Course code	Course Name	L-T-P-Credits	Year of Introduction
AO206	PROPULSION -1	3-0-0-3	2016

Prerequisite: Nil

Course Objectives

- To introduce basic concepts and salient features of engine components of jet propelled engines which are operated in atmosphere.
- To familiarize advanced jet propulsion methods like hypersonic propulsion.

Syllabus

Piston engines – Gas turbine engines – thrust augmentation –inlets – nozzles -thrust reversal-combustion chamber - axial flow compressor- centrifugal compressor – axial flow turbine – ram jet engine – performance characteristics of GT engines.

Expected Outcome

The students will be able to

- i. identify the engine components of jet propelled engines
- ii. know the details of advanced Jet propulsion and hypersonic propulsion

Text Books:

- 1. Hill, P.G. & Peterson, C.R. "Mechanics & Thermodynamics of Propulsion" Addison Wesley Longman INC, 1999.
- 2. James Award, "Aerospace Propulsion System"

References:

- 1. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H. "Gas Turbine Theory", Longman, 1989.
- 2. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York, 1985.
- 3. Rolls Royce, "Jet Engine", 5th Edition, Rolls Royce Technical Publications, 2005.
- 4. Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers & Distributors, Delhi, 1999.

Course Plan

Module	Contents	Hours	Sem. Exam Marks
I	Operating principles of piston engines – thermal efficiency calculations – classification of piston engines.	1	15%
	Propeller geometry, types, material for propellers, selection of propellers.	1	
	Propeller theories Ideal Momentum and Blade element, Numerical problems on the performance of propellers using propeller charts.	2	
	Illustration of working of gas turbine engine-the thrust equation.	1	
	Factors affecting thrust – effect of pressure, velocity and temperature	2	

		1	ı	
	changes of air entering compressor – methods of thrust augmentation.			
II	Internal flow and Stall in subsonic inlets.	1	15%	
	Relation between minimum area ratio and eternal deceleration ratio, Diffuser performance.			
	Supersonic inlets – starting problem on supersonic inlets, shock swallowing by area variation.	1		
	Real flow in nozzles and nozzle efficiency – losses in nozzles – equilibrium flow and frozen flow in nozzles- two phase flow in nozzles.	1		
	Ejector and variable area nozzles - interaction of nozzle flow with adjacent surfaces, Thrust reversal.	1		
	Classification of combustion chambers – combustion chamber performance.	1		
	Effect of operating variables on performance – flame stabilization.	1		
	FIRST INTERNAL EXAM		'	
III	Principle of operation of axial flow compressor.	1	15%	
	Work done and pressure rise – velocity diagrams.	2		
	Degree of reaction – free vortex and constant reaction designs of axial flow compressor.	2		
	Performance characteristics of axial flow compressors— stage efficiency calculations - cascade testing.	2		
IV	Principle of operation of centrifugal compressor.	1	15%	
	Work done and pressure rise – velocity diagrams – degree of reaction.	3		
	Performance characteristics of centrifugal compressors	1		
	Stage efficiency calculations.	2		
	SECOND INTERNAL EXAM			
V	Principle of operation of axial flow turbines—limitations of radial flow turbines—Work done and pressure rise.	2	20%	
	Velocity diagrams – degree of reaction – free vortex and constant nozzle angle designs.	2		
	Performance characteristics of axial flow turbine— turbine blade cooling methods.	1		
	Stage efficiency calculations — basic blade profile design considerations — matching of compressor and turbine.	2		
VI	Operating principle of ramjet engine.	1	20%	
	Various components of ramjet engines and their efficiencies.	1		
	Combustion in ramjet engine – critical, subcritical and supercritical	2		

Characteristics of turboprop, turbofan and turbojet – performance characteristics.	1

Question Paper Pattern

Maximum marks: 100, Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks
Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

