	018/02/T-I
Bag Ban Depa Ban	இதின்ற அதிப்புரியையுடையது All Rights Reserved] வை சிலை දෙපාර්තමේන්තුව இ ஒவை சிலை දෙපාර්තමේන්තුව இ ஓவை சிலல දෙපාර්තමේන්තුව இ ஓவை சிலலைக்களம் இலங்கைப் பரிட்சைத் தினைக்களம் அளங்கைப் பரிட்சைத் தினைக்களம் அளங்கைப் பரிட்சைத் தினைக்களம் அளங்கைப் பரிட்சைத் தினைக்களம் அவங்கைப் பரிட்சைத் தினைக்களம் சிலல் දෙපාර්තමේන්තුව இ ஓவை சிலல் දෙපාර්තමේන්තුව යුදු இது
	கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018
9	க்கை தித்தை I நசாயனவியல் I Chemistry I
	விடைகளில் சரியான அல்லது மிகப் பொருத்தமான விடையைத் தெரிந்தெடுத்து, அதனைக் குறித்து நிற்கும் இலக்கத்தில் தரப்பட்டுள்ள அறிவுறுத்தல்களுக்கு அமைய விடைத்தாளில் புள்ளடி (×) இடுக.
*	அகில வாயு மாறிலி $R=8.314\mathrm{J~K}^{-1}\mathrm{mol}^{-1}$ அவகாதரோ மாறிலி $N_A=6.022\times 10^{23}\mathrm{mol}^{-1}$ பிளாங்கின் மாறிலி $h=6.626\times 10^{-34}\mathrm{J~s}$ ஒளியின் வேகம் $c=3\times 10^8\mathrm{m~s}^{-1}$
	தரை நிலையில் இருக்கும் வாயு நிலையில் உள்ள Co ³⁺ அயனொன்றில் காணப்படும் சோடியாக்கப்படாத இலத்திரன்களின் எண்ணிக்கை (1) 1 (2) 2 (3) 3 (4) 4 (5) 5 ஓர் அணுவின் அணு ஒபிற்றலின் வடிவத்துடன் தொடர்புபட்ட சக்திச் சொட்டெண்/சொட்டெண்கள்
	(n, l, m_l, m_s) எது/எவை? $(1) \ l$ $(2) \ m_l$ $(3) \ n$ உம் l உம் $(4) \ n$ உம் m_l உம் $(5) \ l$ உம் m_l உம்
3.	கீழே காட்டப்பட்டுள்ள சேர்வையின் IUPAC பெயர் என்ன ? $CH_3CH_2CH-C=CHCO_2H$ Br NO_2
	(1) 4-bromo-3-nitro-2-hexenoicacid (2) 4-bromo-3-nitro-2-hexenoic acid (3) 3-nitro-4-bromo-2-hexenoicacid (5) 3-bromo-4-nitro-4-hexenoic acid
4.	O_2 , H_2O_3 , OF_2 , O_2F_2 (கட்டமைப்பு H_2O_2 இற்கு ஒத்தது) ஆகிய மூலக்கூறுகளை ஒட்சிசனின் (O)
	ஒட்சியேற்ற நிலையின் இறங்கு வரிசையில் ஒழுங்குபடுத்தும்போது சரியான வரிசை $(1) O_2F_2 > OF_2 > O_2 > H_2O > H_2O_2 \qquad \qquad (2) H_2O > H_2O_2 > O_2 > O_2F_2 > OF_2$
	(3) $H_2O_2 > O_2F_2 > O_2 > OF_2 > H_2O$ (4) $OF_2 > O_2F_2 > O_2 > H_2O > H_2O_2$
	(5) $OF_2 > O_2F_2 > O_2 > H_2O_2 > H_2O$
5.	தயோசயனேற்று அயன் SCN ⁻ இற்கு மிகவும் ஏற்றுக்கொள்ளக்கூடிய லூயி கட்டமைப்பானது
	$(1) : \overset{\ominus}{S} = \overset{\Box}{C} = \overset{\Box}{N} \qquad (2) \overset{\Box}{S} = \overset{\Box}{C} = \overset{\Box}{N} : \qquad (3) \overset{\ominus}{S} = \overset{\Box}{C} = \overset{\Box}{N} : \qquad (4) \overset{\Box}{S} = \overset{\Box}{C} = \overset{\Box}{N} : \qquad (5) \overset{\ominus}{S} = \overset{\Box}{C} = \overset{\Box}{N}$
6.	திணிவின்படி 3% NaI ஐக் கொண்டதும் 1.03 g cm ⁻³ அடர்த்தி உடையதுமான NaI கரைசலின் மூலர்

திறனானது (mol dm $^{-3}$) (Na = 23, I = 127)

(2) 0.23

(1) 0.21

(5) 0.30

(4) 0.28

(3) 0.25

AL/2018/02/T-1

ஒரு சிறிதளவு காய்ச்சி வடித்த நீருக்கு AgI , AgBr ஆகியவற்றின் வீழ்படிவுகள் சேர்க்கப்பட்டன. இக்கலவையானது 25 °C இல் சமநிலை அடைய விடப்பட்டது. சமநிலையில் இரண்டு திண்மங்களும் தொகுதியில் இருப்பது அவதானிக்கப்பட்டது.

மேற்படி கரைசலுக்குப் பின்வரும் தொடர்புகளில் எது பிரயோகிக்கப்பட முடியும் ?

- (1) $[Br^-] = \sqrt{5.0 \times 10^{-13}} \mod dm^{-3}$, $[I^-] = \sqrt{8.0 \times 10^{-17}} \mod dm^{-3}$
- (2) $[Br^{-}][I^{-}] = [Ag^{+}]^{2}$
- (3) $\left[Ag^{+}\right] = \left(\sqrt{5.0 \times 10^{-13}} + \sqrt{8.0 \times 10^{-17}}\right) \text{ mol dm}^{-3}$

More Past Papers at

(4) $\frac{[Br^-]}{[I^-]} = \frac{5.0}{8.0} \times 10^4$

tamilguru.lk

- (5) $[Ag^{\dagger}] = [Br^{-}] = [I^{-}]$
- 8. பின்வரும் கூற்றுகளில் **பிழையானது** எது ?
 - (1) ஆவர்த்தன அட்டவணையில் கூட்டம் இரண்டின் எல்லா உலோகங்களினதும் காபனேற்றுகள் நீரில் கரையாதபோதும் அவற்றின் இருகாபனேற்றுகள் கரைகின்றன.
 - ஆவர்த்தன அட்டவணையில் கூட்டம் இரண்டின் எல்லா உலோகங்களினதும் ஐதரொட்சைட்டுகள் நீரில்
 - (3) ஆவர்த்தன அட்டவணையில் கூட்டம் இரண்டின் எல்லா உலோகங்களினதும் நைத்திரேற்றுக்கள் நீரில் கரைகின்றன.
 - (4) Na, Mg ஆகியவந்நின் ஒட்சைட்டுகளும் ஐதரொட்சைட்டுகளும் கார இயல்புகளைக் காட்டுகின்ற அதே வேளை Al இன் ஒட்சைட்டும் ஐதரொட்சைட்டும் ஈரியல்பான இயல்புகளைக் காட்டுகின்றன.
 - (5) Si, S ஆகியவற்றின் ஐதரைட்டுகள் மென்னமில் இயல்புகளைக் காட்டுகின்றன.
- பின்வரும் எத்தொடரில் மூலகங்களானவை அவற்றின் அணு ஆரையின் ஏறு வரிசையில் (இடமிருந்து வலம்) உள்ளன ?
 - (1) Li, Na, Mg, S

(3) B, C, N, P

(4) Li, Na, K, Ca

- (2) C, Si, S, Cl (5) B, Be, Na, K
- $f 10.\ A,B$ ஆகிய திரவங்கள் ஓர் இலட்சியக் கரைசலை உருவாக்குகின்றன. மாறா வெப்பநிலையில் ஒரு மூடிய விறைத்த கொள்கலனில் A , B ஆகிய திரவங்களின் கலவை ஆவியுடன் சமநிலையில் உள்ளதாகக் கருதுக. $P_{\!A}^{\circ}$, $P_{\!B}^{\circ}$ ஆகியன முறையே A , B ஆகியவற்றின் நிரம்பல் ஆவி அமுக்கங்களாகும் அதேவேளை கொள்கலனின் மொத்த அ**மு**க்கம் P உம் ஆவி அவத்தையில் A இன் மூல் பின்னம் X_A^g உம் ஆகும். பின்வருவனவற்றில் எது இத்தொகுதி தொடர்பாகச் சரியானது ?

 - (1) $P = (P_A^o P_B^o) X_A^g + P_B^o$ (2) $\frac{1}{P} = (\frac{1}{P_A^o} \frac{1}{P_B^o}) X_A^g + \frac{1}{P_B^o}$ (3) $P = (P_A^o + P_B^o) X_A^g P_B^o$
 - (4) $\frac{1}{P} = \left(\frac{1}{P_{P}^{0}} \frac{1}{P_{A}^{0}}\right) \frac{1}{X_{A}^{g}}$ (5) $\frac{1}{P} = \left(\frac{1}{P_{A}^{0}} \frac{1}{P_{P}^{0}}\right) \frac{1}{X_{A}^{g}}$
- பின்வரும் பதார்த்தங்களின் கொதிநிலைகள் அதிகரிக்கும் வரிசையானது

He, CH₄, CCl₄, CBr₄, SiH₄

- (1) CH_4 < He < SiH_4 < CCl_4 < CBr_4
- (2) $\text{He} < \text{SiH}_4 < \text{CH}_4 < \text{CCl}_4 < \text{CBr}_4$
- (3) He < CH₄ < SiH₄ < CCl₄ < CBr₄
- (4) CH_4 < He < SiH_4 < CBr_4 < CCl_4
- (5) He $< CH_4 < CCl_4 < SiH_4 < CBr_4$
- பின்வருவனவற்றில் சரியான கூற்றை இனங்காண்க.
 - (1) ஓர் ஐதரசன் அணுவில் $n=2\longrightarrow n=1,\, n=3\longrightarrow n=2$, $n=4\longrightarrow n=3$ என்னும் இலத்திரன் தாண்டல்களில் $n=3\longrightarrow n=2$ இல் கூடிய சக்தி விடுவிக்கப்படுகிறது.
 - (2) $\mathrm{OF}_2,\mathrm{OF}_4$, SF_4 ஆகிய இனங்களிடையே SF_4 ஆனது இழிவு உறுதியுடையது.
 - (3) Li, C, N, Na, P ஆகிய மூலகங்களிடையே மிகவும் மின்னெதிர்தன்மை குறைந்த மூலகம் Li ஆகும்.
 - (4) ($\text{Li}\ {\omega}$ ற்றும் F), (Li^+ uற்றும் F^-), (Li^+ uற்றும் O^{2-}), (O^{2-} uற்றும் F^-) எனும் சோடிகளைக் கருதும்போது $\mathrm{Li}^{^{+}}$ இனதும் O^{2-} இனதும் ஆரைகளுக்கிடையிலான வித்தியாசம் மிகவும் கூடியதாக இருக்கும்.
 - (5) திரவ அவத்தையில் $\mathrm{CH_2Cl_2}$ இல் உள்ள ஒரே ஒரு மூலக்கூற்றிடை விசை வகை இருமுனைவு இருமுனைவு விசைகளாகும்.

 $\mathbf{13.}$ $\mathrm{CH}_4(\mathrm{g}) \longrightarrow \mathrm{CH}_3(\mathrm{g}) + \mathrm{H}(\mathrm{g})$ என்னும் தாக்கத்தைக் கருதுக

மேற்படி தாக்கத்தின் நியம வெப்பவுள்ளுறை மாற்றம்

- (1) மெதேனின் முதலாவது C—H பிணைப்பிற்கான நியம கூட்டற்பிரிகை வெப்பவுள்ளுறை மாற்றம்
- (2) மெதேனின் நியம அணுவாதலின் வெப்பவுள்ளுறை மாற்றம் ஆகும்.
- (3) மெதேனின் நியம முதலாம் அயனாக்க வெப்பவுள்ளுறை மாற்றம் ஆகும்.
- (4) மெதேனின் நியம பிணைப்பு கூட்டற்பிரிகை வெப்பவுள்ளுறை மாற்றம் ஆகும்.
- (5) மெதேனின் நியம மூலிகம் உருவாதலின் வெப்பவுள்ளுறை மாற்றம் ஆகும்.
- 14. ஒரு மாறா வெப்பநிலையில் மூடிய விறைத்த பாத்திரம் ஒன்றில் $2\,\mathrm{A(g)} \longrightarrow \mathrm{B(g)}$ எனும் முதன்மை தாக்கம் நடைபெறுகிறது. பாத்திரத்தின் தொடக்க அமுக்கம் $P_{
 m o}$ உம் தாக்கத்தின் வீதம் தொடக்க பெறுமானத்தின்

50% ஆக இருக்கும்போது அமுக்கம் P உம் ஆகும். பின்வருவனவற்றில் எது $\frac{F_t}{P}$ இற்கான சரியான பெணமானக்கைக் கருகிறது. γ பெறுமானத்தைத் தருகிறது ?

(1) $\frac{P_t}{P_o} = \frac{1}{2}$ (2) $\frac{P_t}{P_o} = \frac{1}{\sqrt{2}}$ (3) $\frac{P_t}{P_o} = \frac{1+\sqrt{2}}{2\sqrt{2}}$ (4) $\frac{P_t}{P_o} = \frac{\sqrt{2}}{1+\sqrt{2}}$ (5) $\frac{P_t}{P_o} = \frac{\sqrt{2}-1}{1+\sqrt{2}}$

 $15.~~{
m p} extit{K}_{a}$ பெறுமானங்கள் முறையே 4.7 , 5.0 ஆகவுள்ள மென்னமிலங்கள் ${
m HA, HB}$ ஆகியவற்றின் ஒரு சமமூலர் நீர்க் கரைசல் (ஒவ்வோர் அமிலமும் $1.0\,\mathrm{mol}\;\mathrm{dm}^{-3}$) சமநிலையில் உள்ளது. $\log\left(rac{[\mathrm{A}^-]}{\mathrm{IB}^-\mathrm{I}}
ight)$ இன் பெறுமானம் அண்ணளவாகச் சமமாவது

(1) 23.5

- (2) 0.3
- (3) 0.3
- (4) 0.94
- (5) 1.06
- ${f 16.}$ பின்வருவனவற்றுள் ${f C_g H_g O H}$ பற்றிய கூற்றுகளில் **பொய்யானது** எது ?
 - (1) CH₂COCl உடன் தாக்கம்புரிந்து பீனைல் எசுத்தரை உருவாக்குகிறது.
 - (2) புரோமின் நீருடன் தாக்கம்புரிந்து ஒரு வெண்ணிற வீழ்படிவைக் கொடுக்கிறது.
 - (3) NaHCO $_3$ உடன் பரிகரிக்கும்போது CO_2 வாயுவை வெளிவிடுகிறது.
 - (4) NaOH இன் முன்னிலையில் ${
 m C}_6{
 m H}_5{
 m N}_2^+{
 m CI}^-$ உடன் பரிகரிக்கும்போது ஒரு நிறமுள்ள சேர்வையைத்
 - (5) நடுநிலை FeCl_3 உடன் பரிகரிக்கும்போது ஒரு நிறமுள்ள (ஊதா நிறம் சார்ந்த) கரைசலைத் தருகிறது.
- 17. ஒரு தாக்கத்தின் அரை வாழ்வுக் காலம் என்பது
 - (1) எப்பொழுதும் தாக்கிகளின் தொடக்கச் செறிவைச் சார்ந்திருப்பதில்லை.
 - (2) எப்பொழுதும் வீத மாறிலியைச் சார்ந்திருக்கும்.
 - (3) எப்பொழுதும் தாக்கத்தின் வரிசையைச் சார்ந்திருப்பதில்லை.
 - (4) எப்பொழுதும் வெப்பநிலையைச் சார்ந்திருப்பதில்லை.
 - (5) மொத்த தாக்க நேரத்தின் இரு மடங்கிற்குச் சமமானது.
- மின் இரசாயன கலமொன்றின் மின் இயக்க விசை **சார்ந்திராதது**
 - (1) மின்பகுபொருளின் தன்மையில்
 - (2) வெப்பநிலையில்
 - (3) மின்பகுபொருள்களின் செறிவுகளில்
 - (4) மின்வாய்களின் மேற்பரப்பின் பரப்பளவுகளில்
 - (5) மின்வாய்களை உருவாக்கிய உலோகங்களின் வகைகளில்
- அமில ஊடகத்தில் ${
 m IO}_3^-$ (அயடேட் அயன்) ஆனது ${
 m SO}_3^{2-}$ அயனை ${
 m SO}_4^{2-}$ ஆக ஒட்சியேற்றுகிறது. ${
 m Na}_2{
 m SO}_3^{2-}$ $(0.50~{
 m mol~dm}^{-3})$ கரைசலின் $25.0~{
 m cm}^3$ இலுள்ள ${
 m Na_2SO_3}$ இன் அளவை முழுமையாக ${
 m Na_2SO_4}$ ஆக ஓட்சியேற்றுவதற்குத் தேவையான ${
 m KIO}_3$ இன் திணிவு $1.07~{
 m g}$ ஆகும். ${
 m (O=16, K=39, I=127)}$ தாக்கம் முற்றுப்பெற்ற பின் அயடினின் இநுதி ஒட்சியேற்ற நிலையானது

(1) -1

(2) 0

- (3) +1
- (5) +3
- $oldsymbol{20.}$ ஆவர்த்தன அட்டவணையில் s-தொகுப்பு மூலகங்கள் தொடர்பான பின்வரும் கூற்றுகளில் எது **பொப்யானது** ?
 - (1) கூட்டம் I இல் உள்ள எல்லா மூலகங்களும் நீருடன் தாக்கம்புரிந்து H_2 வாயுவை வெளிவிடுகின்றன.
 - (2) Li தவிர்ந்த கூட்டம் I இன் ஏனைய எல்லா மூலகங்களும் N_2 வாயுவுடன் தாக்கம்புரிகின்றன. (3) கூட்டம் Π இன் எல்லா மூலகங்களும் N_2 வாயுவுடன் தாக்கம்புரிகின்றன.
 - (4) Na ஆனது மிகை O_2 உடன் தாக்கம்புரிந்து $\mathrm{Na}_2\mathrm{O}_2$ ஐக் கொடுக்கும் அதேவேளை K ஆனது KO_2 ஐக் கொடுக்கிறது
 - (5) த-தொகுப்பில் உள்ள எல்லா மூலகங்களும் சிறந்த தாழ்த்தும் கருவிகளாகும்.

21. இரண்டு விறைத்த கொள்கலன்களில் இலட்சிய வாயுவைக் கொண்டுள்ள தொகுதி ஒன்று உருவில் காட்டப்பட்டுள்ளது. திருகுப்பிடியைத் திறப்பதன் மூலம் கொள்கலன்கள் ஒன்றுடனொன்று இணைக்கப்பட முடியும். திருகுப்பிடி திறக்கப்படும்போது தொகுதியானது அமைப்பு A இலிருந்து அமைப்பு B இற்கு மாற்றமடைகிறது. பொதுவாக n, P, V, T ஆகியன மூலம் முறையே மூல் எண்ணிக்கை, அமுக்கம், கனவளவு, வெப்பநிலை ஆகியவை வகைகுறிக்கப்படுகின்றன.

அமைப்பு 🗛 (திருகுப்பிடி மூடியுள்ளது)

அமைப்பு **B** (திருகுப்பிடி திறந்துள்ளது)

மேற்படி தொகுதி தொடர்பாகப் பின்வரும் தொடர்புகளில் சரியானது எது ?

$$(1) \quad P_1 V_1 = P_2 V_2$$

(2)
$$\frac{P_3T_1}{P_1} + \frac{P_3T_2}{P_2} = 2T_3$$

(3)
$$\frac{T_1}{P_1} = \frac{T_2}{P_2}$$

(4)
$$P_1T_1 = P_2T_2$$

(5)
$$P_1V_1 + P_2V_2 = P_3(V_1 + V_2)$$

- **22.** ஆவர்த்தன அட்டவணையில் 3d- மூலகங்கள் தொடர்பாகப் பின்வரும் கூற்றுகளில் **பொய்யானது** எது?
 - (1) அணு ஆரைகள் அதே ஆவர்த்தனத்தில் உள்ள r-தொகுப்பு மூலகங்களின் அணு ஆரைகளை விடச் சிறியவை.
 - (2) அடர்த்திகள் அதே ஆவர்த்தனத்தில் உள்ள *s*-தொகுப்பு மூலகங்களின் அடர்த்திகளை விட உயர்வானவை.
 - (3) $V_2^{}O_5^{}$, $CrO_3^{}$, $Mn_2^{}O_7^{}$ ஆகியன அமில ஒட்சைட்டுகள் ஆகும்.
 - (4) முதலாம் அயனாக்கற் சக்திகள் அதே ஆவர்த்தனத்தில் உள்ள *s*-தொகுப்பு மூலகங்களின் முதலாம் அயனாக்கற் சக்திகளை விட குறைவானவை.
 - (5) கோபால்ற்றுச் சேர்வைகளில் கோபால்ற்றின் மிகவும் பொதுவான ஒட்சியேற்ற நிலைகள் +2, +3 ஆகும்.
- **23.** ஒன்றுக்கொன்று வேறான இரண்டு வெப்பநிலைகளில் $MO(s) \longrightarrow M(s) + \frac{1}{2}O_2(g)$ எனும் தாக்கத்துக்கான நியம கிப்ஸ் சக்தி மாற்றங்கள் கீழே தரப்பட்டுள்ளன.

தாக்கத்தின் நியம எந்திரப்பி மாற்றம்

- (1) $248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (2) $-248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (3) $-48.4 \text{ J K}^{-1} \text{ mol}^{-1}$

- (4) $348.4 \text{ J K}^{-1} \text{ mol}^{-1}$
- (5) $48.4 \text{ J K}^{-1} \text{ mol}^{-1}$
- **24.** பின்வருவனவற்றில் எது செறி. HNO_3 / செறி. H_2SO_4 உடனான பென்சீனின் நைத்திரேற்றப் பொறிமுறையில் **சரியான** ஒரு படிமுறையை வகைகுறிக்கின்றது ?

$$(1) \bigcirc \stackrel{+}{\bigvee}^{NO_2} \longrightarrow \stackrel{+}{\bigvee}^{NO_2} \qquad (2) \bigcirc \stackrel{+}{\bigvee}^{NO_2} \longrightarrow \stackrel{+}{\bigvee}^{NO_2} \qquad H$$

$$(3) \bigcirc \stackrel{+}{\bigvee}^{NO_2} \longrightarrow \stackrel{+}{\bigvee}^{NO_2} \longrightarrow$$

$$(5) \begin{array}{c} + \text{NO}_2 \\ + \text{H}_2\text{SO}_4 \end{array}$$

$$\begin{array}{c|c} \hline (1) \text{ NaBH}_4 \\ \hline (2) \text{ H}^+ / \text{H}_2 \text{O} \end{array} \qquad \textbf{X} \qquad \begin{array}{c} \hline \text{LD so } \text{ as } \\ \hline \text{CH}_3 \text{MgBr} \end{array}$$

மேலே தரப்பட்ட தாக்கத் தொடரில் \mathbf{X} , \mathbf{Y} ஆகியவற்றின் கட்டமைப்புகள் முறையே

$$\begin{array}{ccc} \text{(1)} & & & & \\ & & & \\ & & & \\ \text{CH}_2\text{CH}_2\text{CHCH}_3 \\ & & & \\ & & & \\ \text{OH} & & \\ \end{array}$$

$$\begin{array}{c} \text{CH}_2\text{OMgBr} \\ \text{CH}_2\text{CH}_3 \\ \text{CH}_2\text{CH}_2 - \text{C} - \text{CH}_3 \\ \text{OMgBr} \end{array}$$

(4)
$$CO_2H$$
 $CH_2CH_2CHCH_3$
OH

 $26.~{
m (NH}_{_{A}})_{_{2}}{
m CO}_{_{3}}({
m s})$, ${
m (NH}_{_{A}})_{_{2}}{
m Cr}_{_{2}}{
m O}_{_{7}}({
m s})$, ${
m NH}_{_{A}}{
m NO}_{_{3}}({
m s})$ ஆகியவற்றை வெப்பமாக்கும்போது கிடைக்கும் நைதரசனைக் கொண்டுள்ள சேர்வைகள் முறையே

(1) NH_3, N_2, NO_2

- (2) N_2O , N_2 , NH_3 (3) NH_3 , N_2 , N_2O (5) N_2 , NH_3 , N_2O

(4) N_2, N_2O, NH_3

 AgCl இன் நிரம்பிய கரைசல், $\operatorname{AgCl}(s)$ ஆகியன உள்ள ஒரு முகவையில் ஓர் Zn கோலும் ஓர் Ag கோலும் உருவில் காட்டப்பட்டுள்ளவாறு அமிழ்த்தப்பட்டு இந்த இரண்டு உலோகக் கோல்களும் ஒரு கடத்தியினூடாக இணைக்கப்பட்ட உடனேயே பின்வருவனவற்றில் எது நடைபெறும் ?

$$Zn^{2+}(aq) + e \longrightarrow Zn(s) \quad E^{\circ} = -0.76 \text{ V}$$

$$Ag^{+}(aq) + e \longrightarrow Ag(s) \quad E^{\circ} = 0.80 \text{ V}$$

- (1) Zn கரையும், Ag படியும், AgCl(s) கரையும்.
- (2) Zn கரையும், Ag கரையும், AgCl(s) கரையும்.
- (3) Zn கரையும், Ag கரையும், AgCl(s) படியும்.
- (4) Zn படியும், Ag கரையும், AgCl(s) கரையும்
- (5) கரைசலில் குளோரைட்டின் செறிவு குறையும்.

 $oldsymbol{28}$. கீழே தரப்பட்டுள்ள தாக்கத் தொடரில் $oldsymbol{P}$, $oldsymbol{Q}$ ஆகியவற்றின் கட்டமைப்புகள் முறையே

$$C_6H_5$$
C≡CH $\xrightarrow{Hg^{2+}/$ ஐதான H_2SO_4 \longrightarrow P $\xrightarrow{G$ சநிந்த HCl \longrightarrow Q

(1)
$$C_6H_5C=CH_2$$
, $C_6H_5CH=CH_2$ (2) $C_6H_5CH=CH$, $C_6H_5CH=CH_2$ OH OH OH (3) $C_6H_5-C-CH_3$, $C_6H_5-C-CH_3$ (4) $C_6H_5-C-CH_3$, $C_6H_5CH_2CH_3$

(2)
$$C_6H_5CH=CH$$
, $C_6H_5CH=CH_2$
OH

(4)
$$C_6H_5 - C - CH_3$$
, $C_6H_5CH_2CH_3$

More Past Papers at

tamilguru.lk

- பல்பகுதியங்கள் தொடர்பாக பின்வரும் கூற்றுகளில் தவறானது எது ?
 - (1) பேக்லைற்று ஒரு வெப்பமிறுக்கும் பல்பகுதியமாகும்.
 - (2) ரெப்லோன் ஒரு வெப்பம் இளக்கும் பல்பகுதியமாகும்.
 - (3) 1, 6- டைஅமைனோஹெக்சேன் இற்கும் ஹெக்சேன்டைஒயிக் அமிலம் இற்குமிடையிலான கூட்டல் பல்பகுதியமாக்கல் மூலம் நைலோன் 6,6 உருவாகிறது.
 - (4) எதிலீன் கிளைகோல் இற்கும் ரெறிதெலிக் அமிலம் இற்குமிடையிலான ஒடுக்கல் பல்பகுதியமாக்கல் மூலம் ரெறிலீன் உருவாகிறது.
 - (5) இயற்கை இறப்பரானது cis-பொலிஐசோபிறீன் சங்கிலிகளைக் கொண்டிருக்கும்.
- **30.** $S_2O_3^{2-}(aq) + 2H^+(aq) \longrightarrow H_2O(l) + SO_2(g) + S(s)$ என்னும் தாக்கத்தின் $S_2O_3^{2-}$ இற்குச் சார்பான வரிசையை(m) துணிவதற்கு ஒரு பரிசோதனை நிகழ்த்தப்பட்டது. ஓர் அமிலக் கரைசலுக்கு $0.01 \; \mathrm{mol} \; \mathrm{dm}^{-3} \; \mathrm{S_2O_3^{2-}}$ இன் வெவ்வேறான கனவளவுகள் (v) சேரப்பதன் மூலம் தாக்கத்தின் தொடக்க வீதம் (R) அளவிடப்பட்டது. தாக்கக் கலவையில் H^{+} இன் செறிவானது மாறிலியாகப் பேணப்பட்டது. ஆனால் மொத்தக் கனவளவு (V) மாறுவதற்கு அனுமதிக்கப்பட்டது. தாக்கத்தின் தொடக்க வீதம் சம்பந்தமாக பின்வரும் தொடர்புகளில் எது சரியானது ?

(1)
$$R \propto \left(\frac{v}{V}\right)^m$$
 (2) $R \propto v^m$ (3) $R \propto v^{\frac{1}{m}}$ (4) $R \propto \left(\frac{v}{V}\right)^{\frac{1}{m}}$ (5) $R \propto V^m$

- ${f 31}$ தொடக்கம் ${f 40}$ வரையுள்ள வினாக்கள் ஒவ்வொன்றுக்கும் (a),(b),(c), (d) என்னும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை/தெரிவுகளைத் தேர்ந்தெடுக்க.
 - (a), (b) ஆகியன மாத்திரம் திருத்தமானவையெனில் (1) இன் மீதும்
 - (b), (c) ஆகியன மாத்திரம் திருத்தமானவையெனில் (2) இன் மீதும்
 - (c), (d) ஆகியன மாத்திரம் திருத்தமானவையெனில் (3) இன் மீதும்
 - (d), (a) ஆகியன மாத்திரம் திருத்தமானவையெனில் (4) இன் மீதும்

வேறு தெரிவுகளின் எண்ணோ சேர்மானங்களோ திருத்தமானவையெனில் (5) இன் மீதும் உமது விடைத்தாளில் கொடுக்கப்பட்ட அறிவுறுத்தல்களுக்கமைய விடையைக் குறிப்பிடுக.

மேற்கூறிய அறிவுறுத்தற் சுருக்கம்

(1)	(2)	(3)	(4)	(5)
	(b), (c) ஆகியன			
மாத்திரம்	மாத்திரம்	மாத்திரம்	மாத்திரம்	எண்ணோ சேர்மானங்களோ
திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை	திருத்தமானவை

- 31. ஒரு மென்னமிலத்திற்கும் (நிலையான கனவளவு) ஒரு வன்காரத்திற்கும் இடையிலான ஒரு நியமிப்பைக் கருதுக. பின்வருவனவற்றில் எது/எவை மென்னமிலத்தின் செறிவைச் சார்ந்திருப்பதில்லை ?
 - (a) சமவலுப் புள்ளியில் pH பெறுமானம்
 - (b) முடிவுப் புள்ளியை அடைய தேவைப்பட்ட வன்காரத்தின் கனவளவு
 - (c) மென்னமிலத்தின் கூட்டற்பிரிகை மாரிலி
 - (d) நியமிப்புக் குடுவையில் உள்ள கரைசலின் $[\operatorname{H}^+] imes [\operatorname{OH}^-]$ இன் பெறுமானம்

- **32.** கீழே தரப்பட்ட மூலக்கூறு தொடர்பாகப் பின்வருவனவற்றுள் **உண்மையான** கூற்று/கூற்றுகள் எது/எவை ?

 CH₃−C≡C−CHO
 a 3 h c d
 - (a) எல்லா நான்கு காபன் அணுக்களும் ஒரே தளத்தில் உள்ளன.
 - (b) $C_{\mathbf{d}}$ —H , $C_{\mathbf{d}}$ — $C_{\mathbf{c}}$ ஆகிய பிணைப்புகளுக்கிடையிலான கோணம் அண்ணளவாக 120° ஆகும்.
 - (c) $\mathrm{C}_{\mathbf{b}}$ இந்கும் $\mathrm{C}_{\mathbf{c}}$ இந்குமிடையே இரண்டு σ பிணைப்புகளும் ஒரு π பிணைப்பும் உள்ளன.
 - (d) $C_{\mathbf{b}}^{\mathbf{r}}$ இந்கும் $C_{\mathbf{c}}^{\mathbf{r}}$ இந்குமிடையே ஒரு σ பிணைப்பும் இரண்டு π பிணைப்புகளும் உள்ளன.
- ${f 33.}$ ${f Na_{_{2}}CO_{_{2}}}$ இன் உற்பத்தி சம்பந்தமாக பின்வருவனவற்றுள் **உண்மையான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) CO_2 வானது மூலப்பொருள்களில் ஒன்றாக பயன்படுத்தப்படுகின்றது.
 - (*b*) NH₃ இனால் நிரம்பலாக்கப்பட்ட நீர் NaCl இற்கும் CO₂ இற்கும் இடையிலான தாக்கம் அகவெப்பத்திற்குரியது.
 - (c) உற்பத்திச் செயன்முறை ஐந்து படிமுறைகளைக் கொண்டது.
 - (d) இச்செயன்முறையில் பயன்படுத்திய $\mathrm{NH_{q}}$ இல் பெருமளவை மீளப் பெறமுடியும்.
- 34. முதன்மைத் தாக்கமொன்றின் வரிசையைப் பரிசோதனை ரீதியாகத் துணியும்போது வெப்பநிலையானது ஒரு மாறாப் பெறுமானமாகப் பேணப்பட வேண்டும். ஏனெனில்,
 - (a) தாக்கமொன்றின் வரிசை வெப்பநிலையைச் சார்ந்துள்ளது.
 - (b) வெப்பநிலையுடன் ஏவற் சக்தி மாறுகிறது.
 - (c) வெப்பநிலையுடன் தாக்கத்தின் பொறிமுறை மாறுகிறது.
- **35.** எதீன், எதைன் ஆகியன தொடர்பான பின்வருவனவற்றுள் **உண்மையான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) CaC_2 ஆனது நீருடன் தாக்கம்புரிந்து எதைன் உருவாகின்றது.
 - (b) CaC_2 ஆனது நீருடன் தாக்கம்புரிந்து எதீன் உருவாகின்றது.
 - (c) அமோனியா சேர் $\operatorname{AgNO}_{\mathfrak{Z}}$ உடன் எதீன் தாக்கம்புரிந்து ஒரு வீழ்படிவைக் கொடுக்கிறது.
 - (d) அமோனியா சேர் $\mathrm{Cu}_{2}\mathrm{Cl}_{2}$ உடன் எதைன் தாக்கம்புரிந்து ஒரு வீழ்படிவைக் கொடுக்கிறது.
- **36.** அலசன்கள் தொடர்பாகப் பின்வருவனவந்றுள் **உண்மையான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) கூட்டத்தின் வழியே கீழ்நோக்கி அலசன்களின் கொதிநிலைகள் அதிகரிக்கின்றன.
 - (b) மந்நைய அலசன்களைப் போலன்றி, புளோரினிற்கு \mathbf{F}_2 இல் தவிர ஏனைய எல்லா சந்தர்ப்பங்களிலும் (-1) ஒட்சியேற்ற நிலை உள்ளது.
 - (c) எல்லா அலசன்களும் சிறந்த தாழ்த்தும் கருவிகள் ஆகும்.
 - (d) ஆவர்த்தன அட்டவணையில் உள்ள எல்லா மூலகங்களிலும் புளோரின் அதி கூடிய தாக்குத்திறனுடைய போதிலும் இது சடத்துவ வாயுக்களுடன் தாக்கம்புரிவதில்லை.
- 37. மூடிய விறைத்த கொள்கலன் ஒன்றில் நடைபெறும் C(s) + CO₂(g)

 2 CO(g) என்னும் தாக்கத்தில் 700°C, 800°C ஆகியவற்றில் CO(g) இன் சதவீத விளைவுகள் முறையே 60%, 80% ஆக உள்ளன. மேற்கூறிய தாக்கம் சம்பந்தமாகப் பின்வருவனவற்றுள் சரியான கூற்று/கூற்றுகள் எது/எவை ?
 - (a) தாக்கம் அகவெப்பத்திற்குரியது.
 - (b) தாக்கம் புறவெப்பத்திற்குரியது.
 - (c) வெப்பநிலையைக் குறைப்பதன் மூலம் பிற்தாக்கம் சாதகமாக்கப்படும்.
 - (d) C(s) ஐ அகற்றுவதன் மூலம் சமநிலையை தாக்கிகளை நோக்கி நகர்த்த முடியும்.
- **38.** சக்கரபுரப்பேன் —— புரப்பீன் ஒரு முதன்மைத் தாக்கமாகும்.
 - மேற்கூறிய தாக்கம் சம்பந்தமாகப் பின்வருவனவற்றுள் சரியான கூற்று/கூற்றுகள் எது/எவை ?
 - (a) தாக்கத்தின் அரை வாழ்வுக் காலமானது சக்கரபுரப்பேனின் செநிவைச் சார்ந்துள்ளது.
 - (b) தாக்கத்தின் வீதம் புரப்பீனின் செநிவைச் சார்ந்திருப்பதில்லை.
 - (c) ஏவற் சக்தியிலும் பார்க்க கூடிய சக்தியை உடைய சக்கரபுரப்பேன் மூலக்கூறுகளின் பின்னமானது அதிகரிக்கும் வெப்பநிலையுடன் அதிகரிக்கிறது.
 - (d) தாக்கம் ஓர் இருமூலக்கூற்று மோதுகையின் ஊடாக நடைபெறுகிறது. (மூலக்கூற்றுத்திறன் = 2)
- **39.** 3-ஹெக்சீன் சம்பந்தமாகப் பின்வருவனவற்றுள் **உண்மையான** கூற்று/கூற்றுகள் எது/எவை ?
 - (a) கேத்திரகணித சமபகுதிச்சேர்வைக் காட்டமாட்டாது.
 - (b) ஒளியியல் சமபகுதிச்சேர்வைக் காட்டும்.
 - (c) H_2/Pd உடன் தாக்கம்புரியும்போது பெறப்படும் சேர்வையானது ஒளியியல் சமபகுதிச்சேர்வைக் காட்ட மாட்டாது.
 - (d) HBr உடன் தாக்கம்புரியும்போது பெறப்படும் சேர்வையானது ஒளியியல் சமபகுதிச்சேர்வைக் காட்டும்.

- **40.** நைதரசன் வட்டம் சம்பந்தமாகப் பின்வருவனவந்றுள் **சரியான** கூந்று/கூந்றுகள் எது/எவை ?
 - (a) வளிமண்டலத்தில் உள்ள N_2 ஆனது வளிமண்டல மற்றும் கைத்தொழில் பதிக்கப்படல் மூலம் மாத்திரம் பதிக்கப்படுகிறது.
 - (b) வளிமண்டல பதிக்கப்படுதலின்போது N_2 ஆனது தாழ்த்தப்படுகிறது.
 - (c) கைத்தொழில் பதிக்கப்படுதலின்போது N_2 ஆனது ஒட்சியேற்றப்படுகிறது.
 - (d) வளிமண்டல பதிக்கப்படுதலின்போது உருவாக்கப்படும் நைத்திரேற்றுக்களும் நைத்திரைட்டுக்களும் மழை பெய்யும்போது நிலத்தில் படிவிக்கப்பட்டு அவை தாவரங்களினால் புரதங்களை உருவாக்குவதற்குப் பயன்படுத்தப்படுகின்றன.
- 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுகள் தரப்பட்டுள்ளன. அட்டவணையில் உள்ள (1), (2), (3), (4), (5) ஆகிய தெரிவுகளிலிருந்து ஒவ்வொரு வினாவுக்கும் தரப்பட்டுள்ள இரு கூற்றுகளுக்கும் மிகவும் சிறப்பாகப் பொருந்தும் தெரிவைத் தெரிந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடுக.

- Tomas and a		சாநப்பாகப் ப ொருந்தும் தெரில்	லவத அதரந்து பொருத்தமாக விடைத்தாளிற் குறிப்பிடு					
தெரிவுகள்	முதலாம் கூற்று		இரண்டாம் கூற்று					
(1)	உண்மை	உண்மையாக இருந்து முத	லாம் கூற்றுக்குத் திருத்தமான விளக்கத்தைத் தருவது.					
(2)	உண்மை		லாம் கூற்றுக்குத் திருத்தமான விளக்கத்தைத் தராதது .					
(3)	உண்மை	பொய்						
(4)	பொய்	உண்மை						
(5)	பொய்	பொய்						
	முதல	ாம் கூற்று	இரண்டாம் கூற்று					
MgCO ₃ (இலும் பார்	ரக்க BaCO ₃ வெப்பவுறுதி	கூட்டம் இரண்டின் கந்றயன்களின் முனைவாக்கும்					

	(5) பொய் பொய்	
f .	முதலாம் கூற்று	இரண்டாம் கூற்று
41.	கூடியது.	கூட்டம் இரண்டின் கற்றயன்களின் முனைவாக்கும் வலு கூட்டத்தின் வழியே கீழ் நோக்கிச் செல்லும்போது குறைகிறது.
42.	ஓர் அமைனின் நைதரசனின் மீதுள்ள தனிச்சோடி இலத்திரன்கள் H உடன் ஒரு பிணைப்பை ஏற்படுத்துவதற்கான நாட்டம் அற்ககோலில் உள்ள ஒட்சிசனின் மீதுதுள்ள தனிச்சோடி இலத்திரன்களின் அந்நாட்டத்திலும் பார்க்கக் குறைவானது.	நைதரசனானது ஒட்சிசனை விட குறைந்த மின்னெதிரானது.
43.	சமநிலையில் உள்ள தாக்கமொன்றை ஓர் ஊக்கியைச் சேர்ப்பதன் மூலம் முன்நோக்கி நகர்த்த முடியும். (அதாவது சமநிலைப் புள்ளி வலப் பக்கமாக நகரும்).	ஊக்கியானது முன்முகத்தாக்கத்திற்கு மாத்திரம் ஒரு குறைந்த ஏவற் சக்தியுள்ள ஒரு வழியைக் கொடுக்கிறது.
44.	CO_3^{2-} , SO_3^{2-} ஆகிய அயன்கள் ஒத்த வடிவங்களை உடையன.	CO_3^{2-} , SO_3^{2-} ஆகிய இரண்டினதும் மத்திய அணுக்கள் இலத்திரன் தனிச் சோடிகளைக் கொண்டுள்ளன.
45.	$\mathrm{CH_3CH_2CH_2OH}$ இன் கொதிநிலை $\mathrm{CH_3CH_2CHO},$ $\mathrm{CH_3COCH_3}$ ஆகியவற்றின் கொதிநிலைகளிலும் கூடியது.	காபன் ஒட்சிசன் இரட்டைப் பிணைப்பானது காபன் ஒட்சிசன் ஒற்றைப் பிணைப்பை விட வலிமை கூடியது.
46.	தனிமையாக்கப்பட்ட தொகுதியொன்றில் சுயமாக நடைபெறும் தாக்கமொன்றின் கிப்ஸ் சக்தி மாற்றமானது எப்போதும் மறைப் பெறுமானமாகும்.	தனிமையாக்கப்பட்ட தொகுதி ஒன்றில் நடைபெறும் செயன்முறையானது வெளியில் இருந்து மாற்றப்பட முடியாதது.
47.	எண்ணெய்கள், கொழுப்புகள் ஆகியன NaOH அல்லது KOH உடன் தாக்கமடைவதன் மூலம் உருவாகும் கொழுப்பு அமிலங்களின் சோடியம் அல்லது பொற்றாசியம் உப்புக்கள் பொதுவாகப் பயன்படுத்தப்படும் சவர்க்காரங்களில் அடங்குகின்றன.	நீர் NaOH அல்லது KOH உடன் எசுத்தர் ஒன்றின் தாக்கமானது காபொக்சிலிக் அமிலத்தின் சோடியம் அல்லது பொற்றாசியம் உப்பையும் அற்ககோலையும் தருகிறது.
48.	$\mathrm{C_6^H}_5\mathrm{OH}$ ஐ உருவாக்குவதற்கு NaOH உடன் $\mathrm{C_6^H}_5\mathrm{Br}$ இலகுவில் தாக்கம் புரியாது.	பீனைல் காபோகற்றயன் மிக உறுதியானது.
49.	ஒரு மென்னமிலத்தின் நீர்க் கரைசலானது ஐதாக்கப்படும்போது கூட்டற்பிரிகையடைந்த அமில மூலக்கூறுகளின் பின்னம், ஊடகத்தின் pH ஆகிய இரண்டும் அதிகரிக்கும்.	மென்னமில மூலக்கூறுகளின் கூட்டற்பிரிகையானது அவ்அமிலங்களின் கூட்டற்பிரிகை மாறிலி K_a மாறாமல் இருக்கத்தக்கதாக நடைபெறும்.
50.	சூரிய ஒளியின் முன்னிலையில் CO ₂ வானது பச்சைத் தாவரங்களில் பதிக்கப்படுகிறது.	வளிமண்டலத்தில் CO ₂ மட்டத்தின் அதிகரிப்பை பச்சைத் தாவரங்களினால் கட்டுப்படுத்த முடியாது.

69

Tm

100 101

Fm Md

70

Yb

102

No

71

Lu

103

Lr

57

La

89

Ac

58

Ce

90

Th

59

Pr

91

Pa

60

Nd

92

U

61

Pm

93

Np

62

Sm

94

Pu

63

Eu

95

Am

64

Gd

96

Cm

65

Tb

97

Bk

66

Dy

98

Cf

67

Ho

99

Es

68

Er

ஆவர்த்தன அட்டவணை

	1																	2
`1	H			÷														He
	3	4											5 -	6	7	8	9	10
2	Li_	Be											В	C	N	0	F_	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග අදපාර්තමේන්තුව ජීන පැපිරිස්තමේන්තුව විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இன்ஙகைப் பரீட்சைத் திணைக்களம் இல்ஙகைப் படித்தை திணைக்குள்பது இன்று இன்று

අධානයන පොදු සහකික පනු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදාහව II **இரசாயனவியல் II** Chemistry II

17.08.2018 / 0830 - 1140

පැය තුනයි **மூன்று மணித்தியாலம்** Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි **மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்** Additional Reading Time - 10 minutes

சுட்டெண்:

வினாப்பத்திரத்தை வாசித்து, விணாக்களைத் தெரிவுசெய்வதற்கும் விடை எழுதும்போது முன்னூரிமை வழங்கும் வினாக்களை ஒழுங்கமைத்துக் கொள்வதற்கும் மேலதிக வாசிப்பு நேரத்தைப் பயன்படுத்துக.

- 🛠 ஆவர்த்தன அட்டவணை பக்கம் 16 இல் வழங்கப்பட்டுள்ளது.
- ※ கணிப்பாணைப் பயன்படுத்தக்கூடாது.
- * அகில வாயு மாறிலி, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- * அவகாதரோ மாறிலி, $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$
- 🔆 இவ்வினாத்தாளுக்கு விடை எழுதும்போது அற்கைற் கூட்டங்களைச் சுருக்கமான விதத்தில் காட்டலாம்.

ப பகுதி A - அமைப்புக் கட்டுரை (பக்கங்கள் 2 - 8)

- 🔆 எல்லா வினாக்களுக்கும் இத்தாளிலேயே விடை எழுதுக.
- இவ்வொரு வினாவுக்குக் கீழும் விடப்பட்டுள்ள இடத்தில் உமது விடைகளை எழுதுக. கொடுக்கப்பட்டுள்ள இடம் விடைகளை எழுதுவதற்குப் போதுமானது என்பதையும் விரிவான விடைகள் எதிர்பார்க்கப்படவில்லை என்பதையும் கவனிக்க.
 - ப பகுதி B யும் பகுதி C யும் கட்டுரை (பக்கங்கள் 9 15)
- * ஒவ்வொரு பகுதியிலிருந்தும் **இரண்டு** வினாக்களைத் தெரிவுசெய்து எல்லாமாக **நான்கு** வினாக்களுக்கு விடை எழுதுக. உமக்கு வழங்கப்படும் எழுதும் தாள்களை இதற்குப் பயன்படுத்துக.
- st இவ்வினாத்தாளுக்கென வழங்கப்பட்ட நேர முடிவிலே பகுதி f A மேலே இருக்கும்படியாக f A, B, C ஆகிய மூன்று பகுதிகளின் விடைத்தாள்களையும் ஒன்றாகச் சேர்த்துக் கட்டியபின் பரீட்சை மேற்பார்வையாளரிடம் கையளிக்க.
- * வினாத்தாளின் **B**, **C** ஆகிய பகுதிகளை **மாத்திரம்** பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்ல அனுமதிக்கப்படும்.

பரீட்சகர்களின் உபயோகத்திற்கு மட்டும்

பகுதி	வினா இல.	புள்ளிகள்
	1	
	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
மொத்தம்		
சதவீ தம்		

	இறுத்ப	புள்ள	
இலக்கத்தில்			
எழுத்தில்			

குறியீட்டேண்கள்

வினாத்தாள் பரீட்சகர் 1	
வினாத்தாள் பரீட்சகர் 2	
புள்ளிகளைப் பரீட்சித்தவர்:	
மேற்பார்வை செய்தவர் :	

பகுதி A - அமைப்புக் கட்டுரை

நான்கு வினாக்களுக்கும் விடைகளை இத்தாளிலேயே எழுதுக. (ஒவ்வொரு வினாவின் விடைக்கும் **10** புள்ளிகள் வழங்கப்படும்.) இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.

- (a) பின்வரும் கூற்றுகள் உண்மை அல்லது பொய் எனக் குறிப்பிடுக (காரணங்கள் அவசியமில்லை).
 - (i) அலசன் அயன்களின் முனைவாகுதகவு அவற்றின் பருமனுடன் அதிகரிக்கிறது.
 - (ii) $\mathrm{NO_2}$ இன் $\mathrm{O-N-O}$ பிணைப்புக் கோணம் $\mathrm{NO_2^-}$ இன் அதே கோணத்தை விட அதிகமாகும்.
 - (iii) CCl₄ மூலக்கூறுகளுக்கிடையிலான இலண்டன் கலைவு விசைகள் SO₃ மூலக்கூறுகளுக்கிடையிலான இலண்டன் கலைவு விசைகளை விடச் சிறியன.
 - (iv) HSO₄ அயன் முக்கோண இருகூம்பக வடிவமுள்ளது.
 - $({f v})$ ஓர் அணுவின் எல்லா 3d அணு ஒபிற்றல்களும் சக்திச்சொட்டெண்கள் (n,l,m_l) 3,2,1 இனால் வகைகுறிக்கப்பட்டுள்ளன.
 - (vi) வாயு நிலையில் உள்ள பொசுபரஸ் அணுவிற்கு ஓர் இலத்திரனைச் சேர்த்தல் ஒரு புறவெப்பத்துக்குரிய செயன்முறையாகும் அதேவேளை வாயு நிலையிலுள்ள நைதரசன் அணுவிற்கு இது ஓர் அகவெப்பத்துக்குரியதாகும்.

(2.4 புள்ளிகள்)

- (b) (i) $\mathrm{SF_3N}$ மூலக்கூறிற்கு **மிகவும்** ஏற்றுக்கொள்ளத்தக்க லூயி கட்டமைப்பை வரைக.
 - (ii) C_3O_2 (காபன் கீழ்ஒட்சைட்டு) மூலக்கூறுக்கான மிகவும் உறுதியான லூயி கட்டமைப்பு கீழே தரப்பட்டுள்ளது. இம் மூலக்கூறுக்கான மேலும் **இரு** லூயி கட்டமைப்புகளை (பரிவுக் கட்டமைப்புகளை) வரைக.

[**குறிப்பு:** அட்டக விதியை மீறும் லூயி கட்டமைப்புகளுக்குப் புள்ளிகள் வழங்கப்படமாட்டா.] $\ddot{\mathbf{Q}} = \mathbf{C} = \mathbf{C} = \ddot{\mathbf{Q}}$

- (iii) கீழே தரப்பட்ட லூயி கட்டமைப்பை அடிப்படையாகக் கொண்டு C, N மற்றும் P ஆகிய அணுக்கள் தொடர்பாக பின்வருவனவற்றை கீழே தரப்பட்ட அட்டவணையில் குறிப்பிடுக.

 - III. அணுவைச் சூழ உள்ள வடிவம்

IV. அணுவின் கலப்பாக்கம்

அணுக்கள் பின்வருமாறு இலக்கமிடப்பட்டுள்ளன.

$$F - C^{1} - N^{2} - C^{3} - P^{4} - CI$$

		C^1	N ²	C ³	P ⁴
I.	VSEPR சோடிகள்				
II.	இலத்திரன் சோடிக் கேத்திரகணிதம்				<u> </u>
III.	வடிவம்				
IV.	கலப்பாக்கம்				

1	F	1	8	1		_	
	J	1	O	7.1	-	3	

2.

இப்பகுதியில்
எ தனை யும்
எழுதுதல்
அகாகு.

(i	உருவாக்க		ர லூயி கட்டமைப்பில் பின்வரும் σ பிணைப்புகளில /கலப்பின ஒபிற்றல்களை இனங்காண்க. (பகுதி (iii) இல டுள்ளன.)	en ceres
	I. F—C	¹ F	. C ¹	
	II. C ¹ —1	N ² C ¹	. N ²	
	III. N²(C ³ N ²	, C ³	
	IV. C ³ —I	P ⁴ C ³	. P ⁴	
	V. P ⁴ —C	Cl P ⁴	. Cl	
(உருவாக்க	= · · · · · · · · · · · · · · · · · · ·	லூயி கட்டமைப்பில் பின்வரும் π பிணைப்புகளில ணு ஒபிற்றல்களை இனங்காண்க. (பகுதி (iii) இல ட்டுள்ளன.)	i i
	I. N ² —0	\mathbb{C}^3 \mathbb{N}^2	. C ³	
	II. C ³ —I	P ⁴ C ³	. \mathbf{P}^4 (5. 2 புள்ளிகள்	r)
		ளில் தரப்பட்டுள்ள இயல்பு அத டிவசியமில்லை.)	திகரிக்கும் ஒழுங்கில் பின்வருவனவற்றை ஒழுங்குபடுத்துக	5.
(i	* 1		சக்தி)	
(ii	i) ஓர் அணுவ $(3,1,0,-\frac{1}{2})$	வில் உள்ள இலத்திரன்களின் $rac{1}{2}, \left(3,0,0,+rac{1}{2}\right), \left(2,0,0,+rac{1}{2}\right)$	் சக்திச் சொட்டெண்கள் (n,l,m_l,m_s) , $\left(2,1,+1,+rac{1}{2} ight), \left(3,2,-1,+rac{1}{2} ight)$ (இலத்திரனின் சக்தி) $<$ $<$ $<$ $<$ $<$ $<$ $(2.4$ புள்ளிகள்	100
(a) Z	X அவர்க்கன	ചല് ഖരെഞ്ചി റ് ംരനം മ⊸്		1
{ { }	இருக்கின்றது. இனது மிகவும் கரைசலைக் செ அமிலமாக, ஒரு	X ஆனது பரந்த வீச்சிலுள்ள ் பொதுவான ஐதரைட்டு ஆ கொடுக்கிறது. Y ஆனது ஓர் ஒ	ா ஒட்சியேற்ற நிலைகளைக் காட்டுகிறது. Y ஆனது ∑ கும். Y ஆனது நீரில் இலகுவாகக் கரைந்து ஒரு கா நட்சியேற்றும் கருவியாக, ஒரு தாழ்த்தும் கருவியாக, ஓ X இன் ஈரணு வாயு Y இன் உற்பத்தியில் பயன்படுகிறத	K T ir
		· · · · · · · · · · · · · · · · · · ·	=	
(i			 வமானது எனக் கருதப்படுகிறது. சுருக்கமாக விளக்குக	5.
		••••••		
		·		
/··				_
(11	· ·	சைட்டுகள் மூன்றன இரசாயன் ட்சியேற்ற நிலையைக் குறிப்பீ	ச் சூத்திரங்களை எழுதி, அவ்வொவ்வொரு சேர்வையிலு! 11டுக.	٥
	••••••			
	•••••			

AL_{i}	/201	8/02-	T-II	(\mathbf{A}))
----------	-------------	-------	------	----------------	---

- 4	

(iv) பின்வரும் சந்தர்ப்பங்கள் ஒவ்வொன்றிலும் Y இன் தொழிற்பாட்டைக் காட்டுவதற்கு ஒரு சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாடு தருக.	இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.
I. Y ஓர் ஒட்சியேற்றும் கருவியாக	
II. Y ஒரு தாழ்த்தும் கருவியாக	
கொதிநிலை ↑	
vi) மேலே பகுதி (v) இல் கொதிநிலைகளிலுள்ள மாறலுக்கான காரணங்களைத் தருக.	
]
(vii) I. $\mathrm{Al}_2(\mathrm{SO}_4)_3$ கரைசலுக்கு $\mathbf Y$ இன் மிகை நீர்க் கரைசலொன்றைச் சேர்க்கும்போது நீர் என்ன அவதானிப்பீர் என்பதை எழுதுக.	
II. மேலே பகுதி I இல் உமது அவதானிப்புக்குக் காரணமான இனத்தின் இரசாயனச் சூத்திரத்தை எழுதுக.	
(viii) Y ஐ இனங்காண்பதற்கு ஓர் இரசாயனச் சோதனையைத் தருக.	İ
அவதானிப்பு :	
(ix) Z ஆனது X இன் ஓர் ஒட்சோ - அமிலமும் ஒரு வலிமையான ஒட்சியேற்றும் கருவியும் ஆகும். I. Z ஐ இனங்காண்க.	
II. சூடான செறிந்த Z ஆனது கந்தகத்துடன் தாக்கம்புரியும்போது கிடைக்கும் விளைபொருள்களைக்	
குறிப்பிடுக	
b) A, B ஆகியன ஆவர்த்தன அட்டவணையில் ஒரே கூட்டத்தைச் சேர்ந்த p - தொகுப்பிற்குரிய இரு மூலகங்களின் சேர்வைகளாகும். A ஆனது அறை வெப்பநிலையிலும் வளிமண்டல அமுக்கத்திலும் நிறமற்ற, மணமற்ற திரவமாக இருக்கின்றது. மேலும் இது வாயு மற்றும் திண்ம நிலைகளிலும் காணப்படுகிறது. A இன் திண்ம நிலையானது அதன் திரவ நிலையிலும் அடர்த்தி குறைந்தது. அயன் சேர்வைகளும், முனைவுத்தன்மையுள்ள சேர்வைகளும் A இல் இலகுவாகக் கரையும்.	
${f B}$ ஆனது அறை வெப்பநிலையிலும் வளிமண்டல அமுக்கத்திலும் ஒரு நிறமந்ற வாயுவாகும். ஈய அசந்நேற்றில் ஈரமாக்கப்பட்ட ஒரு வடிகட்டித்தாள் ${f B}$ உடன் பரிகரிக்கப்பட்டபோது கறுப்பாக மாறுகின்றது. (i) ${f A}$ மற்றும் ${f B}$ ஆகியவற்றை இனங்காண்க.	
(1) A மற்றும் b ஆகையவற்றை இனங்காணக்.	
B =	}

3.

(ii)	தேவையான இடங்களில் தனிச்சோடி இலத்திரன்களைக் காட்டி ${f A}$ மற்றும் ${f B}$ ஆகியவற்றின் வடிவங்களைப் பருமட்டாக வரைக.	இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.
(iii)	A இற்கா, B இற்கா மிகப் பெரிய பிணைப்புக்கோணம் உள்ளதெனக் காரணங்களைத் தந்து குறிப்பிடுக.	
(iv)	பின்வரும் ஒவ்வொரு சந்தர்ப்பத்திலும் A இன் தொழிற்பாட்டைக் காட்டுவதற்கு ஒரு சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டைத் தருக.	
	I. A ஓர் அமிலமாக :	
	II. A ஒரு மூலமாக :	
(v)	நீர ஈப அசற்றேற்றுடன் ${f B}$ இன் தாக்கத்திற்கான சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டை எழுதுக.	
(vi)	 A, B ஆகியவற்றை வேறு வேறாக ஓர் அமிலமாக்கப்பட்ட BiCl₃ கரைசலுடன் சேர்க்கும்போது நீர் எதனை அவதானிப்பீர் என எழுதுக. 	
	(மிகை) A உடன் : B உடன் :	
	II. மேலே பகுதி I இல் உமது அவதானிப்புகளுக்கான சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாடுகளை எழுதுக.	
		100
	(4.0 புள்ளிகள்)	
இறைகே மலம் ($ ightleftharpoons 2C + D$ (இரு திசைகளிலும் முதன்மையான தாக்கங்களாகும்) எனும் தாக்கம் $25~^{\circ}$ C இல் வற்றப்பட்டது. ஆரம்பத்தில் $0.10\mathrm{mol}\mathbf{A}\mathrm{g}$ யும் $0.10\mathrm{mol}\mathbf{B}\mathrm{g}$ யும் காய்ச்சி வடித்த நீரில் கரைப்பதன் (மொத்தக் கனவளவு $100.00\mathrm{cm}^3$) தாக்கக் கலவை தயாரிக்கப்பட்டது. இக்கரைசலில் \mathbf{A} இன் நேரத்துடன் மாறல் வரைபில் காட்டப்பட்டுள்ளது.	
	செறிவு (mol dm ⁻³)	
	↑	
	1.0	
	[A]	
	0.5	
		
	0.0 	
(i) கா	ாக்கத்தின் முதல் 4.0 நிமிடத்தில் தாக்கமடைந்த ${f A}$ இன் அளவை (மூலில்) கணிக்க.	
.,		
••		
••		

AL/2018/02-T-II(A)

	_	
_	h	

(ii)) 4.0 நிமிடங்களின் பின் முன்முகத்தாக்கத்தின் வீதம், பிற்தாக்கத்தின் வீதத்திலும் குறைவானதா ? உமது விடையை விளக்குக.	இப்பகுதி எதனை, எழுதுத ஆகாத
•		
(iii)	முன்முகத்தாக்கத்தின் வீத மாறிலி ($k_{ m forward}$) $18.57~{ m mol}^{-1}~{ m dm}^3~{ m min}^{-1}$ எனத் தரப்பட்டுள்ளதாயின், முன்முகத்தாக்கத்தின் தொடக்க வீதத்தைக் கணிக்க.	;
٠		
(iv)	சமநிலையில் C இனதும் D இனதும் செறிவுகளைக் கணிக்க.	
	நேரத்துடன் ${f C}$ இனதும் ${f D}$ இனதும் செறிவுகளின் மாறலைக் காட்டும் பொருத்தமான வளையிகளை மேலே தரப்பட்டுள்ள வரைபில் வரைந்து, அவற்றைப் பெயரிடுக.	
•		
(v)	மேற்குறித்த தாக்கத்தின் சமநிலை மாறிலி $K_{ m C}$ இற்கு உரிய கோவையை எழுதி, அதன் பெறுமானத்தைக் கணிக்க.	
		d.
(vi)	பிற்தாக்கத்திற்கான வீத மாறிலியின் ($k_{ m reverse}$) பெறுமானத்தைக் கணிக்க.	

(1.7)	சமநிலையை அடைந்த பின்னர் கரைசலின் கனவளவானது 100.00 cm ³ காய்ச்சி வடித்த நீல சேர்ப்பதன் மூலம் இரு மடங்காக்கப்பட்டது. கரைசலின் கனவளவு இரு மடங்காக்கப்பட்ட உடனே தேறிய தாக்கத்தின் திசையை பொருத்தமான கணிப்பீட்டின் மூலம் எதிர்வுகூறுக.	' 16
-	· · · · · · · · · · · · · · · · · · ·	
(viii)	மேற்கூறிய பரிசோதனையானது 25 °C இலும் குறைந்த வெப்பநிலையில் நிறைவேற்றப்பட்டது	ாகக்
;	கருதுக. பிறதாக்கத்தின் வீதத்தை இது எவ்வாறு பாதிக்கும்? உமது விடையை காரணங்கள் த விளக்குக.	
		/
	(10.0 புள்ளிக	\
(a) (i	$C_5H_{10}O$ என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் $2,4$ -DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடிக தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தடே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு	ன்று சள் பைத் பாது ததிச்
(a) (i	C_5H_{10} O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் $2,4$ -DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH_2CH_2MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் கா	ன்று சள் பாது நதிச் ரியச் திரம்
(a) (i	$C_5H_{10}O$ என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடிக தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக $CH_3CH_2CH_2MgBr$ உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புக	ன்று சள் பாது நதிச் ரியச் திரம்
(a) (i	C_5H_{10} O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் $2,4$ -DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH_2CH_2MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் கா	ன்று சள் பாது நதிச் ரியச் திரம்
(a) (i	C_5H_{10} O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் $2,4$ -DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH_2CH_2MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் கா	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C_5H_{10} O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் $2,4$ -DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH_2CH_2MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் கா	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C_5H_{10} O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் $2,4$ -DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே $NaBH_4$ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH_2CH_2MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் கா	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புக்க கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் காவேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புக்க கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் காவேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புக்க கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் காவேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புக்க கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் காவேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் சூத்திரத்தைக் கொண்ட A,B,C ஆகிய சேர்வைகள் ஒன்றுக்கொகட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடின தருவதில்லை. A,B,C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D,E,F ஆகிய சேர்வைகள் பெறப்பட்டன. E,F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B,C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G,H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A,B,C,D,E,F,G,H ஆகியவற்றின் கட்டமைப்புக்க கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திண்மத்திற்குரிய சமபகுதிய வடிவங்களைக் காவேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் குத்திரத்தைக் கொண்ட A , B , C ஆகிய சேர்வைகள் ஒன்றுக்கொ கட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடிக தருவதில்லை. A , B , C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D , E , F ஆகிய சேர்வைகள் பெறப்பட்டன. E , F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B , C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G , H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A , B , C , D , E , F , G , H ஆகியவற்றின் கட்டமைப்புக கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திணமத்திற்குரிய சமபகுதிய வடிவங்களைக் கா வேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் குத்திரத்தைக் கொண்ட A , B , C ஆகிய சேர்வைகள் ஒன்றுக்கொ கட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடிக தருவதில்லை. A , B , C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D , E , F ஆகிய சேர்வைகள் பெறப்பட்டன. E , F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B , C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G , H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A , B , C , D , E , F , G , H ஆகியவற்றின் கட்டமைப்புக கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திணமத்திற்குரிய சமபகுதிய வடிவங்களைக் கா வேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்
(a) (i	C ₅ H ₁₀ O என்னும் மூலக்கூற்றுச் குத்திரத்தைக் கொண்ட A , B , C ஆகிய சேர்வைகள் ஒன்றுக்கொ கட்டமைப்புச் சமபகுதியங்களாகும். எல்லா மூன்று சேர்வைகளும் 2,4-DNP உடன் செம்மஞ் வீழ்படிவைத் தரும். அவற்றுள் ஒன்றேனும் வெள்ளி ஆடிச் சோதனையில் வெள்ளி ஆடிக தருவதில்லை. A , B , C ஆகியவற்றைத் தனித்தனியே NaBH ₄ உடன் தாக்கம்புரியச் செய்தபே முறையே D , E , F ஆகிய சேர்வைகள் பெறப்பட்டன. E , F ஆகியன மாத்திரம் ஒளியியல் சமபகு சேர்வைக் காட்டின. B , C ஆகியவற்றை வேறு வேறாக CH ₃ CH ₂ CH ₂ MgBr உடன் தாக்கம்புரி செய்து பின் நீர்ப்பகுத்தபோது G , H ஆகிய சேர்வைகள் முறையே பெறப்பட்டன. G மாத்த ஒளியியல் சமபகுதிச் சேர்வைக் காட்டியது. A , B , C , D , E , F , G , H ஆகியவற்றின் கட்டமைப்புக கீழே தரப்பட்டுள்ள பெட்டிகளில் வரைக (திணமத்திற்குரிய சமபகுதிய வடிவங்களைக் கா வேண்டிய அவசியமில்லை).	ன்று தசள் பாது நதிச் ரியச் திரம்

(1) 2,4 – DNP (2) நீரகந்தல்

(4.5 புள்ளிகள்)

<i>(b)</i>	பின்வரும்	ஒவ்வொரு	தாக்கத்தினதும்	பிரதான	சேதன	விளைபொருளின்	கட்டமைப்பை	வரைக.
------------	-----------	---------	----------------	--------	------	--------------	------------	-------

(i)	C,H,	H ₂ / இரனே Ni	 	
(1)	6116	150 °C		

இப்பகுதியில் எதனையும் எழுதுதல் ஆகாது.

(ii)
$$C_6H_5$$
- NH_2

(iv)
$$C_6H_5-N_2^{\oplus}Cl^{\ominus}$$
 H_3PO_2

(v)
$$C_2H_5CONH_2$$
 $\xrightarrow{\text{$\mathfrak{G}$} \text{$\mathfrak{T}$ NaOH}}$

(vi)
$$CH_3CH = CH_2$$
 — G-F-pl. H_2SO_4

(ix)
$$C_2H_5OH$$
 $H^+/KMnO_4$

(3.5 புள்ளிகள்)

(c) ஒளியின் முன்னிலையில் $\mathrm{CH_4}$ உடன் $\mathrm{Cl_2}$ இன் தாக்கத்தின் ஒரு விளைபொருள் $\mathrm{CH_3Cl}$ ஆகும். $\mathrm{CH_3Cl}$ எவ்வாறு தோன்றியது என்பதைக் காட்டும் தாக்கத்தின் பொறிமுறையின் படிமுறைகளை எழுதுக. இலத்திரன்களின் அசைவுகளை வளைந்த அம்புகுறிகள்/வளைந்த அரை அம்புக்குறிகள் $({\mathbf C}/{\mathbf C})$ மூலம் காட்டுக.

100

සියලු ම හිමිකම් ඇවිරිණි / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලි ලංකා විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග දෙපාර්තම් වැනි මෙහිතුවනු ලෙපාල්පාල් පින්සු විභාග දෙපාර්තමේත්තුව මුංග්ශාසර් ප්රියාපති නිකාශස්සහර මුංග්ශාසර ප්රියාපති නිකාශස්සහර මුංග්ශාසර ප්රියාපති නිකාශස්සහර ප්රියාපති නිකාශස්සහර Department of Examinations, Sri Lanka Department o**ලිනාග්ශාසර් ප්රියාභාව නියාග් සම්බාර්ග**ේ සහ විභාග දෙපාර්තමේත්තුව ලී ලංකා විභාග සහ ප්රධානය සහ ප්රධාන සහ ප්රධානය සහ ප්රධාන සහ ප්රධානය සහ ප්රධානය සහ ප්රධානය සහ ප්රධාන සහ ප්රධාන

අධාsයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදනව II **இ**ரசாய**னவியல்** II Chemistry II 02 T II

** அகில வாயு மாறிலி $R = 8.314 \,\mathrm{J} \;\mathrm{K}^{-1} \;\mathrm{mol}^{-1}$

* அவகாதரோ மாறிலி $N_{\scriptscriptstyle A} = 6.022 \times 10^{23} \; \mathrm{mol^{-1}}$

பகுதி B — கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக (ஓவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்).

(a) பின்வரும் தாக்கங்களைக் கருதுக.

$$M(CO_3)_2 \cdot nH_2O(s) \rightarrow M(CO_3)_2(s) + nH_2O(g)$$

 $M(CO_3)_2(s) \rightleftharpoons MO_2(s) + 2CO_2(g)$

ஒரு வெறுமையாக்கப்பட்ட விறைத்த $0.08314\,\mathrm{m}^3$ கனவளவு உடைய பாத்திரத்தில் ஒரு சிறிதளவு $(0.10\,\mathrm{mol})\ \mathrm{M(CO_3)_2\cdot nH_2O(s)}$ உள்ளது. பாத்திரத்தின் வெப்பநிலை $400\,\mathrm{K}$ இற்கு உயர்த்தப்பட்டது. இவ்வெப்பநிலையில் உலோகக் காபனேற்று $\mathrm{M(CO_3)_2}$ ஆனது பிரிகையடையவில்லை. ஆயினும், பளிங்கு நிலையில் காணப்பட்ட நீர் முற்றாக ஆவியாகியது. பாத்திரத்தின் அமுக்கமானது $1.60\times10^4\,\mathrm{Pa}$ என அளவிடப்பட்டது. திண்மப் பதார்த்தங்களால் அடக்கப்பட்ட கனவளவு புறக்கணிக்கத்தக்கது.

சூத்திரம் $M(CO_3)_2 \cdot nH_2O(s)$ இல் உள்ள 'n' இன் பெறுமானத்தைத் துணிக.

(2.0 புள்ளிகள்)

- (b) பின்னர் மேற்கூறிய தொகுதியின் வெப்பநிலை $800~{
 m K}$ இற்கு உயர்த்தப்பட்டது. இதன்போது ஒரு குறித்தளவு திண்ம உலோகக் காபனேற்று பிரிகையடைந்து வாயு அவத்தையுடன் சமநிலையில் இருப்பது அவதானிக்கப்பட்டது. பாத்திரத்தின் அமுக்கம் $4.20 \times 10^4~{
 m Pa}$ என அளவிடப்பட்டது.
 - (i) 800 K யில் பாத்திரத்தில் உள்ள நீராவியின் பகுதி அமுக்கத்தைக் கணிக்க.
 - (ii) 800 K யில் பாத்திரத்தில் உள்ள CO₂ இன் பகுதி அமுக்கத்தைக் கணிக்க.
 - (iii) ${
 m M(CO_3)_2(s)}$ இன் பிரிகைக்கான அமுக்கச் சமநிலை மாறிலி $K_{
 m p}$ இற்கான கோவையை எழுதுக. $800~{
 m K}$ யில் $K_{
 m p}$ ஐக் கணிக்க.
 - (iv) 800 K யில் பிரிகையடைந்த உலோகக் காபனேற்றின் மூலர்ச் சதவீதத்தைக் கணிக்க.
 - (v) மேற்கூறிய நிபந்தனைகளில் உலோகக் காபனேற்றின் பிரிகைக்கான வெப்பவுள்ளுறை மாற்றம் (ΔH) ஆனது $40.0 \ kJ \ mol^{-1}$ ஆகும். ஒத்த எந்திரப்பி மாற்றம் (ΔS) ஐக் கணிக்க.
 - $(vi)\ M(CO_3)_2\ (s)\$ பிரிகைத் தாக்கத்தினை முந்திசையில் செலுத்துவதந்கு **இரு** வழிமுறைகளை முன்வைக்க. $(6.5\$ புள்ளிகள்)
- (c) வெப்ப இரசாயனச் சக்கரங்களையும் அட்டவணையில் தரப்பட்ட தரவுகளையும் உதவியாகக் கொண்டு பின்வரும் வினாக்களுக்கு விடை எழுதுக.

இனம்	நியமத் தோன்றல் வெப்பவுள்ளுறை $(\Delta ext{H}_f^\circ)(ext{kJ mol}^{-1})$
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249.2
MO ₂ (g)	-400.0

- (i) $MO(g) + \frac{1}{2}O_2(g) \rightarrow MO_2(g)$ $\Delta H^\circ = -50.0 \text{ kJ mol}^{-1}$ எனத் தரப்பட்டுள்ளதாயின், MO(g) இன் நியமத் தோன்றல் வெப்பவுள்ளுறையைக் கணிக்க.
- (ii) MO(g) இல் M-O பிணைப்பின் கூட்டற் பிரிகை வெப்பவுள்ளுறையைக் கணிக்க.

- (iii) $\mathrm{MO}_2(\mathrm{g})$ இல் $\mathrm{M-O}$ பிணைப்பின் கூட்டற் பிரிகைக்கான வெப்பவுள்ளுறையைக் கணிக்க.
- **6**. (a) ஒன்றுடன் ஒன்று கலக்காத ஒரு திரவத் தொகுதியை உருவாக்கும் நீர் (A) இற்கும் ஒரு சேதனக் கரைப்பான் (B) இற்குமிடையே அயடீனின் (I_2) பங்கீட்டுக் குணகத்தைத் துணிவதற்காக ஒரு பரிசோதனை நடாத்தப்பட்டது. I_2 இன் 'n' மூல்களை $20.00~{
 m cm}^3$ இல் கொண்டுள்ள ${f B}$ ஆனது $20.00~{
 m cm}^3$ ${f A}$ உடன் கலக்கப்பட்டு அறை வெப்பநிலையில் சமநிலை அடையவிடப்பட்டது.

அவத்தை $\bf A$ யில் இருந்து $5.00~{\rm cm^3}$ மாதிரி எடுக்கப்பட்டு $0.005~{\rm mol}~{\rm dm^{-3}}~{\rm Na_2S_2O_3}$ கரைசலுடன் நியமிப்புச் செய்வதன் மூலம் அவத்தை $\bf A$ யில் $\bf I_2$ இன் செறிவு துணியப்பட்டது. முடிவுப் புள்ளியை அடைவதற்குத் தேவைப்பட்ட ${\rm Na_2S_2O_3}$ இன் கனவளவு $22.00~{\rm cm^3}$ ஆகும். அவத்தை $\bf B$ யில் உள்ள $\bf I_2$ இன் செறிவு $0.040~{\rm mol}~{\rm dm^{-3}}$ எனத் துணியப்பட்டது.

- (i) $\mathrm{Na_2S_2O_3}$ இற்கும் $\mathrm{I_2}$ இற்குமிடையிலான தாக்கத்தின் சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாட்டை எழுதுக.
- (ii) அவத்தை ${f A}$ யில் உள்ள ${f I}_2$ இன் செறிவைக் கணிக்க.
- (iii) பங்கீட்டுக் குணகம் K_D இற்கான பெறுமானத்தைக் கணிக்க. இங்கு $K_D = \frac{\begin{bmatrix} \mathbf{I}_2 \end{bmatrix}_{\mathbf{B}}}{\begin{bmatrix} \mathbf{I}_2 \end{bmatrix}_{\mathbf{C}}}$ ஆகும்.
- (iv) ${f A}, {f B}$ ஆகிய இரண்டு அவத்தைகளிலும் உள்ள ${f I}_2$ மூல்களின் மொத்த எண்ணிக்கையைக் கணிக்க. (4.5 புள்ளிகள்)
- (b) அவத்தை ${\bf A}$ உடன் ${\bf I}^-$ அயன்களைச் சேர்த்து, மேற்குறித்த பரிசோதனை அதே நிலைமைகளின் கீழ் அதாவது அதே வெப்பநிலையிலும் அதே அளவு ${\bf I}_2$ ஐயும் அதே கனவளவுகளையும் பயன்படுத்தி மறுபடியும் செய்யப்பட்டது. தொகுதி நன்றாகக் குலுக்கப்பட்டுச் சமநிலை அடைய விடப்பட்டது. அவத்தை ${\bf A}$ யின் $5.00~{
 m cm}^3$ மாதிரியில் உள்ள ${\bf I}_2$ ஐ நியமிப்புச் செய்வதற்குத் தேவையான $0.005~{
 m mol~dm}^{-3}$ ${
 m Na}_2{
 m S}_2{
 m O}_3$ கரைசலின் கனவளவு $41.00~{
 m cm}^3$ ஆகும். இதன்போது அவத்தை ${\bf B}$ யில் உள்ள ${\bf I}_2$ இன் செறிவு $0.030~{
 m mol~dm}^{-3}$ எனத் துணியப்பட்டது.
 - (i) ${\bf A}, {\bf B}$ ஆகிய அவத்தைகளுக்கிடையே ${\bf I}_2$ இன் பரம்பலுக்கான பங்கீட்டுக் குணகத்தை அடிப்படையாகக் கொண்டு அவத்தை ${\bf A}$ இன் $5.00~{
 m cm}^3$ இல் இருக்க வேண்டும் என எதிர்பார்க்கப்படும் ${\bf I}_2$ இன் அளவைக் (மூல்கள்) கணிக்க.
 - (ii) மேற்குறித்த நியமிப்பின்போது ${
 m Na_2S_2O_3}$ உடன் தாக்கம்புரியும் ${
 m I_2}$ இன் அளவைக் (மூல்கள்) கணிக்க.
 - (iii) மேலே (b) (i) இலும் (b) (ii) இலும் பெற்றுக்கொண்ட விடைகள் ஒன்றுக்கொன்று வேறுபடுவது ஏன் என அவத்தை A இல் உள்ள வேறுபட்ட அயடின் இனங்களைக் கருதுவதன் மூலம் விளக்குக. (3.5 புள்ளிகள்)

(c) X, Y ஆகிய திரவங்கள் இரவோல்ற்றின் விதியைப் பின்பற்றும் ஓர் இலட்சியக் கரைசலை ஆக்குகின்றன.

ஒரு வெறுமையாக்கப்பட்ட விறைத்த பாத்திரத்தில் உருவில் காட்டியவாறு ஆரம்பத்தில் திரவம் ${f X}$ மாத்திரம் உட்செலுத்தப்பட்டது. திரவ மட்டத்தை ${\it l}$ இல் பேணியவாறு தொகுதியானது $400~{f K}$ இல் சமநிலை அடைய விடப்பட்டது. பாத்திரத்தின் அமுக்கம் $3.00\times 10^4~{f Pa}$ என அளவிடப்பட்டது. திரவ மட்டம் ${\it l}$ இல் இருக்கும்போது ஆவி அவத்தையின் கனவளவு $4.157~{f dm}^3$ ஆக இருந்தது. பின் திரவம் ${f Y}$ ஆனது பாத்திரத்தில் விடப்பட்டு திரவம் ${f X}$ உடன் கலக்கப்பட்டு தொகுதி $400~{f K}$ இல் சமநிலை அடைய விடப்பட்டது. திரவ மட்டம் ${\it l}$ இல் பேணப்பட்டது. திரவ அவத்தையில் ${f X}:{f Y}$ இற்கான மூலர் விகிதம் 1:3 ஆகக் காணப்பட்டது. பாத்திரத்தின் அமுக்கம் $5.00\times 10^4~{f Pa}$ ஆக அளவிடப்பட்டது.

- (i) 400 K இல் X இன் நிரம்பல் ஆவி அமுக்கம் யாது ?
- (ii) சமநிலையில் திரவ அவத்தையில் X, Y ஆகியவற்றின் மூல் பின்னங்களைக் கணிக்க.
- (iii) Y ஐச் சேர்த்த பின் சமநிலையில் X இன் பகுதி அமுக்கத்தைக் கணிக்க.
- (iv) சமநிலையில் Y இன் பகுதி அமுக்கத்தைக் கணிக்க.
- (v) Y இன் நிரம்பல் ஆவி அமுக்கத்தைக் கணிக்க.
- (vi) ஆவி அவத்தையில் உள்ள X,Y ஆகியவற்றின் அளவுகளைக் (மூல்களில்) கணிக்க.
- (vii) **X, Y** ஆகிய திரவங்களின் ஒரு கலவை பகுதிபடக் காய்ச்சிவடித்தலுக்கு உட்படுத்தப்படும்போது பகுதிப்படக் காய்ச்சி வடித்தல் நிரலிலிருந்து எந்தச் சேர்வை முதலில் வடிக்கப்படும் என்பதைக் குறிப்பிடுக. உமது விடைக்கான காரணத்தை/காரணங்களைத் தருக.

(7.0 புள்ளிகள்)

 (a) தரப்பட்ட பட்டியலில் உள்ள இரசாயனப் பொருள்களை மாத்திரம் பயன்படுத்திப் பின்வரும் மாற்றீட்டை நீர் எவ்வாறு நிறைவேற்றுவீர் எனக் காட்டுக.

$$C_2H_5CH_2CHO \longrightarrow C_2H_5COCH_3$$

இரசாயனப் பொருள்களின் பட்டியல்

நீர் NaOH, HBr, அற்ககோல் சேர் KOH, NaBH₄, H⁺/KMnO₄

உமது மாற்றீடு ஏழு (7) படிமுறைகளுக்கு மேற்படக்கூடாது.

(6.0 புள்ளிகள்)

(b) பின்வரும் தாக்கத் திட்டத்தை பூரணப்படுத்துவதற்கு ${f R}_1$ — ${f R}_4$ ஆகியவற்றையும் ${f X}_1$ — ${f X}_4$ ஆகியவற்றையும் ${f Y}_1$, ${f Y}_2$ ஆகியவற்றையும் இனங்காண்க.

(6.0 புள்ளிகள்)

(c) (i) பின்வரும் தாக்கத்தின் பொறிமுறையைத் தருக.

$$C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$$

- (ii) மேற்கூறிய தாக்கம் கருநாட்ட (nucleophilic) பிரதியீட்டுத் தாக்கமா, இலத்திரன்நாட்ட (electrophilic) பிரதியீட்டுத் தாக்கமா என்பதைக் குறிப்பிடுக. உரிய கருநாடியை அல்லது இலத்திரன் நாடியை இனங்காண்க.
- (iii) காரணங்களைத் தருவதன் மூலம் பீனோல் (${
 m C_6H_5~OH}$), எதனோல் (${
 m C_2H_5OH}$) என்னும் இரு சேர்வைகளில் எது அமிலத்தன்மை கூடியது எனக் குறிப்பிடுக. (3.0 புள்ளிகள்)

பகுதி C — கட்டுரை

இரு வினாக்களுக்கு மாத்திரம் விடை எழுதுக (ஒவ்வொரு வினாவின் விடைக்கும் 15 புள்ளிகள் வழங்கப்படும்).

8. (a) **P** என்னும் ஒரு நீர்க் கரைசலில் **இரு** கற்றயன்களும் **இரு** அனயன்களும் உள்ளன. இக்கற்றயன்களையும் அனயன்களையும் இனங்காண்பதற்குப் பின்வரும் பரிசோதனைகள் செய்யப்பட்டன.

கற்றயன்கள்

	பரிசோதனை	அவதானிப்பு
①	P ஆனது ஐதான HCl இனால்	ஒரு தெளிந்த கரைசல் பெறப்பட்டது.
	அமிலமாக்கப்பட்டு கரைசலினூடாக $ m H_2S$	
_	வாயு செலுத்தப்பட்டது.	
2	எல்லா $ m H_2S$ உம் அகந்நப்படும் வரை மேற்குறித்த	ஒரு கபில நிற வீழ்படிவு (Q) உருவாகியது.
	கரைசல் கொதிக்க வைக்கப்பட்டது. செறிந்த	
	HNO ₃ இன் சில துளிகள் சேர்க்கப்பட்டு கரைசல்	
	மேலும் வெப்பமாக்கப்பட்டது. விளைவுக் கரைசல்	
_]	குளிரத்தப்பட்டு $\mathrm{NH_4Cl/NH_4OH}$ சேர்க்கப்பட்டது.	
③	Q வடிகட்டி அகற்றப்பட்டு வடிதிரவத்தினூடாக	ஒரு வெளிறிய இளஞ்சிவப்பு வீழ்படிவு
	$ m H_2S$ செலுத்தப்பட்டது.	(R) உருவாகியது.
4	${f R}$ வடிகட்டி அகந்றப்பட்டு எல்லா ${f H_2S}$ உம் அகற்றப்படும் வரை வடிதிரவம் கொதிக்க வைக்கப்பட்டது. கரைசலுடன் ${ m (NH_4)_2CO_3}$ சேர்க்கப்பட்டது.	ஒரு தெளிந்த கரைசல் பெறப்பட்டது.
6	P பின் பு திய பகுதியுடன் ஐதான NaOH	ஓர் அழுக்குப் பச்சை வீழ்படிவும் ஒரு
L	சேர்க்கப்பட்டது.	வெண்ணிற வீழ்படிவும் உருவாகின.

\mathbf{Q},\mathbf{R} ஆகிய வீழ்படிவுகளுக்கான பரிசோதனைகள்:

	பரிசோதனை	அவதானிப்பு
6	Q ஆனது ஐதான HNO ₃ இல் கரைக்கப்பட்டு	ஓர் இளம் ஊதா நிறக் கரைசல்
		பெறப்பட்டது.
Ø	R ஆனது ஐதான அமிலத்தில் கரைக்கப்பட்டு	ஒரு வெண்ணிற வீழ்படிவு உருவாகியது. அது
	கரைசலுடன் ஐதான NaOH சேர்க்கப்பட்டது.	சிறிது நேரத்தில் கபில நிறமாக மாரியது.

அனயன்கள்

		சோதனை	அவதானிப்பு						
8	I	P உடன் BaCl ₂ கரைசல் சேர்க்கப்பட்டது.	ஒரு வெண்ணிற வீழ்படிவு உருவாகியது.						
	II	வெண்ணிற வீழ்படிவு வடிகட்டி வேறாக்கப்பட்டு வீழ்படிவுடன் ஐதான HCI சேர்க்கப்பட்டது.	ചെഞ്ഞിന്ദ ഖീழ്ப്വു.ഖ്ല ക്കന്വ് ധഖിல് വൈ.						
9		இ II இன் வடிதிரவத்தின் ஒரு பகுதியுடன் Cl ₂ நீரும் குளோரபோமும் சேர்க்கப்பட்டுக் கலவை நன்கு குலுக்கப்பட்டது.	குளோரபோம் படை மஞ்சட் கபில நிறமாகியது.						

- (i) கரைசல் P யில் உள்ள **இரு** கற்றயன்களையும் **இரு** அனயன்களையும் இனங்காண்க (காரணங்கள் **அவசியமில்லை**).
- $(ii)\ {f Q},{f R}$ ஆகிய வீழ்படிவுகளுக்கான இரசாயனச் சூத்திரங்களை எழுதுக.
- (iii) பின்வருவனவற்றிற்கு காரணங்களைத் தருக.
 - I. கற்றயன்களுக்கான பரிசோதனை $\emph{2}$ இல் H_2S அகற்றப்பட்டமை
 - ${
 m II.}$ கற்றயன்களுக்கான பரிசோதனை ${
 m f Q}$ இல் செறிந்த ${
 m HNO_3}$ உடன் வெப்பமாக்கப்பட்டமை

(7.5 புள்ளிகள்)

(b) மாதிரி X ஆனது ஈயம், செம்பு, ஒரு சடத்துவ பொருள் என்பவற்றைக் கொண்டுள்ளது. X இல் உள்ள ஈயத்தையும் செம்பையும் பகுப்பாய்வுச் செய்வதற்குப் பின்வரும் செயன்முறை நிறைவேற்றப்பட்டது.

செயன்முறை

 ${f X}$ இன் 0.285 g திணிவு சிறிதளவு மிகையான ஐதான ${
m HNO_3}$ இல் கரைக்கப்பட்டது. ஒரு தெளிந்த கரைசல் பெறப்பட்டது. பெறப்பட்ட தெளிந்த கரைசலுடன் ${
m NaCl}$ கரைசல் சேர்க்கப்பட்டது. ஒரு வெண்ணிற வீழ்படிவு ${
m (Y)}$ உருவாகியது. வீழ்படிவானது வடிகட்டல் மூலம் வேறாக்கப்பட்டு வீழ்படிவு ${
m (Y)}$ உம் வெவ்வேறாகப் பகுப்பாய்வு செய்யப்பட்டன.

வீழ்படிவு (\mathbf{Y})

வீழ்படிவு வெந்நீரில் கரைக்கப்பட்டது. மிகை $K_2\mathrm{CrO}_4$ கரைசல் சேர்க்கப்பட்டது. ஒரு மஞ்சள் நிற வீழ்படிவு உண்டாகியது. வீழ்படிவு வடிகட்டல் மூலம் வேறாக்கப்பட்டு ஐதான HNO_3 இல் கரைக்கப்பட்டது. ஒரு செம்மஞ்சள் நிறக் கரைசல் பெறப்பட்டது. இக்கரைசலுடன் மிகை KI சேர்க்கப்பட்டு, விடுவிக்கப்பட்ட I_2 ஆனது $0.100~\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3$ உடன் மாப்பொருளைக் காட்டியாகப் பயன்படுத்தி நியமிப்புச் செய்யப்பட்டது. முடிவுப் புள்ளியை அடைவதற்கு $\mathrm{Na}_2\mathrm{S}_2\mathrm{O}_3$ இன் கனவளவு $27.00~\mathrm{cm}^3$ தேவைப்பட்டது (நியமிப்பில் NO_3^- அயன்கள் எவ்வித இடையூறையும் **செய்வதில்லை** எனக் கொள்க).

வடிதிரவம் (Z)

வடிதிரவம் நடுநிலையாக்கப்பட்டு அதனுடன் மிகை KI சேர்க்கப்பட்டது. விடுவிக்கப்பட்ட I_2 ஆனது $0.100~mol~dm^{-3}~Na_2S_2O_3$ உடன் மாப்பொருளைக் காட்டியாகப் பயன்படுத்தி நியமிப்புச் செய்யப்பட்டது. முடிவுப் புள்ளியை அடைவதற்குத் தேவைப்பட்ட $Na_2S_2O_3$ இன் கனவளவு $15.00~cm^3$ ஆகும்.

(கு**றிப்பு:** சடத்துவப்பொருளானது ஐதான HNO_3 இல் கரைந்துள்ளது எனவும் பரிசோதனையில் எவ்வித இடையூறையும் **செய்யவில்லை** எனவும் கொள்க.)

- (i) **X** இல் உள்ள ஈயத்தினதும் செம்பினதும் திணிவுச் சதவீதங்களைக் கணிக்க. பொருத்தமான சந்தர்ப்பங்களில் சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாடுகளை எழுதுக.
- (ii) வீழ்படிவு Y இன் பகுப்பாய்வின்போது நிறைவேற்றப்பட்ட நியமிப்பின் முடிவுப் புள்ளியில் பெறப்படும் நிறமாற்றம் யாது? (Cu=63.5, Pb=207) (7.5 புள்ளிகள்)
- **9**. (*a*) பின்வரும் வினாக்கள் சூழலையும் அதனுடன் தொடர்புபட்ட பிரச்சினைகளையும் அடிப்படையாகக் கொண்டவை.
 - (i) பூகோள வெப்பமாதலுக்குப் பங்களிப்புச் செய்கின்ற மூன்று பச்சை வீட்டு வாயுக்களை இனங்காண்க. பூகோள வெப்பமாதலின் விளைவுகள் **இரண்டைக்** குறிப்பிடுக.
 - (ii) நிலக்கரி மின் உற்பத்தி நிலையங்களினால் உலகளாவிய ரீதியில் ஏற்படும் சூழற் பிரச்சினைகள் நன்கு அறியப்பட்டவை. ஆறுகளிலும் ஏரிகளிலும் நீரின் குறித்த சில தர பரமானங்களின் மாற்றத்திற்குக் கணிசமானளவு பங்களிப்புச் செய்கின்ற அத்தகைய ஒரு பிரச்சினையை இனங்காண்க.
 - (iii) மேலே (ii) இல் இனங்கண்ட சூழற் பிரச்சினைக்குக் காரணமான இரசாயன இனங்களைப் பெயரிட்டு, இப்பிரச்சினையாற் பாதிக்கப்படக்கூடிய நீரின் முன்று தர பரமானங்களைக் குறிப்பிடுக.
 - (iv) வளிமண்டலத்தில் ஓசோனின் மட்டத்தில் மாற்றத்தை ஏற்படுத்தும் (அதிகரிக்கச் செய்யும் அல்லது குறைக்கும்) இரண்டு சூழற் பிரச்சினைகளை இனங்கண்டு, சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாடுகளின் உதவியுடன் இம்மாற்றங்கள் நடைபெறும் விதத்தைச் சுருக்கமாக விளக்குக.
 - (v) I. "வாகனங்களில் வெளிவிடப்படும் தீங்கு பயக்கும் வாயுக்களில் பெரும்பாலானவை ஊக்கி மாற்றிகளினால் (catalytic converters) சார்பளவில் தீங்கற்ற வாயுக்களாக மாற்றப்படுகின்றன." இக்கூற்றைச் சுருக்கமாக விளக்குக.
 - II. ஊக்கி மாற்றியால் குறைந்தளவில் தீங்கு பயக்கும் வாயுவாக மாற்றப்பட முடியாத தீங்கு பயக்கும் வாயுவைப் (CO₂ தவிர்ந்த) பெயரிடுக. இத்தீங்கு பயக்கும் வாயு எவ்வாறு வாகனத்தின் எஞ்சினில் உண்டாகின்றது என்பதைச் சுருக்கமாகக் குறிப்பிடுக. (7.5 புள்ளிகள்)

(b) கீழே தரப்பட்டுள்ள பாய்ச்சற் கோட்டுப்படமானது ${f P}_1, {f P}_2$ என்னும் இரு முக்கிய சேர்வைகளும் அவற்றிலிருந்து பெறுவிக்கப்பட்ட ${f P}_3, {f P}_4, {f P}_5$ என்னும் வேறு மூன்று முக்கிய சேர்வைகளும் உற்பத்தி செய்யப்படும் விதத்தைக் காட்டுகிறது. ${f Na}_2{f CO}_3$ இன் தயாரிப்பில் ${f P}_1$ மூலப்பொருளாகப் பயன்படுத் தப் படுகிறது. ${f P}_1, {f P}_2$ ஆகியவற்றுக் கிடையிலான தாக் கத் தின் மூலம் ${f P}_3$ உற்பத்திசெய்யப்படுகிறது. ${f P}_3$ ஆனது பசளையாகவும் வெடிபொருளாகவும் பயன்படுத்தப்படும். பரந்தளவில் பசளையாகப் பயன்படுத்தப்படும் ${f P}_4$ இன் உற்பத்தியிலும் ${f P}_1$ பயன்படுத்தப்படுகிறது. ஒரு முக்கியமான வெப்பமிறுக்கும் பல்பகுதியம் ${f P}_5$ இன் தொகுப்பில் ${f P}_4$ பயன்படுத்தப்படுகிறது.

 $oldsymbol{M}$ உற்பத்திச் செயன்முறை $oldsymbol{ ext{PC}}$ மூலப்பொருளைப் பெறுவதற்கான $oldsymbol{ ext{R}}$ மூலப்பொருள் பௌதிக/இரசாயனச் செயன்முறைகள்

 $oldsymbol{ extbf{P}}$ விளைபொருள் $oldsymbol{ extbf{S}}$ மூலப்பொருளின் தோற்றுவாய்

x தாக்கமடையாத மூலப்பொருள் (மூலப்பொருள்கள்)/பௌதிக மற்றும்/அல்லது இரசாயனச் செயன்முறையின்போது வளிமண்டலத்திற்கு விடுவிக்கப்படும் பதார்த்தம்

- $(i)\ \, {f P_1},\ {f P_2},{f P_3},{f P_4},{f P_5}$ ஆகியவற்றை இனங்காண்க.
- ${
 m (ii)}\ {
 m R}_{1}, {
 m R}_{2}, {
 m R}_{3}$ ஆகியவற்றை இனங்காண்க.
- $(iii) \ \, {f X_1}, \ {f X_2}, {f X_3} \$ ஆகியவற்றை இனங்காண்க.
- (iv) S ஐ இனங்காண்க.
- (v) உரிய இடங்களில் சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாடுகளைத் தருவதன் மூலம் $\mathbf{PC}_1, \mathbf{PC}_2$ ஆகியவற்றில் நடைபெறும் செயன்முறைகளைச் சுருக்கமாகக் குறிப்பிடுக.
- (vi) $\mathbf{M_1}, \mathbf{M_2}, \mathbf{M_3}$ ஆகிய உற்பத்திச் செயன்முறைகளை இனங்காண்க (உதாரணம்: தொடுகை முறை அல்லது $\mathbf{H_2SO_4}$ இன் தயாரிப்பு)
- $({
 m vii})$ ${
 m M_1}, {
 m M_2}, {
 m M_3}$ ஆகியவற்றில் நடைபெறும் தாக்கங்களுக்கு பொருத்தமான நிலைமைகளுடன் சமப்படுத்தப்பட்ட இரசாயனச் சமன்பாடுகளைத் தருக.
- (viii) I. P_1, P_2 ஆகிய சேர்வைகள் ஒவ்வொன்றினதும் மேலே குறிப்பிட்ட பயன்பாடுகள் தவிர்ந்த ஒரு பயன்பாட்டைத் தருக.
 - ${
 m II.}$ ${
 m I\!P}_1$ இன் உற்பத்திச் செயன்முறையில், மூலப்பொருளாகப் பயன்படுதல் தவிர்ந்த, ${
 m I\!R}_1$ இன் பயன்பாடு ஒன்று தருக. $(7.5\,$ புள்ளிகள்)

- 10.(a) A, B ஆகியன எண்கோணக் கேத்திரகணிதத்தைக் கொண்ட சிக்கல் அயன்களாகும் (அதாவது உலோக அயனும் அதனுடன் இணைந்துள்ள இணையிகளும்). அவை ஒரே அணுவுக்குரிய அமைப்பு $\mathrm{MnC}_5\mathrm{H}_3\mathrm{N}_6$ ஐக் கொண்டுள்ளன. ஒவ்வொரு சிக்கல் அயனிலும் இரண்டு வகையான இணையிகள் உலோக அயனுடன் இணைக்கப்பட்டுள்ளன. A அடங்கும் ஒரு நீர்க் கரைசலைப் பொற்றாசியம் உப்புடன் பரிகரிக்கும்போது C என்னும் இணைப்புச் சேர்வை உருவாகின்றது. C ஆனது நீர்க் கரைசலில் நான்கு அயன்களைக் கொடுக்கிறது. B அடங்கும் ஒரு நீர்க் கரைசலைப் பொற்றாசியம் உப்புடன் பரிகரிக்கும்போது D என்னும் இணைப்புச் சேர்வை உருவாகின்றது. D ஆனது நீர்க் கரைசலில் மூன்று அயன்களைக் கொடுக்கிறது. C, D ஆகிய இரண்டும் எண்கோணக் கேத்திரகணிதத்தை உடையன.
 - (**குறிப்பு:** பொற்றாசியம் உப்புடன் பரிகரிக்கும்போது **A**, **B** ஆகியவற்றில் உள்ள மங்கனீசின் ஒட்சியேற்ற நிலைகளில் மாற்றம் எதுவும் இல்லை.
 - (i) A, B ஆகியவற்றில் உள்ள மங்கனீசுடன் இணைக்கப்பட்டுள்ள இணையிகளை இனங்காண்க.
 - (ii) A, B, C, D ஆகியவற்றின் கட்டமைப்புகளைத் தருக.
 - (iii) A, B ஆகியவற்றில் உள்ள மங்கனீசு அயன்களின் இலத்திரன் நிலையமைப்புகளை எழுதுக.
 - (iv) \mathbf{C},\mathbf{D} ஆகியவற்றின் IUPAC பெயரீட்டை எழுதுக.

(7.5 புள்ளிகள்)

- (b) (i) I. Ag(s) | AgCl(s) | Cl⁻(aq) என்னும் மின்வாய்க்கு உரிய தாழ்த்தல் அரைத் தாக்கத்தை எழுதுக.
 - II. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ இன் மின்வாய் அழுத்தமானது கரைசலில் உள்ள Ag^+ இன் செறிவில் தங்கியுள்ளதா என்பதைக் குறிப்பிடுக. உமது விடையை விளக்குக.
 - (ii) பின்வரும் தாக்கத்தைக் கருதுக.

$$\text{Fe(s)} + 2\text{H}^+(\text{aq}) + \frac{1}{2}\text{O}_2(\text{g}) \rightarrow \text{Fe}^{2+}(\text{aq}) + \text{H}_2\text{O(l)}.$$

- I. மேற்குறித்த தாக்கத்திற்கு உரிய ஒட்சியேற்ற, தாழ்த்தல் அரைத் தாக்கங்களை எழுதுக.
- II. மேற்குறித்த தாக்கம் ஒரு மின்னிரசாயனக் கலத்தின் கலத் தாக்கமெனத் தரப்படின் அக்கலத்தின் நியம மின்னியக்க விசையைத் துணிக.

$$E_{Fe^{2+}(aq)/Fe(s)}^{o} = -0.44 \text{ V}$$
 $E_{H^{+}(aq)/O_{2}(g)/H_{2}O(I)}^{o} = 1.23 \text{ V}$

(iii) உருவில் காட்டியவாறு $100.0~{
m cm}^3,~0.10~{
m mol~dm}^{-3}~{
m CaBr}_2$ நீர்க் கரைசலூடாக $100~{
m mA}$ என்னும் ஒரு மாறா ஓட்டம் செலுத்தப்பட்டது. தொகுதியின் வெப்பநிலை $25~{
m ^{\circ}C}$ இல் பேணப்பட்டது.

- I. மின்வாய்களில் நடைபெறும் ஒட்சியேற்ற, தாழ்த்தல் தாக்கங்களை எழுதுக.
- II. $\operatorname{Ca(OH)}_2(s)$ வீழ்படிவாக ஆரம்பிப்பதற்கு எடுக்கும் நேரத்தைக் கணிக்க. $\operatorname{Ca(OH)}_2$ இன் கரைதிறன் பெருக்கம் $25~^{\circ}\mathrm{C}$ இல் $1.0\times 10^{-5}~\mathrm{mol}^3~\mathrm{dm}^{-9}$ ஆகும். நீரின் அயனாக்கத்தைப் பு**றக்கணிக்க.** நீர் அவத்தையின் கனவளவு மாறிலியாக இருக்கிறது எனக் கொள்க.

(7.5 புள்ளிகள்)

ஆவர்த்தன அட்டவணை

	1	Ì																
1	H	}																2 He
	3	4]										5	6	7	8	9	10
2	Li	Be											B	$\frac{\mathbf{c}}{\mathbf{c}}$	N	o	F	Ne Ne
	11	12											_	<u> </u>		-		!
3	Na												13	14	15	16	17	18
J	114	Mg	ļ										Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	\mathbf{w}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po		
	87	00							_		 			, and	101	10	At	Rn
		88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La				Pm										
89				93										
Ac				Np										

More Past Papers at tamilguru.lk