Определение. Конечное, непустое множество Σ — алфавит

Пример. • $\{0,1\}$

- $\{a, b, c \dots z\}$
- Unicode

$$\Sigma^* := \bigcup_{k=0}^{\infty} \Sigma^k$$

Определение. Конкатенация:

$$\Sigma^k \times \Sigma^l \to \Sigma^{k+l}$$

Это аддитивная операция с нейтральным элементом.

Определение. Язык над алфавитом Σ^* — подмножество Σ^*

 Σ^* — бесконечное счётное множество

Множество всех языков 2^{Σ^*} , т.к. каждый из элементов Σ^* либо включен, либо нет. Это множество несчетно.

 $\mbox{\it Пример.} \quad \ 1. \ \, A = \{w|\ \mbox{в}\ w$ четное число нулей $\} \subset \{0,1\}^*$ $01011 \in A \quad 000 \not\in A$

2.
$$Pal = \{w|w -$$
 палиндром $\} \subset \{0,1\}^*$ $010 \in Pal \quad 0000 \in Pal \quad 01 \not\in Pal$

Языки надо задавать формально, а не что-то рода "язык палиндромов". Есть два способа это делать:

- 1. Распознавание: есть черный ящик, который на вход получает слово и выдает булево значение принадлежит слово искомому языку или нет.
- 2. Конструирование: система правил диктует то, как устроены слова в искомом языке.

Пример. Распознавание ПСП:

Тут код.

Пример. Конструирование ПСП:

$$\varepsilon - \Pi \Pi$$

$$A - \Pi C\Pi \Rightarrow (A) - \Pi C\Pi$$

$$A, B - \Pi C\Pi \Rightarrow AB - \Pi C\Pi$$

Автоматы распознают принадлежность слова языку.

Определение. Детерменированный конечный автомат (ДКА):

- 1. Состояния, обозначаемые кругами
- 2. Переходы, обозначаемые ребрами между состояниями и помечаемые символом алфавита. Из любого состояния есть ровно один переход по каждому символу алфавита.
- 3. Начальное состояние, обозначаемое входящей стрелкой из никуда
- 4. Допускающие состояния, обозначаемые кругом внутри себя.

Переименуем состояния "not 0" $\to A$, "last 0" $\to B$, "00" $\to C$.

Опишем математически ДКА:

Рис. 1: Автомат для $\{w |$ в w четное число нулей $\}$

Рис. 2: Автомат $\{w |$ в wсодержит два нуля подряд $\}$

Определение. ДКА $AV = \langle \Sigma, Q, S \in Q, T \subset Q, \delta : Q \times \Sigma \to Q \rangle$

Мгновенное описание AV — пара из состояния A и оставшихся от исходного слова строки. Это объект из множества $Q \times \Sigma^*$, например $\langle A, 11011001 \rangle$.

На мгновенных описаниях можно задать отношение "переходит за 1 шаг", обозначим его ⊢. Формально оно задается следующим образом:

$$\langle p, \alpha \rangle \vdash \langle q, \beta \rangle$$
, если:

1.
$$\alpha = c\beta$$

2.
$$q = \delta(p, c)$$

Тогда для для слова S верно следующее:

$$\langle S,x \rangle \vdash \langle u_1,x_1 \rangle \vdash \langle u_2,x_2 \rangle \vdash \ldots \vdash \langle u_l, \varepsilon \rangle$$
 AV допускает $x \Leftrightarrow u_L \in T$

Эта запись неудобна, поэтому обозначим транзитивное замыкание \vdash как \vdash^* , это — отношение "переходит ≥ 0 шагов". Тогда получается следующее:

$$AV$$
 допускает $x \Leftrightarrow \langle s, x \rangle \vdash^* \langle t, \varepsilon \rangle$

Заметим, что все ДКА — счётное множество, а языки - несчётное \Rightarrow не любой язык можно описать с помощью ДКА. Назовем все языки, которые можно получить с помощью ДКА автоматными.

Определение. Базовые регулярные языки:

- Ø
- $\{\varepsilon\}$
- $\{c_i\}$ $\Sigma = \{c_1 \dots c_z\}$

Обозначим множество базовых регулярных языков над $\Sigma = \{0,1\}$ как $R_0 = \{\{\}, \{\varepsilon\}, \{0\}, \{1\}\}$ Зададим три операции над этими языками:

М3137у2019 Лекция 7

- 1. Объединение: $A \cup B$
- 2. Конкатенация: $\{ab \mid a \in A, b \in B\}$
- 3. Замыкание Клини: $A^* = \bigcup\limits_{i=0}^{\infty} A^i$

$$R_1:=\{M\,|\,M\in R_0\text{ или }M=AB,A\in R_0,B\in R_0,M=A\cap B,A\in R_0,B\in R_0\text{ или }M=A^*,A\in R_0\}$$

$$R_1=\{\{\},\{\varepsilon\},\{0\},\{1\},\{\varepsilon,0\},\{\varepsilon,1\},\{00\},\{01\},\{10\},\{11\},\{0\}^*,\{1\}^*\}$$

Определение. Регулярные языки:

$$Reg = \bigcup_{i=0}^{\infty} R_i$$

М3137у2019 Лекция 7