Forelæsning 8: Ortogonalt komplement, ortogonal projektion og Gram-Schmidt processen

LinAlgDat 2022/2023

Henrik Holm og Henrik L. Pedersen Institut for Matematiske Fag holm@math.ku.dk og henrikp@math.ku.dk

Oversigt

- Ortogonalt komplement
- Ortogonal projektion
- Gram-Schmidt processen og QR-faktorisering
- 4 Mindste kvadraters metode

Ortogonalt komplement

Definition 4.10 (Ortogonale underrum)

To underrum \mathcal{U} og \mathcal{V} af \mathbb{R}^n kaldes ortogonale hvis enhver vektor i \mathcal{U} er ortogonal på enhver vektor i \mathcal{V} , dvs. hvis

$$\mathbf{u} \cdot \mathbf{v} = 0$$
 for alle $\mathbf{u} \in \mathcal{U}$ og $\mathbf{v} \in \mathcal{V}$.

I dette tilfælde skriver man $\mathcal{U} \perp \mathcal{V}$.

Eksempel (Ortogonale underrum)

Følgende to underrum \mathcal{U} og \mathcal{V} af \mathbb{R}^3 er ortogonale:

• $\mathcal{U} = x_1 x_2$ -planen, dvs.

$$\mathcal{U} = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1, x_2 \in \mathbb{R}\}$$

• $V = \text{linien med retningsvektor } (0, 0, 1), \text{ altså } x_3 - \text{aksen:}$

$$\mathcal{V} = \left\{ (0,0,t) \in \mathbb{R}^3 \,\middle|\, t \in \mathbb{R}
ight\}$$

Fordi for alle $\mathbf{u}=(x_1,x_2,0)\in\mathcal{U}$ og $\mathbf{v}=(0,0,t)\in\mathcal{V}$ gælder $\mathbf{u}\bullet\mathbf{v}=0.$

Eksempel (Underrum som ikke er ortogonale)

Følgende to underrum \mathcal{U} og \mathcal{V} af \mathbb{R}^3 er *ikke* ortogonale:

• $\mathcal{U} = x_1 x_2$ -planen, dvs.

$$\mathcal{U} = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1, x_2 \in \mathbb{R}\}$$

• V = linien med retningsvektor (0, 1, 1), dvs.

$$\mathcal{V} = \left\{ (0, t, t) \in \mathbb{R}^3 \,\middle|\, t \in \mathbb{R} \right\}$$

Fordi fx er $\boldsymbol{u}=(0,1,0)\in\mathcal{U}$ og $\boldsymbol{v}=(0,1,1)\in\mathcal{V}$ men $\boldsymbol{u}\boldsymbol{\cdot}\boldsymbol{v}=1\neq0.$

Eksempel (Underrum som ikke er ortogonale)

Følgende to underrum \mathcal{U} og \mathcal{V} af \mathbb{R}^3 er *ikke* ortogonale:

• $\mathcal{U} = x_1 x_2$ -planen, dvs.

$$\mathcal{U} = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1, x_2 \in \mathbb{R}\}$$

• $V = x_1 x_3$ -planen, dvs.

$$V = \{(x_1, 0, x_3) \in \mathbb{R}^3 \mid x_1, x_3 \in \mathbb{R}\}$$

Fordi fx er $\mathbf{u} = (1,0,0) \in \mathcal{U}$ og $\mathbf{v} = (1,0,0) \in \mathcal{V}$ men $\mathbf{u} \cdot \mathbf{v} = 1 \neq 0$.

Theorem 4.8 (Ortogonalitet af "span-underrum")

Lad $\mathcal{U}=\operatorname{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ og $\mathcal{V}=\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ være underrum af \mathbb{R}^n . Da gælder $\mathcal{U}\perp\mathcal{V}$ netop hvis

$$\mathbf{u}_i \cdot \mathbf{v}_j = 0$$
 for alle $i = 1, \dots, p$ og $j = 1, \dots, q$.

I ord: For at checke ortogonalitet af to underrum, er det nok at checke om de to frembringersæt er ortogonale på hinanden.

Eksempel (Ortogonale "span-underrum")

1/2

Betragt 4 × 5 matricen

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 5 \\ 3 & 1 & 2 & 3 & 1 \\ 1 & 1 & 0 & 0 & 3 \end{pmatrix}.$$

Sidste uge lærte vi at bestemme baser for diverse typer af underrum:

En basis for null
$$\mathbf{A}$$
 er: $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\} = \left\{ \begin{pmatrix} -1\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\-1\\0\\2\\1 \end{pmatrix} \right\}$

En basis for row
$$\mathbf{A}$$
 er: $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\} = \left\{ \begin{pmatrix} 1\\0\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1\\-2 \end{pmatrix} \right\}$

Eksempel (Ortogonale "span-underrum")

2/2

Specielt gælder altså:

null
$$\mathbf{A} = \text{span}\{\mathbf{b}_1, \mathbf{b}_2\}$$
 og row $\mathbf{A} = \text{span}\{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$.

Vi vil indse, at

null
$$\mathbf{A} \perp \text{row } \mathbf{A}$$
.

Ifølge Theorem 4.8 er det nok at undersøge, om

$$\mathbf{b}_1 \boldsymbol{\cdot} \mathbf{c}_1 = \mathbf{b}_1 \boldsymbol{\cdot} \mathbf{c}_2 = \mathbf{b}_1 \boldsymbol{\cdot} \mathbf{c}_3 = \mathbf{b}_2 \boldsymbol{\cdot} \mathbf{c}_1 = \mathbf{b}_2 \boldsymbol{\cdot} \mathbf{c}_2 = \mathbf{b}_2 \boldsymbol{\cdot} \mathbf{c}_3 = 0 \ .$$

Og det checkes let; fx er

$$\mathbf{b}_{1} \cdot \mathbf{c}_{1} = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{pmatrix} = 0 \quad \text{og} \quad \mathbf{b}_{2} \cdot \mathbf{c}_{3} = \begin{pmatrix} -2 \\ -1 \\ 0 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -2 \end{pmatrix} = 0.$$

Eksemplet illustrerer følgende generelle fænomen:

Ortogonalitet af nulrum og rækkerum

For enhver $m \times n$ matrix **A** gælder

$$null \mathbf{A} \perp row \mathbf{A}$$
.

Det følger, at

$$\text{null } \mathbf{A} \perp \text{col } \mathbf{A}^{\mathsf{T}} \quad \text{og} \quad \text{null } \mathbf{A}^{\mathsf{T}} \perp \text{col } \mathbf{A}$$
.

Definition 4.11 (Ortogonalt komplement)

Lad \mathcal{U} være et underrum af \mathbb{R}^n . Det ortogonale komplement \mathcal{U}^{\perp} til \mathcal{U} består af samtlige vektorer som er ortogonale på alle vektorer i \mathcal{U} , dvs

$$\mathcal{U}^{\perp} = \left\{ \mathbf{v} \in \mathbb{R}^n \,\middle|\, \mathbf{v} \cdot \mathbf{u} = 0 \text{ for alle } \mathbf{u} \in \mathcal{U} \right\}.$$

Thm. 4.9 (Egenskaber ved ortogonalt komplement)

For ethvert underrum \mathcal{U} af \mathbb{R}^n gælder:

- \mathcal{U}^{\perp} er et underrum af \mathbb{R}^n .
- $\mathcal{U}^{\perp} \cap \mathcal{U} = \{\mathbf{0}\}.$
- $(U^{\perp})^{\perp} = U$.

Eksempel (Ortogonalt komplement)

Betragt følgende tre underrum \mathcal{U} , \mathcal{V} og \mathcal{W} af \mathbb{R}^3 :

$$\mathcal{U} = \left\{ (0,0,x_3) \in \mathbb{R}^3 \,\middle|\, x_3 \in \mathbb{R} \right\}$$
 (x₃-aksen)

$$\mathcal{V} = \left\{ (0, x_2, 0) \in \mathbb{R}^3 \,\middle|\, x_2 \in \mathbb{R} \right\}$$
 (x₂-aksen)

$$\mathcal{W} = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1, x_2 \in \mathbb{R}\} \quad (x_1 x_2 \text{-planen})$$

 $\mbox{Da gælder:} \quad \mathcal{V} \perp \mathcal{U} \ \mbox{men} \ \ \mathcal{V} \neq \mathcal{U}^\perp \quad \mbox{ og } \quad \mathcal{W} = \mathcal{U}^\perp.$

Vi har set, at der for enhver matrix **A** gælder:

null
$$\mathbf{A} \perp \text{row } \mathbf{A}$$
 [og derfor vil null $\mathbf{A} \subseteq (\text{row } \mathbf{A})^{\perp}$]

Theorem 4.10 (Formler for ortogonale komplementer)

For enhver matrix A gælder

$$(row \mathbf{A})^{\perp} = null \mathbf{A}$$
.

Det følger, at

$$(\operatorname{\mathsf{col}} \mathbf{A})^\perp = \operatorname{\mathsf{null}} \mathbf{A}^\mathsf{T}$$

$$(\operatorname{\mathsf{null}} \mathbf{A})^{\perp} = \operatorname{\mathsf{row}} \mathbf{A}$$

Bemærkning. For enhver $m \times n$ matrix **A** gælder

$$\operatorname{rank} \mathbf{A} + \operatorname{nullity} \mathbf{A} = n \quad \operatorname{dvs.} \quad \operatorname{dim}(\operatorname{row} \mathbf{A}) + \operatorname{dim}((\operatorname{row} \mathbf{A})^{\perp}) = n.$$

Vi skal senere se, at der for ethvert underrum \mathcal{U} af \mathbb{R}^n gælder

$$\dim \mathcal{U} + \dim \mathcal{U}^{\perp} = n$$
.

Betragt 4 × 5 matricen

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 5 \\ 3 & 1 & 2 & 3 & 1 \\ 1 & 1 & 0 & 0 & 3 \end{pmatrix}.$$

Vi betragter først rækkerummet:

$$\mathcal{U} = \mathsf{row}\, \mathbf{A} \subseteq \mathbb{R}^5$$
 .

Vi har en beskrivelse af det ortogonale komplement:

$$\mathcal{U}^{\perp} = (\text{row }\mathbf{A})^{\perp} \stackrel{!}{=} \text{null }\mathbf{A}$$
.

Vores metode til bestemmelse af basis for nulrum giver derfor:

En basis for
$$\mathcal{U}^{\perp}$$
 er: $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\} = \left\{ \begin{pmatrix} -1\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\-1\\0\\2\\1 \end{pmatrix} \right\}.$

Eksempel (Basis for ortogonalt komplement)

Vi betragter dernæst søjlerummet:

$$\mathcal{V} = \operatorname{col} \mathbf{A} \subset \mathbb{R}^4$$
.

Vi har igen en beskrivelse af det ortogonale komplement:

$$\mathcal{V}^{\perp} = (\operatorname{col} \mathbf{A})^{\perp} \stackrel{!}{=} \operatorname{null} \mathbf{A}^{\mathsf{T}}$$
.

Udregningen

$$\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 5 & 1 & 3 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & 0 & -3/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

og vores metode til bestemmelse af basis for nulrum giver derfor:

En basis for
$$\mathcal{V}^{\perp}$$
 er: $\mathcal{D} = \{\mathbf{d}_1\} = \left\{ \begin{pmatrix} 3 \\ -1 \\ -1 \\ 2 \end{pmatrix} \right\}$.

Theorem 4.11 (Dimension af ortogonalt komplement)

Lad \mathcal{U} være et underrum af \mathbb{R}^n . Så gælder:

$$\dim \mathcal{U}^{\perp} = n - \dim \mathcal{U}$$
.

Ydermere gælder, at hvis

$$\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$$
 er en basis for \mathcal{U}

$$\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_\ell\}$$
 er en basis for \mathcal{U}^\perp (hvor $\ell = n - k$)

da er

$$\mathcal{B} \cup \mathcal{C} = \{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_\ell\}$$
 en basis for \mathbb{R}^n .

I ord: Hvis man samler baserne for \mathcal{U} og \mathcal{U}^{\perp} så fås en basis for \mathbb{R}^n .

1/2

Eksempel (Baser for ortogonale komplementer)

Betragt 4 × 5 matricen

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 1 & 0 & 5 \\ 3 & 1 & 2 & 3 & 1 \\ 1 & 1 & 0 & 0 & 3 \end{pmatrix}.$$

Vi har fundet:

En basis for null
$$\mathbf{A}$$
 er: $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\} = \left\{ \begin{pmatrix} -1\\1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\-1\\0\\2\\1 \end{pmatrix} \right\}$

En basis for row
$$\mathbf{A}$$
 er: $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\} = \left\{ \begin{pmatrix} 1\\0\\1\\0\\2 \end{pmatrix}, \begin{pmatrix} 0\\1\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1\\-2 \end{pmatrix} \right\}$

2/2

Eksempel (Baser for ortogonale komplementer)

Da null A og row A er hinandens ortogonale komplementer vil

$$\mathcal{B} \cup \mathcal{C} = \{ \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{c}_1, \boldsymbol{c}_2, \boldsymbol{c}_3 \} = \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ -1 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ -2 \end{pmatrix} \right\}$$

ifølge Theorem 4.10 være en basis for \mathbb{R}^5 .

Check:

$$\begin{pmatrix} -1 & -2 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 1 & 0 & 1 & -1 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & -2 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{I}_{5}$$

Ortogonal projektion

Vi kender: Ortogonal projektion på et 1-dimensionalt underrum:

$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = rac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \, \mathbf{u} \qquad \text{hvor} \qquad \mathcal{U} = \operatorname{span}\{\mathbf{u}\} \, .$$

Vi skal lære om: Ortogonal projektion på et generelt underrum \mathcal{U} .

Definition 4.12 (Ortogonal projektion – generalt)

Lad \mathcal{U} være et underrum af \mathbb{R}^n og antag at vi kender en orto**go**nal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ for \mathcal{U} . For enhver vektor \mathbf{v} i \mathbb{R}^n defineres nu:

• Den ortogonale projektion af \mathbf{v} på \mathcal{U} er givet ved:

$$\operatorname{\mathsf{proj}}_{\,\mathcal{U}}(\boldsymbol{v}) = \frac{\boldsymbol{v} \boldsymbol{\cdot} \boldsymbol{u}_1}{\|\boldsymbol{u}_1\|^2} \, \boldsymbol{u}_1 + \dots + \frac{\boldsymbol{v} \boldsymbol{\cdot} \boldsymbol{u}_k}{\|\boldsymbol{u}_k\|^2} \, \boldsymbol{u}_k \quad (\in \mathcal{U})$$

• Komponenten af **v** ortogonal på \mathcal{U} er givet ved:

$$comp_{\mathcal{U}}(\mathbf{v}) = \mathbf{v} - proj_{\mathcal{U}}(\mathbf{v}) \quad (\in \mathcal{U}^{\perp})$$

Spejlingen af v i U er givet ved:

$$\operatorname{refl}_{\mathcal{U}}(\mathbf{v}) = 2\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) - \mathbf{v}$$

(Faktisk er spejlingen ikke defineret i lærebogen.)

Pointe: $\mathbf{v} = \operatorname{proj}_{\mathcal{U}}(\mathbf{v}) + \operatorname{comp}_{\mathcal{U}}(\mathbf{v})$ og $\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) \perp \operatorname{comp}_{\mathcal{U}}(\mathbf{v})$.

Bemærkning. Hvis $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ er en ortonormal basis for \mathcal{U} så er

$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{u}_1)\mathbf{u}_1 + \cdots + (\mathbf{v} \cdot \mathbf{u}_k)\mathbf{u}_k$$

Eksempel (Ortogonal projektion på en plan)

Betragt følgende vektorer i \mathbb{R}^3 :

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad \text{og} \qquad \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Sæt $\mathcal{U} = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$. Da $\{\mathbf{u}_1, \mathbf{u}_2\}$ er en ortogonal basis for \mathcal{U} er:

$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{u}_{1}}{\|\mathbf{u}_{1}\|^{2}} \mathbf{u}_{1} + \frac{\mathbf{v} \cdot \mathbf{u}_{2}}{\|\mathbf{u}_{2}\|^{2}} \mathbf{u}_{2} = \frac{2}{6} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \frac{2}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathsf{comp}_{\mathcal{U}}(\mathbf{v}) = \mathbf{v} - \mathsf{proj}_{\mathcal{U}}(\mathbf{v}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2}{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

Check:

$$\begin{pmatrix}1\\1\\1\end{pmatrix}=\frac{2}{3}\begin{pmatrix}2\\1\\1\end{pmatrix}+\frac{1}{3}\begin{pmatrix}-1\\1\\1\end{pmatrix}\qquad\text{og}\qquad\frac{2}{3}\begin{pmatrix}2\\1\\1\end{pmatrix}\perp\frac{1}{3}\begin{pmatrix}-1\\1\\1\end{pmatrix}.$$

Illustration af eksemplet

$$\mathcal{U} = \text{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2\} = \text{span}\left\{\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\right\} \qquad \text{og} \qquad \boldsymbol{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \frac{2}{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \quad \operatorname{og} \quad \operatorname{comp}_{\mathcal{U}}(\mathbf{v}) = \frac{1}{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

Af illustrationen ovenfor fremgår, at $\operatorname{proj}_{\mathcal{U}}(\mathbf{v})$ er den vektor i \mathcal{U} som ligger tættest på (og derfor bedst tilnærmer) \mathbf{v} . Mere præcist:

Theorem 4.13 (Projektion som bedste tilnærmelse)

Lad \mathcal{U} være et underrum af \mathbb{R}^n . For $\mathbf{v} \in \mathbb{R}^n$ gælder uligheden

$$\|\mathbf{v} - \mathbf{u}\| > \|\mathbf{v} - \mathsf{proj}_{\mathcal{U}}(\mathbf{v})\|$$

for enhver vektor $\mathbf{u} \in \mathcal{U}$ som er forskellig fra $\operatorname{proj}_{\mathcal{U}}(\mathbf{v})$.

Projektionsmatricen

Lad \mathcal{U} være et underrum af \mathbb{R}^n . Det er geometrisk klart, at

$$\operatorname{proj}_{\mathcal{U}}(-), \operatorname{comp}_{\mathcal{U}}(-), \operatorname{refl}_{\mathcal{U}}(-) \colon \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

er lineære transformationer. Derfor findes $n \times n$ matricer

- P projektionsmatricen for \mathcal{U}
- C komponentmatricen for \mathcal{U}
- R spejlingsmatricen for \mathcal{U}

som for alle $\mathbf{v} \in \mathbb{R}^n$ opfylder:

$$\mathsf{proj}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Pv}$$
 $\mathsf{comp}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Cv}$
 $\mathsf{refl}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Rv}$

Spørgsmål. Hvordan ser matricerne P, C og R ud?

Formel for projektionsmatricen

Lad \mathcal{U} være et underrum af \mathbb{R}^n og antag at vi kender en orto**nor**mal basis $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ for \mathcal{U} . Sæt

$$\mathbf{Q}=(\mathbf{u}_1\,|\,\cdots\,|\,\mathbf{u}_k)$$

Matricerne

$$P = QQ^T$$

$$\mathbf{C} = \mathbf{I} - \mathbf{P}$$

$$\mathbf{R} = 2\mathbf{P} - \mathbf{I}$$

(hvor **I** er $n \times n$ enhendsmatricen) opfylder:

$$\mathsf{proj}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Pv}$$

$$comp_{\mathcal{U}}(\mathbf{v}) = \mathbf{C}\mathbf{v}$$

$$\mathsf{refl}_{\mathcal{U}}(\mathbf{v}) = \mathbf{R}\mathbf{v}$$

for alle $\mathbf{v} \in \mathbb{R}^n$.

1/2

Eksempel (Bestemmelse af projektionsmatrix)

Vi har tidligere set, at vektorerne

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \quad \text{og} \quad \mathbf{u}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

udgør en ortogonal basis for underrummet $\mathcal{U} = \text{span}\{\mathbf{u}_1, \mathbf{u}_2\}$ af \mathbb{R}^3 .

Derfor vil de normerede vektorer

$$\begin{aligned} & \mathbf{u}_1' = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-1\\2 \end{pmatrix} \simeq \begin{pmatrix} 0.41\\-0.41\\0.82 \end{pmatrix}, \quad \text{og} \\ & \mathbf{u}_2' = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} \simeq \begin{pmatrix} 0.71\\0.71\\0.00 \end{pmatrix} \end{aligned}$$

udgøre en ortonormal basis for \mathcal{U} .

2/2

Eksempel (Bestemmelse af projektionsmatrix)

Sæt

$$\mathbf{Q} = (\mathbf{u}_1' \,|\, \mathbf{u}_2') \simeq \begin{pmatrix} 0.41 & 0.71 \\ -0.41 & 0.71 \\ 0.82 & 0.00 \end{pmatrix}.$$

Projektionsmatricen $\mathbf{P} = \mathbf{Q}\mathbf{Q}^\mathsf{T}$ for underrummet \mathcal{U} er nu

$$\mathbf{P} = \begin{pmatrix} 0.41 & 0.71 \\ -0.41 & 0.71 \\ 0.82 & 0.00 \end{pmatrix} \begin{pmatrix} 0.41 & -0.41 & 0.82 \\ 0.71 & 0.71 & 0.00 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}.$$

For vektoren

$$\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

(gen)finder vi

$$\operatorname{proj}_{\mathcal{U}}(\mathbf{v}) = \mathbf{Pv} = \frac{1}{3} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{2}{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.$$

Gram-Schmidt processen

Lad \mathcal{U} være et underrum af \mathbb{R}^n .

Hvis \mathcal{U} er af en bestemt type, fx row **A**, col **A** eller null **A**, så har vi lært af bestemme en basis for \mathcal{U} .

For at beregne ortogonale projektioner på \mathcal{U} skal man bruge en ortonormal basis (eller en ortogonal basis) for \mathcal{U} .

Spørgsmål. Givet en (almindelig) basis for \mathcal{U} , er der så en metode til at konstruere en ortonormal basis for \mathcal{U} ?

Svar. Ja! Brug Gram-Schmidt processen.

Algoritme (4.52): Gram-Schmidt processen

Lad $\mathbf{u}_1, \dots, \mathbf{u}_n$ være lineært uafhængige vektorer, og dermed en basis for underrummet $\mathcal{U} = \operatorname{span}\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$. Definér vektorerne:

Normering af vektoren:

$$\begin{array}{lll} \textbf{q}_1 &=& \frac{\textbf{u}_1}{\|\textbf{u}_1\|} & \textbf{u}_1 \\ \\ \textbf{q}_2 &=& \frac{\textbf{u}_2 - (\textbf{u}_2 \cdot \textbf{q}_1) \textbf{q}_1}{\|\textbf{u}_2 - (\textbf{u}_2 \cdot \textbf{q}_1) \textbf{q}_1\|} & \text{comp}_{\text{span}\{\textbf{q}_1\}}(\textbf{u}_2) \\ \\ \textbf{q}_3 &=& \frac{\textbf{u}_3 - (\textbf{u}_3 \cdot \textbf{q}_1) \textbf{q}_1 - (\textbf{u}_3 \cdot \textbf{q}_2) \textbf{q}_2}{\|\textbf{u}_3 - (\textbf{u}_3 \cdot \textbf{q}_1) \textbf{q}_1 - (\textbf{u}_3 \cdot \textbf{q}_2) \textbf{q}_2\|} & \text{comp}_{\text{span}\{\textbf{q}_1, \textbf{q}_2\}}(\textbf{u}_3) \\ \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array}$$

Da er $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ en ortonormal basis for \mathcal{U} .

Illustration af Gram-Schmidt processen

Eksempel (Gram-Schmidt processen)

1/3

Betragt de lineært uafhængige vektorer

$$\mathbf{u}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}, \quad \mathbf{u}_3 = \begin{pmatrix} -3 \\ -3 \\ 3 \end{pmatrix}.$$

Gram-Schmidt processen giver:

$$\mathbf{q}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{1}{3} \begin{pmatrix} 1\\2\\2 \end{pmatrix}.$$

Vi beregner nu

$$\begin{split} \boldsymbol{q}_2' &= \boldsymbol{u}_2 - (\boldsymbol{u}_2 \boldsymbol{\cdot} \boldsymbol{q}_1) \boldsymbol{q}_1 \\ &= \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix} - \left\{ \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix} \boldsymbol{\cdot} \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\} \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ &= \frac{4}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}. \end{split}$$

Eksempel (Gram-Schmidt processen)

2/3

Dermed er

$$\mathbf{q}_2 = \frac{\mathbf{q}_2'}{\|\mathbf{q}_2'\|} = \frac{1}{4} \cdot \frac{4}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}.$$

Endelig beregnes

$$\begin{aligned} & \mathbf{q}_3' = \mathbf{u}_3 - (\mathbf{u}_3 \bullet \mathbf{q}_1) \mathbf{q}_1 - (\mathbf{u}_3 \bullet \mathbf{q}_2) \mathbf{q}_2 \\ & = \begin{pmatrix} -3 \\ -3 \\ 3 \end{pmatrix} - \left\{ \begin{pmatrix} -3 \\ -3 \\ 3 \end{pmatrix} \bullet \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\} \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} - \left\{ \begin{pmatrix} -3 \\ -3 \\ 3 \end{pmatrix} \bullet \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \right\} \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \\ & = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}. \end{aligned}$$

Dermed er

$$\mathbf{q}_3 = \frac{\mathbf{q}_3'}{\|\mathbf{q}_3'\|} = \frac{1}{1} \cdot \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}.$$

Eksempel (Gram-Schmidt processen)

3/3

Vi konkluderer, at

$$\{\boldsymbol{q}_{1},\boldsymbol{q}_{2},\boldsymbol{q}_{3}\} = \left\{\frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \frac{1}{3} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}, \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}\right\}$$

er en ortonormal basis for underrummet

$$\mathcal{U} = \mathsf{span}\{\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3\} = \mathsf{span}\left\{\begin{pmatrix}1\\2\\2\end{pmatrix},\begin{pmatrix}-2\\0\\4\end{pmatrix},\begin{pmatrix}-3\\-3\\3\end{pmatrix}\right\}.$$

Bemærkning. Eksemplet viser hvordan Gram–Schmidt processen fungerer i praksis. Men faktisk er $\mathcal{U}=\text{span}\{u_1,u_2,u_3\}$ hele \mathbb{R}^3 , så

$$\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

er en simplere ortonormal basis for \mathcal{U} .

QR-faktorisering

Ved at holde lidt nøjere regnskab med hvad der foregår i Gram–Schmidt processen kan man opnå følgende:

QR-faktorisering

Lad $\mathbf{A} = (\mathbf{u}_1 | \cdots | \mathbf{u}_n)$ være en $m \times n$ matrix med rank $\mathbf{A} = n$. Brug Gram–Schmidt på søjlerne i \mathbf{A} og definér tallene \mathbf{r}_{ij} som følger:

$$\begin{split} q_1 &= \frac{u_1}{\|u_1\|} = \frac{u_1}{r_{11}} \\ q_2 &= \frac{u_2 - (u_2 \bullet q_1)q_1}{\|u_2 - (u_2 \bullet q_1)q_1\|} = \frac{u_2 - r_{12}q_1}{r_{22}} \\ q_3 &= \frac{u_3 - (u_3 \bullet q_1)q_1 - (u_3 \bullet q_2)q_2}{\|u_3 - (u_3 \bullet q_1)q_1 - (u_3 \bullet q_2)q_2\|} = \frac{u_3 - r_{13}q_1 - r_{23}q_2}{r_{33}} \\ &\vdots \end{split}$$

Dvs.

$$r_{ij} = \mathbf{q}_i \cdot \mathbf{u}_j$$
 for $i < j$
 $r_{ij} = \|\mathbf{u}_i - r_{1j}\mathbf{q}_1 - r_{2j}\mathbf{q}_2 - \dots - r_{j-1,j}\mathbf{q}_{j-1}\| =: \|\mathbf{q}_i'\|$.

QR-faktorisering (fortsat)

Da opnås følgende QR-faktorisering af A:

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = \underbrace{(\mathbf{q}_1 | \mathbf{q}_2 | \cdots | \mathbf{q}_n)}_{\mathbf{Q}} \underbrace{\begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{pmatrix}}_{\mathbf{R}}$$

hvor

- **Q** er en $m \times n$ matrix med ortonormale søjler, og
- **R** er en invertibel $n \times n$ øvre trekantsmatrix.

Ved løsning af problemer som kræver lineær algebra kan det, i datalogiske sammenhænge, være ganske tidsbesparende at lave QR-faktoriseringer af de involverede matricer.

Eksempel (QR-faktorisering)

1/2

Betragt 4 × 3 matricen

$$\mathbf{A} = (\mathbf{u}_1 | \mathbf{u}_2 | \mathbf{u}_3) = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 10 \end{pmatrix}.$$

Vi udregner (linje for linje):

$$r_{11} = \|\mathbf{u}_1\| \simeq 11.22$$
 $\mathbf{q}_1 = \frac{\mathbf{u}_1}{r_{11}} \simeq \begin{pmatrix} 0.00 \\ 0.27 \\ 0.53 \\ 0.80 \end{pmatrix}$
 $r_{12} = \mathbf{q}_1 \cdot \mathbf{u}_2 \simeq 12.83$ $\mathbf{q}_2' = \mathbf{u}_2 - r_{12}\mathbf{q}_1 \simeq \begin{pmatrix} 1.00 \\ 0.57 \\ 0.14 \\ -0.29 \end{pmatrix}$
 $r_{22} = \|\mathbf{q}_2'\| \simeq 1.20$ $\mathbf{q}_2 = \frac{\mathbf{q}_2'}{r_{22}} \simeq \begin{pmatrix} 0.84 \\ 0.48 \\ 0.12 \\ -0.24 \end{pmatrix}$

Eksempel (QR-faktorisering)

2/2

$$r_{13} = \mathbf{q}_1 \cdot \mathbf{u}_3 \simeq 13.63$$
 $r_{23} = \mathbf{q}_2 \cdot \mathbf{u}_3 \simeq 2.63$
 $\mathbf{q}_3' = \mathbf{u}_3 - r_{13}\mathbf{q}_1 - r_{23}\mathbf{q}_2 \simeq \begin{pmatrix} -0.20 \\ 0.10 \\ 0.40 \\ -0.30 \end{pmatrix}$

$$_{33} = \|\mathbf{q}_3'\| \simeq 0.55$$
 $\mathbf{q}_3 = \frac{\mathbf{q}_3'}{r_{33}} \simeq \begin{pmatrix} -0.37 \\ 0.18 \\ 0.73 \\ -0.55 \end{pmatrix}$.

Vi har nu

$$\mathbf{A} = \mathbf{QR} = (\mathbf{q}_1 | \mathbf{q}_2 | \mathbf{q}_3) \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix}$$

dvs.

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \\ 9 & 10 & 10 \end{pmatrix} = \begin{pmatrix} 0.00 & 0.84 & -0.37 \\ 0.27 & 0.48 & 0.18 \\ 0.53 & 0.12 & 0.73 \\ 0.80 & -0.24 & -0.55 \end{pmatrix} \begin{pmatrix} 11.22 & 12.83 & 13.63 \\ 0 & 1.20 & 2.63 \\ 0 & 0 & 0.55 \end{pmatrix}.$$

Mindste kvadraters metode

For $m \times n$ matrix **A** betragter vi et lineært ligningssystem

$$Ax = b$$
.

Hvis ligningssystemet er inkonsistent (dvs. det har ingen løsning), så efterspørger vi i stedet den vektor **x** som gør størrelsen

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}\|$$

mindst mulig. Theorem 4.13 viser, at vi skal vælge $\mathbf{x} = \bar{\mathbf{x}}$ hvor

$$\mathbf{A}\mathbf{\bar{x}} = \operatorname{proj}_{\operatorname{col} \mathbf{A}}(\mathbf{b})$$
 .

For $\bar{\mathbf{x}}$ gælder altså

$$\mathbf{b} - \mathbf{A}\bar{\mathbf{x}} = \mathbf{b} - \operatorname{proj}_{\operatorname{col} \mathbf{A}}(\mathbf{b}) = \operatorname{comp}_{\operatorname{col} \mathbf{A}}(\mathbf{b}) \in (\operatorname{col} \mathbf{A})^{\perp} = \operatorname{null} \mathbf{A}^{\mathsf{T}}$$

og dermed er

$$\mathbf{A}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\bar{\mathbf{x}}) = \mathbf{0}$$
.

Den søgte vektor $\bar{\mathbf{x}}$ tilfredsstiller altså følgende ligningssystem:

Normalligningerne (Normal equations)

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}}=\mathbf{A}^{\mathsf{T}}\mathbf{b}$$

Men kan normalligningerne overhovedet løses?

Normalligningerne (Normal equations)

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

I det oprindelige inkonsistente ligningsystem

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 (hvor \mathbf{A} er en $m \times n$ matrix)

er der typisk flere ligninger end ubekendte (m > n) og rank $\mathbf{A} = n$.

Theorem 4.16(a) (Løsning af normalligningerne)

Lad **A** være en $m \times n$ matrix. Hvis rank $\mathbf{A} = n$ så er $n \times n$ matricen $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ invertibel og derfor har normalligningerne

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\bar{\mathbf{x}} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

den entydigt bestemte løsning

$$\bar{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$
.

Dette $\bar{\mathbf{x}}$ kaldes mindste kvadraters løsning.

Vi opsummerer:

Mindste kvadraters metode (eller lineær regression)

Lad **A** være en $m \times n$ matrix med rank **A** = n. Den bedste tilnærmede løsning til ligningssystemet

$$Ax = b$$

er mindste kvadraters løsning, dvs.

$$\bar{\mathbf{x}} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}$$
.

Bemærkning. Lad **A** være en $m \times n$ matrix med rank **A** = n. Vi har

$$proj_{col} \mathbf{A}(\mathbf{b}) = \mathbf{A}\bar{\mathbf{x}} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b}$$

og derfor er

$$\mathbf{P} = \mathbf{A}(\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}$$

projektionsmatricen for underrummet $\mathcal{U} = \operatorname{col} \mathbf{A}$.

(Hvis **A** er ortogonal, så er $\mathbf{A}^T \mathbf{A} = \mathbf{I}$ og vi genfinder formlen $\mathbf{P} = \mathbf{A} \mathbf{A}^T$)

Eksempel (Mindste kvadraters metode)

1/3

Vi har givet følgende målepunkter:

					4.2				
ĺ	У	2.6	7.1	9.8	11.8	14.0	15.8	17.4	21.4

Vi vil finde den bedste rette linie y = ax + b gennem målepunkterne.

Eksempel (Mindste kvadraters metode)

2/3

Vi skal altså finde den bedste tilnærmede løsning til ligningssystemet:

$$\begin{cases} a \cdot 0.0 + b = 2.6 \\ a \cdot 2.0 + b = 7.1 \\ a \cdot 2.9 + b = 9.8 \\ a \cdot 4.2 + b = 11.8 \\ a \cdot 5.7 + b = 14.0 \\ a \cdot 6.1 + b = 15.8 \\ a \cdot 7.7 + b = 17.4 \\ a \cdot 9.8 + b = 21.4 \end{cases}$$
 dvs. $\mathbf{Ax} = \mathbf{b}$

hvor

$$\mathbf{A} = \begin{pmatrix} 0.0 & 1 \\ 2.0 & 1 \\ 2.9 & 1 \\ 4.2 & 1 \\ 5.7 & 1 \\ 6.1 & 1 \\ 7.7 & 1 \\ 9.8 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix} \quad \text{og} \quad \mathbf{b} = \begin{pmatrix} 2.6 \\ 7.1 \\ 9.8 \\ 11.8 \\ 14.0 \\ 15.8 \\ 17.4 \\ 21.4 \end{pmatrix}.$$

Eksempel (Mindste kvadraters metode)

3/3

Den bedste tilnærmede løsning til ligningen $\mathbf{A}\mathbf{x} = \mathbf{b}$ er

$$\bar{\mathbf{x}} = \begin{pmatrix} \bar{a} \\ \bar{b} \end{pmatrix} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b}$$

$$= \begin{pmatrix} 255.08 & 38.40 \\ 38.40 & 8.00 \end{pmatrix}^{-1} \begin{pmatrix} 0.0 & 2.0 & 2.9 & 4.2 & 5.7 & 6.1 & 7.7 & 9.8 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2.6 \\ 7.1 \\ 9.8 \\ 11.8 \\ 14.0 \\ 15.8 \\ 17.4 \\ 21.4 \end{pmatrix}$$

$$\simeq \begin{pmatrix} 1.873 \\ 3.497 \end{pmatrix}.$$

Og den bedste rette linie gennem målepunkterne er derfor

$$y = \bar{a}x + \bar{b} = 1.873x + 3.497$$