

ing 2020 Sacramento State - Cook - CSc 2

gates in the circuit and

operators in the equation

a	b	out
0	0	0
0	1	1
1	0	1
1	1	0

a	b	Out 1	Out o
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Disjunctive Normal Form

- Best approach to converting tables into circuits is use Disjunctive Normal Form
- In this form, the expressions consists of OR's (disjuncts) connecting AND subexpressions

<u>13</u>

Definitions

- A literal is a Boolean variable v or its complement (e.g. v or v')
- A *minterm* of Boolean product v₁* v₂ *... v_n

14

Definitions

- Hence, a minterm is a "product" of *n* literals, with one literal for each variable
- An equation written only as the "OR" of minterms is in disjunctive normal form (also called *sum-of-products* form)

15

Algorithm

- 1. Find the rows that indicates a 1 for output
 - ignore the ones with 0 as output
 - · we are making an equation based on true
- 2. Write a minterm for each of them
- 3. "OR" all the minterms

16

Example

b	y (out)
0	1
1	1
0	0
1	0
	0

<u>17</u>

Example

DNF of the table is: y = (a' * b') + (a' * b)

For brevity, for this point on, let's write as:

y = a'b' + a'b

Every possible minterm of *n* variables is represented
 Every square is a minterm
 It is arranged is such a way that we can simplify our table

<u>21</u>

a b out 0 0 1 0 1 1 1 0 1 1 1 0	Two V
0 1 1 1 0 1	
1 0 1	
1 1 0	
Spring 2020 Sacramento State - Cook - CSc 28	Spring 2020

Three Variable K-Map								
				Α	В			
			00	01	11	10		
	С	0	1	0	1	1		
	1	0	0	1	1			
				•		•		
Spring 2020				Sacramento Stat	e - Cook - CSc 28			27
<u>27</u>								

28

How to Use a K-Map

- 1. Mark the squares of a K-map corresponding to the function
- 2. Select a minimal set of rectangles where
 - each rectangle has a <u>power-of-two area</u> and is as large as possible
 - · cover every marked square
- 3. Translate each rectangle into a single midterm and sum (or) all these

Sacramento State - Cook - CSc 28

Converting a Rectangle to Minterm
 If any literal contains both 1 and 0, in the rectangle, it is eliminated
 The goal is to draw the biggest rectangles possible

30

<u>29</u>

Efficiency of K-Maps A K-Map does not necessarily make the best expression/circuit All expressions made this way are sumsof-products and some can be made simpler • For example: a(b+c) is the same as ab+ac, but uses fewer gate inputs

<u> 39</u>

How K-Maps Work • The order of gray code, and the 2ⁿ squares allow us to factor out literals Every time you eliminate a literal, you are performing three Boolean algebra laws • This is done visually, so it is invisible!

42

40

<u>7</u>

How K-Maps Work 1. First you use the *Distribution Law* on the minterms leaving (v + v') - which is the terminal that changed 2. You then use the Complement Law on (v + v') leaving 1 3. Finally, you remove the 1 using the Identity Law

48

47

K-Maps and Programming

- The Boolean expressions, that you use in your Java programs, are the same as the expressions we cover
- So, you can apply K-Maps to your Java code to simplify expressions

Spring 2020 Sacramento State - Cook -

51

K-Maps Can Simplify Expressions

- The following is a complex expression that, on the surface, looks difficult to simplify
- K-Maps can help

```
if (a && !b && c || a && b && !c || a && c ||
```

52

K-Maps Can Simplify Expressions

- First, let's put the expression in the Computer Engineer notation
- Ah, we can see the structure now!

54

<u>53</u>

<u>10</u>

Don't Care

- Sometimes we don't really care what output the circuit generates for some combinations of inputs
- So, for those inputs, the results are simply not significant

Sacramento State - Cook - CSc 28

61

Don't Care

- In truth tables, the value "Don't Care" is represented with an asterisk
- It can be considered True or False – whichever is more convenient for the circuit

ng 2020 Sacramento State - Cook -

62

Karnaugh Maps and Don't Care

- We can construct a Karnaugh Map like before
- Except the squares corresponding to don't care outputs are marked (with an asterisk)

Spring 2020

63

Karnaugh Maps and Don't Care

- Then, when outlining blocks, we can (at our convenience) consider the "don't care" squares as either 0 or 1
- Since we want to make the largest outlines possible, we will sometimes consider a don't care to be true, and sometimes false

ing 2020 Sacramento

<u>64</u>

Example

0	We want to guarantee that the output of a circuit is 1 if both inputs are 1
	And 0 when both inputs are 0
0	But otherwise we do not care

65

Example

	а	b	out
	0	0	0
	0	1	*
	1	0	*
	1	1	1
Spring 2020		Sacramento State - Cook - CSc 28	6

We can construct a circuit for any Boolean expression using and / or / not
 This means the set of gates {and, or, not} is functionally complete

Function Completeness

However, we don't need all three gates
DeMorgan's laws shows us that we can construct:
an OR using an AND
and AND using an OR

72

<u>71</u>

We Don't Need Or!

- So {and, not} are also complete because by DeMorgan's Law:
 x + y = (x'y')'
- So, any expression that can be written using {and, or, not} can be written using just {and, not}

Spring 2020 Sacramento State - Cook - CSc 28

73

or... We Don't Need And!

- Also {or, not} is functionally complete since xy = (x'+y') '
- So, any expression that can be written using {and, or, not} can be written using just {or, not}

74

Functional Completeness

- So, are any of the singular sets {and}, {or}, {not} functionally complete?
- In other words, can and/or/not all be converted into a single type of gate?
- No. Neither {and} or {or} can be converted to a {not}

75

NAND

- So, is there a gate that can, alone, be functional complete?
- What about NAND (negated And)?
 - x nand y = (xy)'
 - Note: the NAND gate is not implemented with an AND gate and a NOT gate. It just has the same truth table as (xy)'

Spring 2020 Sacramento State - Cook - CSc 28

<u>76</u>

NAND

- To show that {nand} is functionally complete, we need to show that we can implement {and, or, not} using it
- The result would be greatly beneficial!
 - we would have to just construct 1 gate to create any circuit
 - · this would greatly aid construction

Sacramento State - Cook - CSc 28

77

Not → Nand Converting not to nand: x' = x' = (xx)' Idempotent = x nand x nand format We can implement NOT by using a NAND. Both input will be x

82

The expressions below show that nand can be used to implement NOT, OR, AND
 So, we can just use NAND since it is functionally complete
 x' = x nand x
 xy = (x nand y) nand (x nand y)
 x + y = (x nand x) nand (y nand y)

<u>84</u>

Also NOR is functionally complete P NOR Q = (P + Q)' Hardware can alternatively use this gate rather than NAND

How Hardware Works

 If our hardware can just implement NAND or NOR, then we can create a circuit with just one gate
 In fact, many fabrication processes use only NAND or NOR gates

Sering 2000 Secretor State - Cod- Cit 28 86