

Techlabs - ST 2022 - Final presentation

UX Ese

WD Solange and Muhammad

DS Anna and Houda

AI/DL Hany and Constanze

Mentor Faruk

Our Path: From idea to application

Original idea:

- The CO₂ absorption of trees depends on their species, age and location.
- Learn about and predict the CO, absorption of trees in Berlin

Our application allows the user

- to gain more information about trees in the twelve districts of Berlin.
- to understand the oldest and the highest tree in each districts of Berlin.
- to know the amount of CO2 each oldest and highest tree species in each district can absorb per year and in total life.
- to **identify trees** simply **by uploading pictures** with their smartphone or Laptop.

Vision: Facilitate people in Berlin to gain more knowledge about the trees surrounding them and on the trees impact on the environment in terms of CO₂ absorption.

Our application

DS

- Information about trees distribution in Berlin
- ML prediction of the age of a tree

UX

- User research
- Design
- Prototyping
- Usability testing

WD

- developed a web
 application based on the UX-Figma model.
- using HTML, CSS,
 Javascript, React and
 React Router.

AI/DL

- species recognition from a tree image
- creation of image dataset via **active learning**

- Live demonstration -

UX: Design, User flow and Functionality

- Create a logo for the app.
- Transformed low fidelity mockup into high fidelity prototype.
- Analysed **user flow**.
- Optimized interactive prototype with available data from the DS.
- Carrying out usability testing; Analyzing data.

High fidelity prototype:

WD: Integration of all functionalities in our application

- 1. Web Dev Team **developed the web** based on the prototype designed by UX.
- 2. Bootstrapped fundamental architecture.
- 3. API Integrations(BackEnd functionalities on the image Upload part).
- 4. Collected data from DS and "hard coded" it to have the top ten trees species, streets with most trees, the oldest and highest tree in each districts.
- 5. Used google to search for how to calculate CO2 absorption with Species, Age, circumference, dry weight, CO2 absorption per year and in total for each districts.
- 6. Each German name species has been provided with the Scientific Name and an image of the species.
- 7. Created an external link that will help users for more information.
- 8. React router is used to direct to different pages based on the request.

DS: Dataset from Cleaning, Visualisations to ML

Create a Dataset

- Collected data of public trees in Berlin
- Cleaned dataset from anomalies
- Stored the dataset in an open source database (supabase)

Used tools:

			0
Baumart deutsch text	∨ Baumart botanisch text ∨	Gattung botanisch text	Straße text
Gemeine Rosskastanie	Aesculus hippocastanum	AESCULUS	Abbestraße
Gemeine Rosskastanie	Aesculus hippocastanum	AESCULUS	Abbestra8e
Sand-Birke	Betula pendula	BETULA	Brahestraße
Winter-Linde	Tilia cordata		Alemannenaliee
Winter-Linde	Tilia cordata		Goethestraße
Spitz-Ahorn	Acer platanoides	ACER	Erdener Straße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Vogelbeere	Sorbus aucuparia	SORBUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Gewöhnliche Esche	Fraxinus excelsior	FRAXINUS	Oppermannstraße
Berg-Ahorn, Weiss-Ahorn	Acer pseudoplatanus	ACER	Erdener Straße

DS: Dataset from Cleaning, Visualisations to ML

Visualizations for tree species

Figure: Share of Trees per Species

Visualizations for districts

Machine Learning Algorithm

```
# Show data in a scatter plot
marker_size=15
plt.scatter(Y_test, Y_pred, marker_size, alpha=0.5)
```

<matplotlib.collections.PathCollection at 0x1b4e9b30488>

Estimate Age

We created an ML algorithm that predicts the age of the tree based on its species and girth.

Used Tools

AI/DL: Image classification of trees

Our technical stack

Documentation

Thank you for your attention and looking forward to your insights & feedback

GreenMonitor

UX Ese

WD Solange and Muhammad

DS Anna and Houda

AI/DL Hany and Constanze

Mentor Faruk

