$12n_{0056} \ (K12n_{0056})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -303u^{16} + 1548u^{15} + \dots + 4864d + 3360, \ 413u^{16} - 1717u^{15} + \dots + 4864c - 1676, \\ &- 306u^{16} + 1521u^{15} + \dots + 2432b + 652, \ 30u^{16} - 53u^{15} + \dots + 1216a - 204, \\ &u^{17} - 5u^{16} + \dots - 11u^2 + 4 \rangle \\ I_2^u &= \langle d + u, \ c + u, \ b - u - 1, \ a, \ u^2 + u + 1 \rangle \\ I_3^u &= \langle d + u + 1, \ c, \ b + u + 1, \ a, \ u^2 + u + 1 \rangle \\ I_4^u &= \langle d - c + u + 1, \ cb - 1, \ a, \ u^2 + u + 1 \rangle \\ I_1^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v - 1 \rangle \end{split}$$

- * 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 22 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle -303u^{16} + 1548u^{15} + \cdots + 4864d + 3360, \ 413u^{16} - 1717u^{15} + \cdots + 4864c - 1676, \ -306u^{16} + 1521u^{15} + \cdots + 2432b + 652, \ 30u^{16} - 53u^{15} + \cdots + 1216a - 204, \ u^{17} - 5u^{16} + \cdots - 11u^2 + 4 \rangle$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -0.0246711u^{16} + 0.0435855u^{15} + \dots - 4.48355u + 0.167763 \\ 0.125822u^{16} - 0.625411u^{15} + \dots + 0.166118u - 0.268092 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -0.0246711u^{16} + 0.0435855u^{15} + \dots - 4.48355u + 0.167763 \\ 0.164474u^{16} - 0.808799u^{15} + \dots + 0.0674342u - 0.587171 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^2 + 1 \\ -u^4 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^4 + u^2 + 1 \\ u^4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0849095u^{16} + 0.353002u^{15} + \dots - 3.22204u + 0.344572 \\ 0.0622944u^{16} - 0.318257u^{15} + \dots - 0.00246711u - 0.690789 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00596217u^{16} - 0.0536595u^{15} + \dots - 4.86842u + 0.451480 \\ 0.119038u^{16} - 0.592722u^{15} + \dots - 0.0246711u - 0.517270 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0814145u^{16} + 0.337582u^{15} + \dots - 2.63322u + 0.603618 \\ 0.0657895u^{16} - 0.333676u^{15} + \dots + 0.586349u - 0.431743 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0.118627u^{16} - 0.572985u^{15} + \dots + 2.09539u - 0.0238487 \\ -0.0750411u^{16} + 0.305099u^{15} + \dots - 0.0254934u + 0.236842 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{409}{1216}u^{16} - \frac{1133}{608}u^{15} + \dots - \frac{4283}{304}u - \frac{37}{152}u^{16} + \dots + \frac{37}{1$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{17} + 15u^{16} + \dots + 88u - 16$
c_2, c_5	$u^{17} + 5u^{16} + \dots + 11u^2 - 4$
c_3	$u^{17} - 14u^{16} + \dots + 6768u - 2592$
c_4, c_8	$u^{17} - u^{16} + \dots - 1024u - 512$
c_6, c_{11}	$u^{17} - 8u^{16} + \dots - 8u - 16$
c_7, c_{10}	$u^{17} + 8u^{16} + \dots - 8u - 16$
<i>C</i> 9	$u^{17} + 6u^{16} + \dots + 32u - 256$
c_{12}	$u^{17} + 34u^{16} + \dots + 6176u + 256$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1	$y^{17} - 21y^{16} + \dots + 36640y - 256$	
c_2, c_5	$y^{17} + 15y^{16} + \dots + 88y - 16$	
c_3	$y^{17} - 66y^{16} + \dots + 36764928y - 6718464$	
c_4, c_8	$y^{17} + 81y^{16} + \dots - 524288y - 262144$	
c_6, c_{11}	$y^{17} - 34y^{16} + \dots + 6176y - 256$	
c_7, c_{10}	$y^{17} + 6y^{16} + \dots + 32y - 256$	
c_9	$y^{17} + 66y^{16} + \dots + 2613760y - 65536$	
c_{12}	$y^{17} - 94y^{16} + \dots + 7397888y - 65536$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.589168 + 0.828507I		
a = 0.502465 - 0.319378I		
b = 0.252552 - 0.424714I	0.79868 - 2.33972I	-0.33078 + 5.26516I
c = 1.35395 - 1.45051I		
d = 1.53322 - 1.04879I		
u = -0.589168 - 0.828507I		
a = 0.502465 + 0.319378I		
b = 0.252552 + 0.424714I	0.79868 + 2.33972I	-0.33078 - 5.26516I
c = 1.35395 + 1.45051I		
d = 1.53322 + 1.04879I		
u = -0.403846 + 0.948035I		
a = -0.292348 - 0.569503I		
b = -0.523078 - 0.308956I	-0.77904 - 2.74622I	2.48507 + 7.16740I
c = -0.142785 - 0.400695I		
d = -0.241825 - 1.074000I		
u = -0.403846 - 0.948035I		
a = -0.292348 + 0.569503I		
b = -0.523078 + 0.308956I	-0.77904 + 2.74622I	2.48507 - 7.16740I
c = -0.142785 + 0.400695I		
d = -0.241825 + 1.074000I		
u = 0.329450 + 1.030540I		
a = 0.752669 + 0.404387I		
b = 2.49667 - 0.33313I	0.72956 + 1.37071I	0.698150 - 0.213889I
c = 0.335662 + 0.165758I		
d = -0.275871 + 0.445429I		
u = 0.329450 - 1.030540I		
a = 0.752669 - 0.404387I		
b = 2.49667 + 0.33313I	0.72956 - 1.37071I	0.698150 + 0.213889I
c = 0.335662 - 0.165758I		
d = -0.275871 - 0.445429I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.349370 + 0.320500I		
a = 0.45151 - 2.07264I		
b = 0.686769 - 0.651916I	-15.3110 - 5.6503I	2.10303 + 1.68119I
c = -1.44216 + 0.34761I		
d = 0.136010 + 0.385037I		
u = 1.349370 - 0.320500I		
a = 0.45151 + 2.07264I		
b = 0.686769 + 0.651916I	-15.3110 + 5.6503I	2.10303 - 1.68119I
c = -1.44216 - 0.34761I		
d = 0.136010 - 0.385037I		
u = 0.76686 + 1.31677I		
a = -1.58212 + 0.24955I		
b = -2.80254 - 0.41679I	-18.4182 + 12.9335I	1.01650 - 5.27491I
c = 0.64759 - 1.27273I		
d = 0.83285 - 2.52656I		
u = 0.76686 - 1.31677I		
a = -1.58212 - 0.24955I		
b = -2.80254 + 0.41679I	-18.4182 - 12.9335I	1.01650 + 5.27491I
c = 0.64759 + 1.27273I		
d = 0.83285 + 2.52656I		
u = 0.249371 + 0.383586I		
a = -0.557024 - 1.287010I	4	0.74704 . 0.000447
b = -0.300121 + 0.720580I	-1.75773 + 0.71028I	-3.71531 + 0.02644I
c = -0.04416 - 1.47679I		
d = -0.837375 + 0.566407I		
u = 0.249371 - 0.383586I		
a = -0.557024 + 1.287010I	1 85889 0 810005	0.71701 0.000117
b = -0.300121 - 0.720580I	-1.75773 - 0.71028I	-3.71531 - 0.02644I
c = -0.04416 + 1.47679I		
d = -0.837375 - 0.566407I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.275145		
a = 1.98253		
b = 0.514913	1.13318	9.61860
c = 1.10798		
d = -0.110369		
u = 0.30683 + 1.77436I		
a = 1.87716 + 1.02764I		
b = 2.72694 + 1.21615I	-9.63429 + 3.26152I	-0.10201 - 1.44169I
c = -0.374205 + 0.884961I		
d = 0.39521 + 2.00728I		
u = 0.30683 - 1.77436I		
a = 1.87716 - 1.02764I		
b = 2.72694 - 1.21615I	-9.63429 - 3.26152I	-0.10201 + 1.44169I
c = -0.374205 - 0.884961I		
d = 0.39521 - 2.00728I		
u = 0.62871 + 1.82695I		
a = 2.35642 + 0.55040I		
b = 3.20534 + 0.91973I	17.4865 + 1.7702I	0.036073 - 0.657690I
c = 0.112128 - 0.993507I		
d = 0.51296 - 2.44755I		
u = 0.62871 - 1.82695I		
a = 2.35642 - 0.55040I		
b = 3.20534 - 0.91973I	17.4865 - 1.7702I	0.036073 + 0.657690I
c = 0.112128 + 0.993507I		
d = 0.51296 + 2.44755I		

II.
$$I_2^u = \langle d+u, \ c+u, \ b-u-1, \ a, \ u^2+u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 11

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_5	$u^2 - u + 1$		
c_2	$u^2 + u + 1$		
$c_4, c_6, c_8 \\ c_{11}, c_{12}$	u^2		
c_7, c_9	$(u+1)^2$		
c_{10}	$(u-1)^2$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5	$y^2 + y + 1$		
$c_4, c_6, c_8 \\ c_{11}, c_{12}$	y^2		
c_7, c_9, c_{10}	$(y-1)^2$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0		
b = 0.500000 + 0.866025I	1.64493 - 2.02988I	9.00000 + 3.46410I
c = 0.500000 - 0.866025I		
d = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = 0		
b = 0.500000 - 0.866025I	1.64493 + 2.02988I	9.00000 - 3.46410I
c = 0.500000 + 0.866025I		
d = 0.500000 + 0.866025I		

III.
$$I_3^u = \langle d+u+1,\ c,\ b+u+1,\ a,\ u^2+u+1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -2u - 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u 1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_3, c_5	$u^2 - u + 1$		
c_2	$u^2 + u + 1$		
c_4, c_7, c_8 c_9, c_{10}	u^2		
c_6	$(u-1)^2$		
c_{11}, c_{12}	$(u+1)^2$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5	$y^2 + y + 1$		
$c_4, c_7, c_8 \\ c_9, c_{10}$	y^2		
c_6, c_{11}, c_{12}	$(y-1)^2$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0		
b = -0.500000 - 0.866025I	-1.64493 - 2.02988I	-3.00000 + 3.46410I
c = 0		
d = -0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = 0		
b = -0.500000 + 0.866025I	-1.64493 + 2.02988I	-3.00000 - 3.46410I
c = 0		
d = -0.500000 + 0.866025I		

IV.
$$I_4^u = \langle d - c + u + 1, cb - 1, a, u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c \\ c-u-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} c \\ c+b-u-1 \end{pmatrix}$$

(ii) Obstruction class = -1

 $a_{12} = \begin{pmatrix} c - u \\ c - 2u - 1 \end{pmatrix}$

- (iii) Cusp Shapes = $c^2u b^2u + c^2 + 4u + 4$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

(iv) Complex Volumes and Cusp Shapes

Solution to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$		
$b = \cdots$	2.02988I	0.58899 + 3.27641I
$c = \cdots$		
$d = \cdots$		

V.
$$I_1^v = \langle c, d+1, b, a-1, v-1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_8	u
c_6, c_7, c_9 c_{12}	u+1
c_{10}, c_{11}	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_8	y
c_6, c_7, c_9 c_{10}, c_{11}, c_{12}	y-1

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 1.00000		
b = 0	0	0
c = 0		
d = -1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u^{2} - u + 1)^{2}(u^{17} + 15u^{16} + \dots + 88u - 16)$
c_2	$u(u^{2} + u + 1)^{2}(u^{17} + 5u^{16} + \dots + 11u^{2} - 4)$
c_3	$u(u^2 - u + 1)^2(u^{17} - 14u^{16} + \dots + 6768u - 2592)$
c_4, c_8	$u^5(u^{17} - u^{16} + \dots - 1024u - 512)$
<i>C</i> ₅	$u(u^2 - u + 1)^2(u^{17} + 5u^{16} + \dots + 11u^2 - 4)$
<i>C</i> ₆	$u^{2}(u-1)^{2}(u+1)(u^{17}-8u^{16}+\cdots-8u-16)$
C ₇	$u^{2}(u+1)^{3}(u^{17}+8u^{16}+\cdots-8u-16)$
<i>c</i> ₉	$u^{2}(u+1)^{3}(u^{17}+6u^{16}+\cdots+32u-256)$
c_{10}	$u^{2}(u-1)^{3}(u^{17}+8u^{16}+\cdots-8u-16)$
c_{11}	$u^{2}(u-1)(u+1)^{2}(u^{17}-8u^{16}+\cdots-8u-16)$
c_{12}	$u^{2}(u+1)^{3}(u^{17}+34u^{16}+\cdots+6176u+256)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y^2 + y + 1)^2(y^{17} - 21y^{16} + \dots + 36640y - 256)$
c_2, c_5	$y(y^2 + y + 1)^2(y^{17} + 15y^{16} + \dots + 88y - 16)$
c_3	$y(y^2 + y + 1)^2(y^{17} - 66y^{16} + \dots + 3.67649 \times 10^7 y - 6718464)$
c_4, c_8	$y^5(y^{17} + 81y^{16} + \dots - 524288y - 262144)$
c_6, c_{11}	$y^{2}(y-1)^{3}(y^{17}-34y^{16}+\cdots+6176y-256)$
c_7, c_{10}	$y^{2}(y-1)^{3}(y^{17}+6y^{16}+\cdots+32y-256)$
c_9	$y^{2}(y-1)^{3}(y^{17}+66y^{16}+\cdots+2613760y-65536)$
c_{12}	$y^{2}(y-1)^{3}(y^{17}-94y^{16}+\cdots+7397888y-65536)$