Workshop Series Summer 2023

CAMBAM

Centre for Applied Mathematics in Bioscience and Medicine

June 16th, 2023

Exploring Single Neuron Excitability with Mathematical and Computational Models

By Niklas Brake and Nils Koch

Lecture 3: Model Fitting and Brian2

https://brian2.readthedocs.io

https://briansimulator.org/

https://brian2.readthedocs.io

Brian2

Free, open-source Python simulator for spiking neural network

- Easy to use
 - Easy to understand syntax to define, run and plot neural models in just a few lines of code
- Flexible
 - Any model: write equations in standard mathematical notation and run
- Performance
 - Automatically converting your equations into low level C++ code, compiling and running
- Reliable
 - widely used: https://briansimulator.org/papers-using-brian/

Marcel Stimberg, Dan F. M. Goodman, Romain Brette, Maurizio De Pittà.

Modeling neuron–glia interactions with the *Brian 2* simulator. bioRxiv 198366


```
from brian import *
eqs = '''
dV/dt = (ge+gi-(V+49*mV))/(20*ms) : volt
dge/dt = -ge/(5*ms)
                                   : volt
dgi/dt = -gi/(10*ms)
                                   : volt
P = NeuronGroup(4000, model=eqs,
        threshold=-50*mV, reset=-60*mV)
Pe = P.subgroup(3200)
Pi = P.subgroup(800)
Ce = Connection(Pe, P, 'ge')
Ci = Connection(Pi, P, 'gi')
Ce.connect_random(Pe, P, p=0.02,
                  weight=1.62*mV)
Ci.connect_random(Pi, P, p=0.02,
                  weight=-9*mV)
M = SpikeMonitor(P)
P.V = -60*mV+10*mV*rand(len(P))
run(.5*second)
raster_plot(M)
show()
```


Goodman, Dan & Brette, Romain. (2008). Brian: A Simulator for Spiking Neural Networks in Python. Frontiers in neuroinformatics. 2. 5. 10.3389/neuro.11.005.2008.

(b)


```
1 # Constants
  E1 = -76.5*mV; E_Na = 50*mV; E_K = -100*mV
   eqs = Equations('''
5 Im = gl*(El-v) - I_Na - I_K - I_T: amp/meter**2
6 I_inj : amp (point current)
  # HH-type currents for spike initiation
   g_Na : siemens/meter**2
  I_Na = g_Na * m**3 * h * (v-E_Na) : amp/meter**2
   v2 = v - VT : volt # shifted membrane potential (Traub convention)
   dm/dt = (0.32*(mV**-1)*(13.*mV-v2)/
           (\exp((13.*mV-v2)/(4.*mV))-1.)*(1-m)-0.28*(mV**-1)*(v2-40.*mV)/
           (\exp((v2-40.*mV)/(5.*mV))-1.)*m) / ms * tadj_HH: 1
   # Load morphology from SWC file
   morpho = Morphology.from_file('tc200.CNG.swc')
   neuron = SpatialNeuron(morpho, eqs, Cm=0.88*uF/cm**2, Ri=173*ohm*cm,
                          method='exponential_euler')
   # Only the soma has Na/K channels
  neuron.main.g_Na = 100*msiemens/cm**2
  neuron.main.g_K = 100*msiemens/cm**2
   neuron.P_Ca = 1.7e-5*cm/second
   # Distal dendrites
   neuron.P_Ca['(distance + length/2) > 11*um'] = 8.5e-5*cm/second
   neuron.v = -74*mV
   neuron.m_T = 'm_T_inf'
   neuron.h_T = 'h_T_inf'
  mon = StateMonitor(neuron, ['v'], record=morpho[0]) # Record at soma
```

Marcel Stimberg, Romain Brette, Dan FM Goodman (2019) Brian 2, an intuitive and efficient neural simulator eLife 8:e47314

- Many different optimization algorithms and packages
 - PyGAD

https://www.electricalelibrary.com/en/2018/04/13/what-is-genetic-algorithm/

Break: 15:00 - 15:15

Workshop Series Summer 2023

CAMBAM

Centre for Applied Mathematics in Bioscience and Medicine

June 16th, 2023

Exploring Single Neuron Excitability with Mathematical and Computational Models

