EDO: Equations Différentielles Ordinaires

(E): $F(x, y, y', y'', \dots, y^{(n)}) = 0$

 $\mathsf{Inconnue} \colon \, y : I \mapsto \mathbb{K}$

Variable : $x \in I$

F: une fonction de n+2 variables. Ci-haut une EDO d'ordre n.

1. EDO à variables séparables

(*E*):
$$y'.f(y) = g(x)$$

g fonction continue sur I. f fonction continue sur y(I).

Résolution : on passe ce qui concerne les y, y', y'' ... d'un côté de l'égalité et ce qui concerne x de l'autre côté, puis on intègre.

2. EDL: EDO Linéaires

F est multilinéaire d'où :

(E):
$$a_0(x).y + a_1(x).y' + a_2(x).y'' + \dots + a_n(x)y^n = g(x)$$

les a_i et g: fonctions continues de I dans \mathbb{K} .

Equation homogène (sans second membre):

$$(E_h)$$
: $a_0(x).y + a_1(x).y' + a_2(x).y'' + \dots + a_n(x)y^n = 0$

2.1. EDL1

EDL du 1^{er} ordre :

(E):
$$y' + a(x).y = b(x)$$

a et b: fonctions continues de I dans \mathbb{K} .

2.1.1. EDL1 à coefficient constant : $a \in \mathbb{K}$

(*E*):
$$y' + a. y = b(x)$$

<u>SH</u>: $y_h = \lambda . e^{-ax}$; $\lambda \in \mathbb{K}$ (esp. vect. de dim=1)

SP:

- a) $b(x)=P_n(x)$; polynôme $d^\circ=n$ $y_p=\begin{cases}Q_n(x) & \text{si } a\neq 0\\x.\,Q_n(x) & \text{si } a=0\end{cases}$ où Q_n polyn. $d^\circ=n$
- b) $b(x) = P_n(x) \cdot e^{\alpha x}$; $\alpha \in \mathbb{K}$ $y_p = \begin{cases} Q_n(x) \cdot e^{\alpha x} & \text{si } \alpha \neq -a \\ x \cdot Q_n(x) \cdot e^{\alpha x} & \text{si } \alpha = -a \end{cases}$

 $o\grave{u} Q_n$ polyn. $d^{\circ} = n$

- c) $\mathbb{K} = \mathbb{R} \text{ et } b(x) = P_n(x).\cos(\omega x) \text{ ; } \omega \in \mathbb{R}$ $(\text{resp. } b(x) = P_n(x).\sin(\omega x))$ $y_p = Re(z_p)$ $(\text{resp. } y_p = Im(z_p))$ où $z_p \, SP \, \text{de } z' + a. \, z = P_n(x).e^{i\omega x}$
- d) Cas général : b continue de I dans \mathbb{K} :

 y_p : par Méthode de Variation de la Constante (MVC) : $y_p\coloneqq \lambda(x).\,e^{-ax}$ où $\lambda'(x)=b(x).\,e^{a.x}$

SG = SH + SP

2.2. EDL2

EDL du 2nd ordre :

(E):
$$y'' + a(x).y' + b(x).y = c(x)$$

a, b et c: fonctions continues de I dans \mathbb{K} .

2.2.1. EDL2 à coefficients constants : $a, b \in \mathbb{K}$

(E):
$$y'' + a.y' + b.y = c(x)$$

SH :

Equation caractéristique :

$$r^2 + ar + b = 0$$
; $\Delta = a^2 - 4b$

Cadre complexe : $v: I \mapsto \mathbb{C}$

- $\Delta \neq 0$: \rightarrow 2 racines complexes $\alpha, \beta \in \mathbb{C}$ $y_h = \lambda. e^{\alpha x} + \mu. e^{\beta x}$; $\lambda, \mu \in \mathbb{C}$
- $\begin{array}{ll} \bullet & \Delta = 0: \ \, \to 1 \ {\rm racine \ double} \ \alpha \in \mathbb{C} \\ y_h = (\lambda x + \mu). \, e^{\alpha x} \ ; \ \lambda, \mu \in \mathbb{C} \end{array}$

Cadre réel $y: I \mapsto \mathbb{R}$

- $\Delta > 0$: \rightarrow 2 racines réelles $\alpha, \beta \in \mathbb{R}$ $y_h = \lambda. e^{\alpha x} + \mu. e^{\beta x}$; $\lambda, \mu \in \mathbb{R}$
- $\Delta = 0$: \rightarrow 1 racine double $\alpha \in \mathbb{R}$ $y_h = (\lambda x + \mu) \cdot e^{\alpha x}$; $\lambda, \mu \in \mathbb{R}$
- $\Delta < 0$: \rightarrow 2 racines complexes conjuguées : $r = \alpha \pm i\omega$; $(\alpha, \omega) \in \mathbb{R} \times \mathbb{R}^*$ $y_h = (\lambda. cos(\omega x) + \mu. sin(\omega x)). e^{\alpha x}$; $\lambda, \mu \in \mathbb{R}$

SP	
<u> </u>	•

a) $c(x) = P_n(x)$; polynôme $d^{\circ} = n$ $y_p = x^m . Q_n(x)$ où Q_n polyn. $d^{\circ} = n$, et :

$$m = \begin{cases} 0 & si \ b \neq 0 \\ 1 & si \ b = 0, a \neq 0 \\ 2 & si \ b = 0 = a \end{cases}$$

b) $c(x) = P_n(x) \cdot e^{\alpha x}$; $\alpha \in \mathbb{K}$ $y_p=x^m.\,Q_n(x).\,e^{lpha x}$ où Q_n polyn. $d^\circ=n$, et :

$$m = \begin{cases} 0 & \text{si } \alpha \text{ non } \text{racine de } l' \text{\'eq. caract.} \\ 1 & \text{si } \alpha \text{ racine } \text{simple de } l' \text{\'eq. caract.} \\ 2 & \text{si } \alpha \text{ racine } \text{double } \text{de } l' \text{\'eq. caract.} \end{cases}$$

- c) $\mathbb{K} = \mathbb{R}$ et $c(x) = P_n(x) . cos(\omega x)$; $\omega \in \mathbb{R}$ (resp. $c(x) = P_n(x) \cdot sin(\omega x)$) $y_p = Re(z_p)$ $(\text{resp. } y_p = Im(z_p))$ où z_p SP de $z'' + a.z' + b.z = P_n(x).e^{i\omega x}$
- d) Cas général : c continue de I dans \mathbb{K} : y_p : par Méthode de Variation des Constantes (MVC): Voir 2.2.2

SG = SH + SP

2.1.2. EDL1 à coefficient non constant : $a C^{\circ}$

$$(E): \quad y' + a(x). \, y = b(x)$$

(E): y' + a(x). y = b(x) $\underline{SH}: y_h = \lambda. e^{-A(x)}; \lambda \in \mathbb{K}, A \text{ une primitive de } a.$

<u>SP</u>: MVC: $y_n := \lambda(x) \cdot e^{-A(x)}$ où $\lambda'(x) = b(x) \cdot e^{A(x)}$ On intègre, on trouve λ , d'où y_n .

SG = SH + SP

2.2.2. EDL2 à coefficients non constants : $a, b : C^{\circ}$

(E): y'' + a(x).y' + b(x).y = c(x) 1^{er} cas : On peut trouver 2 solutions de (E_h) :

<u>SH :</u>

- Rappel: si $a, b \in \mathbb{K}$, on sait trouver $y_h = \lambda y_1 + \mu y_2$
- Sinon, si a, b fonctions, il n'y a pas de méthode générale (contrairement aux EDL1).
 - On cherche 2 solutions évidentes/simples (constantes, polynômes, sin, cos, ...)

Si on suppose qu'on connaît deux solutions de (E_h) : y_1 et y_2 , alors:

 $\mathsf{MVC}: y_p \coloneqq \lambda(x).\,y_1 + \mu(x).\,y_2$ où λ' et μ' sont solutions de :

(S):
$$\begin{cases} \lambda' \cdot y_1 + \mu' \cdot y_2 = 0 \\ \lambda' \cdot y_1' + \mu' \cdot y_2' = c(x) \end{cases}$$

On trouve λ' et μ' , on intègre et on trouve λ et μ , d'où y_p .

 2^{nd} cas : On n'a pas de solution de (E_h) :

a) Changement de la variable x:

$$t \coloneqq f(x)$$
 puis $y(x) = y \circ f^{-1}(t) = z(t) = z \circ f(x)$

b) Changement de l'inconnue y :

$$z(x) \coloneqq f(y(x))$$

puis $y(x) = f^{-1} \circ z(x)$

ATTENTION: On doit dériver par rapport à x!

c) Autres méthodes ...

SG = SH + SP