§1 Der \mathbb{R}^n und seine Topologie

Erklärt man auf der Menge $R^n:=\{\alpha=(x_1,x_2,x_3\dots)\,|x_i\in\mathbb{R}\forall i=1,\dots n\}$ aller geordneten n-Tupel reeller Zahlen eine Addition komponenteweise durch $x+y=x_1+y_1,x_2+y_2,\ldots x_n+y_n$ für $x=x_1+y_2,\ldots x_n+y_n$ $(x_1, x_2, \dots, x_n), y = (y_1, y_2 \dots y_n) \in \mathbb{R}^n$ und eine Multiplikation mit reellen Skalaren. So erhält \mathbb{R}^n die Structure eines n-dimensionalen Vecktorraums über \mathbb{R} ; eine Basis des \mathbb{R}^n ist durch die Vektoren $e_1=(1,0,\ldots,0)\ldots e_n=(0,\ldots,0,1)$ gegeben. Man bezeichent die Familie $\{e_1,e_2,\ldots e_n\}$ als Standardbasis oder auch kanonische Basis des \mathbb{R}^n

euklidisches Skalarproduckt: Das euklidisches Skalarproduckt auf \mathbb{R}^n ist die Abbildung $\left\langle \circ,\circ\right\rangle :\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow\mathbb{R}\left(x,y\right) \mapsto\left\langle x,y\right\rangle =\sum_{1=1}^{n}x_{i}y_{i}$ die je zwei Vektoren $x,y\in\mathbb{R}^{n}$ die reellen Zahl $\langle x,y\rangle$ zugeordnet, welsche man euklidischesSkalarproduckt von x und y nennt.

Eine weitere gebräuchliche Schreibweise für das euklidische Skalarproduckt zwei Vektor ist $\langle x,y\rangle=:x\cdot y$ Die wichtigsten Eigenschaft des euklidische Skalarproduckt nennt der folgende Satz, auf dessen trivialen Beweis wir versichten werden.

Für alle $x, y, z \in \mathbb{R}^n$ und jedes $\alpha \in \mathbb{R}$ gilt:

- a) $\langle (x+z), y \rangle = \langle x, y \rangle + \langle z, y \rangle$
- b) $\langle (\alpha \cdot x), y \rangle = \alpha \langle x, y \rangle$ c) $\langle x, y \rangle = \langle y, x \rangle$
- d) $\langle x, x \rangle$ und $\langle x, x \rangle = 0 \iff x = 0$

Euklidische Norm: Sei $z \in \mathbb{R}^n$, dann nennt man die Zahl $|x| := \sqrt{\langle x, x \rangle}$, die euklidische

Norm von x . Es folgt

- a) $|x| \ge 0$ und $|x| = 0 \iff x = 0$
- b) $|\alpha \cdot x| = |\alpha| \cdot |x|$
- c) $|x + y| \le |x| + |y|$

Schwarzsche Ungleichung: Für alle $x, y \in \mathbb{R}^n$ gilt: $\langle |x, y| \rangle \leq |x| |y|$

(wurde in LA2 beweiesen)

Eigenschaft von Norm auf Vektorraum

Allgemein nennt man jede Abbildung $\|\cdot\|:V\to\mathbb{R}$ auf einem R-Vektorraum V eine Norm auf V, wenn sie die folgende Eigenschaften haben

- a) $\forall x \in V; ||x|| \ge 0$ und $||x|| = 0 \iff x = 0$
- b) $\forall x \in V, \forall a \in \mathbb{R} \|\alpha x\| = |\alpha| \|x\|$
- c) $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$

Man nennt dann das Tupel $(V, \|\cdot\|)$ einem nominierten Vektorraum Dies wurde auch in LA2 bewiesen

Beispiel

- a) $V := \mathbb{R}^n$ und sei $\|.\|_{\infty} : \mathbb{R}^n \to \mathbb{R}_0^+$. $x = (x_1, x_2 \dots x_n) \to \|x\|_{\infty} := max\{|x_1|, |x_2|, |x_n|\}$. Dann ist $\|.\|_{\infty}$ eine Norm auf \mathbb{R}_n nennt.
- b) Der Vektorraum V aller linearen Abbildungen $L: \mathbb{R}^n \to \mathbb{R}^m$ wird durch die Definition $||L||:= sum\{|L(x)|: x \in \mathbb{R}^n, |x| \leq 1\}$
- c) Fehlt

euklidische Metrik: Die Funktion $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x,y) \mapsto d(x,y) := |x-y|$ heißt euklidische Metrik auf \mathbb{R}^n

Eigenschaften der euklidischen Metrik auf \mathbb{R}^n sind:

Eigenschaften der euklidischen Metrik: $\forall x, y, z \in \mathbb{R}^n$ gibt:

- a) $d(x,y) \ge 0$ und $d(x,y) = 0 \iff x = y$
- b) d(x,y) = d(y,x) (Symmetrie)
- c) $d(x,y) \ge d(x,y) + d(y,z)$ (Dreiecksgleichung)

Metrik auf eine Menge: Eine Metrik auf eine Menge A ist eine Abbildung $f: A \times A \to \mathbb{R}_0^+$ mit der Eigenschaft a)- c) von Satz 1.16

Beispiel

Sei A beliebige Menge und $f: A \times A \to \mathbb{R}_0^+$ definiert durch

$$p(x,y) := \begin{cases} 1, & \text{falls} x \neq y \\ 0, & \text{falls} x = y \end{cases}$$

Kugel: Sei $a \in \mathbb{R}^n$ und sei r > 0. Dann heißt die Menge $B(a,r) := \{x \in \mathbb{R}^n : |x - a| < r\}$ als die Kugel um a mit dem Radius r.

Offene und abgeschlosse Menge: Sei $S \subset \mathbb{R}^n$ eine Menge

- a) S heißt offen, wenn $\forall a \in S \exists r > 0 \text{ sodass } B(a,r) < S$
- b) \mathcal{S} heißt abgeschlossen, wenn \mathbb{R}^n \mathcal{S} offen ist.

Sätze über offene Menge:

- a) \mathbb{R}^n und die leere Menge \emptyset sind offen.
- b) Sei $J \neq \emptyset$ eine beliebige Indexmenge und sei $\{U_i : i \in J\}$ eine Familie offener Menge $U_i \subset \mathbb{R}^n$ Dann ist die Menge $V := \bigcup_{i \in J} U_i$ ebenfalls offen.
- c) Sei $m \in \mathbb{N}$ und $seine U_1, U_2, \dots, U_m$ offene Menge in \mathbb{R}^n Dann ist die Menge $W := \bigcap_{i=1}^m U_i$ ebenfalls offen

Beweis. a) Trivial

- b) Sei $a \in V \implies \exists i \in J \text{ sodass } a \in U_i \ U_i \text{ offen } \implies r > 0 \text{ sodass } B(a,r) \subset U_i \subset V \implies V offen$
- c) Sei $a \in W \implies a \in U_i, i = 1, 2, ..., m$. $U_i offen \implies r_i > 0$ sodass $B(a, r_i) \subset U_i$. Sei $r := min\{r_1, r_2, ..., r_m\} > 0$ Dann $\forall i = 1, 2, ..., m$ gilt $B(a, r) \subset B(a, r_i) \subset V_i \implies B(a, r) \subset \bigcap_{i=1}^{m} U_i = w \implies w offen$

Weitere Eigenschaften von Menge:

- a) \mathbb{R}^n und die leere Menge \emptyset sind abgeschlossen
- b) Sei $J \neq \emptyset$ eine beliebige Indexmenge und sei $\{A_i : i \in J\}$ eine Familie abgeschlossner Menge $A_i \subset \mathbb{R}^n$. Dann ist die Menge $A := \bigcap_{i \in J} A_i \subset \mathbb{R}^n$ ebenfalls abgeschlossen.
- c) Sei $m \in \mathbb{N}$ und seien $A_1, A_2, \dots A_m$ abgeschlossene Mengen in \mathbb{R}^n . Dann ist die Menge $L := \bigcup_{i=1}^m A_i \subset \mathbb{R}^n$ ebenfalls abgeschlossen. $\bigcap_{i \in J} (\mathbb{R}^n A_i) = \mathbb{R}^n \bigcup_{i \in J} A_i$ und $\bigcup_{i \in J} (\mathbb{R}^n A_i) = \mathbb{R}^n \bigcap_{i \in J} A_i$

Umgebung: Ist $a \in \mathbb{R}^n$ gegeben, so nennt man jede offene Menge $U \in \mathbb{R}^n$ mit $a \in U$ eine offene Umgebung von a. Für $\varepsilon > 0$ bezeichnet man die Kugel $B(a, \varepsilon)$ auch als ε -Umgebung von a

Definition:

- a) Man bezeichnet die Menge $\overline{A}:=\bigcap B$ mit $A\subset B\subset \mathbb{R}^n$, B-abgeschlossen als den Abschlüß oder abgeschlossene Hülle von A
- b) Die Menge $\mathring{A} \stackrel{\text{u}}{=} uU$ mit $u \in U$ und U offen heißt offener Kern von A
- c) Der Rand von A ist gegeben durch $\partial A := \overline{A} \setminus \mathring{A}$

Bemerkung

Nach Satz 1.10 und 1.11 ist \overline{A} stets abgeschlossen und \mathring{A} stets offen. \mathring{A} ist die kleinste abgeschlossene Menge, die \overline{A} enthält, \mathring{A} ist die größte in A enthälte offene Teilmenge von A. Insbosendere gilt $\mathring{A} \subset A \subset \overline{A}$

Beisiele

- a) Sei $A = [0,1) \times [0,1] \subset \mathbb{R}^2$. Dann ist $\overline{A} = (0,1) \times (0,1), \overline{A} = [0,1] \times [0,1], \partial A = 0, 1 \times [0,1]$ und $\partial A = 0, 1 \times [0,1] \cup [0,1] \times 0, 1$
- b) $A = B(0,1) \cup (B(0,2) \cup (\mathbb{Q} \times \mathbb{Q}))$ und $\overline{A} = \overline{B(0,2)}, \mathring{A} = B(0,1), \partial A = B(0,2) \setminus B(0,1)$

Eigenschaften der abgeschlossenen Hülle und offener Kern:

Sei $A \subset \mathbb{R}^n$ und sei $x \in \mathbb{R}^n$. Dann gilt:

- a) $x \in \partial A \iff$ jede offene Umgebug des Punktes x sowhol A als auch $\mathbb{R}^n \setminus A$ trifft. (Das heißt sowhol mit A, als auch mit $\mathbb{R}^n \setminus A$ einen nicht leeren Durchschnitt hat.)
- b) $A \setminus \partial A = \mathring{A}$
- c) $A \bigcup \partial = \overline{A}$
- d) ∂A ist abgeschlossen.

innerer Punkt: Sei $A \in \mathbb{R}^n$.

- a) Man nennt $x \in A$ einen inneren Punkt der Menge A, wenn es eine offene Umgebung U = U(x) des Punktes x gibt, so dass $U \subset A$ gilt.
- b) Mann nennt $y \in \mathbb{R}^n$ einen Häufungsspunkt der Menge A, wenn in jeder offenen Umgebung U = U(y) des Punktes y ein von y verschiedener Punkt der Menge A liegt, dass heißt wenn gilt:

$$\forall U = U(y) \text{ offen } \exists x \in A | U : x \neq y$$

Die Menge der Häufungsspunkt von A wird HP(A)

- 8 Satz: Sei $A \subset \mathbb{R}^n$, dann gilt:
 - a) $\mathring{A} = \{x \in A : x \text{ ist inerer Punkt con A}\}$
 - b) $\overline{A} = A \bigcup HP(A)$
- Beweis. a) Ist $x \in \mathring{A}$ so it definitions gemäß $x \in U \bigcup : U \subset A, U$ offen also existiert mindestens eine offene Umgebung V = V(x) des Punktes x mit $V \subset A \implies x$ innerer Punkt von A ist. Ist anderseites x innerer Punkt von A, so existiert eine offene Umgebung V = V(x) des Punktes x mit $x \in V \subset A \implies$ insbesondere x ist dann Element der Vereinigung. $\bigcup U : U \subset A, U$ offen, das heißt $x \in \overline{A}$.
 - b) Wegen $\overline{A}A \bigcup \partial A = A \bigcup (\partial A \setminus A)$ und $HP(A) \bigcup = A \bigcup (HA(A) \setminus A)$ folgt die Behauptung aus der einfachen Beobachtung, dass alle nicht in A gelegene Randpunkte von A zwangsläufig Häufungsspunkt von A sind und umgekehrt alle nicht in A gelegenen Häufungsspunkt von A naturliche Randpunkte von A sind.

$\S 2$ Punktfolgen im \mathbb{R}^n

Definition: Sei $(x_k) \subset \mathbb{R}^n$ eine Folge von Punkten im \mathbb{R}^n . (x_k) heißt konvergent gegeben $a \in \mathbb{R}^n$ (in Zeichnen: $\lim_{h\to\infty} x_k = a$), wenn zu jeder offenen Umgebung U = U(a) des Punktes a ein Index $k_0 \in \mathbb{N}$ existiert, so dass $x_n \in U \forall x \geq k_0$ gibt.

Bemerkung

Definition $\iff \forall \varepsilon > 0 \exists k_0 \in \mathbb{N} \text{ sodass } x_k \in B(a, \varepsilon) \forall k \geq k_0$

9 Satz: Sei $(x_k) \subset \mathbb{R}^n$ eine Folge und sei $a \in \mathbb{R}^n$; es seien Komponentschreibweise $x_k = (x_{k_1}, x_{k_2} \cdots x_{k_n}) \, \forall k \in \mathbb{N}, a = (a_1, a_2 \cdots a_n)$, Dann gilt

$$\lim_{k \to \infty} x_k = a \iff \lim_{k \to \infty} x_{k_j} a_j \forall j = 1, 2 \cdots, n$$

Beweis. " \Longrightarrow " $\forall \varepsilon > 0$ sei $k_0 \in \mathbb{N}$ so gesählt, dass $x_k \in B(a,\varepsilon) \forall k \geq k_0$ gilt. Für beliebiges $j \in \{1,2,\cdots n\}$ ist dann

$$|x_{k_j} - a_j| = \sqrt{(x_{k_j} - a_j)^2}$$

$$\leq \sqrt{(x_{k_1} - a_1)^2 + (x_{k_2} - a_2)^2 \cdots (x_{k_n} - a_n)^2}$$

$$= |x_k - a|$$

$$< \varepsilon \implies \lim_{k \to \infty} x_j = a$$

7

" <== " $\forall \varepsilon > 0$ wähle mann $\forall j \in \{1, 2, \cdots n\}$, so gilt $\forall k \geq k_0$

$$|x_{k_j} - a_j| = \sqrt{(x_{k_1} - a_1)^2 + (x_{k_2} - a_2)^2 \cdots (x_{k_n} - a_n)^2}$$

$$= \sqrt{\left(\frac{\varepsilon}{\sqrt{n}}\right)^2 + \cdots + \left(\frac{\varepsilon}{\sqrt{n}}\right)^2}$$

$$= \sqrt{\varepsilon^2}$$

$$= \varepsilon \implies \lim_{k \to \infty} x_k = a$$

Punktfolgen im \mathbb{R}^n

Definition: Sei $(x_k) \subset \mathbb{R}^n$ eine Folge. Man nennt $a \in \mathbb{R}^n$ einen Häufungsspunkt der Folge (x_k) , falls es eine Teilfolge $(x_{ky}) \subset (x_k)$ mit $\lim_{y \to \infty} x_{ky} = a$ gibt.

10 Satz: Für eine Mengne $A \subset \mathbb{R}^n$ sind folgende Aussagen äquivalent:

- a) A ist abgeschlossen.
- b) Der Grenzwert einer jeden Folge $(x_k) \subset A$, die als Punktfolge in \mathbb{R}^n konvergiert, liegt in A

Beweis. 1) \Longrightarrow 2) Sei A abgeschlossen und sei $(x_k) \subset A$ eine Folge mit $\lim_{k\to\infty} x_k = a \in \mathbb{R}^n$. Falls x_n eine konsatante Teilfolge $(x_{k_\gamma}) \subset (x_k)$, so gilt $x_{k_\gamma} = a \forall \gamma \in \mathbb{N}$, und es folgt $a \in A$ wegen $(x_{k_\gamma}) \subset A \Longrightarrow a \in A$

Hat (x_k) keine konsatante Teilfolge, so gibt es ein $k_0 \in \mathbb{N}$ derart, dass $x_k \neq a \ \forall k \geq k_0$ gilt, offenbar ist a ein Häufungspunkt der Menge $\{x_k : k \geq k_0\} \subset A$ und deshalb auch $a \in HP(A)$. Nach Satz 8 ist $HP(A) \subset \overline{A}$, aber $\overline{A} = A$, denn A is abgeschlossen. Deshalb $a \in A$

2) \Longrightarrow 1) Sei $x \in HP(A)$. Dann gibt es eine Folge $(x_k) \subset A, x_k \neq x \ \forall x \in \mathbb{N}$, so dass $x = \lim_{k \to \infty} x_k$ gilt. Nach Voraussetzung liegt der Grenzwert jeder jonvergente Folge von Punkten aus A ebenfalls in A, und es folgt $x \in A$. Dann ist $HP(A) \subset A$ gezeigt, also ist $A = A \cup HP(A) = \overline{A}$, das heißt A - abgeschlossen

Definition: Eine Folge $(x_k) \subset \mathbb{R}^n$ heißt *Cauchy-Folge*, wenn es $\forall \varepsilon > 0 \ \exists k_0 \in \mathbb{N}$, s.d $|x_n - x_m| < \varepsilon \ \forall n, m \ge k_0$

11 Satz: Jede konvergente Folge $(x_k) \subset \mathbb{R}^n$ ist eine Cauchy-Folge

12 Satz: Sei $(x_k) \in \mathbb{R}^n$ eine Folge, es sei $x_k = (x_{k_1}, x_{k_2}, \dots, x_{k_n}) \, \forall \, k \in \mathbb{N}$. Dann ist (x_k) eine Cauchy-Folge genau dann, wenn jede der Folgen $x_{k_j}, \ j = 1, 2, \dots, n$ eine Cauchy-Folge in \mathbb{R} ist.

8 Punktfolgen im \mathbb{R}^n

 $\begin{array}{lll} \textit{Beweis.} & " \implies "(x_k) \text{ ist eine Cauchy-Folge} \implies \forall \varepsilon > 0 \; \exists k_0 \in \mathbb{N} \; \text{s.d.} \; |x_k - x_m| < \varepsilon \; \forall k, m \geq k_0 \implies \forall 1 \leq j \leq n \\ " \iff " \; (x_{k_j}) \text{-eine Cauchy-Folge} \; \forall 1 \leq j \leq \implies \; \forall \varepsilon > 0 \\ \exists k_{0_j} \in \mathbb{N} \; \text{s.d.} \; |x_{k_j} - s_{m_j}| < \varepsilon \; \forall k, m \geq k_0 \\ k_{0_j} \cdot \text{Sei} \; k_0 := \max \{k_{0_1}, \cdots, k_{0_n}\} \in \mathbb{N}. \; \text{Dann ist} \; |x_k - x_m| = \sqrt{(x_{k_1} - x_{m_1})^2 + \cdots + (x_{k_n} - x_{m_n})^2} < \sqrt{\left(\frac{\varepsilon}{\sqrt{n}}\right)^2 + \cdots + \left(\frac{\varepsilon}{\sqrt{n}}\right)^2} = \varepsilon \; \forall k, m \geq k_0 \implies (x_k) \text{-eine Cauchy-Folge.} \end{array}$

13 Satz: Jede Cauchy-Folge im \mathbb{R}^n ist konvergent, das heißt \mathbb{R}^n ist vollstandig.

§2 Funktionen, Abhildungen, Stetigkeit

```
Definition: Eine Funktion f:U\to\mathbb{R} heißt stetig and der Stell a\in U, wenn gilt: \forall \varepsilon>0 s.d |x-a|<\delta, x\in U\implies |f(x)-f(a)|<\varepsilon f heißt stetig ( auf U), wenn f in jedem Punkt a\in U stetig ist.
```

Wir verallgemeinern diese Stetigkeitsdefinition sogleich auf Abbildungen mit Werten in \mathbb{R}^m . Eine Abbildung $f: \mathbb{R}^n \subset U \to \mathbb{R}^m$ ist gegeben durch ein m-Tupel $f = (f_1, f_2, \cdots, f_m)$ von Funktionen $f_j: U \to \mathbb{R}, 1 \leq j \leq m \ \forall x \in U, f(x) \in \mathbb{R}^m, \ \text{d.h} \ f(x) = (f(x_1), \cdots, f(x_m))$

```
Definition: f: \mathbb{R}^n \subset U \to \mathbb{R}^m ist an der stelle a \in U stetig, wenn \forall \varepsilon > 0 \exists \delta > 0 s.d x \in U, |x-a| < \delta \implies |f(x) - f(a)| < \varepsilon. f heißt stetig (auf U), wenn \forall a \in U, f in a stetig ist.
```

14 Satz: Seien $U \subset \mathbb{R}^n$ offen, $a \in U$ und $f = (f_1, f_2, \dots, f_m) : U \to \mathbb{R}^m$ ein Abbildung. f ist stetig in a, genau dann, wenn jede der Komponentenfunktionen $f_j : U \to \mathbb{R}, j = 1, 2, \dots, m$ stetig in a ist.

Beweis. Der Beweis beruht wie der Beweis des Sates 9 auf der Äquivalenz der Maximumnorm auf \mathbb{R}^m zur euklidischen Norm auf \mathbb{R}^m , genauer auf der Beziehung

$$||x||_{\infty} := max\{|x_1|, \cdots, |x_m| \le \sqrt{m} ||x||_{\infty}\} \ \forall x \in \mathbb{R}^m$$

15 Satz: Sei $U \subset \mathbb{R}^n$ offen, sei $a \in U$. Eine Abbildung $f: U \to \mathbb{R}^m$ ist genau dann in a stetig, wenn zu jeder offenen umgebung $F = V(f(a)) \subset \mathbb{R}^m$ des Punktes $f(a)inn\mathbb{R}^m$ eine offene Umgebug $W = W(a) \subset \mathbb{R}^n$ des Punktes $a \in V$ existiert, so dass $f(W) = \{f(x) := x \in U \cap W\} \subset V$ gilt.

$$\begin{array}{l} \textit{Beweis.} \ " \ \Longrightarrow " \ f \ \text{ist stetig. sei} \ V = V(f(a)) \subset \mathbb{R}^m \ \text{eine offene Umgebung des Punktes a} \\ \Longrightarrow \exists \varepsilon > 0 \ \text{,s.d.} \ B(f(a),\varepsilon) \subset V(f(a)). \ f \ \text{ist stetig in a} \ \Longrightarrow \exists \delta > 0 \ \text{,s.d.} \ x \in \underbrace{B(a,\delta) \cap U}_{:=W} \\ \Longrightarrow f(x) \in B(f(a),\varepsilon) \subset V(f(a)) \\ \\ " \ \Longleftrightarrow " \ \text{Sei} \ \forall V(f(a)) \text{-offen s.d.} \ f(W) \subset V \ \text{gilt.} \ \forall \varepsilon > 0 \ \text{sei} \ V = N(f(a),\varepsilon) \\ \text{,dann} \ \exists W(a) \text{-offen s.d.} \ f(W) \subset B(f(a),\varepsilon) \ \Longrightarrow \ \exists \delta > 0 \ \text{s.d.} \ B(a,\delta) \subset W \\ \Longrightarrow f(B(a,\varepsilon) \cap U \subset B(f(a),\varepsilon) \ \Longrightarrow \ f \ \text{ist stetig in a} \\ \end{array}$$

16 Satz: Sei $U \subset \mathbb{R}^n$ offen und sei $f: U \to \mathbb{R}^m$ eine Abbildung. f ist genau dann auf U stetig, wenn das Urbild $f^{-1}(V) := \{x \in U : f(x) \in V\}$ einer jeden offene Teilmenge $V \subset \mathbb{R}^m$ unter f selbst wieder offen ist.

Beweis. "
$$\Longrightarrow$$
 " f ist stetig auf U . Sei V in \mathbb{R}^n offen. Sei $a \in f^{-1}(V)$, d.h. $f(a) \in V \xrightarrow{Satz15} \exists W(a) \subset \mathbb{R}^n$ offen, s.d $f(W(a) \cap V) \subset V \Longrightarrow \exists \delta > 0$ s.d. $B(a, \delta) \subset W(a) \Longrightarrow W(a) \subset f^{-1}(V) \Longrightarrow B(a, \delta) \subset f^{-1}(V)$
" \Longrightarrow " Für $a \in f^{-1}(V)$ sei $W(a) := f^{-1}(V) \xrightarrow{Satz15} f$ stetig in a

Für stetige Abbildung des \mathbb{R}^n mit Werten in \mathbb{R} gelten Rechenregeln, die denen für das Rechnen mit stetige Funktionen $f: \mathbb{R} \to \mathbb{R}$ entsprechen und die völlig analog zu beweisen sind:

17 Satz: Sei $U \subset \mathbb{R}^n$ offen. Die Funktionen $f: U \to \mathbb{R}$ und $g: U \to \mathbb{R}$ seien beide stetig an der Stelle $a \in U$, dann gilt :

- a) Die Funktion $(f+g): U \to \mathbb{R}$ ist stetig in a
- b) Die Funktion $(f \cdot g) : U \to \mathbb{R}$ ist stetig in a
- c) Falls $g(a) \neq 0$ existiert eine offene Umgebung V = V(g) mit $g(x) \neq 0 \ \forall x \in V$, die Funktion $\left(\frac{f}{g}\right): V \to \mathbb{R}$ ist stetig in a.

Bemerkung

Die Übertragung des Sates 17 auf dem Fall \mathbb{R}^m -wertiger Abbildungen ist nicht uneingeschränkt möglich. Folgende Version auf deren Beweis wie ebenfalls versichten können, ist aber gültig.

- 18 Satz: Sei $U \subset \mathbb{R}^n$ offen, die Abbildung $f: U \to \mathbb{R}^m$ sei stetig in a. Dann gilt:
 - a) Ist die Abbildung $g:V\to\mathbb{R}^m$ stetig in a, so ist auch die Abbildung $(f+g):U\to\mathbb{R}$ ist stetig in a.
 - b) Ist die Funktion $g:U\to\mathbb{R}$ stetig in a, so ist auch die Abbildung $(f\cdot g):U\to\mathbb{R}$ ist stetig in a.
 - c) Ist die Funktion $g:U\to\mathbb{R}$ stetig in a und $g(a)\neq 0$, so existiert eine offene Umgebung V=V(a) mit $g(x)\neq 0 \ \forall x\in V$; die Abbildung $\left(\frac{f}{g}\right):V\to\mathbb{R}$ ist stetig in a.

Auch die Komposition stetiger Abbildungen liefert wieder eine stetige Abbildung:

19 Satz: Seien $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ offen und seien $f: U \to V \subset \mathbb{R}^m$ sowie $g: V \to \mathbb{R}^k$ Abbildungen für die gilt: f ist stetig in $x_0 \in V, g$ ist stetig in $y_0 = f(x_0) \in V$. Dann ist die Abbildung $(g \cdot f): U \xrightarrow{f} V \xrightarrow{g} \mathbb{R}^k$ stetig in x_0

Beweis. Ist $W=W\left((g\cdot f)\left(x_0\right)\right)$ eine offene Umgebung des Punktes $|g\cdot f|=g(y_0)\in\mathbb{R}^k$, so gibt es wegen der Stetigkeitvon g an der Stell y_0 nach Satz 15 eine offene y_0 -Umgebung $W_1=W(y_0)=W\left(f\left(x_0\right)\right)\subset\mathbb{R}^m$ mit $g\left(w_1\right)\subset W$. Ebenso impliziert die Stetigkeit von f in x_0 die Existenz einer offenen Umgebung $W_2=W_2\left(x_0\right)$ mit $f\left(W_2\right)\subset W_1$. Offenbar ist dann $(g\cdot f)\left(W_2\right)\subset g\left(f\left(W_2\right)\right)\subset g\left(W_1\right)\subset W$, und die Stetigkeit von $(g\cdot f)$ in x_0 sit beweisen

Definition: Sei $D \subset \mathbb{R}^n$ und sei (f_k) ein Folge von Abbildungen $f_k : D \to \mathbb{R}^m$, $k \in \mathbb{N}$.

a) (f_k) heißt auf D gleichmäßig konvergent gegen $f:D\to\mathbb{R}^n$, wenn gilt:

$$\forall \varepsilon > 0 \; \exists k_0 \in \mathbb{N} \text{ s.d. } |f(x) - f_k(x)| < \varepsilon \; \forall x \in D, \; \forall k \geq k_0$$

b) (f_k) heißt auf D lokal-gleichmäßig konvergent gegen $f: D \to \mathbb{R}^n$, wenn es $\forall a \in D \exists V = V(a) \subset \mathbb{R}^n$ -offen s.d. die Folge $(f_k|_{D \cap V})$ auf $D \cap V$ gleichmäßig gegen $f|_{D \cap V}$ konvergiert.

Bemerkung

b) \iff a) . Gegenbeispiel: Sei $D=(0,+\infty)$ und $f_k(x):=\frac{1}{kx}$ für $1,2\cdots$ lokal-gleichmäßig konvergiert gegen 0, aber nicht gleichmäßig.

20 Satz: Sei $D \subset \mathbb{R}^n$ und sei (f_k) eine Folge stetiger Abbildungen $f_k : D \to \mathbb{R}^m$ welsche auf D lokal-gleichmäßig gegen $f : D \to \mathbb{R}^m$ konvergiert. Dann ist f stetig auf D

§4 Kompakte Mengen

Definition: Sei $S \subset \mathbb{R}^n$, $S \neq \emptyset$.

a) Unter dem $Durchmesser\ von\ \mathcal{S}\ \ \text{versteht}$ man die Zahl

$$d(\mathcal{S}) := \sup\{|x - y| : x, y \in \mathcal{S}\} \le \infty$$

b) S heißt beschränkt, falls $d(S) < \infty$ gilt.

Bemerkung

- a) Ist $\mathcal{S} \subset \mathbb{R}^n$ beschränkt und ist $x_0 \in \mathcal{S}$ gilt $\mathcal{S} \subset B(0,|x_0|+d(\mathcal{S}))$, denn $\forall y \in \mathcal{S}$ ist $|y| = |y-x_0+x_0| \leq |y-x_0|+|x_0| \leq d|\mathcal{S}|+|x|$.
- b) Ist $S \subset B(0,r)$, so folgt $d|S| \leq 2r$, denn $\forall x,y \in S$ gilt $|x-y| \leq |x| + |y| \leq 2r \implies d|S| \leq 2r$.
- c) Für $S_1 \subset S_2$ gilt $d(S_1) \subset (S_2)$

13 Kompakte Mengen

Definition: Sei $K \subset \mathbb{R}^n$ und sie J eine beliebige (endlich oder unendliche) Indexmenge.

- a) Eine Familie $(V_j)_{j\in J}$ von offenen Menge $V_j\subset \mathbb{R}^n$ heißt (offene) Überdeckung von K wenn $K\subset \cup V_j$ gibt.
- b) K heißt kompakt, wenn es zujeder offenen Überdeckung $(U_i)_{i\in I}$ der Menge K endlich viele Indizes $i_1,\cdots,i_m\in I$ gibt, so dass bereits

$$K \subset \bigcup_{p=1}^{m} U_{i_p}$$

gibt. Mann nennt ein solches endliches Mengensystem $\{U_{i_p}; p=1,2,\cdots m\}$ offener Menge der Überdeckung $(V_i)_{i\in I}$ von K, welsches die Eigenschaft $K\subset\bigcup_{p=1}^m U_{i_p}$ hat eine $(U_i)_{i\in I}$ zugehörige offene Teilüberdeckung der Menge \mathbb{R}

Beispiele

- a) Die Menge $K_1 := \left\{ \frac{1}{n}, \ n \in \mathbb{N} \right\} \subset \mathbb{R}$ nicht kompakt, weil sie nicht abgeschlossen ist.
- b) $K_2 \cup \{0\}$ ist aber kompakt.

Index

abgeschlossene Hülle, $4\,$

Dreiecksgleichung, 2

Häufungsspunkt, 5, 7

innerer Punkt, 5

nominierter Vektorraum, $2\,$

Norm, 2

Skalarproduckt, 1

Vecktorraum, 1