Package 'echoLD'

August 31, 2021

```
Type Package
Title echoverse module: LD downloading and processing
Version 0.99.0
Description echoverse module: LD downloading and processing.
URL https://github.com/RajLabMSSM/echoLD
BugReports https://github.com/RajLabMSSM/echoLD/issues
Encoding UTF-8
LazyData true
Depends R (>= 3.6.0)
SystemRequirements Python (>= 3.7.0)
biocViews
Imports echotabix,
     downloadR,
     magrittr,
     dplyr,
     utils,
     R.utils,
     stats,
     methods,
     Matrix,
     parallel,
     BiocManager,
     data.table,
     reticulate,
     GenomeInfoDb,
     GenomicRanges,
     VariantAnnotation,
     snpStats,
     gaston,
     rtracklayer,
     LDlinkR,
     adjclust
Suggests markdown,
     rmarkdown,
     remotes,
```

2 BST1

```
knitr,
     BiocStyle,
     covr,
     testthat (>= 3.0.0)
Remotes github::RajLabMSSM/echotabix,
     github::RajLabMSSM/downloadR
RoxygenNote 7.1.1
VignetteBuilder knitr
License GPL (>= 3) + file LICENSE
Config/testthat/edition 3
```

R topics documented:

	BST1
	BST1_LD_matrix
	get_LD_blocks
	get_UKB_MAF
	liftover
	load_or_create
	locus_dir
	popDat_1KGphase1
	popDat_1KGphase3
Index	11
HIUCA	11

echolocatoR output example: BST1 locus

BST1

Description

An example results file after running finemap_loci on the BST1 locus.

Usage

```
data("BST1")
```

Format

data.table

SNP SNP RSID

CHR Chromosome

POS Genomic position (in basepairs)

... Optional: extra columns

Nalls2019

data.table

BST1_LD_matrix 3

Details

Data originally comes from the Parkinson's disease GWAS by Nalls et al., (bioRxiv).

Source

```
root_dir <-"~/Desktop/Fine_Mapping/Data/GWAS/Nalls23andMe_2019/BST1/Multi-finemap"
BST1 <-data.table::fread(file.path(root_dir,"Multi-finemap_results.txt")) BST1 <-update_cols(dat = BST1) BST1 <-find_consensus_SNPs(dat = BST1) usethis::use_data(BST1,overwrite = TRUE)</pre>
```

BST1_LD_matrix

LD with the lead SNP: BST1 locus

Description

Precomputed LD within the *BST1* locus (defined in BST1. LD derived British, European-decent subpopulation in the UK Biobank. Only includes a subset of all the SNPs for storage purposes (including the lead GWAS/QTL SNP).

Usage

```
data("BST1_LD_matrix")
```

Format

data.table

SNP SNP RSID

CHR Chromosome

POS Genomic position (in basepairs)

... Optional: extra columns

UK Biobank Nalls 2019

matrix

Details

Data originally comes from UK Biobank. LD was pre-computed and stored by the Alkes Price lab (see here).

Source

```
data("BST1") finemap_DT <-BST1 # Only including a small subset of the full # LD matrix
for storage purposes. lead_snp <-subset(finemap_DT,leadSNP)$SNP snp_list <-finemap_DT[which(finemap_
== lead_snp) -100:which(finemap_DT$SNP == lead_snp) + 100,]$SNP BST1_LD_matrix <-readRDS("../Fine_Matrix_BST1_LD_matrix_[snp_list,snp_list] usethis::use_data(BST1_LD_matrix,overwrite = T)</pre>
```

get_UKB_MAF

get_LD_blocks

Identify the LD block in which the lead SNP resides

Description

Identify the LD block in which the lead SNP resides

Usage

```
get_LD_blocks(
  dat,
  ss,
  stats = c("R.squared", "D.prime"),
  pct = 0.15,
  verbose = TRUE
)
```

Arguments

ss snpStats object or LD matrix (containing r or r^2 values).

stats a character vector specifying the linkage disequilibrium measures to be calculated (using the 1d function) when x is a genotype matrix. Only "R.squared" and "D.prime" are allowed, see Details.

pct minimum percentage of points for the plateau selection in capushe selection. See DDSE for further details

verbose Print messages.

Value

A list with the input data and LD matrix (r^2),

Source

adjclust GitHub

get_UKB_MAF Get MAF from UK Biobank.

Description

If MAF column is missing, download MAF from UK Biobank and use that instead.

liftover 5

Usage

```
get_UKB_MAF(
  dat,
  output_path = file.path(tempdir(), "Data/Reference/UKB_MAF"),
  force_new_maf = FALSE,
  download_method = "axel",
  nThread = 1,
  verbose = TRUE,
  conda_env = "echoR"
)
```

Arguments

dat SNP-level data. $output_path$ Path to store UKB_MAF file in. Download UKB_MAF file again. force_new_maf download_method • "axel" : Multi-threaded • "wget": Single-threaded • "download.file": Single-threaded • "internal": Single-threaded (passed to download.file) • "wininet" : Single-threaded (passed to download.file) • "libcurl": Single-threaded (passed to download.file) • "curl": Single-threaded (passed to download.file) or "download.file" (single-threaded). nThread Number of threads to parallelize over. verbose Print messages.

Source

UKB

conda_env

Examples

```
data("BST1")
dat <- data.frame(BST1)[, colnames(BST1) != "MAF"]
BST1 <- get_UKB_MAF(dat = dat)</pre>
```

Conda environment to use.

liftover

Genome build liftover

Description

Transfer genomic coordinates from one genome build to another.

6 load_or_create

Usage

```
liftover(
   dat,
   chrom_col = "CHR",
   start_col = "POS",
   end_col = start_col,
   build_conversion = c("hg38ToHg19", "hg19ToHg38"),
   as_granges = FALSE,
   verbose = TRUE
)
```

Arguments

dat SNP-level data table.

chrom_col Name of the chromosome column.
start_col Name of the start position column.

end_col Name of the end position column (can be same as start_col if all data is SNP-

level).

build_conversion

From which to which genome build to lift over dat.

as_granges Return lifted dat as GenomicRanges object.

verbose Print messages.

Source

liftOver

UCSC chain files

Examples

```
data("BST1")
dat_lifted <- liftover(dat = BST1, build_conversion = "hg19ToHg38")</pre>
```

load_or_create

Procure an LD matrix for fine-mapping

Description

Calculate and/or query linkage disequilibrium (LD) from reference panels (UK Biobank, 1000 Genomes), a user-supplied pre-computed LD matrix

Usage

```
load_or_create(
  locus_dir,
  dat,
  force_new_LD = FALSE,
  LD_reference = c("1KGphase1", "1KGphase3", "UKB"),
  ref_genome = "hg19",
```

load_or_create 7

```
samples = NULL,
superpopulation = NULL,
local_storage = NULL,
leadSNP_LD_block = FALSE,
fillNA = 0,
verbose = TRUE,
remove_tmps = TRUE,
as_sparse = TRUE,
download_method = "axel",
nThread = 1
```

Arguments

locus_dir Storage directory to use.

dat GWAS summary statistics subset to query the LD panel with.

force_new_LD If LD file exists, create a new one.

LD_reference LD reference to use:

"1KGphase1": 1000 Genomes Project Phase 1
"1KGphase3": 1000 Genomes Project Phase 3

• "UKB" : Pre-computed LD from a British European-decent subset of UK Biobank.

ref_genome Genome build of the LD panel (used only if providing custom LD panel).

Sample names to subset the VCF by before computing LD.

superpopulation

samples

Superpopulation to subset LD panel by (used only if LD_reference is "1KG-phase1" or "1KGphase3".)

local_storage

Storage folder for previously downloaded LD files. If LD_reference is "1KG-phase1" or "1KG-phase3", local_storage is where VCF files are stored. If LD_reference is "UKB", local_storage is where LD compressed numpy array (npz) files are stored. Set to NULL to download VCFs/LD npz from remote storage system.

leadSNP_LD_block

Only return SNPs within the same LD block as the lead SNP (the SNP with the smallest p-value).

fillNA Value to fill LD matrix NAs with.

verbose Print messages.

remove_tmps Remove all intermediate files like VCF, npz, and plink files.

as_sparse Convert the LD matrix to a sparse matrix.

download_method

• "axel" : Multi-threaded

• "wget": Single-threaded

• "download.file": Single-threaded

• "internal": Single-threaded (passed to download.file)

• "wininet" : Single-threaded (passed to download.file)

• "libcurl": Single-threaded (passed to download.file)

• "curl": Single-threaded (passed to download.file)

or "download.file" (single-threaded).

nThread Number of threads to parallelize over.

8 locus_dir

Details

Options:

- Download pre-computed LD matrix from UK Biobank.
- Download raw VCF file from 1KG and compute LD on the fly.
- Compute LD on the fly from a user-supplied VCF file.
- Use a user-supplied pre-computed LD-matrix.

Value

A symmetric LD matrix of pairwise SNP correlations.

See Also

```
Other LD: LD_1KG_download_vcf(), LD_1KG(), LD_custom(), LD_ukbiobank(), compute_LD(), filter_LD(), get_locus_vcf_folder(), ldlinkr_ldproxy_batch(), plot_LD(), popDat_1KGphase1, popDat_1KGphase3, rds_to_npz(), saveSparse(), save_LD_matrix(), snpstats_get_MAF(), translate_population()
```

Examples

```
data("BST1")
data("locus_dir")
locus_dir <- file.path(tempdir(), locus_dir)
BST1 <- BST1[seq(1, 50), ]
## Not run:
LD_matrix <- load_or_create(
    locus_dir = locus_dir,
    dat = BST1,
    LD_reference = "1KGphase1"
)
## End(Not run)</pre>
```

locus_dir

Example results path for BST1 locus

Description

Example results path for BST1 locus

Usage

```
data("locus_dir")
```

Format

path string

Source

```
locus_dir <-"results/GWAS/Nalls23andMe_2019/BST1" usethis::use_data(locus_dir,overwrite
= T)
```

popDat_1KGphase1 9

popDat_1KGphase1

Population metadata: 1KGphase1

Description

Individual-level metadata for 1000 Genomes Project (Phase 1).

Usage

```
data("popDat_1KGphase1")
```

Format

data.table

Source

```
popDat_URL <-"ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/phase1_integrated_capopDat_1KGphase1 <-data.table::fread(text = trimws(gsub(",\t",",",readLines(popDat_URL))), sep = "\t",fill = T,stringsAsFactors = F,col.names = c("sample","population","superpop","sex"),nThread = 4) usethis::use_data(popDat_1KGphase1,overwrite = T)</pre>
```

See Also

```
Other LD: LD_1KG_download_vcf(), LD_1KG(), LD_custom(), LD_ukbiobank(), compute_LD(),
filter_LD(), get_locus_vcf_folder(), ldlinkr_ldproxy_batch(), load_or_create(), plot_LD(),
popDat_1KGphase3, rds_to_npz(), saveSparse(), save_LD_matrix(), snpstats_get_MAF(),
translate_population()
```

popDat_1KGphase3

Population metadata: 1KGphase3

Description

Individual-level metadata for 1000 Genomes Project (Phase 3).

Usage

```
data("popDat_1KGphase3")
```

Format

data.table

Source

```
popDat\_URL <-"ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/integrated\_call\_samp popDat\_1KGphase3 <-data.table::fread(text = trimws(gsub(",\t",",",readLines(popDat\_URL))), sep = "\t",fill = T,stringsAsFactors = F,col.names = c("sample","population","superpop","sex"),nThread = 4) usethis::use_data(popDat_1KGphase3,overwrite = T)
```

See Also

Other LD: LD_1KG_download_vcf(), LD_1KG(), LD_custom(), LD_ukbiobank(), compute_LD(), filter_LD(), get_locus_vcf_folder(), ldlinkr_ldproxy_batch(), load_or_create(), plot_LD(), popDat_1KGphase1, rds_to_npz(), saveSparse(), save_LD_matrix(), snpstats_get_MAF(), translate_population()

Index

```
* LD
                                                 saveSparse, 8-10
    load_or_create, 6
                                                 snpstats\_get\_MAF, 8-10
    popDat_1KGphase1, 9
                                                 translate_population, 8-10
    popDat_1KGphase3, 9
* datasets
    BST1, 2
    BST1_LD_matrix, 3
    locus_dir, 8
    popDat_1KGphase1, 9
    popDat_1KGphase3, 9
* standardizing functions
    get_UKB_MAF, 4
BST1, 2, 3
BST1_LD_matrix, 3
compute_LD, 8-10
DDSE. 4
download.file, 5, 7
filter_LD, 8-10
GenomicRanges, 6
get_LD_blocks, 4
get_locus_vcf_folder, 8-10
get_UKB_MAF, 4
1d, 4
LD_1KG, 8–10
LD_1KG_download_vcf, 8-10
LD_custom, 8-10
LD_ukbiobank, 8-10
ldlinkr_ldproxy_batch, 8-10
liftover, 5
load_or_create, 6, 9, 10
locus_dir, 8
plot_LD, 8-10
popDat_1KGphase1, 8, 9, 10
popDat_1KGphase3, 8, 9, 9
rds\_to\_npz, 8-10
save\_LD\_matrix, 8-10
```