1 Группы

- 1. Пусть R кольцо с единицей. Докажите, что множество его обратимых элементов образует группу. Эта группа обозначается R^* .
 - Группа $GL_n(F)$ это множество обратимых элементов кольца матриц $n \times n$ над полем F. Докажите, что множество $U_n(F)$ верхних унитреугольных матриц (то есть матриц, у которых ниже главной диагонали стоят нули, а на самой главной диагонали единицы) образует подгруппу в $GL_n(F)$. Покажите, что $U_2(F) \cong F$.
 - Опишите группу $(\mathbb{Z}/p\mathbb{Z})^*$, где p простое число. Опишите группу $(\mathbb{Z}/p_1, \dots, p_k\mathbb{Z})^*$, где p_1, \dots, p_k различные простые числа.

$$a \cdots ?$$

- 2. Дан кусочек таблицы Кэли : :. Выразите элемент, стоящий на месте знака ? через a,b,c. $b \quad \cdots \quad c$
- 3. Пусть $q^2 = 1$ для любого $q \in G$. Докажите, что G абелева.
- 4. Пусть G группа с чётным числом элементов. Докажите, что в ней есть нечётное число подгрупп порядка 2.
- 5. Пусть G группа, $a \in G$. Докажите, что G с операциями $*_a$ и \circ , определёнными равенствами $g *_a h = gah$ и $g \circ h = hg$ тоже является группой. Всегда ли $(G, *_a)$ изоморфна G? Всегда ли (G, \circ) изоморфна G?
- 6. Явдяется ли $\mathbb R$ с операцией a*b=ab+a+b группой? Моноидом? Какое максимальное подмножество $\mathbb R$ явлется группой относительно операции *?
- 7. Пусть H и $(G \setminus H) \cup \{1_G\}$ подгруппы группы G. Докажите, что H = G или $H = \{1\}$.
- 8. Покажите, что если подмножество H группы G конечно, и для любых $a,b \in H$ верно $ab \in H$, то $H \leq G$.
- 9. Рассмотрим множество $F^* \times F$ с операцией (a,b)*(c,d) = (ab,ad+b). Докажите, что $(F \times F,*)$ группа. Опишите какую нибудь подгруппу с $GL_2(F)$ изоморфню этой группе.
- 10. Докажите, что группа простого порядка циклична.
- 11. Докажите, что любая фактор-группа и любая подгруппа циклической группы циклична. Докажите, что любая подгруппа (\mathbb{Z} , +) изоморфна (\mathbb{Z} , +).
- 12. * Докажите, что, если группа G порождается m элементами, то любая её фактор-группа тоже порождается m элементами. Верно ли это для любой подгруппы G?
- 13. Опишите все пары групп (G, H) такие, что группа $G \times H$ циклична.
- 14. Докажите, что множество полиномов с целыми коэффициентами с операцией сложения образует группу изоморфную группе \mathbb{Q}^+ положительных рациональных чисел по умножению.
- 15. Пусть G множество рациональных чисел из промежутка [0,1) с операцией $x*y=\{x+y\}$. Докажите, что $G\cong \mathbb{Q}/\mathbb{Z}$. Докажите, что для любая собственная конечно порождённая подгруппа $H\subset G$ циклична и что имеет место изоморфизм $G\cong G/H$.
- 16. Рассмотрим подгруппу H группы G из предыдущей задачи, состоящую из всех чисел, знаменатель которых при записи в виде несократимой дроби является степенью двойки. Докажите, что $G \ncong G/H$. Конечна или бесконечна группа H? Имеет ли H хоть одну собственную бесконечную подгруппу?
- 17. Пусть G множество вещественных чисел из промежутка [0,1) с операцией $x*y=\{x+y\}$. Докажите, что $G\cong \mathbb{R}/\mathbb{Z}$. Пусть H циклическая подгруппа группы G. Докажите, что $G\cong G/H$ тогда и только тогда, когда $H\subset \mathbb{Q}$.
- 18. Докажите, что в любой бесконечной группе есть бесконечно много подгрупп.

- 19. Пусть $G \subset GL_n(F)$ множество обратимых верхнетреугольных матриц (то есть матриц, у которых ниже главной диагонали стоят нули). Докажите, что $G/U_n(F) \cong (F^*)^n$.
- 20. Пусть U множество матриц 3×3 , которые отличаются от единичной только в позиции (1,3). Докажите, что $U_3(F)/U \cong F \oplus F$.
- 21. Докажите, что $\mathbb{Q}^* \cong \mathbb{Q}^+ \times \mathbb{Z}/2\mathbb{Z}$.
- 22. Покажите, что существует единственный гомоморфизм sgn из S_n в множество $\{1,-1\}$ с операцией умножения такой, что sgn(1,2)=-1. Значение этого гомоморфизма на перестановке σ называется знаком σ . Перестановка называется чётной, если она лежит в ядре sgn, в противном случае она называется нечётной. Ядро sgn обозначается A_n и называетс знакопеременной группой порядка n.
- 23. Каких перестановок в S_n больше: четных или нечетных?
- 24. Покажите, что в симметрической группе S_n минимальное число транспозций которые необходимо перемножить для того, чтобы получить цикл длины n равно n-1. Сколько существует наборов транспозиций $\{\tau_i\}_{i=1}^{n-1}$ таких, что их произведение дает цикл длины n. Докажите, что любой такой набор порождает S_n .
- 25. Докажите, что S_n порождается транспозициями, а $A_n 3$ -циклами.
- 26. Опишите все подгруппы групп D_3 и D_4 . Какие из них нормальны?
- 27. Пусть H подгруппа G такая, что существует ровно 2 смежных класса G по H. Докажите, что H нормальна.
- 28. Пусть H подгруппа G и $a,b \in G$ таковы, что aH = bH. Докажите, что тогда $Ha^{-1} = Hb^{-1}$. Обязательно ли Ha = Hb?
- 29. Докажите, что множество $X \subset G$ является правым смежным классом по некоторой подгруппе тогда и только тогда, когда $ab^{-1}c \in X$ для любых $a,b,c \in X$. Докажите, что X является левым смежным классом по некоторой подгруппе тогда и только тогда, когда оно является правым смежным классом по некоторой (возможно, другой) подгруппе.
- 30. Опишите все группы порядка 2p, где p нечётное простое число.
- 31. Центр группы G это множество Z(G) элементов G, которые коммутируют со всеми элементами G. Докажите, что центр является нормальной подгруппой. Докажите, что, если G/Z(G) циклическая группа, то Z(G) = G, то есть G абелева.
- 32. Пусть H, K номальные подгруппы группы G такие, что $H \cap K = \{1\}$. Докажите, что xy = yx для любых $x \in H, y \in K$. Останется ли это утверждение верным, если убрать условие нормальности?
- 33. Докажите, что группа автоморфизмов любой группы порядка больше 2 нетривиальна.
- 34. Чему равен порядок группы автоморфизмов циклической группы порядка n?
- 35. Опишите группы автоморфизмов групп $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ и S_3 .
- 36. Автоморфизм σ группы G называется внутренним, если существует $a \in G$ такой, что $\sigma(g) = a^{-1}ga$ для всех $g \in G$. Обозначим через Aut(G) группу всех автоморфизмоф группы G, а через Inn(G) множество её внутренних автоморфизмов. Докажите, что Inn(G) нормальная подгруппа Aut(G). Докажите, что $Inn(G) \cong G/Z(G)$.
- 37. Докажите, что любой внутренний автоморфизм S_n переводит транспозиции в транспозиции.
- 38. Докажите, что при n > 2 центр S_n равен 1.
- 39. Докажите, что любой автоморфизм S_n , переводящий транспозиции в транспозиции внутренний.
- 40. Покажите, что при $n \neq 2, 6$ любой автоморфизм S_n внутренний.