

Labo Beeldinterpretatie

2018-2019

19/10/2018 - Introductiezitting

Steven Puttemans – <u>steven.puttemans@kuleuven.be</u>

Timothy Callemein – <u>timothy.callemein@kuleuven.be</u>

Doelstellingen

- Beeldverwerkingsalgoritmes omzetten in praktische toepassingen gebruikmakend van C++ en OpenCV
- 2. Leren werken met het beeldverwerkingspakket OpenCV
- Leren probleemoplossend denken op basis van opgedane kennis in de theorielessen beeldverwerking van Toon Goedemé
- 4. Zelfredzaamheid: gebruik maken van beschikbare media om softwareproblemen aan te pakken, parameters te tunen en te interpreteren.
- 5. Gebruik van een code management systeem, gebaseerd op GIT

Opbouw vak

 We werken dit jaar met een nieuwe insteek, waarbij we studenten verplichten om elke week de opdracht af te werken + ervaring op doen met GIT code management.

- Algemeen verloop
 - https://github.com/EAVISE/2018_labo_beeldinterpretatie
 - Per sessie komt daar folder met opdracht + nodige data
 - Als student maak je een eigen Github repository aan
 - Daarop plaats je jouw oplossing (deadline volgende woensdag 23u55)
 - Oplossingen automatisch binnen gehaald bij begeleiding

Examen

- We werken dit jaar niet meer met een examenopdracht van 4 uur, maar projectgebaseerd.
 - Dit project werk je uit tijdens je laatste lesweken / blok / examenperiode.
 - Mondelinge verdediging tijdens de januariexamens.
 - Beoordelingscriteria komen nog online.
- 30/11 Lijst beschikbaar met onderwerpen en doorgeven van je persoonlijke top3 tegen woensdag 05/12
- 07/12 Je krijgt je definitieve opdracht toegewezen
- 14/12 21/12 Mogelijkheid tot stellen inhoudelijke vragen, de technische oplossing is voor de student

Afspraken

Labo's

- Formule van zelfstudie
- Je krijgt een voorgeschoteld probleem met deelproblemen
- Op basis van geziene theorie in lessenpakket
- Ubuntu 18.04 + Code::Blocks IDE + OpenCV 3.4.x

Gebruik je contacturen

- Stel vragen als je niet kan volgen en stel dit vooral niet uit tot in December of Januari.
- Zorg dat je je labo's bijwerkt en niet hopeloos achterop loopt.
- Ook naast contacturen is begeleiding via mail of op afspraak beschikbaar om extra ondersteuning te bieden. Zet beide docenten altijd in aan/cc tijdens communicatie.

Afspraken

- Tijdens elke labozitting
 - Je bent op tijd aanwezig (8u15)
 - Zorg op het einde van de zittingen dat je code op GIT staat
 - Elke student werkt op zelfde computeraccount, dus geen garantie dat je code ook daadwerkelijk blijft staan
- Na elke labozitting
 - Stoel onder tafel
 - Computer volledig uitgeschakeld
 - Scherm, toetsenbord, muis op juiste plaats
 - Scherm uitzetten

Programmeeromgeving

Software

- OpenCV bibliotheek: http://opencv.org/
- Source code: https://github.com/opencv/opencv
- We gebruiken `master` branch → OpenCV 3.4.x
 - Meest stabiele versie
 - Meest ondersteunde versie → bugfixes

- · We weten dat dit een nieuwe programmeeromgeving is
- Maar met Python en C achtergrond moet dit lukken
- Programmeerconcepten blijven immers identiek

Programmeeromgeving

- Ontwikkelomgeving Code::Blocks IDE
 - http://www.codeblocks.org/
 - Simpele maar bruikbare interface
 - Eenvoudig te configureren

- We starten telkens met een leeg `command line project`.
- Specifieke configuratie nodig per project
 - Configuratie van waar OpenCV op het systeem te vinden is
 - Configuratie van juiste compiler

- Specifieke configuratie nodig per project
 - 1) File > New Project > Command line project
 - 2) C++ language
 - 3) Kies gepaste naam & locatie (eigen map!)
 - 4) GNU GCC compiler (zeer belangrijk voor C++ support)
 - 5) Project Name > Right Click > Build Options
 - > Linker Settings > Additional Includes

`pkg-config opencv --libs`

- In de main.cpp file van je project
 - Zorgen dat OpenCV herkend word door je project
 #include <opencv2/opencv.hpp>
 - 2) Zorgen dat de nodige C++ bibliotheken herkend worden #include <iostream> (output naar scherm)
 - 3) Namespaces

```
using namespace std;OFstd::functieusing namespace cv;cv::functie(volgorde belangrijk voor naamconflicten)
```


- In de main.cpp file van je project
 - 4) Aanpassen van je main body

```
int main(){
int main(int argc, const char** argv){
```

5) Capteren van inputgegevens

```
/// Adding a little help option and command line parser input
CommandLineParser parser(argc, argv,
        "{ help h usage ? | | show this message }"
        "{ parameter p | | (required) message parameter }"
);

if (parser.has("help")){
        parser.printMessage();
        return;
}
```


- In de main.cpp file van je project
 - 6) Verwerken inputparameters

- 7) Bemerkingen
 - type kan varieren: string, int, double, float, ...
 - geef in je help mee welke parameters < required > en
 < optional > zijn, en check enkel inhoud waar nodig

Opdrachten

 Heel uiteenlopende beeldverwerkingstechnieken op basis van bestaand onderzoek binnen de EAVISE onderzoeksgroep

Datum	Uur + Locatie	Opdracht
19/10/2018	8U15 - 10U15 / A212	Introductiezitting + initiatie OpenCV
26/10/2018	8U15 - 10U15 / A212	Morphologische operatoren
09/11/2018	8U15 - 10U15 / A212	Color space manipulatie
16/11/2018	8U15 - 10U15 / A212	Template matching
23/11/2018	8U15 - 10U15 / A212	Keypoint detection and matching
30/11/2018	8U15 - 10U15 / A212	Machine learning: Naive Bayes, kNN, SVM
07/12/2018	8U15 - 10U15 / A212	Advanced object detection: boosted cascades, HOG+SVM
14/12/2018	8U15 - 10U15 / A212	Deep learning
21/12/2018	8U15 - 10U15 / A212	Deep learning

Problem solving in OpenCV

- OpenCV online documentatie
 - http://docs.opencv.org/master/
 - Zoekfunctie rechts bovenaan
 - Opgedeeld per module
- OpenCV questions & answers
 - http://answers.opencv.org/questions/
- Bij problemen
 - 1. Eerst denken → Wat doe ik en wat kan er verkeerd zijn?
 - 2. http://www.google.be
 - 3. Zorg dat je oplossingen zoekt voor OpenCV 3.x
 - 4. Indien dan niet werkt → vraag hulp

Problem solving in OpenCV

Segmentation fault`

- Zowat de meest voorkomende melding binnen OpenCV
- Meteen dan ook door studenten het meest opgemerkte en geprogrammeerde problem, dat vrij eenvoudig te debuggen is

Hoe oplossen

- Meestal 2-3 regels hoger staat een effectieve foutmelding
- Zoek naar ASSERT() of .type() error
- Indien geen extra info, start met waarden te visualiseren
 - cout << "foutboodschap" << endl;
 - cerr << "foutboodschap" << endl;
 - .type(), .size(), .empty()

OpenCV specifics

OpenCV coordinate system

Toegang tot beeldpixels

.at<template>(row,col)

.at<template>(y,x)

CV_8S -> schar / CV_8U -> uchar

CV_16S -> short / CV_16U -> ushort

CV_32S -> int / CV_32F -> float

CV 64F -> double

 Opgelet, niet elke functie werkt via het row,col principe

Size(width, height) -> Size(x,y)
Point(col, row) -> Point(x, y)

- waitKey()
 - · interrupt caller
 - zorgt voor een verwerking van input signalen
 - # millisec / 0

RGB versus BGR

- Normaal RedGreenBlue
- OpenCV BlueGreenRed
- split()

