

Modélisation et contrôle numérique de systèmes dynamiques en agronomie Partie 3: Identification par moindres carrés

Module de Formation Continue Supagro Montpellier -Cursus Data Science -16-19 Janvier 2018, Montpellier, France

Céline Casenave

¹INRA UMR INRA-SupAgro MISTEA, Montpellier, France

Identification de modèles Objectif

Question: quelles sont les valeurs $\hat{\theta}$ des paramètres θ d'un modèle donné qui permettent d'obtenir des sorties simulées proches des mesures?

Identification de modèles Objectif

Question: quelles sont les valeurs $\hat{\theta}$ des paramètres θ d'un modèle donné qui permettent d'obtenir des sorties simulées proches des mesures?

Formulation mathématique du problème:

Problème de **minimisation** d'une **fonction objectif** $J(\theta)$, de la forme:

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

où Ω est l'ensemble des valeurs des paramètres θ admissibles.

Identification de modèles Objectif

Question: quelles sont les valeurs $\hat{\theta}$ des paramètres θ d'un modèle donné qui permettent d'obtenir des sorties simulées proches des mesures?

Formulation mathématique du problème:

Problème de **minimisation** d'une **fonction objectif** $J(\theta)$, de la forme:

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

où Ω est l'ensemble des valeurs des paramètres θ admissibles.

⇒ notion de proximité à clarifier: "proches" en quel sens? selon quelle distance?

Identification de modèles Notion de distance en mathématiques

Objectif: pour quantifier l'éloignement entre deux objets de même nature.

Identification de modèles Notion de distance en mathématiques

Objectif: pour quantifier l'éloignement entre deux objets de même nature.

Distance "intuitive" = distance euclidiennedéfinie comme la racine de la somme des différences au carré

$$d(x,y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

οù

- $x = (x_1, ..., x_N)^T \in \mathbb{R}^N$: vecteur de **données simulées** (avec le modèle et donc dépendantes des **paramètres** θ)
- $y = (y_1, ..., y_N)^T \in \mathbb{R}^N$: vecteur des données mesurées expérimentalement

Identification de modèles Notion de distance en mathématiques

Objectif: pour quantifier l'éloignement entre deux objets de même nature.

Distance "intuitive" = distance euclidienne pondérée définie comme la racine de la somme des différences au carré

$$d(x,y) = \sqrt{\sum_{i=1}^{N} \frac{\beta_i(x_i - y_i)^2}{\beta_i(x_i - y_i)^2}}$$

où • β_i sont des poids positifs

- $x = (x_1, ..., x_N)^T \in \mathbb{R}^N$: vecteur de **données simulées** (avec le modèle et donc dépendantes des **paramètres** θ)
- $y = (y_1, ..., y_N)^T \in \mathbb{R}^N$: vecteur des données mesurées expérimentalement

Problème de moindres carrés Formulation

Problème de minimisation:

$$\hat{ heta} = \operatorname{argmin}_{ heta \in \Omega} J(heta) ext{ avec } J(heta) = \sum_{i=1}^N eta_i (y_i(heta) - y_i)^2$$

où \bullet θ est le **vecteur de paramètres** du modèle

- N est le nombre d'instants t_i d'observation
- y_i est le **vecteur des observations (mesures)** à l'instant t_i
- $y_i(\theta)$ est le **vecteur des estimations données** par le modèle à l'instant t_i en fonction de θ
- •
 ¡ est un coefficient de pondération pouvant être différent selon l'instant d'observation

Problème de moindres carrés Formulation

Problème de minimisation:

$$\hat{ heta} = \operatorname{argmin}_{ heta \in \Omega} J(heta) ext{ avec } J(heta) = \sum_{i=1}^N eta_i (y_i(heta) - y_i)^2$$

où \bullet θ est le **vecteur de paramètres** du modèle

- N est le nombre d'instants t_i d'observation
- y_i est le **vecteur des observations (mesures)** à l'instant t_i
- $y_i(\theta)$ est le **vecteur des estimations données** par le modèle à l'instant t_i en fonction de θ
- •
 ¡ est un coefficient de pondération pouvant être différent selon l'instant d'observation
- ⇒ solution et méthode à utiliser dépendent du modèle utilisé

Modèles de regression linéaire Solution du problème de moindres carrés

Forme des modèles: modèles linéaires par rapport à θ :

$$y_i(\theta) = \phi_i^T \theta$$

où ϕ_i est un vecteur de même taille que θ appelé **régresseur**.

Modèles de regression linéaire Solution du problème de moindres carrés

Forme des modèles: modèles linéaires par rapport à θ :

$$y_i(\theta) = \phi_i^T \theta$$

où ϕ_i est un vecteur de même taille que θ appelé **régresseur**.

Problème de moindres carrés:

$$\min_{\theta \in \Omega} J(\theta) = \sum_{i=1}^{N} \beta_i (\phi_i^{\mathsf{T}} \theta - y_i)^2$$

Modèles de regression linéaire Solution du problème de moindres carrés

Forme des modèles: modèles linéaires par rapport à θ :

$$y_i(\theta) = \phi_i^T \theta$$

où ϕ_i est un vecteur de même taille que θ appelé **régresseur**.

Problème de moindres carrés:

$$\min_{\theta \in \Omega} J(\theta) = \sum_{i=1}^{N} \beta_i (\phi_i^{\mathsf{T}} \theta - y_i)^2$$

Solution analytique appelée estimateur des moindres carrés:

$$\hat{\theta} = \left[\sum_{i=1}^{N} \beta_i \phi_i \phi_i^T\right]^{-1} \sum_{i=1}^{N} \beta_i \phi_i y_i$$

sous condition que la matrice $\sum_{i=1}^{N} \beta_i \phi_i \phi_i^T$ est inversible.

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left(\mu_i - k \frac{S_i}{a + S_i} \right)^2$$

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left(\mu_i - k \frac{S_i}{\alpha + S_i} \right)^2$$

- ⇒ modèle non linéaire par rapport à a
- ⇒ utilisation de méthodes non linéaires

Exemple: taux de croissance

Fonction de Monod: $\mu(S) = k \frac{S}{G + S}$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 2: transformer le problème pour le rendre linéaire

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 2: transformer le problème pour le rendre linéaire Par exemple:

$$\mu(S) = k \frac{S}{\alpha + S} \iff (\alpha + S)\mu(S) = kS \iff S\mu(S) = kS - \alpha\mu(S)$$

$$\iff S\mu(S) = [S \mid -\mu(S)] \begin{bmatrix} k \\ \alpha \end{bmatrix} \iff y_i(\theta) = \phi_i^T \theta$$

avec:
$$y_i(\theta) = S_i \mu(S_i)$$
, $\theta = \begin{bmatrix} k \\ a \end{bmatrix}$ et $\phi_i = \begin{bmatrix} S_i \\ -\mu(S_i) \end{bmatrix}$

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 2: transformer le problème pour le rendre linéaire Puis résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left([S_i \mid -\mu_i] \begin{bmatrix} k \\ a \end{bmatrix} - S_i \mu_i \right)^2$$

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{C + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 2: transformer le problème pour le rendre linéaire Puis résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \beta_i \left([S_i \mid -\mu_i] \begin{bmatrix} k \\ a \end{bmatrix} - S_i \mu_i \right)^2$$

Solution:

$$\hat{\theta} = \left[\sum_{i=1}^{N} \beta_{i} \begin{bmatrix} S_{i} \\ -\mu_{i} \end{bmatrix} [S_{i} | -\mu_{i}]\right]^{-1} \sum_{i=1}^{N} \beta_{i} \begin{bmatrix} S_{i} \\ -\mu_{i} \end{bmatrix} S_{i}\mu_{i}$$

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de θ

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de θ

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

Objectif des algorithmes: trouver le minimum (ou maximum) d'une fonction et la valeur en laquelle elle atteint cet extremum sur un domaine Ω donné

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de θ

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

Objectif des algorithmes: trouver le minimum (ou maximum) d'une fonction et la valeur en laquelle elle atteint cet extremum sur un domaine Ω donné

- algorithmes itératifs
- démarrent d'une valeur initiale donnée

$$\hat{\theta} = \operatorname{argmin}_{\theta \in \Omega} J(\theta)$$

La plupart du temps, J fonction non linéaire de θ

- ⇒ impossible de calculer analytiquement la solution
- ⇒ utilisation d'algorithmes d'optimisation

Objectif des algorithmes: trouver le minimum (ou maximum) d'une fonction et la valeur en laquelle elle atteint cet extremum sur un domaine Ω donné

- algorithmes itératifs
- démarrent d'une valeur initiale donnée

Valeur initiale = première estimation "grossière" des paramètres.

Minimum global ou local Importance de la condition initiale

Existence de deux types de minimum Pour tout $a \in \Omega$, f(a) est un

- **minimum global de** f si f(a) est la plus petite valeur atteinte par f sur tout le domaine Ω
- **minimum local de** f si il existe un voisinage V de a tel que f(a) est la plus petite valeur atteinte par f sur V

Minimum global ou local Importance de la condition initiale

Existence de deux types de minimum Pour tout $a \in \Omega$, f(a) est un

- **minimum global de** f si f(a) est la plus petite valeur atteinte par f sur tout le domaine Ω
- **minimum local de** f si il existe un voisinage V de a tel que f(a) est la plus petite valeur atteinte par f sur V

exemple:

la fonction $f \mapsto -3e^{-x^2} - e^{-(x-3)^2}$ admet deux minimums locaux sur [-5, 10] dont un est global

Minimum global ou local Importance de la condition initiale

Existence de deux types de minimum Pour tout $a \in \Omega$, f(a) est un

- **minimum global de** f si f(a) est la plus petite valeur atteinte par f sur tout le domaine Ω
- **minimum local de** f si il existe un voisinage V de a tel que f(a) est la plus petite valeur atteinte par f sur V

Importance de bien choisir la condition initiale car les algorithmes convergent généralement vers un minimum local, souvent le plus proche de la condition initiale.

Méthode du gradient Problème considéré

Algorithme du gradient aussi appelé algorithme de plus forte pente ou de plus profonde descente = un algorithme d'optimisation (minimisation ou maximisation) de fonction.

Méthode du gradient Problème considéré

Algorithme du gradient aussi appelé algorithme de plus forte pente ou de plus profonde descente = un algorithme d'optimisation (minimisation ou maximisation) de fonction.

Problème considéré: minimisation d'une fonction $f: x \in \Omega \subset \mathbb{R}^n \mapsto f(x) \in \mathbb{R}$ sur un domaine Ω :

$$\hat{x} = \operatorname{argmin}_{x \in \Omega} f(x)$$

Notation: $\nabla f(x)$ = gradient de f en x:

$$\nabla f(x) = \left[\begin{array}{c} \partial_{X_1} f(x) \\ \vdots \\ \partial_{X_n} f(x) \end{array} \right]$$

direction de descente = direction, donc vecteur $d \in \Omega \setminus \{0\}$ selon laquelle, au voisinage de x, la fonction f décroit.

direction de descente = direction, donc vecteur $d \in \Omega \setminus \{0\}$ selon laquelle, au voisinage de x, la fonction f décroit.

- ⇒ si on suit cette direction, on se rapproche d'un minimum
- \Rightarrow définie localement autour d'un point $x \in \Omega$

direction de descente = direction, donc vecteur $d \in \Omega \setminus \{0\}$ selon laquelle, au voisinage de x, la fonction f décroit.

- ⇒ si on suit cette direction, on se rapproche d'un minimum
- \Rightarrow définie localement autour d'un point $x \in \Omega$

Définition mathématique:

 $d \in \Omega \setminus \{0\}$ est une **direction de descente** en x pour f si il existe un intervalle $[0, \alpha_0]$ tel que:

$$f(x + \alpha d) \leqslant f(x), \ \forall \alpha \in [0, \alpha_0]$$

d est une direction de descente stricte si l'inégalité est stricte (< au lieu de ≤).

direction de descente = direction, donc vecteur $d \in \Omega \setminus \{0\}$ selon laquelle, au voisinage de x, la fonction f décroit.

- ⇒ si on suit cette direction, on se rapproche d'un minimum
- \Rightarrow définie localement autour d'un point $x \in \Omega$

Résultat mathématique

Si $\nabla f(x) \neq 0$, alors:

 $d = -\nabla f(x)$ est une direction de descente stricte en x pour f.

avec une fonction f est la direction du gradient et d'autre direction de descente.

Méthode du gradient Algorithme du gradient

Méthode du gradient Algorithme du gradient

1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. Initialisation: k = 0 et calcul de $\nabla f(x_0)$

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. Initialisation: k = 0 et calcul de $\nabla f(x_0)$
- 3. Itérations: Tant que $k+1 \le N$ et $\|\nabla f(x_k)\| > \epsilon$ alors

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

$$k = k+1$$

où α_k peut être choisi selon différentes méthodes.

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. Initialisation: k = 0 et calcul de $\nabla f(x_0)$
- 3. Itérations: Tant que $k+1 \le N$ et $\|\nabla f(x_k)\| > \epsilon$ alors

$$X_{k+1} = X_k - \alpha_k \nabla f(X_k)$$

 $k = k+1$

où α_k peut être choisi selon différentes méthodes.

4. Solution approchée $\hat{x} \simeq x_k$ et $\min_{x \in \Omega} f(x) \simeq f(x_k)$

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. Initialisation: k = 0 et calcul de $\nabla f(x_0)$
- 3. Itérations: Tant que $k+1 \le N$ et $\|\nabla f(x_k)\| > \epsilon$ alors

$$X_{k+1} = X_k - \alpha_k \nabla f(X_k)$$

 $k = k+1$

où α_k peut être choisi selon différentes méthodes.

4. Solution approchée $\hat{x} \simeq x_k$ et $\min_{x \in \Omega} f(x) \simeq f(x_k)$

Deux choix de α_k classiques:

- α_k constante indépendante de k ⇒ gradient à pas fixe
- α_k choisi pour minimiser $f(x_k \alpha_k \nabla f(x_k)) \Rightarrow$ gradient à pas optimal

Méthode du gradient

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \left(k \frac{S_i}{a + S_i} - \mu_i \right)^2 = \operatorname{argmin}_{(a,k) \in \Omega} f(a,k)$$

Méthode du gradient

Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{C + S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode 1: résoudre le problème de moindres carrés:

$$(\hat{a}, \hat{k}) = \operatorname{argmin}_{(a,k) \in \Omega} \sum_{i=1}^{N} \left(k \frac{S_i}{a + S_i} - \mu_i \right)^2 = \operatorname{argmin}_{(a,k) \in \Omega} f(a,k)$$

Le gradient de f:

$$\nabla f(k, \alpha) = \begin{bmatrix} \partial_k f(k, \alpha) \\ \partial_{\alpha} f(k, \alpha) \end{bmatrix} = \begin{bmatrix} \frac{2}{N} \sum_{i=1}^{N} \frac{S_i}{\alpha + S_i} \left(k \frac{S_i}{\alpha + S_i} - \mu_i \right) \\ -\frac{2}{N} \sum_{i=1}^{N} k \frac{S_i}{(\alpha + S_i)^2} \left(k \frac{S_i}{\alpha + S_i} - \mu_i \right) \end{bmatrix}$$

Méthode du gradient Exemple: taux de croissance

Fonction de Monod:
$$\mu(S) = k \frac{S}{G+S}$$

Problème: trouver les paramètres a et k de la fonction à partir de N mesures bruitées S_i et μ_i , i=1:N de $S(t_i)$ et $\mu(S(t_i))$

Méthode de Newton-Raphton Problème considéré

Méthode de Newton-Raphton = algorithme destiné à trouver une approximation numérique d'un zéro (ou racine) d'une fonction f, c'est à dire la valeur de x telle que f(x) = 0.

Utilisation pour l'optimisation: pour un ensemble fermé Ω :

$$\hat{x} = \operatorname{argmin}_{x \in \Omega} f(x) \Leftrightarrow f'(\hat{x}) = 0 \text{ OU } \hat{x} \in \partial \Omega$$

 \Rightarrow application de la méthode de Newton-Raphton à f'

Méthode de Newton-Raphton Problème considéré

Méthode de Newton-Raphton = algorithme destiné à trouver une approximation numérique d'un zéro (ou racine) d'une fonction f, c'est à dire la valeur de x telle que f(x) = 0.

Utilisation pour l'optimisation: pour un ensemble fermé Ω :

$$\hat{x} = \operatorname{argmin}_{x \in \Omega} f(x) \Leftrightarrow f'(\hat{x}) = 0 \text{ OU } \hat{x} \in \partial \Omega$$

 \Rightarrow application de la méthode de Newton-Raphton à f'

Problème considéré:

Trouver $\hat{x} \in \Omega$ tel que:

$$g(\hat{x}) = 0$$

Formule de Taylor à l'ordre 1 de g au voisinage de x_k :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où $R_1(x)$ est négligeable devant les autres termes.

Formule de Taylor à l'ordre 1 de g au voisinage de x_k :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où $R_1(x)$ est négligeable devant les autres termes.

Autrement dit: si x proche de x_k alors on néglige $R_1(x)$ et on a:

$$g(x) \simeq g(x_k) + g'(x_k)(x - x_k)$$

Formule de Taylor à l'ordre 1 de g au voisinage de x_k :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où $R_1(x)$ est négligeable devant les autres termes.

Autrement dit: si x proche de x_k alors on néglige $R_1(x)$ et on a:

$$g(x) \simeq g(x_k) + g'(x_k)(x - x_k)$$

Rappel:

 $y = g(x_k) + g'(x_k)(x - x_k)$: équation de la tangente au graphe de g en x_k

Formule de Taylor à l'ordre 1 de g au voisinage de x_k :

$$g(x) = g(x_k) + g'(x_k)(x - x_k) + R_1(x)$$

où $R_1(x)$ est négligeable devant les autres termes.

Autrement dit: si x proche de x_k alors on néglige $R_1(x)$ et on a:

$$g(x) \simeq g(x_k) + g'(x_k)(x - x_k)$$

"autour de x_k la courbe de g est à peu près égale à sa tangente"

Rappel:

$$y = g(x_k) + g'(x_k)(x - x_k)$$
: équation de la tangente au graphe de g en x_k

Idée: Au lieu de chercher $x \in \Omega$ tel que:

$$g(x) = 0$$

on cherche $x \in \Omega$ tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

Idée: Au lieu de chercher $x \in \Omega$ tel que:

$$g(x) = 0$$

on cherche $x \in \Omega$ tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

Idée: Au lieu de chercher $x \in \Omega$ tel que:

$$g(x) = 0$$

on cherche $x \in \Omega$ tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

 \Rightarrow nouvelle valeur de x supposée plus proche du zéro de f que x_k

Idée: Au lieu de chercher $x \in \Omega$ tel que:

$$g(x) = 0$$

on cherche $x \in \Omega$ tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

 \Rightarrow nouvelle valeur de x supposée plus proche du zéro de f que x_k

$$\Rightarrow$$
 itération $x_{k+1} = x$

Idée: Au lieu de chercher $x \in \Omega$ tel que:

$$g(x) = 0$$

on cherche $x \in \Omega$ tel que:

$$g(x_k) + g'(x_k)(x - x_k) = 0$$

$$\iff x = x_k - \frac{g(x_k)}{g'(x_k)}$$

- \Rightarrow nouvelle valeur de x supposée plus proche du zéro de f que x_k
- \Rightarrow itération $x_{k+1} = x$
- ⇒ convergence vers le zéro le plus proche

1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. <u>Initialisation</u>: k = 0 et calcul de $f(x_0)$

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. <u>Initialisation</u>: k = 0 et calcul de $f(x_0)$
- 3. Itérations: Tant que $k+1 \le N$ et $f(x_k) > \epsilon$ alors

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
$$k = k+1$$

- 1. Choix des paramètres: nombre d'itérations maximal N, seuil de précision ϵ et valeur initiale x_0 pour x
- 2. <u>Initialisation</u>: k = 0 et calcul de $f(x_0)$
- 3. Itérations: Tant que $k+1 \le N$ et $f(x_k) > \epsilon$ alors

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
$$k = k+1$$

4. Solution approchée $\hat{x} \simeq x_k$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{dt} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{dt} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

Modèle de croissance d'une biomasse B sur un substrat S dans un réacteur batch:

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B\\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

 $\begin{array}{ll} \textbf{Point d'équilibre non nul} & = \text{solution de l'équation } \mu(\mathcal{S}) = \frac{\mathcal{Q}}{\mathcal{V}} \\ & = \text{zéro de la fonction } g: \mathcal{S} \mapsto \mu(\mathcal{S}) - \frac{\mathcal{Q}}{\mathcal{V}} \\ \end{array}$

Exemple: points d'équilibre

Modèle de croissance d'une biomasse B sur un substrat S dans un réacteur batch:

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B\\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Point d'équilibre non nul = solution de l'équation $\mu(S) = \frac{Q}{V}$ = zéro de la fonction $g: S \mapsto \mu(S) - \frac{Q}{V}$

 \Rightarrow application de l'agorithme de Newton-Raphton à g

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Exemple: points d'équilibre

$$\begin{cases} \frac{dB}{df} = (\mu(S) - \frac{Q}{V})B \\ \frac{dS}{df} = -k\mu(S)B + \frac{Q}{V}(S_0 - S) \end{cases}$$

Quelques remarques pour finir

Quels paramètres doit on identifier?:

Analyse de sensibilité pour quantifier l'impact de la variation des paramètres sur les sorties du modèle.

⇒ réduction du nombre de paramètres à identifier: on identifie que les plus importants

Fonctions pré-codées: en python/scilab/R/etc.

