依赖于类型的类型

读书笔记

许博

本章将介绍另一个扩充 $\lambda \rightarrow$ 的系统 $\lambda \omega$, 而非在 $\lambda 2$ 上继续扩充的系统。

1 疑问

在 4.7 变换规则中:

(conv) 如果
$$B =_{\beta} B'$$
,则 $\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s}{\Gamma \vdash A : B'}$ 。

其中 B': s,但是 $\lambda \omega$ 中并没有对类 (kind) 的抽象,如 $\lambda \kappa: \Box M$,也没有相对应的应用,换句话说,当 $s \equiv \Box$ 时,所有的 B 与 B' 应当是恒等的(不包括 β -等价),这样理解是否正确?

2 类型构造子

上一章中引入了一般性的(generalised)项,通过从类型变量抽象项。比如作用于确定类型 σ 的恒等函数 $\lambda x:\sigma.x$ 可以被泛化成项 $\lambda \alpha:*.\lambda x:\alpha.x$,多态的(polymorphic)恒等函数,抽象于 α 。

通过类似的方式也可以构造一般性的类型。比如形如 $\beta \to \beta, \gamma \to \gamma, ...$,等具有结构 $\Diamond \to \Diamond$ 的类型,其中箭头的左边和右边是一样的类型。

为了处理这种情况,引入一个包含了这种结构的本质(essence)的一般性的表达式: $\lambda\alpha: *.\alpha \to \alpha$ 。这个表达式本身并不是一个类型,而是将类型当作值的一个函数。称之为类型构造子(type constructor)。只有当喂给它类型(比如 β , γ)时我们可以得到类型:

 $(\lambda \alpha : *.\alpha \to \alpha)\beta \to_{\beta} \beta \to \beta$, $(\lambda \alpha : *.\alpha \to \alpha)\gamma \to_{\beta} \gamma \to \gamma$.

我们由类型 α 抽象出类型 $\alpha \to \alpha$,来获得类型构造子 $\lambda \alpha : *.\alpha \to \alpha$ 。 类似的,还可以构造出更复杂的类型构造子,比如 $\lambda \alpha : *.\lambda \beta : *.\alpha \to \beta$ 。

而一个显然的问题是:类型构造子的类型是什么?我们可以将 $\lambda\alpha$: *. $\alpha \to \alpha$ 看作是一个将类型 α 映射到类型 $\alpha \to \alpha$ 的函数,因为 α : * 且 $\alpha \to \alpha$: *,我们可以得到: $\lambda\alpha$: *. $\alpha \to \alpha$: * * *.

因此在 * 之后,需要一个新的"超级类型(super-type)",即 * \rightarrow *。 类似的,我们可以得到: $\lambda \alpha : *.\lambda \beta : *.\alpha \rightarrow \beta : *. \rightarrow (*.\rightarrow *)$ 。

需要注意的是,在上一章中,提到了 * 是所有(T2)类型的类型,而 *,* → *,... 等类型不属于 T2,因此它们的类型也不是 *。以及在 $\lambda\alpha$: *. α → α 中, α → α 的类型是 * 而不是 * → *, 是因为 α → α 是一个接收类型为 α 的输入值,返回类型为 α 的输出值的函数的类型,而 * → * 是一个接收类型, 返回类型的函数的类型。

上述扩展称作依赖于类型的类型(types depending on types),扩展后的系统记为 $\lambda\omega$ 。

所有的超级类型,单独的*以及箭头分割的若干*符号,称为类(kind), 所有类的集合 \mathbb{K} 的抽象定义为:

$$\mathbb{K} = *|(\mathbb{K} \to \mathbb{K})$$
.

而所有类的类型我们使用符号 \square 表示,有且仅有一个的超级超级类型 (super-super-type)。也即有 * : \square , * \rightarrow * : \square , ...。

如果 κ 是一个类,则对于每个类型是 κ 的 M (也即 $M:\kappa$),M 被称作是一个类型构造子,简称为构造子。而之前的类型,比如 α 或者 $\alpha \to \alpha$ 也都是构造子,尽管它们什么也没有构造。

我们使用术语(term)真构造子(proper constructor)表示不是类型的构造子(即类型不是*的构造子)。因此构造子的集合被分为了(旧的)类型和真构造子。

最后,使用类别(sort)或符号 s 表示 * 或 \square (我认为 s 其实是代表任意类型的类型或任意构造子类型的类型):

定义 2.1 (构造子, 真构造子, 类别)

- (1) 如果 κ : □ 且 M: κ , 则 M 是一个构造子,如果 $\kappa \neq *$,则 M 是一个真构造子。
 - (2) 类别 (s) 的集合为 $\{*, □\}$ 。

随着 □ 的引入,我们的语法中有四个层级 (level):

定义 2.2 (层级, level)

第 1 层: 项 (terms);

第2层:构造子(包括类型和真构造子);

第 3 层: 类 (kinds);

第 4 层:超级超级类型 □。

关于这里的真构造子和类型在同一层,我的理解是,因为真构造子其实就是依赖于类型的类型,正如之前依赖于项的项和项是一个层级的,依赖于类型的类型故也处在类型所在的层级。

对于语句 A:B,可以得出 B 所处的层级一定比 A 高一级,比如当 A 是一个项时,B 是一个类型,或者 A 是一个类型时, $B \equiv *$ 。

3 $\lambda \underline{\omega}$ 中的类别规则和变量规则,sort-rule and varrule in $\lambda \underline{\omega}$

本章中描述的系统叫做 $\lambda \omega$, 它是 $\lambda \rightarrow$ 的另一个扩展:

- $\lambda 2 = \lambda$ → 加 依赖于类型的项,
- $\lambda\omega$ = λ → 加 依赖于类型的类型。

给出 $\lambda\omega$ 的具体推导规则。

首先形式化 * 的类型是 □,这个规则称为类别规则(sort-rule):

定义 3.1 (类别规则, sort-rule)

(类别, sort) ∅ ⊢*:□

为了确定给定的上下文中所有的声明都是可推导的,在 $\lambda \to \lambda 2$ 中使用变量规则((var)-rule)推导。但是在 $\lambda \underline{\omega}$ 中,我们用有一点不同的方式: 巧妙地将上下文声明的可推导性与构造合适的上下文相结合。

原因是 $\lambda \omega$ 中的类型更为复杂,所以必须保证类型的定义是良构的(wellformed)。在 $\lambda \to 0$ 中,合法类型的集合已经预先给出,所以没有问题,而在 $\lambda \to 0$ 中,必须确定一个(合适的) $\lambda \to 0$ 上下文,这个上下文也提供了在其中使用到的类型需要的条件(requirements),见定义 $\lambda \to 0$ 引起, $\lambda \to 0$ 中出现的所有自由类型变量需要在上下文中声明,此时才可以推定 $\lambda \to 0$ 的良构与否。因此,与 $\lambda \to 0$ 不同, $\lambda \to 0$ 中出现在一个推定(judgement)中的类型的合法性不再能通过引用外部的集合来判定,但是应该依赖于包括其上下文的自身推定的一个检查。

在现在的系统中,类型需要的条件更加严格:出现在一个推定中的类型的合法性只取决于(follow)我们是否可以形式化地推导出它。

这个方式是:如果类型 A 已经是合法的,我们只用一个声明 x:A 扩展一个上下文。并且一个语句中的合法类型位于第 2 层或第 3 层,也即是一个类型(因为构造子不是类型,不能出现在:的右边)或是一个类。可以通过一个规则来表示:

定义 3.2 (变量规则,
$$var$$
- $rule$)
(变量, var) 如果 $x \notin \Gamma$, 则 $\frac{\Gamma \vdash A : s}{\Gamma.x : A \vdash x : A}$ 。

需要注意的是,在这条规则中可以看到,x 的类型不能是 \square ,是因为目前为止,该系统不允许应用时右边是 \square 类型的类 (kind),因此也不存在类型是 \square 的绑定变量。

s 表示 * 或 \square ,因此 A 是一个类型或一个类(kind),x 因此也表示一个项变量或是一个类型变量。这个规则允许我们以一个声明 x:A 扩展上下文,并且在扩展的上下文中推导出与声明一样的语句。

 $x \notin \Gamma$ 保证了变量 x 未在 Γ 中出现,因此声明在一个上下文中的所有的变量都是不同的,避免了变量名相同(类型不同)时造成的混淆。

使用 (sort) 和 (var) 规则的一个例子,观察它们如何工作:

$$\frac{(1) \emptyset \vdash * : \square}{(2) \alpha : * \vdash \alpha : *} (var) \\ \overline{(3) \alpha : *, x : \alpha \vdash x : \alpha} (var)$$

第 (1) 行由 (sort) 规则推导而出,(1)-(2) 以及 (2)-(3) 都应用了 (var) 规则。同时可以清楚地发现,新的 (var) 规则没有 $\lambda \rightarrow$ 中的 (var) 规则通用,因为当前的 (var) 规则只允许推导出上下文中新添加的最后的声明 x:A,而 $\lambda \rightarrow$ 中,任意出现在 Γ 的声明 $x:\sigma$ 都是可推导的。

如在 $\lambda \to \Phi$ 中一样,我们也希望在 $\lambda \underline{\omega}$ 中可以推导 $\alpha: *, x: \alpha \vdash \alpha: *, \alpha: *, \beta: * \vdash \alpha: *, \beta: * \vdash \beta: *, \alpha: *, \beta: *, \alpha: *$

$$\alpha:*\vdash *:\Box$$
。

因为前边所提到的 (sort) 规则,只给出了空上下文时的规则。 为了解决这个问题,引入了所谓的弱化规则 (weakening rule)。

4 $\lambda \underline{\omega}$ 中的弱化规则 (weakening rule)

弱化规则允许我们通过添加新的声明来弱化一个推定(judgement)的上下文。

定义 4.1 (弱化规则, weakening rule)
$$(weak) \ \text{如果 } x \not\in \Gamma, \ \ \text{则} \ \frac{\Gamma \vdash A : B \quad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B}.$$

若上下文 Γ 已经可以推导出 A: B,在 Γ 的尾部添加了一个任意的声明(弱化)后仍然可以推导出 A: B。

需要注意的是第二个 **premiss**,添加的声明的类型需要是可推导出的类型或类(kind),与 (var) 规则类似。

在添加了弱化规则以后,前边所提到的稀疏引理(Thinning Lemma)在 $\lambda \omega$ 中依然成立,即子上下文可以推定出来的语句在扩展后的上下文中依然 可以推定,尽管弱化规则只允许在尾部添加声明。

现在便可以推导 $\alpha:*,x:\alpha\vdash\alpha:*$, 推导树:

$$\frac{(1) \ \emptyset \vdash \ast : \square}{(2) \ \alpha : \ast \vdash \alpha : \ast} \ (var) \quad \frac{(1) \ \emptyset \vdash \ast : \square}{(2) \ \alpha : \ast \vdash \alpha : \ast} \ (var)}{(3) \ \alpha : \ast , x : \alpha \vdash \alpha : \ast} \ (weak)$$

$5 \lambda \omega$ 中的形成规则(formation rule)

在 $\lambda 2$ 中,有一个叫做 (form) 的形成规则,用于在一个上下文中类型化语 句的构造,这个规则基于 $\lambda 2$ -类型的集合 $\mathbb{T} 2$,正如之前提到的, $\lambda \omega$ 中的 类型更为复杂,因此,引入了一个"真正"的推导规则,包含 **premisses** 和 **conclusion**,用于类型(以及类 (kind))的构造:

定义 5.1 (形成规则, formation rule)

$$\textit{(form)}\ \frac{\Gamma \vdash A : s \quad \Gamma \vdash B : s}{\Gamma \vdash A \to B : s}$$

需要注意的是,规则中出现的三个 s 是相同的,同时表示 * 或 \square 。 在引入新的 (form) 规则之前,由 (var) 规则与 (weak) 规则只能推导出 *: \square , α : *, x: α 而不能推出箭头类型 * \rightarrow *: \square 以及 $\alpha \rightarrow \beta$: * 等。引入 新的形成规则可以覆盖我们需要的所有类型和类 (kind)。

例如:
$$\frac{\emptyset \vdash * : \Box \quad \emptyset \vdash * : \Box}{\emptyset \vdash * \to * : \Box}$$
 (form)

6 $\lambda\omega$ 中的应用与抽象规则

 $\lambda \underline{\omega}$ 中的这两个规则与之前略有不同,首先,用于类型的元变量(metavariable)的名字不同,因为 $\lambda \underline{\omega}$ 中的类型更为通用,其次,需要保证类型是良构的(即可以由上下文推导出):

定义 6.1 (应用规则)

$$(appl) \ \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

定义 6.2 (抽象规则)

(abst)
$$\frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash A \to B : s}{\Gamma \vdash \lambda x : A \cdot M : A \to B}$$

需要注意的是,因为 $s \in \{*, \square\}$,所以这些规则(包括之前定义的)都同时具有两种作用,比如当 $s \equiv *$ 时, $A \to B$ 是一个第二层的类型,如 $(\alpha \to \beta) \to \gamma$,当 $s \equiv \square$ 时, $A \to B$ 就是一个第三层的类型(或者说类,kind),如 $(* \to *) \to *$ 。

7 简化(shortened)推导

为了保证推导系统的严谨性以及完整性所定义的这些规则,导致在推导的过程中有许多很无趣以及显而易见的部分,比如在推导 $\alpha:*,\beta:*\vdash\alpha\to\beta:*$ 时,需要下面这些推定:

$$\emptyset \vdash * : \Box \text{ (sort)},$$

$$\alpha : * \vdash \alpha : * \text{ (var)},$$

$$\alpha : * \vdash * : \Box \text{ (weak)},$$

$$\alpha : *, \beta : * \vdash \alpha : * \text{ (weak)},$$

$$\alpha : *, \beta : * \vdash \beta : * \text{ (var)}.$$

而上述推定包括 $\alpha: *, \beta: * \vdash \alpha \rightarrow \beta: *$ 都是非常显而易见的。这里不是很有趣的步骤出现在(尤其是)下面三个情况下:

- (i) 当使用规则 (sort),(var) 和 (weak) 时,
- (ii) 当使用规则 (form) 时,以及
- (iii) 当确定 (abst) 规则的第二个 premiss 的合法性时。

为了将注意力放在真正有趣的步骤上,我们将允许跳过如上的所有推定,或者只确定某个类型的良构与否。因此 $\alpha:*,\beta:*\vdash\alpha\to\beta:*$ 现在可以直接使用。

8 变换(conversion)规则

变换规则的定义如下:

定义 8.1 (变换规则, conversion rule)

$$(conv)$$
 如果 $B =_{\beta} B'$,则 $\frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s}{\Gamma \vdash A : B'}$ 。

需要注意的是,因为 B 是作为推定 $\Gamma \vdash A : B$ 中的一个类型,所以 B 已经是良构的。为了保证 B' 也是良构的,添加了第二个 **premiss:** $\Gamma \vdash B' : s$,保证了 B' 也是良构的类型或类 (kind)。

需要注意的是, β -规约不保证类型匹配,换而言之, $B=_{\beta}B'$ 无法保证 B 是良构时 B' 是良构的,比如 $\beta \to \gamma =_{\beta} (\lambda \alpha : *.\beta \to \gamma)M$,右边在进行 β -规约时,并不检查 M 的类型,而只是进行符号的替换,当 M 的类型不是 * 时,右边即不是良构的。

在拥有了变换规则之后,我们可以进行如下推导,其中令 $\Gamma \equiv \beta: *, x:$ $(\lambda \alpha: *.\alpha \to \alpha)\beta:$

$$\frac{\Gamma \vdash x : (\lambda \alpha : *.\alpha \to \alpha)\beta \quad \Gamma \vdash \beta \to \beta : *}{\Gamma \vdash x : \beta \to \beta} \text{ (conv)}$$

需要注意的是,推定中对象(subject),即 A:B 中的 A 进行规约后的类型不变,且仍可被推导出,而这一定理可以由之前的规则推出,不再赘述。 至此,所有的 $\lambda \omega$ -规则如下:

$$(\text{sort}) \emptyset \vdash * : \Box$$

$$(\text{var}) \text{ 如果 } x \not\in \Gamma, \text{ 则 } \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A}$$

$$(\text{weak}) \text{ 如果 } x \not\in \Gamma, \text{ 则 } \frac{\Gamma \vdash A : B \quad \Gamma \vdash C : s}{\Gamma, x : C \vdash A : B}$$

$$(\text{form}) \frac{\Gamma \vdash A : s \quad \Gamma \vdash B : s}{\Gamma \vdash A \to B : s}$$

$$(\text{appl}) \frac{\Gamma \vdash M : A \to B \quad \Gamma \vdash N : A}{\Gamma \vdash MN : B}$$

$$(\text{abst}) \frac{\Gamma, x : A \vdash M : B \quad \Gamma \vdash A \to B : s}{\Gamma \vdash \lambda x : A . M : A \to B}$$

$$(\text{conv}) \text{ 如果 } B =_{\beta} B', \text{ 则 } \frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s}{\Gamma \vdash A : B'}$$

9 $\lambda \underline{\omega}$ 的性质

 $\lambda \omega$ 满足之前几章所提到的大部分性质,但是类型唯一性引理需要进行调整:

引理 9.1 (类型唯一性引理)

如果 $\Gamma \vdash A : B_1$ 且 $\Gamma \vdash A : B_2$, 则 $B_1 =_{\beta} B_2$ 。