

INTERNATIONAL AS FURTHER MATHEMATICS FM01

(9665/FM01) Unit FP1 Pure Mathematics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

ISW Ignore subsequent working

Q	Answer	Marks	Comments
1(a)(i)	(a+3i)(2-i) = 2a-ai+6i+3	М1	Expands the brackets and replaces i^2 with -1
	$=2a+3+\mathrm{i}(6-a)$	A 1	oe with real and imaginary parts collected and i written as a factor of the imaginary part Accept $u=2a+3$ and $v=6-a$ Condone $2a+3-\mathrm{i}\big(a-6\big)$ ISW
		2	

Q	Answer	Marks	Comments
1(a)(ii)	$\frac{a+3i}{2+i} = \frac{(a+3i)(2-i)}{(2+i)(2-i)}$	M 1	multiplies both the numerator and the denominator by $2-i$ or writes the fraction equivalent to $x+iy$, multiplies by the denominator and equates real and imaginary parts
	$= \frac{2a+3+(6-a)i}{5}$		
	$=\frac{2a+3}{5}+i\frac{6-a}{5}$	A1ft	ft their part (a)(i) oe with real and imaginary parts collected and i written as a factor of the imaginary part Accept $x = \frac{2a+3}{5}$ and $y = \frac{6-a}{5}$ Condone $\frac{2a+3}{5} - i\frac{a-6}{5}$ ISW
		2	

Q	Answer	Marks	Comments
1(b)	Let $z = c + \mathrm{i} d$ where $c, d \in \mathbb{R}$	M1	Uses a suitable method
	3(c-id) + i(c+id) = 23+13i	B1	Uses the relationship between z and z^*
	3c - 3id + ci - d = 23 + 13i		
	3c - d = 23 and $c - 3d = 13$	M1	Compares real and imaginary parts to form simultaneous equations in c and d where $z=c+\mathrm{i}d$
	c = 7 or $d = -2$	A 1	Finds the value of c or d
	z = 7 - 2i	A 1	oe
		5	

Question 1 Total	9	

Q	Answer	Marks	Comments
2(a)	$(1+h)^5 = 1+5h+10h^2+10h^3+5h^4+h^5$	B1	oe expanded and simplified polynomial
		1	

Q	Answer	Marks	Comments
2(b)(i)	$(1+h)^5 - 1^5 = 5h + 10h^2 + 10h^3 + 5h^4 + h^5$	M 1	Subtracts 1 from their part (a) polynomial
	gradient of line $= \frac{(1+h)^5 - 1^5}{(1+h)-1}$	М1	Obtains an expression for the gradient of the line Accept any correct form ft their part (a)
	$=\frac{5h+10h^2+10h^3+5h^4+h^5}{h}$		
	$= 5 + 10h + 10h^2 + 5h^3 + h^4$	A 1	oe polynomial Accept $a = 5$, $b = 10$, $c = 10$, $d = 5$
		3	

Q	Answer	Marks	Comments
2(b)(ii)	gradient of curve = $\lim_{h \to 0} (5+10h+10h^2+5h^3+h^4)$	M1	Considers their part (b)(i) as $h \rightarrow 0$
	= 5	A1ft	Obtains the correct limit of their part (b)(i) as $h \rightarrow 0$ ft their $a + bh + ch^2 + dh^3 + h^4$ SC1 for 5 following $h = 0$
		2	

Question 2 Total	6	
------------------	---	--

Q	Answer	Marks	Comments
3(a)	$\left[x + \frac{\pi}{4}\right] = \frac{\pi}{6}$	B1	Finds one solution to $x + \frac{\pi}{4}$ Accept any correct angle in radians PI oe
	$x + \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{6}$ where $n \in \mathbb{Z}$	М1	Removes the trig function to form a general equation Condone <i>n</i> not defined oe
	$x = 2n\pi \pm \frac{\pi}{6} - \frac{\pi}{4}$	A 1	Finds a general solution May be written in two parts eg $x = n\pi - \frac{\pi}{12}$ for even n and $x = n\pi + \frac{7\pi}{12}$ for odd n
		3	

Q	Answer	Marks	Comments
3(b)	Two solutions for every 2π radians of the interval	M1	PI
	Number of solutions $=2m$	A 1	
		2	

Question 3 To	I 5	
---------------	-----	--

Q	Answer	Marks	Comments
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{4}x^{-\frac{3}{4}}$	M1	Correctly differentiates $x^{\frac{1}{4}}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{4} \times 81^{-\frac{3}{4}}$	A 1	Substitutes $x = 81$ into a correct derivative PI May be unsimplified
	$=\frac{1}{108}$		
	$\delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \times \delta x$	M1	Sight or use of $\delta y \approx \frac{\mathrm{d}y}{\mathrm{d}x} \times \delta x$ PI Condone use of = sign
	$\delta y \approx \frac{1}{108} \times -6$	A1ft	Multiplies their $\frac{dy}{dx}$ (of the form $ax^{-\frac{3}{4}}$) by -6 (or 6) May be algebraic
	$\delta y \approx -\frac{1}{18}$		
	$\delta y \approx -\frac{1}{18}$ $y \approx 81^{\frac{1}{4}} - \frac{1}{18}$	M1	Full method for the required estimate from a derivative of the form $ax^{-\frac{3}{4}}$
	<i>y</i> ≈ 2.944	A 1	CAO Do not condone $\frac{53}{18}$

Question 4 Total	6	

Q	Answer	Marks	Comments
5(a)	$\sum_{r=1}^{n} (6r^2 - 4r + 1) = 6\sum_{r=1}^{n} r^2 - 4\sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$	M1	Writes in terms of standard formulae Condone one error PI
	$= 6 \times \frac{1}{6} n(n+1)(2n+1) - 4 \times \frac{1}{2} n(n+1) + n$	M1	Replaces $\sum r^2$ with $\frac{1}{6}n(n+1)(2n+1)$ and $\sum r$ with $\frac{1}{2}n(n+1)$
	6 \	M1	Replaces $\sum 1$ with n
	= n [(n+1)(2n+1)-2(n+1)+1]		
	$= n(2n^2 + 3n + 1 - 2n - 2 + 1)$		
	$= n(2n^2 + n)$		
	$= n^2 (2n+1)$	A 1	Correct expression following M1M1M1
		4	

Q	Answer	Marks	Comments
5(b)	$\sum_{r=p+1}^{2p} (6r^2 - 4r + 1)$		
	$= \sum_{r=1}^{2p} (6r^2 - 4r + 1) - \sum_{r=1}^{p} (6r^2 - 4r + 1)$	М1	Correctly splits the required expression into the difference of two sums of the
	r=1 $r=1$		form $\sum_{r=1}$
	$= (2p)^{2}(4p+1) - p^{2}(2p+1)$	m1	Writes the required expression in terms of p ft their part (a) in terms of n
	$= p^2 (16p + 4 - 2p - 1)$		
	$=p^2(14p+3)$	A 1	
		3	

Question 5 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
6(a)(i)	$b = -(\alpha + \beta)$	B1	
	$c = \alpha \beta$	B1	
		2	

Q	Answer	Marks	Comments
6(a)(ii)	$[\beta =] x - iy$	B1	
		1	

Q	Answer	Marks	Comments
6(b)(i)	Let α and β be $x \pm iy$ x + iy + x - iy = -6 2x = -6 x = -3	M1	Forms a correct equation in <i>x</i>
	Area = $\frac{1}{2} \times 2y \times (8-x) = 11\sqrt{3}$	M1	Forms a correct equation in y ft their x
	$y = \sqrt{3}$	A 1	
	$\left[\alpha=\right] -3+\mathrm{i}\sqrt{3}$ and $\left[\beta=\right] -3-\mathrm{i}\sqrt{3}$	A 1	
		4	

Q	Answer	Marks	Comments
6(b)(ii)	$\frac{c}{1} = \left(-3 + i\sqrt{3}\right)\left(-3 - i\sqrt{3}\right)$	M 1	Forms an equation in c ft a conjugate pair
	[c=]12	A1ft	ft a conjugate pair
		2	

Q	Answer	Marks	Comments
6(b)(iii)		M1	Correct calculation of the modulus of at least one of their roots
	$\left[\theta_{\alpha}=\right] \tan^{-1}\left(\frac{\sqrt{3}}{-3}\right)+\pi \left[=\frac{5\pi}{6}\right]$	М1	Full method for the argument of one of their roots Accept a correct equivalent radian angle outside the interval $-\pi < \theta \le \pi$
	$2\sqrt{3}\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\!\left(\frac{5\pi}{6}\right)\right)$	A 1	Accept $\sqrt{12}$ for $2\sqrt{3}$
	$2\sqrt{3}\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)$	A 1	Αυτορί γ 12 101 2γ 3
		4	

Question 6 Total	13	
------------------	----	--

Q	Answer	Marks	Comments
7(a)	$x = \sqrt{3}$	B1	
	$x = -\sqrt{3}$	B1	Award a maximum of B2 if any errors are included, eg an extra asymptote
	y = 0	B1	
		3	

Q	Answer	Marks	Comments
7(b)	$\frac{y}{\sqrt{-\frac{2}{3}}}$	M1	Any two of: $y \to 0^+ \text{ as } x \to \infty$ or $y \to 0^+ \text{ as } x \to -\infty$ or $y \to \infty \text{ as } x \to \sqrt{3}^+$ or $y \to \infty \text{ as } x \to -\sqrt{3}^-$ Can be drawn or written Accept implied asymptotic behaviour Accept feathering Both sections drawn correctly Do not accept feathering – must be one continuous curve for each of the two sections Must clearly show correct asymptotic behaviour for all four of $x \to \infty$, $x \to -\infty, \ x \to \sqrt{3}^+, \ x \to -\sqrt{3}^-$
		2	

Q	Answer	Marks	Comments
7(c)	$x = \frac{2}{x^2 - 3}$		
	$x^3 - 3x - 2 = 0$	M1	Forms a cubic equation PI
	$(x-2)(x^2+2x+1)=0$		
	The other intersection point(s) occur when $x^2 + 2x + 1 = 0$		
	x = -1 is a repeated root	M1	Correct solution (other than $x = 2$) of their cubic equation PI
	(-1, -1)	A 1	Correct intersection point Accept $x = -1$ and $y = -1$ unambiguously written as the required coordinates Ignore $(2, 2)$ included
		3	

Q	Answer	Marks	Comments
7(d)		B1	Draws a tangent through the origin, intersecting the curve in the 1st and 3rd quadrants Coordinates of intersection not needed for this mark
		1	

Q	Answer	Marks	Comments
7(e)	$x < -\sqrt{3}$	B1	Condone $\sqrt{3} < x < 2$ for $\sqrt{3} < x \le 2$
	x = -1	B1	if only one (or neither) of the previous B1 s has been awarded
	$\sqrt{3} < x \le 2$	B1	Award a maximum of B2 if any errors are included, eg an extra region
		3	

Question 7 Total 12	
---------------------	--

Q	Answer	Marks	Comments
8(a)	The integrand is not defined for $x = 0$ [when $n < 0$]	E1	oe Condone 'infinite' for 'not defined' Accept 0" is not defined (or infinite)
		1	

Q	Answer	Marks	Comments
8(b)	$I_{\frac{3}{4}} = \int_{0}^{4} x^{-\frac{3}{4}} dx$		
	$= \lim_{a \to 0^+} \left(\int_a^4 x^{-\frac{3}{4}} dx \right)$	M1	Replaces lower limit with a variable
	$= \lim_{a \to 0^+} \left[4x^{\frac{1}{4}} \right]_a^4$	m1	Correct integration and limiting process shown
	$= \lim_{a \to 0^{+}} \left(4 \times 4^{\frac{1}{4}} - 4 \times a^{\frac{1}{4}} \right)$		
	$=4\times4^{\frac{1}{4}}-0$		
	$=4\sqrt{2}$	A 1	oe eg $4\sqrt[4]{4}$ NMS scores 1 mark out of 3 SC2 for correct integration and correct answer without use of limiting process Condone $a \rightarrow 0$ throughout
		3	

Q	Answer	Marks	Comments
8(c)	Accept any value of n where $n \le -1$ eg $n = -1$ or $n = -\frac{5}{2}$ etc	B1	Writes down any number in the range $n \le -1$ Accept a range of numbers within the range $n \le -1$ Condone $-\infty$ or ∞
		1	

Question 8 Total	5	

Q	Answer	Marks	Comments
9(a)	Let $P = (x, y)$ $\sqrt{(x-4)^2 + (y-0)^2} \text{ or } [\pm][2](x-1)$	B1	A correct distance from P to $(4,0)$ or to $x=1$ seen or used May be the square of the distance
	$\sqrt{(x-4)^2+(y-0)^2} = [\pm]2(x-1)$	М1	Forms an equation in x and y using at least one correct distance and a factor of 2
	$(x-4)^2 + (y-0)^2 = 4(x-1)^2$	M1	Removes the square root correctly
	$x^2 - 8x + 16 + y^2 = 4(x^2 - 2x + 1)$		
	$x^2 - 8x + 16 + y^2 = 4x^2 - 8x + 4$		
	$12 = 3x^2 - y^2$		
	$\frac{x^2}{4} - \frac{y^2}{12} = 1$	A 1	
		4	

Q	Answer	Marks	Comments
9(b)	$\frac{x}{2} = \pm \frac{y}{\sqrt{12}}$	M1	Accept one correct asymptote in any form
	$y=\pm x\sqrt{3}$	A1ft	ft their $\frac{x^2}{m} - \frac{y^2}{n} = 1$
		2	

Q	Answer	Marks	Comments
9(c)	y /	В1	Correct shape Must include the asymptotes Accept asymptotes drawn as continuous lines
	-2 Ø 2 x	B1ft	Correct axis intercepts with no incorrect axis intercepts ft their <i>m</i> from part (a)
		2	

Q	Answer	Marks	Comments
9(d)		M1	Accept any vertical translation of one of the asymptotes
	$y = \pm x\sqrt{3} + c$	A1ft	Accept any correct form f t their part (b) of the form $y = \pm kx$
		2	

Question 9 Total	10	
------------------	----	--

Q	Answer	Marks	Comments
10(a)	$\alpha\beta = \frac{m}{2}$ or $\alpha^2\beta\beta^2\alpha = \frac{m}{3}$	B1	Uses the product of roots rule on at least one equation
	$\left(\frac{m}{2}\right)^3 = \frac{m}{3}$ $3m^3 = 8m$ $m^2 = \frac{8}{3} \text{or} m = 0$	M1	Forms an equation in <i>m</i> only
	$3m^3=8m$		
	$m^2 = \frac{8}{3} \text{or} m = 0$		
	but $m > 0$, so $m = \frac{2}{3}\sqrt{6}$	A 1	oe eg $\sqrt{\frac{8}{3}}$
		3	

Q	Answer	Marks	Comments
10(b)	$\alpha + \beta = -\frac{1}{2}$ or $\alpha^2 \beta + \beta^2 \alpha = -\frac{n}{3}$	B1	Uses the sum of roots rule on at least one equation May be seen in part (a)
	$\alpha\beta(\alpha+\beta) = -\frac{n}{3}$ $\frac{m}{2} \times -\frac{1}{2} = -\frac{n}{3}$ $3m = 4n$	M1	Forms a correct equation in m and n May be seen in part (a)
	$3 \times \frac{2}{3}\sqrt{6} = 4n$	m1	Forms an equation in <i>n</i> only
	$n = \frac{1}{2}\sqrt{6}$	A 1	oe eg $\sqrt{\frac{3}{2}}$
		4	

Question 10 To	7	
----------------	---	--