

HEXFET® Power MOSFET

V _{DS}	80	٧
R _{DS(on) max}	15	mΩ
(@V _{GS} = 10V)		
Q _{g (typical)}	35	nC
I _D	9.3	Δ
(@T _A = 25°C)	9.5	^

Features

Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits

Multi-Vendor Compatibility	
Easier Manufacturing	
Environmentally Friendlier	
Increased Reliability	

Door Dowt Number	Daelsana Tuna	Standard Pac	Orderable Part Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRF7493PbF-1	SO-8	Tube/Bulk	95	IRF7493PbF-1
INF/493PDF-1	30-6	Tape and Reel	4000	IRF7493TRPbF-1

Absolute Maximum Ratings

	Parameter		Units	
V _{DS}	Drain-to-Source Voltage	80	v	
V _{GS}	Gate-to-Source Voltage	± 20	v	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	9.3		
D @ T _A = 70°C Continuous Drain Current, V _{GS} @ 10V		7.4	A	
I _{DM}	Pulsed Drain Current ①	74		
P _D @T _A = 25°C	Power Dissipation®	2.5	w	
P _D @T _A = 70°C Power Dissipation ④		1.6	VV	
Linear Derating Factor		0.02	W/°C	
TJ	Operating Junction and	-55 to +150	°C	
T _{STG}	Storage Temperature Range		°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{OJL}	Junction-to-Lead		20	°C/W
$R_{\theta JA}$	Junction-to-Ambient @		50	

Notes ① through ⑤ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	80	_		٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.074		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11.5	15	mΩ	$V_{GS} = 10V, I_D = 5.6A$ ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0	_	4.0	٧	$V_{DS} = V_{GS}, \ I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current		_	20	μΑ	$V_{DS} = 80V$, $V_{GS} = 0V$
				250		$V_{DS} = 64V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

gfs	Forward Transconductance	13			S	$V_{DS} = 15V, I_{D} = 5.6A$
Q_g	Total Gate Charge		35	53		$I_D = 5.6A$
Q_{gs}	Gate-to-Source Charge		5.7			$V_{DS} = 40V$
Q_{gd}	Gate-to-Drain Charge		12			V _{GS} = 10V
t _{d(on)}	Turn-On Delay Time		8.3			V _{DD} = 40V, ③
t _r	Rise Time		7.5			$I_D = 5.6A$
t _{d(off)}	Turn-Off Delay Time		30		ns	$R_G = 6.2\Omega$
t _f	Fall Time		12			V _{GS} = 10V
C _{iss}	Input Capacitance	_	1510			$V_{GS} = 0V$
C _{oss}	Output Capacitance		320		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		130			f = 1.0MHz
Coss	Output Capacitance		1130			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		210			$V_{GS} = 0V, V_{DS} = 64V, f = 1.0MHz$
C _{rss} eff.	Effective Output Capacitance		320			V _{GS} = 0V, V _{DS} = 0V to 64V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ^②		180	mJ
I _{AR}	Avalanche Current ①	_	5.6	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			9.3		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			74		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 5.6A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		37	56	ns	$T_J = 25^{\circ}C$, $I_F = 5.6A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		52	78	nC	di/dt = 100A/µs ③

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

500 $\mathsf{E}_{\mathsf{AS}_{,}}$ Single Pulse Avalanche Energy (mJ) I_D 2.5A TOP 400 300 200 100 0 25 50 75 100 150 125 Starting T_J , Junction Temperature (°C)

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

June 23, 2014

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Waveform

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INC	HES	MILLIM	ETERS
DIIVI	MIN	MAX	MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
E	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 B	ASIC
e1	.025 B	ASIC	0.635 E	BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- (iii) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel (Dimensions are shown in millimeters (inches)

- OTES: CONTROLLING DIMENSION: MILLIMETER. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 12mH, $R_G = 25\Omega$, $I_{AS} = 5.6$ A.
- ③ Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- When mounted on 1 inch square copper board
- © Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.

Qualification information[†]

Qualification level	Industrial (per JEDEC JESD47F ^{††} guidelines)						
Moisture Sensitivity Level	SO-8	MSL1 (per JEDEC J-STD-020D ^{††})					
RoHS compliant	Yes						

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/