

Tungsten R&D at SCK-CEN

D. Terentyev Nuclear Materials Science Institute, SCK•CEN Belgium Nuclear Research Center

Major activities carried in 2014-2015

- Testing after neutron and ion irradiation
- High temperature mechanical testing (cold)
- Microstructural examination
- Electron irradiation
- Large-scale plastic deformation
- Micro-mechanical testing
- Positron Annihilation Spectroscopy
- Integrated Modelling

High temperature tensile tests

- Tensile tests up to 2000 C in vacuum
 - Fracture surface
 - SEM-visible shear bands
 - in-depth TEM analysis

SEM & TEM after high heat load

- Depending on deposited power density and # cycles
 - No surface modification
 - Slip bands (pre-cursor of cracking)
 - Crack and pits
 - Grain boundaries control release of plastic deformation

Large-scale plastic deformation

- Large grain material: Recrystallized W
- Perform controlled deformation at 600 C:
- Homogeneous plastic deformation over 10*10 mm
- Produced samples are used for:
 - Plasma exposure
 - Electron/ion/neutron exposure
 - HHF testing

EBSD & TEM after maro-plastic deformation

Identification of dislocation density and grainrefinement

High temperature Internal friction

- 2 Carbon migration
- $3 \gamma peak dislocation$ activation
- 4 layer oxide formation surface
- 5 Dislocation-Carbon
- 6-recrystallization

Nano-indentation: ion irradiation

- Detection of radiation damage
 - 20MeV W ions (E_{disp} = 90eV)
 - Max. damage depth ~1.4µm

Ion beam irradiation

Nano-indentation: exposure in Pilot-PSI

Detection of plasma-induced damage

Positron Annihilation Spectroscopy

- Ion irradiation produces both
 - Vacancy clusters
 - Dislocation loops
- Correlation between DB and PALS

Integrated modelling (I): Retention & microstructure

Integrated modelling (II): Retention & microstructure

- Fundamental study
 - Role of natural defects: dislocations and GBs
 - Synergy of He and D interaction
- Mean field rate theory
 - Separating contribution from plasma-induced and bulk trapping

- Dedicated electron irradiation exposure
 - MEPHI, Moscow (3.5 MeV)
 - Russian Academy of Science (5 MeV)
- High temperature NI:
 - 300-700 C (JRC, Petten)
- Investigating role of annealing & plastic deformation in ITER-grade W
 - Pure D and He-D mixed beam (FOM)
 - Accumulation of radiation damage: ion irradiation (Jianming Xue @ Ion Beam Lab, Pekin Univ.)
- Design of "blind capsule" irradiation in BR2
 - **300 1000 C**
 - From 0.1 up to 0.5 dpa / cycle (21 day)