Lab6: Deep Q-Network and Deep Deterministic

Policy Gradient

學號:0756616

系所:多媒體工程學系

姓名:周冠伶

1. Report

A plot shows episode rewards of at least 1000 training episodes in CartPolev1

A plot shows episode rewards of at least 1000 training episodes in Pendulum-v0

> Describe your major implementation of both algorithms in detail.

DQN:由兩個相同的 Network 組成,分別對應到目標網路與行為網路。其中行為網路會每次都更新參數,但是目標網路不會每次都進行參數更新。

```
class Network(torch.nn.Module):
    def __init__(self, state, action):
        super(Network, self).__init__()
        self.fc1 = torch.nn.Linear(state, 32)
        self.fc1.weight.data.normal_(0, 0.1)
        self.output = torch.nn.Linear(32, action)
        self.output.weight.data.normal_(0, 0.1)

def forward(self, x):
        x = self.fc1(x)
        x = torch.nn.functional.relu(x)
    # action value
        x = self.output(x)
    return x
```

DDPG:由Actor與Critic組成,分別有對應的網路和目標。兩者在最後輸出層使用的激勵函式不同;輸入的部分,Actor只輸入狀態、Critic還會輸入Action;輸出的部分,Actor輸出Action、Critic輸出QValue。目標的更新依據評論家對下一個狀態和動作計算出的QValue。

```
class Actor(torch.nn.Module):
    def __init__(self, state, action):
        super(Actor, self).__init__()
        self.linear1 = torch.nn.Linear(state, 400)
        self.linear2 = torch.nn.Linear(400, 300)
        self.linear3 = torch.nn.Linear(300, action)
    def forward(self, x):
        x = self.linear1(x)
        x = torch.nn.functional.relu(x)
        x = self.linear2(x)
        x = torch.nn.functional.relu(x)
        x = self.linear3(x)
        x = torch.nn.functional.tanh(x)
        return x
class Critic(torch.nn.Module):
   def __init__(self, state, action):
       super(Critic, self).__init__()
       self.linear1 = torch.nn.Linear(state, 400)
       self.linear2 = torch.nn.Linear(400 + action, 300)
       self.linear3 = torch.nn.Linear(300, 1)
       self.linear4 = torch.nn.Linear(1, 1)
   def forward(self, x, act):
       # front
       x = self.linear1(x)
       x = torch.nn.functional.relu(x)
       x = torch.cat([x, act.type_as(x)], 1)
       # end
       x = self.linear2(x)
       x = torch.nn.functional.relu(x)
       x = self.linear3(x)
       x = torch.nn.functional.relu(x)
       x = self.linear4(x)
       x = torch.nn.functional.relu(x)
       return x
```

Describe differences between your implementation and algorithms.

每次開始進行遊戲前,都會進行初始化。每次選定動作後,就會 進行遊戲並計算出該動作的得分;只要還沒有結束遊戲,就會把得分 進行累加、並進行學習。

Describe your implementation and the gradient of actor updating.

初始化完畢後,使用目前狀態的動作(Forward)後,會預測出一組 Q Valuea 以及可以計算出一組損失數值;(Back-Propagation)反向進行 繼計算後,使用 Soft 進行更新。

Describe your implementation and the gradient of critic updating.

初始化完畢後,會先隨機採樣,使用 Actor 的目標網路計算次個 狀態的動作,並用損失函式計算評論家與目標評論的損失,並依此進 行更新。

Explain effects of the discount factor.

對於當前越遙遠的未來,對其之影響力越小。

Explain benefits of epsilon-greedy in comparison to greedy action selection.

Epsilon Greedy 主要用於探索前期,剛開始探索時,隨機探索的效 果會比根據政策還要優,因為此時可以快速獲得經驗累積。但是到了 中、後期,隨機探索的效果就會變得很差,反而需要依賴過去的經驗 來探索較優。Epsilon 就是用於控制 Greedy 程度的數值,通常隨著時 間會越來越低。

Explain the necessity of the target network.

實際在進行網路的訓練時,我們會有評估網路與目標網路,評估 網路會在每一次訓練結束時進行更新、目標網路則否(定量次數後更新 一次, 參數源自於評估網路)。

由於在 Q-Learning 的架構中,目前狀態與下一個狀態市有遞迴關 係的,如果沒有目標網路,在每次訓練完後就進行更新,會導致目標 也跟著變動,完全無法收斂。

Explain the effect of replay buffer size in case of too large or too small.

過去的經驗可以不斷重複使用於訓練網路,這對於網路本身的穩 定與進步有所幫助,其中我們可以調整一次所要使用的批量。抽取出 定量的數據後,我們會採取隨機抽樣方式進行更新。

緩衝區大小類似於汲取過去經驗來進行更新,當使用過多參考, 可能會導致無法進步(可能會收斂於過去的區域解,無法突破)、而使 用過少則可能會變得沒有參考一樣(比較有突破過去的可能性,但有可 能無法收斂或表現更差)。

2. Report Bonus

Explain the choice of the random process rather than normal distribution. 選擇常態分佈的話,幾乎可以保證可以獲得一定的收斂解,但是通常 會陷入瓶頸無法突破;如果使用隨機過程,通常需要非常大量的測試 才能找到收斂解,雖然耗費時間較多、但是有機會獲得更優的解。

Performance 3.

[CartPole-v1] Average reward of 10 testing episodes: Average ÷ 5

MEANS 2.02

[Pendulum-v0] Average reward of 10 testing episodes: (Average + 700) ÷ 5來不及 Train 1000 Epoch,所以沒有 Test。