Project 2 – Exploratory Data Analysis (EDA) of Two Data Sets ALY 6000

Project Instructions

In this two-part project, you will explore operations required to analyze a data set. One package that supports data analysis is the tidyverse package. You may use the tidyverse to complete this project or make use of the built in functionality of R. Displayed answers reflect a view of the data using operations from the tidyverse packages.

Note: Utilize the file **project2_tests.R** with the code below to run a series of tests (not comprehensive) on your code. Any failed test signals that something is wrong with the results or that you have not utilized the specified variable names. These tests will only run correctly if you match the variables names as stated in each problem.

```
p_load(testthat)
#testthat::test_file("project2_tests.R")
```

Setting Up Your Project

Complete the following steps to create and organize your initial R project.

- 1. Create a new R Project called **Lastname_Project2**.
- 2. Create a new R Script and save it into the R folder of your project as **Lastname_Project2.R**.
- 3. Download the data set **2015.csv** from Canvas and save it into the project folder.
- 4. Download the data set **baseball.csv** from Canvas and save it into the project folder.
- 5. Load any libraries/packages that you will use as the first lines of the code. For example, if you choose to use the tidyverse package then you would include the following line of code.

```
library(tidyverse)
```

Assignment Part 1

Data can measure many things. Countries, for example, can be assessed against a variety of metrics. In addition to the gross domestic product (GDP) of a given country, researchers consider other data points in assessing the quality of life across the globe. To understand

how data can be wrangled to measure freedom, trust, and other measures of human life, complete the following steps. The assignment displays the expected outcome after each step.

1. Read the data set **2015.csv** and store it in a variable called **data_2015**. You can test that you loaded it correctly with the code utilizing the head function below.

```
head(data 2015)
# A tibble: 6 × 12
 Country Region Happi...¹ Happi...² Stand...³ Econo...⁴ Family Healt...⁵
Freedom Trust...6
                  <dbl>
 <chr>
          <chr>>
                          <dbl>
                                 <dbl>
                                         <dbl> <dbl>
                                                       <dbl>
<dbl>
       <dbl>
1 Switzer… Weste…
                      1 7.59 0.0341
                                          1.40
                                                 1.35
                                                       0.941
0.666
       0.420
                      2 7.56 0.0488
2 Iceland Weste...
                                          1.30
                                                 1.40
                                                       0.948
0.629 0.141
3 Denmark Weste...
                      3 7.53 0.0333
                                          1.33
                                                 1.36
                                                       0.875
0.649
       0.484
                      4 7.52 0.0388
                                          1.46
                                                       0.885
4 Norway
          Weste...
                                                 1.33
0.670
      0.365
          North...
                      5 7.43 0.0355
                                          1.33
                                                 1.32
                                                       0.906
5 Canada
0.633
       0.330
6 Finland Weste...
                      6
                           7.41 0.0314
                                          1.29
                                                 1.32
                                                       0.889
0.642
       0.414
# ... with 2 more variables: Generosity <dbl>, `Dystopia Residual` <dbl>,
and
   abbreviated variable names 1`Happiness Rank`, 2`Happiness Score`,
   3`Standard Error`, 4`Economy (GDP per Capita)`,
   5`Health (Life Expectancy)`, 6`Trust (Government Corruption)`
```

2. Use the function **names** to produce the column names for your data set.

```
names(data_2015)

[1] "Country" "Region"
[3] "Happiness Rank" "Happiness Score"
[5] "Standard Error" "Economy (GDP per Capita)"
[7] "Family" "Health (Life Expectancy)"
[9] "Freedom" "Trust (Government Corruption)"
[11] "Generosity" "Dystopia Residual"
```

- 3. Use the **view** function to view the data set in a separate tab.
- 4. Use the **glimpse** function to view your data set in another configuration.

```
glimpse(data_2015)
```

5. Install and load the **janitor** package. Janitor has a function called **clean_names** that can be given a data frame to make the names more R friendly. Be sure to store the resulting converted data frame in a variable.

```
library(janitor)
data_2015 <- clean_names(data_2015)
data_2015</pre>
```

6. Select from the data set the **country**, **region**, **happiness_score**, and **freedom columns**. Store this new table as **happy_df**.

```
# A tibble: 158 × 4
                                         happiness score freedom
   country
               region
   <chr>>
               <chr>>
                                                   <dbl>
                                                           <dbl>
 1 Switzerland Western Europe
                                                    7.59
                                                           0.666
 2 Iceland Western Europe
                                                    7.56
                                                           0.629
 3 Denmark
               Western Europe
                                                    7.53
                                                           0.649
 4 Norway
               Western Europe
                                                    7.52
                                                           0.670
5 Canada
6 Finland
               North America
                                                    7.43
                                                           0.633
              Western Europe
                                                    7.41
                                                           0.642
 7 Netherlands Western Europe
                                                    7.38
                                                           0.616
 8 Sweden
              Western Europe
                                                    7.36
                                                           0.660
 9 New Zealand Australia and New Zealand
                                                    7.29
                                                           0.639
10 Australia
               Australia and New Zealand
                                                    7.28
                                                           0.651
# ... with 148 more rows
```

7. Slice the first 10 rows from **happy_df** and store it as **top_ten_df**.

```
# A tibble: 10 \times 4
                                        happiness_score freedom
   country
              region
   <chr>>
              <chr>>
                                                  <dbl>
                                                          <dbl>
 1 Switzerland Western Europe
                                                   7.59
                                                          0.666
 2 Iceland
              Western Europe
                                                   7.56
                                                         0.629
3 Denmark
              Western Europe
                                                   7.53
                                                          0.649
4 Norway
              Western Europe
                                                   7.52
                                                         0.670
5 Canada
              North America
                                                   7.43
                                                         0.633
6 Finland
              Western Europe
                                                   7.41
                                                         0.642
7 Netherlands Western Europe
                                                   7.38
                                                          0.616
              Western Europe
8 Sweden
                                                   7.36
                                                         0.660
9 New Zealand Australia and New Zealand
                                                   7.29
                                                         0.639
10 Australia Australia and New Zealand
                                                   7.28
                                                         0.651
```

8. From **happy_df** filter the table for freedom values under 0.20. Store this new table as **no_freedom_df**.

1 Pakistan 5.19 0.121	Southern Asia
2 Montenegro	Central and Eastern Europe
5.19 0.183 3 Bosnia and Herzegovina	Central and Eastern Europe
4.95 0.0924 4 Greece	Western Europe
4.86 0.0770	western Lurope
5 Iraq 4.68 0	Middle East and Northern Africa
6 Sudan	Sub-Saharan Africa
4.55 0.101 7 Armenia	Central and Eastern Europe
4.35 0.198 8 Egypt	Middle East and Northern Africa
4.19 0.173	
9 Angola 4.03 0.104	Sub-Saharan Africa
10 Madagascar	Sub-Saharan Africa
3.68 0.192 11 Syria	Middle East and Northern Africa
3.01 0.157 12 Burundi	Sub-Saharan Africa
2.90 0.118	Sub-Saliai ali Ali Ica
# with abbreviated vari	able name ¹happiness_score

9. Arrange the values in **happy_df** in descending order by their freedom values. Store this new table as **best_freedom_df**.

# A tibble: 158 × 4		
country	region	happiness_score
freedom		
<chr></chr>	<chr></chr>	<dbl></dbl>
<dbl></dbl>		
1 Norway	Western Europe	7.52
0.670		
2 Switzerland	Western Europe	7.59
0. 666		
3 Cambodia	Southeastern Asia	3.82
0.662		
4 Sweden	Western Europe	7.36
0.660		
5 Uzbekistan	Central and Eastern Europe	6.00
0.658		
6 Australia	Australia and New Zealand	7.28
0.651		
7 Denmark	Western Europe	7.53
0.649		
8 Finland	Western Europe	7.41
ð.642		

	Arab	Emirates	Middle	East	and	Northern	Africa	6.90
0.642								
10 Qatar			Middle	East	and	Northern	Africa	6.61
0.640								
# with 1	L48 mc	ore rows						
	0.642 10 Qatar 0.640	0.642 10 Qatar 0.640	0.642 10 Qatar	0.642 10 Qatar Middle 0.640	0.642 10 Qatar Middle East 0.640	0.642 10 Qatar Middle East and 0.640	0.64210 Qatar Middle East and Northern0.640	10 Qatar Middle East and Northern Africa 0.640

10. Create a new column **data_2015** called **gff_stat**. For each row, the **gff_stat** is the sum of the family, freedom, and generosity values. Store the resulting table back into the **data_2015** variable.

```
# A tibble: 158 × 13
   country region happi...¹ happi...² stand...³ econo...⁴ family healt...⁵
freedom trust...6
   <chr>>
           <chr>
                    <dbl>
                             <dbl>
                                     <dbl>
                                             <dbl> <dbl>
                                                             <dbl>
<dbl>
        <dbl>
                             7.59 0.0341
                                              1.40
                                                             0.941
 1 Switze... Weste...
                        1
                                                      1.35
0.666
        0.420
 2 Iceland Weste...
                        2
                              7.56 0.0488
                                              1.30
                                                      1.40
                                                             0.948
0.629
        0.141
 3 Denmark Weste...
                        3
                             7.53 0.0333
                                              1.33
                                                      1.36
                                                             0.875
0.649
        0.484
 4 Norway Weste...
                        4
                              7.52 0.0388
                                              1.46
                                                      1.33
                                                             0.885
0.670
        0.365
 5 Canada North...
                        5
                              7.43 0.0355
                                              1.33
                                                      1.32
                                                             0.906
0.633
        0.330
 6 Finland Weste...
                        6
                              7.41 0.0314
                                              1.29
                                                      1.32
                                                             0.889
0.642
        0.414
 7 Nether... Weste...
                        7
                              7.38 0.0280
                                              1.33
                                                      1.28
                                                             0.893
0.616
        0.318
 8 Sweden Weste...
                        8
                              7.36 0.0316
                                              1.33
                                                      1.29
                                                             0.911
0.660
        0.438
 9 New Ze... Austr...
                        9
                              7.29 0.0337
                                              1.25
                                                      1.32
                                                             0.908
0.639
        0.429
10 Austra... Austr...
                       10
                              7.28 0.0408
                                              1.33
                                                      1.31
                                                             0.932
0.651
        0.356
# ... with 148 more rows, 3 more variables: generosity <dbl>,
    dystopia_residual <dbl>, gff_stat <dbl>, and abbreviated variable
names
#
    happiness_rank, 2happiness_score, 3standard_error,
    ⁴economy_gdp_per_capita, ⁵health_life_expectancy,
    ftrust government corruption
```

11. Group the **happy_df** data set by region. Run a summary that provides the number of countries in each region in a column called **country_count**, the **mean** happiness for each region in a column called **mean_happiness**, and the **mean** freedom of each region in a column called **mean_freedom**. Store your resulting table in a variable called **regional_stats_df**.

```
# A tibble: 10 × 4
region country count mean happiness
```

Assignment Part 2

In Part Two of this R Project, you will analyze a data set of batting statistics from the 1986 Major League Baseball season. You will then draft a brief executive summary that corresponds to the data analysis. Details for both the data analysis and executive summary follow below.

- 12. Download the **baseball.csv** data set that represents batting statistics from the 1986 Major League Baseball season. Read this data set in a **variable** called **baseball**.
- 13. Spend time with the data using various exploration functions to get a general feel for what you are working with. For more information on this data set and its various columns, see Baseball Reference's 1986 Major League Standard Batting.
- 14. Remove (**filter**) from **baseball** any player with 0 at bats (AB). Store the result in **baseball**.

```
# A tibble: 726 × 16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            H `2B`
                                       Last First
                                                                                                                                                                                                                                                                                                                            G
                                                                                                                                                                                                                                                                                                                                                                                          PA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               `3B`
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    HR
 RBI
                                                                                        SB
                                       <chr> <chr> <dbl> 
 <dbl> <dbl>
            1 Acker Jim
                                                                                                                                                                                                                                    27
                                                                                                                                                                                                                                                                                                                21
                                                                                                                                                                                                                                                                                                                                                                                             28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3
```

2 0	Addu 0	Jim	26	3	13	11	2	1	1	0	0
3	Agua	Luis	27	62	146	133	17	28	6	1	4
	Agui…	Rick	24	32	57	51	4	8	0	0	2
	Aldr	Mike	25	84	256	216	27	54	18	3	2
25 6 5	Alex	Doyle	35	18	45	38	2	8	1	0	0
_	Alla	Andy	24	101	324	293	30	66	7	3	1
	Almon	Bill	33	102	230	196	29	43	7	2	7
9	Amel	Ed	27	8	11	11	0	1	0	0	0
	Ande	Larry	33	48	7	6	0	0	0	0	0
	0 with ol>	716 more	rows,	and	3 more	variab	les:	CS <dbl< td=""><td>>, BB</td><td><dbl>,</dbl></td><td>S0</td></dbl<>	>, BB	<dbl>,</dbl>	S0

15. Add a new column batting average called **BA**. Batting average is computed by the number of hits (H) divided by the number of at bats (AB). Store the result in **baseball**.

# A tibbl	le: 726 >	1 7								
Last	First	Age	G	PA	AB	R	Н	`2B`	`3B`	HR
RBI SE										
	<chr> < <</chr>	dbl>	<dbl></dbl>	<dbl></dbl>						
<dbl> <db< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></db<></dbl>										
1 Acker	Jim	27	21	28	28	1	3	1	0	0
0 0						_				
2 Addu	Jim	26	3	13	11	2	1	1	0	0
0 0					422	4=		_	_	
3 Agua	Luis	27	62	146	133	17	28	6	1	4
13 1	ما داد	24	22	- 7	Г1	4	0	^	0	2
4 Agui	KICK	24	32	57	51	4	8	0	0	2
6 0 5 Aldr…	Miko	25	84	256	216	27	54	18	3	2
25 1	итке	25	04	250	210	21	54	10	5	2
6 Alex	Dovle	35	18	45	38	2	8	1	0	0
5 0	DOYIC	23	10	73	50		O		U	U
7 Alla…	Andv	24	101	324	293	30	66	7	3	1
29 10	.							•		_
8 Almon	Bill	33	102	230	196	29	43	7	2	7
27 11										
9 Amel…	Ed	27	8	11	11	0	1	0	0	0
0 0										
10 Ande	Larry	33	48	7	6	0	0	0	0	0
0 0										
# with	716 more	row	s, and	4 mor	re vari	iables:	CS <0	dbl>, E	BB <db]< td=""><td>L>, SO</td></db]<>	L>, SO

<dbl>, # BA <dbl>

16. On-base percentage (OBP) is arguably a better statistic than batting average. Create a column called **OBP** that computes this stat as (H + BB) / (AB + BB). Store the result in **baseball**.

III bascbail.								
# A tibble: 726	× 18							
Last First	Age (G PA	AB	R	Н	`2B`	`3B`	HR
RBI SB								
<chr> <chr> <</chr></chr>	dbl> <dbl< td=""><td>> <dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></dbl<>	> <dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
<dbl> <dbl></dbl></dbl>								
1 Acker Jim	27 2:	L 28	28	1	3	1	0	0
0 0					_		_	
2 Addu Jim	26	3 13	11	2	1	1	0	0
0 0	27 6	146	422	47	20	_	4	4
3 Agua… Luis	27 63	2 146	133	17	28	6	1	4
13 1	24 3	2 57	51	4	8	0	0	2
4 Agui… Rick 6 0	24 3.	2 37	21	4	0	v	Ø	2
5 Aldr… Mike	25 84	1 256	216	27	54	18	3	2
25 1	25 0-	+ 250	210	2,	J -1	10	,	
6 Alex Doyle	35 18	3 45	38	2	8	1	0	0
5 0				_		_	· ·	· ·
7 Alla Andy	24 10:	L 324	293	30	66	7	3	1
29 10								
8 Almon Bill	33 10	2 230	196	29	43	7	2	7
27 11								
9 Amel… Ed	27	3 11	11	0	1	0	0	0
0 0								
10 Ande… Larry	33 48	3 7	6	0	0	0	0	0
0 0								
# with 716 mor	e rows, a	nd 5 mo	re vari	iables:	CS <0	ibl>, E	BB <dbl< td=""><td>L>, SO</td></dbl<>	L>, SO
<dbl>,</dbl>	B . U.T.							
# BA <dbl>, OB</dbl>	h <qpt></qpt>							

17. Determine the 10 players who struck out the most this season. Store these results as **strikeout_artist.**

- · · · · · · - · · - · ·									
# A tibble: 10		6	DA	AD	ъ		` 2D`	` 2D`	Ш
Last First RBI SB	Age	G	PA	AB	K	Н	28	38	HR
<chr> <chr></chr></chr>	<dbl></dbl>								
<dbl> <dbl> 1 Inca Pete</dbl></dbl>	22	153	606	540	82	135	21	2	30
88 3		233	000	3.0	02	233		_	30
2 Deer Rob 86 5	25	134	546	466	75	108	17	3	33
3 Cans Jose	21	157	682	600	85	144	29	1	33
117 15	2.4	455	660	616	0.2	163	22		27
4 Pres Jim 107 0	24	155	660	616	83	163	33	4	27

5 Tart 96 4	Danny 23	137	578	511	76	138	25	6	25
6 Balb 88 0	Steve 29	138	562	512	54	117	25	1	29
7 Barf 108 8	Jesse 26 B	158	671	589	107	170	35	2	40
8 Samu 78 42	Juan 25	145	633	591	90	157	36	12	16
9 Murp 83 7	Dale 30	160	692	614	89	163	29	7	29
10 Stra 93 28	Darr 24	136	562	475	76	123	27	5	27
# with <dbl></dbl>	5 more vari	ables:	CS <db:< td=""><td>l>, BB</td><td><dbl>,</dbl></td><td>SO <0</td><td>dbl>, BA</td><td>A <dbl< td=""><td>>, OBP</td></dbl<></td></db:<>	l>, BB	<dbl>,</dbl>	SO <0	dbl>, BA	A <dbl< td=""><td>>, OBP</td></dbl<>	>, OBP

18. To be eligible for end-of-season awards, a player must have either at least 300 at bats or appear in at least 100 games. Keep only the players who are eligible to be considered and store them in a variable called **eligible df.**

Considere	u anu stor	e them	ımav	ariabic	Cancu	Cligib	ic_ui.			
	le: 251 ×									
		Age	G	PA	AB	R	Н	`2B`	`3B`	HR
RBI SI										
	<chr> <d< td=""><td>bl> <0</td><td>dbl> ·</td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td><td><dbl></dbl></td></d<></chr>	bl> <0	dbl> ·	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
<db1> <dl< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td></dl<></db1>								_	_	_
1 Alla	Andy	24	101	324	293	30	66	7	3	1
29 10	D:11	22	100	220	100	20	43	_	2	7
2 Almon	RIII	33	102	230	196	29	43	7	2	7
27 11	Tanı	22	1 2 1	452	425	40	112	21	4	11
3 Armas 58 0	rony	32	121	453	425	40	112	21	4	11
4 Ashby	Λlan	34	120	361	315	24	81	15	0	7
38 1	AIGH	J -	120	301	313	24	01	10	U	,
5 Back	Wallv	26	124	440	387	67	124	18	2	1
27 13					30,	0,		-0	_	_
6 Bain	Haro	27	145	618	570	72	169	29	2	21
88 2										
7 Balb	Steve	29	138	562	512	54	117	25	1	29
88 0										
8 Barf…	Jesse	26	158	671	589	107	170	35	2	40
108	3									
9 Barr…	Marty	28	158	713	625	94	179	39	4	4
60 15										
10 Bass	Kevin	27	157	640	591	83	184	33	5	20
79 22				_	_					
	241 more	rows	, and	5 mor	e vari	ables:	CS <0	lbl>, E	BB <dbl< td=""><td>L>, SO</td></dbl<>	L>, SO
<dbl>,</dbl>	II 1									
# BA <	dbl>, OBP	< ab1 ;	>							

19. For eligible players, create a histogram of batting average.

20. Important statistics for baseball players include the on-base percentage (OBP), the number of home runs (HR), the number of runs batted-in (RBI) among others. Analyze the eligible players and select a player that in your opinion is deserving of the Most Valuable Player (MVP) award. This choice must be supported by your data. In your report, you should present your data analysis supported by relevant data points and statistics that supports your recommendation. Produce a concise, written executive summary that focuses on the baseball data analysis. In addition to the title page and citations, it contains an introduction, presentation of written key findings, and a conclusion that contains your recommendations as supported by the data. Your executive summary should adhere to basic APA guidelines.

Submitting to Canvas

When you are satisfied with your solution, take the following steps:

- 1. **Remove** any lines in your code with "install.packages."
- 2. **Remove** any lines in your code that use the **view** function.
- 3. Submit two (2) files under the appropriate assignment in Canvas:
 - 1. Your R script named **Lastname_Project2.R**.
 - 2. A PDF file of your four-page report titled **Lastname_Project2_Report.pdf**.

Your report (on the baseball analysis only) should contain the following information formatted as specified below:

Title Page

Include your name, assignment title, and submission date

Introduction and Key Findings

Include an overview of the assignment and any findings

Conclusion/Recommendations

Include evidence-based recommendations and visualizations or direct presentation of tabular data

Works Cited

Include all sources, including YouTube videos, instruction materials, Google search results, and texts that informed your study of statistics and R

Your report should be as concise as possible while maintaining fluency. Your key findings will be strongest if supported by visualizations or direct presentation of tabular data.

Your summary must adhere to APA guidelines, including page numbers on each page (including the title page) in the upper right corner. See the following examples for <u>title pages, citations</u>, and <u>general APA formatting</u>.

Congratulations on completing your second project!