Shortest Path Problem

Dikjstra's Algorithm

Shortest Path Problems

- What is shortest path?
 - shortest length between two vertices for an unweighted graph:
 - smallest cost between two vertices for a weighted graph:

Shortest Path Problems

- How can we find the shortest route between two points on a map?
- Model the problem as a graph problem:
 - Road map is a weighted graph:

```
vertices = cities
edges = road segments between cities
edge weights = road distances
```

Goal: find a shortest path between two vertices (cities)

Shortest Path Problems

• Input:

- Directed graph G = (V, E)
- Weight function w : E → R
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Shortest-path weight from u to v:

$$\delta(\mathbf{u}, \mathbf{v}) = \min$$
 $\begin{cases} w(p) : \mathbf{u} & \stackrel{p}{\sim} \mathbf{v} \text{ if there exists a path from } \mathbf{u} \text{ to } \mathbf{v} \end{cases}$ otherwise

• Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

• G = (V, E) \Rightarrow find a shortest path from a given source vertex s to each vertex $v \in V$

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Optimal Substructure of Shortest Paths

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbb{R}$,

• A subpath of p: $p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: \mathbf{p}_{ij} is a shortest path from \mathbf{v}_i to \mathbf{v}_j

Proof:
$$p = v_1 \xrightarrow{p_{1i}} v_i \xrightarrow{p_{ij}} v_j \xrightarrow{p_{jk}} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{ik}) < w(p) contradiction!

Representation

Definition:

• $\underline{\delta(u,v)}$ = weight of the shortest path(s) from u to v

Well Definedness:

- negative-weight cycle in graph: Some shortest paths may not be defined
- argument: can always get a shorter path by going around the cycle again

Negative-edge weights

- No problem, as long as no negative-weight cycles are reachable from the source
- Otherwise, we can just keep going around it, and get $w(s, v) = -\infty$ for all v on the cycle.

Cycles

- Can shortest paths contain cycles?
- Negative-weight cycles
 - Shortest path is not well defined
- Positive-weight cycles:
 - By removing the cycle, we can get a shorter path
- Zero-weight cycles
 - No reason to use them
 - Can remove them to obtain a path with same weigh

Shortest-Path Representation

For each vertex $v \in V$:

- $d[v] = \delta(s, v)$: a **shortest-path estimate**
 - Initially, d[v]=∞
 - Reduces (reaches close to $\delta(s, v)$) as algorithms progress
- $\pi[v]$ = **predecessor** of **v** on a shortest path from **s**
 - If no predecessor, $\pi[v] = NIL$
 - π induces a tree—shortest-path tree
- Shortest paths & shortest path trees are not unique

Initialization

```
Alg.: INIT (G, s)
```

- **1. for** each $v \in V$
- 2. do d[v] $\leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$
- All the shortest-paths algorithms start with INIT
- Maintain d[v] for each $v \in V$
- d[v] is called the shortest-path weight estimate and it is the upper bound on $\delta(s, v)$

Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v \Rightarrow update d[v] and $\pi[v]$

RELAX(u, v)

```
1. if d[v] > d[u] + w(u, v)

2. then d[v] \leftarrow d[u] + w(u, v)

3. \pi[v] \leftarrow u
```

- All the single-source shortest-paths algorithms
 - start by calling INIT
 - then relax edges
- The algorithms differ in the order and how many times they relax each edge (it affects the correctness and time complexity of the algorithm)

Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

Using BFS

Generalization of BFS to handle weighted graphs

- Direct Graph G = (V, E), edge weight $f_n : w : E \rightarrow R$
- In BFS w(e)=1 for all $e \in E$

Weight of path $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Why BFS is not Enough

- Breadth-first visit order is "cautious" in the sense that it examines every path of length i before going on to paths of length i+1
- Breadth-first search does not work!
 - Minimum number of hops does not mean minimum distance.
 - BFS will yield a, e, f as SP between a and f
 - a, d, g, h, f has lower distance

A Greedy Algorithm

- Assume that every node is infinitely far away from the source.
 - i.e., every node is ∞ miles away from s (except s, which is 0 miles away).
 - Now perform something similar to breadth-first search, and optimistically guess that we have found the best path to each node as we encounter it.
 - If we later discover we are wrong and find a better path to a particular node, then update the distance to that node (edge Relaxation).

Intuition Behind Dijkstra's Algorithm

- For our SP problem, we can start by guessing that every node is ∞ miles away.
 - Mark each node with this guess.
- Find all verices/cities one hop away from s, and check whether the distance is less than what is currently marked for that node.
 - If so, then revise the guess.
- Continue for 2 hops, 3 hops, etc.

Dijkstra's Algorithm For Shortest Paths

Assumes no negative-weight edges.

Maintains a set S of vertices whose SP from s has been determined.

Repeatedly selects u in V–S with minimum SP estimate (greedy choice).

Store V—S in priority queue Q. Like BFS: If all edge weights are equal, then use BFS, otherwise use this algorithm (note: BFS uses FIFO)

Dijkstra's Algorithm For Shortest Paths

x is selected, then its edges are relaxed.

Dijkstra's Algorithm

- Similar to Prim's MST algorithm
- Start with source node s and iteratively construct a tree rooted at s
- Each node keeps track of tree node that provides cheapest path from s (not just cheapest path from any tree node)
- At each iteration, include the node whose cheapest path from s is the overall cheapest

Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP

Prim's vs. Dijkstra's

Prim's MST

Dijkstra's SSSP

Dijkstra's Algorithm For Shortest Paths

```
DIJKSTRA(G, s)
   INIT(G, s)
   S \leftarrow \emptyset > set of discovered nodes
   Q \leftarrow V[G]
   while Q \neq \text{do} do
       u \leftarrow EXTRACT-MIN(Q)
        S \leftarrow S \cup \{u\}
      for each v \in Adj[u] do
           RELAX(u, v) > May cause
                            > DECREASE-KEY(Q, v, d[v])
```

Running Time Analysis

- Look at different Q implementation, as did for Prim's algorithm
- Initialization (INIT) : $\Theta(V)$ time
- While-loop:
 - **EXTRACT-MIN** executed |V| times
 - **DECREASE-KEY** executed |E| times
- Time $T = |V| x T_{E-MIN} + |E| x T_{D-KEY}$

Running Time Analysis

Look at different Q implementation

-	Q	Te-min	T _{D-KEY}	TOTAL
•	Linear			
	Unsorted Array:	O(V)	O(1)	$O(V^2+E)$
•	Binary Heap:	O(lgV)	O(logV)	O(VlgV+ElgV) = O(ElgV)

Triangle Inequality

Lemma 1: for a given vertex $s \in V$ and for every edge $(u,v) \in E$,

• $\delta(s,v) \le \delta(s,u) + w(u,v)$

Proof: shortest path $s \rightsquigarrow v$ is no longer than any other path.

• in particular the path that takes the shortest path $s \sim v$ and then takes cycle (u,v)

Algorithms differ in

- how many times they relax each edge, and
- > the order in which they relax edges

Question: How many times each edge is relaxed in BFS?

Answer: Only once!

Given:

- An edge weighted directed graph G = (V, E) with edge weight function $(w:E \rightarrow R)$ and a source vertex $s \in V$
- G is initialized by INIT(G, s)

```
Lemma 2: Immediately after relaxing edge (u,v), d[v] \le d[u] + w(u,v)
```

- Lemma 3: For any sequence of relaxation steps over E,
 - (a) the invariant $d[v] \ge \delta(s,v)$ is maintained
 - (b) once d[v] achieves its lower bound, it never changes.

```
Proof of (a): certainly true after 

INIT(G,s): d[s] = 0 = \delta(s,s): d[v] = \infty \ge \delta(s,v) \ \forall \ v \in V-\{s\}
```

- Proof by contradiction: Let v be the first vertex for which RELAX(u, v) causes $d[v] < \delta(s, v)$
- After RELAX(u, v) we have
 - $d[u] + w(u,v) = d[v] < \delta(s, v)$ $\leq \delta(s, u) + w(u,v) \text{ by } L1$
 - $d[u]+w(u,v) < \delta(s, u) + w(u, v) => d[u] < \delta(s, u)$ contradicting the assumption

Proof of (b):

- d[v] cannot decrease after achieving its lower bound; because $d[v] \ge \delta(s, v)$
- d[v] cannot increase since relaxations don't increase d values.

C1: For any vertex v which is not reachable from s, we have invariant $d[v] = \delta(s, v)$ that is maintained over any sequence of relaxations

Proof: By L3(b), we always have
$$\infty = \delta(s, v) \le d[v]$$

=> $d[v] = \infty = \delta(s, v)$

Lemma 4: Let $s \sim u \rightarrow v$ be a shortest path from s to v for $some u, v \in V$

- Suppose that a sequence of relaxations including
 RELAX(u,v) were performed on E
- If $d[u] = \delta(s, u)$ at any time prior to RELAX(u, v)
- then $d[v] = \delta(s, v)$ at all times after **RELAX**(u, v)

```
Proof: If d[u] = \delta(s, v) prior to RELAX(u, v) d[u] = \delta(s, u) hold thereafter by L3(b)
```

- After RELAX(u,v), we have $d[v] \le d[u] + w(u, v)$ by L2= $\delta(s, u) + w(u, v)$ hypothesis = $\delta(s, v)$ by optimal subst.property
- Thus $d[v] \le \delta(s, v)$
- But $d[v] \ge \delta(s, v)$ by $L3(a) => d[v] = \delta(s, v)$

Correctness

Theorem: Upon termination, $d[u] = \delta(s, u)$ for all u in V (assuming non-negative weights).

Proof:

By Lemma 3(b), once $d[u] = \delta(s, u)$ holds, it continues to hold.

We prove: For each u in V, $d[u] = \delta(s, u)$ when u is inserted in S.

Suppose not. Let u be the first vertex such that $d[u] \neq \delta(s, u)$ when inserted in S.

Note that $d[s] = \delta(s, s) = 0$ when s is inserted, so $u \neq s$.

 \Rightarrow S \neq Ø just before u is inserted (in fact, s \in S).

Proof (Continued)

Note that there exists a path from s to u, for otherwise $d[u] = \delta(s, u) = \infty$.

 \Rightarrow there exists a SP from s to u. SP looks like this:

Proof (Continued)

Claim: $d[y] = \delta(s, y)$ when u is inserted into S.

We had $d[x] = \delta(s, x)$ when x was inserted into S.

Edge (x, y) was relaxed at that time.

By Lemma4, this implies the claim.

```
Now, we have: d[y] = \delta(s, y), by Claim.

\leq \delta(s, u), nonnegative edge weights.

\leq d[u], by Lemma3(a).
```

Because u was added to S before y, $d[u] \le d[y]$.

Thus,
$$d[y] = \delta(s, y) = \delta(s, u) = d[u]$$
.

Contradiction.