.tsp XhoI Start codon

GTTTTAAATACGCTCGAGGTTTTAAAT ATG TCT GTT GCC TTG TTA TGG GTT GTT TCT CCT TGT GAG

Met Ser Val Ala Leu Leu Trp Val Val Ser Pro Cys Asp

Transit peptide of phytoene synthase

GTC TCA AAT GGG ACA AGT TTC ATG GAA TCA GTC CGG GAG GGA AAC CGT Val Ser Asn Gly Thr Ser Phe Met Glu Ser Val Arg Glu Gly Asn Arg

Figure 1

Figure 2

.tsp XhoI Start codon

GTTTTAAATACGCTCGAGTGCAGC ATG GAA ACC CTT CTA AAG CCT TTT CCA TCT CCT TTA CTT

Met Glu Thr Leu Leu Lys Pro Phe Pro Ser Pro Leu Leu

Transit peptide of capsanthin-capsorubin synthase

TCC ATT CCT ACT CCT AAC ATG TAT AGT TTC AAA CAC AAC TTC ACT TTT

Ser Ile Pro Thr Pro Asn Met Tyr Ser Phe Lys His Asn Ser Thr Phe

Figure 3

.tsp XhoI Start codon

GTTTTTAAATACGCTCGAGCC ATG GCT TCC TCA GTT CTT TCC TCT GCA GCA GTT GCC ACC CGC

Met Ala Ser Ser Val Leu Ser Ser Ala Ala Val Ala Thr Arg

RUBISCO SSU Chloroplast Transit Peptide (N. tabacum)

AGC AAT GTT GCT CAA GCT AAC ATG GTT GCA CCT TTC ACT GGC CTT Ser Asn Val Ala Gln Ala Asn Met Val Ala Pro Phe Thr Gly Leu

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

GCTAGATTCTAA AlaArgPhesTP	1992
CTGGTTGGTGAAGACTTAGGATACTCTGGTGAGGCCTTAGACATGACTGTTCCACAATTCAAGTTGGGTACTTATGAGAAGACAGGTCTT LeuValGlyGluAspLeuGlyTyrSerGlyGluAlaLeuAspMETThrValProGlnPheLysLeuGlyThrTyrGluLysThrGlyLeu	1980
TTGAAGGTTGGTGACTTGTCTGTTTGTCCAGACAATGTTGGTTG	1890
ACCTGTTCCATCGGTCCAAGAGAAGGTTCCAAGATTGTTAAATGGGGTGGTGTTCTAGACAACAGATCCAACGTTTACGGAGTCAACGGC ThrCysSerIleGlyProArgGluGlySerLysIleValLysTrpGlyGlyValLeuAspAsnArgSerAsnValTyrGlyValLysGly	1900
CACCCAGACATCGAGTACGATGAGGAGGATGACAAGGCCATTGAGAACTACATCCGTGAGCACACTGAGACCACATGGCACTGTCTGCGA HisProAsplieGluTyrAspGluGluAspAspLysAlaIleGluAsnTyrIleArgGluHisThrGluThrThrTrpHisCysLeuGly	1710
GCTGGTCTTGCACACGGTTCTTGGACTCAACCTTTGAAGAAGCCAACTGCCAAGAAGGAAG	1620
CACCCTCTGTTCCCATACTCATCTGAAGCCAGAGCTTACGAGATTGGAGATTTGGAGACTTCCAACGCTTACGGTGGACCATTGAACTTGTCC HisProLeuPheProTyrSerSerGluAlaArgAlaTyrGluMETAspLeuGluThrSerAsnAlaTyrGlyGlyProLeuAsnLeuSer	1530
AGAGACATGGCTCCTATGGTTTGGTCTTACAAGAAGTCTAGAGAGACTGCCAGAAGAATGGACCACTTTGCCGGTGAAGTTACTTCTCAC ArgaspmetalaPrometValtrpserTyrLysLysSerArgGluThrAlaArgArgmetAspHisPheAlaGlyGluValThrSerHis	1440
GAGTACCCATTCTCTAGAGGTTCTATCCACATTACCTCACCAGACCCATATGCAACTCCAGACTTTGACCCAGGTTTCATGAACGATGAA GluTyrProPheSerArgGlySerIleHisIleThrSerProAspProTyrAlaThrProAspPheAspPrcGlyPheMETAsnAspGlu	1350
CCAGTTATGCACTACTCTATCATTGCTGGTTTCTTCGGTGACCACCAAGATTCCTCCTGGAAAGTACATGACCATGTTCCACTTCTTG ProValMETHisTyrSerIleIleAlaGlyPhePheGlyAspHisThrLysIleProProGlyLysTyrMETThrMETPheHisPheLeu	1260
AAGATCAGACCAACTCCTGAGGAAATGGCTCAAATGGACGAATCCTTCCAAGAAGGTTACAGAGAATACTTTGAAGACAAGCCAGACAAG LysIleArgProThrProGluGluMETAlaGlnMETAspGluSerPheGlnGluGlyTyrArgGluTyrPheGluAspLysProAspLys	1170
GGTGACGCTGAGATTCAAAAGAGAGTCTTTGACCAATGGTACGCCAATGGTACTGGTCCTTTGGCCACCAACGGTATTGAAGCCGGTGTC GlyAspAlaGluIleGlnLysArgValPheAspGlnTrpTyrAlaAsnGlyThrGlyProLeuAlaThrAsnGlyIleGluAlaGlyVal	1080
GGTGTTGGTAGAAACTTCCAGGACCACTACTGTTTCTCACTCCTTACAGAATCAAGCCTCAATACGAGTCCTTCGATGACTTTGTCCGT GlyValGlyArgAsnPheGlnAspHisTyrCysPhePheThrProTyrArgIleLysPrcGlnTyrGluSerPheAspAspPheValArg	990
ATCTCTTCGCCTTTGGTCTTGCAAAGATCTGGTTTCGGTGACCCAGTTAAATTGAGAGCCGCTGGTGTTAAGCCTTTGGTTAACTTGCCA IleSerSerProLeuValLeuGlnArgSerGlyPheGlyAspProValLysLeuArgAlaAlaGlyValLysProLeuValAsnLeuPro	900
AAAACCGTTCCAAGCAAGCCTTTGAACCCAAAGAAGCCAAGTCACAAGATTTACCGTGCTAGAAAGCAGATCGTTTTGTCTTGTGGTACC LysThrValProSerLysProLeuAsnProLysLysProSerHisLysIleTyrArgAlaArgLysGlnIleValLeuSerCysGlyThr	810
TCTACCATGAGAAATCACGACAACTTGTACTTGATCTGCAACACCAAGGTTGAGAGAGA	720
$\label{thm:control} TTGGTTACCGCTCATGGTGAGCACTGGTTGAAGTGGATCAACAGAGACACTGGTCGTCGTCCGACTCCGCCCACGCCTTTGTCCAC\\ LeuValThralaHisGlyAlaGluHisTrpLeuLysTrpIleAsnArgAspThrGlyArgArgSerAspSerAlaHisAlaPheValHis$	630
TCTTTCGGTAACTACACCTACCCAGTCTGTCAAGATTTCTTGAGAGCAAGTGAATCCCAAGGTATTCCTTACGTTGATGACTTGGAAGAC SerPheGlyAsnTyrThrTyrProValCysGlnAspPheLeuArgAlaSerGluSerGlnGlyIlePrcTyrValAspAspLeuGluAsp	540
GACTTGCTTCCATTGATGAAAAAGACCGAGACCTACCAAAGAGCTTGCAACAACCCTGATATCCACGGTTTTGAGGGTCCAATCAAGGTT AspLeuLeuProLeuMETLysLysThrGluThrTyrGlnArgAlaCysAsnAsnProAspIleHisGlyPheGluGlyProIleLysVal	450
GGTGGTGGTTCTTCTXTCAACTTCATGATGTXCACCAGAGGTTCTGCTTCTGATTXTGACGACTTAGAGGCTGAAGGATGGAAAACCAAG GlyGlyGlySerSerIleAsnPheMETMETTyrThrArgGlySerAlaSerAspTyrAspAspLeuGluAlaGluGlyTrpLysThrLys	360
TTGGACTCCAAGACTGCCTCTTTCTACACTGCCAACCCTTCTCCTCACTTGAACGGTAGAAGGGCTATTGTCCCATGTGCTAACATCTTG LeuAspSerLysThrAlaSerPheTyrThrAlaAsnProSerProHisLeuAsnGlyArgArgAlaIleValProCysAlaAsnIleLeu	270
TCCTTGAAAGTTGGTCTTATCGAAGCAGGTGAGAACAACCTCAACAACCCATGGGTTTACCTTCCAGGTATTTACCCAAGAAACATGAAG SerLeuLysValGlyLeuIleGluAlaGlyGluAsnAsnLeuAsnAsnProTrpValTyrLeuProGlyIleTyrProArgAsnMETLys	180
ATGGCTATTCCCGAAGAATTTGATATTATCGTCTGTGGTGGTGGATCCAGTGGATCCTGTATTGCCGGAAGATTGGCTAACTTGGATCAC METAlaIleProGluGluPheAspIleIleValCysGlyGlyGlySerSerGlySerCysIleAlaGlyArgLeuAlaAsnLeuAspHis	90

Figure 11

.tsp XhoI Start codon

GTTT<u>TAA</u>ATACG<u>CTCGAG</u>ATCAATCCATCTCCGAAGTGTGTCTGCAGC ATG CAG GTG CTG AAC ACC ATG Met Gln Val Leu Asn Thr Met

Rice α-amylase signal peptide

GTG AAC AAA CAC TTC TTG TCC CTT TCG GTC CTC ATC GTC CTC ATC GTC

Val Asn Lys His Phe Leu Ser Leu Ser Val Leu Ile Val Leu Leu Gly

Figure 12

.tsp XhoI Start codon

GTTTTAAATACGCTCGAGG ATG ATC AGA TTC TTA GTC CTC TCT TTG CTA ATT CTC ACC CTC TTG

Met Ile Arg Phe Leu Val Leu Ser Leu Leu Ile Leu Thr Leu Phe

13/28

Signal peptide -1 +1 Mature α-trichosanthin

CTA ACA ACT CCT GCT GTG GAG GGC | GAT GTT AGC TTC CGT TTA TCA

Leu Thr Thr Pro Ala Val Glu Gly | Asp Val Ser Phe Arg Leu Ser

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Nucleotide sequence alignment of 740 AT #120 to human ADP-ribosylation factor (ARF3) M33384

740 AT #120	AAGAAGGAGATGCGAATTCTGATGGTTGGTCTTGATGCTGCTGGTAAGACCACAATCTTG
M33384	AAGAAGGAGATGCGCATCCTGATGGTGGGCCTGGATGCCGCAGGAAAGACCACCATCCTA K K E M R I L M V G L D A A G K T T I L
740 AT #120	TACAAGCTCAAGCTCGGAGAGATTGTCACCACCATCCCTACTATTGGTTTCAATGTGGAA
M33384	TACAAGCTGAAACTGGGGGAGATCGTCACCACCATCCCTACCATTGGGTTCAATGTGGAG Y K L K L G E I V T T I P T I G F N V E
740 AT #120	ACTGTGGAATACAAGAACATTAGTTTCACCGTGTGGGATGTCGGGGGTCAGGACAAGATC
M33384	
740 AT #120	CGTCCCTTGTG-AGACACTACTTCCAGAACACTCAAGGTCTAATCTTTGTTGATAGC
M33384	CGACCCCTCTGGAGACACTACTTCCAGAACACCCAAGGGTTGATATTTGTGGTCGACAGC
740 AT #120	R P L W R H Y F Q N T Q G L I F V V D S AATGACAGAGACAGAGTTGTTGAGGCTCGAGATGAACTCCACAGGATGCTGAATGAGGAC
740 A1 #120 M33384	AATGACAGAGACAGAGTTGTTGAGGCTCGAGATGAACTCCACAGGATGCTGAATGAGGAC
1133304	N D R E R V N E A R E E L M R M L A E D
740 AT #120	
	GAGCTGCGTGATGCTGTGTTGTGTTTGCCAACAAGCAAGATCTTCCAAATGCTATG
м33384	
M33384 740 AT #120	GAGCTCCGGGATGCTGTACTCCTTGTCTTTGCAAACAACAGGATCTGCCTAATGCTATG E L R D A V L L V F A N K Q D L P N A M AACGCTGCTGAAATCACAGATAAGCTTGGCCTTCACTCCCTCC
	GAGCTCCGGGATGCTGTCTTGTCTTTGCAAACAACAGGATCTGCCTAATGCTATG E L R D A V L L V F A N K Q D L P N A M
740 AT #120	GAGCTCCGGGATGCTGTACTCCTTGTCTTTGCAAACAACAGGATCTGCCTAATGCTATG ELRD QVLLVFANKQDLPNAM AACGCTGCTGAAATCACAGATAAGCTTGGCCTTCACTCCCTCC
740 AT #120 m33384	GAGCTCCGGGATGCTGTACTCCTTGTCTTTGCAAACAACAGGATCTGCCTAATGCTATG ELRD

Figure 21

Nucleotide sequence alignment of 740 AT #88 to L33574 mRNA for rhodopsin

740 AT #88	CAACCTCCCGTTGGTGTTCCTCCTCCTCAAGGTTATCCACCGGAGGGATATCCAAAAGAT
L33 <i>5</i> 74	CAACCTCCCGTCGGTGTTCCTCCTCAAGGTTATCCCCCGGAGGATTATTCAAAAGAT
	The state of the s
740 AT #88	GCTTATCCACCACAAGGATATCCTCCTCAGGGATATCCTCAGCAAG GCTATCCACCTCA
L33574	GCTTATCCACCGCAAGGATATCCTCCTCAGGGCTATCCGCCGCAAGTACCCTCCACAGCA
740 AT #88	GGGATATCCTCAACAAGGTTATCCTCAGCAAGGATATCC
L33574	GGGATATCCGCCGCAAGG TACCCTCCACAAGGCTATCC
Identities = 45/57 (78%), Positives = 45/57 (78%)	

Nucleotide sequence alignment of 740 AT #88 to X07797 Octopus mRNA for rhodopsin

740 AT #88	CCACCACAAGGATATCCTCCTCAGGGATATCCTCAGCAAGGCTATCCACCȚCAGGGA
X07797	CCACCACAAGGCTACCCACCACAAGGCTACCCACCTCAAGGCTACCCACCC
Identities = 4	5/57 (78%), Positives = 45/57 (78%)

Figure 23

N. benthamiana

24/28

G-protein-coupled receptor

740 AT #88	YPPQ-GYPPQGYPQQGYPQGYPQQGYPPPYAPQYPPPPQASATTEQVLA
ATTS2938	YPPKDGYPPAGYPPAGYPPPGY-AQGYPEQGYPPPQYSQAPEEKQNAGMLEGCLA

Figure 24

G-protein-coupled receptor

N. benthamiana	
740 AT #88	PPVGV-PPPQGYPPEGYPKDAYPPQGYPPQGYPQQGYPPQGYPQQGYPQQGY
octopus rhodopsin	PPQGAYPPPQGYPPQGYPPQGYPPQGAPPQVEAPQGAPPQGVDNQAY
Identity = $34/5465\%$	b, Posititives 35/52 66%

Amino acid sequence comparison of 740 AT #2441 to tobacco RAN-B1 GTP binding protein

Nt RAN-B1	MALPNQQTVDYPSFKLVIVGDGGTGKTTFVKRHLTGEFEKKYEPTIGVEVHPLDFFTNCG
740 AT #2441	MALPNQQTVDYPSFKLVIVGDGGTGKTTFVKRHLTGEFEKKYEPTIGVEVHPLDFFTNCG
Nt RAN-B1	KIRFYCWDTAGQEKFGGLRDGYYIHGQCAIIMFDVTSTTDIQECSNMAP*SLQGL*KHSQ
	+++
740 AT #2441	KIRFYCWDTAGQEKFGGLRDGYYIHGQCAIIMFDVTARLTYKNVPTWHR-DLCRVCENIP
Nt RAN-B1	LFFVGIKLM*KNRQVKAQ
	+ + +
740 AT #2441	IVLCGNKVDVKNRQVKAK

Figure 26

Nucleotide sequence comparison of 740 AT #2441 to human RAN GTP-binding protein

Human RAN	ACTGGAGAGTTTGAGAAGAAGTATGAACCCACTATTGGTGTTGAGGTTCATCC
740 AT #2241	${\tt ACTGGTGAATTTGAGAAGAAGTATGTAGCCACCTTGGGTGTTGAGGTTCATCC}$
Identities =	46/53 (86%), Positives = 46/53 (86%)

Figure 27

Figure 28