

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Campus VI - Unidade Divinópolis - Engenharia de Computação

Inteligencia Computacional Bárbara Braga Gualberto Correa e Pedro Pinheiro de Siqueira

Atividade 01 Conjuntos, Funções e Operadores Fuzzy

Bárbara Braga Gualberto Correa e Pedro Pinheiro de Siqueira

DIVINÓPOLIS - MG 2024

Sumário

1 Introdução			4	
2	Ques	stão		6
	2.1	Funçõe	s de Pertinência e Comportamento	8
		2.1.1	Funções com Ativação Confinada: Triangular, Trapezoidal e Pi-Shaped	9
		2.1.2	Funções com Ativação Gradual e Picos Suaves: Gaussiana, Gaussiana Dupla, Cauchy e Exponencial	10
		2.1.3	Funções com Transições Assimétricas: Sigmoidal, S-Shaped e Z-Shaped	10
		2.1.4	Funções com Ativação Simétrica e Definida: Sino Generalizada, Triangular Complementar e Triangular Não Complementar	11
	2.2	Conclu	são Comparativa	11
3	Ques	Questão		
	3.1	Análise	dos Complementos das Funções Fuzzy	13
		3.1.1	Considerações Finais - Complemento	16
	3.2	Análise	das Operações de União nas Funções Fuzzy	17
		3.2.1	Tabela Resumo das Características das Operações de União	20
		3.2.2	Considerações Finais - União	22
	3.3	Análise	das Operações de Interseção nas Funções Fuzzy	23
		3.3.1	Considerações Finais - Interseção	28
	3.4	Análise	das S-Normas nas Funções Fuzzy	28

5	Ques	tão		42
	4.2	Análise	Textual Comparativa	40
	4.1	Análise	Gráfica	39
4	Anális	se das O _l	perações de Relação Fuzzy com T-Norma e S-Norma	39
		3.5.1	Considerações Finais - T normas	38
	3.5	Análise	das T-Normas nas Funções Fuzzy	34
		3.4.1	Considerações Finais - S Normas	33

1 Introdução

Este relatório faz parte de um exercício mais abrangente sobre funções de pertinência em sistemas fuzzy. O objetivo principal é explorar e analisar diferentes tipos de funções de pertinência, suas características gráficas e comportamentos no domínio.

Para isso foi requerido dos alunos que programassem diversos tipos de funções de pertinência:

- Triangular
- Trapezoidal
- Gaussiana
- Sigmoidal
- Sino
- S
- Z
- Cauchy
- Gaussiana Dupla
- User definied $1 \rightarrow Pi$ Shaped
- User definied $2 \rightarrow Exponencial$

Além de seus complementos, uniões, interseções.

Foi pedido para implementarmos as normas também:

- · Min Zadeh
- Max Zadeh
- · Produto Algébrico
- Soma Probabilística

•	111	kasiewicz	n	>	_
•	∟u	Nasiewicz	v		_ 1

- Lukasiewicz $p \ge 0$
- Hamacher $\gamma>0$
- Hamacher $\gamma>0$
- Diferença Limitada
- Soma Limitada
- · Weber Prod. Drástico
- Weber Soma Drástica

Relações entre diferentes funções de pertinência e composições. E que todos esses dados fossem analisados neste relatório.

2 Questão

Após a programação feita, foi requisitado que fosse pensado um domínio e que fossem escolhidas duas amostras neste domínio para a análise. O domínio escolhido foi de O a 100 e foi requerido que este domínio fosse dividido em pelo menos 4 funções de pertinência uniformemente espaçadas. Nas Figuras 1, 2 e 3 é possível ver como o domínio foi dividido nos diferentes tipos de funções de pertinência implementados.

A maioria das funções possuem um centro claro e por isso o "uniformemente espaçadas"não foi um problema. Para outras funções, como a trapezoidal, Z Shaped, S Shaped, Gaussiana Dupla, foi decidido que seus centros seria igualmente espaçados, mas com isso acabariam se tocando ao subir/decair.

Figura 1: Gráficos das funções de pertinência organizados da esquerda para a direita e de baixo para cima: (1) Triangular Não Complementar; (2) Triangular Complementar; (3) Trapezoidal; (4) Gaussiana.

Figura 2: Gráficos das funções de pertinência organizados da esquerda para a direita e de baixo para cima: (5) Sigmoidal; (6) Sino Generalizada; (7) Z Shaped; (8) S Shaped; (9) Cauchy; (10) Gaussiana Dupla.

Figura 3: Gráficos das funções de pertinência organizados da esquerda para a direita e de baixo para cima: (11) Exponencial; (12) Pi Shaped.

2.1 Funções de Pertinência e Comportamento

Os números escolhidos para a análise do comportamento das funções de pertinência foram 28 e 76.

Tabela 1: Valores de pertinência para o valor 28 em diferentes funções de pertinência

Função	0	1	2	3
Triangular não complementar	0.60	0.40	0.00	0.00
Triangular complementar	0.16	0.84	0.00	0.00
Trapezoidal	0.88	1.00	0.12	0.00
Gaussiana	0.14	0.93	0.02	0.00
Sigmoidal	0.84	0.42	0.09	0.01
Sino Generalizada	0.00	1.00	0.00	0.00
Z Shaped	0.68	1.00	1.00	1.00
S Shaped	0.32	0.00	0.00	0.00
Cauchy	0.26	0.91	0.16	0.05
Gaussiana Dupla	0.37	0.53	0.15	0.00
Exponencial	0.19	0.73	0.10	0.01
Pi Shaped	0.97	1.00	0.03	0.00

Tabela 2: Valores de pertinência para o valor 76 em diferentes funções de pertinência

Função	0	1	2	3
Triangular não complementar	0.00	0.00	0.20	0.80
Triangular complementar	0.00	0.00	0.72	0.28
Trapezoidal	0.00	0.00	0.96	1.00
Gaussiana	0.00	0.01	0.80	0.24
Sigmoidal	0.99	0.93	0.64	0.19
Sino Generalizada	0.00	0.00	0.02	0.00
Z Shaped	0.00	0.00	0.08	1.00
S Shaped	1.00	1.00	0.92	0.00
Cauchy	0.05	0.13	0.76	0.33
Gaussiana Dupla	0.00	0.09	0.53	0.45
Exponencial	0.01	0.08	0.57	0.24
Pi Shaped	0.00	0.00	1.00	1.00

As funções foram divididas em categorias com base nas características de suas ativações, permitindo uma comparação consistente entre elas.

2.1.1 Funções com Ativação Confinada: Triangular, Trapezoidal e Pi-Shaped

Para a amostra 28, a função **Triangular** ativa predominantemente a primeira função, com ativação próxima a 1, enquanto as demais têm pertinência baixa ou nula. A **Trapezoidal** apresenta uma ativação alta na primeira função com uma leve sobreposição na segunda, sugerindo uma transição mais gradual entre os intervalos de pertinência. A função **Pi-Shaped** exibe uma zona central de ativação máxima (platô) no meio do domínio, o que a diferencia das outras duas, pois permite uma ativação total e constante em uma ampla região central.

Para a amostra 76, a função **Triangular** ativa a terceira função com grau próximo a 1, enquanto as outras funções apresentam pertinência nula. Na **Trapezoidal**, observamos um comportamento similar, com ativação máxima na terceira função e uma sobreposição na quarta. A **Pi-Shaped**, por outro lado, continua apresentando um platô de ativação na região central, com quedas suaves nas extremidades.

Comparação: A função **Pi-Shaped** se destaca pela zona central de ativação total, o que é útil para situações que demandam certeza em uma faixa intermediária do domínio. A **Trapezoidal** também oferece transições suaves, enquanto a **Triangular** tem ativação mais rígida entre os intervalos.

2.1.2 Funções com Ativação Gradual e Picos Suaves: Gaussiana, Gaussiana Dupla, Cauchy e Exponencial

Na amostra 28, a função **Gaussiana** concentra a ativação na primeira função, decrescendo suavemente nas demais. A **Gaussiana Dupla** proporciona uma sobreposição maior ao ativar duas funções de forma significativa. A função **Cauchy** exibe uma ativação gradual na primeira função, com uma queda suave nas seguintes, enquanto a função **Exponencial** exibe uma ativação intensa e focalizada no início do domínio, decrescendo rapidamente após o pico.

Para a amostra 76, as funções **Gaussiana** e **Cauchy** ativam principalmente a terceira função, com transições suaves para as vizinhas. A **Gaussiana Dupla** atinge ativação máxima em duas funções, sugerindo uma superposição significativa, enquanto a **Exponencial** exibe uma ativação concentrada na terceira função com uma rápida queda nas vizinhas.

Comparação: As funções **Gaussiana** e **Cauchy** são adequadas para representar transições suaves. A **Gaussiana Dupla** proporciona uma ativação mais ampla em faixas intermediárias, enquanto a **Exponencial** é útil para ativação intensa e localizada em um ponto específico, com uma queda acentuada fora desse ponto.

2.1.3 Funções com Transições Assimétricas: Sigmoidal, S-Shaped e Z-Shaped

Para a amostra 28, a função **Sigmoidal** distribui a ativação ao longo das funções, decrescendo suavemente. A função **S-Shaped** mostra uma ativação mais definida na primeira função, enquanto a **Z-Shaped** exibe pertinência total nas funções seguintes.

Na amostra 76, a função **Sigmoidal** ativa a terceira função predominantemente, com certa distribuição ao longo do domínio. A função **S-Shaped** ativa as três primeiras funções, enquanto a última não é afetada. A função **Z-Shaped** concentra a ativação nas três últimas funções.

Comparação: As funções **S-Shaped** e **Z-Shaped** representam transições gradativas para ativação total e zero, respectivamente, enquanto a **Sigmoidal** oferece uma ativação gradual sem picos, o que pode ser útil em sistemas que exigem uma transição suave entre ativações.

2.1.4 Funções com Ativação Simétrica e Definida: Sino Generalizada, Triangular Complementar e Triangular Não Complementar

Para a amostra 28, a função **Sino Generalizada** apresenta uma ativação alta na primeira função, com transições mais acentuadas. Na **Triangular Complementar**, a ativação está concentrada na primeira função, enquanto a **Triangular Não Complementar** oferece intervalos bem definidos e lacunas entre os picos.

Para a amostra 76, a função **Sino Generalizada** ativa principalmente a terceira função, com leve sobreposição. A **Triangular Complementar** ativa a terceira função, cobrindo o domínio sem lacunas, enquanto a **Triangular Não Complementar** apresenta ativação específica, sem sobreposição.

Comparação: A função **Sino Generalizada** é ideal para intervalos que exigem transições acentuadas, enquanto as funções **Triangular Complementar** e **Triangular Não Complementar** são recomendadas para representar intervalos com ou sem sobreposição.

2.2 Conclusão Comparativa

Cada função de pertinência responde de forma distinta às amostras 28 e 76, oferecendo diferentes características de ativação e transição:

Tabela 3: Resumo das Características e Aplicabilidades dos Complementos das Funções Fuzzy

Função	Tipo	Aplicabilidade
Gaussiana,	Picos Suaves	Modelagem de incertezas simétricas e suaves,
Gaussiana		ideais para capturar transições contínuas.
Dupla, Cauchy		
S-Shaped,	Transições Assimétricas	Representação de fronteiras de ativação com-
Z-Shaped,		plementar, úteis para delimitar zonas de tran-
Sigmoidal		sição gradual.
Trapezoidal, Pi-	Platô	Cobertura alternada em zonas definidas do do-
Shaped		mínio, adequada para representar áreas com
-		ativação total ou nula.
	Continua na próxima página	

Função	Tipo	Aplicabilidade
Triangular	Linear	Representação alternada de certeza e incer-
Complementar,		teza, ideal para modelar regiões de transição
Triangular Não		linear e contínua.
Complementar		
Exponencial,	Decaimento Rápido	Modelagem de zonas inicialmente desativadas
Sino Generali-		ou alternância acentuada, com foco em áreas
zada		específicas do domínio.

Essa análise fornece uma visão ampla das funções fuzzy e destaca qual tipo de função é mais apropriado para diferentes cenários, dependendo da necessidade de transição suave, cobertura uniforme ou ativação focalizada.

3 Questão

3.1 Análise dos Complementos das Funções Fuzzy

Figura 4: Gráficos das operações fuzzy de complemento para as funções: (1) Triangular Não Complementar; (2) Triangular Complementar; (3) Trapezoidal; (4) Gaussiana; (5) Sigmoidal; (6) Sino Generalizada.

Figura 5: Gráficos das operações fuzzy de complemento para as funções: (7) Z Shaped; (8) S Shaped; (9) Cauchy; (10) Gaussiana Dupla; (11) Exponencial; (12) Pi Shaped.

Cada função complementada oferece uma inversão única da ativação original, mantendo características estruturais como suavidade, simetria ou transições. A tabela abaixo resume a aplicabilidade de cada tipo de complemento em sistemas fuzzy, facilitando a escolha de acordo com a necessidade de modelagem de fronteiras de incerteza ou zonas opostas de ativação.

Tabela 5: Resumo das Características e Aplicabilidades dos Complementos das Funções Fuzzy

Função	Tipo	Aplicabilidade
Gaussiana, Gaussi-	Picos Suaves	Modelagem de incertezas simétricas e suaves,
ana Dupla, Cauchy		ideais para capturar transições contínuas.
S-Shaped, Z-	Transições Assimétricas	Representação de fronteiras de ativação com-
Shaped, Sigmoidal		plementar, úteis para delimitar zonas de tran-
		sição gradual.
Trapezoidal, Pi-	Platô	Cobertura alternada em zonas definidas do do-
Shaped		mínio, adequada para representar áreas com
-		ativação total ou nula.
Triangular Comple-	Linear	Representação alternada de certeza e incer-
mentar, Triangular		teza, ideal para modelar regiões de transição
Não Complementar		linear e contínua.
Exponencial, Sino	Decaimento Rápido	Modelagem de zonas inicialmente desativadas
Generalizada		ou alternância acentuada, com foco em áreas
		específicas do domínio.

Complemento de Funções com Picos Suaves: Gaussiana, Gaussiana Dupla e Cauchy: As funções Gaussiana, Gaussiana Dupla e Cauchy, ao serem complementadas, mantêm sua suavidade e simetria. As regiões de alta ativação se tornam baixas e vice-versa, criando uma inversão gradual. São úteis para representar incertezas distribuídas simetricamente, especialmente em sistemas fuzzy que necessitam de inversão gradual. A Gaussiana Dupla se destaca ao oferecer uma ativação intermediária mais ampla.

Complemento de Funções com Transições Assimétricas: S-Shaped, Z-Shaped e Sigmoidal: Nas funções S-Shaped, Z-Shaped e Sigmoidal, o complemento inverte a direção das transições. A S-Shaped e Z-Shaped mantêm transições graduais, porém no sentido oposto, ideal para capturar zonas de fronteira com ativação complementar. A Sigmoidal complementada é ideal para modelar transições inversas suaves.

Complemento de Funções com Platô: Trapezoidal e Pi-Shaped: As funções Trapezoidal e Pi-Shaped, quando complementadas, mantêm seus platôs mas invertem as zonas de ativação. No complemento da Trapezoidal, o platô central se torna uma área sem ativação. Já na Pi-Shaped, o complemento cria um platô central de ativação mínima, focando a ativação nas extremidades, útil para cenários com cobertura alternada.

Complemento de Funções Lineares: Triangular Complementar e Triangular Não Complementar: Nas funções Triangular Complementar e Não Complementar, a ativação máxima nos picos é invertida, mantendo a forma triangular. Esses complementos são vantajosos para representar de forma linear e alternada regiões de certeza e incerteza ao longo do domínio.

Complemento de Funções com Decaimento Rápido: Exponencial e Sino Generalizada: As funções Exponencial e Sino Generalizada complementadas transformam o decaimento ou crescimento rápido em inversão. Na Exponencial, o crescimento torna-se decaimento, útil para destacar áreas inicialmente desativadas. A Sino Generalizada complementada alterna fortemente entre ativação e desativação.

3.1.1 Considerações Finais - Complemento

Esta análise dos complementos das funções fuzzy mostra como cada uma oferece inversões específicas da ativação original, mantendo características como suavidade ou simetria. Tais complementos expandem a capacidade dos sistemas fuzzy de modelar fronteiras de incerteza ou zonas opostas de ativação, auxiliando na escolha da função adequada para cada necessidade de modelagem.

	3	'
3.2	Análise das Operações de União nas Funções Fuzzy	

Figura 6: Gráficos das operações fuzzy de união para as funções: (1) Triangular Não Complementar; (2) Triangular Complementar; (3) Trapezoidal; (4) Gaussiana; (5) Sigmoidal; (6) Sino Generalizada.

Figura 7: Gráficos das operações fuzzy de união para as funções: (7) Z-Shaped; (8) S-Shaped; (9) Cauchy; (10) Gaussiana Dupla; (11) Exponencial; (12) Pi-Shaped.

3.2.1 Tabela Resumo das Características das Operações de União

Tabela 8: Resumo das Características e Aplicabilidades das Operações de União nas Funções Fuzzy

Função	Tipo	Aplicabilidade
Gaussiana, Gaussi-	Picos Suaves	Permite ativação em múltiplas faixas do domí-
ana Dupla, Cauchy		nio com transições suaves entre as zonas de
		alta e baixa pertinência. Ideal para coberturas parciais e simétricas.
S-Shaped, Z-	Transições Gradativas	Representa zonas de transição gradual até atin-
Shaped, Sigmoidal	•	gir uma ativação estável, adequado para siste-
		mas que requerem uma ativação gradual para
		zonas de certeza total.
Trapezoidal, Pi-	Platô	Maximiza a ativação em regiões amplas e cen-
Shaped		trais do domínio, com transições nítidas nas bordas, sendo útil para cobrir zonas de alta
		certeza com intervalos definidos.
Triangular Comple-	Linear	Proporciona picos alternados de ativação total,
mentar, Triangular		ideal para representações de múltiplas zonas
Não Complementar		com alternância entre ativação e desativação
		ao longo do domínio.
Exponencial, Sino	Decaimento Rápido	Gera picos de ativação máxima intercalados
Generalizada		por áreas de baixa pertinência, útil para siste-
		mas que necessitam cobertura periódica em zonas específicas do domínio.
		Zonas especificas do dominio.

Cada gráfico apresenta o resultado da operação de união aplicada nas diferentes funções fuzzy. Abaixo está uma análise detalhada de cada função e o comportamento de sua união.

União - Triangular Complementar: A operação de união nas funções com formato Triangular Complementar maximiza a ativação em intervalos ao longo do domínio, com depressões uniformes entre os picos. Esse comportamento cria uma distribuição de ativação útil para capturar máxima cobertura com transições periódicas.

União - Trapezoidal: Na função Trapezoidal, a união gera uma ativação constante no centro do domínio, com decaimento nas bordas. Este comportamento maximiza a pertinência em uma faixa central, sendo útil para representar situações onde a cobertura total é necessária no centro, com transições bem definidas nas extremidades.

União - Gaussiana: A união das funções gaussianas resulta em picos periódicos de ativação máxima,

separados por áreas de pertinência baixa. Esse padrão ondulado é ideal para sistemas que requerem cobertura em faixas discretas do domínio, mantendo transições suaves entre zonas de ativação.

União - Sigmoidal: A união na função Sigmoidal começa com ativação baixa e cresce até atingir o máximo, que é mantido para o restante do domínio. Esse comportamento progressivo é adequado para modelar transições suaves até uma zona de certeza total.

União - Sino Generalizada: A operação de união na Sino Generalizada cria platôs de ativação máxima alternados, com transições abruptas para zero entre eles. É ideal para representações com cobertura alternada, ativando completamente em intervalos específicos.

União - Z-Shaped: Na Z-Shaped, a união mantém ativação total na maior parte do domínio até um decaimento acentuado na borda direita. Este formato é útil quando se requer uma zona de certeza até um ponto específico, seguido por uma rápida transição para ausência de ativação.

União - S-Shaped: A união na função S-Shaped gera uma transição suave de ativação que atinge o valor máximo e o mantém. É útil em contextos onde se deseja ativação gradual até um nível de certeza total, com estabilidade após a transição.

União - Cauchy: A união na função Cauchy apresenta picos alternados de ativação máxima com transições suaves entre eles, adequado para sistemas que necessitam ativação modular em intervalos alternados.

União - Gaussiana Dupla: A união na Gaussiana Dupla resulta em ativação constante intermediária no domínio, ideal para representar incertezas distribuídas de forma uniforme.

União - Triangular Não Complementar: A união na Triangular Não Complementar preserva os picos alternados de ativação, ideal para garantir ativação total em múltiplas faixas com zonas de inatividade entre elas.

União - Exponencial: A união na função Exponencial mantém picos repetidos de ativação máxima, intercalados por regiões de baixa pertinência, adequado para cobertura periódica com variação suave.

União - Pi-Shaped: Na função Pi-Shaped, a união cria um platô de ativação máxima no centro do domínio, cercado por transições suaves nas bordas. Este comportamento é eficaz para modelar incertezas centralizadas, maximizando pertinência em uma faixa ampla.

3.2.2 Considerações Finais - União

A operação de união em funções fuzzy busca maximizar a pertinência em cada ponto do domínio, resultando em curvas que cobrem zonas de ativação de forma ampla e contínua ou em intervalos alternados, dependendo da função. A união é particularmente útil em sistemas que requerem máxima cobertura de incertezas, proporcionando uma representação abrangente das zonas de pertinência em várias regiões do domínio.

	8	'	
3.3	Análise das Operações de Interseção nas Funções Fuzzy		

Figura 8: Gráficos das operações fuzzy de interseção para as funções: (1) Triangular Não Complementar; (2) Triangular Complementar; (3) Trapezoidal; (4) Gaussiana; (5) Sigmoidal; (6) Sino Generalizada.

Figura 9: Gráficos das operações fuzzy de interseção para as funções: (7) Z-Shaped; (8) S-Shaped; (9) Cauchy; (10) Gaussiana Dupla;(11) Exponencial; (12) Pi-Shaped.

Tabela 11: Resumo das Características e Aplicabilidades das Interseções das Funções Fuzzy

Função	Tipo de Interseção	Aplicabilidade
Gaussiana, Gaussiana Du-	Picos Suaves	Modelagem de incertezas focadas em pontos espe-
pla, Cauchy		cíficos com suavidade, onde a interseção resulta em
		baixa ativação em regiões centrais.
S-Shaped, Z-Shaped, Sig-	Transições Assimétricas	Captura de fronteiras de ativação complementar em
moidal		transições assimétricas, com valores de pertinência
		que decrescem gradualmente.
Trapezoidal, Pi-Shaped	Platô	Cobertura em zonas de pertinência total e zero nas
		bordas, útil para representar ativação limitada a re-
		giões específicas do domínio.
Triangular Complementar,	Linear	Representação de interseções com pontos de má-
Triangular Não Comple-		xima pertinência e quedas bruscas, ideais para transi-
mentar		ções nítidas.
Exponencial, Sino Genera-	Decaimento Rápido	Modelagem de áreas de ativação limitadas a peque-
lizada		nos intervalos, útil para representar zonas de transi-
		ção rápida.

Cada gráfico a seguir apresenta o resultado da operação de interseção aplicada nas diferentes funções fuzzy. Abaixo está uma análise detalhada de cada função e o comportamento de sua interseção.

Interseção - Triangular Complementar: A operação de interseção na função Triangular Complementar gera um gráfico com ativação extremamente baixa em toda a extensão do domínio, exceto em uma região central muito específica. Esse comportamento resulta em uma faixa de ativação muito restrita, o que é útil para representar situações onde a ativação só ocorre em um intervalo bem delimitado, evitando qualquer ambiguidade fora desse ponto.

Interseção - Trapezoidal: A interseção na função Trapezoidal produz uma ativação muito baixa em todo o domínio, pois a interseção tende a minimizar os valores. Esse comportamento é adequado para modelar sistemas que exigem um rigor maior na pertinência, ativando-se apenas em regiões muito específicas e reduzindo o grau de ativação nas demais áreas.

Interseção - Gaussiana: A interseção da função Gaussiana resulta em um gráfico com um pico muito pequeno no centro do domínio, com o restante da ativação próxima a zero. Esse comportamento é útil em representações onde se deseja uma ativação centralizada e precisa, indicando que a pertinência ocorre em uma zona de alta incerteza concentrada.

Interseção - Sigmoidal: Na função Sigmoidal, a operação de interseção gera um gráfico que apresenta um crescimento gradual de ativação, atingindo valores máximos somente no final do domínio. Esse

comportamento é ideal para sistemas onde se deseja uma ativação lenta e gradual, representando incerteza que aumenta progressivamente até atingir um ponto de certeza.

Interseção - Sino Generalizada: A interseção na função Sino Generalizada resulta em um gráfico com pertinência quase nula em todo o domínio. Esse comportamento reflete a característica de forte seletividade da interseção, que minimiza a ativação, sendo útil para modelar sistemas onde apenas zonas muito específicas atingem ativação.

Interseção - Z-Shaped: A operação de interseção na função Z-Shaped gera um gráfico com alta ativação apenas na parte inicial do domínio, decrescendo rapidamente a zero. Esse formato é adequado para representar sistemas que necessitam de uma ativação limitada a um início de domínio, com uma rápida transição para valores nulos, capturando incertezas iniciais.

Interseção - S-Shaped: A interseção na função S-Shaped apresenta um comportamento oposto ao da Z-Shaped, com ativação baixa no início que cresce suavemente até atingir o máximo no final do domínio. Este comportamento é ideal para capturar uma incerteza que aumenta gradualmente ao longo do domínio, sendo útil em sistemas que exigem uma transição progressiva de ativação.

Interseção - Cauchy: Na função Cauchy, a operação de interseção resulta em um gráfico com picos de ativação muito baixos, levemente centralizados. Esse comportamento indica uma ativação baixa e distribuída, sendo útil para sistemas onde a interseção deve ser aplicada de forma difusa, mantendo uma leve ativação centralizada.

Interseção - Gaussiana Dupla: A interseção na Gaussiana Dupla gera uma curva com um pico muito pequeno próximo ao centro do domínio, indicando uma ativação extremamente seletiva. Esse comportamento é útil para modelar incertezas altamente concentradas, onde apenas uma pequena região do domínio atinge pertinência.

Interseção - Triangular Não Complementar: A interseção na Triangular Não Complementar resulta em uma curva com ativação baixa em quase todo o domínio, com um pequeno aumento central. Esse comportamento é útil para sistemas que necessitam de uma ativação localizada e precisa, onde apenas uma faixa estreita do domínio é ativada.

Interseção - Exponencial: A função Exponencial na operação de interseção exibe um padrão ondulado com picos baixos de ativação, refletindo a característica de crescimento e decaimento rápidos da função. Essa configuração é útil para situações onde se deseja uma ativação mínima em intervalos distintos, mantendo um padrão cíclico.

Interseção - Pi-Shaped: A operação de interseção na função Pi-Shaped gera uma curva com ativação mínima, mantendo um platô muito reduzido em todo o domínio. Esse comportamento é adequado

para modelar interseções onde se busca evitar altas pertinências e focar em zonas de interseção muito específicas e restritas.

3.3.1 Considerações Finais - Interseção

A operação de interseção em funções fuzzy tende a minimizar a ativação nas zonas de sobreposição, resultando em pertinência limitada a regiões mais específicas do domínio. Esse comportamento é ideal para sistemas que requerem uma representação rigorosa das incertezas, onde a ativação ocorre apenas quando há concordância máxima entre as funções fuzzy. Essa característica é essencial em cenários onde é preciso delimitar zonas de alta incerteza e evitar ativações em áreas indesejadas.

3.4 Análise das S-Normas nas Funções Fuzzy

Figura 10: Gráficos das operações fuzzy de S Norma para as funções: (1) Triangular Não Complementar; (2) Triangular Complementar; (3) Trapezoidal; (4) Gaussiana; (5) Sigmoidal; (6) Sino Generalizada.

Figura 11: Gráficos das operações fuzzy de S Norma para as funções: (7) Z-Shaped; (8) S-Shaped; (9) Cauchy; (10) Gaussiana Dupla; (11) Exponencial; (12) Pi-Shaped.

Nesta seção, apresentamos uma análise detalhada das S-normas aplicadas a cada função fuzzy, destacando o comportamento específico de cada operação de S-norma.

Cauchy: Para a função Cauchy, a operação Máximo de Zadeh mantém uma ativação oscilante, caracterizada por uma série de picos de ativação máxima ao longo do domínio. Já a Soma Probabilística exibe variações leves e contínuas, destacando áreas de incerteza moderada. A Norma S - Lukasiewicz apresenta uma ativação constante próxima a 1, suavizando a função original, enquanto a Norma S - Hamacher cria uma curva suave, focando no centro do domínio. A Soma Limitada ativa o domínio em sua totalidade, similar à Lukasiewicz, e a Weber Soma Drástica reflete a natureza fragmentada da função Cauchy, com um padrão oscilante de ativação.

Gaussiana Dupla: Na função Gaussiana Dupla, a operação Máximo de Zadeh resulta em uma ativação com valor médio constante e picos leves, proporcionando uma cobertura uniforme. A Soma Probabilística exibe uma leve oscilação, capturando a suavidade da função. A Norma S - Lukasiewicz mantém uma ativação constante em praticamente todo o domínio, enquanto a Norma S - Hamacher gera uma curva com um pico leve ao centro, enfatizando transições suaves. A Soma Limitada cobre uniformemente o domínio, e a Weber Soma Drástica forma um platô constante de alta ativação.

Gaussiana: A função Gaussiana, ao ser aplicada ao Máximo de Zadeh, exibe oscilações suaves de ativação média, destacando transições leves. Com a Soma Probabilística, vemos curvas levemente onduladas, enquanto a Norma S - Lukasiewicz mantém uma ativação estável e contínua. A Norma S - Hamacher cria um leve pico central, ressaltando a suavidade da função original. A Soma Limitada cobre o domínio uniformemente, e a Weber Soma Drástica mantém uma consistência sem variações significativas.

Pi Shaped: Na função Pi Shaped, a operação Máximo de Zadeh maximiza a ativação no platô central, criando uma zona de certeza completa. A Soma Probabilística mantém uma variação menor, focada na centralidade. A Norma S - Lukasiewicz preserva o platô com transições suaves nas bordas, enquanto a Norma S - Hamacher enfatiza a transição nas bordas do platô. A Soma Limitada cobre o domínio de forma uniforme, e a Weber Soma Drástica foca o centro do domínio.

S Shaped: Na função S Shaped, a operação Máximo de Zadeh gera uma ativação crescente ao longo do domínio, estabilizando-se em níveis máximos na extremidade. A Soma Probabilística proporciona uma transição suave ao longo do domínio, enquanto a Norma S - Lukasiewicz gera um crescimento contínuo até a ativação máxima. A Norma S - Hamacher exibe uma suavidade gradual no crescimento. A Soma Limitada cobre o domínio com uma ativação gradual, enquanto a Weber Soma Drástica atinge o máximo gradualmente até o final do domínio.

Sigmoidal: Para a função Sigmoidal, a Máximo de Zadeh apresenta um crescimento progressivo suave, enquanto a Soma Probabilística exibe um decaimento gradual. A Norma S - Lukasiewicz proporciona uma transição linear contínua, e a Norma S - Hamacher enfatiza o crescimento gradual da função.

A Soma Limitada resulta em uma ativação contínua ao longo do domínio, enquanto a Weber Soma Drástica apresenta uma transição leve.

Sino Generalizada: Na função Sino Generalizada, a operação Máximo de Zadeh resulta em ondulações periódicas, destacando padrões cíclicos de ativação. A Soma Probabilística mostra variações suaves, enquanto a Norma S - Lukasiewicz preserva uma ondulação simétrica. A Norma S - Hamacher resulta em uma ativação mais leve, e a Soma Limitada alterna suavemente entre as zonas de ativação. A Weber Soma Drástica exibe um padrão de ativação repetido.

Trapezoidal: Para a função Trapezoidal, a Máximo de Zadeh cria um platô de ativação total no centro do domínio. A Soma Probabilística resulta em um padrão constante, enquanto a Norma S - Lukasiewicz mantém uma ativação constante e completa. A Norma S - Hamacher enfatiza a centralidade da ativação, e a Soma Limitada cobre o domínio de maneira uniforme. A Weber Soma Drástica foca-se na centralidade do domínio.

Triangular Complementar: Na função Triangular Complementar, o Máximo de Zadeh alterna em picos, criando uma ativação oscilante. A Soma Probabilística apresenta baixa variação, enquanto a Norma S - Lukasiewicz mantém uma constância. A Norma S - Hamacher exibe uma suavidade geral, e a Soma Limitada cobre completamente o domínio. A Weber Soma Drástica mostra um padrão de alternância máxima.

Triangular Não Complementar:Para a função Triangular Não Complementar, o Máximo de Zadeh exibe picos de ativação máxima em intervalos alternados, enquanto a Soma Probabilística se mantém baixa. A Norma S - Lukasiewicz oferece uma ativação constante, e a Norma S - Hamacher preserva a consistência da função. A Soma Limitada cobre o domínio de forma completa, e a Weber Soma Drástica proporciona uma cobertura completa e alternada em intervalos.

Exponencial:Na função Exponencial, a operação Máximo de Zadeh apresenta um padrão oscilante com picos alternados, destacando pontos de alta ativação. A Soma Probabilística exibe uma variação moderada, enquanto a Norma S - Lukasiewicz mantém uma ativação constante. A Norma S - Hamacher realça o crescimento gradual, e a Weber Soma Drástica foca a ativação máxima nas extremidades do domínio.

Z Shaped:Na função Z Shaped, a operação Máximo de Zadeh atinge um nível de ativação constante nas extremidades, com um decréscimo suave. A Soma Probabilística mostra uma queda gradual, enquanto a Norma S - Lukasiewicz e a Soma Limitada produzem uma ativação uniforme. A Norma S - Hamacher enfatiza o decréscimo, e a Weber Soma Drástica reflete o mesmo comportamento nas bordas.

3.4.1 Considerações Finais - S Normas

A análise das S-Normas aplicadas às funções fuzzy mostra como diferentes operações destacam características distintas de cada função. Enquanto algumas operações, como a Máximo de Zadeh, enfatizam picos de ativação, outras, como a Norma S - Lukasiewicz e a Soma Limitada, oferecem ativação constante e abrangente. A escolha da S-Norma ideal depende das características desejadas para cada aplicação fuzzy, permitindo modelar transições suaves, padrões alternados ou cobertura uniforme conforme necessário.

	0	'
3.5	Análise das T-Normas nas Funções Fuzzy	

Figura 12: Gráficos das operações fuzzy de T Norma para as funções: (1) Triangular Não Complementar; (2) Triangular Complementar; (3) Trapezoidal; (4) Gaussiana; (5) Sigmoidal; (6) Sino Generalizada.

Figura 13: Gráficos das operações fuzzy de T Norma para as funções: (7) Z-Shaped; (8) S-Shaped; (9) Cauchy; (10) Gaussiana Dupla; (11) Exponencial; (12) Pi-Shaped.

Cauchy: A função Cauchy, quando aplicada ao Mínimo de Zadeh, resulta em uma curva central com leve concentração de ativação, enquanto o Produto Algébrico gera uma curva levemente achatada, refletindo transições suaves. A Norma T - Lukasiewicz cria um padrão oscilante que acentua picos e vales ao longo do domínio. A Norma T - Hamacher enfatiza o centro do domínio com uma ativação concentrada. A Diferença Limitada e a Weber Produto Drástico resultam em padrões de ativação com valores baixos, capturando áreas discretas de pertinência.

Gaussiana Dupla: Na Gaussiana Dupla, a Mínimo de Zadeh exibe uma ativação central bem definida, enquanto o Produto Algébrico enfatiza a centralidade com uma curva mais achatada. A Norma T - Lukasiewicz alterna picos e depressões, enquanto a Norma T - Hamacher foca em uma ativação suave no centro. A Diferença Limitada gera um padrão ondulado, e a Weber Produto Drástico apresenta uma ativação mínima ao longo do domínio.

Gaussiana: Na função Gaussiana, a **Mínimo de Zadeh** e o **Produto Algébrico** resultam em curvas centradas com pouca variação. A **Norma T - Lukasiewicz** e a **Diferença Limitada** geram um padrão de picos suaves, enquanto a **Norma T - Hamacher** cria uma curva com ativação suave no centro. A **Weber Produto Drástico** mantém uma ativação baixa ao longo do domínio.

S Shaped: Na função S Shaped, a **Mínimo de Zadeh** apresenta um aumento gradual na ativação até o final do domínio, enquanto o **Produto Algébrico** segue o mesmo padrão de crescimento. A **Norma T** - **Lukasiewicz** e a **Diferença Limitada** mostram um crescimento constante até o máximo, enquanto a **Norma T** - **Hamacher** mantém uma curva suave. A **Weber Produto Drástico** atinge o máximo no final do domínio.

Sigmoidal: Para a função Sigmoidal, a **Mínimo de Zadeh** e o **Produto Algébrico** exibem crescimento constante ao longo do domínio. A **Norma T - Lukasiewicz** e a **Diferença Limitada** mostram um aumento gradual, enquanto a **Norma T - Hamacher** atinge picos suaves no final do domínio. A **Weber Produto Drástico** apresenta pouca variação.

Sino Generalizada: A função Sino Generalizada com **Mínimo de Zadeh** exibe picos centrais discretos, enquanto o **Produto Algébrico** enfatiza esses picos. A **Norma T - Lukasiewicz** e a **Diferença Limitada** mantêm ondulações suaves, e a **Norma T - Hamacher** realça a centralidade. A **Weber Produto Drástico** se mantém constante.

Trapezoidal: Na função Trapezoidal, a **Mínimo de Zadeh** e o **Produto Algébrico** resultam em ativação constante no centro. A **Norma T - Lukasiewicz** e a **Diferença Limitada** apresentam um padrão uniforme com ativação alta no centro. A **Norma T - Hamacher** mantém uma ativação constante, e a **Weber Produto Drástico** reflete a natureza central da função.

Triangular Complementar: Na função Triangular Complementar, a **Mínimo de Zadeh** apresenta valores

baixos, enquanto o **Produto Algébrico** e a **Norma T - Lukasiewicz** exibem uma oscilação leve. A **Norma T - Hamacher** e a **Diferença Limitada** mostram picos moderados, enquanto a **Weber Produto Drástico** apresenta uma ativação baixa.

Triangular Não Complementar: A função Triangular Não Complementar aplicada ao **Mínimo de Zadeh** exibe um padrão suave, enquanto o **Produto Algébrico** e a **Norma T - Lukasiewicz** apresentam uma oscilação leve. A **Norma T - Hamacher** e a **Diferença Limitada** mostram variações pequenas, enquanto a **Weber Produto Drástico** permanece constante.

Z Shaped: Para a função Z Shaped, a Mínimo de Zadeh e o Produto Algébrico resultam em um decaimento ao longo do domínio. A Norma T - Lukasiewicz e a Diferença Limitada mantêm um padrão de decaimento suave. A Norma T - Hamacher enfatiza o final do domínio, enquanto a Weber Produto Drástico apresenta uma ativação constante.

Exponencial: Na função Exponencial, a **Mínimo de Zadeh** exibe uma curva com um pico central, enquanto o **Produto Algébrico** apresenta um padrão mais achatado. A **Norma T - Lukasiewicz** e a **Diferença Limitada** mostram uma oscilação constante, enquanto a **Norma T - Hamacher** cria uma ativação suave. A **Weber Produto Drástico** permanece praticamente inalterada ao longo do domínio.

Pi Shaped: A função Pi Shaped, quando aplicada à Mínimo de Zadeh e ao Produto Algébrico, apresenta uma ativação constante no centro. A Norma T - Lukasiewicz e a Diferença Limitada geram uma curva com um platô central, enquanto a Norma T - Hamacher mantém uma ativação central. A Weber Produto Drástico reflete essa centralidade, mantendo um valor constante.

3.5.1 Considerações Finais - T normas

A análise das T-Normas nas funções fuzzy mostra como diferentes operações enfatizam características distintas, como picos, ondulações e platôs centrais. A escolha da T-Norma ideal permite modelar comportamentos de ativação que capturam transições suaves, centralidade ou padrões oscilantes, proporcionando uma variedade de opções de modelagem fuzzy.

4 Análise das Operações de Relação Fuzzy com T-Norma e S-Norma

Na análise abaixo, comparamos a relação fuzzy entre a função Gaussiana-2 e a função Trapezoidal-3, utilizando diferentes operadores para T-Norma e S-Norma. As figuras ilustram a distribuição dos graus de pertinência ao longo do domínio, variando conforme o operador utilizado.

Figura 14: Comparação das operações de relação fuzzy entre a função Gaussiana-2 e a função Trapezoidal-3, utilizando diferentes operadores de T-Norma (Norma T - Lukasiewicz e Mínimo de Zadeh) e S-Norma (Norma S - Lukasiewicz e Máximo de Zadeh). As figuras ilustram como cada operador afeta a distribuição dos graus de pertinência no domínio das funções.

4.1 Análise Gráfica

Gráfico Superior Esquerdo (T-Norma: Norma T - Lukasiewicz): A relação fuzzy entre a Gaussiana-2 e o Trapezoidal-3 com a Norma T de Lukasiewicz mostra uma série de padrões de ativação em regiões centrais discretas ao longo do domínio da função. Observa-se que a ativação ocorre em áreas de interseção, criando uma estrutura de listras alternadas, onde os valores mais altos se concentram nas regiões centrais.

Gráfico Superior Direito (S-Norma: Norma S - Lukasiewicz): Neste gráfico, usando a Norma S de Lukasiewicz, as áreas de ativação são mais intensas e mais amplas em comparação ao gráfico anterior. A

função exibe um padrão simétrico de ativação, onde regiões vermelhas dominantes representam uma ativação alta, especialmente nas regiões centrais. Esse comportamento reflete a natureza agregadora da Norma S, maximizando a cobertura em uma faixa mais ampla do domínio.

Gráfico Inferior Esquerdo (T-Norma: Mínimo de Zadeh): Com a T-Norma Mínimo de Zadeh, o gráfico mostra uma ativação mais restrita e concentrada, evidenciando áreas de ativação moderada apenas em zonas muito específicas. Este operador limita a extensão das áreas de interseção, resultando em faixas estreitas e discretas de ativação, o que é característico do Mínimo de Zadeh, que busca os valores mínimos nos pontos de interseção.

Gráfico Inferior Direito (S-Norma: Máximo de Zadeh): Utilizando o Máximo de Zadeh, o gráfico exibe uma ampla área de ativação que cobre quase todo o domínio, com uma predominância de valores altos (regiões em vermelho). Isso indica uma alta agregação dos valores de pertinência, com transições suaves e uma cobertura completa no centro. O Máximo de Zadeh permite que a relação fuzzy capture a totalidade das áreas onde ocorre alguma sobreposição entre os conjuntos, gerando uma cobertura intensa.

4.2 Análise Textual Comparativa

T-Norma vs. S-Norma: Observa-se uma diferença significativa entre os resultados das T-Normas e das S-Normas. Enquanto as T-Normas, como a Norma T de Lukasiewicz e o Mínimo de Zadeh, tendem a restringir a ativação a áreas específicas e discretas, as S-Normas, como a Norma S de Lukasiewicz e o Máximo de Zadeh, promovem uma cobertura mais ampla e contínua no domínio. Isso reflete a característica de "agregação"das S-Normas, que buscam maximizar os valores de pertinência, enquanto as T-Normas buscam a interseção mínima.

Diferença entre Lukasiewicz e Zadeh: A Norma T de Lukasiewicz permite uma oscilação mais regular de ativação ao longo do domínio, enquanto o Mínimo de Zadeh concentra os valores de ativação em áreas muito específicas, resultando em uma cobertura mais esparsa. Por outro lado, a Norma S de Lukasiewicz e o Máximo de Zadeh promovem uma cobertura mais intensa, mas o Máximo de Zadeh se destaca por expandir ainda mais as áreas de ativação, criando uma representação mais ampla do domínio.

Considerações para Aplicações Fuzzy: A escolha do operador afeta diretamente a abrangência da ativação entre os conjuntos fuzzy. Para aplicações que requerem uma abordagem conservadora, limitando as áreas de interseção (como em sistemas que necessitam de precisão em zonas restritas), as T-Normas são mais apropriadas. Para aplicações onde a cobertura deve ser maximizada, as S-Normas são mais eficazes.

Em resumo, a aplicação de diferentes T-Normas e S-Normas na relação fuzzy entre a Gaussiana-2 e o Trapezoidal-3 destaca as capacidades desses operadores em manipular a intensidade e a abrangência da ativação fuzzy.		

5 Questão

Figura 15: Comparação das Composições Fuzzy: Max-Min, Min-Max e Max-Prod para os Conjuntos A e B

Conjunto A: 1º Domínio - Guassiana-2 com o 2º Domínio - Trapezoidal-3, com Norma S - Lukasiewicz | Conjunto B: 2º Domínio - Trapezoidal-3 com o 3º Domínio - Sigmoidal-3, com Mínimo de Zadeh

Análise Textual

A análise a seguir detalha as características de cada composição fuzzy.

Composição Max-Min

A composição Max-Min maximiza o valor mínimo entre elementos dos conjuntos A e B para cada par de pontos avaliados. Visualmente, ela produz uma transição suave entre regiões de alta e baixa pertinência. Observa-se que essa composição resulta em uma faixa central com alta ativação (representada pelas cores mais claras), cercada por áreas com ativação gradualmente menor à medida que se afasta do centro. Esse tipo de composição é útil para modelar situações em que a compatibilidade é dominada pelo menor valor dos conjuntos, sendo ideal para sistemas que buscam uma interseção máxima onde os valores dos conjuntos são equilibrados.

Composição Min-Max

Na composição Min-Max, o resultado é dominado pela maximização do valor mínimo dos elementos ao longo do domínio. Esta composição enfatiza regiões onde os conjuntos A e B possuem valores altos. No gráfico, essa composição se traduz em uma faixa central ainda mais definida e bem destacada, com uma transição mais abrupta para áreas de menor pertinência. Esta técnica é particularmente útil em situações onde se deseja realçar regiões com alta compatibilidade, mas que não sejam afetadas por valores baixos nos conjuntos.

Composição Max-Prod

A composição Max-Prod utiliza o produto entre os valores dos conjuntos A e B, maximizando o valor resultante. O gráfico dessa composição exibe uma transição suave similar à Max-Min, mas com uma gradação que reflete o efeito multiplicativo dos valores. Em comparação com a Max-Min, a Max-Prod tende a ser mais sensível às variações de valores entre os conjuntos, já que os valores são multiplicados em vez de apenas comparados. Esta composição é eficaz para situações onde é desejável que o valor final seja influenciado tanto pelos altos quanto pelos baixos valores nos conjuntos, fornecendo uma transição gradual e contínua.

Análise Comparativa

Visualmente, todas as três composições exibem uma faixa central de alta ativação, mas com diferenças na transição para as áreas de baixa ativação. A **composição Max-Min** e a **composição Max-Prod** possuem transições mais suaves, enquanto a **composição Min-Max** resulta em uma transição mais abrupta, enfatizando as áreas centrais. Cada composição é adequada para diferentes contextos de análise fuzzy: a **Max-Min** é ideal para busca de compatibilidade mínima, a **Min-Max** para destaque de regiões de alta ativação e a **Max-Prod** para uma análise sensível ao produto dos valores de pertinência.

Essas análises permitem escolher a composição adequada de acordo com o comportamento desejado no sistema fuzzy, seja para uma transição gradual ou um destaque mais intenso nas áreas de alta pertinência.