Claims:

5

10

15

20

1. A process for the isomerisation of the Z-isomer I-Z of a compound of the general formula I into its E-isomer I-E

wherein

m, p and q R¹, R², R³ are each independently an integer of 0, 1, 2, 3 or 4

are each independently halogen; OH; CN; NO₂;

 C_1 - C_6 -alkyl, optionally substituted with C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy or C_3 - C_6 -cycloalkyl;

C₁-C₈-haloalkyl;

C₃-C₆-cycloalkyl;

 $C_1\text{-}C_6\text{-alkoxy}$ optionally substituted with $C_1\text{-}C_4\text{-alkoxy}$ or $C_3\text{-}C_6\text{-}$

cycloalkyl;

C₁-C₆-haloalkoxy;

C₁-C₆-alkylcarbonyl;

Cá-C6-cycloalkoxy;

C₁-C₆-alkoxycarbonyl or

C₁-C₆-alkoxycarbonyloxy;

which is characterized in that the Z isomer I-Z or a mixture of the stereoisomers I-Z and I-E is reacted in the presence of iodine.

25

- 2. The process as claimed in claim 1, wherein iodine is used in amounts from 0,1 to 10% by weight, based on the total amount of the compound of the general formula I.
- 30 3. The process as claimed in claim 1, wherein the isomerisation is performed in an inert solvent or diluent.
 - 4. The process as claimed in claim 1, wherein the isomerisation is performed in the absence of a solvent or diluent.

35

5. The process as claimed in claim 1, wherein a mixture of the isomers I-Z and I-E having an E/Z ratio ranging from 15: 1 to 2: 1 is reacted.

WO 2005/047235

5

10

- 6. The process as claimed in claim 1, wherein the isomerisation is performed at a temperature ranging from 40 to 150°C.
- 7. The process as claimed in claim 1, where in formula I
 m, p and q are each 1 and
 R¹, R², R³ are each independently halogen, CN, C₁-C₆-alkyl, C₁-C₆-haloalkyl,
 C₁-C₆-alkoxy or C₁-C₆-haloalkoxy.
- 8. The process as claimed in claim 7, where in formula 1 R¹ is CF₃ located in the 310 position of the phenyl ring, R² is CN located in the 4-position of the phenyl ring
 and R³ is OCF₃ located in the 4-position of the phenyl ring.