数学笔记

BeBop

July 19, 2024

Contents

	代数拓扑 1.1 Brouwer 不动点定理	
2	图论与组合论	7
	2.1 图论	7
	2.1.1 一个关于二部图的小问题	7

4 CONTENTS

Chapter 1

代数拓扑

1.1 Brouwer 不动点定理

Chapter 2

图论与组合论

2.1 图论

2.1.1 一个关于二部图的小问题

问题 2.1.1. 设有二部图 (U,V), U 的顶点数为 12, 且对任意 U 的 10 顶点子集 X, 集合 $\{v \mid v$ 与某个u相邻, $u \in X\}$ 大小为 20; 对任意 U 的 8 顶点子集 Y, 集合 $\{v \mid v$ 与某个u相邻, $u \in Y\}$ 大小为 16. 证明: 集合 $\{v \mid v$ 与某个u相邻, $u \in U\}$ 大小为 24.

证明. 对 U 的任意子集 X, 记 $V_X = \{v \mid v = x \}$ 和邻, $u \in X\}$,并记 $n(X) = |V_X|$,特别地,当 X 仅有一个元素,即 $X = \{u\}$ 时,n(X) 写为 $n(u) = \deg(u)$. 继续记 U_n 为 U 的某个顶点数为 n 的子集,则题设可写为:

$$n(U_{10}) = 20, \quad \forall U_{10} \subset U$$

 $n(U_8) = 16, \quad \forall U_8 \subset U$

对 U 的任意子集 X, Y,

$$n(X \cup Y) = |V_X \cup V_Y| = |V_X| + |V_Y| - |V_X \cap V_Y|$$

$$\leq |V_X| + |V_Y| - |V_{X \cap Y}| = n(X) + n(Y) - n(X \cap Y)$$

于是

$$n(X) + n(Y) \geqslant n(X \cup Y) + n(X \cap Y)$$

我们将反复使用这个不等式推导出结论.

对 $\forall U_6$, 存在 U_8, U_8' 使得 $U_8 \cap U_8' = U_6$, 则 $|U_8 \cup U_8'| = 10$, 于是

$$32 = n(U_8) + n(U_8') \ge n(U_8 \cup U_8') + n(U_6) = 32 + n(U_6)$$

即 $n(U_6) \leq 12$.

对 $\forall U_4$, 存在 U_6 , U_6' 使得 $U_6 \cap U_6' = U_4$, 则 $|U_6 \cup U_6'| = 8$, 于是

$$24 \geqslant n(U_6) + n(U'_6) \geqslant n(U_6 \cup U'_6) + n(U_4) = 16 + n(U_4)$$

 $\mathbb{P} n(U_4) \leqslant 8.$

对 $\forall U_2$, 存在 U_4 , U_6 使得 $U_4 \cap U_6 = U_2$, 则 $|U_4 \cup U_6| = 6$, 于是

$$20 \geqslant n(U_4) + n(U_6) \geqslant n(U_4 \cup U_6) + n(U_2) = 16 + n(U_2)$$

 $\mathbb{P} n(U_2) \leqslant 4.$

另一方面对 $\forall U_2$, 存在 U_8 使得 $U_2 \cap U_8 = \emptyset$, 则 $|U_2 \cup U_8| = 10$, 于是

$$16 + n(U_2) = n(U_8) + n(U_2) \geqslant n(U_10) = 20$$

即 $n(U_2) \ge 4$. 于是 $n(U_2) = 4$, 从而前面的不等式全为等式, 进而 $n(U_4) = 8$, $n(U_6) = 12$. 对任意不相交的 U_2, U_2' ,

$$8 = n(U_2 \cup U_2') = n(U_2) + n(U_2') - |V_{U_2} \cap V_{U_2'}| = 8 - |V_{U_2} \cap V_{U_2'}|$$

推出 $|V_{U_2} \cap V_{U_2'}| = 0$,也即 $V_{U_2} \cap V_{U_2'} = \emptyset$,到此就能推出 n(U) = 24 了. 进一步研究二部图 (U,V),由上述不相交性质可知对任意不同两点 u,u', $V_u \cap V_{u'} = \emptyset$,于是 $n(u) + n(u') = n(\{u,u'\}) = 4$,可推出所有的 n(u) = 2. 设 $U = \{u_1, \ldots, u_{12}\}$,二部图的连接情况为 $E = \{(u_i, v_{2i-1}), (u_i, v_{2i})\}_{1 \leqslant i \leqslant 12}$.