- Una matriz de $n \times n$ es ortogonal si y sólo si sus columnas forman una base ortonormal para \mathbb{R}^n .
- Sea H un subespacio de \mathbb{R}^n con una base ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$. Si $\mathbf{v} \in \mathbb{R}^n$, entonces la **proyección ortogonal** de \mathbf{v} sobre H, denotada por $\operatorname{proy}_H \mathbf{v}$, está dada por

$$\operatorname{proy}_{H} \mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{v} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \cdots + (\mathbf{v} \cdot \mathbf{u}_{k}) \mathbf{u}_{k}$$

• Sea H un subespacio de \mathbb{R}^n . Entonces el **complemento ortogonal** de H, denotado por H^{\perp} , está dado por

$$H^{\perp} = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{h} = 0 \text{ para todo } \mathbf{h} \in H \}$$

• Teorema de proyección

Sea H un subespacio de \mathbb{R}^n y sea $\mathbf{v} \in \mathbb{R}^n$. Entonces existe un par único de vectores \mathbf{h} y \mathbf{p} tales que $\mathbf{h} \in H$, $\mathbf{p} \in H^{\perp}$ y

$$\mathbf{v} = \mathbf{h} + \mathbf{p} = \operatorname{proy}_H \mathbf{v} + \operatorname{proy}_{H_+} \mathbf{v}$$

• Teorema de aproximación de la norma

Sea H un subespacio de \mathbb{R}^n y sea $\mathbf{v} \in \mathbb{R}^n$. Entonces, en H, proy $_H \mathbf{v}$ es la mejor aproximación a \mathbf{v} en el siguiente sentido: si \mathbf{h} es cualquier otro vector en H, entonces

$$|\mathbf{v} - \operatorname{proy}_H \mathbf{v}| < |\mathbf{v} - \mathbf{h}|$$

AUTOEVALUACIÓN 6.1

Indique si las siguientes aseveraciones son falsas o verdaderas

- I) El conjunto $\{(1, 1), (1, -1)\}$ es un conjunto ortonormal en \mathbb{R}^2 .
- II) El conjunto $\left\{\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right\}$ es un conjunto ortonormal en \mathbb{R}^2 .
- III) Toda base en \mathbb{R}^n se puede convertir en una base ortonormal utilizando el proceso de ortonormalización de Gram-Schmidt.
- **IV**) La matriz $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ es ortogonal.
- V) La matriz $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$ es ortogonal.

Elija el inciso que responda la siguiente pregunta

VI) ¿Para cuáles de las siguientes matrices Q^{-1} es igual a Q^{\top} ?

a)
$$\begin{pmatrix} 1 & 6 \\ 3 & -2 \end{pmatrix}$$

b)
$$\begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{6}{\sqrt{40}} \\ \frac{3}{\sqrt{10}} & \frac{2}{\sqrt{40}} \end{pmatrix}$$

c)
$$\begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{6}{\sqrt{40}} \\ \frac{3}{\sqrt{10}} & \frac{-2}{\sqrt{40}} \end{pmatrix}$$

$$d) \begin{pmatrix} 1 & 6 \\ 3 & 2 \end{pmatrix}$$

Respuestas a la autoevaluación

- I) F
- II) V
- III) V
- IV) F
- **V)** V
- **VI**) c)