- 5. ¿Para qué valor de m es isomorfo a \mathbb{R}^m el conjunto de matrices simétricas de $n \times n$?
- **6.** Demuestre que el conjunto de matrices simétricas de $n \times n$ es isomorfo al conjunto de matrices triangulares superiores de $n \times n$.
- 7. Sea $V = \mathbb{P}_4$ y $W = \{ p \in \mathbb{P}_5 : p(0) = 0 \}$. Demuestre que $V \cong W$.
- **8.** Defina $T: \mathbb{P}_n \to \mathbb{P}_n$ por Tp = p + p'. Demuestre que T es un isomorfismo.
- **9.** Encuentre una condición sobre los números m, n, p, q tales que $\mathbb{M}_{mn} \cong \mathbb{M}_{par}$
- **10.** Demuestre que $D_n \cong \mathbb{P}_{n-1}$.
- 11. Pruebe que cualesquiera espacios vectoriales complejos de dimensión finita V y W con dim V = dim W son isomorfos.
- 12. Defina $T: C[0, 1] \to C[3, 4]$ por Tf(x) = f(x 3). Demuestre que T es un isomorfismo.
- **13.** Sea *B* una matriz invertible de $n \times n$. Demuestre que $T: \mathbb{M}_{mn} \to \mathbb{M}_{mn}$ definida por TA = AB es un isomorfismo.
- **14.** Demuestre que la transformación Tp(x) = xp'(x) no es un isomorfismo de \mathbb{P}_n en \mathbb{P}_n .
- 15. Sea H un subespacio del espacio V de dimensión finita con producto interno. Demuestre que $T: V \to H$ definida por $T\mathbf{v} = \text{proy}_H \mathbf{v}$ es sobre. ¿Bajo qué circunstancias será 1-1?
- **16.** Demuestre que si $T: V \to W$ es un isomorfismo, entonces existe un isomorfismo $S: W \to V$ tal que $S(T\mathbf{v}) = \mathbf{v}$. Aquí S se llama **transformación inversa** de T y se denota por T^{-1} .

Transformación inversa

- 17. Demuestre que si $T: \mathbb{R}^n \to \mathbb{R}^n$ está definido por $T\mathbf{x} = A\mathbf{x}$ y si T es un isomorfismo, entonces A es invertible y la transformación inversa T^{-1} está dada por $T^{-1}\mathbf{x} = A^{-1}\mathbf{x}$.
- **18.** Encuentre T^{-1} para el isomorfismo del problema 7.
- *19. Considere el espacio $\mathbb{C} = \{z = a + ib, \text{ donde } a \text{ y } b \text{ son números reales e } i^2 = -1\}$. Demuestre que si los escalares se toman como reales, entonces $\mathbb{C} \cong \mathbb{R}^2$.
- *20. Considere el espacio $\mathbb{C}^n_{\mathbb{R}} = \{(\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n) : \mathbf{c}_i \in \mathbb{C} \text{ y los escalares son reales} \}$. Demuestre que $\mathbb{C}^n_{\mathbb{R}} \cong \mathbb{R}^{2n}$. [Sugerencia: Vea el problema 19.]

EJERCICIOS CON MATLAB 7.4

1. Sea $T: \mathbb{R}^4 \to \mathbb{R}^4$ una transformación definida por $T(\mathbf{v}_i) = \mathbf{w}_i$ para $i = 1, \dots, 4$, donde

$$\{v_1, v_2, v_3, v_4\} = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -2\\1\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\4\\2\\1 \end{pmatrix} \right\}$$

$$\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\} = \left\{ \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\5\\3\\2 \end{pmatrix}, \begin{pmatrix} -1\\-1\\-1\\2 \end{pmatrix}, \begin{pmatrix} 0\\3\\7\\7 \end{pmatrix} \right\}$$