Pinterest Scalability

a. บริษัทดังกล่าวให้บริการอะไร

Pinterest เป็นผู้ให้บริการเครือข่ายสังคมออนไลน์ หรือที่เรียกว่า Social Network จุดประสงค์ ของการให้บริการนี้ คือกระดานปักหมุดออนไลน์ซึ่งมีเพื่อจัดระเบียบและแบ่งปันสิ่งที่เป็นแรงบันดาลใจ ให้กับผู้ใช้บริการ โดยจุดเด่นของการให้บริการคือการปักหมุด ผู้ใช้บริการจะมีบอร์ดเป็นของตัวเอง และ สามารถปักหมุดติดตามบุคคลที่ชื่นชอบได้ เมื่อผู้ใช้บริการทำการปักหมุดแล้ว ผู้ให้บริการก็มีการบอกถึง ความสัมพันธ์ระหว่างบุคคล และสิ่งที่ชื่นชอบของบุคคลที่ติดตามนั้นอีกด้วย

b. ประเด็นปัญหาเกี่ยวกับ Scalability ที่ประสบในการให้บริการ

- 1. ในตอนเริ่มต้นเขาออกแบบตัวผลิตภัณฑ์โดยไม่คำนึงถึงอนาคต Scalability และไมได้คำนึงถึง ความคิดเห็นการตอบรับของผู้ใช้บริการ เห็นได้จากจำนวนเครื่องมือและจำนวนผู้พัฒนา ดังนี้
 - 2 founders
 - 1 engineer
 - Rackspace
 - 1 small web engine
 - 1 small MySQL DB

2. พอเริ่มมีผู้ใช้บริการมากขึ้น และเพิ่มขึ้นเป็นครึ่งหนึ่งและ 2 เท่าทุกๆเดือน เมื่อผลิตภัณฑ์เป็นที่ รู้จักมาก การเข้าถึงตัวผลิตภัณฑ์ก็ยิ่งมากขึ้น ในช่วงที่มีเข้าถึงมากนั้นส่งผลให้เซิฟเวอร์ล่มทุกคืน และ ทุกสัปดาห์ หรือกรณีที่มีการเพิ่มกล่องโฆษณาหรือเริ่มมีการเพิ่มเทคโนโลยีมากขึ้น ฐานข้อมูลก็ล่มไป ด้วย

- 3. การเก็บข้อมูลโดย นำข้อมูลที่ได้มามากกว่า 100 terabytes ทุกวัน เก็บลงในMySQL Databases แล้วใส่ลงไปใน S3 จากนั้นถึงจะเก็บลงใน Storage offline ของเขาเอง จะเห็นได้ถึงการ ทำซ้ำหลายครั้งของการออกแบบและการดำเนินงาน ถึงงานของข้อมูลที่เคลื่อนย้ายไปมา
- 4. ผู้ให้บริการให้บริการปักหมุดออนไลน์ เมื่อเราปักหมุดซึ่งที่ชื่นชอบก็มี รูปภาพอย่างอื่นแนะนำ ขึ้นมาอีก เมื่อกดเข้าไปอีกครั้งก็จะมีการแนะนำขึ้นมาเรื่อยๆ เป็นการทำซ้ำ แปลการเข้าถึงข้อมูลที่เยอะ มากๆ และทำซ้ำเยอะๆ นั้นอาจทำให้การร้องขอข้อมูล ใช้เวลานาน อาจทำให้การเข้าถึงข้อมูลนั้นเกิด ความผิดพลาดได้เนื่องจากมีการร้องขอข้อมูลบ่อยครั้ง ทำให้ MySQL อาจจะไม่ตอบโจทย์ดีนัก
- 5. เนื่องจากมีการเข้าถึงเว็ปไซต์และเว็ปไซต์ต้องดึงข้อมูลจากฐานข้อมูลโดยตรง ผู้ให้บริการไม่มี การเก็บ Cache ทำให้ฐานข้อมูลล่มได้ ซึ่งในความเป็นจริงฐานข้อมูลควรทำงานตลอดเวลาและไม่ควรมี โอกาสที่จะเกิดความผิดพลาดได้

c. เทคนิควิธี หรือสถาปัตยกรรมที่ใช้ในการแก้ปัญหาในข้อ b.

1. ผู้ให้ใช้ Amazon Service EC2 เนื่องจากเมื่อมีผู้ต้องการเข้าใช้บริการมากขึ้นเขาจึงใช้บริการ EC2 หรือ Elastic Compute Cloud เป็นบริการโฮสต์เซิร์ฟเวอร์ของAmazon โดยเซิรฟ์เวอร์ที่ว่านี้ เป็น เซิร์ฟเวอร์เสมือน (virtual machine / virtual server) และในบริการนั้นมีการทำ Auto scaling

2. เครื่องมือที่ใช้เก็บข้อมูลผู้ให้บริการเลือกใช้ Amazon S3 เป็นพื้นที่สำหรับเก็บข้อมูล Images , logs

3. พอข้อมูลมีขนาดใหญ่มากขึ้นจึงใช้ Apache Hadoop ในการจัดการข้อมูลขนาดใหญ่ ผู้ ให้บริการจึงพัฒนา Hadoop infrastructure แบบ Single Cluster มีการใช้ Map Reduce (Master node and Slave Node ทำงานบนเครื่องเดียวกัน)

Figure 1: The Hadoop clusters perform computation and immediately persist to S3

4. มีการใช้บริการ EdgeCast และAkamai แทน Amazon CloudFront เพราะ EdgeCast และAkamai เป็นผู้ให้บริการ CDN ขนาดใหญ่และให้บริการด้านนี้โดยเฉพาะ เพื่อกระจายการเก็บข้อมูล รูปภาพ บทความไว้ใน CDN

- 5. MySQL ซึ่งเป็น SQL ใช้สำหรับ สำหรับการกำหนดและจัดการกับข้อมูล, Hbase และ Ridis ที่เป็น NoSQL ซึ่งจะมุ่งเน้นการจัดเก็บแบบเป็นชุดของข้อมูล
- 6. MySQL Sharding จะมี Master Slaves ในการเก็บข้อมูลลงในฐานข้อมูล ถ้าเกิด ฐานข้อมูล Down Slaves สามารถขึ้นมาทำงานแทน Master หลักได้เนื่องจาก Slaves จะทำการ copy ฐานข้อมูลจาก Master เป็นระยะๆ

NoSQL

7. MemCache คือ extension ของ PHP ที่จะทำหน้าที่ลดภาระการทำงานของ Server

d. ผลที่ได้เมื่อใช้เทคนิควิธีดังกล่าว

1. Auto scaling ทำให้ผู้ให้บริการสามารถเพิ่มหรือลดจำนวนเซิร์ฟเวอร์ได้ สามารถเชื่อถือได้ว่า เมื่อมีการสร้างรูปภาพแบบขนานทำให้ Instance ทำงานได้สำเร็จ มีประสิทธิภาพมากขึ้นและใช้เวลาที่ ลดลง สามารถเซ็คการทำงานได้ว่า Instance ที่สร้างขึ้นมาใหม่นั้นเร่มการทำงานที่รูปล่าสุด ผู้พัฒนา สามารถออกแบบขีดความสามารถของ Auto scaling ได้

Figure 3: A spot auto scaling group running in conjunction with an on demand auto scaling group

- 2. เมื่อ S3 มีขนาดของข้อมูลที่เยอะมาก จะมีมอนิเตอร์แจ้งเตือน มีการวิเคราะห์ข้อมูล และมี การตรวจสอบงานที่เข้ามาเป็นระยะๆได้ ลดการใช้ Hardware Storage
- 3. Hadoop infrastructure ใช้ร่วมกับ S3 โดยการ Map Reduce จะช่วยจัดการข้อมูลที่กระจัด กระจายโดยอัตโนมัติ จัดการการเคลื่อนย้ายข้อมูล จัดสมดุลความสามารถในการแจกจ่าย เกิดความยืดหยุ่น โดยการเพิ่ม Cluster ได้ถึงหลาย 1000 node และลดขนาดของข้อมูลที่สูญหาย

Figure 8: TB of data processed each day across all Mapreduce clusters at Pinterest over time

4. จะเห็นได้ว่าการใช้เครื่องมือ CDN ที่สร้างขึ้นมาโดยเฉพาะนั้นจะช่วยเพื่อลด Latency เซิฟ เวอร์ของ Amazon ได้ ผู้ใช้บริการก็สามารถเรียกใช้ข้อมูลและเข้าถึงจากเครื่องเซิฟเวอร์จำนวนมหาศาลที่ กระจายตัวอยู่ตามภูมิภาคต่างๆทั่วโลกได้จากจุดใกล้เราที่สุดได้อย่างรวดเร็ว

- 5. ผลที่ได้ของการใช้ MySQL, HBase, และ Redis ทำให้เข้าถึงข้อมูลได้อย่างรวดเร็วโดยข้อมูลที่ มีความสัมพันธ์กันมากๆ จะใช้ HBase, และRedis ในการจัดการข้อมูล ซึ่งจะเกิดประสิทธิภาพที่ดีอย่าง สม่ำเสมอ ความสะดวกสบายที่หลากหลาย และประสิทธิภาพของโครงสร้างข้อมูล
 - 6. ผลของการทำ MySQL Sharding ทำให้ฐานช้อมูลสามารถพร้อมใช้งานได้ตลอดเวลา
- 7. ใช้ Memcache ในการ Mappings ข้อมูลซึ่งเก็บข้อมูลแบบ HashTable ทำให้ลดภาระการ ทำงานของ Server ลดเวลาในการเทียบหาข้อมูลเนื่องจากมีความรวดเร็วในการหาข้อมูลที่ต้องการและ นำไปหาในฐานข้อมูลที่เก็บในรูปแบบของชุดข้อมูลที่เรียกใช้ได้โดยตรง โดยไม่ต้องเชื่อมตาราง

e. อภิปรายความสัมพันธ์กับเนื้อหาที่เรียนในชม.บรรยาย

1. การออกแบบเว็ปไซต์หรือแอพพลิเคชั่น ควรคำนึงถึงผู้ใช้งาน อนาคต และโอกาสที่จะ เกิดข้อผิดพลาดมีอะไรบ้าง ฐานข้อมูลควรจะต้อง พร้อมใช้งานตลอดเวลา

AVAILABILITY VS RELIABILITY

- Two similar but very different concepts
- Reliability: The ability of your system to perform the operations it is intended to perform without making a mistake.
- Availability: The ability of your system to be operational when needed in order to perform those operations.
- 2. Database MySQL Sharding จะทำให้ไม่เกิด overhead of communication และ Database เป็นอิสระ

MASTER OF ALL THE SHARDS

3. ใช้ Web Hosting แบบ Cloud based VPS Hosting ในการจัดการเซิฟเวอร์

CLOUD-BASED VPS HOSTING

Your Virtual Private Server isn't one of several on a single server. Rather, it is one of hundreds all sharing a giant pool of computing resources.

4. มีการ Scale แบบ Horizontal Scaling

5. มีการใช้ CDN (Cloud Delivery Network) ในการ Cache รูปภาพ และ ข้อมูล

f. แหล่งอ้างอิงที่น่าเชื่อถือ

- [1] http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/?utm source=tuicool
- [2] https://medium.com/@Pinterest_Engineering/powering-big-data-at-pinterest-3c4836e2b112
 - [3] https://javaboom.wordpress.com/2010/12/24/ec2_for_what/
- [4] https://www.techtalkthai.com/akamai-next-generation-content-delivery-network/
- [5] https://content.pivotal.io/blog/using-redis-at-pinterest-for-billions-of-relationships
- [6] https://medium.com/@Pinterest_Engineering/auto-scaling-pinterest-df1d2beb4d64
 - [7] https://en.wikipedia.org/wiki/Shard (database architecture)
- [8] https://www.quora.com/Why-does-Pinterest-use-MySQL-as-the-data-store-instead-of-NoSQLs
 - [9] https://www.slideshare.net/InfoQ/scaling-pinterest