المباراة العامة للعلوم والتقنيات 2010

موضوع الرياضيات

مدة الإنجاز: 4 ساعات

التخصص: رياضيات

الجمعة 16 يوليوز 2010

التمرين الأول

نرمز بI إلى أحد المجالات الأربعة [a,b] أو $[a,+\infty[$ أو a,b] أو a عددان حقيقيان يحققان a و a عددان حقيقيان يحققان a . a

: يحقق ما يلي [0,1] بحيث يوجد عدد حقيقي [x] بنتمي إلى المجال المفتوح [x] بحقق ما يلي : $\forall x \in I, |f(x) - f(y)| \leq k|x - y|$

. I يسمى نقطة ثابتة للدالة f في المجال f(x)=x يسمى نقطة ثابتة للدالة f في المجال

نهدون من هذا التمرين البرهنة على أن الدالة f تقبل نقطة ثابتة وحيدة في المجال I و نعطي طريقة لحساب قيمة مقربة لمذه النقطة بدقة معلومة.

A. وحدانية النقطة الثابتة

 $|x-y| \le k|x-y|$ ، بين أن f تقبل نقطتين ثابتتين مختلفتين x و y في المجال ، بين أن f تقبل نقطتين ثابتتين مختلفتين x

2. استنتج!

B. وجود النقطة الثابتة

 $\left\{ egin{align*} u_0 \in I, \\ u_{n+1} = f(u_n), n \in IN. \end{array}
ight.$ نعتبر المتتالية العددية $(u_n)_{n \in IN}$ المعرفة بما يلي

I = [a,b] نفترض في هذه الفقرة أن. I

 $u_n - k^n(b-a) \le u_{n+1} \le u_n + k^n(b-a)$ ثم استنتج أن لكل n لدينا n لدينا n لدينا n ثم استنج أن n ثم استنج أن لكل n لدينا n لدينا n أن المعرفتين، بدلالة البار امتر الحقيقي n كما يلي نعتبر فيما يلي المتاليتين العدديتين n n و n المعرفتين، بدلالة البار امتر الحقيقي n كما يلي n نعتبر فيما يلي المتاليتين العدديتين n و n المعرفتين، بدلالة البار امتر الحقيقي n كما يلي n نعتبر فيما يلي المتاليتين العدديتين n أن المعرفة n أن المعرف

- 2. ما هو الشرط الذي يجب أن يحققه العدد α كي تكون المتتاليتان $(w_n)_{n=N}$ و $(v_n)_{n=N}$ متحاديتان.
 - α عددا يحقق الشرط أعلاه.

. [a,b] متتالية متقاربة وأن نهايتها ℓ تتتمي إلى المجال المجال أ - بين أن بين أن

 $|u_n - f(\ell)| \le k^n |u_0 - \ell|$ بين أن لكل عدد صحيح طبيعي n لدينا

. [a,b]ن عنائة الدالة المجال f في المجال ℓ

a يخالف f(a) و أن $I = [a, +\infty[$ يخالف I

. y = x و y = f(a) + k(x-a) هما (D) و (D) نعتبر المستقيمين (D) و نعتبر الذين معادلتاهما، على التوالي،

و a < b و (D) و (D) و (Δ) و (D) و المجال ا، بحيث a < b و المجال ا، بحيث a < b و المستقيمين b = f(a) + k(b-a)

صفحة: 1/4 Page: 1/4

مدة الإنجاز: 4 ساعات

التخصص: رياضيات

الجمعة 16 يوليوز 2010

- . $a \le f(x) \le b$ لدينا [a,b] لمجال x من المجال عنصر 2
 - I استنتج أن الدالة f تقبل نقطة ثابتة في المجال I

$I = \left] - \infty, b \right]$ نفترض في هذه الفقرة أن انترض في الناب

: نضع $J = \{-x/x \in I\}$ و نعتبر التطبيق g المعرف على المجال $J = \{-x/x \in I\}$ نضع

بين أن التطبيق ع يحقق

$$\forall x \in J , |g(x) - g(y)| \le k|x - y|$$

I ثم بین أن f تقبل نقطة ثابتة في

- I=IR نفترض أخيرا أن I=I
- ر. تحقق أنه إذا كان f(0) = 0 فإن f(0) = 0 فإن أنه النقطة الثابتة الوحيدة للدالة أب
 - f(0) > 0 نفترض فيما يلي أن 2.

أ - بين أنه يوجد عددان a و b، ينتميان إلى المجال I، بحيث

a < b و b = f(0) + kb و a = f(0) - ka

IR مستقرة بالدالة f ثم استنتج أن لها نقطة ثابتة في [a,b] مستقرة بالدالة f

3. ادرس الحالة المتبقية

طریقة لحساب قیمة مقربة لنقطة ثابتة

I. نحتفظ بنفس المعطيات الواردة في بداية هذا التمرين و نرمز ب ℓ إلى النقطة الثابتة للدالة f في المجال f.

$$\begin{cases} u_0 \in I, \\ u_{n+1} = f(u_n), n \in IN. \end{cases}$$
 : يعتبر المتتالية العددية $(u_n)_{n \in IN}$ المعرفة بما يلي

- . $|u_{n+p} u_n| \le |u_1 u_0| k^n \frac{1 k^p}{1 k}$. 1
 - . $|u_n \ell| \le |u_1 u_0| \frac{k^n}{1 k}$ دينا n لدينا .2

II. دراسة مثال

. $f(x) = \frac{1}{2}\sin x + 1$: كما يلي IR كما المعرفة على المعرفة

- 1. بين أن f تحقق على المجال IR الشروط الواردة في التمرين.
 - 2. استنتج أن f تقبل نقطة ثابتة وحيدة ℓ في ℓ
- . 10^{-2} من عدد صحیح طبیعی u_n بحیث به قیمهٔ مقربهٔ ل ℓ بدقهٔ أقل من n

صفحة: 2/4 Page : 2/4

مدة الإنجاز: 4 ساعات

التخصص: رياضيات

الجمعة 16 يوليوز 2010

التمرين الثاني

: المتالية العددية المعرفة بما يلي المتالية العددية المعرفة بما يلي

$$\begin{cases} F_0 = 0, & F_1 = 1, \\ F_{n+2} = F_{n+1} + F_n, & n \in IN. \end{cases}$$

. Fibonacci متتالية فيبوناتشي $(F_n)_{n\in \mathbb{N}}$ تسمى المتتالية

I. خصائص حسابياتية لحدود متتالية فيبوناتشي Fibonacci

- 1. تحقق أن جميع حدود هذه المتتالية هي أعداد صحيحة طبيعية.
 - $n \ge 1$ ليكن n عددا صحيحا طبيعيا $n \ge 1$

$$F_n F_{n+1} - F_n^2 = (-1)^n$$
 أ بين أن

ب استنتج أن العددان F_n و F_{n+1} أو ليان فيما بينهما.

 IN^* من p و n د.

(. p على المتساوية والمتساوية). $F_{n+p} = F_n F_{p-1} + F_{n+1} F_p$ أ - بين المتساوية الم

ب - استنتج أن للعددين F_n و F_n و العددين F_n و العددين القاسم المشترك الأكبر.

.(
$$F_{n+p} \wedge F_p = F_n \wedge F_p$$
 أي أن

- n على n يكن m و n عددين من IN^* نرمز ب r لباقي القسمة الإقليدية للعدد m على m بين أن العددين m و m و العددين و العددين m و العددين
- d حيث E_n و E_n و E_n و ساوي E_n و القاسم المشترك الأكبر للعددين E_n عددين من E_n عين أن القاسم المشترك الأكبر للعدين E_n و E_n المشترك المشترك الأكبر المسترك الأكبر المشترك المش

II. تفكيك فيبوناتشي لعدد صحيح طبيعي: مبرهنة زيكيندورف Zeckendorf

سنبر هن فيما يلي على أن كل عدد صحيح طبيعي N، مخالف لصفر، يكتب بطريقة وحيدة على الشكل:

$$N = \sum_{k=2}^{n} a_k F_k$$

حيث أن :

عدد من IN أكبر أو يساوي n

 $\{0,1\}$ أعداد من المجموعة a_n , a_2

. $n \geq 3$ عندما يكون $\{2,...,n-1\}$ عندما يكون $a_{\scriptscriptstyle k}a_{\scriptscriptstyle k+1}=0$

صفحة: 3/4 Page : 3/4

مدة الإنجاز: 4 ساعات

التخصص: رياضيات

الجمعة 16 يوليوز 2010

تعريض : نسمي هذا التفكيك "تفكيك فيبوناتشي".

$(F_n)_{n\in IN}$ نهاية المتاتلية .1

أ - بين أن المتتالية $(F_n)_{n\in\mathbb{N}}$ تزايدية.

ب - نفترض أن المتتالية $(F_n)_{n\in IN}$ تؤول إلى عدد حقيقي $\ell=0$ بين أن $\ell=0$ ثم استنتج أن المتتالية $+\infty$ متباعدة و نهايتها $+\infty$ متباعدة و نهايتها $+\infty$

2 قابلية تفكيك عدد صحيح طبيعي إلى تفكيك فيبوناتشي

ليكن p عددا صحيحا طبيعيا أكبر من أو يساوي 2 و نعتبر العبارة p التالية :

". "کل عدد صحیح طبیعي N یحقق $N < N_n$ فهبو قابل لتفکیك فیبوناتشي. " نكل عدد صحیح طبیعی الله ناتشی. "

. $n \geq 2$ نبر هن بالترجع أن العبارة P_n صحيحة مهما كان n عدد صحيح طبيعي و

أ - تحقق أن العبارتين P_2 و و محيحتان.

ب - نفترض أن العبارة P_k صحيحة لكل k حيث $k \leq n$ و نرمز ب N لعدد صحيح طبيعي يحقق $1 \leq N \leq n$. ادر س قابلية N لتفكيك فيبوناتشي في الحالتن التاليتين $1 \leq N < F_{n+1}$

- $1 \le N \le F_n \bullet$
- . ($1 \le N F_n < F_{n-1}$ الأحظ أن $F_n < N < F_{n+1}$

ت - باستعمال ما سبق بین أن كل عدد طبیعی $N \geq 1$ قابل لتفكیك فیبوناتشی.

3. وحدانية التفكيك

N عدد المحيحا طبيعيا مخالفا لصفر و نعتبر أن يعتبر أن عدد $N=\sum_{k=2}^{n}a_{k}F_{k}$ العدد N

.
$$\sum_{k=2}^{n-1} a_k F_k < F_n$$
 أ - بين بالترجع أن

N بانسبة للعدد a_n بانسبة للعدد

ت - بين وحدانية تفكيك فيبوناتشي.

4. أعط حدود متتالية فيبوناتشي الأصغر من العدد 2010 ثم استنتج تفكيك فيبوناتشي للعدد 2010.

صفحة: 4/4 Page : 4/4