OM-S20-16: Simplex method - II

C. V. Jawahar

IIIT Hyderabad

http://preon.iiit.ac.in/om_quiz

10 Mar 2020

Simplex: Recap

- Min $c^T x$ subject to $Ax \le b$ and $x \ge 0$. n variables (original) and m constraints.
- Constraints are modified with additional slack variables to obtain Ax = b with $x \ge 0$. A is $m \times (m + n)$
- Basic Feasible Solution (BFS) by solving Bx = b. BFS is a vertex/corner. B is $m \times m$
- Iterate j enters and I exists from the Basic Variable set B
- Let j be the entering variable and l be the exiting variable. $d_j = 1$ and $d_i = 0$ for i not in the basic variabel set.

$$Ax_{new} = A(x + \theta d) = Ax = b \implies Ad = 0$$

$$\sum_{i=1}^{m} d_{B(i)} A_{B(i)} + A_{j} = 0, \implies \bar{B} d_{B} + A_{j} = 0, \implies d_{B} = -\bar{B}^{-1} A_{j}$$

Simplex Algorithm

- $x_{new} = x_o Id + \theta^* d$ • $d_j = 1$; $d_B = -B^{-1}A_j$
 - $\bullet \ \theta = \min_{\substack{i \in \mathbf{B} \\ d_i < 0}} \left\{ \frac{-x_i}{d_i} \right\}$
- which j to pick? For a given variable j, difference in cost due to j^{th} variable being basic is: $c_B^T d_B + c_j = c_j c_B^T B^{-1} A_j$. We do for each j and select:

$$ar{\mathcal{C}} = [\mathcal{C}_1, \mathcal{C}_2, ..., \mathcal{C}_n]$$
 where $ar{\mathcal{C}}_j = \mathcal{C}_j - \mathcal{C}_B^T B^{-1} A$

• Compute the reduced costs $\overline{c}_j = c_j - c_B^T B^{-1} A_j$ for all nonbasic indices j. If they are all nonnegative, the current basic feasible solution is optimal, and the algorithm terminates; else, choose some j for which $c_j < 0$.

$$\mathsf{B}^{-1}\mathsf{B}=\mathit{I}=[\mathsf{e}_1\;\mathsf{e}_2\cdots\mathsf{e}_{\mathsf{m}}]=[\mathsf{e}_1\cdots\mathsf{e}_{\mathsf{l}-1}\;\mathsf{u}\;\mathsf{e}_{\mathsf{l}+1}\cdots\mathsf{e}_{\mathsf{m}}]$$

Apply row operations to product matrix, changing the column \emph{u} to $\emph{e}_\emph{l}$

Simplex Tableu

$-C_B^TB^{-1}b$	$C^{T}-C_{B}B^{-1}A$
$B^{-1}b$	$B^{-1}A$

Often start with a simple case of B = I.

- ① We start with a basis $\bar{B} = [A_{B(1)}, \dots, A_{B(m)}]$ and associated solution \mathbf{x} .
- ② Compute the reduced cost $C_j = C_j C_B^T \bar{B}^{-1} A_j$ for each non basic variable j if they are all positive, current solution is optimal, so exit else choose j such that $C_j < 0$.
- **3** Compute $u = B^{-1}A_j$ if no component of u is positive, we have $\theta^* = \infty$ and optimal cost $= -\infty$. Exit.
- If for some computation, u_i is positive then, $\theta^* = \min_{\{i/u_i \ge 0\}} (A_{B(i)}/u_i)$
- **1** If I is the variable which minimizes then I exits and j enters. For a new basis by replacing $A_{B(j)}$ by A_j .

Example 1 (from last class)

Min -x₁-x₂ Subject to: -x₁+x₂+x₃ = 1; $x_1+x_4=3$; and $x_2+x_5=2$; $x_i \ge 0$

	0	-1	-1	0	0	0
х3	1	-1	1	1	0	0
X4	3	1	0	0	1	0
X5	2	0	1	0	0	1

	3	0	0	-1	0	2
x ₂	2	0	1	0	0	1
X4	2	0	0	1	1	-1
× ₁	1	1	0	-1	0	1

	1	-2	0	1	0	0
x ₂	1	-1	1	1	0	0
X ₄	3	1	0	0	1	0
X5	1	1	0	-1	0	1

	5	0	0	0	1	1
X ₂	2	0	1	0	0	1
Х3	2	0	0	1	1	-1
X ₁	3	1	0	0	1	0

Example 2

Min -10x₁-12x₂-12x₃ Subject to: $x_1+2x_2+2x_3 \le 20$; $2x_1+x_2+2x_3 \le 20$; $2x_1+2x_2+x_3 \le 20$; and $x_1,x_2,x_3 \ge 0$

1														
	0	-10	-12	-12	Τ 0	0		120	0	-4	0	2	4	0
\perp		-10			1 0		3	10	0	1.5	1	1	-0.5	0
X4	20	1	2	2	1	0	0 3	0	1	-1	0	-1	1	0
<i>x</i> ₅	20	2	1	2	0	1	0 1	10	0	2.5	0	1	-0.5	1
<i>x</i> ₆	20	2	2	1	0	0	1 6	10		2.5	0	1	-0.5	1
2. 4														
								136	0	0	0	3.6	1.6	1.6
	100	0	-7	-2	0	5	Ø x3	136	0	0	1	0.4	0.4	-0.6
	100	0	-7 1.5	-2 1	0	5 -0.5	0 x ₃		_	0 0	1 0			
X ₄				-2 1 1	0 1 0			4	_		1	0.4	0.4	-0.6