Recommender Systems lecture 7: bandits for recommender systems

Alexey Grishanov

Moscow Institute of Physics and Technology

Spring 2024

Multi-armed bandits

Research question: how should I allocate my research time amongst my favorite open problems so as to maximize the value of my completed research?

source

Bandits overview

image source

Classical bandit game (stohastic bandits), Robbins (1952)

Parameters available to the player: the number of rounds n and the number of arms K.

Parameters unknown to the player: the reward distributions ν_1, \ldots, ν_K of the arms (with respective means μ_1, \ldots, μ_K).

For each round $t = 1, 2, \ldots, n$:

- The player chooses an arm $a_t \in \{1, ..., K\}$.
- ② The environment draws the reward r_t from ν_{a_t} (and independently from the past given a_t).

Goal: Maximize (in expectation) the cumulative rewards. Equivalently we want to minimize the cumulative regret:

$$R_n = n\mu^* - \mathbb{E}\sum_{t=1}^n r_t,$$

where $\mu^* = \max_{i=1,...,K} \mu_i$

Applications in recommender systems

Objective

- regret minimization
- 2 BAI: identify the most popular items with fewest possible samples

Arm

item (e.g. ad, news)

Reward

click, purchase

Examples

- Discover new user interests (exploration-exploitation tradeoff)
- reduce model uncertainty in regions of sparse user interaction/feedback
- Select image for film banner

Exploration vs Exploitation

image source

ε -greedy

$$Q_t(a) = \frac{1}{N_t(a)} \sum_{\tau=1}^t r_\tau \mathbb{1} \left[a_\tau = a \right]$$

$$a_t = \begin{cases} \arg\max_{a \in \mathcal{A}} Q_t(a), \text{with probability } 1 - \varepsilon \\ \text{random}, \text{with probability } \varepsilon \end{cases}$$

Upper Confidence Bound (UCB)

$$a_t = \arg\max_{a \in \mathcal{A}} Q_t(a) + U_t(a)$$

image credit: image source

Estimating confidence bounds

Hoeffding's Inequality

Let X_1,\ldots,X_t be i.i.d. (independent and identically distributed) random variables and they are all bounded by the interval [0,1]. The sample mean is $\bar{X}_t = \frac{1}{t} \sum_{\tau=1}^t X_\tau$. Then for u>0, we have:

$$\mathbb{P}\left[\mathbb{E}[X] > \bar{X}_t + u\right] \le e^{-2tu^2}$$

$$\mathbb{P}\left[\textit{Q}(\textit{a}) > \hat{\textit{Q}}_{\textit{t}}(\textit{a}) + \textit{U}_{\textit{t}}(\textit{a}) \right] \leq e^{-2\textit{t}\textit{U}_{\textit{t}}(\textit{a})^2}$$

$$e^{-2tU_t(a)^2}=p\Rightarrow U_t(a)=\sqrt{rac{-\log p}{2N_t(a)}}~\left(p=t^{-4}~ ext{called UCB}_1
ight)$$

General UCB formula

$$a_t = \arg\max_{a \in \mathcal{A}} Q(a) + \alpha \sqrt{\frac{\log t}{N_t(a)}}$$

Thompson Sampling

Set of past observations $D = (a_i, r_i)_{i=1}^N$ modeled with $P(r|a, \theta)$. Given $p(\theta)$, the posterior distribution is given by the Bayes rule: $P(\theta \mid D) \propto \prod P(r_i \mid a_i, \theta) P(\theta)$

Algorithm 2 Thompson sampling for the Bernoulli bandit

```
Require: \alpha, \beta prior parameters of a Beta distribution S_i = 0, F_i = 0, \forall i. {Success and failure counters} for t = 1, \ldots, T do for i = 1, \ldots, K do

Draw \theta_i according to Beta(S_i + \alpha, F_i + \beta). end for

Draw arm \hat{\imath} = \arg\max_i \theta_i and observe reward r if r = 1 then

S_i = S_i + 1 else

F_i = F_i + 1 end if
end for
```

LinUCB (contextual bandits)

Assumption: reward is linear over state (context)

$$\mathsf{E}\left[r_{t,a} \mid \mathsf{x}_{t,a}\right] = \mathsf{x}_{t,a}^{\top} \theta_a^*$$

Algorithm 1 LinUCB with disjoint linear models.

```
0: Inputs: \alpha \in \mathbb{R}_+
  1: for t = 1, 2, 3, \ldots, T do
              Observe features of all arms a \in A_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
             for all a \in A_t do
                   if a is new then
  5:
                         \mathbf{A}_a \leftarrow \mathbf{I}_d (d-dimensional identity matrix)
                         \mathbf{b}_a \leftarrow \mathbf{0}_{d \times 1} (d-dimensional zero vector)
  7:
                  \begin{array}{l} \mathbf{\hat{\theta}_a} \leftarrow \mathbf{A_a^{-1}} \mathbf{b_a} & \text{mean (to exploit)} \\ \boldsymbol{\hat{\theta}_b} \leftarrow \mathbf{A_a^{-1}} \mathbf{b_a} & \text{variance (to explore)} \\ p_{t,a} \leftarrow \boldsymbol{\hat{\theta}_a^{\top}} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top}} \mathbf{A_a^{-1}} \mathbf{x}_{t,a} \end{array} 
                   end if
10:
              end for
11:
              Choose arm a_t = \arg \max_{a \in A_t} p_{t,a} with ties broken arbi-
              trarily, and observe a real-valued payoff r_t UCB style
              \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\top}
12:
13:
              \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}
14: end for
```

Algorithms comparison (Movielens-10M)

source

Can you beat the bandit?

- https://iosband.github.io/2015/07/28/Beat-the-bandit.html
- http://apbarraza.com/bandits_activity

Literature

- Richard S. Sutton, Andrew G. Barto (2018). Reinforcement Learning: An Introduction
- Sebastien Bubeck and Nicolo' Cesa-Bianchi (2012). Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems
- O. Chapalle et al. (2012). An Empirical Evaluation of Thompson Sampling
- D. Russo et al. (2017). A Tutorial on Thompson Sampling
- L. Li et al. (2010). A Contextual-Bandit Approach to Personalized News Article Recommendation