Capitation and provider choice

Jan Boone

Tilec, Tilburg University

Introduction

Model

Public contracts

Private contracts

Insurance market

Policy implications

Capitation and provider choice Lintroduction

Introduction

motivation

- bigger provider networks lead to higher health care expenditure
 - cross section studies
 - AWP laws
 - US: fee-for-service; narrow networks; broader networks
- both price effect and utilization effect of selective contracting/managed care
 - ► Cutler et al (2000): price
 - papers by Zwanziger and co-authors (1988, 1994, 1996): utilization and cost
 - ► Chernew et al. (2008): utilization
 - Chernew and Newhouse (2011): overview of effects on expenditure and costs
- we focus on the effect of network size on utilization and costs

policy problem

- is it a problem that bigger networks lead to higher costs?
- why should more choice lead to higher utilization?
- people worry that narrow network leads to under-treatment (NYT, July 2014; LA Times Sept. 2013)

private contracts

- with public contracts there is no effect of network size on utilization and costs
- cannot address concerns on under-treatment
- contracts are private in reality
 - confidentiality clauses (Muir et al., 2013)
 - only insurer and provider know the terms
 - other insurers and providers do not
 - consumers do not

questions

- capitation fee as supply side cost sharing
 - how is this combined with provider choice?
 - why is demand side cost sharing used?

literature

- health economics literature on selective contracting and managed care
- papers by McGuire and co-authors (1993, 1997, 2002) on physician agency
 - with public contracts demand and supply side cost sharing separated
 - optimal to have no demand side cost sharing
- ▶ I.O. literature on private contracts
 - ► Hart and Tirole (1990): upstream monopolist with two downstream firms cannot earn monopoly profit with two part tariff
 - p > c: oversupply because downstream firms expect U to oversell to competitor
 - in our case: p < c: provider expects too many patients

main results

- with private contracts, supply side cost sharing decreases in network size
- strategic effect: given capitation fee, insurer sends too many patients to provider with lowest p
- needs to be compensated by higher capitation
- optimal network size trades off treatment efficiency against provider profits
- demand side cost sharing to reduce over-treatment

Model

insurers

- risk neutral
- risk averse consumers (mass 1)
- ightharpoonup premium σ
- ightharpoonup co-payment γ in case of treatment
- network size n of homogeneous providers
- fee-for-service $p \ge 0$, capitation t
- no other cost of insurance
- perfect competition

providers

- homogeneous
- risk neutral
- c cost of treatment
- $v \in [0, \bar{v}]$ value of treatment, F
- v is observed by provider, not by insurer
- efficiency: treat iff $v \ge c$

consumers

- ightharpoonup same exogenous probability θ that treatment is needed
- copay $\gamma > 0$ inefficient due to risk aversion
- gets treatment iff $v \ge v(p, \gamma)$
 - efficiency: $v(p, \gamma) = c$
 - $\triangleright v(p, \gamma) > c$: under-treatment
 - number of treatments $H(p, \gamma) = \theta(1 F(v(p, \gamma)))$
 - with $H_p \ge 0, H_\gamma \le 0$

Public contracts

efficiency

- contract n providers
- fee-for-service: p^* with $v(p^*, 0) = c$
- ▶ assume $p^* < c$
- capitation: $t = H(p^*, 0)(c p^*)/n$
- network size has no effect on costs/utilization
- can be an effect on distribution of rents via t

other effects

- threat to exclude
- shifting volume
- taste for variety
- heterogeneous providers or agents
- risk averse providers

Capitation and provider choice
Private contracts

Private contracts

truthful revelation

- insurer can implicitly guide (some) patients to providers
- send patients (first) to provider i with lowest p_i
- different from explicit/contractible steering
 - exclude provider from network
 - \triangleright vary γ_i with provider P_i
- even without steering:
 - number of patients treated by P_i depends on prices of other providers
 - ▶ patients not treated by P_j shop around hoping that $v(p_i, \gamma) < v < v(p_i, \gamma)$

capitation

- ▶ how many patients can P_i expect?
- ▶ insurer tells P_i that P_i has contract with $p_i = p_i \varepsilon$
- ▶ P_i can expect to treat only $\hat{x}_i = H(p_i, \gamma) H(p_i \varepsilon, \gamma)$ patients
- ▶ ti close to 0
- \triangleright set of contracts p, t where x_i is truthfully revealed:

$$A_{\gamma,n} = \{(p, \hat{x}(c-p)) | \hat{x} \ge x\}$$

proposition

- ▶ for each $(p, t) \in A_{\gamma,n}$, we have $t \ge H(p, \gamma)(c p)$
 - each provider gets t as if she has lowest p
 - any lower t is not incentive compatible and rejected by providers
 - ▶ intuition: provider P_i does not believe insurer's claim that there is $p_i < p_i$

profits

- if two providers get offered the same p < c, insurer pays $t = H(p, \gamma)(c p)$ to each
- providers make a profit
- reduce provider profits by raising fee-for-service p and reduce capitation t
- ightharpoonup p = c implies t = 0: no provider profits
- hence bigger networks lead to less supply side cost sharing
- and thus to higher health care utilization and costs

intuition

- as network size n increases, supply side cost sharing becomes more expensive
- with n = 1, reduce treatment costs by setting $p = 0, t = H(0, \gamma)c$
 - ▶ insured cannot observe p
 - premium does not depend on p
- ▶ with $n \ge 2$, this becomes too expensive, as each provider requires $t = H(0, \gamma)c$
- raise p to reduce t
- bigger network leads to more utilization and higher cost
- ▶ for n big enough, p = c: indemnity insurance, all providers contracted
- size of the network signals probability of treatment
 - broader networks are more generous
 - premium depends on n

results

- ▶ costs $C(n, \gamma)$ increase in n
- ightharpoonup decrease in γ
- **consumer** is interested in highest price $p(n, \gamma)$
- determines probability that insured is treated (at all)
- probability of treatment increases with n

Capitation and provider choice

Insurance market

Insurance market

value of insurance

- ▶ Bertrand competition: $\sigma = C(n, \gamma)$
- consumer does not know p_i
- but does understand that bigger network leads to higher $p(n, \gamma)$
- values insurance at

$$V^{i} = \theta \int_{v(p(n,\gamma),\gamma)} (v - \gamma) f(v) dv - C(n,\gamma) - \theta \delta(p(n,\gamma),\gamma)$$

efficiency

- due to competition, insurers choose n, γ to maximize V^i
- network size is trade off between number of treatments and providers' profits
- ▶ inverse U between *n* and profits
 - ightharpoonup zero profits with n=1
 - ightharpoonup zero profits with n high enough that p = c
- if optimal n implies over-treatment, $\gamma > 0$ can be optimal
- unlike public contracts, here both demand and supply side cost sharing needed

Policy implications

AWP laws

- make it harder to exclude provider from the network
- with private contracts, providers have positive profits; want to be part of the network
- if AWP laws lead to higher n they lead to higher health care utilization and costs
- if the insurance market is perfectly competitive, AWP laws tend to reduce welfare
- if there is no perfect competition, narrow networks can lead to low welfare and undertreatment