સમાંતરબાજુ ચતુષ્કોણ અને ત્રિકોણનાં ક્ષેત્રફળ

9.1 પ્રાસ્તાવિક

પ્રકરણ 5માં તમે જોઈ ગયાં કે ભૂમિતિના અભ્યાસનો પ્રારંભ ખેતરોની સીમાઓનું પુનઃનિર્માણ કરવા માટે અને તેને યોગ્ય ભાગમાં વહેંચવાની પ્રક્રિયામાં જમીનના માપનથી થયો. ઉદાહરણ તરીકે એક ખેડૂત બુધિયા પાસે ત્રિકોણાકાર ખેતર હતું અને તે પોતાની બે પુત્રી અને એક પુત્રને સરખે ભાગે વહેંચવા માંગતો હતો. તેણે ત્રિકોણાકાર ખેતરનું ક્ષેત્રફળ શોધ્યા વગર ફક્ત એક બાજુને બરાબર ત્રણ ભાગમાં વહેંચી અને આ બાજુને વિભાજિત કરતાં બે બિંદુઓને તેની સામેના શિરોબિંદુ સાથે જોડી દીધા. આ રીતે ખેતર બરાબર ત્રણ ભાગમાં વહેંચાઈ ગયું અને તેણે પોતાના દરેક બાળકને એક-એક ભાગ વહેંચી દીધો. શું તમને લાગે છે કે આ પ્રમાણે તેણે જે ત્રણ ભાગ પાડ્યા તે પ્રમાણે તેમનું ક્ષેત્રફળ ખરેખર સમાન હતું? આ પ્રકારના પ્રશ્નો અને બીજી આવી સમસ્યાના ઉકેલ શોધવા માટે જેના વિશે તમે અગાઉનાં ધોરણમાં શીખી ગયાં છો તેવા સમતલ આકૃતિઓનાં ક્ષેત્રફળ વિશે પુનઃવિચાર કરવાની જરૂર છે.

તમને યાદ હશે કે સરળ બંધ આકૃતિ દ્વારા ઘેરાયેલા સમતલ ભાગને તે આકૃતિનો સમતલીય પ્રદેશ (planer region) કહેવાય છે. આ સમતલીય પ્રદેશના પરિમાણ (magnitude) કે માપ (measure)ને આકૃતિનું ક્ષેત્રફળ (area) કહે છે. આ પરિમાણ કે માપને હંમેશાં એક સંખ્યા [કોઈક એકમ (unit)માં] ની મદદથી દર્શાવવામાં આવે છે. જેમકે 5 સેમી², 8 મીટર², 3 હેક્ટર વગેરે. તેથી આપણે કહી શકીએ કે આકૃતિનું ક્ષેત્રફળ (કોઈ એકમમાં) એક સંખ્યા છે અને તે આકૃતિથી ઘેરાયેલા સમતલના ભાગ સાથે સંગત હોય છે.

આપણે અગાઉનાં ધોરણમાં અને પ્રકરણ 7 ના અભ્યાસ દ્વારા એકરૂપ આકૃતિઓના ખ્યાલથી પરિચિત થયા છીએ કે ''જો બે આકૃતિઓનાં આકાર સમાન હોય અને તેમનાં માપ પણ સમાન હોય, તો તે બે આકૃતિઓ એકરૂપ કહેવાય.'' બીજા શબ્દોમાં જો બે આકૃતિઓ A અને B એકરૂપ હોય (આકૃતિ 9.1 જુઓ.) તો તમે એક અનુરેખણ કાગળ (Tracing Paper)નો

ઉપયોગ કરી, એક આકૃતિને બીજી આકૃતિ પર એવી રીતે મૂકી શકો કે એક આકૃતિ, બીજી આકૃતિને સંપૂર્ણપણે ઢાંકી દે એટલે કે તેની ઉપર બંધ બેસતી આવી જાય. તેથી '' જો આ બંને આકૃતિઓ A અને B એકરૂપ હોય, તો તેમનાં ક્ષેત્રફળ પણ ચોક્કસ સમાન જ હોવા જોઈએ''. તેમ છતાં, આથી ઊલટું વિધાન સત્ય નથી. બીજા શબ્દોમાં કહીએ તો "સમાન ક્ષેત્રફળ ધરાવતી બે આકૃતિઓ એકરૂપ હોય તે જરૂરી નથી.''

ઉદાહરણ તરીકે આકૃતિ 9.2 માં લંબચોરસ ABCD અને લંબચોરસ EFGH નાં ક્ષેત્રફળ (9×4 સેમી² અને 6×6 સેમી²) સમાન છે. પરંતુ સ્પષ્ટ છે કે બંને એકરૂપ નથી (શા માટે?)

હવે નીચેની આકૃતિ 9.3 જુઓ :

તમે જોયું કે આકૃતિ T દ્વારા બનતો સમતલીય પ્રદેશ એ આકૃતિઓ P અને Q દ્વારા બનતા બે સમતલીય પ્રદેશો દ્વારા ભેગા થઈ બન્યો છે. તમે સરળતાથી જોઈ શકો છો કે

આકૃતિ T નું ક્ષેત્રફળ = આકૃતિ P નું ક્ષેત્રફળ + આકૃતિ Q નું ક્ષેત્રફળ.

તમે આકૃતિ A ના ક્ષેત્રફળને ar(A), આકૃતિ B ના ક્ષેત્રફળને ar(B) અને આકૃતિ Tના ક્ષેત્રફળને ar(T) સંકેતથી દર્શાવી શકો છો. અને તે જ પ્રમાણે તમે કહી શકો કે કોઈ આકૃતિનું ક્ષેત્રફળ એટલે કે આકૃતિ દ્વારા ઘેરાયેલા સમતલના ભાગથી સંકળાયેલ નીચે આપેલ બે ગુણધર્મો ધરાવતી એક સંખ્યા (કોઈ એકમમાં) છે.

- (1) જો A અને B એકરૂપ આકૃતિઓ હોય તો ar(A) = ar(B); અને
- (2) જો આકૃતિ T દ્વારા બનતો પ્રદેશ, બે આકૃતિઓ P અને Q દ્વારા બનતા એકબીજાને આચ્છાદિત ન કરે તેવા પ્રદેશો (non-overlapping) ભેગા થઈને બને તો ar(T) = ar(P) + ar(Q).

તમે અગાઉનાં ધોરણમાં વિવિધ આકૃતિઓ જેવી કે લંબચોરસ, ચોરસ, સમાંતરબાજુ ચતુષ્કોણ, ત્રિકોણ વગેરેનાં ક્ષેત્રફળ શોધવાનાં કેટલાંક સૂત્રો વિશે માહિતી મેળવી છે. આ પ્રકરણમાં એક જ પાયા પર અને સમાંતર રેખાઓની જોડની રેખાઓ વચ્ચે હોય તે શરત ધરાવતી ભૌમિતિક આકૃતિઓનાં ક્ષેત્રફળ વચ્ચેના કોઇક સંબંધનો અભ્યાસ કરીને ઉપરોક્ત સમજને વધુ સ્પષ્ટ કરવાનો પ્રયત્ન કરવામાં આવશે. આ અભ્યાસ ત્રિકોણની સમરૂપતાને આધારિત કેટલાંક પરિણામોને સમજવા માટે પણ ઉપયોગી થશે.

9.2 એક જ પાયા ઉપર અને સમાંતર રેખાઓ વચ્ચેની આકૃતિઓ

નીચે આપેલી આકૃતિઓ જુઓ :

આકૃતિ 9.4(i) માં સમલંબ ચતુષ્કોણ ABCD અને સમાંતરબાજુ ચતુષ્કોણ EFCD માં એક બાજુ DC સામાન્ય છે. આપણે કહીએ કે સમલંબ ચતુષ્કોણ ABCD અને સમાંતરબાજુ ચતુષ્કોણ EFCD એક જ પાયા DC પર આવેલા છે. આ પ્રમાણે આકૃતિ 9.4 (ii) માં સમાંતરબાજુ ચતુષ્કોણ PQRS અને સમાંતરબાજુ ચતુષ્કોણ MNRS એક જ પાયા SR પર આવેલા છે. આકૃતિ 9.4(iii) માં ત્રિકોણ ABC અને ત્રિકોણ DBC એક જ પાયા BC પર આવેલા છે તથા આકૃતિ 9.4(iv) માં સમાંતરબાજુ ચતુષ્કોણ ABCD અને ત્રિકોણ PDC એક જ પાયા DC પર આવેલા છે.

આકૃતિ 9.5(i) માં સ્પષ્ટ છે કે, સમલંબ ચતુષ્કોણ ABCD અને સમાંતરબાજુ ચતુષ્કોણ EFCD એક જ પાયા DC પર આવેલા છે. આ ઉપરાંત સમલંબ ચતુષ્કોણ ABCD નાં પાયા DC ની સામેનાં શિરોબિંદુઓ A અને B તથા સમાંતરબાજુ ચતુષ્કોણ EFCDનાં પાયા DC ના સામેનાં શિરોબિંદુઓ E અને F એ DC ને સમાંતર રેખા AF પર આવેલાં છે. તેથી આપણે કહી શકીએ કે સમલંબ ચતુષ્કોણ ABCD અને સમાંતરબાજુ ચતુષ્કોણ EFCD એક જ પાયા પર તથા સમાંતર રેખાઓ AF અને DC ની એક જોડની રેખાઓ વચ્ચે આવેલા છે. આવી જ રીતે સમાંતરબાજુ ચતુષ્કોણ PQRS અને MNRS એક જ પાયા SR પર અને સમાંતર રેખાઓ PN અને SR ની એક જ જોડની રેખાઓ વચ્ચે આવેલા છે. [આકૃતિ 9.5 (ii) જુઓ.] તેવી જ રીતે ચતુષ્કોણ PQRS નાં શિરોબિંદુઓ P અને Q અને ચતુષ્કોણ MNRS નાં શિરોબિંદુઓ M અને N એ પાયા SR ને સમાંતર રેખા PN પર આવેલાં છે. આ જ પ્રમાણે ત્રિકોણ ABC અને ત્રિકોણ DBC એક જ પાયા BC પર તથા સમાંતર રેખાઓ AD અને BC ની એક જ જોડની રેખાઓ વચ્ચે આવેલાં છે. [આકૃતિ 9.5 (iii) જુઓ.] અને સમાંતર રેખાઓ AD અને BC ની એક જ જોડની રેખાઓ વચ્ચે આવેલાં છે. [આકૃતિ 9.5 (iii) જુઓ.] અને સમાંતર રેખાઓ AD અને ત્રિકોણ PCD એક જ પાયા DC પર અને સમાંતર રેખાઓ AP અને DC ની એક જ જોડની રેખાઓ વચ્ચે આવેલાં છે [આકૃતિ 9.5(ii) જુઓ.]

જ્યારે બે આકૃતિઓનો પાયો સામાન્ય હોય અને દરેક આકૃતિના સામાન્ય પાયાની સામેનાં શિરોબિંદુઓ (અથવા શિરોબિંદુ) પાયાને સમાંતર કોઈ એક રેખા પર આવેલાં હોય ત્યારે તે બે આકૃતિઓ એક જ પાયા પર અને સમાંતર રેખાઓની એક જ જોડની રેખાઓ વચ્ચે આવેલી છે તેમ કહેવાય.

ઉપરનાં વિધાનને ધ્યાનમાં રાખી તમે કહી ન શકો કે, આકૃતિ 9.6(i)ના Δ PQR અને Δ DQR એ સમાંતર રેખાઓ l અને QR ની વચ્ચે આવેલા છે.

ાણત : ધોરણ 9

આ જ પ્રમાણે આકૃતિ 9.6(ii)માં સમાંતરબાજુ ચતુષ્કોણ EFGH અને MNGH સમાંતર રેખાઓ EF અને HG વચ્ચે આવેલા છે તેમ ન કહી શકો. ઉપરાંત આકૃતિ 9.6(iii) માં સમાંતરબાજુ ચતુષ્કોણ ABCD અને EFCDએ સમાંતર રેખાઓ AB અને DC વચ્ચે આવેલા છે તેમ ન કહી શકો. (ભલે તે એક પાયા DC પર અને સમાંતર રેખાઓ AD અને BC ની વચ્ચે આવેલા હોય.) આ પરથી તમારે ધ્યાન રાખવું

જોઈએ કે ''બે સમાંતર રેખાઓમાંથી એક રેખા સામાન્ય પાયામાંથી પસાર થતી હોવી જોઈએ.'' નોંધો કે આકૃતિ 9.7(i) માં ΔABC અને ΔDBE એક સમાન પાયા પર આવેલા નથી તથા આકૃતિ 9.7(ii) માં ΔABC અને સમાંતરબાજુ ચતુષ્કોણ PQRS પણ એક સમાન પાયા પર આવેલા નથી.

સ્વાધ્યાય 9.1

નીચેની આકૃતિઓમાં એક જ સમાન પાયા પર અને સમાંતર રેખાની એક જોડની રેખાઓ વચ્ચે કઈ આકૃતિઓ આવેલી
 છે? શક્ય હોય, તેવા કિસ્સામાં સામાન્ય પાયો અને સમાંતર રેખાઓ જણાવો.

9.3 એક જ પાયા અને સમાંતર રેખાની જોડની રેખાઓ વચ્ચેના સમાંતરબાજુ ચતુષ્કોણ

આપણે હવે એક જ પાયા પર અને સમાંતર રેખાઓની જોડની રેખાઓ વચ્ચે આવેલા બે સમાંતરબાજુ ચતુષ્કોણનાં ક્ષેત્રફળો વચ્ચે કોઈ સંબંધ હોય તો તે મેળવવાનો પ્રયત્ન કરીએ. તેને સમજવા નીચેની પ્રવૃત્તિઓ કરીએ :

પ્રવૃત્તિ 1 : એક આલેખપત્રલો અને તેના ઉપર આકૃતિ 9.9 માં બતાવ્યા પ્રમાણે બે સમાંતરબાજુ ચતુષ્કોણ ABCD અને PQCD દોરો.

આ બંને સમાંતરબાજુ ચતુષ્કોણ એક જ પાયા DC પર અને સમાંતર રેખાઓની જોડની રેખાઓ PB અને DC ની વચ્ચે આવેલા છે. આ સમાંતરબાજુ ચતુષ્કોણોનાં ક્ષેત્રફળ તેમાં આવેલા ચોરસને ગણીને કેવી રીતે શોધી શકાય તે તમે યાદ કરો.

આ પદ્ધતિમાં આપેલી આકૃતિ દ્વારા ઘેરાયેલા પૂર્ણ ચોરસની સંખ્યા, જેનો અડધાથી વધારે ભાગ ઘેરાયેલો છે તે ચોરસની સંખ્યા અને જેનો અડધો ભાગ ઘેરાયેલો છે તે ચોરસની સંખ્યાનો સરવાળો કરીને આકૃતિનું ક્ષેત્રફળ શોધી શકાય છે. જે ચોરસનો અડધાથી ઓછો ભાગ આકૃતિથી ઘેરાયેલો છે તે ચોરસને કાઢી નાખવામાં આવે છે. તો તમને બંને સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ (લગભગ) 15 ચોરસ એકમ મળશે. આલેખપત્ર પર બીજા કેટલાક સમાંતરબાજુ ચતુષ્કોણની જોડીઓ દોરીને આ પ્રવૃત્તિનું "પુનરાવર્તન કરો તો તમે શું અવલોકન કરો છો? શું બંને સમાંતરબાજુ ચતુષ્કોણનાં ક્ષેત્રફળ ભિન્ન છે કે સમાન છે? હકીકતમાં તે સમાન છે. તેથી આ પ્રવૃત્તિ પરથી તમને એક તારણ મળશે કે ''એક જ પાયા પર આવેલા અને સમાંતર રેખાની એક જોડની રેખાઓ વચ્ચે આવેલા સમાંતરબાજુ ચતુષ્કોણ સમક્ષેત્ર હોય છે''. તેમ છતાં તમે યાદ રાખો કે આ ફક્ત ચકાસણી જ છે. * આ પ્રવૃત્તિ જીઓ બોર્ડ દ્વારા પણ કરાવી શકાય.

પ્રવૃત્તિ 2 : એક મોટા કાગળ પર અથવા પૂંઠા પર એક સમાંતરબાજુ ચતુષ્કોણ ABCD દોરો. આકૃતિ 9.10માં બતાવ્યા પ્રમાણે એક રેખાખંડ DE દોરો.

હવે એક બીજા કાગળ પર કે પૂંઠા પર અનુરેખણ પત્રની મદદથી \triangle ADE ને એકરૂપ હોય તેવો ત્રિકોણ A' D' E' ને કાગળમાંથી કાપી લો. હવે આકૃતિ 9.11 માં દર્શાવ્યા મુજબ \triangle A'D'E' ને એવી રીતે ગોઠવો જેથી A'D' બાજુ એ BC પર ગોઠવાય. ધ્યાન રાખો કે અહીં બે સમાંતરબાજુ ચતુષ્કોણ ABCD અને EE'CD છે. તે એક જ પાયા DC પર અને સમાંતર રેખાઓ AE' અને DC ની વચ્ચે આવેલા છે.

તમે તેમનાં ક્ષેત્રફળો વિશે શું કહી શકો?

તેથી બંને સમાંતરબાજુ ચતુષ્કોણ સમક્ષેત્ર છે.

તો ચાલો આપણે આવા બે સમાંતરબાજુ ચતુષ્કોણોનાં ક્ષેત્રફળ વચ્ચેના આ સંબંધને સાબિત કરવાનો પ્રયત્ન કરીએ.

પ્રમેય 9.1 :એક જ પાયા પર આવેલા અને બે સમાંતર રેખાઓની એક જોડની રેખાઓ વચ્ચે આવેલા સમાંતરબાજુ ચતુષ્કોણોનાં ક્ષેત્રફળ સમાન હોય છે.

સાબિતી : એક જ પાયા DC પર અને સમાંતર રેખાઓ AF અને DC ની વચ્ચે બે

આકૃતિ 9.10

આકૃતિ 9.11

(A')B E'

આકૃતિ 9.12

^{*} આ પ્રવૃત્તિ જીઓ બોર્ડ દ્વારા પણ કરી શકાય.

સમાંતરબાજુ ચતુષ્કોણ ABCD અને EFCD આવેલા છે. (આકૃતિ 9.12 જુઓ.)

આપણે ar (ABCD) = ar (EFCD) સાબિત કરવું છે.

Δ ADE અને Δ BCFમાં

$$\angle DAE = \angle CBF$$
 (AD || BC અને છેદિકા AF થી બનતા અનુકોણ) (1)

$$\angle AED = \angle BFC$$
 (ED || FC અને છેદિકા AF થી બનતા અનુકોણ) (2)

તેથી,
$$\angle ADE = \angle BCF$$
 (ત્રિકોશના ખુશાઓના સરવાળાનો નિયમ) (3)

તેથી,
$$ar (ADE) = ar (BCF)$$
 (એકરૂપ આકૃતિઓનાં ક્ષેત્રફળ સમાન હોય) (5)

હવે,
$$ar ext{(ABCD)} = ar ext{(ADE)} + ar ext{(EDCB)}$$

$$= ar ext{(EFCD)} ext{[(5)પરથી]}$$

આમ, સમાંતરબાજુ ચતુષ્કોણ ABCD અને EFCD સમક્ષેત્ર છે. ■ ઉપરના પ્રમેયનો ઉપયોગ સમજાય તેવાં કેટલાંક ઉદાહરણ જોઈએ.

ઉદાહરણ 1 : આકૃતિ 9.13 માં ABCD એક સમાંતરબાજુ ચતુષ્કોણ અને EFCD એક લંબચોરસ છે અને AL \perp DC છે. સાબિત કરો કે,

(i)
$$ar$$
 (ABCD) = ar (EFCD)

(ii)
$$ar$$
 (ABCD) = DC × AL

ઉકેલ : (i) લંબચોરસ એ હંમેશાં સમાંતરબાજુ ચતુષ્કોણ હોય છે.

(પ્રમેય 9.1)

(ii) ઉપર્યુક્ત પરિણામ પરથી

$$ar (ABCD) = DC \times FC$$
 (લંબચોરસનું ક્ષેત્રફળ = લંબાઈ × પહોળાઈ) (1)

અહીં $AL \perp DC$ છે. તેથી AFCL પણ એક લંબચોરસ થાય.

$$AL = FC (2)$$

શું ઉપર્યુક્ત પરિણામ (ii) પરથી જોઈ શકશો કે એક સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ તેની કોઈ એક બાજુ અને તેને અનુરૂપ વેધના ગુણાકાર જેટલું હોય છે? શું તમને યાદ છે કે ધોરણVII માં સમાંતરબાજુ ચતુષ્કોણનાં ક્ષેત્રફળનું સૂત્ર શીખી ગયાં છો? આ સૂત્રના આધારે પ્રમેય 9.1 ને ફરીથી નીચે પ્રમાણે લખી શકાય :

એક જ પાયા પર (અથવા સમાન પાયા) પર આવેલા અને સમાંતર રેખાઓની એક જોડની રેખાઓ વચ્ચે આવેલા સમાંતરબાજુ ચતુષ્કોણોનાં ક્ષેત્રફળ સમાન હોય છે.

શું તમે ઉપરના વિધાનનું પ્રતીપ લખી શકો? તે આ પ્રમાણે છે. ''એક જ પાયા (અથવા સમાન પાયા)પર આવેલા અને પાયાની (સમાન પાયાની) એક જ બાજુએ આવેલા તથા સમાન ક્ષેત્રફળો ધરાવતા સમાંતરબાજુ ચતુષ્કોણો બે સમાંતર રેખાઓની એક જોડની રેખાઓ વચ્ચે આવેલા હોય છે જેમાંની એક પાયાને સમાવતી રેખા છે.'' શું પ્રતીપ સાચું છે ? તમે સમાંતરબાજુ ચતુષ્કોણના ક્ષેત્રફળના સૂત્રનો ઉપયોગ કરીને પ્રતીપ સાબિત કરો.

જો ચતુષ્કોણો સમાન પાયાની કે પાયાની એક જ બાજુએ ન હોય તો આકૃતિ 9.12 (1) જેવી પરિસ્થિતિ ઉભી થાય.

ઉદાહરણ 2 : જો કોઇ ત્રિકોણ અને સમાંતરબાજુ ચતુષ્કોણ એક જ પાયા અને બે સમાંતર રેખાઓની એક જોડની રેખાઓ વચ્ચે આવેલા હોય, તો સાબિત કરો કે ત્રિકોણનું ક્ષેત્રફળ, સમાંતરબાજુ ચતુષ્કોણના ક્ષેત્રફળ કરતાં અડધું હોય છે.

ઉંકેલ : ધારો કે Δ ABP અને સમાંતરબાજુ ચતુષ્કોણ ABCD એક જ પાયા AB પર અને સમાંતર રેખાઓ AB અને PC ની વચ્ચે આવેલા છે. (આકૃતિ 9.14 જુઓ.)

અહીં તમે $ar(PAB) = \frac{1}{2} ar(ABCD)$ સાબિત કરવા ઈચ્છો છો.

એક બીજો સમાંતરબાજુ ચતુષ્કોણ ABQP મેળવવા માટે BQ | AP દોરો. હવે સમાંતરબાજુ ચતુષ્કોણો ABQP અને ABCD એક જ પાયા AB પર અને સમાંતર રેખાઓ AB અને PC ની વચ્ચે આવેલા છે.

આકૃતિ 9.14

પરંતુ, Δ PAB $\cong \Delta$ BQP

(વિકર્ણ PB એ સમાંતરબાજુ ચતુષ્કોણ ABQP ને બે એકરૂપ ત્રિકોણમાં વિભાજિત કરે છે.)

$$\therefore ar (PAB) = ar (BQP)$$
 (2)

$$\therefore ar (PAB) = \frac{1}{2} ar (ABQP)$$

 \therefore ar (ABQP) = ar (ABCD)

[પરિણામ (2) પરથી] (3)

$$\therefore ar (PAB) = \frac{1}{2} ar (ABCD)$$

[(1) અને (3)પરથી]

(પ્રમેય 9.1) (1)

સ્વાધ્યાય 9.2

- 1. આકૃતિ 9.15 માં ABCD એક સમાંતરબાજુ ચતુષ્કોણ છે. $AE \perp DC$ અને $CF \perp AD$ છે. જો AB = 16 સેમી, AE = 8 સેમી અને CF = 10 સેમી, તો AD શોધો.
- F C
- **2.** જો E, F, G અને H એ અનુક્રમે સમાંતરબાજુ ચતુષ્કોણ ABCD ની બાજુઓનાં મધ્યબિંદુઓ હોય, તો સાબિત કરો કે ar (EFGH) = $\frac{1}{2}$ ar (ABCD).

આકૃતિ 9.15

- 3. સમાંતરબાજુ ચતુષ્કોણ ABCD ની બાજુઓ DC અને AD પર અનુક્રમે બિંદુઓ P અને Q આવેલા છે તો ar (APB) = ar (BQC) થાય તેમ સાબિત કરો.
- 4. આકૃતિ 9.16 માં P એ સમાંતરબાજુ ચતુષ્કોણ ABCD ના અંદરના ભાગમાં આવેલું કોઈ બિંદુ છે, તો સાબિત કરો કે
 - (i) $ar(APB) + ar(PCD) = \frac{1}{2} ar(ABCD)$
 - (ii) ar(APD) + ar(PBC) = ar(APB) + ar(PCD)

[સૂચન: P માંથી પસાર થતી અને AB ને સમાંતર એક રેખા દોરો.]

5. આકૃતિ 9.17 માં PQRS અને ABRS સમાંતરબાજુ ચતુષ્કોણ છે તથા બિંદુ X એ બાજુ BR પર આવેલું બિંદુ છે તો સાબિત કરો કે,

(i)
$$ar(PQRS) = ar(ABRS)$$
.

(ii)
$$ar(AXS) = \frac{1}{2} ar(PQRS)$$
.

આફાત 9.17

6. એક ખેડૂત પાસે સમાંતરબાજુ ચતુષ્કોણ PQRS આકારનું એક ખેતર હતું. તેણે RS પર એક બિંદુ A લીધું અને તેને P અને Q સાથે જોડી દીધું. તો ખેતર કેટલા ભાગમાં વહેંચાય છે ? આ ભાગોનો આકાર કેવો છે? આ ખેડૂત ખેતરમાં ઘઉં અને કઠોળ સમાન ભાગમાં અને જુદાજુદા ઉગાડવા માંગે છે. તેણે આ કાર્ય કેવી રીતે કરવું જોઈએ?

9.4 એક જ પાયા પર આવેલા અને સમાંતર રેખાઓની જોડની રેખાઓ વચ્ચે આવેલા ત્રિકોણ

ચાલો, આપણે આકૃતિ 9.18 જોઈએ, એક જ પાયા BC અને સમાંતર રેખાઓ BC અને AP ની વચ્ચે આવેલા હોય તેવા બે ત્રિકોણો ABC અને PBC ના ક્ષેત્રફળ વિશે શું કહી શકાય ? આ પ્રશ્નનો ઉત્તર મેળવવા તમે એક આલેખપત્ર લઈ તેના પર એક જ પાયો ધરાવતા અને સમાંતર રેખાની જોડ વચ્ચે આવેલા ત્રિકોણોની કેટલીક જોડ દોરીને તેનાથી ઘેરાયેલા ચોરસની ગણતરી કરી તેમનું ક્ષેત્રફળ શોધવાની પ્રવૃત્તિ કરો. દરેક વખતે તમને બંને ત્રિકોણોનાં ક્ષેત્રફળો લગભગ સમાન મળશે. આ પ્રવૃત્તિ જીઓ બોર્ડના ઉપયોગથી પણ કરી શકાય છે. તમને ફરીથી બંને ત્રિકોણોનાં ક્ષેત્રફળ (લગભગ) સમાન મળશે. આ પ્રશ્નનો તાર્કિક ઉકેલ મેળવવા માટે તમે નીચે પ્રમાણે આગળ વધી શકો છો :

આકૃતિ 9.18

આકૃતિ 9.18 માં CD \parallel BA અને CR \parallel BP થાય તે રીતે બિંદુઓ D અને R ને રેખા AP પર લો. (આકૃતિ 9.19 જુઓ.)

આમાંથી તમને એક જ પાયા BC પર આવેલા અને સમાંતર રેખાઓ BC અને AR ની વચ્ચે આવેલા સમાંતરબાજુ ચતુષ્કોણ PBCR અને ABCD મળશે.

તેથી,
$$ar (ABCD) = ar (PBCR)$$
 (કેમ?)

$$\Delta ABC \cong \Delta CDA$$
 અને $\Delta PBC \cong \Delta CRP$ (કેમ?)

$$ar \text{ (ABC)} = \frac{1}{2} ar \text{ (ABCD)}$$
 ਅਜੇ $ar \text{ (PBC)} = \frac{1}{2} ar \text{ (PBCR)}$

તેથી,
$$ar (ABC) = ar (PBC)$$
 સાબિત થાય છે

આ રીતે તમે નીચેના પ્રમેય સુધી પહોંચ્યા :

પ્રમેય 9.2 : એક જ પાયા (અથવા સમાન પાયા) પર આવેલા અને બે સમાંતર રેખાઓની જોડની રેખાઓ વચ્ચે આવેલા બે ત્રિકોણનાં ક્ષેત્રફળ સમાન હોય છે.

હવે, ધારો કે ABCD એક સમાંતરબાજુ ચતુષ્કોણ છે અને તેનો એક વિકર્ણ AC છે. (આકૃતિ 9.20 જુઓ.) AN \perp DC લઈએ. નોંધો કે,

$$\Delta$$
 ADC≅ Δ CBA (શા માટે ?)

$$\therefore ar (ADC) = \frac{1}{2} ar (ABCD)$$

આકૃતિ 9.20

$$=\frac{1}{2}\left(\mathrm{DC}\times\mathrm{AN}\right)$$
 (શા માટે ?)

∴ \triangle ADC નું ક્ષેત્રફળ = $\frac{1}{2}$ × પાયો DC × અનુરૂપ વેધ AN

બીજા શબ્દોમાં કહીએ તો કોઈ ત્રિકોણનું ક્ષેત્રફળ તેના પાયા અથવા કોઈ બાજુ અને અનુરૂપ વેધ (અથવા ઊંચાઈ)ના ગુણાકારથી અડધું હોય છે. તમને યાદ હશે કે તમે ધોરણ-VII માં ત્રિકોણના ક્ષેત્રફળનું આ સૂત્ર ભણી ગયાં છો. આ સૂત્ર પરથી તમે જોઈ શકો કે એક જ પાયા અથવા સમાન પાયાવાળા અને સમાન ક્ષેત્રફળવાળા ત્રિકોણના અનુરૂપ વેધની લંબાઈ સમાન હશે.

સમાન અનુરૂપ વેધ મેળવવા માટે બંને ત્રિકોણ બે સમાંતર રેખાઓની જોડ વચ્ચે હોવા જોઈએ. તેથી આપણે પ્રમેય 9.2 ના પ્રતિપ્રમેય સુધી પહોંચીશું.

પ્રમેય 9.3 : એક જ પાયા (સમાન પાયા) પર આવેલા અને એક જ પાયા(સમાન પાયા)ની એક જ બાજુએ આવેલા તથા સમાન ક્ષેત્રફળો ધરાવતા ત્રિકોણો બે સમાંતર રેખાઓની જોડની રેખાઓ વચ્ચે આવેલા હોય છે જેમાંની એક રેખા પાયાને સમાવતી રેખા છે.

ઉદાહરણ 3 : સાબિત કરો કે ત્રિકોણની મધ્યગા ત્રિકોણનું બે સમક્ષેત્ર ત્રિકોણમાં વિભાજન કરે છે.

હવે આ ઉપર્યુક્ત પરિણામોના ઉપયોગ બતાવવા માટે કેટલાંક ઉદાહરણ લઈએ.

ઉક્રેલ : ત્રિકોણ ABC લઈએ અને તેની મધ્યગાઓ પૈકી એક મધ્યગા AD છે. (આકૃતિ 9.21 જુઓ.)

તમે બતાવવા ઈચ્છો છો કે, ar (ABD) = ar (ACD).

ક્ષેત્રફળના સુત્રમાં વેધનો સમાવેશ થતો હોવાથી, ચાલો આપણે AN⊥BC દોરીએ.

હવે
$$ar$$
 (ABD) = $\frac{1}{2}$ × પાયો × વેધ
$$= \frac{1}{2} \times BD \times AN$$
 (BD = CD)
$$= \frac{1}{2} \times VU \times AV$$
 (ACD માટે)
$$= ar \text{ (ACD)}$$

ઉદાહરણ 4 : આકૃતિ 9.22 માં ABCD એક ચતુષ્કોણ છે. BE ∥ AC છે. રેખા DC ને લંબાવતા BE ને E બિંદુમાં છેદે છે. તો સાબિત કરો કે Δ ADE નું ક્ષેત્રફળ એ ચતુષ્કોણના ક્ષેત્રફળ જેટલું થાય.

ઉકેલ: આકૃતિનું ધ્યાનપૂર્વક નિરીક્ષણ કરો.

 Δ BAC અને Δ EAC એ એક જ પાયા AC પર આવેલા છે અને સમાંતર રેખા AC અને BE ની વચ્ચે છે.

તેથી,
$$ar(BAC) = ar(EAC)$$
 (પ્રમેય 9.2 પ્રમાણે)
 હવે, $ar(BAC) + ar(ADC) = ar(EAC) + ar(ADC)$ (બંને બાજુ સમાન ક્ષેત્રફળ ઉમેરતા)
 અથવા $ar(ABCD) = ar(ADE)$

સ્વાધ્યાય 9.3

- 1. આકૃતિ 9.23 માં Δ ABC ની એક મધ્યગા AD પર કોઈપણ બિંદુ Ε છે. તો સાબિત કરો કે ar (ABE) = ar (ACE).
- 2. ABC માં મધ્યગા AD નું મધ્યબિંદુ E હોય, તો ar (BED) = $\frac{1}{4} ar$ (ABC) થાય તેમ સાબિત કરો.
- 3. સાબિત કરો કે સમાંતરબાજુ ચતુષ્કોણના વિકર્ણા તેને સમાન ક્ષેત્રફળોવાળા ચાર ત્રિકોણમાં વિભાજિત કરે છે.

4. આકૃતિ 9.24માં બે ત્રિકોણ ABC અને ABD સમાન પાયા AB પર આવેલા છે. જો AB એ રેખાખંડ CD ને O બિંદુએ દુભાગે, તો સાબિત કરો કે ar(ABC) = ar(ABD).

આકૃતિ 9.24

- 5. Δ ABC ની બાજુઓ BC, CA અને AB નાં મધ્યબિંદુઓ અનુક્રમે D, E અને F છે તો સાબિત કરો કે.
 - (i) BDEF એક સમાંતરબાજુ ચતુષ્કોણ છે. (ii) ar (DEF) = $\frac{1}{4} ar$ (ABC)

(ii)
$$ar$$
 (DEF) = $\frac{1}{4} ar$ (ABC)

(iii)
$$ar$$
 (BDEF) = $\frac{1}{2} ar$ (ABC)

6. આકૃતિ 9.25 માં ચતુષ્કોણ ABCD ના વિકર્ણો AC અને BD પરસ્પર O બિંદુમાં OB = OD થાય તે રીતે છેદે છે. જો AB = CD હોય, તો સાબિત કરો કે

(i)
$$ar$$
 (DOC) = ar (AOB)

(ii)
$$ar$$
 (DCB) = ar (ACB)

[સૂચન : D અને B માંથી AC પર લંબ દોરો.]

- 7. જો \triangle ABC ની બાજુઓ AB અને AC પર અનુક્રમે D અને E બિંદુઓ એવી રીતે આવેલાં છે જેથી ar (DBC) = ar (EBC) થાય, તો સાબિત કરો કે DE || BC.
- 8. Δ ABC ની બાજુ BC ને સમાંતર એક રેખા XY છે. જો BE || AC અને CF || AB એ રેખા XY ને અનુક્રમે E અને F આગળ છેદતી હોય, તો સાબિત કરો કે ar (ABE) = ar (ACF)
- 9. સમાંતરબાજુ ચતુષ્કોણ ABCD ની એક બાજુ AB ને બિંદુ P સુધી લંબાવેલી છે. બિંદુ A માંથી CP ને સમાંતર દોરેલી એક રેખા, CB ને Q માં મળે છે જેથી કરીને સમાંતરબાજુ ચતુષ્કોણ PBQR બને છે (આકૃતિ 9.26 જુઓ.) તો સાબિત કરો કે ar (ABCD) = ar (PBQR).

[સ્થન: AC અને PQ ને જોડો અને ar (ACQ) અને ar (APQ) ને સરખાવો.]

આકૃતિ 9.26

- 10. સમલંબ ચતુષ્કોશ ABCDમાં AB \parallel DC છે. વિકર્શો AC અને BD પરસ્પર એકબીજાને O બિંદુમાં છેદે, તો સાબિત કરો કે ar (AOD)=ar (BOC).
- 11. આકૃતિ 9.27 માં ABCDE પંચકોણ છે. B માંથી AC ને સમાંતર દોરેલી રેખા DC ને F માં મળે છે. સાબિત કરો કે,

આકૃતિ 9.27

- 12. એક ગામના એક ખેડૂત પાસે એક ચતુષ્કોણ આકારની જમીનનો ભાગ હતો. આ ગામની ગ્રામપંચાયતે તેની પાસેથી જમીનના એક ખૂણાનો જમીનનો કેટલોક ભાગ સ્વાસ્થ્ય કેન્દ્ર બનાવવા માટે લેવાનો નિર્ણય કર્યો. ખેડૂત આ પ્રસ્તાવ એક શરત સાથે સ્વીકારે છે કે તેને પોતાની જમીનની બાજુમાં તેટલા જ ક્ષેત્રફળની જમીનનો ભાગ મળવો જોઈએ જેથી તેની કુલ જમીનનો આકાર ત્રિકોણ બને. તો તમે દર્શાવો કે આ પ્રસ્તાવ કેવી રીતે શક્ય બનશે.
- 13. સમલંબ ચતુષ્કોણ ABCD માં AB \parallel DC છે. AC ને સમાંતર રેખા, AB ને X માં અને BC ને Y માં છેદે છે, તો સાબિત કરો કે ar(ADX) = ar(ACY). [સ્ચન: CX ને જોડો.]
- **14.** આકૃતિ 9.28 માં AP ∥ BQ ∥ CR છે તો સાબિત કરો કે ar(AQC) = ar(PBR).
- 15. ચતુષ્કોણ ABCD ના વિકર્ણો AC અને BD પરસ્પર એકબીજાને O બિંદુએ એવી રીતે છેદે છે કે જેથી ar (AOD) = ar (BOC) થાય, તો સાબિત કરો કે ABCD સમલંબ ચતુષ્કોણ છે.

A B C P P આકૃતિ 9.29

16. આકૃતિ 9.29માં ar(DRC) = ar(DPC) છે અને ar(BDP) = ar(ARC) છે. તો ચતુષ્કોણ ABCD અને DCPR સમલંબ ચતુષ્કોણ છે તેમ સાબિત કરો.

સ્વાધ્યાય 9.4 (વૈકલ્પિક)*

- સમાંતરબાજુ ચતુષ્કોણ ABCD અને લંબચોરસ ABEF એ એક જ પાયા પર આવેલા છે અને તેમનાં ક્ષેત્રફળ સમાન છે.
 સાબિત કરો કે સમાંતરબાજુ ચતુષ્કોણની પરિમિતિ એ લંબચોરસની પરિમિતિ કરતાં વધારે છે.
- 2. આકૃતિ 9.30 માં બાજુ BC પર બે બિંદુઓ D અને E એવી રીતે આવેલાં છે જેથી BD = DE = EC થાય તો સાબિત કરો કે ar(ABD) = ar(ADE) = ar(AEC) છે. શું તમે હવે અનુત્તર રહેલા પ્રસ્તાવનામાં આપેલ પ્રશ્નનો જવાબ આપી શકશો કે બુધિયાના ખેતરનું બરાબર સમાન ક્ષેત્રફળવાળા ત્રણ ભાગોમાં વિભાજન થયું છે?

B D E C આકૃતિ 9.30

^{*} આ સ્વાધ્યાયને પરીક્ષાનો મુદ્દો બનાવવો નહિ.

[સૂચન : નોંધો કે, BD = DE = EC લેવાથી Δ ABC એ સમાન ક્ષેત્રફળવાળા ત્રણ ત્રિકોણ ABD, ADE અને AEC માં વિભાજિત થાય છે. આ જ રીતે BC નું n જેટલા સમાન ભાગમાં વિભાજિત કરતાં બિંદુઓને BCના સામેના શિરોબિંદુ સાથે જોડવાથી તમે Δ ABCનું n સમાન ક્ષેત્રફળવાળા ત્રિકોણોમાં વિભાજન કરી શકો છો.]

- 3. આકૃતિ 9.31માં ABCD, DCFE અને ABFE સમાંતરબાજુ ચતુષ્કોણ છે, તો ar (ADE) = ar (BCF) થાય તેમ સાબિત કરો.
- 4. આકૃતિ 9.32 માં ABCD એક સમાંતરબાજુ ચતુષ્કોણ છે. BC ને બિંદુ Q સુધી એવી રીતે લંબાવો જેથી AD = CQ થાય. જો AQ એ DC ને P બિંદુમાં છેદે તો સાબિત કરો કે ar (BPC) = ar (DPQ).

[**સૂચન**: AC જોડો.]

D P C P C આકૃતિ 9.32

5. આકૃતિ 9.33 માં ABC અને BDE બે સમભુજ ત્રિકોણ છે. બિંદુ D એ BC નું મધ્યબિંદુ છે. જો AE એ BC ને F માં છેદે તો સાબિત કરો કે,

(i)
$$ar(BDE) = \frac{1}{4} ar(ABC)$$

(ii)
$$ar(BDE) = \frac{1}{2} ar(BAE)$$

(iii)
$$ar(ABC) = 2 ar(BEC)$$

(iv)
$$ar(BFE) = ar(AFD)$$

(v)
$$ar(BFE) = 2 ar(FED)$$

આકૃતિ 9.33

(vi)
$$ar(FED) = \frac{1}{8} ar(AFC)$$

[**સ્ચન** : EC અને AD જોડો. BE || AC તથા DE || AB વગેરે સાબિત કરો.]

6. ચતુષ્કોણ ABCD ના વિકર્ણો AC અને BD પરસ્પર P બિંદુમાં છેદે તો સાબિત કરો કે,

$$ar(APB) \times ar(CPD) = ar(APD) \times ar(BPC)$$

[સૂચન : A અને C માંથી BD પર લંબ દોરો.]

7. ΔABCની બાજુઓ AB અને AC નાં મધ્યબિંદુઓ અનુક્રમે Pઅને Q છે તથા R એ AP નું મધ્યબિંદુ છે તો સાબિત કરો કે,

(i)
$$ar(PRQ) = \frac{1}{2} ar(ARC)$$

(ii)
$$ar(RQC) = \frac{3}{8} ar(ABC)$$

(iii)
$$ar(PBQ) = ar(ARC)$$

8. આકૃતિ 9.34 માં કાટકોણ ત્રિકોણ ABC માં ખૂણો A કાટખૂણો છે. BCED, ACFG અને ABMN અનુક્રમે બાજુઓ BC, CA અને AB પર બનેલા ચોરસ છે. રેખાખંડ AX ⊥ DE અને તે બાજુ BC ને Y માં મળે છે. તો સાબિત કરો કે,

(i) Δ MBC $\cong \Delta$ ABD

- (ii) ar(BYXD) = 2 ar(MBC)
- (iii) ar(BYXD) = ar(ABMN)
- (iv) Δ FCB $\cong \Delta$ ACE
- (v) ar(CYXE) = 2 ar(FCB)
- (vi) ar(CYXE) = ar(ACFG)
- (vii) ar (BCED) = ar (ABMN) + ar (ACFG)

નોંધ : પરિણામ (vii) એ પ્રસિદ્ધ પાયથાગોરસ પ્રમેય છે. તમે ધોરણ X માં આ પ્રમેયની સરળ સાબિતી શીખશો.

9.5 સારાંશ

આ પ્રકરણમાં તમે નીચેના મુદ્દા શીખ્યા :

- 1. આકૃતિનું ક્ષેત્રફળ તે આકૃતિ દ્વારા ઘેરાયેલા સમતલના ભાગ સાથે સંગત એક ધન વાસ્તવિક સંખ્યા (કોઇક એકમમાં) છે.
- 2. બે એકરૂપ આકૃતિઓનું ક્ષેત્રફળ એકસરખું હોય છે, પરંતુ પ્રતીપ સત્ય હોય તે જરૂરી નથી.
- 3. જો આકૃતિ T દ્વારા બનેલ સમતલીય પ્રદેશ, આકૃતિઓ P અને Q દ્વારા બનેલ અને એકબીજાને આચ્છાદિત ન કરતા સમતલીય પ્રદેશોથી રચાતો હોય તો, ar(T) = ar(P) + ar(Q) છે, જ્યાં ar(X) એ આકૃતિ X નું ક્ષેત્રફળ છે.
- 4. જો બે આકૃતિઓને એક સામાન્ય પાયો (બાજુ) હોય અને શિરોબિંદુઓ (અથવા શિરોબિંદુ) દરેક આકૃતિનાં સામાન્ય પાયાની એક જ બાજુએ, પાયાને સમાંતર રેખા પર હોય, તો બે આકૃતિઓ સમાન પાયા પર અને સમાંતર રેખાઓની એક જોડની રેખાઓ વચ્ચે આવેલી છે તેમ કહેવાય.
- 5. એક જ પાયા (અથવા સમાન પાયા) પર આવેલા અને બે સમાંતર રેખાની એક જોડ વચ્ચે આવેલા સમાંતરબાજુ ચતુષ્કોણોનાં ક્ષેત્રફળ સમાન હોય છે.
- 6. સમાંતરબાજુ ચતુષ્કોણનું ક્ષેત્રફળ, તેના પાયા અને પાયાને અનુરૂપ વેધના ગુણાકાર જેટલું હોય છે.
- 7. એક જ પાયા (અથવા સમાન પાયા) પર અને પાયાની એક જ બાજુએ આવેલા અને સમાન ક્ષેત્રફળવાળા સમાંતરબાજુ ચતુષ્કોણો એ સમાંતર રેખાઓની જોડની રેખાઓ વચ્ચે આવેલા હોય છે, જે પૈકી એક પાયાને સમાવતી રેખા છે.

8. જો એક ત્રિકોણ અને સમાંતરબાજુ ચતુષ્કોણ એક જ પાયા પર અને સમાંતર રેખાની એક જોડની રેખાઓ વચ્ચે આવેલા હોય, તો ત્રિકોણનું ક્ષેત્રફળ એ સમાંતરબાજુ ચતુષ્કોણના ક્ષેત્રફળ કરતાં અડધું હોય છે.

- 9. એક જ પાયા (અથવા સમાન પાયા) પર આવેલા અને સમાંતર રેખાની એક જોડની રેખાઓ વચ્ચે આવેલા ત્રિકોણનાં ક્ષેત્રફળ સમાન હોય છે.
- 10. ત્રિકોણનું ક્ષેત્રફળ, તેનો પાયો અને તે પાયાને અનુરૂપ વેધના ગુણાકારથી અડધું હોય છે.
- 11. એક જ પાયા (અથવા સમાન પાયા) પર આવેલા અને એક જ પાયાની(સમાન પાયાની) એક જ બાજુએ આવેલાં ત્રિકોણોનાં ક્ષેત્રફળ સમાન હોય તો તે સમાંતર રેખાઓની એક જોડની રેખાઓ વચ્ચે આવેલા હોય છે, જે પૈકી એક પાયાને સમાવતી રેખા છે.
- 12. ત્રિકોણની એક મધ્યગા, તેનું બે સમાન ક્ષેત્રફળોવાળા ત્રિકોણોમાં વિભાજન કરે છે.