Multilevel Measurement Models (for Clustered Item-Level Data)

The Grand Finale: M-SEM

- Multilevel structural equation modeling (M-SEM) is a general term for latent trait measurement models that operate on multiple levels of sampling at once
- It combines the capabilities of:
 - Single-level latent trait measurement models for multivariate item responses with one level of theta(s)
 - Multilevel models for univariate observed outcome whose variance is partitioned across higher level(s) of sampling
- · Now we'll have (at least) two levels of theta, operating on:
 - e.g., In clustered data: within-level-1 = person residuals, between-level-2 = cluster random intercepts
 - We will use this sampling context in our examples
 - > e.g., In longitudinal data: within-level-1 = occasion residuals, between-level-2 = person random intercepts (assuming a lack of individual differences in change)

Diagram from Pornprasertmanit et al., 2014

FIGURE 2 The multilevel CFA model. The grey circles represent macrolevel unique factors, the variances of which are constrained equal to $1 - \lambda_{Brs}^{*2}$. The black circles represent micro-level unique factors, the variances of which are constrained equal to $1 - \lambda_{Wrs}^{*2}$. σ_r is the standard deviation of indicator r. ρ_r is the intraclass correlation of indicator r.

- Example two-factor
 M-SEM for 6 responses
 - > macro = between-L2
 micro = within-L1
- All is now level-specific:
 - > Trait interpretation
 - Assessment of fit, reliability, and validity
- Logical prerequisites:
 - "Enough" item ICCs
 - "Enough" L2n and L1n

Can I Just Ignore the Clustering?

- Single-level measurement model, ignoring clustering, called:
 - "Individual" (<u>Stapleton et al., 2016</u>)
 - "Disaggregated" (Pornprasertmanit et al., 2014)
- Consequences for measurement model of ignoring clustering
 - > **Estimates**: not too much (given level-1 info >>> level-2 info)
 - > **Standard errors**: too small (more so with higher ICCs)!
 - > Model fit: looks too bad (more so with higher ICCs)!
 - Can be remedied somewhat through clustered-sample corrections
- So just use multilevel measurement (M-SEM) instead...
 - Relatively straightforward in application
 - > Intent and interpretation are a different story!

Multilevel Intent: Word Salad

2 distinct types of cluster-level constructs:	Shared experience	Aggregation of disparate individual responses
Difference in item types:	Rate <i>your school</i> (common is the purpose)	Rate <i>yourself</i> (common is unintended)
Stapleton et al. (2016); Kozlowski & Klein (2000)	"shared"	"configural"
Marsh et al. (2012)	"climate"	"contextual"
Lüdtke et al. (2011)	"reflective"	"formative"
Within-level-1 person variance reflects:	Unreliability or disagreement	Expected and targeted variation
Between-level-2 cluster variance reflects:	Differences in actual construct of interest	Similarity for multiple and unknown reasons

- Flavors of multilevel measurement models:
 - "Multilevel CFA/SEM" predicts "continu-ish" item responses
 - "Multilevel IRT" predicts categorical item responses

Measurement Invariance across Clusters

- Measurement non-invariance by cluster (Jak et al., 2013)
 - > **Uniform**: only intercepts/thresholds differ (main effect)
 - > **Non-uniform**: at least loadings differ (≈interaction with factor)
- Levels of measurement invariance ("lack of cluster bias")
 - > **Configural**: same factor structure form within-L1 and between-L2
 - > **Weak**: same factor loadings within-L1 and between-L2
 - Otherwise, we can't meaningfully consider the analysis to yield the "between" and "within" parts of the same factor (are different traits)
 - > **Strong**: no leftover random intercept variance in item responses after prediction by between-L2 factor(s)
 - Otherwise, some other cluster-level variable besides the between-L2 factor is affecting the expected response for each cluster
 - Often done to fix model non-convergence or NPD solutions
- Structural invariance refers to factor relations across levels

Should I Use Across-Level Constraints?

- Constraining factor loadings equal across within-L1 and between-L2 ("weak cluster invariance") is often recommended:
 - > For the **between traits** to be interpreted as the **cluster aggregate of the within traits** (i.e., as is the case for random intercepts in MLMs)
 - To improve parsimony and aid in model convergence (<u>Jak, 2019</u>)
 - > If all loadings estimated, within-level trait variances are fixed to 1 for **shared identification**; between-level trait variances then estimated
 - Alternatively, use a marker item and estimate trait variance at both levels
 - Is assumed in three-level MLMs (Rasch-type items in people in clusters)
- Otherwise, trait variances must be separately identified at each level (although trait means are only parameters at between-L2)
 - Within-L1 traits and between-L2 traits capture conceptually different constructs (and can't be easily put back together again)
 - It would not make sense to constrain leftover random intercept variances to 0 in this case (see also <u>Geldhof et al., 2014</u>)
 - > It would also not make sense to use the same marker item at both levels

Complications: CFA vs. IFA/IRT

- The prior (prototypical) references all dealt with the "CFA" case of the measurement model in M-SEM (now estimated by FIML):
 - > **CFA**: Continuous, normally-distributed person responses to items (or other outcomes) are predicted linearly by person latent traits
- So the total amount of variance in each response can be partitioned into model-estimated orthogonal components
 within-L1 and between-L2 covariance matrices
 - Within-L1: individual deviations around cluster means
 - Between-L2: cluster mean deviations around sample mean
 - ➤ "Latent centering" version of cluster-mean-centering
- Because a saturated model (of all possible variances and covariances) is then possible at each level:
 - Get usual indices of model fit (and modification indices to fix it), although overall fit indices mostly address the within-L1 model (see Ryu & West, 2009; Hsu et al., 2015)
 - > Flexible range of models (e.g., nothing, no covariances, saturated)

Complications: CFA vs. IFA/IRT

- Switching to a **generalized version** of M-SEM (i.e., multilevel IRT) then implies:
 - Intercept/threshold measurement model parameters are then "unit-specific": conditional on their corresponding random effects = 0 (not a distinction in CFA as a general-type model)
 - Because level-1 residual variance is not estimated, there is no easy "saturated model" for within-level covariances unless you resort to limited information estimation (i.e., via polychoric correlations)
- Potential ambiguity about interpretation of between-L2 factor loadings: between or contextual?
 - ➤ **Between** = all level-2; **contextual** = level-2 after controlling for level-1 (whenever level-1 variable still has level-2 variance in it)
 - Given that the latent traits are uncorrelated across levels, we believe the between-L2 loadings are indeed between
 - How else to verify? In non-Bayes estimation, remove the within-L1 traits—if level-2 loadings change a lot, they are contextual

Example Models (as 03_modelxx.stan)

- Empty (non-measurement) two-level model with correlated random item intercepts
- 2. Within-school (WS) measurement model with correlated random item intercepts and within-school discriminations fixed=1
- 3. WS measurement model with correlated random item intercepts and estimated within-school discriminations using standardized theta
- 4. WS measurement model with correlated random item intercepts and estimated within-school discriminations using item1=marker
- 5. WS and between-school (BS) measurement model with uncorrelated random item intercepts and estimated level-specific WS (item1=marker) and BS (item10=marker) discriminations
- 6. WS and BS measurement model with uncorrelated random item intercepts and estimated level-constrained WS (item1=marker) and BS (item1=marker) discriminations
- 7. WS and BS measurement model without random item intercepts and with estimated level-constrained WS (item1=marker) and BS (item1=marker) discriminations
- 8. WS and BS measurement model with uncorrelated random item intercepts and free/reduced lunch MLM predictor and estimated level-constrained WS (item1=marker) and BS (item1=marker) discriminations