Introduction

Repeated measures:

- Defined broadly as data in which the response of each experimental unit is observed on multiple occasions or under multiple conditions
 - the response could be univariate or multivariate
 - "multiple" usually means "more than two"

Longitudinal data:

• Generally refers to data in which the repeated measurement factor is time

Using these definitions, longitudinal data are a subset of repeated measures data

Introduction

An alternative distinction is sometimes made:

Longitudinal:

• data collected over an extended period of time, often under uncontrolled conditions

Repeated measures:

• data collected over a relatively short time period, frequently under experimental conditions

Using these definitions, repeated measures data can be regarded as a subset of longitudinal data

As a result, we shall use "repeated measures" and "longitudinal" somewhat interchangeably

Strengths of Longitudinal Studies

- Economizes on subjects
- Subjects serve as their own controls
- Between-subjects sources of variability are excluded from the experimental error
- Provide more efficient estimators of some parameters than cross-sectional designs with the same number and pattern of measurements
- Information is more reliably quantified than in a cross-sectional study
- Provide information concerning individual patterns of change

Difficulties of Longitudinal Studies

- Other than for multivariate normal data, analysis methods are not as well-developed
- Lack of software
- Existing methods are often computationally intensive
- Dependence of multiple measurements
- Unbalanced designs due to missing data and/or attrition
- Time-dependent covariates
- Carry-over effects
 (primarily of concern when the repeated measurement factor is condition or treatment, rather than time)

General Notation

- n subjects (indexed by $i = 1, \ldots, n$)
- t_i measurement times for the *i*th subject (indexed by $j = 1, \ldots, t_i$)
- p covariates (indexed by k = 1, ..., p) between-subject covariates (time-independent) within-subject covariates (time-dependent)
- y_{ij} is the response from subject i at time j, for $i = 1, ..., n, j = 1, ..., t_i$
- x_{ij} is the corresponding $p \times 1$ vector of covariates
- Since the data may be incomplete:

$$\delta_{ij} = \begin{cases} 1 & \text{if } y_{ij} \text{ and } x_{ij} \text{ are observed} \\ 0 & \text{otherwise} \end{cases}$$

General Notation

Subject		Missing Indicator	Response	Covariates		
1	1	δ_{11}	y_{11}	x_{111}	• • •	x_{11p}
	•	•	• •	•	٠.	•
	j	δ_{1j}		x_{1j1}		x_{1jp}
	•	•	•	•	٠.	•
	t_1	δ_{1t_1}	y_{1t_1}	x_{1t_11}	• • •	x_{1t_1p}
i	1	δ_{i1}	y_{i1}	x_{i11}	• • •	x_{i1p}
	•	•	•	•	٠	•
	j	δ_{ij}	y_{ij}	x_{ij1}		x_{ijp}
	•	: :	• •	•	٠.	•
	t_i	δ_{it_i}	y_{it_i}	x_{it_i1}	• • •	x_{it_ip}
n	1	δ_{n1}	y_{n1}	x_{n11}	• • •	x_{n1p}
	•	:	•	•	٠	•
	j	δ_{nj}	y_{nj}	x_{nj1}		x_{njp}
	•	•	•	•	٠.	•
	t_n	δ_{nt_n}	y_{nt_n}	x_{nt_n1}	• • •	x_{nt_np}

Factors Involved in the Analysis of Repeated Measurements

- Nature of the response variable:
 - continuous, normally-distributed
 - categorical (binary, polytomous, ordinal, count)
 - continuous, nonnormal
- Number of subjects (n)
- Number of time points per subject (t_i)
 - $t_i = t$, no missing data
 - varying number of observations per subject
- Number and type of covariates:
 - one sample (p=0)
 - multiple samples (one categorical covariate)
 - multiple samples (p categorical covariates)
 - regression (at least one continuous covariate)
 - time-dependent covariates

Notation for Special Cases

ullet A common set of t measurement times

Subject		Missing Indicator	Response	Covariates		
1	1	δ_{11}	y_{11}	x_{111}		x_{11p}
	•	•	• •	•	٠.	•
	j	δ_{1j}	y_{1j}	x_{1j1}		x_{1jp}
	•	•	•	•	٠.	•
	t	δ_{1t}	y_{1t}	x_{1t1}	• • •	x_{1tp}
i	1	δ_{i1}	y_{i1}	x_{i11}	• • •	x_{i1p}
	•	•	•	•	٠	•
	\dot{j}	δ_{ij}	y_{ij}	x_{ij1}		x_{ijp}
	•	•	•	•	٠.	•
	t	δ_{it}	y_{it}	x_{it1}	• • •	x_{itp}
n	1	δ_{n1}	y_{n1}	x_{n11}	• • •	x_{n1p}
	•	•	•	•	٠.	•
	\dot{j}	$\dot{\delta_{nj}}$	y_{nj}	x_{nj1}		x_{njp}
	•	•	•	•	٠.	•
	$\overset{\cdot}{t}$	$\dot{\delta_{nt}}$	y_{nt}	x_{nt1}		x_{ntp}

Notation for Special Cases

Multiple Samples:

- In some applications, repeated observations are obtained from s subpopulations (groups)
 - group h contains n_h subjects $(\sum_{h=1}^s n_h = n)$
- The s groups may be defined by the:
 - \bullet s levels of a single covariate
 - cross-classification of several variables
- In terms of the general notation:
 - the s groups can be described in terms of p=s-1 categorical and time-independent covariates
 - y_{hij} now denotes the response at time j from subject i in group h

Notation for the Special Case of Multiple Samples

		Time Point					
Group	Subject	1	• • •	j		t	
1	1	y_{111}	• • •	y_{11j}	• • •	y_{11t}	
	•	•	• •	•	•••	•	
	i	y_{1i1}		y_{1ij}		y_{1it}	
	•	•	• •	•	• •	•	
	n_1	y_{1n_11}	• • •	y_{1n_1j}	• • •	y_{1n_1t}	
h	1	y_{h11}		y_{h1j}	• • •	y_{h1t}	
	•	•	• • •	•	• • •	•	
	i	y_{hi1}	• • •	y_{hij}		y_{hit}	
	•	•	٠.	•	• • •	•	
	n_h	y_{hn_h1}	• • •	y_{hn_hj}	• • •	y_{hn_ht}	
s	1	y_{s11}		y_{s1j}		y_{s1t}	
	•	•	• • •	•	• • •	•	
	i	y_{si1}	• • •	y_{sij}	• • •	y_{sit}	
	•	•	٠.	•	٠.	•	
	n_s	y_{sn_s1}	• • •	y_{sn_sj}	• • •	y_{sn_st}	

Notation for Special Cases

One Sample:

• In this case, the data can be displayed in an $n \times t$ matrix, as follows:

Subject		Time Point					
	1		j		t		
1	y_{11}		y_{1j}	• • •	y_{1t}		
: :	•	•••	•	•••	•		
i	y_{i1}		y_{ij}		y_{it}		
•	•	•	•	•	•		
n	y_{n1}		y_{nj}	• • •	y_{nt}		

• The corresponding missing value indicators are defined by

$$\delta_{ij} = \begin{cases} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

Outline of Topics

Types of response variables:

- continuous, normally-distributed
- categorical (binary, polytomous, ordinal, count)
- continuous, nonnormal

Types of statistical methodology:

- normal-theory
- weighted least squares (GSK)
- randomization model (CMH)
- generalized linear model extensions
- nonparametric

Types of data:

- one sample (p=0)
- multiple samples (one categorical covariate)
- multiple samples (p categorical covariates)
- regression (quantitative covariates)