Lewis Collum Journal: 5.3

Updated: February 25, 2019

Notes

- Mathematical induction is not inductive but deductive.
- Covering a Board with Trominoes [example].

Proof. Let P(n) be the sentence

If any square is removed from a $2^n \times 2^n$ checkerboard, then the remaining squares can be completely covered by L-shape trominoes.

Show that P(1) is true:

A $2^1 \times 2^1$ checkerboard consists of four squares. If one square is removed, the remaining squares form an L, which can be covered by a single L-shaped tromino. Hence, P(1) is true.

Show that for all integers $k \ge 1$, if P(k) then P(k+1):

Let k be any integer such that $k \ge 1$, and suppose that If any square is removed from a $2^k \times 2^k$ checkerboard, then the remaining squares can be completely covered by L-shaped trominoes.

We must show that

If any square is removed from a $2^{k+1} \times 2^{k+1}$ checkerboard, then the remaining squares can be completely covered by L-shaped trominoes.

[insert proof for the k+1 case.]

Test Yourself

- 1. deductive
- 2. prove