

4. Jun. q. 9(x) 5. Cymua Kb. u um. q. ym Cpabrietice of 5 q. in f(x) u g(x) on egenent na co 4) Cam Lim g(x) - K, vge K - nery relax konansuma, me q. u mulron ogunanelum nopagok poema. Eam K=1, mo q. un brazab subirlamen 2) Cam Lim g(x) - co, mo q. 9 f(x) Saree bracours nopagua poema, rem 3) Cam Lim g(x) = 0, mo g(x) Saree liseours nopagua, run f(x) X - D Lim (2x4+x3+1): (-50) - +00 = 7 Lim (2x4+x3+1) = +00 x>-60 Lim 3-x+5x2-2x3 = 00 = Lim -2x3 = -2 Lim 3-x+5x2-2x3 = 00 = Lim -2x3 = -2	Q-9(x) Wa Kb. W. M. Q-18M Gabalene of o g-in 9(x) on egerent na o Lim G(x) - K, vge K - Herepelan konamenma, we go-u van g(x) - K, vge K - Herepelan konamenma, we go-u ogunanolous nopingon poema. Eam K=1, mo g-un biacab. 2 klindellemma Lim g(x) = vo, mo go-9 f(x) baree lincours nopingua poema, van gli x>00 f(x) = 0, mo g(x) baree lincours nopingua, vun f(x) X>00 g(x) = vo = 2 Lim (2 x 4 x 3, 1) = + vo (4 + x 3 + 1); (-vo) = + vo = 2 Lim (2 x 4 x 3, 1) = + vo	1 2. x ³ 3. x ² 1. Min. q. 9(x) Cyaline Kb. in min. q. ishin Cham Lim G(x) - K, vge K - heriyelas konananima, mo q. in mulron oquanishan nopugok pooma. Enin K:1, mo q. in piagab subulculenimin 1 Cam Lim G(x) = 0, mo q. s. f(x) Sacee bucous nopagua, run f(x) Cam Lim G(x) = 0, mo g(x) Sacee linoonso nopagua, run f(x) X -> - D Lim (2x4 + x3+1); (-w) = 7 Lim (2x4 + x3+1) = +00 2-10 2-		Ropingon	poema	gp-u									
2. x ³ 3. x ² 4. lum. q. 9(x) 5. Cymua Kb. u mm. q. ym Gabrellue 5/5 q. n f(x) u g(x) on egenent na x 1) Cam lim (xx) - K, vge K- newyelas Konansma, mo q. n mulson ogunarshan nopagok poama. Egun K:1, mo q. m bragab 2) Cam lim (xx) = 00, mo q. 9 f(x) Salee braves nopagua poema, rem 3) Cam lim (xx) = 0, mo g(x) Salee limonero nopagua, rem f(x) X=0 (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = +v0 => Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = -v0 = Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = -v0 = Lim (2x4 + x3,1) = +v0 Lim (2x4 + x3+1); (-x0) = -v0 = Lim (2x4 + x3,1) = +v0	Q-9(x) ua Kb. u um. q-ym Gabalenue 5/5 q-n 9(x) on egenent na x Lim G(x) - K, rge K- neugelas Konananina, me qo-u x = 10 oquanolour nopagox poema. Eam K=1, mo qo-un biazab. 2klinladenum Lim G(x) = 10, mo qo-9 f(x) basee lucoros nopagua poemo, rem gli x>00 Lim G(x) = 0, mo g(x) basee lucoros nopagua, run f(x) Lim G(x) = 0, mo g(x) basee lucoros nopagua, run f(x) x = 10 (4 + x3+1); (-10) = +10 = 7 Lim (2 x + x 3+1) = +00 x+5x^2-2x^3 = 10 = Lim -2x^3 = 1 x+5x^2-2x^3 = 10 = Lim -2x^3 = 1	2. x ³ 1. Jun. q. 9(x) - Cynula Kb. u um. q. yuu Gabrellue 5/5 q. in f(x) u g(x) onegenenu na to) Cam Lim g(x) - K, rge K - henyselan konanenua, we q. u mulron ogunarshour nopingok poema. Eam K:1, mo q. un breggeb subulatermin J Cam Lim g(x) = to, mo q. 9 f(x) Sacee bucous nopingua poema, rem gli Cam Lim g(x) = 0, mo g(x) Lower limonous nopingua, rum f(x) X - D Lim (2x4 + x3+1); (-10) = +10 = 7 Lim (2x4 + x3+1) = +00 2-10 Lim (3x4 - x3+2) = -10 = Lim (2x4 - x3+1) = +00 x - 10 = 2x4 - x3+2 = -10 = Lim (2x4 - x3+1) = +00 x - 10 = 2x4 - x3+2 = -10 = Lim (2x4 - x3+1) = +00 x - 10 = 2x4 - x3+2 = -10 = Lim (2x4 - x3+1) = +00													
4. Jun. g. 9(x) Gabalence 5/5 g. in f(x) u g(x) on egenene na ox 1) Cam Lim G(x) - K, vge K - menyelar konamanina, we g. u mulron ogunarolour nopagok poma. Eam K:1, wo g. un pragulo relim G(x) = ox, mo g. g. f(x) Saree lucours nopagua poema, rem 3) Cam Lim G(x) = ox, mo g. g. f(x) Saree lucours nopagua, rem f(x) X -> - D Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo Lim (2x4 x3+1); (-vo) = +vo => Lim (2x4 x3,1) = +vo	$q-9(x)$ wa Kb. u um q -ym Gabalenue $5/5$ q -in $g(x)$ σημερευεμου μα ∞ L; m $\frac{G(x)}{g(x)} = K$, $rge K$ - μενεμείαν κονωπονιστα, uw q - u σημανοδιαμό ποριστροκ μοσηγα. ετιμ $K:1$, uo q - u μετεμείανων Lim $\frac{G(x)}{g(x)} = \infty$, uo q - g $f(x)$ δαιεε ίνεσιαν ποριστημα μοσινο, v uo g . Lim $\frac{G(x)}{g(x)} = 0$, uo $g(x)$ δαιεε ίνεσιαν ποριστημα, v uo $f(x)$ $x = \infty$ $(x) = \infty$	Lim (2x 1x3+1); (-vo) = -tim (2x 1x3+1) = +to													
4. Min. q. 9(x) 5. Cymua Kb. n min. q. ym Craboletine 5/5 q. in flx1 u g(x) orgegerent na oo 1) Cam Lim g(x) - K, rze K - neryselas konansuma, mo q. u mulron ogunarolum nopozok poma. Eam K:1, mo q. un brazob 2 Cam Lim g(x) = oo, mo q. 9 f(x) Salee loverson nopozopus poemo, rem 3) Cam Lim g(x) = oo, mo g(x) Salee loverson nopozopus poemo, rem Lim (2x4+x3+1); (-vo) = oo Lim (2x4+x3+1) = +vo Cim (2x4+x3+1); (-vo) = oo Lim (2x4+x3+1) = +vo Lim (2x4+x3+1); (-vo) = coo d(x) salee loverson nopozopus poemo, rem Lim (2x4+x3+1); (-vo) = oo Lim (2x4+x3+1) = +vo Coo d(x)-vo Lim (2x4+x3+1) = vo Lim (2x4+x3+1)	$q-9(x)$ wa Kb. u um q -ym Gabalenue $5/5$ q -in $g(x)$ σημερευεμου μα ∞ L; m $\frac{G(x)}{g(x)} = K$, $rge K$ - μενιμιείαν κονωπανιμα, $rge q$ - $rge q$ σημανοδιαμό ποριστροκ μοσηγα. ετιμ $K:1$, πο rge - $rge q$ Lim $\frac{G(x)}{g(x)} = \infty$, πο rge - $rge q$ Lim $\frac{G(x)}{g(x)} = \infty$, πο rge - $rge q$ Lim $\frac{G(x)}{g(x)} = \infty$, πο rge - rge Lim $\frac{G(x)}{g(x)} = 0$, πο rge	Lim (2x4 + x3 + 1); (-10) = +10 Cymus Kb. In min. p-15m Cymus Cymus Cymus Kb. In min. p-15m Cymus													-
5. Cy. www Kb. u mm. φ-15mm Gabreline 5/5 φ-in f(x) u g(x) ornegoverni na to 1) Cam Lim g(x) - K, rge K - nenyvelar konomeruma, we go-u multon og marshan nopregox poarra. Eam K=1, mo φ-un pragolo zulinlanen 2) Cam Lim g(x) = to, mo qo-a f(x) Salee locaros nopregua poema, rem 3) Cam Lim g(x) = to, mo g(x) Salee locaros nopregua, rem f(x) X - D Lim (2x4+x3+1); (-w) = +to = 2 Lim (2x4+x3,1) = +to x>-to Lim 3-x+5x2-2x3 = to = Lim -2x3 = 1 Lim 3-x+5x2-2x3 = to = Lim -2x3 = 1	ua Kb. u um q-ym Gabrierue $5/5$ g-n g(x) ornegenents na ∞ L; m $\frac{f(x)}{g(x)}$, -K, v_{g} e K-heryrelas Konansuma, v_{g} e v_{g} -u oquanslour nopsyon poema. Ean K=1, no q-un seasob. Lin $\frac{f(x)}{g(x)} = \infty$, no q-9 $f(x)$ baree brears vopagus poema, v_{g} e $v_$	Cymus Kb. u um. q-ym. Gabresue 5/5 q-in f(x) u g(x) orgegerente na to Cam Lim G(x) - K, vze K-neryelas konansuma, me q-u multon ogunanolour nopagok poema. Ecu K=1, mo q-un braçab. 2 klindellemm Gam Lim G(x) = to, mo q-9 f(x) Sacee bricoros nopagua poema, rea gl Cam Lim G(x) = to, mo g(x) Sacee bricoros nopagua, ren f(x) Cam Lim G(x) = 0, mo g(x) Sacee bricoros nopagua, ren f(x) Lim (2x4+x3+1); (-40) = 7 Lim (2x4+x3+1) = +00 2 - 20 Lim (2x4+x3+1); (-40) = 7 Lim (2x4+x3+1) = +00 2 - 20 Lim (2x4+x3+1) = -00 = Lim (2x4+x3+1) = +00 2 - 20 = Lim (2x4+x3+1) = +00	3 x2									8			
5. Cymua Kb. n num. φ-18m Gabalenne 5/5 φ-in f(x) u g(x) σημεσωνων μα ω 1) Cam Lim g(x) - K, rze K - nenyrelan κοναπανιπα, me φ- u multon σημανολων ποριησοκ μοσηγα. εαμ K:1, mo φ- un pragub. 2) Cam Lim g(x) = ∞, mo φ- 9 f(x) δαιε θυσοκον ποριησια μοσηγη, ελιπ 3) Cam Lim g(x) = 0, mo g(x) δονε θωσοκον ποριησια, rem f(x) × ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = +ω = 7 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = -ω = 2 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = -ω = 2 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = -ω = 2 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = -ω = 2 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = -ω = 2 Lim (2x4 + x3, 1) = +ω Lim (2x4 + x3+1); (-ω) = -ω = 2 Lim (2x4 + ω) Lim (2x4 + ω) = ω = ω = ω = ω = ω = ω Lim (2x4 + ω) = ω = ω = ω = ω = ω = ω = ω = ω = ω	ua Kb. u um p-ym Cpabpierue $5/5$ g-n $g(x)$ orgegenents na ∞ L; m $\frac{f(x)}{g(x)}$, -K, v_{g} e K-hengrelas Konananma, v_{g} e $v_$	Cymus Kb. u um. q. ym. Cymus Kb. u um. q. ym. f(x) u g(x) orgegerente na to Cam Lim g(x) = K, vze K - neryselas kononanima, me q. u multon ogunanolour nopagox poema. Ecu K:1, mo q. un pragul zulinlarenne Gam Lim g(x) = to, mo q. 9 f(x) Saree bucovos nopagua poema, rem gl. Cam Lim g(x) = to, mo g(x) Saree lavoros nopagua, rem f(x) X=0 g(x) = to = > Lim (2x4 + x3+1) = +00 Lim (2x4 + x3+1); (-10) = +10 => Lim (2x4 + x3+1) = +00 Lim (2x4 + x3+1); (-10) = -to => Lim (2x4 + x3+1) = +00 Lim (2x4 + x3+1); (-10) = -to => Lim (2x4 + x3+1) = +00 Lim (2x4 + x3+1); (-10) = +10 => Lim (2x4 + x3+1) = +00 Lim (2x4 + x3+1); (-10) = +10 => Lim (2x4 + x3+1) = +00	4- MM. g- 9(x)												
f(x) u g(x) on egenents na \$\in\$ 1) Cam Lim \(\frac{f(x)}{g(x)} = \times, \) ze k - heryselas kononanina, we go u Unulson og unanolous nopagox poema. Equi K:1, uo go un biagab. 2) Cam Lim \(\frac{f(x)}{g(x)} = \int \), mo \(\text{p-9} - \text{9} \) f(x) \(\text{Salee loverson popagua poema, rlim} \) 3) Cam Lim \(\frac{f(x)}{g(x)} = \int \), mo \(\text{g}(x) \) \(\text{Salee loverson popagua, rlim } f(x) \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim} \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{3}{2} \text{x}^2 + \text{x} \) = \(\frac{1}{2} \text{x}^3 - \frac{1}{2} \) \(\text{Lim } \(\frac{3}{2} \text{x}^2 + \text{x} \) = \(\frac{1}{2} \text{x}^3 - \frac{1}{2} \)	9(x) on egeneral na ∞ Lim $\frac{f(x)}{g(x)} = K$, $xge K - Hereyrelan Konamanuma, we ge^{-y} ogunandum nopagou poama. Ecun K = 1, no ge-un maxub. gk Lim \frac{f(x)}{g(x)} = \infty, no ge-g f(x) baree breaves nopagua poema, rlin gl k > \infty Lim \frac{f(x)}{g(x)} = 0, no g(x) baree limonaro nopagua, rlin f(x) k > \infty k = 0 k$	f(x) u g(x) on egenents na ∞) Cam Lim $\frac{G(x)}{g(x)}$, $-K$, $vge K$ - hery relax Konamanina, we go - u mulson ogenerations nonegon pooma. Eam $K=1$, no go - un reache.) Cam Lim $\frac{G(x)}{g(x)} = \infty$, no $qp-g$ $f(x)$ Saile bucours nonegon poems, $ven g(x)$) Cam Lim $\frac{G(x)}{g(x)} = \infty$, no $g(x)$ Saile bucours nonegon, $ven g(x)$ Cam Lim $\frac{G(x)}{g(x)} = 0$, no $g(x)$ Saile bucours nonegon, $ven f(x)$ $x \to -\infty$ Lim $(2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ = $(-\infty)^4 = +\infty$ $x \to -\infty$ Lim $(2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ = $(-\infty)^4 = +\infty$ $x \to -\infty$ Lim $(2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ = $(-\infty)^4 = +\infty$ = $(-\infty)^4 = +\infty$		um g-y	yuu										
f(x) u g(x) on egenents na \$\in\$ 1) Cam Lim \(\frac{f(x)}{g(x)} = \times, \) ze k - heryselas kononanina, we go u Unulson og unanolous nopagox poema. Equi K:1, uo go un biagab. 2) Cam Lim \(\frac{f(x)}{g(x)} = \int \), mo \(\text{p-9} - \text{9} \) f(x) \(\text{Salee loverson popagua poema, rlim} \) 3) Cam Lim \(\frac{f(x)}{g(x)} = \int \), mo \(\text{g}(x) \) \(\text{Salee loverson popagua, rlim } f(x) \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim} \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{1}{2} \text{x}^3 + 1 \); \((-\infty)^4 = +\infty = \frac{1}{2} \) \(\text{Lim } \(\frac{3}{2} \text{x}^2 + \text{x} \) = \(\frac{1}{2} \text{x}^3 - \frac{1}{2} \) \(\text{Lim } \(\frac{3}{2} \text{x}^2 + \text{x} \) = \(\frac{1}{2} \text{x}^3 - \frac{1}{2} \)	9(x) on egeneral na ∞ Lim $\frac{f(x)}{g(x)} = K$, $xge K - Herepelas Konansuma, we ge^{-x} ogunandum nopagok poema. Ecun K:1, no ge-un orașub. 2klinlandennum Lim \frac{f(x)}{g(x)} = \infty, no ge-ge f(x) Sacee bucovos nopagua poema, xlin gl. k > \infty Lim \frac{f(x)}{g(x)} = 0, no g(x) Sacee limonaro nopagua, xlin f(x) k > \infty k = 0 k $	f(x) u g(x) on egenents na ∞) Cam Lim $\frac{G(x)}{g(x)}$, $-K$, $vge K$ - hengelan Konamanina, we go-u mulson ogenerations nonegon pooma. Eam $K:1$, mo go-un reasons.) Cam Lim $\frac{G(x)}{g(x)} = \infty$, mo $op-g$ $f(x)$ Salee bucours nonegon poems, $ven g(x)$) Cam Lim $\frac{G(x)}{g(x)} = \infty$, mo $g(x)$ Salee bucours nopegon poems, $ven g(x)$ Cam Lim $\frac{G(x)}{g(x)} = 0$, mo $g(x)$ Salee bucours nopegon, $ven f(x)$ $ven (2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ $ven (2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ $ven (2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ $ven (2x^4 + x^3 + 1) = +\infty$ Lim $(2x^4 + x^3 + 1) = +\infty$ $ven (2x^4 + x^3 + 1) = +\infty$ $ven (2x^4 + x^3 + 1) = +\infty$	C	0.001110	575	-									
1) Cam Lim $\frac{G(x)}{g(x)} = K$, $1ge K - Hengelas Konomenma, we go - u constant ogeneralism nopagon poema. Ear K = 1, no ge-un beautilessen 2) Cam Lim \frac{G(x)}{g(x)} = \infty, no ge- ge f(x) baree becomes nopagon poems, then 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	Lim $\frac{f(x)}{g(x)} = K$, $vge K - Herryrelas Korronaruma, we go - u ogunarobour noprigor poema. Eru K = 1, us go - un oraque. \frac{f(x)}{g(x)} = \infty, mo qp - g f(x) baree brearos noprigua poema, ven gl. Lim \frac{f(x)}{g(x)} = 0, no g(x) baree brearos noprigua, ven f(x) \frac{f(x)}{f(x)} = 0, no g(x) baree brookers noprigua, ven f(x) \frac{f(x)}{f(x)} = 0, no \frac{f(x)}{f(x)} = 0 and \frac{f(x)}{f(x)} = $	Cam $\lim_{x\to\infty} \frac{f(x)}{g(x)} = K$, $\lim_{x\to\infty} \frac{f(x)}{g(x)} = K$, $\lim_{x\to\infty} \frac{g(x)}{g(x)} = K$, $\lim_{x\to\infty} $				gp-n									
Unilson ogunarolous nopagox poema. Equi $K=1$, no q -un biasob. 3) Cam $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$, no q -9 $f(x)$ Saile bucous nopagua poema, run 3) Cam $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, no $g(x)$ Saile bucous nopagua, run $f(x)$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	ogunarolous nopergon poema. Equi N:1, mo operano seagub. $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$, mo op. 9 $f(x)$ Saice bucous nopergua poema, vin fl. $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule limonaro nopergua, vin $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule limonaro nopergua, vin $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$ $\lim_{x\to\infty} $	Lim $(2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 1) = +\infty$ Lim $(2x^4 + x^3 + 2)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 1) = +\infty$ Lim $(2x^4 + x^3 + 2)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 1) = +\infty$													
Unilson ognoworkous nopogod poema. Ean $N:1$, no qp -un plagab. 3) Can $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$, no $qp-g$ $f(x)$ Saile bucours nopogod poema, that 3) Can $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, no $g(x)$ Saile bucours nopogod, rhan $f(x)$ $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	ogunarolous nopergon poema. Equi N:1, mo open piagua. Lim $\frac{f(x)}{g(x)} = \infty$, mo op. 9 $f(x)$ Salee bucours nopergua poema, thu $f(x)$ Lim $\frac{f(x)}{g(x)} = 0$, mo $g(x)$ Salee limonero nopergua, thu $f(x)$ $\times \to 0$ $(x) = 0$	Lim $(2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 1)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 2)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 2)$; $(-\infty)^4 = +\infty$ => $L_{1m}(2x^4 + x^3 + 2)$ = $L_{1m}(2x^4$	1) Cam Lim gix	, -K, rge	e K- He	regreli	as Ko	non	iani	na	, me	0	go - u	1	
2) Cam Lim $\frac{f(x)}{g(x)} = \infty$, mo $gp-g$ $f(x)$ Sace breaks vopagua poema, thun 3) Cam Lim $\frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule brooks vo nopagua, thun $f(x)$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Lim $\frac{f(x)}{g(x)} = \infty$, mo $g_{-}g_{-}f(x)$ baree breaks vopagua poema, rhu $f(x)$ Lim $\frac{f(x)}{g(x)} = 0$, mo $g(x)$ baree brooks vo nopagua, rhu $f(x)$ $\times \to - \longrightarrow - \longrightarrow - \longrightarrow \longrightarrow$	Can $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$, mo $g_{-g} = f(x)$ Soule becomes ropagua poema, thu $f(x)$ Can $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule becomes nopagua, thu $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule becomes nopagua, thu $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule becomes nopagua, thu $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule becomes nopagua, thu $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule becomes nopagua, thu $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, mo $g(x)$ Soule becomes nopagua, thu $f(x)$ $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$, $\lim_{x\to\infty} \frac{f(x)}$	2200			C		-1			12 X		0		
$\lim_{x \to -\infty} (2x^{4} + x^{3} + 1) : (-\infty)^{4} = +\infty = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +\infty$ $\lim_{x \to -\infty} \frac{3}{1} + 2x^{2} + x = -\infty = \lim_{x \to -\infty} \frac{3}{1} = \frac{1}{2}$ $\lim_{x \to -\infty} 3 - x + 5x^{2} - 2x^{3} = \infty = \lim_{x \to -\infty} 2x^{3} = \frac{1}{2}$	$(4 + x^{3} + 1); (-\infty)^{4} = +10 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +1$	$\lim_{x\to -\infty} (2x^4 + x^3 + 1) ; (-\infty)^4 = +\infty = 7 \lim_{x\to -\infty} (2x^4 + x^3 + 1) = +\infty$ $\lim_{x\to -\infty} \frac{3 + 2x^2 + x}{2 + x^3 + 2x^3} = \frac{-\infty}{\infty} = \lim_{x\to -\infty} \frac{2x^3 + 2x^3}{2} = \frac{1}{2}$ $\lim_{x\to -\infty} 3 - x + 5x^2 - 2x^3 = \frac{1}{2}$	Ullow ogunanolis	us nopage	or poon	ra. C	au n	-1,	mo (P-1	en or	as	mo.		
$\lim_{x \to -\infty} (2x^{4} + x^{3} + 1) ; (-\infty)^{4} = +\infty = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +\infty$ $\lim_{x \to -\infty} \frac{x^{3} + 2x^{2} + x}{1 + 2x^{3} + 2x^{3}} = \frac{-\infty}{\infty} = \lim_{x \to -\infty} \frac{x^{3}}{1 + 2x^{3}} = \frac{1}{2}$ $\lim_{x \to -\infty} 3 - x + 5x^{2} - 2x^{3} = \frac{1}{2}$	$(4 + x^{3} + 1); (-\infty)^{4} = +10 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +1$	$\lim_{x \to \infty} (2x^4 + x^3 + 1) ; (-\infty)^4 = +\infty = 7 \lim_{x \to \infty} (2x^4 + x^3 + 1) = +\infty$ $\lim_{x \to \infty} x^3 + 2x^2 + x = -\infty = \lim_{x \to \infty} -1$ $\lim_{x \to \infty} 3 - x + 5x^2 - 2x^3 = \infty = \lim_{x \to \infty} -1$	William ogunanolu	us noneig	or hoen	ra. C	am h	-1,	mo (P-U	en or	ili	ular	cem	ny
$\lim_{x \to -\infty} (2x^{4} + x^{3} + 1) : (-\infty)^{4} = +\infty = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +\infty$ $\lim_{x \to -\infty} \frac{3}{2} + 2x^{2} + x = -\infty = \lim_{x \to -\infty} \frac{3}{2} = \frac{1}{2}$ $\lim_{x \to -\infty} 3 - x + 5x^{2} - 2x^{3} = \infty = \lim_{x \to -\infty} 2x^{3} = \frac{1}{2}$	$(4 + x^{3} + 1); (-\infty)^{4} = +10 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100 = 7 \lim_{x \to -\infty} (2x^{4} + x^{3} + 1) = +100$ $(4 + x^{3} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +100$ $(4 + x^{4} + 1); (-\infty)^{4} = +1$	$\lim_{x \to \infty} (2x^4 + x^3 + 1) ; (-\infty)^4 = +\infty = 7 \lim_{x \to \infty} (2x^4 + x^3 + 1) = +\infty$ $\lim_{x \to \infty} x^3 + 2x^2 + x = -\infty = \lim_{x \to \infty} -1$ $\lim_{x \to \infty} 3 - x + 5x^2 - 2x^3 = \infty = \lim_{x \to \infty} -1$	2) Can Lin gixi	end nonvig	on poem	ra. C	am n	non	no (p-u	un och	oer	va,	clon	nur gl.
$\lim_{x \to -\infty} (2x^4 + x^3 + 1) ; (-\infty)^4 = +\infty = 7 \lim_{x \to -\infty} (2x^4 + x^3 + 1) = +\infty$ $\lim_{x \to -\infty} \frac{x^3 + 2x^2 + x}{1 + 2x^3 + 2x^3} = \frac{-\infty}{\infty} = \lim_{x \to -\infty} \frac{x^3}{1 + 2x^3} = \frac{1}{2}$	$(4 + x^3 + 1)$; $(-10)^4 = +100 = 7$ $\lim_{x \to -10} (2x^4 + x^3 + 1) = +100$ $\lim_{x \to -10} (2x^4 + x^3 + 1) = +100$ $\lim_{x \to -10} (2x^4 + x^3 + 1) = +100$	$\lim_{x \to -\infty} (2x^4 + x^3 + 1) = (-\infty)^4 = +\infty = 2 \lim_{x \to -\infty} (2x^4 + x^3 + 1) = +\infty$ $\lim_{x \to -\infty} 3 + 2x^2 + x = -\infty = \lim_{x \to -\infty} 2x^3 = \frac{1}{2}$ $\lim_{x \to -\infty} 3 - x + 5x^2 - 2x^3 = \infty = \lim_{x \to -\infty} 2x^3 = \frac{1}{2}$	2) Cam Lim gixi =	end noprorg	on poem 0-9 f(x)	ra. C I Sace Lincons	e live	neg	no (p-v	un per	oen	ular	llon	gl.
Lim 3-x+5x2-2x3 = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{1}{2}	$\frac{+2x^2+x}{x+5x^2-2x^3} = \frac{-1}{100} = \frac{1}{2x^3} = \frac{1}{2}$	$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x}{3 - x + 5x^2 - 2x^3} = \frac{-\infty}{\infty} = \lim_{x \to -\infty} \frac{x^2 - 1}{2x^3} = \frac{1}{2}$	2) Cam Lim g(x) = (3) Cam Lim g(x)=	0, mo g(x)	5-9 f(x)	Sace Perioons	e live	rios	no (p-v	un of an offi	oen	van	llom	gl.
Lim 3-x+5x2-2x3 = \frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{2}	$\frac{+2x^2+x}{x+5x^2-2x^3} = \frac{-00}{100} = \frac{2}{2} = \frac{1}{2}$	$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x}{3 - x + 5x^2 - 2x^3} = \frac{-1}{100} = \lim_{x \to \infty} \frac{x^2 - 1}{2x^3} = \frac{1}{2}$	2) Cam Lim g(x) = 1 3) Cam Lim g(x) = 1	0, mo g(x)	5-9 f(x)	Sace Limons	e live	rios	vop	elu	n fl	oen K)	van	clu	gl.
$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x}{3 - x + 5x^2 - 2x^3} = \frac{-1}{12}$	$\frac{+2x^2+x}{x+5x^2-2x^3} = \frac{-1}{100} = \frac{1}{2x^3} = \frac{1}{2}$	$\lim_{x \to \infty} \frac{x^3 + 2x^2 + x}{3 - x + 5x^2 - 2x^3} = \frac{-\infty}{\infty} = \lim_{x \to -\infty} \frac{x^2 - 1}{2x^3} = \frac{1}{2}$	2) Cam Lim g(x) = 1 3) Cam Lim g(x) = 1	0, mo g(x)	5-9 f(x)	Sace Limons	e live	rios	vop	elu	n fl	oen K)	vo,	clu	91.
(D. V)		W- W	2) Cam Lim (xx) = 13) Cam Lim (xx) = 1	(-w)"	5-9 f(x,	Sace Limons -> L	e luce	rios	vop	elu	n fl	oen K)	vio	llan	91.
(18)			2) Cam Lim g(x) = (3) Cam Lim g(x) = (2x4 + x3 + 1);	(-w)"	5-9 f(x,	Sace Limons -> L	e luce	rios	vop	elu	n fl	oen K)	va,	lem	gl.
			2) Cam Lim g(x) = 1 3) Cam Lim g(x) = 1 Lim (2x4+x3+1) = 1 x3+2x2+x Lim 3-x+5x2-2x3	= 00, mo g(x) (-10) = -5 = -5	-9 f(x,	Sace Limons -> L	e luce	rios	vop	elu	n fl	oen K)	outer way,	ilem	91
			lim (2x4+x3+1); Lim (2x4+x3+1); Lim 3-x+5x2-2x3	= 00, mo g(x) (-10) = -5 = -5	-9 f(x,	Sace Limons -> L	e luce	rios	vop	elu	n fl	oen K)	alar	ilem	gl
			2) Cam Lim g(x) = 1 3) Cam Lim g(x) = 1 Lim (2x4 + x3 + 1) = 1 Lim (2x4 + x3 + 1) = 1 Lim 3-x +5x2-2x3	= 00, mo g(x) (-10) = -5 = -5	-9 f(x,	Sace Limons -> L	e luce	rios	vop	elu	n fl	oen K)	gut.	elen	91
			2) Cam Lim g(x) = 1 3) Cam Lim g(x) = 1 Lim (2x4 + x3 + 1) = 1 x > - 00 Lim (3 + 2x2 + x Lim 3 - x + 5x2 - 2x3	= 00, mo g(x) (-10) = -5 = -5	-9 f(x,	Sace Limons -> L	e luce	rios	vop	elu	n fl	oen K)	put.	elan	gl

Me 9hr. Meorp: 1) =3=0, 50=0 2) 5=8 8=8 3) 3 = +0, (1/2) +0 = 0, 00 = 0 4) Lim (x2-x)= 0-0=0 DO - DO 1) npulogenu loup- a nog znakan nplgena k odnjemy zni-iro 2) jusionerue/generue na compouncemme 3) neoso erapupuolo Lim (x2-x - 33-1) = (w-w) = Lim (x(x-1) - (x-1)(x2+x+1)) = $= \lim_{x \to 1} \frac{x^{2} + x + 1 - 3x}{x(x - 1)|x^{2} + x + 1} = \lim_{x \to 1} \frac{x^{2} - 2x + 1}{x(x - 1)|x^{2} + x + 1} = \lim_{x \to 1} \frac{(x - 1)^{2}}{x(x - 1)|x^{2} + x$ = Lim x(x2+x+1) = 0 Guardon n- 76 4 el megen X1, X2, X3,..., Xu,..., rge X1-neplecent west n-ou, Xn-odingens Xu=2n 124,6,8...} = 10 Yn = 2n-1 27, 3, 5, 7, ... 3 = 00 Un= 1 27, 2, 3, 4, 3 = 0 17-76 quenemen (menubra) lim h! 17,2,6,24...} = 00 Lim n! 27, 2, 6, 24 - 3 = 0