$Linear \ Independence \\ _{Sam \ Kantor}$

Instructor Dan Wolczuk
Date: January 8st, 2016

Theorem 1.1 .2

Let $\vec{v}_1, \ldots, \vec{v}_k \in \mathbb{R}^n$. There exists a vector \vec{v}_i s.t. $\vec{v}_i \in Span \{\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_k\}$ if and only if $Span \{\vec{v}_i, \ldots, \vec{v}_k\} = Span \{\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_k\}$

Proof

" =>"

Let $\vec{x} \in \text{Span } \{\vec{v}_i, \dots, \vec{v}_k\}$