Rachel C. Kurchin

Assistant Research Professor \cdot Carnegie Mellon University \cdot Materials Science and Engineering

≈ rkurchin.github.io □ rkurchin@cmu.edu **≈** google scholar **?** github

EDUCATION

2014 – 2019	Ph.D. Materials Science and Engineering (GPA: 4.6/5.0) Thesis title: "Computational Frameworks to Enable Accelerated Developm	MASSACHUSETTS INSTITUTE OF TECHNOLOGY ent of Defect-Tolerant Photovoltaic Materials"
2013 – 2014	MPhil Materials Science & Metallurgy (research-based)	University of Cambridge
2009 – 2013	BS Physics (Intensive) (GPA 3.9/4.0, magna cum laude)	Yale University
	Past Research Positions	
2019 – 2022	Postdoctoral Fellow, Mechanical Engineering, advised by V. Viswa	nathan Carnegie Mellon University
2014 – 2019	PhD student, Materials Science and Engineering Advised by T. Buonassisi (Mechanical Engineering) (committee members '	MASSACHUSETTS INSTITUTE OF TECHNOLOGY V. Stevanović, B. Yildiz, J. Grossman)
2016 – 2018	Visiting student , Solar Energy Research Facility Summer stays advised by V. Stevanović	NATIONAL RENEWABLE ENERGY LABORATORY
2013 – 2014	MPhil student, Materials Science & Metallurgy Supervised by S. Smoukov, advised by Dame A. Donald (Physics)	University of Cambridge
2012 – 2013	Undergraduate researcher, Physics (senior thesis) Advised by M. L. Lee (Electrical Engineering)	YALE UNIVERSITY
Summer 2012	REU Student, Renewable Energy MRSEC, advised by T. Furtak (P	hysics) Colorado School of Mines
2012	Undergraduate researcher, Physics, advised by C. Osuji (Chemical	Engineeing) YALE UNIVERSITY
Summer 2011	Undergraduate researcher , Earth and Planetary Sciences Advised by I. Koren	Weizmann Insistute of Science
Summer 2008	High school summer researcher , Laboratory for Laser Energetics Advised by R. S. Craxton and M. Wittman	University of Rochester
	TEACHING EXPERIENCE, PREPARATION, AND RECOGNIT	ION
2023	Instructor 27-100: Engineering the Materials of the Future 27-210: Materials Engineering Essentials	Carnegie Mellon University
	Guest Lecturer 27-537/27-737: Data Analytics for Materials Science	Carnegie Mellon University
2022	Guest Lecturer 27-100: Engineering the Materials of the Future	Carnegie Mellon University
2021	Guest Lecturer 24-643/27-700: Energy Storage Materials and Systems 12-216: Introduction to Research Skills in CEE	Carnegie Mellon University
2020 – 2023	Guest Lecturer 12-623/24-623: Molecular Simulation of Materials 24-786: Bayesian Machine Learning	Carnegie Mellon University
	Future Faculty Program Alum, Eberly Center for Teaching Excelle	nce Carnegie Mellon University
2019	Graduate Student Teaching Award, Mat. Sci. and Eng. Graduate Student Teaching Award, School of Engineering	Massachusetts Institute of Technology Massachusetts Institute of Technology

2018	Teaching Assistant	MASSACHUSETTS INSTITUTE OF TECHNOLOGY
	3.23: Electronic, Optical, and Magnetic Properties of Mat	erials
2011 – 2013	Science and Quantitative Reasoning Tutor, Dean's	Office Yale University
	Honors	
2023	Best Oral Presentation, Symposium EN10	Materials Research Society Fall Meeting
	PASC Early Career Travel Award	ACM SIGHPC
2022	DCOMP Travel Award	APS Division of Computational Physics
	DMP Post-Doctoral Travel Award	APS Division of Materials Physics
2020	MolSSI Software Fellowship	Molecular Sciences Software Institute
	Rising Star in Computational and Data Sciences	Oden Institute at UT Austin
2019	MFI Postdoctoral Fellowship	CMU Manufacturing Futures Institute
	CCE Symposium Poster Prize	MIT CENTER FOR COMPUTATIONAL ENGINEERING
2018	Materials Day Best Poster Award	MIT Materials Research Laboratory
2017	Blue Waters Graduate Fellowship	NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS
2016	Total Energy Fellowship	MIT Energy Initiative
	Second Place, De Florez Award Competition	MIT DEPARTMENT OF MECHANICAL ENGINEERING
2014	GRFP Honorable Mention	NATIONAL SCIENCE FOUNDATION
2013	Gates Cambridge Scholarship	Cambridge Gates Trust
	Howard L. Schulz Prize	Yale Physics Department
2012	Mellon Grant	Pierson College at Yale University
	REMRSEC REU Technical Achievement Award	Colorado School of Mines Renewable Energy MRSEC
2009	Robert C. Byrd Honors Scholarship	US DEPARTMENT OF EDUCATION
	Intel STS Semifinalist	Intel Science Talent Search
	Research Software Development	
2021 – present	Co-Developer, AtomsBase Julia interface for representing atomic structures, current	GITHUB LINK
2020 – present	Lead Developer, ElectrochemicalKinetics Julia package for modeling and fitting of electrochemical	GITHUB LINK reaction rate models
2020 – present	Lead Developer, Chemellia Machine learning ecosystem for atomistic systems in the	GitHub link
2017 – present	Lead Developer , Bayesim Python package for Bayesian parameter estimation from o	GITHUB LINK experimental data using high-throughput simulation

PUBLICATIONS

Authors who equally contributed to a publication are marked with a $^{\dagger}.$

- 21. M. Babar, Z. Zhu, **R. C. Kurchin**, E. Kaxiras, and V. Viswanathan. "Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene" *J. Am. Chem. Soc.* (2024)
- 20. X. Wang, J. Musielewicz, R. Tran, S. K. Ethirajan, X. Fu, H. Mera, J. R. Kitchin, **R. C. Kurchin**, and Z. W. Ulissi. "Generalization of graph-based active learning relaxation strategies across materials" *Mach. learn.: sci. technol.* (2024)
- 19. **R. C. Kurchin**, "Using Bayesian parameter estimation to learn more from data without black boxes" *Nat. Rev. Phys.* (2024)
- 18. **R. C. Kurchin**, D. Gandhi, and V. Viswanathan. "Nonequilibrium Electrochemical Phase Maps: Beyond Butler-Volmer Kinetics" *J. Phys. Chem. Lett.* 14, 7802–7807 (2023)

17. E. Annevelink[†], **R. C. Kurchin**[†], et al. "AutoMat: Automated Materials Discovery for Electrochemical systems." *MRS Bulletin* 47, (2022)

- A. Mistry, ..., R. C. Kurchin, et al. "A minimal information set to enable verifiable theoretical battery research." ACS Energy Lett. 6, 11, 3831–3835 (2021)
- R. C. Kurchin and V. Viswanathan. "Marcus-Hush-Chidsey kinetics at electrode-electrolyte interfaces."
 J. Chem. Phys. 153, 134706 (2020)
- 14. **R. C. Kurchin** et al. "How much physics is in a current-voltage curve? Inferring defect properties from photovoltaic device measurements." *IEEE JPV* 10, 1532–1537 (2020)
- 13. **R. C. Kurchin**, G. Romano, T. Buonassisi. "Bayesim: a tool for adaptive grid model fitting with Bayesian inference." *Comp. Phys. Comm.* 239, 161-165 (2019)
- 12. **R. C. Kurchin**[†], P. Gorai[†], Tonio Buonassisi, Vladan Stevanović. "Structural and chemical features giving rise to defect tolerance of binary semiconductors." *Chem. Mater.* 30, 5583–5592 (2018)
- J. Correa-Baena, L. Nienhaus, R. C. Kurchin, et al. "A-site cation in inorganic A₃Sb₂I₉ perovskite influences structural dimensionality, exciton binding energy, and solar cell performance." *Chem. Mater.* 30, 3734–3742 (2018)
- 10. S. S. Shin, J. Correa-Baena, **R. C. Kurchin**, et al. "Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics." *Chem. Mater.* 30, 336–343 (2017)
- 9. R. E. Brandt, **R. C. Kurchin**, et al. "Rapid semiconductor device characterization through Bayesian parameter estimation." *Joule* 1, 843–856 (2017)
- 8. R. Hoye, L. C. Lee, **R. C. Kurchin**, et al. "Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI)" *Adv. Mater.* 29, 1702176 (2017)
- 7. R. E. Brandt, J. R. Poindexter, P. Gorai, R. C. Kurchin, et al. "Searching for "defect-tolerant" photovoltaic materials: combined theoretical and experimental screening." *Chem. Mater.* 29, 4667–4674 (2017)
- 6. J. R. Poindexter, R. Hoye, L. Nienhaus, **R. C. Kurchin**, et al. "High tolerance to iron contamination in lead halide perovskite solar cells." *ACS Nano* 11, 7101–7109 (2017)
- 5. R. Hoye, ..., R. C. Kurchin, et al. "Perovskite-inspired photovoltaics: best practices in materials characterization and calculations." *Chem. Mater.* 29, 1964–1988 (2016)
- 4. D. B. Needleman, J. R. Poindexter, **R. C. Kurchin**, et al. "Economically sustainable scaling of photovoltaics to meet climate targets." *Energy Environ. Sci.* 9, 2122–2129 (2016)
- 3. A. Gufan, ..., R. C. Kurchin, et al. "Segmentation and tracking of marine cellular clouds observed by geostationary satellites." *Int. J. Remote Sens.* 37, 1055–1068 (2016)
- 2. R. Hoye, ..., R. C. Kurchin, et al. "Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber." *Chem. Eur. J.* 22, 2605–2610 (2015)
- I. R. E. Brandt, **R. C. Kurchin**, R. Hoye, et al. "Investigation of bismuth triiodide (BiI₃) for photovoltaic applications." *J. Phys. Chem. Lett.* 6, 4297–4302 (2015)

Presentations

INVITED TALKS

2024

Materials Modeling: Bonding across Atoms, Code, and People JuliaCon (keynote)

EINDHOVEN, THE NETHERLANDS

Using Computation to Accelerate Materials Engineering, from the Atomistic to Device Scale
IEEE Photovoltaic Specialists Conference (plenary)

Seattle, WA

Learning from Data and Distributions to Accelerate Engineering of Energy Materials and Devices MRS Spring Meeting

Seattle, WA

Materials Modeling (Data-Driven and Otherwise) in the Julia Language Virtual 2023 Artificial Intelligence for Materials Science Workshop It's All About That Bayes: Data-Driven Insights into Energy Devices without the Black Box DAVOS, SWITZERLAND Platform for Advanced Scientific Computing (PASC) Conference It's All About That Bayes: Data-Driven Insights into Energy Devices without the Black Box Las Vegas, NV American Physical Society March Meeting Point Defects in Photovoltaics: From Materials to Devices EVANSTON, IL Snyder Group Meeting, Northwestern University Science Stories with Julia PITTSBURGH, PA (VIRTUAL) 2022 Jordan Group Meeting, University of Pittsburgh Building a Materials Computation Ecosystem in Julia OTTAWA, CA (VIRTUAL) Institute of Data Science, Carleton University Design of Defect-Tolerant Materials for Photovoltaic Applications CHICAGO, IL American Physical Society March Meeting Cambridge, MA (virtual) Building a Materials Computation Ecosystem in Julia MIT CESMIX seminar Accelerating Energy Materials Discovery with Computation BOSTON, MA (VIRTUAL) Boston University Materials Science seminar Accelerating Energy Materials Discovery with Computation ATLANTA. GA 2021 Georgia Institute of Technology Department of Materials Science and Engineering Do Me a Solid: Materials Modeling to Fight Climate Change PITTSBURGH, PA Carnegie Mellon University Department of Civil and Environmental Engineering High-Fidelity Accelerated Design of Electrochemical Systems ONLINE Materials Science & Technology Conference Graph Convolutional Networks for Atomic Structures Cambridge, UK (virtual) Cambridge Machine Learning Discussion Group Marcus-Hush-Chidsey Kinetics at Solid Surfaces ONLINE Battery Modeling Webinar Series Accelerating Energy Materials Discovery with Computation Nuremberg, Germany (Virtual) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Accelerating Energy Materials Discovery with Computation PITTSBURGH, PA (VIRTUAL) Carnegie Mellon Department of Materials Science and Engineering Accelerating Energy Materials Discovery with Computation Urbana, IL University of Illinois at Urbana-Champaign Department of Electrical & Computer Engineering Bayesim Workshop NUREMBERG, GERMANY (VIRTUAL) 2019 Helmholtz Institute for Renewable Energy Semiconductor Parameter Extraction (and more!) with Bayesian Inference Cambridge, MA 2018 MIT Society of Industrial and Applied Mathematics CONTRIBUTED TALKS

Modeling Electrochemical Reaction Rates at Fluid-Solid Interfaces

Teaching Introductory Materials Science with Pluto Demos

2023

MRS Fall Meeting

JuliaCon

CAMBRIDGE, MA

BOSTON, MA

2022	Non-equilibrium Electrochemical Phase Diagrams with Automatic Differentiation American Physical Society March Meeting	Chicago, IL
2021	Introducing Chemellia: Machine Learning, with Atoms JuliaCon	ONLINE
	Building a Chemistry and Materials Science Ecosystem in Julia JuliaCon (Birds of a Feather discussion leader)	ONLINE
2018	Computational Screening for Defect-Tolerant Semiconductors Gordon Research Seminar on Defects in Semiconductors	New London, NH
	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Blue Waters Research Symposium	Sunriver, OR
2017	Toward Quantitative Metrics to Screen for Defect Tolerance in Novel Semiconducting Materials Materials Research Society Fall Meeting and Exhibit	Boston, MA
2013	Cross-Sectional EBIC Characterization of III-V Semiconductors for Photovoltaic Applications Yale Physics Department	New Haven, CT
2012	Improving Active Layer Performance of Hybrid Photovoltaics by Nano Imprinting with Bulk Metallic Glass Yale Physics Department	New Haven, CT
	Poster Presentations	
2022	Differentiable Modeling of Electrochemical Reaction Rates Gordon Research Seminar/Conference: Batteries	Ventura, CA
2020	High-fidelity Accelerated Design of High-performance Electrochemical Systems NeurIPS Climate Change and AI Workshop	ONLINE
2019	Measuring Real-World Quantities from Computer Simulation with Bayesian Inference MIT de Florez Award Competition	Cambridge, MA
	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods MIT CCE Symposium	Cambridge, MA
2018	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods MIT Materials Day	Cambridge, MA
	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Gordon Research Seminar on Defects in Semiconductors	New London, NH
	Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors Blue Waters Research Symposium	Sunriver, OR
	Semiconductor Parameter Extraction via Current-Voltage Characterization and Bayesian Inference Methods World Conference on Photovoltaic Energy Conversion	Waikoloa, HI
	Design Principles for Defect-Tolerant Photovoltaic Absorbers MIT de Florez Award Competition	Cambridge, MA
2016	Quantitative Metrics for Defect Tolerance in Semiconductors Materials Research Society Fall Meeting and Exhibit	Boston, MA
	Photovoltaics R&D: Thin Film Materials MIT Energy Night	Cambridge, MA

Bayes-Sun Inference: Next-Generation Photovoltaics through Advanced Probabilistic Modeling Cambridge, MA

MIT de Florez Award Competition

Statistical Inference of Materials Properties from Solar Cell Measurements Cambridge, MA

Beyond 2016: MIT's Frontiers of the Future Symposium

2015 Improving the Accuracy of Novel Materials Screening: Growing Defect-Tolerant Photovoltaic Absorbers BOSTON, MA

MRS Fall Meeting and Exhibit

Toward Algorithmic Screening of Novel, Defect-Tolerant Solar Materials Cambridge, MA

MIT Materials Day

Solar Energy Technology & Innovation in Mexico Cambridge, MA

MIT Energy Initiative Solar Day

Toward Algorithmic Screening of Novel, Defect-Tolerant Solar Materials Golden, CO

NREL HOPE Workshop

2013 Raman Spectroscopy of Silicon Quntum Dots ITHACA, NY

Northeast Conference for Undergraduate Women in Physics

2012 Raman Spectroscopy of Silicon Quntum Dots GOLDEN, CO

REMRSEC REU Poster Session

SERVICE TO THE SCIENTIFIC COMMUNITY

JOURNAL EDITING

2021 - present Journal of Open-Source Software

JOURNAL REVIEWING

2023 – present Physical Review Letters

2022 - present Computer Physics Communications, APL Machine Learning

Journal of Physical Chemistry, Chemistry of Materials, Journal of Physical Chemistry Letters, PR Materials,

2021 - present Computational Materials Science, IEEE Journal of Photovoltaics, Nature Computational Science

2020 - present NPJ Computational Materials 2019 - present Applied Energy Materials

2017 – present Energy & Environmental Science

CONFERENCE SERVICE

2024 – present Invited Organizer ELECTRONIC MATERIALS CONFERENCE
2024 Lead Organizer MOLSSI WORKSHOP ON JULIA FOR COMPUTATIONAL MOLECULAR AND MATERIALS SCIENCE

May 2023 Poster Session Judge CMU MEETING OF THE MINDS
May 2023 Technical Presentation Judge CMU MSE GRADUATE SYMPOSIUM

2023 – 2024 Poster Session Judge CMU Energy Week

March 2022 Session Chair Scientific Machine Learning Webinar Series

March 2022 Session Chair, B67: Advanced Approaches in Modeling and Simulation of Defects APS MARCH MEETING

July 2021 Session Chair, Volunteer JULIACON

2021 – present Reviewer JuliaCon

2019 – 2020 **Organizer** PITTSBURGH CONFERENCE FOR UNDERGRADUATE WOMEN IN PHYSICS

Reviewer NeurIPS ML4PS Workshop

October 2019 Poster Session Judge PITT SCIENCE2019

2015 Organizer SOLAR ENERGY TECHNOLOGY & INNOVATION IN MEXICO WORKSHOP

January 2015 Panelist Northeast Conference for Undergraduate Women in Physics

2011 – 2012 Organizer Northeast Conference for Undergraduate Women in Physics

LEADERSHIP	AND LINIV	ERSITY SERVICE
LEADERSHIP	AND UNIV	EKSILI SEKVICE

2023 – present	Member, Undergraduate Education Committee	CMU MSE Department
2023 – present	Member, Open Science Advisory Board	CMU Libraries
October 2023	Panelist, Mentor	CMU MSE RISING STARS WORKSHOP
April 2023	Design Judge, Buggy Design Competition	CMU Spring Carnival
2022 – present	Working Group Chair, Notebooks Now! Initiative	American Geophysical Union
2018 – 2019	Member, Graduate Student Advisory Group for Engineering	MIT SCHOOL OF ENGINEERING
2018 – 2019	Co-President, Womxn of Materials Science	MIT DMSE
2017	Mentor, Solar Spring Break (service trip)	MIT Energy Initiative
2016 – 2019	Member, Energy Education Task Force	MIT Energy Initiative
2016 – 2019	Member, Solar Test Bed Steering Committee	MIT Office of Sustainability
2015 – 2017	Co-Leader, Solar/Grid Community	MIT Energy Club
2012 – 2013	Co-Leader, Project Bright	YALE OFFICE OF SUSTAINABILITY
2012	Co-President, Society of Physics Students	YALE PHYSICS DEPARTMENT

OUTREACH AND OTHER SERVICE

2022 – present	Mentor	Prison Mathematics Project
May 2022	Guest Speaker	Julia Gender Inclusive
2021 – present	Volunteer	Skype a Scientist
2021 - 2022	Grand Award Judge, Materials Science Division	Regeneron ISEF
Sumer 2021	GSoC Mentor, Julia Language (Chemellia)	Google Summer of Code
March 2014	Demonstrator	Cambridge Hands-On Science (CHaOS)

OTHER SKILLS AND ACTIVITIES

FOREIGN LANGUAGES

2003 – present	Spanish, proficient
2010 – present	Hebrew, intermediate
2020 – present	Mandarin, beginner

MUSIC: VIOLINIST

2014 – 2019	Chamber Music Society, Gilbert & Sullivan Players, Musical Theater Guild	MIT
	Jonathan Edwards College Philharmonic, pit orchestras for the Dramat, Gilbert & Sullivan Society,	
2009 – 2013	Opera Theatre of Yale College, and various independent productions	YALE

ATHLETICS

2019 – 2021	Finisher, Ironman Maryland, Ironman 70.3 Musselman, and Pumpkinman Half Iron triathlons
2018 – 2019	Treasurer, MIT Triathlon Team
2014, 2018	Finisher, Stockholm and Marine Corps Marathons
2013 – 2014	Rower, Churchill College Boat Club (1st Women's VIII in May Bumps 2014)
2009 – 2012	Member (2009 – 2012), Treasurer (2010 – 2011), Yale Bulldog Cycling Team