bon dioxide and ammonia are passed through concentrated salt brine. The following equation represents the reaction:

$$NaCl(aq) + H_2O(l) + CO_2(g) + NH_3(g) \rightarrow NaHCO_3(s) + NH_4Cl(aq)$$

- a. What volume of NH₃ at 25°C and 1.00 atm pressure will be required if 38 000 L of CO₂, measured under the same conditions, react to form NaHCO₃?
- **b.** What mass of NaHCO₃ can be formed when the gases in (a) react with NaCl?
- c. If this reaction forms 46.0 kg of NaHCO₃, what volume of NH₃, measured at STP, reacted?
- d. What volume of CO₂, compressed in a tank at 5.50 atm and a temperature of 42°C, will be needed to produce 100.00 kg of NaHCO₃?
- **327.** The combustion of butane is represented in the following equation:

$$2C_4H_{10}(g) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(l)$$

- a. If 4.74 g of butane react with excess oxygen, what volume of CO₂, measured at 150.°C and 1.14 atm, will be formed?
- **b.** What volume of oxygen, measured at 0.980 atm and 75°C, will be consumed by the complete combustion of 0.500 g of butane?
- c. A butane-fueled torch has a mass of 876.2 g. After burning for some time, the torch has a mass of 859.3 g. What volume of CO₂, at STP, was formed while the torch burned?
- **d.** What mass of H₂O is produced when butane burns and produces 3720 L of CO₂, measured at 35°C and 0.993 atm pressure?

Concentration of Solutions: Chap. 12, Sec. 3

Percentage Concentration

- **328.** What is the percentage concentration of 75.0 g of ethanol dissolved in 500.0 g of water?
- **329.** A chemist dissolves 3.50 g of potassium iodate and 6.23 g of potassium hydroxide in 805.05 g of water. What is the percentage concentration of each solute in the solution?
- **330.** A student wants to make a 5.00% solution of rubidium chloride using 0.377 g of the substance. What mass of water will be needed to make the solution?
- **331.** What mass of lithium nitrate would have to be dissolved in 30.0 g of water in order to make an 18.0% solution?

Molarity

- **332.** Determine the molarity of a solution prepared by dissolving 141.6 g of citric acid, $C_3H_5O(COOH)_3$, in water and then diluting the resulting solution to 3500.0 mL.
- **333.** What is the molarity of a salt solution made by dissolving 280.0 mg of NaCl in 2.00 mL of water? Assume the final volume is the same as the volume of the water.

- **334.** What is the molarity of a solution that contains 390.0 g of acetic acid, CH₃COOH, dissolved in enough acetone to make 1000.0 mL of solution?
- **335.** What mass of glucose, $C_6H_{12}O_6$, would be required to prepare 5.000×10^3 L of a 0.215 M solution?
- **336.** What mass of magnesium bromide would be required to prepare 720. mL of a 0.0939 M aqueous solution?
- **337.** What mass of ammonium chloride is dissolved in 300. mL of a 0.875 M solution?

Molality

- **338.** Determine the molality of a solution of 560 g of acetone, CH₃COCH₃, in 620 g of water.
- **339.** What is the molality of a solution of 12.9 g of fructose, $C_6H_{12}O_6$, in 31.0 g of water?
- **340.** How many moles of 2-butanol, CH₃CHOHCH₂CH₃, must be dissolved in 125 g of ethanol in order to produce a 12.0 *m* 2-butanol solution? What mass of 2-butanol is this?

Mixed Review

341. Complete the table below by determining the missing quantity in each example. All solutions are aqueous. Any quantity that is not applicable to a given solution is marked NA.

Solution Made	Mass of Solute Used	Quantity of Solution Made	Quantity of Solvent Used
a. 12.0% KMnO ₄	? g KMnO ₄	500.0 g	? g H_2O
b. 0.60 M BaCl ₂	? g BaCl ₂	1.750 L	NA
c. 6.20 <i>m</i> glycerol, HOCH ₂ CHOHCH ₂ OH	? g glycerol	NA	800.0 g H ₂ O
d. ? M K ₂ Cr ₂ O ₇	12.27 g K ₂ Cr ₂ O ₇	650. mL	NA
e. ? <i>m</i> CaCl ₂	288 g CaCl ₂	NA	2.04 kg H ₂ O
f. 0.160 M NaCl	? g NaCl	25.0 mL	NA
g. 2.00 <i>m</i> glucose, C ₆ H ₁₂ O ₆	? g glucose	? g solution	1.50 kg H ₂ O

- **342.** How many moles of H₂SO₄ are in 2.50 L of a 4.25 M aqueous solution?
- **343.** Determine the molal concentration of 71.5 g of linoleic acid, C₁₈H₃₂O₂, in 525 g of hexane, C₆H₁₄.
- **344.** You have a solution that is 16.2% sodium thiosulfate, Na₂S₂O₃, by mass.
 - **a.** What mass of sodium thiosulfate is in 80.0 g of solution?
 - **b.** How many moles of sodium thiosulfate are in 80.0 g of solution?
 - c. If 80.0 g of the sodium thiosulfate solution is diluted to 250.0 mL with water, what is the molarity of the resulting solution?