Energy Conservation Strategies for eSC

Prof. C. Dunham, J. Reilly

Contents

Introduction	Brief overview of the project and its importance to eSC
Data Sets Used	Number of records in dataset evaluated
Predicting Future Energy Usage/ Key Drivers of Energy Usage	Results of the prediction model
	Analysis of key factors influencing energy usage
Actionable Insights	Specific strategies and recommendations for eSC to reduce energy costs
Conclusion	Summary of key findings and recommendations
<u>Q&A</u>	Questions

Introduction

The Challenge:

- Increasing temperatures and global warming trends pose a significant challenge to energy grids.
- July's peak energy demand raises concerns for potential system strain and blackouts.

Our Objective:

- To understand the primary factors driving energy consumption.
- To encourage energy-saving measures among customers, reducing the need for additional infrastructure.

Data Sets Used

Static House Data

Contains data on about 5,000 single-family homes that use eSC energy.

Energy Usage Data

Provides hourly energy consumption statistics for each residence in the Static residence Data.

Meta Data

A data description file that describes the fields used in the various housing data files.

Weather

Data

Hourly weather data, with one file for each geographic area (county).

4,000,000+ obs. Of 100+ variables

Number of records in dataset evaluated

Energy Consumption By Setpoint

HVAC Cooling Type

Peak Energy by Region and Hour (Top & Bottom)

Heatmap of Predicted Peak Energy

Energy Consumption by Building Age & Size

Lighting Type Proportion by Building Vintage

Duct Insulation and Energy Consumption

Duct Insulation and Energy Consumption

- 20% Leakage, Uninsulated
- 20% Leakage, R-8

Save

11105.62

(kWh)/month ≈ 0.19%

Conclusion -1/2

- □ Strategic Energy Management
 - Move beyond building age, focus on performance-based energy management.
 - Conduct detailed energy audits to pinpoint specific areas of energy loss.
- □ Smart Thermostat Implementation
 - Promote the use of smart thermostats for real-time energy optimization.
 - Utilize data for adjusting energy use during off-peak hours and according to occupancy.

Conclusion -2/2

- □ Targeted Retrofits for Building Systems
 - Focus retrofits on the least efficient HVAC systems identified by consumption data.
 - Upgrade to high-efficiency technologies like VRF systems and improve ductwork to minimize leakage.
- Data-Driven Infrastructure Development
 - Develop infrastructure based on regional energy demand data.
 - □ Support demand-side generation with community solar projects to alleviate grid stress during peak times.

