Simple Circular Curve

PI: Point of intersection

BC: Beginning of curve

EC: End of curve

 Δ =I: Intersection angle

R: Radius

L: Length of curve

LC: Long chord

T: Tangent

M: Middle ordinate

E: External distance

طول مماس
$$T1=T2=T=R an(rac{\Delta}{2})$$
 طول قوس $L=R.\Delta$ طول قوس $C=2\overline{T1M}=2R\sin(rac{\Delta}{2})$

طول خارجی
$$E = \overline{ES} = B$$
. $D = R(\sec(\frac{\Delta}{2}) - 1) = T\tan(\frac{\Delta}{4})$

طول میانی
$$\overline{EM} = M = R - \overline{OM} = R - R \cos\left(\frac{\Delta}{2}\right) = R(1 - \cos(\frac{\Delta}{2}))$$

$$\delta = \left(\frac{l}{2R}\right)^{rad} = \left(\frac{l}{2R} \times \frac{180}{\pi}\right)^{\circ} = \left(\frac{l}{2R} \times \frac{200}{\pi}\right)^{g}$$

 $c = 2Rsin\delta$

پیاده سازی به روش مختصات قطبی:

♦ به طور کلی زاویه انحراف هر نقطه مانند i از رابطه زیر تعیین می شود.

$$\widehat{Ai} = L_i$$

$$L_i = R. (2\delta_i)$$

$$\delta_i = (\frac{L_i}{2R})_{rad}$$

$$\delta_i = \frac{L_i}{2R} \times (\frac{180^\circ}{\pi} \, \text{lg} \, \frac{200^g}{\pi})$$

\mathbf{L}_{i} محاسبه وتر نظير طول قوس کوتاه \diamond

$$Sin\left(\frac{2\delta_{i}}{2}\right) = \frac{\overline{Ai}/_{2}}{OA} = \frac{C_{i}/_{2}}{R} = \frac{C_{i}}{2R}$$

$$C_{i} = 2R. Sin \delta_{i}$$

L به تعدادی طول قوس کوتاه L تقسیم طول قوس کوتاه

طول كل قوس $=L=L_1+L_c+L_c+L_2=L_1+2L_c+L_2$

۲- تعیین زوایای انحراف جزء

زاویه انحراف جزء نقطه اول ${
m d_1}=rac{L_1}{2{
m R}} imesrac{180^\circ}{\pi}$ واویه انحراف جزء نقاط میانی روی قوس ${
m D}=rac{L_c}{2{
m R}} imesrac{180^\circ}{\pi}$ واویه انحراف جزء نقطه آخر ${
m d_2}=rac{L_2}{2{
m R}} imesrac{180^\circ}{\pi}$

وتر جزء طول قوس اول $c_1=2R.\sin d_1$ وتر جزء طول قوسهای میانی $c=2R.\sin D$ وتر جزء طول قوس آخر $c_2=2R.\sin d_2$

$$\begin{split} S\hat{A}1 &= \delta_1 = \mathrm{d}_1 \\ S\hat{A}2 &= \delta_2 = \mathrm{d}_1 + \mathrm{D} \\ S\hat{A}3 &= \delta_3 = \mathrm{d}_1 + \mathrm{D} + \mathrm{D} = \mathrm{d}_1 + 2\mathrm{D} \\ S\hat{A}B &= \delta_4 = \mathrm{d}_1 + \mathrm{D} + \mathrm{D} + \mathrm{d}_2 = \mathrm{d}_1 + 2\mathrm{D} + \mathrm{d}_2 = \frac{\Delta}{2} \end{split} \tag{كنترل محاسبات}$$

$$\begin{split} KM_1 &= KM_{\rm A} + L_1 \\ KM_2 &= KM_{\rm A} + L_1 + L_{\rm c} = KM_1 + L_{\rm c} \\ KM_3 &= KM_{\rm A} + L_1 + L_{\rm c} + L_{\rm c} = KM_{\rm A} + L_1 + 2L_{\rm c} = KM_2 + L_{\rm c} \\ KM_{\rm B} &= KM_{\rm A} + L_1 + L_{\rm c} + L_{\rm c} + L_2 = KM_{\rm A} + L = KM_3 + L_2 \end{split}$$

﴿ جدول پیاده سازی در حالت استفاده از زاویه انحراف جزء و وتر متناظر طول قوس جزء

نقاط	طول کمان هر دهنه	زاویه انحراف جزء	زاویه انحراف کل نسبت به خط مماس	وتر كوتاه	كيلومتراژ
Α					
1					
2					

﴿ جدول پیاده سازی در حالت استفاده از زاویه انحراف و وتر از

شروع قوس تا نقطه مورد نظر

	نقاط	طول کمان هر دهنه	زاویه انحراف جزء	زاویه انحراف کل	وتر	كيلومتراژ
`	Α		W			
	1					
	2					