

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N'-[(E)-4-Methoxybenzylidene]-2-(5-methoxy-2-methyl-1*H*-indol-3-yl)acetohydrazide

Mehmet Akkurt, a Joel T. Mague, b Shaaban K. Mohamed, c,d Antar A. Abelhamide and Mustafa R. Albayatif*

^aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, ^eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq

Correspondence e-mail: shaabankamel@yahoo.com

Received 30 September 2013; accepted 2 October 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.036; wR factor = 0.090; data-to-parameter ratio = 12.7.

The conformation adopted by the title compound, C₂₀H₂₁-N₃O₃, in the crystal is 'J'-shaped and appears to be at least partially directed by a weak intramolecular C-H···N hydrogen bond. In the crystal, molecules are linked by N-H···O hydrogen bonds, forming dimers with $R_2^2(8)$ motifs. Furthermore, these dimers connect to each other via C-H···O and N-H···O hydrogen bonds to form a threedimensional network.

Related literature

For general medical applications of non-steriodal antiinflammatory drugs (NSAIDs), see: Richy et al. (2004). For the undesirable side effects of such drugs, see: Allison et al. (1992); McMahon (2001); Rocha et al. (2001); Halen et al. (2009). For a similar structure, see: Mague et al. (2013). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\gamma = 97.882 \ (2)^{\circ}$
$V = 873.24 (5) \text{ Å}^3$
Z = 2
Cu $K\alpha$ radiation
$\mu = 0.74 \text{ mm}^{-1}$
T = 100 K
$0.14 \times 0.12 \times 0.08 \text{ mm}$

Data collection

(SADABS; Bruker, 2013) $T_{\min} = 0.85, T_{\max} = 0.94$	$R_{\rm int} = 0.029$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.090$	independent and constrained
S = 1.04	refinement
3121 reflections	$\Delta \rho_{\text{max}} = 0.19 \text{ e Å}^{-3}$
246 parameters	$\Delta \rho_{\min} = -0.18 \text{ e Å}^{-3}$

8928 measured reflections

3121 independent reflections

2579 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

Bruker D8 VENTURE PHOTON

Absorption correction: multi-scan

100 CMOS diffractometer

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$\begin{array}{c} \hline \\ N1-H1\cdots O2^{i} \\ N2-H2\cdots O2^{ii} \\ C4-H4\cdots O3^{iii} \\ C11-H11B\cdots N3 \\ C20-H20A\cdots O1^{iv} \\ \end{array}$	0.88 (2)	2.04 (2)	2.9212 (17)	174.0 (18)
	0.920 (18)	1.988 (18)	2.9025 (16)	171.9 (15)
	0.95	2.50	3.410 (2)	161
	0.99	2.36	2.8373 (19)	109
	0.98	2.49	3.215 (2)	131

Symmetry codes: (i) -x + 2, -y + 1, -z + 2; (ii) -x + 2, -y + 2, -z + 2; (iii) x + 1, y - 1, z; (iv) x - 1, y, z.

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008): molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

The authors are deeply grateful to Tulane University, Erciyes University and Manchester Metropolitan University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5357).

References

Allison, M. C., Howatson, A. G., Torrance, C. J., Lee, F. D. & Russell, R. I. (1992). N. Engl. J. Med. 327, 749-754.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Halen, P. K., Prashant, R., Murumkar, P. R., Giridhar, R. & Mange Ram Yadav, M. R. (2009). Mini Rev. Med. Chem. 9, 124-139.

Mague, J. T., Akkurt, M., Mohamed, S. K., El-Remaily, M. A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1614.

organic compounds

McMahon, A. D. (2001). Am. J. Epidemiol. 154, 557–562. Richy, F., Bruyere, O., Ethgen, O., Rabenda, V., Bouvenot, G., Audran, M., Herrero-Beaumont, G., Moore, A., Eliakim, R., Haim, M. & Reginster, J.-Y. (2004). Ann. Rheum. Dis. 63, 759–766. Rocha, G. M., Michea, L. F., Peters, E. M., Kirby, M., Xu, Y., Ferguson, D. R. & Burg, M. B. (2001). *Proc. Natl Acad. Sci. USA*, **98**, 5317–5322.
Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.
Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

Acta Cryst. (2013). E69, o1660–o1661 Akkurt et al. • C₂₀H₂₁N₃O₃ **01661**

Acta Cryst. (2013). E69, o1660-o1661 [doi:10.1107/S1600536813027050]

N'-[(*E*)-4-Methoxybenzylidene]-2-(5-methoxy-2-methyl-1*H*-indol-3-yl)acetohydrazide

Mehmet Akkurt, Joel T. Mague, Shaaban K. Mohamed, Antar A. Abelhamid and Mustafa R. Albayati

1. Comment

Indomethacin like other non-steroidal anti-inflammatory drugs (NSAIDs) is widely used in treatment of pain, fever, and inflammation (Richy *et al.*, 2004). Prolonged administration of such drugs is commonly associated with several undesired side-effects. The most common of these are gastrointestinal hemorrhage, ulceration, and decreased renal function (Allison *et al.*, 1992; McMahon 2001; Rocha *et al.*, 2001). The existence of a free carboxylic acid group in the parent drug has been considred to be the major factor in establishing superficial stomach erosion, particularly in the corpus region of the stomach (Halen *et al.*, 2009). Thus, it was considered essential to mask or to remove this functional group in order to produce a safer and more tolerant prodrug profile. Following this reasoning, we report here the synthesis and crystal structure of the title compound.

The "J" shaped conformation of the title molecule (I) is shown in Fig. 1. The bond lengths and bond angles of (I) compare well with those in related compounds (Mague *et al.*, 2013).

In the crystal, the molecules form inversion dimers with $R_2^2(8)$ motifs (Bernstein *et al.*, 1995) through N—H···O hydrogen bonds (Fig. 2, Table 1). In addition, the dimers are linked by C—H···O and N—H···O hydrogen bonds (Table 1), forming a three-dimensional network.

2. Experimental

A mixture of 233 mg (1 mmol) 2-(5-methoxy-2-methyl-1*H*-indol-3-yl)acetohydrazide and 136 mg (1 mmol) of 4-methoxybenzaldehyde in 30 ml ethanol containing few drops of glacial acetic acid was refluxed for 5 h. The reaction mixture was allowed to cool to room temperature and the excess solvent was evaporated under *vacuum*. The residual solid was collected, washed with cold ethanol and recrystallized from ethanol. Colourless blocks of X-ray quality were obtained. *M*.p. 453–455 K.

3. Refinement

The H atoms of the amino group were found in the difference Fourier maps, and were refined freely. C-bound H atoms were placed geometrically and refined using a riding model with C—H = 0.95 - 0.99 Å, and with $U_{iso}(H) = 1.2$ or $1.5U_{iso}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for

publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figure 1Perspective view of the title compound with 50% probability displacement ellipsoids.

Figure 2 Packing viewed along a showing the hydrogen bonds as dotted lines.

N'-[(*E*)-4-Methoxybenzylidene]-2-(5-methoxy-2-methyl-1*H*-indol-3-yl)-acetohydrazide

Crystal data

$C_{20}H_{21}N_3O_3$	Z = 2
$M_r = 351.40$	F(000) = 372
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.336 {\rm \ Mg \ m^{-3}}$
Hall symbol: -P 1	Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$
a = 7.1894 (2) Å	Cell parameters from 6305 reflections
b = 10.4055 (3) Å	$\theta = 3.8 - 68.2^{\circ}$
c = 12.4403 (4) Å	$\mu = 0.74~\mathrm{mm}^{-1}$
$\alpha = 107.983 (2)^{\circ}$	T = 100 K
$\beta = 92.451 (2)^{\circ}$	Block, colourless
$\gamma = 97.882 \ (2)^{\circ}$	$0.14 \times 0.12 \times 0.08 \text{ mm}$
$V = 873.24 (5) \text{ Å}^3$	

$V = 873.24 (5) \text{ Å}^3$	
Data collection	
Bruker D8 VENTURE PHOTON 100 CMOS	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: INCOATEC IµS micro–focus	(SADABS; Bruker, 2013)
source	$T_{\min} = 0.85, T_{\max} = 0.94$
Mirror monochromator	8928 measured reflections
Detector resolution: 10.4167 pixels mm ⁻¹	3121 independent reflections

2579 reflections with
$$I > 2\sigma(I)$$
 $h = -8 \rightarrow 8$ $k = -11 \rightarrow 12$ $\theta_{\text{max}} = 68.2^{\circ}, \, \theta_{\text{min}} = 3.8^{\circ}$ $l = -14 \rightarrow 12$ Refinement

Refinement on F^2 H atoms treated by a mixture of independent and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.036$ $w = 1/[\Sigma^2(F_o^2) + (0.0398P)^2 + 0.2493P]$ $wR(F^2) = 0.090$ $where $P = (F_o^2 + 2F_c^2)/3$ $S = 1.04$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.19 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.18 \text{ e Å}^{-3}$$

Special details

0 restraints

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.71418 (17)	0.52381 (11)	0.54515 (9)	0.0430 (4)
O2	0.98707 (13)	0.84392 (9)	1.03898 (8)	0.0292 (3)
O3	-0.13304 (14)	0.95693 (11)	0.60125 (9)	0.0371 (3)
N1	0.79353 (17)	0.35490 (13)	0.91900 (12)	0.0351 (4)
N2	0.76381 (16)	0.90476 (12)	0.94351 (10)	0.0260(3)
N3	0.58416 (16)	0.88308 (12)	0.89050 (9)	0.0265 (3)
C1	0.7349 (3)	0.44162 (19)	0.43283 (14)	0.0480 (6)
C2	0.7324(2)	0.46796 (15)	0.63133 (13)	0.0345 (5)
C3	0.7787 (2)	0.33672 (16)	0.61512 (15)	0.0388 (5)
C4	0.7991 (2)	0.28921 (15)	0.70661 (15)	0.0384 (5)
C5	0.7752(2)	0.37351 (15)	0.81367 (14)	0.0326 (4)
C6	0.72832 (19)	0.50583 (14)	0.83158 (13)	0.0296 (4)
C7	0.7039(2)	0.55117 (15)	0.73782 (13)	0.0310 (4)
C8	0.7797 (2)	0.48079 (17)	1.12353 (14)	0.0379 (5)
C9	0.76673 (19)	0.47320 (15)	1.00178 (14)	0.0317 (5)
C10	0.72383 (19)	0.56677 (14)	0.95159 (12)	0.0281 (4)
C11	0.67910 (19)	0.70663 (14)	1.01121 (12)	0.0284 (4)
C12	0.82053 (19)	0.82164 (14)	0.99829 (11)	0.0256 (4)
C13	0.5515 (2)	0.97217 (14)	0.84341 (11)	0.0272 (4)
C14	0.3702(2)	0.96285 (14)	0.78169 (11)	0.0269 (4)
C15	0.2179 (2)	0.86146 (14)	0.77499 (12)	0.0290 (4)
C16	0.0484 (2)	0.85462 (15)	0.71417 (12)	0.0302 (4)
C17	0.0283 (2)	0.95182 (15)	0.66076 (12)	0.0296 (4)
C18	0.1787 (2)	1.05399 (15)	0.66754 (12)	0.0322 (5)
C19	0.3475 (2)	1.05862 (15)	0.72627 (12)	0.0305 (5)

C20	-0.2801 (2)	0.84238 (17)	0.57471 (14)	0.0380 (5)
H1	0.855 (3)	0.295 (2)	0.9360 (16)	0.052 (5)*
H1A	0.86220	0.41770	0.42890	0.0720*
H1B	0.71490	0.49270	0.38010	0.0720*
H1C	0.64190	0.35780	0.41200	0.0720*
H2	0.847 (2)	0.9799 (18)	0.9426 (14)	0.037 (4)*
Н3	0.79600	0.28050	0.54110	0.0470*
H4	0.82900	0.20030	0.69610	0.0460*
H7	0.66820	0.63830	0.74730	0.0370*
H8A	0.66310	0.43210	1.13970	0.0570*
H8B	0.79780	0.57680	1.17140	0.0570*
H8C	0.88670	0.43840	1.13960	0.0570*
H11A	0.67420	0.71790	1.09300	0.0340*
H11B	0.55260	0.71370	0.98090	0.0340*
H13	0.64810	1.04650	0.84880	0.0330*
H15	0.23020	0.79590	0.81260	0.0350*
H16	-0.05350	0.78380	0.70910	0.0360*
H18	0.16500	1.12090	0.63150	0.0390*
H19	0.45010	1.12800	0.72920	0.0370*
H20A	-0.23210	0.75960	0.53170	0.0570*
H20B	-0.38450	0.85740	0.52910	0.0570*
H20C	-0.32500	0.83130	0.64510	0.0570*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0543 (7)	0.0399 (6)	0.0312 (6)	0.0116 (5)	0.0040 (5)	0.0044 (5)
O2	0.0263 (5)	0.0249 (5)	0.0361 (5)	0.0024 (4)	-0.0050(4)	0.0112 (4)
О3	0.0322 (6)	0.0354(6)	0.0412 (6)	0.0052 (5)	-0.0101(5)	0.0103 (5)
N1	0.0263 (7)	0.0250(7)	0.0565 (9)	0.0034 (5)	-0.0021(6)	0.0177 (6)
N2	0.0243 (6)	0.0238 (6)	0.0290(6)	0.0014 (5)	-0.0035(5)	0.0091 (5)
N3	0.0257 (6)	0.0267 (6)	0.0251 (6)	0.0044 (5)	-0.0018(5)	0.0060 (5)
C1	0.0488 (11)	0.0495 (10)	0.0348 (9)	0.0063 (8)	0.0034(8)	-0.0016 (8)
C2	0.0298 (8)	0.0309(8)	0.0389(8)	0.0030(6)	0.0015 (6)	0.0063 (7)
C3	0.0322(8)	0.0288 (8)	0.0469 (9)	0.0022(6)	0.0044 (7)	0.0007 (7)
C4	0.0269(8)	0.0232 (8)	0.0604 (11)	0.0041 (6)	0.0038 (7)	0.0064 (7)
C5	0.0217 (7)	0.0253 (7)	0.0494 (9)	0.0010(6)	-0.0006(6)	0.0117 (7)
C6	0.0201 (7)	0.0245 (7)	0.0421 (8)	0.0007 (5)	-0.0014(6)	0.0093 (6)
C7	0.0271 (8)	0.0257 (7)	0.0383 (8)	0.0038 (6)	-0.0007(6)	0.0079 (6)
C8	0.0301(8)	0.0363 (9)	0.0516 (10)	-0.0003(6)	-0.0071(7)	0.0240 (8)
C9	0.0199 (7)	0.0287 (8)	0.0469 (9)	-0.0017(6)	-0.0035 (6)	0.0159 (7)
C10	0.0212 (7)	0.0250(7)	0.0388 (8)	0.0006 (5)	-0.0021(6)	0.0131 (6)
C11	0.0266 (7)	0.0280(8)	0.0312 (7)	0.0028 (6)	-0.0002(6)	0.0113 (6)
C12	0.0275 (8)	0.0227 (7)	0.0246 (7)	0.0053 (6)	0.0004 (6)	0.0044 (6)
C13	0.0298 (8)	0.0240(7)	0.0266 (7)	0.0031 (6)	0.0004 (6)	0.0072 (6)
C14	0.0297 (8)	0.0257 (7)	0.0237 (7)	0.0063 (6)	0.0006 (6)	0.0049 (6)
C15	0.0323 (8)	0.0250 (7)	0.0301 (7)	0.0063 (6)	0.0008 (6)	0.0089 (6)
C16	0.0284 (8)	0.0257 (7)	0.0336 (8)	0.0026 (6)	0.0015 (6)	0.0060(6)
C17	0.0296 (8)	0.0303 (8)	0.0264 (7)	0.0094 (6)	-0.0022 (6)	0.0042 (6)
C18	0.0362 (8)	0.0313 (8)	0.0316 (8)	0.0066 (6)	-0.0019(6)	0.0136 (7)

C19 C20	0.0298 (8) 0.0293 (8)	0.0301 (8) 0.0443 (9)	0.0316 (8) 0.0367 (8)	0.0026 (6) 0.0029 (7)	-0.0004 (6) -0.0040 (6)	0.0111 (6) 0.0098 (7)
Geometr	ic parameters (Å	°)				
D1—C1	e parameters (11	1.422 (2)	C14—C15	1 '	393 (2)
01—C1		1.3776		C14—C15 C15—C16		388 (2)
D1—C2 D2—C12	2	1.2422	` '	C15—C10 C16—C17		390 (2)
D3—C1		1.3653	` '	C10—C17 C17—C18		389 (2)
)3—C1)3—C2(1.425 (C17—C18 C18—C19		377 (2)
	J	,	<i>'</i>	C10—C19 C1—H1A		` '
N1—C5		1.386 (*			9800
N1—C9		1.383 (*	C1—H1B		9800
N2—N3	,	1.3818	` '	C1—H1C		9800
N2—C12		1.3475		C3—H3		9500
N3—C1	3	1.2810	` /	C4—H4		9500
N1—H1		0.88 (2	·	C7—H7		9500
N2—H2		0.920 (C8—H8A		9800
C2—C3		1.406 (,	C8—H8B		9800
C2—C7		1.382 (*	C8—H8C		9800
C3—C4		1.384 (*	C11—H11A		9900
C4—C5		1.383 (*	C11—H11B		9900
C5—C6		1.415 (,	C13—H13		9500
C6—C10)	1.434 (<i>'</i>	C15—H15		9500
C6—C7		1.400 (C16—H16		9500
C8—C9		1.490 (C18—H18		9500
C9—C10		1.369 (2)	C19—H19	0.9	9500
C10—C	11	1.501 (C20—H20A	0.9	9800
C11—C1	12	1.514 (2)	C20—H20B	0.9	9800
C13—C	14	1.460 (2)	C20—H20C	0.9	9800
C14—C1	19	1.398 (2)			
C1—O1-	—C2	118.05	(13)	C14—C19—C18	12	1.03 (14)
C17—O	3—C20	117.85	(13)	O1—C1—H1A	10	9.00
C5—N1-	—С9	109.09	(13)	O1—C1—H1B	10	9.00
N3N2-	—C12	122.52	(12)	O1—C1—H1C	10	9.00
N2—N3-	—C13	114.94	(12)	H1A—C1—H1B	10	9.00
C9—N1-	—H1	120.9 (12)	H1AC1H1C	10	9.00
C5—N1-	—H1	126.0 (13)	H1B—C1—H1C	10	9.00
N3N2-	—H2	118.7 (10)	C2—C3—H3	12	0.00
C12—N2	2—H2	118.8 (10)	C4—C3—H3	12	0.00
D1—C2-	—С3	123.67	· ·	C3—C4—H4		1.00
D1—C2-		115.23	` '	C5—C4—H4		1.00
C3—C2-		121.10		C2—C7—H7		0.00
C2—C3-		120.20		C6—C7—H7		0.00
C3—C4-		118.84	` '	C9—C8—H8A		9.00
C4—C5-		121.74		C9—C8—H8B		9.00
N1—C5-		107.17		C9—C8—H8C		0.00
03		131.07		H8A—C8—H8B		9.00
V1—C5-		151.07				
N1—C5- C5—C6-		107.06	* *	H8A—C8—H8C		9.00

C5—C6—C7	118.73 (14)	C10—C11—H11A	109.00
C2—C7—C6	119.35 (15)	C10—C11—H11B	109.00
N1—C9—C8	120.08 (14)	C12—C11—H11A	109.00
N1—C9—C10	109.40 (14)	C12—C11—H11B	109.00
C8—C9—C10	130.47 (15)	H11A—C11—H11B	108.00
C6—C10—C11	126.49 (13)	N3—C13—H13	119.00
C9—C10—C11	126.29 (13)	C14—C13—H13	119.00
C6—C10—C9	107.22 (13)	C14—C15—H15	119.00
C10—C11—C12	113.58 (12)	C16—C15—H15	119.00
N2—C12—C11	119.29 (12)	C15—C16—H16	120.00
O2—C12—C11	119.29 (12)	C17—C16—H16	120.00
O2—C12—N2 O2—C12—C11	` /		
	121.97 (13)	C17—C18—H18	120.00
N3—C13—C14	121.97 (13)	C19—C18—H18	120.00
C13—C14—C19	119.12 (13)	C14—C19—H19	119.00
C15—C14—C19	118.23 (13)	C18—C19—H19	119.00
C13—C14—C15	122.65 (13)	O3—C20—H20A	110.00
C14—C15—C16	121.06 (14)	O3—C20—H20B	109.00
C15—C16—C17	119.73 (14)	O3—C20—H20C	109.00
O3—C17—C16	124.68 (14)	H20A—C20—H20B	109.00
C16—C17—C18	119.73 (13)	H20A—C20—H20C	109.00
O3—C17—C18	115.59 (14)	H20B—C20—H20C	109.00
C17—C18—C19	120.21 (15)		
C1—O1—C2—C3	3.0(2)	C10—C6—C7—C2	174.92 (15)
C1—O1—C2—C7	-177.73 (15)	C7—C6—C10—C9	-177.33 (16)
C20—O3—C17—C18	169.28 (13)	C5—C6—C7—C2	-2.2 (2)
C20—O3—C17—C16	-11.6 (2)	C5—C6—C10—C9	0.04 (16)
C9—N1—C5—C6	-2.29 (16)	C8—C9—C10—C11	0.6 (3)
C5—N1—C9—C10	2.37 (17)	N1—C9—C10—C6	-1.46 (16)
C9—N1—C5—C4	176.09 (16)	N1—C9—C10—C11	178.14 (13)
C5—N1—C9—C8	-179.76 (13)	C8—C9—C10—C6	-179.03 (15)
C12—N2—N3—C13	179.16 (13)	C6—C10—C11—C12	-64.10 (18)
N3—N2—C12—C11	-5.17 (19)	C9—C10—C11—C12	116.38 (16)
N3—N2—C12—C11 N3—N2—C12—O2	, ,		` '
	176.44 (12)	C10—C11—C12—O2	-65.23 (17)
N2—N3—C13—C14	178.67 (12)	C10—C11—C12—N2	116.43 (14)
O1—C2—C3—C4	178.35 (14)	N3—C13—C14—C19	-176.06 (13)
C7—C2—C3—C4	-0.9 (2)	N3—C13—C14—C15	3.6 (2)
C3—C2—C7—C6	2.4 (2)	C13—C14—C19—C18	-179.70 (13)
O1—C2—C7—C6	-176.95 (13)	C15—C14—C19—C18	0.7 (2)
C2—C3—C4—C5	-0.7(2)	C13—C14—C15—C16	-179.08 (13)
C3—C4—C5—N1	-177.38(15)	C19—C14—C15—C16	0.6(2)
C3—C4—C5—C6	0.8 (2)	C14—C15—C16—C17	-1.3(2)
N1—C5—C6—C7	179.22 (13)	C15—C16—C17—C18	0.8(2)
C4—C5—C6—C7	0.7 (2)	C15—C16—C17—O3	-178.29 (13)
C4—C5—C6—C10	-177.19 (14)	O3—C17—C18—C19	179.57 (13)
N1—C5—C6—C10	1.37 (16)	C16—C17—C18—C19	0.4(2)
C7—C6—C10—C11	3.1 (3)	C17—C18—C19—C14	-1.2(2)
C5—C6—C10—C11	-179.56 (13)		
	· · · · · · · · · · · · · · · · · · ·		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.88(2)	2.04(2)	2.9212 (17)	174.0 (18)
N2—H2···O2 ⁱⁱ	0.920 (18)	1.988 (18)	2.9025 (16)	171.9 (15)
C4—H4···O3 ⁱⁱⁱ	0.95	2.50	3.410(2)	161
C11—H11 <i>B</i> ···N3	0.99	2.36	2.8373 (19)	109
C20—H20 <i>A</i> ···O1 ^{iv}	0.98	2.49	3.215 (2)	131

Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+2, -z+2; (iii) x+1, y-1, z; (iv) x-1, y, z.