MA 361 HOMEWORK 9

08.10.2024

Instruction: The homework is due on 11:30 am, 15.10.2024. You can either submit a hard copy in the beginning of the class or send a soft copy to sudeshnab@iisc.ac.in. Only submit the blue coloured problems for grading. No submission after the deadline will be accepted.

Problem 1. Determine whether the following statements are true or false with proper justification

- (1) Let X_1, X_2, \cdots be a sequence of i.i.d. random variables taking values in \mathbb{R} and defined on same probability space. Then $\frac{X_n}{n} \stackrel{P}{\to} 0$.
- (2) Let X_1, X_2, \cdots be a sequence of i.i.d. random variables, taking values in \mathbb{R} and are defined on same probability space. Then $\frac{X_n}{n} \to 0$ almost surely.
- (3) Let X be a random variable which is finite almost surely. Then $\frac{X}{n} \stackrel{P}{\to} 0$.
- (4) Let X be a random variable which is finite almost surely. Then $\frac{X}{n} \to 0$ almost surely.

Problem 2. Let X_n and X be random variables on a common probability space. Show that if $X_n \stackrel{P}{\to} X$ then there is a subsequence n_k such that $X_{n_k} \to X$ almost surely.

Problem 3. Let $X_1, X_2, ...$ be i.i.d. with distribution $\mu \in \mathcal{P}(\mathbb{R})$. Recall that the support of μ is the smallest closed set K with $\mu(K) = 1$. Show that $\overline{\{X_1, X_2, ...\}} = K$ a.s. (the left side is the closure of the set $\{X_n\}$)

Problem 4. Let X_n be independent and $\mathbf{P}(X_n = n^{-a}) = \frac{1}{2} = \mathbf{P}(X_n = -n^{-a})$ where a > 0 is fixed. For what values of a does the series $\sum X_n$ converge a.s.? For which values of a does the series converge absolutely, a.s.?

Problem 5. Suppose X_n are i.i.d random variables with finite mean. Which of the following assumptions guarantee that $\sum X_n$ converges a.s.?

- (1) (i) $\mathbf{E}[X_n] = 0$ for all n and (ii) $\sum \mathbf{E}[X_n^2 \wedge 1] < \infty$.
- (2) (i) $\mathbf{E}[X_n] = 0$ for all n and (ii) $\sum \mathbf{E}[X_n^2 \wedge |X_n|] < \infty$.

Problem 6. (Large deviation for Bernoullis). Let X_n be i.i.d Ber(1/2). Fix $p > \frac{1}{2}$.

- (1) Show that $\mathbf{P}(S_n > np) \le e^{-np\lambda} \left(\frac{e^{\lambda}+1}{2}\right)^n$ for any $\lambda > 0$.
- (2) Optimize over λ to get $\mathbf{P}(S_n > np) \leq e^{-nI(p)}$ where $I(p) = -p \log p (1-p) \log (1-p)$. (Observe that this is the *entropy* of the Ber(p) measure).

Problem 7. Carry out the same program for i.i.d exponential(1) random variables and deduce that $\mathbf{P}(S_n > nt) \leq e^{-nI(t)}$ for t > 1 and $\mathbf{P}(S_n < nt) \leq e^{-nI(t)}$ for t < 1 where $I(t) := t - 1 - \log t$.

Problem 8. Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space.

- (1) Let X, Y be random variables on Ω . Define a function $d(X, Y) = \mathbf{E}\left(\frac{|X-Y|}{1+|X-Y|}\right)$. Show that d is a metric on the set of all random variables and $d(X_n, X) \to 0$ iff $X_n \stackrel{P}{\to} X$.
- (2) Show that if X_n, X are random variables such that any subsequence of X_n has a further subsequence that converge almost surely to X then $X_n \stackrel{P}{\to} X$.

Problem 9. Let X_n, Y_n, X, Y be random variables on a common probability space. If $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$ (all r.v.s on the same probability space), show that $f(X_n, Y_n) \to f(X, Y)$ for any continuous $f: \mathbb{R}^2 \to \mathbb{R}$. In particular, this implies if $X_n \stackrel{P}{\to} X, Y_n \stackrel{P}{\to} Y$ then for any $a, b \in \mathbb{R}$, $aX_n + bY_n \stackrel{P}{\to} aX + bY$.

Problem 10. Give examples of two sequence of random variables X_n and Y_n such that $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ but $X_n + Y_n$ does not converge in distribution to X + Y.