

type 3rd regions, resp., by heat treatment using the Si film in the contact holes as diffusion sources, especially in preparation of bipolar or bipolar complementary MOS semiconductor devices containing npn and pnp transistors. Concentrate profile in the emitter region is made easy by double diffusion, and processing step is decreased.

- IT 7440-21-3, Silicon, uses
 RL: DEV (Device component use); USES (Uses)
 (formation of emitter regions by double diffusion in preparation of bipolar complementary MOS transistors)
- RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 10 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1997:215560 HCPLUS

DN 126:219448

TI Manufacture of NPN and vertical PNP transistors on same semiconductor substrates

IN Nemoto, Kyoshi

PA Olympus Optical Co, Japan

SO Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 09027551	A2	19970128	JP 1995-197914	19950712

PRAI JP 1995-197914 19950712

AB The emitters of the vertical PNP transistors comprise the shallow and highly-concentrated P-type diffusion layers and highly-doped (with, e.g., B) poly-Si layers on the diffusion layers.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
 (doped; manufacture of NPN and vertical PNP transistors with emitters from)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 11 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1996:714579 HCPLUS

DN 126:40582

TI The ideal NPN vertical BIMOS transistor:

Analytical model, simulation and experimental results of the collector current

AU Galy, P. H.; Berland, V.

CS Pole Universitaire Leonard de Vinci, Paris, F-92916, Fr.

SO International Journal of Electronics (1996), 81(5), 501-516

CODEN: IJELA2; ISSN: 0020-7217
 PB Taylor & Francis

DT Journal
 LA English

AB Combining a NPN silicon bipolar transistor with a MOSFET leads to a high collector current in the hybrid mode. As this transistor has already been qual. described and as simulation was previously presented, this paper emphasizes the theor. study of the collector current, I_c , when the transistor works in the hybrid mode. A model is proposed to demonstrate the great influence of the gate bias and to confirm the previous simulation results. Exptl. results were performed with a surface PNP BIMOS transistor sample: they confirm the anal. expression of the collector current in the hybrid mode.

L19 ANSWER 12 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1994:497578 HCAPLUS

DN 121:97578

TI Integrated circuits

IN Imoto, Shinya

PA Rohm KK, Japan

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 06021367	A2	19940128	JP 1992-173340	19920630
PRAI JP 1992-173340		19920630		

AB In an integrated circuit comprising a vertical npn transistor and a vertical pnp transistor on the same p-type Si substrate, the impurity concns. of various buried layers are such that the performance of the vertical pnp transistor is improved without reducing the performance of other elements.

L19 ANSWER 13 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1993:92512 HCAPLUS

DN 118:92512

TI Semiconductive integrated circuits

IN Kimura, Takashi

PA Toshiba Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI JP 04196353	A2	19920716	JP 1990-322643	19901128
PRAI JP 1990-322643		19901128		

AB The circuit comprises (1) a 1st insulator layer formed on a semiconductor substrate, (2) an n-Si layer, a p-Si layer, and a 2nd insulator layer separating the n-Si and p-Si layers formed, (3) a vertical npn-transistor formed on the n-Si layer, and (4) a vertical pnp-transistor formed on the p-Si layer. The integrated arrangement provides a high-speed and low power consuming device.

L19 ANSWER 14 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1987:26626 HCAPLUS
 DN 106:26626
 TI Semiconductor device, notably a bipolar integrated circuit, comprising npn transistors and lateral and vertical pnp transistors
 IN Ueki, Yoshio
 PA Sony Corp., Japan
 SO Fr. Demande, 13 pp.
 CODEN: FRXXBL
 DT Patent
 LA French
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	FR 2572850	A1	19860509	FR 1985-16362	19851105
	FR 2572850	B1	19880909		
	JP 06038476	B4	19940518	JP 1984-232870	19841105
	NL 8503033	A	19860602	NL 1985-3033	19851105
	NL 194711	B	20020801		
	NL 194711	C	20021203		
	AT 8503189	A	19920315	AT 1985-3189	19851105
	AT 395272	B	19921110		
	DE 3539208	C2	19980409	DE 1985-3539208	19851105
PRAI	JP 1984-232870	A	19841105		
AB	In a semiconductor device (e.g., bipolar integrated circuit) comprising n-p-n transistors and lateral and vertical p-n-p transistors, an n-p-n transistor is made in an n-type epitaxial layer (A) (e.g., Si) on a semiconductor support. The p-n-p transistor is made in an n-type semiconductor region (B) made in an n-type epitaxial layer. B Has an impurity concentration (10 ¹⁶ -10 ¹⁷ cm ⁻³) greater than that of A.				

L19 ANSWER 15 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1986:434037 HCAPLUS
 DN 105:34037
 TI Integrated injection logic semiconductor circuit
 IN Nakagawa, Shoichi
 PA Matsushita Electronics Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 3 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 61048968	A2	19860310	JP 1984-170693	19840816
PRAI	JP 1984-170693		19840816		
AB	An integrated injection logic semiconductor circuit is described, which consists of a lateral pnp transistor (injector) and reverse vertical npn transistor (inverter) in an n-type epitaxial layer formed on a p-type Si substrate via an n+-type buried layer. The n-type impurity concentration of the base region near the injector emitter is higher than that of the epitaxial layer to decrease collector-base reverse injection current.				
IT	7440-21-3, uses and miscellaneous RL:—USES—(Uses)				

02/26/2004

10/065,837

(circuits, integrated injection logic)

RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 16 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1986:100695 HCPLUS
 DN 104:100695
 TI Substrate injection logic operator structure
 IN Depey, Maurice
 PA Thomson-CSF S. A., Fr.
 SO U.S., 8 pp. Cont. of U.S. Ser. No. 261,935, abandoned.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 4550491	A	19851105	US 1984-677885	19841203
	FR 2482368	A1	19811113	FR 1980-10566	19800512
	FR 2482368	B1	19840914		
PRAI	FR 1980-10566		19800512		
	US 1981-261935		19810508		

AB A process is described for manufacturing a substrate-fed logic operator (SFL) which includes single collector NPN bipolar vertical transistors, or a PNP injection transistor and an NPN multicollector transistor, on a common substrate. The operator is manufactured from a low-doped P-type substrate on which are successively implanted a highly-doped P-type layer and a highly-doped N-type layer. The structure then successively comprises an epitaxial N-layer, an average-doped P-type layer, and a highly-doped N-type layer below a metallic collector contact of the NPN transistor of the SFL operator. The dopants used to form successive layers are chosen based in part on their relative diffusion speeds. This structure is compatible with manufacturing on the same Si chip both SFL operators and classical linear bipolar transistors.

L19 ANSWER 17 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1983:497835 HCPLUS
 DN 99:97835
 TI Oxide isolation process for standard RAM/PROM and lateral PNP cell RAM
 IN Shideler, Jay Albert; Mishra, Umeshwar Dutt
 PA Fairchild Camera and Instrument Corp., USA
 SO Eur. Pat. Appl., 52 pp.
 CODEN: EPXXDW

DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 84465	A2	19830727	EP 1983-400012	19830104
	EP 84465	A3	19860205		
	R: DE, FR, GB, IT, NL				
	JP 58161363	A2	19830924	JP 1983-16	19830104

02/26/2004

10/065,837

US 4624046	A	19861125	US 1985-770355	19850827
US 4961102	A	19901002	US 1988-256213	19881007
PRAI-US 1982-336802		19820104		
US 1985-770355		19850827		
US 1986-892979		19860804		

AB An oxide-isolated RAM (random-access memory) and PROM (programmable and read-only memory) process is disclosed wherein a RAM circuit includes a lateral PNP transistor formed in the same island of Si material as a vertical NPN device and further wherein contact is made to the base of the lateral PNP and to the collector of the vertical NPN through a buried contact region accessed through a sink region formed in an adjacent island of semiconductor material. A field implantation beneath the isolation oxide avoids implanting impurity along the sidewalls of the semiconductor material adjacent the field oxidation and therefore provides both vertical and lateral isolation from 1 Si island to another. Substantial redns. in sink sizes and cell sizes are obtained by eliminating the field diffusions from the sidewalls of the semiconductor islands. The lateral PNP transistor serves as an active load for memory circuit construction using this structure. The process also can be used to manufacture PROMs from vertical NPN transistors.

An LVCEO (collector-emitter breakdown voltage) implant is used to increase the breakdown voltage of each vertical transistor from its collector-to-emitter thereby allowing junction avalanching of selected emitter base junctions to program selected PROMS in the array even though the programming voltage is only a few volts beneath the breakdown voltage of the oxide isolated structure.

IT 7440-21-3, uses and miscellaneous
 RL: DEV (Device component use); USES (Uses)
 (memory devices, oxide isolation in fabrication of)

RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 18 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1979:144973 HCPLUS

DN 90:144973

TI Semiconductor device

IN Tokumaru, Yukuya; Nakai, Masanori

PA Tokyo Shibaura Electric Co., Ltd., Japan

SO Brit., 5 pp.

CODEN: BRXXAA

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	-----	-----	-----	-----	-----
PI	GB 1528030	A	19781011	GB 1975-53015	19751229
	JP 52017777	A2	19770209	JP 1975-93762	19750731
	DE 2558974	A1	19770203	DE 1975-2558974	19751229
	FR 2319979	A1	19770225	FR 1975-40000	19751229
	FR 2319979	B1	19780630		
PRAI	JP 1975-93762		19750731		

AB The manufacture of a high speed operable semiconductor device with small power

EIC2800

Irina Speckhard

571 272 25 54

dissipation and no current hopping is described comprising transistors of different conductivity types formed to constitute a logic circuit, e.g. a NAND circuit. A π or P- conductivity-type Si substrate is formed on an N+ conductivity-type Si substrate, the former substrate having a lower B-impurity concentration than the latter. A SiO₂ insulating film is formed on the P--type substrate in a high-temperature oxidizing atmospheric Openings in the SiO₂ film are made by photoetching to permit N-type regions to be formed in the P--type substrate by thermal diffusion of P. Further similar processes result in a semiconductor device consisting of a lateral PNP transistor, a vertical NPN transistor, and 3 Schottky diodes.

L19 ANSWER 19 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1975:67303 HCAPLUS

DN 82:67303

TI Metal-silicon field effect transistor

IN Wilenken, Richard N.; Pearce, Leon B.

PA Intersil, Inc.

SO Ger. Offen., 15 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 2415736	A1	19741024	DE 1974-2415736	19740401
	CA 997869	A1	19760928	CA 1973-186913	19731128
	NL 7317176	A	19741015	NL 1973-17176	19731214
	GB 1443999	A	19760728	GB 1973-59390	19731221
	FR 2225844	A1	19741108	FR 1974-545	19740108
	JP 50003585	A2	19750114	JP 1974-10574	19740124
	IT 1008753	A	19761130	IT 1974-47931	19740125

PRAI US 1973-350587 19730412

AB An improved MOSFET (MOS field-effect transistor), with n- or p-type channel, operates at low threshold voltage, due to the use of a diode, formed between the Si substrate and the gate electrode. Two complementary units, one with p-, the other with n-type channel, can be formed on the same substrate; the design includes an n-type epitaxial layer containing a buried p-type layer, a vertical npn transistor, and a horizontal pnp transistor.

L22 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1999:691329 HCAPLUS

DN 131:280294

TI Vertical bipolar transistor, in particular with
 SiGe base heterojunction, and method for making same

IN Chantre, Alain

PA France Telecom, Fr.

SO PCT Int. Appl., 21 pp.

CODEN: PIXXD2

DT Patent

LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9954939	A1	19991028	WO 1999-FR867	19990414
	W: JP, US RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE				
	FR 2778022	A1	19991029	FR 1998-5019	19980422
	FR 2778022	B1	20010713		
	EP 1074051	A1	20010207	EP 1999-913403	19990414
	R: DE, GB, IT, NL				
	JP 2002512452	T2	20020423	JP 2000-545198	19990414
	US 6384469	B1	20020507	US 2000-674021	20001023
PRAI	FR 1998-5019	A	19980422		
	WO 1999-FR867	W	19990414		

AB The semiconductor region of an intrinsic collector is surrounded with a lateral insulating region. A semi-conducting layer comprising a SiGe heterojunction is partially located between the transmitter and the intrinsic collector and extends on either side of the transmitter above the lateral insulating region. The base intrinsic region is formed in said semi-conducting layer with heterojunction between the transmitter and the intrinsic collector. The base extrinsic region and the collector extrinsic region resp. comprise first zones formed in said semi-conducting layer with heterojunction, located resp. on either side of the transmitter and above the lateral insulating region first part and mutually elec. insulated by the lateral insulating region second part.

IT 7440-21-3, Silicon, processes 11148-21-3

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(vertical bipolar transistor with SiGe
 base heterojunction and method for making it)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS

CN Germanium alloy, nonbase, Ge;Si (9CI) (CA INDEX NAME)

Component	Component
Registry	Number

=====+=====

Ge 7440-56-4

02/26/2004

10/065,837

Si 7440-21-3

RE.CNT 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L22 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1999:659599 HCAPLUS
DN 131:265843
TI A bipolar transistor having low **extrinsic base**
resistance
IN Jerome, Rick C.
PA UTMC Microelectronic Systems Inc., USA
SO PCT Int. Appl., 21 pp.
CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9952138	A1	19991014	WO 1999-US7644	19990407

W: JP, KR
RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
PT, SE

PRAI US 1998-56536 19980408

AB A method is disclosed for forming a **vertical bipolar**
transistor having a relatively low value of **extrinsic**
base resistance. The method creates the transistor having a
recessed emitter and a single polysilicon layer that functions as the
emitter contact. The polysilicon emitter contact extends downward into a
shallow trench formed in an upper portion of a layer of silicon
that is heavily doped to form the **extrinsic base**
regions on each side of the shallow trench. At the bottom of the
shallow trench is the single crystal emitter **region** which
overlies the **intrinsic base region** of the transistor.
In turn, the **intrinsic base region** overlies the
collector region.

IT 7440-21-3, Silicon, uses
RL: DEV (Device component use); USES (Uses)
(**vertical bipolar transistor** having low
extrinsic base resistance)

RN 7440-21-3 HCAPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L22 ANSWER 3 OF 3 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1992:603331 HCAPLUS
DN 117:203331
TI Fabrication of bipolar transistors
IN Naruse, Kazufumi
PA Sharp Corp., Japan
SO Jpn: Kokai Tokkyo Koho, 4 pp.
CODEN: JKXXAF

02/26/2004

10/065,837

DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04116933	A2	19920417	JP 1990-237831	19900907
PRAI	JP 1990-237831		19900907		

AB Fabrication of a bipolar **transistor**, which contains vertically positioned emitter, collector, and base regions, includes (a) forming an oxide film on a substrate which is to become the emitter and base regions; (b) forming a poly-Si film, in which an n-type impurity is diffused, on the oxide film; (c) forming a nitride film on the poly-Si film, and etching it leaving only in the emitter region; (d) implanting ions in an **external base** region with the nitride film as a mask; (e) oxidizing the whole poly-Si film; (f) removing the nitride film and the poly-Si; (g) opening an area to become an emitter region; and (h) forming the emitter **region** and an **intrinsic base** region. The bipolar transistor is capable of fast operation.

IT 7440-21-3, Silicon, reactions

RL: PRP (Properties); TEM (Technical or engineered material use); USES (Uses)

(polycryst., oxidation of, in fabrication of bipolar transistors)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L24 ANSWER 1 OF 1 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1985:88633 HCAPLUS
DN 102:88633
TI Semiconductor Bi-CMOS device
IN Iwasaki, Hiroshi
PA Toshiba Corp., Japan
SO U.S., 13 pp.
CODEN: USXXAM
DT Patent
LA English
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 4484388	A	19841127	US 1983-504161	19830614
PRAI	JP 1982-108069		19820623		

AB A bipolar transistor and complementary MOS transistors may be formed on a single substrate while securing the optimal characteristics of both types of transistors. A method for forming a Bi-CMOS structure, wherein a vertical npn transistor and CMOS transistors are formed on a single semiconductor substrate, is disclosed. After forming a p-type epitaxial Si layer on a p-type Si substrate with a plurality of a+-type buried layers therein, n-type wells are formed to extend to the n+-type buried layers. Selective oxidation is performed to form field oxide films so as to define an n-type element region for the npn transistor, an n-type element region for the p-channel MOS transistor, and a p-type element region for the n-channel MOS transistor. An oxide film as a gate oxide film for the CMOS is formed on the surfaces of all the element regions. After forming a p-type active base region of the npn transistor by ion-implantation of B, an emitter electrode comprising an As-doped polysilicon layer is formed in contact with the p-type active base region. Gate electrodes of the CMOS are formed and have a low resistance due to doping with P and/or As. Using the emitter electrode as a diffusion source, an n-type emitter region is formed. B is then ion-implanted to simultaneously form a p+-type external base region and p+-type source and drain regions of the p-channel MOS transistor. P is ion-implanted to form an n+-type collector contact region and n+-type source and drain regions of the n-channel MOS transistor. A structure may be obtained which has a bipolar transistor with high cut-off frequency and a low power consumption and complementary MOS transistors with high switching speed characteristics.

L25 ANSWER 1 OF 10 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:569005 HCAPLUS

DN 139:125984

TI Fabrication of vertical bipolar transistors showing improved high-frequency characteristics

IN Iwanaga, Junko; Matsuno, Toshinobu

PA Matsushita Electric Industrial Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2003209116	A2	20030725	JP 2002-4208	20020111

PRAI JP 2002-4208 20020111

AB In the process, the lateral dimension of intrinsic base layers (e.g., Si-Ge alloys) are reduced as follows; etching silica layers on intrinsic base layers through resist patterns to expose both edges of the base layers, etching the exposed base edges with liquid etchants to expose n-type epitaxial layers and form spaces for external base electrodes. The distance from emitter-base junction to external base electrodes is reduced as above, resulting in reduction of carrier transport time.

IT 11148-21-3

RL: CPS (Chemical process); DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 " (intrinsic bases; manufacture of vertical bipolar transistors having reduced base resistance and showing improved high-frequency characteristics)

RN 11148-21-3 HCAPLUS

CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component Registry Number
-----------	---------------------------

Ge	7440-56-4
Si	7440-21-3

IT 7440-21-3, Silicon, processes

RL: CPS (Chemical process); DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (p-conductive, intrinsic bases; manufacture of vertical bipolar transistors having reduced base resistance and showing improved high-frequency characteristics)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L25 ANSWER 2 OF 10 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 2001:657760 HCAPLUS

DN 135:219676

TI Vertical-semiconductor-devices-for high-withstand-voltage MOSFETs

IN Uesugi, Tsutomu; Kodama, Masato
 PA Toyota Central Research and Development Laboratories, Inc., Japan
 SO Jpn. Kokai Tokkyo Koho, 6 pp.
 CODEN: JKXXAF

DT Patent
 LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001244461	A2	20010907	JP 2000-50748	20000228
PRAI JP 2000-50748		20000228		

AB The title devices have a super-junction vertical MOSFET where 1st and 2nd semiconductor regions are alternately and vertically provided across the elec. current direction. The insulator regions are provided outside the Si single region wherein the insulator region is provided by burying a Si oxide film in the trench to give the insulator region.

IT 7440-21-3P, Silicon, properties
 RL: DEV (Device component use); PNU (Preparation, unclassified); PRP (Properties); PREP (Preparation); USES (Uses)
 (vertical semiconductor devices for high withstand-voltage MOSFETs)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L25 ANSWER 3 OF 10 HCPLUS COPYRIGHT 2004 ACS on STN

AN 2001:225356 HCPLUS

DN 134:230757

TI Method for fabricating a self-aligned vertical bipolar transistor

IN Chantre, Alain; Marty, Michel; Baudry, Helene

PA Stmicroelectronics S. A., Fr.

SO Eur. Pat. Appl., 14 pp.

CODEN: EPXXDW

DT Patent

LA French

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI EP 1087424	A1	20010328	EP 2000-402612	20000921
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
FR 2799048	A1	20010330	FR 1999-11895	19990923
FR 2799048	B1	20030221		
JP 2001244275	A2	20010907	JP 2000-283976	20000919
JP 3386787	B2	20030317		
US 6551891	B1	20030422	US 2000-668428	20000922
US 2003155611	A1	20030821	US 2003-378198	20030303
PRAI FR 1999-11895	A	19990923		
US 2000-668428	A3	20000922		

AB The title fabrication comprises a phase of manufacturing of a base region comprising an extrinsic and intrinsic base, and a manufacturing of an emitter region comprising a block emitter possessing a lower part more narrow situated in an emitter window

above the intrinsic base. The manufacturing of the **extrinsic base** comprises an implantation of dopants effected after a delimiting of the emitter window, on both sides at a predetd. distance of the lateral limits of the emitter window, in a self-aligned fashion with this window emitter, in advance of the formation of the block emitter.

IT 7440-21-3, Silicon, processes 11148-21-3
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (method for fabricating self-aligned **vertical bipolar transistor**)
 RN 7440-21-3 HCAPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS
 CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component Registry Number	Component
Ge	7440-56-4
Si	7440-21-3

RE.CNT 1 THERE ARE 1 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L25 ANSWER 4 OF 10 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1998:277443 HCAPLUS

DN 129:22151

TI Semiconductor devices having **vertical bipolar transistors** and their manufacture

IN Takahashi, Seiichi

PA NEC Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI JP 10116836	A2	19980506	JP 1996-268362	19961009
JP 3022343	B2	20000321		

PRAI JP 1996-268362 19961009

AB The device has a refractory metal silicide layer, which is prepared by reaction of the refractory metal with Si under lamp annealing and removal of the residual refractory metal, on the **extrinsic base region**, which has narrow and wide portions in its region facing the longer side of the emitter diffusion layer, and a contact hole formed only on the wide portion for connection of the base electrode wiring. Base-collector capacitance is lowered by decrease of the area of the **extrinsic base region**, and increase of **extrinsic base resistance** is compensated by formation of the silicide layer.

L25 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1996:598927 HCAPLUS
 DN 125:236172
 TI Prismatic bipolar transistors and manufacture thereof
 IN Ri, Kiko; Ri, Shinko
 PA Korea Electron Transmission, Japan
 SO Jpn. Kokai Tokkyo Koho, 7 pp.
 CODEN: JKXXAF

DT Patent
 LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08186123	A2	19960716	JP 1994-316866	19941220
JP 2731811	B2	19980325		
PRAI JP 1994-316866		19941220		

AB The title process comprises formation of a 1st and a 2nd prismatic structure by formation of trenches in a 1st conductivity type Si substrate, implantation of a 2nd conductivity type impurity to a high concentration into

a desire region of the substrate including the surrounding of the lower end of the 1st prismatic structure and the entire portion of the 2nd prismatic structure forming the collector (or emitter) region, formation of an oxide and a polycryst. Si film on the entire surface for an even surface, and etching thereof forming extrinsic base regions surrounded by the oxide film in the trenches, formation of contacts by etching of the oxide film on the side walls of the 1st prismatic structure of filling of the etched portion with polycryst. Si, deposition of a 2nd oxide and a polycryst.

Si film and formation of an even surface by polishing using the 2nd oxide film as a stopper, exposure of the 1st prismatic structure by removal of the 2nd oxide film thereon, formation of the base region connected to the contact and subsequently the emitter (or collector) region by ion implantation of a 1st and a 2nd conductivity type impurity, resp.

formation of a 2nd conductivity type polycryst. Si film wider than the emitter region on the emitter region, and formation of a protective film on the entire surface and wiring of electrodes through openings in self-alignment. Base-collector and base-emitter junction parasitic capacitance can be made min.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (manufacture of transistors with prismatic structures)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L25 ANSWER 6 OF 10 HCAPLUS COPYRIGHT 2004 ACS on STN

-- AN-- 1995:178664- HCAPLUS

DN 122:69128

TI A low-capacitance bipolar/BiCMOS isolation technology, part I - concept, fabrication process, and characterization

AU Burghartz, Joachim N.; McIntosh, Robert C.; Stanis, Carol L.

CS IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY,

10598, USA
 SO IEEE Transactions on Electron Devices (1994), 41(8), 1379-87
 CODEN: IETDAI; ISSN: 0018-9383
 DT Journal
 LA English
 AB A device isolation structure for low-parasitic bipolar transistor integration is presented. The concept involves two selective epitaxial growth steps (SEG) and two polishing cycles which replace the collector-epitaxy and the deep/shallow trench formation in conventional device isolation. With an optimum device layout, the collector-substrate capacitance is reduced to .simeq.30%, the collector-base capacitance to .simeq.70%, and the extrinsic base contact resistance to <50% compared to trench isolation. The combination of SEG and polishing makes it possible to form SOI regions with locally different SOI thicknesses on the same wafer, so that fully depleted CMOS and vertical bipolar transistors can be combined in a SOI-BiCMOS technol.
 IT 7440-21-3, Silicon, uses
 RL: DEV (Device component use); USES (Uses)
 (device isolation structure for low-parasitic bipolar transistor integration)
 RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L25 ANSWER 7 OF 10 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1993:438922 HCPLUS
 DN 119:38922
 TI Manufacture of bipolar complementary MOS devices
 IN Won, Tae Y.; Kim, Moon H.; Yoo, Kwang D.; Yoo, Ji H.
 PA Samsung Electronics Co., Ltd., S. Korea
 SO U.S., 8 pp.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5196356	A	19930323	US 1992-874612	19920427
JP 05218314	A2	19930827	JP 1992-251164	19920921
JP 2528242	B2	19960828		

 PRAI KR 1991-20269 19911114
 AB The emitter and base of a vertical pnp transistor are self-aligned, an extrinsic base is formed by using a base electrode polysilicon layer as a diffusion source, and the base electrode and an intrinsic base are coupled by diffusion of n-type impurities, using the n+-polysilicon as a diffusion source. The process is simplified and the resistance of the extrinsic base is decreased.
 IT 7440-21-3P, Silicon, uses
 RL: IMF (Industrial manufacture); PRP (Properties); PREP (Preparation)
 (polycryst. bipolar complementary MOS devices containing, manufacture of)
 RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L25 ANSWER 8 OF 10 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1989:240873 HCPLUS
 DN 110:240873
 TI An advanced single-level polysilicon submicrometer BiCMOS technology
 AU Brassington, Michael P.; El-Diwany, Monir H.; Razouk, Reda R.; Thomas,
 Michael E.; Tuntasood, Prateep T.
 CS Fairchild Res. Cent., Palo Alto, CA, 94304, USA
 SO IEEE Transactions on Electron Devices (1989), 36(4, Pt. 1), 712-19
 CODEN: IETDAI; ISSN: 0018-9383
 DT Journal
 LA English
 AB An advanced very large-scale integration technol. uncompromised,
 high-performance n-p-n bipolar ($f_r = 9$ GHz) and submicrometer gate-length
 MOS transistors is described. This technol. is intended for high-speed
 logic circuits operating at 5 V and where a high level of circuit
 integration and low power consumption is required. Features include
 vertical n-p-n transistors with walled, self-aligned
 polysilicon emitters and lightly doped extrinsic base
 extensions. MOS transistors feature complementary-doped polysilicon gates
 and lightly doped drain structures for both N-channel and P-channel MOS.
 Optional buried contacts between the polysilicon layer and all junctions
 in the Si substrate are provided. Polysilicon emitters, MOS
 gates, base/collector and source/drain regions are silicided. In addition, a
 fully planarized metal interconnect scheme incorporating nonselective
 chemical-vapor-deposited W and vertical-walled contacts and vias is utilized.
 This technol. is scalable to deep submicron (<0.5 μ m) dimensions.
 IT 7440-21-3, Silicon, uses and miscellaneous
 RL: USES (Uses)
 (bipolar complementary MOS, technol. of submicrometer, for very
 large-scale integration applications)
 RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L25 ANSWER 9 OF 10 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1989:146207 HCPLUS
 DN 110:146207
 TI Heterojunction bipolar transistor and its fabrication
 PA International Business Machines Corp., USA
 SO Jpn. Kokai Tokkyo Koho, 6 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 63268276 JP-05053299	A2 B4	19881104 19930809	JP 1988-35458	19880219

EP 288681 B1 19940824
 R: DE, FR, GB, IT

EP 1988-102728 19880224

PRAI US 1987-41812 19870423

AB The transistor comprises the following: (1) a single-crystal multilayer structure having a 1st wide-gap semiconductor layer (e.g., GaAs), 2nd narrow-gap semiconductor layer (e.g., Ge), and 3rd wide-gap semiconductor layer (e.g., GaAs); (2) bipolar-transistor active regions from vertically arranged portions of the 1st, 2nd and 3rd layers; (3) high-resistance doped regions from the outsides of the active regions of the 1st and 3rd layers; and (4) a highly conductive region of the outside of the active region of the 1st and 3rd layers; and (4) a highly conductive region of the outside of the active region of the 2nd layer. The title method involves the following steps: (1) forming the single-crystal structure having the active regions; (2) forming an impurity-implantation mask for defining the device region on the 1st semiconductor layer; (3) doping the 1st, 2nd, and 3rd layers to form highly resistive and highly conductive regions; (4) forming an etching mask on the surface of the 1st layer exposed by the implantation and etching masks to expose the 2nd layer; and (5) forming ohmic contacts on the exposed 2nd layer, as well as on the 1st and 3rd layers. The emitter and base contacts of the transistor can be exchanged, and the transistor has a decreased occupying area.

IT 7440-56-4, Germanium, uses and miscellaneous

RL: USES (Uses)

(transistors from gallium arsenide and, heterojunction bipolar)

RN 7440-56-4 HCPLUS

CN Germanium (7CI, 8CI, 9CI) (CA INDEX NAME)

Ge

RL: TEM (Technical or engineered material use); USES (Uses)
 (transistors, bipolar, heterojunction, germanium-gallium arsenide)

L25 ANSWER 10 OF 10 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1981:543107 HCPLUS

DN 95:143107

TI Vertical bipolar transistor structure

IN Magdo, Ingrid Emese; Rupprecht, Hans Stephen

PA International Business Machines Corp., USA

SO Eur. Pat. Appl., 35 pp.

CODEN: EPXXDW

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 32550	A1	19810729	EP 1980-107626	19801204
	EP 32550	B1	19850313		
	R: DE, FR, GB, IT				
	CA 1142267	A1	19830301	CA 1980-365496	19801126
	US 4485552	A	19841204	US 1982-399927	19820719

PRAI US 1980-113168 19800118

AB A method for fabricating a Si integrated complementary vertical bipolar transistor structure consists of '(1)

02/26/2004

10/065,837

following a control region of low defect concentration of a 1st conductivity type in a substrate of a 2nd conductivity type, (2) forming a subcollector zone of a 2nd type in the control region, (3) forming a subcollector zone of the 1st conductivity type of a complementary transistor outside the control region, (4) forming isolation regions between the transistors, (5) depositing epitaxially a 2nd-type conductivity layer, and (6), placing base and emitter zones above the collector regions with the emitter zone formed by ion implantation and diffusion of doped polycryst. Si give a pnp-integrated transistor.

L31 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:71766 HCAPLUS
 DN 138:129799
 TI Method to form and/or isolate **vertical transistors**
 IN Quek, Elgin; Sundaresan, Ravi; Pan, Yang; Lee, Yong Meng; Leung, Ying
 Keung; Pradeep, Yelehanka Ramachandramurthy; Zheng, Jia Zhen; Chan, Lap
 PA Chartered Semiconductor Manufacturing Ltd., Singapore
 SO U.S., 7 pp.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 6511884	B1	20030128	US 2001-972503	20011009
PRAI US 2001-972503		20011009		

AB The present invention relates generally to fabrication of semiconductor devices, and more specifically to methods of fabricating **vertical transistors**. The method of fabricating an isolated **vertical transistor** comprises the following steps. A wafer having a 1st implanted region selected from the group comprising a source region and a drain region is provided. The wafer further includes shallow trench isolation (STI) areas on either side of a center transistor area. The wafer is patterned down to the 1st implanted region to form a vertical pillar within the center transistor area using a patterned hard mask. The vertical pillar having side walls. A pad dielec. layer is formed over the wafer, lining the vertical pillar. A nitride layer is formed over the pad dielec. layer. The structure is patterned and etched through the nitride layer and the pad dielec. layer; and into the wafer within the STI areas to form STI trenches within the wafer. The STI trenches are filled with insulative material to form STIs within STI trenches. The patterned nitride and pad dielec. layers are removed. The patterned hard mask is removed. Gate oxide is grown over the exposed portions of the wafer and the vertical pillar. Spacer gates are formed over the gate oxide lined side walls of the vertical pillar. Spacer gate implants are formed within the spacer gates, and a 2nd implanted region is formed within the vertical pillar selected from the group consisting of a drain region and a source region that is not the same as the 1st implanted region to complete formation of the isolated **vertical transistor**.

IT 7440-21-3, Silicon, uses
 RL: DEV (Device component use); USES (Uses)
 (polycryst.; in isolated **vertical transistors**)
 RN 7440-21-3 HCAPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L31 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1997:344844 HCAPLUS
 DN 127:43391
 TI Vertical power MOSFET and its manufacture

IN Tsoi, Hak-yam; Tam, Pak; De, Fresart Edouard D.

PA Motorola, Inc., USA

SO U.S., 21 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5631484	A	19970520	US 1995-576983	19951226
	EP 782181	A2	19970702	EP 1996-119955	19961212
	EP 782181	A3	19991013		
	R: DE, FR, GB, IT				
	JP 09186173	A2	19970715	JP 1996-354014	19961218
PRAI	US 1995-576983		19951226		

AB A method for forming a semiconductor device includes forming insulated gate regions on a substrate using a 1st photomasking step, forming a base region through an opening between the insulated gate regions, and forming a source region within the base region. Next, a protective layer is formed and selectively patterned using a 2nd photomasking step to form an opening within the 1st opening and an opening above one of the insulated gate regions. Next, a portion of the substrate and a portion of the insulated gate region are removed. Ohmic contacts are then formed and patterned using a 3rd photomasking step. Addnl., a termination structure is described.

L31 ANSWER 3 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1996:537780 HCPLUS

DN 125:210433

TI Simultaneous fabrication of a vertical bipolar transistor and a memory cell

IN Sung, Janmye

PA Vanguard International Semiconductor Corp., Taiwan

SO U.S., 19 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5547893	A	19960820	US 1995-578923	19951227
PRAI	US 1995-578923		19951227		

AB The present invention provides a method of simultaneously forming CMOS DRAM cells, CMOS devices, and vertical bipolar transistors on the same chip. The invention utilizes a CMOS DRAM process to simultaneously fabricate a vertical bipolar transistor and uses only 1 addnl. mask (a base implant mask) compared to forming the DRAM cell alone. Also, to reduce the bipolar collector plug resistance, the process uses a W-plug module where the collector is formed within a field oxide region near the base.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(polycryst.; simultaneous fabrication of vertical bipolar transistors and memory cells containing)

RN 7440-21-3 HCPLUS

GN Silicon-(7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L31 ANSWER 4 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1995:797295 HCPLUS
 DN 123:185374
 TI Semiconductor devices and manufacture thereof
 IN Sato, Fumihiro
 PA Nippon Electric Co, Japan
 SO Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07106341	A2	19950421	JP 1993-251254	19931007
	JP 2551353	B2	19961106		
	US 5432104	A	19950711	US 1994-319638	19941007
PRAI	JP 1993-251254		19931007		

AB The title process comprises sequential formation of a 2nd conductivity type buried layer selectively on a 1st conductivity type single crystal Si substrate, a 2nd conductivity type Si epitaxial layer on the entire surface, a device isolation field oxide film, a 1st insulating film of a desired thickness on the entire surface, a 1st conductivity type 1st polycryst. semiconductor film in a desired shape, and a 2nd insulating film on the entire surface; sequential etching of a desired region of the 2nd insulating film and at least the 1st polycryst. semiconductor film forming a 1st opening reaching the 1st insulating film; deposition of a 3rd insulating film on the entire surface and anisotropic etching thereof forming a 1st insulating spacer in the 1st opening; isotropic etching of the 1st insulating film with a mask from the 2nd insulating film and the 1st insulating spacer to form a 2nd opening reaching the Si epitaxial layer and having an opening area wider than that of the 1st opening and protrusion of the 1st polycryst. semiconductor layer; simultaneous formation of a 1st conductivity type 2nd polycryst. semiconductor film of a desired thickness on the bottom of the 1st polycryst. semiconductor film protruded with a 1st conductivity type 1st single crystal semiconductor layer on the Si epitaxial layer exposed in the 2nd opening by selective growth of the 1st semiconductor film; simultaneous formation of a 1st conductivity type 3rd polycryst. semiconductor film of a desired thickness on the bottom of the 2nd polycryst. Semiconductor film with a 1st conductivity type 2nd single crystal semiconductor layer higher in impurity concentration than that in the 1st single crystal semiconductor layer and in contact with the bottom of the 3rd polycryst. semiconductor film on the 1st single crystal semiconductor layer by selective growth of the 2nd semiconductor film; implantation of a 2nd conductivity type ions using a mask from the 2nd insulating film and the 1st insulating spacer to convert the 1st single crystal semiconductor layer immediate below the gap of the 1st insulating spacer to a 3rd single crystal semiconductor layer higher in impurity concentration than in the Si epitaxial layer; deposition of a 4th insulating film on the entire surface and anisotropic etching thereof forming a 2nd insulating spacer on the side of the 1st insulating spacer; formation of a 2nd conductivity type 4th single crystal semiconductor layer filling the gap of the 2nd insulating spacer and

covering the 2nd single crystal semiconductor layer by selective growth of the 3rd semiconductor layer. Especially a vertical bipolar transistor is prepared, and parasite capacitance between the base and the collector region can be lowered and connection of an intrinsic base region from the 2nd single crystal semiconductor layer to a base draw-out electrode from the 1st polycryst. semiconductor film is made without any obstacle.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
(epitaxial formation of intrinsic base regions in openings of semiconductor devices)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

IT 11148-21-3

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(film; for epitaxy of intrinsic base regions in vertical bipolar transistors)

RN 11148-21-3 HCAPLUS

CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component
Registry	Number

Ge 7440-56-4

Si 7440-21-3

L31 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1984:28696 HCAPLUS

DN 100:28696

TI Fabrication method for vertical pnp structure with Schottky barrier diode emitter utilizing ion implantation
IN De Bar, David E.; Hamaker, Raymond W.; Stephens, Geoffrey B.
PA International Business Machines Corp., USA
SO U.S., 10 pp. Cont. of U.S. Ser. No. 142,323 ab
CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 4412376	A	19831101	US 1982-355059	19820305
PRAI US 1979-25693		19790320		
US 1980-142323		19800421		

AB A vertical pnp bipolar transistor with Schottky-barrier diode emitter has simplified structure and process steps for combining a complementary pnp in an npn Si integrated circuit. The speed and d. of the vertical p-n-p are improved. The structure uses a sep. masked ion/implant for the npn intrinsic base implant (which also forms the pnp collector region) so that the pnp base doping profile can intercept the pnp-collector-profile at a lower concentration resulting in lower collector/base

capacitance, lower series collector resistance, and higher collector/base breakdown voltage. In particular, the n-type conductivity base regions are formed by ion-implanting P at 200 keV and a dose of .apprx.2 + 10¹² cm⁻². Schottky-barrier contacts are formed by vacuum evaporating an Al-Si alloy (e.g. containing 1.5% Si), followed by annealing at .apprx.450° for 1 h.

L31 ANSWER 6 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1982:153961 HCPLUS

DN 96:153961

TI Fabricating semiconductor devices

IN Shinbo, Masafumi

PA Daini Seikosha Co., Ltd., Japan

SO Brit. UK Pat. Appl., 13 pp.

CODEN: BAXXDU

DT Patent

LA English

FAN.CNT 1

	PATENT NO..	KIND	DATE	APPLICATION NO.	DATE
PI	GB 2072945	A	19811007	GB 1981-6841	19810304
	GB 2072945	B2	19840125		
	US 4380481	A	19830419	US 1981-244793	19810317

PRAI JP 1980-39463 19800327

AB An improved method is described of manufacturing vertical-type static induction transistors or FETs having a gate region encircling a source or drain region. A multiinsulation island layer composed of antioxidn. and oxide films, e.g. Si₃N₄ and SiO₂, is formed on the surface of an n- epitaxial layer. A selective oxidation layer is formed on the n- epitaxial layer using the nitride film as a mask. A 1st window is defined having a width determined by the side faces of the multiinsulation layer, after a 1st side etching step, and an end of the selective oxidation film. A p+ gate region is formed by selective diffusion of an impurity. The size of the nitride film is reduced by subjecting the multiinsulation layer to a 2nd side etching step and carrying out selective oxidation. An n+ drain region is formed within the p+ region after removing the multiinsulation layer thereby defining a 2nd window.

L31 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:71766 HCAPLUS
 DN 138:129799
 TI Method to form and/or isolate **vertical transistors**
 IN Quek, Elgin; Sundaresan, Ravi; Pan, Yang; Lee, Yong Meng; Leung, Ying
 Keung; Pradeep, Yelehanka Ramachandramurthy; Zheng, Jia Zhen; Chan, Lap
 PA Chartered Semiconductor Manufacturing Ltd., Singapore
 SO U.S., 7 pp.
 CODEN: USXXAM

DT Patent
 LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 6511884	B1	20030128	US 2001-972503	20011009
PRAI US 2001-972503		20011009		

AB The present invention relates generally to fabrication of semiconductor devices, and more specifically to methods of fabricating **vertical transistors**. The method of fabricating an isolated **vertical transistor** comprises the following steps. A wafer having a 1st implanted region selected from the group comprising a source region and a drain region is provided. The wafer further includes shallow trench isolation (STI) areas on either side of a center transistor area. The wafer is patterned down to the 1st implanted region to form a vertical pillar within the center transistor area using a patterned hard mask. The vertical pillar having side walls. A pad dielec. layer is formed over the wafer, lining the vertical pillar. A nitride layer is formed over the pad dielec. layer. The structure is patterned and etched through the nitride layer and the pad dielec. layer; and into the wafer within the STI areas to form STI trenches within the wafer. The STI trenches are filled with insulative material to form STIs within STI trenches. The patterned nitride and pad dielec. layers are removed. The patterned hard mask is removed. Gate oxide is grown over the exposed portions of the wafer and the vertical pillar. Spacer gates are formed over the gate oxide lined side walls of the vertical pillar. Spacer gate implants are formed within the spacer gates, and a 2nd implanted region is formed within the vertical pillar selected from the group consisting of a drain region and a source region that is not the same as the 1st implanted region to complete formation of the isolated **vertical transistor**.

IT 7440-21-3, Silicon, uses
 RL: D&V (Device component use); USES (Uses)
 (polycryst.; in isolated **vertical transistors**)
 RN 7440-21-3 HCAPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L31 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1997:344844 HCAPLUS
 DN 127:43391
 TI Vertical power MOSFET and its manufacture

02/26/2004

10/065,837

IN Tsoi, Hak-yam; Tam, Pak; De, Fresart Edouard D.

PA Motorola, Inc., USA

SO U.S., 21 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5631484	A	19970520	US 1995-576983	19951226
	EP 782181	A2	19970702	EP 1996-119955	19961212
	EP 782181	A3	19991013		
	R: DE, FR, GB, IT				
	JP 09186173	A2	19970715	JP 1996-354014	19961218
PRAI	US 1995-576983		19951226		

AB A method for forming a semiconductor device includes forming insulated gate regions on a substrate using a 1st photomasking step, forming a base region through an opening between the insulated gate regions, and forming a source region within the base region. Next, a protective layer is formed and selectively patterned using a 2nd photomasking step to form an opening within the 1st opening and an opening above one of the insulated gate regions. Next, a portion of the substrate and a portion of the insulated gate region are removed. Ohmic contacts are then formed and patterned using a 3rd photomasking step. Addnl., a termination structure is described.

L31 ANSWER 3 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1996:537780 HCPLUS

DN 125:210433

TI Simultaneous fabrication of a vertical bipolar transistor and a memory cell

IN Sung, Janmye

PA Vanguard International Semiconductor Corp., Taiwan

SO U.S., 19 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5547893	A	19960820	US 1995-578923	19951227
PRAI	US 1995-578923		19951227		

AB The present invention provides a method of simultaneously forming CMOS DRAM cells, CMOS devices, and vertical bipolar transistors on the same chip. The invention utilizes a CMOS DRAM process to simultaneously fabricate a vertical bipolar transistor and uses only 1 addnl. mask (a base implant mask) compared to forming the DRAM cell alone. Also, to reduce the bipolar collector plug resistance, the process uses a W-plug module where the collector is formed within a field oxide region near the base.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(polycryst.; simultaneous fabrication of vertical bipolar transistors and memory cells containing)

RN 7440-21-3 HCPLUS

CN Silicon-(7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L31 ANSWER 4 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 1995:797295 HCPLUS
 DN 123:185374
 TI Semiconductor devices and manufacture thereof
 IN Sato, Fumihiro
 PA Nippon Electric Co, Japan
 SO Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF

DT Patent
 LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07106341	A2	19950421	JP 1993-251254	19931007
	JP 2551353	B2	19961106		
	US 5432104	A	19950711	US 1994-319638	19941007
PRAI	JP 1993-251254		19931007		

AB The title process comprises sequential formation of a 2nd conductivity type buried layer selectively on a 1st conductivity type single crystal Si substrate, a 2nd conductivity type Si epitaxial layer on the entire surface, a device isolation field oxide film, a 1st insulating film of a desired thickness on the entire surface, a 1st conductivity type 1st polycryst. semiconductor film in a desired shape, and a 2nd insulating film on the entire surface; sequential etching of a desired region of the 2nd insulating film and at least the 1st polycryst. semiconductor film forming a 1st opening reaching the 1st insulating film; deposition of a 3rd insulating film on the entire surface and anisotropic etching thereof forming a 1st insulating spacer in the 1st opening; isotropic etching of the 1st insulating film with a mask from the 2nd insulating film and the 1st insulating spacer to form a 2nd opening reaching the Si epitaxial layer and having an opening area wider than that of the 1st opening and protrusion of the 1st polycryst. semiconductor layer; simultaneous formation of a 1st conductivity type 2nd polycryst. semiconductor film of a desired thickness on the bottom of the 1st polycryst. semiconductor film protruded with a 1st conductivity type 1st single crystal semiconductor layer on the Si epitaxial layer exposed in the 2nd opening by selective growth of the 1st semiconductor film; simultaneous formation of a 1st conductivity type 3rd polycryst. semiconductor film of a desired thickness on the bottom of the 2nd polycryst. Semiconductor film with a 1st conductivity type 2nd single crystal semiconductor layer higher in impurity concentration than that in the 1st single crystal semiconductor layer and in contact with the bottom of the 3rd polycryst. semiconductor film on the 1st single crystal semiconductor layer by selective growth of the 2nd semiconductor film; implantation of a 2nd conductivity type ions using a mask from the 2nd insulating film and the 1st insulating spacer to convert the 1st single crystal semiconductor layer immediate below the gap of the 1st insulating spacer to a 3rd single crystal semiconductor layer higher in impurity concentration than in the Si epitaxial layer; deposition of a 4th insulating film on the entire surface and anisotropic etching thereof forming a 2nd insulating spacer on the side of the 1st insulating spacer; formation of a 2nd conductivity type 4th single crystal semiconductor layer filling the gap of the 2nd insulating spacer and

covering the 2nd single crystal semiconductor layer by selective growth of the 3rd semiconductor layer. Especially a **vertical bipolar transistor** is prepared, and parasite capacitance between the base and the collector region can be lowered and connection of an **intrinsic base region** from the 2nd single crystal semiconductor layer to a base draw-out electrode from the 1st polycryst. semiconductor film is made without any obstacle.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
(epitaxial formation of **intrinsic base regions** in openings of semiconductor devices)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

IT 11148-21-3

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(film; for epitaxy of **intrinsic base regions** in **vertical bipolar transistors**)

RN 11148-21-3 HCAPLUS

CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component
	Registry Number

=====+=====	=====
Ge	7440-56-4
Si	7440-21-3

L31 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1984:28696 HCAPLUS

DN 100:28696

TI Fabrication method for **vertical pnp structure** with Schottky barrier diode emitter utilizing ion implantation

IN De Bar, David E.; Hamaker, Raymond W.; Stephens, Geoffrey B.

PA International Business Machines Corp., USA

SO U.S., 10 pp. Cont. of U.S. Ser. No. 142,323 ab

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI US 4412376	A	19831101	US 1982-355059	19820305
PRAI US 1979-25693		19790320		
US 1980-142323		19800421		

AB A **vertical pnp bipolar transistor** with Schottky-barrier diode emitter has simplified structure and process steps for combining a complementary pnp in an npn Si integrated circuit. The speed and d. of the vertical p-n-p are improved. The structure uses a sep. masked ion/implant for the npn **intrinsic base** implant (which also forms the pnp collector region) so that the pnp base doping profile can intercept the pnp-collector-profile-at-a-lower-concentration resulting in lower collector/base

capacitance, lower series collector resistance, and higher collector/base breakdown voltage. In particular, the n-type conductivity base regions are formed by ion-implanting P at 200 keV and a dose of .apprx.2 + 10¹² cm⁻². Schottky-barrier contacts are formed by vacuum evaporating an Al-Si alloy (e.g. containing 1.5% Si), followed by annealing at .apprx.450° for 1 h.

L31 ANSWER 6 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1982:153961 HCAPLUS

DN 96:153961

TI Fabricating semiconductor devices

IN Shinbo, Masafumi

PA Daini Seikosha Co., Ltd., Japan

SO Brit. UK Pat. Appl., 13 pp.

CODEN: BAXXDU

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	GB 2072945	A	19811007	GB 1981-6841	19810304
	GB 2072945	B2	19840125		
	US 4380481	A	19830419	US 1981-244793	19810317
PRAI	JP 1980-39463		19800327		

AB An improved method is described of manufacturing vertical-type static induction transistors or FETs having a gate region encircling a source or drain region. A multiinsulation island layer composed of antioxidn. and oxide films, e.g. Si₃N₄ and SiO₂, is formed on the surface of an n- epitaxial layer. A selective oxidation layer is formed on the n- epitaxial layer using the nitride film as a mask. A 1st window is defined having a width determined by the side faces of the multiinsulation layer, after a 1st side etching step, and an end of the selective oxidation film. A p+ gate region is formed by selective diffusion of an impurity. The size of the nitride film is reduced by subjecting the multiinsulation layer to a 2nd side etching step and carrying out selective oxidation. An n+ drain region is formed within the p+ region after removing the multiinsulation layer thereby defining a 2nd window.

=> D L33 BIB AB TOT HITSTR

L33 ANSWER 1 OF 2 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1998:779912 HCAPLUS

DN 130:46224

TI Manufacture of a germanium-implanted heterojunction bipolar transistor

IN Lombardo, Salvatore; Pinto, Angelo; Nicotra, Maria Concetta

PA Stmicroelectronics S.r.l., Italy; CO.RI.M.ME. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno

SO Eur. Pat. Appl., 25 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 881669	A1	19981202	EP 1997-830259	19970530

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,

IE, SI, LT, LV, FI, RO
 JP 11087364 A2 19990330 JP 1998-151595 19980601
 US 6624017 B1 20030923 US 2000-724563 20001127
 US 2004004270 A1 20040108 US 2003-615084 20030707
 PRAI EP 1997-830259 A 19970530
 US 1998-87398 A1 19980529
 US 2000-724563 A3 20001127

AB A process for fabricating a **vertical** high-carrier-mobility **transistor** on a substrate of crystalline Si doped with **n-type** impurities, having a collector region in the lower portion of the substrate, comprises: defining a window in the semiconductor substrate; providing a 1st implantation of Ge atoms through the window; providing a 2nd implantation of acceptor dopants through the window to define a base region; applying an RTA treatment, or treatment in an oven, to reconstruct the crystal lattice within the substrate comprising a Si/Ge alloy (Si_{1-x}Ge_x); forming a 1st thin dielec. layer of SiO₂ by CVD; depositing a 2nd dielec. layer on the 1st dielec. layer; depositing a polysilicon layer on the 2nd dielec. layer; etching away, within the window **region**, the 1st and 2nd dielec. layers and the polysilicon layer, to expose the base region and form isolation spacers at the window edges; and forming an **n-type** emitter in the base and window regions.
 This process allows the frequency field of application of HBT transistors to be extended, while eliminating deviations of the base currents from the ideal.

IT 7440-56-4, Germanium, uses
 RL: MOA (Modifier or additive use); USES (Uses)
 (manufacture of a germanium-implanted heterojunction bipolar transistor)

RN 7440-56-4 HCPLUS
 CN Germanium (7CI, 8CI, 9CI) (CA INDEX NAME)

Ge

IT 11148-21-3
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (manufacture of a germanium-implanted heterojunction bipolar transistor containing)

RN 11148-21-3 HCPLUS
 CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component Component
 Registry Number

Ge	7440-56-4
Si	7440-21-3

IT 7440-21-3, Silicon, processes
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (polycryst.; manufacture of a germanium-implanted heterojunction bipolar transistor containing)

RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L33 ANSWER 2 OF 2 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1998:764153 HCAPLUS
DN 130:19662
TI Vertical bipolar semiconductor power **transistor** with
an interdigitized geometry, with optimization of the base-to-emitter
potential difference
IN Patti, Davide
PA Stmicroelectronics S.R.L., Italy
SO Eur. Pat. Appl., 10 pp.
CODEN: EPXXDW

DT Patent
LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 878848	A1	19981118	EP 1997-830228	19970516
	R: DE, FR, GB, IT				
	US 6069399	A	20000530	US 1998-79827	19980515
	US 6297118	B1	20011002	US 2000-548784	20000413

PRAI EP 1997-830228 A 19970516
US 1998-79827 A3 19980515

AB The transistor comprises: an epitaxial layer with a first conductivity type; a base buried region with a second conductivity type; a sinker base region with the second conductivity type, which extends from the main surface to the buried base region, and delimits, together with the base buried region, emitter fingers in the epitaxial layer; an emitter buried region with the first conductivity type and a doping level which is higher than that of the epitaxial layer, said emitter buried region being embedded in the epitaxial layer in a position adjacent to the base buried region; and a sinker emitter region having the first conductivity type and a doping level which is higher than that of the epitaxial layer and extending from the main surface to the emitter buried region **inside** the emitter fingers. The buried and sinker emitter regions delimit in each finger pairs of sections which are mutually spaced and delimit between one another a central region of the epitaxial layer. The sinker emitter region sections of a finger extend in the vicinity of mutually facing edges of the emitter buried region sections.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
(vertical bipolar semiconductor power **transistor**
with an interdigitized geometry, with optimization of the base-to-
emitter p.d.)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) - (CA INDEX NAME)

Si

L36 ANSWER 1 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:551637 HCAPLUS

DN 137:102519

TI Vertical heterojunction bipolar transistor
 IN El-Sharawy, El-Badawy Amien; Hashemi, Majid M.
 PA National Scientific Corporation, USA
 SO U.S., 16 pp., Cont.-in-part of U.S. 6,171,920.
 CODEN: USXXAM

DT Patent

LA English

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6423990	B1	20020723	US 1999-441576	19991117
	US 5912481	A	19990615	US 1997-939487	19970929
	US 6171920	B1	20010109	US 1999-267252	19990312
	WO 2001037349	A1	20010525	WO 2000-US42206	20001116
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	US 2002179933	A1	20021205	US 2002-197726	20020717
PRAI	US 1997-939487	A3	19970929		
	US 1999-267252	A2	19990312		
	US 1999-441576	A1	19991117		
AB	A heterojunction bipolar transistor is provided with a Si base region that forms a semiconductor junction with a multilayer emitter having a thin Ga arsenide emitter layer proximate the base region and a distal Ga phosphide emitter layer. The GaAs emitter layer is sufficiently thin, preferably <200 Å, so as to be coherently strained. In 1 embodiment, the GaP emitter layer includes a doped region which serves as the emitter and a non-doped region on which the intrinsic portion of the transistor is formed.				
IT	7440-21-3, Silicon, processes RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses) (vertical heterojunction bipolar transistor with wide bandgap with low interdiffusion base-emitter junction and fabrication)				
RN	7440-21-3 HCAPLUS				
CN	Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)				

Si

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L36 ANSWER 2 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 2001:809061 HCAPLUS

02/26/2004

10/065,837

DN 135:337918
TI Process for formation of vertically isolated bipolar
transistor device with reduced surface area

IN Kitch, Vassili
PA National Semiconductor Corporation, USA
SO U.S., 11 pp.
CODEN: USXXAM

DT Patent
LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6313000	B1	20011106	US 1999-442810	19991118
PRAI	US 1999-442810		19991118		

AB A vertically-isolated bipolar transistor occupying reduced surface area is fabricated by circumscribing an expected active device region within a 1st narrow trench. The 1st trench is filled with sacrificial material impermeable to diffusion of conductivity-altering dopant, and then isolation dopant of a conductivity type opposite

to that of the substrate is introduced into the trench-circumscribed Si region. The introduced isolation dopant is then thermally driven into the substrate, with lateral diffusion of isolation dopant phys. constrained by the existing 1st narrow trench. Epitaxial Si is then formed over the substrate, with polysilicon formed in regions overlying the filled narrow trench. A 2nd, wider trench encompassing the 1st trench is etched to consume epitaxial Si, polysilicon, and the sacrificial material. The 2nd trench is then filled with dielec. material. Base and emitter structures are formed in the conventional manner within the trench-circumscribed Si.

Constraint of lateral diffusion of isolation-type dopant by the 1st trench reduces lateral dimensions of the isolation region and of the overall device. The smaller device area permits enhanced device packing d. and reduces parasitic capacitance arising between the isolation region and the substrate.

IT 7440-21-3, Silicon, processes
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(in process for formation of vertically isolated bipolar transistor device with reduced surface area)

RN 7440-21-3 HCPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 19 THERE ARE 19 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L36 ANSWER 3 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN
AN 2000:493241 HCPLUS
DN 133:113632
TI Vertical bipolar transistor with minimum variation of properties and method of manufacturing the same
IN Sato, Fumihiro
PA NEC Corporation, Japan
SO Eur.-Pat.-Appl., 39 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 1020923	A2	20000719	EP 2000-100084	20000105
	EP 1020923	A3	20020116	R: DE, FR, GB, IT, NL, SI, LT, LV, RO	
	JP 2000269233	A2	20000929	JP 1999-107420	19990415
	JP 3303833	B2	20020722		
	US 6680522	B1	20040120	US 1999-474504	19991229
	KR 2000057734	A	20000925	KR 2000-861	20000110
PRAI	JP 1999-4685	A	19990111		

AB An object of the invention is to minimize variation in characteristics of a **vertical bipolar transistor**. An insulating side wall spacer composed of a Si nitride film 10 and a Si oxide film 9 is formed on the side surface of an opening 101 formed in a base electrode polysilicon film 7. The thickness (= WD) of the insulating side wall spacer is made thicker than the maximum thickness (= WF) within a range of variation in thickness of a polycryst. film 12 grown from the side surface of the base electrode polysilicon film 7 exposed inside the opening 101 (namely, WD > WF). The size of an opening for forming an **emitter** electrode polysilicon film 16 on an **intrinsic base** 11 is not influenced by the thickness of a polycryst. film 12 epitaxially growing from the side surface of the polysilicon film 7 for the base electrode, but is defined by the side wall spacer formed on a portion of the side surface of the base electrode polysilicon film. Therefore, **emitter** area hardly disperses, and elec. characteristics become stable.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (poly; **vertical bipolar transistor** with min. variation of properties and method of manufacturing using)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

IT 12727-59-2

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (**vertical bipolar transistor** with min. variation of properties and method of manufacturing using)

RN 12727-59-2 HCPLUS

CN Germanium alloy, base, Ge 0-100, Si 0-100 (9CI) (CA INDEX NAME)

Component	Component	Component
	Percent	Registry Number
Ge	0 - 100	7440-56-4
Si	0 - 100	7440-21-3

AN 1999:783850 HCAPLUS
 DN 132:8251
 TI Low noise vertical bipolar transistor and method of
 manufacturing it
 IN Ghantre, Alain; Marty, Michel; Dutartre, Didier; Monroy, Augustin;
 Laurens, Michel; Guette, Francois
 PA Stmicroelectronics S.A., Fr.; Commissariat A L'Energie Atomique; France
 Telecom
 SO Eur. Pat. Appl., 13 pp.
 CODEN: EPXXDW

DT Patent

LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 962966	A1	19991208	EP 1999-401337	19990603
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	FR 2779572	A1	19991210	FR 1998-7059	19980605
	FR 2779572	B1	20031017		
	US 6177717	B1	20010123	US 1999-323418	19990601
	JP 2000031155	A2	20000128	JP 1999-156049	19990603
PRAI	FR 1998-7059	A	19980605		

AB The intrinsic collector is epitaxed on a layer of the extrinsic collector
 buried in a semiconductor substrate. A lateral isolation region surrounds
 the upper part of the intrinsic collector and one realizes a well of
 removed extrinsic collector. One realizes a base of a SiGe
 heterojunction situated above the intrinsic collector and the lateral
 isolation region from nonselective epitaxy, and one realizes an
 in-situ-doped emitter by epitaxy on a predetd. window and the
 surface of the base situated above the intrinsic
 collector in a fashion to obtain ≥1 of said windows of an
 emitter region formed of single-crystal Si and directly
 in contact with Si of the base.

IT 7440-21-3, Silicon, processes 11148-21-3
 RL: DEV (Device component use); PEP (Physical, engineering or chemical
 process); PROC (Process); USES (Uses)
 (low noise vertical bipolar transistor and method
 of manufacturing it)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS
 CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component
	Registry Number
Ge	7440-56-4
Si	7440-21-3

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L36 ANSWER 5 OF 6 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1995:913513 HCAPLUS

DN 123:304415

TI Semiconductor devices

IN Sato, Fumihiro

PA Nippon Electric Co, Japan

SO Jpn. Kokai Tokkyo Koho, 14 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07201877	A2	19950804	JP 1993-336646	19931228
	JP 2626535	B2	19970702		
	US 5500554	A	19960319	US 1994-364964	19941228

PRAI JP 1993-336646 19931228

AB The device has a 1st conductivity type Si single crystal substrate having a 2nd conductivity type buried layer partly covered by a 2nd conductivity type

Si epitaxial layer, a 1st SiO₂ film with a 1st opening reaching the Si epitaxial layer, a Si₃N₄ film having a 2nd opening in the 1st opening on the SiO₂ film, a 2nd SiO₂ film having a 3rd opening in the 2nd opening on the Si₃N₄ film, a base draw-out electrode which has a 1st polycryst. semiconductor lower layer, a 4th opening in the 3rd opening, protrusion from the edge of the 3rd opening as formed on the 2nd SiO₂ film, a 4th SiO₂ film covering the base draw-out electrode, a 1st spacer from a 5th SiO₂ film covering the sides of the base draw-out electrode and the 4th SiO₂ film in the 4th opening, a 1st conductivity type 2nd polycryst. semiconductor film in the 2nd opening covering the top of the 1st SiO₂ film, the bottom of the 2nd SiO₂ film, and the side wall of the Si₃N₄ film in the 2nd opening, a 1st conductivity type 3rd polycryst. semiconductor film connected to the bottom of the 1st polycryst. semiconductor film and the 2nd polycryst. semiconductor film exposed in the 3rd opening, and covering the 2nd SiO₂ film side wall in the 3rd opening, a 1st conductivity type 1st single crystal semiconductor layer connected to the upper surface of the Si epitaxial layer, and the 3rd and the 2nd polycryst.

Semiconductor layer, and partly filling the 1st opening, a 2nd spacer from a 5th SiO₂ film covering a part of the sides and the bottom of the 1st spacer, and sides of the 3rd polycryst. semiconductor film exposed in the 2nd and the 3rd polycryst. semiconductor film exposed in the 2nd and the 3rd opening, and the 1st single crystal semiconductor layer exposed in the 2nd opening, and a 2nd conductivity type 2nd single crystal semiconductor film covering a portion of the side of the 2nd spacer and the upper surface of the 1st single crystal semiconductor layer not covered by the 2nd spacer. The thickness of the insulating laminate between the 2nd conductivity type Si epitaxial collector region and the base draw-out electrode can be increased and the 1st conductivity type 1st single crystal intrinsic base layer under the emitter region in the opening can be made thin, and parasite capacitance between the collector and the base region is lowered while cutoff frequency is enhanced, especially in a vertical bipolar transistor.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)

(epitaxial base region under emitter regions in opening structures with insulating laminate walls)

RN 7440-21-3 HCAPLUS

CN Silicon-(7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L36 ANSWER 6 OF 6 HCPLUS COPYRIGHT 2004 ACS on STN
AN 1994:593473 HCPLUS
DN 121:193473
TI Vertical bipolar transistors and their manufacture
PA Korea Institute of Electronic Communication, S. Korea
SO Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DT Patent
LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 06069219	A2	19940311	JP 1993-137514	19930608
	JP 2524079	B2	19960814		
	KR 9507348	B1	19950710	KR 1992-9982	19920609
PRAI	KR 1992-9982	A	19920609		

AB In the manufacture the n+-buried layer for the **emitter** and the Si layer for the **intrinsic base** formed on the buried layer are formed on a Si semiconductor substrate; a trench insulating oxide film is formed for elec. isolation between elements; and a base electrode is formed for flattening and micropatterning a p+-polycryst. Si and silicide film. The operating voltage and switching speed of an integrated injection logic can be improved and for an **emitter** coupled logic the integration can be increased greatly.

L37 ANSWER 1 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:492318 HCAPLUS

DN 139:45254

TI Semiconductor device with a **vertical transistor** and method for fabricating the same

IN Park, Cheol Soo

PA S. Korea

SO U.S. Pat. Appl. Publ., 6 pp.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003116800	A1	20030626	US 2002-325392	20021219
PRAI	KR 2001-84007	A	20011224		

AB The present invention relates to a semiconductor device and a method for fabricating the same, which has a **transistor** of a **vertical structure**. The fabricating method comprises: forming an insulating film on a Si substrate; forming a 1st conductive well of a 1st conductive type in the Si substrate; 1st and 2nd conductive layers of a 2nd conductive type at a portion below the surface of the 1st conductive well and in the **inner region** of the 1st conductive well, resp.; patterning the insulating film and the 1st conductive layer of the 2nd conductive type, so that contact holes are formed in such a manner that the 2nd conductive layer formed in the **inner region** of the 1st conductive well is exposed through the contact holes; forming a gate insulating film on the sidewall of the 1st conductive well in the contact holes; and forming a gate electrode on the surface of the gate insulating film in the contact holes.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
 (semiconductor device with a **vertical transistor** and method for fabricating the same)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L37 ANSWER 2 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 2002:830454 HCAPLUS

DN 137:303328

TI Method for fabricating an insulated-gate **vertical transistor** having a quadruple conduction channel, and integrated circuit comprising this transistor

IN Skotnicki, Thomas; Josse, Emmanuel

PA STMicroelectronics SA, Fr.

SO Fr. Demande, 26 pp.

CODEN: FRXXBL

DT Patent

LA French

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

02/26/2004

10/065, 837

PI	FR 2823010	A1	20021004	FR 2001-4437	20010402
	FR 2823010	B1	20030815		
	US 2002163027	A1	20021107	US 2002-114672	20020402
PRAI	FR 2001-4437	A	20010402		

AB The vertical transistor comprises an insulated gate on a semiconductor substrate, a vertical post incorporating at its summit one of source of source and drain regions, a dielec. layer of the gate situated on the flanks of the post and on the upper surface of the substrate, and a semiconductive gate supported on a dielec. layer of the gate; the other source and drain regions extend from the lower part of the post; the insulated gate comprises an external insulated part supported on the flanks of the post, and an internal insulated part situated at the interior of the post between the source and drain regions; the internal insulated part is separated laterally from the external insulated part by 2 semiconductive connective regions extending between the source and drain regions and forming 2 very fine posts.

IT 7440-21-3, Silicon, processes 11148-21-3

RL: CPS (Chemical process); DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (method for fabricating insulated-gate vertical
 transistor having quadruple conduction channel and integrated
 circuit comprising this transistor)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS

CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component
	Registry Number

=====+=====	=====+=====
Ge	7440-56-4
Si	7440-21-3

L37 ANSWER 3 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 2002:552255 HCAPLUS

DN 137:117938

TI Structure and method of fabricating a MOS transistor having increased substrate resistance

IN Salling, Craig T.; Wu, Zhiqiang; Hu, Che-Jen

PA Texas Instruments Incorporated, USA

SO Eur. Pat. Appl., 16 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----	-----
PI	EP 1225636	A2	20020724	EP 2002-100045	20020121
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
	US 2002096716	A1	20020725	US 2002-43507	20020114
	JP 2002280552	A2	20020927	JP 2002-14180	20020123

EIC2800

Irina Speckhard

571 272 25 54

02/26/2004

10/065, 837

US 2003207543 A1 20031106 US 2003-446760 20030528
PRAI US 2001-263619P P 20010123
US 2002-43507 A3 20020114

AB The present invention is related in general to the field of electronic systems and semiconductor devices, and more specifically to structure and fabrication methods of MOS transistors, which have an increased substrate resistance compared to standard technol. A structure and a fabrication method are presented for a lateral MOS transistor, positioned on the surface of an integrated circuit fabricated in a semiconductor of a 1st conductivity type, comprising a source and a drain, each having at the surface a region of the opposite conductivity type extending to the centrally located gate, defining

the active area of the transistor; and a semiconductor region within the semiconductor of the 1st conductivity type, having a resistivity higher than the remainder of the semiconductor, this region extending vertically below the transistor while laterally limited to the area of the transistor such that the resistivity under the gate is different from the resistivity under the source and drain regions.

IT 7440-21-3, Silicon, uses 11148-21-3

RL: DEV (Device component use); USES (Uses)
(structure and method of fabricating a MOS transistor having increased substrate resistance)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCPLUS

CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component Component
Registry Number

=====+=====

Ge	7440-56-4
Si	7440-21-3

L37 ANSWER 4 OF 14 HCPLUS COPYRIGHT 2004 ACS on STN

AN 2000:897802 HCPLUS

DN 134:186532

TI Vertical MOS-gated pin-diodes: MOS-gated tunneling transistors in Si(100) and Si(111)

AU Schulze, J.; Fink, C.; Sulima, T.; Eisele, I.; Hansch, W.

CS Institut fur Physik, Universitat der Bundeswehr Munchen, Neubiberg, 85577, Germany

SO Thin Solid Films (2000), 380(1,2), 154-157

CODEN: THSFAP; ISSN: 0040-6090

PB Elsevier Science S.A.

DT Journal

LA English

AB Tunneling devices are an interesting alternative to conventional MOS devices due to their high speed switching capabilities. Recently, it was shown that tunneling transistors based on vertical MOS-gated pin diodes can be fabricated. The pin diodes themselves were grown by means of UHV-MBE-on-highly-n+-doped Si(100) substrates

with a 100-nm-thick intrinsic channel region. The top contact was formed by the deposition of a highly doped B 8-layer with a peak doping amount of approx. 1021 cm⁻³ for the necessary abrupt pn-junction and 300-nm p+-contact region. At a low supply voltage of -0.2 V, a current gain of three orders of magnitude with saturation behavior is achieved. In the present contribution, the authors have shown the influence of the amount of B in the 8-layer and of the abruptness of the drain-channel-junction on the transistor behavior. For that, they have discussed the characteristics of MOS-gated pin diodes on Si (111) with ultrasharp B 8's with a peak doping amount between 1020 and 1021 cm⁻³ and a peak width <3 nm, in comparison with MOS-gated pin diodes on Si(100) presented in W. Hansch et al. (2000). In order to obtain these highly doped ultra-sharp B 8-layers, a phase-transition from an elec. inactive Si(111)- $\sqrt{3}+\sqrt{3}$ -R30° B surface phase into an elec. active one was induced by rapid thermal annealing.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
(MOS-gated tunneling transistors in Si(100) and Si (111))

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si ...

RE.CNT 9 THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L37 ANSWER 5 OF 14 HCPLUS COPYRIGHT 2004 ACS on STN
AN 1999:783851 HCPLUS
DN 132:8252
TI Method for selectively doping the intrinsic collector of an epitaxial base vertical bipolar transistor
IN Marty, Michel; Chantre, Alain; Schwartzmann, Thierry
PA STMicroelectronics S.A., Fr.; Commissariat A L'Energie Atomique; France Telecom
SO Eur. Pat. Appl., 13 pp.
CODEN: EPXXDW
DT Patent
LA French
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 962967	A1	19991208	EP 1999-401338	19990603
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	FR 2779571	A1	19991210	FR 1998-7060	19980605
	FR 2779571	B1	20030124		
	US 6265275	B1	20010724	US 1999-323525	19990601
	JP 11354537	A2	19991224	JP 1999-156065	19990603
PRAI	FR 1998-7060	A	19980605		
AB	One effects selective doping of the collector by 1st implantation of dopants before epitaxy of the base and by 2nd implantation of dopants across the epitaxial base. One obtains 2 implanted zones of different widths. The base of the transistor is thinned and the collector resistance is optimized.				

IT 7440-21-3, Silicon, processes 11148-21-3
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (method for selectively doping intrinsic collector of epitaxial base vertical bipolar transistor
)
 RN 7440-21-3 HCAPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS
 CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component
Registry Number	
Ge	7440-56-4
Si	7440-21-3

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L37 ANSWER 6 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1998:706040 HCAPLUS
 DN 129:297224
 TI Vertical insulated gate field-effect transistor, method of making it and corresponding integrated circuit
 IN Degawa, Toshihiko
 PA Sharp Kabushiki Kaisha, Japan
 SO Eur. Pat. Appl., 14 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI EP 872895	A2	19981021	EP 1998-302765	19980408
EP 872895	A3	19990224		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
JP 10290007	A2	19981027	JP 1997-96163	19970414
TW 400649	B	20000801	TW 1998-87104285	19980323
US 6215150	B1	20010410	US 1998-55214	19980406
PRAI JP 1997-96163	A	19970414		
AB The invention relates to a semiconductor device, characterized in that a trench is formed in a silicon substrate, an element isolation film is formed on an inner surface of said trench, and a drain region, a channel region and a source region are arranged vertically in a region encircled by said element isolation film; and that a gate insulating film is formed inside of these regions and a gate electrode is formed on an inner side portion of said gate insulating film, while a drain electrode or source electrode is formed on an outer side portion of said gate insulating film.				

L37 ANSWER-7-OF-14-HCAPLUS-COPYRIGHT-2004-ACS-on-STN

02/26/2004

10/065,837

AN 1996:380254 HCAPLUS
DN 125:102368
TI Vertical double-diffused MOSFETs and power semiconductor device containing them
IN Yamamoto, Masanori
PA Nec Corporation, Japan
SO U.S., 35 pp.
CODEN: USXXAM
DT Patent
LA English
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 5521410	A	19960528	US 1994-215110	19940321
JP 06275838	A2	19940930	JP 1993-62209	19930322
JP 2910489	B2	19990623		

PRAI JP 1993-62209 19930322

AB In a vertical double-diffused MOSFET comprising a semiconductor substrate of a 1st conductivity type, an epitaxial layer of the 1st conductivity type, and a gate

insulating layer, a gate electrode coats the gate insulating layer. The gate electrode has a plurality of polygonal windows and ≥ 1 slit-shaped window. Each polygonal window has a center positioned on 1 of the lattice points of a 2-dimensional square lattice comprising a plurality of unit cells. Each slit-shaped window is laid on a straight line connecting 2 centers of 2 polygonal windows which are obliquely adjacent to one another. A 1st insulating layer is formed on the upper surface of the gate electrode. Second insulating layers are formed on the side walls of the gate electrode. A base region of a 2nd conductivity type having a predetd. base junction depth is formed in the surface of the epitaxial layer. The base region is self-aligned to the polygonal windows and the slit-shaped window. A source region of the 1st conductivity type has a source junction shallower than the base junction. The source region has an inner edge self-aligned to both of the polygonal windows and the slit-shaped window and an inner edge spaced from the polygonal windows by a predetd. distance.

IT 7440-21-3, Silicon, uses
RL: DEV (Device component use); USES (Uses)
(vertical double-diffused MOSFETs containing)
RN 7440-21-3 HCAPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L37 ANSWER 8 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1996:342372 HCAPLUS
DN 125:72972
TI Investigation of lateral and vertical profiles enhanced by implantation
AU Mineji, A.; Hamada, K.; Saito, S.
CS ULSI Device Dev. Lab., NEC Corp., Sagamihara, 229, Japan
SO Materials Research Society Symposium Proceedings (1996), 396(Ion-Solid
Interactions for Materials Modification and Processing), 751-756
CODEN: MRSPDH; ISSN: 0272-9172
PB Materials Research Society
DT Journal

LA English

AB In shallow junction formation with junction depth below 0.1 μm , enhanced diffusion control is essential. The purpose of this paper is to investigate the B enhanced diffusion by point defects, introduced by high dose implantation with amorphization. Ge ions were implanted to induce amorphization within the S/D region of pMOS. These results were compare with that of the B enhanced diffusion by point defects, induced by Si+ implant with non-amorphization. These results suggest that the B enhanced diffusion in lateral profiles is much smaller, compared with that in vertical profiles, when point defects were introduced by amorphization.

IT 7440-21-3, Silicon, processes 7440-56-4,
Germanium, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(lateral and vertical profiles enhanced by implantation)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 7440-56-4 HCPLUS

CN Germanium (7CI, 8CI, 9CI) (CA INDEX NAME)

Ge

L37 ANSWER 9 OF 14 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1994:593555 HCPLUS

DN 121:193555

TI Vertical field-effect transistor

IN Yamada, Manabu; Takahashi, Yoshitomo

PA Nippon Electric Co, Japan

SO Jpn. Kokai Tokyo Koho, 4 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 06177389	A2	19940624	JP 1992-326373	19921207
	JP 2917720	B2	19990712		
PRAI	JP 1992-326373		19921207		

AB The FET, comprising a conductive poly-Si gate electrode film formed on a surface (involving drain and source region) through a gate insulating film, comprises an insulating film which is thicker than that of an insulating film formed on intrinsic poly-Si region (arranged in the gate electrode center) and those of other insulating films (arranged on the intrinsic poly-Si region). The structure decreases gate electrode capacity.

IT 7440-21-3, Silicon, uses

RL: PRP (Properties)

(polycryst., vertical FET gate electrode, structure for capacity decrease-of)

02/26/2004

10/065, 837

RN 7440-21-3 HCAPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L37 ANSWER 10 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1994:336957 HCAPLUS

DN 120:336957

TI Forming a vertical transistor

IN Malhi, Satwinder

PA Texas Instruments Inc., USA

SO U.S., 5 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5294559	A	19940315	US 1990-559756	19900730
	JP 04233764	A2	19920821	JP 1991-214437	19910730
	JP 3246753	B2	20020115		
	US 6194773	B1	20010227	US 1995-384816	19950206
PRAI	US 1990-559756	A	19900730		
	US 1994-187570	B1	19940126		

AB A vertical transistor comprises a semiconductor layer of a 1st conductivity type having a 1st doped region formed therein. A 2nd doped

region is formed within the 1st doped region.

A gate overlies the 1st doped region such that a low-impedance path between the 2nd doped region and the semiconductor layer may be created responsive to a voltage applied to the gate. Isolation regions are formed through the semiconductor layer to isolate the transistor from other devices.

IT 7440-21-3P, Silicon, uses

RL: IMF (Industrial manufacture); PREP (Preparation)
(vertical transistors based on, manufacture of)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L37 ANSWER 11 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1994:21454 HCAPLUS

DN 120:21454

TI Vertical MOSFETs

IN Shinohara, Toshiaki; Kusuyama, Koichi

PA Nissan Motor, Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

EIC2800

Irina Speckhard

571 272 25 54

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 05110105 JP 2871232	A2	19930430 19990317	JP 1991-264927	19911014
PRAI	JP 1991-264927		19911014		
AB	In a semiconductor device containing vertical MOSFETs which comprise a source region formed on the top side of a semiconductor substrate, a drain region formed inside or on the bottom side of the substrate, a channel region formed between the source and drain regions, and under the source region, and gate electrodes which sandwich the channel region across a gate-insulator film, the width of the channel region between gate electrodes is set shorter than that of the source-region top, and 1 end of the gate-insulator film in the channel region is inclined by a predetd. angle with respect to the substrate surface, while the other end is parallel with the 1st end. The MOSFETs have uniform characteristics.				
IT	7440-21-3, Silicon, uses RL: USES (Uses) (poly-, gate electrodes from, vertical MOSFETs containing, semiconductor devices containing)				
RN	7440-21-3 HCAPLUS				
CN	Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)				

Si

L37 ANSWER 12 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 1992:624565 HCAPLUS
 DN 117:224565
 TI Vertical-type insulated-gate field-effect transistors
 IN Haneda, Hisashi
 PA NEC Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 3 pp.
 CODEN: JKXXAF

DT Patent
 LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 04127574	A2	19920428	JP 1990-249096	19900919
PRAI	JP 1990-249096		19900919		
AB	A vertical-type insulated-gate FET, which has a 2nd-conductivity-type base region in a 1st-conductivity-type semiconductor substrate, a 1st-conductivity-type source region inside the base region, a gate electrode from a 1st elec.-conductive film which is formed, across a gate-insulator film, on the exposed part of the substrate in the base region, and a 2nd elec.-conductive film above the 1st elec.-conductive film, which is connected with the source region across an insulator film, contains a highly resistive semiconductor film (e.g., poly-Si) on the 1st elec.-conductive film. Short circuiting of source and gate electrodes can be prevented.				
IT	7440-21-3, Silicon, uses RL: PRP (Properties) (polycryst... highly-resistive-films from, vertical-type FETs containing)				

02/26/2004

10/065,837

RN 7440-21-3 HCAPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L37 ANSWER 13 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1991:645882 HCAPLUS

DN 115:245882

TI Vertical MOS field-effect transistors with increased breakdown voltage

IN Shigeta, Norihiro; Okada, Shigemi

PA Sanyo Electric Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI JP 03155167	A2	19910703	JP 1989-294702	19891113
PRAI JP 1989-294702		19891113		

AB A vertical MOSFET, which comprises a semiconductor substrate (common drain), a lattice-shaped diffusion layer, a source region in the surface of the diffusion layer, a gate electrode on an insulator-covered channel region between the source region and the substrate, and a source electrode in contact with both the source region and diffusion region, is characterized in that: the diffusion region is divided into the peripheral and internal regions; the source region is removed and in a floating state; and the source electrode is also in contact with the peripheral diffusion region. The MOSFET has increased breakdown voltage.

IT 7440-21-3, Silicon, uses and miscellaneous

RL: USES (Uses)

(common drains from, vertical MOSFETs containing, with large breakdown voltage)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L37 ANSWER 14 OF 14 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1988:642397 HCAPLUS

DN 109:242397

TI Vertical-type metal-oxide-semiconductor field-effect transistor

IN Yao, Takeyuki

PA Nissan Motor Co., Ltd., Japan

SO Jpn. Kokai Tokkyo Koho, 6 pp..

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
------------	------	------	-----------------	------

EIC2800

Irina Speckhard

571 272 25 54

02/26/2004

10/065,837

PI JP 63177473 A2 19880721 JP 1987-7753 19870116
JP 2501810 B2 19960529
PRAI JP 1987-7753 19870116

AB The FET comprises: a semiconductor substrate from a laminate of a low-resistivity region and a high-resistivity region; a base region which is formed in the high-resistivity region and has a conductivity type opposite

to that of the latter; source regions which are formed in the base region and away from the substrate; and a polycryst. semiconductor (e.g., Si) region inside the base region

and right below the source regions. The structure prevents the flow of a large elec. current which cannot be controlled by the gate potential.

IT 7440-21-3, Silicon, uses and miscellaneous

RL: PRP (Properties)
(polycryst., vertical MOSFET containing region of, in base region)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

EIC2800

Irina Speckhard

571 272 25 54

(FILE 'HOME' ENTERED AT 10:57:53 ON 26 FEB 2004)

FILE 'REGISTRY' ENTERED AT 10:59:42 ON 26 FEB 2004

L1 80 SEA ABB=ON PLU=ON SI/MF
 L2 129 SEA ABB=ON PLU=ON GE/MF
 L3 716 SEA ABB=ON PLU=ON GE.SI/MF OR GE SI/ELF

FILE 'HCAPLUS' ENTERED AT 11:00:07 ON 26 FEB 2004

L4 1234092 SEA ABB=ON PLU=ON L1 OR SILICON OR SI OR SILICA
 L5 154122 SEA ABB=ON PLU=ON L2 OR GERMANIUM OR GE
 L6 18378 SEA ABB=ON PLU=ON L3 OR SILICON(W)GERMANIUM OR SIGE
 L7 1328628 SEA ABB=ON PLU=ON (L4 OR L5 OR L6)
 L8 878 SEA ABB=ON PLU=ON L7 AND VERTICAL?(3A)(NPN OR PNP OR TRANSIST?)
 L9 31 SEA ABB=ON PLU=ON L8 AND (PNP(3A)TRANSIST? AND NPN(3A)TRANSIS T?)
 L10 4 SEA ABB=ON PLU=ON L9 AND (BICMOS OR BIPOLAR(W)COMPLEMENTARY(W) METAL(W)OXIDE)

L11 27 SEA ABB=ON PLU=ON L9 NOT L10
 L12 3 SEA ABB=ON PLU=ON L11 AND HIGH(3A)PERFORM?

L13 24 SEA ABB=ON PLU=ON L11 NOT L12
 L14 4 SEA ABB=ON PLU=ON L13 AND (BASE OR REGION)(3A)(EXTRINSIC? OR EXTERNAL? OR OUTSIDE)

L15 20 SEA ABB=ON PLU=ON L13 NOT L14
 L16 0 SEA ABB=ON PLU=ON L15 AND (INTRINSIC? OR INTERNAL? OR INNER? OR WITHIN OR INSIDE)(3A)REGION
 L17 0 SEA ABB=ON PLU=ON L15 AND (CUTOFF OR CUT(W)OFF OR LIMIT?)(3A) (FREQUENC? OR GHZ OR GIGAHERTZ)
 L18 1 SEA ABB=ON PLU=ON L15 AND MASK?

L19 19 SEA ABB=ON PLU=ON L15 NOT L18

L20 847 SEA ABB=ON PLU=ON L8 NOT L9
 L21 14 SEA ABB=ON PLU=ON L20 AND (BASE OR REGION)(3A)(EXTRINSIC? OR EXTERNAL? OR OUTSIDE)
 L22 3 SEA ABB=ON PLU=ON L21 AND (INTRINSIC? OR INTERNAL? OR INNER? OR WITHIN OR INSIDE)(3A)REGION

L23 11 SEA ABB=ON PLU=ON L21 NOT L22
 L24 1 SEA ABB=ON PLU=ON L23 AND (CUTOFF OR CUT(W)OFF OR LIMIT?)(3A) (FREQUENC? OR GHZ OR GIGAHERTZ)

L25 10 SEA ABB=ON PLU=ON L23 NOT L24
 L26 0 SEA ABB=ON PLU=ON L25 AND (RF OR RADIO(3A)FREQUENC? OR RADIOFREQUENC?)
 L27 10 SEA ABB=ON PLU=ON L23 NOT L24

L28 833 SEA ABB=ON PLU=ON L20 NOT L21
 L29 28 SEA ABB=ON PLU=ON L28 AND (INTRINSIC? OR INTERNAL? OR INNER? OR WITHIN OR INSIDE)(3A)(REGION OR BASE)
 L30 0 SEA ABB=ON PLU=ON L29 AND (RF OR RADIO(3A)FREQUENC? OR RADIOFREQUENC?)
 L31 6 SEA ABB=ON PLU=ON L29 AND MASK?

02/26/2004

10/065,837

L32 22 SEA ABB=ON PLU=ON L29 NOT L31
L33 2 SEA ABB=ON PLU=ON L32 AND (P OR N) (1A) (TYPE OR EMIT?)

L34 20 SEA ABB=ON PLU=ON L32 NOT L33
L35 0 SEA ABB=ON PLU=ON L34 AND HIGH(3A) PERFORM?
L36 6 SEA ABB=ON PLU=ON L34 AND EMIT?

L37 14 SEA ABB=ON PLU=ON L34 NOT L36

L10 ANSWER 1 OF 4 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:387646 HCPLUS
 DN 136:393050
 TI BiCMOS-integrated photodetecting semiconductor device having an avalanche photodiode
 IN Sahara, Masanori; Suzuki, Takashi
 PA Hamamatsu Photonics K.K., Japan
 SO U.S., 27 pp., Cont.-in-part of Appl. No. PCT/JP99/00397.
 CQDEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6392282	B1	20020521	US 2000-628446	20000728
	JP 11046010	A2	19990216	JP 1998-19302	19980130
	JP 11045988	A2	19990216	JP 1998-19311	19980130
	WO 9939391	A1	19990805	WO 1999-JP397	19990129
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
PRAI	JP 1998-19302	A	19980130		
	JP 1998-19311	A	19980130		
	WO 1999-JP397	A2	19990129		
	JP 1997-137023	A	19970527		
AB	BiCMOS-integrated photodetecting semiconductor devices are described which comprise an avalanche photodiode, a vertical PNP transistor, an N-channel MOS transistor for an N-channel MOS transistor, a P-channel MOS transistor for a P-channel MOS transistor, and a vertical type NPN transistor all formed on a P-type semiconductor substrate.				
IT	7440-21-3, Silicon, uses RL: DEV (Device component use); USES (Uses) (BiCMOS-integrated photodetecting semiconductor device having avalanche photodiode)				
RN	7440-21-3 HCPLUS				
CN	Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)				

Si

RE.CNT 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> D L10 BIB AB TOT HITSTR

L10 ANSWER 1 OF 4 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:387646 HCPLUS
 DN 136:393050

TI BiCMOS-integrated photodetecting semiconductor device having an

avalanche photodiode

IN Sahara, Masanori; Suzuki, Takashi
 PA Hamamatsu Photonics K.K., Japan
 SO U.S., 27 pp., Cont.-in-part of Appl. No. PCT/JP99/00397.
 CODEN: USXXAM

DT Patent
 LA English

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6392282	B1	20020521	US 2000-628446	20000728
	JP 11046010	A2	19990216	JP 1998-19302	19980130
	JP 11045988	A2	19990216	JP 1998-19311	19980130
	WO 9939391	A1	19990805	WO 1999-JP397	19990129
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
PRAI	JP 1998-19302	A	19980130		
	JP 1998-19311	A	19980130		
	WO 1999-JP397	A2	19990129		
	JP 1997-137023	A	19970527		
AB	BiCMOS-integrated photodetecting semiconductor devices are described which comprise an avalanche photodiode, a vertical PNP transistor , an N-channel MOS transistor for an N-channel MOS transistor, a P-channel MOS transistor for a P-channel MOS transistor, and a vertical type NPN transistor all formed on a P-type semiconductor substrate.				
IT	7440-21-3, Silicon, uses				
	RL: DEV (Device component use); USES (Uses) (BiCMOS-integrated photodetecting semiconductor device having avalanche photodiode)				
RN	7440-21-3 HCPLUS				
CN	Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)				

Si

RE.CNT 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 2 OF 4 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:251894 HCPLUS
 DN 136:271757
 TI High-voltage complementary bipolar and **BiCMOS** devices using double epitaxial growth
 IN Hebert, Francois; Chen, Datong; Razouk, Reda
 PA National Semiconductor Corporation, USA
 SO U.S., 11 pp.
 CODEN: USXXAM
 DT Patent
 LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 6365447	B1	20020402	US 1998-5786	19980112
PRAI US 1998-5786		19980112		
AB	A method of making high-voltage complementary bipolar and BiCMOS devices on a common substrate. The bipolar devices are vertical NPN and PNP transistors having the same structure. The fabrication process utilizes trench isolation and thus is scalable. The process uses two epitaxial silicon layers to form the high-voltage NPN collector, with the PNP collector formed from a p-well diffused into the two epitaxial layers. The collector contact resistance is minimized by the use of sinker up/down structures formed at the interface of the two epitaxial layers. The process minimizes the thermal budget and therefore the up diffusion of the NPN and PNP buried layers. This maximizes the breakdown voltage at the collector-emitter junction for a given epitaxial thickness. The epitaxial layers may be doped as required depending upon the specifications for the high-voltage NPN device. The process is compatible with the fabrication of low-voltage devices, which can be formed by placing the sinker regions under the emitter region. The thicknesses of the two epitaxial layers may be adjusted as required depending upon the specifications for the low-voltage devices.			
IT	7440-21-3, Silicon, uses			
	RL: DEV (Device component use); USES (Uses) (high-voltage complementary bipolar and BiCMOS devices using double epitaxial growth)			
RN	7440-21-3 HCPLUS			
CN	Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)			

Si

RE.CNT 11 THERE ARE 11 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 3 OF 4 HCPLUS COPYRIGHT 2004 ACS on STN
AN 2000:589122 HCPLUS
DN 133:328044
TI The piezojunction effect in **NPN** and **PNP vertical transistors** and its influence on silicon temperature sensors
AU Fruett, F.; Wang, G.; Meijer, G. C. M.
CS Electronics Research Laboratory, Delft University of Technology, Delft, 2628 CD, Neth.
SO Sensors and Actuators, A: Physical (2000), A85(1-3), 70-74
CODEN: SAAPEB; ISSN: 0924-4247
PB Elsevier Science S.A.
DT Journal
LA English
AB This paper describes a test structure to characterize the piezojunction effect for the base-emitter voltage VBE and the PTAT voltage Δ VBE. The piezojunction effect directly affects the accuracy of temperature sensors and special types of pressure sensors. Packaging is a source of mech. stress in electronics circuits. Measurements have been performed for two types of **vertical bipolar transistors**. Firstly, an **NPN transistor** of a **BiCMOS** technol. and secondly, a **PNP substrate transistor** of a **CMOS**

technol., both of them using a [100] silicon wafer geometry. It has been found that the sensitivity for the uniaxial stress of the VBE of the PNP is four times less than that of the NPN transistor. In both cases, the PTAT voltage appears to be hardly stress-sensitive.

RE.CNT 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 4 OF 4 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 2000:508177 HCAPLUS
DN 133:98153
TI Method for making high gain lateral PNP and NPN bipolar **transistor** compatible with CMOS for making BiCMOS circuits
IN Verma, Purakh Raj; Kuek, Joe Jin
PA Chartered Semiconductor Manufacturing, Ltd., Singapore
SO U.S., 11 pp.
CODEN: USXXAM

DT Patent
LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 6093613	A	20000725	US 1998-20496	19980209
	SG 71812	A1	20000418	SG 1998-1559	19980630
	US 6249031	B1	20010619	US 2000-534551	20000327

PRAI US 1998-20496 A 19980209

AB A method and lateral bipolar transistor structure are achieved, with high current gain, compatible with CMOS processing to form BiCMOS circuits. Making a lateral PNP bipolar involves forming an n- well in a p- doped Si substrate. A patterned Si₃N₄ layer was used as an oxidation barrier mask to form field oxide isolation around device areas by the LOCOS method. A polysilicon layer over device areas is patterned to leave portions over the intrinsic base areas of the L-PNP bipolar an implant block-out mask. A buried N- base region is implanted in the substrate under the emitter region. A photoresist mask and the patterned polysilicon layer were used to implant the p++ doped emitter and collector for the L-PNP. The emitter junction depth x_j intersects the highly doped n+ buried base region. This n+ doped base under the emitter reduces the current gain of the unwanted (parasitic) vertical PNP portion of the L-PNP bipolar to reduce the current gain of the V-PNP. The built-in potential V_{bi} of the emitter-base junction also increases further the current gain of the V-PNP thereby increasing the gain of the L-PNP bipolar **transistor**. By reversing the polarity of the dopants, L-NPN components can also be made. Also by implanting a tetravalent impurity such as Ge, Si, or C, the current gain of the L-PNP can be further improved.

IT 7440-56-4, Germanium, uses

RL: MOA (Modifier or additive use); USES (Uses)
(in method for making high gain lateral pnp and npn bipolar **transistor** compatible with CMOS for making BiCMOS circuits)

RN 7440-56-4 HCAPLUS

CN Germanium (7CI, 8CI, 9CI) (CA INDEX NAME)

Ge

02/26/2004

10/065,837

IT 7440-21-3D, Silicon, ions, processes 7440-56-4D
, Germanium, ions, processes
RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical
process); PROC (Process); USES (Uses)
(in method for making high gain lateral pnp and npn
bipolar transistor compatible with CMOS for making
BiCMOS circuits)
RN 7440-21-3 HCPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 7440-56-4 HCPLUS
CN Germanium (7CI, 8CI, 9CI) (CA INDEX NAME)

Ge

IT 7440-21-3P, Silicon, processes
RL: DEV (Device component use); PEP (Physical, engineering or chemical
process); SPN (Synthetic preparation); PREP (Preparation); PROC (Process);
USES (Uses)
(method for making high gain lateral pnp and npn
bipolar transistor compatible with CMOS for making
BiCMOS circuits)
RN 7440-21-3 HCPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 1 OF 3 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:850549 HCAPLUS
DN 136:93842
TI A complementary bipolar technology family with a vertically integrated PNP for high-frequency analog applications
AU Bashir, Rashid; Hebert, Francois; DeSantis, Joseph; McGregor, Joel M.; Yindepol, Wipawan; Brown, Kevin; Moraveji, Farhood; Mills, Thomas B.; Sadovnikov, Alexei; McGinty, James; Hopper, Peter; Sabsowitz, Robert; Khidr, Mohamed; Krakowski, Tracey; Smith, Linda; Razouk, Reda
CS School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
SO IEEE Transactions on Electron Devices (2001), 48(11), 2525-2534
CODEN: IETDAI; ISSN: 0018-9383
PB Institute of Electrical and Electronics Engineers
DT Journal; General Review
LA English
AB A review. Silicon complementary bipolar processes offer the possibility of realizing high-performance circuits for a variety of analog applications. This paper presents a summary of silicon complementary bipolar process technol. reported in recent years. Specifically, an overview of a family of silicon complementary bipolar process technologies, called Vertically Integrated PNP (VIP), which have been used for the realization of high-frequency analog circuits is presented. Three process technologies, termed VIP-3, VIP-3H, and VIP-4H offer device breakdowns of 40, 85, and 170 V, resp. These processes feature optimized vertically integrated bipolar junction transistors (PNPs) along with high performance NPN transistors with polycryst. silicon emitters, low parasitic polycryst. silicon resistors, and metal-insulator-polycryst. silicon capacitors. Key issues and aspects of the processes are described. These issues include the polycryst. silicon emitter optimization and vertical and lateral device isolation in the transistors. Circuit design examples are also described which have been implemented in these technologies.
IT 7440-21-3, Silicon, uses
RL: DEV (Device component use); USES (Uses)
(complementary bipolar technol. family with a vertically integrated PNP for high-frequency analog applications)
RN 7440-21-3 HCAPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 62 THERE ARE 62 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L12 ANSWER 2 OF 3 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1982:44849 HCAPLUS
DN 96:44849 --
TI High performance PNP and NPN
transistor structure
IN Horng, Cheng Tzong; Konian, Richard Robert; Schwenker, Robert Otto;
Wieder, Armin Wilhelm
PA--International Business Machines Corp., USA

SO Eur. Pat. Appl., 37 pp.
CODEN: EPXXDW

DT Patent
LA English
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 39411	A2	19811111	EP 1981-102499	19810402
	R: DE, FR, GB, IT				
	CA 1148269	A1	19830614	CA 1981-372670	19810310
	US 4378630	A	19830405	US 1981-309627	19811008
PRAI	US 1980-146921		19800505		

AB The structure provides **vertical npn** and lateral **pnp transistors** within the same semiconductor chip. The base of the **pnp transistor** is very narrow (.apprx.300-400 nm), obtained in part by using a well-defined chemical vapor-deposited oxide mask instead of conventional lithog. masking. To eliminate the emitter current injected into the substrate, the p+ emitter and p+ collector of the **pnp transistor** are bonded by Si3N4 and SiO2 layers.

L12 ANSWER 3 OF 3 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1970:460533 HCPLUS

DN 73:60533

TI Field effect transistors for integrated circuits

IN Kronlage, John W.

PA Texas Instruments Inc.

SO S. African, 33 pp.

CODEN: SFXXAB

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	ZA 6904664		19700119		
	GB 1278281			GB	

PRAI US 19680829

AB High-quality and high-performance p-channel field-effect transistors [FET] having low noise figures are fabricated as devices per se or in an integrated circuit including a complementary n-channel FET and (or) **vertical** and surface bipolar npn and pnp transistors and resistors, all formed on the same monolithic chip or slice. The use of p-channel FETs in such integrated circuits permits addnl. design flexibility and optimum circuit performance. The complementary n- and p-channel transistors may be used to fabricate differential/operational amplifiers having high gain, low noise, high output voltage swing, and balanced amplifier stages. Thus, to form a p-channel FET: (1) a 1st p-type, B-doped region is diffused into the surface of an n-type, P-doped, single-crystal Si substrate; (2) then, a 1st n+-type region, Sb- or As-doped, is diffused into the 1st p-type region, forming a back gate for the p-channel transistor; (3) an n-type epitaxial layer is formed over the surface by thermal decomposition of trichlorosilane in a H atmospheric containing a few ppm arsine; (4) a lightly B-doped p-type region is formed by diffusion into the surface of the epitaxial layer, thus forming the channel region; (5) a B-doped p+ barrier or isolation ring is formed around the periphery and contacting the 1st p-type region, thus providing effective isolation from the n-type

02/26/2004

10/065,837

substrate by reverse biasing; (6) p-type source and drain regions and an n+ front gate region are formed by diffusion on the surface of the p-type layer. n-Channel FET and bipolar npn and pnp transistors may be formed concurrently on the same substrate as desired for use in an integrated circuit.

L14 ANSWER 1 OF 4 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:203348 HCPLUS
 DN 138:213790
 TI Manufacturing method of a semiconductor device having a polysilicon electrode
 IN Kim, Jong-hwan; Kim, Cheol-joong; Lee, Suk-kyun; Choi, Yongcheol
 PA Fairchild Korea Semiconductor Ltd., S. Korea
 SO U.S. Pat. Appl. Publ., 31 pp.
 CODEN: USXXCO

DT Patent
 LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003049909	A1	20030313	US 2002-94445	20020308
PRAI	KR 2001-56518	A	20010913		

AB A semiconductor device and a method of manufacturing the semiconductor device having a vertical NPN bipolar transistor, a lateral PNP bipolar transistor, and P-type and N-type resistors are disclosed which are manufactured in a reduced number of steps.

In one embodiment, a photoresist pattern is formed on a pad oxide layer and field oxides on an N-type epitaxial layer that is grown on a P-type semiconductor substrate. The pad oxide layer is etched after implanting P-type impurity into the epitaxial layer by using the photoresist pattern as a mask. Deposition of a polysilicon layer after removing the photoresist pattern is followed by implanting P-type impurity and N-type impurity into the polysilicon layer in sequence. Another photoresist pattern formed on the polysilicon layer after the previous implantation was used as an etch mask for etching the polysilicon layer to form polysilicon electrodes of transistors and P-type and N-type resistors as well as expose the surface of the epitaxial layer near an emitter region of the vertical transistor. P-type impurity is implanted into the epitaxial layer through the exposed surface thereof by using the photoresist pattern as an implant mask. The structure is then subjected to heat treatment to form emitter, intrinsic and extrinsic base, and collector regions of the transistors.

IT 7440-21-3, Silicon, processes
 RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PYP (Physical process); PROC (Process); USES (Uses)
 (poly-; manufacturing semiconductor device having polysilicon electrode)
 RN 7440-21-3 HCPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L14 ANSWER 2 OF 4 HCPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:444559 HCPLUS
 DN 137:14465
 TI Complementary vertical bipolar-junction transistors fabricated in silicon-on-sapphire substrate utilizing wide base PNP transistors
 IN Cartagena, Eric N.

02/26/2004

10/065,837

PA United States Dept. of the Navy, USA
SO U.S., 22 pp.
CODEN: USXXAM

DT Patent
LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-----	-----	-----	-----	-----
PI	US 6404038	B1	20020611	US 2000-517292	20000302
PRAI	US 2000-517292		20000302		

AB A method for fabricating complementary vertical bipolar junction transistors of silicon-on-sapphire in fewer steps than required for true complimentary vertical bipolar junction transistors is disclosed. Initially a thin layer of silicon is grown on a sapphire substrate. The silicon is improved using double solid phase epitaxy. The silicon is then patterned and implanted with P+-type and N+-type dopants. Subsequently a micrometer scale N-type layer is grown that acts as the intrinsic base for both an PNP transistor and as the collector for an NPN transistor. The extrinsic base for the NPN is then formed and the emitter, collector and ohmic contact regions are next selectively masked and implanted. Conductive metal is then formed between protecting oxide to complete the complementary vertical bipolar junction transistors.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
(complementary vertical bipolar junction transistors
fabricated in silicon-on-sapphire substrate utilizing wide
base PNP transistors)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 23 THERE ARE 23 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L14 ANSWER 3 OF 4 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 1999:763809 HCAPLUS

DN 132:8198

TI Method of making an integrated vertical bipolar
transistor

IN Yoshida, Hiroshi

PA NEC Corporation, Japan

SO Eur. Pat. Appl., 19 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
	-----	-----	-----	-----	-----
PI	EP 961316	A2	19991201	EP 1999-110147	19990525
	EP 961316	A3	20030625		

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
IE, SI, LT, LV, FI, RO

02/26/2004

10/065,837

JP 11340335	A2	19991210	JP 1998-144316	19980526
JP 3252898	B2	20020204		
US 6337252	B1	20020108	US 1999-315826	19990521

PRAI JP 1998-144316 A 19980526

AB There is provided a method of manufacturing a semiconductor device which can use

commonly a part of a step of forming a PNP transistor with a step of forming an NPN transistor. In an area isolated by a later isolation region of PNP formed by doping N-type impurities simultaneously with the formation of the collector region of NPN, an N-type bottom isolation region of PNP, a collector region, and a base region are formed by using the same mask. Trenches extending to the collector regions are formed by an overetching treatment carried out when the emitter electrodes of PNP and NPN are subjected to a patterning treatment, and N-type impurities are doped through the trench simultaneously with the formation of an external base region of PNP, thereby forming a collector drawing region of NPN. Further, P-type impurities are doped through the trench simultaneously with the formation of an external base region of NPN, thereby forming a collector drawing region of PNP.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(fabrication of integrated vertical bipolar transistors based on)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L14 ANSWER 4 OF 4 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1998:242235 HCAPLUS

DN 128:303016

TI Complementary bipolar transistors, integrated injection logic circuits and semiconductor devices using them, and their production

IN Kim, Jong-Hwan; Kim, Cheol-Joong; Kwon, Tae-Hoon; Lee, Suk-Kyun

PA Samsung Electronics Co., Ltd., S.. Korea

SO Ger. Offen., 114 pp.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 19744860	A1	19980416	DE 1997-19744860	19971010
	CN 1179627	A	19980422	CN 1997-119313	19971010
	US 6326674	B1	20011204	US 1999-451623	19991130
	US 2002017703	A1	20020214	US 2001-978521	20011016
	US 6573146	B2	20030603		
PRAI	KR 1996-46600	A	19960910		
	KR 1996-45305	A	19961011		
	KR 1997-46600	A	19970910		
	US 1997-949223	A3	19971010		
	US 1999-451623	A3	19991130		

AB The complementary bipolar transistor comprises a lateral

npn bipolar transistor, vertical and lateral pnp transistors, an integrated injection logic circuit, a diffusion capacitor, a polysilicon capacitor, and polysilicon resistors. The lateral pnp transistor has emitter and collector regions which include high- and low-d. regions, and the emitter region is formed in an n-type trench region. In the integrated injection logic circuit, collector regions are surrounded by high-d. p-type regions and low-d. p-type regions are formed under the collector regions. The diffusion and polysilicon capacitors are formed in the substrate. The diffusion regions outside the regions formed by diffusion of the impurities in the polysilicon resistors into the epitaxial layer are formed before the formation of the polysilicon resistors, and the polysilicon electrodes are formed together with the polysilicon resistors.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(polycryst.; manufacture of complementary bipolar transistors containing)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L18 ANSWER 1 OF 1 HCPLUS COPYRIGHT 2004 ACS on STN
AN 2000:551445 HCPLUS
DN 133:170999
TI Fabrication of bipolar CMOS semiconductor device having vertical
pnp and npn transistors
IN Yoshida, Hiroshi
PA NEC Corp., Japan
SO Jpn. Kokai Tokkyo Koho, 9 pp.
CODEN: JKXXAF
DT Patent
LA Japanese
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2000223601	A2	20000811	JP 1999-22514	19990129
	JP 3216716	B2	20011009		
PRAI	JP 1999-22514		19990129		

AB The title method involves forming a field oxide film on a p-type Si substrate, forming a first oxide film, forming gate electrodes and a polysilicon layer containing an oxide film(s) as a mask for forming the pnp-forming region having an ion-implanted emitter structure, forming a second oxide film on the overall substrate including the gate electrodes and mask, removing the first and second oxide films at the regions for forming collector and emitter contacts and removing the polysilicon layer at the pnp-emitter contact in patterning the polysilicon layer as well as etching the silicon at the npn and pnp collectors. The number of fabrication steps and device size are decreased.

IT 7440-21-3, Silicon, processes
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(fabrication of bipolar CMOS semiconductor device having vertical pnp and npn transistors)

RN 7440-21-3 HCPLUS
CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 1 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:777009 HCAPLUS
 DN 139:269247
 TI Design and fabrication of a semiconductor device having high-speed PNP and NPN heterojunction bipolar transistors
 IN Ikeda, Tatsuhiko
 PA Japan
 SO U.S. Pat. Appl. Publ., 28 pp.
 CODEN: USXXCO
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003183903	A1	20031002	US 2002-246406	20020919
	JP 2003297843	A2	20031017	JP 2002-92622	20020328
PRAI	JP 2002-92622	A	20020328		

AB The invention relates to the design and fabrication of a semiconductor device having high-speed PNP and NPN heterojunction bipolar transistors formed on a single substrate. The semiconductor device consists of a vertical NPN bipolar transistor and a vertical PNP bipolar transistor, each having a collector layer, a base layer, and an emitter layer formed on a common silicon substrate. Each of the vertical NPN bipolar transistor and the vertical PNP bipolar transistor consists of (i) a first epitaxial layer formed on the surface of the silicon substrate; (ii) an isolation insulating film disposed on the surface of the first epitaxial layer; (iii) a first portion of the collector layer formed on the surface of the first epitaxial layer and surrounded by the isolation insulating film; and (iv) a second epitaxial layer extending on the first epitaxial layer and the isolation insulating film, where the second epitaxial layer consists of a silicon layer as a second portion of the collector layer, a silicon germanium layer as the base layer, and a silicon layer as the emitter layer in the order from the bottom.

IT 7440-21-3, Silicon, uses 11148-21-3
 RL: DEV (Device component use); USES (Uses)
 (design and fabrication of semiconductor device having high-speed PNP and NPN heterojunction bipolar transistors)

RN 7440-21-3 HCAPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS
 CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component
Registry Number	
Ge	7440-56-4
Si	7440-21-3

02/26/2004

10/065,837 .

L19 ANSWER 2 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 2003:203090 HCAPLUS
DN 138:213764
TI Electrostatic discharge protection **silicon** controlled rectifier
for **silicon-germanium** technologies
IN Russ, Cornelius Christian; Armer, John; Mergens, Markus Paul Josef;
Jozwiak, Phillip Czeslaw
PA Sarnoff Corporation, USA
SO U.S. Pat. Appl. Publ., 21 pp.
CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003047750	A1	20030313	US 2002-238699	20020910
	EP 1294025	A2	20030319	EP 2002-256293	20020911
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, SK				
	JP 2003179150	A2	20030627	JP 2002-265936	20020911

PRAI US 2001-318550P P 20010911
US 2002-238699 A 20020910

AB An electrostatic discharge (ESD) protection device having a **Si**
controlled rectifier (SCR) for protecting circuitry of an integrated
circuit (IC) is prepared which is not as subject to failure as the prior
art. The SCR includes a N-doped layer disposed over a substrate and a 1st
P doped region disposed over the N-doped layer. At least one 1st N+ doped
region forming a cathode is disposed over the P-doped region and coupled
to ground. The at least one 1st N+ doped region, 1st P-doped region, and
N-doped layer form a **vertical NPN transistor**
of the SCR. A 2nd P doped region forming an anode is coupled to a
protected pad. The 2nd P doped region is disposed over the N-doped layer,
and is laterally positioned and elec. isolated with respect to the 1st P
doped region. The 2nd P doped region, N-doped layer, and 1st P doped
region form a lateral **PNP transistor** of the SCR.

IT 7440-21-3, Silicon, uses 11148-21-3

RL: DEV (Device component use); USES (Uses)
(electrostatic discharge protection **silicon** controlled
rectifier for **silicon-germanium** technologies)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN 11148-21-3 HCAPLUS
CN Germanium alloy, nonbase, Ge,Si (9CI) (CA INDEX NAME)

Component	Component Registry Number
Ge	7440-56-4
Si	7440-21-3

L19 ANSWER 3 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:598374 HCAPLUS

02/26/2004

10/065,837

DN 135:161115
 TI Vertical bipolar **transistor** based on gate induced
 drain leakage current which is compatible with CMOS fabrication processes
 IN Chi, Min-Hwa; Jeng, Min-Chie
 PA Taiwan
 SO U.S. Pat. Appl. Publ., 7 pp.
 CODEN: USXXCO

DT Patent
 LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2001013610	A1	20010816	US 1999-365436	19990802
	TW 447131	B	20010721	TW 2000-89100624	20000117
PRAI	US 1999-365436	A	19990802		

AB A vertical npn bipolar **transistor** formed in
 a p-type substrate is disclosed. The transistor comprises: a deep n-well
 formed within the p-type substrate; a buried n+ layer formed within the
 deep n-well; a p-well formed within the deep n-well and atop the buried n+
 layer; an isolation structure surrounding the p-well and extending from
 the surface of the substrate to below the level of the p-well; a n+
 structure formed within the p-well; and a gate formed above the p-well,
 the gate separated from the substrate by a thin oxide layer, the gate
 extending over at least a portion of the n+ structure. To turn on the
 npn bipolar **transistor**, the gate is pulsed to 0 V (or
 lower), generating GIDL current at the n+ structure and flowing into the
 p-well (as base current). A corresponding vertical gated
 pnp bipolar **transistor** can also be formed and operated
 similarly with reverse polarity of charge carriers and biases.

IT 7440-21-3, Silicon, uses
 RL: DEV (Device component use); USES (Uses)
 (vertical bipolar **transistor** based on gate induced
 drain leakage current which is compatible with CMOS fabrication
 processes)
 RN 7440-21-3 HCAPLUS
 CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 4 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN
 AN 2000:259043 HCAPLUS
 DN 132:287417
 TI Semiconductor devices having npn/pnp-
 transistors on a SOI wafer and fabrication thereof
 IN Sugiyama, Mitsuhiro
 PA NEC Corp., Japan
 SO Jpn. Kokai Tokkyo Koho, 9 pp.
 CODEN: JKXXAF

DT Patent
 LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2000114391	A2	20000421	JP 1998-282134	19981005
	JP-3175707	B2	20010611		

EIC2800

Irina Speckhard

571 272 25 54

02/26/2004

10/065,837

PRAI JP 1998-282134

19981005

AB The title semiconductor devices have a **vertical npn-transistor** and a **horizontal pnp-transistor** provided across an isolation region on a substrate. The transistors are provided across a buried SiO₂ film on the substrate, wherein a p+-layer of the horizontal **pnp-transistor** is provided in proximity to the SiO₂ film. The buried Si oxide film gives the devices a stable base region width and consequently provides a stable linearity on the current amplification ratio regardless of an increase of collector current. The devices may be well applicable to communication bipolar ICs.

IT 7440-21-3, Silicon, properties

RL: DEV (Device component use); PRP (Properties); USES (Uses)
(semiconductor devices having **npn/pnp-transistors** on a SOI wafer and fabrication thereof)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 5 OF 19 HCAPLUS COPYRIGHT 2004 ACS on STN

AN 1999:468151 HCAPLUS

DN 131:96144

TI Complementary **Si/Si-Ge** heterojunction bipolar transistor fabrication

IN Bashir, Rashid; Hebert, Francois

PA National Semiconductor Corporation, USA

SO U.S., 11 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5930635	A	19990727	US 1997-850610	19970502
PRAI	US 1997-850610		19970502		

AB A method of manufacturing truly complementary bipolar transistors on a common substrate. The method results in the fabrication of **vertical NPN and PNP transistors** which have an identical structure and mode of operation, with both devices operating in the downward direction. The inventive method permits independent control of the characteristics of the two devices, producing a closely matched performance for both devices.

IT 7440-21-3, Silicon, processes 12790-21-5

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
(complementary silicon/silicon-germanium heterojunction bipolar transistor fabrication)

RN 7440-21-3 HCAPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RN—12790-21-5—HCAPLUS

EIC2800

Irina Speckhard

571 272 25 54

02/26/2004

10/065,837

CN Silicon alloy, base, Si,Ge (9CI) (CA INDEX NAME)

Component Component
Registry Number

=====+=====+
Si 7440-21-3
Ge 7440-56-4

RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L19 ANSWER 6 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1998:594653 HCPLUS

DN 129:284473

TI Semiconductor devices and manufacturing thereof

IN Kuranochi, Atsushi

PA Sony Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 10242291	A2	19980911	JP 1997-45873	19970228
PRAI JP 1997-45873		19970228		

AB The device has SiCx films (e.g., 0.5-5 nm thick) between a polycryst. Si emitter electrode and the emitter layer of a npn- and a pnp-bipolar transistor (e.g., double polycryst. Si bipolar transistor and vertical bipolar transistor type, resp.). The title process comprises formation of SiCx films on the base layers, deposition of polycryst. Si films to be formed to the emitter electrodes, ion implantation of a p- and an n-type impurity into the polycryst. Si films, (1) patterning of the polycryst. Si films to the emitter electrodes and heat treatment for diffusion of the p-type impurity to the surface of the base layer forming the emitter layer, and (2) heat treatment for diffusion of the n-type impurity onto the surface of the base layer forming the emitter layer and patterning of the polycryst. Si film to the emitter electrode, for the npn- and the pnp-bipolar transistor, resp. Current amplification factor is raised with increased emitter injection effect with decreased deviations of the current amplification factor and the base-emitter voltage.

IT 7440-21-3, Silicon, properties
RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PRP (Properties); PROC (Process); USES (Uses)
(polycryst., emitter electrode; semiconductor devices and manufacturing thereof)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 7 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1998:501244 HCPLUS

EIC2800

Irina Speckhard

571 272 25 54

02/26/2004

10/065,837

DN 129:143792

TI Vertical pnp transistor, integrated circuit containing it, and fabrication of the transistor and the circuit
 IN Lachner, Rudolf; Bianco, Michael
 PA Siemens A.-G., Germany
 SO Eur. Pat. Appl., 11 pp.
 CODEN: EPXXDW

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 855747	A1	19980729	EP 1998-100638	19980115
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	DE 19702320	A1	19980730	DE 1997-19702320	19970123
	JP 10214846	A2	19980811	JP 1998-23911	19980121
PRAI	DE 1997-19702320		19970123		

AB The base contact of the transistor, preferably of n-type polysilicon, is formed after the p-type polysilicon emitter contact, and thus is at least partially above the emitter contact. On integration with a vertical npn transistor, the emitter contact of the pnp transistor and the base contact of the npn transistor are formed from the same p-type polysilicon layer. The pnp transistor requires little space and is simple to fabricate.

IT 7440-21-3, Silicon, processes

RL: DEV (Device component use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)
 (polycryst.; fabrication of polysilicon base and emitter contacts in vertical pnp transistor for integrated circuits)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L19 ANSWER 8 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1998:334180 HCPLUS

DN 129:61597

TI Manufacture of semiconductor devices with NPN and PNP transistors

IN Nagayama, Masanori

PA Hitachi Electronics Co., Ltd., Japan

SO Jpn. Kokai Tokyo Koho, 3 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 10135235	A2	19980522	JP 1996-292414	19961105
PRAI	JP 1996-292414		19961105		

EIC2800

Irina Speckhard

571 272 25 54

AB N-type epitaxial layers are formed on the buried regions of vertical NPN transistors, device-isolation regions are formed, collector contact regions are etched away, and replaced by high-concentration P-type poly-Si, and base and emitter regions are formed. The NPN transistors have reduced collector contact resistance.

IT 7440-21-3, Silicon, uses

RL: DEV (Device component use); USES (Uses)
(polycryst.; manufacture of semiconductor devices with NPN and PNP transistors with reduced collector contact resistance)

RN 7440-21-3 HCPLUS

CN Silicon (7CI, 8CI, 9CI) (CA INDEX NAME)

Si

L19 ANSWER 9 OF 19 HCPLUS COPYRIGHT 2004 ACS on STN

AN 1998:163313 HCPLUS

DN 128:224835

TI Manufacture of semiconductor devices

IN Iwamoto, Yasuhiko

PA NEC Corp., Japan

SO Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 10070194	A2	19980310	JP 1996-226579	19960828
	JP 2907141	B2	19990621		
PRAI	JP 1996-226579		19960828		
AB	The title process comprises sequential formation of 2nd conductivity type 1st regions for separation of vertical pnp transistors and 2nd conductivity type 2nd regions for high concentration collectors of npn transistors on a 1st conductivity type semiconductor substrate; 1st conductivity				
	type 1st regions for vertical pnp transistors in the 2nd conductivity type 1st regions, a 1st conductivity type 2nd regions in the 2nd conductivity type 2nd regions, and a 2nd conductivity type 3rd regions in the 1st conductivity				
	type regions; insulating layer(s) on the entire surface including the 1st conductivity type 2nd and the 2nd conductivity type 3rd regions; formation of contact				
	holes in the insulating layer(s) over the 1st conductivity type 2nd and the 2nd conductivity type 3rd regions; and selective deposition of polycryst. Si film doped with a 2nd conductivity type impurity in the contact holes; doping of				
	the 2nd conductivity type Si film in the contact holes over the 2nd conductivity type 3rd regions with a 1st conductivity type impurity converting the				
	Si film to the 1st conductivity type; and formation of 2nd conductivity type				
	and 1st conductivity type 3rd regions in the 1st conductivity type 2nd and the 2nd conductivity				

26feb04 09:40:55 User267149 Session D1259.1

SYSTEM:OS - DIALOG OneSearch

File 2:INSPEC 1969-2004/Feb W3

(c) 2004 Institution of Electrical Engineers

*File 2: Alert feature enhanced for multiple files, duplicates removal, customized scheduling. See HELP ALERT.

File 6:NTIS 1964-2004/Feb W4

(c) 2004 NTIS, Intl Cpyrgh All Rights Res

File 8:Ei Compendex(R) 1970-2004/Feb W3

(c) 2004 Elsevier Eng. Info. Inc.

File 34:SciSearch(R) Cited Ref Sci 1990-2004/Feb W3

(c) 2004 Inst for Sci Info

*File 34: New prices as of 1/1/2004 per Information Provider request. See HELP RATES 34.

File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec

(c) 1998 Inst for Sci Info

*File 434: New prices as of 1/1/2004 per Information Provider request. See HELP RATES434.

File 35:Dissertation Abs Online 1861-2004/Jan

(c) 2004 ProQuest Info&Learning

File 65:Inside Conferences 1993-2004/Feb W4

(c) 2004 BLDSC all rts. reserv.

File 94:JICST-EPlus 1985-2004/Feb W3

(c) 2004 Japan Science and Tech Corp(JST)

File 99:Wilson Appl. Sci & Tech Abs 1983-2004/Jan

(c) 2004 The HW Wilson Co.

File 144:Pascal 1973-2004/Feb W3

(c) 2004 INIST/CNRS

File 305:Analytical Abstracts 1980-2004/Jan W3

(c) 2004 Royal Soc Chemistry

*File 305: Alert feature enhanced for multiple files, duplicate removal, customized scheduling. See HELP ALERT.

File 315:ChemEng & Biotec Abs 1970-2004/Jan

(c) 2004 DECHHEMA

File 350:Derwent WPIX 1963-2004/UD,UM &UP=200413

(c) 2004 Thomson Derwent

*File 350: New prices as of 1-1-04 per Information Provider request. See HELP RATES350

File 347:JAPIO Oct 1976-2003/Oct(Updated 040202)

(c) 2004 JPO & JAPIO

*File 347: JAPIO data problems with year 2000 records are now fixed. Alerts have been run. See HELP NEWS 347 for details.

File 344:Chinese Patents Abs Aug 1985-2003/Nov

(c) 2003 European Patent Office

File 371:French Patents 1961-2002/BOPI 200209

(c) 2002 INPI. All rts. reserv.

*File 371: This file is not currently updating. The last update is 200209.

Set	Items	Description
S1	3846	AU=(GRAY, P? OR GRAY P?)
S2	28819	AU=(JOHNSON, J? OR JOHNSON J?)
S3	3	S1 AND S2
S4	3	RD (unique items)
S5	32662	S1:S2
S6	7	S5 AND VERTICAL?(3N) (NPN OR PNP OR TRANSIST?)
S7	7	S6 NOT S3
S8	4	RD (unique items)
S9	32652	S5 NOT S6,S4
S10	49	S9 AND (BICMOS OR BIPOLAR()COMPLEMENTARY()METAL()OXIDE)
S11	31	S10 AND (SILICON OR SI OR GERMANIUM OR GE OR SILICON()GERMANIUM OR SIGE)
S12	1	S11 AND (P OR N)(1N) (TYPE? ? OR EMIT???????)
S13	30	S11 NOT S12
S14	1	S13 AND BASE???(3N) (EXTRINSIC? OR EXTERNAL? OR OUTSIDE)
S15	29	S13 NOT S14
S16	2	S15 AND (CUTOFF OR CUT()OFF OR LIMIT???????) (3N) (FREQUENC? - OR GHZ OR GIGAHERTZ)
S17	1	RD (unique items)
S18	27	S15 NOT S16
S19	15	RD (unique items)

4/3,AB/1 (Item 1 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7176093 INSPEC Abstract Number: B2002-03-2570K-002

Title: A 0.18 μ m BiCMOS technology featuring 120/100 GHz ($f_{\text{sub T}}$ / $f_{\text{sub max}}$) HBT and ASIC-compatible CMOS using copper interconnect

Author(s): Joseph, A.; Coolbaugh, D.; Zierak, M.; Wuthrich, R.; Geiss, P.; He, Z.; Liu, X.; Orner, B.; Johnson, J.; Freeman, G.; Ahlgren, D.; Jagannathan, B.; Lanzerotti, L.; Ramachandran, V.; Malinowski, J.; Chen, H.; Chu, J.; Gray, P.; Johnson, R.; Dunn, J.; Subbanna, S.; Schonenberg, K.; Harame, D.; Groves, R.; Watson, K.; Jadus, D.; Meghelli, M.; Rylyakov, A.

Author Affiliation: Microelectron. Div., IBM Corp., Essex Junction, VT, USA

Conference Title: Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212) p.143-6

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 2001 Country of Publication: USA 199 pp.

ISBN: 0 7803 7019 8 Material Identity Number: XX-2001-02296

U.S. Copyright Clearance Center Code: 0-7803-7019-8/01/\$10.00

Conference Title: Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting

Conference Sponsor: IEEE Electron. Devices Soc.; IEEE Solid-State Circuits Soc.; IEEE Twin Cities Sect

Conference Date: 30 Sept.-2 Oct. 2001 Conference Location: Minneapolis, MN, USA

Language: English

Abstract: A BiCMOS technology is presented that integrates a high performance NPN ($f_{\text{sub T}}=120$ GHz and $f_{\text{sub max}}=100$ GHz), ASIC compatible 0.11 μ m L_{eff} CMOS, and a full suite of passive elements. Significant HBT performance enhancement compared to previously published results has been achieved through further collector and base profile optimization guided by process and device simulations. Base transit time reduction was achieved by simultaneously increasing the Ge ramp and by limiting the base diffusion with the addition of carbon doping to SiGe epitaxial base. This paper describes IBM's next generation SiGe BiCMOS production technology targeted at the communications market.

Subfile: B

Copyright 2002, IEE

4/3,AB/2 (Item 1 from file: 65)
DIALOG(R)File 65:Inside Conferences
(c) 2004 BLDSC all rts. reserv. All rts. reserv..

03392936 INSIDE CONFERENCE ITEM ID: CN035824443

Increasing the Flexibility of Modelling Tools via Constraint-Based Specification

Gray, P.; Welland, R.

CONFERENCE: CASCON 1999-Conference (Meeting of minds)

P: 161-172

CASCON, 1999

LANGUAGE: English DOCUMENT TYPE: Conference Papers

CONFERENCE EDITOR(S): MacKay, S. A.; Johnson, J. H.

CONFERENCE SPONSOR: Consortium for Software Engineering Research

IBM TJ Watson Research Center

CONFERENCE LOCATION: Mississauga, Canada

CONFERENCE DATE: Nov 1999 (199911) (199911)

NOTE:

8/3,AB/1 (Item 1 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7508997 INSPEC Abstract Number: B2003-02-2560J-018
Title: A simulation study on thin SOI bipolar transistors with fully or partially depleted collector
Author(s): Ouyang, Q.C.; Jin Cai; Tak Ning; Oldiges, P.; Johnson, J.B.
Author Affiliation: IBM Semicond. Res. & Dev. Center (SRDC), IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA
Conference Title: Proceedings of the 2002 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.02CH37384) p.28-31
Publisher: IEEE, Piscataway, NJ, USA
Publication Date: 2002 Country of Publication: USA 241 pp.
ISBN: 0 7803 7561 0 Material Identity Number: XX-2002-02195
U.S. Copyright Clearance Center Code: 0-7803-7561-0/02/\$17.00
Conference Title: 2002 IEEE Bipolar/BICMOS Circuits and Technology Meeting
Conference Sponsor: IEEE Electron Devices Soc.; IEEE Solid-State Circuits Soc
Conference Date: 29 Sept.-1 Oct. 2002 Conference Location:
Minneapolis, MN, USA
Language: English
Abstract: Vertical npn BJTs on thin SOI with a partially or fully depleted collector are studied by 2-dimensional device simulations. It is found that compared to conventional bulk BJTs, the SOI BJTs have a reduced base-collector capacitance, a higher Early voltage and a higher breakdown voltage. A SOI BJT with a fully-depleted collector can achieve a higher f_{sub} max/ with a comparable current gain and f_{sub} T/.
Subfile: B
Copyright 2003, IEE

8/3,AB/2 (Item 2 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

04200596 INSPEC Abstract Number: B9209-2560J-016
Title: A self-aligned short process for insulated-gate bipolar transistors
Author(s): Chow, T.P.; Baliga, B.J.; Gray, P.V.; Adler, M.S.; Chang, M.F.; Pifer, G.C.; Yilmaz, H.
Author Affiliation: General Electric Co., Schenectady, NY, USA
Journal: IEEE Transactions on Electron Devices vol.39, no.6 p. 1317-21
Publication Date: June 1992 Country of Publication: USA
CODEN: IETDAI ISSN: 0018-9383
U.S. Copyright Clearance Center Code: 0018-9383/92/\$03.00
Language: English
Abstract: An n-channel vertical insulated-gate bipolar transistor (IGBT) process which implements a self-aligned p_{sub} +/ short inside the DMOS diffusion windows is proposed and demonstrated experimentally. The salient feature of the new process is the placement of a poly-Si plug to define the diffusion window of the p_{sub} +/ short. Similar forward conduction characteristics and tradeoffs with turn-off time were obtained for these self-aligned short IGBTs when compared to conventional IGBTs with non-self-aligned shorts. With a resistive load and no external gate resistor, dynamic latching current was seen to increase with increasing p_{sub} +/ diffusion depth and electron irradiation dosage, as well as with larger p_{sub} +/ diffusion windows.

Subfile: B

8/3,AB/3 (Item 3 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

03157380 INSPEC Abstract Number: B88039480
Title: P-channel, vertical insulated gate bipolar transistors
with collector short
Author(s): Chow, T.P.; Baliga, B.J.; Chang, H.R.; Gray, P.V.;
Hennessy, W.; Logan, C.E.
Author Affiliation: Gen. Electr. Co., Schenectady, NY, USA
Conference Title: 1987 International Electron Devices Meeting, IEDM.
Technical Digest (Cat. No.87CH2515-5) p.670-3
Publisher: IEEE, New York, NY, USA
Publication Date: 1987 Country of Publication: USA 936 pp.
U.S. Copyright Clearance Center Code: CH2515-5/87/0000-0670\$01.00
Conference Sponsor: IEEE
Conference Date: 6-9 Dec. 1987 Conference Location: Washington, DC,
USA
Language: English
Abstract: P-channel, collector-shorted, vertical insulated gate
bipolar transistors (IGBTs) with hexagonal and square cell geometries
were studied. The presence of the collector short, surrounding the edges of
the device, resulted in a linear I-V region before the conductivity
modulation region sets in. The effect of poly-Si overlap and JFET (junction
field-effect transistor) dosage on forward drop and breakdown voltage were
analyzed for hexagonal and square DMOS cell geometries. In contrast to the
conventional IGBT, the turnoff time increases with increasing collector
current. A maximum controllable current of 5 A (710 A/cm^2) was
measured when switching into 300 V at room temperature. The built-in
antiparallel diode formed between the collector short and the deep n⁺/
short in the DMOS cells has also been characterized.

Subfile: B

8/3,AB/4 (Item 1 from file: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

01941250
E.I. Monthly No: EI8602017150
E.I. Yearly No: EI86122816
Title: INSULATED GATE TRANSISTOR: A NEW THREE-TERMINAL MOS-CONTROLLED
BIPOLAR POWER DEVICE.
Author: Baliga, Jayant; Adler, Michael S.; Love, Robert P.; Gray Peter
V.; Zommer, Nathan D.
Corporate Source: GE, High Voltage Device & Integrated Circuits Unit,
Schenectady, NY, USA
Source: IEEE Transactions on Electron Devices v ED-31 n 6 Jun 1984 p
821-828
Publication Year: 1984
CODEN: IETDAI ISSN: 0018-9383
Language: ENGLISH
Abstract: A new three-terminal power device, called the insulated-gate
transistor (IGT), with voltage-controlled output characteristics is
described. In this device, the best features of the existing families of
bipolar devices and power MOSFET's are combined to achieve optimal device
characteristics for low-frequency power-control applications. Devices with

600-V blocking capability fabricated using a vertical DMOS process exhibit 20 times the conduction current density of an equivalent power MOSFET and five times that of an equivalent bipolar transistor operating at a current gain of 10. Typical gate turn-off times have been measured to range from 10 to 50 μ s. (Author abstract) 8 refs.

12/3,AB/1 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

013474613

WPI Acc No: 2000-646556/200062

Related WPI Acc No: 2003-695631

XRAM Acc No: C00-195491

XRPX Acc No: N00-479143

Contacting a silicide-based Schottky diode involves forming a silicide layer of Schottky diode, and contacting a contact to the silicide layer

Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)

Inventor: DUNN J S; GRAY P B; KIEFT K K; SCHMIDT N T; ST ONGE S

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 6121122	A	20000919	US 99312945	A	19990517	200062 B

Priority Applications (No Type Date): US 99312945 A 19990517

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
US 6121122	A	8	H01L-029/64	

Abstract (Basic): US 6121122 A

Abstract (Basic):

NOVELTY - A silicide-based Schottky diode is contacted by forming a silicide layer of Schottky diode, where a first portion of the silicide layer is in contact with a guard ring area and a second portion of the silicide layer is not in contact with a guard ring area; and contacting a contact to the first portion of the silicide layer but not to the second portion.

USE - The method is used for contacting a silicide-based Schottky diode. The processes and structure of the invention may be used in any bi-complementary metal oxide semiconductor (BiCMOS), Bipolar, CMOS or other semiconductor technologies where diffusions are silicided.

ADVANTAGE - Schottky diode (20) is effectively de-coupled from contact metallurgy. In addition, the silicide/silicon interface is formed by a high temperature annealing process and is atomically clean and thermally stable. As contact metallurgy need only touch silicide layer over guard ring area, diode characteristics are not influenced by processes used to form contacts. Any etch or pre-clean steps may be used when defining contact and/or any typical thermal anneals may be used to ensure good ohmic contact to the silicide without influencing diode interface or its electrical characteristics.

DESCRIPTION OF DRAWING(S) - The figure shows a side view of a silicon-based Schottky diode.

Schottky diode (20)

Contact (36, 40, 42)

Silicide layer (46, 47)

Guard ring area (50)

Portion (54, 58)

External edge (60)

pp; 8 DwgNo 2/5

14/3,AB/1 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

015583356

WPI Acc No: 2003-645513/200361

Related WPI Acc No: 2003-446767

XRAM Acc No: C03-176407

XRPX Acc No: N03-513577

Quasi hyper-abrupt base-collector junction varactor for, e.g. mobile or cellular phones, includes antimony spike located between intrinsic base and subcollector region

Patent Assignee: INT BUSINESS MACHINES CORP (IBMC)

Inventor: COOLBAUGH D D; DUNN J S; GORDON M D; HAMMAD M Y; JOHNSON J B; SHERIDAN D C

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 20030122128	A1	20030703	US 200116539	A	20011213	200361 B
			US 2002323022	A	20021218	

Priority Applications (No Type Date): US 200116539 A 20011213; US 2002323022 A 20021218

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
US 20030122128	A1	10	H01L-029/04	Div ex application US 200116539
				Div ex patent US 6521506

Abstract (Basic): US 20030122128 A1

Abstract (Basic):

NOVELTY - A quasi hyper-abrupt base-collector junction varactor comprises an antimony spike located between an intrinsic base and subcollector region of a bipolar device.

DETAILED DESCRIPTION - A quasi hyper-abrupt base-collector junction varactor comprises a substrate (10) having a collector region (18) of a first conductivity type atop a subcollector region (12), reach-through implant regions (20) located between at least a pair of isolation regions (16) of the collector region, a silicon-germanium layer atop a portion of the substrate not containing a reach-through implant region, and an antimony implant region located between an extrinsic base region and subcollector region. The silicon-germanium layer has the extrinsic base region of a second conductivity type that is different from the first conductivity type.

An INDEPENDENT CLAIM is also included for a method of fabricating the inventive quasi hyper-abrupt base-collector junction varactor.

USE - For mobile or cellular phones, personnel digital assistances, and other high radio frequency electronic devices.

ADVANTAGE - The assembly is highly linear, has improved tunability, can be easily implemented in existing complementary metal oxide semiconductor (CMOS) and BiCMOS technologies, and has the highest possible quality factor.

DESCRIPTION OF DRAWING(S) - The figure shows pictorial representation of the fabrication of a quasi hyper-abrupt base-collector junction varactor.

Substrate (10)

Subcollector region (12)

Isolation regions (16)

Collector region (18)

Reach-through implant regions (20)

17/3,AB/1 (Item 1 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7239002 INSPEC Abstract Number: B2002-05-2570K-004
Title: A technology simulation methodology for AC-performance optimization
of SiGe HBTs
Author(s): Johnson, J.B.; Stricker, A.; Joseph, A.J.; Slinkman,
J.A.
Author Affiliation: Microelectron. Div., IBM, Essex Junction, VT, USA
Conference Title: International Electron Devices Meeting. Technical
Digest (Cat. No.01CH37224) p.21.4.1-4
Publisher: IEEE, Piscataway, NJ, USA
Publication Date: 2001 Country of Publication: USA 951 pp.
ISBN: 0 7803 7050 3 Material Identity Number: XX-2002-00101
U.S. Copyright Clearance Center Code: 0-7803-7050-3/01/\$10.00
Conference Title: International Electron Devices Meeting. Technical
Digest
Conference Sponsor: Electron Devices Soc. IEEE
Conference Date: 2-5 Dec. 2001 Conference Location: Washington, DC,
USA
Language: English
Abstract: A methodology for simultaneous calibration of SiGe HBT
process and device simulation is presented and applied to SiGe
BiCMOS HBTs with peak cut-off frequencies ranging
from 100 GHz to 200 GHz. Predictive simulation capability is demonstrated
for critical HBT AC device characteristics through comparison with
experimental devices.
Subfile: B
Copyright 2002, IEE

performance and applications. The bandgap-engineered SiGe heterojunction bipolar transistors (HBTs) continue to be the workhorse of the technology, while the CMOS offering is fully foundry compatible for maximizing IP sharing. Process customization is done to provide high-quality passives, which greatly enables fully integrated single-chip solutions. Product examples include 40-Gb/s (OC768) components using high-speed SiGe HBTs, power amplifiers compatible for cellular applications, integrated voltage-controlled oscillators, and very high-level mixed-signal integration. It is argued that such key enablements along with the lower cost and higher yields attainable by SiGe BiCMOS technologies will provide competitive solutions for the communication marketplace.

Subfile: B

Copyright 2003, IEE

19/3,AB/3 (Item 3 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7554316 INSPEC Abstract Number: B2003-04-2570K-002

Title: Product applications and technology directions with SiGe BiCMOS

Author(s): Dunn, J.; Freeman, G.; Harame, D.; Joseph, A.; Coolbaugh, D.; Groves, R.; Stein, K.; Volant, R.; Subbanna, S.; Marangos, V.S.; St Onge, S.; Eshun, E.; Cooper, P.; Johnson, J.; Rieh, J.; Ramachandran, V.; Ahlgren, D.; Wang, D.; Wang, X.

Author Affiliation: IBM Corp., Essex Junction, VT, USA

Conference Title: GaAs IC Symposium. IEEE Gallium Arsenide Integrate Circuit Symposium. 24th Annual Technical Digest 2002 (Cat. No.02CH37354)
p.135-8

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 2002 Country of Publication: USA x+296 pp.

ISBN: 0 7803 7447 9 Material Identity Number: XX-2002-02491

U.S. Copyright Clearance Center Code: 0-7803-7447-9/02/\$17.00

Conference Title: IEEE Gallium Arsenide Integrated Circuits Symposium

Conference Sponsor: IEEE Electron Devices Soc.; IEEE Microwave Theory & Techniques Soc.; IEEE Solid-State Circuits Soc

Conference Date: 20-23 Oct. 2002 Conference Location: Monterey, CA, USA

Language: English

Abstract: In this paper we highlight the effectiveness and flexibility of SiGe BiCMOS as a technology platform over a wide range of performance and applications. Examples include high speed device design, power amplifiers, integrated VCOs and very high level integration.

Subfile: B

Copyright 2003, IEE

19/3,AB/4 (Item 4 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7509032 INSPEC Abstract Number: B2003-02-2570K-008

Title: High performance, low complexity 0.18 μ m SiGe BiCMOS technology for wireless circuit applications

Author(s): Feilchenfeld, N.; Lanzerotti, L.; Sheridan, D.; Wuthrich, R.; Geiss, P.; Coolbaugh, D.; Gray, P.; He, J.; Demag, P.; Greco, J.; Larsen, T.; Patel, V.; Zierak, M.; Hodge, W.; Rascoe, J.; Trappasso, J.; Orner, B.; Norris, A.; Hershberger, D.; Voegeli, B.; Voldman, S.; Rassel,

R.; Ramachandrian, V.; Gautsch, M.; Eshun, E.; Hussain, R.; Jordan, D.; St Onge, S.; Dunn, J.

Author Affiliation: IBM Microelectronics Div., Essex Junction, VT, USA

Conference Title: Proceedings of the 2002 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.02CH37384) p.197-200

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 2002 Country of Publication: USA 241 pp.

ISBN: 0 7803 7561 0 Material Identity Number: XX-2002-02195

U.S. Copyright Clearance Center Code: 0-7803-7561-0/02/\$17.00

Conference Title: 2002 IEEE Bipolar/BICMOS Circuits and Technology Meeting

Conference Sponsor: IEEE Electron Devices Soc.; IEEE Solid-State Circuits Soc

Conference Date: 29 Sept.-1 Oct. 2002 Conference Location: Minneapolis, MN, USA

Language: English

Abstract: High frequency performance at low current density and low wafer cost is essential for low power wireless BiCMOS technologies. We have developed a low-complexity, ASIC-compatible, 0.18 μ m SiGe BiCMOS technology for wireless applications that offers 3 different breakdown voltage NPNs; with the high performance device achieving $F_{\text{subt}}/F_{\text{submax}}$ of 60/85 GHz with a 3.0 V BV_{CEO} . In addition, a full suite of high performance passive devices complement the state-of-the-art SiGe Wireless HBTs.

Subfile: B

Copyright 2003, IEE

19/3,AB/5 (Item 5 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6894354 INSPEC Abstract Number: B2001-05-2570K-002

Title: Review of silicon-germanium BiCMOS technology after 4 years of production and future directions

Author(s): Subbana, S.; Freeman, G.; Ahlgren, D.; Jagannathan, B.; Greenberg, D.; Johnson, J.; Bacon, P.; Najarian, R.; Herman, D.; Meyer, B.

Author Affiliation: Commun. Res. & Dev. Center, IBM Corp., Hopewell Junction, NY, USA

Conference Title: GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuits Symposium. 22nd Annual Technical Digest 2000. (Cat. No.00CH37084) p.7-10

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 2000 Country of Publication: USA ix+266 pp.

ISBN: 0 7803 5968 2 Material Identity Number: XX-2001-00190

U.S. Copyright Clearance Center Code: 0 7803 5968 2/2000/\$10.00

Conference Title: GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 22nd Annual Technical Digest 2000

Conference Sponsor: IEEE Electron Devices Soc.; IEEE Microwave Theory & Tech. Soc.; IEEE Solid-State Circuits Soc

Conference Date: 5-8 Nov. 2000 Conference Location: Seattle, WA, USA

Language: English

Abstract: Silicon Germanium (SiGe) HBTs have proven themselves as cheaper, viable replacements for GaAs in many different applications. SiGe RFIC products have been available for the last couple of years. SiGe SONET parts have also become available and demonstrate good performance. Adding to this product success, it has been possible to replace several GaAs chips with one silicon-germanium chip for yield, reliability, power, and cost improvements.

Integration with low-power, digital CMOS has also been demonstrated in different applications. Digital CMOS application-specific integrated circuits (ASICs) have been combined with SiGe HBT circuits. Various SiGe BiCMOS ICs are in volume production in our CMOS fab. The quality of passive components such as inductors and capacitors is also approaching that of GaAs, enabling high-performance RF and networking circuits.

Subfile: B

Copyright 2001, IEE

19/3,AB/6 (Item 6 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6671304 INSPEC Abstract Number: B2000-09-1350H-056

Title: Prospects of silicon-germanium-based technology for very high-speed circuits

Author(s): Subbanna, S.; Johnson, J.; Freeman, G.; Volant, R.; Groves, R.; Herman, D.; Meyerson, B.

Author Affiliation: Microelectron., IBM Corp., Hopewell Junction, NY, USA
Conference Title: 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017) Part vol.1 p.361-4 vol.1

Editor(s): Perkins, T.

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 2000 Country of Publication: USA 3 vol.
lxviii+xxi+1976 pp.

ISBN: 0 7803 5687 X Material Identity Number: XX-2000-01754

U.S. Copyright Clearance Center Code: 0 7803 5687 X/2000/\$10.00

Conference Title: 2000 IEEE MTT-S International Microwave Symposium Digest

Conference Date: 11-16 June 2000 Conference Location: Boston, MA, USA

Language: English

Abstract: Silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) BiCMOS technology has developed into a production manufacturing technology that replaces and extends the performance of silicon-based BiCMOS technology. The market impetus for this development has been the insatiable requirement for bandwidth in network communication at speeds up to 40 Gbit/s and the rapid growth of the global cellular and wireless LAN markets. There has also been much work on the use of silicon-based structures for microwave frequencies. This paper focuses on a review of the status of our SiGe BiCMOS technology, based on four generations of scaling CMOS-compatible SiGe. We also show in principle how techniques commonly used in III-V semiconductor technology and microwave systems can also be applied to SiGe chips, along with silicon-on-insulator (SOI) and other existing technology, to provide a possible further extension in SiGe performance, for 50+ GHz circuits.

Subfile: B

Copyright 2000, IEE

19/3,AB/7 (Item 7 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6521143 INSPEC Abstract Number: B2000-04-2570K-003

Title: A 0.24 μ m SiGe BiCMOS mixed-signal RF production technology featuring a 47 GHz f/sub t/ HBT and 0.18 μ m L/sub ett/ CMOS
Author(s): St. Onge, S.A.; Harame, D.L.; Dunn, J.S.; Subbanna, S.;

Ahlgren, D.C.; Freeman, G.; Jagannathan, B.; Jeng, J.; Schonenberg, K.; Stein, K.; Groves, R.; Coolbaugh, D.; Feilchenfeld, N.; Geiss, P.; Gordon, M.; Gray, P.; Hershberger, D.; Kilpatrick, S.; Johnson, R.; Joseph, A.; Lanzerotti, L.; Malinowski, J.; Orner, B.; Zierak, M.

Author Affiliation: Microelectron. Div., IBM Corp., Essex Junction, VT, USA

Conference Title: Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024) p.117-20

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 1999 Country of Publication: USA 182 pp.

ISBN: 0 7803 5712 4 Material Identity Number: XX-1999-02917

U.S. Copyright Clearance Center Code: 0 7803 5712 4/99/\$10.00

Conference Title: Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting

Conference Sponsor: IEEE

Conference Date: 26-28 Sept. 1999 Conference Location: Minneapolis, MN, USA

Language: English

Abstract: A new base-after-gate integration scheme has been developed to integrate a 47 GHz f_{sub} T/, 65 GHz F_{sub} max/SiGe HBT process with a 0.24 μm CMOS technology having 0.18 μm L_{sub} eff/ and 5 nm gate oxide. We discuss the benefits and challenges of this integration scheme which decouples the HBT from the CMOS thermal cycles. We also describe the resulting 0.24 μm SiGe BiCMOS technology, BiCMOS 6HP, which includes a 7 nm dual gate oxide option and full suite of passive components. The technology provides a high level of integration for mixed-signal RF applications.

Subfile: B

Copyright 2000, IEE

19/3,AB/8 (Item 8 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6507006 INSPEC Abstract Number: B2000-03-1350H-049

Title: A 0.18 μm 90 GHz f_{sub} T/ SiGe HBT BiCMOS, ASIC-compatible, copper interconnect technology for RF and microwave applications

Author(s): Freeman, G.; Ahlgren, D.; Greenberg, D.R.; Groves, R.; Huang, F.; Hugo, G.; Jagannathan, B.; Jeng, S.J.; Johnson, J.; Schonenberg, K.; Stein, K.; Volant, R.; Subbanna, S.

Author Affiliation: IBM Corp., Hopewell Junction, NY, USA
Conference Title: International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318) p.569-72

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 1999 Country of Publication: USA 943 pp.

ISBN: 0 7803 5410 9 Material Identity Number: XX-2000-00353

U.S. Copyright Clearance Center Code: 0 7803 5410 9/99/\$10.00

Conference Title: International Electron Devices Meeting 1999. Technical Digest

Conference Sponsor: Electron Devices Soc. IEEE
Conference Date: 5-8 Dec. 1999 Conference Location: Washington, DC, USA

Language: English

Abstract: We present a self-aligned, 0.18 μm emitter width SiGe HBT with f_{sub} T/ of 90 GHz, f_{sub} MAX/ of 90 GHz (both at V_{sub} CB/=0.5 V), NF_{sub} MIN/ of 0.4 dB, and BV_{sub} CEO/ of 2.7 V. We also demonstrate that this device is integrable with IBM's 0.18 μm, 1.8/3.3 V copper metallization CMOS technology with little effect on the CMOS device

cost is essential for low power wireless BiCMOS technologies. We have developed a low-complexity, ASIC compatible, 0.18 um SiGe BiCMOS technology for wireless applications that offers 3 different breakdown voltage NPNs with the high performance device achieving F//t/F//m//a//x of 60/85 GHz with a 3.0 V BV//C//E//O. In addition, a full suite of high performance passive devices complement the state-of-the-art SiGe wireless HBTs. 6 Refs.

19/3,AB/11 (Item 3 from file: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

05967245

E.I. No: EIP01536782825
Title: A 0.18mum BiCMOS technology featuring 120/100 GHz (f//t/f//m//a//x) HBT and ASIC-compatible CMOS using copper interconnect
Author: Joseph, A.; Coolbaugh, D.; Zierak, M.; Wuthrich, R.; Geiss, P.; He, Z.; Liu, X.; Orner, B.; Johnson, J.; Freeman, G.; Ahlgren, D.; Jagannathan, B.; Lanzerotti, L.; Ramachandran, V.; Malinowski, J.; et al.
Corporate Source: IBM Microelectronics Division, Essex Junction, VT 05452, United States
Conference Title: 2001 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING
Conference Location: Minneapolis, MN, United States Conference Date: 20010930-20011002
E.I. Conference No.: 58877
Source: Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting 2001. p 143-146 (IEEE cat n 01CH37212)
Publication Year: 2001
CODEN: PBCMFL
Language: English
Abstract: A BiCMOS technology is presented that integrates a high performance NPN (f//T = 120GHz and f//m//a//x = 100GHz), ASIC compatible 0.11mum L//e//f//f CMOS, and a full suite of passive elements. Significant HBT performance enhancement compared to the previously published results in left bracket 1 right bracket has been achieved through further collector and base profile optimization guided by process and device simulations. Base transit time reduction was achieved by simultaneously increasing the Ge ramp and by limiting the base diffusion with the addition of carbon doping to SiGe epitaxial base. This paper describes IBM's next generation SiGe BiCMOS production technology targeted at the communications market. 6 Refs.

19/3,AB/12 (Item 1 from file: 65)
DIALOG(R)File 65:Inside Conferences
(c) 2004 BLDSC all rts. reserv. All rts. reserv.

04887060 INSIDE CONFERENCE ITEM ID: CN050968337
A 0.13mum BiCMOS Technology Featuring a 200/280GHz (f SUB T/f SUB m SUB a SUB x) SiGe HBT
Orner, B. A.; Liu, Q. Z.; Rainey, B.; Stricker, A.; Geiss, P.; Gray, P.; Zierak, M.; Gordon, M.; Collins, D.; Ramachandran, V.
CONFERENCE: Bipolar/BiCMOS circuits and technology meeting
PROCEEDINGS OF THE BIPOLAR BICMOS CIRCUITS AND TECHNOLOGY MEETING , 2003
P: 203-206

IEEE, 2003

ISSN: 1088-9299

LANGUAGE: English DOCUMENT TYPE: Conference Preprinted papers and programme

26feb04 10:10:20 User267149 Session D1260.1

SYSTEM:OS - DIALOG OneSearch

File 2:INSPEC 1969-2004/Feb W3

(c) 2004 Institution of Electrical Engineers

*File 2: Alert feature enhanced for multiple files, duplicates removal, customized scheduling. See HELP ALERT.

File 6:NTIS 1964-2004/Feb W4

(c) 2004 NTIS, Intl Cpyrht All Rights Res

File 8:Ei Compendex(R) 1970-2004/Feb W3

(c) 2004 Elsevier Eng. Info. Inc.

File 34:SciSearch(R) Cited Ref Sci 1990-2004/Feb W3

(c) 2004 Inst for Sci Info

*File 34: New prices as of 1/1/2004 per Information Provider request. See HELP RATES 34.

File 434:SciSearch(R) Cited Ref Sci 1974-1989/Dec

(c) 1998 Inst for Sci Info

*File 434: New prices as of 1/1/2004 per Information Provider request. See HELP RATES434.

File 35:Dissertation Abs Online 1861-2004/Jan

(c) 2004 ProQuest Info&Learning

File 65:Inside Conferences 1993-2004/Feb W4

(c) 2004 BLDSC all rts. reserv.

File 94:JICST-EPlus 1985-2004/Feb W3

(c) 2004 Japan Science and Tech Corp(JST)

File 99:Wilson Appl. Sci & Tech Abs 1983-2004/Jan

(c) 2004 The HW Wilson Co.

File 144:Pascal 1973-2004/Feb W3

(c) 2004 INIST/CNRS

File 305:Analytical Abstracts 1980-2004/Jan W3

(c) 2004 Royal Soc Chemistry

*File 305: Alert feature enhanced for multiple files, duplicate removal, customized scheduling. See HELP ALERT.

File 315:ChemEng & Biotec Abs 1970-2004/Jan

(c) 2004 DECHEMA

File 350:Derwent WPIX 1963-2004/UD,UM &UP=200413

(c) 2004 Thomson Derwent

*File 350: New prices as of 1-1-04 per Information Provider request. See HELP RATES350

File 347:JAPIO Oct 1976-2003/Oct(Updated 040202)

(c) 2004 JPO & JAPIO

*File 347: JAPIO data problems with year 2000 records are now fixed. Alerts have been run. See HELP NEWS 347 for details.

File 344:Chinese Patents Abs Aug 1985-2003/Nov

(c) 2003 European Patent Office

File 371:French Patents 1961-2002/BOP1 200209

(c) 2002 INPI. All rts. reserv.

*File 371: This file is not currently updating. The last update is 200209.

Set	Items	Description
S1	5900	VERTICAL?(3N) (NPN OR PNP OR TRANSIST?)
S2	4344	PNP(3N)TRANSIST? AND NPN(3N)TRANSIST?
S3	14768	BICMOS OR BIPOAR()COMPLEMENTARY()METAL()OXIDE
S4	12723	MC=(U13-D03B2 OR U11-C18A OR U13-D02A)
S5	436062	MOS OR METAL()OXIDE(1W)SEMICONDUCT?????? OR NMOS? ? OR N(-)MOS? ? OR PMOS? ? OR P()MOS? ? OR VMOS? ? OR V()MOS? ? OR C(-)MOS? ? OR CMOS? ? OR NMOSFET? ? OR NMOS()FET? ? OR PMOS()FET? ? OR PMOSFET? ?
S6	110956	DMOS()FET? ? OR DMOSFET? ? OR UMOS()FET? ? OR UMOSFET? ? OR MOS()FET? ? OR MOSFET? ?
S7	169626	(FIELD()EFFECT? ?(1W)TRANSIT???????) OR FET? ?
S8	653332	S1:S7
S9	610671	HIGH?????(3N)PERFORM???????
S10	512	PERFORM???????(3N) (NPN OR PNP)
S11	610948	S9:S10
S12	276981	(P OR N) (1N) (TYPE? ? OR EMIT??????)
S13	112717	(SILICON OR SI) AND (GERMANIUM OR GE)
S14	36120	SILICON()GERMANIUM OR SIGE
S15	122303	S13:S14
S16	69935	(N OR P) (1N) (BASE??? OR REGION? ?)
S17	45956	(BASE??? OR REGION? ?) (3N) (EXTRINSIC? OR EXTERNAL? OR OUTSIDE?)
S18	124712	(INTRINSIC? OR INTERNAL? OR INNER? OR WITHIN OR INSIDE) (3N-)REGION? ?
S19	233710	S16:S18
S20	63100	(CUTOFF OR CUT()OFF OR LIMIT???????) (3N) (FREQUENC? OR GHZ OR GIGAHERTZ)
S21	418903	RF OR RADIO(3N)FREQUENC????? OR RADIOFREQUENC??????
S22	4788	MASK???????(3N)STEP? ?
S23	21676	S8 AND S11
S24	1206	S23 AND S12
S25	73	S24 AND S15
S26	12	S25 AND S19
S27	6	RD (unique items)
S28	61	S25 NOT S26
S29	17	S28 AND S20
S30	9	RD (unique items)
S31	44	S28 NOT S29
S32	0	S31 AND S21
S33	0	S31 AND S22
S34	32	RD S31 (unique items)
S35	0	S34 AND S2
S36	1	S34 AND S1
S37	31	S34 NOT S36
S38	436	S1 AND S2
S39	39	S38 AND S3
S40	0	S39 AND S15
S41	10	S39 AND S19
S42	10	RD (unique items)
S43	10	S42 NOT S27,S30,S34
S44	957	S15 AND S20
S45	2	S44 AND S22
S46	1	RD (unique items)
S47	115	S44 AND S21
S48	6	S47 AND S19
S49	4	RD (unique items)

02/26/2004

10/065,837

S50

4 S49 NOT S45

EIC2800

Irina Speckhard 571 272 25 54

27/3,AB/1 (Item 1 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7223279 INSPEC Abstract Number: B2002-05-2570K-001

Title: Minimizing thermal resistance and collector-to-substrate capacitance in SiGe BiCMOS on SOI

Author(s): Mastrapasqua, M.; Palestri, P.; Pacelli, A.; Celler, G.K.; Frei, M.R.; Smith, P.R.; Johnson, R.W.; Bizzarro, L.; Lin, W.; Ivanov, T.G.; Carroll, M.S.; Kizilyalli, I.C.; King, C.A.

Author Affiliation: Agere Syst., Murray Hill, NJ, USA

Journal: IEEE Electron Device Letters vol.23, no.3 p.145-7

Publisher: IEEE,

Publication Date: March 2002 Country of Publication: USA

CODEN: EDLEDZ ISSN: 0741-3106

SICI: 0741-3106(200203)23:3L.145:MTRC;1-2

Material Identity Number: I338-2002-004

U.S. Copyright Clearance Center Code: 0741-3106/02/\$17.00

Language: English

Abstract: We describe a low fabrication cost, high-performance implementation of SiGe BiCMOS on SOL. The use of high-energy implant allows the simultaneous formation of the subcollector and an additional n-type region below the buried oxide. The combination of buried oxide layer and floating n-type region underneath results in a very low collector-to-substrate capacitance. We also show that this process option achieves a much lower thermal resistance than using SOI with deep trench isolation, both reducing cost and curbing self-heating effects.

Subfile: B

Copyright 2002, IEE

27/3,AB/2 (Item 1 from file: 8)

DIALOG(R)File 8:EI Compendex(R)

(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

06447123

E.I. No: EIP03297544958

Title: 2D-simulation and analysis of lateral SiC N-emitter SiGe P-base Schottky metal-collector (NPM) HBT on SOI
Author: Kumar, M. Jagadesh; Reddy, C. Linga
Corporate Source: Department of Electrical Engineering Indian Inst. of Technology, Delhi, Hauz Khas, New Delhi 110 016, India

Source: Microelectronics Reliability v 43 n 7 July 2003. p.1145-1149

Publication Year: 2003

CODEN: MCRLAS ISSN: 0026-2714

Language: English

Abstract: We report a novel BiCMOS compatible lateral SiC N-emitter, SiGe P-base Schottky metal-collector NPM HBT on SOI. The proposed lateral NPM HBT performance has been evaluated in detail using 2-dimensional device simulation by comparing it with the equivalent NPN HBT and homojunction silicon NPM BJT structures. Based on our simulation results, it is observed that while both the lateral NPM and NPN HBTs exhibit high current gain, high cut-off frequency compared to the homojunction NPN BJT, the lateral NPM HBT has the additional benefit of suppressed Kirk effect and excellent transient response over its counterpart lateral NPN HBT. The improved performance of the proposed NPM HBT is discussed in detail and a CMOS compatible process is suggested for its fabrication. copy 2003 Elsevier Ltd. All

rights reserved. 26 Refs.

27/3,AB/3 (Item 1 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2004 Inst for Sci Info. All rts. reserv.

01813033 Genuine Article#: JC979 Number of References: 32
Title: COMPARATIVE-ANALYSIS OF THE HIGH-FREQUENCY PERFORMANCE
OF SI/Si1-xGex HETEROJUNCTION BIPOLAR AND SI BIPOLAR-TRANSISTORS (Abstract Available)
Author(s): CHEN J; GAO GB; MORKOC H
Corporate Source: INTEL CORP, PORTLAND TECHNOL DEV, AL4-76, 5200 NE ELAM YOUNG
PKWY/HILLSBORO//OR/97124; UNIV ILLINOIS, COORDINATED SCI
LAB/URBANA//IL/61801; UNIV ILLINOIS, MAT RES LAB/URBANA//IL/61801
Journal: SOLID-STATE ELECTRONICS, 1992, V35, N8 (AUG), P1037-1044
Language: ENGLISH Document Type: ARTICLE
Abstract: This paper presents a model-based comparison of the high-frequency performance of Si/Si_{1-x}Gex heterojunction bipolar transistors (HBTs) and Si bipolarjunction transistors (BJTs), in which the structural parameters were designed for maximum f(T) almost-equal-to f(max). This model study shows: (1) the Si_{1-x}Gex HBT has a peak f(T) (=f(max)) of 64 GHz, which represents a 16.4% improvement over the Si BJT; (2) emitter charging time has a sizable effect on high-frequency performance, even at current densities as high as 80 kA cm⁻²; (3) compositional grading of the SiGe base, as well as the profile of the base doping, strongly influence f(T) and f(max). A Gaussian grading profile is found to exhibit the highest peak f(T)=f(max); a 30% higher peak cutoff frequency is predicted over a uniform doping profile; (4) the dependence of high-frequency performance upon collector design represents a trade-off between f(T), f(max) and BV(CBO); and (5) by decreasing emitter or base doping levels, Si_{1-x}GexHBTs with f(T) exceeding 100 GHz can be designed. Alternatively, f(max) of 100 GHz may be achieved by increasing base doping and reducing extrinsic capacitances and resistances.

27/3,AB/4 (Item 1 from file: 350)
DIALOG(R)File 350:Derwent WPIX
(c) 2004 Thomson Derwent. All rts. reserv.

015608851
WPI Acc No: 2003-671008/200363
XRAM Acc No: C03-182928
XRPX Acc No: N03-535814

Integrated circuit fabricated in semiconductor material of first conductivity type, comprises source and drain, well of opposite conductivity, semiconductor region, and layer of opposite conductivity type
Patent Assignee: SALLING C T (SALL-I); WU Z (WUZZ-I); TEXAS INSTR INC (TEXI)
Inventor: SALLING C T; WU Z
Number of Countries: 102 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 20030134479	A1	20030717	US 200251962	A	20020116	200363 B
WO 200363235	A1	20030731	WO 2003US1412	A	20030116	200363

Priority Applications (No Type Date): US 200251962 A 20020116

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

US 20030134479 A1 13 H01L-021/336

WO 200363235 A1 E H01L-021/8238

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Designated States (Regional): AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR HU IE IT KE LS LU MC MW MZ NL OA PT SD SE SI SK SL SZ TR TZ UG ZM ZW

Abstract (Basic): US 20030134479 A1

Abstract (Basic):

NOVELTY - An integrated circuit fabricated in semiconductor material of first conductivity type, the circuit having surface(s) of lateral **metal oxide semiconductor (MOS)** transistor surrounded by electrical isolation region, has source and drain, well of opposite conductivity type surrounding the source and drain, semiconductor **region within the semiconductor material**, and layer of opposite conductivity type.

DETAILED DESCRIPTION - The integrated circuit comprises source and drain, each having at the surface region of the opposite conductivity type extending to centrally located gate, defining the active area of the transistor; well of the opposite conductivity type surrounding the source and drain, extending from the surface deep into the semiconductor material; semiconductor **region within the semiconductor material** surrounded by the well and having a resistivity higher than a remainder of the semiconductor material; and layer of the opposite conductivity type buried in the semiconductor region. The layer extends laterally to the well, thus electrically isolating a near-surface portion of the semiconductor region from the remainder of the semiconductor material, and enabling the **MOS** transistor to operate as an electrically isolated high-voltage input/output (I/O) transistor for circuit noise reduction, while having low drain junction capacitance. This layer extends vertically deeper from the surface than the electrical isolation region, thus enabling a separate contact to the electrically isolated near-surface portion of the semiconductor region. INDEPENDENT CLAIMS are also included for:

(1) a method of fabricating an electrically isolated high-voltage I/O nMOS transistor in the surface of a p-type semiconductor material, comprising forming 2 nested pairs of non-conductive electrical isolation regions into the p-type semiconductor material, the inner pair defining lateral boundaries of the transistor active area, and the outer pair defining areas between n-wells; implanting p-doping or n-doping ions to adjust background doping level of sub-surface region of the p-type material; forming n-wells into the adjusted p-type material; depositing over the surface a layer of insulating material as gate dielectric, covering the transistor area; depositing a layer of polysilicon or other conductive material onto the insulating layer; protecting a portion of the polysilicon and etching its remainder, defining gate area of the transistor; depositing first photoresist layer and opening a window in there, exposing the surface of the area between outer isolation regions; implanting, at low-energy, n-doping ions into the exposed surface area, creating shallow n-doped layers under the surface as extended source and drain of the transistor; implanting, at high energy and high dose, n-doping ions into the exposed surface area, creating a deep region under the surface

having net **n-type** doping between, and continuous with, the **n-wells**, and further creating **p-region** having doping concentration lower than that of the remainder of the adjusted **p-type region**; removing the first photoresist layer; depositing conformal insulating layer of an insulator, such as silicon nitride or silicon dioxide, over the surface and directional plasma etching the insulating layers so that only sidewalls around the polysilicon remain; depositing second photoresist layer and opening a window in there, exposing the surface of the area between the outer isolation regions; implanting, at medium energy, **n-doping ions** in the exposed surface area, creating **n-doped region** that extends to a medium depth under the surface as deep source and drain of the transistor; removing the second photoresist layer; and forming an electrical contact region to the **p-region** of lower doping concentration;

(2) a method of fabricating a buried **p-type** layer connecting 2 **p-wells** in an **n-type** semiconductor region, electrically isolating the near-surface **n-type** semiconductor portion for fabricating a high-voltage I/O **pMOS** transistor, comprising depositing a photoresist layer over the surface of the **n-type region** and opening a window in the layer, exposing the surface area between the **p-wells**; implanting, at low energy, **p-doping ions** through the window, creating shallow **p-doped** layers under the surface as extended source and drain of the transistor; and implanting, at high energy and high dose, **p-doping ions** into the **n-type** semiconductor through the window, creating a deep region having net **p-type** doping between; and

(3) a method of fabricating an electrically isolated high-voltage I/O **pMOS** transistor in the surface of **n-type** semiconductor material.

USE - Used as integrated circuit applicable to **nMOS** and **pMOS** transistors (claimed).

ADVANTAGE - The assembly provides transistors operable to eliminate substrate noise.

DESCRIPTION OF DRAWING(S) - The figure is a schematic cross-section of electrically isolated high-voltage I/O **nMOS** transistor.

Substrate (101)
Isolation trench (102)
Gate (103)
Gate insulator (104)
Deep source (110)
Extended source (111)
Deep drain (112)
Photoresist layer (130)
High energy ion implant (140)
Buried layer (160)

pp; 13 DwgNo 1/7

27/3,AB/5 (Item 2 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

015302307

WPI Acc No: 2003-363241/200334

XRAM Acc No: C03-095975

XRPX Acc No: N03-290079

Circuit for processing radio frequency signal comprises field effect transistor(s) having channel region including strained channel layer(s) disposed on planarized layer(s)

Patent Assignee: BRAITHWAITE G (BRAI-I); CURRIE M (CURR-I); HAMMOND R (HAMM-I); AMBERWAVE SYSTEMS CORP (AMBE-N)

Inventor: BRAITHWAITE G; CURRIE M; HAMMOND R

Number of Countries: 101 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
WO 200328106	A2	20030403	WO 2002US30226	A	20020924	200334 B
US 20030102498	A1	20030605	US 2001324329	P	20010924	200339
			US 2002253361	A	20020924	

Priority Applications (No Type Date): US 2001324329 P 20010924; US 2002253361 A 20020924

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
WO 200328106	A2	E	26	H01L-027/088	

Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

Designated States (Regional): AT BE BG CH CY CZ DE DK EA EE ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SK SL SZ TR TZ UG ZM ZW

US 20030102498 A1 H01L-029/76 Provisional application US 2001324329

Abstract (Basic): WO 200328106 A2

Abstract (Basic):

NOVELTY - A circuit for processing a radio frequency (RF) signal comprises field effect transistor(s) (FET(s)) (100) to which the RF signal is applied. The FET(s) comprises a semiconductor substrate (102) including a planarized layer(s), a channel region (110) including a strained channel layer(s) disposed on the planarized layer(s) and a gate electrode (116).

USE - Processing RF signal (claimed).

ADVANTAGE - Provides RF signals that exhibit improved performance, particularly at high signal frequencies without requiring significant changes to design or fabrication.

DESCRIPTION OF DRAWING(S) - The figure is a cross-section of the field effect transistor.

Field effect transistor (100)

Semiconductor substrate (102)

Isolation well (104)

Isolation trenches (106)

Channel region (110)

Gate electrode (116)

pp: 26 DwgNo 1/6

27/3,AB/6 (Item 1 from file: 347)

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

05230749

SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

PUB. NO.: 08-186249 [JP 8186249 A]

PUBLISHED: July 16, 1996 (19960716)

INVENTOR(s): AWANO YUJI

MAEDA TAKESHI

APPLICANT(s): FUJITSU LTD [000522] (A Japanese Company or Corporation), JP (Japan)

APPL. NO.: 06-327156 [JP 94327156]
FILED: December 28, 1994 (19941228)

ABSTRACT

PURPOSE: To obtain a **high-performance** complementary semiconductor circuit device having a higher-speed characteristic than a **silicon** complementary circuit device, by simple manufacturing processes and with good reproducibility.

CONSTITUTION: A grated $\text{Si}(\text{sub } 1-x)\text{Ge}(\text{sub } x)$ layer 2 having an increasing **Ge** composition, an active layer 3 composed mainly of germanium, and a grated $\text{Si}(\text{sub } 1-y)\text{Ge}(\text{sub } y)$ layer 4 having a reducing **Ge** composition are provided on a **silicon germanium** substrate 1, and in its one part **region** a **p-type** transistor 7 having a **silicon germanium** active layer 3 as a channel layer is formed. Along with it, in an adjacent **region** an **n-type** transistor 8 is formed in a **III-V compound semiconductor** active layer 6 provided through the medium of a high-resistance **III-V compound semiconductor** layer 5.

30/3,AB/1 (Item 1 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7511920 INSPEC Abstract Number: B2003-03-1350F-003

Title: DC and high frequency performance of 0.1 μ m n-type Si/Si_x 0.6/Ge_y MODFET with f_{MAX}=188 GHz at 300 K and f_{MAX}=230 GHz at 50 K

Author(s): Enciso-Aguilar, M.; Aniel, F.; Crozat, P.; Adde, R.; Herzog, H.-J.; Hackbarth, I.; Konig, U.; von Kanel, H.

Author Affiliation: Inst. d'Electron. Fondamentale, Univ. de Paris-Sud, Orsay, France

Journal: Electronics Letters vol.39, no.1 p.149-51

Publisher: IEE,

Publication Date: 9 Jan. 2003 Country of Publication: UK

CODEN: ELLEAK ISSN: 0013-5194

SICI: 0013-5194(20030109)39:1L.149:HFPT;1-1

Material Identity Number: E089-2003-001

U.S. Copyright Clearance Center Code: 0013-5194/03/\$20.00

Language: English

Abstract: Maximum oscillation frequency f_{MAX} as high as 188 GHz at 300 K and 227 GHz at 50 K are reported for a 0.1*30 μ m² n-type strained Si/Si_x 0.6/Ge_y modulation doped field-effect transistor (n-MODFET) together with high quality DC characteristics. These f_{MAX} are the highest values reported so far for Si-based hetero-FETs. The frequency performances are discussed using analytical expressions of f_{MAX} and f_T (intrinsic current gain cutoff frequency) together with the main equivalent circuit elements extracted.

Subfile: B

Copyright 2003, IEE

30/3,AB/2 (Item 2 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6851873 INSPEC Abstract Number: B2001-04-2560S-012

Title: SiGe-based FETs: buffer issues and device results

Author(s): Herzog, H.-J.; Hackbarth, T.; Hock, G.; Zeuner, M.; Konig, U.

Author Affiliation: Res. Center, Daimler-Chrysler AG, Ulm, Germany

Journal: Thin Solid Films Conference Title: Thin Solid Films (Switzerland) vol.380, no.1-2 p.36-41

Publisher: Elsevier,

Publication Date: 22 Dec. 2000 Country of Publication: Switzerland

CODEN: THSFAP ISSN: 0040-6090

SICI: 0040-6090(20001222)380:1/2L.36:SBFB;1-R

Material Identity Number: T070-2001-003

U.S. Copyright Clearance Center Code: 0040-6090/2000/\$20.00

Conference Title: 2000 E-MRS Spring Conference, Symposium F: Thin Films Epitaxial Growth and Nanostructures

Conference Date: 29 May-2 June 2000 Conference Location: Strasbourg, France

Language: English

Abstract: SiGe quantum well structures gain increasing interest in the Si technology. The preparation of a Si channel or a Ge-rich or even a pure Ge channel with a respective two-dimensional carrier gas opens the attractive possibility to fabricate high performance n- or p-type field effect

transistors. For both device types, a virtual substrate surface is required which is created by a strain relieved buffer layer grown on a Si standard wafer. The paper reviews various approaches of SiGe buffers including special attempts to reduce the thickness and to improve the quality. N- and p-type modulation-doped field-effect transistors are presented which show comparably good device characteristics and cut-off frequencies in the range of 100-120 GHz.

Subfile: B

Copyright 2001, IEE

30/3,AB/3 (Item 3 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6674315 INSPEC Abstract Number: B2000-09-1350F-027

Title: High performance 0.1 μ m gate-length p-type SiGe MODFET's and MOS-MODFET's

Author(s): Lu, W.; Kuliev, A.; Koester, S.J.; Wang, X.-W.; Chu, J.O.; Ma, T.-P.; Adesida, I.

Author Affiliation: Microelectron. Lab., Illinois Univ., Urbana, IL, USA

Journal: IEEE Transactions on Electron Devices vol.47, no.8 p. 1645-52

Publisher: IEEE,

Publication Date: Aug. 2000 Country of Publication: USA

CODEN: IETDAI ISSN: 0018-9383

SICI: 0018-9383(200008)47:8L.1645:HPGL;1-0

Material Identity Number: I037-2000-008

U.S. Copyright Clearance Center Code: 0018-9383/2000/\$10.00

Language: English

Abstract: High performance p-type modulation-doped field-effect transistors (MODFET's) and metal-oxide-semiconductor MODFET (MOS-MODFET) with 0.1 μ m gate-length have been fabricated on a high hole mobility SiGe-Si heterojunction grown by ultrahigh vacuum chemical vapor deposition. The MODFET devices exhibited an extrinsic transconductance ($g_{\text{sub m}}$) of 142 mS/mm, a unity current gain cut-off frequency ($f_{\text{sub T}}$) of 45 GHz and a maximum oscillation frequency ($f_{\text{sub MAX}}$) of 81 GHz, 5 nm-thick high quality jet-vapor-deposited (JVD) $\text{SiO}_{\text{sub 2}}$ was utilized as gate dielectric for the MOS-MODFET's. The devices exhibited a lower gate leakage current (1 nA/ μ m at $V_{\text{sub GS}}=6$ V) and a wider gate operating voltage swing in comparison to the MODFET's. However, due to the larger gate-to-channel distance and the existence of a parasitic surface channel, MOS-MODFET's demonstrated a smaller peak $g_{\text{sub m}}$ of 90 mS/mm, $f_{\text{sub T}}$ of 38 GHz, and $f_{\text{sub max}}$ of 64 GHz. The threshold voltage shifted from 0.45 V for MODFET's to 1.33 V for MOS-MODFET's. A minimum noise figure ($NF_{\text{sub min}}$) of 1.29 dB and an associated power gain ($G_{\text{sub a}}$) of 12.8 dB were measured at 2 GHz for MODFET's, while the MOS-MODFET's exhibited a $NF_{\text{sub min}}$ of 0.92 dB and a $G_{\text{sub a}}$ of 12 dB at 2 GHz. These DC, RF, and high frequency noise characteristics make SiGe/Si MODFET's and MOS-MODFET's excellent candidates for wireless communications.

Subfile: B

Copyright 2000, IEE

30/3,AB/4 (Item 4 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6507008 INSPEC Abstract Number: B2000-03-2560R-134
Title: High performance 0.15 μ m self-aligned SiGe
p-MOS-MODFET's with SiN gate dielectric
Author(s): Lu, W.; Hammond, R.; Koester, S.J.; Wang, X.W.; Chu, J.O.; Ma, T.P.; Adesida, I.
Author Affiliation: Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA
Conference Title: International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318) p.577-80
Publisher: IEEE, Piscataway, NJ, USA
Publication Date: 1999 Country of Publication: USA 943 pp.
ISBN: 0 7803 5410 9 Material Identity Number: XX-2000-00353
U.S. Copyright Clearance Center Code: 0 7803 5410 9/99/\$10.00
Conference Title: International Electron Devices Meeting 1999. Technical Digest
Conference Sponsor: Electron Devices Soc. IEEE
Conference Date: 5-8 Dec. 1999 Conference Location: Washington, DC, USA
Language: English
Abstract: Using jet-vapor-deposited silicon nitride as gate dielectric, self-aligned p-type SiGe metal-oxide-semiconductor modulated-doped field effect transistors are fabricated. For a 0.15 μ m gate-length device, the gate leakage current is as low as 0.46 nA/ μ m at $V_{gs}=3$ V and $V_{ds}=-50$ mV. A maximum extrinsic transconductance of 305 mS/mm, a unity current gain cut-off frequency of 62 GHz, and a maximum oscillation frequency of 68 GHz are measured at low operating biases of $V_{ds}=-0.75$ V and $V_{gs}=0.4$ V.
Subfile: B
Copyright 2000, IEE

30/3,AB/5 (Item 5 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.
5285918 INSPEC Abstract Number: B9607-2560S-024
Title: High performance submicron-gate SiGe p-type modulation-doped field-effect transistors
Author(s): Arafa, M.; Fay, P.; Ismail, K.; Chu, J.O.; Meyerson, B.S.; Adesida, I.
Author Affiliation: Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA
Conference Title: 1995 53rd Annual Device Research Conference Digest (Cat. No.95TH8109) p.20-1
Publisher: IEEE, New York, NY, USA
Publication Date: 1995 Country of Publication: USA 170 pp.
ISBN: 0 7803 2788 8 Material Identity Number: XX96-00544
Conference Title: 1995 53rd Annual Device Research Conference Digest
Conference Sponsor: IEEE Electron Devices Soc
Conference Date: 19-21 June 1995 Conference Location: Charlottesville, VA, USA
Language: English
Abstract: High transconductance p-type field-effect transistors (FETs) are essential for the fabrication of high speed complementary circuits. Unfortunately, the much lower mobility of holes in comparison to electrons in Si has been responsible for the large gap between the performance of n-type and p-type devices. Recent advances in the growth of high quality SiGe has lead to structures with higher hole mobilities. This has been attributed to the

light hole-heavy hole band splitting which results in less band mixing and a smaller in-plane effective mass. In this work, we report our work on the fabrication and characterization of **p-type** modulation-doped field effect transistors (MODFETs) in high mobility SiGe heterostructures. High transconductance and unity current-gain cut-off frequency are demonstrated for submicron-gate MODFETs.

Subfile: B

Copyright 1996, IEE

30/3,AB/6 (Item 1 from file: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

05135815

E.I. No: EIP98104417498
Title: **High performance 0.25 mu m p-type Ge /SiGe MODFETs**
Author: Hoeck, G.; Hackbarth, T.; Erben, U.; Kohn, E.; Koenig, U.
Corporate Source: Univ of Ulm, Ulm, Ger
Source: Electronics Letters v 34 n 19 Sep 17 1998. p 1888-1889
Publication Year: 1998
CODEN: ELLEAK ISSN: 0013-5194
Language: English

Abstract: The authors report the fabrication and characterization of 0.25 mu m gate length **p-type** Ge channel modulation doped field effect transistors (MODFETs) with improved RF performance. The structure consists of a compressively strained pure Ge hole channel, grown on a relaxed 5 mu m thick graded Si//0///4Ge//0///6 buffer. A room temperature hole mobility of 1870 cm**2/Vs and a sheet carrier density of 2.1 multiplied by 10**1**2cm** minus **2 were measured. The devices exhibit DC transconductances up to 160 mS/mm and saturation currents up to 300 mA/mm. Cutoff frequencies of f//T equals 32 GHz and f//m//a//x equals 85 GHz have been achieved. (Author abstract) 6 Refs.

30/3,AB/7 (Item 2 from file: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2004 Elsevier Eng. Info. Inc. All rts. reserv.

03053266

E.I. Monthly No: EIM9104-017183
Title: **SiGe-base PNP transistors fabricated with n-type UHV/CVD LTE in a 'No Dt' process.**
Author: Harame, D. L.; Stork, J. M. C.; Meyerson, B. S.; Crabbe, E. F.; Patton, G. L.; Scilla, G. J.; de Fresart, E.; Bright, A. A.; Stanis, C.; Megdanis, A. C.; Manny, M. P.; Petrillo, E. J.; Dimeo, M.; McIntosh, R. C.; Chan, K. K.

Corporate Source: IBM T J Watson Res Center, Yorktown Heights, NY, USA
Conference Title: 1990 Symposium on VLSI Technology
Conference Location: Honolulu, HI, USA Conference Date: 19900604
E.I. Conference No.: 14179
Source: Digest of Technical Papers Digest of Technical Papers - Symposium on VLSI Technology. Publ by IEEE, IEEE Service Center, Piscataway, NJ, USA (IEEE cat n 90CH2874-6). p 47-48
Publication Year: 1990

CODEN: DTPTEW ISSN: 0743-1562

Language: English

Abstract: Experimental results are presented on the use of N-type ultrahigh-vacuum/chemical vapor deposition (UHV/CVD)

low-temperature epitaxy (LTE) to deposit thin (45 nm), heavily doped (1×10^{19} cm $^{-3}$) SiGe films to form the base of PNP transistors. To take full advantage of epitaxial base technology, the thermal cycles following the base deposition that cause dopant diffusion and relaxation of highly strained layers, must be eliminated. This objective is met by a novel process using PECVD insulators and UHV/CVD LTE emitter deposition to limit the temperature following the base deposition to 550 degree C. This is essentially a 'No Dt' process in the sense that the effective dopant diffusion length Dt is negligible at this temperature. An advanced double-polysilicon bipolar structure was modified to fabricate non-self-aligned small-geometry transistors. Both DC and AC measurements were used to characterize the devices, confirming the presence of a large valence band offset at the base-collector junction. The resulting barrier to minority carrier transport caused additional charge storage in the neutral base and limited the peak cutoff frequency to 15 GHz independent of collector doping. The results demonstrate the impact of the valence band offset of SiGe heterojunctions on the performance of PNP transistors. 6
Refs.

30/3,AB/8 (Item 1 from file: 34)
DIALOG(R) File 34:SciSearch(R) Cited Ref Sci
(c) 2004 Inst for Sci Info. All rts. reserv.

02534752 Genuine Article#: LJ673 Number of References: 249
Title: STRAINED-LAYER HETEROSTRUCTURES, AND THEIR APPLICATIONS TO MODFETS,
HBTS, AND LASERS (Abstract Available)

Author(s): MORKOC H; SVERDLOV B; GAO GB
Corporate Source: UNIV ILLINOIS, COORDINATED SCI LAB/URBANA//IL/61801
Journal: PROCEEDINGS OF THE IEEE, 1993, V81, N4 (APR), P493-556
ISSN: 0018-9219

Language: ENGLISH Document Type: REVIEW

Abstract: Recent developments in the art and technology of strained layer epitaxial systems are reviewed. This interest stems primarily from the additional degree of freedom that strained layers provide in the design of technologically important heterostructures and devices. This added degree of freedom has already led to device structures that can be tailored to a particular application with, in many cases, performances that are unparalleled and out of reach with lattice-matched systems alone. To date, modulation-doped field-effect transistors (MODFET's) fabricated with strained InGaAs channels on GaAs and InP substrates have shown superior performance over their counterparts with lattice-matched channels. MODFET's with unprecedented performance, e.g., a power gains of 7.3 dB at 140 GHz and a noise level of 1.4 dB in the 90-GHz range have been fabricated.

With the advent of SiGe alloys, the concept of strained layers was recently extended to include the elemental semiconductors as well. Heterojunctions formed in the Si/SiGe system have provided a laboratory in which to study quantum phenomena and explore heterojunction bipolar transistors (HBT's) and field-effect transistors (FET's). SiGe HBT's have already exhibited current gains in excess of 5000, current gain cutoff frequencies $f(T)$ of about 75 GHz, and 24-ps switching times. Of particular significance are the recent reports of enhanced mobilities in strained SiGe and strained Si with applications to high-speed complementary metal-oxide-semiconductor (CMOS) circuits.

In the area of optoelectronics, quantum well lasers with compressively strained InGaAs active layers have led to considerable

reduction the threshold current density. Both compressive and tensile strains have been shown to lead to reduced threshold currents owing to favorable alterations in the valence-band structure. With coherently strained active layers based on GaAs, lasers with longevities superior to those with lattice-matched channels have been obtained. With strained channels the 0.98-mum wavelength radiation can be produced with important applications to Er-doped fiber amplifiers. Strained layer concepts have also been successfully used in yellow and green lasers made in InGaAlP and ZnCdSe/ZnSSe, respectively.

30/3;AB/9 (Item 1 from file: 99)
DIALOG(R)File 99:Wilson Appl. Sci & Tech Abs
(c) 2004 The HW Wilson Co. All rts. reserv.

2311420 H.W. WILSON RECORD NUMBER: BAST01000301

High performance 0.1 mm gate-length P-type

SiGe MODFET's and MOS-MODFET's

Lu, Wu; Kuliev, Almaz; Koester, Steven J

IEEE Transactions on Electron Devices v. 47 no8 (Aug. 2000) p. 1645-52

DOCUMENT TYPE: Feature Article ISSN: 0018-9383

ABSTRACT: The authors examined the characteristics of **p-type SiGe/Si MODFETs and MOS-MODFETs with 0.1 mm gate length.**

High-quality jet-vapor-deposited SiO₂ was used as the gate dielectric for the MOS-MODFETs. The MODFET devices showed an intrinsic transconductance of 142 mS/mm, a unity current gain **cut-off frequency of 45 GHz**, and a maximum oscillation frequency of 81 GHz. The MOS-MODFETs showed a lower gate leakage current and a wider gate operating voltage swing in comparison to the MODFETs. Other characteristics of the devices are also described.

36/3,AB/1 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

015634694

WPI Acc No: 2003-696876/200366

XRAM Acc No: C03-191451

XRPX Acc No: N03-556564

Integrated circuit fabricated in semiconductor material of first conductivity type, and having **vertical bipolar transistor(s)** comprises layer of opposite conductivity type buried in semiconductor material of first conductivity type

Patent Assignee: SALLING C T (SALL-I); WU Z (WUZZ-I)

Inventor: SALLING C T; WU Z

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 20030137029	A1	20030724	US 200251639	A	20020118	200366 B

Priority Applications (No Type Date): US 200251639 A 20020118

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
US 20030137029	A1	10	H01L-027/82	

Abstract (Basic): US 20030137029 A1

Abstract (Basic):

NOVELTY - An integrated circuit (300) fabricated in semiconductor material (301) of a first conductivity type, the circuit having at the surface a **vertical bipolar transistor(s)** comprises:

(i) a layer of the opposite conductivity type buried in the semiconductor material of the first conductivity type, as collector of the transistor having sharp junctions; and

(ii) a subsurface semiconductor band of the first conductivity type

DETAILED DESCRIPTION - An integrated circuit fabricated in semiconductor material of a first conductivity type, the circuit having at the surface a **vertical bipolar transistor(s)** surrounded at least in part by a dielectric isolation zone, comprises:

(a) a first surface region of opposite conductivity type, as an emitter(310, 311);

(b) a second surface region of the first conductivity type, as a base contact (312, 313);

(c) a well (371) of opposite conductivity type surrounding the first and second surface regions, extending from the surrounding deep into the semiconductor material of the first conductivity type;

(d) a layer of the opposite conductivity type buried in the semiconductor material of the first conductivity type, as collector of the transistor having sharp junctions;

(e) a subsurface semiconductor band of the first conductivity type between the layer and the surface and surrounded by the well, the band being the base of the transistor providing a width controlled, by the proximity of the buried layer (360) junction to the surface, and a resistivity higher than the remainder of the semiconductor material, thus enabling the **vertical bipolar transistor** to operate as a low breakdown voltage transistor for low electrostatic discharge (ESD) clamping voltage and high-beta.

The layer extends laterally to the wells, electrically isolating the base and emitter portions of the transistor from the remainder of the semiconductor material. It extends vertically from the surface regions, beginning at a level more shallow than the depth of the

dielectric isolation zone, and extending to a depth greater than the depth of the dielectric zone.

An INDEPENDENT CLAIM is also included for a method of fabricating, in a semiconductor region of a first conductivity type having two wells of the opposite conductivity type, a **vertical bipolar transistor**, comprising:

(1) depositing a photoresist layer (330), over the surface of the region and opening a window (330a) in the layer, exposing the surface area between the wells;

(2) implanting at low energy ions of the opposite conductivity type through the window, creating a shallow layer of the opposite conductivity under the surface; and

(3) implanting, at high energy and high dose (340), ions of the opposite conductivity type into the region of the first conductivity type through the window, creating a deep buried region having a net doping of the opposite conductivity type between, and connecting to the wells, as the collector of the transistor, and further creating a near-surface region of the first conductivity type, having a doping concentration lower than that of the remainder of the region, being the base of the transistor.

USE - Used as integrated circuit, e.g. **metal-oxide-semiconductor** integrated circuits, useful in electronic systems.

ADVANTAGE - The method is coherent and of low-cost, enhancing ESD insensitivity without the need for additional, real-estate consuming protection devices. It is simple, yet flexible enough for different semiconductor product families and a wide spectrum of design and process variations. The device structure provides for excellent electrical performance, mechanical stability and high reliability. No investment in new manufacturing machines is needed. The substrate resistance is increased as a welcome side effect of the fabrication of the collector by ion implantation. The collector has a low breakdown voltage, and thus low ESD clamping voltage. A silicon area-saving **vertical transistor**, is created, without an additional photomask step.

DESCRIPTION OF DRAWING(S) - The figure is a schematic cross section of a **vertical bipolar transistor** with buried collector.

Integrated circuit (300)
Semiconductor material (301)
Inner pair (302)
Emitter (310, 311)
Base contact (312, 313)
Photoresist layer (330)
Window (330a)
High energy and high dose (340)
Buried layer (360)
Outer pair (370)
Wells (371)

pp; 10 DwgNo 3/3

37/3,AB/1 (Item 1 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7176081 INSPEC Abstract Number: B2002-03-2560J-016

Title: High performance 0.25 μ m SiGe and SiGe:C

HBTs using non selective epitaxy

Author(s): Baudry, H.; Martinet, B.; Fellous, C.; Kermarrec, O.; Campidelli, Y.; Laurens, M.; Marty, M.; Mourier, J.; Troillard, G.; Monroy, A.; Dutartre, D.; Bensahel, D.; Vincent, G.; Chantre, A.

Author Affiliation: Centre Commun. de Microelectronique de Crolles, ST Microelectron., Crolles, France

Conference Title: Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212) p.52-5

Publisher: IEEE, Piscataway, NJ, USA

Publication Date: 2001 Country of Publication: USA 199 pp.

ISBN: 0 7803 7019 8 Material Identity Number: XX-2001-02296

U.S. Copyright Clearance Center Code: 0-7803-7019-8/01/\$10.00

Conference Title: Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting

Conference Sponsor: IEEE Electron. Devices Society; IEEE Solid-State Circuits Society; IEEE Twin Cities Sect

Conference Date: 30 Sept.-2 Oct. 2001 Conference Location: Minneapolis, MN, USA

Language: English

Abstract: A robust 0.25 μ m double-poly SiGe HBT structure using non selective epitaxy has been developed. The device features 70/90 GHz f_{sub}T//f_{sub}max/ with pure SiGe base in 0.25 μ m BiCMOS technology. Performances up to 120/100 GHz f_{sub}T//f_{sub}max/ are demonstrated for SiGe:C base transistors.

Subfile: B

Copyright 2002, IEE

37/3,AB/2 (Item 2 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7081261 INSPEC Abstract Number: B2001-12-2560R-048

Title: Ge-redistributed poly-Si/SiGe stack gate (GRPSG)
for high-performance CMOSFETs

Author(s): Rhee, H.S.; Bae, G.J.; Choe, T.H.; Kim, S.S.; Song, S.; Lee, N.I.; Fujihara, K.; Kang, H.K.; Moon, J.T.

Author Affiliation: Semicond. R&D Div., Samsung Electron. Co. Ltd., Yongin, South Korea

Conference Title: 2001 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.01 CH37184) p.61-2

Publisher: Japan Society Appl. Phys, Tokyo, Japan

Publication Date: 2001 Country of Publication: Japan xv+150 pp.

ISBN: 4 89114 012 7 Material Identity Number: XX-2001-01380

Conference Title: 2001 Symposium on VLSI Technology. Digest of Technical Papers

Conference Date: 12-14 June 2001 Conference Location: Kyoto, Japan

Language: English

Abstract: A Ge-redistributed poly-Si/SiGe stack gate (GRPSG) has been proposed to improve the current performance of PMOS without the degradation of NMOS for sub-0.1 μ m CMOSFETs with ultrathin gate oxide. Ge diffusion into the poly-Si layer was promoted more by ion implantation of N-type dopants such as P and As rather than P-type dopants. NMOS and PMOS

had different Ge concentrations at the interface between gate electrode and gate oxide by an additional anneal to redistribute the Ge profile. The current performance of NMOS with GRPSG with low Ge content (<5%) was not degraded, while that of PMOS with GRPSG with high Ge content (>20%) was improved due to suppression of the poly-depletion effect and boron penetration. In addition, the gate reoxidation was modified to reduce G/sub m/ degradation by reduced gate bird's beak. High-performance 70 nm-CMOSFETs were successfully fabricated using the simple GRPSG process.

Subfile: B

Copyright 2001, IEE

37/3,AB/3 (Item 3 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6562453 INSPEC Abstract Number: B2000-05-2570D-017

Title: High-performance deep submicron CMOS technologies
with polycrystalline-SiGe gates

Author(s): Ponomarev, Y.V.; Stolk, P.A.; Salm, C.; Schmitz, J.; Woerlee, P.H.

Author Affiliation: Philips Res. Laboratory, Eindhoven, Netherlands

Journal: IEEE Transactions on Electron Devices vol.47, no.4 p.
848-55

Publisher: IEEE,

Publication Date: April, 2000 Country of Publication: USA

CODEN: IETDAI ISSN: 0018-9383

SICI: 0018-9383(200004)47:4L.848:HPDS;1-8

Material Identity Number: I037-2000-004

U.S. Copyright Clearance Center Code: 0018-9383/2000/\$10.00

Language: English

Abstract: The use of polycrystalline SiGe as the gate material for deep submicron CMOS has been investigated. A complete compatibility to standard CMOS processing is demonstrated when polycrystalline Si is substituted with SiGe (for Ge fractions below 0.5) to form the gate electrode of the transistors. Performance improvements are achieved for PMOS transistors by careful optimization of both transistor channel profile and p-type gate workfunction, the latter by changing Ge mole fraction in the gate. For the 0.18 mu m CMOS generation we record up to 20% increase in the current drive, a 10% increase in the channel transconductance and subthreshold swing improvement from 82 mV/dec to 75 mV/dec resulting in excellent "on"/"off" currents ratio. At the same time, NMOS transistor performance is not affected by gate material substitution.

Subfile: B

Copyright 2000, IEE

37/3,AB/4 (Item 4 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

5802340 INSPEC Abstract Number: B9802-2570D-053

Title: Gate-workfunction engineering using poly-(Si,Ge) for
high-performance 0.18 mu m CMOS technology

Author(s): Ponomarev, Y.V.; Salm, C.; Schmitz, J.; Woerlee, P.H.; Stolk, P.A.; Gravesteijn, D.J.

Author Affiliation: MESA Res. Inst., Twente University, Enschede, Netherlands

Conference Title: International Electron Devices Meeting 1997. IEDM

Technical Digest (Cat. No.97CH36103) p.829-32
Publisher: IEEE, New York, NY, USA
Publication Date: 1997 Country of Publication: USA 944 pp.
ISBN: 0 7803 4100 7 Material Identity Number: XX97-03283
U.S. Copyright Clearance Center Code: 0 7803 4100 7/97/\$10.00
Conference Title: International Electron Devices Meeting. IEDM Technical
Digest

Conference Sponsor: Electron Devices Society IEEE
Conference Date: 7-10 Dec. 1997 Conference Location: Washington, DC,
USA

Language: English

Abstract: We show that poly-SiGe can be readily integrated as a gate material into an existing CMOS technology to achieve significant increase in the transistor performance. In order to preserve the standard salicidation scheme, a buffer poly-Si layer is introduced in the gate stack. PMOST channel profiles are optimized to account for the change of the gate workfunction. High-performance CMOS 0.18 μm devices are manufactured using p- and n-type poly-Si/Si_{sub} 0.8/Ge_{sub} 0.2/ gates.

Subfile: B

Copyright 1998, IEE

37/3,AB/5 (Item 5 from file: 2)
DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

5285698 INSPEC Abstract Number: B9607-2560R-070

Title: Super self-aligned ultrashallow junction formation using selective Si_{sub} 1-x/Ge_{sub} x/ CVD in deep-submicron MOSFETs fabrication

Author(s): Goto, K.; Murota, J.; Honma, F.; Matsuura, T.; Sawada, Y.
Author Affiliation: Laboratory for Electron. Intelligent Syst., Tohoku University, Sendai, Japan

Conference Title: Proceedings of the Fifth International Symposium on Ultra Large Scale Integration Science and Technology. ULSI Science and Technology / 1995 p.512-18

Editor(s): Middlesworth, E.M.; Massoud, H.

Publisher: Electrochem. Soc, Pennington, NJ, USA

Publication Date: 1995 Country of Publication: USA ix+533 pp.

Material Identity Number: XX95-02965

Conference Title: Proceedings of Fifth International Symposium. ULSI Science and Technology

Conference Sponsor: Electrochem. Soc

Conference Date: 23-26 May 1995 Conference Location: Reno, NV, USA

Language: English

Abstract: In order to prevent the short channel effects of deep submicron MOSFETs, a novel super self-aligned ultrashallow junction formation was proposed. Using an ultraclean LPCVD system and an optimized sequence, selective deposition of B-doped Si_{sub} 1-x/Ge_{sub} x/ on n⁻ type Si and a high performance ultrashallow p⁺/n junction have been realized. pMOSFETs were fabricated using this selective B-doped Si_{sub} 0.5/Ge_{sub} 0.5/ for self-aligned ultrashallow source/drain regions, and they showed a much smaller threshold voltage shift compared with the same size B⁺-implanted MOSFETs.

Subfile: B

Copyright 1996, IEE

37/3,AB/6 (Item 6 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

4827040 INSPEC Abstract Number: B9501-0510D-017

Title: UHVCVD growth of **Si/SiGe** heterostructures and their applications

Author(s): Meyerson, B.S.; Ismail, K.E.; Harame, D.L.; LeGoues, F.K.; Stork, J.M.C.

Author Affiliation: Res. Div., IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA

Journal: Semiconductor Science and Technology vol.9, no.11S p. 2005-10

Publication Date: Nov. 1994 Country of Publication: UK

CODEN: SSSTEET ISSN: 0268-1242

U.S. Copyright Clearance Center Code: 0268-1242/94/112005+06\$19.50

Conference Title: Eighth International Winterschool on New Developments in Solid State Physics

Conference Date: 14-18 Feb. 1994 Conference Location: Mauterndorf, Austria

Language: English

Abstract: The era of integrated circuits based on **SiGe** heterojunction bipolar transistors arrived with the announcement of a 12-bit digital to analogue converter (DAC) fabricated using an analogue optimization of IBM's **SiGe** HBT technology. Medium-scale integration was employed, the circuit consisting of approximately 3000 transistors and 2000 passive elements (resistor and capacitors). Operable at 1 GHz, this converter consumes approximately 0.75 W, thus yielding power-delay performance a decade superior to prior devices. It is significant that this DAC was fabricated employing the same technology and toolset as found on a standard silicon-based **CMOS** product line. In addition to the **CMOS** toolset, only one unique tool is required to support this technology, a commercial (Leybold-AG) ultrahigh vacuum chemical vapour deposition system for **SiGe** deposition. It is of interest to note, however, that the processing of these integrated circuits was no different from that employed in fabricating high-performance **SiGe** high electron mobility transistors (HEMTs), as well as the first N-type **SiGe**-based resonant tunnelling devices (RTDs), all functional at room temperature. This enables one to combine a wafer-scale manufacturable **SiGe**-based heterojunction technology with devices that utilize quantum phenomena, made accessible by the use of band offsets and strain-induced band splitting in the **Si/SiGe** materials system. This new ability to incorporate leading edge developments in **SiGe** device physics into a standard technology line opens up a host of new areas for exploration.

Subfile: B

37/3,AB/7 (Item 7 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

04111470 INSPEC Abstract Number: B9204-2570K-010

Title: A CRYO-BiCMOS technology with **Si/SiGe** heterojunction bipolar transistors

Author(s): Imai, K.; Yamazaki, T.; Tashiro, T.; Tatsumi, T.; Niino, T.; Aizaki, N.; Nakamae, M.

Author Affiliation: NEC Corp., Kanagawa, Japan

Conference Title: Proceedings of the 1990 Bipolar Circuits and Technology

Meeting (Cat. No.90CH2890-2) p.90-3

Editor(s): Jopke, J.

Publisher: IEEE, New York, NY, USA

Publication Date: 1990 Country of Publication: USA 262 pp.

Conference Sponsor: IEEE

Conference Date: 17-18 Sept. 1990 Conference Location: Minneapolis, MN, USA

Language: English

Abstract: A high-performance liquid-nitrogen temperature BiCMOS (CRYO-BiCMOS) technology with Si/SiGe heterojunction bipolar transistors (HBTs) is presented. The newly developed HBT, which has an n^{sup} +/-polysilicon/n-type Si epitaxial layer emitter structure on a p-type SiGe base layer, shows a high current gain of 50 at liquid nitrogen temperature. Under the conditions of 3.3 V and 83 K, the driving capability of CRYO-BiCMOS gates is two times larger than that of the CRYO-CMOS gate. At 3.3 V and a load capacitance of 1 pF, the gate delay of CRYO-BiCMOS gate with pull-up HBT is 480 ps. The CRYO-BiCMOS with Si/SiGe HBTs presented is very promising for the future progress of BiCMOS LSIs.

Subfile: B

37/3,AB/8 (Item 8 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

01741465 INSPEC Abstract Number: A81086663, B81040421

Title: Amorphous SiGe:H for high performance solar cells

Author(s): Nakamura, G.; Sato, K.; Yukimoto, Y.; Shirahata, K.; Murahashi, T.; Fujiwara, K.

Author Affiliation: LSI Res. & Dev. Laboratory, Mitsubishi Electric Corp., Mizuhara, Itami, Japan

Journal: Japanese Journal of Applied Physics vol.20, suppl.20-1 p. 291-6

Publication Date: 1981 Country of Publication: Japan

CODEN: JJAPA5 ISSN: 0021-4922

Conference Title: Twelfth Conference on Solid State Devices

Conference Date: 26-27 Aug. 1980 Conference Location: Tokyo, Japan

Language: English

Abstract: A preliminary study has been carried out on electrical and optical properties of films deposited by a glow discharge plasma reaction. As the germanium content in the film increases, the optical absorption coefficient increases and the optical gap energy E_g decreases. The growth rate of a-SiGe:H films increases with the germanium content and reaches a value for pure a-Ge:H films about 3 times larger than that of a pure a-Si:H film. Film properties were examined by dark- and photoconductivity, MOSFET transistor characteristics, and photoluminescence. Photoconductivity and carrier mobilities decrease drastically when the mole ratio GeH₄/(GeH₄+SiH₄) exceeds 25%. Solar cells of various structures using a-SiGe:H and a-Si:H films were fabricated and their photovoltaic properties compared with that of a simple p-i-n type a-Si:H solar cell. Tandem structures with a-Si:H p-i-n and a-SiGe:H p-i-n cells show a broadened spectral response in the long wavelength region and an open circuit voltage of 1.13 V, about twice that of a single cell.

Subfile: A B

37/3,AB/9 (Item 1 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2004 Inst for Sci Info. All rts. reserv.

05590274 Genuine Article#: WJ494 Number of References: 25
Title: Suppression of the floating-body effect in SOI MOSFET's by the
bandgap engineering method using a Si1-xGex source structure (ABSTRACT
AVAILABLE)
Author(s): Yoshimi M (REPRINT) ; Terauchi M; Nishiyama A; Arisumi O;
Murakoshi AR; Matsuzawa K; Shigyo N; Takeno S; Tomita M; Suzuki K;
Ushiku Y; Tango H
Corporate Source: TOSHIBA CO LTD, ULSI, RES LABS, R&D CTR/KAWASAKI/KANAGAWA
210/JAPAN/ (REPRINT); TOSHIBA CO LTD, MICROELECT ENGN
LAB/KAWASAKI/KANAGAWA 210/JAPAN/; TOSHIBA CO LTD, ENVIRONM ENGN LAB, R&D
CTR/KAWASAKI/KANAGAWA 210/JAPAN/
Journal: IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, V44, N3 (MAR), P
423-430
ISSN: 0018-9383 Publication date: 19970300
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 345 E 47TH ST,
NEW YORK, NY 10017-2394
Language: English Document Type: ARTICLE
Abstract: The bandgap engineering method using a SiGe source
structure is presented as a means to suppress the floating-body effect
in SOI MOSFET's. Experiments using Ge implantation are
carried out to form a narrow-bandgapped SiGe layer in the source
region. It has been confirmed that Ge-implanted SIMOX exhibited a
0.1 eV bandgap narrowing with a relatively low Ge-dosage of
10(16) cm(-2). The fabricated N-type SOI-MOSFET's
exhibited suppressed parasitic bipolar effects, such as improvement of
the drain breakdown voltage or latch voltage, and suppression of
abnormal subthreshold slope. Advantages over other conventional methods
are also discussed, indicating that the bandgap engineering provides a
practical method to suppress the floating-body effect.

37/3,AB/10 (Item 2 from file: 34)
DIALOG(R)File 34:SciSearch(R) Cited Ref Sci
(c) 2004 Inst for Sci Info. All rts. reserv.

02284536 Genuine Article#: KQ003 Number of References: 8
Title: FABRICATION OF A SI1-XGEX CHANNEL METAL-OXIDE-
SEMICONDUCTOR FIELD-EFFECT TRANSISTOR (MOSFET) CONTAINING
HIGH GE FRACTION LAYER BY LOW-PRESSURE CHEMICAL VAPOR-DEPOSITION
(Abstract Available)
Author(s): GOTO K; MUROTA J; MAEDA T; SCHUTZ R; AIZAWA K; KIRCHER R; YOKOO
K; ONO S
Corporate Source: TOHOKU UNIV,ELECT COMMUN RES INST,MICROELECTR LAB,2-1-1
KATAHIRA,AOBA KU/SENDAI/MIYAGI 980/JAPAN/
Journal: JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS & SHORT
NOTES, 1993, V32, N1B (JAN), P438-441
ISSN: 0021-4922
Language: ENGLISH Document Type: ARTICLE
Abstract: A method for growing the high-quality strained epitaxial
heterostructure of Si/Si1-xGex/Si by low-pressure chemical
vapor deposition (CVD) and the fabrication of Si1-xGex-channel
metal-oxide-semiconductor field-effect transistors (
MOSFET's) with a high Ge fraction layer have been
investigated. It is found that lowering of the deposition temperature
of the Si1-xGex and Si capping layers is necessary with
increasing Ge fraction in order to prevent island growth of the

layers. With the use of the optimized fabrication process, Si /Si_{1-x}Gex/Si heterostructures with flat surfaces and interfaces were realized, and a **high-performance** Si0.5Ge0.5-channel MOSFET has been achieved with a large mobility enhancement of about 70% at 300 K and over 150% at 77 K compared with that of a MOSFET without a Si_{1-x}Gex channel.

37/3,AB/11 (Item 1 from file: 35)
DIALOG(R)File 35:Dissertation Abs Online
(c) 2004 ProQuest Info&Learning. All rts. reserv.

01737301 AADAAI0801272
Technology for SiGe heterostructure-based CMOS devices
Author: Armstrong, Mark Albert
Degree: Ph.D.
Year: 1999
Corporate Source/Institution: Massachusetts Institute of Technology (0753)
Source: VOLUME 61/03-B OF DISSERTATION ABSTRACTS INTERNATIONAL.
PAGE 1542.

Bulk silicon is currently the substrate material of choice for the manufacture of **high-performance** digital circuits due to its highly-developed processing technology and the relatively low cost for high-quality substrates. Silicon-based MOSFETs have reached remarkable levels of performance through device scaling. However, with each technology generation, it is becoming harder and harder to improve device performance at the same pace through traditional scaling methods alone. Short-channel effects such as velocity saturation and drain-induced barrier lowering have placed an fundamental limit on the ultimate performance of bulk Si MOSFETs.

One way to raise this limit is to increase the carrier mobilities in the channel. This can be done using high-mobility Si and SiGe strained-layers. Unlike III-V-based high-mobility materials, Si/SiGe strained-layers have the advantage of being largely compatible with mainstream Si processing, which is important from a financial feasibility standpoint. This thesis examines several issues related to Si/SiGe strained-layer devices and their integration into mainstream CMOS.

The first part of this work strives to predict the **performance** leverage of high-mobility Si/SiGe over bulk Si devices and circuits in a realistic manner. Two-dimensional hydrodynamic simulations are used to predict static device characteristics including effects of series resistance, velocity saturation and velocity overshoot. The simulations show enhanced current drive over bulk Si devices at 0.2 μ m effective channel length and highlight the importance of velocity overshoot in high-mobility submicron devices. The circuit performance of Si/SiGe devices is determined from transient simulations of CMOS ring oscillators including the effects of parasitic capacitance and drain-to-source voltage at the onset of saturation $V_{DS,sat}$. The simulations show a 4 to 6-fold reduction in power-delay product as compared to bulk CMOS oscillators operated at 2.5 V with the same design rules.

The remainder of the thesis focuses on the fabrication and characterization of strained-Si NMOS devices. The vehicle for this work is a novel short-flow, single-mask MOSFET which can be fabbed in as little as a week. This device is superior to simple Hall mobility structures which suffer from leakage through the substrate, an inability to control the carrier concentration and the uncertainty associated with the Hall scattering factor.

I investigate a novel buried-channel strained-Si NMOS structure incorporating an **n-type** donor layer beneath the strained-Si channel to encourage occupation of the buried channel and increase the overall mobility. Peak mobility in a structure without a donor layer reproduces the best results in the literature for buried-channel strained-Si NMOS devices. For structures with donor layers, Coulomb scattering from charges in the donor layer eradicates any benefit from increased buried-channel occupation.

I also investigate the effect of well implants on the mobility of surface-channel strained-Si NMOS devices. Similar to the universal mobility curve in bulk Si, mobility at low perpendicular electric field degrades with increasing implant dose while high field mobility is unaffected. The mobility is largely unaffected by a neutral implant species at the same dose. This leads to the conclusion that the material quality of the strained-layer is not affected by the implant, and that the mobility degradation is due solely to increased ionized impurity scattering.
(Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

37/3,AB/12 (Item 2 from file: 35)
DIALOG(R)File 35:Dissertation Abs Online
(c) 2004 ProQuest Info&Learning. All rts. reserv.

01367234 .AAD9422097
APPLICATIONS OF POLYCRYSTALLINE SILICON-GERMANIUM THIN FILMS IN
METAL-OXIDE-SEMICONDUCTOR TECHNOLOGIES
Author: KING, TSU-JAE
Degree: PH.D.
Year: 1994
Corporate Source/Institution: STANFORD UNIVERSITY (0212)
Source: VOLUME 55/03-B OF DISSERTATION ABSTRACTS INTERNATIONAL.
PAGE 1088. 151 PAGES

Polycrystalline silicon (poly-Si) is an important component of silicon integrated-circuit (IC) technology and is currently used in a wide range of device applications. The fundamental properties of silicon-germanium ($Si_{\rm x}Ge_{\rm 1-x}$) indicate that poly-Si $_{\rm x}$ Ge $_{\rm 1-x}$ can be a favorable alternative to poly-Si in many of these applications. Since the melting point of $Si_{\rm x}Ge_{\rm 1-x}$ is lower than that of Si, physical phenomena controlling fabrication processes such as deposition, crystallization, and dopant activation occur at lower temperatures for $Si_{\rm x}Ge_{\rm 1-x}$ than for Si. Thus, lower process temperatures can be used for poly-Si $_{\rm x}$ Ge $_{\rm 1-x}$, so that it is preferable to poly-Si for various applications in technologies which have limited thermal-budget allowances. In this work, a deposition technology for poly-Si $_{\rm x}$ Ge $_{\rm 1-x}$ films has been developed, and the physical and electrical properties of these films have been characterized. Two important potential applications of poly-Si $_{\rm x}$ Ge $_{\rm 1-x}$ films in metal-oxide-semiconductor (MOS) technologies have been investigated: first, the application as a gate-electrode material; second, the application as a thin-film transistor (TFT) channel material. The resistivity of heavily doped p-type (p^{+}) poly-Si $_{\rm x}$ Ge $_{\rm 1-x}$ is lower than that of comparably doped poly-Si, and its work function can be easily modified by adjusting its germanium content. These properties make p $^{+}$ poly-Si $_{\rm x}$ Ge $_{\rm 1-x}$ a very attractive candidate for

the gate-electrode material in submicrometer complementary MOS (CMOS) technologies. p-channel TFTs fabricated in poly-Si_{1-x}Ge_x exhibit well-behaved device characteristics and may be suitable for high-density static memory (SRAM) and three-dimensionally integrated circuit applications. n- and p-channel poly-Si_{1-x}Ge_x TFTs have been successfully fabricated using conventional microelectronic fabrication techniques without exceeding 550°C. This demonstrated low-temperature-processing capability permits the fabrication of high-performance CMOS circuits on glass substrates using a process no more complex than that for fabricating silicon TFTs. Therefore, a poly-Si_{1-x}Ge_x TFT technology is particularly attractive for large-area electronics applications.

37/3,AB/13 (Item 1 from file: 65)
DIALOG(R)File 65:Inside Conferences
(c) 2004 BLDSC all rts. reserv. All rts. reserv.

03795324 INSIDE CONFERENCE ITEM ID: CN039883510
Electrical stress characteristics in MOS capacitors with p-type poly-SiGe and poly-Si gates in the direct tunneling regime" Physical Electronics and photonics, Microtechnology Centre at Chalmers (MC2), Physics Dept, Chalmers University of Technology and Goteborg University, S-412 96 Goteborg, Sweden

Yousif, M. Y. A.; Willander, M.; Lundgren, P.; Caymax, M.

CONFERENCE: High performance electron devices for microwave and optoelectronic applications-International symposium; 8th

EDMO -CONFERENCE-, 2000; 8TH P: 271-275

IEEE, 2000

ISBN: 078036550X

LANGUAGE: English DOCUMENT TYPE: Conference Preprinted papers

CONFERENCE SPONSOR: IEEE

IEE

University of Glasgow

CONFERENCE LOCATION: Glasgow 2000; Nov (200011) (200011)

NOTE:

Also known as EDMO 2000. IEEE cat no 00TH8534

37/3,AB/14 (Item 2 from file: 65)
DIALOG(R)File 65:Inside Conferences
(c) 2004 BLDSC all rts. reserv. All rts. reserv.

03795275 INSIDE CONFERENCE ITEM ID: CN039883028
n-and p-type Si/SiGe Hetero FETs" Daimler Chrysler Research Labs, Ulm, Germany

Koenig, U.

CONFERENCE: High performance electron devices for microwave and optoelectronic applications-International symposium; 8th

EDMO -CONFERENCE-, 2000; 8TH P: 1-7

IEEE, 2000

ISBN: 078036550X

LANGUAGE: English DOCUMENT TYPE: Conference Preprinted papers

CONFERENCE SPONSOR: IEEE

IEE

University of Glasgow

CONFERENCE LOCATION: Glasgow 2000; Nov (200011) (200011)

NOTE:

Also known as EDMO 2000. IEEE cat no 00TH8534

37/3,AB/15 (Item 1 from file: 94)
DIALOG(R)File 94:JICST-Eplus
(c)2004 Japan Science and Tech Corp(JST). All rts. reserv.

02567702 JICST ACCESSION NUMBER: 95A0814987 FILE SEGMENT: JICST-E
Self-Aligned Ultrashallow Junction Formation Using Selective Si_{1-x}Ge_xCVD
for Ultra-Small MOSFET.

GOTO KIN'YA (1); MUROTA JUN'ICHI (1); HONMA FUMITAKA (1); MATSUURA TAKASHI
(1); SAWADA KOJI (1)

(1) Res. Inst. of Electr. Commun., Tohoku University

Denshi Joho Tsushin Gakkai Gijutsu Kenkyu Hokoku(IEIC Technical Report
(Institute of Electronics, Information and Communication Engineers),
1995, VOL.95,NO.205(SDM95 93-101), PAGE.9-14, FIG.8, REF.6

JOURNAL NUMBER: S0532BBG

UNIVERSAL DECIMAL CLASSIFICATION: 621.382.3

LANGUAGE: Japanese COUNTRY OF PUBLICATION: Japan

DOCUMENT TYPE: Journal

ARTICLE TYPE: Original paper

MEDIA TYPE: Printed Publication

ABSTRACT: In order to prevent the short channel effects of deep submicron
MOSFET's, novel super self-aligned ultrashallow junction formation was
proposed. Using an ultraclean LPCVD system and an optimized sequence,
selective deposition of B-doped Si_{1-x}Ge_x on n -type Si and a high
performance ultrashallow p+n junction have been realized. pMOSFET's were
fabricated using this selective B-doped Si_{0.5}Ge_{0.5} for self-aligned
ultrashallow source/drain regions, and they showed a much smaller
threshold voltage shift compared with the same size B+-implanted
MOSFET's. (author abst.)

37/3,AB/16 (Item 1 from file: 99)
DIALOG(R)File 99:Wilson Appl. Sci & Tech Abs
(c) 2004 The HW Wilson Co. All rts. reserv.

2531024 H.W. WILSON RECORD NUMBER: BAST02145735

Series resistance and mobility degradation factor in C-incorporated
SiGe heterostructure p-type metal-oxide
semiconductor field-effect transistors

Kar, G. S; Maikap, S; Banerjee, S. K

Semiconductor Science & Technology v. 17 no9 (Sept. 2002) p. 938-41

DOCUMENT TYPE: Feature Article ISSN: 0268-1242

ABSTRACT: The authors developed p-type MOSFET devices with channel lengths from
0.8-10 μm. The devices were fabricated on
strained Si/Si_{0.8}Ge_{0.2}/Si and partially strain-compensated
Si/Si_{0.793}Ge_{0.2}Co_{0.007}/Si heterolayers. Below 160 K, the
resulting ternary devices exhibited a sharp rise in source-drain resistance
and in their mobility degradation factor. Results indicated that a
higher performance level for ternary devices could be achieved,
compared to Si and SiGe binary devices, by optimizing the
source/drain contact metallization. However, performance enhancement at
low temperatures was limited by alloy scattering and surface roughness in
the ternary layer.

37/3,AB/17 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX
(c) 2004 Thomson Derwent. All rts. reserv.

015378631

WPI Acc No: 2003-439569/200341

Related WPI Acc No: 2002-656479; 2003-439715

XRAM-Acc No: C03-116411

XRPX Acc No: N03-350761

Thin film transistor for image display device, includes insulator substrate, poly-crystalline thin film, and transistor, where poly-crystalline film in channel part is composed of silicon-germanium poly-crystalline

Patent Assignee: HATANO M (HATA-I); PARK S (PARK-I); SHIBA T (SHIB-I); YAMAGUCHI S (YAMA-I)

Inventor: HATANO M; PARK S; SHIBA T; YAMAGUCHI S

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 20030049892	A1	20030313	US 2001790545	A	20010223	200341 B
			US 2002277140	A	20021022	

Priority Applications (No Type Date): JP 200125531 A 20010201

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
US 20030049892	A1	20	H01L-021/00	Div ex application US 2001790545	

Abstract (Basic): US 20030049892 A1

Abstract (Basic):

NOVELTY - A thin film transistor comprises an insulator substrate; a poly-crystalline thin film formed on the insulator substrate; and a transistor composed of a source, a drain, a channel, and a gate (6) formed on the poly-crystalline thin film. The poly-crystalline film in the channel part is composed of a silicon-germanium poly-crystalline.

DETAILED DESCRIPTION - A thin film transistor comprises an insulator substrate; a poly-crystalline thin film formed on the insulator substrate; and a transistor composed of a source, a drain, a channel, and a gate formed on the poly-crystalline thin film. The poly-crystalline film in a channel part of the transistor is composed of a silicon (Si)-germanium (Ge)

poly-crystalline (Sil-xGex), a ratio ox of a germanium composition relative to silicon is x lesser than 1 but greater than 0, and a ratio x of a Ge composition in the poly-crystalline thin film is larger in a grain boundary than a portion where a Ge composition in an interior grain of crystal becomes the minimum.

INDEPENDENT CLAIMS are also included for:

- a method for producing a thin film transistor device; and
- an image display device comprising an image display part, an image display circuit controlling a display of the image display part and including a data driver, a gate driver, and a buffer amplifier, and a peripheral circuit part in the neighborhood of the image display circuit and controlling the image display circuit, the circuit part including a complementary metal oxide semiconductor type transistor making present as a mixture of p-type and/or n-type transistor.

USE - The invention is used for an image display device (claimed).

ADVANTAGE - The invention provides an image display device having high performance, and a large area with low cost.

DESCRIPTION OF DRAWING(S) - The figure shows the thin film transistor.

Gate (6)
pp; 20 DwgNo 4/12

37/3,AB/18 (Item 2 from file: 350)
DIALOG(R) File 350:Derwent WPIX
(c) 2004 Thomson Derwent. All rts. reserv.

010357578
WPI Acc No: 1995-258892/199534
XRAM Acc No: C95-117925
XRPX Acc No: N95-199471

Semiconductor element e.g. FET - has mixed crystal layer of 10 microns width arranged parallel to surface bearing of substrate
Patent Assignee: HITACHI LTD (HITA)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 7162015	A	19950623	JP 93310548	A	19931210	199534 B

Priority Applications (No Type Date): JP 93310548 A 19931210

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 7162015	A	6	H01L-029/80	

Abstract (Basic): JP 7162015 A

The semiconductor element comprises a **p type Si** substrate with a surface bearing of (100). Over the substrate, a Si(1-X) GeX mixed crystal layer is formed parallel to the surface bearing of the substrate. The layer width of the mixed crystal layer is lesser than or equal to 10 micrometers.

ADVANTAGE - Facilitates increase in **germanium** density without producing any transposition. Enlarges band discontinuity between substrate and mixed crystal layer to twice original value. Lowers average effective mass of electrons. Raises **high speed performance** to thrice original value. Lowers defect generation rate without lowering mixed crystal ratio.

Dwg.1/6

37/3,AB/19 (Item 1 from file: 347)
DIALOG(R) File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

07029640
SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD

PUB. NO.: 2001-257274 [JP 2001257274 A]
PUBLISHED: September 21, 2001 (20010921)
INVENTOR(s): HISAMOTO MASARU
KACHI TAKESHI
APPLICANT(s): HITACHI LTD
APPL. NO.: 2000-069778 [JP 200069778]
FILED: March 14, 2000 (20000314)

ABSTRACT

PROBLEM TO BE SOLVED: To provide a **high-performance CMOS** with a little parasitic resistance.

SOLUTION: The **CMOS** is constituted such that **p-type**

impurity diffused electrodes 310 constituting source and drain regions of pMOSS are electrically connected to a metal wiring layer 600 through a p-type polycrystalline silicon-made leading layer 300, and n-type impurity diffused electrodes 410 constituting source and drain regions of nMOSS are electrically connected to the metal wiring layer 600 through an n-type silicon-germanium mixed crystal-made leading layer 400. The p- and n-type leading layers 300, 400 are formed by selectively etching off only either the polycrystalline silicon or silicon-germanium mixed crystal, utilizing a high etching selective ratio of both.

COPYRIGHT: (C)2001, JPO

37/3,AB/20 (Item 2 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

05906515
SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

PUB. NO.: 10-189615 [JP 10189615 A]
PUBLISHED: July 21, 1998 (19980721)
INVENTOR(s): EJIRI YOICHI
APPLICANT(s): SONY CORP [000218] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 08-342925 [JP 96342925]
FILED: December 24, 1996 (19961224)

ABSTRACT

PROBLEM TO BE SOLVED: To provide a high-performance, high-density, high-integration and high-reliability LSI device by a method wherein the performances of many semiconductor devices including a bipolar transistor, which has a low base resistance are enhanced without reducing its reliability and yield.

SOLUTION: A bipolar transistor 1 is provided with a base lead-out electrode 31, which is connected with a silicon layer 13 and made of an alloy silicon and a high-melting point metal, such as a tungsten silicide layer. In this case, germanium-containing semiconductor layers 17 are respectively provided in the interfaces between graft base layers 34, which are P-type semiconductor layers formed in parts of the layer 13, and the electrode 31, whereby the tungsten silicide layer does not absorb boron.

37/3,AB/21 (Item 3 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

05809925
SEMICONDUCTOR DEVICE

PUB. NO.: 10-093025 [JP 10093025 A]
PUBLISHED: April 10, 1998 (19980410)
INVENTOR(s): HIRAKAWA YOSHIKO
KUROBE ATSUSHI
APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP
(Japan)

APPL. NO.: 08-245317 [JP 96245317]
FILED: September 17, 1996 (19960917)

ABSTRACT

PROBLEM TO BE SOLVED: To realize high speed and high performance by well consistently forming high-performance Si type n- and p-channel hetero-junction FETs on a substrate.

SOLUTION: A complementary inverter has n- and p-channel hetero-junction FETs on a substrate. On the Si substrate 30 are laminated a first semiconductor layer 31 made of a lattice-relaxed SiGe to form an electron feed layer, second semiconductor layer 32 made of a tensile-strained Si to form an electron-channel layer and hole feed layer and third semiconductor layer 33, made of a lattice- relaxed SiGe to form a hole channel 1. On a part of the third layer 33 gate electrodes 36 and source-drain electrodes 37 are formed to construct the p- channel heterojunction FETs. The third layer 33 is removed, gate electrodes 34 and source-drain electrodes 35 are formed on the exposed second layer 32 to form the n-channel heterojunction FETs.

37/3,AB/22 (Item 4 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

04299602

MANUFACTURE OF SEMICONDUCTOR DEVICE

PUB. NO.: 05-291302 [JP 5291302 A]
PUBLISHED: November 05, 1993 (19931105)
INVENTOR(s): OKAMOTO AKIHIKO
APPLICANT(s): NEC CORP [000423] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 04-084285 [JP 9284285]
FILED: April 07, 1992 (19920407)
JOURNAL: Section: E, Section Number 1505, Volume 18, Number 80, Pg. 3,
February 09, 1994 (19940209)

ABSTRACT

PURPOSE: To prevent an electric field from concentrating on the end of a gate and then to obtain a high-performance FET of the reduced source resistance by changing only a non-doped region between a source electrode and a gate electrode into an n-type semiconductor by ion implantation.

CONSTITUTION: A high-purity GaAs layers 1-3 are caused to grow on a semi-insulating GaAs substrate 6 by the molecular beam epitaxial method. Then, an n-type GaAs layer 4 is caused to grow. Nextly, a part of the epitaxial layers is removed by etching and the non-doped layer is etched to make it a recess- having structure and then a gate electrode 8 is formed with heat resistant metal. After that, the whole surface is coated with resist 10. After selectively removing the resist only at the source side, silicon, an n-type impurity, is doped by ion implantation. Nextly, a part of the resist is opened for a source and a drain and then the source and the drain electrode are formed with gold-germanium - nickel alloy by evaporation. By this method, a source resistance of FET can be reduced and a high drain withstand voltage can be maintained and eventually characteristics of the high output FET, etc., can be enhanced.

37/3,AB/23 (Item 5 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

03617537

SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

PUB. NO.: 03-280437 [JP 3280437 A]
PUBLISHED: December 11, 1991 (19911211)
INVENTOR(s): NAKAGAWA AKIO
APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 02-078905 [JP 9078905]
FILED: March 29, 1990 (19900329)
JOURNAL: Section: E, Section Number 1177, Volume 16, Number 101, Pg. 165,
March 12, 1992 (19920312)

ABSTRACT

PURPOSE: To contrive an increase in the performance of a semiconductor device utilizing a heterojunction structure by a method wherein a channel region under a gate insulating film is constituted of an SiGe layer.

CONSTITUTION: The p^(sup +) source and drain diffused layers 6 and 7, which are isolated from each other, are formed in an n-type Si substrate 1 and a gate electrode 5 is formed on the substrate surface between the layers 6 and 7 via a gate insulating film 4. The film 4 is a thermal oxide film and the electrode 5 is a polycrystalline silicon film. An SiGe layer 2 is formed at a part, which is used as a channel region, under the film 4 by an ion implantation of Ge. A thin Si layer 3 is left on the layer 2. The layer 2 if formed in such a way that both ends intrude into the layers 6 and 7. As the layer 2 which is formed as the channel region if formed in the interior, which is positioned more inside than the interface between the film 4 and the substrate, of the substrate, a carrier mobility in the channel region is increased by a principle identical with that of an HEMT and high-performance field-effect element characteristics are obtained. As the Si substrate is used, a thin gate insulating film consisting of an oxide film of good quality can be formed by a thermal oxidation and an element having a high gm is obtained.

37/3,AB/24 (Item 6 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

03243734

SEMICONDUCTOR DEVICE

PUB. NO.: 02-219234 [JP 2219234 A]
PUBLISHED: August 31, 1990 (19900831)
INVENTOR(s): TAKAISHI TAKESHI
APPLICANT(s): SEIKO EPSON CORP [000236] (A Japanese Company or Corporation), JP (Japan)
APPL. NO.: 01-039731 [JP 8939731]
FILED: February 20, 1989 (19890220)
JOURNAL: Section: E, Section Number 1002, Volume 14, Number 520, Pg. 75,
November 14, 1990 (19901114)

ABSTRACT

PURPOSE: To realize high speed operation by forming a base layer composed of second conductivity type compound $\text{SiGe}(\text{sub } x)$ ($0 < x < 10$) composed of silicon Si and germanium Ge, on an emitter region composed of first conductivity type single crystal silicon, and forming a collector composed of first conductivity type $\text{SiGe}(\text{sub } x)$ on the base layer.

CONSTITUTION: On an emitter layer 102 of an N-type single crystal silicon film epitaxially grown on a silicon substrate 101, a base layer 103 of P-type polycrystalline $\text{SiGe}(\text{sub } x)$ ($0 < x < 10$) composed of silicon Si and germanium Ge doped with high concentration is formed by plasma CVD method, and then an insulating layer 105 is formed on the surface. After a window for forming an emitter is opened in the insulating layer 105, a collector layer 104 of N-type polycrystalline $\text{SiGe}(\text{sub } x)$ is formed by the same way as the base layer; a collector is formed by etching; a collector electrode 106, a base electrode 107, and an emitter electrode 108 are formed. Thereby a circuit of high speed and high performance can be manufactured.

37/3, AB/25 (Item 7 from file: 347)

DIALOG(R) File 347: JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

01898264

SEMICONDUCTOR DEVICE

PUB. NO.: 61-112364 [JP 61112364 A]

PUBLISHED: May 30, 1986 (19860530)

INVENTOR(s): MORI KAZUTAKA

MURATA JUN

APPLICANT(s): HITACHI LTD [000510] (A Japanese Company or Corporation), JP (Japan)

APPL. NO.: 59-233106 [JP 84233106]

FILED: November 07, 1984 (19841107)

JOURNAL: Section: E, Section Number 443, Volume 10, Number 293, Pg. 153, October 04, 1986 (19861004)

ABSTRACT

PURPOSE: To provide a high performance complementary MISFET without latch-up, by using a P type silicon in a P type semiconductor region, in which an N type MISFET is formed, using N type germanium in an N type semiconductor region, in which a P type MISFET is formed, and making the channel conductances of both parts approximately equal.

CONSTITUTION: In an N type silicon semiconductor substrate 1, a P type silicon well 2, in which P type impurities are selectively diffused, is provided. An N- channel MOSFET is formed in the well. At a part of the surface of the substrate 1, an N type germanium semiconductor region 9, in which germanium is selectively grown epitaxially, is formed. In this region 9, a P-channel MOSFET is formed. In this semiconductor device, rising time of the output waveform becomes as quick as the speed of a falling time. Unbalance between both times is eliminated, and a high speed CMOS inverter circuit can be formed.

37/3, AB/26 (Item 8 from file: 347)

DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

01848924

MANUFACTURE OF SEMICONDUCTOR DEVICE

PUB. NO.: 61-063024 [JP 61063024 A]
PUBLISHED: April 01, 1986 (19860401)
INVENTOR(s): NAKATSUKA MASAHIKO
APPLICANT(s): NEC CORP [000423] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 59-184801 [JP 84184801]
FILED: September 04, 1984 (19840904)
JOURNAL: Section: E, Section Number 426, Volume 10, Number 228, Pg. 84, August
08, 1986 (19860808)

ABSTRACT

PURPOSE: To activate the implanted ions on the titled semiconductor device in a high efficiency by performing a cap annealing by a method wherein, after ions are implanted on a semiconductor substrate, a heat treatment is performed in two stages, namely, at a low temperature for a long period and at a high temperature for a short period.

CONSTITUTION: After $(\text{sup } 30)\text{Si}$ ($\text{sup } +$) ions are implanted for the purpose of forming an **n type** active layer 2 on the surface of a semiconductor GaAs substrate 1, a $\text{W}(\text{sub } 3)\text{Si}(\text{sub } 3)$ layer 3 to be turned to a heat-resisting gate is formed by performing a sputtering method. The layer 3 is brought into the desired gate length by performing a plasma etching using $\text{SF}(\text{sub } 6)$ gas, and after an $\text{SiO}(\text{sub } 2)$ film 4 is grown in vapor phase, the side wall of a $\text{W}(\text{sub } 5)\text{Si}(\text{sub } 3)$ gate 4 is coated by $\text{SiO}(\text{sub } 2)$ films 5 and 6 by performing a reactive ion etching using $\text{CF}(\text{sub } 4)$ gas. **n⁺ type** layers 7 and 8 are obtained by implanting $(\text{sup } 28)\text{Si}$ ($\text{sup } +$) ions. After a heat treatment is performed at 400 deg.C in a hydrogenous atmosphere for 48hr, and the layers 2, 7 and 8 are activated by performing an annealing at 800 deg.C for 20min. By performing the above-mentioned primary annealing, the generation of microcracks 9 and 10 on the gate end face can be prevented. Then, after removal of a protective layer 11, Au-Ge/Ni layers 12 and 13, a Ti-Au source electrode 14 and a drain electrode 15 are formed, and a GaAs FET is obtained.

37/3, AB/27 (Item 9 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

01713861

COLOR IMAGE SENSER

PUB. NO.: 60-192361 [JP 60192361 A]
PUBLISHED: September 30, 1985 (19850930)
INVENTOR(s): UCHIDA HIROYUKI
APPLICANT(s): NEC CORP [000423] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 59-047836 [JP 8447836]
FILED: March 13, 1984 (19840313)
JOURNAL: Section: E, Section Number 380, Volume 10, Number 35, Pg. 54,
February 12, 1986 (19860212)

ABSTRACT

PURPOSE: To provide the titled senser with high speed performance and high resolving power without any crosstalk at all by a method wherein an amorphous semiconductor layer containing amorphous germanium or germanium is inserted between a blocking diode and a photodiode.

CONSTITUTION: An a-Si 41 formed by etching chromium and doping phosphorus, an i type a-Si 42, a P type a-Si 43 doped with boron are laminated as an individual electrode 22 on an insulating substrate 21 such as glass or substrate etc. to form a blocking diode. Next, an amorphous germanium 44 is deposited by glow discharge decomposing germanium gas. Then a P type a-Si 45, an i type a-Si 46 doped with boron by glow discharge decomposing silane, an N type a-Si 47 doped with phosphorus are successively laminated on the amorphous germanium to form a photodiode. Through these procedures, a color image sensor provided with high speed performance and high resolving power without any crosstalk at all may be produced.

37/3,AB/28 (Item 10 from file: 347)

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

01485576

MANUFACTURE OF JUNCTION GATE FIELD-EFFECT TRANSISTOR

PUB. NO.: 59-197176 [JP 59197176 A]

PUBLISHED: November 08, 1984 (19841108)

INVENTOR(s): OHATA KEIICHI

APPLICANT(s): NEC CORP [000423] (A Japanese Company or Corporation), JP (Japan)

APPL. NO.: 58-071070 [JP 8371070]

FILED: April 22, 1983 (19830422)

JOURNAL: Section: E, Section Number 302, Volume 09, Number 56, Pg. 137, March 12, 1985 (19850312)

ABSTRACT

PURPOSE: To easily obtain an FET, which operates at high speed in a short gate structure, by a method wherein a high-resistance layer, which constitutes one part of a high-resistance substrate, is grown on a semiinsulative substrate, the layer is covered with a nitride film having an aperture, a groove is bored in the high-resistance layer by performing an etching, the groove is filled with a channel layer and a semiconductor layer and a gate electrode is provided thereon.

CONSTITUTION: A high-resistance GaAs layer 21, which constitutes one part of a high-resistance substrate, is deposited on a semiinsulative GaAs substrate and an N⁺ type GaAs layer 22 is epitaxially grown thereon. Then, an Si₃N₄ film 23 is coated on the whole surface according to a plasma CVD method, the film 23 and then the layer 22 are vertically removed by performing a reactive ion etching to obtain a gate aperture and an N type channel layer 24 and a P type GaAs layer 25, both of polycrystalline Si, are laminatedly formed in the aperture. After that, the surface of an polycrystalline Si layer 24' coated to the circumferential edge of the aperture is similarly covered with an polycrystalline Si layer 25' and a CrAu gate electrode 26 is coated while the upper part on the layer 25' is being filled. Then, the film 23 and the layers 24' and 25' in the circumference thereof are removed, and a source electrode 27 and a

drain electrode 28, both consisting of Au-Ge, are coated on the exposed layer 22.

37/3,AB/29 (Item 11 from file: 347)
DIALOG(R) File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

01320574

MANUFACTURE OF FIELD EFFECT TRANSISTOR

PUB. NO.: 59-032174 [JP 59032174 A]
PUBLISHED: February 21, 1984 (19840221)
INVENTOR(s): TSUKURIDA YASUTAMI
APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP (Japan)
APPL. NO.: 57-141934 [JP 82141934]
FILED: August 16, 1982 (19820816)
JOURNAL: Section: E, Section Number 248, Volume 08, Number 119, Pg. 50, June 05, 1984 (19840605)

ABSTRACT

PURPOSE: To obtain an FET with a compound semiconductor by preventing the deterioration in the characteristics due to a reaction between a metal and the semiconductor by the application of a self-aligning method due to an ion implantation and a heat treatment by employing a junction type FET configuration.

CONSTITUTION: An i type GaAs active layer 22(sub 1), an n type GaAlAs layer 22(sub 2) and a p type GaAlAs layer 23 are laminated by an electron beam epitaxial method on a semi-insulating GaAs substrate 21. This structure is etched to the vicinity of the layer 22(sub 1) with a gate region as a mask 24, Si ions are then implanted, the structure is heat treated, and n type source 25 and drain 26 are formed. Then, a CVD SiO(sub 2) film 27 is covered, a window is opened, and ohmic Au-Ge electrodes 28-30 are formed. The current of channel 22 can be controlled by applying negative voltage to the electrode 30 in the obtained junction type FET. According to this structure, a compound semiconductor is used, a self-aligning method in an Si gate MOSFET is applied, and an FET which has high density and high performance can be formed.

37/3,AB/30 (Item 12 from file: 347)
DIALOG(R) File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

01320573

MANUFACTURE OF FIELD EFFECT TRANSISTOR

PUB. NO.: 59-032173 [JP 59032173 A]
PUBLISHED: February 21, 1984 (19840221)
INVENTOR(s): TSUKURIDA YASUTAMI
APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP (Japan)
APPL. NO.: 57-141933 [JP 82141933]
FILED: August 16, 1982 (19820816)
JOURNAL: Section: E, Section Number 248, Volume 08, Number 119, Pg. 49, June 05, 1984 (19840605)

ABSTRACT

PURPOSE: To obtain an FET which employs a compound semiconductor without variation in the characteristics due to a reaction between a metal and the semiconductor even by a self-aligning method due to an ion implantation and a heat treatment by employing an MISFET which uses as a gate electrode the semiconductor.

CONSTITUTION: An i-type GaAs active layer 22(sub 1), an n type GaAlAs layer 22(sub 2), a semi-insulating GaAlAs layer 23, and an n type GaAs layer 24 are laminated by an electron beam epitaxial method on a semi-insulating GaA substrate 21. This structure is etched to the vicinity of the layer 22(sub 1) with a gate region as a mask 25. Then, Si ions are implanted, the structure is then heat treated so as to form n type source 26 and drain 27. The mask 25 is removed, a CVD SiO(sub 2) film 28 is covered, a hole is opened, and ohmic Au-Ge electrodes 29-31 are formed. The layer 24 becomes a gate electrode, the layer 23 becomes a gate insulating film, and the current of the channel 22(sub 1) can be controlled. According to this structure, a self-aligning technique in an MOSFET of Si gate is applied, and an FET which has high integration and high performance can be obtained with a compound semiconductor.

37/3, AB/31 (Item 13 from file: 347)
DIALOG(R) File 347: JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

01015771
SEMICONDUCTOR DEVICE

PUB. NO.: 57-166071 [JP 57166071 A]
PUBLISHED: October 13, 1982 (19821013)
INVENTOR(s): OSONE TAKASHI
APPLICANT(s): MATSUSHITA ELECTRIC IND CO LTD [000582] (A Japanese Company or Corporation), JP (Japan)
APPL. NO.: 56-051476 [JP 8151476]
FILED: April 06, 1981 (19810406)
JOURNAL: Section: E, Section Number 152, Volume 07, Number 8, Pg. 34, January 13, 1983 (19830113)

ABSTRACT

PURPOSE: To obtain a high performance C-MOS IC by a method wherein an N channel transistor and a P channel transistor are built in different substrates and the transistors enjoy a roughly equal mobility or the mobility ratio between the two is devised to approach the quantity one.

CONSTITUTION: An N type Ge substrate 22 is selectively grown on a P type Si substrate 20 by the vapor deposition method. An N channel MOS transistor 21 is built on the substrate 20 and a P channel MOS transistor 23 is built on the substrate 22. Next, source regions 24 and 24' are respectively connected to a ground terminal 25 and a power source terminal 26, drain regions 27 and 27' jointly to an output terminal 29, gate electrodes 28 and 28' jointly to an output terminal 29', constituting an inverter circuit. Mobility is roughly balanced between the two transistors, $1,350 \text{ cm}(\text{sup}_2)/\text{V.sec}$ for the transistor 21 and $1,900 \text{ cm}(\text{sup}_2)/\text{V.sec}$ for the transistor 23. Inductance is also roughly balanced between the two transistors and the gate oxide films can be smaller in area. Parasitic capacity decreases, which results in a high speed switching.

43/3;AB/1 (Item 1 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7455492 INSPEC Abstract Number: B2002-12-2570K-005

Title: Implementation of optimized vertical bipolar transistor
in CMOS process technology

Author(s): Singh, U.; Singh, D.B.; Roy, J.N.

Author Affiliation: Semicond. Complex Ltd., Nagar, India

Conference Title: Proceedings of the Eleventh International Workshop on
the Physics of Semiconductor Devices (SPIE Vol.4746) Part vol.1 p.
721-4 vol.1

Editor(s): Kumar, V.; Basu, P.K.

Publisher: SPIE, Washington, DC, USA

Publication Date: 2002 Country of Publication: USA 2
volume(xxxix+xl+1460) pp.

ISBN: 0 8194 4500 2 Material Identity Number: XX-2002-02457

Conference Title: Proceedings of the Eleventh International Workshop on
the Physics of Semiconductor Devices

Conference Sponsor: Defence Res. & Dev. Organ.; Ministr. Inf. Technol.;
Dept. Sci. & Technol.; et al

Conference Date: 11-15 Dec. 2001 Conference Location: Delhi, India

Language: English

Abstract: This paper describes the enhanced analog CMOS technology that
integrates Bipolar (NPN & PNP) and CMOS on a single chip. The bipolar (both
NPN and PNP) were realized using two additional mask & implant steps. For
process simplicity, the P-well and the collector of PNP were formed
simultaneously. The base of the PNP and NPN were made using extra N-
base and p-base masking and implant steps respectively.

The NPN transistor with beta /sub F/ approximately=240 and
BV/sub CEO/ approximately=18.0 V and the PNP transistor with
beta /sub F/ approximately=95 and BV/sub CEO/=23.0 V were fabricated using
this process technology. Commercial products have been realized using this
process.

Subfile: B

Copyright 2002, IEE

43/3;AB/2 (Item 1 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

014592757

WPI Acc No: 2002-413461/200244

XRAM Acc No: C02-116813

XRPX Acc No: N02-324926

Fabrication of high voltage complementary bipolar transistors in
silicon-on-insulator involves forming first and second N-type and P-type
sinker regions using respective first and second epitaxial silicon layers

Patent Assignee: NAT SEMICONDUCTOR CORP (NASC)

Inventor: CHEN D; HEBERT F; RAZOUK R

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 6365447	B1	20020402	US_985786	A	19980112	200244-B

Priority Applications (No Type Date): US 985786 A 19980112

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

Abstract (Basic): US 6365447 B1

Abstract (Basic):

NOVELTY - High voltage complementary bipolar transistors are fabricated in a silicon-on-insulator structure by forming first N-type and P-type sinker regions and second N-type and P-type sinker regions using respective first and second epitaxial silicon layers. The N-type and P-type sinker regions are implanted with corresponding N-type and P-type dopants.

DETAILED DESCRIPTION - Fabrication of high voltage complementary vertical NPN and PNP bipolar transistors in a silicon-on-insulator (SOI) structure involves forming N-type buried region for the NPN bipolar transistor. The SOI structure includes a silicon substrate, a buried silicon oxide layer formed on the substrate, and a conductive silicon layer formed on the buried oxide layer. The N-type buried region is formed in the conductive silicon layer. A P-type buried region for the PNP bipolar transistor is formed in the conductive silicon layer and is spaced apart from the N-type buried region. A first epitaxial silicon layer is formed on the conductive silicon layer, and a first layer of screen silicon oxide is formed on the first epitaxial silicon layer. The first screen silicon oxide layer is masked to define spaced-apart first N-type and first P-type sinker regions in the first epitaxial silicon layer. A N-type dopant is implanted into the first N-type sinker region located above, but spaced apart from, the N-type buried region. A P-type dopant is implanted into the first P-type sinker region located above, but spaced apart from, the P-type buried region. A second epitaxial silicon layer is formed, and a second layer of screen silicon oxide is formed on the second epitaxial silicon layer. The second screen silicon oxide layer is masked to define spaced-apart second N-type and second P-type sinker regions in the second epitaxial layer. A N-type dopant is implanted into the second N-type sinker region located above, but spaced apart from, the first N-type sinker region. A P-type dopant is implanted into the second P-type sinker region located above, but spaced apart from, the first P-type sinker region. An anneal step is then performed such that N-type dopant diffuses so that the second N-type sinker region overlaps with the first N-type sinker region and the first N-type sinker region overlaps with the N-type buried region. The anneal step also allows the P-type dopant to diffuse such that the second P-type sinker region is overlaps with the first P-type sinker region and the first P-type sinker region overlaps with the P-type buried region. A P-type dopant is then implanted into the second epitaxial silicon layer to define a P-type well above the P-type buried region. An insulating trench is formed between the N-type buried region and the P-type buried region. The insulating trench extends from an upper surface at the second epitaxial silicon layer to the buried silicon oxide layer.

USE - For fabricating complementary bipolar and bi-complementary metal oxide semiconductor (BiCMOS) transistors.

ADVANTAGE - The use of the two epitaxial silicon layers minimizes thermal budget and therefore the up diffusion of the dopants in the NPN and PNP buried layers. Because the sinker regions are formed by diffusion of dopants at the interface of the two epitaxial layers, the dopants have a shorter distance which they must diffuse over as compared when to the situation in which they are implanted into the top surface of the of a single, thicker epitaxial layer. Thus, a shorter anneal time is required to form the sinker regions.

DESCRIPTION OF DRAWING(S) - The figure is a cross-sectional view illustrating high voltage complementary bipolar and BiCMOS

devices.

pp; 11 DwgNo 2/4

43/3,AB/3 (Item 2 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

011973132

WPI Acc No: 1998-390042/199834

XRPX Acc No: N98-304280

Vertical PNP transistor structure for bipolar or BiCMOS circuit used in e.g. mobile radio or data link - comprises buried P-doped area as collector, N-doped area as base, and P-doped area as emitter, whereby P-doped polysilicon layer serves as emitter contact and base contact is, at least partially, arranged above emitter contact

Patent Assignee: SIEMENS AG (SIEI)

Inventor: BIANCO M; LACHNER R

Number of Countries: 027 Number of Patents: 005

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 855747	A1	19980729	EP 98100638	A	19980115	199834	B
DE 19702320	A1	19980730	DE 1002320	A	19970123	199836	
JP 10214846	A	19980811	JP 9823911	A	19980121	199842	
KR 98070685	A	19981026	KR 981813	A	19980122	199953	
TW 373334	A	19991101	TW 97120049	A	19971231	200036	

Priority Applications (No Type Date): DE 1002320 A 19970123

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
EP 855747	A1	G	11	H01L-029/423	

Designated States (Regional): AL AT BE CH DE DK ES FI FR GB GR IE IT LI
LT LU LV MC MK NL PT RO SE SI

DE 19702320	A1	H01L-029/732
JP 10214846	A	6 H01L-021/331
KR 98070685	A	H01L-029/74
TW 373334	A	H01L-029/732

Abstract (Basic): EP 855747 A

The transistor structure includes a semiconductor substrate (1) with a buried P-doped area as a collector (2), an N-doped area as a base (5), and a base contact (10) arranged on the substrate surface. A P-doped area is formed as an emitter (9), and a P-doped poly-silicon layer on the substrate surface serves as an emitter contact (6).

The base contact is, at least partially, arranged above the emitter contact. The base contact is preferably formed of N-doped polysilicon, and the emitter contact is preferably formed as a ring around the base contact, or as a strip adjacent to the base contact.

USE - For manufacture of, especially analog, semiconductor in BiCMOS technology.

ADVANTAGE - Enables simplified manufacture, especially without significantly increasing complexity if transistor is integrated with corresponding NPN transistor structure. Has higher operation frequency due to reduced base width and reduced surface requirement...In-situ-doped-polysilicon-has-better-properties,-especially offering very small emitter window as used for high frequency applications. Improved diffusion properties.

Dwg.1/4

43/3,AB/4 (Item 3 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

011133590

WPI Acc No: 1997-111514/199711

XRPX Acc No: N97-092271

BiCMOS integrated circuit - has silicon monocrystalline substrate in which buried **N**, **N+** and **P+** type **regions** are obtained by arsenic and boron ion implantation and diffusion while **NPN transistors** are obtained by high dose arsenic implantation and annealing

Patent Assignee: MOTOROLA SEMICONDUCTEURS SA (MOTI)

Inventor: COMBES M; FOERSTNER J; HAUTEKIET G; MARTY B A

Number of Countries: 002 Number of Patents: 002

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
FR 2736209	A1	19970103	FR 957906	A	19950630	199711 B
JP 9036249	A	19970207	JP 96212215	A	19960701	199716

Priority Applications (No Type Date): FR 957906 A 19950630

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
-----------	------	-----	----	----------	--------------

FR 2736209	A1	22	H01L-027/07
------------	----	----	-------------

JP 9036249	A	10	H01L-021/8238
------------	---	----	---------------

Abstract (Basic): FR 2736209 A

The IC includes a monocrystalline silicon p type substrate (1) on which two N type buried regions are formed by arsenic ion implantation through a masking layer.

P+ type **regions** are obtained by boron ion implantation through a second masking layer (24). The diffusion of arsenic and boron ions at relatively high temperatures generates the buried **regions** **N-**, **N+**, and **P+**. The collector and emitter of **NPN transistors** and the source and drain of NMOS transistors are obtained by high dose ion implantation. an annealing process at 1020 degrees Celsius in nitrogen atmosphere is then carried out.

ADVANTAGE - Can includes **vertical PNP transistors** and active devices. Can easily include resistors, capacitors and other **pässive** devices. Bipolar and MOS devices are integrated using single manufacturing process.

Dwg.23/25

43/3,AB/5 (Item 4 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

009423291

WPI Acc No: 1993-116806/199314

XRAM Acc No: C93-051864

XRPX Acc No: N93-089074

BICMOS device mfr. having an **extrinsic base** of reduced resistance - in which emitter and **vertical PNP transistor** by using **base electrode polysilicon layer as diffusion source**

Patent Assignee: SAMSUNG ELECTRONICS CO LTD (SMSU)

Inventor: KIM M H; WON T Y; YOO J H; YOO K D

Number of Countries: 003 Number of Patents: 003

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
US 5196356	A	19930323	US 92874612	A	19920427	199314 B
JP 5218314	A	19930827	JP 92251164	A	19920921	199339
KR 9407466	B1	19940818	KR 9120269	A	19911114	199622

Priority Applications (No Type Date): KR 9120269 A 19911114

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
US 5196356	A	8	H01L-021/265	
JP 5218314	A	6	H01L-027/06	
KR 9407466	B1		H01L-027/06	

Abstract (Basic): US 5196356 A

Mfg. BiCMOS devices includes (1) forming an N-type buried layer (2) in a P-type Si substrate (1) and forming a highly doped P-type bottom layer (3) and a highly doped N-type bottom layer (4); (2) growing an intrinsic epitaxial layer; (3) forming N type(5) and P type (6) wells in the epitaxial layer by a twin well process; (4) forming a channel-stop region (7) for preventing field inversion, (5) forming selectively a 1st insulating layer (11) by local oxidation of Si, (6) growing a gate oxide layer (21) and depositing a polysilicon layer (23); (7) removing first polysilicon layer (23) and gate oxide layer (21) on NPN transistor region (41) and vertical PNP transistor region (43) defined photolithographically; (8) depositing a second polysilicon layer (45) and doping with highly doped N-type impurities; (9) depositing a second insulating layer (47); (10) forming gates (53,51) of PMOS and NMOS transistors, emitter electrodes (55) and collector electrodes (57) of NPN transistor, and base electrodes (59) of vertical PNP transistor by removing predetermined parts of second insulating layer (47) and second polysilicon layer (45) photo-lithographically; (11) depositing third insulating layer and forming sidewall spacers (79) by reactive ion etching; (12) highly doping the source/drain regions of PMOS transistor, the emitter/collector regions of the vertical PNP transistor, and the base of NPN transistor; (13) removing second insulating layer (47); and (14) forming extrinsic base (87) of vertical PNP transistor by using second polysilicon layer (45) as a diffusion source.

USE/ADVANTAGE - The process is simplified and the resistance of the extrinsic base is reduced.

Dwg.1/20

43/3,AB/6 (Item 5 from file: 350)

DIALOG(R)File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

009375409

WPI Acc No: 1993-068887/199309

XRAM Acc No: C93-030533

XRXPX Acc No: N93-052877

Forming vertical PNP transistor in complementary BiCMOS with EEPROM - using two dopants and giving high performance transistors with modular combinations

Patent Assignee: EXAR CORP (EXAR-N)

Inventor: AKKAN O L; ICEL A B

Number of Countries: 009 Number of Patents: 005

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 529860	A2	19930303	EP 92307301	A	19920810	199309 B
TW 200597	A	19930221	TW 92106132	A	19920803	199329
US 5248624	A	19930928	US 91749076	A	19910823	199340
JP 5243584	A	19930921	JP 92222668	A	19920821	199342
EP 529860	A3	19931118	EP 92307301	A	19920810	199512

Priority Applications (No Type Date): US 91749076 A 19910823

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
EP 529860	A2	E 12	H01L-021/82	
			Designated States (Regional): AT DE FR GB IT NL	
US 5248624	A	11	H01L-021/331	
JP 5243584	A	12	H01L-029/788	
TW 200597	A		H01L-021/205	
EP 529860	A3		H01L-021/82	

Abstract (Basic): EP 529860 A

Forming a **vertical PNP transistor** on a P substrate, in a complementary **bicmos** process with EEPROM memory, comprises forming an N buried layer (12) in the P substrate (11), forming a P buried layer in the N layer, growing a P epitaxial layer (10) over the buried layers and implanting an N base (13) over the P buried layer. A P region is then implanted (14) in the N base and EEPROM transistors are then formed.

Also claimed is a **vertical PNP transistor** as above, additionally comprising a perimeter N+ buried layer around the N- buried layer and a perimeter N+ sinker **region** extending down to the N+ buried layer, with both the N+ and N- regions formed with As.

Pref. a field oxidation layer is formed after the transistor bases to give high-voltage transistors or pref. formed before the bases to give low-voltage transistors. Pref. N+ implants form a low resistance **extrinsic base** and NMOS source and drain; pref. P+ implants form a contact region for the PNP collector and source and drain form the PMOS.

USE/ADVANTAGE - Useful for EEPROM memories in a complementary BICMOS process, logic and analogue circuits. High performance vertical PNPs are provided, only two dopant species are needed, high collector to isolation breakdown voltage and low isolation layer resistivity are achieved, and different types of transistor may be integrated on the same substrate in a modular process.

Dwg.1a,1b/

4

Abstract (Equivalent): US 5248624 A

Method comprises (a) forming an N-buried layer in the P substrate, (b) forming a P-buried layer in the N-buried layer, (c) growing a P-epitaxial layer over the buried layers, (d) implanting an N-base **region** over the P-buried layer, (e) implanting a P-region in the N-base **region**, and (f) forming EEPROM transistors after formation of the buried layers and the P-epitaxial layer. The N-base for the PNP transistor and a P-base for an NPN transistor are formed before the formation of a field oxidation layer. An N+ **region** is formed by ion implantation into the N-base **region** to form a low resistance **extrinsic base region** and form source and drain **regions** for NMOS transistors.

USE/ADVANTAGE - Used for forming a **vertical PNP transistor** on a P substrate, partic. in BICMOS or bipolar

technologies. Good flexibility, performance and variety of devices on the same substrate.

Dwg. 3/4

43/3, AB/7 (Item 6 from file: 350)

DIALOG(R) File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

008800548

WPI Acc No: 1991-304560/199142

XRPX Acc No: N91-233338

Vertical isolated-collector PNP transistor structure -
has P-well **region** enclosed in N type pocket comprised of N
plus buried layer and N reach-through region

Patent Assignee: IBM CORP (IBMC); INT BUSINESS MACHINES CORP (IBMC)

Inventor: BONNEAU D; COMBES M; DALLY A; MOLLIER P; OGURA S; TANNHOF P;
DALLY A J

Number of Countries: 005 Number of Patents: 003

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 451423	A	19911016	EP 90480056	A	19900410	199142 B
US 5155572	A	19921013	US 91680490	A	19910404	199244
JP 5041487	A	19930219	JP 9143721	A	19910308	199312

Priority Applications (No Type Date): EP 90480056 A 19900410

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 451423 A

Designated States (Regional): DE FR GB

US 5155572 A 10 H01L-027/02

JP 5041487 A H01L-027/06

Abstract (Basic): EP 451423 A

The vertical isolated-collector PNP transistor structure (58) comprises a P+ **region** (45), an N **region** (44) and a P- well **region** (46) forming respectively the emitter, the base and the collector of the PNP transistor structure. The P- well **region** is enclosed in a N type pocket comprised of a N+ buried layer (48) and a N reach-through region (47). The contact regions (46-1, 47-1) to the P- well **region** and to the N reach-through region are shorted to define a common collector contact (59).

In addition, the thickness W of the P-well **region** is so minimised to allow transistor action of the parasitic NPN transistor formed by N PNP base **region**, P- well **region** and the N+ buried layer, respectively as the collector, the base and the emitter of said PNP transistor.

ADVANTAGE - High performance vertical PNP transistor with isolated collector. (12pp Dwg.No.8, 9A/9)+

Abstract (Equivalent): US 5155572 A

The vertical isolated-collector PNP transistor structure comprises a P+ **region** (45), a N **region** (44) and a P- well **region** (46) which form the emitter, the base and the collector, respectively. The P- well **region** is enclosed in a N type pocket comprised of a N+ buried layer (48) in contact with a N reach-through region (47). The contact regions (46-1, 47-1) to the P- well **region** (46) and to the N reach-through region (47) are shorted to define a common collector contact (59).

In addition, the thickness W of the P- well region (46) is minimised to allow transistor action of the parasitic NPN transistor formed by N PNP base region (44), P- well region (46) and the N+ buried layer, (48) respectively as the collector, the base and the emitter of said PNP transistor. The PNP transistor structure may be combined with a conventional NPN transistor structure.

USE - BiCMOS circuit output stage consisting of complementary bipolar transistors. Mfg. process compatible with NPN transistor mfr..

Dwg. 4/9

43/3, AB/8 (Item 7 from file: 350)

DIALOG(R) File 350:Derwent WPIX

(c) 2004 Thomson Derwent. All rts. reserv.

008455962

WPI Acc No: 1990-342962/199046

XRAM Acc No: C90-148658

XRPX Acc No: N90-262279

Bismuth-CMOS IC - includes PNP transistor in which collector is formed in epitaxial layer and base straddles collector and epitaxial region

Patent Assignee: NEC CORP (NIDE)

Inventor: OHKI M

Number of Countries: 005 Number of Patents: 005

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
EP 396948	A	19901114	EP 90107572	A	19900420	199046 B
JP 3048458	A	19910301	JP 90104969	A	19900420	199115
US 5045912	A	19910903	US 90513463	A	19900423	199138
EP 396948	B1	19971229	EP 90107572	A	19900420	199805
DE 69031846	E	19980205	DE 631846	A	19900420	199811
			EP 90107572	A	19900420	

Priority Applications (No Type Date): JP 89102427 A 19890421; JP 90104969 A 19900420

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

EP 396948 A 10

Designated States (Regional): DE FR GB

US 5045912 A 8

EP 396948 B1 E 8 H01L-027/06

Designated States (Regional): DE FR GB

DE 69031846 E H01L-027/06 Based on patent EP 396948

Abstract (Basic): EP 396948 A

In an IC having pnp and npn transistors and p and a channel MOSFETs on the same substrate, the pnp transistor comprises: a semiconductor layer formed on the substrate; a collector layer formed on the semiconductor layer; a base layer straddling the collector and semiconductor layers; and an emitter layer on the base layer. The substrate is pref. a p-Si substrate, the pnp transistor being formed on an n-epitaxial layer.

ADVANTAGE - A Bi-CMOS IC is provided capable of high speed operation and a large current drive. (10pp DWg.No.2f/2

Abstract (Equivalent): EP 396948 B

In an IC having pnp and npn transistors and p and

á"channel MOSFETs on the same substrate, the pnp transistor comprises: a semiconductor layer formed on the substrate; a collector layer formed on the semiconductor layer; a base layer straddling the collector and semiconductor layers; and an emitter layer on the base layer. The substrate is pref. a p-Si substrate, the pnp transistor being formed on an n-epitaxial layer.

ADVANTAGE - A Bi-CMOS IC is provided capable of high speed operation and a large current drive.

Dwg.2a/2f

Abstract (Equivalent): US 5045912 A

Integrated circuit comprises PNP transistor formed on semiconductor substrate, NPN transistor, N-channel FET on substrate, and p-channel FET on substrate. PNP transistor comprises (i) N-type base region including two portions, first formed on substrate, second selectively formed in first portion with higher impurity concentration; (ii) P-type collector region, having specific impurity concentration range, with side surface portion contacting side surface portion of second portion of base region to form PN junction; and (iii) P-type emitter region having side surface forming PN junction with second portion along with side surface or second portion, with part of second portion of base sandwiched between side surfaces of emitter and collector regions, to form active base through which current flows. USE - For BiCMOS integrated circuit which monolithically integrates vertical NPN bipolar transistor, PNP bipolar transistor, N-MOSFET and P-MOSFET.

(8pp

43/3,AB/9 (Item 1 from file: 347)
DIALOG(R)File 347:JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

03532035

MANUFACTURE OF VERTICAL PNP TRANSISTOR

PUB. NO.: 03-194935 [JP 3194935 A]
PUBLISHED: August 26, 1991 (19910826)
INVENTOR(s): HORIUCHI HITOSHI
SATOU MINAKO
APPLICANT(s): YOKOGAWA ELECTRIC CORP [000650] (A Japanese Company or Corporation), JP (Japan)
APPL. NO.: 01-334071 [JP 89334071]
FILED: December 22, 1989 (19891222)
JOURNAL: Section: E, Section Number 1135, Volume 15, Number 454, Pg. 64, November 19, 1991 (19911119)

ABSTRACT

PURPOSE: To form a vertical type PNP transistor in an IC without complicating a process, by applying a part of process forming an NPN transistor and an MOSFET in a BiCMOS process.

CONSTITUTION: In a BiCMOS process, a buried layer 2 of an NPN transistor and a vertical PNP transistor is simultaneously formed on a P-type substrate 1, and an epitaxial layer 3 of N-type low concentration is grown at the same time on the buried layer 2. Next, the P-well region of an N-channel MOSFET is formed, and at the same time, a P-well region 9 is formed in the epitaxial layer 3 of the vertical PNP transistor. N-type diffusion is performed in the P-well region 9, thereby forming an

intrinsic base region 10 of the vertical type PNP transistor. By P^(sup +) diffusion, the source and the drain of the P-channel MOSFET are formed, and at the same time, the emitter 11 of the vertical PNP transistor is formed in the intrinsic base region 10. A collector leading-out region 12 is formed in the P-well region 9.

43/3, AB/10 (Item 2 from file: 347)
DIALOG(R) File 347: JAPIO
(c) 2004 JPO & JAPIO. All rts. reserv.

02787144

BICMOS INTEGRATED CIRCUIT

PUB. NO.: 01-084744 [JP 1084744 A]
PUBLISHED: March 30, 1989 (19890330)
INVENTOR(s): HAMADA MITSUHIRO
APPLICANT(s): NEC CORP [000423] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 62-244516 [JP 87244516]
FILED: September 28, 1987 (19870928)
JOURNAL: Section: E, Section Number 788, Volume 13, Number 312, Pg. 98, July
17, 1989 (19890717)

ABSTRACT

PURPOSE: To obtain a BICMOS integrated circuit having a high integration, by forming a MOS transistor where a collector is connected into a collector region of a vertical bipolar transistor which is connected to a power source terminal, a drain is connected to a base of the said bipolar transistor, and a source is connected to the power source terminal respectively.

CONSTITUTION: This element comprises: an element formation region which is provided at the surface of a semiconductor substrate p_(sub 15) and is made up by an n-type semiconductor layer n_(sub 17) that is dielectrically isolated from surroundings; a vertical type npn transistor Q_(sub 1) consisting of the said n-type semiconductor layer n_(sub 17) and containing a collector region that is connected to a power source terminal Vcc; a p-type MOS transistor M_(sub 1) consisting of a p-type impurity added region that is formed selectively at the foregoing n-type semiconductor n_(sub 17) and containing a source region p_(sub 11) that is connected to the said power source Vcc as well as a drain region p_(sub 12) that is connected to a base region p_(sub 13) of the said vertical type pnp transistor Q_(sub 1). Thus, an integration degree is improved by installing a bipolar transistor which composes an off-buffer part of a BICMOS circuit as well as a p-type MOS transistor in the same element formation region.

46/3,AB/1 (Item 1 from file: 2)

DIALOG(R)File 2:INSPEC

(c) 2004 Institution of Electrical Engineers. All rts. reserv.

5628367 INSPEC Abstract Number: B9708-6260-197

Title: 7-mask self-aligned SiGe base bipolar transistors with f_{sub}T/ of 80 GHz

Author(s): Tashiro, T.; Hashimoto, T.; Sato, F.; Hayashi, Y.; Tatsumi, T.

Author Affiliation: VLSI Dev. Div., NEC Corp., Sagamihara, Japan

Journal: IEICE Transactions on Electronics vol.E80-C, no.5 p.707-13

Publisher: Inst. Electron. Inf. & Commun. Eng,

Publication Date: May 1997 Country of Publication: Japan

CODEN: IELEEEJ ISSN: 0916-8524

SICI: 0916-8524(199705)E80C:5L.707:MSAS;1-E

Material Identity Number: P712-97006

Language: English

Abstract: A 7-mask self-aligned SiGe base bipolar transistor has been newly developed. This transistor offers several advancements to a super self-aligned selectively grown SiGe base (SSSB) transistor which has a selectively grown SiGe-base layer formed by a cold-wall ultra-high vacuum (UHV) CVD system. The advancements are as follows: (1) BPSG-filled arbitrary-width trench isolation on SOI is formed by high-uniformity CMP with a hydro-chuck to reduce the number of isolation fabrication steps; (2) polysilicon-plug emitter and collector electrodes are made simultaneously using an in-situ phosphorus-doped polysilicon film to decrease the distance between emitter and collector electrodes and also to reduce the electrode fabrication steps; (3) an n^{sup} +/-buried collector layer is made by a high-energy phosphorus ion implantation technique to eliminate collector epitaxial growth; (4) the germanium profile in the neutral base region is optimized to increase the cut-off frequency (f_{sub}T/) value without increasing leakage current at the base-collector junction. In the developed transistor, a high performance of 80 GHz f_{sub}T/ and mask-steps reduction are simultaneously achieved.

Subfile: B

Copyright 1997, IEE

50/3,AB/1 (Item 1 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

7509031 INSPEC Abstract Number: B2003-02-2560J-032
Title: Optimization of a SiGe:C HBT in a BiCMOS technology for low power wireless applications
Author(s): John, J.P.; Chai, F.; Morgan, D.; Keller, T.; Kirchgessner, J.; Reuter, R.; Rueda, H.; Teplik, J.; White, J.; Wipf, S.; Zupac, D.
Author Affiliation: Semicond. Products Sector, Motorola Inc., Tempe, AZ, USA
Conference Title: Proceedings of the 2002 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.02CH37384) p.193-6
Publisher: IEEE, Piscataway, NJ, USA
Publication Date: 2002 Country of Publication: USA 241 pp.
ISBN: 0 7803 7561 0 Material Identity Number: XX-2002-02195
U.S. Copyright Clearance Center Code: 0-7803-7561-0/02/\$17.00
Conference Title: 2002 IEEE Bipolar/BICMOS Circuits and Technology Meeting
Conference Sponsor: IEEE Electron Devices Society; IEEE Solid-State Circuits Soc
Conference Date: 29 Sept.-1 Oct. 2002 Conference Location:
Minneapolis, MN, USA
Language: English
Abstract: The performance enhancement of a SiGe:C HBT for RF /IF applications is described for Motorola's 0.35 μ m and 0.18 μ m BiCMOS technologies. Cutoff frequencies ($f_{\text{sub}} T$) have been improved from 50 GHz to 78/84 GHz (0.35/0.18 μ m BiCMOS), with a reduction in minimum noise figure (NF) from 0.7 dB to 0.30 dB. Improvements occurred through the optimization of the intrinsic collector and base dopant profiles, extrinsic collector resistance, and device layout.
Subfile: B
Copyright 2003, IEE

50/3,AB/2 (Item 2 from file: 2)
DIALOG(R)File 2:INSPEC
(c) 2004 Institution of Electrical Engineers. All rts. reserv.

6490137 INSPEC Abstract Number: B2000-03-1350H-021
Title: A 0.15- μ m/73-GHz $f_{\text{sub}} \text{max}$ / RF BiCMOS technology using cobalt silicide ring extrinsic-base structure
Author(s): Suzuki, H.; Yoshida, H.; Kinoshita, Y.; Fujii, H.; Yamazaki, T.
Author Affiliation: ULSI Device Dev. Labs., NEC Corp., Kanagawa, Japan
Conference Title: 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325) p.149-50
Publisher: Japan Society Appl. Phys, Tokyo, Japan
Publication Date: 1999 Country of Publication: Japan xvi+174 pp.
ISBN: 4 930813 93 X Material Identity Number: XX-1999-02839
Conference Title: 1999 Symposium on VLSI Technology. Digest of Technical Papers
Conference Date: 14-16 June 1999 Conference Location: Kyoto, Japan
Language: English
Abstract: This paper presents an advanced RF mixed-signal BiCMOS technology. A single-polysilicon bipolar transistor with a high maximum frequency of oscillation ($f_{\text{sub}} \text{max}$) is successfully implemented into a 0.15 μ m dual gate CMOS process. To achieve such a bipolar transistor, a cobalt silicide (CoSi₂) ring-shaped extrinsic-base structure is newly developed. This bipolar transistor demonstrates 73 GHz

f/sub max/, minimum noise figure (NF/sub min/) of 1.1 dB and a cut-off frequency emitter-to-collector breakdown voltage (f/sub T/.BV/sub CEO/) product of 160 GHz.V, which is competitive with previously reported SiGe-based technology.

Subfile: B
Copyright 2000, IEE

50/3,AB/3 (Item 1 from file: 8)
DIALOG(R)File 8:Ei Compendex(R)
(c) 2004 Elsevier English Info. Inc. All rts. reserv.

05804887

E.I. No: EIP00025070136
Title: 0.15- mu m/73-GHz f//m//a//x RF BiCMOS technology using cobalt silicide ring extrinsic-base structure
Author: Suzuki, Hisamitsu; Yoshida, Hiroshi; Kinoshita, Yasushi; Fujii, Hiroki; Yamazaki, Tohru
Corporate Source: NEC Corp, Kanagawa, Jpn
Conference Title: Proceedings of the 1999 Symposium on VLSI Technology
Conference Location: Kyoto, Jpn Conference Date: 20990614-20990616
E.I. Conference Number: 56097
Source: Digest of Technical Papers - Symposium on VLSI Technology 1999.
IEEE, Piscataway, NJ, USA. p 149-150
Publication Year: 1999
CODEN: DTPTEW ISSN: 0743-1562
Language: English
Abstract: This paper presents an advanced RF mixed-signal BiCMOS technology. A single-polysilicon bipolar transistor with a high maximum frequency of oscillation (f//m//a//x) is successfully implemented into a 0.15 mu m dual gate CMOS process. To achieve such a bipolar transistor, a cobalt silicide (CoSi//2) ring-shaped extrinsic-base structure is newly developed. This bipolar transistor demonstrates 73 GHz f//m//a//x, minimum noise figure (NF//m//i//n) of 1.1 dB and a cut-off frequency emitter-to-collector break down voltage (f//T center dot BV//C//E//O) products of 160 GHz center dot V, which is competitive with the previously reported SiGe-based technology. (Author abstract) 5
Refs.

50/3,AB/4 (Item 1 from file: 35)
DIALOG(R)File 35:Dissertation Abs Online
(c) 2004 ProQuest Info&Learning. All rts. reserv.

01911983 AADAAIC809952
High frequency characterization and modeling of silicon germanium heterojunction bipolar transistors
Author: Malm, B. Gunnar
Degree: Ph.D.
Year: 2002
Corporate Source/Institution: Kungliga Tekniska Hogskolan (Sweden) (1022)
Source: VOLUME 63/04-C OF DISSERTATION ABSTRACTS INTERNATIONAL.
PAGE 845. 95 PAGES
Publisher: Royal Institute of Technology, S-100 44 Stockholm, Sweden

High-speed, low voltage Silicon-Germanium (SiGe) heterojunction bipolar transistors (HBTs) have been designed, fabricated, electrically characterized and modeled. The SiGe HBTs are suitable for use in radio frequency (RF) integrated circuit (IC)

applications and were fabricated using non-selective epitaxial growth. The design of the **extrinsic base region** has been investigated in detail. Transient enhanced diffusion of boron, caused by the **extrinsic base implantation**, was found to degrade DC and high-frequency electrical characteristics. It was also found that the low-frequency noise was affected by the base design. Furthermore, a hydrogen anneal was found to reduce the low-frequency noise in polysilicon emitter bipolar transistors. The high-frequency noise of **SiGe HBTs** was investigated experimentally as well as by device simulation. Noise parameter extraction methods based on direct admittance or Y-parameter measurement have been investigated in detail. Good agreement was found with conventional noise figure measurement. **SiGe HBTs** were fabricated to investigate the optimization of ion-implanted collector doping profiles. A novel concept was suggested where a low-energy (5–10 keV) antimony (Sb) implantation was combined with a standard selectively implanted collector (SIC) using phosphorous. Segregation of Sb was found to occur during the subsequent growth of the epitaxial **SiGe** base layer. The resulting broadening of the implanted Sb-profile degraded the DC-electrical characteristics of the device. The devices with an Sb-implantation exhibited a **cut-off frequency** of more than 60 GHz. A mixed-mode circuit and device simulation methodology was developed to investigate the RF harmonic distortion of **SiGe HBTs**. The influence on harmonic distortion of the Ge-profile as well as the collector doping profile was quantified. High-injection heterojunction barrier effects due to the presence of a valence band offset at the base-collector junction were found to significantly affect the harmonic distortion. Devices with a Ge-profile retrograded towards the collector exhibited significantly reduced harmonic distortion. Increasing the Ge-concentration at the base-emitter junction led to reduced harmonic distortion for low current operation. A non-uniform collector doping profile was shown to suppress the harmonic distortion and increase the breakdown voltage.