The Delta method

The Delta method is a technique used to approximate the variance of a nonlinear function of an estimator by using a first order Taylor expansion. Given a function $g(\theta)$ and an estimator $\hat{\theta}$, the approximate variance of $g(\hat{\theta})$ is: $var(g(\hat{\theta})) \approx \left(\frac{dg(\theta)}{d\theta}\right)^2 var(\hat{\theta})$.

example 1: $\hat{\theta}$ is an estimate of the mean θ . We are interested in $g(\theta) = \log(\theta)$.

By the Delta method, var $(\log(\hat{\theta})) \approx (\frac{1}{\hat{\theta}})^2 \text{ var}(\hat{\theta})$ $\pm (\hat{\theta} = 4) \text{ and var}(\hat{\theta}) = 0.2$, then $\text{var}(\log(\hat{\theta})) = 0.0125$.

Example 2: Let $\hat{\theta}$ be an estimate of θ and we are interested in the variance of the squared estimate $g(\theta) = \theta^2$. Using the Delta method, we have:

 $Var(\hat{\theta}^2) \approx (2\hat{\theta})^2 Var(\hat{\theta})$

If $\hat{\theta} = 3$ and var $(\hat{\theta}) = 0.05$, the variance of $\hat{\theta}^2$ is $(2.3)^2 \cdot 0.05 = 0.45$.