Topic 8

Full Abstraction

Proof principle

For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$,

$$\llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket \text{ in } \llbracket \tau \rrbracket \implies M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$
.

Hence, to prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$.

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

Full abstraction

A denotational model is said to be *fully abstract* whenever denotational equality characterises contextual equivalence.

ightharpoonup The domain model of PCF is *not* fully abstract.

In other words, there are contextually equivalent PCF terms with different denotations.

Failure of full abstraction, idea

We will construct two closed terms

$$T_1, T_2 \in \mathrm{PCF}_{(bool \to (bool \to bool)) \to bool}$$

such that

$$T_1 \cong_{\operatorname{ctx}} T_2$$

and

$$\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$$

 \blacktriangleright We achieve $T_1 \cong_{\operatorname{ctx}} T_2$ by making sure that

$$\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} \left(T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool} \right)$$

ightharpoonup We achieve $T_1 \cong_{\operatorname{ctx}} T_2$ by making sure that

$$\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool})$$

Hence,

$$[\![T_1]\!]([\![M]\!]) = \bot = [\![T_2]\!]([\![M]\!])$$

for all $M \in \mathrm{PCF}_{bool \to (bool \to bool)}$.

lacktriangle We achieve $T_1 \cong_{\operatorname{ctx}} T_2$ by making sure that

$$\forall M \in \mathrm{PCF}_{bool \to (bool \to bool)} (T_1 M \not \downarrow_{bool} \& T_2 M \not \downarrow_{bool})$$

Hence,

$$[T_1]([M]) = \bot = [T_2]([M])$$

for all $M \in \mathrm{PCF}_{bool \to (bool \to bool)}$.

lacktriangle We achieve $\llbracket T_1 \rrbracket \neq \llbracket T_2 \rrbracket$ by making sure that

$$[T_1](por) \neq [T_2](por)$$

for some *non-definable* continuous function

$$por \in (\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp}))$$
.

Parallel-or function

is the unique continuous function $por: \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})$ such that

```
por true \perp = true
por \perp true = true
por false false = false
```

Parallel-or function

is the unique continuous function $por: \mathbb{B}_\perp \to (\mathbb{B}_\perp \to \mathbb{B}_\perp)$ such that

```
por true \perp = true
por \perp true = true
por false false = false
```

In which case, it necessarily follows by monotonicity that

Undefinability of parallel-or

Proposition. There is no closed PCF term

$$P:bool \rightarrow (bool \rightarrow bool)$$

satisfying

$$\llbracket P \rrbracket = por : \mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})$$
.

Parallel-or test functions

Parallel-or test functions

```
For i=1,2 define
       T_i \stackrel{\text{def}}{=} \mathbf{fn} \ f: bool \to (bool \to bool) \ .
                           if (f \mathbf{true} \Omega) \mathbf{then}
                               if (f \Omega \text{ true}) then
                                   if (f false false) then \Omega else B_i
                               else \Omega
                            else \Omega
where B_1 \stackrel{\text{def}}{=} \mathbf{true}, B_2 \stackrel{\text{def}}{=} \mathbf{false},
and \Omega \stackrel{\text{def}}{=} \mathbf{fix}(\mathbf{fn} \, x : bool.x).
```

Failure of full abstraction

Proposition.

$$T_1 \cong_{\operatorname{ctx}} T_2 : (bool \to (bool \to bool)) \to bool$$
$$||T_1|| \neq ||T_2|| \in (\mathbb{B}_\perp \to (\mathbb{B}_\perp \to \mathbb{B}_\perp)) \to \mathbb{B}_\perp$$

PCF+por

Expressions
$$M::=\cdots \mid \mathbf{por}(M,M)$$

Typing $\frac{\Gamma dash M_1:bool \ \Gamma dash M_2:bool}{\Gamma dash \mathbf{por}(M_1,M_2):bool}$

Evaluation

Plotkin's full abstraction result

The denotational semantics of PCF+por is given by extending that of PCF with the clause

$$\llbracket\Gamma \vdash \mathbf{por}(M_1, M_2)\rrbracket(\rho) \stackrel{\text{def}}{=} por(\llbracket\Gamma \vdash M_1\rrbracket(\rho)) (\llbracket\Gamma \vdash M_2\rrbracket(\rho))$$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

$$\Gamma \vdash M_1 \cong_{\operatorname{ctx}} M_2 : \tau \iff \llbracket \Gamma \vdash M_1 \rrbracket = \llbracket \Gamma \vdash M_2 \rrbracket.$$