Algorithms: Analysis of Algorithms

Alberto Valderruten (orig.), Carlos Gómez Rodríguez (transl.)

Dept. of Computer Science, University of A Coruña

alberto.valderruten@udc.es, carlos.gomez@udc.es

Contents

- Analysis of the efficiency of algorithms
- 2 Asymptotic notations
- Calculation of execution times

Index

- Analysis of the efficiency of algorithms
- Asymptotic notations
- Calculation of execution times

Analysis of the efficiency of algorithms (1)

- Goal: to predict the algorithm's behaviour
 - \Rightarrow quantitative aspects:

execution time (runtime), memory usage

- To have a metric of their efficiency:
 - "theoretical"
 - not exact: approximation, sufficient to compare, classify
 - \Rightarrow bound T(n): execution time,

 $n = problem \ size$ (sometimes, input size)

 $n \rightarrow \infty$: asymptotic behaviour

$$\Rightarrow T(n) = O(f(n))$$

f(n): an **upper bound** of T(n), sufficiently adjusted

f(n) grows faster than T(n)

Analysis of the efficiency of algorithms (2)

Approximation?

- 1. Ignore constant factors:
- 20 multiplications per iteration \rightarrow 1 **operation** per iteration How many iterations? \rightarrow iterations as a function of n
- 2. Ignore lower order terms (the maximum rule): $n + const \rightarrow n$

Example 1:

2 algorithms (A1 and A2) for the same problem A

- algorithm A1: 100 n steps \rightarrow a traversal of the input T(n) = O(n): linear algorithm
- algorithm A2: $2n^2 + 50$ steps $\rightarrow n$ traversals of the input $T(n) = O(n^2)$: quadratic algorithm

Analysis of the efficiency of algorithms (3)

- Example 1 (Cont'd):
 - \Rightarrow A1 linear and A2 quadratic:
 - Compare: A2 "slower" than A1, even though with $n \le 49$ it's faster
 - \Rightarrow A1 is better
 - Classify: linear, quadratic...

Typical growth rates:

$$O(1), O(logn), O(n), O(nlogn), O(n^2), O(n^3), ... O(2^n), ...$$

- Example 2: (approximation ⇒ limitations)
 - 2 algorithms (B1 and B2) for the same problem B:
 - algorithm B1: $2n^2 + 50$ steps $\rightarrow O(n^2)$
 - algorithm B2: $100n^{1.8}$ steps $\rightarrow O(n^{1.8})$

 \Rightarrow B2 is "better"...

but only from some value of n between 310 and 320 * 10⁶

Index

- Analysis of the efficiency of algorithms
- 2 Asymptotic notations
- Calculation of execution times

Asymptotic notations

- Goal: To establish a relative order between functions, comparing their growth rates
- O (big O) notation:

• **Example:** $5n^2 + 15 = O(n^2)$? $< c, n_0 > = < 6, 4 >$ in the definition: $5n^2 + 15 \le 6n^2 \ \forall n \ge 4$; \exists infinite $< c, n_0 >$ satisfying the unequality

O notation (1)

Observation:

According to the definition, T(n) could be far below:

$$5n^2 + 15 = O(n^3)?$$

$$< c, n_0 > = < 1, 6 >$$
 in the definition: $5n^2 + 15 \le 1n^3 \ \forall n \ge 6$
but it is more precise to say $= O(n^2) \equiv$ to **adjust bounds**

 \Rightarrow For algorithm analysis, we use the approximations:

$$5n^2 + 4n \rightarrow O(n^2)$$
$$log_2n \rightarrow O(logn)$$
$$13 \rightarrow O(1)$$

Observation:

O notation is also used in expressions like $3n^2 + O(n)$

Example 3:

How do we obtain a more drastic improvement,

- improving the efficiency of the algorithm, or
- improving the computer?

O notation (2)

Example 3 (cont'd):

	• \	,		
	time ₁	time ₂	time ₃	time ₄
T(n)	1000 steps/s	2000 steps/s	4000 steps/s	8000 steps/s
log₂n	0.010	0.005	0.003	0.001
n	1	0.5	0.25	0.125
$nlog_2n$	10	5	2.5	1.25
$n^{1.5}$	32	16	8	4
n^2	1,000	500	250	125
n^3	1,000,000	500,000	250,000	125,000
1.1 ⁿ	10 ³⁹	10 ³⁹	10 ³⁸	10 ³⁸

Table: Execution times (in s) for 7 algorithms with different complexities (n=1000).

- Example 4: Sort 100.000 random integers:
 - * 17 s on a 386 + Quicksort
 - * 17 min on a 100 times faster processor + Bubble sort

O notation (3)

Practical rules to work with *O*:

Definition: f(n) is monotonically increasing if $n_1 \ge n_2 \Rightarrow f(n_1) \ge f(n_2)$

• **Theorem**: $\forall c > 0, a > 1, f(n)$ monotonically increasing:

$$(f(n))^c = O(a^{f(n)})$$

 \equiv "An exponential function (e.g.: 2^n) grows faster than a polynomial function (e.g.: n^2)"

$$\rightarrow \begin{cases} n^c = O(a^n) \\ (log_a n)^c = O(a^{log_a n}) = O(n) \\ \rightarrow (log n)^k = O(n) \ \forall k \text{ const.} \end{cases}$$

- \equiv "n grows faster than any power of a logarithm"
- ≡ "logarithms grow very slowly"

O notation (4)

Practical rules to work with *O* (Cont'd):

Sum and product:

$$T_{1}(n) = O(f(n)) \land T_{2}(n) = O(g(n)) \Rightarrow$$

$$\begin{cases} (1) & T_{1}(n) + T_{2}(n) = O(f(n) + g(n)) = max(O(f(n)), O(g(n))) \\ (2) & T_{1}(n) * T_{2}(n) = O(f(n) * g(n)) \end{cases}$$

Application:
$$\begin{cases} (1) \text{ Sequence:} & 2n^2 = O(n^2) \land 10n = O(n) \\ & \Rightarrow 2n^2 + 10n = O(n^2) \end{cases}$$
(2) Loops

Observation: Do not extend the rule to substraction or division

← relation < in the definition of O

... sufficient to order the majority of functions

Other asymptotic notations (1)

- $T(n), f(n): Z^+ \to R^+$, Definition: O
- ② **Definition**: $T(n) = \Omega(f(n))$ iff \exists constants c and n_0 : $T(n) \ge cf(n) \ \forall n \ge n_0$
 - f(n): **lower bound** of $T(n) \equiv$ minimum work of the algorithm **Ejemplo**: $3n^2 = \Omega(n^2)$: more adjusted lower bound...

but
$$3n^2 = O(n^2)$$
 also! $(O \wedge \Omega)$

- **3 Definition**: $T(n) = \Theta(f(n))$ iff \exists constants c_1 , c_2 and c_0 : $c_1 f(n) \leq T(n) \leq c_2 f(n) \ \forall n \geq n_0$
 - f(n): **exact bound** of T(n), of the exact order

Example:
$$5nlog_2n - 10 = \Theta(nlogn)$$
:

$$\begin{cases} (1) \text{ prove } O \rightarrow < c, n_0 > \\ (2) \text{ prove } \Omega \rightarrow < c', n_0' > \end{cases}$$

Other asymptotic notations (2)

- 4. **Definition**: T(n) = o(f(n))iff \forall constant C > 0, $\exists n_0 > 0$: $T(n) < Cf(n) \forall n \ge n_0$ \Box $\equiv O \land \neg \Theta \equiv O \land \neg \Omega$ f(n): **strict upper bound** of T(n): $\lim_{n \to \infty} \frac{T(n)}{f(n)} = 0$ **Examples**: $\frac{n}{\log_2 n} = o(n)$ $\frac{n}{10} \neq o(n)$ 5. **Definition**: $T(n) = \omega(f(n))$ iff \forall constant C > 0, $\exists n_0 > 0$: $T(n) > Cf(n) \forall n \ge n_0$ \Box $\leftrightarrow f(n) = o(T(n))$
- 6. **OO notation** [Manber]: T(n) = OO(f(n)) if it is O(f(n)) but with too large constants for practical cases Ref: Example 2 (p. 4): $B1 = O(n^2)$, $B2 = OO(n^{1.8})$

 $\rightarrow f(n)$: strictly lower bound of T(n)

Other asymptotic notations (3)

Practical rules (Cont'd):

- $T(n) = a_0 + a_1 n + a_2 n^2 + ... + a_k n^k \Rightarrow T(n) = \Theta(n^k)$ (polynomial of degree k)
- **Theorem**: $\forall c > 0, a > 1, f(n)$ monotonically increasing:

$$(f(n))^c = o(a^{f(n)})$$

- = "An exponential function **grows faster** than a polynomial function"
- \rightarrow they never get equal

Index

- Analysis of the efficiency of algorithms
- 2 Asymptotic notations
- Calculation of execution times

Model of computation (1)

- Calculate O for $T(n) \equiv$ number of "steps" $\rightarrow f(n)$? step?
- Model of computation:
 - sequential computer
 - instruction ↔ step (there are no complex instructions)
 - inputs: single type ("integer") → seq(n)
 - infinite memory + "everything is in memory"
- Alternatives: A step is...
 - Elementary operation:

Operation whose runtime is bounded above by a constant that only depends on the implementation $\rightarrow = O(1)$

Main operation [Manber]:

Operation that is *representative* of the algorithm's work: The number of main operations being executed must be *proportional* to the total number of operations (verify!). **Example**: comparison in a sorting algorithm

Model of computation (2)

- The hypothesis of main operations is more abstract/a wider approximation!
- In general, we will use the hypothesis of elementary operations.
- In any case, we ignore: programming language, processor, OS, load...
 - \Rightarrow We only consider algorithm, problem size ...
- Weaknesses:
 - different-cost operations
 - ("everything in memory" \Rightarrow disk read = assignment)
 - \rightarrow count separately according to operation type and then $\textit{weight} \equiv \text{factors} \equiv \text{implementation-dependent}$
 - \Rightarrow costly and generally useless
 - page faults ignored
 - etc.
 - \rightarrow Approximation

Case analysis

Case analysis:

We consider different functions for T(n):

$$\begin{cases} T_{best}(n) \\ T_{average}(n) & \leftarrow \text{representative, more complicated to obtain} \\ T_{worst}(n) & \leftarrow \text{generally, the most used} \end{cases}$$

$$T_{best}(n) \le T_{average}(n) \le T_{worst}(n)$$

Response time is critical?

→ Real-Time Systems

Insertion Sort (1)

```
procedure Insertion Sort (var T[1..n])
  for i:=2 to n do
    x:=T[i];
    j:=i-1;
    while j>0 and T[j]>x do
        T[j+1]:=T[j];
        j:=j-1
    end while;
    T[j+1]:=x
  end for
end procedure
```

Insertion Sort (2)

3	1	4	1	2	9	5	6	5	3
1	3	4	1	2	9	5	6	5	3
1	3	4	1	2	9	5	6	5	3
1	1	3	4	2	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	4	5	9	6	5	3
1	1	2	3	4	5	6	9	5	3
1	1	2	3	4	5	5	6	9	3
1	1	2	3	3	4	5	5	6	9

Case analysis: Insertion Sort

- Worst case → "insert always at the first position"
 - \equiv input in reverse order
 - ⇒ the inner loop executes 1 time in the first iteration,

2 times in the second, ..., n-1 times in the last:

$$\Rightarrow \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$
 iterations of the inner loop

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\Rightarrow T(n) = \frac{n(n-1)}{2}c_1 + (n-1)c_2 + c_3 : \text{polynomial of degree 2}$$
$$\Rightarrow \boxed{T(n) = \Theta(n^2)}$$

- ullet Best case o "never insert" \equiv ordered input
 - \Rightarrow the inner loop is never ran
 - $\Rightarrow T(n) = (n-1)c_1 + c_2$: polynomial of degree 1

$$\Rightarrow T(n) = \Theta(n)$$

 \Rightarrow T(n) depends also of the initial state of the input

Selection Sort (1)

```
procedure Selection Sort (var T[1..n])
    for i:=1 to n-1 do
        minj:=i;
        minx:=T[i];
        for j:=i+1 to n do
            if T[j]<minx then</pre>
                minj:=j;
                minx:=T[i]
            end if
        end for;
        T[mini]:=T[i];
        T[i]:=minx
    end for
end procedure
```

Selection Sort (2)

3	1	4	1	2	9	5	6	5	3
1	3	4	1	2	9	5	6	5	3
1	1	4	3	2	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	4	9	5	6	5	3
1	1	2	3	3	9	5	6	5	4
1	1	2	3	3	4	5	6	5	9
1	1	2	3	3	4	5	6	5	9
1	1	2	3	3	4	5	5	6	9
1	1	2	3	3	4	5	5	6	9

Case analysis: Selection Sort

• $T(n) = \Theta(n^2)$ regardless of initial order (exercise) \leftrightarrow the inner comparison is ran the same number of times Empirically: T(n) does not vary more than 15%

algorithm	minimum	maximum
Insertion	0,004	5,461
Selection	4,717	5,174

Tabla: Times (in seconds) obtained for n = 4000

Comparison:

algorithm	worst case	average case	best case	
Insertion	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n)$	
Selection	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	
Quicksort	$O(n^2)$	O(nlogn)	O(nlogn)	

Rules to calculate O(1)

1. elementary operation = $1 \leftrightarrow Model$ of Computation

Rules to calculate O (2)

2. **sequence**:
$$S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$$

 $\Rightarrow S_1; S_2 = O(f_1(n) + f_2(n)) = O(max(f_1(n), f_2(n)))$

Also with Θ

Rules to calculate O(3)

3. **condition**:
$$B = O(f_B(n)) \land S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$$

 $\Rightarrow \text{ if } B \text{ then } S_1 \text{ else } S_2 = O(\max(f_B(n), f_1(n), f_2(n)))$

- If $f_1(n) \neq f_2(n)$ and $max(f_1(n), f_2(n)) > f_B(n) \leftrightarrow Worst case$
- Average case?
 - \rightarrow f(n): average of f_1 and f_2 weighted with the frequencies of each branch
 - $\rightarrow O(max(f_B(n), f(n)))$

Rules to calculate O (4)

4. iteration: B; $S = O(f_{B,S}(n)) \wedge n^{\circ}$ iter= $O(f_{iter}(n))$

$$\Rightarrow$$
 while B do S = $O(f_{B,S}(n) * f_{iter}(n))$

iff the cost of iterations does not vary, else: \sum indiv. costs.

$$\Rightarrow$$
 for $i \leftarrow x$ **to** y **do** S $= O(f_S(n)*n^o$ iter)

iff the cost of iterations does not vary, else: \sum indiv. costs.

• B is to compare 2 integers = O(1); n^0 iter = y - x + 1

Rules to calculate O (5)

- $lue{0}$ elementary operation = 1 \leftrightarrow Model of Computation
- **2 sequence**: $S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$ $\Rightarrow S_1; S_2 = O(f_1(n) + f_2(n)) = O(\max(f_1(n), f_2(n)))$ • Also with Θ
- **3** condition: $B = O(f_B(n)) \land S_1 = O(f_1(n)) \land S_2 = O(f_2(n))$
 - \Rightarrow if B then S_1 else S_2 $= O(max(f_B(n), f_1(n), f_2(n)))$
 - If $f_1(n) \neq f_2(n)$ and $max(f_1(n), f_2(n)) > f_B(n) \leftrightarrow$ Worst case
 - Average case? $\rightarrow f(n)$: average of f_1 and f_2 weighted with the frequencies of each branch $\rightarrow O(max(f_B(n), f(n)))$
- **1 iteration**: B; $S = O(f_{B,S}(n)) \wedge n^{o}$ iter= $O(f_{iter}(n))$
 - \Rightarrow while B do S $= O(f_{B,S}(n) * f_{iter}(n))$

iff the cost of iterations does not vary, else: \sum indiv. costs.

 \Rightarrow **for** $i \leftarrow x$ **to** y **do** $S = O(f_S(n) * n^0 \text{ iter})$

iff the cost of iterations does not vary, else: \sum indiv. costs.

• B is to compare 2 integers = O(1); n^0 iter = y - x + 1

Rules to calculate O (6)

- Usage of the rules:
 - analysis "from the inside out"
 - analyse subprograms first
 - recursivity: try to treat it as a loop, without solving recurrence relation
- Example: $\sum_{i=1}^{n} i^3$

```
function sum (n:integer) : integer
{1}
     s := 0;
{2} for i:=1 to n do
{3} s:=s+i*i*i;
   return s
   end function
```

$$\Theta(1)$$
 in $\{3\}$ and there are no variations $\Rightarrow \Theta(n)$ in $\{2\}$ (rule 4) $\Rightarrow T(n) = \Theta(n)$ (rule 2)

The reasoning already includes approximations

Selection Sort (3)

Selection Sort (4)

- $\Theta(1)$ in $\{5\}$ (rule 2) $\Rightarrow O(max(\Theta(1),\Theta(1),0)) = \Theta(1)$ in $\{4\}$ (rule 3: we aren't in the worst case)
- $S = \Theta(1)$; n^0 iter= $n i \Rightarrow \Theta(n i)$ in $\{3\}$ (rule 4)
- $\Theta(1)$ in $\{2\}$ and in $\{6\}$ (rule 2) $\Rightarrow \Theta(n-i)$ in $\{2-6\}$ (rule 2)

•
$$S = \Theta(n-i)$$
 varies:
$$\begin{cases} i = 1 & \to \Theta(n) \\ i = n-1 & \to \Theta(1) \end{cases}$$

$$\Rightarrow \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i \text{ in } \{1\}$$
 (rule 4)
= $(n-1)n - \frac{n(n-1)}{2}$: polynomial of degree 2

$$\Rightarrow T(n) = \Theta(n^2)$$
 in any case

Case analysis: exponentiation (1)

- Power1: $x^n = x * x * ... * x$ (loop, n times x)

 Main operation: multiplication

 Number of multiplications? $f_1(n) = n 1 \Rightarrow T(n) = \Theta(n)$
- Power2 (recursive): $x^n = \begin{cases} x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} & \text{if n even} \\ x^{\lfloor n/2 \rfloor} * x^{\lfloor n/2 \rfloor} * x & \text{if n odd} \end{cases}$ Number of multiplications? $f_2(n)$?

Case analysis: exponentiation (2)

Power2 (recursive) (Cont'd) Calculation of $f_2(n)$:

 $\begin{cases} \text{min: n even in each call} & \to n = 2^k, k \in Z^+ \leftrightarrow \text{best case} \\ \text{max: n odd in each call} & \to n = 2^k - 1, k \in Z^+ \leftrightarrow \text{worst case} \end{cases}$

• Best case:
$$f_2(2^k) = \begin{cases} 0 & \text{if } k = 0 \\ f_2(2^{k-1}) + 1 & \text{if } k > 0 \end{cases}$$
 (1)

• Best case:
$$f_2(2^k) = \begin{cases} 0 & \text{if } k = 0 \\ f_2(2^{k-1}) + 1 & \text{if } k > 0 \ (1) \end{cases}$$

• Worst case: $f_2(2^k - 1) = \begin{cases} 0 & \text{if } k = 1 \\ f_2(2^{k-1} - 1) + 2 & \text{if } k > 1 \ (2) \end{cases}$

→ recurrence relations

Case analysis: exponentiation (3)

• Best case:
$$f_2(2^k) = \begin{cases} 0 & \text{if } k = 0 \\ f_2(2^{k-1}) + 1 & \text{if } k > 0 \end{cases}$$

$$k = 0 \rightarrow f_2(1) = 0$$

$$1 \qquad 2 \qquad 1$$

$$2 \qquad 4 \qquad 2$$

$$3 \qquad 8 \qquad 3$$

 \Rightarrow Induction hypothesis: $f_2(2^{\alpha}) = \alpha$: $0 \le \alpha \le k-1$ Induction step:

...

(1)
$$\rightarrow f_2(2^k) = f_2(2^{k-1}) + 1$$

= $(k-1) + 1$
= k

correct explicit form of the recurrence relation

Case analysis: exponentiation (4)

• Worst case:
$$f_2(2^k - 1) = \begin{cases} 0 & \text{if } k = 1 \\ f_2(2^{k-1} - 1) + 2 & \text{if } k > 1 \end{cases}$$
 (2)
 $k = 1 \rightarrow f_2(1) = 0$
 $2 \qquad 3 \qquad 2$
 $3 \qquad 7 \qquad 4$
 $4 \qquad 15 \qquad 6$
 $5 \qquad 31 \qquad 8$
 $6 \qquad 63 \qquad 10$
...

$$\Rightarrow$$
 Induction hypothesis: $f_2(2^{\alpha}-1)=2(\alpha-1)$: $1 \le \alpha \le k-1$
Induction step: $(2) \rightarrow f_2(2^k-1) = f_2(2^{k-1}-1)+2$
 $= 2(k-1)+2$
 $= 2(k-1)$

Case analysis: exponentiation (5)

•
$$n = 2^k$$
 (best case):
 $f_2(2^k) = k$ for $k \ge 0$
 $\rightarrow f_2(n) = \log_2 n$ for $n = 2^k$ y $k \ge 0$ (as $\log_2 2^k = k$)
 $\Rightarrow f_2(n) = \Omega(\log n)$

- $n = 2^k 1$ (worst case): $f_2(2^k - 1) = 2(k - 1)$ for $k \ge 1$ $\to f_2(n) = 2[log_2(n + 1) - 1]$ for $n = 2^k - 1$ y $k \ge 1$ $\Rightarrow f_2(n) = O(logn)$
- \Rightarrow $f_2(n) = \Theta(logn)$ Model of computation: main operation = multiplication $\Rightarrow T(n) = \Theta(logn)$

best case $\leftrightarrow \Omega$ worst case $\leftrightarrow O$