RAM TESTER

Submitted by: Group 70

Group Members Arshika Lalan Arohi Dureja Arjun Agarwal Samruddhi Shailesh Bothara Saksham Agrawal

Date: 19/4/2020 f20170620@goa.bits-pilani.ac.in f20170531@goa.bits-pilani.ac.in f20170285@goa.bits-pilani.ac.in f20170766@goa.bits-pilani.ac.in f20170581@goa.bits-pilani.ac.in

Contents

User Requirements & Technical Specifications	2
Assumptions & Justifications	2
Components used with justification wherever required	3
Address Map	3
Memory Map	3
I/O Map	3
Design	4
Flow Chart	5
Main Program	5
Variations in Proteus Implementation with Justification	6
Firmware	7
List of Attachments	8

User Requirements & Technical Specifications

Design a microprocessor-based RAM tester.

The tester should be able to test 6164 RAM chips. The tester tests each bit of the RAM individually.

For a byte of RAM, the first bit (D0) is written as zero and read back, now a one is written into the bit and again it is read back.

If the two read operations result in bit D0 to contain a zero and one respectively then the bit is inferred as good. Any other result indicates a faulty bit.

The test is repeated for all bits of a byte and for all bytes of the RAM. The summary result, PASS/FAIL should be displayed.

User will place the 6164 chip in the zip socket, then press a switch labelled TEST.

The RAM is tested and the result is displayed on the 7-segement display as PASS/FAIL.

Assumptions & Justifications

J	At the memory location FFFF0H where the processor returns on reset is provided with a JMP
	statement taking it to the start of the code.
J	HOLD and NMI signals are grounded since no DMAC or non-maskable interrupt is used.
J	INT signal is not used and hence IVT and ISR is not used. So is INTA'. Polling is used. Whenever
	TEST switch is pressed, testing starts.
J	Ready signal is held high always. Data transfer into TEST RAM is taken care by introducing software delays.
J	All addresses used are even addresses as D0-D7 data lines are used in interfacing all 8255As.

Components used with justification wherever required

```
8086
8284: Clock generator for 8086
6164 TEST RAM – 8K ram placed in the test socket to test all pins – Manual Attached
Common Anode Seven Segment Display – 4 Nos. As PASS/FAIL are to be displayed
8255 – 3 nos. used for I/O interfacing
2716 – 4 nos. Smallest ROM chip available is 2K and as we need to have even and odd bank and ROM is required at reset address which is at FFFFO<sub>H</sub> and 00000<sub>H</sub> - where there is the IVT
6116 – 2 nos. Smallest RAM chip available is 2 K and we need odd and even bank. We need RAM for stack and temporary storage of data
LS 138 – 2 decoders
LS 373, LS 245 and required gates
SPDT Momentary switches – 2 used for RESET and TEST
```

Address Map

Memory Map

 $\begin{aligned} & \mathsf{ROM1} - \mathsf{00000_H} - \mathsf{00FFF_H} \\ & \mathsf{RAM} \ 1 - \mathsf{01000_H} - \mathsf{01FFF_H} \\ & \mathsf{ROM2} - \mathsf{FF000_H} - \mathsf{FFFFF_H} \end{aligned}$

I/O Map

 $8255_1 - 50 - 56_H$

 $8255_{H} - 60 - 66_{H}$

 $8255_{H} - 70 - 76_{H}$

Design

Complete design shown with proper labelling (design attached)

Variations in Proteus Implementation with Justification

- 1. 6264 RAM used instead of 6164 as specified in question due to module loading issues in proteus
- 2. ROM in only 00000 as proteus allows to change reset address.

Firmware

Implemented using emu8086 attached.

List of Attachments

- 1. Complete Hardware Real World Design ram_tester_design.pdf
- 2. Manuals
 - a. 6164 RAM
- 3. Proteus File FinalSubmission.dsn
- 4. EMU8086 ASM File ram_tester_code.asm
- 5. Binary File after assembly test2.bin