Design Theory for Relational Databases

Functional Dependencies

Guillaume Raschia — Polytech Nantes; Université de Nantes

Last update: November 11, 2021

Contents

Integrity Constraints

Reasoning with FD's

Projecting FD's

[Source : J. Ullman, Stanford]

Integrity Constraints

Functional Dependencies

$$X \to Y$$

An FD is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on all attributes in set Y

$$X \to Y := \forall t, u \in R, \ t[X] = u[X] \Longrightarrow t[Y] = u[Y]$$

- · Say "X determines Y" or "X gives Y" and also " $X \to Y$ holds in R"
- Convention: ..., X, Y, Z represent set of attributes; A, B, C, ...represent single attributes
- Convention: no set formers in sets of attributes, just ABC rather than $\{A,B,C\}$

Example FD's

Drinkers(name, addr, beersLiked, brewery, favBeer)

Expected FD's to assert:

- 1. name \rightarrow addr favBeer
 - Note: this FD is the same as $name \rightarrow addr$ and $name \rightarrow favBeer$
 - No splitting rule for the left-hand side (lhs)
- 2. beersLiked \rightarrow brewery

Example Data

name	addr	beersLiked	brewery	favBeer
Alice	Nantes	Trompe Souris	La Divatte	Titan
Alice	Nantes	Titan	Bouffay	Titan
Bob	Rennes	Titan	Bouffay	Titan

FD's

- $oldsymbol{\cdot}$ name ightarrow addr implies (Alice, Nantes) twice
- name → favBeer implies (Alice, Titan) twice
- \cdot beersLiked \rightarrow brewery implies (Titan, Bouffay) twice

Keys of Relations

- K is a **superkey** for relation R if K functionally determines all the attributes of R
 - In other words, a set of attributes K is a superkey in R if for any two tuples t, u in R, t[K] = u[K] implies t = u. That is, a superkey is a set of attributes that **uniquely identifies** a tuple in a relation
- K is a key for R if K is a superkey, but no proper subset of K is a superkey:
 K is minimal

Among the—candidate—keys, arbitrarily promote one into the primary key

Example: Superkey

Drinkers(name, addr, beersLiked, brewery, favBeer)

{name, beersLiked} is a superkey

because together these attributes determine all the other attributes

- name \rightarrow addr favBeer
- beersLiked \rightarrow brewery

Example: Key

Drinkers(name, addr, beersLiked, brewery, favBeer)

{name, beersLiked} is a key

because neither {name} nor {beersLiked} is a superkey

- name doesn't \rightarrow brewery
- beersLiked doesn't \rightarrow addr

There are no other keys, but lots of superkeys: any superset of {name, beersLiked}

Where Do Keys Come From?

- 1. Just assert a—surrogate—key K
 - The only FD's are $K \to A$ for all attributes A
- 2. Assert FD's and deduce the keys
 - · Like we did on the previous Drinkers example

More FD's From "Physics"

FD's are integrity contraints on the database, coming from the real-life problem

Example

"no two courses can meet in the same room at the same time"

• tells us: hour room \rightarrow course

Short Digression on Inclusion Dependencies

```
Drinkers(name, addr, beersLiked, brewery, favBeer)
Bars(name, addr)
Frequents(drinker, bar)
```

Inclusion Dependencies (IND)

- Every drinker from the Frequents table must be an existing name in the Drinkers table
- 2. Every bar from the **Frequents** table must be an existing name in the **Bars** table

Inclusion Dependencies

IND is a Referential integrity

Attributes of one relation refer to values in another one

Formally, we have an inclusion dependency $S[Y] \subseteq R[X]$ when every value of the set of attributes Y in S also occurs as a value of the set of attributes X in X:

$$\pi_Y(S) \subseteq \pi_X(R)$$

Foreign Keys

- Most often IND's occur as part of a foreign key
- Foreign key is a conjunction of a primary key and an IND:

 $S[X] \subseteq R[K]$ and K is a key in R

Example: Foreign Key

```
Bars(name, addr)
Frequents(drinker, bar)
```

The Bars-Frequents link

- As an IND, we expect Frequents.bar from Frequents to be found in Bars.name
- Since name is a primary key in Bars, then Frequents.bar is a foreign key in Frequents

Inference System

Inferring FD's

We are given a set of FD's $\mathcal{F}=\{f_i\}_{1\leq i\leq n}$, and we want to know whether an FD $X\to A$ must hold in any relation that satisfies the given FD's

Example

If $A \to B$ and $B \to C$ hold, surely $A \to C$ holds, even if we don't say so

The inference system is important for the design of good relation schemas

Inference Test

To test if $X \to A$, start by assuming two tuples t and u agree on all attributes of X

R	X	A	the rest
t	000	0	000
u	000	?	???

Use the given FD's to infer that these tuples must also agree in certain other attributes

- If A is one—subset—of these attributes, then $X \to A$ is true
- Otherwise, the two tuples, with any forced equalities, form a two-tuple relation that proves $X \to A$ does not follow from the given FD's

Example: Inference Test

Question

Does $A \to C$ holds in R(A, B, C, D) with $\mathcal{F} = \{A \to B, B \to C\}$?

- \cdot Then, if any t and u agree on A, they agree on C
- $A \to C$ follows from \mathcal{F} , also denoted $\mathcal{F} \models A \to C$

Closure Test

An easier way to test is to compute the **closure** of X, denoted X^+

- 1. Basis: $X^{+} = X$
- 2. Induction: look for an FD's lhs Y that is a subset of the current X^+ . If the FD is $Y \to Z$, add Z to X^+
- 3. Stop when a fixpoint is reached

Example: Closure Test

$$\mathcal{F} = \{AB \rightarrow CD, C \rightarrow A, B \rightarrow DE, A \rightarrow E, DE \rightarrow F\}$$

CD⁰ = {CD} init. step
CD¹ = CD⁰
$$\cup$$
 {A} = {CDA} by firing C \rightarrow A, C in CD⁰
CD² = CD¹ \cup {E} = {CDAE} by firing A \rightarrow E, A in CD¹
CD³ = CD² \cup {F} = {CDAEF} by firing DE \rightarrow F, DE in CD²
CD⁴ = CD³ = CD⁺

Side note: CDA, CDE, CDF, CDAE, CDAF, CDEF, CDAEF all have closure =CDAEF

Closure Test and Inference

Definition (Attribute Closure)

$$X^{+} = \{ A \mid \mathcal{F} \models X \to A \}$$

Does $X \to A$ follows from \mathcal{F} ?

 \iff Membership test: Does $A \in X^+$?

Back to Key Finding

Remember: $K \rightarrow \text{all attributes and } K \text{ is minimal}$

- 1. For each subset of attributes X, compute X^+
- 2. Add X as a new key if $X^+ = \text{all attributes}$
- 3. However, drop XY whenever we add X
 - \cdot Because XY is a non-minimal superkey

A Few Tricks

- No need to compute the closure of the empty set or of the set of all the attributes
- If we find $X^+=$ all attributes, so is the closure of any superset of X
 - \cdot Then, it's worth considering X by increasing cardinalities
- If an attribute is not in any rhs of FD, then it MUST be part of every key
 - Step 1 is then: Find non-rhs attributes Z then for each subset ZX...

Example: Key Finding

ABCD with
$$\mathcal{F} = \{A \rightarrow B, AC \rightarrow D, D \rightarrow C\}$$

- 1. Only A is non-rhs attribute
- 2. $A^+ = AB$; A is not superkey
- $3. AB^+ = AB$
 - · Since AB is already a—subset of a—closure (of A), then $AB^+=A^+$
- 4. $AC^+ = ACDB$; AC is a (super)key
- 5. $AD^+ = ADCB$; AD is a (super)key
- 6. ABC, ABD, ACD may be skipped as obvious superkeys
- 7. Any other subset does not contain A

Keys are AC, AD

Projecting FD's

Finding All Implied FD's

Motivation

normalization: the process where we break a relation schema into two or more schemas

Example

ABCD with FD's $AB \to C$, $C \to D$, and $D \to A$

- · Decompose into ABC, AD: What FD's hold in ABC?
- Not only $AB \to C$, but also $C \to A!$

All Implied FD's

Definition (Closure of \mathcal{F})

$$\mathcal{F}^+ = \{ X \to Y \mid \mathcal{F} \models X \to Y \}$$

Example: ABCD with $\mathcal{F} = \{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}$

In \mathcal{F}^+ , one can find:

- \cdot all the FD's from ${\cal F}$
- trivial FD's: $A \rightarrow A$, $AB \rightarrow A$, ..., $B \rightarrow B$, ...
- $ABD \rightarrow CD$, $CA \rightarrow DA$, $CB \rightarrow DB$, ...
- $AB \rightarrow D, C \rightarrow A$

How to be sure not to forget any FD?

Reasoning with FD's

Armstrong's axioms

- 1. **Reflexivity** (trivial FD): if $X \supseteq Y$, then $X \to Y$
- 2. **Augmentation**: if $X \to Y$, then $XZ \to YZ$ for any Z
- 3. **Transitivity**: if $X \to Y$ and $Y \to Z$, then $X \to Z$
- These are sound and complete inference rules for FD's!
 - \cdot \mathcal{F}^+ is the result of applying these 3 rules
 - syntactic \vdash and semantic \models are mainly the same
- · Usually, we are only concerned with **nontrivial** FD's: rhs not contained in lhs

Reasoning with FD's (cont'd)

Commonly derived rules

- 4. **Union**: if $X \to Y$ and $X \to Z$, then $X \to YZ$
- 5. **Decomposition**: if $X \to YZ$, then $X \to Y$ and $X \to Z$
- 6. **Pseudo-transitivity**: if $X \to Y$ and $YZ \to T$, then $XZ \to T$

Project FD's onto Attributes

Given ABC with FD's
$$\mathcal{F} = \{A \rightarrow B, B \rightarrow C\}$$

Problem: project onto AC

Basic Idea

- 1. Start with given FD's in ${\cal F}$ and find all nontrivial FD's that follow from ${\cal F}$ w.r.t. the Armstrong's axioms
- 2. Restrict to those FD's that involve only attributes of the projected schema

Simple Yet Exponential Algorithm

- 1. For each subset of attributes X in the projected schema, compute X^+
- 2. Add $X \to A$ for all A in $X^+ X$ only if A is a projected attribute
- 3. However, drop $XY \to A$ whenever we discover $X \to A$
 - Because $XY \to A$ follows from $X \to A$ in any projection

A Few Tricks

- No need to compute the closure of the empty set or of the set of all the projected attributes
- \cdot If we find $X^+=$ all attributes, so is the closure of any superset of X

Example: Projecting FD's

Given ABC with FD's
$$\mathcal{F} = \{A \rightarrow B, B \rightarrow C\}$$

Problem: project onto AC

- $\cdot A^+ = ABC$ yields $A \to C$
 - We do not need to compute AC^+
- $C^+ = C$ yields nothing

Projection of \mathcal{F} onto AC is $\mathcal{F}_{AC} = \{A \to C\}$

Equivalence Test

Given
$$\mathcal{F} = \{A \to B, B \to C\}$$
 and $\mathcal{G} = \{A \to B, B \to C, A \to C\}$

How to check \mathcal{F} and \mathcal{G} are the same?

- \cdot $\mathcal F$ not equal to $\mathcal G$ but $\mathcal F^+$ equal to $\mathcal G^+$
- A dead end: compute \mathcal{F}^+ and \mathcal{G}^+ ?!
- · Solution: check both ${\mathcal F}$ implies ${\mathcal G}$ and ${\mathcal G}$ implies ${\mathcal F}$

Equivalence of FD's

$$\mathcal{F} \equiv \mathcal{G} \iff \mathcal{F}^+ = \mathcal{G}^+$$

$$\iff \mathcal{F} \models \mathcal{G} \text{ and } \mathcal{G} \models \mathcal{F}$$

Is \mathcal{F} the same than \mathcal{G} ?

$$\mathcal{F} = \{A \to B, B \to C\}$$
 and $\mathcal{G} = \{A \to B, B \to C, A \to C\}$

Show $\mathcal{F} \models \mathcal{G}$ and $\mathcal{G} \models \mathcal{F}$

- 1. $\mathcal{G} \models \mathcal{F}$:
 - Each FD in \mathcal{F} follows from \mathcal{G} : trivial
- 2. $\mathcal{F} \models \mathcal{G}$:
 - $A \to B$ and $B \to C$ in \mathcal{G} both follows from \mathcal{F} : trivial
 - · Does $A \to C$ follows from \mathcal{F} ? Answer yes, by closure test

Conclusion

Minutes

- · Functional Dependencies are integrity constraints in Databases
- Keys and Foreign Keys are specific forms of FD's
- · One can reason with FD's thx to Armstrong's axioms
- The closure test is a simple yet powerful tool for inference
- FD's projection requires closure computation