DISCIPLINE SPECIFIC CORE COURSE – 8: Analog Electronics-II

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutorial	Practical/ Practice		(if any)
Analog Electronics- II ELDSC-8	4	3	0	1	Course Admission Eligibility	Basic knowledge of BJT based circuits

Learning Objectives

The Learning Objectives of this course are as follows:

- To develop understanding of Analog Devices starting with ideal Op Amp model and assessing the practical device limitations and learning importance of the Data Sheets.
- Design linear applications but also design of non-linear application without feedback (voltage comparators), with positive feedback (Schmitt Trigger), and the negative feedback but using non-linear elements such as diodes and switches (sample and hold circuits)
- Study of Oscillators and other Signal Generators
- Study Multivibrators and its applications using IC 555 Timer

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand basic building blocks of an op-amp and its parameters for various applications design.
- Elucidate and design the linear and non-linear applications of an op-amp.
- Understanding and Designing of various Signal Generators
- Understand the working of multivibrators using IC 555 timer

SYLLABUS OF ELDSC-8 **Hours**

Total Hours- Theory: 45 Hours, Practicals: 30

UNIT – I (12 Hours)

Basic Operational Amplifier: Concept of differential amplifiers (Dual Input Balanced and Unbalanced Output), Block Diagram of an Operational Amplifier, Characteristics of an Ideal Op-Amp.

Open and Closed Loop Configurations: Inverting, Non-Inverting and Differential **Amplifier**

Op-Amp Parameters (IC741): Differential Input Resistance, Output Resistance, Input Capacitance, Input Voltage Range, Large Signal Voltage Gain, Offset Voltage Adjustment Range, Input Offset Voltage, Input Offset Current, Input Bias Current, 97 Common Mode Rejection Ratio, Supply Voltage Rejection Ratio, Bandwidth, Gain Bandwidth Product, Slew Rate.

UNIT – II (11 Hours)

Frequency Response of an Op-Amp.: High Frequency Op-Amp Equivalent Circuit, Open Loop Voltage Gain as a function of Frequency, Closed Loop Frequency Response, Effect of Slew Rate in Applications.

Linear Applications of an Op-Amp: Summing, Scaling and Averaging Amplifiers, Subtractor, Integrator, Differentiator, Current to voltage converter.

UNIT - III (11 Hours)

Active Filters: First Order Low Pass and High Pass Butterworth Filter, Concept of Higher Order Butterworth Filters, Band Pass Filter, Band Reject Filter, All Pass Filter.

Non-Linear Applications of an Op-Amp: Basic Comparator, Level Detectors, Schmitt Trigger, Characteristics of Comparator, Voltage Limiters, Sample and Hold circuit.

UNIT - IV (11 Hours)

Signal Generators: Phase Shift Oscillator, Wien Bridge Oscillator, Square Wave Generator, Triangle Wave Generator, Saw Tooth Wave Generator

IC 555 Timer: Block Diagram, Astable and Monostable Multivibrator Circuit, Applications of Monostable and Astable Multivibrator.

Practical component (if any) – Analog Electronics- II (Hardware and Circuit Simulation Software)

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the non-ideal behaviour by parameter measurement of Op-amp.
- Design application oriented circuits using Op-amp ICs.
- Generate square wave using different modes of 555 timer IC.
- Prepare the technical report on the experiments carried.

LIST OF PRACTICALS (Total Practical Hours- 30 Hours)

- 1. Study of op-amp characteristics: CMRR and Slew rate.
- 2. Designing of an amplifier of given gain for an inverting and non-inverting configuration using an Op-Amp.
- 3. Designing of an Integrator using op-amp for a given specification.
- 4. Designing of a Differentiator using op-amp for a given specification.
- 5. Designing of analog adder/subtractor circuit.
- 6. Designing of a First Order Low-pass / High Pass Filter using op-amp and study its frequency response.
- 7. Designing of a RC Phase Shift Oscillator using Op-Amp.
- 8. Study of IC 555 as an astable multivibrator.

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than seven.

Essential/recommended readings

- 1. R. A. Gayakwad, Op-Amps and Linear Integrated Circuits, Pearson Education
- 2. R. F. Coughlin and F. F. Driscoll, Operational amplifiers and Linear Integrated circuits, Pearson Education
- 3. Nutan Kala Joshi and Swati Nagpal, Basic Electronics, Khanna Publishers

Suggestive readings

- 1. D.Roy Choudhary and Shail B. Jain, Linear Integrated Circuits, New Age International Publishers
- 2. A.P.Malvino, Electronic Principals, Tata McGraw-Hill

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.