

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

AYUDANTES: FRANCISCA CAPRILE, CATALINA ORTEGA, MATÍAS FERNÁNDEZ E

Ignacio Vergara

Ayudantía 14

1 de diciembre de 2023

 $2^{\rm o}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado
- B. Barías

Ejercicio 1 | Lógica

Un conjunto de fórmulas proposicionales \sum es redundante si existe una fórmula α tal que $\sum \setminus \{\alpha\} \models \alpha$, es decir, si existe α tal que al extraerla del conjunto \sum , es consecuencia lógica del conjunto resultante. Además, decimos que \sum es redundante de a pares si existen α y $\beta \in \sum$ con $\alpha \neq \beta$ tales que $\{\alpha\} \models \beta$, .

- a) Demuestre que si existen α y $\beta \in \sum$ con $\alpha \neq \beta$ y con $\alpha \equiv \beta$, entonces el conjunto es redundante.
- b) ¿Es cierta la siguiente afirmación? Demuestre.

Si \sum es redundante, entonces es redundante de a pares.

Ejercicio 2 | Teoría de Conjuntos

Diremos que un conjunto $A \subseteq \mathbb{R}$ es abierto si

$$\forall x \in A \exists r > 0 \text{ tal que } B_r(x) \subseteq A \text{ donde } B_r(x) := \{ y \in X : |x - y| < r \}$$

Demuestre que para todo r > 0, $x \in \mathbb{R}$ el conjunto $B_r(x)$ es abierto.

Hint: Utilizar que $|x-y| \le |x-z| + |z-y|$ para todo $x, y, z \in \mathbb{R}$.

Ejercicio 3 | Algoritmos

Considere el siguiente algoritmo A para analizar en esta pregunta:

Algorithm 1: ExistsPath

```
Data: Un grafo dirigido G = (V, E) y nodos u, v \in V.

Result: 1 si existe un camino entre u y v, 0 en caso contrario.

1 i = 1;
2 M = E;
3 while i \leq |V| do
4 | if (u, v) \in M then
5 | return return 1;
6 | else
7 | M = M \circ E;
8 | i = i + 1;
9 return 0;
```

Utilice la función de tamaño de input |((V, E), u, v)| = |V| = n. Además, considere que el costo computacional para la línea 7 (esto es, computar $M \circ E$) es $\Theta(n^3)$ y para todas las demás lineas el costo es constante. Encuentre una función f tal que peor-caso $f(n) \in \Theta(f(n))$ y una función f tal que mejor-caso $f(n) \in \Theta(f(n))$. Demuestre ambos resultados.

Ejercicio 4 | Grafos

Sea G un grafo. Definimos el diámetro de G como el más largo de los caminos más cortos entre dos vértices de G.

Demuestre que no puede ser que G y \bar{G} tengan ambos diámetro mayor que 3.