ГРАНИЦІ ФУНКЦІЙ БАГАТЬОХ ЗМІННИХ

В цьому розділі розглядатимуться функції, що мають кілька дійсних аргументів і набувають дійсних значень. Наприклад,

$$f(x_1, x_2) = x_1 + 3x_2^2,$$

$$f(x_1, x_2, x_3) = x_3^{x_1} + x_2.$$

Геометрично функції двох змінних зображаються поверхнями:

$$f(x_1,x_2)=x_1^2+x_2^2$$
 – еліптичний параболоїд, $f(x_1,x_2)=\sqrt{1-x_1^2-x_2^2}$ – сфера,

$$f(x_1, x_2) = \sqrt{1 - x_1^2 - x_2^2}$$
 - coepa,

$$f(x_1, x_2) = x_1 - x_2$$
 – площина.

Залежність одної величини від кількох інших часто зустрічається у фізичних законах:

рівняння стану ідеального газу

$$V(P, T, M, \mu) = \frac{MRT}{\mu P},$$

кутова швидкість при обертанні

$$\omega(v,R) = \frac{v}{R}.$$

Нехай $A \subset \mathbb{R}^m$, $f: A \to \mathbb{R}$, x^0 – гранична точка множини A.

ОЗНАЧЕННЯ 1. Число p називають **границею функції** f в точці x^0 , якщо

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in A, \; x \neq x^0, \; \rho(x, x^0) < \delta \; : \; |f(x) - p| < \varepsilon.$$

Величину $+\infty$ називають **границею функції** f в точці x_0 , якщо $\forall C>0 \; \exists \delta>0 \; \forall x\in A, \; x\neq x^0, \; \rho(x,x^0)<\delta \; : \; f(x)>C.$

Величину $-\infty$ називають **границею функції** f в точці x_0 , якщо $\forall C > 0 \; \exists \delta > 0 \; \forall x \in A, \; x \neq x^0, \; \rho(x, x^0) < \delta \; : \; f(x) < -C.$

Позначення: $p = \lim_{x \to x^0} f(x)$.

ЗАУВАЖЕННЯ. Означення зберігається, якщо A – множина в деякому метричному просторі (X, ρ) .

ЗАУВАЖЕННЯ. При m=2 таку границю називають подвійною, при m=3 – потрійною, взагалі при $m\geq 2$ - кратною.

ЗАУВАЖЕННЯ. Для подвійних та потрійних границь використовують позначення

$$\lim_{\substack{x_1 \to x_1^0 \\ x_2 \to x_2^0}} f(x_1, x_2), \quad \lim_{\substack{x_1 \to x_1^0 \\ x_2 \to x_2^0 \\ x_3 \to x_3^0}} f(x_1, x_2, x_3).$$

ЗАУВАЖЕННЯ. Означення можна еквівалентно записати покоординатно, наприклад для скінченної подвійної границі:

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in A, \; (x_1, x_2) \neq (x_1^0, x_2^0), \; |x_1 - x_1^0| < \delta, \; |x_2 - x_2^0| < \delta :$$
$$|f(x_1, x_2) - p| < \varepsilon.$$

Це випливає з оцінок

$$|x_1 - x_1^0| \le \sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2}, |x_2 - x_2^0| \le \sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2},$$

$$\sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2} \le |x_1 - x_1^0| + |x_2 - x_2^0|.$$

ЗАУВАЖЕННЯ. Аналогічно функціям однієї змінної можна давати означення Коші для нескінченних граничних значень, наприклад

$$-\infty = \lim_{\substack{x_1 \to x_1^0 \\ x_2 \to +\infty}} f(x_1, x_2)$$

визначається так:

$$\forall C > 0 \,\exists \delta > 0 \,\exists L > 0 \,\forall (x_1, x_2) \in A, \, |x_1 - x_1^0| < \delta, \, x_2 > L : \, f(x_1, x_2) < -C,$$

ТЕОРЕМА 1. (Про еквівалентність означення Гейне). Величина p є границею функції f в точці x_0 тоді й лише тоді, коли для довільної послідовності $\{x_n: n \geq 1\}$ такої, що:

- $1) \ \forall n \ge 1 : \ x_n \in A;$
- $2) \ \forall n \ge 1 : \ x_n \ne x_0;$
- 3) $x_n \to x_0, n \to \infty$ в $(\mathbb{R}^m, \rho),$ справджується $f(x_n) \to p, \ n \to \infty$.

Доведення аналогічне доведенню в одновимірному випадку.

ТЕОРЕМА 2. (Про єдиність границі). Нехай $f(x) \to p, \ x \to x_0$, і $f(x) \to q, \ x \to x_0$. Тоді p = q.

Доведення. Для довільної послідовності з 1 теореми $f(x_n) \to p, \ n \to \infty$, і $f(x_n) \to q, \ n \to \infty$, отже, за теоремою про єдиність границі послідовності p = q.

ТЕОРЕМА 3. (Про арифметичні дії). Нехай $\lim_{x\to x_0} f(x) = p \in \mathbb{R},$ $\lim_{x \to x_0} g(x) = q \in \mathbb{R}$. Тоді:

- 1) $\forall c \in \mathbb{R} : \lim_{x \to x_0} (cf(x)) = c \lim_{x \to x_0} f(x);$ 2) $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x);$ 3) $\lim_{x \to x_0} (f(x)g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x);$
- 4) якщо $q \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$.

Доведення. Досить підставити довільну послідовність з теореми 1 і скористатися теоремою про арифметичні дії для числових послідовностей.

Аналогічно на цей випадок переносяться інші властивості границь функцій. Зокрема, при обчисленні корисною є

ТЕОРЕМА 4. (Про три функції). Нехай $f, g, h : A \to \mathbb{R}$, і виконуються умови:

- 1) $\forall x \in A : f(x) \le g(x) \le h(x);$
- 2) $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = p$.

Тоді
$$\lim_{x \to x_0} g(x) = p$$
.

ЗАУВАЖЕННЯ. Наведені теореми справджуються також для нескінченних граничних значень змінних та границь у випадку відсутності невизначеностей.

ЗАУВАЖЕННЯ. При обчисленні кратних границь не можна використовувати правила Лопіталя, тому широко використовуються оцінки.

ПРИКЛАДИ. 1. Обчислити границю $\lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} \frac{x_1^2 x_2^2}{x_1^2 + x_2^2}$.

Використовуючи арифметичні дії, $\lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} \frac{x_1^2 x_2^2}{x_1^2 + x_2^2} = \lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} \frac{1}{\frac{1}{x_1^2} + \frac{1}{x_2^2}} = \frac{1}{(+\infty) + (+\infty)} =$

0.

2. Обчислити границю $\lim_{\substack{x_1 \to +\infty \\ x_2 \to +\infty}} \frac{x_1 x_2}{(x_1^2 + x_2^2)^2}$.

Оскільки $0 \leq \left| \frac{x_1 x_2}{(x_1^2 + x_2^2)^2} \right| \leq \frac{1}{2} \frac{x_1^2 + x_2^2}{(x_1^2 + x_2^2)^2}, \text{ a } \lim_{\substack{x_1 \to +\infty \\ x_2 \to +\infty}} \frac{1}{2(x_1^2 + x_2^2)} = 0, \text{ то й шукана}$

границя рівна нулю.

3. Чи існує границя $\lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} \frac{x_1^2 x_2^2}{(x_1^2 + x_2^2)^2}$?

Якщо покласти $(x_1^n,x_2^n)=(0,\frac{1}{n})\to (0,0),\ n\to\infty,$ то $f(x_1^n,x_2^n)=0\to 0,\ n\to\infty.$

Якщо ж покласти $(z_1^n,z_2^n)=(\frac{1}{n},\frac{1}{n})\to (0,0),\ n\to\infty,$ то $f(z_1^n,z_2^n)=\frac{1}{4}\to\frac{1}{4},\ n\to\infty.$

Отже, за означенням Гейне границя не існує.

Розглянемо інший спосіб знаходження границі в точці.

ОЗНАЧЕННЯ 2. Нехай $x_1 \neq x_1^0$ – фіксоване. Тоді $f(x_1, x_2)$ можна розглядати, як функцію однієї змінної. Припустимо, що вона має границю $\lim_{x_2 \to x_2^0} f(x_1, x_2) = g(x_1)$. Якщо при кожному $x_1 \neq x_1^0$ з деякого околу точки x_1^0 існує $g(x_1)$ і існує границя $q = \lim_{x_1 \to x_1^0} g(x_1)$, то величину q називають **повторною границею**.

Позначення:
$$q = \lim_{x_1 \to x_1^0} \lim_{x_2 \to x_2^0} f(x_1, x_2)$$
.

Аналогічно визначається $\lim_{x_2 \to x_2^0} \lim_{x_1 \to x_1^0} f(x_1, x_2)$.

ЗАУВАЖЕННЯ. При знаходженні повторної границі двічі обчислюється границя функції одної змінної (перший раз — з параметром). Тому можна використовувати всі відомі правила обчислення границь (зокрема, правило Лопіталя).

ТЕОРЕМА 5. (Про зв'язок подвійної і повторної границі). Нехай функція $f(x_1,x_2)$ в точці (x_1^0,x_2^0) має подвійну границю q і для всіх $x_1 \neq x_1^0$ з деякого околу точки x_1^0 існує $g(x_1) = \lim_{x_2 \to x_2^0} f(x_1,x_2)$. Тоді існує повторна границя

$$\lim_{x_1 \to x_1^0} \lim_{x_2 \to x_2^0} f(x_1, x_2) = q.$$

Доведення. За означенням

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (x_1, x_2) \neq (x_1^0, x_2^0), \ |x_1 - x_1^0| < \delta, \ |x_2 - x_2^0| < \delta \ : \ |f(x_1, x_2) - q| < \delta$ Отже, при фіксованому $x_1 \neq x_1^0, \ |x_1 - x_1^0| < \delta$ маємо

$$\forall x_2 \neq x_2^0, |x_2 - x_2^0| < \delta : |f(x_1, x_2) - q| < \varepsilon.$$

Перейдемо тут до границі при $x_2 \to x_2^0$, яка існує за умовою. Отримаємо:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1 \neq x_1^0, \ |x_1 - x_1^0| < \delta : \ |g(x_1) - q| < \varepsilon,$$

тобто існує повторна границя, рівна q.

ЗАУВАЖЕННЯ. Ця теорема показує, що якщо подвійна і повторні границі існують, то вони рівні між собою.

ПРИКЛАДИ. 1. $\lim_{x_1\to 0}\lim_{x_2\to 0}\frac{x_1^2x_2^2}{(x_1^2+x_2^2)^2}=0$, інша повторна границя теж рівна нулю, хоча подвійна границя не існує.

- 2. $\lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} \lim_{\substack{x_2 \to 0 \\ x_2 \to 0}} x_2 \sin \frac{1}{x_1} = 0$, $\lim_{\substack{x_2 \to 0 \\ x_2 \to 0}} \lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} x_2 \sin \frac{1}{x_1} \neq 0$, $\lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} x_2 \sin \frac{1}{x_1} = 0$, бо $0 \le |x_2 \sin \frac{1}{x_1}| \le |x_2| \to 0$, $x_1 \to 0$, $x_2 \to 0$.
- 3. $\lim_{x_1 \to 0} \lim_{x_2 \to 0} \frac{2x_1 3x_2 + x_1^2 + x_2^2}{x_1 + x_2} = \lim_{x_1 \to 0} (2 + x_1) = 2, \quad \lim_{x_2 \to 0} \lim_{x_1 \to 0} \frac{2x_1 3x_2 + x_1^2 + x_2^2}{x_1 + x_2} = \lim_{x_2 \to 0} (-3 + x_2) = -3,$

 $\lim_{\substack{x_1 \to 0 \\ x_2 \to 0}} \frac{2x_1 - 3x_2 + x_1^2 + x_2^2}{x_1 + x_2}$ не існує, бо існування суперечить теоремі.

НЕПЕРЕРВНІСТЬ ФУНКЦІЙ БАГАТЬОХ ЗМІННИХ

Нехай $f:A\to\mathbb{R},\ A\subset\mathbb{R}^m,\ x_0$ – гранична точка множини A.

ОЗНАЧЕННЯ 1. Функцію $f:A\to\mathbb{R}$ називають неперервною в точці $x_0,$ якщо $\lim_{x\to x_0}f(x)=f(x_0).$

ЗАУВАЖЕННЯ. 1. Для функції двох змінних це – подвійна границя, для функції трьох змінних – потрійна.

2. Вважатимемо, що в ізольованій точці функція завжди неперервна.

ОЗНАЧЕННЯ 2. Функцію $f:A\to\mathbb{R}$ називають неперервною на множині A, якщо вона неперервна в кожній точці цієї множини.

Позначення: $f \in C(A)$.

ТЕОРЕМА 1. (Про арифметичні дії). Нехай f,g — неперервні в точці $x_0, c \in \mathbb{R}$. Тоді функції cf, f+g, fg неперервні в точці x_0 . Якщо $g(x_0) \neq 0$, то неперервна в точці x_0 також функція $\frac{f}{g}$.

Доведення. Випливає з теореми про арифметичні дії для границь функцій.

ТЕОРЕМА 2. (Про неперервність складної функції). Нехай $f: A \to B, \ A \subset \mathbb{R}^m, \ g: B \to \mathbb{R}, \ B \subset \mathbb{R}$. Нехай функція f неперервна в точці $x_0 \in A$, а функція g неперервна в точці $f(x_0) \in B$.

Тоді функція $h(x) = g(f(x)), x \in A$, є неперервною в точці $x_0 \in A$.

Доведення. Нехай послідовність $\{x_n: n \geq 1\}$ задовольняє умови означення Гейне. Тоді $f(x_n) \to f(x_0), \ n \to \infty$. Знову застосовуючи означення Гейне, маємо $h(x_n) = g(f(x_n)) \to g(f(x_0)) = h(x_0), \ n \to \infty$.

ПРИКЛАДИ. 1. Стала функція $f(x) = L, x \in \mathbb{R}^m$, неперервна в кожній точці.

- 2. Координатна функція $f_k(x) = x_k, \ x \in \mathbb{R}^m, \ k = \overline{1,m}$, неперервна в кожній точці, бо збіжність в \mathbb{R}^m покоординатна: $x \to x_0 \implies x_k \to x_k^0$.
- 3. Неперервними є многочлени від m змінних, тобто суми одночленів, кожен з яких добуток числа і кількох степенів $x_k^{p_k},\ p_k\in\mathbb{N}$. Неперервність є наслідком теореми про арифметичні дії.
- 4. Функція $h(x_1, x_2) = \sqrt{x_1^2 + x_2^2} + \frac{x_1 x_2}{e^{x_1 + x_2}}$ неперервна на \mathbb{R}^2 , як сума функцій, кожна з яких неперервна, як складна функція.

Можна сформулювати корисний критерій неперервності в термінах прообразу. Нехай $f:A\to\mathbb{R},\ A\subset\mathbb{R}^m$. Нагадаємо, що

$$f^{-1}(G) = \{x \in A \mid f(x) \in G\}.$$

ТЕОРЕМА 3. (Про характеризацію неперервності). Функція f неперервна на $A \Leftrightarrow$

для кожної відкритої множини $G\subset \mathbb{R}$: $f^{-1}(G)$ — відкрита в $(A,\rho)\Leftrightarrow$

для кожної замкненої множини $G \subset \mathbb{R}$: $f^{-1}(G)$ – замкнена в (A, ρ) . Доведення. Необхідність. Нехай $f \in C(A)$. Тоді якщо $G \subset \mathbb{R}$ – від-крита і $x_0 \in f^{-1}(G)$, то

$$f(x_0) \in G \implies \exists \varepsilon > 0 : B(f(x_0), \varepsilon) \subset G.$$

За означенням неперервності для цього ε

$$\exists \delta > 0 \ \forall x \in A, \ \rho(x, x_0) < \delta : |f(x) - f(x_0)| < \varepsilon \Rightarrow f(x) \in G,$$

тобто

$$f(B(x_0, \delta)) \subset G \implies B(x_0, \delta) \subset f^{-1}(G).$$

Отже, $f^{-1}(G)$ – відкрита множина.

Якщо ж G – замкнена множина, то

$$f^{-1}(G) = A \backslash f^{-1}(\mathbb{R} \backslash G)$$

– замкнена, бо прообраз відкритий за вже доведеним.

Достатність. Нехай $x_0 \in A$, $\varepsilon > 0$. За умовою множина $f^{-1}(B(f(x_0), \varepsilon))$ відкрита, отже містить кулю $B(x_0, \delta)$. Це означає, що

$$\exists \delta > 0 \ \forall x \in A, \ \rho(x, x_0) < \delta \ : \ |f(x) - f(x_0)| < \varepsilon.$$

Якщо справджується твердження для замкнених множин, то твердження для відкритих можна отримати з рівності, наведеної в необхідності.

ПРИКЛАДИ. Множина $A=\left\{(x_1,x_2)\mid x_1^2+x_2^4<1\right\}$ відкрита, бо $A=f^{-1}(G),$ де $f(x_1,x_2)=x_1^2+x_2^4,\ G=(-\infty,1).$

Неперервні функції однієї змінної мали особливо гарні властивості на відрізку. Для того, щоб отримати аналогічні властивості, в багатовимірному випадку потрібний новий клас множин.

ОЗНАЧЕННЯ 3. Множину $F \subset X$ називають **компактною** в (X,d), якщо кожна послідовність в F містить підпослідовність, збіжну до елемента F.

ПРИКЛАДИ. 1. Скінченна множина завжди компактна, бо довільна послідовність містить підпослідовність з однакових елементів.

- 2. Множина \mathbb{Z} в (\mathbb{R}, ρ) не є компактною, бо послідовність $\{n: n \geq 1\}$ не містить збіжної підпослідовності.
- 3. Множина (0,1] в (\mathbb{R},ρ) не є компактною, бо послідовність $\left\{\frac{1}{n}: n \geq 1\right\}$ не містить збіжної підпослідовності.
- 4. Множина $\left\{\frac{1}{n}: n \geq 1\right\} \cup \{0\}$ в (\mathbb{R}, ρ) є компактною, бо довільна послідовність містить або підпослідовність з однакових елементів, або підпослідовність, збіжну до нуля.

Властивості компактних множин:

1. Компактна множина замкнена.

Доведення. Нехай множина F компактна, x_0 – її гранична точка, тобто $\exists \{x_n : n \geq 1\} \subset F, \ x_n \to x_0, \ n \to \infty$. Тоді за означенням існує підпослідовність $\{x_{n_k} : k \geq 1\}$, збіжна до деякого елемента $y \in F$. Але підпослідовність збігається до того ж елемента, що і вся послідовність, отже $x_0 = y \in F$. Тому F містить всі свої граничні точки.

2. Компактна множина обмежена.

Доведення. Нехай множина F компактна. Якщо припустити від супротивного, що вона необмежена, тобто не міститься в жодній кулі, то, обравши довільну точку x_0 , знайдемо елементи $\{x_n: n \geq 1\} \subset F$ такі, що $x_n \notin \overline{B}(x_0,n)$, тобто $d(x_n,x_0) \geq n$.

За означенням існує підпослідовність $\{x_{n_k}: k \geq 1\}$, збіжна до деякого елемента $y \in F$. За властивістю метрики $d(x_{n_k}, x_0) \to d(y, x_0), k \to \infty$, але $d(x_{n_k}, x_0) \geq n_k \to +\infty, k \to \infty$. Протиріччя.

3. Замкнена підмножина компактної множини компактна.

Доведення. Довільна послідовність у підмножині має підпослідовність, збіжну до деякого елемента множини. Але з замкненості випливає, що цей елемент належить підмножині.

ТЕОРЕМА 4. **(Критерій компактності в** (\mathbb{R}^m, ρ) **).** Множина в (\mathbb{R}^m, ρ) компактна тоді й лише тоді, коли вона замкнена і обмежена.

Доведення. Необхідність доведена в загальному випадку.

Достатність. Нехай F — замкнена і обмежена множина, $\left\{(x_1^{(n)},x_1^{(n)},...,x_m^{(n)}):n\geq 1\right\}$ — послідовність в F. Тоді числова послідовність $\left\{x_1^{(n)}:n\geq 1\right\}$ обмежена, отже має збіжну до x_1^0 підпослідовність $\left\{x_1^{(n(k_1))}:k_1\geq 1\right\}$. Числова послідовність $\left\{x_2^{(n(k_1))}:k_1\geq 1\right\}$ обмежена, отже має збіжну до x_2^0 підпослідовність $\left\{x_2^{(n(k_1))}:k_2\geq 1\right\}$ і т. д. Числова послідовність $\left\{x_m^{(n(k_m))}:k_m\geq 1\right\}$ обмежена, отже має збіжну до x_m^0 підпослідовність $\left\{x_m^{(n(k_m))}:k_2\geq 1\right\}$. Тоді $x_1^{(n(k_1))}\to x_1^0,...,x_m^{(n(k_m))}\to x_m^0$. Враховуючи покоординатну збіжність в $\mathbb{R}^m, (x_1^{(n(k_1))},...,x_m^{(n(k_m))})\to (x_1^0,...,x_m^0)$. Враховуючи замкненість множини $F, (x_1^0,...,x_m^0)\in F$.

ПРИКЛАДИ. Компактами є $[a,b], \{(x_1,x_2) \mid x_1^2 + 2x_2^2 \le 3\}$.

ТЕОРЕМА 4. **(Критерій компактності в** $(C([a,b]), \rho)$). Множина F в $(C([a,b]), \rho)$ компактна тоді й лише тоді, коли виконуються умови:

- 1) F замкнена;
- 2) F рівномірно обмежена, тобто

$$\exists C > 0 \ \forall f \in F \ \forall x \in [a, b] : |f(x)| < C;$$

3) F – одностайно неперервна, тобто

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall f \in F \; \forall x', x'' \in [a, b], \; |x' - x''| < \delta \; : \; |f(x') - f(x'')| < \varepsilon.$

Наведемо тепер кілька теорем, що дають властивості неперервних функцій на компактах.

ТЕОРЕМА 5. (Про образ компактної множини). Нехай $f \in C(A)$, A – компакт в (\mathbb{R}^m , ρ). Тоді f(A) – компакт в (\mathbb{R} , ρ).

Доведення. Нехай $\{y_n: n \geq 1\} \subset f(A)$. Тоді за означенням образу $y_n = f(x_n), \ x_n \in A, \ n \geq 1$. За означенням компактності існує підпослідовність $\{x_{n_k}: k \geq 1\}$, збіжна до $x \in A$. Але за означенням Гейне $f(x_{n_k}) \to f(x) \in f(A), \ k \to \infty$.

ТЕОРЕМА 6. (Узагальнення теорем Вейєрштрасса). Нехай $f \in C(A), A$ – компакт в (\mathbb{R}^m, ρ) . Тоді

- 1) $\exists C > 0 \ \forall x \in A : |f(x)| \leq C$ (обмеженість);
- 2) $\exists x_*, x^* \in A : f(x_*) = \inf_{x \in A} f(x), f(x^*) = \sup_{x \in A} f(x).$

Доведення. За попередньою теоремою множина f(A) компактна, а отже обмежена і замкнена. Обмеженість дає п. 1, а з замкненості випливає, що множина містить точні межі.

ТЕОРЕМА 7. (Про неперервність оберненої функції). Нехай $f: A \to B$ – бієкція, $f \in C(A)$, A – компакт в (\mathbb{R}^m, ρ). Тоді $f^{-1} \in C(B)$.

Доведення. Бієктивність гарантує існування оберненої функції. Нехай $G \subset A$ — відкрита множина в (A, ρ) . Тоді прообраз $(f^{-1})^{-1}(G) = \{y \in B \mid f^{-1}(y) \in G\} = \{y \in B \mid y \in f(G)\} = f(G) = B \setminus f(A \setminus G)$ — відкрита множина, як доповнення образу компакту.

За критерієм неперервності f^{-1} – неперервна.

ЗАУВАЖЕННЯ. Неперервну функцію, яка є бієкцією, і обернена до якої теж неперервна, називають **гомеоморфізмом.**

ОЗНАЧЕННЯ 4. Нехай (X,d) – метричний простір, $S\subset X$. Множину S називають зв'язною, якщо не існує відкритих множин A,B в X таких, що:

1)
$$A \cap B = \emptyset$$
; 2) $A \cap S \neq \emptyset$; 3) $B \cap S \neq \emptyset$; 4) $S \subset A \cup B$.

ПРИКЛАДИ. На прямій множини $(a,b),(a,+\infty)$ зв'язні, а множина $[0,1]\cup[2,3]$ незв'язна.

ТЕОРЕМА 8. (Про зв'язність образу). Нехай $f \in C(A)$, A – зв'язна множина в (\mathbb{R}^m , ρ). Тоді f(A) – зв'язна множина в (\mathbb{R} , ρ).

ОЗНАЧЕННЯ 5. Функцію $f:A\to\mathbb{R},\ A\subset\mathbb{R}^m$, називають **рівно- мірно неперервною** на множині A, якщо:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x', x'' \in A, \ \rho(x', x'') < \delta : |f(x') - f(x'')| < \varepsilon.$$

ТЕОРЕМА 9. **(Кантора).** Нехай $f \in C(A), A$ – компакт в (\mathbb{R}^m, ρ) . Тоді f рівномірно неперервна на A.

Доведення. Припустимо від супротивного, що f не є рівномірно неперервною. Тоді для деякого $\varepsilon > 0$ і кожного $\delta_n = \frac{1}{n} (n \in \mathbb{N})$ існують $x^{(n)}, y^{(n)} \in A$, такі, що

$$\rho(x^{(n)}, y^{(n)}) < \frac{1}{n}, \quad |f(x^{(n)}) - f(y^{(n)})| \ge \varepsilon.$$

Оберемо за означенням компактності збіжну до $x \in A$ підпослідовність $\{x^{n(k)}: k \geq 1\}$, а потім збіжну до $y \in A$ підпослідовність $\{y^{n(k(l))}: l \geq 1\}$ послідовності $\{y^{n(k)}: k \geq 1\}$. Враховуючи оцінку для відстаней, границі співпадають y = x. Тоді за означенням Гейне неперервності $f(x^{n(k(l))}) - f(y^{n(k(l))}) \to 0, \ l \to \infty$. Але це суперечить оцінці для значень функції.