INTRODUCCIÓN A LA INVESTIGACIÓN OPERATIVA.

Problema de producción: metas y variables binarias.

Una empresa produce pelotas de beisbol y de baloncesto para las ligas profesionales Producir cada pelota de beisbol cuesta 11€y su precio de venta es de 17€, producir cada pelota de baloncesto cuesta 10,50€y su precio de venta es de 15€ Los materiales y el trabajo requerido para la producción de cada tipo de pelota y la disponibilidad semanal de materias primas y trabajo son:

	Beisbol	Baloncesto	Disponible
Cuero	5	4	6.000
Nailon	6	3	5.400
Otros tejidos	4	2	4.000
Trabajo	2,5 minutos	2 minutos	3.500 minutos
Tiempo de cosido	1 minuto	1 minuto	1.500 minutos

Además, la empresa tiene el compromiso con la liga de beisbol de satisfacer un pedido de 500 pelotas semanales.

El modelo de programación que se plantea resolver para determinar la producción que maximiza el beneficio es:

Max
$$z=6X_1+4,5X_2$$

Sujeto a:
 $5X_1+4X_2 \le 6.000$
 $6X_1+3X_2 \le 5.400$
 $4X_1+2X_2 \le 4.000$
 $2,5X_1+2X_2 \le 3.500$
 $X_1+X_2 \le 1.500$
 $X_1 \ge 500$
 $X_1,X_2 \ge 0$

- a. Replantead el modelo anterior como un modelo de programación con las siguientes metas:
 - I. El gerente de la empresa quiere conseguir un beneficio de al menos 7.000€
 - II. No subutilizar la capacidad productiva de la empresa: trabajo y tiempo de cosido.
 - III. Agotar la materia prima disponible.
 - IV. Satisfacer el pedido de 500 pelotas de béisbol semanales.

EL MODELO DE PROGRAMACIÓN POR METAS ES:

Min
$$z=1/7000d_1^-+1/3500d_2^-+1/1500d_3^-+1/6000d_4^-+1/5400d_5^-+1/4000d_6^++1/500 d_7^-$$

Sujeto a:
 $6X_1+4,5X_2+d_1^--d_1^+=7000$
 $2,5X_1+2X_2+d_2^--d_2^+=3500$
 $X_1+X_2+d_3^--d_3^+=1500$
 $5X_1+4X_2+d_4^-=6000$
 $6X_1+3X_2+d_5^-=5400$
 $4X_1+2X_2+d_6^-=4000$
 $X_1+d_7^--d_7^+=500$
 $d_i^+\times d_i^-=0, i=1,...7$
 $d_i^+,d_i^-\ge 0, i=1,...7$.
 $X_1,X_2\ge 0$

b. Resolved el modelo de programación por metas planteado en el apartado a. Utilizad SAS/OR. Interpretad la solución óptima.

obj	0	0	0.00014285	7 0	0.000142857	0	0.000285714	: 0	0.000666667	0.000185185	0.00025	0.002	0	MIN	
benefici	6	4.5	5 1	-1	0	0	0	0	0	0	0	0	0	EQ	7000
Trabajo	2.5	2	0	0	1	-1	0	0	0	0	0	0	0	EQ	3500
Cosido	1	1	0	0	0	0	1	-1	0	0	0	0	0	EQ	1500
Cuero	5	4	0	0	0	0	0	0	1	0	0	0	0	EQ	6000
Nailon	6	3	0	0	0	0	0	0	0	1	0	0	0	EQ	5400
otros	4	2	0	0	0	0	0	0	0	0	1	0	0	EQ	4000
Pedido	1	0	0	0	0	0	0	0	0	0	0	1	-1	EQ	500
;															

run;

proc lp data=pr.p2 maxit=500;
run;

Variable Summary

	Variable					Reduced
Col	Name	Status	Туре	Price	Activity	Cost
1	x1	BASIC	NON - NEG	0	400	0
2	x2	BASIC	NON-NEG	0	1000	0
3	d1me	BASIC	NON-NEG	0.0001429	100	0
4	d1ma		NON-NEG	0	0	0.0001429
5	d2me	BASIC	NON-NEG	0.0001429	500	0
6	d2ma		NON-NEG	0	0	0.0001429
7	d3me	BASIC	NON-NEG	0.0002857	100	0
8	d3ma		NON-NEG	0	0	0.0002857
9	d4me		NON-NEG	0.0006667	0	0.0003095
10	d5me		NON-NEG	0.0001852	0	0.0012328
11	d6me	BASIC	NON-NEG	0.00025	400	0
12	d7me	BASIC	NON-NEG	0.002	100	0
13	d7ma		NON-NEG	0	0	0.002

The LP Procedure

	Constraint		S/S			Dual
Row	Name	Туре	Col	Rhs	Activity	Activity
1	obj	OBJECTVE		0	0.4142856	
2	benefici	EQ		7000	7000	0.0001429
3	Trabajo	EQ		3500	3500	0.0001429
4	Cosido	EQ		1500	1500	0.0002857
5	Cuero	EQ		6000	6000	0.0003571

6	Nailon	EQ	5400	5400	-0.001048
7	otros	EQ	4000	4000	0.00025
8	Pedido	EQ	500	500	0.002

c. Plantead el modelo de programación lineal (PL) como un modelo de programación lineal entera (PLE) y resolverlo utilizando SAS/OR. Interpretad los resultados.

ELMODELO DE PROGRAMCIÓN LINEAL ENTERA ES:

Max
$$z=6X_1+4,5X_2$$

Sujeto a:
 $5X_1+4X_2 \le 6.000$
 $6X_1+3X_2 \le 5.400$
 $4X_1+2X_2 \le 4.000$
 $2,5X_1+2X_2 \le 3.500$
 $X_1+X_2 \le 1.500$
 $X_1 \ge 500$
 $X_1,X_2 \ge 0$
 $X_1,X_2 \in E$

```
data pr.p2;
 input _row_ $9. x1 x2 _type_ $ _rhs_;
      datalines;
               6
benefici
                         4.5
                               MAX
Cuero
               5
                               LE
                                       6000
Nailon
                               LE
                                       5400
Otros
                               LE
                                       4000
               2.5
Trabajo
                               LE
                                       3500
Cosido
                                       1500
                               _{
m LE}
Pedido
               1
                         0
                               GE
                                        500
          10000
                    10000
limsup
                               UPPERBD
enteras
                               INTEGER
run;
```

The LP Procedure

Variable Summary

	Variable					Reduced
Col	Name	Status	Туре	Price	Activity	Cost
1	x1	BASIC	INTEGER	6	500	0
-	x2	BASIC	INTEGER	4.5	800	0
_	X 2	DASIC	INTEGER	4.5	800	U
3	Cuero	BASIC	SLACK	0	300	0
4	Nailon		SLACK	0	0	-1.5
5	Otros	BASIC	SLACK	0	400	0
6	Trabajo	BASIC	SLACK	0	650	0
7	Cosido	BASIC	SLACK	0	200	0
8	Pedido		SURPLUS	0	0	-3

The LP Procedure

	Constraint		S/S			Dual
Row	Name	Туре	Col	Rhs	Activity	Activity
1	benefici	OBJECTVE		0	6600	
2	Cuero	LE	3	6000	5700	0
3	Nailon	LE	4	5400	5400	1.5
4	Otros	LE	5	4000	3600	0
5	Trabajo	LE	6	3500	2850	0
6	Cosido	LE	7	1500	1300	0
7	Pedido	GE	8	500	500	-3

d. Utilizando variables binarias, incorporar en el modelo de PLE del apartado c. la existencia de costes fijos de producción, que son igual a 50€y 100€ para las pelotas de beisbol y baloncesto, respectivamente. Resolved este modelo utilizando SAS/OR. Interpretad los resultados.

EL MODELO CON VARIABLES BINARIAS ES:

$$\begin{aligned} &\text{Max } z = 6X_1 + 4,5X_2 - 50Y_1 - 100Y_2 \\ &\text{Sujeto a:} \\ &5X_1 + 4X_2 \leq 6.000 \\ &6X_1 + 3X_2 \leq 5.400 \\ &4X_1 + 2X_2 \leq 4.000 \\ &2,5X_1 + 2X_2 \leq 3.500 \\ &X_1 + X_2 \leq 1.500 \\ &X_1 \geq 500 \\ &X_1 - 10000Y_1 \leq 0 \\ &X_2 - 10000Y_2 \leq 0 \\ &X_1, X_2 \geq 0 \\ &X_1, X_2 \in E \\ &Y_1, Y_2 \in \{0,1\} \end{aligned}$$

	ow_ \$9. x2	L x2 y1 y	/2 _type	_ \$ _rh	.s_;	
data	alines;					
benefici	6	4.5	-50	-100	MAX	
Cuero	5	4	0	0	LE	6000
Nailon	6	3	0	0	LE	5400
Otros	4	2	0	0	LE	4000
Trabajo	2.5	2	0	0	LE	3500
Cosido	1	1	0	0	LE	1500
Pedido	1	0	0	0	GE	500
CF1	1	0	-10000	0	LE	0
CF2	0	1	0	-10000	LE	0
limsup	10000	10000			UPPERBI	o .

1

INTEGER

BINARY

2

1

data pr.p2;

enteras

binarias

```
run;
```

proc lp data=pr.p2 imaxit=500;
run;

The LP Procedure

Variable Summary

	Variable					Reduced
Col	Name	Status	Туре	Price	Activity	Cost
1	x1	BASIC	INTEGER	6	500	0
2	x2	BASIC	INTEGER	4.5	800	0
3	y1		BINARY	-50	1	- 50
4	y2		BINARY	-100	1	- 100
5	Cuero	BASIC	SLACK	0	300	0
6	Nailon		SLACK	0	0	-1.5
7	Otros	BASIC	SLACK	0	400	0
8	Trabajo	BASIC	SLACK	0	650	0
9	Cosido	BASIC	SLACK	0	200	0
10	Pedido		SURPLUS	0	0	-3
11	CF1	BASIC	SLACK	0	9500	0
12	CF2	BASIC	SLACK	0	9200	0

The LP Procedure

	Constraint		S/S			Dual
Row	Name	Туре	Col	Rhs	Activity	Activity
1	benefici	OBJECTVE		0	6450	
2	Cuero	LE	5	6000	5700	0
3	Nailon	LE	6	5400	5400	1.5
4	Otros	LE	7	4000	3600	0
5	Trabajo	LE	8	3500	2850	0
6	Cosido	LE	9	1500	1300	0
7	Pedido	GE	10	500	500	-3
8	CF1	LE	11	0	-9500	0
9	CF2	LE	12	0	-9200	0

e. Utilizando variables binarias, incorporad en el modelo de PLE del apartado c. el hecho de que la empresa estaría dispuesta a ampliar la disponibilidad de una de las materias primas, es decir, que una de las restricciones de disponibilidad de materia prima puede no cumplirse. Resolved este modelo utilizando SAS/OR. Interpretad los resultados.

EL MODELO CON VARIABLES BINARIAS ES:

Max
$$z=6X_1+4,5X_2$$

Sujeto a:
 $5X_1+4X_2 \le 6.000+10000(1-Y_1)$
 $6X_1+3X_2 \le 5.400+10000(1-Y_2)$
 $4X_1+2X_2 \le 4.000+10000(1-Y_3)$
 $Y_1+Y_2+Y_3=2$
 $2,5X_1+2X_2 \le 3.500$
 $X_1+X_2 \le 1.500$
 $X_1 \ge 500$
 $X_1,X_2 \ge 0$
 $X_1,X_2 \in E$
 $Y_1,Y_2,Y_3 \in \{0,1\}$

```
data pr.p2;
 input _row_ $9. x1 x2 y1 y2 y3 _type_ $ _rhs_;
      datalines;
benefici
                6
                          4.5
                                                       MAX
                5
                              10000
                                         0
                                                       LE
                                                              16000
Cuero
Nailon
                                  0 10000
                                                       LE
                6
                                                              15400
Otros
                                         0
                                            10000
                                                       _{
m LE}
                                                              14000
                                         1
                                                       ΕQ
sum
               2.5
Trabajo
                                         0
                                                       LE
                                                               3500
                          1
                                         0
Cosido
                                                       _{
m LE}
                                                               1500
               1
                                         0
Pedido
                                                       GE
                                                                500
                     10000
limsup
           10000
                                                       UPPERBD
                                                       INTEGER
enteras
BINARIAS
                                                       BINARY
```

run;

The LP Procedure

Variable Summary

	Variable					Reduced
Col	Name	Status	Туре	Price	Activity	Cost
1	x1	BASIC	INTEGER	6	667	0
2	x2		INTEGER	4.5	666	1.5
3	y1		BINARY	0	1	15000
4	y2		BINARY	0	0	15000
5	у3	BASIC	BINARY	0	1	0
6	Cuero	BASIC	SLACK	0	1	0
7	Nailon	BASIC	SLACK	0	9400	0
8	Otros		SLACK	0	0	-1.5
9	Trabajo	BASIC	SLACK	0	500.5	0
10	Cosido	BASIC	SLACK	0	167	0
11	Pedido	BASIC	SURPLUS	0	167	0

The LP Procedure

	Constraint		S/S			Dual
Row	Name	Туре	Col	Rhs	Activity	Activity
1	benefici	OBJECTVE		0	6999	
			•	•		
2	Cuero	LE	6	16000	15999	0
3	Nailon	LE	7	15400	6000	0
4	Otros	LE	8	14000	14000	1.5
5	sum	EQ		2	2	- 15000
6	Trabajo	LE	9	3500	2999.5	0
7	Cosido	LE	10	1500	1333	0
8	Pedido	GE	11	500	667	0

f. A continuación se replantea el modelo de modo que se incorporan beneficios decrecientes a escala, es decir, que cuanto mayor es el número de unidades menor es el beneficio marginal unitario, de modo que el nuevo modelo de programación es el siguiente:

Max
$$z=6X_1+4,5X_2-0.01X_1^2-0.005X_2^2$$

Sujeto a: $5X_1+4X_2 \le 6.000$
 $6X_1+3X_2 \le 5.400$
 $4X_1+2X_2 \le 4.000$
 $2,5X_1+2X_2 \le 3.500$
 $X_1+X_2 \le 1.500$
 $X_1 \ge 500$
 $X_1,X_2 \ge 0$

Resolved el modelo sin y con el efecto cuadrático y comparad los resultados obtenidos.

```
libname pr '.';
data pr.p2;
 input _row_ $9. x1 x2 _type_ $ _rhs_;
      datalines;
               6
                         4.5
benefici
                               MAX
Cuero
                               _{
m LE}
                                       6000
Nailon
                               LE
                                      5400
Otros
                                      4000
                              LE
              2.5
Trabajo
                               LE
                                      3500
Cosido
                                      1500
                               _{
m LE}
Pedido
                               GE
                                       500
run;
proc lp data=pr.p2 imaxit=500;
run;
proc nlp tech=CONGRA OUTEST=sensi;
 max z;
 parms x1=0, x2=0;
```

```
bounds x1>=500, x2>=0;
lincon 5*x1+4*x2<=6000,
6*x1+3*x2<=5400,
4*x1+2*x2<=4000,
2.5*x1+2*x2<=3500,
x1+x2<=1500;
z=6*x1+4.5*x2-0.01*x1**2-0.005*x2**2;
run;

proc print data=sensi;
run;

The LP
Problem</pre>
```

The LP Procedure

Problem Summary

Objective Function Rhs Variable Type Variable Problem Density (%)	Max benefici _rhs_ _type_ 35.42
Variables	Number
Non-negative Slack Surplus	2 5 1
Total	8
Constraints	Number
LE GE Objective	5 1 1
Total	7

Solution Summary

Terminated Successfully

Objective Value			
Phase 1 Iterations	1		
Phase 2 Iterations	2		
Phase 3 Iterations	0		

Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	8
Time Used (seconds)	0
Number of Inversions	3
Epsilon	1E-8
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	500
Time Limit (seconds)	120

Variable Summary

	Variable					Reduced
Col	Name	Status	Туре	Price	Activity	Cost
1	x1	BASIC	NON-NEG	6	500	0
2	x2	BASIC	NON-NEG	4.5	800	0
3	Cuero	BASIC	SLACK	0	300	0
4	Nailon		SLACK	0	0	-1.5
5	Otros	BASIC	SLACK	0	400	0
6	Trabajo	BASIC	SLACK	0	650	0
7	Cosido	BASIC	SLACK	0	200	0
8	Pedido		SURPLUS	0	0	-3

The LP Procedure

	Constraint		S/S			Dual
Row	Name	Туре	Col	Rhs	Activity	Activity
1	benefici	OBJECTVE		0	6600	
2	Cuero	LE	3	6000	5700	0
3	Nailon	LE	4	5400	5400	1.5
4	Otros	LE	5	4000	3600	0
5	Trabajo	LE	6	3500	2850	0
6	Cosido	LE	7	1500	1300	0
7	Pedido	GE	8	500	500	-3

PROC NLP: Nonlinear Maximization

Gradient is computed using analytic formulas.

NOTE: Initial point was changed to be feasible for boundary and linear constraints.

The SAS System 20:25 Monday, May 16, 2016 14

PROC NLP: Nonlinear Maximization

Optimization Start Parameter Estimates

		Gradient	Lower	Upper
		Objective	Bound	Bound
N Parameter	Estimate	Function	Constraint	Constraint
1 x1	550.000000	-5.000000	500.000000	
2 x2	1.000000	4.490000	0	

Value of Objective Function = 279.495

Linear Constraints

1	3246	:	6000.0	>=	+	5.0000 * x1	+	4.0000 * x2
2	2097	:	5400.0	>=	+	6.0000 * x1	+	3.0000 * x2
3	1798	:	4000.0	>=	+	4.0000 * x1	+	2.0000 * x2
4	2123	:	3500.0	>=	+	2.5000 * x1	+	2.0000 * x2
5	949.00000	:	1500.0	>=	+	1.0000 * x1	+	1.0000 * x2

PROC NLP: Nonlinear Maximization

Conjugate-Gradient Optimization

Automatic Restart Update (Powell, 1977; Beale, 1972)

Parameter Estimates	2
Lower Bounds	2
Upper Bounds	(
Linear Constraints	Ę

Optimization Start

Active Constraints
Max Abs Gradient Element

Iter	Restarts	Function Calls	Active Constraints	Objective Function	Objective Function Change	Max Abs Gradient Element	Step Size	Slope of Search Direction
1	0	5	1	696.01595	416.5	4.0410	10.000	-45.160
2	1	8	1	1513	816.5	0		-16.330

Optimization Results

Iterations	2	Function Calls	9
Gradient Calls	9	Active Constraints	1
Objective Function	1512.5	Max Abs Gradient Element	0
Slone of Search Direction	-16 329681		

ABSGCONV convergence criterion satisfied.

PROC NLP: Nonlinear Maximization

Optimization Results
Parameter Estimates

		Gradient	Active
		Objective	Bound
N Parameter	Estimate	Function	Constraint
1 x1	500.000000	-4.000000	Lower BC
2 x2	450.000000	0	

Value of Objective Function = 1512.5

Linear Constraints Evaluated at Solution

1	1700	=	6000.0	-	5.0000	*	x1	-	4.0000 *	х2
2	1050	=	5400.0	-	6.0000	*	x1	-	3.0000 *	х2
3	1100	=	4000.0	-	4.0000	*	x1	-	2.0000 *	х2
4	1350	=	3500.0	-	2.5000	*	x1	-	2.0000 *	х2
5	550 00000	=	1500 0	_	1 0000	*	v1	_	1 0000 *	v2

0bs	_TECH_	_TYPE_	_NAME_	x1	x2	_RHS_	_ITER_
1	CONGRA	INITIAL		550.0	1.00	279.50	0
2	CONGRA	GRAD		-5.0	4.49		0
3	CONGRA	TERMINAT	ABSGTOL			3.00	
4	CONGRA	PARMS		500.0	450.00	1512.50	
5	CONGRA	GRAD		-4.0	0.00		
6	CONGRA	LOWERBD		500.0	0.00		
7	CONGRA	NACTBC		1.0	1.00		
8	CONGRA	ACTBC	GE	1.0	0.00		
9	CONGRA	NACTLC		0.0	0.00		
10	CONGRA	LE	LC	5.0	4.00	6000.00	
11	CONGRA	LE	LC	6.0	3.00	5400.00	
12	CONGRA	LE	LC	4.0	2.00	4000.00	
13	CONGRA	LE	LC	2.5	2.00	3500.00	
14	CONGRA	LE	LC	1.0	1.00	1500.00	
15	CONGRA	PROJGRAD		0.0			
16	CONGRA	LAGM BC	GE	-4.0			