9.6 Differing Project Time Frames

Sunday, November 1, 2020

	Pratects		6-55%	NPV = 3.62	a~d 3.36
E	X			^	1
O	-10	-70		×	y
1	5	13			
2	3	10			
3	5	NA			
	•				

Ponts method

Equivalent annual Net benefit (EANB)

 $NPA = \alpha(x, T) \cdot N$ = $\alpha(x, T) \cdot EANB$ $EANB = NPV/\alpha(x, T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$ $\alpha(x, T) = (1 - \delta^T) \delta/(1 - \delta^T)$