SALES-PREDICTION-USING-PYTHON

 ${\tt CodSoft\text{-}DataScience\text{-}Internship\text{-}Task_2}$

```
Importing the dependencies
```

```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

Loading the Dataset

```
path = '/content/Sales_Prediciton.csv'
data = pd.read_csv(path , encoding='latin-1')
```

Exploring the Dataset

data.head()

TV		Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

data.head

<bound method="" ndframe.head="" of<="" th=""><th>Radio</th><th>Newspaper</th><th>Sales</th></bound>							Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1				
	1	44.5	39.3	45.1	10.4				
	2	17.2	45.9	69.3	12.0				
	3	151.5	41.3	58.5	16.5				
	4	180.8	10.8	58.4	17.9				
	195	38.2	3.7	13.8	7.6				
	196	94.2	4.9	8.1	14.0				
	197	177.0	9.3	6.4	14.8				
	198	283.6	42.0	66.2	25.5				
	199	232.1	8.6	8.7	18.4				

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

[200 rows x 4 columns]>

memory usage: 6.4 KB

Data	COTAIIII3 (CC	car + corumns).					
#	Column	Non-Null Count	Dtype				
0	TV	200 non-null	float64				
1	Radio	200 non-null	float64				
2	Newspaper	200 non-null	float64				
3	Sales	200 non-null	float64				
dtypes: float64(4)							

data.info

<pre><bound dataframe.info="" method="" of<="" pre=""></bound></pre>						TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1				
	1	44.5	39.3	45.1	10.4				
	2	17.2	45.9	69.3	12.0				
	3	151.5	41.3	58.5	16.5				

```
4 180.8 10.8
                       58.4 17.9
    195 38.2
                3.7
                         13.8
                                7.6
               4.9
9.3
                         8.1 14.0
6.4 14.8
    196 94.2
    197 177.0
    198 283.6 42.0
                         66.2 25.5
    199 232.1
               8.6
                          8.7 18.4
    [200 rows x 4 columns]>
data.shape
    (200, 4)
data.size
    800
```

Cheking the Statistical Measure of the data

data.describe()

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

Cheking for missing values in the dataset

```
data.isnull().sum()

TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64
```

Spliting the Features and Target variables

```
# Split features and target variable
X = data[['TV', 'Radio', 'Newspaper']]
y = data['Sales']
```

Spliting the training data and testing data

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Training Model Linear regression

```
model = LinearRegression()
model.fit(X_train , y_train)

v LinearRegression
LinearRegression()
```

Making the predictions

```
y_pred = model.predict(X_test)
Evaluating the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("Mean Squared Error:", mse)
print("R-squared:", r2)
    Mean Squared Error: 2.9077569102710896
    R-squared: 0.9059011844150826
Cheking the Model with user define inputs
tv_ad = float(input("Enter the TV advertising expenditure: "))
radio_ad = float(input("Enter the Radio advertising expenditure: "))
newspaper_ad = float(input("Enter the Newspaper advertising expenditure: "))
# Creating a new DataFrame with the user input
new_data = pd.DataFrame({'TV': [tv_ad], 'Radio': [radio_ad], 'Newspaper': [newspaper_ad]})
# Making predictions using the trained model
predicted_sales = model.predict(new_data)
print("Predicted Sales:", predicted_sales[0])
    Enter the TV advertising expenditure: 9000
    Enter the Radio advertising expenditure: 7000
    Enter the Newspaper advertising expenditure: 5000
    Predicted Sales: 1223.5983347980527
```