

Wintersemester 2024/2025 Prof. Dr. Sergey Dashkovskiy 05.12.2023 Andreas Schroll

8. Übungsblatt zu gewöhnlichen Differentialgleichungen

Präsenzaufgaben

Diese Aufgaben werden zusammen mit ihrem Übungsleiter in den Übungen vom 09.12. und 10.12. gelöst.

Aufgabe P8.1

Bestimmen Sie die allgemeine reelle Lösung der Differentialgleichung

$$\ddot{x} + 2x = 2\cos(t).$$

Aufgabe P8.2

Seien $\varphi_1, \varphi_2, \varphi_3 \colon \mathbb{R} \to \mathbb{R}$ gegeben durch

$$\varphi_1(t) = 1$$
, $\varphi_2(t) = t$, $\varphi_3(t) = t^2$

für alle $t \in \mathbb{R}$. Es ist bekannt, dass $\varphi_1, \varphi_2, \varphi_3$ Lösungen einer linearen inhomogenen Differentialgleichung zweiter Ordnung sind.

Geben Sie die Menge aller Lösungen dieser Differentialgleichung an.

Die Differentialgleichung selbst ist dabei nicht zu bestimmen.

(Hinweis: Beachten Sie, dass die Lösungen einer linearen inhomogenen Differentialgleichung einen affinen Unterraum aufspannen, siehe Satz 7.3.)

Aufgabe P8.3

Bei zeitunabhängigen linearen Differentialgleichungen $\dot{x}=Ax$ können wir mit Hilfe der Matrix-Exponentialfunktion $\exp(At)$ eine Fundamentalmatrix angeben. Man könnte daher versuchen zu beweisen, dass bei zeitabhängigen linearen Differentialgleichungen $\dot{x}=A(t)x$ die Matrix-Exponentialfunktion

$$\Phi(t) := \exp\left(\int_{t_0}^t A(s) \, \mathrm{d}s\right)$$

eine Fundamentalmatrix ist.

Erklären Sie, an welcher Stelle der Beweis schief gehen würde und belegen Sie dies mit einem Gegenbeispiel.

Wintersemester 2024/2025 Prof. Dr. Sergey Dashkovskiy 05.12.2023 Andreas Schroll

8. Übungsblatt zu gewöhnlichen Differentialgleichungen

Hausaufgaben

Die Abgabe der bearbeiteten Übungszettel ist auf WueCampus bis zum 12.12.2023 (bis 23:59 Uhr) möglich. Bis zu 4 Personen dürfen zusammen abgeben. Bitte laden Sie Ihre Abgabe nur einmal pro Gruppe hoch und schreiben Sie alle entsprechenden Namen auf die Abgabe.

Aufgabe H8.1 (4+6=10 Punkte)

Bestimmen Sie die allgemeine Lösung der Differentialgleichungen

- a) $\ddot{x} 4\dot{x} 5x = 8e^t$.
- b) $\ddot{x}(t) + x(t) = 4t\sin(t) 2\sin(t)$.

Aufgabe H8.2 (6 Punkte)

Bestimmen Sie mit Begründung eine lineare Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten, die folgende Lösungen besitzt:

$$\varphi_1 \colon \mathbb{R} \to \mathbb{R}, \quad t \mapsto 2e^{3t} + \sin(3t)$$

$$\varphi_2 \colon \mathbb{R} \to \mathbb{R}, \quad t \mapsto 3e^{-2t} + \sin(3t)$$

$$\varphi_3 \colon \mathbb{R} \to \mathbb{R}, \quad t \mapsto e^{-2t} + 5e^{3t} + \sin(3t)$$

Aufgabe H8.3 (8 Punkte)

Sei $D = \mathbb{R} \times \mathbb{R}^n$. Wir betrachten das Anfangswertproblem

$$\dot{x} = f(t, x), \quad x(t_0) = x_0,$$
 (1)

wobei $f: D \to \mathbb{R}^n$ stetig auf D und lokal Lipschitz-stetig in x ist. Weiterhin sei $C \geq 0$, sodass

$$\langle f(t,x), x \rangle \leq C|x|_2^2$$

für alle $(t,x) \in D$. $\langle \cdot, \cdot \rangle$ bezeichne hier das Standardskalarprodukt und $|\cdot|_2$ die euklidische Norm im \mathbb{R}^n .

Zeigen Sie: Für das maximale Existenzintervall $I=(t^-,t^+)$ der Lösung $\varphi\colon I\to\mathbb{R}$ von (1), gilt $t^+=+\infty$.

(Bemerkung: Eine Möglichkeit diese Aufgabe zu lösen, verwendet folgende Hinweise:

- 1. Verwenden Sie als Ansatz $y(t) = |x(t)|_2^2$.
- 2. In dieser Aufgabe können Sie die Separation der Variablen ohne Beweis auch auf Differentialungleichungen der Form $\dot{y} \leq f(t,y)$ anwenden.)