2021 年度

修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性

―低階数・低次元の場合―

学生証番号 45-196010

フリガナ オクダ タカコ

氏名 奥田 堯子

目次

導入	2
謝辞	3
1 設定と β 射影の基本的な性質,予想 1.4 の観察	4
1.1 記号の設定	4
1.2 予想 1.4 の観察: $G = SU(1,1),\ H = SO(1,1)$ の場合	6
1.3 予想 1.4 の観察: 予想 1.4 はなぜこの形になったか	9
2 具体例と主定理の証明	0
2.1 具体例: 実階数 1 の古典型単純 Lie 群	0
2.2 G の実階数が 1 の場合 \dots 1	3
2.2.1 補足: 定理 2.5 の微分幾何的側面	7
2.3 G が実階数 1 の群の直積の場合 $\dots 1$	9
参老文献 1	a

導入

G を非コンパクトな実半単純 Lie 群,K を G の極大コンパクト部分群で G の Cartan 対合 Θ に対して $K = \Theta K$ なるものとするとき,G/K は $\mathfrak g$ の Killing 形式 B から定まる Riemann 計量によって Riemann 多様体の構造を持つ。 $\mathfrak g = \mathfrak k \oplus \mathfrak p$ を Θ の微分 $d\Theta$ による $\mathfrak g$ の Cartan 分解とするとき,G/K は $\mathfrak p$ と微分同相であり,G の 単位元の G/K での像 eK を通る G/K の極大測地線は B(X,X) = 1 なる $X \in \mathfrak p$ に よって $e^{tX}K$, $t \in \mathbf R$ と書ける。H を G の非コンパクトな部分 Lie 群で, $H = \Theta H$ を満たすものとし, $\mathfrak p$ での B に対する $\mathfrak h \cap \mathfrak p$ の直交補空間を $\mathfrak h^\perp \cap \mathfrak p$ とする。測地線 $e^{tX}K$ の $\mathfrak h \cap \mathfrak p$ 成分と $\mathfrak h^\perp \cap \mathfrak p$ 成分への分解を与える定理として次の定理が知られて いる。

定理 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z K \in G/K$ は上への微分同相である.

この定理を用いて $X \in \mathfrak{p}$ に対し, $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義すると,任意の $t \in \mathbf{R}$ に対して $e^{tX}K = e^{Y(tX)}e^{Z(tX)}K$ である.

 $G=SU(1,1),\ H=SO(1,1)$ とするとき, $t\in\mathbf{R}$ に対し,Y(tX) は図 1 に図示するような幾何学的な意味を持つ.図 1 は Poincaré 円板における測地線 $e^{tX}K$ (赤色の斜め線) とその上の一点 $e^{tX}K$ から eK の H 軌道 (中央の直線) に下ろした垂線の足(緑の丸)が $e^{Y(tX)}K$ である.

図 1: Poincaré 円板における Y(tX) の幾何学的意味

本論文では小林俊行氏による次の予想について考察し,G が実階数 1 の場合の肯定的な結果を得た.

予想 $Y(\mathbf{R}\,X)$ は $\mathfrak{h}\cap\mathfrak{p}$ の有界な部分集合である \iff $[X_1,X_2]\neq 0$ であるか $X_1=0$ である.

ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に対応する $X\in\mathfrak{p}$ の分解とする.

謝辞

1 設定と f 射影の基本的な性質, 予想 1.4 の観察

1.1 記号の設定

本論文の基本的な設定は次のとおりであり、この他に必要な条件は都度明示することとする.

記号と定義 1.1

- G を非コンパクト実半単純 Lie 群, H を G の非コンパクトな部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- e を G の単位元とし、 $o_K := eK \in G/K$ とする.
- B(-,-) を $\mathfrak g$ の Killing 形式とし、 $\mathfrak h^\perp \cap \mathfrak p \coloneqq \{W \in \mathfrak p \mid \text{ 任意の } Y \in \mathfrak h \cap \mathfrak p$ に対して $B(Y,W)=0\}$ とする.

以下の定理 1.2 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

定理 1.2 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^{Y} e^{Z} \cdot o_{K} \in G/K$ は上への微分同相である.

ここで、 $Y(\mathbf{R} X)$ の有界性について、次の予想 1.4 が小林俊行氏によって立てられた。

定義 1.3 $\mathfrak{p}_{H,\mathrm{bdd}} \coloneqq \{X \in \mathfrak{p} \mid Y(\mathbf{R} X) \text{ が } \mathfrak{h} \cap \mathfrak{p} \text{ の有界集合である.} \}$ と定める.

予想 1.4 (by T. Kobayashi)

ベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^{\perp})$ に対応して $X=X_1+X_2$ と分解すると, $\mathfrak{p}_{H,\mathrm{bdd}}=\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0$ あるいは $X_1=0\}$ である.

予想 1.4 についての基本的な事項を挙げる.

補題 1.5

1. $\mathfrak{p}_{H,\mathrm{bdd.}}\subset\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0$ あるいは $X_1=0\}$ である。もっと書くことはあるはず。2022/01/11

- 2. $X \in \mathfrak{p}$ が $X_1 = 0$ を満たすならば $X \in \mathfrak{p}_{H, \text{bdd}}$ である.
- 3. 1, 2 より予想 1.4 と「 $X \in \mathfrak{p}$ が $[X_1, X_2] \neq 0$ ならば $X \in \mathfrak{p}_{H, \mathrm{bdd.}}$ である」は同値である.
- 4. G が実階数 1 のとき、予想 1.4 と「 $\mathfrak{p}_{H\,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ 」は同値である.

補題 1.5 の証明

- 1. 背理法による. $[X_1, X_2] = 0$ かつ $X_1 \neq 0$ なる $X \in \mathfrak{p}$ に対しては $[X_1, X_2] = 0$ より $e^{tX_1}e^{tX_2} \cdot o_K = e^{t(X_1 + X_2)} \cdot o_K = e^{tX} \cdot o_K$ であり, $Y(tX) = tX_1$, $Z(tX) = tX_2$ であることから $Y(\mathbf{R} X) = \mathbf{R} X_1$ となり, $X_1 \neq 0$ より $Y(\mathbf{R} X)$ は有界集合とならない.
- 2. $X_1 = 0 \iff X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ より Z(tX) = tX, Y(tX) = 0 であることによる.
- 4. 対偶を示す. $X \in \mathfrak{p}$ に対し, $[X_1, X_2] = 0$ かつ $X_1 \neq 0 \iff X \in \mathfrak{h} \setminus \{0\}$ を示せば良い. G の実階数は 1 で,H は非コンパクトであるから, $\mathfrak{h} \subset \mathfrak{p}$ であり, \mathfrak{h} は \mathfrak{g} の極大可換部分空間である. よって $X_1 \neq 0$ かつ $[X_1, X_2] = 0 \implies X_2 = 0$ であり, $X = X_1 + X_2 \in \mathfrak{h} \setminus \{0\}$ を得る.

 $Y(\mathbf{R}X)$ の有界性は $\mathrm{Ad}(k)$ -不変である;

補題 **1.6** $k \in K$, $X \in \mathfrak{p}$ に対し, $X' \coloneqq \operatorname{Ad}(k)X$, $\mathfrak{h}' \coloneqq \operatorname{Ad}(k)\mathfrak{h}$ とするとき, $Y(\mathbf{R} X)$ が有界 $\iff Y'(\mathbf{R} X')$ が有界である.

ここで Y'(X'), Z'(X') を,微分同相 π' : $(\mathfrak{h}' \cap \mathfrak{p}) \oplus (\mathfrak{h}'^{\perp} \cap \mathfrak{p}) \ni (Y', Z') \mapsto e^{Y'} e^{Z'} \cdot o_K$ を用いて, $X' \in \mathfrak{p}$ に対し, $(Y'(X'), Z'(X')) = \pi'^{-1}(e^{X'} \cdot o_K)$ と定める.

補題 1.6 の証明

主張は (X, \mathfrak{h}) と (X', \mathfrak{h}') に対して対称的であるから, $Y(\mathbf{R} X)$ が有界 $\Rightarrow Y'(\mathbf{R} X')$ が有界, のみを示せば十分である.

任意に $r \in \mathbf{R}$ を取る. $e^{rX'} \cdot o_K = e^{Y'(rX')}e^{Z'(rX')} \cdot o_K$ であり,両辺に左から k^{-1} を掛けると, $e^{rX} = e^{\operatorname{Ad}(k^{-1})(Y'(rX'))}e^{\operatorname{Ad}(k^{-1})(Z'(rX'))} \cdot o_K$ を得る.ここで $Y'(rX') \in \mathfrak{h}' \cap \mathfrak{p}$, $Z'(rX') \in \mathfrak{h}'^{\perp} \cap \mathfrak{p}$ であるから $\operatorname{Ad}(k^{-1})(Y'(rX')) \in \mathfrak{h} \cap \mathfrak{p}$, $\operatorname{Ad}(k^{-1})(Z'(rX')) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ である.

定理 1.2 により π は微分同相であるから任意の $r\in\mathbf{R}$ に対して $\mathrm{Ad}(k^{-1})(Y'(rX'))=Y(rX)$ であるから, $Y'(\mathbf{R}X)=\mathrm{Ad}(k)(Y(\mathbf{R}X))$ であ

- り、 $\mathrm{Ad}(k)$ は有限次元空間の間の線型写像であるから有界性を保つ、以上から補題 1.6 が示された、
- $Z(\mathbf{R}\,X)$ の有界性については次の定理が知られており、有界性の判定は Lie 環の言葉のみで行える.

定理 1.7 [Kob97, Lemmma 5.4]

 $X \in \mathfrak{p}$ に対し、 $\|Z(X)\| \ge \|X\| \sin \varphi(X, \mathfrak{h} \cap \mathfrak{p})$ である.

ここに $\varphi(X,\mathfrak{h}\cap\mathfrak{p})$ は X と $\mathfrak{h}\cap\mathfrak{p}$ の元がなす角度の最小値 $0 \le \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \le \frac{\pi}{2}$ であり, $X \in \mathfrak{p} \setminus \mathfrak{h} \iff \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \ne 0$ である.

つまり $X \in \mathfrak{p} \setminus \mathfrak{h}$ ならば $||Z(tX)|| \to \infty$, $|t| \to \infty$ である.

1.2 予想 1.4 の観察: G = SU(1,1), H = SO(1,1) の場合

$$G=SU(1,1),\ H=SO(1,1)\coloneqq\left\{egin{pmatrix}\cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}\ \middle|\ t\in\mathbf{R}\right\}$$
 の場合に予想 1.4 が正しいことは直接計算により確かめられる.

命題 1.8 G = SU(1,1), H = SO(1,1) のとき予想 1.4 は正しい.

補題 **1.9** $\mathfrak{su}(1,1)$ の Killing 形式から定まる Poincaré 円板 $G/K=\{x+\sqrt{-1}y\}$ $x^2+y^2<1\}$ の計量は $\frac{8(dx^2+dy^2)}{(1-x^2-y^2)^2}$ である.

補題 1.9 の証明

$$X' \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \frac{\partial}{\partial x}, \ Y' \coloneqq \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix} = \frac{\partial}{\partial y} \ \texttt{とすると}, \ \|X'\|^2 = \|Y'\|^2 = 8, \ \langle X', Y' \rangle = 0 \ \texttt{であって}, \ 0 \in G'/K' \ \texttt{で主張が成り立つ}.$$
 $k_{\theta} \coloneqq \mathrm{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), \ a_r \coloneqq \begin{pmatrix} \cosh r & \sinh r \\ \sinh r & \cosh r \end{pmatrix} \texttt{とすると},$

$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'))$$

$$= g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y'))$$

$$= 8$$

$$g(d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})X'), d\tau(k_{\theta/2}a_r)(d\tau(k_{-\theta/2})Y')) = 0$$

なるような計量 g が Killing 形式から誘導される計量であるが、それが主張の形であることを示せば良い (これらのベクトルが何を表しているかは図 2 参照).

 $t = 0 \ \text{での接ベクトルが} \ d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})X' \ \text{を与える曲線は} \ \gamma_x(t) \coloneqq e^{\sqrt{-1}\theta}\frac{\cosh r \cdot e^{-\sqrt{-1}\theta}\tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta}\tanh t + \cosh r} \ \text{であるから}, \ \frac{d}{dt}\bigg|_{t=0} \gamma_x(t) = d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})X' = (1-\tanh^2r)\frac{\partial}{\partial x} = (1-x^2-y^2)\frac{\partial}{\partial x} \ \text{である}.$ 同様に t = 0 での接ベクトルが $d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})Y'$ を与える曲線は $\gamma_y(t) \coloneqq e^{\sqrt{-1}\theta}\frac{\cosh r \cdot e^{-\sqrt{-1}\theta}\sqrt{-1}\tanh t + \sinh r}{\sinh r \cdot e^{-\sqrt{-1}\theta}\sqrt{-1}\tanh t + \cosh r} \ \text{であるから}, \ \frac{d}{dt}\bigg|_{t=0} \gamma_y(t) = d\tau(k_{\theta/2}a_r)d\tau(k_{-\theta/2})Y' = (1-\tanh^2r)\frac{\partial}{\partial y} = (1-x^2-y^2)\frac{\partial}{\partial y} \ \text{である}.$ 以上より $g = \frac{8(dx^2+dy^2)}{(1-x^2-y^2)^2}$ が示された.

命題 1.8 の証明

$$k_{\theta} \coloneqq \operatorname{diag}(e^{\sqrt{-1}\theta}, e^{-\sqrt{-1}\theta}), X_{\theta} \coloneqq k_{\theta/2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} k_{-\theta/2}$$
 とすると, $\mathfrak{p} \setminus \{0\} = \{tX_{\theta} \mid t\}$

 $t \in \mathbf{R}_{>0}, \ 0 \le \theta \le \pi$ } である.この X_{θ} と $t \in \mathbf{R}$ に対して $Y(tX_{\theta}) = s \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ なる $s \in \mathbf{R}$ を求める.

右の円の Euclid 距離での半径を R とし, $e^{tX_{\theta}}\cdot o_{K}$ から $H\cdot o_{K}$ への垂線の足の o_{K} からの Euclid 距離を h とするとき,外側の青色の直角三角形に対して三平方の 定理を用いて $(h+R)^{2}=R^{2}+1$ より $R=\frac{1-h^{2}}{2h},R+h=\frac{1+h^{2}}{2h}$ を得る.

さらに下の紫色の三角形に対して余弦定理を用いて $R^2=(R+h)^2+r^2-2(R+h)\cos\theta$ を得, $\frac{2r\cos\theta}{r^2+1}=\frac{2h}{h^2+1}$ ··· (1.1) を得る.

要確認: ここで補題 1.9 より $\frac{r}{2\sqrt{2}} = \tanh 2\sqrt{2}t$, $\frac{h}{2\sqrt{2}} = \tanh 2\sqrt{2}s$ であり (1.1) は $\cos \theta \tanh \frac{t}{4\sqrt{2}} = \tanh \frac{s}{4\sqrt{2}}$ と書き直せる. したがって X_{θ} に対して $Y(\mathbf{R} \ X)$ が 有界 $\iff |\cos \theta| \neq 1 \iff X \notin \mathfrak{h}$ である.

系 **1.10** G = SO(1,n), H = SO(1,k), $1 \le k \le n-1$ に対して予想 1.4 は正しい. 系 **1.10** の証明

「 $e^X \cdot o_K$ と o_K を結ぶ直線」と $H \cdot o_K$ で張られる超平面で Poincaré 球SO(1,n)/SO(n) を切った際の断面を考える.

この断面に現れるのは図3と同じであるから、同様の計算により系1.10を得る.

1.3 予想 1.4 の観察: 予想 1.4 はなぜこの形になったか

予想 1.4 と次の予想 1.11 は同値である.

予想 1.11 $\mathfrak{p}_{H,\mathrm{bdd.}} = \{X \in \mathfrak{p} \mid [X, (\mathfrak{h} \cap \mathfrak{p})] \neq \{0\}$ あるいは $X \perp (\mathfrak{h} \cap \mathfrak{p})\}$ ここで似た予想として次の $\mathfrak{h} \cap \mathfrak{p}$ を \mathfrak{h} に置き換えた予想が立てられる.

予想 $\mathbf{1.12}\ \mathfrak{p}_{H,\mathrm{bdd.}} = \{X \in \mathfrak{p} \mid [X,\mathfrak{h}] \neq \{0\} \$ あるいは $X \perp \mathfrak{h}\}$ しかし予想 1.12 には反例が存在する.

しかし予想 1.12 には反例が存在する.
補題 1.13
$$G = SL(3,\mathbf{R})$$
, $Y_1 \coloneqq \operatorname{diag}(1,1,-2)$, $Y_2 \coloneqq \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\mathfrak{h} = \mathbf{R} Y_1 \oplus \mathbf{R} Y_2$, $X = \operatorname{diag}(1,0,-1)$ に対し, $[X,\mathfrak{h}] \neq \{0\}$ であるが $Y(\mathbf{R} X) = \mathbf{R} Y_1$ であり、非有界である.

補題 1.13 の計算:

 \mathfrak{h} は可換 Lie 環であり, $\mathfrak{g} = \mathfrak{sl}(3, \mathbf{R})$ の Cartan 対合 $\theta W \coloneqq -{}^t W$ に対し $\mathfrak{h} = \theta \mathfrak{h}$ である.

 $[X, \mathfrak{h}] \neq 0$ は, $[X, Y_2] \neq 0$ より従う.

ここで $Z_1 := \operatorname{diag}(1, -1, 0) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ であり、任意の $t \in \mathbf{R}$ に対し、 $e^{2tX} = e^{tY_1}e^{tZ_1}$ であるから、 $Y(\mathbf{R} X) = \mathbf{R} Y_1$ となり、補題 1.13 が示された.

補題 1.13 において X と \mathfrak{h} は, $[X,\mathfrak{h}] \neq \{0\}$ だが $[X,(\mathfrak{h} \cap \mathfrak{p})] = \{0\}$ かつ $X \not\perp (\mathfrak{h} \cap \mathfrak{p})$ となるように取った.

つまり予想 1.12 の右辺を次の予想 1.14 のように少し弱めても補題 1.13 はその反例になっている.

予想 1.14 $\mathfrak{p}_{H,\mathrm{bdd.}}=\{X\in\mathfrak{p}\mid [X,\mathfrak{h}]
eq\{0\}$ あるいは $X\perp(\mathfrak{h}\cap\mathfrak{p})\}$

以上のことから予想 1.4 が立てられた.

2 具体例と主定理の証明

2.1 具体例: 実階数1の古典型単純 Lie 群

命題 **2.1** G = SO(1,n), SU(1,n), Sp(1,n), H = SO(1,1), $n \ge 2$ に対して予想 1.4 は正しい.

$$G=Sp(1,2),\ \mathfrak{h}=\mathbf{R}egin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
の場合にのみ示す。その他の場合も全く同様

の議論である.

命題 **2.2** $G=Sp(1,2),\ H=SO(1,1),\ X\in\mathfrak{p}$ に対し、 $Y(\mathbf{R}\,X)$ が有界 \iff $X\in\mathfrak{p}\setminus\mathfrak{h}$ or X=0 である.

ただし、H は G の左上に入っている.すなわち, $\mathrm{Lie}\,H=\mathfrak{h}=\mathbf{R}\,A$, $A:=egin{pmatrix}0&1&0\\1&0&0\\0&0&0\end{pmatrix}$ とする.

記号と定義 2.3 H を四元数体とする. $Sp(1,2)/Sp(1)\times Sp(2)\simeq \{(z_1,z_2)\mid z_1,z_2\in z_1\}$ \mathbf{H} , $|z_1|^2 + |z_2|^2 < 1$ =: $\mathbf{H} \mathbb{H}^2$ である. これは自然表現 $Sp(1,2) \curvearrowright \mathbf{H}^2$ の $^t(1,0,0)$ 軌道を考え,第2,第3成分に第1成分の逆数を右からかけた空間が \mathbf{H} \mathbb{H}^2 と微分同

相であるためであり,Sp(1,2) \sim ${f H}^3$ の $^t(1,0,0)$ 軌道の点 $\begin{pmatrix} z_0 \\ z_1 \\ \ddots \end{pmatrix}$ に対応する ${f H}$ \mathbb{H}^2

の点を
$$\begin{bmatrix} z_0 \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1 \\ z_1 z_0^{-1} \\ z_2 z_0^{-1} \end{bmatrix}$$
 と書く.

愚直な行列計算により、次が示される.

補題
$$\mathbf{2.4} \ \forall z, w \in \mathbf{H}$$
 に対し, $\exp \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cosh r & * & * \\ \overline{z} \\ \frac{\overline{z}}{r} \sinh r & * & * \\ \frac{\overline{w}}{r} \sinh r & * & * \end{pmatrix}$, ただし

 $r \coloneqq \sqrt{|z|^2 + |w|^2}$, である.

命題 2.2 の証明

は明らかであるから、 $X \notin \mathfrak{h}$ の場合にのみ議論すればよい.

G の Cartan 対合を $\Theta(g)=(g^*)^{-1}$ $(g^*$ は g の共役転置) とするとき, $\Theta(e^{Y(tX)}e^{Z(tX)})\cdot o_K \,=\, e^{-Y(tX)}e^{-Z(tX)}\cdot o_K \,=\, \Theta(e^X)\cdot o_K \,=\, e^{-X}\cdot o_K \, \, \, \sharp \, \, \mathfrak{h} \, \, ,$ 「 $Y(\mathbf{R} X)$ が非有界 $\iff Y(\mathbf{R} X) \subset \mathbf{R} A$ が上に非有界」である.

したがって, $Y(\mathbf{R} X)$ が非有界であるとき,列 $\{t_n \in \mathbf{R}\}_{n \in \mathbf{N}}$ で, $s_n \to \infty$, $n \to \infty$, ただし $Y(t_nX) = s_nA$, なるものが存在する

また, 任意の
$$\mathfrak{h}^{\perp} \cap \mathfrak{p}$$
 の元はある $Z = \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^{\perp} \cap \mathfrak{p}, \ z, w \in \mathbf{H} \ \mathrm{s.t.} \ |z|^2 +$

 $z_n,w_n\in\mathbf{H} ext{ s.t.}\,|z_n|^2+|w_n|^2=1$ とすると, $X\notin\mathfrak{h}$ であるから定理 1.7 より $|r_n|
ightarrow \infty$ である. $z_n, w_n \in \mathbf{H}$ s.t. $|z_n|^2 + |w_n|^2 = 1$ より, $\{t_n\}$

るとある
$$Z_\infty$$
 が存在して $\lim_{n\to\infty} Z_n = Z_\infty = \begin{pmatrix} 0 & z_\infty & w_\infty \\ \overline{z_\infty} & 0 & 0 \\ \overline{w_\infty} & 0 & 0 \end{pmatrix} \in \mathfrak{h}^\perp \cap \mathfrak{p}$ な

るようにできる. $Z \in \mathfrak{p} \setminus \mathfrak{h}$ より $\operatorname{Re} z_{\infty} \neq \pm 1$ であることに注

補題 2.4 より,

$$e^{s_n A} e^{r_n Z_n} \cdot o_K = \begin{pmatrix} \cosh s_n & \sinh s_n & 0 \\ \sinh s_n & \cosh s_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} 1 \\ \pm \overline{z_n} \tanh |r_n| \\ \pm \overline{w_n} \tanh |r_n| \end{pmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} \cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n \\ \sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n \\ \pm \overline{w_n} \tanh |r_n| \end{bmatrix},$$

複号は r_n の符号 \pm と同順, である. このとき $\lim_{n \to \infty} anh s_n = 1$ $\lim_{n \to \infty} \tanh |r_n|$ と $\lim_{n \to \infty} \operatorname{Re} z_n = \operatorname{Re} z_\infty \neq \pm 1$ に注意すると次を得る. 具体的 な計算は後述する.

 $\lim_{n\to\infty} (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} = 1$

したがって,
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$$
から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2 \,$ か

$$\begin{pmatrix}
(\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n)(\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} \\
*
\end{pmatrix} \in \mathbf{H} \mathbb{H}^2 \wedge \mathcal{O}$$

しかし、
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$ へのベクトルと、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H}\mathbb{H}^2$ か

ベクトルがなす Euclidean な内積の値を
$$I_n$$
 とすると、 $\lim_{n\to\infty}I_n=1$ である。 しかし、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ へのベクトルと、 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ から $e^{t_n X} \cdot o_K \in \mathbf{H} \, \mathbb{H}^2$ へのベクトルがなす Euclidean な内積の値 J_n は、 $X \coloneqq \begin{pmatrix} 0 & z_0 & w_0 \\ \overline{z_0} & 0 & 0 \\ \overline{w_0} & 0 & 0 \end{pmatrix}$ 、 $z_0, w_0 \in \mathbf{H} \text{ s.t. } |z_0|^2 + |w_0|^2 = 1$ とするとき $J_n = \frac{\overline{z_0}}{r_0} \tanh(tr_0)$ 、

 $r_0\coloneqq \sqrt{|z_0|^2+|w_0|^2}$ であり, $X\notin ha\iff z_0\ne 1$ より $\lim_{n\to\infty}J_n=rac{\overline{z_0}}{r_0}\ne 1$ である.

以上 2 つの議論を合わせると $e^{s_n A} e^{r_n Z_n} \cdot o_K = e^{t_n X} \cdot o_K \implies 1 = \lim_{n \to \infty} I_n = \lim_{n \to \infty} J_n \neq 1$ となり矛盾する.

以上より 「 $X \in \mathfrak{p} \setminus \mathfrak{h} \Rightarrow Y(\mathbf{R} X)$ 有界」, したがって 命題 2.2 を得る.

命題 2.2 の計算:

 $\lim_{n\to\infty} |(\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n)(\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1| = 0$ を示せば主張が得られる. 具体的に計算すると,

 $\lim_{n\to\infty} \left| (\sinh s_n \pm \overline{z_n} \tanh |r_n| \cosh s_n) (\cosh s_n \pm \overline{z_n} \tanh |r_n| \sinh s_n)^{-1} - 1 \right|$ $= \lim_{n\to\infty} \left| \frac{(\tanh s_n \pm \overline{z_n} \tanh |r_n|) (1 \pm z_n \tanh |r_n| \tanh s_n)}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2} - 1 \right|$ $= \lim_{n\to\infty} \frac{\left| (\tanh s_n \pm \overline{z_n} \tanh |r_n|) z_n' - (1 \pm \overline{z_n} \tanh |r_n| \tanh s_n) z_n' \right|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|^2},$ $(\text{toticu} z_n' \coloneqq 1 \pm z_n \tanh |r_n| \tanh s_n \text{ and } z_n' \text{ and } z_n$

であり、 $0<\min|1\pm\operatorname{Re} z_n|\leq |(1\pm\overline{z_n}\tanh|r_n|\tanh s_n)|\leq \sqrt{2^2+1^2}=\sqrt{5}$ と $\min\{|-1\pm\operatorname{Re} z_n|\}\leq |-1\pm\overline{z_n}\tanh|r_n||\leq \sqrt{5}$ であることと $\lim_{n\to\infty}\operatorname{Re} z_n=\operatorname{Re} z_\infty\neq\pm 1$ より、

$$0 = \lim_{n \to \infty} (1 - \tanh s_n) \frac{\min\{|-1 \pm \operatorname{Re} z_n|\}}{\sqrt{5}} \le \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z_n} \tanh |r_n|)|}{|(1 \pm \overline{z_n} \tanh |r_n| \tanh s_n)|}$$

$$\le \lim_{n \to \infty} (1 - \tanh s_n) \frac{\sqrt{5}}{\min\{|1 \pm \operatorname{Re} z_n|\}} = 0$$

より,(2.1) が成り立つ.

2.2 Gの実階数が1の場合

定理 2.5~G を実階数 1 の実半単純 Lie 群とするとき、予想 1.4 が成り立つ.

定理 2.6 [Hel01, p. 409, Theorem 3.1]

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を実半単純 Lie 環とその Cartan 対合 θ に対する Cartan 分解とし、 $\alpha, 2\alpha \in \Sigma(\mathfrak{g}, \mathfrak{a})$ と仮定する. このとき、 $X_{\alpha}, X_{2\alpha}, \theta X_{\alpha}, \theta X_{2\alpha}$ から生成される Lie 環 \mathfrak{g}^* は $\mathfrak{su}(2,1)$ と同型である.

以下で定理 2.6 を示すための補題や記号を設定し、定理 2.6 を示す.

記号と定義 2.7

- $\mathfrak{a} \subset \mathfrak{g}$ を極大分裂可換代数, $\mathfrak{m} \coloneqq \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a}) \coloneqq \{W \in \mathfrak{k} \mid [W,\mathfrak{a}] = \{0\}\}$ とする. B を \mathfrak{g} の Killing 形式とする.
- $\Sigma(\mathfrak{g},\mathfrak{a})$ を \mathfrak{a} に関する制限ルート系とする. \mathfrak{g}_{λ} を, $\lambda \in \mathfrak{a}^*$ のルート空間とし, $0 \neq X_{\alpha} \in \mathfrak{g}_{\alpha}$, $0 \neq X_{2\alpha} \in \mathfrak{g}_{2\alpha}$ を任意に固定する. $Y_{\alpha} := [\theta X_{\alpha}, X_{2\alpha}]$ とする.
- $A_{\alpha} \in \mathfrak{a}$ を、任意の $H \in \mathfrak{a}$ に対して $B(H, A_{\alpha}) = \alpha(H)$ を満たす元とする. このとき、任意の $H \in \mathfrak{a}$ に対して $B(H, [X_{\alpha}, \theta X_{\alpha}]) = \alpha(H)B(X_{\alpha}, \theta X_{\alpha})$ より $[X_{\alpha}, \theta X_{\alpha}] = B(X_{\alpha}, \theta X_{\alpha})A_{\alpha}$ (同様に $[Y_{\alpha}, \theta Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})A_{\alpha}$, $[X_{2\alpha}, \theta X_{2\alpha}] = 2B(X_{2\alpha}, \theta X_{2\alpha})A_{\alpha}$) である.
- $$\begin{split} &[X_{2\alpha},\theta X_{2\alpha}] = 2B(X_{2\alpha},\theta X_{2\alpha})A_{\alpha}) \text{ である.} \\ \bullet & c_{\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})}}, \ c_{2\alpha} \coloneqq \sqrt{\frac{-2}{\alpha(A_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})}} \text{ とする.} \\ & \sharp \text{た,} \ X_{\alpha}^{*} \coloneqq c_{\alpha}X_{\alpha}, \ X_{2\alpha}^{*} \coloneqq c_{2\alpha}X_{2\alpha}, \ Y_{\alpha}^{*} \coloneqq [\theta X_{\alpha}^{*},X_{2\alpha}^{*}] = c_{\alpha}c_{2\alpha}Y_{\alpha}, \ A_{\alpha}^{*} \coloneqq \frac{1}{12\alpha(A_{\alpha})}A_{\alpha} \text{ とする.} \end{split}$$

補題 **2.8** $c := 2\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})$ とすると, $[X_{\alpha}, Y_{\alpha}] = cX_{2\alpha}$ である.特に $0 \neq Y_{\alpha} \neq X_{\alpha}$ である.

証明略,Jacobi 恒等式と $3\alpha \notin \Sigma(\mathfrak{g},\mathfrak{a})$ による.

補題 $\mathbf{2.9} [X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} \setminus \{0\}$ である.特に証明から $[[X_{\alpha}, \theta Y_{\alpha}], X_{\alpha}] = -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha}$ がわかる.

補題 2.9 の証明

 $Y_{\alpha} \in \mathfrak{g}_{\alpha}$ より $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} + \mathfrak{a}$ であり,任意の $H \in \mathfrak{a}$ に対して $B(H, [X_{\alpha}, \theta Y_{\alpha}]) = B([H, X_{\alpha}], Y_{\alpha}) = \alpha(H)B(X_{\alpha}, [X_{\alpha}, \theta X_{2\alpha}]) = \alpha(H)B([X_{\alpha}, X_{\alpha}], X_{2\alpha}) = 0$ であることより $[X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m}$ である.

さらに, $[[\theta X_{\alpha}, Y_{\alpha}], X_{\alpha}] = -[[Y_{\alpha}, X_{\alpha}], \theta X_{\alpha}] - [[X_{\alpha}, \theta X_{\alpha}], Y_{\alpha}] = c[X_{2\alpha}, \theta X_{\alpha}] - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} = -cY_{\alpha} - B(X_{\alpha}, \theta X_{\alpha})\alpha(A_{\alpha})Y_{\alpha} = -3\alpha(A_{\alpha})B(X_{\alpha}, \theta X_{\alpha})Y_{\alpha} \neq 0$

0 より、 $\theta[\theta X_{\alpha}, Y_{\alpha}] = [X_{\alpha}, \theta Y_{\alpha}] \in \mathfrak{m} \setminus \{0\}$ である.

補題 **2.10** R X_{α} + R Y_{α} は $\operatorname{ad}_{\mathfrak{g}}([X_{\alpha}, \theta Y_{\alpha}])$ で不変である.

特に証明の途中で $[[X_{\alpha},\theta Y_{\alpha}],Y_{\alpha}]=-6\alpha(A_{\alpha})^2B(X_{\alpha},\theta X_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})X_{\alpha}$, $[Y_{\alpha},\theta Y_{\alpha}]=-2\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})A_{\alpha}$ がわかる.

補題 2.10 の証明

 $[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] \in \mathbf{R} X_{\alpha}$ を示せば、補題 2.9 と併せて 補題 2.10 が従う.

$$\begin{split} [[X_{\alpha},\theta Y_{\alpha}],Y_{\alpha}] &= -[[\theta Y_{\alpha},Y_{\alpha}],X_{\alpha}] - [[Y_{\alpha},X_{\alpha}],\theta Y_{\alpha}] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} + c[X_{2\alpha},[X_{\alpha},\theta X_{2\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - c[X_{\alpha},[\theta X_{2\alpha},X_{2\alpha}]] - c[\theta X_{2\alpha},[X_{2\alpha},X_{\alpha}]] \\ &= B(Y_{\alpha},\theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - cB(X_{2\alpha},\theta X_{2\alpha})\alpha(A_{2\alpha})X_{\alpha} \end{split}$$

さらに, $B(Y_{\alpha},\theta Y_{\alpha})=B(Y_{\alpha},[X_{\alpha},\theta X_{2\alpha}])=-B([X_{\alpha},Y_{\alpha}],\theta X_{2\alpha})=-2\alpha(A_{\alpha})B(X_{\alpha},\theta X_{\alpha})B(X_{2\alpha},\theta X_{2\alpha})$ であるから,最終的に

 $[[X_{\alpha}, \theta Y_{\alpha}], Y_{\alpha}] = B(Y_{\alpha}, \theta Y_{\alpha})\alpha(A_{\alpha})X_{\alpha} - 4\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$ $= -6\alpha(A_{\alpha})^{2}B(X_{\alpha}, \theta X_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})X_{\alpha}$

を得る.

補題 **2.11** $[[X_{\alpha}, \theta Y_{\alpha}], X_{2\alpha}] = 0$ である.

証明略. 補題 2.8-2.10 と Jacobi 恒等式による.

補題 **2.12** $[Y_{\alpha}, \theta X_{2\alpha}] = 2\alpha(A_{\alpha})B(X_{2\alpha}, \theta X_{2\alpha})\theta X_{\alpha}$ である.

証明略. Jacobi 恒等式を用いて与式を変形し計算することによる.

定理 2.6 の証明

補題 2.8-2.12 より, $\mathfrak{g}^* = \mathfrak{g}_0^* \oplus \mathfrak{g}_\alpha^* \oplus \mathfrak{g}_{-\alpha}^* \oplus \mathfrak{g}_{2\alpha}^* \oplus \mathfrak{g}_{-2\alpha}^*$,ただし $\mathfrak{g}_0^* \coloneqq \mathbf{R} A_\alpha \oplus \mathbf{R} [X_\alpha, \theta Y_\alpha]$, $\mathfrak{g}_\alpha^* \coloneqq \mathbf{R} X_\alpha \oplus \mathbf{R} Y_\alpha$, $\mathfrak{g}_{-\alpha}^* \coloneqq \mathbf{R} \theta X_\alpha \oplus \mathbf{R} \theta Y_\alpha$, $\mathfrak{g}_{2\alpha}^* \coloneqq \mathbf{R} X_{2\alpha}$, $\mathfrak{g}_{-2\alpha}^* \coloneqq \mathbf{R} \theta X_{2\alpha}$,がわかる.

非自明な \mathfrak{g}^* の Lie 括弧の関係として, $[X_{\alpha}^*,Y_{\alpha}^*]=-4X_{2\alpha}^*$ (∵ 補題 2.8), $[X_{\alpha}^*,[X_{\alpha}^*,\theta Y_{\alpha}^*]]=-6Y_{\alpha}^*$ (∵ 補題 2.9), $[X_{\alpha}^*,\theta X_{\alpha}^*]=-24A_{\alpha}^*$ (∵ 定義による), $[X_{\alpha}^*,X_{2\alpha}^*]=0$ (∵ $\mathfrak{g}_{3\alpha}=0$), $[X_{\alpha}^*,\theta X_{2\alpha}^*]=\theta Y_{\alpha}^*$, $[Y_{\alpha}^*,X_{2\alpha}^*]=0$ (∵ 補題 2.11), $[Y_{\alpha}^*,\theta X_{2\alpha}^*]=-4\theta X_{\alpha}^*$ (∵ 補題 2.12), $[Y_{\alpha}^*,\theta Y_{\alpha}^*]=-96A_{\alpha}^*$ (∵ 補題 2.10), $[Y_{\alpha}^*,[X_{\alpha}^*,\theta Y_{\alpha}^*]]=24X_{\alpha}^*$ (∵ 補題 2.10) $[[X_{\alpha}^*,\theta Y_{\alpha}],X_{2\alpha}^*]=[[X_{\alpha}^*,\theta Y_{\alpha}],\theta X_{2\alpha}^*]=0$ (∵ 補題 2.12), $[X_{2\alpha}^*,\theta X_{2\alpha}^*]=-48A_{\alpha}^*$ が存在する(残りの関係式はこの両辺に θ をつけることで得

られる). g* と su(2,1) の対応を,

$$\begin{split} X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & 0 & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ \theta X_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, & \theta X_{2\alpha}^* \leftrightarrow \begin{pmatrix} \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & 0 & 0 \\ -\sqrt{-1} & 0 & -\sqrt{-1} \end{pmatrix}, \\ Y_{\alpha}^* \leftrightarrow -2 \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & -\sqrt{-1} \\ 0 & \sqrt{-1} & 0 \end{pmatrix}, & \theta Y_{\alpha}^* \leftrightarrow \begin{pmatrix} 0 & \sqrt{-1} & 0 \\ \sqrt{-1} & 0 & \sqrt{-1} \\ 0 & -\sqrt{-1} & -0 \end{pmatrix}, \\ A_{\alpha}^* \leftrightarrow \frac{1}{12} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & [X_{\alpha}, \theta Y_{\alpha}^*] \leftrightarrow -4 \begin{pmatrix} \sqrt{-1} & 0 & 0 \\ 0 & -2\sqrt{-1} & 0 \\ 0 & \sqrt{-1} \end{pmatrix} \end{split}$$

でつけ、この対応が Lie 環としての同型であること (上の関係式が満たされること) を愚直に計算して、定理 2.6 が示せる.

補題 2.13 証明せよ

 $\Sigma(\mathfrak{g},\mathfrak{a})=\{\pm\alpha\}$ の場合, $0\neq X_{\alpha}\in\mathfrak{g}_{\alpha}$ と θX_{α} により生成される部分 Lie 環 \mathfrak{g}' は $\mathfrak{su}(1,1)$ と同型である.

系 2.14 定理 2.6 と補題 2.13 より,G が実階数 1 ならば, $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ あるいは $\Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ であるから,任意の $Y \in \mathfrak{h} \setminus \{0\}$ と任意の $X \in \mathfrak{p} \setminus \mathfrak{h}$ を固定したとき,X,Y を含む部分 Lie 環 $\mathfrak{g}_0 \subset \mathfrak{g}$ で, $\mathfrak{g}_0 \simeq \mathfrak{su}(1,2)$ か $\mathfrak{g}_0 \simeq \mathfrak{su}(1,1)$ なるものが存在する.

系 2.14 で定めた \mathfrak{g}_0 について次の 2 つが成り立つ.

補題 2.15 [Hel01, p. 409, Lemma 2.2] \mathfrak{g} の Cartan 対合 θ に対して $\mathfrak{g}_0 = \theta \mathfrak{g}_0$ であり, $\mathfrak{g}_0 \land \mathfrak{o} \theta$ の制限は \mathfrak{g}_0 の Cartan 分解を与える.

補題 2.16 [Hel01, p. 409, Lemma 2.3]

系 2.14 の \mathfrak{g}_0 の G における解析的部分群を G_0 とする. G=KAN を G の岩澤 分解, $G_0=K_0A_0N_0$ を G の岩澤分解とするとき,

$$K_0 := G_0 \cap K$$
, $A_0 := G_0 \cap A$, $N_0 := G_0 \cap N$,

であり、 $G_0/K_0 \simeq G_0/K$ は G/K の全測地的な部分 Riemann 多様体である.

以上のことを用いて,G が実階数 1 の場合を SU(1,2) ないし SU(1,1) に帰着させることにより定理 2.5 を示す.

定理 2.5 の証明

 $X \notin \mathfrak{h}$ に対して $Y(\mathbf{R} X)$ が有界であることを背理法により示す. \mathfrak{g} のある極大分裂可換代数 \mathfrak{a} の定めるルート系を $\Sigma(\mathfrak{g},\mathfrak{a})$ とし, $\Sigma(\mathfrak{g},\mathfrak{a})$ の形によって 2 通りに場合分けして証明する.

場合 $\mathbf{1} \Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha\}$ のとき

任意の固定した $\tau \in \mathbf{R}$ に対し $\mathfrak{a}_{\tau} \coloneqq \mathbf{R} \, Y(\tau X)$ が定める制限ルート系も,ある $\alpha_{\tau} \in \mathfrak{a}_{\tau}^{*}$, $\|\alpha_{\tau}\| = 1$ により $\Sigma(\mathfrak{g}, \mathfrak{a}_{\tau}) = \{\pm \alpha_{\tau}\}$ となるが, $Y(\mathbf{R} \, X)$ の非有界性より,ある $T \in \mathbf{R}$ で $|\alpha_{t}(Y(tX))| >$ 埋めよ, $\forall t \geq T$ なるものが存在する.

場合 $2 \Sigma(\mathfrak{g},\mathfrak{a}) = \{\pm \alpha, \pm 2\alpha\}$ のとき

場合 1 と同様に、任意の固定した $\tau \in \mathbf{R}$ に対し $\mathfrak{a}_{\tau} \coloneqq \mathbf{R} \, Y(\tau X)$ が定める制限 ルート系も、ある $\alpha_{\tau} \in \mathfrak{a}_{\tau}^{*}$ 、 $\|\alpha_{\tau}\| = 1$ により $\Sigma(\mathfrak{g},\mathfrak{a}_{\tau}) = \{\pm \alpha_{\tau}, \pm 2\alpha_{\tau}\}$ となるが、 $Y(\mathbf{R} \, X)$ の非有界性より、ある $T \in \mathbf{R}$ で $|\alpha_{t}(Y(tX))| >$ 埋めよ、 $\forall t \geq T$ なるものが存在する.

2.2.1 補足: 定理 2.5 の微分幾何的側面

定義 2.17 [Ebe72a, Definition 1.3]

M が完備かつ非正曲率をもつ 1-連結 Riemann 多様体であるとき, M を

Hadamard 多様体といい、Hadamard 多様体 M が visibility manifold であるとは、 $\forall p \in M, \forall \varepsilon > 0$ に対し、ある $r(p,\varepsilon) > 0$ が存在して、測地線 $\gamma \colon [t_0,t_1] \to X$ が $d_M(p,\gamma(t)) \geq r(p,\varepsilon)$ 、 $\forall t \in [t_0,t_1]$ ならば、 $\angle_p(\gamma(t_0),\gamma(t_1)) \leq \varepsilon$ であることである.

図 5: visibility manifold のイメージ

定理 2.18 [BH99, p. 296, 9.33 Theorem], originally [Ebe72b, Theorem 4.1] $\exists C \subset M \text{ s.t. } M = \bigcup \{f(C) \mid f \in \text{Isom}(M)\}$ なる Hadamard 多様体 M に対し、次は同値である.

- (ii) 全測地的な部分 Riemann 多様体 $M'\subset M$ で ${\bf R}^2$ と等長同型なものが存在しない.

ここで Riemann 対称空間は Hadamard 多様体であり、定理 2.18 の (ii) は G の 実階数が 1 以下であることと同値である。 したがって G の実階数が 1 の場合 G/K は visibility manifold であり、G=SU(1,2)、H=SO(1,1) の場合の証明と全く同様にして背理法により予想 1.4 が示される。

2.3 G が実階数1の群の直積の場合

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710
- [BBE85] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), Vol. 122, No. 1, 1985, pp. 171–203
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999
- [Borel-Ji] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, 2006
- [**Ebe72a**] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I, Ann. of Math. (2), Vol. 95, pp. 492–510, 1972
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, pp. 151–70, 1972
- [EO73] P. Eberlein and B. O'Neill, Visibility Manifolds, Pacific J. Math., Vol. 46, No. 1, 1973, pp. 45–109
- [Hel84] S. Helgason, Groups and Geometric Analysis—Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, Vol. 83, AMS, 1984
- [Hel01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, GSM, Vol. 34, AMS, 2001
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490–1, 1997, pp. 37–54