In [2]: #Import Dataset csvData = pd.read_csv('diabetes.csv') csvData

Out[2]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction
	0	6	148	72	35	0	33.6	0.62
	1	1	85	66	29	0	26.6	0.3
	2	8	183	64	0	0	23.3	0.67
	3	1	89	66	23	94	28.1	0.16
	4	0	137	40	35	168	43.1	2.28
	763	10	101	76	48	180	32.9	0.17
	764	2	122	70	27	0	36.8	0.34
	765	5	121	72	23	112	26.2	0.24
	766	1	126	60	0	0	30.1	0.34
	767	1	93	70	31	0	30.4	0.3

768 rows × 9 columns

```
In [3]: #Sort Dataset
x = csvData.iloc[:,0:-1].values
y = csvData.iloc[:,-1].values
```

```
In [18]: #Clean the Dataset
    from sklearn.preprocessing import MinMaxScaler, StandardScaler
    scaler = StandardScaler()
    # scaler = MinMaxScaler() #StandardScaler gave better results here
    x = scaler.fit_transform(x)
```

1 of 2 10/7/2022, 12:13 AM

```
In [19]: #Perform the Training with K=5
         from sklearn.model_selection import KFold
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import cross_val_score
         kcup = KFold(n_splits=5, random_state=1337, shuffle=True)
         model = LogisticRegression(random_state=1337)
         results = cross_val_score(model,x,y,cv=kcup)
         print("K=5 | Accuracy: {:.3f}% ({:.3f}%)".format(results.mean()*100, results.s
         K=5 | Accuracy: 77.734% (2.167%)
In [17]: #Perform the Training with K=10
         kcup = KFold(n_splits=10, random_state=1337, shuffle=True)
         model = LogisticRegression(random_state=1337)
         results = cross_val_score(model,x,y,cv=kcup)
         print("K=10 | Accuracy: {:.3f}% ({:.3f}%)".format(results.mean()*100, results.
         K=10 | Accuracy: 76.811% (3.108%)
 In [ ]:
```

2 of 2 10/7/2022, 12:13 AM