DVA400 - Assignment

Mathias Strand*, Luca Grossetti[†]
School of Innovation, Design and Engineering, M.Sc.Eng Robotics
Mälardalens University, Västerås, Sweden
Email: *msd16007@student.mdh.se,
School of industrial and information engineering, M.Sc. Mathematical Eng
Politecnico di Milano, Milan, Italy
Email: †lgi21001@student.mdh.se

I. README

The assignment is divided into these 6 files. The "Assignment" files are standalone and no config file is needed to execute any of the scripts.

- Assignment 1
 - poly_trajD4.m
 - $Assignment1_1.m$
 - $Assignment1_2.slx$
- Assigment 2
 - poly_trajD5.m
 - $Assignent2_12.m$
 - $Assignent2_3.slx$

A. Matlab

The polynomial trajectory generation functions $poly_trajD4$, $poly_trajD5$ creates and returns a polynomial of degree 4 and 5 respectively. The example execution of the degree 4 polynomial is located in $Assingment1_1$. $Assingment2_12$ for the degree 5 polynomial.

B. Simulink

In $Assignment1_2$ the example run of the degree 4 polynomial is provided. $Assignment2_3$ has the execution of the doubly normalized degree 5 polynomial.