RC Circuit

Experiment No.:	Date:
-----------------	--------------

Aim:

To study the charging and discharging of a capacitor with different pulses of width much less than the time constant.

Apparatus:

- a) RC Circuit KIT
- b) Function generator

Theory:

a) Let V_C =Potential difference across capacitor

C =Capacitance of the capacitor

I =The charging current

q = The charge on the capacitor plates

V = The applied voltage

 V_R = The voltage across the resistor

$$V = V_R + V_C = IR + V_C - \dots (1)$$

Now
$$I = \frac{dq}{dt} = \frac{d}{dt}(CV_C) = C\frac{dV_C}{dt}$$

$$\therefore V = CR \frac{dVc}{dt} + V_C \qquad (2)$$

$$-\frac{dV_C}{V - V_C} = -\frac{dt}{CR}$$

Integrating the above we get,

$$\int -\frac{dV_C}{V - V_C} = -\frac{1}{CR} \int dt$$

$$\therefore \log_e(V - V_C) = -\frac{1}{CR} + K - (3)$$

K is constant of integration, whose value can be found from initial known conditions. We know that when charging begins, i.e. t = 0, $V_C = 0$

Substituting these values in equation (3)

We get
$$\log_e V_C = K$$

Hence, equation (3) becomes
$$\log_e(V - V_C) = \frac{-t}{CR} + \log_e V$$

$$\Rightarrow \log_e \frac{V - V_C}{V} = \frac{-t}{CR} = \frac{-t}{\lambda}$$

(Where
$$\lambda = CR = \text{Time constant}$$
)

$$\Rightarrow \frac{V - V_C}{V} = e^{\frac{-t}{CR}} = e^{\frac{-t}{\lambda}}$$

$$\Rightarrow V_C = V\left(1 - e^{\frac{-t}{\lambda}}\right)$$

When
$$t = \lambda$$
; $V_C = V\left(1 - e^{-\frac{\lambda}{\lambda}}\right) = V(1 - e^{-1}) = V\left(1 - \frac{1}{e}\right) = V\left(1 - \frac{1}{2.718}\right) = 0.632V$

This is equation of charging.

b) While discharging, V = 0 (Applied potential difference is zero.)

$$\Rightarrow 0 = V_R + V_C$$

$$\Rightarrow 0 = IR + V_C$$

$$\Rightarrow 0 = IR + \frac{Q}{C} \Rightarrow IR = -\frac{Q}{C}$$

$$\Rightarrow I = -\frac{Q}{RC} \Rightarrow I = -\frac{Q}{\lambda}$$

$$\Rightarrow \frac{dQ}{dt} = -\frac{Q}{\lambda}$$

Integrating both the sides

$$Q(t) = Q_{max} e^{-\frac{t}{\lambda}}$$

$$\Rightarrow I(t) = \frac{dQ(t)}{dt} = \frac{d\left(Q_{max}e^{-\frac{t}{\lambda}}\right)}{dt}$$

$$I(t) = -I_{max}e^{-\frac{t}{\lambda}}$$

Taking absolute value of above

$$\begin{split} V_R(t) &= I(t)R \\ &= RI_{max}e^{-\frac{t}{\lambda}} = V_{max}e^{-\frac{\lambda}{\lambda}} = V_{max}e^{-1} \\ \Rightarrow V_R &= \frac{V_{max}}{e} = \frac{V_{max}}{2.718} = 0.37V_{max} \end{split}$$

Procedure:

Charging:

- a) Connect the circuit of the supplied RC KIT as per the circuit diagram.
- b) Supply the desired pulse on the function generator, keeping the voltage range at 20 volt.
- c) Note the charging voltages of the capacitor in the pulse time interval.

- d) Plot the graph between V_C (Capacitor Voltage) versus time.
- e) From capacitor charging graph, calculate the time corresponding to the capacitor voltage $0.632 V_{max}$ which is time constant (λ) of the RC circuit.

Discharging:

- a) Disconnect the supplied voltage from the function generator and not the discharging capacitor voltage from the voltmeter in pulse time interval.
- b) Plot the graph between VC (discharge) versus time and calculate the time corresponding to 0.37 of the V_{max} . This is the time constant (λ) of the circuit.
- c) Compare the calculated time constant (λ) value from the graph with the RC product value of the used circuit.

Observation:

$$R =$$
_____ $C =$ _____ $RC =$ _____

Table – 1: (Charging of Capacitor)

	Rectangular	Charged		Rectangular	Charged
Sl No.	pulse time (t)	Voltage	Sl No.	pulse time (t)	Voltage
	in sec.	$V_{\mathcal{C}}$ (Volts)		in sec.	$V_{\mathcal{C}}$ (Volts)
1	0		21	200	
2	10		22	210	
3	20		23	220	
4	30		24	230	
5	40		25	240	
6	50		26	250	
7	60		27	260	
8	70		28	270	
9	80		29	280	
10	90		30	290	
11	100		31	300	
12	110		32	310	
13	120		33	320	
14	130		34	330	
15	140		35	340	

16	150		36	350	
17	160		37	360	
18	170		38	370	
19	180		39	380	
20	190		40	390	

Circuit Diagram:

Table − **2:** (Discharging of Capacitor)

Sl No.	Rectangular pulse time (t) in sec.	Charged Voltage V_C (Volts)	Sl No.	Rectangular pulse time (t) in sec.	Charged Voltage V_C (Volts)
1	0		21	200	
2	10		22	210	
3	20		23	220	
4	30		24	230	
5	40		25	240	
6	50		26	250	
7	60		27	260	
8	70		28	270	
9	80		29	280	
10	90		30	290	
11	100		31	300	
12	110		32	310	
13	120		33	320	
14	130		34	330	
15	140		35	340	
16	150		36	350	
17	160		37	360	

18	170		38	370	
19	180		39	380	
20	190		40	390	

\sim 1				
()	CIL	oti	Ar	
Cal	CUI	au	w	

$$R = \underline{\hspace{1cm}}, C = \underline{\hspace{1cm}},$$

Percentage of Error:

Conclusion:

Marks Awarded

Planning and Execution (2)	Result and Report (6)	Viva (2)	Total (10)

Signature of the student:

Regd. No:

Group:

Branch:

Signature of the Faculty