

planetmath.org

Math for the people, by the people.

symmetry of a solution of an ordinary differential equation

 ${\bf Canonical\ name} \quad {\bf Symmetry Of A Solution Of An Ordinary Differential Equation}$

Date of creation 2013-03-22 13:42:26 Last modified on 2013-03-22 13:42:26

Owner Daume (40) Last modified by Daume (40)

Numerical id 11

Author Daume (40) Entry type Definition Classification msc 34-00

Synonym symmetry of a periodic solution solution of an ordinary differential equation

Let γ be a http://planetmath.org/SymmetryOfAnOrdinaryDifferentialEquationsymmetry of the ordinary differential equation and x_0 be a steady state solution of $\dot{x} = f(x)$. If

$$\gamma x_0 = x_0$$

then γ is called a symmetry of the solution of x_0 .

Let γ be a symmetry of the ordinary differential equation and $x_0(t)$ be a periodic solution of $\dot{x} = f(x)$. If

$$\gamma x_0(t - t_0) = x_0(t)$$

for a certain t_0 then (γ, t_0) is called a symmetry of the periodic solution of $x_0(t)$.

lemma: If γ is a symmetry of the ordinary differential equation and let $x_0(t)$ be a solution (either steady state or periodic) of $\dot{x} = f(x)$. Then $\gamma x_0(t)$ is a solution of $\dot{x} = f(x)$.

proof: If $x_0(t)$ is a solution of $\frac{dx}{dt} = f(x)$ implies $\frac{dx_0(t)}{dt} = f(x_0(t))$. Let's now verify that $\gamma x_0(t)$ is a solution, with a substitution into $\frac{dx}{dt} = f(x)$. The left hand side of the equation becomes $\frac{d\gamma x_0(t)}{dt} = \gamma \frac{dx_0(t)}{dt}$ and the right hand side of the equation becomes $f(\gamma x_0(t)) = \gamma f(x_0(t))$ since γ is a symmetry of the differential equation. Therefore we have that the left hand side equals the right hand side since $\frac{dx_0(t)}{dt} = f(x_0(t))$. qed

References

[GSS] Golubitsky, Martin. Stewart, Ian. Schaeffer, G. David: Singularities and Groups in Bifurcation Theory (Volume II). Springer-Verlag, New York, 1988.