Характер группоида

А. А. Владимиров

16.06.2022

Задача

Дан функтор $\varkappa = (\varkappa_1, \varkappa_2) : \mathbf{Cat}(\Gamma) \to \mathbf{Vec}$. Найти $\varkappa_2 : (f : \Gamma_1 \to \Gamma_2) \mapsto (A_f : \varkappa_1(\Gamma_1) \to \varkappa_1(\Gamma_2))$, если известно, что $\varkappa_1 : \Gamma \mapsto V$, где V – пространство характеров, т.е. $V = \{\chi : \operatorname{Hom}\Gamma \to \mathbb{C} : \chi(\psi \circ \varphi) = \chi(\psi) + \chi(\varphi)\}$.

Таким образом задача сводится к нахождению линейного оператора A_f на коммутативной диаграмме

Рис. 1: постановка задачи

Решение

Содержание

0.1	Характер группоида			
	i.	Группоид	2	
	ii.	Группа	6	
	iii.	Абелева группа	8	
	Преоб	разование характеров	6	
	i.	Что дальше?	Ç	

0.1 Характер группоида

і. Группоид

Перед тем, как задавать характер, обсудим сперва саму структуру группоида¹.

Определение 1. [1] *Группоидом* назывется категория, любая стрелка которой обратима.

Рис. 2: группоид

Попытаемся найти в группоиде "что-то вроде базиса". В некотором группоиде Γ выберем произвольную вершину a и рассмотрим её группу петель G и веер стрелок (e,f,g,\ldots) .

Определение 2. Веером стренок вершины a группоида Γ назовем множество стренок $V = \{e = \mathrm{id}_a : a \to a, f : a \to b, g : a \to b, \ldots\}$, исходящих из вершины a по одной в каждую из вершин группоида, причем $e : a \to a$ есть тождественная стрелка.

Рис. 3: веер

Возникает вопрос: как соотносятся с выделенным "базисом" остальные стрелки группоида? Ответ на него дает следующая простая лемма.

¹здесь и далее под группоидами подразумеваются связные группоиды

Пемма 1. Для любой стрелки $v:b\to c$ группоида Γ существуют, и притом единственные $f,g\in V$ и $h\in G$, такие что

$$v = ghf^{-1}. (1)$$

Доказательство. Действительно, поскольку $v:b\to c$, и $h:a\to a$, стрелки g и f обязаны действовать из a в c, и из a в b соответственно, а таковые имеются в V в единственном экземпляре.

Раз теперь известны v, g и f, существование и единственность стрелки $h \in G$ следует напрямую алгебраически из выражения (1), а именно $h = g^{-1}vf$.

Иными словами, мы построили биекцию

$$\iota: Arr(\Gamma) \to V \times G \times V$$
 (2)

— между стрелками и множеством троек вида ghf^{-1} .

Располагая таким построением, мы опустим кавычки говоря о (G, V) как о базисе группоида Γ , а под разложением по этому базису стрелки или множества стрелок с математической точки зрения будем подразумевать образ соответствующего множества при отображении ι .

Перебирая и фиксируя различные пары (g, f) можно получить разложение группоида по базису (G, V).

Следствие 1. (о представлении hom-множеств)

- a. $hom(b, c) = gGf^{-1}$
- b. $hom(a, b) = fGe^{-1} = fG$,
- c. $hom(b, a) = eGf^{-1} = Gf^{-1}$,
- d. $hom(b, b) = fGf^{-1}, ^{2}$
- e. $hom(a, a) = eGe^{-1} = G$,

где $f: a \to b, g: a \to c, G = \text{hom}(a, a)$.

Полезно также отедельно выделить частный случай

Определение 3. *Простым группоидом* назовем группоид, фундаментальная группа которого тривиальна.

Для которого, ввиду $G = \{ id_a \}$ следствие 1 принимает вид:

Следствие 2. В простом группоиде любая стрелка $v:b\to c$, раскладывается в базисе V как

$$v = qf^{-1},$$

где $f: a \to b, g: a \to c$.

Рис. 4: фактор-группоид

Вернемся к группоиду Γ и перерисуем диаграмму 2 с учетом следствия 1 (рис. 4).

Диаграмма 4 напоминает некую "факторизацию", и действительно, если под стрелками на диаграмме понимать не hom-множества, а просто стрелки, то мы получим диаграмму фактор-группоида Γ/Φ_{Γ}^{3} по фундаментальной группе Φ_{Γ} , где названия стрелок соответствуют прообразам факторизации. Мы не будем здесь строго вводить понятие фактор-группоида, т.к. в нашем случае он предствляет из себя всего лишь простой группоид с тем же набором объектов что и исходный.

При виде диаграммы 4 кажется само собой разумееющимся

Утверждение 1.

$$\Gamma \simeq \Gamma/\Phi_{\Gamma} \times \Phi_{\Gamma}. \tag{3}$$

Перед доказательством утверждения 1 напомним

Определение 4. [1] *Произведением* двух данных категорий B и C, называется категория $B \times C$, объекты которой — пары (b,c) объектов b из B и c из C; стрелки $(b,c) \to (b',c')$ — пары (f,g) стрелок $f:b\to b'$ и $g:c\to c'$, а композиция двух таких стрелок

$$(b,c) \xrightarrow{(f,g)} (b',c') \xrightarrow{(f',g')} (b'',c'')$$

определяется в терминах композиции в категориях B и C по формуле

$$(f', g') \circ (f, g) = (f' \circ f, g' \circ g).$$

Доказательство. Построим явно изоморфизм — функтор $i: \Gamma \to \Gamma/\Phi_{\Gamma} \times \Phi_{\Gamma}$.

²Это классическое утверждение об изоморфности всех групп петель в группоиде (которое и позволяет ввести такой объект как фундаментальная группа)

³Пользуясь стандартным определением факторизации категории[1], естественным образом, подобно тому как это делается в обыкновенных группах, можно ввести факторизацию группоида по любой нормальной подгруппе фундаментальной группы, в том числе и по ней самой.

Для этого выделим некоторый базис (G = hom(a, a), V - веер a) группоида Γ , и для удобства отождествим Φ_{Γ} с G, а веер вершины a в Γ/Φ_{Γ} с V.

Тогда i может быть задан следующим образом:

на объектах: $i: d \mapsto (d, \theta)$;

на стрелках: $i:v\mapsto (gf^{-1},h),$ где $(g,h,f^{-1})=\iota(v).$

Биективность и функторность i очевидна вследствие определения биекции ι , леммы 1 и ее следствий. Впрочем, в этом также можно наглядно убедится взглянув на схему, изображенную на рис. 5.

Рис. 5: изоморфизм

Возвращаясь, наконец, к вопросу задания характера на группоиде

іі. Группа

Рассмотрим некоторую группу G, его фактор-группу G/G' по коммутанту G' и следующую диаграмму

Рис. 6

Здесь $\tau: g \mapsto gG'$ — канонический гомоморфизм; χ, χ_{ab} — характеры групп G и G/G' соответственно.

Оказывается, что

Утверждение 2. для любого $\chi: G \to \mathbb{C}$ существует и при том единственный характер $\chi_{ab}: G/G' \to \mathbb{C}$ такой, что диаграмма (6) коммутативна, т.е.

$$\chi = \chi_{ab} \circ \tau.$$

Доказательство. Действительно, потребуем для любого $g \in G$

$$\chi(g) = \chi_{ab} \circ \tau(g),$$

тогда

$$\chi(g) = \chi_{ab}(gG'),$$

и χ_{ab} задан на G/G' однозначно.

Более того χ_{ab} задан корректно, т.к. для $\forall f \in gG' \ \exists h \in G' : f = gh$, но по определению коммутанта существуют такие a и b, что $h = aba^{-1}b^{-1}$, откуда $f = gaba^{-1}b^{-1}$, и

$$\chi(f) = \chi(gaba^{-1}b^{-1}) = \chi(g) + \chi(a) + \chi(b) - \chi(a) - \chi(b) = \chi(g),$$

то есть,

$$\chi(f) = \chi(g)$$
, для любых f и g из одного смежного по G' класса. (4)

Очевидно, что χ_{ab} — характер:

$$\chi_{ab}(gfG') = \chi(gf) = \chi(g) + \chi(f) = \chi_{ab}(gG') + \chi_{ab}(fG').$$

Замечание. Попутно доказано важное для понимания происходящего утверждение (4), показывающее, что факторизация группы по коммутанту G' разбивает ее также и на «области постоянства» характера (рис. 7). Становится ясно, что вместо рассмотрения характера χ на всей группе, достаточно пронаблюдать лишь за его «действием с точностью до G'», т.е. за определяемым им на G/G' характере χ_{ab} .

Рис. 7

Обратно,

Утверждение 3. характер χ_{ab} однозначно задает χ , как

$$\chi=\chi_{ab}\circ\tau$$

Утверждение представляется очевидным.

Так, построено взаимооднозначное отображение $t:\chi_{ab}\mapsto\chi_{ab}\circ\tau=\chi$ между характерами группы и ее абелизации (т.е. фактор группы по коммутанту). Покажем, что отображение t является гомоморфизмом (а следовательно и изоморфизмом) линейных пространств.

Действительно, для любого $g \in G$

$$t(c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(g) = (c_1\chi_{ab}^1 + c_2\chi_{ab}^2) \circ \tau(g) =$$

$$= (c_1\chi_{ab}^1 + c_2\chi_{ab}^2)(gG') = c_1\chi_{ab}^1(gG') + c_2\chi_{ab}^2(gG') =$$

$$= c_1\chi_{ab}^1 \circ \tau(g) + c_2\chi_{ab}^2 \circ \tau(g) = c_1t(\chi_{ab}^1)(g) + c_2t(\chi_{ab}^2)(g).$$

Тем самым доказано следующее

Утверждение 4. Пространства характеров группы G и ее абелизации G/G' изоморфны. Конкретно, изоморфизм имеет вид:

$$t: G/G' \to G. \quad t: \chi_{ab} \mapsto \chi_{ab} \circ \tau,$$
 (5)

где au — канонический гомоморфизм G o G/G'.

Последнее утверждение позволяет нам свести задачу изучения характеров группы G к рассмотрению характеров на G/G' — группе, абелевой по определению.

ііі. Абелева группа

Итак, пусть некоторая группа A — абелева. Как задать на ней характер? Нетрудно получить ответ в случае конечно-порожденных групп.

Известно, что для таких групп справедливо разложение 4

$$A \simeq \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n} \oplus \operatorname{Tor} A = \mathbb{Z}^{n} \oplus \operatorname{Tor} A,$$

где \mathbb{Z}^n — свободная подгруппа,

 $\operatorname{Tor} A \ \ = \ \{a \in A : ma = 0 \ \text{для некоторого} \ m \in \mathbb{Z}, m \neq 0\} - \textit{nodгpynna кручения},$ причем

Tor
$$A \simeq \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_s}$$
,

где \mathbb{Z}_{p_i} — циклическая группа порядка p_i .

Отсюда

$$A = \{x_1 e_1 + \ldots + x_n e_n + x_{n+1} f_1 + \ldots + x_{n+s} f_s \mid x_i \in \mathbb{Z}\},\tag{6}$$

где $\{e_i\}_{i=1}^n$ – базис свободной подгруппы, $\{f_i\}_{i=1}^s$ – порождающие соответствующих циклических групп. Попутно введем обозначение $|\dim|A=n$.

Пусть теперь задан характер $\chi:A\to\mathbb{C},$ тогда для любого $a\in A,$ с учетом (6) верно

$$\chi(a) = \chi(\alpha_1 e_1 + \ldots + \alpha_n e_n + \alpha_{n+1} f_1 + \ldots + \alpha_{n+s} f_s) =$$

$$= \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n) + \alpha_{n+1} \chi(f_1) + \ldots + \alpha_{n+s} \chi(f_s),$$

но, так как порядок каждого элемента f_i конечен, то $\chi(f_i) = 0$ для всех i = 1,...,s, и

$$\chi(a) = \alpha_1 \chi(e_1) + \ldots + \alpha_n \chi(e_n). \tag{7}$$

Тем самым доказано

Утверждение 5. Для конечно-порожденной группы A пространство характеров $X(A) = \{\chi : A \to \mathbb{C} : \chi(a+b) = \chi(a) + \chi(b)\}$ имеет размерность

$$\dim X(A) = |\dim| A. \tag{8}$$

⁴см.[2] гл.9 §1

0.2 Преобразование характеров

і. Что дальше?

Список литературы

- [1] Маклейн С. «Категории для работающего математика». Изд-во ФизМатЛит, Москва, 2004.
- [2] Винберг Э. Б. «Курс алгебры». Изд-во МЦНМО, Москва, 2014.