M358K : September 22nd 2023. Continuous Random Variables [Review]. Def'n. A random variable X is said to be continuous if its cumulative distribution f'tion Fx is: (i) continuous everywhere; (ii) differentiable everywhere except @ at most countably many points. X~ Uniform (Qa) Defin. Any function of R = [0,+00) such that $f_X(x) = F_X'(x)$, for all x where the derivative exists, is called the probability density function (pdf) of X. Q: P[a<X & b] = \(\int_{x}(x) \, dx = \int_{x}(b) - \int_{x}(a) \) P[x&b]-P[x&a]

Q: X is continuous
$$\Rightarrow$$
 $P[x=z]=0$

Q: $\int_{-\infty}^{+\infty} \int_{X}^{\infty} (x) dx = \frac{1}{2}$

Q: Is it possible for $\int_{X}^{\infty} (x) > 1$ for some x ? Yes.

Example. $X \sim U(e, \frac{1}{2})$

E[X] = $\frac{1}{4}$

In general: $Y \sim U(a, \frac{1}{1})$

E[Y] = $\frac{a+b}{2}$

F[X] = $\frac{a+b}{2}$

F[X] = $\frac{a+b}{2}$

In general: $Y \sim U(a, \frac{1}{1})$

F[Y] = $\frac{a+b}{2}$

F[X] = $\frac{a+b}{2}$

It for $x > \frac{1}{2}$

Example. Exponential Distribution. $T \sim \exp(x)$

Example. The parameter $x > \frac{1}{2}$

Its pdf is: $f_{T}(t) = \begin{cases} x = 2 \\ x = 2 \end{cases}$

What: If $x = 3.44$, then $f_{T}(t) \approx 3.44$.