

Online Retailer

Customer Segmentation

Data Science Capstone Spring 2022 SECS 7259-01 22124

Online Retailer: Business Objective

- Need to explore: E-Commerce past infancy
 - Maximize efficiency leads to profits
 - Understand customers key to success
- Business Objective: Understand customer to enhance Product offering and maximize profit
- Scope and Design: Customer Segmentation
 - Data preparation: Data Exploration, Data Cleaning
 - Descriptive analysis: Visuals to derive insights
 - Unsupervised learning model: Clustering
 - Dimensionality reduction
 - · Baseline: RFM Model
 - Elbow method and Silhouette score to find optimal clusters
 - K-Means Cluster analysis
 - Model iteration and best fit
 - Evaluating model
 - Model Implementation
- Stakeholders: Online Retailer, Customers, Support functions

Data Acquisition

- Transactions for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011
- Source:

Dr. Daqing Chen, Course Director: MSc Data Science. School of Engineering, London South Bank University, London SE1 0AA, UK. https://archive.ics.uci.edu/ml/datasets/Online+Retail+II

Reference:

https://www.kaggle.com/datasets/lakshmi25npathi/online-retail-dataset?select=online_retail_II.xlsx

Online Retail: Year 2009-10 Online Retail: Year 2010-11

RangeIndex: 525461 entries, 0 to 525460 Data columns (total 8 columns): Column Non-Null Count Dtype Invoice 525461 non-null object 1 StockCode 525461 non-null object Description 522533 non-null object Quantity 525461 non-null int64 InvoiceDate 525461 non-null object Price 525461 non-null float64 Customer ID 417534 non-null float64 Country 525461 non-null object dtypes: float64(2), int64(1), object(5) memory usage: 32.1+ MB

RangeIndex: 541910 entries, 0 to 541909
Data columns (total 8 columns):

Daca	0014111113 (000	ar o coramno,.				
#	Column	Non-Null Count	Dtype			
0	Invoice	541910 non-null	object			
1	StockCode	541910 non-null	object			
2	Description	540456 non-null	object			
3	Quantity	541910 non-null	int64			
4	InvoiceDate	541910 non-null	object			
5	Price	541910 non-null	float64			
6	Customer ID	406830 non-null	float64			
7	Country	541910 non-null	object			
<pre>dtypes: float64(2), int64(1), object(5)</pre>						
memory usage: 33.1+ MB						

Online Retailer: Data Cleaning

- Step 1: Combined 2 worksheets:
 - Year 2009-10 and 2010-11
 - Total 1067371 entries
- Step 2: Removed entries without Customer ID
 - Reduced to 824364 entries
- Step 3: Outliers: Negative Quantity and Price

- Step 4: Normalization to scale
- Step 5: Removed Non UK dataset

```
Data columns (total 8 columns):
    Column
                 Non-Null Count
                                   Dtype
    Invoice
                1067371 non-null object
    StockCode
                1067371 non-null
                                  object
    Description 1062989 non-null
                                  object
    Quantity
                 1067371 non-null int64
    InvoiceDate 1067371 non-null datetime64[ns]
    Price
                 1067371 non-null float64
    Customer ID 824364 non-null
                                  float64
    Country
                 1067371 non-null object
dtypes: datetime64[ns](1), float64(2), int64(1), object(4)
memory usage: 65.1+ MB
```


Online Retailer: Exploratory Data Analysis

- 5942 customers spent on average 2801.80 currency
- Each customers had purchased on average approx. 7.5 times in 2 years, at least once and at most 508 times
- On average, 293.97 spent by a customer on a purchase
 - 75% of customer purchases with 357.41
- Most Customers and most revenue generated from United Kingdom
 - Ireland, Netherlands, Germany, France, and Australia top Revenue generating countries/ markets
- Seasonality in revenue generated
 - Peak months: Q4 Oct to Dec

Revenue Generated in 2 years

Month over Month: Revenue Generated

Online Retailer: Exploratory Data Analysis

- Further review of Cancel Orders:
 - Mainly coincided with peak order days
 - About a third of customers cancelled orders
 - Equates to just 8% of revenue
 - Top 3 Most cancels by Countries that order revenue with in Top 5:
 - United Kingdom
 - EIRE
 - France
 - About 49% of products have had cancelled orders

Online Retailer: Baseline

- Scatter plot of revenue to time distribution indicated 3 clusters
 - Cluster 0: Orders with moderate revenue generation
 - Cluster 1: Orders that were cancelled and resulted in loss of revenue
 - Cluster 2: Orders with high revenue generation
- K Means with 3 clusters shows similar composition as scatter plot clusters

```
online_retailer_2['clusters'].value_counts()

0 824339
1 23
2 2
Name: clusters, dtype: int64
```

 Segment of customer who is the big spender but what if they purchased only once or how recently they purchased?

Scatter plot of Revenue Generated

Clusters Composition: v1

	Quantity	Quantity Amount	
clusters			
0	12.414962	19.869580	2.811637
1	-6748.652174	-15767.043478	9648.739130
2	77605.000000	122826.000000	1.500000

Online Retailer: RFM Model

- Customer behavior segmentation technique
 - Recency,
 - Frequency,
 - Monetary
- Each component split into quantiles
- Scores for each component assigned from quantiles
- Overall Score generated based on
 - how recently customer bought products,
 - how often customer buys, and
 - how much money was spent by customer,
- Based on each component and with Recency at higher weights, model designed with 7 clusters

RFM and scores

	Customer ID	recency	Spending	Purchase_Frequency	r_score	f_score	m_score	rfm	rfm_scores	Segment_name	cluster
4	12747.0	2.0	9276.54	26	3	3	3	333	9	champion	1
5	12748.0	1.0	56599.39	337	3	3	3	333	9	champion	1
6	12749.0	4.0	6897.36	9	3	3	3	333	9	champion	1
9	12820.0	3.0	2689.52	11	3	3	3	333	9	champion	1
15	12826.0	3.0	2955.75	12	3	3	3	333	9	champion	1

Scatter plot: RFM Segments

Online Retailer: Elbow Method

- Most popular methods to determine Optimal value of k – Elbow method
- It is a plot of explained variation for a range of number of clusters
- Using the "elbow" as a cutoff point for number of clusters so that adding another cluster doesn't give much better modeling
- Elbow method to find optimal K indicates 5 clusters

Online Retailer: Silhouette Score

Silhouette score and Clusters

```
#3. Silhouette Analysis
for num_clusters in range(2,15):
    kmeans=KMeans(n_clusters=num_clusters,max_iter=50)
    kmeans.fit(rfm4_scaled)
    cluster_labels=kmeans.labels_
    #silhouette score
    silhouette_avg=silhouette_score(rfm4_scaled,cluster_labels)
    print("For n_clusters={0},the silhouette score is {1}".format(num_clusters,silhouette_avg))
```

```
For n_clusters=2, the silhouette score is 0.5427383933423554
For n_clusters=3, the silhouette score is 0.5709408998925913
For n_clusters=4, the silhouette score is 0.5756265375828242
For n_clusters=5, the silhouette score is 0.5999459927700813
For n_clusters=6, the silhouette score is 0.5937624905154639
For n_clusters=7, the silhouette score is 0.5350453656163757
For n_clusters=8, the silhouette score is 0.5346261659994758
For n_clusters=9, the silhouette score is 0.4764734096744537
For n_clusters=10, the silhouette score is 0.4973912941046593
For n_clusters=11, the silhouette score is 0.4938293671036302
For n_clusters=12, the silhouette score is 0.4777990330924042
For n_clusters=13, the silhouette score is 0.49099801625143963
For n_clusters=14, the silhouette score is 0.468996663562025
```

• Silhouette Analysis for Clusters

- Silhouette Coefficient or score is a metrics to calculate goodness of clustering technique
 - 1=> clusters are well apart from each other and clearly distinguished.
 - 0 => clusters are indifferent, or we can say that the distance between clusters is not significant.
 - -1 => clusters are assigned in the wrong way
- Applying on Online Retailer dataset, 5 clusters highest Silhouette coefficient

Online Retailer: Final model

- K-Means identified 5 optimal Customer Segments or clusters
 - Cluster 0: Customer group who bought fairly recently, but fewer number of times and spending lower compared to others
 - Cluster 1: Customers who have recently purchased fairly high value products but did not repeat purchasing frequently
 - Cluster 2: Customers who have very high repeat purchases and higher spending, and recently purchased
 - Cluster 3: These Customers have not purchased in a very long time and have high churn while spending very little
 - Cluster 4: This is the best group of customers who buy very frequently and spent the most. Also they bought very recently

Online Retailer: K Means

K Means Clusters: 5 optimal

Customer ID Segment_name Spending Purchase_Frequency

			g			,		
Ī	4	12747.0	champion	0.540141	1.660052	-0.957423	2	1
	5	12748.0	champion	4.457811	27.798019	-0.962186	1	2
	6	12749.0	champion	0.343179	0.231288	-0.947896	0	0
	9	12820.0	champion	-0.005172	0.399378	-0.952659	0	0
	15	12826.0	champion	0.016868	0.483423	-0.952659	0	0
	28	12839.0	champion	0.605972	1.660052	-0.952659	2	1
	30	12841.0	champion	0.396436	2.752636	-0.943133	2	1
	62	12877.0	champion	0.016820	1.155782	-0.947896	2	1
	85	12901.0	champion	1.233722	1.828142	-0.924080	2	1
	97	12913.0	champion	0.326911	0.567468	-0.943133	0	0
	105	12921.0	champion	2.745933	5.610163	-0.924080	2	1
	119	12935.0	champion	0.123506	0.735558	-0.957423	0	1
	121	12937.0	champion	0.028612	0.231288	-0.895500	0	0
	132	12948.0	champion	-0.035975	0.231288	-0.890737	0	0
	135	12951.0	champion	0.038225	0.735558	-0.924080	0	1
	139	12955.0	champion	0.166000	0.399378	-0.962186	0	0
	141	12957.0	champion	0.492989	0.567468	-0.919316	0	1
	147	12963.0	champion	0.070335	0.483423	-0.928843	0	0
	154	12970.0	champion	-0.101580	0.315333	-0.933606	0	0
	155	12971.0	champion	1.094497	8.887914	-0.947896	2	2

Online Retailer: RFM Segment vs. K Means Clusters

KMeans_Cluster	Segment_name	
0	champion	185
	needing_attention1	360
	needing_attention2	2205
	potential1	520
1	champion	298
	lost1	2
	needing_attention1	146
	needing_attention2	2
2	champion	16
	needing_attention1	3
3	lost1	1078
	lost2	4
	needing_attention1	15
	needing_attention2	511
4	champion	4
	potential1	1
Name: KMeans_Cl	uster, dtype: int64	

- 61% of customers are in K-Means Cluster 0
 - Overlap in Segments identified with RFM Scores vs. K Means Clusters
 - Champions: high Recency, high Frequency, high Spending spread across 4 K-Means clusters
 - 59% in K Means Cluster 1
 - 37% in Cluster 0
 - 3% in Cluster 2
 - 1% in Cluster 4

Online Retailer: Conclusion

- 61% of customers in Cluster 0
 - Grow this group with Marketing plan to drive more frequent purchase utilizing recommenders, coupon offerings for related past purchases
- 30% of customers not purchased recently.
 - Likely to churn
 - Nurture campaigns to bring back the group
- Cluster 1 is 8% of customers
 - Purchased fairly recent, bought high value products, did not purchase frequently
 - Likely dissatisfied customers
 - Feedback campaigns to increase engagement

Online Retailer: Next Steps

- Model deployment and Validation
 - Canary deployment strategy: Gradually add customer country
 - Internal Validation: Evaluating the fitness and Stability of clustering
 - Geometrical Properties of cluster like Compactness, Separation, Connectedness: Average Silhouette Width, and Bayesian information criterion (BIC)

Data Model Find a source of raw data Download model weights and training pipeline from GitHub Construct airtight annotation **ML Lifecycle** Set up model and training pipeline schema Have annotators make Train and track model and mistakes/find edge cases hyperparameter versions Collect more data to fix biases/imbalances Evaluation Visualize model outputs Refine and compute evaluation metric Find individual failure cases Determine reason for mistakes (data or model) Finally get a model that performs well on your test data Collect new data reflecting errors/updates in production Continue cycle until model performs well Production Monitor model Evaluate model on new data Reference: and it performs worse https://neptune.ai/blog/model-Found biases in model deployment-strategies Source: The Machine

Add additional functionality

Learning Lifecycle in 2021

Online Retailer: Model Profiling

- Risks of model:
 - Every clustering algorithm will find clusters in a dataset, even if there is no cluster structure in it
 - Outliers
 - Country specific
 - No Cancel orders
 - Extreme outliers will skew clusters

- Stakeholders for project:
 - Online Retailer, Customers, Support functions
 - Marketing team for building nurture campaigns via emails, texts
 - Finance team for determining profitable offers and discounts
 - Product purchase and maintenance team for stocking products
 - Data Science team for building and maintenance of Customer segmentation model

Next Steps:

• Optimize product offerings by customer segments

• Design Recommenders to assist customer segments