

Retificador com Center Tap com Diodo Ideal

Retificador com Center Tap com Diodo Ideal

Retificador com Center Tap com Diodo Real.

• A cada semiciclo do sinal de entrada os diodos D_1 e D_2 se comportam como retificadores de meia onda

$$V_{o(av)} = \frac{2V_{o(m)}}{\pi} = \frac{2\left(V_{i(m)} - V_K\right)}{\pi} \frac{R_L}{r_d + R_L} \qquad V_{o(rms)} = \frac{V_{o(m)}}{\sqrt{2}} = \frac{\left(V_{i(m)} - V_K\right)}{\sqrt{2}} \frac{R_L}{r_d + R_L}$$

Especificação dos Diodos em Center Tap: V_{RRM}

Percorrendo a malha de interesse tem-se

$$+V_{o(m)} + V_{i(m)(AT-CT)} - PIV = 0$$

ou

$$PIV = V_{i(m)(AT-CT)} + V_{o(m)}$$

Especificação dos Diodos em Center Tap: V_{RRM}

$$V_{RRM} \ge PIV$$

$$PIV = V_{i(m)(AT-CT)} + V_{o(m)}$$

$$PIV = 2V_{i(m)(AT-CT)}\Big|_{Diodo\ Ideal}$$

$$PIV = V_{i(m)(AT-CT)} + \left[V_{i(m)(AT-CT)} - V_K\right] \frac{R_L}{r_d + R_L} \bigg|_{Diodo \text{ Re }al}$$

Especificação dos Diodos em Center Tap: I_{FRM} e I_{FAV}

$$\begin{split} I_{FRM} &\geq I_{D(m)} \\ I_{FAV} &\geq I_{D(av)} \\ I_{D(m)} &= \frac{V_{o(m)}}{R_L} \\ I_{D(av)} &= \frac{I_{D(m)}}{\pi} = \frac{I_{o(av)}}{2} \end{split}$$

Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, 8º ed.

Forma da Ondas em Retificadores com Center Tap com Diodos

$$V_{o(av)} = \frac{2\left[V_{i(m)(AT-CT)} - V_K\right]}{\pi} \frac{R_L}{r_d + R_L}$$

$$V_{o(rms)} = \frac{\left[V_{i(m)(AT-CT)} - V_K\right]}{\sqrt{2}} \frac{R_L}{r_d + R_L}$$

$$V_{o(rms)} = \frac{\left[V_{i(m)(AT-CT)} - V_K\right]}{\sqrt{2}} \frac{R_L}{r_d + R_L}$$

$$V_{o(rms)} = \sqrt{5,741^2 + 3,03^2} = 6,49 \text{ V}$$

CH1: $V_{i(S)}$, CH2: V_{R1}

CH1:V_{D1}

Forma da Ondas em Retificadores com Center Tap com Diodos

 $V_{i(m)(AT-CT)} = 10 \text{ V}$, $R_L = 1 \text{ k}\Omega$ e diodo de Si com r_d desprezível

Especificação do Transformador com Center Tap

$$P_{Trafo} = V_{s(rms)(AT-AT)} I_{s(rms)(CT)}$$

$$I_{s(rms)(CT)} = \sqrt{I_{s_1(rms)}^2 + I_{s_2(rms)}^2}$$

$$I_{s_1(rms)} = I_{s_2(rms)} = I_{s(rms)} = \frac{I_{s(m)}}{2}$$

$$I_{s(m)} = I_{D(m)} = I_{o(m)} = \frac{V_{o(m)}}{R_L}$$

$$I_{s(rms)(CT)} = \sqrt{2} I_{s(rms)}$$

Retificador com Center Tap

$$\begin{split} I_{FRM} & \geq I_{D(m)} \\ I_{D(m)} & = I_{o(m)} & I_{FAV} \geq I_{D(av)} \\ I_{s(m)} & = I_{o(m)} = \frac{V_{o(m)}}{R_L} \\ I_{D(av)} & = \frac{I_{o(av)}}{2} \\ I_{o(av)} & = \frac{V_{o(av)}}{R_L} \\ V_{o(av)} & = \frac{2V_{o(m)}}{\pi} \\ V_{o(m)} & = \left[V_{i(m)(AT-CT)} - V_K\right] \frac{R_L}{r_d + R_L} \\ V_{RRM} & \geq V_{i(m)(AT-CT)} + V_{o(m)} \end{split}$$

Exemplo 3.5.1. No retificador de onda completa com CT da figura a seguir, sabe-se que

- A rede elétrica é de 220 (V_{rms})/60 Hz
- O Trafo utilizado: 220 (V_{ef}) /(9 + 9) (V_{ef}) 5 (W)
- Os Diodos são de Si e tem resistência dinâmica média desprezível
- A carga \mathbf{R}_{L} é de 50 $\mathbf{\Omega}$.

Pede-se determinar:

- a) As tensões Média e Eficaz na carga R_L .
- b) A componente contínua e a componente alternada da tensão de saída.
- c) As formas de onda da tensão e da corrente na carga, esboçadas em amplitude em função de tempo.
- d) As formas de onda da tensão e da corrente sobre os diodos D_1 e D_2 , esboçadas em amplitude em função do tempo.
- e) As formas de onda da tensão e da corrente no secundário do Trafo, esboçadas em amplitude em função de tempo.
- f) Os valores mínimos para os parâmetros V_{RRM} , I_{FRM} e I_{FAV} dos diodos utilizados.
- g) Se o transformador utilizado suporta o nível de potência dele solicitado.

Pede-se determinar:

a) $\,$ As tensões Média e Eficaz na carga $R_{
m L}$.

$$V_{P(rms)} = 220V : V_{S(rms)(AT-CT)} = 9V : f = 60 Hz$$

$$R_L = 50\Omega : r_d = 0\Omega : P_{Trafo} = 5W$$

Pede-se determinar:

b) A componente contínua e a componente alternada da tensão de saída. $V_{o(rms)} = 8,5050(V)$ $V_{o(av)} = 7,6572(V)$

$$V_{o(m)} = 12,03(V)$$
 $V_{i(m)} = 12,7279(V)$

c) As formas de onda da tensão e da corrente na carga, esboçadas em amplitude em função de tempo.

Pede-se determinar:

d) As formas de onda da tensão e da corrente sobre o diodo, esboçadas em amplitude em função do tempo

Pede-se determinar:

d) As formas de onda da tensão e da corrente sobre o diodo, esboçadas em amplitude em função do tempo

Pede-se determinar:

e) As formas de onda da tensão e da corrente no secundário do Trafo, esboçadas em amplitude em função de tempo.

Pede-se determinar:

f) Os valores mínimos para os parâmetros V_{RRM} e I_{FAV} do diodo utilizado.

Pede-se determinar:

g) Se o transformador utilizado suporta o nível de potência dele solicitado.

$$P_{Trafo} = V_{S(rms)(AT-AT)} I_{S(rms)(CT)}$$

Respostas

a)
$$V_{i(rms)(AT-CT)} = 9$$
 (V) $V_{i(m)(AT-CT)} = 12,73$ (V) $V_{o(m)} = 12,03$ (V) $V_{o(av)} = 7,66$ (V) $V_{o(rms)} = 8,51$ (V)

b)
$$V_{\text{(dc)}} = 7,66 \text{ (V)}$$

 $V_{\text{(ac)}} = 3,70 \text{ (V)}$

c)
$$V_{o(m)} = 12,03$$
 (V)
 $I_{o(m)} = 240,60$ (mA)
 $T = 16,67$ (ms)
 $T/4 = 4,17$ (ms)
 $T/2 = 8,33$ (ms)
 $3T/4 = 12,50$ (ms)

d)
$$I_{D(m)} = 240 \text{ (mA)}$$

 $V_{D^{+}} = 0.7 \text{ (V)}$
 $PIV = 24.76 \text{ (V)}$

e)
$$I_{S(m)} = 240 \text{ (mA)}$$

 $V_{s(m)} = 12,73 \text{ (V)}$

f)
$$V_{RRM} \ge 24,76 \text{ (V)}$$

 $I_{FRM} \ge 240 \text{ (mA)}$
 $I_{F(AV)} \ge 76,57 \text{ (mA)}$

g)
$$I_{S(rms)(AT-CT)} = 120 \text{ (mA)}$$

 $I_{S(rms)(CT)} = 169,7 \text{ (mA)}$
 $V_{S(rms)(AT-CT)} = 18 \text{ (V)}$
 $P_{Trafo} = 3,06 \text{ (W)}$