

Using Machine Learning models to predict air pollution around Eiffel Tower

Adina Bondoc, Jezuela Gega

Supervised by Tom Dupuis

Table of contents

Objective

The aim of this project is to model the **pollutant concentrations** in time using ML models around Eiffel tower.

Problem

Air pollution is the most considerable environmental health risk in all of Europe (European Environment Agency (EEA), 2022).

To tackle pollution, European Union (EU) came up with the approach in 2008 to measure the air quality in areas where people are affected adversely. [1]

Long-term exposure to high levels of **nitrogen dioxide can cause chronic lung disease**. It may also affect the senses, for example, by reducing a person's ability to smell an odour. [2]

^[1] A. Samad, A. (2023, July 28). Air pollution prediction using machine learning techniques – an approach to replace existing monitoring stations with Virtual Monitoring Stations. Atmospheric Environment. https://www.sciencedirect.com/science/article/pii/S1352231023004132#bib14

Problem

Air quality guidelines

The Environmental Protection (Air) Policy 2019 (EPP Air) objectives for nitrogen dioxide are:

- 0.12 parts per million (ppm) for a 1-hour exposure period
- 0.03ppm for an annual exposure period.

The National Environment Protection (Ambient Air Quality) Measure standards for nitrogen dioxide are:

- 0.08ppm for a 1-hour exposure period
- 0.015ppm for an annual exposure period.

[3]

DateTime	NO2	NO	NOX
2022-01-01 00:00:00+00:00	13.3	2.3	16.8
2022-01-01 01:00:00+00:00	10.1	0.9	11.5
2022-01-01 02:00:00+00:00	7.5	0.3	8
2022-01-01 03:00:00+00:00	6.1	0.2	6.4
2022-01-01 04:00:00+00:00	5.9	0.2	6.2

It was shown that **wind** speed and the height of the lowest air layer are the most important factors that determine how much pollutants can accumulate locally.

(Traffic density, wind and air stratification influence concentrations of air pollutant NO2: https://www.sciencedaily.com/releases/2020/06/200626114750.htm)

DateTime	NO2	Temp	Wind
2022-01-01 00:00:00+00:00	13.3	22	16.8
2022-01-01 01:00:00+00:00	10.1	21	11.5
2022-01-01 02:00:00+00:00	7.5	20	8
2022-01-01 03:00:00+00:00	6.1	22	6.4
2022-01-01 04:00:00+00:00	5.9	18	6.2

PreProcessing

Handling Missing Values:

Linear imputation + backfill

Data Normalization:

Normalizes values in 0-1 scale

Seasonal Adjustment

Creation of binary variables related to dates (month, holidays, day, weekdays, etc.)

Train-test Split

Training: July 2021 - June 2023

Validation: July 2023 - December 2023

Test: January 2024

Our Models

1

Dronhat

RNN

Recurrent Neural Networks

- Sequential data
- Maintains a hidden state/internal memory

ARIMA

Statistical method used for time series models

- AutoRegressive: past values
- Integrated: differencing for stationarity
- Moving Average: trends & patterns

Prophet

Developed by Facebook for time series based on an additive model

- Fast & Easy
- Best for strong seasonality
- Robust for outliers and missing data
- Holiday effects

Vanilla

- Short term dependencies
- Vanishing gradient problem
- Difficult for long term

LSTM

Long short-term memory networks

- Extends memory of RNNs
- Can read, write and delete information

Architectures

ARIMA

$$y_{t}\overset{(d)}{\uparrow} = c + \varepsilon_{t} + \phi_{1}y_{t-1}^{(d)} + \phi_{2}y_{t-2}^{(d)} + \dots + \phi_{p}y_{t-p}^{(d)} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{p}\varepsilon_{t-q}$$
Integrated Auto-Regressive Moving Average

Prophet

$$y(t) = trend(t) + seasonality(t) + holidays(t) + error(t)$$

Architectures: Vanilla RNN

Dropout after every layer

Dropout after first layer

Batch Normalization after first layer

Architectures: LSTM

Results: ARIMA (11, 0, 0)

Results: Prophet

Lookback

[1, 12, 24, 72, 168]

Features

Univariate, Multivariate: Wind & Temp

Best Model:

Lookback = 24 Train RMSE = 5.5176 Val RMSE = 5.7788

Results: Prophet

Lookback

[1, 12, 24, 72, 168]

Features

Univariate, Multivariate: Wind & Temp

Best Model:

Lookback = 24 Train RMSE = 5.3834 Val RMSE = 5.6699

Results: Prophet Best

Results: Prophet Best

Results: RNN Univariate

1 layer, no dropout, 1 hour lookback Epoch 200 train RMSE 6.3298, val RMSE 6.5984

train loss RMSE 0.0515, val loss RMSE 0.0537

→ Use only 10 epochs for training


```
iter_lookback = 1
iter_model_type = 'dropout'
iter_num_layers = [1, 5, 10, 50]
iter_hidden_nodes = [50, 100]
iter_batch_size = [8, 128]
iter_lr = [0.01, 0.0001]
iter_dropout_prob = [0, 0.2, 0.4, 0.6, 0.8]
```



```
iter_lookback = [12, 24, 72, 168]
iter_model_type = ['dropout', 'dropout-once']
iter_num_layers = [1, 5]
iter_hidden_nodes = [100]
iter_batch_size = [128]
iter_lr = [0.0001]
iter_dropout_prob = [0, 0.2, 0.4, 0.6]
```


24

Results: RNN Multivariate

RMSE on Test Set: 6.3708

Results: RNN Best Model Rerun

```
'lookback': 168,
                                                                                                 Test RMSE
'model type': 'dropout-once',
                                                   Train RMSE = 7.6005
                                                                                              6.5
'num layers': 1,
                                                   Test RMSE = 7.2446
'hidden nodes': 100,
                                                    Train Loss = 0.0513
'batch size': 128,
                                                    Test Loss = 0.0489
                                                                                              5.0
'lr': 0.0001,
                                                                                              4.5
'dropout prob': 0.0
                                                      Predicted vs Actual Values Over Time
                                                                                                                        Test Actual
    80
                                                                                                                        Predicted
    60
  values
40
    20
                                 2024-01-05
                                             2024-01-07
                                                         2024-01-09
                                                                                                          2024-01-17
        2024-01-01
                    2024-01-03
                                                                      2024-01-11
                                                                                  2024-01-13
                                                                                              2024-01-15
                                                                                                                       2024-01-19
```

Time

Results: LSTM - Univariate

Tuning LSTM: batch_sizes = [8, 16, 32] learning_rates = [0.001, 0.01, 0.1]

Results: LSTM - Univariate

Best parameters:

Batch Size 32

Learning Rate 0.001000 Validation Loss 0.053087

Results: LSTM - Multivariate

Tuning LSTM:

```
num_layers_options = [1, 2, 3]
hidden_units_options = [8,32, 64]
learning_rate_options = [0.001, 0.01, 0.1]
batch_size_options = [8, 16, 32]
```


Results: LSTM - Multivariate

With dropout - 10 epochs

Input_size=55
hidden_size=50
num_layers=1

Final: Train RMSE 0.0449, Validation RMSE 0.0496

Results: LSTM - Multivariate

No dropout - 10 epochs

input_size=55
hidden_size=50
num_layers=1

Final: Train RMSE 0.0437, Validation RMSE 0.0472

Results: Comparison of Best Models

	Train RMSE	Test RMSE
Prophet	5.5604	4.3148
RNN	7.6005	7.2446
LSTM	17.9568	20.7277

Limitations

- GPU possible for around 1 hour for free in Colab
- Limited number of combinations for hyperparameter tuning
- Limited number of epochs 10 epochs were used
- Data 2020 disruption of the trend

Conclusions

- Deep learning requires a lot of hyperparameter tuning to get good results
- Lookback most effective in improving the model performance
- Look into: feature selection for better multivariable models
- Prophet optimized for time series modelling
- LTSM overfits with small amount of data even if the hyperparameters a properly tuned

