MA 108 : ODE Closed, exact, and simply connected

Aryaman Maithani

IIT Bombay

6th March, 2020

Simply connected sets

Let $m \in \mathbb{N}$ and $D \subset \mathbb{R}^m$.

We know that a curve in D is simply a C^1 function $c:[a,b]\to D$ where $a,\ b\in\mathbb{R}$ with a< b.

For the purpose of this discussion, we shall assume a=0 and b=1.

We say that c can be <u>continuously</u> shrunk to a point $d \in D$ if there is a continuous function $H: [0,1] \times [0,1] \to D$ such that

- 1) H(0,s) = c(s) for every $s \in [0,1]$,
- 2) H(1,s) = d for every $s \in [0,1]$, and
- ③ H(t,1) = H(t,0) for every $t \in [0,1]$.

This map H is called a homotopy in D between the curve c and the constant curve d. The domain D is said to be simply-connected if for every simply closed curve c in D, we have a homotopy H between c and some $d \in D$.

Interpretation of the last slide

The map H can be interpreted as follows:

It is a function of two variables. The first may be thought of as "time".

For every fixed instant of time $t_0 \in [0,1]$, we get a curve $H(t_0,s)$ as s varies from 0 to 1. This is capturing the "continuous shrink."

Let us look what the three points are saying:

- At time $t_0 = 0$, the curve drawn is the initial curve c that we started with.
- ② At time $t_0 = 1$, the curve is the final point d.
- \circ At any given time $t_0 \in [0,1]$, the curve is still a loop, that is, we aren't opening it up.

Alternate definition

The previous definition can also be written in a slightly more concise (but equivalent) way.

Let D and c have the same meaning as before. Moreover, let $S^1 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ and $U^2 := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.

We say that D is simply-connected if any loop in D defined by $f: S^1 \to D$ can be contracted to a point: there exists a continuous map $F: U^2 \to D$ such that Frestricted to S^1 is f

This is admittedly a terser definition. It's okay if you don't understand it right away.

A more intuitive idea

For the purpose of MA 108, we will be concerned about the case that m=2. That is, our domains are (open) subsets of \mathbb{R}^2 . To recall, a subset $\Omega \subset \mathbb{R}^2$ is said to be open if for every $p \in \Omega$, there exists some r>0 such that the open disc of radius r centered at p is a subset of Ω . (You can draw a small enough circle about every point within Ω .)

Loosely speaking, a subset $D \subset \mathbb{R}^2$ will be simply connected if for every (closed) loop $C \subset D$, we have that the points "inside" C are also points of D.

That gives us that any closed loop in the domain can be continuously shrunk (without opening the loop) to a point in the domain.

Examples

The following subsets of \mathbb{R}^2 are simply connected:

- \mathbb{R}^2 ,
- $\mathbb{R}^2 \setminus (\mathbb{R} \times \{0\})$ (the plane after removing the *x*-axis),
- $\{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 < 1\} \cup \{(x,y) \in \mathbb{R}^2 : (x+2)^2 + y^2 < 1\}$ (union of two disjoint open discs).

The following subsets of \mathbb{R}^2 are **not** simply connected:

- $\mathbb{R}^2 \setminus \{(0,0)\}$ (the plane after removing the origin),
- 2) the plane after removing any finite set of points,
- $\mathbb{R}^2 \setminus S^1$, where $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is the unit circle.

Verify that all the examples given above are open subsets of \mathbb{R}^2 .

Closed and Exact Forms

Definition

A first order ODE $M(x,y) + N(x,y)y^1 = 0$ is called exact if there is a function u(x,y) such that

$$\frac{\partial u}{\partial x} = M$$
 and $\frac{\partial u}{\partial y} = N$.

Definition

The differential form

$$M(x, y)dx + N(x, y)dy$$

is called closed if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$

Their connection

Recall that if M and N are "nice enough", then exact \implies closed. More precisely, if $M, N: D \to \mathbb{R}$ are such that their first partial derivatives exist and are continuous, then $M + Nv^1 = 0$ being exact implies that $M_v = N_x$.

The idea behind the proof was to note that we have $M=u_x$ and $N=u_y$. By hypothesis, we have that u has all of its second partial derivatives continuous. The mixed partials theorem from MA 105 told us that this implies $u_{xy} = u_{yx}$ which gives us the desired equality.

(If you have forgotten the theorem, it is there on the last slide.)

Their connection

Let M, N, D be as before. Now, we additionally assume that D is simply connected. Then we have the following:

$$M + Ny^1 = 0$$
 is exact $\iff Mdx + Ndy$ is closed.

Note that we already had exact \implies closed. Thus, we only need to prove that closed \implies exact.

The idea behind the proof was the following:

Take any closed loop $C \subset D$. Then, the points contained "within" C are also points in D. Thus, the vector field (M,N) is defined completely "within" C. Then, we used Green's Theorem to compute $\oint (M,N) \cdot dr$, which turns out to be zero as $N_x - M_v = 0$.

Thus, we got that the line integrals of (M, N) are path-independent in D and hence, (M, N) is the gradient of a scalar field.

An example

Note that the additional hypothesis of D being simply connected was indeed required. To see this recall the following tutorial question from MA 105:

Let $D = \mathbb{R}^2 \setminus \{(0,0)\}$. Let $M,N:D \to \mathbb{R}$ be given by

$$(M(x,y),N(x,y)) := \left(-\frac{y}{x^2+y^2},\frac{x}{x^2+y^2}\right).$$

Then, $\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}$. However, (M, N) is not the gradient of any scalar field on D.

(How had we shown this? Hint: integrate (M, N) along the unit circle centered at origin.)

Summary

If M and N are good enough functions, then we have

exact \implies closed.

If the domain is simply connected, then we have

exact \iff closed.

Exercise

Note that the domain $D = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ is simply connected. (The upper half plane.)

Let $M, N : D \to \mathbb{R}$ be defined as in the earlier example. Find a scalar field u such that $\nabla u = (M, N)$. (The existence of such a field is guaranteed as we have a closed form on a simply connected domain.)

Do the above for the case that $D = \{(x, y) \in \mathbb{R}^2 : x > 0\}$. (The right half plane.)

Mixed Partial Theorem

Theorem

Let $D \subset \mathbb{R}^2$ and let (x_0, y_0) be an interior point of D. Then there is r > 0 such that

$$S := \{(x,y) \in \mathbb{R}^2 : |x - x_0| < r \text{ and } |y - y_0| < r\} \subset D.$$

Consider $f: S \to \mathbb{R}$ and suppose f_x and f_y exist on S. If one of the mixed partials f_{xy} or f_{yx} exists on S, and it is continuous at (x_0, y_0) , then the other mixed partial exists at (x_0, y_0) , and $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$.