Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

You should implement mini-batch gradient descent without an explicit forloop over different mini-batches, so that the algorithm processes all mini-Optimization algorithms same time (vectorization).

10/10 points (100%)

· ·	40		
Quiz,	10	questions	s

~	1 / 1 points
3. Why is betwee	the best mini-batch size usually not 1 and not m, but instead something inen?
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.
Un-s	elected is correct
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
Corre	ect
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
Un-s	elected is correct
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
Corre	ect
~	1/1 points

4.

iterations, looks like this: Optimization algorithms

Quiz, 10 questions

10/10 points (100%)

Which of the following do you agree with?

O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect
	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.

1/1 points

Suppose the temperature in Casablanca over the first three days of January are the

Optimization algorithms

10/10 points (100%)

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=7.5$

$$v_2=7.5$$
, $v_2^{corrected}=10$

Correct

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = 0.95^t lpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\alpha = \frac{1}{1+2*t}\alpha_0$$

$$igcap lpha = e^t lpha_0$$

Correct

7.

Optimization use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Increasing β will create more oscillations within the red line.

Optimization algorithms

Quiz, 10 questions

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
	(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
0	(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $Optimization(\mathbf{M}[\mathbf{gofithms}^{[L]},b^{[L]}).$ Which of the following techniques could help find $\mathbf{Month of the following techniques could help find } \mathbf{Month of the following techniques}$

Quiz, 10 questions parameter values that attain a small value for ${\cal J}$? (Check all that apply)

	Try better random initialization for the weights		
Corre	ect		
	Try initializing all the weights to zero		
Un-selected is correct			
	Try tuning the learning rate $lpha$		
Correct			
	Try using Adam		
Correct			
	Try mini-batch gradient descent		
Correct			
~	1 / 1 points		
10. Which	of the following statements about Adam is False?		
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.		
	Adam combines the advantages of RMSProp and momentum		
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9,eta_2=0.999$, $arepsilon=10^{-8}$)		
0	Adam should be used with batch gradient computations, not with minibatches.		

Correct Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

