Aviator Design Document

David Thoe, Joshua Kim, Zeke Ulrich, Juan Vargas September 18, 2025

GTA: Zixiao Ma Professor: Ryan Beasley

Figure 0.0.1: [Caption]

Contents

1	\mathbf{Intr}	$\operatorname{roducti}$		10
	1.1	Execut	tive Description	. 10
	1.2	User S	Story	. 10
2	Des	ign Re	equirements	11
	2.1	Requir	rements	. 11
	2.2	Factor	rs influencing requirements	. 12
		2.2.1	Public Health, Safety, and Welfare	
		2.2.2	Global Factors	. 12
		2.2.3	Cultural Factors	. 12
		2.2.4	Social Factors	. 12
		2.2.5	Environmental Factors	. 12
		2.2.6	Economical Factors	. 12
3	Svs	tem Ov	verview	13
_	3.1		n Block Diagram	
	3.2		n Activity Diagram	
	3.3		n Mechanical Design (Extra Credit)	
	3.4	-	ation Approach	
	3.5	0	n Photographs	
4	C1-			20
4		system		. 22
	4.1		stem 1: [Subsystem Name]	
		4.1.1	Subsystem Diagrams	
		4.1.2	Specifications	
		4.1.3	Subsystem Interactions	
		4.1.4	Core ECE Design Tasks	
		4.1.5	Schematics	
		4.1.6	Parts	
		4.1.7	Algorithm	
		4.1.8	Theory of Operation	
		4.1.9	Specifications Measurement	
		4.1.10		
	4.2		stem 2: [Subsystem Name]	
		4.2.1	Subsystem Diagrams	
		4.2.2	Specifications	
		4.2.3	Subsystem Interactions	
		4.2.4	Core ECE Design Tasks	
		125	Schematics	26

		4.2.6	Parts	26
		4.2.7	Algorithm	26
		4.2.8	Theory of Operation	26
		4.2.9	Specifications Measurement	26
		4.2.10	Standards	27
	4.3	Subsys	stem 3: [Subsystem Name]	30
		4.3.1	Subsystem Diagrams	30
		4.3.2	Specifications	30
		4.3.3	Subsystem Interactions	30
		4.3.4	Core ECE Design Tasks	30
		4.3.5	Schematics	30
		4.3.6	Parts	30
		4.3.7	Algorithm	30
		4.3.8	Theory of Operation	30
		4.3.9	Specifications Measurement	30
		4.3.10	Standards	31
	4.4	Subsys	stem 4: [Subsystem Name]	34
		4.4.1	Subsystem Diagrams	34
		4.4.2	Specifications	34
		4.4.3	Subsystem Interactions	34
		4.4.4	Core ECE Design Tasks	34
		4.4.5	Schematics	34
		4.4.6	Parts	34
		4.4.7	Algorithm	34
		4.4.8	Theory of Operation	34
		4.4.9	Specifications Measurement	34
		4.4.10	Standards	35
_	DO	. n		90
5		B Design		38
	5.1		Schematics	
	5.2	PCB I	Layout	39
6	Fina	al Stat	us of Requirements	41
7	Tea	m Stru	icture	42
•	7.1		Member 1	42
	7.2		Member 2	42
	7.3		Member 3	43
	7.4		Member 4	43
				2.5
8	Bib	liograp	bhy	44

9 Appendices 45

List of Figures

0.0.1 [Caption]
3.1.1 System Block Diagram
3.2.1 System Activity Diagram
3.3.1 System Mechanical Design
$3.5.1 \ [Photo \ Name] \ \dots \$
4.1.1 Subsystem Block Diagram
4.1.2 [Schematic Name]
4.2.1 Subsystem Block Diagram
4.2.2 [Schematic Name]
$4.3.1 \; Subsystem \; Block \; Diagram \; \dots \; \dots \; 32$
4.3.2 [Schematic Name]
$4.4.1 \; Subsystem \; Block \; Diagram \; \dots \; \dots \; 36$
4.4.2 [Schematic Name]
5.1.1 PCB Schematic
5.2.1 PCB Layout

T	ist	α f	T_{2}	h	امو
	aist.		12	1)	45

																				_	
1	Revision Log																			8	

Revision Log

Date	Revision	Changes
5/3/2024	v0.1	Initial Release
[Copy]	[and]	[Replace]

Table 1: Revision Log

Glossary

- 3D audio technology Simulation that creates the illusion of sound sources placed anywhere in 3 dimensional space, including behind, above or below the listener.
- \bullet ${\bf API}$ Application Programming Interface.

•

1 Introduction

1.1 Executive Description

[Type here. DD1+]

1.2 User Story

[Type here. DD1+]

2 Design Requirements

2.1 Requirements

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

2.2 Factors influencing requirements

2.2.1 Public Health, Safety, and Welfare

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

2.2.2 Global Factors

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

2.2.3 Cultural Factors

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

2.2.4 Social Factors

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

2.2.5 Environmental Factors

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

2.2.6 Economical Factors

- 1. [Type here **DD1+**]
- 2. [Type here **DD1+**]

3 System Overview

 ${\bf 3.1}\quad {\bf System~Block~Diagram}\\ [{\bf DD1+}]$

Figure 3.1.1: System Block Diagram

3.2 System Activity Diagram

[DD1+]

Figure 3.2.1: System Activity Diagram

3.3 System Mechanical Design (Extra Credit) [DD3+]

Figure 3.3.1: System Mechanical Design

3.4 Integration Approach

 $[\mathbf{DD3+}]$ [Theory behind the system design, with reference to subsystem integration within your system – i.e., explain how it is supposed to work, but not whether it did actually work] [Type here]

3.5 System Photographs

 $[\mathbf{DD3+}]$ [Photograph of assembled system, intended to highlight user interaction / controls. If system is split into multiple parts, show a composite of more than one photograph with all key user interactions / controls.]

Figure 3.5.1: [Photo Name]

4 Subsystems

- 4.1 Subsystem 1: [Subsystem Name]
- 4.1.1 Subsystem Diagrams

[DD1+]

- 4.1.2 Specifications
 - 1. [Type here **DD1+**]
- 4.1.3 Subsystem Interactions

[Type here **DD1+**]

- 4.1.4 Core ECE Design Tasks
- [DD1+ Write tasks and course that helps accomplish that task]
 - ECE xxxx: [Type the relationship here.]
- 4.1.5 Schematics

[Type here **DD2+**]

- 4.1.6 Parts
 - [Type here **DD1+**]
- 4.1.7 Algorithm

[Type here **DD1+**]

4.1.8 Theory of Operation

[Type here **DD2+**]

- 4.1.9 Specifications Measurement
- [DD3+ Every specification here should match the specification above.]
 - 1. [Copy specification here.] [Explain the specification here. Add photoes if necessary.]

4.1.10 Standards

[DD1+]

 \bullet [Standard Name]: [Describe the standards and explain the connection]

Figure 4.1.1: Subsystem Block Diagram

Figure 4.1.2: [Schematic Name]

4.2 Subsystem 2: [Subsystem Name]

4.2.1 Subsystem Diagrams

[DD1+]

4.2.2 Specifications

1. [Type here **DD1+**]

4.2.3 Subsystem Interactions

[Type here **DD1+**]

4.2.4 Core ECE Design Tasks

[DD1+ Write tasks and course that helps accomplish that task]

• ECE xxxx: [Type the relationship here.]

4.2.5 Schematics

[Type here **DD2+**]

4.2.6 Parts

• [Type here **DD1+**]

4.2.7 Algorithm

[Type here **DD1+**]

4.2.8 Theory of Operation

[Type here **DD2+**]

4.2.9 Specifications Measurement

[DD3+ Every specification here should match the specification above.]

1. [Copy specification here.] [Explain the specification here. Add photoes if necessary.]

4.2.10 Standards

$[\mathbf{DD1+}]$

 \bullet [Standard Name]: [Describe the standards and explain the connection]

Figure 4.2.1: Subsystem Block Diagram

Figure 4.2.2: [Schematic Name]

4.3 Subsystem 3: [Subsystem Name]

4.3.1 Subsystem Diagrams

[DD1+]

4.3.2 Specifications

1. [Type here **DD1+**]

4.3.3 Subsystem Interactions

[Type here **DD1+**]

4.3.4 Core ECE Design Tasks

[DD1+ Write tasks and course that helps accomplish that task]

• ECE xxxxx: [Type the relationship here.]

4.3.5 Schematics

[Type here **DD2+**]

4.3.6 Parts

• [Type here **DD1+**]

4.3.7 Algorithm

[Type here **DD1+**]

4.3.8 Theory of Operation

[Type here **DD2+**]

4.3.9 Specifications Measurement

[DD3+ Every specification here should match the specification above.]

1. [Copy specification here.] [Explain the specification here. Add photoes if necessary.]

4.3.10 Standards

[DD1+]

 \bullet [Standard Name]: [Describe the standards and explain the connection]

Figure 4.3.1: Subsystem Block Diagram

Figure 4.3.2: [Schematic Name]

4.4 Subsystem 4: [Subsystem Name]

4.4.1 Subsystem Diagrams

[DD1+]

4.4.2 Specifications

1. [Type here **DD1+**]

4.4.3 Subsystem Interactions

[Type here **DD1+**]

4.4.4 Core ECE Design Tasks

[DD1+ Write tasks and course that helps accomplish that task]

• ECE xxxx: [Type the relationship here.]

4.4.5 Schematics

[Type here **DD2+**]

4.4.6 Parts

• [Type here **DD1+**]

4.4.7 Algorithm

[Type here **DD1+**]

4.4.8 Theory of Operation

[Type here **DD2+**]

4.4.9 Specifications Measurement

[DD3+ Every specification here should match the specification above.]

1. [Copy specification here.] [Explain the specification here. Add photoes if necessary.]

4.4.10 Standards

[DD1+]

 \bullet [Standard Name]: [Describe the standards and explain the connection]

Figure 4.4.1: Subsystem Block Diagram

Figure 4.4.2: [Schematic Name]

5 PCB Design

5.1 PCB Schematics

 $[\mathbf{DD3} +]$

Figure 5.1.1: PCB Schematic

5.2 PCB Layout

[DD3+]

Figure 5.2.1: PCB Layout

6 Final Status of Requirements

[DD3+] [If met, give a detailed explanation of the requirement. If partially met, mention what has been met and a reason for why the complete requirement couldn't be achieved. If not met, give an explanation for why the requirement couldn't be met in the product. Add as many requirements as you had in your earlier design documents here.

- 1. Requirement 1: [Copy your requirement above here]

 Met: [Explanation]
- 2. Requirement 2: [Copy your requirement above here] **Partially Met**: [Explanation]
- 3. Requirement 3: [Copy your requirement above here] **Not Met**: [Explanation]

7 Team Structure

[DD1+]

7.1 Team Member 1

[Name Here]

Major: [FILL IN]

Contact: [user]@purdue.edu

Team Role: [Technical and Professional Roles in the team]

Bio: [Short Introduction here]

7.2 Team Member 2

[Name Here] Major: [FILL IN]

Contact: [user]@purdue.edu

Team Role: [Technical and Professional Roles in the team]

Bio: [Short Introduction here]

7.3 Team Member 3

[Name Here]

Major: [FILL IN]

Contact: [user]@purdue.edu

Team Role: [Technical and Professional Roles in the team]

Bio: [Short Introduction here]

7.4 Team Member 4

[Name Here]

Major: [FILL IN]

Contact: [user]@purdue.edu

Team Role: [Technical and Professional Roles in the team]

Bio: [Short Introduction here]

8 Bibliography

[Here are some examples. IEEE format can be found on Purdue OWL.]

References

- [1] "Data Platform Open Power System data," Apr. 15, 2020. https://data.open-power-system-data.org/household_data/
- [2] Author,"Title," Journal, volume, number, page range, month year, DOI.
- [3] Author. "Page." Website. URL(accessed month day, year)

9 Appendices

[This section is mainly designed for code. You can directly generate a somewhat decent display of your code file or psuedo code by using the template provided below. You can have as many appendix as you want. In the document, you can refer to the code posted here instead of pasting the whole code in the body.]