1 Exercices de niveau 1

904.1

cc-INP

Soit $(u_n)_n$ définie par :

$$u_0 \in \left]0, \frac{\pi}{2}\right[\text{ et } u_{n+1} = \sin(u_n) \quad \forall n \in \mathbb{N}$$

- (a) Montrer que $(u_n)_n$ converge et déterminer sa limite.
- (b) Montrer que $\sum u_n^3$ converge. On pourra utiliser $u_{n+1}-u_n$.
- (c) Étudier la convergence de $\sum u_n^2$. On pourra utiliser $\ln(u_{n+1}) \ln(u_n)$.

904.2

Mines-Télécom

On note
$$a_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$$
.

- (a) Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que $a_n = \gamma + \underset{n \to +\infty}{\text{o}} (1)$.
- (b) On note:

$$u_n = \prod_{k=1}^{n} \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}} \right)$$

Montrer que $u_n > 0$ pour tout $n \in \mathbb{N}^*$.

- (c) Donner le développement limité à l'ordre 3 de $\ln(1+x)$.
- (d) Montrer que la suite $(\ln(u_n\sqrt{n}))_n$ converge.

904.3

cc-INP

Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite décroissante de réels qui converge vers 0. On pose $\forall n\in\mathbb{N}^*,\ u_n:\ x\in\mathbb{R}\mapsto a_n\sin(nx)$.

- (a) Montrer que $\sum_{n\geqslant 1}u_n$ converge normalement sur $\mathbb{R}\iff \sum_{n\geqslant 1}a_n$ converge.
- (b) On pose, $\forall n \ge 1$, $\forall x \in \mathbb{R}$, $T_n(x) = \sum_{k=1}^n \sin(kx)$ et $T_0(x) = 0$.
 - b1. Calculer $T_n(x)$.

Établir que
$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R} \setminus \{2p\pi/p \in \mathbb{Z}\}, \ |T_n(x)| \leqslant \frac{1}{|\sin(x/2)|}.$$

- b2. Montrer que la série de fonctions $\sum_{n\geqslant 1}(a_n-a_{n+1})T_n$ converge simplement sur \mathbb{R} .
- (c) Soit $N \in \mathbb{N}^*$; on pose $S_N : x \in \mathbb{R} \mapsto \sum_{k=1}^N u_k(x)$.

Montrer que
$$S_N(x) = \sum_{k=1}^{N-1} (a_k - a_{k+1}) T_k(x) + a_N T_N(x).$$

En déduire que $\sum_{n\geqslant 1}u_n$ converge simplement sur $\mathbb{R}.$

904.4

IMT

On pose $\forall n \ge 1$, $u_n = \prod_{k=1}^n \left(1 + \frac{(-1)^{k-1}}{\sqrt{k}}\right)$, $v_n = \ln(u_n)$.

- (a) Vérifier que $\forall n \ge 1, \ v_n$ existe.
- (b) Déterminer la limite de (v_n) .
- (c) En déduire la limite de (u_n) .

904.5

Mines-Télécom

On note:

$$S_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $T_n = S_n + \frac{1}{n \, n!}$

- (a) Montrer que $(S_n)_n$ et $(T_n)_n$ sont adjacentes.
- (b) En déduire que $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k!} = o\left(\frac{1}{n!}\right)$.
- (c) Étudier la série de terme général $\sin(\pi e n!)$.

Examinatrice très désagréable. Elle force à écrire sans prendre le temps de réfléchir, ce qui mène à des erreurs bidon.

904.6

CCP

- (a) Soit $a_n = \frac{1}{1^2 + 2^2 + 3^2 + \dots + n^2}$. Montrer que $\sum a_n$ converge.
- (b) Soit $H_n = \sum_{k=1}^n \frac{1}{k}$. Montrer que $H_{2n+1} H_n \xrightarrow[n \to +\infty]{} \ln(2)$.
- (c) Déterminer a, b, c tels que $a_n = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{2n+1}$.
- (d) Déterminer la valeur de $\sum_{n=1}^{+\infty} a_n$.

2 Exercices de niveau 2

904.7

Mines-Ponts

Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une permutation de \mathbb{N}^* . Démontrer la convergence de la série :

$$\sum \frac{1}{n\sigma(n)}$$

Indication : on pourra commencer par majorer les « paquets » $\sum_{k=r^2+1}^{(n+1)^2} \frac{1}{k\sigma(k)}$.

904.8

Centrale

(a) Énoncer et démontrer le théorème de Rolle.

Pour tout entier $n \ge 1$, on considère le polynôme :

$$P_n = \prod_{i=0}^n (X - i)$$

- (b) Démontrer que, pour tout entier $n \ge 1$, P'_n possède une unique racine x_n dans l'intervalle]0,1[.
- (c) Démontrer que, pour tout entier $n \ge 1$ et tout $x \in \mathbb{R} \setminus \{0, 1, \dots, n\}$:

$$\frac{P'_n(x)}{P_n(x)} = \sum_{i=0}^{n} \frac{1}{x-i}$$

On note $f_n(x)$ cette expression.

(d) Étudier les variations de f_n sur]0,1[, puis en déduire que la suite $(x_n)_n$ est strictement décroissante, et qu'elle converge vers 0.

On note $H_n = \sum_{i=1}^n \frac{1}{i}$.

(e) Encadrer $\frac{1}{x_n} + \frac{1}{x_n - 1}$ à l'aide de H_{n-1} et de H_n . En déduire un équivalent simple de x_n .

904.9

Mines-Ponts

On considère $(x_n)_{n\in\mathbb{N}}$ une suite réelle bornée telle que, pour tout $n\geqslant 1$:

$$x_n \leqslant \frac{1}{2}(x_{n-1} + x_{n+1})$$

Démontrer que cette suite est convergente.

Indication : on pourra commencer par montrer que la suite $(y_n)_n$ où $y_n = x_{n+1} - x_n$ converge vers 0.

904.10

Mines-Ponts

Étudier la suite $(x_n)_n$ définie par :

$$x_0 \ge 0 \text{ et } \forall n \in \mathbb{N}, \ x_{n+1} = \frac{1}{2} \int_0^{\pi/2} e^{-x_n \sin t} dt$$

904.11

Centrale

Soit u définie par $\begin{cases} u_0 = \alpha > 0 \\ \forall n, \ u_{n+1} = u_n^2 + u_n \end{cases}$

- (a) Montrer que $u_n \xrightarrow[n \to +\infty]{} +\infty$.
- (b) On pose $\forall n, \ v_n = \frac{\ln(u_n)}{2^n}$; montrer que (v_n) converge vers un certain β .
- (c) Montrer que $|v_n \beta| = o\left(\frac{1}{2^n}\right)$.
- (d) Déterminer un équivalent de u_n .

2024-2025 http://mpi.lamartin.fr 3/4

904.12

Mines-Ponts

Soit (u_n) une suite positive et décroissante.

- (a) Montrer que si $\sum u_n$ converge, alors $nu_n \xrightarrow[n \to +\infty]{} 0$.
- (b) Qu'en est-il de la réciproque?
- (c) On pose $\forall n, v_n = n(u_{n+1} u_n)$ et on suppose que $u_n \xrightarrow[n \to +\infty]{} 0$. Montrer que $\sum u_n$ et $\sum v_n$ sont de même nature.

Que vaut
$$\sum_{n=0}^{+\infty} v_n$$
?

904.13

Centrale 1

Pour
$$n \in \mathbb{N}^*$$
, on note $I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^3)^n}$.

- (a) Montrer que la suite $(I_n)_n$ converge, et déterminer sa limite.
- (b) Établir une relation entre I_{n+1} et I_n .
- (c) Étudier selon la valeur de α la suite $(v_n)_n$, où $v_n = \ln(n^{\alpha}I_n)$.
- (d) Montrer que $\sum \frac{I_n}{n}$ converge, et calculer sa somme.

904.14

Mines-Ponts

Sans préparation.

Calculer, pour $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} k^3 \binom{n}{k}$$

Examinateur très courtois, mais difficile à suivre car il avait une manière très particulière de s'exprimer.

904.15

Mines-Ponts

- (a) Existence et valeur de $I = \int_0^1 \frac{t \operatorname{Arctan} t}{t^2} dt$.
- (b) Existence et valeur de $S = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2n(2n+1)}$.

Examinateur sympathique, mais qui parle très doucement.

3 Exercices de la banque CC-INP

13, 34 à 41, 43 à 45, 54, 61