

Departamento de Matemática, Universidade de Aveiro Álgebra Linear e Geometria Analítica — Agrup. IV 1.ª Prova de Avaliação Discreta; 2 de novembro de 2018 Duração: 1h30min

- Justifique todas as respostas e indique os cálculos efetuados -

1. Considere as matrizes: $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 2 & 0 \end{bmatrix}$.

[15pts]

(a) Calcule um produto (que esteja definido) das três matrizes.

[20pts]

(b) Usando o método de eliminação de Gauss-Jordan, determine a matriz escalonada por linhas reduzida equivalente a C. Indique, justificando, a característica e a nulidade de C.

[15pts]

- (c) Justifique que A é invertível. Sendo $D=\begin{bmatrix}1&0&0\end{bmatrix}$, determine a matriz X tal que $XA^{-1}=D$.
- 2. Considere $A=\left[\begin{array}{ccc}1&1&a\\1&a&1\\a&1&1\end{array}\right],\,a\in\mathbb{R},\;\;\mathbf{e}\;B=\left[\begin{array}{ccc}-1\\2\\-1\end{array}\right].$

[40pts]

(a) Discuta, em função do parâmetro a, o sistema AX = B.

[12pts]

(b) Para a = 3, B pertence ao espaço das colunas de A? Justifique.

[13pts]

(c) Para a = 1, determine $\mathcal{N}(A)$, o espaço nulo de A.

3. Sejam A(-1,0,2), B(1,2,3) e C(0,1,3) pontos de \mathbb{R}^3 .

[15pts]

(a) Calcule o volume do paralelepípedo com vértice em O=(0,0,0) e arestas \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .

[20pts]

- (b) Calcule a área de um dos paralelogramos com vértices em $O,\,A$ e B.
- $\text{4. Seja A a matriz 4×4 invertivel tal que } \quad \text{adj $A = \begin{bmatrix} 1 & 1 & 0 & 4 \\ 1 & 2 & 1 & 8 \\ 1 & 0 & 7 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$

[15pts]

(a) Verifique que $\det(\operatorname{adj} A) = -8$

[20pts]

(b) Calcule A^{-1} .

[15pts]

5. Diga, justificando, se é verdadeira ou falsa a seguinte afirmação. Caso seja falsa, apresente um contra-exemplo.

$$(X \times Y) \cdot (X + Y) = 0$$
, quaisquer que sejam $X, Y \in \mathbb{R}^3$.