

## ORGANISASI ARSITEKTUR KOMPUTER PENINGKATAN KINERJA KOMPUTER

STT TERPADU NURUL FIKRI TEKNIK INFORMATIKA 2017



# TOPIK UTAMA DALAM PENGEMBANGAN KOMPUTER DARI WAKTU KE WAKTU

# BAGAIMANA MEMBUAT KERJA KOMPUTER LEBIH CEPAT... DAN LEBIH CEPAT LAGI?



## Cara Meningkatkan Kinerja Komputer

Membuat sistem pipelining dalam processor Meningkatkan jumlah transistor & clock frekuensi kerja prosesor Membuat paralel processing

Menambah cache memory



### 1. Menambah cache memory

- Dalam kerjanya prosesor harus bekerjasama dengan main memory
- Kecepatan main memory DRAM ternyata tidak secepat prosesor
- Cepatnya prosesor menjadi tidak berarti jika ternyata pada kenyataannya harus banyak menunggu kerja main memory
- Cache memory berbahan SRAM dibuat untuk mengurangi kesenjangan kecepatan antara prosesor dan main memory



#### CACHE MEMORY

- Merupakan Sejumlah Kecil Memori Cepat SRAM
- Ada Di Antara Jalur Main Memory Dan CPU
- Secara Fisik Ada Dalam Chip Atau Modul CPU
- Menduplikasi Sebagaian Block Data Di Main Memory
- Sehingga Dapat Memberikan Data Ke CPU Jika Membutuhkan Tanpa CPU Harus Menunggu Lama Main Memory





#### Cara Kerja Cache Memory

- CPU Meminta Data Dari Suatu Lokasi Di Main Memory
- Cache Mengecek Data Tersebut Apakah Ada Di Dalam Dirinya
- Jika Ada, Maka Ambil Dari Cache (Disebut HIT, Akan Menjadi Cepat)
- Jika Tidak Ada, Ambil Dari Main Memory Untuk Dikopi Ke Cache Dan Dibawa Ke CPU (Disebut MISS, Akan Tetap Menjadi Lambat)







(a) Single cache





### 2. Membuat sistem pipelining dalam prosesor

- Setiap eksekusi instruksi melalui beberapa tahapan yang berurutan
- Setiap tahapan dilakukan oleh bagian mikroprosesor yang berbeda
- Pipelining adalah eksekusi tahapan instruksi secara parallel
- Tanpa penerapan pipelining, maka setiap instruksi baru akan mulai dieksekusi jika instruksi sebelumnya telah selesai semua tahapannya
- Dengan penerapan pipeling, maka setiap instruksi dapat mulai dieksekusi ketika instruksi sebelumnya telah selesai satu tahap



## Contoh kegiatan Laundry untuk ilustrasi kerja Pipelining

Adi, Budi, Cici dan Dedi masing-masing punya 1 kantong pakaian untuk dicuci, dikeringkan dan disetrika



Hanya ada 1 mesin cuci.
Tahap mencuci butuh waktu **30 menit** 



Hanya ada 1 mesin pengering.



Tahap mengeringkan butuh waktu **40 menit** 



Hanya ada 1 meja setrika.







## Jika tiap orang mulai menunggu orang sebelumnya selesai semua tahap, maka butuh 6 jam





Metode pipelining: tiap orang bisa mulai ketika orang sebelumnya selesai satu tahap, maka butuh 3.5 jam





| 1. Fetch                                                                                    | 2. Decode                                                                                                                | 3. Calculate                                                                                                                   | 4. Fetch                                                                              | 5. Execute Instruction                                                       | 6. Store                                                   |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|
| Instruction                                                                                 | Instruction                                                                                                              | Operand                                                                                                                        | Operand                                                                               |                                                                              | Result                                                     |
| yaitu proses<br>mengambil<br>instruksi<br>yang harus<br>dieksekusi,<br>dari memori<br>ke IR | yaitu proses<br>menerjemah<br>kan isi<br>instruksi<br>untuk<br>diketahui apa<br>yang harus<br>dilakukan<br>oleh prosesor | yaitu proses<br>menghitung /<br>mengidentifi<br>kasi letak<br>operand yang<br>harus<br>disiapkan<br>untuk operasi<br>instruksi | yaitu proses<br>mengambil<br>operand yang<br>diperlukan<br>untuk siap<br>dioperasikan | yaitu proses<br>melaksanakan<br>operasi<br>instruksi<br>(biasanya di<br>ALU) | yaitu proses<br>menyimpan<br>hasil<br>operasi<br>instruksi |





#### Tanpa Pipelining



#### **Dengan Pipelining**

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|
| а |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| b |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |
| С |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |

Terjadi speed up (peningkatan kecepatan) sebesar 18/8 = 2,25 kali



## 3. Meningkatkan jumlah transistor & clock frekuensi kerja dari processor

- Semakin banyak jumlah transistor, semakin banyak dan cepat kerja prosesor\
- Semakin tinggi clock frekuensi, semakin cepat kerja prosesor
- Namun kerapatan transistor dan tingginya frekuensi menyebabkan peningkatan panas dalam prosesoTerdapat batasan \
- alamiah, yaitu kemampuan silikon sebagai bahan semikonduktor untuk prosesor dalam menahan panas yang terjadi saat kerja prosesor
- Batasan maksimal mulai tercapai pada tahun 2000an



## Generasi Komputer

| Generation | Approximate<br>Dates | Technology                         | Typical Speed<br>(operations per second) |
|------------|----------------------|------------------------------------|------------------------------------------|
| 1          | 1946–1957            | Vacuum tube                        | 40,000                                   |
| 2          | 1958-1964            | Transistor                         | 200,000                                  |
| 3          | 1965–1971            | Small and medium scale integration | 1,000,000                                |
| 4          | 1972-1977            | Large scale integration            | 10,000,000                               |
| 5          | 1978-1991            | Very large scale integration       | 100,000,000                              |
| 6          | 1991-                | Ultra large scale integration      | 1,000,000,000                            |









#### (a) 1970s Processors

|                       | 4004      | 8008    | 8080   | 8086                 | 8088         |
|-----------------------|-----------|---------|--------|----------------------|--------------|
| Introduced            | 1971      | 1972    | 1974   | 1978                 | 1979         |
| Clock speeds          | 108 kHz   | 108 kHz | 2 MHz  | 5 MHz, 8 MHz, 10 MHz | 5 MHz, 8 MHz |
| Bus width             | 4 bits    | 8 bits  | 8 bits | 16 bits              | 8 bits       |
| Number of transistors | 2,300     | 3,500   | 6,000  | 29,000               | 29,000       |
| Feature size (µm)     | 10        |         | 6      | 3                    | 6            |
| Addressable memory    | 640 Bytes | 16 KB   | 64 KB  | 1 MB                 | 1 MB         |

#### (b) 1980s Processors

|                       | 80286          | 386TM DX      | 386TM SX      | 486TM DX CPU  |
|-----------------------|----------------|---------------|---------------|---------------|
| Introduced            | 1982           | 1985          | 1988          | 1989          |
| Clock speeds          | 6 MHz-12.5 MHz | 16 MHz-33 MHz | 16 MHz-33 MHz | 25 MHz-50 MHz |
| Bus width             | 16 bits        | 32 bits       | 16 bits       | 32 bits       |
| Number of transistors | 134,000        | 275,000       | 275,000       | 1.2 million   |
| Feature size (µm)     | 1.5            | 1             | 1             | 0.8-1         |
| Addressable memory    | 16 MB          | 4 GB          | 16 MB         | 4 GB          |
| Virtual memory        | 1 GB           | 64 TB         | 64 TB         | 64 TB         |
| Cache                 | -              | _             | -             | 8 kB          |





#### (c) 1990s Processors

|                       | 486TM SX      | Pentium         | Pentium Pro              | Pentium II      |
|-----------------------|---------------|-----------------|--------------------------|-----------------|
| Introduced            | 1991          | 1993            | 1995                     | 1997            |
| Clock speeds          | 16 MHz-33 MHz | 60 MHz-166 MHz, | 150 MHz-200 MHz          | 200 MHz-300 MHz |
| Bus width             | 32 bits       | 32 bits         | 64 bits                  | 64 bits         |
| Number of transistors | 1.185 million | 3.1 million     | 5.5 million              | 7.5 million     |
| Feature size (µm)     | 1             | 0.8             | 0.6                      | 0.35            |
| Addressable memory    | 4 GB          | 4 GB            | 64 GB                    | 64 GB           |
| Virtual memory        | 64 TB         | 64 TB           | 64 TB                    | 64 TB           |
| Cache                 | 8 kB          | 8 kB            | 512 kB L1 and<br>1 MB L2 | 512 kB L2       |

#### (d) Recent Processors

|                       | Pentium III | Pentium 4   | Core 2 Duo   | Core 2 Quad |
|-----------------------|-------------|-------------|--------------|-------------|
| Introduced            | 1999        | 2000        | 2006         | 2008        |
| Clock speeds          | 450-660 MHz | 1.3-1.8 GHz | 1.06-1.2 GHz | 3 GHz       |
| Bus sidth             | 64 bits     | 64 bits     | 64 bits      | 64 bits     |
| Number of transistors | 9.5 million | 42 million  | 167 million  | 820 million |
| Feature size (nm)     | 250         | 180         | 65           | 45          |
| Addressable memory    | 64 GB       | 64 GB       | 64 GB        | 64 GB       |
| Virtual memory        | 64 TB       | 64 TB       | 64 TB        | 64 TB       |
| Cache                 | 512 kB L2   | 256 kB L2   | 2 MB L2      | 6 MB L2     |







## Overclocking

- Overclocking adalah meningkatkan frekuensi kerja yang diterapkan ke prosesor agar prosesor dipacu bekerja lebih cepat
- Dilakukan dengan cara menaikkan settingan multiplier frekuensi di BIOS/firmware melebihi settingan standar





## Efek Overclocking

- (+) prosesor bekerja lebih cepat
- (-) prosesor lebih cepat panas
- (-) sistem bisa menjadi tidak stabil

Karena itu biasanya ditambahkan kipas dan sistem pendingin





## Meningkatkan frekuensi clock sudah tidak lagi efektif meningkatkan kecepatan komputer





### 4. Membuat Paralel Processing

- Paralel processing adalah eksekusi program secara paralel oleh dua atau lebih prosesor sehingga diharapkan hasil lebih cepat
- Syarat paralel processing adalah program dapat dipecah-pecah menjadi beberapa bagian yang dapat dijalankan secara parallel
- Implementasi paralel processing yang paling banyak digunakan saat ini adalah dengan membuat multi core processor (dual core, quad core, dan seterusnya)





Syarat paralel processing adalah program dapat dipecah-pecah menjadi beberapa bagian independen yang dapat dijalankan secara paralel



### Contoh Organisasi Multicore Processor



Beberapa core processor dengan cache masing-masing, bekerja terhadap satu main memory & I/O modules pada suatu komputer



### Bagaimana hasilnya?





#### **TERIMA KASIH**



Thank you very much for your kind attention