Cheatsheet: Exercise 4.2

Cheatsheet: Equations Reducible to Quadratic Form (Exercise 4.2)

Class 11 Mathematics (Chapter 4)

Prepared by ExpertGuy

Overview

Equations that appear higher-degree or non-quadratic can often be reduced to the quadratic form $ay^2 + by + c = 0$ using appropriate substitutions. Five types are covered in Exercise 4.2 (PDF pp.216–240).

Note

Always verify solutions by substituting back into the original equation, especially for equations with negative or fractional exponents.

Type I: Equations of the Form $ax^{2n} + bx^n + c = 0$

Concept Substitute $x^n = y$ to reduce to $y^2 + by + c = 0$. Solve for y, then find x using $x^n = y$.

Steps

- 1. Identify the exponent n and set $x^n = y$.
- 2. Rewrite the equation in terms of y.
- 3. Solve the quadratic equation in y using factorization or the quadratic formula.
- 4. Solve for x by taking the n-th root of y.

Example Solve $x^4 - 6x^2 + 8 = 0$:

$$x^4 - 6x^2 + 8 = 0$$
 Let $x^2 = y \implies y^2 - 6y + 8 = 0$
$$(y - 4)(y - 2) = 0 \implies y = 4, 2$$

$$x^2 = 4 \implies x = \pm 2, \quad x^2 = 2 \implies x = \pm \sqrt{2}$$

Solution set: $\{\pm\sqrt{2},\pm2\}$.

Type II: Equations of the Form
$$(x+a)(x+b)(x+c)(x+d)=k$$
, where $a+b=c+d$

Concept Pair terms such that (x+a)(x+d) and (x+b)(x+c) share a common quadratic form. Substitute to reduce to a quadratic equation. **Steps**

- 1. Identify pairs where a + d = b + c.
- 2. Group as [(x+a)(x+d)][(x+b)(x+c)] = k.

- 3. Simplify each pair to $x^2 + (a+d)x + ad$, set equal to y.
- 4. Solve the resulting quadratic in y, then solve for x.

Example Solve (x-5)(x-7)(x+6)(x+4) - 504 = 0:

$$(-5+4) = (-7+6) = -1$$

$$[(x-5)(x+4)][(x-7)(x+6)] = 504$$

$$(x^2 - x - 20)(x^2 - x - 42) = 504$$
Let $x^2 - x = y \implies (y-20)(y-42) = 504$

$$y^2 - 62y + 336 = 0 \implies (y-56)(y-6) = 0$$

$$y = 56, 6 \implies x^2 - x - 56 = 0, \quad x^2 - x - 6 = 0$$

$$x = 8, -7, \quad x = 3, -2$$

Solution set: $\{-7, -2, 3, 8\}$.

Tip

Check the condition a + b = c + d carefully to pair terms correctly.

Type III: Exponential Equations

Concept Equations with variables in exponents, e.g., $a^{2x} + ba^x + c = 0$. Substitute $a^x = y$ to form a quadratic in y.

Steps

- 1. Rewrite exponents to share a common base.
- 2. Set $a^x = y$ and form a quadratic in y.
- 3. Solve for y, then solve $a^x = y$ using logarithms or exponent rules.

Example Solve $4 \cdot 2^{2x+1} - 9 \cdot 2^x + 1 = 0$:

$$8 \cdot (2^{x})^{2} - 9 \cdot 2^{x} + 1 = 0$$
Let $2^{x} = y \implies 8y^{2} - 9y + 1 = 0$

$$(8y - 1)(y - 1) = 0 \implies y = \frac{1}{8}, 1$$

$$2^{x} = \frac{1}{8} = 2^{-3} \implies x = -3, \quad 2^{x} = 1 \implies x = 0$$

Solution set: $\{-3,0\}$.

Type IV: Reciprocal Equations

Concept Equations unchanged when x is replaced by $\frac{1}{x}$, e.g., $ax^4 + bx^3 + cx^2 + bx + a = 0$. Use substitution $x + \frac{1}{x} = y$ or divide by x^2 .

Steps

1. Divide by x^2 to group terms like $x^2 + \frac{1}{x^2}$ and $x + \frac{1}{x}$.

- 2. Set $x + \frac{1}{x} = y$, note $x^2 + \frac{1}{x^2} = y^2 2$.
- 3. Solve the quadratic in y, then solve for x.

Example Solve $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$:

$$6x^{2} - 35x + 62 - \frac{35}{x} + \frac{6}{x^{2}} = 0$$

$$6\left(x^{2} + \frac{1}{x^{2}}\right) - 35\left(x + \frac{1}{x}\right) + 62 = 0$$

$$Let \ x + \frac{1}{x} = y, \quad x^{2} + \frac{1}{x^{2}} = y^{2} - 2$$

$$6(y^{2} - 2) - 35y + 62 = 0 \implies 6y^{2} - 35y + 50 = 0$$

$$(3y - 10)(2y - 5) = 0 \implies y = \frac{10}{3}, \frac{5}{2}$$

$$x + \frac{1}{x} = \frac{10}{3} \implies x = 3, \frac{1}{3}, \quad x + \frac{1}{x} = \frac{5}{2} \implies x = 2, \frac{1}{2}$$

Solution set: $\{\frac{1}{3}, \frac{1}{2}, 2, 3\}$.

Tip

Use $x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2$ to simplify expressions.

Type V: Radical Equations

Concept Equations with radical expressions, e.g., $l(ax^2+bx)+m\sqrt{ax^2+bx+c}=0$. Substitute the radical term to eliminate square roots.

Steps

- 1. Set the radical expression, e.g., $\sqrt{ax^2 + bx + c} = y$.
- 2. Express the quadratic term in terms of y^2 .
- 3. Form and solve a quadratic in y, then solve for x.
- 4. Check for extraneous roots by substituting back.

Example Solve $3x^2 + 2x - \sqrt{3x^2 + 2x - 1} = 3$:

Let
$$\sqrt{3x^2 + 2x - 1} = y \implies 3x^2 + 2x - 1 = y^2$$
 $3x^2 + 2x = y^2 + 1$ $y^2 + 1 - y = 3 \implies y^2 - y - 2 = 0$ $(y - 2)(y + 1) = 0 \implies y = 2, -1$ $3x^2 + 2x - 5 = 0 \implies x = 1, -\frac{5}{3}$. No solution for $y = -1$

Solution set: $\left\{-\frac{5}{3}, 1\right\}$

Warning

Radical equations may introduce extraneous roots. Always verify solutions.

Key Reminders

- For Type I, ensure the correct root (e.g., square or cube root) is applied.
- For Type II, verify the pairing condition a + b = c + d.
- For Type III, check the base of exponents for consistency.
- For Type IV, confirm the equation's symmetry for reciprocal properties.
- $\bullet\,$ For Type V, exclude negative y values for square roots and check for extraneous roots.