Statistics 2

Overview Statistics I

Casper Albers & Jorge Tendeiro Lecture 0, 2019 – 2020

- Statistics II will introduce a range of inferential methods for finding relations between variables in a wide range of practical settings.
- These methods all continue from the basics of statistical inference you have learned in Statistics I:
 Hypothesis testing, confidence intervals, p-values, the t-test, normal distribution, z-scores, checking assumptions,...
- ▶ In Statistics II we assume you have active knowledge of these topics.
- Recap this material in the textbook (Chapters 4, 5, 6).

Goal of today: A refresher of these topics.

Overview

Inferential statistics

What is inference? Sampling distribution Significance tests Confidence intervals

Inferential statistics

Inference: To derive as a conclusion from facts or premises.

Confidence intervals (CIs)

- An x% CI contains an (unknown) population parameter with x% certainty.
- When repeating the study many times, about x% of the CIs will contain the parameter.

Hypothesis testing

The probability of the current sample result (or more extreme) is so small, under the null hypothesis, that it is unlikely that the population parameter has a certain value (defined under \mathcal{H}_0).

Inferential statistics - Example

Inferring number of sex partners

How many male sex partners did females have since their 18th birthday (age 23-29)?

N	Mean	SD
129	6.6	13.3

95% CI = (4.4, 8.8)

We are 95% confident that μ , the population mean number of sex partners, lies in this interval.

$\mathcal{H}_0: \mu=1$ vs $\mathcal{H}_a: \mu>1$

- t(128) = 4.78, p < .001.
- If \mathcal{H}_0 were true, the sample result would be extremely unlikely. Thus, we reject \mathcal{H}_0 .

Population and sample

Use a fact about a sample to estimate the truth about the whole population.

Population and sample

Example: The sample mean \overline{y} and the population mean μ .

The sample mean \overline{y} can be used to:

- ightharpoonup Estimate μ .
- Make probabilistic statements about μ :
 - "The 95% CI for μ is (4.4, 8.8)."
 - We reject the hypothesis that $\mu = 1$ at $\alpha = 5\%$.

To make such probabilistic statements we need knowledge about the sampling distribution of the statistic.

Sampling distribution

Understanding the sampling distribution of the sample mean (for a fixed sample size n):

- 1. Collect a sample. Compute the sample mean: \overline{y}_1 .
- 2. Collect a sample. Compute the sample mean: \overline{y}_2 .
- 3. Collect a sample. Compute the sample mean: \overline{y}_3 .
- 4. ... (say, some hundreds of times)

This provides a set of sample means: $\{\overline{y}_1, \overline{y}_2, \overline{y}_3, \ldots\}$.

This set of scores has a certain distribution:

The sampling distribution of the mean.

Of course, the same principle generalizes to any statistic other than the sample mean.

Sampling distribution

Hence,

The sampling distribution is the probability distribution of a statistic in the sample.

What do we know about the sampling distribution of \overline{y} that allows us using it to estimate μ ?

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{y_1 + y_2 + \dots + y_n}{n}$$

Sampling distribution

Sampling distribution of \overline{y} :

- ► SD := $\sigma_{\overline{y}} = \frac{\sigma}{\sqrt{n}}$: Standard Error (SE) of the mean.
- ▶ It is normally distributed if the population of *y* values is also normally distributed (regardless of the sample size *n*):

$$y_i \sim N(\mu, \sigma) \Longrightarrow \overline{y} \sim N(\mu_{\overline{y}}, \sigma_{\overline{y}}) = N\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

▶ If the population of *y* values is not normally distributed, use the Central Limit Theorem (CLT):

For a random sample of size n from an arbitrary distribution with mean μ and standard deviation σ , the sampling distribution of the sample mean is approximately normal with mean μ and standard deviation σ/\sqrt{n} , if n is large.

Inference: Basics

Q: What's the use of sampling distributions for inferential statistics?

A: Sampling distributions help quantifying which values of the statistic are most/least probable. This allows associating probabilities to sample values:

- Significance tests: p-values.
- Confidence intervals: The lower and upper boundaries.

Significance tests

Underlying principles:

- A formal procedure for comparing observed data with an hypothesis whose truth we want to assess.
- It is intended to assess the evidence provided by data against \mathcal{H}_0 and in favor of \mathcal{H}_a .

There are two types of hypotheses in significance testing:

- Null hypothesis (\mathcal{H}_0) : Statement quantifying a value for the population parameter of interest.
- Alternative hypothesis (\mathcal{H}_a): Statement contradicting the null hypothesis (smaller, larger, different).

The alternative hypothesis always contradicts the null hypothesis.

Example:

$$\mathcal{H}_0: \mu = 0$$
 versus $\mathcal{H}_a: \mu \neq 0$

Significance tests

Each significance test is based on a test statistic..

General form of a test statistic for z-tests and t-tests:

Example:

One-sample z test

- ▶ In the population: $y \sim N(\mu, \sigma)$, σ known.
- ▶ Sampling distribution: $\overline{y} \sim N(\mu, \sigma/\sqrt{n})$.

$$Z=rac{\overline{y}-\mu_0}{\sigma/\sqrt{n}}\sim {\sf N}(0,1)$$

Significance tests: *p*-values

The p-value is the probability of getting an outcome as extreme or more extreme than the actually observed outcome from the sample, given that \mathcal{H}_0 were true.

- ▶ The smaller the *p*-value, the stronger the evidence against \mathcal{H}_0 , that is, the more unlikely \mathcal{H}_0 is.
- What is 'small'? Compare p with the significance level α (e.g., $\alpha=5\%$).

- ▶ $y \sim N(\mu, \sigma)$. Both μ and σ unknown.
- \vdash $\mathcal{H}_0: \mu = \mu_0.$
- Estimate σ with $s = \sqrt{\frac{1}{n-1} \sum_{i} (y_i \overline{y})^2}$.
- Test statistic:

$$t=rac{\overline{y}-\mu_0}{s/\sqrt{n}}\sim t(n-1).$$

The t distribution is used to compute the p-value.

- $ightharpoonup y_1 \sim N(\mu_1, \sigma_1), \ y_2 \sim N(\mu_2, \sigma_2).$ All μ s and σ s unknown.
- $\mathcal{H}_0: \mu_1 = \mu_2$ or, equivalently, $\mathcal{H}_0: \mu_1 \mu_2 = 0$.
- Test statistic
 - If we can assume that $\sigma_1 = \sigma_2$ (ideal):

$$t = \frac{(\overline{y}_1 - \overline{y}_2) - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

where
$$s_p = \mathsf{pooled} \ \mathsf{SD} = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{(n_1-1) + (n_2-1)}}$$
 .

Otherwise:

$$t = \frac{(\overline{y}_1 - \overline{y}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \sim t(k)$$

(k approximated by software).

The t distribution is used to compute the p-value.

Example: 'Sesame Street' Data.

- ► Two populations:
 - Boys $(n_1 = 115, \text{ mean} = 26.39).$
 - ightharpoonup Girls ($n_2 = 125$, mean = 26.98).
- ▶ Pooled SD = 13.30.
- y = POSTLET, knowledge of the alphabet.

Independent Samples Test t-test for Equality of Means 95% Confidence Interval of the Sig. Difference (2-tail SE. Mean ed) Diff. Diff. Lower Upper POSTLET Equal variances .340 .734 -.5847 1.72 -3.9694 2.8000 assumed Equal variances 26.39 - 26.98df = 115 + 125 - 2Don't reject \mathcal{H}_0 $13.30 \times \sqrt{1/115+1/125}$

Significance tests: Which and where

- Regression
 - t-tests: Parameters.F-tests: Model fit
- Correlation
 - t-test: Special case $(\mathcal{H}_0 : \rho = 0)$.
 - z-test: Fisher's Z transformation.
- Analysis of variance (ANOVA)
 - t-tests: Contrasts, multiple comparisons.
 - F-tests: Model fit.

Confidence intervals (CIs)

Underlying principles:

- Numerical interval that, with a given degree of certainty, contains the value of a population parameter.
- ► Confidence level: The degree of certainty, most commonly 95%.
- After repeating the experiment many times, 95% of the times the confidence interval will contain the population parameter.

Confidence intervals: Mean of one population

Known σ : z confidence interval

▶ In the population: $y \sim N(\mu, \sigma)$, σ known.

$$CI = \overline{y} \pm z^* \times \frac{\sigma}{\sqrt{n}}$$
 SE of the mean

 $z^* = \text{critical value from } N(0,1)$

Unknown σ : t confidence interval

- ▶ In the population: $y \sim N(\mu, \sigma)$. Both μ and σ unknown.
- **E**stimate σ with $s = \sqrt{\frac{1}{n-1} \sum_{i} (y_i \overline{y})^2}$.

$$\mathsf{CI} = \overline{\mathsf{y}} \pm \mathsf{t}^* \times \frac{\mathsf{s}}{\sqrt{\mathsf{n}}}$$

 $t^* = \text{critical value from } t(n-1)$

Confidence intervals: Comparing two means

Assume equal variances:

$$y_1 \sim N(\mu_1, \sigma), \ y_2 \sim N(\mu_2, \sigma).$$

 μ 's and σ unknown.

- \triangleright Sample sizes: n_1 , n_2 .
- Recall the test statistic:

$$t=rac{(\overline{y}_1-\overline{y}_2)}{s_
ho\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2), s_
ho= extsf{pooled}$$
 SD

Confidence interval:

$$\mathsf{CI} = (\overline{y}_1 - \overline{y}_2) \pm t^* \times s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}$$

 $t^* = \text{critical value from } t(n_1 + n_2 - 2)$

Confidence intervals: Comparing two means

Example: 'Sesame Street' Data

- Two populations:
 - Boys $(n_1 = 115, \text{ mean} = 26.39).$
 - ightharpoonup Girls ($n_2 = 125$, mean = 26.98).
- ▶ Pooled SD = 13.30.
- $\rightarrow y = POSTLET$, knowledge of the alphabet.

Independent Samples Test

Confidence intervals

The margin of error of a CI decreases (i.e., the CI becomes smaller) if:

- ► The confidence level decreases.
- ► The sample size increases.
- ► The SD decreases.

Possible correct interpretations of a 95% CI = (a, b):

- We say that we are 95% confident that the unknown parameter lies between a and b.
- We arrived at these numbers by a method that gives correct results 95% of the time.
- In the long run, 95% of all samples lead to an interval that covers the unknown parameter.

Confidence intervals

What you cannot say about a 95% CI:

There is 95% probability that the unknown parameter from the population is inside the CI.

Q: Why not?

A: The population parameter that one wishes to estimate is supposed to be fixed (and unknown, obviously).

A specific CI either contains or does not contain the parameter.

This is not a matter of probability.

Cls vs significance tests

Property:

A two-sided test with significance level α rejects the hypothesis

$$\mathcal{H}_0: \mu = \mu_0$$

if and only if the value μ_0 lies outside the $(1-\alpha)$ % CI for μ .

Example

Suppose the 95% CI for the difference between the means of two groups is

95% CI =
$$(-3.97, 2.80)$$
.

It can be concluded that the null hypothesis \mathcal{H}_0 : $\mu_1=\mu_2$ cannot be rejected for $\alpha=5\%$ because 0 $(=\mu_1-\mu_2)$ is contained in the CI.

Start of the course. Contents of Lecture 1:

- ▶ Rules and regulations of the course: Lectures, practicals, homework, exam.
- Overview of methods to be introduced in Statistics II.

Read:

No new reading material. Make sure your Statistics I knowledge is up-to-date.