Theorem 1. Suppose that the state $|\psi\rangle$ is real. If we substitute the matrix A_n with the matrix A'_n in the problem (??), the optimal solution of the restricted problem is also optimal for the original problem.

1 The proof of Theorem 1

In this section, we prove Theorem 1. As we have stated in section ??, by substituting the matrix A_n with the matrix A'_n , we consider the restricted problems of primal problem (??) and dual problem (??). Let x^* and y^* be the optimal solutions of the restricted primal and dual problems, respectively. We can assure such solutions always exists. Now, we show that the x^*, y^* are optimal not only for the restricted problems but also for the original problems.

Lemma 1. Suppose y is a real vector and satisfies $|a^{\dagger}y| \leq 1$ for all $a \in \mathcal{A}_n$ such that a is a real vector. Then, y satisfies $|a^{\dagger}y| \leq 1$ for all $a \in \mathcal{A}_n$.

Proof. We check the all states $|\phi_i\rangle \in \mathcal{S}_n$ respectively. It is trivial for the case k=0 since the corresponding columns both exist in \mathcal{S}_n and \mathcal{T}_n . We set $|\phi_i\rangle = \frac{1}{2^{k/2}} \sum_{x=0}^{2^k-1} (-1)^{x^\top Qx} i^{c^\top x} |Rx+t\rangle$ with k>0 and $\langle \phi_i|y\rangle = \alpha + i\beta(\alpha,\beta\in\mathbb{R})$. The following two states

$$|\phi_{+}\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx} |Rx+t\rangle , \quad |\phi_{-}\rangle \coloneqq \frac{1}{2^{k/2}} \sum_{x=0}^{2^{k}-1} (-1)^{x^{\top}Qx+c^{\top}x} |Rx+t\rangle$$

are in \mathcal{T}_n , and satisfy $\langle \phi_+|y\rangle = \alpha + \beta$, $\langle \phi_-|y\rangle = \alpha - \beta$. From the assumption, we have

$$|\langle \phi_i | y \rangle| = \sqrt{\alpha^2 + \beta^2} \le |\alpha| + |\beta| = \max\{|\alpha + \beta|, |\alpha - \beta|\} \le 1,$$

which completes the proof.

Theorem 2. The optimal solutions for the restricted problems x^* and y^* are also optimal for the original problems.

Proof. Let OPT be the optimal value for the original primal problem. Since x^* can be a feasible solution for the original primal problem, it is clear that OPT $\leq \|x^*\|_1$. By the strong duality theorem, OPT is also the optimal value for the original dual problem. From the lemma 1, we can see that y^* is a feasible solution for the original dual problem and OPT $\geq \langle \psi | y^* \rangle$. Again, by applying the strong duality theorem to the restricted problems, we have $\|x^*\|_1 = \langle \psi | y^* \rangle$, which means that OPT $= \|x^*\|_1 = \langle \psi | y^* \rangle$. Therefore, x^* and y^* are also optimal for the original problems.