16.Смяна на променливите при кратен интеграл.

Нека са ни дадени две отворени области D, D' от R^2 и една непрекъсната и дефинирана в $D \ni (x, y)$ функция f(x, y). Нека изображението

$$\phi: D' \to D, \ \phi: (u, v) \to (x, y),$$

задава едно взаимно-еднозначно съответствие между двете множества D и D', което означава че на всяка точка $(u,v)\in D'$ съответствува точно една точка $(x,y)\in D$, която се получава чрез следната **смяна** на променливите:

$$\phi := \left| \begin{array}{c} x = x(u, v) \\ y = y(u, v) \end{array} \right. \tag{16.1}$$

При тази смяна на променливите (x,y) се наричат стари променливи, а (u,v) - новите променливи. Всяка една такава смяна на променливите се асоциира с нейния **якобиан** $J:=J(\phi)$, който предтсавлява следната матрица:

$$J := \begin{pmatrix} x_u & y_u \\ y_v & y_v \end{pmatrix}. \tag{16.2}$$

В горната формула x_u , x_v , y_u , y_v са частните производни на функциите x(u,v),y(u,v) по съответните променливи, за които предполагаме, че са непрекъснати като функции на две променливи $(u,v) \in D'$. За да се осигури взимната еднозначност на изображението между двете области $\phi: D' \to D$ едно достатъчно условие е да поискаме за всяко $(u,v) \in D'$:

$$\det(J) := |J| \neq 0. \tag{16.3}$$

За да опростим означенията по-нататък с |J| ще означаваме абсолютната стойност на $\det(J)$.

Teorema 1. При предположенията и означенията, които направихме по-горе, в сила е следната формула за смяна на променливите при двоен интеграл:

$$\iint_{D} f(x,y)dxdy = \iint_{D'} f(x(u,v),y(u,v)) \cdot |J|dudv.$$
 (16.4)

Формулата (16.4) лесно се обобщава за три и повече (n-) променливи. По-нататък ще разгледаме три най-често прилагани субституции при кратните интеграли, а именно - полярната смяна на променливите при двоен интеграл, и сферичната и цилиндрична смени на променливите при троен интеграл.

Полярна смяна. Това е следната смяна:

$$\begin{vmatrix}
x = \rho \cos \varphi \\
y = \rho \sin \varphi.
\end{aligned} (16.5),$$

където (x,y) са старите декартови координати на т.M(x,y) x е абсцисата на т.М, а y еординатата на т.М. Полярните координати ρ , φ са новите координати, като $\rho = |\overrightarrow{OM}| \ge 0$ е радиус-векторът на т.М, а $\varphi = \angle(O_x, \overrightarrow{OM}) \in [0,2\pi]$ е полярният ъгъл на т.М. Якобианът на тази смяна се пресмята като

$$J = \begin{vmatrix} x_{\rho} & x_{\varphi} \\ y_{\rho} & y_{\varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho.$$
 (16.6)

Цилиндрична смяна. Това е следната смяна в тримерното пространство: ако M(x,y,z) е точка, зададена с нейните декартови координати, то новите цилиндрични координати са ρ, φ, z , където (ρ, φ) са полярните координати на т.'-ортогонална проекция на т.М в координатната равнина O_{xy} , а z като нова координата съвпада със старата координата z. Цилиндричната смяна се задава като:

$$x = \rho \cos \varphi$$

$$y = \rho \sin \varphi$$

$$z = z.$$
(16.7)

Якобианът на цилиндричната смяна се пресмята като:

$$J = \begin{vmatrix} x_{\rho} & x_{\varphi} & x_{z} \\ y_{\rho} & y_{\varphi} & y_{z} \\ z_{\rho} & z_{\varphi} & z_{z} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho.$$
 (16.8)

Сферична смяна. Това е следната смяна в тримерното пространство: ако M(x,y,z) е точка, зададена с нейните декартови координати, то новите сферични координати са ρ, φ, θ , където $\rho = |\vec{OM}| \geq 0$ е радиусвекторът на т.М, $\varphi = \angle(O_x, \vec{OM'}) \in [0, 2\pi]$, ако M' е ортогоналната

проекция на т.М в координатната равнина O_{xy} , $\theta = \angle(O\vec{M}', O_z) \in [0, \pi]$. Сферичната смяна се задава като:

Якобианът на сферичната смяна се пресмята като:

$$J = \begin{vmatrix} x_{\rho} & x_{\varphi} & x_{theta} \\ y_{\rho} & y_{\varphi} & y_{theta} \\ z_{\rho} & z_{\varphi} & z_{theta} \end{vmatrix} = \begin{vmatrix} \sin\theta\cos\varphi & -\rho\sin\theta\sin\varphi & \rho\cos\theta\cos\varphi \\ \sin\theta\sin\varphi & \rho\sin\theta\cos\varphi & \rho\cos\theta\sin\varphi \\ \cos\theta & 0 & -\rho\sin\theta \end{vmatrix} =$$

$$= \cos\theta \cdot \begin{vmatrix} -\rho\sin\theta\sin\varphi & \rho\cos\theta\cos\varphi \\ \rho\sin\theta\cos\varphi & \rho\cos\theta\sin\varphi \end{vmatrix} + (-\rho\sin\theta) \cdot \begin{vmatrix} \sin\theta\cos\varphi & -\rho\sin\theta\sin\varphi \\ \sin\theta\sin\varphi & \rho\sin\theta\cos\varphi \end{vmatrix} =$$

$$= -\rho^{2}\sin\theta. \tag{16.10}$$

Следователно $|J| = \rho^2 \sin \theta$.

Пример 1. Пресметнете

$$I = \int \int_G \sqrt{4a^2 - x^2 - y^2} dx dy,$$

ако $G: \{x^2 + y^2 - 2ax = 0, a > 0.$

Решение: Лесно се вижда, че $G:(x-a)^2+y^2=a^2$. Правим полярна смяна и виждаме, че $-\frac{\pi}{2} \leq \varphi \leq \frac{\pi}{2}$. В полярни координати уравнението на окръжността G е $\rho^2-2a\rho\cos\varphi=0,\ \rho=2a\cos\varphi$. Тогава границите за изменение на ρ са $0\leq \rho\leq 2a\cos\varphi$. Тогава

$$I = -\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\int_{0}^{2a\cos\varphi} (4a^2 - \rho^2)^{\frac{1}{2}} d(4a^2 - \rho^2) \right) d\varphi =$$

$$=\left(-\frac{1}{2}\right)\frac{2}{3}\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}[(4a^2\sin^2\varphi)^{\frac{3}{2}}-(4a^2)^{\frac{3}{2}}]d\varphi=\left(-\frac{8a^3}{3}\right)\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\sin^3\varphi-1)d\varphi=\pi\cdot\frac{8a^3}{3}.$$