Analyse de Données – Développeur C5-160512-INFO

4. Classification Non Supervisée

Pr. Carl FRÉLICOT FST/PAS221 – carl.frelicot@univ-lr.fr

Licence d'Informatique 3ème année

Automne 2021 - La Rochelle

- 4. Classification Non Supervisée
 - 4.1 Problématique et Structures
 - 4.2 Distances
 - 4.3 Méthodes de Partitionnement (Clustering)
 - 4.4 Réduction de la Dimensionnalité?

4 Classif. Non Supervisée 4.1 Problématique...

 individus vs variables quantitatives données dites vectorielles

$$X = [X_{ki}]_{k=1,n;i=1,p}$$
 nuage de n points en dim. p données sans étiquette de groupe cas non supervisé

 individus vs individus données non vectorielles

ex. : tableau de distances, proximités, etc

$$D = [d_{kl}]_{k,l=1,n}$$
 où $d_{kl} = d(x_k, x_l)$

K-Means. Hierarchical Clustering

 variables vs variables $D = [d_{ii}]_{i,i=1,p}$ où $d_{ii} = d(X_i, X_i)$ Feature Clustering par exemple?

 $X(n \times p)$ $Y(n \times 1)$

But: identifier une structure de groupes dans X afin d'attribuer à tout x une étiquette y

4.1 et Structures

- différents types de classification non supervisée selon qu'on cherche :
 - à modéliser les classes par des distributions conditionnellement aux groupes (approche probabiliste) mixture decomposition
 - une structure particulière (approche métrique)
 - partition
 - hiérarchierecouvrement

K-Means Hierarchical Clustering plusieurs étiquettes

Exemple : notes de n = 9 élèves de Terminale S dans p = 5 matières

Prénor	n mat	th.	info.	fran.	angl.	arts		Prénom	Cluster	lien entre partition et hiérarchie?
1 Thomas	6.0	0	6.0	5.0	5.5	8.0	1	Thomas	C3	nen entre partition et merarchie :
2 Margau	x 8.0	0	8.0	8.0	8.0	9.0	2	Margaux	C3	
3 Florian	6.0	0	7.0	11.0	10.0	11.0	3	Florian	C2	
4 Lucie	15.	.0	14.0	16.0	15.0	8.0	4	Lucie	C1	
5 Victor	14.	.0	14.0	12.0	12.5	10.0	5	Victor	C1	
6 Elena	11.	.0	10.0	5.5	7.0	13.0	6	Elena	C3	
7 Hugo	5.5	5	7.0	14.0	11.5	10.0	7	Hugo	C2	
8 Nabil	13.	.0	12.5	8.5	9.5	12.0	8	Nabil	СЗ	
9 Juliette	9.0	0	9.5	12.5	12.0	18.0	9	Juliette	C2	

Pr. C. Frélicot - ADD Licence d'Informatique 3ème année

- 4. Classification Non Supervisée

 - 4.2 Distances

Distances entre individus : une distance métrique (a) d sur un ensemble X:

$$X \times X \to \mathbb{R}_+, (x, y) \mapsto d(x, x)$$
 vérifiant

(1)
$$d(x, y) = d(y, x)$$
 symétri

(1)
$$d(x,y) = d(y,x)$$
 symétrie
(2) $d(x,y) = 0 \Leftrightarrow x = y$ indiscernabilité

(3)
$$d(x,z) \le d(x,y) + d(y,z)$$
 inégalité triang.

- (a) si tout $x \in X$ se projette dans un espace (vectoriel) \mathcal{X} , (\mathcal{X}, d) est appelé espace métrique; pour nous $\mathcal{X} = \mathbb{R}^p$, d'où le raccourci de langage entre distance et métrique
 - une pseudométrique ne vérifie que (1)-(3)
 - une semimétrique ou disssimilarité ne vérifie que (1)-(2) suffit en Classif. NS
 - une ultramétrique vérifie (1)-(2)-(3') $d(x,z) \leq max(d(x,y),d(y,z))$ distance?

$d_q(x,y) = \left(\sum_{j=1}^p |x_j - y_j|^q\right)^{1/q}$ Distances usuelles : distances de Minkowski

 $2X_1$

- Manhattan ou cityblock si q=1
- euclidenne si q=2; alors $d_2^2(x,y)=||x-y||_L^2$

• Chebychev si $a \to +\infty$: alors $d_{\infty}(x, y) = \max_{i=1, p} |x_i - y_i|$

 X_1

Pondération des variables! **A** X₂

4.2 Distances

Distance de Mahalanobis : $d_M^2(x,y) = ||x-y||_{V^{-1}}^2 = {}^t(x-y) V^{-1}(x-y)$

- si *V* est diagonale, alors les ellipses d'iso-distance sont parallèles aux axes
- si V = I? alors $d_M^2(x, y) = d_2^2(x, y)$

Distances usuelles : distances de Minkowski

$$d_q(x,y) = \left(\sum_{j=1}^p |x_j - y_j|^q\right)^{1/q}$$

- ullet Manhattan ou cityblock si q=1
- euclidenne si q=2; alors $d_2^2(x,y)=||x-y||_I^2$

...

• Chebychev si $q \to +\infty$; alors $d_{\infty}(x, y) = \max_{j=1, p} |x_j - y_j|$

Pondération des variables!

4.2 Distances

Distance de Mahalanobis : $d_M^2(x,y) = ||x-y||_{V^{-1}}^2 = {}^t(x-y) V^{-1}(x-y)$

- si V est diagonale, alors les ellipses d'iso-distance sont parallèles aux axes
- si V = I? alors $d_M^2(x, y) = d_2^2(x, y)$

$$q=2$$

Distances usuelles : distances de Minkowski

$$d_q(x,y) = \left(\sum_{j=1}^p |x_j - y_j|^q\right)^{1/q}$$

q = 1

q = 4

 $q = +\infty$

- 1. Préambule
- 2. Tableaux et Espaces
- 3. Réduction de la Dimensionnalité
- 4. Classification Non Supervisée
 - 4.1 Problématique et Structures
 - 4.2 Distances
 - 4.3 Méthodes de Partitionnement (Clustering)
 - 4.3.1 Motivation
 - 4.3.2 Algorithme C-means
 - 4.3.3 Pros and Cons C-means
 - Réduction de la Dimensionnalité?
- 5. Classification Supervisée
- 6. Conception et Évaluation

4.3.1 Motivation

Partition: une partition stricte d'un ensemble $X = \{x_1, x_2, ..., x_n\}$ est un ensemble $P = \{C_1, C_2, ..., C_c\}$ de groupes (*clusters*) disjoints, couvrant X

• on lui associe une matrice de partition $U = [u_{ik}]_{i=1,c;k=1,n}$ où où $u_{ik} = 1$ ou 0 selon que $x_k \in C_i$ ou non, telle que $\sum_i u_{ik} = 1$, $\forall k$ et $0 < \sum_k u_{ik} < n$, $\forall i$

Problèmes :

- nombre c de groupes?
- la recherche de la "meilleure partition" en k classes d'un ensemble de n éléments est NP-complet;

nombre de Stirling : c et n grands
$$S(c,n) = \frac{1}{c!} \sum_{i=1}^{c} (-1)^{c-i} \begin{pmatrix} i \\ c \end{pmatrix} i^n \quad S(c,n) \simeq \frac{c^n}{c!}$$

С	n	S					
2	4	7					
2	10	511					
5	10	42 535					
2	30	536 870 911					
3	150	$> 6 \times 10^{70}$					

But : identifier une structure de groupes dans X afin d'attribuer à tout x une étiquette y

X o U ou P

Sont nécessaires un(e) :

- $\mathbf{0}$ dissimilarité/distance d sur X
- ${f 2}$ critère d'affectation ${\cal D}$ aux groupes
- $oldsymbol{3}$ algorithme d'optimisation de $\mathcal D$

Pr. C. Frélicot – ADD Licence d'Informatique 3ème année

Analyse de Données – Développeur

- 4. Classification Non Supervisée

 - 4.3 Méthodes de Partitionnement (Clustering)
 - 4.3.2 Algorithme C-means

4.3.2 Algo. C-means

Algorithme(s) C-means

K-moyennes ou "centres mobiles"

- méthode de *clustering* : recherche itérative d'une partition $X \to U, V$ et de représentants (?) $V = \{\overline{x}_1, \overline{x}_2, ..., \overline{x}_c\}$
- paramètres utilisateurs :
 - nombre c de clusters
 - paramètre d'arrêt ε
 - o distance d
- critère $\mathcal{D}(U, V) = \frac{1}{n} \sum_{i=1}^{c} \sum_{x_{\nu} \in C_i} d_2^2(x_k, \overline{x}_i)$
- $_{f 0}$ initialisation aléatoire : $U^{(0)}$
- 1 tant que non convergence

 - $U^{(t)} = \operatorname{argmin}_{U} \mathcal{D}(U, V^{(t)})$

attention : K == cou nombre max. d'iérations d_2 par défaut

> inertie intra-clusters min? max?

stabilité de la partition prototypage

affectation

 $X \rightarrow U$ on P

But : identifier une structure de groupes dans X afin d'attribuer à tout x une étiquette y

Sont nécessaires un(e) :

- o dissimilarité/distance d sur X
- ${f 2}$ critère d'affectation ${\cal D}$ aux groupes
- $oldsymbol{3}$ algorithme d'optimisation de $\mathcal D$

Pr. C. Frélicot – ADD Licence d'Informatique 3ème année

<u></u> 4.3 Méth. par Partition

4.3.2 Algo. C-means

Algorithme(s) C-means

K-moyennes ou "centres mobiles"

- méthode de *clustering* : recherche itérative d'une partition $X \to U, V$ et de représentants (?) $V = \{\overline{x}_1, \overline{x}_2, ..., \overline{x}_c\}$
- paramètres utilisateurs :
 - nombre c de clusters
 - paramètre d'arrêt arepsilon
 - distance d

attention :
$$K == c$$

ou nombre max. d'iérations
 d_2 par défaut

- critère $\mathcal{D}(U, V) = \frac{1}{n} \sum_{i=1}^{c} \sum_{x_k \in C_i} d_2^2(x_k, \overline{x}_i) = \frac{1}{n} \sum_{k=1}^{n} d_2^2(x_k, \overline{x}_{C_i(x_k)})$ inertie intra min $\frac{? \max?}{}$
- o initialisation aléatoire : $U^{(0)}$
- 1 tant que non convergence
 - $V^{(t)} = \operatorname{argmin}_{V} \mathcal{D}(U^{(t-1)}, V)$
 - $U^{(t)} = \operatorname{argmin}_{U} \mathcal{D}(U, V^{(t)})$

convergence : $||U^{(t)} - U^{(t-1)}|| < \varepsilon$

stabilité de la partition

prototypage

ou $V^{(0)}$

affectation norme matricielle. par ex. : *max*

norme matricielle, par ex. : max ou maxiter

•
$$U^{(0)} \to V^{(1)} \to U^{(1)} \to V^{(2)} \dots V^{(t)} = V^{(t-1)}$$

• $V^{(0)} \to U^{(1)} \to V^{(1)} \to U^{(2)} \dots U^{(t)} = U^{(t-1)}$

4.3.2 Algo. C-means

Exemple: chiffres manuscrits

 10 chiffres 1797 imagettes (\simeq 180 par chiffre) de très petite taille $64 = 8 \times 8$ pixels

barycentres trouvés

• taux d'accord avec la vérité-terrain : 92% supervision connue, par expertise / connaissance humaine 8, 6, 4, 7, 2

0, 9, 5, 1, 3

ground-truth

- 1. Préambule
- 2. Tableaux et Espaces
- 3. Réduction de la Dimensionnalité
- 4. Classification Non Supervisée
 - 4.1 Problématique et Structures
 - 4.2 Distances
 - 4.3 Méthodes de Partitionnement (Clustering)
 - 1 Motivation
 - 4.3.2 Algorithme C-means
 - 4.3.3 Pros and Cons C-means
 - .4 Réduction de la Dimensionnalité?
- 5. Classification Supervisée
- 6. Conception et Évaluation

partition finale

run #1

run #2

initialisation

4.3.3 Pros and Cons

⊕ intuitif et rapide

sensible à l'initialisation solution : exécuter r fois,

comparé à *HAC* optimum local

inertie intra-classes

retenir les points qui finissent toujours ensemble tendance à former des clusters équilibrés formes fortes

- effectif
 - dispersion

solution : adapter la métrique, donc le critère

variantes distance euclidienne une idée?

 tendance à former des clusters hypershériques solution : adapter la métrique

4.3.3 Pros and Cons

⊕ intuitif et rapide

 sensible à l'initialisation solution : exécuter r fois,

exécuter *r* fois, retenir les points qui finissent toujours ensemble

→ tendance à former des clusters équilibrés

- effectif
- dispersion

solution : adapter la métrique, donc le critère

- tendance à former des clusters hypershériques solution : adapter la métrique
- sensible aux inliers
 et outliers

comparé à *HAC* optimum local

formes fortes

inertie intra-classes

variantes distance euclidienne une idée?

partition stricte C fixé : cluster validity

Pr. C. Frélicot – ADD Licence d'Informatique 3ème année

4.3.3 Pros and Cons

Cluster Validity Problem

- quel $c_{opt.}$?
- critères (non/liés à l'algorithme)
 fondés sur les points et/ou centres
 copt. = argmin/max_{c=2,cmax} CVI(c)

Dunn Index :

$$DI(c) = \frac{\min_{1 \leq i < i' \leq c} d(\overline{x}_i, \overline{x}_{i'})}{\max_{j=1,c} \Delta_j} \quad \text{où } \Delta_j = \max_{x_k, x_l \in C_j} d(x_k, x_l)$$

certains CVI ont une tendance monotone avec c:(

• critères relatifs (comparaison de deux partitions en c et c' clusters)

min ou max?

•
$$t = \sum_{i=1}^{c} \sum_{j=1}^{c'} n_{ij}^2 - n$$

• $u = \sum_{i=1}^{c} n_{i\bullet}^2 - n$, où $n_{i\bullet} = \sum_{i=1}^{c'} n_{ij}$

à partir de la matrice d'accord : $N(P, Q) = {}^{t}PQ$

•
$$v = \sum_{i=1}^{c'} n_{i}^{\bullet}$$
 in, où $n_{i}^{\bullet} = \sum_{i=1}^{c} n_{i}^{0}$
• $v = \sum_{i=1}^{c'} n_{i}^{0} - n$, où $n_{i}^{\bullet} = \sum_{i=1}^{c} n_{i}^{0}$

de dimension $(p \times q)$

min ou max?

- 4. Classification Non Supervisée

 - 4.4 Réduction de la Dimensionnalité?

 individus vs variables quantitatives données dites vectorielles

$$X = [X_{ki}]_{k=1,n;i=1,p}$$
 nuage

nuage de n points en dim. p

données sans étiquette de groupe cas non supervisé

 $X(n \times p)$

 individus vs individus données non vectorielles

ex. : tableau de distances, proximités, etc

$$D = [d_{kl}]_{k,l=1,n}$$
 où $d_{kl} = d(x_k, x_l)$

C-Means, Hierarchical Clustering

 tX $(p \times n)$

 variables vs individus données vectorielles

$${}^{t}X = [X_{ik}]_{i=1,p;k=1,n}$$

nuage de p points en dim. n

 variables vs variables données non vectorielles

ex. : tableau de distances, proximités, etc

$$D = [d_{ij}]_{i,j=1,p}$$
 où $d_{ij} = d(X_i, X_j)$

Feature Clustering (C-Means, Hierarchical)

4.4 Réduc, de la Dim.?

Exemple: notes de n = 9 élèves de Terminale S dans p = 5 matières

Feature name	Thomas	Margaux	Florian	Lucie	Victor	Elena	Hugo	Nabil	Juliette	8	
math.	6.000	8.000	6.000	15.000	14.000	11.000	5.500	13.000	9.000		
info.	6.000	8.000	7.000	14.000	14.000	10.000	7.000	12.500	9.500	, i	
fran.	5.000	8.000	11.000	16.000	12.000	5.500	14.000	8.500	12.500	4	
angl.	5.500	8.000	10.000	15.000	12.500	7.000	11.500	9.500	12.000		
arts	8.000	9.000	11.000	8.000	10.000	13.000	10.000	12.000	18.000	. 2	
a numero de veriebles (n — E v. n — O)											

- nuage de variables ($p = 5 \times n = 9$)
- algorithme *C-means*; c=3

 \rightarrow espace de dimension réduite (q = c < p)

ACP sur les variables (plan 1-2) $^tX(p\times n)$

Q.,

 variables vs individus données vectorielles

$${}^{t}X = [X_{ik}]_{i=1,p;k=1,n}$$

variables vs variable

$$D = [d_{ij}]_{i,j=1,p} \text{ où } d_{ij} = d(X_i, X_j)$$

Feature Clustering (C-Means, Hierarchical)

Pr. C. Frélicot – ADD Licence d'Informatique 3ème année

- - 1. Préambule
 - 2. Tableaux et Espaces
 - 3. Réduction de la Dimensionnalité
 - 4. Classification Non Supervisée
 - 4.1 Problématique et Structures
 - 4.2 Distances
 - 4.3 Méthodes de Partitionnement (Clustering)
 - 4.3.1 Motivation
 - 4.3.2 Algorithme C-means
 - 4.3.3 Pros and Cons C-means
 - 4.4 Réduction de la Dimensionnalité?
 - 5. Classification Supervisée
 - 6. Conception et Évaluation