January 9, 2022 By: KAM

finiteelementanalysis.org

CalculiX Simulation

For

Circular Plate Bending

Version 1.0

Published: January 9, 2022

January 9, 2022 By: KAM

finiteelementanalysis.org

Table of Contents

1.	Project Description	3
	Model Description	
3.	Material Data	3
4.	Simulation results	4
5.	Hand calculation	5
6.	Conclusion	6
7	Appendix	7

Revision history

Version Number	Comments
1.0	Original Publication

Special things to learn:

- Generating surfaces and applying a pressure load to the surface
- Using axisymmetric elements (CAX6)

finiteelementanalysis.org

1. Project Description

The project pertains to the simulation of a simply supported circular plate with radius 80mm and thickness 10 mm subjected to a uniform pressure load of 5.25 N/mm². The results are compared with an analytical solution.

2. Model Description

The plate is modeled using axisymmetric elements such that a section of the plate is considered as a model as shown below.

3. Material Data

We are using Steel as or material

$$E = 210 \times 10^3 MPa$$
$$v = 0.3$$

finiteelementanalysis.org

4. Simulation results

The simulation results are shown below

finiteelementanalysis.org

5. Hand calculation

Circular plate under uniform load

r = radius of circular plate, (m, in)

p = uniform loading, (N/m², lbs/in²)

v = Poisson's ratio (assumed to be 0.3)

E = Young's modulus, (N/m2, lbs/in2)

t = plate thickness, (m, in)

 $\sigma_m = \text{maximum stress}, (N/m^2, Ibs/in^2)$

y_m = maximum deflection, (m, in)

Circular plate, uniform load, edges simply supported equation and calculator.

Stress At Center

$$\sigma_{\rm m} = \frac{3(3+v)pr^2}{8t^2} = \frac{1.238pr^2}{t^2}$$

Deflection at center, v = 0.3

$$y_{\rm m} = \frac{(5+v)pr^4}{64(1+v)D} = \frac{0.696pr^4}{Et^3}$$

D = flexural rigidity = $Et^3/(12 * (1 - v^2))$

Inputs

$$p := 5.25 \frac{N}{mm^2}$$

t := 10 mm

E := 210 GPa

r := 80 mm

Results

$$Y_{m} := \frac{0.696 \cdot p \cdot r^{4}}{E \cdot t^{3}} = 0.7127 \text{ mm}$$

$$\sigma_{\text{max}} := \frac{1.238 \cdot p \cdot r^2}{t^2} = 415.968 \text{ MPa}$$

January 9, 2022 By: KAM

finiteelementanalysis.org

6. Conclusion

The plate was successfully modeled and the simulation and hand calculations are very close.

Modeling approach	Deflection (mm)	Stress (MPa)
Simulation	0.726	429
Hand calculation	0.713	416

January 9, 2022 By: KAM

finiteelementanalysis.org

7. Appendix

```
**
     Structure: disk under uniform load modeled with
**
     CAX6 elements
**
*NODE, NSET=Nall
1,0.00000e+01,1.00000e+01,0.00000e+01
85,8.00000e+01,2.50000e+00,0.00000e+01
*ELEMENT, TYPE=CAX6, ELSET=Eall
1,1,2,3,4,5,6
. . .
32,49,79,83,82,84,85
*Elset, elset=TOPELEMENTS, generate
1,15,2
*SURFACE, TYPE=ELEMENT, NAME=TOPSURFACE, internal
TOPELEMENTS, S3
*BOUNDARY
83,2,2
*MATERIAL, NAME=EL
*ELASTIC
210000.,.3
*SOLID SECTION, ELSET=Eall, MATERIAL=EL
0.01
**
*STEP
*STATIC
*Dload
TOPSURFACE, P, 5.25
*NODE PRINT, NSET=Nall
*EL PRINT, ELSET=Eall
*NODE FILE
*EL FILE
*END STEP
```