

PROCESSAMENTO DIGITAL DE SINAIS

Prof. Claudio Coutinho

Aula 05

Convolução (Cont.) e exercícios

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[0] = x[0] \times h[0]$$

 $y[0] = 1 \times 8 = 8$

$$y[1] = x[0] \times h[1] +$$

= $x[1] \times h[0]$
= $1 \times 7 + 1 \times 8$
= 15

$$y[4] = x[0] \times h[4] +$$

$$= x[1] \times h[3] +$$

$$= x[2] \times h[2] +$$

$$= x[3] \times h[1] +$$

$$= x[4] \times h[0]$$

$$= 4 + 5 + 6 + 7$$

$$+8$$

$$= 30$$

Exercício

• A resposta ao impulo de um sistema LIT é:

$$h[n] = u[n] - u[n-5]$$

Ao se aplicar a esse sistema o sinal de entrada:

$$x[n] = n; 0 \le n \le 5$$

• Calcule a saída y[n] do sistema

Exercício

• Um determinado sistema é formado por dois subsistemas. Cada um possui sua própria resposta ao impulso $(h_1[n] \ e \ h_2[n])$

 Passar o sinal de entrada pelos dois subsistemas é o mesmo que convolui-lo com a convolução das duas respostas ao impulso, ou seja:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] [h_1[n-k] * h_2[n-k]]$$

• Sendo $h_1[n]=-2\delta[n]+\delta[n-1]+2\delta[n-2]$ e $h_2[n]=n/2$, $0 \le n \le 4$, encontre a resposta ao impulso do sistema completo e convolua o sinal x[n]=u[n]-u[n-3]