PHY 517 / AST 443: Observational Techniques in Astronomy

Course Objectives

- introduction to observational astronomy
- design, take, analyze and interpret astronomical observations
- same concepts as needed for these:

Mt Stony Brook Observatory

roof-top dome + telescope (14-inch) + CCD camera +
 spectrograph

Radio interferometer

• custom-built at Stony Brook

A Michelson-type radio interferometer for university education

Jin Koda, James Barrett, Gene Shafto, Jeff Slechta, Tetsuo Hasegawa, Masahiko Hayashi, and Stanimir Metchev

Citation: American Journal of Physics 84, 249 (2016); doi: 10.1119/1.4940212

How to be an astronomer

- I. come up with an interesting idea / hypothesis
- 2. search for and analyze archival observations
- 3. write a telescope proposal
- 4. plan and execute your observations
- 5. analyze your data
- 6. write a journal paper
- 7. present your work at conferences

We'll deviate a bit ...

- I. conduct and analyze observations
- 2. lab report → journal paper
- 3. write a telescope proposal
- 4. serve on a Time Allocation Committee (TAC)
- 5. present your work in class

Grading

- ~75% labs (3 labs, i.e. ~25% each)
- ~10% project proposal
- ~10% final presentation
- ~5% evaluation of peers' proposals and presentations

Course webpage

http://www.astro.sunysb.edu/anja/PHY517_AST443/

(might change to something more modern...)

Lab I - optical imaging; time-series photometry

detect an exoplanet transit

Lab 2 - optical spectroscopy

measure the gas temperature of a gaseous nebula

Lab 3 - radio interferometry

measure the diameter of the Sun

Class structure

Officially:

Mon + Wed 6-9pm

In practice:

- 0-2 lectures per week
- most important scheduling constraint is that you get to take your observations
- you need good weather for all labs
- for each optical lab: schedule target night + 1-2 back-up nights
- radio lab: schedule target day + I-2 back-up days
- as needed: Mon / Wed evening data reduction help

Team work

- observational astronomy is done in teams
- you will work in teams of 3
- please form teams of 3 people by Wed next week
- please make sure that
 - at least one of you has some programming experience
 - at least one of you has a laptop
 - you are available on the same week-nights / days

Night-time observing

- a TA or instructor must be present (or in the building)
- please plan your observations to be done by ~ midnight
- bring:
 - WARM clothes!
 - a red flash-light / rear bike-light
 - a USB key to take your data home
 - all materials needed for the lab: instructions, finding charts, your notebook etc.
 - cookies / chocolate

TAs

Drew Jamieson <andrew.jamieson@stonybrook.edu>

Lucie Baumont < lucie.baumont@stonybrook.edu>

This is me. Tell me who you are!

