Data Structures

Dictionaries

DataLab

November 12, 2016

Outline

- Introduction
 - Dictionary
- Operation in a ADT dictionary
 - The Operations Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys
 - Example
 - Using a Dictionary
 - Implementation
 - How Do We Implement a Dictionary? Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
- Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Outline

- Introduction
 - Dictionary
 - The Operations
 - Add
 - Remove GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys
- - Using a Dictionary

- How Do We Implement a Dictionary? Using an Linear List

 - Introduction
 - Number of Keys
- Hash Functions
- Too Many Keys Repeat Buckets
- Chaining

Dictionaries

Definition

The **ADT** dictionary—also called a map, table, or associative array—contains entries that each have two parts:

Dictionaries

Definition

The **ADT** dictionary—also called a map, table, or associative array—contains entries that each have two parts:

 A keyword—usually called a search key—such as an English word or a person's name

Dictionaries

Definition

The **ADT** dictionary—also called a map, table, or associative array—contains entries that each have two parts:

- A keyword—usually called a search key—such as an English word or a person's name
- A value—such as a definition, an address, or a telephone number—associated with that key

Dictionary with Duplicates

Pairs are of the form (word, meaning).

Dictionary with Duplicates

Pairs are of the form (word, meaning).

- (bolt, a threaded pin)
- (bolt. a crash of thunder)
- (holt to shoot forth suddenly)
- (1-1)
- (bolt, a gulp)
- (bolt, a standard roll of cloth)
- e etc.

Dictionary with Duplicates

Pairs are of the form (word, meaning).

- (bolt, a threaded pin)
- (bolt, a crash of thunder)
- (holt a guln)
- (bolt, a standard roll of cloth)
- etc

Dictionary with Duplicates

Pairs are of the form (word, meaning).

- (bolt, a threaded pin)
- (bolt, a crash of thunder)
- (bolt, to shoot forth suddenly)

Dictionary with Duplicates

Pairs are of the form (word, meaning).

- (bolt, a threaded pin)
- (bolt, a crash of thunder)
- (bolt, to shoot forth suddenly)
- (bolt, a gulp)

Dictionary with Duplicates

Pairs are of the form (word, meaning).

- (bolt, a threaded pin)
- (bolt, a crash of thunder)
- (bolt, to shoot forth suddenly)
- (bolt, a gulp)
- (bolt, a standard roll of cloth)

Dictionary with Duplicates

Pairs are of the form (word, meaning).

- (bolt, a threaded pin)
- (bolt, a crash of thunder)
- (bolt, to shoot forth suddenly)
- (bolt, a gulp)
- (bolt, a standard roll of cloth)
- etc.

Thus

We have possibly in a dictionary

- Sorted keys
- Duplicate keys

Outline

Dictionary

Operation in a ADT dictionary The Operations

Add

Remove

GetValue Contains

Iterators

Other Operations Scenarios About the Keys

Using a Dictionary

• How Do We Implement a Dictionary?

Using an Linear List

Introduction

Number of Keys Hash Functions

- insert adds a new entry to the dictionary, given a search key and associated value.
- retrieve retrieves the value associated with a given search key
- search sees whether the dictionary contains a given search key
- ▶ It traverse all the search keys in the dictionary
 - ▶ It traverse all the values in the dictionary

Common operations with most databases

- insert adds a new entry to the dictionary, given a search key and associated value.
- delete removes an entry, given its associated search key

DataLab

Deta Science Community

Deta Science Community

- **insert** adds a new entry to the dictionary, given a search key and associated value.
- delete removes an entry, given its associated search key
- retrieve retrieves the value associated with a given search key

- insert adds a new entry to the dictionary, given a search key and associated value.
- delete removes an entry, given its associated search key
- retrieve retrieves the value associated with a given search key
- search sees whether the dictionary contains a given search key

- insert adds a new entry to the dictionary, given a search key and associated value.
- delete removes an entry, given its associated search key
- retrieve retrieves the value associated with a given search key
- search sees whether the dictionary contains a given search key
- traverse

- **insert** adds a new entry to the dictionary, given a search key and associated value.
- delete removes an entry, given its associated search key
- retrieve retrieves the value associated with a given search key
- search sees whether the dictionary contains a given search key
- traverse
 - It traverse all the search keys in the dictionary

- **insert** adds a new entry to the dictionary, given a search key and associated value.
- delete removes an entry, given its associated search key
- retrieve retrieves the value associated with a given search key
- search sees whether the dictionary contains a given search key
- traverse
 - ► It traverse all the search keys in the dictionary
 - ▶ It traverse all the values in the dictionary

In addition

We have the following extra operations

- Detect whether a dictionary is empty
- Get the number of entries in the dictionary
- Remove all entries from the dictionary

In addition

We have the following extra operations

- Detect whether a dictionary is empty
- Get the number of entries in the dictionary

In addition

We have the following extra operations

- Detect whether a dictionary is empty
- Get the number of entries in the dictionary
- Remove all entries from the dictionary

Outline

- - Dictionary
 - Operation in a ADT dictionary
 - The Operations Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys
 - Using a Dictionary

 - How Do We Implement a Dictionary? Using an Linear List
 - Introduction
 - Number of Keys
 - Hash Functions

 - Too Many Keys Repeat Buckets
 - Chaining

Specifications: Add

Pseudocode

add(key, value)

Task

It adds the pair (key , value) to the dictionary.

Specifications: Add

Pseudocode

add(key, value)

Task

It adds the pair (key, value) to the dictionary.

Input: key is an object search key, value is an associated object

Specifications: Add

Pseudocode

add(key, value)

Task

It adds the pair (key , value) to the dictionary.

Input and Output

Input: key is an object search key, value is an associated object.

Output: None.

Outline

- Introduction
 - Dictionary
 - Operation in a ADT dictionaryThe Operations
 - Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys
 - Example
 - Using a Dictionary
 - How Do We Implement a Dictionary
 - How Do We Implement a Dictionary?Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
- Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Pseudocode

remove(key)

Task

It removes from the dictionary the entry that corresponds to a given search key.

Pseudocode

remove(key)

Task

It removes from the dictionary the entry that corresponds to a given search key.

Input and Output

Input: key is an object search key.

Pseudocode

remove(key)

Task

It removes from the dictionary the entry that corresponds to a given search key.

Input and Output

Input: key is an object search key.

Output: Returns either the value that was associated with the search

key or null if no such object exists.

Outline

- - Dictionary
 - Operation in a ADT dictionary
 - The Operations Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys

 - Using a Dictionary
 - - How Do We Implement a Dictionary? Using an Linear List

 - Introduction
 - Number of Keys
 - Hash Functions
- - Too Many Keys Repeat Buckets
 - Chaining

Pseudocode

getValue(key)

Task

It retrieves from the dictionary the value that corresponds to a given search key.

Pseudocode

getValue(key)

Task

It retrieves from the dictionary the value that corresponds to a given search key.

Input and Output

Input: key is an object search key.

Pseudocode

getValue(key)

Task

It retrieves from the dictionary the value that corresponds to a given search key.

Input and Output

Input: key is an object search key.

Output: Returns either the value associated with the search key or

null if no such object exists.

Outline

- - Dictionary
 - Operation in a ADT dictionary
 - The Operations Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys

 - Using a Dictionary

 - How Do We Implement a Dictionary? Using an Linear List

 - Introduction
 - Number of Keys
 - Hash Functions
- - Too Many Keys Repeat Buckets
 - Chaining

Pseudocode

 $\mathsf{contains}(\mathsf{key})$

Task

It sees whether any entry in the dictionary has a given search key.

Pseudocode

contains(key)

Task

It sees whether any entry in the dictionary has a given search key.

Input and Output

Input: key is an object search key.

Pseudocode

contains(key)

Task

It sees whether any entry in the dictionary has a given search key.

Input and Output

Input: key is an object search key.

Output: Returns true if an entry in the dictionary has key as its search key.

Outline

- - Dictionary
 - Operation in a ADT dictionary
 - The Operations
 - Add Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys

 - Using a Dictionary
 - - How Do We Implement a Dictionary? Using an Linear List

 - Introduction
 - Number of Keys
 - Hash Functions

 - Too Many Keys Repeat Buckets
 - Chaining

Pseudocode

getKeyIterator()

Task

It creates an iterator that traverses all search keys in the dictionary.

Pseudocode

 $\mathsf{getKeyIterator}()$

Task

It creates an iterator that traverses all search keys in the dictionary.

Input and Output

Input: None.

Pseudocode

getKeyIterator()

Task

It creates an iterator that traverses all search keys in the dictionary.

Input and Output

Input: None.

Output: Returns an iterator that provides sequential access to the search keys in the dictionary.

Pseudocode

getValueIterator()

Pseudocode

getValueIterator()

Task

It creates an iterator that traverses all values in the dictionary.

Input: None.

Pseudocode

getValueIterator()

Task

It creates an iterator that traverses all values in the dictionary.

Input and Output

Input: None.

Output: Returns an iterator that provides sequential access to the values in the dictionary.

Outline

- - Dictionary
 - Operation in a ADT dictionary
 - The Operations
 - Add
 - Remove GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys

 - Using a Dictionary
 - - How Do We Implement a Dictionary? Using an Linear List

 - Introduction
 - Number of Keys
 - Hash Functions

 - Too Many Keys Repeat Buckets
 - Chaining

Other Operations

isEmpty()

It sees whether the dictionary is empty.

get5ize()

It gets the size of the dictionary.

clear(

It removes all entries from the dictionary.

Other Operations

isEmpty()

It sees whether the dictionary is empty.

getSize()

It gets the size of the dictionary.

It removes all entries from the dictionary.

Other Operations

isEmpty()

It sees whether the dictionary is empty.

getSize()

It gets the size of the dictionary.

clear()

It removes all entries from the dictionary.

Outline

- Introduction
 - Dictionary
 - Operation in a ADT dictionary
 - The Operations
 - AddRemove
 - GetValue
 - Contains
 - Iterators
 - Other Operations
 - Scenarios About the Keys
 - Example
 - Using a Dictionary
- Implementation
 - How Do We Implement a Dictionary?Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
- Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Distinct search keys

Case 1 You can refuse to add another key-value.

Case 2 You can change the existing value associated with key to the new value. Then you return the old value.

Distinct search keys

Case 1 You can refuse to add another key-value.

Case 2 You can change the existing value associated with key to the new value. Then, you return the old value

Distinct search keys

Case 1 You can refuse to add another key-value.

Case 2 You can change the existing value associated with key to the new value. Then, you return the old value

Duplicate search keys

if the method add adds every given key-value entry to a dictionary

Distinct search keys

Case 1 You can refuse to add another key-value.

Case 2 You can change the existing value associated with key to the new value. Then, you return the old value

Duplicate search keys

if the method add adds every given key-value entry to a dictionary

• The methods **remove** and **getValue** must deal with multiple entries that have the same search key.

Distinct search keys

Case 1 You can refuse to add another key-value.

Case 2 You can change the existing value associated with key to the new value. Then, you return the old value

Duplicate search keys

if the method add adds every given key-value entry to a dictionary

- The methods **remove** and **getValue** must deal with multiple entries that have the same search key.
- What do you remove or return!!!

Interface

```
We have the following interface
interface DictionaryInterface
  add(k, Item);
  remove(k);
  getValue(k);
  contains(k);
  getKeyIterator();
  getValueIterator();
  isEmpty();
  getSize();
  clear();
```

Outline

- Introduction
 - Dictionary
 - Operation in a ADT dictionaryThe Operations
 - Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other OperationsScenarios About the Keys
 - Example
- Using a Dictionary
- Implementation

 How Do We Implement a Distinguish
 - How Do We Implement a Dictionary?Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
 - Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Where we can use this ADT?

In the phone directory problem

It is a directory that uses a name as the key and adds and returns a phone number $% \left(1\right) =\left(1\right) \left(1\right)$

Where we can use this ADT?

In the phone directory problem

It is a directory that uses a name as the key and adds and returns a phone number

For example

Name	Number
Suzanne Nouveaux	401-555-1234
Andres Mendez-Vazquez	301-123-2345

Thus, we have the following diagram

Outline

- Introduction
 - Dictionary
 - Operation in a ADT dictionaryThe Operations
 - Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other OperationsScenarios About the Keys
 - Evample
 - Using a Dictionary
- 1 Implementation
 - How Do We Implement a Dictionary?
 Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
 - Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Now, the Big Question

It is a big one

How do we implement this data structure?

Now, the Big Question

It is a big one

How do we implement this data structure?

Possible ways

- Linear List
- Skip List
- Hash Tables

Now, the Big Question

It is a big one

How do we implement this data structure?

Possible ways

- Linear List
- Skip List
- Hash Tables

Now, the Big Question

It is a big one

How do we implement this data structure?

Possible ways

- Linear List
- Skip List
- Hash Tables

Now, the Big Question

It is a big one

How do we implement this data structure?

Possible ways

- Linear List
- Skip List
- Hash Tables
- •

Outline

- - Dictionary
 - The Operations
 - Add
 - Remove
 - GetValue
 - Contains Iterators
 - Other Operations Scenarios About the Keys

 - Using a Dictionary
- Implementation
 - How Do We Implement a Dictionary? Using an Linear List

 - Introduction
 - Number of Keys
 - Hash Functions

 - Too Many Keys Repeat Buckets
 - Chaining

First: Represent It As A Linear List

You have

$$L = (e_0, e_1, ..., e_{n-1})$$

[M/he]

Each e_i is a pair (key, element)

Array or linked representation.

First: Represent It As A Linear List

You have

$$L = (e_0, e_1, ..., e_{n-1})$$

Where

Each e_i is a pair (key, element).

Array or linked representation.

First: Represent It As A Linear List

You have

$$L = (e_0, e_1, ..., e_{n-1})$$

Where

Each e_i is a pair (key, element).

We can use the following representations

Array or linked representation.

Array Representation

Array Representation

We have then

Operation in Array Representation	Complexity
getValue(theKey)	O(size)
add(theKey, theItem)	O(size) to find duplicate
	O(1) to add at right end
remove(theKey)	O(size)

What if we sort the array?

What if we sort the array?

We have then

Operation in Array Representation	Complexity	
getValue(theKey) O(logsize) Using Binary Sear		
add(theKey, theItem)	O(logsize) to find duplicate	
	O(size) to add	
remove(theKey) O(size)		

Unsorted Chain

Unsorted Chain

Complexity

Operation in Chain Representation Complexity		
getValue(theKey)	O(size)	
add(theKey, theItem)	theKey, theItem) $O(\text{size})$ to find duplicate $O(1)$ to add	
remove(theKey)	O(size)	

Sorted Chain

Sorted Chain

Complexity

Operation in Chain Representation	Complexity	
getValue(theKey)	O(size)	
add(theKey, theItem)		
remove(theKey)	O(size)	

Skip Lists: we will skip it - It is for an advance class of analysis of algorithms

Skip Lists: we will skip it - It is for an advance class of analysis of algorithms

Complexity

Operation	Complexity - Worst Case	Complexity - Expected
getValue(theKey)	O(size)	O(log size)
add(theKey, theItem)	O(size)	O(log size)
remove(theKey)	O(size)	O(log size)

Outline

- Introduction
 - Dictionary
 - Operation in a ADT dictionaryThe Operations
 - Add
 - Remove
 - GetValueContains
 - Iterators
 - Other Operations
 - Scenarios About the Keys
 - Example
 - Using a Dictionary
 - Implementation
 - How Do We Implement a Dictionary?Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
 - Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

We will concentrate our efforts in the Hash Tables

Definition

 A hash table or hash map T is a data structure, most commonly an array, that uses a hash function to efficiently map certain identifiers of keys (e.g. person names) to associated values.

```
Operation in Array Representation | Complexity - Worst Case | Complexity - Expected | getValue(theKey) | O(\text{size}) | O(1 + C) | add(theKey, theItem) | O(\text{size}) | O(1 + C) | remove(theKey) | O(\text{size}) | O(1 + C)
```

We will concentrate our efforts in the Hash Tables

Definition

ullet A hash table or hash map T is a data structure, most commonly an array, that uses a hash function to efficiently map certain identifiers of keys (e.g. person names) to associated values.

Why?

Operation in Array Representation	Complexity - Worst Case	Complexity - Expected
getValue(theKey)	O(size)	O(1+C)
add(theKey, theItem)	O(size)	O(1+C)
remove(theKey)	O(size)	O(1+C)

Then

Advantages

 \bullet They have the advantage of having a expected complexity of operations of O(1+C)

Then

Advantages

- \bullet They have the advantage of having a expected complexity of operations of O(1+C)
 - ▶ Still, be aware of *C* because this will change depending on which overflow policy you use...

Outline

- - Dictionary
 - The Operations
 - Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other Operations Scenarios About the Keys

 - Using a Dictionary

 - How Do We Implement a Dictionary? Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions

 - Too Many Keys Repeat Buckets
 - Chaining

You have two cases for this data structure

First

Small universe of keys.

Second

Large number of keys

You have two cases for this data structure

First

Small universe of keys.

Second

Large number of keys

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address table

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Open Direct-Address-Search (Table, key)
 - ► return Table[key]
- Direct-Address-Search(Table, key, value)
 - ► Table[kev]=value
- $igoplus ext{Direct-Address-Delete}(T,x)$
 - ► Table[kev]=null

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Direct-Address-Search(Table, key)
- ▶ return Table[kev]
- Oirect-Address-Search(Table,key,value)
- lacktriangle Direct-Address-Delete(T, x)
 - T-11-[1--1]

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Direct-Address-Search(Table, key)
 - ▶ return Table[key]
- Direct-Address-Search(Table, key, value)
- lacktriangle Direct-Address-Delete(T,x)
 - ► Table[key]—null

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Direct-Address-Search(Table, key)
 - return Table[key]
- Direct-Address-Search(Table, key, value)

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Direct-Address-Search(Table, key)
 - return Table[key]
- ② Direct-Address-Search(Table, key, value)
 - ► Table[key]=value
 - \bigcirc Direct-Address-Delete(T,x)
- ► Table[key]=null

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Direct-Address-Search(Table, key)
 - return Table[key]
- ② Direct-Address-Search(Table,key,value)
 - ► Table[key]=value
- \odot Direct-Address-Delete(T, x)

We can do the following

- Key values are direct addresses in the array.
- Direct implementation or Direct-address tables.

- Direct-Address-Search(Table, key)
 - return Table[key]
- ② Direct-Address-Search(Table, key, value)
 - Table[key]=value
- **3** Direct-Address-Delete(T, x)
 - ▶ Table[key]=null

Then

Then, it is impractical to store a table of the size of $\lvert U \rvert$.

 $h: U \to \{0, 1, \dots, m-1\}$

(1)

Then

Then, it is impractical to store a table of the size of $\lvert U \rvert$.

You can use a especial function for mapping

$$h: U \rightarrow \{0, 1, ..., m-1\}$$

Example

Imagine that you have

A 1D array (or table) table [0:m-1].

h(k) is the home bucket for key k

 $n(\kappa)$ is the norme bucket for key κ .

Every dictionary pair (key, Item) is stored in its home bucket $\mathsf{table}[h[key]]$

Imagine that you have

A 1D array (or table) table [0:m-1].

Thus

h(k) is the home bucket for key k.

Every dictionary pair (key, Item) is stored in its home bucket $\mathsf{table}[h[key]]$

Imagine that you have

A 1D array (or table) table [0:m-1].

Thus

h(k) is the home bucket for key k.

Then

Every dictionary pair (key, Item) is stored in its home bucket $\mathsf{table}[h[key]].$

Push the following pairs in a hash table of size m=8

(22,a), (33,c), (3,d), (73,e), (85,f).

Push the following pairs in a hash table of size m=8

(22,a), (33,c), (3,d), (73,e), (85,f).

Hash function is

key/11

Push the following pairs in a hash table of size $m=8\,$

(22,a), (33,c), (3,d), (73,e), (85,f).

Hash function is

key/11

Then, we have that

 (3,d)
 (22,a)
 (33,c)
 (73,e)
 (85,f)

 [0]
 [1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [7]

DataLab

Data Science Community

What if we add?

Where does (26,g) go?

What if we add?

Where does (26,g) go?

What if we add?

Where does (26,g) go?

Then (3,d) (22,a) (33,c) (73,e) (85,f) [0] [1] [2] [3] [4] [5] [6] [7]

PROBLEM!!!

• Keys that have the same home bucket are synonyms.

What if we add?

Where does (26,g) go?

Then

PROBLEM!!!

- Keys that have the same home bucket are synonyms.
- 22 and 26 are synonyms with respect to the hash function that is in use.

What if we add?

Where does (26,g) go?

Then

PROBLEM!!!

- Keys that have the same home bucket are synonyms.
- 22 and 26 are synonyms with respect to the hash function that is in use.
- This is known as collision or overflow.

This is a problem

We might try to avoid this by using a suitable hash function h.

This is a problem

We might try to avoid this by using a suitable hash function h.

Idea

Make appear to be "random" enough to avoid collisions altogether (**Highly Improbable**) or to minimize the probability of them.

This is a problem

We might try to avoid this by using a suitable hash function h.

Idea

Make appear to be "random" enough to avoid collisions altogether (**Highly Improbable**) or to minimize the probability of them.

You still have the problem of collisions

Possible Solutions to the problem:

This is a problem

We might try to avoid this by using a suitable hash function h.

Idea

Make appear to be "random" enough to avoid collisions altogether (**Highly Improbable**) or to minimize the probability of them.

You still have the problem of collisions

Possible Solutions to the problem:

Chaining

DataLab
Data Science Community

This is a problem

We might try to avoid this by using a suitable hash function h.

Idea

Make appear to be "random" enough to avoid collisions altogether (**Highly Improbable**) or to minimize the probability of them.

You still have the problem of collisions

Possible Solutions to the problem:

- Chaining
- Open Addressing

This is a problem

We might try to avoid this by using a suitable hash function h.

Idea

Make appear to be "random" enough to avoid collisions altogether (**Highly Improbable**) or to minimize the probability of them.

You still have the problem of collisions

Possible Solutions to the problem:

- Chaining
- Open Addressing

Other Issues

First Issue

The choice of the possible hash function.

Second

The collision handling method

Third

The size (number of buckets) at the hash table

Other Issues

First Issue

The choice of the possible hash function.

Second

The collision handling method

The size (number of buckets) at the hash table

Other Issues

First Issue

The choice of the possible hash function.

Second

The collision handling method

Third

The size (number of buckets) at the hash table

Outline

- Introduction
 - Dictionary
 - Operation in a ADT dictionaryThe Operations
 - Add
 - Remove
 - GetValue
 - Contains
 - Iterators
 - Other OperationsScenarios About the Keys
 - Example
 - Using a Dictionary
 - Implementation
 - How Do We Implement a Dictionary?Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
 - Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Hash Functions

They have two parts

• The conversion of the key into an integer in the case the key is not an integer.

Hash Functions

They have two parts

- The conversion of the key into an integer in the case the key is not an integer.
- 2 The mapping to the home bucket.

Hash Functions

They have two parts

- The conversion of the key into an integer in the case the key is not an integer.
- 2 The mapping to the home bucket.

Analysis of hashing: Which hash function?

Consider that:

Good hash functions should maintain the property of simple uniform hashing!

A uniform hash function minimizes the likelihood of an overflow wheeleast selected at random.

Analysis of hashing: Which hash function?

Consider that:

Good hash functions should maintain the property of simple uniform hashing!

ullet The keys have the same probability 1/m to be hashed to any bucket!!!

Analysis of hashing: Which hash function?

Consider that:

Good hash functions should maintain the property of simple uniform hashing!

- \bullet The keys have the same probability 1/m to be hashed to any bucket!!!
- A uniform hash function minimizes the likelihood of an overflow when keys are selected at random.

What if...?

Question:

What about something with keys in a normal distribution?

Hashing By Division

Universe of keys

keySpace = all integers.

Thus we have that

For every m, the number of integers that get mapped (hashed) into bucket i is approximately $2^{32}/m$.

Propertie

The division method results in a uniform hash function when keySpace = all integers.

Hashing By Division

Universe of keys

keySpace = all integers.

Thus, we have that

For every m, the number of integers that get mapped (hashed) into bucket i is approximately $2^{32}/m$.

The division method results in a uniform hash function when keySpace = log all integers.

Hashing By Division

Universe of keys

keySpace = all integers.

Thus, we have that

For every m, the number of integers that get mapped (hashed) into bucket i is approximately $2^{32}/m$.

Properties

The division method results in a uniform hash function when keySpace = all integers.

However

Problem

In practice, keys tend to be correlated.

Thus

The choice of the divisor b affects the distribution of home buckets.

The

Because of this correlation, applications tend to have a bias towards keys that map into odd integers (or into even ones).

However

Problem

In practice, keys tend to be correlated.

Thus

The choice of the divisor b affects the distribution of home buckets.

Because of this correlation, applications tend to have a bias towards keys that map into odd integers (or into even ones).

However

Problem

In practice, keys tend to be correlated.

Thus

The choice of the divisor b affects the distribution of home buckets.

Then

Because of this correlation, applications tend to have a bias towards keys that map into odd integers (or into even ones).

Odd number and m an even number

Odd integers hash into odd home buckets

• 15%14 = 1, 3%14 = 3, 23%14 = 9

Even integers into even home buckets.

 \bullet 20%14 = 6, 30%14 = 2, 8%14 = 8

The bias in the keys results in a bias toward either the odd or even home

Odd number and m an even number

Odd integers hash into odd home buckets

• 15%14 = 1, 3%14 = 3, 23%14 = 9

Even number and m an even number

Even integers into even home buckets.

20%14 = 6,30%14 = 2,8%14 = 8

The bias in the keys results in a bias toward either the odd or even home

Odd number and m an even number

Odd integers hash into odd home buckets

• 15%14 = 1, 3%14 = 3, 23%14 = 9

Even number and m an even number

Even integers into even home buckets.

 \bullet 20%14 = 6, 30%14 = 2, 8%14 = 8

Properties

The bias in the keys results in a bias toward either the odd or even home buckets.

What if we use an Odd number?

Odd number and m an odd number

odd integers may hash into any home.

• 15%15 = 0, 3%15 = 3, 23%15 = 8

Even integers may hash into any home.

 \bullet 20%15 = 5. 30%15 = 0. 8%15 = 8

The bias in the keys does not result in a bias toward either the odd or even

What if we use an Odd number?

Odd number and m an odd number

odd integers may hash into any home.

• 15%15 = 0, 3%15 = 3, 23%15 = 8

Even number and m an odd number

Even integers may hash into any home.

20%15 = 5, 30%15 = 0, 8%15 = 8

The bias in the keys does not result in a bias toward either the odd or even

What if we use an Odd number?

Odd number and m an odd number

odd integers may hash into any home.

• 15%15 = 0, 3%15 = 3, 23%15 = 8

Even number and m an odd number

Even integers may hash into any home.

• 20%15 = 5, 30%15 = 0, 8%15 = 8

Thus

The bias in the keys does not result in a bias toward either the odd or even home buckets.

Bias

Something Notable

The bias in the keys does not result in a bias toward either the odd or even home buckets.

Then we haw

We have a better chance of uniformly distributed home buckets

So do not use an even divisor.

60 / 91

Bias

Something Notable

The bias in the keys does not result in a bias toward either the odd or even home buckets.

Then, we have

We have a better chance of uniformly distributed home buckets.

So do not use an even divisor.

Bias

Something Notable

The bias in the keys does not result in a bias toward either the odd or even home buckets.

Then, we have

We have a better chance of uniformly distributed home buckets.

Thus

So do not use an even divisor.

Selecting The Divisor

Another Problem

Similar biased distribution of home buckets is seen, in practice, when the divisor is a multiple of prime numbers such as 3, 5, 7, ...

The effect of each prime divisor p of m decreases as p gets larger

- Ideally, choose m so that it is a prime number.
 - Not to close to a power of 2.

Selecting The Divisor

Another Problem

Similar biased distribution of home buckets is seen, in practice, when the divisor is a multiple of prime numbers such as 3, 5, 7, ...

However

The effect of each prime divisor p of m decreases as p gets larger.

- Ideally, choose m so that it is a prime number.
- Not to close to a power of 2.

Selecting The Divisor

Another Problem

Similar biased distribution of home buckets is seen, in practice, when the divisor is a multiple of prime numbers such as 3, 5, 7, ...

However

The effect of each prime divisor p of m decreases as p gets larger.

Rules of Choosing m

- ullet Ideally, choose m so that it is a prime number.
- Not to close to a power of 2.

However

Something Notable

Even with this hash function, we can have problems

The Gaussian Kevs.

However

Something Notable

Even with this hash function, we can have problems

Remember

The Gaussian Keys...

Issues

• In practice, keys are not randomly distributed.

Issues

- In practice, keys are not randomly distributed.
- Any fixed hash function might yield retrieval O(n) time.

To find hash functions that produce uniform random table indexes rrespective of the keys.

Issues

- In practice, keys are not randomly distributed.
- Any fixed hash function might yield retrieval O(n) time.

Goal

To find hash functions that produce uniform random table indexes irrespective of the keys.

Issues

- In practice, keys are not randomly distributed.
- Any fixed hash function might yield retrieval O(n) time.

Goal

To find hash functions that produce uniform random table indexes irrespective of the keys.

ldea

To select a hash function at random from a designed class of functions at the beginning of the execution.

Proceed as follows:

- \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]
 - $\mathbb{Z}_p = \{0, 1, ..., p-1\}$ and $\mathbb{Z}_p^* = \{1, ..., p-1\}$
- Define the following hash function:
 - $h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^*$ and $b \in Z_p^*$
- The family of all such hash functions is:
 - $H_{p,m} = \{h_{a,b} : a \in Z_p^* \text{ and } b \in Z_p\}$

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0,1,...,p-1\} \text{and } \mathbb{Z}_p^* = \{1,...,p-1\}$$

- Define the following hash function:
 - $h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^*$ and $b \in Z_p$
- The family of all such hash functions is:
 - $H_{p,m} = \{h_{a,b} : a \in Z_p^* \text{ and } b \in Z_p\}$

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0,1,...,p-1\} \text{and } \mathbb{Z}_p^* = \{1,...,p-1\}$$

Define the following hash function:

• The family of all such hash functions is:

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0,1,...,p-1\} \text{and } \mathbb{Z}_p^* = \{1,...,p-1\}$$

• Define the following hash function:

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^* \text{and } b \in Z_p$$

The family of all such hash functions is:

 $H_{p,m} = \{h_{a,b} : a \in Z_p^* \text{ and } b \in Z_p\}$

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0,1,...,p-1\}$$
 and $\mathbb{Z}_p^* = \{1,...,p-1\}$

Define the following hash function:

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^* \text{and } b \in Z_p$$

• The family of all such hash functions is:

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0,1,...,p-1\} \text{and } \mathbb{Z}_p^* = \{1,...,p-1\}$$

Define the following hash function:

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^* \text{and } b \in Z_p$$

• The family of all such hash functions is:

$$H_{p,m}=\{h_{a,b}:a\in Z_p^* \text{and } b\in Z_p\}$$

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0, 1, ..., p-1\}$$
 and $\mathbb{Z}_p^* = \{1, ..., p-1\}$

• Define the following hash function:

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^* \text{and } b \in Z_p$$

• The family of all such hash functions is:

$$H_{p,m} = \{h_{a,b} : a \in Z_p^* \text{ and } b \in Z_p\}$$

Important

ullet a and b are chosen randomly at the beginning of execution.

Proceed as follows:

 \bullet Choose a primer number p large enough so that every possible key k is in the range [0,...,p-1]

$$\mathbb{Z}_p = \{0, 1, ..., p-1\}$$
 and $\mathbb{Z}_p^* = \{1, ..., p-1\}$

• Define the following hash function:

$$h_{a,b}(k) = ((ak+b) \mod p) \mod m, \forall a \in Z_p^* \text{and } b \in Z_p$$

• The family of all such hash functions is:

$$H_{p,m} = \{h_{a,b} : a \in Z_p^* \text{ and } b \in Z_p\}$$

Important

- a and b are chosen randomly at the beginning of execution.
- The class $H_{p,m}$ of hash functions is universal.

Example: Universal hash functions

Example

- p = 977, m = 50, a and b random numbers
 - $h_{a,b}(k) = ((ak+b) \mod p) \mod m$

Example of key distribution

Example with 10 keys

Example with 50 keys

Example with 100 keys

70 / 91

Example with 200 keys

Outline

- Introduction

 Dictionary
 - Dictionary
 - Operation in a ADT dictionaryThe Operations
 - Add
 - Remove
 - GetValue
 - ContainsIterators
 - Iterators
 - Other OperationsScenarios About the Keys
 - Example
 - Using a Dictionary
- Implementation
- How Do We Implement a Dictionary?Using an Linear List
 - Hash Tables
 - Introduction
 - Number of Keys
 - Hash Functions
- Overflow Handling
- Too Many Keys Repeat Buckets
- Chaining

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

One strategy to handle overflow, small universe of keys

Search the hash table in some systematic fashion for a bucket that is not full.

- Linear probing (linear open addressing).
- Quadratic probing
- Random probing.

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

One strategy to handle overflow, small universe of keys

Search the hash table in some systematic fashion for a bucket that is not full.

- Linear probing (linear open addressing).
- Random probing.
- Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket
 - Array linear list.
 - Chain

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

One strategy to handle overflow, small universe of keys

Search the hash table in some systematic fashion for a bucket that is not full.

- Linear probing (linear open addressing).
- Quadratic probing.

Chain

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

One strategy to handle overflow, small universe of keys

Search the hash table in some systematic fashion for a bucket that is not full.

- Linear probing (linear open addressing).
- Quadratic probing.
- Random probing.

The other strategy, a large universe of keys

Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket.

Overflow Handling

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

One strategy to handle overflow, small universe of keys

Search the hash table in some systematic fashion for a bucket that is not full.

- Linear probing (linear open addressing).
- Quadratic probing.
- Random probing.

The other strategy, a large universe of keys

Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket.

Array linear list.

Overflow Handling

Overflow

An overflow occurs when the home bucket for a new pair (key, element) is full.

One strategy to handle overflow, small universe of keys

Search the hash table in some systematic fashion for a bucket that is not full.

- Linear probing (linear open addressing).
- Quadratic probing.
- Random probing.

The other strategy, a large universe of keys

Eliminate overflows by permitting each bucket to keep a list of all pairs for which it is the home bucket.

- Array linear list.
- Chain.

Outline

- - Dictionary
 - The Operations
 - Add
 - Remove
 - GetValue Contains
 - Iterators
 - Other Operations Scenarios About the Keys

 - Using a Dictionary
- How Do We Implement a Dictionary?
 - Using an Linear List

 - Introduction
 - Number of Keys
 - Hash Functions
- Overflow Handling
 - Too Many Keys Repeat Buckets
 - Chaining

Linear List Of Synonyms

Thus

- Each bucket keeps a linear list of all pairs for which it is the home bucket.
- The linear list may or may not be sorted by key.
- The linear list may be an array linear list or a chain.

Collision Handling: Chaining

A Possible Solution Insert the elements that hash to the same slot into a linked list. (Universe of Keys)

Example Sorted Chains

Add to a hash table with m=11

Put in pairs whose keys are 6, 17, 12, 23, 28, 5, 16, 3, 8

Home bucket = key % 11.

Example Sorted Chains

Add to a hash table with $\overline{m} = 11$

Put in pairs whose keys are 6, 17, 12, 23, 28, 5, 16, 3, 8

So, we have

Home bucket = key % 11.

Do You Remember This?

Expected Complexity of Hash Table under Chaining

We have for unsuccessful search

$$U_n = O\left(1 + \alpha\right) \tag{2}$$

We have for successful sea

$$S_n = O\left(1 + \alpha\right)$$

Expected Complexity of Hash Table under Chaining

$$U_n = O\left(1 + \alpha\right) \tag{2}$$

We have for successful search

$$S_n = O\left(1 + \alpha\right)$$

- It uses unsorted chains.
- ullet It uses a default initial m= divisor =101
- It uses a default $\alpha < 0.75$
- When loading density exceeds a max permissible threshold, It rehash
 - with new m = 2m+1.

- It uses unsorted chains.
- ullet It uses a default initial $m={
 m divisor}=101$

- It uses unsorted chains.
- It uses a default initial m = divisor = 101
- \bullet It uses a default $\alpha \leq 0.75$

- It uses unsorted chains.
- It uses a default initial m = divisor = 101
- It uses a default $\alpha < 0.75$
- ullet When loading density exceeds a max permissible threshold, It rehash with new m=2m+1.