GUIA da Unidade Curricular

FÍSICA COMPUTACIONAL

Ano Letivo 2019/2020

Conteúdo

1.	Informações Gerais	2
	1.1 Docentes.	
	1.2 Horas de Contacto	2
	1.3 Regimes de Faltas	
2.	Conteúdos	2
	2.1 Programa	2
	2.2 Trabalhos Práticos.	3
3.	Avaliação	4
	3.1 Avaliação da componente teórica	
	3.2 Avaliação da componente prática	
	3.2.1 Formato dos testes práticos.	
	3.2.2 Melhoria de nota prática positiva obtida num ano lectivo anterior	7
	3.2.3 Época de recurso	
4.	Calendário das aulas práticas	8
	Bibliografia	

1. Informações Gerais

1.1 Docentes

Alexandre Pombo	pomboalexandremira@ua.pt	PL9
Ana Maria Rocha	amrocha@ua.pt	PL7
Gábor Timar	gtimar@ua.pt	PL4
João Amaral	jamaral@ua.pt	PL6
Manuel Barroso	scpip@ua.pt	PL1
Rui Américo Costa	americo.costa@ua.pt	PL8
Sooyeon Yoon	syoon@ua.pt	PL5
Sofia Latas	sofia.latas@ua.pt	T1, T2
		PL2, PL3

Coordenadora: Sofia Latas

1.2 Horas de contacto

Em cada semana, haverá uma aula teórica (T), com a duração de uma hora e de natureza expositiva.

Cada estudante frequentará ainda uma aula prática laboratorial (PL), de 3 horas. Os trabalhos práticos são realizados individualmente.

1.3 Regime de faltas

- Não haverá marcação de faltas nas aulas teóricas.
- Os estudantes têm que assistir a pelo menos 80% das aulas práticas, sob pena de reprovarem automaticamente à Unidade Curricular (UC), ficando impedidos de se apresentarem a qualquer prova das diferentes épocas de exames (incluindo a época especial, em Setembro).
- O ponto anterior não se aplica a trabalhadores estudantes ea estudantes que tenham uma nota prática positiva obtida anteriormente.

2. Conteúdos

2.1 Programa

- Métodos numéricos para problemas de valor inicial descritos por equações diferenciais ordinárias (ODE): método de Euler, métodos implícitos e semi-implícitos e métodos de Runge–Kutta.
- Problemas de condição fronteira em ODE: diferenças finitas e método de shooting.
- Métodos numéricos baseados em diferenças finitas para equações diferenciais às derivadas parciais (PDE). Aplicação a PDE elípticas e parabólicas.
- Transformadas de Fourier discretas e métodos espetrais.
- Equação de Schrödinger independente do tempo: determinação numérica de valores e vetores próprios de estados quânticos ligados.
- Métodos de Monte Carlo.

2.2 Trabalhos práticos

• Trabalho 1

Método de Euler. Movimento de corpos a 1, 2 e 3 dimensões.

Trabalho 2

Métodos implícitos e semi-implícitos para ODE.

Oscilador harmónico simples e oscilador não harmónico. Órbita de Mercúrio.

Trabalho 3

Métodos de Runge-Kutta.

Aplicação de métodos de Runge-Kutta de 2ª e 4ª ordens e de passo adaptativo.

Trabalho 4

Aplicação de Métodos de Runge-Kutta a problemas de dinâmica não linear.

Trabalho 5

Problemas de valores fronteira. Métodos de shooting e de diferenças finitas.

Trabalho 6

Condução de calor (PDE parabólica). Método explícito e método de Crank-Nicolson.

Trabalho 7

Transformada de Fourier discreta e sua aplicação na resolução de equações diferenciais.

Trabalho 8

Equação de Laplace (PDE elíptica). Métodos iterativos.

• Trabalho 9

Método de Numerov. Estados quânticos ligados.

• Trabalho 10

Métodos de Monte Carlo. Cálculo de integrais. Modelo de Ising.

3. Avaliação

Para efeitos de avaliação, a UC é dividida em duas componentes, teórica e prática.

A nota final (NF) da UC é calculada através da seguinte fórmula:

 $NF = 0.7 \times (\text{Nota da componente prática}) + 0.3 \times (\text{Nota da componente teórica}),$

e arredondada ao valor inteiro mais próximo.

- As notas das duas componentes são atribuídas de forma independente.
- A nota da componente prática é arredondada às unidades.
- A nota da componente teórica é arredondada às décimas.
- Notas positivas de qualquer uma das componentes transitam de anos letivos anteriores.
- Os alunos que que tenham uma nota **inferior a 7,0** em qualquer uma das componentes serão **reprovados por nota mínima**, mesmo que o valor arredondado de NF seja igual ou superiora 10 valores.
- Não serão exigidas provas suplementares de defesa de nota para alunos aprovados com notas iguais ou superiores a 16 valores.
- As notas de ambas as componentes podem ser melhoradas independentemente na época de recurso.
- Em todas as situações em dúvida, aplica-se o Regulamento de Estudos da Universidade de Aveiro (UA).

3.1 Avaliação da componente teórica

A avaliação da componente teórica pode ser *discreta* ou por *exame final*. Cada estudante só pode ser avaliado por um dos regimes. No início do semestre, assume-se que todos os estudantes serão sujeitos à avaliação discreta. Passarão ao regime de exame final os estudantes que,

- manifestem a sua intenção de o fazer durante um período a designar;
- não compareçam ao primeiro momento presencial de avaliação discreta;
- compareçam ao primeiro momento presencial de avaliação discreta, mas indiquem claramente na sua folha de teste que desistem desse momento.

Qualquer uma das 3 ações acima enunciadas afasta definitivamente o estudante do regime de avaliação discreta.

O estudantes que entreguem o teste respeitante ao primeiro momento de avaliação discreta sem indicação de desistência ficarão definitivamente afastados da hipótese de ser avaliados por exame final.

Para os alunos avaliados por *exame final*, a nota da componente teórica é igual à classificação de um exame que incide sobre todos os conteúdos teóricos e que terá lugar durante a época de exames, em data a anunciar.

Para os alunos em regime de *avaliação discreta*, a nota da componente teórica é dada pela média aritmética de 2 testes que incidirão sobre cada uma das metades dos conteúdos teóricos:

- **1º Teste** Incide sobre os conteúdos lecionados até uma aula teórica a indicar futuramente, inclusive. Prevê-se que este teste tenha início às 16h30 de sexta-feira, dia **17 de Abril**.
- **2º Teste** Incide sobre os conteúdos não avaliados no 1º teste. Realizar-se-á na época de exames, à mesma hora e no mesmo dia que o exame teórico final.

Uma falta ou desistência no 2º teste por parte de estudantes que, por terem entregue o 1º teste, estejam no regime de avaliação discreta, será, para efeito do cálculo da nota da componente teórica, equivalente a uma classificação de zero valores.

3.2 Avaliação da componente prática

A avaliação da componente prática pode ser *discreta* ou por *exame final*. O regime de avaliação discreta desta componente é fortemente recomendado. Cada estudante só pode ser avaliado por um dos regimes.

No início do semestre, assume-se que todos os estudantes serão sujeitos à avaliação discreta. A mudança para o regime de avaliação final obedece às mesmas regras da componente teórica.

Para os alunos avaliados por exame final, a nota da componente prática é igual à classificação de um exame que incide sobre todos os conteúdos práticos e que terá lugar durante a época de exames, em data a anunciar.

A *nota da componente prática* (NP) obtida por por avaliação discreta é dada por

NP = 1/3* TP1 + 1/3*TP2 + 1/3*TP3,

Onde,

TP1

é a nota, arredondada às décimas, de um teste prático que avaliará os conteúdos abordados nos 4 primeiros trabalhos práticos e na folha de revisões 1. Prevê-se que este teste tenha início às 16h30 de sexta-feira, dia 3 de Abril.

TP2

é a nota, arredondada às décimas, de um teste prático que avaliará os conteúdos abordados nos trabalhos práticos 5 a 7 e na folha de revisões 2. Prevê-se que este teste tenha início às 16h30 de sexta-feira, dia **15 de Maio**.

TP3

é a nota, arredondada às décimas, de um teste prático que avaliará os conteúdos abordados nos trabalhos práticos 8 a 10 e na folha de revisões 3. Este teste realizar-se-á na época de exames, à mesma hora e no mesmo dia que o exame prático final.

3.2.1 Formato dos testes práticos

Os testes práticos são realizados, individualmente, nos computadores da sala de aulas, em contas de exame que não proporcionarão acesso à Internet.

Imediatamente antes do início do teste, os estudantes poderão copiar para o computador, a partir de um dispositivo de armazenamento USB, todos os

ficheiros que desejarem. Esses ficheiros poderão ser consultados durante a realização do teste. Não é permitida a consulta de documentos através de qualquer outro meio.

3.2.2 Melhoria de nota prática positiva obtida num ano letivo anterior

Os alunos repetentes que já têm uma nota prática positiva, obtida num ano letivo anterior, podem escolher a avaliação por exame prático final ou ser sujeitos ao regime de avaliação discreta. No fim do semestre, a nota prática será a melhor de entre a nota anterior e a obtida em 2019/2020.

3.3 Época de recurso

A avaliação da componente teórica na época de recurso é feita através de um exame que incide sobre a totalidade dos conteúdos teóricos. A nota desse exame substitui a nota da componente teórica (quer esta tenha sido obtida por exame final ou por avaliação discreta durante o semestre, quer tenha transitado de um ano anterior) apenas se for superior.

A avaliação da componente prática na época de recurso é feita através de um exame que incide sobre a totalidade dos conteúdos práticos. A nota desse exame substitui a nota da componente prática (quer esta tenha sido obtida por exame final ou por avaliação discreta durante o semestre, quer tenha transitado de um ano anterior) apenas se for superior.

As melhorias das classificações das duas componentes na época de recurso são independentes.

Assim.

- se o estudante realizar apenas um dos exames de recurso (teórico ou prático), manterá a classificação da componente a que não realizou exame de recurso e, na componente a que realizou exame de recurso, ficará com a melhor das duas classificações (a que já tinha ou a que resulte da classificação do exame de recurso);
- se o estudante realizar os dois exames de recurso, as melhorias das classificações às duas componentes são independentes uma da outra, ou seja, em cada componente ficará com a melhor das duas classificações (a que já tinha ou a que resulte da classificação do exame de recurso), qualquer que tenha sido o resultado obtido no exame de recurso da outra componente.

4. Calendário das aulas práticas

Tabela 1: Planeamento das aulas práticas.

SEMANA		TURMA PRÁTICA			
	PL8	PL1 , PL3, PL4, PL5, PL6	PL2, PL7	PL9	
10 a 14 de Fevereiro	Trabalho 1	Trabalho 1	Trabalho 1	Trabalho 1	
17 a 21 de Fevereiro	Trabalho 1	Trabalho 1	Trabalho 1	Trabalho 1	
24 a 28 de Fevereiro	Trabalho 2	Carnaval	Trabalho 2	Trabalho 2	
2 a 6 de Março	Trabalho 3	Trabalho 2	Trabalho 3	Trabalho 3	
9 a 13 de Março	Trabalho 4	Trabalho 3	Trabalho 4	Trabalho 4	
16 a 20 de Março	FR1	Trabalho 4	FR1	FR1	
23 a 27 de Março	Trabalho 5	FR1	Trabalho 5	Trabalho 5	
30 Março a 3 de Abril	Trabalho 6	Trabalho 5	Trabalho 6	Trabalho 6	
6 a 13 de Abril	Férias da Páscoa				
14 a 17 de Abril	Férias da Páscoa	Trabalho 6	Trabalho 7	Trabalho 7	
20 a 24 de Abril	Trabalho 7	Trabalho 7	FR2	FR2	
27 de Abril a 1 de Maio		Sen	ana Académic	ra	
4 a 8 de Maio	FR2	FR2	Trabalho 8	Trabalho 8	
11 a 15 de Maio	Trabalho 8	Feriado Municipal	Trabalho 9	Trabalho 9	
18 a 22 de Maio	Trabalho 9	Trabalho 8	Trabalho 10	Trabalho 10	
25 a 29 de Maio	Trabalho 10	Trabalho 9	FR3	FR3	
1 - 5 de Toud	ED2	M 1 11 40	ED2	ED2	
1 a 5 de Junho	FR3	Trabalho 10	FR3	FR3	
8 a 9 de Junho	FR3	FR3			
FR1, FR2 e FR3: folhas de revisões 1 a 3	Segundas-feiras.	Terças-feiras.	Quintas- feiras.	Sextas- feiras.	

5. Bibliografia

- ●N. J. Giordano e H. Nakanishi, Computational Physics, Pearson Prentice Hall2006
- •Parviz Moin, Fundamentals of Engineering Numerical Analysis, Cambridge University Press, 2010
- •Numerical Methods for Engineers, <u>Steven Chapra</u>, <u>Raymond</u> <u>Canale</u>, McGraw-Hill Science/Engineering/Math, 2009