EE 301: Microelectronic Circuits

Lecture 04 - 05

Single-Stage Amplifiers

March. 14th & 16th, 2005

Prof. SeongHwan Cho

2005-03-13 EE301

Introduction & Outline

- Why do we need an amplifier? Linear amplifier?
- Analyzing gain of amplifiers
- Common source amplifier
- Resistance of MOS
- Common gate amplifier
- Source Follower
- Cascode
- Current Mirrors

Single Stage Amplifier

Intuitive large signal analysis

Common Source Amplifier

EE301

• Quantitative large signal analysis

2005-03-13

For linear amplification, input must be "small" and must have appropriate DC voltage (i.e. the transistor must be biased at a certain point) \Rightarrow Must be operated in the saturated region!

$$V_o = V_{DD} - R_D I_D$$

(1)
$$V_{in} < V_t : I_D = 0$$

(2)
$$V_{in} > V_r V_o > V_{in} - V_t : I_D =$$

(3)
$$V_{in} > V_r V_o < V_{in} - V_t : I_D =$$

Obtaining A_v for *small enough* inputs

1.
$$V_o = V_{DD} - I_D(V_i)R_D \rightarrow \text{Obtain } V_o = f(v_i)$$

$$\mathbf{V}_{\mathrm{o}} = V_{DD} - I_{D} R_{D}$$

2.
$$V_o = V_{DD} - I_D(V_i)R_D \rightarrow Solve for dv_o/dv_i$$

$$\begin{split} \frac{dV_o}{dV_i} &= -R_D \frac{dI_D}{dV_i} & \text{g}_{\text{m}} = ? \\ &= -R_D g_m \end{split}$$

3. Use Small Signal Model

• Linearized analysis!

2005-03-13

→ Only works for "small" input signals under appropriate conditions

EE301

EE301

EE301 2005-03-13

1. Obtaining $v_o = f(v_i)$

$$\begin{aligned} V_{o} &= V_{DD} - I_{D} R_{D} \\ &= V_{DD} - R_{D} \cdot k (V_{i} - V_{TH})^{2} \\ &= V_{DD} - R_{D} \cdot k (V_{iDC} + V_{i} - V_{TH})^{2} \end{aligned}$$

Note: how about current source?

• In a linear circuit, the voltage gain is equal to $-G_m$ R_{out} where G_m is the transconductance of the circuit when the output is shorted to ground and R_{out} is the output resistance of the circuit when the input voltage is zero.

*Note $A_v = \frac{\sum Output \ Resistance}{\sum Source \ Resistance}$

First Order Approximation.

→ Good for first glance analysis only. (Needs accuracy improvement.)

2005-03-13 EE301

Non-Ideality: g_{mb}

• Body-effect : threshold voltage variation

2005-03-13 EE301

Non-Ideality : \mathbf{g}_{ds}

• Channel length modulation

Summary

- Transistor is a voltage-controlled current source
- For small enough signals at appropriate DC levels, transistor can be linearized.
- Non-idealities from channel length modulation and body-effect can decrease the gain

Biasing (Section 4.5 of Sedra/Smith)

- 1. Biasing with fixed V_{GS}
- 2. AC coupling capacitors with resistors
- 3. Current Sources

Note: Fig 4.33(a) of Sedra/Smith

2005-03-13

EE301

13

How to replace the "Resistor"

- Why replace resistor?
 - Resistor is expensive and very inaccurate in CMOS process
 - Achieve higher gain (small signal)
- Replace with what?
 - Transistors are FREE!
 - Not a linear resistor

Which resistor (transconductance) do I use?

Small Signal Equivalent R in MOS

2005-03-13

EE301

Resistance Multiplication

$$R_{\rm eff} = R(1 - \frac{dI_x}{dI_s})$$

e.g.)
$$R = 1$$

 $Vs = 1V \rightarrow 1.1V$
 $Ix = 1A \rightarrow 0.91A$

CS stage with Active (current source) load

$$Av = ?$$

2005-03-13 EE301 17

Problem of Common-Source Amp

EE301

The MOS Cascode Amplifier

Problem limited linear range input dependant gain

Active load

2005-03-13

- Solution
 - reduce g_mreduce sensitivity
- Intuition: Vs rise → ID rise → Vs rise → Vgs fall → Id fall

Increasing the output resistance

• Can we increase the resistance even higher?

Increasing the channel length

Cascode Stage

2005-03-13 EE301

2005-03-13 EE301

Solution: Degenerate Resistor

Common Gate Amplifier

• small-signal model

2005-03-13 EE301 21

2005-03-13

EE301

lifion

23

Common Gate Amplifier

$$A_V = ?$$

CS Amplifier vs **CG Amplifier**

- High input resistance
- Large gain

Common-Gate Stage

- Current buffering property
- Superior high frequency response

2005-03-13 EE301 22

2005-03-13 EE301

Source Follower

- Input resistance
- Output resistance
- Voltage gain

Problem! : I_D's depandancy on Vs!!

2005-03-13

EE301

2

<u>_</u> поw

2005-03-13

How can we provide accurate current?

Copy Circuit

Definition of current by resistive divider

Conceptual means of copying currents

Could you set I_{out} stably?

Source Follower with Current Source

- Input resistance
- Output resistance
- Voltage gain

Note: Why can't this be used in common source amplifiers?

2005-03-13 EE301

Basic Concept of Current Mirror

EE301

Basic current mirror

