SOLUTIONS AND HINTS TO PROBLEM SET 7

Problem 1.

3.5.1: From fact (3), we know that a parity-check matrix for C_{24} is

$$H = \left[egin{array}{c} I \\ B \end{array}
ight]$$

where B is the matrix shown on page 77. Now, let

$$v = (1, 1, 1, \dots, 1)$$

be the all-one word of length 24. By direct inspection, one can verify that vH=0 where 0 is the all-zero word (or vector). Hence $v \in C_{24}$.

If C_{24} had a codeword, say, c, of weight 20, then the codeword v+c would have weight 4, a contradiction (recall that C_{24} has no codewords of weight 4, see pp. 78–79).

3.5.2: One parity-check matrix for C_{24} is

$$H = \left[\begin{array}{c} I \\ B \end{array} \right].$$

Then $[B | I] \cdot H = B \cdot I + I \cdot B = \mathbf{0}$. Since the rank of [B | I] equals 12, it follows that [B | I] is also a generator matrix for C_{24} .

3.5.3: A parity-check matrix for C_{24} is

$$H = \left[\begin{array}{c} I \\ B \end{array} \right].$$

Hence, a generator matrix for C_{24}^{\perp} is $[I \mid B^T] = [I \mid B]$, which, by definition, is also a generator matrix for C_{24} . This shows that the two codes, C_{24} and C_{24}^{\perp} , have the same generator matrix, that is, $C_{24} = C_{24}^{\perp}$.

Problem 2.

3.6.5(d): The parity-check matrix H is the one from the previous problem. The received vector is

$$r = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0].$$

The syndrome of r is $s_1 = rH = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]$.

Note that $wt(s_1) = 4 > 3$. We also have $s_2 = sB = [0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0]$, that is, $wt(s_2) = 4 > 3$. By direct inspection, one can verify that

$$wt(s_1 + b_i) > 2$$
 and $wt(s_2 + b_i) > 2$

where b_i denotes the *i*th row of B, for $1 \le i \le 12$. From these results and Algorithm 3.6.1, it follows that the weight of error pattern is beyond the error-correction capability of C_{24} , namely, 3. Hence, the decoder will not decode r; it will request retransmission.

3.6.6(b): Since $wt(s_2) = 3$, then (according to Algorithm 3.6.1) the most likely error pattern is

$$u = [0, s_2] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0].$$

Problem 3.

3.7.5: The reliability of IMLD for C_{23} , namely, $\theta_p(C_{23})$ can be found via the formula on p. 63. To use it, we need to know the number of coset leaders of weight 0, 1, 2, and 3:

- Clearly, there is exactly 1 coset leader of weight 0.

- There are (²³₁) = 23 coset leaders of weight 1.
 There are (²³₂) = 253 coset leaders of weight 2.
 There are (²³₃) = 1771 coset leaders of weight 3.

The total is $2048 = 2^{11}$, so there are no other coset leaders. Also, by Theorem 3.2.8, all the above coset leaders are unique. Therefore,

$$\theta_p(C_{23}) = p^{23} + 23p^{22}(1-p) + 253p^{21}(1-p)^2 + 1771p^{20}(1-p)^3.$$

3.7.7: The Golay code C_{23} is a linear code of minimum distance equal to 7. Hence the minimum weight of its nonzero codewords is equal to 7 and C_{23} is a 3-errorcorrecting code. We also showed that C_{23} is a perfect code.

From the above, it follows that each word of length 23 and weight 4 is at distance 3 from exactly one codeword in C. Moreover, this codeword has weight equal to 7. Note that there are $\binom{23}{4} = 8855$ words of length 23 having weight equal to 4. Now, for any codeword $c \in C_{23}$ such that $\operatorname{wt}(c) = 7$, the number of words that have weight 4 and are at distance 3 from c is $\binom{7}{3} = 35$. In view of all of this, the number of words of weight 7 in C_{23} is equal to $\frac{8855}{35} = 253$.

3.7.8: There are $\binom{24}{5} = 42504$ words of length 24 having weight equal to 5. Each of these words is at distance 3 from exactly one codeword $v \in C_{24}$ such that wt(v) = 8 (this is the hint of the problem and it is justified below). For each such v, the number of words that have weight equal to 5 and are at distance 3 from v is $\binom{8}{3} = 506$. In view of the above, the number of words of weight 8 in C_{24} is equal to $\frac{42504}{506} = 759$.

Now we will justify the hint: Let $w \in K^{24}$ with wt(w) = 5. Puncture any coordinate of w that contains a 0 and denote the obtained word by \widehat{w} . Thus, $\widehat{w} \in K^{23}$ and $\operatorname{wt}(\widehat{w}) = 5$. Since C_{23} is perfect, \widehat{w} is at distance 2 or 3 from exactly one codeword $c \in C_{23}$. Moreover, either $\operatorname{wt}(c) = 7$ or $\operatorname{wt}(c) = 8$. From this, it follows that the original $w \in K^{24}$ is at distance 3 from exactly one codeword in C_{24} of weight equal to 8.