PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-116306

(43)Date of publication of application: 07.05.1996

(51)Int.CI.

H04B 7/26

(21)Application number: 06-249630

(71)Applicant: N T T IDO TSUSHINMO KK

(22)Date of filing:

14.10.1994

(72)Inventor: NAKANO NOBUHIRO

UMEDA SHIGEMI ONO HIROSHI

(54) TRANSMISSION POWER CONTROL METHOD

(57)Abstract:

PURPOSE: To increase subscriber capacity by reducing a transmission power and interference quantity in a mobile station and a base station.

CONSTITUTION: The mobile station 1 is connected simultaneously to first to third base stations 3a-3c, and the same information is transmitted to the base stations via each radio line. Information signals transmitted from the mobile station 1 are synthesized by an exchange 5, and transmitted to an opposite terminal with which communication is being held via another exchange 7 or another communication network. The transmission power of the mobile station can be controlled by designating the transmission power of the mobile station 1 by the base station 3 and the exchange 5 based on the reception quality of the base station 3 and the synthesized reception quality of the exchange 5. Also, the transmission power of the base station 3 is controlled by designating the transmission power of the base station 3 by the mobile station 1 based on its

reception quality. As the transmission mode of the mobile station 1, a mode of transmission on the same channel or the one on different channels is prepared, and the independent control of the reception quality by each base station 3 is not possible when the same channel is used, however, when the different channels are used, the independent control of the transmission power to each base station 3 can be performed, and the independent control of the reception quality can also be performed.

LEGAL STATUS

[Date of request for examination]

04.09.1997

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2966296

[Date of registration]

13.08.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報 (A) (11)特許出願公開番号

特開平8-116306

(43)公開日 平成8年(1996)5月7日

(51) Int.Cl.6

離別記号 庁内整理番号

FΙ

技術表示箇所

H 0 4 B 7/26

102

審査請求 未請求 請求項の数6 OL (全 17 頁)

(21)出願番号	特顯平6-249630	(71)出願人	392026693
			エヌ・ティ・ティ移動通信網株式会社
(22)出顧日	平成6年(1994)10月14日		東京都港区虎ノ門二丁目10番1号
		(72)発明者	中野 悦宏
			東京都港区虎ノ門二丁目10番1号 エヌ・
	•		ティ・ティ移動通信網株式会社内
		(72)発明者	梅田 成視
			東京都港区虎ノ門二丁目10番1号 エヌ・
			ティ・ティ移動通信網株式会社内
		(72)発明者	大野 公士
			東京都港区虎ノ門二丁目10番1号 エヌ・
			ティ・ティ移動通信網株式会社内

(54) 【発明の名称】 送信電力制御方法

(57)【要約】

【目的】 本発明は、移動局及び基地局での送信電力を 低減し、また、干渉量を減らすことにより、加入者容量 を増大することのできる送信電力制御方法を提供するこ とを目的とする。

【構成】 移動局が通信網に接続される複数の基地局と 無線回線を介して同時接続されるとき、これら複数の各 基地局で受信した信号を合成したときの受信品質が第1 の品質を保持するように移動局の送信電力を制御すると 共に、移動局が受信したこれら複数の基地局からの信号 を合成したときの受信品質が第2の品質を保持するよう に基地局の送信電力を制御することを要旨とする。

(74)代理人 弁理士 三好 秀和 (外3名)

【特許請求の範囲】

【請求項1】 移動局が通信網に接続される複数の基地 局と無線回線を介して同時接続されるとき、これら複数 の各基地局で受信した信号を合成したときの受信品質が 第1の品質を保持するように移動局の送信電力を制御す ると共に、移動局が受信したこれら複数の基地局からの 信号を合成したときの受信品質が第2の品質を保持する ように基地局の送信電力を制御することを特徴とする送 信電力制御方法。

【請求項2】 前記複数の各基地局は、それぞれが通信 に係る基準品質が設定され、この基準品質に基づき移動 局における送信電力を制御することにより同時接続され た複数の各基地局の受信信号を合成したときの受信品質 が前記第1の品質を満足するように当該各基地局の基準 品質を変更することを特徴とする請求項1記載の送信電 力制御方法。

【請求項3】 前記移動局に同時接続される複数の基地 局における基準品質の変更に際して、当該複数の各基地 局における基準品質を全て同様に上げ下げして変更する ことを特徴とする請求項2記載の送信電力制御方法。

前記移動局と複数の基地局が同時接続さ 【請求項4】 れるとき、基地局は移動局との間の伝搬損失の比に応じ てそれぞれの基準品質を変更し、移動局は当該基準品質 を保つように同時接続中の各基地局に対する送信電力を 別チャネルを介して個々に制御することを特徴とする請 求項2記載の送信電力制御方法。

前記移動局は接続中の基地局からの受信 【請求項5】 信号に対する第2の基準品質が各基地局毎にそれぞれ設 定され、この第2の基準品質に基づき同時接続される複 数の各基地局の送信電力をそれぞれ制御することによ り、当該移動局で受信される複数の基地局からの受信信 号を合成したときの受信品質が前記第2の品質を満足す るように前記第2の基準品質をそれぞれ設定及び変更す ることを特徴とする請求項1記載の送信電力制御方法。

【請求項6】 前記移動局と複数の基地局が同時接続さ れるとき、移動局は各基地局との間の伝搬損失の比に応 じて前記第2の基準品質を各基地局毎にそれぞれ設定及 び変更し、各基地局は当該第2の基準品質を保つように 同時接続中の移動局への送信電力をそれぞれ制御するこ とを特徴とする請求項5記載の送信電力制御方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、無線通信における送信 電力制御方法に関する。

[0002]

【従来の技術】無線通信方式では、送信電力を必要最小 限に抑えるための送信電力制御に係る技術がある。この 送信電力制御を行うことにより、消費電力の節約や他の 無線回線への干渉の低減といった効果が得られる。特 に、CDMA方式では干渉量をできるだけ低く抑えるこ

とが、直接、加入者容量の増大につながるため、送信電 力制御は必須の技術である。また、従来技術では、受信 品質が一定の所要品質以上となるように送信電力制御が 行われており、送信電力制御の精度が高いほど、送信電 力を小さくすることができるので、干渉量が減り加入者 容量も増大する。

【0003】ところで、通常、移動通信では、ある時刻 において移動局は1つの基地局とのみ無線回線を接続す るが、移動局に送受信装置を2系統以上備えることによ り複数基地局との間で無線回線を同時に接続することを 可能する技術がある。これにより移動局と複数基地局と の間で複数の無線回線を同時に接続した場合、レベル変 動条件の異なる複数回線で同一の情報を伝送することと なり、サイトダイバーシチ効果が得られ、同時接続時の 品質は向上する。また、移動局が他の無線ゾーンに移行 する場合に同時接続を行うことにより、無瞬断で無線ゾ ーンを移行することができる。なお、CDMA方式にお いては、同一周波数で複数の拡散コードを用いて通信を 行うため、相関器を複数持つことにより比較的容易に同 20 時送受信を行うことができる。

[0004]

【発明が解決しようとする課題】しかしながら、上述し た従来の方式では、同時接続に接続中の無線回線のそれ ぞれにおいて所要品質を満足するように送信電力を制御 していることから、合成後の品質は所要品質を上回るこ ととなる。つまり、同時接続時には必要以上の電力で送 信されることとなり、移動局及び基地局においてそれぞ れ電力を無駄に浪費すると共に、他に与える干渉量が増 えることから、加入者容量が減少する等の欠点があっ 30 tc.

【0005】更に、従来の方式では、同時接続し、各回 線で異なる電力で送信する場合、伝搬損失が大きい回線 ほど大きな電力で送信することとなり、他に与える干渉 量が増え、加入者容量が減少するという欠点もあった。

【0006】本発明は、上記課題に鑑みてなされたもの で、移動局が複数基地局と同時接続を行う際の送信電力 を必要最小限におさえることにより、従来方式に比べ移 動局及び基地局での送信電力を低減し、また、干渉量を 減らすことにより、加入者容量を増大することのできる 送信電力制御方法を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するため 本願第1の発明は、移動局が通信網に接続される複数の 基地局と無線回線を介して同時接続されるとき、これら 複数の各基地局で受信した信号を合成したときの受信品 質が第1の品質を保持するように移動局の送信電力を制 御すると共に、移動局が受信したこれら複数の基地局か らの信号を合成したときの受信品質が第2の品質を保持 するように基地局の送信電力を制御することを要旨とす 50 る。

る。

10

30

40

【0008】また、本願第2の発明は、前記請求項1記 載の複数の各基地局は、それぞれが通信に係る基準品質 が設定され、この基準品質に基づき移動局における送信 電力を制御することにより同時接続された複数の各基地 局の受信信号を合成したときの受信品質が前記第1の品 質を満足するように当該各基地局の基準品質を変更する ことを要旨とする。

【0009】また、本願第3の発明は、前記請求項2記 載の移動局に同時接続される複数の基地局における基準 品質の変更に際して、当該複数の各基地局における基準 品質を全て同様に上げ下げして変更することを要旨とす る。

【0010】また、本願第4の発明は、前記請求項2記 載の移動局と複数の基地局が同時接続されるとき、基地 局は移動局との間の伝搬損失の比に応じてそれぞれの基 準品質を変更し、移動局は当該基準品質を保つように同 時接続中の各基地局に対する送信電力を別チャネルを介 して個々に制御することを要旨とする。

【0011】また、本願第5の発明は、前記請求項1記 載の移動局は接続中の基地局からの受信信号に対する第 2の基準品質が各基地局毎にそれぞれ設定され、この第 2の基準品質に基づき同時接続される複数の各基地局の 送信電力を制御することにより、当該移動局で受信され る複数の基地局からの受信信号を合成したときの受信品 質が前記第2の品質を満足するように前記第2の基準品 質をそれぞれ設定及び変更することを要旨とする。

【0012】さらに、本願第6の発明は、前記請求項5 記載の移動局と複数の基地局が同時接続されるとき、移 動局は各基地局との間の伝搬損失の比に応じて前記第2 の基準品質を各基地局毎にそれぞれ設定及び変更し、各 基地局は当該第2の基準品質を保つように同時接続中の 移動局への送信電力をそれぞれ制御することを要旨とす る。

[0013]

【作用】本願第1の発明の送信電力制御方法は、移動局 が通信網に接続される複数の基地局と無線回線を介して 同時接続されるとき、これら複数の各基地局で受信した 信号を合成したときの受信品質が第1の品質を保持する ように移動局の送信電力を制御すると共に、移動局が受 信したこれら複数の基地局からの信号を合成したときの 受信品質が第2の品質を保持するように基地局の送信電 力を制御することにより、移動局が1つの基地局と接続 する場合も、複数の基地局と同時接続する場合も、同一 の品質とすることが可能となるため、従来方式に比べ同 時接続時の移動局及び基地局の送信電力を小さくするこ とが可能となる。また、干渉量が減るため加入者容量が 増大する。

【0014】また、本願第2の発明における送信電力制 御方法では、移動局が通信網に接続される複数の基地局

数の基地局からの受信信号を合成したときの受信品質を 直接用い送信電力制御を行うのではなく、この合成後の 受信品質を基に比較的長い周期で各無線回線の基準品質 を変更し、この基準品質に従って瞬時的に送信電力を制 御するため、送信電力制御の精度を保ちながらかつ、制

御遅延が少なくなり、送信電力制御の誤差が小さくな

【0015】また、このとき本願第3の発明は、基準品 質の変更に際して、各基地局における基準品質を全て同 様に上げ下げして変更することから、基地局のいずれか 1つから送られてきた送信電力制御に係る情報に従えば よい、

【0016】また、本願第4の発明における送信電力制 御方法では、同時接続時には、移動局と各基地局間の伝 搬損失の比に基づいて各回線の送信電力を配分するの で、全体の送信電力が小さくなり、また、他に与える干 渉量も減少する。

【0017】また、本願第5の発明は、移動局には接続 中の基地局からの受信信号に対する第2の基準品質が各 基地局毎にそれぞれ設定されており、この第2の基準品 質に基づき同時接続される複数の各基地局の送信電力を 制御する。さらに当該移動局で受信される複数の基地局 からの受信信号を合成したときの受信品質が前記第2の 品質を満足するように前記第2の基準品質を設定及び変 更する。すなわち、各基地局の送信電力を独立に制御す る事ができる。また基地局からの送信電力をできるだけ 小さくするように、また通信中のユーザ数が多い基地局 からの送信電力を小さくする等、よりフレキシブルな送 信電力制御が可能となる。

【0018】さらに、本願第6の発明における送信電力 制御方法では、同時接続時には、移動局と各基地局間の 伝搬損失の比に基づいて各回線の送信電力を配分するの で、全体の送信電力が小さくなり、また、他に与える干 渉量も減少する。

[0019]

【実施例】以下、本発明に係る一実施例を図面を参照し て説明する。図1は本発明の送信電力制御方法が適用さ れる無線通信システムの概略の構成を示したブロック図 である。尚、図中、同一の記号を付したものは略同様の 機能を有するものである。

【0020】図1に示す無線通信システムは、移動局1 は、無線回線を介して基地局3と接続され、この基地局 3は無線回線及び有線回線を介して交換局5及び他の交 換局または他の通信網7と接続される。また基地局3は 通常、複数の基地局3a, 3b, …が所定の領域毎に設 けられ、移動局1はこれら領域内を移動しつつ基地局3 及び交換局5を介して他の移動局等の通信端末との通信

【0021】このとき、本実施例では、移動局1は第1 と無線回線を介して同時接続されるとき、受信される複 50 の基地局3a、第2の基地局3b、第3の基地局3cと

同時に接続し、それぞれの無線回線を介して同一の情報を伝送する。そして移動局1が送信した情報信号は交換局5で合成され、他の交換局7または他の通信網を通じ、通信中の相手側の端末に伝送される。

【0022】また、移動局送信電力の制御を行うのは、 基地局3及び交換局5であり、基地局受信品質及び交換 局5で合成した受信品質を基に、移動局送信電力を指定 する。また、基地局送信電力の制御は移動局1が行い、 移動局1での受信品質を基に、基地局送信電力を指定す る。なお、図1の無線通信システムでは移動局1が送信 した信号を交換局5で合成する例を示したが、交換局以 外の場所で合成することも可能である。例えば「特願平 6-106953号」に合成方法の1例が示されてい る。

【0023】また、移動局1の送信形態として、

- 1) 各基地局3に対し同一のチャネルで送信する形態、
- 2) 各基地局3に対し異なるチャネルで送信する形態と がある。
- 1) に示す形態の場合、各基地局3での受信品質を独立 に制御することはできないが、2) に示す形態では、各 基地局3に対する送信電力を独立に制御できるので、各 基地局3における受信品質も独立に制御できる。以下、
- 1) の場合を第1の実施例として、2) の場合を第2の実施例として説明する。

【0024】次に図1に示す無線通信システムの第1の 実施例を図2を参照して説明する。この第1の実施例 は、CDMA方式に適用した場合の移動局の構成であ る。アンテナ11及びアンテナ共用器13を通して受信 部15で受信した信号は第1の受信用相関器17a、第 2の受信相関器17b、第3の受信用相関器17c、第 4の受信用相関器17dに送られる。第1の受信用相関 器17aは、基地局3が常時送信するレベルー定の信号 を受信するために使用し、レベル測定部19で各基地局 3からの受信レベルを測定し、基準品質決定部21に送 られる。第2の受信用相関器17b、第3の受信用相関 器17c、第4の受信用相関器17dはそれぞれ第1の 基地局3a、第2の基地局3b、第3の基地局3cから の信号を受信する場合の、各基地局毎のチャネルに対応 し、第1の復調器25a、第2の復調器25b、第3の 復調器25 c でそれぞれ復調した後、第1の移動局送信 電力制御情報読み取り部27a, 第2の移動局送信電力 制御情報読み取り部27b, 第3の移動局送信電力制御 情報読み取り部27cへそれぞれ送られ、移動局送信電 力制御情報を読み取った後、情報信号を合成部29で合 成し、端末部33に送られる。

【0025】送信信号については、まず、端末部33から送られた情報信号に、基地局送信電力制御情報付加部35で基地局送信電力制御情報を付加し、変調器37に送られる。変調器37で変調を行い、送信用相関器39で拡散し、増幅部41で増幅した後、送信部43に送ら

れ、アンテナ共用器 1 3 及びアンテナを通じて各基地局 3 に対して送信される。

【0026】第1の品質比較部23a,第2の品質比較部23b,第3の品質比較部23cには、それぞれ第2の基準品質としての基準品質QAa,QAb,QAcがそれぞれ記憶されており、受信用相関器17a,17b,17c及び復調器25a,25b,25cから得られた品質QBa,QBb,QBcと比較し、その比較結果に基づいた基地局送信電力制御情報を基地局送信電力制御情報付加部35で付加する。また、合成後品質比較部31には、第2の品質としての一定品質Qcが記憶されており、合成部29より得られた品質Qoと比較し、その比較結果を基準品質決定部21に送る。

【0027】基準品質決定部21ではそれぞれの基準品質QAa, QAb, QAcを決定し、品質比較部23a, 23b, 23cに記憶させる。また、移動局送信電力制御情報読み取り部27a, 27b, 27cで読み取った情報により、増幅部41における増幅率を変化させ送信電力を制御する。

【0028】次に、図2に示した第1の実施例の移動局に対応する基地局3及び交換局5の構成を図3を参照して説明する。アンテナ51及びアンテナ共用器53を通して受信部55で受信した信号は、第1の受信用相関器57a、第2の受信用相関器57b…に送られる。第1の受信用相関器57bは移動局2が送信するチャネルに対応し、第2の受信用相関器57bは移動局2が送信するチャネルに対応する。次に第1の復調器65a、第2の復調器65b…でそれぞれ復調した後、第1の基地局送信電力制御情報読み取り部67b…に送られ、基地局送信電力制御情報を読み取り部67b…に送られ、基地局送信電力制御情報を読み取り部67b…に送られ、基地局送信電力制御情報を読み取った後、信頼度情報を含む情報信号をそれぞれ交換局5に伝送する。交換局5では、各基地局3から送られてきた信頼度情報を基に情報信号を成し、他の交換局7または他の通信網に伝送する。

【0029】送信信号については、まず、他の交換局7または他の通信網から送られた情報信号をそれぞれ交換局5内の分配器91a、分配器91b…で分配し、基地局3a,3b,3cに伝送する。

【0030】第1の基地局3aの第1の移動局送信電力制御情報付加部71aで移動局送信電力制御情報を付加し、第1の変調器73aに送られる。第1の変調器73aで変調を行い、第1の送信用相関器75aで拡散し、第1の増幅部77aで増幅した後、送信部79に送られ、アンテナ共用器53及びアンテナ51を通じて移動局に対して送信される。

【0031】また、第1の品質比較部63aには、第2の基準品質としての基準品質QEが記憶されており、第1の受信用相関器57a及び第1の復調器65aから得られた受信品質QEと比較し、その比較結果に基づいた50 移動局送信電力制御情報を第1の移動局送信電力制御情

20

30

報付加部71aで付加する。また、交換局5内の合成後品質比較部85には、第2の品質としての一定品質QGが記憶されており、合成部83より得られた品質QHと比較し、その比較結果を基準品質決定部87に送る。基準品質決定部87では基準品質QEを決定し、第1の品質比較部63aに記憶させる。

【0032】また、第1の基地局送信電力制御情報読み取り部67aで読み取った情報により、第1の増幅部77aにおける増幅率を変化させ送信電力を制御する。第2の基地局3b及び第3の基地局3cについても第1の基地局3aと同様の動作を行う。尚、詳述しないが、上記動作は対応する各局毎に行なわれるものである。

【0033】続いて本実施例における送信電力制御方法について図4,7,9,11に示すフローチャートを用いて説明する。図4は移動局送信電力制御方法を示したフローチャートである。また、図中の送信電力制御情報の具体例を図5に示す。図5において、送信電力制御情報 $(0\sim7)$ は右の送信電力制御量 $(-2.0dB\sim+2.0dB)$ に対応し、送信電力制御情報が与えられた場合、それに対応する送信電力制御量だけ送信電力を変化させる。

【0034】以下、図4を参照して移動局送信電力制御の処理手順について説明する。第1の基地局3aにおいて、移動局1からの信号を受信し、第2の受信用相関器17b及び第1の復調器25aから、受信レベル、受信CIR(搬送波対干渉波比)、BER(ビット誤り率)等の受信品質QFを得る。この受信品質QFは第1の品質比較部63aに送られ、この第1の品質比較部63aに記憶されている基準品質QEと比較し受信品質QFの方が高い(良い)場合には、移動局の送信電力を下げるべく、送信電力制御情報(0~3)を移動局送信電力制御情報付無い)場合には、移動局の送信電力を上げるべく、送信電力制御情報(4~7)を移動局送信電力制御情報付

加部1に送る。

【0035】この送信電力制御情報は、受信品質QFが基準品質31になるべく近づくように、かつ、基準品質QEを下回らないような値とする。また、受信品質として受信レベルや受信CIRを用いる場合は、送信電力の変化量と受信品質の変化量が一致する。したがって、例えば、受信品質QF(受信レベルや受信CIR)が基準品質QE(基準レベルや基準CIR)より1.2dB低い場合は、送信電力制御情報を6(+1.5dB)とする。すると、送信電力制御後の送信電力が1.5dB大きくなり、受信品質QFも1.5dB大きくなり、基準品質QEを0.3dB上回ることとなる。一方、受信品質QEを0.3dB上回ることとなる。一方、受信品質QEを0.3dB上回ることとなる。一方、受信品質QEを0.3dB上回ることとなる。一方、受信品質CERの変化量が一致しないため、図6に示すようなBERとCIRの関係を用い、BERの変化量からCIRの変化量すなわち送信電力の変化量を換算し、送信電力

制御情報を決定する。

【0036】この送信電力制御情報は情報信号に付加されて基地局3から移動局1に伝送される。また、基地局3b,3cでも同様に送信電力制御情報を情報信号に付加して移動局1に伝送する。

【0037】移動局1では、第1の基地局3aからの信 号を第2の受信用相関器17b及び第1の復調器25a を用いて受信し第1の移動局送信電力制御情報読み取り 部27aにおいて、送信電力制御情報を読み取り、増幅 部41に与える。また、基地局3b,3cからの信号に ついても同様に、送信電力制御情報を読み取り、増幅部 41に与える。増幅部41において、各基地局3から送 られてきた送信電力制御情報を基に移動局送信電力を決 定する。なお、移動局送信電力の決定方法であるが、後 述のように、交換局5での合成後の品質に従って全基地 局3の基準品質を同様に変化させるため、いずれか1つ の基地局3から送られてきた送信電力制御情報に従えば よい。なお、このとき最も受信レベルの高い基地局3に 従った方が、送信電力制御情報の信頼性が最も高く、ま た、合成時の配分が高いため、交換局で合成した後の品 質が安定し、送信電力制御の精度が良くなる。また、全 ての基地局の基準品質を等しくする場合、移動局の送信 電力が最も小さくなるような送信電力制御情報に従えば 良い。これは、最も受信レベルの高い基地局に従うこと と等しい。

【0038】図7は、上記基地局3内の品質比較部63に記憶される基準品質QEを制御するフローチャートである。また、図中の基準品質制御情報の具体例を図8に示す。図8において、基準品質制御情報(0~7)は右の基準品質制御量(-2.0dB~+2.0dB)に対応し、基準品質制御情報が与えられた場合、それに対応する基準品質制御量だけ基準品質QEを変化させる。

【0039】以下、図7を参照して基地局品質基準制御 の処理手順について説明する。交換局5において、合成 部83で基地局3a, 3b, 3cで受信した信号を合成 し、合成後のBER等の品質QH を得る。この品質QH は合成後品質比較部31に送られ、合成後品質比較部3 1に記憶されている一定品質Qc と比較し、比較した結 果を基準品質決定部21に渡す。基準品質決定部21で は、品質QH の方が高い(良い)場合には、第1の基地 局3aにおける基準品質を下げるため、基準品質制御情 報(0~3)を第1の品質比較部23aに送る。また、 基地局3b,3cに対しても同様の信号を送る。なお、 基準品質制御情報であるが、送信電力制御情報の場合と 同様に、品質QH が一定品質QG になるべく近づくよう に、かつ、一定品質Qa を下回らないような値とする。 また、合成後のBERを用いる場合は、送信電力制御情 報の場合と同様に、図6に示したグラフに基づいて、基 準品質制御情報を決定する。

50 【0040】第1の基地局3aにおいて、第1の品質比

30

較部23aが基準品質制御情報を受け取ると、その信号に従い、基準品質QE を変化させる。また、基地局3b,3cでも同様に基準品質を変化させる。基準品質が変化すると、図4における比較基準が変わることとなり、送信電力も変化する。

【0041】図9は基地局送信電力制御方法を示したフローチャートである。また、図中の送信電力制御情報の具体例を図10に示す。図10において、送信電力制御情報(10~17)は第1の基地局3aの送信電力を制御し、送信電力制御情報(20~27)は第2の基地局3bの送信電力を制御し、送信電力制御情報(30~3~7)は第3の基地局3cの送信電力を制御する。各送信電力制御情報は右の送信電力制御量(-2.0dB~+2.0dB)に対応し、それぞれの基地局3の送信電力を変化させる。

【0042】以下、図9を参照して基地局送信電力制御 の処理手順について説明する。移動局1において、基地 局3からの信号を受信し、第1の受信用相関器57a及 び第1の復調器65aから、受信レベル、受信CIR、 BER等の受信品質QBaを得る。この受信品質QBaは第 1の品質比較部63aに送られ、第1の品質比較部63 a に記憶されている基準品質QAaと比較し受信品質QBa の方が高い(良い)場合には、第1の基地局3aの送信 電力を下げるべく、送信電力制御情報(10~13)を 第1の基地局送信電力制御情報付加部71 aに送る。ま た、受信品質Q8aの方が低い (悪い) 場合には、第1の 基地局3aの送信電力を上げるべく、送信電力制御情報 (14~17)を第1の基地局送信電力制御情報付加部 71 a に送る。基地局 3 b , 3 c から受信した信号につ いても同様にして、送信電力制御情報(20~27,3 0~37) を第1の基地局送信電力制御情報付加部71 aに送る。これら送信電力制御情報は情報信号に付加さ れて移動局1から基地局3a,3b,3cに伝送され る。

【0043】第1の基地局3aでは、移動局1からの信号を第1の受信用相関器57a及び第1の復調器65aを用いて受信し第1の基地局送信電力制御情報読み取り部67aにおいて、基地局3に対する送信電力制御情報(14~17)を読み取り、第1の増幅部77aに与える。第1の増幅部77aにおいて、送信電力制御情報を基に移動局送信電力を変化させる。また、基地局3b,3cでも同様に、自基地局に対する送信電力制御情報を読み取り、送信電力を変化させる。

【0044】本実施例では移動局1が1チャネルのみで送信するため、各基地局3に対する送信電力制御情報を1つのチャネルでまとめて伝送したが、送信電力制御専用チャネルを設け、各基地局3に対する送信電力制御情報をそれぞれ別チャネルで伝送することも可能である。

【0045】図11は、上記移動局1内の品質比較部2 3a, 23b, 23cに記憶される基準品質QAa, 10 QAb, QAcを制御するフローチャートである。

【0046】以下図11の説明をする。移動局1の合成 部29で基地局3a,3b,3cから受信した信号を合 成し、合成後のBER等の品質Qo を得る。この品質Q o は合成後品質比較部31に送られ、合成後品質比較部 31に記憶されている品質Qc と比較し、比較した結果 を基準品質決定部21に渡す。並列して、第1の受信用 相関器17 a は基地局3 a, 3 b, 3 c が常時送信して いるレベルー定のチャネルをスキャンし、レベル測定部 19において、それぞれのチャネルのレベルを測定す る。この測定結果を基準品質決定部21に渡す。基準品 質決定部21では、上記品質比較結果及びレベル測定結 果によって、基準品質QAa, QAb, QAcを決定し、品質 比較部23a, 23b, 23cに記憶された値を更新す る。このときの各基準品質の決定方法であるが、全ての 基準品質を同一とする方法がある。この場合、レベル測 定が不要になるという利点がある。

【0047】ところで、全基準品質を同一とした場合、レベル測定の結果が小さい基地局3すなわち、移動局1と基地局3間の伝搬損失の大きい基地局3程大きな送信パワーが必要となり、干渉量が多くなる。従って、レベル測定の結果が大きい基地局3程、基準品質を大きくし、送信パワーを大きくすることにより、トータルの干渉量を減らすことができる。

【0048】基準品質が受信レベルや受信CIRの場合、伝搬損失の逆比で各基地局3の基準品質を設定すれば、各基地局3からの送信電力はほぼ等しくなる。また、更に逆比の2乗で各基地局3の基準品質を設定すれば、レベル測定の結果が小さい基地局3程、小さな送信電力とすることもできる。基準品質がBERの場合も、図6を用いて換算することにより同様の設定が可能である。このように基準品質の比を決定することにより、全体の干渉量が減り、加入者容量が増大する。

【0049】そこで、基準品質の決定方法としては、レベル測定結果を基に基準品質QAa、QAb、QAcの配分を変えるとともに、合成後の品質比較結果を基に、一定品質Qcと比較し品質QDの方が高い(良い)場合には、基地局3a、3b、3cの送信電力を下げるべく、基準品質QAa、QAb、QAcを低く(悪く)し、品質QDの方が低い(悪い)場合には、基地局3a、3b、3cの送信電力を上げるべく、基準品質QAa、QAb、QAcを高く(良く)する、という方法もある。

【0050】以上説明したように、第1の実施例に示した送信電力制御方法によれば、移動局1と複数基地局3との同時接続時に、移動局1が送信した同一の信号を各基地局3で受信する場合、複数基地局3で受信した信号を合成した受信品質が一定品質Qcを保つように移動局1の送信電力を制御し、移動局1が受信した複数基地局3からの信号を合成した受信品質が一定品質Qcを保つように移動局1の送信電力を制御できるので、従来方式

に比べ同時接続時の移動局1及び基地局3の送信電力が 小さくなり、また、干渉量が減るため加入者容量が増大 する。

【0051】また、同時接続時には、合成後の受信品質を直接用い送信電力制御を行うのではなく、合成後の受信品質を基に比較的長い周期で各無線回線の基準品質を変更し、この基準品質に従って瞬時的に送信電力を制御するため、送信電力制御の精度を保ちながらかつ、制御遅延が少なくなり、送信電力制御の誤差を小さくする事ができる。

【0052】また、本実施例における送信電力制御方法では、同時接続時には、移動局1と各基地局3間の伝搬損失の比に基づいて各回線の送信電力を配分するので、全体の送信電力が小さくなり、また、他に与える干渉量も減少し、加入者容量が増大する。

【0053】次に図1に示す無線通信システムの第2の 実施例を図12を参照して説明する。この図12に示す 第2の実施例は、CDMA方式に適用した場合の移動局 の構成である。アンテナ11及びアンテナ共用器13を 通して受信部15で受信した信号は第1の受信用相関器 17a、第2の受信用相関器17b、第3の受信用相関 器17 c、第4の受信用相関器17 dに送られる。第1 の受信用相関器17aは、基地局3が常時送信するレベ ルー定の信号を受信するために使用し、レベル測定部1 9で各基地局3からの受信レベルを測定し、基準品質決 定部21及びレベル情報付加部32に送られる。第2の 受信用相関器17b、第3の受信用相関器17c、第4 の受信用相関器17 dはそれぞれ基地局3 a、基地局3 b、基地局3cからの信号を受信する場合の、各基地局 3年のチャネルに対応し、復調器25a, 25b, 25 c で復調した後、移動局送信電力制御情報読み取り部2 7a, 27b, 27cに送られ、移動局送信電力制御情 報を読み取った後、情報信号を合成部29で合成し、端 末部33に送られる。

【0054】送信信号については、まず、端末部33からの情報信号に、レベル情報付加部32においてレベル情報を付加し、分配器34に送る。分配器34では、同じ3つの信号に分配し、各信号に基地局送信電力制御情報を付加的35a,35b,35cで基地局送信電力制御情報を付加し、変調器37a,37b,37cに送られる。変調器37a,37b,37cで変調を行い、送信用相関器39a,39b,39cで拡散し、増幅部41a,41b,41cで増幅した後、送信部43に送られ、アンテナ共用器13及びアンテナ11を通じて各基地局3に対して送信される。

【0055】品質比較部23a,23b,23cには、 基準品質QAa,QAb,QAcが記憶されており、受信用相 関器17a,17b,17c及び復調器25a,25 b,25cから得られた品質QBa,QBb,QBcと比較 】 それぞれの比較結果に基づいた基地局送信頼力制御 12

情報を基地局送信電力制御情報付加部35a,35b,35cで付加する。また、合成後品質比較部31には、一定品質Qcが記憶されており、合成部29より得られた品質Qoと比較し、その比較結果を基準品質決定部21に送る。

【0056】基準品質決定部21では基準品質QAa, QAb, QAcを決定し、品質比較部23a, 23b, 23cに記憶させる。

【0057】また、移動局送信電力制御情報読み取り部27a,27b,27cで読み取った情報により、増幅部41a,41b,41cにおける増幅率を変化させ送信電力を制御する。

【0058】本実施例をCDMA方式に適用した場合の基地局及び交換局構成図を図13に示す。

【0059】図13については、図3の交換局内にレベル情報読み取り部84が追加されただけである。レベル情報読み取り部84では、受信した信号からレベル情報を読み取り、基準品質決定部87に送る。

【0060】本実施例における送信電力制御動作について以下に説明する。移動局送信電力制御に関する基地局動作は、図4で説明した動作と同様であり、移動局送信電力制御情報が移動局3に対して送られる。移動局動作についてもほぼ同様であるが、第2の実施例では、移動局1は基地局3a,3b,3cに対し別チャネルで送信を行うため、送信電力制御は各チャネル独立に行う。つまり、基地局3a,3b,3cから送信された送信電力制御情報はそれぞれ、増幅部77a,77b,77cに与えられ、増幅部77a,77b,77cにおいて、それぞれの基地局3から送られてきた送信電力制御情報を30 基に独立に移動局送信電力を決定する。

【0061】また、基地局3a,3b,3c内の品質比較部63に記憶される基準品質QEa,QEb,QEcの制御について、基準品質を全て同一とし、合成部83から得た合成後の品質情報のみによって制御する方法がある。また、レベル情報読み取り部84から得た移動局1と基地局3a,3b,3cとの間の伝搬損失情報と、合成部83から得た合成後の品質情報とを基に制御する方法もある。この場合の各基準品質は、第1の実施例で説明したのと同様に、伝搬損失の大きい基地局3への信号程送40 信電力が小さくなるようにする。

【0062】次に、基地局送信電力制御動作について説明する。この制御方法は基本的に第1の実施例で述べた制御方法と同一である。ただし、第2の実施例では、基地局3a,3b,3cに対し共通のチャネルを用いて各基地局3に対する送信電力制御情報を送る必要があった。第2の実施例では、各基地局3に対し別々のチャネルで伝送を行うため、送信電力制御情網も個々のチャネルで伝送することができる。

b, 25cから得られた品質QBa, QBb, QBcと比較 【0063】以上説明したように、第2の実施例に示し し、それぞれの比較結果に基づいた基地局送信電力制御 50 た送信電力制御方法によれば、移動局1と複数基地局3

との同時接続時に、移動局1が各基地局に対して別チャネルを用いて送信を行う場合にも、第1の実施例と同様、複数基地局3で受信した信号を合成した受信品質が一定品質Qaを保つように移動局の送信電力を制御し、移動局1が受信した複数基地局3からの信号を合成した受信品質が一定品質Qcを保つように移動局の送信電力を制御でき、従来方式に比べ同時接続時の移動局1及び基地局3の送信電力が小さくなり、また、干渉量が減るため加入者容量が増大する。

【0064】また、同時接続時には、合成後の受信品質を直接用い送信制御を行うのではなく、合成後の受信品質を基に比較的長い周期で各無線回線の基準品質を変更し、この基準品質に従って瞬時的に送信電力を制御するため、送信電力制御の精度を保ちながらかつ、制御遅延が少なくなり、送信電力制御の誤差が小さくなる。

【0065】また、本実施例における送信電力制御方法では、同時接続時には、移動局と各基地局間の伝搬損失の比に基づいて各回線の送信電力を配分するので、全体の送信電力が小さくなり、また、他に与える干渉量も減少し、加入者容量が増大する。

【0066】上述したように、上記各実施例によれば、移動局が複数の基地局と同時接続する場合も、移動局が1つの基地局と接続する場合と同一の品質となる。また、同時接続時には、合成後の受信品質を直接用い送信電力制御を行うのではなく、合成後の受信品質を基に比較的長い周期で各無線回線の基準品質を変更し、この基準品質に従って瞬時的に送信電力を制御するため、送信電力制御の精度を保ちながらかつ、制御遅延が少なくなり、送信電力制御の誤差が小さくなる。また、同時接続時には、移動局と各基地局間の伝搬損失の比に基づいて各回線の送信電力を配分する。従って、従来方式に比べ同時接続時の移動局及び基地局の送信電力低減効果がある。また全体の干渉量が減るので、CDMA方式では加入者容量の増大という効果を得ることができる。

【0067】尚、上記の実施例ではCDMA方式に適用した場合を例にとって説明したが、本発明はこれに限定されること無く、例えばTDMA方式等の適宜の通信方式に適用することができる。

[0068]

【発明の効果】以上説明したように、本発明によれば、 移動局及び基地局での送信電力を低減し、また、干渉量 を減らすことにより、加入者容量を増大することができ る等の効果を奏する。

【図面の簡単な説明】

【図1】本発明に係る送信電力制御方法が適用される無 線通信システムの一実施例の概略の構成を示すブロック '図である。

【図2】移動局の構成を示すブロック図である。

【図3】基地局及び交換局の構成を示すブロック図である。

14

【図4】基地局及び移動局における送信電力制御の処理 手順を示すフローチャートである。

【図5】送信電力制御情報を示す図である。

【図6】 受信CIRとBERとの関係を示す図である。

【図7】交換局及び基地局における品質基準制御の処理 手順を示すフローチャートである。

【図8】基準品質制御情報を示す図である。

【図9】移動局及び基地局における送信電力制御の処理 手順を示すフローチャートである。

【図10】送信電力制御情報を示す図である。

【図 1 1 】移動局における品質基準制御の処理手順を示すフローチャートである。

【図12】移動局の構成を示すブロック図である。

【図13】基地局及び交換局の構成を示すブロック図で ある。

20 【符号の説明】

1 移動局

3 基地局

5 交換局

7 他の交換局または他の通信網

11,51 アンテナ

13,53 アンテナ共用器

15,55 受信部

17,57 受信用相関器

19 レベル測定部

30 21,87 基準品質決定部

23,63 品質比較部

25 復調器

27 移動局送信電力制御情報読取り部

29,83 合成部

31,85 合成後品質比較部

32 レベル情報付加部

33 端末部

35 基地局送信電力制御情報付加部

37,73 変調器

40 39,57 送信用相関器

41,77 増幅部

4 3 送信部

67 基地局送信電力制御情報読み取り部

71 移動局送信電力制御情報付加部

84 レベル情報読取り部

【図5】 【図6】 送信電力制御情報 送信電力制御量 10-0 -2.0dB 1 -1.5dB 2 -1.0dB 10⁻¹ 3 -0.5dB 4 +0.5dB 交信品質 5 +1.0dB 照· 10-3 基準品質 6 +1.5dB 7 +2.0dB 10-3 Δ(dB) 10-4

大

基準品質制御情報	基準品質制御量	
0	-2.0dB	
1	-1.5dB	
2	-1.0dB	
3	-0.5dB	
4	+0.5dB	
5	+1.0dB	
6	+1.5dB	
7	+2.0dB	

【図8】

受信CIR

小

【図3】

[図10]

(a)

(c)

第1の基地局の基準品質をも開		
基準品質制御情報	基章品質契例量	
10	-2.0dB	
li .	-1.543	
12	-1.0cB	
13	-0.548	
14	+0.548	
15	+1.068	
16	+1.543	
17	+2.0dB	

第20基地局の基準品質主動物		
基準品質制即情報	基準品質制御量	
20	-2.0dB	
21	-1.5 c B	
22	-1.048	
23	-0.543	
24	40.5 4 B	
25	+1,068	
26	+1.543	
27	+2.0dB	

第8の基準局の基準品質を制御			
基本品質制與情報	美华岛货制货量		
30	-2.0dB		
31	-1.5dB		
32	-1.0dB		
33	-0.5dB		
34	+0.5dB		
35	+1.04B		
36	+1.549		
37	+2,0dB		

【図7】

(b)

【図9】

【図12】

【図13】

