Μέθοδοι Αιτιοκρατικής και Στοχαστικής Βελτιστοποίησης και Εφαρμογές

Εργασία Αιτιοκρατικής Βελτιστοποίησης

Ζαχαριουδάκης Εμμανουήλ, Κατσιφής Ηλίας

1 Επεξεργασία Ερωτήματος Α

Η εξίσωση που επιλέχθηκε για το πρωτεύων πρόβλημα ήταν:

$$R = \frac{d^2U}{dx^2} + b_4U^3 + b_3(x^2 - x) - 2xU = 0$$
 (1)

Με οριακές συνθήκες:

$$U(x=0) = b_1 \tag{2}$$

$$\frac{dU}{dx}(x=0) = b_2 \tag{3}$$

με χωρίο επίλυσης το διάστημα [0:2] και η προς ελαχιστοποίηση συνάρτηση κόστους είναι:

$$F = \frac{1}{2} \int_{0}^{0.5} (U - x^{2})^{2} dx \tag{4}$$

Με τη διαχριτοποιήση της εξίσωσης (1):

$$\frac{1}{\Lambda x^2} U_{i-2} - \frac{2}{\Lambda x^2} U_{i-1} + \left(\frac{1}{\Lambda x^2} - 2x_i\right) U_i + b_4 U_i^3 + b_3 (x_i^2 - x_i) = 0 \tag{5}$$

Συνεπώς προχύπτει ένα μη γραμμικό σύστημα εξισώσεων το οποίο επιλύεται με τη χρήση της δέλτα διατύπωσης:

$$\frac{\partial R}{\partial U}dU = -R\tag{6}$$

$$U^{new} = U^{old} + dU (7)$$

 Δ οχιμάστηκαν διαφορετικές διαστάσεις πλέγματος και η ανεξαρτησία της λύσης από το πλέγμα φαίνεται στο παρακάτω διάγραμμα για $b=[0.1\ 0.2\ 0.3\ 0.7]^T$:

Σχήμα 1: Ανεξαρτησία του πλέγματος για διαφορετικό αριθμό κόμβων σε όλο το χωρίο επίλυσης (πάνω) και σε ένα μικρό τμήμα του χωρίου επίλυσης, δηλαδή ύστερα από μεγέθυνση (κάτω)

Ο παραχάτω πίναχας δίνει την τιμή της συνάρτησης χόστους για διαφορετικά πλέγματα:

Συνάρτηση Κόστους			
Κόμβοι	F		
500	0.0016869		
1000	0.0016873		
2000	0.0016875		
3000	0.0016876		
4000	0.0016877		
5000	0.0016877		
6000	0.0016877		
7000	0.0016877		

2 Επεξεργασία Ερωτήματος Β

Σε αυτό το χομμάτι της εργασίας έγινε εύρεση της παραγώγου $\frac{\delta F}{\delta b_i}$ με διαφορετιχές μεθόδους.

Πεπερασμένες Δ ιαφορές: Ο παραχάτω τύπος δίνει την παράγωγο $\frac{\delta F}{\delta b_i}$

$$\frac{\partial F}{\partial b_i} = \frac{F(b_1, \dots b_i + \epsilon, \dots b_N) - F(b_1, \dots b_i - \epsilon, \dots b_N)}{2\epsilon}$$
(8)

και η διερεύνηση ως προς το ϵ φαίνεται στον παρακάτω πίνακα για πλέγμα με 1000 κόμβους:

Πεπερασμένες Διαφορές				
ε	$\frac{\partial F}{\partial b_1}$	$\frac{\partial F}{\partial b_2}$	$\frac{\partial F}{\partial b_3}$	$\frac{\partial F}{\partial b_4}$
1e-6	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e-7	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e-8	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e - 9	0.03483	0.00579	4.68e - 5	-1.19e - 6
1e - 10	0.03483	0.00579	4.68e - 5	-7.6e - 7
1e - 11	0.03486	0.00579	5.57e - 5	5.096e - 6
1e - 12	0.03466	0.00571	8.69e - 5	8.96e - 5
1e - 13	0.03470	0.00602	2.86e - 4	0

 $\underline{\text{Μιγαδικές Μεταβλητές}}$ Ο παρακάτω τύπος δίνει την παράγωγο $\frac{\delta F}{\delta b_i}$

$$\frac{\partial F}{\partial b_i} = \lim_{\epsilon \to 0} \frac{imag(F(b_i + i\epsilon))}{\epsilon} \tag{9}$$

και η διερεύνηση ως προς το ϵ φαίνεται στον παρακάτω πίνακα για πλέγμα με 1000 κόμβους:

]	Μιγαδικές Μετα	3λητές <u> </u>	
ε	$\frac{\partial F}{\partial b_1}$	$\frac{\partial F}{\partial b_2}$	$rac{\partial F}{\partial b_3}$	$\frac{\partial F}{\partial b_4}$
1e-6	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e-7	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e-8	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e-9	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e - 10	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e - 11	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e - 12	0.03483	0.00579	4.68e - 5	-1.04e - 6
1e - 13	0.03483	0.00579	4.68e - 5	-1.04e - 6

Συγκρίνοντας τις δύο μεθόδους με την μείωση του ε, στις πεπερασμένες διαφορές παρατηρείται ότι η ακρίβεια της παραγώγου μειώνεται ενώ με την μέθοδο μιγαδικών μεταβλητών οι παράγωγοι δεν επηρεάζονται.

Διαχριτή Συζυγής Μέθοδος Στη διαχριτή συζυγής μέθοδο επιλύεται η πρωτεύων εξίσωση (5) στη διαχριτή μορφή της και βρίσκεται η μεταβλητή Υ. Εφαρμόζοντας τη μεθοδο του τραπεζίου για τον υπολογισμό της συνάρτησης στόχου F, υπολογίζεται και η παράγωγος $\frac{\partial F}{\partial \vec{n}}$.

$$\left(\frac{\partial F}{\partial \vec{u}}\right)^{T} = \left[dx(U(1) - x^{2}(1)) \dots 2dx(U(i) - x^{2}(i)) \dots dx(U(N) - x^{2}(N))\right]$$
(10)

και επιλύεται η συζυγής εξίσωση για την εύρεση της μεταβλητής Ψ :

$$\left(\frac{\partial \vec{R}}{\partial \vec{U}}\right)^T \Psi = -\left(\frac{\partial F}{\partial \vec{u}}\right)^T \tag{11}$$

και η παράγωγος $\frac{\delta F}{\delta h_i}$:

$$\frac{\delta F}{\delta b_i} = \frac{\partial \vec{F}}{\partial \vec{b}} + \vec{\Psi}^T \frac{\partial \vec{R}}{\partial \vec{b}} = \vec{\Psi}^T \frac{\partial \vec{R}}{\partial \vec{b}}$$
(12)

Ισχύει ότι $\frac{\partial \vec{F}}{\partial \vec{b}}=0$ επειδή η διακριτή έκφραση της F δεν έχει όρους με το \vec{b} . Για 1000 κόμβους προκύπτουν οι εξής παράγωγοι με τη διακριτή συζυγής μέθοδο.

	$\Delta \iota$	ακριτή Συζυγής	Μέθοδος	
Κόμβοι	$\frac{\partial F}{\partial b_1}$	$\frac{\partial F}{\partial b_2}$	$rac{\partial F}{\partial b_3}$	$rac{\partial F}{\partial b_4}$
1000	0.03483	0.00579	4.68e - 5	-1.04e - 6

Συνεχής Συζυγής Μέθοδος

Αρχικά υπολογίζεται η επαυξημένη αντικειμενική συνάρτηση:

$$F_{aug} = F + \int_0^2 (\Psi R) dx \tag{13}$$

και υπολογίζεται η παράγωγος:

$$\frac{\delta F_{aug}}{\delta b} = \frac{\delta F}{\delta b} + \int_0^2 \frac{\delta(\Psi R)}{\delta b} dx \tag{14}$$

εκτελώντας τις πράξεις προκύπτει η σχέση:

$$\frac{\delta F_{aug}}{\delta b} = \int_0^{0.5} (U - x^2) \frac{\delta U}{\delta b} + \int_0^2 (\frac{d^2 \Psi}{dx^2} + 3b_4 U^2 \Psi - 2x\Psi) \frac{\delta U}{\delta b} dx + \int_0^2 U^3 \delta_4^n \Psi dx
+ \int_0^2 \delta_3^n (x^2 - x) \Psi dx + \left[\frac{d}{dx} \left(\frac{\delta U}{\delta b} \right) \Psi \right]_0^2 - \left[\frac{\delta U}{\delta b} \frac{d\Psi}{dx} \right]_0^2$$
(15)

Η adjoint εξίσωση που επιλύεται είναι:

 $\Gamma \text{in } 0 \leq x \leq 0.5:$

$$\frac{d^2\Psi}{dx^2} + 3b_4U^2\Psi - 2x\Psi + U - x^2 = 0 \tag{16}$$

Για $0.5 < x \le 2$:

$$\frac{d^2\Psi}{dx^2} + 3b_4U^2\Psi - 2x\Psi = 0 \tag{17}$$

Οι συνοριακές συνθήκες της adjoint εξίσωσης είναι:

$$[\Psi]_2 = 0 \tag{18}$$

$$\left[\frac{d\Psi}{dx}\right]_2 = 0\tag{19}$$

Η διαχριτοποιημένη μορφή της (16):

$$\frac{1}{\Delta x^2} \Psi_{i+2} - \frac{1}{\Delta x^2} \Psi_{i+1} + \left(\frac{1}{\Delta x^2} + 3b_4 U_i^2 - 2x_i \right) \Psi_i + U_i - x_i^2 = 0$$
 (20)

και η διακριτοποιημένη μορφή της (17):

$$\frac{1}{\Delta x^2} \Psi_{i+2} - \frac{1}{\Delta x^2} \Psi_{i+1} + \left(\frac{1}{\Delta x^2} + 3b_4 U_i^2 - 2x_i\right) \Psi_i = 0$$
 (21)

και συνεπώς προκύπτει ότι:

$$\frac{\delta F_{aug}}{\delta b} = \frac{\delta F}{\delta b} = \int_0^2 U^3 \delta_4^n \Psi dx + \int_0^2 \delta_3^n (x^2 - x) \Psi dx - \delta_2^n [\Psi]_0 + \delta_1^n \left[\frac{d\Psi}{dx} \right]_0$$
 (22)

οπότε:

	$\Sigma \upsilon$	νεχής Συζυγής	Μέθοδος	
Κόμβοι	$rac{\partial F}{\partial b_1}$	$\frac{\partial F}{\partial b_2}$	$rac{\partial F}{\partial b_3}$	$rac{\partial F}{\partial b_4}$
1000	0.03489	0.00584	4.62e - 5	-1.04e - 6

Συνεχής Μέθοδο Ευθείας Διαφόρισης

Γίνεται διαφόριση της σχέσης (1) ως προς \vec{b} :

$$\frac{\delta R}{\delta b} = \frac{d^2}{dx^2} \left(\frac{\delta U}{\delta b} \right) + 3b_4 U^2 \frac{\delta U}{\delta b} + \delta_4^n U^3 + \delta_3^n (x^2 - x) - 2x \frac{\delta U}{\delta b} = 0$$
 (23)

Ύστερα από διακριτοποίηση:

$$\frac{1}{\Delta x^2} \left(\frac{\delta U}{\delta b} \right)_{i-2} - \frac{2}{\Delta x^2} \left(\frac{\delta U}{\delta b} \right)_{i-1} + \left(\frac{1}{\Delta x^2} + 3b_4 U_i^2 - 2x_i \right) \left(\frac{\delta U}{\delta b} \right)_i + \delta_4^n U_i^3 + \delta_3^n (x_i^2 - x_i) = 0 \quad (24)$$

Από την επίλυση της (24) προκύπτουν τα αποτελέσματα στον πίνακα:

	Συνεχής	Μέθοδος Ευθεί	ίας Δ ιαφόρισης	
Κόμβοι	$\frac{\partial F}{\partial b_1}$	$\frac{\partial F}{\partial b_2}$	$rac{\partial F}{\partial b_3}$	$rac{\partial F}{\partial b_4}$
1000	0.03483	0.00579	4.68e - 5	-1.04e - 6

Διαχριτή Μέθοδο Ευθείας Διαφόρισης

Σε αυτή την περίπτωση επιλύεται το σύστημα:

$$\frac{\partial R}{\partial U}\frac{\delta U}{\delta b} = -\frac{\partial R}{\partial b} \tag{25}$$

και τα αποτελέσματα που προκύπτουν:

Διακριτή Μέθοδος Ευθείας Διαφόρισης				
Κόμβοι	$\frac{\partial F}{\partial b_1}$	$rac{\partial F}{\partial b_2}$	$rac{\partial F}{\partial b_3}$	$\frac{\partial F}{\partial b_4}$
1000	0.03483	0.00579	4.68e - 5	-1.04e - 6

3 Επεξεργασία Ερωτήματος Γ

Μετά την εύρεση των παραγώγων ευαισθησίας, δημιουργήθηκε βρόγχος βελτιστοποίης των μεταβλητών σχεδιασμού προς ελαχιστοποίηση της αντικειμενικής συνάρτησης F.

Ο βρόγχος βελτιστοποίησης δοχιμάστηχε με την μέθοδο της διαχριτούς Συζυγούς εξίσωσης για την εύρεση των $\frac{\delta F}{\delta B}$. Η εξέλιξη της λύσης της αντιχειμενιχής συνάρτησης φαίνεται παραχάτω.

 Σ χήμα 2: Εξέλιξη του κριτηρίου σύγκλισης $|F_{new}-F_{old}|$ συναρτήσει του αριθμού επαναλήψεων του βρόγχου βελτιστοποίησης.

 Σ τη συνέχεια επαναλήφθηκε η εκτέλεση του βρόγχου βελτιστοποίησης για τις διάφορες μεθόδους εύρεσης των παραγώγων ευαισθησίας.

Πεπερασμένες Διαφορές			
F_{new}	αρ. επαναλήψεων	συνολικός	
		χρόνος (sec)	
0.0000767	278	29.5	
	Μιγαδικές Μεταβλ	ιητές	
F_{new}	αρ. επαναλήψεων	συνολικός	
		χρόνος (sec)	
0.0000767	278	19.9	
	Συνεχής Συζυγής Μ	[έθοδος	
F_{new}	αρ. επαναλήψεων	συνολικός	
		χρόνος (sec)	
0.0000767	276	10.2	
Συνεχής Μέθοδος Ευθείας Διαφόρισης			
F_{new}	αρ. επαναλήψεων	συνολικός	
		χρόνος (sec)	
0.0000767	278	10.5	
	Διακριτή Συζυγής Μ	Ιέθοδος	
F_{new}	αρ. επαναλήψεων	συνολικός	
		χρόνος (sec)	
0.0000767	278	8.69	

4 ПАРАРТНМА

Όλοι οι κώδικες γράφηκαν σε Matlab και μπορούν να βρεθούν στον παρακάτω σύνδεσμο: $\frac{https:}{github.com/manosZHR/optimization_hw2.git}$