Aula 36 (15/Abr)

No oulo de hoje:

- * Recissos des oules enteriores.
- * Esfectro des oferadores J² e Ĵz.
- * Refresentações dos (Kij, on).
- latière raligna etnement es elpmex x x
- * Hormónicos esféricos.

De visos das últimas oules

- * Teoria Geral de Momente Angular. * Oferadores escade Ît e Î... * Espectro dos oferadores Ît e Îz.

Capitulo (9) à Teorie Geral de Momente Ameular

(9.2) Auto-Kolores de Je Je (cont.)

Vimos no final de aule anterior que se sufusermos que (v; on) é auto-dec não

ouls de J'e Jz con outo-vals j(j+1)t e mt. Como de lemo 1 temos - j < m ¿ j, La veré entes um número inteiro p tal que $-j \leq m-p \leq -j+1$ Actuando successiblemente com Î em | n jm)
(pelo leme 2) (k, i, an) - m & J- / k.j m> (m-1) t $(\hat{I})^2 | \kappa j m \rangle \longrightarrow (m-2) \pm$ $(\hat{\mathcal{I}}_{-})^{p}|_{\kappa_{i}}$ $\longrightarrow (m-p)t \geq -it$.

Mos se afficarmos \hat{S} - mais uma leg $(\hat{S}_{-})^{p+1}|_{K_{j}}(m) \longrightarrow (m-p-1)t < -jt$, que esté em contradição com lema !!

A forme de resolver este contredições é requerer

Cm - P = -i(1)

pois se actuaronos uma les adicional

com Î_ terre ones le ctor mulo, tendo dei en diente se orpre le ctor mulo para mais ectua ções de Ĵ_.

Arouments interremente análogo para \hat{J}_{+} octue ado em $|R,j,m\rangle$ $(\hat{J}_{+})^{4}|Rjm\rangle \rightarrow (m+q+1)t \geq jt$, $(\hat{J}_{+})^{q+1}|Kjm\rangle \rightarrow (m+q+1)t \geq jt$, para j-1 < m+q < j com q inters, que esté em contradição com lemes, e que pode ser resolvido requerendo m+q=j. (2)

Assion, texernor que p = q são dois in teiror tais que (2)-(1)= q + p = 2j (=) j = <math>p+q

logo i teré valores interos (se q+p é imper).

 \hat{T}_{+} ca entée dors que, actuando com \hat{T}_{+} e \hat{T}_{-} mestes Kets, os velores admitido de om serão m=-i,-i+1,-i+2,...,i-1,i

Reservindos

Se J'hor moments encular arbitecésios obdencendo as relações comuteção [Ĵi,Ĵi]=== 2 £ E, in Ĵn, então auto-vals de J' e Ĵz sorão i (i+1) £ e m l, onde

Los foderé ser 0, ½, 1,3, , , que num sistema físico particular crov precisem ser todos realizados.

La Porce de de j, tere mos todos en m se printer: -j-j+1,..., j.

(9.3) Auto-lectorer Î'e Îz

le mos serre ler como construir os outole tores de J'e Jz.

Connecemon for considerer um for (j.m)
que identifice en kets (kj.m) de sub-en
pare E(j.m), que son oute-les de J'
e j_z com oute-vals j(j+1) t² e m t.

O sub-espeço $\mathcal{E}(jm)$ tem em peral dimensão $\mathcal{E}(j,m)$ pois em peral \hat{J}^2 e \hat{J}_z mão formom CCO.C. for si so.

[] [K,j,m] com K=1,2,...,&(j,m) que fodemos es colher como sendo bose ortonormol de E(j,m). Se m + i existe sub-especiónedos cues { | K, i, m + 1 > j estas relacionados com { | K, i, m > j de bose de E(i, M)

 $\frac{1}{1} \left(\frac{1}{1}, \frac{1}{1}, \frac{1}{1} \right) \propto \hat{\mathcal{I}}_{+} \left(\frac{1}{1}, \frac{1}{1}, \frac{1}{1} \right)$ $\frac{1}{1} \left(\frac{1}{1}, \frac{1}{1}, \frac{1}{1} \right)$

Le ma 40 Sege $K_1 \neq K_2$ tal que $\langle K_1 | m | K_2 | m \rangle = 0$, enter enter en le clarer $\hat{J}_{\pm} | K_1 | m \rangle$ e es loci $\hat{J}_{\pm} | K_2 | m \rangle$ serior ortogramais.

De monstræções: () produte es color $\langle K_1; m | \hat{I}_+ \hat{I}_+ | K_2; m \rangle = \langle K_1; m | (\hat{J}^2 - \hat{I}_2^2 + \hat{I}_4^2) | K_2; m \rangle$ $= [i(i+1)] \hat{I}^2 - m(m+1)] \hat{I}^2] \langle K_1; m | K_2; m \rangle$

loss Ît | Kıjm > e Ît | Kzjm > serios ortosomois se $R_1 \neq K_2$. Le me 5: Pade mas obter base ortomoronal

de $\mathcal{E}(j, m+1)$ de base de $\mathcal{E}(j, m)$ pagendo $|K, j, m \pm 1\rangle = \frac{1}{\sqrt{|j+1| - m(m \pm 1)}} \hat{J}_{\pm} |\kappa m_j\rangle$

Demonstreção do De le mo ℓ , re Dase de E(jm) está orar oralizade, então se $K_1 = K_2 = K$ teorar $\{k_j = 1\}$ $\{k_j = 1\}$

logo conjunte {\mathred{Inj, m \dagger 1}} são ortomor mais. Mos ainde mão produmos que são base de E(j, m \dagger 1).

Supombomon que existe Ret $|\chi, j, m+1\rangle$ enteremonal e todon $|K, j, m+1\rangle = \frac{1}{4\pi} \hat{J}_{+}|K, j, m\rangle$. Entere $\hat{J}_{+}|\chi, j, m+1\rangle \propto |\chi, j, m\rangle$, que teré que ser ortogonal e todon on $|K, j, m\rangle$ que boronom sone $\mathcal{E}(j, m)$. Non isto é imponí-

lel pais / | k j m > j é Dose complete de E(j, on)
for hipôtere de partide.

La Nois pade haver | x, j, m+1 > orta

Now pade haven $|x,j,m+1\rangle$ orto escal a todor $|x,j,m+1\rangle = \frac{1}{4\pi} \hat{J}_{+}|x_{jm}\rangle$ => $|x_{j,m+1}\rangle$ formam base $\mathcal{E}(j,m+1)$.

Noto: Fice clars que e dimensão dos sub-esfeços $\mathcal{E}(j,m+1)$, $\mathcal{E}(j,m)$ e $\mathcal{E}(j,m-1)$ são ionais, então $\mathcal{E}(j,m) = \mathcal{E}(j,m)$.

Métado padrão de construir estes auto lecs dos serb-espeços E(j,m):

> g(j) different values of kk = 1g(j) $\left| \mathcal{E}(j, m = j) \right| \left| 1, j, j \right\rangle \qquad \left| 2, j, j \right\rangle \dots \qquad \left| g(j), j, j \right\rangle$ $J_ J_ J_$ $arrow J_{-}$ $\mathscr{E}(j, m = j - 1) \mid 1, j, j - 1 \rangle \quad |2, j, j - 1 \rangle \dots \quad |g(j), j, j - 1 \rangle$ $\bigvee J_{-} \qquad \bigvee J_{-} \qquad \bigvee J_{-}$ (2j + 1) $\begin{cases} \text{spaces} \\ \mathscr{E}(j,m) \end{cases} \begin{cases} \vdots \\ [1,j,m\rangle \\ [2,j,m\rangle \dots \\ [g(j),j,m\rangle \end{cases}$ $\downarrow J_- \qquad \downarrow J_- \qquad \downarrow J_ \left\{ \mathscr{E}(j, m = -j) \mid | 1, j, -j \right\} \quad \left| 2, j, -j \right\} \dots \quad \left| g(j), j, -j \right\}$ $\mathscr{E}(k = g(j), j)$ $\mathscr{E}(k=1,j)$ $\mathscr{E}(k=2,j)$ g(j) spaces $\mathscr{E}(k,j)$

Note: Obomomos bose fadrão a estes conjuntos ossion construidos.

Note: Peremos es sequintes relações de 27 tempor moligações e de pado:

$$\langle K,j,m|K',j',m'\rangle = \langle K,K',S,j',S_{ij'},S_{m,m'}\rangle,$$

$$\frac{\langle K,j,m|K',j',m'\rangle = \langle K,K',S_{ij'},S_{m,m'}\rangle,$$

on de saba mos que outs-les de obser lé le J² e J₂ com diferentes outs-las ses ne cessoriemente ortogomois.

Note: O indice « corres fondoré cos mime ros quênticos essociados e outros estras do CCOC., Â, Ĵ, Ĉ, ..., fore elém de J'e Jz.

Por simplicidade consideraciones efenes \hat{A} , $CCOC = \{\hat{A}, \hat{J}^2, \hat{J}_z\}$, $\left[\hat{A}, \hat{\xi}^2\right] = \left[\hat{A}, \hat{J}_z\right] = 0$

Enter serb-esfeço E(j,m) é dito plobalmente invloriente pele ocção de A, i. e Â(kjm) E E(j,m) se (kjm) E E(j,m), pois

$$\hat{\mathcal{I}}^{2}(\hat{A}|\kappa_{j}m) = \hat{A}\hat{\mathcal{I}}^{2}|\kappa_{j}m) = \mathcal{I}(j+1)\hat{E}(\hat{A}|\kappa_{j}m)$$

$$\hat{\mathcal{I}}_{2}(\hat{A}|\kappa_{j}m) = \hat{A}\hat{\mathcal{I}}_{2}|\kappa_{j}m) = m\hat{E}(\hat{A}|\kappa_{j}m)$$

$$\hat{E}(\hat{A}|\kappa_{j}m) \in \mathcal{E}(j,m).$$

Note: Os ento-tals de À defendarios afenos de K e de je, viois defendende de m,

 $\hat{\lambda} | \kappa_{j} m \rangle = \alpha_{\kappa,j} | \kappa_{j} m \rangle$.

Épécil mostror que se comenormos por m= j E(j,i) enter é notural escretor

 $\hat{A}|\kappa,j,l\rangle=\omega_{\kappa,j}|\kappa,j,l\rangle$

e notendo que $[\hat{A}, \hat{J}_{x}] = [\hat{A}, \hat{J}_{y}] = 0$, entre $[\hat{A}, \hat{J}_{\pm}] = 0$, loss

 $\hat{\mathcal{L}}_{in} = \hat{\mathcal{L}}_{in} = \hat{\mathcal{$

(=> Â| K, j, j-1 > = Q x ; |K, j, j-1 >

 $\Rightarrow \hat{A} | \kappa_{i} m \rangle = \alpha_{\kappa_{i}} | \kappa_{i} m \rangle.$

Note: Hé cosor em que exj = ex. Litomo de Hidrogémis, Ĥ. Ours des lentegens:

Lo Não sabemos em geral dimensão de E(jm), g(j,m). Defende do siste ma pisico.

Los Os sub-especies mas ses als balomente interientes pala ectue ças de É (por ex J. aplicado a E(j,m) le la-mos para E(j,m+1))

Otil interodupir outro tipo de sub-espeços onde piraconos k e j, E(k,j)

Les dimensées conhecide, 2j+1, pare qualques lebor de K.

Lo E(K,j) são plabalomente inv. pelo eccão de É (sá mudam on).

Or feredores de tipe $f(\vec{J})$ serves metriges Li agemeis for Decos menter esteços (de Blemente inv. felo o caso de \hat{J}).

	$\mathscr{E}(k,j)$	$\mathscr{E}(k',j)$	$\mathscr{E}(k',j')$	•••
$\mathscr{E}(k,j)$	matrix $(2j+1) \times (2j+1)$	0	0	0
$\mathscr{E}(k',j)$	0	matrix $(2j+1) \times (2j+1)$	0	0
$\mathscr{E}(k',j')$	0	0	matrix $(2j'+1)\times(2j'+1)$	0
•	0	0	0	0

Comotemas que $\hat{J}^2(\kappa_j, m) = j(j+1)\hat{t}^2(\kappa_j, m)$, $\hat{J}_2(\kappa_j, m) = m\hat{t}(\kappa_j, m)$, $\hat{J}_2(\kappa_j, m) = m\hat{t}(\kappa_j, m)$, $\hat{J}_2(\kappa_j, m) = m\hat{t}(\kappa_j, m)$,

enter on elementer de matriz server $\langle \kappa_{j}m|\hat{\mathcal{I}}^{2}|\kappa'_{j}'m'\rangle = j'(j'+1)\hat{\mathcal{I}}^{2}|\kappa_{k}'_{j}|\zeta_{mm'}|$ $\langle \kappa_{j}m|\hat{\mathcal{I}}_{2}|\kappa'_{j}',m'\rangle = m'\hat{\mathcal{I}}.\mathcal{L}_{kk'}\mathcal{L}_{jj'}.\mathcal{L}_{mm'}$ $\langle \kappa_{j}m|\hat{\mathcal{I}}_{2}|\kappa'_{j}',m'\rangle = \mathcal{L}_{j}(j'+1)-m'(m'+1).\mathcal{L}_{kk'}$ $\mathcal{L}_{kk'}$ $\mathcal{L}_{kk'}$ $\mathcal{L}_{j}m|\hat{\mathcal{L}}_{kk'}$

que defendem aferror de je m e moo de K. Pademon ex creker $J_{\pm} = J_{x} \pm \hat{J}_{y}$ comes $\langle N_{j}m|\hat{J}_{x}|\hat{K}_{j}'m'\rangle = \frac{1}{2}\left[\hat{J}_{j}'(j+1) - m'(m'+1).S_{m,m'+1} + \hat{J}_{j}'(j+1) - m'(m'-1).S_{m,m'-1}\right]$ $+ \hat{J}_{j}'(j+1) - m'(m'-1).S_{m,m'-1}$ $+ \hat{J}_{j}'(j+1) - m'(m'-1).S_{m,m'-1}$

 $\langle K_{j}m|\tilde{J}_{j}|K_{j}'m'\rangle = \frac{1}{22} \int \tilde{J}_{j}(\tilde{J}_{j}+1) - m'(m'+1) \cdot \delta_{m,m'+1} - \int \tilde{J}_{j}(\tilde{J}_{j}+1) - m'(m'-1) \cdot \delta_{m,m'-1} \cdot \delta_{kk} \cdot \delta_{jj}$

Para fodermos construir es matrizes correspondentes a oferadores $f(\vec{z})$ reste-mos openos colculor es motrizes $(\vec{J}_{i})^{(d)}$ fora objern j

Exemple's Coso j=0, sub-esfo j=0 $\in (\kappa,j=0)$ tem dimensées 2j+1=1, fois m=0. Entée os moteriques serié $(\hat{J}_{i})^{(0)}$ minmeros, $(\hat{J}_{z})^{(0)}=0=(\hat{J}_{x})^{(0)}=(\hat{J}_{y})^{(0)}$

Exemple: Case
$$j = 1/2$$
, sub-expose $\mathcal{E}(K, j = \frac{1}{2})$
tem diamentes $2j+1=2$ $(M=\pm 1/2)$. As once-
trives $(\hat{J}_{i})^{(1/2)}$ series 2×2

$$(\hat{J}_{z})^{(1/2)} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$(\hat{J}_{z})^{(1/2)} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$(\hat{J}_{y})^{(1/2)} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$(\hat{J}_{y})^{(1/2)} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Exemple: Coso
$$j=1$$
, sub-espece $\mathcal{E}(K,j=1)$
tem Lomensão $\mathcal{Q}_{ij}+1=3$ (m=-1,0,1). As
matrices serão 3×3

$$(\tilde{J}_{z})^{(1)}=\pm\begin{pmatrix}100\\000\\00-1\end{pmatrix}$$

$$(\tilde{J}_{x})^{(1)}=\pm\begin{pmatrix}010\\101\\010\end{pmatrix}$$

$$(\tilde{J}_{y})^{(1)}=\pm\begin{pmatrix}0.10\\101\\010\end{pmatrix}$$

(9.4) Aplicação ao Momento Angular Orbital

Vomos agora aflicar ester conceitor as cosa concreto do momento angular orbital, $\hat{\Gamma} = \hat{R} \times \hat{P}$, de uma fartícula rem rf.m.

Noto à Usaremos Le lem vez de Jej, fora identificar este moments angular como moments angular or Sital.

Vocan ver que outo-vols de L'serois l(l+1) l^2 com l=0,1,2,..., sendo 0 m=-l,-l+1,...,0,...,l.

Vernor tembém mostrier quel a per me des p. o. des outo-este dos comuns a L² e L₂.

= n² sen o bododo

9.4.1) Operedores de momente enquier et bitel en coordene des esperices Os efercéares Lx, Ly, Lz em coordene-des contesiemes ses, me refres. \152>}, $\hat{L}_{x} = \frac{1}{2} \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$

$$\hat{L}_{y} = \frac{1}{i} \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right),$$

$$\hat{L}_{z} = \frac{1}{i} \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right).$$

Jé em coordenador espérices, têm a forma

$$\hat{L}_{x} = 2 \left(\text{Nem} \phi \frac{\partial}{\partial \theta} + \frac{\cos \phi}{\log \theta} \frac{\partial}{\partial \phi} \right),$$

$$\hat{L}_{y} = 2 \left(-\cos \phi \frac{\partial}{\partial \theta} + \frac{\text{Nem} \phi}{\log \theta} \frac{\partial}{\partial \phi} \right),$$

$$\hat{L}_{z} = -2 \left(\frac{\partial}{\partial \phi} \frac{\partial}{\partial \phi} + \frac{\cos \phi}{\log \theta} \frac{\partial}{\partial \phi} \right),$$

$$\hat{L}_{z} = -2 \left(\frac{\partial}{\partial \phi} \frac{\partial}{\partial \phi} + \frac{\cos \phi}{\log \theta} \frac{\partial}{\partial \phi} \right).$$

Dester expressões L'e L'± são triviel mente ablidas, tendo por mo

$$\hat{L}^2 = -\frac{1}{2}\left(\frac{\partial^2}{\partial \theta^2} + \frac{1}{16}\frac{\partial}{\partial \theta} + \frac{1}{16}\frac{\partial^2}{\partial \phi^2}\right),$$

$$\hat{L}_{\pm} = \pm e^{\pm i\phi} \left(\pm \frac{2}{50} + i \pm \frac{1}{50} \frac{2}{50} \right).$$

Neste refresenteção es f. O. serãos identifica dos for (7,0,0).

Como L'e Lz nos defendem de r no sua forma diferencial (em coor decredor espéricos), pode mos en tos ver z como um parâmetro e escrever os outo-estedos de l' e de Lz como

$$\varphi_{\ell,m}(\pi,\theta,\phi) = \varphi(\pi). Y_{\ell}^{m}(\theta,\phi).$$

Poderemos entos eliminos p(r) dos egos de outo-lels e outo-lecs de L' e Lz,

$$\left(\frac{1}{2} \varphi_{em}(\pi, \theta, \phi) \right) = m \pm . \varphi_{em}(\pi, \theta, \phi)$$

$$\left(\frac{1}{2} \varphi_{em}(\pi, \theta, \phi) \right) = m \pm . \varphi(\pi). Y_{e}(\theta, \phi)$$

e ossim podemos es crever estes eges de outo-labs e outo-lecs como

$$\sum_{\alpha} Y_{\alpha}^{(\alpha)}(\theta, \phi) = \mathbb{Q}(\mathbb{Q}+1) \mathbb{Z}^{2} Y_{\alpha}^{(m)}(\theta, \phi) ,$$

$$\sum_{k=1}^{\infty} Y_{k}^{m}(0,\phi) = m + Y_{k}^{m}(0,\phi)$$