Lineare Algebra 1 - WS 2024/25

Übungsblatt 4-20.11.2024

Aufgabe 1

(a) Sind die vier Punkte

$$P_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \qquad \qquad P_2 = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}, \qquad \qquad P_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad \qquad P_4 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}.$$

komplanar? Bestimmen Sie gegebenenfalls eine Ebene welche die Punkte enthält.

(b) Finden Sie vier *nicht*-kollineare Punkte Q_1, \ldots, Q_4 in der Ebene für die gilt: es gibt $\alpha_1, \ldots, \alpha_4 \in \mathbb{R}$, nicht sämtliche verschwindend, mit

$$\sum_{i=1}^4 \alpha_i = 0 \quad \text{und} \quad \sum_{i=1}^4 \alpha_i \overrightarrow{OQ_i} = 0.$$

Aufgabe 2

Es seien A, B, C die Eckpunkte eines Dreiecks \overrightarrow{ABC} . Der $\overrightarrow{Schwerpunkt}$ von \overrightarrow{ABC} ist nach Definition der Punkt S mit Ortsvektor $\overrightarrow{OS} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC})$. Zeigen Sie:

- (a) Je zwei Seitenhalbierende sind nicht parallel.
- (b) S ist der Schnittpunkt der drei Seitenhalbierenden.
- (c) Es gilt $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} = o$.

Aufgabe 3

Stellen Sie fest, ob die folgenden Verknüpfungen kommutativ/assoziativ sind. Welche der Paare (G, *) bilden Gruppen? Bestimmen Sie gegebenenfalls neutrale und inverse Elemente

- (a) $G = \mathbb{R}, x * y = \min\{x, y\},\$
- (b) $G = \mathbb{R}, x * y = x + y 1,$
- (c) $G = \mathbb{R} \setminus \{-1\}, x * y = x + y + xy.$

Aufgabe 4

Es sei G eine Gruppe mit $a^2 := a \cdot a = e$ für alle $a \in G$, wobei e das neutrale Element von G bezeichnet. Zeigen Sie, dass G abelsch ist.

${\bf Aufgabe~5}$

Es sei G eine Gruppe mit endlich vielen Elementen und neutralem Element e. Zeigen Sie, dass es zu jedem $a \in G$ ein $n \in \mathbb{N} \setminus \{0\}$ gibt, für das gilt $e = a^n := \underbrace{a \cdot a \cdot \dots \cdot a}_{n\text{-mal}}$.

Aufgabe 6

Wir betrachten $F = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\} \subset \mathbb{R}$. Zeigen Sie:

- (a) $0, 1 \in F$.
- (b) Für alle $x, y \in F$ gelten $x + y \in F$ und $xy \in F$.
- (c) $(F, +, \cdot)$ ist ein Körper.

Sie können dazu $\sqrt{5} \notin \mathbb{Q}$ benutzen.