Разностные схемы для уравнения конвективной диффузии. Лекция 2

О.С.Мажорова

Сентябрь 2020 г.

Гибридные разностные схемы

Что такое, по существу, схемы с направленными разностями, схема А.А.Самарского и экспоненциальная схема?

Схема Д.Сполдинга

Эффективное сеточное число Пекле:

$$P_{h,i+\frac{1}{2}}^* = \begin{cases} P_{h,i+\frac{1}{2}}, & \text{если } |P_{h,i+\frac{1}{2}}| \leq 2; \\ 2, & \text{если } |P_{h,i+\frac{1}{2}}| > 2. \end{cases} \tag{1}$$

Интерполяции в полуцелую точку:

$$\theta_{i+\frac{1}{2}} = \frac{1}{P_{h,i+\frac{1}{2}}} \left[P_{h,i+\frac{1}{2}} - 1 + \max(-P_{h,i+\frac{1}{2}}, 1 - \frac{P_{h,i+\frac{1}{2}}}{2}, 0) \right]$$
(2)

Если $|P_{h,i+\frac{1}{2}}| < 2$, то $\theta_{i+\frac{1}{2}} = \frac{1}{2},$ $W_{i+\frac{1}{2}} = u_{i+\frac{1}{2}} \frac{Q_i + Q_{i+1}}{2},$ т.е. конвективные члены аппроксимируются центральными разностями.

Если
$$|P_{h,i+\frac{1}{2}}| \geq 2$$
 , то

$$\theta_{i+\frac{1}{2}} = \frac{1}{2} \left(1 + \frac{|P_{h,i+\frac{1}{2}}|}{P_{h,i+\frac{1}{2}}} \right) - \frac{1}{P_{h,i+\frac{1}{2}}}$$

Результат интерполяции:

$$\begin{split} Q_{i+\frac{1}{2}} &= \left[\frac{1}{2}\left(1 + \frac{|P_{h,i+\frac{1}{2}}|}{P_{h,i+\frac{1}{2}}}\right) - \frac{1}{P_{h,i+\frac{1}{2}}}\right]Q_i + \\ &\left[\frac{1}{2}\left(1 - \frac{|P_{h,i+\frac{1}{2}}|}{P_{h,i+\frac{1}{2}}}\right) + \frac{1}{P_{h,i+\frac{1}{2}}}\right]Q_{i+1}; \end{split}$$

Конвективный поток:

$$W_{i+\frac{1}{2}} = u_{i+\frac{1}{2}}Q_{i+\frac{1}{2}} = \underbrace{u_{i+\frac{1}{2}}^{+}Q_{i} + u_{i+\frac{1}{2}}^{-}Q_{i+1} + DQ_{x}}_{}$$

направленные разности

 $|P_{h,i+\frac{1}{2}}| \geq 2$ — диффузионный перенос осуществляется схемной

диффузией с коэффициентом $D_h=rac{|u|h}{2},$

Схема С.Патанкара

Эффективное сеточное число Пекле:

$$P_{h,i+\frac{1}{2}}^* = \begin{cases} \frac{P_{h,i+\frac{1}{2}}}{P_{h,i+\frac{1}{2}}/2 + (1-0.1P_{h,i+\frac{1}{2}})^5}, & \text{если } |P_{h,i+\frac{1}{2}}| \leq 10; \\ 2, & \text{если } |P_{h,i+\frac{1}{2}}| > 10. \end{cases}$$

Интерполяция в полуцелую точку:

$$\theta_{i+\frac{1}{2}} = \frac{1}{P_{h,i+\frac{1}{2}}} \left[P_{h,i+\frac{1}{2}} - 1 + \max(0, -P_{h,i+\frac{1}{2}}) + \max(0, (1-0.1|P_{h,i+\frac{1}{2}}|)^5) \right]$$

При
$$|P_{h,i+\frac{1}{2}}| < 10$$
 ($u=const>0$, сетка — равномерная)
$$\theta = \frac{1}{P_h} \left[P_h - 1 + (1-0.1P_h)^5) \right].$$

Конвективный поток:

$$W_{i+\frac{1}{2}} = uQ_{i+\frac{1}{2}} = uQ_i + DQ_x - D((1 - 0.1P_h)^5 Q_x)$$

Получается схема с направленными разностями:

$$uQ_{\bar{x}} - D(1 - 0.1P)^5 Q_{\bar{x}x} = 0,$$

Переходя к центральным разностям,

$$uQ_{x}^{\circ} - D^{*}Q_{x\bar{x}} = 0$$
, где $D^{*} = D\left[\frac{P_{h}}{2} + (1 - 0.1P_{h})^{5}\right]$.

Эффективное число Пекле:
$$P_h^* = \frac{uh}{D^*} = \frac{P_h}{P_h/2 + (1-0,1P_h)^5}$$

Пусть
$$|P_{h,i+\frac{1}{2}}| > 10$$
, тогда $\theta = 1 - \frac{1}{P_h}$ и конвективный поток:

$$W_{i+\frac{1}{2}} = uQ_{i+\frac{1}{2}} = uQ_i + DQ_x$$

Полная схема:

$$\underbrace{uQ_{\bar{x}} + DQ_{\bar{x}x}}_{\mathsf{KY}} - \underbrace{DQ_{\bar{x}x}}_{\mathsf{ДY}} = 0.$$

Гибридные схемы просты в реализации, дают гладкие решения при любых P_h , соответствующие сеточные уравнения хорошо решаются, они включены в пакеты прикладных программ.

Но для хорошей точности в задачах с преобладающим влиянием конвекции нужен мелкий шаг.

Разностные схемы на расширенных шаблонах.

Здесь сетка равномерная и u = const > 0.

Схема с направленными разностями второго порядка. (SOU)
Интерполяция в полуцелую точку:

$$Q_{i+\frac{1}{2}} = \frac{1}{2}(Q_{i+1} + Q_i) - \eta(Q_{i+1} - 2Q_i + Q_{i-1})$$
(3)

Аппроксимация конвективных членов

$$u\frac{dQ}{dx} \sim uQ_{\bar{x}} - uh\eta(Q_{\bar{x}x} - Q_{\bar{x}\bar{x}}) \tag{4}$$

и разностная схема запишется следующим образом:

$$uQ_{\bar{x}} - DQ_{\bar{x}x} - uh^2 \eta Q_{\bar{x}x\bar{x}} = 0, \tag{5}$$

Задача. Почему при $\eta=\frac{1}{2}$ схема (5) называют схемой с направленными разностями второго порядка точности.

Семейство схем с третьей пространственной производной.

$uQ_{\bar{x}} - DQ_{\bar{x}x} - uh^2 \eta Q_{\bar{x}x\bar{x}} = 0$	η
Направленные разности второго порядка (SOU)	$\frac{1}{2}$
Метод Фромма	$\frac{1}{4}$
Схема с искусственной дисперсией	$\frac{1}{6}$
QUICK (Quadratic Upstream Interpolation for Convective Kinematics)	$\frac{1}{8}$

Примеры расчетов. $P_h = 4$

$$1 - \text{точное решение, } 2 - \eta = \frac{1}{8}; \ \ 3 - \eta = \frac{1}{6}; \ \ 4 - \eta = \frac{1}{4}; \ \ 5 - \eta = \frac{1}{2}.$$

Примеры расчетов. $P_h = 10$

$$1 - \text{точное решение, } 2 - \eta = \frac{1}{8}; \ \ 3 - \eta = \frac{1}{6}; \ \ 4 - \eta = \frac{1}{4}; \ \ 5 - \eta = \frac{1}{2}.$$

Третья производная как анти-дисперсия.

Пусть Q-бесконечно дифференцируемая функция. Используя ее разложение в ряд Тейлора, получим, что разностная схема (5) это

$$u\frac{dQ}{dx} - D\frac{d^2Q}{dx^2} + \frac{uh^2}{6}(1 - 6\eta)\frac{d^3Q}{dx^3} + \frac{uh^3}{12}(6\eta - \frac{1}{P_h})\frac{d^4Q}{dx^4} + \dots = 0$$

Если $\eta=\frac{1}{6}$, то схема имеет третий порядок аппроксимации, с ростом η увеличивается влияние четвертой производной.

При $P_h=10$ все схемы, кроме SOU $(\eta=\frac{1}{2}),\;$ дают пилообразные решения.