

MoveSense[™] One 双目深度相机 Linux 开发指南(中文版)

2016-07-04 rev 1.01

目录

简介	1
SDK 目录结构	1
快速使用说明	2
API 接口简介	2
开发环境配置	2
编译 MoveSense TM One 依赖库	2
编译 MoveSense [™] One 测试用例	3
编译 ROS 开发用例	4
三维点云应用开发	6
SLAM 应用开发说明	7
ORB_SLAME	7
Stereo-SLAM	7
RGBD-SLAM	7
修订版本	7

简介

MoveSenseTM One 双目深度相机支持 Linux 环境开发,在 Linux 下 MoveSenseTM One 为 UVC 标准设备。人加目前为 MoveSenseTM One 提供了 SDK,使得用户能在 Linux 平台下开发基于双目深度相机的应用。同时提供了 ROS(机器人操作系统)下的开发用例,便于用户与 ROS 对接。Linux 版本 SDK 及 ROS 开发用例均托管在 GitHub 上,供用户下载使用。

Linux-SDK: https://github.com/HumanPlus-Company/MoveSenseSDK-Linux.git https://github.com/HumanPlus-Company/movesense-ros.git <a href="https://github.com/HumanPlus-Com

注:本指南在开发所使用 Linux 发行版本为 Ubuntu 14.04,ROS 发行版本为 ROS indigo。

SDK 目录结构

Linux 下的 SDK 按下图中目录结构进行组织:

其中各个文件夹及文件的介绍如下表所示:

目录名称	描述	
doc	存储数据手册、开发指南以及引用笔记等文档	
lib	存储 Linux 下发布库的源码,需用户自行编译	
samples	存储一些示例工程程序	
tools	存储一些软件工具	

快速使用说明

在 Linux 平台下,运行 MoveSenseTM One 用例需首先编译 MoveSenseTM One 依赖库,请仔细阅读**开发环境配置**章节,完成 Linux 平台下 MoveSenseTM One 依赖库的编译工作。

API 接口简介

目前针对Linux系统开发环境提供了MoveSenseTM One 的一些基本的数据接口API。

未完待续!!!

开发环境配置

Linux 下使用 g++编译器对 MoveSenseTM One SDK 进行编译。

编译 MoveSenseTM One 依赖库

打开 MoveSenseSDK-Linux 文件夹下的 lib 文件夹,仔细阅读 README.me。

按照README 所述步骤依次按成依赖库安装及 MoveSenseTM One 依赖库编译及安装任务。成功安装后在/user/local/incude/目录下新增 movesense 文件夹,存储 MoveSenseTM One 依赖库所需头文件,在/user/local/lib/目录下新增 libmovesense.so 及 libmovesense.a 库文件。

编译 MoveSense™ One 测试用例

打开 MoveSenseSDK-Linux/samples/Sample_Cap_OpenCV 文件夹,仔细阅读README.me。

按照 README 所述步骤完成 Sample_Cap_OpenCV 测试用例的编译工作,在编译开发用例前请确保已完成 MoveSenseTM One 依赖库的编译工作。

Sample_Cap_OpenCV 测试用例可工作在六种不同模式下(其中 LRD 模式要求系统有 USB 3.0 接口),其分别为:

测试用例名称	功能(以下测试帧率均为 30fps)
TestCase_376X240_LD()	1/4 分辨率下的左图及对应深度图
TestCase_376X240_LR()	1/4 分辨率下的左图及右图
TestCase_376X240_LRD()	1/4 分辨率下的左图、右图及深度图
TestCase_752X480_LD()	全分辨率下的左图及深度图
TestCase_752X480_LR() 全分辨率下的左图、右图	
TestCase_752X480_LRD/_OnlyUSB3.0()	全分辨率下的左图、右图及深度图

连接 MoveSenseTM One 双目相机,运行 Sample_Cap_OpenCV 可执行程序,其效果如下:

编译 ROS 开发用例

从 https://github.com/HumanPlus-Company/movesense-ros.git 获取 ROS 开发用例,其目录为:

在编译 ROS 开发用例前,清确保 Linux 开发环境上已经成功安装 ROS<Indio>, ROS 安装教程参看: http://wiki.ros.org/indigo/Installation/Ubuntu。

仔细阅读 movesense-ros 文件夹下的 README.md 文件,依次按步骤编译 ROS 开发用例。编译成功后会生成三个可执行程序,分别对应 MoveSenseTM One 的不同工作模式。

执行 movesense-ros 文件夹下的 movesense-ros_LR_node 可执行程序,使用 ROS 提供的

Rviz 可视化工具,订阅 MoveSense[™] One 的左右相机图像,其效果如下:

为方便用户观看深度图,人加提供了一个简单地 ROS 包显示深度图信息,请仔细阅读 movesense-ros/tools/ms_image_view/文件夹下的 README.md,编译 ms_image_view 包。

连接 MoveSense[™] One 双目相机,分别执行 movesense-ros 文件夹下的 movesense-ros_LD_node 和 movesense-ros/tools/ms_image_view/image_view 可执行程序,显示深度图信息,其效果如下:

三维点云应用开发

用户可参考数据手册的《相机标定参数》、《视差空间到欧式空间转换》小节,将获取的视差数据转换为三维点云数据。

人加目前提供的 ROS 开发用例中,当执行包含深度信息的节点时,会同时发布三维点云数据,用户可通过执行 movesense-ros 文件夹下的 movesense-ros_LD_node 可执行程序,使用 ROS 提供的 Rviz 可视化工具,订阅 MoveSense[™] One 的点云数据。

人加提供的深度及三维点云信息使用单位均为毫米(mm), 故为便于观看,用户需将 PointCloud2->Size(m)的数值从 0.01 修改到 10 或更大,其效果图如下。

SLAM 应用开发说明

ORB_SLAME

未完待续!!!

Stereo-SLAM

未完待续!!!

RGBD-SLAM

未完待续!!!

修订版本