

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΨΗΦΙΑΚΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ 1η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

ακαδημαικό έτος 2015-2016

ΕΡΩΤΗΜΑ 20 ΚΩΔΙΚΟΠΟΙΗΣΗ PCM

ΣΙΜΑΚΗΣ ΠΑΝΑΓΙΩΤΗΣ

A.M 5227 | simakis@ceid.upatras.gr

επι πτυχίο

1.

Δημιουργώ την πηγή Α με βάση την εκφώνηση:

```
t = (randn(10000,1)+sqrt(-1)*randn(10000,1))./sqrt(2);
x = abs(t).^2;
```

Το αρχικό σήμα φαίνεται παρακάτω:

Στην συνέχεια χρησιμοποιούμε τον ομοιόμορφο κφαντιστή που υλοποίησα για να κωδικοποιήσω την πηγή A με min_value=0, max_value=4 και έχω:

• για N=4 bits

```
[xq, centers, p] = my_quantizer(x,4,0,4);
plot(xq);
```


στη συνέχεια με την συνάρτηση sqnr() υπολογίζω το SQNR στην έξοδο του κβαντιστή και την θεωρητική παραμόρφωση:

```
[my4_sqnr_exp, my4_sqnr_theor]=sqnr(x,xq,2)
```

το οποίο μας επιστρέφει 6.3567 και 25.84 αντίστοιχα.

Η πιθανότητα να βρεθεί η είσοδος του κβαντιστή εκτός της δυναμικής περιοχής του είναι:

```
>> disp(p)
 Columns 1 through 9
   0.2216
              0.1725
                        0.1387
                                  0.1074
                                             0.0784
                                                       0.0668
                                                                 0.0495
                                                                            0.0364
                                                                                      0.0278
  Columns 10 through 16
   0.0215
              0.0187
                        0.0149
                                  0.0099
                                             0.0070
                                                       0.0057
                                                                 0.0042
```

• για N = 6 bits

```
[y,fs,N] = wavread('speech.wav');
[xq, centers] = my_quantizer(y,6,0,4);
```


στη συνέχεια με την συνάρτηση sqnr() υπολογίζω το SQNR στην έξοδο του κβαντιστή και την θεωρητική παραμόρφωση:

το οποίο μας επιστρέφει 6.4038 και 37.88 αντίστοιχα.

Η πιθανότητα να βρεθεί η είσοδος του κβαντιστή εκτός της δυναμικής περιοχής του είναι:

>> disp(p) Columns 1 through 9								
0.0592	0.0554	0.0536	0.0534	0.0484	0.0456	0.0403	0.0382	0.0347
Columns 10 through 18								
0.0367	0.0370	0.0303	0.0304	0.0256	0.0269	0.0245	0.0226	0.0197
Columns 19 through 27								
0.0206	0.0155	0.0204	0.0177	0.0150	0.0137	0.0138	0.0130	0.0104
Columns 28 through 36								
0.0123	0.0104	0.0101	0.0084	0.0075	0.0082	0.0061	0.0074	0.0061
Columns 37 through 45								
0.0069	0.0044	0.0058	0.0044	0.0050	0.0051	0.0046	0.0040	0.0042
Columns 46 through 54								
0.0031	0.0034	0.0042	0.0032	0.0027	0.0021	0.0019	0.0021	0.0018
Columns 55 through 63								
0.0016	0.0015	0.0010	0.0015	0.0015	0.0017	0.0011	0.0009	0.0011
Column 64								
0.0011								

2.

Το αρχικό σήμα της πηγής Β φαίνεται παρακάτω:

και στην συνέχεια ύστερα από την κωδικοποίηση με N=2, 4, 6 η εικόνα του σήματος είναι:

N = 4

α.Ο ρυθμός με τον οποίο μεταβάλλεται το SQNR σε σχέση με τον αριθμό των επαναλήψεων:

b. Ο υπολογισμός των SQNR υλοποιείται με το script erotima2b.m

Αριθμός N bits	SQNR ομοιόμορφου κβαντιστή	SQNR Lloyd Max Κβαντιστή
2	-2.9001	7.1946
4	10.7555	17.7441
6	23.7050	26.7600

C.

Για να υπολογίσουμε πειραματικά την πιθανότητα εμφάνισης κάθε στάθμης του κβαντιστή αρκεί να υπολογίσουμς την πιθανότητα εμφάνισης του κάθε κέντρου κβάντισης. Η υλοποίηση γίνεται με την συνάρτηση $\exp_freq()$ και το script = tima2c.

• $\gamma \iota \alpha N = 2$:

0.1142

και επαληθεύω:

```
>> sum(freq2bits_exp)

ans =

1.0000
```

• $\gamma \iota \alpha N = 4$:

```
>> disp(freq4bits_exp)
   0.0036
   0.0076
   0.0240
   0.0452
   0.0627
   0.0790
   0.1205
   0.3549
   0.1106
   0.0801
   0.0538
   0.0352
   0.0147
    0.0065
   0.0015
```

και επαληθεύω:

```
>> sum(freq4bits_exp)
ans =
1
```

• και τέλος για N = 6:

```
>> disp(freq6bits_exp)
0.0000
0.0001
0.0002
```

0.0005		
0.0006		
0.0007		
0.0013		
0.0015		
0.0019		
0.0026		
0.0032		
0.0052		
0.0084		
0.0123		
0.0165		
0.0197		
0.0222		
0.0256		
0.0269		
0.0309		
0.0360		
0.0481		
0.0553		
0.1072		
0.1542		
0.1085		
0.0586		
0.0433		
0.0356		
0.0316		
0.0274		
0.0218		
0.0201		
0.0148		
0.0140		
0.0115		
0.0093		
0.0057		
0.0041		
0.0036		
0.0025		
0.0020		
0.0015		
0.0009		
0.0008		

```
0.0004
0.0003
0.0002
0.0002
0.0001
0.0002
0.0001
0.0002
0.0001
```

και επαληθεύω:

```
>> sum(freq6bits_exp)
ans =
1
```

Για τον υπολογισμό της εντροπίας από την θεωρία γνωρίζουμε οτι ο τύπος με τον οποίο υπολογίζεται είναι:

$$H = \sum p_i * \log_2 * (1/p_i)$$

όπου ρ είναι η πιθανότητα εμφάνησης κάθε στάθμης.

Για τον υπολογισμό της εντροπίας χρησιμοποιώ την συνάρτηση entropy () και τα αποτελέσματα που λαμβάνω είναι:

για N = 2 έχω:

```
entropy2 = entropy(xq21loyd);
>> disp(entropy2)
1.4771
```

για N = 4 έχω:

```
>> entropy4 = entropy(xq4lloyd);
>> disp(entropy4)
3.0429
```

για N = 6 έχω:

```
>> entropy6 = entropy(xq61loyd);
>> disp(entropy6)
4.4235
```

d.

Αρχικά υπολογίζω την αποδοτικότητα ή οποία είναι το πηλίκο $\frac{\varepsilon ντροπία}{N}$

Για N = 2, 4, 6 η αντίστοιχη αποδοτικότητα είναι:

```
>> entropy2/2

ans =

0.7385
```

```
>> entropy4/4

ans =

0.7607
```

```
>> entropy6/6

ans =

0.7373
```

Κώδικες Matlab

my_quantizer.m

```
%% SYNARTHSH KWDIKOPOIHSH me OMOIOMORFO KVANTISTH
function [xq,centers, p] = my_quantizer(x,N,min_value,max_value)
quant_levels = 2^N; % epipeda kvantismou
xq = zeros(length(x),1); % arxiko to dianysma me to shma eksodou me vash th
diastash toy dianismatos eisodou
centers = min_value + vima/2; % ypologizw to kentrou tou prwtou epipedou
p = zeros(1,quant_levels); %arxiko to mhtrwo me tis pithanothtes emfanishs
% ypologizw ta kentra kvantishs
for i=1:1:quant_levels-1
   centers(i+1) = centers(i) + vima;
end
% kvantisw tis times toy shmatos
for i=1:1:length(x)
   for j=1:1:quant_levels
       if x(i) <= min_value + j*vima;</pre>
           xq(i) = centers(j);
           p(j) = p(j) + 1;
           break;
       end
   end
end
% ypologizw tis pithanothtes
p = p./length(x);
end
```

Lloyd Max.m

```
%% SYNARTHSH KWDIKOPOIHSHS me ton algorithmo Lloyd Max
function [xq, centers, D, p] = Lloyd_Max(x,N,min_value,max_value)
kmax = 0;
quant_levels = 2^N; % ypologizw ta epipeda kvantismou me vash to N
xq = zeros(length(x),1); % arxikopoiw to kvantismeno shma me mhdenika
centers = zeros(quant_levels,1) ; % arxikopoiw ta kentra kvantismou me mhdenika
D(1) = 0;
Sqnr(1) = 0;
p = zeros(quant_levels,1) ; % arxikopoiw to mhtrwo pou tha ekxwrisw tis
pithanothtes
d = (max_value - min_value)/quant_levels ; % ypologizw to vima kvantismou
centers(1) = \min value + d/2; % ypologizw to prwto kentro
% ypologismos twn kentrwn kvantishs
for i =1:quant_levels-1
    centers(i+1) = centers(i) + d; %ypologismos kentrwn perioxwn
end
% diadikasia kvantismou toy shmatos
while 1
    kmax = kmax + 1; % afksanw ton metrhth epanalipshs
    T(quant_levels+1) = max_value ; % arxikopoiw to panw orio
    T(1) = min_value; % arxikopoiw to katw orio
    sum =zeros(quant_levels);
    counter=zeros(quant_levels) ; %arxikopoihsh counter emfanisewn
    for k=2:quant_levels
        T(k) = (centers(k-1) + centers(k))/2; %prosdiorismos orion
        %perioxon kvantisis
    end
    if (x(kmax)>=max_value) %Diadikasi kbantishs
    xq(kmax, 1) = 1;
    elseif (x(kmax)<min_value)</pre>
        xq(kmax, 1) = quant_levels ;
    else
        for i =1:length(x)
```

```
for k=1:quant_levels
                if x(i) > T(k) && x(i) <= T(k+1)
                     p(k) = p(k) + 1;
                     xq(i, 1) = centers(k);
                     sum(k) = sum(k) + x(i);
                     counter(k) = counter(k) +1;
                    break;
                end
            end
        end
    end
    for k=1:quant_levels
       p(k) = p(k)/length(x);
        if (counter(k) > 0 )
            centers(k) = sum(k)/counter(k); %Ypologismos newn kentrwn
        end
    end
    % ypologizw thn paramorfosh se kathe epanalipsh
    D(kmax+1) = mean((x-xq).^2);
    Sqnr(kmax) = mean(x.^2) / D(kmax+1);
    % kai an einai mikroterh apo to 10^-16 tote stamataei h diadikasia
    a = 10^{-16};
    if (abs(D(kmax+1)-D(kmax)) < a)
        break;
    end
end
```

sqnr.m

```
%% SYNARTHSH GIA TO YPOLOGISMOU THEORITIKOU KAI PEIRAMATIKOU SQNR

function [sqnr_exp, sqnr_theor] = sqnr(x, xq, N)

%prwta ypologizoume thn peiramatiki timh toy sqnr

sfalma = abs(xq-x);

sqnr_exp = 10*log10(sum(x.^2)/sum(sfalma.^2));
```

```
% kai sthn synexeia ypologizoume thn theoritikh timw toy sqnr
sqnr_theor = 1.76+6.02*N;
end
```

```
erotima2b.m
%% ypologismos twn sqnr gia omoiomofro kai lloyd max kvadisti
x = wavread('speech.wav');
xq2my = my_quantizer(x,2,-1,1);
sqnr2my = sqnr(x,xq2my,2);
xq2lloyd = Lloyd_Max(x,2,-1,1);
sqnr2lloyd = sqnr(x,xq2lloyd,2);

xq4my = my_quantizer(x,4,-1,1);
sqnr4my = sqnr(x,xq4my,4);
xq4lloyd = Lloyd_Max(x,4,-1,1);
sqnr4lloyd = sqnr(x,xq4lloyd,4);

xq6my = my_quantizer(x,6,-1,1);
sqnr6my = sqnr(x,xq6my,6);
xq6lloyd = Lloyd_Max(x,6,-1,1);
```

erotima2c.m

sqnr6lloyd = sqnr(x, xq6lloyd, 6);

```
%% erotima 2c: peiramatikos ypologismos ypologismos ths pithanothtas emfanishs twn
kentrwn kvantishs
x = wavread('speech.wav');
[xq2lloyd,centers] = Lloyd_Max(x,2,-1,1);
[xq4lloyd,centers] = Lloyd_Max(x,4,-1,1);
[xq6lloyd,centers] = Lloyd_Max(x,6,-1,1);

freq2bits_exp = exp_freq(xq2lloyd);
freq4bits_exp = exp_freq(xq4lloyd);
freq6bits_exp = exp_freq(xq6lloyd);
```

entropy.m %% synarthsh ypologismou ths entropias function [entropy] = entropy(x) p = exp_freq(x); entropy = 0; for i=1:length(p) if (p(i) ~= 0) entropy = entropy + p(i) * log2(1/p(i)); end end

```
exp_freq.m
%% me afth th synarthsh ypologizw thn pithanothta emfanishs toy kathe kentroy
kvantishs

function [ freq ] = exp_freq( xq )
uniq = unique(xq);
freq = [uniq, histo(xq(:), uniq)];
freq(:,2) = freq(:,2)./length(xq);
freq(:,1) = [];
disp(freq);
end
```