Analysis 1 – Tutorium 1 robin.mader@campus.lmu.de 6.11.2020

Aufgabe 1 (Aussagenlogik, Wahrheitstabellen). (a) Es seien A, B, C Aussagen. Zeige, dass es sich bei folgenden Formeln um Tautologien handelt:

(i) Beweis einer Disjunktion (Aktivierungselement 1.7):

$$((C \Rightarrow A) \lor (\neg C \Rightarrow B)) \Rightarrow A \lor B,$$

(ii) Formel von Peirce:

$$((A \Rightarrow B) \Rightarrow A) \Rightarrow A,$$

(iii) Kettenschluss:

$$(A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

- (b) Aktivierungselement 1.8: Seien A, B Aussagen. Zeige: $\neg(A \Rightarrow B)$ und $A \land \neg B$ sind gleichwertig.
- (c) Für Aussagen A, B, C sind die Formeln $A \Rightarrow (B \Rightarrow C)$ und $A \land B \Rightarrow C$ gleichwertig.

Aufgabe 2 (Beispiele zu Mengenoperationen und Funktionen).

- (a) Aktivierungselement 1.11: Gegeben seien die Mengen $M = \{1, 2, 3\}$ und $N = \{2, 3, 4\}$. Berechne $M \cup N$, $M \cap N$, $M \setminus N$ und $M \triangle N$.
- (b) Aktivierungselement 1.12: Gegeben seien die Mengen $A = \{1, 2, 3\}$ und $B = \{4, 5, 6\}$ und eine Abbildung $f: A \to B$, definiert durch f(1) = 4, f(2) = 5, f(3) = 5.
 - 1. Ist f injektiv? Ist f surjektiv? Ist f bijektiv?
 - 2. Schreibe f als Teilmenge von $A \times B$.
 - 3. Berechne das Bild $f[\{2,3\}]$ und das Urbild $f^{-1}[\{5,6\}]$.

Aufgabe 3 (Prädikatenlogik). (a) Aktivierungselement 1.10: Betrachte den prädikatenlogischen Ausdruck

$$\forall x \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathbb{R} : (|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon).$$

Formuliere das Gegenteil dieses Ausdrucks.

- (b) Es sei M eine Menge. Formuliere mit Hilfe der Existenz- und Allquantoren (und " $\in M$ "), der Junktoren und "=" die folgenden Aussagen:
 - (i) Es gibt mindestens drei verschiedene Elemente in M.
 - (ii) Es gibt genau drei verschiedene Elemente in M.

Aufgabe 4.

(a) Rechtskürzbarkeit von Surjektionen: Es seien X,Y,Z Mengen, und $f:Y\to Z,$ $g:Y\to Z,$ $s:X\to Y$ Abbildungen. Angenommen, s ist surjektiv. Beweise die Implikation

$$f \circ s = q \circ s \implies f = q.$$

(b) Linkskürzbarkeit von Injektionen: Wieder seien X, Y, Z Mengen. Diesmal betrachten wir Abbildungen $f: X \to Y, g: X \to Y, i: Y \to Z$. Angenommen i ist injektiv. Zeige

$$i \circ f = i \circ g \implies f = g.$$

Aufgabe 5 (Relationen, Quotienten).

(a) Aktivierungslement 1.14: Es sei $M=\{0,1,2,3,4,5\}$, und die Relation $\sim\subseteq M\times M$ definiert durch

$$x \sim y$$
 : \Leftrightarrow 3 teilt $x - y$.

Wir nehmen ohne Beweis an: \sim ist eine Äquivalenzrelation.

- 1. Schreibe M/\sim als Menge in aufzählender Notation.
- 2. Es sei $f:M\to M/\sim$ die kanonische Abbildung. Schreibe f(1) als Menge in aufzählender Notation.
- (b*) Injektiv-machen mittels Faktorisieren durch den Quotienten: Es sei $f: X \to Y$ eine Abbildung von Mengen X und Y. Definiere eine Relation $\sim \subseteq X \times X$ durch

$$x \sim y :\Leftrightarrow f(x) = f(y).$$

Zeige:

- 1. \sim ist eine Äquivalenzrelation.
- 2. Die Abbildung

$$\overline{f}: X/\sim \to Y, \quad [x]_{\sim} \mapsto f(x)$$

ist wohldefiniert, und injektiv.

^{*}Die Bearbeitung einer mit * versehenen Aufgabe sollte erst nach dem Lösen der übrigen Aufgaben erfolgen.