Chapter 8

RLC Circuits

Parallel RLC Circuits

Natural Response

$$V_{0}$$
, $I_{0} \equiv \text{Initial Voltage and Current}$

v is same for all elements

copyright @ 2000 F carson Frentice Hall, Inc

Write equation in terms of v, by Σi leaving top node

$$\begin{aligned} i_c + i_L + i_R &= 0 \\ C \frac{dv}{dt} + \left[\frac{1}{L} \int_0^t v dt + I_0 \right] + \frac{v}{R} &= 0 \\ \end{aligned} \end{aligned} \end{aligned}$$
 Substitute *V/I* Relationships for each element
$$\end{aligned}$$
 How do we deal with the Integral?
$$\end{aligned}$$
 Differentiate the equation

Parallel RLC Circuits (Contd.)

$$C\frac{d^2v}{dt^2} + \left[\frac{v}{L} + 0\right] + \frac{1}{R}\frac{dv}{dt} = 0$$
 Obtain a second order differential equation

$$\frac{d^2v}{dt^2} + \left(\frac{1}{RC}\right)\frac{dv}{dt} + \frac{v}{LC} = 0$$

After simplification

 2^{nd} – order, ordinary differential equation with constant coefficients.

Solving 2nd – Order Circuits

- 1. Need a function whose 1^{st} and 2^{nd} order derivatives are of the same form as the function.
- 2. 1^{st} Order circuits were exponential.

$$v = Ae^{st}$$
 where A and s are constants

Assume:

- Assumed solution leads to the concept of the "Characteristic Equation".
- Plug assumed solution into $\frac{d^2v}{dt^2} + \left(\frac{1}{RC}\right)\frac{dv}{dt} + \frac{v}{LC} = 0$ $As^2e^{st} + \frac{As}{RC}e^{st} + \frac{A}{LC}e^{st} = 0$ After plugging in the solution

$$\left\{Ae^{st}\left[s^2 + \left(\frac{1}{RC}\right)s + \frac{1}{LC}\right] = 0\right\}$$
After simplification

When is the above equation satisfied?

Solving 2nd – Order Circuits (Contd.)

When is
$$Ae^{st} \left[s^2 + \left(\frac{1}{RC} \right) s + \frac{1}{LC} \right] = 0$$

$$3. \quad st \to -\infty \Rightarrow v(t) = 0$$

$$2. \quad A = 0 \Rightarrow v(t) = 0$$

$$3. \quad s^2 + \left(\frac{1}{RC} \right) s + \frac{1}{LC} = 0$$

$$3. \quad S^2 + \left(\frac{1}{RC} \right) s + \frac{1}{LC} = 0$$

$$3. \quad S^2 + \left(\frac{1}{RC} \right) s + \frac{1}{LC} = 0$$

1.
$$st \to -\infty \Rightarrow v(t) = 0$$

$$2. \qquad A = 0 \Rightarrow v(t) = 0$$

$$s^2 + \left(\frac{1}{RC}\right)s + \frac{1}{LC} = 0$$

General Procedure for 2nd – Order Circuits

$$a\frac{d^{2}\chi}{dt^{2}} + b\frac{d\chi}{dt} + c\chi = 0$$

$$as^{2} + bs + c = 0$$
Characteristic Equation
$$\chi(t) = Ae^{st}$$
Solution

Solving 2nd – Order Circuits (Contd.)

Quadratic Equation Review:

$$a\chi^{2} + b\chi + c = 0$$
 } a, b, c are constants
$$\chi = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
 Roots of quadratic equation

For the Characteristic Equation of the RLC Circuit

$$s_{1,2} = \frac{-\frac{1}{RC} \pm \sqrt{\left(\frac{1}{RC}\right)^2 - 4(1)\frac{1}{LC}}}{2(1)}$$
 After using quadratic formula

$$S_{1,2} = -\frac{1}{2RC} \left(\pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}} \right)$$
After simplification

Solving 2nd – Order Circuits (Contd.)

Two Solutions for $s \Longrightarrow T$ wo solutions for $v(t) \mid v(t) = Ae^{st}$

$$v_1(t) = A_1 e^{s_1 t}$$
 and $v_2(t) = A_2 e^{s_2 t}$ are both solutions

It can be shown that $V = V_1 + V_2$ is also a solution

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
General Solution for Parallel RLC

$$A_1$$
 and A_2

Initial Conditions A_1 and A_2 Use initial conditions to solve for A_1 and A_2 Need two initial conditions

Parallel RLC Solution for Voltage

Natural Response

1.
$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 | Solution

2.
$$s_{1,2} = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$
 Characteristic roots $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$ Complex Frequency

3.
$$\alpha = \frac{1}{2RC}$$
 Neper Frequency

4.
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
 Resonant Frequency

Parallel RLC Solution for Voltage (Contd.)

$$\frac{1}{RC} = \frac{1}{\Omega F} = \frac{1}{\frac{V}{A} \cdot \frac{C}{V}} = \frac{A}{C} = \frac{C/s}{C} = \frac{1}{s}$$
 Units for frequency "1/seconds"

Neper
Frequency
$$\alpha$$
 in units of $\frac{rad}{\sec}$ rad are dimensionless $f = \frac{cycles}{\sec}$ $cycles$ are dimensionless $\omega = 2\pi f \frac{rad}{s} \equiv \text{Angular Frequency}$

3 Possible Outcomes for Roots

1.
$$\omega_0^2 < \alpha^2 \Rightarrow s_{1,2}$$
 Real } Overdamped

2. $\omega_0^2 > \alpha^2 \Rightarrow s_{1,2}$ Complex } Underdamped

3. $\omega_0^2 = \alpha^2 \Rightarrow s_{1,2} = -\alpha$ Repeated } Critically damped

Overdamped Voltage Response

$$\omega_0^2 < \alpha^2$$

Roots are real

Copyright © 2008 Pearson Prentice Hall, Inc.

$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

 S_1 , S_2 are roots

Initial Conditions

$$\implies A_1 \text{ and } A_2$$

$$v(0^{+}) \text{ and } \frac{dv(0^{+})}{dt}$$

$$v(0^{+}) \text{ and } \frac{dv(0^{+})}{dt}$$

$$v(0^{+}) \text{ and } \frac{dv(0^{+})}{dt}$$

$$v(0^{+}) = A_{1} + A_{2} \equiv V_{0}$$

$$v(0^{+})$$

Overdamped Voltage Response (Contd.)

Find
$$i_c(0^+)$$
 $i_c(0^+) + i_L(0^+) + i_R(0^+) = 0$ KCL

$$i_c(0^+) = I_0 - \frac{V_0}{R}$$

$$\frac{dv(0^+)}{dt} = \frac{1}{C}i_C(0^+) = \frac{1}{C}\left(-I_0 - \frac{V_0}{R}\right) \qquad \qquad \left\{ \frac{dv(0^+)}{dt} \text{ in terms of } I_0 \text{ and } V_0 \right\}$$

Initial Capacitor Current in terms of Initial Inductor Current and Initial Voltage across Resistor

$$\int \frac{dv(0^+)}{dt}$$
 in terms of I_0 and V_0

Solution Method

1.Find
$$s_1, s_2 \equiv fcn(R, L, and C)$$

2.Find $v(0^+)$ and $dv(0^+)/dt$

Roots

- **Determine Initial Conditions**
- **3.Use** v(0+) and dv(0+)/dt to find A_1 , A_2
- 4.Plug s_1 , s_2 , A_1 , A_2 into solution for v(t)

Drill Exercise: Find v(t) for $t \ge 0$

$$R = 400 \Omega$$

$$I_0 = -4 \text{ A}$$

$$L = 50 \text{ mH}$$
 $V_0 = 0 \text{ V}$

$$V_0 = 0 \text{ V}$$

$$C = 50 \text{ nF}$$

Copyright © 2008 Pearson Prentice Hall, Inc.

$$\omega_0^2 < \alpha^2$$

$$\alpha = \frac{1}{2RC} = \frac{1}{2(400)50 \times 10^{-9}} = 25,000 \text{ rad/s}$$

$$\frac{\omega_0^2 < \alpha^2}{\left\{\begin{array}{l} \alpha = \frac{1}{2RC} = \frac{1}{2(400)50 \times 10^{-9}} = 25,000 \text{ rad/s} \\ \omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{(50 \times 10^{-3})(50 \times 10^{-9})^{1/2}} = 20,000 \text{ rad/s} \end{array}\right.$$

∴ Overdamped

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \Rightarrow \begin{bmatrix} s_1 = -10 & (Krad/s) \\ s_2 = -40 & (Krad/s) \end{bmatrix}$$

Roots obtained from quadratic formula

a)
$$v(0^+) = V_0 = 0$$
 Given

Drill Exercise

(Contd.)

b). Find
$$\frac{dv(0^{+})}{dt}$$
 by using $i_{C}(0^{+})$

$$i_{L}(0^{+}) = I_{0} = -4 \text{ A }$$
Given
$$i_{C}(0^{+}) = i_{L}(0^{+}) - i_{R}(0^{+})$$

$$= -(-4A) - 0$$

$$V_{0} = 0 \Rightarrow i_{R}(0^{+})$$

$$i_{C}(0^{+}) = 4$$

$$I_{C}(0^{+}) = 4$$

c). Initial Conditions
$$\Rightarrow A_1$$
 and A_2

$$v(0^+) = 0 = A_1 + A_2$$

$$i_{C}(0^{+}) = i_{L}(0^{+}) - i_{R}(0^{+})$$

$$= -(-4A) - 0$$

$$V_{0} = 0 \Rightarrow i_{R}(0^{+}) = 0$$

$$\frac{dv(0^{+})}{dt} = 8 \times 10^{7} = s_{1}A_{1} + s_{2}A_{2} = -10,000A_{1} - 40,000A_{2}$$

$$A_1 + A_2 = 0$$

$$(\div 10K) \Rightarrow A_1 + 4A_2 = -8000$$

$$\Rightarrow A_1 = \frac{8000}{3} \qquad A_2 = -\frac{8000}{3}$$

$$\frac{dv(0^{+})}{dt} = \frac{1}{C}i_{C}(0^{+}) = \frac{4A}{50 \times 10^{-9} \text{ F}}$$

$$\frac{dv(0^{+})}{dt} = 8 \times 10^{7} \text{ V/s}$$

d).
$$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Final $8000 = 10,000t = 240.0$

Solution

$$\left\{ \left(v(t) = \frac{8000}{3} \left[e^{-10,000t} - e^{-40,000t} \right] \right) \mid (V) \right\} t \ge 0$$

Underdamped Voltage Response

$$\omega_0^2 > \alpha^2$$
 Roots are complex

$$s_{1,2} = -\alpha \pm \sqrt{-(\omega_0^2 - \alpha^2)}$$

$$= -\alpha \pm \sqrt{-1} \cdot \sqrt{\omega_0^2 - \alpha^2}$$
Factor out the complex number

Let
$$j = \sqrt{-1}$$

$$\begin{bmatrix} s_1 = -\alpha + j\omega_d \\ s_2 = -\alpha - j\omega_d \end{bmatrix} \qquad \begin{bmatrix} \omega_d = \sqrt{\omega_0^2 - \alpha^2} \\ \text{Damped Radian Freq.} \end{bmatrix}$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$v(t) = A_1 e^{(-\alpha + j\omega_d)t} + A_2 e^{-(\alpha + j\omega_d)t}$$

Underdamped Solution

Underdamped Voltage Response (Contd.)

$$e^{\pm j\theta} = \cos\theta \pm j\sin\theta$$

Using Euler's Identity $\Rightarrow e^{\pm j\theta} = \cos\theta \pm j\sin\theta$ **Substitute in expression for v(t)**

1
$$v(t) = e^{-\alpha t} [(A_1 + A_2)\cos(\omega_d t) + j(A_1 - A_2)\sin(\omega_d t)]$$
 After simplifying the expression for $v(t)$

Let
$$B_1 = A_1 + A_2$$
 and $B_2 = j(A_1 - A_2)$

$$v(t) = e^{-\alpha t} [B_1 \cos(\omega_d t) + B_2 \sin(\omega_d t)]$$
 Real Number Solution

$$B_1 = A_1 + A_2$$

$$B_2 = j(A_1 - A_2)$$
Both are real numbers
because
$$A_1 = A_2^* \text{ Complex Conjugate}$$

Find the equations for the Initial Conditions

$$v(0^+) = V_0 = B_1$$
 Use 3

$$\frac{dv(0^{+})}{dt} = \frac{1}{C}i_{C}(0^{+}) = -\alpha B_{1} + \omega_{d}B_{2}$$
 \(\)\text{Use 3}

After some Algebra See next slide

Find Constants A_1 and A_2

General Solution

$$v(t) = e^{-\alpha t} [(A_1 + A_2)\cos(\omega_d t) + j(A_1 - A_2)\sin(\omega_d t)]$$

Initial Conditions

$$v(0^{+}) = V_{0} = A_{1} + A_{2}$$
 (1)
$$\frac{dv(t)}{dt} = -\alpha e^{-\alpha t} (A_{1} + A_{2}) \cos(\omega_{d} t) - e^{-\alpha t} \omega_{d} (A_{1} + A_{2}) \sin(\omega_{d} t)$$

$$-\alpha e^{-\alpha t} j(A_{1} - A_{2}) \sin(\omega_{d} t) + e^{-\alpha t} j \omega_{d} (A_{1} - A_{2}) \cos(\omega_{d} t)$$

$$\frac{dv(0^{+})}{dt} = \frac{1}{C} i_{C}(0^{+}) = -\alpha (A_{1} + A_{2}) + j \omega_{d} (A_{1} - A_{2})$$
 (2)
$$\text{Let } K = \frac{1}{C} i_{C}(0^{+}) \equiv \text{constant}$$
 (Contd.

Find Constants A_1 and A_2 (Contd.)

$$A_1 + A_2 = V_0$$

$$-\alpha(A_1 + A_2) + j\omega_d(A_1 - A_2) = K$$

Two equations for IC's

From (3)
$$A_2 = V_0 - A_1$$

$$A_1 - A_2 = A_1 - V_0 + A_1 = 2A_1 - V_0$$
 (6) Subtract (5) from A_1

(6) Subtract (5) from
$$A_1$$

Insert (3) and (6) into (4)

$$-\alpha(V_0) + j\omega_d(2A_1 - V_0) = K$$

(5)

$$2A_1 - V_0 = \frac{K + \alpha V_0}{j\omega_d} = -j\left(\frac{K + \alpha V_0}{\omega_d}\right)$$

(8) Solve for
$$A_1$$

$$2A_1 = V_0 - j \frac{K + \alpha V_0}{\omega_d}$$
 Simplify

$$A_{1} = \frac{1}{2} \left(V_{0} - j \frac{K + \alpha V_{0}}{\omega_{d}} \right) \tag{9}$$

Find Constants A_1 and A_2 (Contd.)

From (3)
$$A_2 = V_0 - A_1$$

(10)

$$A_2 = V_0 - \frac{1}{2}V_0 + j\frac{K + \alpha V_0}{2\omega_d}$$
 (11) Substitute (9) into (10)

$$A_{2} = \frac{1}{2}V_{0} + j\frac{K + \alpha V_{0}}{2\omega_{d}}$$
 (12)

From the examination of (9) and (12), we see that:

$$A_1 = A_2^*$$

Since
$$A_1 = A_2^*$$

Then
$$B_1 = A_1 + A_2 = V_0 \equiv \text{Real}$$

and
$$B_2 = j(A_1 - A_2) = \frac{K + \alpha V_0}{\omega_d} \equiv \text{Real}$$

Thus, the constants B_1 and B_2 are real.

Underdamped Voltage Response (Contd.)

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \qquad \alpha = \frac{1}{2RC}$$

Frequency parameter related to 2nd – order circuit parameters

Critically Damped Voltage Response

$$\omega_0^2 = \alpha^2$$

OR

$$\omega_0 = \alpha$$

On the verge of oscillating

$$S_{1,2} = -\alpha$$

Advanced Solution

Proof beyond our scope

$$v(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$$
 Critically Damped Solution

$$v(0^{+}) = V_{0} = D_{2}$$

$$\frac{dv(0^{+})}{dt} = \frac{i_{C}(0^{+})}{C} = D_{1} - \alpha D_{2}$$

Equations for finding D_1 and D_2 from the Initial Conditions

Critically Damped Voltage Response (contd.)

Summary of Parallel RLC Circuits

Natural Response

 V_0 , $I_0 \equiv$ Initial Voltage and Current

v is same for all elements

$$v(0^+) = V_0$$

$$\rho_0 = \frac{1}{\sqrt{LC}} \qquad \frac{dv(0^+)}{dt}$$

$$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}} \qquad \frac{dv(0^+)}{dt} = \frac{1}{C}i_C(0^+) = \frac{1}{C}\left[-I_0 - \frac{V_0}{R}\right]$$

Overdamped $\omega_0^2 < \alpha^2$	Underdamped $\omega_0^2 > \alpha^2$	Critically Damped $\omega_0^2 = \alpha^2$
$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$	$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$	$\omega_0 = \alpha$
$s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$	$s_1 = -\alpha + j\omega_d$	$s_1 = -\alpha$
	$s_2 = -\alpha - j\omega_d$	$s_2 = -\alpha$
$A_{1} = \frac{1}{s_{1} - s_{2}} \left[\frac{dv(0^{+})}{dt} - s_{2}v(0^{+}) \right]$	$B_1 = v(0^+)$	$D_1 = \alpha D_2 + \frac{dv(0^+)}{dt}$
$A_2 = \frac{1}{s_2 - s_1} \left[\frac{dv(0^+)}{dt} - s_1 v(0^+) \right]$	$B_2 = \frac{1}{\omega_d} \left[\frac{dv(0^+)}{dt} + \alpha v(0^+) \right]$	$D_2 = v(0^+)$ $V(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$
$V(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$	$V(t) = e^{-\alpha t} \left[B_1 \cos(\omega_d t) \right]$	$V(t) = D_1 t e^{-t} + D_2 e^{-t}$
1 2	$+B_2\sin(\omega_d t)$	I

Step Response of a Parallel RLC Circuit

Apply a DC current source Find $i_L(t)$ for $t \ge 0$

$$v = L \frac{di_L}{dt} \Rightarrow \frac{dv}{dt} = L \frac{d^2i_L}{dt^2}$$
 Differentiate the Inductor Law

5
$$I = LC \frac{d^2 i_L}{dt^2} + i_L + \frac{L}{R} \frac{d i_L}{dt}$$
 Substitute 4 into 3

Simplify 5
$$\frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{1}{LC}i_L = \frac{I}{LC}$$
 Differential Equation for $i_L(t)$ "forced" by constant source I

Note the similarity to the natural response differential equation

$$\frac{d^2v}{dt^2} + \left(\frac{1}{RC}\right)\frac{dv}{dt} + \left(\frac{1}{LC}\right)v = 0$$

Form is the same, except for constant.

In general, <u>complete</u> response of a 2^{nd} – order system, with a <u>constant forcing function</u> is given by

Natural response + Forced response

Coefficients in the analytical solutions are different from the case of zero forcing function.

Three cases:

$$\alpha = \frac{1}{2RC}$$

$$\alpha = \frac{1}{2RC} \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

Overdamped

$$\omega_0^2 < \alpha^2$$

$$i_{L}(t) = A_{1}'e^{s_{1}t} + A_{2}'e^{s_{2}t} + I_{\underline{f}}$$

$$S_{1,2} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}}$$
Constant I_{f} Caused by a constant forcing function

Underdamped

$$\omega_0^2 > \alpha^2$$

$$i_L(t) = e^{-\alpha t} [B_1' \cos(\omega_d t) + B_2' \sin(\omega_d t)] + I_f$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

$$s_{1,2} = -\alpha \pm j\omega_d$$

(Contd.)

3 **Critically damped**

$$\omega_0^2 = \alpha^2$$

$$i_{L}(t) = D_{1}'te^{-\alpha t} + D_{2}'e^{-\alpha t} + \underline{I}_{f}$$

Final condition:

Capacitor open Inductor short

 $V(t \to \infty) = 0$ $\therefore I_f = i_L(t \to \infty) = I$ current source input

Initial conditions: Used to determine scaling constants.

$$\frac{i_L(0^+)}{di_L(0^+)} = \frac{i_L(0^+)}{L}$$

$$\frac{i_L(0^+)}{dt} = i_L(0^-) = I_0$$

$$\frac{di_L(0^+)}{dt} = \frac{V_0}{L}$$
since $v \equiv v_L = L \frac{di_L}{dt}$

Note:

For initial currents, consider Inductor.

For initial voltage, consider Capacitor.

Step Response of Parallel RLC Circuit

Study Suggestions:

Make neat page or two of notes with equations for natural response and step response, for parallel RLC circuits.

Do the same for series RLC circuits.

Read all the examples

Do all the drill exercises.

Example: Find v(t) for $t \ge 0$

Given

$$R = 250 \,(\Omega)$$
 $I_0 = 0.5 \,(A) = i_L(0)$

$$L = 0.32 (H)$$
 $V_0 = 80 (V) = v_c(0)$

$$C = 2 (\mu F)$$
 $I = -1.5(A)$

Current source switched in at t = 0

$$\alpha = \frac{1}{2RC} = \frac{1}{2(250)(2 \times 10^{-6})} = 1000 \frac{rad}{s} = \alpha$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.32(2 \times 10^{-6})}} = 1250 \frac{rad}{s} = \omega_0$$
Find α and ω_0

 $\omega_0^2 > \alpha^2 \implies \text{Underdamped response}$

Note
$$i_L(\infty) = I = I_f$$

Note $i_L(\infty) = I = I_f$ All steady state current is in inductor

Example (Contd.)

Given

$$R = 250 \,(\Omega)$$
 $I_0 = 0.5 \,(A) = i_L(0)$

$$L = 0.32 (H)$$
 $V_0 = 80 (V) = v_c(0)$

$$C = 2 (\mu F)$$
 $I = -1.5(A)$

Solution is of the form

a)
$$i_{L}(t) = e^{-\alpha t} [B_{1}' \cos(\omega_{d} t) + B_{2}' \sin(\omega_{d} t)] + I_{f}$$

$$I_{f} = I = -1.5 (A)$$

Underdamped Solution

Find
$$\alpha, \omega_d, B_1', B_2'$$

b)
$$s_{1,2} = -\alpha + j\omega_d$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{1250^2 - 1000^2} = 750$$
Calculate the roots of the characteristic equation

$$s_{1,2} = -1000 \pm j750 \frac{rad}{sec}$$
 Underdamped Solution

Find Initial Conditions

c)
$$v_L = L \frac{di}{dt} \Rightarrow \frac{di_L(0^+)}{dt} = \frac{v_L(0^+)}{L} = \frac{V_0}{L} = \frac{80(V)}{0.32(H)} = 250(A/S)$$

$$\left\{ \frac{i_L(0) = 0.5(A)}{\frac{di_L(0^+)}{dt}} = 250(A/S) \right\}$$

$$\begin{bmatrix} i_{L}(0) = 0.5(A) \\ \frac{di_{L}(0^{+})}{dt} = 250 \left(\frac{A}{S} \right) \end{bmatrix}$$

Example (Contd.)

d) Solution has the form

$$i_L(t) = e^{-1000t} \left[B_1' \cos 750t + B_2' \sin 750t \right] - 1.5$$

 $i_L(0^+) = B_1' - 1.5 \Rightarrow i_L(0^+) = 0.5(A) \Rightarrow B_1' = 2(A)$

e) Differentiate $i_L(t)$ and substitute $t = 0^+$ to find B_2'

$$\frac{di_L(t)}{dt} = -1000e^{-1000t} \left[B_1' \cos 750t + B_2' \sin 750t \right] + e^{-1000t} \left[-750B_1' \sin 750t + 750B_2' \cos 750t \right]$$

$$\frac{di_{L}(0^{+})}{dt} = -1000B_{1}' + 750B_{2}' \begin{cases} \frac{di_{L}(0^{+})}{dt} = 250(A/s) \\ B_{1}' = 2(A) \end{cases} \Rightarrow B_{2}' = 3(A)$$

f) Solution has the final form

$$i_L(t) = e^{-1000t} [2\cos 750t + 3\sin 750t] - 1.5(A)$$

Example (Contd.)

g)
$$i_L(t) = e^{-1000t} [2\cos(750t) + 3\sin(750t)] - 1.5 (A)$$

Note:
$$i_L(0^+) = 2 - 1.5 = 0.5 A \equiv I_0$$

$$i_L(\infty) = -1.5 (A) = I_f \equiv I$$
Perform as a Check

We know $i_L(t)$ and v(t) is the same for each element. h)

$$\therefore v(t) = L \frac{di_L}{dt}$$
 Differentiate $i_L(t)$ of (g) and multiply by L Solution $v(t) = 80e^{-1000t} [\cos(750t) - 18\sin(750t)]$ ($v(t) = 80e^{-1000t} [\cos(750t) - 18\sin(750t)]$ After Simplification

Final Solution
$$v(t) = 80e^{-1000t} [\cos(750t) - 18\sin(750t)] (V)$$

Note: $v(0) = 80 = V_0$

Series RLC Circuits

Similar to Parallel RLC Analysis

Find Natural Response for i(t) by

obtaining Differential Equation in terms of i(t).

Note that i(t) is the same for all elements.

Series RLC Circuits (Contd.)

$$\begin{array}{c|cccc}
+ V_R - & + V_L - \\
R & I & C & V_C \\
\hline
\end{array}$$

$$V_R + V_L + V_C = 0$$
 \(\)\(\)\(\)\(\)KVL

$$V_R + V_L + V_C = 0$$

Differentiate to get rid of integral

$$\Rightarrow \frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

Characteristic Equation

$$\left(s^2 + \left(\frac{R}{L}\right)s + \frac{1}{LC} = 0\right)$$

Same form as for parallel RLC

Series RLC Circuits (Contd.)

$$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

$$(\omega_0^2 < \alpha^2 \implies \text{overdamped})$$

$$i(t) = B_1 e^{-\alpha t} \cos(\omega \alpha t) + B_2 e^{-\alpha t} \sin(\omega \alpha t)$$

$$(\omega_0^2 < \alpha^2 \implies \text{underdamped})$$

$$i(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}$$

$$(\omega_0^2 = \alpha^2 \implies \text{critically damped})$$

Solution of Differential Equation

where:
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$
 $\alpha = R/2L$ Differs from \parallel RLC $\omega_0 = 1/\sqrt{LC}$ Same as \parallel RLC $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$

Series RLC Circuits: Step Response (Contd.)

Apply a DC Voltage Source

Focus on v_C since it is continuous

Similar to Parallel RLC analysis

$$v_R + v_L + v_C = V$$
 } **KVL**

1
$$Ri + L\frac{di}{dt} + v_C = V$$
 Substitute Ohm's Law and inductor law

Series RLC Circuits (Contd.)

Differentiate capacitor law

$$i = C \frac{dv_c}{dt} \Rightarrow \frac{di}{dt} = C \frac{d^2v_c}{dt^2}$$
 2

$$Ri + L\frac{di}{dt} + v_C = V \qquad \boxed{1}$$
 From the previous slide

$$\frac{d^2v_c}{dt^2} + \frac{R}{L}\frac{dv_c}{dt} + \frac{v_c}{LC} = \frac{V}{LC}$$
 Substitute 2 into 1

Same form as for | RLC circuit

Series RLC Circuits: Step response for $v_c(t)$

$$V_f = V_{cap(final)} = V$$
 C - open; L - short $\left.\right\}$ $\left.\right\}$ $\left.\right\}$ In steady state

$$C$$
 - open; L - short

$$v_C(t) = A_1' e^{s_1 t} + A_2' e^{s_2 t} + V_f$$
 overdamped

Need

$$S_1, S_2,$$

 $\alpha, A_1', A_2',$
 $B_1', B_2',$

$$D_1', D_2', \omega_d$$

$$v_{C}(t) = e^{-\alpha t} [B_{1}' \cos(\omega_{d} t) + B_{2}' \sin(\omega_{d} t)] + V_{f}$$

underdamped

$$D_{1}', D_{2}', \omega_{d} | v_{C}(t) = D_{1}' t e^{-\alpha t} + D_{2}' e^{-\alpha t} + V_{f}$$

critically damped

Example

Find i(t) for $t \ge 0$

Example: Find Initial Conditions (Contd.)

$$v_C(0^-) = \left(\frac{12.8K}{12.8K + 19.2K}\right) 50V = 20 \text{ (V)}$$
Voltage Division (*)

$$v_C(0^-) = v_C(0^+) = 20 (V)$$
Since v_c can't change instantaneously

Example: Find Parameters (Contd.)

c)
$$\alpha = \frac{R}{2L} = \frac{100}{2(10 \times 10^{-3})} = \boxed{500 \ rad / s}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\left[(10 \times 10^{-3})(2 \times 10^{-6})\right]^{1/2}} = \boxed{7071.07 \ rad / s}$$
Find α and ω_0

$$\omega_0 > \alpha^2 \qquad \Rightarrow \qquad Underdamped$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2} = \sqrt{(7071.07)^2 - (5000)^2}$$

$$\omega_d = \boxed{5000 \ rad / s}$$
Find ω_d

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -\alpha \pm j\omega_d$$
Find Characteristic equation roots
$$s_{1,2} = -5000 \pm j5000$$

Example: Find i(t) (Contd.)

$$i(t) = e^{-\alpha t} \left[B_1' \cos(\omega_d t) + B_2' \sin(\omega_d t) \right] + I_f$$
 General solution for Underdamped system

 $I_f = 0$ since eventually capacitor becomes open

- We must use $i(0^+)$ and $\frac{di(0^+)}{dt}$ to find B_1' and B_2' $\frac{100 \text{ M}}{2 \mu \text{F}}$ $\frac{100 \text{ W}}{100 \text{ W}}$
- Find $i(0^+)$ $i(0^+) = 0$ From a previous slide

Example: Find Initial Conditions (Contd.)

Need
$$\frac{di(0^{+})}{dt}$$
 USE $v_{L}(0^{+}) = L \frac{di(0^{+})}{dt}$ $v_{c} = \frac{1000 \text{ } 10\text{mH}}{100 \text{ V}}$

Need $\frac{di(0^{+})}{dt}$ $v_{L}(0^{+}) = L \frac{di(0^{+})}{dt}$ $v_{c} = \frac{100 \text{ V}}{100 \text{ V}}$

Need $\frac{di(0^{+})}{dt}$ $v_{L}(0^{+}) = L \frac{di(0^{+})}{dt}$ $v_{C}(0^{+}) = 0$ $v_{L}(0^{+}) = 0$ $v_{L}(0^{+}) + v_{C}(0^{+})$ $v_{C}(0^{+}) = 20$ $v_{L}(0^{+}) + v_{C}(0^{+})$ $v_{C}(0^{+}) = 20$ from the previous slide $v_{C}(0^{+}) = 20$ $v_{C}(0^{+}) = 20$

Example: Find i(t) (Contd.)

h) Find B_1' and B_2' in general solution

$$i(t) = e^{-\alpha t} \left[B_1' \cos(\omega_d t) + B_2' \sin(\omega_d t) \right] + I_f$$

$$i(0^+) = 0$$
From a previous slide
$$0 = B_1' + I_f$$
Substitute $t = 0^+$

$$B_1' = 0$$
Since $I_f = 0$

$$\frac{di(t)}{dt} = -\alpha e^{-\alpha t} \left[B_1' \cos(\omega_d t) + B_2' \sin(\omega_d t) \right] + e^{-\alpha t} \left[-B_1' \omega_d \sin(\omega_d t) + B_2' \omega_d \cos(\omega_d t) \right]$$

$$\frac{di(0^+)}{dt} = -\alpha B_1' + \omega_d B_2' = 8000$$
Substitute $t = 0^+$ and use value for $\frac{di(0^+)}{dt}$

$$B_1' = 0, \ \alpha = 500, \ \omega_d = 50000 \Rightarrow B_2' = 1.6(A)$$

$$i(t) = 1.6e^{-5000t} \sin(5000t)(A)$$
 $t \ge 0$

Check
$$i(0) = 0, i(\infty) = 0$$

Example: Find $V_0(t)$ for $t \ge 0$

No initial energy stored in the circuit

Given in the problem

$$\begin{pmatrix} i_0 (0^-) = i_0 (0^+) = 0 \\ V_0 (0^-) = V_0 (0^+) = 0 \end{pmatrix}$$

Properties of inductors and capacitors

Example: Use Source Transformation (Contd.)

Redraw the circuit for $t \ge 0$

Source Transformation

Parallel RLC

$$\alpha = \frac{1}{2RC} = \frac{1}{2(400)(1.25 \times 10^{-6})} = 1000$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1.25(1.25 \times 10^{-6})}} = \sqrt{64 \times 10^4} = 800$$

Find α and ω_0

 $\alpha > \omega_0$ overdamped

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -1000 \pm 600$$

$$s_1 = -400, \qquad s_2 = -1600$$
Calculate the roots of the Characteristic equation

$$V_o(t) = V_f + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
 Overdamped solution has this form $V_f = 0$ C open, L short, all current in L $V_o = 0$ as $t \to \infty$

$$V_o(t) = A_1 e^{-400t} + A_2 e^{-1600t}$$
Use initial conditions to find A_1 and A_2

Now must find $V_0(0^+)$ and $\frac{dV_0(0^+)}{dt}$ to solve for A_1 and A_2

Find
$$V_0(0^+) \Rightarrow V_0(0^+) = 0$$
 } Given in the problem

Find $\frac{dV_0(0^+)}{dt}$ using the circuit

$$\begin{split} &V_o(0) = V_o(0^+) = 0 \quad \bigg\} & \text{Voltage across capacitor can't change instantly} \\ &i_R(0^+) = V_o/R = 0 \quad \bigg\} & \text{Ohm's Law} \\ &30mA = i_R(0^+) + i_C(0^+) + i_o(0^+) \quad \bigg\} & \text{KCL} \\ &30mA = i_C(0^+) \quad \bigg\} & \text{since } i_R(0^+) = i_o(0^+) = 0 \\ & \frac{dV_o\left(0^+\right)}{dt} = \frac{1}{C}i_C \quad \bigg\} & \text{Capacitor Law} \\ & \frac{dV_o\left(0^+\right)}{dt} = \frac{i_C\left(0^+\right)}{C} = \frac{30mA}{1.25\mu F} = 24,000V/s \quad \bigg\} & \text{Plug in numbers} \end{split}$$

Find A_1 and A_2

$$V_0(t) = A_1 e^{-400t} + A_2 e^{-1600t}$$
 Solution so far

1
$$V_o(0^+) = 0 = A_1 + A_2$$
 Plug in $t = 0^+$

$$\frac{dV_0(0^+)}{dt} = 24,000 = -400A_1 - 1600A_2$$

$$\Rightarrow A_1 = 20V \qquad A_2 = -20V$$
Solve 1 and 2 for 2 unknowns

Final Solution
$$V_o(t) = 20 \left[e^{-400t} - e^{-1600t} \right] (V)$$

Example: Design R so that $v_c(t)$ is critically damped

- a) Critical Damping: $\alpha = \omega_0$ Series $\rightarrow \frac{R}{2L} = \frac{1}{\sqrt{LC}} \Rightarrow R = 1250(\Omega)$
- **b)** $i_L(0^+) = i_L(0^-) = 6(mA)$ Current cannot change instantly

Series *RLC* Current same in all components

c)
$$\alpha = \frac{R}{2L} = \frac{1250}{2(0.125)} = 5000 \frac{rad}{s}$$
 Calculate α

d)
$$v_c(t) = D_1 t e^{-5000t} + D_2 e^{-5000t}$$
 General expression for critically damped system

- We must find $v_C(0^+)$ and $\frac{dv_C(0^+)}{dt}$ to solve for D_1 and D_2
- **f)** $v_C(0^+) = 15(V)$ Given in the problem

$$i_C(t) = C \frac{dv_C(t)}{dt}$$
 Capacitor Law

so
$$\frac{dv_C(0^+)}{dt} = \frac{1}{C}i_C(0^+) = \frac{-i_L(0^+)}{32(\mu F)}$$
 From Circuit
$$i_C = -i_L$$

so
$$\frac{dv_C(0^+)}{dt} = -18,750(A/F)$$
 Substitute $i_L(0^+) = 6(mA)$

h) Find D_1 and D_2

$$v_{C}(t) = D_{1}te^{-5000t} + D_{2}e^{-5000t}$$
 General Solution
$$v_{C}(0^{+}) = 15(V) \frac{dv_{C}(0^{+})}{dt} = -18,750(A/F)$$
 From previous slide
$$v_{C}(0^{+}) = 15(V) = D_{2}$$
 Substitute $t = 0^{+}$
$$\frac{dv_{C}(t)}{dt} = D_{1}e^{-5000t} - 5000tD_{1}e^{-5000t} - 5000D_{2}e^{-5000t}$$
 Time derivative of $v_{C}(t)$
$$\frac{dv_{C}(0^{+})}{dt} = -18,750 = D_{1} - 5000D_{2}$$
 Substitute $t = 0^{+}$
$$D_{1} = 56,250(V/S)$$
 Substitute $D_{2} = 15$ Final Solution