

UNIVERSIDAD AUTÓNOMA TOMÁS FRÍAS CARRERA DE INGENIERIA DE SISTEMAS

F

UNIVERSITARIO: Virgilio Espinoza Paca

DOCENTE: Ing. Gustavo A. Puita Choque

AUXILIAR: Univ. Aldrin Roger Perez Miranda
SIGLA: SIS-522-g1 FECHA: 07/10/24

CALIFICACION

N° de Practicas:

SIGLA: SIS-522-g1

1) ¿Cuál es la diferencia fundamental entre una memoria RAM y una memoria ROM en términos de accesibilidad y volatilidad?

R.- La memoria **RAM** es volátil y que pierde su contenido al apagar el dispositivo/ PC. Es accesible para lectura y escritura, permitiendo que el procesador almacene y acceda a datos de manera rápida.

La memoria **ROM** es no volátil y su contenido incluso sin energía. Su acceso es principalmente para lectura, también mantiene la información asta cuando se apague la PC lo que la hace adecuada para almacenar firmware y programas esenciales.

- 2) ¿Qué ventajas y desventajas presentan las memorias estáticas y dinámicas en términos de velocidad, densidad y costo?
- R.- Las Memorias estáticas (SRAM): Se compone de celdas conformadas por flip-flops

Ventajas:

Mayor velocidad de acceso.

No necesita refresco constante.

Desventajas:

Menor densidad, ocupando más espacio por bit.

Mayor costo por bit.

Las Memorias dinámicas (DRAM): Se compone de un solo transistor y un único Ventajas:

Mayor densidad, permitiendo almacenar más datos en menos espacio.

Menor costo por bit.

Menor velocidad de acceso.

Necesita refresco periódico para mantener los datos.

3) ¿Por qué se utiliza la tecnología de Video RAM (VRAM) en los controladores de video de las computadoras y cuál es su función principal?

R.- El **Video RAM (VRAM)** se utiliza en los controladores de video porque está diseñada para manejar las altas tasas de transferencia de datos requeridas por gráficos y video. Su función principal es almacenar datos de imágenes y texturas que se utilizan para renderizar gráficos gráfico (GPU) en pantalla que permite un acceso rápido y eficiente para mejorar el rendimiento visual. para garantizar un rendimiento gráfico rápido y eficiente y especialmente en aplicaciones de alto rendimiento como los videojuegos, la creación de contenido multimedia y el procesamiento gráfico avanzado.

4) Dibuja un diagrama que represente la jerarquía de memoria en un sistema informático típico y etiqueta cada nivel con el tipo correspondiente de memoria.

- 1 Registros del CPU (Register)- Son los más rápidos y de menor tamaño.
- 2 Caché L1 (L1 Cache) Caché de primer nivel, muy rápida y pequeña.
- 3 Caché L2 (L2 Cache) Caché de segundo nivel, más grande que L1 pero un poco más lenta
- 4 Caché L3 (L3 Cache) Caché de tercer nivel, aún más grande y más lenta que L2.
- 5 Memoria principal (RAM) Memoria volátil de acceso rápido y mayor capacidad.
- 6 (Disco Duro/SSD) Almacenamiento secundario permanente, más lento pero de mayor capacidad que la RAM.
- 7 Unidades de cinta Son dispositivos de almacenamiento que utilizan una cinta plástica revestida con material magnético para almacenar datos alta capacidad de almacenamiento

5) ¿Qué diferencias existen entre la memoria caché L1, L2 y L3 en términos de tamaño, velocidad y proximidad al procesador?

R.- Caché L1: Caché de primer nivel

Tamaño: Generalmente entre 16 KB y 128 KB.

Velocidad: Más rápida, con acceso en ciclos de reloj.

Proximidad: Está integrada directamente en el procesador, lo que reduce la latencia.

Caché L2: Caché de segundo nivel

Tamaño: Generalmente entre 256 KB y 8 MB.

Velocidad: Más lenta que L1, pero aún rápida.

Proximidad: Puede estar en el chip del procesador o cerca de él.

Caché L3: Caché de tercer nivel

Tamaño: Generalmente entre 2 MB y 64 MB.

Velocidad: Más lenta que L1 y L2.

Proximidad: Compartida entre núcleos de procesador, pero no está tan cerca como L1 y L2.

6) Resolver el siguiente laboratorio paso a paso con capturas propias mostrando su barra de tareas de su pc

Insertando volatility imageinfo -f memdump.bin

- PID = Identificador del proceso
- PPID= Padre del Proceso
- Start= inicio del Proceso

Ingrese el siguiente comando: volatility -f memdump.bin --profile=Win2003SP0x86 pstree

volatility -f memdump.bin --profile=Win2003SP0x86 dlllist

DIllist Identifica las librerías del sistema que se están utilizando.

¿Qué hora inicia el proceso explorer.exe?

 0x81c4bd88 explorer.exe
 188
 1996
 11
 337
 0
 0 2012-11-03 21:32:38 UTC+0000

 ¿Qué hora inicia el proceso svchost.exe?

 0x81c99020 svchost.exe
 1404
 488
 2
 60
 0
 0 2012-11-03 20:19:12 UTC+0000

 ¿Cuál es el nombre del proceso PID: 420?

0x82031020 csrss.exe 420 372 11 505 0 0 2012-11-03 20:18:30 UTC+0000 ¿Cuál es el nombre del proceso PID: 932?

0x81fd6968 svchost.exe 932 488 47 1092 0 0 2012-11-03 20:18:44 UTC+0000

