Calcul Scientifique et Apprentissage Automatique

M1 IAFA-SECIL Université Paul Sabatier

Contacts: Sandrine.Mouyss

Sandrine.Mouysset@irit.fr Thomas.Pellegrini@irit.fr

Plan de l'UE

- Prétraitement pour l'analyse de données / algèbre linéaire
- Apprentissage supervisé et non supervisé
- Introduction à l'optimisation : sans contrainte, avec contraintes d'égalité et moindres carrés
- Introduction aux réseaux de neurones
- Limites de l'Apprentissage Automatique
- Master Class

Nombre de séances :

- 9 cours + 3h (masterclass)
- 9 TD
- 9 TP

L'expression Analyse de données recouvre les techniques ayant pour objectif la description statistique des grands tableaux $n \times p$ de données

Chaîne d'analyse des données

Introduction

Chaîne d'analyse des données

Nature des données ?

- Qualitative : ordinale, nominale;
- Quantitative;
- Temporelle.

Cas de variables qualitatives

yeux/cheveux	brun	châtain	roux	blond	profil moyen
marron	11	20	5	1	37
noisette	3	9	2	2	16
vert	1	5	2	3	11
bleu	3	14	3	16	36
Profil moyen	18	48	12	22	100

Table: Exemple de tableau de contingence

Cas de variables qualitatives

Transformations du tableau de contingence

Cas de variables qualitatives : généralisation

	bacC	bacD	< 18	18ans	19ans	> 19	2ans	3ans	4ans
bacC	583	0	108	323	114	38	324	192	67
bacD	0	214	25	97	68	24	76	82	56
< 18	108	25	133	0	0	0	84	35	14
18ans	323	97	0	420	0	0	224	137	59
19ans	114	68	0	0	182	0	73	75	34
> 19	38	24	0	0	0	62	19	27	16
2ans	324	76	84	224	73	19	400	0	0
3ans	192	82	35	137	75	27	0	274	0
4ans	67	56	14	59	34	16	0	0	123

Tableau de Burt

Cas de variables quantitatives

Principe de représentation graphique

Données : cas de variable quantitative et variable qualitative

Boîte parallèle

Boîte à moustache (boxplot)

Cas de variables temporelles

Principe de représentation graphique

Vers les méthodes factorielles et les méthodes de classifications

Prétraitement des données

Chaîne d'analyse des données

- Variables quantitatives : Analyse en Composantes Principales (A.C.P)
- Variables qualitatives : Analyse Factorielle des Correspondances (A.F.C)
- Variables temporelles : Analyse Fréquentielle (Analyse Hilbertienne)

Cas des variables quantitatives : sélection des variables

Soit X le tableau des données de dimensions $n \times p$ d'élément x_{ij} construit à partir de n individus (ou observations/ unités statistiques/expériences) définis par p variables (ou facteurs/ mesures physiques).

$$X = \begin{bmatrix} x_{11} & \dots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \dots & x_{np} \end{bmatrix}$$

On définit l'individu moyen g par le vecteur de \mathbb{R}^p par :

$$g = [\overline{x_1}, .., \overline{x_p}] \text{ avec } \overline{x_j} = \frac{1}{n} \sum_{k=1}^n x_{kj}, \ \forall j \in \{1, .., p\}.$$

Cas des variables quantitatives : sélection des variables

Soit maintenant X_C le tableau centré en g de dimensions $n \times p$ défini par :

$$\textit{X}_{\textit{C}_{ij}} = \textit{x}_{ij} - \overline{\textit{x}_{j}}, \forall i \in \{1,..,n\}, \forall j \in \{1,..,p\}.$$

Centrer la matrice des données

Matrice de variance-covariance Σ

Soit la matrice des données $X \in \mathbb{R}^{n \times p}$. La matrice symétrique Σ de dimension $p \times p$ définie par :

$$\Sigma = \frac{1}{n} X_C^T X_C,$$

avec X_c matrice des données centrées.

• La covariance de la variable j et l, notée Σ_{jl} , sert à mesurer la liaison/dépendance des paramètres :

$$\Sigma_{jl} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x_j})(x_{il} - \overline{x_l})$$

• La variance de la variable j, notée Σ_{jj} , mesure l'écart au carré des données à la moyenne :

$$\Sigma_{jj} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x_j})^2$$

Mesure de Corrélation

on définit aussi la corrélation entre les variables X et Y, indépendant des unités de mesure des variables :

$$-1 \le Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}} \le 1$$

- Corr(X, Y) = 0, les variables sont décorrélées, indépendantes c'est-à-dire étant donné X, on ne peut rien dire prédire sur la valeur de Y.
- Corr(X, Y) = 1, dépendance linéaire positive de X et Y.
- Corr(X, Y) = -1, dépendance linéaire négative de X et Y.

A partir de la matrice Σ , la corrélation entre les variables j et l correspond à $\frac{\Sigma_{jl}}{\sqrt{\Sigma_{il}\Sigma_{ll}}}$

Application : Corrélation entre les intensités de 2 pixels voisins

Problème : soit I une image de niveaux de gris dont les éléments $I_{ij} \in [0,255]$. Soient α et β une paire de pixels voisins (horizontalement). Les intensités de 2 pixels voisins sont-elles corrélées ?

Résolution : Soit l'image I de taille 3×4 suivante :

$$I = \begin{pmatrix} 7 & 4 & 9 & 7 \\ 0 & 2 & 0 & 3 \\ 1 & 8 & 5 & 7 \end{pmatrix}$$

Décorrélation au + proche voisin :

$$I_d(i,j) \leftarrow I(i,j) - I(i+1,j)$$

Représentation des coefficients décorrélés $\alpha_d \in [-255, 255]$ et $\beta_d \in [-255, 255]$ par histogramme.

Image décorrélée

Mise en évidence de la décorrélation entre pixels voisins

Prétraitement des données

Chaîne d'analyse des données

- Variables quantitatives : Analyse en Composantes Principales (A.C.P)
- Variables qualitatives : Analyse Factorielle des Correspondances (A.F.C)
- Variables temporelles : Analyse Fréquentielle (Analyse Hilbertienne)

Analyse en Composantes Principales (A.C.P)

But

Trouver q composantes principales $C_1, ..., C_q$ avec q << p comme des nouvelles variables combinaison linéaire des variables d'origines $x_{.1}, ...x_p$ telles que les C_k soient 2 à 2 non corrélées, de variance maximale, d'importance décroissante.

Exemple d'ACP

⇒ Toolbox Scikit-learn (sklearn)

Analyse en Composantes Principales

Exemple d'ACP

Décomposition de la variance :

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - g)^T (x_i - g)$$

où g est l'individu moyen et x_i est la ième ligne de la matrice des données X.

• Projection sur une droite : L'opérateur de projection orthogonale, noté π , sur une droite de vecteur directeur unitaire ν s'écrit :

$$\Pi = vv^T$$

avec $v^T v = 1$.

Analyse en Composantes Principales

Recherche de la projection de variance maximale

Maximiser cette variance des observations projetées:

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v} \text{ avec } \mathbf{v}^T \mathbf{v} = 1$$

Solution : v est le vecteur propre de Σ associé à la plus grande valeur propre λ .

- ullet Premier axe principal : correspond au vecteur propre associé à la plus grande valeur propre de la matrice de variance-covariance Σ
- Composantes principales : coefficients de projection des données sur les axes principaux

Analyse en Composantes Principales

Recherche de la projection de variance maximale

Maximiser cette variance des observations projetées:

$$\max_{v} v^{T} \Sigma v \text{ avec } v^{T} v = 1$$

Solution : v est le vecteur propre de Σ associé à la plus grande valeur propre λ .

 Interprétation des vecteurs propres : La somme des valeurs propres correspond à la variance totale:

$$Tr(\Sigma) = \sigma^2 = \sum_{i=1}^p \lambda_i$$

Chaque valeur propre mesure la part de variance expliquée par l'axe factoriel correspondant.

 Choix de la dimension q: La "qualité globale" des représentations est mesurée par la part d'inertie expliquée:

$$r_q = \frac{\sum_{k=1}^q \lambda_k}{\sum_{i=1}^p \lambda_i}.$$

Analyse en Composantes Principales : algèbre linéaire

Diagonalisation de matrice : En dimension finie, la diagonalisation revient à décrire une matrice à l'aide d'une matrice diagonale.

La diagonalisation concerne les matrices carrées (n = p). Dans la suite, on considère une matrice A carrée de dimension $n \times n$

Calcul des coefficients de cette matrice diagonale ?

Valeurs propres, Vecteurs propres

• Les valeurs propres λ_i sont les racines du polynôme caractéristique :

$$\chi_A(\lambda) = \det(A - \lambda I) \tag{1}$$

Cette expression est un polynôme de degré n.

• Un vecteur X est un vecteur propre de A associé à la valeur propre λ si :

$$AX = \lambda X \Leftrightarrow (A - \lambda I_n) X = 0 \tag{2}$$

Analyse en Composantes Principales : algèbre linéaire

Diagonalisation

Si la matrice est diagonalisable alors il existe une matrice P inversible $(\det(P) \neq 0)$ ayant ses n vecteurs propres comme colonnes et la matrice $D = P^{-1}AP$ est alors diagonale. La diagonale de D est constituée des valeurs propres ordonnées dans le même ordre que les colonnes de P. On dit alors que D et A sont **semblables**.

Déterminant d'une matrice:

Le **déterminant d'une matrice carrée** A est un scalaire noté det(A) dont la définition n'est pas intuitive. Il peut être calculé, par exemple, en développant suivant la j^{eme} colonne :

$$det(A) = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det A_{ij}$$

où A_{ii} est la matrice A à laquelle on a ôté la i^{eme} ligne et la j^{eme} colonne.

Application:

Pour étudier l'efficacité de capteurs de température sur des montres connectées, on considère les différences entre les mesures de deux capteurs de température par rapport à la température réelle. On obtient les données suivantes sur 4 individus.

Personne	Capteur 1	Capteur 2		
Ind. 1	0	2		
Ind. 2	-2	-1		
Ind. 3	1	0		
Ind. 4	1	-1		

- Existe-t-il une dépendance entre ces deux capteurs ? Expliquer votre réponse.
- 2 Calculer le premier axe principal de ces points.
- 3 Représenter les données et la premier axe principal.

Algèbre linéaire : autres décompositions spectrales

Décomposition en valeurs singulières SVD

Soit $A \in \mathbb{R}^{q \times p}$ $(q \ge p)$ alors on peut décomposer A :

$$A = U\Sigma V^T$$

avec:

- $U \in \mathbb{R}^{q \times q}$ est formée de q vecteurs propres orthonormés associés aux q valeurs propres de AA^T .
- $V \in \mathbb{R}^{p \times p}$ est formée de p vecteurs propres orthonormés associés aux p valeurs propres de A^TA .
- $\Sigma \in \mathbb{R}^{q \times p}$ est une matrice rectangulaire dont les élements non nuls sur la diagonale sont les valeurs singulières σ_i , $i = \{1, ..., q\}$ de A (sont les racines carrées des valeurs propres de A^TA et de AA^T).

Algèbre linéaire : autres décompositions spectrales

Propriétés :

- $rang(A) = p \text{ donc } \sigma_{p+1} = \dots = \sigma_q = 0.$
- Si $A = U\Sigma V^T$ alors $A^T = V\Sigma U^T$ est une SVD de A^T .

Meilleure approximation de rang inférieur

Soit
$$A \in \mathbb{R}^{q \times p}$$
 de SVD $A = \sum_{i=1}^p \sigma_i u_i v_i^T$ avec $p = rang(A)$.

Si k < p et $A^k = \sum_{i=1}^k \sigma_i u_i v_i^T$ alors A^k est la meilleure approximation de A de

rang k < r c'est-à-dire :

$$\min_{rg(D)=k} \|A - D\|_F = \|A - A^k\|_F$$

Autre méthode de réduction de dimensions

t-SNE (t-distributed stochastic neighbor embedding)

méthode non linéaire permettant de représenter un ensemble de points d'un espace à grande dimension dans un espace 2D ou 3D.

- ⇒ Conserver la proximité entre les points pendant la transformation : deux points qui sont proches (resp. éloignés) dans l'espace d'origine doivent être proches (resp. éloignés) dans l'espace de faible dimension.
- ⇒ interprétation probabiliste des proximités.

Exemples ACP et t-SNE