STN Karlsruhe

L2 ANSWER 1 OF 1 WPIDS COPYRIGHT 2004 THE THOMSON CORP on STN AB DE 19948395 A UPAB: 20010711

NOVELTY - In a fluidized bed reactor, the heater (14) is a radiation source positioned outside the inner reaction tube (3) and not in direct contact with it. (14) is annular so as to define a heating zone and constructed so that it heats silicon particles (5) in the heating zone to a temperature that adjusts the required temperature in the reaction zone.

DETAILED DESCRIPTION - The reactor comprises: a pressure-resistant shell (2); (3), made of material highly transmissive for heat radiation; inlet (4) for (5); tubular inlet (6) for (i) delivering gas that contains a silicon compound (as gas or vapor) and (ii) dividing the fluidized bed into a heating zone and, above this, a reaction zone; gas distributor for supplying fluidizing gas to the heating zone; outlet (10) for unreacted reactant, fluidizing gas and gaseous/vapor reaction by-products; outlet (12) for product; (14) and an attached energy source.

An INDEPENDENT CLAIM is also included for a method of producing high purity, polycrystalline silicon using this reactor.

USE - The reactor is used to produce high-purity, polycrystalline silicon, a starting material for electronic components and solar cells.

ADVANTAGE - Radiative heating makes it possible to operate the fluidized bed for a long time at the required reaction temperature, producing granules of high purity and with only a low level of agglomeration. The heat-transfer mechanism is self-stabilizing; heating can be made very uniform over an exactly defined region; the heating zone can be operated with low speed of fluidizing gas and materials used for insulation are not limited to those than are transparent for microwaves.

DESCRIPTION OF DRAWING(S) - Diagram of the fluidized bed reactor.

Inner reactor tube 3

Inlet for silicon particles 4

Inlet for reactive gas 7

Inlet for fluidizing gas 9

Product outlet 13

Radiative heater 14

Dwg.1/2

BEST AVAILABLE COP

19 BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift _® DE 199 48 395 A 1

(5) Int. Cl.⁷: C 01 B 33/027

B 01 J 8/24

DEUTSCHES PATENT- UND MARKENAMT (7) Aktenzeichen:

199 48 395.7

② Anmeldetag:

6. 10. 1999

(3) Offenlegungstag:

3: 5.2001

Anmelder:

Wacker-Chemie GmbH, 81737 München, DE

② Erfinder:

Weidhaus, Dieter, Dipl.-Ing., 84489 Burghausen, DE; Hayduk, Alexander, Dipl.-Ing. (FH), 84489 Burghausen, DE

58 Entgegenhaltungen:

DE wo

43 27 308 A1 96 41 036 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (4) Strahlungsbeheizter Fliessbettreaktor
- Die Erfindung betrifft einen strahlungsbeheizten Fließbettreaktor und ein Verfahren zur Herstellung von hochreinem polykristallinem Silicium mittels dieses Reaktors. Der Fließbettreaktor (1) weist folgende Komponenten auf: a) eine drucktragende Hülle (2), b) ein inneres Reaktorrohr (3) aus einem Material, das

eine hohe Transmission für Wärmestrahlung aufweist,

c) einen Einlaß (4) für Siliciumpartikel (5),

d) eine Einlaßvorrichtung (6) zum Zuführen eines Reaktionsgases (7), das eine gas- oder dampfförmige Siliciumverbindung enthält, wobei die Einlaßvorrichtung (6) rohrförmig ausgebildet ist und das Fließbett in eine Heizzone und eine darüberliegende Reaktionszone teilt,

e) eine Gasverteilungseinrichtung (8) für die Zufuhr eines

Fluidisiergases (9) in die Heizzone,

f) einen Auslaß (10) für nicht abreagiertes Reaktionsgas, Fluidisiergas sowie die gas- oder dampfförmigen Produkte der Reaktion (11),

g) einen Auslaß (12) für das Produkt (13),

h) eine Heizvorrichtung (14),

i) eine Energieversorgung (15) für die Heizvorrichtung

Er ist dadurch gekennzeichnet, daß die Heizvorrichtung (14) eine Strahlungsquelle für Wärmestrahlung ist, die au-Berhalb des inneren Reaktorrohres und ohne direkten Kontakt zu diesem ringförmig um die Heizzone angeordnet ist und derart ausgebildet ist, daß sie mittels Wärmestrahlung die Siliciumteilchen in der Heizzone auf so eine Temperatur aufheizt, daß sich in der Reaktionszone die Reaktionstemperatur einstellt.

Beschreibung

Die Erfindung betrifft einen strahlungsbeheizten Fließbettreaktor und ein Verfahren zur Herstellung von hochreinem polykristallinem Silicium mittels dieses Reaktors.

Hochreines polykristallines Silicium dient u. a. als Ausgangsmaterial für die Herstellung von elektronischen Bauteilen und Solarzellen. Es wird durch thermische Zersetzung eines siliciumhaltigen Gases oder eines siliciumhaltigen Gasgemisches gewonnen. Dieser Prozess wird als Abscheidung aus der Dampfphase (CVD, chemical vapor deposition) bezeichnet. In großem Maßstab, wird dieser Prozeß in sogenannten Siemens-Reaktoren realisiert.

In neuester Zeit gibt es jedoch zahlreiche Bestrebungen, als Alternative zum diskontinuierlichen Siemens-Verfahren ein Fließbettverfahren zu nutzen. Hierbei wird ein Fließbett aus Siliciumpartikeln, beispielsweise annähernd kugelförmige Partikel mit einem Durchmesser von 200 µm–3000 µm, betrieben. Die Partikel werden auf die nötigen Abscheidetemperaturen von bevorzugt 600–1100°C erhitzt und ein siliciumhaltiges Gas bzw. Gasgemisch, beispielsweise Trichlorsilan oder ein Trichlorsilan-Wasserstoffgemisch, durch das Fließbett geleitet. Dabei scheidet sich elementares Silicium auf den Siliciumpartikeln ab und die einzelnen Partikel wachsen in der Größe an. Durch den regelmäßigen Abzug von angewachsenen Partikeln und Zugabe kleinerer Siliciumpartikel als Keimpartikel kann das Verfahren kontinuierlich mit allen damit verbundenen Vorteilen betrieben werden.

Eine wesentliche Schwierigkeit beim Fließbettverfahren ist das Einbringen der Energie, um das Fließbett bei den benötigten hohen Temperaturen, die bevorzugt zwischen 600 und 1100°C liegen, zu betreiben. Die Abscheidereaktion ist nicht selektiv hinsichtlich des Materials der Feststoffoberfläche, die CVD-Reaktion findet bevorzugt an der heißesten Oberfläche statt. Wird die Energie über eine Wandheizung dem Fließbett zugeführt, so ist die Bewandung des Fließbettes die heißeste Oberfläche im Reaktionsraum und es kommt zu einer entsprechend hohen Abscheidung von Silicium auf dieser Wand. Durch fortwährendes Aufwachsen von Silicium kann diese Wandschicht die Heizung stark bis hin zur Funktionsuntüchtigkeit beeinträchtigen. Entsprechend sind in der Technik verschiedene Methoden bekannt, um dies zu vermeiden.

WO 96/41036 beschreibt ein Verfahren, bei dem die Energie mittels eines stark gebündelten Lichtstrahles durch die Gaszufuhr eingebracht wird. Der Lichtstrahl durchdringt das Gas, wird von den Siliciumpartikeln absorbiert und heizt diese auf. Nachteiligerweise wird dadurch nur der Bereich des Fließbettes beheizt, der sich in der direkten Umgebung des Eintrittes des siliciumhaltigen Gases befindet.

Aus DE 36 38 931 C2 (entspricht US 4,786,477)ist das Beheizen des Fließbettes mittels Mikrowellen bekannt. Über eine mikrowellendurchlässige Fließbettbewandung aus Quarz, werden dem Fließbett Mikrowellen zugeführt. Die Partikel werden dadurch direkt beheizt, sie sind somit heißer als die Wand. Da jedoch der Wärmeübergang Wand/Partikel dafür sorgt, daß der Temperaturunterschied Wand/Partikel nur geringfügig ist, kommt es auch hier zur unerwünschten Wandabscheidung von Silicium.

Deshalb wurde die Mikrowellenbeheizung in DE 43 27 308 C2 (entspricht US 5,382,412) weiterentwickelt und das Fließbett vertikal in eine untere Heizzone und eine darüberliegende Reaktionszone aufgeteilt. In der Heizzone werden die Partikel von einem inerten Gas, bevorzugt Wasserstoff, fluidisiert und mittels Mikrowellen beheizt. Durch Partikelund Gaskonvektion wird die darüberliegende Reaktionszone auf die Abscheidetemperatur aufgeheizt. Das siliciumhaltige Gas wird über eine Düse erst in der Reaktionszone zugegeben. Hier findet dann die Abscheidereaktion statt. Die Heizzone selbst bleibt frei von Wandabscheidung und die Mikrowellenheizung wird daher auch bei längerem Betrieb nicht beeinträchtigt.

Mit einem derartigen Reaktor kommt es jedoch aufgrund des temperaturabhängigen Einkoppelverhaltens von Mikrowellen in Silicium und der Abhängigkeit des Energieeintrages von der Geometrie des Reaktors und der Mikrowellenzufuhr zu einer flächig ungleichmäßigen Energiezufuhr. In der Fachwelt wird dies resultierende Problem als Hot Spot/Cold Spot bezeichnet und z. B. in US 4,967,486 im Zusammenhang mit einem mikrowellenbeheizten Fließbett erwähnt. Es kommt dabei zu starker Überhitzung einzelner Siliciumpartikel und zum Zusammensintern von Partikeln sowie zur Bildung von größeren Partikelagglomeraten im Fließbett. Diese Siliciumagglomerates sind im Produkt unerwünscht und stören aufgrund schlechterer Fließeigenschaften den Reaktorbetrieb erheblich. Ebenso hafteten Partikel an der Fließbettbewandung an und wurden teilweise bis zum Aufschmelzen (T > 1400°C) aufgeheizt. Die starke Überhitzung von Partikeln in direkter Nähe der Wellenleiteranschlüsse führte außerdem zu einer übermäßigen thermischen Belastung der Fließbettbewandung. In der Summe führen die aufgezählten Nachteile zu einer instabilen Betriebsweise und einer unzufriedenstellenden Produktqualität. Die Fluidisierung des Fließbettes und damit das Mischungsverhalten hat zwar eine ausgleichende Wirkung hinsichtlich der Temperaturverteilung im Fließbett, dies ist jedoch stark abhängig vom Grad der Fluidisierung. Je höher die Gasgeschwindigkeit umso stärker werden Partikel vertikal und horizontal vermischt. Eine Erhöhung der Gasgeschwindigkeit weit über die Lockerungsgeschwindigkeit umf, gekennzeichnet beispielsweise durch Gleichung (18) Chapter 3 in "Fluidization Engineering"; D. Kunii, O. Levenspiel; Butterwoth-Heinemann; Second Edition 1991:

$$_{60}\quad\frac{1.75}{\epsilon_{mf}^{3}\varphi_{s}^{\prime}}{\left(\frac{d_{p}u_{mf}\rho_{g}}{\mu}\right)^{2}}+\frac{150\left(1-\epsilon_{mf}\right)}{\epsilon_{mf}^{3}\varphi_{s}^{2}}{\left(\frac{d_{p}u_{mf}\rho_{g}}{\mu}\right)}=\frac{d_{p}^{3}\rho_{g}\left(\rho_{s}-\rho_{g}\right)g}{\mu^{2}}$$

mit

ε_{mf} Hohlraumanteil am Lockerungspunkt

φ_s Sphärizität der Partikel

d_p Partikeldurchmesser

ρg Gasdichte

ρ_s Feststoffdichte

l u dynamische Viskosität des Gases g Erdbeschleunigung hat jedoch immer eine Erhöhung der nötigen Energiezufuhr zufolge, da das Fluidisiergas im allgemeinen mit deutlich geringerer Temperatur als die Partikel dem Fließbett zuströmt und sich bei der Durchströmung des Fließbettes annähernd auf dessen Temperatur erwärmt. Eine Erhöhung des Gasstromes kann somit zwar einer Hot-Spot/Cold-Spot-Bildung entgegenwirken, sie führt aber immer zu einem erhöhten Energiebedarf des Verfahrens. Aufgabe der Erfindung ist es, einen Fließbettreaktor zur Verfügung zu stellen, bei dem das Fließbett derart beheizt wird, daß es über längerer Zeit bei den notwendigen hohen Temperaturen störungsfrei betrieben werden kann und Granulat von hoher Reinheit und einem geringen Anteil an Agglomeraten hergestellt wird. Die Aufgabe wird gelöst durch einen Fließbettreaktor (1) der aufweist: a) eine drucktragende Hülle (2) b) ein inneres Reaktorrohr (3) aus einem Material, das eine hohe Transmission für Wärmestrahlung aufweist c) einen Einlaß (4) für Siliciumpartikel (5), d) eine Einlaßvorrichtung (6) zum Zuführen eines Reaktionsgases (7), das eine gas- oder dampfförmige Siliciumverbindung enthält, wobei die Einlaßvorrichtung (6) rohrförmig ausgebildet ist und das Fließbett in eine Heizzone und eine darüberliegende Reaktionszone teilt, e) eine Gasverteilungseinrichtung (8) für die Zufuhr eines Fluidisiergases (9) in die Heizzone f) einen Auslaß (10) für nicht abreagiertes Reaktionsgas, Fluidisiergas sowie die gas- oder dampfförmigen Produkte der Reaktion (11) g) einen Auslaß (12) für das Produkt (13) h) eine Heizvorrichtung (14), i) eine Energieversorgung (15) für die Heizvorrichtung (14) dadurch gekennzeichnet, daß die Heizvorrichtung (14) eine Strahlungsquelle für Wärmestrahlung ist, die außerhalb des inneren Reaktorrohres und ohne direkten Kontakt zu diesem ringförmig um die Heizzone angeordnet ist und derart ausgebildet ist, daß sie mittels Wärmestrahlung die Siliciumteilchen in der Heizzone auf so eine Temperatur aufheizt, daß sich in der Reaktionszone die Reaktionstemperatur einstellt. Zur Reduzierung von Wärmeverlusten ist der Raum zwischen innerem Reaktorrohr (3) und drucktragender Hülle (2) vorzugsweise mit einer thermischen Isolation (16) versehen. Ein solcher Reaktor ist in Fig. 1 dargestellt. Besonders bevorzugt handelt es sich dabei um inertes Material, insbesondere bevorzugt um Quarz oder ein Metallsilikat. Die vertikale Trennung in Heizzone und Reaktionszone analog DE 43 27 308 C2 ermöglicht es, das Fließbett auch mit anderen Heizmethoden als mit Mikrowellen zu beheizen, da es in der Heizzone zu keiner Wandabscheidung kommen kann, weil dort kein siliciumhaltiges Gas vorliegt. Genau dieser Punkt wurde aber im Patent DE 43 27 308 C2 nicht erkannt. Dort werden ganz im Gegenteil andere Heizmethoden als Mikrowellenheizung gerade hinsichtlich zu erwartender Wandabscheidung sowie wegen Material- und Reinheitsprobleme ausgeschlossen (siehe DE 43 27 308 C2 Seite 2 Zeile 60 bis Seite 3 Zeile 22). Die erfindungsgemäße Kombination einer Wärmestrahlungsheizung in Verbindung mit einer vertikalen Trennung des Fließbettes in Heizzone und Reaktionszone zu verwenden, bietet Vorteile: a) Der Wärmeübertragungsmechanismus ist selbststabilisierend. Dies ermöglicht einen schonenden Betrieb für Produkt und, Konstruktionsmaterial der Fließbettbewandung. b) Mit flächigen Heizerelementen, kann die Wärme sehr gleichmäßig über den Umfang des Fließbettes und örtlich definiert eingebracht werden, was wiederum das Konstruktionsmaterial der Fließbettbewandung schont. c) Strahlungsheizer sind einfach aufgebaute und zu betreibende Wärmequellen. d) Aufgrund des Temperaturgefälles vom Heizer zum Fließbett muß dem Fließbett nur der Nettowärmebedarf, also die Wärme, die nötig ist um das Gas von der Zuströmtemperatur auf die Temperatur der Partikel aufzuheizen, zue) Die Heizzone kann mit niedrigen Geschwindigkeiten des Fluidisiergases betrieben werden, da sich auch bei

niedrigen Gasgeschwindigkeiten keine Partikelagglomerate bilden.

f) Für die Isolation können beliebige Materialien benutzt werden. Da das Isolationsmaterial auch in der Heizzone nicht mikrowellendurchlässig sein muß, ist die Auswahl an verwendbaren Materialien wesentlich größer. Bevorzugt werden inerte Materialien verwendet.

g) Die vertikale Trennung in Heizzone und Reaktionszone sorgt dafür, daß es in der Heizzone zu keiner Wandabscheidung kommt. Dies ermöglicht es, daß der Strahlungsheizer über lange Zeit ohne Beeinträchtigung der Wärmeübertragung betrieben werden kann.

Ist die Heizvorrichtung erfindungsgemäß ausgewählt und angeordnet und die Heizvorrichtung und das Material des inneren Reaktorrohres aufeinander so abgestimmt, daß das Reaktorrohr eine hohe Transmission, bevorzugt größer 80% für die vom Heizer emmittierte Wärmestrahlung aufweist, so durchdringt der Hauptteil der Wärmestrahlung das innere Reaktorrohr und wird direkt von den Siliziumpartikeln, die sich in direkter Wandnähe in der Heizzone befinden, absorbiert. So können die Siliciumpartikel im Fließbett sehr gleichmäßig über den Umfang der Heizzone direkt beheizt werden. Nur ein geringer Anteil der Wärmestrahlung wird vom Reaktorrohr absorbiert und beheizt dieses. Die Wärmeübertragung auf die Siliziumpartikel erfolgt nur für diesen Anteil indirekt wie über eine Wandheizung. Mit der erfindungsgemäßen Strahlungsheizung ist nur ein geringes Überschreiten der Lockerungsgeschwindigkeit umf im Bereich der Heizzone nötig, um den Reaktor stabil und kontinuierlich zu betreiben, da keine über den Umfang unterschiedlichen Wärmeeintragsraten, wie sie beispielsweise bei Mikrowellen auftreten, durch erhöhte Fluidisierung ausgeglichen werden müs-

Wie aus den Beispielen ersichtlich, kommt es bei der aus dem Stand der Technik bekannten Beheizung mit Mikrowellen in der Heizzone zu Sinterprozessen, Agglomeratbildungen und Produktanbackungen an der Innenseite der Fließbettbewandung. Anders als durch DE 43 27 308 nahegelegt, werden mit einer Beheizung mittels Wärmestrahlung sehr gute Ergebnisse erzielt und es treten keine Materialprobleme oder Probleme mit Wandabscheidung auf.

Vorzugsweise wird die Heizvorrichtung flächig um die gesamte Heizzone ausgeführt und bildet so eine zylinderförmige Strahlungsquelle. Dadurch erzielt man einen sehr gleichmäßigen Energieeintrag über den vollen Umfang der Heiz-

zone.

Als Heizvorrichtung kommen alle Vorrichtungen in Frage, die Wärmestrahlung einer Wellenlängen von 0,4 µm bis 900 µm, vorzugsweise einer Wellenlängen von 0,4 µm bis 300 µm, besonders bevorzugt nahe Infrarotstrahlung von 0,7 µm bis 25 µm Wellenlänge emittieren.

Bei der Heizvorrichtung handelt es sich beispielsweise um Heizelemente aus dotiertem Silicium oder Graphit oder Siliciumcarbid, Quarzrohrstrahler, Keramikstrahler und Metalldrahtstrahler. Vorzugsweise besteht die Heizvorrichtung aus einem keramischen Material oder Graphit, besonders bevorzugt aus Graphit mit SiC-Oberflächenbeschichtung.

Insbesondere bevorzugt handelt es sich bei der Heizvorrichtung um ein mäanderförmig geschlitztes Rohr aus Graphit mit SiC-Oberflächenbeschichtung, das im Reaktor stehend oder hängend an den Elektrodenanschlüssen angeordnet ist. Vorzugsweise handelt es sich um faserverstärkten Graphit. Eine solche Heizvorrichtung ist beispielhaft in Fig. 2 dargestellt.

Die drucktragende Hülle ist in der Regel als Stahlbehälter ausgeführt.

Um eine hohe Produktreinheit zu erreichen, sollten alle produktberührenden Bauteile des Reaktors vorzugsweise aus inerten Materialien, beispielsweise Silicium, Quarz oder einer Keramik, bestehen oder mit solchen Materialien beschichtet sein.

Als inerte Materialien werden Materialien bezeichnet, welche das Produkt im Reaktor unter Reaktionsbedingungen nicht kontaminieren. Besonders geeignete Materialien hierfür sind Silicium oder Quarz.

Das innere Reaktorrohr muß zudem in jedem Fall eine hohe Transmission für die Wärmestrahlung, die vom gewählten Heizer emmittiert wird, besitzen. So ist beispielsweise bei Quarzglas entsprechender Qualität die Transmission für infrarote Strahlung mit Wellenlängen kleiner als 2,6 µm größer als 90%. Damit ist Quarz in Kombination mit einem infrarothellstrahlendem Heizer (Bereich von 0,7 bis 2,5 µm), beispielsweise einem Strahler mit SiC-Oberfläche, dessen Maximum der emmittierten Strahlung bei 2,1 µm Wellenlänge liegt, besonders gut geeignet.

Die Gasverteilungseinrichtung (8) ist vorzugsweise aus porösem inerten Material oder aus massivem inerten Material

ausgebildet, das mit einzelnen Öffnungen zur Verteilung des Fluidisiergases versehen ist.

Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung von hochreinem polykristalinem Silicium in einem Fließbett unter Einsatz eines erfindungsgemäßen Reaktors.

Bei dem erfindungsgemäßen Verfahren wird hochreines polykristalines Silicium hergestellt durch Abscheiden eines Reaktiongases oberhalb einer Reaktionstemperatur auf Siliciumteilchen in einem Fließbett, welches vertikal in eine Heizzone und eine Reaktionszone aufgeteilt ist, wobei in der Heizzone eine Fraktion der Siliciumteilchen mit Hilfe eines siliciumfreien Fluidisiergas fluidisiert und über die Reaktionstemperatur erhitzt wird und die aufgeheizten Siliciumteilchen in einem oberen Bereich der Heizzone mit den Siliciumteilchen der Reaktionszone unter Übertragung der Wärme aus der Heizzone in die Reaktionszone vermischt werden und in der Reaktionszone das Reaktionsgas, enthaltend eine gasförmige oder dampfförmige Siliciumverbindung, als Siliciummetall bei der Reaktionstemperatur auf den Siliciumteilchen abgelagert wird, und die mit dem abgelagerten Silicium versehenen Teilchen sowie nicht reagierendes Reaktionsgas, Fluidisierungsgas und gasförmige Nebenreaktionsprodukte aus dem Reaktor entfernt werden, dadurch gekennzeichnet, daß das Erhitzen der Siliciumteilchen auf die Reaktionstemperatur in der Heizzone mittels Wärmestrahlung erfolgt.

Bei dem Fluidisiergas, handelt es sich beispielsweise um Wasserstoff.

Beim Reaktionsgas das eine gas- oder dampfförmige Siliciumverbindung enthält, handelt es sich beispielsweise um Monosilan oder um einen Chlorsilanverbindung bzw. um ein Monosilan-Wasserstoff- oder um eine Chlorsilan-Wasserstoff-Gemisch, bevorzugt um Trichlorsilan oder ein Trichlorsilan-Wasserstoff-Gemisch.

Die Partikeltemperaturen in Heizzone und Reaktionszone gleichen sich über Partikel- und Gaskonvektion an, so daß durch Beheizen der Heizzone die Temperatur in der Reaktionszone gesteuert werden kann.

Die Temperatur der Siliciumpartikel liegt in der Reaktionszone vorzugsweise zwischen 600 und 1100°C, insbesondere bevorzugt zwischen 800 und 1100°C.

Der Druck im Fließbett liegt vorzugsweise zwischen 0 und 10 bar Überdruck, insbesondere bevorzugt zwischen 0 und 6 bar Überdruck.

Die Partikel in der Heizzone werden mittels thermischer Wärmestrahlung mit einer Wellenlänge zwischen 0,4 bis 9000 µm und bevorzugt naher Infrarotstrahlung von 0,7 bis 25 µm aufgeheizt, wobei vorzugsweise mittels flächiger Heizstrahler die Wärmeenergie gleichmäßig über den Umfang des Fließbettes eingetragen wird.

In der Heizzone kann wegen geringer Neigung der Siliciumpartikel zur Agglomeratbildung (keine Überhitzung und keine Anwesenheit von siliciumhaltigem Gas) die Geschwindigkeit des Fluidisiergases nahe der Lockerungsgeschwindigkeit u_{mf}, insbesondere auf das 1- bis 2fache der Lockerungsgeschwindigkeit u_{mf}, eingestellt werden.

In der Reaktionszone kann sich das siliciumhaltige Gas an der Oberfläche der heißen Partikel zersetzen und elementares Silicium wächst auf die Partikel auf. Die Partikel im Fließbett sind von annähernd kugelförmiger Gestalt und weisen einen mittleren Korndurchmesser von 200–3000 µm, bevorzugt von 500 bis 1500 µm, auf.

Durch regelmäßiges Abziehen von Partikeln aus dem Fließbett und Zugabe von kleinen Keimpartikeln, kann das Verfahren kontinuierlich betrieben werden.

Vorrichtung und Verfahren dienen vorzugsweise der Abscheidung von hochreinem polykristallinem Silicium als Ausgangsmaterial für die Herstellung von elektronischen Bauteilen und Solarzellen.

Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.

Vergleichsbeispiele

Es wurde ein aus dem Stand der Technik beka In einem druckfesten Stahlbehälter mit einem ein Quarzrohr von 200 mm Innendurchmesser un aus Quarz den Gasverteiler für das Fluidisiergas rohr ein weiteres Quarzrohr mit 10 mm Innendur bzw. Gasgemisches und bildet gleichzeitig die Vo	Innendurchmesser von 2000 mm Länge. A. Durch das Zentrum chmesser und 450 mm prichtung zur Trennur	on 450 mm befi m unteren Ende der Gasverteile n Länge für die 2 ng des Fließbette	des Quarzrohres platte ragt in das Zufuhr des siliciu s in Heizzone und	bildet eine Platte innere Reaktor- mhaltigen Gases	5
Weiterhin ist die Quarzplatte mit einer Öffnun Stahlmantel und oberes Ende des Reaktors si	ig zur Entnahme von i nd mit Öffnungen zur	Zugabe von Ke	n. eimpartikeln und	zur Wegführung	10
des Abgases versehen.	tahlmantel zwei gege	nüberliegende (offnungen zur Zu	fuhr von Mikro-	
wellenenergie, die mittels Wellenleiter von eine liefert maximal 38 kW Mikrowellenleistung bei	einer Frequenz von 9	015 MHz. Zur Te	emperaturmessun	ig wird ein Pyro-	15
meter benutzt, das die Partikeltemperatur an der mißt.	Oberseite des Filenbei	ites als reprasem	anven wert fur d	ie Reaktionszone	
Zur Isolation ist der Raum zwischen innerem Für alle Beispiele wurde eine Startfüllung mit	annähernd gleicher K	lmantel mit Qua orngrößenvertei	rzwolle gefüllt. lung von 200 µm	bis 1100 µm und	,
einem mittleren Korndurchmesser von 550 µm v	verwendet.		,		20
	Vergleichsbeispiel 1				
Zum Test der Mikrowellenheizung wurde das Folgende Bedingungen wurden hergestellt:		nit 24 kg Siliciu	npartikeln gefüll	t.	:
Fluidisiergas Wasserstoff: 13,5 m³/h (Normbedi	ngungen)		r · ·		25
Vorlauftemperatur Fluidisiergas: 120°C			•		
Keine Zugabe von Reaktionsgas Temperatur der Reaktionszone: 920°C					
Druck in der Reaktionszone: 1250 kPa (absolut))	•		,	
Heizleistung: 13.9 kW.					. 30
Das Fließbett wurde mit ca. 1,5facher Locker	ungsgeschwindigkeit	u _{mf} betrieben.	: dom EliaRhatt al	haezoaen und die	
Nach 24 Stunden Betrieb unter o. g. Bedingu Korngrößenverteilung untersucht. Die mittlere	Normaröße war aufar	numparuket aus	orozessen und A	gglomerathildung	
auf 720 µm angestiegen. Die Agglomerate wiese	en eine Größe von bis	zu 4 mm auf. A	ußerdem fanden	sich an der Innen-	
seite des inneren Reaktorrohres zahlreiche ange	backene Partikel.				3
, ,					
	Vergleichsbeispiel 2	2		•	٠.
Das innere Reaktorrohr wurde erneut mit 24	ka Siliciumpartikeln s	efiillt.		•	
Folgende Bedingungen wurden eingestellt:	ag omeramparaxon.	,		•	4
Fluidisiergas Wasserstoff: 22,5 m³/h (Normbedi	ingungen)		·		
Vorlauftemperatur Fluidisiergas: 120°C				•	
Keine Zugabe von Reaktionsgas	•	·			
Temperatur der Reaktionszone: 920°C	,				4
Druck in der Reaktionszone: 1250 kPa (absolut Heizleistung: 16,5 kW.					
Das Fließbett wurde diesmal mit ca. 2,5fache Nach 24 Stunden Betrieb unter o. g. Beding und die Komgrößenverteilung untersucht. Die	ungen wurden die Sil	iciumpartikel er	neut aus dem Fli	ießbett abgezogen	
bildung erneut angestiegen. Diesmal betrug der	mittlere Korndurchm	esser 610 µm. D	ie Innenseite des	Quarzrohres wies	5
diesmal deutlich weniger angebackene Partikel	auf.	•		,	
		•	•	÷	
	Beispiele				
Für die weiteren Versuche wurde der Reakto mestrahlung ein Strahlungsheizer eingebaut. Da	abei handelte es sich u	m ein mäanderfö	ormig geschlitzte:	s Rohr aus Graphit	5
mit SiC-Oberflächenbeschichtung, das das inne ren. Der Strahlungsheizer wurde über eine reg	ere Reaktorrohr im Be	reich der Heizz	one umfable, ohn	e dieses zu berun-	
malleistung betrugt 40 kW.			. •		6
	Beispiel 1				
Die Durchführung erfolgte analog Vergleich	sbeispiel 1. Die Startf	üllung betrug er	neut 24 kg.		
Folgende Bedingungen wurden eingestellt:		•			
Fluidisiergas Wasserstoff: 13,5 m³/h (Normbed Vorlauftemperatur Fluidisiergas: 120°C	miguigen)	_			`
vinianiennemann emphiblevas LAVII.	0 0 .	-		•	
Keine Zugabe von Reaktionsgas				·	

Druck in der Reaktionszone: 1250 kPa (absolut)

Heizleistung: 12,5 kW. Das Fließbett wurde wie in Beispiel 1 mit ca. 1,5 facher Lockerungsgeschwindigkeit u_{mf} 24 Stunden lang betrieben.

Die Korngrößenanlayse der danach abgezogenen Partikel ergab einen mittleren Korndurchmesser von 565 µm. Es wurden keine zusammengesinterten Agglomerate entdeckt. Die Innenseite des Reaktorrohres war vollkommen frei von Ablagerungen.

Beispiel 2

In diesem Versuch wurde die Funktionsfähigkeit des Verfahrens zur Produktion von hochreinem Silicium nachgewiesen. Dazu wurde wiederum die Anordnung mit dem Strahlungsheizer verwendet. Das innere Reaktorrohr wurde mit 28 kg Siliciumpartikeln aufgefüllt, wiederum mit einer mittleren Korngröße von 550 µm.

Folgende Bedingungen wurden eingestellt: Fluidisiergas Wasserstoff: 27 m³/h (Normbedingungen)

Reaktionsgas Trichlorsilan: 30 kg/h

Wasserstoff: 3,6 m³/h (Normbedingungen)

Vorlauftemperatur der Gase: 120°.

Temperatur der Reaktionszone: 920°C

Druck in der Reaktionszone: 1250 kPa (absolut)

Nettoenergiebedarf: 37,5 kW

35

45

60

65

Zugabe von Siliziumpartikeln (250 µm): 0,05 kg/h.

Der Reaktor wurde 7 Tage mit dieser Einstellung betrieben. Es wurde halbstündlich Produkt abgezogen, wobei sich eine mittlere Produktionsrate von 1,27 kg/h ergab. Der mittlere Durchmesser des Produkts lag bei 780 µm und das Produkt war frei von Agglomeraten. Nach Beendigung des Versuchs war die Innenseite des Reaktorrohres im Bereich der Heizzone vollkommen frei von Wandabscheidung und Produktanbackungen.

Patentansprüche

- 1. Fließbettreaktor (1) der aufweist:
 - a) eine drucktragende Hülle (2)
 - b) ein inneres Reaktorrohr (3) aus einem Material, das eine hohe Transmission für Wärmestrahlung aufweist
 - c) einen Einlaß (4) für Siliciumpartikel (5),
 - d) eine Einlaßvorrichtung (6) zum Zuführen eines Reaktionsgases (7), das eine gas- oder dampfförmige Siliciumverbindung enthält, wobei die Einlaßvorrichtung (6) rohrförmig ausgebildet ist und das Fließbett in eine Heizzone und eine darüberliegende Reaktionszone teilt,
 - e) eine Gasverteilungseinrichtung (8) für die Zufuhr eines Fluidisiergases (9) in die Heizzone
 - f) einen Auslaß (10) für nicht abreagiertes Reaktionsgas, Fluidisiergas sowie die gas- oder dampfförmigen Produkte der Reaktion (11)
 - g) einen Auslaß (12) für das Produkt (13)
 - h) eine Heizvorrichtung (14),
 - i) eine Energieversorgung (15) für die Heizvorrichtung (14)

dadurch gekennzeichnet, daß die Heizvorrichtung (14) eine Strahlungsquelle für Wärmestrahlung ist, die außerhalb des inneren Reaktorrohres und ohne direkten Kontakt zu diesem ringförmig um die Heizzone angeordnet ist und derart ausgebildet ist, daß sie mittels Wärmestrahlung die Siliciumteilchen in der Heizzone auf so eine Temperatur aufheizt, daß sich in der Reaktionszone die Reaktionstemperatur einstellt.

- 2. Fließbettreaktor nach Anspruch 1, dadurch gekennzeichnet, daß der Raum zwischen innerem Reaktorrohr (3) und drucktragender Hülle (2) mit einer thermischen Isolation (16) versehen ist.
- 3. Fließbettreaktor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Heizvorrichtung flächig um die gesamte Heizzone ausgeführt ist und so eine zylinderformige Strahlungsquelle bildet.
- 4. Fließbettreaktor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß eine Wärmestrahlung einer Wellenlängen von 0,4 μm bis 900 μm emittiert.
- 5. Fließbettreaktor nach Anspruch 4, dadurch gekennzeichnet, daß die Heizvorrichtung eine Wärmestrahlung einer Wellenlängen von 0,4 µm bis 300 µm emittiert.
- 6. Fließbettreaktor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Heizvorrichtung ausgewählt ist aus der Gruppe Heizelement aus dotiertem Silicium oder Graphit oder Siliciumcarbid, Quarzrohrstrahler, Keramikstrahler und Metalldrahtstrahler.
- 7. Fließbettreaktor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Heizvorrichtung ein mäanderförmig geschlitztes Rohr aus Grafit mit SiC-Oberflächenbeschichtung ist, das im Reaktor stehend oder hängend an den Elektrodenanschlüssen angeordnet ist.
- 8. Fließbettreaktor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß alle produktberührenden Bauteile des Reaktors vorzugsweise aus einem inerten Materialien bestehen oder mit solchem Material beschichtet sind. 9. Verfahren zur Herstellung von hochreinem polykristalinen Silicium durch Abscheiden eines Reaktiongases oberhalb einer Reaktionstemperatur auf Siliciumteilchen in einem Fließbett, welches vertikal in eine Heizzone und eine Reaktionszone aufgeteilt ist, wobei in der Heizzone eine Fraktion der Siliciumteilchen mit Hilfe eines siliciumfreien Fluidisiergas fluidisiert und über die Reaktionstemperatur erhitzt wird und die aufgeheizten Siliciumteilchen in einem oberen Bereich der Heizzone mit den Siliciumteilchen der Reaktionszone unter Übertragung der Wärme aus der Heizzone in die Reaktionszone vermischt werden und in der Reaktionszone das Reaktionsgas, bestehend aus einer gasförmigen oder dampfförmigen Siliciumverbindung, als Siliciummetall bei der Reaktionstemperatur auf

den Siliciumteilchen abgelagert wird, und die mit dem abgelagerten Silicium versehenen Teilchen sowie nicht reagierendes Reaktionsgas, Fluidisierungsgas und gasförmige Nebenreaktionsprodukte aus dem Reaktor entfernt werden, dadurch gekennzeichnet, daß das Erhitzen der Siliciumteilchen über die Reaktionstemperatur in der Heizzone mittels Wärmestrahlung erfolgt.

mittels Warmestrahlung erloigt.

10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß dies, Siliziumteilchen in der Heizzone mittels thermischer Wärmestrahlung einer Wellenlänge zwischen 0,4 bis 900 µm aufgeheizt werden, und die Wärmeenergie mittels flächiger Heizstrahler gleichmäßig über den Umfang des Fließbettes eingetragen wird.

15

20

25

35

45

50

55

Hierzu 2 Seite(n) Zeichnungen

7

- Leerseite -

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 48 395 A1 C 01 B 33/027 3. Mai 2001

Fig. 1

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 48 395 A1 C 01 B 33/027 3. Mai 2001

Fig. 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

BEST AVAILABLE COPY