CMPEN 270 Laboratory 8 **2020**

In this lab you will work on:

- 1. Sequential Logic
- 2. Latches and Flip-Flops
- 3. Conversions

Conversion Example:

In this lab you will need to do Flip Flop conversions. Here we will go over an example of how to convert a T-FF to a JK-FF. (Q represents the current Q value and Q^+ represents the next Q value)

The first step we want to do is to write out the truth table for JK-FF.

J	K	Q	Q⁺
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Our next step is to look at the T-FF excitation table. We know that is Q is not changing then T = 0 and if Q does change then T = 1.

Q	Q⁺	Т
0	0	0
0	1	1
1	0	1
1	1	0

Next we want to combine these two tables.

	-			
J	К	Q	Q⁺	Т
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	0	1

Next we want to find an equation for T using J, K, and Q as inputs. To do this we will use a kmap.

Problem Description:

EDA Playground link with starter files: https://www.edaplayground.com/x/bJft

This week's lectures will focus on Sequential Logic and Latches and Flip Flops. One important tool you will need to know is how to convert from one flip-flop/latch to another. In this lab you will be tasked with converting an SR-Flip Flop to a JK-Flip Flop.

Project Requirements:

SR_FF.v

- You will need to create a module that acts like an SR-FF name this file SR_FF.v
- SR_FF.v will have four inputs S, R, clock, and reset and two output Q and Qbar
- when reset is on (reset = 1) then you must set Q = 0
- when reset is off (reset = 0) then you must set Q following the SR-FF which the truth table is shown below
- for the lab we will use Q=0 as default in the case of the forbidden state

CMPEN 270 Laboratory 8 **2020**

Reset	S	R	Q	Qbar
1	d	d	0	1
0	0	0	Last Q	Last Qbar
0	0	1	0	1
0	1	0	1	0
0	1	1	Х	Х

design.v

- You will need to create a top level module that converts the SR-Latch to a JK-FF, name this file design.v
- design.v will have four inputs J, K, clock, and reset and two outputs Q and Qbar

Your Project should follow the following diagram:

Below is the SR-FF excitation table which will help you when finding the conversion.

	Outputs			Innute	
	Present State	Next State	Inputs		
	Q _n	Q _{n+1}	S	R	
•	0	0	0	X	
	0	1	1	0	
▶	1	0	0	1	
	1	1	X	0	

Solution:

1

1

Your solution will be auto graded by the test bench script. You will pass the testbench if your output truth table matches a JK-FF truth table. Below is how your truth table will look.

PASS