Algebra 1R

by a moron :3 21.03.2137

1 Teoria grup

1.1 Grupy, pierscienie, ciala

Dzialanie [≋ operation] na zbiorze X:

$$\Phi: X \times X \to X$$
,

zwykle zapisywane jako xy, $x \cdot y$, x + y.

Przyklady:

 \hookrightarrow na dowolnym z \mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{C} , \mathbb{Q} mamy dodawanie (+) i mnozenie (·)

 \hookrightarrow na \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{N} mamy \leq ktory daje dziala-nia:

$$a \lor b := mina, b$$

 $a \land b := maxa, b$

 \hookrightarrow np na $\mathbb R$ mozemy zdefiniowac a *b := a + b^2 \hookrightarrow niech X bedzie zbiorem, a X^X bedzie zbiorem wszystkich funkcji X \to X, wtedy skladanie funckji jest dzialaniem okreslonym w X^X:

$$f\circ g\in X^X$$

MOZNA DOJEBAC GRAFIK KOMUTUJACY

 \hookrightarrow X - zbior i niech $\mathscr{P}(X)$ to zbior wszystkich podzbiorow X, wtedy na $\mathscr{P}(X)$ mamy dzialanie sumy [\ggg union] i przekroju [\ggg intersection]

 \hookrightarrow niech a, b \in X, wtedy mamy rzuty na osie:

$$aLb := a$$

 $aPb := b$

 $\hookrightarrow \text{ na zbiorze } \mathbb{R} \cup \{\infty\} \text{ deifniujemy } (\forall \ a \in \mathbb{R} \cup \{\infty\}) \ a+\infty = \infty = \infty + a \text{ oraz } (\forall \ a,b \in \mathbb{R}) \ a+b = a+_{\mathbb{R}} b \text{ (dodawanie w } \mathbb{R})$

Prosty opis dzialan – niech \star bedzie dzialaniem okreslonym w A = $\{a_1, \ldots, a_n\}$, to mozemy dojebac tabelke:

*	a ₁	a ₂	 a _n
a ₁	a ₁ * a ₁	a ₁ * a ₂	 a₁ ∗a _n
a_2	a ₂ * a ₁	$a_2 \star a_2$	 a ₂ ∗a _n
a _n	a _n ∗a ₁	a _n ∗a ₂	 a _n ∗a _n

Element neutralny [\ggg neutral element] - takie e, ze dla kazdego $x \in X$ ex = xe = x. Dzialanie ma co najwyzej jeden element neutralny.

Element odwrotny [ﷺ inverse element] do x to takie y, ze xy = yx = e. Jesli dzialanie jest laczne [ﷺ associative], to ma co na-jwyzej jeden element odwrotny do danego x.

Homomorfizm algebry $\mathscr{X} = (X, \{\cdot\})$ na algebre $\mathscr{Y} = (Y, \{\circ\})$ nazywamy przeksztalcenie $f: X \to Y$

$$f(a \cdot b) = f(a) \circ f(b).$$

- monomorfizm f jest 1-1
- epimorfizm f jest "na"
- izomorfizm f jest 1-1 i "na"

Y spelniajace dla kazdego a, b \in X

- endomorfizm kiedy $\mathscr{Y} = \mathscr{X}$
- automorfizm enodmorfizm bedacy izomorfizmem

Polgrupa to niepusty zbior z dzialaniem lacznym.

GRUPA [ﷺ group] to niepusty zbior z lacznym dzialaniem i elementem neutralnym (zwanym jednoscia grupy) oraz elementami odwrotnymi dla kazdego elementu.

Zbior G z dzialaniem · jest grupa, jesli:

- 1. $(\forall a, b, c \in G)$ (ab)c = a(bc)
- 2. $(\exists e \in G)(\forall a \in G) ea = ae = e$
- 3. $(\forall a \in G)(\exists b \in G) ab = ba = e$
- *4. $(\forall a, b \in G)$ ab = ba w grupie abelowej

Grupa przeksztalcen [\thickapprox transformation group] – niepusty podzbior G \subseteq SX, ktory jest:

 \hookrightarrow jest zamkniety na laczenie funkcji \hookrightarrow ($\forall~f\in G)~f^{-1}\in G$

Pojecie to wprowadzil Galois ok 1830, gdzie X byl zbiorem pierwiastkow pewnego wielomianu.

Grupa macierzy [$\mbox{\tt Mm}$ matrix group] [M_n(R)] to grupa wszystkich macierzy z mnozeniem :v

Ogolna grupa liniowa [\Re general linear group] [$GL_n(\mathbb{R})$] to grupa wszystkich macierzy o niezerowym wyznaczniku ze standardowym mnozeniem.

Grupa ortogonalna [\Join orthogonal group] $[O_n(\mathbb{R})]$ to podzbior grupy $GL_n(\mathbb{R})$ taki, ze $A^{-1}=A^T$

WYPADALOBY POKAZAC, ZE (S_X, \circ) jest przemienna iff $|X| \le 2$

Grupy izometrii - dla W \subseteq \mathbb{R}^2 , grupa izometrii W to macierze ortogonalne zachowujace zbior W.

PIERSCIEN to niepusty zbior X z dwoma dzialaniami $(\cdot, +, \text{ mnozenie i dodawanie})$ taki, ze:

- 1. zbior X z + jest grupa abelowa
- 2. · jest laczne
- 3. $(\forall x, y, z \in X) x \cdot (y+z) = x \cdot y + x \cdot z \land (x+y) \cdot z = x \cdot z + y \cdot z$

Kolejne dzikie nazwy ★:

- * pierscien przemienny jesli mnozenia jest przemienne
- * pierscien z jednoscia dla mnozenia istnieje element neutralny

CIALO to pierscien przemienny, ktory dla kazdego elementu $\neq 0$ ma element odwrotny

.....

1.2 Wlasnosci grup

Niech G bedzie grupa, a e jej elementem neutralnym. Wowczas:

$$\hookrightarrow$$
 a, b \in G \Longrightarrow (ab)⁻¹ = b⁻¹a⁻¹

$$\Rightarrow$$
 a \in G i n = 1, ..., n $a^{-n} = (a^n)^{-1} = (a^{-1})^n$

$$\hookrightarrow \, d \, l \, a \, \, m, \, n \in \mathbb{Z} \, \, i \, \, a \in G \, \, mamy \, \, a^{mn} =^* (a^m)^n$$

$$\hookrightarrow$$
 dla G grupy abelowej i $n\in\mathbb{Z}$ $(ab)^n=^*a^nb^n$

st
 trzeba udowodnic, ale mi sie nie chce

H \subseteq G jest podgrupa G, jesli jest grupa ze wzgledu na te same dzialania, czyli wystar-czy, ze

$$(\forall a, b \in H) ab^{-1} \in H.$$

Jelsi $a \in G$ i istnieja $n \in \mathbb{N}$, $n \ge 1$, takie, ze $a^n = e$, to mowimy ze n jest rzedem elementu a (n = o(a)). Jesli takie n nie istnieja, to a ma rzad nieskonczony $(o(a) = \infty)$.

 \hookrightarrow grupa torsyjna - wszystkie elementy maja rzad skonczony

⇔ grupa beztorsyjna – wszystkie elementy maja rzad nieskonczony

Jesli $o(a) = n \ oraz \ a^N = e \ to \ n|N, \ fajny dowodzik, ale leniem jestem$

Grupa cykliczna to grupa zlozona z wszystkich poteg danego elementu a, natomiast a jest nazywane generatorem tej grupy

1.3 Grupy ilorazowe B)

Prawostronna warstwa grupy G wzgledem jej podgrupy H wyznaczona przez $g \in G$ to zbior

$$gH = \{gh : h \in H\},$$

natomiast lewostronna warstwa to zbior

$$Hg = \{hg : h \in H\}.$$

Dla grup abelowych sa one rowne.

Dwa elementy $g_1,g_2\in G$ wyznaczaja te sama warstwe prawostronna wzgledem H, gdy $g_1^{-1}g_2\in H$, a te sama warstwe lewostronna, gdy $g_1g_2^{-1}\in H$.

Rzad grupy skonczonej G to ilosc jej elementow

Indeks [G:H] podgrupy H w grupie G to ilosc
warstw w grupie G wzgledem H. Dla skonczonych grup mamy:

$$\hookrightarrow g \in G \ o(g) \, | \, |G| \, ,$$

 \hookrightarrow rzad i indeks kazdej podgrupy sa dziel-nikami rzedu grupy,

 \hookrightarrow jesli rzad jest liczba pierwsza, to grupa jest cykliczna

Twierdzenie Lagrange'a - dla skonczonych G > H:

$$|G| = [G : H] \cdot |H|$$
.

Podgrupa H jest dzielnikiem normalnym grupy G [H \triangleleft G] jesli (\forall g \in G) gH = Hg. Wystarczy, ze (\forall g \in G)(\forall h \in H) ghg $^{-1}$ \in H.

Niech f : $G_1 \rightarrow G_2$ bedzie homomorfizmem, a e_1 , e_2 beda elementami neutralnymi grup

odpowiednio G_1 , G_2 . Wtedy $f(e_1) = e_2$ oraz $f(g)^{-1} = f(g^{-1})$.

Obraz homomorfizmu $f:G_1\to G_2$ jest podgrupa grupy G_2 [Im $f < G_2$], natomiast jadro f jest dzielnikiem normalnym G_1 [Ker $f \triangleleft G_1$].

Grupa ilorazowa to zbior wszyystkich warstw H/G, gdzie $H \triangleleft G$, z dzialaniem

$$(g_1H)(g_2H) = (g_1g_2)H.$$

Odwzorowanie

$$\phi: \mathsf{G} \to \mathsf{H}$$

$$\phi(g) = gH$$

jest epimorfizmem (czesto nazywane kanonicznym homeomorfizmem G na H).

[!!!]Zasadnicze twierdzenie o homeomorfiz-mach dla grup - jesli f : G \rightarrow G₁ jest epimorfizmem oraz Ker f = H, natomiast ϕ : G \rightarrow G/H jest dzialaniem jak wyzej, to istnieje tylko jeden izomorfizm ψ : G/H \rightarrow G₁ taki, ze f = ψ \circ ϕ

Jezeli $\emptyset \neq A \subseteq G$ oraz G(A) < G to przekroj wszystkich podgrup G zawierajacych A, a $A \subseteq G_1 < G$, to $G(A) < G_1$.

Jezeli K \triangleleft G i H \triangleleft G, to najmniejsza podgrupa G zawierajaca H i K pokrywa sie ze zbiorem

$$KH := \{kh : k \in K, h \in H\}$$

Pierwsze twierdzenie o izomorfizmach – jezeli K $\triangleleft G$ i H $\triangleleft G$, to

$$\hookrightarrow$$
 K < KH = HK < G

 $\hookrightarrow \mathsf{H} \cap \mathsf{K} \triangleleft \mathsf{H} \mathsf{i} \mathsf{K} \triangleleft \mathsf{K} \mathsf{H}$

 $\hookrightarrow \phi : hK \rightarrow h(K \cap H)$ indukuje izomorfizm

$$HK/K \sim H/(H \cap K)$$

Drugie twierdzenie o izomorfizmach – jezeli K \triangleleft G i K \triangleleft H \triangleleft G i oznaczymy \overline{H} = H/K oraz \overline{G} = G/K, to wtedy:

- $\hookrightarrow \overline{H} < \overline{G}$
- $\hookrightarrow \overline{\mathsf{H}} \triangleleft \overline{\mathsf{G}} \iff \mathsf{H} \triangleleft \mathsf{G}$

Automorfizm wewnetrzny grupy G wyznaczony przez g: $\phi_g(x) = g^{-1}xg$.

Jesli G to grupa abelowa, to dla kazdego g $\phi_{\rm g}({\bf x}) = {\bf x}$, a wiec ma ona jedynie identy-cznosc.

Zbior wszystkich automorfizmow wewnetrznych grupy G oznaczamy $\mathbf{I}(\mathbf{G})$ i tworzy on grupe ze skladaniem

Centrum grupy G [Z(G)] to zbior $x \in G$ takich, ze dla dowolnego $y \in G$ xy = yx. Dla kazdego G $Z(G) \triangleleft G$

Grupa I(G) jest izomorficzna z G/Z(G).

Jesli M to dowolny podzbior grupy G, to dla kazdego g takiego, ze $\phi_{\rm g}$ \in I(G) zbiorem sprzezony do M nazywamy zbior

$$\mathsf{M}^\mathsf{g} = \{ \phi_\mathsf{g}(\mathsf{x}) : \mathsf{x} \in \mathsf{M} \}$$

Jesli M = $\{x\}$, to M^g zawiera elementy sprzezone z x.

Normalizator zbioru M:

$$N_G(M) = \{g \in G : M^g = M\}$$

Centralizator zbioru M:

$$C_G(\,M\,)=\{g\in G\ :\ mg=gm\,,\ m\in M\}$$

Twierdzonka:

$$\hookrightarrow (\forall M \subseteq G) C_G(M) < N_G(M) (|M| = 1 \implies C_G(M) = N_G(M))$$

$$\hookrightarrow$$
 Z(G) = C_G(G)

 \hookrightarrow dla M \subseteq G ilosc zbiorow Mg jest rowna [G : N_G(M)].

Aby klasa elementow sprzezonych z x \in G byla jednoelementowa wystarczy, zeby x \in Z(G)

Jesli G jest skonczona, to ilosc elementow sprzezonych z zadanym x jest dzielnikiem |G|.

p-grupa to grupa, w ktorej wszystkie elementy maja rzad p, gdzie p jest liczba pierwsza. Jesli $|G| = p^n$ to G jest p-grupa.

Skonczone p=grupy maja nietrywialne centrum. Jesli $|G| = p^2$, to G jest grupa abelowa.

1.4 Produkty grup

W zbiorze $A \times B = \{(a,b) : a \in A, b \in B\}$, gdzie A,B sa grupami, okreslmy

$$(a,b)\cdot(c,d)=(ac,bd)$$

Wtedy $(A \times B, \cdot)$ jest grupa zwana produktem A i B.

Oznaczenia:

$$\hookrightarrow G^2 = G \times G$$

$$\hookrightarrow$$
 $G^n = G \times G \times \ldots \times G$

Grupa Kleina: $\mathbb{Z}_2 \times \mathbb{Z}_2$ to najmniejsza niecykliczna grupa. Jest tez \simeq z prostokatem, ktory nie jest kwadratem.

Niech $\{G_i \ : \ i \in I\}$ bedzie rodzina grup indeksowana elementami ze zbioru I

 $\hookrightarrow \prod_{i \in I} \texttt{G}_i$ to zbior wszystkich i-ciagow elementow z G z dzialaniem _

$$(g_i)_i \cdot (g'_i)_i = (g_i g'_i)_i$$

$$\hookrightarrow \sum_{i \in I} G_i :=$$

$$\{(g_i)_i \in \prod G_i : (\exists I_0 \subseteq I)(\forall i \in I \setminus I_0) g_i = e_{g_i}\}$$

2 Permutacje :>

n-ta grupa symetryczna $[S_n]$ - grupa wszystkich permutacji zbioru $X_n = \{1, \dots, n\}.$ $|S_n| = n!$

Jesli $P \in S_n$ i dla i = 1, ..., $n P(i) = a_i$, to piszemy

$$\begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$

Mnozenie permutacji:

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix} \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ a_1 & a_2 & \dots & a_n \end{pmatrix} =$$

$$= \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ b_1 & b_2 & \dots & b_n \end{pmatrix}$$

Zbior elementow niezmienniczych (fixpunktow) permutacji P to zbior $F(P) = \{k \in X_n : P(k) = k\}$. Jego dopelnienie oznaczamy $M(P) = S_n \setminus F(P)$.

.....

Cykl k-elementowy C to permutacja taka, ze $C(a_1) = a_2$, $C(a_2) = a_3$, ..., $C(a_n) = a_1$. Cykl 2-elementowy to transpozycja. Cykle zapisujemy

$$(a_1, a_2, \ldots, a_n)$$

Kazda permutacja jest iloczynem transpozycji. Permutacje parzyste - iloczyn

$$\prod_{i < j} (a_j - a_i)$$

jest dodatni (gorny row to kolejne liczby naturalne, dolny to wyrazy). Pozostale permutacje sa nieparzyste.

Znak permutacji jest +1 gdzy permutacja jest parzysta i -1 wpp. Alternatywnie mozna zapisac (gorny row to b_k , a dolny to c_k)

$$\text{sgn P} = \prod_{i < j} \frac{b_j - b_i}{c_j - c_i}$$

Dla dwoch dowolnych permutacji P_1 , P_2 mamy

$$\operatorname{sgn} P_1 P_2 = \operatorname{sgn} P_1 \cdot \operatorname{sgn} P_2$$

$$sgn P_1^{-1} = sng P_1.$$

n-ta grupa alternujaca $[A_n]$ - podgrupa S_n zlozona ze wszystkich parzystych permutacji.

Permutacja jest parzysta iff σ jest trans-pozycja parzyscie wielu transpozycji (czyli ma nieparzyscie wiele elementow).