Pushouts in topological spaces

Ruth Plümer

Practical training course: Formalizing mathematics in Lean

February 9, 2025

Outline

- Mathematical background
 - Definition of the adjunction space
 - Universal properties
 - Interesting lemmas
- Pormalization
 - Implementing the definition
 - Challenging aspects
- Future work?

Definition of the adjunction space

Definition

Let X and Y be topological spaces, $X \sqcup Y$ be the disjoint union and $\varphi_1: X \to X \sqcup Y$ and $\varphi_2: Y \to X \sqcup Y$ be the canonical inclusion maps. The topology $\mathcal O$ on $X \sqcup Y$ is given by

$$\mathcal{O} := \{ U \subseteq X \sqcup Y \, | \, \varphi_1^{-1}(U) \text{ is open in } X \text{ or } \varphi_2^{-1}(U) \text{ is open in } Y \}.$$

Definition

Let X be a topological space and \sim be an equivalence relation on X. Then, the **quotient space** $X/_{\sim}$ is the set $\{[x]:x\in X\}$ of equivalence classes together with the topology

$$\mathcal{O} := \{ U \subseteq X /_{\sim} \mid \exists V \subseteq X \text{ open } : x \in V \Leftrightarrow [x] \in U \}.$$

Definition of the adjunction space

Definition

Let X and Y be topological spaces and let A be a subspace of Y.

Moreover, let $f_1: A \to X$ be continuous and $f_2: A \to Y$ be the inclusion map.

Moreover, let \sim be the equivalence relation on $X \sqcup Y$ generated by $f_1(a) \sim f_2(a)$ for all $a \in A$. Then, the quotient

$$X \cup_{f_1} Y := (X \sqcup Y)/_{\sim}$$

with the quotient topology is called the adjunction space (or pushout).

Theorem (Universal property of the disjoint union)

Let X, Y, Z be topological spaces and $f_1: X \to Z$ and $f_2: Y \to Z$ be continuous maps. Then there exists exactly one continuous map $g: X \sqcup Y \to Z$ with $f_1 = g \circ \varphi_1$ and $f_2 = g \circ \varphi_2$.

The disjoint union is the coproduct in the category of topological spaces.

Universal properties

Theorem (Universal property of the quotient space)

Let X, Z be topological spaces, \sim be an equivalence relation on X and $f: X \to Z$ be continuous with $x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2)$. Then there exists exactly one continuous map $g: (X/_\sim) \to Y$ with g([x]) = f(x) for all $x \in X$.

Universal properties

Theorem (Universal property of the pushout)

Let X, Y, Z be topological spaces, A a subspace of Y, $f_1 : A \to X$ be continuous and $f_2 : A \to Y$ be the inclusion map.

Moreover, let $g_1: X \to Z$ and $g_2: Y \to Z$ be continuous maps with $g_1 \circ f_1 = g_2 \circ f_2$.

Then there exists exactly one continuous map $h: X \cup_{f_1} Y \to Z$ with $g_1 = h \circ \varphi_1$ and $g_2 = h \circ \varphi_2$.

Interesting lemmas

Lemma

 φ_1 is an embedding.

Interesting lemmas

Lemma

 φ_1 is an embedding.

Lemma

If A is closed in X, φ_1 is a closed embedding.

Interesting lemmas

Lemma

 φ_1 is an embedding.

Lemma

If A is closed in X, φ_1 is a closed embedding.

Lemma

If A is closed in X, $\varphi_2|_{Y\setminus A}$ is an open embedding.

Interesting lemmas

Lemma

 φ_1 is an embedding.

Lemma

If A is closed in X, φ_1 is a closed embedding.

Lemma

If A is closed in X, $\varphi_2|_{Y\setminus A}$ is an open embedding.

Lemma

If f_1 is a quotient map, φ_2 is a quotient map as well.

Interesting lemmas

Definition (Connectedness)

A topological space X is called **connected** if and only if the only subsets of X that are both open and closed are \emptyset and X.

Interesting lemmas

Definition (Connectedness)

A topological space X is called **connected** if and only if the only subsets of X that are both open and closed are \emptyset and X.

Definition (Path-connectedness)

A topological space X is called **path-connected** if and only if for all $x, y \in X$ there exists a continuous map $p : [0,1] \to X$ with p(0) = x and p(1) = y.

Interesting lemmas

Definition (Connectedness)

A topological space X is called **connected** if and only if the only subsets of X that are both open and closed are \emptyset and X.

Definition (Path-connectedness)

A topological space X is called **path-connected** if and only if for all $x, y \in X$ there exists a continuous map $p : [0,1] \to X$ with p(0) = x and p(1) = y.

Lemma

If A is nonempty and X and Y are connected, $X \cup_{f_1} Y$ is connected as well.

Interesting lemmas

Definition (Connectedness)

A topological space X is called **connected** if and only if the only subsets of X that are both open and closed are \emptyset and X.

Definition (Path-connectedness)

A topological space X is called **path-connected** if and only if for all $x, y \in X$ there exists a continuous map $p : [0,1] \to X$ with p(0) = x and p(1) = y.

Lemma

If A is nonempty and X and Y are connected, $X \cup_{f_1} Y$ is connected as well.

Lemma

If A is nonempty and X and Y are path connected, $X \cup_{f_2} Y$ is path connected as well.

Interesting lemmas

Definition

A nonempty topological space X is called a T_1 -space if and only if every set S with |S| = 1 is closed.

Interesting lemmas

Definition

A nonempty topological space X is called a T_1 -space if and only if every set S with |S| = 1 is closed.

Lemma

Let A be closed in Y and X and Y be T_1 -spaces. Then $X \cup_{f_1} Y$ is a T_1 -space as well.

Interesting lemmas

Definition (Normal space)

A topological space X is called **normal** if and only if for all disjoint closed sets $C, D \subseteq X$ there exist disjoint open sets $U, V \subseteq X$ with $C \subseteq U$ and $D \subseteq V$.

Interesting lemmas

Definition (Normal space)

A topological space X is called **normal** if and only if for all disjoint closed sets $C, D \subseteq X$ there exist disjoint open sets $U, V \subseteq X$ with $C \subseteq U$ and $D \subseteq V$.

Definition (T4 space)

A nonempty topological space X is called T_4 -space iff it is both T_1 and normal.

Interesting lemmas

Definition (Normal space)

A topological space X is called **normal** if and only if for all disjoint closed sets $C, D \subseteq X$ there exist disjoint open sets $U, V \subseteq X$ with $C \subseteq U$ and $D \subseteq V$.

Definition (T4 space)

A nonempty topological space X is called T_4 -space iff it is both T_1 and normal.

Theorem (Tietze's extension theorem)

Let X be a normal space, $C \subseteq X$ closed and $f : C \to \mathbb{R}$ be a continuous map. Then there exists a continuous map $f' : X \to \mathbb{R}$ with $f'|_C = f$.

Interesting lemmas

Lemma

Let X, Y be T_4 -spaces, $A \subseteq Y$ a nonempty closed subspace of Y, $f_1 : A \to X$ be continuous and $f_2 : A \to Y$ be the inclusion map. Then $X \cup_{f_1} Y$ is a T_4 -space as well.

Formalization

Implementing the definition

Disjoint unions and quotient spaces are already implemented in mathlib as more general concepts:

```
or `.inr b` where `b : β`.
inductive Sum (\alpha : Type u) (\beta : Type v) where
    inl (val : \alpha) : Sum \alpha B
    inr (val : \beta) : Sum \alpha \beta
@[inherit doc] infixr:30 " ⊕ " => Sum
Ouotient \alpha s` is the same as `Ouot \alpha r`, but it is specialized to a setoid `s`
def \emptysetuotient \{\alpha : Sort u\} (s : Setoid \alpha) :=
  @Quot α Setoid.r
```

Formalization

Implementing the definition

The topologies on the disjoint union and the quotient space are given as instances of TopologicalSpace:

Formalization

Implementing the definition

Steps when implementing the definition of AdjunctionSpace:

- Defining the equivalence relation on the disjoint union (equivalence_of_images f₁ hf₂)
- ② Defining A and Y as separate types and defining the subspace relation by requiring f_2 to be an embedding.