

INTRO

Datasets

Main - Wildfires, location, dates, duration, size, cause, etc

2.3 Million US Wildfires (1992-2020) 6th Edition

Spatial wildfire occurrence data for the United States, 1992-2020

https://www.kaggle.com/datasets/behroozsohrabi/us-wildfire-records-6th-edition?select=data.csv

Complementary - Weather and topography info

Predict Droughts using Weather & Soil Data

https://www.kaggle.com/datasets/cdminix/us-drought-meteorological-data

Final - Working file

Merged and cleaned dataset		
Year range	2000 - 2020	
Wildfires count	1.7 million	
Location	Continental US (48 states)	

Problem

Wildfires impact

- Human: health, lives, property
- Wildlife: ecosystems, biodiversity

- Costs:
 - Avg. Acres per year: 5.7 million
 - Avg. Spent per year: US\$ 1.6 billion

https://www.kaggle.com/datasets/dylanfox10/federal-wildfires-acres-cost-temp-19852020

Objectives

 Understand trends of wildfires and climate in the US

- Use machine learning/deep learning models to predict the CAUSE of the wildfires:
 - Lead to more prevention opportunities, saving money, lives & environment
 - Help solving undetermined causes (27%)

OVERVIEW

Wildfires x State

1. California - 182k

- 2. Texas 167k
- 3. Georgia 121k
- 4. New York 94k
- 5. North Carolina 91k

Size & Duration

- Majority of fires:
 - o "Small" 86,25% < 10 acres
 - Put out the same day (≈ 90%)

Data Cleaning

Feature Engineering/Editing

Data Modelling

- Removing unnecessary columns
- Joined datasets, removed fires missing climate data
- Cleaned categorical variables
- Filled in NA's based on other data

- Encoded and 'categorised' necessary categorical features
- Combined categorical groups based on confusion matrices created by models
- Refined imbalanced dataset using under- and over- sampling methods.

We ran and evaluated various models, using them to refine the dataset and determine the best model:

- Logistic regression
- Decision Tree
- Neural Network
- Random Forest

MODELS

Logistic Regression

- A type of algorithm utilized for prediction by assuming a linear relationship between the input features (columns) and the output classes
- It assigns weights (coefficients) to the different features, enabling a clear understanding of their impact on the prediction
- Considered a white-box baseline model, logistic regression serves as an excellent starting point due to its simplicity in interpretation. It establishes a benchmark for evaluating more sophisticated models

& Neural Networks

- Inspired by the functioning of the human brain, a neural network comprises interconnected nodes (neurons) organized in layers
- As a deep learning model, neural networks are more complex, also assigning weights to input features and utilizing various activation functions
- Logistic regression can be conceptualized as a single-layer neural network. Logistic functions are often used as activation functions in neural network hidden layers

Decision Tree

- Whitebox model
- Model splits data based on conditions for each 'node', until a classification can be made
- First, calculates the 'root node'
- Then, refines values, orders, and levels

Random Forest

- An 'ensemble' of decision trees
- Each tree is built using a different random sample of the dataset
- Each tree may predict a different class for a data point
- The 'majority class' prediction will be returned as the random forest output

Confusion Matrix

 Neural network/logistic regression - 1st attempt

True vs Predicted

Was not able to predict:'Firearms', 'Fireworks','Minor', 'Smoking'...

 Most of predictions mapped to 'Undetermined'

Random Forest model with Over-sampling

Clearly shows

better classification

Models

Model	F1-Score
Logistic Regression	0.37
Decision Tree, with 'oversampling'	0.87
Neural Network	0.57
Balanced Random Forest, with 'oversampling'	0.64
Random Forest	0.59
Random Forest, with 'oversampling'	0.90

An evaluation metric which combines measures of precision (how well the model can identify an instance of a class) and recall (how well the model can identify all instances of a class).

A method to balance sample size of categories, by creating false data for categories of smaller sample size.

Target variable: NWCG General Cause

Initial Causes Final causation groups Arson Arson Debris and open burning Debris and open burning Firearms and explosives use Firearms and explosives use Fireworks **Fireworks** Natural Natural Recreation and ceremony Recreation and ceremony Equipment and vehicle use Power Infrastructure-related causes generation/transmission/distribution Railroad operations and maintenance Misuse of fire by a minor 'Erratic' - erratic behaviours **Smoking** Other causes Undetermined (removed) Missing data/not specified/undetermined)

Random Forest Model Evaluation

Class	f1-score
Arson	0.83
Debris and open burning	0.73
Erratic behaviour	0.94
Firearms and explosives use	0.99
Fireworks	0.99
Infrastructure-related causes	0.85
Natural	0.93
Recreation and ceremony	0.96

How important the data features are in determining the right class

How well each class can be predicted

Feature	Importance
Day of Year	0.14
Elevation	0.13
County, State	0.12
Temperature	0.11
Wind Speed	0.10
Fire Size	0.09
Precipitation	0.08
Fire Year	0.08
State	0.08
Day of Week	0.05
Duration	0.02

CLASSIFICATION INSIGHTS

Precipitation & Elevation

- Human-related fires: drier weather
- Natural fires: higher elevation

Temperature & Wind

- Human-related fires: higher wind speed
- Natural fires & Fireworks: higher temperature

60

40

20

0

Arson

Debris and

open burning

Erratic

Firearms and

explosives use

Fireworks

Infrastructure-

related causes

Natural

Recreation

and ceremony

4th of July...

Specific

Size & Duration

- Firearms & Explosives tend to generate bigger fires
- However, in total, Natural fires burnt more acres and, on average, are harder(take longer) to put out

Recreation & Ceremony

Recreational fires exhibit twice the frequency of occurrence between Sunday (highest - 14k) and Wednesday (lowest -7k)

In contrast, other fire causes do not demonstrate such notable variations between different days of the week

Arson & Erratic Over Years

Significant decline in the occurrences of two causes:

Arson: Potentially attributed to its classification as a felony, punishable by imprisonment and fines.

Erratic (Smoking + Minor): Potentially influenced by a decrease in the number of people smoking.

State-wise info

APPLICATION & PROSPECTS

Example of model use

- Predicting the 'undetermined' data removed earlier
- Good
 distribution of
 these
 predictions

Conclusions

- Random Forest, with over-sampling to balance the dataset, is the best model to predict wildfire causes in the US
- Understanding causes will save money, wildlife, lives, and the environment

Future Work

- Application to other locations/worldwide
- Further refinement to hyperparameters of Random Forest model
- Link more datasets, e.g. wildlife populations

Thank You!

Ana Cahet www.linkedin.com/in/anacahet

Rachel Star www.linkedin.com/in/rachelstar/

