天津医科大学全国硕士研究生入学统一考试 生物化学与分子生物学考试大纲

一、 考试内容

1. 蛋白质化学

考试内容

- □氨基酸的分类,20种常见氨基酸的简写符号
- □氨基酸的酸碱化学性质和氨基酸的化学反应
- □氨基酸混合物的分析分离
- □蛋白质的化学组成和分类
- □肽和肽段的结构及物化性质
- □蛋白质分子的结构(一级、二级、高级结构的概念及形式)
- □蛋白质一级结构的测定
- □蛋白质的理化性质及蛋白质分离纯化
- □蛋白质的含量测定和蛋白质纯度鉴定
- □蛋白质的变性作用
- □蛋白质结构与功能的关系

考试要求

- □了解氨基酸、肽的分类
- □理解氨基酸的通式与结构
- □理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基
- □掌握氨基酸与蛋白质的物理性质和化学性质
- □掌握氨基酸混合物的分离方法
- □掌握蛋白质的变性作用
- □掌握目前蛋白质一级结构的测定方法
- □掌握蛋白质结构与功能的关系

□掌握蛋白质的分离纯化的原则和方法
2. 核酸化学 考试内容
□核酸的种类和分布及核酸的生物功能
□核苷酸的结构
□ DNA和RNA一级结构的概念和二级结构要特点; DNA的三级结构
□核酸的主要理化特性
□核酸的研究方法 考试要求
□全面了解核酸的组成、结构、结构单位以及
□全面了解核苷酸组成、结构、结构单位
□掌握核酸的物化性质
□掌握核酸的研究方法
□掌握RNA功能多样性和研究现状
□掌握microRNA的序列结构特点及其研究现状
3. 糖类结构与功能考试内容□糖的主要分类及其各自的代表
□糖聚合物及其代表和它们的生物学功能
□糖链和糖蛋白的生物活性
考试要求
□理解旋光异构
□掌握糖的概念及其分类
□掌握糖类的元素组成、化学本质及生物学功用
□掌握单糖、二糖、寡糖和多糖的结构和性质

□掌握糖的鉴定原理
4. 脂质与生物膜
考试内容
□生物体内脂质的分类,其代表脂及各自特点
□甘油脂、磷脂以及脂肪酸特性。油脂和甘油磷脂的结构与性质
□血浆脂蛋白的分类及其结构与功能
□生物膜的化学组成和结构, "流体镶嵌模型"的要点
考试要求
□了解脂质的类别、功能
□熟悉重要脂肪酸、重要磷脂的结构
□掌握甘油脂、磷脂的通式以及脂肪酸的特性
□掌握油脂和甘油磷脂的结构与性质
□掌握血浆脂蛋白的生理功能
□掌握生物膜结构的主要特征和"流体镶嵌模型"的要点。
5. 酶学
考试内容
□酶催化作用特点
□酶的作用机理
□影响酶促反应的因素(米氏方程的推导)
□酶的提纯与活力鉴定的基本方法
□熟悉酶的国际分类和命名
□抗体酶、核酶和固定化酶的基本概念和应用
考试要求
□了解酶的概念
□了解酶的分离提纯基本方法

□熟悉酶的国际分类(第一、二级分类)
□了解特殊酶,如溶菌酶、丝氨酸蛋白酶催化反应机制
□掌握酶活力概念、米氏方程以及酶活力的测定方法
□掌握核酶和抗体酶的基本概念
□掌握固定化酶的方法和应用
□掌握酶活性调节的因素、酶的作用机制(别构酶的结构特点和性质)
6. 维生素和辅酶 考试内容
□维生素的分类及性质
□各种维生素的活性形式、生理功能 考试要求
□了解水溶性维生素的结构特点、生理功能和缺乏病
□了解脂溶性维生素的结构特点和功能
7. 激素和抗生素考试内容□激素的分类
□激素的化学本质; 激素的合成与分泌
□常见激素的结构和功能 (甲状腺素、肾上腺素、胰岛素、胰高血糖素)
□激素作用机理
□ 抗生素的种类和抗菌作用机制 考 试要求
口了解激素的类型、特点
□了解常见激素的结构和功能
□理解激素的化学本质和作用机制

□理解第二信使学说
□掌握抗生素作用机制
8. 新陈代谢和生物能学
□新陈代谢的概念、类型及其特点
□ATP与高能磷酸化合物
□ATP的生物学功能
□电子传递过程与ATP的生成
□呼吸链的组分、呼吸链中传递体的排列顺序
考试要求
□了解高能磷酸化合物的概念和种类
□理解新陈代谢的概念、类型及其特点
□理解ATP的生物学功能
□掌握呼吸链的组分、呼吸链中传递体的排列顺序
□掌握氧化磷酸化偶联机制
9. 糖的分解代谢和合成代谢考试内容□糖的代谢途径,包括物质代谢、能量代谢和有关的酶
□糖的无氧分解、有氧氧化的概念、部位和过程
□糖异生作用的概念、场所、原料及主要途径
□糖原合成作用的概念、反应步骤及限速酶
□糖酵解、丙酮酸的氧化脱羧和三羧酸循环的反应过程及催化反应的关键酶
口光合作用的概况
□光呼吸和C4途径

考试要求
□了解糖的各种代谢途径,包括物质代谢、能量代谢和酶的作用
□了解糖原合成作用的概念、反应步骤及限速酶
口了解光合作用的总过程
口了解单糖、蔗糖和淀粉的形成过程
□理解糖的无氧分解、有氧氧化的概念、部位和过程
□理解光反应过程和暗反应过程
□掌握糖酵解、丙酮酸的氧化脱羧和柠檬酸循环(三羧酸循环)的途径及其限速酶调控位 点
□掌握磷酸戊糖途径、限速酶调控位点及其生理意义
10. 脂类的代谢与合成
考试内容
□脂肪动员的概念、限速酶; 甘油代谢
□脂肪酸的 -氧化过程及其能量的计算
□酮体的生成和利用
□胆固醇合成的部位、原料及胆固醇的转化及排泄
□血脂及血浆脂蛋白
考试要求
□了解甘油代谢:甘油的来源合去路,甘油的激活
□了解脂类的消化、吸收及血浆脂蛋白
□了解磷脂和胆固醇的代谢
□理解脂肪酸的生物合成途径
□理解脂肪动员的概念、各级脂肪酶的作用、限速酶
□掌握脂肪酸 β -氧化过程及能量生成的计算
□掌握脂肪的合成代谢

11. 核酸的代谢

考试内容
□嘌呤、嘧啶核苷酸的分解代谢与合成代谢的途径
□外源核酸的消化和吸收
□碱基的分解
□核苷酸的生物合成
□常见辅酶核苷酸的结构和作用
考试要求
□了解外源核酸的消化和吸收
□了解常见辅酶核苷酸的结构和作用
□理解碱基的分解代谢
□理解核苷酸的分解和合成途径
□掌握核苷酸的从头合成途径
12. 蛋白质的降解和代谢
考试内容
□蛋白质在细胞内的降解机制及其特点
口氨基酸分解代谢的过程
□尿素循环的流程,特点及关键步骤
□氨基酸代谢异常引起的主要缺陷症
考试要求

13. DNA,RNA和遗传密码

□了解蛋白质降解的过程

□了解氨基酸代谢缺陷症

□掌握尿素循环的流程

考试内容
□DNA复制的一般规律
□参与DNA复制的酶类与蛋白质因子的种类和作用(重点是原核生物的DNA聚合酶)
□DNA复制的基本过程
口真核生物与原核生物DNA复制的比较
口转录基本概念;参与转录的酶及有关因子
□原核生物的转录过程
□RNA转录后加工的意义
□mRNA、tRNA、 rRNA和非编码RNA的后加工
□逆转录的过程
□逆转录病毒的生活周期和逆转录病毒载体的应用
□RNA的复制: 单链RNA病毒的RNA复制,双链RNA病毒的RNA复制
□RNA传递加工遗传信息
□染色体与DNA 染色体 染色体概述
□DNA的转座
转座子的分类和结构特征 转座作用的机制
转座作用的遗传学效应
真核生物中的转座子
转座子Tn10的调控机制
考试要求
□理解DNA的复制和DNA损伤的修复基本过程
□全面了解RNA转录与复制的机制
□理解RNA的复制

□理解原核生物的转录过程
□掌握参与DNA复制的酶与蛋白质因子的性质和种类
□掌握DNA复制的特点 □掌握真核生物与原核生物DNA复制的异同点
□掌握DNA的损伤与修复的机理
□掌握转录的一般规律
□掌握RNA聚合酶的作用机理
□掌握启动子的作用机理
□掌握真核生物的转录过程、转录后加工过程及其意义
□掌握逆转录的过程及生物学意义
□掌握逆转录病毒载体的应用(iPS细胞和疾病治疗)
□掌握RNA传递加工遗传信息 14. 蛋白质的合成和转运 考试内容 □mRNA在蛋白质生物合成中的作用、原理和密码子的概念、特点
□tRNA、核糖体在蛋白质生物合成中的作用和原理
□参与蛋白质生物合成的主要分子的种类和功能
□蛋白质生物合成的过程
□翻译后的加工过程
□真核生物与原核生物蛋白质合成的区别
□蛋白质合成的抑制剂
考试要求
□全面了解蛋白质生物合成的分子基础 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□理解蛋白质合成抑制因子的作用机理
□掌握翻译的步骤

- □掌握翻译后加工过程
- □掌握真核生物与原核生物蛋白质合成的区别

15. 细胞代谢和基因表达调控

考试内容

- □细胞代谢的调节网络
- □酶活性的调节
- □细胞信号传递系统
- □原核生物和真核生物基因表达调控的区别
- □真核生物基因转录前水平的调节
- □真核生物基因转录活性的调节和转录因子的功能
- □操纵子学说(原核生物基因转录起始的调节)
- □翻译水平上的基因表达调控
- □原核基因表达调控

原核基因调控总论

转录调节的类型

启动子与转录起始 (要求熟练掌握,灵活运用)

RNA聚合酶与启动子的相互作用

环腺苷酸受体蛋白对转录的调控

乳糖操纵子

酶的诱导——lac体系受调控的证据

操纵子模型 (要求熟练掌握, 灵活运用)

lac操纵子DNA的调控区域

1ac操纵子中的其他问题

色氨酸操纵子

trp操纵子的阻遏系统

弱化子与前导肽

trp操纵子弱化机制的实验依据

阻遏作用与弱化作用的协调

其他操纵子

半乳糖操纵子

阿拉伯糖操纵子

组氨酸操纵子

recA操纵子

多启动子调控的操纵子

λ噬菌体基因表达调控

λ噬菌体

λ噬菌体基因组

溶原化循环和溶菌途径的建立

 \mathbf{X} 0

λ噬菌体的调控区及入阻遏物的发现

CI蛋白和Cro蛋白

转录后调控

稀有密码子对翻译的影响

重叠基因对翻译的影响

Poly(A)对翻译的影响

翻译的阻遏

RNA的高级结构对翻译的影响

RNA—RNA相互作用对翻译的影响

魔斑核苷酸水平对翻译的影响

考试要求

□ 理1	解代谢	†徐径的	交叉	形成	网络和	代谢的	基本要略

- □理解酶促反应的前馈和反馈、酶活性的特异激活剂和抑制剂
- □了解细胞信号传递和细胞增殖调节机理
- □掌握细胞膜结构对代谢的调节和控制作用
- □掌握操纵子学说的核心
- □掌握原核和真核生物基因表达的调节

16. 基因工程和蛋白质工程

考试内容

□基因工程的简介

□DNA克隆的基本原理
□基因的分离、合成和测序
□克隆基因的表达
□基因来源、人类基因组计划及核酸顺序分析
□基因的功能研究(针对基因功能的相关研究技术如基因敲除和RNA干扰是近年来的研究 热点,是基础研究与技术结合的典范)
□RNA和DNA的测序方法及其过程
□蛋白质工程 考试要求
□了解人类基因组计划及核酸顺序分析
□了解蛋白质工程的进展
□掌握基因工程操作的一般步骤,
□掌握各种水平上的基因表达调控
□掌握研究基因功能的一些方法和原理
□掌握RNA和DNA的测序方法原理及其过程
□掌握研究蛋白质相互作用的方法
17. 真核生物基因调控原理
考试内容
□真核细胞的基因结构
基因家族(gene family)
真核基因的断裂结构
真核生物DNA水平的调控(要求熟练掌握,灵活运用)
□顺式作用元件与基因调控(要求熟练掌握,灵活运用)
Britten—Davidson模型
染色质结构对转录的影响
启动子及其对转录的影响
增强子及其对转录的影响

□反式作用因子对转录的调控(要求熟练掌握,灵活运用)
CAAT区结合蛋白CTF / NF1
TATA和GC区结合蛋白
RNA聚合酶Ⅲ及其下游启动区结合蛋
其他转录因子及分子机制
转录因子介导的基因表达的级联调控(发育生物学的核心问题就是同样的基因组是如何实
现时空特异表达的,转录因子在这其中起到了重要的作用,这是细胞信号转导和细胞分化的研究
热点之一)
□激素及其影响
固醇类激素的作用机理
多肽激素的作用机理
激素的受体
□其他水平上的基因调控
RNA的加工成熟
翻译水平的调控
蛋白质的加工成熟
考试要求
□掌握真核生物基因表达多级调控系统的调节
□掌握真核生物基因结构和调控的基本概念
18. 高等动物的基因表达
考试内容
□表观遗传学的概念和研究范畴
□基因表达与DNA甲基化(要求熟练掌握,灵活运用)
DNA的甲基化
DNA甲基化对基因转录的抑制机理
DNA甲基化与X染色体失活
DNA甲基化与转座及细胞癌变的关系
□基因表达与组蛋白修饰(组蛋白修饰的种类和对基因表达的影响)
□蛋白质磷酸化与信号传导(要求熟练掌握,灵活运用)
□免疫球蛋白的分子结构

口分子伴侣的功能
□原癌基因及其调控
□癌基因和生长因子的关系
考试要求
□熟练掌握基因表达与DNA甲基化和组蛋白修饰
□熟练掌握蛋白质磷酸化与信号传导
□掌握原癌基因定义、特点、激活机制和原癌基因产物及其功能
□掌握表观遗传学概念、表观遗传学种类和研究方法
19. 病毒的分子生物学(一般了解)
考试内容
□人免疫缺损病毒——HIV
HIV病毒粒子的形态结构和传染
□乙型肝炎病毒——HBV
肝炎病毒的分类地位及病毒粒子结构
□SV40病毒
SV40基因的转录调控
考试要求
□掌握SV40基因的转录调控
20. 植物基因工程(一般了解)
考试内容
□工程的基本原理(农杆菌Ti质粒法、直接转化法)
□植物抗逆和抗生物胁迫的分子生物学
21. 基因工程产业化的现状与展望(一般了解)
考试内容

□基因治疗和精准医疗

二、考试方法和考试时间

硕士研究生入学生物化学与分子生物学考试为笔试,考试时间为3小时。满分150分。 试卷务必书写清楚、符号和西文字母运用得当。

三、试卷题型

单选题、多选题; 名词解释; 专业术语英汉互译; 问答题; 论述题。

四、 主要参考教材(参考书目)

《生物化学》(2002年第三版),上、下册 王镜岩、朱圣庚、徐长法编著, 高等教育出版社

《基因X》(中文版), Benjamin Lewin, 科学出版社

