Integrating \mathbb{Y}_m and \mathbb{Y}_{∞} Number Systems into p-adic Hodge Theory and Related Fields

Pu Justin Scarfy Yang June 29, 2024

Abstract

This paper explores the integration of \mathbb{Y}_m and \mathbb{Y}_∞ number systems into the study of p-adic Hodge theory, representation theory, number theory, and related fields. By extending traditional frameworks, we aim to provide new insights and unify various mathematical theories, offering a richer understanding of p-adic analysis and its applications.

1 Introduction

The study of p-adic numbers and their applications has been a central theme in number theory and algebraic geometry. This paper introduces the \mathbb{Y}_m and \mathbb{Y}_{∞} number systems as extensions to existing p-adic frameworks. We explore how these systems can enhance the understanding of topological and metric properties, Galois representations, p-adic Hodge theory, local-global principles, continuous and differentiable functions, p-adic L-functions, and p-adic dynamical systems.

2 Topological and Metric Properties of \mathbb{Y}_m and \mathbb{Y}_{∞} Number Systems

2.1 p-adic Norm and Valuation

Let \mathbb{Y}_m and \mathbb{Y}_{∞} be number systems with their own valuations $\operatorname{val}_{\mathbb{Y}_m}$ and $\operatorname{val}_{\mathbb{Y}_{\infty}}$, respectively. Define the p-adic norms on \mathbb{Y}_m and \mathbb{Y}_{∞} by:

$$|x|_{\mathbb{Y}_m} = p^{-\operatorname{val}_{\mathbb{Y}_m}(x)}, \quad |x|_{\mathbb{Y}_\infty} = p^{-\operatorname{val}_{\mathbb{Y}_\infty}(x)}$$

for $x \in \mathbb{Y}_m$ and $x \in \mathbb{Y}_{\infty}$.

2.2 Convergence in \mathbb{Y}_m and \mathbb{Y}_{∞}

A sequence $\{x_n\}$ in \mathbb{Y}_m (or \mathbb{Y}_{∞}) converges to $x \in \mathbb{Y}_m$ (or $x \in \mathbb{Y}_{\infty}$) if $|x_n - x|_{\mathbb{Y}_m} \to 0$ (or $|x_n - x|_{\mathbb{Y}_{\infty}} \to 0$) as $n \to \infty$. For example, consider the sequence $x_n = \frac{1}{n!} \in \mathbb{Y}_m$ or \mathbb{Y}_{∞} . We show that $|x_{n+1} - x_n|_{\mathbb{Y}_m}$ (or $|x_{n+1} - x_n|_{\mathbb{Y}_{\infty}}$) decreases, indicating the sequence converges.

2.3 Compactness

Closed and bounded subsets in \mathbb{Y}_m (or \mathbb{Y}_{∞}) are compact under the p-adic norm. For instance, the set of all elements in \mathbb{Y}_m (or \mathbb{Y}_{∞}) with norm less than or equal to 1 is compact, as every sequence within this set has a convergent subsequence.

2.4 Metric Space Structure

The space \mathbb{Y}_m (or \mathbb{Y}_{∞}) equipped with the *p*-adic norm $|\cdot|_{\mathbb{Y}_m}$ (or $|\cdot|_{\mathbb{Y}_{\infty}}$) forms a metric space. The metric $d: \mathbb{Y}_m \times \mathbb{Y}_m \to \mathbb{R}_{\geq 0}$ (or $d: \mathbb{Y}_{\infty} \times \mathbb{Y}_{\infty} \to \mathbb{R}_{\geq 0}$) is defined by:

$$d(x,y) = |x - y|_{\mathbb{Y}_m}$$
 (or $d(x,y) = |x - y|_{\mathbb{Y}_\infty}$)

Properties of the metric include: - Non-negativity: $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$ - Symmetry: d(x,y) = d(y,x) - Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$

3 Galois Representations in \mathbb{Y}_m and \mathbb{Y}_∞ Number Systems

3.1 Constructing Galois Representations

Let \mathbb{Y}_m (or \mathbb{Y}_{∞}) be a finite extension of \mathbb{Q}_p with a non-trivial automorphism group. Construct a homomorphism:

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) \to \operatorname{GL}_n(\mathbb{Y}_m) \quad (\text{or } \operatorname{GL}_n(\mathbb{Y}_\infty))$$

3.2 Properties of ρ

Study the image of ρ and its algebraic structure. For example:

$$\rho(\sigma) = \begin{pmatrix} \psi(\sigma) & 0 \\ 0 & 1 \end{pmatrix}$$

where ψ is a homomorphism into \mathbb{Y}_m (or \mathbb{Y}_{∞}).

3.3 Applications to Modular Forms and Automorphic Representations

Analyze how \mathbb{Y}_m and \mathbb{Y}_{∞} structures influence modular forms and automorphic representations. The introduction of \mathbb{Y}_m and \mathbb{Y}_{∞} allows for new insights and refinements in these areas.

4 p-adic Hodge Theory with \mathbb{Y}_m and \mathbb{Y}_{∞}

4.1 Comparison Theorems

Let X be a smooth projective variety over \mathbb{Q}_p . The comparison theorem between p-adic étale cohomology and de Rham cohomology is extended using \mathbb{Y}_m and \mathbb{Y}_{∞} :

$$H^{i}_{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Y}_{m}) \cong H^{i}_{\operatorname{dR}}(X/\mathbb{Y}_{m}) \otimes_{\mathbb{Y}_{m}} B_{\operatorname{dR}}$$

$$H^i_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Y}_{\infty}) \cong H^i_{\mathrm{dR}}(X/\mathbb{Y}_{\infty}) \otimes_{\mathbb{Y}_{\infty}} B_{\mathrm{dR}}$$

4.2 Applications

Use \mathbb{Y}_{∞} by:

$$|x|_{\mathbb{Y}_m} = p^{-\operatorname{val}_{\mathbb{Y}_m}(x)}, \quad |x|_{\mathbb{Y}_\infty} = p^{-\operatorname{val}_{\mathbb{Y}_\infty}(x)}$$

for $x \in \mathbb{Y}_m$ and $x \in \mathbb{Y}_{\infty}$.

4.3 Convergence in \mathbb{Y}_m and \mathbb{Y}_{∞}

A sequence $\{x_n\}$ in \mathbb{Y}_m (or \mathbb{Y}_{∞}) converges to $x \in \mathbb{Y}_m$ (or $x \in \mathbb{Y}_{\infty}$) if $|x_n - x|_{\mathbb{Y}_m} \to 0$ (or $|x_n - x|_{\mathbb{Y}_{\infty}} \to 0$) as $n \to \infty$. For example, consider the sequence $x_n = \frac{1}{n!} \in \mathbb{Y}_m$ or \mathbb{Y}_{∞} . We show that $|x_{n+1} - x_n|_{\mathbb{Y}_m}$ (or $|x_{n+1} - x_n|_{\mathbb{Y}_{\infty}}$) decreases, indicating the sequence converges.

4.4 Compactness

Closed and bounded subsets in \mathbb{Y}_m (or \mathbb{Y}_{∞}) are compact under the p-adic norm. For instance, the set of all elements in \mathbb{Y}_m (or \mathbb{Y}_{∞}) with norm less than or equal to 1 is compact, as every sequence within this set has a convergent subsequence.

4.5 Metric Space Structure

The space \mathbb{Y}_m (or \mathbb{Y}_{∞}) equipped with the *p*-adic norm $|\cdot|_{\mathbb{Y}_m}$ (or $|\cdot|_{\mathbb{Y}_{\infty}}$) forms a metric space. The metric $d: \mathbb{Y}_m \times \mathbb{Y}_m \to \mathbb{R}_{\geq 0}$ (or $d: \mathbb{Y}_{\infty} \times \mathbb{Y}_{\infty} \to \mathbb{R}_{\geq 0}$) is defined by:

$$d(x,y) = |x - y|_{\mathbb{Y}_m}$$
 (or $d(x,y) = |x - y|_{\mathbb{Y}_\infty}$)

Properties of the metric include: - Non-negativity: $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$ - Symmetry: d(x,y) = d(y,x) - Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$

5 Galois Representations in \mathbb{Y}_m and \mathbb{Y}_∞ Number Systems

5.1 Constructing Galois Representations

Let \mathbb{Y}_m (or \mathbb{Y}_{∞}) be a finite extension of \mathbb{Q}_p with a non-trivial automorphism group. Construct a homomorphism:

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) \to \operatorname{GL}_n(\mathbb{Y}_m) \quad (\text{or } \operatorname{GL}_n(\mathbb{Y}_\infty))$$

5.2 Properties of ρ

Study the image of ρ and its algebraic structure. For example:

$$\rho(\sigma) = \begin{pmatrix} \psi(\sigma) & 0 \\ 0 & 1 \end{pmatrix}$$

where ψ is a homomorphism into \mathbb{Y}_m (or \mathbb{Y}_{∞}).

5.3 Applications to Modular Forms and Automorphic Representations

Analyze how \mathbb{Y}_m and \mathbb{Y}_{∞} structures influence modular forms and automorphic representations. The introduction of \mathbb{Y}_m and \mathbb{Y}_{∞} allows for new insights and refinements in these areas.

6 p-adic Hodge Theory with \mathbb{Y}_m and \mathbb{Y}_{∞}

6.1 Comparison Theorems

Let X be a smooth projective variety over \mathbb{Q}_p . The comparison theorem between p-adic étale cohomology and de Rham cohomology is extended using \mathbb{Y}_m and \mathbb{Y}_{∞} :

$$H^{i}_{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Y}_{m}) \cong H^{i}_{\operatorname{dR}}(X/\mathbb{Y}_{m}) \otimes_{\mathbb{Y}_{m}} B_{\operatorname{dR}}$$

$$H^i_{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Y}_{\infty}) \cong H^i_{\operatorname{dR}}(X/\mathbb{Y}_{\infty}) \otimes_{\mathbb{Y}_{\infty}} B_{\operatorname{dR}}$$

6.2 Applications

Use \mathbb{Y}_m and \mathbb{Y}_{∞} structures to refine existing comparison theorems and unify different cohomology theories. Apply these extended theorems to study the properties of varieties over p-adic fields with \mathbb{Y}_m and \mathbb{Y}_{∞} structures.

6.3 Generalizing the Comparison Theorems

Generalize the comparison theorems to more complex varieties, such as higherdimensional Calabi-Yau varieties or varieties with additional structure (e.g., toroidal embeddings):

$$H^{i}_{\operatorname{\acute{e}t}}(X_{\overline{\mathbb{Q}_{p}}}, \mathbb{Y}_{m}) \cong H^{i}_{\operatorname{dR}}(X/\mathbb{Y}_{m}) \otimes_{\mathbb{Y}_{m}} B^{(d)}_{\operatorname{dR}}$$

$$H^i_{\mathrm{\acute{e}t}}(X_{\overline{\mathbb{Q}_p}}, \mathbb{Y}_{\infty}) \cong H^i_{\mathrm{dR}}(X/\mathbb{Y}_{\infty}) \otimes_{\mathbb{Y}_{\infty}} B^{(d)}_{\mathrm{dR}}$$

7 Local-Global Principles in Number Theory

7.1 Formulating Local-Global Principles

Consider a polynomial equation f(x) = 0 over \mathbb{Q} . Analyze f(x) = 0 in $\mathbb{Y}_m(\mathbb{Q}_p)$ (or $\mathbb{Y}_\infty(\mathbb{Q}_p)$) for all primes p.

7.2 Example: Polynomial Equation

For the polynomial $x^2 - 2 = 0$: - In \mathbb{Q}_p , solutions exist if $p \neq 2$. - In \mathbb{Q}_2 , no solutions exist. Using $\mathbb{Y}_m(\mathbb{Q}_p)$ or $\mathbb{Y}_\infty(\mathbb{Q}_p)$ provides additional local information.

7.3 Enhanced Local-Global Principle

Formulate a new local-global principle incorporating \mathbb{Y}_m and \mathbb{Y}_∞ invariants to enhance the solution process. For example, the Hasse-Minkowski theorem can be extended to incorporate \mathbb{Y}_m and \mathbb{Y}_∞ invariants.

8 Insights from Analysis with \mathbb{Y}_m and \mathbb{Y}_{∞}

8.1 Continuous and Differentiable Functions

Define p-adic continuous functions: $f: \mathbb{Y}_m(\mathbb{Q}_p) \to \mathbb{Y}_m(\mathbb{Q}_p)$ (or $f: \mathbb{Y}_\infty(\mathbb{Q}_p) \to \mathbb{Y}_\infty(\mathbb{Q}_p)$) is continuous if:

$$\forall \epsilon>0, \exists \delta>0 \text{ such that } |x-y|_{\mathbb{Y}_m}<\delta \implies |f(x)-f(y)|_{\mathbb{Y}_m}<\epsilon$$
 (or
$$\forall \epsilon>0, \exists \delta>0 \text{ such that } |x-y|_{\mathbb{Y}_\infty}<\delta \implies |f(x)-f(y)|_{\mathbb{Y}_\infty}<\epsilon$$
)

Define the derivative f'(x) in \mathbb{Y}_m (or \mathbb{Y}_{∞}):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

8.2 Example

For the function $f(x) = x^2$: - Derivative f'(x) = 2x.

8.3 Further Properties and Examples

Consider more complex functions, such as $f(x) = \exp(x)$ or $f(x) = \log(x)$, and analyze their p-adic behavior within \mathbb{Y}_m and \mathbb{Y}_{∞} .

9 p-adic L-functions and Modular Forms with \mathbb{Y}_m and \mathbb{Y}_∞

9.1 p-adic Interpolation

Construct $L_p(s, \mathbb{Y}_m)$ (or $L_p(s, \mathbb{Y}_\infty)$) that interpolates values of $L(s, \chi)$ at padic points. The p-adic L-function for a Dirichlet character χ is given by:

$$L_p(s, \chi, \mathbb{Y}_m) = \sum_{n=1}^{\infty} \chi(n) n^{-s}$$

$$L_p(s, \chi, \mathbb{Y}_{\infty}) = \sum_{n=1}^{\infty} \chi(n) n^{-s}$$

9.2 Behavior and Special Values

Study zeros and special values of $L_p(s, \mathbb{Y}_m)$ (or $L_p(s, \mathbb{Y}_\infty)$). Analyze the impact of \mathbb{Y}_m and \mathbb{Y}_∞ structures on the distribution of zeros and the special values at integers and critical points.

9.3 Generalizing p-adic L-functions

Generalize the p-adic L-functions to include \mathbb{Y}_m and \mathbb{Y}_∞ coefficients in various arithmetic settings, such as for elliptic curves and higher-dimensional abelian varieties:

$$L_p(s, E/\mathbb{Y}_m) = \prod_p \left(1 - \frac{\alpha_p}{p^s}\right)^{-1}$$

$$L_p(s, E/\mathbb{Y}_{\infty}) = \prod_p \left(1 - \frac{\beta_p}{p^s}\right)^{-1}$$

10 $p ext{-adic Dynamical Systems with } \mathbb{Y}_m$ and \mathbb{Y}_∞

10.1 Defining p-adic Dynamical Systems

Consider a morphism $\phi: \mathbb{Y}_m(\mathbb{Q}_p) \to \mathbb{Y}_m(\mathbb{Q}_p)$ (or $\phi: \mathbb{Y}_\infty(\mathbb{Q}_p) \to \mathbb{Y}_\infty(\mathbb{Q}_p)$).

10.2 Fixed and Periodic Points

Analyze the stability and behavior of these points. For example:

$$\phi(x) = x^2 - 1$$

Find fixed points: $\phi(x) = x$. Investigate periodic orbits by solving:

$$\phi^k(x) = x$$

for k-periodic points.

10.3 Dynamics of Rational Maps

Consider rational maps $\phi(x) = \frac{P(x)}{Q(x)}$ over \mathbb{Y}_m and \mathbb{Y}_{∞} . Study their *p*-adic dynamics, including Julia sets, Fatou sets, and the behavior of orbits.

11 Higher Dimensional Fields with \mathbb{Y}_m and \mathbb{Y}_{∞}

11.1 Extensions to Higher Dimensions

Extend \mathbb{Y}_m and \mathbb{Y}_{∞} to higher-dimensional fields, such as \mathbb{Y}_m (or \mathbb{Y}_{∞}) over function fields $\mathbb{Q}_p(t)$. Define higher-dimensional extensions:

$$\mathbb{Y}_m^{(d)} = \mathbb{Y}_m(\mathbb{Q}_p(t_1, t_2, \dots, t_d))$$

$$\mathbb{Y}_{\infty}^{(d)} = \mathbb{Y}_{\infty}(\mathbb{Q}_p(t_1, t_2, \dots, t_d))$$

11.2 Studying the Arithmetic Geometry

Analyze the properties and behavior of varieties over $\mathbb{Y}_m(\mathbb{Q}_p(t))$ (or $\mathbb{Y}_{\infty}(\mathbb{Q}_p(t))$). For example:

$$\mathbb{Q}_p(t)(\sqrt{t^2-1})$$

Study the arithmetic of this field, including its p-adic cohomology, rational points, and zeta functions.

11.3 Generalizing to Higher-Dimensional Varieties

Extend the study of higher-dimensional varieties to include more complex structures, such as toric varieties, Shimura varieties, and moduli spaces of vector bundles. Analyze their arithmetic properties using \mathbb{Y}_m and \mathbb{Y}_∞ number systems:

$$\operatorname{Moduli}(X/\mathbb{Y}_m) = \underline{\lim} H^i(X, \mathcal{L}_m^n)$$

$$\operatorname{Moduli}(X/\mathbb{Y}_{\infty}) = \varprojlim H^{i}(X, \mathcal{L}_{\infty}^{n})$$

12 Utility of \mathbb{Y}_m and \mathbb{Y}_{∞} Number Systems

12.1 Bridging Algebra and Analysis

 Y_m and Y_∞ structures provide new norms and metrics for p-adic fields, enabling the study of continuous and differentiable functions within p-adic analysis. For instance, in non-Archimedean functional analysis, these structures help to generalize classical results to the p-adic setting.

12.2 Unifying Cohomology Theories

 \mathbb{Y}_m and \mathbb{Y}_∞ systems refine comparison theorems between p-adic étale and de Rham cohomology, leading to a unified framework that accommodates more general coefficient systems.

12.3 Extending to Higher Dimensions

Applying Y_m and Y_∞ to higher-dimensional fields extends their utility in arithmetic geometry. This allows for the exploration of higher-dimensional varieties and the study of their arithmetic properties, such as Mordell-Weil groups and heights on higher-dimensional abelian varieties.

12.4 Enhancing Local-Global Principles

 \mathbb{Y}_m and \mathbb{Y}_{∞} introduce new local invariants, aiding in solving global problems using local data. For example, generalizing the Hasse principle to include \mathbb{Y}_m and \mathbb{Y}_{∞} invariants provides more refined tools for addressing Diophantine equations.

13 Applications and Examples

13.1 Application to Fermat's Last Theorem

Consider the equation $x^n + y^n = z^n$. Using \mathbb{Y}_m and \mathbb{Y}_∞ number systems, we can provide additional local analysis tools. For example, in $\mathbb{Y}_\infty(\mathbb{Q}_p)$, analyze the equation modulo higher p-adic norms.

13.2 Elliptic Curves and Modular Forms

Study elliptic curves E over \mathbb{Y}_m and \mathbb{Y}_{∞} . Define modular forms with coefficients in \mathbb{Y}_m and \mathbb{Y}_{∞} and explore their properties:

$$f(z) = \sum_{n=0}^{\infty} a_n q^n$$
 with $a_n \in \mathbb{Y}_m$ or \mathbb{Y}_{∞}

13.3 Higher Dimensional Varieties

Consider K3 surfaces or Calabi-Yau varieties over \mathbb{Y}_m and \mathbb{Y}_{∞} . Study their Hodge structures, moduli spaces, and rational points.

13.4 Application to Diophantine Equations

Utilize \mathbb{Y}_m and \mathbb{Y}_{∞} number systems to refine the analysis of Diophantine equations. For example, study solutions to equations like $x^3 + y^3 = z^3$ using p-adic methods in \mathbb{Y}_m and \mathbb{Y}_{∞} .

Generalizations and New Directions

1. Higher-Dimensional Number Theory

Extend the \mathbb{Y}_m and \mathbb{Y}_{∞} frameworks to higher-dimensional number theory, incorporating concepts like higher-dimensional local fields and multi-variable p-adic analysis.

2. Non-commutative p-adic Geometry

Explore the applications of \mathbb{Y}_m and \mathbb{Y}_{∞} in non-commutative p-adic geometry, studying spaces and algebras that arise from non-commutative p-adic analysis.

3. Arithmetic Dynamics

Investigate the dynamics of maps over \mathbb{Y}_m and \mathbb{Y}_{∞} , including the study of entropy, periodic points, and chaotic behavior in the p-adic context.

4. p-adic Quantum Mechanics

Develop a p-adic version of quantum mechanics using \mathbb{Y}_m and \mathbb{Y}_{∞} , exploring how these number systems can provide new insights into the foundations of quantum theory.

5. p-adic Model Theory

Incorporate \mathbb{Y}_m and \mathbb{Y}_{∞} into p-adic model theory, investigating logical frameworks and structures within these number systems.

13.5 Definable Sets and Functions

Define and study sets and functions within \mathbb{Y}_m and \mathbb{Y}_{∞} that are definable in a p-adic logical framework:

$$\operatorname{Def}(X, \mathbb{Y}_m)$$
 and $\operatorname{Def}(X, \mathbb{Y}_\infty)$

13.6 Applications to p-adic Zeta Functions

Extend the concept of p-adic zeta functions to \mathbb{Y}_m and \mathbb{Y}_{∞} :

$$\zeta_p(s, \mathbb{Y}_m) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 with coefficients in \mathbb{Y}_m

$$\zeta_p(s, \mathbb{Y}_{\infty}) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 with coefficients in \mathbb{Y}_{∞}

14 Applications and Examples (Continued)

14.1 Application to the Birch and Swinnerton-Dyer Conjecture

Investigate the implications of \mathbb{Y}_m and \mathbb{Y}_{∞} number systems for the Birch and Swinnerton-Dyer conjecture. Analyze the rank of elliptic curves over \mathbb{Y}_m and \mathbb{Y}_{∞} and study the associated p-adic L-functions.

14.2 Application to Iwasawa Theory

Explore the role of \mathbb{Y}_m and \mathbb{Y}_{∞} in Iwasawa theory. Study the growth of class groups in \mathbb{Y}_m - and \mathbb{Y}_{∞} -extensions of number fields.

14.3 Application to Modular Abelian Varieties

Analyze modular abelian varieties defined over \mathbb{Y}_m and \mathbb{Y}_{∞} . Study their arithmetic properties, such as the Mordell-Weil group and Tate-Shafarevich group.

14.4 Application to Noncommutative Geometry

Incorporate \mathbb{Y}_m and \mathbb{Y}_{∞} into noncommutative geometry frameworks. Investigate p-adic analogs of noncommutative spaces and their geometric and arithmetic properties.

14.5 Application to Homotopy Theory

Extend the use of \mathbb{Y}_m and \mathbb{Y}_∞ to p-adic homotopy theory. Define p-adic homotopy groups and study their relationships with \mathbb{Y}_m and \mathbb{Y}_∞ structures.

15 Conclusion

The extended and refined integration of \mathbb{Y}_m and \mathbb{Y}_∞ number systems into p-adic Hodge theory, dynamics, quantum mechanics, model theory, and other areas opens new avenues for research and unifies various mathematical theories. This comprehensive framework enhances the understanding of p-adic analysis and its applications, offering powerful tools for future exploration and discovery.

16 References

References

- [1] Fontaine, J.-M. p-adic Hodge Theory, Proceedings of the International Congress of Mathematicians, Kyoto, Japan, 1990.
- [2] Serre, J.-P. *Local Fields*, Graduate Texts in Mathematics, Springer-Verlag, 1979.
- [3] Tate, J. Rigid Analytic Spaces, Inventiones Mathematicae, 1962.
- [4] Kedlaya, K. p-adic Differential Equations, Cambridge Studies in Advanced Mathematics, 2010.
- [5] Conrad, B. Cohomological Descent, Journal of Algebra, 2000.
- [6] Deligne, P. Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., AMS, 1979.
- [7] Schneider, P. p-adic Lie Groups, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, 2011.