1

EE5603:Conceention Inequalities

J. Balasubramaniam[†] and G V V Sharma^{*}

1 Convergence

1.1 Definitions

- **Review** the mc diamid's inequality from alot like the hoeffding's inequality
- can we express the difference $V = g(X^n) E[g(X^n)]$ as a sum of V_i where V_i are such that:

$$(i)V = \sum_{i=1}^{n} V_i$$

- $(ii)V_i$ depend only on X^i
- (iii) given X^{i-1} , there exist function u, L_i such that

$$[u_i - L_i \leqslant c_i]L_i \leqslant V_i u_i \tag{1.1}$$

Recall $u_i = \sup_{\lambda' \in x} E[g(x^n)|x^{1-1}, \lambda^1] - E[g(x^n)|x^{1-1}]$

$$\begin{split} L_i &= inf_{\lambda \epsilon x} E[g(x^n)|x^{1-1}, \lambda] - E[g(x^n)|x^{1-1}] \\ u_i - L_i &= sup_{\lambda' \epsilon x} E[g(x^n)|x^{1-1}, x'] - E[g(x^n)|x^{1-1}] \\ inf_{\lambda \epsilon x} E[g(x^n)|x^{1-1}, x] - E[g(x^n)|x^{1-1}] \\ &= sub_{\lambda \epsilon x} sup_{\lambda \epsilon x} E[g(x^n)|x^{1-1}x] - E[g(x^n)|x^{1-1}, x] \\ &= sub_{\lambda \epsilon x} sup_{\lambda \epsilon x} \int [g(x^n|x^{1-1}, x) - g(x^n|x^{1-1}, x^1)] \end{split}$$

$$dpx_{i+1}^n \tag{1.2}$$

 $\leq \sup_{\lambda \in x} \sup_{\lambda \in x} \int |g(x^n|x^{1-1}, x)|$ $g(x^n|x^{1-1}, x^1)|dpX_{1-1}^n(since \int f - g \leq \int |f - g|)$ $\leq c_i$ (from bounded differences property

$$\therefore u_i - L_i \leq c_i \text{ or } L_i \leq u_i \leq L_i + c_i$$

observation: mc diarmid's inequality is a poerful result since we only require,

(i)independence of RVs... x_1 ... x_u , (ii) $g(x^n)$ to satisty bounded difference property

note that we did not impore any restrions on the distributions of x_i

• Eform-stein inequality:let

$$X_1, \ldots, X_n$$
 (1.3)

be independent RVs. let $\delta: x^n \to |R|$ be a square integrable function. let $z = f(x_1...x_n,)$

$$Var(z) \le \sum_{i=1}^{n} E(z - E^{i}(z))^{2}$$
 (1.4)

$$E_i(z) = E(f(x^n)|x^1].$$
 (1.5)

To dos

$$\bullet \ \Delta_i = E_i(z) - E_{1=1}(z)$$

$$\bullet Z - E[z] = \sum_{i=1}^{n} \Delta_i$$

•if
$$E^{i}(z) = \int f(x_1...x_i - 1, x_{i+1}...x_n)$$

$$dp(x_i)E_i[E^i(z)] = E_{i-1(z)}$$

[†] The author is with the Department of Mathematics, IIT Hyderabad. *The author is with the Department of Electrical Engineering, IIT, Hyderabad 502285 India e-mail: {jbala,gadepall}@iith.ac.in. All material in the manuscript is released under GNU GPL. Free to use for all.