

planetmath.org

Math for the people, by the people.

A.1.1 Type universes

Canonical name A11TypeUniverses
Date of creation 2013-11-09 4:43:13
Last modified on 2013-11-09 4:43:13

Owner PMBookProject (1000683) Last modified by PMBookProject (1000683)

Numerical id 1

Author PMBookProject (1000683)

Entry type Feature Classification msc 03B15 We postulate a hierarchy of **universes** denoted by primitive constants

$$\mathcal{U}_0, \quad \mathcal{U}_1, \quad \mathcal{U}_2, \quad \dots$$

The first two rules for universes say that they form a cumulative hierarchy of types:

- $\mathcal{U}_m : \mathcal{U}_n \text{ for } m < n$,
- if $A: \mathcal{U}_m$ and $m \leq n$, then $A: \mathcal{U}_n$,

and the third expresses the idea that an object of a universe can serve as a type and stand to the right of a colon in judgments:

• if $\Gamma \vdash A : \mathcal{U}_n$, and x is a new variable, then $\vdash (\Gamma, x : A)$ ctx.

In the body of the book, an equality judgment $A \equiv B : \mathcal{U}_n$ between types A and B is usually abbreviated to $A \equiv B$. This is an instance of typical ambiguity, as we can always switch to a larger universe, which however does not affect the validity of the judgment.

The following conversion rule allows us to replace a type by one equal to it in a typing judgment:

• if a:A and $A\equiv B$ then a:B.

 $^{^1\}mathrm{By}$ "new" we mean that it does not appear in Γ or A.