TWITTER HATE SPEECH ANALYSIS MILESTONE THREE COLIN GREEN & SEAN ZHANG

BALANCED DATASET

- Ran Random Forest and Logistic Regression as a benchmark
- Compared with tuned versions of Random Forest and Logistic Regression
- Used the bagging method for those 4 models as well as untuned:
 - Extra Trees, KNN, SVC, Ridge Classifiers
- Also used Ada Boost, Grad Boost, XG Boost and an Ensemble

LOGISTIC REGRESSION VS RANDOM FOREST

FALSE NEGATIVES

ROC CURVES

Base Random Forest

Based Logistic Regression

Tuned Random Forest

Tuned Logistic Regression

AREA UNDER THE CURVE

LEARNING CURVES — BASE RANDOM FOREST

LEARNING CURVES — TUNED RANDOM FOREST

LEARNING CURVES - BASE LOGISTIC REGRESSION

LEARNING CURVES - TUNED LOGISTIC REGRESSION

BAGGING

BAGGING TO REDUCE VARIANCE

BOOSTING

FULL DATASET

- Used Logistic Regression as Benchmark
- Ran to see whether learning curves would converge
- Comparison of: Base, under/oversampling, hyperparameter tuning, bagging, ensemble (voting)
- Decision boundary visualization

LEARNING CURVES – TUNED LOGISTIC REGRESSION (FULL DATA)

ACCURACY METRICS (FULL DATA)

Imbalanced sampling done with **imblearn** package

Voting ensemble: Random Forest, Extra Trees, KNN, Support Vector Machine, Logistic Regression

DECISION BOUNDARIES

- Chose numerical variables based on importance and the fact that word features are too sparse
- Observations with lower number of tokens tends to be classified as hate speech (this was something noticed in previous EDA, feature importance, and past research)

X: hashtag count Y: number of tokens

1: Non-hate speech

0: Hate speech

CONCLUSIONS

- Algorithm converged in full dataset compared to balanced subset
- Tuning slightly increased accuracy
- Bagging slightly increased accuracy and decreased variance in most cases
- Imbalanced sampling significantly decreased accuracy with no improvement in sensitivity or precision
- Ensemble learning slightly improved accuracy