The (Un)Reasonable Design of Stablecoins

Ariah Klages-Mundt
Cornell University

Exogenous = asset price independent of protocol

Endogenous = asset price self-referential with protocol

Agent = speculative agents decide, as applicable, risk exposure or issuance

Agent
Algorithmic

Exogenous = asset price independent of protocol

Endogenous = asset price self-referential with protocol

Agent = speculative agents decide, as applicable, risk exposure or issuance

 \triangle = recent problems observed, X = broken

Agent
Algorithmic

This talk: Non-custodial stablecoins (and DeFi more generally)

- ➤ Three fundamental design problems
 - 1. Technical security
 - 2. Economic security
 - 3. Economic stability
- ➤Our work exploring these

Work we will draw from

Stablecoins 2.0: Economic Foundations and Risk-based Models. AK, D Harz, L Gudgeon, JY Liu, A Minca. At ACM AFT (2020).

While Stability Lasts: A Stochastic Model of Stablecoins. AK, A Minca (2020).

(In)Stability for the Blockchain: Deleveraging Spirals and Stablecoin Attacks. AK, A Minca. To appear in Cryptoeconomic Systems, MIT Press (2021). Preprint 2019.

SoK: Decentralized Finance (DeFi). S Werner, D Perez, L Gudgeon, AK, D Harz, W Knottenbelt (2021).

Governance Extractable Value. L Lee, AK (2021 blog post).

Designing an Autonomous Primary Market for Stabilizing Non-custodial Stablecoins. AK, S Schuldenzucker (not yet released)

----Fundamental Design Problems----

Technical Security

Atomic, instantaneous exploits of technical structure (risk-free)

Economic Security

Manipulation of equilibria over some time period (not risk-free)

Economic Stability

Do incentives actually lead to stable outcomes?

Technical Security

Atomic, instantaneous exploits of technical structure (risk-free)

- Risk-free because outcomes binary for attacker:
 - Either attack is successful = profit \$\$
 - Or it doesn't happen = only pay gas fee
- Examples: atomic MEV, sandwich attacks, reentrancy, logic bugs now well-studied!
- **Best addressed:** program analysis, formal models to specify protocols

'Engineering Error' Led to \$34 Million DeFi Hack, Harvest Finance Says

Yearn Loses \$11M in 2021's First DeFi Hack

Economic Security

Manipulation of equilibria over some time period (not risk-free)

- Exploits both technical structure and economic equilibrium over some time period
- **Not risk-free** for attacker:
 - Tangible upfront costs to perform manipulation
 - Possibility of attack failure and mis-estimation of market
 - Not atomic
- Less studied: governance extractable value, MEV reorg attacks, market manipulation exploits
- To address: needs economic models of how these systems and agents work

Economic Security

Manipulation of equilibria over some time period (not risk-free)

Illustration (not clear exploit): Nov 2020

DAI price increase led to a massive \$88 million worth of liquidations at DeFi protocol Compound

May 2021: a clear exploit

Venus, BSC's largest lending platform, once again experienced problems. By manipulating the price of XVS, someone borrowed 4100BTC and 9600ETH, generated more than \$100m in bad debts. Venus had similar loopholes before, and was loaned 3000 Bitcoins and 7000 ETH.

Our Work on **Economic Security**

Economic attacks: market manipulation, liquidations, MEV

Variant later occurred in Dai

Mempool Manipulation Enabled Theft of \$8M in MakerDAO **Collateral on Black** Thursday: Report

(In)Stability for the Blockchain, 2019

Stablecoins 2.0, 2020

Tractable "forking" model of MEV-based reorgs

Our Work on **Economic Security**

GEV = short-termism and governance attacks (e.g., rugpulls)

- Capital structure models for "price of anarchy"
- "Honest" incentives may not be enough
- Impossibility conjecture about many systems today

Analogy: a bank that's unsecure if equity $< 2x AUM \rightarrow$ no depositors participate

Optimistic Approval mechanism to bypass impossibility

• Give users option to veto governance changes to align vision

Stablecoins 2.0, 2020

Governance Extractable Value (blog), 2021

----Fundamental Design Problems----

Technical Security

Atomic, instantaneous exploits of technical structure (risk-free)

Economic Security

Manipulation of equilibria over some time period (not risk-free)

Economic Stability

Do incentives actually lead to stable outcomes?

----Deleveraging Spirals in Dai----

(In)Stability for the Blockchain, 2019

While Stability Lasts, 2020

CDO Structure

CDO Structure

Split into 2 tranches

Junior tranche = more risky

Senior tranche = less risky

CDO Structure

Losses that occur are first borne by junior tranche

Senior tranche protected

Stablecoin CDO-like Structure

~ Risk Absorbers

~ Stablecoin Holders

Stablecoin CDO-like Structure

Modeling Price Dynamics

- (Original) Dai supply determined in leverage market
 - Created by speculator choosing to borrow against ETH (risky!)
 - Endogenous price: supply needn't = demand at \$1
 - Traditional financial leverage models not applicable
- Stochastic models of endogenous stablecoin price (K-M, 2020), (K-M, 2019)
 - Deleveraging spirals → short squeeze effect, amplify collateral drawdown
 - 'Stable' and 'unstable' regions for stablecoins

Model: Speculator

Collateral constraint: protocol requires over-collateralization

Model: Speculator

Decision: Change stablecoin supply to maximize next period expected returns

$$\max_{\Delta_t} \quad \mathbb{E}[Y_{t+1}|\mathcal{F}_t]$$
s.t.
$$\bar{N}_t X_t \ge \beta L_t$$

$$Y_t = N_{t-1}X_t - L_{t-1} -$$
liquidation effect

Protocol can liquidate: costs and market effect

Deleveraging Spiral – Round 2

2nd Liquidation

Supply

Deleveraging Spiral – Round 2

Deleveraging Spiral – Round 2

Black Thursday in Dai, March 2020

~50% ETH price crash

Liquidation price effect on Dai DEX trades

Non-custodial Complications

- No stable region when X_t is not \sim submartingale (positive expectations)
- Seeming contradiction: goal to make decentralized stablecoin, but can only be fully stabilized by adding uncorrelated assets, which are currently custodial
- Patching this has been major topic since Black Thursday

Non-custodial Complications

Solutions:

- Maker: Since Black Thursday has tethered to USDC (+ custodial risks)
 - ➤ Maintaining exchangeability via USDC reserve ("PSM")

Non-custodial Complications

Solutions:

- **Maker:** Since Black Thursday has tethered to USDC (+ custodial risks)
 - Maintaining exchangeability via USDC reserve ("PSM")
- **Rai:** negative rates during crises (equilibrium participation, liquidity?)
- **Liquity (and our 2020 paper):** Dedicated liquidity pools for crises

Non-custodial Complications

Solutions:

- Maker: Since Black Thursday has tethered to USDC (+ custodial risks)
 - Maintaining exchangeability via USDC reserve ("PSM")
- Rai: negative rates during crises (equilibrium participation, liquidity?)
- Liquity (and our 2020 paper): Dedicated liquidity pools for crises
- Reserve-backed primary markets: Gyroscope

----Algorithmic Design----

Gyroscope P-AMM, 2021 (soon)

What Backs a Currency Peg?

2 sources of value

Peg sustained!

What Backs a Currency Peg?

A shock to one of these...

What Backs a Currency Peg?

A shock to one of these...

Peg breaks!

^{*}Highly simplified: see (Morris & Shin, 1998) for more precise model

What Backs Algorithmic Stablecoins?

These systems have no native usage, but try to start out under-backed

- What are these assets?
- Seigniorage shares: value of endogenous "equity shares"
- Basis: nothing!
- Reserve-backed: some portfolio

Contrasting Algorithmic Stablecoins

- Primary market = minting and redeeming
- Redemption curve = price of redemption as fn. of system state
- A key factor: What do redemption curves look like?

Case study 1: Basis/ESD

Flat at \$0 (no asset backing)

Case study 2: USDC/USDT

- Flat redemption curve at \$1
- Offchain, so must trust issuer to maintain primary market
- Dai PSM wrapped version of this

Case study 3: Fei

• Implicit redemption curve very steep to \$0

Implicit Fei Redemption Curve, Reserve Ratio = 100%

Case Study 4: Seigniorage shares

- \$1 redemption, but backing volatile endogenous asset
- Speculative attack could cause collapse of this asset value (UST, Titan)

TITAN endogenous asset backing:

IRON stablecoin:

- Current space of primary market mechanisms
 - Ad hoc design
 - Need governance to make quick fixes in crises
- Missing: how to design primary markets with desirable properties that can adapt autonomously?

Gyroscope P-AMM, 2021 (soon)

Some Properties

- Bounded loss for protocol and redeemers
 - Reserve assets can't be depleted
- "Path deficiency"
 - No incentive to subdivide trades
- Efficiently computable on-chain

The End: Papers available on arXiv

We seed stablecoin and DeFi design problems and models

Fundamental Design Problems

- 1. Technical Security
- 2. Economic Security
- 3. Economic Stability

Design gap: robust reserve-backed stablecoins designed for liquidity

led us to design Gyroscope: https://gyro.finance/

