Aalto University School of Science Master's Programme in Life Science Technologies

Bent Ivan Oliver Harnist

Probabilistic Precipitation Nowcasting using Bayesian Convolutional Neural Networks

Master's Thesis Espoo, July 20th, 2022

DRAFT! — May 24, 2022 — DRAFT!

Supervisor: Professor Arno Solin Advisor: Terhi Mäkinen D.Sc.

Seppo Pulkkinen D.Sc.

Aalto University School of Science Master's Programme in Life Science Technologies

ABSTRACT OF MASTER'S THESIS

Author:	Bent Ivan Oliver Harnist			
Title:				
	Probabilistic Precipitation Nowcasting using Bayesian Convolutional Neural Net-			
works				
Date:	July 20th, 2022	Pages:	18	
Major:	Complex Systems	Code:	SCI3060	
Supervisor:	Professor Arno Solin			
Advisor:	Terhi Mäkinen D.Sc.			
	Seppo Pulkkinen D.Sc.			
!Fixme This is an example how to use fixme: add your abstract here.				
FIXME!				
Keywords:	Precipitation nowcasting,			
Language:	English			

Aalto-yliopisto

Perustieteiden korkeakoulu

DIPLOMITYÖN TIIVISTELMÄ

Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

Tekijä:	Bent Ivan Oliver Harnist			
Työn nimi: Probabilistinen Sateen Nowcasting käyttäen Bayesilaisia Konvolutiivisia Neuroverkkoja				
Päiväys:	20. heinäkuuta 2022	Sivumäärä:	18	
Pääaine:	Complex Systems	Koodi:	SCI3060	
Valvoja:	Professori Arno Solin			
Ohjaaja:	Terhi Mäkinen D.Sc.			
	Seppo Pulkkinen D.Sc.			
joku				
Asiasanat:	Sateen ennustaminen,			
Kieli:	Englanti			

Acknowledgements

 $! \\ FIXME \ \mathbf{My} \ \mathbf{acknowledgements} \ FIXME!$

Espoo, July 20th, 2022

Bent Ivan Oliver Harnist

Abbreviations and Acronyms

DL Deep learning

NWP Numerical Weather Prediction BNN Bayesian Neural Network

Contents

\mathbf{A}	bbre	viation	ns and Acronyms	5
1	Intr	oduct	ion	8
	1.1	Proble	em statement	8
	1.2		ture of the Thesis	9
2	Bac	kgrou	nd	10
	2.1	Precip	pitation Nowcasting	11
		2.1.1	Weather radars and radar products	11
		2.1.2	Overview of weather forecast methods	11
		2.1.3	Precipitation nowcasting: classical methods	11
		2.1.4	Machine learning approaches to precipitation nowcasting	11
	2.2	Bayes	ian deep learning	11
		2.2.1	Learning probability distributions	11
		2.2.2	Intractable integrals and ways to deal with them	11
			2.2.2.1 MCMC based methods	11
			2.2.2.2 Variational inference	11
			2.2.2.3 Monte-Carlo dropout	11
		2.2.3	Applications of bayesian deep learning	11
		2.2.4	Predictive uncertainty estimation	11
			2.2.4.1 Epistemic and aleatoric uncertainty	11
	2.3	Proba	bilistic machine learning in atmospheric sciences	11
3	Ma	terials	and Methods	12
	3.1	Datas	ets and data selection	12
	3.2	Model		12
		3.2.1	The baseline: RainNet	12
		3.2.2	Our model: a bayesian extension to RainNet	12
	3.3	verific	eation methods	12
		3.3.1	Baseline models for verification	12
			3.3.1.1 Deterministic predictions	12

		3.3.1.2 Probabilistic predictions	12
		3.3.2 Prediction skill evaluation metrics	12
		3.3.2.1 Deterministic evaluation metrics	12
		3.3.2.2 Probabilistic evaluation metrics	12
		3.3.3 Evaluation of nowcast predictive uncertainty	12
	3.4	Experiments	12
4	Res	ults	13
	4.1	Case studies for nowcasts	13
		4.1.1 Case study 1 : Large-scale Stratiform rain event	13
		4.1.2 Case study 2 : Rapidly evolving convective rain event .	13
	4.2	Deterministic prediction skill (Metrics)	13
	4.3	Probabilistic prediction skill (Metrics)	13
	4.4	Uncertainty estimation	13
		4.4.1 Uncertainties against leadtime	13
		4.4.2 Uncertainties against rainfall intensity	13
		4.4.3 Epistemic uncertainty against training parameters	13
5	Disc	cussion	14
	5.1	Goodness of results	14
	5.2	Validity of results	14
	5.3	What could we learn from uncertainty	14
	5.4	What would have to be improved, potential problems in the study?	14
	5.5	Directions for further work	$\frac{14}{14}$
	J.J	Directions for further work	14
6	Con	clusions	15
\mathbf{A}	Firs	t appendix	17

Introduction

- Nowcasting precipitation is a societally important problem
- Disaster damage control, flash flood prevention, etc
- Predicting accurate short-term (0-6h) (nowcasts) weather forecasts is not feasible with NWP
- This is due to: Numerical stability not reached yet at time-scales such short. + computationally expensive
- Dedicated nowcasting systems / algorithms to the rescue
- Extrapolation / cell tracking based algorithms are traditional : fairly good results, but become worse quickly, in well less than an hour
- Recently, DL based precipitation nowcasting approaches have shown promising results delving into short-comings of traditional methods.

1.1 Problem statement

- accurate uncertainty quantification / probabilistic forecasts are necessary in order to quantify risk for real life-decision-making in meteorological crisis
- Current models: STEPS, LINDA have limited usefulness and are computationally expensive
- Also: No insight into the nature and validity of uncertainty
- Bayesian neural networks (BNN) provide a framework for forecast uncertainty estimation

- They have been proposed for use in problems where uncertainty quantification is primordial, such as autonomous vehicles and other risk-aware use cases, making them ideal candidates to tackle the current problem.
- In this work, we will approach the problem of making useful probabilistic precipitation nwocast by building an uncertainty-aware nowcasting deep neural network, turning a convolutional neural network into a BNN with stochastic variational inference.

1.2 Structure of the Thesis

The present work is organized as follows. Section two (II) contains background and a literature review on precipitation nowcasting and bayesian deep learning, aiming to familiarize the reader with essential concepts regarding the subject. Section three (III) describes the experimental details of the work performed, including the datasets used for training and verification, the models implemented, as well as verification methods and baselines.

- results
- discussion
- conclusions

Background

2.1	Precipitation	Nowcasting

- 2.1.1 Weather radars and radar products
- 2.1.2 Overview of weather forecast methods
- 2.1.3 Precipitation nowcasting: classical methods
- 2.1.4 Machine learning approaches to precipitation nowcasting

2.2 Bayesian deep learning

- 2.2.1 Learning probability distributions
- 2.2.2 Intractable integrals and ways to deal with them
- 2.2.2.1 MCMC based methods
- 2.2.2.2 Variational inference
- 2.2.2.3 Monte-Carlo dropout
- 2.2.3 Applications of bayesian deep learning
- 2.2.4 Predictive uncertainty estimation
- 2.2.4.1 Epistemic and aleatoric uncertainty

2.3 Probabilistic machine learning in atmospheric sciences

Materials and Methods

3.1	Datasets	and	data	selection
O.T	Datasets	anu	uata	2616611011

- 3.2 Model
- 3.2.1 The baseline: RainNet
- 3.2.2 Our model: a bayesian extension to RainNet
- 3.3 verification methods
- 3.3.1 Baseline models for verification
- 3.3.1.1 Deterministic predictions
- 3.3.1.2 Probabilistic predictions
- 3.3.2 Prediction skill evaluation metrics
- 3.3.2.1 Deterministic evaluation metrics
- 3.3.2.2 Probabilistic evaluation metrics
- 3.3.3 Evaluation of nowcast predictive uncertainty
- 3.4 Experiments

Results

- 4.1 Case studies for nowcasts
- 4.1.1 Case study 1 : Large-scale Stratiform rain event
- 4.1.2 Case study 2 : Rapidly evolving convective rain event
- 4.2 Deterministic prediction skill (Metrics)
- 4.3 Probabilistic prediction skill (Metrics)
- 4.4 Uncertainty estimation
- 4.4.1 Uncertainties against leadtime
- 4.4.2 Uncertainties against rainfall intensity
- 4.4.3 Epistemic uncertainty against training parameters

Discussion

- 5.1 Goodness of results
- 5.2 Validity of results
- 5.3 What could we learn from uncertainty
- 5.4 What would have to be improved, potential problems in the study?
- 5.5 Directions for further work

Conclusions

Bibliography

Appendix A

First appendix

This is the first appendix. You could put some test images or verbose data in an appendix, if there is too much data to fit in the actual text nicely. For now, the Aalto logo variants are shown in Figure A.1.

(a) In English

(b) Suomeksi

(c) På svenska

Figure A.1: Aalto logo variants