Calculus 1-Exercise 10

All exercises should be submitted by January 10th by 23:00. Delays won't be accepted aside for special cases which will be approved beforehand. These are the submission regulations (also available on the Moodle):

- 1. Exercises are personal and cannot be submitted in groups.
- 2. Write your name, ID and tutorial group in the header of the exercise.
- 3. They should be written clearly on A4 pages. Hard-to-read exercises will not be graded.
- 4. Serious effort has to be shown by the student. Unreadable or extremely partial answers will be disregarded.
- 5. Exercises submitted late without the TA's approval will not be accepted.

Questions:

- Define each of the following terms. Give a full and complete mathematical definition, without using any negation symbol, except for maybe ≠.
 If your definition includes a secondary term that was defined in class, you must define it as well! You do not have to define any term that appears prior to the words "Define the term".
 - (a) Let $f:[a,b] \to \mathbb{R}$, and let $x_0 \in [a,b]$. Define the term: x_0 is not an extreme point of f in [a,b].
 - (b) Let $f:(a,b)\to\mathbb{R}$, and let $x_0\in(a,b)$. Define the term: f is not differentiable at x_0 .
- 2. Let f be a function that is defined on a neighbourhood of $x_0 \in \mathbb{R}$. For each of the following cases, determine whether f is differentiable at x_0 , and compute the value of $f'(x_0)$, or prove that it doesn't exist.
 - (a) $f(x) = |x^2 3x 4|$, $x_0 = 4$.

(b) $f(x) = \sqrt[3]{x^2 - |x|}$, $x_0 = 0$.

(c)
$$f(x) = \begin{cases} \frac{\sin(x^2)}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
, $x_0 = 0$.

- 3. Let f be a function that is continuous on [a,b] for some a < b. Suppose that f(a) = f(b) = 0, and let $M = \sup \{f(x) : x \in [a,b]\}$.
 - (a) Explain why M is well-defined.
 - (b) Suppose that M>0, and let $0 \le r < M$. Prove that the set $\{x \in [a,b]: f(x)=r\}$ contains at least two distinct points.
- 4. Prove or disprove each of the following statements:
 - (a) Let f be function that is continuous on [0,1]. Suppose that f(x) > 0 for every $x \in [0,1]$. Then there exists an $\epsilon > 0$ such that $f(x) > \epsilon$ for every $x \in [0,1]$.
 - (b) Let f be a function defined on a neighbourhood of 1, and assume that f is differentiable at 1. If f(1) = 2 and f'(1) = 3, then $\lim_{x \to 1} \frac{f^2(x) - 2f(x)}{x - 1} = 6$.
 - (c) Let f,g be two functions that are defined on a neighborhood of 0 such that $f(x) = x \cdot g(x)$ for every x in that neighborhood. Then f is differentiable at 0 if and only if $\lim_{x \to a} g(x)$ exists.
 - (d) Let f be a function that is continuous on (a, b) for some a < b. Suppose that a and b are removable discontinuities of f. Then f is bounded in (a, b).
 - (e) Let f be a function that is defined on a neighbourhood of 0. Suppose that $\lim_{x\to 0}\frac{f(x)}{|x|}=1$. Then f is not differentiable at 0.
- 5. Let $L_1, L_2 \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function such that $\lim_{x \to \infty} f(x) = L_1$ and $\lim_{x \to -\infty} f(x) = L_2$.
 - (a) Give an example of a function satisfying the above conditions, and such that f doesn't have any extreme point in \mathbb{R} (neither a maximum nor a minimum).
 - (b) Assume that $L_1 = L_2$. Prove that f has an extreme point (maximum or minimum) in \mathbb{R} .