	LECTURE 7-1 LINEAR SYSTEMS IN 2D
	Generic matrix in R ² A=[ab]
	$\frac{\vec{\chi} = A\vec{\chi}}{\vec{\chi}} = A\vec{\chi}$
	Delia construction \mathbb{R}^2 note $\mathbb{X} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ an exact solution
	Defines a vector field in R2, note $\vec{x} = (°)$ an exact solution Note the vector field is singular (no well-defined direction) at $(°)$?
	Let's look at solutions in detail
	€ X'12 ext v
	$\begin{vmatrix} a-\lambda & b \\ c & d-\lambda \end{vmatrix} = 0 = (a-\lambda)(d-\lambda) - bc$
	$= \lambda^2 - (a+d)\lambda + ad - bc$
	$= \lambda^2 - \tau \lambda + 8$
	S=ad-bc the determinant
	eigenvaluer \mu = \tau = \tau \tau \tau = \tau \ \h
	eigenvalues $\lambda_{\mu} = \frac{T \pm \sqrt{T^2 - 4\delta}}{2}$ note $\lambda_{\mu} = \delta$ & $\lambda_{\mu} + \lambda_{\mu} = T$ $\hat{\chi} = c_1 e^{\lambda t} \hat{v}_1 + c_2 \hat{v}_2 e^{\mu t}$
	What can we learn about solutions from just T & 8?
	(Warning this is specific to 2D!)
	if T2-48 <0 then \mu = x \pm i \bar{\bar{\bar{\bar{\bar{\bar{\bar{
	T2-48 120 then hip real (Note & < 0 puts us in this case)
	T2-48=0 then \mu real (Note & < 0 puts us in this case) T2-48=0 then \= \mu may be diagonal or Jordan-Block
	18
	TI TY
-	II I
	T
	I)
	REGION 1 ASKO => hukl so or wlock have
	$\sqrt{\frac{v_2}{x}} = c_1 \vec{v}_1 e^{\lambda t} + c_2 v_2 e^{\lambda t}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Alet orale was livil -> 0 is if C = D
	Note only way 1/x11 to is if C2 = 0
	only way x -> 0 'w if C = 0
	(°) A SADDLE POINT
f	CO /

	LECTURE 7-2
	REGION II, III , BOTH EIGENVALUES HAVE DEGATIVE REAL PART
	REGION II WLOG L'EMLO
	then as t->+00 the vi COMPONENT DECAYS FASTER
H	SO SOLUTIONS APPROACH ORIGIN THE TO DIRECTION UPLESS CZ=0
	1/2
14	STABLE NODE
	/ Fr. 2.7
	REGION 3 $A = D\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} D^{-1}$ aco
	De rus STABLE FOCUS
	STARIE SPIRAL
	Bloso Bro clockwise
	Counterclockwise
	BETWEEN 3+24 T=0, D positive
	$A = D\begin{bmatrix} 0 & -\beta \end{bmatrix} D^{-1}$ $\beta > 0 \text{ counterclock wise}$
	Bso clockwise
	D responsible for neseccentrity of closed orbits
	ellipticity & angle
	B70 B10
	B70 B(6)
	Regions II & V with like II & III with
	Regions II & V much like II & III with & solutions moving away from origin
	to Boundary of region 1 \=0 in an eigenvalue => (X) CVH CZE
	IV:
= 1	So if $\begin{pmatrix} x \\ y \end{pmatrix} = \alpha \vec{v}$, then $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = 0$
	line of fixed points

Want to think geometrically $\lambda_1 = -2 + i$ $xxample \quad A = \begin{bmatrix} -2 & -1 \\ 1 & -2 \end{bmatrix} \quad V_1 = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ i \\ 0 \end{bmatrix} + i \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \hat{e}_2 + i\hat{e}_1$ $\lambda_2 = 3, \quad 4 \cdot V_3 = \hat{e}_3$ $So \quad E^S = Span \{\hat{e}_1, \hat{e}_2\}, \quad E^U = Span \{\hat{e}_3\}, \quad E^C = \{3\}$

A spiral orbit in x-x2 plan

more examples in text

Deximitation We know the general solution in $\chi(t) = e^{At}\chi_0$ this is a map from the initial could $\chi_0 \in IR^n$ to
another point $\chi \in IR^n$ call this mapping
the flow of the diff egn
A flow is hyperbolic if all the eigenvalues have non-zero
real part

A subspace ECR" is invariant under the flow if eAt ECE YteR

The usefulness of the subspaces E', E', E' are useful because they are invariant under the flow

To show this we & first show this

Lemma let E be the generalized eigenspace corresponding to eigenvalue &

of a matrix A them AECE

Ph let $\{\vec{v}_i, \vec{v}_i, \dots, \vec{v}_k\}$ the the generalized eigenspace E

Given $\vec{v} \in \vec{t}$, $\vec{v} = \sum_{i=1}^{n} C_i v_i$

50 Av = Zc; Av;

7-5 muint k; since each $v_j \in E$, $\exists_i k_j \in S$, t $(A-\lambda I)$ $v_j = 0$ so (A-XI) by v; = V; for some V: 6 Ku(A-XI) ki-1 c E So Av; = \v, +V; ∈ E by Since E a subspace Zic; Av; ∈ E Theorem 1.9.1 The subspaces Es, Eu & Ec are each invariant w.r.t flow of ett if xo E 5 then xo = E citi where Vi = ujor vi then e Atxo = Zicje AtV; $e^{At}V_j = \lim_{k \to \infty} [I + At + ... + \frac{At}{k!}]V_s \in E^s$ since each partial sum is in Es by the above lemma and Es is complete Proof for E", E" identical Det y all eigenvalues of A have regative real part, the origin is a suck, positive > sink source Theorem The following three statements are equivalent

(a) All the eigenvalues of A have negative real part

(b) For all x0 e Rh lime At x0 = 0 and lime || e At x0 || = 00

t > 00

t > 00

t > 00

t > 00 (c) Frontomts M, M, G, E st +t

me-ct < ||eAt xo|| < Meat proof : Nothing interesting, see perko \$1.9