### **Application of DFS**

- ➤Topological Sort
- ➤ Detection of a cycles
- ➤ Strongly Connected Components
  - ➤ Component graph
  - ➤ Transpose of directed graph
  - ➤ Algorithm to compute SCC
- **▶**Biconnectivity
- >Articulation Points
- **≻**Bridges

# **Topological Sort**

- DFS used to perform topological sort of a DAG
- Topological sort of a DAG:
  - Linear ordering of all vertices in graph G such that vertex u appears before vertex v in the ordering if edge  $(u, v) \in G$
- · Example: getting dressed





# **Topological Sort Algorithm**

```
Topological-Sort(G)
{
1.Call DFS(G) to compute finishing times f(v)
  for each vertex v
2. As each vertex is finished, insert it onto
  the front of linked list
3.Return the linked list of vertices
}
```

Topological sort performed in Time: O(V+E)



## **Strongly Connected Components**

- *G* is strongly connected if every pair (*u*, *v*) of vertices in *G* is reachable from one another
- A strongly connected component (SCC) of G is a maximal set of vertices  $C \subseteq V$  such that for all  $u, v \in C$ , both  $u \sim v$  and  $v \sim v$  exist
  - i.e. vertices u and v are reachable from each other



### Component Graph

**Component graph**  $G^{SCC} = (V^{SCC}, E^{SCC})$ 

 $V^{\text{SCC}} \rightarrow \text{has one vertex for each SCC in } G$ 

 $E^{SCC} \rightarrow$  has an edge if there's an edge between the corresponding



### Transpose of a Directed Graph

- Transpose of directed G(V,E) is  $G^{T}$ 
  - $-G^{T}=(V, E^{T}),$ 
    - where  $E^{T} = \{(u, v) : (v, u) \in E\}.$
  - $G^{T}$  is G with all its edges reversed
- Using Adjacency list of G
  - $G^{T}$  created in  $\Theta(V+E)$  time
- G and  $G^T$  have the same strongly connected components
  - u and v are reachable from each other in G if and only if reachable from each other in  $G^T$

### Strongly\_Connected\_Components(G)

- Call DFS(G) to compute finishing times f [u] for all u
- Compute G<sup>T</sup>
- Call DFS(G<sup>T</sup>), but in the main loop, consider vertices
  - in order of decreasing f[u] (as computed in first DFS)
- Poutput the vertices in each tree of the depthfirst forest formed in second DFS as a separate SCC Linear running Time:  $\Theta(V+E)$





#### Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge  $(u, v) \in E$  such that  $u \in C$  and  $v \in C'$ Then f(C) > f(C').

#### Corollary

Let C and C' be distinct strongly connected components in G = (V, E). Suppose there is an edge  $(u, v) \in E^T$  such that  $u \in C$  and  $v \in C'$ Then f(C) < f(C').

### **Biconnectivity**

➤ A connected undirected graph is **biconnected** if there are no vertices whose removal will disconnects the rest of the graph



#### Example:

- --Computer→ Nodes and Links →Edges
- --if any computer goes down, mailing service of network mail unaffected, except at the down computer.

### **Articulation Points**

- ➤ Articulation point or cut-vertex : A vertex whose removal (along with its attached arcs) makes the graph disconnected
  - → graph is not biconnected
- Eg. C is an articulation point



- --Relevant to computer networks
- --Represent vulnerabilities in a network
- --In many applications these nodes are critical

Articulation points can be computed using **depth-first search** and a special numbering of the vertices in the order of their visiting

### **Bridges**

**Bridge:** An edge in a graph whose removal disconnects the graph

- a bridge is any edge in a graph, that does not lie on a cycle
- a bridge has at least one articulation point at its end
- however an articulation point is not necessarily linked in a bridge

Eg. (C,D) and (E,D)



No articulation points and No bridges → **Biconnected graph** 

## **Binconnectivity: Articulation Points**

In a connected graph all articulation points can computed using DFS in a linear time:

- 1. Perform a DFS starting at any vertex
  - number the nodes as they are visited say:
     dfs\_num(v) as visiting sequence of vertices v and
- 2. For every vertex v in the depth-first spanning tree
  - compute dfs\_low(v): the lowest-numbered vertex, dfs\_num that is reachable from v through a path by taking zero or more tree edges and then possibly followed by zero or one back edge
- 3. Vertex **v** is an articulation point of G if and only if either
  - v is the root of DFS tree and has at least two children
  - v is not the root of DFS tree and has a child u for which no vertex in subtree rooted with u has a back edge to one of the ancestors (in DFS tree) of v i.e. vertex v is an articulation point if and only if v has

