9. James A Freeman, David M S Kapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Addison Wesley, 2003.

CO's-PO's & PSO's MAPPING

CO's	PO's									PSO's				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	3	2	3	1	-	-	2	1	-	-	2	2
2	3	1	2	1	-	-	-	-	-	1	2	2	-	1
3	3	3	3	3	3	1	-	-	2	1	-	-	2	2
4	3	3	3	3	3	-	-	-	2	-	2	3	2	2
5	1	1	3	2	3	-	-	-	2	-	-	-	1	1
AVg.	2.6	2	2.8	2.2	2.4	0.4	0	0	1.6	0.6	0.8	1	1.4	1.6

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS340 CYBER SECURITY

LT P C 2 0 2 3

COURSE OBJECTIVES:

- To learn cybercrime and cyberlaw.
- To understand the cyber attacks and tools for mitigating them.
- To understand information gathering.
- To learn how to detect a cyber attack.
- To learn how to prevent a cyber attack.

UNIT I INTRODUCTION

6

Cyber Security – History of Internet – Impact of Internet – CIA Triad; Reason for Cyber Crime – Need for Cyber Security – History of Cyber Crime; Cybercriminals – Classification of Cybercrimes – A Global Perspective on Cyber Crimes; Cyber Laws – The Indian IT Act – Cybercrime and Punishment.

UNIT II ATTACKS AND COUNTERMEASURES

6

OSWAP; Malicious Attack Threats and Vulnerabilities: Scope of Cyber-Attacks – Security Breach – Types of Malicious Attacks – Malicious Software – Common Attack Vectors – Social engineering Attack – Wireless Network Attack – Web Application Attack – Attack Tools – Countermeasures.

UNIT III RECONNAISSANCE

5

Harvester – Whois – Netcraft – Host – Extracting Information from DNS – Extracting Information from E-mail Servers – Social Engineering Reconnaissance; Scanning – Port Scanning – Network Scanning and Vulnerability Scanning – Scanning Methodology – Ping Sweer Techniques – Nmap Command Switches – SYN – Stealth – XMAS – NULL – IDLE – FIN Scans – Banner Grabbing and OS Finger printing Techniques.

UNIT IV INTRUSION DETECTION

5

Host -Based Intrusion Detection – Network -Based Intrusion Detection – Distributed or Hybrid Intrusion Detection – Intrusion Detection Exchange Format – Honeypots – Example System Snort.

UNIT V INTRUSION PREVENTION

5

Firewalls and Intrusion Prevention Systems: Need for Firewalls – Firewall Characteristics and Access Policy – Types of Firewalls – Firewall Basing – Firewall Location and Configurations – Intrusion Prevention Systems – Example Unified Threat Management Products.

30 PERIODS 30 PERIODS

PRACTICAL EXERCISES:

- 1. Install Kali Linux on Virtual box
- 2. Explore Kali Linux and bash scripting
- 3. Perform open source intelligence gathering using Netcraft, Whois Lookups, DNS Reconnaissance, Harvester and Maltego
- 4. Understand the nmap command d and scan a target using nmap
- 5. Install metasploitable2 on the virtual box and search for unpatched vulnerabilities
- 6. Use Metasploit to exploit an unpatched vulnerability
- 7. Install Linus server on the virtual box and install ssh
- 8. Use Fail2banto scan log files and ban lps that show the malicious signs
- 9. Launch brute-force attacks on the Linux server using Hydra.
- 10. Perform real-time network traffic analysis and data pocket logging using Snort

COURSE OUTCOMES:

On successful completion of this course, the student will be able to

CO1: Explain the basics of cyber security, cyber crime and cyber law (K2)

CO2: Classify various types of attacks and learn the tools to launch the attacks (K2)

CO3 Apply various tools to perform information gathering (K3)

CO4: Apply intrusion techniques to detect intrusion (K3)

CO5: Apply intrusion prevention techniques to prevent intrusion (K3)

TOTAL:60 PERIODS

TEXTBOOKS

- 1. Anand Shinde, "Introduction to Cyber Security Guide to the World of Cyber Security", Notion Press, 2021 (Unit 1)
- 2. Nina Godbole, Sunit Belapure, "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", Wiley Publishers, 2011 (Unit 1)
- 3. https://owasp.org/www-project-top-ten/

REFERENCES

- 1. David Kim, Michael G. Solomon, "Fundamentals of Information Systems Security", Jones & Bartlett Learning Publishers, 2013 (Unit 2)
- 2. Patrick Engebretson, "The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made easy", Elsevier, 2011 (Unit 3)
- 3. Kimberly Graves, "CEH Official Certified Ethical hacker Review Guide", Wiley Publishers, 2007 (Unit 3)
- 4. William Stallings, Lawrie Brown, "Computer Security Principles and Practice", Third Edition, Pearson Education, 2015 (Units 4 and 5)
- 5. Georgia Weidman, "Penetration Testing: A Hands-On Introduction to Hacking", No Starch Press, 2014 (Lab)

COs- PO's & PSO's MAPPING

CO's		PO's												PSO's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	1	1	1	1	-	1	-	-	-	-	1	-	2	2	

2	1	3	1	3	2	1	-	-	-	-	-	-	2	2
3	2	1	1	1	-	1	-	-	-	-	1	-	2	2
4	3	3	2	2	2	1	-	-	-	-	-	-	2	2
5	3	2	1	1	1	1	-	1	-	-	1	-	2	2
AVg.	2	2	1.2	1.6	1	1	0	0.2	0	0	0.6	0	2	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

CCS359 QUANTUM COMPUTING

LTPC

2 0 2 3

COURSE OBJECTIVES:

- To know the background of classical computing and quantum computing.
- To learn the fundamental concepts behind quantum computation.
- To study the details of quantum mechanics and its relation to Computer Science.
- To gain knowledge about the basic hardware and mathematical models of quantum computation.
- To learn the basics of quantum information and the theory behind it.

UNIT I QUANTUM COMPUTING BASIC CONCEPTS

6

Complex Numbers - Linear Algebra - Matrices and Operators - Global Perspectives Postulates of Quantum Mechanics – Quantum Bits - Representations of Qubits - Superpositions

UNIT II QUANTUM GATES AND CIRCUITS

5

Universal logic gates - Basic single qubit gates - Multiple qubit gates - Circuit development - Quantum error correction

UNIT III QUANTUM ALGORITHMS

7

Quantum parallelism - Deutsch's algorithm - The Deutsch–Jozsa algorithm - Quantum Fourier transform and its applications - Quantum Search Algorithms: Grover's Algorithm

UNIT IV QUANTUM INFORMATION THEORY

6

Data compression - Shannon's noiseless channel coding theorem - Schumacher's quantum noiseless channel coding theorem - Classical information over noisy quantum channels

UNIT V QUANTUM CRYPTOGRAPHY

6

Classical cryptography basic concepts - Private key cryptography - Shor's Factoring Algorithm - Quantum Key Distribution - BB84 - Ekart 91

30 PERIODS

PRACTICAL EXERCISES

30 PERIODS

- Single qubit gate simulation Quantum Composer
- Multiple qubit gate simulation Quantum Composer
- 3. Composing simple quantum circuits with q-gates and measuring the output into classical bits.
- 4. IBM Qiskit Platform Introduction
- 5. Implementation of Shor's Algorithms
- 6. Implementation of Grover's Algorithm
- 7. Implementation of Deutsch's Algorithm
- 8. Implementation of Deutsch-Jozsa's Algorithm
- 9. Integer factorization using Shor's Algorithm