Data Mining for Business Project Yelp Customer Review_Sentiment Analysis

(A) Explore the data.

From the dataset we can tell that Yelp restaurant review ratings are listed as one to five stars. The distribution shows five stars ratings with the highest number of ratings,15,084 ratings out of a total of 40,087 reviews. As to the least reviews, it is two stars with 4,094 ratings.

I consider reviews with 1 to 2 stars as negative, and 4 to 5 stars as positive, since 3 stars are the neutral reviews.

^	starsReview	\$	n [‡]
1		1	4553
2		2	4094
3		3	5561
4		4	10795
5		5	15084

After conducting the process of removing rare words and numbers etc, below is the most frequent and Least frequent words in the review
 xx %>% count(word, sort=TRUE) %>% view()

*	word [‡]	n
1	food	32113
2	service	15844
3	time	12521
4	chicken	9411
5	restaurant	8833
6	nice	7907
7	menu	7574
8	love	7145
9	delicious	7090
10	bar	6202
11	friendly	6180
12	sauce	5945
13	salad	5865
14	cheese	5833
15	pizza	5829
16	lunch	5672

÷	word [‡]	n 📥
1	abound	10
2	accented	10
3	accommodations	10
4	accoutrements	10
5	accused	10
6	aint	10
7	aji	10
8	aloud	10
9	ancho	10
10	angela	10
11	antipasti	10
12	anxiously	10
13	applaud	10
14	applesauce	10
15	arab	10
16	arguably	10

For the relationship between 'funny', 'cool', 'useful', I first printed out the distribution among star reviews, 1 to 5. From the following 3 plots, we can notice all 3 attributes, funny, cool, and useful, possess similar characteristics. As to the outlier in the 4-star-review, it was a popular review for "Salem's Market & Grill" which has outstanding performance on both 3 categories.

Furthermore, I looked into the relationship between 2 attributes, and they, without surprise, possess positive correlations. (Please take references from image 4 to 6)

(ii)
How does star ratings for reviews relate to the star-rating given in the dataset for businesse (attribute 'businessStars')? (Can one be calculated from the other?)

To have a clearer view of the relationship between "starsReview" and "starsBusiness" I built a linear regression model as shown below.

starsBusiness = 3.029422 + 0.1793 * starsBusiness

```
# (a) (ii)
\#How does star ratings for reviews relate to the star-rating given in the dataset for businesse (attribute 'businessStars')? (Can one be
calculated from the other?)
 ``{r pressure, echo=FALSE}
cor(resReviewsData$starsReview, resReviewsData$starsBusiness) #[1] 0.4114881
lmstars <- lm(starsBusiness ~starsReview, data =resReviewsData)</pre>
summarv(lmstars)
# we can get a statistically significant linear regression for those 2 <u>caegories</u> of stars review
Call:
lm(formula = starsBusiness ~ starsReview, data = resReviewsData)
 Residuals:
             1Q Median
    Min
 -2.42615 -0.38811 0.07385 0.43254 1.79123
 Coefficients:
          Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.5405 on 40085 degrees of freedom
Multiple R-squared: 0.1693, Adjusted R-squared: 0.1693
F-statistic: 8171 on 1 and 40085 DF, p-value: < 2.2e-16
```

Besides the linear model, here is the plot for the relationship:
> stars_relationship <- ggplot(resReviewsData, aes(x= starsReview, y=starsBusiness)) +
geom_count(alpha = 0.5) # geom_point()

After running a linear regression with the entire data, I also looked into the relationship between starsReview and starsBusiness in individual restaurants.

First, I started with finding the restaurants with top 10 reviews. And then build linear models individually.


```
# view it by restaurant!
rest_star%>% group_by(name) %>% tally() %>% view()
lmstars_SI <- lm(starsBusiness ~starsReview, data =resReviewsData %>% filter(name=="Sugar & Ice"))
lmstars_Alle <- lm(starsBusiness ~starsReview, data =resReviewsData %>% filter(name=="Momo Sushi"))
lmstars_innout <- lm(starsBusiness ~starsReview, data =resReviewsData %>% filter(name=="Momo Sushi"))
lmstars_innout <- lm(starsBusiness ~starsReview, data =resReviewsData %>% filter(name=="In-N-Out Burger"))
lmstars_thai <- lm(starsBusiness ~starsReview, data =resReviewsData %>% filter(name=="Thai House"))
summary(lmstars_Alle)
summary(lmstars_momo)
summary(lmstars_innout)
summary(lmstars_thai)

essentially perfect fit: summary may be unreliable
Call:
```

Result: showing "Warning: essentially perfect fit: summary may be unreliable.

But the coefficients for starsReview are mostly not statistically significant since the sample size is not sufficient enough. So this attempt might not be an appropriate approach.

What are some words indicative of positive and negative sentiment? (One approach is to determine the average star rating for a word based on star ratings of documents where the word occurs). Do these 'positive' and 'negative' words make sense in the context of user reviews being considered? (For this, since we'd like to get a general sense of positive/negative terms, you may like to consider a pruned set of terms -- say, those which occur in a certain minimum and maximum number of documents).

word <chr></chr>	n <int></int>
food	32113
service	15844
time	12521
chicken	9411
restaurant	8833
nice	7907
menu	7574
love	7145
delicious	7090
bar	6202

- Prune the words:

rareWords <-rrTokens %>% count(word, sort=TRUE) %>% filter(n<10) freqWords <-rrTokens %>% count(word, sort=TRUE) %>% filter(n>8000)

Here is how I decided to prune the "fegWords":

• First, I observed the relatively even distribution among 5 stars for those words with n>8000, which can indicate these words do not possess distinct character for specific star review, they are words with neutral meaning.

```
ws %>% filter(word=='food') %>% view()
ws %>% filter(word=='service') %>% view()
ws %>% filter(word=='time') %>% view()
ws %>% filter(word=='chicken') %>% view()
ws %>% filter(word=='restaurant') %>% view()
```

^	starsReview	word	n	prop	^	starsReview [‡]	word [‡]	n [‡]	prop
1	5	food	10827	0.02419858	1	5	service	5369	0.01199983
2	4	food	786	0.01884870	2	4	service	3955	0.00948309
3	3	food	4952	0.02083833	3	3	service	2411	0.01014564
4	1	food	4339	0.02404877	4	1	service	2131	0.01181100
5	2	food	4134	0.02392915	5	2	service	1978	0.01144941
•	starsReview [‡]	word [‡]	n	prop ‡	_	starsReview [‡]	word [‡]	n [‡]	prop
1	5	time	3823	0.008544487	1	5	chicken	3020	0.006749765
2	4	time	3333	0.007991694	2	4	chicken	2729	0.006543454
3	3	time	1944	0.008180475	3	3	chicken	1608	0.006766566
4	1	time	1843	0.010214771	4	1	chicken	1030	0.005708743
5	2	time	1578	0.009134059	5	2	chicken	1024	0.005927298

*	starsReview [‡]	word [‡]	n [‡]	prop [‡]
1	5	restaurant	2922	0.006530733
2	4	restaurant	2210	0.005299023
3	3	restaurant	1304	0.005487315
4	1	restaurant	1279	0.007088818
5	2	restaurant	1118	0.006471405

Let's take a look at the Top 10 Words in each level of star reviews.

Regarding the separation of positive and negative reviews, I considered star 3 as a neutral review so I then classified star 4 and 5 as positive reviews, star 1 and 2 as negative.

After having a rough idea about the word distributions from the above images, I also looked at the top 10 frequent words for each star to point out which words indicate different star levels. Following my sentiment categories, I only extract the information from negative reviews, star 1 and 2, and positive reviews, star 4 and 5. I will explain more on the separation between negative and positive sentiment

÷	starsReview [‡]	word [‡]	n [‡]	prop	÷	starsReview [‡]	word [‡]	n [‡]	prop
1	5	delicious	3897	0.0092463852	1	4	nice	2812	0.0070836587
2	5	love	3848	0.0091301232	2	4	menu	2441	0.0061490793
3	5	amazing	3339	0.0079224224	3	4	delicious	2355	0.0059324382
4	5	friendly	2965	0.0070350352	4	4	pretty	2092	0.0052699196
5	5	fresh	2645	0.0062757734	5	4	bar	2011	0.0050658740
6	5	nice	2457	0.0058297071	6	4	love	2008	0.0050583167
7	5	staff	2367	0.0056161647	7	4	friendly	1991	0.0050154924
8	5	menu	2365	0.0056114193	8	4	lunch	1912	0.0048164849
9	5	pizza	1995	0.0047335228	9	4	cheese	1878	0.0047308361
10	5	excellent	1911	0.0045342166	10	4	sauce	1868	0.0047056453
\$	starsReview [‡]								
		word	n ,	prop	<u></u>	φ.		_	_
1		word minutes	901	prop 0.0055300501	÷	starsReview +	word ‡	n ‡	prop •
2	2				1	1	minutes	1290	0.0075970389
	2	minutes	901	0.0055300501	2	1	minutes table	1290 1008	0.0075970389
2	2	minutes menu	901 812	0.0055300501 0.0049837965	2	1 1	minutes table bad	1290 1008 948	0.0075970389 0.0059362909 0.0055829402
2	2 2 2	minutes menu pretty	901 812 796	0.0055300501 0.0049837965 0.0048855936	2 3 4	1 1 1	minutes table bad told	1290 1008 948 943	0.0075970389 0.0059362909 0.0055829402 0.0055534943
2 3 4	2 2 2 2	minutes menu pretty table	901 812 796 794	0.0055300501 0.0049837965 0.0048855936 0.0048733183	2 3 4 5	1 1 1 1	minutes table bad told eat	1290 1008 948 943 916	0.0075970389 0.0059362909 0.0055829402
2 3 4 5	2 2 2 2 2 2	minutes menu pretty table bad	901 812 796 794 773	0.0055300501 0.0049837965 0.0048855936 0.0048733183 0.0047444270	2 3 4	1 1 1	minutes table bad told	1290 1008 948 943	0.0075970389 0.0059362909 0.0055829402 0.0055534943 0.0053944866
2 3 4 5 6	2 2 2 2 2 2 2	minutes menu pretty table bad bar	901 812 796 794 773 769	0.0055300501 0.0049837965 0.0048855936 0.0048733183 0.0047444270 0.0047198763	2 3 4 5	1 1 1 1 1	minutes table bad told eat manager	1290 1008 948 943 916 885	0.0075970389 0.0059362909 0.0055829402 0.0055534943 0.0053944866 0.0052119221
2 3 4 5 6	2 2 2 2 2 2 2 2 2	minutes menu pretty table bad bar nice	901 812 796 794 773 769 729	0.0055300501 0.0049837965 0.0048855936 0.0048733183 0.0047444270 0.0047198763 0.0044743690	2 3 4 5 6	1 1 1 1 1 1	minutes table bad told eat manager people	1290 1008 948 943 916 885 859	0.0075970389 0.0059362909 0.0055829402 0.0055534943 0.0053944866 0.0052119221 0.0050588034

Below are the top 20 words from positive (star 4 + star 5) and negative (star 1 + star 2):

- ws %>% filter(starsReview==5| starsReview==4) %>% filter(row_number()<=20) %>% ggplot(aes(word, n)) + geom col()+coord flip()+ggtitle("**Positive** Review Words")
- ws %>% filter(starsReview==1| starsReview==2) %>% filter(row_number()<=20) %>% ggplot(aes(word, n)) + geom_col()+coord_flip()+ggtitle("**Negative** Review Words")

From my point of view, besides some noun phrases existing in both sentiments, such as staff and menu, words in positive reviews make sense.

We can infer that negative reviews focus more on accusing the services since there are more noun phrases, for instance, manager, people. This actually is understandable, because good service is something people expect to experience in a dining environment. In this case, customers will be less likely to praise the good quality of service but more likely to scold the bad one.

And in my knowledge, the term, pretty, serves as an adverb instead of an adjective, used as "pretty bad" etc.

starsReview <dbl></dbl>	word <chr></chr>	n <int></int>	prop <dbl></dbl>
5	delicious	3897	0.009246385
5	love	3848	0.009130123
5	amazing	3339	0.007922422
4	nice	2812	0.007083659
5	friendly	2965	0.007035035
5	fresh	2645	0.006275773
4	menu	2441	0.006149079
4	delicious	2355	0.005932438
5	nice	2457	0.005829707
5	staff	2367	0.005616165

starsReview <dbl></dbl>	word <chr></chr>	n <int></int>	prop <dbl></dbl>
1	minutes	1290	0.007597039
1	table	1008	0.005936291
1	bad	948	0.005582940
1	told	943	0.005553494
2	minutes	901	0.005530050
1	eat	916	0.005394487
1	manager	885	0.005211922
1	people	859	0.005058803
2	menu	812	0.004983797
2	pretty	796	0.004885594

Using score, starsReview*prop, to find the top 20 words

```
# (c) score: starsReview*prop

```{r}

#Can we get a sense of which words are related to higher/lower star raings in general?

#One approach is to calculate the average star rating associated with each word - can sum the star ratings associated with reviews where each word occurs in. Can consider the proportion of each word among reviews with a star rating.

xx<- ws %% group_by(word) %%summarise(totWS=sum(starsReview*prop))

20 words with highest and lowest star rating

xx %% top_n(20)

xx_neg<- ws %% group_by(word) %% filter(starsReview==1| starsReview==2) %% summarise(totWS=sum(starsReview*prop))

xx_pos<- ws %% group_by(word) %% filter(starsReview==4| starsReview==5) %% summarise(totWS=sum(starsReview*prop))

xx_neg %% top_n(20)

xx_neg %% top_n(20)

xx_pos %% top_n(20)

xx_pos %% top_n(-20)
```

# top\_n(20) for positive and negative:



Comparing the results from above, using n and prop to extract top-ranked words is alike. Using both methods to validate these words are representable to a certain degree.

(C)

Digging deeper into Dictionaries -> How many matching terms are there for each of the dictionaries?

Using the dictionary based on positive and negative terms to predict sentiment of a movie: using each dictionary, obtain an aggregated positiveScore and a negativeScore for each review; for the AFINN dictionary, an aggregate positivity score can be obtained for each review.

Trying to predict review sentiment based on these aggregated scores, and evaluate their performance

Quick overview of the different dictionaries.

SENTIMENT ANALYSIS SNAPSHOT											
Lexicon 1: NRC		I	Lexicon	2: AFINI	V	Le	xicor	3 : BIN	IG		
В	Binary cate	gorization PL	US emotions	numeric score between -5 & 5			binary categorization				
# A til	bble: 26,9	943 x 3		# A 1	tibble: 6,28	34 x 3		# A tib	ole: 7,97	74 x 3	
	enbera_id		sentiment	25 00000	utenberg_id		score	0.000	berg_id		sentiment
	<int></int>	<chr></chr>	<chr></chr>	"	<int></int>	<chr></chr>	<int></int>		<int></int>	<chr></chr>	<chr></chr>
1	768	visit	positive	1	768	troubled	-2	1	768	troubled	negative
2	768	beautiful	joy	2	768	beautiful	3	2	768	beautiful	positive
3	768	beautiful	positive	3	768	perfect	3	3	768	perfect	positive
4	768	fixed	trust	4	768	heaven	2	4	768	heaven	positive
5	768	completely	positive	5	768	jealous	-2	5	768	suitable	positive
6	768	perfect	anticipation	6	768	honour	2	6	768	desolation	negative
7	768	perfect	joy	7	768	hope	2	7	768	suspiciously	negative
8	768	perfect	positive	8	768	interrupted	-2	8	768	jealous	negative
9	768	perfect	trust	9	768	inconvenience	-2	9	768	perseverance	positive
10	768	suitable	positive	10	768	determined	2	10	768	inconvenience	negative
# \	with 26,93	33 more rows	S	#	. with 6,274	more rows		# w	th 7,964	more rows	

# **Matching in Bing and Affin**

- Using Bing

```
#to retain only the words which match the sentiment dictionary, do an inner-join
rrSenti_bing<- rrTokens %>% inner_join(get_sentiments("bing"), by="word")

Which words contribute to positive/negative sentiment ?
#count the occurrences of positive/negative sentiment words in the reviews
xx<-rrSenti_bing %>% group_by(word, sentiment) %>% summarise(tot0cc=sum(n)) %>% arrange(sentiment,
desc(tot0cc))
xx

xx_neg<-rrSenti_bing %>% group_by(word, sentiment) %>%filter(sentiment=="negative") %>%
summarise(tot0cc=sum(n)) %>% arrange(sentiment, desc(tot0cc))
xx_pos<-rrSenti_bing %>% group_by(word, sentiment) %>%filter(sentiment=="positive") %>%
summarise(tot0cc=sum(n)) %>% arrange(sentiment, desc(tot0cc))

xx_neg
xx_pos
```

- Negative words defined by Bing that occur in the review data

word <chr></chr>	sentiment <chr></chr>	totOcc <int></int>
bad	negative	4199
disappoint	negative	2773
hard	negative	1750
cold	negative	1542
cheap	negative	1349
wrong	negative	1324
slow	negative	1296
miss	negative	1099
lack	negative	1093
bland	negative	1062

- Positive words defined by Bing that occur in the review data

word <chr></chr>	sentiment <chr></chr>	totOcc <int></int>
love	positive	7492
nice	positive	6554
delicious	positive	6143
friendly	positive	5902
fresh	positive	4767
pretty	positive	4480
amaze	positive	4294
recommend	positive	3723
enjoy	positive	3686
favorite	positive	3240

From below plot we can tell that using totOcc (total occurance) to capture the terms in different levels is making sense. Not too many confusing terms or meaningless noun phrases selected.





- 1130 matching words with Bing dictionary

```
(c) How many matching terms are there for each of the dictionaries?

For the bing dictionary we found a total of 1130 total matching words

```{r warning=FALSE}
bingMatchUniqueWords <- unique(rrSenti_bing$word)
str(bingMatchUniqueWords)

...

chr [1:1130] "fresh" "friendly" "fun" "ready" "enjoyable" "hard" "memorable" "negative" "fast" "happy" "improve" "pan" "amaze" "easy" ...
```

- Besides part c, I would like to sort the words using "tf * idf ".
 - Note: tf * idf can somehow represent the importance of words.
 - avg=mean(tf idf)

0

From the below result, although it might seem fair, the high ranking words actually have no-so-high total occurrence. This might not be persuasive to represent those words for Positive or Negative reviews.

```
xx<-rrSenti_bing %% group_by(word, sentiment) %% summarise(avg=mean(tf_idf),tot0cc=sum(n)) %% arrange(sentiment, desc(avg))
xx
xx_neg_imp<-rrSenti_bing %% group_by(word, sentiment) %% filter(sentiment=="negative") %% summarise(avg=mean(tf_idf),tot0cc=sum(n)) %%
arrange(sentiment, desc(avg))
xx_pos_imp<-rrSenti_bing %% group_by(word, sentiment) %% filter(sentiment=="positive") %% summarise(avg=mean(tf_idf),tot0cc=sum(n)) %%
arrange(sentiment, desc(avg))</pre>
```

word <chr></chr>	sentiment <chr></chr>	avg <dbl></dbl>	totOcc <int></int>
awsome	positive	0.50605052	27
handsome	positive	0.47041971	15
pep	positive	0.44768222	11
approve	positive	0.38743708	34
speedy	positive	0.38116752	56
awesomeness	positive	0.37838367	18
reliable	positive	0.37441650	41
carefree	positive	0.36700868	13
splendid	positive	0.34934713	14
serene	positive	0.34250639	15
word <chr></chr>	sentiment <chr></chr>	avg <dbl></dbl>	totOcc <int></int>
<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>
<chr> forgetful</chr>	<chr> negative</chr>	<dbl></dbl>	<int> 10</int>
<chr> forgetful disregard</chr>	<chr> negative negative</chr>	<dbl> 0.47792862 0.45639741</dbl>	<int> 10 10</int>
<chr> forgetful disregard gimmicky</chr>	<chr> negative negative negative negative</chr>	<dbl> 0.47792862 0.45639741 0.42809842</dbl>	<int> 10 10 11</int>
<chr> forgetful disregard gimmicky inefficient</chr>	<chr> negative negative negative negative negative</chr>	<dbl> 0.47792862 0.45639741 0.42809842 0.42177783</dbl>	<int> 10 10 11 9</int>
<chr> forgetful disregard gimmicky inefficient pinch</chr>	<chr> negative negative negative negative negative negative negative</chr>	<dbl> 0.47792862 0.45639741 0.42809842 0.42177783 0.40929484</dbl>	<int> 10 10 11 9 28</int>
<chr> forgetful disregard gimmicky inefficient pinch violation</chr>	<pre><chr> negative negative negative negative negative negative negative</chr></pre>	<dbl> 0.47792862 <dd>0.45639741 0.42809842 0.42177783 0.40929484 0.40704119</dd></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>	<int> <int> 10 10 11 9 28 9</int></int>
<chr> forgetful disregard gimmicky inefficient pinch violation dissapointed</chr>	<pre><chr> negative negative negative negative negative negative negative negative negative</chr></pre>	<dbl> 0.47792862 0.45639741 0.42809842 0.42177783 0.40929484 0.40704119 0.39207663</dbl>	<int> <int> 10 10 10 11 9 28 9 34</int></int>

- Accuracy for Bing: 83.8%

```
#consider reviews with 1 to 2 stars as positive, and this with 4 to 5 stars as negative
revSenti_bing <- revSenti_bing %>% mutate(hiLo=ifelse(starsReview<=2,-1, ifelse(starsReview>=4, 1, 0)))
revSenti_bing <- revSenti_bing %>% mutate(pred_hiLo=ifelse(sentiScore >0, 1, -1))

#filter out the reviews with 3 stars, and get the confusion matrix for hiLo vs pred_hiLo
xx<-revSenti_bing %>% filter(hiLo!=0)
table(actual=xx$hiLo, predicted=xx$pred_hiLo)

#accuracy
BingAccuracy <-mean(xx$hiLo==xx$pred_hiLo)</pre>
```

```
predicted
actual -1 1
-1 6362 2001
1 3441 21793
```

To see how the words in Bing are presentable or not:

My answer will be Yes, it is representative, because we can tell from the ascending average sentimental score (avgSentiSc) from star 1 to 5.

starsReview <dbl></dbl>	avgPos <dbl></dbl>	avgNeg <dbl></dbl>	avgSentiSc <dbl></dbl>
1	0.3107697	0.6892303	-0.3784607
2	0.4483663	0.5516337	-0.1032674
3	0.6104126	0.3895874	0.2208253
4	0.7550768	0.2449232	0.5101536
5	0.8322997	0.1677003	0.6645993

- Afinn: 84.16%

```
#we can consider reviews with 1 to 2 stars as positive, and this with 4 to 5 stars as negative
revSenti_afinn <- revSenti_afinn %>% mutate(hiLo=ifelse(starsReview<=2,-1, ifelse(starsReview>=4, 1, 0 )))
revSenti_afinn <- revSenti_afinn %>% mutate(pred_hiLo=ifelse(sentiSum >0, 1, -1))
#filter out the reviews with 3 stars, and get the confusion matrix for hilo vs pred_hilo
xx<-revSenti_afinn %>% filter(hiLo!=0)
table(actual=xx$hiLo, predicted=xx$pred_hiLo )
#accuracy
AffinAccuracy <-mean(xx$hiLo==xx$pred_hiLo)</pre>
```

```
predicted
actual -1 1
-1 5117 3081
1 2132 22572
```

To see how the words in Afinn are presentable or not:

-Method 1:

>> revSenti_afinn <- rrSenti_afinn %>% group_by(review_id, starsReview) %>% summarise(nwords=n(), sentiSum =sum(value))

>> revSenti_afinn %>% group_by(starsReview) %>% summarise(avgLen=mean(nwords), avgSenti=mean(sentiSum))

starsReview <dbl></dbl>	avgLen <dbl></dbl>	avgSenti <dbl></dbl>
1	4.994694	-2.3863899
2	5.051773	0.7765985
3	4.983273	3.7701958
4	4.870839	6.5102021
5	4.343821	7.2800636

Method 2:

I experimentally defined the goodBad for "affin score -5 to -3" as minus, and for "affin score 3 to 5" as positive score, and among -2 to 2 will be zero.

>> rrSenti_afinn <- rrSenti_afinn %>% mutate(goodBad=ifelse(value %in% c('-5', '-4', '-3'), -totOcc, ifelse(value %in% c('5', '4', '3'), totOcc, 0)))

>> rrSenti_afinn %>% group_by(starsReview) %>% summarise(avgscore=sum(goodBad))

And the result is making sense too.

starsReview <dbl></dbl>	avgscore <dbl></dbl>
1	-10890
2	8319
3	30241
4	91929
5	126477

Afinn: 84.16%

predicted
actual -1 1
-1 5117 3081
1 2132 22572

starsReview <dbl></dbl>	avgscore <dbl></dbl>
1	-10890
2	8319
3	30241
4	91929
5	126477

Summary for part C:

The accuracy of prediction for Bing and Affin are higher than nrc and are almost equal to each other. but from the results, the extracted words from Affin make more sense compared to Bing But for part D, I will pick Bing to conduct further analysis since it has embedded categories, positive and negative, in the dictionary, and I would love to take a deeper look about how this default categorize system works in predicting the hiLo score.

(D) Model-developing part to predict reviews sentiment.

(i)

Here I will go for Lemmatizing. Since I would like to capture more meaning than having a reduced number set of terms.

Do you use term frequency, tfidf, or other measures, and why? What is the size of the document- term matrix?

Should you use stemming or lemmatization when using the dictionaries?

Ans:

I will use lemmatization because I want to put more emphasis on the context inthe reviews instead of having a compact number of terms. And to my understanding lemmatization conducts a better work on capturing the meaning of terms while stemming is good at reducing the size of unique words.

This chart presents a straight overview of the results from RF and SVM models. In the following model building process, I use hiLo score to predict the outcome.

```
The definition of "hiLo" is

hiLo=ifelse(starsReview<=2,-1, ifelse(starsReview>=4, 1, 0)

The definition of "predicted hiLo" is

pred_hiLo=ifelse(sentiScore >0, 1, -1)
    sentiScore = posProp - negProp,
    posProp=posSum/nwords
    negProp=negSum/nwords
```

Notes: In order to do some comparison, I put efforts on building 2 models, RF and SVM.

	RF_Bing	SVM_Bing
Training	0.9710476	0.9757143
Testing	0.8822222	0.8833333

(i) Using Bing to build a RF

Use a subset of 15,000 samples.

0.7 as training

0.3 as testing

Using ROC can find the best Threshold: 0.5995781

Set seed to make sure we get the same testing and training data set everytime we run it.

Top16 Var important:

rude	friendly	bLana	Love	norrible	terrible	delicious	baa
5.803121e-03	6.126269e-03	6.264299e-03	6.822255e-03	8.694064e-03	8.981699e-03	1.046832e-02	1.255137e-02
disappoint	mediocre	awesome	favorite	excellent	awful	amaze	poor
3.611445e-03	3.623737e-03	4.047077e-03	4.051279e-03	4.748572e-03	5.094798e-03	5.211219e-03	5.361846e-03
			_				

Plot the ROC for Training and Testing data.

Using Bing to build a SVM

```
svmBing2 <- svm(as.factor(hiLo) ~., data = revDTM_sentiBing_trn
%>% select(-review_id), kernel="radial", cost=5, gamma=5, scale=FALSE)

revDTM_predTrn_svm2Bing<-predict(svmBing2, revDTM_sentiBing_trn)
table(actual= revDTM_sentiBing_trn$hiLo, predicted= revDTM_predTrn_svm2Bing)
revDTM_predTst_svm2Bing<-predict(svmBing2, revDTM_sentiBing_tst)
table(actual= revDTM_sentiBing_tst$hiLo, predicted= revDTM_predTst_svm2Bing)

svm_bing_acc_tr <- mean(revDTM_sentiBing_trn$hiLo == revDTM_predTrn_svm2Bing) # 0.9757143
svm_bing_acc_ts <- mean(revDTM_sentiBing_tst$hiLo == revDTM_predTst_svm2Bing) # 0.8833333</pre>
```

Plot the ROC for Training and Testing data.

(ii)

Develop a model using a broader list of terms. And I will compare performance with that in part (c) above

For the previous dataset, we exempt rare words(n<10) and frequent words(n>8000). And here we revised those standards to n>100 and n<6000, with sample size=15,000, to prevent expensive computation issues.

As to stemming or lemmatizing, I will, still, use lemmatizing over stemming since I still want to put more emphasis on analyzing the "context" in the reviews.

In (c), the accuracy of Bing dictionary to predict sentiment using scores is 283.8%

> posSum=sum(sentiment=='positive')

> negSum=sum(sentiment=='negative')

	RF_Bing	RF_broader
Training	0.9710476	1.0
Testing	0.8822222	1.0
	SVM_Bing	SVM_broader
Training	0.9757143	1.0
Testing	0.8833333	Run into unsolvable error

Notes: I have run into some bizarre error in my code (line 878-890), saying "testing set and model are not match". But I have double checked all the splitting steps and model-building set. Error still occurs.

(E)

Since this dataset has different attributes for restaurants. I will consider a few interesting attributes and summarize how many restaurants there are by values of these attributes; examine if star ratings vary by these attributes.

Using the model I developed previously, I want to see whether prediction accuracy vary by certain restaurant attributes.

For the attributes of my choice, I chose "GoodForKids" and "RestaurantsReservations". The main question I was asking myself in the picking process is what factors will affect the customers to leave more distinguished or extreme reviews. If the content of reviews is more evident in positive or negative sentiment, it is easier for models to capture the essence and further conduct better predictions.

Concerning "GoodForKids", my thought on these attributes is that restaurants that are labeled "True" or "False" must be put on by customers with children. So this factor is highly relevant to the reviewers. So we might be able to extract some insights through analyzing this attribute.

In the matter of "RestaurantsReservations", I assume that if people make reservations for the restaurant, they might possess higher expectations than not making reservations. If the reality appeared not to match their hype, they would give even lower stars for the restaurant. And from this pattern, we might be able to get some insights too.

• "Good For Kids" or not

GoodForKids <chr></chr>	n <int></int>	GoodForKids <chr></chr>	avgStar <dbl></dbl>
False	8804	False	3.597342
True	30621	True	3.718886
NA	539	NA	3.914657

"Restaurants Reservations"

RestaurantsReservations <chr></chr>	n <int></int>	RestaurantsReservations <chr></chr>	avgStar <dbl></dbl>
False	20949	False	3.645663
True	18352	True	3.744823
NA	663	NA	3.859729

From the above results, we can conclude that they do showcase a difference between "True" and "False".

While for the "GoodForKids" attributes, I do not expect higher star reviews on the NA label, since my assumption is that people who leave a "True" label on the factor might leave a higher rating for the restaurant since the staff there are good with their kids. If I am the stakeholder of this research, I will conduct further steps to gather more information about this observed phenomenon.

Steps I took to conduct this analysis:

- Step 1:
 - Separate data set into "attributes of your choice" == "True" and == "False". And extract sets of "review_id"
- Step 2:
 - Create 2 separate dataset to build models
- Step 3:

Compare the accuracy between models with "True" or "False" labels.

Since I picked 2 attributes, GoodForKids and RestaurantsReservations, I will repeat the above steps twice.

I will use "Random Forest" with terms from the Bing dictionary. And you might ask why don't I choose the SVM model, it is because although SVM has a slightly higher accuracy than Bing on the training and testing data, RF has a smaller difference between training and testing.

Using ROC find the **Threshold** for 4 different attributes conditions

- GoodForKids(True): 0.6244062GoodForKids(False): 0.6282966
- Restaurants Reservations(True): 0.6459355
- Restaurants Reservations(False): 0.5888654

And here are the accuracy for different attributes conditions:

	GoodForKids=="True"	GoodForKids=="False"
Training	0.9671429	0.9755102
Testing	0.8851111	0.8811111
	RestaurantsReservations=="True"	RestaurantsReservations=="False"
Training	RestaurantsReservations=="True" 0.9729524	RestaurantsReservations=="False" 0.9712245

- GoodForKids: True (left) vs False (right)

- RestaurantsReservations : True (left) vs False (right)

From the above chart and images, we can conclude that these two attributes do not significantly affect the accuracy rates. The results are basically compared to part D. And I would love to get some feedback about my approach for part E, and further on experiment more on different attributes.