DSL 504 Natural Language Processing

Assignment 1

Question 1: Word Segmentation and Part-of-Speech Tagging for English and German

Given a contiguous string of characters (without spaces), first segment it into its most probable sequence of words. Then, for this segmented sequence, determine the most probable sequence of Part-of-Speech (POS) tags. This task will be performed for both English and German, allowing for a comparison of language model performance across morphologically distinct languages.

Example (English):

Input String: thequickbrownfoxjumpsoverthelazydog
Expected Output (Segmentation & POS Tagging):
[(the, DT), (quick, JJ), (brown, JJ), (fox, NN), (jumps, VBZ), (over, IN), (the, DT), (lazy, JJ), (dog, NN)]

Example (German):

Input String: hausundgarten

Expected Output (Segmentation & POS Tagging):

[(Haus, NN), (und, CC), (Garten, NN)]

(Note: German nouns are capitalized, but the input string is lowercase to maintain the challenge of segmentation from a raw stream of characters.)

Corpora:

English: Use the Brown Corpus from nltk for training both the word segmentation model and the POS tagging model.

German: Use the UD_German-GSD corpus (Universal Dependencies project) for training both the word segmentation model and the POS tagging model.

You can download the data by cloning the official GitHub repository: git clone https://github.com/UniversalDependencies/UD German-GSD.git

from conllu import parse

```
# Load helper
def load_ud_conllu(path):
    with open(path, "r", encoding="utf-8") as f:
        sents = parse(f.read())
    tokens = [[tok["form"] for tok in sent] for sent in sents]
    upos = [[tok["upos"] for tok in sent] for sent in sents]
    return tokens, upos

# Path to your cloned repo
root = Path("UD_German-GSD")

# Load train/dev/test
de_train_tokens, de_train_upos = load_ud_conllu(root / "de_gsd-ud-train.conllu")
de_dev_tokens, de_dev_upos = load_ud_conllu(root / "de_gsd-ud-dev.conllu")
de_test_tokens, de_test_upos = load_ud_conllu(root / "de_gsd-ud-test.conllu")
```

This corpus provides word segmentation and POS tagging..

Use the train split for training, dev for tuning, and test for evaluation.

Task Breakdown:

- Word Segmentation Model (for both English and German):
 For each language, train a language model (e.g., a trigram model) on its respective corpus to determine the probability of word sequences.
 Implement a dynamic programming algorithm (like Viterbi or similar) to find the most probable word segmentation for a given input string.
- Part-of-Speech (POS) Tagging Model (for both English and German):
 For each language, train a separate language model (e.g., a trigram) on the POS-tagged sentences of its respective corpus. This model should estimate:

 The probability of a word given its tag (emission probability, e.g., P(word | tag))
 The probability of a tag sequence (transition probability, e.g., P(tag_i | tag_i-1, tag_i-2))

For the segmented word sequence, use this model to find the most probable sequence of POS tags.

Comparative Analysis & Report:

After implementing and testing for both languages:

<u>Observed Differences</u>: How did the performance (e.g., accuracy, types of errors) of the segmentation and POS tagging models differ between English and German?

Test Set and Evaluation:

Test Set Generation: Divide each corpus (Brown for English, Tiger for German) into an 80% training set and a 20% test set. Ensure proper separation (sentences in the test set should not be used for training).

For each sentence in your test set, remove all spaces and create a contiguous character string. You will then attempt to segment and tag these strings.

Evaluation:

For the segmentation task, report the word accuracy for both English and German: (number of correctly segmented words) / (total number of words in the original sentence).

For the POS tagging task, report the POS tagging accuracy for both English and German: (number of correctly tagged words) / (total number of correctly segmented words).

Provide example input strings and their corresponding outputs from your system for both languages.

Example Test Strings (German):

meineelternliebendaswandern (My parents love hiking)

Expected: [(meine, PPER), (Eltern, NN), (lieben, VVFIN), (das, ART), (Wandern, NN)]

autobahnmeistereiverwaltungsgebaeude (Motorway maintenance administration building)

Expected: [(Autobahnmeisterei, NN), (Verwaltungsgebäude, NN)] (Or potentially Autobahn,

Meisterei, Verwaltungsgebäude depending on lexicon and probabilities)

diedonnausindwunderschön (The Danube is beautiful)

Expected: [(Die, ART), (Donau, NN), (sind, VAFIN), (wunderschön, ADJD)]

Submission Requirements:

Model Codes: Your Python code for implementing both the word segmentation model and the POS tagging model for both English and German.

Test Set Generation Code: The code used to prepare your test data for both languages.

Evaluation Code: The code used to calculate and report the accuracies for both languages.

Output Examples: Show the system's output for the provided example test strings and a few of your own for both languages.

Comparative Analysis Report.

Marking Scheme (Total 70 Marks):

5 Marks: Proper training-test data distribution and separation (for both languages).

20 Marks: Word Segmentation Model Implementation:

Trigram language model for segmentation (10 marks - 5 for English, 5 for German)

Dynamic programming algorithm for segmentation (10 marks - 5 for English, 5 for German)

25 Marks: POS Tagging Model Implementation:

Training emission probabilities P(word | tag) (10 marks - 5 for English, 5 for German)

Training transition probabilities P(tag | tag_prev, tag_prev2) (10 marks - 5 for English, 5 for German)

Viterbi-like algorithm for POS tagging (5 marks - 2.5 for English, 2.5 for German)

10 Marks: Evaluation Code and Accuracy Report (5 for English, 5 for German).

10 Marks: Comparative Analysis Report.

Question 2 : Implement and Train a Transition-Based Dependency Parser

The goal of this assignment is to build a simple, data-driven dependency parser from scratch. You will implement a transition-based parser that uses a classifier trained on a treebank to make its decisions.

Dataset: You will use the **Universal Dependencies English-EWT** corpus. You should use the en_ewt-ud-train.conllu file for training your model and the en_ewt-ud-dev.conllu file for evaluating its performance.

You can download the data by cloning the official GitHub repository: git clone https://github.com/UniversalDependencies/UD_English-EWT.git

Transition System: You are required to implement a dependency parser based on the **arc-standard** transition system. The system uses a stack, a buffer, and a set of arcs to build a parse tree. The possible transitions are:

- 1. **SHIFT**: Move the first word from the buffer to the top of the stack.
- 2. **LEFT-ARC(label)**: The word at the top of the stack becomes the head of the second word on the stack. The second word is then popped from the stack.
- 3. **RIGHT-ARC(label)**: The second word on the stack becomes the head of the word at the top of the stack. The top word is then popped from the stack.

Implementation Details:

Your implementation should be divided into the following parts:

Part 1: Data Processing and Oracle Simulation

- 1. **CoNLL-U Parser:** Write a function to read the .conllu files. It should parse each sentence and store its words, POS tags, and gold-standard head-dependent relationships.
- 2. Oracle Simulator: Write a function that takes a gold-standard parsed sentence (from the CoNLL-U file) and simulates the parsing process. For each step (configuration), it should determine the correct oracle transition (SHIFT, LEFT-ARC, or RIGHT-ARC) that leads to the gold-standard tree. This function will generate your training data: a list of (configuration, correct_transition) pairs.

Part 2: Feature Extraction and Model Training

- Feature Extractor: Write a function that takes a parser configuration (stack, buffer) and extracts features. For this assignment, you should implement the following simple features:
 - POS tag of the word on top of the stack.

- o POS tag of the second word on the stack (if it exists).
- POS tag of the first word in the buffer (if it exists).
- POS tag of the second word in the buffer (if it exists).
- 2. **Model Training:** Use the training data generated in Part 1 to train a classifier. This classifier will act as your **oracle** to predict the next transition for a given configuration.

Part 3: Parser Implementation and Evaluation

- Parser: Implement the main parser function. It should take a sentence (a list of words and their POS tags) as input. It will initialize a configuration and then loop, at each step doing the following:
 - Extract features from the current configuration.
 - Use your trained classifier to predict the next transition.
 - Apply the predicted transition to update the configuration. The loop continues until the parsing is complete. The function should return the set of predicted dependency arcs.
- Evaluation: Write an evaluation script that runs your trained parser on the
 en_ewt-ud-dev.conllu dataset. You should calculate the Labeled Attachment Score
 (LAS), which is the percentage of words that were assigned the correct head and the correct
 dependency label.

Some example sentences to test your system:

- "The cat sat on the mat."
- "She eats a green salad."
- "I saw the man with a telescope."

Marking Scheme: (40)

- 1. Part 1: Data Processing and Oracle Simulation (12 marks)
 - o 5 marks Correctly parsing the CoNLL-U file and storing the data structures.
 - 7 marks Correct implementation of the oracle simulator to generate training instances.
- 2. Part 2: Feature Extraction and Model Training (10 marks)
 - o 5 marks Implementation of the feature extraction function.
 - 5 marks Correctly training a scikit-learn classifier with the generated features and labels.

3. Part 3: Parser and Evaluation (15 marks)

- 10 marks Implementation of the core parsing loop that uses the trained model.
- 5 marks Correct implementation of the LAS evaluation metric.

4. Code Quality and Report (3 marks)

 3 marks - Well-structured, commented code and a brief report explaining your design choices and final LAS score.

Question3: Building and Evaluating an Efficient Spelling Corrector

The goal of this assignment is to build a robust spelling corrector that can handle both non-word and real-word errors within one edit distance. A key part of this assignment is to implement and compare two different methods for generating candidate corrections, analyzing their impact on performance and speed.

Dataset: You will use the **Brown Corpus** from the NLTK library to build your vocabulary and language model. This corpus is well-balanced and suitable for gathering word frequency and contextual probabilities.

Implementation Details:

Your task is to create a spelling corrector by implementing the following components.

Part 1: Corpus and Model Preparation

- 1. **Vocabulary and Frequencies:** Process the **Brown corpus** to create a vocabulary of unique words and a frequency distribution (unigram model).
- 2. **Language Model:** Create a bigram probability model from the corpus. This will be used to handle real-word errors by considering the context of a word.

Part 2: Candidate Generation Methods You must implement two distinct methods for generating candidate corrections for a given misspelled word.

1. Method A: Standard Edit Distance 1 Generation

 Write a function that takes a word and generates a set of all possible words at an edit distance of 1 (deletions, transpositions, replacements, and insertions).

2. Method B: Symmetric Delete Spelling Correction

- This is an efficient method for finding candidates.
- Preprocessing Step: Create a dictionary that maps every possible one-character deletion of a vocabulary word back to the original word (e.g., { 'ello':

```
['hello'], 'hllo': ['hello'], ...}).
```

 Candidate Generation Step: To find candidates for a misspelled word, first generate all its one-character deletions. Then, look up these deleted variants in your pre-processed dictionary to find matching vocabulary words.

Part 3: Spelling Correction Logic

- 1. **Non-Word Error Correction:** For a word not found in your vocabulary, use both Method A and Method B to generate candidate sets. The best correction is the candidate with the highest frequency (unigram probability).
- 2. **Real-Word Error Correction:** For a word that *is* in the vocabulary but may be incorrect in its context (e.g., "I ate an **apple**" vs. "I ate an **apply**"), you must:
 - Generate candidate corrections for the target word using one of your methods.
 - Use your bigram model to calculate the probability of the original phrase (e.g., P("an apple")) versus the probability of phrases with the corrected candidates (e.g., P("an apply")).
 - If a candidate phrase has a significantly higher probability, suggest it as the correction.

Part 4: Evaluation

- 1. **Test Set Generation:** Create a test set by taking 10% of the sentences from the Brown corpus. For each sentence, randomly select one word and introduce a single-edit spelling mistake to create both a non-word and a real-word error version.
- 2. **Accuracy:** Report the accuracy of your spelling corrector on both the non-word and real-word test sets.
- 3. **Performance Comparison:** For the non-word error test set, measure and compare the total time taken to generate candidates using Method A versus Method B. Write a brief conclusion on which method is faster and why.

Some example sentences to test your system:

- Non-word error: "I hav a good feeling about this."
- Non-word error: "This is a test sentnce."
- Real-word error: "I would like to sea the world."

• Real-word error: "Please meat me at the station."

Marking Scheme: (40)

1. Part 1: Corpus and Model Preparation (8 marks)

- o 4 marks Correctly building the vocabulary and unigram frequency model.
- o 4 marks Correct implementation of the bigram probability model.

2. Part 2: Candidate Generation Methods (12 marks)

- 6 marks Correct implementation of the standard edit distance 1 generation (Method A).
- 6 marks Correct implementation of the symmetric delete method, including the pre-processing step (Method B).

3. Part 3: Spelling Correction Logic (8 marks)

- o 4 marks Implementation for handling non-word errors using unigram probabilities.
- 4 marks Implementation for handling real-word errors using the bigram model for context.

4. Part 4: Evaluation and Analysis (12 marks)

- o 4 marks Test set generation code.
- 4 marks Accuracy calculation for both error types.
- 4 marks Code for performance comparison (timing) and a clear written conclusion analyzing the speed difference between Method A and Method B.