Posloupnosti

Posloupnost je zobrazení množiny přirozených čísel $\mathbb N$ do množiny reálných čísel $\mathbb R$, tedy přiřazuje každému přirozenému číslu n právě jedno reálné číslo a_n (n-tý člen). Posloupnost značíme

$${a_n}_{n=1}^{\infty} := {a_1, a_2, a_3, \dots}.$$

Lze ji chápat jako očíslovaný seznam čísel. Například: $\{n\}_{n=1}^{\infty}=\{1,2,3,4,\dots\}$ nebo $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}=\left\{1,\frac{1}{2},\frac{1}{3},\dots\right\}$.

Vybraná posloupnost vznikne tak, že z původní posloupnosti vynecháme některé členy, ale zachováme jejich pořadí. Například z posloupnosti $\{n\}_{n=1}^{\infty} = \{1, 2, 3, 4, 5, \dots\}$ můžeme vybrat jen liché členy: $\{2n+1\}_{n=1}^{\infty} = \{1, 3, 5, \dots\}$.

Rozlišujeme následující **monotónní posloupnosti**:

- neklesajíci každý další člen je větší než nebo roven předchozímu, např. $\{1, 2, 2, 3, 4, \dots\}$,
- rostoucí každý další člen je větší než předchozí, např. {1, 2, 3, 4, ...},
- nerostouci každý další člen je menší než nebo roven předchozímu, např. $\{5, 4, 4, 3, \dots\}$,
- klesajíci každý další člen je menší než předchozí, např. $\{5,4,3,2,\dots\}$.

Omezená posloupnost je taková posloupnost, jejíž všechny členy leží mezi dvěma reálnými čísly m (dolni mez) a M (horni mez) tak, že pro všechna $n \in \mathbb{N}$ platí:

$$m \leq a_n \leq M$$
.

Například posloupnost $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$ je omezená, protože platí $0 < a_n \le 1$ pro všechna n.

Limita posloupnosti popisuje, ke které hodnotě se členy posloupnosti blíží, když n roste do nekonečna. Pokud tato limita existuje a je to reálné číslo, říkáme, že posloupnost a_n je konvergentní a zapisujeme:

$$\lim_{n\to\infty} a_n = a.$$

V opačném případě říkáme, že posloupnost **diverguje**, tj. limita neexistuje, nebo je **ne-vlastní** $(\pm \infty)$.

Nejjednodušším příkladem je konstantní posloupnost, například:

$$\{5\}_{n=1}^{\infty} = \{5, 5, 5, 5, \dots\}.$$

Tato posloupnost má limitu 5, protože všechny její členy jsou rovny této hodnotě a píšeme:

$$\lim_{n \to \infty} 5 = 5.$$

Nevlastní limity popisují skutečnost, že členy posloupnosti nejsou omezené.

Pokud členy posloupnosti $rostou \ nad \ v \check{s}echny \ meze$, říkáme, že limita je $+\infty$. Například:

$${n}_{n=1}^{\infty} = {1, 2, 3, 4, \dots}, \quad \lim_{n \to \infty} n = +\infty.$$

Pokud členy posloupnosti klesají pod všechny meze, říkáme, že limita je $-\infty$. Například:

$$\{-n\}_{n=1}^{\infty} = \{-1, -2, -3, -4, \dots\}, \quad \lim_{n \to \infty} -n = -\infty.$$

Význačné limity posloupností

- $\bullet \lim_{n \to \infty} a = a$
- $\bullet \lim_{n \to \infty} \frac{1}{n} = 0$
- $\lim_{n\to\infty} n = \infty$
- $\lim_{n \to \infty} q^n = 0$, pokud |q| < 1
- $\lim_{n\to\infty} q^n = +\infty$, pokud q > 1
- $\lim_{n\to\infty} (-1)^n$ neexistuje
- $\lim_{n\to\infty}q^n$ neexistuje, pokud q<-1
- $\lim_{n\to\infty} \sqrt[n]{a} = 1$, pro a > 0
- $\bullet \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$

Pravidla pro počítání limit posloupností

Ověření, že limita neexistuje - spočívá v nalezení dvou vybraných posloupností s různými limitami (důsledek jednoznačnosti).

 $P\check{r}iklad$: Zvažme posloupnost $\{(-1)^n\}_{n=1}^\infty=\{-1,1,-1,1,\dots\}.$

- Vybereme liché členy: $\{a_{2k-1}\}_{k=1}^{\infty} = \{(-1)^{2k-1}\}_{k=1}^{\infty} = \{-1, -1, -1, \dots\}$ s limitou -1.
- Vybereme sudé členy: $\{a_{2k}\}_{k=1}^{\infty} = \{(-1)^{2k}\}_{k=1}^{\infty} = \{1, 1, 1, \dots\}$ s limitou 1.

Protože tyto dvě vybrané posloupnosti mají různé limity, **limita zadané posloupnosti** neexistuje a píšeme $\lim_{n\to\infty} (-1)^n = \text{neexistuje}$.

Věta o aritmetice limit posloupností

Nechť $\{a_n\}$ a $\{b_n\}$ jsou posloupnosti s limitami $\lim_{n\to\infty} a_n = A$ a $\lim_{n\to\infty} b_n = B$, kde $A, B \in \mathbb{R} \cup \{\pm\infty\}$. Pak platí (pokud jsou pravé strany definovány):

$$\lim_{n \to \infty} (a_n + b_n) = A + B,$$

$$\lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B,$$

$$\lim_{n \to \infty} (a_n - b_n) = A - B,$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}, \quad \text{pokud } B \neq 0.$$

Například není povoleno $\infty-\infty,\,\frac{\infty}{\infty}$ a další nedefinované výrazy.

Důsledek věty o aritmetice limit a základních limit:

$$\lim_{n \to \infty} n^2 = +\infty, \quad \lim_{n \to \infty} \frac{1}{n^2} = 0,$$

a obecně pro každé $k \in \mathbb{N}$ platí:

$$\lim_{n \to \infty} n^k = +\infty, \quad \lim_{n \to \infty} \frac{1}{n^k} = 0.$$

Příklad: Spočítejte limitu posloupnosti:

$$\lim_{n \to \infty} \frac{2n^3 + 3n^2 - 5}{n^3 - n + 1}.$$

Řešení:

Čitatel i jmenovatel jsou polynomy. Pro určení limity využijeme fakt, že $p\check{r}i$ limitě k nekonečnu dominují členy s nejvyšší mocninou. Nejvyšší mocnina je v obou případech n^3 . Z obou částí tedy vytkneme nejvyšší mocninu n^3 a následně krátíme:

$$\lim_{n \to \infty} \frac{2n^3 + 3n^2 - 5}{n^3 - n + 1} = \lim_{n \to \infty} \frac{n^3 \left(2 + \frac{3}{n} - \frac{5}{n^3}\right)}{n^3 \left(1 - \frac{1}{n^2} + \frac{1}{n^3}\right)} = \lim_{n \to \infty} \frac{2 + \frac{3}{n} - \frac{5}{n^3}}{1 - \frac{1}{n^2} + \frac{1}{n^3}}$$

Po této úpravě již nemůže nastat dělení nulou. Nyní použijeme známé limity:

$$\lim_{n \to \infty} a = a \quad \text{a} \quad \lim_{n \to \infty} \frac{1}{n^k} = 0 \quad \text{pro } k \in \mathbb{N}.$$

Tedy:

$$\lim_{n\to\infty}\frac{2n^3+3n^2-5}{n^3-n+1}=\frac{\lim_{n\to\infty}2+\lim_{n\to\infty}\frac{3}{n}-\lim_{n\to\infty}\frac{5}{n^3}}{\lim_{n\to\infty}1-\lim_{n\to\infty}\frac{1}{n^2}+\lim_{n\to\infty}\frac{1}{n^3}}=\frac{2+0-0}{1-0+0}=\frac{2}{1}=2.$$