MQE: Economic Inference from Data: Module 3: Instrumental Variables

Claire Duquennois

6/9/2020

Even with fixed effects, certain types of unobservables can still bias our estimates.

For OVB to not be a problem, we want a treatment variable x_i where we know that there does not exist some omitted variable x_{ov} such that

- $ightharpoonup cor(x_i, x_{ov}) \neq 0$
- ▶ and $cor(y_i, x_{ov}) \neq 0$.

This is a tall order...

But if you try sometimes,

But if you try <u>sometimes</u>, you just <u>might</u> find,

But if you try <u>sometimes</u>,
you just <u>might</u> find,
you get what you need: a good instrumental variable.

An instrument for what?

I am interested in the relationship between y and x_1 .

The true data generating process looks like this:

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

- \triangleright x_i and x_2 are uncorrelated with ϵ
- x_i and x_2 they are correlated with each other such that $Cov(x_1, x_2) \neq 0$

So whats the problem?

you don't actually observe x₂.

Uh oh.

The problem:

The naive approach (but you of course know better then to do this...)

Regress y on just x_1 :

$$y_i = \beta_0 + \beta_1 x_1 + \nu$$

where

$$\nu = \beta_2 x_2 + \epsilon.$$

The problem:

$$\begin{split} \hat{\beta}_{1,OLS} &= \frac{cov(x_1, y)}{var(x_1)} \\ &= \frac{cov(x_1, \beta_0 + \beta_1 x_1 + \nu)}{var(x_1)} \\ &= \frac{cov(x_1, \beta_0) + cov(x_1, \beta_1 x_1) + cov(x_1, \nu)}{var(x_1)} \\ &= \frac{\beta_1 var(x_1) + cov(x_1, \nu)}{var(x_1)} \\ &= \beta_1 + \frac{cov(x_1, \nu)}{var(x_1)} \end{split}$$

 $cov(x_1, \nu) \neq 0 \Rightarrow \hat{\beta}_{1,OLS}$ is biased.

All is not lost!

An instrumental variable (IV) is a variable that

- ightharpoonup is correlated with the "good" or "exogenous" variation in x_1
- ▶ is unrelated to the "bad" or "endogenous" or "related-to-x₂" variation in x₁.

Formally

An IV is a variable, z that satisfies two important properties:

- ► $Cov(z, x_1) \neq 0$ (the first stage).
- $Cov(z, \nu) = 0$ (the exclusion restriction).

The First Stage

 $Cov(z, x_1) \neq 0$

- \triangleright z and x_1 are correlated
- the IV is useless without a first stage.

We are trying to get a $\hat{\beta}_1$ such that $E[\hat{\beta}_1] = \beta_1$. If our instrument is totally unrelated to x_1 , we won't have any hope of using it to get at β_1 .

The exclusion restriction

$$Cov(z, \nu) = 0$$

- \triangleright z has to affect y **only** through x_1 .
- ightharpoonup \Rightarrow $Cov(z,\epsilon)=0$ (because we've already assumed that x_2 is uncorrelated with ϵ).

The IV estimator

$$\hat{\beta}_{1,IV} = \frac{cov(z,y)}{cov(z,x)}$$

$$= \frac{cov(z,\beta_0 + \beta_1 x_1 + \nu)}{cov(z,x_1)}$$

$$= \beta_1 \frac{cov(z,x_1)}{cov(z,x_1)} + \frac{cov(z,\nu)}{cov(z,x_1)}$$

$$= \beta_1 + \frac{cov(z,\nu)}{cov(z,x_1)}.$$

With the exclusion restriction: $cov(z, \nu) = 0 \Rightarrow E[\hat{\beta}_{1,IV}] = \beta_1$ Woot Woot! We have an unbiased estimator!

Chasing Unicorns

- \triangleright z's that satisfy the first condition are easy to find, and we can test that $Cov(z, x_1) \neq 0$
- ightharpoonup z's that satisfy the exclusion restriction are rare and we cannot test that $Cov(z, \nu) = 0$ since we don't observe ϵ .

Chasing Unicorns

A good IV is not unlike a unicorn. It is quite powerful/magical as it will allow you to recover a consistent estimate of $\hat{\beta}_1$ in a situation that was otherwise hopeless.

Chasing Unicorns

It is also a rare, (some may argue imaginary) beast, that usually turns out to be a horse with an overly optimistic rider (author).

- be skeptical of instrumental variables regressions
- be wary of trying them yourself
- be prepared to convince people the exclusion restriction is satisfied

I generate some simulated data, with properties I fully understand:

The DGP: Y depends on two variables, X_1 and X_2 such that

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$$

- \triangleright x_1 and x_2 are correlated with $Cor(x_1, x_2) = 0.75$
- ightharpoonup z is correlated with x_1 such that $Cor(x_1, z) = 0.25$
- ightharpoonup z is not correlated with x_2 (so $Cor(x_2,z)=0$).

```
library(MASS)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.2
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018), stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
sigmaMat<-matrix(c(1,0.75,0.25,0.75,1,0,0.25,0,1), nrow=3)
sigmaMat
        [.1] [.2] [.3]
## [1,] 1.00 0.75 0.25
## [2,] 0.75 1.00 0.00
## [3.] 0.25 0.00 1.00
set.seed(3221)
ivdat<- as.data.frame(mvrnorm(10000, mu = c(0.0.0),</pre>
                     Sigma = sigmaMat))
names(ivdat) <- c("x_1", "x_2", "z")
cor(ivdat)
```

```
## x_1 x_2 z
## x_1 1.000000 0.753135403 0.237314050
## x_2 0.7531354 1.000000000 -0.008862925
## z 0.2373140 -0.008862925 1.00000000
```

```
ivdat$error<-rnorm(10000, mean=0, sd=1)
#The data generating process
B1<-10
B2<-(-20)
ivdat$Y<-ivdat$x_1*B1+ivdat$x_2*B2+ivdat$error
knitr::kable(head(ivdat))</pre>
```

Y	error	z	x_2	×_1
-9.253636	-0.6100699	0.6043023	0.8895539	0.9147512
1.736550	-0.9436084	1.6537624	0.7578459	1.7837077
11.994118	1.2663896	-0.0728647	-0.8811583	-0.6895438
-15.679784	0.1740300	0.2623387	1.0688671	0.5523528
38.493805	-0.5827891	0.6425111	-3.1155154	-2.3233713
4.483690	-0.6097235	0.2199799	-0.3597693	-0.2101972

```
simiv1<-lm(Y~x_1+x_2, data=ivdat)
simiv2<-lm(Y~x_1, data=ivdat)</pre>
```

How will our estimate of $\hat{\beta}_1$ in model 2 compare to the true β ?

 \Rightarrow Top Hat

```
stargazer(simiv1, simiv2, header=FALSE, type='latex', omit.stat = "all", single.row = TRUE)
```

Table 2

	Dependent variable:		
	(1)	(2)	
x_1 x_2	10.011*** (0.015) -20.009*** (0.015)	-5.233*** (0.134)	
Constant	0.016 (0.010)	0.079 (0.134)	
Note:	*p<0.1; *	**p<0.05; ***p<0.01	

- With the correctly specified model $E[\hat{\beta}_1] = \beta_1$.
- ▶ If I do not observe x_2 , the naive approach is biased.

Suppose there exists a variable z that satisfies the two conditions outlined above:

- $ightharpoonup Cov(z, V_1) \neq 0$ (the first stage).
- $Cov(z, \nu) = 0$ (the exclusion restriction).

Our simulated data includes z, a variable with these properties cor(ivdat\$z, ivdat\$x 1)

```
[1] 0.237314
```

#note: we can test this correlation because I am working with simulated data and observe \mathbf{x}_2 .
#In the wild \mathbf{x}_2 would be unobservable and you would have to argue that this condition holds.

ivdat\$nu<-B2*ivdat\$x_2+ivdat\$error
cor(ivdat\$z, ivdat\$nu)</pre>

I instrument my endogenous variable, x_1 , with my instrument z: $_{\mathtt{library(lfe)}}$

```
## Loading required package: Matrix
simiv3<-felm(Y~1|0|(x_1~z),ivdat)</pre>
```


- ▶ I get an unbiased estimate of β_1 !
- Careful: R² values get real funky (negative!?!) don't use.

Table 3

	Dependent variable:		
		Υ	
	Ol	LS	felm
	(1)	(2)	(3)
x_1	10.011*** (0.015)	-5.233*** (0.134)	
x_2	-20.009*** (0.015)		
'x_1(fit)'			10.766*** (0.878)
Constant	0.016 (0.010)	0.079 (0.134)	-0.036 (0.209)
R ²	0.995	0.133	-1.111
Adjusted R ²	0.995	0.133	-1.112
Noto:	*n<0.1: **n<0.05: ***n<0.01		

Note: *p<0.1; **p<0.05; ***p<0.01

2SLS:

How does β_{IV} uses the instrumental variable to retrieve an unbiased estimate?

To build intuition, let's look at the two-stage least squares (2SLS) estimator β_{2SLS} .

When we are working with only one instrument and one endogenous regressor, $\beta_{IV}=\beta_{2SLS}.$

2SLS:

2SLS proceeds in two (least squares regression) stages:

▶ the "first stage," a regression of our endogenous variable on our instrument

$$x_1 = \gamma_0 + \gamma_1 z + u.$$

• using the estimated $\hat{\gamma}$ coefficients we generate predicted values, \hat{x}_1 :

$$\hat{x}_1 = \hat{\gamma}_0 + \hat{\gamma}_1 z$$

▶ the "second stage" where we regress our outcome on the predicted values of the endogenous variable

$$y = \beta_0 + \beta_1 \hat{x}_1 + \epsilon$$

The first stage:

```
sim2slsfs<-felm(x_1~z,ivdat)
summary(sim2s1sfs)
##
## Call:
     felm(formula = x_1 \sim z, data = ivdat)
##
## Residuals:
      Min
              10 Median
                                     Max
## -3.6955 -0.6508 -0.0001 0.6500 3.7093
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.006807 0.009723 0.70
                                            0.484
              0.239464 0.009803 24.43 <2e-16 ***
## 2.
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9723 on 9998 degrees of freedom
## Multiple R-squared(full model): 0.05632 Adjusted R-squared: 0.05622
## Multiple R-squared(proj model): 0.05632 Adjusted R-squared: 0.05622
## F-statistic(full model):596.7 on 1 and 9998 DF, p-value: < 2.2e-16
## F-statistic(proj model): 596.7 on 1 and 9998 DF, p-value: < 2.2e-16
```

The second stage:

```
hatgamma0<-sim2slsfs$coefficients[1]
hatgamma1<-sim2slsfs$coefficients[2]
ivdat$hatx_1<-hatgamma0+hatgamma1*ivdat$z
sim2slsss<-felm(Y-hatx 1,ivdat)
```

The second stage:

```
hatgamma0<-sim2slsfs$coefficients[1]
hatgamma1<-sim2slsfs$coefficients[2]
ivdat$hatx_1<-hatgamma0+hatgamma1*ivdat$z
sim2slsss<-felm(Y-hatx_1,ivdat)
```


The second stage:

stargazer(simiv1, simiv2, simiv3, sim2slsss, header=FALSE, type='latex', omit.stat = "all", no.space=TRUE

Table 4

	Dependent variable:				
		Y			
	OL	OLS		elm	
	(1)	(2)	(3)	(4)	
x_1	10.011*** (0.015)	-5.233*** (0.134)			
x_2	-20.009*** (0.015)	()			
'x_1(fit)'	()		10.766*** (0.878)		
hatx_1			(0.070)	10.766*** (0.595)	
Constant	0.016 (0.010)	0.079 (0.134)	-0.036 (0.209)	-0.036 (0.141)	
Note:	*p<0.1; **p<0.05; ***p<0.01				

- ▶ Math Magic! $\hat{\beta}_{1,2SLS}$ consistently estimates β_1 and $\hat{\beta}_{1,2SLS} = \hat{\beta}_{1,IV}$!
- Note: The standard errors reported from the second stage of 2SLS will not be correct (because they are based on \hat{x}_1 rather than x_1).(There are ways to correct this but the math and coding is a bit complicated.)

The Reduced Form (and more cool IV intuition)

The **reduced form** regresses the outcome directly on the exogenous instrument (and any other exogenous variables if you have them):

$$y_i = \pi_0 + \pi_1 z + \eta$$

```
sim2slsrf<-felm(Y-z,ivdat)
stargazer(sim2slsfs, sim2slsss, sim2slsrf, type='latex', header=FALSE, omit.stat = "all")</pre>
```

Table 5

	Dependent variable:		
	×_1	Y	
	(1)	(2)	(3)
z	0.239***		2.578***
	(0.010)		(0.142)
hatx_1		10.766*** (0.595)	
Constant	0.007 (0.010)	-0.036 (0.141)	0.037 (0.141)
Note:	*1	o<0.1; **p<0.05;	***p<0.01

The Reduced Form (and more cool IV intuition)

We can recover $\hat{\beta}_1$ by taking the $\hat{\pi}_1$ from the reduced form and dividing it by $\hat{\gamma}_1$ from the first stage:

$$\hat{\beta}_1 = \frac{\hat{\pi}_1}{\hat{\gamma}_1} = \frac{2.578}{0.239} = 10.786$$

- ► Math Magic!
- Why does this work?

The Reduced Form (and more cool IV intuition)

We can recover $\hat{\beta}_1$ by taking the $\hat{\pi}_1$ from the reduced form and dividing it by $\hat{\gamma}_1$ from the first stage:

$$\hat{\beta}_1 = \frac{\hat{\pi}_1}{\hat{\gamma}_1} = \frac{2.578}{0.239} = 10.786$$

- ► Math Magic!
- Why does this work? We are taking the effect of z on y and scaling it by the effect of z on x₁ (since z affects y via x₁).

We saw the good. Now for the bad and ugly.

- ► The Forbidden Regression
- ► Weak Instruments

The Bad: The Forbidden Regression

Be weary of the **forbidden regression**!

People sometimes try to run a logit, probit, Poisson or some other non-linear regression as the first stage of a 2SLS procedure. This is a bad idea. Don't do it.

The Ugly: Weak Instruments

Recall that

$$\hat{\beta}_{IV} = \beta + \frac{cov(z, \nu)}{cov(z, x_1)}.$$

A weak instrument is an instrument with a weak first stage: $Cov(z, x_1)$, is small.

Why is this a problem?

The Ugly: Weak Instruments

A weak instrument will amplify any endogeneity that exists in your model.

For $E[\hat{\beta}_{IV}] = \beta_1$, we need $cov(z, \nu) = 0$ (the exclusion restriction) to hold.

Suppose this assumption is violated in a small way, meaning that $cov(z, \nu) \neq 0$ but that it was a vary small value.

If $cov(z, x_1)$ is also small, the violation of the exclusion restriction will get amplified leading to potentially severe bias in our estimator.

The Ugly: Simulation

I generate a simulated dataset with:

- ▶ a week first stage $cov(z, x_1) = 0.03$
- ightharpoonup a small violation of the exclusion restriction, $cov(z,x_2)=0.01$

```
## x_1 x_2 z

## x_1 0.98285285 0.74457303 0.02472936

## x_2 0.74457303 1.00432318 0.01277121

## z 0.02472936 0.01277121 0.98892020

ivdatwk$error<-rnorm(10000, mean=0, sd=1)

ivdatwk$nu=(-20)*ivdatwk$x_2*ivdatwk$error
```

The Ugly: Simulation

```
#The data generating process
B1<-10
B2<-(-20)
ivdatwk$Y<-ivdatwk$x_1*B1+ivdatwk$x_2*B2+ivdatwk$error

simivweakfs<-lm(x_1-z,ivdatwk)
simivweak<-felm(Y-1|0|(x_1-z),ivdatwk)
stargazer(simivweakfs,simivweak, type='latex', omit.stat = c("n", "adj.rsq", "rsq", "ser"), header=FALSE</pre>
```

Table 6

	Dependent variable:	
	x_1	Υ
	OLS	felm
	(1)	(2)
Z	0.025** (0.010)	
'x_1(fit)'		-0.415 (5.685)
Constant	0.007 (0.010)	0.137 (0.146)
F Statistic	6.295** (df = 1; 9998)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

The Ugly: Simulation

cov(ivdatwk\$z,ivdatwk\$x_1)

[1] 0.02472936

cov(ivdatwk\$z,ivdatwk\$nu)

[1] -0.2575614

We can see that $cov(z, x_1) = 0.02473$ and $cov(z, \nu) = -0.25756$ so

$$\hat{\beta}_{1,IV} = 10 + \frac{-0.25756}{0.02473} = -0.415 \neq \beta_1 = 10.$$

The Ugly: Weak Instruments

This is a major problem because:

- ▶ It is rare that an instrument would be perfectly independent of all confounding factors, and
- it is impossible to test the exclusion restriction.
- \Rightarrow be very cautious about results when there is a weak first stage.

What constitutes a "weak" instrument?

The standard benchmark is a first stage F-test that is less than 10.

Dealing with Multiples

See the lecture notes for example of how to deal with more complicated specifications:

- Control variables
- Multiple Instruments
- Multiple endogenous variables and multiple instruments

Unicorns and Work-horses

The real Siberian unicorn, Elasmotherium sibiricum, 29,000 BC.

Unicorns and Work-horses

IV estimations show up in two different types of situations:

- ► IV projects:
 - the validity of the instrumental variable is central to the identification strategy
 - can be very interesting because they are often looking at an important but highly endogenous variable
 - the validity of the causal claims, depends <u>heavily</u> on the validity of the instrument.
- Cameo appearances in other projects:
 - in randomized control trials (RCT)
 - ▶ in regression discontinuity (RD) projects
 - the random assignment of treatment is used as an instrument to estimate treatment effects

"Work Horse" IV intuition and medical trials (RCT)

Medical trials are a fantastic example of an application of instrumental variables:

- socially important (perhaps the most important application of IV to date)
- very clean experimental design

And this is a good segway to the RCT module.

The model for a medical trial:

$$y_i = \beta_0 + \beta_1 d_i + \epsilon_i.$$

- \triangleright y_i represents a medical outcome (continuous or discreet).
- $ightharpoonup d_i$ is generally a dummy variable (1 if treated and 0 if not).
- ▶ The error term, ϵ_i represents all other factors that affect the health outcome

This regression model corresponds to the potential outcome model with constant treatment effects:

$$y = dy_1 + (1 - d)y_0$$

 $y_0 = \beta_0 + \epsilon$
 $y_1 = y_0 + \beta_1$.

Our goal:

- estimate the effect that the treatment (say a pill) has on our outcome (say blood pressure)
- \blacktriangleright our hope is that β_1 is large and negative.

Options: Non-Experimental estimates:

- Selling the drug to the general population.
- Collect some data
- Regress blood pressure on whether or not you take the pill
- Problem:
 - people who take the pill are the ones who have high blood pressure to begin with!
 - We will likely get a positive estimate of β_1 (even with controls).

Options: A Medical Trial:

- randomly assign some patients to the treatment group and others to the control group.
- Treatment group is given the pill and told to take it
- Control group are given a placebo (or nothing at all).

Back in the old days: the **intention to treat** (or ITT) estimate:

- ightharpoonup Calculate $\bar{y}_{i,treat} \bar{y}_{i,control}$
- This is the equivalent to estimating $y_i = \beta_0 + \beta_1 d_i + \epsilon$ where $d_i = 1$ if in the treatment group and 0 if in the control group
- intention to treat because you compare the group that you intended to treat and the group that you do not intend to treat.

What is the problem with this?

Non-compliance:

- some (selected) people in the treatment group would fail to take the pill
- some (selected) people in the control group would obtain the pill from another source (even though they were not supposed to)

Non-compliance can bias in the estimate of β_1 .

How can this bias be corrected?

The "Work Horse" IV:

This is actually a simple IV problem:

- ▶ The instrument, z_i is the intention to treat:
 - $z_i = 1$ if you are assigned to the treatment group (we intend to treat you)
 - $z_i = 0$ if you are assigned to the control group (we do not intend to treat you)

Does z_i satisfies the two properties of a good instrument?

The "Work Horse" IV:

Does z_i satisfies the two properties of a good instrument?

- \triangleright z_i is randomly assigned so by construction will be uncorrelated with ν_i so $cov(z_i, \nu_i) = 0$ (the exclusion restriction).
- > z_i is correlated with d_i , because you are going to be more likely to take the pill if you are in the treatment group so $cov(z_i, d_i) \neq 0$ (the first stage).
- \Rightarrow z_i is a valid instrument for d_i and the IV estimator gives us a consistent estimate of β_1 , the effect of taking the pill on blood pressure.