Graphs' decompositions and resolutions of combinatorial problems

Stéphane Secouard Supervised by : Florent Madeleine

Caen University - Computer science

25 october 2016

Table of contents

- Tree decomposition
 - definition
 - treewidth
 - nice tree
 - example
- 2 Applications
 - k-color
 - the problem
 - illustration
 - max clik

 - Hamilton cycle
- Mission
- Bibliography

Definition (Graph decomposition)

A tree T is a decomposition of a graph G when its vertices are arranged satisfying the following properties :

- $\textbf{0} \ \, \text{If u and v are netighbors in G, then there is a bag of T containing both of them}.$
- For every vertex v of G, the bags of T containing v form a connected subtree

Definition (Graph decomposition)

A tree T is a decomposition of a graph G when its vertices are arranged satisfying the following properties :

- If u and v are netighbors in G, then there is a bag of T containing both of them.
- For every vertex v of G, the bags of T containing v form a connected subtree

Definition (Graph decomposition)

A tree T is a decomposition of a graph G when its vertices are arranged satisfying the following properties :

- If u and v are netighbors in G, then there is a bag of T containing both of them.
- For every vertex v of G, the bags of T containing v form a connected subtree

Definition (Graph decomposition)

A tree T is a decomposition of a graph G when its vertices are arranged satisfying the following properties:

- (a) If u and v are netighbors in G, then there is a bag of T containing both of them.
- For every vertex v of G, the bags of T containing v form a connected subtree

Definition (Graph decomposition)

A tree T is a decomposition of a graph G when its vertices are arranged satisfying the following properties :

- If u and v are netighbors in G, then there is a bag of T containing both of them.
- For every vertex v of G, the bags of T containing v form a connected subtree

Definition (treewidth)

- The width of a decomposition is largest bag size 1.
- The treewidth of a graph is the width of the best decomposition of this graph.

Definition (treewidth)

- The width of a decomposition is largest bag size 1.
- The treewidth of a graph is the width of the best decomposition of this graph.

 $\underline{\textbf{Example}:} \ \mathsf{Assume} \ (\mathsf{T}) \ \mathsf{is} \ \mathsf{one} \ \mathsf{of} \ \mathsf{the} \ \mathsf{best} \ \mathsf{representation} \ \mathsf{og} \ (\mathsf{G}) :$

Definition (treewidth)

- The width of a decomposition is largest bag size 1.
- The treewidth of a graph is the width of the best decomposition of this graph.

 $\underline{\textbf{Example}:} \ \mathsf{Assume} \ (\mathsf{T}) \ \mathsf{is} \ \mathsf{one} \ \mathsf{of} \ \mathsf{the} \ \mathsf{best} \ \mathsf{representation} \ \mathsf{og} \ (\mathsf{G}) :$

Treewidth(G)=3-1=2

Definition (treewidth)

- The width of a decomposition is largest bag size 1.
- The treewidth of a graph is the width of the best decomposition of this graph.

$\underline{\textbf{Example}:} \ \mathsf{Assume} \ (\mathsf{T}) \ \mathsf{is} \ \mathsf{one} \ \mathsf{of} \ \mathsf{the} \ \mathsf{best} \ \mathsf{representation} \ \mathsf{og} \ (\mathsf{G}) :$

Remark

The treewidth of a tree is 1 and if a graph have a treewidth of 1 we can claim that this graph is a forest (i.e. a collection of trees).

Definition (nice tree)

A tree decomposition is nice if every node x is one of the following 4 types :

Leaf : no children, $|B_x| = 1$

Introduce : 1 child y, $B_x = B_y \cup \{v\}$ for some vertex v

Forget : 1 child y, $B_x = B_y \setminus \{v\}$ for some vertex v.

Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

Remark

- A tree decomposition can be turned into a nice tree decomposition
- A nice tree could be very good to simplify a proof or to find an easy program to solve a problem (as we will see later).

This is a decomposition tree saw previously. How could we obtain a nice tree from it?

c,d,f

This is a decomposition tree saw previously. How could we obtain a nice tree from it?

FORGET

the problem

Problem (k-color)

problem: Let (G) be a graph and k an integer. We want to know if it is possible to draw each vertice of the graph such that two neighbors have never the same color and

with only k color.

This problem is a problem of decision which is NP.

tree-width: k-color is possible for a graph (G) if and only if $k \geqslant t$ reewidth(G).

nice tree : a nice tree of (G) give a way to find a k-coloration of (G) (if $k \ge treewidth(G)$).

the problem

Problem (k-color)

problem: Let (G) be a graph and k an integer. We want to know if it is possible to draw

each vertice of the graph such that two neighbors have never the same color and

with only k color.

This problem is a problem of decision which is NP.

tree-width: k-color is possible for a graph (G) if and only if $k \geqslant t$ reewidth(G).

nice tree : a nice tree of (G) give a way to find a k-coloration of (G) (if $k \ge t$ reewidth(G)).

$\underline{\hbox{\bf Illustration}}$ we will use the previously trees to solve the problem with this graph :

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

- treewith(G)=3: we can solve the problem with 3 colors
- we can fixe a color for a "Leaf"
- when we meet an "Introduce" we add a color
- when we meet a "Forget" we can claim that the vertex which has disappeared won't come back (propertie of the decomposition) and so we can reuse the color.

Other applications

Mission

Bibliography