Recapitular: Fsica Cuntica

Dirk Hornung

5 de febrero de 2016

Índice general

		$_{ m llados}$																2
1.1.	Estad	los Pui	os															2
1.2.	Obser	vables																2
1.3.																		2
 		Arm emas		 _	 	 _												3

Capítulo 1

Los postulados de la mecnica cuntica

1.1. Estados Puros

Definition 1. A la mecnica cuantica un estado es un vector ψ (vector estado o ket) normalizado ($\langle \psi | \psi \rangle = 1$) en un espacio Hilbert \mathcal{H} comlejo, completo, unitario y separable.

1.2. Observables

Definition 2. Cada observable $\bf A$ de un systema fsico se representa en la mecnica cuantica mediante un operador **hermtico** \tilde{A} .

1.3.

Capítulo 2

Oscilador Armnico Cuntico

2.1. Problemas

1. Ecuentra las expressiones del los observables x y p en trminos de los operadores a y a^{\dagger} que permiten escribir l'hamiltoniano armnico unidimensional como $H=\hbar\omega(a^{\dagger}a+1/2)$. Conviene que utilizas argumentos d'hermitinidad y dimensional.

Solucion:

Los operadores escalera estan definida por

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + \frac{i}{m\omega} \hat{p} \right)$$
$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} - \frac{i}{m\omega} \hat{p} \right)$$

As aadiendo y sustraiendo los operadores escalar danos

$$a + a^{\dagger} = a\sqrt{\frac{m\omega}{2\hbar}}(\hat{x} + \hat{x}) \Rightarrow \quad \hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger})$$

$$a - a^{\dagger} = a\sqrt{\frac{m\omega}{2\hbar}}\left(\frac{i}{m\omega}\hat{p} + \frac{i}{m\omega}\hat{p}\right)a \Rightarrow \quad \hat{p} = \sqrt{\frac{\hbar m\omega}{2}}(-i)(a - a^{\dagger})$$

Ahora vamos a comprobar la dimensionalidad. En general los unidades utilizados para los operadores escalares estan

$$m = kg$$
 $\omega = \sqrt{\frac{k}{m}} = \frac{1}{s}$ $h = \frac{kg \cdot m^2}{s}$

porque $h = J \cdot s = N \cdot m \cdot s$ y k = N/m = kg/s. As que la comproba de \hat{x}

$$\hat{x} = \sqrt{\frac{h}{m\omega}} = \sqrt{\frac{kg \cdot m^2}{s} \cdot kg^{-1} \cdot s} = m$$

y de \hat{p}

$$\hat{p} \,=\, \sqrt{hm\omega} \,=\, \sqrt{\frac{kg\cdot m^2}{s}\cdot kg\cdot s^{-1}} \,=\, \frac{kg\cdot m}{s}$$

donde hemos mirado solo trminos importantes, estan hecho facilmente.

2. Utilza los operadores escalar a y a^{\dagger} para calcular los valores esperados $\langle x \rangle_n$, $\langle p \rangle_n$, $\langle x^2 \rangle_n$, $\langle p^2 \rangle_n$, $\langle K \rangle_n$, $\langle V \rangle_n$ y los indeterminacines $\langle (\Delta x)^2 \rangle_n$, $\langle (\Delta p)^2 \rangle_n$ y $\langle (\Delta H)^2 \rangle_n$ de el estado estacionario $|n\rangle$ de l'oscilador armnico unidimensional.

Solucion:

Recuerdando que los vectores del estado estan orthogonales

$$\langle n|n'\rangle = \delta_{nn'}$$

nos podemos calcular $\langle \hat{x} \rangle_n$ y $\langle \hat{p} \rangle_n$ facilmente

$$\begin{split} \langle \hat{x} \rangle_n a &= \langle n | \hat{x} | n \rangle = \sqrt{\frac{\hbar}{2m\omega}} \langle n | a^\dagger + a | n \rangle = \sqrt{\frac{\hbar}{2m\omega}} (\langle n | a^\dagger | \rangle + \langle n | a | n \rangle) \\ a &= \sqrt{\frac{\hbar}{2m\omega}} (\sqrt{n+1} \langle n | n+1 \rangle + \sqrt{n} \langle n | n-1 \rangle) = 0, \\ \langle \hat{p} \rangle_n a &= \sqrt{\frac{\hbar}{2m\omega}} (-i) \langle n | (a-a^\dagger) | n \rangle = 0. \end{split}$$

Utilizando el operador n
mero $N=a^{\dagger}a$ y el commutador de los operadores escalar

$$[a,a^{\dagger}] = aa^{\dagger} - a^{\dagger}a = 1 \quad \Rightarrow \qquad aa^{\dagger} = a^{\dagger}a + 1 = \hat{N} + 1$$

danos las valores esperados de $\langle \hat{x}^2 \rangle_n$ y $\langle \hat{p}^2 \rangle_n$

$$\begin{split} \langle \hat{x}^2 \rangle_n a &= \langle n | \hat{x}^2 | n \rangle = \frac{\hbar}{2m\omega} (\langle n | a^{\frac{1}{2}} a^{\frac{1}{2}} + \underbrace{a^{\frac{1}{2}} a}_{\hat{N}} + \underbrace{aa^{\frac{1}{2}}}_{\hat{N}+1} + aa^{\frac{1}{2}} n \rangle \\ a &= \frac{\hbar}{2m\omega} (\langle n | 2\hat{N} + 1 | n \rangle = \frac{\hbar}{2m\omega} (2n+1) = \frac{\hbar}{m\omega} \left(n + \frac{1}{2} \right) \\ \langle \hat{p}^2 \rangle_n a &= -\frac{\hbar m\omega}{2} [-(2n+1)] = \frac{\hbar m\omega}{2} (2n+1) = \hbar m\omega (n+\frac{1}{2}). \end{split}$$

Los valores esperados kintetico $\langle K \rangle_n$ y potencial $\langle V \rangle_n$ estan compuesto de los valores esperados calculado antes, por lo tanto nos podemos escribir

$$\langle K \rangle_n a = \frac{1}{2m} \langle \hat{p}^2 \rangle_n \frac{\hbar \omega}{2} \left(n \frac{1}{2} \right)$$
$$\langle V \rangle_n a = \frac{1}{2} m \omega^2 \langle x^2 \rangle_n = \frac{1}{2} \hbar \omega \left(n + \frac{1}{2} \right)$$

Por esto $\langle H \rangle_n$ esta dado por

$$\langle H \rangle_n = \langle K \rangle_n + \langle V \rangle_n = \hbar \omega \left(n + \frac{1}{2} \right).$$

Por los indeterminaviones nos recuerdamos de la relacin de indeterminacin

$$\Delta A \equiv A - \langle A \rangle \quad \Rightarrow \quad \langle (\Delta A)^2 \rangle = \langle A^2 \rangle - \langle A \rangle^2$$

As los indeterminaciones estan dado por

$$\langle (\Delta x)^2 \rangle_n a = \langle x^2 \rangle_n - \underbrace{\langle x \rangle_n}_0 = \frac{\hbar}{m\omega} \left(n + \frac{1}{2} \right)$$
$$\langle (\Delta p)^2 \rangle_n a = \langle p^2 \rangle_n - \underbrace{\langle p \rangle_n}_0 = \hbar m\omega \left(n + \frac{1}{2} \right)$$
$$\langle (\Delta H)^2 \rangle_n = \langle H^2 \rangle_n - \langle H \rangle_n^2 = 0$$

El ultimo realcin esta verdad porque dando un Hamiltoniano armnico

$$H = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2x^2 \quad \Rightarrow \qquad H^2 = \frac{1}{4m^2}\underbrace{p^4}_{(a-a^\dagger)^4} + \frac{1}{4}m^2\omega^2\underbrace{x^4}_{(a+a^\dagger)^4}$$

as considerado solo x^4

$$\langle x^4 \rangle_n = \langle n | (a + a^\dagger)^4 | n \rangle = \langle n | (aa + aa^\dagger + a^\dagger a + a^\dagger a^\dagger)^2 | n \rangle = \langle n | (aa^\dagger + a^\dagger a)^2 | n \rangle = \langle n | (aa^\dagger + a^\dagger a) | n \rangle^2$$

repitiendo el mismo processo por p^4 danos como resultado

$$\langle H^2 \rangle_n = \langle H \rangle_n^2$$

por lo tanto vemos que la indeterminación del Hamiltoniano esta cero.

3. por el estado no estacionario inicial (y sencillo) $|\psi(t=0)\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ y cualquier instant de tiempo t.

Solucion:

Primero tenemos que evaluar la evolucin del tiempo del estado no esacionario inicial. Por lo tanto deberiamos calcular la energa del oscillador armnico del estado fundamental y primero estado

$$E_n = \hbar\omega(n + \frac{1}{2}), \quad E_0 = \frac{\hbar\omega}{2}, \quad E_1 = \frac{3\hbar\omega}{2}.$$

As utilizando

$$|\alpha(t)\rangle = \sum_{n} \alpha_n e^{-i\frac{E_n}{\hbar}t} |n\rangle$$

danos la evolucin temporal de $|\psi(t=0)\rangle$

$$|\psi(t)\rangle = \frac{1}{\sqrt{2}}e^{-\frac{i\omega}{2}}|0\rangle + \frac{1}{\sqrt{2}}e^{-\frac{3i\omega t}{2}}|1\rangle = \frac{1}{\sqrt{2}}e^{-\frac{i\omega t}{2}}\left(|0\rangle + e^{\frac{i\omega t}{2}}|2\rangle\right)$$

Logicamente por los valores eseperados nos tenemos

$$\begin{split} \langle \hat{x} \rangle_{\psi(t)} &= \langle \psi | \hat{x} | \psi \rangle \\ &= \frac{1}{2} e^{\frac{-i\omega t}{2}} \frac{\hbar}{2m\omega} \left(\langle 0 | + e^{i\omega t} \langle 1 | \right) (a + a^{\dagger}) \left(e^{i\omega t} | 1 \rangle + | 0 \rangle \right) \\ &= \frac{1}{2} \sqrt{\frac{\hbar}{2m\omega}} \left(e^{-i\omega t} \langle 0 | a | 1 \rangle + e^{i\omega t} \langle 1 | a^{\dagger} | 0 \rangle \right) \\ &= \frac{1}{2} \sqrt{\frac{\hbar}{2m\omega}} \left(e^{-i\omega t} + e^{i\omega t} \right) \\ &= \frac{1}{2} \sqrt{\frac{\hbar}{2m\omega}} \cos \omega t \end{split}$$

У

$$\begin{split} \langle \hat{p} \rangle_{\psi(t)} &= \frac{1}{2} \sqrt{\frac{\hbar m \omega}{2}} (-i) \left(\langle 0| + e^{i\omega t} \langle 1| \right) (a - a^{\dagger}) \left(e^{-i\omega t} |1\rangle + |0\rangle \right) \\ &= \frac{1}{2} \sqrt{\frac{\hbar m \omega}{2}} (-i) \left(e^{-i\omega t} \langle 0| a |1\rangle - e^{i\omega t} \langle 1| a^{\dagger} |0\rangle \right) \\ &= \sqrt{\frac{\hbar m \omega}{2}} \frac{1}{2i} \left(e^{-i\omega t} - e^{i\omega t} \right) \\ &= -\sqrt{\frac{\hbar m \omega}{2}} \sin \omega t \end{split}$$

4. Dada la function d'onda del estado fundamental del oscilador armnico unidimenional

$$\phi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2}$$

ecuentre l'expresion de $\phi_2(x)$.

Solucion:

Nos podemos escribir el operador escalar a^{\dagger} en la siguiente forma

$$a^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{x} - i\hat{p}) \quad \text{con} \quad a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$$

As

$$(a^{\dagger})^2|0\rangle = \sqrt{1}a^{\dagger}|1\rangle = \sqrt{2}|2\rangle \quad \Rightarrow \quad |2\rangle = \frac{1}{\sqrt{2}}(a^{\dagger})^2|0\rangle$$

y por lo tanto $\phi_2(x)$ esta dado por

$$|2\rangle = \phi_2 = \frac{1}{\sqrt{2}}\phi_0.$$

Empezando con el operador escalar cuadrado

$$(a^{\dagger})^2 = \frac{1}{2\hbar m\omega}(m\omega\hat{x} - i\hat{p})^2 = \frac{1}{2\hbar m\omega}\left(m\omega\hat{x} - \hbar\frac{\partial}{\partial x}\right)^2 = \frac{1}{2\hbar m\omega}\left(m^2\omega^2x^2 + \hbar\frac{\partial^2}{\partial x^2} - 2m\omega\hbar x\frac{\partial}{\partial x}\right)$$

donde hemos utilizado el operador momento $\hat{p} = -i\hbar\partial/\partial x$. Antes de continuar queremos caclular la segunda derivada de

$$\frac{\partial^2}{\partial x^2} \left(e^{-\frac{1}{2} \frac{m\omega}{\hbar} x^2} \right) = \frac{\partial}{\partial x} \left(\frac{m\omega}{\hbar} x \right) e^{-\frac{1}{2} \frac{m\omega}{\hbar} x^2} = \left(-\frac{m\omega}{\hbar} + \frac{m^2 \omega^2}{\hbar^2} x^2 \right) e^{-\frac{1}{2} \frac{m\omega}{\hbar} x^2}$$

Por lo tanto ϕ_2 esta dado por

$$\begin{split} \phi_2 &= \frac{1}{\sqrt{2}} \frac{1}{2\hbar m \omega} \left(\frac{m \omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(m^2 \omega^2 x^2 + \hbar^2 \frac{\partial^2}{\partial x^2} - 2m \omega \hbar x \frac{\partial}{\partial x} \right) e^{\frac{1}{2} \frac{m \omega}{\hbar} x^2} \\ &= \frac{1}{\sqrt{2}} \frac{1}{2\hbar m \omega} \left(\frac{m \omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(m^2 \omega^2 x^2 + 2m^2 \omega^2 x^2 - m \omega \hbar + m \omega \hbar + m^2 \omega^2 x^2 \right) e^{\frac{1}{2} \frac{m \omega}{\hbar} x^2} \\ &= \left(\frac{m \omega}{\pi \hbar} \right)^{\frac{1}{4}} \left(-\frac{1}{\sqrt{8}} + \sqrt{2} \frac{m \omega}{\hbar} x^2 \right) e^{\frac{1}{2} \frac{m \omega}{\hbar} x^2} \end{split}$$

- 5. En la mecnica matricial, qual es el ket $|x=0\rangle$ que represente un oscilador situada exactamente al origen x=0? Distinguie entre componentes pares y impares. Compara con los resultados de mecnica ondulatria.
- 6. Un estado coherente a t=0 esta dado por el ket

$$|\alpha_0\rangle e^{\frac{1}{2}|\alpha_0|^2} \sum_{n=0}^{\infty} \frac{\alpha_0^n}{\sqrt{n!}} |n\rangle$$

Ecuentre el ket $|\alpha(t)\rangle$ que da su evolucin temporal y comproba que satisfar la equacin de Schrdingerdependiendo de t.

Solucion:

Empezando por lo evolucin temporal nos sabemos que los estados del oscilador armnico esta dado por

$$|n\rangle \stackrel{t}{\longrightarrow} e^{-i\frac{E_n}{\hbar}t}|n\rangle \quad \Rightarrow \quad |n\rangle \stackrel{t}{\longrightarrow} e^{i\omega(n+\frac{1}{2})t}|n\rangle$$

As el evolucin temporal de $|\alpha_0\rangle$ esta dado por

$$|\alpha_0\rangle \stackrel{t}{\longrightarrow} |\alpha(t)\rangle = e^{-\frac{1}{2}|\alpha_0|^2} e^{-\frac{i\omega t}{2}} \sum_{n=0}^{\infty} \frac{\alpha_0^n}{\sqrt{n!}} e^{i\omega nt} |n\rangle.$$

Para comprobar el ecuacin de Schrdinger

$$i\hbar \frac{d}{dt} |\alpha(t)\rangle = H |\alpha(t)\rangle$$

necesitamos de recuerdarnos de el operador de nmero

$$\hat{N}|n\rangle = a^{\dagger}a|n\rangle = n|n\rangle$$

Por lo tanto

$$\begin{split} i\hbar\frac{d}{dt}|\alpha(t)\rangle &= i\hbar\frac{d}{dt}\left(e^{-\frac{1}{2}|\alpha_0|^2}e^{-\frac{i\omega t}{2}}\sum_{n=0}^{\infty}\frac{\alpha_0^n}{\sqrt{n!}}e^{-i\omega nt}|n\rangle\right)\\ &= \frac{\hbar\omega}{2}\underbrace{e^{-\frac{1}{2}|\alpha_0|^2}e^{-i\frac{i\omega t}{2}}\sum_{n=0}^{\infty}\frac{\alpha_0^n}{\sqrt{n!}}e^{-i\omega nt}|n\rangle}_{|\alpha(t)\rangle} + \underbrace{\hbar\omega e^{-\frac{1}{2}|\alpha_0|}e^{-\frac{i\omega t}{2}}\sum_{n=0}^{\infty}n\frac{\alpha_0^n}{\sqrt{n!}}|n\rangle}_{\hat{N}|\alpha(t)\rangle} \\ &= \hbar\omega\left(\frac{1}{2}+a^{\dagger}a\right)|\alpha(t)\rangle = H|\alpha(t)\rangle \end{split}$$

7. Ultilza la regla de commutacin $[a, a^{\dagger}] = 1$, comprobar que

$$[a, (a^{\dagger})^n] = n(a^{\dagger})^{n-1}$$
 y $[a^n, a^{\dagger}] = na^{n-1}$.

Ademas con los primeros resultatos justifica los relacines

$$[a, f(a^{\dagger})] = \frac{df(a^{\dagger})}{da^{\dagger}}$$
 y $[f(a), a^{\dagger}] = \frac{df(a)}{da}$

Solucion:

Para derivar la premiero relacin tenemos que utilizar la inducin mathematica. Empezando por la **iniciacin de la induccin**

Demostración.

$$[a,(a^\dagger)^n] \stackrel{n=1}{=} [a,a^\dagger] = 1 \cdot (a^\dagger)^0 = 1$$

Ahora por demonstar el **paso inductive** utilizamos como **hiptesis inductiva** la siguinte relacion

$$[a, (a^{\dagger})^k] = k(a^{\dagger})^{k-1}.$$

Por lo tanto tenemos que comprobar que

$$[a, (a^{\dagger})^{k+1}] \stackrel{!}{=} (k+1)(a^{\dagger})^{(k)}$$

As, utilizando la hiptesis inductiva,

$$[a, a^{\dagger}(a^{\dagger})^{k}] = [a, a^{\dagger}](a^{\dagger})^{k} + a^{\dagger}[a, (a^{\dagger})^{k}]$$

$$= (a^{\dagger})^{k} + a^{\dagger}k(a^{\dagger})^{k-1}$$

$$= (k+1)(a^{\dagger})^{k}$$

Demostraci'on. Por la segunda relacin vamos a utilizar el mismo conzepto de inducin

$$[a^n, a^{\dagger}] \stackrel{!}{=} na^{n-1}$$

mathematica. As la iniciacin de la induccin esta dado por

$$[a^1, a^{\dagger}] = 1 \cdot a^0 = 1$$

y aplicar la hitesis inductiva

$$[a^k, a^{\dagger}] = ka^{k-1}$$

danos la comporbacin

$$[a^{k+1}, a^{\dagger}] \stackrel{!}{=} (k+1)a^{k}$$

$$[a^{k+1}, a^{\dagger}] = [a^{k}a, a^{\dagger}]$$

$$= a^{k} \underbrace{[a, a^{\dagger}]}_{1} + \underbrace{[a^{k}, a^{\dagger}]}_{ka^{k-1}} a$$

$$= (k+1)a^{k}$$

Demostración. Por la tercera relacin

$$[a, f(a^{\dagger})] \stackrel{!}{=} \frac{df(a^{\dagger})}{da^{\dagger}}$$

tenemos que haver uso de serie de Taylor

$$f(x) = \sum_{n=0}^{\infty} \frac{f(n)}{n!} (x - a)^n$$

Por esto evaluando la funcion del operador $f(a^{\dagger})$ a la posicin a=0 danos

$$f(a^{\dagger}) = \sum_{n=0}^{\infty} \underbrace{\frac{d^n f(a^{\dagger})}{d(a^{\dagger})^n} \frac{1}{n!}}_{k_n} (a^{\dagger})^n \quad \mathbf{y} \qquad \frac{df(a^{\dagger})}{da^{\dagger}} = \sum_{n=0}^{\infty} k_n n (a^{\dagger})^{n-1}$$

As que

$$[a, f(a^{\dagger})] = [a, \sum_{n=0}^{\infty} k_n (a^{\dagger})^n] = \sum_{n=0}^{\infty} k_n [a, (a^{\dagger})^n] = \sum_{n=0}^{\infty} k_n n (a^{\dagger})^{n-1} \quad \Box$$

Demostración. Despus de todo por la ultima relacin

$$[f(a), a^{\dagger}] \stackrel{!}{=} \sum_{n=0}^{\infty} \underbrace{\frac{d^n f(a)}{da^n} \frac{1}{n!}}_{k_n} a^n \quad \mathbf{y} \qquad \frac{df(a)}{da} = \sum_{n=0}^{\infty} k_n n a^{n-1}$$

$$[f(a), a^{\dagger}] = \sum_{n=0}^{\infty} k_n [a^n, a^{\dagger}] = \sum_{n=0}^{\infty} k_n n a^{n-1} = \frac{df(a)}{da}$$

8. Encuentre los commutatores

$$[\hat{N}, (a^{\dagger})^k]$$
 y $[\hat{N}, a]$

Ademas justificar el resultado

$$[\hat{N}, f(a^{\dagger})] = a^{\dagger} \frac{df(a^{\dagger})}{da^{\dagger}}$$

Solucion:

Usando los resultados del ejercicio anterior esta facil calculando los resultados de ese problema. En chronologia

$$\begin{split} [\hat{N},(a^\dagger)^k] &= [a^\dagger a,(a^\dagger)^k] = a^\dagger \underbrace{[a,(a^\dagger)^k]}_{k(a^\dagger)^{n-1}} + \underbrace{[a^\dagger,(a^\dagger)^k]}_{0} a = k(a^\dagger)^k \\ [\hat{N},a^k] &= [a^\dagger a,a^k] = a^\dagger \underbrace{[a,a^k]}_{0} + \underbrace{[a^\dagger,a^k]a}_{ka^k} = ka^k \end{split}$$

Y por la relacin de la funcin del operador

$$[\hat{N}, f(a^{\dagger})] \stackrel{!}{=} a^{\dagger} \frac{df(a^{\dagger})}{da^{\dagger}}$$

$$f(a^{\dagger}) = \sum_{n=0}^{\infty} k_n (a^{\dagger})^n \quad \text{y} \qquad \frac{df(a^{\dagger})}{da^{\dagger}} = \sum_{n=0}^{\infty} k_n n (a^{\dagger})^{n-1}$$

$$[\hat{N}, f(a^{\dagger})] = \sum_{n=0}^{\infty} k_n [\hat{N}, (a^{\dagger})^n] = \sum_{n=0}^{\infty} k_n n (a^{\dagger})^n = a^{\dagger} \frac{df(a^{\dagger})}{d(a^{\dagger})}$$