Integration Review

Definition of the definite integral:

Let let f(x) be continuous on [a, b] and x_0, x_1, \ldots, x_n be the endpoints of n equal subdivisions of the interval [a, b], with $x_0 = a$ and $x_n = b$. Set Δx be the length of each subdivision, so $\Delta x = \frac{b-a}{n}$. For each $1 \le i \le n$, let x_i^* be any point in the subinterval $[x_{i-1}, x_i]$. Then the definite integral of f(x) from a to b is

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x.$$

This value measures the amount of net (signed) area from a to b between f and the x-axis.

FTC part 2: $\int_a^b f(x) dx = F(b) - F(a)$ where F(x) is an antiderivative of f(x).

FTC part 1:
$$F(x) = \int_a^x f(t) dt \implies F'(x) = f(x)$$
.

Basic indefinite integrals (antiderivatives), C is any constant:

$$\int x^p dx = \frac{1}{p+1}x^{p+1} + C, \quad p \neq -1$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \cos(x) dx = \sin(x) + C$$

$$\int \sin(x) dx = -\cos(x) + C$$

$$\int \sec^2(x) dx = \tan(x) + C$$

$$\int \tan(x) \sec(x) dx = \sec(x) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$$

$$\int \frac{1}{1+x^2} dx = \arctan(x) + C$$

Properties of integrals:

Linearity:
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

$$\int cf(x) dx = c \int f(x) dx$$
, c any constant

Switching limits:
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

Breaking up integrals: If c is any point in
$$[a, b]$$
, then $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$

Comparison properties: If
$$f(x) \ge 0$$
 for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$

If
$$f(x) \leq g(x)$$
 for $a \leq x \leq b$, then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$