1. Pengertian logaritma

Logaritma adalah operasi matematika yang merupakan kebalikan (invers) dari ekspone atau perpangkatan.

- Bentuk umum: $b \log(x) = y$
- Sama artinya dengan: $b^y = x$

Keterangan:

- b = basis atau bilangan pokok, dengan syarat b > 0 dan $b \neq 1$.
- x = numerus atau argumen, dengan syarat x > 0.
- y = hasil logaritma, yaitu besar pangkatnya.

Jika basis tidak ditulis, artinya basisnya adalah 10. Contoh: $\log(100) = 2$ karena $10^2 = 100$.

SIFAT OPERASI LOGARITMA

Sifat dasar

- $a \log a = 1$:
 - Contoh: $^{7} \log 7 = 1$ (karena $7^{1} = 7$).
- $a \log 1 = 0$:
 - Contoh: ${}^{6}\log 1 = 0$ (karena ${}^{6}=1$).

Sifat operasi

- Penjumlahan: $a \log x + a \log y = a \log(xy)$
 - Contoh: $^4 \log 2 + ^4 \log 8 = ^4 \log (2 \times 8) = ^4 \log 16 = 2$ (karena $4^2 = 16$).
- Pengurangan: $a \log x a \log y = a \log(\frac{x}{y})$
 - Contoh: $^5 \log 100 ^5 \log 4 = ^5 \log (\frac{100}{4}) = ^5 \log 25 = 2$ (karena $5^2 = 25$).
- Perpangkatan: $a \log x^n = n \cdot a \log x$
 - Contoh: ${}^4\log 64 = {}^4\log 4^3 = 3 \cdot {}^4\log 4 = 3 \cdot 1 = 3$.

Untuk lebih memahaminya perhatikan contoh soal berikut:

Soal 1 (Sifat perkalian dan pembagian)

Hitunglah nilai dari $^2 \log(16) + ^2 \log(3) - ^2 \log(6)$.

Penyelesaian:

$${}^{2} \log(16) + {}^{2} \log(3) - {}^{2} \log(6)$$

$$= {}^{2} \log(\frac{16 \cdot 3}{6})$$

$$= {}^{2} \log(\frac{48}{6})$$

$$= {}^{2} \log(8)$$

$$= {}^{2} \log(2^{3})$$

$$= 3 \cdot {}^{2} \log(2)$$

$$= 3 \cdot 1$$

$$= 3$$

Soal 2 (Sifat pangkat)

Jika diketahui $\log(2) = p$, nyatakan $\log(16)$ dalam bentuk p.

Penyelesaian:

Dengan menggunakan sifat logaritma pangkat:

$${}^{b}\log(x^{p}) = p \cdot {}^{b}\log(x)$$

$${}^{3}\log(16)$$

$$= {}^{3}\log(2^{4})$$

$$= 4 \cdot {}^{3}\log(2)$$

Karena $^3 \log(2) = p$, maka:

$$= 4p$$

Soal 3 (Sifat perubahan basis)

Tentukan nilai dari $^2 \log(5) \cdot ^5 \log(6) \cdot ^6 \log(8)$.

Penyelesaian:

Dengan menggunakan sifat perkalian logaritma dengan basis berantai:

$${}^{a} \log(b) \cdot {}^{b} \log(c) \cdot {}^{c} \log(d) = {}^{a} \log(d)$$

$${}^{2} \log(5) \cdot {}^{5} \log(6) \cdot {}^{6} \log(8)$$

$$= {}^{2} \log(8)$$

$$= {}^{2} \log(2^{3})$$

$$= 3 \cdot {}^{2} \log(2)$$

$$= 3 \cdot 1$$

Soal 4 (Sifat gabungan)

Sederhanakanlah bentuk
$$\frac{^2 \log(81) \cdot ^3 \log(32)}{^5 \log(125)}$$
.

Penyelesaian

Ubah numerus menjadi bentuk pangkat:

$$^{2} \log(3^{4}) \cdot ^{3} \log(2^{5}) \cdot \frac{1}{^{5} \log(5^{3})}$$

Gunakan sifat logaritma pangkat:

$$(4 \cdot {}^{2} \log(3)) \cdot (5 \cdot {}^{3} \log(2)) \cdot \frac{1}{(3 \cdot {}^{5} \log(5))}$$
$$(4 \cdot {}^{2} \log(3)) \cdot (5 \cdot {}^{3} \log(2)) \cdot \frac{1}{3}$$
$$\frac{20}{3} \cdot ({}^{2} \log(3) \cdot {}^{3} \log(2))$$

Gunakan sifat perkalian logaritma dengan basis berantai:

$$\frac{20}{3} \cdot (^2 \log(2))$$

$$\frac{20}{3} \cdot 1$$

$$= \frac{20}{3}$$

Soal 5 (Mengubah basis dan sifat dasar)

Jika diketahui log(2) = 0.301 dan log(3) = 0.477, hitunglah log(6).

Penyelesaian:

Dengan menggunakan sifat logaritma perkalian, kita tahu bahwa $6 = 2 \cdot 3$.

$$\log(6) = \log(2 \cdot 3)$$

$$= \log(2) + \log(3)$$

$$= 0.301 + 0.477$$

$$= 0.778$$