Hilbert Transforms of Band-Pass Functions

BY URKOWITZ, H.

Abstract

This paper is a guess at what "Hilbert transforms of band-pass functions." *Proc. IRE* 50.10 (1962): 2143. might contain if it were available based on the references to it made by papers which cite it.

Table of contents

1	Background and Definitions	1
2	Preliminary Lemmas	2
3	Main Theorems and Proofs	2
4	Conclusion	4

1 Background and Definitions

Definition 1. [Hilbert Transform] For a real-valued x(t) with Fourier transform $X(\omega)$, its Hilbert transform is

$$\hat{x}(t) = \mathcal{H}[x](t) = \frac{1}{\pi} P.V. \int_{-\infty}^{\infty} \frac{x(\tau)}{t - \tau} d\tau$$
 (1)

equivalently in the frequency domain,

$$\mathcal{F}\{\mathcal{H}[x]\}(\omega) = -j\operatorname{sgn}(\omega) \ X(\omega) \tag{2}$$

Definition 2. [Analytic Signal] Given real x(t), its analytic signal is

$$z(t) = x(t) + j \hat{x}(t) \tag{3}$$

whose Fourier transform is one-sided:

$$Z(\omega) = 2U(\omega) \ X(\omega) \quad U(\omega) = \begin{cases} 1, & \omega > 0 \\ 0, & \omega < 0 \end{cases}$$
 (4)

2 Preliminary Lemmas

Lemma 3. [Hilbert Transform of a Complex Exponential] For any real constant $\omega_0 \neq 0$,

$$\mathcal{H}[e^{j\omega_0 t}] = -j \operatorname{sgn}(\omega_0) \ e^{j\omega_0 t} \tag{5}$$

In particular, if $\omega_0 > 0$, $\mathcal{H}[e^{j\omega_0 t}] = -j e^{j\omega_0 t}$

Proof. The Fourier transform of $e^{j\omega_0 t}$ is $2 \pi \delta(\omega - \omega_0)$. Thus

$$\mathcal{F}\{\mathcal{H}[e^{j\omega_0 t}]\}(\omega) = -j\operatorname{sgn}(\omega) \ 2\pi \ \delta(\omega - \omega_0) = -j\operatorname{sgn}(\omega_0) \ 2\pi \ \delta(\omega - \omega_0)$$
 (6)

and inverting yields the stated result.

3 Main Theorems and Proofs

Theorem 4. [Bedrosian's Theorem]Let f and g be real-valued, absolutely integrable functions. Suppose

$$\operatorname{supp} \mathcal{F}\{f\} \subset [-\Omega, \Omega \quad \operatorname{supp} \mathcal{F}\{g\} \subset \mathbb{R} \setminus (-\Omega, \Omega) \tag{7}$$

Then

$$\mathcal{H}[f(t) \ g(t)] = f(t) \ \mathcal{H}[g(t)] \tag{8}$$

Proof. Write $F(\omega) = \mathcal{F}\{f\}(\omega), G(\omega) = \mathcal{F}\{g\}(\omega)$. Then

$$\mathcal{F}\left\{fg\right\}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\lambda) \ G(\omega - \lambda) \ d\lambda \tag{9}$$

Therefore

$$\mathcal{F}\left\{\mathcal{H}\left[fg\right]\right\}(\omega) = -j\operatorname{sgn}(\omega) \ \mathcal{F}\left\{fg\right\}(\omega) = -\frac{j}{2\pi} \int F(\lambda)\operatorname{sgn}(\omega) \ G\left(\omega - \lambda\right) \ d \qquad (10)$$

But for every $\lambda \in [-\Omega, \Omega]$ and every ω for which $G(\omega - \lambda) \neq 0$, we have $\omega - \lambda \notin (-\Omega, \Omega)$ by hypothesis, hence

$$\operatorname{sgn}(\omega) = \operatorname{sgn}(\omega - \lambda) \tag{11}$$

Thus

$$\operatorname{sgn}(\omega) \ G(\omega - \lambda) = \operatorname{sgn}(\omega - \lambda) \ G(\omega - \lambda) \tag{12}$$

and so

$$\mathcal{F}\left\{\mathcal{H}\left[fg\right]\right\}(\omega) = -\frac{j}{2\pi} \int F(\lambda) \operatorname{sgn}(\omega - \lambda) \ G\left(\omega - \lambda\right) \ d\lambda = \mathcal{F}\left\{f \ \mathcal{H}[g]\right\}(\omega) \tag{13}$$

Inverting the Fourier transform gives the result.

Theorem 5. [Hilbert Transform of a Narrowband Signal]Let

$$s(t) = A(t)\cos(\omega_c t + \phi(t)) \tag{14}$$

where A(t) and $\phi(t)$ vary slowly enough that the Fourier support of $u(t) = A(t) e^{j\phi(t)}$ lies in $|\omega| < \Omega$ with $\Omega < \omega_c$. Then

$$\mathcal{H}[s](t) = A(t) \sin(\omega_c t + \phi(t)) \tag{15}$$

Equivalently, the analytic signal is

$$z(t) = s(t) + j \mathcal{H}[s](t) = A(t) e^{j(\omega_c t + \phi(t))}$$
 (16)

Proof. Write

$$s(t) = \Re \{u(t) e^{j\omega_c t}\}$$
 $u(t) = A(t) e^{j\phi(t)}$ (17)

Since supp $\mathcal{F}\{u\} \subset [-\Omega, \Omega]$ and $\mathcal{F}\{e^{j\omega_c t}\} = 2 \pi \delta(\omega - \omega_c)$ lives at $\omega = \omega_c > \Omega$, Theorem 4 applies:

$$\mathcal{H}\left[u(t)\,e^{j\omega_c t}\right] = u(t)\,\,\mathcal{H}\left[e^{j\omega_c t}\right] \tag{18}$$

By Lemma 3 with $\omega_0 = \omega_c > 0$, $\mathcal{H}[e^{j\omega_c t}] = -j \ e^{j\omega_c t}$. Hence

$$\mathcal{H}\left[u(t)\,e^{j\omega_{c}t}\right] = -\,j\,\,u(t)\,e^{j\omega_{c}t}\tag{19}$$

and taking real parts,

$$\mathcal{H}\left[\Re\left\{u\,e^{j\omega_{c}t}\right\}\right] = \Re\left\{-j\,u\,e^{j\omega_{c}t}\right\} = \Im\left\{u\,e^{j\omega_{c}t}\right\} = A(t)\sin\left(\omega_{c}\,t + \phi(t)\right) \tag{20} \quad \Box$$

Theorem 6. [Spectrum of the Analytic Signal] If $x(t) \leftrightarrow X(\omega)$, then its analytic signal $z(t) = x(t) + j\mathcal{H}[x(t)]$ has transform

$$Z(\omega) = X(\omega) + j \left(-j \operatorname{sgn}(\omega) \ X(\omega) \right) = \left(1 + \operatorname{sgn}(\omega) \right) X(\omega) = 2 \ U(\omega) \ X(\omega).$$

Proof. Immediate from the frequency-domain definition of \mathcal{H} .

Theorem 7. [Envelope Detection] For any real x(t),

$$|x(t) + j \mathcal{H}[x(t)]| = \sqrt{x^2(t) + \mathcal{H}[x]^2(t)}$$
 (21)

is exactly the instantaneous envelope of the narrowband signal.

Proof. Write $z(t) = x(t) + j \hat{x}(t) = R(t) e^{j\theta(t)}$, then $|z(t)| = R(t) = \sqrt{x^2 + \hat{x}^2}$ by definition of magnitude in the complex plane.

Theorem 8. [Single-Sideband (SSB) Modulation] Given a real baseband m(t), the standard Hilbert-transform SSB transmitter produces

$$s_{\text{SSB}}(t) = m(t)\cos(\omega_c t) + \mathcal{H}[m](t)\sin(\omega_c t)$$
(22)

which has only the upper sideband.

Proof. Form the analytic signal $m_a(t) = m(t) + j\mathcal{H}[m](t) \leftrightarrow 2U(\omega)M(\omega)$, then modulate:

$$m_a(t) e^{j\omega_c t} \leftrightarrow 2 M (\omega - \omega_c) U (\omega - \omega_c)$$
 (23)

Taking the real part gives exactly

$$\Re\left\{m_a(t)\,e^{j\omega_c t}\right\} = m(t)\cos\omega_c \,t - \mathcal{H}[m](t)\sin\omega_c \,t \tag{24}$$

which is the lower-sideband suppressed version. A sign flip in the sine term (or using $e^{-j\omega_c t}$) yields the upper SB alone.

4 Conclusion

Full proofs of the central results on Hilbert transforms of band-pass functions have been given, Bedrosian's theorem, spectrum of the analytic signal, envelope detection and the SSB construction, completing the rigorous theory often attributed to Urkowitz (Proc. IRE, 1962).