LATEX for dummies

Guida di sopravvivenza per fisici

Lezione 1 - Le basi

Leonardo Pacciani-Mori leonardo.pacciani@phd.unipd.it AISF - Comitato Locale di Padova 6 dicembre 2018

Quattro lezioni da due ore ciascuna. Argomenti:

- 1 Le basi
- 2 Matematica
- 3 Le classi report, article e book
- 4 La classe beamer

Quattro lezioni da due ore ciascuna. Argomenti:

- 1 Le basi
- 2 Matematica
- 3 Le classi report, article e book
- 4 La classe beamer

Scopo

Porre le basi per un uso e una comprensione di base di LATEX.

Competenze acquisite

Essere in grado di scrivere documenti con LATEX, quali relazioni di laboratorio, tesi e presentazioni.

Quattro lezioni da due ore ciascuna. Argomenti:

- 1 Le basi
- 2 Matematica
- 3 Le classi report, article e book
- 4 La classe beamer

Scopo

Porre le basi per un uso e una comprensione di base di LATEX.

Competenze acquisite

Essere in grado di scrivere documenti con LATEX, quali relazioni di laboratorio, tesi e presentazioni.

Referenza su cui si basa il corso: L'arte di scrivere con LATEX, di Lorenzo Pantieri.

Quattro lezioni da due ore ciascuna. Argomenti:

- 1 Le basi
- 2 Matematica
- 3 Le classi report, article e book
- 4 La classe beamer

Scopo

Porre le basi per un uso e una comprensione di base di LATEX.

Competenze acquisite

Essere in grado di scrivere documenti con LATEX, quali relazioni di laboratorio, tesi e presentazioni.

Referenza su cui si basa il corso: L'arte di scrivere con LATEX, di Lorenzo Pantieri. Tutte le informazioni sul corso (comprese le slides) si trovano qui.

In questa lezione

In questa lezione

- Informazioni base su LATEX (senza excursus storico)
- 2 Esempio di documento "Hello world", con commenti riga per riga
- 3 Alcuni comandi utili
- 4 Struttura generale di un documento
- **5** Tabelle e figure

Le basi

Che cos'è LATEX, e come funziona?

Le basi

Che cos'è LATEX, e come funziona?

■ È un **linguaggio di markup**, che serve per la composizione tipografica di documenti di qualunque tipo

Che cos'è LATEX, e come funziona?

- È un **linguaggio di markup**, che serve per la composizione tipografica di documenti di qualunque tipo
- II "ΤΕΧ" di LATEX proviene dalla radice greca "τεχ" (come in τεχνή), e quindi si pronuncia "tèch" (ma "tèk" è anche accettato)

Che cos'è LATEX, e come funziona?

- È un **linguaggio di markup**, che serve per la composizione tipografica di documenti di qualunque tipo
- II "ΤΕΧ" di LATEX proviene dalla radice greca "τεχ" (come in τεχνή), e quindi si pronuncia "tèch" (ma "tèk" è anche accettato)
- È un linguaggio carattereizzato da composizione asincrona

- È un **linguaggio di markup**, che serve per la composizione tipografica di documenti di qualunque tipo
- II "ΤΕΧ" di LATEX proviene dalla radice greca "τεχ" (come in τεχνή), e quindi si pronuncia "tèch" (ma "tèk" è anche accettato)
- È un linguaggio carattereizzato da composizione asincrona Composizione sincrona: l'utente agisce direttamente su un testo già composto, che appare come verrà stampato. Ogni modifica si traduce in una variazione immediata di quel testo (es: word processors)

- È un **linguaggio di markup**, che serve per la composizione tipografica di documenti di qualunque tipo
- II "ΤΕΧ" di LATEX proviene dalla radice greca "τεχ" (come in τεχνή), e quindi si pronuncia "tèch" (ma "tèk" è anche accettato)
- È un linguaggio carattereizzato da composizione asincrona Composizione sincrona: l'utente agisce direttamente su un testo già composto, che appare come verrà stampato. Ogni modifica si traduce in una variazione immediata di quel testo (es: word processors)

Composizione asinctrona: l'utente inserisce il testo in un editor, concentrandosi su contenuto e struttura per poi darlo in pasto a un compositore, che lo impagina in modo ottimale

Le basi

Università degli Studi di Padova

Hello world

Le basi

Università degli Stud di Padova

Hello world

Il codice sorgente di un documento scritto in \LaTeX è simile al sorgente di un programma: contiene le istruzioni che il compositore deve eseguire per dare l'output desiderato.

Il codice sorgente di un documento scritto in LATEXÈ simile al sorgente di un programma: contiene le istruzioni che il compositore deve eseguire per dare l'output desiderato.

"Hello world" di un documento in LATEX, confrontato con uno in C++:

```
\documentclass[a4paper]{ article }
                                   1 //inizio preambolo
%inizio preambolo
                                    2 #include < iostream >
\usepackage[T1]{fontenc}
                                      using namespace std;
\usepackage[utf8]{inputenc}
\usepackage[italian]{babel}
                                    5 //fine preambolo
%fine preambolo
                                    6 int main(){
\begin { document }
                                    7 //inizio corpo
                                    8 cout << "Hello_world!";
%inizio corpo
Hello world!
                                      return 0:
%fine corpo
                                    10 //fine corpo
\end{document}
                                    11 }
```

Università degli Studi di Padova

Comandi e ambienti

Comandi e ambienti

I comandi \prescript{PTEX} iniziano **sempre** con un backslash $\$, e hanno la seguente struttura:

```
\backslash \mathsf{nomecomando}\underbrace{\left[\cdots\right]\cdots\left[\cdots\right]}_{\mathsf{argomenti}}\underbrace{\left\{\cdots\right\}\cdots\left\{\cdots\right\}}_{\mathsf{argomenti}}
```


Comandi e ambienti

I comandi $\prescript{AT_EX}$ iniziano **sempre** con un backslash $\$, e hanno la seguente struttura:

All'interno delle parentesi gli argomenti sono separati da virgole. Se un comando non ha argomenti è detto **dichiarazione**, ed ha effetto sul teso dal punto in cui viene inserito fino alla fine del blocco (es.: \itshape).

Comandi e ambienti

I comandi $\prescript{AT_{E}X}$ iniziano **sempre** con un backslash $\$, e hanno la seguente struttura:

All'interno delle parentesi gli argomenti sono separati da virgole. Se un comando non ha argomenti è detto **dichiarazione**, ed ha effetto sul teso dal punto in cui viene inserito fino alla fine del blocco (es.: \itshape).

Gli **ambienti** sono porzioni di codice delimitate da comandi di apertura e chiusura. Struttura generale:

```
\begin{ambiente } [...] {...}
%corpo
\end{ambiente}
```

Esempi: document, itemize, enumerate. Gli ambienti possono essere annidati.

Preambolo

Università degli Stud di Padova

Preambolo

Il **preambolo** di un documento contiene:

- dichiarazioni per caricare pacchetti che estendono le capacità di LATEX (es.: inserire figure, fare disegni, simboli matematici ecc.), attraverso il comando \usepackage[...] {nomepacchetto}
- definizioni di comandi e agrassettombienti personalizzati
- opzioni generali del documento (font, margini ecc.)

Preambolo

Il **preambolo** di un documento contiene:

- dichiarazioni per caricare pacchetti che estendono le capacità di LATEX (es.: inserire figure, fare disegni, simboli matematici ecc.), attraverso il comando \usepackage[...] {nomepacchetto}
- definizioni di comandi e agrassettombienti personalizzati
- opzioni generali del documento (font, margini ecc.)

```
1 //inizio preambolo
\documentclass[a4paper]{ article}
%inizio preambolo
                                    2 #include < iostream >
\usepackage[T1]{fontenc}
                                       using namespace std;
\usepackage[utf8]{inputenc}
\usepackage[italian]{babel}
                                    5 //fine preambolo
%fine preambolo
                                      int main(){
\begin { document }
                                    7 //inizio corpo
%inizio corpo
                                    8 cout << "Hello_world!";
Hello world!
                                       return 0:
%fine corpo
                                      //fine corpo
\end{document}
                                    11
```


\documentclass[a4paper]{article}

\documentclass[a4paper]{article}

Il comando documentclass serve per dichiarare la classe del documento (articolo, libro, presentazione) e specificarne le dimensioni (foglio A4 ecc.).

\documentclass[a4paper]{article}

Il comando documentclass serve per dichiarare la classe del documento (articolo, libro, presentazione) e specificarne le dimensioni (foglio A4 ecc.).

Le principali classi predefinite sono:

- article, per articoli
- report, per relazioni
- book, per libri e tesi
- letter, per lettere intestate
- beamer, per presentazioni

\documentclass[a4paper]{article}

Il comando documentclass serve per dichiarare la classe del documento (articolo, libro, presentazione) e specificarne le dimensioni (foglio A4 ecc.).

Le principali classi predefinite sono:

- article, per articoli
- report, per relazioni
- book, per libri e tesi
- letter, per lettere intestate
- beamer, per presentazioni

Gli argomenti facoltativi sono globali per tutto il documento. Esempi:

- 10pt, 11pt, 12pt, ...: dimensione principale del font
- letterpaper, a4paper, a5paper, ...: dimensione del foglio

Università degli Studi di Padova

fontenc, inputenc e babel

fontenc, inputenc e babel

```
\documentclass[a4paper]{ article }
                                   1 //inizio preambolo
%inizio preambolo
                                   2 #include < iostream >
\usepackage[T1]{fontenc}
                                      using namespace std;
\usepackage[utf8]{inputenc}
\usepackage[italian]{babel}
                                   5
%fine preambolo
                                      //fine preambolo
\begin { document }
                                     int main(){
%inizio corpo
                                   8 //inizio corpo
Hello world!
                                      cout << "Hello world!";
%fine corpo
                                   10 return 0; //fine corpo
\end{document}
                                   11 }
```

Sono direttive necessarie per poter scrivere in italiano (o qualsiasi altra lingua). Rimuovendole è comunque possibile scrivere in inglese.

fontenc: font encoding, serve per gestire il font del documento; T1 è la codifica per le lingue occidentali

inputenc: input encoding, serve per interpretare correttamente i caratteri speciali (lettere accentate ecc.); utf8 è la codifica generalmente usata per interpretare gli input da tastiera

babel: gestisce parole fisse (generate automaticamente da alcuni comandi, come "capitolo", "appendice", "indice" e il formato della data)

fontenc, inputenc e babel

```
\documentclass[a4paper]{ article }
                                   1 //inizio preambolo
%inizio preambolo
                                   2 #include < iostream >
\usepackage[T1]{ fontenc}
                                      using namespace std;
\usepackage[utf8]{inputenc}
\usepackage[italian]{babel}
%fine preambolo
                                      //fine preambolo
\begin { document }
                                     int main(){
%inizio corpo
                                   8 //inizio corpo
Hello world!
                                      cout << "Hello,,world!";
%fine corpo
                                   10 return 0; //fine corpo
\end{document}
                                   11 }
```

\begin{document} e \end{document} delimitano, rispettivamente, l'inizio e la fine del contenuto del documento. Tutto ciò che nel sorgente viene scritto dopo \end{document} viene ignorato dal compilatore.

A seconda della sua classe, un documento può essere diviso in più parti:

- part
- chapter
- section
- subsection
- subsubsection
- paragraph
- subparagraph

Ognuno di questi è un comando che prende come argomento obbligatorio il nome della parte/capitolo/sezione ecc.

A seconda della sua classe, un documento può essere diviso in più parti:

part Ad esempio, \chapter{La relatività ristretta} in un documento book restituisce:

Capitolo 1

La relatività ristretta

Aggiungendo \section{L'esperimento di Michelson e Morley}:

Capitolo 1

La relatività ristretta

1.1 L'esperimento di Michelson e Morley

chapter

section

subsection

subsubsection

paragraph

■ subparagraph

Ognuno di questi è un comando che prende come argomento obbligatorio il nome della parte/capitolo/sezione ecc.

Il compilatore LATEX gestisce **automaticamente** la numerazione di tutti gli elementi di un documento: pagine, capitoli/sezioni, equazioni, figure, tabelle, referenze bibliografiche ecc.

Il compilatore LATEX gestisce **automaticamente** la numerazione di tutti gli elementi di un documento: pagine, capitoli/sezioni, equazioni, figure, tabelle, referenze bibliografiche ecc.

L'indice di un documento viene creato automaticamente col comando \tableofcontents. Analogamente, \listoffigures e \listoftables generano gli indici di figure e tabelle (mostrando le didascalie).

Struttura generale di un documento

Il compilatore LATEX gestisce **automaticamente** la numerazione di tutti gli elementi di un documento: pagine, capitoli/sezioni, equazioni, figure, tabelle, referenze bibliografiche ecc.

L'indice di un documento viene creato automaticamente col comando \tableofcontents. Analogamente, \listoffigures e \listoftables generano gli indici di figure e tabelle (mostrando le didascalie).

Come vedremo più avanti, poi, ci sono più modi di creare la bibliografia di un documento.

Modificare lo stile e le dimensioni del testo

Modificare lo stile e le dimensioni del testo

Lo stile del testo può essere modificato coi seguenti comandi:

Testo corsivo: \textit{...} o \itshape

Testo "enfatizzato": \emph{...} o \em

Testo **grassetto**: \textbf{...} o \bfseries

Testo MAIUSCOLETTO: \textsc{...} o \scshape

Testo "macchina da scrivere": \texttt{...} o \ttfamily

Modificare lo stile e le dimensioni del testo

Lo stile del testo può essere modificato coi seguenti comandi:

Testo corsivo: \textit{...} o \itshape

Testo "enfatizzato": \emph{...} o \em

Testo **grassetto**: \textbf{...} o \bfseries

Testo MAIUSCOLETTO: \textsc{...} o \scshape

Testo "macchina da scrivere": \texttt{...} o \ttfamily

Le dimensioni, invece, coi seguenti comandi:

\tiny \scriptsize \footnotesize \small \normalsize \large

\Large \LARGE \huge

\Huge

Colori, note a margine e a piè pagina

Colori, note a margine e a piè pagina

Il colore di una parte di testo può essere cambiato usando il pacchetto color, e la sintassi del comando per cambiare colore è:

```
\textcolor{colore}{testo} oppure {\color{colore}testo}
```

I colori predefiniti nel pacchetto sono:

```
black, blue, brown, cyan, darkgray, gray, green, lightgray, lime, magenta, olive, orange, pink, purple, red, teal, violet, white, yellow
```


Colori, note a margine e a piè pagina

Il colore di una parte di testo può essere cambiato usando il pacchetto color, e la sintassi del comando per cambiare colore è:

```
\textcolor{colore}{testo} oppure {\color{colore}testo}
```

I colori predefiniti nel pacchetto sono:

```
black, blue, brown, cyan, darkgray, gray, green, lightgray, lime, magenta, olive, orange, pink, purple, red, teal, violet, white, yellow
```

Le note a margine di un testo si inseriscono caricando il pacchetto marginnote e usando il comando \marginpar. Le note a piè pagina, invece, si inseriscono col comando \footnote (senza bisogno di caricare pacchetti particolari).

Elenchi puntati e numerati

Elenchi puntati e numerati

Gli elenchi puntati si fanno con l'ambiente itemize, e ogni punto è contrassegnato dal comando \item. Ad esempio:
Codice:

```
\begin{itemize}
  \item primo punto
  \item secondo punto
\end{itemize}
```

Risultato:

- primo punto
- secondo punto

Elenchi puntati e numerati

Gli elenchi puntati si fanno con l'ambiente itemize, e ogni punto è contrassegnato dal comando \item. Ad esempio:

Codice:

```
\begin{itemize}
  \item primo punto
  \item secondo punto
\end{itemize}
```

Risultato:

- primo punto
- secondo punto

Analogamente, gli elenchi numerati si creano con l'ambiente enumerate:

```
\begin{enumerate}
\item primo punto
\item secondo punto
\end{enumerate}
```

Risultato:

- 1 primo punto
- 2 secondo punto

Elenchi puntati e numerati

Gli elenchi puntati si fanno con l'ambiente itemize, e ogni punto è contrassegnato dal comando \item. Ad esempio:

Codice:

```
\begin{itemize}
  \item primo punto
  \item secondo punto
\end{itemize}
```

Risultato:

- primo punto
- secondo punto

Analogamente, gli elenchi numerati si creano con l'ambiente enumerate: Codice:

```
\begin{enumerate}
  \item primo punto
  \item secondo punto
\end{enumerate}
```

Risultato:

- 1 primo punto
- 2 secondo punto

L'ambiente description permette di personalizzare i vari punti con una "descrizione": Codice: Risultato:

```
\begin{description}
\item[descrizione 1] primo punto
\item[descrizione 2] secondo punto
\end{description}
```

```
descrizione 1 primo punto
```

descrizione 2 secondo punto

Sono oggetti **floating**, ossia La struttura del codice per le tabelle è:

```
\begin{table}[preferenze di posizionamento]
...
\end{table}
mentre per le figure è:
  \begin{figure}[preferenze di posizionamento]
...
\end{figure}
```

Ognuno di questi oggetti riceve automaticamente un numero progressivo di identificazione.

Sono oggetti **floating**, ossia La struttura del codice per le tabelle è:

```
\begin{table}[preferenze di posizionamento]
...
\end{table}
mentre per le figure è:
  \begin{figure}[preferenze di posizionamento]
...
\end{figure}
```

Ognuno di questi oggetti riceve automaticamente un numero progressivo di identificazione.

La didascalia si aggiunge usando il pacchetto caption e il comando \caption{...} all'interno dell'ambiente table o figure; usando \caption*{...} la figura non riceve un numero di identificazione. Argomento facoltativo: versione "ridotta" della didascalia (per listoffigures e listoftables).

Preferenze di posizionamento:

- h (here, cioè dove si trova nel sorgente)
- t (top, all'inizio della pagina)
- b (bottom, al fondo della pagina)
- p (page of floats, ossia in una pagina dedicata)

Preferenze di posizionamento:

- h (here, cioè dove si trova nel sorgente)
- t (top, all'inizio della pagina)
- b (bottom, al fondo della pagina)
- p (page of floats, ossia in una pagina dedicata)

Le preferenze si possono giustapporre in ordine di priorità (ad es.: htb). Se LATEX non riesce a soddisfare le nostre richieste, prova a posizionare la figura nella pagina successiva e così via.

Preferenze di posizionamento:

- h (here, cioè dove si trova nel sorgente)
- t (top, all'inizio della pagina)
- b (bottom, al fondo della pagina)
- p (page of floats, ossia in una pagina dedicata)

Le preferenze si possono giustapporre in ordine di priorità (ad es.: htb). Se LATEX non riesce a soddisfare le nostre richieste, prova a posizionare la figura nella pagina successiva e così via.

Attenzione

È sempre preferibile lasciare che LATEX posizioni le figure e le tabelle dove ritiene più opportuno, seguendo le nostre preferenze di posizionamento.

Preferenze di posizionamento:

- h (here, cioè dove si trova nel sorgente)
- t (top, all'inizio della pagina)
- b (bottom, al fondo della pagina)
- p (page of floats, ossia in una pagina dedicata)

Le preferenze si possono giustapporre in ordine di priorità (ad es.: htb). Se LATEX non riesce a soddisfare le nostre richieste, prova a posizionare la figura nella pagina successiva e così via.

Attenzione

È sempre preferibile lasciare che LATEX posizioni le figure e le tabelle dove ritiene più opportuno, seguendo le nostre preferenze di posizionamento.

Nel caso in cui si voglia forzare LATEX a posizionare una tabella o figura dove l'abbiamo messa all'interno del codice sorgente, si può usare il pacchetto float e la preferenza di posizionamento H.

Tabelle

La struttura generale di una tabella è:

```
\begin{table}
  \centering
  \begin{tabular}{allineamento}
    %corpo
  \end{tabular}
  \caption {...}
\end{table}
```


Tabelle

La struttura generale di una tabella è:

```
\begin{table}
  \centering
  \begin{tabular}{allineamento}
    %corpo
  \end{tabular}
  \caption {...}
\end{table}
```

Il corpo di una tabella si scrive *riga per riga*, separando le colonne con & e le nuove righe con \\, le linee verticali con | e quelle orizzontali con \hline. Usando il pacchetto booktabs si possono fare linee di divisone "professionali": \toprule, \midrule e \bottomrule.

Tabelle

La struttura generale di una tabella è:

```
\begin{table}
  \centering
  \begin{tabular}{allineamento}
    %corpo
  \end{tabular}
  \caption {...}
\end{table}
```

Il corpo di una tabella si scrive *riga per riga*, separando le colonne con & e le nuove righe con \\, le linee verticali con | e quelle orizzontali con \hline. Usando il pacchetto booktabs si possono fare linee di divisone "professionali": \toprule, \midrule e \bottomrule.

La voce allineamento indica come il testo deve essere allineato allinterno delle celle, e deve contenere per ogni colonna una delle seguenti lettere: c (center), l (left), r (right).

Tabelle

Primo esempio:

Codice:

```
\begin{table}
\centering
\begin{tabular}{cc}
Prima colonna & seconda colonna \\
\hline
prima cella & seconda cella \\
\hline
terza cella & quarta cella
\end{tabular}
\caption{Tabella di esempio}
\end{table}
```

Risultato:

Prima colonna	seconda colonna
prima cella	seconda cella
terza cella	quarta cella

Tabella: Tabella di esempio

Tabelle

Secondo esempio:

Codice:

```
\begin{table}
\centering
\begin{tabular}{|||r|}
Prima colonna & seconda colonna \\
\hline
prima cella & seconda cella \\
\hline
terza cella & quarta cella \\
hline
\end{tabular}
\caption{Altra tabella}
\end{table}
```

Risultato:

Prima colonna	seconda colonna
prima cella	seconda cella
terza cella	quarta cella

Tabella: Altra tabella

Tabelle

Esempio finale (booktabs):

Codice:

```
\begin{table}
\centering
\begin{tabular}{cc}
Prima colonna & seconda colonna \\
\toprule
prima cella & seconda cella \\
\midrule
terza cella & quarta cella \\
midrule
quinta cella & sesta cella \\
bottomrule
\end{tabular}
\caption{Utilizzo di booktabs}
\end{table}
```

Risultato:

Prima colonna	seconda colonna
prima cella	seconda cella
terza cella	quarta cella
quinta cella	sesta cella

Tabella: Utilizzo di booktabs

Figure

La struttura generale di una figura è:

```
\begin{figure}
  \centering
  \includegraphics[dimensioni]{file}
  \caption {...}
\end{figure}
```

Per poter utilizzare l'ambiente figure è necessario includere il pacchetto graphicx.

Figure

La struttura generale di una figura è:

```
\begin{figure}
  \centering
  \includegraphics[dimensioni]{file}
  \caption {...}
\end{figure}
```

Per poter utilizzare l'ambiente figure è necessario includere il pacchetto graphicx.

All'argomento dimensioni vanno sostituite le indicazioni sulle dimensioni della figura; si possono ad esempio indicare width e height (indicandone solo una LATEX mantiene automaticamente il loro rapporto costante), oppure scale per riscalare direttamente tutta l'immagine, e angle per ruotarla (in gradi, in senso antiorario).

Figure

La struttura generale di una figura è:

```
\begin{figure}
  \centering
  \includegraphics[dimensioni]{file}
  \caption {...}
\end{figure}
```

Per poter utilizzare l'ambiente figure è necessario includere il pacchetto graphicx.

All'argomento dimensioni vanno sostituite le indicazioni sulle dimensioni della figura; si possono ad esempio indicare width e height (indicandone solo una LATEX mantiene automaticamente il loro rapporto costante), oppure scale per riscalare direttamente tutta l'immagine, e angle per ruotarla (in gradi, in senso antiorario).

All'argomento file bisogna inserire la posizione del file immagine, rispetto alla cartella dove si trova il file .tex compilato.

Formati accettati: pdf, jpg, bmp, png, eps.

Figure

Primo esempio:

Risultato:

Codice:

```
\begin{figure} \centering \includegraphics[scale=0.5]% { Einstein.jpg} \caption{Einstein nel 1947} \end{figure}
```


Figura: Einstein nel 1947

Figure

Secondo esempio:

Codice:

\begin{figure}
\centering
\includegraphics%
 [scale = 0.5, angle = 45]{Einstein.jpg}
\caption{Einstein nel 1947, ruotato}
\end{figure}

Risultato:

Figura: Einstein nel 1947, ruotato

Figure

Terzo esempio:

Risultato:

Codice:

```
\begin{figure}
\centering
\includegraphics%
   [width=50px,height=120px]{Einstein.jpg}
\caption{Einstein nel 1947, stiracchiato}
\end{figure}
```


Figura: Einstein nel 1947, stiracchiato

Figure

Quarto esempio:

Risultato:

Codice:

```
\begin{figure}
\centering
\includegraphics%
     [width=50px]{Einstein.jpg}
\caption{Einstein nel 1947, normale}
\end{figure}
```


Figura: Einstein nel 1947, normale

Figure

Ultimo esempio:

Risultato:

Codice:

```
\begin{figure}
\centering
\includegraphics%
     [height=120px]{Einstein.jpg}
\caption{Einstein nel 1947, normale}
\end{figure}
```


Figura: Einstein nel 1947, normale

Per oggi è tutto!

Prossimo appuntamento: 10 dicembre 2018, **aula LUF2** ore 16:30

Prossima lezione: Matematica

Informazioni di servizio

Informazioni di servizio

Cambio orario e aule

Rispetto a quanto annunciato ci sono stati dei cambi di aule e orario per le prossime lezioni, che saranno:

- il 10 dicembre in aula LUF2 dalle 16:30 alle 18:30
- il 12 dicembre in aula LUF2 dalle 14:30 alle 16:30
- il 13 dicembre in aula **LUF2** dalle 16:30 alle 18:30

Un po' di (sano) spam

Un po' di (sano) spam

Dal 13 dicembre si apriranno le iscrizioni per la V Conferenza Italiana degli Studenti di Fisica, che si terrà a Milano dal 6 al 10 marzo 2019.

Un po' di (sano) spam

Dal 13 dicembre si apriranno le iscrizioni per la V Conferenza Italiana degli Studenti di Fisica, che si terrà a Milano dal 6 al 10 marzo 2019.

Per maggiori informazioni: ai-sf.it/cisf19