Formulario ESTADISTICA DESCRIPTIVA

(VARIABLE UNIVARIADA)

1. Medidas para construir tablas de frecuencia:

- \rightarrow Numero de intervalos segun Sturges: $k = 1 + 3, 3 \log(n)$
- ightarrow Numero de intervalos segun criterio de raiz cuadrada: $\mathbf{k} = \sqrt{\mathbf{n}}$
- $\rightarrow Rango: R_x = X_{max} X_{min}$
- \rightarrow Amplitud o Anchura de clase: $c = \frac{R_x + a}{k}$

2. Medidas Descriptivas

> Medidas de Tendencia Central

- \rightarrow Media Aritmetica: $\overline{x} = \frac{\sum_{i=1}^{k} x_i n_i}{n}$
- \rightarrow Mediana: $Me = L'_{i-1} + \frac{\frac{n}{2} N_{i-1}}{n_i}c_i$
- $\rightarrow \textit{Moda} \colon \textit{Mo} = L'_{i-1} + \frac{n_i n_{i-1}}{(n_i n_{i-1}) + (n_i n_{i+1})} c_i$
- \rightarrow Media Geometrica: $G = \sqrt[n]{\prod_{i=1}^k x_i^{n_i}}$
- \rightarrow Media Armonica: $H = \frac{n}{\sum_{i=1}^{k} \frac{n_i}{x_i}}$
- \rightarrow Media Cuadratica: $MC = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 * n_i}{n}}$
- \rightarrow Media Ponderada: $\overline{x_p} = \frac{\sum_{i=1}^k x_i p_i}{\sum_{i=1}^k p_i}$
- \rightarrow Relacion Entre Medias: $H \leq G \leq \overline{x}$
- \rightarrow Relacion Empirica Media Mediana Moda: $\overline{x} -$ Mo $\approx 3(\overline{x} -$ Me)

> Medidas de Posición:

$$\rightarrow$$
 Cuartiles: $Q_j = L'_{i-1} + \frac{j\frac{n}{4} - N_{i-1}}{n_i}c_i$

$$\rightarrow$$
 Deciles: $D_j = L'_{i-1} + \frac{j\frac{n}{10} - N_{i-1}}{n_i}c_i$

$$\rightarrow Percentiles: P_j = L'_{i-1} + \frac{j \frac{n}{100} - N_{i-1}}{n_i} c_i$$

> Momentos:

$$\rightarrow$$
 Respecto al origen: $M_r = \frac{\sum_{i=1}^k x_i^r n_i}{n}$, $r = 1, 2, 3, 4 \dots$

$$ightarrow$$
 Respecto a la media: $m_r = rac{\sum_{i=1}^k (x_i - \overline{x})^r n_i}{n}$, $r = 1, 2, 3, 4$...

$$ightarrow$$
 Respecto a un punto cualquiera: $M'_r = \frac{\sum_{i=1}^k (x_i - a)^r n_i}{n}$, $r = 1, 2, 3, 4$...

Medidas de Dispersión:

$$\rightarrow Rango: R_x = X_{max} - X_{min}$$

$$ightarrow$$
 Rango Cuartilico: $\mathbb{Q} = RC = \mathbb{Q}_3 - \mathbb{Q}_1$

$$ightarrow Rango Semi - Cuartilico: \frac{RC}{2} = (\mathbb{Q}_3 - \mathbb{Q}_1)/2$$

$$ightarrow$$
 Rango Percentilico: $ho =
ho_{90} -
ho_{10}$

$$ightharpoonup$$
 Desviación Mediana: $DMe_x = \frac{\sum_{i=1}^k |x_i - Me| n_i}{n}$

$$ightarrow Desviación Media: DM_x = \frac{\sum_{i=1}^{k} |x_i - \overline{x}| n_i}{n}$$

$$\rightarrow Varianza: \quad S_x^2 = \frac{\sum_{i=1}^k (x_i - \overline{x})^2 n_i}{n} = \frac{\sum_{i=1}^k x_i^2 n_i}{n} - \overline{x}^2$$

$$ightarrow$$
 Desviación Estandar: $S_x = \sqrt{S_x^2}$

$$ightarrow$$
 Coeficiente de Variación: $CV_x = \frac{S_x}{|\overline{x}|}$

$$\rightarrow Relaciones \ Empiricas: \ \ 0 \leq DMe_x \leq DM_x \leq S_x; \qquad DM = \frac{4}{5} \ S_x \leq \frac{1}{2} R_x; \qquad \frac{\mathbb{Q}}{2} = \frac{2}{3} S_x$$

Medidas de Sesgo o Asimetría:

$$ightarrow$$
 Coeficiente de Pearson: $Cas_1 = \frac{\overline{x} - Mo}{S_x}$; $Cas_2 = \frac{3(\overline{x} - Me)}{S_x}$

→ Coeficiente de Bowley:
$$Cas_3 = \frac{(\mathbb{Q}_3 - \mathbb{Q}_2) - (\mathbb{Q}_2 - \mathbb{Q}_1)}{\mathbb{Q}_3 - \mathbb{Q}_1}; \quad Cas_4 = \frac{(\rho_{90} - \rho_{50}) - (\rho_{50} - \rho_{10})}{\rho_{90} - \rho_{10}}$$

$$\rightarrow$$
 Coeficiente de Fisher: $Cas_5 = \frac{m_3}{S_3^2}$

> Medidas de Curtosis o Apuntamiento:

$$ightharpoonup$$
 Coeficiente en función de momentos: $K_1 = \frac{m_4}{(m_2)^2}$; $K_2 = K_1 - 3$

$$ightharpoonup$$
 Coeficiente de Curtosis de Kelly: $K_3 = \frac{\mathbb{Q}_3 - \mathbb{Q}_1}{2(\rho_{90} - \rho_{10})}$

