Quiz 3: Relations and Functions II

- Q1 Consider $R \subseteq \mathbb{N} \times \mathbb{N}$ given by $(x,y) \in R$ if $x-y \geq 7$. Which of the properties Reflexivity (R) and Transitivity (T) does R have?
 - **Answer:** x-x=0<7 for all $x\in\mathbb{N}$ so $(x,x)\notin R$ for all $x\in\mathbb{N}$. Therefore R is antireflexive (so not reflexive).
 - If $(x,y) \in R$ and $(y,z) \in R$ then $x-y \ge 7$ and $y-z \ge 7$. So $x-z=(x-y)+(y-z) \ge 14 \ge 7$. So $(x,z) \in R$. Therefore R is transitive
- Q2 Suppose R is a partial order. True or false: $R \cup R^{\leftarrow}$ is an equivalence relation.
 - **Answer:** Consider the partial order $R = \{(1,1),(2,2),(3,3),(1,2),(3,2)\}$. We have $(1,2) \in R$ and $(2,3) \in R^{\leftarrow}$ so $(1,2),(2,3) \in R \cup R^{\leftarrow}$, however (1,3) is neither in R nor R^{\leftarrow} , so $(1,3) \notin R \cup R^{\leftarrow}$. Hence $R \cup R^{\leftarrow}$ is not an equivalence relation.
- Q3 Consider the poset $(\{1, 3, 5, 9, 15, 45\}, |)$. What is glb(15, 9)?
 - **Answer:** The lower bounds of 15 and 9 are all the numbers in the set which divide both 15 and 9: $\{1,3\}$. Of these, 3 is divisible by every element in $\{1,3\}$ so it is the maximum element of the set of lower bounds. Hence glb(15,9) = 3.
- Q4 Suppose R is a symmetric relation. True or false: $R = R^{\leftarrow}$?
 - **Answer:** $(x,y) \in R$ if and only if $(y,x) \in R$ (because R is symmetric), and $(y,x) \in R$ if and only if $(x,y) \in R^{\leftarrow}$ (by the definition of converse). So $R = R^{\leftarrow}$.
- $\label{eq:Q5} \mbox{Which of the following is the lexicographic ordering of: } 01, 101, 1001, 11100, 01111, 0011?$
 - **Answer:** The lexicographic (i.e. dictionary) ordering is: 0011, 01, 01111, 1001, 101, 11100.