## Correction du jour 12

1. a. On commence par modéliser la situation avec un arbre pondéré :



A: 
$$p(V_2 \cap V_3) = p(V_2) \times p_{V_2}(V_3) = 0, 6 \times 0, 6 = 0, 36.$$

B: On a 
$$p(V_2) = 0.6 \Rightarrow p(\overline{V_2}) = 1 - 0.6 = 0.4$$
 et d'après l'énoncé  $p_{\overline{V_2}}(\overline{V_3}) = 0.9$ .

Donc 
$$p\left(\overline{V_2} \cap \overline{V_3}\right) = p\left(\overline{V_2}\right) \times p_{\overline{V_2}}\left(\overline{V_3}\right) = 0, 4 \times 0, 9 = 0, 36.$$

2.  $V_2$  et  $\overline{V_2}$  forment une partition de l'univers donc d'après la formule des probabilités totales :

$$p_{3} = p(V_{3}) = p(V_{3} \cap V_{2}) + p(V_{3} \cap \overline{V_{2}})$$

$$= 0.36 + p(\overline{V_{2}}) \times p_{\overline{V_{2}}}(V_{3})$$

$$= 0.36 + 0.4 \times 0.1$$

$$= 0.4$$

Conclusion :  $p_3 = 0.36 + 0.04 = 0.4$ .

3. Voici l'arbre modélisant la situation :



**4.**  $V_n$  et  $\overline{V_n}$  forment une partition de l'univers donc d'après la formule des probabilités totales :

1

$$p_{n+1} = P(V_n \cap V_{n+1}) + P(\overline{V_n} \cap V_{n+1})$$

$$= p_n \times 0, 6 + (1 - p_n) \times 0, 1$$

$$= 0, 6p_n + 0, 1 - 0, 1p_n$$

$$= 0, 5p_n + 0, 1$$

- **5. a.** Démontrons par récurrence que  $p_n > 0.2$ : soit  $\mathcal{P}_n$  la proposition :  $p_n > 0.2$ .
  - **Initialisation.** On sait que  $p_1 = 1$  donc  $p_1 > 0,2$ ; la proposition est vraie au rang 1.
  - Hérédité

Soit  $n \in \mathbb{N}^*$ . Supposons  $\mathcal{P}_n$  vraie c'est-à-dire  $p_n > 0, 2$ .

D'après l'hypothèse de récurrence,  $p_n > 0.2$  donc  $0.5p_n > 0.1$  et donc  $0.5p_n + 0.1 > 0.2$  qui signifie  $p_{n+1} > 0.2$ . La proposition est donc vraie au rang n + 1.

Conclusion

 $\mathscr{P}_1$  est vraie et  $\mathscr{P}_n$  est héréditaire à partir du rang 1 donne  $\mathscr{P}_n$  est vraie pour tout  $n \ge 1$ .

On a donc démontré que, pour tout entier naturel non nul,  $p_n > 0, 2$ .

**b.**  $\forall n \in \mathbb{N}^*$ ,

$$p_{n+1} - p_n = 0.5p_n + 0.1 - p_n$$
$$= 0.1 - 0.5p_n$$

Or pour tout entier naturel non nul,  $p_n > 0.2$  donc  $0.5p_n > 0.1$  donc  $-0.5p_n < -0.1$  et ainsi  $0.1 - 0.5p_n < 0.$ 

On en déduit que, pour tout  $n \ge 1$ ,  $p_{n+1} - p_n < 0$  et donc que la suite  $(p_n)$  est décroissante.

**c.** La suite  $(p_n)$  est décroissante et minorée par 0,2 : la suite  $(p_n)$  converge vers une limite $\ell$  telle que  $\ell \geqslant 0,2$ .

Sa limite  $\ell$  vérifie  $\ell = 0, 5\ell + 0, 1$  d'où  $\ell = 0, 2$ .

**6. a.** Pour tout entier naturel *n* non nul,

$$u_{n+1} = p_{n+1} - 0.2$$

$$= 0.5p_n + 0.1 - 0.2$$

$$= 0.5p_n - 0.1$$

$$= 0.5(p_n - 0.2)$$

$$= 0.5u_n$$

Cette égalité montre que la suite u est la suite géométrique de raison 0,5 et de terme est  $u_1 = p_1 - 0,2$  soit  $u_1 = 0,8$ .

**b.** On sait que pour tout entier naturel n non nul  $u_n = u_1 \times q^{n-1}$  donc  $u_n = 0, 8 \times \left(\frac{1}{2}\right)^{n-1}$ .

2

Or, de la définition de  $u_n$  il résulte que  $p_n = 0, 2 + 0, 8 \times \left(\frac{1}{2}\right)^{n-1}$ .

**c.** On sait que  $0 < \frac{1}{2} < 1$  entraı̂ne que  $\lim_{n \to +\infty} 0.8 \times \left(\frac{1}{2}\right)^{n-1} = 0$ , donc  $\lim_{n \to +\infty} p_n = 0.2$  et on retrouve le résultat de la question 5.c.