A Model to Flag Patients Likely to Have/Acquire a MRSA Infection

JoAnn Alvarez

July 26, 2018

Outline

- Background
- 2 Data
 - Data Acquisition
 - Feature Engineering
 - Data Description
- Machine Learning Algorithm
 - Model Tuning
 - Choosing Threshold

Project Goal

Task: Flag patients who are likely to have/acquire MRSA

Project Goal

Task: Flag patients who are likely to have/acquire MRSA

Use case: Implement a realtime alert through the EHR.

Outline

- Background
- 2 Data
 - Data Acquisition
 - Feature Engineering
 - Data Description
- Machine Learning Algorithm
 - Model Tuning
 - Choosing Threshold

Methicillin-resistant Staphylococcus aureus

Exists because of bacteria's evolution to survive different antibiotics

Methicillin-resistant Staphylococcus aureus

Exists because of bacteria's evolution to survive different antibiotics

80,000 life-threatening cases per year in US.

Many people have staph on skin or in nose.

Many people have staph on skin or in nose. Hospital- or community- acquired Spreads betweeen patients and providers.

Human Costs of MRSA

- If infection localized to skin or soft tissue, can be treated more easily
- Can spread to blood and internal organs
- Patients die

Financial Costs

Costs hospitals lots of money

Financial Costs

Costs hospitals lots of money

Hospital acquired:

- Liability
- Lose insurance reimbursements
- Impacts hospital quality ratings
- Hospitals are required to report to CMS and to the government in some states
- CMS reduces payment if the infection is preventable or if the hospital has high MRSA rates.

Financial Costs

Costs hospitals lots of money

Hospital acquired:

- Liability
- Lose insurance reimbursements
- Impacts hospital quality ratings
- Hospitals are required to report to CMS and to the government in some states
- CMS reduces payment if the infection is preventable or if the hospital has high MRSA rates.

Community acquired:

• Can save money with faster diagnosis and treatment

MRSA protocols

Hospitals develop protocols

- Screen to identify carriers.
- Decolonization

Prevent spread

- handwashing
- keep wounds clean and covered
- isolate patients

Treatment

Urgent

Oral or IV antibiotics

There are different tiers of abx that strains of MRSA are successively resistant to.

vancomycin, teicoplanin, daptomycin, linezolid

Outline

- Background
- 2 Data
 - Data Acquisition
 - Feature Engineering
 - Data Description
- Machine Learning Algorithm
 - Model Tuning
 - Choosing Threshold

Data Acquisition

Cerner EHR \rightarrow integrated data mart

Available Data

- patient encounter
 - admission date
 - discharge date
 - reason for visit
- patient data
 - birth date
 - race
 - gender
 - marital status

Available Data

- diagnoses
- labs
- vital signs
- medications administered
- location
 - timestamps
 - location
- billing
 - insurance type

Data Acquisition

Identifed training cases

Used ICD 10 diagnosis codes.

- A41.02 Sepsis due to MRSA
- J15.212 Pneumonia due to MRSA
- A49.02 MRSA infection, unspecified site
- B95.62 MRSA infection causing disease classified elsewhere

Started with those recommended by infection control person

Started with those recommended by infection control person

- Nursing home patients
- Immunocompromised
- Any access to the body such as central line or catheter
- On dialysis

Location within hospital

Location within hospital

- Surgery
- Trauma
- Obstetrics
- Rehab

Prior hospital/ED visits

Prior hospital/ED visits

- Number of visits in last year
- Time since last visit (inpatient, ED, ICU)
- Length of stay at last visit

Labs and vitals

Labs and vitals

- White blood cell count
- Height, weight, BMI
- Lactic acid
- Age
- Shock index by age: (HR/SBP) * Age

Words in 'Reason for visit'

Words in 'Reason for visit'

- Cellulitis
- Abscess
- Sepsis

More features:

More features:

- Hospital's bed count
- Hospital region
- Patient's ED arrival method
- Time since admission

Preprocessing

Used recipes R package

Preprocessing

Used recipes R package

- Impute missing numeric with extreme value
- Impute missing factors with mode
- One-hot encode
- Create extra categories for new, unseen values.

Challenges

Very low prevalence

Challenges

Very low prevalence

Dependence on past visits which are often not observable

Challenges

Very low prevalence

Dependence on past visits which are often not observable

Patients cannot be identified if they went to a different hospital (within or outside Tenet)

Challenges

Very low prevalence

Dependence on past visits which are often not observable

Patients cannot be identified if they went to a different hospital (within or outside Tenet)

Complexities with time

Data Description

- Identified 3,000,000 inpatient/ED encounters
- 10,000 MRSA cases over about 2 years
- Prevalence: 0.3%
- Mostly community acquired

Relationship with Age

Relationship with Weight

Outline

- Background
- 2 Data
 - Data Acquisition
 - Feature Engineering
 - Data Description
- Machine Learning Algorithm
 - Model Tuning
 - Choosing Threshold

xgboost!

xgboost!

R packages:

xgboost!

R packages:

- xgboost
- caret
- recipes
- mlr

Variable Importance

xgboost tuning parameters:

• Learning rate/shrinkage

- Learning rate/shrinkage
- Number of boosting rounds

- Learning rate/shrinkage
- Number of boosting rounds
- Maximum tree depth

- Learning rate/shrinkage
- Number of boosting rounds
- Maximum tree depth
- Fraction of observations to subsample

- Learning rate/shrinkage
- Number of boosting rounds
- Maximum tree depth
- Fraction of observations to subsample
- Fraction of features to subsample

Effects of tuning parameters

Effects of tuning parameters

See figure

Alert rate

"Alert fatigue" Want a very low alert rate because event very rare

Performance at different alert rates and times

Table: Performance at selected alert rates

Alert Rate	Cutoff	PPV	Sensitivity	Specificity
1%	0.049	0.09	0.26	0.99
2%	0.026	0.07	0.42	0.98
3%	0.017	0.05	0.50	0.97

Next Steps

- Tuning!
- Previous antibiotic exposure
- Find evidence of wound
- Try some interactions with whether came through ED
- Expand data