

การออกแบบวงจรตรวจจับลำดับ แบบมัวร์ที่ใช้ JK Flip-Flop (Moore Machine Design of a Sequence Detector Circuits JK Flip-Flop¹)

(¹Roth, C.H., Fundamentals of Logic Design, 5th Ed.)

Out Line

- การสร้าง JK Flip-Flop Table จาก Transition Table
- การแปลง JK Flip-Flop Table เป็นสมการบูลีนโดยใช้ Karnaugh Map
- บทสรุป

วัตถุประสงค์

• สามารถสร้างตรวจจับลำดับตัวเลขไบนารีโดยใช้ JK Flip-Flop ได้

ขั้นตอน 3: การสร้าง Transition Table (JK Flip-Flop Table)

Present	Next	State	Present	J_A		K	(_A	(i	l _B	K	(_B
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	X = 0	X = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
00	00	01	0				7,550	857	- 20	100	7870 3
01	11	01	0								
11	00	10	0								
10	11	01	1	l.	Torse.						

Q Q+	J	K
0 0	0	Х
0 1	1	X
1 0	X	1
1 1	X	0

ขั้นตอน 3: การสร้าง Transition Table (JK Flip-Flop Table)

Present	Next	State	Present	,	A	F	(_A	12	J_B	<i>F</i>	ζ_B
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
00	00	01	0	0	0	Х	х	857	-20	100	7570
01	11	01	0	1	0	X	X				
11	00	10	0	X	X	1	0				
10	11	01	1	X	X	0	1				

	Q	Q^+	J	K
	0	0	0	Х
	0	1	1	X
	1	0	X	1
	1	1	X	0
5				

ขั้นตอน 3: การสร้าง Transition Table (JK Flip-Flop Table)

Present	Next	State	Present	-	I _A	<i> </i>	(_A	6	J _B	K	C _B
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
00	00	01	0	0	0	X	X	82	- 2		1000
01	11	01	0	1	0	X	X				
11	00	10	0	X	X	1	0				
10	11	01	1	X	X	0	1				

Q Q+]	K
0 0	0	Х
0 1	1	X
1 0	X	1
1 1	X	0

ขั้นตอน 3: การสร้าง Transition Table (JK Flip-Flop Table)

Present	Next	State	Present	-	I_A	<i> </i>	(_A	(i	J _B	ı	(_B
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
00	00	01	0	0	0	X	X	850	-20	100	7270
01	11	01	0	1	0	X	X				
11	00	10	0	X	X	1	0				
10	11	01	1	X	X	0	1	,			

Q Q+	J	K
0 0	0	Х
0 1	1	X
1 0	X	1
1 1	X	0

ขั้นตอน 3: การสร้าง Transition Table (JK Flip-Flop Table)

Present	Next	State	Present	,	A	F	(A	14	I_B	K	ζ_B
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
00	00	01	0	0	0	X	X	0	1	Х	X
01	11	01	0	1	0	X	X	X	X	0	0
11	00	10	0	X	X	1	0	×	X	1	1
10	11	01	1	X	X	0	1	1	1	X	Х

$Q Q^+$	J	K
0 0	0	Х
0 1	1	X
1 0	X	1
1 1	X	0

ขั้นตอน 3: การสร้าง Transition Table (JK Flip-Flop Table)

Present	Next	State	Present	-	I_A	<i> </i>	(_A	C (4	J_B	<i>F</i>	(_B
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1
00	00	01	0	0	0	Х	Х	0	1	Х	X
01	11	01	0	1	0	X	X	×	X	0	0
11	00	10	0	×	X	1	0	×	X	1	1
10	11	01	1	×	×	0	1	1	1	×	X

ขั้นตอน 4: การแปลง JK Flip-Flop Table เป็นสมการบูลีน

Present	
State	
AB	
00	
01	
11	
10	

	A	<i>F</i>	(A		J_B	K _B		
X = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	X = 0	X = 1	X = 0	<i>X</i> = 1	
0	0	Х	Х	0	1	Х	Х	
1	0	x	X	X	X	0	0	
X	X	1	0	×	X	1	1	
X	X	0	1	1	1	X	X	

ขั้นตอน 4: การแปลง JK Flip-Flop Table เป็นสมการบูลีน

Present	1	A	<i>I</i>	(_A		J_B	$ K_B $		
State AB	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	
00	0	0	Х	Х	0	1	Х	Х	
01	1	0	×	X	X	X	0	0	
11	X	X	1	0	×	X	1	1	
10	X	X	0	1	1	1	×	×	

ขั้นตอน 4: การแปลง JK Flip-Flop Table เป็นสมการบูลีน

Present	-	A	<i>K</i>	(A		J_B	K _B		
State AB	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	
00	0	0	Х	Х	0	1	Х	X	
01	1	0	X	X	X	X	0	0	
11	X	X	1	0	×	X	1	1	
10	X	X	0	1	1	1	×	X	

12

ขั้นตอน 4: การแปลง JK Flip-Flop Table เป็นสมการบูลีน

Present		A	<i> </i>	C _A		J_B	K _B		
State AB	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	
00	0	0	Х	Х	0	1	Х	X	
01	1	0	X	X	X	X	0	0	
11	X	X	1	0	×	X	1	1	
10	X	X	0	1	1	1	×	X	

X	0	1	ABX	0	1	AB	0	1	ABX	0	1	
0	0	0	00	Х	х	00	0	1	00	Х	х	
	1	0	01	х	x	.01	Х	x	01	0	0	
	Х	х	11	1	0	11	Х	x	11	1	1	
,	Х	х	10	0	1	10	1	1	10	х	х	
		l _A		K	A		1	J_B	7		K _B	

ขั้นตอน 4: การแปลง JK Flip-Flop Table เป็นสมการบูลีน

Present	-	A	<i>K</i>	(_A		I_B	$ K_B $		
State AB	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	
00	0	0	Х	Х	0	1	X	Х	
01	1	0	X	X	X	X	0	0	
11	X	X	1	0	X	X	1	1	
10	X	X	0	1	1	1	×	X	

X	0	1	ABX	0	1	AB	0	1	ABX	0	1
00	0	0	00	Х	х	00	0	1	00	х	х
01	1	0	01	х	х	01	Х	x	01	0	0
11	Х	×	11	1	0	11	Х	х	11	1	1
10	Х	x	10	0	1	10	1	1	10	Х	х
	-	l _A	,	K	A		1	J _B		-	K _B

$J_B = X'B$	
$K_B = X'B + XB$	
$V = A \perp V$	

 $J_A = A$

ขั้นตอน 5: การหาสมการบูลีนของเอาต์พุต

Present	Next	State	Present	,	J_A		K_A		J _B	K _B	
State AB	$X = 0$ A^+B^+	$X = 1$ A^+B^+	Output(Z)	<i>X</i> = 0	<i>X</i> = 1	X = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1	<i>X</i> = 0	<i>X</i> = 1
00	00	01	0	0	0	Х	Х	0	1	Х	×
01	11	01	0	1	0	X	X	X	X	0	0
11	00	10	0	X	X	1	0	×	X	1	1
10	11	01	1	X	X	0	1	1	1	×	X

ขั้นตอน 5: การหาสมการบูลีนของเอาต์พุต

Present
State
AB
00
01
11
10

Present Output(Z)
0
0
0
1

15

16

ขั้นตอน 5: การหาสมการบูลีนของเอาต์พุต

Present State AB	Present Output(Z)
00	0
01	0
11	0
10	1

$$Z = AB'$$

ขั้นตอน 6: การสร้างวงจร Logic จากสมการบูลีน

$$J_B = X'B$$

$$K_B = X'B + XB'$$

$$K_A = A + X$$

$$J_A = A$$

$$Z = AB'$$

ขั้นตอน 6: การสร้างวงจร Logic จากสมการบูลีน

$$J_{B} = X'B$$

$$K_{B} = X'B + XB'$$

$$K_{A} = A + X$$

$$J_{A} = A$$

$$Z = AB'$$

