lecture_4

January 26, 2017

0.1 When using the command prompt, anything in your path or working directory can be run either as a script, function or class (to define objects)

Questions from last class: - I downloaded GitHub to my desktop but I cannot sign into my UConn account like I can online. - I checked my grades on HuskyCt recently and I received a 0 / 100 for Homework 1. - It is very hard to tell if what I'm doing on github is right or wrong. - How often will be using our laptops during the lecture? - How many frogs would it take to move a car that is stuck in the snow? And what would be the approximate cost to do so

```
m<sub>frog</sub>=22.7 g (https://en.wikipedia.org/wiki/Common_frog)
   v_{frog}=17 kph = 4.72 m/s (http://purelyfacts.com/question/14/is-a-toad-faster-than-a-
frog?DDA=113&DDB=40)
   m_{car}=1000 kg (reasonable guess)
   conservation of momentum:
   mv_1 + mv_2 = mv_1' + mv_2' = m_{total}v_2'
In [64]: number_of_frogs = 1;
         v2=0;
         while v2 < 1 \% 1 m/s
              m_frogs=number_of_frogs*22.7e-3;
              number_of_frogs=number_of_frogs+1;
              p1=(m_frogs)*4.72; % momentum 1
              v2=p1/(m_frogs+1000); % p2=p1, so v2=p1/m_total
         end
         number_of_frogs
number_of_frogs =
       11844
In [2]: %myscript
```

When using the GUI, your command history is saved, but it is better to save your work either as a script or a function or combination of both

Creating a default graph script: setdefaults.m

In [3]: %plot --format sug

1 EOL

1.1 Graphics can be produced with a number of functions

2-D plots, 3-D plots, contour plots, 3D contour plots ...

0	0.1710	0.2880	0.3570	0.3840	0.3750	0.3360
-0.1710	0	0.1224	0.2016	0.2430	0.2520	0.2340
-0.2880	-0.1224	0	0.0840	0.1344	0.1560	0.1536

-0.3570	-0.2016	-0.0840	0	0.0546	0.0840	0.0924
-0.3840	-0.2430	-0.1344	-0.0546	0	0.0330	0.0480
-0.3750	-0.2520	-0.1560	-0.0840	-0.0330	0	0.0180
-0.3360	-0.2340	-0.1536	-0.0924	-0.0480	-0.0180	0
-0.2730	-0.1944	-0.1320	-0.0840	-0.0486	-0.0240	-0.0084
-0.1920	-0.1386	-0.0960	-0.0630	-0.0384	-0.0210	-0.0096
-0.0990	-0.0720	-0.0504	-0.0336	-0.0210	-0.0120	-0.0060
0	0	0	0	0	0	0
0.0990	0.0720	0.0504	0.0336	0.0210	0.0120	0.0060
0.1920	0.1386	0.0960	0.0630	0.0384	0.0210	0.0096
0.2730	0.1944	0.1320	0.0840	0.0486	0.0240	0.0084
0.3360	0.2340	0.1536	0.0924	0.0480	0.0180	0.0000
0.3750	0.2520	0.1560	0.0840	0.0330	0	-0.0180
0.3840	0.2430	0.1344	0.0546	-0.0000	-0.0330	-0.0480
0.3570	0.2016	0.0840	0	-0.0546	-0.0840	-0.0924
0.2880	0.1224	0	-0.0840	-0.1344	-0.1560	-0.1536
0.1710	0.0000	-0.1224	-0.2016	-0.2430	-0.2520	-0.2340
0	-0.1710	-0.2880	-0.3570	-0.3840	-0.3750	-0.3360
Columns 8	through 1	4				
0.2730	0.1920	0.0990	0	-0.0990	-0.1920	-0.2730
0.1944	0.1386	0.0720	0	-0.0720	-0.1386	-0.1944
0.1320	0.0960	0.0504	0	-0.0504	-0.0960	-0.1320
0.0840	0.0630	0.0336	0	-0.0336	-0.0630	-0.0840
0.0486	0.0384	0.0210	0	-0.0210	-0.0384	-0.0486
0.0240	0.0210	0.0120	0	-0.0120	-0.0210	-0.0240
0.0084	0.0096	0.0060	0	-0.0060	-0.0096	-0.0084
0	0.0030	0.0024	0	-0.0024	-0.0030	0
-0.0030	0	0.0006	0	-0.0006	0	0.0030
-0.0024	-0.0006	0	0		0.0006	0.0024
0	0	0	0	0	0	0
0.0024	0.0006	-0.0000	0	0	-0.0006	-0.0024
0.0030	0	-0.0006	0	0.0006	0	-0.0030
0	-0.0030	-0.0024	0	0.0024	0.0030	0
-0.0084	-0.0096	-0.0060	0	0.0060	0.0096	0.0084
-0.0240	-0.0210	-0.0120	0	0.0120	0.0210	0.0240
-0.0486	-0.0384	-0.0210	0	0.0210	0.0384	0.0486
-0.0840	-0.0630	-0.0336	0	0.0336	0.0630	0.0840
-0.1320	-0.0960	-0.0504	0	0.0504	0.0960	0.1320
-0.1944	-0.1386	-0.0720	0	0.0720	0.1386	0.1944
-0.2730	-0.1920	-0.0990	0	0.0990	0.1920	0.2730
Columns 1	5 through	21				
-0.3360	-0.3750	-0.3840	-0.3570	-0.2880	-0.1710	0
-0.2340				-0.1224	-0.0000	0.1710
-0.1536	-0.1560	-0.1344		0	0.1224	0.2880

-0.0924	-0.0840	-0.0546	0	0.0840	0.2016	0.3570
-0.0480	-0.0330	0.0000	0.0546	0.1344	0.2430	0.3840
-0.0180	0	0.0330	0.0840	0.1560	0.2520	0.3750
-0.0000	0.0180	0.0480	0.0924	0.1536	0.2340	0.3360
0.0084	0.0240	0.0486	0.0840	0.1320	0.1944	0.2730
0.0096	0.0210	0.0384	0.0630	0.0960	0.1386	0.1920
0.0060	0.0120	0.0210	0.0336	0.0504	0.0720	0.0990
0	0	0	0	0	0	0
-0.0060	-0.0120	-0.0210	-0.0336	-0.0504	-0.0720	-0.0990
-0.0096	-0.0210	-0.0384	-0.0630	-0.0960	-0.1386	-0.1920
-0.0084	-0.0240	-0.0486	-0.0840	-0.1320	-0.1944	-0.2730
0	-0.0180	-0.0480	-0.0924	-0.1536	-0.2340	-0.3360
0.0180	0	-0.0330	-0.0840	-0.1560	-0.2520	-0.3750
0.0480	0.0330	0	-0.0546	-0.1344	-0.2430	-0.3840
0.0924	0.0840	0.0546	0	-0.0840	-0.2016	-0.3570
0.1536	0.1560	0.1344	0.0840	0	-0.1224	-0.2880
0.2340	0.2520	0.2430	0.2016	0.1224	0	-0.1710
0.3360	0.3750	0.3840	0.3570	0.2880	0.1710	0

In [7]: contour(X,Y,Z)

In [8]: mesh(X,Y,Z)

In [9]: pcolor(X,Y,Z)

1.2 Functions

So far, everything has been executed as a script, or calling a built-in function. Now we begin building our own functions.

Functions are saved in memory (or better yet) in a folder in your path or current directory Example of storing function in memory

$$f(x,y) = (xy^3 - x^3y)$$

In [10]: $f = @(x,y) (x.*y.^3-x.^3.*y)$

```
f =
    0(x,y)(x.*y.^3-x.^3.*y)
In [15]: f(0.1,-0.5)
ans =
   -0.0120
   Here we will save a function called my_function as my_function.m
function [vx,vy] = my_function(x,y,t)
    % Help documentation of "my_function"
    % This function computes the velocity in the x- and y-directions given
    % three vectors of position in x- and y-directions as a function of time
    % x = x-position
   % y = y - position
   % t = time
   % output
   % vx = velocity in x-direction
    % vy = velocity in y-direction
   vx=zeros(length(t),1);
   vy=zeros(length(t),1);
    vx(1:end-1) = diff(x)./diff(t); % calculate vx as delta x/delta t
    vy(1:end-1) = diff(y)./diff(t); % calculate vy as delta y/delta t
    vx(end) = vx(end-1);
    vy(end) = vy(end-1);
end
In [18]: help my_function
Help documentation of "my_function"
 This function computes the velocity in the x- and y-directions given
 three vectors of position in x- and y-directions as a function of time
 x = x-position
 y = y-position
 t = time
 output
 vx = velocity in x-direction
  vy = velocity in y-direction
```

```
In [51]: t=linspace(0,10,100)';
        x=t.^3; % vx = 3*t^2
        y=t.^2/2;  %vy = t
         [vx,vy]=my_function(x,y,t);
In [54]: yyaxis left
        plot(t(1:10:end), vx(1:10:end), 'o',t,3*t.^2)
        ylabel('v_{x}')
        yyaxis right
        plot(t(1:10:end), vy(1:10:end), 's',t, t)
        ylabel('v_{y}')
        xlabel('time')
                      300
                                                        10
                      200
                      100
                                                        0
                                         5
                                                     10
                                      time
```

Now, create a new function that calls 'my_function' called, my_caller.m

```
In [40]: help my_caller

Help documentation of "my_caller"
   This function computes the acceleration in the x- and y-directions given three vectors of position in x- and y-directions as a function of time x = x-position
   y = y-position
   t = time
   output
   ax = velocity in x-direction
   ay = velocity in y-direction
In [59]: [ax,ay]=my_caller(x,y,t);
```



```
In [62]: diff_match_dims(x,t)
Undefined function 'diff_match_dims' for input arguments of type 'double'.
In []:
```