Quantitative modelling of the energy cost of Na⁺ exclusion, transport and storage in plant roots under salt stress

Kylie Foster and Stan Miklavcic

Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences.

University of South Australia

Schematics of our model root

Driving forces for ion and water transport

- Water transport is driven by hydraulic and osmotic pressure differences.
- Apoplastic and symplastic ion (Na⁺, K⁺, H⁺ and Cl⁻) transport is driven by electrochemical diffusion and convection.
- Transmembrane ion transport is driven by relevant ion concentrations and transmembrane potentials:
- Channels permeable to Na⁺, K⁺ (VIC, IRC and ORC) and CI⁻;
- K⁺/H⁺ symporters and CI⁻/H⁺ symporters;
- H⁺ pumps;
- Na⁺/H⁺ antiporters.

Spatial distributions of model transport proteins

• Spatial distribution of plasma membrane transport proteins:

- PM VIC channels and H⁺ pumps operating in all cells
- Plasma membrane Na⁺/H⁺ antiporters? We have simulated a range of spatial distributions.
- Tonoplast membrane transport proteins: No active storage of Na⁺ in the apex.

Energy cost calculations

- We assume:
 - 5 ATP synthesized per O₂ consumed in respiration.
 - 1 H⁺ transported across PM per ATP hydrolysed.
 - 2 H⁺ transporter across TM per ATP hydrolysed.
- There is a single 'composite' pump operating on the model TM, so we can only calculate an upper bound for the ATP cost of storage (assuming all TM H⁺ fluxes are through the V-ATPase).
- Energy costs calculated:
 - Cost of active efflux of Na⁺ across plasma membranes (based on H⁺ flux through PM antiporters).
 - Cost of actively transporting all ions across plasma membranes (based on total H⁺ flux through PM pumps).
 - Cost of actively transport of Na⁺ across both PM and TM.
 - Cost of actively transporting all ions across PM and TM.

Model validation: MIFE fluxes and electric potentials

- Model parameters fitted using K⁺ and H⁺ flux measurements, and electric potential measurements from Shabala et. al. (2005) for wild-type *Arabidopsis* plants and *sos1* mutants.
- Mature zone fluxes:

Model validation: MIFE fluxes and electric potentials

Mature zone epidermal cell electric potential results:

Model validation: Na⁺ content and xylem concentrations

 We also compared our model with Na⁺ root contents and Na⁺ concentrations in the xylem of wild-type Arabidopsis and sos1 mutants from Shi et al. (2002).

Hiah

Medium

PM Antiporter

Density

None

Model validation: Na⁺ content and xylem concentrations

• Realistic Na⁺ contents:

Magnitude of energy costs: PM ion transport

 The energy costs of transporting just Na⁺ across just the plasma membranes are very high compared to available energy from respiration.

Magnitude of energy costs: Tonoplast ion transport

 The energy costs of transporting Na⁺ across tonoplast membranes are relatively minor.

Possible explanations for high energy costs

- The model energy costs are very high.
- Possible explanations:
 - Overestimated passive plasma membrane Na⁺ permeability.

Possible explanations for high energy costs

- Overestimated passive plasma membrane Na⁺ permeability.
 - Further experimental evidence:

Possible explanations for high energy costs

- The model energy costs are very high.
- Possible explanations:
 - There is a transport mechanism missing from the current model of Na⁺ transport in roots, i.e. active Na⁺ efflux through a transporter other than SOS1.
 - A much more energy efficient mechanism would be required.

Control points for Na⁺ transport: Cytosolic Na⁺

- What are the most important control points for maintaining low Na⁺ levels in root cell cytosols?
 - Outer root cells.
 - NOT: Inner root cells or storage.

 Our Model
 Validation
 Magnitude of energy costs
 Control points
 Energy efficiency
 Summary

 000
 0000
 0000
 0
 0
 0
 0
 0
 0

Control points for Na⁺ transport: Na⁺ flux

- What are the most important control points for Na⁺ accumulation in the shoot?
 - Outer root cells (active efflux reduces Na⁺ flux).
 - Inner root cells (active efflux increases Na⁺ flux).

Na⁺ exclusion from the outer root: Energy costs

 There are significant energy costs associated with the exclusion of Na⁺ from the outer root cells.

Na⁺ exclusion from the outer root: Energy efficiency

- Increasing the plasma membrane H⁺ pump density lowers the cytosolic Na⁺ concentration but increases the energy costs.
- Reducing the passive Na⁺ permeability of the plasma membranes significantly reduces the energy costs.

Minimising net Na⁺ flux into the xylem: Energy costs

- Lower Na⁺ flux requires *less* energy at the pericycle.
- Energy costs for Na⁺ transport across pericycle plasma membranes are relatively small.

Minimising net Na⁺ flux into the xylem: Energy efficiency

 Reducing active loading of Na⁺ is more energy efficient than increasing the passive unloading of Na⁺.

Storage of Na⁺ in vacuoles: Energy efficiency

- Reducing the passive Na⁺ permeability of the tonoplast reduces the energy costs.
- Energy costs for Na⁺ transport across tonoplast membranes are relatively small.

Parameters

High Pump Density

Storage of Na⁺ in vacuoles: Benefits

- Temporary reduction in cytosolic Na⁺ concentrations
- 8 hrs after 100 mM NaCl

• 15 days after 100 mM NaCl

Storage of Na⁺ in vacuoles: Benefits

Increase in turgor pressure

Summary: Magnitude of energy costs

- The energy cost of ion transport under salt stress, based on the current model of Na⁺ transport in roots, is unrealistically high.
- Possible explanations for this:
 - Na⁺ influx is restricted by relatively low passive plasma membrane permeabilities.
 - There is an alternative transport mechanism effluxing Na⁺.
- Key model assumptions:
 - Ca²⁺ transport is not included in the model.
 - Cl⁻ is the only mobile anion.
 - H⁺ transport across the tonoplast membrane is simulated using one 'composite pump' that represents the combined transport of H⁺ via V-ATPase and H⁺-PPase.

Summary: Energy efficiency

- Exclusion of Na⁺ from the outer root tissues:
 - Is very energetically expensive.
 - Can be most efficiently achieved by reducing the passive uptake of Na⁺.
- Na⁺ loading/unloading of the xylem:
 - It is more efficient to minimise net Na⁺ transport into the xylem by reducing the active loading of Na⁺ rather than by increasing the passive unloading of Na⁺.
- Active Na⁺ storage in vacuoles:
 - Can be most efficiently achieved by reducing the passive leak of Na⁺ across the tonoplast.
 - Benefits?

References

Experimental comparisons:

- Shabala, L., Cuin, T. A., Newman, I. A., Shabala, S., 2005.
 Salinity-induced ion flux patterns from the excised roots of *Arabidopsis sos* mutants. Planta 222 (6), 1041-1050.
- Shi, H., Quintero, F. J., Pardo, J. M., Zhu, J., 2002. The putative plasma membrane Na⁺/H⁺ antiporter SOS1 controls long-distance Na⁺ transport in plants. The Plant Cell Online 14 (2), 465-477.
- Wang, B., Davenport, R., Volkov, V., Amtmann, A., 2006.
 Low unidirectional sodium influx into root cells restricts net sodium accumulation in *Thellungiella halophila*, a salt-tolerant relative of *Arabidopsis thaliana*. J. Exp. Bot. 57 (5), 1161-1170.

References

- Spatial distribution of transport proteins:
 - Desbrosses, G., Josefsson, C., Rigas, S., Hatzopoulos, P., and Dolan, L. (2003). AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J. Exp. Bot. 54, 781788.
 - Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., et al. (1998). Identification and disruption of a plant shaker-like outward channel involved in K⁺ release into the xylem sap. Cell 94, 647655.
 - Gierth, M., Mser, P., and Schroeder, J. I. (2005). The potassium transporter AtHAK5 functions in K⁺ deprivation-induced high-affinity K⁺ uptake and AKT1 K⁺ channel contribution to K⁺ uptake kinetics in Arabidopsis roots. Plant Physiol. 137, 11051114.
 - Ivashikina, N., Becker, D., Ache, P., Meyerhoff, O., Felle, H. H., and Hedrich, R. (2001). K⁺ channel profile and electrical properties of *Arabidopsis* root hairs. FEBS Lett. 508, 463469.
 - Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., et al. (1996). Tissue-specific expression of *Arabidopsis* AKT1 gene is consistent with a role in K⁺ nutrition. Plant J. 9, 195203.

