

### KARATINA UNIVERSITY

# UNIVERSITY EXAMINATIONS 2024/2025 ACADEMIC YEAR

# FOURTH YEAR FIRST SEMESTER REGULAR EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE

**COURSE CODE: ACS 411** 

COURSE TITLE: MATHEMATICS FOR
DEMOGRAPHY AND
GRADUATION

DATE: 18<sup>TH</sup> DECEMBER 2024 TIME: 9.00-11.00 AM

#### **INSTRUCTIONS TO CANDIDATES**

• SEE INSIDE

## <u>INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO</u> QUESTIONS

#### **QUESTION ONE (30 MARKS)**

- a) Distinguish between the following terms;
  - (i) Total Fertility Rate (TFR) and Gross Reproduction Rate (GRR). (2 marks)
  - (ii) Infant Mortality Rate and Under Five Mortality. (2 marks)
  - (iii) Population estimation and Population projection. (2 marks)
- b) Why is the Infant Mortality Rate (IMR) considered an important indicator of population health? How does it relate to other demographic measures such as life expectancy and fertility? (4 marks)
- c) Explain how the separation factor is used in the adjustment of infant mortality rates. Why is this adjustment necessary? (4 marks)
- d) What is meant by "graduation" in the context of demographic analysis? (2 marks)
- e) The mortality rate at age 30 is 0.002, and at age 50 is 0.008. Assuming mortality follows a Gompertz function, estimate the mortality rate at age 40. (4 marks)
- f) The data below shows the proportion of women in rural and urban areas of a country X and the Age Specific Fertility Rates (ASFR) per woman by age in 2009.

|       | Proportion  |             | ASFR        |             |  |
|-------|-------------|-------------|-------------|-------------|--|
| Age   | Urban Areas | Rural Areas | Urban Areas | Rural Areas |  |
| 15-19 | 9.7         | 9.4         | 0.135       | 0.165       |  |
| 20-24 | 10.1        | 7.8         | 0.268       | 0.291       |  |
| 25-29 | 9.0         | 6.3         | 0.242       | 0.273       |  |
| 30-34 | 6.3         | 5.3         | 0.210       | 0.261       |  |
| 35-39 | 4.7         | 4.4         | 0.149       | 0.202       |  |
| 40-44 | 3.0         | 4.4         | 0.086       | 0.123       |  |
| 45-49 | 1.9         | 3.1         | 0.012       | 0.062       |  |

Given that, the total number of urban women in the survey is 1334 and the total number of rural women is 10518, calculate the Total fertility rate for X. (4 marks)

g) The following data was collected from the out patients records of a county hospital.

| Age   | Males | Females |
|-------|-------|---------|
| 0-9   | 1688  | 1040    |
| 10-19 | 456   | 396     |
| 20-29 | 328   | 312     |
| 30-39 | 360   | 530     |
| 40-49 | 504   | 568     |
| 50+   | 528   | 456     |

Calculate the age-sex accuracy score (joint score). Explain the results. (6 marks)

#### **QUESTION TWO (20 MARKS)**

a) Distinguish between cohort fertility and period fertility.

b) The following data is for a population:

| Age Group (vears) | <b>Number of Births</b> | Female Population |
|-------------------|-------------------------|-------------------|
| 15-19             | 120                     | 3,000             |
| 20-24             | 200                     | 2,800             |
| 25-29             | 250                     | 2,600             |
| 30-34             | 180                     | 2,400             |
| 35-39             | 90                      | 2,200             |
| 40-44             | 30                      | 2,000             |

- (i) Calculate the **Age-Specific Fertility Rates (ASFR)** for each age group. Plot the **ASFR** curve. (6 marks)
- (ii) Calculate the **Total Fertility Rate (TFR)** for this population. Interpret the TFR in terms of average children per woman. (4 marks)
- (iii) Using the **TFR** calculated above, estimate the **Gross Reproduction Rate (GRR)** if 48% of the births are female. What does this value represent in terms of population replacement? (4 marks)
- (iv) Given a survival ratio of 0.95 for females from birth to reproductive age, calculate the **Net Reproduction Rate (NRR)**. Explain the demographic significance of the NRR being greater than, less than, or equal to 1. (4 marks)

#### **QUESTION THREE (20 MARKS)**

- a) Distinguish between direct standardization and indirect standardization. (2 marks)
- b) In what situations would you prefer to use indirect standardization over direct standardization? (2 marks)
- **c)** Consider the following data on mortality for two populations, A and B, and a standard population. Calculate the age-standardized mortality rate for population A and B using **direct standardization**

| Age   | Population | Mortality | Population | Mortality | Standard   |
|-------|------------|-----------|------------|-----------|------------|
| group | A          | rate per  | В          | rate per  | Population |
|       |            | 1000      |            | 1000      |            |
| 0-19  | 8000       | 2.0       | 10,000     | 1.8       | 12,000     |
| 20-39 | 6000       | 3.0       | 8,000      | 2.5       | 10,000     |
| 40-59 | 4000       | 5.0       | 5,000      | 4.0       | 8,000      |
| 60+   | 2000       | 8.0       | 3,000      | 7.5       | 6,000      |

(6 marks)

(2 marks)

d) The table below shows the births and deaths for a given county for the years 2012 to 2014.

| Year | Birth cohort | Births | Deaths | Infant deaths |
|------|--------------|--------|--------|---------------|
| 2012 | 2012         | 67349  | 661    | 561           |
| 2013 | 2012         |        |        | 98            |
| 2013 | 2013         | 69304  | 640    | 542           |
| 2014 | 2013         |        |        | 94            |
| 2014 | 2014         | 68515  | 613    | 519           |

(i) Calculate the crude infant mortality rate for country X for 2013.

(2 marks)

- (ii) Calculate the infant mortality rate for 2013 using the numerator separation and the cohort probability methods. (4 marks)
- e) You are provided with the following age distribution of a population. Graduate the population distribution by age using the **Carrier-Farrag method**, and refine the results using **Newton's method** to improve the graduation

| Age group | Observed population |
|-----------|---------------------|
| 0-4       | 1200                |
| 5-9       | 1100                |
| 10-14     | 950                 |
| 15-19     | 850                 |
| 20-24     | 700                 |

(4 marks)

#### **QUESTION FOUR (20 MARKS)**

- a) A city's population is 200,000, and has a carrying capacity of 500,000. If it grows at a rate of 5% annually, project the population in 5 years using the
  - (i) Geometric Growth Model.

(2 marks)

(ii) Exponential Growth Model.

(2 marks)

(iii) Logistic Growth Model.

(2 marks)

b) The table below is the abridged life table for a country Y.

| Age   | $_{n}q_{x}$ | $l_x$  | $_{n}d_{x}$ | $_{n}L_{x}$ | $T_x$   | $e_x$ |
|-------|-------------|--------|-------------|-------------|---------|-------|
| 0-1   | 0.005880    | 100000 | 588         |             | 8010591 | 80.1  |
| 1-4   | 0.000999    | 99412  | 99          | 397409      | 7911090 | 79.6  |
| 5-9   | 0.000650    | 99313  | 65          | 496402      | 7513681 | 75.7  |
| 10-14 | 0.000750    |        | 74          | 496054      | 7017279 |       |
| 15-19 | 0.001898    | 99174  |             |             | 6521225 | 65.8  |
| 20-24 | 0.002247    | 98985  | 222         | 494371      | 6025827 | 60.9  |
| 25-29 | 0.002597    | 98763  | 257         | 493174      | 5531457 | 56.0  |
| 30-34 |             | 98506  | 349         | 491660      | 5038283 | 51.1  |
| 35-39 | 0.005584    | 98157  | 548         | 489417      | 4546623 | 46.3  |
| 40-44 | 0.008712    | 97609  | 850         | 485920      | 4057206 | 41.6  |
| 45-49 | 0.012719    | 96759  | 1231        | 480718      | 3571286 | 36.9  |
| 50-54 | 0.018330    | 95528  | 1751        | 473264      |         | 32.4  |
| 55-59 | 0.028488    | 93777  | 2672        | 462207      | 2617304 | 27.9  |

(i) Complete the life table. (show all your working)

(6 marks)

- (ii) What is the probability of dying between ages 15 and 25 given survival to age 15. (2 marks)
- (iii) What is the average age at death for those dying between ages 20 and 55 given survival to age 20. (4 marks)
- (iv) Of 3000 members of this population aged 30 years, how many are likely to survive to exact age 50. (2 marks)

#### **QUESTION FIVE (20 MARKS)**

- a) A country experiences 50,000 immigrants and 30,000 emigrants in a given year. The total population at mid-year is 1,000,000. Calculate the Net Migration Rate **(NMR).** Interpret the result. (3 marks)
- b) In a region, the number of in-migrants is 15,000, and the number of out-migrants is 10,000. Calculate the **Migration Effectiveness Index (MEI)** Interpret the effectiveness of migration in terms of population redistribution. (3 marks)
- c) The following data was collected from the out patients records of a county hospital.

| Terminal  | Population with Terminal    | Population with Terminal    |
|-----------|-----------------------------|-----------------------------|
| Digit "a" | Digit "a" starting at 10 +a | Digit "a" starting at 20 +a |
| 0         | 1569                        | 1183                        |
| 1         | 526                         | 393                         |
| 2         | 788                         | 447                         |
| 3         | 583                         | 360                         |
| 4         | 478                         | 277                         |
| 5         | 1134                        | 836                         |
| 6         | 493                         | 295                         |
| 7         | 392                         | 226                         |
| 8         | 535                         | 280                         |
| 9         | 297                         | 165                         |

Calculate the Myer's Blended Index and explain the results.

(6 marks)

a) What do we mean by Parity Progression Ratio.

(2 marks)

b) Suppose a certain hypothetical cohort for women has the parity progression ratios;

$$p_0 = 0.968, p_1 = 0.940, p_2 = 0.929, p_3 = 0.913, p_4 = 0.888$$

. Assuming that no woman in this cohort had more than five children, out of 2000 women calculate the;

(i) Number of women who remain childless. (2 marks)

(ii) Number of women who have exactly one child. (2 marks)

(iii) Complete family size. (2 marks)