Estrategias para la exploración coordinada multi-VANT

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 14 de agosto de 2023

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- **6** Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Problemática

(a) Trabajos contra reloj en búsqueda de sobrevivientes.

(b) Desastre ocurrido 4:17 am. de un Lunes por la mañana según medios internacionales.

Figura 1: Terremoto Turquía y norte de Siria Febrero 2023.

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Descripción del proyecto

Figura 2: Cuadricópteros en una red descentralizada¹

- Resumer
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- **6** Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Arquitectura híbrida

Figura 3: Control Autónomo¹

¹Software System of Autonomous Vehicles. Guo et al. 2020 → ⟨፮ → ⟨፮ → № № № ∞ o o o

Planificación de trayectorias

Erickson and LaValle (2013)[5] Calcular la ruta más corta entre dos puntos en un ambiente 3D es un problema NP-HARD. La mayoria de planificadores de rutas hacen uso de heuristicas y metaheuristicas para generar el óptimo más cercano

Beneficios coordinación múlti-VANT

- Eficiencia y cobertura
- Redundancia y tolerancia a fallos
- Adaptabilidad a entornos dinámicos
- Distribución de carga de trabajo
- Aprendizaje colaborativo

Comparación de métodos						
Metodo	Completo	Óptimo	Escalable	Notas		
Grafo de Visibi- lidad	Si	Si	No	Poca escalabilidad, el robot pasa cerca de los obstaculos		
Diagramas de Voronoi	Si	No	No	Poca escalabilidad		
Campo de po- tencial artificial	Si	No	Depende del ambien- te	Fácil de implementar, suceptible a minimos locales		
Dijkstra/A*/D*	Si	Grafo	No	A* usa una función heuristica que guía la búsqueda más eficiente, Poca escalabilidad		
PRM	Si	Grafo	Si	Eficiente para multi-busquedas, completez probabilistica		
RRT	Si	No	Si	Eficiente para problemas simples, completez pro- babilistica		

Representación del ambiente

Figura 4: Mapa probabilistico 3D¹

¹Cooperación en robots heterogeneos Schuster et al. (2020)

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- **5** Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de $\mathcal V$ vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

 Coordinación - Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de $\mathcal V$ vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.

Planteamiento del problema

Desarrollar una estrategia de exploración multi-VANT que reduzca el tiempo total de exploración dado un conjunto de $\mathcal V$ vehículos aéreos no tripulados. Las capacidades limitadas de energía y sensores abordo de los VANTS les permiten navegar de forma autónoma. Teniendo en cuenta sus limitaciones de energía y la necesidad de una exploración eficiente, el objetivo es determinar la trayectoria, las rutas y la asignación de tareas óptimas ó sub-óptimas.

- Coordinación Establecer comunicación efectiva entre los múltiples VANTs. Intercambiar información relevante. Tener baja latencia en su comunicación.
- Planificación Los VANTs deben coordinar sus movimientos para evitar colisiones y lograr una cobertura eficiente del área objetivo.
- Asignación de tareas Se busca evitar la duplicación de esfuerzos optimizando el uso de recursos disponibles.

El espacio de todas las posibles configuraciones, está compuesto por los espacios libres (C_{free}) y espacios ocupado (con obstáculos) C_{obs} .

Sea $\mathcal{W}=\mathbb{R}^3$ el mundo, $\mathcal{O}\in\mathcal{W}$ el conjunto de obstáculos, $\mathcal{A}(q)$ las configuraciones del robot $q\in\mathcal{C}$

- $C_{free} = \{q \in \mathcal{C} | \mathcal{A}(q) \cap \mathcal{O} = \emptyset\}$
- $C_{obs} = C \setminus C_{free}$

donde $\mathcal{W}=\mathbb{R}^3$ es el espacio de trabajo del robot, $\mathcal{O}\in\mathcal{W}$ es el conjunto de obstáculos, y $\mathcal{A}(q)$ son las configuraciones del robot $q\in\mathcal{C}$.

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 5 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Objetivos generales y específicos del proyecto

① General Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

Objetivos generales y específicos del proyecto

- ① General Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- 2 Particulares
 - Construcción de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).

Objetivos generales y específicos del proyecto

- ① General Diseñar una arquitectura de software descentralizada capaz de resolver los problemas de localización y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- 2 Particulares
 - Construcción de solución en base a los algoritmos reportados en la literatura.
 - Valoración propuesta (simulación de propuesta).
 - Comparación y análisis (escalabilidad, robustez y recursos computacionales).

- Resumer
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Metodología

- 1 Análisis y diseño de la solución propuesta
 - Revisión a grano fino del estado del arte
 - Evaluación de aptitudes
 - Elaboración de la solución

Metodología

- 1 Análisis y diseño de la solución propuesta
 - Revisión a grano fino del estado del arte
 - Evaluación de aptitudes
 - Elaboración de la solución
- Implementación y validación
 - Selección de Simulador
 - Visualización de información (Construcción OctoMap)
 - Control de desplazamientos (1 VANT, 2 VANT,..N)
 - Exploración 1 VANT
 - Exploración multi-VANT

Metodología

- 1 Análisis y diseño de la solución propuesta
 - Revisión a grano fino del estado del arte
 - Evaluación de aptitudes
 - Elaboración de la solución
- Implementación y validación
 - Selección de Simulador
 - Visualización de información (Construcción OctoMap)
 - Control de desplazamientos (1 VANT, 2 VANT,..N)
 - Exploración 1 VANT
 - Exploración multi-VANT
- 3 Evaluación experimental, resultados y conclusiones
 - Experimentación de solución
 - Recopilación de información
 - Divulgación

	Cuatrimestre 1a			Cuatrimestre 2 ^b				Cuatrimestre 3 ^c				
	1	2	3	4	1	2	3	4	1	2	3	4
Etapa 1	1			<u>'</u>	1			<u> </u>				<u>. </u>
E1.A1. Revisión literatura relevante ^d												
E1.A2. Selección de algoritmos			$\overline{}$									
E1.A3. Diseño de la arquitectura de software												
E1.A4. Documentación Etapa 1												
E1.A5. Revisión de tesis Etapa 1		\Box										
Etapa 2									-			
E2.A1. Selección Simulador												
E2.A2. Visualización de datos ^e												
E2.A3. Control de desplazamientos												
E2.A4. Desarrollo de algoritmo de exploración												
E2.A5. Implementación y simulación ^g												
E2.A6. Desarrollo de coordinación												
E2.A7. Implementación y sumulaciónh												
E2.A8. Documentación Etapa 2												
E2.A9. Revisión de tesis Etapa 2												
Etapa 3												
E3.A1. Experimentación de solución												
E3.A2. Recopilación resultados												
E3.A3. Documentación Etapa 3												
E3.A4. Revisión de tesis												
E3.A5. Divulgación ⁱ												
E3.A6. Proceso de titulación												

^aCorrespondiente a los meses de Septiembre, Octubre, Noviembre, Diciembre del 2023
^bCorrespondiente a los meses de Enero, Febrero, Marzo, Abril del 2024

Correspondiente a los meses de Mayo, Junio, Julio, Agosto del 2024

^dRevisión de alertas de trabajos relacionados sobre la exploración y colaboración multi-VANT, evaluación de aptitudes en trabajos recientes

^eVisualización Octomap en Simulador

^fUn VANT

⁸Se considera un solo agente que resuelva la tarea de exploración autónoma con evación de obstáculos

^hSe considerán los múltiples-VANT que resuelva la tarea de exploración autónoma con evación de obstáculos

ⁱAbierto a espacios de divulgación de acuerdo con las actividades de retribución social

- Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

REFERENCIA	MAPA	Planificador de rutas	Generación trayectoria	MULTI-VANT
Cieslewski et al. [2017] [41]	Octomap	Basado en fronteras	Control directo de velocidad	Х
Usenko et al. [2017] [42]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier	Х
Mohta et al. [2017] [43]	mapa 3D-Local y 2D-Global	A*	Progración cuadrática	Х
Lin et al. [2017] [44]	3D voxel array TSDF	A*	Optimización cuadrática	Х
Papachristos et al. [2017] [45]	Octomap	NBVP	Control directo de velocidad	Х
Oleynikova et al. [2018] [46]	Voxel Hashing TSDF	NBVP	Optimización cuadrática	Х
Gao et al. [2018] [47]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática	Х
Florence et al. [2018][48]	Busqueda basada en visibilidad	2D A*	Control MPC	Х
Selin et al. [2019] [49]	Octomap	NBVP	Control directo de velocidad	Х
McGuire et al. [2019][50]	NA	SGBA	Control directo de velocidad	Х
Collins and Michael [2020] [51]	KD Tree + Mapa en Voxel	Búsqueda en Grafo	Movimientos suaves	Х
Campos-Macías et al. [2020] [24]	Octree	RRT	Basado en contornos	Х
Zhou et al. [2023][53]	Octomap HGrid	NBVP	Control directo de velocidad	/

- Resumer
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- Planteamiento del problema
- 6 Objetivos generales y específicos del proyecto
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Simulación de la solución

Contribuciones o resultados esperados

- Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- Simulación de la solución
- 3 Tesis impresa

Bibliography

- L. Bartolomei, L. Teixeira, and M. Chli. Fast multi-uav decentralized exploration of forests. IEEE Robotics and Automation Letters, 8(9): 5576-5583, 2023. doi: 10.1109/LRA.2023.3296037.
- L. Campos-Macías, R. Aldana-López, R. Guardia, J. I. Parra-Vilchis, and D. Gómez-Gutiérrez. Autonomous navigation of MAVs in unknown cluttered environments. *Journal of Field Robotics*, 38(2): 307-326, may 2020. doi: 10.1002/rob.21959. URL

https://doi.org/10.1002/rob.21959.

- T. Cieslewski, E. Kaufmann, and D. Scaramuzza. Rapid exploration with multi-rotors: A frontier selection method for high speed flight. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2135-2142, 2017. doi: 10.1109/IROS.2017.8206030.
- M. Collins and N. Michael. Efficient planning for high-speed mav flight in unknown environments using online sparse topological graphs. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 11450-11456, 2020. doi: