

UNIVERSITI TEKNOLOGI MARA FINAL EXAMINATION

COURSE

STATISTICAL COMPUTING

COURSE CODE

STA705

EXAMINATION

JUNE 2016

TIME

3 HOURS

INSTRUCTIONS TO CANDIDATES

1. This question paper consists of two (2) parts :

PART A (2 Questions)

PART B (5 Questions)

- 2. Answer ALL questions in both parts using separate Answers Booklets. Start each answer on a new page.
- 3. Do not bring any material into the examination room unless permission is given by the invigilator.
- 4. Please check to make sure that this examination pack consists of :
 - i) the Question Paper
 - ii) two Answer Booklets provided by the Faculty
- 5. Answer ALL questions in English.

PART A

QUESTION 1

a) Create the following vectors using the **rep** function:

(3 marks)

b) Use the built-in function (sort, order and rank) in the following sequence:

86 100 25 56 75 35 42

Obtain the following results.

i)	Sort	

(5 marks)

c) Using *generate factor levels*, produce the R command of the following output:

	Grade	Colour	Location
1	A	Blue	Inner
2	A	Blue	Inner
3	A	Blue	Inner
4	A	Blue	Inner
5	A	Red	Inner
6	В	Red	Inner
7	В	Red	Inner
8	В	Red	Inner
9	В	Green	Inner
10	В	Green	Inner
11	С	Green	Outer
12	С	Green	Outer
13	С	White	Outer
14	С	White	Outer
15	С	White	Outer
16	D	White	Outer
17	D	Black	Outer
18	D	Black	Outer
19	D	Black	Outer
20	D	Black	Outer

(6 marks)

d) Produce the following data set which is obtained from the R random generator.

```
> data.1
[1] 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0

(3 marks)
```

e) Give the R command to compute the probability of success for data.1.

(2 marks)

f) Produce the R function to generate 50 samples of probability of success for the data obtained in part (d).

The output is obtained as follows:

```
> Find.pr(data.1,50)
$data.1
[1] 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0

$sample.prob
[1] 0.633 0.467 0.533 0.533 0.367 0.433 0.533 0.533 0.567 0.533 0.233 0.467
[13] 0.533 0.533 0.433 0.500 0.367 0.500 0.633 0.333 0.533 0.500 0.467 0.500
[25] 0.567 0.533 0.433 0.433 0.367 0.467 0.333 0.567 0.567 0.400 0.600 0.367
[37] 0.400 0.367 0.500 0.433 0.333 0.500 0.400 0.367 0.600 0.533 0.533 0.567
[49] 0.633 0.367
```

(6 marks)

Ozone pollution data collected in Rennes, France during the summer of 2001. The variables available are maxO3 (maximum daily ozone), T12 (temperature at midday), wind (direction), rain and wx12 (projection of the wind speed vector on the east-west axis at midday). The information on the "ozone" dataset is given as follows:

```
> str(ozone)
'data.frame':
                        112 obs. of 13 variables:
 $ maxO3 : int 87 82 92 114 94 80 79 79 101 106 ...
            : num 15.6 17 15.3 16.2 17.4 17.7 16.8 14.9 16.1 18.3 ...
 $ T12 : num 18.5 18.4 17.6 19.7 20.5 19.8 15.6 17.5 19.6 21.9 ...
 $ T15 : num 18.4 17.7 19.5 22.5 20.4 18.3 14.9 18.9 21.4 22.9 ...
 $ Ne9 : int 4 5 2 1 8 6 7 5 2 5 ...
 $ Ne12 : int 4 5 5 1 8 6 8 5 4 6 ...
 $ Ne15 : int 8 7 4 0 7 7 8 4 4 8 ...
 $ Wx9 : num 0.695 -4.33 2.954 0.985 -0.5 ...
 $ Wx12 : num -1.71 -4 1.879 0.347 -2.954 ...
 $ Wx15 : num -0.695 -3 0.521 -0.174 -4.33 ...
 $ maxO3y: int 84 87 82 92 114 94 80 99 79 101 ...
 $ wind : Factor w/ 4 levels "East", "North", ..: 2 2 1 2 4 4 4 2 2 4 ...
 $ rain : Factor w/ 2 levels "Dry", "Rainy": 1 1 1 1 1 2 1 1 1 1 ...
  > ozone
 max03
                       T9 T12 T15 Ne9 Ne12 Ne15
                                                                Wx9
                                                                                    Wx15 maxO3y wind rain
                                                                         Wx12
                71 15.4 17.7 16.6 4 5 5 -3.8302 0.0000 1.3892 69 North Dry 60 13.7 14.0 15.8 4 5 4 0.0000 3.2139 0.0000 71 North Rainy 42 12.7 14.3 14.9 8 7 7 -2.5000 -3.2139 -2.5000 60 North Rainy 65 14.8 16.3 15.9 7 7 7 -4.3301 -6.0622 -5.1962 42 West Rainy 71 15.5 18.0 17.4 7 7 6 -3.9392 -3.0642 0.0000 65 West Dry 96 11.3 19.4 20.2 3 3 3 -0.1736 3.7588 3.8302 71 East Rainy 98 15.2 19.7 20.3 2 2 2 4.0000 5.0000 4.3301 96 East Dry 92 14.7 17.6 18.2 1 4 6 5.1962 5.1423 3.5000 98 North Dry 76 13.3 17.7 17.8 3 5 6 0.0000 -1.0000 -1.2856 76 South Dry 84 13.3 17.7 17.8 3 5 6 0.0000 -1.0000 -1.2856 76 South Dry 99 16.9 23.0 22.6 6 4 7 1.5000 0.8682 0.8682 77 South Dry 83 16.9 19.8 22.1 6 5 3 -4.0000 -3.7588 -4.0000 99 West Rainy 70 15.7 18.6 20.7 7 7 0.0000 -1.0419 -4.0000 83 South Dry
  20010916
  20010917
  20010918
  20010919
  20010920
  20010921
  20010922
  20010923
  20010924
  20010925
  20010927
  20010928
  20010929
  20010930
```

a) Write the R command to produce the given output.

Output:

T12	max03	wind	rain	Wx12
Min. :14.00	Min. : 42.00	East :10	Dry :69	Min. $:-7.878$
1st Qu.:18.60	1st Qu.: 70.75	North:31	Rainy:43	1st Qu.:-3.565
Median :20.55	Median : 81.50	South:21		Median $:-1.879$
Mean :21.53	Mean : 90.30	West :50		Mean :-1.611
3rd Qu.:23.55	3rd Qu.:106.00			3rd Qu.: 0.000
Max. :33.50	Max. :166.00			Max. : 6.578

(2 marks)

b) Write the R command to produce the following plots.

c) Comment on the plot obtained in Figure 2.

(2 marks)

d) Produce the R function to obtain the following descriptive statistics.

```
$mean

East North South West

mean.T12 23.670 20.065 23.729 21.080

mean.maxO3 105.600 86.129 102.524 84.700

mean.Wx12 3.747 -0.641 -0.900 -3.583

$skewness

East North South West

skew.T12 -0.039 0.721 0.469 0.771

skew.maxO3 -0.777 1.288 0.420 1.508

skew.Wx12 0.322 0.578 0.102 -0.350
```

(5 marks)

e) Write the R command to select the "ozone" data sets contain both variables T12 and maxO3 which are greater than or equal to 25 and 120, respectively. The data with the variable which less than these values should be excluded. The required data should be obtained as follows:

	T12	max03	wind	rain	Wx12	
20010623	28.6	146	South	Dry	-1.9284	
20010624	25.2	121	North	Dry	-0.5209	
20010625	32.7	146	East	Dry	6.5778	
20010703	30.1	139	South	Dry	2.0000	
20010725	26.9	149	West	Dry	-0.9397	
20010726	27.7	153	North	Dry	1.5000	
20010727	28.3	159	North	Dry	1.2856	
20010728	27.6	149	West	Dry	-1.5321	
20010729	29.6	160	South	Dry	-0.6840	
20010730	30.5	156	West	Dry	-1.8794	
20010801	29.5	126	East	Dry	3.7588	
20010823	28.4	131	West	Dry	-1.9696	
20010824	27.2	166	West	Dry	-0.8660	
20010825	33.5	159	South	Dry	0.6946	

(3 marks)

f) Produce the R command to obtain the following result based on the output in part (e).

	T12	max03	wind	rain	Wx12
20010625	32.7	146	East	Dry	6.5778
20010801	29.5	126	East	Dry	3.7588
20010703	30.1	139	South	Dry	2.0000
20010726	27.7	153	North	Dry	1.5000
20010727	28.3	159	North	Dry	1.2856
20010825	33.5	159	South	Dry	0.6946
20010624	25.2	121	North	Dry	-0.5209
20010729	29.6	160	South	Dry	-0.6840
20010824	27.2	166	West	Dry	-0.8660
20010725	26.9	149	West	Dry	-0.9397
20010728	27.6	149	West	Dry	-1.5321
20010730	30.5	156	West	Dry	-1.8794
20010623	28.6	146	South	Dry	-1.9284
20010823	28.4	131	West	Dry	-1.9696

(2 marks)

g) Produce the R function to divide the projection of the wind speed vector on the east-west axis at midday into two categories (Positive and Negative). The required data should be obtained as follows:

	T12	max03	wind	rain	Wx12	Category
20010625	32.7	146	East	Dry	6.5778	Positive
20010801	29.5	126	East	Dry	3.7588	Positive
20010703	30.1	139	South	Dry	2.0000	Positive
20010726	27.7	153	North	Dry	1.5000	Positive
20010727	28.3	159	North	Dry	1.2856	Positive
20010825	33.5	159	South	Dry	0.6946	Positive
20010624	25.2	121	North	Dry	-0.5209	Negative
20010729	29.6	160	South	Dry	-0.6840	Negative
20010824	27.2	166	West	Dry	-0.8660	Negative
20010725	26.9	149	West	Dry	-0.9397	Negative
20010728	27.6	149	West	Dry	-1.5321	Negative
20010730	30.5	156	West	Dry	-1.8794	Negative
20010623	28.6	146	South	Dry	-1.9284	Negative
20010823	28.4	131	West	Dry	-1.9696	Negative

(6 marks)

PART B

QUESTION 1

Output A shows a temporary data set called STAFF that contains the 10 rows and 5 columns. Based on Output B, it is shown that label and format are assigned on two variables. Identify these variables and write a program to include the permanent label and format and print the result as shown in Output B.

Output A

Output B

STAFF with a Format for the Variables Salary and Site

STAFF Dataset

Name	IdNumber	Salary	Site	HireDate
Capalleti, Jimmy	2355	21163	BR1	30JAN09
Chen, Len	5889	20976	BR1	18JUN06
Davis, Brad	3878	19571	BR2	20MAR84
Leung, Brenda	4409	34321	BR2	18SEP94
Martinez, Maria	3985	49056	US2	10JAN93
Orfali, Philip	0740	50092	US2	16FEB03
Patel, Mary	2398	35182	BR3	02FEB90
Smith, Robert	5162	40100	BR5	15APR06
Sorrell, Joseph	4421	38760	US1	19JUN11
Zook, Carla	7385	22988	BR3	18DEC10

Name	IdNumber	Salary in U.S. Dollars	Site	HireDate
Capalleti, Jimmy	2355	\$21,163	Birmingham UK	30JAN09
Chen, Len	5889	\$20,976	Birmingham UK	18JUN06
Davis, Brad	3878	\$19,571	Plymouth UK	20MAR84
Leung, Brenda	4409	\$34,321	Plymouth UK	18SEP94
Martinez, Maria	3985	\$49,056	Miami USA	10JAN93
Orfali, Philip	0740	\$50,092	Miami USA	16FEB03
Patel, Mary	2398	\$35,182	York UK	02FEB90
Smith, Robert	5162	\$40,100	INCORRECT CODE	15APR06
Sorrell, Joseph	4421	\$38,760	Denver USA	19JUN11
Zook, Carla	7385	\$22,988	York UK	18DEC10

(10 marks)

QUESTION 2

a) Explain the results generated by the following program. Your explanation must describe the process involved in each line of sas statements.

```
data normal (keep= x);
call streaminit(4321);
do i = 1 to 100;
    x = rand("Normal");
    output;
end;
run;
```

(6 marks)

b) Using the program in (a), add relevant sas statements to show the use of macro variables to simulate 10 data samples.

(5 marks)

CONFIDENTIAL

Examine the following program. The data step creates a sas data set called CHANGED, by reading instream data. The proc step displays the output that is the data portion of CHANGED. Fill in the blank spaces in the data step with sas statements (using ARRAY and DO LOOP), that will replace each missing value with zero (0), with the number of columns (variables) maintains at three. The result is shown in the Output C.

options nodate pageno=1 linesize=80 pagesize=60;

data changed ______;
input Reference Usage Introduction;
_______;

datalines;
45 63 113
. 75 150
62 . 98
;
proc print data=changed;
title 'Number of Books Sold';
run;

Output C

Number of Books Sold

ntroduction	Usage	Reference	Obs
113	63	45	1
150	75	0	2
98	0	62	3

(10 marks)

Examine the given program (PROGRAM A). This program uses PROC SQL to create a sas data set called CUSTORDER and prints the following output. Your task is to write a new the program that uses data step and proc step to yield the same results as generated by this program in Output D.

PROGRAM A:

```
libname proclib 'C:\SAS Lesson';
proc sql;
create table proclib.custorder
    (IdNum char(4), Gender char(1), ProductType char(3),
        Price num, Order_Qty num, OrderDate num informat=date9.
format=ddmmyy10.);
insert into proclib.custorder
    values('1639','F','PT1',263.62,25,'26JUN2015'd)
    values('1065','M','ME3',524.25,30,'26JAN2015'd)
    values('1400','M','ME1',297.69,50,'05NOV2015'd)
    values('1561','M',null,365.14,10,'30NOV2015'd)
    values('1221','F','FA3',...,'22SEP2015'd);
title 'PROCLIB.CUSTORDER Table';
select * from proclib.custorder;
```

OUTPUT D

PROCLIB.CUSTORDER Table

ldNum	Gender	ProductType	Price	Order_Qty	OrderDate
1639	F	PT1	263.62	25	26/06/2015
1065	М	ME3	524.25	30	26/01/2015
1400	М	ME1	297.69	50	05/11/2015
1561	M	***************************************	365.14	10	30/11/2015
1221	F	FA3			22/09/2015

(10 marks)

Given the following program, answer each question:

- a) State the libref.
- b) What is the function of the 'SELECT' clause.
- c) State the name of the two tables.
- d) State the status (either permanent or temporary) of the tables in (c).
- e) What is the purpose of this statement: idnumber=idnum.
- f) State the number of rows and columns created in the output table.

END OF QUESTION PAPER