ESCOLA DE ENGENHARIA DA UFMG DEPARTAMENTO DE ENGENHARIA METALÚRGICA E DE MATERIAIS EME 887 - MODELAMENTO TÉRMICO E FLUIDO-DINÂMICO APLICADO A SISTEMAS METALÚRGICOS.

QUARTO TRABALHO - PRAZO DE ENTREGA: 30.11.2017 e 07.12.2017

Os arquivos de CORENGR22016-V1.mp4 a CORENGR22016-V41.mp4, encaminhados anteriormente, apresentam os fundamentos e a configuração do software Ansys-Fluent, para simulação do escoamento laminar axissimétrico de um fluido incompressível isotérmico em um duto cilíndrico. Inicialmente, todos devem assistir a estes filmes e fazer um paralelo com o que foi visto no curso. A tarefa de cada participante consistirá em alterar as condições de simulação, conforme listagem abaixo, mas mantendo as condições de axissimetria.

Participante	Condições de simulação
1	Regime laminar, acrescentando variação de temperatura,
	considerando um fluxo de calor constante na parede. Considerar
	temperatura de entrada do fluido uniforme ao longo da seção
	transversal.
2	Regime laminar, acrescentando variação de temperatura,
	considerando uma temperatura constante na parede. Considerar
	temperatura de entrada do fluido uniforme ao longo da seção
	transversal.
3	Regime turbulento. A vazão de fluido deve ser alterada para fornecer
	número de Reynolds acima de 2100. Considerar temperatura de
	entrada do fluido uniforme ao longo da seção transversal.
4	Regime turbulento. A vazão de fluido deve ser alterada para fornecer
	número de Reynolds acima de 2100. Acrescentar variação de
	temperatura, considerando uma temperatura constante na parede.
	Considerar temperatura de entrada do fluido uniforme ao longo da
	seção transversal.
5	Regime turbulento. A vazão de fluido deve ser alterada para fornecer
	número de Reynolds acima de 2100. Acrescentar variação de
	temperatura, considerando um fluxo de calor constante na parede.
	Considerar temperatura de entrada do fluido uniforme ao longo da
	seção transversal.
6	Regime turbulento. A vazão de fluido deve ser alterada para fornecer

número de Reynolds acima de 2100. Acrescentar um anel no interior do duto (semelhante a uma placa de orifício) obstruindo parte do duto. Simulação isotérmica. Para participante mais familiarizado com o Ansys.

Em cada caso, devem ser feitas simulações analisando o uso de diferentes esquemas de acoplamento pressão-velocidade e de esquemas de interpolação (exemplo: *upwind*). Quando pertinente, as soluções numéricas devem ser comparadas com soluções analíticas e correlações disponíveis na literatura. É importante realizar estudos de independência da malha.

Preparar um relatório escrito descrevendo o desenvolvimento das simulações e analisando os resultados obtidos. Cada participante fará uma apresentação de 15 minutos sobre o trabalho, seguido de um período de 5 minutos para perguntas.