Finding Similar Sets (part 3)

Applications
Shingling
Minhashing

Locality-Sensitive Hashing

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

Motivation for Locality Sensitive Hashing

- ◆ **Used k-shingles** to create sets that **summarize documents**
- Used Minhashing to generate signatures that represent sets of shingles, reflect their similarity
- Suppose we need to find near-duplicate documents among a million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of signatures
 - ≥ 10⁶ choose 2
 - \triangleright Recall: for large n, $\binom{n}{2}$ is approximately $n^2/2$
 - $> \approx 5*10^{11}$ comparisons
 - ➤ At 10⁵ secs/day and 10⁶ comparisons/sec, it would take **6 days**.

Locality Sensitive Hashing Overview

- Hash items several times
 - ➤ In a way that **similar items** are more likely to **be hashed to the same bucket** than dissimilar items
- ◆ Candidate Pair: Any pair that hashes to the same bucket for any of the hashings
- Check only the candidate pairs for similiarity
- ◆ False positives: dissimilar pairs that hash to the same bucket
- ◆ False negatives: truly similar pairs do not hash to the same bucket for at least one of the hash functions.

Recall: Minhashing Example

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

LSH: First Cut

- ◆ Goal: Find documents with Jaccard similarity at least s for some similarity threshold s (e.g. s=0.8)
- ◆ LSH General idea: Use a function *f(x,y)* that tells whether *x* and *y* are a *candidate pair*: a pair of elements whose similarity must be evaluated
- For Min-Hash matrix:
 - ➤ Hash columns of signature matrix *M* to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair.

Candidates from Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

◆ Pick a similarity threshold s (0 < s < 1)</p>

signature matrix M

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows: M (i, x) = M (i, y) for at least frac. s values of I
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures.

LSH for Min-Hash

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- ◆ Candidate pairs are those that hash to the same bucket.

Partition M into b Bands

Partition M into Bands

b bands

r rows
per band

One
signature

Signature matrix M

10

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make **k** as large as possible
 - Use a separate bucket array for each band so columns with the same vector in different bands don't hash to same bucket
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- ◆ Tune b and r to catch most similar pairs, but few non-similar pairs.

Example of Bands

Assume the following case:

- Suppose 100,000 columns of M
 - Correspond to signatures for 100,000 documents
- Signatures of 100 integers (rows)
 - Correspond to 100 hash functions used in minhashing
- 4 bytes per integer
- ◆ Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 rows of integers/band
- ◆ **Goal:** Find pairs of documents that are at least *s* = 0.8 or 80% similar.

Analysis of Banding Technique (Function)

- Use b bands of r rows each
- **◆** Pair of documents have Jaccard similarity *t*
 - Probability that minhash signatures for the documents agree in any one particular row of the signature matrix is t
- ◆ Columns C₁ and C₂ in signature matrix have similarity t
- Pick any band (r rows)
 - \triangleright Prob. that all rows in band are equal = t
 - Prob. that not all r rows are equal (some row in band is unequal) = $1 t^r$
- Prob. that no band has rows that are all equal = $(1 t')^b$
- ◆ Prob. that at least 1 band has rows that are all equal (which is the probability of being a candidate pair) = $1 (1 t^r)^b$

C₁, C₂ are 80% Similar false negatives?

- **♦ Find pairs of ≥** s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = t = 0.8$
 - \triangleright Since sim(C₁, C₂) \ge s, we want C₁, C₂ to be a candidate pair
 - ➤ We want them to hash to at **least 1 common bucket** (at least one band is identical)
- **◆** Probability C_1 , C_2 identical in one particular band: $t^r = (0.8)^5 = 0.328$
- ◆ Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1 t^r)^b = (1-0.328)^{20} = 0.00035$
 - i.e., about .035% of the 80%-similar column pairs
 are false negatives (truly similar pairs that we miss)
 - ➤ We would find 99.965% pairs of truly similar documents. 14

C₁, C₂ are 30% Similar false positives?

- 2 1 4 1
 1 2 1 2
 2 1 2 1
- ♦ Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = t = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
 - Should NOT be a candidate pair!
- Probability C_1 , C_2 identical in one particular band: $t' = (0.3)^5 = 0.00243$
- Will identify C1, C2 as candidate pair if they are identical in at least one band
- Probability C_1 , C_2 identical in at least 1 of 20 bands: $1 - (1 - t')^b = 1 - (1 - 0.00243)^{20} = 0.0474$
 - Approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives (dissimilar documents that must be examined as candidate pairs but will have similarity below thresholds).

LSH Involves a Tradeoff

♦ Pick:

- The number of Min-Hashes (rows of **M**)
- > The number of bands **b**, and
- The number of rows *r* per band to balance false positives/negatives
- ◆ Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up.

Example of Tradeoffs

- Previous example: 20 bands of 5 rows each
 - Probability of false negatives when C1, C2 are 80% similar: 0.00035
 - Probability of false positives when C1, C2 are 30% similar: 0.0474
- What if we use 15 bands of 5 rows each (smaller signature matrix)?
 - > Probability of false negatives higher when C1, C2 are 80% similar:
 - $(1 t^r)^b = (1-0.328)^{15} = 0.002573$
 - > Probability of false positives lower when C1, C2 are 30% similar:
 - 1 $(1 t^r)^b = 1 (1 0.00243)^{15} = 0.0358$.

Analysis of LSH – What We Want

of two sets

What 1 Band of 1 Row Gives You

Compare two values in similarity matrix

What 1 Band of 1 Row Gives You

Compare two values in similarity matrix

What b Bands of r Rows Gives You: $1 - (1 - t^r)^b$

- Form of an S-curve, regardless of values of b and r
- Threshold s is where rise of curve is steepest: approximately $(1/b)^{1/r}$

R=5, b=20, for t=0.9: 1 - $(1 - t^r)^b=0.999999$, for t=0.1: 0.0000199

Example: b = 20; r = 5

- Similarity t of two columns
- ◆ Prob. that at least 1 band is identical (so a candidate pair):

	t	1-(1-t ^r) ^b
	.2	.006
	.3	.047
	.4	.186
l	.5	.470
L	.6	.802
	.7	.975
	.8	.9996

- Not an ideal step function
- Probability rises by more than 0.6 going from similarity t = 0.4 to t = 0.6
- Slope in middle > 3

Picking r and b: The S-curve

- ◆ Picking *r* and *b* to get the best S-curve
 - > 50 hash-functions (r=5, b=10)

Green area:

False Negative rate
Similar documents that are
not identified as candidate
pairs

Blue area:

False Positive rate
Dissimilar documents that
are identified as candidate
pairs

Picking b and r

- **◆** Threshold *s* defines how similar documents have to be for them to be regarded as a similar pair (e.g., s = 0.8)
- **♦** Length *n* for minhash signatures

 \bullet Pick number of bands **b** and number of rows **r** such that **br** = **n**

and threshold s is approximately $(1/b)^{1/r}$

- **♦ To avoid false negatives (green area):**
 - > Select b and r to produce a threshold lower than s
- **♦** To avoid false positives (blue area):
 - > Select b and r to produce a higher threshold than s

	-
V	$\frac{1}{2}$
	-
	1
	-

E	xam	nple	
:	n=1	100	

b	r	(1/b) ^{1/r}
50	2	0.1414
20	5	0.5493
10	10	0.7943
5	20	0.9227

Example

- $(1/b)^{1/r}$ represents the threshold of the S curve for function $1 (1 t^r)^b$, the probability of being a candidate pair
- ◆ If **s=0.6** (similarity of documents to be a candidate pair) what values should you choose for b and r to reduce the number of **false negatives**?
- **◆** To avoid false negatives: Select *b* and *r* to produce a threshold lower than *s*
- **◆** To avoid false positives: Select *b* and *r* to produce a higher threshold than *s*
- Could choose (b=20, r=5) or (b=50, r=2): both give threshold lower than s
- **♦** Better answer probably b=20, r=5
- Because b=50, r=20 will have a higher rate of false positives: TRADEOFFS

Example : n=100

b	r	(1/b) ^{1/r}
50	2	0.1414
20	5	0.5493
10	10	0.7943
5	20	0.9227

LSH Summary

- ◆ Tune M, b, r to identify almost all candidate pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Then check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.

Summary: 3 Steps

- ◆ Shingling: Convert documents to sets
 - > We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- ◆ Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - \triangleright We used hashing to find candidate pairs of similarity \ge s.

Combining the techniques (1)

- Pick a value of k and construct from each document the set of k-shingles
 - Optionally hash the k-shingles to shorter bucket numbers
- 2. Sort the document-shingle pairs to order them by shingle
 - Which sets contain which elements (shingles)
- Pick a length n for minhash signatures corresponding to n minhash functions and compute the minhash signatures for all the documents.

Combining the techniques (2)

- 4. Choose threshold s that defines how similar documents have to be for them to be regarded as a "similar pair"
 - > Pick number of bands b and number of rows r such that br = n
 - Adjust b and r to limit false positives or negatives
- 5. Construct candidate pairs with LSH technique
- 6. **Examine candidate pair signatures** and determine whether fraction of components where they agree is at least s
- 7. **Optionally,** if signatures are sufficiently similar, **compare documents** to check they are truly similar.

Locality Sensitive Hashing

- Or Near-neighbor search
- Minhashing is one example of a family of functions (the minhash functions) that can be combined (by the banding technique) to distinguish strongly between pairs at a low distance from pairs at a high distance
- Steepness of the S-curve reflects how effectively we can avoid false positives and false negatives among the candidate pairs
- Section 3.6: more general theory of Locality Sensitive Functions

Families of Functions for LSH

- ◆ Families of functions (including minhash functions) that can serve to produce candidate pairs efficiently
 - Space of sets and Jaccard distance OR other space and/or distance measure
- **♦** Three conditions for family of functions:
- More likely to make close pairs be candidate pairs than distant pairs
- 2. Statistically independent
- Efficient in two ways
 - 1. Be able to identify candidate pairs in time much less than time to look at all pairs
 - 2. Combinable to build functions better at avoiding false positives and negatives (e.g., banding techique takes single minhash functions, combines them to produce S-curve shape we want) 31

Locality-Sensitive Functions

Figure 3.9: Behavior of a (d_1, d_2, p_1, p_2) -sensitive function

LS Families of Hash Functions

Figure 3.9: Behavior of a (d_1, d_2, p_1, p_2) -sensitive function

- Suppose we have a space S of points with a distance measure d
- A family H of hash functions is said to be (d_1,d_2,p_1,p_2) -sensitive if for any x and y in S:
 - 1. If $d(x,y) \le d_1$, then prob. over all h in H, that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. over all h in H, that h(x) = h(y) is at most p_2
- Note: we say nothing about what happens when the distance between items is between d1 and d2
 - But can make d1 and d2 as close as we wish
 - Can drive p1 and p2 apart while keeping d1 and d2 fixed.

Locality Sensitive Hashing for Other Distance Measures

- We focused on minhashing, a locality sensitive hashing family that uses Jaccard distance
 - Based on sets representing documents and their Jaccard similarity
- Book covers LSH families for other distance measures:
 - Euclidean distance: based on the locations of points in a Euclidean space with some number of real-valued dimensions
 - Cosine distance: angle between vectors from the origin to the points in question
 - Edit distance: number of inserts and deletes to change one string into another
 - ➤ Hamming Distance: number of positions in which bit vectors differ

LSH and Shingling Application Examples

- Matching fingerprints
- ◆ Identifying similar news articles

LSH for Fingerprints

- ◆ Typical representation is not an image, but set of locations in which minutiae are located
 - ➤ Place where something unusual happens: two ridges merging or a ridge ending
- ◆ Place a grid over a fingerprint
 - Normalize for size and orientation so that identical prints will overlap
- Represent fingerprint by set of grid points where minutiae are located
 - Possibly, treat minutiae near a grid boundary as if also present in adjacent grid points.

Discretizing Minutiae

Place a minutia in several adjacent grid squares if it lies close to the border of the squares

Applying LSH to Fingerprints

- ◆ Make a bit vector for each fingerprint's set of grid points with minutiae
 - ➤ Similar to set representing a document: 1 if the shingle is in the document, 0 otherwise
- We could minhash the bit vectors to obtain signatures
 - ➤ But since there probably aren't too many grid points, we can work from the bit-vectors directly.

Matching Fingerprints with LSH: Many-to-many problem

- Many-to-many version of fingerprint matching: take an entire database of fingerprints and identify if there are any pairs that represent the same individual
 - Analogous to finding similar documents among millions of documents
- Define a locality-sensitive family of hash functions:
 - Each function f in the family F is defined by 3 grid squares
 - Function f says "yes" for two fingerprints if both have minutiae in all three grid squares, otherwise, f says "no"
 - "Yes" means the two fingerprints are candidate pairs
- Sort of "bucketization"
 - > Each set of three points creates one bucket
 - Function f sends fingerprints to its bucket that have minutae in all three grid points of f
- Compare all fingerprints in each of the buckets.

Matching Fingerprints with LSH: Many-to-One Problem

- Many-to-one version: A fingerprint has been found at a crime scene, and we want to compare it with all fingerprints in a large database to see if there is a match
- Could use many functions f from family F
- Precompute their buckets of fingerprints to which they answer "yes" on the large database
- **♦** For a new fingerprint:
 - Determine which buckets it belongs to
 - Compare it with all fingerprints found in any of those buckets.

Example 3.22

- ◆ 1024 functions chosen randomly from F
 - Each function f says "yes" for two fingerprints if both have minutiae in all three grid squares, otherwise, f says "no"
- Suppose typical fingerprints have minutiae in 20% of the grid points
- Suppose fingerprints from the same finger agree in at least 80% of their points
- * Probability two random fingerprints each have 1 in all three points = (0.2)⁶ = .000064
 - > 2 fingerprints, 3 points each, all independent events.

First image has 1 in a point

Example: Continued

Second image of same finger also has 1

- Probability two fingerprints from the same finger each have 1's in three given points = $(0.2)(0.8))^3 = .004096$ (Analogy: t)
- ◆ Prob. for at least one of 1024 sets of three points = $1-(1-.004096)^{1024} = .985$ (Analogy:

 But for random fingerprints (prev. slide*).

$$1-(1-.000064)^{1024} = .063$$
 1.5% false negatives

6.3% false

Choosing the number of functions from F

- **◆** Want to use many functions from F, but not too many
- Want a good probability of matching fingerprints from the same finger while not having too many false positives
- Previous example: only 1.5% chance we fail to identify a print on the gun (false negative), but have to look at 6.3% of entire database (due to false positives)
- Increasing number of functions from F increases number of false positives
 - Only a small benefit in reducing false negatives below 1.5%
- **♦** Can use constructions/combinations of functions
 - Several examples in the chapter.

Finding Same or Similar Same News Articles

- **♦** Want to organize large repository of on-line news articles
 - Group together web pages derived from same basic text
- ◆ Scenario: the same article, say from the Associated Press, appears on the Web site of many newspapers, but looks quite different
- Each newspaper surrounds the text of the article with:
 - Its own logo and text
 - > Ads
 - Perhaps links to other articles
- A newspaper may also "crop" the article (delete parts).

Variation on Shingling

- Looks like earlier problem: find documents whose shingles have high Jaccard similarity
- **♦** But: Shingling treats all parts of document equally
- For this application, we want to ignore parts of the documents (ads, links to other articles, etc.)
- ◆ There is a difference between text that appears in prose and text in ads or headlines/links
 - > Prose contains greater frequency of stop words
 - E.g., common words like "and" or "the"
 - Common to use list of several hundred most frequent words.

New Shingling Technique

- News articles have a lot of stop words, while ads do not
 - "Buy Sudzo" vs. "I recommend that you buy Sudzo for your laundry."
- Define a shingle to be a stop word plus the next two following words
 - Shingles are: "I recommend that"
 - "that you buy"
 - "you buy Sudzo"
 - "for your laundry"
 - "your laundry < nextword>"
- Then compare the similarity of the sets of shingles that represent each document
 - Don't use minhashing or LSH in this example.

Why it Works

By requiring each shingle to have a stop word: bias the mapping from documents to shingles so it picked more shingles from the article than from the ads

◆ Pages with the same article, but different ads, have higher Jaccard similarity than those with the same ads, but different articles.

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents