线性代数单元练习三(向量)

一、单项选择题

1. 设 n 阶方阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $B = (\beta_1, \beta_2, \dots, \beta_n)$, $AB = (\gamma_1, \gamma_2, \dots, \gamma_n)$, 记向量组 $I: \alpha_1, \alpha_2, \dots, \alpha_n$,
$II: \beta_1, \beta_2, \cdots, \beta_n, III: \gamma_1, \gamma_2, \cdots, \gamma_n.$ 如果向量组 III
线性相关,则() (B) 向量组 II 线性相关 (C) 向量组 I 与 II 都线性相关 (D) 向量组 I 与 II 至少有一个线性相关
2. $m \times n$ 矩阵 A , $m > 3$, $n > 3$, $A \xrightarrow{\text{qisfroom}} B$, 则必有()
(A) 若 A 的前 3 列线性无关,则 B 的前三列线性无关 (B) 若 A 的前 3 行线性无关,则 B 的前三行线性无关 (C) 若 A 的左上角三阶行列式不为零,则 B 的左上角的三阶行列式也不为零 (D) 以上说法都不对
3. 设 $\alpha_1, \alpha_2, \dots, \alpha_s$ 均为 n 维向量,下列结论 <u>不正确</u> 的是()
(A) 若对于任意一组不全为零的数 k_1, k_2, \cdots, k_s ,都有 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s \neq 0$
则 $lpha_1,lpha_2,\cdots,lpha_s$ 线性无关.
(B) 若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线 性 相 关 , 则 对 于 任 意 一 组 不 全 为 零 的 数 $ k_1,k_2,\cdots,k_s$, 都 有
$k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s = 0.$
(C) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关的充分必要条件是此向量组的秩为 s.
(D) $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关的必要条件是其中任意两个向量线性无关.
4. 已知 $\alpha_1, \alpha_2, \dots, \alpha_s$ 及 $\beta, \alpha_1, \dots, \alpha_s$ ($\beta \neq 0$)均线性相关,则()
(A) β 可由 $\alpha_1, \dots, \alpha_s$ 唯一线性表示
(B) 有某个 i 使 α_i 可由 $\alpha_1, \dots, \alpha_{i-1}, \beta$ 唯一线性表示
(C) α_s 可由 $\alpha_1, \dots, \alpha_{s-1}, oldsymbol{eta}$ 线性表示
(D) β 不能由 $\alpha_1, \dots, \alpha_s$ 线性表示
5. 设 $\alpha_1,\alpha_2,\alpha_3$ 线性无关的向量,则下列各组中线性无关的是()
(A) $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$ (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 - \alpha_3$
(C) $\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_3, 3\alpha_3 + \alpha_1$ (D) $\alpha_1 - \alpha_2, 3\alpha_2 + \alpha_3, -\alpha_1 - 2\alpha_2 - \alpha_3$
6. 设 n 维列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m(m < n)$ 线性无关,则 n 维列向量组 $\beta_1,\beta_2,\cdots,\beta_m$ 线性无关的充要条件为

(A) 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 可由向量组 $\beta_1,\beta_2,\cdots,\beta_m$ 线性表示

(B) 向	量组 $\beta_1, \beta_2, \cdots, \beta_m$ 可	由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$	_m 线性表示		
(C) 向	量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 与	向量组 $\beta_1, \beta_2, \cdots, \beta_m$	等价		
(D) 矩	阵 $A = (\alpha_1, \alpha_2, \dots, \alpha_m)$)与矩阵 $B = (\beta_1, \beta_2, \beta_3)$	··, <i>β</i> ")等价		
7. 设向量	量组(I) a_1, a_2, a_3 ; (I	$(II)a_1, a_2, a_3, a_4; (III)a_1$	$a_1, a_2, a_3, a_5;$	$(IV) \ a_1, a_2, a_3, a_4 + a_5, \bot$	$\exists . r(I) = r(II) = 3,$
r(III) = 4,	则 $r(IV) = ($)			
(A) 2	(B) 3	(C) 4	(D) 5		
			但不能由向]量组 $lpha_{\scriptscriptstyle 1},lpha_{\scriptscriptstyle 2},\cdots,lpha_{\scriptscriptstyle m-1}$ 线性	上表示,若向量组
$(II)\alpha_1,\alpha_2,\cdot$	\cdots , $lpha_{\scriptscriptstyle{m-1}}$, eta ,则 $lpha_{\scriptscriptstyle{m}}$ ()			
(B) 不 (C) 可	能由(I)线性表示 由(I)线性表示,	云,也不能由(II) ,但可由(II)线性 也可由(II)线性表 但不可由(II)线性	表示		
9. <i>n</i> 维向量	组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性	无关的充分条件是()		
$(A) \alpha$	$_{_{1}},lpha_{_{2}},\cdots,lpha_{_{s}}$ 中不含零	向量			
(B) s	$\leq n$				
(C) α_1	$_{_{1}},lpha_{_{2}},\cdots,lpha_{_{s}}$ 中任意两	个向量的分量不成比	1例		
(D) 某	E向量 eta 可由 $lpha_{\scriptscriptstyle 1},lpha_{\scriptscriptstyle 2},\cdots$	\cdots , α_s 线性表示,且表	表示式唯一		
$10.$ 设 $a_1 = ($	$(a_1, a_2, a_3)^{\mathrm{T}}, a_2 = (b_1, b_2)^{\mathrm{T}}$	$(b_2, b_3)^{\mathrm{T}}, a_3 = (c_1, c_2, c_3)$	T,则三条直	线	
$a_i x + b_i y + a_i x + b_i y + a_i x + a_i $	$c_i = 0 (i = 1, 2, 3, \sharp, \psi)$	$q_i^2 + b_i^2 \neq 0$) 交于一点[的充要条件是	<u>(</u>	
(A) a_1	,,a ₂ ,a ₃ 线性相关				
(B) a_1	, <i>a</i> ₂ , <i>a</i> ₃ 线性无关				
(C) r($(a_1, a_2, a_3) = r(a_1, a_2)$				

二、填空题

9.

1 . 已知 $r(\alpha_1,\alpha_2,\cdots,\alpha_n,\beta)=r(\alpha_1,\alpha_2,\cdots,\alpha_n)=k$, $r(\alpha_1,\alpha_2,\cdots,\alpha_n,\gamma)=k+1$, 则向量组的秩 $r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta, \gamma) = \underline{\hspace{1cm}}.$

2. 已知 $m \times n$ 矩阵A的秩为3,且A的行向量组线性无关,则 $m = ____$

(D) a_1, a_2, a_3 线性相关, a_1, a_2 线性无关

- 3. 设 n 维向量 $\alpha = (a,0,\dots,0,a)^T$,a < 0 , E 为 n 阶单位矩阵,矩阵 $A = E \alpha \alpha^T$, $B = E + \frac{1}{a} \alpha \alpha^T$,其中 A 的逆矩阵为 B,则 $a = \underline{\qquad}$.
- 4. 下列叙述正确的有_____
- ① 若向量组的秩相等,则此向量组等价.
- ② 若向量组 $\alpha_1,\alpha_2,\dots,\alpha_s$ 可由向量组 $\beta_1,\beta_2,\dots,\beta_t$ 线性表出,则必s < t.
- ③ 若齐次线性方程组 Ax = 0 与 Bx = 0 同解,则矩阵 A 与 B 的行向量等价.
- ④ n维向量组 $\alpha_1,\alpha_2,\dots,\alpha_s$ 线性无关的充分条件是 $s \le n$.
- 5. 向量组 $a_1 = (2,2,7)^T$, $a_2 = (3,-1,2)^T$, $a_3 = (1,5,12)^T$ 线性______
- 6. 已知向量组 a_1, a_2, a_3 的秩为3,则向量组 $a_1, a_2 a_3$ 的秩为
- 7. 设 $\beta = (0,k,k^2)^{\mathrm{T}}$ 能由 $\alpha_1 = (1+k,1,1)^{\mathrm{T}}$, $\alpha_2 = (1,1+k,1)^{\mathrm{T}}$, $\alpha_3 = (1,1,1+k)^{\mathrm{T}}$ 唯一线性表出,则k满足____
- 8. 已知秩为 3 的向量组 a_1, a_2, a_3, a_4 可由向量组 $\beta_1, \beta_2, \beta_3$ 线性表示,则向量组

 $\beta_1, \beta_2, \beta_3$ 必线性_____

三、计算题

1. 设有向量组(I): $\alpha_1 = (1,0,2)^T$, $\alpha_2 = (1,1,3)^T$, $\alpha_3 = (1,-1,a+2)^T$ 和向量组(II): $\beta_1 = (1,2,a+3)^T$. $\beta_2 = (2,1,a+6)^T$. $\beta_3 = (2,1,a+4)^T$.

试问: 当 a 为何值时,向量组(I)与(II)等价? 当 a 为何值时,向量组(I)与(II)不等价?

2. (1) 设 $\alpha_1,\alpha_2,\beta_1,\beta_2$ 均是三维列向量,且 α_1,α_2 线性无关, β_1,β_2 线性无关,证明:存在非零向量 ξ ,使得 ξ 既可由 α_1,α_2 线性表出,又可由 β_1,β_2 线性表出。

(2) 当
$$\alpha_1 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 5 \\ 5 \end{pmatrix}$, $\beta_1 = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $\beta_1 = \begin{pmatrix} -3 \\ -4 \\ 3 \end{pmatrix}$ 时,求所有既可由 α_1, α_2 线性表出,又可由 β_1, β_2 线性

表出的向量.

- 3. 设列向量 $\alpha_1 = (1,0,0,3)^T$, $\alpha_2 = (1,1,-1,2)^T$, $\alpha_3 = (1,2,a-3,1)^T$, $\alpha_4 = (1,2,-2,a)^T$ 及 $\beta = (0,1,b,-1)^T$ (1) a,b 为何值时, β 不能表示成 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的线性组合。
 - (2) a,b 为何值时, β 可由表示成 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 唯一线性表出?写出表达式。
 - (3) a,b 为何值时, β 可由表示成 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表出,且表达式不唯一,并求出表达式。
- 4. 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 为 4 维非零列向量, $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$. 已知方程组 $Ax = \beta$ 的通解是 $(-1,1,0,2)^T + k(1,-1,2,0)^T$,其中 k 为任意实数.
- (1) 问 β 能否由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示?
- (2) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 的一个极大无关组.

5. 设向量组
$$a_1, a_2$$
及 $\beta_1, \beta_2, \beta_3$ 满足
$$\begin{cases} \beta_1 = c_{11}a_1 + c_{12}a_2 \\ \beta_2 = c_{21}a_1 + c_{22}a_2 \text{ 判定 } \beta_1, \beta_2, \beta_3 \text{ 的线性相关性} . \\ \beta_3 = c_{31}a_1 + c_{32}a_2 \end{cases}$$

6. 举例说明下列各命题是错误的。

- (1) 若向量组 α_1 , α_2 , ..., α_m 是线性相关的,则 α_1 可由 α_2 , α_3 , ..., α_m 线性表示。
- (2) 若向量组 $\alpha_1+\beta_1$, $\alpha_2+\beta_2$, ..., $\alpha_m+\beta_m$ 线性相关,则 α_1 , α_2 , ... , α_m 线性相关, β_1 , β_2 , ... , β_m 亦线性相关。
- (3) 若 α_1 , α_2 , ... , α_m 线性相关, β_1 , β_2 , ... , β_m 亦线性相关,则 $\alpha_{1+}\beta_1$, $\alpha_{2+}\beta_2$, ... , $\alpha_{m+}\beta_m$ 也线性相关。
 - (4) 若 α_1 , α_2 , ... , α_m 线性无关,则 α_1 , α_2 , ... , α_{m+1} 也线性无关。

三、 证明题

- 1. n维列向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关,P为n阶方阵,证明: $P\alpha_1,P\alpha_2,\cdots,P\alpha_n$ 线性无关的充分必要条件是P可逆。
- 2. 设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 都是n维向量,证明: $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关的充要条件是任一n维向量均可有 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出。
- 3. 已知向量组 a_1, a_2, a_3 线性相关,向量组 a_1, a_2, a_4 线性无关,证明:向量 a_3 可由向量 a_1, a_2 唯一线性表出.
- 4. 在秩为r的n阶方阵A中任取s行作一新矩阵B, 证明: $r(B) \ge r + s n$.
- 5. 设n维列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$, 试证: $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关的充分必要条件是

$$D = \begin{vmatrix} \alpha_1^T \alpha_1 & \alpha_1^T \alpha_2 & \cdots & \alpha_1^T \alpha_n \\ \alpha_2^T \alpha_1 & \alpha_2^T \alpha_2 & \cdots & \alpha_2^T \alpha_n \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_n^T \alpha_1 & \alpha_n^T \alpha_2 & \cdots & \alpha_n^T \alpha_n \end{vmatrix} \neq 0, 其中 \alpha_i^T 表示列向量 \alpha_i 的转置。$$

6. 设矩阵
$$\mathbf{A} = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 是满秩的,证明:直线 $\frac{x-a_3}{a_1-a_2} = \frac{y-b_3}{b_1-b_2} = \frac{z-c_3}{c_1-c_2}$ 与直线 $\frac{x-a_1}{a_2-a_3} = \frac{y-b_1}{b_2-b_3} = \frac{z-c_1}{c_2-c_3}$

相交于一点.

答案与提示:

一、选择题

二、填空题

- 1. k+1 2. 3 3. -1 4. 注意③可以考虑只有零解
- 5. 相关 6. 2 7. ≠0, -3; 8. 无关

三、计算题

- 1. 当 $a \neq -1$ 时,向量组(I)与(II)等价. 当a=-1 时,向量组(I)与(II)不等价.
- 2. 四个三维向量 $\alpha_1, \alpha_2, \beta_1, \beta_2$ 必线性相关,故知存在不全为零的 $k_1, k_2, \lambda_1, \lambda_2$,使得

$$k_1 \alpha_1 + k_2 \alpha_2 + \lambda_1 \beta_1 + \lambda_2 \beta_2 = 0$$

成立,即

$$k_1 \alpha_1 + k_2 \alpha_2 = -\lambda_1 \beta_1 - \lambda_2 \beta_2$$

成立,其中 k_1 , k_2 不全为零,(否则,由 $-\lambda_1\beta_1-\lambda_2\beta_2=0$,可推出 $\lambda_1=\lambda_2=0$,这和 k_1 , k_2 , λ_1 , λ_2 不全为零的矛盾).

则ξ即为所求.

由(1)知,
$$\xi = k_1\alpha_1 + k_2\alpha_2 = -\lambda_1\beta_1 - \lambda_2\beta_2$$
,
$$k_1\alpha_1 + k_2\alpha_2 + \lambda_1\beta_1 + \lambda_2\beta_2 = 0$$

将上式齐次方程组的系数矩阵化成阶梯形矩阵,得方程通解为 $(k_1,k_2,\lambda_1,\lambda_2)=k(1,0,-5,-3)^T$,所求向量为

$$\xi = k_1 \alpha_1 + k_2 \alpha_2 = -\lambda_1 \beta_1 - \lambda_2 \beta_2 = \begin{bmatrix} k \\ 3k \\ 4k \end{bmatrix}.$$

其中 k 为任意常数.

- 3. (1) a = 1 且 $b \neq -1$ 时, β 不能由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表出;
 - (2) $a \neq 1$ 时, β 可由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 唯一线性表出,即

$$\beta = \frac{b-a+2}{a-1}\alpha_1 + \frac{a-2b-3}{a-1}\alpha_2 + \frac{b+1}{a-1}\alpha_3 + 0 \cdot \alpha_4$$

(3) a=1 且 b=-1 时, β 可由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表出,且表达式不唯一。

$$\beta = (-1 + t_1 + t_2)\alpha_1 + (1 - 2t_1 - 2t_2)\alpha_2 + t_1\alpha_3 + t_2\alpha_4, \quad t_1, t_2 \in \mathbf{R}$$

- 4. [解] 由己知,齐次方程组 Ax = 0 的基础解系为 $(1,-1,2,0)^T$,所以,A 的秩为 3.
 - (1) β 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示.
 - (2) $\alpha_1, \alpha_2, \alpha_4$ 是向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \beta$ 的一个极大无关组.
- 5. 线性相关
- 6. 略

四、证明题

1. 提示: 由 $[\mathbf{P}\alpha_1, \mathbf{P}\alpha_2, \cdots, \mathbf{P}\alpha_n] = \mathbf{P}[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ 知,

$$|P\alpha_1, P\alpha_2, \cdots, P\alpha_n| = |P|\alpha_1, \alpha_2, \alpha_3, \alpha_4|$$

- 2. 略
- 3. 利用向量的线性相关与线性表出的关系。
- 4. 提示: 不妨取 A 的前 s 行得 B ,则

$$B = \begin{bmatrix} e_1^{\mathsf{T}} \\ \vdots \\ e_s^{\mathsf{T}} \end{bmatrix} A, \quad \text{id} \ r(B) \ge r(A) + r \begin{bmatrix} e_1^{\mathsf{T}} \\ \vdots \\ e_s^{\mathsf{T}} \end{bmatrix} - n = r + s - n$$

5. 提示:
$$\mathbf{D} = \begin{bmatrix} \boldsymbol{\alpha}_1^T \\ \boldsymbol{\alpha}_2^T \\ \vdots \\ \boldsymbol{\alpha}_n^T \end{bmatrix} [\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n] = |\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n|^2, \mathbf{D} \neq 0 \Rightarrow |\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n| \neq 0$$
 等价.

6. 略