

SNA 2A: Intro to Random Graphs

Lada Adamic

Network models

- Why model?
 - □ simple representation of complex network
 - can derive properties mathematically
 - predict properties and outcomes
- Also: to have a strawman
 - In what ways is your real-world network different from hypothesized model?
 - What insights can be gleaned from this?

Erdös and Rényi

Erdös-Renyi: simplest network model

- Assumptions
 - nodes connect at random
 - network is undirected
- Key parameter (besides number of nodes N): p or M
 - p = probability that any two nodes share and edge
 - M = total number of edges in the graph

what they look like

Binomial degree distribution

- (N-1,p)-model: For each potential edge we flip a biased coin
 - with probability p we add the edge
 - with probability (1-p) we don't

Can be approximated by Poisson distribution

http://ladamic.com/netlearn/NetLogo501/ErdosRenyiDegDist.html

Degree distribution

- What is the probability that a node has 0,1,2,3... edges?
- Probabilities sum to 1

Quiz Q:

- The maximum degree of a node in a simple (no multiple edges between the same two nodes) N node graph is
 - □ a) N
 - □ b) N 1
 - □ c) N / 2

N = 50, p = 0.2

N = 50, p = 0.9

Quiz Q:

- What is the approximate average degree of a graph with 100 nodes and probability p = 0.04 of an edge existing between any two nodes?

 - **2**
 - **3**
 - **4**

Quiz Q:

- As the size of the network increases, if you keep **p**, the probability of any two nodes being connected, the same, what happens to the average degree
 - a) stays the same
 - b) increases
 - c) decreases

http://ladamic.com/netlearn/NetLogo501/ErdosRenyiDegDist.html

What insights does this yield? No hubs

You don't expect large hubs in the network