UTRPLITOS	

Закладки

- ▶ О ВШЭ
- ▶ Неделя 1. Числа
- Неделя 2.Индукция
- ► Неделя 3. Инструменты
- ▼ Неделя 4. Целые числа и многочлены

Видеозапись лекции **Тест**

Дополнительные материалы

Презентация

Неделя 4. Целые числа и многочлены > Тест > Оцениваемое задание

Оцениваемое задание

ЭТОТ ЭЛЕМЕНТ КУРСА ОЦЕНИВАЕТСЯ КАК 'ПРОМЕЖУТОЧНЫЕ ТЕСТЫ' BEC: 1.0

ДО 29 CEHT. 2019 Г. 23:59 MSK

ДДобавить страницу в мои закладки

Тест по четвертой лекции

15 из 15 баллов (оценивается)

В первых шести задачах выберите правильный вариант ответа.

Если произведение ab двух целых чисел делится на целое число c>1, то

- \bigcirc либо \pmb{a} , либо \pmb{b} делится на \pmb{c} .
- lacktriangle либо $oldsymbol{a}$, либо $oldsymbol{b}$ делится на какой-то из простых множителей числа $oldsymbol{c}$. \checkmark
- \bigcirc a делится на c.
- \bigcirc b делится на c.

Какой из следующих многочленов неприводим над полем рациональных чисел?

- $x^2 2x + 1$
- $\bigcirc x^2-2x-3.$
- $x^2 2$.

а многочле	$100x^{100} + 99x^{99} + \ldots + 2x^2 + x - 5050$ делит ен
$\odot x-1$	~
$\bigcirc x-2$.	
$\bigcirc x-3$.	
$\bigcirc x-4$.	
○ Z/3Z.	
○ Z/3Z.	
ℤ/4ℤ.	✓
$\bigcirc \mathbb{Z}/5\mathbb{Z}$.	
·	SA используется для
0 2/02	

0	простого деления многочленов с остатком.
двух	ритм для быстрого поиска наибольшего общего делителя целых чисел или двух многочленов с коэффициентами в е назван в честь
•	Евклида. 🗸
0	Эратосфена.
0	Ривеста, Шамира и Адлемана
0	Мартина Гарднера.
посл ВВО, СТАЕ Най <i>а</i>	едующих пяти задачах ответ дайте в виде числа или педовательности чисел, написанных через запятую. ПРИ ДЕ ОТВЕТА МЕЖДУ ЗАПЯТОЙ И СЛЕДУЮЩИМ ЧИСЛОМ ВЬТЕ ПРОБЕЛ. Пробел. Пробер начименьшее натуральное число, у которого есть 5 парно различных простых делителей.
посл ВВО, СТАЕ Най,	педовательности чисел, написанных через запятую. ПРИ ДЕ ОТВЕТА МЕЖДУ ЗАПЯТОЙ И СЛЕДУЮЩИМ ЧИСЛОМ ВЬТЕ ПРОБЕЛ. прите наименьшее натуральное число, у которого есть 5 врно различных простых делителей.
посл ВВО, СТАЕ Найд попа	ледовательности чисел, написанных через запятую. ПРИ ДЕ ОТВЕТА МЕЖДУ ЗАПЯТОЙ И СЛЕДУЮЩИМ ЧИСЛОМ ВЬТЕ ПРОБЕЛ. Дите наименьшее натуральное число, у которого есть 5 арно различных простых делителей. 10 ✓
посл ВВО, СТАЕ Найд попа 231	ледовательности чисел, написанных через запятую. ПРИ ДЕ ОТВЕТА МЕЖДУ ЗАПЯТОЙ И СЛЕДУЮЩИМ ЧИСЛОМ ВЬТЕ ПРОБЕЛ. Дите наименьшее натуральное число, у которого есть 5 арно различных простых делителей. 10 ✓

	очлен x^5+x+1 над полем \mathbb{F}_2 . В качестве ответ ишите через запятую в порядке возрастания степени ченных неприводимых множителей.
2, 3	•
Найд	ите наименьший простой делитель числа $\mathbf{3^{11}}+\mathbf{4^{11}}$.
7	•
7	
ариф	и дробей $\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{99}$ найдите 6 дробей, образующих метическую прогрессию. В качестве ответа выпишите чергую в порядке возрастания знаменатели этих дробей.
10,	12, 15, 20, 30, 60
вари	следних четырёх заданиях отметьте ВСЕ правильные анты ответа. стен эффективный алгоритм для
✓	поиска наибольшего общего делителя двух целых чисел.
	поиска наибольшего общего делителя двух многочленов с коэффициентами в поле.
	разложения целого числа на простые множители.
	разложения целого числа на простые множители. разложения многочлена с коэффициентами в поле на неприводимые множители.

Каки	е из следующих уравнений разрешимы в целых числах?
	3x + 9y = 1.
✓	7x + 100y = 1.
✓	25x + 12y = 401.
✓	13x + 17y = 100.
~	
	е из следующих многочленов делят многочлен x^4+4 в це многочленов $\mathbb{Q}[x]$?
✓	$x^2 + 2x + 2.$
	$x^2 + 2x - 2.$
✓	$x^2-2x+2.$
	x^2-2x-2 .
~	
	хих случаях многочлен $m{f}$ с рациональными коэффициентами иводим над полем рациональных чисел?
	Если $m{f}$ не имеет рациональных корней.
✓	Если $m{f}$ не представляется в виде произведения двух многочленов с рациональными коэффициентами, степени которых строго меньше, чем степень многочлена $m{f}$.
✓	Если $m{f}$ не имеет рациональных корней, и при этом степень многочлена $m{f}$ не больше трёх.

<u>Каталог курсов</u> <u>Направления</u> <u>подготовки</u>

О проекте Вопросы и ответы Пользовательское соглаш Контакты Помощь

© 2018 Открытое Образование

