Übungsblatt 2

Aufgabe 1 (Digitale Datenspeicher)

- 1. Nennen Sie einen digitalen Datenspeicher, der mechanisch arbeitet.
- 2. Nennen Sie zwei rotierende magnetische digitale Datenspeicher.
- 3. Nennen Sie zwei nichtrotierende magnetische digitale Datenspeicher.
- 4. Nennen Sie vier Vorteile von Datenspeicher ohne bewegliche Teile gegenüber Datenspeichern mit beweglichen Teilen.
- 5. Beschreiben Sie was wahlfreier Zugriff ist.
- 6. Nennen Sie einen nicht-persistenten Datenspeicher.
- 7. Der Speicher eines Computersystems wird in die Kategorien Primärspeicher, Sekundärspeicher und Tertiärspeicher unterschieden. Auf welche Kategorie(n) kann der Prozessor direkt zugreifen?
- 8. Nennen Sie die Kategorie(n) aus Teilaufgabe 7, auf die der Prozessor nur über einen Controller zugreifen kann.
- 9. Nennen Sie für jede Kategorie aus Teilaufgabe 7 zwei Beispiele.
- 10. Erklären Sie, warum Speicherseiten in den oberen Schichten der Speicherhierarchie ständig ersetzt werden.

Aufgabe 2 (Cache-Schreibstrategien)

- 1. Nennen Sie die beiden grundsätzlichen Cache-Schreibstrategien.
- 2. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der es zu Inkonsistenzen kommen kann.
- 3. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der die System-Geschwindigkeit geringer ist.
- 4. Nennen Sie die Cache-Schreibstrategie aus Teilaufgabe 1, bei der sogenannte "Dirty Bits" zum Einsatz kommen.
- 5. Beschreiben Sie die Aufgabe der "Dirty Bits".

Inhalt: Themen aus Foliensatz 2 Seite 1 von 10

Aufgabe 3 (Speicherverwaltung)

1.	bei welchen Konzepten der Speicherpartitionierung entstent interne Fragmentierung?													
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung												
2.	Bei welchen Ko tierung?	nzepten der Spei	cherpartitionier	ung entsteht externe Fragmen-										
	☐ Statische Pa ☐ Dynamische ☐ Buddy-Algor	Partitionierung												
3.	Welches Konzep passt?	pt zur Speicherve	erwaltung sucht	den freien Block, der am besten										
	☐ First Fit	☐ Next Fit	\square Best fit	\square Random										
4.		pt zur Speicherv ssenden freien B	~	t ab dem Anfang des Adress-										
	\square First Fit	☐ Next Fit	\square Best fit	\square Random										
5.		pt zur Speicherv eicher am Ende d	_	sückelt schnell den großen Be- s?										
	\square First Fit	\square Next Fit	\square Best fit	\square Random										
6.	Welches Konzeg senden Block?	pt zur Speicherv	erwaltung wähl	t zufällig einen freien und pas-										
	\square First Fit	☐ Next Fit	\square Best fit	\square Random										
7.	_	pt zur Speicherve n passenden freie	_	ab der Stelle der letzten Block-										
	\square First Fit	☐ Next Fit	\square Best fit	\square Random										
8.	Welches Konzej arbeitet am lan	-	erwaltung prod	uziert viele Minifragmente und										
	☐ First Fit	□ Next Fit	\square Best fit	\square Random										
9.				Speicher mit dynamischer Par- ithmen First Fit, Next Fit und										

Inhalt: Themen aus Foliensatz 2

Best Fit die Nummer der freien Partition an, die der entsprechende Algorithmus verwendet, um einen Prozess einzufügen, der 21 MB Speicher benötigt.

a) First Fit: ______ b) Next Fit: _____ c) Best Fit: _ $10\,\mathrm{MB}$ $22\,\mathrm{MB}$ 1 $30\,\mathrm{MB}$ letzter zugewiesener Bereich \longrightarrow $2 \, \mathrm{MB}$ $7\,\mathrm{MB}$ $17\,\mathrm{MB}$ $12\,\mathrm{MB}$ 6 $45\,\mathrm{MB}$ frei $21\,\mathrm{MB}$ belegt 39 MB

Aufgabe 4 (Buddy-Verfahren)

Das Buddy-Verfahren zur Zuweisung von Speicher an Prozesse soll für einen $1024\,\mathrm{kB}$ großen Speicher verwendet werden. Führen Sie die angegeben Aktionen durch und geben Sie den Belegungszustand des Speichers nach jeder Anforderung oder Freigabe an

	0	128	256	384	512	640	768	896	1024
Anfangszustand					1024 KB				
65 KB Anforderung => A									
30 KB Anforderung => B									
90 KB Anforderung => C									
34 KB Anforderung => D									
130 KB Anforderung => E									
Freigabe C									
Freigabe B									
275 KB Anforderung => F									
145 KB Anforderung => G									
Freigabe D									
Freigabe A									
Freigabe G									
Freigabe E									

Aufgabe 5 (Real Mode und Protected Mode)

1. Beschreiben Sie wie der Real Mode arbeitet.

- 2. Beschreiben Sie warum der Real Mode für Mehrprogrammbetrieb (Multitasking) ungeeignet ist.
- 3. Beschreiben Sie wie der Protected Mode arbeitet.
- 4. Beschreiben Sie was virtueller Speicher ist.
- 5. Erklären Sie, warum mit virtuellem Speicher der Hauptspeicher besser ausgenutzt wird.
- 6. Beschreiben Sie was Mapping ist.
- 7. Beschreiben Sie was Swapping ist.
- 8. Nennen Sie die Komponente der CPU, die virtuellen Speicher ermöglicht.
- 9. Beschreiben Sie die Aufgabe der Komponente aus Teilaufgabe 8.
- 10. Beschreiben Sie das Konzept des virtuellen Speichers mit dem Namen Paging.
- 11. Beschreiben Sie wo beim Paging interne Fragmentierung entsteht.
- 12. Geben Sie die maximale Anzahl von Speicheradressen an, die mit einem 16-Bit-Computersystem adressiert werden können.
- 13. Geben Sie die maximale Anzahl von Speicheradressen an, die mit einem 32-Bit-Computersystem adressiert werden können.
- 14. Erklären Sie, warum in 32-Bit- und 64-Bit-Systemen mehrstufiges Paging und nicht einstufiges Paging verwendet wird.
- 15. Berechnen Sie die physische 16-Bit-Speicheradresse unter Verwendung der Adressumrechnung mit einstufigem Paging. Ergänzen Sie die einzelnen Bits in der physischen 16-Bit-Adresse.

Inhalt: Themen aus Foliensatz 2 Seite 4 von 10

Virtuelle (logische) 16 Bit Adresse

0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 1

Seitentabelle

000110	Ρ	Δ	R	Weitere Steuerbits	1	0	0	1	0	1
000101	Ρ	D	R	Weitere Steuerbits	1	1	1	0	1	0
0 0 0 0 1 0	Р	D	R	Weitere)	>	1	>	1	1
000010	_	ב	_	Steuerbits	כ	U	4	U		
000010	Р	ם	R	Steuerbits Weitere Steuerbits	0	1	1	0	1	1

Physische 16 Bit Adresse

ı								
-								
-1								

- 16. Beschreiben Sie den Zweck des Page-Table Base Register (PTBR).
- 17. Beschreiben Sie wie eine Page Fault Ausnahme (Exception) entsteht.
- 18. Beschreiben Sie wie das Betriebssystem auf eine Page Fault Ausnahme (Exception) reagiert.
- 19. Beschreiben Sie wie eine Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception) entsteht.
- 20. Beschreiben Sie die Auswirkung einer Access Violation Ausnahme (Exception) oder General Protection Fault Ausnahme (Exception).

Aufgabe 6 (Speicherverwaltung)

Kreuzen Sie bei jeder Aussage zur Speicherverwaltung an, ob die Aussage wahr oder falsch ist.

1.	Real Mode ist f	ür Multitasking-Systeme geeignet.
	\square Wahr	☐ Falsch
2.		Mode läuft jeder Prozess in seiner eigenen, von anderen Protteten Kopie des physischen Adressraums.
	\square Wahr	☐ Falsch
3.	Bei statischer P	artitionierung entsteht interne Fragmentierung.
	\square Wahr	☐ Falsch

4.	Bei dynamisch	er Partitionierung ist externe Fragmentierung unmöglich.
	□ Wahr	\square Falsch
5.	Beim Paging h	aben alle Seiten die gleiche Länge.
	\square Wahr	\square Falsch
6.	Ein Vorteil lan	ger Seiten beim Paging ist geringe interne Fragmentierung.
	\square Wahr	\square Falsch
7.	Ein Nachteil k werden kann.	eurzer Seiten beim Paging ist, dass die Seitentabelle sehr groß
	\square Wahr	☐ Falsch
8.	Die MMU übe belle in physiso	rsetzt beim Paging logische Speicheradressen mit der Seitentache Adressen.
	□ Wahr	\square Falsch
9.	Moderne Betri den Paging.	ebssysteme (für x86) arbeiten im Protected Mode und verwen-
	□ Wahr	\square Falsch

Aufgabe 7 (Seiten-Ersetzungsstrategien)

- 1. Die beste Seitenersetzungsstrategie ist die optimale Strategie. Beschreiben Sie, wie sie funktioniert.
- 2. Begründen Sie warum die optimale Ersetzungsstrategie OPT nicht implementiert werden kann.
- 3. Beschreiben Sie ein Szenario, in dem die optimale Strategie in der Praxis hilfreich ist.
- 4. Führen Sie die gegebene Zugriffsfolge mit den Ersetzungsstrategien Optimal, LRU, LFU und FIFO einmal mit einem Datencache mit einer Kapazität von 4 Seiten und einmal mit 5 Seiten durch. Berechnen Sie auch die Hitrate und die Missrate für alle Szenarien.

Inhalt: Themen aus Foliensatz 2 Seite 6 von 10

Optimale Ersetzungsstrategie (OPT):

Hitrate: Missrate:

Prof. Dr. Christian Baun, Henry-Norbert Cocos Betriebssysteme und Rechnernetze (SS2024)

 $$\operatorname{FB}\ 2$$ Frankfurt Univ. of Appl. Sciences

Ersetzungsstrategie Least Recently Used (LRU):

Anfragen:	1	3	5	4	2	4	3	2	1	0	5	3	5	0	4	3	5	4	3	2	1	3	4	5
Seite 1:																								
Seite 2:																								
Seite 3:																								
Seite 4:																								
Queue:																								
	Hit Mis	rat ssr		::																				

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Seite 1: Seite 2: Seite 3: Seite 4: Seite 5: Queue:

Ersetzungsstrategie Least Frequently Used (LFU):

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Seite 1: Seite 2: Seite 3: Seite 4:

Hitrate: Missrate:

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Hitrate: Missrate:

Ersetzungsstrategie FIFO:

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

Hitrate: Missrate:

Anfragen: 1 3 5 4 2 4 3 2 1 0 5 3 5 0 4 3 5 4 3 2 1 3 4 5

- 5. Beschreiben Sie die Kernaussage der Anomalie von Laszlo Belady.
- 6. Zeigen Sie Belady's Anomalie, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität

von 3 Seiten und einmal mit 4 Seiten durchführen. Berechnen Sie auch die Hitrate und die Missrate für beide Szenarien.

> Hitrate: Missrate:

Anfragen: 3 2 1 0 3 2 4 3 2 1 0 4