FCC RADIO TEST REPORT FCC ID: 2AC43S60

Product: Mobile Phone

Trade Name: N/A

Model Number: S60

Serial Model: \$50, \$70, \$80

Prepared for

Shenzhen Jinhuima Technology Co. LTD
B13 Building, Yintian Industrial Zone, Xixiang Town, Baoan
District, Shenzhen

Prepared by

Shenzhen STONE Testing Technology Co.,Ltd.
F/6, Bldg.12, Zhongxing Industrial City, Chuangye Rd., Nanshan District
Shenzhen P.R. China

TEST RESULT CERTIFICATION

This device described above has been tested by STT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STT, this document may be altered or revised by STT, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests.... Aug 17, 2014 ~ Aug 25, 2014

Test procedure ANSI C63.4-2003, TIA/EIA 603

Date of Issue Aug 26, 2014

Test Result Pass

Testing Engineer : Evic Wang

(Eric Wang)

Technical Manager : Jerry 7 stu

(Jerry You)

Authorized Signatory : Jank Ym

(Jack yu)

Report No: STT-DG20140820558F3 **Page 3 of 47**

Contents

<u>1.</u>	TEST STANDARDS ANDTEST DESCRIPTION	4
1.1.	Test Standards	4
1.2.	Test Description	4
<u>2.</u>	SUMMARY	5
2.1.	Client Information	5
2.2.	Product Description	5
2.3.	EUT operation mode	6
2.4.	EUT configuration	6
2.5.	Modifications	6
<u>3.</u>	TEST ENVIRONMENT	7
3.1.	Address of the test laboratory	7
3.2.	Environmental conditions	7
3.3.	Statement of the measurement uncertainty	7
3.4.	Equipments Used during the Test	8
<u>4.</u>	TEST CONDITIONS AND RESULTS	10
4.1.	Conducted Emissions Test	10
4.2.	Conducted Peak Output Power	13
4.3.	Occupy Bandwidth	14
4.4.	Out of band emission at antenna terminals	22
4.5.	Band Edge compliance	31
4.6.	Radiated Power Measurement	36
4.7.	Radiated Spurious Emssion	39
4.8.	Frequency stability V.S. Temperature measurement	44
4.9.	Frequency stability V.S. Temperature measurement	46
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	47
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	47
<u> </u>	EXTERNAL AND INTERNAL FIRSTON OF THE EUT	

Report No: STT-DG20140820558F3 **Page 4 of 47**

1. TEST STANDARDS ANDTEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 22(10-1-13 Edition):PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2:FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-

<u>KDB971168 D01:2013-06-07</u>Procedures for Compliance Measurement of the FundamentalEmission Power of Licensed Wideband (> 1 MHz) DigitalTransmission Systems

ANSI C63.4:2009 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Test Description

Test Item	Section in CFR 47	Result
AC Power Conducted Emission	Part 15.207	Pass
	Part 2.1046	
RF Output Power	Part 22.913 (a)(2)	Pass
	Part 24.232 (c)	
Modulation Characteristics	Part 2.1047	Pass
	Part 2.1049	
99% & -26 dB Occupied Bandwidth	Part 22.917	Pass
	Part 24.238	
	Part 2.1051	
Spurious Emissions at Antenna Terminal	Part 22.917 (a)	Pass
	Part 24.238 (a)	
	Part 2.1053	
Field Strength of Spurious Radiation	Part 22.917 (a)	Pass
	Part 24.238 (a)	
Out of hand emission, Rand Edge	Part 22.917 (a)	Pass
Out of band emission, Band Edge	Part 24.238 (a)	Fd55
Frequency stability vs. temperature	Part 2.1055(a)(1)(b)	Pass
Frequency stability vs. voltage	Part 2.1055(d)(1)(2)	Pass

Remark: The measurement uncertainty is not included in the test result.

Report No: STT-DG20140820558F3 **Page 5 of 47**

2. **SUMMARY**

2.1. Client Information

Applicant: Shenzhen Jinhuima Technology Co. LTD	
Address: B13 Building, Yintian Industrial Zone, Xixiang Town, Baoan District, China	
Manufacturer:	Shenzhen Jinhuima Technology Co. LTD
Address:	B13 Building, Yintian Industrial Zone, Xixiang Town, Baoan District, Shenzhen, China

2.2. Product Description

No CELIT				
Name of EUT	mobile phone			
Trade Mark:				
Model No.:	S60			
List Model:	S50, S70, S80			
Power supply:	DC 3.7V for lithium battery			
Adapter information:	Model:JS-009			
	Input: 100-240V~50/60Hz, 0.2A			
	Output: 5V , 0.8A			
2G:				
Support Network:	GSM, GPRS, EGPRS			
Support Band:	GSM850, DCS1900			
Modulation:	GSM/GPRS: GMSK			
	EGPRS: GMSK			
Transmit Frequency:	GSM850: 824.20MHz-848.80MHz			
	PCS1900: 1850.20MHz-1909.80MHz			
Receive Frequency:	GSM850: 869.20MHz-893.80MHz			
	PCS1900: 1930.20MHz-1989.80MHz			
GPRS Class:	12			
EGPRS Class:	12			
Antenna type:	Intergal Antenna			
Antenna gain:	0dBi			
Software version:	MT83X2_MR706_MR7063H1Z2W1.2014041016			
Hardware version:	ELINK_MR706_D3_V6			
3G:				
Operation Band:	FDD Band II			
Power Class:	Power Class 3			
Modilation Type:	QPSK for WCDMA/HSUPA/HSDPA			
WCDMA Release Version:	R7			
HSDPA Release Version:	Release 8			
HSUPA Release Version:	Release 6			
DC-HSUPA Release Version:	Not Supported			
Antenna type:	Intergal Antenna			
Antenna gain:	0dBi			
Hardware version:	ELINK_MR706_D3_V6			

Report No: STT-DG20140820558F3 **Page 6 of 47**

Software version: MT83X2_MR706_MR7063	BH1Z2W1.2014041016
---------------------------------------	--------------------

Test Frequency:

GSM	1 850	PCS1900		
Channel Frequency (MHz)		Channel	Frequency (MHz)	
128 824.20		512	1850.20	
190 836.60		661	1880.00	
251	251 848.80		1909.80	

FDD Band II				
Channel Frequency (MHz)				
9262	1852.4			
9400	1880.0			
9538	1907.6			

2.3. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant providessoftware to control the EUT for staying in continous transmitting and receiving mode for testing.

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

0	PowerCable	Length (m):	/
		Shield:	/
		Detachable :	/
0	Multimeter	Manufacturer:	/
		Model No. :	/

2.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: STT-DG20140820558F3 **Page 7 of 47**

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

STT Testing Technology Co., Ltd.

F/6, Bldg.12, Zhongxing Industrial City, Chuangye Rd., Nanshan District Shenzhen P.R. China.

The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003.

FCC Registration No.: 323508 IC Registration No.: 11043A

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature/Tnor:	15~35°C
lative Humidity	30~60 %
Air Pressure	950-1050 hPa

3.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1"and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	MeasurementUncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: STT-DG20140820558F3 **Page 8 of 47**

3.4. Equipments Used during the Test

AC Pov	AC Power Conducted Emission							
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.	Next cal. Date		
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100045	2013/10/26	2014/10/25		
2	EMI Test Receiver	Rohde&Schwarz	ESCS 30	100066	2013/10/26	2014/10/25		
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100042	2013/10/26	2014/10/25		
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/	N/		
5	UNIVERSAL RADIO COMMUNICATIO N	Rohde&Schwarz	CMU200	112064	2013/10/26	2014/10/25		

	Output Power(Conducted) &Occupied Bandwidth&Emission Bandwidth&Band Edge Compliance&Conducted Spurious Emission							
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.	Next cal. Date		
1	UNIVERSAL RADIO COMMUNICATIO N	Rohde&Schwarz	CMU200	112064	2013/10/26	2014/10/25		
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201154	2013/10/26	2014/10/25		
3	Splitter	Mini-Circuit	ZAPD-4	400037	2013/10/26	2014/10/25		
4	Power Meter	Anritsu	MA2411B	R101077	2013/10/25	2014/10/24		
5	Spectrum Analyzer	Agilent	E4407B	MY45108040	2014/07/06	2015/07/05		

Freque	Frequency Stability								
No.	Equipment	Manufacturer	Model No.	SerialNo.	II ast (:al	Next cal. Date			
1	UNIVERSAL RADIO COMMUNICATIO N	Rohde&Schwarz	CMU200	112012	2013/10/26	2014/10/25			
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/26	2014/10/25			
3	Climate Chamber	ESPEC	EL-10KA	05107008	2013/10/26	2014/10/25			
4	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/26	2014/10/25			

Out	Output Power (Radiated) &Radiated Spurious Emission								
No.	Equipment	Manufacturer	Model No.	SerialNo.	Last Cal.	Next cal. Date			
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26	2014/10/25			
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/26	2014/10/25			
3	HORNANTENNA	ShwarzBeck	9120D	1012	2013/10/26	2014/10/25			
4	HORNANTENNA	ShwarzBeck	9120D	1011	2013/10/26	2014/10/25			
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2013/10/26	2014/10/25			
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2013/10/26	2014/10/25			
7	TURNTABLE	MATURO	TT2.0		N/A	N/A			
8	ANTENNA MAST	MATURO	TAM-4.0-P		N/A	N/A			
9	EMI Test Software	Audix	E3	N/A	N/A	N/A			
10	EMI Test Receiver	Rohde&Schwarz	ESIB 26	100009	2013/10/26	2014/10/25			
11	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A	N/A			
12	High pass filter	Compliance Direction systems	BSU-6	34202	2013/10/26	2014/10/25			
13	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/26	2014/10/25			
14	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2013/10/26	2014/10/25			

Report No: STT-DG20140820558F3

Page	9	of	47
------	---	----	----

15	Horn Antenna	SCHWARZBECK	BBHA9170	25842	2013/10/26	2014/10/25
16	Preamplifier	ShwarzBeck	BBV 9718	BBV 9718	2013/10/26	2014/10/25
17	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2013/10/26	2014/10/25
18	Signal Generator	Rohde&Schwarz	SMF100A	101932	2013/10/26	2014/10/25
10	19 Amplifer	Compliance Direction	PAP1-	120	2012/10/26	2014/10/25
	•	systems	4060	120	2013/10/20	2014/10/23
20	TURNTABLE	ETS	2088	2149	N/A	N/A
21	ANTENNA MAST	ETS	2075		,	N/A
22	HORNANTENNA	Rohde&Schwarz	HF906	100068	2013/10/26	2014/10/25
23	HORNANTENNA	Rohde&Schwarz	HF906	100039	2013/10/26	2014/10/25

The calibration interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test

LIMIT:

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
r requerity or Emission (Wiriz)	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

^{*} Decreasing linearly with the logarithmof the frequency

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 Ifa EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Note: We tested all modes and recorded the worst case at GSM900

GSM850

Report No: STT-DG20140820558F3 **Page 13 of 47**

4.2. Conducted Peak Output Power

LIMIT:

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II: 2W

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power.

EUT Mode	Channel	Frequency (MHz)	Power (dBm)	Limit (dBm)	Result
2211.222	128	824.20	31.85		
GSM 850 (GMSK)	190	836.60	31.77	38.45	Pass
(Gill-Gill)	251	848.80	31.81		
000000	128	824.20	31.86		
GPRS850 (GMSK,1Slot)	190	836.60	31.79	38.45	Pass
(3.113.11, 13.131)	251	848.80	31.80		
EODD COEO	128	824.20	31.82		
EGPRS850 (GMSK,1Slot)	190	836.60	31.72	38.45	Pass
(GIVISIX, 13101)	251	848.80	31.85		
	512	1850.20	29.61		Pass
PCS1900 (GMSK)	661	1880.00	29.89	33.01	
(Ginery)	810	1909.80	29.67		
	512	1850.20	29.62		Pass
GPRS1900 (GMSK,1Slot)	661	1880.00	29.85	33.01	
(33.3, 13.33)	810	1909.80	29.65		
E00004000	512	1850.20	29.65		
EGPRS1900 (GMSK,1Slot)	661	1880.00	29.90	33.01	Pass
(GW3K, 1310t)	810	1909.80	29.63]	
	9262	1852.40	21.82		
WCDMA Band II	9400	1880.00	21.76	33.01	Pass
	9538	1907.60	21.92]	

Report No: STT-DG20140820558F3 **Page 14 of 47**

4.3. Occupy Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBWwas set to about 1% of emission BW, VBW= 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth isthe delta frequency between the two points where the display line intersects the signal trace.

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
0011.000	128	824.20	245.19	313.30
GSM 850 (GMSK)	190	836.60	248.40	310.10
(Gillert)	251	848.80	242.79	313.30
	128	824.20	242.79	305.29
GPRS850 (GMSK,1Slot)	190	836.60	247.60	307.70
	251	848.80	245.19	316.50
E000000	128	824.20	244.39	311.70
EGPRS850 (GMSK,1Slot)	190	836.60	244.39	314.10
(Olwort, Folot)	251	848.80	242.79	314.90
	512	1850.20	242.79	314.10
PCS1900 (GMSK)	661	1880.00	244.39	317.30
(GMGIT)	810	1909.80	247.60	310.90
	512	1850.20	245.19	317.31
GPRS1900 (GMSK,1Slot)	661	1880.00	245.99	315.71
(Gillert, Feloty	810	1909.80	244.39	315.71
	512	1850.20	245.19	318.11
EGPRS1900 (GMSK,1Slot)	661	1880.00	246.79	312.50
(Civiott, 10iot)	810	1909.80	247.60	313.30
	9262	1852.4	4166.67	4679.49
WCDMA Band II	9400	1880.0	4166.67	4695.51
	9538	1907.6	4182.69	4695.51

Report No: STT-DG20140820558F3 **Page 22 of 47**

4.4. Out of band emission at antenna terminals

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficientscans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10th harmonic.

Report No: STT-DG20140820558F3 **Page 31 of 47**

4.5. Band Edge compliance

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriateattenuation.
- 2. For the bandedge: 2G:Set the RBW=5KHz, VBW = 50KHz,Span=1MHzSweep time= Auto 3G:Set the RBW=5KHz, VBW = 50KHz,Span=5MHzSweep time= Auto

Report No: STT-DG20140820558F3

	GSM850								
Channel	Frequency	Measureme	nt Results	Limit	Verdict				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Veruici				
128	824.20	823.98	-14.85	-13.00	Pass				
251	848.80	849.00	-15.52	-13.00	Pass				

	GPRS850								
Channel	Frequency	Measureme	nt Results	Limit	Verdict				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict				
128	824.20	824.00	-16.18	-13.00	Pass				
251	848.80	849.00	-15.05	-13.00	Pass				

EGPRS850								
Channel	Frequency	Measuremer	nt Results	Limit	Verdict			
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict			
128	824.20	824.00	-13.16	-13.00	Pass			
251	848.80	849.00	-14.72	-13.00	Pass			

	PCS1900								
Channel	Frequency	Measurement Results Limit			Verdict				
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict				
512	1850.20	1850.00	-17.58	-13.00	Pass				
810	1909.80	1910.00	-16.79	-13.00	Pass				

GPRS1900								
Channel	Frequency	Measuremer	nt Results	Limit	Verdict			
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict			
512	1850.20	1850.00	-18.04	-13.00	Pass			
810	1909.80	1910.00	-18.23	-13.00	Pass			

EGPRS1900							
Channel	Frequency	Measurement Results		sults Limit Verdict			
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	Verdict		
512	1850.20	1850.00	-19.19	-13.00	Pass		
810	1909.80	1910.00	-15.7	-13.00	Pass		

WCDMA Band II							
Channel	Frequency	Measuremer	nt Results	Limit	Verdict		
Number	(MHz)	Frequency(MHz)	Values(dBm)	(dBm)	verdict		
9262	1852.4	1850.00	-26.48	-13.00	Pass		
9538	1907.6	1910.69	-26.13	-13.00	Pass		

Report No: STT-DG20140820558F3 **Page 36 of 47**

4.6. Radiated Power Measurement

LIMIT

GSM850/WCDMA Band V: 7W ERP PCS1900/WCDMA Band II: 2W EIRP

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set
 Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be
 recorded as (Pr).

Report No: STT-DG20140820558F3 **Page 37 of 47**

4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below:

Power(EIRP)=PMea- PcI + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

GSM:

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	128	V	32.38		
	120	Н	27.54		
GSM850	190	V	32.28	38.45	Pass
GSIVIOSO	190	Н	28.09	36.43	F ass
	251	V	32.21		
	231	Н	27.43		
	128	V	32.42		Pass
	120	Н	27.57	38.45	
GPRS850	190	V	32.29		
		Н	28.08		
	251	V	32.19		
		Н	27.41		
	128	V	32.38		
	120	Н	27.53		
EGPRS850	190	V	32.19	38.45	Pass
	190	Н	28.09	30.40	Газэ
	251	V	32.01		
	251	Н	27.35		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	512	V	30.67		
	512	Н	25.58		
PCS1900	661	V	31.52	33.01	Pass
FC31900	001	Н	26.34	33.01	Fass
	810	V	30.79		
	610	Н	25.71		
	512	V	29.68		Pass
	312	Н	25.66	33.01	
GPRS1900	661	V	31.58		
		Н	26.33		F ass
	810	V	30.31		
		Н	25.86		
	512	V	29.69		
	512	Н	25.51		
EGPRS 1900	661	V	31.45	33.01	Pass
LGFN3 1900	001	Н	26.24	33.01	F d55
	810	V	30.26		
		Н	25.72		

WCDMA:

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	9262	V	22.23	33.01	Pass
		Н	18.17		
WCDMA Band II	9400 9538	V	22.97		
WCDIVIA Ballu II		Н	18.88		
		V	22.13		
		Н	18.69		

Report No: STT-DG20140820558F3 **Page 39 of 47**

4.7. Radiated Spurious Emssion

LIMIT

-13dBm

TEST CONFIGURATION

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr).

Report No: STT-DG20140820558F3 **Page 40 of 47**

4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest isconnected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

		GS	M850		
Channel	Frequency	Spurious	Emission	Limit (dBm)	Result
Chamilei	(MHz)	Polarization	Level (dBm)	Liffiit (dBiff)	Result
	1648.40	Vertical	-34.73		
	2472.60	V	-37.38		
	3296.80	V	-39.56	-13.00	Pass
	4121.00	V	-41.78		
128	4945.20	V			
120	1648.40	Horizontal	-39.87		
	2472.60	Н	-43.65		
	3296.80	Н	-45.14	-13.00	Pass
	4121.00	Н	-47.89		
	4945.20	Н			
	1673.20	Vertical	-35.86	-13.00	
	2509.80	V	-38.07		
	3346.40	V	-39.91		Pass
	4183.00	V	-41.67		
190	5019.60	V			
190	1673.20	Horizontal	-42.66		Pass
	2509.80	Н	-45.88		
	3346.40	Н	-47.11	-13.00	
	4183.00	Н	-49.32		
	5019.60	Н			
	1697.60	Vertical	-40.14		
	2546.40	V	-43.27		
	3395.20	V	-44.56	-13.00	Pass
	4244.00	V	-46.78		
251	5092.80	V			
201	1697.60	Horizontal	-39.67		
	2546.40	Н	-42.52		
	3395.20	Н	-43.65	-13.00	Pass
	4244.00	Н	-45.62		
	5092.80	Н			

- 2.
- The emission behaviour belongs to narrowband spurious emission.

 Remark"---" means that the emission level is too low to be measured

 The emission levels of below 1 GHz are very lower than the limit and not show in test report.

		PCS	S1900		
O 1 1	Channel Frequency Spurious E				- ·
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3700.40	Vertical	-34.95		
	5550.60	V	-37.27		
	7400.80	V	-39.24	-13.00	Pass
	9251.00	V	-41.13		
512	11101.20	V			
312	3700.40	Horizontal	-39.47		
	5550.60	Н	-42.82		
	7400.80	Н	-44.15	-13.00	Pass
	9251.00	Н	-46.47		
	11101.20	Н			
	3760.00	Vertical	-32.87	-13.00	
	5640.00	V	-35.32		
	7520.00	V	-37.34		Pass
	9400.00	V	-39.26		
661	11280.00	V			
001	3760.00	Horizontal	-37.57		Pass
	5640.00	Н	-41.02		
	7520.00	Н	-42.37	-13.00	
	9400.00	Н	-44.79		
	11280.00	Н			
	3819.60	Vertical	-33.94		
	5729.40	V	-36.26		
	7639.20	V	-38.25	-13.00	Pass
	9549.00	V	-40.14		
810	11458.80	V			
010	3819.60	Horizontal	-38.46		
	5729.40	Н	-41.83		
	7639.20	Н	-43.14	-13.00	Pass
	9549.00	Н	-45.48		
	11458.80	Н			

Remark:

- 2.
- The emission behaviour belongs to narrowband spurious emission.

 Remark"---" means that the emission level is too low to be measured

 The emission levels of below 1 GHz are very lower than the limit and not show in test report.

WCDMA Band II							
Ohamal	Frequency	Spurious	Emission	Limit (dDas)	Darrett		
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result		
-	3704.80	Vertical	-34.58				
	5557.20	V	-61.37				
	5557.20	V	-38.36	-13.00	Pass		
	7409.60	V	-41.96				
9262	9262.00	V					
9202	3704.80	Horizontal	-39.74				
	5557.20	Н	-67.67				
	5557.20	Н	-43.93	-13.00	Pass		
	7409.60	Н	-48.02				
	9262.00	Н					
	3760.00	Vertical	-35.73				
	5640.00	V	-62.07				
	5640.00	V	-38.68	-13.00	Pass		
	7520.00	V	-41.92				
9400	9400.00	V					
9400	3760.00	Horizontal	-42.57		Pass		
	5640.00	Н	-69.86				
	5640.00	Н	-45.87	-13.00			
	7520.00	Н	-49.54				
	9400.00	Н					
	3815.20	Vertical	-40.04				
	5722.80	V	-67.26				
	5722.80	V	-43.38	-13.00	Pass		
	7630.40	V	-46.95				
0539	9538.00	V					
9538	3815.20	Horizontal	-39.56				
	5722.80	Н	-66.52				
	5722.80	Н	-42.43	-13.00	Pass		
-	7630.40	Н	-45.81				
	9538.00	Н					

Remark:

- The emission behaviour belongs to narrowband spurious emission.

 Remark"---" means that the emission level is too low to be measured

 The emission levels of below 1 GHz are very lower than the limit and not show in test report.

Page 44 of 47 Report No: STT-DG20140820558F3

4.8. Frequency stability V.S. Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25℃ operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10℃ increased per stage until the highest temperature of +50℃ reached.

Ref	erence Frequency: G	SM850 Middle ch	annel=190 channel	el=836.6MHz	
Power supplied	Temperature (°C)	Frequency error		Limit (ppm)	Result
(Vdc)	remperature (C)	Hz	ppm	Limit (ppin)	Result
	-30	45	0.054		
	-20	41	0.049		
	-10	34	0.041		
	0	32	0.038	1	
3.70	10	31	0.037	2.5	Pass
	20	26	0.031		
	30	35	0.042		
	40	37	0.044	1	
	50	31	0.037		
Ref	erence Frequency: Po	CS1900 Middle ch	nannel=661 chann	nel=1880MHz	
Power supplied	Tamanaratura (°C)	Frequency error		Limit (nnm)	Result
(Vdc)	Temperature (°C)	Hz	ppm	Limit (ppm)	Result
	-30	38	0.020		
	-20	36	0.019		
	-10	31	0.016		
	0	39	0.021	1	
3.70	10	28	0.015	2.5	Pass
	20	24	0.013	1	
	30	32	0.017	1	
	40	31	0.016	1	
	50	33	0.018	1	

Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz						
Power supplied	Temperature (°C)	Frequer	icy error	Limit (ppm)	Result	
(Vdc)	remperature (C)	Hz	ppm	Еппі (рріп)	Result	
	-30	44	0.023			
	-20	46	0.024	2.5	Pass	
	-10	35	0.019			
	0	33	0.018			
3.70	10	35	0.019			
	20	26	0.014			
	30	35	0.019			
	40	36	0.019			
	50	37	0.020			

Report No: STT-DG20140820558F3 **Page 46 of 47**

4.9. Frequency stability V.S. Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. Set chamber temperature to 25°C. Use a variable DC power source topower the EUT and set the voltage to rated voltage.
- 2. Set the spectrum analyzer RBW lowenough to obtain the desired frequency resolution and recorded the frequency.
- 3. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, recordthe maximum frequency change.

Reference Frequency: GSM850 (GSM link) Middle channel=190 channel=836.6MHz						
Temperature (°C)	Power supplied	Frequer	ncy error	Limit (ppm)	Result	
remperature (C)	(Vdc)	Hz	ppm	Еппи (ррпі)	resuit	
	4.25	28	0.033			
25	3.70	26	0.031	2.5	Pass	
	3.40	34	0.041			
Reference	e Frequency: PCS190	00 (GSM link) Mid	dle channel=661	channel=1880MI	Hz	
Temperature (°C)	Power supplied	Frequency error		Limit (ppm)	Result	
remperature (C)	(Vdc)	Hz	ppm	Littiit (ppiti)	Nesuit	
	4.25	53	0.028			
25	3.70	44	0.023	2.5	Pass	
	3.40	56	0.030			
Referen	ce Frequency: WCDN	MA Band II Middle	channel=9400 ch	nannel=1880MH	Z	
Temperature (°C)	Power supplied	Frequer	ncy error	Limit (none)	Result	
remperature (C)	(Vdc)	Hz	ppm	Limit (ppm)	Nesuit	
	4.25	51	0.027			
25	3.70	56	0.030	2.5	Pass	
	3.40	51	0.027			

Report No: STT-DG20140820558F3 **Page 47 of 47**

5. <u>Test Setup Photos of the EUT</u>

Radiated emission:

Conducted emission:

6. External and Internal Photos of the EUT