Universidad Interamericana-Recinto Bayamón

Diseño de Sistemas Digitales

Examen 1

Reglas

- Permitido: Durante el desarrollo del examen puede utilizar lo siguiente: apuntes de clase (incluye videos en BB),
 ejercicios de laboratorio desarrollados y libro.
- <u>No permitido</u>: Navegar en Internet (a excepción de Blackboard), colaborar con otros estudiantes o cualquier otra persona. El examen es personal (solo tú)
- Si se encuentra partes del examen (código o texto) repetido en más de un estudiante, los estudiantes involucrados tendrán "F" en el examen.
- El examen tiene un tiempo de inicio y uno de fin. Exámenes entregados fuera del horario tendrán puntos de menos.
- Cumplir con lo establecido en la sección de "Entrega". La falla en cumplir esta regla conlleva a descontar puntos

Entrega:

- Se adjunta documento en formato Word donde responderá las preguntas del examen
 - o Coloque su nombre y firme ese documento
 - o Siga todas indicaciones de allí establecidas para las respuestas del examen.
 - Responda las preguntas
 - o Convierte el documento a PDF
- Utilizando Blackboard, suba los siguiente:
 - 1. El documento con las respuesta en formato PDF, con nombre de archivo; nombreApellido.pdf
 - Archivo comprimido con los códigos en verilog con el formato: nombreApellido.zip. Se adjuntara los siguientes archivos:
 - 3. Pregunta_1: sumador.v, restador.v, mux.v, registro.v, Top_1.v, Test_1.v
 - 4. Pregunta 2: comparador.v, contador.v, Top 2.v, Test 2.v

Ejercicios

1. Diseñe los módulos y simule en vivado el siguiente circuito

- a) Cree los siguientes módulos: sumador.v, restador.v, mux.v, registro.v, Top 1.v, Test 1.v
- b) Agregue al modulo Test 1.v el siguiente código para la simulación:

```
initial forever #10 clk = ~clk;
initial begin
//Initialize Inputs
clk = 0; clr = 1;
load = 0; sel =0;
A = 0; B = 0;
// Wait 40 ns for global reset to finish
#40;
#20 clr = 0; load=1; A=8; B=2;
#20 A=14; B=3;
#20 sel=1;
#20 A=12; B=4;
#20 sel=0;
#20 load=0;A=7;B=3;
#20 clr = 1;
end
initial
    #300 $finish;
```

2. Diseñe los módulos y simule en vivado el siguiente circuito

a) Cree los siguientes módulos: comparator.v, counter.v, Top_2.v, Test_2.v

b) El módulo counter (contador) tiene las siguientes características

Pin	Direction	Description
clk	input	Clock signal
reset	input	Reset=1 -> Count=0
ld	input	1= load (out =din)
en	input	1=count (out+1), 0=not count
din[7:0]	input	8-bit input vector
lim[7:0]	input	Roll over value (count restart when count=limit)
out[7:0]	output	4-bit output vector (the count)
Remenber		If ld=1 and en=1 -> count = din+1

c) Agregue al modulo Test_2.v el siguiente código para la simulación:

```
initial begin
clk = 0; clr = 1;
load = 0; lim =0;
A = 0; B = 0;
// Wait 20 ns
#20;
#20 clr = 0; lim = 4; A=12; B=4;
#140 load =1;
#20 A=8;
#20 A=5;
#40 A=3;
#20 A=2;;
#20 clr = 1;
end
initial
#320 $finish;
```