				10	1 t 3		t ₃
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}{}_+\alpha\beta$	0	0	0	0	0	0	0
$\sigma_{1^{+}\alpha\beta}^{\#2}~\tau_{1^{+}\alpha\beta}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2r_3+r_5)}$	0	0	0	0	0	0
,	$r_1^{#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{#2} + ^{\alpha}$

Lagrangian density	$\frac{2}{3}t_3\;\omega_{,\alpha}^{\;\alpha\prime}\;\;\omega_{\kappa\alpha}^{\;\;\kappa}+f^{\alpha\beta}\;\;\tau_{\alpha\beta}+\;\omega^{\alpha\beta\chi}\;\;\sigma_{\alpha\beta\chi}^{\;\;-\frac{1}{2}}r_3\;\partial_{,}\omega^{\kappa\lambda}_{\;\;\kappa}\;\partial^{,}\omega_{\lambda}^{\;\;\alpha}-r_5\;\partial_{,}\omega^{\kappa\lambda}_{\;\;\kappa}\;\partial^{,}\omega_{\lambda}^{\;\;\alpha}+$	$\frac{2}{3}r_2\partial^\beta\omega^{\theta\alpha}_{\alpha}\partial_{\theta}\omega^{\beta}_{\beta} - \frac{1}{3}r_2\partial_{\theta}\omega^{\beta}_{\beta}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{2}{3}r_2\partial_{\theta}\omega^{\beta}_{\beta}\partial_{\kappa}\omega^{\theta\alpha\beta} +$	$rac{1}{2}r_3\partial_{lpha}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{ heta\kappa\lambda}_{}-r_5\partial_{lpha}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{ heta\kappa\lambda}_{}-rac{1}{2}r_3\partial_{\theta}\omega_{\lambda}^{a}_{}\partial_{\kappa}\omega^{ heta\kappa\lambda}_{}+$	$r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - \tfrac{1}{2} r_3 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - r_5 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} + r_3 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} +$	$2r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \frac{2}{3}t_3\ \omega_{\kappa\alpha}^{\ \alpha}\partial^\kappa f'_{\ \prime} - \frac{2}{3}t_3\ \omega_{\kappa\lambda}^{\ \lambda}\partial^\kappa f'_{\ \prime} - \frac{4}{3}t_3\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{\ \prime} +$	$\frac{2}{3}t_{3}\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ l}+\frac{2}{3}t_{3}\ \omega_{l\alpha}^{\ \ \alpha}\partial^{\kappa}f'_{\ \ k}+\frac{2}{3}t_{3}\ \omega_{l\lambda}^{\ \ \lambda}\partial^{\kappa}f'_{\ \ k}+\frac{2}{3}t_{3}\partial^{\alpha}f^{\lambda}_{\ \ \alpha}\partial^{\kappa}f_{\lambda\kappa}+$	$\frac{1}{3} r_2 \partial_\kappa \omega^{\alpha\beta\theta} \partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_\kappa \omega^{\theta\alpha\beta} \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^\beta \omega_{\alpha}{}^{\alpha\lambda} \partial_\lambda \omega_{\alpha\beta}{}^{\prime} +$	$rac{2}{3}r_2\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ - $4r_3\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ - $rac{1}{2}r_3\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial_{\lambda}\omega_{lpha}{}^{lpha}$ +	$r_5\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial^{\lambda}\omega^{ heta\kappa}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
--------------------	---	---	---	---	---	--	---	--	---	--

$f_{1^{ ext{-}}lpha}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\tfrac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	[3]	0	$-\frac{1}{3}$ \bar{l} $\sqrt{2}$ kt_3
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+}$ $\alpha_{\beta}^{\#1}_{+}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0
	$o_1^{\#1} + \alpha \beta$	$o_1^{\#2} + \alpha \beta$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^{\text{-}1}}^{\#_1} \dagger^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#_1} \dagger^\alpha$	$f_1^{\#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\beta}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

 $t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$

 $r_{0+}^{\#1} - 2ik\sigma_{0+}^{\#1} == 0$

Source constraints SO(3) irreps

$\sigma_0^{\#1}$	(1)#1	$\omega_2 + \alpha \beta$ $3k^2 r_3$	2		0
0		$\omega_{2+}^{\#1} + ^{\alpha\beta}$	$1 + \alpha \beta$	$^{\prime}$ 2 $^{\prime}$	—— —
0		#3	2 . f#1 -	, 2	ω_2^{-1}
0			1		
$\frac{1}{k^2 r_2}$			$\omega_{0^{\text{-}}}^{\#1}$	0	0
k ² r ₂			$f_0^{\#2}$	0	0

 $\sigma_{2}^{\#1}\alpha\beta\chi==0$

 $\sigma_1^{\#2}\alpha\beta==0$

 $\tau_1^{\#1}\alpha\beta==0$

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $f_2^{\#1}$ $\omega_2^{\#1}$ $\alpha \beta \chi$

	•					
77	$f_0^{\#1}$	$-i\sqrt{2}\ kt_3$	$2 k^2 t_3$	0	0	
 #	$\omega_{0}^{\#1}$	£4	$i\sqrt{2}kt_3$	0	0	
otal #	•	$\omega_0^{\#1}$ †	$f_0^{\#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1}$ \dagger	

0 0

0

0

0

•	
	(No massive narticle

? /	Quadratic pole			
$\stackrel{k^{\mu}}{\longrightarrow}$?	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$		
\	Polarisations:	2		

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$