Multiple logistic regression

April 19, 2020

Applied STAtistics group at AAU

Department of Mathematical Sciences

Aalborg University

Introduction

Outline of session:

- ▶ Data
- ► Model
- ► Inference
- ► Model selection

Lecturer for this session is Ege Rubak, Dept. of Math. Sciences, AAU

Data

Wisconsin Breast Cancer Database covers 683 observations of 10 variables in relation to examining tumors in the breast.

- ▶ Nine clinical variables with a score between 0 and 10.
- ► The binary variable Class with levels benign/malignant.

We will use 4 of the predictors, where 2 have been discretized.

id	nuclei	cromatin	Size.low	Size.medium	Shape.low	Class
1 2	1 10	3	TRUE FALSE	FALSE TRUE	TRUE FALSE	benign benign
25	7	3	TRUE	FALSE	FALSE	malignant
26	1	2	TRUE	FALSE	TRUE	benign
682	4	10	FALSE	FALSE	FALSE	malignant
683	5	10	FALSE	FALSE	FALSE	malignant

Plot of data

Plots of tumor class vs. cromatin coloured by shape score (low or not)

Multiple logistic regression

We generalize the simple logistic regression model to the case, where we have k predictors x_1, x_2, \ldots, x_k . Where some might be dummies for a factor.

$$logit(P(y = 1 | x_1, x_2, \dots, x_k)) = \alpha + \beta_1 x_1 + \dots + \beta_k x_k$$

Interpretation of β -values is unaltered: If we fix x_2, \ldots, x_k and increase x_1 by one unit, then the relative change in odds is given by $\exp(\beta_1) - 1$.

Example without interaction

For Class modelled by cromatin score (x_1) , and shape score $(x_2 - \text{dummy for low or not})$ without interaction:

$$logit(P(y = 1 | x_1, x_2)) = \alpha + \beta_1 x_1 + \beta_2 x_2$$

For tumors with a low shape score $(x_2 = 1)$ we get

$$logit(P(y = 1 | x_1, x_2)) = \alpha + \beta_2 + \beta_1 x_1$$

When the shape score is not low $(x_2 = 0)$ we get

$$logit(P(y = 1 | x_1, x_2)) = \alpha + \beta_1 x_1$$

Slopes are the same – curves have just shifted horizontally.

Graphically

Test of significance of the model

▶ The null model with no effect of the predictors corresponds to

$$H_0: \quad \beta_1 = \beta_2 = \cdots = \beta_k = 0$$

- ▶ I.e. there is a constant risk of malignant tumor regardless of predictor values.
- ▶ The test statistic is the Deviance which should be small under H_0 .
- ▶ It is evaluated in χ^2 -distribution with k degrees of freedom (number of parameters set to zero).

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
682	884.4	NA	NA	NA
680	218.7	2	665.6	2.899e-145

► The 95%-critical value for the $\chi^2(2)$ distribution is 6 and the p-value is in practice zero.

Example with interaction

For Class modelled by cromatin score (x_1) , and shape score $(x_2 - \text{dummy for low or not})$ with interaction:

$$logit(P(y = 1 | x_1, x_2)) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

For tumors with a low shape score $(x_2 = 1)$ we get

$$logit(P(y = 1 | x_1, x_2)) = \alpha + \beta_2 + (\beta_1 + \beta_3)x_1$$

When the shape score is not low $(x_2 = 0)$ we get

$$logit(P(y = 1 | x_1, x_2)) = \alpha + \beta_1 x_1$$

Again the Deviance is used to test H_0 : $\beta_3 = 0$ for insignificant interaction (or we could use the z-test on next page):

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
680	218.7	NA	NA	NA
679	218.7	1	0.01448	0.9042

Example with interaction

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.38	0.525	-4.54	5.52e-06
cromatin	1	0.157	6.4	1.57e-10
Shape.lowTRUE	-4.49	1.02	-4.4	1.08e-05
cromatin:Shape.lowTRUE	0.0307	0.255	0.12	0.904

Model selection by stepwise selection

- ► We propose a starting model with all predictors and their pairwise interactions, which is a 15 parameter model.
- ► We use the so-called Bayesian Information Criterion (BIC) to leave out terms one by one.
- ▶ We end up with a model with 7 parameters:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.0337	0.903	0.0373	0.97
nuclei	0.302	0.0837	3.6	0.000314
cromatin	0.446	0.144	3.09	0.00198
Size.lowTRUE	-5.42	1.14	-4.77	1.82e-06
Size.mediumTRUE	-2.29	0.69	-3.33	0.000874
Shape.lowTRUE	-2.25	0.649	-3.47	0.000525
nuclei:Size.lowTRUE	0.569	0.236	2.41	0.0157

Prediction and classification

▶ We save the final model's estimate of the probability of malignant.

Class	P(y=1)
benign	0.004
benign	0.89
benign	0.01
benign	0.929
benign	0.004
malignant	0.999

► We may classify by rounding the probability:

	0	1
benign	432	12
malignant	11	228

23 patients are misclassified.

Prediction and classification

► If we assign everyone with predicted probability of malignancy above 5% to further investigation, then we catch all malignant.

39
239

The expense is that the number of false positive increases from 12 to 39.

▶ If we instead set the alarm to 10%, then the number of false positives decreases from 39 to 26.

	0	1
benign malignant	418 2	26 237

But at the expense of 2 false negative.