Homework 9 Extra Credit

Lance Remigio

November 23, 2024

Lemma. Let $(X, \|\cdot\|)$ be a normed space and let (x_n) and (y_n) be two sequences in X where $y_n = x_{n+1} - x_n$. If $\sum_{n=1}^{\infty} y_n$ converges, then (x_n) converges.

Proof. Let $y_n = x_{n+1} - x_n$ and suppose $\sum_{n=1}^{\infty} y_n$ converges. Define

$$s_n = \sum_{k=1}^n y_k = \sum_{k=1}^n (x_{k+1} - x_k).$$

Since $\sum_{n=1}^{\infty} y_n$ converges, the sequence of partial sums (s_n) of $\sum_{n=1}^{\infty} y_n$ must converge to some $s \in X$. Our goal is to show that (x_n) converges. Observe that

$$x_1 + \sum_{k=1}^{n-1} y_k = x_1 + \sum_{k=1}^{n-1} (x_{k+1} - x_k)$$

= $x_1 + (x_2 - x_1) + (x_3 - x_2) + \dots + (x_n - x_{n-1})$
= x_n .

Hence, we have for all $n \in \mathbb{N}$ that

$$x_n = x_1 + \sum_{k=1}^{n-1} y_k.$$

Since $\sum_{n=1}^{\infty} y_n$ converges, we can use the algebraic limit theorem on the equation above to conclude that

$$\lim_{n \to \infty} x_n = x_1 + s.$$

Problem 1. Prove that a normed space $(X, \|\cdot\|)$ is a Banach space if and only if every absolutely convergent series is convergent.

Proof. (\Longrightarrow) Note that this direction was proven during class.

(\iff) Suppose every absolutely convergent series converges. Our goal is to show that X is a Banach Space; that is, we need to show that X is a complete normed space. Hence, we need to show that every Cauchy sequence in X is convergent. To this end, let (x_n) be a Cauchy sequence in X. Our strategy is to find a subsequence (x_{n_k}) of (x_n) that converges to some $x \in X$.

Since (x_n) is a Cauchy Sequence, there exists an $N \in \mathbb{N}$ such that for any n > m > N, we have

$$||x_n - x_m|| < \varepsilon.$$

We claim that for all $k \in \mathbb{N}$, there exists $m_k \in \mathbb{N}$ such that for all $n > m > m_k$,

$$||x_n - x_m|| < \frac{1}{2^{k-1}}.$$

Indeed, using the fact that (x_n) is Cauchy, we have

For
$$\varepsilon=1$$
 $\exists m_1\in\mathbb{N}$ such that $\forall n,m>m_1,\ \|x_n-x_m\|<1$
For $\varepsilon=\frac{1}{2^1}$ $\exists m_2\in\mathbb{N}$ such that $\forall n,m>m_2,\ \|x_n-x_m\|<\frac{1}{2^1}$
For $\varepsilon=\frac{1}{2^2}$ $\exists m_3\in\mathbb{N}$ such that $\forall n,m>m_3,\ \|x_n-x_m\|<\frac{1}{2^2}$
 \vdots
For $\varepsilon=\frac{1}{2^{k-1}}$ $\exists m_k\in\mathbb{N}$ such that $\forall n,m>m_k,\ \|x_n-x_m\|<\frac{1}{2^{k-1}}$
 \vdots

More generally, we see that for any $k \in \mathbb{N}$, there exists m_k such that for any $n > m > m_k$

$$||x_n - x_m|| < \frac{1}{2^{k-1}}. (*)$$

In what follows, we will construct (x_{n_k}) of (x_n) . For every $k \in \mathbb{N}$, choose $n_k > m_k$ defined by $n_k = m_k + 1$ such that $n_k > m_k$. Similarly, for all $k \in \mathbb{N}$, we can choose $n_{k+1} > n_k$ where $n_{k+1} = n_k + 1$. Clearly, we see that for any $k \in \mathbb{N}$, we have $n_{k+1} > n_k > m_k$. By (*), we can see that

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^{k-1}}.$$

Now, observe that

$$0<\underbrace{\sum_{k=1}^{\infty}\|x_{n_{k+1}}-x_{n_k}\|}_{\text{This is a series in }\mathbb{R}}<\sum_{k=1}^{\infty}\frac{1}{2^{k-1}}=1.$$

Note that the above holds because of (*) and the fact that $\sum_{k=1}^{\infty} \frac{1}{2^{k-1}} = 1$ is a geometric series. Hence, we see that the series above converges absolutely. By assumption, we must have

$$\sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}) \text{ converges.}$$

From the lemma above, we can see that $\lim_{k\to\infty} x_{n_k} = x$ for some $x\in X$. Using this result along with the result found in exercise 18 from homework 8, we can say that (x_n) must converge to x as well. Thus, we conclude that X is a Banach Space.