

Institute of Computer Engineering Research Division of Automation Systems

ITIA

Targetbeschreibung

Dokumentation

Dieter Etz dieter.etz@tuwien.ac.at

7. Mai 2020

Inhaltsverzeichnis

1	Ziel	Isetzung	4
2	Übe	ersicht	4
3	Auf	fbau Target 12	5
	3.1	Station 1: Verteilen	5
		3.1.1 Module	5
		3.1.1.1 Stapelmagazin	5
		3.1.1.2 Umsetzen	5
		3.1.2 Sensoren/Aktoren	5
	3.2	Station 2: Prüfen	6
		3.2.1 Module	6
		3.2.1.1 Erkennen	6
		3.2.1.2 Heben und Schieben	6
		3.2.1.3 Messen	6
		3.2.1.4 Rutsche	6
		3.2.2 Sensoren/Aktoren	7
	3.3	SPS Komponenten	8
4	Auf	fbau Target 34	9
	4.1	Station 3: Bearbeiten	9
		4.1.1 Module	9
		4.1.1.1 Rundschalttisch	9
		4.1.1.2 Bohren	9
		4.1.1.3 Bohrlochprüfung	10
		4.1.2 Sensoren/Aktoren	10
	4.2	Station 4: Handhaben	10
		4.2.1 Module	10
		4.2.1.1 Schwenkarm	10
		4.2.1.2 Rutsche	11
		4.2.2 Sensoren/Aktoren	11
	4.3		12
5	Auf	fbau Target 56	14
	5.1	Station 5: Puffern	14
		5.1.1 Module	14
		5.1.1.1 Förderband	14
		5.1.1.2 Vereinzelung	14
		5.1.2 Sensoren/Aktoren	15

	5.2	Statio	ation 6: Sortieren			
		5.2.1	Module		. 15	
			5.2.1.1	Sortierband	. 15	
			5.2.1.2	Rutsche	. 15	
		5.2.2	Sensore	n/Aktoren	. 16	
	5.3	SPS K	omponen	nten	. 16	
6	Auf	bau Ta	rget Rob	oter	18	
	6.1	Statio	n Robote	r	. 18	
		6.1.1	Module		. 18	
			6.1.1.1	Roboter	. 18	
			6.1.1.2	Roboter Handling	. 18	
			6.1.1.3	Roboter Assembly	. 19	
		6.1.2	Sensore	n/Aktoren	. 19	
	6.2	Robot	er Steuer	rungs Komponenten	. 20	
7	Syst	tem Ne	atzwark (Struktur	21	

1 Zielsetzung

Die vorliegende Beschreibung enthält die für die Lösung der Beispiele wesentlichen Informationen über Aufbau und Funktionsweise der Targetsysteme.

2 Übersicht

Das Gesamtsystem besteht aus 4 Targets, jedes Target besteht aus einer bzw. zwei Stationen.

Target	Station
Target 12	Station 1: Verteilen
Target 12	Station 2: Prüfen
Target 34	Station 3: Bearbeiten
Target 54	Station 4: Handhaben
Target 56	Station 5: Puffern
Target 50	Station 6: Sortieren
Target Rob	Station Rob

Der Ablauf und Materialfluss sind in Abbildung 1 dargestellt.

Abbildung 1: Gesamtsystem Struktur

Jedes Target verfügt über ein programmierbares Steuerungssystem. Bei Target 12, Target 34, und Target 56 ist dies eine industrielle SPS. Am Target Rob befindet sich ein programmierberer Roboter Controller.

3 Aufbau Target 12

3.1 Station 1: Verteilen

Das Modul Verteilen reicht die Werkstücke an die Station 2 "Prüfen" weiter.

3.1.1 Module

3.1.1.1 Stapelmagazin Das Stapelmagazin enthält die zu bearbeitenden Werkstücke, vereinzelt diese und bietet dabei Platz für 10 Werkstücke. Mithilfe eines optischen Sensors kann gemessen werden, ob das Magazin leer ist oder Werkstücke enthält. Mittels eines doppeltwirkenden Zylinders kann das unterste Werkstück aus dem Fallmagazin heraus geschoben werden. Das Magazin kann mit Werkstücken beliebiger Farbe aus beliebigem Material befüllt werden. Es ist zu beachten, dass diese, in der Reihenfolge in der sie im Magazin liegen, von unten nach oben der Reihe nach abgearbeitet werden. Das Magazin ist also eine Art FIFO-Buffer.

3.1.1.2 Umsetzen Der Umsetzer ist ein pneumatisches Handlinggerät und besteht aus einem Greifarm und einen Vakuumsauger. Der Greifarm ist als pneumatischer Schwenkantrieb realisiert und kann zwischen 0° bis 180° geschwenkt werden. Der Schwenkantrieb hat eine Endlagenabfrage, kann aber auch Positionen zwischen 0° und 180° anfahren. Der Vakuumsauger hat die Aufgabe, das Werkstück wärend des gesamten Schwenkvorganges anzusaugen und so zu transportieren.

3.1.2 Sensoren/Aktoren

Sensoren				
Name	Beschreibung			
S1_Cylinder_IsIn	Vereinzelungszylinder-Endschalter hinten = 1, wenn Vereinzelungszylinder hinten ist.			
S1_Magazine_IsEmpty	optischer Näherungsschalter = 1, wenn das Magazin leer ist.			
S1_Swivel_IsLeft	Schwenkarm in linker Endposition.			
S1_Swivel_IsRight	Schwenkarm in rechter Endposition.			
S1_Item_IsPresent	Werkstück befindet sich am Sauger.			
S1_Button[03]	4 farbige Taster.			

Aktoren				
Name	Beschreibung			
S1_Cylinder_Eject	Nächstes Werkstück aus dem Magazin entnehmen. (Einfachwirkend).			
S1_Vacuum_On	Werkstück ansaugen.			
S1_Vacuum_Off	Werkstück loslassen.			
S1_Swivel_Left	Schwenkarm nach links bewegen.			
S1_Swivel_Right	Schwenkarm nach rechts bewegen.			
S1_Lamp[03]	Lampen für die Taster.			

Hinweis: S1_Cylinder_Eject darf nur aktiviert werden wenn sich der Schwenkarm nicht in der linken Endposition befindet. Der Sauger könnte dadurch beschädigt werden.

Hinweis: S1_Swivel_Right darf nur aktiviert werden wenn sich der Lift in der unteren Endposition befindet und sich kein Werkstück am Lift befindet.

3.2 Station 2: Prüfen

3.2.1 Module

Die Station kann in vier Module eingeteilt werden, die jeweils die Hauptaufgaben dieser Station widerspiegeln: Erkennen, Messen, Transport (Heben und Schieben), Weitergeben (Rutsche).

3.2.1.1 Erkennen Dieses Modul beinhaltet 3 Näherungsschalter: kapazitiv, induktiv und optisch. Damit lassen sich Werkstücke in die Kategorien "Rot", "Metall", "Kunststoff" einteilen. In diesem Schritt können schon die ersten ungültigen Teile ausgeworfen werden (mittels Ausschiebezylinder, siehe Modul Heben und Schieben). Die folgende Tabelle gibt an, welcher Sensor bei welcher Art von Werkstück anspricht.

	induktiv	kapazitiv	optisch
Werkstück vorhanden		Х	
Metall	Χ	Χ	Χ
Kunststoff		X	
rot		Χ	Χ

Aufgrund der Eigenschaften der Sensoren werden folgende Verknüpfungen angewandt, um ein Werkstück zu klassifizieren (jeweils 1 Bit pro Klasse):

- Werkstück vorhanden := sensor_kap
- Werkstück aus Metall := sensor_ind
- Werkstück ist rot := sensor_opt ∧ ¬sensor_ind

Der kapazitive Sensor spielt eine große Rolle beim Implementieren der Funktionen dieser Station. Er bewegt sich mit dem Werkstück auf dem Modul Heben und Schieben im Gegensatz zu den anderen beiden Sensoren und kann somit zum Steuern des Ausschiebezylinders verwendet werden oder den eigentlichen Betrieb (Erkennen, Messen, Heben, Weitergeben) einleiten.

- **3.2.1.2 Heben und Schieben** Dieses Modul kann das Werkstück auf- und abbewegen. Um ein neues Werkstück (von der Station Verteilen) zu erhalten, muss die Förderanlage in den Grundzustand "unten" gebracht werden. Nach dem Erkennen des Werkstücks (siehe Modul Erkennen) wird das Werkstück mit einem Ausschiebezylinder ausgeworfen oder nach oben befördert. Am Anschlag der Hebevorrichtung kann die Höhe des Werkstücks kontrolliert (siehe Module Messen) und das Werkstück an das Modul Rutsche weitergereicht werden.
- **3.2.1.3 Messen** Dieses Modul enthält einen analogen Sensor, der die Werkstückshöhe angibt. Falls die Höhe einen bestimmten Wert über- bzw. unterschreitet, muss das Werkstück mit dem Modul Heben und Schieben wieder zum Auswurf (am unteren Ende der Hebevorrichtung) befördert werden.
- **3.2.1.4 Rutsche** Ist das Werkstück gültig (d.h., alle Kontrollen Farbe, Material, Höhe bestanden), wird es vom Ausschiebezylinder am Modul Heben und Schieben auf die Rutsche befördert. Die Rutsche ist leicht geneigt. Ein Stopper kann das Werkstück davor bewahren, zu einem ungünstigen Zeitpunkt zur nächsten Station zu wechseln. D.h., wenn die Station Bearbeiten für die Übergabe noch nicht bereit ist, kann der Stopper aktiviert werden. Sobald die nächste Station das OK gibt, soll der Stopper eingefahren werden und so das Werkstück weitergeben.

3.2.2 Sensoren/Aktoren

Sensoren			
Name	Beschreibung		
S2_Sensor_Ind	induktiver Näherungsschalter = '1', wenn ein metallisches Werkstück vorhanden ist.		
S2_Sensor_Cap	kapazitiver Näherungsschalter = '1', wenn ein Werkstück vorhanden ist.		
S2_Sensor_Opt	optischer Näherungsschalter = '1', wenn ein rotes oder metallisches Werkstück vorhanden ist.		
S2_Raiser_IsBot	Heben-Endschalter unten = '1', wenn sich die Hebevorrichtung in der Ausgangsposition "unten" befindet.		
S2_Raiser_IsTop	Heben-Endschalter oben = '1', wenn sich die Hebevorrichtung am oberen Anschlag befindet.		
S2_Pusher_IsIn	Ausschieber-Endschalter = '1', wenn der Ausschiebezylinder eingefahren ist.		
S2_Measure_Height	Linearpotentiometer zum Messen der Werkstückhöhe, der Wertebereicht liegt bei 16#00086C6C (827756).		
S2_Measure_IsReady	Linearpoti ist in Position gebracht (heruntergefahren) = '1', sonst '0'.		
S2_Button[03]	4 farbige Taster = '1', wenn er gedrückt ist.		

Aktoren		
Name	Beschreibung	
S2_Raiser_Up	Hebevorrichtung nach oben fahren; Mit '1' wird die Hebevorrichtung nach oben gefahren. Wenn '0' anliegt steht sie still.	
S2_Raiser_Down	Hebevorrichtung nach unten fahren; Mit '1' wird die Hebevorrichtung nach unten gefahren. Wenn '0' anliegt steht sie still.	
S2_Measure_Act	Linearpoti zum Messen der Höhe nach unten fahren; Um nach unten zu fahren, sollte '1' solange angelegt werden, bis S2_Measure_IsReady '1' wird und S2_Measure_Height gemessen wurde. Wenn anschließend '0' angelegt wird, fährt das Gerät selbstständig in die Ausgangsposition.	
S2_Push_Act	Ausschiebezylinder ausfahren; Solange dieser Ausgang auf '1' gesetzt wird, bewegt sich der Zylinder nach außen. Sobald der Wert auf '0' springt, wird der Zylinder eingezogen.	
S2_Stopper_Act	Stopper ausfahren; Dieser wird mit '1' blitzartig ausgefahren, sobald der Wert '0' ist wieder eingefahren (Rutsche freigegeben).	
S2_Lamp[03]	4 farbige Lampen für die Taster; Die Lampen leuchten bei '1'.	

Hinweis: S2_Raiser_Up und S2_Raiser_Down dürfen nur aktiviert werden wenn sich der Schwenkarm nicht in der rechten Endposition befindet.

3.3 SPS Komponenten

SPS

Device: CPU 1513-1 PN

ID: 6ES7 513-1AL02-0AB0

MAC: ac:64:17:57:b1:0b

IP: 192.168.162.33/25

HMI

Device: TP1500 Comfort V2

ID: 6AV2 124-0QC02-0AX1

MAC: ac:64:17:55:1e:42

IP: 192.168.162.37/25

IO Device				
Device:	IM155-6 PN HF			
ID:	6ES7	155-6AU01-0CN0		
MAC:	ac:64	:17:80:57:4a		
IP:	192.1	68.162.34/25		
	Slot	Modul		
	1	CM AS-i Master ST 3RK7 137-65A00-0BC1		
	2	DI 8x24VDC HF 6ES7 131-6BF00-0CA0		
	3	DI 8x24VDC HF 6ES7 131-6BF00-0CA0		
	4	AI 4xU/I 2-wire ST 6ES7 134-6HD01-0BA1		
	5	DQ 8x24VDC/0.5A HF 6ES7 132-6BF00-0CA0		
		DQ 8x24VDC/0.5A HF 6ES7 132-6BF00-0CA0		

	Eingänge				
Adresse	Label	Name	Beschreibung		
E0.0		S1_ButtonY	Taster gelb.		
E0.1		S1_ButtonG	Taster grün.		
E0.2		S1_ButtonW	Taster weiß.		
E0.3		S1_ButtonR	Taster rot.		
E32.0	B4	S1_Magazine_IsEmpty	Magazin ist leer.		
E32.1	1B2	S1_Cylinder_IsIn	Ausfurfzylinder ist in der hinteren Position.		
E32.2	3S2	S1_Swivel_IsLeft	Umsetzer in der linken Position.		
E33.2	3S1	S1_Swivel_IsRight	Umsetzer in der rechten Position.		
E3.4		S2_ButtonY	Taster gelb.		
E3.5		S2_ButtonG	Taster grün.		
E3.6		S2_ButtonW	Taster weiß.		
E3.7		S2_ButtonR	Taster rot.		
E33.0	1B2	S2_Raiser_IsBot	Lift in unterer Position.		
E33.1	B6	S2_Sensor_Cap	Kapazitiver Sensor.		
E33.2	2B1	S2_Pusher_IsIn	Ausstosser eingezogen.		
E33.3	1B1	S2_Raiser_IsTop	Lift in oberer Position.		
E33.4	B5	S2_Sensor_Ind	Induktiver Sensor.		
E33.5	В7	S2_Sensor_Opt	Optischer Sensor.		
E33.6	3B1	S2_Measure_IsReady	Messung ist in Position zum Messen.		
EW34		S2_Measure_Height	Gemessener Wert der Höhe des Werkstückes.		

	Ausgänge				
Adresse	Label	Name	Beschreibung		
A0.0		S1_LampY	Lampe gelb.		
A0.1		S1_LampG	Lampe grün.		
A0.2		S1_LampW	Lampe weiß.		
A0.3		S1_LampR	Lampe rot.		
A2.1	1Y1	S1_Cylinder_Eject	Wirft Werkstück aus Magazin aus.		
A2.4	2Y2	S1_Vacuum_On	Saugt das Werkstück an.		
A2.5	2Y1	S1_Vacuum_Off	Stoppt das Ansaugen des Werkstück.		
A2.6	3Y1	S1_Swivel_Right	Bewegt den Umsetzer nach rechts.		
A2.7	3Y2	S1_Swivel_Left	Bewegt den Umsetzer nach links.		
A3.4		S2_LampY	Lampe gelb.		
A3.5		S2_LampG	Lampe grün.		
A3.6		S2_LampW	Lampe weiß.		
A3.7		S2_LampR	Lampe rot.		
A4.0	1Y1	S2_Raiser_Down	Heber abwärts bewegen.		
A4.1	1Y2	S2_Raiser_Up	Heber aufwärts bewegen.		
A4.2	2Y1	S2_Push_Act	Ausschiebezylinder betätigen.		
A5.4	3Y1	S2_Measure_Act	Gerät zum Höhe messen herunterfahren.		
A5.6	4Y1	S2_Stopper_Act	Stopper betätigen (Rutsche).		

4 Aufbau Target 34

4.1 Station 3: Bearbeiten

4.1.1 Module

Die Hauptaufgabe dieser Station ist, wie der Name bereits verrät, das Formändern oder auch Behandeln eines Werkstückes. Daher sind in dieser Station folgende drei Module beinhaltet: Rundschalttisch, Bohren, Bohrlochprüfung.

- **4.1.1.1 Rundschalttisch** Der Rundschalttisch kann mittels Gleichstrommotor im Uhrzeigersinn bewegt werden. Mittels induktivem Näherungsschalter kann die Drehtellerposition abgefragt werden (Sensor=1, wenn Drehteller in Ausgangsposition, d.h., um 90° gedreht wurde). Das Vorhandensein eines Werkstückes kann an der Einwurf-Position mittels optischem Näherungsschalter abgefragt werden, dieser bleibt dabei solange auf "1"bis wieder die Ausgangsposition des Drehtellers erreicht wurde.
- **4.1.1.2 Bohren** Die Bohrmaschine selbst (der Gleichstrom-Motor) kann ein und ausgeschaltet werden. Weiters ist es möglich, den Bohrkopf abzusenken und wieder anzuheben. Am Fuße des Modules sitzt ein Spannzylinder, der das Werkstück zum Bohren fixieren kann, indem er ausgefahren wird.

Aktuell ist jedoch kein Bohrer im Bohrkopf eingesetzt.

4.1.1.3 Bohrlochprüfung Diese Prüfung wird durch einen Prüfzylinder realisiert, der bis zu seiner Endstellung nach unten gefahren wird; diese Endstellung kann jedoch nur bei Werkstücken mit Loch erreicht werden.

Der Prüfzylinder ist aktuell etwas höher montiert, sodass nicht wirklich geprüft wird und der Zylinder erreicht seine Endposition (=Prüfung OK) auch, wenn das Werkstück kein Loch besitzt.

4.1.2 Sensoren/Aktoren

Sensoren			
Name	Beschreibung		
S3_Checker_IsUp	Endschalter oben = '1', wenn sich die Prüfvorrichtung am oberen Anschlag befindet.		
S3_Checker_IsDown	Endschalter unten = '1', wenn sich die Prüfvorrichtung am unteren Anschlag befindet.		
S3_Item_IsPresent	Wert ist '1', wenn Werkstück eingelegt (= Drehscheibe ist "eingerastet" und Werkstück liegt in Start-Halterung).		
S3_Drill_IsDown	Wert ist '1', wenn Bohrmaschine ganz unten ist.		
S3_Drill_IsUp	Wert ist '1', wenn Bohrmaschine ganz oben ist.		
S3_Turntable_IsLocked	Wert ist '1', wenn die Drehscheibe "eingerastet" ist.		
S3_Button[03]	4 farbige Taster = '1', wenn er gedrückt ist.		

Aktoren		
Name Beschreibung		
S3_Turntable_Rot	Gleichstrommotor dreht Drehscheibe im Uhrzeigersinn, wenn Wert auf '1' gesetzt wird.	
S3_Drill_On	Bohrmaschine ist eingeschaltet, wenn Wert auf '1' gesetzt wird.	
S3_Checker_On	Prüfer fährt nach unten, wenn Wert auf '1' gesetzt wird.	
S3_Clamp_On	Fixierer fährt aus, wenn Wert auf '1' gesetzt wird.	
S3_Drill_Down	Bohrmaschine fährt nach unten, wenn Wert auf '1' gesetzt wird.	
S3_Drill_Up	Bohrmaschine fährt nach oben, wenn Wert auf '1' gesetzt wird.	
S3_Lamp[03]	4 farbige Lampen für die Taster; Die Lampen leuchten bei '1'.	

4.2 Station 4: Handhaben

4.2.1 Module

4.2.1.1 Schwenkarm Der Schwenkarm besteht aus vier Einheiten:

Rotationszylinder Dieser ist für die Drehbewegung zuständig, um das Werkstück von der Vorgängerstation zur Nachfolgerstation zu befördern. Mit zwei Sensoren können die beiden Endpositionen erkannt werden.

Hubzylinder Hierbei handelt es sich um einen Linearzylinder in Z-Richtung. Der Zylinder muss nach unten ausgefahren werden, um das Werkstück aufzunehmen und abzulegen. Für den Transport von der Vorgängerstation zur Nachfolgerstation muss sich der Zylinder in der oberen Position befinden.

Auszug Der Auszug ist ein Linearzylinder in X-Richtung. Der Zylinder muss ausgefahren sein, um das Werkstück von der Vorgängerstation aufzunehmen und auf die Nachfolgestation abzulegen. Wenn ein fehlerhaftes Werkstück transportiert wurde, dann ist der Hubzylinder in der Endposition des Rotationszylinders auszufahren ohne den Auszug zu verwenden, um es in der Rutsche abzulegen.

Vakuumsauger Dieser dient zum Ansaugen des Werkstücks, um es danach transportieren zu können.

Der Schwenkarm besitzt folgende acht Positionen:

Position	Beschreibung	
1	Ausgangsposition	
2	wie Position 1, Hubzylinder ausgefahren	
3	Position Vorgängerstation	
4	wie Position 3, Hubzylinder ausgefahren	
5	Position Schlechtteile	
6	wie Position 5, Hubzylinder ausgefahren	
7	Position Folgestation	
8	wie Position 7, Hubzylinder ausgefahren	

4.2.1.2 Rutsche Dieses Modul wird verwendet, um fehlerhafte Arbeitsstücke auszusortieren. Die fehlerhaften Arbeitsstücke müssen von den vorherigen Stationen als solche erkannt werden und können mit Hilfe des Schwenkarmes auf der Rutsche abgelegt werden. Maximal können vier Stücke aussortiert werden. Das Entfernen aus der Rutsche muss händisch erfolgen, der Schwenkarm ist dazu nicht geeignet.

4.2.2 Sensoren/Aktoren

Sensoren		
Name	Beschreibung	
S4_CylinderZ_IsUp	Endschalter Hubzylinder oben.	
S4_CylinderZ_IsDown	Endschalter Hubzylinder unten.	
S4_CylinderX_IsOut	Enschalter Auszug vorne.	
S4_CylinderX_IsIn	Endschalter Auszug hinten.	
S4_Swivel_IsLeft	Endschalter Drehzylinder links.	
S4_Swivel_IsRight	Endschalter Drehzylinder rechts.	
S4_Item_IsPresent	Werkstück befindet sich am Sauger.	
S4_Button[03]	4 farbige Taster = '1', wenn er gedrückt ist.	

Aktoren		
Name Beschreibung		
S4_Swivel_Right	Drehzylinder nach rechts bewegen.	
S4_Swivel_Left	Drehzylinder nach links bewegen.	
S4_Vacuum_On	Saugen ein.	
S4_Vacuum_Off	Saugen aus.	
S4_CylinderZ_Down	Hubzylinder nach unten fahren.	
S4_CylinderZ_Up	Hubzylinder nach oben fahren.	
S4_CylinderX_In	Auszug einfahren.	
S4_CylinderX_Out	Auszug ausfahren.	
S4_Lamp[03]	4 farbige Lampen für die Taster; Die Lampen leuchten bei '1'.	

4.3 SPS Komponenten

	SPS
Device:	CPU 1513-1 PN
ID:	6ES7 513-1AL02-0AB0
MAC:	ac:64:17:57:a5:62
IP:	192.168.162.49/25

IO Device				
Device:	IM15	IM155-6 PN HF		
ID:	6ES7	155-6AU01-0CN0		
MAC:	ac:64	ac:64:17:80:57:6e		
IP:	192.1	68.162.50/25		
	Slot	Modul		
	1	CM AS-i Master ST 3RK7 137-65A00-0BC1		
	2	DI 8x24VDC HF 6ES7 131-6BF00-0CA0		
	3	DI 8x24VDC HF 6ES7 131-6BF00-0CA0		
	4	DQ 8x24VDC/0.5A HF 6ES7 132-6BF00-0CA0		
	5	DQ 8x24VDC/0.5A HF 6ES7 132-6BF00-0CA0		

	Eingänge			
Adresse	Label	Name	Beschreibung	
E5.0		S3_ButtonY	Taster gelb.	
E5.1		S3_ButtonG	Taster grün.	
E5.2		S3_ButtonW	Taster weiß.	
E5.3		S3_ButtonR	Taster rot.	
E32.0	2B2	S3_Checker_IsUp	Prüfer befindet sich in der oberen Position.	
E32.3	2B1	S3_Checker_IsDown	Prüfer befindet sich in der unteren Position.	
E32.4	B8	S3_Item_IsPresent	Werkstück befindet sich in der ersten Position.	
E32.6	1B2	S3_Drill_IsDown	Bohrmaschine befindet sich in der oberen Position.	
E32.5	1B1	S3_Drill_IsUp	Bohrmaschine befindet sich in der unteren Position.	
E32.7	В7	S3_Turntable_IsLocked	Drehtisch ist eingerastet.	
E8.4		S4_ButtonY	Taster gelb.	
E8.5		S4_ButtonG	Taster grün.	
E8.6		S4_ButtonW	Taster weiß.	
E8.7		S4_ButtonR	Taster rot.	
E33.0	1B1	S4_Swivel_IsRight	Endschalter Drehzylinder rechts.	
E33.1	3B2	S4_CylinderZ_IsDown	Endschalter Hubzylinder unten.	
E33.2	2B1	S4_CylinderX_IsIn	Endschalter Auszug eingefahren.	
E33.3	3B1	S4_CylinderZ_IsUp	Endschalter Hubzylinder oben.	
E33.4		S4_Item_IsPresent	Werkstück befindet sich am Sauger.	
E33.5	1B2	S4_Swivel_IsLeft	Endschalter Drehzylinder links.	
E33.6	2B2	S4_CylinderX_IsOut	Enschalter Auszug ausgefahren.	

Ausgänge			
Adresse	Label	Name	Beschreibung
A5.0		S3_LampY	Lampe gelb.
A5.1		S3_LampG	Lampe grün.
A5.2		S3_LampW	Lampe weiß.
A5.3		S3_LampR	Lampe rot.
A7.0	2Y1	S3_Checker_On	Prüfer in Prüfposition bringen.
A7.2	3Y1	S3_Clamp_On	Spannzylinder ein.
A7.4	1Y2	S3_Drill_Down	Bohrmaschine nach unten bewegen.
A7.5	1Y1	S3_Drill_Up	Bohrmaschine nach oben bewegen.
A32.0	K2/M2	S3_Turntable_Rot	Drehteller Rechtsdrehung aktivieren.
A32.1	K1/M1	S3_Drill_On	Bohrmaschine einschalten.
A8.4		S4_LampY	Lampe gelb.
A8.5		S4_LampG	Lampe grün.
A8.6		S4_LampW	Lampe weiß.
A8.7		S4_LampR	Lampe rot.
A9.0	1Y2	S4_Swivel_Right	Drehzylinder nach rechts bewegen.
A9.1	1Y1	S4_Swivel_Left	Drehzylinder nach links bewegen.
A9.2	4Y2	S4_Vacuum_On	Saugen ein.
A9.3	4Y1	S4_Vacuum_Off	Saugen aus.
A10.4	3Y1	S4_CylinderZ_Down	Hubzylinder nach unten fahren.
A10.5		S4_CylinderZ_Up	Hubzylinder nach oben fahren.
A10.6	2Y1	S4_CylinderX_Out	Auszug ausgefahren.
A10.7	2Y2	S4_CylinderX_In	Auszug eingefahren.

Hinweis: S4_CylinderZ_Down darf nur aktiviert werden wenn sich der Schwenkarm nicht in X- oder Y-Richtung bewegt. Der Sauger bzw. die Hubstange könnten dadurch beschädigt werden.

5 Aufbau Target 56

5.1 Station 5: Puffern

5.1.1 Module

5.1.1.1 Förderband Zum Transport des Werkstücks verfügt die Station Puffern über ein Förderband, welches durch einen Motor angetrieben wird. Wenn der Motor aktiv ist, bewegt sich das Band immer von links nach rechts. Am Anfang und am Ende des Bandes befindet sich jeweils ein Näherungsschalter.

5.1.1.2 Vereinzelung Die tatsächliche Pufferung wird durch die Vereinzelung durchgeführt. Dazu wird ein Kurzhubzylinder verwendet, welcher eine Art Weiche bedient. Dabei wird, wenn der Zylinder sich oben befindet, kein Werkstück durchgelassen. Sobald der Zylinder nach unten bewegt wird, wird exakt ein Werkstück durchgelassen. Mögliche weitere Stücke werden weiterhin gepuffert. Um feststellen zu können, ob sich ein Werkstück auf Höhe des Mechanismus befindet ist auch hier ein Näherungssensor installiert. Die Stellung des Zylinders kann durch zwei Endschalter (oben und unten) abgefragt werden.

5.1.2 Sensoren/Aktoren

Sensoren		
Name	Beschreibung	
S5_Cylinder_IsDown	Endschalter (-1B1) ist 0, wenn der Zylinder ganz unten ist, also gerade ein Werkstück durchlässt.	
S5_Cylinder_IsUp	Endschalter (-1B2) ist 0, wenn der Zylinder ganz oben ist, also gerade alle Werkstücke aufhält.	
S5_ItemLeft_IsPresent	Näherungsschalter Links (-B3) wird 0, wenn er unterbrochen wird.	
S5_ItemMiddle_IsPresent	Näherungsschalter Mitte (-B5) wird 0, wenn er unterbrochen wird.	
S5_ItemRight_IsPresent	Näherungsschalter Rechts (-B4) wird 0, wenn er unterbrochen wird.	
S5_Button[03]	4 farbige Taster = '1', wenn er gedrückt ist.	

Aktoren		
Name	Beschreibung	
S5_Belt_On	Gleichstrommotor zum Antrieb des Förderbandes (-M1), Steuerung über K1.	
S5_Cylinder_Act	Kurzhubzylinder (-1Y1) zur Steuerung der Vereinzelung.	
S5_Lamp[03]	4 farbige Lampen für die Taster; Die Lampen leuchten bei '1'.	
S5_SignalTower[02]	Ampel mit den Farben rot, gelb, grün.	

5.2 Station 6: Sortieren

5.2.1 Module

- **5.2.1.1 Sortierband** Dieses Modul verfügt über zwei Kurzhubzylinder, mit denen zwei Materialweichen geschaltet werden können. Das Sortierband wird durch einen Gleichstromgetriebemotor angetrieben und befördert Werkstücke von links nach rechts. Um zu erkennen, ob tatsächlich ein Werkstück über das Band transportiert wird, kann die Lichtschranke im linken Bereich des Bandes verwendet werden. Die Zylinder für die Weichen verfügen über Endschalter, mit denen auf die Position der jeweiligen Weiche geschlossen werden kann. Außerdem verfügt dieses Modul über eine Schiene, die links vom Abgang zur linken Rutsche angebracht ist und die über Druckluft ausgefahren werden kann. Mit dieser Schiene und der linken Weiche ist es möglich, das Sortierband so abzusperren, dass keine Werkstücke mehr weitertransportiert werden können und somit keine Materialen in die Rutschen gelangen können.
- **5.2.1.2 Rutsche** Insgesamt gibt es drei Rutschen, die nach hinten geneigt sind, damit neu eingetroffene Werkstücke die entsprechende Rutsche bis ans Ende hinunterrutschen können. Für jeden Werkstück-Typ gibt es eine Rutsche. In die linke Rutsche werden die roten Werkstücke einsortiert, in die mittlere Rutsche die Werkstücke aus Metall und in die rechte Rutsche gelangen die schwarzen Werkstücke. Quer über die drei Rutschen ist am oberen Ende eine Reflex-Lichtschranke installiert, die unterbrochen wird, sobald ein Werkstück in eine der drei Rutschen geleitet wird bzw. erkennen lässt, ob eine Rutsche ihre Aufnahmekapazität erschöpft hat.

5.2.2 Sensoren/Aktoren

Sensoren		
Name	Beschreibung	
S6_Button[03]	4 farbige Taster = '1', wenn er gedrückt ist.	
S6_Gate1_IsOpen	Endschalter (-1B1) ist 1, wenn die linke Weiche offen ist.	
S6_Gate1_IsClosed	Endschalter (-1B2) ist 1, wenn die linke Weiche geschlossen ist.	
S6_Gate2_IsOpen	Endschalter (-2B1) ist 1, wenn die rechte Weiche offen ist.	
S6_Gate2_IsClosed	Endschalter (-2B2) ist 1, wenn die rechte Weiche geschlossen ist.	
S6_ItemInput_IsPresent	Lichtschranke (-B5) ist 1, wenn die Schranke nicht unterbrochen ist.	
S6_ItemSlide_IsPresent	Reflex-Lichtschranke (-B6) ist 1, wenn die Lichtschranke unterbrochen ist.	

Aktoren		
Name	Beschreibung	
S6_Lamp[03]	4 farbige Lampen für die Taster; Die Lampen leuchten bei '1'.	
S6_Belt_On	Gleichstromgetriebemotor (-M1) dient zum Antrieb des Sortierbandes und wird über ein Relais (-K1) gesteuert.	
S6_Gate1_Act	Kurzhubzylinder (-1Y1) dient zum Steuern der linken Weiche.	
S6_Gate2_Act	Kurzhubzylinder (-1Y2) dient zum Steuern der rechten Weiche.	
S6_Stopper_Act	Absperrschiene (-1Y3) dient zum Blockieren der linken Rutsche.	

5.3 SPS Komponenten

	SPS
Device:	CPU 1513-1 PN
ID:	6ES7 513-1AL02-0AB0
MAC:	ac:64:17:57:b3:25
IP:	192.168.162.65/25

IO Device			
Device:	IM155-6 PN HF		
ID:	6ES7	6ES7 155-6AU01-0CN0	
MAC:	ac:64	ac:64:17:80:58:37	
IP:	192.1	68.162.66/25	
	Slot	Modul	
	1	CM AS-i Master ST 3RK7 137-65A00-0BC1	
	2	DI 8x24VDC HF 6ES7 131-6BF00-0CA0	
	3	DI 8x24VDC HF 6ES7 131-6BF00-0CA0	
	4	DQ 8x24VDC/0.5A HF 6ES7 132-6BF00-0CA0	
	5	DQ 8x24VDC/0.5A HF 6ES7 132-6BF00-0CA0	

	Eingänge			
Adresse	Label	Name	Beschreibung	
E10.0		S5_ButtonY	Taster gelb.	
E10.1		S5_ButtonG	Taster grün.	
E10.2		S5_ButtonW	Taster weiß.	
E10.3		S5_ButtonR	Taster rot.	
E32.0	1B2	S5_Cylinder_IsUp	Endschalter Zylinder oben (alle Werkstücke aufhalten).	
E32.1	B5	S5_ItemMiddle_IsPresent	Näherungsschalter Mitte (beim Vereinzelungsmechanismus).	
E32.2	B3	S5_ItemLeft_IsPresent	Näherungsschalter Links (am Anfang des Förderbandes).	
E32.3	1B1	S5_Cylinder_IsDown	Endschalter Zylinder unten (ein Werkstück wird durchgelassen).	
E32.4	B4	S5_ItemRight_IsPresent	Näherungsschalter Rechts (am Ende des Förderbandes).	
E12.0		S6_ButtonY	Taster gelb.	
E12.1		S6_ButtonG	Taster grün.	
E12.2		S6_ButtonW	Taster weiß.	
E12.3		S6_ButtonR	Taster rot.	
E33.0	B5	S6_ItemInput_IsPresent	Wert ist 1, solange die Schranke nicht unterbrochen ist.	
E33.1	1B1	S6_Gate1_IsOpen	Wert ist 1, wenn die linke Weiche offen ist.	
E33.2	1B2	S6_Gate1_IsClosed	Wert ist 1, wenn die linke Weiche geschlossen ist.	
E33.3	2B2	S6_Gate2_IsOpen	Wert ist 1, wenn die rechte Weiche geschlossen ist.	
E33.4	В6	S6_ItemSlide_IsPresent	Wert ist 1, wenn die Lichtschranke unterbrochen ist.	
E33.5	2B1	S6_Gate2_IsClosed	Wert ist 1, wenn die rechte Weiche offen ist.	

	Ausgänge			
Adresse	Label	Name	Beschreibung	
A10.0		S5_LampY	Lampe gelb.	
A10.1		S5_LampG	Lampe grün.	
A10.2		S5_LampW	Lampe weiß.	
A10.3		S5_LampR	Lampe rot.	
A11.4		S5_SignalTowerG	Ampel grün.	
A11.5		S5_SignalTowerY	Ampel gelb.	
A11.0		S5_SignalTowerR	Ampel rot.	
A32.0	K1/M1	S5_Belt_On	Band läuft von links nach rechts, wenn Wert 1 ist.	
A12.4	1Y1	S5_Cylinder_Act	Zylinder aktivieren (ein Werkstück durchlassen).	
A12.0		S6_LampY	Lampe gelb.	
A12.1		S6_LampG	Lampe grün.	
A12.2		S6_LampW	Lampe weiß.	
A12.3		S6_LampR	Lampe rot.	
A33.0	M1/K1	S6_Belt_On	Band läuft von links nach rechts, wenn Wert 1 ist.	
A14.4	1Y2	S6_Gate2_Act	Zylinder für die rechte Weiche.	
A14.5	1Y1	S6_Gate1_Act	Zylinder für die linke Weiche.	
A14.6	1Y3	S6_Stopper_Act	Ausfahrbare Schiene zum Absperren der linken Rutsche.	

Hinweis: S5_Belt_On und S6_Belt_On dürfen nicht zeitgleich aktiviert werden. Der Einschaltstrom beider Motoren überlastet die Netzteile!

6 Aufbau Target Roboter

6.1 Station Roboter

Die Roboterstation besteht primär aus 3 Modulen, der Roboter mit seinem Multifunktionsgripper, dem Handling Modul und dem Assembly Modul.

6.1.1 Module

- **6.1.1.1 Roboter** Der Roboter verfügt über 6 Achsen und kann sich im 3D Raum frei bewegen. Positionen die angefahren werden sollen müssen durch Angabe von XYZ Koordinaten entweder erlernt oder im Programm zur Verfügung gestellt werden. Der Multifunktionsgripper besitzt Ausnehmungen um Kolben, Deckel und das Basisbauteil aufzunehmen. Die Farbe des Basisbauteils kann durch einen entsprechend eingestellten Reflektionssensor in binärer Weise (Bauteil nicht schwarz) erfasst werden.
- **6.1.1.2 Roboter Handling** Das Handling Modul besteht aus einer Rutsche die Basis-Bauteile einer Abhohlposition zuführt. Bauteile werden in dieser Abhohlposition mittels eines Sensors erfasst und können vom Roboter aufgenommen werden. Als Ablagen stehen zwei Zylindermagazine sowie ein Ablageblock zur Verfügung.

Eine Orientierungsausnehmung am Ablageblock ermöglicht das Ablegen und erneut aufnehmen des Basis-Bauteils. In der Montageausnehmung wird das Bauteil und die zusätzlichen Bestandteile zum Endprodukt vereint.

Die Ortientierung des Basisbauteils bzw. des Deckels kann mittels einer Reflexlichtschranke erfasst werden. Die Rotation des Deckels erfolgt dabei um eine Rotationsachse die von einem passenden Metallstift vorgegeben ist.

6.1.1.3 Roboter Assembly Das Assembly Modul stellt Federn, Kolben und Deckel zur Verfügung. Das Federlager ist ein Zylinderlager aus dem mittels eines Schiebers Federn entnommen und angeboten werden. Ein Sensor ermittelt ob Federn zur Verfügung stehen, der Schieber kann pneumatisch aus und eingefahren werden. Im ausgefahrenen Zustand können Federn vom Roboter aufgenommen werden.

Kolben werden dem Roboter auf einer Lochplatte mit zwei Reihen a 5 Kolben angeboten. Der Füllstand kann dabei nicht überprüft werden.

Deckeln werden von einem pneumatischen Schieber aus einem Zylinderlager entnommen. Der Schieber befördert die Deckel in eine Ablageposition in der sie von einem Sensor erfasst werden. Der Schieber muss zur Aufnahme des Deckels eingefahren werden.

Eine Rutsche dient als Ablage und Entnahmespunkt für fertiggestellte Bauteile.

6.1.2 Sensoren/Aktoren

Sensoren		
Name	Beschreibung	
RobPartOriented	Wert ist 1 wenn Bauteil ausgerichtet ist	
RobPartAvailable	Wert ist 1 wenn Bauteil vorhanden ist	
RobStart	Taster, Wert ist 1 wenn gedrückt	
RobStop	Taster, Wert ist 0 wenn gedrückt	
RobReset	Taster, Wert ist 1 wenn gedrückt	
RobSpringRetracted	Wert ist 1 wenn der Federschieber eingefahren ist	
RobSpringExtended	Wert ist 1 wenn der Federschieber ausgefahren ist	
RobSpringAvailable	Wert ist 1 wenn eine Feder vorhanden ist	
RobCapRetracted	Wert ist 1 wenn der Deckelschieber eingefahren ist	
RobCapExtended	Wert ist 1 wenn der Deckelschieber ausgefahren ist	
RobCapAvailable	Wert ist 1 wenn ein Deckel in der Abhohlposition liegt	
RobGripperNotBlack	Wert ist 1 wenn das Bauteil nicht schwarz ist	

Aktoren		
Name	Beschreibung	
RobStartLed	Lampe leuchtet bei 1	
RobResetLed	Lampe leuchtet bei 1	
RobLed1	Lampe leuchtet bei 1	
RobLed2	Lampe leuchtet bei 1	
RobSpringPusher	Federschieber ausfahren	
RobCapPusher	Deckelschieber ausfahren	

6.2 Roboter Steuerungs Komponenten

OPC UA Gateway		
Device:	RaspberryPi 3B	
ID:	BCM2835 (a02082)	
MAC:	b8:27:eb:09:db:ca	
IP:	192.168.162.84/25	
PORT:	4840	

Telnet Controller		
Device:	Robot Controller	
ID:	CR750-D	
MAC:	38:e0:8e:9e:89:8d	
IP:	192.168.162.82/25	
PORT:	10003	

Sensoren werden über den Befehl **M_In(<Index>)** in MELFA-BASIC V, bzw. in OPC UA über die Methode **readInput(<Index>)** mit der Nodeld **ns=?;i=?**, gelesen.

Sensoren		
Index	Beschreibung	
1	Modul Roboterhandling - Werkstück ausgerichtet	
2	Modul Roboterhandling - Werkstück in Abholposition	
3	Bedienfeld - Start (Schließer)	
4	Bedienfeld - Stopp (Öffner)	
5	Bedienfeld - Reset (Schließer)	
7	Bedienfeld - COM Brücke (I7)	
8	Modul Robotermontage (Federmagazin) - Schieber eingefahren	
9	Modul Robotermontage (Federmagazin) - Schieber ausgefahren	
10	Modul Robotermontage (Federmagazin) - Feder vorhanden	
12	Modul Robotermontage (Deckelmagazin) - Schieber eingefahren	
13	Modul Robotermontage (Deckelmagazin) - Schieber ausgefahren	
15	Modul Robotermontage (Deckelmagazin) - Deckel auf Ablage	
900	Modul Roboter (Hand) - Teil nicht schwarz	

Aktoren werden über den Befehl M_Out(<Index>)=<value> in MELFA-BASIC V, bzw. in OPC UA über den Befehl writeOutput(<Index>,<value>) mit der Nodeld ns=?;i=?, beschrieben.

Aktoren		
Index	Beschreibung	
0	Bedienfeld - Start (LED)	
1	Bedienfeld - Reset (LED)	
2	Bedienfeld - Q1 (LED)	
3	Bedienfeld - Q2 (LED)	
4	Bedienfeld - COM Brücke (Q4)	
8	Modul Robotermontage (Federmagazin) - Schieber ausfahren	
12	Modul Robotermontage (Deckelmagazin) - Schieber ausfahren	

Abbildung 2: Robot coordinate system in XYZ mode

Gripper			
MB5-Command	OPC UA	Beschreibung	
Mov(X,Y,Z,A,B,C)	move(X,Y,Z,A,B,C): ns=?;i=?	Modul Roboter (Hand) - Position, Rotation anfahren	
HOpen 1	gripperOpen(): ns=?;i=?	Modul Roboter (Hand) - Gripper öffnen	
HClose 1	gripperClose(): ns=?;i=?	Modul Roboter (Hand) - Gripper schließen	

7 System Netzwerk Struktur

Abbildung 3: Netzwerk Struktur

TU Wien
Faculty of Informatics
Institute of Computer Engineering
Automation Systems Group
A-1040 Wien, Treitlstr. 1-3/4. Floor/E191-3

www.auto.tuwien.ac.at