MAT02036 - Amostragem 2

Aula 17 - Amostragem por Conglomerados - Exercícios e Lab R

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- Aproveitem o momento presencial para tirar dúvidas
- Se estivéssemos no ensino remoto ou à distância
 - o vocês poderiam estar somente ouvindo, sem interação
 - o u assistindo vídeos e material em outro momento
- Depois das aulas, rever material da aula passada
 - fazer exercícios
 - se preparar para a próxima aula

Aula passada 💾

Estimação de Proporções

• Para

$$y_{ij} = I\left[(i,j) \in A
ight] = \left\{egin{aligned} 1, ext{ se a unidade } j ext{ do conglorerado } i ext{ possui o atributo,} \ 0, ext{ caso contrário.} \end{aligned}
ight.$$

Parâmetros:

 $\circ~$ O total populacional, $T = \sum_{i \in C} T_i = N_A$.

$$\circ~$$
 A média populacional, $\overline{Y}=rac{1}{N}\sum_{i\in C}T_i=rac{T}{M\overline{N}}=rac{\overline{Y}_C}{\overline{N}}=rac{N_A}{N}=P$

A variância populacional,...

Aula passada 💽

Estimação de Proporções

• O estimador natural HT, ${\widehat P}^{HT}=rac{{\overline y}_C}{\overline N},$

em que
$$\overline{y}_C = rac{\sum_{i \in a} T_i}{m}$$
 .

- \widehat{P}^{HT} é **não viciado** para P ? ?
- Esse estimador pode resultar em uma **proporção estimada** $\widehat{P}^{HT}>1$ (?).
- ullet $\overline{N}=rac{\sum i\in CN_i}{M}$ pode ser estimado por $\overline{n}=rac{\sum i\in aN_i}{m}.$

Aula passada 📀

Estimação de Proporções

Variância do estimador natural

A variância de \widehat{P}^{HT} na **AC1S** é dada por:

• COM reposição,
$$Var_{AC1S_c}\left(\widehat{P}^{HT}
ight)=rac{1}{\overline{N}^2}rac{Var_{ec_T}}{m}=rac{1}{\overline{N}^2}ig(1-rac{1}{M}ig)rac{S_{ec}^2}{m};$$

• SEM reposição, $Var_{AC1S_s}\left(\widehat{P}^{HT}\right)=rac{1}{\overline{N}^2}\Big(rac{M-m}{M-1}\Big)\,rac{Var_{ec_T}^2}{m}=rac{1}{\overline{N}^2}\Big(1-rac{m}{M}\Big)\,rac{S_{ec}^2}{m}.$

• O estimador não viciado da variância de \widehat{P}^{HT} na **AC1S** é dada por:

$$\circ$$
 COM reposição, $\widehat{V}ar_{AC1S_c}\left(\widehat{P}^{HT}
ight)=rac{1}{\overline{N}^2}ig(1-rac{1}{M}ig)rac{s_{ec}^2}{m}pproxrac{1}{\overline{N}^2}rac{s_{ec}^2}{m}$ (?);

$$\circ$$
 SEM reposição, $\widehat{V}ar_{AC1S_s}\left(\widehat{P}^{HT}
ight)=rac{1}{\overline{N}^2}ig(1-rac{m}{M}ig)rac{s_{ec}^2}{m},$

Estimação de Proporções

Estimador de Razão

Aula passada 💾

Estimação de Proporções

Exemplo (Apostila pg. 27)

Uma população universitária foi avaliada quanto à posse de bicicleta. Os conglomerados foram os campi da universidade. Os dados da população estão abaixo:

$\begin{array}{c} \textbf{Campus} \\ (i) \end{array}$	No. pessoas com bicicleta (T_i)	Número total de pessoas (N_i)
1	2226	2950
2	1512	1726
3	315	948
Total	4053	5624

Aula passada 💾

Estimação de Proporções

Exemplo (Apostila pg. 28)

Considere os dados da população universitária, construa o IC 95% para a proporção.

Aula passada 💽

Estimação de Proporções

Exemplo (Apostila pg. 36)

Em uma certa região, deseja-se fazer uma **AC1S** de fazendas criadores de gado. Em média, as fazendas têm 50 animais. O interesse é estimar a prevalência de uma doença, isto é, a proporção de animais doentes. Numa região vizinha, um estudo mostrou que 10% dos animais estavam doentes e $r_{int}=0,1225$. Quantas fazendas devem pertencer à amostra, considerando que se deseja uma margem de erro de 1% para mais ou para menos e 95% de confiança?

Exercícios e Lab

Exercícios e Lab 😱

Utilizaremos o banco de dados Lucy (com informações ao nível individual) para:

- a. calcular os parâmetros e selecionar amostras
- b. calcular o coeficiente de correlação intraclasse
- c. estimação e tamanho da amostra, IC

Exercícios e Lab 😱

Parâmetros

Arquivo parametros e sorteio na AC1.R

Exercícios e Lab

Estimação, tamanho amostra e IC

Arquivo estimacao e tamanho de amostra AC1.R

Exercícios e Lab

CCI

Arquivos exemplo_pg31_apostila.R e exemplo_pg35_apostila.R

Para casa 🏠

- Fazer a lista 2 de exercícios.
- Continuar exercícios.
- Rever os slides.
- Preparação para avaliação parcial 2

Próxima aula | | | |

• Acompanhar o material no moodle.

Amostragem por Conglomerados

- Exercícios.
- Laboratório de 😱

Muito obrigado!

Fonte: imagem do livro Combined Survey Sampling Inference: Weighing of Basu's Elephants.

Referências

- Amostragem: Teoria e Prática Usando o R
- Elementos de Amostragem, Bolfarine e Bussab.
- Cochran(1977)

Resumo da notação