Departamento de Matemáticas $1^{\underline{0}}$ Bachillerato

24 - Complejos

1. p045e01 - Calcula:

(a)
$$(7-2i)^2 + (3+4i)(5-2i)$$

Sol: 68 - 14i

(b)
$$(2+i)^2(3-2i) + (5-i)i^2$$

Sol: 12 + 7i

(c)
$$(\sqrt{3}-2i)^2+(2\sqrt{3}-5i)(1-2i)$$

Sol:
$$-11 + 2\sqrt{3} + i\left(-8\sqrt{3} - 5\right)$$

(d)
$$(i^7-1)(i^{16}+i^3-i^9)^5+(1-2i)^5(1+i)$$

Sol: 0

(e)
$$(1+i)^2 + \frac{1+i}{1-i}$$

Sol: 3*i*

2. p045e02 - Halla el valor de k, sabiendo que se cumple:

(a)
$$(k+5i) + (3+i) = (1+5i) + (-k+i)$$

Sol: [-1]

(b)
$$(1+3i)(k+2i) = 13+59i$$

Sol: $\{k:19\}$

(c)
$$k + \frac{4}{5}i = \frac{5+i}{3-i}$$

Sol: $\left[\frac{7}{5}\right]$

3. p045e03 - Calcula el inverso de los siguientes números complejos:

(a)
$$-1 + 2i$$

Sol: $-\frac{1}{5} - \frac{2i}{5}$

(b)
$$3 - \sqrt{2}i$$

Sol: $\frac{3}{11} + \frac{\sqrt{2}i}{11}$

(c)
$$\frac{1}{3} - \frac{1}{2}i$$

Sol: $\frac{12}{13} + \frac{18i}{13}$

4. p045e04y14 - Calcular el valor de k para que la siguiente expresión sea a) real y b) imaginario:

(a)
$$\frac{k-2i}{3+4i}$$

Sol:
$$\frac{3k}{25} - \frac{4ik}{25} - \frac{8}{25} - \frac{6i}{25} \rightarrow \left[-\frac{3}{2} \right] \wedge \left[\frac{8}{3} \right]$$

(b)
$$k-2+(\frac{1}{4}+k)i$$

Sol:
$$k + ik - 2 + \frac{i}{4} \to \left[-\frac{1}{4} \right] \wedge [2]$$

5. p045e05 - Determina el valor que debe tener k para que la siguiente expresión sea un número real.

(a)
$$(k-i)^3$$

Sol:
$$k^3 - 3ik^2 - 3k + i \to \left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right]$$

(b)
$$(k-i)^3$$

Sol:
$$k^3 - 3ik^2 - 3k + i \to \left[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right]$$

6. p045e06y7 - Dados los siguientes números complejos, indica sus afijos:

(a)
$$1+i$$

Sol: (1, 1)

Sol: (1, -1)

(b) (1+i)i

Sol: (-1, 1)

Sol: (0, 1)

(e) i

(c) $(1+i)i \cdot i$

Sol: (-1, -1)

 $(f) \quad \frac{1}{2}(-1+\sqrt{3}i)\cdot i$

Sol: $(-0.5\sqrt{3}, -0.5)$

(d) $(1+i)i \cdot i \cdot i$

(g) $\frac{1}{2}(-1+\sqrt{3}i)\cdot\frac{1}{2}(-1+\sqrt{3}i)\cdot i$

Sol: $(0.5\sqrt{3}, -0.5)$

7. p
045e11 - Dado el siguiente número z, calcula el valor de
 $z\cdot \overline{z}$

(a) $\sqrt{3} - 2i$

Sol: 7

Sol: $-\frac{i}{2}$

- (b) 4-2i
- 8. p045e17 Calcula

(a) (5-i)(3+2i)

Sol: 17 + 7i

Sol: 5

(b) $(2 + \frac{1}{3}i)(-5 - i)$

Sol: $-\frac{29}{3} - \frac{11i}{3}$

(d) $(3 - \frac{1}{4}i)(2 - i)(3 + 2i)$

Sol: $\frac{97}{4} + i$

(c) (2-i)(2+i)

(e) $\frac{2-i}{1+3i}$

Sol: $-\frac{1}{10} - \frac{7i}{10}$

 $(f) \quad \frac{\sqrt{2}-3}{2+i}$

Sol: $-\frac{3}{5} + \frac{2\sqrt{2}}{5} - \frac{6i}{5} - \frac{\sqrt{2}i}{5}$

 $(g) \quad \frac{1}{3-i}$

Sol: $\frac{3}{10} + \frac{i}{10}$

 $(h) \quad \frac{3i}{2-4i}$

Sol: $-\frac{3}{5} + \frac{3i}{10}$

(i) $\frac{5-i}{i}$

Sol: -1 - 5i

(j) $\frac{1+2i}{3+3i}$

Sol: $\frac{1}{2} + \frac{i}{6}$

(k) $(\sqrt{2} - i) \frac{\sqrt{2} + i}{1 - 2i}$

Sol: $\frac{3}{5} + \frac{6i}{5}$

(1) $(2\sqrt{3}-i)\frac{\sqrt{3}i}{1+i}$

Sol: $\frac{\sqrt{3}}{2} + 3 - \frac{\sqrt{3}i}{2} + 3i$

 $(m) \quad \frac{1-i}{3+2i} \frac{2i}{1+i}$

Sol: $\frac{6}{13} - \frac{4i}{13}$

 $\begin{pmatrix} \mathbf{n} \end{pmatrix} \quad \frac{\sqrt{2}}{-2-i} \frac{1}{2+3i}$

Sol: $-\frac{\sqrt{2}}{65} + \frac{8\sqrt{2}i}{65}$

9. p
046e31y 32 - Calcular el módulo y el argumento (en radianes) de los siguientes números complejos:

(a) $2 - 2\sqrt{3}i$

Sol: $4_{-\frac{\pi}{3}}$

(b) -1 - i

Sol: $\sqrt{2}_{-\frac{3\pi}{4}}$

(c) $\sqrt{3} + i$

Sol: $2\frac{\pi}{6}$

(d) $2\sqrt{3} + 2i$

Sol: $4\frac{\pi}{6}$

(e) 2 - 2i

Sol: $2\sqrt{2}_{-\frac{\pi}{4}}$

(f) -5 - 5i

Sol: $5\sqrt{2}_{-\frac{3\pi}{4}}$

(g) 5i

Sol: $5\frac{\pi}{2}$

(h) 4

Sol: 4₀

(i) 1+i

Sol: $\sqrt{2}\frac{\pi}{4}$

(j) -9i

Sol: $9_{-\frac{\pi}{2}}$

(k) -3 + 3i

Sol: $3\sqrt{2}_{\frac{3\pi}{4}}$

(l) $\sqrt{3} + i$

Sol: $2\frac{\pi}{6}$

10. p046e34 - Escribe en forma binómica los siguientes números complejos:

(a) $2\frac{\pi}{4}$

Sol: $\sqrt{2} + \sqrt{2}i$

(e) $1_{\frac{\pi}{2}}$

Sol: i

(b) $3\frac{\pi}{6}$

Sol: $\frac{3\sqrt{3}}{2} + \frac{3i}{2}$

(f) $5_{\frac{3\pi}{2}}$

Sol: -5i

(c) $\sqrt{2}_{\pi}$

Sol: $-\sqrt{2}$

(g) $1_{\frac{5}{6}}$

Sol: $-\frac{\sqrt{3}}{2} + \frac{i}{2}$

(d) 17_0

Sol: 17

(h) $4_{\frac{2\pi}{3}}$

Sol: $-2 + 2\sqrt{3}i$

11. p047e40 - Determina el valor que han de tener a y k para que sean iguales los siguientes números:

(a) $\frac{a+2i}{3+k\cdot i} y\sqrt{2} \frac{7\pi}{4}$

Sol: $[\{a:8, k:5\}]$

12. p047e41 - Hallar la ecuación de segundo grado cuyas raíces sean los números complejos:

(a) $2\frac{\pi}{3} \ y \ 2\frac{5\pi}{3}$

Sol: $x^2 - 2x + 4 = 0$

 $13.\,$ p
047e51 - Calcula dos números complejos conjugados cuya suma y la suma de su
s módulos sea respectivamente

(a) 8 y 10

Sol: $4 - 3i \wedge 4 + 3i$