"Kernel methods in machine learning" Homework 2 Due on 02/01/2023, 3pm

Exercice 1.

Let K_1 and K_2 be two positive definite kernels on a set \mathcal{X} with corresponding RKHS's \mathcal{H}_1 and \mathcal{H}_2 , and α, β two positive scalars.

- 1. Show that $\alpha K_1 + \beta K_2$ is positive definite, and describe its RKHS \mathcal{H} .
- 2. Express the norm of the RKHS \mathcal{H} in terms of the norms of both RKHS \mathcal{H}_1 and \mathcal{H}_2 .

Exercice 2.

Let \mathcal{X} be a set and \mathcal{F} be a Hilbert space. Let $\Psi : \mathcal{X} \to \mathcal{F}$, and $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be:

$$\forall x, x' \in \mathcal{X}, \quad K(x, x') = \langle \Psi(x), \Psi(x') \rangle_{\mathcal{F}} .$$

- 1. Show that K is a positive definite kernel on \mathcal{X} , and describe its RKHS \mathcal{H} .
- 2. Express the norm of the RKHS \mathcal{H} in terms of the norm in \mathcal{F} .