HematoVision: Advanced Blood Cell Classification Using Transfer Learning

Introduction

 HematoVision is a deep learning-based approach to classify white blood cells into four types: Neutrophils, Eosinophils, Monocytes, and Lymphocytes.

This helps in aiding quick medical diagnostics using AI.

Objective

 To develop an accurate blood cell classification system using transfer learning, enabling faster and more reliable diagnosis in medical laboratories.

Dataset Description

- The dataset is sourced from Kaggle and contains thousands of labeled blood cell images.
- Classes: Neutrophil, Eosinophil, Monocyte, Lymphocyte.

Sample Cell Images

 Here are sample images of the four types of blood cells used in this project.

Model Architecture

 We use a pretrained convolutional neural network (e.g., MobileNetV2) for feature extraction, followed by fully connected layers for classification.

Methodology

- 1. Data Collection
- 2. Preprocessing and Augmentation
- 3. Model Training using Transfer Learning
- 4. Evaluation and Testing

Results

- The model achieved high classification accuracy.
- Evaluation metrics include confusion matrix, precision, recall, and F1-score.

Here are the results of testing the model with sample blood cell images:

Image class	Predicted class	Accuracy (%)	
Neutrophil	Neutrophil	94.3%	
Lymphocyte	Lymphocyte	91.6%	
Monocyte	Monocyte	92.8%	
Eosinophil	Eosinophil	93.4%	

Conclusion

- The model demonstrates strong potential for real-world applications in hematology.
- Future improvements include using larger datasets and real-time deployment.

References

- Kaggle Blood Cell Dataset
- TensorFlow & Keras Documentation
- Related Research Papers in Medical Al

Thank You