Haute école de gestion Economie d'entreprise Information documentaire Informatique de gestion

EXAMENS MODULAIRES

Semestre d'hiver 2008

Filière:	Économie d'entreprise	
Module:	Branches instrumentales	Type: Écrit
Unité de cours:	Statistiques III	

Date: 13 Janvier 2009

Nombre de pages: 11 (sans la présente page de garde)

Étudiant-e

Nom:	D. 4
Nom:	Prénom:

Enseignant-e

Nom: Varone Prénom: Sacha

Veuillez laisser cet examen agrafé. Si vous choisissez d'enlever l'agrafe, tout manque de page sera sous votre entière responsabilité. La précision de vos calculs doit être de 4 chiffres après la virgule.

Formulaire de 3 pages (recto-verso) autorisé et calculatrice.

NOTE OBTENUE: Points:

Problème 1 Compréhension : 4 points

Le nombre de skieurs sur les pentes enneigées de Nax lors des dimanches ensoleillés suit une loi normale $\mathcal{N}(1000, 50)$.

a) (2 pts) Dimanche prochain sera une journée ensoleillée. Le manager Opti Mist suppose que le nombre moyen de skieurs sera supérieur à 1000. Son frère, le manager Pessi Mist suppose que le nombre moyen de skieurs sera inférieur à 1000. L'un d'eux a-t-il une plus forte probabilité d'avoir raison? Justifiez.

b) (2 pts) Un échantillon de 10 dimanches ensoleillés a servi à calculer l'intervalle de confiance à 90% suivant : [910; 990]. Interprétez ce résultat, en indiquant ce que signifie un tel intervalle de confiance.

Problème 2 TCS: 7 points

Un responsable de centre d'interventions du TCS désire connaître la durée moyenne des interventions, dont la distribution suit une loi normale. Il relève la durée de 25 interventions de manière aléatoire, et calcule une durée moyenne de 30 minutes, avec un écart type de 10 minutes. Votre tâche est de l'aider à calculer un intervalle de confiance à 95% pour la durée moyenne d'une intervention.

of emic a discretified.
a) (1 pt) Quel est le paramètre d'intérêt?
b) (1 pt) Quelle loi (distribution) suit la statistique de test, et sous quelle condition
c) (2 pt) Quelles sont les valeurs critiques?
d) (1 pt) Quelles sont les statistiques, et leur valeur, calculées sur l'échantillon?
e) (1 pt) Quelle est l'erreur standard de la moyenne?
f) (1 pt) Quelle est l'intervalle de confiance?

Problème 3 Fertilisant (11 points)

Un producteur de céréales utilise un nouveau fertilisant, qui devrait permettre de une faible variabilité de la production annuelle. Il fait un test sur 12 champs d'1 hectare et trouve les rendements suivant par hectare, qui sont issus d'une loi normale :

Á partir de ces données sont calculées les valeurs suivantes : m'ediane = 89; moyenne = 89.25; variance = 27.84

- a) (8 pts) Le fabricant du nouvel engrais assure que l'écart type des rendements est de 6 par hectare. Le producteur peut-il dire, avec un niveau de confiance de 90%, que le nouvel engrais génère une telle variabilité de la production?
 - i) (1 pt) Quel est le paramètre d'intérêt?
 - ii) (1 pt) Quelles sont les hypothèses nulles et alternatives?
 - iii) (1 pt) Quelle loi (distribution) suit la statistique de test, et sous quelle condition?

- iv) (1 pt) Déterminez la ou les valeur(s) critique(s).
- v) (1 pt) Déterminez la région de rejet de l'hypothèse nulle.
- vi) (1 pt) Que vaut la statistique de test?

- vii) (1 pt) Rejetez-vous l'hypothèse nulle (Justifiez)?
- viii) (1 pt) Concluez
- b) (3 pts) Calculez un intervalle de confiance à 90% sur la variabilité de la production annuelle avec le nouvel engrais. Indiquez les étapes (au minimum les valeurs critiques et l'intervalle de confiance).

Indication : certains résultats de la partie précédente peuvent être repris

Problème 4 Course alpine (5 points)

L'organisateur d'une course en montagne doit répartir les équipes médicales le long du parcours. Pour cela, il pense que la moitié des personnes nécessitent des soins avant 40 km de parcours, et l'autre moitié après 40 km de parcours. Il dispose des données de la précédente course, indiquant pour chacun des 7 coureurs ayant nécessité des soins le nombre de km parcourus. (Ces données ne proviennent pas d'une distribution normale).

31 48 23 56 28 29 44

Sur la base des ces données, l'organisateur a-t-il raison de penser que le 50% des soins doivent être dispensés avant $40\,\mathrm{km}$, et 50% après $40\,\mathrm{km}$ de course, avec un risque de première espèce de 0.1? (Justifiez et indiquez toutes les étapes)

Problème 5 Indépendance (3 points)

Un sondage portant sur la consultation des horoscopes publiés dans les journaux a fourni le tableau croisé suivant. La variable colonne "Fréquence de lecture" indique fréquence de consultation des horoscopes, et la variable ligne "Niveau d'étude" indique le niveau d'étude atteint.

	Jamais	Parfois	Souvent	Toujours
Obligatoire	84	50	44	16
Secondaire	82	64	34	10
Universitaire	44	21	8	5

Un test sur l'indépendance de ces deux variables a été fait à l'aide du logiciel R, dont le résultat est fourni ci-dessous. Écrivez les hypothèses nulle et alternative, concluez en fonction du résultat et commentez. Le risque de première espèce est fixé à 10%.

Pearson's Chi-squared test

data: horoscope

X-squared = 10.6935, df = 6, p-value = 0.09833

- a) (1pt) Quelles sont les hypothèses nulle et alternatives?
- b) (1 pt) Sous quelle condition ce test est-il valide?
- c) (1 pt) Quelle est votre conclusion?

Problème 6 Âge des employés (5 points)

L'âge des employés d'une entreprise est considéré (variable âge, unité : année). Un test portant sur l'âge moyen a été réalisé à l'aide du logiciel R. Voici ci-dessous le résultat du test. Le risque de première espèce est fixé à 5%.

One Sample t-test

```
data: âge
t = -0.3771, df = 14, p-value = 0.3559
alternative hypothesis: true mean is less than 40
95 percent confidence interval:
        -Inf 42.24088
sample estimates:
mean of x
39.38949
```

- a) (1 pt) Quelles sont les hypothèses nulle et alternative?
- b) (1 pt) Sous quelle condition ce test est-il valide?
- c) (1 pt) Quelle est la taille de l'échantillon sélectionné?
- d) (1 pt) Qu'est-ce que "t = -0.3771"?
- e) (1 pt) Quelle doit être la conclusion du test?

A Loi normale centrée réduite

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5030 0.5478	0.5120 0.5517	0.5100 0.5557	0.5199 0.5596	0.5239 0.5636	0.5279 0.5675	0.5319 0.5714	0.5359 0.5753
$0.1 \\ 0.2$	0.5793	0.5438 0.5832	0.5476 0.5871	0.5917 0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
$0.2 \\ 0.3$	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6004	0.6480	0.6517
0.3	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.4	0.0004	0.0031	0.0020	0.0004	0.0700	0.0100	0.0112	0.0000	0.0011	0.0013
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	0.0000	0.0045		0.00=0	0.0000	0.0004	0.040.0	0.0440	0.0400	0.0444
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
$\frac{2}{2.1}$	0.9772 0.9821	0.9826	0.9183	0.9133	0.9193	0.9798	0.9803 0.9846	0.9850	0.9812 0.9854	0.9817 0.9857
$\frac{2.1}{2.2}$	0.9821 0.9861	0.9820 0.9864	0.9868	0.9834 0.9871	0.9875	0.9842 0.9878	0.9840 0.9881	0.9884	0.9834 0.9887	0.9890
$\frac{2.2}{2.3}$	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9034 0.9911	0.9913	0.9830
$\frac{2.3}{2.4}$	0.9833	0.9920	0.9922	0.9901 0.9925	0.9904 0.9927	0.9929	0.9931	0.9911 0.9932	0.9913 0.9934	0.9910 0.9936
4.4	0.3310	0.9920	0.3322	0.3320	0.3321	0.3323	0.3331	0.9902	0.3334	0.5550
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

B Table de la loi du χ^2

					Vale	eurs de α				
	0.995	0.99	0.975	$\boldsymbol{0.95}$	0.9	0.1	0.05	$\boldsymbol{0.025}$	0.01	0.005
dl										
1	0.0000	0.0002	0.0010	0.0039	0.0158	2.7055	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	0.2107	4.6052	5.9915	7.3778	9.2103	10.5966
3	0.0717	0.1148	0.2158	0.3518	0.5844	6.2514	7.8147	9.3484	11.3449	12.8382
4	0.2070	0.2971	0.4844	0.7107	1.0636	7.7794	9.4877	11.1433	13.2767	14.8603
5	0.4117	0.5543	0.8312	1.1455	1.6103	9.2364	11.0705	12.8325	15.0863	16.7496
6	0.6757	0.8721	1.2373	1.6354	2.2041	10.6446	12.5916	14.4494	16.8119	18.5476
7	0.9893	1.2390	1.6899	2.1673	2.8331	12.0170	14.0671	16.0128	18.4753	20.2777
8	1.3444	1.6465	2.1797	2.7326	3.4895	13.3616	15.5073	17.5345	20.0902	21.9550
9	1.7349	2.0879	2.7004	3.3251	4.1682	14.6837	16.9190	19.0228	21.6660	23.5894
10	2.1559	2.5582	3.2470	3.9403	4.8652	15.9872	18.3070	20.4832	23.2093	25.1882
11	2.6032	3.0535	3.8157	4.5748	5.5778	17.2750	19.6751	21.9200	24.7250	26.7568
12	3.0738	3.5706	4.4038	5.2260	6.3038	18.5493	21.0261	23.3367	26.2170	28.2995
13	3.5650	4.1069	5.0088	5.8919	7.0415	19.8119	22.3620	24.7356	27.6882	29.8195
14	4.0747	4.6604	5.6287	6.5706	7.7895	21.0641	23.6848	26.1189	29.1412	31.3193
15	4.6009	5.2293	6.2621	7.2609	8.5468	22.3071	24.9958	27.4884	30.5779	32.8013
16	5.1422	5.8122	6.9077	7.9616	9.3122	23.5418	26.2962	28.8454	31.9999	34.2672
17	5.6972	6.4078	7.5642	8.6718	10.0852	24.7690	27.5871	30.1910	33.4087	35.7185
18	6.2648	7.0149	8.2307	9.3905	10.8649	25.9894	28.8693	31.5264	34.8053	37.1565
19	6.8440	7.6327	8.9065	10.1170	11.6509	27.2036	30.1435	32.8523	36.1909	38.5823
20	7.4338	8.2604	9.5908	10.8508	12.4426	28.4120	31.4104	34.1696	37.5662	39.9968
21	8.0337	8.8972	10.2829	11.5913	13.2396	29.6151	32.6706	35.4789	38.9322	41.4011
22	8.6427	9.5425	10.9823	12.3380	14.0415	30.8133	33.9244	36.7807	40.2894	42.7957
23	9.2604	10.1957	11.6886	13.0905	14.8480	32.0069	35.1725	38.0756	41.6384	44.1813
24	9.8862	10.8564	12.4012	13.8484	15.6587	33.1962	36.4150	39.3641	42.9798	45.5585
25	10.5197	11.5240	13.1197	14.6114	16.4734	34.3816	37.6525	40.6465	44.3141	46.9279
26	11.1602	12.1981	13.8439	15.3792	17.2919	35.5632	38.8851	41.9232	45.6417	48.2899
27	11.8076	12.8785	14.5734	16.1514	18.1139	36.7412	40.1133	43.1945	46.9629	49.6449
28	12.4613	13.5647	15.3079	16.9279	18.9392	37.9159	41.3371	44.4608	48.2782	50.9934
29	13.1211	14.2565	16.0471	17.7084	19.7677	39.0875	42.5570	45.7223	49.5879	52.3356
30	13.7867	14.9535	16.7908	18.4927	20.5992	40.2560	43.7730	46.9792	50.8922	53.6720
40	20.7065	22.1643	24.4330	26.5093	29.0505	51.8051	55.7585	59.3417	63.6907	66.7660
50	27.9907	29.7067	32.3574	34.7643	37.6886	63.1671	67.5048	71.4202	76.1539	79.4900
60	35.5345	37.4849	40.4817	43.1880	46.4589	74.3970	79.0819	83.2977	88.3794	91.9517
70	43.2752	45.4417	48.7576	51.7393	55.3289	85.5270	90.5312	95.0232	100.4252	104.2149
80	51.1719	53.5401	57.1532	60.3915	64.2778	96.5782	101.8795	106.6286	112.3288	116.3211
90	59.1963	61.7541	65.6466	69.1260	73.2911	107.5650	113.1453	118.1359	124.1163	128.2989
100	67.3276	70.0649	74.2219	77.9295	82.3581	118.4980	124.3421	129.5612	135.8067	140.1695

C Table de la loi de Student

t										
	0.45	0.4	0.3	0.25	0.2	0.1	0.05	0.025	0.01	0.005
dl										
1	0.1584	0.3249	0.7265	1.0000	1.3764	3.0777	6.3138	12.7062	31.8205	63.6567
2	0.1421	0.2887	0.6172	0.8165	1.0607	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.1366	0.2767	0.5844	0.7649	0.9785	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.1338	0.2707	0.5686	0.7407	0.9410	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.1322	0.2672	0.5594	0.7267	0.9195	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.1311	0.2648	0.5534	0.7176	0.9057	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.1303	0.2632	0.5491	0.7111	0.8960	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.1297	0.2619	0.5459	0.7064	0.8889	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.1293	0.2610	0.5435	0.7027	0.8834	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.1289	0.2602	0.5415	0.6998	0.8791	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.1286	0.2596	0.5399	0.6974	0.8755	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.1283	0.2590	0.5386	0.6955	0.8726	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.1281	0.2586	0.5375	0.6938	0.8702	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.1280	0.2582	0.5366	0.6924	0.8681	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.1278	0.2579	0.5357	0.6912	0.8662	1.3406	1.7531	2.1314	2.6025	2.9467
16	0.1277	0.2576	0.5350	0.6901	0.8647	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.1276	0.2573	0.5344	0.6892	0.8633	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.1274	0.2571	0.5338	0.6884	0.8620	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.1274	0.2569	0.5333	0.6876	0.8610	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.1273	0.2567	0.5329	0.6870	0.8600	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.1272	0.2566	0.5325	0.6864	0.8591	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.1271	0.2564	0.5321	0.6858	0.8583	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.1271	0.2563	0.5317	0.6853	0.8575	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.1270	0.2562	0.5314	0.6848	0.8569	1.3178	1.7109	2.0639	2.4922	2.7969
25	0.1269	0.2561	0.5312	0.6844	0.8562	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.1269	0.2560	0.5309	0.6840	0.8557	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.1268	0.2559	0.5306	0.6837	0.8551	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.1268	0.2558	0.5304	0.6834	0.8546	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.1268	0.2557	0.5302	0.6830	0.8542	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.1267	0.2556	0.5300	0.6828	0.8538	1.3104	1.6973	2.0423	2.4573	2.7500
40	0.1265	0.2550	0.5286	0.6807	0.8507	1.3031	1.6839	2.0211	2.4233	2.7045
50	0.1263	0.2547	0.5278	0.6794	0.8489	1.2987	1.6759	2.0086	2.4033	2.6778
60	0.1262	0.2545	0.5272	0.6786	0.8477	1.2958	1.6706	2.0003	2.3901	2.6603
70	0.1261	0.2543	0.5268	0.6780	0.8468	1.2938	1.6669	1.9944	2.3808	2.6479
80	0.1261	0.2542	0.5265	0.6776	0.8461	1.2922	1.6641	1.9901	2.3739	2.6387
90	0.1260	0.2541	0.5263	0.6772	0.8456	1.2910	1.6620	1.9867	2.3685	2.6316
100	0.1260	0.2540	0.5261	0.6770	0.8452	1.2901	1.6602	1.9840	2.3642	2.6259
200	0.1258	0.2537	0.5252	0.6757	0.8434	1.2858	1.6525	1.9719	2.3451	2.6006
500	0.1257	0.2535	0.5247	0.6750	0.8423	1.2832	1.6479	1.9647	2.3338	2.5857
∞				ci	f. Distrib	ution Nor	male			

D Table du test des rangs signés de Wilcoxon

Les valeurs critiques sont données par la table suivante :

unilatéral	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.01$
bilatéral	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.02$
n	Infé	rieur, Supér	ieur
5	0,15		
6	2,19	$0,\!21$	
7	3,25	$2,\!26$	0,28
8	5,31	3,33	1,35
9	8,37	$5,\!40$	3,42
10	10,45	8,47	5,50
11	13,53	$10,\!56$	7,59
12	17,61	13,65	10,68
13	21,70	17,74	12,79
14	25,80	21,84	16,89
15	30,90	$25,\!95$	19,101
16	35,101	29,107	23,113
17	41,112	34,119	27,126
18	47,124	40,131	32,139
19	53,137	46,144	37,153
20	60,150	52,158	43,167