জ্ঞানমূলক প্রশ্ন ও উত্তর:

প্রশ্ন-১. রিডক্স বিক্রিয়া কাকে বলে?

উত্তর: ইলেকট্রনীয় মতবাদ অনুসারে, যে বিক্রিয়ায় কোনো পরমাণু বা আয়ন থেকে এক বা একাধিক ইলেকট্রনের অপসারণ ঘটে তাকে জারণ এবং যে বিক্রিয়ায় কোনো পরমাণু বা আয়ন ইলেকট্রন গ্রহণ করে তাকে বিজারণ বলে। জারণ ও বিজারণ বিক্রিয়াকে একসাথে জারণ-বিজারণ বা রিডক্স বিক্রিয়া বলে।

প্রশ্ন-২. মোলার দ্রবণের একক কী?

উত্তরঃ মোলার দ্রবণের একক হলো $molL^{-1}$ ।

প্রশ্ন-৩. টাইট্রোশন কি?

উত্তর: অজানা ঘনমাত্রার কোনো দ্রবণের ঘনমাত্রা নির্ণয়ের লক্ষে উক্ত দ্রবণের কত আয়তনের সাথে কোনো প্রমান দ্রবঁণের কত আয়তন ঠিক ঠিক বিক্রিয়া করতে পারে তা নির্ণয় করার পরীক্ষা কর্মই হলো টাইট্রেশন।

প্রশ্ন-৪. মোলরিটি কী?

উত্তর: নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত দ্রবের মোল সংখ্যাকে দ্রবণের মোলারিটি বলে।

প্রশ্ন-৫. ppmv এর পূর্ণরুপ কী?

উত্তর: ppmv এর পূর্ণরুপ হলো parts per million by volume.

প্রশ্ন-৬. প্রশমন বিন্দু কী?

উত্তর: এসিডের মধ্যে ক্ষার অথবা ক্ষারের মধ্যে এসিড যোগ করার সময় এসিডের শেষ বিন্দু যা ক্ষারকে পূর্ণ প্রশমিত করে অথবা ক্ষারের শেষ বিন্দু যা এসিডকে পূর্ণ প্রশমিত করে ঐ শেষ বিন্দুই প্রশমন বিন্দু বা সমাপ্তি বিন্দু।

প্রশ্ন-৬. ল্যামার্টের সূত্রটি লিখ।

উত্তরঃ কোনো স্বচ্ছ মাধ্যমের মধ্য দিয়ে একবর্ণী আলোক রশ্মি প্রবাহিত করলে দ্রবণের ঘনমাত্রার সাথে আলোকের তীব্রতা ব্রাসের হার আলোকের তীব্রতার সমানুপাতিক।

প্রশ্ন-৭. বিয়ারের সূত্রটি লিখ।

উত্তরঃ কোনো দ্রবণের মধ্য দিয়ে একবর্ণী আলোক রশ্মি প্রবাহিত করলে দ্রবণেল ঘনমাত্রার সাথে আলোকের তীব্রতা হ্রাসের হার আলোকের তীব্রতার সমানুপাতিক।

প্রশ্ন-৮. এক্সটিংকশন গুণাঙ্ক কী?

উত্তর: আপতিত আলোক রশ্মির তীব্রতা এক-দশমাংশ হ্রাস করতে হয় হ্রাস গুণাঙ্ক বা এক্সটিংকশন গুণাঙ্ক।

প্রশ্ন-৯. ক্রোমোফোর কাকে বলে?

উত্তর: জৈব যৌগের অণুস্থিত যেসব π – বন্ধন যুক্ত মূলক দৃশ্যমান আলোর পরিসরের শক্তি-তরঙ্গ শোষণ করে এবং যৌগকে বর্ণযুক্ত দেখায়, এদেরকে ক্রোমোফোর বলে।

প্রশ্ন-১০. জারণ অর্ধ-বিক্রিয়া কী?

উত্তরঃ যেসব পরমাণু, মূলক বা আয়ন বাসায়নিক বিক্রিয়াকালে ইলেকট্রন ত্যাগ বা বর্জন কারে সেগুলো বিজারক হিসেবে পরিচিত। বিজারক কর্তৃক ইলেকট্রন ত্যাগের ফলে এর সংশিষ্ট মৌলের পরমানুটি জারিত হয়, একে জারণ অর্ধ-বিক্রিয়া বলে। প্রশ্ন-১১. দৃশ্যমান আলোর উৎস কী?

উত্তর: দৃশ্যমান আলোর উৎস টংস্টেন ল্যাম্প।

প্রশ্ন-১২. জারণ সংখ্যা কী?

উত্তরঃ কোনো যৌগ বা আয়ন সৃষ্টির সময় বিভিন্ন পরমাণুর মধ্যে ইলেকট্রন আদান-প্রদানের ফলে সংশ্লিষ্ট পরমানুতে সৃষ্ট ধনাত্মক বা ঋণাত্মক তড়িৎ চার্জেও সংখ্যাকে ঐ মৌল বা মূলকের জারণ সংখ্যা বলে। প্রশ্ন-১. মোল সংখ্যা বলতে কী বোঝ?

উত্তর: কোনো নির্দিষ্ট পরিমাণ বস্তুতে যতো মোল বস্তু নিহিত আছে তাকে ঐ বস্তুর মোল সংখ্যা বলা হয়। অর্থাৎ বস্তুর ভর ও আণবিক ভরের আনুপাতিক রাশিকে মোল সংখ্যা বলা হয়। যেমন- কোনো বস্তুর ভর W g এবং তার আণবিক ভর M g.

 mol^{-1} হলে, তার মোল সংখ্যা (n) কে নিমুরুপে প্রকাশ করা যায় $n=rac{W}{M}mol$.

উদাহরণস্বরূপ, 27g পানিতে মোলসংখ্যা, $m = \frac{27}{18} = 1.5 mol.$

প্রশ্ন-২. দ্রবণের ঘনমাত্রা প্রকাশের বিভিন্ন পদ্ধতির রাম লিখ।

উত্তর: দ্রবণের ঘনমাত্রা প্রকাশের জন্য বিভিন্ন পদ্ধতি চালু আছে। যেমন- নরমালিটি, মোলারিটি, মোলারিলি, মোল ভগ্নাংশ, শতকরা, হার ইত্যাদি।

প্রশ্ন-৩. জারণ সংখ্যার ব্যবহার লিখ।

উত্তর: জারণ সংখ্যার প্রধান ব্যবহারসমূহ নিম্নুরুপ:

- ১.আয়নিক যৌগের সংযুক্তি ও সংকেত নির্ণয়ে জারণ সংখ্যা ব্যবহৃত হয়।
- ২. অজৈব যৌগের রামকরণে জারণ সংখ্যার ব্যবহার ব্যাপক। এক্ষেত্রে সংশ্লিষ্ট মৌলের জারণ সংখ্যা রোমান সংখ্যা দ্বারা মৌলের বা আয়নের নামের পর ব্র্যাকেটসহ লেখা হয়।
- ৩. জারণ সংখ্যার সাহায্যে জারণ-বিজারণ বিক্রিয়ায় জারক ও বিজারকের মোলার অনুপাত নির্ণয় করা যায়।
- 8. জারণ- বিজারণ বিক্রিয়ার সমীকরণের সমতাকরণের ক্ষেত্রেও জারণ সংখ্যার ব্যাপক ব্যবহার পরিলক্ষিত হয়। প্রশ্ন-৪. টাইট্রেশনে $KMnO_4$ ব্যবহারের সুবিধা লিখ।

উত্তর: টাইট্রেশনে $KMnO_4$ ব্যবহারের সুবিধা হলো $KMnO_4$ একটি স্ব-নির্দেশক। তাই $KMnO_4$ দ্বরা টাইট্রেশনে কোনো নির্দেশকের প্রয়োজন হয় না। কেননা এর বর্ণ অত্যন্ত তীব্র এবং $100~\mathrm{mL}$ পানিতে ০.১ $\mathrm{mL}~0.02~\mathrm{M}~KMnO_4$ যোগ করলে এর সুস্পষ্ট হালকা পিংক বা গোলাপি বর্ণ দেখা যায়।

প্রশ্ন-৫. মোলারিটি বলতে কি বোঝায়?

উত্তর: নির্দিষ্ট তাপমাত্রায় প্রতি লিটার দ্রবণে দ্রবীভূত দ্রবের গ্রাম আণবিক ভর বা মোল সংখ্যাকে ঐ দ্রবণের মোলারিটি বলে। একে M দ্বরা প্রকাশ করা হয়।

মোলারিটি,
$$M=rac{$$
েমাল এককে দ্রুবের ভর $}{$ িলটারের দ্রুবেগর আয়তন

উদাহরণস্বরুপ, এক লিটার Na_2CO_3 দ্রবণে 106g Na_2CO_3 বা 1 মোল Na_2CO_3 দ্রবীভূত থাকলে ঐ দ্রবণের মোলারিটি হবে $1 \; \mathrm{mol} \; L^{-1}$

প্রশ্ন-৬. ল্যাম্বার্টের সূত্রটি ব্যাখ্যা কর।

উত্তর: কোনো স্বচ্ছ মাধ্যমের মধ্য দিয়ে কোনো একটি নির্দিষ্ট তরঙ্গদৈঘ্যেও একবণী আলোক রশ্মি প্রবাহিত করলে মাধ্যমের পুরুত্বের সাথে আলোকের তীব্রতা হ্রাসের হার আলোকের তীব্রতার সমানুপাতিক হয়। এটিই ল্যাম্বার্টের সূত্র।

প্রশ্ন-৭. UV-Visible বর্ণালির মূলনীতি লিখ।

উত্তরঃ যেসব অণুতে পাই (π) ইলেকট্রন বা বন্ধনহীন ইলেকট্রন আছে তাদের আণবিক অরবিটালের এসব ইলেকট্রন অতিবেগুনি এবং দৃশ্যমান আলোক রশ্মি থেকে শক্তি শোষণ করে উত্তেজিত অবস্থায় বন্ধন প্রতিরোধী উচ্চ শক্তিসম্পন্ন আণবিক অবিটালে স্বল্প সময়ের জন্য স্থানান্তরিত হয়। এর ফলে UV-Visible বা ইলেকট্রনীয় শোষণ বণালি সৃষ্টি হয়।

প্রশ্ন–৮. HPLC প্রযুক্তির মীলনীতি লিখ।

উত্তর: HPLC প্রযুক্তিতে তরল নমুনাকে কলামের ভিতর অবস্থানরত কঠিন শোষকের উপর দিয়ে পাম্পের সাহায্যে চালনা করা হয়।নমুনায় উপস্থিত উপাদানসমূহ পৃথক পৃথকভাবে বঠিন শোষক দ্বারা শোষিত হয় এবং দ্রাববের উস্থিতিতে ধীরে ধীরে কলামের নিচ দিয়ে বের হয়ে ডিটেক্টরে পোঁছায়। এই বের হয়ে আসা সময়ের পার্থক্যের উপর ভিত্তি করেই মিশ্রণের

ইপাদানসমূহকে পৃথক করা হয়। তরল দশায় যার দ্রবণীয়তা বেশি এবং স্থির দশার প্রতি যে উপাদানের আকর্ষণ কম সে উপাদানটি প্রথমে প্রথক হয়ে আসে। অপরদিকে স্থির দশার প্রতি অপেক্ষাকৃত বেশি আসক্তি এবং তরল দশায় দ্রবণীয়তা সবচেয়ে কম, সে উপাদানটি সবচেয়ে নিজ্ঞান্ত হয়।

১নং সুজনশীল প্রশ্ন ও উত্তর:

নিচের উদ্দীপকটি পর্যবেক্ষণ কর-

- ক. সোডা ক্ষার এর আণবিক সংকেড 🕠 👝
- খ. প্রমান কর ডেসিমোলার দ্রবণ একটি প্রমাণ দ্রবণ।
- গ. নমুণা-১ থেকে কী পরিমাণ লৌহ পাওয়া যাবে নির্ণয় কর।
- ঘ. নমুনা-১ ও নমুনা-২ এর মধ্যে কোনটিতে লোহার পরিমাণ বেশিু বিশ্লেষণ কর।

উত্তর: (ক)

সোডা ক্ষার এর আণবিক সংকেত Na_2CO_3 .

উত্তর: (খ)

কোনো দ্রবণের প্রতি লিটার বা 1 dm³ বা 1000 mL. আয়তনে দ্রবের এক দশমাংশ মোল বা 0.1 মোল পরিমাণ দ্রবীভূত থাকলে উৎপন্ন দ্রবণের ঘনমাত্রা ডেসিমোলার (0.1 M) হয়।

যেহেতু এই দ্রবণের প্রতি লিটারে দ্রবের নির্দিষ্ট পরিমাণ নির্দিষ্টভাবে জানা থাকে, তাই ডেসিমোলার দ্রবণ একটি প্রমাণ দ্রবণ। যেমন, অক্সলিক এসিডের ডেসিমোলার দ্রবণে প্রতি লিটার আয়তনে 0.1 মোল বা $12.6 \, \mathrm{g}$ অক্সালিক এসিড দ্রবীভূত থাকে (অক্সালিক এসিডের আণবিক ভর 126)।

উত্তর: (গ)

ম্যাগনেটাইট এর সংকেত Fe_3O_4 .

 $500~\mathrm{kg}$ ম্যাগনেটাইটে Fe_3O_4 আছে $=500~\mathrm{kg} imes 60\%$

=
$$500 \text{ kg} \times \frac{60}{100}$$

= 300 kg
= $300 \times 10^3 \text{ g}$

 Fe_3O_4 এর গ্রাম আণবিক ভর = $(55.85 \times 3) + (16 \times 4)$ g

$$= (167.55 + 64) g$$

$$= 231.55 g$$

 Fe_3O_4 এর মধ্যে লৌহের (Fe) পরিমাণ = 55.85×3

$$= 167.55 g$$

 $\therefore 231.55~{
m g}~Fe_3O_4$ এর মধ্যে লৌহের পরিমান $167.55~{
m g}$

∴ 1 g
$$Fe_3O_4$$
 এর মধ্যে লৌহের পরিমান = $\frac{167.55}{231.55}g$

$$\therefore 300 \times 10^3 \, \mathrm{g} \; Fe_3O_4$$
 এর মধ্যে লৌহের পরিমান = $\frac{167.55 \times 300 \times 10^3}{231.55} \, \mathrm{g}$ = $217080.54 \, \mathrm{g}$ = $217.08054 \, \mathrm{kg}$

নমুনা-১ এর মধ্যে লৌহের পরিমান 217.08054 kg।

উত্তর: (ঘ)

রেড হেমাটইটের সংকেত Fe_2O_3 .

60% রেড হেমাটাইটে Fe_2O_3 আছে = $500~{
m kg} \times 60\%$

$$= 500 \text{ kg} \times \frac{60}{100}$$
$$= 300 \text{ kg} = 300 \times 10^3 \text{ g}$$

 Fe_2O_3 এর গ্রাম আণবিক ভর = $(55.85 \times 2 + 16 \times 3)~\mathrm{g}$

$$= (111.7 + 48) g$$

= 159.7 g

 Fe_2O_3 এর মধ্যে লৌহের পরিমাণ = $55.85 \times 2 = 111.7$ g

 $\therefore 159.7 \mathrm{g} \; Fe_2O_3$ এর মধ্যে লৌহের পরিমাণ $111.7 \mathrm{g}$

∴
$$300 \times 10^{3} \,\mathrm{g}$$
 " " $= \frac{111.7 \times 300 \times 10^{3}}{159.7} \,\mathrm{g}$
= $209830 \,\mathrm{g}$
= $209.830 \,\mathrm{kg}$

নমুনা-২ এ লৌহের পরিমাণ 209.830 kg

এবং (গ) নং প্রশ্নোত্তর হতে পাই, নমুনা-১ এ লৌহের পরিমাণ $217.08054~\mathrm{kg}$ ।

অতএব, বলা যায়, নমুনা-১ এ লৌহের পরিমাণ বেশি।

২নং সজনশীল প্রশ্ন ও উত্তর:

উদ্দীপকটির আলোকে নিচের প্রশ্নগুলোর উত্তর দাও:

$$(i)Cu^{2+} + I^{-} \rightarrow Cu^{+} + I_{2}$$

 $(ii)I_{2} + S_{2}O_{3}^{2-} \rightarrow S_{4}O_{6}^{2-} + I^{-}$

- ক. ফুয়েল সেল কী?
- খ. লবণ সেতুর গুরুত্ব কী?
- গ. (i) নং বিক্রিয়া একটি রেডকস বিক্রিয়া– ব্যাখ্যা কর।
- ঘ. উদ্দীপক দুটির আলোকে Cu^{2+} এর পরিমাণ নির্ণয়ের মাত্রিক সম্পর্ক প্রতিষ্টাি কর।

উত্তর: (ক)

ফুয়েল সেল হলো উন্নত মানের আধুনিক গ্যালভানিক সেল। এ সেলের ফুয়ের হিসেবে H_2 গ্যাস, থািনল, অক্সিজেন ইত্যাদিকে ব্যবহার কারা হয়। এ সেলে তড়িৎ রাসানিক ডিভাইস থাকে থাকে যা রাসায়নিক শক্তিকে তড়িৎ শক্তিতে রুপান্তরিত করে।

উত্তর: (খ)

লবণ সেতুর গুরুত্ব নিচে ব্যাখ্যা করা হলো:

- ১. লবল সেতু অর্ধকোষদ্বয়ের উভয় দ্রবণের মধ্যে সংযোগ স্থাপন করে কোষের বর্তনী পূর্ণ করে।
- ২. লবল সেতুর মধ্যস্থ তড়িৎবিশ্লেষ্য KNO_3 উভয় অর্ধকোষের দ্রবণের সাথে কোন রাসায়নিক বিক্রিয়া কওে না; বরং উভয় তরলের মধ্যে প্রয়োজনমত ধনাত্মক ও ঋণাত্মক আয়ন বিনিময়ের ব্যাপন প্রক্রিয়ার মাধ্যমরূপে কাজ করে।
- ৩. লবণ সেতু উভয় অর্ধকোষের দ্রবণের তড়িৎ-বিরপেক্ষতা বজায় রাখতে কাজ করে।
- ৪. লবণ সেতুর অভাবে উভয় অর্ধকোষে জারণ-বিজারণ ক্রিয়া বাধপ্রাপ্ত ডয়ে অল্প সময়ের মধ্যে কোষ বিক্রিয়া তথা বিদ্যু প্রবাহ বন্ধ হয়ে যায়।

উত্তর: (গ)

যে রাসায়নিক বিক্রিয়ায় ভিন্ন বস্তুর পরমাণু বা মূলক বা আয়নের মধ্যে ইলেকট্রন আদান-প্রদানের মাধ্যমে জারণ ও বিজারণ প্রক্রিয়া একই সাথে সম্পন্ন হয় তাকে রেডক্স বিক্রিয়া বলে।

উদ্দীপকের নং বিক্রিয়াটি হলো:

$$(i)Cu^{2+} + I^{-} \rightarrow Cu^{+} + I_{2}$$

এক্ষেত্রে আয়োডাইড আয়ন (I^-) বিজারক এবং Cu^{2+} আয়ন জারক হিসেবে ক্রিয়া করে।

এদের জারণ-বিজারণের অর্ধবিক্রিয়া নিমুরুপ:

$$21^{-}(aq) \rightarrow I_{2}(aq) + 2e^{-}$$
 (জারণ)

$$2Cu^{2+}(aq) + 2e \rightarrow 2Cu^{2+}(aq)$$
(বিজারণ)

সম্পূর্ণ বিক্রিয়া: $2Cu^{2+} + 21^- \rightarrow I_2 + 2Cu^+$ (জারন - বিজারণ বিক্রিয়া)

কাজেই উদ্দীপকের (i) নং বিক্রিয়াটিতে জারণ ও বিজারণ বিক্রিয়া সম্পন্ন হয়েছে। অর্থাৎ এটি একটি রেডক্স বিক্রিয়া।

উত্তর: (ঘ)

উদ্দীপকের বিক্রিয়া দুটির সাহায্যে আয়োডিমিতির মূলনীতি প্রয়োগ করে Cu^{2+} এর পরিমাণ নির্ণয় করা য়ায়। কাজের ধারা: নির্দিষ্ট পরিমাণ জারক পদার্থ (যেমন $CuSO_4$ এর Cu^{2+} আয়ন) এর দ্রবণ কনিকেল ফ্লাঙ্কে নিয়ে এর মধ্যে অধিক পরিমাণ KI যোগ করলে উভয়ের বিক্রিয়ায় জারক পদার্থের তুল্য পরিমাণ আয়োডিন মুক্ত হয়। পরে মুক্ত আয়োডিনকে প্রমাণ $Na_2S_2O_3$ দ্রবণ দ্বারা টাইট্রেশন করা হয়। যেমন,

$$2CuSO_4 + 4KI \rightarrow Cu_2I_2 + I_2 + 2K_2SO_4$$

$$2Na_2S_2O_3+I_2 \rightarrow Na_2S_4O_6+2Nal$$

উপরের উভয় সমীকরণ থেকে সুস্পষ্ট যে,

বা, $2mol\ CuSO_4 \equiv 1\ mol\ I_2 \equiv 2\ mol\ Na_2S_2O_3$

বা, 1 mol $Na_2S_2O_3 \equiv 1 \mod CuSO_4$

প্রমাণ সোডিয়াম থায়োসালফেট দ্রবণ বিজারক। এ প্রমাণ দ্রবণ দ্বারা মুক্ত আয়োডিনকে টাইট্রেশন করা হয় এবং বিজারক পদার্থের পরিমান থেকে প্রথমোক্ত জারক পদার্থ (Cu^{2+}) পরিমাণ নির্নয় করা হয়। যেমন উপরের উভয় বিক্রিয়া থেকে পাই-তুল্য মোল জারক = তুল্য মোল আয়োডিন = তুল্য মোল বিজারক

বা, 1 mol
$$Na_2S_2O_3 \equiv 1 \text{ mol } Cu^{2+} \text{ ion} = 63.5 \text{ g } Cu^{2+} \text{ ion}$$

বা, 1000 mL IM
$$Na_2S_2O_3$$
 দ্ৰবণ $\equiv 63.5gCu^{2+}+ion$

এক্ষেত্রে টাইট্রেশনে প্রাপ্ত প্রমাণ $Na_2S_2O_3$ দ্রবণের আয়তন থেকে Cu^{2+} আয়নের পরিমাণ নির্ণয় করা হয়।

উদ্দীপকটির আলোকে নিচের প্রশ্নগুলোর উত্তর দাও।

ক. BOD কী?

- খ. বেজিন এটি অ্যারোমিটিক যৌগ কনে?
- গ. A পাত্রের দ্রবণটির ঘনমাত্রা ppm এককে হিসেবে কর।
- ঘ. 'A' ও 'B' পাত্রের দ্রবণ 'C' পাত্রে মিশ্রিত করলে দ্রবণের প্রকৃতি কিরুপ হবে গণিতিকভাবে বিশ্লেষণ কর।

উত্তর: (ক)

কোনো নমুনা পানিতে উপস্থিত জৈব অণুজীব কর্তৃক প্রাণ রাসায়নিক জারণে ব্যবহৃত অক্সিজেনের পরিমাণকে (mg/L) জীব রাসায়নিক অক্সিজেন চাহিদা বা BOD বলে।

উত্তর: (খ)

যেসব জৈব যৌগের গঠন চ্যাপ্টা বা সমতলীয় বলয়াকার বিশিষ্ট এবং ঐ বলং গঠনকাটো পরমাণুসমূহের (4m+2) সংখ্যক সঞ্চরণকাশীল π — ইলেকট্রন দ্বরা আণবিক অরবিটাল সৃষ্টি হয় তাদেরকে অ্যারোমেটিক যৌগ বলে। বেনজিন একটি অ্যারোমেটিক যৌগ এবং সমতলীয় গঠনে সঞ্চরণশীল 6π ইলেকট্রন আছে। বেনজিন অণুতে 1 টি চক্র থাকায় হাকেল নিয়ম অনুসারে $4n+2=4\times 1+2=6$ টি π — ইলেকট্রন রয়েছে। অথ্যাৎ বেনজিন একটি অ্যারোমেটিক যৌগ।

উত্তর: (গ)

এখানে, দ্রবের ভর, W = 0.4 g

দ্রবণের আয়তন, V = 10 mL

দ্রবের (NaOH) গ্রাম আণবিক ভর, M = 80 g

দ্রবণের মোলার ঘনমাত্রা, C=?

জানা আছে,
$$C = \frac{1000W}{MV} = \frac{1000 \times 0.4}{40 \times 10} = 1M$$

∴ ppm এককে প্রকাশিত দ্রবণের ঘনমাত্রা

$$= CM \times 10^3 ppm$$

$$= 1 \times 40 \times 10^3 \, ppm = 40000 ppm$$

দ্রবণটির ঘনমাত্রা 40000 ppm

উত্তর: (ঘ)

Vessel-A তে রক্ষিত আছে

10 mL 1M NaOH দ্রবণ

Vessel-B তে রক্ষিত আছে

20 mL 0.05 M HCI দ্ৰবণ = (25×0.05) mL 1M HCI দ্ৰবণ

= 1.25 mL 1M HCI দ্রবণ

Vessel-C তে,

বিক্রিয়া : NaOH + HCI \rightarrow NaCI + H_2O

বিক্রিয়া অনুসারে, 1 mol NaOH ≡ 1 mol HCI

অর্থাৎ 1 mol HCI কে প্রশমিত করতে 1 mol NaOH প্রয়োজন।

1.25 mL IM HCI কে প্রশমিত করতে 1.25 mL 1M NaOH লাগবে।

কিন্তু Vessel-C তে মিশ্রণে 10 mL 1M NaOH আছে।

:. উল্লিখিত এসিড (HCI) ও ক্ষার (NaOH) মিশ্রিত করলে দ্রবণে অবশিষ্ট থাকবে (10 – 1.25) বা 8.75 mL 1M NaOH। তাই C- পাত্রের মিশ্রিত দ্রবণের প্রকৃতি ক্ষারীয় হবে।

3**নং সৃজনশীল প্রশ্ন' ও উত্তর**ঃ

একটি স্টিল প্রস্তুতশারক কোম্পানির ল্যাবরেটরিতে রাসায়নবিদগণ লঘু $m H_2SO_4$ মিশ্রিত m 19.8 mL আয়তনের m 0.02 $m MKMnO_4$ দ্রবন দ্বারা m 25~mL আয়তনের কোন আয়রন (II) সালফেট দ্রবণকে সম্পূর্ণভাবে জারিত করেন। ব্যবহৃত আয়রন (II) সালফেটের ঘনমাত্রা বিশ্লেষণ করে দেখলেন।

- ক, অতিবেগুনি আলোর উৎস কী?
- খ. জারণ সংখ্যা ও যোজনীর মধ্যে পার্থক্য উল্লেখ কর।
- গ. উদ্দীপকের সৃষ্ট রাসায়নিক সমীকরণের আয়ন ইলেকট্রনীয় পদ্ধতির সমতাকৃত অবস্থা দেখাও।
- ঘ. বিজ্ঞানীদের বিশ্লেষণকৃত আয়রন (II) সালফেটের ঘনমাত্রা কত ছিল হিসাব কর।

উত্তর: (ক)

অতিবেগুনি আলোর উৎস হিসেবে সাধারণত ডিউটেরিয়াম ল্যাম্প ব্যবহার করা হয়।

উত্তর: (খ)

জারণ সংখ্যা ও যোজনীর মধ্যে নিমুরূপ পার্থক্য পরিলক্ষিত হয়–

জারণ সংখ্যা	যোজনী
জারণ সংখ্যার মান ধনাত্মক বা ঋনাত্মক হতে পারে।	যোজনীর মান সর্বদাই ধনাত্মক
জারণ সংখ্যা ভগ্নাংশ বা পূর্ণ সংখ্যা হতে পারে।	যোজনী সর্বদা পূর্ণ সংখ্যা হয়। কষনও ভগ্নাংশ হয়
	ना ।

উত্তর: (গ)

উদ্দীপক হতে প্রাপ্ত বিক্রিয়াটির সমীকরণ নিমুরূপ-

$$KmnO_4+H_2SO_4+FeSO_4 \longrightarrow Fe(SO_4)_3+K_2SO_4+MnSO_4+H_2O$$
 অথবা, MnO_4 - $H^++Fe^2 \longrightarrow Mn^{2+}+Fe^{3+}+H^2O$

জারক বিজারক

উল্লিখিত সমীকরণে ${
m H^+}$ এর উপস্থিতিতে ${
m MnO_4}$ আয়ন বিজারিত হয়ে ${
m Mn^{2+}}$ আয়নে এবং ${
m Fe^{2+}}$ আয়ন জারিত হয়ে ${
m Fe^{3+}}$ আয়নে পরিণত হওয়ায় এ বিক্রিয়ায় ${
m MnO_4}$ জারক এবং ${
m Fe^{2+}}$ বিজারক হিসেবে ক্রিয়া করে। সুতরাং

জারণ অর্ধ-বিক্রিয়া:
$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$
 (1)

বিজারণ অর্ধ-বিক্রিয়া:
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
....(2)

(1) নং সমীকরণকে 5 দ্বারা গুন করে (1) + (2) করে পাই,

$$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2o...$$
 (3)

(3) নং সমীকরণে প্রয়োজনীয় সংখ্যক আয়ন সরবরাহ করে পাই.

$$KmnO_{4} + 5Fe(SO_{4}) + 4H_{2}SO_{4} \rightarrow \frac{5}{2}Fe_{2}(SO_{4}) + MnSO_{4} + \frac{1}{2}K_{2}SO_{4} + 4H_{2}O$$

সমতাবিধানের জন্য সমীকরণের উভয় পাশে 2 দ্বারা গুণ করি,

 $2 \text{ KmnO}_4 + 10 \text{FeSO}_4 + 8 \text{H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 + 5 \text{Fe}(\text{SO}_4)_3 + 8 \text{H}_2 \text{O}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{MnSO}_4 +$

উত্তর: (ঘ)

আয়রন (II) সালফেটকে অম্লীয় KmnO4 দ্বারা জারিত করা হলে নিমুরূপ আয়নিক সমীকরণ পাওয়া যায়:

$$MnO_4^- + 5Fe^{2+} + 8H^+ \rightarrow 5Fe^{3+} + 4H_2O$$

সমীকরন হতে 1 mol MnO₄ আয়ন দ্বারা 5 mol Fe²⁺ আয়ন জারিত হয়।

 $\therefore 1 \ mol \ KMnO_4 \equiv 5 \ mol \ FeSO_4$

নির্ণেয় আয়রন (II) সালফেটের ঘনমাত্রা 0.0792 M।

প্র্যাকটিস অংশঃ- সজনশীল রচনামূলক প্রপ্লাঃ

১। নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তরদাওঃ

- ক. অ্যাসিটোফেনোনের সংকেত লিখ।
- খ. আলোক সমাণুতার শর্তসমুহ ব্যাখ্যা কর।
- গ.(i) নং পাত্রের 25mL দ্রবণকে সম্পূর্ণরুপে প্রশমিত করতে (2) নং পাত্রের 50mL দ্রবন প্রয়োজন হলে নমুনাতে লোহার ভেজালের পরিমাণ নির্ণয় কর।
- ঘ. উদ্দীপকে জারকটির পরিবতে $K_2Cr_2O_7^{\checkmark}$ ব্যবহার করে যুক্তিসহ বিশ্লেষণ কর যে জারণ বিজারণ বিক্রিয়াটি যুগপৎ সংঘটিত হয়েছে।
- ২। নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাওঃ

- ল. প্রমাণ দ্রবণ বলতে কী বৃঝ?
- খ. উদ্দীপকের দ্রবণে দ্রবগুলোর মধ্যে কোনটি প্রাইমারি স্ট্যান্ডার্ড পদার্থ তা ব ্যাখ্যা কর।
- গ. উদ্দীপকের ক দ্রবণের 10mLকে সম্পূর্ণরুপে প্রশমিত করতে কত mL খ দ্রবণ প্রয়োজন হবে তা নির্ণয় কর।
- ঘ. উদ্দীপকের ক দ্রবণের সাথে গ দ্রবণ মেশালে মিশ্রণের প্রকৃতি কীরুপ হবে্ বিশ্লেষণ কর।

৩। নিচের উদ্দীপকটি পড় এবং প্রশ্নগুলোর উত্তর দাওঃ

কনিক্যাল ফ্লান্কের দ্রবণকে সম্পূর্ণরূপে টাইট্রেশন করতে $0.01M\ KMnO_4$ দ্রবণের 25.0mL প্রয়োজন হয়।

- ক. মোলার আয়তন বলতে কী বুঝ?
- খ. পিপিএম কী? দ্রবণের শতকরা একককে কীভাবে পিপিএম এ রুপান্ত করা যায়।
- গ. উক্ত টাইট্রেশনে H_2SO_4 ব্যবহার করা হয় কেন? H_2SO_4 এর পরির্বতে HNO_3 ব্যবহার করা যাবে কিনা কেন? তোমার উত্তরের স্বপক্ষে যুক্তি দাও।
- ঘ. উদ্দীপকে উল্লেখিত লোহার আকরিক ভেজালের পরিমাণ নির্ণয় কর । ল্যাবরেটরিতে $KMnO_4$ না থাকলে তুমি অন্য কোন বিকারক ব্যবহার করত পার কী? সেক্ষেত্রে কী সুবিধা এবং অসুবিধ হবে যুক্তিসহ উল্লেখ কর ।