

BOOLEAN ALGEBRA: PART 1

- Principles
- Boolean functions

Boolean algebra: Axiomatic definition

A Boolean algebra consists of

A set of elements B

Binary operators {+, •} Boolean sum and product

A unary operation { ' } (or { \bullet}) example: A' or A

...and the following axioms

- 1. The set B contains at least two elements $\{a b\}$ with $a \neq b$
- 2. Closure: a+b is in B a b is in B a' is in B
- 3. Commutative: a+b=b+a $a \cdot b=b \cdot a$
- 4. Associative: a+(b+c) = (a+b)+c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 5. Two neutral elements denotes 0 and 1: a+0=a $a\cdot 1=a$
- 6. Distributive: $a+(b \cdot c)=(a+b) \cdot (a+c)$ $a \cdot (b+c)=(a \cdot b)+(a \cdot c)$
- 7. Complementarity: for every element a, a' exists such that a+a'=1 $a \cdot a' = 0$

BOOLEAN ALGEBRA: EXHAUSTIVE DEFINITION ()

A SET OF TWO ELEMENTS denoted 0 and 1 and 3 operators defined below by Truth tables.

AND	a•b	or	ab

NOT
$$\frac{}{a}$$
 or a'

Digital (binary) logic is a Boolean algebra

Substitute

 $\{0, 1\}$ for B

AND for • Boolean Product. In logic this was A

OR for + Boolean Sum. In logic this was v

NOT for 'Complement. In logic this was ¬

All the axioms hold for binary logic

Ambiguity:

$$a + bc = a + (bc) \text{ or } a+bc = (a+b) c ?$$

Priority rule: "and" has priority (must be executed before) over "or".

So
$$A + BC = A + (BC)$$

Same rule as in standard arithmetic: multiplication has priority over addition.

Variables and their complements are sometimes called literals

Useful laws and theorems

Absorption:

$$a + 1 = 1$$

Dual: $a \cdot 0 = 0$

Idempotent:

$$a + a = a$$

Dual: $a \cdot a = a$

Idempotent:

$$(a')' = a$$

Uniting:

Dual: (a+b)•(a+b')=a

Useful laws and theorems (con't)

Absorption: a+a•b=a Dual: a•(a+b)=a

Absorption (#2): $(a+b')\cdot b=a\cdot b$ Dual: $(a\cdot b')+b=a+b$

de Morgan's: (a+b+...)'=a'•b'•... Dual: (a•b•...)'=a'+b'+...

Multiplying & factoring: (a+b)•(a'+c)=a•c+a'•b

Dual: a•b+a'•c=(a+c)•(a'+b)

Consensus: $(a \cdot b) + (b \cdot c) + (a' \cdot c) = a \cdot b + a' \cdot c$

Dual: $(a+b) \cdot (b+c) \cdot (a'+c) = (a+b) \cdot (a'+c)$

DEMONSTRATION USING TRUTH TABLE (+)

$$(a+b)(a+b') = a$$

BOOLEAN FUNCTION: EXAMPLE (+)

abc	F(a,b,c)	
000	0	
001	0	
010	1	
011	1	
100	0	
101	1	
110	0	
111	1	

Truth Table

REMARK: easy to derive Truth Table from algebraic expression but going in the other direction is not straightforward

IMPORTANT ELEMENTARY BOOLEAN FUNCTIONS (1)

			a	b	(ab)'
NIANID	(- I- \1	(- I- \)	0	0	1
NAND	(a•b)' or	(ab)	0	1	1
			1 1	0 1	1
			1	1	¹ 0
			a	b	(a+b)'
			0	0	1
NOR	(a+b)'		0	1	0
	(3.7.13)		1	0	0
			1	1	0

XOR (Ou Exclusif) a⊕b

а	b	a⊕b
0	0	1
0	1	0
1	0	0
1	1	1

GENERAL AND (COMPLETE) MINTERM

DEFINITION: For a boolean function of **n** variables $x_{(n-1)}, x_{(n-2)}, \dots, x_2, x_1, x_0$, a product term in which each of the n variables appears **at most once** (either in its complemented or uncomplemented form) is called a **general minterm.**

Thus, a **general minterm** is a logical expression of n variables that employs only the complement operator and the disjunction (AND) operator.

DEFINITION (Wikipedia): For a boolean function of \mathbf{n} variables $x_{(n-1)}, x_{(n-2)}, \dots, x_2, x_1, x_0$, a product term in which each of the \mathbf{n} variables appears **exactly once** (either in its complemented or uncomplemented form) is called a (complete) minterm.

COMPLETE MINTERM DEFINED BY A VECTOR (2)

Let us consider a n bit vector $V = (v_{(n-1)}, v_{(n-2)}, \dots, v_2, v_1, v_0)$, the complete minterm associated with V is defined by the formula

$$Min_{V}(x_{(n-1)},x_{(n-2)}....x_{2},x_{1},x_{0}) = (1 \oplus x_{(n-1)} \oplus v_{(n-1)}) (1 \oplus x_{(n-2)} \oplus v_{(n-2)})....$$

 $(1 \oplus x_{1} \oplus v_{1}) (1 \oplus x_{0} \oplus v_{0})$

MINTERM/MAXTERM: VECTOR /NUMBER 💮

VECTOR	Minterm	Number	Name
(0,0,0,1,0)	X' ₄ .X' ₃ .X' ₂ .X ₁ .X' ₀	2	m_2
(1,0,0,0,1)	$X_4.X'_3.X'_2.X'_1.X_0$	17	m ₁₇
(1,0,0,1,1)	$x_4.x'_3.x'_2.x_1.x_0$	19	m ₁₉
(0,1,1,1,0)	x' ₄ .x ₃ .x ₂ .x ₁ .x' ₀	14	m ₁₄

VECTOR	Maxterm	Number	Name
(0,0,0,1,0)	$x_4 + x_3 + x_2 + x_1' + x_0$	2	M_2
(1,0,0,0,1)	x' ₄ +x ₃ +x ₂ +x ₁ +x' ₀	17	M ₁₇
(1,0,0,1,1)	x' ₄ +x ₃ +x ₂ +x' ₁ +x' ₀	19	M ₁₉
(0,1,1,1,0)	$x_4 + x'_3 + x'_2 + x'_1 + x_0$	14	M_{14}

COMPLETE MINTERMS 3 VARIABLES ()

VECTOR	Minterm	Number	Name
(0,0,0)	x' ₂ .x' ₁ .x' ₀	0	m_0
(0,0,1)	$x'_{2}.x'_{1}.x_{0}$	1	m_1
(0,1,0)	x' ₂ .x ₁ .x' ₀	2	m_2
(0,1,1)	$x'_{2}.x_{1}.x_{0}$	3	m_3
(1,0,0)	X ₂ . X ' ₁ . X ' ₀	4	m_4
(1,0,1)	$\mathbf{X}_{2}.\mathbf{X'}_{1}.\mathbf{X}_{0}$	5	m_5
(1,1,0)	$\mathbf{X}_{2}.\mathbf{X}_{1}.\mathbf{X}'_{0}$	6	m_6
(1,1,1)	$x_2.x_1.x_0$	7	m ₇

COMPLETE MAXTERMS 3 VARIABLES 🕒

VECTOR	Maxterm	Number	Name
(0,0,0)	$\mathbf{x}_2 + \mathbf{x}_1 + \mathbf{x}_0$	0	M_0
(0,0,1)	$x_2+x_1+x_0'$	1	M_1
(0,1,0)	$x_2 + x'_1 + x_0$	2	M_2
(0,1,1)	$\mathbf{x}_2 + \mathbf{x}'_1 + \mathbf{x}'_0$	3	M_3
(1,0,0)	$x'_{2}+x_{1}+x_{0}$	4	M_4
(1,0,1)	$x'_{2}+x_{1}+x'_{0}$	5	M_5
(1,1,0)	x' ₂ +x' ₁ +x ₀	6	M_6
(1,1,1)	x' ₂ +x' ₁ +x' ₀	7	M_7

MINTERM CANONICAL FORM

Theorem: Let F be a Boolean function and Sup (F) (called support of F) the set of Boolean vectors for which F value is 1, then

$$F = \sum_{V in Sup(F)} Min_V$$

MAXTERM CANONICAL FORM

Theorem: Let F be a Boolean function and ASup(F) (called AntiSupport of F) the set of Boolean vectors for which F value is 0, then

$$F = \prod_{V \ in \ ASup(F)} Max_V$$

MINTERM CANONICAL FORM (EXAMPLE) (+)

	abc	F(a,b,c)
0	000	0
1	001	1
2	010	1
3	011	1
4	100	0
5	101	1
6	110	1
7	111	0

MAXTERM CANONICAL FORM (EXAMPLE) (+)

Acknowledgements

A lot of material was found in Wikipedia.

Some of these slides were inspired by slides developed by:

- University of Washington Computer Science & Engineering (CSE 370)
- Y.N. Patt (Univ of Texas Austin)
- S. J. Patel (Univ of Illinois Urbana Champaign)
- Walid A. Najjar (Univ California Riverside)
- Brian Linard (Univ California Riverside)
- G.T. Byrd (Univ North Carolina)