Bazy Danych Slajdy w2-w7		
Literatura	7	
Teoria baz danych Beynon-Davies P, Systemy baz danych. WNT Date C. J. , Wprowadzenie do systemów baz danych. WNT Henderson K., Bazy danych w architekturze klient/serwer. Robomatic SQL Debarros A.: Praktyczny SQL. Wydawnictwo Naukowe PWN Bowman, J., S.L. Emerson i M. Darnovsky: Podręcznik języka SQL. WNT, Warszawa Celko J.: Praktyki mistrza SQL. Programowanie zoawansowane. Helion Celko J.: SQL Zaawansowane techniki programowania. Mikom, Warszawa		
Harrington, I.L.: SQL dia kazdego. EDU-MIKOM Ladanyi, H.: SQL. Księga eksperta. Helion		_
Literatura		
• <u>Diagramy ERD i projektowanie; CASE</u>		

Hernandez M.: Projektowanie baz danych dla każdego.
Przewodnik krok po kroku, Helion
Connolly T.: Systemy baz danych: Praktyczne metody
projektowania implementacji i zarządzania. Oficyna Wydawnicza
READ ME
Barker, R.: CASE*Method – modelowanie związków encji. WNT
Jaszkiewicz A.: Inżynieria oprogramowania. HELION,
Yourdon, E.: Współczesna analiza strukturalna. WNT

ORACLE
 Austin Dave: Poznaj Oracle 8. (Prosto profesjonalnie). ZNIMIKOM
 Rogers, U.: Oracle. Przewodnik projektanta baz danych. WNT
 Wermbel, R. I. W. Wieczerzycki: Projektowanie aplikacji bazy danych Oracle. Wydawnictwo NAKOM

4	,	
/	rac	lłつ
_	IUU	на

- Dokumentacja elektroniczna Oracle
 - https://docs.oracle.com
 - * https://docs.oracle.com/en/database/oracle/sql-developer/18.2/books.html
 - 2 Day DBA
 - Database Administrator's Guide
 - PL/SQL Language Reference
 SQL Language Reference

 - Oracle SQL Developer User's Guide
 Oracle SQL Developer Data Modeler User's Guide

Przykład	wstępny	(1)
----------	---------	-----

- System bazy danych to skomputeryzowany system przechowywania rekordów, gdzie dane przechowywane są zgodnie z tzw. modelem danych
 - rodzaj elektronicznej kartoteki z aktami
 - miejsce przechowywania kolekcji danych "w plikach"
 - odzwierciedla pewien wycinek rzeczywistości

Przykład wstępny (2)

Użytkownik ma do dyspozycji **narzędzia** do przeprowadzania rozmaitych operacji na tych kolekcjach:

- Dodawanie nowych, pustych plików do bazy danych
- · Wstawianie nowych danych do istniejących plików
- Odczytywanie danych z istniejących plików
- Usuwanie danych z istniejących plików
- Usuwanie plików, pustych lub nie, z bazy danych

Przykładowa baza danych - Wina

- (z lewej) Baza złożona z tylko jednego pliku zawierającego informację na temat domowej piwniczki z winami.
- (z prawej) Przykład operacji wyszukiwania w tej bazie wraz z uzyskanymi wynikami/danymi.

Baza danych - Wina

(z prawej) Przykład operacji wstaw, zmodyfikuj i usuń (ang. insert, update, delete)

Uwagi dla przykładu wstępnego

- Pliki w naszym przykładzie są tożsame z tabelami (w rzeczywistości z tabelami relacyjnymi);
- Wiersze w takiej tabeli będziemy nazywać rekordami;
- Operacje SELECT, INSERT, UPDATE, DELETE pokazane wcześniej są przykładami języka baz danych nazywanego SQL (ang. Structured Query Lonquage);
- SQL jest stosowany w większości komercyjnych relacyjnych baz danych;
- Ciekawostka: Pierwotna wymowa "sikłel" obecnie "es-kiu-el".

System zarządzania bazą danych

- System zarządzania bazą danych, SZBD (ang. Database Management System, DBMS) oprogramowanie bądź system informatyczny służący do zarządzania bazą danych.
- Funkcje oferowane przez SZBD zostaną omówione w dalszej części wykładu
- Składa się z czterech zasadniczych elementów:
 - A. Dan
 - B. Sprzęt
 - C. System bazy\procesy bazy
 - D. Użytkownicy

A. Dane

- Dostęp do danych może odbywać się w trybie jednego użytkownika (single-user) lub w trybie z wieloma jednoczesnymi użytkownikami (multi-user). W przypadku systemu z wieloma użytkownikami głównym celem SZBD jest sprawienie, że każdy z użytkowników ma wrażenie, iż tylko on korzysta z bazy.
- Dla prostoty będziemy przyjmować, że wszystkie dane przechowywane są w jednej bazie danych.
- Dane przechowywane są więc w sposób **współdzielony** jak i **zintegrowany**.

Integragia-Tanenie	dough	7.	wielu
Jadde T	· /-	•	

Wapoldeid	enle -	- maic	bac	woodline
Wapo Ideid	mer	widu	win	thouse how
V	ľ		0	

B. Sprzęt

- Szereg rozwiązań dostępnych od mikrokomputerów do największych systemów klasy mainframe.
- Najważniejsze elementy systemu to:
 - Pamięci masowe (dyski twarde) używane do przechowywania danych, wraz z dodatkowym osprzętem m.in. kontrolery dysków
 - Procesory
 - Pamięć operacyjna

C. System Zarządzania Bazą Danych (1)

- Warstwa pośrednicząca między użytkownikami a fizyczną bazą danych
- Obsługuje żądania użytkowników;
- Uwalnia użytkowników od znajomości szczegółów technicznych (wyższy poziom abstrakcji jak dla języków programowania);
- · Najważniejszy składnik całego systemu bazy danych;

C. System	Zarządzania	Bazą	Danych
(2)			

Działanie:

- 2. SZBD przechwytuje i analizuje żądanie
- SZBD bada kolejno dla danego użytkownika odpowiedni schemat zewnętrzny, pojęciowy i wewnętrzny (struktury pamięci)
- 4. Wykonanie przez SZBD niezbędnych operacji na bazie danych

C. System Zarządzania Bazą Danych (3)

Funkcje realizowane przez SZBD (1):

- **Definiowanie danych** definiowanie poszczególnych schematów wew./poj./zew. i właściwych odwzorowań
- Obróbka danych obsłużenie żądań użytkownika związane z wyszukiwaniem, aktualizacją, usuwaniem oraz dodawaniem danych
- Zapewnienie mechanizmów bezpieczeństwa i integracji danych

Ta prezentacja jest chroniona prawami
autorskimi. Rozpowszechnianie poza
domeną pwr.edu.pl jest zabronione.

C. System Zarządzania Bazą Danych (4) Funkcje realizowane przez SZBD (2): • Słownik danych (data dictionary): • Sam słownik można uznać za bazę danych (lecz systemu, nie użytkownika) • Zawiera dane o danych (zwane metodanymi) – tj. definicje innych obiektów w bazie • Zapewnienie wydajności • Kontrola współbieżności • Mechanizmy odzyskiwania danych	
D. Użytkownicy (1)	
Główne grupy:	
 programiści aplikacji – odpowiedzialni za programy wykorzystujące bazy danych; Programy przetwarzają informację na wszystkie typowe sposoby (wyszukiwanie, 	
dodowanie, modyfikacja, usuwanie); aplikacje działają zazwyczaj w trybie bezpośrednim (online)	
	<u> </u>
	-
D. Użytkownicy (2)	
 użytkownicy (ang. end users) – komunikują się z bazą w sposób bezpośredni za pomocą narzędzi z linii komend lub odpowiednich paznędzi, klienckich (często, stanowia, integralna, część, SZRD); 	
narzędzi klienckich (często stanowią integralną część SZBD); wykorzystują (bez)pośrednio język zapytań SQL;	
 administrator bazy danych (ang. database administrator, DBA) – osoba, która jest odpowiedzialna za środowiskowy aspekt bazy 	
danych.	

D. Użytkownicy (3)

- projektanci baz danych zajmują się projektowaniem struktury logicznej bazy danych, czyli struktur modelu danych i projektowaniem struktury fizycznej bazy danych, czyli doborem parametrów fizycznego składowania danych na nośnikach. Ponadto, ich zadaniem jest przygotowanie działającej bazy danych.
- analitycy systemowi zajmują się analizą wymagań systemu bazy danych i aplikacji. Wynik ich pracy jest podstawą opracowania struktury logicznej (a często również fizycznej) bazy danych i jest podstawą do pracy dla programistów aplikacji.

D.	Użytk	ownicy	(4)
----	-------	--------	-----

Inne grupy:

- Administratorzy serwerów
- Administratorzy sieci komputerowych
- Projektanci narzędzi deweloperskich

Co to jest baza danych?

- Dane trwałe (persistent) chcemy odróżnić dane z bazy od danych "bardziej tymczasowych" np. instrukcje kontrolne, bloki kontroli programów (czyli dane nzejściowe).
- Rozróżnienie między danymi trwałymi a tymczasowymi nie jest sztywne i zależy od kontekstu.

Definicja bazy o	danych
------------------	--------

Definicja podstawowa:

Baza danych to zbiór informacji zapisanych w ściśle określony sposób w strukturach odpowiadających założonemu *modelowi danych*.

Definicja rozszerzona:

W potocznym ujęciu B0 obejmuje <u>dane</u> oraz <u>program komputerowy</u> wyspecjalizowany do gromadzenia i przetwarzania tych danych. Program taki (często zestaw programów) to "Systemem zarządzania bazą danych" (ang. database management system, DBMS).

Charakterystyka baz danych (1)

1. Trwałość danych

- Długi czas życia bazy danych kilka, kilkadziesiąt, kilkaset lat
- Niezależność od działania aplikacji
- Trwałość danych jest niezależna od platformy sprzętowo-programowej

2. Rozmiar wolumenu danych

- Dane nie mieszczą się w pamięci operacyjnej wymagana pamięć zewnętrzna (dyskowa, optyczna, taśmowa)
- Danych jest zbyt dużo dla ich liniowego przeglądania przez użytkowników

Charakterystyka baz danych (2)

3. Złożoność danych

- Złożoność strukturalna i złożoność zależności pomiędzy danymi np. projekt promu kosmicznego, złożony z setek tysięcy elementów
- Złożoność semantyczna (np. fakt przyznania kredytu jest uzależniony od spełnienia lub niespełnienia wielu wymagań przez petenta)
- Ograniczenia integralnościowe w bazie danych pojawią się wyłącznie dane spełniające te ograniczenia

Encje i związki (1)

Encja (entity) – potocznie oznacza indywidualną, rozpoznawalną rzecz, jaka ma być reprezentowana w bazie danych;

- Encja zawiera w sobie cechy (atrybuty) obiektu, który tworzy.
- W przypadku relacyjnych baz danych, encja jest zazwyczaj utożsamiana z tabelą w bazie danych.
- - · Proszę podać przykłady encji (i atrybutów w encji)

Encje i związki (1)

Encja (entity) - potocznie oznacza indywidualną, rozpoznawalną rzecz, jaka ma być reprezentowana w bazie danych;

- Encja zawiera w sobie cechy (atrybuty) obiektu, który tworzy.
- W przypadku relacyjnych baz danych, encja jest zazwyczaj utożsamiana z tabelą w bazie danych.
- Przykłady encji (i atrybuty w encji):
 - Pracownik (imię, nazwisko, PESEL)
 - Produkt (wysokość, szerokość, długość, cena)

Relaye & 2 Liemmhare

wight terme up. LS PJD

wight velwayune up Lpy>

Atrybuty

- Encje mają własności atrybuty
- (Załóżmy na razie, że) wszystkie atrybuty są "proste" i są reprezentowane przez "proste typy" m.in. liczby, napisy, daty itd.

BIN (Partia)	WINE (Wino)	PRODUCER (Producent)	YEAR (Rocenik)	BOTTLES (Butelki)	READY (Gotowa
2	Chardonnay	Buena Vista	92	. 1	94
3	Chardonnay	Geyser Peak	92	5	94
6	Chardonnay	Stonestreet	91	4	93
12	Jo. Resling	Jekel	93	1	91
21	Funé Blanc	Ch. St. Jean	92	4	9
22	Funé Blanc	Robt. Mondavi	91	2	9.
22	Funé Blanc	Robt. Mondavi	91	2	

Przewaga baz nad metodami tradycyjnymi – "papierowymi"/"plikami" (np. dla dużej restauracji – baza dań/tabela win):

- Zawartość nie musi przeszukiwać grubych ksiąg
- Szybkość komputer potrafi wyszukiwać i zmieniać dane dużo szybciej niż człowiek
- Mniej pracy brak konieczności ręcznego korygowania i dopisywania w księgach
- Aktualność bieżące dane dostępne na żądanie

Wyobraźmy sobie konieczność ręcznego uzupełniania ksiąg dla wielkiej sieci restauracji.

Interakcja z bazą danych

Język SQL (ang. Structured Query Language)

- interakcja programu użytkowego (aplikacji) z bazą odbywa się za pomocą języka SQL
- język deklaratywny specyfikujemy tylko co chcemy otrzymać, np. wyświetl najstarszego pracownika
- ustandaryzowany <u>SQL-92</u>, SQL- 99, SQL-2003; brak jednak 100% zgodności
- Prowadzone są również prace nad alternatywnymi językami zapytań opartymi na SQL'u.
 Przykładem takiego języka może być język ciągłych zapytań CQL lub język SQL wyposażony w możliwość przetwarzania sekwencji danych AQuery.

Interakcja z bazą danych (2)

- Aplikacje (pod spodem nadal SQL)
 - Formularze elektroniczne formularze z polami, listami, elementami wyboru umożliwiają wstawianie, modyfikowanie, usuwanie, wyszukiwanie danych
 - Raporty umożliwiają prezentowanie zawartości bazy danych (teksty, wykresy, grafika)

Technologie implementacyjne aplikacji

- Języki 3GL
 - np. C, C++, Visual Basic, Visual C++ biblioteki umożliwiające zagnieżdżanie poleceń SQL w kodzie
- Języki 4GL
 - np. SAS 4GL, Oracle Forms umożliwiają bezpośrednie umieszczanie poleceń SQL w kodzie aplikacji i bezpośrednią obsługę wyników poleceń SQL
- · Java, PHP, JavaScript
 - stosowane w aplikacjach web'owych pracujących w architekturze 3-warstwowej

Nie relacyjne systemy

HOW TO WRITE A CV

- Systemy nie relacyjne (nie relacyjne modele danych):
 - Dedukcyjne DBMS
 - Eksperckie DBMS
 - Obiektowe DBMS
 - Semantyczne DBMS
 Strumieniowe DBMS
- Modele hierarchiczny i sieciowy nie są już stosowane w
 - systemach.

 Obecnie w bazach danych najczęściej stosuje się model relacyjny, obiektowo-relacyjny lub semistrukturalny 			
Objectiono-relacyjny ido semisti dictarally	_		
	_		
Architektura systemu baz danych	_		
(1)			
	_		
 Celem zastosowania architektury trójwarstwowej jest 			
uniezależnienie prezentacji danych od sposobu, w jaki są one			
przechowywane.			
 W architekturze trójwarstwowej ANSI/SPARC wyróżniamy trzy 	_		
poziomy:			
 Poziom zewnętrzny – sposób w jaki poszczególni użytkownicy widzą dane; 	_		
Poziom pojęciowy "pośredni"			
 Poziomom wewnętrzny – fizyczny sposób przechowywania danych; 			

Architektura systemu baz danych Poziom zewnętrzny

- · Poziom indywidualnego użytkownika (np. programista, DBA itd.);
- Użytkownik dysponuje językiem właściwym dla danego systemu (np. programista - język 4GL, inżynier baz danych - język zapytań);
- Wspólna cechą języków jest zawieranie osadzonego (embeded) podjezyka danych (data sublanguage, DSL) – tzn. podzbiór języka związany z operacjami i obiektami bazy danych.

Architektura systemu baz danych

Poziom zewnętrzny c.d. Podjęzyk danych składa się z przynajmniej dwóch podrzędnych języków:

- języka definicji danych (data definitione language, DDL) deklarowanie
- języka operowania danymi (data manipulation language, DML) przetwarzanie

Reasumując schemat zewnętrzny stanowi interfejs użytkownika do bazy danych. Schemat ten odwzorowuje schemat implementacyjny w schemat poprzez który użytkownik widzi baze danych i pracuje z nia.

Architektura systemu baz danych

Poziom pojęciowy

- Pojęciowy model danych stanowi reprezentację zawartości informacyjnej bazy danych. Stosowany format jest oderwany od fizycznego sposobu przechowywania danych;
- Pojęciowy model składa się z wystąpień rekordów pojęciowych; np. zbiór wystąpień rekordów pracowników, rekordów części itd.
- · Pojęciowy model definiuje się za pomocą schematu pojęciowego stanowiącego związek wszystkich schematów zewnętrznych wraz z regułami bezpieczeństwa i integralności.

Architektura systemu baz danych (5) Poziom wewnętrzny

- Reprezentuje niski poziom bazy danych;
- Składa się z wystąpień wielu "rekordów wewnętrznych";
- Poziom ten znajduje się o jeden stopień wyżej od poziomu fizycznego tzn. nie zajmuje się blokami lub stronami pamięci.
- Schemat wewnętrzny definiuje typy rekordów, precyzuje indeksy itd.

Architektura systemu baz danych (6) Zalety architektury trójwarstwowej

- Różne perspektywy użytkowników: architektura ANSI-SPARC pozwala stworzyć
 perspektywy dla różnych użytkowników dostosowane do ich potrzeb i wymagań.
 Każdy użytkownik powinien mieć dostęp do tych samych danych, ale na różne
 sposoby. Perspektywy użytkowników powinny być niezależne od siebie zmiana
 jednej z nich nie powinna wpływać na pozostałe.
- Ukrycie fizycznej implementacji: użytkownicy nie powinni mieć dostępu do niskopoziomowych szczegółów przechowywania danych. Powinni mieć możliwość pracy z danymi bez zaprzątania sobie głowy tym, jak są one zapisane.

Architektura systemu baz danych (7) Zalety c.d.

- Zmiany w niższych warstwach: administrator bazy danych powinien mieć możliwość zmiany sposobu przechowywania danych bez naruszania perspektyw użytkowników. Podobnie, zmiana dysku twardego w serwerze bazy danych nie powinna naruszać struktury danych w bazie.
- Zmiany koncepcji przechowywania danych: administrator powinien mieć możliwość zmiany koncepcji bazy danych lub jej struktury również bez naruszania perspektywy użytkownika.

Architektura komunikacyjna

Dwie podstawowe architektury komunikacyjne systemów

baz danych to:

- · architektura klient-serwer
- architektura 3-warstwową

Idea polega na założeniu, że interfejs użytkownika, przetwarzanie danych i składowanie danych są rozwijane w postaci osobnych modułów, zwykle na oddzielnych platformach;

Architektura klient-serwer (1)

- Inne spojrzenie niż w architekturze ANSI/SPARC
- Główne zadanie systemów klient-serwer to wspieranie rozwoju i wykonywania aplikacji na bazie danych;
- System bazy danych w uproszczeniu jest dwuczęściową strukturą złożoną z:
 - Serwera (server / backend)
 - Szeregu klientów (client / frontend)

Architektura klient-serwer (2)

Elementy:

- Serwer wykonuje podstawowe funkcje jak definiowanie danych, obróbkę danych, zapewnienie integralności i bezpieczeństwa; serwer to synonim SZBD;
- Klienci różne aplikacje korzystające z SZBD napisane przez programistów jak i aplikacje/narzędzia wbudowane w SZBD

Przetwarzanie rozproszone (1)

 Oznacza, w "architekturze klient-serwer" sytuację, gdzie klient i serwer działają na różnych maszynach;

Zalety:

- Przetwarzanie rozdzielone na różne maszyny w sposób równoległy na kliencie i serwerze;
- Serwer i klient mogą posiadać odpowiednią konfigurację dostosowaną do realizowanych zadań;

Przetwarzanie rozproszone (2)

• Jeden serwer, wielu klientów

Przetwarzanie rozproszone (3)

• Wiele serwerów, wielu klientów

Architektura	komunikacyjna - 3-warstwowa
	PODD PRODUCTY © 2004A
	Baza Dunych Dysk

Rola administratora bazy danych (1)

Administrator (database administrator, DBA)— osoba, która:

- podejmuje decyzje strategiczne i realizuje politykę dotyczącą danych w firmie,
- zapewnia konieczne wsparcie techniczne oraz
- \bullet sprawuje ogólną kontrolę systemu na poziomie technicznym.

Rola administratora bazy danych(2)

Administrator ponadto:

- **Definiowanie schematu pojęciowego** decyduje jakie informacje przechowywać w bazie:
 - wpływ na projekt logiczny bazy a następnie na tej podstawie tworzy odpowiedni schemat pojęciowy, stosując pojęciowy DDL;
 - W praktycy kwestie te rzadko wyglądają tak jasno;
- **Definiowanie schematu wewnętrznego** proces fizycznego projektu bazy danych

Dostępne SZBD (1)

Komercyjne bazy danych:

- Orade: wersja 9i 19c/21c w tym:
 - (Oracle Database Express Edition (XE))
- IBM: DB2 UDB, Informix(R) Dynamic Server
- Microsoft: SQL Server
- Sybase (od 2014 SAP): Adaptive Server Enterprise,

Adaptive Server Anywhere

Dostępne	SZBD	(2)
----------	------	-----

Niekomercyjne bazy danych:

- MySQL
- PostgreSQL
- FireBird
- Berkley DB
- Firebase
- MongoDB

Rys historyczny

Początek tat 60	danymi przeznaczone do rozwiązania konkretnych problemów	
Połowa lat 60	Pakiety baz danych ogólnego przeznaczenia, IDS Integrated Data Source firmy GEC General Electric Company	
Druga połowa 60	SZBD IDMS dla IBM360, początek sieciowych baz danych	,
1969	Stworzono model CODASYL - standard sieciowych baz danych	danych
1970	Codd publikuje artykuł A Relational Model for Large Shared Data Banks IBM opracowuje prototyp relacyjnego	baz danych
	SZBD o nazwie System/R, który później przekształcił się w INGRES	
Lata 70 - początek 80	Intensywne prace naukowe nad relacyjnymi bazami danych, panowanie modelu sieciowego	

,	zny	
1983	IBM prezentuje pierwszą komercyjną relacyjną bazę danych DB2	Początek ery RBD
Lata 80 - początek 90	Rozwój osobistych komputerów przyczynia się do rozpowszechnienia RBD	
II połowa 80	Poszukiwanie nowego modelu danych, ponieważ: 1) stacje graficzne - nowe dziedziny; 2) przetwarzanie równolegle i czasu rzeczywistego; 3) popularyzacja obiektowości 4) wbudowanie przetwarzania danych do BD	Post relacyjne bazy danych
1989, Kyoto	Opublikowano Manifest obiektowych baz danych, co dało początek standaryzacji tych systemów	
Lata 90	Prace nad obiektowymi bazami danych, pierwsze systemy komercyjne tego typu	Dominacja relacyjnych BD
1996	ODMG-2 - Przyjęcie standardu światowego dla producentów SOBD	Popularyzacja obiektowych baz danych
Obecnie	Koegzystencja RBD oraz OBD	

Relacyjny system baz danych

- Przechowuje wszystkie dane w relacjach (encjach = tabelach).
- Każda relacja zawiera dane na konkretny temat, np. dane o klientach, pracownikach, towarach, sprzedaży itp.
- System bazy danych zarządza tymi informacjami, pozwala m.in. na szybsze ich wyszukiwanie i zorganizowanie, przydzielanie pamięci.

12 postulatów Codda

9. Postulat logizmej nisaslečności danych - zmiany wartości w tabelach nie wphywają na aplikację,
10. Postulat nisasleżności włąsów spójności - więzy spójności są definiowane w bazie i nie zależą od aplikacji,

11. Postulet niezsieżności dyżatybucyjnej - działanie aplikacji nie zależy od modyfikacji dystrybudi bazy.
12. Postulet bespieczeństwe weględem operacji nisklego posiomu - operacje nisklego posiomu nie mogą na

Język SQL
(ang. Structured Query Language, SQL)

- Strukturalny język zapytań używany do tworzenia, modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych
- Język SQL jest językiem deklaratywnym (oparty na rachunku relacyjnym).
- Decyzję o sposobie przechowywania i pobrania danych pozostawia się systemowi zarządzania bazą danych (DBMS)

SQL Historia

- Opracowany w latach 70. w firmie IBM.
- Stał się standardem w komunikacji z serwerami relacyjnych baz danych.
- Wiele współczesnych systemów relacyjnych baz danych używa do komunikacji z użytkownikiem SQL, dlatego potocznie mówi się, że korzystanie z relacyjnych baz danych to korzystanie z SQL-a.
- Pierwszą firmą, która włączyła SQL do swojego produktu komercyjnego był Oracle.
- Dalsze wprowadzanie SQL-a, w produktach innych firm, wiązało się nierozłącznie z wprowadzaniem modyfikacji pierwotnego języka.
- Wkrótce utrzymanie dalszej jednolitości języka wymagało wprowadzenia standardu.

Standardy SQL (1)

- Od 1986 SQL stał się oficjalny standardem, wspieranym przez Międzynarodową Organizację Normalizacyjną (ISO) i jej członka, Amerykański Narodowy Instytut Normalizacji (ANSI).
- Wczesne wersje specyfikacji (SQL86 i SQL89) były w dużej mierze jedynie określeniem wspólnej płaszczyzny łączącej różne istniejące wówczas produkty i pozostawiały wiele swobody twórcom implementacji.

Standard ¹	y SQL (2	١
-----------------------	---------	---	---

- Z czasem jednak systemy komputerowe uległy integracji i rynek zaczął domagać się aplikacji oraz ich funkcji faktycznie współpracujących z wieloma różnymi bazami danych.
- Pojawiła się potrzeba określenia standardu ściślejszego.
- Mógł on jednocześnie obejmować nowe elementy, nieujęte do tej pory w języku. Tak powstał standard **SQL92, obowiązujący w wielu produktach** do

Standardy SQL (3)

SQL:2003 – nowy standard języka SQL. Jest to w zasadzie poprawione SQL:1999 z wyjątkiem części SQL/XML oraz kilku dodatkowych właściwości.

Zmiany wprowadzone w SQL 2003:

- Dodano nowe typy danych (BIGINT, MULTISET oraz XML)
 Usunięto typy BIT oraz BIT VARYING
- Wprowadzono rozszerzenia w sposobie wywoływania procedur
- Poszerzono instrukcję CREATE TABLE (CREATE TABLE { LIKE | AS })
- Wprowadzono instrukcję MERGE
- Wprowadzono nowy obiekt schematu generator sekwencji
- Wprowadzono dwa nowe typy kolumn identyfikatory oraz generowane
- Wprowadzono retrospektywne sprawdzanie więzów integralności
- Wprowadzono rozszerzenia dla OLAP w formie wbudowanych funkcji (skalarnych i agregujących)
 Wprowadzono klauzulę WINDOW

Standardy SQL (4)	
Prowadzone są również prace nad alternatywnymi językami zapytań	
opartymi na SQL.	
Przykładem takiego języka może być język ciągłych zapytań CQL lub język	
SQL wyposażony w możliwość przetwarzania sekwencji danych AQuery .	
Obiektowy język zapytań (Object Query Language, OQL) – według standardu ODMG (Object Data Management Group). Składnia OQL wzorowana jest na SQL.	
rowana jest na SQL.	

autorskimi. Rozpowszechnianie poza domeną pwr.edu.pl jest zabronione.

Systemy bazodanowe używające SQL	
Apache Derby Microsoft SQL Server Caché Mimer SQL DATAllegro MySQL	
DB2 MSQL Firebird OpenLink Virtuoso	-
First SQL Greenplum Oracle Oracle Rdb	
HSQL PostgreSQL Ingres Pervasive Informix SQL/DS	
InterBase SQL - SQLE - MaxDB (dawnie) SAP DB) - Wirrorsoft Arcress - SQL Anywhere, Sybase (Q)	
Microsoft Access Microsoft Jet Microsoft Jet	
	٦
Formy SQL-a	
 SQL wykorzystywany wyłącznie do komunikacji z bazą danych. 	
Nie posiada on cech pozwalających na tworzenie	-
kompletnych programów.	
 Jego wykorzystanie może być trojakie i z tego względu 	
wyróżnia się trzy formy SQL-a: 1. SQL interakcyjny (autonomiczny)	
Statyczny kod SQL (Static SQL) Dynamiczny kod SQL (Dynamic SQL)	
	٦
SQL interakcyjny (autonomiczny)	
Wykorzystywany jest przez użytkowników w celu bezpośredniego	
pobierania lub wprowadzania informacji do bazy.	
Przykładem może być zapytanie prowadzące do uzyskania zestawienia	
aktywności kont w miesiącu. Wynik jest wówczas przekazywany na	
ekran, z ewentualną opcją przekierowania go do pliku lub drukarki.	

Statyczny kod SQL (Static SQL)

- Nie ulega zmianom w sensie zachowania niezmiennej treści instrukcji, które jednak zawierać mogą odwołania do zmiennych lub parametrów przekazujących wartości z lub do aplikacji.
- Statyczny SQL występuje w dwóch odmianach:
 - Osadzony SQL (Embedded SQL) oznacza włączenie kodu SQL do kodu źródłowego innego języka (np. Java), jedynie odwołania do bazy danych realizowane są w SQL. Do przenoszenia wartości wykorzystywane są zmienne.
 - Język modułów. W tym podejściu moduły SQL łączone są z modułami kodu w innym języku. Moduły kodu SQL przenoszą wartości do i z parametrów, podobnie jak to się dzieje przy wywoływaniu podprogramów w większości języków proceduralnych.

Dynamiczny kod SQL (Dynamic SQL)

- Generowany jest w trakcie pracy aplikacji.
 Wykorzystuje się go w miejsce podejścia statycznego, jeżeli w chwili pisania aplikacji nie jest możliwe określenie treści potrzebnych zapytań, np. powstaje ono w oparciu o decyzje użytkownika.
- Dynamiczne budowanie zapytania bez wykorzystania dynamicznego SQL mogliśmy budować zapytania o z góry znanej konstrukcji.
 - Modyfikowalnym elementem był np. parametr wyszukiwania (np. select * from employees where employee_id= XJ, nie mogliśmy natomiast zmieniać nazwy tabeli do której się odwołujemy.

Składowe języka SQL - SELECT - INSERT - UPDATE - BELLYTE - MERKE - ALTER - LROP - REMANE* - TRINCATE* - COMMIN** - COMMIN**

Charakterystyka języka SQL

Trzy najważniejsze składowe języka SQL:

- języka definiowania danych języka DDL (ang. Data Definition Language),
- języka sterowania danymi języka DCL (ang. Data Control Language)
- język operowania na danych język DML (ang. Data Manipulation Language)

Dodatkowo, niektóre programy do łączenia się z silnikiem bazy danych, używają swoich własnych instrukcji, spoza standardu SQL (np. PostgreSQL).

DOL- DOL- DML	CREATE GBANT	- DAOR BEVOL	E DEN

Pisanie zapytań SQL

- Wielkość liter nie ma znaczenia, ale instrukcje SQL w obrębie zapytań tradycyjnie zapisywane są wielkimi literami jednak nie jest to wymóg.
- Kod SQL może być w jednej lub więcej linii.
- Słowa kluczowe nie mogą zostać skrócone lub dzielone.
- Klauzule są zazwyczaj umieszczone w oddzielnych wierszach.
- Zapytanie kończy się znakiem średnika, czyli ;
- W celu poprawy czytelności:
 - Stosuj akapity
 - Pisz słowa kluczowe wielkimi literami

Formatowanie zapytań SQL (1)

• Przykład kodu niesformatowanego:

SKLECT r.last_name, (SKLECT MAX(YEAR(championship_date))
FROM champions AS c NUERE c.last_name = r.last_name AND
c.confirmed "'Y') AS last_championship_year FROM risker
AS r WHERE r.last_name IN (SKLECT c.last_name FROM
champions AS c NUERE YEAR(championship_date) > '2008' AND
c.confirmed = 'Y');

Baza HR				
	HR	DEPARTMENTS department id	LOCATIONS location id	
		department_name >	street_address	
		manager_id location_id	postal_code city	
	JOB HISTORY		state_province country id	
	employee_id		33311733	
	start_date end_date	EMPLOYEES		
	job_id	employee_id first_name	COUNTRIES	
	department_id	last_name	country_id country_name	
		email phone number	region_id	
		hire_date		
	JOBS	job_id salary		
	job_id iob_title	commission_pct	REGIONS	
	min_salary	manager_id department id	region_id region_name	
	max_salary	department_id	Togisti_name	

Projelija - utylat Sehelija - nad Kaucnie - danjeh

FROM table;	T] column expression [alias],}
W składni:	
SELECT	wybór jednej lub wielu kolumn
*	wszystkie kolumny
DISTINCT	ukrycie duplikatów
column expres	sion wybór kolumn lub wyrażenia
alias nagłówków	nadanie wybranym kolumno
FROM table kolumny	wskazanie tabeli zawierającej

<u>+ - ,*</u>	/ds	iala_		

Reguły pierwszeństwa działań artmetycznych

- **Dzielenie** i **mnożenie** ma pierwszeństwo przed dodawaniem i odejmowaniem
- Operatory o tym samym priorytecie są wykonywane od lewej do prawej.
- Nawiasy są stosowane do zmiany domyślnych reguł przetwarzania.

null to wantobi nie istnigaca

not null - ognaniciente integracy ne

null + w = null jak colidariek na

null

Aliasy -	– Przyk	ład				
		t_name AS nam loyees;	e, commissi	on_pct comm]	
	King Kochhar De Haan	NAME		COMM		
	De Haan					

jeidi duem naom name to wadic' ja w "

Operator konkatenacji " "	
 Łączy dane z kolumny lub ciąg znaków z danymi innej kolumny; 	
_ 'Abel' NULL 'Ellen' _	
alv. 11" cos" 11 at Concat	-
	」′

w oragic Abolellers
indiej null, rallig od implemente

Powtarzające się wiersze	
Domyślnie wyświetlane są wszystkie wiersze, nawet powtarzające się; DISTINCT UNIQUE - używany wraz z instrukcją SELECT	
SELECT DISTINCT department_id	
FROM employees;	
DEPARTMENT ID	
10	
20 50	

ESCRIBE employee	S	
Name	Null?	Туре
EMPLOYEE_ID	NOT NULL	N.MEER(6)
'RST_NAME		VARCHAR2(20)
LAST NAME	NOT NULL	VARCHAR2(25)
EMAL	NOT NULL	VARCHAR2(25)
PHONE_NUMBER		VARCHAR2(20)
HRE DATE	NOT NULL	DATE
JOB ID	NOT NULL	VARCHAR2(10)
SALARY		NUMBER(8,2)
COMMISSION PCT		N.MEER(2,2)
MANAGER ID		NUMBER(6)
DEPARTMENT ID		NUMBER(4)

Ograniczanie wierszy, które są wybrane
• Ogranicz liczbę wierszy, które są zwracane korzystając SELECT *{{DISTINCT} column expression {alias},}} FROM table [[WHERE condition(s)];]

daje	nam	into	0	schenation
Jabel	i (ma via	,enia	eh
	U	,		

SELECT employee id, last_name, job_id, department_id FROM employees WHIERE department_id = 90 } INVESTIGATION 1481,0488	FROM employees WHERE department_id = 90 } 100 long					
EMPLOYEE_ID		FROM emplo	yees		.d, department_id	
100 King AD_PRES 90 101 Kookhar AO_VP 90	100 King AD_PRES 90 101 Kookhar AD_VP 90					
101 Kookhar A0_VP 90	101 Kochhar AD_VP 90					
					90	
too jou have jour just on our	sec (sec const.				90	
			102 De main	JAD_VF	30	

Ciqui walkow i daty w
you've I formation MM MM 80
- hub 200./1/1/1. 4 4 4 4
Wah & WAH
•

Operator	Znaczenie
=	Równy
>	Większy
>=	Większy lub równy
<	Mniejszy
<=	Mniejszy lub równy
<> alternatywnie !=, ^=	Nie równy
[NOT] BETWEENAND	Pomiędzy dwiema wartościami (włącznie
[NOT] IN(set)	Równy dowolnej wartości z listy
[NOT] LIKE	Pasuje do wzorca znakowego
IS [NOT] NULL	Jest wartością NULL

Użycie warunku BETWEEN	
SELECT last_name, salary FROM employees WHERE salary BETWEEN 2500 AND 3500;	
Done Górne ograniczenie ograniczenie	

	_
Operator IN może być stosowany	
z dowolnym typem danych	
SELECT employee_id, manager_id	
FROM employees ("Hartstein', 'Vargas');	
6	
Operator LIKE	
Operator LIKE sprawdza, czy w danym ciągu	
tekstowym występuje określony wzorzec.	
SELECT first_name FROM employees WHERE first_name [LIKE '53'];	
WHERE first_name_LIKE 'S\$' ;	
	<u> </u>
On a water a NILLI T]
Operator NULL	
SELECT last name, job_id, commission_pct FROM employees WHERE Commission_pct IS NULL;	
	1

Spójniki logiczne

Operator	Znacznie
AND	Zwraca TRUE jeżeli oba warunki są spełnione (prawdziwe)
OR	Zwraca TRUE jeżeli dowolny z warunków jest spełniony (prawdziwe)
NOT	Zwraca TRUE jeżeli warunek jest nie spełniony (fałsz)

- Dotychczasowe przykłady zawierały tylko jeden warunek w klauzuli WHERE.
- Aby użyć kilku warunków w jednej klauzuli WHERE, używamy operatorów AND i OR.

Przykłady użycia operatora NOT

Przykłady:

- $\bullet \dots$ WHERE salary NOT BETWEEN 10000 AND 15000
- ... WHERE last_name NOT LIKE '%A%'
- $\bullet \dots \mathsf{WHERE}\ \mathsf{commission_pct}\ \mathsf{IS}\ \mathsf{NOT}\ \mathsf{NULL}$

Kolejność wykonywania operacji

Priorytet	Operator
1	Operatory arytmetyczne
2	Operatory łączenia
3	Operatory porównania
4	IS [NOT] NULL, LIKE, [NOT] IN
5	[NOT] BETWEEN
6	Nie równe
7	NOT warunek logiczny
8	AND warunek logiczny
0	OR was well lesisses.

Kolejność może być zmieniona z zastosowaniem nawiasów

Klauzula ORDER BY

SELECT expr
FROM table
[WHERE condition(s)]
[GRDER BY (Column-Name|ColumnPosit
[ASC | DESC]
[NULLS FIRST | NULLS LAST]]

- ORDER BY znajduje się na ostatnim miejscu w zapytaniu
- Jaka jest kolejność sortowania dla wartości zawierających NULL gdy nie stosujemy NULLS FIRST/LAST?

Inne przykłady dla ORDER BY

1. Sortowanie z użyciem wartości numerycznej

SELECT name, salary, bonus

FROM employee

ORDER BY salary+bonus

2. Sortowanie z użyciem funkcji

SELECT i, len

FROM measures ORDER BY sin(i)

3. Sortowanie z wymuszonym porządkiem wartości Null

SELECT *

ORDER BY c1 DESC NULLS LAST

Funkcje operujące ciągami

Funkcja	Wynik
LOWER('SQL Course')	sql course
UPPER('SQL Course')	SQL COURSE
INITCAP('SQL Course')	Sql Course

Funkcje operujące znakami

Funkcja	Wynik
CONCAT('Hello', 'World')	HelloWorld
SUBSTR('HelloWorld',1,5)	Hello
LENGTH('HelloWorld')	10
INSTR('HelloWorld', 'W')	6
LPAD(salary, 10, '*')	*****24000
RPAD(salary, 10, '*')	24000****
REPLACE ('JACK and JUE','J','BL')	BLACK and BLUE
TRIM('H' FROM 'HelloWorld')	elloWorld

Oracle Database SQL Reference SUBSTR (1)

Oracle Database SQL Reference

- SUBSTR (2)
 (SUBSTR | SUBSTRB | SUBSTRC | SUBSTR2 | SUBSTR4 } (char, position [, substring_length])

 Purpose

The SUBSTR functions return a portion of **char**, beginning at character **position**, **substring_length** characters long. [...]

• If **position** is 0, then it is treated as 1.

- If position is positive, then Oracle Database counts from the beginning of char to find the first character.
- If position is negative, then Oracle counts backward from the end of char. If substring_length is omitted, then Oracle returns all characters to the end of char. If substring_length is less than 1, then Oracle returns null.

char can be any of the datatypes CHAR, VARCHARZ, NCHAR, NVARCHARZ. Both position and substring length must be of datatype NUMBER, or any datatype that can be implicitly converted to MUMBER, and must resolve to an integer. The return value is the same datatype as char. Floating-point numbers passed as arguments to SUBSTR are automatically converted to integers.

Funkcje operujące na liczbach

- ROUND: Zwraca liczbę n zaokrągloną do m miejsc po przecinku.
- TRUNC: Zwraca liczbę n "obciętą" do m miejsc po przecinku.
- MOD: Zwraca resztę z dzielenia liczby m przez liczbę n.

Funkcja	Wynik
ROUND(45.926, 2)	45.93
TRUNC(45.926, 2)	45.92
MOD(1600, 300)	100

Pozostałe funkcje liczbowe

Funkcja	Wynik
abs(n)	wartość bezwzględna liczby n,
ceil(n)	najmniejsza liczba całkowita >= n,
floor(n)	największa liczba całkowita <= n,
power(n, m)	n podniesione do potęgi m,
sign(n)	zwraca 1 dla $n>0$, 0 dla $n=0$ oraz -1 dla $n<0$,
sqrt(n)	pierwiastek kwadratowy n.

Praca z Datami

- Daty w bazie Oracle są przechowywane w specjalnym wewn. formacie: wiek, rok, miesiąc, dzień, godzina, minuta, sekundy.
- Domyślny format prezentowania danych (zależny od ustawień NLS): DD-MON-RR lub RR/MM/DD.

 • Alternatywą jest ustawienie odpowiedniej zmiennej NLS (NLS_LANGUAGE)

 • ALTER SESSION SET NLS_LANGUAGE = 'Polish';

last_name, hire_date

Operatory arytmetyczne i daty	
Przykład 1. Wyświetl datę jaka będzie za 100 dni.	
SELECT SYSDATE+100 FROM DUAL;	
	1
Funkcje operujące na datach	
Funkcja Wynik MONTH'S, BETWEEN(date1, date2) Lucha miesięcy pomiędzy datami ADD, MONTH'S(date, n) Dodanie miesiąca do daty	
NEXT_DAY(date, 'char') Następny dzień od wyspecyfikowanej daty LAST_DAY(date) Ostatni dzień miesiąca	
ROUND(datel,'fmt'] Zaokraglenie daty TRUNC(datel, 'fmt']) Obcięcie daty	
L	<u> </u>
Funkcje operujące na datach	
r annoje operające na adiaci	
Funkcja Wynik MONTHS_BETWEEN('01-SEP-95','11-JAN-94') 19.6774194	
ADD_MONTHS('11-JAN-94',6)	
20-160-30 (Dec 100-30)	

	_
Funkcje operujące na datach	
ғипксје орегијасе на аатасп	
Przyjmijmy, że SYSDATE = '25-JUL-03': Funkcja Wynik	
ROUND(SYSDATE, 'MONTH') 01-AUG-03 ROUND(SYSDATE , 'YEAR') 01-JAN-04	-
TRUNC(SYSDATE ,'MONTH') 01-JUL-03 TRUNC(SYSDATE ,'YEAR') 01-JAN-03	
	_
Użycie TO_CHAR z liczbami (2)	
SELECT TO CHAR(salary, '\$99,999.00') SALARY FROM employees WHERE last name "Ernst';	
WHERE last_name = 'Ernst';	
	_
Użycie TO_NUMBER oraz TO_DATE	
Zamienia łańcuch znaków <i>char</i> na liczbę:	
<pre>TO_NUMBER(char[, 'format_model'])</pre>	
Przekształca ciąg znaków <i>char</i> w datę (DATE), zgodnie z formatem:	
TO_DATE(char[, 'format_model'])	
Przykłady: TO NUMBER(100.00', '96999999'); TO DABT (May 24 1999' Month DD YVYY'): Result: 24-MAY-99	

TO_CHAR(date, 'format_model')		_		
Element	Wynik		_		
YYYY	pełny czterocyfrowy rok				
YEAR	rok słownie				
MM	numer miesiąca		_		
MONTH	pełna nazwa miesiąca				
MON	trzyliterowy skrót miesiąca		_		
DY	trzyliterowy skrót dnia				
DAY	nazwa dnia tygodnia w pełnym brzmieniu, uzupełnion znaków	a do 9	_		
DD	numer dnia w miesiącu: od 1 do 31				
DD	manier and winiesique, our do si				
			- -		
eżdżor	ne Funkcje] -		
eżdżor	ne Funkcje] -		

Inne ważne funkcje Poniższe funkcje działają z dowolnymi typami danych: • NVL (expr1, expr2) • NVL2 (expr1, expr2, expr3) • NULLIF (expr1, expr2) • COALESCE (expr1, expr2, ..., exprn)

Typy funkcji grupujących 1. AVG 2. COUNT 3. MAX 4. MIN 5. STDDEV 6. SUM 7. VARIANCE

[WHERE condition]	[WHERE condition] [GROUP BY column]	[WHERE condition] [GROUP BY column]	SELECT	[column,] group_function(column), table
				condition]
(UNDER B1 COLUMN);	(ONUMER D. COLUMN);	(OWNER B1 GOLUMN);		

Użycie GROUP BY		
SELECT AVG(salary) FROM employees GROUP BY department_id ;		
894(\$94,889) 440 900 500 640		
(0000.000) 1993.3333 (0000.000) 7000.		

Użycie GROUP BY dla wielu kolumn	
SELECT department_id dept_id, job_id, SUM(salary) FROM employees GROUP BY department_id, job_id ;	

⊏:l+:	rowania wypików z klauzula HANTING
FIIL	rowania wyników z klauzulą HAVING
	Klauzula HAVING warunek_logiczny – umożliwia wybór grup, spełniających
	warunek logiczny.
	Warunek logiczny może być skonstruowany jedynie z funkcji agregujących
	i/lub wyrażeń grupujących.
	SELECT column, group_function FROM table
	[WHERE condition]
	[GROUP BY group_by_expression] [HAVING group condition]
	[ORDER BY column];

Użycie HAVING SELECT department_id, MAX(salary) FROM employees GROUB My department_id RAVING MAX(salary)>10000];	
Typy połączeń Połączenie wewnętrzne Połączenie równowartościowe, Połączenie naturalne Połączenie krzyżowe/lloczyn kartezjański Połączenie zewnętrzne Lewostronne Prawostronne Prawostronne Prawostronne Połączenie zwrotne	

Złączenia w składni SQL:1999

SELECT tablel.column, table2.column
FROM table1
[NATURAL JOIN table2] |
[JOIN table2 USING (colum_name)] |
[JOIN table2 USING (colum_name)] |
[LETTIRGINT FOLL OUTER JOIN table2
ON (table1.column name = table2.column_name)] |
[CROSS JOIN table2];

Delta accoming of the control of the control	
Połączenia równowartościowe	
SELECT table1.column, table2.column FROM table1, table2 WHERE table1.column_name = table2.column_name;	
SELECT employees.employee_id, employees.department_id, departments.department_name FROM employees, departments	
<pre>MHERE employees.department id = departments.department id;</pre>	
Połączenie naturalne (ang. <i>Natural Join</i>)	
{T1} NATURAL JOIN {T2}	
• Połączenie jest dokonywane "automatycznie";	
 Dla NATURAL JOIN warunek równości dotyczy wszystkich par atrybutów o takich samych nazwach; 	
wazyskich par attybutow o takun samyun nazwach,	
r	1
Połączenia równowartościowe z wykorzystaniem klauzuli ON	
{ T1 } JOIN {T2} ON search condition	
 Klauzula JOIN ON pozwala określić nadrzędny warunek połączenia lub wyspecyfikować kolumny 	
wg. których złączenie ma być wykonane.	

Klauzula USING

{ T1 } JOIN { T2 } USING (join column list)

 Jeżeli wiele atrybutów posiada identyczną nazwę, ale różne dziedziny, klauzula NATURAL JOIN może zostać zastąpiona klauzulą USING w celu wyspecyfikowania kolumn użytych w warunku połączenia;

Połą<u>czenia - Przykła</u>dy

SELECT table1.column, table2.column
FROM table1
NATURAL JOIN table2
SELECT table1.column, table2.column
FROM table1
JOIN table2 USING (column, names)
SELECT table1.column, table2.column
FROM table1
JOIN table2 ON (table1.column-table2.column)
SELECT table1.column, table2.column
FROM table4
BELECT table1.column, table2.column
SELECT table1.column, table2.column

Na slajdzie przedstawiono równoważne zapytania.

Złączenie zwrotne

 Ogólna składnia połączenia zwrotnego jest taka sama, jak każdego innego typu połączenia omawianego poprzednio. Jedyną różnicą jest tutaj podanie tej samej nazwy relacji po obu stronach operatora definiującego połączenie.

Połączenia nie równowartościowe (2) Możliwe operatory połączenia: • nierówne (<>), • mniejszy niż (<), • większy niż (<), • mniejszy lub równy (<=), • większy lub równy (>=), • LIKE, • IN, • BETWEEN AND	
Połączenia zewnętrzne w składni SQL SELECT tablel.column, table2.column FROM table1.column_table2 ON (table1.column_name = table2.column_name));	
Operatory zbiorowe • Składnia:	
SELECT command (UNION) INTERSECT MINUS) SELECT command	

UNION Operator (2)

- Załóżmy, że mamy dwie tabele:
 - T1 ma wiersze 1, 2 oraz 3 T2 ma wiersze 2, 3 oraz 4

• W wyniku usunięte zostały zduplikowane wiersze 2 oraz 3.

UNION ALL Operator (2)

- Załóżmy, że mamy dwie tabele:
 - T1 ma wiersze 1, 2 oraz 3
 - T2 ma wiersze 2, 3 oraz 4

• W wyniku znajdują się unikalne oraz zduplikowane wiersze 2 oraz 3.

INTERSECT Operator

- Załóżmy, że mamy dwie tabele:
 T1 ma wiersze 1, 2 oraz 3
 T2 ma wiersze 2, 3 oraz 4

T1 INTERSECT T2

MINUS Operator	
Zalóźmy, ze mamy dwie tabele: 11 ma wiersze 1, 2 oraz 3 T2 ma wiersze 2, 3 oraz 4	
1 2 3 4 3 T1 T2 T1 MINUS T2	

Składnia podzapytania | SELECT | Select | ist | FROM | table | | WHERE | expr operator | (SELECT | select | ist | Table) | | Przebieg wykonywania: 1. Podzapytanie/zapytanie wewnetrzne (ang. subquery/inner query) | wykonywane jest jednokrotnie przed zapytaniem | głównym/zewnetrznym (ang. moin query/outer query). 2. Dostarczony wynik podzapytania (zależny od danych) jest | wykorzystywany do wykonania zapytania zewnętrznego.

Operatory dla podzapytań	
SELECT select_list FROM table WHERE expr operator (SELECT select_list FROM table);	
Operator	

Podzapytanie skorelowane

 Podzapytanie posiada referencje do kolumn tabeli zapytania nadrzędnego.

SELECT column1, column2, ...
FROM table1 outer
WHERE column1, operator
(SELECT column1, FROM table2
WHERE expr1 = outer.expr2;

Można wykorzystywać dowolny operator

Podzapytanie skorelowane - Przykład

SELECT e.employee_id, last_name,e.job_id
FROM employees e
WHERE 2 <= (SELECT COUNT(*)
FROM job_history
WHERE employee_id = e.employee_id);

	٦
Składnia INSERT	
Dodanie nowego rekordu do tabeli:	
INSERT INTO table [(column [, column])] VALUES (value [, value]);	
 Powyższa składnia pozwala na dodanie tylko jednego wiersza; 	
<pre>INSERT INTO table [(column [, column])] VALUES ([DEFAULT] [NULL], (, value]);</pre>	
Możemy wprowadzić wartość NULL / DEFAULT;	
	-
	٦
Wstawienie nowego rekordu	
Specyfikujemy jawnie kolumny i wstawiane	
wartości w klauzuli INSERT	
INSERT INTO departments(department_id, department_name, manager_id, location_id) VALUES (70, "Public Relations', 100, 1700); I row created.	
Dodanie nowego rekordu zawierającego wartość dla każdego atrybutu.	
INSERT INTO departments VALUES (70, 'Public Relations', 100, 1700); 1 row created.	-
	-
Składnia UPDATE	
Modyfikowanie istniejących rekordów z klauzulą UPDATE	
SET column = value [, column = value,] [WHERE condition];	

	1
Aktualizacja krotek w relacji	
• Wskaż odpowiednie rekordy w klauzuli WHERE:	
UPDATE employees SST department id = 30 WHERE department id = 60;	
mana upparted. 14 - our	
<pre>UPDATE copy_emp SET</pre>	
22 rows updated.	
Klauzula DELETE	
 Możemy usuwać krotki z relacji odpowiednio wykorzystując klauzulę DELETE: 	
DELETE [FROM] table (WHERE condition);	
	1
Usuwanie krotek z relacji	
Wyspecyffiaj rekordy w Mauzui WHERE:	
DELETE FROM departments WHERE department name = 'Finance';	

DELETE FROM departments
WHERE department_id IN (30, 40);

	Ī
Transakcja w bazie danych - definicje	
Definicja 1:	
Zbiór operacji na bazie danych, które stanowią w istocie pewną całość i jako takie powinny być	
wykonane wszystkie lub żadna z nich.	
Definicja 2:	
Transakcja jest sekwencją logicznie powiązanych operacji na bazie danych, która przeprowadza bazę danych z jednego stanu spójnego w inny stan spójny.	
Definicja 3:	
Operacja lub ciąg operacji wykonany przez jednego użytkownika lub program aplikacji odwołujący się	
(czytający lub modyfikujący) do zawartości bazy danych.	
	1
Transakcja (1)	
 Typy operacji na bazie danych obejmują: 	
odczyt i zapis danych	
akceptację (zatwierdzenie) lub wycofanie transakcji	
• Transakcja składa się zawsze z 3 etapów:	
• rozpoczęcia	
• wykonania	
• zamknięcia	
izi (ti ti i i i i i i i i i i i i i i i i	
Klasyfikacja transakcji	
Ze względu na porządek operacji: transakcja sekwencyjna	
transakcja współbieżna	
Ze względu na zależność operacji:	
transakcja zależna od danych	
transakcja niezależna od danych To wzaledu po trany poporaciji:	
 Ze względu na typy operacji: zapytania lub transakcja odczytu (read only) 	
transakcja aktualizująca - transakcja (<i>read/write</i>)	
	1

Przetwarzanie transakcyjne	-
Cele: Bazy danych powinny zapewniać spójność wykonywanych operacji;	
 Transakcje pozwablaj na większą kontrolę ielastyczność w przetwarzaniu danych; Oznają przed przypadkowymi błędami; 	
	1
Transakcje	
• Transakcje mogą być <i>niejawne</i> lub <i>jawne</i> .	
 Transakcje niejawne to takie, które odbywają się bez wiedzy użytkownika. 	
W systemach, w których ustawione jest "autozatwierdzanie"	
(AUTOCOMMIT), każde zapytanie stanowi oddzielną transakcję niejawną.	
 Transakcja jawna to taka, którą użytkownik sam definiuje, czyli określa blok instrukcji, jaki ma się wykonać w ramach jednej transakcji. 	
	<u> </u>
	1
Zalety COMMIT i ROLLBACK	
Edicty Column 1 11022271010	
 Zapewnienie spójności danych; Możliwość wykonania "podpłądu" danych przed zatwierdzeniem trwałych 	
zmian; • Grupowanie logicznie podobnych operacji;	

Własności ACID

- Dużym problemem jest również sytuacja, w której w trakcie trwania transakcji następuje awaria systemu.
- Aby w wyniku działania transakcji w bazie danych nie powstał "bałagan" oraz by wszystkie mogły się wykonać poprawnie, system musi zapewnić by transakcje spełniały tzw. własności ACID:
 - Atomicity Atomowość
 - Consistency Spójność
 - <u>I</u>solation Izolacja
 - <u>D</u>urability -Trwałość

Awarie SZBD	(1)	١
Awalle Jabb	1 1	ı

Awarie, mogą być różnego typu:

- awarie systemu wynikające z wad sprzętu lub błędów oprogramowania, wpływają na pamięć operacyjną,
- awarie nośników powodują utratę części pamięci operacyjnej,
- błąd oprogramowania aplikacji np. logiczne blędy w programie odwołującym się do bazy danych, powodujące awarie jednej lub kilku transakcji,
- naturalne katastrofy –pożar,
- nieostrożność przypadkowe wyłączenie komputera,
- sabota

Przykład - Transakcja

• Transakcja przelewu kwoty N z konta A na konto B:

begjin
// odejmiji kwotę N z konta A;
update konta
SET stan = stan - N
where id konta = A;
// dodaj do konta B kwotę N;
update konta
SET stan = stan + N
where id_konta = B;
commit;

Zatwierdzanie danych - commit	
Dokonanie zmian: DELETE FROM employees	
WHERE employee_id = 99999; 1 row deleted. INSERT INTO departments	
VALUES (290, 'Corporate Tax', NULL, 1700); 1 row reasted: • Zatwierdzenie zmian:	
COMMITY Commit complete.	