- Name-Auushman Bhatt
Tutorial-1 (1) Name-Ayushman Brau Section-AI & DS
DAA Class Koll No-21/2017
Answer 1 Asymptotic Notation: Asymptotic Notations are the mathematical notations used to describe the running time
Answer I Asymptotic Notation: Asymptotic Harmoing time
mathematical notations used to describe the
of an algorithm.
Of an algorithm. Different types of Asymptotic Notation:
$f(n) = O(g(n)) \text{ if } f(n) \leq C * g(n)$ $f(n) = O(g(n)) \text{ if } f(n) \leq C * g(n)$
(1) Omen Natation (1) - IT represents
$f(n) = \Omega (g(n)) \text{ if } f(n) > C * g(n)$
3 Theta Notation (0) - It represents upper and lower bound,
H +:
that is average bound of algorithm.
$f(n) = O(g(n)) \text{ if } C_1 * g(n)) \leq f(n) \leq (2*(g(n)))$
Answer 2 for (i = 1 to n) = i=1
\frac{1=2}{3}
i = i * 2;
$ \begin{cases} i = 8 \\ i = 16 \end{cases} $
This Course GP
It is forming a GP. $a_n = a_1^{n-1}$ $n = a_1^{k-1}$ $n = a_1^{k-1}$
$a_n = a_1$ $n = a_1 + a_2$
$\log n = \log 2^{k-1}$
$\log n = (k-1)\log 2$
$k = \log n + 1$: Time Complexity = $O(\log n)$
7 T(n) = 3T(n-1) if $n > 0$, otherwise 1

Answer 3 T(1) = 3T(0) [T(0) = 1] $T(1) = 3 \times 1$ $T(2) = 3T(1) = 3 \times 3 \times 1$

$$T(3) = 3 \times T(2) = 3 \times 3 \times 3$$

$$T(n) = 3 \times 3 \times 3 \times \dots$$
 ntimes
= $3^n = 0(3^n)$
Hence, time complexity = $0(3^n)$

Answer
$$\frac{4}{7}$$
 $T(n) = 2T(n-1)-1$ if $n > 0$, otherwise 1

 $T(0) = 1$
 $T(1) = 2T(0)-1$
 $T(1) = 2-1=1$
 $T(2) = 2T(1)-1$
 $T(3) = 212T(2)-1$
 $= 2-1=1$

Answer 5 int
$$i=1$$
; $s=1$; while $(s \le n)$

while $(s \le n)$
 $s=s+i$; $s=$

Constally englished with all

11-10-11

while
$$(s \le n)$$

i=2

i=3

s=1+2+3

i=4

s=s+i;

printf("#");

Loop ends when $s > n$
 $1+2+3+4+...+k > n$
 $\frac{k(k+1)}{2} > n$

i=1 S=1

void function (int n) int & count = 0; for (int i=1; i*i <=n; i++) count ++; i = kLoopiends when i*i>n k*k>n $k^2 > n$ $k > \sqrt{n}$ $O(n) = \sqrt{n}$ Time Complexity = O (Vin) Answer 7 void function (int n) inti,i, k, count = 0; for (i=n/2; i <=n; i++) for(j=1;j <=n;j=j*2)for (k=1; k<=n; k=k*2) count ++; · 1st Loop -> i=n/2 ton, i++ = 0 (n/2) = 0 (n)2nd Loop -> j=1 to n, j=j*2
(Nested) = n (") 0 = (m) = 10 = · 3rd Loop -> k=1 ton, k= 1 2 K=1(Nested) $=0(\log n)$ Total Time Complexity = O(nxlognxlogn) = O(nlog2n)

Answer 8 function (int n), Eif (n == 1) return; — 1 for (inti=1 to n)

{ for (inti=1 to n) -- n²

{ printf("*");} Recurrence Relation 3 function(n-3); — T(n-3) $T(n) = T(n-3) + n^2$ T(1)=1 $\rightarrow T(4) = T(4-1) + 4^2 = T(1) + 4^2 = 1^2 + 4^2$ \rightarrow T(7)= T(7-3)+ $\P7^2 = 1^2 + 4^2 + 7^2$ \rightarrow T(10)=T(10-3)+10²=1²+4²+7²+10² So, $T(n) = 1^2 + 4^2 + 7^2 + 10^2 + \dots + n^2 = n(n+1)(2n+1) = 0(n^3)$ also for terms like T(2), T(3), T(5)So, Time Complexity = O(n3) Answer 9 void function (int n) = 1 = 1 > i= 1 > i= 1 ton for (int i = 1 to n) — n $= 2 \rightarrow j = 1$ to n $= 2 \rightarrow j = 1$ to n $= 3 \rightarrow j = 1$ to n $= 3 \rightarrow j = 1$ to n $= 4 \rightarrow j = 1$ to n $= 4 \rightarrow j = 1$ to n .. So, for i upton it will take n2 ++iSo, $T(n)=O(n^2)$ Time Complexity = 0 (n2) Answer 10 $f_1(n) = n^k$, $f_2(n) = C^n$ Asymptotic relationship between f1 and f2 is Big-O. i.e., $f_1(n) = O(f_2(n)) = O(C^n)$ as n < G * C" [G is some constant]. $(a_1 \circ b_1) = 0$