Prova di Comunicazioni Numeriche

14 settembre 2012

Es. 1 - Con riferimento alla Fig. 1, sia $x(t) = B \operatorname{sinc}^2(Bt)$ e $p(t) = B \operatorname{sinc}(Bt)$. Calcolare la espressione analitica dell'uscita z(t) nei casi: 1) c(t) = 1 e 2) $c(t) = \exp(-j2\pi Bt)$. Calcolare inoltre la energia e potenza di z(t) nei due casi.

Fig. 1

Es. 2 - In un sistema di comunicazione numerico il segnale trasmesso è $s(t) = \sum_k x \left[k\right] p(t-kT)$, dove i simboli $x \left[k\right]$ appartengono all'alfabeto $A = \{-1, +3\}$ e sono equiprobabili, e $P(f) = \begin{cases} \sqrt{1 - |fT|} & |fT| \leq 1 \\ 0 & altrove \end{cases}$. La risposta impulsiva del canale è $C(f) = \begin{cases} 1 + j2\pi fT & |fT| \leq 1 \\ 0 & altrove \end{cases}$. Il canale introduce anche rumore Gaussiano additivo bianco in banda

del canale è $C(f)=\left\{ egin{array}{ll} 1+j2\pi fT & |fT|\leq 1 \\ 0 & altrove \end{array} \right.$. Il canale introduce anche rumore Gaussiano additivo bianco in banda la cui densità spettrale di potenza è $S_N(f)=\frac{N_0}{2}$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 2. La risposta impulsiva del filtro in ricezione è $G_R(f)=P(f)$. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento T e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a λ . Determinare:

1) L'energia media per intervallo di segnalazione del segnale trasmesso, 2) Verificare se è soddisfatta la condizione di Nyquist, 3) Calcolare la potenza di rumore in uscita al filtro in ricezione P_{nu} , 4) Calcolare la probabilità di errore sul bit, $P_E(b)$, in funzione della soglia λ , 5) Determinare la soglia λ che minimizza la probabilità di errore sul bit.

Fig. 2