实验 2 伸长法测量杨氏模量

材料受外力作用时必然发生形变,在弹性范围内,其应力(单位面积上受力大小)和应变(即相对形变)的比值称为弹性模量,这是衡量材料受力后形变大小的参数之一,是设计各种工程结构时选用材料的主要依据之一. 如果应力使物体长度发生拉伸或压缩形变,则对应的弹性模量称为杨氏模量. 杨氏模量的测量方法有动态法与静态法,本实验所用的伸长法是静态法的一种,常用的静态法还有梁弯曲法. 本实验用显微镜对微小形变量进行直接测量,并学习采用作图法进行数据处理.

【实验目的】

- (1) 掌握用伸长法测量材料杨氏模量的方法和原理.
- (2) 掌握作图法处理数据的方法.

【实验仪器】

LY-2型杨氏模量测量仪、螺旋测微器. 实验装置如图 4.2.1 所示.

图 4.2.1 LY-2 型杨氏模量测量仪

【实验原理】

1. 杨氏模量

长度为 L、横截面为 S 的各处均匀的物体沿长度方向受力 F 作用时,会有长度变化 δL . 由胡克定律知,在弹性形变的范围内,相对形变量 $\delta L/L$ (称应变)与单位面积上的作用力 F/S (应力)成正比,于是有

$$\frac{\delta L}{L} = \frac{1}{E} \cdot \frac{F}{S} \quad (4.2.1)$$

式中 E 就称作杨氏模量. 由上式得

$$E = \frac{FL}{S\delta L} \quad (4.2.2)$$

2. 测量原理

如图 4.2.1 所示,在悬挂的金属丝下端连着十字叉丝板和砝码盘,当盘中加上质量为m的砝码时,金属丝所受的拉力增大,增量为 δF

$$\delta F = mg \quad (4.2.3)$$

在这个力的作用下金属丝产生了 δL 的拉伸形变,十字叉丝随着金属丝的伸长同

样下降 δL . 而 δL 通过显微镜的物镜作直接测量,刻度最小分度为 0.05 mm.

设金属丝的直径为 d, 金属丝截面积 $S = \frac{1}{4}\pi d^2$, 将 S 及 (4.2.3) 式代入 (4.2.22) 式, 得

$$E = \frac{4mgL}{\pi d^2 \delta L} \quad (4.2.4)$$

测出 δL 即可得到杨氏模量 E.

【实验内容】

- 1. 使用拉伸法测量金属丝的杨氏模量.
- 2. 使用作图法处理数据

【预习问题】

- 如果金属丝在测量前存在局部扭曲,测量时可能出现什么现象?需要如何 降低影响?
- 2. 如何快速的找到十字叉丝?

【实验步骤与数据记录】

- 1. 仪器调节
- (1) 调松十字叉线板限位螺丝,调节底座上的调平螺钉,使十字叉线板居中自由悬挂并且不旋转.
- (2) 移动读数显微镜,调整聚焦,使显微镜的刻度线和十字叉丝板的叉丝清楚对齐,叉丝初始偏离 0 刻度线~2 个刻度的位置.
 - 2. 测量金属丝的伸长量

在砝码托盘上逐次加上 200 g 的砝码, 共加 9 次. 记录对应的读数为 c_i (i=1,

2, …, 8, 9). 再将所加的砝码逐个减去,记下对应的读数为 c'_i (i=1, 2, …, 8, 9),并将两对应读数 c_i 与 c'_i 求平均值, $\overline{c}_i = \frac{c_i + c'_i}{2}$ (i=8, 7, …, 1, 0, 舍掉 c_9),数据填入表 4.2.1.

3. 测量金属丝的直径

用螺旋测微器测量在金属丝的不同位置测量直径 d 共 5 次,求平均值,填入表 4.2.1

表 4.2.1 金属丝杨氏模量测量数据

d mm	零点 修正	1		2		3	4		5		平均值
									_		
m_i Kg		加砝码 c _i mm		Ci	减砝码 c'i mm		$\overline{c_i} = (c_i + c'_i)/2$ mm		$\delta L = \bar{c}_i - \bar{c}_0$		
m 0		c_0			c'_0		\bar{c}_0				
<i>m</i> 1		c_1			c'_1		\bar{c}_1			δL_1	
m_2		c_2			c'_2		\bar{c}_2			δL_2	
<i>m</i> ₃		c_3			c'_3		\bar{c}_3			δL_3	
<i>m</i> 4		c_4			c'_4		\bar{c}_4			δL_4	
<i>m</i> 5		<i>c</i> ₅			c'_5		\bar{c}_5			δL_5	
<i>m</i> ₆		c_6			c'_{6}		\bar{c}_6			δL_6	
<i>m</i> 7		<i>C</i> ₇			c'_7		\bar{c}_7			δL_7	
<i>m</i> 8		<i>c</i> ₈			c'_8		\bar{c}_8			δL_8	
m 9		<i>C</i> ₉									

4. 数据处理

(1)由式 (4.2.4) 得

$$\delta L = \frac{4gL}{\pi d^2 E} m (4.2.5)$$

(2) 以 m 为横坐标, δL 为纵坐标作图,并进行线性拟合,求斜率 k. 金属丝长度 L,本地重力加速度(如广州地区的重力加速度 g=9.788 m/s^2)由实验室给出,根据

$$k = \frac{4gL}{\pi d^2 E},$$

求出杨氏模量 E.

【注意事项】

- 1. 测量时限位螺丝仅插入凹槽限制十字叉线板的旋转运动,不能锁死.
- 2. 从显微镜目镜里观察,位于分划板上的刻度尺与十字叉丝的竖线平行,才能测量;
 - 3. 测量金属丝直径时,需要在不同高度的不同方向进行测量.

【思考题】

1. 杨氏模量测量中,微小伸长量的测量除了可以采用显微镜来进行测量外,

还可以采用光杠杆的方法测量,请了解并说明其原理.

2. 为什么要测量加、减砝码的伸长量,并用其平均值进行计算。

【物理史话】

托马斯·杨

图 4.2.2 托马斯·杨

杨氏模量是由英国物理学家托马斯·杨(Thomas Young, 1773 — 1829)首次引入的概念,用以描述固体在力作用下的形变. 托马斯·杨在物理上有诸多建树,比如,设计了杨氏双缝干涉实验,为光的波动说奠定了基础; 首次测量了7种光的波长,最先建立了三原色原理; 提出了托马斯·杨方程描述表面张力与接触角的关系,等等. 当然,托马斯·杨的贡献并不局限于光波学说方面,他在生理学、艺术、机械、医学、语言、考古、保险等领域均有所涉猎,并且建树甚广,是和阿基米德、牛顿和欧拉等并肩的全才. 因此,托马斯·杨被誉为"The last man who knew everything".