

Ausgleichsrechnung

Frédéric Pythoud

Thema und Ziel

Einführung von grundlegenden Fitmethoden, die

- für die Auswertung von Messdaten zur Anwendung gelangen,
- typischerweise in der Kalibrierarbeit von Bedeutung sind.

Ziel:

- die Methode der kleinsten Quadrate ist geläufig und Parameter eines linearen Regressionsmodells können berechnet werden,
- Messdaten können mit Hilfe der linearen Regression ausgewertet werden,
- die Güte eines Regressionsmodells kann beurteilt werden.

Inhalt

- Die lineare Regression
 - Geradenfit nach der Methode der kleinsten Quadrate
 - EXCEL-Werkzeuge
 - Analyse der Residuen
 - Voraussage neuer Beobachtungen
 - Lineare Regression mit unterschiedlichen Gewichten der Messpunkte
- Multilineare Regression
- (Nicht-lineare Ausgleichsrechnung)

Problemstellung

Wir haben eine Reihe von Messdaten bei verschiedenen Werten für einen oder mehrere der Einflussgrössen

Fragen:

- Gibt es einen funktionalen
 Zusammenhang zwischen x und y
- Wenn ja, welcher?
- Bestätigen die Messdaten das Modell der Messung?
- Was ist der Funktionswert (y) für ein beliebiges Argument (x)?

Einfachstes Modell – Die Gerade

Modell

Der funktionale Zusammenhang zwischen x und y kann durch eine Gerade beschrieben werden.

$$y(x) = a + bx$$

Messungen

Ein Satz von $(x_i, y_i, i = 1...n, n > 2)$ Wertepaaren

Die Funktionswerte y_i sind mit einer Unsicherheit behaftet.

Die Argumente x_i nehmen wir als exakt an.

Aufgabe

Parameter a und b einer Geraden finden, so dass der Unterschied $y_i - (a + bx_i)$ für alle Wertepaare möglichst klein wird.

Graphischer Ausgleich

Annahme:

Instrumentenfehler kann durch Gerade angenähert werden.

Geraden mit kleinster und grösster annehmbaren Steigung einzeichnen: b_{min} , b_{max}

Mittlere Steigung berechnen: b

$$b_{\min} = \frac{\Delta y}{\Delta x}$$

$$b = \frac{b_{\text{max}} + b_{\text{min}}}{2}$$

$$u(b) \approx \frac{b_{\text{max}} - b_{\text{min}}}{2}$$

Interpolation:

Für T=10 °C ist die interpolierte Abweichung: $T-T_{ref}=(55\pm5)$ mK

Methode der kleinsten Quadrate

Summe der Abstände zwischen einer geschätzten Gerade und den Messpunkten bilden

$$\chi^2 = \sum_{i=1}^n (y_i - y(x_i))^2 = \sum_{i=1}^n (y_i - a - bx_i)^2$$

a und b nehmen den wahrscheinlichsten Wert ein, wenn χ^2 minimal ist.

$$0 = \frac{\partial \chi^2}{\partial a} = -2 \sum_{i=1}^n y_i - a - bx_i$$
$$0 = \frac{\partial \chi^2}{\partial b} = -2 \sum_{i=1}^n x_i (y_i - a - bx_i)$$

Prinzip "Methode der kleinsten Quadrate"

Lösung für einen Geradenfit

a und b nehmen ihren wahrscheinlichsten Wert ein, wenn χ^2 ein Minimum erreicht.

Definition Hilfssummen: $S_x = \sum_{i=1}^n x_i$, $S_y = \sum_{i=1}^n y_i$

$$S_{xx} = \sum_{i=1}^{n} x_i^2$$
, $S_{xy} = \sum_{i=1}^{n} x_i y_i$

Resultate: $\Delta \equiv nS_{xx} - S_x^2$

$$a = \frac{S_{xx}S_y - S_xS_{xy}}{\Delta}$$

$$b = \frac{nS_{xy} - S_x S_y}{\Delta}$$

Geradenfit

Als Schätzung für die Standardunsicherheit einer einzelnen Messung erhalten wir:

$$s = \sqrt{\frac{1}{n-2} \sum (y_i - a - bx_i)^2} = \sqrt{\frac{\chi^2}{n-2}}$$
 Streuung der Messwerte um die angepasste Gerade

angepasste Gerade

(n - 2): Anzahl Freiheitsgrade

Aus dem Unsicherheitsfortpflanzungsgesetz berechnen wir für die Unsicherheit der Fitparameter:

$$u(a) \equiv s_a = s \cdot \sqrt{\frac{S_{xx}}{\Delta}}$$

$$u(b) \equiv s_b = s \cdot \sqrt{\frac{n}{\Delta}}$$

$$Cov(a, b) = -s^2 \cdot \frac{S_x}{\Delta}$$

Geradenfit - Resultat

Fitresultate:

$$a = (24.5 \pm 3.2) \text{ mK}$$

$$b = (3.05 \pm 0.46) \text{ mK/K}$$

$$s = 5 \text{ mK}$$

Interpolation für T = 10 °C: (exakte Lösung siehe nächste Folie)

$$\Delta T(T = 10 \, ^{\circ}\text{C}) = 55 \, \text{mK}$$

$$u(\Delta T) \cong \sqrt{u^2(a) + T^2 u^2(b)}$$

$$\Rightarrow u(\Delta T) \cong 5.6 \text{ mK}$$

Unsicherheit der Interpolation – Vorwärts

Die Formel lautet: $y = a + b \cdot x$

Für die Unsicherheit:

$$u^2(y) =$$

$$u^2(a) + u^2(b) \cdot x^2 + 2 \cdot \text{Cov}(a, b) \cdot x$$

$$+b^2 \cdot u^2(x)$$

$$+(u_{y-\text{scale}})^2$$

Fit-Unsicherheit

x-Unsicherheit

Unsicherheit der y-Skala

Bemerkung
$$u(a) = s_a$$
, $u(b) = s_b$

Unsicherheit der Interpolation – Rückwärts

Die Formel lautet:

$$x = \frac{y - a}{b}$$

Für die Unsicherheit:

$$u^{2}(x) =$$

$$\frac{u^2(a)}{b^2} + u^2(b) \cdot \frac{(y-a)^2}{b^4} + 2 \cdot \text{Cov}(a,b) \cdot \frac{y-a}{b^3}$$

Fit-Unsicherheit

$$+u^{2}(y)/b^{2}$$

y-Unsicherheit

$$+(u_{x-scale})^2$$

Unsicherheit der x-Skala

Güte des Fits

- Experimentator muss beurteilen, ob Fitresultat sinnvoll ist oder nicht.
- Verschiedene statistische Tests helfen bei der Beurteilung
- **Frage:** Ist die Abhängigkeit der *y*-Werte von *x* statistisch relevant?

Bestimmtheitsmass
$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$
Gesamtvariabilität der Daten
$$\sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} (f_{i} - \overline{y})^{2} + \sum_{i=1}^{n} (y_{i} - f_{i})^{2}$$

R² variiert zwischen 0 und 1

$$= SSR + \chi^2$$

 $R^2 = 1$: Gerade geht exakt durch alle Punkte

kleines \mathbb{R}^2 : schwache Korrelation zwischen x und y

$$R^2 = \frac{SSR}{SSR + \chi^2}$$

Linearer Fit in EXCEL

Das Tabellenkalkulationsprogramm EXCEL bietet Funktionen zur Berechnung der linearen Regression nach der Methode der kleinsten Quadrate an.

- Berechnung des Offsetterms a:
 - ACHSENABSCHNITT(y1:yn; x1:xn)
 - INTERCEPT(y1:yn; x1:xn)
- Berechnung der Steigung b:
 - STEIGUNG(y1:yn; x1:xn)
 - SLOPE(y1:yn;x1:xn)
- Standardabweichung s:
 - STFEHLERYX(y1:yn; x1:xn)
 - STEYX(y1:yn; x1:xn)

EXCEL-ArrayFunktion RGP

Berechnet Gerade und die statistischen Grössen für die lineare Regression

{RGP(y1:yn; x1:xn; WAHR,
$$\overline{W}$$
AHR)} berechnet statistische Kenngrössen

	A	В
1	Fitparameter b	Fitparameter <i>a</i>
2	Standardabweichung $s_{\it b}$	Standardabweichung s_a
3	Bestimmtheitsmass R ²	Standardunsicherheit einer Einzelmessung <i>s</i>
4	F (Grösse für die F-Statistik)	Anzahl der Freiheitsgrade = $n-2$
5	Quadratsumme SSR	χ^2

Bemerkung

RGP (deutsche Excel Version) oder LINEST (englische Version) sind «Arrays Functions»

Analyse der Residuen

$$y_i - a - b x_i$$

Residuen

- sollten konstante Varianz aufweisen
- zufällig um den Nullwert verteilt sein (keine Struktur)
- normalverteilt sein

Residuen

Voraussage neuer Beobachtungen

$$\delta_{\text{nom}}(\Delta T) = a + b \cdot \Delta T$$

 $\delta_{\text{nom}}(\Delta T = 7 \text{ K}) = 17.5 \times 10^{-6}$

Unsicherheit:

$$u(\delta_{\text{nom}}) = \sqrt{s_a^2 + (\Delta T \cdot s_b)^2}$$
$$= 1.2 \times 10^{-6}$$

EXCEL-Funktion:

- SCHÄTZER(X; Y1:Yn; X1:Xn)
- FORECAST(X; Y1:Yn; X1:Xn)

Extrapolation

Linearer Fit mit unterschiedlichen Gewichten

Praxis:

Messunsicherheiten nicht für alle Messpunkte gleich gross

- → Punkte mit kleinerer Unsicherheit sollten beim Fit ein grösseres Gewicht erhalten.
- → Methode der kleinsten Quadrate kann einfach verallgemeinert werden.

$$\chi^2 \to \chi_w^2 = \sum_{i=1}^n \frac{(y_i - f(x_i))^2}{s_i^2}$$

Gewichteter Geradenfit

Angepasste Hilfssummen:
$$S = \sum_{i=1}^{n} \frac{1}{s_i^2}$$
 $S_x = \sum_{i=1}^{n} \frac{x_i}{s_i^2}$ $S_y = \sum_{i=1}^{n} \frac{y_i}{s_i^2}$ $S_{xx} = \sum_{i=1}^{n} \frac{x_i^2}{s_i^2}$ $S_{xy} = \sum_{i=1}^{n} \frac{x_i y_i}{s_i^2}$

Resultate: $\Delta \equiv S \cdot S_{\chi\chi} - S_{\chi}^2$

$$a = \frac{S_{xx}S_y - S_xS_{xy}}{\Delta} \qquad S_a = \sqrt{\frac{S_{xx}}{\Delta}}$$

$$b = \frac{S \cdot S_{xy} - S_xS_y}{\Delta} \qquad S_b = \sqrt{\frac{S}{\Delta}}$$

Gewichteter Geradenfit

Bedeutung des χ^2

Ungewichteter Fit (*s* aus Residuen berechnet)

$$s = \sqrt{\sum_{i=1}^{n} \frac{(y_i - f(x_i))^2}{n-2}} \rightarrow 1 = \frac{\chi^2}{s^2 \cdot (n-2)}$$
 Anzahl Freiheitsgrade

Gewichteter Fit (*s*_i der Einzelmessung bekannt)

Kriterium für Güte des Fits:

 $\chi^2 \approx 1$: Fit ok

 $\chi^2 >> 1$: Modell schlecht (siehe Residuen) oder Messunsicherheit zu klein geschätzt

(Wahrscheinlichkeitsaussage über Relevanz des Fits über χ^2 -Test)

Multilinearer Fit

In vielen Fällen können Messdaten durch eine Gerade nicht befriedigend angenähert werden:

Streuung um angepasste Gerade viel grösser als Messunsicherheit

Systematische Struktur in den Residuen

→ zusätzliche Modellparameter notwendig

Polynom

Eine Verbesserung ist oft mit zusätzlichen Fitparametern möglich

 \square Polynom m^{ter} Ordnung:

$$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_m x^m$$

- Die Funktion ist linear in den Fitparametern
- Die Methode der kleinsten Quadrate ist anwendbar.
- Es existieren analytische Lösungen

RGP-Funktion für Polynomfit

{RGP(y1:yn; x11:xmn; WAHR, WAHR)}

Xij: Matrix mit m Spalten

1. Spalte: x-Werte 2. Spalte: x_2 -Werte m. Spalte: x_m -Werte

allgemeine Form multilineare Gleichung

$$y(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$

	Α	В	С	 X
1	Fitparameter a_m	a_{m-1}	a_{m-2}	 a_0
2	Standardabweichung $s(a_m)$	$s(a_{m-1})$	$s(a_{m-2})$	 $s(a_0)$
3	Bestimmtheits-mass R ²	S		
4	F (Grösse für die F-Statistik)	Freiheitsgrade $v = n - m - 1$		
5	Quadratsumme SSR	χ ²		

$$F = \frac{R^2}{1 - R^2} \cdot \frac{n - m - 1}{m}$$

Polynomfit

$$\chi_n^2 = 1.05 \ (\chi^2\text{-Test: 40\%})$$

$$F = 422$$
 (Grenzwert = 6)

aber:

- nur 3 Freiheitsgrade
- Modell muss sinnvoll sein
 (Abstützung durch theoretische Überlegung; zusätzliche Untersuchungen....)

Bestimmung Kalibrierkonstanten Pt-100-Fühler

Der Widerstand eines Pt-100-Fühlers in Funktion der Temperatur lässt sich oberhalb 0 °C durch ein Polynom 2. Ordnung beschreiben.

Norm IEC 751:
$$R(T) = R_0 \circ_C (1 + A \cdot T + B \cdot T^2); T \ge 0 \circ_C$$

Beispiel:

Gemessener

Widerstandswert Pt-100

Geradenfit Pt-100 – Resultate

Residuen zeigen eine quadratische Komponente

Pt-100 – Abweichung lineares Verhalten

Normfühler:

$$R(T = 0 \, ^{\circ}\text{C}) = 100 \, \Omega$$

$$a_1 = 0.384 \ \Omega/^{\circ} C$$

Fit Temperaturabhängigkeit

Fitresultat:

Polynom 2. Ordner nähert die Messdaten gut an: $(y_i - y(xi))$ sind zufällig verteilt

32

Beispiel 2 – Polynomfit

Beispiel 2 – Polynomfit

Extrapolation bei Polynomfits

Nicht-lineare Fitfunktion

 Die Methode der kleinsten Quadrate kann auch für nicht-lineare Fitfunktionen verwendet werden.

• In diesem Fall muss das Minimum für χ^2 mit Hilfe numerischer Methoden gesucht werden.

 Im Programm EXCEL kann das Analysepaket "SOLVER" für beliebige Fits eingesetzt werden

Beispiel – Eigenerwärmung eines Shunts

- Bei einem Messstrom I an einem Widerstand R wird die Leistung $P = R I^2$ verbraucht.
- Die Eigenerwärmung kann zu einer Widerstandsänderung führen.
- Die Änderung weist ein exponentielles Verhalten auf.

$$\frac{\Delta R}{R} = a_0 + a_1 \exp(-a_2(t - t_0))$$

$$\frac{1}{a_2} = \tau$$
 $\tau = \text{Zeitkonstante}$

Beispiel – Eigenerwärmung eines Shunts

Bedeutung **Zeitkonstante**: Nach dieser Zeit hat der Shunt (1 - 1/e) = 63 % der totalen, durch den Strom verursachten Änderung erreicht.

$$1 \times \tau \rightarrow 63 \%$$

$$2 \times \tau \rightarrow 86 \%$$

$$3 \times \tau \rightarrow 95 \%$$

$$4 \times \tau \rightarrow 98 \%$$

SOLVER – Praktische Anwendung

x_i : Zeit	$y_i: \Delta R/R$	s_i	Fitwert	$(y_i - f(x_i:))^2$	f(x)	- a	<i>La.</i> evr	$(-a_{-}t)$
(min)	(ppm)	(ppm)	$f(x_i)$		$f(x) = a_0 + a_1 \exp(-a_2 t)$			
1.24	14.03	0.10	14.18	2.09				,
3.72	12.43	0.10	12.44	0.01		Fitparameter		
6.20	10.96	0.10	10.91	0.22		a_0	-0.23	
:	:	:	:	•		a_1	15.40	
68.20	0.20	0.10	0.18	0.05		a_2	0.052	
χ^2 :			χ ² :	17.05		1		
Solver Parameters ? X								
	Set Target Cell: \$K\$52	[0	Solve				
				Equal To: C Max • Min C Value of: 0 Close				
				\$P\$57:\$P\$59 -Subject to the Constraints:	<u>N</u>	<u>G</u> uess	<u>O</u> ptions	
					_	Add		
					~	<u>C</u> hange <u>D</u> elete	Reset All	

<u>H</u>elp

Beispiel – Eigenerwärmung eines Shunts

Fitresultate:

 a_0 : (-0.23 ± 0.05) × 10⁻⁶ a_1 : (15.4 ± 0.07) × 10⁻⁶ = Änderung durch Eigenerwärmung

t: (19.1 \pm 0.3) min

- Nach einer Stunde hat der Shunt $(1 \exp(-60 / 19.1)) = 96 \%$ der Änderung erreicht.
- Er hat sich damit auf $0.04 \times 15.4 \times 10^{-6} = 0.6 \times 10^{-6}$ an seinen unter Strom *I* geltenden Gleichgewichtszustand angenähert

Schlussbemerkungen

Software für die (nicht-lineare) Ausgleichsrechnung

- Igor
- Mathcad
- Matlab
- Mathematica.....
- Metas.UncLib (www.metas.ch/unclib)

Weiterführende Literatur

- Douglas C. Motgomery, George C. Runger, Applied statistics and probability for engineers, Wiley, 3rd edition
- P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sci-ences, McGraw-Hill, 2nd edition, 1992.
- W. H. Press, B. P. Flannery, S. A. Teukolsky, w. T. Vetterling, Numerical Recipes:
 The art of Scientific Computing, Cambridge University Press.
- W. H. Heini Gränicher, Messung beendet was nun? vdf Hochschulverlag an der ETH Zürich und B. G. Teubner, Stuttgart, 1994.