4) Tables

Vitor Kamada

December 2019

Reference

Tables, Graphics, and Figures from

Computational and Inferential Thinking: The Foundations of Data Science

Adhikari & DeNero (2019): Ch 6. Tables

https://www.inferentialthinking.com

U.S. Census Bureau, Population Division

```
from datascience import *
import numpy as np
path_data = 'http://www2.census.gov/programs-surveys/po
data = path_data + 'nc-est2015-agesex-res.csv'
full_census_table = Table.read_table(data)
full_census_table
```

SEX	AGE	CENSUS 2010 POP	ESTIMATESBASE2010
0	0	3944153	3944160
0	1	3978070	3978090
0	2	4096929	4096939
0	3	4119040	4119051

Annual Estimates of the Resident Population by Single Year for the United States: 2010 to 2015

SEX	0=Total, 1=Male, 2=Female		
AGE	999 = total population		
CENSUS2010POP	4/1/2010 resident Census 2010 population		
ESTIMATESBASE2010	4/1/2010 resident population estimates base		
POPESTIMATE2010	7/1/2010 resident population estimate		
POPESTIMATE2011	7/1/2011 resident population estimate		

full_census_table.num_rows

306

Column Labels

```
full census table.num columns
full census table.labels
               ('SEX',
                'AGE',
                'CENSUS2010POP',
                'ESTIMATESBASE2010',
                'POPESTIMATE2010'.
                'POPESTIMATE2011',
                'POPESTIMATE2012',
                'POPESTIMATE2013',
                'POPESTIMATE2014',
                'POPESTIMATE2015')
```

10

Select Relevant Columns

SEX	AGE	POPESTIMATE2010	POPESTIMATE2014
0	0	3951330	3949775
0	1	3957888	3949776
0	2	4090862	3959664

Rename Labels

SEX	AGE	2010	2014
0	0	3951330	3949775
0	1	3957888	3949776
0	2	4090862	3959664
0	3	4111920	4007079

Create Variables

SEX	AGE	2010	2014	Change	Percent Change
0	0	3951330	3949775	-1555	-0.04%
0	1	3957888	3949776	-8112	-0.20%
0	2	4090862	3959664	-131198	-3.21%

Sorting the Data

census.sort('Change', descending=True)

SEX	AGE	2010	2014	Change	Percent Change
0	999	309346863	318907401	9560538	3.09%
1	999	152088043	156955337	4867294	3.20%
2	999	157258820	161952064	4693244	2.98%

Two Conditions

```
us_pop.where('SEX', are.equal_to(0)).where('AGE', are.between(97, 101))
```

SEX	AGE	2010	2014
0	97	68893	83089
0	98	47037	59726
0	99	32178	41468
0	100	54410	71626

Convert and Format %

SEX	AGE	2014	Proportion
0	999	318907401	100.00%
1	999	156955337	49.22%
2	999	161952064	50.78%

Proportions of Boys and Girls among Infants

```
infants = us_pop_2014.where('AGE', are.equal_to(0))
infants_2014 = infants.column('2014').item(0)
infants.with_column(
    'Proportion', infants.column('2014')/infants_2014
).set_format('Proportion', PercentFormatter)
```

SEX	AGE	2014	Proportion
0	0	3949775	100.00%
1	0	2020326	51.15%
2	0	1929449	48.85%

Female: Male Ratio at Each Age

```
females_all_rows = us_pop_2014.where('SEX', are.equal_to(2))
females = females_all_rows.where('AGE', are.not_equal_to(999))
females
males_all_rows = us_pop_2014.where('SEX', are.equal_to(1))
males = males_all_rows.where('AGE', are.not_equal_to(999))
males
```

SEX	AGE	2014	SE	Χ	AGE	2014
2	0	1929449		1	0	2020326
2	1	1931375		1	1	2018401
2	2	1935991		1	2	2023673
2	3	1957483		1	3	2049596

Compare Array

males.column('AGE')

```
array([
         0,
             1,
                   2,
                        3,
                             4,
                                  5,
                                    6, 7,
                                               8,
                                                     9,
                                                         10,
                                                               11,
        13,
             14,
                  15,
                       16,
                            17,
                                 18,
                                     19,
                                           20,
                                                21,
                                                     22,
                                                          23,
                                                               24,
                                                                    25.
                  28.
                       29.
                            30.
                                 31.
                                     32.
                                           33.
                                                34.
                                                     35.
                                                          36.
                                                               37.
                  41,
        39,
             40,
                       42,
                            43,
                                 44,
                                      45,
                                           46,
                                                47,
                                                     48,
                                                          49,
                                                               50,
                                                                    51,
        52,
             53,
                  54,
                       55,
                            56,
                                 57,
                                     58,
                                           59,
                                                60,
                                                     61,
                                                          62,
                                                               63,
                                                                    64,
                            69,
                                 70, 71, 72,
                                                     74,
        65.
                  67.
                       68,
                                                73.
                                                          75.
                                                               76, 77,
        78,
                            82,
                                 83,
                                     84, 85,
                                                86,
                                                     87,
            79,
                 80,
                       81,
                                                          88,
                                                               89, 90,
                           95,
        91,
            92,
                 93,
                       94,
                                 96, 97, 98,
                                                99, 100])
```

females.column('AGE')

```
array([
         0,
              1,
                   2,
                        3,
                              4,
                                   5,
                                        6,
                                             7,
                                                  8,
                                                      9,
                                                            10,
                                                                 11,
                  15,
                        16,
                             17,
                                  18,
                                      19,
                                            20,
                                                 21,
                                                       22,
                                                            23,
                                                                 24,
        13,
             14,
                                                                      25.
                  28.
                        29.
                             30.
                                  31,
                                       32,
                                            33,
                                                  34.
                                                       35.
                                                            36.
                                                                 37.
        39,
                        42,
                             43,
                                  44,
                                       45,
                                            46,
                                                       48,
             40,
                  41,
                                                 47,
                                                            49,
                                                                 50,
                                                                      51,
        52.
             53,
                  54,
                        55,
                             56,
                                  57,
                                       58,
                                            59,
                                                 60,
                                                       61,
                                                            62,
                                                                 63.
                                                                      64,
        65.
                  67.
                        68.
                             69,
                                  70, 71, 72,
                                                  73.
                                                       74.
                                                            75.
                                                                 76, 77,
                                  83,
                                       84, 85,
                                                 86,
        78,
            79,
                  80,
                       81,
                             82,
                                                       87,
                                                            88,
                                                                 89,
                                                                     90,
                                  96,
        91,
             92,
                  93,
                       94,
                             95,
                                      97,
                                           98,
                                                 99, 100])
```

Elementwise Division

```
ratios = Table().with columns(
   'AGE', females.column('AGE'),
   '2014 F:M RATIO', females.column('2014')/males.column('2014')
ratios
ratios.where('AGE', are.above(75)).show()
                                      2014 F:M RATIO
                                AGE
      2014 F:M RATIO
 AGF
                                 76
                                               1.23487
               0.955019
                                 77
                                               1 25797
               0.956884
                                 78
                                               1.28244
               0.956672
                                 79
                                              1.31627
```

At ages 98 and 99, there were about 3.5 to 4 times as many women as men

```
males.where('AGE', are.between(98, 100))
females.where('AGE', are.between(98, 100))
```

2014	AGE	SEX	2014	AGE	SEX
46208	98	2	13518	98	1
32517	99	2	8951	99	1

Gender Imbalance

```
%matplotlib inline
import matplotlib.pyplot as plots
plots.style.use('fivethirtyeight')
ratios.plot('AGE')
```

