

RDA: Reciprocal Distribution Alignment for Robust Semi-supervised Learning

Yue Duan¹, Lei Qi², Lei Wang³, Luping Zhou⁴, and Yinghuan Shi¹

¹ Nanjing University, China ² Southeast University, China ³ University of Wollongong, Australia ⁴ University of Sydney, Australia

Introduction

Lately, confidence-based pseudo-labeling [1,2] and distribution alignment [2,3,4] have been introduced to SSL, boosting the performance to a new height. FixMatch [1] utilizes the confidence-based threshold to select more accurate pseudo-labels and proves the superiority of this technique. Despite this threshold preventing the model from risk of noisy pseudo-labels, since the learning difficulties of different classes are different, a fixed threshold is not a "silver bullet" for all scenarios of SSL. We try to ask — is the confidence-based threshold really necessary for pseudo-labeling? Motivated by this, we rethink pseudo-labeling in a hyperparameter-free way while noticing that **distribution alignment (DA)** has been introduced to SSL [2,4]. We consider only using DA to improve the pseudo-labels without additional hyperparameters, i.e., DA is enough for pseudo-labeling. However, original DA is based on a strong assumption: "labeled data and unlabeled data share the same distribution". Thus, we have the following motivations:

Motivation

- **◆**Improve pseudo-label quality by using only distribution alignment without introducing confidence threshold.
- ◆Distribution alignment fails in mismatched distribution scenarios.
- **◆**Explore a more general distribution alignment to meet the challenge of mismatched distributions.

Method

Reciprocal Distribution Alignment (RDA)

We use ground-truth label y and complementary label \overline{y} (selected randomly from classes excluding ground-truth label) of labeled data to train Default Classifier \mathcal{D} and Auxiliary Classifier \mathcal{A} , respectively. Given an unlabeled sample u, \mathcal{D} predicts pseudo-label p and \mathcal{A} predicts complementary label q for its weakly-augmented version. \mathbf{RDA} is applied on p and q by reciprocally scaling each other to the distributions of their reversed versions obtained by Reverse Operation (Proposition 1). We then enforce consistency regularization on the aligned pseudo-label and complementary label against corresponding predictions for strongly-augmented u, i.e., p_s (from \mathcal{D}) and q_s (from \mathcal{A}).

Theoretical Analysis

Proposition 1 (*Reverse Operation*). In the case of using \mathcal{A} to predict pseudo-labels, we have $\overline{q} = Norm(q)$, where Norm(x) is the normalized operation.

Theorem 1. For pseudo-label p and the reversed pseudo-label p obtained by *Reverse Operation*, we show that the entropy of \overline{p} is larger than that of $p: \mathcal{H}(\overline{p}) \geq \mathcal{H}(p)$, where $\mathcal{H}(\cdot)$ refers to the entropy.

Experiments

Method	CIFAR-10					mini-ImageNet STL-10		
	20 labels	40 labels	80 labels	100 labels		1000 labels		1000 labels
MixMatch*	27.84 ± 10.63	51.90 ± 11.76	80.79 ± 1.28	-		-		38.02 ± 8.29
$\frac{\mathrm{AlphaMatch}^{\intercal}}{}$		91.35 ± 3.38	_					
FixMatch CoMatch	84.97 ± 10.37 88.43 ± 7.22	$89.18{\pm}1.54 \ 93.21{\pm}1.55$	$91.99 \pm 0.71 \\ 94.08 \pm 0.31$	93.14 ± 0.76 94.55 ± 0.27		39.03 ± 0.66 43.72 ± 0.58		$65.38 \pm 0.42^*$ $79.80 \pm 0.38^*$
RDA	$92.03{\pm}2.01$	$\bf 94.13 {\pm} 1.22$	$\bf 94.24 {\pm} 0.42$	94.35 ± 0.25		$46.91{\pm}1.16$		$82.63{\pm}0.54$

Tab. 1 Accuracy (%) in the conventional matched SSL setting.

Method ${}$ 40 labels $\gamma = 2$	$N_0 = 10$	100 labels	$N_0 = 40$	$\frac{\text{mini-ImageNet}}{1000 \text{ labels}, N_0 = 40}$
$\gamma=2$,	1000 100015, 110 = 40
	5	5	10	10
FixMatch 74.97±5.80 RDA 88.58±4.05	$64.62{\pm}6.13$ 79.90 \pm 2.80	58.72 ± 3.61 79.33 ± 1.37	57.49 ± 4.56 70.93 ± 2.91	21.40 ± 0.53 25.99 ± 0.19

Tab. 3 Accuracy (%) with mismatched and imbalanced C_x , C_u .

Method		CIFAR-1	STL-10 $(\gamma_l \neq \gamma_u)$			
	$\gamma_u = 1$	50	150	100 (reversed)	$\gamma_l = 10$	20
FixMatch DARP	68.90 ± 1.95 85.40 ± 0.55	73.90 ± 0.25 77.30 ± 0.17	69.60 ± 0.60 72.90 ± 0.24	65.50 ± 0.05 74.90 ± 0.51	72.90 ± 0.09 77.80 ± 0.33	63.40 ± 0.21 69.90 ± 0.40
$\overline{\text{RDA}}$	$93.35{\pm}0.24$	$79.77 {\pm} 0.06$	$74.48 {\pm} 0.24$	$79.25 {\pm} 0.52$	87.21±0.44	$83.21 {\pm} 0.52$

Tab. 4 Accuracy (%) under DARP's protocol.

	CIFAR-10				CIFA	R-100	${ m mini-ImageNet}$		
Method	40 labels		100 labels		400 labels	1000 labels	1000 labels		
	$N_0 = 10$	20	40	80	40	80	40	80	
FixMatch	85.72±0.93	76.53 ± 3.03	93.01 ± 0.72	71.57 ± 1.88	25.66 ± 0.46	40.22 ± 1.00	36.20 ± 0.36	28.33 ± 0.41	
FixMatch w. DA	71.23 ± 1.25	47.85 ± 1.99	56.78 ± 1.28	34.18 ± 0.86	22.66 ± 1.53	31.06 ± 0.51	33.87 ± 0.40	23.53 ± 0.72	
CoMatch	60.27 ± 3.22	39.48 ± 2.20	52.82 ± 2.03	26.91 ± 0.75	23.97 ± 0.62	28.35 ± 1.20	30.24 ± 1.37	21.47 ± 0.86	
RDA	$92.57{\pm}0.53$	$81.78 {\pm} 6.44$	94.23 ± 0.36	$79.00{\pm}2.67$	$ 30.86{\pm}0.78$	$\overline{41.29\pm0.43}$	$ 42.73{\pm}0.84 $	$36.73{\pm}1.0$	

Tab. 2 Accuracy (%) in the mismatched scenario with imbalanced C_x and balanced C_u .

Fig. 1 (x, y, z): (labels, N_0, γ ,). (a), (c), (e) and (g): Distribution of labels. (b), (d), (f) and (h): Probability density of confidence scores.

Conclusion

First, we describe a scenario that has not been discussed extensively by recently-proposed SSL work: **mismatched distributions**. Second, we improve distribution alignment by proposed **RDA** so that this technique could be applied into mismatched scenario safely. Then we show *RDA results in a form of maximizing the input-out mutual information without any prior information*. Finally, we demonstrate that our method outperforms existing baselines significantly under various scenarios.

Acknowledgements. This work is supported by projects from NSFC Major Program (62192783), CAAI-Huawei MindSpore (CAAIXSJLJJ-2021-042A), China Postdoctoral Science Foundation (2021M690609), Jiangsu NSF (BK20210224), and CCF-Lenovo Bule Ocean. Thanks to Prof. Penghui Yao's helpful discussions.

References

- [1] Sohn, K., Berthelot, D., Li, C.L., Zhang, Z., Carlini, N., Cubuk, E.D., Kurakin, A., Zhang, H., Raffel, C.: Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)
- [2] Li, J., Xiong, C., Hoi, S.C.: Comatch: Semi-supervised learning with contrastive graph regularization. In: ICCV (2021)
- [3] Bridle, J.S., Heading, A.J., MacKay, D.J.: Unsupervised classifiers, mutual information and "phantom targets". In: NeurIPS (1992)
- [4] Berthelot, D., Carlini, N., Cubuk, E.D., Kurakin, A., Sohn, K., Zhang, H., Raffel, C.: Remixmatch: Semi-supervised learning with distribution matching and augmentation anchoring. In: ICLR (2020)