

INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMENT

Market Relevance for openETCS

supported by:

openETCS@ITEA2 Project

Klaus-Rüdiger Hase

Paris, 03.07.2013

European Diversity

Today: Diversity Future: Unity ATB, AWS, TBL,-PDS, TPWS LZB, INDÚSI KHP BRS ERTMS/ KVB, TVM, BRS **EBICAB ETCS** ZUB 121, SIGNUM ASFA, ATSS, LZB

Total Number of Vehicles for ETCS in Europe: 48.986

Deutsche Bahn: Retrofit Schedule for ETCS Two Step Approach with two OBU Generations

ETCS Retrofit Projects @ DB

- Class 101 (D)
- ICE 1 EMU (CH)
- ICE 3-M EMU (F, B, NL)
- Class 185 (CH)
- Class 189 (NL)
- ICE T / ICE 3 (D, A, CH) Dec.'12

Experience from vehicle retrofit projects at DB before 2010: High engineering cost & very high per vehicle cost figures

Class Units E	TCS-Vendor	Deployment	Engineering Co		per Vehicle	Total Cost
101 5 Loc.	А	D (Pilot)	A G) ≈ 400 T€	10,2 m €
185 10 Loc.	В			4	∕) ≈ 400 ₹	²) 4,8 m €
ICE1 38 PH	8		5,5 m €	•	A BEATA	18,8 m €
Thalys4 PH	057	Mann	≈ 3,4 m €	4	**	4,6 m €
189 26 Loc.	1013	NL	3 ,0		01€	23,0 m €
ICE310 EMU		BO	5 m	Y	*) ≈ 450J€	11,0 m €
442 42 EMU	A	A A	$\forall m \forall m$		5). 1	28,0 m €
tati i view average pricing ()						
*) Due to limited information with the differentiated.						

- on analogy pengineering cost most likely divided with other proj... **) Estimated 🌈
- 2) Swiss state-subsidies included other was not disclosed, estimated value of 12 m €.
- 3) A non-integrated appro contracted with option for integration (quote for integr. was: 32 m€).

ETCS onboard costing/time diagram reveals almost no maturation: *Product was still in it's infancy stage!*

Why need for action?

Initial Situation:

PZB/LZB-System:

60 T€average Cost per OBU

ETCS-System Capex:

Before 2010: 650 T€

In 2010 (ICE-T): 365 T€

Identified Cost Driver:

- One time cost (Engineering, Authorization, Proj.-Management,...)
- + 100 T€for Software Updates per OBU over 15 years

Investitionskosten für ETCS-Bordgeräte im Vergleich mit PZB/LZB bezogen auf typische Projektgrößen von 50 Anlagen (Referenzgröße), zuzüglich erwartete Software-Update-Kosten bei ETCS f. 15 Jahre, SW-Kosten bei PZB/LZB nicht transparent.

ITEA2

Overview of Costs – Vehicles in CH

- The difference between lowest and highest total cost per unit is very large.
- Reasons for this include market values, volume of contracts and rather monopolistic position of suppliers.
- With low volume orders, the one -off costs of system development, vehicle engineering, system integration, certification and approvals, as well as operator investments are a stark proportion of overall cost.

Market Analysis of ETCS OBU EU Market Share indicates a Risk for Intermodal Competitiveness for the EU Railway Undertakings

Railway Undertakings need a fair and competitive ETCS OBU market:

- At least 3 independent and stable product lines are needed
- There is a need for an independent and neutral reference EVC system
- Long term market presence requires >20% market share to recover R&D + maintenance costs
- Smaller product lines can only survive by sharing their ongoing R&D and maintenance costs
- Market requires an Open Source Software based product line for independent reference OBU EVCs and R&D cost sharing.

References: CER, UIC, UNISIG firms' press releases, various internet sources (February 2010)

Capex Allocation (ICE-T Average)

Significant LCC savings by launching openETCS combined with a Frame procurement contract rather than per class procurements

Methodology:

Net present value for equipment with proprietary ETCS SW vs. *openETCS*, for 3.814 units (2.873 vehicles) assuming a 25% market share of total 11.492 vehicles to be equipped in 60% of EU's railway undertakings, differential costs are evaluated only, no full costs been considered (without STMs, e.g. for PZB/LZB).

FLOSS Experience @ Deutsche Bahn AG (2010):

1

We are using 178 OSS applications – including mission critical ones - for more than 10 years.

2

We never had a SLA breach caused by Open Source Software.

3

Cash reserve for critical situations to buy 3rd level support, was actually never needed.

Benefits for the Manufacturer

- Reduced cost on R&D for software and homologation
 - Manufacturer can cooperation by using the same software package
 - Improved competitiveness at world market level
- Pooling resources → faster time to market for new features
- New business opportunities: Long term Maintenance Support
 - Only possible with OSS license, independent from existence of organizations
- Reduced Risk
 - Faster feed-back from field experience and from cooperating partners
 - Minimize number of faults: Open source software → higher SW quality
- **Improved competitiveness by attracting resources**
 - OSS → academic research → creating educated engineering graduates

Learning from **AUT © SAR**: *) "Cooperate on standards, compete on implementation"

That was it ...

Thank you very much for your attention.

