Деревья поиска. Задачи

Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2023

Дано подвешенное корневое бинарное дерево. Как за линейное время проверить, что оно является деревом поиска?

Задача 1 (Решение)

Дано подвешенное корневое бинарное дерево. Как за линейное время проверить, что оно является деревом поиска?

Решение:

- Учимся считать максимум и минимум на поддеревьях
- Проверяем для каждой вершины, что все в порядке

Как в дереве поиска искать максимальный и минимальный элементы? Как находить наименьший элемент, больший x, лежащий в дереве? Может понадобиться хранить дополнительное поле в каждой вершине.

Задача 2 (Решение)

Как в дереве поиска искать максимальный и минимальный элементы? Как находить наименьший элемент, больший x, лежащий в дереве? Может понадобиться хранить дополнительное поле в каждой вершине.

Решение:

- Чтобы найти максимальный элемент спускаемся всегда вправо, пока правый сын существует
- Минимум аналогично

Пусть даны два AVL-дерева T_1 и T_2 , причём все ключи T_1 из них строго меньше всех ключей T_2 . Предложите алгоритм построения AVL-дерева, множество ключей которого совпадает с объединением множеств ключей T_1 и T_2 , за время $O(\log(|T_1|+|T_2|))$.

Задача 3 (Решение)

Пусть даны два AVL-дерева T_1 и T_2 , причём все ключи T_1 из них строго меньше всех ключей T_2 . Предложите алгоритм построения AVL-дерева, множество ключей которого совпадает с объединением множеств ключей T_1 и T_2 , за время $O(\log(|T_1|+|T_2|))$.

Решение:

• Пусть $h(T_1) \le h(T_2)$. Удалите из T_1 максимальный элемент. Пройдите от корня T_2 вправо до той глубины, куда нужно подвесить T_1 . Верните удалённый элемент, подвесьте к нему T_1 и необходимое поддерево T_2 .

В изначально пустое множество по одному добавляются или удаляются элементы. После выполнения каждого запроса сообщать медиану текущей версии множества. Асимптотика: $O(\log n)$ на запрос, где n — текущий размер множества.

Задача 4 (Решение)

В изначально пустое множество по одному добавляются или удаляются элементы. После выполнения каждого запроса сообщать медиану текущей версии множества. Асимптотика: $O(\log n)$ на запрос, где n — текущий размер множества.

Решение:

• Вспомним как мы делали это с кучами

 K изначально пустому множеству чисел S поступают запросы трёх типов:

- а) добавить x в S
- 6) удалить x из S
- в) найти сумму элементов S, значения которых лежат в отрезке [I,r]
- г) прибавить x ко всем элементам S

Отвечайте на каждый запрос за $O(\log q)$, а на запрос типа г) — за O(1)

Задача 5 (Решение)

K изначально пустому множеству чисел S поступают запросы трёх типов:

- а) добавить x в S
- б) удалить х из S
- в) найти сумму элементов S, значения которых лежат в отрезке [I,r]
- Γ) прибавить X ко всем элементам S

Отвечайте на каждый запрос за $O(\log q)$, а на запрос типа г) — за O(1)

Решение:

- В каждой вершине дерева храните сумму с поддерева.
- Также можно хранить отдельную константу, равную прибавляемому числу во всём дереве

