ECON-320-Lab-8

Sonan Memon

Introduction

- While the OLS is a linear model, it is not linear in the extremely restrictive sense. It has the capacity to incorporate many non-linear relationships.
- More precisely, OLS is linear in terms of the impact of x on y but x itself can be a non-linear variable such as square or an interaction-term.
- Loops are fundamental building blocks for any programming exercise; they allow for automation and efficiency when there exists a recursion in the model.

Packages

```
library(tinytex)
library(tidyverse)
library(dslabs)
library(dplyr)
library(ggplot2)
library(tibble)
library(broom)
library(modelsummary)
```

Introduction

- While the OLS is a linear model, it is not linear in the extremely restrictive sense. It has the capacity to incorporate many non-linear relationships.
- More precisely, OLS is linear in terms of the impact of x on y but x itself can be a non-linear variable such as square or an interaction-term.
- Loops are fundamental building blocks for any programming exercise; they allow for automation and efficiency when there exists a recursion in the model.

Data Cleaning

```
data <- read.csv("nlsy79-2020.csv")

data <- data %>%
   rename(
    logWealth = log_wealth,
    logEduc = log_educ
)
View(data)
```

• Some common form of non-linear relationships in economics are linear, log-liner, linear-log and log-log models.

```
linear = lm(data = data, wealth ~ educ)

model1 <- modelsummary(
    list("Linear Model" = linear),
    stars = TRUE,
    statistic = "std.error",
    output = "tinytable",
    title = "Results From Simulated Data",
    gof_omit = ".*" # remove AIC, BIC, etc.
)</pre>
```

model1

Table 1: Results From Simulated Data

2 4 4 4	
	Linear Model
(Intercept)	-2837577.048***
	(236970.310)
educ	270430.004***
	(16790.823)
+ p < 0.1, * p < 0.05, ** p < 0.01 *** p < 0.001	

$$+ p < 0.1$$
, * p < 0.05, ** p < 0.01, *** p < 0.001

• Log-Linear Case:

```
log_lin = lm(data = data, logWealth ~ educ)

model2 <- modelsummary(
    list("Log-Linear" = log_lin),
    stars = TRUE,
    statistic = "std.error",
    output = "tinytable",
    title = "Results From Simulated Data",
    gof_omit = ".*" # remove AIC, BIC, etc.
)</pre>
```

Table 2: Results From Simulated Data

Log-Linear

(Intercept) 7.213***

(0.180)

$$\begin{array}{l} + \; p < 0.1, \; {}^{*} \; p < 0.05, \; {}^{**} \\ p < 0.01, \; {}^{***} \; p < 0.001 \end{array}$$

educ

0.343***

(0.013)

• Linear-Log Case:

```
lin_log = lm(data = data, wealth ~ logEduc)

model3<- modelsummary(
    list("Linear-Log" = lin_log),
    stars = TRUE,
    statistic = "std.error",
    output = "tinytable",
    title = "Results From Simulated Data",
    gof_omit = ".*" # remove AIC, BIC, etc.
)</pre>
```

Table 3: Results From Simulated Data

Dutu	
	Linear-Log
(Intercept)	-8640087.816***
logEduc	(617063.317)
	3655431.205***
	(235443.611)
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001	

Log-Log case

```
log_log = lm(data = data, logWealth ~ logEduc)

model4 <- modelsummary(
    list("Log-Log" = log_log),
    stars = TRUE,
    statistic = "std.error",
    output = "tinytable",
    title = "Results From Simulated Data",
    gof_omit = ".*" # remove AIC, BIC, etc.
)</pre>
```

Table 4: Results From Simulated Data

	Log-Log
(Intercept)	-0.538
	(0.467)
logEduc	4.787***
	(0.178)
J = 201	* ~ < 0.0F

$$\begin{array}{l} + \ p < 0.1, \ ^{*} \ p < 0.05, \\ ^{**} \ p < 0.01, \ ^{***} \ p < 0.001 \end{array}$$

Function

```
fun = function(y, x){
df = tibble(v,x)
df = df \% \% utate(log_y = log(y), log_x = log(x))
lin = lm(data = df, y ~ x)%>%broom::tidy()
log lin = lm(data = df, log_y ~ x)%>%broom::tidy()
\lim \log = \lim(\frac{data}{data} = df, y \sim \log x)\%
\log \log = \lim(\text{data} = \text{df}, \log y \sim \log x)\%
bind rows(lin, log lin, lin log, log log) %>%
filter(term == 'x' | term == 'log x') %>%
mutate(interpret =c(estimate[1],estimate[2]*100, estimate[3]/100
type = c("lin", "log lin", "lin log", "log log"),
x_change = c("unit", "unit", "percent", "percent"),
y change = c("unit", "percent", "unit", "percent")
```

Function: Check

4

3 36554. lin_log percent unit

4.79 log_log percent percent

Quadratic Model

```
data <- data %>% mutate(EducSgr = educ^2)
quad = lm(data = data, wealth ~ educ + EducSqr)
modelsquare <- modelsummary(</pre>
    list("OLS with Quadratic Term" = quad),
    stars = TRUE,
    statistic = "std.error",
    output = "tinytable",
    title = "Results From Simulated Data",
    gof_omit = ".*" # remove AIC, BIC, etc.
```

Quadratic Model

Table 5: Results From Simulated Data

	OLS with Quadratic Term
(Intercept)	70951.081
	(1113209.272)
educ	-142317.210
	(155269.011)
EducSqr	14172.191**
	(5300.141)
	*

$$+ p < 0.1$$
, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

Quadratic Model: Interpretation

- $wealth = \beta_0 + \beta_1 * educ + \beta_2 * educ^2$
- $\bullet \ \tfrac{\partial wealth}{\partial educ} = \beta_1 + 2*\beta_2*educ$

Quadratic Model: Visualisation

```
quad = lm(data = data, wealth ~ educ + EducSqr) %>% tidy()
education = seq(1, 20, 1)
change = c()

for(i in education){
  change[i] = quad$estimate[2] + 2*quad$estimate[3]*education[i]}

df = tibble(education, change)
```

Quadratic Model: Visualisation

Interaction Terms

- When the effect of x on y varies based on whether z is high or low or other continuous or categorical variable, we use interaction terms.
- For instance, effect of education on income can vary across genders, racial groups, parent's socioeconomic status etc.
- Interaction terms with dummy variables have specially elegant interpretation.

Interaction Terms

Model with Interaction Term

 Effect of education on wealth is slightly dampened by race; in other words, African Americans benefit more from one additional year of education relative to white population.

Table 6: Results From Simulated Data

	OLS with Interaction Term
(Intercept)	-1.120
	(0.830)
logEduc	4.654***
	(0.320)
race	2.167*
	(0.983)
$logEduc \times race$	-0.309
	(0.378)
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001	

Sonan Memon

ECON-320-Lab-8