GNU Scientific Library

Reference Manual Third edition, for GSL Version 1.12

Mark Galassi

Los Alamos National Laboratory

Jim Davies

Department of Computer Science, Georgia Institute of Technology

James Theiler

Astrophysics and Radiation Measurements Group, Los Alamos National Laboratory

Brian Gough

Network Theory Limited

Gerard Jungman

Theoretical Astrophysics Group, Los Alamos National Laboratory

Patrick Alken

Department of Physics, University of Colorado at Boulder

Michael Booth

Department of Physics and Astronomy, The Johns Hopkins University

Fabrice Rossi

University of Paris-Dauphine

Published by Network Theory Ltd.

A catalogue record for this book is available from the British Library.

Third edition, First printing, January 2009 for version 1.12.

Published by Network Theory Limited.

Email: info@network-theory.co.uk

ISBN: 0-9546120-7-8

This book supersedes the previous edition for version 1.8 (ISBN 0-9541617-3-4).

Original cover design by David Nicholls.

Further information about this book is available from http://www.network-theory.co.uk/gsl/manual/

This book has an unconditional guarantee. If you are not fully satisfied with your purchase for any reason, please contact the publisher at the address above.

Copyright $\@ifnextchar[{\@modified Copyright}]{\hbox{\it Copyright}}$ Minor formatting modifications for publication.

Copyright © 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 The GSL Team.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being "Preface", "GNU General Public License" and "Free Software Needs Free Documentation", the Front-Cover text being "A GNU Manual", and with the Back-Cover Text being (a) (see below). A copy of the license is included in the section entitled "GNU Free Documentation License".

(a) The Back-Cover Text is: "You have the freedom to copy and modify this GNU Manual."

The texinfo source files for this manual are available from http://www.network-theory.co.uk/gsl/manual/src/

Table of Contents

Pr	efac	e	. 1
1	Int	$\operatorname{roduction}$	3
	1.1	Routines available in GSL	3
	1.2	GSL is Free Software	
	1.3	Obtaining GSL	4
	1.4	No Warranty	5
	1.5	Reporting Bugs	
	1.6	Further Information	
	1.7	Conventions used in this manual	6
2	Usi	ing the library	7
	2.1	An Example Program	
	2.2	Compiling and Linking	
		2.2.1 Linking programs with the library	
		2.2.2 Linking with an alternative BLAS library	
	2.3	Shared Libraries	
	2.4	ANSI C Compliance	9
	2.5	Inline functions	9
	2.6	Long double	10
	2.7	Portability functions	11
	2.8	Alternative optimized functions	11
	2.9	Support for different numeric types	12
	2.10	Compatibility with C++	13
	2.11	Aliasing of arrays	13
	2.12	Thread-safety	13
	2.13	Deprecated Functions	14
	2.14	Code Reuse	14
3	Err	or Handling	. 15
	3.1	Error Reporting	15
	3.2	Error Codes	
	3.3	Error Handlers	
	3.4	Using GSL error reporting in your own functions	
	3.5	Examples	

4	$M\epsilon$	athematical Functions	. 21
	4.1	Mathematical Constants	21
	4.2	Infinities and Not-a-number	22
	4.3	Elementary Functions	23
	4.4	Small integer powers	24
	4.5	Testing the Sign of Numbers	24
	4.6	Testing for Odd and Even Numbers	24
	4.7	Maximum and Minimum functions	25
	4.8	Approximate Comparison of Floating Point Numbers	26
5	Co	mplex Numbers	27
	5.1	Representation of complex numbers	27
	5.2	Properties of complex numbers	
	5.3	Complex arithmetic operators	
	5.4	Elementary Complex Functions	
	5.5	Complex Trigonometric Functions	
	5.6	Inverse Complex Trigonometric Functions	
	5.7	Complex Hyperbolic Functions	
	5.8	Inverse Complex Hyperbolic Functions	
	5.9	References and Further Reading	
6	Po	lynomials	35
	6.1	Polynomial Evaluation	35
	6.2	Divided Difference Representation of Polynomials	
	6.3	Quadratic Equations	
	6.4	Cubic Equations	
	6.5	General Polynomial Equations	
	6.6	Examples	
	6.7	References and Further Reading	
7	Spe	ecial Functions	. 41
	7.1	Usage	
	7.2	The gsl_sf_result struct	42
	7.3	Modes	
	7.4	Airy Functions and Derivatives	
		7.4.1 Airy Functions	
		7.4.2 Derivatives of Airy Functions	
		7.4.3 Zeros of Airy Functions	
		7.4.4 Zeros of Derivatives of Airy Functions	
	7.5	Bessel Functions	
	,	7.5.1 Regular Cylindrical Bessel Functions	
		7.5.2 Irregular Cylindrical Bessel Functions	
		7.5.3 Regular Modified Cylindrical Bessel Functions	
		7.5.4 Irregular Modified Cylindrical Bessel Functions	
		7.5.5 Regular Spherical Bessel Functions	
		7.5.6 Irregular Spherical Bessel Functions	

	7.5.7	Regular Modified Spherical Bessel Functions	. 49
	7.5.8	Irregular Modified Spherical Bessel Functions	
	7.5.9	Regular Bessel Function—Fractional Order	. 51
	7.5.10	Irregular Bessel Functions—Fractional Order	. 51
	7.5.11	Regular Modified Bessel Functions—Fractional Order	. 51
	7.5.12	Irregular Modified Bessel Functions—Fractional Order.	. 52
	7.5.13	Zeros of Regular Bessel Functions	
7.6	Clause	en Functions	. 53
7.7	Coulor	mb Functions	. 53
	7.7.1	Normalized Hydrogenic Bound States	. 53
	7.7.2	Coulomb Wave Functions	54
	7.7.3	Coulomb Wave Function Normalization Constant	. 55
7.8	Coupli	ing Coefficients	
	7.8.1	3-j Symbols	. 55
	7.8.2	6-j Symbols	. 56
	7.8.3	9-j Symbols	. 56
7.9	Dawso	on Function	. 56
7.10	Deby	e Functions	. 57
7.11	Dilog	garithm	. 58
	7.11.1	Real Argument	. 58
	7.11.2	Complex Argument	. 58
7.12	Elem	entary Operations	. 58
7.13	Ellipt	tic Integrals	. 59
	7.13.1	Definition of Legendre Forms	
	7.13.2	Definition of Carlson Forms	
	7.13.3	Legendre Form of Complete Elliptic Integrals	. 60
	7.13.4	Legendre Form of Incomplete Elliptic Integrals	
	7.13.5	Carlson Forms	
7.14	Ellipt	tic Functions (Jacobi)	
7.15	Error	Functions	. 62
	7.15.1	Error Function	
	7.15.2	Complementary Error Function	62
	7.15.3	Log Complementary Error Function	
	7.15.4	Probability functions	
7.16	Expo	nential Functions	63
	7.16.1	Exponential Function	63
	7.16.2	Relative Exponential Functions	
	7.16.3	Exponentiation With Error Estimate	
7.17	Expo	nential Integrals	65
	7.17.1	Exponential Integral	
	7.17.2	$\mathrm{Ei}(\mathbf{\hat{x}})$	65
	7.17.3	Hyperbolic Integrals	
	7.17.4	Ei_3(x)	
	7.17.5	Trigonometric Integrals	
	7.17.6	Arctangent Integral	. 66
7.18	Ferm	i-Dirac Function	
	7.18.1	Complete Fermi-Dirac Integrals	
	7.18.2	•	

7.19	Gamm	a and Beta Functions	68
	7.19.1	Gamma Functions	68
	7.19.2	Factorials	69
	7.19.3	Pochhammer Symbol	70
	7.19.4	Incomplete Gamma Functions	71
	7.19.5	Beta Functions	
	7.19.6	Incomplete Beta Function	
7.20	Gegen	bauer Functions	72
7.21		geometric Functions	
7.22		rre Functions	
7.23		ert W Functions	
7.24	Legeno	dre Functions and Spherical Harmonics	75
	7.24.1	Legendre Polynomials	
	7.24.2		
	7.24.3	Conical Functions	
	7.24.4	Radial Functions for Hyperbolic Space	
7.25	Logari	thm and Related Functions	
7.26	_	eu Functions	
	7.26.1	Mathieu Function Workspace	
	7.26.2	Mathieu Function Characteristic Values	
	7.26.3	Angular Mathieu Functions	
	7.26.4	Radial Mathieu Functions	
7.27		Function	
7.28		igamma) Function	
0	7.28.1	Digamma Function	
	7.28.2	Trigamma Function	
	7.28.3	Polygamma Function	
7.29		rotron Functions	
7.30		port Functions	
7.31		ometric Functions	
	7.31.1	Circular Trigonometric Functions	
	7.31.2	Trigonometric Functions for Complex Arguments	
	7.31.3	Hyperbolic Trigonometric Functions	
	7.31.4	Conversion Functions	
	7.31.5	Restriction Functions	
	7.31.6	Trigonometric Functions With Error Estimates	
7.32		unctions	
1.02	7.32.1	Riemann Zeta Function	
	7.32.1 $7.32.2$	Riemann Zeta Function Minus One	
	7.32.2 $7.32.3$	Hurwitz Zeta Function	
	7.32.3 $7.32.4$	Eta Function	
7.33		bles	
7.34		nces and Further Reading	
1.34	neiere	nces and further reading	00

8	Vec	ctors and Matrices	89
	8.1	Data types	. 89
	8.2	Blocks	. 89
		8.2.1 Block allocation	. 90
		8.2.2 Reading and writing blocks	. 90
		8.2.3 Example programs for blocks	. 91
	8.3	Vectors	
		8.3.1 Vector allocation	
		8.3.2 Accessing vector elements	. 93
		8.3.3 Initializing vector elements	. 94
		8.3.4 Reading and writing vectors	
		8.3.5 Vector views	
		8.3.6 Copying vectors	
		8.3.7 Exchanging elements	
		8.3.8 Vector operations	
		8.3.9 Finding maximum and minimum elements of vectors	
		8.3.10 Vector properties	
		8.3.11 Example programs for vectors	
	8.4	Matrices	
		8.4.1 Matrix allocation	
		8.4.2 Accessing matrix elements	
		8.4.3 Initializing matrix elements	
		8.4.4 Reading and writing matrices	104
		8.4.5 Matrix views	
		8.4.6 Creating row and column views	107 108
		• • •	
		8.4.8 Copying rows and columns	
		8.4.10 Matrix operations	
		8.4.11 Finding maximum and minimum elements of matrices	110
		0.4.11 Finding maximum and minimum elements of matrices	111
		8.4.12 Matrix properties	
		8.4.13 Example programs for matrices	
	8.5	References and Further Reading	
	0.0	Therefore wild I driver Hooding	110
9	Don	mutations 1	17
9			
	9.1	The Permutation struct	
	9.2	Permutation allocation	
	9.3	Accessing permutation elements	
	9.4	Permutation properties	
	9.5	Permutation functions	
	9.6	Applying Permutations	
	9.7	Reading and writing permutations	
	9.8	Permutations in cyclic form	
	9.9	Examples	
	9.10	References and Further Reading	124

10	$\mathbf{C}\mathbf{o}$	ombinations	125
	10.1	The Combination struct	125
	10.2	Combination allocation	. 125
	10.3	Accessing combination elements	126
	10.4	Combination properties	
	10.5	Combination functions	
	10.6	Reading and writing combinations	
	10.7	Examples	
	10.8	References and Further Reading	129
11	So	rting	131
	11.1	Sorting objects	131
	11.2	Sorting vectors	132
	11.3	Selecting the k smallest or largest elements	133
	11.4	Computing the rank	
	11.5	Examples	
	11.6	References and Further Reading	136
12	$_{ m BI}$	AS Support	137
	12.1	GSL BLAS Interface	
	12.1	12.1.1 Level 1	
		12.1.2 Level 2	
		12.1.3 Level 3	. 145
	12.2	Examples	150
	12.3	References and Further Reading	151
13	Lir	near Algebra	153
	13.1	LU Decomposition	
	13.2	QR Decomposition	
	13.3	QR Decomposition with Column Pivoting	
	13.4	Singular Value Decomposition	
	13.5	Cholesky Decomposition	
	13.6	Tridiagonal Decomposition of Real Symmetric Matrices	
	13.7	Tridiagonal Decomposition of Hermitian Matrices	
	13.8	Hessenberg Decomposition of Real Matrices	. 163
	13.9	Hessenberg-Triangular Decomposition of Real Matrices	
	13.10	Bidiagonalization	. 164
	13.11		
	13.12	Householder solver for linear systems	166
	13.13		
	13.14	0	
	13.15	F - 17	
	13.16	References and Further Reading	169

14	\mathbf{Ei}	gensystems	71
	14.1	Real Symmetric Matrices	171
	14.2	Complex Hermitian Matrices	172
	14.3	Real Nonsymmetric Matrices	
	14.4	Real Generalized Symmetric-Definite Eigensystems	175
	14.5	Complex Generalized Hermitian-Definite Eigensystems	176
	14.6	Real Generalized Nonsymmetric Eigensystems	177
	14.7	Sorting Eigenvalues and Eigenvectors	179
	14.8	Examples	
	14.9	References and Further Reading	184
15	Fa	st Fourier Transforms (FFTs) 1	.85
	15.1	Mathematical Definitions	185
	15.2	Overview of complex data FFTs	186
	15.3	Radix-2 FFT routines for complex data	187
	15.4	Mixed-radix FFT routines for complex data	190
	15.5	Overview of real data FFTs	194
	15.6	Radix-2 FFT routines for real data	195
	15.7	Mixed-radix FFT routines for real data	197
	15.8	References and Further Reading	202
16	Νι	umerical Integration	205
	16.1	Introduction	205
		16.1.1 Integrands without weight functions	206
		16.1.2 Integrands with weight functions	
		16.1.3 Integrands with singular weight functions	206
	16.2	QNG non-adaptive Gauss-Kronrod integration	207
	16.3	QAG adaptive integration	207
	16.4	QAGS adaptive integration with singularities	208
	16.5	QAGP adaptive integration with known singular points	209
	16.6	QAGI adaptive integration on infinite intervals	
	16.7	QAWC adaptive integration for Cauchy principal values	
	16.8	QAWS adaptive integration for singular functions	
	16.9	QAWO adaptive integration for oscillatory functions	
	16.10	• 1 0	
	16.11		
	16.12	r r	
	16.13	3 References and Further Reading	216

17	\mathbf{Ra}	ndom Number Generation	217
	17.1	General comments on random numbers	217
	17.2	The Random Number Generator Interface	
	17.3	Random number generator initialization	
	17.4	Sampling from a random number generator	
	17.5	Auxiliary random number generator functions	
	17.6	Random number environment variables	
	17.7	Copying random number generator state	
	17.8	Reading and writing random number generator state	
	17.9 17.10	Random number generator algorithms	
	17.10 17.11	Unix random number generators Other random number generators	
	17.11 17.12	Performance	
	17.12 17.13	Examples	
	17.13 17.14	References and Further Reading	
	17.14	Acknowledgements	
	11.10	11cknowledgements	204
18	Qu	asi-Random Sequences	235
	18.1	Quasi-random number generator initialization	. 235
	18.2	Sampling from a quasi-random number generator	235
	18.3	Auxiliary quasi-random number generator functions	
	18.4	Saving and resorting quasi-random number generator state	
	18.5	Quasi-random number generator algorithms	
	18.6	Examples	
	18.7	References	238
19	Ra	ndom Number Distributions	239
	19.1	Introduction	
	19.2	The Gaussian Distribution	
	19.3	The Gaussian Tail Distribution.	
	19.4	The Bivariate Gaussian Distribution	_
	19.5	The Exponential Distribution	
	19.6	The Laplace Distribution	
	19.7	The Exponential Power Distribution	
	19.8	The Cauchy Distribution	249
	19.9	The Rayleigh Distribution	. 250
	19.10	The Rayleigh Tail Distribution	251
	19.11	The Landau Distribution	
	19.12	The Levy alpha-Stable Distributions	. 253
	19.13	The Levy skew alpha-Stable Distribution	254
	19.14	The Gamma Distribution	
	19.15	The Flat (Uniform) Distribution	
	19.16	The Lognormal Distribution	
	19.17	The Chi-squared Distribution	
	19.18	The F-distribution	
	19.19	The t-distribution	. 262

	19.20	The Beta Distribution	263
	19.21	The Logistic Distribution	264
	19.22	The Pareto Distribution	
	19.23	Spherical Vector Distributions	266
	19.24	The Weibull Distribution	
	19.25	The Type-1 Gumbel Distribution	
	19.26	The Type-2 Gumbel Distribution	
	19.27	The Dirichlet Distribution	
	19.28	General Discrete Distributions	
	19.29	The Poisson Distribution	273
	19.30	The Bernoulli Distribution	274
	19.31	The Binomial Distribution	275
	19.32	The Multinomial Distribution	276
	19.33	The Negative Binomial Distribution	
	19.34	The Pascal Distribution	278
	19.35	The Geometric Distribution	279
	19.36	The Hypergeometric Distribution	280
	19.37	The Logarithmic Distribution	281
	19.38	Shuffling and Sampling	
	19.39	Examples	
	19.40	References and Further Reading	
20	Sta	atistics	287
		Mean, Standard Deviation and Variance	
	20.1	*	
	20.2	Absolute deviation	289
	$20.2 \\ 20.3$	Absolute deviation	289 289
	20.2 20.3 20.4	Absolute deviation	289 289 290
	20.2 20.3 20.4 20.5	Absolute deviation	289 289 290 291
	20.2 20.3 20.4 20.5 20.6	Absolute deviation	289 289 290 291 291
	20.2 20.3 20.4 20.5 20.6 20.7	Absolute deviation	289 289 290 291 291
	20.2 20.3 20.4 20.5 20.6 20.7 20.8	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples. Maximum and Minimum values.	289 289 290 291 291 294
	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples. Maximum and Minimum values. Median and Percentiles.	289 289 290 291 291 294 295
	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10	Absolute deviation	289 289 290 291 291 294 295 296
	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples. Maximum and Minimum values. Median and Percentiles.	289 289 290 291 291 294 295 296
	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11	Absolute deviation Higher moments (skewness and kurtosis) Autocorrelation Covariance Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples References and Further Reading	289 289 290 291 291 294 295 297
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11	Absolute deviation. Higher moments (skewness and kurtosis) Autocorrelation. Covariance. Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples. References and Further Reading.	289 289 290 291 291 294 295 296 297
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11	Absolute deviation Higher moments (skewness and kurtosis) Autocorrelation Covariance Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples References and Further Reading	289 289 290 291 291 294 295 296 297
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11	Absolute deviation. Higher moments (skewness and kurtosis) Autocorrelation. Covariance. Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples. References and Further Reading.	289 289 291 291 291 294 295 296 297
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 His 21.1	Absolute deviation. Higher moments (skewness and kurtosis) Autocorrelation. Covariance. Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples. References and Further Reading. stograms The histogram struct Histogram allocation Copying Histograms	289 289 291 291 291 294 295 296 297 299 300 301
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 His 21.1 21.2	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples Maximum and Minimum values Median and Percentiles. Examples. References and Further Reading. stograms The histogram struct Histogram allocation. Copying Histograms Updating and accessing histogram elements	289 289 291 291 291 294 295 296 297 299 300 301 301
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 His 21.1 21.2 21.3	Absolute deviation. Higher moments (skewness and kurtosis) Autocorrelation. Covariance. Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples. References and Further Reading. stograms The histogram struct Histogram allocation Copying Histograms	289 289 291 291 291 294 295 296 297 299 300 301 301
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 His 21.1 21.2 21.3 21.4	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples. Maximum and Minimum values. Median and Percentiles. Examples. References and Further Reading. stograms. The histogram struct. Histogram allocation. Copying Histograms. Updating and accessing histogram elements. Searching histogram ranges. Histogram Statistics.	289 289 291 291 291 294 295 296 297 299 300 301 301 302 303
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 21.1 21.2 21.3 21.4 21.5	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples. Maximum and Minimum values. Median and Percentiles. Examples. References and Further Reading. stograms. The histogram struct. Histogram allocation. Copying Histograms. Updating and accessing histogram elements. Searching histogram ranges.	289 289 291 291 291 294 295 296 297 299 300 301 301 302 303
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 21.1 21.2 21.3 21.4 21.5 21.6	Absolute deviation. Higher moments (skewness and kurtosis). Autocorrelation. Covariance. Correlation. Weighted Samples. Maximum and Minimum values. Median and Percentiles. Examples. References and Further Reading. stograms. The histogram struct. Histogram allocation. Copying Histograms. Updating and accessing histogram elements. Searching histogram ranges. Histogram Statistics.	289 289 291 291 291 294 295 296 297 299 300 301 301 302 303 303
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 20.10 20.11 21.1 21.2 21.3 21.4 21.5 21.6 21.7	Absolute deviation Higher moments (skewness and kurtosis) Autocorrelation Covariance Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples References and Further Reading Stograms The histogram struct Histogram allocation Copying Histograms Updating and accessing histogram elements Searching histogram ranges Histogram Statistics Histogram Operations Reading and writing histograms Resampling from histograms Resampling from histograms	289 289 291 291 291 294 295 296 297 299 300 301 301 302 303 303 304 305
21	20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.10 20.11 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8	Absolute deviation Higher moments (skewness and kurtosis) Autocorrelation Covariance Correlation Weighted Samples Maximum and Minimum values Median and Percentiles Examples References and Further Reading Stograms The histogram struct Histogram allocation Copying Histograms Updating and accessing histogram elements Searching histogram ranges Histogram Statistics Histogram Operations Reading and writing histograms Reading and writing histograms	289 289 291 291 291 294 295 296 297 299 300 301 301 302 303 303 304 305

	21.12	Two dimensional histograms	308
	21.13	The 2D histogram struct	309
	21.14	2D Histogram allocation	310
	21.15	0 · F. J · · · · O · · · · · · · · · · · · · ·	
	21.16	1 0 0	
	21.17	Searching 2D histogram ranges	312
	21.18	2D Histogram Statistics	312
	21.19	- I	
	21.20		
	21.21	1 0	
	21.22	Example programs for 2D histograms	317
22	N-1	$ ext{tuples} \dots \dots$	319
	22.1	The ntuple struct	319
	22.2	Creating ntuples	
	22.3	Opening an existing ntuple file	
	22.4	Writing ntuples	
	22.5	Reading ntuples	
	22.6	Closing an ntuple file	
	22.7	Histogramming ntuple values	320
	22.8	Examples	321
	22.9	References and Further Reading	324
23	Mo	onte Carlo Integration	325
	23.1	Interface	
	23.2	PLAIN Monte Carlo	
	23.3	MISER	
	23.4	VEGAS	
	23.5	Examples	
	23.6	References and Further Reading	
24	Sin	nulated Annealing	337
	24.1	Simulated Annealing algorithm	
	24.2	Simulated Annealing functions	
	24.2 24.3	Examples	
	_	24.3.1 Trivial example	
		24.3.2 Traveling Salesman Problem	
	24.4	References and Further Reading	
25	Or	dinary Differential Equations	347
	25.1	Defining the ODE System	
	25.1 25.2	Stepping Functions	
	25.2 25.3	Adaptive Step-size Control	
	25.3 25.4	Evolution	
	$25.4 \\ 25.5$	Examples	
	25.6	References and Further Reading.	
		TOTAL CALOO GIVE I GIVILLE I CONGLING	001

26	Int	terpolation	359
	26.1	Introduction	359
	26.2	Interpolation Functions	
	26.3	Interpolation Types	
	26.4	Index Look-up and Acceleration	
	26.5 26.6	Evaluation of Interpolating Functions	
	26.0 26.7	Examples	
	26.8	References and Further Reading	
27	Nι	umerical Differentiation	367
	27.1	Functions	
	27.2	Examples	
	27.3	References and Further Reading	369
28	Ch	nebyshev Approximations	371
	28.1	Definitions	
	28.2	Creation and Calculation of Chebyshev Series	
	28.3	Auxiliary Functions	
	$28.4 \\ 28.5$	Chebyshev Series Evaluation	
	28.6	Examples	
	28.7	References and Further Reading.	
29	Se	ries Acceleration	375
	29.1	Acceleration functions	
	29.2	Acceleration functions without error estimation	
	29.3	Examples	
	29.4	References and Further Reading	378
30	W	avelet Transforms	379
	30.1	Definitions	379
	30.2	Initialization	379
	30.3	Transform Functions	
		30.3.1 Wavelet transforms in one dimension	
	20.4	30.3.2 Wavelet transforms in two dimension	
	$30.4 \\ 30.5$	Examples	
31	Di	screte Hankel Transforms	387
	31.1	Definitions	
	31.2	Functions	
	31.3	References and Further Reading	

32	On	e dimensional Root-Finding	389
	32.1	Overview	389
	32.2	Caveats	
	32.3	Initializing the Solver	
	32.4	Providing the function to solve	
	32.5	Search Bounds and Guesses	
	32.6	Iteration	
	32.7	Search Stopping Parameters	
	32.8	Root Bracketing Algorithms	
	32.9	Root Finding Algorithms using Derivatives	
	32.10	Examples	
	32.11	References and Further Reading	403
33	On	e dimensional Minimization	405
	33.1	Overview	405
	33.2	Caveats	406
	33.3	Initializing the Minimizer	
	33.4	Providing the function to minimize	407
	33.5	Iteration	
	33.6	Stopping Parameters	
	33.7	Minimization Algorithms	409
	33.8	Examples	
	33.9	References and Further Reading	411
34	Μυ	ultidimensional Root-Finding	413
	34.1	Overview	413
	34.2	Initializing the Solver	414
	34.3	Providing the function to solve	415
	34.4	Iteration	
	34.5	Search Stopping Parameters	
	34.6	Algorithms using Derivatives	
	34.7	Algorithms without Derivatives	
	34.8	Examples	
	34.9	References and Further Reading	427
35	Μι	ultidimensional Minimization	429
	35.1	Overview	429
	35.2	Caveats	430
	35.3	Initializing the Multidimensional Minimizer	
	35.4	Providing a function to minimize	431
	$35.4 \\ 35.5$	Providing a function to minimize Iteration	
		9	433
	35.5	Iteration	433 434
	35.5 35.6	Iteration	433 434 435
	35.5 35.6 35.7	Iteration	

36	Least-Squares Fitting				
	36.1	Overview	443		
	36.2	Linear regression			
	36.3	Linear fitting without a constant term	445		
	36.4	Multi-parameter fitting			
	36.5	Examples			
	36.6	References and Further Reading	453		
37	Nonlinear Least-Squares Fitting				
	37.1	Overview	455		
	37.2	Initializing the Solver	456		
	37.3	Providing the Function to be Minimized			
	37.4	Iteration			
	37.5	Search Stopping Parameters			
	37.6	Minimization Algorithms using Derivatives			
	37.7	Minimization Algorithms without Derivatives			
	37.8	Computing the covariance matrix of best fit parameters			
	37.9	Examples			
	37.10	References and Further Reading	467		
38	Basis Splines				
	38.1	Overview			
	38.2	Initializing the B-splines solver	470		
	38.3	Constructing the knots vector			
	38.4	Evaluation of B-splines			
	38.5	Evaluation of B-spline derivatives			
	38.6	Examples			
	38.7	References and Further Reading	475		
39	Physical Constants				
	39.1	Fundamental Constants	477		
	39.2	Astronomy and Astrophysics			
	39.3	Atomic and Nuclear Physics	478		
	39.4	Measurement of Time			
	39.5	Imperial Units			
	39.6	Speed and Nautical Units			
	39.7	Printers Units			
	39.8	Volume, Area and Length			
	39.9	Mass and Weight			
	39.10	Thermal Energy and Power			
	39.11	Pressure			
	39.12	Viscosity			
	39.13	Light and Illumination			
	39.14 39.15	Radioactivity			
	39.13		400 483		

	39.17 39.18		olesnces and Further Reading	
40	IEI	EE floa	ating-point arithmetic	487
	40.1 40.2 40.3	Setting	ntation of floating point numbersup your IEEE environmentces and Further Reading	489
$\mathbf{A}\mathbf{p}$	pend	lix A	Debugging Numerical Programs	493
-	A.3 A.4	Examini Handling GCC wa	lb	494 495 495
\mathbf{Ap}	pend	lix B	Contributors to GSL	499
$\mathbf{A}\mathbf{p}$	pend	lix C	Autoconf Macros	501
Ap	D.1 D.2 D.3	Level 2. Level 3.	GSL CBLAS Library	503 506 512
$\mathbf{A}\mathbf{p}$	pend	lix E	GPG verification	517
\mathbf{Fre}	e So	ftware	e Needs Free Documentation	519
Otl	her b	ooks	from the publisher	521
GN	IU G	enera	l Public License	523
GN	IU F	ree Do	ocumentation License	533
His	story	•••••		539
Fur	nctio	n Inde	ex	541

Type and Variable Index	561
Concept Index	563

Preface 1

Preface

This manual documents the use of the GNU Scientific Library, a numerical library for C and C++ programmers.

The GNU Scientific Library is free software. The term "free software" is sometimes misunderstood—it has nothing to do with price. It is about freedom. It refers to your freedom to run, copy, distribute, study, change and improve the software. With the GNU Scientific Library you have all these freedoms.

The GNU Scientific Library is part of the GNU Project. The GNU Project was launched in 1984 to develop a complete Unix-like operating system which is free software: the GNU system. It was conceived as a way of bringing back the cooperative spirit that prevailed in the computing community in earlier days, by removing the obstacles to cooperation imposed by the owners of proprietary software.

The Free Software Foundation is a tax-exempt charity that raises funds for work on the GNU Project and is dedicated to promoting the freedom to modify and redistribute computer programs. You can support the GNU Project by becoming an associate member of the Free Software Foundation and paying regular membership dues. For more information, visit the website www.fsf.org.

Brian Gough Publisher December 2008

1 Introduction

The GNU Scientific Library (GSL) is a collection of routines for numerical computing. The routines have been written from scratch in C, and present a modern Applications Programming Interface (API) for C programmers, allowing wrappers to be written for very high level languages. The source code is distributed under the GNU General Public License.

1.1 Routines available in GSL

The library covers a wide range of topics in numerical computing. Routines are available for the following areas,

Complex Numbers Roots of Polynomials
Special Functions Vectors and Matrices
Permutations Combinations
Sorting BLAS Support
Linear Algebra CBLAS Library

Fast Fourier Transforms Eigensystems
Random Numbers Quadrature

Random Distributions Quasi-Random Sequences

Histograms Statistics Monte Carlo Integration N-Tuples

Differential Equations Simulated Annealing

Numerical Differentiation Interpolation

Series Acceleration Chebyshev Approximations Root-Finding Discrete Hankel Transforms

Least-Squares Fitting Minimization IEEE Floating-Point Physical Constants

Basis Splines Wavelets

The use of these routines is described in this manual. Each chapter provides detailed definitions of the functions, followed by example programs and references to the articles on which the algorithms are based.

Where possible the routines have been based on reliable public-domain packages such as FFTPACK and QUADPACK, which the developers of GSL have reimplemented in C with modern coding conventions.

1.2 GSL is Free Software

The subroutines in the GNU Scientific Library are "free software"; this means that everyone is free to use them, and to redistribute them in other free programs. The library is not in the public domain; it is copyrighted and there are conditions on its distribution. These conditions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of the software that they might get from you.

Specifically, we want to make sure that you have the right to share copies of programs that you are given which use the GNU Scientific Library, that you receive their source code or else can get it if you want it, that you can change these programs or use pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of any code which uses the GNU Scientific Library, you must give the recipients all the rights that you have received. You must make sure that they, too, receive or can get the source code, both to the library and the code which uses it. And you must tell them their rights. This means that the library should not be redistributed in proprietary programs.

Also, for our own protection, we must make certain that everyone finds out that there is no warranty for the GNU Scientific Library. If these programs are modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation.

The precise conditions for the distribution of software related to the GNU Scientific Library are found in the GNU General Public License (see [GNU General Public License], page 523). Further information about this license is available from the GNU Project webpage Frequently Asked Questions about the GNU GPL,

http://www.gnu.org/copyleft/gpl-faq.html

The Free Software Foundation also operates a license consulting service for commercial users (contact details available from http://www.fsf.org/).

1.3 Obtaining GSL

The source code for the library can be obtained in different ways, by copying it from a friend, purchasing it on CDROM or downloading it from the internet. A list of public ftp servers which carry the source code can be found on the GNU website,

http://www.gnu.org/software/gsl/

The preferred platform for the library is a GNU system, which allows it to take advantage of additional features in the GNU C compiler and GNU C library. However, the library is fully portable and should compile on most systems with a C compiler.

Announcements of new releases, updates and other relevant events are made on the info-gsl@gnu.org mailing list. To subscribe to this low-volume list, send an email of the following form:

To: info-gsl-request@gnu.org Subject: subscribe

You will receive a response asking you to reply in order to confirm your subscription.

1.4 No Warranty

The software described in this manual has no warranty, it is provided "as is". It is your responsibility to validate the behavior of the routines and their accuracy using the source code provided, or to purchase support and warranties from commercial redistributors. Consult the GNU General Public license for further details (see [GNU General Public License], page 523).

1.5 Reporting Bugs

A list of known bugs can be found in the 'BUGS' file included in the GSL distribution or online in the GSL bug tracker. (1) Details of compilation problems can be found in the 'INSTALL' file.

If you find a bug which is not listed in these files, please report it to bug-gsl@gnu.org.

All bug reports should include:

- The version number of GSL
- The hardware and operating system
- The compiler used, including version number and compilation options
- A description of the bug behavior
- A short program which exercises the bug

It is useful if you can check whether the same problem occurs when the library is compiled without optimization. Thank you.

Any errors or omissions in this manual can also be reported to the same address.

⁽¹⁾ http://savannah.gnu.org/bugs/?group=gsl

1.6 Further Information

Additional information, including online copies of this manual, links to related projects, and mailing list archives are available from the website mentioned above.

Any questions about the use and installation of the library can be asked on the mailing list help-gsl@gnu.org. To subscribe to this list, send an email of the following form:

To: help-gsl-request@gnu.org Subject: subscribe

This mailing list can be used to ask questions not covered by this manual, and to contact the developers of the library.

If you would like to refer to the GNU Scientific Library in a journal article, the recommended way is to cite this reference manual, e.g. M. Galassi et al, GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0-9546120-7-8.

If you want to give a url, use "http://www.gnu.org/software/gsl/".

1.7 Conventions used in this manual

This manual contains many examples which can be typed at the keyboard. A command entered at the terminal is shown like this,

\$ command

The first character on the line is the terminal prompt, and should not be typed. The dollar sign '\$' is used as the standard prompt in this manual, although some systems may use a different character.

The examples assume the use of the GNU operating system. There may be minor differences in the output on other systems. The commands for setting environment variables use the Bourne shell syntax of the standard GNU shell (bash).

2 Using the library

This chapter describes how to compile programs that use GSL, and introduces its conventions.

2.1 An Example Program

The following short program demonstrates the use of the library by computing the value of the Bessel function $J_0(x)$ for x=5,

```
#include <stdio.h>
#include <gsl/gsl_sf_bessel.h>

int
main (void)
{
   double x = 5.0;
   double y = gsl_sf_bessel_J0 (x);
   printf ("J0(%g) = %.18e\n", x, y);
   return 0;
}
```

The output is shown below, and should be correct to double-precision accuracy, (1)

```
J0(5) = -1.775967713143382920e-01
```

The steps needed to compile this program are described in the following sections.

2.2 Compiling and Linking

The library header files are installed in their own 'gsl' directory. You should write any preprocessor include statements with a 'gsl/' directory prefix thus,

```
#include <gsl/gsl_math.h>
```

If the directory is not installed on the standard search path of your compiler you will also need to provide its location to the preprocessor as a command line flag. The default location of the 'gsl' directory is '/usr/local/include/gsl'. A typical compilation command for a source file 'example.c' with the GNU C compiler gcc is,

```
$ gcc -Wall -I/usr/local/include -c example.c
```

This results in an object file 'example.o'. The default include path for gcc searches '/usr/local/include' automatically so the -I option can actually be omitted when GSL is installed in its default location.

The last few digits may vary slightly depending on the compiler and platform used this is normal.

2.2.1 Linking programs with the library

The library is installed as a single file, 'libgsl.a'. A shared version of the library 'libgsl.so' is also installed on systems that support shared libraries. The default location of these files is '/usr/local/lib'. If this directory is not on the standard search path of your linker you will also need to provide its location as a command line flag.

To link against the library you need to specify both the main library and a supporting CBLAS library, which provides standard basic linear algebra subroutines. A suitable CBLAS implementation is provided in the library 'libgslcblas.a' if your system does not provide one. The following example shows how to link an application with the library,

```
$ gcc -L/usr/local/lib example.o -lgsl -lgslcblas -lm
```

The default library path for gcc searches '/usr/local/lib' automatically so the -L option can be omitted when GSL is installed in its default location.

2.2.2 Linking with an alternative BLAS library

The following command line shows how you would link the same application with an alternative CBLAS library called 'libcblas',

```
$ gcc example.o -lgsl -lcblas -lm
```

For the best performance an optimized platform-specific CBLAS library should be used for -lcblas. The library must conform to the CBLAS standard. The ATLAS package provides a portable high-performance BLAS library with a CBLAS interface. It is free software and should be installed for any work requiring fast vector and matrix operations. The following command line will link with the ATLAS library and its CBLAS interface,

```
$ gcc example.o -lgsl -lcblas -latlas -lm
```

If the ATLAS library is installed in a non-standard directory use the -L option to add it to the search path, as described above.

For more information about BLAS functions see Chapter 12 [BLAS Support], page 137.

2.3 Shared Libraries

To run a program linked with the shared version of the library the operating system must be able to locate the corresponding '.so' file at runtime. If the library cannot be found, the following error will occur:

```
$ ./a.out
```

```
./a.out: error while loading shared libraries:
libgsl.so.0: cannot open shared object file: No such
file or directory
```

To avoid this error, either modify the system dynamic linker configuration⁽²⁾ or define the shell variable LD_LIBRARY_PATH to include the directory where the library is installed.

^{(2) &#}x27;/etc/ld.so.conf' on GNU/Linux systems.

For example, in the Bourne shell (/bin/sh or /bin/bash), the library search path can be set with the following commands:

- \$ LD_LIBRARY_PATH=/usr/local/lib
- \$ export LD_LIBRARY_PATH
- \$./example

In the C-shell (/bin/csh or /bin/tcsh) the equivalent command is,

% setenv LD_LIBRARY_PATH /usr/local/lib

The standard prompt for the C-shell in the example above is the percent character '%', and should not be typed as part of the command.

To save retyping these commands each session they can be placed in an individual or system-wide login file.

To compile a statically linked version of the program, use the **-static** flag in gcc,

\$ gcc -static example.o -lgsl -lgslcblas -lm

2.4 ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard (C89). It should be portable to any system with a working ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it exports to the user. Programs you write using GSL can be ANSI compliant. Extensions which can be used in a way compatible with pure ANSI C are supported, however, via conditional compilation. This allows the library to take advantage of compiler extensions on those platforms which support them.

When an ANSI C feature is known to be broken on a particular system the library will exclude any related functions at compile-time. This should make it impossible to link a program that would use these functions and give incorrect results.

To avoid namespace conflicts all exported function names and variables have the prefix gsl_, while exported macros have the prefix GSL_.

2.5 Inline functions

The inline keyword is not part of the original ANSI C standard (C89) so the library does not export any inline function definitions by default. Inline functions were introduced officially in the newer C99 standard but most C89 compilers have also included inline as an extension for a long time.

To allow the use of inline functions, the library provides optional inline versions of performance-critical routines by conditional compilation in the exported header files. The inline versions of these functions can be included by defining the macro <code>HAVE_INLINE</code> when compiling an application,

\$ gcc -Wall -c -DHAVE_INLINE example.c

If you use autoconf this macro can be defined automatically. If you do not define the macro HAVE_INLINE then the slower non-inlined versions of the functions will be used instead.

By default, the actual form of the inline keyword is extern inline, which is a gcc extension that eliminates unnecessary function definitions. If the form extern inline causes problems with other compilers a stricter autoconf test can be used, see Appendix C [Autoconf Macros], page 501.

When compiling with gcc in C99 mode (gcc -std=c99) the header files automatically switch to C99-compatible inline function declarations instead of extern inline. With other C99 compilers, define the macro GSL_C99_INLINE to use these declarations.

2.6 Long double

In general, the algorithms in the library are written for double precision only. The long double type is not supported for actual computation.

One reason for this choice is that the precision of long double is platform dependent. The IEEE standard only specifies the minimum precision of extended precision numbers, while the precision of double is the same on all platforms.

However, it is sometimes necessary to interact with external data in long-double format, so the vector and matrix datatypes include long-double versions.

It should be noted that in some system libraries the stdio.h formatted input/output functions printf and scanf are not implemented correctly for long double. Undefined or incorrect results are avoided by testing these functions during the configure stage of library compilation and eliminating certain GSL functions which depend on them if necessary. The corresponding line in the configure output looks like this,

checking whether printf works with long double... no

Consequently when long double formatted input/output does not work on a given system it should be impossible to link a program which uses GSL functions dependent on this.

If it is necessary to work on a system which does not support formatted long double input/output then the options are to use binary formats or to convert long double results into double for reading and writing.

2.7 Portability functions

To help in writing portable applications GSL provides some implementations of functions that are found in other libraries, such as the BSD math library. You can write your application to use the native versions of these functions, and substitute the GSL versions via a preprocessor macro if they are unavailable on another platform.

For example, after determining whether the BSD function hypot is available you can include the following macro definitions in a file 'config.h' with your application,

```
/* Substitute gsl_hypot for missing system hypot */
#ifndef HAVE_HYPOT
#define hypot gsl_hypot
#endif
```

The application source files can then use the include command #include <config.h> to replace each occurrence of hypot by gsl_hypot when hypot is not available. This substitution can be made automatically if you use autoconf, see Appendix C [Autoconf Macros], page 501.

In most circumstances the best strategy is to use the native versions of these functions when available, and fall back to GSL versions otherwise, since this allows your application to take advantage of any platform-specific optimizations in the system library. This is the strategy used within GSL itself.

2.8 Alternative optimized functions

The main implementation of some functions in the library will not be optimal on all architectures. For example, there are several ways to compute a Gaussian random variate and their relative speeds are platform-dependent. In cases like this the library provides alternative implementations of these functions with the same interface. If you write your application using calls to the standard implementation you can select an alternative version later via a preprocessor definition. It is also possible to introduce your own optimized functions this way while retaining portability. The following lines demonstrate the use of a platform-dependent choice of methods for sampling from the Gaussian distribution,

```
#ifdef SPARC
#define gsl_ran_gaussian gsl_ran_gaussian_ratio_method
#elif INTEL
#define gsl_ran_gaussian my_gaussian
#endif
```

These lines would be placed in the configuration header file 'config.h' of the application, which should then be included by all the source files. Note that the alternative implementations will not produce bit-for-bit identical results, and in the case of random number distributions will produce an entirely different stream of random variates.

2.9 Support for different numeric types

Many functions in the library are defined for different numeric types. This feature is implemented by varying the name of the function with a type-related modifier—a primitive form of C++ templates. The modifier is inserted into the function name after the initial module prefix. The following table shows the function names defined for all the numeric types of an imaginary module gsl_foo with function fn.

```
gsl_foo_fn
                          double
gsl_foo_long_double_fn
                          long double
gsl_foo_float_fn
                          float
gsl_foo_long_fn
                          long
gsl_foo_ulong_fn
                          unsigned long
gsl_foo_int_fn
gsl_foo_uint_fn
                          unsigned int
gsl_foo_short_fn
                          short
gsl_foo_ushort_fn
                          unsigned short
gsl_foo_char_fn
                          char
gsl_foo_uchar_fn
                          unsigned char
```

The normal numeric precision double is considered the default and does not require a suffix. For example, the function gsl_stats_mean computes the mean of double precision numbers, while the function gsl_stats_int_mean computes the mean of integers.

A corresponding scheme is used for library defined types, such as gsl_vector and gsl_matrix. In this case the modifier is appended to the type name. For example, if a module defines a new type-dependent struct or typedef gsl_foo it is modified for other types in the following way,

```
gsl_foo
                          double
gsl_foo_long_double
                          long double
gsl_foo_float
                          float
gsl_foo_long
                          long
gsl_foo_ulong
                          unsigned long
gsl_foo_int
                          unsigned int
gsl_foo_uint
gsl_foo_short
                          short
gsl_foo_ushort
                          unsigned short
gsl_foo_char
                          char
gsl_foo_uchar
                          unsigned char
```

When a module contains type-dependent definitions the library provides individual header files for each type. The filenames are modified as shown in the below. For convenience the default header includes the definitions for all the types. To include only the double precision header file, or any other specific type, use its individual filename.

```
#include <gsl/gsl_foo.h> All types
#include <gsl/gsl_foo_double.h> double
#include <gsl/gsl_foo_long_double.h> long double
#include <gsl/gsl_foo_float.h> float
#include <gsl/gsl_foo_long.h> long
```

```
#include <gsl/gsl_foo_ulong.h> unsigned long
#include <gsl/gsl_foo_int.h> int
#include <gsl/gsl_foo_uint.h> unsigned int
#include <gsl/gsl_foo_short.h> short
#include <gsl/gsl_foo_ushort.h> unsigned short
#include <gsl/gsl_foo_ushort.h> char
#include <gsl/gsl_foo_uchar.h> unsigned char
```

2.10 Compatibility with C++

The library header files automatically define functions to have extern "C" linkage when included in C++ programs. This allows the functions to be called directly from C++.

To use C++ exception handling within user-defined functions passed to the library as parameters, the library must be built with the additional CFLAGS compilation option '-fexceptions'.

2.11 Aliasing of arrays

The library assumes that arrays, vectors and matrices passed as modifiable arguments are not aliased and do not overlap with each other. This removes the need for the library to handle overlapping memory regions as a special case, and allows additional optimizations to be used. If overlapping memory regions are passed as modifiable arguments then the results of such functions will be undefined. If the arguments will not be modified (for example, if a function prototype declares them as const arguments) then overlapping or aliased memory regions can be safely used.

2.12 Thread-safety

The library can be used in multi-threaded programs. All the functions are thread-safe, in the sense that they do not use static variables. Memory is always associated with objects and not with functions. For functions which use workspace objects as temporary storage the workspaces should be allocated on a per-thread basis. For functions which use table objects as read-only memory the tables can be used by multiple threads simultaneously. Table arguments are always declared const in function prototypes, to indicate that they may be safely accessed by different threads.

There are a small number of static global variables which are used to control the overall behavior of the library (e.g. whether to use range-checking, the function to call on fatal error, etc). These variables are set directly by the user, so they should be initialized once at program startup and not modified by different threads.

2.13 Deprecated Functions

From time to time, it may be necessary for the definitions of some functions to be altered or removed from the library. In these circumstances the functions will first be declared deprecated and then removed from subsequent versions of the library. Functions that are deprecated can be disabled in the current release by setting the preprocessor definition GSL_DISABLE_DEPRECATED. This allows existing code to be tested for forwards compatibility.

2.14 Code Reuse

Where possible the routines in the library have been written to avoid dependencies between modules and files. This should make it possible to extract individual functions for use in your own applications, without needing to have the whole library installed. You may need to define certain macros such as GSL_ERROR and remove some #include statements in order to compile the files as standalone units. Reuse of the library code in this way is encouraged, subject to the terms of the GNU General Public License.

3 Error Handling

This chapter describes the way that GSL functions report and handle errors. By examining the status information returned by every function you can determine whether it succeeded or failed, and if it failed you can find out what the precise cause of failure was. You can also define your own error handling functions to modify the default behavior of the library.

The functions described in this section are declared in the header file 'gsl_errno.h'.

3.1 Error Reporting

The library follows the thread-safe error reporting conventions of the POSIX Threads library. Functions return a non-zero error code to indicate an error and 0 to indicate success.

```
int status = gsl_function (...)
if (status) { /* an error occurred */
    .....
    /* status value specifies the type of error */
}
```

The routines report an error whenever they cannot perform the task requested of them. For example, a root-finding function would return a non-zero error code if could not converge to the requested accuracy, or exceeded a limit on the number of iterations. Situations like this are a normal occurrence when using any mathematical library and you should check the return status of the functions that you call.

Whenever a routine reports an error the return value specifies the type of error. The return value is analogous to the value of the variable errno in the C library. The caller can examine the return code and decide what action to take, including ignoring the error if it is not considered serious.

In addition to reporting errors by return codes the library also has an error handler function gsl_error. This function is called by other library functions when they report an error, just before they return to the caller. The default behavior of the error handler is to print a message and abort the program,

```
gsl: file.c:67: ERROR: invalid argument supplied by user Default GSL error handler invoked.

Aborted
```

The purpose of the gsl_error handler is to provide a function where a breakpoint can be set that will catch library errors when running under the debugger. It is not intended for use in production programs, which should handle any errors using the return codes.

3.2 Error Codes

The error code numbers returned by library functions are defined in the file 'gsl_erro.h'. They all have the prefix GSL_ and expand to non-zero constant integer values. Error codes above 1024 are reserved for applications, and are not used by the library. Many of the error codes use the same base name as the corresponding error code in the C library. Here are some of the most common error codes.

int GSL_EDOM Macro

Domain error; used by mathematical functions when an argument value does not fall into the domain over which the function is defined (like EDOM in the C library)

int GSL_ERANGE Macro

Range error; used by mathematical functions when the result value is not representable because of overflow or underflow (like ERANGE in the C library)

int GSL_ENOMEM Macro

No memory available. The system cannot allocate more virtual memory because its capacity is full (like ENOMEM in the C library). This error is reported when a GSL routine encounters problems when trying to allocate memory with malloc.

int GSL_EINVAL Macro

Invalid argument. This is used to indicate various kinds of problems with passing the wrong argument to a library function (like EINVAL in the C library).

The error codes can be converted into an error message using the function gsl_strerror.

const char * gsl_strerror (const int gsl_errno)

Function

This function returns a pointer to a string describing the error code gsl_errno. For example,

```
printf ("error: %s\n", gsl_strerror (status));
```

would print an error message like error: output range error for a status value of GSL_ERANGE.

3.3 Error Handlers

The default behavior of the GSL error handler is to print a short message and call abort. When this default is in use programs will stop with a core-dump whenever a library routine reports an error. This is intended as a fail-safe default for programs which do not check the return status of library routines (we don't encourage you to write programs this way).

If you turn off the default error handler it is your responsibility to check the return values of routines and handle them yourself. You can also customize the error behavior by providing a new error handler. For example, an alternative error handler could log all errors to a file, ignore certain error conditions (such as underflows), or start the debugger and attach it to the current process when an error occurs.

All GSL error handlers have the type gsl_error_handler_t, which is defined in 'gsl_errno.h',

```
gsl_error_handler_t
```

Data Type

This is the type of GSL error handler functions. An error handler will be passed four arguments which specify the reason for the error (a string), the name of the source file in which it occurred (also a string), the line number in that file (an integer) and the error number (an integer). The source file and line number are set at compile time using the <code>__FILE__</code> and <code>__LINE__</code> directives in the preprocessor. An error handler function returns type <code>void</code>. Error handler functions should be defined like this,

To request the use of your own error handler you need to call the function gsl_set_error_handler which is also declared in 'gsl_errno.h',

This function sets a new error handler, new_handler, for the GSL library routines. The previous handler is returned (so that you can restore it later). Note that the pointer to a user defined error handler function is stored in a static variable, so there can be only one error handler per program. This function should be not be used in multi-threaded programs except to set up a program-wide error handler from a master thread. The following example shows how to set and restore a new error handler,

```
/* save original handler, install new handler */
old_handler = gsl_set_error_handler (&my_handler);
/* code uses new handler */
.....
/* restore original handler */
gsl_set_error_handler (old_handler);
```

To use the default behavior (abort on error) set the error handler to NULL, old_handler = gsl_set_error_handler (NULL);

```
gsl_error_handler_t * gsl_set_error_handler_off () Function
This function turns off the error handler by defining an error handler which
does nothing. This will cause the program to continue after any error, so
the return values from any library routines must be checked. This is the
recommended behavior for production programs. The previous handler is
returned (so that you can restore it later).
```

The error behavior can be changed for specific applications by recompiling the library with a customized definition of the GSL_ERROR macro in the file 'gsl_erro.h'.

3.4 Using GSL error reporting in your own functions

If you are writing numerical functions in a program which also uses GSL code you may find it convenient to adopt the same error reporting conventions as in the library.

To report an error you need to call the function <code>gsl_error</code> with a string describing the error and then return an appropriate error code from <code>gsl_erro</code>. h, or a special value, such as <code>NaN</code>. For convenience the file '<code>gsl_errno.h</code>' defines two macros which carry out these steps:

```
GSL_ERROR (reason, gsl_errno)
```

Macro

This macro reports an error using the GSL conventions and returns a status value of gsl_errno. It expands to the following code fragment,

```
gsl_error (reason, __FILE__, __LINE__, gsl_errno);
return gsl_errno;
```

The macro definition in 'gsl_errno.h' actually wraps the code in a do { ...} while (0) block to prevent possible parsing problems.

Here is an example of how the macro could be used to report that a routine did not achieve a requested tolerance. To report the error the routine needs to return the error code GSL ETOL.

```
if (residual > tolerance)
  {
    GSL_ERROR("residual exceeds tolerance", GSL_ETOL);
}
```

```
GSL_ERROR_VAL (reason, gsl_errno, value)
```

Macro

This macro is the same as GSL_ERROR but returns a user-defined value of value instead of an error code. It can be used for mathematical functions that return a floating point value.

The following example shows how to return a NaN at a mathematical singularity using the GSL_ERROR_VAL macro,

3.5 Examples

Here is an example of some code which checks the return value of a function where an error might be reported,

The function gsl_fft_complex_radix2 only accepts integer lengths which are a power of two. If the variable n is not a power of two then the call to the library function will return GSL_EINVAL, indicating that the length argument is invalid. The function call to gsl_set_error_handler_off stops the default error handler from aborting the program. The else clause catches any other possible errors.

4 Mathematical Functions

This chapter describes basic mathematical functions. Some of these functions are present in system libraries, but the alternative versions given here can be used as a substitute when the system functions are not available.

The functions and macros described in this chapter are defined in the header file 'gsl_math.h'.

4.1 Mathematical Constants

The library ensures that the standard BSD mathematical constants are defined. For reference, here is a list of the constants:

ΜE

The base of exponentials, e

M_LOG2E

The base-2 logarithm of e, $\log_2(e)$

M LOG10E

The base-10 logarithm of e, $\log_{10}(e)$

M_SQRT2

The square root of two, $\sqrt{2}$

M_SQRT1_2

The square root of one-half, $\sqrt{1/2}$

M_SQRT3

The square root of three, $\sqrt{3}$

M_PI

The constant pi, π

M_PI_2

Pi divided by two, $\pi/2$

M_PI_4

Pi divided by four, $\pi/4$

M SORTPI

The square root of pi, $\sqrt{\pi}$

M_2_SQRTPI

Two divided by the square root of pi, $2/\sqrt{\pi}$

M_1_PI

The reciprocal of pi, $1/\pi$

M 2 PI

Twice the reciprocal of pi, $2/\pi$

M_LN10

The natural logarithm of ten, ln(10)

M_LN2

The natural logarithm of two, ln(2)

M LNPI

The natural logarithm of pi, $ln(\pi)$

M EULER

Euler's constant, γ

4.2 Infinities and Not-a-number

GSL_POSINF Macro

This macro contains the IEEE representation of positive infinity, $+\infty$. It is computed from the expression +1.0/0.0.

GSL_NEGINF Macro

This macro contains the IEEE representation of negative infinity, $-\infty$. It is computed from the expression -1.0/0.0.

GSL NAN Macro

This macro contains the IEEE representation of the Not-a-Number symbol, NaN. It is computed from the ratio 0.0/0.0.

int gsl_isnan (const double x)

Function

This function returns 1 if x is not-a-number.

int gsl_isinf (const double x)

Function

This function returns +1 if x is positive infinity, -1 if x is negative infinity and 0 otherwise. (1)

int gsl_finite (const double x)

Function

This function returns 1 if x is a real number, and 0 if it is infinite or not-anumber.

⁽¹⁾ Note that the C99 standard only requires the system isinf function to return a non-zero value, without the sign of the infinity. The implementation in some earlier versions of GSL used the system isinf function and may have this behavior on some platforms. Therefore, it is advisable to test the sign of x separately, if needed, rather than relying the sign of the return value from gsl_isinf().

4.3 Elementary Functions

The following routines provide portable implementations of functions found in the BSD math library. When native versions are not available the functions described here can be used instead. The substitution can be made automatically if you use autoconf to compile your application (see Section 2.7 [Portability functions], page 11).

double gsl_log1p (const double x)

Function

This function computes the value of log(1+x) in a way that is accurate for small x. It provides an alternative to the BSD math function log1p(x).

double gsl_expm1 (const double x)

Function

This function computes the value of $\exp(x) - 1$ in a way that is accurate for small x. It provides an alternative to the BSD math function $\exp(x)$.

double gsl_hypot (const double x, const double y)

Function

This function computes the value of $\sqrt{x^2+y^2}$ in a way that avoids overflow. It provides an alternative to the BSD math function hypot(x,y).

double gsl_hypot3 (const double x, const double y, const double z)

Function

This function computes the value of $\sqrt{x^2 + y^2 + z^2}$ in a way that avoids overflow.

double gsl_acosh (const double x)

Function

This function computes the value of $\operatorname{arcosh}(x)$. It provides an alternative to the standard math function $\operatorname{acosh}(x)$.

double gsl_asinh (const double x)

Function

This function computes the value of $\operatorname{arcsinh}(x)$. It provides an alternative to the standard math function $\operatorname{asinh}(x)$.

double gsl_atanh (const double x)

Function

This function computes the value of $\operatorname{arctanh}(x)$. It provides an alternative to the standard math function $\operatorname{atanh}(x)$.

double gsl_ldexp (double x, int e)

Function

This function computes the value of $x * 2^e$. It provides an alternative to the standard math function ldexp(x,e).

double gsl_frexp (double x, int * e)

Function

This function splits the number x into its normalized fraction f and exponent e, such that $x=f*2^e$ and $0.5 \le f < 1$. The function returns f and stores the exponent in e. If x is zero, both f and e are set to zero. This function provides an alternative to the standard math function f(x, e).

4.4 Small integer powers

A common complaint about the standard C library is its lack of a function for calculating (small) integer powers. GSL provides some simple functions to fill this gap. For reasons of efficiency, these functions do not check for overflow or underflow conditions.

double gsl_pow_int (double x, int n)

Function

This routine computes the power x^n for integer n. The power is computed efficiently—for example, x^8 is computed as $((x^2)^2)^2$, requiring only 3 multiplications. A version of this function which also computes the numerical error in the result is available as $gsl_sf_pow_int_e$.

```
double gsl_pow_2 (const double x)
                                                                   Function
                                                                   Function
double gsl_pow_3 (const double x)
double gsl_pow_4 (const double x)
                                                                   Function
                                                                   Function
double gsl_pow_5 (const double x)
double gsl_pow_6 (const double x)
                                                                   Function
double gsl_pow_7 (const double x)
                                                                   Function
                                                                   Function
double gsl_pow_8 (const double x)
double gsl_pow_9 (const double x)
                                                                  Function
```

These functions can be used to compute small integer powers x^2 , x^3 , etc. efficiently. The functions will be inlined when HAVE_INLINE is defined, so that use of these functions should be as efficient as explicitly writing the corresponding product expression.

```
#include <gsl/gsl_math.h>
double y = gsl_pow_4 (3.141) /* compute 3.141**4 */
```

4.5 Testing the Sign of Numbers

GSL_SIGN (x) Macro

This macro returns the sign of x. It is defined as $((x) \ge 0.71 : -1)$. Note that with this definition the sign of zero is positive (regardless of its IEEE sign bit).

4.6 Testing for Odd and Even Numbers

GSL_IS_ODD (n) Macro

This macro evaluates to 1 if n is odd and 0 if n is even. The argument n must be of integer type.

GSL_IS_EVEN (n) Macro

This macro is the opposite of $GSL_IS_ODD(n)$. It evaluates to 1 if n is even and 0 if n is odd. The argument n must be of integer type.

4.7 Maximum and Minimum functions

Note that the following macros perform multiple evaluations of their arguments, so they should not be used with arguments that have side effects (such as a call to a random number generator).

- GSL_MAX (a, b)

 Macro
 - This macro returns the maximum of a and b. It is defined as ((a) > (b)? (a):(b)).
- GSL_MIN (a, b) Macro This macro returns the minimum of a and b. It is defined as ((a) < (b)?
- extern inline double GSL_MAX_DBL (double a, double b) Function This function returns the maximum of the double precision numbers a and b using an inline function. The use of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline functions are not available the macro GSL_MAX will be automatically substituted.
- extern inline double GSL_MIN_DBL (double a, double b) Function This function returns the minimum of the double precision numbers a and b using an inline function. The use of a function allows for type checking of the arguments as an extra safety feature. On platforms where inline functions are not available the macro GSL_MIN will be automatically substituted.
- extern inline int GSL_MAX_INT (int a, int b) Function extern inline int GSL_MIN_INT (int a, int b) Function

These functions return the maximum or minimum of the integers a and b using an inline function. On platforms where inline functions are not available the macros GSL_MAX or GSL_MIN will be automatically substituted.

- extern inline long double GSL_MAX_LDBL (long double a, long double b)
- extern inline long double GSL_MIN_LDBL (long double a, long double b)

These functions return the maximum or minimum of the long doubles a and b using an inline function. On platforms where inline functions are not available the macros ${\tt GSL_MAX}$ or ${\tt GSL_MIN}$ will be automatically substituted.

4.8 Approximate Comparison of Floating Point Numbers

It is sometimes useful to be able to compare two floating point numbers approximately, to allow for rounding and truncation errors. The following function implements the approximate floating-point comparison algorithm proposed by D.E. Knuth in Section 4.2.2 of Seminumerical Algorithms (3rd edition).

int gsl_fcmp (double x, double y, double epsilon)

Function

This function determines whether x and y are approximately equal to a relative accuracy epsilon.

The relative accuracy is measured using an interval of size 2δ , where $\delta = 2^k \epsilon$ and k is the maximum base-2 exponent of x and y as computed by the function frexp.

If x and y lie within this interval, they are considered approximately equal and the function returns 0. Otherwise if x < y, the function returns -1, or if x > y, the function returns +1.

Note that x and y are compared to relative accuracy, so this function is not suitable for testing whether a value is approximately zero.

The implementation is based on the package fcmp by T.C. Belding.

5 Complex Numbers

The functions described in this chapter provide support for complex numbers. The algorithms take care to avoid unnecessary intermediate underflows and overflows, allowing the functions to be evaluated over as much of the complex plane as possible.

For multiple-valued functions the branch cuts have been chosen to follow the conventions of Abramowitz and Stegun in the Handbook of Mathematical Functions. The functions return principal values which are the same as those in GNU Calc, which in turn are the same as those in Common Lisp, The Language (Second Edition)⁽¹⁾ and the HP-28/48 series of calculators.

The complex types are defined in the header file 'gsl_complex.h', while the corresponding complex functions and arithmetic operations are defined in 'gsl_complex_math.h'.

5.1 Representation of complex numbers

Complex numbers are represented using the type gsl_complex. The internal representation of this type may vary across platforms and should not be accessed directly. The functions and macros described below allow complex numbers to be manipulated in a portable way.

For reference, the default form of the gsl_complex type is given by the following struct,

```
typedef struct
{
  double dat[2];
} gsl_complex;
```

The real and imaginary part are stored in contiguous elements of a two element array. This eliminates any padding between the real and imaginary parts, dat[0] and dat[1], allowing the struct to be mapped correctly onto packed complex arrays.

```
gsl_complex gsl_complex_rect (double x, double y) Function This function uses the rectangular cartesian components (x,y) to return the complex number z = x + iy. An inline version of this function is used when HAVE_INLINE is defined.
```

```
gsl_complex gsl_complex_polar (double r, double theta) Function This function returns the complex number z = r \exp(i\theta) = r(\cos(\theta) + i\sin(\theta)) from the polar representation (r, theta).
```

```
\operatorname{GSL}_REAL (z) Macro \operatorname{GSL}_IMAG (z) Macro
```

These macros return the real and imaginary parts of the complex number z.

⁽¹⁾ Note that the first edition uses different definitions.

$GSL_SET_COMPLEX$ (zp, x, y)

Macro

This macro uses the cartesian components (x,y) to set the real and imaginary parts of the complex number pointed to by zp. For example,

sets z to be 3 + 4i.

GSL_SET_REAL (zp,x)GSL_SET_IMAG (zp,y) Macro Macro

These macros allow the real and imaginary parts of the complex number pointed to by zp to be set independently.

5.2 Properties of complex numbers

double gsl_complex_arg (gsl_complex z)

Function

This function returns the argument of the complex number z, $\arg(z)$, where $-\pi < \arg(z) \le \pi$.

 $\verb|double gsl_complex_abs (gsl_complex z)|\\$

Function

This function returns the magnitude of the complex number z, |z|.

double gsl_complex_abs2 (gsl_complex z)

Function

This function returns the squared magnitude of the complex number z, $|z|^2$.

double gsl_complex_logabs (gsl_complex z)

Function

This function returns the natural logarithm of the magnitude of the complex number z, $\log |z|$. It allows an accurate evaluation of $\log |z|$ when |z| is close to one. The direct evaluation of $\log(gsl_complex_abs(z))$ would lead to a loss of precision in this case.

5.3 Complex arithmetic operators

- gsl_complex gsl_complex_add (gsl_complex a, gsl_complex b) Function This function returns the sum of the complex numbers a and b, z = a + b.
- gsl_complex gsl_complex_sub (gsl_complex a, gsl_complex b) Function This function returns the difference of the complex numbers a and b, z = a b.
- gsl_complex gsl_complex_mul (gsl_complex a, gsl_complex b) Function This function returns the product of the complex numbers a and b, z = ab.
- gsl_complex gsl_complex_div (gsl_complex a, gsl_complex b) Function This function returns the quotient of the complex numbers a and b, z = a/b.
- gsl_complex gsl_complex_add_real (gsl_complex a, double x) Function This function returns the sum of the complex number a and the real number x, z = a + x.

\mathbf{C}			
C		cblas_drotm	
cblas_caxpy	504	cblas_drotmg	
cblas_ccopy	504	cblas_dsbmv	
cblas_cdotc_sub	503	cblas_dscal	
cblas_cdotu_sub	503	cblas_dsdot	
cblas_cgbmv	507	cblas_dspmv	
cblas_cgemm	513	cblas_dspr	
cblas_cgemv	507	cblas_dspr2	510
cblas_cgerc	511	cblas_dswap	
cblas_cgeru		cblas_dsymm	513
cblas_chbmv	510	cblas_dsymv	510
cblas_chemm	515	cblas_dsyr	
cblas_chemv		cblas_dsyr2	
cblas_cher	511	cblas_dsyr2k	513
cblas_cher2	511	cblas_dsyrk	
cblas_cher2k	515	cblas_dtbmv	507
cblas_cherk	515	cblas_dtbsv	507
cblas_chpmv		cblas_dtpmv	507
cblas_chpr		cblas_dtpsv	507
cblas_chpr2		cblas_dtrmm	513
cblas_cscal		cblas_dtrmv	507
cblas_csscal		cblas_dtrsm	513
cblas_cswap		cblas_dtrsv	507
cblas_csymm		cblas_dzasum	504
cblas_csyr2k		cblas_dznrm2	503
cblas_csyrk		cblas_icamax	504
cblas_ctbmv		cblas_idamax	
cblas_ctbsv		cblas_isamax	504
cblas_ctpmv		cblas_izamax	504
cblas_ctpsv		cblas_sasum	
cblas_ctrmm		cblas_saxpy	
cblas_ctrmv		cblas_scasum	503
cblas_ctrsm		cblas_scnrm2	503
cblas_ctrsv		cblas_scopy	504
cblas_dasum		cblas_sdot	
cblas_daxpy		cblas_sdsdot	503
cblas_dcopy		cblas_sgbmv	
cblas_ddot		cblas_sgemm	
cblas_dgbmv		cblas_sgemv	506
cblas_dgemm		cblas_sger	
cblas_dgemv		cblas_snrm2	
cblas_dger		cblas_srot	
cblas_dnrm2		cblas_srotg	
cblas_drot		cblas_srotm	
chlas drotg	505	chlas srotmg	504

cblas_ssbmv		cblas_ztpsv	
cblas_sscal		cblas_ztrmm	
cblas_sspmv		cblas_ztrmv	508
cblas_sspr	509	cblas_ztrsm	514
cblas_sspr2	509	cblas_ztrsv	509
cblas_sswap	504		
cblas_ssymm	512	G	
cblas_ssymv	509	G	
cblas_ssyr	509	gsl_acosh	. 23
cblas_ssyr2	509	${\tt gsl_asinh}$. 23
cblas_ssyr2k	512	${\tt gsl_atanh}$. 23
cblas_ssyrk	512	gsl_blas_caxpy	140
cblas_stbmv	506	gsl_blas_ccopy	140
cblas_stbsv	506	gsl_blas_cdotc	139
cblas_stpmv	506	gsl_blas_cdotu	139
cblas_stpsv	506	gsl_blas_cgemm	145
cblas_strmm	512	gsl_blas_cgemv	142
cblas_strmv	506	gsl_blas_cgerc	144
cblas_strsm	512	gsl_blas_cgeru	144
cblas_strsv	506	gsl_blas_chemm	146
cblas_xerbla	515	gsl_blas_chemv	143
cblas_zaxpy	504	gsl_blas_cher	144
cblas_zcopy	504	gsl_blas_cher2	145
cblas_zdotc_sub	503	gsl_blas_cher2k	149
cblas_zdotu_sub	503	gsl_blas_cherk	148
cblas_zdscal	505	gsl_blas_cscal	141
cblas_zgbmv	508	gsl_blas_csscal	141
cblas_zgemm	514	gsl_blas_cswap	140
cblas_zgemv	508	gsl_blas_csymm	146
cblas_zgerc	511	gsl_blas_csyr2k	149
cblas_zgeru	511	gsl_blas_csyrk	148
cblas_zhbmv	511	gsl_blas_ctrmm	147
cblas_zhemm	515	gsl_blas_ctrmv	142
cblas_zhemv	511	gsl_blas_ctrsm	147
cblas_zher	511	gsl_blas_ctrsv	143
cblas_zher2	512	gsl_blas_dasum	
cblas_zher2k	515	gsl_blas_daxpy	
cblas_zherk	515	gsl_blas_dcopy	140
cblas_zhpmv		gsl_blas_ddot	
cblas_zhpr	512	gsl_blas_dgemm	145
cblas_zhpr2	512	gsl_blas_dgemv	142
cblas_zscal	505	gsl_blas_dger	144
cblas_zswap	504	gsl_blas_dnrm2	139
cblas_zsymm	514	gsl_blas_drot	141
cblas_zsyr2k	514	gsl_blas_drotg	141
cblas_zsyrk	514	gsl_blas_drotm	141
cblas_ztbmv	508	gsl_blas_drotmg	141
cblas_ztbsv	509	gsl_blas_dscal	141
cblas_ztpmv	508	gsl_blas_dsdot	139

gsl_blas_dswap	140	gsl_blas_zgemm	145
gsl_blas_dsymm	146	gsl_blas_zgemv	142
gsl_blas_dsymv	143	gsl_blas_zgerc	144
gsl_blas_dsyr	144	gsl_blas_zgeru	144
gsl_blas_dsyr2	145	gsl_blas_zhemm	146
gsl_blas_dsyr2k	149	gsl_blas_zhemv	143
gsl_blas_dsyrk	148	gsl_blas_zher	144
gsl_blas_dtrmm	147	gsl_blas_zher2	145
gsl_blas_dtrmv	142	${\tt gsl_blas_zher2k}$	149
gsl_blas_dtrsm	147	gsl_blas_zherk	148
gsl_blas_dtrsv	143	gsl_blas_zscal	141
gsl_blas_dzasum	140	gsl_blas_zswap	140
gsl_blas_dznrm2		gsl_blas_zsymm	
gsl_blas_icamax	140	gsl_blas_zsyr2k	149
gsl_blas_idamax	140	gsl_blas_zsyrk	148
gsl_blas_isamax	140	gsl_blas_ztrmm	147
gsl_blas_izamax		gsl_blas_ztrmv	142
gsl_blas_sasum	139	gsl_blas_ztrsm	147
gsl_blas_saxpy	140	gsl_blas_ztrsv	143
gsl_blas_scasum	140	gsl_block_alloc	. 90
gsl_blas_scnrm2	139	${\tt gsl_block_calloc}$. 90
gsl_blas_scopy	140	${\tt gsl_block_fprintf}$. 91
gsl_blas_sdot	139	${\tt gsl_block_fread} \dots \dots \dots$. 90
gsl_blas_sdsdot	139	gsl_block_free	. 90
gsl_blas_sgemm		${\tt gsl_block_fscanf} \dots \dots \dots$. 91
gsl_blas_sgemv	142	${\tt gsl_block_fwrite}$. 90
gsl_blas_sger	144	${\tt gsl_bspline_alloc}$	470
gsl_blas_snrm2	139	${\tt gsl_bspline_deriv_alloc}$	470
gsl_blas_srot	141	${\tt gsl_bspline_deriv_eval} \ldots \ldots$	471
gsl_blas_srotg	141	${\tt gsl_bspline_deriv_eval_nonzero} \; . \; .$	471
gsl_blas_srotm	141	${\tt gsl_bspline_deriv_free} \dots \dots \dots$	470
gsl_blas_srotmg	141	gsl_bspline_eval	471
gsl_blas_sscal	141	${\tt gsl_bspline_eval_nonzero}$	471
gsl_blas_sswap	140	<pre>gsl_bspline_free</pre>	470
gsl_blas_ssymm	146	${\tt gsl_bspline_knots}$	470
gsl_blas_ssymv	143	${\tt gsl_bspline_knots_uniform}$	470
gsl_blas_ssyr	144	gsl_bspline_ncoeffs	471
gsl_blas_ssyr2	145	gsl_cdf_beta_P	263
gsl_blas_ssyr2k	149	${\tt gsl_cdf_beta_Pinv}$	263
gsl_blas_ssyrk	148	gsl_cdf_beta_Q	263
gsl_blas_strmm	147	<pre>gsl_cdf_beta_Qinv</pre>	263
gsl_blas_strmv	142	${\tt gsl_cdf_binomial_P}$	275
gsl_blas_strsm	147	${\tt gsl_cdf_binomial_Q}$	275
gsl_blas_strsv	143	<pre>gsl_cdf_cauchy_P</pre>	249
gsl_blas_zaxpy	140	gsl_cdf_cauchy_Pinv	249
gsl_blas_zcopy	140	gsl_cdf_cauchy_Q	249
gsl_blas_zdotc		gsl_cdf_cauchy_Qinv	249
gsl_blas_zdotu	139	gsl_cdf_chisq_P	259
gsl_blas_zdscal	141	gsl_cdf_chisq_Pinv	259

gsl_cdf	$_{ t chisq_Q}\dots\dots$	259	<pre>gsl_cdf_negative_binomial_Q</pre>	277
gsl_cdf	_chisq_Qinv	259	gsl_cdf_pareto_P	265
gsl_cdf	_exponential_P	246	<pre>gsl_cdf_pareto_Pinv</pre>	265
gsl_cdf	_exponential_Pinv	246	${\tt gsl_cdf_pareto_Q}$	265
gsl_cdf	$_{ t exponential}_{ t Q} \dots$	246	<pre>gsl_cdf_pareto_Qinv</pre>	265
gsl_cdf	${\tt _exponential_Qinv}$	246	${\tt gsl_cdf_pascal_P}$	278
gsl_cdf	_exppow_P	248	${\tt gsl_cdf_pascal_Q}$	278
gsl_cdf	_exppow_Q	248	${\tt gsl_cdf_poisson_P}$	273
gsl_cdf	_fdist_P	261	<pre>gsl_cdf_poisson_Q</pre>	273
gsl_cdf	_fdist_Pinv	261	${\tt gsl_cdf_rayleigh_P}$	
gsl_cdf	_fdist_Q	261	gsl_cdf_rayleigh_Pinv	250
_	_fdist_Qinv		${\tt gsl_cdf_rayleigh_Q}. \dots \dots$	
gsl_cdf	_flat_P	257	gsl_cdf_rayleigh_Qinv	250
gsl_cdf	_flat_Pinv	257	gsl_cdf_tdist_P	262
	_flat_Q		<pre>gsl_cdf_tdist_Pinv</pre>	262
	_flat_Qinv			262
gsl_cdf	_gamma_P	256	<pre>gsl_cdf_tdist_Qinv</pre>	262
gsl_cdf	_gamma_Pinv	256	<pre>gsl_cdf_ugaussian_P</pre>	242
_	$_{ t gamma}_{ t Q}$		<pre>gsl_cdf_ugaussian_Pinv</pre>	242
gsl_cdf	${\tt gamma_Qinv}$	256	<pre>gsl_cdf_ugaussian_Q</pre>	242
gsl_cdf	_gaussian_P	242	<pre>gsl_cdf_ugaussian_Qinv</pre>	
gsl_cdf	_gaussian_Pinv	242	gsl_cdf_weibull_P	267
gsl_cdf	$_{ t gaussian _Q}$	242	gsl_cdf_weibull_Pinv	267
	_gaussian_Qinv		gsl_cdf_weibull_Q	267
	_geometric_P			267
	_geometric_Q		gsl_cheb_alloc	371
gsl_cdf	_gumbel1_P	268	gsl_cheb_calc_deriv	373
_	_gumbel1_Pinv		gsl_cheb_calc_integ	373
	_gumbel1_Q		gsl_cheb_coeffs	372
	_gumbel1_Qinv		0	372
_	_gumbel2_P		gsl_cheb_eval_err	
	_gumbel2_Pinv		gsl_cheb_eval_n	372
	_gumbel2_Q			372
	_gumbel2_Qinv		gsl_cheb_free	
_	_hypergeometric_P		gsl_cheb_init	
	_hypergeometric_Q		0	372
	_laplace_P			372
	_laplace_Pinv		gsl_combination_alloc	125
	_laplace_Q		gsl_combination_calloc	125
_	_laplace_Qinv		gsl_combination_data	126
_	_logistic_P		gsl_combination_fprintf	127
	_logistic_Pinv		gsl_combination_fread	127
	_logistic_Q			125
_	_logistic_Qinv		gsl_combination_fscanf	
_	_lognormal_P		gsl_combination_fwrite	
	_lognormal_Pinv			126
	_lognormal_Q		<pre>gsl_combination_init_first</pre>	
_	_lognormal_Qinv		<pre>gsl_combination_init_last</pre>	
osl cdf	negative binomial P	277	gsl combination k	126

${ t gsl_combination_memcpy$	26	gsl_complex_polar	. 27
${\tt gsl_combination_n}$	26	gsl_complex_poly_complex_eval	35
gsl_combination_next 12	26	gsl_complex_pow	30
${\tt gsl_combination_prev}$ 12	26	gsl_complex_pow_real	30
${\tt gsl_combination_valid} \ldots 12$	26	gsl_complex_rect	. 27
gsl_complex_abs	28	gsl_complex_sec	31
gsl_complex_abs2	28	gsl_complex_sech	32
gsl_complex_add	28	gsl_complex_sin	30
gsl_complex_add_imag	29	gsl_complex_sinh	32
gsl_complex_add_real :	28	gsl_complex_sqrt	30
gsl_complex_arccos	31	gsl_complex_sqrt_real	30
gsl_complex_arccos_real	31	gsl_complex_sub	28
gsl_complex_arccosh	33	gsl_complex_sub_imag	29
gsl_complex_arccosh_real	33	gsl_complex_sub_real	29
gsl_complex_arccot	32	gsl_complex_tan	30
gsl_complex_arccoth	33	gsl_complex_tanh	32
gsl_complex_arccsc	32	gsl_deriv_backward	367
gsl_complex_arccsc_real	32	gsl_deriv_central	367
gsl_complex_arccsch	33	gsl_deriv_forward	367
gsl_complex_arcsec	31	gsl_dht_alloc	388
gsl_complex_arcsec_real	31	gsl_dht_apply	388
gsl_complex_arcsech	33	gsl_dht_free	388
gsl_complex_arcsin	31	gsl_dht_init	388
gsl_complex_arcsin_real	31	gsl_dht_k_sample	388
gsl_complex_arcsinh	33	gsl_dht_new	388
gsl_complex_arctan	31	gsl_dht_x_sample	388
gsl_complex_arctanh	33	gsl_eigen_gen	178
gsl_complex_arctanh_real	33	gsl_eigen_gen_alloc	178
gsl_complex_arg	28	gsl_eigen_gen_free	178
gsl_complex_conjugate :	29	gsl_eigen_gen_params	178
gsl_complex_cos	30	gsl_eigen_gen_QZ	178
gsl_complex_cosh	32	gsl_eigen_genherm	176
gsl_complex_cot	31	gsl_eigen_genherm_alloc	176
gsl_complex_coth	32	gsl_eigen_genherm_free	176
gsl_complex_csc	31	gsl_eigen_genhermv	177
gsl_complex_csch	32	gsl_eigen_genhermv_alloc	176
gsl_complex_div	28	gsl_eigen_genhermv_free	176
gsl_complex_div_imag :	29	gsl_eigen_genhermv_sort	180
gsl_complex_div_real :	29	gsl_eigen_gensymm	175
gsl_complex_exp	30	gsl_eigen_gensymm_alloc	175
gsl_complex_inverse	29	gsl_eigen_gensymm_free	175
gsl_complex_log	30	gsl_eigen_gensymmv	176
gsl_complex_log_b	30	gsl_eigen_gensymmv_alloc	175
gsl_complex_log10	30	gsl_eigen_gensymmv_free	175
gsl_complex_logabs	28	gsl_eigen_gensymmv_sort	180
gsl_complex_mul			179
			178
gsl_complex_mul_real :	29	gsl_eigen_genv_free	179
gsl_complex_negative	29	gsl_eigen_genv_QZ	179

gsl_eigen_genv_sort 180	gsl_fft_complex_wavetable_free 191
gsl_eigen_herm	gsl_fft_complex_workspace_alloc
gsl_eigen_herm_alloc 172	191
gsl_eigen_herm_free 172	gsl_fft_complex_workspace_free 191
gsl_eigen_hermv	gsl_fft_halfcomplex_radix2_backward
gsl_eigen_hermv_alloc	196
gsl_eigen_hermv_free 172	gsl_fft_halfcomplex_radix2_inverse
gsl_eigen_hermv_sort 179	
gsl_eigen_nonsymm	gsl_fft_halfcomplex_radix2_unpack
gsl_eigen_nonsymm_alloc 173	
gsl_eigen_nonsymm_free	gsl_fft_halfcomplex_transform 199
gsl_eigen_nonsymm_params 173	gsl_fft_halfcomplex_unpack 199
gsl_eigen_nonsymm_Z 174	gsl_fft_halfcomplex_wavetable_alloc
gsl_eigen_nonsymmv	
gsl_eigen_nonsymmv_alloc	gsl_fft_halfcomplex_wavetable_free
gsl_eigen_nonsymmv_free	
gsl_eigen_nonsymmv_sort 180	gsl_fft_real_radix2_transform 195
gsl_eigen_nonsymmv_Z	gsl_fft_real_transform
gsl_eigen_symm	gsl_fft_real_unpack 199
gsl_eigen_symm_alloc	gsl_fft_real_wavetable_alloc 198
gsl_eigen_symm_free	gsl_fft_real_wavetable_free 198
gsl_eigen_symmv	gsl_fft_real_workspace_alloc 198
gsl_eigen_symmv_alloc	gsl_fft_real_workspace_free 198
	gsl_finite
gsl_eigen_symmv_free	gsl_fit_linear 444
gsl_eigen_symmv_sort	gsl_fit_linear_est
GSL_ERROR 18	gsl_fit_mul
GSL_ERROR_VAL	gsl_fit_mul_est
gsl_expm1	gsl_fit_wlinear
gsl_fcmp	gsl_fit_wmul
gsl_fft_complex_backward	gsl_frexp
gsl_fft_complex_forward	
gsl_fft_complex_inverse	gsl_heapsort
gsl_fft_complex_radix2_backward	gsl_heapsort_index
	gsl_histogram_accumulate 302
gsl_fft_complex_radix2_dif_backward	gsl_histogram_add
	gsl_histogram_alloc
gsl_fft_complex_radix2_dif_forward	gsl_histogram_bins
	gsl_histogram_clone
gsl_fft_complex_radix2_dif_inverse	gsl_histogram_div
	gsl_histogram_equal_bins_p 303
gsl_fft_complex_radix2_dif_	gsl_histogram_find
transform	gsl_histogram_fprintf
gsl_fft_complex_radix2_forward 187	gsl_histogram_fread 304
gsl_fft_complex_radix2_inverse 187	gsl_histogram_free
gsl_fft_complex_radix2_transform	gsl_histogram_fscanf 305
	gsl_histogram_fwrite 304
gsl_fft_complex_transform 192	gsl_histogram_get
gsl_fft_complex_wavetable_alloc	gsl_histogram_get_range 302
190	gsl_histogram_increment 301

gsl_histogram_max	302	<pre>gsl_histogram2d_pdf_init</pre>	316
gsl_histogram_max_bin		${\tt gsl_histogram2d_pdf_sample}$	316
gsl_histogram_max_val	303	gsl_histogram2d_reset	312
${\tt gsl_histogram_mean}$	303	gsl_histogram2d_scale	314
gsl_histogram_memcpy	301	<pre>gsl_histogram2d_set_ranges</pre>	
gsl_histogram_min	302	gsl_histogram2d_set_ranges_unifor	m
gsl_histogram_min_bin			310
gsl_histogram_min_val		gsl_histogram2d_shift	314
gsl_histogram_mul		gsl_histogram2d_sub	313
gsl_histogram_pdf_alloc		gsl_histogram2d_sum	313
gsl_histogram_pdf_free		gsl_histogram2d_xmax	312
gsl_histogram_pdf_init		gsl_histogram2d_xmean	313
${\tt gsl_histogram_pdf_sample}$		gsl_histogram2d_xmin	312
gsl_histogram_reset		0 - 0 - 0	313
gsl_histogram_scale	304	gsl_histogram2d_ymax	312
${\tt gsl_histogram_set_ranges}$	300	gsl_histogram2d_ymean	313
${\tt gsl_histogram_set_ranges_uniform}$		gsl_histogram2d_ymin	312
	301	0 - 0	
gsl_histogram_shift	304	gsl_hypot	
gsl_histogram_sigma	303	gsl_hypot3	. 23
gsl_histogram_sub	304	gsl_ieee_env_setup	489
gsl_histogram_sum		<pre>gsl_ieee_fprintf_double</pre>	488
${\tt gsl_histogram2d_accumulate}$		<pre>gsl_ieee_fprintf_float</pre>	488
gsl_histogram2d_add		<pre>gsl_ieee_printf_double</pre>	
gsl_histogram2d_alloc		gsl_ieee_printf_float	488
gsl_histogram2d_clone		GSL_IMAG	. 27
gsl_histogram2d_cov		gsl_integration_qag	207
gsl_histogram2d_div		gsl_integration_qagi	209
gsl_histogram2d_equal_bins_p		gsl_integration_qagil	210
gsl_histogram2d_find		gsl_integration_qagiu	209
gsl_histogram2d_fprintf		gsl_integration_qagp	209
gsl_histogram2d_fread		gsl_integration_qags	208
gsl_histogram2d_free		gsl_integration_qawc	210
gsl_histogram2d_fscanf		gsl_integration_qawf	213
gsl_histogram2d_fwrite		gsl_integration_qawo	213
gsl_histogram2d_get		<pre>gsl_integration_qawo_table_alloc</pre>	
<pre>gsl_histogram2d_get_xrange</pre>			212
${\tt gsl_histogram2d_get_yrange}$		gsl_integration_qawo_table_free	
${\tt gsl_histogram2d_increment}$			213
gsl_histogram2d_max_bin		${\tt gsl_integration_qawo_table_set} \; . \; .$	212
gsl_histogram2d_max_val		gsl_integration_qawo_table_set_	
gsl_histogram2d_memcpy		length	213
gsl_histogram2d_min_bin		-	211
gsl_histogram2d_min_val		gsl_integration_qaws_table_alloc	
gsl_histogram2d_mul			211
gsl_histogram2d_nx		gsl_integration_qaws_table_free	
gsl_histogram2d_ny			211
<pre>gsl_histogram2d_pdf_alloc</pre>		0 - 0 -1	
gsl_histogram2d_pdf_free	316	gsl_integration_qng	207

gsl_integration_workspace_alloc	gsl_linalg_complex_householder_hv
${\tt gsl_integration_workspace_free}\ 207$	gsl_linalg_complex_householder_mh
gsl_interp_accel_alloc 361	
gsl_interp_accel_find	gsl_linalg_complex_householder_
gsl_interp_accel_free 361	transform
gsl_interp_akima	gsl_linalg_complex_LU_decomp 153
gsl_interp_akima_periodic 360	${\tt gsl_linalg_complex_LU_det$
gsl_interp_alloc	${\tt gsl_linalg_complex_LU_invert}$ 154
gsl_interp_bsearch	gsl_linalg_complex_LU_lndet 154
gsl_interp_cspline	gsl_linalg_complex_LU_refine 154
gsl_interp_cspline_periodic 360	gsl_linalg_complex_LU_sgndet 155
gsl_interp_eval	gsl_linalg_complex_LU_solve 153
gsl_interp_eval_deriv	gsl_linalg_complex_LU_svx 154
gsl_interp_eval_deriv_e 361	gsl_linalg_hermtd_decomp 162
gsl_interp_eval_deriv2 362	gsl_linalg_hermtd_unpack 162
gsl_interp_eval_deriv2_e 362	gsl_linalg_hermtd_unpack_T 162
gsl_interp_eval_e	gsl_linalg_hessenberg_decomp 163
gsl_interp_eval_integ 362	gsl_linalg_hessenberg_set_zero 163
gsl_interp_eval_integ_e 362	gsl_linalg_hessenberg_unpack 163
gsl_interp_free	gsl_linalg_hessenberg_unpack_accum
gsl_interp_init	
gsl_interp_linear	gsl_linalg_hesstri_decomp 164 gsl_linalg_HH_solve 166
gsl_interp_min_size 360	gsl_linalg_HH_svx
gsl_interp_name	gsl_linalg_householder_hm 165
gsl_interp_polynomial 360	gsl_linalg_householder_hv 166
GSL_IS_EVEN	gsl_linalg_householder_mh 165
GSL_IS_ODD	gsl_linalg_householder_transform
gsl_isinf	
gsl_isnan	gsl_linalg_LU_decomp
gsl_ldexp	gsl_linalg_LU_det
gsl_linalg_balance_matrix 167	gsl_linalg_LU_invert
gsl_linalg_bidiag_decomp 164	gsl_linalg_LU_lndet
gsl_linalg_bidiag_unpack 164	gsl_linalg_LU_refine
gsl_linalg_bidiag_unpack_B 165	gsl_linalg_LU_sgndet 155
gsl_linalg_bidiag_unpack2 165	gsl_linalg_LU_solve 153
gsl_linalg_cholesky_decomp 160	gsl_linalg_LU_svx
gsl_linalg_cholesky_invert 161	gsl_linalg_QR_decomp 155
gsl_linalg_cholesky_solve 161	gsl_linalg_QR_lssolve
gsl_linalg_cholesky_svx	gsl_linalg_QR_QRsolve
gsl_linalg_complex_cholesky_decomp	gsl_linalg_QR_QTmat 156
	gsl_linalg_QR_QTvec 156
gsl_linalg_complex_cholesky_solve	gsl_linalg_QR_Qvec
	gsl_linalg_QR_Rsolve 156
gsl_linalg_complex_cholesky_svx	gsl_linalg_QR_Rsvx
	gsl_linalg_QR_solve 155
gsl_linalg_complex_householder_hm	gsl_linalg_QR_svx
165	osl linalo OR unnack 156

gsl_linalg_QR_update 157	gsl_matrix_fscanf
gsl_linalg_QRPT_decomp	gsl_matrix_fwrite 104
gsl_linalg_QRPT_decomp2 158	gsl_matrix_get 103
${\tt gsl_linalg_QRPT_QRsolve$	gsl_matrix_get_col 109
gsl_linalg_QRPT_Rsolve 158	gsl_matrix_get_row 109
gsl_linalg_QRPT_Rsvx 158	gsl_matrix_isneg 111
gsl_linalg_QRPT_solve	gsl_matrix_isnonneg 111
gsl_linalg_QRPT_svx 158	gsl_matrix_isnull 111
gsl_linalg_QRPT_update 158	gsl_matrix_ispos 111
gsl_linalg_R_solve	gsl_matrix_max
gsl_linalg_R_svx	gsl_matrix_max_index 111
gsl_linalg_solve_cyc_tridiag 167	gsl_matrix_memcpy
gsl_linalg_solve_symm_cyc_tridiag	gsl_matrix_min
	gsl_matrix_min_index 111
gsl_linalg_solve_symm_tridiag 166	gsl_matrix_minmax
gsl_linalg_solve_tridiag 166	gsl_matrix_minmax_index 111
gsl_linalg_SV_decomp 159	gsl_matrix_mul_elements 110
gsl_linalg_SV_decomp_jacobi 160	gsl_matrix_ptr 103
${\tt gsl_linalg_SV_decomp_mod$	gsl_matrix_row 107
gsl_linalg_SV_solve 160	gsl_matrix_scale 110
${\tt gsl_linalg_symmtd_decomp$	gsl_matrix_set 103
gsl_linalg_symmtd_unpack 162	gsl_matrix_set_all 103
${\tt gsl_linalg_symmtd_unpack_T$	gsl_matrix_set_col
gsl_log1p	gsl_matrix_set_identity 103
gsl_matrix_add	gsl_matrix_set_row
gsl_matrix_add_constant 110	gsl_matrix_set_zero 103
gsl_matrix_alloc	gsl_matrix_sub 110
gsl_matrix_calloc	gsl_matrix_subcolumn 107
gsl_matrix_column	${\tt gsl_matrix_subdiagonal} \ldots \ldots 108$
gsl_matrix_const_column 107	gsl_matrix_submatrix 105
gsl_matrix_const_diagonal 108	gsl_matrix_subrow
gsl_matrix_const_ptr 103	gsl_matrix_superdiagonal 108
gsl_matrix_const_row 107	gsl_matrix_swap 108
gsl_matrix_const_subcolumn 107	gsl_matrix_swap_columns 109
gsl_matrix_const_subdiagonal 108	gsl_matrix_swap_rowcol 109
gsl_matrix_const_submatrix 105	gsl_matrix_swap_rows 109
gsl_matrix_const_subrow 107	gsl_matrix_transpose 110
${\tt gsl_matrix_const_superdiagonal108}$	gsl_matrix_transpose_memcpy 110
${\tt gsl_matrix_const_view_array}$ 105	gsl_matrix_view_array 105
gsl_matrix_const_view_array_with_	${\tt gsl_matrix_view_array_with_tda} \ \ 105$
tda	gsl_matrix_view_vector 106
gsl_matrix_const_view_vector 106	gsl_matrix_view_vector_with_tda
gsl_matrix_const_view_vector_with_	106
tda	GSL_MAX
gsl_matrix_diagonal 108	GSL_MAX_DBL
gsl_matrix_div_elements 110	GSL_MAX_INT
gsl_matrix_fprintf	GSL_MAX_LDBL
gsl_matrix_fread 104	GSL_MIN
gsl_matrix_free	GSL_MIN_DBL

gsl_min_fminimizer_alloc 406	gsl_multifit_linear_alloc 446
gsl_min_fminimizer_brent 409	gsl_multifit_linear_est 447
gsl_min_fminimizer_f_lower 408	gsl_multifit_linear_free 446
gsl_min_fminimizer_f_minimum 408	gsl_multifit_linear_residuals 447
gsl_min_fminimizer_f_upper 408	gsl_multifit_linear_svd
gsl_min_fminimizer_free 407	gsl_multifit_test_delta 459
gsl_min_fminimizer_goldensection	gsl_multifit_test_gradient 459
409	gsl_multifit_wlinear 447
gsl_min_fminimizer_iterate 407	gsl_multifit_wlinear_svd 447
gsl_min_fminimizer_name 407	gsl_multimin_fdfminimizer_alloc
gsl_min_fminimizer_set 407	430
gsl_min_fminimizer_set_with_values	gsl_multimin_fdfminimizer_
407	conjugate_fr 435
gsl_min_fminimizer_x_lower 408	gsl_multimin_fdfminimizer_
gsl_min_fminimizer_x_minimum 408	conjugate_pr 435
gsl_min_fminimizer_x_upper 408	gsl_multimin_fdfminimizer_free 431
GSL_MIN_INT	gsl_multimin_fdfminimizer_gradient
GSL_MIN_LDBL 25	434
gsl_min_test_interval 408	gsl_multimin_fdfminimizer_iterate
gsl_monte_miser_alloc 328	433
gsl_monte_miser_free 329	gsl_multimin_fdfminimizer_minimum
gsl_monte_miser_init 328	434
gsl_monte_miser_integrate 329	gsl_multimin_fdfminimizer_name 431
gsl_monte_plain_alloc 327	gsl_multimin_fdfminimizer_restart
gsl_monte_plain_free 327	
gsl_monte_plain_init 327	gsl_multimin_fdfminimizer_set 430
gsl_monte_plain_integrate 327	gsl_multimin_fdfminimizer_steepest_
gsl_monte_vegas_alloc	descent 435
gsl_monte_vegas_free 331	gsl_multimin_fdfminimizer_vector_
gsl_monte_vegas_init 331	bfgs
gsl_monte_vegas_integrate 331	gsl_multimin_fdfminimizer_vector_
gsl_multifit_covar461	bfgs2
gsl_multifit_fdfsolver_alloc 456	gsl_multimin_fdfminimizer_x 434
gsl_multifit_fdfsolver_free 456	gsl_multimin_fminimizer_alloc 430
${ t gsl_multifit_fdfsolver_iterate458}$	gsl_multimin_fminimizer_free 431
gsl_multifit_fdfsolver_lmder 460	gsl_multimin_fminimizer_iterate
gsl_multifit_fdfsolver_lmsder 460	433
gsl_multifit_fdfsolver_name 456	gsl_multimin_fminimizer_minimum
gsl_multifit_fdfsolver_position	434
	gsl_multimin_fminimizer_name 431
gsl_multifit_fdfsolver_set 456	gsl_multimin_fminimizer_nmsimplex
gsl_multifit_fsolver_alloc 456	
gsl_multifit_fsolver_free 456	gsl_multimin_fminimizer_nmsimplex2
gsl_multifit_fsolver_iterate 458	
gsl_multifit_fsolver_name 456	gsl_multimin_fminimizer_set 430
gsl_multifit_fsolver_position 458	gsl_multimin_fminimizer_size 434
gsl_multifit_fsolver_set 456	gsl_multimin_fminimizer_x 434
gsl_multifit_gradient 459	gsl_multimin_test_gradient 434
gsl_multifit_linear 446	gsl_multimin_test_size

${\tt gsl_multiroot_fdfsolver_alloc}$	414	<pre>gsl_odeiv_evolve_reset</pre>	352
${\tt gsl_multiroot_fdfsolver_dx}$	418	gsl_odeiv_step_alloc	348
${\tt gsl_multiroot_fdfsolver_f}$	418	gsl_odeiv_step_apply	348
<pre>gsl_multiroot_fdfsolver_free</pre>	415	gsl_odeiv_step_bsimp	349
gsl_multiroot_fdfsolver_gnewton		gsl_odeiv_step_free	348
	421	gsl_odeiv_step_gear1	349
gsl_multiroot_fdfsolver_hybridj		gsl_odeiv_step_gear2	349
	421	gsl_odeiv_step_name	348
${\tt gsl_multiroot_fdfsolver_hybridsj}$		gsl_odeiv_step_order	348
	420	gsl_odeiv_step_reset	348
gsl_multiroot_fdfsolver_iterate		gsl_odeiv_step_rk2	349
		gsl_odeiv_step_rk2imp	349
${\tt gsl_multiroot_fdfsolver_name}\ \dots.$	415	gsl_odeiv_step_rk4	349
${\tt gsl_multiroot_fdfsolver_newton} \; . \; .$	421	gsl_odeiv_step_rk4imp	349
${\tt gsl_multiroot_fdfsolver_root} \ \dots.$	418	gsl_odeiv_step_rk8pd	349
${\tt gsl_multiroot_fdfsolver_set} \ \dots .$	414	gsl_odeiv_step_rkck	349
${\tt gsl_multiroot_fsolver_alloc} \ \dots .$	414	gsl_odeiv_step_rkf45	349
${\tt gsl_multiroot_fsolver_broyden}$	422	gsl_permutation_alloc	117
${\tt gsl_multiroot_fsolver_dnewton} \dots$	422	gsl_permutation_calloc	117
${\tt gsl_multiroot_fsolver_dx}$	418	gsl_permutation_canonical_cycles	
<pre>gsl_multiroot_fsolver_f</pre>	418		122
${\tt gsl_multiroot_fsolver_free}$	415	gsl_permutation_canonical_to_line	ar
<pre>gsl_multiroot_fsolver_hybrid</pre>	421		121
${\tt gsl_multiroot_fsolver_hybrids} \dots$	421	gsl_permutation_data	118
<pre>gsl_multiroot_fsolver_iterate</pre>	418	gsl_permutation_fprintf	120
<pre>gsl_multiroot_fsolver_name</pre>	415	gsl_permutation_fread	120
<pre>gsl_multiroot_fsolver_root</pre>	418	gsl_permutation_free	117
gsl_multiroot_fsolver_set	414	gsl_permutation_fscanf	
<pre>gsl_multiroot_test_delta</pre>	419	gsl_permutation_fwrite	120
<pre>gsl_multiroot_test_residual</pre>	419	gsl_permutation_get	118
gsl_ntuple_bookdata	320	gsl_permutation_init	117
gsl_ntuple_close	320	gsl_permutation_inverse	118
gsl_ntuple_create	319	gsl_permutation_inversions	121
gsl_ntuple_open		gsl_permutation_linear_cycles	122
gsl_ntuple_project	321	gsl_permutation_linear_to_canonic	al
gsl_ntuple_read	320		121
gsl_ntuple_write	320	gsl_permutation_memcpy	118
<pre>gsl_odeiv_control_alloc</pre>	351	gsl_permutation_mul	119
<pre>gsl_odeiv_control_free</pre>	351	gsl_permutation_next	118
gsl_odeiv_control_hadjust	351	gsl_permutation_prev	119
gsl_odeiv_control_init	351	gsl_permutation_reverse	118
gsl_odeiv_control_name	351	gsl_permutation_size	
gsl_odeiv_control_scaled_new	351	gsl_permutation_swap	118
<pre>gsl_odeiv_control_standard_new</pre>	350	gsl_permutation_valid	
gsl_odeiv_control_y_new	350	gsl_permute	
gsl_odeiv_control_yp_new	350	gsl_permute_inverse	
gsl_odeiv_evolve_alloc		gsl_permute_vector	119
gsl_odeiv_evolve_apply	352	gsl_permute_vector_inverse	
gsl_odeiv_evolve_free		gsl_poly_complex_eval	35

<pre>gsl_poly_complex_solve</pre>	. 38	${\tt gsl_ran_dir_2d_trig_method}.\dots$	266
${\tt gsl_poly_complex_solve_cubic} \ \dots.$. 37	gsl_ran_dir_3d	266
${\tt gsl_poly_complex_solve_quadratic}$		gsl_ran_dir_nd	266
	. 36	${\tt gsl_ran_dirichlet}$	270
${\tt gsl_poly_complex_workspace_alloc}$		${\tt gsl_ran_dirichlet_lnpdf}$	270
	. 37	${\tt gsl_ran_dirichlet_pdf} \dots \dots \dots$	
${\tt gsl_poly_complex_workspace_free}\;.$. 37	${\tt gsl_ran_discrete}$	272
gsl_poly_dd_eval	. 35	${\tt gsl_ran_discrete_free} \dots \dots \dots$	272
gsl_poly_dd_init		<pre>gsl_ran_discrete_pdf</pre>	
<pre>gsl_poly_dd_taylor</pre>		${\tt gsl_ran_discrete_preproc}$	
gsl_poly_eval		gsl_ran_exponential	246
<pre>gsl_poly_solve_cubic</pre>		${\tt gsl_ran_exponential_pdf} \dots \dots$	
${\tt gsl_poly_solve_quadratic}$. 36	gsl_ran_exppow	
gsl_pow_2	. 24	${\tt gsl_ran_exppow_pdf}$	248
gsl_pow_3	. 24	<pre>gsl_ran_fdist</pre>	260
gsl_pow_4	. 24	${\tt gsl_ran_fdist_pdf} \dots \dots \dots$	
gsl_pow_5	. 24	gsl_ran_flat	257
gsl_pow_6		${\tt gsl_ran_flat_pdf} \dots \dots \dots$	257
gsl_pow_7	. 24	gsl_ran_gamma	255
gsl_pow_8		gsl_ran_gamma_knuth	255
gsl_pow_9	. 24	${\tt gsl_ran_gamma_pdf} \dots \dots \dots$	255
gsl_pow_int		gsl_ran_gaussian	241
${\tt gsl_qrng_alloc} \dots \dots \dots \dots$	235	${\tt gsl_ran_gaussian_pdf} \ \dots \dots \dots$	241
gsl_qrng_clone	236	${\tt gsl_ran_gaussian_ratio_method} \dots$	241
${\tt gsl_qrng_free} \dots \dots \dots \dots$	235	${\tt gsl_ran_gaussian_tail} \dots \dots \dots$	243
gsl_qrng_get	235	${\tt gsl_ran_gaussian_tail_pdf}$	243
gsl_qrng_halton	236	<pre>gsl_ran_gaussian_ziggurat</pre>	241
${\tt gsl_qrng_init} \dots \dots \dots \dots$	235	${\tt gsl_ran_geometric}$	279
gsl_qrng_memcpy	236	${\tt gsl_ran_geometric_pdf} \dots \dots$	279
gsl_qrng_name	236	${\tt gsl_ran_gumbel1}$	268
${\tt gsl_qrng_niederreiter_2}$	236	gsl_ran_gumbel1_pdf	268
${\tt gsl_qrng_reversehalton}$	236	${\tt gsl_ran_gumbel2}$	269
gsl_qrng_size	236	gsl_ran_gumbel2_pdf	269
gsl_qrng_sobol		gsl_ran_hypergeometric	280
gsl_qrng_state	236	${\tt gsl_ran_hypergeometric_pdf}$	280
gsl_ran_bernoulli		gsl_ran_landau	252
${\tt gsl_ran_bernoulli_pdf} \dots \dots$	274	${\tt gsl_ran_landau_pdf}$	252
gsl_ran_beta	263	gsl_ran_laplace	247
gsl_ran_beta_pdf	263	gsl_ran_laplace_pdf	247
gsl_ran_binomial	275	gsl_ran_levy	253
<pre>gsl_ran_binomial_pdf</pre>	275	gsl_ran_levy_skew	254
<pre>gsl_ran_bivariate_gaussian</pre>	245	gsl_ran_logarithmic	281
${\tt gsl_ran_bivariate_gaussian_pdf} \ . \ .$	245	<pre>gsl_ran_logarithmic_pdf</pre>	281
gsl_ran_cauchy	249	gsl_ran_logistic	264
gsl_ran_cauchy_pdf	249	gsl_ran_logistic_pdf	
gsl_ran_chisq	259	gsl_ran_lognormal	258
gsl_ran_chisq_pdf	259	gsl_ran_lognormal_pdf	258
gsl_ran_choose	282	gsl_ran_multinomial	276
gsl_ran_dir_2d	266	gsl_ran_multinomial_lnpdf	276

gsl_ran_multinomial_pdf	276	gsl_rng_name	220
gsl_ran_negative_binomial	277	gsl_rng_r250	229
gsl_ran_negative_binomial_pdf	277	gsl_rng_rand	227
gsl_ran_pareto	265	gsl_rng_rand48	228
gsl_ran_pareto_pdf	265	gsl_rng_random_bsd	227
gsl_ran_pascal	278	gsl_rng_random_glibc2	227
gsl_ran_pascal_pdf	278	gsl_rng_random_libc5	227
gsl_ran_poisson	273	gsl_rng_randu	230
gsl_ran_poisson_pdf	273	gsl_rng_ranf	228
gsl_ran_rayleigh	250	gsl_rng_ranlux	224
gsl_ran_rayleigh_pdf	250	gsl_rng_ranlux389	224
gsl_ran_rayleigh_tail	251	gsl_rng_ranlxd1	224
gsl_ran_rayleigh_tail_pdf	251	gsl_rng_ranlxd2	224
gsl_ran_sample	283	gsl_rng_ranlxs0	224
gsl_ran_shuffle	282	gsl_rng_ranlxs1	224
gsl_ran_tdist	262	gsl_rng_ranlxs2	224
gsl_ran_tdist_pdf	262	gsl_rng_ranmar	229
gsl_ran_ugaussian	242	gsl_rng_set	218
gsl_ran_ugaussian_pdf	242	gsl_rng_size	220
${\tt gsl_ran_ugaussian_ratio_method}$	242	gsl_rng_slatec	230
gsl_ran_ugaussian_tail	244	gsl_rng_state	220
gsl_ran_ugaussian_tail_pdf	244	gsl_rng_taus	225
gsl_ran_weibull		gsl_rng_taus2	225
gsl_ran_weibull_pdf	267	gsl_rng_transputer	230
GSL_REAL	. 27	gsl_rng_tt800	229
gsl_rng_alloc	218	gsl_rng_types_setup	220
gsl_rng_borosh13	231	gsl_rng_uni	230
gsl_rng_clone		gsl_rng_uni32	230
gsl_rng_cmrg	225	gsl_rng_uniform	219
gsl_rng_coveyou	231	gsl_rng_uniform_int	219
gsl_rng_env_setup	221	gsl_rng_uniform_pos	219
gsl_rng_fishman18	231	0 - 0-	229
gsl_rng_fishman20		gsl_rng_waterman14	231
gsl_rng_fishman2x		S - S-	230
gsl_rng_fread	223	gsl_root_fdfsolver_alloc	390
gsl_rng_free		gsl_root_fdfsolver_free	
gsl_rng_fwrite	222	gsl_root_fdfsolver_iterate	394
gsl_rng_get		gsl_root_fdfsolver_name	
gsl_rng_gfsr4		gsl_root_fdfsolver_newton	
gsl_rng_knuthran		gsl_root_fdfsolver_root	
gsl_rng_knuthran2	231	gsl_root_fdfsolver_secant	397
gsl_rng_knuthran2002	231	gsl_root_fdfsolver_set	391
gsl_rng_lecuyer21			398
gsl_rng_max		gsl_root_fsolver_alloc	390
gsl_rng_memcpy		0	396
gsl_rng_min		gsl_root_fsolver_brent	396
gsl_rng_minstd		gsl_root_fsolver_falsepos	
gsl_rng_mrg		gsl_root_fsolver_free	
gsl_rng_mt19937	223	gsl_root_fsolver_iterate	394

gsl_root_fsolver_name 391	gsl_sf_bessel_I1	46
gsl_root_fsolver_root	gsl_sf_bessel_I1_e	46
gsl_root_fsolver_set 391	gsl_sf_bessel_i1_scaled	50
gsl_root_fsolver_x_lower 394	gsl_sf_bessel_I1_scaled	46
gsl_root_fsolver_x_upper 394	gsl_sf_bessel_i1_scaled_e	50
gsl_root_test_delta 395	gsl_sf_bessel_I1_scaled_e	46
gsl_root_test_interval 395	gsl_sf_bessel_i2_scaled	50
gsl_root_test_residual 395	gsl_sf_bessel_i2_scaled_e	50
GSL_SET_COMPLEX	gsl_sf_bessel_il_scaled	50
gsl_set_error_handler 17	<pre>gsl_sf_bessel_il_scaled_array</pre>	50
gsl_set_error_handler_off 18	gsl_sf_bessel_il_scaled_e	50
GSL_SET_IMAG	gsl_sf_bessel_In	46
GSL_SET_REAL	<pre>gsl_sf_bessel_In_array</pre>	46
$gsl_sf_airy_Ai$ 43	gsl_sf_bessel_In_e	46
$gsl_sf_airy_Ai_deriv \dots 43$	${\tt gsl_sf_bessel_In_scaled} \ldots \ldots$	
$gsl_sf_airy_Ai_deriv_e$ 43	${\tt gsl_sf_bessel_In_scaled_array}\ \dots.$	47
${\tt gsl_sf_airy_Ai_deriv_scaled$	<pre>gsl_sf_bessel_In_scaled_e</pre>	46
${\tt gsl_sf_airy_Ai_deriv_scaled_e} \ldots 44$	gsl_sf_bessel_Inu	51
$gsl_sf_airy_Ai_e$ 43	gsl_sf_bessel_Inu_e	
$gsl_sf_airy_Ai_scaled$ 43	gsl_sf_bessel_Inu_scaled	
gsl_sf_airy_Ai_scaled_e 43	gsl_sf_bessel_Inu_scaled_e	
gsl_sf_airy_Bi	gsl_sf_bessel_j0	48
gsl_sf_airy_Bi_deriv 44	gsl_sf_bessel_J0	
gsl_sf_airy_Bi_deriv_e 44	gsl_sf_bessel_j0_e	
gsl_sf_airy_Bi_deriv_scaled 44	gsl_sf_bessel_J0_e	
gsl_sf_airy_Bi_deriv_scaled_e 44	gsl_sf_bessel_j1	
gsl_sf_airy_Bi_e43	gsl_sf_bessel_J1	
gsl_sf_airy_Bi_scaled 43	gsl_sf_bessel_j1_e	
gsl_sf_airy_Bi_scaled_e 43	gsl_sf_bessel_J1_e	
gsl_sf_airy_zero_Ai	gsl_sf_bessel_j2	
gsl_sf_airy_zero_Ai_deriv 44	gsl_sf_bessel_j2_e	
gsl_sf_airy_zero_Ai_deriv_e 44	gsl_sf_bessel_jl	
gsl_sf_airy_zero_Ai_e 44	gsl_sf_bessel_jl_array	
gsl_sf_airy_zero_Bi44	gsl_sf_bessel_jl_e	
gsl_sf_airy_zero_Bi_deriv	gsl_sf_bessel_jl_steed_array	
gsl_sf_airy_zero_Bi_deriv_e 44	gsl_sf_bessel_Jn	
gsl_sf_airy_zero_Bi_e 44	gsl_sf_bessel_Jn_array	
gsl_sf_angle_restrict_pos 85	gsl_sf_bessel_Jn_e	
gsl_sf_angle_restrict_pos_e 85	gsl_sf_bessel_Jnu	
gsl_sf_angle_restrict_symm 85	gsl_sf_bessel_Jnu_e	
gsl_sf_angle_restrict_symm_e 85	gsl_sf_bessel_K0	
gsl_sf_atanint	gsl_sf_bessel_KO_e	
gsl_sf_atanint_e66	gsl_sf_bessel_k0_scaled	
gsl_sf_bessel_I0	gsl_sf_bessel_K0_scaled	
gsl_sf_bessel_I0_e	gsl_sf_bessel_k0_scaled_e	
gsl_sf_bessel_i0_scaled	gsl_sf_bessel_KO_scaled_e	
gsl_sf_bessel_IO_scaled	gsl_sf_bessel_K1	
gsl_sf_bessel_i0_scaled_e 49	gsl_sf_bessel_K1_e	
osl of bessel IO scaled e 46	osl of heosel ki scaled	50

gsl_sf_bessel_K1_scaled	gsl_sf_Chi	. 66
${\tt gsl_sf_bessel_k1_scaled_e$	gsl_sf_Chi_e	66
gsl_sf_bessel_K1_scaled_e 47	gsl_sf_choose	70
gsl_sf_bessel_k2_scaled 50	gsl_sf_choose_e	. 70
gsl_sf_bessel_k2_scaled_e 50	gsl_sf_Ci	. 66
gsl_sf_bessel_kl_scaled	gsl_sf_Ci_e	. 66
gsl_sf_bessel_kl_scaled_array 51	gsl_sf_clausen	53
gsl_sf_bessel_kl_scaled_e	gsl_sf_clausen_e	
gsl_sf_bessel_Kn	gsl_sf_complex_cos_e	
gsl_sf_bessel_Kn_array 47	gsl_sf_complex_dilog_e	
gsl_sf_bessel_Kn_e	gsl_sf_complex_log_e	
gsl_sf_bessel_Kn_scaled	gsl_sf_complex_logsin_e	
gsl_sf_bessel_Kn_scaled_array 48	gsl_sf_complex_sin_e	
gsl_sf_bessel_Kn_scaled_e	gsl_sf_conicalP_0	
gsl_sf_bessel_Knu	gsl_sf_conicalP_0_e	
gsl_sf_bessel_Knu_e	gsl_sf_conicalP_1	
gsl_sf_bessel_Knu_scaled	gsl_sf_conicalP_1_e	
gsl_sf_bessel_Knu_scaled_e 52	gsl_sf_conicalP_cyl_reg	
gsl_sf_bessel_lnKnu	gsl_sf_conicalP_cyl_reg_e	
gsl_sf_bessel_lnKnu_e 52	gsl_sf_conicalP_half	
gsl_sf_bessel_sequence_Jnu_e 51	gsl_sf_conicalP_half_e	
gsl_sf_bessel_y0	gsl_sf_conicalP_mhalf	
gsl_sf_bessel_Y0	gsl_sf_conicalP_mhalf_e	
gsl_sf_bessel_y0_e	gsl_sf_conicalP_sph_reg	
gsl_sf_bessel_Y0_e 45	gsl_sf_conicalP_sph_reg_e	
gsl_sf_bessel_y1	gsl_sf_cos	
gsl_sf_bessel_Y1	gsl_sf_cos_e	
gsl_sf_bessel_y1_e 49	gsl_sf_cos_err_e	
gsl_sf_bessel_Y1_e 45	gsl_sf_coulomb_CL_array	
gsl_sf_bessel_y2	gsl_sf_coulomb_CL_e	
gsl_sf_bessel_y2_e 49	gsl_sf_coulomb_wave_F_array	
gsl_sf_bessel_yl	gsl_sf_coulomb_wave_FG_array	
gsl_sf_bessel_yl_array 49	gsl_sf_coulomb_wave_FG_e	
gsl_sf_bessel_yl_e 49	gsl_sf_coulomb_wave_FGp_array	
gsl_sf_bessel_Yn45	gsl_sf_coulomb_wave_sphF_array	
gsl_sf_bessel_Yn_array 46	gsl_sf_coupling_3j	
gsl_sf_bessel_Yn_e 45	gsl_sf_coupling_3j_e	
gsl_sf_bessel_Ynu51	gsl_sf_coupling_6j	
gsl_sf_bessel_Ynu_e 51	gsl_sf_coupling_6j_e	
gsl_sf_bessel_zero_J0 52	gsl_sf_coupling_9j	. 56
gsl_sf_bessel_zero_J0_e 52	gsl_sf_coupling_9j_e	56
gsl_sf_bessel_zero_J1 52	gsl_sf_dawson	56
gsl_sf_bessel_zero_J1_e 52	gsl_sf_dawson_e	. 56
${\tt gsl_sf_bessel_zero_Jnu}$	gsl_sf_debye_1	. 57
${\tt gsl_sf_bessel_zero_Jnu_e$	gsl_sf_debye_1_e	. 57
gsl_sf_beta 71	gsl_sf_debye_2	
gsl_sf_beta_e 71	gsl_sf_debye_2_e	. 57
gsl_sf_beta_inc	gsl_sf_debye_3	
gsl sf heta inc e 72	gsl sf debye 3 e	57

gsl_sf_debye_4	57	gsl_sf_exp_err_e10_e	64
gsl_sf_debye_4_e	57	gsl_sf_exp_mult	63
gsl_sf_debye_5	57	gsl_sf_exp_mult_e	63
gsl_sf_debye_5_e		gsl_sf_exp_mult_e10_e	63
gsl_sf_debye_6	57	gsl_sf_exp_mult_err_e	64
gsl_sf_debye_6_e	57	${\tt gsl_sf_exp_mult_err_e10_e}$	65
gsl_sf_dilog	58	gsl_sf_expint_3	66
gsl_sf_dilog_e	58	gsl_sf_expint_3_e	66
gsl_sf_doublefact		gsl_sf_expint_E1	
gsl_sf_doublefact_e		gsl_sf_expint_E1_e	
gsl_sf_ellint_D		gsl_sf_expint_E2	
gsl_sf_ellint_D_e		gsl_sf_expint_E2_e	
gsl_sf_ellint_E		gsl_sf_expint_Ei	
gsl_sf_ellint_E_e		gsl_sf_expint_Ei_e	
gsl_sf_ellint_Ecomp		gsl_sf_expint_En	
gsl_sf_ellint_Ecomp_e	60	gsl_sf_expint_En_e	
gsl_sf_ellint_F		0 1	64
gsl_sf_ellint_F_e		gsl_sf_expm1_e	
gsl_sf_ellint_Kcomp		gsl_sf_exprel	
gsl_sf_ellint_Kcomp_e		gsl_sf_exprel_2	
gsl_sf_ellint_P		gsl_sf_exprel_2_e	
gsl_sf_ellint_P_e		gsl_sf_exprel_e	
gsl_sf_ellint_Pcomp		gsl_sf_exprel_n	
gsl_sf_ellint_Pcomp_e		gsl_sf_exprel_n_e	
gsl_sf_ellint_RC		gsl_sf_fact	
gsl_sf_ellint_RC_e			69
gsl_sf_ellint_RD			67
gsl_sf_ellint_RD_e gsl_sf_ellint_RF		9	67 67
gsl_sf_ellint_RF_e		9	67
gsl_sf_ellint_RJgsl_sf_ellint_RJ			67
gsl_sf_ellint_RJ_e			67
gsl_sf_elljac_e		gsl_sf_fermi_dirac_3half	
gsl_sf_erf		gsl_sf_fermi_dirac_3half_e	
gsl_sf_erf_e	62	•	67
gsl_sf_erf_Q		gsl_sf_fermi_dirac_half_e	
gsl_sf_erf_Q_e		•	68
gsl_sf_erf_Z	62	•	68
gsl_sf_erf_Z_e		9	67
gsl_sf_erfc		gsl_sf_fermi_dirac_int_e	
gsl_sf_erfc_e			67
gsl_sf_eta		9	67
gsl_sf_eta_e		gsl_sf_fermi_dirac_mhalf	
gsl_sf_eta_int		gsl_sf_fermi_dirac_mhalf_e	
gsl_sf_eta_int_e		•	68
gsl_sf_exp			68
gsl_sf_exp_e		gsl_sf_gamma_inc	
gsl_sf_exp_e10_e		gsl_sf_gamma_inc_e	
ggl of own orr o		gal of gamma inc D	

gsl_sf_gamma_inc_P_e	71	gsl_sf_laguerre_1_e	75
gsl_sf_gamma_inc_Q	71	gsl_sf_laguerre_2	75
gsl_sf_gamma_inc_Q_e	71	gsl_sf_laguerre_2_e	75
gsl_sf_gammainv	69	gsl_sf_laguerre_3	75
gsl_sf_gammainv_e	69	gsl_sf_laguerre_3_e	
gsl_sf_gammastar	69	gsl_sf_laguerre_n	75
gsl_sf_gammastar_e	69	gsl_sf_laguerre_n_e	75
gsl_sf_gegenpoly_1	72	gsl_sf_lambert_W0	75
gsl_sf_gegenpoly_1_e	72	gsl_sf_lambert_WO_e	75
gsl_sf_gegenpoly_2	72	gsl_sf_lambert_Wm1	75
gsl_sf_gegenpoly_2_e	72	gsl_sf_lambert_Wm1_e	75
gsl_sf_gegenpoly_3	72	<pre>gsl_sf_legendre_array_size</pre>	77
gsl_sf_gegenpoly_3_e	72	gsl_sf_legendre_H3d	79
gsl_sf_gegenpoly_array	72	5 5	78
gsl_sf_gegenpoly_n	72	gsl_sf_legendre_H3d_0_e	78
gsl_sf_gegenpoly_n_e	72	gsl_sf_legendre_H3d_1	79
gsl_sf_hazard	63	gsl_sf_legendre_H3d_1_e	79
gsl_sf_hazard_e	63	gsl_sf_legendre_H3d_array	79
gsl_sf_hydrogenicR	53	gsl_sf_legendre_H3d_e	79
gsl_sf_hydrogenicR_1	53	gsl_sf_legendre_P1	76
gsl_sf_hydrogenicR_1_e	53	gsl_sf_legendre_P1_e	76
gsl_sf_hydrogenicR_e	53	gsl_sf_legendre_P2	76
gsl_sf_hyperg_0F1	73	S – – S – –	76
gsl_sf_hyperg_0F1_e		gsl_sf_legendre_P3	76
gsl_sf_hyperg_1F1	73	gsl_sf_legendre_P3_e	76
gsl_sf_hyperg_1F1_e	73	gsl_sf_legendre_Pl	76
gsl_sf_hyperg_1F1_int	73	gsl_sf_legendre_Pl_array	76
gsl_sf_hyperg_1F1_int_e	73	gsl_sf_legendre_Pl_deriv_array	76
gsl_sf_hyperg_2F0		gsl_sf_legendre_Pl_e	76
gsl_sf_hyperg_2F0_e	74	gsl_sf_legendre_Plm	77
gsl_sf_hyperg_2F1	73	<pre>gsl_sf_legendre_Plm_array</pre>	77
gsl_sf_hyperg_2F1_conj	74	<pre>gsl_sf_legendre_Plm_deriv_array</pre>	77
gsl_sf_hyperg_2F1_conj_e	74	gsl_sf_legendre_Plm_e	77
gsl_sf_hyperg_2F1_conj_renorm	74	gsl_sf_legendre_Q0	76
gsl_sf_hyperg_2F1_conj_renorm_e	74	gsl_sf_legendre_Q0_e	76
gsl_sf_hyperg_2F1_e	73	gsl_sf_legendre_Q1	76
gsl_sf_hyperg_2F1_renorm		gsl_sf_legendre_Q1_e	76
gsl_sf_hyperg_2F1_renorm_e		gsl_sf_legendre_Ql	76
gsl_sf_hyperg_U	73	gsl_sf_legendre_Ql_e	76
gsl_sf_hyperg_U_e	73	gsl_sf_legendre_sphPlm	77
gsl_sf_hyperg_U_e10_e	73	gsl_sf_legendre_sphPlm_array	77
gsl_sf_hyperg_U_int	73	gsl_sf_legendre_sphPlm_deriv_array	
gsl_sf_hyperg_U_int_e	73		77
gsl_sf_hyperg_U_int_e10_e	73	gsl_sf_legendre_sphPlm_e	77
gsl_sf_hypot	84	gsl_sf_lnbeta	71
gsl_sf_hypot_e	84	gsl_sf_lnbeta_e	71
gsl_sf_hzeta	86	gsl_sf_lnchoose	70
gsl_sf_hzeta_e	86	gsl_sf_lnchoose_e	70
gsl sf laguerre 1	75	gsl_sf_lncosh	85

gsl_sf_lncosh_e	85	gsl_sf_psi_1_e	83
gsl_sf_lndoublefact	70	gsl_sf_psi_1_int	83
gsl_sf_lndoublefact_e	70	gsl_sf_psi_1_int_e	83
gsl_sf_lnfact	70	gsl_sf_psi_1piy	83
gsl_sf_lnfact_e	70	gsl_sf_psi_1piy_e	83
gsl_sf_lngamma	68	gsl_sf_psi_e	82
gsl_sf_lngamma_complex_e	69	gsl_sf_psi_int	82
gsl_sf_lngamma_e	68	gsl_sf_psi_int_e	82
gsl_sf_lngamma_sgn_e	69	gsl_sf_psi_n	83
gsl_sf_lnpoch	70	gsl_sf_psi_n_e	83
gsl_sf_lnpoch_e	70	<pre>gsl_sf_rect_to_polar</pre>	
gsl_sf_lnpoch_sgn_e	71	gsl_sf_Shi	66
gsl_sf_lnsinh	85	gsl_sf_Shi_e	66
gsl_sf_lnsinh_e	85	gsl_sf_Si	66
gsl_sf_log	79	gsl_sf_Si_e	66
gsl_sf_log_1plusx	79	gsl_sf_sin	84
gsl_sf_log_1plusx_e	79	gsl_sf_sin_e	84
gsl_sf_log_1plusx_mx	80	gsl_sf_sin_err_e	85
gsl_sf_log_1plusx_mx_e	80	gsl_sf_sinc	84
gsl_sf_log_abs	79	gsl_sf_sinc_e	84
gsl_sf_log_abs_e	79	gsl_sf_synchrotron_1	83
gsl_sf_log_e	79	gsl_sf_synchrotron_1_e	83
gsl_sf_log_erfc	62	gsl_sf_synchrotron_2	83
gsl_sf_log_erfc_e			83
gsl_sf_mathieu_a		gsl_sf_taylorcoeff	70
gsl_sf_mathieu_a_array	81	gsl_sf_taylorcoeff_e	70
gsl_sf_mathieu_alloc	80	gsl_sf_transport_2	83
gsl_sf_mathieu_b		gsl_sf_transport_2_e	83
gsl_sf_mathieu_b_array		gsl_sf_transport_3	
gsl_sf_mathieu_ce		-	83
gsl_sf_mathieu_ce_array		gsl_sf_transport_4	
gsl_sf_mathieu_free		gsl_sf_transport_4_e	
gsl_sf_mathieu_Mc		gsl_sf_transport_5	
gsl_sf_mathieu_Mc_array		.	
gsl_sf_mathieu_Ms		gsl_sf_zeta	
gsl_sf_mathieu_Ms_array		gsl_sf_zeta_e	
gsl_sf_mathieu_se		gsl_sf_zeta_int	
gsl_sf_mathieu_se_array		gsl_sf_zeta_int_e	
gsl_sf_multiply_e		0	86
gsl_sf_multiply_err_e	58	gsl_sf_zetam1_e	
gsl_sf_poch		gsl_sf_zetam1_int	
<u> </u>	70	gsl_sf_zetam1_int_e	
gsl_sf_pochrel		GSL_SIGN	
gsl_sf_pochrel_e		gsl_siman_solve 3	
gsl_sf_polar_to_rect		gsl_sort	
gsl_sf_pow_int		gsl_sort_index	
gsl_sf_pow_int_e		gsl_sort_largest	133
gsl_sf_psi		gsl_sort_largest_index	
osl sf nsi 1	83	gsl sort smallest 1	133

${\tt gsl_sort_smallest_index$	gsl_stats_variance_m 288
gsl_sort_vector	gsl_stats_variance_with_fixed_mean
gsl_sort_vector_index 133	288
gsl_sort_vector_largest 133	gsl_stats_wabsdev
gsl_sort_vector_largest_index 134	gsl_stats_wabsdev_m 293
gsl_sort_vector_smallest 133	gsl_stats_wkurtosis 293
${\tt gsl_sort_vector_smallest_index}$. 134	gsl_stats_wkurtosis_m_sd 294
gsl_spline_alloc	gsl_stats_wmean
gsl_spline_eval	gsl_stats_wsd
$gsl_spline_eval_deriv$	gsl_stats_wsd_m
gsl_spline_eval_deriv_e 362	gsl_stats_wsd_with_fixed_mean 292
gsl_spline_eval_deriv2	8
gsl_spline_eval_deriv2_e 363	•
gsl_spline_eval_e	gsl_stats_wtss
gsl_spline_eval_integ	gsl_stats_wtss_m
gsl_spline_eval_integ_e 363	9 – – –
gsl_spline_free	gsl_stats_wvariance_m
gsl_spline_init	gsl_stats_wvariance_with_fixed_mean
gsl_spline_min_size	
gsl_spline_name	gsl_strerror
gsl_stats_absdev	gsl_sum_levin_u_accel
gsl_stats_absdev	gsl_sum_levin_u_alloc
gsl_stats_correlation	gsl_sum_levin_u_free
gsl_stats_covariance	gsl_sum_levin_utrunc_accel 376
gsl_stats_covariance_m	gsl_sum_levin_utrunc_alloc 376
gsl_stats_covariance_m	gsl_sum_levin_utrunc_free 376
gsl_stats_kurtosis_m_sd	•
gsl_stats_lag1_autocorrelation 290	gsl_vector_add_constant
gsl_stats_lag1_autocorrelation_m	gsl_vector_alloc
gsi_stats_lagi_autocoffelation_m	gsl_vector_alloc
	gsl_vector_complex_const_imag 96
gsl_stats_max 294 gsl_stats_max_index 294	gsl_vector_complex_const_real 96
_	-
gsl_stats_mean287 gsl_stats_median_from_sorted_data	8-1
gsi_stats_median_irom_sorted_data	gsl_vector_complex_real
gsl_stats_min	gsl_vector_const_ptr
gsl_stats_min_index	gsl_vector_const_subvector 95 gsl_vector_const_subvector_with_
gsl_stats_minmax	stride
gsl_stats_minmax_index	gsl_vector_const_view_array 96
gsl_stats_quantile_from_sorted_data	gsl_vector_const_view_array_with_ stride
gsl_stats_sd	gsl_vector_div
gsl_stats_sd_m	gsl_vector_fprintf94
gsl_stats_sd_with_fixed_mean 288	
gsl_stats_skew	gsl_vector_free
gsl_stats_skew_m_sd	gsl_vector_free 92 gsl_vector_fscanf 94
gsl_stats_skew_m_sd	gsl_vector_iscani 94 gsl_vector_fwrite 94
gsl_stats_tss_m	gsl_vector_fwrite
	gsl_vector_get
gsl_stats_variance	Ret_Aecrot_Tamed

gsl_vector_isnonneg	gsl_wavelet_daubechies_centered
gsl_vector_isnull	379
gsl_vector_ispos	gsl_wavelet_free
gsl_vector_max 98	gsl_wavelet_haar 380
gsl_vector_max_index 99	gsl_wavelet_haar_centered 380
gsl_vector_memcpy	gsl_wavelet_name
gsl_vector_min 98	gsl_wavelet_transform 381
gsl_vector_min_index 99	gsl_wavelet_transform_forward 381
gsl_vector_minmax	gsl_wavelet_transform_inverse 381
gsl_vector_minmax_index	gsl_wavelet_workspace_alloc 380
gsl_vector_mul	gsl_wavelet_workspace_free 380
gsl_vector_ptr	gsl_wavelet2d_nstransform 382
gsl_vector_reverse	gsl_wavelet2d_nstransform_forward
gsl_vector_scale	382
gsl_vector_set 93	gsl_wavelet2d_nstransform_inverse
gsl_vector_set_all94	382
gsl_vector_set_basis 94	gsl_wavelet2d_nstransform_matrix
gsl_vector_set_zero94	383
gsl_vector_sub	gsl_wavelet2d_nstransform_matrix_
gsl_vector_subvector 95	forward
gsl_vector_subvector_with_stride	gsl_wavelet2d_nstransform_matrix_
95	inverse
gsl_vector_swap 97	gsl_wavelet2d_transform
gsl_vector_swap_elements 98	gsl_wavelet2d_transform_forward
gsl_vector_view_array 96	gsl_wavelet2d_transform_inverse
gsl_vector_view_array_with_stride	
	gsl_wavelet2d_transform_matrix 382
gsl_wavelet_alloc	gsl_wavelet2d_transform_matrix_
gsl_wavelet_bspline 380	forward 382
gsl_wavelet_bspline_centered 380	gsl_wavelet2d_transform_matrix_
gsl_wavelet_daubechies 379	inverse

Type and Variable Index

\mathbf{A}	gsl_fft_complex_workspace	191
alpha 329, 332	<pre>gsl_fft_halfcomplex_wavetable</pre>	198
arpiia 525, 552	gsl_fft_real_wavetable	198
	gsl_fft_real_workspace	198
\mathbf{C}	gsl_function	391
chisq	gsl_function_fdf	392
Clisq	gsl_histogram	299
	gsl_histogram_pdf	306
D	gsl_histogram2d	309
1141 220	gsl_histogram2d_pdf	316
dither	GSL_IEEE_MODE	489
	gsl_integration_qawo_table	212
\mathbf{E}	gsl_integration_qaws_table	211
	gsl_integration_workspace	207
estimate_frac	gsl_interp	359
	gsl_interp_accel	361
G	gsl_interp_type	360
	gsl_matrix	101
gsl_block	gsl_matrix_const_view	104
gsl_bspline_deriv_workspace 470	gsl_matrix_view	104
gsl_bspline_workspace 470	gsl_min_fminimizer	406
GSL_C99_INLINE	gsl_min_fminimizer_type	406
gsl_cheb_series	gsl_monte_function	325
gsl_check_range	gsl_monte_miser_state	328
gsl_combination	gsl_monte_plain_state	327
gsl_complex	gsl_monte_vegas_state	331
gsl_dht	gsl_multifit_fdfsolver	456
GSL_EDOM	<pre>gsl_multifit_fdfsolver_type</pre>	456
gsl_eigen_gen_workspace	gsl_multifit_fsolver	456
gsl_eigen_genherm_workspace 176	<pre>gsl_multifit_fsolver_type</pre>	456
gsl_eigen_genhermv_workspace 176	<pre>gsl_multifit_function</pre>	457
gsl_eigen_gensymm_workspace 175	${\tt gsl_multifit_function_fdf}$	457
gsl_eigen_gensymmv_workspace 175	${\tt gsl_multifit_linear_workspace} \ldots$	446
gsl_eigen_genv_workspace 178	${\tt gsl_multimin_fdfminimizer}$	430
gsl_eigen_herm_workspace 172	${\tt gsl_multimin_fdfminimizer_type} \; . \; .$	430
gsl_eigen_hermv_workspace 172	${\tt gsl_multimin_fminimizer} \dots \dots \dots$	430
gsl_eigen_nonsymm_workspace 173	${\tt gsl_multimin_fminimizer_type}\ \dots.$	430
gsl_eigen_nonsymmv_workspace 174	<pre>gsl_multimin_function</pre>	432
gsl_eigen_symm_workspace 171	${\tt gsl_multimin_function_fdf}$	431
gsl_eigen_symmv_workspace 171	${\tt gsl_multiroot_fdfsolver}$	414
GSL_EINVAL	${\tt gsl_multiroot_fdfsolver_type}\ \dots.$	414
GSL_ENOMEM	<pre>gsl_multiroot_fsolver</pre>	414
GSL_ERANGE	${\tt gsl_multiroot_fsolver_type}$	414
gsl_error_handler_t	${\tt gsl_multiroot_function} \dots \dots \dots$	415
gsl_fft_complex_wavetable 191	gsl_multiroot_function_fdf	416

GSL_NAN 22	gsl_sum_levin_u_workspace 375
GSL_NEGINF	gsl_sum_levin_utrunc_workspace 376
gsl_ntuple	gsl_vector91
gsl_ntuple_select_fn 320	gsl_vector_const_view 95
gsl_ntuple_value_fn 320	gsl_vector_view
gsl_odeiv_control	gsl_wavelet 379
gsl_odeiv_control_type 350	gsl_wavelet_type
gsl_odeiv_evolve	gsl_wavelet_workspace 380
gsl_odeiv_step	
gsl_odeiv_step_type 348	TT
gsl_odeiv_system	Н
gsl_permutation	HAVE_INLINE9
gsl_poly_complex_workspace 37	· -
GSL_POSINF	_
gsl_qrng	I
gsl_qrng_type	iterations
gsl_ran_discrete_t	10014010111 002
GSL_RANGE_CHECK_OFF93	
gsl_rng	${f M}$
gsl_rng_default	min_calls
gsl_rng_default_seed 218, 221	min_calls_per_bisection
GSL_RNG_SEED	mode
gsl_rng_type 218	mode 332
GSL_RNG_TYPE 221	
gsl_root_fdfsolver	0
gsl_root_fdfsolver_type 390	
gsl_root_fsolver	ostream
gsl_root_fsolver_type 390	
gsl_sf_mathieu_workspace 80	R.
gsl_sf_result 42	
gsl_sf_result_e1042	result
gsl_siman_copy_construct_t 339	
gsl_siman_copy_t	S
gsl_siman_destroy_t 339	
gsl_siman_Efunc_t	sigma
gsl_siman_metric_t	stage
gsl_siman_params_t	
gsl_siman_print_t	\mathbf{V}
gsl_siman_step_t	v
mal anline 260	wanhaga 222

\$	astronomical constants 478
\$, shell prompt 6	ASUM, Level-1 BLAS
2	atomic physics, constants
	autoconf, using with GSL 501 AXPY, Level-1 BLAS 140
2D histograms	THE T, LOVEL I BELLS THE
2D fandom direction vector 200	В
3	B-spline wavelets
3-j symbols	Bader and Deuflhard, Bulirsch-Stoer
3D random direction vector 266	method 349
200 - Tunidom discosion (2000)	balancing matrices
	Basic Linear Algebra Subroutines
6	(BLAS)
6-j symbols 55	basis splines, derivatives
	basis splines, evaluation 471
9	basis splines, examples 472
	basis splines, initializing 470
9-j symbols	basis splines, overview 469
	Bernoulli trial, random variates 274
\mathbf{A}	Bessel functions
acceleration of series	Bessel Functions, Fractional Order 51
acosh	best-fit parameters, covariance 461 Beta distribution 263
Adaptive step-size control, differential	Beta function
equations	Beta function, incomplete normalized
Ai(x)	
Airy functions	BFGS algorithm, minimization 435
Akima splines	Bi(x)
aliasing of arrays	bias, IEEE format
alternative optimized functions 11	bidiagonalization of real matrices 164
AMAX, Level-1 BLAS	binning data
Angular Mathieu Functions	Binomial random variates
angular reduction	biorthogonal wavelets
Apell symbol, see Pochammer symbol	bisection algorithm for finding roots
	Bivariate Gaussian distribution 245
approximate comparison of floating	BLAS
point numbers	BLAS, Low-level C interface 503
arctangent integral	blocks
argument of complex number 28	bounds checking, extension to GCC 93
arithmetic exceptions 489	breakpoints
asinh	Brent's method for finding minima 409

Brent's method for finding roots 396	complex hermitian matrix, eigensystem
Broyden algorithm for multidimensional	$\dots \dots $
roots	complex log sine function, special
BSD random number generator 227	functions
bug-gsl mailing list 5	complex numbers
bugs, how to report 5	complex sinc function, special functions
Bulirsch-Stoer method	84
	complex sine function, special functions
	84
\mathbf{C}	confluent hypergeometric function 74
C extensions, compatible use of 7	confluent hypergeometric functions 73
C++, compatibility	conical functions
C99, inline keyword	Conjugate gradient algorithm,
Carlson forms of Elliptic integrals 59	minimization
	conjugate of complex number
Cash-Karp, Runge-Kutta method 349	constant matrix
Cauchy distribution	constant matrix 103 constants, fundamental 477
Cauchy principal value, by numerical	
quadrature	constants, mathematical—defined as
CBLAS	macros
CBLAS, Low-level interface 503	constants, physical 477
CDFs, cumulative distribution functions	constants, prefixes
	contacting the GSL developers 6
ce(q, x), Mathieu function 81	conventions, used in manual 6
Chebyshev series	convergence, accelerating a series 375
checking combination for validity 126	conversion of units 477
checking permutation for validity 118	cooling schedule
Chi(x)	COPY, Level-1 BLAS
Chi-squared distribution	correlation, of two datasets 291
Cholesky decomposition 160	cosine function, special functions 84
Ci(x)	cosine of complex number 30
Clausen functions	cost function
Clenshaw-Curtis quadrature 206	Coulomb wave functions
CMRG, combined multiple recursive	coupling coefficients
random number generator 225	covariance matrix, from linear regression
code reuse in applications	
combinations	covariance matrix, linear fits 443
combinatorial factor $C(m,n)$	covariance matrix, nonlinear fits 461
combinatorial optimization	covariance, of two datasets 291
comparison functions, definition 131	CRAY random number generator,
compatibility	RANF
compiling programs, include paths 7	cubic equation, solving
compiling programs, library paths 8	cubic splines
	cumulative distribution functions
complementary incomplete Gamma	(CDFs)
function	
complete Fermi-Dirac integrals 67	Cylindrical Bessel Functions 45
complex arithmetic	
complex cosine function, special	D
functions	2
Complex Gamma function 69	Daubechies wavelets 379

Dawson function	\mathbf{E}
DAXPY, Level-1 BLAS 140	e, defined as a macro
debugging numerical programs 493	E1(x), E2(x), Ei(x)
Debye functions	eigenvalues and eigenvectors 171
denormalized form, IEEE format 487	elementary functions
deprecated functions	elementary operations
derivatives, calculating numerically	elliptic functions (Jacobi)
367	elliptic integrals 59
determinant of a matrix, by LU	energy function
decomposition	energy, units of
Deuflhard and Bader, Bulirsch-Stoer	erf(x) 62
method	erfc(x) 62
DFTs, see FFT	Erlang distribution
diagonal, of a matrix	error codes
differential equations, initial value	error codes, reserved
problems	error function 62
differentiation of functions, numeric	Error handlers
	error handling
digamma function 82	error handling macros
dilogarithm	Errors
direction vector, random 2D 266	estimated standard deviation 287
direction vector, random 3D 266	estimated variance
direction vector, random N-dimensional	Eta Function
	euclidean distance function, hypot 23
Dirichlet distribution 270	Euler's constant, defined as a macro 22
discontinuities, in ODE systems \dots 352	evaluation of polynomials
Discrete Fourier Transforms, see FFT	evaluation of polynomials, in divided
	difference form
discrete Hankel transforms 387	exceptions, C++
Discrete Newton algorithm for	exceptions, floating point
multidimensional roots 422	exceptions, IEEE arithmetic
Discrete random numbers 271, 272	exchanging permutation elements 118
Discrete random numbers, preprocessing	exp
$\dots \dots $	expm1
divided differences, polynomials 35	exponent, IEEE format 487
division by zero, IEEE exceptions 489	Exponential distribution
dollar sign \$, shell prompt 6	exponential function
DOT, Level-1 BLAS 139	exponential integrals
double factorial	Exponential power distribution 248
double precision, IEEE format 487	exponential, difference from 1 computed
downloading GSL 4	accurately
DWT initialization	exponentiation of complex number 30
DWT, mathematical definition 379	$\verb extern inline 9 $
DWT, one dimensional 381	
DWT, see wavelet transforms 379	F
DWT, two dimensional 381	-
	F-distribution
	factorial

factorization of matrices	fundamental constants 477
Fast Fourier Transforms, see FFT 185	\mathbf{G}
Fehlberg method, differential equations	Gamma distribution
	gamma functions
Fermi-Dirac function 67	Gauss-Kronrod quadrature 206
FFT 185	Gaussian distribution
FFT mathematical definition 185	Gaussian distribution, bivariate 245
FFT of complex data, mixed-radix	Gaussian Tail distribution
algorithm	gcc extensions, range-checking 93
FFT of complex data, radix-2 algorithm	gcc warning options
	gdb
FFT of real data	Gear method, differential equations
FFT of real data, mixed-radix algorithm	
	Gegenbauer functions
FFT of real data, radix-2 algorithm	GEMM, Level-3 BLAS
	GEMV, Level-2 BLAS
FFT, complex data 186	general polynomial equations, solving
finding minima	
finding roots	generalized eigensystems
finding zeros	generalized hermitian definite
fits, multi-parameter linear	eigensystems
fitting	generalized symmetric eigensystems
fitting, using Chebyshev polynomials	
	Geometric random variates 279, 280
Fj(x), Fermi-Dirac integral	GER, Level-2 BLAS
$F_j(x,b)$, incomplete Fermi-Dirac integral	GERC, Level-2 BLAS
	GERU, Level-2 BLAS
flat distribution	Givens Rotation, BLAS 141
Fletcher-Reeves conjugate gradient	Givens Rotation, Modified, BLAS 141
algorithm, minimization 435	GNU General Public License 3
floating point exceptions 495	golden section algorithm for finding
floating point numbers, approximate	minima
comparison	GSL_C99_INLINE 9
floating point registers 494	GSL_RNG_SEED 218
force and energy, units of 483	gsl_sf_result
Fortran range checking, equivalent in gcc	gsl_sf_result_e10
93	Gumbel distribution (Type 1) 268
Four-tap Generalized Feedback Shift	Gumbel distribution (Type 2) 269
Register	, ,
Fourier integrals, numerical 213	***
Fourier Transforms, see FFT 185	H
Fractional Order Bessel Functions 51	Haar wavelets
free documentation 519	Hankel transforms, discrete 387
free software, explanation of 4	HAVE_INLINE 9
frexp	hazard function, normal distribution
functions, numerical differentiation	63
367	HBOOK

header files, including 7	IEEE floating point 487
heapsort	IEEE format for floating point numbers
HEMM, Level-3 BLAS 146	487
HEMV, Level-2 BLAS 143	IEEE infinity, defined as a macro 22
HER, Level-2 BLAS 144	IEEE NaN, defined as a macro 22
HER2, Level-2 BLAS 145	illumination, units of 482
HER2K, Level-3 BLAS 149	imperial units 479
HERK, Level-3 BLAS	importance sampling, VEGAS 330
hermitian matrix, complex, eigensystem	including GSL header files
$\dots \dots $	incomplete Beta function, normalized
hessenberg decomposition 163	72
hessenberg triangular decomposition	incomplete Fermi-Dirac integral 68
	incomplete Gamma function 71
histogram statistics	indirect sorting
histogram, from ntuple 320	indirect sorting, of vector elements 132
histograms	infinity, defined as a macro
histograms, random sampling from 306	infinity, IEEE format
Householder linear solver 166	info-gsl mailing list
Householder matrix 165	initial value problems, differential
Householder transformation 165	equations
Hurwitz Zeta Function	initializing matrices
HYBRID algorithm, unscaled without	initializing vectors
derivatives	inline functions
HYBRID algorithms for nonlinear	integer powers
systems	integrals, exponential 65
HYBRIDJ algorithm 421	integration, numerical (quadrature)
HYBRIDS algorithm, scaled without	
derivatives	interpolation
HYBRIDSJ algorithm 420	interpolation, using Chebyshev
hydrogen atom	polynomials 371
hyperbolic cosine, inverse	inverse complex trigonometric functions
hyperbolic functions, complex numbers	
32	inverse cumulative distribution functions
hyperbolic integrals	239
hyperbolic sine, inverse	inverse hyperbolic cosine
hyperbolic space	inverse hyperbolic functions, complex
hyperbolic tangent, inverse	numbers
	inverse hyperbolic sine
hypergeometric random variates 280 hypot 23	inverse hyperbolic tangent
hypot function, special functions 84	inverse of a matrix, by LU
nypot function, special functions 64	decomposition
	inverting a permutation
I	Irregular Cylindrical Bessel Functions
i(x) Reseal Functions 40	irregular Cymhdrical Bessel Functions
i(x), Bessel Functions	Irregular Modified Bessel Functions,
identity matrix	Fractional Order 52
identity matrix	Irregular Modified Cylindrical Bessel
IEEE exceptions	Functions
100	1,

Irregular Modified Spherical Bessel	libraries, shared 8
Functions 50	license of GSL
Irregular Spherical Bessel Functions 49	light, units of
iterating through combinations 126	linear algebra
iterating through permutations 118	linear algebra, BLAS
iterative refinement of solutions in linear	linear interpolation
systems	linear regression
·	linear systems, refinement of solutions
T	
${f J}$	linear systems, solution of 153
j(x), Bessel Functions	linking with GSL libraries 8
J(x), Bessel Functions 45	LMDER algorithm 460
Jacobi elliptic functions	log1p
Jacobi orthogonalization 160	logarithm and related functions 79
Jacobian matrix, fitting	logarithm of Beta function
Jacobian matrix, ODEs	logarithm of combinatorial factor C(m,n)
Jacobian matrix, root finding 413	
Jacobian manix, 1000 manig 410	logarithm of complex number 30
	logarithm of cosh function, special
K	functions
k(x), Bessel Functions 50	logarithm of double factorial 70
K(x), Bessel Functions	logarithm of factorial
· //	logarithm of Gamma function
knots, basis splines	logarithm of Pochhammer symbol 70
Kurtosis	logarithm of 1 ochnammer symbor 70
	functions
${f L}$	logarithm of the determinant of a matrix
T	
Laguerre functions	logarithm, computed accurately near 1
Lambert function	
Landau distribution	Logarithmic random variates 281
LAPACK	Logistic distribution
Laplace distribution	Lognormal distribution
LD_LIBRARY_PATH	O .
ldexp	long double
leading dimension, matrices 101	low discrepancy sequences
least squares fit	Low-level CBLAS
least squares fitting, nonlinear 455	LU decomposition
least squares, covariance of best-fit	
parameters	\mathbf{M}
Legendre forms of elliptic integrals 59	
Legendre functions	macros for mathematical constants 21
Legendre polynomials	magnitude of complex number 28
length, computed accurately using hypot	mailing list archives 6
$\dots \dots $	mailing list for GSL announcements 4
Levenberg-Marquardt algorithms 460	mailing list, bug-gsl
Levin u-transform	mantissa, IEEE format
Levy distribution	mass, units of
Levy distribution, skew	mathematical constants, defined as
libraries, linking with 8	macros

mathematical functions, elementary 21	MINPACK, minimization algorithms
Mathieu Function Characteristic Values	420, 460
81	MISCFUN 88
Mathieu functions 80	MISER monte carlo integration 328
matrices 89, 101	Mixed-radix FFT, complex data 190
matrices, initializing	Mixed-radix FFT, real data 197
matrices, range-checking 103	Modified Bessel Functions, Fractional
matrix determinant	Order 51
matrix diagonal	Modified Clenshaw-Curtis quadrature
matrix factorization	206
matrix inverse	Modified Cylindrical Bessel Functions
matrix square root, Cholesky	46
decomposition	Modified Givens Rotation, BLAS 141
matrix subdiagonal	Modified Newton's method for nonlinear
matrix superdiagonal	systems 421
matrix, constant	Modified Spherical Bessel Functions 49
matrix, identity	Monte Carlo integration
matrix, operations	MRG, multiple recursive random
matrix, zero	number generator
max	MT19937 random number generator
maximal phase, Daubechies wavelets	
379	multi-parameter regression 446
maximization, see minimization 405	multidimensional integration 325
maximum of two numbers 25	multidimensional root finding, Broyden
maximum value, from histogram 303	algorithm
mean	multidimensional root finding, overview
mean value, from histogram 303	415
Mill's ratio, inverse 63	multidimensional root finding, providing
min	a function to solve 415
minimization, BFGS algorithm 435	Multimin, caveats 430
minimization, caveats 406	Multinomial distribution 276
minimization, conjugate gradient	multiplication
algorithm	
minimization, multidimensional 429	N
minimization, one-dimensional 405	
minimization, overview 405	N-dimensional random direction vector
minimization, Polak-Ribiere algorithm	
$\dots \dots $	NaN, defined as a macro 22
minimization, providing a function to	nautical units
minimize	Negative Binomial distribution, random
minimization, simplex algorithm 436	variates
minimization, steepest descent algorithm	Nelder-Mead simplex algorithm for
$\dots \dots $	minimization 436
minimization, stopping parameters 408	Newton algorithm, discrete 422
minimum finding, Brent's method 409	Newton algorithm, globally convergent
minimum finding, golden section	
algorithm	Newton's method for finding roots 397
minimum of two numbers	Newton's method for systems of
minimum value, from histogram 303	nonlinear equations 421

\mathbf{R}	Regular Modified Cylindrical Bessel
R250 shift-register random number	Functions
generator	Regular Modified Spherical Bessel
Racah coefficients	Functions 49
Radial Mathieu Functions 81	Regular Spherical Bessel Functions 48
radioactivity, units of 483	Regulated Gamma function 69
Radix-2 FFT for real data 195	relative Pochhammer symbol 71
Radix-2 FFT, complex data 187	reporting bugs in GSL 5
rand, BSD random number generator	representations of complex numbers 27
	resampling from histograms 305
rand48 random number generator 228	residual, in nonlinear systems of
random number distributions 239	equations 419, 459
random number generators	reversing a permutation
random sampling from histograms 306	Riemann Zeta Function 86
RANDU random number generator	RK2, Runge-Kutta method 349
	RK4, Runge-Kutta method 349
RANF random number generator 228	RKF45, Runge-Kutta-Fehlberg method
range	
range-checking for matrices	root finding
range-checking for vectors	root finding, bisection algorithm 396
RANLUX random number generator	root finding, Brent's method 396
	root finding, caveats
RANLXD random number generator	root finding, false position algorithm
RANLXS random number generator	root finding, initial guess 394
	root finding, Newton's method 397
RANMAR random number generator	root finding, overview
	root finding, providing a function to
229, 230	solve
Rayleigh distribution	root finding, search bounds 394
Rayleigh Tail distribution	root finding, secant method 397
real nonsymmetric matrix, eigensystem	root finding, Steffenson's method 398
real symmetric matrix, eigensystem	root finding, stopping parameters 395,
, , ,	419
Reciprocal Gamma function 69	roots
-	ROTG, Level-1 BLAS
rectangular to polar conversion 85	rounding mode
recursive stratified sampling, MISER	Runge-Kutta Cash-Karp method 349
328	Runge-Kutta methods, ordinary
reduction of angular variables 85	differential equations 349
refinement of solutions in linear systems	Runge-Kutta Prince-Dormand method
regression, least squares	
Regular Bessel Functions, Fractional	
Order	\mathbf{S}
Regular Bessel Functions, Zeros of 52	
Regular Cylindrical Bessel Functions	safe comparison of floating point
Domilor Modified Boord Frontiers	numbers
Regular Modified Bessel Functions,	sampling from histograms 305, 306
Fractional Order 51	SAXPY, Level-1 BLAS 140

square root of a matrix, Cholesky
decomposition
square root of complex number 30
standard deviation
standard deviation, from histogram
303
standards conformance, ANSI C 7
Statistical Reference Datasets (StRD)
statistics
statistics, from histogram 303
steepest descent algorithm, minimization
Steffenson's method for finding roots
398
stratified sampling in monte carlo
integration
stride, of vector index 91
Student t-distribution 262
subdiagonal, of a matrix 108
summation, acceleration 375
superdiagonal, matrix 108
SVD
SWAP, Level-1 BLAS
swapping permutation elements 118
SYMM, Level-3 BLAS 146
symmetric matrix, real, eigensystem
SYMV, Level-2 BLAS
synchrotron functions 83
SYR, Level-2 BLAS
SYR2, Level-2 BLAS
SYR2K, Level-3 BLAS 149
SYRK, Level-3 BLAS
systems of equations, nonlinear 413
TD.
\mathbf{T}
t-distribution
t-test
tangent of complex number 30
Tausworthe random number generator
$\dots \dots 225$
Taylor coefficients, computation of 70
testing combination for validity 126
testing permutation for validity 118
thermal energy, units of 481
time units
trailing dimension, matrices 101

transformation, Householder 165	\mathbf{V}
transforms, Hankel 387 transforms, wavelet 379 transport functions 83 traveling salesman problem 343 tridiagonal decomposition 161, 162 tridiagonal systems 166	value function, ntuples 320 Van der Pol oscillator, example 353 variance 287 variance, from histogram 303 variance-covariance matrix, linear fits 444
trigonometric functions 84 trigonometric functions of complex 30 trigonometric integrals 66 TRMM, Level-3 BLAS 147 TRSW, Level-2 BLAS 142 TRSV, Level-3 BLAS 147 TRSV, Level-2 BLAS 143 TSP 343 TT800 random number generator 229	VAX random number generator 229 vector, operations 137 vector, sorting elements of 132 vectors 89, 91 vectors, initializing 94 vectors, range-checking 93 VEGAS monte carlo integration 330 viscosity, units of 482 volume units 480
two dimensional Gaussian distribution 245	\mathbf{W}
two dimensional histograms	W function 75 warning options 495 warranty (none) 5 wavelet transforms 379 website, developer information 6 Weibull distribution 267
U	weight, units of
u-transform for series 375 underflow, IEEE exceptions 489 uniform distribution 257 units, conversion of 477 units, imperial 479 Unix random number generators, rand	Wigner coefficients
Unix random number generators, rand48	Z
227 unnormalized incomplete Gamma function 71 unweighted linear fits 443 usage, compiling application programs 7	zero finding