Applied Deep Learning

Nitish Bhardwaj

Summary of Session I

- Al to Deep Learning
- Neural networks to Deep nets
- Problem Solving
- Coding session
 - Image Classification
 - Convolutional Neural network
 - Object Detection
 - Segmentation
- More examples

Overview of Session II:

- Text Classification
- Al Pipeline
- Industrial Requirement
- Research Topics in Deep Learning
- GAN

Text Classification

Text Classification

Embedding Vector

•	Word	index

- TF-IDF
- word2vec
- Doc2vec
- Glove
- Transformers
- BERT

Dimensions

animal

pet

fluffy

domesticated

cat -0.15 -0.02 -0.23 -0.2 lion 0.19 -0.4 0.35 -0.4	3
	8
tiger -0.08 0.31 0.56 0.0	7
elephant -0.04 -0.09 0.11 -0.0	6
tiger -0.08 0.31 0.56 0.0 elephant -0.04 -0.09 0.11 -0.0 cheetah 0.27 -0.28 -0.2 -0.4 monkey -0.02 -0.67 -0.21 -0.4	3
≥ monkey -0.02 -0.67 -0.21 -0.4	8
rabbit -0.04 -0.3 -0.18 -0.4	7
mouse 0.09 -0.46 -0.35 -0.2	4
rat 0.21 -0.48 -0.56 -0.3	7

Resume Shortlisting

Sentiment Analysis: Walkthrough

Al Pipeline

Example : Smart Retail Store

Smart Retail Store:

- Smart Basket
- Chatbot for Assistant
-

AI R&D for each problem

- Computer Vision
- Natural Language Processing
-

Industrial Requirement

Industry Academic Collaboration

- Research to find new mathematical approach, ex. Loss functions
- Exploration of new domain like 3D, Graph neural Nets
- A lot of experimentations and Trials-Errors
- Solving new problems: COVID-19

Transfer Learning

Using Pre-trained Models

Transfer learning: idea

Instead of training a deep network from scratch for your task:

- Take a network trained on a different domain for a different source task
- Adapt it for your domain and your target task

Variations:

- Same domain, different task
- Different domain, same task

Traditional ML

VS

Transfer Learning

- Isolated, single task learning:
 - Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Reusing Pretrained models: Transfer Learning

Transfer Learning Approaches

- Method 1: Using online repository of the trained model
- Method 2: Using models defined in the model in the framework
- Method 3: Downloading the model in your local and using it

Method 1: Using online repository of the trained model

- Using tensorflow hub
 - Online pre-trained models
 - https://www.tensorflow.org/tutorials/images/transfer_learning_with_hub
 - https://github.com/tensorflow/hub/blob/master/examples/colab/object_detection.ipynb

Using pytorch hub

- o https://pytorch.org/hub/research-models
- https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/
- O import torch
- O precision = 'fp32'
- o ssd_model = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_ssd',
 model_math=precision)

Method 2: Using models defined in the model in the framework

- Using tensorflow trained models defined in library as application
 - https://www.tensorflow.org/tutorials/images/transfer_learning#create_the_base_model_from _the_pre-trained_convnets

- Using pytorch trained models defined in library
 - https://pytorch.org/docs/stable/torchvision/models.html
 - o import torchvision.models as models
 o respet18 = models.respet18(pretrained=True)

0

oresnet18 = models.resnet18(pretrained=True)

Method 3: Downloading the model in your local and using it

- Keras Model: .h5
- Pytorch model : .pt, .pth, .onnx
- Tf Model : .ckpt, .pb

- Tensorflow:
 - Exporting a model: https://www.tensorflow.org/api_docs/python/tf/saved_model/save
 - Re-using the exported model: https://www.tensorflow.org/guide/saved_model
- Pytorch:
 - Approach 1: https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
 - Approach 2: https://pytorch.org/tutorials/beginner/saving_loading_models.html

Keras Examples: walkthrough

Research Topic in Deep Learning

- A Comprehensive Survey on Graph Neural Networks Wu, Zonghan, et al. in cs.LG and stat.ML, latest revision 12/4/2019 : 1901.00596v4: Abstract Full Paper (pdf)
- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks Tan, Mingxing and Le, Quoc in cs.LG, cs.CV and stat.ML, latest revision 11/23/2019: 1905.11946v3: Abstract Full Paper (pdf)
- Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context: Dai, Z., et al. in cs.LG | cs.CL | stat.ML, latest revision 6/2/2019 1901.02860v3: Abstract Full Paper (pdf)

Elephant in the House: GAN

NOISE VECTOR REAL FORGER IDEAS REAL DATASET Jewlery Store **FAKE GENERATOR GENERATED** DISCRIMINATOR **FAKE DATA FORGER**

Image generation

Image Generation Demo

Sentence Generation

Code-Walkthrough

- PixelCNN
- Face Generation
- GANs

Summary

- Text classification
- Story of Resume Shortlisting
- Coding Session
 - Sentiment Analysis I
 - Sentiment Analysis II
- Al Pipeline
- Industrial roles
- Research Topics
- GAN models

https://www.linkedin.com/in/nitish-bhardwai/

References

- https://paperswithcode.com/
- https://www.kdnuggets.com/2020/01/top-10-ai-ml-articles-to-know.html
- https://www.aclweb.org/anthology/D18-1451.pdf
- https://medium.com/what-is-gan/conditional-gan-d62a76e1724f
- https://machinelearningmastery.com/what-are-generative-adversarial-net-works-gans/
- https://colab.research.google.com/drive/1gAS_eDzGRhEznUosanlUvjv-g96 jfQZE#scrollTo=39CgD8t68Otg
- https://colab.research.google.com/github/agungsantoso/deep-learning-v2
 -pytorch/blob/master/sentiment-rnn/Sentiment_RNN_Exercise.ipynb#scro
 llTo=TT8spavKpmxH
- https://github.com/hindupuravinash/the-gan-zoo

Thank You