Relatório do Projeto 2 de Inteligência Artificial

Mihail Brinza
83533

Ricardo Brancas

83557

9 de Dezembro de 2017

1 Métodos de Classificação

Para classificar as plavras escolhemos de entre outras, com recurso a *cross validation*, as seguintes *features*:

- 1. Paridade do número de caracteres;
- 2. Paridade do número de caracteres "z";
- 3. Paridade do número de vogais;
- 4. Paridade do número de consoantes;
- 5. Número de caracteres "a".

Para escolher o classificador, usámos novamente cross validation com os classificadores k-neighbors, com $k = \{1, 3, 5, 7, 9\}$ e decision tree, obtendo os resultados indicados na tabela 1.

	Conjunto 1	Conjunto 2
1- $neighbor$	1.0	1.0
3-neighbors	1.0	1.0
5-neighbors	1.0	1.0
7-neighbors	1.0	1.0
9-neighbors	1.0	1.0
Decision Tree	1.0	1.0

Tabela 1: F_1 scores da validação cruzada para o problema 1.

Concluímos portanto que, para estas features, qualquer um dos classificadores testados escolhe sempre bem dentro do conjunto de treino. Mais tarde verificámos que a escolha também é sempre acertada no conjunto de testes.

Decidimos utilizar o *Decision Tree Classifier* porque escolhe corretamente com maior probabilidade mesmo quando utilizamos *features* piores.

2 Métodos de Regressão

Para escolher o método de regressão mais apropriado usamos *cross validation* pontuado pelo erro quadrático médio, obtendo os resultados dispostos na tabela 2.

	$g_1()$	$g_2()$
$Linear\ Regression$	0.94	816
$KRR^{1} \ (\gamma = 0.05, \ \alpha = 0.1)$	0.67	1235
$KRR^{1} \ (\gamma = 0.05, \ \alpha = 0.01)$	0.34	707
$KRR^1 \ (\gamma = 0.05, \ \alpha = 0.001)$	0.14	428
$KRR^{1} \ (\gamma = 0.1, \ \alpha = 0.1)$	0.23	1265
$KRR^{1} \ (\gamma = 0.1, \ \alpha = 0.01)$	0.10	811
$KRR^1 \ (\gamma = 0.1, \ \alpha = 0.001)$	0.10	548
$KRR^{1} \ (\gamma = 0.2, \ \alpha = 0.1)$	0.40	1445
$KRR^{1} \ (\gamma = 0.2, \ \alpha = 0.01)$	0.24	1104
$KRR^{1} \ (\gamma = 0.2, \ \alpha = 0.001)$	0.66	799
$KRR^2 \text{ (degree} = 2)$	2.27	3589
KRR^2 (degree = 3)	7.75	0.38
KRR^2 (degree = 4)	0.93	1.25
KRR^2 (degree = 5)	21.72	4.39
Decision Tree	0.73	1290

Tabela 2: *MSE scores* da validação cruzada para o problema 2. Os erros dentro do *threshold* definido estão marcados a azul.

Das duas parametrizações testadas que apresentam resulados aceitáveis para ambas as funções decidimos utilizar a Kernel Ridge Regression com kernels do tipo radial basis function e parâmetros $\{\gamma=0.1,\ \alpha=0.001\}$. Apresentamos na figura 1 alguns dos resultados obtidos, em particular para a regressão escolhida.

3 Aprendizagem por Reforço

3.1 Trajetórias Aprendidas

3.1.1 Ambiente 1

$$5_0 \xrightarrow{0} 6_1 \xrightarrow{0} 6_1 \xrightarrow{0} 6_1 \xrightarrow{0} 6_1$$

3.1.2 Ambiente 2

$$5_0 \xrightarrow{0} 6_1 \xrightarrow{0} 1_0 \xrightarrow{1} 0_1 \xrightarrow{1} 0_{(1)}$$

3.2 Modelo do Mundo

3.2.1 Ambiente 1

Apresentamos na figura 2 um esquema do ambiente 1. Os movimentos são, maioritariamente,

¹ Kernel Ridge Regression com radial basis function kernel.

 $^{{\}it nel.} \\ {\it ^2Kernel~Ridge~Regression~com~polynomial~kernel.}$

Figura 1: Resultados obtidos para as regressões.

sequênciais com exceção da ação 0 no estado 5 que é não-determinística. Tentar andar para os estados anterioes/seguintes a partir dos estados 0/6, respetivamente, não tem qualquer efeito.

A função de recompensa é a seguinte:

$$r(s) = \left\{ \begin{array}{ll} 1, & s \in \{0, 6\} \\ 0, & s \notin \{0, 6\} \end{array} \right.$$

Assim, a melhor ação a tomar é sempre dirigirmo-nos o mais rapidamente possível para um dos estados de recompensa, tendo eventualmente cuidado com o não-determinismo do estado 5. Começando nesse mesmo estado, a melhor ação é sem dúvida movermo-nos para o estado 6 e depois mantermo-nos lá.

Figura 2: Ambiente 1. Os nós com duplo contorno são os nós de recompensa.

3.2.2 Ambiente 2

O ambiente 2 é muito semelhante ao primeiro com exceção do estado 6. Agora quando tentamos tomar a ação 0 nesse estado voltamos para o estado 1, tal como representado na figura 3.

Figura 3: Ambiente 2. Os nós com duplo contorno são os nós de recompensa.

A função de recompensa mantem-se também inalterada:

$$r(s) = \begin{cases} 1, & s \in \{0, 6\} \\ 0, & s \notin \{0, 6\} \end{cases}$$

Como tal [quando começamos no estado 5] já não é possível usar a estratégia anterior de ficar parado no estado 6. Assim, o melhor a fazer nesta situação é tentermo-nos dirigir para o estado 0, de modo a maximizar a recompensa a longo prazo, que é exatamente o que obtemos com o algoritmo Q-learning.