NDC { London }

Johnny Hooyberghs

Microsoft Q# and Azure Quantum

Johnny Hooyberghs

@djohnnieke
github.com/Djohnnie
johnny.hooyberghs@involved-it.be

Superposition and Entanglement

- Quantum mechanics describes superposition and entanglement of quantum particles
- Quantum computing can use these phenomena to its advantage

- Security
 - Public/private key encryption?
 - Could make current RSA encryption obsolete
 - QKD (Quantum Key Distribution)

 $3.167 \times 6.301 = 19.955.267$

- Drug development
 - It takes a quantum system to simulate a quantum system
 - Interactions between molecules
 - Gene sequencing
 - Protein folding

#NDCLondon

- Machine Learning
 - Analyze large quantities of data
 - Fast feedback
 - Emulate human mind

100110

#NDCLondon

100110)

$$\alpha | 0 \rangle + \beta | 1 \rangle$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha |0\rangle + \beta |1\rangle$$

$$|\alpha|^2 + |\beta|^2 = 1$$

$$\alpha = a + bi$$

$$\beta = c + di$$

$$\frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

- Classical bit 0, Quantum bit $|0\rangle$
- Classical bit 1, Quantum bit |1>
- Quantum bit in superposition
- $\boldsymbol{\alpha}|0\rangle + \boldsymbol{\beta}|1\rangle$ where $|\boldsymbol{\alpha}|^2 + |\boldsymbol{\beta}|^2 = 1$
- α and β are complex numbers (ai + b)
- Value known after measurement
- Collapses to $|0\rangle$ with probability $|\alpha|^2$ or $|1\rangle$ with probability $|\beta|^2$

#NDCLondon

• 2 Qubit system (4 probabilities):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

• 2 Qubit system (4 probabilities):

$$\alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$

• 3 Qubit system (8 probabilities):

$$\alpha|000\rangle + \beta|001\rangle + \gamma|010\rangle + \delta|011\rangle + \varepsilon|100\rangle + \epsilon|110\rangle + \zeta|101\rangle + \eta|111\rangle$$

• 4 Qubit system (16 probabilities):

•••

#NDCLondon

X-gate

(1

1 0 Y-gate

$$0 \choose i$$

Z-gate

H-gate

$$\begin{pmatrix} 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \\ 1 & 1 \\ \overline{\sqrt{2}} & \overline{\sqrt{2}} \end{pmatrix}$$

CNOT-gate

/1	0	0	$0 \setminus$
$\int 0$	1	0	0
0	0	0	1 /
/0	0	1	0

Microsoft Q#

https://www.microsoft.com/en-us/quantum/development-kit

Azure Quantum

- Quantum in the cloud
 - Optimization
 - Machine Learning
 - Quantum Simulation
- Access to quantum hardware
 - Microsoft (Topological)
 - IonQ & Honeywell (Ion Traps)
 - QCI (Superconducting)
- Q# & QDK
 - Quantum Intermediate Representation (QIR)

Entanglement

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} H \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} CNOT \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = ?$$

#NDCLondon

Entanglement

If the product state of two qubits cannot be factored, they are entangled

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix} \otimes \begin{pmatrix} c \\ d \end{pmatrix} \rightarrow \begin{cases} ad = 0 \\ bc = 0 \\ bd = \frac{1}{\sqrt{2}} \end{cases}$$

$$bd = \frac{1}{\sqrt{2}}$$

This set of two qubits has a 50% chance of collapsing to $|00\rangle$ and a 50% chance of collapsing to $|11\rangle$

#NDCLondon

Teleportation

CHSH game

 $X \cdot Y = A \oplus B$

Output bit **B**

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

$$X \cdot Y = A \oplus B$$

#NDCLondon www.involved-it.be

Χ	Υ	X∙Y
0	0	0
0	1	0
1	0	0
1	1	1

Output bit ${\bf B}$

Random	bit Y
4	

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

$$X \cdot Y = A \oplus B$$

#NDCLondon www.involved-it.be

www.involved-it.be #NDCLondon

www.involved-it.be #NDCLondon

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	0>	$\cos^2\left(-\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(-\frac{\pi}{8}\right) \approx 0.15$
1	1>	$\cos^2\left(\frac{3\pi}{8}\right) \approx 0.15$	$\sin^2\left(\frac{3\pi}{8}\right) \approx 0.85$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	0>	$\cos^2\left(-\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(-\frac{\pi}{8}\right) \approx 0.15$
1	1>	$\cos^2\left(\frac{3\pi}{8}\right) \approx 0.15$	$\sin^2\left(\frac{3\pi}{8}\right) \approx 0.85$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	0>	$\cos^2\left(\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(\frac{\pi}{8}\right) \approx 0.15$
1	1>	$\cos^2\left(\frac{5\pi}{8}\right) \approx 0.15$	$\sin^2\left(\frac{5\pi}{8}\right) \approx 0.85$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	0>	$\cos^2\left(\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(\frac{\pi}{8}\right) \approx 0.15$
1	1>	$\cos^2\left(\frac{5\pi}{8}\right) \approx 0.15$	$\sin^2\left(\frac{5\pi}{8}\right) \approx 0.85$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	+>	$\cos^2\left(\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(\frac{\pi}{8}\right) \approx 0.15$
1	- >	$\cos^2\left(-\frac{3\pi}{8}\right) \approx 0.15$	$\sin^2\left(-\frac{3\pi}{8}\right) \approx 0.85$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	+>	$\cos^2\left(\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(\frac{\pi}{8}\right) \approx 0.15$
1	->	$\cos^2\left(-\frac{3\pi}{8}\right) \approx 0.15$	$\sin^2\left(-\frac{3\pi}{8}\right) \approx 0.85$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	+>	$\cos^2\left(\frac{3\pi}{8}\right) \approx 0.15$	$\sin^2\left(\frac{3\pi}{8}\right) \approx 0.85$
1	->	$\cos^2\left(-\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(-\frac{\pi}{8}\right) \approx 0.15$

Alice outputs	Bob's qbit	Bob outputs 0 with probability	Bob outputs 1 with probability
0	+>	$\cos^2\left(\frac{3\pi}{8}\right) \approx 0.15$	$\sin^2\left(\frac{3\pi}{8}\right) \approx 0.85$
1	- >	$\cos^2\left(-\frac{\pi}{8}\right) \approx 0.85$	$\sin^2\left(-\frac{\pi}{8}\right) \approx 0.15$

johnny.hooyberghs@involved-it.be @djohnnieke

https://github.com/Djohnnie/QSharp-and-AzureQuantum-NDCLondon-2021

#NDCLondon www.involved-it.be