

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

. .

• }

ADA 120934

Partor pages of a
Tondern Factor/Paintenn-Stator
Cranes Super Compressor
Lesigned for a Pressure
Ratio of 3

Miles of Table

March Von March Comment Language V Statement

SERVE SERVE

62:11 01 185

SHINESHOOK STANDARD C

NASA Technical Paper 2034

AVRADCOM Technical Report 81-C-5

1982

RALI			
		X !	
_	ļ	<u> </u>	
Unannounced			
Justification			
	, , , ,		
bilit	y Cod	es	
vail e	ind/or	•	
Speci	ial		
	ution bilit	nced	

National Aeronautics and Space Administration

Scientific and Technical Information Branch

Performance of a Tandem-Rotor/Tandem-Stator Conical-Flow Compressor Designed for a Pressure Ratio of 3

Jerry R. Wood Lewis Research Center Cleveland, Ohio

Albert K. Owen and Lawrence F. Schumann Propulsion Laboratory AVRADCOM Research and Technology Laboratories Lewis Research Center Cleveland, Ohio

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

Summary

The overall and blade element data for a conical-flow compressor stage are presented. The stage was designed as the first stage of a 10:1 pressure ratio two-stage compressor. It was designed for a pressure ratio of 3.06 at a flow of 0.9072 kilogram per second. Tip speed at the inlet to the first rotor was 355.7 meters per second, and exit tip speed for the second rotor was 473.6 meters per second. The stage was tested from 50 to 100 percent of design speed from open throttle to surge. Stage performance was also taken at 90- and 100-percent speed at three values of rotor tip clearance. Peak stage efficiency at the smallest clearance (0.022 of an average radial blade height) was 0.774 at 95.8 percent of design flow and a pressure ratio of 2.613. Efficiency decreased by about 0.024 point for each 1-percent increase in average clearance over the rotors. Peak rotor efficiency at design speed from the rotor only test was 0.871 at a pressure ratio of 2.952. Survey data indicated that the hub region on both rotors was operating efficiently but that large losses were present in the outer portion of the channel.

Introduction

The Lewis Research Center has in the past several years been engaged in a program to investigate performance potential of small compressors (1 kilogram per second flow rate class) for gas turbine engine applications such as helicopters, auxiliary power units, general aviation, and surface vehicles (refs. 1 and 2). At high compressor pressure ratios it is necessary to use multiple stages consisting of all axial, axial/centrifugal, mixed flow/centrifugal, or centrifugal/centrifugal. As part of the small compressor program various configurations were investigated analytically under contract (ref. 3) to determine the most suitable combination of stages for an overall pressure ratio of 10:1 and a mass flow rate of 0.907 kilogram per second. A configuration consisting of a conical-flow first stage with a design pressure ratio of 3.06 and a centrifugal second stage with a design pressure ratio of 3.27 was selected as having the greatest potential to achieve good overall efficiency. The term conical flow was coined to describe a modified mixed-flow stage having axial flow type blading and an increase in radius to increase the work input potential. It was anticipated in the design process that axial compressor design criteria could be used to select blade shapes, loadings, and loss estimates and that a large static pressure rise could be obtained by increasing the radius through the blade row with little or no loss in performance from that of a purely axial blade row.

Detailed design was done for the conical-flow stage only. The stage consists of a tandem bladed rotor and a tandem bladed stator. The first blade row of the rotor has an inlet tip speed of 355.7 meters per second with a mean radius ratio (r_{exit}/r_{inlet}) of 1.23. The second blade row has a mean radius ratio of 1.15 and an exit tip speed of 473.6 meters per second. The detailed design of the stage is given in reference 3.

This report presents the overall stage performance for three values of rotor tip clearance, rotor only performance obtained without the stators, and detailed blade element data for both rotor blade rows (rotors 1 and 2). Data are presented for the stage over the stable operating range from 50 to 100 percent of design speed. Data for the rotor only test are presented for 80 to 100 percent of design speed with detailed blade element data given at 80- and 100-percent speed for both rotors. Data is given in tabular and plotted form.

(a) Tandem bladed rotor.

Figure 1. - Rotor and flow path geometry.

Figure 2. - Circumferential relationship of tanden rotor and tandem stator at tip section.

Cm	Shr	oud	Hi	J.b	
Cm	Axiai	Radius,	Axial	Radius,	
-2.531	distance,	cm	distance,	cm	
-1. 121	cm		cm		
30	-2, 531	4,597	-0.547	0, 904	
. 508	-1. 121	4, 597			
1. 016	a 0	4, 597	a 0	1, 285	
b1. 417	. 508	4.640	.762	1.704	
1. 783 5. 020 1. 925 2. 728 2. 148 5. 210 2. 179 3. 033 2. 855 5. 662 \$\frac{3}{2}\$. 855 3. 909 \frac{3}{3}\$. 195 5. 920 \$\frac{3}{3}\$. 195 4. 394 3. 393 6. 050 3. 360 4. 623 3. 632 6. 780 5. 850 6. 400 3. 520 4. 849 6. 73 6. 780 6. 470 3. 678 5. 065 \$\frac{3}{4}\$. 272 6. 789 6. 261 5. 227 7. 62 4. 996 6. 561 6. 340 7. 196 6. 261 5. 227 7. 62 4. 996 6. 561 6. 566 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 944 8. 771 6. 515 7. 813 67. 368 8. 961 6. 939 8. 047 8. 102 9. 914 11. 71 9. 914 10. 145 13. 65 9. 914 11. 71 9. 914 13. 65 9. 914 11. 71 9. 914 13. 65 9.	1. 016	4,740	1.090	1. 922	
1. 783 5. 020 1. 925 2. 728 2. 148 5. 210 2. 179 3. 033 2. 855 5. 662 \$\frac{3}{2}\$. 855 3. 909 \frac{3}{3}\$. 195 5. 920 \$\frac{3}{3}\$. 195 4. 394 3. 393 6. 050 3. 360 4. 623 3. 632 6. 780 5. 850 6. 400 3. 520 4. 849 6. 73 6. 780 6. 470 3. 678 5. 065 \$\frac{3}{4}\$. 272 6. 789 6. 261 5. 227 7. 62 4. 996 6. 561 6. 340 7. 196 6. 261 5. 227 7. 62 4. 996 6. 561 6. 566 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 520 8. 542 6. 096 7. 556 6. 944 8. 771 6. 515 7. 813 67. 368 8. 961 6. 939 8. 047 8. 102 9. 914 11. 71 9. 914 10. 145 13. 65 9. 914 11. 71 9. 914 13. 65 9. 914 11. 71 9. 914 13. 65 9.	D1, 417	4, 859	D1. 417	2, 196	
C2. 509	1.783	5, 020	1.925	2, 728	
**2. 855	2.148	5. 210	2.179	3. 033	
D3, 195		5. 420		3, 693	
3, 393 6, 250 3, 360 4, 623	a2, 855	5.662	2.855	3, 909	
3, 393 6, 250 3, 360 4, 623	D3. 195	5. 920	D3, 195	4, 394	
C3, 906 6, 470 3, 678 5, 065 a4, 272 6, 789 C4, 008 5, 484 b4, 719 7, 186 a272 5, 750 4, 975 7, 409 b4, 719 6, 281 5, 227 7, 62 4, 996 6, 561 C5, 466 7, 815 5, 273 6, 779 b, 0, 096 8, 263 5, 908 7, 258 6, 520 8, 542 b6, 096 7, 506 6, 944 8, 771 6, 515 7, 283 C7, 368 8, 961 6, 939 8, 047 8, 182 9, 301 C7, 335 8, 255 9, 271 10, 145 8, 463 8, 705 11, 71 9, 914 11, 71 9, 914 11, 71			3, 360		
**A				4, 849	
04, 719					
4. 975	² 4, 272		^C 4, 008		
5, 227 7, 62 4, 996 6, 561 6, 797 7, 815 5, 273 6, 779 6, 0.96 8, 263 5, 903 7, 258 6, 520 8, 542 6, 0.96 7, 506 6, 944 8, 771 6, 515 7, 813 67, 368 8, 961 6, 939 8, 047 8, 112 71 9, 914 11, 71 9, 914 11, 71 9, 914 11, 71 9, 914 13, 65 9, 914 11, 71 9, 914 13, 65 9, 914 11, 71 9, 914 13, 65 9, 9	D4.719				_ይ
C5. 456 7. 815 5. 273 6. 779 5. 847 8. 098 C5. 532 7. 059 6. 096 8. 263 8. 542 6. 096 7. 506 6. 984 8. 771 6. 515 7. 813 C7. 368 8. 961 6. 999 8. 047 7. 368 8. 961 6. 939 8. 047 9. 271 10. 145 8. 453 8. 275 9. 271 10. 145 8. 453 8. 275 9. 271 10. 145 8. 453 8. 705 11. 71 9. 914 10. 145 13. 65 9. 914 11. 71 9. 914 13. 65 9.	4, 975				
5. 847 8. 098 C5. 532 7. 059 06. 096 8. 263 5. 903 7. 258 6. 520 8. 542 06. 096 7. 506 6. 944 8. 771 6. 515 7. 813 C7. 368 8. 961 6. 939 8. 047 8. 182 9. 301 C7. 335 8. 255 9. 271 10. 145 8. 453 8. 705 11. 71 9. 914 10. 145 13. 65 9. 914 11. 71 9. 914 13. 65 C8 Station 2 Station 3 Stat					1 1 - 11
06. 096 8. 263 5. 908 7. 358 6. 520 8. 542 06. 096 7. 506 6. 944 8. 771 6. 515 7. 813 067 2 8. 007 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					· · · · · · · · · · · · · · · · · · ·
6. 520 8. 542 06. 096 7. 506 7. 813 67. 368 8. 961 6. 939 8. 047 8. 12					
6. 944 8. 771 6. 515 7. 813 62 5 Stator 2 Stator 2 (53 blades) 9. 271 10. 145 8. 453 8. 765 11. 71 9. 914 10. 145 11. 71 9. 914					l∈ 10 ト 3 i リノル
6. 944 8. 7/1 6. 515 7. 813 2 2 5 5 5 5 63 blades) 9. 271 10. 145 8. 453 8. 705 11. 71 9. 914 10. 145 11. 71 9. 914 11. 71 9. 9					
7.388 8.961 6.939 8.067 8.182 9.301 67.335 8.255 9.271 10.145 8.453 8.705 11.71 9.914 10.145 13.65 9.914 11.71 9.914 13.65 Stator 1 (30 blades) Rotor 2 (40 blades) Rotor 1 (20 blades) Rotor 1 (20 blades)					Stator 2
11. 71 9. 914 10. 145 (40 blades) 13. 65 9. 914 11. 71 9. 914 13. 65 Survey stations. Leading edge of blade row.					(53 blad
11. 71 9. 914 10. 145 (40 blades) 13. 65 9. 914 11. 71 9. 914 13. 65 Survey stations. Leading edge of blade row.					Statof 1
13, 65 9, 914 11, 71 (40 blades) 9, 914 13, 65 (20 blades) Survey stations, Leading edge of blade row.	9. 271				oz 5 - 1 (Partor 3
Survey stations. 1 Survey stations. 1 Leading edge of blade row.					
2 C20 blades) 2 Survey stations. 0 Call blade row. 0 5 10		15, 65			Rotor 1
Leading edge of blade row. 0 5 10			9. 914	13.65	
Leading edge of blade row. 0 5 10	a Survey	stations.			
			de row.		0 5 10
					Axial distance, Z, cm

Figure 3. - Flow path geometry.

Compressor Aerodynamic Design

The detailed aerodynamic design is presented in reference 3, and, therefore, only a brief summary of the aerodynamic design parameters is presented herein. The tandem bladed rotor is shown in figure 1(a) and the meridional flow path in figure 1(b). The relationship of the tandem rotor and tandem stator blade rows to each

other is shown in figure 2. The flow path geometry and instrument stations are shown in figure 3. The overall design parameters are given in table I, and design blade element data are given in table II. The stage was designed for a total pressure ratio of 3.06, a mass flow rate of 0.9072 kilogram per second, rotor inlet tip speed of 355.7 meters per second, and efficiency of 0.906. The rotor inlet relative Mach number varies from 1.256 at the tip to 0.585 at the hub. The diffusion factor for the first blade row (rotor 1) varies from 0.443 at the tip to 0.39 at the hub. The second blade row (rotor 2) diffusion factor varies from 0.493 at the tip to 0.22 at the hub. The stator inlet Mach number varies from 0.747 at the tip to 0.848 at the hub.

Some pertinent blade design parameters from reference 3 are shown in table III. Rotor 1 has 20 blades with a tip solidity of 1.34 and rotor 2 has 40 blades with a tip solidity of 1.57. Both rotors use multiple circular arc blading. The first stator row has a hub solidity of 1.891 and the second stator row has a hub solidity of 1.63. Each stator blade row has 53 blades consisting of double circular arc blading. Manufacturing coordinates are given in reference 3.

Apparatus and Procedure

Test Facility

A schematic of the compressor test facility is given in figure 4. The compressor and turbine are on a common shaft. Compressor mass flow rate was measured with a

Figure 4. - Test facility schematic.

choked flow nozzle on the inlet line. Compressor inlet pressure was automatically controlled by a valve on the inlet line to the plenum chamber. Inlet temperature is not controlled but was approximately 295 K for these tests. Compressor discharge pressure was manually controlled with a remotely operated valve in the compressor discharge line. Drive turbine speed was automatically controlled by a valve on the turbine inlet line. High pressure air was used to drive the turbine. Turbine discharge pressure was manually controlled by two remotely operated valves in the turbine discharge line.

Instrumentation

The compressor instrumentation stations are shown in figure 5 and table IV and their relationship to the compressor blade rows is shown in figure 3. The flow enters the plenum as shown in figure 5, is diverted by a flow deflector, and passes through a series of screens before reaching station 0, which is used to determine compressor inlet conditions. Station 0 consists of two rakes spaced 90° apart. Each rake has four total pressure probes and two total temperature probes. The outlet measurement station for the stage (station 7) consists of

Figure 5. - Stage performance instrument stations and inlet configuration.

Figure 6. - Survey instrumentation.

four 0.051-centimeter-diameter total pressure probes and four calibrated high-recovery thermocouple probes located at midspan (span height, 0.643 cm). Static taps were distributed along the outer casing from station 1 to station 7 and along the hub from station 3 to station 5 (see fig. 3 for station locations and table IV for detailed instrumentation locations). Static taps spanning one stator pitch were used at station 3 (4 taps) and stations 4 and 5 (5 taps) to determine the effect of the stator vanes on static pressure.

For the rotor only tests the temperatures and pressures were measured at station 0 and total temperature was measured at station 7 using the same instrumentation as for the stage test. Static pressures were measured along the casing from station 1 to station 3.1 and on the hub at stations 3.0 and 3.1. Fast response semiconductor transducers were flush mounted over each rotor midchord to indicate rotor stall. Survey data were taken at stations 1, 2, and 3 using probes such as those shown in figure 6. Each individual thermocouple and angle probe was calibrated in a flow tunnel. The angle of the sensing element for the angle and pressure probes was made equal to the average of the hub and casing slopes at each station location.

All pressures were measured with scanivalve transducers which were dynamically calibrated during a data scan. Estimated errors in the data are as follows:

Mass flow rate, kg/sec	±0.009
Rotative speed, rpm	
Temperature, K	
Pressure, N/cm	

Flow angles were measured behind rotors 1 and 2 for the rotor only test. Flow angle was checked at the inlet to rotor 1 and no deviation from axial was measured. Each probe was nulled automatically to the general direction of flow and then manually nulled so that the indicated pressure differential across the side tubes was zero.

The overall accuracy of the angle measurement is probably the least accurate of the measurements considering the finite size of the angle probe (each tube was 0.038 cm in diameter) in a highly skewed flow with large pressure changes in the axial direction which would subject each side of the probe to a different static pressure.

Tip clearance over each rotor was measured at four locations, 90° apart, with carbon rub probes. Probe holders for the carbon probes had been machined with the casing and provided a reference for measuring the probe length.

Test Procedure

Tip clearance.—Tip clearance was measured over the tips of both rotors. Clearance was established over the rotors by shimming the shroud axially away from the stator assembly 0.33 centimeter downstream of station 3 (see fig. 1(b)). The deflection curve measured for both rotors as a function of percent design speed is shown in

Clearance setting		n speed (fractional)	Design clearan cı		Average fractional clearance
	Rotor 1	Rotor 2	Rotor 1	Rotor 2	
Large Medium Smail	0. 0207 . 0177 . 0160	0, 0404 . 0320 . 0273	0, 0406 . 0347 . 0314	0, 0394 . 0312 . 0266	0, 031 . 025 . 022

Figure 7. - Clearance curve for both rotors as function of percent speed.

figure 7. The stage test was run at three clearance settings as shown in figure 7. The smallest setting was for a clearance of 0.0314 centimeter over rotor 1 and 0.0266 centimeter over rotor 2.

Stage test.—For all tests inlet temperature was approximately 295 K and inlet pressure was approximately 9.9 newtons per square centimeter. Speed varied from 50 to 100 percent of design and flow varied from open throttle to surge. Surge was assumed to occur whenever a significant pressure fluctuation was observed in the exhaust line downstream of station 7 or an audible noise was heard in the test cell. Capacitance probes located near the back of rotor 2 indicated large rotor motion in surge. At the smallest clearance tested, the stage was not surged since open throttle running clearance was quite small.

Rotor only test.—The rotor only test was conducted by removing the stator assembly and replacing it with dummy pieces to simulate stator wall contours back to about station 3.3 (see fig. 1(b)) where the flow was dumped. The dump was used in an attempt to inhibit any rotating stall that might occur in the long, vaneless passage. The test was run at the smallest clearance quoted for the stage test. Speed was varied from 80 to 100 percent of design and the flow was varied from open throttle to surge.

Since the passages are quite small for these rotors (radial spans at stations 1, 2, and 3 are 3.312, 1.753, and 1.039 cm, respectively), only one station was surveyed at a time to minimize disturbances to the flow. Also, because of the small probe sizes desired, separate probes were used to measure flow angle, total temperature, and total pressure. Angle probes were installed at each station and angle distributions were measured for each desired operating point on the map. The test package was shutdown and the angle probes replaced with total pressure probes. The operating points were reset and the total pressure probes set according to the previously determined angle distribution. The process was repeated for the temperature measurements. Consequently, it was necessary to set the flow rate and speed of a particular operating point three different times (for measurements of flow angle, temperature, and total pressure). The repeatability which could be obtained in setting flow rate and speed for these surveys was checked on different days with the angle probe. Repeatability of the angle measurements for different test days was 1 or less.

Calculation Procedure

Overall performance.—Stage efficiency values are based on the arithmetic average of the four total pressure and total temperature values from the midspan probes at station 7 and the arithmetic average of the four total temperatures and eight total pressure values from the rakes located at station 0. These values were used to

determine actual and ideal values from tables of gas properties.

Overall rotor performance for the rotor only test is not based on measured quantities from hub to shroud but is derived from a calculated total pressure at station 3. This total pressure is calculated iteratively from the equations (symbols defined in appendix A) in appendix B using the following quantities: (1) flow path area, (2) mass flow rate, (3) measured static pressures on the hub and shroud, (4) an average tangential component of velocity obtained from the actual enthalpy rise to station 7, (5) an average wheel speed at rotor 2 exit, and (6) an assumed aerodynamic blockage of 2 percent. This value of aerodynamic blockage was arbitrarily selected in order to match the calculated total pressure result with the overall performance results from the surveys. This method of obtaining rotor performance was used since survey results were not obtained over the entire rotor map because of the large amount of time required to obtain one operating point (~ 2 hr).

Survey performance of rotor only test.—The overall results from the surveys are mass-averaged total temperature and energy-averaged total pressure. These values and the blade element data were calculated using a specific heat ratio of 1.4. Since static pressures could be measured only on the shroud at stations 1 and 2 and since it was necessary to correct the thermocouple readings for Mach number effects, the following procedure was used to obtain the static pressure gradient:

- (1) The temperature was corrected assuming a constant static pressure from shroud to hub equal to the measured shroud value.
- (2) This result and the measured mass flow rate from the flow nozzle were input to the computer code of reference 4.
- (3) The resultant static pressure gradient from step 2 was used to correct the raw temperature readings for Mach number for subsequent input to the computer code.

Steps (2) and (3) were repeated (only about one cycle was required) until the static pressure gradient obtained did not change. In order to match the mass flow rate measured with the flow nozzle, it was necessary to reduce the flow angle distribution from hub to shroud by a constant amount (approximately 9° to 11.5° for station 2 and 7° to 9.5° for station 3 depending on the flow point). Flow angle rather than total pressure was adjusted since it was judged improbable that the pressures would be significantly in error since they were measured on scanivalves that were continuously calibrated with known high and low pressures with a port open to atmosphere for a check against barometric readings. Values of total pressure measured when the probes were retracted out of the flow stream were slightly above measured static pressures at that point indicating no leakage occurred between impact head and transducer for the total pressure measurements. All values quoted are based on the angle distribution corrected to satisfy continuity. Conditions at the survey stations were translated to the blade leading and trailing edges using the computer code of reference 4. The static pressure gradient at the leading and trailing edges obtained from the code were matched to measured shroud static pressures at the edges. The blade element data are based on the translated values of the measured quantities and the matched static pressure profiles at leading and trailing edges.

Results and Discussion

The results of this investigation are presented in three parts: overall stage performance for three values of rotor tip clearance, overall performance from the rotor only test, and blade element data for rotors 1 and 2. Overall stage performance is given in table V. Static pressures measured through the stage are given in tables VI and VII. Rotor performance for the rotor only test is given in table VIII. Static pressure ratio along the rotor shroud for the rotor only test is given in table IX. Data at each survey station are given in tables X to XII. Blade element data are given in tables XIII and XIV.

Overall Stage Performance

Overall performance for the stage at the medium clearance is shown in figure 8. Peak efficiency is fairly constant for all speed lines from 50 to 100 percent of design flow with a maximum efficiency of 0.772 at 90-and 95-percent speed. Peak efficiency at 100-percent speed is 0.767 at a pressure ratio of 2.588.

A comparison of the performance obtained with the large, medium, and small clearances is given in figures 9 and 10 for 90- and 100-percent speed. Both pressure ratio and temperature ratio increase as clearance is reduced with a corresponding increase in efficiency (fig. 9). Crossplots of peak efficiency and peak pressure ratio for each clearance at 100-percent speed are given in figure 10. Maximum efficiency and pressure ratio occur at the smallest clearance where peak efficiency was 0.774 at a pressure ratio of 2.613 at 95.8 percent of design flow. The data indicate a linear variation with clearance of both rotors with about a 0.024 change in efficiency for each 0.01 change in clearance as a percent of a mean radial span. Some of the effect due to clearance could be attributed to an area ratio change between rotor 2 exit and rotor 1 inlet which would allow more diffusion through the blade rows. The area ratio (rotor 2 exit over rotor 1 inlet) increased by 1.3 percent as clearance was increased from the smallest to the largest clearance.

The static pressure ratio through the stage at peak pressure ratio and peak efficiency for the small clearance

Figure 8. - Stage performance for medium clearance.

at 100-percent speed is shown in figure 11 with the design static pressure distribution. The static pressure ratio at peak efficiency at rotor 1 exit is about 6 percent lower than design and at the exit of rotor 2 it is about 13 percent lower than design. The lower than design pressure rise results in a mismatch between rotor and stator.

Static pressure ratio as a function of mass flow ratio is shown is figure 12 for the medium clearance. At the one-third axial chord position of rotor 1 for 70- and 80-percent speed the static pressure ratio initially increases as flow is decreased; however, eventually a positive pressure ratio as a function of mass flow rate characteristic occurs, indicating that the rotor is stalled or near stall. Dynamic pressure traces obtained with the rotor only test indicated rotating stall occurred in the rotor at a flow point consistent with that shown in figure 12 where the rotor pressure ratio characteristic is zero or slightly positive.

Overall Rotor Performance from Rotor Only Test

Overall rotor performance as calculated per the Calculation Procedure section is presented in figure 13.

The integrated values obtained from the survey data at station 3 are also shown in the figure. The performance is referenced to plenum conditions since surveys at station 1 were not taken at all flow points. Calculated values are in good agreement with measured values. Peak pressure ratio from the survey data is 2.982 at a mass flow ratio near stall. Maximum efficiency at 100-percent speed as obtained from the survey data is 0.871 at a pressure ratio

Figure 9. - Effect of radial clearance over rotor tips on stage performance at 90- and 100-percent design speed.

Figure 10. - Variation of peak stage efficiency and peak stage pressure ratio with radial clearance at design speed,

Figure 11. - Static pressure ratio distribution at 100-percent design speed for stage test at small clearance for peak efficiency and peak pressure ratio.

Figure 12. - Shroud static pressure ratio at various stations for medium clearance stage test,

Figure 13. - Rotor performance at station 3 from rotor only test (referenced to plenum conditions).

of 2.952. The performance of the rotor referenced to station 1 is given in table VIII, part (c), and shows that peak efficiency at 100-percent speed is 0.886 at a pressure ratio of 2.971. Approximately 0.008 of the efficiency difference is attributable to the total pressure difference between stations 1 and 0 and approximately 0.007 is

Figure 14. - Static pressure ratio distribution along shroud at small clearance for rotor only test at 100percent speed.

Axial distance along shroud

from station 1, cm

Radial Distribution of Performance Parameters

The radial distribution of several parameters is presented in figures 15 and 16 for rotors 1 and 2, respectively. Data were taken at 100-percent speed at design flow, peak efficiency flow, and at a flow near stall. The distributions of pressure ratio, efficiency, diffusion factor, and total pressure loss coefficient are given for 10- to 90-percent streamlines from the hub. Design conditions for both rotors are also given.

Rotor 1

Efficiency near the hub is very high and is close to the design value from 10- to 35-percent span from the hub. It falls gradually to about 0.05 less than design at 70-percent span, and then it decreases rapidly toward the tip where it is considerably below design. The fall in efficiency near the tip is due to a large increase in temperature ratio beyond 70-percent span. This is indicative of a high loss region caused either by separation of the flow or by migration of low energy fluid toward the tip region. Pressure ratio is also high near the hub region and slightly exceeds design values. It decreases sharply to 40-percent span where it tends to remain constant.

Figure 15. - Radial distribution of performance for rotor 1 at 100-percent speed,

Figure 16. - Radial distribution of performance for rotor 2 at 100-percent speed.

Rotor 2

Efficiency is very close to design value from 20- to 30-percent span; however, it is significantly below design value over the rest of the span except in the near tip region. Pressure ratio is below design value over the entire span. The total pressure loss coefficient is generally higher than that for rotor 1 and much larger than the design value over most of the span.

Concluding Remarks

A conical-flow stage consisting of a tandem rotor followed by a tandem stator has been evaluated experimentally. Although the rotor performance is considerably below the design value, the performance is still quite good for this size machine. A fair assessment of the concept cannot be made since the reduced rotor pressure ratio at design flow resulted in a flow mismatch with the stator. The measured rotor performance would indicate, however, that the conical-flow concept has potential for achieving a large pressure rise in a single stage at good efficiency. A redesigned rotor based on the measured data coupled with new stator rows that are matched for flow area and incidence could produce a stage total pressure ratio of approximately 2.8:1 with an efficiency in the mid 80's at a 0.3 exit Mach number.

Summary of Results

This report has discussed the overall and blade element performance of a conical-flow compressor having a

tandem rotor and tandem stator. The stage is suitable as the first stage of a high-pressure-ratio two-stage unit. The stage was designed for a pressure ratio of 3.06, first rotor inlet tip speed of 355.7 meters per second, and second rotor exit tip speed of 473.6 meters per second. Overall stage performance was taken from 50 to 100 percent of design speed. Performance at 90- and 100-percent speed for three values of rotor tip clearance was also taken. Rotor only performance was taken from 80 to 100 percent of design speed and detailed blade element data were obtained at 80- and 100-percent speed. The results are as follows:

- 1. At 100-percent speed the peak efficiency for the stage was 0.774 at 95.8 percent of design flow and a pressure ratio of 2.613 for the smallest clearance tested (0.022 of an average radial blade height for both rotors).
- 2. Peak efficiency at design speed decreased by 0.024 for every 0.01 increase in clearance as a fraction of an average radial blade height.
- 3. Peak rotor efficiency at design speed from the rotor only test was 0.871 at a pressure ratio of 2.952.
- 4. The pressure ratio developed by the rotor at design speed and design flow was significantly below the design value. This resulted in a flow mismatch between the rotor and stators.
- 5. In general, rotor blade element efficiency was high near the hub and dropped rapidly near the tip.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, February 18, 1981

Appendix A

Symbols

CL C _p	normal clearance over a rotor, cm specific heat at constant pressure, J/kg-K	K _{mc}	angle between blade mean camber line and meridional direction, deg
D_f	diffusion factor	σ	solidity, ratio of chord to spacing
h	enthalpy, J/kg	ρ	density, kg/m ³
Δh	specific work, J/kg	Φ	entropy function, J/kg-K
i	index	φ	angle between end walls and axial direction,
MFR	mass flow ratio	_	deg
m	mass flow rate, kg/sec	$\overline{\omega}$	total pressure loss coefficient
N	rotative speed, rpm	Subscr	ipts:
NR	number of radial positions	AD	adiabatic
p	pressure, N/cm ²	AVG	average
R	radius, cm	D	design conditions
R_G	gas constant, J/kg-K	cr	critical conditions
T u	temperature, K wheel speed, m/sec	EQ	equivalent conditions, refer to NASA Standard Conditions
u V	absolute velocity, m/sec	H	hub
W	· ·	ID	ideal
Z [']	relative velocity, m/sec axial distance measured along rotor	<i>LE</i>	blade leading edge
Z	centerline, cm	MC	blade mean camber line
α	absolute flow angle measured from	m	meridional direction
-	meridional direction, deg	T	tip
β	relative flow angle measured from	TE	blade trailing edge
	meridional direction, deg	θ	tangential direction
γ	ratio of specific heats	0	inlet plenum
δ	ratio of inlet total pressure to standard sea	1	survey station in front of rotor 1
	level pressure, P'_0/P_{STD} , P_{STD} = 101325.04 NT/m ²	2	survey station between rotors 1 and 2
		3	survey station behind rotor 2
η	efficiency	7	overall measurement station
θ	ratio of rotor inlet total temperature to standard temperature, T'_0/T_{STD} ,	Supers	
	$T_{STD} = 288.15 \text{ K}$, or cylindrical angle, deg	,	absolute total conditions
	- 01D,y		relative total conditions
			relative total conditions

Appendix B

Equations Used in Data Reduction Programs

The following equations were used to calculate overall stages, rotor only, and blade element performance.

Overall Performance

Adiabatic efficiency:

$$\eta_{AD} = \frac{\Delta h_{ID}'}{\Delta h_{\text{actual}}'} = \frac{h_{ID,7}' - h_0'}{h_{\text{actual},7}' - h_0'}$$

Equivalent mass flow rate:

 $\dot{m}\sqrt{\theta}/\delta$

Mass flow ratio:

$$MFR = (\dot{m}/\dot{m}_D)_{EO}$$

Calculated total pressure for rotor:

$$(V_{\theta})_{AVG} = (h'_{1} - h'_{0})/u_{AVG}$$

Assume $V_{m,AVG}$,

$$V_{AVG} = (V_{\theta}^2 + V_{m}^2)_{AVG}^{Y_2}$$

$$h_{AVG} = h_1^2 - V_{AVG}^2/2$$

$$T_{AVG} = \text{function } (h_{AVG})$$

$$p_{AVG} = (p_{hub} + p_{shroud})/2$$

$$\rho_{AVG} = \frac{p_{AVG}}{R_G T_{AVG}}$$

$$\dot{m} = 0.98 \, \rho_{AVG} V_{m,AVG} \pi (R_T + R_H) \, (R_T - R_H)$$

$$imes \cos\left(rac{\Phi_T + \Phi_H}{2}
ight)$$

$$p'_{AVG} = p'_0 e^{\text{EXP}/R_G}$$

where

$$EXP = \Phi' - \Phi'_0 - \Phi + \Phi_0 + R_G \ln(p/p_0)$$

$$\tilde{\Phi} = \begin{cases} T \\ \frac{C_p}{T} & \text{dt} \\ T_{reference} \end{cases}$$

Blade Element Data

Adiabatic efficiency:

$$\eta_{AD} = \frac{\left[(p'_{TE}/p'_{LE})^{(\gamma-1)/\gamma} \right] - 1}{(\Gamma'_{TE}/T'_{LE}) - 1}; \ \gamma = 1.4$$

Diffusion factor:

$$D_f = 1 - \frac{W_{TE}}{W_{LE}} + \frac{(RV_{\theta})_{TE} - (RV_{\theta})_{LE}}{(R_{TE} + R_{LE})\sigma W_{LE}}$$

Total pressure loss coefficient:

$$\overline{\omega} = \frac{(p_{ID}^{n})_{TE} - p_{TE}^{n}}{p_{LE}^{n} - p_{LE}}$$

Critical velocity:

$$V_{cr} = \left(\frac{2\gamma}{\gamma + 1} R_G T'\right)^{1/2}$$

Energy-averaged efficiency:

$$\eta = \frac{\left\{ \frac{\sum_{i=1}^{NR} \left[(p'/p_0')^{(\gamma-1)/\gamma} \right] \Delta \dot{m}_i}{\sum_{i=1}^{NR} \Delta \dot{m}_i} - 1 \right\}}{\frac{\sum_{i=1}^{NR} \Delta \dot{m}_i T_i'}{T_0' \sum_{i=1}^{NR} \Delta \dot{m}_i} - 1}$$

Incidence angle:

$$\beta_{LE} - (\kappa_{mc})_{LE}$$

Deviation angle:

$$\beta_{TE} - (\kappa_{mc})_{TE}$$

References

- Klassen, Hugh A.; Wood, Jerry R.; and Schumann, Lawrence F.: Experimental Performance of a 16.10-Centimeter-Tip-Diameter Sweptback Centifugal Compressor Designed for a 6:1 Pressure Ratio. NASA TM X-3552, 1977.
- Klassen, Hugh A.; Wood, Jerry R.; and Schumann, Lawrence F.: Experimental Performance of a 13.65-Centimeter-Tip-Diameter Tandem-Bladed Sweptback Centrifugal Compressor Designed for a Pressure Ratio fo 6. NASA TP-1091, 1977.
- Bryce, C. A.; et al.: Advanced Two-Stage Compressor Program Design of Inlet Stage. (AT-6133-R, AiResearch Mfg. Co.; NASA Contract NAS3-15324). NASA CR-120943, 1973.
- Katsanis, Theodore; and McNally, William D.: Revised Fortran Program for Calculating Velocities and Streamlines on the Hub-Shroud Midchannel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct. I—User's Manual. NASA TN D-8430, 1977.

TABLE I.—ROTOR AND STAGE DESIGN PARAMETERS

Stage overall design performance:	
Total pressure ratio	3.0
Adiabatic efficiency	
Total temperature ratio	
Critical velocity ratio at exit	0.3
Rotor 1 inlet tip speed, m/sec	
Equivalent mass flow rate, kg/sec	
Flow rate/unit annulus area, kg/sec/m ²	153.
Equivalent speed, rpm	
Rotor 1 overall design performance:	
Total pressure ratio	1.7
Adiabatic efficiency	
Total temperature ratio	
Rotor 2 overall design performance:	
Total pressure ratio	1.82
Adiabatic efficiency	
Total temperature ratio	
Inlet equivalent mass flow rate, kg/sec	
Combined rotor overall design performance:	
Total pressure ratio	3.24
Adiabatic efficiency	

TABLE II.—BLADE ELEMENT DATA—DESIGN CONDITIONS

[Mass flow ratio, 1.0; design speed, 100 percent; plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]

(a) Rotor 1

	ROTOR LEADING EDG	DING E	DOE								
	RADIUS (CM)	X Z Z	STREAM	PRESSURE PLENUM TOTAL PRESSURE (P·/P)	TOTAL TEMPERATURE/ PLENUM TEMPERATURE (T**)	CRITICAL C CRITICAL C CRIOCITY W RATIO (W/W _{Cr}) (C	ABSOLUTE A CRISTICAL VELOCITY RATIO (V/V _C r)	SSOLUTE FLOW ANGLE (a)	RELATIVE FLOW ANGLE (B)	INCIDENCE ANGLE	
	2.19 3.19 4.74 6.74 8.90 8.90 8.90 8.90	40800 60446 64466	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.0000	0.620 .883 1.1029 1.123		00	586. 589. 589. 589. 589. 580 580 580 580	24222 200 200 200 200 200 200 200	
*	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AILING	XXXXXX EDGE	*********	· 法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法	X X X X X X X X X X X X X X X X X X X	*****	***		***	****
	RADIUS (CM)	SPAN FROM	STREAM LINE	TOTAL PRESSURE/ PLENUM TOTAL PRESSURE (P'/P')	TOTAL TEMPERATURE/ PLENUM TOTAL TEMPERATURE (T'/T')	EFFICIENCY REFERENCED TO PLENUM CONDITIONS	RELATIVE CRITICAL VELOCITY RATIO (M/W _{Cr})	ABSOLUTE CRITICAL VELOCITY RATIO (V/V Cr)	FLOW FLOW ANGLE	E RELATIVE FLOW ANGLE (B)	FELATIVE DEVIATION FLOW ANGLE ANGLE (B)
		8.59.6 92.7 100.0	100000 00000 00000	1.7407 1.7656 11.7805 1.8075 1.8205	1.1733 1.1734 1.1824 1.2069 1.2124	0.9799 .9841 .9724 .9487 .88816 .8698	0 7.7.7.28 2.4.7.28 2.4.7.28 2.4.7.28	0 7.0.0.0.0.0 4.0.0.0.0.0 4.0.0.0.0.0.0	6471. 647. 747. 746. 7669 7669	28.877 50.537 50.531 55.456 55.456 55.786 55.786	14. 11. 14. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18
<u> </u>	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	XXXX DATA A	***** T TRAIL		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	****	*****	**************************************	**************************************	*****	****
	STREAM LINE	PRESSURE RATIO	URE T	EMPERATURE Ratio	EFFICIENCY	DIFFUSION	LOSS	L PRES COEFFI	SURE		
	25.0 25.0 50.0 75.0 100.0	1.746 1.769 1.799 1.807	กละเลย เกละเลย	1.1733 1.1774 1.1824 1.2069 1.2124	0 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7	0.397 444 420 420 448 448		0.066 .027 .036 .137			

[Mass flow ratio, 1.0; design speed, 100 percent; plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.] TABLE II.—Concluded. BLADE ELEMENT DATA—DESIGN CONDITIONS

(b) Rotor 2

			*	L		*	T	 _
			********	DEVIATION ANGLE	7.791 5.018 5.418 7.289	* * * * * * * * * * * * * * * * * * *		5
INCIDENCE	ANGLE	20.00 20.00	***	E RELATIVE FLOW ANGLE (B)	50.00 50.00 50.00 50.00 57.00 57.00 57.00 59.00 50 50 50 50 50 50 50 50 50 50 50 50 5	*****		
RELATIVE	ANGLE (B)	47.00.00 50.00	****	ABSOLUT FLOW Angle (a)	566 59.8666 59.8666 59.8388 65.9617 65.965	**************************************	RE ENT	
ABSOLUTE	ANGLE (a)	4 www 4	X X X X X X X X X X	CRITICAL CRITICAL VELOCITY RATIO (V/V Cr)	0.97 0.09 0.09 0.09 0.09 0.09 0.09 0.09	****	COEFFICIEN	0.029 .015 .022 .052 .131
BSOLUTE	RATIO (V/V _{Cr})	0.644 .654 .707 .720 .724	CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RELATIVE CRITICAL VELOCITY VATIO (N/W _{Cr})		******	DN TOTAL	
	CKITICAL VELOCITY V RATIO CW/W Cr)	0 	米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米	EFFICIENCY REFERENCED TO PLENUM CONDITIONS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X X X X X X	DIFFUSION	0.2.0 0.2.0 0.00 0.00 0.00 0.00 0.00 0.
TOTAL	PLENUM TOTAL EMPERATURE T'/T')	1.1733 1.1734 1.1824 1.1895 1.2069 1.2126	·宋定宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋宋	TOTAL TEMPERATURE/ PLENUM TOTAL TEMPERATURE (1'71')	1.4103 1.4006 1.3985 1.4127 1.4476 1.4514	米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米	EFFICIENCY	0.992 .993 .987 .965 .916
TOTAL	PLENUM TOTAL PRESSURE (P'/P')			TOTAL PRESSURE/ PLENUM TOTAL PRESSURE (P'/P')	3.3296 3.2421 3.2157 3.2752 3.267	KKKKKKKKKKK TRAILING EDGE	TEMPERATURE RATIO	1.2019 1.1896 1.1828 1.1876 1.1994
STREAM	7	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XXXXX EDGE	STREAM Line	25.0 25.0 75.0 75.0	≆ ⊢	SURE	9583355 583355 583355
12		34.8 60.1 81.3 92.7	AILING	SPAN FROM	25.0 73.6 89.0	***** DATA A	PRESS RATI	1.90
RADIUS X		448888 862.86 84888 84888 8488	AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RADIUS (CM)	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	ELEMENT DATA	STREAM	25.0 55.0 75.0 99.0

TABLE III.—BLADE DESIGN PARAMETERS

	Rotor 1	Rotor 2
Tip diffusion factor, D_f	0.443	0.493
Tip relative velocity ratio, W_{TE}/W_{LE}	0.707	0.655
Inlet hub to tip radius ratio	0.45	0.746
Inlet tip relative Mach number	1.256	0.981
Mean blade height to mean chord ratio	1.028	0.84
Tip solidity, σ	1.34	1.57
Number of blades	20	40
Mean blade height, cm	2.195	1.256
	Stator 1	Stator 2
Hub inlet Mach number	0.848	0.423
Hub solidity, σ	1.891	1.63
Number of vanes	53	53
Mean blade height to mean chord ratio	0.604	0.494
Tip diffusion factor, D_f	0.57	0.49

TABLE IV—INSTRUMENTATION STATIONS

(a) Static pressure tape

		(E) 50	atic pressu	re taps		_
Station	Shro	ud coordi	inates	Hu	b coordii	nates
	Z,	R,	θ, deg	Z,	R,	θ, deg
1.0	0	4,597	0			
1.02	.508	4.640	l ŏ			
1.04	1.016	4.740	l ŏ	*****		
1.1	1.417	4.859	350			
1.2	1.783	5.020				
1.3	2.148	5.210	1 1	 		
1.4	2.509	5.420	▼		****	
2.0	2.855	5.662	230			
2.0	2.855	5.662	325			
2.0	2.855	5.662	45			
2.1 2.2	3.195	5.920	łł		*	
2.2	3.393	6.050	1		*****	
2.3	3.632 3.906	6.240 6.470	♦		*	
3.0	4.272	6.789	241.2	4,272	5.784	209.7
J.U	7.272	0.767	239.2	7.2/2	3.764	211.7
	l 1		237.2	l		213.7
\ \ \	₩	♥	235.2	! ♦ ∣		217.7
a _{3.1}	4.719	7.186	353.8	4.719	6.281	353.8
3.2	4.975	7.409	344.4	4.996	6.561	344.4
3.3	5.227	7.620	348.1	5.273	6.779	348.1
3.4	5.456	7.815	339.6	5.532	7.059	339.6
4.0	5.847	8.098	220.8	5.903	7,358	220.8
1 1	1	1	219.1	1		219.1
			217.4		1 1	217.4
1	L	I	215.7		↓	215.7
. ▼	▼	V 1	314.0	•	₹ .	214.0
4.1	6.096	8.263	32.6	6.096	7.506	32.6
4.2	6.520	8.542	30.7	6.515	7.813	30.7
4.3	6.944	8.771	29.9	6.939	8.047	29.9
4.4	7.368	8.961	29.8	7.335	8.255	29.8
5.0	8.182	9.301	236.9	8.453	8.705	236.9
			235.2			235.2
			233.5 231.8			233.5
†	₩	₩ .	231.8	I	L	231.8 230.1
7.0	9.271	11.71	145	▼	V	230.1
'ï	7.271	**-7	150			
1	·	1 1	155			
V		▼]	160			
						ليستسب

⁽b) Fixed instrumentation

Station	Туре	Quantity		Location				
			Z, cm	R,	θ, deg			
0	Total pressure	8	S	See plenum-figure 5				
0	Total temperature	4	See plenum-figure 5					
7	Total pressure	4	9.592	11.71	0, 90, 180, 270			
7	Total temperature	4	9.592	11.71	15, 105, 195, 258			

(c) Survey instrumentation—rotor only test

Station	Туре	Quantity	θ, deg
1.0	Total pressure	1	240
1.0	Total temperature	1 1	240
1.0	Angle	l I ,	240
2.0	Total pressure	1 1	150
2.0	Total temperature	1 1	150
2.0	Angle	; ; ;	150
3.0	Total pressure	i i	210
3.0	Total temperature	1 I	210
3.0	Angle	₹	210

^aLast static station for rotor only test.

TABLE V.—OVERALL STAGE PERFORMANCE

90	0.865 .831 .809 .779	1.743 2.179 2.220 2.247	0.550 .772 .777 .773	1.3118 1.3220 1.3284	90	0.870 .837 .815	1.759 2.160	0.562 .765	1.311 1.321
	.831 .809 .779 .932 .902	2.179 2.220 2.247	.772 .777	1.3220					1.321
	.831 .809 .779 .932 .902	2.179 2.220 2.247	.772 .777	1.3220	1			.772	
95	.809 .779 .932 .902	2.220 2.247	.777				2.206		1.328
95	.779 .932 .902	2.247				.799 .764	2.226 2.240	.771 .763	1.333 1.339
95	.902	1 900		1.3357		.747	2.236	.754	1.3419
	.902		.565	1.3516	95	.902	2.360	.767	1.3615
1		2.374	.775	1.3609	1 "	.895	2.377	.770	1.3635
j	.892	2.403	.779	1.3647	1	.885	2.399	.772	1.3668
Ì	.871	2.430	.778	1.3702		.871	2.412	.772	1.3696
100	.995	2.048	.578	1.3924	100	.999	1.986	.549	1.3931
	.971	2.577	.770	1.4020		.983	2.485	.746	1.3971
İ	.958	2.613	.774	1.4070	ì	.975	2.528	.756	1.3999
1	.934	2.66	.771	1.4172		.951	2.588	.767	1.4059
	Medi	um clearanc	e		ļ	.915	2.620 2.619	.759 .752	1.4162 1.4199
50	0.507	0.016	0.22	1.074				<u></u>	
3 0	.415	0.916 1. 26 1	-0.33 .724	1.074		Large	clearance		
ł	.398	1.280	.745	1.098	90	0.864	1.685	0.513	1.3122
Į.	.359	1.300	.755	1.103	, ~	.827	2.125	.745	1.3208
	.313	1.295	.717	1.107		.816	2.138	.748	1.3224
į	.256	1.288	.680	1.110		.785	2.184	.752	1.3309
		5155				.749	2.194	.744	1.3368
70	.653	1.387	.548	1.179		,			
Ĭ	.594	1.615	.754	1.195	95	.900	2.266	.740	1.3550
	.572	1.642	.763	1.120	}	.873	2.345	.756	1.3637
]	.554	1.650	.762	1.202	Ì	.852	2.372	.756	1.3691
ļ	.528	1.646	.752	1.203		.832	2.382	.754	1.3723
,	.422	1.599	.685	1.209	1	}]	
					100	.981	2.050	.578	1.3928
80	.753	1.572	.571	1.241	1	.970	2.439	.731	1.3954
	.736	1.783	.725	1.248		.954	2.511	.748	1.4009
Į	.709	1.848	.756	1.254	1	.947	2.518	.750	1.4014
]	.651 .5 89	1.911	.761	1.267 1.266	1	.925	2.545	.752 .738	1.4053 1.4147
	.569	1.842 1.828	.715 .705	1.266	1	.862	2.553	./36	1.414/

TABLE VI.—STATIC PRESSURE RATIO DISTRIBUTION AT 100 PERCENT SPEED FOR STAGE TEST AT SMALL CLEARANCE FOR PEAK STAGE EFFICIENCY AND PEAK STAGE PRESSURE RATIO

Station		Station pressu	re ratio, p/p_0'	
	Peak stage efficies	ncy (<i>MFR</i> = 0.958)	Peak stage pressure	ratio (<i>MFR</i> = 0.934)
	Shroud	Hub	Shroud	Hub
1.0	0.869		0.878	
1.02	.834	*****	.844	
1.04	.811		.824	*****
1.1	.799		.816	****
1.2	.896		.954	****
1.3	1.102		1.154	*****
1.4	1.312		1.342	****
2.0	1.333		1.369	~
2.0	1.358	*****	1.393	
2.0	1.335	*****	1.371	
2.1	1.356	*****	1.395	*****
2.2	1.462		1.507	,
2.3	1.632		1.680	
2.4	1.890		1.936	
3.0	1.928	1.683	1.957	1.712
- 1 -	1.926	1.620	1.961	1.650
- ↓	1.916	1.659	1.953	1.685
	1.956	1.707	1.992	1.734
3.1	1.846	1.849	1.943	1.894
3.2	2.133	1.936	2.191	2.041
3.3	2.189	2.125	2.242	2.191
3.4	2.278	2.170	2.346	2.226
4.0	2.233	2.154	2.313	2.236
	2.237	2.151	2.310	2.236
	2.227	2.133	2.308	2.217
•	*****	2.123		2.203
	2.230	2.134	2.310	2.217
4.1	2.352	2.285	2.419	2.356
4.2	2.430	2.384	2.495	2.453
4.3	2.482	2.423	2.542	2.487
4.4	2.466	2.452	2.528	2.512
5.0	2.461	2.438	2.518	2.497
	2.458	2.443	2.517	2.502
	2.457	2.445	2.519	2.505
	2.452	2.443	2.507	2.505
7.0	2.455	2.441	2.514	2.503
7.0	2.477	*****	2.533	
	2.475	*****	2.535	
- ↓	2.478	*****	2.536	*****
▼	2.473	*****	2.533	

TABLE VII.—STATIC PRESSURE RATIO AT VARIOUS STATIONS FOR MEDIUM CLEARANCE STAGE TEST

Percent design	Mass flow ratio.					Static	pressure	ratio, p	/Pó				
equivalent	MFR						Static	n					
speed, $(N/N_D \times 100)_{EQ}$		1.1	1.2	1.3	1.4	2.0	2.1	2.2	2.3	2.4	3.0	4.0	5.0
70	0.653	0.914	0.981	1.030	1.122	1.126	1.124	1.138	1.191	1.275	1.312	1.088	1.273
	.594	.940	1.002	1.077	1.159	1.163	1.166	1.195	1.261	1.346	1.363	1.435	1.534
	.572	.949	1.007	1.093	1.169	1.174	1.179	1.212	1.278	1.360	1.382	1.480	1.567
	.554	.955	1.008	1.098	1.173	1.175	1.183	1.218	1.284	1.364	1.390	1.500	1.580
	.528	.963	1.008	1.083	1.161	1.164	1.174	1.214	1.286	1.369	1.388	1.508	1.582
	.422	.989	1.027	1.100	1.174	1.181	1.190	1.219	1.286	1.369	1.397	1.492	1.549
80	.753	.887	.976	1.040	1.170	1.178	1.175	1.204	1.279	1.409	1.476	1.183	1.431
	.736	.897	1.001	1.060	1.188	1.196	1.197	1.232	1.317	1.447	1.488	1.485	1.666
	.709	.908	1.022	1.080	1.204	1.212	1.216	1.256	1.349	1.475	1.507	1.600	1.744
	.651	.941	1.009	1.116	1.228	1.237	1.251	1.296	1.390	1.514	1.546	1.717	1.825
	.589	.950	1.017	1.098	1.212	1.224	1.234	1.275	1.365	1.490	1.525	1.675	1.776
	.569	.956	1.020	1.104	1.217	1.226	1.236	1.276	1.369	1.493	1.525	1.670	1.758
90	.870	.838	.943	1.061	1.214	1.237	1.240	1.286	1.387	1.577	1.672	1.267	1.576
	.837	.862	.995	1.099	1.253	1.274	1.280	1.337	1.451	1.648	1.692	1.831	2.028
	.815	.876	1.018	1.119	1.273	1.291	1.301	1.362	1.483	1.673	1.713	1.910	2.082
	.797	.886	1.034	1.129	1.282	1.302	1.312	1.377	1.501	1.692	1.726	1.949	2.108
	.764	.904	1.054	1.165	1.299	1.324	1.334	1.399	1.520	1.709	1.746	1.995	2.136
	.747	.913	1.047	1.176	1.305	1.327	1.341	1.405	1.525	1.708	1.760	2.000	2.133
100	.999	.776	.825	1.035	1.230	1.274	1.282	1.360	1.511	1.761	1.880	1.397	1.757
	.983	.787	.849	1.063	1.264	1.305	1.314	1.396	1.550	1.813	1.897	2.050	2.319
	.975	.793	.868	1.079	1.280	1.319	1.331	1.416	1.569	1.835	1.903	2.113	2.365
	.951	.811	.924	1.119	1.310	1.351	1.367	1.454	1.616	1.885	1.934	2.214	2.438
	.915	.834	.973	1.171	1.351	1.384	1.403	1.494	1.651	1.915	1.962	2.286	2.481
	.884	.853	1.002	1.206	1.374	1.401	1.426	1.510	1.669	1.913	1.974	2.315	2.495

TABLE VIII.—ROTOR PERFORMANCE FOR ROTOR ONLY TEST

(a) Performance based on calculated total pressure at station 3 referenced to plenum conditions

Percent design	Mass flow	Pressure	Efficiency,	Temperature
equivalent speed,	ratio,	ratio,	70-3	
$(N/N_D \times 100)_{EQ}$	$(\dot{m}/\dot{m}_D)_{EQ}$	P3/P0		T_7/T_0'
80	0.810	1.881	0.885	1.2231
	.743	1.989	.883	1.2452
	.662	2.064	.864	1.2654
	.594	1.987	.821	1.2632
	.461	1.985	.771	1.2800
	.404	1.996	.753	1.2890
90	.919	2.244	.877	1.2948
	.908	2.279	.881	1.2998
	.888	2.338	.886	1.3085
	.824	2.423	.876	1.3266
	.752	2.480	.855	1.3444
95	.977	2.356	.853	1.3241
	.963	2.451	.868	1.3351
	.933	2.581	.881	1.3518
	.887	2.657	.876	1.3659
	.814	2.707	.856	1.3825
100	1.018	2.639	.850	1.3741
	.999	2.805	.868	1.3930
	.977	2.861	.872	1.3997
	.952	2.948	.878	1.4104
	.926	2.955	.867	1.4163
	.883	2.974	.863	1.4214

(b) Performance based on survey results referred to plenum conditions

Percent	Mass flow	Stat	Station 1		Station 2			Station 3		
design equivalent speed, $(N/N_D \times 100)_{EQ}$	ratio, (m/m _D) _{EQ}	Pressure ratio, p'1/p'0	Temperature ratio, .T'_1/T'_0	Pressure ratio, P2/P6	Temperature ratio $T_2^{\prime}/T_0^{\prime}$	Efficiency,	Pressure ratio, P3/P0	Temperature ratio, T_3^2/T_0^2	Efficiency, 70-3	
100 100 100 80	1.00 .95 .88 .77	0.9930 .9934 .9930 .9971	1.0027 1.0030 1.0037 1.0017	1.6734 1.7569 1.7845 1.4261	1.1845 1.2021 1.2158 1.1208	0.859 .864 .834 .883	2.8154 2.9515 2.9823 1.9850	1.3969 1.4161 1.4321 1.2396	0.867 .871 .848 .903	

(c) Performance based on survey results across the rotors

Percent design	Mass flow ratio.	<u> </u>	Rotor 1			Rotor 2			Both rotors			
equivalent speed, $(N/N_D \times 100)_{EQ}$	(m/m _P) _{EQ}	Inlet equiv- alent flow to design mass flow	Pressure ratio, p_2'/p_1'	Temperature ratio, T_2'/T_1'	Efficiency,	Inlet equiv- alent flow to design mass flow	Pressure ratio p ₃ /p ₂	Temperature ratio, T_3'/T_2'	Efficiency,	Pressure ratio, p'3/p'i	Temperature ratio, T'3/T'1	Efficiency,
100 100 100 80	1.00 .95 .88 .77	1.008 .958 .888 .773	1.6852 1.7686 1.7971 1.4302	1.1813 1.1985 1.2113 1.1189	0.887 .891 .863 .905	0.650 .593 .544 .572	1.6824 1.6799 1.6712 1.3879	1.1792 1.1780 1.1779 1.1079	0.894 .897 .888 .910	2.8352 2.9711 3.0033 1.9908	1.3930 1.4119 1.4268 1.2375	0.882 .886 .865 .915

TABLE IX.—STATIC PRESSURE RATIO DISTRIBUTION ALONG SHROUD FOR ROTOR ONLY TEST

AT 100-PERCENT SPEED

Station	St	atic pressure rat	io
[Ma	ss flow ratio, M	FR
[1.000	0.950	0.880
1.0	0.864	0.875	0.898
1.02	.823	.849	.873
1.04	.797	.828	.860
1.1	.770	.815	.851
1.2	.811	.954	1.034
1 1.3	1.054	1.148	1.211
1.4	1.224	1.336	1.350
2.0	1.246	1.347	1.400
2.0	1.258	1.371	1.397
2.0	1.276	1.365	1.411
2.1	1.279	1.387	1.436
2.2	1.375	1.495	1.546
2.3	1.539	1.655	1.710
2.4	1.810	1.916	1.947
3.0	1.937	2.043	2.077
3.0	1.925	2.040	2.076
3.0	1.926	2.033	2.066
3.1	1.931	2.047	2.083
3.1	1.959	2.079	2.116
3.1	1.989	2.107	2.142

TABLE X.—STATION 1 SURVEY DATA

[Pressures referenced to plenum pressure, 101 325.04 N/m²; temperature referenced to plenum temperature, 288.15 K.]

(a) Mass flow ratio, 1.0; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
1.285 1.415 1.468 1.567 1.722 1.925 2.126 2.332 2.484 2.677 2.896 3.086 3.287 3.485 3.698 3.698 4.045 4.156 4.258 4.361 4.465 4.565	1.000 .9990 .9970 .9970 .9950 .9950 .9950 .9980 .9860 .9840 .9810 .9750 .9690 .9690	1.003 1.002 1.001 1.001 1.001 1.002 1.002 1.002 1.002 1.003 1.004 1.006 1.013 1.013	0.8790 .8820 .8860 .8930 .8990 .8990 .8990 .8990 .8960 .8960 .8850 .8770 .8770 .8710 .8690 .8660 .8650	0	0 3.917 5.530 8.525 13.21 19.35 25.42 31.64 36.25 42.09 48.69 54.45 60.52 66.51 72.96 79.11 83.72 86.79 89.86 93.01 94.55 96.16 97.70	0.4332 .4274 .4194 .4054 .3932 .3911 .3911 .3913 .3974 .3999 .4060 .4125 .4186 .4250 .4312 .4317 .4287 .4271 .4288 .4150 .4060 .4060 .4060 .4060

(b) Mass flow ratio, 0.95; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
1.285 1.415 1.468 1.567 1.722 1.925 2.126 2.332 2.487 3.086 3.287 3.485 3.698 3.901 4.045 4.156 4.258 4.361 4.412 4.465 4.516 4.565 4.516 4.565	1.001 1.001 1.000 	1.002 1.002 1.001 1.001 1.001 1.000 1.001 1.000 1.001 1.001 1.001 1.002 1.002 1.002 1.005 1.007 1.033 1.061	0.9875 .8900 .8955 .9015 .9064 .9087 .9090 .9090 .9080 .9042 .9014 .8982 .8941 .8895 .8850 .8850 .8850 .8815 .8750	Ō	0 3.917 5.530 8.525 13.21 19.35 25.42 31.64 36.25 42.09 48.69 54.45 60.52 66.51 72.96 79.11 83.72 86.79 89.86 93.01 94.55 96.16 97.70 99.17	0.4182 .4132 .4002 .3878 .3773 .3724 .3697 .3719 .3745 .3782 .3822 .3871 .3938 .4014 .4034 .4010 .3977 .3960 .3905 .3842 .3598

^{*}Static pressure ratio obtained as explained in Calculation Procedures section.

TABLE X.—Concluded. STATION 1 SURVEY DATA

[Pressures referenced to plenum pressure, 101 325.04 N/m²; temperature referenced to plenum temperature, 288.15 K.]

(c) Mass flow ratio, 0.88; speed, 100 percent design

1.285 1.003 0.9045 0 3.917 0.3795 1.468 .9072 5.530 .3737 1.567 .9105 8.525 .3665 1.722 .9152 13.21 .3560 1.925 .9190 19.35 .3474 2.126 .9210 25.42 .3428 2.332 .9980 .9219 31.64 .3385 2.484 .9215 36.25 .3395 2.677 .9208 42.09 .3411 2.896 .9190 48.69 .3453 3.086 .9970 .9172 54.45 .3473 3.287 .9960 .9150 60.52 .3502 3.485 .9950 .9123 66.51 .3543 3.698 .9940 .9090 72.96 .3596 3.901 .9920 .9059 79.11 .3625 4.045 .9910	Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
4.516 .9/30 1.01/ .89/8 99.17 .3140 4.565 .9610 1.039 .8975 99.17 .3140 4.5978980 - 100.00	1.415 1.468 1.567 1.722 1.925 2.126 2.332 2.484 2.€77 2.896 3.086 3.287 3.698 3.901 4.045 4.156 4.258 4.361 4.465 4.565	.9980 .9970 .9960 .9950 .9940 .9920 .9910 .9870 .9850 .9820 .9780	1.002 1.003 1.003 1.004 1.005 1.009 1.017	.9072 .9105 .9152 .9190 .9210 .9215 .9208 .9190 .9172 .9150 .9123 .9090 .9059 .9025 .9009 .8989 .8989 .8989 .8980 .8978	0	3.917 5.530 8.525 13.21 19.35 25.42 31.64 36.25 42.09 48.69 54.45 60.52 66.51 72.96 79.11 83.72 86.79 89.86 93.01 94.55 96.16 97.70	.3737 .3665 .3560 .3474 .3428 .3385 .3395 .3411 .3453 .3502 .3543 .3596 .3625 .3680 .3695 .3639 .3593 .3593 .3593 .3593

(d) Mass flow ratio, 0.77; speed, 80 percent design

1.468 1.567 1.001 .9337 5.530 .3169 1.722 1.925 .9400 13.21 .301 1.925 .9435 19.35 .2919 2.126 .9458 25.42 .2856 2.332 .9460 31.64 .2850 2.484 .9450 36.25 .2886 2.677 1.000 .9450 36.25 .2886 2.896 1.000 .9432 48.69 .2907 3.086 1.000 .9421 54.45 .293 3.485 .9990 1.000 .9375 66.51 .302 3.698 .9980 1.000 .9351 72.96 .306 3.901 .9980 1.001 .9320 79.11 .314 4.045 .9960 1.001 .9300 83.72 .316 4.156 .9950 1.001 .9284 86.79 .316 4.258 .9930 1.002 .9270 89.86 .3150	Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
4.412 .9900 1.003 .9252 94.55 .312 4.465 .9860 1.005 .9245 96.16 .304 4.516 .9840 1.009 .9240 97.70 .301	1.415 1.468 1.567 1.722 1.925 2.126 2.332 2.484 2.677 2.896 3.086 3.287 3.485 3.698 3.901 4.045 4.156 4.258 4.361 4.465 4.516	1.000 1.000 1.000 .9990 .9980 .9980 .9950 .9950 .9910 .9900 .99860	1.002 1.001 1.000 1.000 1.001 1.001 1.001 1.002 1.002 1.003 1.005 1.009	.9337 .9364 .9400 .9435 .9458 .9460 .9450 .9452 .9432 .9432 .9431 .9375 .9351 .9375 .9351 .9320 .9300 .9284 .9270 .9262 .9252 .9252	ō	3.917 5.530 8.525 13.21 19.35 25.42 31.64 36.25 42.09 48.69 54.45 60.52 66.51 72.96 79.11 83.72 86.79 89.86 93.01 94.55 96.16 97.70	0.3211 .3169 .3011 .2919 .2858 .2853 .2880 .2876 .2902 .2931 .2985 .3027 .3047 .3145 .3150 .3123 .3123 .3123 .3123 .3123

^{*}Static pressure ratio obtained as explained in Calculation Procedures section.

TABLE XI.—STATION 2 SURVEY DATA [Pressures referenced to plenum pressure, 101 325.04 N/m²; temperature referenced to plenum temperature, 288.15 K.]

(a) Mass flow ratio, 1.0; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
3.909 4.040 4.091 4.141 4.189 4.291 4.393 4.546 4.698 4.850 4.998 5.150 5.303 5.404 5.510 5.612	1.767 1.790 1.786 1.767 1.714 1.670 1.646 1.656 1.655 1.665 1.6661	1.187 1.187 1.186 1.182 1.173 1.166 1.163 1.168 1.168 1.168 1.173	1.237 1.240 1.245 1.248 1.253 1.255 1.257 1.256 1.254 1.252 1.251 1.251 1.253 1.256	52.31 50.20 50.02 49.14 46.49 43.66 39.70 40.76 37.49 35.73 33.52 32.69 40.49 50.46 58.23	0 7.461 10.37 13.27 16.02 21.81 27.62 36.31 45.01 53.70 62.10 70.80 79.50 85.29 91.37	0.7325 .7436 .7367 .7329 .6842 .6518 .6324 .6541 .6356 .6452 .6451 .6515 .6476
5.662			1.260		100.00	

(b) Mass flow ratio, 0.95; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
3.909 4.040 4.091 4.141 4.189 4.291 4.393 4.546 4.698 4.698 5.150 5.303 5.404 5.510 5.612 5.662	1.825 1.850 1.851 1.838 1.798 1.754 1.737 1.737 1.739 1.742 1.754 1.770 1.778	1.199 1.197 1.195 1.194 1.186 1.179 1.176 1.183 1.185 1.186 1.191 1.220 1.244 1.255	1.292 1.298 1.302 1.306 1.312 1.316 1.322 1.325 1.326 1.328 1.331 1.334 1.338 1.348 1.348	53.12 52.72 52.62 51.72 49.62 47.46 44.46 44.64 44.99 43.14 39.87 40.31 48.17 54.62 59.11	0 7.461 10.37 13.27 16.02 21.81 27.62 36.31 45.01 53.70 62.10 70.80 79.50 85.29 91.37 97.22	0.7200 .7296 .7273 .7159 .6866 .6537 .6131 .6335 .6330 .6320 .6378 .6451 .6472

^{*}Static pressure ratio and flow angle obtained as explained in Calculation Procedure section.

TABLE XI.—Concluded. STATION 2 SURVEY DATA

[Pressures referenced to plenum pressure, 101 325.04 N/m²; temperature referenced to plenum temperature, 288.15 K.]

(c) Mass flow ratio, 0.88; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
3.909					0	
4.040	1.857	1.204	1.297	56.81	7.461	0.7347
4.091	1.882	1.203	1.303	54.43	10.37	.7442
4.141	1.882	1.201	1.308	54.34	13.27	.7399
4.189	1.867	1.198	1.313	53.81	16.02	.7275
4.291	1.828	1.193	1.321	51.34	21.81	.6972
4.393	1.793	1.188	1.328	49.49	27.62	.6691
4.546	1.755	1.186	1.335	47.37	36.31	.6377
4.698	1.761	1.190	1.341	48.17	45.01	.6362
4.850	1.755	1.191	1.346	49.31	53.70	.6273
4.998	1.756	1.196	1.351	47.55	63.10	.623 8
5.150	1.761	1.211	1.358	46.23	70.80	.6209
5.303	1.768	1.253	1.367	49.40	79.50	.6173
5.404	1.782	1.269	1.376	53.64	85.29	.6195
5.510	1.780	1.279	1.384	58.05	91.37	•6103
5.612	1.788	1.288	1.394	62.64	97.22	.6074
5.662			1.403		100.00	

(d) Mass flow ratio, 0.77; speed, 80 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
3.909 4.040 4.091 4.141 4.189 4.291 4.393 4.546 4.698 4.850 4.998 5.150 5.303 5.404 5.510 5.612 5.662	1.489 1.493 1.487 1.479 1.456 1.435 1.415 1.423 1.419 1.420 1.419 1.416 1.416 1.414	1.123 1.124 1.122 1.120 1.117 1.113 1.113 1.114 1.118 1.122 1.134 1.141	1.150 1.160 1.162 1.164 1.166 1.168 1.171 1.170 1.168 1.166 1.165 1.165 1.164	54.60 52.80 51.60 50.50 48.20 46.00 43.20 42.7(41.02 37.60 35.70 39.20 44.90 53.30	0 7.461 10.37 13.27 16.02 21.81 27.62 36.31 45.01 53.70 62.10 70.50 79.50 85.29 91.37 97.22 100.00	0.6189 .6112 .6043 .5950 .5725 .5500 .5267 .5351 .5358 .5371 .5358 .5371 .5358

^{*}Static pressure ratio and flow angle obtained as explained in Calculation Procedure section.

TABLE XII.—STATION 3 SURVEY DATA

[Pressures referenced to plenum pressure, 101 325.04 N/m²; temperature referenced to plenum temperature, 288.15 K.]

(a) Mass flow ratio, 1.0; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
5.750 5.796 5.814 5.862 5.913 5.964 6.068 6.170 6.271 6.373	3.020 3.012 3.094 3.089 3.012 2.805 2.720 2.691 2.673	1.406 1.407 1.399 1.390 1.378 1.355 1.352 1.362	1.720 1.730 1.734 1.743 1.753 1.764 1.784 1.805 1.825 1.825	60.82 55.35 54.82 54.55 54.55 51.90 49.69 49.78 51.10	0 4.400 6.112 10.76 15.65 20.54 30.56 40.34 50.12 59.90	0.9289 .9245 .9437 .9371 .9091 .8305 .7885 .7667
6.477 6.579 6.680 6.777 6.789	2.706 2.786 2.825 2.675	1.420 1.454 1.463 1.456	1.866 1.887 1.907 1.926	53.22 56.94 60.65 75.95	69.93 79.71 89.49 98.78 100.00	.7484 .7676 .7706 .7011

(b) Mass flow ratio, 0.95; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
5.750 5.796 5.814 5.862 5.914 5.964 6.068 6.169 6.271 6.373 6.476 6.578 6.680 6.776 6.789	3.181 3.167 3.221 3.195 3.103 2.889 2.813 2.810 2.828 2.879 2.952 2.958 2.913	1.414 1.414 1.409 1.400 1.389 1.370 1.375 1.388 1.410 1.443 1.473 1.488 1.481	1.805 1.817 1.821 1.832 1.843 1.855 1.878 1.901 1.924 1.947 1.970 1.993 2.016 2.037 2.039	59.84 58.41 57.97 57.70 57.70 55.67 53.78 53.81 55.05 57.44 60.62 63.50 79.14	0 4.400 6.112 10.76 15.65 20.54 30.56 40.34 50.12 59.90 69.93 79.71 89.49 98.78 100.00	0.9315 .9257 .9257 .9255 .8901 .8092 .7696 .7563 .7502 .7568 .7707 .7716 .7331

^{*}Static pressure ratio and flow angle obtained as explained in Calculation Procedure section.

TABLE XII.—Concluded. STATION 3 SURVEY DATA

[Pressures referenced to plenum pressure, 101 325.04 N/m²; temperature referenced to plenum temperature, 288.15 K.]

(c) Mass flow ratio, 0.88; speed, 100 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
5.750 5.796 5.814 5.862 5.914 5.964 6.068 6.169 6.271 6.373 6.476 6.580 6.776 6.789	3.202 3.184 3.234 3.196 3.103 2.908 2.825 2.821 2.854 2.915 2.995 3.084 2.992	1.415 1.415 1.410 1.401 1.391 1.382 1.389 1.406 1.431 1.466 1.501 1.527	1.821 1.832 1.836 1.848 1.860 1.872 1.898 1.922 1.947 1.972 2.022 2.046 2.070 2.073	59.91 59.91 59.38 59.03 58.89 57.79 57.35 57.61 58.23 60.26 63.62 63.62 66.66 80.86	0 4.400 6.112 10.76 15.65 20.54 30.56 40.34 50.12 59.90 69.93 79.71 89.49 98.78 100.00	0.9300 .9230 .9313 .9145 .8810 .8054 .7625 .7474 .7465 .7554 .7706 .7886 .7449

(d) Mass flow ratio, 0.77; speed, 80 percent design

Radius, cm	Total pressure ratio	Total temperature ratio	Static pressure ratio ^a	Absolute flow angle, deg	Percent span from hub	Mach number
5.750 5.796 5.814 5.862 5.913 5.964 6.068 6.170 6.271 6.373 6.477 6.579 6.680 6.777 6.789	2.069 2.071 2.129 2.138 2.105 2.002 1.947 1.935 1.933 1.942 1.961 1.962 1.855	1.252 1.251 1.249 1.245 1.238 1.222 1.219 1.220 1.229 1.265 1.265	1.381 1.386 1.388 1.393 1.398 1.404 1.415 1.426 1.437 1.449 1.460 1.471 1.482 1.493 1.494	60.25 53.50 52.70 52.00 51.80 49.50 47.40 46.80 47.20 48.90 52.10 55.30 69.10	0 4.400 6.112 10.76 15.65 20.54 30.56 40.34 50.12 59.90 69.93 79.71 89.49 98.78 100.00	0.7789 .7783 .8028 .8031 .7834 .7216 .6817 .6656 .6554 .65543 .6462 .5660

^{*}Static pressure ratio and flow angle obtained as explained in Calculation Procedure section.

TABLE XIII.—ROTOR 1 BLADE ELEMENT DATA
[Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]
(a) Mass flow ratio, 1.0; speed, 100 percent design

_	,		*		·	_		
				DEVIATION ANGLE	122.66.0 122.6.0 125.0 1	****		
	INCIDENCE ANGLE	0000 0000 0000 0000 0000 0000 0000 0000 0000	***************************************	E RELATIVE FLOW ANGLE (B)	200444444 201444444 401760 40180	****		
	RELATIVE Flow Angle (B)	60.063 60.794 60.724 60.838 60.971 60.464 60.718	****	E ABSOLUT FLOW A ANGLE (a)	56.00 56.00	***** ***	SURE	
	BSOLUTE FLOW Angle (a.)	0000		ABSOLUT CRITICA VELOCIT RATIO (V/VCr	0.826 .7466 .715 .715 .723 .723	****	TAL PRESSUR S COEFFICIO	0.056 .061 .072 .072 .074 .080 .101 .196
	ABSOLUTE A CRITICAL VELOCITY RATIO (V/VCr)	0 W444WWW V1W6WW W4V0VWW W4V0VWW W4V0VWW	* * * * * *	RELATIVE CRITICAL VELOCITY CM/W _{Cr})	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****	105	
	RELATIVE A CRITICAL C VELOCITY V RATIO (W/W _C r) (* * * * * * * * * *	EFFICIENCY REFERENCED TO PLENUM CONDITIONS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****	DIFFUSION FACTOR	0.372 .298 .298 .347 .303 .303 .282 .282 .282 .286 .382
	TOTAL EMPERATURE/ CONTROL OF TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL			TOTAL FEMPERATURE/ F PLENUM TOTAL FEMPERATURE	1.1859 1.1672 1.1672 1.1665 1.1665 1.1745 1.2370	*****	EFFICIENCY	0.976 952 952 940 940 911 835
	TOTAL PRESSURE/ I PLENUM PRESSURE I	0.9999 .99990 .99971 .99952 .99528 .99588 .98588 .98588	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PRESSURE/ 1 PLENUM PLENUM PRESSURE 1 (P./P)	1.78 1.68310 1.66310 1.66510 1.66590 1.66590	KKKKKKKKK LING EDGE	TEMPERATURE RATIO	1.1848 1.1661 1.1668 1.1668 1.1654 1.1738 1.2332
	STREAM		KKKKK KKKKKK C EDGE	STREAM LINE		AT TRAI	SURE IO	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
ADING	S SPAN FROM HUB	20.7 47.5 57.4 73.9 87.5 93.7	*** AILIN	SPAN FROM FROM	25.72 26.72 26.72 26.72 26.73 26.73 26.73 26.73	**** DATA	PRES	11111111111111111111111111111111111111
ROTOR LEADING	RADIUS (CM)	24402555556 4402555556	**************************************	RADIUS (CM)	244444446 644676666 64467666666666666666	EL EMENT	STREAM LINE	こいいふざると言う

TABLE XIII.—Continued. ROTOR 1 BLADE ELEMENT DATA [Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]
(b) Mass flow ratio, 0.95; speed, 100 percent design

CCM) SPAN LINE PRESSURE/ TEMPERATURE/ CRIT-PLENUM PLENUM VELOCOMPAGE TOTAL TOTAL RATIO PRESSURE TEMPERATURE (W/W	1.0000 1.0000 0.7 -2 9990	ROIOR IRAILING EDGE RADIUS X SIREAM TOTAL TOTAL EFFICANT COND. RADIUS X SIREAM TOTAL TOTAL TOTAL TO FEE TO PRESSURE TEMPERATURE TO PLENUM PLENUM TO PLENUM TO PLENUM TO PRESSURE TEMPERATURE COND. FROM TOTAL TOTAL TOTAL TO TAL TO PRESSURE TEMPERATURE COND.	14.3 0.1 1.8520 1.1931 0.26.4 .2 1.7620 1.1808 1.1865 1.7630 1.1865 1.1865 1.7830 1.1865 1.7830 1.1859 1.1859 1.1859 1.1859 1.7800 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.1859 1.7860 1.1859 1.2525	**************************************	0.1 1.8520 1.1931 0.997 .2 1.7639 1.1808 .974 .3 1.7048 1.1765 .933 .4 1.7373 1.1840 .929
IIVE ABSOLUTE ICAL CRITICAL SITY VELOCITY RATIO Cr) (V/Vcr)	06 0.339	AKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	99372 93172 93199 93199 93146 93146 93116	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.416 .429 .429 .424
ABSOLUTE RELATIVE FLOW FLOW ANGLE ANGLE (a) (B)	0.00 63.1385 62.3857 62.857 62.756 62.426 62.446 63.155	************ E ABSOLUTE ABSOLUT C CRITICAL FLOW Y VELOCITY ANGLE RATIO (\alpha)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	**************************************	0.007 .052 .113 .107
INCIDENCE ANGLE	10.385 10.180 9.377 8.857 8.456 7.426 7.165 6.446	**************************************	869 2.369 1966 6.766 973 3.6834 940 3.240 1597 1.597	**************************************	

TABLE XIII.—Continued. ROTOR 1 BLADE ELEMENT DATA [Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.] (c) Mass flow ratio, 0.88; speed, 100 percent design

1			_					
	INCI DENCE ANGLE	13.626 12.512 11.908 11.388 10.189 9.829	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RELATIVE DEVIATION FLOW ANGLE ANGLE (B)	20.570 -1.930 32.885 3.085 40.214 4.914 42.531 2.531 45.488 2.531 47.683 1.983 49.012 1.412 50.187 1.287	********		
	RELATIVE I FLOW ANGLE (B)	665 665 665 665 665 665 665 665 665 665	****	E ABSOLUTE FLOW Y ANGLE (a)	52.703 48.372 47.153 47.451 46.153 46.253 55.261	****	SE SNT	
	ABSOLUTE FLOW ANGLE (a)	0		E ABSOLUTI CRITICAL Y VELOCITY V VELOCITY (V/V Cr.	0.828 0.761 7117 717 707 707 7699 695 695	~***********	AL PRESSURE COEFFICIENT	0.007 00.008 00.008 10.
	ABSOLUTE CRITICAL VELOCITY RATIO (V/Vcr)	0 20 20 20 20 20 20 20 20 20 20 20 20 20	****************	RELATIV CRITICA VELOCIT RATIO CW/WCr	0 22.0 24.0 24.0 24.0 24.0 24.0 24.0 24.	** ** ** ** **	10N 10T/ R 1055	
	RELATIVE CRITICAL VELOCITY RATIO (W/WCr)	0.6726 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	;; ****** *****	EFFICIENCY REFERENCE TO PLENUM CONDITIONS	9843 9665 9665 9237 9237 903 808 6870 6522	***	PIFFUS	44444444444444444444444444444444444444
	TOTAL TEMPERATURE/ PLENUM TOTAL TEMPERATURE (T*/T0)	1.0019	**************************************	TOTAL TEMPERATURE/ PLENUM TOTAL TEMPERATURE (T'/T)	1.2010 1.1892 1.1806 1.1900 1.1990 1.2200 1.2585 1.2585	*****	EFFICIENCY	0.997 .982 .977 .940 .928 .823 .713
	PRESSURE/ PLENUM TOTAL PRESSURE (P'/P')	0.99990 .9980 .9981 .9971 .9957 .9957	****	TOTAL PRESSURE/ PLENUM TOTAL PRESSURE (P'/P')	1.8810 1.8000 1.7510 1.7560 1.7560 1.7570 1.750	ILING EDGE	TEMPERATURE RATIO	1.1987 1.1869 1.1883 1.1887 1.1897 1.2176 1.2551
۳	X STREAM AN LINE IDM	0 1.52.4.2.4.2.8.2.	********ING EDGE	STREAM IN LINE		ж	SSURE	88830 75455 7662 7777 7775 7951
R LEADING	RADIUS X (CM) SPAN FROM	747 20 144 35 460 47 725 57 955 66 162 73 527 80 691 83	***** TRAIL	RADIUS % (CM) SPAN FRON	200 200 200 200 200 200 200 200 200 200	******* Element data	REAM PRE	
ROTOR	oc	Nuunnaaaa	**************************************	~	ကတ်တိတ်တိတ်ကိုက်	***************************************	\$18 []	0

TABLE XIII.—Concluded. ROTOR I BLADE ELEMENT DATA [Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]
(d) Mass flow ratio, 0.77; speed, 80 percent design

			*	z	<u> </u>	*	 	
			***	DEVIATION ANGLE	00000000000000000000000000000000000000	* * * * * * * * * * * * * * * * * * *		
	INCIDENCE ANGLE	111.326 10.806 10.115 9.509 9.305 7.814 7.155	***************	E RELATIVE FLOW ANGLE (B)	22.940 35.282 41.652 46.100 47.100 47.100 49.177 50.968	*****		
	ELATIVE FLOW Angle (B)	66663 6663 6633 6633 6633 6633 6633 66	****	ABSOLUT FLOW ANGLE (a)	448.701 448.701 448.701 466.4801 966.48081 966.68081	**************************************	NT NT	
	BSOLUTE R FLOW ANGLE (a)	000000	*****	ABSOLUTE CRITICAL VELOCITY RATIO (V/VCr)	0 66 60 60 60 60 60 60 60 60 60 60 60 60	***	L PRESSURE COEFFICIENT	0051 0088 0077 0084 1124 1366 1366
	BSOLUTE A RITICAL ELOCITY RATIO V/VCr)	0.2260 .2322 .350 .350 .426 .426		RELATIVE CRITICAL VELOCITY RATIO (W/W _C r)	0 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	***	LOSS	0
	RELATIVE AL CRITICAL CI VELOCITY VI RATIO (M/W Cr) (1	0.567 .754 .754 .754 .754 .883 .900 .900	**************************************	EFFICIENCY REFERENCED TO PLENUM CONDITIONS	0.98 9742 9411 9411 9267 9167 8807 7459	*****	DIFFUSION FACTOR	0 4 W W W W W W A A W W C W W W W W W W W W W W W W W W W W
	TOTAL TEMPERATURE/ PLENUM TOTAL TEMPERATURE (T:/T)	1.0000		TOTAL EMPERATURE/ PLENUM TOTAL EMPERATURE T'/T'	1.1221 1.1125 1.1125 1.1126 1.1130 1.1189 1.1251	(*************************************	EFFICIENCY	0 99.09711 99.0971 99.00 99.00 99.00 99.00
	TOTAL PRESSURE/ PLENUM TOTAL PRESSURE (P'P)	11.000.1 10.000.1 10.000.0 10.	AKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TOTAL PRESSURE/ PLENUM TOTAL PRESSURE (P'/P')	1.4870 1.4830 1.4210 1.4210 1.4120 1.4130 1.4130 1.4150	k***** Ling edge	TEMPERATURE Ratio	1.1221 1.1125 1.1125 1.1126 1.1130 1.1189
	STREAM LINE	e	XXXXX EDGE	STREAM LINE		XXXXX T TRAI	SURE IO	n voon m m vo
LEAUING E	SPAN FROM HUS	220.7 547.5 73.9 73.9 93.7	* * * * * * * * * * * * * * * * * * *	SPAN SPAN FROM HUB	2004000 2004000 2004000 2004000	***** DATA A]	PRESSI RATI	24444444444444444444444444444444444444
KUIUK LEAL	RADIUS (CM)	2.747 3.1444 3.7660 3.9555 4.162 4.527 4.527	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	RADIUS (CM)	M444444WW & " W W W W W W W W W W W W W W W W W W	**************************************	STREAM	

TABLE XIV.—ROTOR 2 BLADE ELEMENT DATA
[Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]
(a) Mass flow ratio, 1.0; speed, 100 percent design

	VE ABSOLUTE ABSOLUTE RELATIVE INCIDENCE AL CRITICAL FLOW FLOW TY VELOCITY ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE ANGLE (B)	\$ 0.757 43.069 40.993 -4.007 0.711 37.829 47.430 1.230 0.695 34.114 50.479 3.179 0.718 35.026 50.239 1.939 4.727 30.008 52.302 7.729 28.506 53.094 2.794 4.716 29.495 54.197 3.197 55.899 4.099	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TENCY RELATIVE ABSOLUTE ABSOLUTE RELATIVE DEVIATION CENCED CRITICAL CRITICAL FLOW FLOW ANGLE ANG	30 0.697 1.002 54.042 27.447 8.947 61 .756 .977 53.877 31.624 7.024 62 .807 .861 50.998 38.280 8.580 64 .817 .861 47.744 44.574 6.774 69 .792 .836 50.298 47.218 3.418 55 .762 .856 55.802 47.218 3.418 62 .762 .856 56.802 47.921 279	双次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次次	FFUSION TOTAL PRESSURE	.198 0.183 .293 .004 .270 .063 .233 .063 .261 .228 .36 .351
	DIAL RELATI PERATURE/ CRITIC ENUM VELOCI FOTAL RATIO PERATURE (W/W Cr	1.1859 0.73 1.1672 881 1.1679 881 1.1665 995 1.1665 1.95 1.1745 1.91	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	TOTAL TEMPERATURE/ REFERE PLENUM TO PLE TOTAL CONDIT TOTAL CONDIT	1. 5500 1. 5500 1. 5500 1. 5500 1. 5500 1. 5750 1. 5600 1. 56000 1. 5600 1. 5600 1. 5600 1. 5600 1. 5600 1. 5600 1. 5600 1. 56	*****	EFFICIENCY DIF	0 9000 9000 9000 9000 7000 8000 8000 800
	PRESSURE/ TEMPI PLENUM PLEI TOTAL TOTAL (P'.P') (T'.')	11.66.00 11.66.00 11.66.00 11.66.00 11.66.00 11.66.00 11.66.00	*****	PRESSURE/ 1 PLENUM TOTAL PRESSURE 1 (P'.P)		KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	TEMPERATURE RATIO	11.13822 11.15823 11.156933 11.1660 11.10560 11.1058
ING EDGE	X STREAM SPAN LINE FROM HUB	ៈខេត្ត មេតុ ខេត្ត ខេត្ត	KKKKKKKKKK ILING EDGE	SPAN LINE	BHN0000MM	******** ATA AT TRAI	PRESSURE RATIO	1.7255 1.7255 1.6357 1.6199 1.6571 1.6571
ROTOR LEADING	RADIUS (CM)		ROTOR TRA	RADIUS (CM)	NNNNNAAAA 47786910N 196794NN 1118N98891	ELEMENT D	STREAM LINE	9

TABLE XIV.—Continued: ROTOR 2 BLADE ELEMENT DATA [Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]
(b) Mass flow ratio, 0.95; speed, 100 percent design

_			*					
			*****	DEVIATION ANGLE	8.447 7.189 9.551 9.074 7.079 5.026 2.636	**************************************		
	INCIDENCE ANGLE	-2.126 4.521 4.521 4.521 7.528 7.538 7.538 7.538	* * * * * *	E RELATIVE FLOW ANGLE (B)	25.947 31.789 43.026 44.879 46.486 46.486 46.7884 66.7884	***		
	RELATIVE 1 FLOW ANGLE (B)	56.00 56	****	ABSOLUT FLOW ANGLE (a)	56.686 57.679 51.299 51.299 51.299 54.842 56.842 56.812	****	SE INT	
	ABSOLUTE I	445.144 443.271 440.042 339.243 357.243 35.590 51.987	(*********	RABSOLUTE CRITICAL Y VELOCITY RATIO (V/VCr)	0.999999999999999999999999999999999999	****	AL PRESSURE COEFFICIEN	0.165 .005 .007 .007 .211 .300 .403 .318
	ABSOLUTE CRITICAL VELOCITY RATIO (V/Vcr)	0 7,933,933,93 0,48,46,88,86,9 0,48,46,46,46,46	**********	CRITICAL CRITICAL VELOCIT RATIO (W/WCr	0.65 65 65 65 65 66 66 66 66 66	*****	LOSS	084132787
	RELATIVE CRITICAL VELOCITY NATIO (W/WCr)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	 *****	EFFICIENCY REFERENCED TO PLENUM CONDITIONS	9644 9683 9284 9284 8538 8578 8097 7726	***	DIFFUSIC FACTOR	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	TOTAL TETIPERATURE/ PLENUM TOTAL TEMPERATURE (T'/T)	1.1931 1.1868 1.1865 1.1865 1.1859 1.2259 1.2272	******	TOTAL EMPERATURE/ PLENUM TOTAL EMPERATURE	1.59103 1.3910 1.3910 1.37122 1.4320 1.4645 1.4645	********	EFFICIENCY	0.99.00 9.90.00 9.00 9.
	TOTAL PRESSURE/ PLENUM TOTAL PRESSURE (P'/P)	1.8520 1.7620 1.7030 1.7330 1.7390 1.7390 1.7460 1.7560	~*************************************	PRESSURE/ T PLENUM TOTAL PRESSURE T (P'.P)	3.2120 3.1220 2.9120 2.8230 2.830 2.8170 2.8570 2.9250 2.940	KKKKKKKKK LING EDGE	TEMPERATURE RATIO	1.1821 1.1782 1.1663 1.1663 1.1586 1.1798 1.1983 1.1934
EDGE	STREAM		**** EDGE	STREAM Line		XXXXXXIT TRAIL	SURE IO	8660988 41108988 418660988 45860988
NIC	SPAN SPAN FROM HUB	26.28 26.28 26.28 26.28 26.28 26.28 26.28	XXXX AILIN	SPAN FROM HUB	113.0 222.1 312.1 48.2 57.6 66.6 87.3	*****	PRESS RATI	1.65311 66311 1.6631
ROTOR LEA	RADIUS (CM)	44444444444444444444444444444444444444	******* ROTOR TRA	RADIUS (CM)	5.011 5.701 5.701 5.0791 6.063 6.136 6.136 6.236	ELEMENT I	STREAM LINE	a แผ่นจะก่อนขอ

TABLE XIV.—Continued. ROTOR 2 BLADE ELEMENT DATA [Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.] (c) Mass flow ratio, 0.88; speed, 100 percent design

PRESSURE/ TEMPERATURE/ CONTROL OF TEMPERATURE/ CONTROL OF TEMPERATURE CONTROL OF T	1.8810 1.2010 1.8000 1.1892 1.7510 1.1806 1.7560 1.1900 1.7570 1.1990 1.7520 1.2585 1.7830 1.2585	.* * *	PRESSURE/ TEMPERATURE/ R PLENUM PLENUM TOTAL TOTAL PRESSURE TEMPERATURE (P'.P) (T'.T;)	00000000	XXXXXXXXXXXXXXXXXXXXING EDGE	EMPERATURE EFFICIENCY RATIO	1.1755 0.954 1.1714 .994 1.1708 .997 1.1637 .892 1.1732 .834 1.1839 .797 1.1856 .787
RELATIVE ABSOLU CRITICAL CRITICA VELOCITY VELOCI RATIO RATIO (W/WCr) (V/Vcr	0.660 7.797 8.17 8.17 8.17 8.19 6.18 7.67 6.18 6.19 6.18	*****	EFFICIENCY RELA REFERENCED CRIT TO PLENUM VELOC CONDITIONS RAT (M/)	0.9672 0.9782 9404 9404 96019 8638 7788 7788 7212	*****	DIFFUSION FACTOR L	0 30,000,000,000,000,000,000,000,000,000
TE ABSOLUTE RELATIVE IT AL FLOW TY ANGLE ANGLE (a) (B)	48.779 45.159 46.173 47.825 48.5431 43.5431 54.355 54.355 54.355 54.355 55.919 56.724 57.919 56.724 57.919	***************************************	TIVE ABSOLUTE ABSOLUTE ICAL CRITICAL FLOM CITY VELOCITY ANGLE IO RATIO (\alpha)		***************************************	TOTAL PRESSURE OSS COEFFICIENT	0.132 .013 .164 .208 .391 .415
INCIDENCE ANGLE	-14 1.4 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	**************	RELATIVE DEVIATION FLOW ANGLE ANGLE (B)	28.757 10.257 34.351 9.751 41.453 11.753 45.069 7.269 48.012 7.269 47.850350	**************		

TABLE XIV.—Concluded. ROTOR 2 BLADE ELEMENT DATA [Plenum pressure, 101 325.04 N/m²; plenum temperature, 288.15 K.]
(d) Mass flow ratio, 0.77; speed, 80 percent design

	VE INCIDENCE ANGLE)	6 11.206 4 3.574 6 3.136 8 3.136 2 2.736 1 5.8 8 3.70 8 3.570	****************	OLUTE RELATIVE DEVIATION OW FLOW ANGLE IGLE ANGLE	64 26.902 8.402 67 29.988 5.388 07 36.815 7.115 27 41.100 7.100 88 45.872 5.972 46.839 2.539 16 48.145 1.645 18 50.804 2.604	******************		
	ABSOLUTE RELATI FLOW FLOW ANGLE ANGL (α) (β	46.613 41.408 33.594 37.936 36.096 36.096 37.036 37.036 37.036 37.096 52.15 52.994 56.15 56.15	***********	VE ABSOLUTE ABS AL CRITICAL FL TY VELOCITY AN RATIO (V/VCr)	0.856 .843 .790 .757 .735 .735 .735 .730 .710 .710 .710 .710 .710 .710 .710 .710	米米米米米米米米米米米米米米米米米米米米米米米米米	TAL PRESSURE S COEFFICIENT	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	RETIVE ABSOLUTE RITICAL CRITICAL FELOCITY VELOCITY ATIO RATIO W/W Cr) (V/V Cr)	0.566 0.612 686 0.581 713 577 747 577 778 578 804 589	*****	FFICIENCY RELATI EFERENCED CRITIC O PLENUM VELOCI ONDITIONS RATIO (M/M.)	0.9592 0.9903 0.9903 0.9850	米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米米	DIFFUSION TOTAL	0 .2011. .1304 .222. .224 .224
	TEMPERATURE/ CI PLENUM TOTAL TEMPERATURE (1	1.1221 1.1125 1.1108 1.1122 1.1130 1.1189 1.1251 1.1251	**********	TOTAL EI TEMPERATURE/ RI PLENUM TOTAL TEMPERATURE (T*/T)	11.2250 12.2250 12.2250 12.2250 12.2250 12.2250 13.2250 13.2250 13.2250 13.2250 13.2250 13.2250 13.2250 13.2250 13.2250 13.2250	宋宣宋宋宋宋宋宋宋宋宋宋宋宋宋宋	E EFFICIENCY	0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	PRESSURE PLENUM PRESSURE PRESSURE PRESSURE (PRESSURE (P'/P')	5430 11.4430 11.4430 11.4430 11.44130 11.41130 11.41130 11.41130	****	NE PRESSURE/ PLENUM TOTAL PRESSURE (P'-P)	446666666	K******** Ling edge	TEMPERATURE RATIO	11111111111111111111111111111111111111
ADING EDGE	SPAN LINE FROM	887673888 4887673888 188767387	******** Railing edge	SPAN LI	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PRESSURE RATIO	11.46621 11.46621 11.46621 11.46621 11.46634 11.46634 11.46634
ROTOR LEADING	RADIUS (CM)	4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	KKKKKKK ROTOR TR	RADIUS (CM)	6.5.00 6.00	K******	STREAM LINE	

1. Report No. NASA TP-2034 AVRADCOM TR 81-C-5	AD-ALLA 934	3. Recipient's Catalog	j No.			
4. Title and Subtitle PERFORMANCE OF A TANDE	M-ROTOR/TANDEM-STATOR	5. Report Date October 1982				
CONICAL-FLOW COMPRESSOI RATIO OF 3	R DESIGNED FOR A PRESSURE	6. Performing Organi 505 -32 -2A	zation Code			
7. Author(s)		8. Performing Organiz	ation Report No.			
Jerry R. Wood, Albert K. Owe	n, and Lawrence F. Schumann	E-369	·			
9. Performing Organization Name and Address NASA Levis Poscorab Contor o	nd	10. Work Unit No.				
•	VASA Lewis Research Center and AVRADCOM Research and Technology Laboratories Cleveland, Ohio 44135					
Creverand, Chie 11100		13. Type of Report as	nd Period Covered			
12. Sponsoring Agency Name and Address		Technical Pa				
National Aeronautics and Space	Administration	14. Sponsoring Agency				
	Washington, D. C. 20546 and U. S. Army Aviation Research and Development Command, St. Louis, Missouri 63166					
15. Supplementary Notes		-				
Jerry R. Wood, Lewis Researc AVRADCOM Research and Tech		awrence F. Schuma	nn,			
16. Abstract						
A conical-flow compressor stag three values of rotor tip clearar Peak efficiency at design speed tested without the stator, and do Overall peak rotor efficiency w	nce. The stage had a tandem rowas 0.774 at a pressure ratio of etailed survey data were obtained.	otor and a tandem st of 2.613. The rotor od for each rotor bla	ator. was			
17. Key Words (Suggested by Author(s))	18. Distribution Stat	ement				
Turbomachine		Unclassified - unlimited				
Compressor	STAR Categ	STAR Category 02				
Conical flow						
Mixed flow						
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*			
Unclassified	Unclassified	35	A03			

END

FILMED