Choose the best model for your analysis

Hill and Plateau Sample Data

Traditional regression

Decision tree

Neural network

Decision trees

PROS	CONS	
Accepted	Tendency to overfit	
Understood	Many hyperparameters to tune	
Interpretable	No parameters, standard errors or confidence limits	
Few assumptions	Single decision trees can be unstable	
 Excellent for: discontinuous, nonlinear phenomena interactions missing data correlated variables variables on different scales 	Usually poor performance in pattern recognition tasks vs. neural networks	

Example decision tree

Example decision tree - basics

Example decision tree – scoring a new record

Example decision tree – pruning based on validation data

Variable importance in decision trees

Variable importance in decision trees

		Number of	
Variable Name	Label	Splitting Rules	Importance
NVCat	Categorical non-vehicle variable	2	1
Var8	Continuous vehicle variable, mean 0 stdev 1	4	0.392026454
Var3	Continuous vehicle variable, mean 0 stdev 1	1	0.298358498
NVVar3	Continuous non-vehicle variable, mean 0 stdev 1	4	0.267762691
NVVar2	Continuous non-vehicle variable, mean 0 stdev 1	1	0.241597405
Model_Year	Model year of vehicle (not blinded)	2	0.198911935
Cat1	Categorical vehicle variable	1	0.120725455

Ensemble models

Ensemble models combine the results of many other models, often called base learners

Ensembles are often more accurate than single models

There are several common approaches to ensembles:

- Bootstrap aggregation (Bagging)
- Boosting
- Stacking (Super learner)

Ensemble models: intuition

Variable hiding – important variables are often correlated and can hide one-another (only the single most important variable from a group of important correlated variables will be used in many models); in different samples, many different important variables can shine through

Representative samples – some samples can be highly representative of new data

Stability - the predictions of ensemble models are stable w.r.t. minor perturbations of training data

Decision Tree Bagging: Random Forest

Bagging is essentially a parallel process where the results of base learners are combined

Decision Tree Boosting: GBM

Boosting is essentially a sequential process where each subsequent base learner attempts to improve on past results

