Converge siesta calculations

Mesh, k-points and SCF convergence Catalina Coll

3th October 2023

Quality/accuracy/precision

Monday 2nd October	
12:30-12:45	Introductory remarks
12:45-13:30	General Siesta Theory (Prof. José Soler, UAM)
13:30–13:55	Pseudopotentials (Dr. Alberto García, ICMAB-CSIC)
13:55–14:10	Break
14:10–16:00	A first contact with SIESTA: inputs, execution and outputs (Dr. Federico Pedron, ICN2)
16:00–16:15	Break
16:15–17:15	Basis sets in SIESTA (Dr. Miguel Pruneda, CINN-CSIC)
17:15–17:30	Discussion and feedback
Tuesday 3rd October	
12:30-14:30	Basis set optimization (Dr. Federico Pedron, ICN2)
14:30–14:45	Break
14:45–16:15	K-points, mesh, and SCF convergence (Dr. Catalina Coll, ICN2)

System geometry

Pseudo potential

Real space grid

SCF convergence parameters

Basis Set

Reciprocal space grid

Sampling

Sampling

Real space

- Potentials
- Densities
- Basis

Reciprocal space

- Density of states
- Bandstructure

Real space grid

Fineness ↔ Maxim energy avoiding aliasing

$$\Delta x \leftrightarrow E_c$$
 MeshCutoff Energy units (Ry)

Real space grid: MeshCutoff

- What is it set by the user?
 - Mesh.Cutoff 300 Ry (default)
- What is set by siesta?
 - MESH = $18 \times 18 \times 30 = 9720$
 - Mesh cutoff (required, used) = 100.000 101.039 Ry
- How can one decide the good value?
 - Minimize the total energy.
 - Total force to zero.
 - Reasonable time (relatively small systems)

Real space grid: MeshCutoff

Time

TIMES file

Results for methane (CH4)

Force

siesta: Atomic forces (eV/Ang):

Real space grid: MeshCutoff

Energy

```
siesta: Final energy (eV):
```


Results for methane (CH4)

Egg-box effect

Invariant under any translation?

Solution:

- Increase Meshcutoff
- Use "grid-cell-sampling"

Results for magnesium oxide (MgO)

Let's try it

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

• Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- · A first encounter with Siesta
- First crystals
- Pseudopotentials
- Basis sets
- Basis set optimization
- The real-space grid

day2/03-RealSpaceGrid

- Sampling of the BZ with k-points
- The self-consistent-field cycle
- Structural optimization using forces and stresses
- Vibration modes and phonons
- Magnetism

Reciprocal space grid

Crystals

 $\psi(\mathbf{r})$ Infinite matrix

Periodicity

Reciprocal space $\psi_{n,\mathbf{k}+\mathbf{G}}(\mathbf{r}) = \psi_{n,\mathbf{k}}(\mathbf{r})$

Finite matrix

Reciprocal space grid: k-mesh

- What is it set by the user?
 - k grid cut off

Input structure — Lattice vectors

Monkhorst Pack grid

- What is set by siesta?
 - SystemLabel.KP
- How can one decide the good value?
 - Must consider the ratio between the lattice vectors.
 - Check:
 - DOS
 - Bandstructure
 - For metallic systems more k points will be needed.

```
kgrid_cutoff 10.0 Ang

%block kgrid_Monkhorst_Pack
6 0 0 0.0
0 6 0 0.0
0 0 1 0.0
%endblock kgrid_Monkhorst_Pack
```

SystemLabel.KP

```
1 -0.447497E+00 -0.258363E+00 0.00000E+00 0.555556E-01
2 -0.223749E+00 -0.129181E+00 0.00000E+00 0.277778E-01
3 0.000000E+00 0.000000E+00 0.000000E+00 0.277778E-01
4 0.671246E+00 0.387544E+00 0.000000E+00 0.277778E-01
5 -0.447497E+00 0.111022E-15 0.000000E+00 0.555556E-01
6 -0.223749E+00 0.129181E+00 0.000000E+00 0.555556E-01
7 0.000000E+00 0.258363E+00 0.000000E+00 0.555556E-01
8 0.223749E+00 0.387544E+00 0.000000E+00 0.555556E-01
9 0.447497E+00 0.516726E+00 0.000000E+00 0.555556E-01
10 0.671246E+00 0.645907E+00 0.000000E+00 0.555556E-01
11 -0.447497E+00 0.258363B+00 0.000000E+00 0.555556E-01
12 -0.223749E+00 0.387544E+00 0.000000E+00 0.555556E-01
13 0.00000E+00 0.516726E+00 0.00000E+00 0.555556E-01
14 0.223749E+00 0.387544E+00 0.00000E+00 0.555556E-01
15 0.447497E+00 0.516726E+00 0.00000E+00 0.555556E-01
16 0.671246E+00 0.645907E+00 0.00000E+00 0.555556E-01
17 -0.447497E+00 0.516726E+00 0.00000E+00 0.555556E-01
18 -0.223749E+00 0.645907E+00 0.00000E+00 0.555556E-01
19 0.00000E+00 0.516726E+00 0.00000E+00 0.577778E-01
19 0.00000E+00 0.775088E+00 0.00000E+00 0.277778E-01
19 0.00000E+00 0.775088E+00 0.00000E+00 0.277778E-01
20 0.223749E+00 0.775088E+00 0.00000E+00 0.277778E-01
21 0.447497E+00 0.775088E+00 0.00000E+00 0.277778E-01
22 0.671246E+00 0.904270E+00 0.00000E+00 0.277778E-01
21 0.447497E+00 0.775088E+00 0.00000E+00 0.277778E-01
22 0.671246E+00 0.103345E+01 0.00000E+00 0.277778E-01
```


DOS: Eig2DOS

output Eig2DOS

```
EIG2DOS: Utility for SIESTA to obtain the electronic density of states
# E. Artacho, Apr 1999, A. Garcia, Apr 2012
# Nick R. Papior, Feb 2017
 Eigenvalues calculated from a spin-polarized calculation
# Eigenvalues read from graphene.EIG
# Kpoint weights read from graphene.KP
# Using smearing parameter: 0.1000
# Using 400 points in the energy range
# Selected bands: 1 to: 26
# Emin, Emax in file for selected band(s):
                                               -24.2236335
                                                              143.6658020
# Nbands, Nspin, Nk
# E F
                            -5.0301 eV --> (shifted to ZERO)
# Broadening
                            0.1000 eV
                      N(up)
                                    N (down)
                                                    Ntot
                                                 0.000000
    -12.000000
                    0.000000
                                   0.000000
    -11.964912
                    0.000000
                                   0.000000
                                                 0.000000
    -11.929825
                    0.000000
                                   0.000000
                                                 0.000000
    -11.894737
                    0.000000
                                   0.000000
                                                 0.000000
    -11.859649
                    0.000000
                                   0.000000
                                                 0.000000
    -11.824561
                    0.000000
                                   0.000000
                                                 0.000000
    -11.789474
                    0.000000
                                                 0.000000
                                   0.000000
    -11.754386
                    0.000000
                                   0.000000
                                                 0.000000
    -11.719298
                    0.000000
                                   0.000000
                                                 0.000000
    -11.684211
                    0.000000
                                   0.000000
                                                 0.000000
    -11.649123
                    0.000000
                                   0.000000
                                                 0.000000
    -11.614035
                    0.000000
                                   0.000000
                                                 0.000000
                                                 0.000000
    -11.578947
                    0.000000
                                   0.000000
    -11.543860
                    0.000000
                                   0.000000
                                                 0.000000
    -11.508772
                    0.000000
                                   0.000000
                                                 0.000000
                                                 0.000000
    -11.473684
                    0.000000
                                   0.000000
    -11.438596
                    0.000000
                                   0.000000
                                                 0.000000
    -11.403509
                    0.000000
                                   0.000000
                                                 0.000000
    -11.368421
                    0.000000
                                   0.000000
                                                 0.000000
    -11.333333
                    0.000000
                                   0.000000
                                                 0.000000
    -11.298246
                    0.000000
                                   0.000000
                                                 0.000000
                    0.000000
                                                 0.000000
    -11.263158
                                   0.000000
    -11.228070
                    0.000000
                                   0.000000
                                                 0.000000
    -11.192982
                    0.000000
                                   0.000000
                                                 0.000000
    -11.157895
                    0.000000
                                   0.000000
                                                 0.000000
    -11.122807
                    0.000000
                                   0.000000
                                                 0.000000
    -11.087719
                    0.000000
                                   0.000000
                                                 0.000000
    -11.052632
                    0.000000
                                   0.000000
                                                 0.000000
    -11.017544
                    0.000000
                                   0.000000
                                                 0.000000
    -10.982456
                    0.000000
                                   0.000000
                                                 0.000000
                    0.000000
                                                 0.000000
    -10.947368
                                   0.000000
    -10.912281
                    0.000000
                                   0.000000
                                                 0.000001
```


Bandstructure: gnubands

```
%block Bandlines
    0.5000000000
                                   0.0000
                    0.00000000
     0.000000000
                     0.00000000
30
                                    0.0000
                                              \Gamma
45
     0.3333333333
                     0.333333333
                                    0.0000
                                             K
30
     0.5000000000
                     0.500000000
                                    0.0000
                                             М
%endblock BandLines
```

 -G : print GNUplot commands for correct labels to stderr Suggested usage: prog options 2> bands.gplot 1> bands.dat gnubands [options] 1> bands.dat 2> bands.gplot

and then:

gnuplot -persist bands.gplot

-s arg : only plot selected spin bands [1,nspin]

-F : shift energy to Fermi-level

-b arg : first band to write -B arg : last band to write

-e arg : minimum energy to write

: If -F set, will be with respect

: to Fermi level

-E arg : maximum energy to write

: Note, see -e

-o file : specify output file (instead of piping)

: if used with -G a file name file.gplot will be created

SystemLabel.bands

Bandstructure

```
gnubands -F -G -o bandstructure -E 10 -e -20 *.bands gnuplot -persist bandstructure.gplot
```

```
set xtics ("M" 0.000000, "Gamma" 0.775088, "K" 1.670083, "M" 2.117581)
plot "bandstructure" using 1:2:3 with lines lc variable
# -- Use line below for single-color#plot "bandstructure" with lines
```



```
# GNUBANDS: Utility for SIESTA to transform bands output into
#Gnuplot format
# Emilio Artacho, Feb. 1999 # Alberto Garcia, May 2012
# Nick Papior, April 2013, July 2016
# -----
# Bands for all spins
# E F / orig = 0.0000 - 5.0301
# k min, k max = 0.0000 2.1176
# E min, E max = -20.0000 10.0000
# Nbands, Nspin, Nk = 26 2 106
# Using min band, max band = 126
# Total number of bands = 26
# k E[eV]
0.000000 -14.038730 1
0.025836 -14.158130 1
0.051673 -14.413430 1
0.077509 -14.707530 1
0.103345 -15.009230 1
0.129181 -15.308430 1
0.155018 -15.601030 1
0.180854 -15.885030 1
0.206690 -16.159330 1
0.232526 -16.423330 1
0.258363 -16.676430 1
0.284199 -16.918530 1
0.310035 -17.149230 1
```


Let's try it

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

• Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- · A first encounter with Siesta
- First crystals
- Pseudopotentials
- Basis sets
- Basis set optimization
- The real-space grid
- Sampling of the BZ with k-points

day2/04-KpointSampling

- The self-consistent-field cycle
- Structural optimization using forces and stresses
- · Vibration modes and phonons
- Magnetism

- The physical quantity that is mixed:
 - Density matrix
 - Hamiltonian matrix
- Mixing algorithm:
 - Linear
 - Broyden
 - Pulay

N previous steps

- SCF.Mix [default Hamiltonian]:
 - **Density** -> for systems hard to converge
 - Hamiltonian
- SCF.MixerMethod [def_ull_pulay]
 Linear

 - Pulay
 - Broyden pendent on the
 - 0.001 systems hard to converge ->a lot of steps
 - 0.4 systems easy to converge -> reduce steps
- SCF.Mixer.History [default 2]
- Max.SCF.Iterations [default 1000]
- SCF.DM.Converge F [default T]
- SCF.H.Converge F [default T]

SCF.Mix Hamiltonian SCF.MixerMethod Pulay SCF.Mixer.Weight 0.3

SCF.DM.Tolerance 10-4

Max SCF.Iterations 75 SCF.M.xerMethod pulay

SCF.Mixer.Weight 0.2

SCF.Mixer.History 5

More advanced options ... (manual)

Let's try it

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

• Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- · A first encounter with Siesta
- First crystals
- Pseudopotentials
- Basis sets
- Basis set optimization
- The real-space grid
- Sampling of the BZ with k-points
- The self-consistent-field cycle

day2/05-SCF-Options

- · Structural optimization using forces and stresses
- Vibration modes and phonons
- Magnetism

How do I converge the whole calculation?

- 1. Optimize the Basis set
- 2. Converge real space mesh: Energy
- 3. (Converge K grid: increase it for metallic systems)
- 4. SCF mixing

Thank you for your attention

