1 Funzione convessa

Definizione Un insieme $E \subseteq \mathbb{R}^n$ è convesso se $\forall x, y \in E$, il segmento $[x,y] \subseteq E$.

Si noti che in \mathbb{R}^n un segmento [x,y] è definito come

$$[x,y] := x + ty$$

al variare di $t \in [0, 1]$.

Definizione Data $f: I \to \mathbb{R}$, con I intervallo, diciamo *epigrafo* (o epigrafico), l'insieme

Epi
$$f = \{(x, y) \in \mathbb{R}^2 \text{ t. c. } x \in I, y \ge f(x) \}$$

Diciamo che una funzione f è convessa su I, se $\mathrm{Epi}(f)$ è convesso in \mathbb{R}^2 Poniamo adesso nel caso in cui f sia derivabile su I.

Teorema I (di caratt. delle funzioni convesse) Sia $f: I \to \mathbb{R}$ derivabile su I, allora sono equivalenti le seguenti proprietà:

- 1. f convessa su I;
- 2. $\forall x_0, x \in I, f(x) \ge f(x_0) + f'(x_0)(x x_0);$
- 3. f' è crescente su I.

dim. (I) Dimostreremo che 1. \implies 2. \implies 3. \implies 1.

1. \implies 2. Consideriamo f convessa su I, e fissiamo $x_0, x \in I$, con $x_0 < x$. È noto che $\forall t \in [0,1]$

$$f((1-t)x_0 + tx) \le (1-t)f(x_0) + t f(x)$$

$$f(x_0 - tx_0 + tx) \le f(x_0) - t f(x_0) + t f(x)$$

$$f(x_0 + t(x - x_0)) \le f(x_0) + t(f(x) - f(x_0))$$

$$f(x_0 + t(x - x_0)) - f(x_0) \le t (f(x) - f(x_0))$$

Per $t \in (0,1)$ dividiamo per $t(x-x_0) > 0$

$$\frac{f(x_0 + t(x - x_0)) - f(x_0)}{t(x - x_0)} \le \frac{t(f(x) - f(x_0))}{t(x - x_0)}$$

Posto $h = t(x - x_0)$ abbiamo che

$$\frac{f(x_0 + h) - f(x_0)}{h} \le \frac{f(x) - f(x_0)}{(x - x_0)}$$

Quando $t \to 0 \implies h \to 0$, quindi questa proprietà è valida definitivamente per $h \to 0$.

$$\underbrace{\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}}_{f'(x_0)} \le \underbrace{\frac{f(x) - f(x_0)}{(x - x_0)}}$$

$$\implies f(x) \ge f(x_0) + f'(x_0)(x - x_0).$$

2. \implies 3. Noi sappiamo che f è derivabile su I, e $f(x) \ge f(x_0) + f'(x_0)(x - x_0)$. Allora si ha che fissati $x_0, x \in I$, con $x_0 < x$,

$$f(x) \ge f(x_0) + f'(x_0) \underbrace{(x - x_0)}_{>0}$$

inoltre vale anche (scambiando $x \in x_0$)

$$f(x_0) \ge f(x) + f'(x)\underbrace{(x_0 - x)}_{<0}.$$

Allora abbiamo che

$$f'(x_0) \le \frac{f(x) - f(x_0)}{x - x_0}$$
$$f(x_0) - f(x) \ge f'(x)(x_0 - x) \implies f(x) - f(x_0) \le f'(x)(x - x_0).$$

Otteniamo quindi, dalla seconda equazione:

$$f'(x) \ge \frac{f(x) - f(x_0)}{x - x_0}$$
$$f'(x_0) \le \frac{f(x) - f(x_0)}{x - x_0} \le f'(x).$$

Allora per $x < x_0$ generico in I si ha

$$f'(x_0) \le f'(x)$$

 \implies per genericità di $x_0, x \in I, x < x_0, f'$ è crescente su I.

3. \implies 1. Data f' crescente su I, dobbiamo far vedere che

$$\forall t \in [0, 1], \forall x_0, x \in I$$

$$f((1 - t)x_0 + tx) \le (1 - t)f(x_0) + tf(x) \tag{1.1}$$

¹ per permanenza del segno

(1.1) è ovviamente vera per $t=0 \land t=1$

Consideriamo ora $t \in (0,1)$. Preso

$$z_t = (1-t)x_0 + tx = x - tx_0 + tx = x_0 + t(x-x_0)$$

Dato $t \in (0,1)$, assumendo $x_0 < x$, vale che $x_0 < z_t < x$.

Applichiamo il Teorema di Lagrange agli intervalli $I_1 = [x_0, z_t]$ e $I_2 = [z_t, x]$, in quanto f derivabile (e quindi continua) su I_1, I_2 .

Allora $\exists z \in I_1 \in w \in I_2$ tale che

$$f'(z) = \frac{f(z_t) - f(x_0)}{(z_t - x_0)} \qquad f'(w) = \frac{f(x) - f(z_t)}{(x - z_t)}$$

$$f'(z) = \frac{f(x_0 + t(x - x_0)) - f(x_0)}{x_0 + t(x - x_0) - x_0}$$
(1.2)

$$f'(w) = \frac{f(x) - f(x_0 + t(x - x_0))}{x - x_0 - tx + tx_0)} = \frac{f(x) - f(x_0 + t(x - x_0))}{(1 - t)(x - x_0)}$$
(1.3)

Da (1.2) otteniamo che

$$f(x_0 + t(x - x_0)) - f(x_0) = t f'(z) (x - x_0).$$
(1.4)

Da (1.3) otteniamo che

$$f(x) - f(x_0 + t(x - x_0)) = (1 - t) f'(w) (x - x_0)$$
(1.5)

Moltiplichiamo (1.4) per (1-t) e (1.5) per t

$$(1-t)\left[f(x_0+t(x-x_0))-f(x_0)\right] = \underbrace{t(1-t)}_{>0} f'(z) \underbrace{(x-x_0)}_{>0}$$
$$t\left[f(x)-f(x_0+t(x-x_0))\right] = \underbrace{t(1-t)}_{>0} f'(w) \underbrace{(x-x_0)}_{>0}.$$

Inoltre $z \in [x_0, z_t], w \in [z_t, x]$

$$\implies z < w$$

 $\implies f'(z) \leq f'(w)$, in quanto per ipotesi f' è crescente.

Allora si ha, per $x_0 < x$

$$(1-t) \left[f(x_0 + t(x - x_0)) - f(x_0) \right] \le$$

$$\le t \left[f(x) - f(x_0 + t(x - x_0)) \right]$$

Con banali passaggi algebrici si ottiene

$$f((1-t)x_0 + tx) \le (1-t)f(x_0) + tf(x)$$

ossia f convessa su I.

Per $x < x_0$ si fanno passaggi simili.

Teorema II (test della derivata seconda) Data f derivabile due volte su I, f è convessa su I

$$\iff f''(x) \ge 0 \ \forall x \in I.$$

dim. (II) È sufficiente applicare il test della derivata prima ad f'. \square

Definizione $f: I \to \mathbb{R}$ è detta concava se g := -f è convessa.

f derivabile su I è concava

⇔ la tangente in ogni punto giace sopra il grafico;

 $\iff f'$ è decrescente (e se f derivabile due volte $\iff f''(x) \le 0 \ \forall x \in I$).

Definizione Sia $f: I \to \mathbb{R}$, $x_0 \in \mathring{I}$, f derivabile in x_0 , x_0 è un punto di flesso per f

- se f convessa in $(x_0 \delta, x_0)$ e f concava in $(x_0, x_0 + \delta)$, ed è detto flesso discendente;
- se f concava in $(x_0 \delta, x_0)$ e f convessa in $(x_0, x_0 + \delta)$, ed è detto flesso ascendente.

Attenzione In x_0 punto di flesso, la tangente in x_0 attraversa (taglia) il grafico.

Definizione Se la tangente è orizzontale in x_0 ($f'(x_0) = 0$), x_0 è detto flesso a tangente orizzontale.

Attenzione Per definire il flesso la funzione deve essere derivabile in quel punto.

Caso particolare: f derivabile in $I \setminus \{x_0\}$, continua in x_0

$$\lim_{x \to x_0} f'(x) = +\infty$$

 x_0 è detto flesso a tangente verticale.

In x_0 flesso a tangente verticale, la tangente è verticale e taglia il grafico.

Proprietà Data $f: I \to \mathbb{R}$, I intervallo, $x_0 \in I$, f derivabile due volte in x_0 . Allora vale

 x_0 è punto di flesso (non verticale)

$$\implies f''(x_0) = 0$$

Dimostrazione. Si applica il teorema di Fermat a f'

I candidati punti di flesso (se f è derivabile due volte) sono i punti con $f''(x_0) = 0$.

Attenzione $f''(x) = 0 \Rightarrow x_0$ punto di flesso

Esempio (1.1) Sia $f(x) = x^4$,

$$f'(x) = 4x^3 \qquad f''(x) = 12x^2$$

Si ha che $f''(x) = 0 \iff x = 0$.

Quindi x = 0 è punto di minimo e non di flesso.