```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
```

Data collection and Preprocessing

titanic_data = pd.read_csv('/content/train (1).csv')

titanic_data.head()

→		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	7
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	Ę
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	

Next steps:

 $\textbf{Generate code with } \verb|titanic_data| \\$

New interactive sheet

titanic_data.shape

→ (891, 12)

titanic_data.info()

RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

memory usage: 83.7+ KB

Checking for missing values

titanic_data.isnull().sum()

→		0
	PassengerId	0
	Survived	0
	Survived	U
	Pclass	0
	Name	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Ticket	0
	Fare	0
	Cabin	687
	Embarked	2

dtype: int64

Dropping Cabin axis and replacing Age missing values with their mean

```
titanic_data = titanic_data.drop(columns='Cabin', axis=1)
titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
```

```
\rightarrow /tmp/ipython-input-9-3693345471.py:2: FutureWarning: A value is trying to be s
     The behavior will change in pandas 3.0. This inplace method will never work be
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.n
       titanic_data['Age'].fillna(titanic_data['Age'].mean(), inplace=True)
replacing the missing values in Embarked column with mode value
print(titanic_data['Embarked'].mode())
\rightarrow
    Name: Embarked, dtype: object
print(titanic data['Embarked'].mode()[0])
→ S
titanic data['Embarked'].fillna(titanic data['Embarked'].mode()[0], inplace=True)
\rightarrow \overline{\phantom{a}} /tmp/ipython-input-12-3993763136.py:1: FutureWarning: A value is trying to be
    The behavior will change in pandas 3.0. This inplace method will never work be
    For example, when doing 'df[col].method(value, inplace=True)', try using 'df.n
       titanic_data['Embarked'].fillna(titanic_data['Embarked'].mode()[0], inplace=
titanic_data.isnull().sum()
```


0

PassengerId 0

Survived 0

Pclass 0

Name 0

Sex 0

Age 0

SibSp 0

Parch 0

Ticket 0

Fare 0

Embarked 0

dtype: int64

Data analysis

titanic_data.describe()

•

	PassengerId	Survived	Pclass	Age	SibSp	Parch	F
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204
std	257.353842	0.486592	0.836071	13.002015	1.102743	0.806057	49.693
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000
25%	223.500000	0.000000	2.000000	22.000000	0.000000	0.000000	7.910
50%	446.000000	0.000000	3.000000	29.699118	0.000000	0.000000	14.454
75%	668.500000	1.000000	3.000000	35.000000	1.000000	0.000000	31.000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329

titanic_data['Survived'].value_counts()

count

Survived0 5491 342

dtype: int64

titanic_data['Sex'].value_counts()

Sex | 577 | female | 314

dtype: int64

sns.set()

sns.countplot(x='Survived', data=titanic_data)

<Axes: xlabel='Survived', ylabel='count'>

sns.countplot(x='Sex', hue='Survived', data=titanic_data)

<Axes: xlabel='Sex', ylabel='count'>

sns.countplot(x='Pclass', hue='Survived', data=titanic_data)

Label Encoding

titanic_data['Sex'].value_counts()

577

```
⇒ count
Sex
```

male

female 314

dtype: int64

titanic_data['Embarked'].value_counts()

→ *		count
	Embarked	

S	646
С	168
Q	77

dtype: int64

titanic_data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'Q':2}}

/tmp/ipython-input-28-4126089538.py:1: FutureWarning: Downcasting behavior in titanic_data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'

titanic_data.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	-
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	7
2	3	1	3	Heikkinen, Miss. Laina	1	26.0	0	0	STON/O2. 3101282	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	35.0	1	0	113803	5
4	5	0	3	Allen, Mr. William Henry	0	35.0	0	0	373450	i

Split data and target

```
x = titanic_data.drop(columns = ['PassengerId','Name','Ticket','Survived'],axis=1
y = titanic_data['Survived']
```

Split Test and train data

```
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state)
print(x.shape, x_train.shape, x_test.shape)

$\frac{1}{2}$ (891, 7) (712, 7) (179, 7)
```

Model Tarining(Logistic Regression)

```
regressor = LogisticRegression()
regressor.fit(x_train, y_train)
```

/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear model.html#logistic-regress n_iter_i = _check_optimize_result(

▼ LogisticRegression ① ? LogisticRegression()

Model Evaluation

on train data

x train prediction = regressor.predict(x train) training_data_accuracy = accuracy_score(y_train, x_train_prediction) print('Accuracy score of training data : ', training_data_accuracy)

Accuracy score of training data: 0.8075842696629213

on test data

x_test_prediction = regressor.predict(x_test) test_data_accuracy = accuracy_score(y_test, x_test_prediction) print('Accuracy score of test data : ', test_data_accuracy)

→ Accuracy score of test data : 0.7821229050279329