

CSE - 2018

S) For an incompressible fluid, $u = n^2 + 2y^2 + 3z^2$ $v = x^2y - y^2z + xz$ Determine w so they satisfy the efn of continuity. Also find the z component of acceleration.

It is a continuity equation in cartisian co-ordinals:

 $\frac{\partial y}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial w}{\partial z} = 0$ $\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} = 0$ $\frac{\partial}{\partial x} + \frac{\partial}{\partial x} + \frac{\partial}{\partial z} = 0$

7 0w = 2yz - 2x - x2

Intigrating wr. t ?:

The z-component of acceleration.

$$a_{\pm} = (q \cdot \nabla) w + \partial w$$

 $= \frac{u \partial w}{\partial x} + \frac{v \partial w}{\partial y} + \frac{v \partial w}{\partial z}$ $= \frac{(z^2 + z^2 + z^2 + z^2 + z^2)}{(z^2 + z^2 + z^2 + z^2 + z^2)}$

 $= (x^{2} + 2y^{2} + 3z^{2}) (2f(x, y))$

 $a = (x^2 + 2y^2 + 3z^2) \left(\frac{\partial f}{\partial x} - 2z - 2xz \right)$

 $+ (x^{2}y - y^{2}z + xz)(2f + z^{2})$ $+ (yz^{2} - 2xz - x^{2}z + f(x, y))(2yz - 2z - x^{2})$

g) for a 20 flow: $\phi = x^2y - xy^2 + 1(x^3 - y^3)$ Determine relocity components along the dir x & y. Also determine y and check of is a possible flow or orst. Soln: Let q = uê + vj $\frac{1}{2} u = - \left(\frac{2xy - y^2 + x^2}{2xy} \right)$ $V = -\frac{\partial \phi}{\partial y}$ $\frac{\partial \phi}{\partial y}$ $\frac{\partial \phi}{\partial y} = -\left(\frac{x^{2} - 2xy - y^{2}}{x^{2} + 2xy}\right)$ $\frac{\partial \phi}{\partial y} = \frac{y^{2} - x^{2} + 2xy}{y^{2} + 2xy}$ We know that \$+ i4 is an analytic function and satisfies Cauchy Riemann equations.

So,
$$-\frac{\partial V}{\partial y} = u$$
 and $\frac{\partial V}{\partial x} = V$
 $\frac{\partial V}{\partial x} = y^2 - x^2 + 2xy$

Integrating $N \ Y \cdot L \ x :$
 $\psi = xy^2 - x^3 + x^2y + f(y)$

Now, $\frac{\partial V}{\partial y} = 2xy + x^2 + f'(y)$

and $\frac{\partial V}{\partial y} = -u$
 $\frac{\partial V}{\partial y} = -u$
 $\frac{\partial V}{\partial y} = -y^2$
 $\frac{\partial V}{\partial y} =$

 $2 = \frac{1 + 2bxy + cy^2}{2}$ $\frac{1 + 2bxy + cy^2}{2}$; a, b, C, m, 14 are constants and $5^2 \neq ae$. write down Lagrangian equations of motion and identify the system. Idn: Lagrange's x equation:

d (3L) - 3L = 0 - (1)

it (vi) vx $\frac{\partial L}{\partial \dot{x}} = \frac{m}{2} \left(\frac{2a\dot{x} + 25\dot{y}}{2} \right) = m\left(\frac{a\dot{x} + 5\dot{y}}{2} \right)$ $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = m \left(a \dot{x} + b \dot{y} \right)$ $\frac{\partial L}{\partial x} = \frac{K}{2} \left(\frac{2ax + 2by}{2by} \right) = K(ax + by)$ So, Eq () gives us: $m(a\dot{x} + 5\dot{y}) = K(ax + 5y) - A$ Lagrangi's y equation: $d \left(\frac{\partial L}{\partial y} \right) - \frac{\partial L}{\partial z} = 0 \qquad -11$ $dt \left(\frac{\partial J}{\partial y} \right) \qquad \frac{\partial J}{\partial y} = m \left(\frac{J}{J} + \frac{$ The d (DL) = m (5i + cy')

By de (Dy') $\frac{\partial L}{\partial y} = \frac{K}{2} \left(25x + 2cy \right) = K(5x + cy)$ Jo, Eq (11) gires m(5 \(\dagger + c \(\dagger \) = us: K(b2+cy) - B)

Now, $a\ddot{x} + b\ddot{y} = \frac{x}{m} (ax + by)$ $b\ddot{x} + c\ddot{y} = \kappa (bx + cy)$ Axc - Bx 5 $\frac{1}{7} \left(ac - b^2\right) \stackrel{\circ \circ}{x} = k \left(ac - b^2\right) x$ $\frac{1}{x} = \frac{k}{x} \times \frac{1}{m}$ Putting \dot{x} in \dot{A} : $a k x + 5 \dot{y} = k (ax + 5 y)$ \dot{m} $\frac{1}{2}$ $\frac{1}$ $\frac{3}{y} = \frac{k}{m} y - D$ Eq. (D² - K) $\alpha = 0$ The auxillary ign $m^2 = K + m = \pm \int K$ So, $\chi = C_1 e^{\int K/m} \chi + C_2 e^{\int K/m} \chi$ and $y = C_1 e^{\int K/m} y + C_2 e^{\int K/m} y$

$$7 + 2e^{-t} - 2bc_3 \int e^{-2t} dt$$

 $7 + 2e^{-t} - bc_3 e^{-2t} + c_4$

Now ?

- 592 - 503e - t c4e t - 503e - t

21

- 22

- 22

- 22

- 23

- 24

- 24

- 25

- 24

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

- 25

-

C₂