GAS DYNAMICS LABORATORY

UILU-ENG-76-4003

DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 61801

THEORETICAL AND EXPERIMENTAL ANALYSIS OF THE

CONSTANT-AREA, SUPERSONIC-SUPERSONIC EJECTOR

ADA 033615

by

C.D. MIKKELSEN

M.R. SANDBERG

A.L. ADDY

OCTOBER 1976

Supported by

U.S. Army Research Office $\gamma_{l\mu\nu}$

Grant Number DAHC 04-75-G-0046

and

Department of Mechanical and

Industrial Engineering

Approved for Public Release; Distribution Unlimited

DD 1 JAN 73 1473

EDITION OF ! NOV 65 IS OBSOLE &

Unclassified

466

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

theory predicts maximum ejector compression ratios which are approximately 15 to 20 percent higher than the corresponding experimental values and (ii) that this ejector appears to be particularly susceptible to secondary flow separation.

The one-dimensional analysis of the constant-area, supersonic-supersonic ejector was incorporated with a one-dimensional analysis of the conventional constant-area, subsonic-supersonic ejector into a pumping system optimization procedure applicable to high-energy, chemical laser systems and supersonic wind tunnel systems. A comparison of optimum pumping system data shows that under certain conditions, a supersonic-supersonic pumping system has the potential for improved performance over that of a subsonic-supersonic pumping system.

THEORETICAL AND EXPERIMENTAL ANALYSIS OF THE

CONSTANT-AREA, SUPERSONIC-SUPERSONIC EJECTOR

Final Technical Report

by

C.D. Mikkelsen^t

M.R. Sandberg^{††}

A.L. Addy

October 1976

Supported by

U.S. Army Research Office Grant Number DAHC 04-75-G-0046

and

Department of Mechanical & Industrial Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Approved for Public Release; Distribution Unlimited

^{*}This report is based in part on the Ph.D. thesis of C.D. Mikkelsen.

[†] Formerly Graduate Research Assistant; currently 1st Lieutenant, U.S. Army, Aeroballistics Directorate, U.S. Army Missile Command, DRSMI-RDK, Redstone Arsenal, Alabama 35809.

^{††}Graduate Research Assistant.

ttt Professor of Mechanical Engineering.

TABLE OF CONTENTS

			PAG
LIST	OF TA	ABLES	ν
LIST	OF FI	IGURES	vi
NOME	NCLAT	JRE	iх
SECT	ION		
1.0	INTRO	ODUCTION	. 1
		REVIEW OF PREVIOUS WORK	
2.0		RETICAL ANALYSIS OF THE CONSTANT-AREA, SUPERSONIC-RSONIC EJECTOR	.10
	2.1 2.2	ONE-DIMENSIONAL OVERALL MIXING SECTION ANALYSIS	
		PARAMETRIC RESULTS. COMPUTER PROGRAMS.	. 21
3.0		RIMENTAL ANALYSIS OF THE CONSTANT-AREA, SUPERSONIC-RSONIC EJECTOR	. 33
		EXPERIMENTAL APFARATUS	. 36
4.0		TOR OPTIMIZATION AND COMPARISON OF THE CONSTANT-AREA ONIC-SUPERSONIC AND SUPERSONIC-SUPERSONIC EJECTORS	. 67
	4.1	RELATIONSHIP OF THE CONSTANT-AREA SUBSONIC-SUPERSONIC EJECTOR TO THE CONSTANT-AREA SUPERSONIC-SUPERSONIC	
	4.2	EJECTOR OPTIMIZATION OF THE CONSTANT-AREA, SUBSONIC-SUPERSONIC AND SUPERSONIC-SUPERSONIC EJECTORS	
	4.3	COMPARISON OF OPTIMUM CONSTANT-AREA, SUBSONIC- SUPERSONIC AND SUPERSONIC-SUPERSONIC EJECTOR DATA	
	4.4	COMPUTER PROGRAMS	
5.0	CONC	LUSIONS	. 94
6.0	REFE	RENCES	.97
7.0	APPE	NDICES	.99
	7.1	A LITERATURE SURVEY OF EJECTOR SYSTEMS AND RELATED	.99

TABLE OF CONTENTS

				PAGE
	7.2		NT-AREA SUPERSONIC-SUPERSONIC EJECTOR ER PROCRAM	.126
		7.2.1 7.2.2 7.2.3	Computer Program (CASSE)	.135
	7.3		NT-AREA SUPERSONIC-SUPERSONIC EJECTOR TERS	.140
		7.3.2	Computer Program (CASSEP)	. 153
	7.4	CHEMICA	AL LASER GAS DYNAMICS OPTIMIZATION PROGRAM	.163
		7.4.1 7.4.2 7.4.3		.214
	7.5	СНЕМІС	AL LASER GAS DYNAMICS SYSTEM PROGRAM	.222
		7.5.1 7.5.2 7.5.3		.275
	7.6	CONSTA VARIAT	ERIMENTAL INVESTIGATION OF THE PERFORMANCE OF A NT-AREA SUPERSONIC-SUPERSONIC EJECTOR FOR IONS IN THE MIXING-TUBE LENGTH-TO-DIAMETER (L/D)	, 280
8.0	PART	ICIPATI	NG PERSONNEL	. 284

JIST OF TABLES

[able			Pa	age
3.1-1	Dimensionless Parameters for the Experimental, Supersonic-Supersonic Ejector Model	•	•	34
4.3-1		•	•	85
	(a) Miniaum Wo/We · · · · · · · · · · · · · · · · · · ·	•	٠	85
	(b) Minimum $P_{60}/P_2 \cdots \cdots$	٠	•	86
	(c) Minimum Wp/Ws at Matched Pressure Conditions	٠	•	87
	(d) Minimum P_{60}/P_2 at Matched Pressure Conditions • • •	•	•	88
4.3-2	Optimum Chemical Laser System Data, Case No. 2 · · · ·	۰	•	89
	(a) Minimum $W_{\rm p}/W_{\rm c}$ · · · · · · · · · · · · · · · · · · ·	•	٠	89
	(b) Minimum $P_{60}/P_2 \cdots \cdots$	•	•	90
	(c) Minimum W _P /W _S at Matched Pressure Conditions · · ·	•	٠	91
	(d) 4inimum P_{60}/P_2 at Matched Pressure Conditions • • •	•	•	92
4.3-3	Optimum Superconic Wind Tunnel Data	•	•	93

LIST OF FIGURES

Fj	igure			Page	,
	1.0-1	Typical Flow Diagram for a High-Energy, Chemical Laser System • • • • • • • • • • • • • • • • • • •	•	• 8	
	1.0-2	Laser Cavity Schematic • • • • • • • • • • • • • • • • • • •	•	• 8	
	1.0-3	Subsonic-Supersonic Pumping System • • • • • • • • • • • • • • • • • • •	•	• 9	
	1.0-4	Supersonic-Supersonic Pumping System • • • • • • • • • • • • • • • • • • •	•	• 9	
	2.0-1	Constant-Area, Supersonic-Supersonic Ejector Configuration • • • • • • • • • • • • • • • • • • •	•	23	
	2.1-1	Typical Plane of Supersonic-Supersonic Operation • • • •	,	24	
	2.1-2	Constant-Area Mixing Section Control Volume • • • • • •	•	25	
	2.2-1	Control Volumes for the Inviscid Interaction Region • • •	•	26	
	2.3-1	Influence of Y _s on the Plane of Supersonic-Supersonic Operation · · · · · · · · · · · · · · · · · · ·	•	27	
	2.3-2	Influence of γ_p on the Plane of Supersonic-Supersonic Operation	•	28	
	2.3-3	Influence of Mw_S/Mw_P and T_{S0}/T_{P0} on the Plane of Supersonic-Supersonic Operation	•	29	
	2.3-4	Influence of M_{S1} on the Plane of Supersonic-Supersonic Operation • • • • • • • • • • • • • • • • • • •	•	30	
	2.3-5	Influence of M_{p_1} on the Plane of Supersonic-Supersonic Operation $\cdot \cdot \cdot$	•	31	
	2.3-6	Influence of A_{S1}/A_{P1} on the Plane of Supersonic-Supersonic Operation	•	32	
	3.1-1	Half-Section of the Axisymmetric, Supersonic-Supersonic Ejector Model • • • • • • • • • • • • • • • • • • •	•		
	3.1-2	Section View and Specifications of the Continuous-Slope Nozzle and Constant-Area Mixing Tube Configurations • • •		44	
	3.1-3	Enlargement of a Typical Continuous-Slope, Supersonic-Supersonic Nozzle · · · · · · · · · · · · · · · · · · ·	•	45	
	3.1-4	Section View for the Continuous-Slope Nozzles with Specifications for the Nozzle Wall Profiles • • • • • •		46	

			Page
3.1-5	Photograph of the Continuous-Slope, Supersonic-Supersonic Nozzles		47
3.1-6	Photographs of the Ejector Model Components • • • • • • • • • • • • • • • • • • •	•	48 48 49
3.1-7	Partial Assembly of the Axisymmetric Ejector Model Showing the Position of the Supersonic-Supersonic Nozzle in the Secondary Stagnation Chamber ••••••	•	50
3.1-8	Ejector Experiment Flow Diagram • • • • • • • • • • • • • • • • • • •	•	51
3.1-9	Photograph of the Ejector Model Installed on the Test Chamber with the Back Pressure Control Valve Located Downstream of the Mixing Tube • • • • • • • • • • • • • • • • • • •	•	52
3.1-10	Photograph of the Ejector Model Installed on the Test Chamber with the Pitot Probe Located between the Mixing Tube and Back Pressure Control Valve • • • • •	•	53
3.3-1	Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector $(M_{S1} = 1.50)$ • • •	•	54
3.3-2	Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector $(M_{S1} = 1.75)$ • • •	•	55
3.3-3	Maximum Compression Characteristics for the Constant- Area, Supersonic-Supersonic Ejector $(M_{S1} = 2.00)$ • • •		56
3.3-4	Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector $(M_{S1} = 2.50)$ • • •		57
3.3-5	Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions $(M_{S1} = 1.50) \cdot \cdot$	•	58
3.3-6	Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions $(M_{S1} = 1.75) \cdot \cdot$		59
3.3-7	Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions $(M_{S1} = 2.00)$ *** • • • • • • • • • • • • • • • • •	•	60
3.3-8	Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions $(M_{c_1} = 2.50) \cdot \cdot$		61

	viii	Page
3.3-9	Exit Mach Number Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions $(M_{S1} = 2.00) \dots \dots \dots \dots \dots$	62
3.3-10	Schematic of Secondary Flow Separation Induced by the Primary Flow	63
3.3-11	Variation in the Secondary Mach Number at the Mixing Tube Entrance with Primary Stagnation Pressure and Secondary Nozzle Reynolds Number	64
3.3-12	Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector Near the Upper Limit Point	65
3.3-13	Schematic of a "Two Shock" Model for the Constant-Area, Supersonic-Supersonic Ejector	66
4.1-1	Constant-Area, Subsonic-Supersonic Ejector Performance Characteristics	76
4.1-2	Constant-Area, Supersonic-Supersonic Ejector Performance Characteristics	77
4.2-1	High-Energy, Chemical Laser System Schematic	78
4.2-2	Typical Upper Limit Point Data for Optimization of a Supersonic-Supersonic Pumping System $(M_6 vs. P_7/P_2)$	79
4.2-3	Typical Upper Limit Point Data for Optimization of a Supersonic-Supersonic Pumping System (W_p/W_S) and (P_{60}/P_2) vs. (A_2/A_6)	80
4.2-4	Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System $(M_6 \text{ vs. P}_7/P_2)$	81
4.2-5	Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System $(W_p/W_s \text{ and } P_{60}/P_2 \text{vs. } A_5/A_6)$.	82
4.2-6	Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System $(W_p/W_S vs. M_S)$	83
4.2-7	Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System $(P_{60}/P_2 vs. M_5)$	84
7.6-1	Maximum Ejector Compression Characteristics for Variation Mixing Tube Length-to-Diameter Ratio $(W_P/W_S \text{ vs. } P_{MS}/P_{S1}) \dots \dots \dots \dots \dots \dots$	
7.6.2	Maximum Ejector Compression Characteristics for Variation Mixing Tube Length-to-Diameter Ratio $(P_1, P_2, vs. P_1, P_2)$	ons . 283

NOMENCLATURE

Symbols	
A	Area.
$C_{\mathbf{p}}$	Specific heat at constant pressure.
$c_{\mathbf{v}}$	Specific heat at constant volume.
D	Diameter.
f ₁ (), · · · , f ₄ ()	Gas dynamic functions defined in text.
F	Force.
g	Gravitational constant.
h	Specific enthalpy.
М	Mach number.
Mw	Molecular weight.
P	Pressure.
Q	Heat.
r	Radial coordinate.
R	Radius.
Re	Reynolds number.
R	Universal gas constant.
t	Time.
T	Temperature.
u	Specific internal energy.

Magnitude of velocity.

Mass flow rate.

Work, shaft and shear.

Volume.

Longitudinal coordinate or flow-direction coordinate.

Z	Elevation.
Υ	Ratio of specific heats.
μ	Absolute viscosity.
ρ	Density.
()*	Signifies state at which the Mach number is unity.
Subscripts	
0	Stagnation state.
1 ,2 ,3	System locations.
cs	Control surface.
cv	Control volume.
М	Mixed.
P	Primary.
s	Secondary.
т	Nozzle throat.
() _x	Signifies quantity in the flow direction coordinate.
For Sections 4.2 and 4.	3 only:
Symbols	
f()	Gas dynamic functions defined in text.
R _{NS D}	Normal shock diffuser coefficient.
η	Subsonic diffuser efficiency.
Subscripts	
1	Laser cavity entrance location.
2	Laser cavity exit location.
3	Normal shock diffuser exit and subsonic diffuser entrance location

Subsonic diffuser exit location.

Secondary nozzle exit location.

Primary nozzle exit location.

Mixing tube exit and subsonic diffuser entrance location.

Subsonic diffuser exit location.

1.0 INTRODUCTION

This theoretical and experimental analysis of the constant-area, supersonic-supersonic ejector was prompted by current interest in the high-energy, chemical laser and the unique gas dynamic problems associated with that device.

In a typical high-energy, chemical laser, Figs. 1.0-1 and 1.0-2, hydrogen and flourine are precombusted to form free flourine atoms which, with the other gaseous products of combustion, accelerate into the laser cavity through a series of supersonic nozzles. Additional streams of secondary gases enter the laser cavity through a series of supersonic nozzles to form alternate interleaved streams of precombustor and secondary gases. These streams, initially at high Mach numbers (3 to 7) and low static pressures (5 to 200 Terr) mix and react to establish the lasing zone by chemically producing population inversions of selected species. Accompanying these chemical reactions, a significant quantity of heat is released into the laser cavity flow which tends, qualitatively, to increase the static pressure, to decrease the stagnation pressure, and to decrease the Mach number of the "mixed" supersonic flow. At the laser cavity exit, the hot $(T \approx 1500 \text{ K})$, corrosive, supersonic (1.5 < M < 3.5)"mixed" flow at low pressure (10 < P < 60 Torr) must be "pumped" by some form of diffuser-ejector system to atmospheric discharge conditions (760 Torr) in order to start and sustain the lasing process. A pumping system w.ich is ideally suited to this application would have:

- 1. A potential compression ratio in the range 80 to 8,
- Simplicity of design with high resistance to hot, corrosive gases,

- 3. The capability to isolate the laser cavity flow from minor perturbations in the downstream conditions and/or pumping system,
- 4. The flexibility in operating point and performance to allow for variations in laser performance and flow conditions,
- 5. The capability for short-duration, transient start-up,
- 6. Minimum pumping resource requirements, and
- 7. Compact design with portability and mobility as goals.

Current high-energy chemical laser designs have incorporated the constant-area, supersonic diffuser coupled with the constant-area, subsonic-supersonic ejector, Fig. 1.0-3, as a pumping system since the operation of this system is fairly well understood while providing the most obvious, if not satisfactory, solution to the above requirements. Nevertheless, the quest for an improved pumping system continues with various modifications of the conventional diffuser-ejector as candidates [1].

One such candidate for a high-performance chemical laser pumping system is the supersonic-supersonic ejector, Fig. 1.0-4, the subject of this investigation. In this system, the diffuser is eliminated and the supersonic laser cavity stream is pumped directly by the ejector. Thus, the supersonic-supersonic ejector offers a potential alternative in that the desirable characteristics of the conventional diffuser-ejector are retained with a reduction of size and a possible increase in performance.

1.1 REVIEW OF PREVIOUS WORK

The ejector has been in use for many years; indeed, the literature is filled with a virtual multitude of ejector related papers*, the author

^{*}See APPENDIX 7.0.

having compiled over 300 entries dating from 1892. With the exception of three supersonic wind tunnel studies, none of these papers, to the author's knowledge, have addressed the problem of pumping a supersonic stream directly by an ejector, which is not particularly surprising since most commercial applications involve the pumping of subsonic or nearly stagnate streams.

The three wind tunnel studies [2.3,4] were part of an experimental investigation to study the effects of auxiliary air injection on the pressure recovery of variable geometry, supersonic wind tunnel systems. In each case, the auxiliary air was injected through a supersonic nozzle at the downstream end of the supersonic test section, thus in essence forming a supersonic-supersonic ejector. The first two investigations [2,3] showed that the resultant pressure recovery with injection was not as good as those attained with variable-geometry diffuser tunnels; however, the later study by Hasel and Sinclair [4] demonstrated a significant improvement in total system pressure recovery with auxiliary injection.

The general methods of analysis employed in existent subsonicsupersonic ejector models apply equally well to the supersonic-supersonic ejector provided their application is consistent with the physical phenomena. These methods of analysis are:

- 1. The one-dimensional analysis,
- The method-of-characteristics,
- 3. The method of integral relations, and
- 4. The finite-difference method.

In the one-dimensional model of the subsonic-supersonic ejector as executed by Fabri, et al. [5,6], the conservation equations were applied

to a control volume contained within the ejector mixing tube assuming uniform velocity and pressure distributions of the primary and secondary streams at the tube entrance and a uniformly mixed stream at the tube exit. A second control volume was used to predict the operation of the ejector when the secondary stream choked within the mixing tube. The primary and secondary streams were assumed to remain distinct and to be isentropic from their point of confluence to the secondary choking location. Consequently, the condition that the static pressures be equal at the boundary between the primary and secondary streams is not satisfied.

A modified or quasi-one-dimensional model has also been applied to ejectors with short mixing tubes in which case the secondary and primary streams are assumed to remain distinct from entrance to exit [7].

Addy and Chow [8-11] developed a more sophisticated approach for the prediction of secondary stream choking within the mixing tube. In this model, the secondary stream was treated by the conventional methods of one-dimensional gas dynamics while the primary flow field was obtained from the two-dimensional method-of-characteristics for steady, irrotational, supersonic axisymmetric flows. This method allows the static pressures to be matched at the boundary of the streams since the primary stream may have a nonuniform pressure profile; although, the pressure must be uniform across the secondary stream. The simultaneous solution of the two flow fields satisfies the choking criteria, i.e., a Mach number of unity at the minimum flow area, was then corrected for viscous effects by superimposing the mixing layer on the inviscid boundary between the primary and secondary streams.

Howlett and Chow [12] added more detail to the Addy and Chow model using the method of integral relations for computation of the secondary stream but retaining the method-of-characteristics for the primary stream; the static pressure was matched at the boundary of the streams. The choking criteria for the secondary stream was developed based on a singularity in the integral relations describing the secondary flow.

Hill, et al. [13], applied the method of integral relations to both the secondary and primary streams but later [14,15] adopted a finite-difference model which does not attempt to separate the secondary and primary flows.

Each of the models discussed has its own particular advantages and disadvantages.

The one-dimensional model is well suited to broad-band parametric studies of ejector operation since:

- It is computationally simple, each operating point being determined by the direct solution of a set of algebraic equations;
- It applies equally well, at least in theory, to any constant-area ejector configurations; and
- It is quite reliable as long as the assumption of one-dimensional or quasi-one-dimensional flow is satisfied.

The one-dimensional model has certain disadvantages in that:

- It is restricted to the constant-area and constant-pressure ejectors where any pressure-area surface forces acting in the flow direction are eliminated from the momentum equation;
- 2. It may seriously error in flow regimes which are highly two-dimensional in nature;

- 3. It provides no insight into the actual flow phenomena; and
- 4. It requires some a priori knowledge of ejector operation to predict any limiting conditions such as choking of the secondary stream.

The method-of-characteristics, method of integral relations, and finite-difference models have all the advantages of sophistication in that:

- They may be applied to all ejector configurations including variable-area geometries;
- 2. They provide field descriptions of increasing detail;
- They satisfy the physical condition of continuity of static pressure across the boundary between the primary and secondary streams;
 and
- 4. They produce good results over all phases of ejector operation.

 On the other hand, these models require:
- 1. Considerable knowledge, even empirical relations, taken from prior experimentation for their development; and
- Significant amounts of computer time for program development and convergence problems which restricts their use for parametric studies.

1.2 STATEMENT OF THE PROBLEM

This theoretical and analytical analysis of the constant-area, supersonic-supersonic ejector was conducted to:

 Develop a simplified mathematical model for predicting the operating characteristics of a constant-area, supersonicsupersonic ejector which is suitable for parametric evaluations and optimization procedures;

- 2. Provide quantitative and experimental data for verification of the theoretical model and identification of problem areas not indicated by the theoretical analysis; and
- 3. Compare the performance of the constant-area, supersonicsupersonic ejector with that of the constant-area, subsonicsupersonic ejector as applied to high-energy, chemical laser systems.

Figure 1.6-1 Typical Flow Diagram for a High-Energy, Chemical Laser System

Figure 1.0-2 Laser Cavity Schematic

Figure 1.0-3 Subsonic-Supersonic Pumping System

Figure 1.0-4 Supersonic-Supersonic Pumping System

2.0 THEORETICAL ANALYSIS OF THE CONSTANT-AREA, SUPERSONIC-SUPERSONIC EJECTOR

In the constant-area, supersonic supersonic ejector of Fig. 2.0-1, the primary and secondary streams enter at supersonic Mach numbers where they begin to interact, mix, and diffuse. Proceeding through the ejector, these streams continue to mix and diffuse, thus approaching a uniform flow at the ejector exit. The result of this interaction, mixing, and diffusion process can be described by a one-dimensional, compressible flow model consisting of two components, an overall analysis of the constant-area mixing section, stations 1 to 3, and an analysis of the nearly inviscid interaction region just downstream of the confluence of the primary and secondary streams.

By tradition, the governing equations for subsonic-supersonic ejector models are nondimensionalized by the appropriate primary flow variables to allow for a zero secondary mass flow rate, and this tradition is maintained in the following analysis, however, in preference to people in the chemical laser field, the results are presented as nondimensionalized by the secondary flow variables.

2.1 ONE-DIMENSIONAL OVERALL MIXING SECTION ANALYSIS

By hypothesis, the streams entering the ejector must be supersonic. This criteria restricts the ejector operation to a plane as illustrated in Fig. 2.1-1, and prescribes the boundaries of this plane. So long as the entering streams remain supersonic, the ejector mass-flow ratio $W_{\rm p}/W_{\rm S}$ is established independent of the ejector exit-plane pressure but directly proportional to the primary-to-secondary static pressure ratio $P_{\rm P1}/P_{\rm S1}$ at the confluence point. The right-most boundary of the plane of operation

defines the maximum compression ratio and is determined by applying the conservation equations to the control volume of Fig. 2.1-2 together with the following assumptions:

- (1) Steady flow, $\frac{\partial(\)}{\partial t} \equiv 0$.
- (2) Piecewise uniform flows at station 1 and uniform flow at station 3.
- (3) The primary and secondary gases obey the perfect gas relationships.
- (4) The primary and secondary streams mix ideally to form a mixed gas at station 3.
- (5) Negligible wall shear stresses.
- (6) Adiabatic flow between stations 1 and 3.
- (7) No shaft or shear work between stations 1 and 3.
- (8) Negligible body forces.
- (9) The flow in the primary nozzle is isentropic from its stagnation state to the state at station 1.

The fundamental equations of continuity, momentum, in the flow direction, and energy are, respectively:

$$\frac{\partial}{\partial t} \int_{CV} \rho dv + \oint_{CS} \rho \overline{V} \cdot d\overline{A} = 0 , \qquad (2.1-1)$$

$$+ \rightarrow \sum_{\mathbf{x}} \mathbf{F}_{\mathbf{x}} = \frac{\partial}{\partial t} \int_{\mathbf{x}} \mathbf{V}_{\mathbf{x}} (\rho d\mathbf{v}) + \oint_{\mathbf{x}} \mathbf{V}_{\mathbf{x}} (\rho \overline{\mathbf{V}} \cdot d\overline{\mathbf{A}}) , \qquad (2.1-2)$$

$$\frac{pQ}{pt} - \frac{pW_{ss}}{pt} = \frac{\partial}{\partial t} \int_{cv} (u + \frac{v^2}{2} + gz + \cdots) (\rho dV)$$

$$+ \oint_{cs} (h + \frac{v^2}{2} + gz + \cdots) (\rho \overline{V} \cdot d\overline{A}) . \qquad (2.1-3)$$

Applying assumptions (1,2) to Eqn. (2.1-1) yields

$$-\rho_{S1}V_{S1}A_{S1} - \rho_{P1}V_{P1}A_{P1} + \rho_{M3}V_{M3}A_{M3} = 0$$
,

or in terms of the mass flow rate $W = \rho AV$,

$$\frac{W_{M}}{W_{P}} = 1 + \frac{W_{S}}{W_{P}} . {(2.1-4)}$$

Applying assumptions (1,2,5) to Eqn. (2.1-2) gives

$$\begin{split} P_{\text{S1}} A_{\text{S1}} + P_{\text{P1}} A_{\text{P1}} - P_{\text{M3}} A_{\text{M3}} &= -V_{\text{S1}} \left(\rho_{\text{S1}} V_{\text{S1}} A_{\text{S1}} \right) \\ &- V_{\text{P1}} \left(\rho_{\text{P1}} V_{\text{P1}} A_{\text{P1}} \right) + V_{\text{M3}} \left(\rho_{\text{M3}} V_{\text{M3}} A_{\text{M3}} \right) \; , \end{split}$$

or in terms of the Mach number,

$$P_{S1}A_{S1}(1 + \gamma_S M_{S1}^2) + P_{P1}A_{P1}(1 + \gamma_P M_{P1}^2) = P_{M3}A_{M3}(1 + \gamma_M M_{M3}^2).$$

Since $A_{S1} + A_{P1} = A_{M3}$ for a constant-area mixing tube, the result is

$$\frac{P_{M3}}{P_{P1}} = \frac{\frac{P_{S1}}{P_{P1}} \cdot \frac{A_{S1}}{A_{P1}} \cdot f_1(\gamma_S, M_{S1}) + f_1(\gamma_P, M_{P1})}{\left(1 + \frac{A_{S1}}{A_{P1}}\right) f_1(\gamma_M, M_{M3})}$$
(2.1-5)

where
$$f_1(\gamma, M) = 1 + \gamma M^2$$
. (2.1-6)

Equation (2.1-3) together with assumptions (1,2,6,7,8) yields

$$- (h_{S1} + \frac{V_{S1}^2}{2}) (\rho_{S1} V_{S1} A_{S1}) - (h_{P1} + \frac{V_{P1}^2}{2}) (\rho_{P1} V_{P1} A_{P1})$$

$$+ (h_{M3} + \frac{V_{M3}^2}{2}) (\rho_{M3} V_{M3} A_{M3}) = 0 ,$$

or in terms of the mass flow rate and stagnation enthalpy $h_0 = h + \frac{V^2}{2}$,

$$h_{SO}W_{S} + h_{PO}W_{P} = h_{MO}W_{M}$$
.

But since $h_0 = C_P T_0$ + constant for an ideal gas, the result is

$$\frac{T_{M0}}{T_{P0}} \cdot \frac{W_{M}}{W_{P}} \cdot \frac{(C_{P})_{M}}{(C_{P})_{P}} = 1 + \frac{T_{S0}}{T_{P0}} \cdot \frac{W_{S}}{W_{P}} \cdot \frac{(C_{P})_{S}}{(C_{P})_{P}} . \qquad (2.1-7)$$

Using assumptions (3,4), the specific heats of the mixed flow are related to their primary and secondary stream counterparts by

$$W_{M}(C_{p})_{M} = W_{S}(C_{p})_{S} + W_{p}(C_{p})_{p},$$
 (2.1-8)

$$W_{M}(C_{V})_{M} = W_{S}(C_{V})_{S} + W_{P}(C_{V})_{P}$$
 (2.1.9)

Rearranging Eqn. (2.1-8) as

$$\frac{W_{M}}{W_{P}} \cdot \frac{(C_{P})_{M}}{(C_{P})_{P}} = 1 + \frac{W_{S}}{W_{P}} \cdot \frac{(C_{P})_{S}}{(C_{P})_{P}} ,$$

and noting that $C_{\rm p} = (\frac{\gamma}{\gamma-1}) \, \frac{R}{{\rm Mw}}$ for a perfect gas, gives the useful relations

$$\frac{\left(C_{\mathbf{p}}\right)_{\mathbf{S}}}{\left(C_{\mathbf{p}}\right)_{\mathbf{p}}} = \frac{Mw_{\mathbf{p}}}{Mw_{\mathbf{S}}} \left(\frac{\gamma_{\mathbf{S}}}{\gamma_{\mathbf{S}}-1}\right) \left(\frac{\gamma_{\mathbf{p}}-1}{\gamma_{\mathbf{p}}}\right) , \qquad (2.1-10)$$

$$\frac{W_{M}}{W_{P}} \cdot \frac{(C_{P})_{M}}{(C_{P})_{P}} = 1 + \frac{W_{S}}{W_{P}} \cdot \frac{MW_{P}}{MW_{S}} \left(\frac{\gamma_{S}}{\gamma_{S} - 1}\right) \left(\frac{\gamma_{P} - 1}{\gamma_{P}}\right) . \tag{2.1-11}$$

Similarly, rearranging Eqn. (2.1-9) as

$$\frac{W_{M}}{W_{P}} \cdot \frac{(C_{V})_{M}}{(C_{V})_{P}} = 1 \div \frac{W_{S}}{W_{P}} \cdot \frac{(C_{V})_{S}}{(C_{V})_{P}}$$

and noting that $C_V = (\frac{1}{\gamma - 1}) \frac{R}{Mw}$ for a perfect gas, gives the useful relations

$$\frac{\left(C_{\mathbf{V}}\right)_{S}}{\left(C_{\mathbf{V}}\right)_{P}} = \frac{Mw_{P}}{Mw_{S}} \left(\frac{\gamma_{P} - 1}{\gamma_{S} - 1}\right) , \qquad (2.1-12)$$

$$\frac{W_{M}}{W_{P}} \cdot \frac{(C_{V})_{M}}{(C_{V})_{P}} = 1 + \frac{W_{S}}{W_{P}} \cdot \frac{MW_{P}}{MW_{S}} \left(\frac{\gamma_{P} - 1}{\gamma_{S} - 1}\right) . \tag{2.1-13}$$

The mass flow rate, W, is expressed in terms of the mass flow function by

$$\frac{W}{PA} \left[\frac{P}{MW} \cdot T_0 \right]^{V2} = M \left\{ \gamma \left[1 + \frac{(\gamma - 1)}{2} M^2 \right] \right\}^{V2} \equiv f_2(\gamma, M) . \qquad (2.1-14)$$

Then using this relation, the secondary-to-primary mass flow ratio is related to the static pressure ratio at the confluence point by

$$\frac{W_{S}}{W_{P}} = \frac{P_{S1}}{P_{P1}} \cdot \frac{A_{S1}}{A_{P1}} \left[\frac{MW_{S}}{MW_{P}} \cdot \frac{T_{P0}}{T_{S0}} \right]^{V2} \frac{f_{2}(\gamma_{S}, M_{S1})}{f_{2}(\gamma_{P}, M_{P1})} . \tag{2.1-15}$$

Since $\gamma = \frac{C_p}{C_v}$ for a perfect gas, the mixed gas property is given by

$$\gamma_{M} = \frac{\left(C_{p}\right)_{M}}{\left(C_{V}\right)_{M}} = \frac{\left(C_{p}\right)_{p}}{\left(C_{V}\right)_{p}} \cdot \frac{\frac{W_{M}}{W_{p}} \cdot \frac{\left(C_{p}\right)_{M}}{\left(C_{p}\right)_{p}}}{\frac{W_{M}}{W_{p}} \cdot \frac{\left(C_{V}\right)_{M}}{\left(C_{V}\right)_{p}}},$$

which, with Eqns. (2.1-11) and (2.1-13), becomes

$$\gamma_{M} = \frac{\frac{W_{S}}{W_{P}} \cdot \frac{MW_{P}}{MW_{S}} (\frac{\gamma_{S}}{\gamma_{S}-1}) + (\frac{\gamma_{P}}{\gamma_{P}-1})}{\frac{W_{S}}{W_{P}} \cdot \frac{MW_{P}}{MW_{S}} [(\frac{\gamma_{S}}{\gamma_{S}-1}) - 1] + [(\frac{\gamma_{P}}{\gamma_{P}-1}) - 1]} . \qquad (2.1-16)$$

Subtracting Eqn. (2.1-8) from Eqn. (2.1-9) and using the perfect gas relation $\frac{R}{Mw}$ = $C_{\rm P}$ - $C_{\rm V}$ yields

$$\frac{W_{M}}{W_{P}} \cdot \frac{Mw_{P}}{Mw_{M}} = 1 + \frac{W_{S}}{W_{P}} \cdot \frac{Mw_{P}}{Mw_{S}} .$$

Then applying Eqn. (2.1-4) and rearranging results in

$$\frac{Mw_{M}}{Mw_{F}} = \frac{\frac{w_{S}}{w_{F}} + 1}{\frac{w_{S}}{w_{P}} \cdot \frac{Mw_{P}}{Mw_{S}} + 1}$$
(2.1-17)

Substituting relations (2.1-10) and (2.1-11) into Eqn. (2.1-7) gives

$$\frac{T_{MO}}{T_{PO}} = \frac{\frac{T_{SO}}{T_{PO}} \cdot \frac{W_S}{W_P} \cdot \frac{MW_P}{MW_S} \left(\frac{\gamma_S}{\gamma_S - 1}\right) + \left(\frac{\gamma_P}{\gamma_P - 1}\right)}{\frac{W_S}{W_P} \cdot \frac{MW_P}{MW_S} \left(\frac{\gamma_S}{\gamma_S - 1}\right) + \left(\frac{\gamma_P}{\gamma_P - 1}\right)} . \tag{2.1-18}$$

Using the mass flow function (2.1-14), the mixed-to-primary mass flow ratio is expressed as

$$\frac{W_{M}}{W_{P}} = \frac{P_{M3}}{P_{P1}} \cdot \frac{A_{M3}}{A_{P1}} \cdot \left[\frac{Mw_{N}}{Mw_{P}} \cdot \frac{T_{P0}}{T_{M0}} \right]^{1/2} \cdot \frac{f_{2}(\gamma_{M}, M_{M3})}{f_{2}(\gamma_{P}, M_{P1})} .$$

Applying Eqn. (2.1-4) and the relation $A_{S1} + A_{P1} = A_{M3}$, this equation becomes

$$\frac{P_{\text{M3}}}{P_{\text{P1}}} \left[1 + \frac{A_{\text{S1}}}{A_{\text{P1}}} \right] \left[\frac{Mw_{\text{M}}}{Mw_{\text{P}}} \cdot \frac{T_{\text{P0}}}{T_{\text{M0}}} \right]^{V2} \quad \frac{f_{2} \left(\gamma_{\text{M}}, M_{\text{M3}} \right)}{f_{2} \left(\gamma_{\text{P}}, M_{\text{P1}} \right)} = 1 + \frac{W_{\text{S}}}{W_{\text{P}}} \quad .$$

Then eliminating $\frac{P_{MS}}{F_{P1}}$ with Eqn. (2.1-5) yields

$$f_{3}(Y_{M}, M_{M3}) = \frac{\left[\frac{M_{W_{M}}}{M_{W_{P}}} \cdot \frac{T_{P0}}{T_{M0}}\right]^{1/2} \left[\frac{P_{S1}}{P_{P1}} \cdot \frac{A_{S1}}{A_{P1}} \cdot f_{s}(Y_{2}, M_{S1}) + f_{1}(Y_{P}, M_{P1})\right]}{\left[1 + \frac{W_{S}}{W_{P}}\right] f_{2}(Y_{P}, M_{P1})}$$
(2.1-19)

where
$$r_3(\gamma, M) = \frac{f_1(\gamma, M)}{f_2(\gamma, M)} = \frac{1 + \gamma M^2}{M(\gamma^r 1 + (\frac{\gamma - 1}{2})M^2)^{\frac{\gamma}{2}}}$$
 (2.1-20)

The exit Mach number is obtained by solving the quadratic equation

$$\left[\frac{(\gamma_{M}-1)}{2} f_{3}^{2} - \gamma_{M}\right] (N_{M3}^{2})^{2} + \left[f_{3}^{2} - 2\right] N_{M3}^{2} - \left[\frac{1}{\gamma_{M}}\right] = 0 . \quad (2.1-21)$$

Then the mixed-to-primary static pressure ratio is found by solving, in order:

(1) Equation (2.1-15) for $\frac{W_S}{W_D}$,

•

- (2) Equation (2.1-16) for $\boldsymbol{\gamma}_{\boldsymbol{M}}$,
- (3) Equation (2.1-17) for $\frac{Mw_{M}}{Mw_{P}}$,
- (4) Equation (2.1-18) for $\frac{T_{MO}}{T_{PO}}$,
- (5) Equation (2.1-19) for $f_3(\gamma_M, M_{M3})$,
- (6) Equation (2.1-21) for $M_{\overline{M3}}^2$, and
- (7) Equation (2.1-5) for $\frac{P_{M3}}{P_{P1}}$,

where $\gamma_{\rm S}$, $\gamma_{\rm P}$, $\frac{M_{\rm W}}{M_{\rm W}_{\rm P}}$, $\frac{T_{\rm S0}}{T_{\rm P0}}$, $M_{\rm S1}$, $M_{\rm P1}$, $\frac{A_{\rm S1}}{A_{\rm P1}}$, and $\frac{P_{\rm S1}}{P_{\rm P1}}$ are the independent variables or ejector parameters. For computational purposes, the static pressure $P_{\rm P1}$ may be obtained from the stagnation pressure $P_{\rm P0}$ using assumption (9) and the isentropic flow relation

$$\frac{P_0}{P} (\gamma, M) = [1 + (\frac{\gamma - 1}{2}) M^2]^{\frac{\gamma}{\gamma - 1}}.$$
 (2.1-22)

For chemical laser applications, relation (2.1-22) may not be applied to the secondary stream unless P_{SO} is taken at station 1 in Fig. 2.0-1 since the laser cavity flow will not be isentropic.

It should be noted that Eqn. (2.1-21) has two roots for M_{M3}^2 giving subsonic and supersonic values of M_{M3} . The right-most boundary of the plane of operation, Fig. 2.1-1, is calculated from the subsonic value of M_{M3} , whereas the supersonic value of M_{M3} divides the plane into supersonic solutions and subsonic solutions. It is also interesting to note that when supersonic solutions along the supersonic-subsonic dividing line are

diffused through a normal shock wave, they yield exactly the subsonic solutions along the right-most boundary of the plane. Of course, the ejector may operate anywhere within the boundaries of the plane of supersonic-supersonic operation; howev r, given W_p/W_S or P_{F0}/P_{S1} , the most desirable operation is at the right-most boundary since the potential exists for operation at this, the maximum compression ratio.

2.2 ONE-DIMENSIONAL ANALYSIS OF THE INVISCID INTERACTION REGION

The upper boundary of the plane of operation, Fig. 2.1-1, is also dictated by the requirement that both the secondary and primary streams remain supersonic. If the primary-to-secondary static pressure ratio at the confluence point is greater than 1 ($P_{P1}/P_{S1} > 1$), the secondary flow is compressed by the mutual interaction of the primary and secondary streams within the mixing tube. This process is limited, in a one-dimensional sense, to a "nearly" reversible recompression to sonic flow at the minimum area as determined by the control volumes shown in Fig. 2.2-1. Thus, the constant-area, supersonic-supersonic ejector couples the effect of an ideal aerodynamic, supersonic diffuser and momentum transfer through viscous mixing.

The control volume of Fig. 2.2-1(a) extends from station 1 to station 2. In addition to the assumptions listed in Section 2.1, the following additional assumptions are made:

- (10) The streams remain distinct and do not mix between stations 1 and 2.
- (11) The flow is isentropic for each stream between stations 1 and 2.
- (12) The average pressures of the streams can be different at each cross-section; thus, continuity of static pressure at the boundary between the streams is not satisfied by this flow model.

- (13) The Mach number of the secondary flow at station 2 is $M_{\rm S\,2}$ = 1.
- (14) The static pressures are such that $P_{p_1} > P_{s_1}$.

For an isentropic, compressible flow, the area ratio, A/A^* , is expressed in terms of the area ratio function by

$$\frac{A}{A^*} = \frac{1}{M} \left\{ \left(\frac{2}{\gamma + 1} \right) \left[1 + \left(\frac{\gamma - 1}{2} \right) M^2 \right] \right\}^{\frac{\gamma + 1}{2(\gamma - 1)}} \equiv f_4(\gamma, M) . \qquad (2.2-1)$$

since M_{S2} = 1, A_{S2} = A_S^* , and for a constant-area mixing tube A_{S1} + A_{P1} = A_{S2} + A_{P2} . Then

$$\frac{A_{P2}}{A_P^{\star}} = \frac{A_{P1}}{A_P^{\star}} \left\{ 1 + \frac{A_{S1}}{A_{P1}} \left[1 - \frac{A_S^{\star}}{A_{S1}} \right] \right\} \text{ , or }$$

$$\frac{A_{P2}}{A_P^*} = f_4(\gamma_P, M_{P1}) \left\{ 1 + \frac{A_{S1}}{A_{P1}} \left[1 - \left(\frac{1}{f_4(\gamma_S, M_{S1})} \right) \right] \right\} ; \qquad (2.2-2)$$

and

$$f_4(\gamma_p, M_{p2}) = \frac{A_{p2}}{A_p^*}$$
 (2.2-3)

can be solved for the supersonic value of M_{P2} .

By assumptions (10,11), $W_{\rm S}$, $W_{\rm P}$, $T_{\rm S0}$, and $T_{\rm P0}$ are constant from station 1 to station 2 in Fig. 2.2-1(a). Then the mass flow function (2.1-14) gives

$$\frac{P_{S2}}{P_{S1}} \cdot \frac{A_{S2}}{A_{S1}} = \frac{f_2(\gamma_S, M_{S1})}{f_2(\gamma_S, M_{S2})} , \text{ and}$$
 (2.2-4)

$$\frac{P_{P2}}{P_{P1}} \cdot \frac{A_{P2}}{A_{P1}} = \frac{f_2(\gamma_P, M_{P1})}{f_2(\gamma_P, M_{P2})} . \qquad (2.2-5)$$

Applying the momentum equation (2.1-2) to the combined control volume of Fig. 2.2-1(b) together with assumptions (1,2,5,10) yields

$$P_{S1}A_{S1} + P_{P1}A_{P1} - P_{S2}A_{S2} - P_{P2}A_{P2} = -V_{S1}(\rho_{S1}V_{S1}A_{S1})$$

$$- V_{P1} (\rho_{P1} V_{P1} A_{P1}) + V_{S2} (\rho_{S2} V_{S2} A_{S2}) + V_{P2} (\rho_{P2} V_{P2} A_{P2})$$
,

or in terms of the Mach number.

$$P_{S1}A_{S1}(1 + \gamma_S M_{S1}^2) + P_{P1}A_{P1}(1 + \gamma_P M_{P1}^2) =$$

$$P_{S2}A_{S2}(1 + \gamma_SM_{S2}^2) + P_{p2}A_{p2}(1 + \gamma_pM_{p2}^2) .$$

Then using the function (2.1-6), the result is

$$\frac{P_{S1}}{P_{P1}} \cdot \frac{A_{S1}}{A_{P1}} \frac{f_1(\gamma_S, M_{S1})}{f_1(\gamma_P, M_{P1})} + 1 = \frac{P_{S2}}{P_{S1}} \cdot \frac{A_{S2}}{A_{S1}} \cdot \frac{P_{S1}}{P_{P1}} \cdot \frac{A_{S1}}{A_{P1}} \frac{f_1(\gamma_S, M_{S2})}{f_1(\gamma_P, M_{P1})} + \frac{P_{P2}}{P_{P1}} \cdot \frac{A_{P2}}{A_{P1}} \frac{f_1(\gamma_P, M_{P2})}{f_1(\gamma_P, M_{P1})} .$$
(2.2-6)

Combining Eqns. (2.2-4), (2.2-5), and (2.2-6) with $M_{\rm S2}$ = 1 yields

$$\frac{P_{S1}}{P_{P1}} = \frac{f_2(\gamma_P, M_{P1}) \cdot f_3(\gamma_P, M_{P2}) - f_1(\gamma_P, M_{P1})}{\frac{A_{S1}}{A_{P1}} [f_1(\gamma_S, M_{S1}) - f_2(\gamma_S, M_{S1}) \cdot f_3(\gamma_S, 1)]}$$
(2.2-7)

where $\boldsymbol{f}_{3}\left(\boldsymbol{\gamma},\boldsymbol{M}\right)$ is the function (2.1-20).

Then the static pressure ratio P_{S1}/P_{P1} for an isentropic recompression of the secondary stream to sonic conditions at station 2 is obtained by solving, in order:

- (1) Equation (2.2-2) for $\frac{A_{p_2}}{A_p^*}$,
- (2) Equation (2.2-1) for $M_{P2} > 1$, and
- (3) Equation (2.2-7) for $\frac{P_{s1}}{P_{p1}}$,

where $\gamma_{\rm S}$, $\gamma_{\rm P}$, $M_{\rm S1}$, $M_{\rm P1}$, and $\frac{\Lambda_{\rm S1}}{\Lambda_{\rm P1}}$ are the independent variables or ejector parameters; and $P_{\rm P1}$ may again be related to $P_{\rm P0}$ by the isentropic flow function (2.1-22).

2.3 PARAMETRIC RESULTS

The maximum compression ratio for a given supersonic-supersonic ejector configuration, i.e. given $\gamma_{\rm S}$, $\gamma_{\rm P}$, $M_{\rm W_S}/M_{\rm W_P}$, $T_{\rm SO}/T_{\rm PO}$, $M_{\rm S1}$, $M_{\rm P1}$, and $A_{\rm S1}/A_{\rm P1}$, is defined by the intersection of the upper boundary or "upper limit line" of the plane of operation as calculated from Section 2.2, and the right-most boundary of the plane as calculated from Section 2.1. This intersection point is termed the "upper limit point" or "ULP" in Fig. 2.1-1.

The static pressure ratio P_{P1}/P_{S1} may take on values less than 1; however, the roles of driver and driven streams are interchanged and the plane of operation, Fig. 2.1-1, would be reproduced with the primary and secondary subscripts interchanged. Then for practical purposes, the lower boundary of the plane of supersonic-supersonic operation was taken to be the "matched pressure line" where $P_{P1} = P_{S1}$. The intersection of the matched pressure line with the right-most boundary of the plane is termed the "matched pressure point" or "MPP" in Fig. 2.1-1.

The influence of the input variables, γ_s , γ_p , Mw_s/Mw_p , T_{s0}/T_{p0} , M_{s1} , M_{p1} , and A_{s1}/A_{p1} , on the plane of operation is illustrated in

Figs. 2.3-1 to 2.3-6. The procedure for producing each figure was to hold all the ejector parameters at constant values, save one, and to vary this parameter over a wide range. Rather than plot the resultant planes of operation, only the loci of upper limit and matched pressure points are given. The base values for the input variables were in all figures:

$$\gamma_{s}$$
 = 1.40, M_{s}/M_{p} = 1.00, γ_{p} = 1.40, T_{s0}/T_{p0} = 1.00, M_{s1} = 2.00, M_{p1} = 4.00,

while each point on the graphs represent valid solutions to the equations of Sections 2.1 and 2.2, the figures with $\gamma_{\rm S}$, $\gamma_{\rm P}$, and ${\rm MW}_{\rm S}/{\rm MW}_{\rm P}$ as the abcissa may not represent physically realistic solutions except at the base value, indicated by the vertical dashed line, since only limited combinations of γ and ${\rm MW}$ occur in nature. It should also be noted that the identical influence of ${\rm MW}_{\rm S}/{\rm MW}_{\rm P}$ and ${\rm T}_{\rm SO}/{\rm T}_{\rm PO}$ on the plane of operation, as shown in Fig. 2.3-3, is simply a coincidence of the choice of base values. The most significant information given by Figs. 2.3-1 to 2.3-6 is the slope of each curve at the base value or vertical dashed line, since this slope indicates the partial derivative of the dependent variable, ${\rm P}_{\rm PO}/{\rm P}_{\rm S1}$, ${\rm W}_{\rm P}/{\rm W}_{\rm S}$, or ${\rm P}_{\rm MS}/{\rm P}_{\rm S1}$, with respect to the independent variable.

2.4 COMPUTER PROGRAMS

The analyses of Sections 2.1 and 2.2 were the bases for the development of computer programs for analyzing the performance of constant-area, supersonic-supersonic ejectors. These programs along with sample input and output are presented in detail in APPENDICES 7.2 and 7.3 for programs CASSE and CASSEP, respectively.

These computer programs were used to calculate the parametric results presented in Section 2.3.

*Exists only for the limiting case

Figure 2.0-1 Constant-Area, Supersonic-Supersonic Ejector Configuration

を変える。

ALC: NO.

が変え

和

提供

MARK

(A) Market

Figure 2.1-1 Typical Plane of Supersonic-Supersonic Operation

--- Control volume

P, ρ , A,V,T,M, etc. are defined for each stream at sections I and 3. * If the limiting condition exists

Figure 2.1-2 Constant-Area Mixing Section Control Volume

(a) Control Volume for the Distinct Streams

(b) Control Volume for the Combined Streams

Figure 2.2-1 Control Volumes for the Inviscid Interaction Region

Figure 2.3-1 Influence of γ_{S} on the Plane of Supersonic-Supersonic Operation

の名の

のでは、

DESIGNATION OF THE PERSON OF T

ない。

ので

STATE OF

έď

Figure 2.3-2 Influence of γ_{p} on the Plane of Supersonic-Supersonic Operation

Figure 2.3-3 Influence of M_{W_S}/M_{W_P} and T_{S_0}/T_{P_0} on the Plane of Supersonic-Supersonic Operation

の変数

NAMES AS

於然為

;--****

Figure 2.3-4 Influence of Mg, on the Plane of Supersonic-Supersonic Operation

Figure 2.3-5 Influence of Mp1 on the Plane of Supersonic-Supersonic Operation

Figure 2.3-6 Influence of A_{S1}/A_{P1} on the Plane of Supersonic-Supersonic Operation

A series of small-scale, cold-flow, air-to-air ejector experiments were conducted to verify the theory of Section 2.0 and to provide a more detailed description of the flow field than necessarily allowed by a one-dimensional analysis.

3.1 EXPERIMENTAL APPARATUS

1

A half-section of the axisymmetric, supersonic-supersonic, ejector model is given in Fig. 3.1-1. This ejector model was designed and fabricated to facilitate a rapid replacement of nozzles and mixing tubes.

Primary flow enters the ejector from a large stagnation chamber and is accelerated through an elliptical entrance section into the interchangeable nozzle. Secondary flow enters the secondary stagnation chamber from two sides and is accelerated between the nozzle wall and elliptical entrance section at the mixing tube base. Static pressure taps were installed along the mixing tube wall from the nozzle exit plane to the mixing tube exit at increments of one tube radius. A series of six static pressure taps, not shown, were equally spaced about the mixing tube axis at the nozzle exit plane to check the concentricity of the nozzle and mixing tube. In addition, five static pressure wall taps, not shown, were located upstream of the nozzle exit plane at increments of 2.54 mm to ensure that the entering secondary flow was supersonic.

For experimental purposes, the supersonic primary and secondary flows were produced by concentric nozzles of the continuous-slope type, as shown in Fig. 3.1-2. The primary stream was directed through the central nozzle, while the secondary flow was accelerated through the annular passage

formed by the outer mozzle wall and the constant-area mixing tube. Nozzle and mixing tube specifications are also given in Fig. 3.1-2 with the corresponding dimensionless parameters summarized in Table 3.1-1. While confined to an axisymmetric geometry and narrow Mach number range due to test facility limitations, these experimental configurations should be adequate for an initial evaluation of supersonic-supersonic ejector performance.

The continuous-slope nozzles constructed for these experiments were designed by the method-of-characteristics to produce uniform velocity and pressure distributions at the confluence of the secondary and primary streams, thus satisfying, at least ideally, the assumptions for the one-dimensional theory of Section 2.0. A photographic enlargement of one of these nozzles emphasizing the secondary or outer nozzle wall profile is presented in Fig. 3.1-3. As a design simplification, all four nozzles were machined to the same length which necessitated the addition of constant-area sections at the nozzle throat and exit segments as specified

Table 3.1-1 Dimensionless Parameters for the Experimental, Supersonic-Supersonic Ejector Model

	M P 1	M _{S1}	A _{s1} /A _{P1}
1	2.50	1.50	1.95
2	2.50	1.75	1.95
3	2.50	2.00	0.88
4	2.50	2.50	0.88

in Fig. 3.1-4. Although these constant-area sections would have no effect for a truly inviscid flow, they would promote boundary layer growth under actual experimental conditions. Figure 3.1-5 is a near actual size photograph of all four supersonic-supersonic nozzles showing their similarity in size and shape.

Photographs of the ejector components are given in Fig. 3.1-6 showing both front and rear views of the secondary stagnation chamber. It should be noted from Fig. 3.1-2 that the two constant-area mixing tubes are 10 tube diameters in length and that the interchangeable nozzles were constructed with a separate elliptical entrance section. A view of the ejector model in a partially assembled state is given in Fig. 3.1-7 showing the position of the supersonic-supersonic nozzle in the secondary stagnation chamber, one of two side entrance ports for the secondary flow, and one of two "U"-shaped baffles, the visible one surrounding the secondary stagnation pressure tap, which prevent the formation of a large circular vortex about the nozzle axis. All the ejector components were precision machined to design specifications with less than 1.27 mm clearance and 0-ring seals at all the mating surfaces to ensure proper alignment and sealing.

Figure 3.1-8 is a flow diagram for the experimental program. Air from a common supply branched to two automatic control valves which maintained a constant stagnation pressure in the primary and secondary chambers. The air then passed through standard VDI nozzles for measurement of the primary and secondary mass flow rates. A final stagnation chamber was located at the mixing tube exit immediately upstream of a back pressure control valve to prevent local disturbances at this valve

from influencing the velocity and pressure distributions of the mixed, subsonic flow at the tube exit. The back pressure control valve was a sliding block arrangement with two blocks closing symmetrically across the exit duct.

Figure 3.1-9 is a photograph of the small-scale, ejector model installed on the test chamber, which served as the primary stagnation chamber, with a balance handle for manual adjustment of the back pressure control valve visible in the upper portion of the photo. Also visible are the pressure lines leading to the mixing tube wall taps and a portion of the silencer which supports the final stagnation chamber and back pressure control valve. For one experiment, a traversing pitot probe, as shown in Fig. 3.1-10, was added between the mixing tube and final stagnation chamber for measurement of the exit Mach number distribution.

3.2 EXPERIMENTAL PROCEDURE

The experimental, supersonic-supersonic ejector model was installed on a test chamber of the continuous flow facility in the Mechanical Engineering Laboratory and was operated with dry, compressed air. The tests were run at secondary stagnation pressures of 98 to 270 kPa absolute, primary stagnation pressures of 269 to 741 kPa absolute, and stagnation temperatures of approximately 294 K. The primary nozzle Reynolds number, based on the throat diameter, varied from 4.3 x 10^5 at P_{P0} = 269 kPa to 1.2 x 10^6 at P_{P0} = 741 kPa. Secondary nozzle throat Reynolds numbers are indicated in the experimental results.

Pressure data were taken from Bourdon-tube gauges and manometers or with a strain gauge transducer-digital counter system. The primary and secondary stagnation pressures and static pressures upstream of the

standard VDI nozzles were measured with Bourdon-tube gauges except at levels near atmospheric pressure, in which case a mercury manometer was used. Pressure differences across the standard VDI nozzles were measured with either mercury, Meriam 3[†], or water filled U-tube manometers, depending on the magnitude of the pressure difference. Photographic records of all static pressures along the mixing tube wall were taken from mercury manometer boards. Stagnation pressure readings for the traversing pitot probe were taken with the strain gauge transducer-digital counter system.

Although six static pressure taps were available for the measurement of P_{S1} , only one was used in each experiment, and this pressure was read with both a mercury manometer and a strain gauge transducer. An attempt was made to measure an average value of P_{S1} by manifolding all six pressure taps; however, the resultant readings were lower than for any one given pressure tap.

Since the stagnation temperatures T_{P0} and T_{S0} are primarily dependent on the supply temperature, the primary stagnation temperature was measured with a dial thermometer and values for T_{S0} and the temperature of the air upstream of the standard VDI nozzles were assumed to equal this value for T_{P0} .

Maximum compression ratio data for each experimental ejector configuration were obtained in the following manner. With the back pressure control valve fully open, the secondary stagnation pressure P_{so} was set at a fixed value to be maintained by the secondary automatic controller (see Fig. 3.1-8). The automatic controller for the primary stagnation

 $[\]ensuremath{^\dagger Product}$ of the Meriam Instrument Company, Cleveland, Ohio.

pressure P_{p0} was then set at a fixed value such that the static pressure ratio P_{p1}/P_{S1} would lie, at least theoretically, in the range between the matched pressure and upper limit lines. The back pressure valve was then closed until the value of P_{S1} , as indicated by the digital counter, began to rise, at which point the mercury manometer board was photographed. This process was repeated for different combinations of P_{S0} and P_{p0} until the full range of P_{p1}/P_{S1} was covered unless otherwise restricted by the maximum supply pressure.

While the above process is necessarily transient in nature, the results are thought to be good since the point at which P_{S1} begins to rise rapidly, indicating a transition from supersonic to subsonic flow, was quite well defined and the time constant for the mercury manometer boards is much greater than for the strain gauge transducer-digital counter system. Thus, measurements of P_{S1} and P_{M3} from the mercury manometers should be very close to the limit of supersonic-supersonic operation. This thought is also supported on the basis of data repeatability which was about $\frac{1}{2}$ for P_{M3}/P_{S1} with $M_{S1} = 1.50$.

Traverses with the pitot probe at the mixing tube exit could not be completed at exactly maximum back pressure conditions. The above procedure was followed until P_{S1} began to rise, and then the back pressure valve was opened slightly to reach a stable state for the traverse.

3.3 EXPERIMENTAL RESULTS

Maximum compression characteristics for the experimental, constantarea, supersonic-supersonic ejector configurations listed in Table 3.1-1 are presented in Figs. 3.3-1 to 3.3-4. In each figure, the data points are plotted on the plane of supersonic-supersonic operation as predicted

by the one-dimensional analysis of Section 2.0 and illustrated in Fig. 2.1-1. These data points indicate the maximum compression ratio, P_{MS}/P_{S1} , for subsonic values of M_{MS} and, therefore, should lie on the right-most boundary of the plane of supersonic-supersonic operation. Also, given the compression ratio P_{MS}/P_{S1} , the mass flow ratio data points should lie on the pressure ratio data points, i.e. the triangles should lie on the circles directly below them, since W_p/W_S is theoretically proportional to P_{PO}/P_{S1} . In all cases, given P_{PO}/P_{S1} , the experimental values for the maximum compression ratio P_{MS}/P_{S1} were 15 to 18 percent less than the theoretical, except for $M_{S1} = 1.50$, in which case the error was 21 to 22 percent, and the experimental values of W_p/W_S were 0 to 44 percent greater than the theoretical. It should also be noted that the percent errors in P_{MS}/P_{S1} and especially W_p/W_S increase with a decrease in the secondary nozzle throat Reynolds number as defined by

$$Re_{ST} = \frac{\rho V}{11} (D_{M3} - D_S^*) .$$

Wal! pressure distributions at maximum compression conditions for the ejector configurations listed in Table 3.1-1 are given in Figs. 3.3-5 to 3.3-8. Three pressure distributions are plotted in each figure which correspond to data points near the matched pressure point, upper limit point, and at some point midway between in Figs. 3.3-1 to 3.3-4.

At the matched pressure point, the wall pressure is initially constant followed by a near linear rise which levels off at the mixing tube exit. The linear rise covers a smaller portion of the nixing tube at the larger values of M_{S1} corresponding to the higher initial velocity of the

secondary stream and the fact that viscous mixing of the primary and secondary streams is accomplished in a shorter length as M_{S1} approaches M_{P1} .

At the upper limit point, the secondary stream undergoes a large initial recompression followed by a near linear rise which again levels off at the mixing tube exit. The initial pressure rise can be attributed to the aerodynamic diffuser formed by the primary stream as it expands into the mixing tube. As noted for the matched pressure data, the linear portion of the pressure rise occupies a smaller segment of the mixing tube as $M_{\rm S1}$ approaches $M_{\rm P1}$, though the total pressure rise is much greater since more energy is transferred to the secondary stream as $P_{\rm P0}/P_{\rm S1}$ is increased.

The wall pressure distributions of Figs. 3.1-5 to 3.1-8 also show that the low experimental values for the maximum compression ratio in Figs. 3.1-1 to 3.1-4 may be due, in part, to the mixing tube length which was equal to 10 tube diameters in all the experimental ejector configurations, 8 to 12 tube diameters being sufficient for most subsonic-supersonic ejectors. If the mixing cube is long enough for completion of the viscous mixing process, yet not too long such that wall friction becomes important, then the wall pressure distributions should exhibit a near linear rise which levels off to 1 constant value as the primary and secondary streams mix to a uniform flow. With the exception of Fig. 3.3-8, where $M_{S1} = M_{P1}$, it appears that the linear portion of the wall pressure distributions end at the mixing tube exit, that the viscous mixing and diffusion process may not have been completed, and that the compression ratio might be increased with a longer mixing tube. This conclusion is,

moreover, supported by the exit Mach number distributions at maximum compression conditions in Fig. 3.3-9 which show that for $M_{S1} = 2.00$, the potential exists for further mixing and diffusion even for P_{p_1}/P_{S1} near the matched pressure line.

The large percent errors in $W_{\rm p}/W_{\rm S}$ and the changes in compression characteristics with Ke_{ST} noted in Figs. 3.3-1 to 3.3-4 are probably due to separation of the secondary flow upstream of the confluence point. In the onedimensional theory of Section 2.0, it is assumed that the secondary stream would undergo an isentropic recompression to, at the least, sonic conditions for P_{P1} P_{S1} as shown schematically in Fig. 3.3-10(a). In the real situation, however, the secondary stream may not be able to change directions at station 1 without separating the boundar, layer as illustrated in Fig. 3.3-10(b). The flow losses through the oblique shock structure may not be significant even with secondary separation, but the area $\Lambda_{\rm g}$ is effectively reduced with a corresponding increase in ${\rm P}_{\rm S1}$ and decrease in M_{s1}; hence, larger secondary stagnation pressures and mass flow rates are required to obtain the desired values of P_{p_0}/P_{s_1} . The region of secondary separation should grow with increasing values of P_{P1}/P_{S1} and decreasing secondary Reynolds number, and this fact is evident in Fig. 3.3-11 where $M_{s,t}$ as calculated from the isentropic flow function $\frac{P}{P_0}\frac{A}{A^*}$ (Y,M), is plotted versus $\frac{P}{P_0}$ / $\frac{P}{S1}$ for the experimen tal data of Figs. 3.3-1 to 3.3-4. Some methods, such as Zukoski's [16] are available for description of the separation region, but prediction of the static pressure ratio Pp1/Ps1 at the actual onset of separation requires empirical data, thus defeating most simple models for parametric evaluation of supersonic-supersonic ejector performance.

The results of an experimental investigation of a typical ejector configuration for variations in length-to-diameter ratio(L/D = 5, 7.5, 10, 12.5, 15) are presented in APPENDIX 7.6.

Near the matched pressure point, separation should not be a problem and the mass flow ratio data (triangles) of Figs. 3.3-1 to 3.3-4 should lie on the pressure data (circles). For $M_{S1} = 1.75$ and 2.50, this is indeed true; but for $M_{S1} = 1.50$ and 2.00, there is a small deviation. This deviation is apparently due to boundary layer growth in these two nozzles caused by the constant-area, exit segments which were added to the secondary nozzle contours as specified in Fig. 3.1-4.

As mentioned previously, the one-dimensional theory of Section 2.0 employed an isentropic recompression model for prediction of the upper limit to the plane of supersonic supersonic operation. In Fig. 3.3-12, the wall pressure distributions near the upper limit point in Figs. 3.3-5 to 3.3-8 have been replotted with P_{s0} as the characteristic pressure in order to compress the scale. The initial recompression of the secondary stream to Mach numbers probably less than 1 ($P(x)/P_{s0} < 0.5283$) as shown in Fig. 3.3-12 suggests another simple model, a "two shock model" as illustrated in Fig. 3.3-13, which is also suitable for a one-dimensional analysis an2, in addition, accounts for the irreversibilities in two oblique shocks. Of course, this model does not allow for secondary flow separation, nor would it apply to large turning angles where the two oblique shocks are replaced by a single, normal shock wave.

An attempt was made to compare the one-dimensional theory of Section 2.0 with the extensive sup rsonic wind tunnel-injector data or Hasel and Sinclair [4]. Unfortunately, these investigators did not measure the secondary stagnation pressure P_{s0} or include the static pressure P_{s1} at the injector, which makes any comparison impossible.

Figure 3.1-1 Half-Section of the Axisymmetric, Supersonic-Supersonic Ejector Model

	Nozzie			Mixing tube			
	MpI	Dp (mm)	Msı	D* (mm)	D _{M3} (mm)	L (mm)	△ (mm)
i	2.50	11.18	1.50	21.13	31.62	316.2	15.81
2	2.50	81.11	1.75	23.01	31.62	316.2	15.81
3	2.50	11.18	2.00	21.59	25.27	252.7	12.64
4	2.50	11.18	2.50	22.39	25.27	252.7	12.64

Figure 3.1-2 Section View and Specifications of the Continuous-Slope Nozzle and Constant-Area Mixing Tube Configurations

Figure 3.1-3 Enlargement of a Typical Continuous-Slope, Supersonic-Supersonic Nozzle

	Nozzle					
	Msi	△ (mm)	8 (mm)			
	1.50	6.35	2.14			
2	175	0	0			
3	2.00	6.35	2.18			
4	2.50	2.11	0			

Figure 3.1-4 Section View for the Continuous-Slope Nozzles with Specifications for the Nozzle Wall Profiles

Figure 3.1-5 Photograph of the Continuous-Slope, Supersonic-Supersonic Nozzles

(a) Front View of the Secondary Stagnation \cdot hamber

Figure 3.1-6 Photographs of the Fiector Model Components

(b) Reir View of the Secondary Stagnation Chamber

Partial Assembly of the Axisymmetric Ejector Model Showing the Position of the Supersonic-Supersonic Nozzle in the Secondary Stagnation Chamber Figure 3.1-7

Figure 3.1-8 Ejector Experiment Flow Diagram

Figure 5.1-9 Photograph of the Liector Model Installed on the Test Chamber with the Back Pressure Control Valve Located Downstream of the Mixing Tube

Figure 5 1 10 Photograph of the Tjecter Model Installed on the lest Chamber with the Pitot Probe Locates between the Mixing Tube and Back Pressure control Vilvi

.

Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector $(M_{\rm S1}~=~1.50)$ Figure 3.3-1

Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector $(M_{\rm S1}$ = 1.75) Figure 3.3-2

Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector ($M_{S1} = 2.00$) Figure 3.3-3

Sand Court !

Maximum Compression Characteristics for the Constant-Area, Supersonic-Supersonic Ejector $(M_{\rm S1}$ = 2 %0)Figure 3.3-4

Figure 3.3-5 Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions $(M_{S1} = 1.50)$

Figure 3.3-6 Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector as Maximum Compression Conditions $(M_{S1} = 1.75)$

Figure 3.3-7 Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions ($M_{\rm S1}$ = 2.00)

Figure 3.3-8 Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions ($N_{\rm S}$, = 2.50)

Figure 3.3-9 Exit Mach Number Distributions for the Constant-Area, Supersonic-Supersonic Ejector at Maximum Compression Conditions ($M_{\rm S1}$ = 2.00)

(a) Without Secondary Separation

(b) With Secondary Separation

Figure 3.3-10 Schematic of Secondary Flow Separation Induced by the Primary Flow

Figure 3.3-11 Variation in the Secondary Mach Number at the Mixing Tube Entrance with Primary Stagnation Pressure and Secondary Nozzle Reynolds Number

Figure 3.3-12 Wall Pressure Distributions for the Constant-Area, Supersonic-Supersonic Ejector Near the Upper Limit Point

300

Figure 3.3-13 Schematic of a "Two Shock" Model for the Constant-Area, Supersonic-Supersonic Ejector

4.0 LJECTOR OPTIMIZATION AND COMPARISON OF THE CONSTANT-AREA, SUBSONIC-SUPERSONIC AND SUPERSONIC-SUPERSONIC EJECTORS

One purpose of this investigation was to compare the performance of the constant-area, supersonic-supersonic ejector with that of the constant-area, subsonic-supersonic ejector as applied to high-energy chemical laser systems. Because of the large number of parameters involved, it appears that the only fair comparison of the two ejectors must be based on optimum data for a supersonic-supersonic pumping system and a subsonic-supersonic pumping system. To this end, a method was developed for optimizing these two pumping systems within a given set of constraints. This method is based entirely on one-dimensional, compressible flow theory with a limited use of empirical data.

4.1 RELATIONSHIP OF THE CONSTANT-AREA SUBSONIC-SUPERSONIC EJECTOR
TO THE CONSTANT-AREA SUPERSONIC-SUPERSONIC EJECTOR

The performance characteristics of the constant-area, subsonic-supersonic ejector and constant-area, supersonic-supersonic ejector are quite similar, the primary difference being the range of M_{S1} .

Given $\gamma_{\rm S}$, $\gamma_{\rm P}$, $M_{\rm W_S}/M_{\rm W_P}$, $T_{\rm SO}/T_{\rm PO}$, and $A_{\rm S1}/A_{\rm P1}$, the performance characteristics of the constant-area, subsonic-supersonic ejector, as shown schematically in Fig. 4.1-1, are described by a three-dimensional surface with axis $M_{\rm S1}$, $P_{\rm S1}/P_{\rm PO}$, and $P_{\rm MS}/P_{\rm PO}$. Since the secondary entrance forms a converging nozzle, $M_{\rm S1}$ may take on any value in the range 0 to 1. For $P_{\rm P1} > P_{\rm S1}$, the primary stream expands inside the mixing tube and the secondary stream is reaccelerated to, at most, sonic conditions. Should the secondary stream be thus choked, the ejector operation becomes independent of $P_{\rm MS}/P_{\rm PO}$ as indicated by two faces of the characteristic

surface which lie parallel to the P_{M3}/P_{P0} axis. The curve marking the transition from the P_{M3}/P_{P0} independent to dependent regimes is known as the "break-off" curve and is considered to represent the optimum conditions for ejector operation.

Given $\gamma_{\rm S}$, $\gamma_{\rm P}$, ${\rm Mw_S/Mw_P}$, ${\rm T_{SO}/T_{PO}}$, and ${\rm A_{S1}/A_{P1}}$, the performance characteristics of the constant-area, supersonic-supersonic ejector, as shown schematically in Fig. 4.1-2, are also described by a three-dimensional surface with axis M_{S1} , P_{S1}/P_{P0} , and P_{M3}/P_{P0} ; however, the ejector operation is restricted to only a portion of the surface. So long as the entering secondary stream remains supersonic, as assumed in Section 2.0, \mathbf{M}_{Sl} will be at the supersonic design value as produced by the generating device, e.g. a laser cavity, and the ojector is confined to the plane of supersonic-supersonic operation. If P_{M3}/P_{P0} is increased beyond the limit of maximum P_{MS}/P_{po} for supersonic-supersonic operation, then a normal shock wave will pass into the secondary entrance and ${\rm M}_{\rm S1}$ must undergo a step change to the normal shock value as indicated in Fig. 4.2-2(a). If, alternately, P_{s1}/P_{p0} is decreased one you the upper limit line for supersonic-supersonic operation, then the secondary stream is recompressed in the mixing tube to an area less than A* for the supersonic design value of $\mathrm{M}_{\mathrm{S}1}$, and $\mathrm{M}_{\mathrm{S}1}$ must drop to the subsonic design value of the generating device. However, if P_{s1}/P_{p0} is now increased, the entering secondary flow will again go supersonic, similar to a secondthroat, supersonic diffuser, with M_{S1} first increasing to the normal shock value before a step change to the supersonic design value.

See references [1,8,10,11] for a complete description of constant-area, subsonic-supersonic ejector operation.

The similarity in performance characteristics of the constant-area, subsonic-supersonic ejector and constant-area, supersonic-supersonic ejector becomes even more apparent as the supersonic design value of M_{S1} in Fig. 4.1-2(a) approaches 1 since the normal shock value also approaches 1 and, in the limit, Fig. 4.1-2(a) becomes identical to Fig. 4.1-1(a).

4.2 OPTIMIZATION OF THE CONSTANT-AREA, SUBSONIC-SUPERSONIC AND SUPERSONIC-SUPERSONIC EJECTORS

- market state of the state of

Referring to the high-energy, chemical laser system schematic of Fig. 4.2-1, the laser cavity, stations 1 to 2, has no influence on the pumping system other than establishing the flow conditions at point 2. Hence, the laser cavity can be replaced by a supersonic wind tunnel or any other device producing a uniform, supersonic stream. A one-dimensional analysis for laser cavity flows with heat addition is available [1] and was included in a computerized version of the optimization procedure.

The constant-area, normal shock diffuser, stations 2 to 3 of Fig.
4.2-1, diffuses the entering supersonic stream to its normal shock value.
The static pressure ratio across the duct is expressed by

$$P_3/P_2 = R_{NSD} \xi(\gamma_S, M_2)$$

where $R_{\rm NSD}$ is an empirical normal shock coefficient and $f(r_{\rm S},\,{\rm M_2})$ is the usual normal shock static pressure ratio function. Value: of $r_{\rm NSD}$ in the range $0.75 \le R_{\rm NSD} \le 1.25$ are commonly used for parametric studies [1].

The static pressure rise across the subsonic diffuser, stations 3 r 4 of Fig. 4.2-1, is given by

$$(P_4 - P_3)_{ACTUAL} = \eta(p_4 - P_3)_{IDEAL}$$

where η is an empirical diffuser efficiency and $(P_4 - P_3)_{IDEAL}$ is a function of γ_S , M_3 , and A_4/A_3 . As a simplification, η was taken from a curve fit of experimental data given in [17,18] for 15° conical, subsonic diffusers with

$$\eta = 1.048992 - 0.027229 (A_4/A_3)$$
$$- 0.024461 (A_4/A_3)^2 + 0.002685 (A_4/A_3)^3 ,$$
$$1.0 \le A_4/A_3 \le 5.2 .$$

This empirical relation was also applied to the subsonic diffuser at stations 7 to 8.

Although stagnation pressure losses are encountered in sudden enlargements, these losses were ignored in the subsonic-supersonic pumping system of Fig. 4.2-1.

Finally, the one-dimensional analysis for the constant-area, supersonic-supersonic ejector of Fig. 4.2-1 was taken from Section 2.0, and the corresponding analysis for the constant-area, subsonic-supersonic ejector was taken from Addy and Mikkelsen [1].

Then given $\gamma_{\rm S}$, ${\rm M_2}$, ${\rm R_{NSD}}$, ${\rm A_4/A_3}$, ${\rm Y_P}$, ${\rm Mw_P/Mw_S}$, ${\rm T_{60}/T_{50}}$, ${\rm A_8/A_7}$, ${\rm P_{60}/P_2}$, and ${\rm P_8/P_2}$ for the subsonic-supersonic pumping system, or ${\rm Y_S}$, ${\rm M_2}$, ${\rm Y_P}$, ${\rm Mw_P/Mw_S}$, ${\rm T_{60}/T_{20}}$, ${\rm A_8/A_7}$, ${\rm P_{60}/P_2}$, and ${\rm P_8/P_2}$ for the supersonic-supersonic pumping system, the optimum is considered to be that ejector, as specified by ${\rm M_6}$ and ${\rm A_7/A_6}$ which requires the minimum ${\rm W_P/W_S}$; or, alternately, the minimum ${\rm P_{60}/P_2}$ when ${\rm W_P/W_S}$ is specified. In general, ${\rm Y_S}$, ${\rm M_2}$, ${\rm Y_P}$, ${\rm Mw_P/Mw_S}$, and ${\rm T_{60}/T_{50}}$ (or ${\rm T_{60}/T_{20}}$) are known and ${\rm P_8/P_2}$ and ${\rm P_{60}/P_2}$ (or ${\rm W_P/W_S}$) are the constraints of primary interest.

Now consider the simplified supersonic-supersonic pumping system of Fig. 4.2-1 with $A_8/A_7=1$, i.e. with no subsonic diffuser and γ_S , γ_P ,

 $\mathrm{Mw_p}/\mathrm{Mw_s}$, $\mathrm{T_{60}/T_{20}}$, and $\mathrm{M_2}$ as known constants. Then given $\mathrm{M_6}$ and $\mathrm{A_2/A_6}$, upper limit point values of $\mathrm{P_7/P_2}$, $\mathrm{P_{60}/P_2}$, and $\mathrm{W_p/W_s}$ are obtained from the one-dimensional theory of Section 2.0. Figure 4.2-2 is a plot of $\mathrm{M_6}$ vs. $\mathrm{P_7/P_2}$ at the upper limit point over a range of $\mathrm{A_2/A_6}$ for this system. If the compression ratio $\mathrm{P_7/P_2}$ is chosen to be, say, 20, then all possible combinations of $\mathrm{M_6}$ and $\mathrm{A_2/A_6}$ satisfying this constraint are determined by the verticle dashed line.

Figure 4.2-3 is a cross plot of P_{60}/P_2 and W_p/W_S vs. A_2/A_6 for the combinations of M_6 and A_2/A_6 of Fig. 4.2-2 satisfying the constraint on P_7/P_2 . From this graph it is apparent that P_{60}/P_2 varies inversely with W_p/W_S and that if an upper limit is established for P_{60}/P_2 , say, at 1000, then the minimum value of W_p/W_S , in this case $W_p/W_S = 3.2$, will occur at that upper limit. The optimum ejector is, therefore, fully determined since $A_2/A_6 = 4.4$ for $P_{60}/P_2 = 1000$ and $M_6 = 4.4$ from Fig. 4.2-2. If, for example, an upper limit of 6 is set for W_p/W_S , then the minimum value of P_{60}/P_2 , in this example $P_{60}/P_2 = 217$, will occur at $A_2/A_6 = 1$, corresponding to the upper limit value of W_p/W_S in Fig. 4.2-3 and $M_6 = 3.7$ from Fig. 4.2-2.

This procedure for optimizing the supersonic-supersonic pumping system of Fig. 4.2-1 is not significantly altered by the addition of a subsonic diffuser at stations 7 to 8. Figures 4.2-2 and 4.2-3 are still sufficient; however, the overall compression ratio P_8/P_2 is substituted for P_2/P_2 .

The optimization procedure for the subsonic-supersonic pumping system of Fig. 4.2-1 is nearly identical to the procedure outlined above for the supersonic-supersonic pumping system, with Figs. 4.2-4 and 4.2-5

corresponding to Figs. 1.2-2 and 4.2-3, respectively; however, one additional variable is involved since M_5 may take on any value in the range $0 \le M_5 \le 1$. The result is that Figs. 4.2-4 and 4.2-5 must be reproduced for all values of M_5 which give solutions satisfying the constraints on P_7/P_2 and P_{60}/P_2 (or alternately W_p/W_s). Once this is accomplished, the minimum values of W_p/W_s (or alternately P_{60}/P_2) can be cross plotted vs. P_5 to find the absolute minimum as shown in Figs. 4.2-6 and 4.2-7. This process completes the ejector specification since, for example, P_7/P_8 and P_8/P_8 and P_8/P_8 from Fig. 4.2-6 determine P_8/P_8 from Fig. 4.2-5, which in turn specifies P_8/P_8 from Fig. 4.2-4.

As an example of the optimization procedure for a subsonic-supersonic pumping system of Fig. 4.2-1 with $R_{\rm NSD}$, A_4/A_3 and A_8/A_7 equal to 1, let $M_5=0.9$ as in Figs. 4.2-4 and '.2-5 with constraints of $P_7/P_2=20$ and $P_{60}/P_2=1000$. Since P_{60}/P_2 varies inversely with W_p/W_s in Fig. 4.2-5, the minimum value of W_p/W_s is 2.8 at $A_5/A_6=3.8$ and $M_6=4.5$ from Fig. 4.2-4. Repeating this process for all suitable values of M_5 and plotting the results, shown in Fig. 4.2-6, it can be seen that the absolute minimum value of W_p/W_s occurs at $M_5=0.9$ and the optimization is complete.

If in the preceding example an upper limit of $W_p/W_S=6$ was selected rather than the constraint on P_{60}/P_2 , then for $M_5=0.9$, the minimum value of P_{60}/P_2 would be 105 at $A_5/A_6=0.8$ from Fig. 4.2-5 and $M_6=2.8$ from Fig. 4.2-4. Now repeating this process for all values of M_S yielding solutions which satisfy the system constraints and plotting the results shown in Fig. 4.2-7, it can be seen that the absolute minimum value of

 P_{60}/P_2 occurs at M_5 = 0.7, rather than at M_5 = 0.9, and that the solution at M_5 = 0.9 is merely one step in the optimization process.

While this graphical method of ejector optimization is necessarily quite tedious, the entire process is readily adaptable to standard computer programing procedures. Some care, however, must be taken in the selection of M_5 , A_5/A_6 , and M_6 (or A_2/A_6 and M_6) since only certain combinations will yield solutions satisfying any one system constraint.

4.3 COMPARISON OF OPTIMUM CONSTANT-AREA, SUBSONIC-SUPERSONIC AND SUPERSONIC-SUPERSONIC EJECTOL DATA

Three sets of optimum data, as listed in Tables 4.3-1, 4.3-2, and 4.3-3, were calculated by the procedure of Section 4.2 for comparison of a supersonic-supersonic pumping system with a subsonic-supersonic pumping system as shown in Fig. 4.2-1. The first two cases represent typical high-energy, chemical laser system data while the third case demonstrates a supersonic wind tunnel application. In each case, the appropriate variable, either W_p/W_g or P_{60}/P_2 , was minimized for the supersonic-supersonic pumping system and for the subsonic-supersonic pumping system with $R_{\rm NSD}=1.0,\ 0.85,\ {\rm and}\ 0.75.$ The exit-to-entrance area ratio for all the subsonic diffusers was arbitrarily set at 2.0. The optimum ejector for each case is specified by M_6 and A_7/A_6 . The area ratio A_8/A_2 was also tabulated as an indication of the overall size of the pumping systems.

In selecting data for the hypothetical, supersonic wind tunnel configuration of Table 4.3-3, it was assumed that the secondary, or test section, nozzle and the ejector primary nozzle would both be supplied from a common source at the same stagnation pressure, in this case

790.8 kPa, and that the ejector system would pump to atmospheric conditions. This assumption precludes a minimization of P_{60}/P_2 since the compression ratio P_8/P_2 would be unknown.

The optimization method of Section 4.2 used only theoretical, supersonic-supersonic ejector data computed at upper limit point conditions. In defense of this procedure, Cases No. 1 and 2 were also calculated for a supersonic-supersonic pumping system at matched pressure conditions. A matched pressure calculation was unrealistic for the supersonic wind tunnel, Case No. 3, since this condition would only be satisfied if the secondary, or test section, nozzle and primary ejector nozzle (operating at equal stagnation pressures) had identical design Mach numbers.

Examination of the optimum data for Cases No. 1, 2, and 3 leads to several important conclusions:

1. For a fixed value of P_{60}/P_2 , the minimum value of W_p/W_S for the supersonic-supersonic pumping system lies between the minimum value of W_p/W_S for the subsonic-supersonic pumping systems with $R_{NSD}=1.0$ and 0.85. Since a value of $R_{NSD} \leq 0$ 85 is most realistic, it appears that the supersonic-supersonic pumping system gives the best performance.

For a fixed value of W_p/W_s , the minimum value of P_{60}/P_2 for the supersonic-supersonic pumping system is equal to or greater than the minimum value of P_{60}/P_2 for the subsonic-supersonic pumping system with $R_{NSD} \approx 0.75$ indicating that the performance of the subsonic-supersonic pumping system is superior.

Clearly, the only conclusion to be drawn from this limited data is that the selection of one pumping system over the other on the bases of mass flow ratio and primary stagnation pressure depends entirely on the system constraints and that no broad statement can be made as to one pumping system performing better than the other.

- 2. Upper limit point conditions are preferred over matched pressure conditions in the optimization of superscnic-supersonic pumping systems since the resultant system requires much lower values of W_p/W_S and P_{60}/P_2 . The same conclusion, though not proven, should apply to all values of P_6/P_2 between the matched pressure and upper limit points since P_7/P_2 varies line rly with P_8/P_3 and P_{60}/P_2 (see Section 2.0).
- 3. Based on the area ratio A_8/A_2 , that pumping system with the best performance, or the smallest W_p/W_S or P_{60}/P_2 requirements, is also physically the smallest system.
- 4. The normal shock coefficient has a significant influence on the performance of subsonic-supersonic pumping systems and points to supersonic diffuser design as an area for careful attention.
- 5. The comparison of a constant-area, subsonic-supersonic ejector with a constant-area supersonic-supersonic ejector on the bases of primary Mach number, M_6 , and mixing tube area ratio, A_7/A_6 , alone has little if any value.

4.4 COMPUTER PROGRAMS

Two computer programs were developed to conduct the foregoing optimization and system studies. The optimization program, CLGDOP, and the systems program, CLGDSP, along with sample input and output data are presented in detail in APPENDICES 7.4 and 7.5, respectively.

(a) Ejector Characteristic Surface

(b) Ejector Configuration and Notation

Figure 4.1-1 Constant-Area, Subsonic-Supersonic Ejector Performance Characteristics

(a) Ejector Characteristic Surface

(b) Ejector Configuration and Notation

Figure 4.1-2 Constant-Area, Supersonic-Supersonic Ejector Performance Characteristics

Figure 4.2-1 High-Energy, Chemical Laser System Schematic

Figure 4.2-2 Typical Upper Limit Point Data for Optimization of a Supersonic-Supersonic Pumping System $(M_6 \text{ vs. } P_7/P_2)$

Figure 4.2-3 Typical Upper Limit Point Data for Optimization of a Supersonic-Supersonic Pumping System $(W_p/W_g \text{ and } P_{60}/P_2 \text{ vs. } A_2/A_6)$

Figure 4.2-4 Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System $(M_6 \text{ vs. } P_7/P_2)$

Figure 4.2-5 Typical Break-Off Data for Optimization of a Subsonic-Supersoric Pumping System $(W_p/W_S \text{ and } P_{60}/P_2 \text{ vs. } A_5/A_6)$

Figure 4.2-6 Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System (W_p/W_s vs. M_s)

Figure 4.2-7 Typical Break-Off Data for Optimization of a Subsonic-Supersonic Pumping System $(P_{60}/P_2 \text{ vs. M}_5)$

Table 4.3-1 Optimum Chemical Laser System Data, Case No. 1 $(a) \quad \text{Minimum W_p/W_S}$

CASE NO. 1(a)									
Optimum Chemical Laser System Data for Minimum W _P /W _S									
$\gamma_{s} = 1.562 \qquad Mw_{p}/Mw_{s} = 1.684$									
$\gamma_{\rm p} = 1.340$ $A_8/A_7 = 2.000$									
	$M_2 = 2$	2.180	P_{60}/P_{2}	= 193	7				
		$P_8/P_2 =$	28.06						
Supersonic-Supersonic Pumping System at Upper Limit Point Conditions									
	r	•			$T_{60}/T_{20} = 0.761$				
	r								
	W _p /W _s	T ₆₀ /T ₂₀			A ₈ /A ₂				
		T ₆₀ /T ₂₀	= 0.761		A ₈ /A ₂ 2.496				
	W _P /W _S 4.408 Subson	T ₆₀ /T ₂₀ :	A ₇ /A ₆ 5.028 Pumping Condition	Syster s	2.496				
R _{NS D}	W _P /W _S 4.408 Subson	T_{60}/T_{20} M_{6} 4.690 Aic-Supersonic at Break-Off (= 0.761 A_7/A_6 5.028 Pumping Condition $A_4/A_3 =$	Syster s	2.496				
R _{NSD}	W _P /W _S 4.408 Subson a T ₆₀ /T	T_{60}/T_{20} M_{6} 4.690 Aic-Supersoniat Break-Off (= 0.761 A_7/A_6 5.028 E Pumping Condition $A_4/A_3 =$	Systers 2.000	2.496 n				
	W _P /W _S 4.408 Subson a T ₆₀ /T W _P /W _S	T_{60}/T_{20} M_{6} 4.690 $Aic-Supersoniant Break-Off (a) and (b) and (c) and ($	= 0.761 A_7/A_6 5.028 Pumping Condition $A_4/A_3 =$	Systers 2.000 A ₇ /A ₆	2.496 n A ₈ /A ₂				

Table 4.3-1 (Cont.) (b) Minimum P_{60}/P_2

CITOR NOT A LO	CASE	NO.	1	(b)
----------------	------	-----	---	-----

Optimum Chemical Laser System Data for Minimum P_{66}/P_2

$$\gamma_{S} = 1.562$$
 $Mw_{P}/Mw_{S} = 1.684$
 $\gamma_{P} = 1.340$
 $A_{8}/A_{7} = 2.000$
 $M_{2} = 2.180$
 $W_{P}/W_{S} = 10.00$
 $P_{8}/P_{2} = 28.06$

Supersonic-Supersonic Pumping System at Upper Limit Point Conditions

$$T_{60}/T_{20} = 0.761$$

 P_{60}/P_{2} M_{6} A_{7}/A_{6} A_{8}/A_{2} 318.6 3.797 1.705 4.838

Subsonic-Supersonic Pumping System at Break-Off Conditions

$$1_{60}/T_{50} = 0.761$$
 $A_4/A_3 = 2.000$

R _{ris d}	P ₆₀ /P ₂	^M 6	A ₇ / A ₆	A_8/A_2
1.00	110.2	2.660	1.729	4.319
0.85	174.0	3.047	1.903	4.515
0.75	270.6	3.410	2.085	4.665

Table 4.3-1 (Cont.) (c) Minimum $W_{\rm p}/W_{\rm S}$ at Matched Pressure Conditions

CASE	NO.	1 ((c)
CAUL	110.	- 4 1	,

Optimum Chemical Laser System Data for Minimum Wp/Ws

$$\gamma_s = 1.562$$

$$Mw_{p}/Mw_{s} = 1.684$$

$$\gamma_{\mathbf{p}} = 1.340$$

$$\gamma_{p} = 1.340$$
 $A_{8}/A_{7} = 2.000$

$$M_2 = 2.180$$

$$P_{60}/P_2 = 1937$$

$$P_8/P_2 = 28.06$$

Supersonic-Supersonic Pumping System at Matched Pressure Conditions $(P_6/P_2 = 1.0)$

$$T_{60}/T_{20} = 0.761$$

W_P/W_S

M₆

 A_7/A_6 A_8/A_2

9.665

5.853

1.654

5.058

Table 4.3-1 (Cont.)

(d) Minimum P_{60}/P_2 at Matched Pressure Conditions

CASE NO. 1(d)

Optimum Chemical Laser System Data for Minimum P_{60}/P_2

$$\gamma_{\rm S} = 1.562$$

 $\gamma_{S} = 1.562$ $M_{W_{p}}/M_{W_{S}} = 1.684$

$$\gamma_{\mathbf{p}} = 1.340$$

 $A_8/A_7 = 2.000$

$$M_2 = 2.180$$

 $W_P/W_S = 10.00$

$$P_8/P_2 = 28.06$$

Supersonic-Supersonic Pumping System at Matched Pressure Conditions $(P_6/P_2 = 1.0)$

$$T_{60}/T_{20} = 0.761$$

 P_{60}/P_{2}

 A_7/A_6

 A_8/A_2

1836

5.807

1.623

5.209

Table 4.3-2 Optimum Chemical Laser System Data, Case No. 2 $\label{eq:case_power} \mbox{(a)} \quad \mbox{Minimum W_p/W_S}$

ginner - Novemberger	France (The Service Committee of the						
CASE NO. 2(a)							
Optimum Chemical Laser System Data for Minimum W _p /W _S							
$\gamma_{s} = 1.562$ $Mw_{p}/Mw_{s} = 1.478$							
	$Y_{p} = 1.340$ $A_{8}/A_{7} = 2.000$						
	$M_2 = 2.23$	80 P ₆	$P_2 = 143$	0			
		$P_{8}/P_{2} = 20.$.71				
Supersonic-Supersonic Pumping System at Upper Limit Point Conditions $T_{6C}/T_{20} = 0.897$							
	W_2/W_S M_6 A_7/A_6 A_8/A_2						
	2.228 4.055 1.059 2.209						
Subsonic-Supersonic Pumping System at Break-Off Conditions $T_{60}/T_{50} = 0.807 \qquad A_4/A_3 = 2.000$							
P _{NS D}	W _p /W _s	M ₆	A7 / A6	A ₈ /A ₂			
1.00	1.968	4.476	7.000	1.952			
0.85	2.559	4.596	5.838	2.375			
0.75	3.108	4.690	5.128	2.771			

Table 4.3-2 (Cont.) (b) Minimum $P_{0,0}/P_2$

gramamityt Wa	Same A shire of the company of the c			manufakir kilin Tirangan / jakir			
		CASE NO	. 2(b)				
Optimum Chemical Laser System Data for Minimum P ₆₀ /P ₂							
$\gamma_{\rm S} = 1.562$ $Mw_{\rm p}/Mw_{\rm S} = 1.478$							
	$Y_p = 1.340$ $A_8/A_7 = 2.000$						
	$M_2 = 2.$	230	W _P /W _S ≈	6.000			
		$P_8/P_2 =$	20.71				
			ic Pumping int Condition = 0.807				
	P ₆₀ /P ₂	M ₆	A_7/A_6	A_3/A_2			
74	123.0	3.127	1.801	4.497			
Subsonic-Supersonic Pumping System at Break-Off Conditions $T_{60}/T_{50} = 9.807 \qquad A_4/A_3 = 2.000$							
R _{NSD}	P ₆₀ /F ₂	M ₆	A ₇	/A ₆	A_8/A_2		
1.00	56.58	2.22	3 1.	844	3.951		
0.85	84.21	2.56	8 2.	047	4.160		
0.75	125.7	2.89	4 2.	262	4.323		

Table 4.3-2 (Cont.) (c) Minimum $\mathrm{W_{p}/W_{S}}$ at Matched Pressure Conditions

	il Laser System Data nimum W _p /W _S
$\gamma_{\rm S} = 1.562$	$Mw_{\nu}/Mw_{S} = 1.478$
$\gamma_p = 1.340$	$A_8/A_7 = 2.000$
$M_2 = 2.230$	$P_{60}/P_{2} = 1430$
P ₈ /P	$r_2 = 20.71$

at Matched Pressure Conditions $(P_6/P_2 = 1.0)$

$$T_{60}/T_{20} = 0.807$$

 A_7/A_9 W_{p}/W_{S} A_8/A_2 3.920 5.593 2.302 3.536

£							
CASE NO. 2(d)							
Optimum Chemical Laser System Data for Minimum P_{60}/P_2							
Y _S :	$\gamma_{S} = 1.562$ $Mw_{P}/Mw_{S} = 1.478$						
γ_p :	$\gamma_{p} = 1.340$ $A_{8}/A_{7} = 2.000$ $M_{2} = 2.230$ $M_{p}/M_{S} = 6.000$						
M ₂ :							
$P_8/P_2 = 20.71$							
Supersonic-Supersonic Pumping System at Matched Pressure Conditions $(P_6/P_2 = 1.0)$ $T_{60}/T_{20} = 0.807$							
P ₆₀ /P ₂	M ₆	A ₇ /A ₆	A_8/A_2				
633.0	4.934	1.677	4.955				

Table 4.3-3 Optimum Supersonic Wind Tunnel Data

			······································				
CASE NO. 3							
Optimum Supersonic Wind Tunnel Data for Minimum W _P /W _S							
$\gamma_{\rm S} = 1.400$ $M_{\rm Wp}/M_{\rm W} = 1.000$							
	$\gamma_{p} = 1.400$ $A_{8}/A_{7} = 2.000$						
	$M_2 = 5.00$	00 P ₆	$_{0}/P_{2} = 529$.1			
		$P_8/P_2 = 67$.81				
	Supersonic-Supersonic Pumping System at Upper Limit Point Conditions $T_{60}/T_{20} = 1.000$						
	W_p/W_s M_s A_7/A_6 A_8/A_2						
	1.810 2.063 8.758 2.258						
Subsonic-Supersonic Pumping System at Break-Off Conditions $T_{60}/T_{50} = 1~000 \qquad {}_{4}/A_{3} = 2.000$							
R _{NS D}	$W_{_{\mathbf{P}}}/W_{_{\mathbf{S}}}$	M ₆	A ₇ /A ₆	A_8/A_2			
1.00	1.349	2.811	4.450	1.700			
0.85	1.852	2.918	3.669	2.130			
0.75	2.336	3.001	3.217	2.549			

5.0 CONCLUSIONS

As a result of this preliminary theoretical and experimental analysis of the constant-area, supersonic-supersonic ejector, the following conclusions may be drawn.

- 1. A one-dimensional theory was developed which predicts the performance characteristics of all constant-area, supersonic-supersonic ejector configurations.
- 2. Due to the simplified analysis of the constant-area, mixing section and inviscid interaction region, the present one-dimensional theory is particularly well-suited to parametric evaluations of constant-area, supersonic-supersonic ejector performance.
- 3. The present one-dimensional theory predicts maximum compression ratios which are 15 to 21 percent greater than experimental measurements.
- 4. The constant-area, supersonic-supersonic ejector is particularly susceptible to secondary flow separation which requires a more sophisticated method of analysis than the present one-dimensional theory.
 - 5. Continued experimentation is needed to:
 - a) Establish a sufficient length for constant-area, supersonicsupersonic ejector mixing tubes.
 - b) Obtain supersonic-supersonic ejector data over a wide range of operation, particularly under simulated high-energy, chemical laser system conditions.
 - c) Verify the present one-dimensional theory for plane, two-dimensional ejector configurations which are more consistent with current high-energy, chemical laser designs.

- d) Develop more advanced theoretical models, including a "two-shock" model, through flow visualization studies of the mixing and interaction phenomena.
- e) Evaluate the effects of variable mixing tube wall profiles which have proved advantageous in subsonic-supersonic ejector development.
- 6. The constant-area, supersonic-supersonic ejector is an extension of the constant-area, subsonic-supersonic ejector with similar characteristic surfaces.
- 7. The constant-area, subsonic-supersonic and supersonic-supersonic ejectors must be compared on an optimum, overall pumping system basis.
- 8. Present one-dimensional theories for both the constant-area, subsonic-supersonic and supersonic-supersonic ejectors may be incorporated in a single high-energy, chemical laser system optimization procedure.
- 9. Conclusions as to the relative performance of optimum subsonic-supersonic and supersonic-supersonic pumping systems are included in Section 4.3; but in summary, a supersonic-supersonic pumping system has the potential for improved performance over that of a subsonic-supersonic pumping system on the basis of mass flow ratio and primary stagnation pressure; however, this depends on
 - a) The high-energy chemical laser system constraints,
 - b) The source of disagreement between the present one-dimensional, supersonic-supersonic ejector theory and experiment as noted in item 3, preceding, and

c) An adequate solution to the secondary flow separation problems encountered during high compression ratio operation of the constantarea, supersonic-supersonic ejector.

6.0 REFERENCES

- 1. Addy, A. L., and Mikkelsen, C. D., "An Investigation of Gas-Dynamic Flow Problems in Chemical Laser Systems," Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Report No. UILU-ENG-74-4009 (1974).
- 2. Spiegel, J. M., Hofstetter, R. U., and Kuehn, D. M., "Applications of Auxiliary Air Injectors to Supersonic Wind Tunnels," NACA RM A53101 (1953).
- 3. Hunczak, H. R., and Rousso, M. D., "Starting and Operating Limits of Two Supersonic Wind Tunnels Utilizing Auxiliary Air Injection Downstream of the Test Section," NACA TN 3262 (1954).
- 4. Hasel, L. E., and Sinclair, A. R., "A Preliminary Investigation for Improving the Pressure-Recovery Characteristics of Variable-Geometry Supersonic-Subsonic Diffuser Systems," NACA RM L57H02 (1957).
- 5. Fabri, J., and Paulon, J., "Theory and Experiments on Supersonic Air-to-Air Ejectors," NACA TM 1410 (1958).
- 6. Fabri, J., and Siestrunck, R., "Supersonic Air Ejectors," Advances in Applied Mechanics, New York, N.Y., Academic Press, Vol. V, pp. 1-34 (1958).
- 7. Crocco, L., "One-Dimensional Treatment of Steady Gas Dynamics,"
 Fundamentals of Gas Dynamics," Emmons, H. W., Editor, Princeton,
 N.J., Princeton University Press, Vol. III, pp. 272-293 (1958).
- 8. Addy, A. L., "On the Steady State and Transient Operating Characteristics of Long Cylindrical Shroud Supersonic Ejectors (With Emphasis on the Viscous Interaction Between the Primary and Secondary Streams)," Ph.D. Thesis, Department of Mechanical Engineering, University of Illinois, Urbana (1963).
- 9. Chow, W. I., and Addy, A. L., "Interaction between Primary and Secondary Streams of Supersonic Ejector Systems and their Performance Characteristics," AIAA Journal, 2(4):686-695 (1964).
- 10. Addy, A. L., "The Analysis of Supersonic Ejector Systems," Supersonic Ejectors, AGARDograph No. 163, pp. 31-101 (1972).
- 11. Addy, A. L., "The Analysis of Supersonic Ejector Systems," <u>Ejectors</u>, von Karman Institute, Lecture Series 79 (1975).
- 12. Howlett, L. D., and Chow, W. L., "A Study of Nozzle and Ejector Flow Problems by the Method of Integral Relations," NASA CR-128066 (1972).

- 13. Hickman, K. D., Hill, P. G., and Gilbert, G. B., "Analysis and Testing of Compressible Flow Ejectors with Variable Area Mixing Tubes," Journal of Basic Engineering, 94(2):407-416 (1972).
- 14. Hedges, K. R., and Hill, P. G., "Compressible Flow Ejectors, Part I Development of a Finite-Difference Flow Model," ASME Paper No. 74-FE-1 (1974).
- 15. Hedges, K. R., and Hill, P. G., "Compressible Flow Ejectors, Part II Flow Field Measurements and Analysis," ASME Paper No. 74-FE-2 (1974).
- 16. Zukoski, E. E., "Turbulent Boundary-Layer Separation in Front of a Forward-Facing Step," AIAA Journal, 5(10):1746-1753 (1967).
- 17. Patterson, G. N., "Modern Diffuser Design," Aircraft Engineering, 9(9):267-273 (1938).
- 18. Henry, J. R., Wood, C. C., and Wilbur, S. W., "Summary of Subsonic-Diffuser Data," NACA RM L56F05 (1956).

7.0 APPENDICES

- 7.1 A LITERATURE SURVEY OF EJECTOR SYSTEMS AND RELATED TOPICS
- 1. "Practical Application to Pumps of Small Lifts, Ventilation, Etc.," Engineering Record, 400-401 (November 19, 1892).
- 2. "Ejector Condensers vs. Jet Condensers and Air Pumps," Practical Engineer (November 26, 1897).
- 3. Rateau, A., "The Theory of the Ejector-Condenser and Experiments with a New Type," Revue de Mécanique (June 1902).
- 4. Mechanical Engineer (England), (June 5, 1908).
- 5. Bullock, S., "Ejector Condensers," Iron & Coal Trades Review (April 26, 1912).
- 6. Balch, L. R., "Tests of a Jet Pump," Bulletin of the University of Wisconsin, No. 596, 15 pp. (1914).
- 7. Delaporte, M., "The Breguet Ejectair," Journal of the American Society of Naval Engineers (May 1914).
- 8. Delas, A., "General Considerations on Condenser Air-Pumps," Memoires de la Société des Ingenieurs Civils de France (May 1914).
- 9. Witz, A., "Steam Ejector Condensors," Le Technique Moderne (July 1, 1914).
- 10. Verdam, N.C.H.. "De lucht-ejecteur systeem Westinghouse-Leblanc," Ingenieur (November 18, 1916).
- 11. "Methods for Producing High Vacuum," Transactions of the North-East Coast Institution of Engineers & Shipbuilders (February 1918).
- 12. Conge, L., "Les éjecteurs extracteurs d'air," Revue Générale de l'Eléctricité, 4(17):629-632 (1918).
- 13. Morgan, D.W.R., "Recent Developments in Condensers," Electrical World (August 3, 1918).
- 14. Wheeler, F. R., "Air Pumps for Condensing Equipment," Mechanical Engineering, 41(12):926-930 (1919).
- 15. Lashinger, E. J., "Air Ejectors Theory and Design," Journal of the South Aftican Institution of Engineers, 18(6):89-91 (1920).
- 16. Meyer, E., "The Theory of Steam-Jet Air Pumps," Schiffbau, 22(4): 76-81 (1920).
- 17. Taylor, D. M., "Steam-Jet Air Pumps for Condensers," Power, 51(25): 995-999 (1920).

- 18. Jauch, L., "Recent Improvements in Condensing Apparatus for Steam Engines," Chaleur et Industree, 2(16):501-508 (1921).
- 19. Hepburn, H. A., "The Gaseous Fluid Ejector," Engineer, 134(3486, 3487):401-402, 429-430 (1922).
- 20. Hoefer, K., "Investigations of Condensing Air Pumps," Forschungsarbeiten auf dem Gebiete des Ingenieur-Wesens, No. 253, 92 pp. (1922).
- 21. Blaum, R., "A New Air Pump for Turbine Steamers," Zeitschrift des vereines deutscher Ingenieure, 67(39,40):956-957 (1923).
- 22. Heuser, L., and Finiel, K., "Steam Ejectors and Water-Jet Pumps in Condenser Plants," Schiffbau, 24(51,52):785-791 (1923).
- 23. Muller, F., "The Steam-Jet Apparatus as Air Pump for Turbine Condensers," Schiffbau, 24(30,31):486-489 (1923).
- 24. "L'Ejecteur-Air Condenseur," Génie Civil, 84(10):234-235 (1924).
- 25. "The Steam-Jet Vacuum Ejector," Mechanical World, 76(1973,1974): 264-265, 277-278 (1924).
- 26. "Water and Steam-Jet Air Pumps for Surface Condensers Especially on Board Ships," Zeitschrift des vereines deutscher Ingenieure, 68(12): 288-292 (1924).
- 27. Von Le Juge, S., "Water- vs. Steam-Jet Air Pumps," Wärme, 47(3): 21-23 (1924).
- 28. Carleton, H. E., "Economy of the Steam Jet Air Pump," Power Plant Engineering, 29(11):595 (1925).
- 29. Ernsberger, M. C., "A Steam Ejector for Pumping Low Pressure Steam," Sibley Journal of Engineering, 39(6):357-358 (1925).
- 30. Johnstone-Taylor, F., "Pneumatic Ejectors," Mechanical World 78(2020):224-226 (1925).
- 31. Kothny, G. L., "New Developments in High Vacuum Apparatus," Society of Naval Architects & Marine Engineers, Advance Paper No. 1 for meeting November 12, 1925; Abstract, Marine Engineering & Shipping Age, 30(12):689-690 (1925).
- 37. Lamb, N. A., "Steam Ejectors in Condensers for High Vacua," World Power, 4(22):200-205 (1925).
- 33. McNair, D. G., "The Ejector Air Pump," Power Engineer, 20(235): 367-370 (1925).
- 34. Smith, J. H., "The Steam-Jet Condensing-Type Vacuum Pump," Electric Journal, 22(1):17-23 (1925).

- 35. Brada, T., "Basic Theory of Thermal Compressors," Chaleur et Industree, 7(80):673-678 (1926).
- 36. Colburn, C. E., "Hints on the Practical Operation of Air Ejectors," Power, 63(11):410-411 (1926).
- 37. Morgan, D.W.R., "Three-Stage Air Ejector Uses Less Steam," Power, 64(4):127-128 (1926).
- 38. McNulty, J. W., "Air Ejectors for Industrial Applications," Electric Journal, 24(10):505-506 (1927).
- 39. Third, A. D., "The Air Ejector," Journal of the Royal Technological Society, 4:84-103 (1927).
- 40. McNair, D. G., "Steam-Jet Air Ejectors for High Vacuum," Mechanical World, 84(2177):267-270 (1928).
- 41. "Ejectors Monopolize High Vacuum Field," Power Plant Engineering, 33(15):853-855 (1929).
- 42. Maunder, F. J., "Condensers, Air-Pumps, and Ejectors," Mechanical World, 85(2204):294-295 (1929).
- 43. "Calculation of Ejectors Employed in Naval Construction for Scavenging of Foul Air," Bulletin Technique du Bureau Veritas, 12(9):184-186 (1930).
- 44. McNair, D. G., "High-Vacuum Ejectors," Power Engineer, 26(306): 330-332 (1931).
- 45. "Steam-Jet Ejectors for Steam Condensers," AEG Progress, 3:54-55 (1933).
- 46. Watson, F.R.B., "Production of Vacuum in Air Tank by Means of Steam Jet," Proceedings of the Institution of Mechanical Engineers, 124: 231-265, 266-300 (1933); Engineering, 135(3502,3503).230-232, 255-257, 262-265 (1933); Engineer, 155(4024):192-194, 198 (1933).
- 47. "Ejector-Pump Installation," Engineering, 142(3679):80 (1936).
- 48. Scott, A. W., and Jamieson, J., "Nozzle Effects in Air Ejector," Journal of the Royal Technical College, 3(4):627-635 (1936).
- 49. Simon, W., "Dampf- und Luftstrahlsauger im Kesselhaus," Wärme, 59(41):659-663 (1936).
- 50. "Cinder-Recovery Plant for Boiler Installations," Engineering, 144(3733):123-124 (1937).

frankling .

51. Dowson, R., "Performance of Single-Stage Steam Jet Operated Ejectors," 164(4274,4275,4277):650-652, 680-681, 747 (1937).

- 52. Watson, J. D., "Industrial Applications of Jet Condenser," Steam Engineer, 6(68,69):343-345, 386-388, 394 (1937).
- 53. Fluefel, G., "Berechnung von Strahlapparaten," VDI Forschungsheft, 10(395), 21 pp. (1939).
- 54. Lidiak, J. P., "Ejectors Beat Air Pumps," Power, 83(8):72-74 (1939).
- 55. Tanishita, I., "Studies on Steam Ejector," Bulletin of the Institute of Physical and Chemical Research, 18(4):293-320 (1939).
- 56. Work, L. T., and Haedrich, V. W., "Performance of Ejectors," Industrial & Engineering Chemistry, 31(4):407-486 (1939).
- 57. Kravath, F. F., "Venturi Ejector for Handling Air," Heating \S Ventilation, 37(6,8):17-21, 46-49 (1940).
- 58. Work, L. T., and Miller, A., "Factor C in Performance of Ejectors as Function of Molecular Weights of Vapors," Industrial & Engineering Chemistry, 32(9):1241-1243 (1940).
- 59. Bruce, R., "Alexander Morton and Ejector Condenser," Engineer, 171(4441):126 (1941).
- 60. Frey, O., "On Steam-Jet Air Ejectors," Brown Boveri Revue, 28(11): 382-383 (1941).
- 61. Finn, P. J., "Flow Losses in, and Design Data for, Compressed Air Operated Venturi Ejectors and Blowers," Journal of the South African Institution of Engineers, 41(3):70-86, 86-94 (1942); 43(1):16-21 (1943); 43(3):93 (1943); Mechanical World, 113(2940):494-496 (1943).
- 62. Hatt, H. A., "Notes on Maintenance of Pneumatic Ejectors," Journal of the Junior Institution of Engineers, 52(2):276-279 (1942).
- 63. Keenan, J. H., and Neumann, E. P., "Simple Air Ejector," Journal of Applied Mechanics, 9(2):A75-A81 (1942).
- 64. "Duplex Air Ejector for Surface Condensing Plant," Beama Journal, 50(74):257-258 (1943).
- 65. Engdahl, R. B., and Holton, W. C., "Overfire Air Jets," Transactions of the ASME, 65(7):741-751, 751-754 (1943).
- 66. Frenau, P., and Ross, E. G., "Operation and Maintenance of Steam-Jet Ejectors," Nautical Gazette, 133(12):38-41, 50, 66-69, 80-81, 91-92 (1943).
- 67. Goff. J. A., and Coogan, C. H., "Some Two-Dimensional Aspects of Ejector Problem," Journal of Applied Mechanics, 9(4):A151-A154 (1942); 10(2):A114-A115 (1943).

- 68. "Venturi Ejectors and Blowers," Mechanical World, 116(3026):712-713, 715 (1944).
- 69. Bean, D. R., "Note on Theory of Steam Ejector," Engineer, 180(4675): 131-132 (1945).
- 70. Elrod, H G., "Theory of Ejectors," 'ournal of Applied Mechanics, 12(3):A170-A174 (1945); 13(2):A162-A165 (1946).
- 71. Freneau, P., "Know Steam-Jet Air Ejectors and They'll Serve You Well," Power, 89(6):372-374 (1945).
- 72. Freneau, P., "Multi-Stage Ejectors for High-Vacuum Performance," Power, 89(7):443-415, 488a-488b (1945).
- 73. Gordon, S. M., "Factors in Replacing RDV Pumps with Steam Jet Ejectors," Blast Furnace & Steel Plant, 33(2):256-257, 272 (1945).
- 74. Mansa, J. L., "Ejector Test Station," Engineers' Digest, 6(4):108-109 (1945); (American Edition) 2(6):290-291 (1945).
- 75. Scott, W. P., "Steam Jet Air Ejector," Transactions of the Institute of Marine Engineers, 57(3):51-56 (1945).
- 76. Crownover, J. C., "Steam-Jet Ejectors Their Selection and Operation," Combustion, 17(7):24-31 (1946).
- 77. Darling, C. S., "Use of Ejector Condenser," Mechanical World, 120(3128):655-657 (1946).
- 78. Freneau, P., "Condenser and Steam-Jet Air Ejector: Team for Maintaining Exhaust Vacuum," Power, 90(2):85-88 (1946).
- 79. McClintock, F. A., and Hood, J. H., "Aircraft Ejector Performance," Journal of Aeronautical Sciences, 13(11):559-568 (1946).
- 80. Meckley, W. O., "Exhaust Ejector Improves both Turbo Cooling and Propulsion," Aviation, 45(3):74-75, 150-151 (1946).
- 81. "Design of Injectors for Low-Pressure Air Flow," Heating & Ventilation, 44(7):82-94 (1947).
- 82. Clegern, W. A., "New Ejector Device Uses Exhaust Energy for Engine Cooling," Automotive & Aviation Industries, 96(8):24-27 (1947).
- 83. Freneau, P., "Steam-Jet Air Evacuators Make Vacuum During Power Plant Starting Periods," Power, 91(3):162-165 (1947).
- 84. Freneau, P., Kelso, G., and Hoge, A. W., "Application of Steam-Jet Ejectors in Houdry Fixed-Bed Catalytic Cracking Process," Transactions of the ASME, 69(1):69-79 (1947).

- 85. McRoberts, i., "foresee Wider Use of Exhaust Jet Cooling," Automotive Intustries, 97(2):34-35, 74, 76, 80, 82 (1947).
- 86. Woodman, W. C., "Intary or Steam-Jet Air Pumps," Power, 92(8): 470-473, 510b (1948).
- 87. Berman, L. D., "Steam Jet Ejector Characteristics," Engineers' Digest, 11(5):169-171 (1980).
- 88. Binder, R. C., "Measurement of Flow Rate in Saturated-Air Test for Steam-Jet Ejectors," ASME, Advance Paper No. 50-A-47 for meeting November 26-December 1, 1950, 6 pp.
- 89. Johannesen, N. H., "Design of Ejectors," Ingenioren, 59(41):831-835 (1950).
- 90. Johannesen, N. H., "Ejektorers Anvendelsesomrader," Ingenioren, 59(20):568-589 (1950).
- 91. Kastner, L. J., and Spooner, J. R., "Investigation of Performance and Design of Air Ejector Employing Low-Pressure Air as Driving Fluid," Proceedings of the Institution of Mechanical Engineers, 162(2):149-159 (1950).
- 92. Keenan, J. H., Neumann, E. P., and Lustwerk, F., "Investigation of Ejector Design by Analysis and Experiment," Journal of Applied Mechanics, 17(3):299-309 (1950); 18(1):117 (1951).
- 93. "Vacuum Magic Hat of Industry," Compressed Air Magazine, 56(6): 142-149 (1951).
- 94. Ellis, C. W., Hollister, D. P., and Sargent, A. F., Jr., "Preliminary Investigation of Cooling-Air Ejector Performance at Pressure Ratio from 1 to 10," NACA RM E51H21 (1951).
- 95. Evans, W. R., "Cooling with Steam," Southern Power & Industry, 69(7):42-45 (1951).
- 96. Holcon, W. C., "Effect of Molecular Weight of Entrained Fluid on Performance of Steam-Jet Ejectors," Transactions of the ASME, 73(7):905-910 (1951).
- 97. Holton, W. C., and Schultz, E. J., "Effect of Temperature of Entrained Fluid on Performance of Steam-Jet Ejectors," Transactions of the ASME, 73(7):911-913 (1951).
- 93. Knoerschild, E. M., "The Design and the Ferformance Calculation of Ejectors and Aspirators," Wright Air Development Center, Air Force Technical Report No. 6673 (1951).

- 99. Kochendorfer, F. D., and Rousso, M. D., "Performance Characteristics of Aircraft Cooling Ejectors having Short Cylindrical Shrouds," NACA RM E51E01 (1951).
- 100. Levine, A., "Modernization of Tugboat Power Plants," Marine Engineering & Shipping Review, 56(5):57-61 (1951).
- 101. Stinson, L. S., "Keep Your Steam Ejectors Up to Snuff," Power Engineering, 55(7):87-88, 90 (1951).
- 102. Towle, H. C., and Judd, F.V.H., "Ejectors for Cooling Turbojet Installation," Aeronautical Engineering Revue, 10(9):20-24 (1951).
- 103. White, J. C., "Injector Type Steam Jets Solve Heating System Problem," National Eng.neer, 55(1):15, 24 (1951).
- 104. Alexander, L. G., "Turbulent Transfer of Momentum, Heat, and Mass in Jet Ejector," Ohio State University Engineering Experiment Station, Bulletin No. 149 (1952).
- 105. Greathouse, W. K., and Hollister, D. P., "Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0, II Diameter Ratios of 1.06 and 1.40," NACA RM E52F26 (1952).
- 106. Jones, D. E., "Passenger Car Heating and Air Conditioning," Engineering Journal, 35(4):332-338 (1952).
- 107. Weinberg, S., "Heat Transfer to Low Pressure Sprays of Water in Steam Atmosphere," Proceedings of the Institution of Mechanical Engineers, 1B(6):240-253, 253-258 (1952); Heating & Air Treatment Engineer, 16(1,2):17-25, 45-53 (1953).
- 108. Fabri. J., Le Grives, F., and Siestrunck, R., "Etude aérodynamique des trompes supersoniques," Janrbuch der Wissenschaftlichen Gesellschaft fuer Luftfahrt, 106-101 (1953).
- 109. Fondrk, V. V., "Multistage Ejectors for High Vacuum," Chemical Engineering Progress, 49(1):3-7 (1953).
- 110. Greathouse, W. K., and Hollister, D. P., "Air-Flow and Thrust Characteristics of Several Cylindrical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0," NACA RM F52L24 (1953).
- 111. Hings, D. C., "Glass Pipe Line Ejectors," Industrial Chemist, 29(346):537-538, 544 (1953).
- 112. Jackson, D. H., "Corrosion Problems in Steam-Jet Vacuum Equipment," Chemical Engineering Progress, 49(2):102-104 (1953).

- 113. Medici, M., "Design of Jet Ejectors," Engineers' Digest, 14(2): 51-53 (1953).
- 114. Moos, H. R., "Analytical and Experimental Study of Low Pressure
 Air Ejector Pumps," SAE, paper for meeting December 14, 1953, 9 pp.
- 115. Peterson, J., "Steam Jets Efficiently Remove Dust from Open Hearth Furnace Flues," Journal of Metals, 5(6):794-795 (1953).
- 116. Plank, R., "Strahlkaeltemacshinen," Ingenieur, 65(51):CH113-CH117 (1953).
- 117. Reshotko, E., "Performance Characteristics of a Double-Cylindrical-Shroud Fiector Nozzle," NACA RM E53H28 (1953).
- 118. Spiegel, J. M., Hofstetter, R. U., and Kuehn, D. M., "Applications of Auxiliary Air Injectors to Supersonic Wind Tunnels," NACA RM A53101 (1953).
- 119. Stewart, P. B., and Kreita, F., "What's Ahead for Jet Engines and Rocket Motors in Process Units?" Chemical Engineering, 60(9): 208-211 (1953).
- 120. Zimmerman, L., "Graphisches Berechnungsverfahren fuer mehrstufige Damphstrahlapparate," Chemie-Ingenieur-Technik, 25(11):665-671 (1953).
- 121. Allen, J. L., "Pumping Characteristics for Several Simulated Variable-Geometry Ejectors with Hot and Cold Primary Flow,"
 NACA RM E54G15 (1954).
- 122. Ciopluch, C. C., and Fenn, D. B., "Experimental Data for Four Full-Scale Conical Cooling-Air Ejectors," NACA RM E54F02 (1954).
- 123. Gorton, G. C., "Pumping and Drag Characteristics of an Aircraft Ejector at Subsoric and Supersonic Speeds." NACA RM E54D06 (1954).
- 124. Greathouse, W. K., "Performance Characteristics of Several Fill-Scale Double-Shroud Ejector Configurations over a Range of Primary Gas Temperatures," NACA RM E54F07 (1954).
- 125. Greathouse, W. K., "Preliminary Investigation of Pumping and Thrust Characteristics of Full-Size Cooling-Air Ejectors at Several Exhaust-Gas Temperatures," NACA RM E54A18 (1954).
- 126. Hearth, D. P., and Valerino, A. S., "Thrust and Pumping Characteristics of a Series of Ejector-Type Exhaust Nozzles at Subsonic and Supersonic Flight Speeds," NACA RM E54H19 (1954).
- 127. Hunczak, H. R., and Rousso, M. D., "Starting and Operating Limits of Two Supersonic Wind Tunnels Utilizing Auxiliary Air Injection Downstream of the Test Section," NACA TN 3262 (1954).

- 128. Huntley, S. C., and Yanowitz, H., "Pumping and Thrust Character istics of Several Divergent Cooling-Air Ejectors and Comparison of Performance with Conical and Cylindrical Ejectors," NACA RM E53J13 (1954).
- 129. Kochendorfer, F. D., "Effect of Properties of Primary Fluid on Performance of Cylindrical Shroud Ejectors," NACA RM E53L24a (1954).
- 130. Kochendorfer, F. D., "Note on Performance of Aircraft Ejector Nozzles at High Secondary Flows," NACA RM E54F17a (1954).
- 131. Messina, P., Brown, J. J., and Bohnlofink, J., "How to Check Your Jet Utilities," Chemical Engineering, 61(1):161-164 (1954).
- 132. Rolls, L. S., and Havill, C. D., "An Evaluation of Two Cooling-Air Ejectors in Flight at Transonic Speeds," NACA RM A54A05 (1954).
- 133. Spalding, D. B., "Compressible Flow of Semi-Perfect Gas," Engineering, 117(4616):777-781 (1954); Journal of the American Society of Naval Engineers, 66(4):992-1004 (1954).
- 134. Useller, J. W., Huntley, S. C., and Fenn, D. B., "Combined Compressor Coolant Injection and Afterburning for Turbojet Thrust Augmentation," NACA RM E54G08 (1954).
- 135. Fabri, J., and Siestrunck, R., "Etude des divers regimes d'ecoulement dans l'elargissement brusque d'une veine supersonique," Revue Générale des Sciences Appliquées, 114:229-237 (1955).
- 136. Stett, L. E., and Valerino, A. S., "Effect of Freestream Mach Number on Gross-Force and Fumping Characteristics of Several Ejectors," NACA RM E54K25a (1955).
- 137. Weinstein, A. S., Osterle, J. F., and Forstall, W., "Momentum Diffusion from Slot Jet into Moving Secondary," ASME Paper No. 55-A60 (1955).
- 138. Standards for Steam Jet Ejectors, 3rd Edition, New York, N.Y., Heat Exchange Institute, 80 pp. (1956).
- 139. Cheers, F., "Development of an Air Injector," National Research Council of Canada, Report No. MT. 31 (1956).
- 140. Falanga, R. A., and Leiss, A., "Free-Flight Investigation at Transonic Speeds of Drag Coefficients of a Boattail Body of Revolution with a Simulated Turbojet Exhaust Issuing at the Base from Conical Short-Length Ejectors," NACA RM L56H23 (1956).
- 141. Flores, J. R., McJones, R. W., and Sain, J. A., "Generalized Performance of Cylindrical and Conical Aircraft Ejectors," Aircraft Division, Douglas Aircraft Company, Inc., Long Beach, Cal. (1956).

- 142. Jaeckel, R., "Neuere Forschungsergebnisse der Vakuumtechnik," Chemie-Ingenieur-Technik, 28(3):201-202 (1956).
- 143. Linck, C. G., "Can Air-Operated Ejectors Solve Your Problem," Engineering, 60(6):69-71 (1956).
- 144. Schupp, F., "Neue Strahlsauger fuer Kondensationsanlagen," Brennstoff-Waerme-Kraft, 8(12):576-579 (1956).
- 145. Vogel, R., "Ein Beitrag zur Berechnung von Strahlapparaten," Technische Hochschule-Wissenschaft Zeitschrift, 6(6):1171-1177 (1956-1957).
- 146. Vogel, R., "Practical Application of Air Ejectors," NASA TT F-9352 (1956).
- 147. Berkley, F. D., "Ejectors Give Any Suction Pressure," Engineering, 64(4):255-260 (1957).
- 148. Blatchley, C. G., "Control of Steam-Jet Vacuum Jumps," ASME Paper No. 57-F-15 (1957).
- 149. Carrière, P., "Interaction de l'ecoulement externe et de l'ecoulement interne a la sortie d'un reacteur, aux vitesses transsoniques, et supersoniques," Compte rendu des journées internationales de sciences aéronautiques (May 1957).
- 150. Hasel, L. E., and Sinclair, A. R., "A Preliminary Investigation for Improving the Pressure-Recovery Characteristics of Variable-Geometry Supersonic-Subsonic Diffuser Systems," NACA RM L57H02 (1957).
- 151. Kaye, J., and Rivas, M. A., "Experimental and Analytical Study of Two-Component Two-Phase Flow in Ejector with Condensation," ASME Paper No. 57-HT-35 (1957).
- 152. Pfleiderer, C., "Uberschallstroemungen von hoher Machzahl bei kleinen Stroemungsgeschwindigkeiten," VDI Zeitschrift, 99(30): 1535-1536 (1957).
- 153. Polikovskii, V. I., Perel'man, R. G., and Tvanov, Yu.A., "Ob odnoi vozmozhnosti umen'sheniya dJiny ezhektora," Teploenergetika, 4(9):23-26 (1957).
- 154. Schupp, F., "Wirtschaftliche Entleuftung, Vorwaermung und Entgasgung im Kondensationsbetrieb," Brennstoff-Waerme-Kraft, 9(7):320-323 (1957).
- 155. Berman, L. D., and Zinger, N. M., "Sravnenie Raznykh ipov Vozdushnykh Nasosov Olya Kondensatorov Turbin." Teploenergetika, 5(11):46-55 (1958).

- 156. Broecker, E., "Vermischung von Fluessigkeits- odor Gasstroemen bei Kleiner Gesamtdruckaenderung," Forschung auf dem Gebiete des Ingenieurwesens, 24(6):169-177 (1958); 25(1):17.25 (1959).
- 157. Crocco, L., "One-Dimensional Treatment of Steady Gas Dynamics,"

 Fundamentals of Gas Dynamics," Emmons, H. W., Editor, Princeton,
 N.J., Princeton University Press, Vol. III, pp. 272-293 (1958).
- 158. Fabri, J., and Paulon, J., "Theory and Experiments on Supersonic Air-to-Air Ejectors," NACA TM 1410 (1958).
- 159. Fabri, J., and Siestrunck, R., "Supersonic Air Ejectors," Advances in Applied Mechanics, New York, N.Y., Academic Press, Vol. V, pp. 1-34 (1958).
- 160. Filimonov, A. G., "Gas Ejectors," Automobile Engineer, 48(7):271-274 (1958).
- 161. Hoge, H. J., Eichacker, S. S., and Fiske, D. L., "Studies of Jet Compression I, Apparatus and Methods," ASME Paper No. 58-SA-13 (1958).
- 162. Linck, C. G., "Selecting Ejectors for High Vacuum," Chemical Engineering, 65(1):145-150 ('958).
- 163. Mitchell, J. W., "Design Parameters for Subsonic Air-Air Ejectors," Office of Naval Research, Technical Report No. 40 (1958).
- 164. Polikovskii, M. V., and Shklover, G. G., "Eksperimental'noe issledovanie parostruinykh ezhektorov," Teploenergetika, 5(9): 46-51 (1958).
- 165. Rethorst, S., and Royce, W., "The Annular Jet and Thrust Augmentation," Vehicle Research Corporation, Pasadena, Cal., N63-86009 (1958).
- 166. Runckel, J. F., "Preliminary Transonic Performance Results for Solid and Slotted Turbojet Nacelle Afterbodies Incorporating Γixed Divergent Jet Nozzles Designed for Supersonic Operation," NASA TM 10-24-58L (1958).
- 167. Swihart, J. M., and Mercer, C. E., "Investigation at Transonic Speeds of a Fixed Divergent Ejector Installed in a Single-Engine Fighter Model," NACA RM L57L10a (1958).
- 168. Barton, D. L., and Taylor, D., "An Investigation of Ejectors without Induced Flow," Arnold Engineering Development Center Report No. AFDC-TN-59-145 (1959).
- 169. Codegone, C., "Experienze su eiettori," Termotecnica, 13(10):481-495 (1959).

- 170. Douchez, M., "Les ejecteurs," Annales de l'Institut Technique du Baitment et des Travaux Publics, 12(144):1264-1277 (1959).
- 171. Fortini, A.. "Performance Investigation of a Nonpumping Rocket-Ejector System for Altitude Simulation," NASA TN D-257 (1959).
- 172. Howell, R. R., "Experimental Operating Performance of Single-Stage Annular Air Ejector," NASA TN D-23 (1959).
- 173. Norton, H. T., Jr., Marlowe, D. C., and Mercer, C. E., "Transonic Off-Design Performance of a Fixed Divergent Ejector Designed for Mach Number of 2.0," NASA TM X-165 (1959).
- 174. Richards, W. G., and Osborne, W. C., "Very Low Pressure Air Ejector," Institution of Heating & Ventilating Engineers, 27:172-179 (1959).
- 175. Schupp, F., "Betriess- und Versuchsergebnisse von neuen Strahlsaugapparaten," Brennstoff-Waerme-Kraft, 11(9):420-424 (1959).
- 176. Schupp, F., "Regelbare Mehrfach-Strahlsauger," VDI Zeitschrift, 101(34):1630-1635 (1959).
- 177. Asquith, W., "Entlueften von Oberflaechenkondensatoren," Siemens Zeitschrift, 34(4):150-155 (1960).
- 178. Chisolm, R.G.A., "Design and Calibration of an Air Ejector to Operate Against Various Back Pressures," Toronto University Institute of Aerophysics, Report No. UTIA TN 39 (1960).
- 179. Corson, B. W., Jr., and Mercer, C. E., "Static Thrust of an Annular Nozzle with a Concave Central Base," NASA TN D-418 (1960).
- 180. Gertsma, L. W., and Yeager, R. A., "Preliminary Investigation of Off-Design Performance of Divergent-Ejector-Type Rocket Nozzles," NASA TM X-250 (1960).
- 181. Hicks, H. H., Jr., "The Theory of Ejectors," Ph.D. Thesis, Department of Chemical Engineering, University of Michigan, Ann Arbor (1960).
- 182. Jones, W. L., Price, H. S., and Lorenzo, C. F., "Experimental Study of Zero-Flow Ejectors using Gaseous Nitrogen," NASA TN D-203 (1960).
- 163. Kastner, L. J., and McGarfy, J. B., "Mass Flow and Mixing Process in Low-Velocity Air Ejectors," Engineer, 210(5453):190-192 (1960).
- 184. Lewis, W.G.E., and Drabble, J. S., "Ejector Experiments," National Gas Turbine Establishment, Report No. R 151 (1960).

- 185. Schem, O., "Luftabsaugung bei Dampfturbinen-Kondensatoren mit einer Kombination aus zwei Dampfstrahlern und einer Elmo-Pumpe," Siemens Zeitschrift, 34(11):753-758 (1960).
- 186. Yeager, R. A., "Investigation of an Ejector-Type Nozzle for Rocket Application," NASA TM X-251 (1960).
- 187. Bauer, R. C., and German, R. C., "Some Reynolds Number Effects on the Performance of Ejectors without Induced Flow," Arnold Engineering Development Center Report No. AEDC-TN-61-87 (1961).
- 188. Bauer, R. C., and German, R. C., "The Effect of Second-Throat Geometry on the Performance of Ejectors without Induced Flow," Arnold Engineering Development Center Report No. AEDC-TN-61-133 (1961).
- 189. German, R. C., and Bauer, R. C., "Effects of Diffuser Length on the Performance of Ejectors without Induced Flow," Arnold Engineering Development Center Report No. AEDC-TN-61-89 (1961).
- 190. Johnson, J. K., Jr., Snumpert, P. K., and Sutton, J. F., "Steady Flow Ejector Research Program," Final Report, Lockheed-Georgia Company, Marietta, Geo., N62-16458 (1961).
- 191. Mihaloew, J. R., "Internal-Performance Evaluation of Two Fixed-Divergent Shroud Ejectors," NASA TN D-763 (1961).
- 192. Mihaloew, J. R., and Stofan, A. J., "Internal-Performance of Two-Position Divergent Shroud Ejector," NASA TN D-762 (1961).
- 193. Taylor, D., Barton, D. L., and Simmons, M., "An Investigation of Cylindrical Ejectors Equipped with Truncated Conical Inlets," Arnold Engineering Development Center Report No. AEDC-TN-60-224 (1961).
- 194. Ueda, T., "On Performance Characteristics of Steam Ejectors," Bulletin of the Japanese Society of Mechanical Engineers, 4(13): 124-131 (1961).
- 195. Bonnington, S. T., "The Design of Ejectors Driven by and Entraining Compressible Fluids," British Hydromechanics Research Association, NASA Accession No. N65-80898 (1962).
- 196. Chow, W. L., and Korst, H. H., "Influence on Base Pressures by Heat and Mass Additions," ARS Journal, 32(7):1094-1095 (1962).
- 197. Daitch, A. M., Sparkes, H. A., and Westman, R. E., "Mathematical Model of a Diffuser-Ejector System for Rocket Engine Altitude Simulation Final Report," Systems Engineering Division, Daniel, Mann, Johnson, and Mendenhall and Associates, Los Angeles, Cal., AD-859217 (1962).

- 198. Peters, C. E., and Wehofer, S., "Theoretical Performance of Air-Driven Ejectors for Pumping Rocket Exhaust Gases," Arnold Engineering Development Center Report No. AEDC-TDR-62-134 (1962).
- 199. Simonson, A. J., and Schmeer, J. W., "Static Thrust Augmentation of a Rocket-Ejector System with a Heated Supersonic Primary Jet," NASA TN D-1261 (1962).
- 200. Addy, A. L., "On the Steady State and Transient Operating Characteristics of Long Cylindrical Shroud Supersonic Ejectors (With Emphasis on the Viscous Interaction Between the Primary and Secondary Streams)," Ph.D. Thesis, Department of Mechanical Engineering, University of Illinois, Urbana (1963).
- 201. De Hann, R. E., "Supersonic Ejectors with Mixing at Constant Cross-Section, 1. Theoretical Part," Applied Scientific Research, 12A(3): 293-313 (1963-1964).
- 202. Eastman, R. H., "Effects of a Particle-Laden Driving Stream on Ejector Efficiency," Joseph Kaye Company, Inc., Report No. 52 (1963).
- 203. Engel, M. O., "Some Problems in Design and Operation of Jet Ejectors," Proceedings of the Institution of Mechanical Engineers, 177(13):347-362 (1963).
- 204. Francis, W. E., "A Generalized Procedure for Optimum Design of Injectors, Ejectors, and Jet Pumps," Midland Research Station, The Gas Council, 66-11912 (1963).
- 205. German, R. C., Panesci, J. H., and Clark, H. K., "Zero Secondary Flow Ejector-Diffuser Performance using Annular Nozzles," Arnold Engineering Development Center Report No. AEDC-TDR-62-196 (1963).
- 206. Hale, J. W., "Auxiliary Ejector Effects on Rocket-Driven Diffuser Performance during Thrust Variation," Arnold Engineering Development Center Report No. N63-22022 (1963).
- 207. Hale, J. W., "Comparison of Diffuser-Ejector Performance with Five Different Driving Fluids," Arnold Engineering Development Center Report No. AEDC-TDR-63-207 (1963).
- 208. Hale, J. W., "Investigation of Two-Nozzle Cluster Diffuser-Ejector with and without Ejected Mass," Arnold Engineering Development Center Report Nc. AEDC-TDR-63-130 (1963).
- 209. Moore, G. F., "Successful Operation of Steam Vacuum Jets," ASME Paper No. 63-WA-161 (1963).
- 210. Panesci, J. H., and German, R. C., "An Analysis of Second-Throat Diffuser Performance for Zero-Secondary-Flow Ejector Systems," Arnold Engineering Development Center Report No. AEDC-TDR-63-249 (1963).

- 211. Poppe, D. G., "Dangerous Air Fan Removed Replaced by Venturi System," Plant Engineering, 17(7):152-153 (1963).
- 212. Power, R. B., "Steam-Jet Air Ejectors Specification, Evaluation, and Operation," ASME Paper No. 63-WA-143 (1963).
- 213. Sirieix, M., "Contribution a l'etude des ejecteurs supersoniques," Association Technique Maritime et Aeronautique, T.P. 32 (1963).
- 214. Traksel, J., "Simplified Ejector and Jet Thrust Augmentor Theory," Lockheed Aircraft Corporation (1963).
- 215. Uryukov, B. A., "Teoriya differentsial'nog ezhektora," Zhurnal Priklandnoi Mekhaniki i Tekhnicheskoi Fiziki, 5:41-47 (1963).
- 216. Bauer, R. C., "Theoretical Base Pressure Analysis of Axisymmetric Ejectors without Induced Flow," Arnold Engineering Development Center Report No. AEDC-TDR-64-3 (1964).
- 217. Beheim, M. A., "Ejectors and Thrust Augmentation," NASA, Proceedings of Conference on Large Liquid Rocket Systems, Lewis Research Center, Cleveland, Ohio, 1964, pp. 315-323.
- 218. Chow, W. L., and Addy, A. L., "Interaction between Primary and Secondary Streams of Supersonic Ejector Systems and their Performance Characteristics," AIAA Journal, 2(4):686-695 (1964).
- 219. De Hann, R. E., "Supersonic Ejectors with Mixing at Constant Cross-Section, 2. Experimental Part," Applied Scientific Research, 14A(1,2):57-76 (1964-1965).
- 220. Dyke, M. C., and Saddon, J., Ejectors and Mixing of Streams, AGARD Bibliography 6, 1954, 585 References.
- 221. Elliott, G. A., "An Experimental Study of Static Thrust Augmentation Using a Rocket-Ejector System," M.S. Thesis, School of Engineering, Southern Methodist University, Dallas, Texas (1964).
- 222. Fitch, R. E., "Analysis of the Inviscid Interaction Between an Underexpanded Rocket Exhaust and a Confined Secondary Stream," Boeing, Report No. D2-36211-1 (1964).
- 223. Geiger, F. W., "A One-Dimensional Thrust Augmentation Calculation," Research Laboratories, Brown Engineering Company, Inc., Huntsville, Alabama, Report No. X65-18078 (1964).
- 224. Hale, J. W., "Influence of Pertinent Parameters on Ejector-Diffuser Performance with and without Ejected Mass," Arnold Engineering Development Center Report No. AEDC-TDR-64-134 (1964).

- 225. Harper, D. J., "The Thrust Augmentation of Rocket Motors at High Altitudes," Journal of the Royal Aeronautical Society, 68(648): 799-807 (1964).
- 226. Harris, L. S., "Air Cooled Condensers for Steam Jet Vacuum Pumps," ASME Symposium on Air-Cooled Heat Exchangers, August 1964, pp. 142-151.
- 227. Lynch, O. R., and Carman, C. T., "An Investigation of the Performance of a Hot-Gas Pump with and without Induced Flow," Arnold Engineering Development Center Report No. AEDC-TDR-64-234 (1964).
- 228. Polak, P., "Notes on Jet Thrust Augmentation," Engineer, 217(5640): 383-385 (1964).
- 229. Power, R. B., "Steam-Jet Air Ejectors," Hydrocarbon Processing and Petroleum Refiner, 43(2,3,4):121-126, 138-142, 149-152 (1964).
- 230. Scott, W. J., "Experimental Thrust Augmentation of a Variable Geometry, Two-Dimensional Coanada Wall Jet Ejector," National Research Council of Canada, Aeronautical Report No. LR-394 (1964).
- 231. Wan, Chia-An, "A Study of Jet Ejector Phenomena," Aerophysics Department, Mississippi State University, NASA Accession No. N65-26099 (1964).
- 232. Chow, W. L., and Yeh, P. S., "Characteristics of Supersonic Ejector Systems with Non-Constant Area Shroud," AIAA Journal, 3(3):525-527 (1965).
- 233. Delery, J., "Recollement d'un jet supersonique de revolution sur une paroi cylindrique coaxiale," La Recherche Aerospatiale, No. 104 (1965).
- 234. Fellous, J. R., "Calcul d'ejecteur pumpe a chambre de mélande cylindrique," Houille Blanche, 20(2):137-142 (1965).
- 235. German, R. C., and Panesci, J. H., "Improved Methods for Determining Second-Throat Diffuser Performance of Zero-Secondary-Flow Ejector Systems," Arnold Ergineering Development Center Report No. AEDC-TDR-65-124 (1965).
- 236. Hardy, J. M., and Delery, J., "Possibilities actuelles d'etude theorique d'une tuyere supersonique a double flux," Office Nationale d'Etudes et de Recherches Aeronautiques, Chatillon-sous-Bagneux, Seine, France, Technical Paper No. 287 (1965).
- 237. Hoge, H. J., and Segars, R. A., "Choked Flow: A Generalization of the Concept and Some Experimental Data," AIAA Journal, 3(12):2177-2183 (1965); 4(7):1309-1310 (1966).

- 238. Lee, C. G., and Inman, S. J., "Analysis of Flow from Plug Nozzles with Secondary Ejector Systems," NASA TN R-128 (1965).
- 239. Middleton, D., "The Noise of Ejectors," Aeronautical Research Council, Great Britain, Report No. ARC-R/M-3389 (1965).

z~

- 240. Nelson, J. R., "Investigation of the Mixing Region Between the Primary and Secondary Streams of a Two-Dimensional Supersonic Air-Air Ejector System," M.S. Thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (1965).
- 241. Robozhev, A. V., "Primenenie nomogramm dlya rascheta mnogostupenchatykh ezhektorov," Energomashinostroenie, 8:21-26 (1965).
- 242. Scott, J. E., Jr., "Mixing and Combustion of a Supersonic Fuel Jet and a Subsonic, Coaxial Gas Stream," ATAA, 2nd Annual Meeting, San Francisco, Cal., July 26-29, 1965.
- 243. Sillem, H., "Untersuchungen zur kompressiblen Gasstroemung in Strahlapparaten mit konstantem Mischrohrquerschnitt," VDI Zeitschrift, 107(12):535 (1965).
- 244. Strand, G. E., "A Study of a Supersonic Ejector Mixing Chamber," M.S. Thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (1965).
- 245. Uebelhack, H. T., "Supersonic Air-Air Ejectors with Second Throat Diffusers," von Kármán Institute for Fluid Dynamics, Report No. VKI-TN-28 (1965).
- 246. Vasil'ev, Yu.N., "Great-Pressure-Drop Gas Ejector with Additional Nozzle," (Translated from: Russian Patent 134804, Appl. 664925/25, April 28, 1960), Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, Report No. FTD-TT-64-1198 (1965).
- 247. Vogel, R., "Theoretical and Experimental Investigation of Air Ejectors," (Translated from: "Theoretische und experimentelle Untersuchungen an Strahlapparaten," Maschinenbautechnik, 5(12): 619-637, 1956), NASA TT F-9353 (1965).
- 148. Witte, J. H., "Efficiency and Design of Liquid-Gas Ejectors," British Chemical Engineering, 10(9):602-607 (1965).
- 249. Barth, E., "Effects of Nozzle Geometry on Jet Flow Ejectors," Ph.D. Thesis, Technische Hochschule, Hanover, West Germany (1966).
- 250. Brown, P., "Seventeen-Inch TWT Tests of a Coannular Ejector with a Clamshell Reverser," Research Laboratories, United Aircraft Corporation, East Hartford, Conn., AD-821265L (1966).

- 251. Fabri, J., Le Grives, E., and Mechard, J., "Sur le melange a section constante de deux flux a enthalpies differentes," France (1966).
- 252. German, R. C., Bauer, R. C., and Panesci, J. H., "Methods for Determining the Performance of Ejector-Diffuser Systems," Journal of Spacecraft, 3(2):193-200 (1966).
- 253. Heiser, W. H., "Thrust Augmentation," ASME, Gas Turbines and Products Show, Zurich, Switzerland, March 13-17, 1966.
- 254. Hoge, H. J., and Segars, R. A., "An Equation for the Entrainment of Ejectors," AIAA Journal, 4(9):1689-1691 (1966).
- 255. Korst, H. H., Addy, A. L., and Chow, W. L., "Installed Performance of Air-Augmented Nozzles Based on Analytical Determination of Internal Ejector Characteristics," Journal of Aircraft, 3(6): 498-506 (1966).
- 256. Krenkel, A. R., and Kipowsky, H. H., "Design Analysis of Central and Annular-Jet Ejectors," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Project No. 7065 (1966).
- 257. Loth, J. L., "Theoretical Optimization of Staged Ejector Systems," Arnold Engineering Development Center Report No. AEDC-TR-66-2 (1966).
- 258. Okeefe, P. C., "Seventeen-Inch TWT Tests on a Coannular Ejector with a Clamshell Reverser," Research Laboratories, United Aircraft Corporation, East Hartford, Conn., AD-821266L (1966).
- 259. Schroeder, H. J., "Der Pulsozerstaeuber ein selbstansaugendes Strahlgeblaese mit hoher Foerderlsitung," Forschung im Ingenieur-Wesen, 32(3):91-95 (1966).
- 260. Stewart, D., "Subsonic Wind Tunnel Tests of a Clamshell-Shroud Ejector Nozzle for the Supersonic Transport Engine," Research Laboratories, United Aircraft Corporation, East Hartford, Conn. AD-821268L (1966).
- 261. Verbridge, D., "Experimental Performance Evaluation of a Clamshell Shroud Ejector Nozzle for the Supersonic Transport Engine,"
 Research Laboratories, United Aircraft Corporation, East Hartford, Conn., AD-821269L (1966).
- 262. Verbridge, D., "Experimental Performance Evaluation of a Proposed Translating Shroud Ejector Nozzle for the Supersonic Transport Engine," Research Laboratories, United Aircraft Corporation, East Hartford, Conn., AD-821267L (1966).

- 263. Yarborough, P. P., "Investigation of the Performance of an Ejector-Afterburner for Thrust Augmentation of a Small Rocket Engine,"
 School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (1966).
- 264. Adamas, D. M., "Performance Analysis of Hypersonic Air-Augmented Supersonic Combustion Propulsion Vehicles," AIAA Paper No. 67-226 (1967).
- 265. Baykov, U. S., and Vasilev, Yu., "Vane Machines in Jet Apparatuses (Selected Articles)," (Translated from: Lopatochnye Mashiny i Struynye Apparaty, USSR, 1:235-238, 1966), Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, Report No. FTD-MT-24-185-67 (1967).
- 266. Bernstein, A., Heiser, W. H., and Hevenor, C., "Compound-Compressible Nozzle Flow," Journal of Applied Mechanics, 34(3): 548-554 (1967).
- 267. Campbell, W. S., and von Ohain, H., "Thrust Augmentation for V/STOL: ARL's Research and Concepts," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-67-0065 (1967).
- 268. Hardy, J. M., and La Combe, H., "Supersonic Bypass Nozzles: Computing Methods," Revue Française de Méchanique, 24:49-59 (1967).
- 269. Harris, G. L., "The Self-Preserving Turbulent Jet Ejector," AIAA Paper No. 67-127 (1967).
- 270. Huang, K. P., and Kisielowski, E., "An Investigation of the Thrust Augmentation Characteristics of Jet Ejectors," Dynasciences Corporation, AD 651-946 (1967).
- 271. Johnson, W. S., "Analytical and Experimental Study of the Pulsejet Ejector," Ph.D. Thesis, Clemson College, South Carolina (1967).
- 272. Kogan, P. A., "Razrabotka i issledovanie novykh malogabaritnykh shchelevykh gazostruinykh ezhektorov," Energetika, 4:64-70 (1967).
- 273. Mains, W. D., and Richenberg, R. E., "Steam Jet Ejectors in Pilot and Production Plants," Chemical Engineering Progress, 63(3):84-88 (1967).
- 274. Newman, E. F., "How to Specify Steam-Jet Ejectors," Chemical Engineering, 74(8):203-208 (1967).
- 275. Wade, B. S., "Parametric and Experimental Analysis of Ejector Performance," M.S. Thesis, Naval Postgraduate School, Monterey, Cal. (1967).

- 276. Ahren, B., "Analysis of Ejectors used as Supersonic Propelling Nozzles for Jet Engines," Ph.D. Thesis, Kungliga Tekniska Högskolan, Stockholm, Sweden (1968).
- 277. Arkadov, Iu.K., "A Gas Ejector with a Nozzle Perforated by Longitudinal Slots," Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, 71-74 (1968).
- 278. Bradshaw, P., Flintoff, J. L., and Middleton, D., "Unexplained Scale Effects in Ejector Shroud 'Howling'," Journal of Sound and Vibration, 7(2):183-190 (1968).
- 279. Clenoweth, F. C., and Steffen, F. W., "Comparison of Experimental and Predicted Heat Transfer Characteristics for a Cylindrical Ejector," NASA TM X-1641 (1968).
- 280. Fourtanier, J. M., and Oiknine, C., "Study of Cylindrical Ejectors with Zero Induced Flow," Doc-Air-Espace, pp. 41-56 (1968).
- 281. Gobbell, W. C., and Hale, J. W., "Determination of Annular Ejector-Diffuser Performance Improvement," Arnold Engineering Development Center Report No. AEDC-TR-68-68 (1968).
- 282. Grodzovskii, G. L., "Contribution to the Theory of a High-Compression Gas Ejector with a Cylindrical Mixing Chamber," Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, 3:35-44 (1968).
- 283. Hanbury, W. T., "The Performance of an Air-to-Air Ejector According to a Quasi-One-Dimensional Theory," Aeronautical Research Council, Great Britain, Report No. ARC-29341 (1968).
- 284. Imfeld, W. F., "Analysis of F-111 Blow-In Door Ejector Nozzle Final Report, Aug. 1967 Feb. 1968," Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Report No. ASD-TR-68-20 (1968).
- 285. Johnson, W. S., and Yang, T., "A Mathematical Model for the Prediction of the Induced Flow in a Pulsejet Ejector with Experimental Verification," ASME Paper No. 68-WA/FE-33 (1968).
- 286. Johnston, S. C., "Experimental Investigation of a Supersonic Air-Air Ejector Operating with a Second Throat," von Kármán Institute for Fluid Dynamics, Report No. VKI-TN-45 (1968).
- 287. Loth, J. L., "Theoretical Optimization of Staged Ejector Systems," Arnold Engineering Development Center Report No. AEDC-TR-08-80 (1968).
- 288. Peters, C. E., "Turbulent Mixing and Burning of Coaxial Steams inside a Duct of Arbitrary Shape," Ph.D. Thesis, University of Brussels, Belgium (1968).

- 289. Taylor, D., and Toline, F. R., "Summary of Exhaust Gas Ejector-Diffuser Research," Arnold Engineering Development Center Report No. AEDC-TR-68-84 (1968).
- 290. Vasilyev, Yu.N., "Theory of a Supersonic Gas Ejector with a Cylindrical Mixing Chamber," (Translated from: Bladed Machines and Jet Devices, Issue 2, Vasil'ev, Iu.N., Editor, Moscow, Izdatel'stvo Mashinostroenie, pp. 171-235, 1967), NASA TT-F-11554 (1968).
- 291. "Ejector System Performance Analysis in Hot Gas Exhaust Duct," FORTRAN IV Program, Aeroj.t-General Corporation, El Monte, Cal. (1969).
- 292. Anderson, R. E., and Graha v. B., "Improvement of Ejector-Diffuser Performance by Reduction of Backflow," Journal of Aircraft, 6(1): 73-74 (1969).
- 293. Di Tommaso, S., "General Semiempirical Method for Determining the Performance Curves of Supersolic Air-to-Air Ejectors," Tecnica Italiana, 34(4):125-131 (1969).
- 294. Dumin, N. A., and Zhadin, G. P., "Determination of the Actual Shot Delivery from an Ejector Nozzle During Shot Peening," Kazanskii Aviatsionnyi Institut, Trudy, Seriia Aviatsionnaia Tekhnologiia i Organizatsiia, Proizvodstva, 112:46-52 (1969).
- 295. Kalmykov, I. I., and Mosin, I. I., "Calculation of the Maximum Compression Ratio of an Ejector," Kazanskii Aviatsioanyi Institut, Trudy, Seriia Aviatsioanye Dvigateli, 110:27-34 (1969).
- 296. Miller, J. R., "The Liquid-Gas Ejector," Ph.D. Thesis, New Mexico State University, University Park (1969).
- 297. Nagamatsu, H. T., Pettit, W. T., and Sheer, R. E., Jr., "Flow and Acoustic Measurements on a Convergent Nozzle Supersonic Jet Ejector," Mechanical Engineering Laboratory, General Electric Company, Schenectady, N. Y. (1969).
- 298. Nazarova, L. I., and Sedelnikov, T.Kh., "The Dispersion Equation of a 2-Dimensional Ejector," <u>Physics of Aerodynamic Noise</u>, Rimskii-Korsakov, A. V., Editor, (<u>Translated from: Fizika Aerodinamicheskikh Shumov</u>, Moscow, Izdatel's vo Nauka, 1967), National Lending <u>Library for Science and Technology</u>, Boston Spa, Yorks, England, pp. 130-137 (1969).
- 299. Oiknine, C., Robert, C., and Sananes, F., "Study of Supersonic Ejectors," Association Française des Ingénieurs et Techniciens de l'Aéronautique et de l'Espace, 6th Colloque d'Aérodynamique Appliquée, Toulouse, France, November 12-14, 1969.

- 300. Samanich, N. E., and Huntley, S. C., "Thrust and Pumping Characteristics of Cylindrical Ejectors using Afterburning Turbojet Gas Generator," NASA TM X-52565 (1969).
- 301. Armstrong, F. W., and Lewis, W.G.E., "Some Experiments on Two-Stream Propelling Nozzles for Supersonic Aircraft," International Council of the Aeronautical Sciences, 7th Congress, Rome, Italy, September 14-18, 1970.
- 302. Bowman, J. E., and Clayden, W., "Base Pressure on a Boat-Tailed Afterbody at Free Stream Mach Number 2 with Gas Ejection from Porous and Multi-Nozzle Bases." Royal Armament Research and Development Establishment, Forst Halstead, Great Britain, Report No. RARDE-MEMO-20/70 (1970).
- 303. Dobrovolskii, G. P., "Equation of Conservation of Momentum and the Characteristic of an Ejector," Teplofizika i Teplotekhnika, 18:133-139 (1970).
- 304. Fancher, R. B., "A Compact Thrust Augmenting Ejector Experiment," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-70-0137 (1970).
- 305. Johns, A. L., and Steffen, F. W., "Performance of an Auxiliary Inlet Ejector Nozzle with Fixed Doors and Single-Hinge Trailing-Edge Flap," NASA TM X-2027 (1970).
- 306. Kalmykov, I. I., and Mosin, I. I., "Influence of Nozzle Structure Design on the Operation of an Ejector Stage with a Conical Mixing Chamber," Kazanskii Aviatsionnyi Institut, Trudy, Seriia Aviatsionnye Dvigateli, 114:48-57 (1970).
- 307. Kukanov, F. A., and Mezhirov, I. I., "Operation of a Gas Ejector in the Case of Differing Physical Parameters of the Mixing Gases," Tsagi, Uchenye Zapiski, 1(4):103-108 (1970).
- 308. Middleton, D., "Theoretical and Experimental Investigations into the Acoustic Output from Ejector Flows," Journal of Sound and Vibration, 11(4):447-473 (1970).
- 309. Quinn, B., "The Characteristics of a Small Variable Geometry Ejector Final Report," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-70-0071 (1970).
- 310. Wright, W. A., and Shahrokhi, F., "Investigation of High Mass Ratio, Multiple-Nozzle, Air-Ejector Systems," Journal of Spacecraft and Rockets, 7(12):1489-1491 (1970).
- 311. Alperin, M., and Marlotte, G. L., "A Jet Flap Diffuser Ejector," Flight Dynamics Research Corporation, Burbank, Cal., Report No. TR-71-06-01 (1971).

- 312. Barna, P. S., "Performance and Noise Generation Studies of Supersonic Air Ejectors," Proceedings of the 7th International Congress on Acoustics, Budapest, Hungary, August 18-26, 1971, Vol. 2, pp. 481-484; NASA CR-2056 (1972).
- 313. Carey, J. H., Gilbert, G. B., and Hickman, K. E., "High Entrainment Ejector Design," ASME Paper No. 71-FE-34 (1971).
- 314. Dobrovolskii, G. P., "Approximate Method of Calculation of Gas Ejectors," Teplofizika i Teplotekhnika, 20:125-129 (1971).
- 315. Fancher, R. B., "Low Area Ratio Thrust Augmenting Ejectors," AIAA Paper No. 71-576 (1971).
- 316. Forman, I., "Fjector Simulation," (Translated from: Vyzkumny a Zkusebni Letecky Ustav, Letnany, Zprayodaj Vzlu, Czechoslovakia, 5(50):33-38, 1966), Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, Report No. FTD-HT-23-811-70 (1971).
- 317. Gladkov, E. P., and Vasilev, Iu.N., "Experimental Study of a Vacuum Water-Air Ejector with a Multibarreled Nozzle," Lopatochnye Mashiny i Struinye Apparaty, 5:262-306 (1971).
- 318. Hardy, J. M., "Influence of Certain Characteristic Parameters on Ejector Performance," <u>Inlets and Nozzles for Aerospace Engines</u>, AGARD CP-91-71, 12 pp. (1971).
- 319. Kalmykov, I. I., and Mosin, I. I., "Effect of Certain Geometrical Parameters on the Operation of an Ejector with a Conical Mixing Chamber," Aviatsionnaia Tekhnika, 14(1):104-112 (1971).
- 320. Paulon, J., "Theoretical and Experimental Study of the Coexistence of Two Flows in a Constant-Section Duct," <u>Inlets and Nozzles for Aerospace Engines</u>, AGARD CP-91-71, 12 pp. (1971); ONERA TP-976 (1971).
- 321. Stern, R. D., "A Description of a Multichannel Ejector Test Facility and Preliminary Test Results," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-71-0036 (1971).
- 322. Vasilev, Iu.N., "Theory of a Two-Phase Gas-Liquid Ejector with a Cylindrical Mixing Chamber," Lopatochnye Mashiny i Struinye Apparaty, 5:175-261 (1971).
- 323. Yule, A. J., "Two-Dimensional Self-Preserving Turbulent Mixing Layers at Different Free Stream Velocity Ratios," Aeronautical Research Council, Great Britain, Report No. ARC-R/M-3683 (1971).
- 324. <u>Jet Pumps and Ejectors</u>, British Hydromechanics Research Association, Proceedings of the Symposium, London, England, November 1, 1972, 12 Papers.

- 325. Addy, A. L., "The Analysis of Supersonic Ejector Systems," Supersonic Ejectors, AGARDograph No. 163, pp. 31-101 (1972).
- 326. Anderson, B. H., "Factors which Influence the Analysis and Design of Ejector Nozzles," AIAA Paper No. 72-46 (1972).
- 327. Ginoux, J. J., Editor, <u>Supersonic Ejectors</u>, AGARDograph No. 163, 1972, 5 Papers.
- 328. Gusev, V. N., "The Theory of the Critical Conditions of a Gas Ejector at Large Pressure Drops," (Translated from: Tsentralnyi Aerohidrodinamicheskii Institut, Uchenye Zapiski, USSR, 1(3): 91-96, 1970), Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, Report No. FTD-MT-24-0005-72 (1972).
- 329. Hardy, J. M., "Theoretical Study of a By-Pass Convergent-Divergent Nozzle," L'Aeronautique et l'Astronautique, 37:23-36 (1972).
- 330. Hickman, K. D., Hill, P. G., and Gilbert, G. B., "Analysis and Testing of Compressible Flow Ejectors with Variable Area Mixing Tubes," Journal of Basic Engineering, 94(2):407-416 (1972).
- 331. Howlett, L. D., and Chow, W. L., "A Study of Nozzle and Ejector Flow Problems by the Method of Integral Relations," NASA CR-128066 (1972).
- 332. Kentfield, J.A.C., and Barnes, R. W., "The Prediction of the Optimum Performance of Ejectors," Proceedings of the Institution of Mechanical Engineers, 186(54):671-681 (1972).
- 333. Lapin, Iu.D., "Design of a Low-Pressure Gas Ejector," Izdatel'stvo Mashinostroenie, 4:115-120 (1972).
- 334. Lapin, Iu.D., "Investigation of the Operation of Low-Pressure Gas Ejectors," Izdatel'stvo Mashinostroenie, 5:90-94 (1972).
- 335. Mueller, T. J., and Sule, W. P., "Basic Flow Chracteristics of a Linear Aerospike Nozzle Segment," ASME Paper No. 72-WA/AERO-2 (1972).
- 336. Oddving, B., "Jet Pumps for Compressible Fluids at Supersonic Velocities," Proceedings of the 4th Conference on Fluid Machinery, Budapest, Hungary, September 11-16, 1972, pp. 915-929.
- 337. Peters, C. E., "Analysis of Ducted Mixing and Burning of Coaxial Streams," Supersonic Ejectors, AGARDograph No. 163, pp. 165-187 (1972).
- 338. Quinn, B., "A Simple Estimate of the Effect of Ejector Length on Thrust Augmentation," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-73-0212 (1972); Journal of Aircraft, 10(5):313-314 (1973).

- 339. Solignac, J. L., and Delery. J., "Contribution to Aerodynamic Studies of Two-Stream Propulsion Systems," Israel Journal of Technology, 10(1-2) (1972); ONERA TP-1050 (1972).
- 340. Taylor, D., "Ejector Design for a Variety of Applications," <u>Supersonic Ejectors</u>, AGARDograph No. 163, pp. 103-163 (1972).
- 341. Uebelhack, H. T., "Analysis and Design Method for Ejector Systems with Second Throat Diffusers," <u>Supersonic Ejectors</u>, AGARDograph No. 163, pp. 17-30 (1972).
- 342. Uebelhack, H. T., "One Dimensional Inviscid Analysis of Supersonic Ejectors," Supersonic Ejectors, AGARDograph No. 163, pp. 1-16 (1972).
- 343. Vaughan, J. C., III, "Performance of Jet Ejectors," Aeronautical Systems Division, Wright-Patterson Air Force Bose, Ohio, Report No. ASD/XR-72-5 (1972).
- 344. Watanabe, I., "Experimental Investigations Concerning Preumatic Ejectors, With Special Reference to the Effect of Dimensional Parameters on Performance Characteristics," Jet Pumps and Ejectors, British Hydromechanics Research Association, Proceedings of the Symposium, London, England, November 1, 1972, pp. 97-120.
- 345. Arkadov, Iu.K., "Investigation of a Gas Ejector Employing a Helical Nozzle," Aerodynamics of Channels and Jet Flows, Moscow, Izdatel'stvo Mashinostroenie, pp. 82-91 (1973).
- 346. Baker, L. R., Jr., and McDermit, J. H., "Survey of Pressure Recovery Methods for Chemical Laser Application," Vol. VI, Chemical Laser Analysis Development, Huntsville Research and Engineering Center, Lockheed Missiles and Space Company, Inc., Puntsville, Ala., Report No. LMSC-HREC-TR-D306900-6 (1973).
- 347. Binder, G., and Favre-Marinet, M., "Mixing Improvement in Pulsating Turbulent Jets," Fluid Mechanics of Mixing, ASME, Proceedings of the Joint Meeting, Atlanta, Ga., June 20-22, 1973, pp. 167-172.
- 348. Brychta, O., "The 'Small Ejector' System," British Hydromechanics Research Association, Proceedings of the 5th Cranfield Fluidics Conference, Uppsala, Sweden, June 13-16, 1973, Vol. 1, pp. E7-97 to E7-112.
- 349. Cheng, D. Y., Wang, P., and Chisel, D. M., "Experimental Study on Optimization Parameters of a Supersonic Jet Ejector Thrust Augmentor," Journal of Aircraft, 10(9):569-570 (1973).
- 350. Fabris, G., and Fejer, A. A., "Confined Mixing of Multiple Jets,"

 Fluid Mechanics of Mixing, ASME, Proceedings of the Joint Meeting,
 Actanta, Ga., June 20-22, 1973, pp. 147-157.

- 351. Fishbach, L. H., "Performance of Ejector Wing Aircraft for Navy VTOL Fighters," NASA TM X-68237 (1973).
- 352. Gilbert, G. B., and Hill, P. G., "Analysis and Testing of Two-Dimensional Slot Nozzle Ejectors with Variable Area Mixing Sections," NASA CR-225! (1973).
- 353. Hasinger, S. H., "Simplified Lay-Out of Supersonic, Heterogeneous Ejectors," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-73-0149 (1973).
- 354. Kunstadt, E., "Study of Reverse-Flow Characteristics of a Tip Fan and an Ejector," M.S. Thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio (1973).
- 355. Marshek, K. M., and Otis, D. R., "Flow Limitations in a Supersonic Ejector," Fluid Mechanics of Mixing, ASME, Proceedings of the Joint Meeting, Atlanta, Ga., June 20-22, 1973, pp. 59-61.
- 356. Nagaraja, K. S., Hammond, D. L., and Graetch, J. E., "One-Dimensional Analysis of Compressible Ejector Flows Applicable to V/STOL Aircraft Design," AIAA Paper No. 73-1184 (1973).
- 357. Taylor, D., Duesterhaus, D. A., and Simmons, M., "Diffuser Studies," Arnold Engineering Development Cen er Report No. AEDC-TR-73-198 (1973).
- 358. Throndson, L. W., "Compound Ejector Thrust Augmentor Development," ASME Paper No. 73-GT-67 (1973).
- 359. Tirumalesa, D., "Theoretical Analysis of the Noise Characteristics of an Ejector Jet," Journal of Sound and Vibration, 30(4):465-481 (1973).
- 360. Zannetti, L., "One-Dimensional Study of Ejectors with a Supersonic Primary Flow and a Subsonic Secondary Flow," L'Aerotecnica Missili e Spazio, 52(5):357-368 (1973).
- 361. Addy, A. L., and Mikkelsen, C. D., "An Investigation of Gas-Dynamic Flow Problems in Chemical Laser Systems," Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Report No. UILU-ENG-74-4009 (1974).
- 362. Bevilaqua, P. M., and Toms, H. L., Jr., "A Comparison Test of the Hypermixing Nozzle," Aerospace Research Labs, Wright-Patterson Air Force Base, Ohio, Report No. ARL-74-0006 (1974).
- 363. Hedges, K. R., and Hill, P. G., "Compressible Flow Ejectors, Part I Development of a Finite Difference Flow Model," ASME Paper No. 74-FE-1 (1974).

- 364. Hedges, K. R., and Hill, P. G., "Compressible Flow Ejectors, Part II Flow Field Measurements and Analysis," ASME Paper No. 74-FE-2 (1974).
- 365. Puzyrev, V. M., and Tagirov, R. K., "Calculation of Ejector Nozzle Flows," Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza, 1:111-118 (1974).
- 366. Vereshchaka, L. P., Kraiko, A. N., and Sternin, L. E., "Grid-Characteristic Method of Calculating Plane and Axisymmetrical Supersonic Two-Phase Flows," (Translated from: Lopatochnye Mashiny i Struynye Apparaty, USSR, 6:163-178, 1974), Foreign Technology Division, Wright-Patterson Air Force Base, Ohio, Report No. FTD-HT-23-676-74 (1974).
- 367. Addy, A. L., "The Analysis of Supersonic Ejector Systems," <u>Ejectors</u>, von Karman Institute, Lecture Series 79 (1975).
- Delery, J., "Methods d'étude des éjecteurs supersonique Application aus tuyéres double-flux," <u>Ejectors</u>, von Karman Institute, Lecture Series 79 (1975).
- 369. Olivari, D., "Jets and Mixing Phenomena," Ejectors, von Karman Institute, Lecture Series 79 (1975).
- 370. Schmitt, H., "Summary of Possible Applications and Present Status of Various Ejector Techniques," <u>Ejectors</u>, von Karman Institute, Lecture Series 79 (1975).
- 371. Viets, H., "Thrust Augmenting Ejectors," <u>Ejectors</u>, von Karman Institute, Lecture Series 79 (1975).
- 372. Walker, B. J., "Chemical Laser Pumping Systems," <u>Ejectors</u>, von Karman Institute, Lecture Series 79 (1975).

7.2.1 Computer Program (CASSE)

4

CASSE OF SONIC S A (F) 40 G DEPARTMENT URBANA-CHAMPAIGN S 61801 CULATING THE PLANE (EA SUPERSONIC-SUPERSONALYSIS CASSE IS FOR DEC SYSTEM-10 ECTOR EJ SUPERSCNIC-SUPERSONIC ***** Z W HANICAL ENGINEERING ITY OF ILLINOIS AT URBANA, ILLINCIS S E. ZARCIE OF A CONSTANT-ARE ONE-DIMENSIONAL PREGRAM WRITTEN 0.0 4 ごの -ARE MECUNI VERS CASSE IS A OPERATION O EJECTOR BY FORTRAN IV ANT CONST ****

SCHE FGLLOW ATION AS INED DEF AR LES IABI VAR

RAT RATI Ä AREA (GAMMA) SPECFIC HI MACH NUMBER MOLECULAR WEIGHT : PRESSURE TEMPERATURE MASS FLCW RATE Z-LDZZUÞ

O

INDICATES SECONDARY OR DRIVEN STREAM PROPERTICION ICATES PRIMARY OR DRIVING STREAM PROPERTICIONICATES MIXED STREAM PROPERTICES MAHIXED STREAM SPECIFIC HEAT RATED FOLL ¥S: LOCATION 9 S ⋖ SIGNATED U ARE BLE AR R o a Σ iii

S

108

RAT

INDICATE SIZAPI

۲ on II

TTER:

ASI

ED E:

EATE

REPE EXA!

ii o

S

80

PRESSURE ECCNDARY ONS 9 FNI ATIC THE CONFLUENCE PO STREAMS JBE AT WHICH THE SO TO SONIC CONDITIES SI -10-PRIMARY SECCNDARY AND PRIMARY STREASECTIONARY AND PRIMARY STREASESTREAM IS RECOMPRESSED TO SECONDARY STREAM IS RECOMPRESSED TO SECONDARY TO PRIMARY STATION I mw

CASSE (Cont.) 7.2.1

 $\frac{\partial \mathcal{N} \partial \mathcal{N$ **** CX#XX#XXB F(GX.MXX)=1.0+GX#XX#MXX G(GX.MXX)=MXX*DSQRT(1.0+0.5#(GX-1.0)#MXX#MXX) H(MM.TT.GG)=DSGRT(MM#GG/TT) MDMU(GX.MXX)=0.0QRT((MXX#MXX+2.0/fGX-1.0))/(2.0#GX#MXX#MXX -/(GX-1.0)-1.0) POPUMU(GX.MXX)=(2.0#GX#MXX#MXX-GX+1.0)/(GX+1.0) PDOM (GX.MXX)=(1.0+0.5#(GX-1.0)#MXX#MXX}##(GX/(1.0-GX)) AASM(GX.MXX)=(2.0#(1.0+0.5#(GX-1.0)#MXX#MXX)/(GX+1.0) OW PM3PS1(2 MOLECULAR WEIGHT RATE STAGNATION TEMPERATURE DIMENSION GM(21), MWMMWF(21), MWMMMS(21), PSOPPO(21), PSIPPO(21), FPOPSO(21), PPOPSI(21), PPIPSI(21), TMOTPO(21), TMOTSO(21), TMOTPO(21), TMOTSO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21), TMOTPO(21) INED DEF TAGNATION CONDITIONS 0=MIXED-TO-PRIMARY STAGNATION RATURE RATIO .31 .31.PM3PS0(21 NOI A R STAT SCHEME FUNCT ION DATA A SECCNDARY GAMMA
PRIMARY GAMMA
SECONDARY-IO-PRIMARY N
SECCNDARY-IO-PRIMARY SECCNDARY-MACH NO. AT S THE A S: INDICATES *** CCNDITION EXAMPLE: APIAPS=API/AP* MM3(21.3), PM3PP0(2 CIAL FOLLOWING 6 E 1-4 MOTPO ACT *** O: INDICATE EXAMPLE: TH REAL ARIABLES EQUIRED. H H H H GS GP MESMEP HSOHPO DIMENSION S

7.2.1 CASSE (Cont.)

* MPI = PRIMARY MACH NO. AT STATION I * AS1API = SECONDARY-TO-PRIMARY AREA RAYIO AT STATION I * * RD = NOMAL SHOCK DIFFUSER COEFFICENT * ERROR = MAX PERCENT DEVIATION IN M(G.AAS) * NOATA = NUMBER OF INCREMENTS INTO WHICH THE PLANE GF * * OPERATION IS OIVIDED * *********************************		00000000000000000000000000000000000000
WRITE(5,200) READ(5,201)GS,GP,MWSMWP,TSOTPO.MS1,MP1.AS1AP1 WRITE(5,202) READ(5,203)RD,ERROR,NDATA		0 = NW 4 W
######################################	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00000000000000000000000000000000000000
IF(MSI.LE.1.0) GO TO 105 IF(MPI.LE.1.0) GC TO 106	00000 0000 VVVV	2000 2000 2000 2000
在各种的企业中的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的	2000 2000 2000 2000 2000 2000 2000	00000000000000000000000000000000000000
WRITE(3,301)GS.GP.MWSMWP.TSOTPO.MSI.MPI.ASIAPI.ACO.ERROR. NDATA	A S S S S S S S S S S S S S S S S S S S	₩ X W W W W ₩ X W W W W ₩ X W W W W W ₩ X W W W W W ₩ X W W W W W ₩ X W W W W W ₩ X W W W W W W ₩ X W W W W W W W ₩ X W W W W W W W ₩ X W W W W W W W W ₩ X W W W W W W W W W ₩ X W W W W W W W W W W W ₩ X W W W W W W W W W W W W W W W W W ₩ X W W W W W W W W W W W W W W W W W W
格特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特	A S S S S S S S S S S S S S S S S S S S	40~NW48
GP1=(GP-1.0)/2.0 GP11=1.0/GP1 GP2=2.0/(GP+1.0) GP21=1.0/GP2	A 55 A 55 A 55 A 55 A 55	444 444 500 500

7.2.1 CASSE (Cont.)

```
******
                                                                                                                                                                               ***
                                                                                                                                                                    S
                                                                                                                                                                    NCREMENT
                                                                      188
                                                                             LINEAR
                                                               乔女子女女女女女女女女女女女女女女女女女女女女女女女女女女
                                                                      MPRES
                                                                      TROPIC RECOM
C CONDITIONS
M AP2AP2 BY
                                                                                                                                                                    ¥
ED
                                                                                                                                                                    MATCHE
                                                                                                                                                                    THE
                                                                                                   S
                                                                                                                                          MP1/G(GP • MP2
S1/G(GS • MS2)
                                                                      I SENTR
SONIC
FROM
                                                                                                   SSA
                                                                                                                             0
                                                                                                                                                                    NO:
                                                                                                   . 0-A
                                                                                                                            10
                                                                      IR AN E
                                                                                                                                                                    OPERATS 1PP1=1
                                                                                                                 9,0
                                                                                                 AP2APS=AP1APS*(1.0+AS1AP1*(1)
MP2=MP1
DO 100 [=1.200
C1=(WP2*AF2APS)**GF4[
XMP2=DSQRT(GP1]*(GP2]*C1-1.0
XERROR=(XMP2-MP2)*100.0/MP2
MP2=XMP2
MP2=XMP2
IF(DABS(XERROR).LT.ERRCR) GO
CONTUNE
GO TO 107
MS2=1.0
C1=-FGPMP1*F(GP,MP2)*GGPMP1/
C2=FGSMS1-F(GS.MS2)*GGSMS1/G
PS1PP1(1)=C1/(AS1AP1*C2)
                                                                                                   AP1*(1
                                                                                                                             9
                                                                                        ***
                                                                      FOR
REAM
OBTAI
        .0*(GP-1.0)
                                                                                        ¥
                                                                                                                                                                    F G
                                                                     SIPPI(I)
                                                                                                                                                                       0
GS3=GS/(GS-1.0)
GP3=GP/(GP-1.0)
GP4=[GP+1.0)/(2.0*(GGS-1.0)
GSGP=GS/GP
GSGP=GS/GP
MWPMWS=1.0/GP4
GSGP=GS/GP
MWPMWS=1.0/GP4
GSGP=GS/GP
MWSMZF
PSIPSO=PPOW(GP.MPI)
PSIPSO=PPOW(GP.MPI)
ASIASS=AASM(GS.MSI)
ASIASS=AASM(GS.MSI)
ASIASS=AASM(GS.MSI)
GGSMSI=F(GS.MSI)
GGSMSI=F(GS.MSI)
GGSMSI=F(GS.MSI)
GGSMSI=G(GS.MSI)
                                                                                        ***
                                                                                                                                                                    ΨĔ
                                                                                                                                                                    PLANE
                                                                                        ***
                                                               ***
                                                                     CALCULATE PS
OF THE SECON
STATION 2.
ITERATION.
                                                                                                                                                                   THE
SIPPI
ION.
                                                                                                                                                                   ROM PS
                                                                                                                                                                    OIL U
```

÷ * * * * * * * *

7.2.1 CASSE (Cont.)

```
DO 104 [=1.NDATA

WSWP(I)=PSIPPI(I) *ASIAPI*H(MWSNWP,TSOTPO,GSGP)*GGSMS1

-/GGPMP1

WPWS(I)==0/WSWP(I)

Cl=WSWP(I) *MWPMWS*GS3+GP3

Cl=WSWP(I) *MWPMWS*GS3+GP3

GM(I)=CI/C2

GM(P=GM(I)*MWPMWS*GS3+I.0) + (GP3-I.0)

GM(I)=CI/C2

GM(P=GM(I)*MWPMWS*GS3+I.0) / (WSWP(I)*MWPMWS+I.0)

MWMMWP(I)=(WSWP(I)*MWPMWS*GS3+GP3

Cl=MSWP(I)*MWPMWS*GS3+GP3

TMOTPO(I)=TWOTPO(I)*TSOTPO

FFX=F(MWMWP(I)*TSOTPO(I)*GMGP)*(PSIPPI(I)*ASIAPI*FGSMSI

TMOTSO(I)=TMOTPO(I)*TSOTPO

FFX=F(MWMWP(I)*GPM(I)*GGPMPI)

Cl=O.5*(GM(I)-I.0)*FFX*FFX-GM(I)

C3=(-C2+DSQRT(C2*C2+4.0*CI)/(2.0*CI)

C3=(-C2+DSQRT(C2*C2+4.0*CI)/(2.0*CI)
                                                          ****
                                                                                                                                                                                 ****
                                                                                                                                                                                                                 MM3(I:1)=DSQRT(DMAXI(C3.C4))
MM3(I:2)=DSQRT(DMAXI(C3.C4))
DO 103 J=1.2
PM3PFI=(PSIPPI(I)*ASIAPI*FGSMSI+FGPMPI)/((1.0+ASIAPI)
PM3PSI(I)*MM3(I:J))
PM3PSI(I:J)=PN3PPI/PSIPPI(I)
                                                          SOLUTION
                                                 CULATION
                                                                                                                                                                                           SUBSONIC
                                                 CAL
                                                                                                                                                                                           Q
V
V
                                                 VOLUME
                                                                                                                                                                                           SUPERSONI
                                                                                                                                                                                                     ****
                         O*(1-1)+(1)
                                                 80
                                        *******
                                                 <del>ا</del> _
          C1=(1.0-FSIPPI(1))/NCAT
NDATA=NDATA+1
D0 102 I=2.NDATA
PSIPPI(I)=PSIPPI(I)+(I-
                                                                                                                                                                                                     **
                                                 S
                                                                                                                                                                                           THE
                                                                                                                                                                                                     *
```

02 Oυ

000000000

*

**

ENTIFY ***

7.2.1 CASSE (Cont.)

	M3PSO(I.1)=PW3PF1*PM3PF1*P	CASSE	25100
	\$1(1)=1.0/PS1PP1() PO(1)=PS1PP1(1)#P	800 800 800 800 800 800 800 800 800 800	24 t
	POPS1(1)=1.0/PS1PP SOPP0(1)=PS1PP1(1)	A 55	5.0
	POPSO(1)=1.0/PSCPPO(888 888	58
		ASS	59
	***************************************	A 55	9,
	1 3013310	%	- (V)
	CONDITIONS	ASS	63
	转换物的复数 经存储存储 医格特特斯特格氏检验检尿病检验检尿病 计多数分子 计多数计算 医多种氏管 医多种性多种性多种的	888 8 88	0 0 0
		A SS	56
	"I) ERN - (I) NS) OND dOG #G8= (,	. œ
	Mapos (1.3)=01*pMapos (1.2)	ASS	60
	PAGPSO(1,3)=C1+PAGPSO(1,2)	A SS	0 r
	本でした。 かいしゅつ かいかい かいぎん アプロ・コンド はいかい しょうしん おいまい かいしょう しょうしん カンド かいかい しょう かんしょう かんしょう かんかい しょう かんしょう かんしょう かんしょう かんしょう しょうしょう しょう	000 800 800	72
		ASS	73
		888	~ 1
	计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设	いいく	こと
	* COLLD SUBSONIC SCENTION *	> 2	77
		ASS	78
	***************************************	ASS	60
		ハハマ	2 - 20 a
	RITE(3,302	95.4 1 5.5	9 0
	RITE(3+303)	ASS	83
1	EXITER(3+304)([+PNITE]([)+FNITE)([)+FNITE)([)+FNOTEO([)+ENST(E)+ -DENDDO([+1]+ENST([+1]+NITE)(NDATA)	8 5 5 5 8 5 5 5	0 0 0
	RITE(3+305)	ASS	86
i	WRITE(3,306	いいく	2) C
		> S < <	89
		A 55	00
	*************************************	ハいく	≥ 0 ∪ ∪
	* OUTPUT - SUPERSONIC SCLUTION *	A 55	IM.
		A 555	♥ 1
	经存货帐据 计电子记录 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	クロマ) (
		ASS	97
	WRITE(3,3C7)	888 A SS	დე ტე
	RITE(3,304	A 55	0 4

N. Marketting

= 0000000000

$\begin{array}{c} u_{u} u} u_{u} u} u_{u} u_{u} u_{u} u} u_{u} u} u_{u} u_{u} u} u_{u} u_{u} u_{u} u_{u} u} u_{u} u_{u} u_{u} u_{u} u} u_{u} u_{u} u_{u} u_{u} u_{u} u} u_{u} u_{u} u_{u} u_{u} u} u_{u} u_$	44444440 W450/800
	σονονονος -

	*PPOPSO(I)*WPWS(I)* **************** *D OF NORMAL SHOCK ************* *PSOPPO(I)*WSWP(I)* ******************* *PSOPPO(I)*WSWP(I)* **********************************
STOD	*PSOPPO(I)*WSWP(I)* A) *PPOPSO(I)*WPWS(I)*
#XITE(3,306)(I.PSIPPI(I).PSIPPO(I).PSOPPO(I).#SWP(I). #WMMWP(I).TMOTPO(I).GM(I).I=1.NDATA) #RITE(3,311) #RITE(3,311) #RITE(3,306)(I.PPIPSI(I).PPOPSI(I).PPOPSO(I).#PWS(I). #WMMWS(I).TMOTSO(I).GM(I).I=1.NDATA)	
WRITE(3,3C9) WRITE(3,310) WRITE(3,310) WRITE(3,310) WRITE(3,310) WRITE(3,310) WRITE(3,311) WRITE(3,3C6)(1,PPIPSI(1),PPOPSI(1),PPOPSO(1),WPWS(1),	· PDECED TO CONTRACT TO CONTR
######################################	************************
######################################	*PPOPSO(I)*EPES(I)*
RITE(3,3C9) M3PSO(I,3), PM3PSI(I), PPOPSI(I), PPOPSO(I), WPWS(I), M3PSO(I,3), PM3PSI(I,3), PM3(I,3), I=1, NDATA) **********************************	* [1] d M S M * [1) O d d O S d *
#RITE(3,303)RD #RITE(3,304)(I,PSIPPI(I),PSIPPO(I),PSOPPO(I),WSWP(I), -PM3PDO(I,3),MM3(I,3),I=1,NDATA) #RRITE(3,306)(I,PPIPSI(I),PPOPSI(I),PPOPSO(I),WPWS(I), -PM3PSO(I,3),PM3PSI(I,3),PM3(I,3),PM3(I,3),PM3(I,3),PM3(I,3),PM3(I,3),PM3(I,3),PM3(I,3),PM3(I,3),PM3PSI(I),PM3PSI(I),PSIPPI(I),PSIPPI(I),PSIPPI(I),PSIPPI(I),PSIPPI(I),PPOPSI(I),WPWS(I),WPWS(I),TM0TPO(I),GM(I),I=1,NDATA) #RRITE(3,306)(I,PPIPSI(I),PPOPSI(I),PPOPSI(I),WPWS(I),WPWWS(I),TM0TSO(I),GM(I),I=1,NDATA) #RRITE(3,306)(I,PPIPSI(I),PPOPSI(I),PPOPSI(I),WPWWS(I),WPWWS(I),TM0TSO(I),GM(I),I=1,NDATA)	****
#RITE(3,308)RD #RRITE(3,304)[I.PSIPPI(I).PSIPPO(I).PSOPPO(I).WSWP(I). #RRITE(3,304)[I.PSIPPI(I).PDIPSI(I).PDOPSI(I).WPWS(I). #RRITE(3,304)[I.PSIPPI(I).PDOPSI(I).WPWS(I). #RRITE(3,304)[I.PSIPPI(I).PDOPSI(I).WPWS(I). #RRITE(3,305)[I.PSIPPI(I).PDOPSI(I).WPWS(I). #RRITE(3,306)[I.PSIPPI(I).PSIPPO(I).WSWP(I). ####################################	RD OF NORMAL SHOCK #
## CUTPUT - SUPERSONIC SOLUTION AT RD OF NORMAL SHOCK ## CONDITIONS ## CONDITIONS ####################################	*PDOPSO(I)* WDMS(I)*
######################################	

WRITE(5,400) MS1 STOP WRITE(5,401) MP1

CASSE (Cont.) 7.2.1

```
FORMAT('1', 1744, 'CGNSIANI-AREA SUPERSONIC-SUPERSONIC',

- "EJECTOR', '154, 'DAE, 'DRED' BERSONIC-SUPERSONIC',

- "COD" MIKKELSEN', '154, 'DRED' BERSONIC-SUPERSONIC',

- "COD" MIKKELSEN', '154, 'DRED' BERSONIC-SUPERSONIC',

- "ENGINEERING DEPARTMENI', '155, 'UNIVERSITY OF ILLINOIS',

- "AT URBANA-CHAMPAIGN', '155, 'UNIVERSITY OF ILLINOIS',

- "AT URBANA-CHAMPAIGN', '155, 'UNIVERSITY OF ILLINOIS',

- "TA4, "MS.AW, "= "DI3.6, 'T57, 'RD = "DI3.6, ',

- "TA4, "MS.AW, "= "DI3.6, 'T67, 'RD = "DI3.6, ',

- "TA4, "ERROR = "DI3.6, 'T67, 'RD = "DI3.6, ',

- "TA4, "ERROR = "DI3.6, 'T67, 'RD = "DI3.6, ',

- "TA4, "ERROR = "DI3.6, 'T67, 'RD = "DI3.6, ',

- "TA4, "ERROR = "DI3.6, 'T67, 'RD = "DI3.6, ',

- "DSOPPO', 'T65, 'WSWP', 'T78, 'PM3PPO', 'T108, 'PM3PS', 'T108, '
                                                                                                                  *MSI . MPI . ASI API . 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             *6 * 2X
                                                                                                                                                                                                                                                                                                                                                                                                                                                           ō
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             •E13
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ŤĮ.
                                                                                                                                                                                                                                                                                                                                                                                                                                                          MP
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FAILURE . . . . 12. MP2
                                                                                       ***
                                                                                                                                                                                                                                                                                                                                                                                                                                        ×
                                                                                                                 SOTPO
                                                                    S
                                                                                                                                                                                                                                                                                                                                                                                                                                       E13.6
                                                                    STATEMENT
                                                                                                                  GS. GP. MWSMWP. T
                                                                                                                                     RC. ERROR. NDATA
                                                  ***
                                                                                       ***
                                                                                                                                                                                                                                                                                                                                                                                                                                       i
                                                                                                                                                                                                                                                                                                                                                                                                                                       MS1
   STOP
WRITE(5.402)MP2.XERROR.ERROR
STOP
                                                                                                                                                                                                                                                                                                                                                                                                                                                          Œ
                                                                   CRMAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              * CONVERGENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                       ERROR:
                                                                                                                                                                                                                                                                                                                                                                                                                                                           ERROH:
                                                                                                                   FORMAT (*0*, T2, *INPUT FORMAT (7F)
FORMAT (*0*, T2, *INPUT FORMAT (F, C, 1)
                                                  ****
                                                                                                                                                                                                                                                                                                                                                                                                                                      C. )
                                                                                       *
                                                                                                                                                                                                                                                                                                                                                                                                                                                SCNIC!)
                                                                                        ****
                                                                                                                                                                                                                                                                                                                                                                                                                                     FORMAT(.0.
FORMAT(.0.
SUPERSONI
                                                   ****
                                                   ****
                               306
307
308
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           402
                                                                                                                                                                                                                                                                         302
                                                                                                                                                                                                                                                                                                     304
                                                                                                                                                                                                                                                                                                                                                                                310
                                                                                                                                                                                                                                                                                                                                                                                                                              C
400
                                                                                                                                                                                                                                                                                                                                                                                                           311
                                                                                                                                                                                                                                                                                                                                                                                                                                                          401
```

301

O

40104

CASSE

-'XERROR =',E13.6,2X,'ERROR =',E13.6} END

7.2.2 CASSE Sample Input

INPUT GS, GP, MWSMWP, TS0TP0, MS1, MP1, AS1AP1 1.562, 1.34, 0.593912, 1.31341, 2.18, 4.690, 4.02823

INPUT RD, ERROR, NDATA 0.75, 5.0E-06, 10

7.2.3. CASSE Sample Output

					EMM3	0.434615D+00 0.442472D+00 0.449454D+00 0.449454D+00 0.4461330D+00 0.466425D+00 0.47391D+00 0.47310D+00 0.47310D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00 0.482776D+00
α		7	0000			PM 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RSONIC EJECTO NIC OPERATION LYSIS	•	EPARTMENT BANA-CHAMPAJGN 1801	= 0.134000D+(= 0.131341D+(= 0.469000D+(= 0.750000D+(DNS	PM3PPO	0.132029D-01 0.134725D-01 0.167725D-01 0.167735D-01 0.177288D-01 0.194765D-01 0.2072430D-01 0.2072430D-01 0.242063D+01 0.194815D+01 0.194815D+01 0.111159D+01 0.194811D+01 0.988724D+01 0.988724D+01 0.988724D+01
ERSONIC-SUPE ONIC-SUPERSO ENSIGNAL ANA	.D. MIKKELSEN 9 MARCH 75	ENGINFERING DI LLINGIS AT UR A. ILLINGIS 6	00+00 GP 00+00 150TP0 00+01 MP1 30+01 RD 00-05 NDATA	SONIC SCLUTIC	d B S A	C. 226836D+00 C. 2995880D+00 C. 517810D+00 C. 59053D+00 C. 663296D+00 C. 736640D+00 C. 736640D+00 C. 736640D+00 O. 954260D+00 O. 954260D+00 O. 954260D+00 O. 159312D+01 C. 150762D+01 C. 135862D+01 C. 135862D+01 C. 135862D+01 C. 135862D+01 C. 135862D+01
STANT-AREA SUP ANE OF SUPERS	Ü	MECHANICAL (IVERSITY OF IN	WP = 0.15620 = 0.59391 = 0.21800 Pl = 0.40282 R = 0.50000	SOB	PSOPPO	0.565432D-02 0.895257D-02 0.107017D-01 0.1124508D-01 0.11594991D-01 0.1159491D-01 0.211964D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01
CONS) I	G X X X X X X X X X X X X X X X X X X X		PS1PP0	0.51632000-03 0.6818970-03 0.107863C-02 0.117863C-02 0.1184500-02 0.1675360-02 0.1846940-02 0.206510-02 0.2066510-
					199189	0.2377070+00 0.39936D+00 0.466395D+00 0.5426240+00 0.5528240+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.7713120+00 0.10000+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01 0.1615890+01
					Q Z	10004004000 O 10004004000000000000000000

			SUPER	SUPERSCNIC SCLUTIONS	SNO		
Q	PSIPPI	PSIPPO	04d0Sd	CASA	рмзрро		MW3
	.2377070+3	.516320D-0	.545432D-C	.2268360+0	.7777510-0	0	.3843670+0
Λı	.313936D+0	.6818970-0	.720344D-C	•299580D+0	.893705C-0	0	.3682850+0
m	•350165D+0	.847474D -0	. 8552570-C	.3723230+0	.101142D-0	0	355134D+0
	63	0.1013050-02	0.107017D-01	0.4456660+00	3.113064D-02	0	.344136D+0
	*54262<0+0	.117863U-0	-124508D-0	.517810D+0	.1251120-0	0	.334797D+0
۸.	0.618853D+0	.134420D-0	.141999D-0	•590553D+0	•137270D-0	0	.326764D+C
	.695083D+ô	.150978D-0	.1594 91 D-0	.6632960+0	.149523D-0	0	.3197790+0
~	.7713120+0	.167536D-0	.176982D-0	.736040D+0	.1618590-0	0	.313648D+0
_	.8475410+0	•184094D-0	.194473D-0	.808783D+0	.174268D-0	0	.308221D+0
_	.9237710+0	.2006510-0	.211964D-0	.8815260+0	•186741D-0		.3033830+0
_	*1C00C0D+0	•217239D-0	.229456D-C	.9542690+0	.199272D-0	0	.2990430
0	PP1PS1	PF0PS1	PPOPSO	SECR	PM3PS0	PM 3P S 1	M X X
	.429686D+0	.1936780+0	.183341D+0	.4408470+0	.142594D+0	.1506	.3843070+
۸.	.318536D+0	.146650D+0	•138823D+0	.333601D+0	•124056D+0	.13106	.368285D+
_	*256302D+0	.117998D+3	,111700D+0	.268584D+0	.112976D+0	.11934	,3551340+
_	.2144110+0	.5871170+0	.934432D+0	*224686D+0	•1056500+C	. 11160	.3441360+
	•184290D+0	.8484440+0	• 80 31 60D + 0	.193121D+0	*100485D+0	1001	.334797D+
_	.1615890+0	.7439340+0	.704228D+0	.169333D+0	·9666930-3	. 1021	.326764D+0
	0.1438680+01	0.6623470+03	0.6269560+02	C.150762D+01	0.9375010-01	0.9903600+00	0.3197790+01
	•129649D+0	*596887D+0	• 565030D+0	,135862D+0	.9145492-0	.96611	.3136480+0
_	.1179880+0	.543202D+0	.5142100+0	0123643D+0	.896101.D-0	.9466	.308221D+0
_	• 108252D+0	.498377D+0	.471777D+0	.113440D+0	.8810020-0	.9336	•303383D+0
	•1C000001•	.460386D+0	.435814D+0	.104792D+0	8684550-0	41742	2090430+0

7.2.3 CASSE Sample Output (Cont.)

	M.M.	0.434615D+G0 0.449454D+00 0.449454D+00 0.455703D+00 0.4613300+00 0.471062D+00 0.4753C1D+00 0.4753C1D+00 0.4753C1D+00 0.482776D+60	MM3	0.434615D+00 0.442472D+00 0.449454D+00 0.455703D+00 0.461330D+00 0.466425D+00 0.471062D+00 0.47102D+00 0.4827760+00
DIFIONS		00000000000	PM3PS1	0.191783D+02 0.153557D+02 0.130250D+02 0.114549D+02 0.947281D+01 0.880698D+01 0.783353D+01 0.783353D+01 0.78589D+01
NORMAL SHOCK CONDIFIONS	Oddewd	0.990217D-02 0.10383D-01 0.116044D-01 0.121694D-01 0.121694D-01 0.127334D-01 0.138591D-01 0.138591D-01 0.144210D-01 0.155432D-01	PM3PS0	0.181547D+01 0.145361D+01 0.123298D+01 0.977395B+00 0.896722D+00 0.833693D+00 0.783082D+00 0.785834D+00
0.750 GF	MSMO	0.2268360+00 0.3995800+00 0.3723230+00 0.4450660+00 0.5178100+00 0.5905530+00 0.7360400 0.7360400 0.8815260+00 0.9542690+00	SACA	0.4408470+01 0.3338010+01 0.2246860+01 0.1931210+01 0.1507620+01 0.1507620+01 0.1356620+01 0.134400+01 0.1047920+01
SOLUTIONS AT	PSOPPO	0.545432D-02 0.720344D-02 0.855257D-02 0.107017D-01 0.124508D-01 0.141999D-01 0.154473D-01 0.176982D-01 0.176473D-01 0.229456D-01	054044	0.183341D+03 0.138823D+03 0.934432D+02 0.93160D+02 0.704228D+02 0.626996D+02 0.565030D+02 0.565030D+02 0.565030D+02
SUPERSCNIC	PS1PP0	82 82 84 84 84 84 86 86 86 86 86 86 86 86 86 86 86 86 86	pp0pS1	0.193678D+04 0.146650D+04 0.117993D+04 0.987117D+03 0.84844D+03 0.743934D+03 0.596887D+03 0.596887D+03 0.498377D+03
	PS1 PP1	7070 7070 7070 1650 1650 1650 6240 6240 6330 0830 0830 0830 00330 7710 000 7710 000	PP1PS1	0.420686D+01 0.318536D+01 0.256302D+01 0.184290D+01 0.161589D+01 0.129649D+01 0.129649D+01 0.129649D+01 0.117988D+01
	9	WW 4 W 0 V W 0 O C	0	

7.2.3 CASSE Sample Output (Cont.)

		•					^			•			•											
	W O	.1381670+0	.139191D+0	0.1401640+01	.140925D+0	,141666D+0	.142339D+0	·142951D+0	.1435130+0	144028D+0	.144503D+0	.144943D+0	X	.1381670+0	.1391910+0	.1401040+0	0.1409250+01	•141666D+O	.142339D+0	.142951D+0	.1435130+0	.144028D+0	.1045030+0	.1449430+0
	TMOTPO	.1065500+0	,108223D+0	0.1096080+01	.1108360+0	.111933D+0	e112918D+0	.1138090+0	,114617D+0	.1153540+0	.1160280+0	•116648D+0	TMOTSO	,8120110+0	.823988D+0	•834530D+O	0.8438810+00	*852232D+0	.8597340+0	• 866512D+C	.8726650+0	.8782750+0	.883412D+0	.888133D+0
\$	DAMMAM	.8877661	.86384,2040	0.8435210+00	.8263440+0	.810055040	.7975320+0	.785750D+0	.7752570+0	.7658530+0	.757376D+0	.7495950+0	SHEWAY	.1454780+0	.1A5450D+0	.142028D+0	0.1390850+01	.136528D+0	.134285D+0	.132301D+0	.130534D+0	.1289510+0	.1275230+0	.126230D+0
CED PROPERTIE	CLES S. S.	.2268360+0	.29958CD+0	0.3723230+00	.445066D÷0	.517810D+0	.5905530+0	.663255D+0	.736043C v0	• 80 8 7 8 3D+0	. 8815260+0	*9542690+0	SACS	.440847D+	.3338010+	*2685840+	0.2246860+01	.1931210+	•169333D+	.150762D+	1358620+	.1236430+	.1134400+	.1047920+
X]W	0 d d 0 S d	5454320-0	. 720 344D-0	0.895257D-02	. 107017D-0	-124508D-0	.141999D-0	.1554910-0	1769820-0	. 194473D-0	.2119640-0	.229456D-0	PFOPSO	. 183341D+C	.1388230+0	.1117000+0	0,9344320+02	.803160D+0	.704228D+0	.626956D+0	. 565030D+0	. 514210D+0	.471777D+0	.435814D+0
	PSIPPO	.5163200-3	.681897D-0	8474740-0	.1013950-0	.117863D-0	.134420D-0	.1509780-0	167536D-0	.184094D-0	.2006510-0	172090-	1830dd	.1936786+6	.1466500+0	.117998D+0	3.587117D+03	. 846444D+3	.743934D+0	,662347D+0	.596887D+0	.543232D+0	.4983770+0	.46C386D+3
	199129	0.407.0775.2	.313936D+0	3901650+0	•466395D+0	.542624D+0	.6188530+3	6950830+0	.771312D+0	.8475410+0	.9237710+0	+	1SdIdd	.420686D+0	+318536D+0	.2563C2D+0	0.2144110+01	.184290D+0	.1615890+3	.1438680+0	•129649D+0	.117988D+0	•108252D+0	.10000001.
	O Z										0		Ö				4						0	

7.3 CONSTANT-AREA SUPERSONIC-SUPERSONIC EJECTOR PARAMETERS COMPUTER PROGRAM

7.3.1 Computer Program (CASSEP)

CASSED IS A PROGRAM FOR SUPERSONIC—SUPERFORM CASSED CASSED IS A PROGRAM FOR EVALUATING THE INFLUENCE OF ILLINOIS AT URBANA—CHAMPAIGN CASSED IS A PROGRAM FOR EVALUATING THE INFLUENCE OF ILLINOIS AT URBANA—CHAMPAIGN CONSTANT—ARE A SUPERSONIC—SUPERATION AS CALCULATED BY NOTED IN THE PLANE WITH VARIATION AS CALCULATED BY NOTED IN THE PLANE WITH VARIATIONS IN THE SELECTED EJECTOR AS CALCULATED BY NOTED IN CONSTANT AND COMPRESSION CASSED IS A FORTRAN IV PROGRAM WRITTEN FOR DEC SYSTEM—IO (F40). ***********************************
$M \vdash Z \cup D C C Z \cup A + A \cap C \vdash C C \vdash C C$

CASSEP (Cont.) 7.3.1

**** AP1 . RD . ERROR : • 5 0 m m IGHT RATI S MS 1 X S *** 51,2 X(8).RE 51.2 , X(8).Y · YE S • • H-S 000 = SECGNDARY GAMMA
= PRIMARY GAMMA
= SECGNDARY-TO-PRIMARY MOLECULAR WEIGHT
= SECCNDARY-TO-PRIMARY STAGNATION TEM
= SECCNDARY MACH NO. AT STATION 1
= PRIMARY MACH NO. AT STATION 1
= PRIMARY MACH NO. AT STATION 1
= SECCNDARY-TO-PRIMARY AREA RATIO AT
= NORMAL SHCCK DIFFUSER COEFFICIENT ECTED FROM TH RAMETERS AND RIC IMAGE.), MWMMWP(51,2), MWMMWS(51,2), 1,2), PSIPPI(51,2), PPOPSO(1,2), TMOTPO(51,2), TMOTSO(9) 0770 *** TPO PM3D ,MS1,MP1,AS1 (2), GP), (X(3), MWSMWP), MP1), (X(7), AS1AP1), (SELECTIO E(8) 80 S -3 , TITL -٠ 2 ů. • S - MESHED FAIL/* ш INDEPENDENT VARIABLE IS SELECONING CATALOG OF EJECTOR PARTHE FROGRAM AS ITS ALPHANUMER (51 **ENDE** .LIST(8) VARIABL SOTPO . PM3PP0 • SMWP. T • *** (2) --NDEPENDENT 3) ВP Œ.)*(2)*(X(e)*(...)*(X(e)*(...)* 3 **G**5 ***** a C 3 2 COMMON/BLOCK1/MM3(51.2 -PM3PS1(51.2.3) CORMON/BLCCK2/GM(51.2) -PSOPPO(51.2),PS1PPO(51 -PPDOPS1(51.2),PP1PS1(51 -WPWS(51.2),WSWP(51.2) COMMON/BLOCK3/GS.GP.PM α. F. 200-2 I 8 CATALG/'GS '.'ASIAPI'. TITLE/' GS FI '.'ASIAFI'. FLOW/' UL ' (X(1)₄ ALG *8 CAT AL SOTPO). (X(S) ŵ 11 11 11 11 11 11 11 11 $\tilde{\alpha}$ GS GP MESMEP 1 SOTEC ZOI FOLL TO TH MENS MS1 MP1 AS1 T DATA ∢ ⊷ ⋖ 0 A T A D I A T A D I A T A D I A T A D I A T A D I A T A D I A T A D I A T A D I A T A D IMP

5,2CC) WRITE (S

AP

ATION

ST

<u> -ر لن</u>

DO 101 K=1.8 IF(VARBLE.E0.CATALG(K)) GO TO 1C2 CONTINUE GO TO 1C7 INDVAR=K	CASSEEP CASSEEP CASSSEEP CASSSEEP CASSSEEP CASSSEEP CASSSEEP CASSSEEP	11000000000000000000000000000000000000
***************************************	▼	900
DETERMINE THE READ/WRITE SEQUENCE	A S S E	00
**************************************	ASSE	200
1 1ST (1)=[NOVAR	ASSE ASSE ASSE	3 4 N
03 L=2.8	ASSE	900
F(K,EQ.IN	ASSE	90
X + 1	A SSE	000
	ASSE	220
英琴海外海外海外海外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外	ASSE	2 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* INFUT - EJECTOR PARAMETERS AND ERROR *	ASSE	250
	ASSI	0 C
建水类 计转移 医格特曼 经存货 医电性性性 医乳球性 医乳球性 医多种性 医多种性 医多种性 医多种性 医多种性 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	ASSE	280
OTTE / S. 202) (Catal G(I fst(K)) . K=2.	ASSE	300
READ (S + 2002) (X (LIST (X)) - X = 2 + 8) + ERROR	ASSE	000
K1 E (S+ZC4) C	ASSE	330
	ASSE	340
***************************************	ASSE	90
* PERFORM FLECTOR CALCULATIONS *	A SSE	80
	ASSE	06
安托公安法安安共和安公安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	A SSE	0 0
	ASSE	202
0 104 [71,52	ASSE	000
ール	ASSE	9 to
(I)=X(INCVAR)	ASSE	90
ALL CASS	A S S S S S S S S S S S S S S S S S S S	2 0
0. 00 00 00 00 00 00 00 00 00 00 00 00 0	ASSE	0
<u> </u> ∷	ASSE	0

101

 $0 \cup 0 \cup 0 \cup 0 \cup 0 \cup 0$

104

WRITE(3,300) WRITE(3,301)(CATALG(LIST(K)),X(LIST(K)),K=2,8),ERROR **********************************	体验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检
**************************************	ITE (3.
1C6 L=1,2 [L.6G.2] WRITE(3,302) [L.6G.2] WRITE(3,303) [TE(3,304)FLCW(L)] [TE(3,304)FLCW(L)] [TE(3,310) TI TLE(INDVAR) [TE(3,310) TI TLE(INDVAR) [TE(3,311) TI TLE(INDVAR) [TE(3,311) TI TLE(INDVAR) [TE(3,309) (K,Y(K),PP1PS1(K,L),PP0PS1(K,L),PP0PS0(K,L), #\$ (K,L),FM3PS0(K,L,1),MM3(K,L),PP0PS1(K,L), #\$ (K,L),FM3PS0(K,L),PP1PS1(K,L),PP0PS1(K,L), #\$ (K,L),FM3PS0(K,L),PP1PS1(K,L),PS1PP0(K,L),PP0PS0(K,L), #\$ (M,L),PM3PS1(K,L),PP1PS1(K,L),PP0PS1(K,L),PP0PS0(K,L), #\$ (M,L),PM3PS1(K,L),PP0PS1(K,L),PP0PS1(K,L),PP0PS0(K,L), #\$ (K,L),PM3PS0(K,L,L),PM3PS1(K,L),PP0PS1(K,L),PP0PS0(K,L), #\$ (K,L),PM3PS0(K,L,L),PM3PS1(K,L),PP0PS1(K,L),PP0PS0(K,L), #\$ (K,L),PM3PS0(K,L,L),PM3PS1(K,L),PP0PS1(K,L),PP0PS0(K,L),	**************************************
######################################	1C6 L=1,2 [L.EQ.1] WRITE(3,302) [TE(3,304)FLCW[L] ITE(3,310)TITLE(INDVAR) ITE(3,310)TITLE(INDVAR) TE(3,310)TITLE(INDVAR) ITE(3,311)TITLE(INDVAR) ITE(3,311)TITLE(INDVAR) ITE(3,311)TITLE(INDVAR) ITE(3,311)TITLE(INDVAR) ITE(3,311)FITLE(INDVAR) ITE(3,311)FITLE(INDVAR) ITE(3,311)FITLE(INDVAR)
RITE(3,305)FLCW(L) RITE(3,310)TITLE(INDVAR) RITE(3,328)(K,Y(K),DSIPPI(K,L),PSIPPO(K,L),PSOPPO(K,L) SWPT(X,L),PM3PPO(K,L,2),MM3(K,L,2),K=1,I) SITE(3,311)TITLE(INDVAR) RITE(3,311)TITLE(INDVAR) RITE(3,320)(K,Y(K),PPIPSI(K,L),PPOPSI(K,L),PPOPSO(K,L) PWS(K,L),PM3PSO(K,L,2),PM3PSI(K,L,2),MM3(K,L,2),K=1,I)	##*###################################
	RITE(3,3C5)FLCW(L) RITE(3,310) TITLE(INDVAR) RITE(3,3C8)(K,Y(K),DSIPPI(K,L),PSIPPO(K,L),PSOPPO(K,L) SWP(K,L),PM3PPO(K,L,2),MM3(K,L,2),K=1,I) RITE(3,311) TITLE(INDVAR) RITE(3,321) TITLE(INDVAR) RITE(3,320)(K,Y(K),PPIPSI(K,L),PPOPSI(K,L),PPOPSO(K,L) PWS(K,L),PM3PSO(K,L,2),PM3PSI(K,L,2),MM3(K,L,2),K=1,I)

A S S S S S S S S S S S S S S S S S S S	A A A S S S S S S S S S S S S S S S S S	CASSSED 24 A COOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO
# OLTPUT - SUPERSONIC SOLUTION AT RD CF NORMAL SHOCK # C NDITIONS # * * * * * * * * * * * * * * * * * * *	######################################	* * M HOHO *
000000	000000000 2	00000000000000000000000000000000000000

7.3.1 CASSEP (Cont.)

201 202 203 203

00

บบบบลิ

205 C 300

```
90
                                                                                        . T58.
6. GM
                                                                                 S S S
                                                                                                 ш«
         ũ
                                                                                                   -
                                                                                                            PROGRAM
                                                                                 — •
                                                                                                 FROM 1
                                                                                                       CASSI
         I
                                                                                        OPS1 • ,
                                                                                   Ó
                    HI GH
                                                                                 S1PP0
         W
         ΓYΡ
                                                                                                   S
                                                                                                       SUBROUTINE
                   ONY
                                                                                                 T VARIABLE PARAMETER
                                                                                        1 . T44 . PP
0. TMOISO.
                                                                                 44.P
                                                                                                            Ī
         1
                                                                                                            S
                    INCREMENT
                                                                                                            EED
         ш
                                                                                 1
               ERRCR
         IABI
                                                                                 -0
                                                                                                            Š
                                                                                                 EPENDENT
EJECTOR
                                                                                                       z
         VAR
                                                                                 SIPP
                                                                                        *A6.T30.PP1PS
6.*MWMMWS..T10
                                                                                                            Ш
                                                                                                            . 46.
                                                                                                       ۵
                                                                                 130 . P.
                                                                                                       NATE
         INDEPENDENT
                    LCN VALUE
                                                                                                 IND
                                                                                                            ٠
                                                                                                       ERMI
                ( A6
                                                                                 H X
                                                                                                           9
                                                                                                 ALOG
                                                                                  • A6
                                                                                                       ۲
                                                                                                           VALUE
                                                                                        .T16
                                                                                                FORMAT('C',T2,'SELECT |
-'FULLOWING',',T2,'CATAL
-7(A6,','),A6)
FORMAT('C',T2,'PRGGRAM
-'FORMAT('C',T2,'PRGGRAM
-'FORMAT('C',T2,'D13,6)
                                                                                 ωã
             6.12. INPUT
6.0)
6.12. INPUT
7.12. INPUT
         TURALI
                                                                                        • d
                                                                                  UNA
SS
                                                                                  ..
                                                                                 σ. ¯•
         N
         -
                                                                                        PORMAT(10.
        FORMAT(*0*,
FORMAT(A6)
FORMAT(A6)
FORMAT(76,
FORMAT(76,
FORMAT(36,
FORMAT(36,
                                                                                 - -
                                                                                 FORMAT( .0
```

303

302

301

304 305 306

307 308 309 310

00

4 C 1 408

CASSEP 30100 CASSEP 30200

> - + O IMENSIONS *) END

CASSEP (Cont.) 7.3.1

```
\frac{2}{2} \frac{2}
 *****
                                     * * *
                                                                                       ***********
                                                                                                                                                                                                                                                                                                                                                       IGHT RATIO
                                                                                                                                                                                                                                                                             STATION
                                                                                                               IL O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     PROPERTIES PROPERTIES
                                                                                                              ING THE PLANE OF SONIC-SUPERSONICS.
                                                                                                                                                                                       = SECONDARY GAMMA

= PRIMARY GAMMA

= SECCNDARY-IO-PRIMARY STAGNATION TEMI

RATIC

= SECCNDARY MACH NO. AT STATION I

= SECCNDARY MACH NO. AT STATION I

= SECCNDARY-IO-PRIMARY AREA RATIO AT STATION I

= NCGMAL SHCCK DIFFUSER COEFFICIENT

= MAX FERCENT DEVIATION IN M(G.AAS)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RATI(
                          ERSONIC
                                                                                                                                                                                                                                                                                                                               *******
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Y OR CRIVEN STREAM OR DRIVING STREAM REAM PROPERTIES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AT
                           -SUP
                                                                                                               CALCULATI
                           SUPERSONIC SUBROUTINE
                                                                                                                                                                                                                                                                                                                                                                               SCHE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               RATIOS
                                                                                                                                                                                                                                                                                                                                                                                                       FOLLOW
                                                                                                                                                                                                                                                                                                                                                                                                                                           RAT
                                                                                                                                                                                                                                                                                                                                                                              NOITATION
                                                                                                               BROUTINE FOR C.
A CONSTANT-ARE.
E-DIMENSIONAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 w
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               CAT
      ***
                                                                                                                                                                                                                                                                                                                                                                                                       S
                                                                                                                                                                                                                                                                                                                                                                                                                                            HEAT
                                                                                                                                                                                                                                                                                                                                                                                                         ⋖
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ARY
IY UI
STRE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    α
                            C-AREA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 INCI
                                                                                                                                                                                                                                                                                                                                                                                                       INED
                                                                                                                                                                                                                                                                                                                                                                                                                               AREA
(GAMMA) SPECFIC +
MACH NUMBER
MGLECULAR WEIGHT
PRESSURE
TEMPERATURE
MASS FLOW RATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    GHI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    S SECCNCA
S PRIMARY
S MIXED S
                                                                                                                                                                                                                                                                                                                                 *****
                             ANT-
EJE(
                                                                                                                                                                                                                                                                                                                                                                                                         L.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ~ ~
      ****
                                                                                                                                                                                                                                                                                                                                                                                                         ٩
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                TTEF
1AP
                                                                                                             SUB
OF
                                                                                                                                          Z
                              S
                                                                                           ****
                                                                                                                                                                                                                                                                                                                                                                                                       AR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    INDICATES
INDICATES
INCICATES
                                                                                                                                                                                                                                                                                                                                 * * *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 шs
                                                                                                                 ATION O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   74
                                                                                                                                                                 CAT
                                                                                                                                                                                                                                                                                                                                                                                                       ES
                                                                                                                                                                                                                                                                                                                                 *
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ۰۰۰
                                                                                                                                                                                             11 11 11 11
                                                                                                                                                                                                                                                         # # # # #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   шш
                                                                                                                                                                                                                                                                                                                                                                                                         IABL
                                                                                                                  DERAT DECTOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A1
PL
                                                                                                                                                                                         GS
GP
MWSMWF
TSOTPC
```

*

A R

.... ∢७३.₹0⊬3

X A

αw

4

SO Z W

Αb OR

MSI MPI ASI RRDI

POT

ОOM

¥

1

m

N

* 드 *** PRESSUA **V**S S α FOLLOW MIXING TUBE ENTRANCE, THE CONFLUENCE POINT OF SECCNDARY AND PRIMARY STREAMS
POINT IN THE MIXING TUBE AT WHICH THE SECONDAR STREAM IS RECOMPRESSED TO SONIC CONDITIONS MIXING TUBE EXIT
MPLE: PSIPPI=SECCNDARY-TO-PRIMARY STATIC PRESS DEF INED TES STAGNATION CONDITIONS TMOTPO=MIXED-TO-PRIMARY STAGNATION TEMPERATURE RATIO AS LUCATION w AR w SCHEM T C THIS A S ** CONDITIONS S=AFI/AP* DESIGNATED FOLLOWING : * : TES "4 ECT. ARE : INDICATI **** INDICAT S IABLES /ARIABLES REQUIRED. VAR EXA. .. X

REAL *8 (A-H, M.C CASSE SUBRCUTINE IMPLICIT

SWWP, TSOTPO, MS1, MP1, AS1 AP1, RD, ERROR MWKMWS(51,2), 2),PPOPSO(51,2), 2),TMOTSO(51,2), S 2,3),PM3PS0(COMMON/BLOCK1/WM3(51,2,3),PM3PPO(51,;
-PM3PS1(51,2,3)
CCMMCN/BLCCK2/GM(51,2),MWMWWP(51,2),FPS0PPO(51,2),PFIPPO(51,2),PFIPPI(51,2)
-PP0PS1(51,2),PFIPS1(51,2),TM0TPO(51,2)
-WPWS(51,2),WSWP(51,2)
COMMCN/BLCCK3/GS,GP,MWSWWP,TS0TPO,MS1

S S/*YE w ⋖ CAT * * * * XXW#XXW# (0 · I - X9) * FUNCT LON GX.MXX)=1.0+GX#MXX*MXX GX.MXX)=MXX*DSGRT(1.0+0.5*(GX-1.0 MM.TT.GG)=DSGRT(MM*GG/TT) SPECIAL O T Z

•C))/(S•O*GX*EXX*EXX

7

U

S

OW

-N

0000000000

€2 ·

CASSEP (Cont.) 7.3.1

 $\frac{\alpha}{\alpha} \frac{\alpha}{\alpha} \frac{\alpha}$ ***** DO 103 L=1.2

WSWP(I.e.L)=FSIPPI(I.e.L)+ASIAPI+H(MWSMWP.TSOTPO.GSGP)+GGSMSI
-/GGPMPI
WPWS(I.e.L)=I.o/WSWP(I.e.L)
WPWS(I.e.L)=I.o/WSWP(I.e.L)
CL=WSWP(I.e.L)+WWPNWS+GS3-GP3
CL=WSWP(I.e.L)+WWPNWS+GS3-I.o)+(GP3-I.o)
GMGI-EM(I.e.L)=CNP(I.e.L)+I.o)/(WSWP(I.e.L)+MWPNWS)
MWMMWP(I.e.L)=(WSWP(I.e.L)+I.o)/(WSWP(I.e.L)+MWPNWS)
NWMMWS(I.e.L)=MWNMWP(I.e.L)+MWPNWS
CI=TSOTPC+RSWP(I.e.L)+MWPNWS ***************** CALCULATION ₽ APZAPZ AP2APS=AP1APS*(1.0+AS1AP1*(1.0-ASSAS1))
WP2=MP1
DO 100 J=1.200
C1=(WP2*AF2APS)**GP4I
XMP2=DSORT(GP1I*(GP2 I*C1-1.0))
XERROR=(XWP2-MP2)**100.C/MP2
MP2=XMP2
IF(CABS(XERROR).LT.ERRCR) GO TO 101
CCNTINUE
GO TO 100
MS2=1.0
C1=-FGPMP1+F(GP.MP2)*GGPMP1/G(GP.MP2)
C2=FGSMS1-F(GS.MS2)*GGSMS1/G(GS.MS2)
PS1PP1(1.1)=C1/(AS1AP1*C2) .0-ASSAS1) FROM VOLCER CBTAINED CCNTROL S OVERALL MF2 1=(2: STATION 2. ITERATION. I)IddI

S

į

3

```
* * * *
                                                                                                                                                                                                                                                                                                                                         * *
                                                                                                     *****
                                                                                                                                                                                                                                                                                                       ***
                                                                                                                                                                                                                                                                                                                                                   ***
                                                                                                                                        ***
                                                                                                                                                                                           .0+AS3AP13
 SOLUTIONS
                                                                                                                                                                                                                                                                                                       ****
                                                                                                                                                                                                                                                                                                                         NCN
                                                                                                                                                                                                                                                                                                                                                                                                                                                      *
                                                                                                                                                                                           GPMP1 ) / ((1
                                                                                                                                       ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                      ***
                                                                                                                                                                                                                                                                                                                        r.
                                                                                                                    SONIC
                                                                                                                                                                                                                                                                                                                        80
                                                                                                                                                                                                                                                                                                                                                   ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                     ***
                                                                                                                    OB
                                                                                                                     S
                                                                                                                                                                                                                                                                                                       *****
                                                                                                                                                                                                                                                                                                                                                    **
                                                                                                                                                                                            145
                                                                                                                                                                                                                                                                                                                                                                                                                .2))
                                                                                                                                                                                                                                                                    SIP
                                                                                                                                                                                                                                                                                                                                                                                                                                                     ¥
                                                                                                                     AND
                                                                                                     **
                                                                                                                                                                                                                                                                                                                       SOLUTION
                                                                                                                                                                                                                                                                                                                                                                                                                                                      ¥
                                                                                                                                       的复数水水 医复数甲状状虫虫 医多种性 医多种 医多种 医多种 医多种
                                                                                                                                                                                                               ,L)
                                                                                                                                                                MM3(I=L-1)=DSQRT(DMIN1(C3,C4))
MM3(I=L-2)=DSQRT(DMAX1(C3,C4))
DO 1C2 J=1,2
PM3PP1=(FSIPP1(I+L)*ASIAPI*FGSMS-*F(GM(I+L+J)=PM3PP1*PFIPP1(I+L)
PM3PS0(I+L+J)=PM3PP1*PFIPP0
PM3PS0(I+L+J)=FM3PP1*PFIPP0
PM3PS0(I+L+J)=FM3PP1*PFIPP0
PM3PS0(I+L+J)=FM3PF1*PFIPP0
PM3PS0(I+L+J)=FM3PF1*PFIPP0
PM3PS0(I+L+J)=FM3PF1*PFIPP0
PM3PS0(I+L)=I+C/FSIPP0(I+L)
PSOPP0(I+L)=I+O/FSIPP0(I+L)
PSOPP0(I+L)=I+O/FSIPP0(I+L)
                                                                                                                                                                                             SMS
                                                                                                                                                                                                                                                                                                                                                                                                                                                     *
                                                                                                                                                                                                                                                                   PPC/P
                                                                                                                                                                                                                                                                                                                                                    **
                                                                                                     * * *
                                                                                                                     SONIC
                                                                                                                                                                                                                                                                                                                                                                             2
                                                                                                                                                                                                                                                                                                                                                                              I+L+2)
+L+2)
+L+2)
M3(I+
                                                                                                                                                                                                                                                                                                                                                                                                                                                      **
                                                                                                     ***
                                                                                                                                                                                                                                                                                                                                                   ***
                                                                                                                      α
                                                                                                                                                                                                                                                                                                                         Ų
                                                                                                                                                                                                                                                                                                                                                                             PMSPSICI
PMSPSICI
PMSPSCI
PMSPSCI
PMSPSCI
PMSPSCI
PMSPSCI
PMSPSCI
                                                                                                     **
                                                                                                                      ш
                                                                                                                                                                                                                                                                                                                        SUPERSONI
                                                                                                                                                                                                                                                                                                                                                                                                                                                      *
                                                                                                                                                                                                                                                                                                                                                    ******
                                                                                                                     U.F.
                                                                                                                      Ś
                                                                                                     **
                                                                                                                                                                                                                                                                                                                                                                                                                                                     *
                                                                                                                      Ψ
                                                                                                                                                                                                                                                                                                                                                                             C1=RD*PDPUMU(GM(I*LPM3PS)(I*L*3)=C1*PPPM3PS)(I*L*3)=C1*PPPM3PS)(I*L*3)=C1*PPPM3PP)(I*L*3)=C1*PPPM3F(I*L*3)=MONU(GM3PETUHN
                                                                                                     *
                                                                                                                      -
                                                                                                     ***
                                                                                                                                                                                                                                                                                                                                                                                                                                                      * * *
                                                                                                                    XU1
                                                                                                                                                                                                                                                                                                                         IN
                                                                                                                                                                                                                                                                                                                                                                                                                                                      삭
삭
                                                                                                                      EZ U
                                                                                                     *
                                                                                                                                                                                                                                                                                                                        IFFUSE T
                                                                                                     *
                                                                                                     *
                                                                                                     *
                                                                                                     #
                                                                                                                                                                                                                                                                                                                                                                                                                                                      ¥
                                                                                                                                                                                                                                                                                                                         C Ü
                                                                                                     *
*
                                                                                                                                                                                                                                                                                                                                                                                                                                                      ¥
                                                                                                                                        ***
   SETERONO
SET
                                                                                                                                                                                                                                                                                                       * ****
                                                                                                                                                                                                                                                                                                                                                                                                                                                       *
                                                                                                      * * * *
```

ö

000000000

0000000000

000

Ó

*2×

7.3.1 CASSEP (Cont.)

INDICATORS

FAILURE

经本本条件并未来的基本条件

į

e i

CASSSER
CASSSE

9 ā \mathfrak{D} 3 ·EI LUST MUST -K. . WS1 = , E13.6.2X, * HP1 . 72. MP2 *,E13.6,2 EMENTS AILURE . / AT ST ij WRITE(5,200)MS1 60 TD 107 WRITE(5,201)MP1 GD TD 107 WRITE(5,202)MF2,XERRGR,ERRGR FAIL=YES a a u ii えい FORMAT • 12 • CCNVERGENCE • E13 • 6 • 2X • • EFRCR ERROR: ERPOR: FORMAT('0'.'INPUT E FORMAT('0'.'INPUT E FORMAT('0'.'INPUT E FORMAT('0'.'Z.'CCN' -'XERFOR =',E13.6.2)

105 106 107 ပပ္ပပ္ပပ္ပပ္လို 201 COOOOO

7.3.2 CASSEP Sample Input

INPUT INDEPENDENT VARIABLE - TYPE "H" FOR HELP

SELECT THE INDEPENDENT VARIABLE FROM THE FOLLOWING CATALOG OF EJECTOR PARAMETERS:

GS ,GP ,MWSMWP,TSOTPO,MS1 ,MP1 ,AS1AP1,RD

INPUT INDEPENDENT VARIABLE - TYPE "H" FOR HELP AS1AP1

INPUT GS ,GP ,MWSMWP,TS0TP0,MS1 ,MP1 ,RD , ERROR 1.562, 1.34, 0.593912, 1.31341, 2.18, 4.690, 0.75, 5.0E-06

INPUT LOW VALUE, INCREMENT, AND HIGH VALUE OF AS1AP1 1.0, 1.0, 10.0 $\,$

/	5.3	CASSE	Sample	Output					
						MM3	0.417080D+00 0.425312D+00 0.430573D+00 0.434522D+00 0.437445D+00 0.439764D+00 0.441662D+00 0.443252D+00 0.444610D+00	EWH3	2 0.417080D+00 2 0.425312D+00 2 0.430679D+00 2 0.434522D+90 2 0.437445D+00 2 0.441662D+00 2 0.441662D+00 2 0.4446100+00 2 0.4446100+00
~		7	01 01 05					15 d£ Wd	0.3514020+0 0.3002350+0 0.2731850+0 0.2561050+0 0.235790+0 0.235790+0 0.215790+0 0.215790+0 0.215790+0
RSONIC EJECTOR Lysis		EPARTMENT BANA-CHAMPAIGN 1801	= 0.134000D+0 = 0.131341D+0 = 0.469000D+0 = 0.500000D+0	OF THE PLANE OPERATION	SNOI	OddEWa	0.296420D-01 0.208017D-01 0.161594D-01 0.132689D-01 0.112848D-01 0.983354D-02 0.872327D-02 0.734502D-02	PM3PS0	0.332646D+01 0.2842110+01 0.258604D+01 0.242436D+01 0.2311420+01 0.2227220+01 0.216152D+01 0.2104500+01 0.2752D+01
PERSONIC-SUPER RAMETRIC DATA MENSIONAL ANAL	.D. MIKKELSEN 1 MAY 75	ENGINEERING D LLINCIS AT UR A. ILLINCIS 6	00+01 GF 2D+00 TSOTPO 0D+01 MP1 00+00 EFRCR	E UPPER LIMIT IC-SUPERSONIC	UBSONIC SCLUTI	A S & B	C.919989D-01 0.15112ED+00 C.193539D+00 C.226C25D+C0 C.252025D+00 0.273499D+00 0.273499D+00 0.307304D+00	SECE	C.108697D+02 0.661689D+01 C.510691D+C1 C.396786D+01 C.396786D+C1 C.365631D+01 0.342865D+01 C.325410D+01 0.311544D+C1
TANT-AREA SU PA CNE-DI	ŭ	MECHANICAL VERSITY OF I URBAN	WP = 0.15620 = 0.59391 = 0.21800 = 0.75000	INDICATES THE OF SUPERSON	טר אַר	PSOPPO	0.8913960-62 0.6248700-62 0.5473160-02 0.4462260-02 0.4415170-02 0.3726670-02 0.3454450-62	PPOPSO	0.11221D+03 0.1366290+03 0.160033D+03 0.182710D+03 0.264826D+03 0.264767D+03 0.2687690+03 0.2687690+03 0.2687690+03
Cüns		S	S X X X X X X X X X X X X X X X X X X X	UL.		PSIPPO	0.843536D-03 0.652846D-03 0.591519D-03 0.462163D-03 0.417952D-03 0.352208D-03 0.352208D-03	1840dd	0.1185490+64 0.1443320+04 0.1650560+04 0.1930110+04 0.2163740+64 0.2517580+64 0.2517580+64 0.2517580+64 0.2517580+04
						AS1 AP1	0.100000000000000000000000000000000000	ASIAPI	0.200000000000000000000000000000000000
						0	-UN450/0000	O Z	-UW4U0VBV0

THE TAX A PARTY OF THE PARTY OF	DS1PPO PS0PPO PS0PPO PS0PPO PS1PPO PS0PPO PS	PS1PPO *843536D-03 0 *891096D *692846D-03 0 *891096D *591519D-03 0 *6248700 *163D-03 0 *6248700 *163D-03 0 *6248700 *182203D-03 0 *4682200 *352203D-03 0 *468720 *352203D-03 0 *468720 *352203D-03 0 *468720 *352203D-03 0 *4687450 *352203D-03 0 *3720670 *352203D-03 0 *3720670 *352203D-03 0 *3720670 *352203D-03 0 *3720670 *352203D-03 0 *3720670 *352203D-03 0 *3720670 *2623023D+04 0 *1152210 *263753D+04 0 *1366290 *263753D+04 0 *2264920 *263753D+04 0 *2264920 *26375	C SOLUTIONS	SMM DM3DDO DM3DDO	128D+00 0.142989D-02 0.425724D+01 1528D+00 0.110508D-02 0.405200D+01 5539D+00 0.911814D-03 0.392875D+01 5025D+00 0.780853D-03 0.384505D+01 5025D+00 0.685249D-03 0.378377D+01 5499D+00 0.653727D-03 0.37853D+01 566D+00 0.553727D-03 0.369875D+01 7364D+00 0.466705D-03 0.369875D+01 898D+00 0.463216D-03 0.364155D+01 0.36195D+01	PM3PS0 PM3PS1 MM3	\$697D+02 0.160465D+00 0.169512D+01 0.425724D+01 689D+01 0.150985D+00 0.159498D+01 0.4055200D+01 689D+01 0.150985D+00 0.159498D+01 0.405200D+01 699D+01 0.392875D+01 0.150D+01 0.384505D+01 0.384505D+01 0.140357D+00 0.150713D+01 0.384505D+01 0.378377D+01 0.37857D+01 0.37807D+00 0.3441DD+01 0.3569875D+01 0.3460D+01 0.3460D+
--	--	--	-------------	-------------------	---	-------------------	---

		UL SUPERSON	ONIC SOLUTIONS AT	RD GF	NORMAL SHOCK CONDITIONS	SNCITION	
2	ASIAPI	PSIPPO	PSOPPO	CASA	PM3PPO		MEM
-	01000001	0-0953589	-891096D-0	441 9989D-0	-222315D-	0	.417080D+0
· (\)	\$2CC000D+0	•692846D-C	. 731910D-0	.1511280+0	-156013D-	0	.425312D+0
M	43C0000D+0	.591519D-0	.624870D-0	.1935390+0	.121195D-C		· 430675D+0
4	0+000000 +·	.5181650-0	.547316D-0	.226025D+0	.9951680-0	0	.434522D+0
មា	.500000D+0	.462163D-0	. 48 £2 20D-C	.252025D+0	.8463620-0	0	.437445D+0
Q	.60000004	4179520-0	.441517D-0	0+056922-	.737516D-0	O	.4397640+0
,~	. 7000005°	-382032D-0	.403572D-0	.29166cD+0	.654245D-3	O	.441662D+0
60	·8000000+0	3522080-0	.372067D-0	.307304D+0	.588377D-0		.4432520+0
σ	C. 9000000+01	0.327C08D-03	0.3454450-02	0.3209810+00	534907D	0	
0.1	·1000000+0	*3054050-0	.322624D-0	•333C85D+0	.4905950-0	0	.4457870+0
Z	ASIAPI	FPCPS1	PPOPSO	N M D M	PM3PS0	PM3PS1	E W W
-	• 1 CCOCOD+ 2	, 118549D+0	.1122210+0	.1086970+0	0.249485D+01	.2035510+0	.417080D+0
· CI	.2000C0D+0	.1443320+0	•136629D+0	•661689D+	2131580+	.225177D+0	.4253120+0
m	.3C00C0D+0	.1650560+0	.160033D+C	.5166910+0	+1939530+	• 204889D+0	.430679D+0
4	.4CC000D+0	. 193011D+C	+ 182713D+0	.442425D+0	.181827D+	.192079U+0	.4345220+0
ស	*5c0000D+0	.2163740+0	.204826D+0	.3967860+	.1733570+	.1831310+0	.4374450+0
9	· 6 C0 0 0 0 0 + 0	•235262D+C	.2264920+0	.3656310+	.1670410+	.176460D+0	.4397640+0
7	0+000000 L*	.261758D+0	.247787D+0	.3428650+	.162114D+	01712540+0	.4416620+0
σO	.8C0000D+0	.283923D+0	,268769D+C	.3254100+	.158137D+	.1670540+0	.4432520+0
Φ	C+0000000+01	0.305803D+04	0.2894810+03	C.3115440+01	0.1548450+01	0.1635760+02	0.4446100+30
~	.1C000CD+0	.3274350+0	0+0836505	3002240+	1520640+	1,606380+0	4457870+0

	¥	0.1359020+01 0.1369620+01 0.1376560+01 0.1385350+01 0.1386350+01 0.1392930+01 0.1392930+01 0.1394700+01	W O	0.135902D+01 0.136962D+01 0.137656D+01 0.138535D+01 0.1388370+01 0.139293D+01 0.139293D+01 0.139293D+01
	TMOTPO	0.103087D+01 0.104768D+01 0.105857D+01 0.107219D+01 0.107583D+01 0.1083042D+01 0.1083790+01 0.108349D+01	TMOTSO	0.7848770+00 0.8059670+00 0.8118680+00 0.815880+00 0.8163380+00 0.8227590+00 0.82272270+00
ЕS	DAWWAN	0.9455330+00 0.9176270+00 0.9001920+00 0.8880570+00 0.8790170+00 0.8615290+00 0.8615290+00 0.8575280+00	MAMMA	0.159204D+01 0.154506D+01 0.151570D+01 0.149527D+01 0.146816D+01 0.145856D+01 0.14586D+01
IXED PRCPERTI	GROM	0.9199890-01 0.1511280+00 0.1935390+00 0.7520250+00 0.2316600+00 0.3073040+00 0.3209810+00	SECE	0.108657D+02 0.6516691D+01 0.442429D+01 0.396786D+01 0.34265D+01 0.34264D+01 0.325410+01 0.325410+01 0.325410+01
¥ Jo	pS1 pp0	0.6928460-03 0.6928460-03 0.5915190-03 0.4621630-03 0.3879320-03 0.322080-03 0.3270080-03	FP0PS1	0.116549D+04 0.144332D+04 0.169056D+64 0.216374D+04 0.239262D+C4 0.261758D+C4 0.263923D+C4
	psippi	0.38832D+0C 0.272327D+0C 0.238528D+0C 0.238528D+C 0.127730+C 0.175882D+0C 0.162152D+0C 0.150550D+0C	PP1PS1	0.2574980+01 0.3135020+01 0.3672050+01 0.4699840+01 0.5196990+01 0.516690+01 0.6167060+01
	ASIAPI	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ASIAPI	0.000000000000000000000000000000000000
	ON		Ö	// m 4 m // m w c

A STATE OF THE STA

CASSEP	Sa	ımp1	e	Oi	ıt	pι	ıt	(Co	on	t	.)													
		7	7 E	.435760D+0	.457993D+0	•4738650+0	.485795D+0	.4951C2D+0	. 532574D . C	• 5087 C8D+C	.5138360+0	0-5181850+00	.5219310+0	:	M X X	*4357600+0	4579930+0	473865D+0	485795D+0	495102D+0	-502574D+0	.5087080+0	0.5138360+00	0+0683016.	0.761.951.070
										•				130K NO	L 7	.1540340+0	.1216890+0	1054310+0	. 9563230+0	0+0857 C68.	.843778D+C	30000000000000000000000000000000000000	0 - 100 900 101 0 - 75 8 4 9 8 9 + 0 1	7497320+0	
T OF THE PLANE C OPERATION	SNOIL	Dagswd		0.3345760	0 . 40 4 5 KC C-	0 000000 0 000000	0.01.00.0	0.1934010	0 1 7 5 6 0 0 0	0 1 20000000000000000000000000000000000	0 - 164804510	0.1608940-)	PM3PSD		• 145813D+3	01151940+0	0+000000000000000000000000000000000000	0+0288666	0+00120+0.	0+000+000+	73077777	3.7183270+00	. 7011970+3	
E LOWER LIMI IC-SUPERSONI	SUBSONIC SOLUTIONS	W S W		0.40.000000000000000000000000000000000	2106860±0	947582D+0	1 3 8 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	•142137D+0	.165827D+0	*189516D+C	.2132C6D+0	.2368550+0		S T D T S	0.010	**************************************	0.40.40.40.40.40.40.40.40.40.40.40.40.40	100 K P P O I •	8442540	- 703545F+A	040363609	.527659D+0	C - 46903CD+00	4221270+0	
IMCICATES THOOF SUPERSON	S OF	Oddosd	0-03666	0.2294560-01	-229456D-0	· 229456D-0	.2294550-0	0-229456D-0	- 225456D-C	• 525456D-C	-2254560-	.2254550-		08d0da	• 4 75 A 1 A 15 + 0	• 4 35 4 1 4 C + C	•435814D+0	.435814D+0	04358140+0	•435814D+C	.435814D+C	·435814D+0	0.4358140+62	0+0+1pn++	
<u>₹</u>		FS1PP0	•217209D-C	0.2172090-02	•217209D-0	-2172090-0	•217209D-0	-2172090-0	0-06027120	0-0000000000000000000000000000000000000	0-0502110	3-0502212	(Isloud	• 460386D+C	.460380D+0	.46C386D+C	•46C384D+0	•46C386D+C	•403360+0	•40C386D+0	0+003860+0 0+03860+0	0440C386D+03		
		ASIAPI	3 000 000 40	٠	0+00000000		04000000	04000000	0+000 0000	0.000.0006.	C + C C C C C C C C C C C C C C C C C C		ASIABI	(•)	1000000+0	0.4 G00000.5•	0+0000000+	0+000000+•	1 + 0000000			C+0000000	01.		
		O Z	 (N M) 4	r v) (C) ~	σ,	0	C ~		C Z		⊶ (V) (t u) () ^	α	0	1 C		

7.3.3 CASSEP Sample Output (Cont.)

·	- Cu.	ipro output (done	• ,	
	E W W	0.3818850+01 0.3462720+01 0.3156980+01 0.2994230+01 0.2723950+01 0.2723950+01 0.2669920+01 0.2669920+01 0.2668810+01	E Z Z	0.3818850+01 0.3402720+01 0.3156980+01 0.2994230+01 0.2878320+01 0.2791470+01 0.2723950+01 0.2669920+01 0.2625690+01
			PM 3P S 1	0.918642D+00 0.909049D+00 0.91725D+00 0.9172562+00 0.923044D+00 0.933403D+00 0.937798D+00 0.941710D+00
SNO	O ddewd	0.199537D-02 0.197454D-02 0.198056D-02 0.200493D-02 0.201675D-02 0.203694D-02 0.204544D-02 0.204544D-02	PM3PS0	0.869612D-01 0.860531D-01 0.863130D-01 0.873778D-01 0.873778D-01 0.873778D-01 0.873778D-01 0.873778D-01 0.873778D-01 0.873778D-01 0.873778D-01
SUPERSONIC SOLUTIONS	d M S M	0.236895D+00 C.710686D+00 0.947582C+00 0.11844ED+01 0.165827D+01 0.165827D+01 0.189516D+01 0.2132060+01 C.23685D+01	SMCM	0.422127D+01 C.211664D+01 C.140769D+01 C.105532D+01 0.844254D+00 C.703545D+00 C.703545D+00 0.69030D+00 0.469030D+00 0.469030D+00
MP SUPE	PS0PP0	0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01 0.229456D-01	084044	0.435814D+02 0.435814D+02 0.435814D+02 0.435814D+02 0.435814D+02 0.435814D+02 0.435814D+02 0.435814D+02 0.435814D+02
	PSIPPO	0.217209D-02 0.217209D-02 0.217209D-02 0.217209D-02 0.217209D-02 0.217209D-62 0.217209D-62 0.217209D-62	PP0PS1	0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03
	ASIAPI	0.2000C0D+01 0.3C00C0D+01 0.5CC0C0D+01 0.5CC0C0D+01 0.7CC0CD+01 0.7CC0CD+01 0.7CC0CD+01 0.9CC0CD+01 0.9CC0CD+01 0.9CC0CD+01	ASIAPI	0.200000000000000000000000000000000000
	Q	-um4m0ra00	Q	

		MP SUPERS	GNIC SOLUTIONS	AT RD CF	NORMAL SHOCK CONDITIONS	SNOITIONS	
O Z	ASIAPI	CddlSd	PSSPPO	C AS S	РМЗРРО		KEE
~	.1000000+0	.2172090-0	.2294560-0	+236895D+0	-2509320-		.435760D+0
N	.2000c3D+0	.2172090-0	+225456D-C	.4737910+0	-198240D-		4579930+0
m	0.3000000+01	0.2172090-02	0.2294560-01	C.7106860+00	1717540		C. 473865D+00
4	*400000D+0	.217205D-C	.225456D-0	.947582D+C	-1557920-		.4857550+0
ß	*5000000+	.2172090-0	.2294560-0	.11844ED+0	-1451100-		.4951020+0
Ø	· 6 C C C C C C C C C C C C C C C C C C	.217209D-0	.225456D-C	.1421370+0	-137457D-		.502574D+0
^	* 1C00C0D+0	•217209D-0	.225456D-0	.165E27D+0	.131702D-		.538708D+0
Φ	*800000D+	.2172090-0	.229456D-0	.189516D+0	-127215D-		.513836D+C
σ	C+GC00006.	•217209D-C	• 229456D-C	.2132360+	-123618D-		.5181890+0
0	•1c:003D+0	.2172C9D-C	.2254560-0	.2368950+	.120670D-		.521931D+C
9 2	ASIAPI	1SdOdd	PFOPSO	SECE	PM3PS0	PM 3P S 1	E WW
-	.10C000D+0	.4603860+0	.4356140+0	.4221270+	.1093600+3	1155260+0	.4357600+0
N	.2 C0 0 00D+3	.463386D+0	.435814D+0	.211064D+	.863957D+0	.9126680+0	4579930+0
m	C.30C0C0D+C1	0.4603860+03	0.435814.0+02	0.1407090+01	0.7485270+00	0.790730D+01	0.4738650+00
4	·4000000+0	•46C386D+0	.4358140+0	.1055320+0	.678961D+0	.7172430+0	.4857950+0
ហ	*ScoccoD+3	.460386D+C	.435814D+0	.844254D+0	.6324120+0	0+05908999·	• 495102D+0
Φ	· 6c000009	.46C386D+C	.435814D+0	.703545D+C	.5990580+0	.632834D+	.502574D+0
~	.7000000+0	•46C386D+0	·4358140+0	603C35D+	.573975D * 0	.6063360+0	.5087080+0
Φ,	0+0000008.	•46C386D+0	.435814D+0	•527655D+C	•554420U+0	.5856A0D+0	.513836D+0
σ	0+00000006 •	•460386D+0	·435814D+C	.469C30D+0	.5387450+0	.569121D+C	.5181890+0
0	•10C0C0D+0	.4663860+0	.435814D+0	.4221270+0	.5258980+0	5555490+0	5219310+0

)EP	San	mpre output (cont	•)	
	₹	0.138316D+01 0.141227D+01 0.14322D+01 0.146139D+01 0.14731D+01 0.147945D+01 0.148624D+01 0.149201D+01	¥.	0.1412270+01 0.1412270+01 0.143220+01 0.1449040+01 0.1461390+01 0.1471310+01 0.1479450+01 0.1496960+01
	TMOTPO	0.11068800+01 0.1112840+01 0.1165930+01 0.1193170+01 0.119300+01 0.1216990+01 0.1224670+01	TMOTSO	0.813763D+00 0.847289D+00 0.870586D+00 0.903840D+00 0.911218D+00 0.919629D+00 0.926585D+00
ЕS	CRWEN	0.884209D+00 0.819799D+00 0.778782D+00 0.750371D+00 0.71358BD+00 0.71358BD+00 0.690808D+00 0.692387D+00	SAWWAW	0.1488790+01 0.1380340+01 0.1263440+01 0.1228350+01 0.1201500+01 0.1180310+01 0.1148970+01
IXED PROPERTI	O'A'S'A	C.236E95D+00 0.473791D+00 C.710686D+00 0.947582D+00 C.11844ED+01 0.1658270+01 C.1658270+01 0.23689516D+01 0.236895D+01	SMUM	0.4221270+01 0.2110640+01 0.1467690+01 0.1055320+01 0.8442540+03 0.7035450+00 0.6030390+00 0.6030390+00 0.4690360+00 0.4690360+00
¥ d.	PSIPPO	0.2172C9D-02 0.2172C9D-02 0.2172C9D-02 0.2172C9D-02 0.2172C9D-02 0.2172C9D-02 0.2172C9D-02 0.2172C9D-02	PPOPS1	0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03 0.4603860+03
	psippi	00000000000000000000000000000000000000	PF1PS1	00000000000000000000000000000000000000
	ASIAPI	0.100000000000000000000000000000000000	ASIAPI	0.200000000000000000000000000000000000
	_		C	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4

.

3

E

7.4 CHEMICAL LASER GAS DYNAMICS OPTIMIZATION COMPUTER PROGRAM

7.4.1 Computer Program

CHANGE!

747875C

```
CL 600P 00100
CL 600P 00200
CL 600P 00400
CL 600P 00500
CL 600P 00500
CL 600P 00100
CL 600P 011000
CL 600P 0110
```

CLGDOP IS A PROGRAM FOR OPTIMIZING THE PRESSURE RECOVERY SUBSYSTEM OF HIGH ENERGY CHEMICAL LASER SYSTEMS BY GNE-DIMENSIONAL ANALYSIS. THE OPTIMUM IS TAKEN TO BE THAT COMPIGURATION WHICH REQUIRES THE MINIMUM DRIVER STEOM FOR A GIVEN DRIVER STAGNATION PRESSURE (OR VICE VERSA) AND GIVEN COMPRESSION RATIO. CLGDOP IS A FORTRAN IV PROGRAM WRITTEN FOR DEC SYSTEM-10 (F40). PROGRAM DEPARTMENT URBANA-CHAMPAIGN 61801 OPTIMIZATION 8 ADDY Mikkelsen Sandberg LOCATION ***** SCHEM L ENGINEERING ILLINGIS AT A NA. ILLINGIS FOLLOWS RAT 105 DYNAMICS (CLGDOP) RATIO 10 JANUARY ¥ÇŞ YOÇ AS NOTATION W HEAT AS DESIGNATED •• LETTERS INDICAT A2A1=A2/A1 ₽ URBANA. AREA (GAMMA) SPEC-MACH NUMBER MOLECULAR WEIGHT PRESSURE TEMPERATURE MASS FLOW RATE GAS DEF INED RITTEN CHANICAL LASER ARE w AR CHEMICAL ARIABLES CLLOWING IABLES EPEATED XAMPLE: VAR ₹UIIU⊢3 à w

EX IT

LASER CAVITY ENTRANCE LASER CAVITY EXIT NCRMAL SHCCK DIFFUSER SUBSONIC DIFFUSER EXIT

- N M 4

7.4.1 CLGDOP (Cont.)

```
*****
  CAVITY
                . A 7 A .
                   NA
                         PWSC/*WPWS*/*CAE/*CAE*/*SSE/*SSERI/*PARI*/
    S
    шs
            *********
```

MPLICIT REAL*4 EAL*4 NU

U

S.MI.A2AI.CGI.CG2.NPTS/1.400.2.C.1.C.2*O. BPI.P60PI.WPWS/76.0.2.5E+C3.1.0/ NSD.A4A3/2*I.0/ P.MWPMWS.160750.760720.A8A7/I.40C.4*I.0/ σαα 0ATA 0ATA 0ATA 0ATA

1. / · W

60P

001C/00

ΘÜ

š >

DATA YES/

. CG2 , NPT 1 · CO1 · A2A 1.P 300 S.M. STACAVA NAMEL I

0 1

EJECTCR SECONDARY NOZZLE EXIT EJECTCR PRIMARY NOZZLE EXIT EJECTCR MIXING TUBE EXIT SUBSONIC DIFFUSER EXIT PBP2= SUBSONIC DIFFUSER EXIT-TO-LASER EXIT STATIC PRESSURE RATIO

SO-OH

OOINT OOINT XAMPL

 $\sigma \sigma \sigma \sigma m$

PROPER PROPERT

RATIO

EAT

SECONDARY OR DRIVEN STREAM PRIMARY OR DRIVING STREAM MIXED STREAM PROPERTIES MIXED STREAM SPECIFIC HEAT

S: INDICATES
P: INDICATES
M: INDICATES
EXAMPLE: GM=

NOZW

NTRANCE

: INDICATES STAGNATION CONDITIONS XAMPLE: T20T10= LASER CAVITY EXIT-TO-EI STAGNATION TEMPERATURE RATIO

JEF

AR

SCHEME

S

CLLOWING

ū

ED.

ARIABLES S REGUIRE

O U

O

7.4.1 CLGDOP (Cont.)

CL GDDP 10100
CL GDDP 10200
CL GDDP 10200
CL GDDP 10500
CL GDDP 10500
CL GDDP 11200
CL GDDP 11300
CL GDDP 11400
CL GDDP 11400
CL GDDP 14400
CL GDDP 14400

*************** 2 *** ***** ŝ DEFINED RAT TOTM(GX*MX)=1.0+(GX-1.0)/2.0)*MX*MX POPM(GX*HX)=(1.0+(GX-1.0)/2.0)*MX*MX)**(GX/(GX-1.0) WM(GX*MX)=MX*SQRT(GX*(1.0+(GX-1.0)/2.0)*MX*MX)) DEFAUL S ⋖ RATIO OF SPECIFIC HEATS
CAVITY ENTRANCE MACH NUMBER
CAVITY EXIT-TO-ENTRANCE AREA
HEAT ADDITION COEFFICIENT
HEAT ADDITION COEFFICIENT
CAVITY INTEGRATION INCREMENT S STEP ш THEIR õ ANALYSI ST VALUES OF ALL INPUT VARIABLES MUST EITHER BY INPUT OR DEFAULT.
ALL VARIABLE INPUT IS BY NAMELIST.
THE MAXIMUM NUMBER OF INTEGRATION QN4 .T60T50.A8A7 CAVITY SECT 10N LASER SIT SHOS NAMEL IST/CONST2/P8P1.MPM: NAMEL IST/DIFUSR/RNSD.A4A: NAMEL IST/EJECTI/GP.MWPMM: NAMEL IST/EJECT2/GP.MWPMM: *** : Z SECT ION ES USED GS(1.400) M1(2.0) A2A1(1.0) CQ1(0.0) CQ2(0.0) NPTS(21) ag s VARIAE VALUE NO7 - NM 450 0 am . 4 *******

CALCULATIONS FOR LASER CAVITY

 **

5.20C) 5.CAV)

WRITE (READ (S XIIIO O XIIIO O AZIIIO AZIIIO AZIIIO AZIIIO

CLGDOP (Cont.) 7.4.1

*X1, X2, A1. A2, CQ1, CQ2, NP TS, M2, T2T1, T2CT10.

** SECTION II: SYSTEM CONSTRAINTS

** SECTION II: SYSTEM CONSTRAINTS

** ONE OF TWO VARIABLES MAY BE SELECTED FOR MINIMIZATION *

** THESE VARIABLES ARE:

** P60PI: PRIMARY STAGNATION-TO-LASER CAVITY ENTRANCE *

** STATIC PRESSURE RATIO ITY THEIR DEFAULT SUBSONIC DIFFUSER EXIT-TO-LASER CAVITY ENTRANCE STATIC PRESSURE. RATIO PRIMARY STAGNATION-TO-LASER CAVIENTRANCE STATIC PRESSURE RATIO PRIMARY-TO-SECCNDARY MASS FLOW RATIO RATIO PRIMARY STAGNATION-TO-LASER CANSTATIC PRESSULE RATIO PRIMARY-TO-SECCNDARY MASS FI.OW 024 BY NAMELIST SECTION THIS S O LOGNI z 9 ., WRITE(5,201)
READ(5,202)COEFF
WRITE(5,203)
IF(COEFF,EQ.P6OPIC) G
WRITE(5,CONST1)
GO TO 102
WRITE(5,CONST2)
READ(5,CONST2) VARIABLES USED VALUES ARE: P60P1(2.5E+03) CALL CAVITY(GS.MI.)
-P2PI.P20PIO.FAIL)
TITIO=1.0/TOTM(GS.PPIDIO=1.0/POPM(GS.PPIDIO-1.0/POPM(GS.PPIDIO-1.0/PO O ALL VARIABLE P8P1 (76.0) WPWS(1.0) N M C M m N

0000

0

ر. 9

7.4.1 CLGDOP (Cont.)

```
SUBSONIC DIFFUSER COEFFICIENT
SUBSONIC DIFFUSER EXIT-TO-ENTRANCE
AREA RATIO
RATIO OF SPECIFIC HEATS
PRIMARY-TO-SECONDARY MOLECULAR
WEIGHT RATIO
PRIMARY-TO-SECONDARY STAGNATION
TEMPERATURE RATIO (FOR CAE)
PRIMARY-TO-SECONDARY STAGNATION
TEMPERATURE RATIO (FOR SSE)
SUBSONIC DIFFUSER EXIT-TO-ENTRANCE
AREA RATIO
                                     AUL
                            EJECTOR
                   1 1
      CHOSEN
                                     DEF
                  DIFFUSER
EJECTOR
                                     \alpha
                                     THEI
                  NORMAL SHOCK DIFFUSER - SUBSONIC DIF
CGNSTANI-AREA SUBSONIC-SUPERSONIC E.
SUBSONIC DIFFUSER
CONSTANI-AREA SUPERSONIC-SUPERSONIC
SUBSONIC DIFFUSER
      0
ANAL YSI
      CONFIGURATIONS MAY
                                     0
V
V
                                                                                      NAMEL I
                                     SECTION
EJECTOR
                                                                                       8
                                     THIS
ONE OF TWO EJECTOR CO
TO REPRESSURIZE THE OCONFIGURATIONS ARE:
                                                                                       INDUI
                                      Z
ECTION
                                     USED
                                                                                       ALL VARIABLE
                                                           0
                                     VARIABLES
VALUES ARE
                                                                  50(1.0
                                                        000
                                                                             0
                                               RNSD(1.0
                                                                       T60720(1
                                                       GP(1.40
                                                                             A8A7(1
                                                                  T601
                   CAE
                            ш
                            SSI
                                                        M 4
                                                                 S
                                                                       S
 ****
```

0 g WRITE(5.204)
READ(5.205)EJECT
IF(EJECT.EQ.SSE)
WRITE(5.206)
WRITE(5.DIFUSR)
WRITE(5.207)
WRITE(5.207)
WRITE(5.207)
WRITE(5.207)
WRITE(5.207)
READ(5.EJECTI)
RAD(5.EJECTI)
RAD(5.EJECTI)
RANTE(5.207)
WRITE(5.207)

103 104

****		S
	CLGDDP	0.4
÷ *	1000	550
****	1,600	560
		580
	L 600	200
	- 600 - 600	009
		0 0 0 0
	1 600	630
	PGS 7	640
		6 6 6 6 6 6
	1000	670
***	0057	686
* *) () () ()
+		710
****	1 600	720
	1600	730
•	L 600	740
- AIL)	1600	750
	2000	760
	1 600	770
	1001	180
) () ()
) c
		200
) C
****	- 600 - 600	0 & Q
	Coo	850
*	1 600	860
#	1600	870
***	0007	880
	1 600	890
	- CD0	000
	1600	016
) C
		700
) () () (
	5000	960
	CODD	970
	LGDO	980
****	COO	066
*	0057	000

CALL SDS(GS.M3.A4A3.M4.P4P3.P40P30.T4T3.T40T30.RSD34.F.
IF(FAIL.EQ.YES) GO TO 12C
P4P1=P4P3*P3P1
T4T1=T4T3*T3T1
P40P10=P40F30*P3CP10
T40T10=T40T30*T3CT10
A4A1=A4A3*A3A1 IF(EJECT.EQ.SSE) GO TO 105 CALL NSDS(GS.MZ.KNSD.M3.P3P2,P30P20,T3T2,T30T20) P3P1=P3P2*P2P1 T3T1=T3T2*T2T1 P3OP10=P3CP20*P20P10 T3OT10=T3CT20*T2CT10 DIFFUSER DIFFUSER ENLARGEMENT SHOCK SUBSONIC SUCDEN CACULATIONS FOR NORMAL CALCULATIONS FOR FOR P53P40=1.0 150T40=1.0 P50P20=P5CP4C*P40P30%P30P20 T50T20=T5CT4C*T40T30*T30T20 P50P10=P50P20*F20P10 T50T10=T50T20*T20T10 CALCULATIONS

0000 100000000000000000000000000000000	00000000000000000000000000000000000000	#####################################

66666666666666666666666666666666666666	88888888888888888888888888888888888888	88888888888888888888888888888888888888	699999999 55555555555555555555555555555
######################################	**************************************	NTYPE3=1 NIT3=1 NIT3	
# H # H # H # H # H # H # H # H # H # H	NITYPE2=1 NITYP=1 A7A6=200 DO 111 ITI * * * * * * * * * * * * * * * * * * *	MATYPESS = 1 MATYPESS = 1 MATYPESS = 1 MATS = 1 MATS = 1 MATYPESS = 1	IF (EJECT • AGA7=1.0/ CALL CAES - T70T60*M7 IF (FAIL • E P7P1 = P7P5

UUUUU

ວບບບບບບຕ

0000000000

50P2=P60P50*P50P20P2 ={FAIL.EQ.NO} GC TO 108	GDOP 3510 GDOP 3520 GDOP 3530	
***************************************	GDOP 3540 GDOP 3550	
NO CAE SOLUTION EXISTS FOR CURRENT VALUE OF * * M6. INCREMENT M6 AN() SEARCH FOR SOLUTION. *	GDOP 3570 GDOP 3570	
******	GDOP 3590 GDOP 3600	
5=#6+0•5	GDOP 3620 CDOP 3630	
F(M6.GT.10.0) GD TD 106 AIL=ND 3 TG 109	GDOP 3650 GDOP 3650 GDOP 3650	
法法律职责法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法	GDOP 3690 GDOP 3690	
NO CAE SOLUTION EXISTS FOR CURRENT VALUE OF A7A6. * INCREMENT A7A6 AND SEARCH FOR SOLUTION.	GDOP 3700 GDOP 3710 GDOP 3720	
***************************************	GDOP 3730 GDOP 3740	
	GDOP 3750	
786=8786-0.5 ={8786.LE.1.0} GD TJ 113	GDOP 3770 GDOP 3780	
	GDOP 3790 GDOP 3800	
化苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基	G00P 3810	
CNS FOR SUPERSONIC-SUPERSONIC EJECTOR	GDGP 3840 GDGP 3850	
*	GDDP 3860 GDDP 3870	
A6=4-2A6-1-0	0000 10000 0000 10000	
ALL SSES(GS+GP+NWSMWP+T20T60+M2+M2A6+WSWP+GM+MWMMWP+T0T60+M7+P60P2+P7P2+FALL)	GDOP 3910 GDOP 3920	
71 0- 09	600P 3930 600P 3940 600P 3950	
######################################	CL GD0P 39500 CL GD0P 39700 CL GD0P 39800 CL GD0P 39800	
H*	GD3P 4000	

CL GDOP 4010 CL GDOP 4020 CL GDOP 4030 CL GDOP 4050 CL GDOP 4050 CL GDOP 4050	CL GDGP 4180 CL GDGP 4100 CL GDGP 4110 CL GDGP 4120 CL GDGP 4120	600P 4150 600P 4160 600P 4170 600P 4180 600P 4200 600P 4200	CLGDGP 4220 CLGDGP 4230 CLGDGP 4240 CLGDGP 4250 CLGDGP 4260 CLGDGP 4260	CLGDDP 42900 CLGDGP 43100 CLGDGP 43200 CLGDGP 43200 CLGDGP 43200 CLGDGP 43500 CLGDGP 43500 CLGDGP 43500 CLGDGP 43500 CLGDGP 43500 CLGDGP 43500 CLGDGP 43500 CLGDGP 43500	CL GDOP 4440 CL GDOP 44430 CL GDOP 4450 CL GDOP 4460 CL GDOP 4460 CL GDOP 4480 CL GDOP 4490
######################################	在本种种种种的基础的工作,并将有有种的工作的工作的工作的工作的工作的工作的工作的工作的工作的工作的工作的工作的工作的	CALL ITER(M6.0.5.5.0E-06.+1.0.XP8P1.P8P1.1.0E-01.NIT3NTYPE3.XNEG3.YNEG3.XFGS3.YPDS3.NSIGN3.NSIGN4) IF(NIYPE3.EQ.3) GO TO 110 CONTINUE GO TO 125	本 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	XP60P1=P60P2*P2P1 XGPWS=1.0/WSWP IF(CDEFF.EQ.WPWSC) CALL ITER(A7A6.0.5.5.0E-061.0.XP60P1. IF(CDEFF.EQ.WPWSC) CALL ITER(A7A6.0.5.5.0E-061.0.XPG0P11.0.XPG0P1.1.0E-01.NIT2.NTYPE2.XNEG2.YPG2.XPGS2.YPGS2.NSIGNINSIGN2) IF(CDEFF.EQ.P60P1C) CALL ITER(A7A6.0.5.5.0E-061.0.XWPWS.1.0E-01.NIT2.NTYPE2.XNEG2.YNEG2.XPGS2.YPGS2.NSIGNINSIGN2) IF(NIYPE2.EQ.3) GO TO 112 CONTINUE GO TO 126	**************************************

```
CL 6009
CL 600
                                                                              MIN( #5. XP60P1.NTYPE1.NITI.COEFF
                                                                                                                                                                                                                                           MIN(M5.XMPWS.NTYPEI.NITI.COEFF
                                                                                                                                                                                                                                                                                                                法有证据证据证据证明证据证据证据证据证据证据证据证据证据证证证证
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       NS0-SD-SE-
                                                                                                                                                                                                                                                                                                                                                              IF(EJECT.EQ.SSE) GO TO 116
PSP1=PSOP20*P2OP2*P2P1/POPM(GS.MS)
TST1=T50T20*T2CT2*T2T1/TOTM(GS.MS)
ASA1=SQRT(T50TIO)*WM(GS.M1)/(P5P1*WM(GS.MS))
T70P50=POPM(GM.M7)*P7P50
T70T50=T7CT60*T60T50
T7T50=T70T50=TCTM(GM.M7)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SSE
                                                                                                                                                                                                                                                                                   CAE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FOR
                                                                                                                                                                                                                                                                                   E CR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        CALCULATIONS
                                                                                                                                                                                                                                                                             CALCULATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 FOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           CALCULATIONS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        P60P20=P6CP2/P20P2
P70P20=P0PM(GM,M7)*P7P2/P20P;
I70T20=T7CT60*T60T20
T7T2=T20T2*T70T20/T0TM(GM,M7)
A7A2=A7A6/A2A6
GD TO 118
                           GO TO 115
                IF(COEFF-EQ.WPWSC) CALL N-FAIL)
IF(COEFF-EQ.WPWSC) CALL N-FAIL)
IF(COEFF-EQ.P60PIC) CALL 1-FAIL)
IF(FAIL)
IF(FAIL)
IF(NTYPEI-EQ.4) GC TO 115
GO TO 127
MWMMWS=MWMWP#WWPWS
                                                                                                                         4 N
                                                                           .EQ.P60P1C) CALL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        FINAL
                                                                                                                                                                                                                                                                               INAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FINAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ***
```

35

```
* *
                                                                                    * *
        P60P20=P60P50*F50P20
T60T20=T50T50*F50P20
P7P2=P7P50*P50P20
P70P20=P70P50*P50P20
T7T2=T7T50*T50*T20T2
T7CT20=T70Y50*T5CT20
T7CT20=T70Y50*T5CT20
A7A2=WMWS*SORT(T70T20/MWMMWS)*WM(GS*MZ}/(P7P2*WM(GM*M7
                                                                                                                                             ****
                                                                                       ***
                                                                                CALCULAT IONS
                                                                                       ***
                                                                                                                                                  RESUL
                                    GUTPUT
                                                                                 SYSTEM
                                                                                               A7A1:::A7A2*A2A1

A6A1:::A7A1/A7A6

A8A1:::A8A7*A7A1

P6OP10=P60P20*P20P10

T6CT1=T60T20*T20T2

T6CT10::T60T20*T20T10

P7D1=P7P2*P2P1

P7D10=P70P20*P20P10

T7T1=T72*T1

T70T10=F70F20*T20T10

P80P10=P8CP20*P20P10

T8T1=T8T2*T2T1

T8T1=T8T2*T21
                                                                           ****
                                                                                 INAL
                                                         P8P2=P8P7*P70P20
P80P20=P8CP70*P70P20
Y8T2=T8T7*T7T2
T80T20=T8CT7C*T70T20
                                                                                                                                             ****
                                                                                                                                             *
                                                                                                                                             ***
                                                                           *
                                                                                    ;
# #
```

17000

Ī

000000000

8

0000000000

	CLGDOP	55100
经存储器 医甲状腺素 医非原子氏性 医克洛氏性 医克洛氏性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种	CL 600P	5520
	CLGDGP) (2)
	CLGDOP	5540
ALL TT	CLGDOP	5550
	G0000 10	5560
		1000
	しつのいい	000
	CLGDOP	5580
		200
经特殊的 计分子 计多数 计多数 计多数 计多数 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	しつの	7 (
*	CLGDGP	5000
	9000	5610
TAILUKE INDICATOR		0 0
	こうつうし	000
法法院公司法院法院法院法院法院法院法院法院法院法院法院法院院院院院院院院院院院	4005 TO	5630
	0000	5640
	. מכנים מבינים בינים	200
	10000	0 0
RITE(S.	CLGDUP	2660
	CLGDOP	5670
	aug i	5680
* C U Y		004
0 10 128		
RITE(5.	CLGDUP	0000
10.00	CLGDOP	5710
0.10.10.00	9000	2100
RITE(5.	CC 6007	100
O TO 128	CLebur	5730
07 TC/5	CLGDOP	5740
# 20 0 0 0 1 1 X	a court	A750
0 TO 128	100011	7 (
RITE(5,305	CL GDOP	0000
DITFIS	CLGDOP	5770
	9000	5780
TO THE TO MOTEON MOTTERS ANALYS AND ANALYSE OF THE		2400
COOLS		0 0
F (CLEFF.E.C.POPIC) WKIIE (S.308) MS.MO.A/AD.XWPWS.WFW	こうこう	000
	CLGDGP	5810
TOURDERS TO BE TO BE THE CO. NOW DO A 246 BE XIS XED TO COURSE A 246 BE XIS	CLGDOP	582
COURT ROLL BOLD OF COLOR	CLGDOP	583
2 + 1 1 2 2 2 2 2 2 2 2	arus ir	2040
7007001117		ט פ ט פ
EAU(5,204)RUN	いいのかしい	0 0
F (RUN.EG. YES		0
	כרפססה	28
	CLGDOP	588
经按格式的存储的 化二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	CLGDGP	589
*	CL GDGP	590
A CONTRACT AND A MORE A	CLGDOP	591
		0
化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		0.0
		1
		000
COUNTY CHARACT COURT COURT AND ALL THE CONTRACTOR		י י י
DEMAT (0		70
NAMEL IST 7 . 12 CURRENT VALUES ARE: /		700
FOXMALL'O' . IN . OI - HE VAKIABLE IN BE		0 0
FOLL CWING LIST: **//*12*	CL 60 UT	3) (3) (3) (
P60PI" CIMENSICNLESS PRIM	CLGDUP	9

```
9005
600P
                                      ARE:
                                                                   + Ø
                                   DATA FOR SUPERSONIC-SUBSONIC . NAMELIST. 1.7.12. CURRENT VALUE
        BY NAMEL IST
                                                      MYESH . /.T
                FROM THE
                                             FORMAT(*0*,T2,*INFUT DATA FOR EJECTOR ANALYSIS
-*NAMELIST.*,/*T2,*CURRENT VALUES ARE:*,/)
FORMAT(*1*,†2,*10 RESTART PROGRAM ENTER "YES"*,
-*TO STOP PROGRAM ENTER "NO"*)
 FORMAT(A5)
FORMAT(A5)
FORMAT(A0), T2, INPUT SYSTEM CONSTRAINTS BY
-T2, CURRENT VALUES ARE::,/)
FORMAT('0', T2, 'INPUT THE EJECTOR MODEL FROM
-'FOLLOWING LIST:',/'T2,
-'FOLLOWING LIST:',/'T2,
-'FOLLOWING LIST:',/'T2,
-'FOLLOWING LIST:',/'T2,
-'FOLLOWING LIST:',/'T2,
-'FOLLOWING LIST:',/'T2,
-'FOLMAT(A3)
FORMAT(A3)
FORMAT(A3)
FORMAT(A3)
FORMAT(A3)
      202
                                 205
                                               207
                                                       208
                                                                      300
                                                                                  302
303
304
                                                                                                 305
                                                                                                                        307
                                                                                                                                                              309
                                                                                                                                                                              310
                                                               60
```

**** AND MODEL JEAL SUBROUTINE CAVITY IS A SIMPLIFIED FLCW MODEL TO ASSESS QUALITATIVELY THE EFFECTS OF HEAT RELEASE AREA CHANGE ON THE LASER CAVITY FLOW. THE FLOW MOIS BASED ON THE ASSUMPTION OF A 1-D FLOW OF AN IDEHOMOGENEOUS GAS THROUGH A CHANNEL WITH A LINEAR VARIATION IN AREA AND HEAT ADDITION. ************ *** SPECIFIC HEAT RATIO

ENTRANCE MACH NUMBER

ENTRANCE COORDINATE

EXIT COORDINATE

EXIT CORDINATE

EXIT AREA

HEAT ADDITION COEFFICIENT

HEAT ADDITION COEFFICIENT

CAVITY INTEGRATION INCREMENTS MACH NUMBER
STAI'C TEMPERATURE
STAGNATION TEMPERATURE
STATIC PRESSURE
STAGNATION PRESSURE SUBROUTINE CAVITY *** SER S W ü OR VARIABL EXIT EXIT EXIT EXIT ERROR I A BL ** VARI 8 0 0 0 0 0 0 0 0 # # # # # # PUT NPCT *** **** S NOOP HALL A 11 DUT X--aau ¥ ******

.co1,ca2 , A2 E CAVITY(G.MI.DUMMYI.DUMMY2.AI.P2.P02.FAIL) SUBROUTIN

U

5),P(25),P0(25),T(2 ((25),M(25 EXTERNAL FMSOD
IMPLICIT REAL*4(L,M)
DIMENSION TO(25)
COMMON/FVD/ZI(3),XI(3),XI
COMMCN/CGEFF/XI,CA(2),CT(DATA YES/'YES'/

00000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

#	
CALCULATE THE CAVITY AREA COEFFICIENTS. A LINEAR	3 .
VARIATION WITH X IS ASSUMED.	
分	н
化苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	
(1)=(A1*X2-A2*X1)/(X2-X1)	
(2)=(A2-A1)/(X2-X1)	
*************************************	ш.
CALCULATE THE RATE OF HEAT ADDITION COEFFICIENTS. A *	
LINEAR VARIATION OF RATE OF HEAT ADDITION WITH X IS *	*
ASSUMED.	*
*	<u>.</u>
经公共债据 医克勒氏病 医克洛氏病 化二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	×
0(1)=(C01*x2-C02*x1)/(x2-x1)	
0(2)=(C02-CG1)/(X2-X1)	

INITIALIZE VARIABLES AT STATION (1).

INITIALIZE FLCW VARIABLES FOR INTEGRATION.

	00000000000000000000000000000000000000	$\begin{array}{c} \alpha < \alpha $	11111111111111111111111111111111111111
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	 	: 44444444 	COA COA COA COA COA COA COA COA COA COA

经存货的 计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设
* SET INCREMENT SIZE FOR R-K AND SIMPSON INTEGRATIONS. *

DX={x2-x1}/FLDAT(NPTS-1) DXRKI=DX/2.0

INTEGRATION SECTION

DQ 60 [=2,NPTS

* SET-UP FOR D(M*#C)/DX [NTEGRATION BY R-K.
计算 计存储 计多种 计多种 计多种 计多种 计多种 计多种 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
ZI(1)=YRKI XI(1)=XRKI DO 50 J=1+2

CALL RKII(G.DXRKI.XRKI.YRKI.FWSQD.FAIL) IF(FAIL.EG.YES) GG TO 110 XI(J+1)=XRKI ZI(J+1)=YRKI

on hallings ?

LNP=0.0 LNP0=0.0 LNT=0.0

```
CAVITY
CAVITY
CAVITY
CAVITY
CAVITY
CAVITY
CAVITY
                                                                             CAVITY
                                                                                          CAVITY
CAVITY
             STAGNATION TEMPERATURE RATIO BASED ON A ADDITION THAT IS ASSUMED TO BE A LINEAR
                      RULE
                     SIMPSONIS
                                                                                         TO(I)=(1.c+CTC(I)*(X(I)-XI)+0.5*CTO(2)*
-(X(I)**2-XI**2))
CONTINUE
TO2=TO(NPTS)
TO2=T(NPTS)
PO2=P(NPTS)
PO2=P(NPTS)
R2=M(NPTS)
R2=M(NPTS)
                      ₽
                      P.PO.T
                                          FVI(1.6.00X.LNP.LNPO.LNT
                      FIND
                      2
                      INTEGRATE
                                                              RATE OF HEAT FUNCTION OF X
  CONTINUE
                                          CALL
```

STATE OF THE PARTY

```
I PERFCRMS A FOURTH-ORDER RUNGE-KUTTA
A FIRST-ORDER DIFFERENTIAL EQUATION...
WHERE P IS A PARAMETER. THE SUBROUTINE
FOR 1-D FLOW WITH AREA CHANGE AND HEAT
            公安安外安安安安安安
         我我也 经存货 经存货 化苯基苯甲基甲基苯基苯甲基甲基甲基甲基甲基甲基
   (RKI
   SUBROUTINE CAVITY)
                                                               50
50
                          ****
                                                               00
                                                                             NOT
                                                                                    *
                                                               99
                                                                                    ***
                          *
```

SUBSONIC-10-SUP *** ****** 15 FROM S TRANSITIONS SUPERSCNIC-PROGRAM. **** ****

127

0

N=0 C1=F(P*X*Y)*DX XRK=X+0.5*DX YRK=Y+0.5*C1 GD TG 40 C2=F(P,XRK,Y9K)*DX YRK=Y+0.5*C2 GG TO 40 C3=F(P,XRK,YRK)*DX XRK=X+DX XRK=X+DX YRK=Y+C3 GG TO 40 C4=F(P,XRK,YRK)*CX YRK=Y+C3 GG TO 40 C4=F(P,XRK,YRK)*CX YRK=Y+C1+C3 F(Y, GT, 1) AND. (YRK, GC, 1) N=N+1 GG TO (10.20.30.70), N

. * ******

SUBROUTINE RKII INTEGRATION OF A DY/DX=F(P+X,Y) W IS SPECIALIZED FI ADDITIEN+

**

安林老爷的女子女子女女女女女女女女女女女女女女女女女

P.DX.X.Y.F

RK 1 1 (

UBRCUTINE

ES/.YE

×

CATA

INTEGRATION OF SUBROUTINE

RUNGE-KLITA

*** ***

00000000000

- so

```
7.4.1 CLGDOP (Cont.)
```

WRITE(5,60)
FORMAT(//.5X.*....R-K INTEGRATION TERMINATED BECAUSE -*CHOKING WAS ENCOUNTERED.*/)
FAIL=YES
RETURN
Y=YRK
X=XRK
END

70

6 SO 6 O

	>	
*********	>	000
LE INTEGRATION SUBRO	>	030
(OF SUBROUTINE CAVITY)	>	040
	>	020
· · · · · · · · · · · · · · · · · · ·	> 3	090
	> >) \)
	· >	
UBROUTINE FVI PERFORMS AN INTEGRATION BY SIMPSON'S	· >	200
ULE TO FIND THE FLOW VARIABLES (M.P.PO.T) ALONG THE	>	110
CAVITY AS A FUNCTION OF X. THE VARIABLES ARE	>	120
DUND BY INTEGRATING EQUATIONS OF THE FORM	>	130
Y/DX=F(G.2(x),x). REFERENCE: SHAPIRO, PAGE	٦. ٧.	₩ •
OF FORCER CAST INNOTANGE OF MON DON ON TO A	> >	0 4
אַנְאַנְאַנְייִי	>	200
	· >	180
1. 化氯甲基甲基异甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	>	190
	>	200
	>	200
SUBRECUTINE FVI (1.6.DX.LNP.LNPO.LN)	> :	0 0 N 0
M - 17 0 * 10 U	> >	こって
	> >	20
	. 5	260
	>	270
· 安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	>	280
	>	290
FUNCTIONS TO BE INTEGRATED WHERE Z=M**2. *	>	00 ·
	>	018
	>	320
	> :	0 (P)
	> :	ひょうり
**************************************	>	360
Z.X)=((G-1.C)*Z/(1.0-Z))*FA(X)	>	370
2-6¢2) # (1 • 0 + 0 • 2 * (e-1 • 0) * 2) / (1	>	380
	1 > > U	0 C
安全的 化苯甲基苯甲基甲基甲基甲基甲基甲甲基甲甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	> >	
	». >	• • •
SIZPSON* S AULIM INTEGRATION.	>	14
	>	4 (
计分类操作系统 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲甲甲甲甲甲甲甲甲甲甲	>	450
	>	460
10712 10712 070940 94(11712 1712 970	→ . > ! !! !!	0 0 0 0 0 0
7	- X	00
LNT=(DX/6.0)*(FT(G,ZI(1),XI(1)) e4.0*FT(G,ZI(2),XI(2))	1 > 4	02000
))

000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
	00000
44444490000000000000000000000000000000	W 111
000000000000000000000000000000000000000	0000

-+FT(G.ZI(3),XI(3)))
DLNPO=(DX/6.0)*(FPO(G.ZI(1),XI(1))+4.0*FPO(G.ZI(2),XI(2))
-+FPO(G.ZI(3),XI(3)))

1

granten w X

Same

Jan . . i

変別を

THE INTEGRATION VARIABLES QF FIND THE NEW VALUES

LNP=LNP+DLNP LNPO=LNPO+DLNF0 LNT=LNT+DLNF

I=1,NPTS.

CAVITY FLOW VARIABLES...V(I)-VS-X(I), X(1)=XI(3) P(1)=EXP(LNP) PO(1)=EXP(LNP) T(1)=EXP(LNT) M(1)=SQRT(ZI(3)) END LASER

0000000000

7	4.1	CLGDOP	(Cont.	`
Ι.	. 4 . 1	CEGEOR	(COnt.	•

010	020	030	040	080	090	070	080	060	001	10	120	130	140	150	160	170	180	061	200	210	220	230	240	250	260	270	280	068	000	015	320) () ()	サロウト) () () C) (- 0 n f) () () () () () () «) (0 0 0	0 10 10 10 10 10 10 10 10 10 10 10 10 10	4	450	9	04700	480
Z	Z	Z	Z	Z	Z	Z	Z	2	Z	$\frac{z}{2}$	z	Z	S	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	S	z	Z :	Z :	z :	Z :	z	5	2	֓֞֞֞֜֞֞֜֞֜֞֜֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֓֓֡֓֜֡֡֓֓֡֡֡֡֝֡֓֡֓֡֡֡֡֡֡֡֓֡֡֡֡֡֡֡֡	Z	֓֞֞֞֞֜֞֞֞֓֓֓֓֞֞֜֓֓֓֓֞֞֜֓֓֓֓֡֡֓֓֡֡֡֝֓֓֡֡֝	5	z S	5	Š	5	U Z Z	Ξ

NOTE ... Y=N##2 AND BY/DX=FMSQD(G,X.Y) FUNCTION SUBPROGRAMS (DF SUBROUTINE CAVITY) FUNCTION FMSQD(G.X.Y)
FMSQD=(Y*(1.0+0.5*(G-1.0)*Y)/(1.0-Y))*
-(-2.0*FA(X)+(1.0+G*Y)*FTO(X))
END

FUNCTION FOR EVALUATING...(1.0/A)(DA/DX). THE LASER CAVITY AREA IS ASSUMED TO BE A LINEAR FUNCTION OF X.

FUNCTION FOR EVALUATING...(1,0/TO)(CTO/DX). THE RATE OF HEAT ADDITION IS ASSUMED TO BE A LINEAR FUNCTION

FUNCTION FA(X)
COMMON/COEFF/X1.CA(2).CTO(2)
FA=CA(2)/(CA(1)+CA(2)*X)
END

FUNCTION FTO(X)
CDMMCN/CDEFF/X1.CA(2).CTO(2)
FTO=(CTO(1)+CTO(2)*X)/(1.0+CTO(1)*(X-X1)+0.5*CTO(2)*
-(X**2-X1**2)
END

000000000000000

00000000000

O(C)

CLGDOP (Cont.) 7.4.1

```
* * *
                                                                                . R.C. M2, P2P1, P20P10, T2T1, T20T10
                                                                                                              42=SQRT((2.0+(G-1.0)*MI*MI)/(2.0*G*MI*MI-G+1.0))
52PI=RD*(Z.0*G*MI*MI-G+1.0)/(G+1.0)
51OPI=POPM(G.MI)
52OPIO=PCPW(G.MZ)
52OPIO=PCPW(G.MZ)
52OPIO=T.C
670TI=TIOTI + T2CTIO/T2OT2
62TI=TIOTI + T2CTIO/T2OT2
62TI=TIOTI + T2CTIO/T2OT2
      SCSN)
                                                                                                       OTM(GX*XX)=1.0+0.04(GX-1.0)*#X##X
ODM(GX*XX)=(1.0+C.04(GX-1.0)*MX#MX)*#(GX/4GX-1
      SUBROUFINE
       DIFFUSER
       SHOCK
                                                                                            NSDS(C.M.
                                                                                                 REAL * 4 ( M)
       NORMAL
                                                                                            SUBROUTINE
                                                                                                  IMPLICIT
```

ECCCCHHHH

* *********

特种公安特殊外部的特殊特殊特殊特殊的特殊的的特殊的的特殊的的

SUBROUT INE

DIFFUSER

SUBSONIC

```
*****
 in
   ₩.
₩
```

SUBROUTINE SUS CALCULATES THE PRESSURE RATIO ACROSS A CONICAL, SUBSONIC DIFFUSEP WITH AN INCLUDED ANGLE OF 15 DEGREES. THE STATIC PRESSURE RATIO IS COMPUTED USING AN EMPERICAL DIFFUSER EFFICIENCY. ALL OTHER PROPERTIES ARE CALCULATED FROM THE ISENTROPIC FLOW RELATIONS TO BE CONSISTENT WITH THE ENTRANCE AND EXIT MACH NG.S. *2<MI<0.5* 2.34<A2/AI<5*2
N THE FOLLOWING REFERENCE P.O AIRCRAF "SUMMARY (1956). AS DEF INED S I GN . " 9 ND WILBUR.S.W.. NACA RM L56F05 GIVEN S Ö 1-46 -F1)/(P2-P RD=(P21/P1)/(P2/P) COEFFIC IENT EFFIC SENCY ENRY.J.R. WCGD.C.C. AND UBSONIC-OIFFUSER DATA." N. 0 -F=(P2" IS LIMITED TO THE RANGE: AND IS DERIVED FROM DATA SUBSONIC DIFFUSER DIFFUSER (6)6 · S SON.G. SUBSONIC PATTERS ENGINE TIL. THE

STATIC PRESSURE RATIO STAGNATION PRESSURE RATIO STATIC TEMPERATURE RATIO STAGNATION TEMPERATURE RATIO RETIO GAMMA ENTRANCE MACH NUMBER EXIT-TO-ENTRANCE AREA EXIT MACH NUMBER
EXIT-TO-ENTRANCE SI
EXIT-TO-ENTRANCE SI
EXIT-TO-ENTRANCE SI
EXIT-TO-ENTRANCE SI
EXIT-TO-ENTRANCE SI
SUBSONIC DIFFUSER (ES VARIABL 0 0 0 M2 P2P1 P20P10 T2T1 T2GT%0 RD 5 OUTPL 1 2A1

ARIABLE

>

INPOT

Ų X €

环安餐农务等的事务 医多种 医多种 医多种 医多种 医多种 医多种 医多种

The state of the s

	SO	010	
SUBBOUTINE SDS(G.MI.A2AI.K2.P2PI.P20PIO.T2TI.T2TIO.RD.	30 S	02300	
	~ ~	さんない	١.
I DI ION	~	90	4.
DATA YES/ YES' / SUB/ SUB'	$\sim c$	7 C	1
	$^{\circ}$	90	Ç
公理特殊的证据的证据的证据的证据的的证据的证据的证据的证据的证据的证据的证据的证据的证据	\sim	500	LU
	\sim	615 10	יענ
# GAS DYNAMIC FUNCTIONS	\sim	() () () () () ()	Jr.
经存储证据 化氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	\neg)	(
************	١ ٠٠	0 C	CU
	~/	560	11 C
「「ないな人の人」をなくしましょうもの。の今人のメート。の)をなべを表示しまった。「およう」という。これの、「およう」といった。「これの、「およう」という。これの、「およう」という。「およう」という。	``) () ()	• ;
0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	~	069	
	\sim \sim) () () (
安全中心中央市场的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的	٦ ^	, V	
* RESURFIG ABOA-TANTAND BOOK AND TAND AND AND AND AND AND AND AND AND AND	\sim	730	
	\sim	740	
建筑接近的新兴县的基础的基础的基础的的基础的设计的基础的基础的基础的基础的基础的基础的基础的基础的基础的。	\sim	250	
	\sim $^{\prime}$	91	
	ጉ ሶ) (
Tr(AMAI, NR. 1, O. CO. 10 I	\sim	200	
0-11-00	\sim	800	
p20p10=1•C	$^{\circ}$	000	
T271=1.0	$\sim c$) () () () (
12011011.0	מ נ	9 0	
	റ	850	
	വ	860	
医电子线 经转换 经销售 医电影的 经经济证券 经存货 医多种氏征 医多种氏征 医克勒特 医克勒氏氏征 医多种氏征 医多种 医多种氏征 医多种氏征 医多种氏征 医多种氏征 医多种性性 医多种种种种种种种种种种	3 (3	90	
	a	890	
CALCULATE CONSTANTS	\mathbf{c}	000	
	α	016	
经方式计划分类的 医维氏性性 医克里特氏 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	ገ (70	
	ാവ	9 Q	
011	0	950	
64=(6+1.0)/(2.0+(6-1.0))	α	0100	
	36) (C	
特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特	30	066	
*	a	00	

	2	0.0	•
SULVE ACACS FOR BA	3 5		• (
	วี	1	J P
经分类分类 化苯酚 化二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	ก็	n 11	7 4
	יי איני		S
1A1S=(1.0/M1)*	S		0
2A2S=A2A1#A1A1S	วร	O .	
ZAASAGOES	S C		o c
TITALL SECONDS THEORY	o G		000
	7 6		~ ∩
μ •	S	7	J M
* CALCULATE DIFFUSER EFFICIENCY *	35		4
	S	11	S
的景势失力的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人	os S	<u></u>	9 P
	300		00
EFF=0.002685*A2A1*A2A1*A2A1-0.024461*A2A1*A2A1-0.027229*	38.		7 C
66840 - 14142	9 W	0 10	> ~
	SS	200	i
化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	S	12	M
	SS	3 12	4
* CALCULATE THE IDEAL STATIC PRESSURE RATIO	วร	(A) (S)
	วร	N (91
经设计分额法 化甲状腺 化苯甲酚 经实验的 医克格奇氏征 医多种性 医多种氏征 医多种性 医多种性 医多种性 医多种性 经营养的 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	SS	N C	~ 0
	ט מ מ	7.	00
1 NO 3 NO	יא ה מ	ייי ייי	Ù
いっぱいのこのはいのこの	38	יים מו	,
100 III 001 / 100 III	SS	5	N
-+(1.0-EFF	S	S	m
	35		e u
新教馆教育教育的研究教育的教育教育的教育的教育教育的教育教育的教育教育的教育的教育教育教育教育教育	יי פו	o er	n c
	SS	· M	
* CALCULATE THE ACTUAL STATIC PRESSURE RATIO *	S	5 13	8
	S	S:	9
经转换保险额 经保存股份 经存储 计记录 计分别 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	S	₹.	O
	S	¢ •	بر ز
	กี .	2 4	V f
3. C	î i	8 4 	<u>ე</u> අ
20110=1-C	3.0	S	· N
1011=1011.(G.M.	รร	S	ø
2072=TOTM(G	SC	S 14	۴
=T10T1*T20	SE	S	8
Z	ร	S 1.4	9

```
ENTRANCE
                                                                                                                                                            ZO
                                                                                                                                                                                                                                                                                                                         ОШ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STAGNAT ION
                                                                                                                                                                                                                                                                                                                         WEIGHT RATT
                                                                                                                                                         THE BREAK-OFF COMPRESS SUBSONIC-SUPERSONIC
                                                                                                                    WEIGHT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  PRESSUR
                                                                                                                                                                                                                                                                                                                                                                                   TUBE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DNIXIN
                                                                                                                                                                                                                                                                                                                                                                                                                             MIXING TUBE
AREA RATIO
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        MOLECULAR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STAGNATIO
                                                                                                                                                                                                                                                                                                                                                                                     MIXING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STREAM STATIC-TO-SECGNDARY URE RATIO FLAG
                                                                                                                                                                                                                                                                                                                         MOLECULAR R
STAGNATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STAGNATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  FLOW
                                      SUBROUTING
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       THE
                                                                            THE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MASS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             SECCNDARY-TO-PRIMARY MASS MIXED STREAM GAMMA
MIXED STREAM-TO-PRIMARY WAYIC
RAYIC
NIXED STREAM-TO-PRIMARY S
TEWPERATURE RATIO
MIXED STREAM MACH NO. AT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ****
                                                                                                                                                                                                                                                                                                                                                                                                                             Ψ
L
U
                                                                                                                                                                                                                                                                              SECONCARY GAMMA

PEINARY GAMMA

SECCNDARY-TO-PRIMARY M

RATIO

RATIO

ENTRANCE

PRIMARY MACH NO. AT

PRIMARY MACH 
                                                                                                                                                                                                                                                                                                                                                                                     ⊬
                                                                                                                                                                                                                                                                                                                                                                                                                             TUBIL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IMARY-TO-SECONDARY
                                                                                                                                                           CAES CALCULATES TI
CONSTANT-AREA, S
A CNE-DIMENSIONAL
                                      JECTOR
                                      w
                                                                            安安安安安
                                      -ARE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VARIABLES
                                                                                                                                                                                                                                         VARIAELES
                                      CONSTANT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RATIC
MIXED
PRESSU
ERROR
                                                                            经会会保持的
                                                                                                                                                                              1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             M C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *
                                                                                                                                                         SUBROUTINE
RATIO FOR A
EJECTOR BY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           **
                                                                                                                                                                                                                                                                                      H H H H
                                                                                                                                                                                                                                                                                                                                                                                          H
                                                                                                                                                                                                                                                                                                                                                                                                                                h !!
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     H H H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ij
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           *****
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          OUTPUT
                                                                                                                                                                                                                                                                                 GS
GP
T S O P O
                                                                                                                                                                                                                                                                                                                                                                                                                           MD 3
AD 1 43
                                                                              经验证证券
                                                                                                                                                                                                                                           INPUT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Odoxe
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PM3S0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  P050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        0.发五定
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FAIL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        かまま
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                R
S
T
T
                                                                                                                                                                                                                                                                                                                                                                                     MS1
                                                                                                                                                            Sam
                                                                                                                                                                                                                        *************
```

SUBROUTINE CAES(GS.GP.MWSP.TSOPO.MS1.MPI.APIM3.WSP.GM. MWMP.TMOPO.MM3.PPOSO.PM3SO.FAIL)

IMPLICIT REAL*4(F) REAL*4 NO DATA NO''NO'/

U

U

0000000000	0000000000000
00000000000	000000000000000
120m450/20cm	とう みらら て の ひ り ま ろ う ち ち ち ら り
຺ຎຎຒຒຎຒຒຒຎຎ	44444000000000
0000000000	0000000000000

CALCULATE PSIPI FOR THE BREAK-OFF POINT. ***********************************	CALCULATE PSIPI FOR THE BREAK-OFF POINT. ***********************************	化新兴的 计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设
**************************************		BREAK-OFF
######################################		5.张蒋紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫紫
7*************************************		F(#S1.NE.1.0) GO TO 100
**************************************		O TG 101 ALL CAEFC(GS,GP,MS1,MP1,AP1M3,PS1P1,FAIL) F(FAIL,NE,NO) RETURN
CALCULATE THE DOWNSTREAM CONDITIONS FOR THE BREAK-OFF # PCINT. PCINT.	CALCULATE THE DOWNSTREAM CONDITIONS FOR THE BREAK-OFF * PCINT* **********************************	· · · · · · · · · · · · · · · · · · ·
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	: :***********************************	ATE THE DOWNSTREAM CONDITIONS FOR THE
	ALL CAEDCV(GS+GF+MWSP+TSOPO+MS1+MP1+AP1M3+PS1P1+WSP+GM+	**************************************

计数据转换设备 经存储额 经存储 计多数 计数据 医多种 计多数 医多种	AEF	010
	A E E	0000
TOURSE ACTIONS ACTIONS OF THE STATE OF THE S	₹	0 4
CERTO SUBBOUTINE CARS	AEF	050
	AEF	090
计计算器 计计算机 计计算机 计计算机 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	AEF	040
	AEF	080
***************************************	¥ E F	060
	M M M	00.
SUBROUTINE CAEFC PERFORMS THE CONSTANTARE EJECT	₹	200
CRITERICA CALCCEATIONS BY 1-0 ANALYSIS FOR	ւ ն Ս ն < <	700
KIONOJIO JINOSOOS KIONK TININES EXKETAL JINOSOUSOOS (THOUSE) CICATO COLUMNIA LITE OF VERSOLO IDEEL (TVIVI)	. U. U U V V	\$ C
HIS ELECTOR ANALYSIS IS BASED ON THE CONSTANT—AR	AEF	150
HROUD, EJECTOR ANALYSIS OF FABRI, REFERENCE:	AEF	160
ACA TM 1410	ART	170
	M C	800
+ INTOL VAKINGERO:	L U) (
S = SECONDARY GA	AEF	210
RIMARY GAMMA	AEF	220
S1 = SECONDARY MA	AEF	230
ENTRANCE	AEF	240
H PRIMARY MACH NO. AT THE MIXING	AEF	250
PIMS - PRIMARY-IO-MIXING TUBE AREA RAIL	↑	200
# CIITDIT VADIARIES.	L IL	200
	AEF	290
1PI = SECCNDARY	AEF	300
FAIL = ERROR	AEF	310
化多异苯甲基甲甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	בות ה	3 K
	AEF	0
	AEF	350
SUBROUTINE CAEFC (GS.GP.MS1.MP1.AP1M3.PSIP1.FAIL)	A TH	360
REAL * 4 (M)	AEF.	380
ATA YES/'YES'/'P	AEF	068
	Y U	4 4
******************	A E E	4 20
	AEF	430
A GAS DYNAMIC FUNCTIONS	AEF	440
新新新新新的 计多数 医多种	7 TT	4 6 0 0
	CAEFO	04700
(-5)/5-)##((0##Z)#("-5)#%"+"() (Z*5)#CO	AER ARR	480
2./(G+1.))*(1.+0.5*	AEF	200

000000000

S.MS11) VD=(1.0-AF1M3)*((1.0+GS*(MS1**2))--(PPOM(GS.1.0)/PPOM(GS.MS1))*((1.0+GS)/AASM(GS.MS1))) VN=(PPOM(GP.MF2)/PPOM(GP.MP1))*AP1M3*(AASM(GP.MP2)/--AASM(GP.MF1))*(1.+GP*(MP2**2))-AP1M3*(1.+GP*(MP1**2)) PSIP1=VN/VD IF(PSIP1.LE.(C.0)) GD TD 103 IF(PSIP1.GT.(1.0)) GD TD 100 .0 FROM **** SMCG WHERE MS2=1 AT STATION P3)/AA CATIC PRESSURE ON FABRI'S CR - N (1.-AP) 100 **(0.5*(G+1.)/(G-1.)) MMS(G.MS)=SQRT(((2./(G+1.))*(MS**2)). (1.-((G-1.)/(G+1.))*(MS**2))) **** (S) × 10 10 *** ************ AP2PS=(AASM(GP,MP1)/AP1M3)*(1.-CALL MAAS(GP,MP1,AP2PS,SUP,5.0E. IF(FAIL,EQ,YES) GG TO 105 IF(MP2,LI,MP1) GG TO 108 IF(MP2/MP1-1.).LT.(1.E-4) GG AT STATION (0 101 ATE STA *** **** 10 1 CALCUL **** E MP2 A 9 (1.0)) (w CULATE 11.6T CAL (*** *** S -Z _ * * * * H.H. . * * * * * * * * * * * *

0000	0000	000	- N M 4	84000	00000	128400 128500 128500 1286000 1380000 1380000 1380000
					4444 SECT	00000000000000000000000000000000000000

######################################	计算机设计器 化邻苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
######################################	SIS
PSIP1=1.0 RETURN ************************************	***************************************
**************************************	PS1P1=1•0 RETURN
MESSAGES ***********************************	计多数分类 化二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲
FFC: (MSI.GT.(1.0))//) FFC: (PSIPI.LT.(0.0))//) AAS YAS CALLED FROM ".	
	新教育教育 计多数存储 计多数存储 计多数存储 计多数 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
	WRITE(5,102) FORMAT(7,5x**,*,FRROR IN CAEFC: (MS1,GT.(1,0))//)
F C .	
AAS FAS CALLED	FC:
AAS FAS CALLED	
FAIL=VES RETURN FAIL=PART	AAS YAS CALLED
FAIL=PART	FAIL=YES RETURN
	FAIL=PART

CAAEDCC CAAEEDCC COABEDCC COABEDC COABEDCC COABE

******** **格格安姆斯特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特特** SUBROUTINE CAEUCY PERFORMS THE CONSTANT-AREA EJECTOR OVERALL C'NTRCL VOLUME CALCULATIONS BY 1-D ANALYSIS FROM INLET SECTION (1) TO MIXED SECTION (3). $O \omega$ ANC NOI 10 12 12 13 MOLECULAR WEIGHT RA ENTR AGNAT PRESSURE IGHT = SECONDARY GAMMA
= PRIMARY GAMMA
= SECONDARY-IO-PRIMARY MOLECULAR WEIGHT
= SECONDARY-TO-PRIMARY STAGNATION TEMPER
= SECONDARY MACH NO. AT THE MIXING TUBE
ENTRANCE
= PRIMARY MACH NO. AT THE MIXING TUBE EPRIMARY TO-MIXING TUBE AREA RATIO
= SECONDARY-IO-PRIMARY STATIC PRESSURE F ш ESSURE 108 RATIO = SECCNDARY-TU-PRIMARY MASS FLOW RATIC
= MIXED STREAM GAMMA
= MIXED STREAM-TO-PRIMARY MOLECULAR WE
RATIO
= MIXED STREAM-TO-PRIMARY STAGNATION
TEMPERATURE RATIO
= MIXED STREAM MACH NO. AT THE MIXING
EXIT
= PRIMARY-TO-SECONDARY STAGNATION PRESENTED STREAM STATIC-TO-SECCNDARY STAFESSURE RATIO
= HIXED STREAM STATIC-TO-SECCNDARY STAFESSURE RATIO BUINI S STAGNATION **** **** ഗ Ü VARIABLE VARIABL **** ** 0.0 0.0 11 11 11 11 0 0 11 11 11 11 DUTPUT GS GP TMSP MP1 AP1M3 PS1P1 80 M350 LUGNI MOPO **** 90 117 ** S 2 2 * * ******

SUBRGUTINE CAEGCV(GS, GP, MESP, TSOPO, MSI, MPI, APIM3, PSIPI, ESP, GM, MW PP, TROPO, MM3, PPOSO, PR3SO, FAIL)

IMPLICIT REAL*4(M)

ATA PART/'PART'/	AEOC	0510
4	A E O C	0530
	AEOC	0550
(本本学》中,在1712年,1914	AEOC	0570
	A E O C	0590
(G.X)=r*SQDT(G*(1.+.5*(G-1.)*(X**2))) (G.X)=(1.+G*(***2))/(**SQRT(1.+.5*(G-1.)*(***2)))	A M C C C C C C C C C C C C C C C C C C	0610
DW(C•W)=(1•+•2*(C-1•)*(W*#Z))**(-C\(C-1•))		9000
t t	AFOCA	0630
《《···································	AEOC	0690
	A EOC	0710
0=SQRT(MWSP/TSOPO) SP=PSIP1*((1APIM3)/APIM3)*CO*(WM(GS*MSI)/WM(GP*MP1))	AEOC	0730
SP=(GS/GP)*((GP-1.)/(GS-1.))/MWS	A FIGURE	0920
· 特神特殊特殊特殊特殊特殊特殊特殊特殊特殊特殊的政策等等的,所以对于	A E O C	0780
MIXED FLOW PROPERTIES	A MICO	0800
法法律法律法律法律法律法律法律法律法律法律法律法律法律法律法律法律法法法法法法	AEGC	0820
WMP=(1.+FSD)/(1.+(WSP/MBSP)) M=1./(1(GP-1.)/GP)*(1.+(WSP/MBSF))/(1.+CPSP*WSP))) MOPO=(1.+ESDP*CPSP*TSOPO)/(1.+WSP*CPSP)	A M M M M M M M M M M M M M M M M M M M	0850 0850 0850
****	A EOC	0000
SOLVE FOR MM3	A FEOCIA	0910
新新安全 化二氯甲基苯甲基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼	0000
1=SGR1((TSOPO/MESP)#(GP/GS)) A3=SGR1(TNOPO/NEMF#(GP/GM)) A3=SGR1(TNOPO/NEMF#(GP/GM)) A3=SGR1(TNOPO/NEMF#(GP/GM)) A3=SGR1(TNOPO/NEMF#(GP/GM)) A3=SGR1(TNOPO/NEMF#(GP/GM)) A3=SGR1(TNOPO/NEMF#(GP/GM)) A3=SGR1(TNOPO/NEMF#(GP/GM))		000000
)))

00000000 00000000 000000000 000000000

0000000 100000000000000000000000000000	00000000000000000000000000000000000000	

DETERWINE TWO POSSIBLE MIXED-FLOW MACH NO. * SOLUTIONS. USE ONLY SUBSONIC RESULT AT (3). *

F(MSQD3M。GE。(O.C)) MM3M=SQRT(MSQD3M) F(MSQD3P。GE。(O.O)) MM3P=SQRT(MSGD3P) M3=WM3P

CALCULATE PRESSURE RATIOS

6#SQRT(TROPO/MEMP) MAP1=C6*AP1M3*(1°+ESP)*(EM(GP°MP1)/EM(GM°MM3)) POSOH(PPOK(GS°KS1)/PPOK(GP°MT1)/PS1P1 MASOHPMAP1*(PPOK(GS°KS1)/PS1P1) MOSOHPMASO/PPOK(GR°KE1)/PS1P1) ETURN

ERROR MESSAGES

FAIL=PART END

IF(TM3*LI.TM3MIN) GO TC 10 C3=(TM3**2-2.*GM) C4=((GM-1.)/2.)*(TM3**2)-GM**2) C5=SQRT(C3**2+4.*C4) MSQD3M=(-C3-C5)/(2.*C4) MSQD3P=(-C3+C5)/(2.*C4)

沙特拉特特拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉拉	ιέ,	010
	in in	000
מסאמאטטאור מסאמטאור הזמרוטא מסמאמטוואר כארני	SE	90
· · · · · · · · · · · · · · · · · · ·	S	050
经分式分分价 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	S E E	0000
	SE	080
SUBROUTINE SSES CALCULATES THE MAXIMUM COMPRESS	S C	060
NATIO FOR A CONSTANTAREA, SUPERSONIC-SUPERSON FIRST FOR FIRST ANALYSIS. ASSURTED	S E	700
ISENTROPIC RECOMPRESSION OF THE SECONDARY STREAM	SE	120
ONIC CONDITIONS	Sun	0 T
* INPUT VARIABLES:	SE	150
	Sm	160
GU II UNICENERA BARRA	SE	180
MESMED I SECONDARY-TO-PREMARY MOLECULAR METGHT RA	SE	190
ISOIPG = SECONDARY - G-FRIMARY SIAGNALION LEMPERALORE BATIO	SPE	200
MS1 = SECONDARY MACH NO. AT THE MIXING TUBE	SE	220
TOWNS TO THE DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER O	S T T	2000
ASIADI = SECONDAN-TO-PRIMARY AREA RATIO	SE	250
	S	260
* OCTAN VAKIABLEST	ש מית	200
WSWP = SECCNDARY-10-PRIM	SE	290
GR IN MIXED STREAM GAMMA	SE	300
MEMBER II MINING ULKUNGILOILU	u n n	200 700 700 700
TMOTPO = MIXED STREAM-TO-	SIE	330
TEMPERATURE RATIO	in in	340
DATE OF SERVICE OF SER	S	300
PPOPSI = PRIMARY STAGN	SUL	370
PRESCUENT PRESCUENT PRESCUENT	S	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FAIL = ERROR FLAG	S	00
格斯特特拉特特特斯特斯特斯特斯特斯特特特特斯特斯特特斯特斯特斯特斯特斯特斯特斯特	S	4 4
	S	430
UBRCUTISE SSES(6S.6P. PERMEPTSCIPO.MS1	55ES 55ES	04400 04500
3PSI , FAIL)	SE	460
MD TITERAL #4(M	U U) C
DATA YES/'YES'/SUP/'SLP'/	SE	400
	S	200

* * * * *	经公司公司 计电子设计 计多数计算 医乳腺性蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白蛋白	***************************************
SLBROU	TINE SSES CALCULATES THE M	IIMUM COMPRESSION
RATICE	TOR A CONSTANT-AREA, SUPER	SONIC-SUPERSONIC
I SENTS	DOIC RECEMPESSION OF THE	CONDARY STREAM TO
SONIC	CONDITIONS.	
INPUT	r variaeles:	
9 g	I SECONDARY GAMMA	
	入口をおいらからで下すみ口をしなししはび、1	DITAG THRITE GA HID
TSOTE	= CECCNOARY - (O-PRIMARY	STAGNATION TEMPERATURE
MS1	H SECONDARY MACH NO. AT THE	E MIXING TUBE
34 D 1	# PRIMARY MACH NO. AT THE	MIXING TUBE ENTRANCE
ASIAPI	1 = SECCNDARY-TO-PRIMARY ARE	RATIO
OUTPUT	JT VARIABLES:	
d A S A	SECCNOARY-10-	FLOW RATIO
CAXXAC	P = MIXED STREAM-TO-PRIMARY	MOLECULAR WEIGHT
TMOTEC	RATIO 0 = MIXEG STRFAM-TO-PRIMARY	STAGNATION
	TEMPERATURE RATIO	,
m I	IXEC STREAM	THE MIXING TUBE
PP0PS1	1 = FRIMARY STAGNATION-TO-	SECONCIRY STATIC
PM3PS1	I = STATIC PRESSURE COMPRE	SSION RATIO
	SA IR COCCAR	

U

E. sent to

00000000000000000000000000000000000000
Αυτορούν το πουτορούν το πουτορού

F(GX*MXX)=1.0+GX*MXX*MXX G(GX*MXX)=MXX*SQRT[1.0+0.5#(GX-1.0)*MXX*MXX) H(MM.TT.6G)=SGRT(MM*GG/TT) HPO(GX*MXX)=(1.0+C.5*(GX-1.0)*MXX*MXX)*#(GX/(1.0-GX)) HPO(GX*MXX)=(1.0+C.5*(GX-1.0)*MXX*MXX)*#(GX/(1.0-GX)) ABS(GX*MXX)=(2.0*(1.0+0.5*(GX-1.0)*MXX*MXX)/(GX+1.0))*#(0.5#(GX+)-0)/(GX+1.0)) 经销售等的公司经济证券的 医多种性 医多种性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医多种性 RECOMPRESSION FROM AP2APS. *** CONSTANTS SENT FOP IC FUNCT ION CALCULATE SPECIAL 15 FOR AN *** CALCULATE PSIPPI SGNIC CONDITIONS GS3=GS/(GS-1.0)
GSGP=GS/GP
GSGP=GS/GP
NWPMBS=1.0/NWSNWP
PP!PPO=PPO(GP*NP!)
AS1ASS=AAS(GP*NP!)
ASSAS1=1.0/AS1ASS
FGSMS1=F(GS*MS!)
GGSMS1=F(GS*MS!)
GGSMS1=F(GS*MS!) **** * * ***

IF(ASIAP1.GE.C.0) GO TC 1
#RITE(5.2)ASIAP1
FAIL=YES
RETURN
AP2APS=AP1APS*(1.0+ASIAP1*(1.0-ASSASI))

ALL M	SSES	10100
S2=1.0	Su	000
CIHTEGPMP1+F(GD*XPV)+GGPMP1/G(GD*MP2)	งห	ງ () • ທ _ີ
SIPPL=C1/(ASIAP1*C2)	รถ	000
	S	080
在安全的水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水	S E	000
	ט ה ה) c
* OVERALL CENTROL VOLUME CALCULATIONS *	U U.	20
计安全存储器 计多数存储 计多数	SE	30
	SE	41
	ง กัก	၁ လ ဂ
の最大に対してするようなな、ようで、そのできるのであります。このでは、このでは、このでは、このでは、このでは、このでは、このでは、このでは、	SE	170
SHECEDARE TERMS (CONT.)	SE	180
M=C1/C2	in in	200
RGP = GE/GP	U U	0 C
十八字の字) 八字定定字) M	220
「H~じつしてしょうしまても38%でありまたりにする!	SE	230
いしまいほうしょう スプライム ひんしょうき アイフィラー・ション	SE	240
TONI TONEWARD THOSE	SE	250
1 - O+KSED + CGPRP1)	SE	260
1=0.5*(GM-1.0)*F	S	200
CHFFX*FFX+C *O *G*	U U	2 C 0 U 0 U
3=(-C2+50R1(C2*C2+4.	J C	100
4 -	Sin	310
TOP I SOUTH TOOLS TO THE TOTAL	SE	320
MADON INDEADON / PONTON	SE	330
Q.	Su	4 (
POPS1=1.C/PS1PP	אונ טיר	3 6
	SE	340
建筑的 医生殖性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	SE	80
	SE	6
# FCRMAT STATEMENTS	SE	00
	ט נ ט נ	⊃ (¬ (
法债 法保持法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法	υ c n π	2 C
	S	9 4
FORMAT('0', T2, 'IMPOSSIBLE VALUEASIAP! =',E13.6)	S	50
	S	9

000000000000000000000000000000000000000	000mmmmmmm 000mmmmmm 00000000000000000		$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	4 4 4 4 4 4 4 4 0
		ZZZZZZZZZZZZ HWHWHWHWHW ZZZZZZZZZZZZZ		

SUBROUTINE MIN. AS APPL (ED TG A CONSTANT-AREA SUBSONIC-SUPERSONIC EJECTOR, PERFCRMS A SEARCH AND INTERVAL HALVING PROCEDURE TO FIND MSI SUCH THAT FUNC(MSI) IS A MINIMUM. MIXING TUB MIN (MSI .FUNC.NTYPE.NIT.COEFF.FAIL) SECCNDARY MACH NO. AT THE MI ENTRANCE FUNCTION OF MSI 1.2 - SEARCH 3.4 - SOLUTION INCREMENT NUMBER ALPHANUMERIC IMAGE OF FUNC ERROR FLAG VARIABLES: Ħ 4 9 4 4 4 4 SUBRCUTINE NIT COEFF FAIL FUNC MS 1

MINIMIZATION SUBFOUTINE

#4 ng D2.xLow.xerrcr.yerror/0.1.1.0E-03.0.025.1.0/ YES/'YES'/.hG/'nG'/'PART/'PART' RROR (ACTUAL . G IVEN)= (ACTUAL - G IVEN) * 100 .0 / G IVEN REAL * 4 (M) IMPLICIT S REAL#4 NG DATA DX.XI DATA YES/

10 09 IF(FAIL.NE.PART) C MSI=MSI-XERKUR IF(MSI.LT.XLGW) GG FAIL=NU

Į

00	F(RIT.NE.1)	,	200
	20C) CC	-	3 C
	くつけてのど	•	3.0 0.4 0.0
	しょうにんきょうにん		550
•	7 (1. 0 (1. 0. 1 (1. 0. 1. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-	560
		-	570
		-	580
		~	989
	法操作法法 格特特特 化环分离分分分次次法 化水水油 有有有 有有有 有有的 化异式二氯化异式 医多种 医多种毒素 医多种	-	009
		1-4	610
	STORE UPPER BOUND FOR MSI	-	620
		-4	630
	计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设	-	640
		-	650
(3	Z Z	00000
N O	一クをリー	4	680
8	U.	, 144	690
)	TON L	~	700
	TYPE=2	-	710
	ETURN	-	720
		-	730
		 +	740
	经按据帐据 医克勒氏性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	-	287
			(V)
	STORE LOWER BOUND FOR MS1	* rt	270
			087
	打新的部分的光线的部分的影响的影响的影响的影响的影响的影响的影响的影响的影响的影响的影响的影响的影响的	-4 (ር ሳ ው ሳ ሎ .
		 '	
		-6 6) ~ () (
40	SEE SEE	w 6) C U C O C
		· >-	2 d
			350
))	\$=0	860
		a rri	0 2 0
	格格格特 计操作 计操作 计存储 计存储 计设备 计设计设计设计设计设计设计 计设计设计设计设计设计设计设计设计设计设计	-	880
		smi s	900
	H TONG TON TON TON TONG AND INCHANGE AND TANGEN AND TAN	٦ -) C
		٠,) (
	经代外部 法法律法律 医二甲甲基甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	٠,) (
		٠,) () () (
IJ	A 1 (1 (100
	T (ADS) CRACK (C. 1777) CENTON CO TO TO	•	000
	はついま	٠.	926
	- ************************************	-	980
	(-	990
	0 10	144	000

th) Period or

	_		-
7 A 1	CGLDOP	(Cont	٦,
/.4.1	COLDOR	I COME.	. ,

	-	10
	-	30
化新学长春安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安	N I W 安林安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安安	10300
₩.	T	0 4 0
NOTION TO BUY TO BE A STRUCT OF THE SOLUTION OF THE SOLUTION	WAS LOST & MI	030
	X	080
经验证证据的 人名英格兰 医克里氏征 医克里氏性皮肤炎 医克里氏征 医克里氏征 医克里氏征 医克里氏征 医克里氏征 计算机 计算机 计算机 计算机 计算机 计算机 计算机 计算机 计算机 计算机	X	070
		OAC
		000
) (
IF(Y2.LE.Y1) GD TC iC7	-	9
X	-	2
u	,,,,	120
֓֞֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	-	130
5		0
) (
	E	000
经银金额的 计分类操作 计多数操作 计多数记录 医二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	-	160
4	-	170
STEETEN CAN CAUCH ARRO NAT CALL STR OCH TAR A	.~	180
	7	190
经存款的 化多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医多种 医	1.12	000
******************		0.0
		0 0
	-	71
N. Y. Y. P. E. A.	-	10 to
Zaskua	-	いるべ
	A.M	ひのな
	-	260
. 特殊性的计算的对称的 计经验分析系统 医多种性神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经神经	N N N N N N N N N N N N N N N N N N N	270
	*	280
NICH NOTES ON THE PROPERTY OF	**	5
בשונייני אם כאר ספוס ומים	. **	100
) (
医乳球状 化二苯二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲) C
	• >) () () (
) () {
MAX. CTO CON DOLL STORT OF SOLIT OF SOL	4 6	700
<u>ا</u> ا	4 4) () (
) () () (
	**************************************	000
建超级精神学术经验经验 化铁柱化铁 化环环环环 经现代债务 医多种子 计多数分子 医多种子 经条件 医二种二种	71	000
	芝) (
* FORMAT STATEMENTS	3	400
*	I	410
经验验证券的的证券的 计计算 计对象 计分类 化二苯基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	外护外外外外外外外	420
	-	430
	-	9
AMAT(*)**130.*SFARCH DATA: *, // .TB. *NTYPE *, T2	-	50
STATE THE TROPER TO THE TOTAL STATE OF THE TOTAL ST	. ¥	60
FORMAT (* ** 10.11.713.3F15.6.160.A4	-	70
CACACACACACACACACACACACACACACACACACACA	THE MET - 1.	. נ
TOTSING OF	TE TOE I	000
0.010.1 IOMO MOL. 621.	.,) C
	4)

**************************************	计数据分类类型 医电子 医克尔氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	(020
######################################	UBROUTINE (MAAS)	4 4	080
######################################	使转移设备论设备设施运输场标论设置的设计设计设计设备设备设施设施设施设施设施的设备的设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计	{	000
SUBROUTINE MASS CALCULATES THE MCH NUMBER (M) GIVEN # MASS 00070 THE ARAINERS # # # # # # # # # # # # # # # # # # #		4	090
SUBROUTINE MAAS CALCULATES THE MACH NUMBER (M) GIVEN ** MAAS 0110 (A/A*) BY LINEAR ITERATION. ** MAAS 0110 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND AND WIEW FOR ** MAAS 0120 (A/A*) BY LINEAR AND	经实施股份的 计分类系统 计分类 计分类 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	4 <	0 0 0 0
THE AREA RATIO (A/A+) BY LINEAR ITERATION.	AND AND AND AND HORM THE SAFE TO LAC SAME BATELODAY.	1 4	900
INPUT VARIABLES: ##AAS 0120 ##AA	TE AREA RATIO (A/A*) BY LINEAR ITERATION.	. K	100
INDUT VARIABLES: MAAS 0130 MINI = INTIAL VALUE OF MACH NUMBER AAS		4	110
G = SPECIFIC HEAT RATED AAS	NPUT VARIABLES:	4	200
MINI = SPECIFIC AFAR AND NUMBER ASSISTED ASSISTE		∢ ∘	000
### ### ##############################	II STECTION TO SELECT TO SELECT	4	
FLOW = CCTTFOL VARIABLE SUCH THAT = "SUBMED FOR THE SUBERSONIC BRANCH = "SUBMED FOR THE SUPERSONIC BRANCH # MAAS 0190 ERROR = MAX PERCENT DEVIATION IN MCLD AND MNEW FOR # MAAS 0220 OLTPUT VARIABLES: MAAS 0220 MAAS 0220 MAAS 0220 MAAS 0220 MAAS 0230 MAAS 0240 MAAS 0	AN HITT AND MAIL OF AND HITCH	\ \ \	160
= "SUPW FOR THE SUPERSONIC BRANCH	LOW = CCNTFOL VARIABLE SUCH THAT	A	170
ERROR = MSQPW FOR THE SUPERSONIC BRANCH	= "SCB" FOR THE SUBSONIC BRANCH	AA	180
ERROR = MAX BECENT DEVIATION IN MCLD AND MNEW FOR * MAAS 0210 A SCLUTION A SCLUTION WAAS 0220 WAAS 0220 WAAS 0220 WAAS 0240 W	= "SUP" FOR THE SUPERSONIC BRANCH	AA	190
A SCLUTION # MAAS 0210 # MAAS 0220 # MAAS 0220 # MAAS 0220 # MAAS 0230 # MAAS 0330 # MAAS 0340 # MAAS 0340 # MAAS 0350 # MAAS 0360 # MAAS 0360 # MAAS 0370 # MAAS 0420 # MAAS 0430 # MAAS # MA	RROR - MAX PERCENT DEVIATION IN MOLD AND MNEW FOR	AA	200
######################################	SCHOTICA	Y	210
######################################		۷ .	220
#WNEW = FINAL VALUE OF MACH NUMBER # # MAAS 0250 ##################################	UCIPOL VARIABLES:	۷) (
######################################		2 e) C
######################################	SOUR II TETATI VALUE OF SACE NOMBER	₹	0 0 0 0 0 0
######################################	ייין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איין דר אין דר איי	(d) () (
MAAS 0290 MAAS 0300 MAAS 0310 MAAS MAAS 0310 MAAS 0310 MAAS 0310 MAAS 0310 MAAS	格安特米特特特特特特特的人的变形的安全的安全的安全的人的人的人的人的人的人的人的人的人的人的人的人的人的人的人的	\ \ \	280
MAAS		4	290
UBROUTINE MAS(G*MINE*AAS*FLUW*ERRUR*ANEW*FAIL) MAAS 0320 MAAS 0340 MAAS 0450		A A	300
### ##################################	TINE MAAS(G. MINE. AAS. FILCE. HRROTH . MNRELLE	4	310
######################################		€ .	320
######################################	MPLICIT REAL#4(F)	۲÷	08.6
######################################	AIA 1857 1857 1858 AIA	K) (t t t) t
######################################		< <) C
######################################	转的形式 经银行股份 计设计设计 医多种性 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	< <	370
######################################		4	380
######################################	CALCULATE CONSTANTS	4	390
**************************************		4	400
1=(G-1.C)/2.0 MAAS 0430 MAAS 0430 MAAS 0450 2=2.0/(G+1.0) MAAS 0450 21=1.0/G2 MAAS 0450 MAAS 0450 A4=(G+1.C)/(2.0*(G-1.0)) MAAS 0450 A60 MAAS 0450 A60 MAAS 0450	医格勒格氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	₹ :	410
1=(G-1.C)/2.0 MAAS 0450 Z=2.0/(G+1.0) MAAS 0450 Z=2.0/(G+1.0) MAAS 0450 Z=2.0/(G+1.0) MAAS 0450 AAAS 0450 MAAS 0450 AAAS 0450 MAAS 0450		4 4	9 K
	0710 1 10 111	₹ 4 ₹ 4	76
2=2.0/(6+1.0) MAAS 0450 21=1.0/(62 4=(6+1.0)/(2.0*(6-1.0)) MAAS 0490 MAAS 0490 MAAS 0500		(1 (4	\$ 4 \$ 4
ZI=1.0/GZ 4=(G+1.0)/(2.0*(G-1.0)) MAAS 0480 AI=1.0/G4 MAAS 0500	01010101010	(4	4
4=(G+1.0)/(2.0*(G-1.0)) MAAS 0480 AI=1.0/G4 MAAS 0500	21=1.0/62	(4	470
4 I=1.0/G4 MAAS 0490	4=(6+1-0)/(2-0*(6-1-0	4	480
MAAS OSCO	4 I = 1 • 0 / G4	4	4 90
	i i	X	500

	MAAS	510
医氯化氯甲基苯酚甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲甲甲甲甲甲甲甲	<u>ح</u>	520
	4	230
CALCULATE THE SUPERSONIC BRANCH	MAAN	05400
	۲ :	יים נים
计算器 计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设	۲ •	360 400
	[80
	(4	0000
しょうしょうしょ	A	500
	¥	919
1 UNIT D** ABA	4	520
X SORT (G1 + (G2 +C1 -) -	₹	530
() () () () () () () () () () () () () (4	540
	4 :	650
ABS(X	? ?	0 V
	(«	580
5	4	9
	4	000
化二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	₹	710
	۲	720
CALCULATE THE SUBSONIC BRANCH *	∢:	08.6
	<u>ح</u>	9
经存款条件 经存货帐户 计分子 计可控制 化环烷基苯化甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷甲烷	٠ •	750
	(·	10
	∢ ∢) (
3 0=1+200	(<	00
0+01***********************************	(4	800
(*	810
たのなしくまにましまればのともようのものできられる日本を下す。	4	820
A D A X	4	830
	4	840
	A A	850
	∢ ∶	860
医维维氏试验检试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	∀	870
	₹ ∢) () () ()
CLNVERGENCE TAILORE	{	
***************************************	(4 (4	0
***************************************	(• (
	7 4 4 4 A) V V V
	(<) () (
I THE (O. O.) FILDS.G. XINI. FURES ABO.XINXOX.FIXIOX	₹ <	7 (1) 1) (1) 2) (2)
	(<) (
MANUAL CONTRACTOR OF TAXABLE CONTRACTOR OF T	0 4 4 A	
ANCIO	(4	, c
SOUTH THE PROPERTY OF THE PROP	্ৰ	000
ERROR = 1,E13.6)	MAAS	000

10100

SAAA

```
* * *
                                                                                                                                                                                                                                                   SOLUTION
                                                                                                                                                                                                                                                                                                   FO
                                                            ****
                                                                                                                                                                                                                                                                      OS
                                                                                                                                                                                        INITIAL
                                                                             LE. TO
AND X(I)
                                                                                                                                                                                                                                                                     G. XPCS. YPI
                                                                                                                                                                                                                                                                                                                              SUBRCUTINE ITER(X.0X.ERRCRX.SIGN.Y.YGIVEN.ERRORY.NIT NIYPE.XNEG.YNEG.XPOS.YPOS.NSIGNI.NSIGN2)
                                                                                                                                                                       (1)×
                                                                                                                                                                                                                     FOR
                                                                                                                                                                                                                                                   3-1
                                                                                                                                                            VARIABLE
X(1+1) AND
                                                                                                                                                                                        FROM
                                                           ****
                                                                              C YGIVEN IS
                                                                                L.
                                                                                                                                                                                                            шZ
                                                                                                                                                 INCEPENDENT VARIABLE

INCREMENT IN INDEPENDENT VARIABLE

MAX PERCENT DEVIATION IF X(I+1) A

SOLUTION

+1.0 GR -1.C. +/- INCREMENTING FR

DEFENDENT VARIABLE

GIVEN

AX PERCENT ERROR IN Y AND YGIVEN

SCLUTION

INCREMENT NUMBER

11-INCREMENT. 2--INTERPOLATION.
                                                                                                                                                                                                            NT VARIABL
                                                                                                                                                                                                                                                                     VARIABLES XNEG, YNE
STOREC BETWEEN INTE
                                                                                                                                                                                                                                                   -- INTERPOLATION.
                                                                                                                                                                                                                                                                                                                                                            IVEN ) = ( ACTUAL - GIVEN ) * 1 CU . 0 / G
                                                                                                                                                                                                                                                                                                                                                                               50,90.1
                     INE
                                                                            SUBROUTINE ITER PERFORMS AN ITER
THAT THE PERCENT ERROR IN Y AND
ERRORY OR THE PERCENT DEVIATION
IS .LE. TO ERRORX.
                      UBROUT
                                                             *****
                                                                                                                                                                                                                                                                                                                                                                               IVEN))-ERRORY)
0.30
                                          ***
                      Š
                       NOI
                                                                                                                                                                                                                                                                     INTERMEDIATE
GN2 MUST BE
                     AT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ш
                       ER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      (50,80), NTYPE
T-1) 70,70,60
=NSIGN1*NSIGN2
                                                                                                                                                                                                                                                                                                                                                                                )5 to
                                                                                                                                                                                                                                                                                                                                                                               ٠,٧
                                                                                                                                                                                                                                                                                                                                                            ( ACTUAL . G
                                                                                                                                                                                                                                                                                                                                                                              | (AES(EREOR (YES) | AES | AES
                                                              **
                                                                                                                                                                                                                                                                       шs
                                                                                                                                                                                        0.00
                                                                                                                                                      0 11 0
                                                                                                                                                                                                                                            # #
                                                                                                                                                                                                                                                                       14
                                                                                                                                 VARIABLE
                                                              * * *
                                                                                                                                                    X
DX
ERRORX
                                                                                                                                                                                                             YGIVEN
ERRORY
                                                                                                                                                                                                                                                                      NOTE:
                                                                                                                                                                                                                                         NIT
                                                                                                                                                                                          SIGN
                                                              **
                                                                                                                                                                                                                                                                                                                                                            RROR
                                                                                                                                                                                                                                                                                                                                                                                TT 0 Z Z D 0 D D D L 0
                                                             *
```

4 U Q

0

00

~ N

U U

40	IF(NSIGN) 80.8C.70 NSIGNI=NSIGN2 NIT=NIT+1	աատաա	00000 00000
	**************************************	14.1 14.2 14.3 14.3 14.3 14.3	000000 000000
	X=X+S1GN+CX GD TC 100 ###################################	шшшшшшш	84000000000000000000000000000000000000
	A SOLCIION FCR SOLCIION A RAMPHARMAN SOLCIION A PART COLCIION FCR COLCIION A PART COLCIII A PART COLC	шшшшш	00000 00000
	17PE=2 17=F1T+1 SAVE=X ATIO=(XPGS-XNEG)/(YPOS-YNEG) ATIO=(XPGS-XNEG)/(YPOS-YNEG) AXNEG+RATIO*(YGIVEN-YNEG)		2444 2444 2444 2444 2444 2444 2444 244
	ACCELERATION OF CONVERGENCE OF ITERATION ACCELERATION OF CONVERGENCE OF ITERATION ACCELERATION OF CONVERGENCE OF ITERATION A REFERENCE - BEGSTEIN* NBS A REFERENCE - BEGSTEIN*	шшшшшшшш	22222222222 22222222222 20020000
	A=1.0/RATIC IF(A-1.0) 62.86.82 Q=A(A-1.0) XWGSTN=0*XSAVE+(1.0-0)*X IF(XNEG-XWGSTN) 64.86.88 IF(XMGSTN-XPDS) 86.86.89 X=XWGSTN IF(ABS(ERROR(X.XSAVE))-ERRORX) 90.90.100 NIYPE=3 END		00000000000000000000000000000000000000

0000000000

000000000 000000000

,

######################################	**************************************
**************************************	#*************************************
######################################	######################################
** SUBROUTINE TTY PRINTS THE RESULTS OF PRUGRAM CLGDDP ** ** Characters per ** ** Line*** ** SEE MAIN PROGRAM CLGDOP FOR NOTATION** ** Line*** ** ** ** ** ** ** ** ** ** ** ** **	THE RESULTS OF PRUGRAM CLGDOP ** INIEUM OF 72 CHARACTERS PER ** AM CLGDOP FOR NOTATION. ** *********************************
** OSNEGOTINE 117 FAINTS THE RESULTS OF FOR NOTATION ** ** CONSTRUCTINE 117 FAINTS THE RESULTS OF FOR NOTATION ** ** CAN TERMINDE 117 FAINTS THE RESULTS OF FOR NOTATION ** ** CAN TERMINDE 117 FAINTS THE RESULTS OF FOR NOTATION ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA3 ASA1 ASA6 A6A1 A7A2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA3 ASA1 ASA6 A6A1 A7A2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA3 ASA1 ASA6 A6A1 A7A2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA3 ASA1 ASA6 A6A1 A7A2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA3 ASA1 ASA6 A6A1 AAA2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA1 AAA3 ASA1 ASA6 A6A1 AAA2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA1 AAA3 ASA6 A6A1 AAA2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA1 AAA3 ASA6 A6A1 AAA2 ** ** COMMON 7TY 1/AZA1 AAA1 AAA1 AAA1 AAA3 ASA6 A6A1 AAA2 AAA4 AAA4 AAA4 AAA4 AAA4 AAA4 AA	1NIEUM CESULTS OF PROCESS PER ** AM CLGDOP FOR NOTATION. ** *********************************
## LINES SEE MAIN PROGRAM CLGDOP FOR NOTATION. ##**********************************	## CLGDOP FOR NOTATION. # ********************** 2. E.JECT. GM.GP.GS #5. M6.M7.M8.MWHMMS.MWPMWS.NPTS #5. M6.W7.M8.MWHMMS.MWPMWS.NPTS #5. M6.W7.MS.MWHMMS.MWPMWS.NPTS #5. M6.W7.MS.MWHMMS.MWPMWS.NPTS #6. M6. M7.MS.MWPMWS.NPTS #6. M6. M7.MS.MWPMWS.NPTS #6. M6. M7.MS.MWPMWS.NPTS #6. M6. M7.MS.MWPMWS.NPTS #6. M6. M7.MS.MS.MWPMWS.NPTS #6. M6. M7.MS.MS.MS.MS.MS.MS.MS.MS #6. M6. M6. M7.MS.MS.MS.MS.MS.MS.MS #6. M6. M6. M7.MS.MS.MS.MS.MS.MS.MS #6. M6. M6. M6. M6. M6. M6. MS.MS #6. M6. M6. M6. M6. M6. MS.MS.MS.MS #6. M6. M6. M6. M6. M6. M6. MS.MS #6. M6. M6. M6. M6. M6. M6. MS.MS #6. M6. M6. M6. M6. M6. M6. M6. M6. M6. M
**************************************	# # # # # # # # # # # # # # # # # # #
SUBROUTINE TIY SUBROUTINE TIY IMPLICIT FEAL*4(M) DATA (AE.*6.SE.*6.SE.*/ COMMON/TIY1/AEA1.*AA1.*AA41.*AA43.*ASA1.*A5A6.*A6A1.*A7A2.* TITT COMMON/TIY1/AEA1.*AA1.*AA41.*AA43.*ASA1.*A5A6.*A6A1.*A7A2.* TITT COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY3/COEFF.*CO1.*CO2.*EJECT.*GM.*GP.*GS COMMON/TIY5/COEFF.*CO1.*CO2.*EJECT.*GO1.*GO1.*GO1.*GO1.*GO1.*GO1.*GO1.*GO1	#1.A4A3,A5A1.A5A6.A6A1.A7A1.A7A2. 2.EJECT.GM.GP.GS #15.M6.M7.M8.MWHMWS.NPTS 20P10.P3P1.P3CP10.P3P2.P30P20. 0.P7P2.P70P20.P7P50.P70P50.P8P1. P80P70 20T10.T3T1.T30T1C.T3T2.T30T20. T5T1.T5C.T75C.T70T50.T8T1. T80T70 T80T70 T80T70
SUBROUTINE TTY IMPLICIT FEAL+4(M) DATA CAE''SSE''SSE'' CAMMON/TTY1/AZAI.A3AI.A4AI.A4A3.ASAI.A5A6.A6AI.A7AI.A7A2. A7A6.A8AI.A3AI.A4AI.A4AI.A5A6.A6AI.A7AI.A7A2. TT CAMMON/TTY1/AZAI.A3AI.A4AI.A4A3.ASAI.A5A6.A6AI.A7AI.A7A2. TT A7A6.BABAI.A2AC.EFF "COI.CO2.EJECT.GM.GP.GS CAMMON/TTY2/COEFF "COI.CO2.EJECT.GM.GP.GS CAMMON/TTY3/MI.YAZAI.A3AA.BSBI.BASOPIO.PBS.PBOPDO. CAMMON/TTY3/MI.YAZAI.A3AA.BSBI.BASOPIO.PBS.PBOPDO. P80P20.PBP2.PBP7.PBP7.PBP7.PBP7.PBP7.PBP2.PP7	# 1. A 4 A 3. A 5 A 1. A 5 A 6. A 6 A 1. A 7 A 1. A 7 A 2. Z. E J E C T. G M . G P . G S
IMPLICIT FEAL*4(M) DATA CAE'*CAE*, SSE'*C COMMON/TTY1/AZAI*A3AI*A4AI*A4A3*A5AI*A5A6*A6AI*A7A2* TT COMMON/TTY2/COEF*, COI*CO2*EJECT*GM*GP*GS*C COMMON/TTY2/COEF*COI*CO2*EJECT*GM*GP*GS*C COMMON/TTY2/COEF*COI*CO2*EJECT*GM*GP*GS*C COMMON/TTY3/MI*P2*MO*P30*P30*P30*P30*P30*P50*P50*P50*P50*P50*P50*P50*P50*P50*P5	A1.A4A3.A5A1.A5A6.A6A1.A7A1.A7A2. 2.EJECT.GM.GP.GS 2.EJECT.GM.GP.GS 20P10.P3P1.P3CP10.P3P2.P30P20. P5P1.P5CP10.P60P1.P60P10.P60P2. 0.P7P2.P70P20.P7P50.P70P50.P8P1. P80P70 SD78 SD
COMMON/TTY1/A2A1.A4A1.A4A3.A5A1.A5A6.A6A1.A7A2.TTT COMMON/TTY1/A2A1.A4A1.A4A1.AA5A1.A5A6.A6A1.A7A2.TTT COMMON/TTY2/COEFF.CO1.CO2.EJECT.GM.GP.GS COMMON/TTY2/COEFF.CO1.CO2.EJECT.GM.GP.GS COMMON/TTY3/M1.V2.M3.M4.PF.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.M4.PF.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.M4.PF.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.M4.PF.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.PF.G.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.PF.G.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.PF.G.G.G.G.GM.GP.GS COMMON/TTY3/M1.V2.M3.PF.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.G.	#1. A4A3, A5A1, A5A6, A6A1, A7A1, A7A2, 2, EJECT, GM, GP, GS
COMMON/TTY1/A2A1.A3A1.A4A1.A4A3.A5A1.A5A6.A6A1.A7A1.A7A2. A7A6.A8A1.A8A7 A7A6.A8A1.A8A7 A7A6.A8A1.A8A7 COMMON/TTY2/COEFF CQ1.CQ2.EJECT.GM.GP.GS COMMON/TTY2/COEFF CQ1.SCM.B.MW.MW.S.NDTS COMMON/TTY3/P1F10.P2P1.P5CP10.P3P2.P3OP20. P4D1.P4CP10.P4P3.P4CP10.P7P2.P7CP20.P7P50.P2CP20.P5CP20. P4D1.P4CP10.P4P3.P4CP10.P7P2.P7CP20.P7P50.PCCP20.PFP1. P6DP20.P6CP50.P7F1.P7CP10.P7P2.P7CP20.P7P50.P7CP20.PFP1. P8DP10.P8P2.P8CP20.P8P7.P2.P7CP20.P7P50.P7CP20.PFP1.PFCP10.P7CP10.P7F2.P7CP20.PFP1.PFCP10.P7F2.P7CP20.PFP1.PFCP10.P7F2.P7CP20.PFP1.PFCP10.P7F2.PFP1.PFCP10.P7F2.PFP1.PFCP10.P7F2.PFP1.PFCP10.PFP2.PFP1.PFCP10.PFP2.PFP2.PFP1.PFCP10.PFP2.PFP2.PFP2.PFP2.PFP2.PFP2.PFP2.PFP	2.E.JECT.GM.GP.GS 2.E.JECT.GM.GP.GS 175.M6.M7.M8.MWHMWS.NPTS 20P10.P3P1.P3CP10.P3P2.P30P20. 180P70.P3P1.P60P1.P60P10.P60P2. 0.P7P2.P70P20.P7P50.P70P50.P8P1. P80P70.P7P2.P7P50.P7P50.P7P50.P8P1. 20T10.T3T1.T30T10.T3T2.T30T20. T5T1.T5CT10.T5C.T70T50.T8T1. ************************************
### ### ### ##########################	2. E.JECT. GM. GP. GS 145. M6. M7. M8. MBHMBS. MWPMWS. NPTS 20P10. P3P1. P3CF1. O.P3P2. P30P20. P5P1. P5CP1. P6CP1. P6CP1. P8CP7. O. P7P2. P7OP50. P6P1. P8CP7. O. P7D20. P7D50. P6CP2. SD78 SD78 SD78 T7012C. T75C. T7CT1. T6011. T60120. T7012C. T75C. T70150. T611. ***********************************
COMMON/ITY4/PIPIO*P291*P20P1O*P3P1*P3PNPTS COMMON/ITY4/PIPIO*P2P1*P20P1O*P3P1*P3P2*P3OP2O* COMMON/ITY4/PIPIO*P2P1*P20P1O*P3P1*P3P2*P3OP2O* COMMON/ITY4/PIPIO*P3P1*P20P1O*P3P1*P3P2*P3OP2O* P4P1*P4/PIPIO*P3D*P3P1*P3OP1O*P3P1*P5OP3O*P5O*P3P2*P5OP3O*P5O*P5O*P5O*P5O*P5O*P5O*P5O*P5O*P5O*P5	### ##################################
### COMMENTITY 4 / PIFIO * PP2PI * PPSOPIO * PPSOPIO * PPSOPIO * PPOPIO * P	20P10,P3P1,P3CP10,P3P2,P30P20,P5P1,P5P1,P5CP10,P6OP2, 0,P7P2,P70P20,P7P50,P70P50,P8P1, P80P70 20710,73T1,T30T10,T3T2,T30T20, T5T1,T5CT2C,T75C,T70T50,T8T1, T80T70 T80T70 ************************************
P4P1.P4CP10.P4P3.P40P30.P5P1.P5CP10.P60P10.P60P2. P60P20.P6CP30.P30.P5P.P8.P70P20.P7P20.P7P50.P7P50.P7P50.P8P1. TT COMMCN/TTY5/RNSC.P8SD34.RSD34.RSD34.RSD78 COMMCN/TTY5/RNSC.P8SD34.RSD36.RSD33.RSD34.RSD3	P5P1.P5GP10.P6GP1.P6GP10.P6GP2. 0.P7P2.P70P20.P7P50.P70P50.P8P1. P80P70. 20710.7371.730710.7372.730720. 7571.P5C.10.76C71.760710.760720. 77072C.7775C.770750.7871. ************************************
POUNCO P	0.000000 0.000000 0.000000 0.00000000
COMMCN,TTY5/RNSC.RSD34.RSD78 COMMCN,TTY5/RNSC.RSD34.RSD78 COMMCN,TTY5/RNSC.RSD34.RSD78 T411.T40,T271.T0.T2.T1.0.T371.T0.T20.T30120. T411.T40,T176/T1110.T2.T2.T1.T0.T20.T371.T50.T30120. T411.T40,T177.T1.T0.T2.T2.T2.T2.T2.T2.T2.T2.T2.T2.T1.T0.T20.T311.T2.T20.T20.T20.T20.T20.T20.T20.T20.T20.	SD78 20110.T3T1.T30T1C.T3T2.T30T20. 20T10.T5C11.T5C11.T5OT10.T6OT20. T70T2C.T7T5C.T70T50.T8T1. T80T70 T SYSTEM DATA ***********************************
COMMCN/TTY6/T1110,T2T; ,T20710,T371,T30710,T372,T30720, T471,T40710,T413,T40730,T571,T50,T6071,T60710,T60720,T772,T771,T771,T772,T772,T772,T772,T772	20710,7371,730710,7372,730720,7571,7571,750,750,750,750,750,750,750,750,750,750
147197407100741307403077010075011075001200 1760750077110772077207720772077207720772077207	T511.15C.T7T5C.T9T5O.T8T1. T80T70 T80T70 T80T70 T8 T SYSTEM DATA ***********************************
TBOT10.T8T2.T8CT20.T8T7.T8OT70 COMMCN/TTY7/WMbS.WPWS **********************************	######################################
TT **********************************	**************************************
##************************************	**************************************
**************************************	**************************************
######################################	UT SYSTEM DATA **********************************
######################################	*
######################################	***************************************
RITE(5,2CC) RITE(5,2C1) EJECT, COEFF TT RITE(5,2C2) RITE(5,2C2) RITE(5,2C3)	
RITE(5,2CC) RITE(5,2C1) EJECT, COEFF TT RITE(5,2C2) RITE(5,2C2) RITE(5,2C3)	-
RITE(5,202) RITE(5,203)	•
TT (5,202)	
RITE(5,2C4)M1,GS,PIP1C,T!T)O	01110

0000000000000000000

7.4.1 CGLDOP (Cont.)

z.

U

```
7.4.1 CGLDOP (Cont.)
```

```
G.CAE) WRITE(5.218)
G.SSE) WRITE(5.219)
O)GW.MWMMWES.WMBS.M7.A7A1.P7P1.T7TI.P70P10.T70T10
                                                                                                                                                        {5,306)
{5,307}6S,GP,GM,MWPMWS,A7A6,WPWS,M6,M7,P60P50,T60T50.
                                                                                                                                                                                      0
                                                                                                                                                                                                                           T3, P40P30, T40T30
                                                                                                                                                                             RITE(5,300)
RITE(5,301)NPTS.CO1.CQ2.GS.A2A1.M1.M2.P2P1.T2T1.P20P1.
20T10
                                                                       WRITE(5,215)
GO TC 101
WRITE(5,216)
WRITE(5,217)GP.MWFMWS.WPWS.M6.A6A1.P60F1.T60T1.P60P10
T60T10
                                                                                                                                               WRITE(5,221)
WRITE(5,222)GM,MWMMWS,WMWS,M8,A8A1,P8P1,T8T1,P80P10
T80T10
                                                                                                                                                                                                             .P3CP20,T30T20
WRITE(5,205)
IF(EJECT+EQ.CAE) WRITE(5,206)
IF(EJECT-EQ.SSE) WRITE(5,207)
WRITE(5,208)GS,M2,A2A1,P2P1,T2T1,P20P1C,T20T1
                                                               0T1
                                  .P30P10.T30T1
                                                                                                                                                                                                                           14.
                                                               *P50P1C
                                                                                                                                                                                                             , T3T2
                                                                                                                                                                                                                           SC34 . GS . A4A3 . M3 . M4 . P4P
                                 . A3A1 . P3P1 . T3T1
                                                411
                                                               5P1, T5T1
                                                                                                                                                                                                             a
                                                                                                                                                                                                             30
                                                                                                                                                                                                             TAMM.
                                                9P4P
                                                                                                                                                                                                   102
                                                               ď
                       70
                                                                                                                                                                                                   70
                                                . A4 A 1
                                                               .ASA1
                                                                                                                                                                                                             **2
                         0
                                                                                                                                                                                                   9
                                                                                                                                                                                                             PRNSD
                                                               , MS
                                  E.
                                                ₽¥.
                        (EJECT.EQ.SSE)
ITE(5.209)
ITE(5.210)GS.M.
                                                                                                                                                                                                   IF(EJECT.EG.SSE)
WRITE(5.302)
WRITE(5.303)GS.RI
                                                SS
                                                          WRITE(5,213)
WRITE(5,214)GS
                                                                                                                                                                                                                           α
                                                                                                                                                                                                                      5,304)
                                            55
                                                                                                    JECT.E
                                           ITE(5,21
ITE(5,21
                                                                                                                                                                                                                       WШ
                                                                                                                                                                                                                                     ww
                                                                                                    IF (E
WRITE
                                                                                                                                                                                                                      WRITE
                                                                                                                                                                                                                                     TI
                        T 张 C C
                                           \alpha \alpha
                                                                                                                                                                                                                                     2 C
                                                                                  000
```

U

0

O

U

U

4.

ž

<##

TAXABLE IN

1

が経過が

Ç

U

U

U

```
CONDITIONS*)
                                       *GM*MWPMWS*A7A2*A7A6*WPWS*M2*M6*M7*P6CP22*T7T2*P70P20*T70T20
                                                                                                                          不安安的公安安安安安安安安安安安
                                                                                                                                                                        FORMAT('I',TI4,'HIGH ENERGY CHEMICAL LASER SYSTEM '.

-'SIMULATICN',',T24,'CNE-DIMENSIONAL ANALYSIS','/,T29,

-'A.L. ADDY',',T29,'C.D. MIKKELSEN',',T29,'M.R. SANDBERG',

-',T30,'I JANUARY 76','/,T19,'MECHANICAL ENGINEERING '.

-'DEPARTMENT',',T15,'UNIVERSITY OF ILLIEUS AT URBANA-',

-'CHAMPAIGN',',T25,'URBANA, ILLINCIS 61801')

FORMAT('0',T20,A3,' SCLUTION FOR MINIMUM ',25)
                                                                                                                                                                                                                                                                                                                                   AND
                                                                                                                                                                                                                             DATA::)
LASER CAVITY ENTRANCE CONDITION
=',E13.6:138.'GS =',E13.6./
38.'TIT10 =',E13.6)
                                                             IF(EJECT.EG.CAE) WRITE(5,312)
IF(EJECT.EQ.SSE) WRITE(5,313)
WRITE(5,314)GS.GP.GM.MWPMWS.A7A2.A7A6.ABA7.WPWS.M2.M6.I
M8.P60P2.P60P2C.T60T20.PBP2.T8T2.P80P2C.T80T20
                                                                                                                                                                                                                                                                       ш
                                                                                                     817, P80P70, T80T7
                                                                                                                                                     *****************
                                                                                                                                                                                                                                                                     ENTRANCE
                                                                                                                                                                                                                                                                                    EJECTOR
                                                                                                                                                                                                                                                                                                                                   CONDITIONS.)
                                                                                                                                                                                                                                                               CIFFUSER . / TI4 . E
                                                                                                                                                                                                                                                             FORMAT('0',T5,'POINT 2 LASER CAVITY EXIT AND';
-'CCNDITIGNS')
FORMAT('+',T36,'SUPERSCNIC-SUPERSCNIC',',T14,'E
FORMAT('+',T36,'SUPERSCNIC-SUPERSCNIC',',T14,'E
FORMAT('0',T14,'GS = ',E13.6,',
-T14,'P2PI = ',E13.6,T38,'T2TI = ',E13.6,',
-T14,'P2PI = ',E13.6,T38,'T2TI = ',E13.6,',
-T14,'P2PI = ',E13.6,T38,'T2TI = ',E13.6,',
                                                                                                                    . GM. ABA7. M7. N8. P8P7.T
                                                                                                                                                                                                                                                                                                                                   NORMAL SPECK
ER ENTRANCE
                                                                                                                                                                                                                                                                                                                                         SO
                                                                                                                                                                                                                             FORMAT('0'.T14,'SYSTEM FORMAT('0'.T5,'PCINT I FURMAT('0'.T14,'M1
                                                                                                                                                                                                                                                                                                                                   INT B
              ω
                                                                                                                                                                                                                                                                                                                                   O
  -P7P50,17150,P7CP5
                                                                                                5,315)
5,316)RSC7
                                                                                                                                                                                                                                                                                                                                  .15
                                                                                                                                                                                                                                                                                                                                   o U
                                                                                                                                                                                                                                                                                                                                   SO
                                                                                                E E
                                                                                                                                                                                                                                                                                                                                  FORM
                                                                                               WRIT
                                                                                                                                                                                                                              202
202
203
204
                                    102
103
                                                                                                                                                                          00
                                                                                                                                                                                                                                                               0.5
0.5
0.6
                                                                                                                                                                                                                                                                                    207
                                                                                                                                                                                                                                                                                                 208
                                                                                                                                                                                                                                                                                                                                   60
                                                                                                              ด้อบอบอบออด
```

, and

4

```
      8
      8
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9
      9

<</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p><</p></p
                                                                                                                                                                                                                                             1.15. POINT 7 CONSTANT—AREA EJECTOR EXIT AND '.
1.15. POINT 7 SUPERSONIC—SUPERSONIC EJECTOR '.
1.15. PCINT 7 SUPERSONIC—SUPERSONIC EJECTOR '.
1.114. SUBSCNIC DIFFUSER ENTRANCE CONDITIONS')
1.114. GM = '.E13.6.738. "MWMMWS = '.E13.5.7."
1.114. GM = '.E13.6.7. = '.E13.6.7.
                                                                                                   CONDARY
                                                                                                                                                            PRIMARY
                                                                                                                                                                             EJECTOR
                                                                                                                                                                                                                                                                                                                                                 13.6
                                                                                                                                                                                            E13.6
                                           AND
                                                                                                   SEC
                                                                                                                                                                                                                                                                                                                                                   w
                                                                                                                                                                                               •
                                           FFUSER EXITE CONDITIONS
                                                                                                   JECTOR
                                                                                                                                                             EJECTOR
          E13.6./.
                                                                  3.6./.
3.6./.
3.6)
                                                                                                                            FORMAT('0', 15, 'PCINT 6 CONSTANT-AREA EJECTOF
-'NOZZLE EXIT', '114, 'CCNDITIONS')
FORMAT('0', 15, 'PCINT 6 SUPERSONIC-SUPERSONIC
-'PRIWARY NGZZLE', '.114, 'EXIT CONDITIONS')
FORMAT('0', 114, 'GP = ', E13,6, 138, 'MWPMWS = '114, 'WPUS = ', E13,6, 138, 'A6A1 = ', E13,6,',
-'T14, 'PGOP1 = ', E13,6, 138, 'T6071 = ', E13,6,',
-'T14, 'PGOP10 = ', E13,6, 138, 'T6071 = ', E13,6,',
-'T14, 'PGOP10 = ', E13,6, 138, 'T6071 = ', E13,6,',
                                                                                                                                                                                                                                                                                                                                                                  3.6./4
                                                                                                                                                                                                                                                                                                                                 Ä
                                                                                                                                                                                                                                                                                                                                                 S
                                                                                                                                                                                                                                                                                                                                                 BEERE.
                                                                                                                                                                                                                                                                                                                                 DIFFUSER
                                                                    <
                                                                                                                             w w w
                                                                                                                                                                                                                                                                                                                                                                   யயய
  3, 4341 = 6
3, 1311 = 6
3, 1311 = 6
                                         **T5*PDINT 4 SUBSONIC DIFF

**T14*GS = **E13*6*/*

= *E13*6*T38*A4A1 = **E

= *E13*6*T38*T4T1 = **E

10 = **E13*6*T38*T4T1 = **E
                                                                                                                       . 11 11 11
                                                                                                                                                                                                                                                                                                                                                 80
                                                                                                                                                                                                                                                                                                                                                                   ARE
                                                                                                                                                                                                                                                                                                                                                                    H II H
                                                                                                                                                                                                                                                                                                                                                                                                  CAVITY DATA:
=',113./,
T38,'C02 =
                                                                                                  18A1
1871
180110
                                                                                                                                                                                                                                                                                                                                 SUBSONIC
                                                                                                                                                                                                                                                                                                                                                   Ś
                                                                                                                                                                                                                                                                                                                                                 E13.
                                                                                                                                                                                                                                                                                                                                                            38. 48
  #
                                                                                                                                                                                                                                                                                                                                                 -GM
E13-6-73
E13-6-73
E13-6-73
                                                                                                                                                                                                                                                                                                                                 Ø
                                                                                                                                                                                                                                                                                                                                                                                                   SEF
1SF
            000
                                                                                                                                                                                                                                                                                                                                FUL DOS+
                                                                                                                                                                                                                                                                                                                                                                                                   ASE
3.C
  - T14 - 6S
= + E13
= - E13
10 = + E13
                                                                                                                                                                                                                                                                                                                                                                                                   - - W
                                                                                                                                                                                                                                                                                                                                 44.
                                                                                                                                                                                                                                                                                                                                                                                                   FORMAT( 0 ... T SUDDEN ENLA FORMAT( 0 ... T 114. PAP1
                                                                                                                                                                                                                                                                                                                                 FORMAT(°C°,
FORMATICNS
FORMATICNS
TTIA, *MENS
TTIA, *PBPI
                                                                                                                                                                                                                                                                                                                                                                                                   - -
                                                                                                                                                                                                                                              00
    30 P 1
                                                                                                     RMAT (
   FORMAT (-114, P3
                                                                                                     FOF
                                                                                                                                                                                                                                                                                                                                                                                            300
301
                                                                                                                                                                               16
                                                                                                                                                                                                                                               18
                                                                                                                                                                                                                                                                 219
                                                                                                      m
                                                                                                                       4
                                                                                                                                                               S
```

UN

```
SUBSONI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DATA: 1)
• £13•6•/
                                                                                                                                                                                                                                                                                                          E13.6./
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ,E13.6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               UBSONIC . - SUBSONIC
                                                                                                                                                                                                                                                                                                                                                                                                                                      •
                                                                                                 E
                                                                                                                                                                                                                                                                                                                                                                                                                                      SUBSONIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ŧ
                                                                                                                                                                                                                                                                                                            •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.5UPERSCNIC-SUPERSONIC EJECTOR DATA::)
4.6S = 'E13.6.T38.GP = 'E13.6.T08.T08 |
-E13.6.T38.MWPMWS = 'E13.6./.
-E13.6.T38.MZ = 'E13.6./.
-E13.6.T38.MZ = 'E13.6./.
-E13.6.T38.T50T20 = 'E13.6./.
-E13.6.T38.T70T20 = 'E13.6./.
-E13.6.T38.T70T20 = 'E13.6./.
                                                                                                                                                                                                                                                                                        STANT-AREA EJECTOR DATA: )
= 'E13.6'138''GP = '
5.738''MWPWS = 'E13.6''
5.738''WPWS = 'E13.6''
5.738''T60750 = 'E13.6''
5.738''T750 = 'E13.6''
5.738''T750 = 'E13.6''
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            JEC TOR
                                                                                     ~ II
                                                                                                                                                                                                                                                                                             ~ ||
      0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              :::
                                                                                                               ***
                                                                                                                                                                                                               111
                                                                                     ⋖
                                                                                                                                                                                                           5000
                                                                                  F0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ώα
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             999
                                                                                  4Xmmm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           מ מו מו מו
      mmmm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                O
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               JECTO
                                                                                                                                                                                                                                                                                                                                                                                                                                         ŧ
                                                                                                                                                                                • •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            W
                                                                                                                                                                                                 R = mmm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9 - 1 - 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           SONIC
        មាខាធា
                                                                                                                                                                             DAT
                                                                                                                                                                                                                                                                                                                                                                                                                                      ER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   . . . .
         . . . .
                                                                                                                                                                                                                                                                                                                                                                                                                                        FUSI
                                                                                     v œ •
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ωm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00 -- --
                                                                                                                                                                             14. SUBSONIC DIFFUSER [14. RSD = ... E13.6.7. = ... E13.6.738. R4A3 = ... E13.6.738. R4A3 = ... E13.6.738. T473 = ... E13.6.738. T473 = ... E13.6.738. T40730 = ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             S 138
         0 0 0 0
                                                                                  FF. 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FURMAT('0',114,'NORMAL SHOCK DIFFU-10 IFFUSER '','114,'CGNSTANT-AREA ''DIFFUSER '','114,'SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC-SUPERSONIC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 <u>.</u>
                                                                                 SHOCK DIFF
8. M3
8. M3
8. T3T2
8. T3T2
                                                                                                                                                                                                                                                                                                                                                                                                                                      DIF
                                                    0
     2A1
271
20110
                                                                                                                                                                                                                                                                                                                                                                                                                                      SFOCK
        411
      1438
1438
1438
                                                                                  MAT("0", T14", CCNSTANT CONTINUES CO
                                                                                                                                                                                                                                                                                                                                                                                                                                         ¥
                                                                                                                                                                                                                                                                                                                                                                                                                                      WHUN.
      0000
mmmm
                                                                                    $ 000
$ 000
                                                                                    ZO----
        医电压压
                                                                                                                                                                                                                                                                                                                                                                                                                                  FORMAT(***)
FORMAT(***)
FORMAT(***)
FORMAT(***)
FORMAT(***)
FORMAT(****)
FORMAT(***)
FORMAT(****)
FORMAT(****)
FORMAT(****)
FORMAT(****)
FORMAT(**
                                                                                  ---
         0 0 0 0
                                                                                                                                                                                                                                                             30
                                                                                                                                                                                0
                                                                                                                                                                             DRMAT(00-
14-GS
14-M3
14-P4P3
14-P4P3
     25 S
                                                                                    306
      OXOC
                                                                                     -- ZCC
      -T14.
-T14.
-T14.
                                                                                    XX . . .
                                                                                                                                                                                                                                                                                           XX . . . . . .
                                                                                     10H-1
                                                                                                                                                                                304
305
305
                                                                                                                                                                                                                                                                               306
306
307
                                                                      302
302
303
```

<</pre><</p><</p><</p><</p><</p><</p><</p><</p><</p><p

69./. - 9996 12C 2 120 1, 1601 1, 1812 1, 1801 .. RE တတင **6000** • 6000 -----0 0 0 0 0 0 nmmmm Namman 11144-15 11144-15 11144-15 11144-15 1114-15 114-15 114-15 114-15 114-15 114-15 114-15 114-15 114-15 114-15 114-15 114-15 114-1 PB60P2 PB60P2 PB60P2 PB60P2 PB60P2 -T114. ***
-T114. **
-T114. ***
-T144. **
-T144. ***
-T

7.4.2 CLGDOP Sample Case No. 1

CLGNOP SAMPLE IMPUT DATA: CASE NO.1

IMPUT DATA FOR LASER CAMITY ANALYSIS BY MANELIST. CURRENT MALUES ARE:

FERM

us=1.56200. M1=5.00000. A2A1=2.55724. C01=1.00000. C02=0.00000. HPTS=21. \$ %CAP M1=2.23. A2A1=1.0. C01=0.0. NPTS=5\$

THEUT THE MARIABLE TO BE MINIMIZED FROM THE FOLLOWING LIST:

186081" DIMENSIONLESS PRIMARY STAGNATION PRESSURE 18805" PRIMARY-TO-SECONDARY MASS FLOW RATIO

LECE1

IMPUT SYSTEM CONSTRAINTS BY NAMELIST. CURRENT MALUES ARE:

SCONSTE

FSP1=57.1634, WPWS=1.00000, \$
\$COHST2 PSP1=20.7141, WPWS=6.0\$

IMPUT THE EJECTOR MODEL FROM THE FOLLOWING LIST:

"LAE" COMSTANTHAREA EUECTOR | SSE" SUPERSONICHSUPERSONIC EUECTOR

SEE

IMPUT DATA FOR EJECTOR AMALYSIS BY MAMELIST. CURPENT MALLES ARE:

#EUECT2

GP=1.34000, MWPMWS=1.68375, T60T20=0.761376, A8A7=2.00000, \$
\$EUECT2 MWPMWS=1.47815, T60T20=0.80T313\$

7.4.2 CGLDOP Sample Case No. 1 (Cont.)

CLGDOR SAMPLE OUTPUT DATA: CASE NO.1

SEAPCH DATA:

HTIFE	MS1	MEMS	DMS 1	FAIL
i	0.100000E+01	0.593785E+01	0.100000E+00	HC
₽.	0.900000E+00	0.577684E+01	0.100000E+00	HO
ے	0.800000E+00	0.577978E+01	0.100000E+00	011
	0.900000E+00	0.577684E+01	9.199999E+99	HO

HIGH EMERGY CHEMICAL LASER SYSTEM SIMULATION ONE-DIMENSIONAL ANALYSIS

A.L. ADDY C.D. MILLELSEN M.P. SANDBERG

1 JANUARY 76

MECHAMICAL ENGINEERING DEPARTMENT UNIVERSITY OF ILLINOIS AT UPBANA-CHAMPAIGN UPBANA, ILLINOIS 61801

CAE SOLUTION FOR MINIMUM WPWS

SYSTEM DATA:

POINT 1 LASER CAUITY ENTRANCE CONDITIONS

M1 = 0.500000E+01 G5 = 0.156200E+01 P1P10 = 0.306353E-02 T1T10 = 0.124611E+00

POINT 2 LASER CAULTY EXIT AND MORMAL SHOCK DIFFUSER ENTRANCE CONDITIONS

GS = 0.156200E+01 M2 - 0.218000E+01 A2A1 = 0.255724E+01 P2P1 = 0.203682E+01 T2T1 = 0.515579E+01 P2OP10 = 0.658641E-01 T2OT10 = 0.150000E+01

```
7.4.2 CGLDOP Sample Case No. 1 (Cont.)
```

- 3

```
POINT 3 NORMAL SHOCK DIFFUSER EXIT ANI SUBSONIC
         DIFFUSER ENTRANCE CONDITIONS
```

GS. = 0.158200E+01

143 = 0.5718386+00 ABA1 = 0.255724E+01 F3F1 = 0.851724E+01TBT1 = 0.110277E+02 P30P10 = 0.332875E-01 T30T10 = 0.150000E+01

POINT 4 SUBSONIC DIFFUSER EMIT AND SUDDEN INLARGEMENT ENTRANCE CONDITIONS

> = 0.15620WE+91 6.5

1-1-1 = 0.2429410+80 = 0.511448E+01H4H1 14F1 = 0.1023505+08 T4T1 = 0.113445E+02 F40P10 = 0.3279698-01 T49T10 = 0.1500006+01

FOIRT 5 CONSTANT-AREA EUECTOR SECRIDARY NOCELE EMIT CONDITIONS

> 93 = 0.156200E+81

= 0.900000E+00 H5H1 = 0.287105E+01 TET1 - ± 0.980845E+01 F:5F:1 = 0.605933E+01 P50P10 = 0.327969E-01 150T10 = 0.150000E+01

FOIRT & CONSTANT-AREA EUECTOR PRIMARY NOZZLE EXIT COMBITIONS

> GF' - 0.134000E+01 MAPMAS = 0.168375E+01

= 0.577684E+01 UPWS.

HE. = 0.495558E+01 A6A) - 0.106546E+01 PEOP1 = 0.354470E+04 T6011 - 0 916769E+01 $P60P10 = 0.120751E \pm 02$ T60T10 = 0.114206E+01

CONSTANT-AREA EJECTOR EMIT AND SUBSCHIC FOIHT 7 DIFFUSER ENTRANCE CONDITIONS

> = 0.137328E+01 MMMMMS = 0.152944E+01CM

MMMS = 0.677684E+01

+ 0.393733E+61 ≈ 0.435520E+00 ATA1 F7F1 ≈ 0.520506E+02 T7T1 = 0.932738E+01 PTOP10 = 0.181087E+00 T70T10 = 0.120309E+01

POINT 8 - SUBSONIC DIFFUSER EXIT CONDITIONS

> MMMMMS = 0.1529440+01= 0.137328E+01 GM .

MMMS = 0.677684E+01

= 0.787466E+01ASA1 MB = 0.199607E+00 = 0.958629E+01 F8F1 = 0.571155E+02TST1

P80P10 = 0.179667E+00 T80T10 ≈ 0.120309E+01

7.4.2 CGLDOP Sample Case No. 1 (Cont.)

LASER CAUITY DATA:

HETS	=	ਣ1			
001	=	0.100000E+01	002	=	0.000000E+00
GS.	=	0.156200E+01	A2A1	=	0.255724E+01
Mi1	z	0.500000E+01	M2	=	0.218000E+01
PEP1	=	0.203682E+01	T2T1	=	0.515579E+01
P20H10	=	0.658641E-01	TEOTIO	=	0.150000E+01

HOPMAL SHOCK DIFFUSER DATA:

SUBSONIC DIFFUSER DATA:

FSD	=	0.985261E+00			
GS.	=	0.156200E+01	A4A3	=	0.200000E+01
MЗ	=	0.571828E+00	1-1-4	=	0.242941E+00
P4P3	=	0.120172E+01	T4T3	=	0.107407E+01
P40P30	=	0.985261E+00	T40T30	=	0.100000E+01

CONSTANT-AREA EJECTOP DATA:

```
GS.
       = 0.156200E+01
                          \mathsf{GF}^{\bullet}
                                 = 0.134000E+01
GM
       = 0.137328E+01
                         MMPMMS = 0.168375E+01
                         MPWS
ATH6
       = 0.369544E+01
                                 = 0.577684E+01
       = 0.495558E+01
                         M7
                                 = 0.435520E+00
P60P50 = 0.368178E+03
                         T60T50 = 0.761376E+00
P7P50 = 0.485814E+01
                         T7T50 = 0.774638E+00
F70P50 = 0.552147E+01
                          170150 = 0.802061E+00
```

NORMAL SHOCK DIFFUSER - SUBSONIC DIFFUSER - CONSTANT-AREA EJECTOR DATA:

```
GS.
       = 0.156200E+01
                               = 0.134000E+01
       = 0.137328E+01
GH
                        MMPMMS = 0.168375E+01
A7H2
       = 0.153968E+01
                        A7A6
                               = 0.369544E+01
       = 0.577684E+01
MPMS.
                        ME
                               - 0.218000E+01
ME.
       = 0.495558E+01
                        M7
                               - 0.435520E+00
P60P2 = 0.193669E+04
P60P20 = 0.183333E+03
                        760720 = 0.761376E+00
F7F2
       = 0.255548E+02
                        T7T2 = 0.180911E+01
P70P20 = 0.274940E+01
                        T70T20 = 0.802061E+00
```

7.4.2 CGLDOP Sample Case No. 1 (Cont.)

```
HOPMAL SHOCK DIFFUSER - SUBSONIC DIFFUSER -
CONSTANT-AREA EJECTOP - SUBSONIC DIFFUSEP
DATA:
GS.
      ≖ 0.156200E+01
                       GF
                            = 0.134000E+01
GM
      = 0.137328E+01
                       MWPMWS = 0.168375E+01
87A2
      = 0.153968E+01
                       A7A6
                             = 0.369544E+01
ABA7
      = 0.200000E+01
                       WPWS
                            = 0.577684E+01
ME
      = 0.218000E+01
                       Me
                             - 0.495558E+01
617
      - 0.435520E+00
                             = 0.199607E+00
                       M8
P60P2 = 0.193669E+04
F60P20 = 0.183333E+03
                       T60T20 ≈ 0.761376E+00
PSP2
     = 0.280415E+02
                       | T8T2 | = 0.185932E+01
P80P20 = 0.272784E+01
                       780T20 = 0.802061E+00
```

SUBSONIC DIFFUSER DATA:

FSI	=	0.992159E+00			
<u>C</u> .(-1	·=	0.137328E+01	8887	r.	0.200000E+01
F17	=	0.435520E+00	ME		0.199607E+00
FSP7		0.109731E+01	TSTT		0.1027766+01
P80P70	=	0.992159E+00	T80T70		0.100000E+01

TO PESTART PROGRAM ENTER "YES" TO STOP PROGRAM ENTER "NO" TES

7.4.3 CLGDOP Sample Case No. 2

CLGDOR SAMPLE OUTPUT DATA: CASE NO.2

HIGH EMERGY CHEMICAL LASER SYSTEM SIMULATION ONE-DIMENSIONAL AMALYSIS

A.L. ADDY

C.D. MIKKELSEN

M.P. SANDBERG

1 JANUARY 76

MECHANICAL ENGINEERING DEPARTMENT UNIVERSITY OF ILLINOIS AT UPBANA-CHAMPAIGN UPBANA-ILLINOIS 61801

SSE SOLUTION FOR MINIMUM PEMP1

SYSTEM DATA:

POINT 1 LASER CAPITY ENTRANCE CONDITIONS

M1 = 0.223000E+01 GS = 0.156200E+01 P1P10 = 0.880182E+01 F1F10 = 6.417121E+00

POINT 2 LASER CAUITY EXIT AND SUPERSONIC-SUPERSONIC EJECTOR ENTRANCE CONDITIONS

GS = 0.156200E+01

POINT 6 SUPERSONIC-SUPERSONIC EJECTOR PRIMARY NOZZLE EMIT CONDITIONS

GP = 0.134000E+01 MWPMWS = 0.147815E+01

WPWS = 0.599726E+01

POINT 7 SUPERSONIC-SUPERSONIC EJECTOR EXIT AND SUBSONIC DIFFUSER ENTRANCE CONDITIONS

GM = 0.136881E+01 MWMMWS = 0.138360E+01

WMWS = 0.699726E+01

M7 = 0.470762E+00 A7A1 = 0.224839E+01 P7P1 = 0.185762E+02 F7T1 = 0.192517E+01 P70P10 = 0.189710E+01 T70T10 = 0.835845E+00 7.4.3 CLGDOP Sample Case No. 2 (Cont.)

CLGDOR SAMPLE IMPUT DATA: CASE NO.2

IMPUT DATA FOR LASER CAUITY AMALYSIS BY MAMELIST. CUPPENT MALUES ARE:

÷ € Fitt

GS=1.40000, M1=2.00000, A2A1=1.00000, C01=0.00000, C02=0.00000, HPTS=21, \$ \$CAP GS=1.562, M1=5.0, A2A1=2.55724, CQ1=1.0\$

IMPUT THE MARIABLE TO BE MINIMIZED FROM THE FOLLOWING LIST:

F60P1" DIMENSIONLESS PRIMARY STAGRATION PRESSURE "WRWS" PRIMARY-TO-SECONDARY MASS FLOW PATIO

UF HS

THPUT SYSTEM CONSTRAINTS BY NAMELIST. CUPPENT MALUES ARE:

200HST1 F8P1=76.0000, P60P1=2500.00, \$ 200HST1 P8P1=57.1634, P60P1=3945.83\$

INPUT THE EJECTOR MODEL FROM THE FOLLOWING LIST:

10AE" CONSTANT-AREA EJECTOR 188E" SUPERSONIC-SUPERSONIC EJECTOR

FIE

THRUT DATA FOR SUPERSONIC-SUBSONIC DIFFUSER SECTION BY HAMELIST. CUPPENT VALUES ARE:

IMPUT DATA FOR EJECTOR ANALYSIS BY MAMELIST. CUPPENT MALUES ARE:

LEUECT1 GF=1.40000, MWPMWS=1.00000, T60T50=1.00000, A8A7=1.00000, \$ \$6UECT1 GP=1.34, MWPMWS=1.68375, T60T50=0.761376, A8A7=2.0\$

7.4.3 CLGDOP Sample Case No. 2 (Cont.)

POINT 8 SUBSONIC DIFFUSER EXIT CONDITIONS

LASER CAUITY DATA:

```
HPTS
001
       = 0.000000E+00
                         002
                                 = 0.000000E+00
65
       = 0.156200E+01
                         A2A1
                                 = 0.100000E+01
       = 0.223000E+01
                         142
                                 = 0.223000E+01
M1
PEP1
       = 0.100000E+01
                         TET1
                                 = 0.100000E+01
P20P10 = 0.100000E+01
                         T20T10 = 0.1000000E+01
```

SUPERSONIC-SUPERSONIC EJECTOR DATA:

```
€,5,
       = 0.156200E+01
                         GP'
                                = 0.134060E+61
GH.
       = 0.136881E+01
                        MWPMWS = 0.147815E+01
       = 0.2248395+01
HTH2
                        A786
                                = 0.180103E+01
MEMS
       = 0.5997265+01
                        MS
                                = 0.223000E+01
       = 0.312691E+01
                        M7
                                = 0.470762E+00
NE
P60P2 = 0.123006E+03
                         T60T20 = 0.807313E+00
P60P20 = 0.108268E+02
P7P2
       = 0.185762E+02
                         T7T2 = 0.192517E+01
PTOP20 = 0.189710E+01
                         T70T20 = 0.835845E+00
```

SUPERSONIC-SUPERSONIC EJECTOR - SUBSONIC DIFFUSER DATA:

```
= 0.156200E+01
65
                         GP
                                ≈ 0.134000E+01
                        MMPMMS = 0.147815E + 01
GM
       = 0.136881E+01
ATA2
       = 0.224839E+01
                         A7A6
                                = 0.180103E+01
       - 0.200000E+01
BSB7
                        WPWS
                                = 0.599726E+01
ME
       = 0.223000E+01
                         MB
                                = 0.312691E+01
117
       = 0.470762E+90
                         MS.
                                = 0.212559E+00
       = 0.123006E+03
F60P2
                         T60T20 = 0.807313E∻00
F60P20 = 0.108268E+02
P8P2
       = 0.207098E+02
                         T8T2
                                = 0.1987296+01
F80P20 = 0.187984E+01
                         T80T20 = 0.835845E+00
```

SUBSONIC DIFFUSER DATA:

```
FSD
       ≈ 0.990902E+00
511
                         A8A7
       = 0.136881E+01
                                = 0.200000E+01
M7
       = 0.470762E+00
                         MB:
                                ≈ 0.212559E+00
PSP7
       = 0.111485E+01
                         T8T7
                                = 0.103227E+01
P80P70 ≈ 0.990902E+00
                         T80T70 = 0.100000E+01
```

TO RESTART PROGRAM ENTER "YES" TO STOP PROGRAM ENTER "NO" NO

7.5,1 Computer Program (CLGDS7)

٠į

```
LASER CAVITY ENTRANCE
LASER CAVITY EXIT
NORMAL SHOCK DIFFUSER EXIT
SUBSONIC DIFFUSER EXIT
EJECTOR SECONDARY NOZZLE EXIT
EJECTOR PRIMARY NOZZLE EXIT
EJECTOR MIXING TUBE EXIT
SUBSONIC DIFFUSER EXIT
PBP2= SUBSONIC DIFFUSER EXIT
                                                                                                                                                                                                                                                                                                                                                                                                                                               PROGRAM
                                                      Sp
                                                                                                                                                                                                                                                                                                                                                                                    CLGDSP IS A PROGRAM FOR SIMULATING THE GAS DYNAMICS OF HIGH-ENERGY CHEMICAL LASER SYSTEMS BY ONE-DIMENSIONAL ANALYSIS. CLGDSP IS A FORTRAN IV PROGRAIWRITTEN FOR DEC SYSTEM-10 (F40).
****
                                                      as 10)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DEPARTMENT URBANA-CHAMPAIGN 61801
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             THE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PROGRAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9
                                                                                                           ADDY
Mikkelsen
Sandberg
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        LOCATION
                                                    SYSTEM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SCHERE
  JANUARY 76
                                                                                                                                                                                                                                                                               Ģ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FOLLOWS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         RATIOS
                                                                                                                                                                                                                                                                             MECHAMICAL ENGINEERING
UNIVERSITY OF ILLINOIS AT
URBANA, ILLINOIS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           10
                                                                                                             A O E
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           RAT
                                                    DYNAMICS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              NOTATION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           AS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        HEAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LETTERS INDICATE
A2A1=A2/A1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Y S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           DESIGNATED
                                                                                                                ••
                                                                                                                ą١
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         AREA
(GAMMA) SPECIFIC +
MACH NUMBER
MOLFCOLAR WEIGHT
PRESSURE
TEMPERATURE
MASS FLCW RATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          INED
                                                                                                                BRITTEN
                                                         GAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          DEF
                                                         LASER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ARE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ARE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ••
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           VARIABLES
FOLLOWING
                                                         CHEMICAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         REPEATED
EXAMPLE:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       VARIABLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     12345678日
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              POOLINE
POOLIN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ZOZZCHB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       **
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              *
```

```
CLGDSP (Cont.)
```

шv

M PROPERTIE

HEAT RATE

SECCNDARY OR CRIVEN STREAM PRIMARY OR ORIVING STREAM FMIXED STREAM PROPERTIES MIXED STREAM SPECIFIC HEAT

ហហហ II

S: INDICATES
A: INDICATES
A: INDICATES
EXAMPLE: GM

oo ≭∭

ш

SSUR

PRE

TATIC

Ś

DEF INED INDICATES STAGNATION CONDITIONS MPLE: T20T10= LASER CAVITY EXIT-TO-ENTR STAGNATION TEMPERATURE RATIO ARE SCHEME S III OLLOWING S NOT FC 4 REAL RIABLES REGUIRE V AR

IMPLICIT | REAL#4 NO

. A4 A1 . A4 A3 . A5 A1 . A5 A6 . A6 A1 . A7 A1 . A 7 A • a COMMON/TTY1/A2A1.A4A1.A4A1.A4A3.A5A1.A5A6.A5A1.A7A1.A7A
-A7A6.A8A1.A8A7
-COMMON/TTY2/COEFF.CO1.CO2.EJECT.GM.GD.GD.GS
COMMON/TTY3/COEFF.CO1.CO2.EJECT.GM.GD.GD.GS
COMMON/TTY3/M1.M2.M3.M4.M5.M6.M7.M8.MMMMS.MWPMWS.NPTS
COMMON/TTY3/M1.M2.M3.M4.M5.M6.M7.M8.MMMMS.MWPMWS.NPTS
COMMON/TTY3/M1.M2.M3.M4.M5.M6.M7.M8.MMMMS.MWPMWS.NPTS
-PAP1.PAOP10.PAP3.PAOP30.P5P1.P5OP10.P6OP10.P6OP10.P6OP20.P6OP20.P6OP20.P6OP20.P6OP20.PFOP20.P7D2.P7D2.P7D2.P7D20.P

/ SMdM DATA CPE/'CPE'/'CAE'/'CAE'/'SSE/'SSE'/'WPWSC'' M6C/'M6'/'A7A6C/'A7A6'/'YES''YES'/'ND''NO'' .NPTS, P8P1/1

.0.21

.0.2*0

.400.2.0

8A7, . MPWS . RCPE .T60T20,M6,A7A6 DATA GS#MI.A2AI.CQI.CQ2.-10.0/ DATA RNSD.A4A3/2#1.0/ DATA GP.MBPMWS.T60T50.TC-1.400.3#1.001.01.01.10.0.3

, RCPE, A8A 500 NAMEL I ST / CAV / G S, M I, A Z A I, CQ I, CQ Z, NPT S, P B P I NAMEL I ST / D I F U S R / R N S D, A 4 A 3 N A MEL I ST / E J E C T I / G P, M W P K 'S, T 6 O T 5 O, M 6, A 7 A 6, W P W NAMEL I ST / E J E C T 2 / G P, M W P M K S, T 6 O T 5 O, M 6, A 7 A 6, W P W NAMEL I ST / E J E C T 3 / G P, M W P M W S, T 6 O T 2 O, M 6, A 7 A 6, A 8 A .

U

..×

ОШ

U U O

U

```
7.5.1 CLGDSP (Cont.)
```

CL GD SP 10100
CL GD SP 10100
CL GD SP 10200
CL GD SP 111000
CL GD SP 111200
CL GD SP 111200
CL GD SP 111200
CL GD SP 111200
CL GD SP 112200
CL GD SP 112200
CL GD SP 112200
CL GD SP 112300
CL GD SP 112300
CL GD SP 113200
CL GD SP 13300
CL GD SP 13400
CL GD SP 144000

RATIO ហ DEF INED TOTM(GX*MX)=1.0+((GX-1.0)/2.0)*MX*MX POPM(GX*MX)=(1.0+((GX-1.0)/2.0)*MX*MX)**(GX/(GX-1.0)/ WM(GX*MX)=MX*SORT(GX*(1.0+(GX-1.0)/2.0)*MX*MX)) RATIG OF SPECIFIC HEATS
CAVITY ENTRANCE MACH NUMBER
CAVITY EXIT-TO-ENTRANCE AREA RAT
FEAT ADDITION COEFFICIENT
HEAT ADDITION COEFFICIENT
CAVITY INTEGRATION INCREMENTS
SUBSONIC DIFFUSER EXIT-TO-CAVITY
ENTRANCE STATIC PRESSURE RATIO N DEFAUL 18 EPS 96 THEIR ANALYSIS ST S: ALUES OF ALL INPUT VARIABLES MUST ITHER BY INPUT OR DEFAULT. LL VARIABLE INPUT IS BY NAMELIST. HE MAXIMUM NUMBER OF INTEGRATION ANC CAVITY SECT TON LASER S H •• Z -EC TION USED E: 2 2 0 GS(1.400) A2A1(1.0) CG1(0.0) CG2(0.0) NFTS(21) P8P1(10.0) LES മ്ഗ VARIAE VALUES E>EAT NO 36 ~ 0m 4 50 6 r NM *********

CALL CAVITY(GS.MI.XI.X2.AI.A2.CQI.CQ2.NPTS.M2.T2TI.T20TIO.P2PI.P2OPIO.FAIL)
TITIO=1.0/TOTM(GS.MI) ¥ CAVITY LASE A C C CALCULATIONS **** ****

000000000

WRITE(5.200)
WRITE(5.CAV)
READ(5.CAV)
X1=0.0
X2=1.0
A1=1.0
A2=A2A1
FAIL=NG

7.5.1 CLGDSP (Cont.)

经济 经债务 化二氯甲基 化二氯甲基 化二氯甲基 化二氯甲基 化二氯甲基 化二氯甲基

10

P1P10=1.0/P0PM(GS.T20T2=T0TM(GS.M2) P20P2=P0PM(GS.M2) IF(FAIL.EG.YES) G0

```
CL 60SP 15100
CL 60SP 15200
CL 60SP 15500
CL 60SP 17200
CL 60SP 17200
CL 60SP 17200
CL 60SP 18200
CL 60SP 18200
CL 60SP 18800
CL 60SP 18900
CL 60SP 19900
```

* **** EXIT S BEEN MADE ON VARIABLE AN ITERATION EXIT Z THREE EJECTOR HE CAVITY FLOW RATIO S. ■•• w 9ER NOZ ZL PRIMARY NOZZLE EXIT MACH NUMBER MIXING TUBE EXIT-TO-PRIMARY NOZZLI AREA RATIO PRIMARY-TO-SECONDARY MASS FLOW RA CHOOS S LIST FOR CPE AND CAE. THE PROGRAMMER MUST (ITERATION VARIABLE FROM THE FOLLOWING EJECTOR SYSTEM HA E EXIT MACH NUM T CHOOSE ANALY CCNSTANT-PRESSURE EJECTCR CONSTANT-AREA EJECTOR SUPERSONIC-SUPERSONIC EJE P. . THE PROGRAMMER MAY CHOOSE ONE (CCNFIGURATIONS TO REPRESSURIZE THESE COMFIGURATIONS ARE: S **** EJECTOR CHOOSE A THE PROGRAMMER MUST FRCW THE FOLLOWING JECT w PRIMARY NOZZLI Mixing tube e; Area ratio • • ER THE CHOICE OF PROGRAMMER MUST CTION • W CPE: CAE: SSE: M6 A7A6 SSE, M6 A 7 A 6 SMGR AFTE FOR VAR 3 - 0 M

VARIABLES USED IN THIS SECTION AND THEIR DEFAULT VALUES ARE:

(5,204

WRI TE

WRITE(5.201) READ(5.202)EJECT WRITE(5.203) IF(EJECT.NE.SSE) READ(5.205)COEFF

¥

7.5.1 CLCDSP (Cont.)

```
******
                                                                                                                                                                                                              SUBSONIC DIFFUSE, COEFFICIENT
SUBSONIC DIFFUSER EXIT-TO-ENTRANCE
AREA RATIO
RATIO OF SPECIFIC HEATS
PRIMARY-TO-SECONDARY MOLECULAR
WEIGHT RATIO
TEMPERATURE RATIO (FOR CPE AND CAE)
PRIMARY-TO-SECONDARY STAGNATION
TEMPERATURE RATIO (FOR SSE)
PRIMARY-TO-SECONDARY STAGNATION
TEMPERATURE RATIO (FOR SSE)
PRIMARY NOZZLE EXIT MACH NUMBER
EXIT AREA RATIO
PRIMARY-TO-SECONDARY MASS FLOW RATIO
NORMAL SHOCK COEFFICIENT FOR
CONSTANT-PRESSURE EJECTOR
SUBSONIC DIFFUSER EXIT-TO-ENTRANCE
                                                                                                                                                                                            NAMEL IST
                                                                                                                                                                                             ₽
                                                                                                                                                                                             S
                                                                                                                                                                                             INPUT
                                                                                                                                                                                           ALL VARIABLE
                                                                                  T60T20(1.0):
                                    GP(1.400)
MWPMWS(1.0)
                                                                  T60T50(1.0)
                                                                                                      M6(1.01)
A7A6(10.0)
        RNSD(1.0
                                                                                                                                  MPWS(1.0
                                                                                                                                                               A8A7(1.0
                                                                                    ທ
                                                                                                        91
                                                                                                                                                               01
                                    M 4
                                                                 S
                                                                                                                                    8
```

0 0 0 9 9 | F (EJECT,EQ.SE) G| | WRITE(5,206) | WRITE(5,206) | WRITE(5,01FUSR) | WRITE(5,01FUSR) | WRITE(5,01FUSR) | WRITE(5,01FUSR) | WRITE(5,01FUSR) | WRITE(5,01FUSR) | WRITE(5,01FUS) =

102 103 01

0000

* *

a often 1

7.5.1 CLGDSP (Cont.)

• RSD34 IF(EJECT.EO.SSE) GO TO 104 CALL NSDS(GS.M2.RNSD.M3.P3P2.P3OP20.T3T2.T3OT201 P3P1=P3P2*P2P1 T3T1=T3T2*T2T1 P3OP10=P3OP20*P2OP10 T3OT10=T3OT2O*T2OT10 DIFFUSER DIFFUSER ENLARGEMENT .T4T3. T40T30 SSUR SUBSONIC CONSTANT-PRE SHOCK SUDDEN 30 40P NORMAL FOR P4P3.P FOR 150P40=1.0 150T40=1.0 150P20=P50P4C*P40P30*P30P20 150T20=T50T40*T40T30*T30T20 150P10=P50P20*P20P10 150T10=T50T20*T20T10 ことと 30 N I CNS CALCULATICNS CALL SDS(GS,M3,A4A3,M4,FIF AIL, EC, YES) GC TO 11 P4P1=P4P3+P3P1 T4 T1=T4 T3*T3T1 P40P10=P40P30*T30P10 T40T10=T40T30*T30T10 *** CACULATIONS CALCULAT CALCULATIONS ****

7.5.1 CLGDSP (Cont.)

00000000 	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
	20000000000000000000000000000000000000		

		Š	9
		පු	30
08 KOUNT=1+100		င္ပႏ	000
JECT.NE.CPE) GO TO 105	,	3	300
C B E S	A5A6.	36) C
EXECUTION TO TOO TO THE OPEN OF THE OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPE		36	ე (
AIL, EC, YES) GO TO 115		36	٥ ر د د
#P7P5C*P50P2C*P20P2		3	3
01 0		ဌ	0
		ဒ္ဗ	3
	•	G	31
经验证证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证	***	3	31
	*	င္ပ	31
CALCULATIONS FOR CONSTANT AREA BLOCKER		မ	31
		ဌ	31
基础的 计分别分别 计设计 计设计 计分别 计分别 化二苯基甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		3	31
		B	31
		G	31
JECT. N		G	# F)
=1.0/A7A6		9	32
CAES(GS	•	င္ပႏ	W (
60.M7.P60P50.P7P50.FAIL		30	7
AIL EC.YES) GG TO 116		36	1 L
=P7P5C#P5CPZ0#P20P2#		36	0 (
0 10		36	2 1
		36) (
	•	36	J 10
***************************************	• 1	36	ט ני ע נ
	* *	36	۷ ار ا
20141	· 4	֚֚֚֓֞֜֞֜֜֞֓֟֝֓֓֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֡֝֡֓֡֓֡֡֡֝֡֓֡֓֡֡֡֡֡֡	ייי אינ
化复数计算机 化多层电影 化多色彩色 医多色素 医多色素 医多色素 医多色素 医多色素 医多色素 医多色素 医多色		36	אן (אן נ
***************************************	} } }	36) [r
		38	16
=A7A6-1.0		8	33
SSES(GS.GP. PESMEP.T20T60.M2.M6.A2A6.USEP.GM	• MEXIKU •	3	33
2.FAIL		36	ال ال الله ال
AIL FEG TEST GO IL 1		36	ין ה
ニナヘアヘキア		36	۵ اد ا
		36	9
(各种特殊的种种的特殊的 计分类 计分类 计多数 医多种性 医多种性 医多种性 医多种性 医克勒氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	****	3	M
		G	34
CALCULATIONS FOR SUBSONIC DIFFUSER		င္ပႏ	m
	# + + + + + +	36	ω r φ <
***************************************	***	ָבָּיבָ פַרָּיבָּי	ץ ק
		36	J W
SDS (GM, M7 . ABA7 . M8 . P	·FAIL)	18	34
AfL.EG.YES) GO TO 118		3	35
CALCOLN: CING -	***** *****	555555555555555555555555555555555555555	88888888888888888888888888888888888888

```
7.5.1 CLGDSP (Cont.)
```

TOUCH IF (CDEFF.EQ.M6C) CALL ITER(M6.0.5.1.0E-06.1.0.XP8P1.P8P1. -1.0E-01.NIT.NIYPE.XNEG.YNEG.XPDS.YPDS.NSIGNI.NSIGN2) IF (CDEFF.EQ.A7A6C) CALL ITER(A7A6.0.5.1.0E-06.-1.0.XP8P1. -P8P1.1.0E-01.NIT.NIYPE.XNEG.YNEG.XPDS.YPDS.NSIGNI.NSIGN2) IF (CDEFF.EQ.WPWSC) CALL ITER(WSWP.0.1.1.0E-06.-1.0.XP8P1. IF (CDEFF.EQ.M6C) GD TO 199 IF (CDEFF.EQ.M6C) GO TO 120 IF (CDEFF.EQ.WPWSC) GO TO 120 IF (CDEFF.EQ.WPWSC) GO TO 120 IF (CDEFF.EQ.WPWSC) GO TO 121 MWMMWS:=NWMMWP*MWPWWSSC) GO TO 121 MWMMWS:=NWMMWP*MWPWWSSC) GO TO 121 MWMMWS:=NWMMWP*MWPWWSSC) GO TO 121 MWMWSSC1.0.WSWP S.MS1) SSE CALCULATIONS FOR IF(EJECT.EG.SSE) GO TO 110 PSP1=PSOP204P2CP2*P2P1/POPM(GS.MS) TST1=T50T20*T20T2*T211/T0TM(GS.MS) ASA1=SURT(T50T10)*WM(GS.M1)/(PSP1*WM(GS PYOP50=POFM(GM.MY)*P7P50 T70T50=T70T50+T60T50 T7T50=T70T50+T60T50 IF(EJECT.EQ.CAE) A7A6=1.0/A6A7 FINAL **** ****

000000000

=P8P7*P7P

XP8P1

7.5.1 CLGDSP (Cont.)

> P60P2=P60P50*P50P20P20P20P20P20P20P20P20P20P20=P60P50*F50P20 T60T20=T60T50*P50P20*P20P20P20P70P20=P70F20=P70F50P20 P70P20=P70F50*F50P20 T7T2=T7T50*T50*T20T2 T70T20=T70T50*T50T20 A7A2=WMWS*SQRI(T70T20/MWMWWS)*WM(GS*M2)/(P7P2*WM(GM*M7) NSD-SD-SE-CPE/CAE CAE -CPE/ NSD-SD-SE ***** FOR FOR ***** CALCULATIONS FINAL CALCULATIONS OF SSE-SD =P8P7*P7P2 20=P80P7C*P70P20 =T8T7*T772 20=180T70*170120 FINAL **** P8P2= P80P2 T812= T80T2

A7AI=A7A2*A2AI A6AI=A7AI/A7A6 A8AI=A8A7*A7AI P60PI=P60P2*P2PI

CALCULAT IONS

SYSTEM

FINAL

110 0000000000

**

P60P20=P6CP2/P20P2 P70P20=P0FM(G*,M7)*P7P2/P20P2 T70T20=T70T60*T60120 T7T2=T20T2*T70T20/T0TM(GM,M7,A7A2=A7A6/A2A6

00000000000

* *

7.5.1 CLGDSP (Cont.)

2T1

7,47 4,50 4,50 4,50

P60P10=P6CP20*P20P1C T60T1=T60T20*T20T2*T2 T60T10=T60T20*T20T10 P7P1=P7P2*P2P1 P7DF10=P70P20*P20P10 T7T1=T7T2*T2T1 T70T10=T70T20*T20T10 P80P10=P80P20*F20P10 P80P10=F80F20*T20T10 T8T1=T8T2*T2T1

0

```
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 M
```

|--|

```
7.5.1 CLGDSP (Cont.)
```

```
* * *
*
*
                                                                                                                                                                                                                                          ARE: .
                                                                                                                                                                                                                                                                                                            FORMAT('0'*T2'*PROGRAM TERMINATED IN SUBROUTINE CAVITY')
FORMAT('0'*T2'*PROGRAM TERMINATED IN SUBROUTINE SOS'*/
FORMAT('0'*T2'*PROGRAM TERMINATED IN SUBROUTINE CAES')
FORMAT('0'*T2'*PROGRAM TERMINATED IN SUBROUTINE CAES')
FORMAT('0'*T2'*PROGRAM TERMINATED IN SUBROUTINE SSES')
FORMAT('0'*T2'*CONVERGENCE FAILURE IN MAIN PROGRAM',',
FORMAT('O'*T2'*CONVERGENCE FAILURE IN MAIN PROGRAM',',
                                                                                       Œ
                                                                                                                                                                                     AREA
FLOW
                                                                                                                                                                                                                                     • W
                                                                                       S
                                                                                                                                                                                                                       ) ** 12.**INPUT DATA FOR SUPERSONIC-SUBSONIC ** SECTION BY NAMELIST.** / 12.**CURRENT VALUE
                                                                                                                                                                                                                                                                            *T2
                                                                                                                                                                                                                                                           •
                                                                                 FORMAT(*0*, T2, 'Input Data FOR LASER CAVITY ANALYSIS

-'NAMELIST.',', T2, 'CURRENT VALUES ARE:',')

-'NAMELIST.',', T2, 'Input THE EJECTOR MODEL FROM THE ',

-'NCAE" CONSTANT-PRESSURE EJECTOR',', T2,

-'NSSE" SUFERSONIC-SUPERSONIC EJECTOR',')

FURMAT(*0*, T2, 'Input THE ITERATION VARIABLE FROM THE 'NOSSE" SUFERSONIC EJECTOR',')

-'NOSE" SUFERSONIC-SUPERSONIC EJECTOR',')

-'NSSE" SUFERSONIC-SUPERSONIC EJECTOR',')

-'NSSE" SUFERSONIC EXIT MACH NUMBER',', T2,

-'NATIO')

FORMAT(*0*, T2, 'NUPWS" PRIMARY-TO-SECONDARY MASS FLOPERSONIC SUPERSONIC SUBRONIC -'DIFFUSER SECTION BY NAMELIST.','T2,'CURRENT VALUE

-')
                                                                                     ANALYSE
                                                                                                                                                                                                                                                           8≺
                                                                                                                                                           FROM
                                                                                                                                                                                                                                                                            MYES" .
                                                                                                                                                                                                                                                            S
                                                                                                                                                                                                                                                         FORMAT(*0*,T2,*1NPUT DATA FOR EJECTOR ANALYSI:
-*NAMEL [ST.*,7,T2,*CURRENT VALUES ARE:*,7)
FORMAT(*1,*,T2,*TO RESTART PROGRAM ENTER *YES**
-*TC STOP FROGRAM ENTER *NO**)
FORMAT(A3)
                                                            ****
      202
                                                                                                                                                                                                      204
                                                                                                                                                                                                                       205
206
                                                                                                                                                                                                                                                          202
                                                                                                                                                                                                                                                                           208
                                                                                                                                                                                                                                                                                             209
C
300
301
                                                                                                                                                                                                                                                                                                                                        300
300
300
300
300
300
                                                                                                                                                                                                                                                                                                                                                                                    306
                                                                                                                                                                                                                                                                                                                                                                                                     307
                                                                                                       201
                                                                                                                                                                                                                                                                                                                                                                                                                        308
```

7.5.1 CLGDSP (Cont.)

```
CAVITY 000100
CAVITY 000200
CAVITY 000200
CAVITY 000200
CAVITY 000200
CAVITY 000200
CAVITY 012000
CAVITY 012000
CAVITY 012000
CAVITY 02200
CAVITY 02200
CAVITY 03200
CAVITY 03400
CAVITY 04000
CAVITY 04000
```

**************************************	INPUT VARIABLES: G # SPECIFIC HEAT RATIO MI # ENTRANCE MACH NUMBER X1	OUTPUT VARIABLES: M2 = EXIT MACH NUMBER T2 = EXIT STATIC TEMPERATURE T02 = EXIT STAGNATION TEMPERATURE P2 = EXIT STAGNATION PRESSURE FAIL = ERROR FLAG ***********************************
--	--	--

EXTERNAL FWSQD IMPLICIT REAL#4(L.M) DIMENSION TO(25) CCMMON/FVD/ZI(3).XI(3).X(25).M(25).P(25).PO(25).T(25) COMMCN/COEFF/XI.CA(2).CTO(2) DATA YES/1YES!/

ŧ

7.5.1 CLGDSP (Cont.)

₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩)	00000000000000000000000000000000000000	~ ~ & & & & & & & & & & & & & & & & & &	00000000000000000000000000000000000000
AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAAA	A V L L Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	**************************************	**************************************	~

CALCULATE THE RATE OF HEAT ADDITION COEFFICIENTS. S.INEAR VARIATION OF RATE OF HEAT ADDITION WITH X ASSUMED. CALCULATE THE CAVITY AREA COEFFICIENTS. VARIATION WITH X IS ASSUMED. CA(1)=(A1*X2-A2*X1)/(X2-X1) CA(2)=(A2-A1)/(X2-X1)

INITIALIZE FLOW VARIABLES FOR INTEGRATION. CTO(1)=(CQ1*X2-CQ2*X1)/(X2-X1) CTO(2)=(CQ2-CG1)/(X2-X1)

0000000

X1=DUXXY1
X2=DUXXY1
X(1)=X1
X(1)=X1
Y(1)=X1
Y(1)=10
Y(1)=10
Y(1)=10
YXXXI=X1
YXXXI=X1
YXXXI=X1

INITIALIZE VARIABLES AT STATION (1).

格尔安特特书 新非外外的特殊的 医多种 计图象的 经非常的 经存货的 医格特特氏 计分析 医非异性 医多种 医多种 医多种 医多种 医多种 计多种 化二甲基甲基

00000000000

00000000000

7.5.1 CLGDSP	(Cont.)
--------------	--------	---

00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
***************************************	*************************************	* · · · · · · · · · · · · · · · · · · ·	・ b b b b b b c b b b b b b b b b b c b c
>>>>>>>>	>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

? ╸按查检查存证证据按据证据证据证据证据证据证据证据证证证证证证证证证证证证证证证证证证证
* SET INCREMENT SIZE FOR R-K AND SIMPSON INTEGRATIONS. *
法分泌环境化 计预式设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设
DX=(X2-X1)/FLOAT(NPTS-1) DXRKI=DX/2.0
ANICARALION OUCLIION 基本 基本 基本 基本 基本 基本 基本 基本 基本 基本
DO 60 I=2.NPTS
在,这时间,这一只有一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一
ZE(1)=YRKI XI(1)=XRKI DO 50 J=1+2

* INTEGRATE D(M**2)/DX BY R-K. * *
新兴县等的的人的 医克勒氏性 医克勒氏性 医克勒氏性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基

LNP=0.0 LNP0=0.0 LNT=0.0

7.5.1 CLGDSP (Cont.)

तन हमें क्ये क्ये क्ये क्ये क्ये क्ये क्ये क्ये
・ 人人人 ベルルス人人人人人 ぶんくんん人人人人人人人人人人人人人人人人人人人人人人人人人人人人人
医复复医医医医医医医医医尿管医尿管医尿管医尿管医尿管
->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
000000000000000000000000000000000000000
000000000000000000000000000000000000000

EVALUATE THE STAGNATION TEMPERATURE RATIO BASED ON A RATE OF HEAT ADDITION THAT IS ASSUMED TO BE A LINEAR FUNCTION OF X. CALL FVI(I.G.DX.LNF.LNFG.LNT)

INTEGRATE TO FIND P.PO.T BY SIMPSON'S RULE.

CONTINUE

1 10

TO(I)=(1.C+CTO(I)*(X(I)-XI)+0.5*CTO(2)*
-{X(I)**2-XI**2})
-(X(I)**2-XI**2))
-(X(I)**

CLGDSP (Cont.)

```
***
                                     ***
                                                                          A FIRST-ORDER DIFFERENTIAL EQUATION...
WHERE P IS A PARAMETER. THE SUBROUTINEFOR I-D FLOW WITH AREA CHANGE AND HEAT
                                     I
                                                                                                                                                                                                                       a z
           ( RK I 1
                                                                                                                                                                                                                                 FLOW
OWED
           SUBROUTINE CAVITY)
                                                                                                                                                                                                                                 PERSONIC NOT ALLO
                                                                                                                                                                                         50
                                                                                                                                                                                         10
                                                                                                                                                                                         99
  TRANSITIONS FROM SUBSGNIC-10-SUP-
SUPERSCNIC-10-SUBSCNIC FLOW ARE PROGRAM.
            RUNGE-KLITA INTEGRATION S
(OF SUBROUTINE
                                                                                                                                                                                         100
                                                                                                                N=0

C1=F(P,X,Y)*DX

XRK=X+0.5*DX

YRK=Y+0.5*C1

G0 T0 40

C2=F(P,XRK,YRK)*CX

YRK=Y+0.5*C2

G0 T0 40

C3=F(P,XRK,YRK)*CX

XRK=X+DX

XRK=X+DX

YRK=Y+C3

G0 T0 40

C4=F(P,XRK,YRK)*CX

YRK=Y+C1+C3

C4=F(P,XRK,YRK)*CX

YRK=Y+C1+C3

G1 T0 40

C4=F(P,XRK,YRK)*CX

YRK=Y+C1+C3

G1 T0 40

C4=F(P,XRK,YRK)*CX

YRK=Y+C1+C3

YRK,YRK,YRK)*CX

YRK=Y+C1+C3

G1 T0 400 (YRK,CE-1)

IF(Y,C1+C3) (YRK,CE-1)

IF(Y,C1+C3) (YRK,CE-1)

IF(Y,C1+C3) (YRK,CE-1)
                                                                                             AIL
                                                                                              u,
                                                                                              *DX * X * X
                                              SUBROUTINE RKII
INTEGRATION OF A
DY/DX=F(P.X.Y) H
IS SPECIALIZED FI
ADDITION.
                                                                                             RKI 1 (F
                                                                                                       YES/"YE
                                                                                             SUBROUTINE
                                                                                                       DATA
```

20

30

```
7.5.1 CLGDSP (Cont.)
```

WRITE(5,6C)
FORMAT(//.5X.*....R-K INTEGRATION TERMINATED BECAUSE
-!CHOKING WAS ENCCUNTERED.!/)
FAIL=YES
RETURN
Y=YRK
X=XRK
K=XRK
END

0 0

7.5.1	CLGDSP	(Cont.)
/	CTODOL	(COHE.	,

INTEGRATION SUBROUTINE (FVI) SUBROUTINE CAVITY)

FLOW VARIABLE

00000000000000000000000000000000000000	4444444 000000000000000000000000000000
	>>>>>>>

CNG THE **	SPECT TO # # * *	,1(25)	# # # # # # # # # # # # # # # # # # #	L L X Y Y Y
SUBROUTINE FVI PERFORMS AN INTEGRATION BY SIMPSON'S ROLE TO FIND THE FLOW VARIABLES (M.P.PO.T) ALGNG THE LASER CAVITY AS A FUNCTION OF X. THE VARIABLES ARE FOUND BY INTEGRATING EQUATIONS OF THE FORM DY/DX=F(G.Z(X).X). REFERENCE: SHAPIRO. PAGE 231.	# ALL VARIABLES ARE NON-DIMENSIGNALIZED WITH RESPECT TO # # THE LASER CAVITY ENTRANCE CONDITIONS. # ###################################	SUBRGUTINE FVI(I,6,0X,LNP,LNP0,LNT) Implicit Real#4(L,m) Common/fvd/zi(3),xi(3),x(25),m(25),p(25),p0(25),T(25)	并并分类的有效的,我们们们的,我们们的的,我们的的,我们们的,我们们的,我们们的的,我们们的的,我们们们们的的,我们们的的。 TONC TONO TO BE ENTEGRATED THERE I The property of the propert	THE CHURCH TO DESCRIPTION OF THE CONTRACT OF T
ERFORMS AN IN- FLOW VARIABLE A FUNCTION OF TING EQUATIONS	VARIABLES ARE NON-DIMENSIGNALIZED LASER CAVITY ENTRANCE CONDITIONS.	SUBRCUTINE FVI(I.G.DX.LNP.LNPO.LNT) IMPLICIT REAL#4(L.M) COMMON/FVD/ZI(3).XI(3).X(25).M(25).	**************************************	*******
SROUTINE FVI PE E TO FIND THE SER CAVITY AS / JND BY INTEGRAT OX=F(G.Z(X).X)	VARIABLES ARE LASER CAVITY	JTINE FVI(I.G.E SIT REAL#4(L.M) J/FVD/ZI(3).XI	·*************************************	
******	# ALL # THE ######	SUBRCL IMPL IC	* * * * * * * * * * * * * * * * * * * *	1

	* * * * *	
FP(G.Z.X)=(G&2/(1Z))*(FA(X)-(1.+0.5*(G-1.)*Z)*FTO(X)) FPO(G.Z.X)=-0.5*G*Z*FTO(X) FT(G.Z.X)=(G-1.0)*Z/(1.00-Z))*FA(X) -+((1.0-G*Z)*(1.00-Z))*FA(X)	**************************************	DLNP=(DX/6.0)*(FP(G.21(1).XI(1))+4.0*FP(G.21(2).XI(2))

DLNP=(Dx/6.0)*(FF(G.21(1),XI(1))+4.0*FF(G.2I(2),XI(2)}
-+FP(G.2I(3),XI(3))
DLNT=(Dx/6.0)*(FI(G.2I(1),XI(1))+4.0*FI(G.2I(2),XI(2))

整備を

7.5.1 CLCDSP (Cont.)

 66500 66500 66500 66500 66500 66500 777000 77600 8000 8000 8000
000000000000000000000000000000000000000

-+FT(G, ZI(3), XI(3)))
DLNPO=(DX/6.0)*(FPO(G, ZI(1), XI(1))+4.0*FPO(G, ZI(2), XI(2))
-+FPO(G, ZI(3), XI(3)))

LNP=LNP+OLNP LNPO=LNPO+DLNPO LNT=LNT+DLNT

X(I)=XI(3) P(I)=EXP(LNP) PO(I)=EXP(LNPO) T(I)=EXP(LNT) M(I)=SQRT(ZI(3)) END

000000000

000000000

ì 1 2

1

计计算计算器 医海绵性硬性 医神经性 医神经性 医克特氏性 医克特氏性 医克特氏性 医克特氏性 医克特氏性 医克特氏氏征 计分类 医克特氏氏征 计分类 医克特氏氏征 计分类 医克特氏氏征 计分类 医克特氏征 计分类 医克特氏征 计分类 医克特氏征 计分类 医克特氏征 计分类 医克特氏征 计记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计记录器	よりとい	010
	UNO.	050
* CAMPAGE SCENE *	UND I	200
THE PROPERTY OF THE PROPERTY O) UZ) L	050
兴州的公共安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安	UND!	090
		0 4 0
	E CNO	060
# NOTE Y = A + A D D Y / D X = F T S O D (G + X + Y)	PUNO.	100
	ر ا ا	011
***************************************	UN O	120
	FONC	200
X		1 50
FESOC = (Y+(1.0+0.5#(G-1.0)+Y)/(1.0-Y)	T CNO	01600
+C**/*E10(X)		200
) () () ()	061
	FUNC	200
文学科学科学科学科学科学科学科学科学科学科学科学科学科学科学科学科学科学科学科	してつに	210
	S C C C	220
FUNCTION FOR EVALUATING (1.0/A) (DA/DX).	UN O	230
CAVITY AREA IS ASSUMED TO BE A LINEAR FUNCTION OF X	U	0 0 0 1 0 1
	7 (2 (2 (2 (3 (4) () () (
女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女女		200
		200
FUNCTION FA(X)	NON DIE	290
COMMCN/COEFF/X1,CA(2),CTO(2)	FUNC	300
CA(2)*X	FUNC	310
		320
		200
计对象计算 计存储设计 计计算计算 计计算计算 计计算计算 计计算计算 计计算计算 计计算计算 计计算计算 计计算计算	FUNC	350
	ON OIL	360
		200
COLLION 19 ASSOCIATION TO BE A LINEAR FORCITO		000
	FICE	400
经安全分割的法法律 医克勒氏性 医克勒氏性 医多种性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医克勒氏性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种	PUNC	410
	いとこれ	4 4 0 6 0 6
FUNCTION FIG(x)	F S S S S S S S S S S S S S S S S S S S	4 (0)
A(2), CTO(2)	FICE CO.	450
○ 【○ ○ ○		4000
<i>-</i> W	I NO	4 80

S SO SUBROUTINE NSDS CALCULATES THE PRESSURE RATIG ACROSS A CCNSTANT-AREA, SUPERSONIC DIFFUSER. THE STATIC PRESSURE RATIO IS TAKEN AS RD*(PY/PX) FOR A NORMAL SHOCK AT THE ENTERING MACH NO. ALL OTHER PROPERTIES ARE CALCULATED FROM THE ISENTROPIC FLOW RELATIONS TO BE CONSISTENT WITH THE ENTRANCE AND EXIT MACH NO.S. STATIC PRESSURE RATIO STAGNATION PRESSURE RATIO STATIC TEMPERATURE RATIO STAGNATION TEMPERATURE RAT SOSN) COEFF ICIENT SUBROUTINE GAMPA ENTRANCE MACH NUMBER NORMAL SHOCK DIFFUSER DIFFUSER EXIT MACH NUMBER EXIT-10-ENTRANCE EXIT-10-ENTRANCE EXIT-10-ENTRANCE EXIT-10-ENTRANCE SHOCK VARIABLES VARIABLE **NONE AL**

NSDS(G.M1.RD.W2.P2P1.P20P10.T2T1.T20T10 SUBROUTINE

REAL # 4 (M MPLICIT TOTM(GX+MX)=1.040.5*(GX-1.0)+MX+MX POPM(GX+MX)=(1.040.5*(GX-1.0)+MX+MX)++(GX/(GX-1.0) M2=SQRI((2.0+(G-1.0)*W!*M1)/(2.0+G*M1*M1-G+1.0))
P2P1=RD*(2.0*G*M1*M1-G+1.0)
P10P1=P0PW(G.M1)
P20P2=P0PW(G.M2)
P20P10=P0PW(G.M2)
P20P10=1.0
T10T1=T10T1*T20T10/T20T2
F20F1=T10T1*T20T10/T20T2
F20F

U

#

38

INPUT

* **********

DUTPUT

0 0 0 0 0

M2 P2P1 P20P10 T2T1 T2OT10

CLGDSP (Cont.) 7.5.1

(SDS

SUBROUTINE

DIFFUSER

SUBSONIC

SUBROUTINE SDS CALCULATES THE PRESSURE RATIO ACROSS A CONICAL. SUBSONIC DIFFUSER WITH AN INCLUDED ANGLE OF 15 DEGREES. THE STATIC PRESSURE RATIO IS COMPUTED USING AN EMPERICAL DIFFUSER EFFICIENCY. ALL OTHER PROPERTIES ARE CALCULATED FROM THE ISENTROPIC FLOW RELATIONS TO BE CONSISTENT WITH THE ENTRANCE AND EXITMACH NO.5. P 0.2<M1<0.5. 2.34<A2/A1<5.2
IN THE FOLLOWING REFERENCE

8∀;

EFFICIENCY GIVEN

DIFFUSER

SUBSONIC

EFF=(P2'-P1)/(P2-P1)

IS LIMITED TO THE RANGE: AND IS DERIVED FROM DATA

AIRCRAF "SUMMARY (1956). Nº Nº IS HENRY.J.R. WOGD.C.C., AND WILBUR.S.W., SUBSONIC-DIFFUSER DATA," NACA RM L56FGS 0 SON.G.N. "MODERN DIFFUSER ERING, 9(9):267-273 (1938)

DEF INED I S COEFFICIENT IFFUSER SUBSONIC

=(P2'/P1)/(P2/P1)

ARIABLE INPUT GAMMA ENTRANCE MACH NUMBER EXIT-IO-ENTRANCE AREA RATIO H H H M1 A2A1

IABLE AR. DUTPUT

STATIC PRESSURE RATIO STAGNATION PRESSURE RATIO STATIC TEMPERATURE RATIO STAGNATION TEMPERATURE RA EXIT MACH NUMBER EXIT-TC-ENTRANCE SI EXIT-TO-ENTRANCE SI EXIT-TO-ENTRANCE SI EXIT-TO-ENTRANCE SI EXIT-TO-ENTRANCE SI SUBSONIC DIFFUSER (H 4 4 H 4 H H M2 P2P1 P2OP10 T2T1 T2OT10 RD FAIL NGINER

7.5.	1	CLGDSP	(Cont	٦
1.3.		CLUDAY	11.00011.	. 1

Į

SUBROUTINE SDS(G, W1, A2A1, M2, P2P1, P20P10, T2T1, T20T10, RD, -FAIL)	808 808 808 808	00 00 00 00 00 00 00 00 00 00 00 00 00
IMPLICIT REAL#4(M) DATA YES/'YES'/,SUB'/	2000	5000
******************	200	590
# GAS DYNAMIC FUNCTIONS #	00	620
***************************************	99	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FOTM(GX*RX)=1*O+O*S#(GX-1*O)*EX*RX POPM(GX*RX)=(1*O+O*S#(GX-1*O)*EX*EX*F#(GX/(GX-1*O))	2000	640 640 680
*************	000	690 700 710
ATIONS FOR CONSTANT-AREA DIFFUSER	00	720
***************************************	00	740750
	0	760
	90	770 780
M2E1=1 • 0	00	800
	0	8208
**	90	830
w	0	850
4	0	870
	2 0	890
* CALCULATE CONSTANTS *	90	006
*******************	0	920
	90	086
	300	950
C4={C+1•0 }/(Z•0*(G-1•0))	9	960 970
***************************************	00	980
	20	000

```
7.5.1 CLGDSP (Cont.)
```

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

*** EFF=0.002685*A2A1*A2A1*A2A1-0.024461*A2A1*A2A1-0.027229* -A2A1+1.048992 RATIO EFF ICIENCY PRESSURE A1A1S=(1.0/M1)*(G2*TOT#(G.M1))**G4 A2A2S=A2A1*A1A1S CALL MAAS(G.M1.A2A2S.SUB.5.0E-06.M2.FAIL) IF(FAIL.EQ.YES) RETURN DIFFUSER STATIC IDEAL THE 111 CALCULATE P10P1=P0PM(G.M1) P20P2=P0PM(G.M2) P2P1=P10P1/P20P2 RD=EFF+(1.0-EFF)/P2P1 CALCULATE

P2P1=RD*P2P1 P20P10=P2CP2*P2P1/P10P1 T20T10=1.0 T10T1=T0TM(G.M1) T20T2=T0TM(G.M2) T2T1=T10T1*T2CT16/T20T2 END

00000

0

000000000

00000000000000000000000000000000000000	00000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000000000000000000000000000000000000
$\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma\sigma$	σ	σ	

Ū	Ž	CNSTANT-PRESSURE EJECTOR SUBROUTINE (CPES)
****	*	**************************************
***	*	***************************************
SUBROU A CCNS	STANT-	E CPES CALCULATES THE COMPRESSION RATIO FOR T-PRESSURE, SUBSONIC-SUPERSONIC EJECTOR WITH
NA C	I S	-AREA DIFFUSER SECTION BY A ONE-DIMENSE
INPUT	VAR	IABLES:
gs	ij	SECCIODARY GAMMA
d5	11	RIMARY GARRA
T SOPO	11 11	SECONDARY-10-PRIMARY MULECULAR WEIGH! RAJIO SECONDARY-10-PRIMARY STAGNATION TEMPERATURE
IdSM	11	ATIO ECCNDARY…TO-PRIMARY MASS FLOW RATIO
MP1	# 1	RIMARY MACH NO. AT THE MIXING
ROFF	11	COEFFICIENT
OUTPUT	VAR	AI ABLES:
MS1	11	SECONDARY MACH NO. AT THE MIXING TUBE
ASIPI	11	SECONDARY-IO-PRIMARY AREA RATIO AT THE
X U	II	IXED STREAM
N M M	11	IXED STRE
TNOPO	Ħ	IXED STREAM-
MM	1)	TREA
PPOSO	Ħ	XII RIMARY-10-SE AIIO
P#350	н	XED STRE
		RESSURE HALL

SUBREUTINE CPES(GS.GF.MWSP.TSOPC.MSPI.MPI.AM2PI.RD.MSI.-ASIPI.GM.MWMP.TMOPO.MM3.PPOSO.PM3SO.FAIL)

000000000000000000000000000000000000000
OO BAQUANIA COO BAD
000000000000000000000000000000000000000

MWMP::(1.+#SPI)/(1.+(BSPI/MWSP))
CPSP=(GS/GP)#(GP-1.)/(GS-1.)/MWSP
GM=1./(1.-(GP-1.)/GP)#((1.+(#SPI/MWSP))/(1.+CPSP#WSPI))
CPMP::(1.+#SPI#CPSP)/(1.+#SPI) WM(G.M)=M#SQFT(G#(1.+0.5#(G-1.)*(M##2)))
PPOM(G.M)=(1.+0.5#(G-1.)*(M##2))##(-G/(G-1.))
PYXMX(G.MX)=(2.#G/(G+1.))#(MX##2)-((G-1.)/(G+1.))
MYXMX(G.MX)=SQFT((2.0#(G-1.0)#MX#MX)/(2.0#G#MX#MX-G+1.0) **WSP!*CPSP DYNAMIC FUNCTIONS *CPSP*TS0P0)/(1 S ¥ IdS#+. 0P0=(1 X

MPLICIT REAL * 4(M) ATA YES 'YES' / (『ひま・ひじ】女子《ひばかぶ/ひひのまし》とひの子(『ひらず・』)=〇〇

*******************	W.	0
CH STOCKS: NO WILLY TIGHT	O 0	0 C
OTHER DATA FOR SOLUTIONS TO EXIST.	י מי הו) 4
	E C	500
	บ แ บัน	9 C
	ה ה	90
MAX=(CCC++	띮	96
D#(MD1##2])	E I	0
こことをいれている。	7 0 11 11	→ (
M2=SORT (SOR	r o n m	O C
GR*(GR-1.0))	E I	10
F(MM2 .LT. 1.0) GO TO 60	9	50
NT THURSHIES OF THE TO TO THE	ט ממ	9 P
2 = ESPI+CORT (TSOPO/MESP) + EX (GP * MP1)/D	r a	90
S1=SQRT(2./(1.0+(2.0*(C2**2)	F	0
21b1=05/(@2*(WS1*#2)	田 (C	0
	יו בי	200
计解注册的 医克拉特氏 计计算机 计计算机 计计算机 计计算机 计计算机 计计算机 计计算机 计计算	# Ա Դ. Ո)))
	I W	9 0
* CALCULATE THE VARIOUS PRESSURE RATIOS. *	9	50
	ŭ	0
计转换设计 经分额的 医牙唇 计分类 计分类 化二苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	Ш II O	000
	l a	200
POM (GS+MS	L O	0
M2SC=PPOM(GS.MS1)	Ē	0
		200
	W u	0 (M (
	i u	うてかけ
A CIFFUSER BASEC ON A NORMAL S	ıΜ	99
OVERALL EJECTOR PRESSURE RISE IS PM3S	E	20
化多多多次 化多多化多多多多 计多数 计多数 医多种	ш u n n	90
	L L	0 0
	Ш	0
するもののまするののの米でロネアメスズ(の文・文文)	E F	00
NEEPEDINCE (EIDE	ה ה	つ (り (
NAUTH NAUTH	L M	ວ ດ ນ 1
	Ä	60
**************************************	CD CD CD CD CD CD CD CD CD CD CD CD CD C	14700
	ıш	90
# ERROR MESSAGES *	m m	0

00000000

000000000 0000000000 00000

* . .

```
#RITE(S.7C)
FORMAT(SX.*...ERROR: SUBSONIC FLOW AT SECTION 2.*//)
GO TO 140
WRITE(S.90)
FORMAT(SX.*...ERROR: IMPOSSIBLE VALUE OF MSI.*//)
GU TO 140
WRITE(S.11C)
FORMAT(SX.*...NCTE: KSI IS SUPERSUNIC.*//)
GO TO 140
WRITE(S.13C) AWAX
GO TO 140
-100 WRITE(S.13C) AWAX
-100 WRITE(S.13C) AWAY
-100 WRITE(S.1C) AWAY
-100 W
```

100

90

1000.86

120

140

CLGDSP (Cont.)

7.5.1

**

**

CONSTANT-AREA GUECTER SUBROUTINE (CAES) # ###################################	**************************************	POSO-VS-PM3SO AND OTHER EJECTOR CHARACTERISTICS ARE * ALCULATED FOR WSP=WSPI IN THE SUPERSONIC REGIME (SR) * IN THE SATURATED-SUPERSONIC REGIME (SSR). THE SSUMPTION IS MADE THAT MPI REMAINS AT ITS DESIGN * **ALUE. (MR) IS THE MIXED REGIME.	NPUT VARIABLES:	S = SECONDARY GAMMA P = PRIMARY GAWMA WSP = SECONDARY-ID-PRIMARY MOLECUL, SOPO = SECONDARY-IO-PRIMARY STAGNAT		OUTPUT VARIABLES:	= SECCNDARY MACH NO ENTRANCE	S SECOND	PO = MINED STREAM-TO-PRIMARY STAGNATION TEMPERATURE RATIO	EXIT EXIT STREAM EXIT SO E PRIMARY-TO-SE	RATIO ************************************	格林拉米拉姆 经存储存储存储 计连接存储 计多数存储 计多数设计 医多种性 计多数设计 医多种性 计计算机 计计算机 计计算机 计计算机 化二甲基甲基甲基
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	CALCE VALUE	DON!	668 4 M 60 4 M 60 4 M 60 5 M 60 6 M 60 7 M 6	A ME SO III	OUTP	X.	D I I I I I I	THOP	F 343	F 743S(******

7.5.1

CLGDSP (Cont.)

	AE	510
	AE	520
IMPLICIT REAL #4(M)	W U	ひっている
	U U.	550
计多数 化二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	AE	560
	AE	570
* SYDIFUNDE OF MANY OR SYD	AE	580
	AE	290
经数据证据 经法律的 计计算的 计计算 化化二苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	₩.	909
	Ų.	010
	uiti V V	2 C
を送(の)(エメールの)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	I M	540
	A	650
	CAES	06700
· · · · · · · · · · · · · · · · · · ·	¥	680
INITIALIZE THE VARIABLES FOR	M.	900
VALUE OF MS1, MS1	IJ U	200
经验证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证证	E E	720
······································	AE	730
	AE	740
1 - 1 - 0 E - 0 3 / - YE S /	M i	750
ATA FAFMS1.ERRCRY.NITMAX/2*5.0E-06.100	U U.	700
	ĭ ₩	780
计算论的 计计算计算 计计算 计计算 计计算 计计算 计计算 计计算 计计算 计计算	M.	790
	W !	800
PSIPIU. IS BASED ON A NORMAL SHOCK	M M	810
STANDING AL THE PRIMARY NUZZLE EXIL WILLS MAH	U L	0 W
计多数分数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数数	A	840
	AE	850
	M.	860
PSIPIU=PYX#X(GF, WPI)	U U	200
	! W	890
安米安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安全的安	AE	900
	AE	910
AT THE JUNCTURE (J) BETWEEN THE (SR) AND THE (S.	W (920
THE VARIABLES ARE: (MSI=1.0, PSIPI=1.0, MPI=MPI.	A 4) () (
The manufacture of the second	4 A	010
发光者的 化氯化甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲	A E	966
	A E	970
	MA.	980
	W ₹	000
DNS1=SORI (MWSP/1SOPC)	A FF	000

AS1P1=({1.0/AP1M3)-1.0) CONST=SORT(MWSP/TSOPC)*AS1P1/WM(CP.MP1)

7	5.1	CLGDSP	(Cont	1
	J. 1	CEGDOL	TOOME.	

Ì

00000000000000000000000000000000000000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	00000000000000000000000000000000000000

计语言语言 计设计设计 医克拉克氏 医克拉氏氏征 计数据数据 医克拉斯氏试验检检验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	555
* DETERMINE WHETHER THE OPERATING REGIME IS (SR) OR * (SSR).	333
* *	333
IF(WSPI.6.T.WSPJ) GO TO 20	3000
	V V
* FOR THE BREAK-OFF POINT (B) BETWEEN THE (SSR) AND (MR) *	555
**************************************	500
MS18=1.0 PS1P18=35P1/WSFJ IF(PS1P1E.GE.PS1F1U . 70 GU TC 40	000000
安记法律法法 医动物性坏坏 计计算 医多种性 医多种性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	V V
* CETERMINE THE BREAK-OFF POINT (B) BETWEEN (SR) AND * LAITEN INITIALIZE THE VARIABLES FOR THE TERMINAL INTERNATION AND *	4 4 4
「None Table 1977」 「None Tabl	3000
NIT=1 NTYPE=1	500000
######################################	34444 30000
*	0000

 $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

رن س	TERM	N	THE 6	BREAK-0	FF P	Z	T (B)	BETWEE	A (SR) A	02
∵ *	(8)·	Z	TIAL	IZE THE	V AR	IAB	LES F	CR THE	ITERATIO	0 L Z
u.) QN	NS10	, PS1	18) IN	(\$ 5	â			TIND (WEID, DOIDIND) IN (DOX).	
#										
**	***	**	***	****	***	* * *	****	****	计操作操作 计算程序设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计	****
NITHI										
NTYPE										
***	***	***	***	****	***	*	***	****	经转移转换 经预转接收 经存储存储 医电子 医多克氏性 医克勒特氏 医克勒特氏 医克勒特氏 医克勒特氏 医克勒特氏 医克勒氏试验检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检检	****
*										
	TITI	LIZE	T T	ITERAT	NO.	10	ONIL	(MS1B)	* INITIALIZE THE ITERATION TO FIND (MSIB) SOLUTION IN	Z

-	•	¥	
	z O	*	
Z	0	*	
9	2	*	<u> </u>
Ξ	LL.	# #	پ
5	<u>~</u>	2	-
	-	÷	II.
5	α	*	•
SOLUT ION	ت	*	LL)
		*****	O.
2	S	*) -
ш	_	# *	7
S	uz.	*	4
Ξ	<u>.</u>	*	æ
J	⋖	#	=
	u_	*	Q
Ö	_	*	
ڪ	5	*	ည်
-	•	ж ж	u.
	٥	÷	m
ပ	W	*	X
۳	S	*	-
-	₹	*	ď
4	W	*	•
<u>_</u>	S	*	<u> </u>
ITERATION TO FIND (MSIB)	-	*	O.
۹		#	Z
α	Z	*	•
ш	9	*	00
_	SOLUTION	Ţ.	- 5
	:	#	ž
w	Ū	*	•
Ξ	0	*	<u>o</u>
T T	0)	*	G
		*	IBL EFC(GS,GP,WS1B,MPI,APIM3,PSIPIB,NTYPE,FAIL
7	Ĩ	*	ဒိ
-	—	*	Ü
ب		*	ںیے
٩.	_	*	MS16 CAEF
Ξ		*	S A
	α	*	ΣÜ
INITIALIZE	เก	*	Ð
_	•	*	S18= ALL (
		*	7.7
¥	* *	安排推准的法律的证券的证券的证券的证券的证券的证券的证券的证券的证券的证券的证券的证券的证券的	A C
		-	

COPT = CO NEW L COPT = COPT

,

7.5.1 CLGDSP (C	Cont.)
-----------------	-------	---

000000000000000000000000000000000000000) O
	0
<i></i>	Ó
. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ıΛı

IF(FAIL.eG.YES) RETURN IF(NTYPE.EQ.3) GO TO 32 WSPB=CCNST*PSIPIB*WM(GS.NSIB) CALL ITER(MSIE.DMSID.ERRMS1.+1.0.WSPB.WSPI.ERRGRY.NIT. CALL ITER(MSIE.DMSID.ERRMS1.+1.0.WSPB.WSPI.ERRGRY.NITNTYPE.XNEG.YNEG.YPOS.YPOS.NSIGNI.NSIGNZ) IF(MSIB.GT.1.C) MSIB=1.0 IF(MSIB.GT.1.C) MSIB=1.0 GO TO(30.30.40).NIYME

A=(W5PI/(CCNST*PS1P1B))**2 MS1E=SQRT((1./(GS-1.))*(SQRT(1.+(2.*(GS-1.)/GS)*A)-1.))
######################################
WSI=WSIB PSIP1=PSIF18
######################################
CALL CAECCV(GS.GF.MWSP.TSOPO.WSI.MPI.APIN3.PSIPI.GM.MWMP. TMOPO.MW3.PPOSO.PM3SO.FAIL) IF(FAIL.EG.YES) GO TO 80 RETURN

WRITE(5.72)
FORMAT(/.5x.*...ERROR IN CAES:(PSIPIB.GE.PSIPIU).')
GO TC 12C
GO TC 12C
GO TC 12O
WRITE(5.11C)
FORMAT(/.5x.*...NCN-CCNVERGENCE OF ITERATIONS FOR*./.
FORMAT(/.5x.*...NCN-CCNVERGENCE OF ITERATIONS FOR*./.
FAIL=YES
END

Corp.

7.5.1	CLGDSP	(Cont.)

0000000 100400000 00000000	22222222222222222222222222222222222222	00000000000000000000000000000000000000	MWW4444444446
	. * * * * * * * * * * * * * * * * * * *	00000000000000000000000000000000000000	

|--|

GAS DYNAMIC FUNCTIONS IMPLICIT REAL#4(M)
DATA YES, YES', SUP'SUP'

PPOM(G,M)=(1.+.5+(G-1.)*(M**2))**(-G/(G-1.))

0000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
444444 MUMUMUMU FITTTTT		. L L L L L L L L L L L L L L L L L L L	00000000000000000000000000000000000000

**************************************	*	######################################	IF(MS1.GT.(1.0)) GO TO 10 IF((1MS1).LT.(1.E-4)) GO TO 100	* EABRI'S CRITERION APPLIES GNLY WHEN * FABRI'S CRITERION APPLIES GNLY WHEN * * * * * * * * * * * * * * * * * * *	AASM(G*M)=(1°/M)*(((2°/(G+1°))*(1°+0°5*(G-1°)*(M##2))) -##(0°5#(G+1°)/(G-1°)) MMS(G*MS)=SQRT(((2°/(G+1°))#(RS##2))/ -(1°-((G-1°)/(G+1°))*(MS##2))/ ***********************************
--	---	--	--	---	--

10100	400	000	000	200	750	140	150	170	180	900	210	220	230	200	260	270	280	290	000	0 C)
ပ္ပပ္																					

ECRON MESSAGE A A A A A A A A A A A A A A A A A A	(//:	_	· · ·	**************************************	* * * * * * * * * * * * * * * * * * *	
* * * * * * * * * * * * * * * * * * * *	IN CAEFC: (MSI.GT.(1.0)) .'.//)	CAEFC: (MP2.LT.MP1).".//)	CAEFC: (PSIP1.LT.(0.0)).'.//)	***	MSI IS APPROXIMATELY I O AND MPI IS APPROXIMATELY MPI.	
* * * *	.GT.(11.	LT.MP	01 of T • (***	1.0 AND MP1.	
MESSAGES	(MS1,	(MP2.	(PS16	***	1ATELY 1ATELY :****	
ERROR MES	CAEFC:	CAEFC:	CAEFC:	****	APPROXIMATELY APPROXIMATELY *********	
# # #		Z	Z	* * *	IS AP	
* * * *	ERROR	•••ERROR	• • ERROR	* * * *	X X X X X X X X X X X X X X X X X X X	
* * * * *	~X -	~×	~×	***	***	
* * *	(5.20 T(/.5	9 · / O / C	AITE(5.60) DRMAT(/.5X D TO 90 AIL-YES	* * * * * * :	***	

0000000 4000000 00000000	00000000000000000000000000000000000000	- 00 00 00 00 00 00 00 00 00 00 00 00 00	00000000000000000000000000000000000000

**	****
*****	经存款证据 计多数设备 计设备 医乳腺素 医乳腺素 医乳腺素 医多种性 医克里特氏 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性
SUBROU OYERALI FROM [ROUTINE CAECCV PERFORMS THE CONSTANT-AREA EJECTOR. RALL CCNTRCL VOLUME CALCULATIONS BY 1-0 ANALYSIS W INLET SECTION (1) TO WIXED SECTION (3).
INPUT	VARIAELES:
"	SECON
^	DRIMARY GAMMA
T NO DO	w w
51	RATIC = SECONDARY MACH NO. AT THE MIXING TUBE ENTOANCE
10	PRIMARY MACH NO. AT THE MIXIN
E ¥ 10	FIMARY-IG-MIXING TUBE AREA RATIO
psipi	SECC
OUTPUT	VARIABLES:
2 A	I XE
L	RATIO
TMOPO	XED STREAM
MM3	IXED STREAM
PPOSC	X
PM350	HAYED STREAM STATIC-TO-SECCNDARY STAGNATION
7.	RESSURE CCCC FT

SUBRCUTINE CAECOV(GS.GF.NWSP.TSOPO.MSI.MPI.APIM3.PSIPI.GM.-MWMP.TMOPC.MM3.PF0SO.PM3SO.FAIL) IMPLICIT REAL*4(M) DATA YES/'YES'/

CARECCY 05100 CARECCY 05500 CA

经安部的 计自由 化二甲基苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
GAS DYNAMIC FUNCTIONS
公证证书书书证书书书书书书书书书书书书书书书书书书书书书书书书书书书书书书书
WM(G*M)=W#SQFT(G#(1,+,5#(G-1,)#(M**2))) T(G*M)=(1,+G*(M**2))/(M*SQXT(1,+,5#(G-1,)*(M**2))) PPOM(G*M)=(1,+,5#(G-1,)*(M**2))**(G-1,)
在本种的工作,并有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有有
CO=SGRT(FWSP/TSOPO) WSP=PSIPI*((1APIM3)/APIM3)*CO*(WM(GS*MSI)/WK(GP*MP1)) CPSP=(GS/GP)*((GP-1.)/(GS-1.)//WWSP
并并将并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并并
MWMP=(1.+WSP)/(1.+(WSP/MWSP)) GM=1./(1(GP-1.)/GP)*((1.+(WSP/MWSP))/(1.+CPSP*WSP))) TMOPO=(1.+WSP*CPSP*TSOFO)/(1.+WSP*CPSP)
各种法律检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查检查
C1=SQRT((TSOPD/MWSP)*(GP/GS)) C2=SQRT(TWOPO/MWMP*(GP/GM)) TM3=(T(GF.MP1)+C1*WSP*T(GS.MS1)}/((1.4%SP)*C2) TM3MIN=SQRT(2.*(GM+1.)) IF(TW3.LT.*TM3WIN) GG TC 10

00000000000000000000000000000000000000	//////////////////////////////////////

MSQD3M=(-C3+C5)/(2.*C4) MSQD3P=(-C3+C5)/(2.*C4)	
***************************************	* * * *
# OETERPINE 1%O POSSIBLE BIXED-FLOW MACH NO.	* * * * * * *
IF(MSQD3M.GE.(0.0)) VM3M=SQRT(MSGD3M) IF(MSQD3P.GE.(0.0)) MM3P=SQRT(MSQD3P) MM3=NM3P	
计算操作系统 经存储存储 医外外性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种	***
** CALCULATE PRESSURE RATIOS	* * * .
计分类操作 计分类 计分类 计分类 计分类 化二苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	* * *
C6mSGRT(Tropo/mwmp) PM3p1mC6*AP1M3#(1.+WSP)#(WM(GP.Mp1)/wm(GM.Mm3)) PP0SCm(ppom(GC.MS1)/ppcM(GP.Mp1))/pS1p1 PM3SCmpM3F1#(Ppom(GS.MS1)/pS1p1) PMOSCmpM3CO/ppom(GM.MM3) RETURN	
*******************	* * *
# ERRUR MESSAGES	K # +
***************************************	****
WRITE(5.2C) FORMAT(7.5x°°°°°) FAIL=YES END	

SUBROUTINE SSES CALCULATES RATIC FCR A CONSTANT-AREA. SEJECTOR. BY ONE-DIMENSIONAL ISENTROPIC RECOMPRESSION OF SCNIC CONDITIONS.

S

VARIABLE

INPUT

0 0 0 0

GS GP KESKEF TSOTP(

00

JECTOR

W

SUPERSON IC-SUPERSONIC

**

**

ANCE OW THE MAXIMUM COMPRESSION SUPERSONIC-SUPERSONIC ANALYSIS. ASSUMING AN THE SECCNDARY STREAM TO ***** MOLECULAR WEIGHT RATI STAGNATION TEMPERATUR ENTR IGHI TUBE Z W RATIO TUBE UNIXIM **** SUBROUTINE = SECCNDARY GAMMA = PRIMARY GAMMA = SECCNDARY-10-PRIMARY MOLECULAR WE = SECCNDARY-10-PRIMARY STAGNATION TI RATIO = SECCNDARY MACH NO. AT THE MIXING TO = PRIMARY MACH NO. AT THE MIXING TO = SECCNDARY-10-PRIMARY AREA RAYIO MOLECULAR STAGNATIO S 0 BNIXIW RATI

FLCB

SS

W

ARIABL

DUTPUT

H H H

S S S S

M. M. M.

#

MOTP

Ħ

PPOPS

MEE

H H

PM3PS1 FAIL

H B

MP1 AS1AP1

SUBROUTINE SSES(GS.GP.NWSMWP.TSOTPO.MS1.NP1.AS1AP1.WSWP.GR.NWMNNWP.TMOTPO.NN3.PPOFS1.PM3PS1.FAIL)

IMARY STAGNATION-TC-SECCNDARY ESSURE RAYIO ATIC PRESSURE COMPRESSION RAT ROR FLAG

E SECCNDARY-TO-PRIMARY MASS
E MIXEC STREAM-TO-PRIMARY MASS
RATIC
MIXEC STREAM-TO-PRIMARY S
TEMPERATURE RATIO
MIXEC STREAM-TO-PRIMARY S
MIXEC STREAM-TO-PRIMARY S
MIXEC STREAM MACH NO. AT
EXIT
PRIMARY STAGNATION-TC-SEC
PRESSURE RATIO
STATIC PRESSURE COMPRESSI

A

REAL #4(M) IMPLICIT I

O

U

I SI

0

000000000

00000000000

_

0	00	00	\circ	90	00	00	0	00	00	9	00	0	O	0	00) (0	0	0	0) C	0	0	0	٥ () (0	0	00	, 0	O	0	Э
0	00	00	00	90	ÓО	00	0	00	00	0	00	0	C	0	S	5 C	Ò	0	0	0) C	O	0	0	00	S C	\circ	0	00	20	0	0)
-	NM	4 1	100	0	Ó 0	-1	ım ı	4 10	97	· Φ (ý C	-	N	m.	₹ U	n	ΝĒ	Ø	0	٥.	40	m	4	S	10	- α	9	0	0	JM	4	S	٥
0	00	00	0	00	Ò۳						٦ م	10	2	N (NO	V۵	J N	10	N	m r	7 1	m	m	M)	יז ני	7 1	m	4	44	4	4	4	4
-	~ ~	-	4					~~	-4	-	-	•		⊶ .	~ .		4		-	٠.	4 -	-	-	~	٠,	۔ ۔	,	-	, ,	4 ***		 .	,-4

· · · · · · · · · · · · · · · · · · ·	S	SE
SAUCHATIO TAN TAN TON THAT OF TAN TON THE SAUCH	<i>\$</i>	SE
	*	SE
经存款条款 化苯甲苯甲苯甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲		SE
		SE
		SE
SUMD DO 1 1 4 A D 1 4 A D 1 4 T L (文章のMM D + T SO 1 D O + C C C D + C C C D M D 1 + C C C D M D 1		SE
T H T S S S S S S S S S S S S S S S S S		S
C2=MOMD+XKFXMEXK(G33-1.0)+(GD3-1.0)		M C
GT=C1/C2		ט מי חידו
(O" +UENGENHOLUS")		SE
PIDTH MODYNOX はまごかしまります。 PiDTH PIDTH MODYNOX はまごからない。 PiDTH PIDT		SE
COHECO ED RESIDENCE OF COMPANY OF		S C
TMOTF0=C1/C2		V O
^^ 1 ととりにトマのをのりにそすとは「のはそず」1 1 1 7 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2		יו ע
************************************		SE
(ハートル・) よくりょ (ルール・) よくり (カール・) (カ		SE
C3=(-C2+SQRT(C2*C2+4 0+C1))/(2•0+C1)		SE
C4 = (- C2 = SGRT (C2 * C2 + 4 • 0 * C1)) / (2 • 0 * C1)		SE
SK3=SORT(AMIN1(C3.C4))		S
PH3PP1=(PS1PP1+AS1AP1+FGSNS1+FGPNP1)/((1.0+AS1AP1)+F(GM,		S
PM3PS1=P3P1/FS1PP1		N C
Oddida*Iddisa=Oddisa		V C
PP 0P SI = 1 · C/PSI FP 0		ייני עיק
	n vo	SIM
计算机转换 计存储设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设计设		SE
*		SE
# FCRMAT STATEMENTS	*	SE
*		S
法典法法律法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法法		S
	S	SE
FORMAT(*0*,T2,*IMPOSSIBLE VALUEASIAP! =",E13.6)	o o	SSE
ì)	•

CALL MAAS(GP, MPI, AP2APS, SUP, 5.0E-06, MP2, FAIL)
IF(FAIL, EC, YES) RETURN
MS.2=1.0
C1:-FGPMP1+F(GP, MP2)*GGPMP1/G(GP, MP2)
C2=:GSMS1-F(GS, MS2)*GGSMS1/G(GS, MS2)
PSIPP1=C1/(AS1AP1*C2)

***************************************	4	010
* SCBROUTINE (MAAS)	NAAM	00000
	4 :	0 4 0 0 4 0
大學行行性 计计算 医动性性性 化二氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	< < <	000
经验证金额的证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据证据	4	070
SOUTH HOSE BUT OUTS IN THE OWNER BOSEFFEED TO	<	000
THE AREA RATIO (A/A*) BY LINEAR ITERATION.	(100
	4	110
* INPUT VARIABLES:	< <	120
G = SPEC(FIC HTAT RATIO	4	140
MINT = INITIAL VALUE OF MACH NUMBER	4 :	1.50
DAS II THE AREA RAMIO A/A*	4 4 4 4	1007
THUS I WOUSE FOR THE SUBSONIC BRANCH	*	180
= "SUP" FOR THE SUPERSONIC BRANCH	4	000
ERROR - MAX PERCENT DEVIATION IN MOLD AND MNEW FOR	∢ <	000
A SULUTION	< 4<	いって
OUTPUT VARIABLES:	4	230
	4	240
* MNEW # FINAL VALUE OF MACH NUMBER	4 •	250
FAIL = ERHUR FLA	(200
法的法外的证据证据的证据证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证明的证	*	280
	<	290
	₹ 4) C
	< <	320
MPLICIT REAL*4(M)	*	330
YES/ YES 1, S	4	340
	< <	350
经存在证券的 医克格特氏 医克格特氏病 计算法 计算法 计算法 计算法 计算法 计算法 计算法 计算法 计算法 计算法	(4	300
	4	380
* CALCULATE CONSTANTS	X .	0 0 0 0 0 0
兴新新教育新新新新教育教育教育教育教育教育教育教育教育教育教育教育教育教育教育教	€ 4	4 4 0 4 0 0
	(4	4
	A	430
6-1	4	4 4 4 4 0 0
11-1-0/01	(d) () () (
21=1.0/62	\ \ \	4 40
4=(6+1.0	4	480
4 I=1 0/64	4	900
	≪ ≪	200

```
7.5.1
  CLGDSP (Cont.)
```

A CONTRACT OF THE PROPERTY OF BRANCH

SUBSONIC MOLD=MINI

IF(FLOW*NE*SUP) GO TO 2

DO 1 J=1*200

C1=(WOLD*AAS)**GAI

MNEW=SQRT(G11*(G2[*C1-1*Q))

XERROR=(MNEW-MCLD)*100*O/MOLD

NOLD=MNEW

KF(ABS(XERROR)*LT*ERROR) RETURN

CONTINUE

GO TO 4 T T ALCULATE

RETURN

RETUR DD 3 J=1.200 CI=1.0+G1*MOLD*MJLD MNEW=(G2*C1)**G4)*AAS XERFCR=(MNEW-MGLD)*100.C/MDLD **3\LD=MNEW IF (ABS(XERFGR).LT.F9FGR) RETUF

FAILUR CONVERGENCE

SONIC. ه (۱۹ XERROR • ERROR 3.6,7,3,6,7,3,6) FOR *,72,*CONVERGENCE FAILURE SUBROUTINE NAAS*,/, =*,E13.6*2x,*MINI =*,E =*,E13.6*2x,*AAS =*,E R =*,E13.6*2x,*ERROR =*,E SOME TAIN TANKE AAM

00000000

10100

AAS

QN H

```
7.5.1
        CLGDSP (Cont.)
```

```
SUBROCTINE ITER PERFORMS AN ITERATION TO FIND X SUCH THAT THE PERCENT ERROR IN Y AND YGIVEN IS .LE. TO ERRORY OR THE PERCENT DEVIATION IN X(I+1) AND X(I) IS .LE. TO ERRORX.
                                                                                                                                                   INDEPENDENT VARIABLE
INCREMENT IN INDEPENDENT VARIABLE
MAX PERCENT DEVIATION IF X(1+1) AND X(1) FOR
SOLLTION
+1.0 OR -1.C. +/- INCREMENTING FROM INITIAL >
DEPENDENT VARIABLE
GIVEN VALUE OF DEPENDENT VARIABLE
MAX PERCENT ERROR IN Y AND YGIVEN FOR
SOLUTION
INCREMENT NUMBER
1--INCREMENT. 2--INTERPOLATION. 3--SOLUTION
                        (ITEP
 ITERATION SUBROUTINE
                                                                                                                                VARIABLE
                                                                                                                                                         # # #
                                                                                                                                                                                                       0 11 11 15
                                                                                                                                                                                                                                                                                                NOTE: TY
                                                                                                                                                                                                                            YGIVEN
ERRORY
                                                                                                                                                       NIT
                                                                                                                                                                                                      NS IS
                                                                                                                                                                                                                                                                                                                                   ***
                             *
```

SUBROUTINE ITER(x, DX, ERRORX, SIGN, Y, YGIVEN, ERRORY, NIYPE, XNEG, YNEG, XPOS, YFOS, NSIGNI, NSIGN2) .O/GIVEN . G IVEN)= (ACTUAL-GIVEN) * 100 .YGIVEN))-ERRORY) C.90.30 RROR (ACTUAL

90,90,1

. LIN.

IF (ABS (ERRCR (Y,YGIVEN) IF (Y-YGIVEN) 2C,90,30 NSIGN2=-1 XNEG=X YNEG=X YNEG=Y GO TO 40 NSIGN2=+1 YPOS=Y YPOS=Y YPOS=Y TO (50,80), NIYPE GO TO (50,80), NIYPE IF (NIT-1) 70,7C,6C NSIGN=NSIGN1*NSIGN2 0 0 0 0 0 0 0 30 00

```
7.5.1
        CLGDSP (Cont.)
```

```
****
                          ****
                                                *********
                                                                                         ITER/
                     INTERV
                                                                                                        SOLUTION
                                                                                              E S
                                                                                                                                     .90,100
                    SOLUTION
                                                                                              CONVERGENCE
E - WEGSTEIN
                                                     FOR
                                                                                                                                     0
                                                     INTERFOLATION
                                                                                                                                     RRORX)
                                                                    NIYPE=2
NIT=NIT+1
XSAVE=X
RATIO=(XPCS-XNEG)/(YPOS-YNEG)
X=XNEG+RATIO*(YGIVEN-YNEG)
                     FIND
                                                                                                                A=1.0/RATIO
IF(A-1.0) E2.88.82
C=A/(A-1.0)
XWGSIN=O*XSAVE+(1.0-Q)*X
IF(XWGSIN-XPOS) E6.86.88
IF(XWGSIN-XPOS) E6.86.88
S = XWGSIN
S IF(AES(ERROR(X.XSAVE))-ERR
O NIYPE=3
                                                                                              ENCE
ENCE
                     1
                                                                                              ERATICN
REFERE
                ****
                     NCREMENT
IF(NSIGN) 80,8C,7
NSIGNI=NSIGN2
NIT=NIT+1
                                                            ***
                                                                                               ACCEL
                                   GN#CX
10C
                                    X+S1
                                    ii o
                                                                                                                               88 8 6 0 0
4 8 8 0 0
    20
                                                                     0
```

0

000000000

œ

法法律法律的 计计算机 计计算机 计计算机 计计算机 计计算机 计计算机 计计算机 计计算	- 5	010
	- 1) () (
* SUBROUTINE (TTY)	> i- i-	00000000000000000000000000000000000000
	- }	100
	- þ-) C
法非法定证据 经存储的 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	٠,	040
	-	000
CLINE ITY DOINTS THE RESULTS OF PROGRAM CL	-	060
TEDRINAL OF THE A MINIMUM OF 23 CHARACTERS DES	١.	100
TOTAL STATE OF THE	>	110
TALE OF THE STAN THOUSAND CHOOLS I'VE TO THE STAN THOUSAND THE STAN THE STA	, þ.,	120
***	-	130
``````````````````````````````````````	· jo	9 6
	<b>.</b> þ.	150
	. }-	9 (
SUBACOLINE	٠,	70
	٠,	- 4
	- þ-	200
こうり こうりゃく リモン・スリモン・スリモン・スリモン・スリモン・スート	٠ 🛏	200
TAKAL MATAY 1 / A2 A1 - A3 A1	-	210
74 48 4 4 8 4 7 4 7 4 7 4 7 4 7 4 7 4 7	-	220
OBSENZITY/CORFE COI . COV. FUECT. GM. GP. G.	-	230
一句之。の文文の文文。の文文文文文、の文・八文・い文・い文・い文・八文・「文/竹/十一/又の文文)	<b>;-</b> -	240
08811 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	250
P4P1 . P40P10 . P4P3 . P40P3 0 . P5P1 . P50P10 . P60P1 . P60P10 . P60P2	-	260
60P20.P60P50.P7P1.P70610.P7P2.P70P20.P7P50.P70P50.XP	-	270
P80P10,P8F2,P80P20,P8P7,P8CP70	⊨	280
OKECN/11Y5/RCPE,RNSC,RSCJ4,RSCJ8	<b> </b>	900
DMMCN/T1Y6/T1T10,T2T1,120T10,T3T1.T30T10.T3T29,T3DT29,	⊢ i	000
1411.140110.1413.140130.1511.1501110.15011.160110.160	- 1	310
60T50.1711.17CT10.1712.170120.17150.170150.1811	- i	0 ( 1 ( 1 (
180110,1812,18012C,1817,18017	~ <b> </b>	9 C
日本の日本の「こうない」のでは、「こうないのでは、「こうない」のでは、「こうない」のでは、「こうない」のでは、「こうない」のでは、「こうない」のでは、「こうない」のできません。	سار د	100 100 100 100 100 100 100 100 100 100
		360
<b>计图题 化化合金属 化异氯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基</b>	-	370
	<b>⊢</b>	380
* OUTPUT SYSTEM DATA *	<b>-</b>	390
	-1	400
***************************************	- 1	9
	- >	4 4 2 4
OTTE (5. OFF	- }-	4
MANATER AND DECIMENT	- ļ-	450
	-	460
RITE(5.20	-	470
	⊢	480
RITE(5.20	<b>-</b>	490
	<b>}</b>	500
	•	

300000000 U

U

```
7.5.1
 CLGDSP (Cont.)
*
 .P7P1.T7T1.P70P10.T70T1
 0
 0
 , P4P3, T413, P40P30, T40T3
 , P20P1
 .A6A1.P60F1.T60T1.P60P10
 .p80P1
 2T1
 . (30T2
 O
 0
 8T1
 ,50T1
 .P20F10,T20T1
 T4071
 2P 1 • T
 ۲
 30P20
 891
 >
 đ
 *P40P1C
 ó
 30P10
 , P50P1
 N ≥ •
 ā
 ď×.
 312 . P
 ¥CH
 2A1, M1
 ď
 ۳
۷
 . ABA1
 ш
 3T1,
 271
 4T1
 . A 7 !
 , P3P2, T
 51
 S
 443. M3. N4
 .206)
.207)
2P1.T2
 1,1
 (5,213)
(5,214)
(,P5P1,T5
 $200)
$201)
$200)
$800)
 • M6
 . P4P1 . T
 .65 . A
 16)
 S . M8
 ũ
 DATA
 20
 ď
 100
 S
 . M. J.
 S. NPW
 a.
 KRITE(5.
KRITE(5.
WRITE(5.

 សិសិថ
 ທ່ ທ
 .C01.C02
 WRITE
WRITE
2.AZA1
 WRITE
WRITE
 10
 . A4 A 1
 2
2
0
 . A3A1
 шш
 ø
 10
 4
 UTPUT
 (V)
 WRIT
WRIT

 MMDAM.
 BIXIE.
 SC34 , GS
 09
 000
 OSN
 E)
 * M 4
 S
 ₩₩₩.
 ê
 Q Q ₹
 E E
 ď
 Į
 S
 шw
 トルス
 6, CPE
0, CAE
5) GS
 0.0PB
 24)
2516*
 • SSE
 SS
 5.5
 ທິທິທ
 SF.
 ŝ
8
6
6
6
6
6
6
 ୬
ଓରିନ
 α
 **
 **
 12)
 18)
 301)
 304)
 060
 IF(EJECT.EG
IF(EJECT.EG
GO TO 101
WRITE(5,219
WRITE(5,219
5,20
CT . N
CT . E
 C1.E
CT.E
5.21
 CT • E
CT • E
CT • E
S • 22
 • 00 €

• 0 €
 #UD

 V; V)
 200
 JECT.
E(5,2
 JACT.
 លល
 ម) ហ
A CHE
 E E
 ...
 17E
071
 رنا
 17E
 w w
F.W.F.
 出口に
 11
 JAF.
 mmm<sub>F</sub>
 **
 MFF
 11
ATT TA
 T C C
 αα
 uu\alpha
 \mu \mu \mu \alpha
 00 IS 20
 a a a
 u cc
 αα
 3 3
 - 3

 3 3 h
 *
 油油厂
 3 3
 7 3
```

000

Ų

J

000000000

O

U

Ü

U

O

U

```
7.5.1 CLGDSP (Cont.)
```

```
Q.CPE) %RITE(5,306)
Q.CAE) %RITE(5,307)
8)GS.GP.GM.M%PMWS.A.7A6.WPWS.M6.M7.P60P50,T60T50
0.P70P5C.T70T50
Q.CPE) WRITE(5,309)RCPE.A5A6
 · ·
 = . E13.6./.
 JECT.NE.SSE) WRITE(5,315)
JECT.EQ.CPE) WRITE(5,316)
JECT.EQ.CAE) WRITE(5,317)
JECT.EQ.SSE) WRITE(5,318)
E(5,319)GS.GP.GM.MWPMWS.A7A2.A7A6.A8A7.WPWS.M2.M6.M7.60P2.P60P2C.T60T20.P8P2.T8T2.P80P20.T80T20
 - H 1
 EXIT AND .)
 .T8T7.P80P70,T80T7

 .T14, EJECTOR
 FORMAT(*1*,T14.*+IGH ENERGY CHEMICAL LASER SYSTEM *.
-*SINULATIUN*, /*T24.*CNE-DIMENSIONAL ANALYSIS*, //*T29.
-*A.L. ADDY*, //*T29.*C.D. MIRKELSEN*, /*T29.*M.R. SANDBE-//*T30.*1 JANUARY 76.*//*T19.*MECHANICAL ENGINEERING-/DEPARTMENT*, /*T15.*UNIVERSITY OF ILLINDIS AT URBANA--*CHAMPAIGN*, /*T25.*URBANA, ILLINCIS 61801*)
FORMAT(*0*,T18,A3.**SOLUTION WITH ITERATION ON *.A4)
 DATA:)
LASER CAVITY ENTRANCE
= , E1346,138, 'GS
38, '?!!10 = ', E13.6)
 SUPERSCNIC-SUPERSONIC .. /
 E(5,310)
JECT.EG.CPE) WRITE(5,311)
JECT.EG.CAE, WRITE(5,312)
G 103
E(5,313)
E(5,314) GS.GP.GM.MMPMWS.A7A2.A7A6:
20.161120.P7P2.T7T2.P70P20.T70T20
 CAVITY (
 . M8. P8P7

 STATEMENT

 LASER SHOCK D
 . M.
 ORMAT
 SC78, GM, A8A7
 FCWMAT('0',T14,'SYSTEM FORMAT('0',T5,'POINT 1 FORMAT('0',T14,'M1
 . POINT 2
6. NORMAL
 •

 ,T36,
 FORMAT(**, 136
FORMAT(**, 136
- CONDITIONS*)
FORMAT(**, 136
 α
 10 ECT • ECT
 326
 ດາ ເນ
 ww

 IF (E. YALTE TA PS CE, IF (E. CE,
 WRITE
IF (E.
GO TO
WRITE
 E E E
 * * * *
 102
103
 201
202
203
204
 00
 0
0.5
 NOUUUUUN
 O
```

ţ

o N U

```
•
 ONS.
 AND
 CONDAR
 PRIMARY
 JECT
 •
 AND
S.)
 DIFFUSER EXIT
 JECTOR
 EJECTOR
 ū
 W
 S
 S
 w
 SER EXIT
 FORMAT('0'.TS,'PGINT 6 CONSTANT-PRESSURE EJEC-PRIMARY NCZZE EXIT','T14,'CONCITICNS')
FORMAT('0'.T5,'PGINT 6 CONSTANT-AREA EJECTOR-NDZZE EXIT','T14,'CCNDITIONS')
FORMAT('C'.T5,'PCINT 6 SUPERSONIC-SUP
 KE EJE(
IS.)
JECTOR
 #++E13.65/*
#++E13.65/*
#+,E13.6)
 3.6./.
 FURMAT('0',15,'PGINT 3 NORMAL SHOCK DIFFUSEF

-'SUBSONIC',','114,'DIFFUSER ENTRANCE CONDITION

FORMAT('0',T14,'GS =',E13.6,',

-T14,'M3 =',E13.6,T38,'A3A! =',E13.6,',

-T14,'P3P1 =',E13.6,T38,'T3T1 =',E13.6,',

-T14,'P3OP10 =',E13.6,T38,'T30T10 =',E13.6)
 ::
 000
mmm
 FORMAT('0'.T5,'PCINT S CONSTANT—PRESSUAR L'SECCNDARY NOZZLE',/,T14,'EXIT CCNDITIONS FORMAT('0'.T5,'PCINT S CONSTANT—AREA EJE -'NOZZLE EXIT'./,T14,'CCNDITIONS') FORMAT('0',T14,'GS = ',E13.6,/,F14,'M5 = ',E13.6,T38,'A5A1 = ',E13.6,T4,'PSP1 = ',E13.6,T38,'T50110 = ',E13.6,T4,'PSOP10 = ',E13.6,T38,'T50110 = ',E13.6
 · (۲)
 GEMENT.,/,T14,'ENTRANCE CI
4,'GS = ",E13,6,',
',E13,6,138,'A4A1 = ',E1
',E13,6,128,'14T1 = ',E1
',E13,6,138,'14T1 = ',E1
',E13,6,138,'140TE = ',E1
 --
\
 .
 Ħ
 = * E13 6 4 / 5 + T38 + * A2A1 5 + T38 + T2T1 5 + T38 + T2T1
 4
 ⋖
 .
 FORMAT('C', T5, 'PGINT 7
FORMAT('O', T5, 'PGINT 7
FORMAT('O', T5, 'PCINT 7
FORMAT('O', T5, 'PCINT 7
FORMAT('C', T14, 'GM
FORMAT('C', T14, 'GM
-T14, 'WMWS = 'E13.6, '.
 - ENTRANCE CONDITIONS
FORMAT(00, 114, 6S
-114, M2 = .e13.6
-114, P2P1 = .e13.6
 FORMAT("0", T5.
- SUDDEN ENLARG
FORMAT("0", T14.
-T14. M4 = "114. P4P1 = "
 218
 217
 212
 c
216
 219
 8
 9
 C
 211
 m
 4
 S
```

50

N N a

```
DATA: 1)
 ,E13.6
 = * • E13.
 EXIT
 ?"
 99.00
99.00
99.00
99.00
 9999
 S
 9999
 B. "MERKE
 IFFUSER
 SHOCK DIFFUSER DATA
="E13.6.T38."RNSD
38."M3 =".E13.6.
38."T3T2 =".E13.6.
38."T30T20 =".E13.6.
 DATA:
 EI
 444
 MMMMM

 11 11 11 11 11
 111111
 4.*SUBSGNIC DIFFUSER D
4.*RSD = *.E13.6./.
.*E13.6.T38.*A4A3 = *.
.*E13.6.T38.*M4 = *.
.*E13.6.T38.*T4T3 = *.
 , 138
 **
 11 11
 ٥
 H H H
 4.6M = .E13.6,T;

•E13.6,T38.48A1

•E13.6,T38,T8T1

•E13.6,T38,T80T10
 DAT/
 T1
0 T10
 SUBSONIC
 4. LASER CAVITY DA
4. NPTS = 113,
1613.6.138. CQ2
(.E13.6.138. A2A1
(.E13.6.138. R2
(.E13.6.138. T211
 986
 Ø
 * POINT
 * E1.
 0 H H H H
 4114
4114
20 = = 02
 FORMAT(*0.*T144
FORMAT(*0.*T144
-T144*GW = *144
-T144*P60P50 = *144*P70P50 = *144*P70 = *144*P70 = *144*P70 = *144*P70 = *144*P70 = *144*P70 =
 11 11
 FORMAT(0 - 1
FORMAT(0 - 1
-114 - 6S
-114 - M3
-114 - P4P3
 FORMAT(0 . T - T 14 . P 30P20
 -T14, P7P1
-T14, P70P10
 FORMAT(*0**-114**CQ1-714**CQ1-714**GS-7114**P2P1-714**P2P1-714**P2P1-714**P2OP1-714***P2OP1-714***P
 FORMATIC
FORMATIC
FORMATIC
FORMATIC
FORMATIC
FORMATIC
 306
307
308
308
 C
224
 300
300
302
 302
303
303
 3004
305
 309
C
310
 - 2E
 22
```

ניז מיז מיז מיז

Umm

### 7.5.1 CLGDSP (Cont.)

```
.E13.6./
 SUBSONIC
 SUBSONIC
 ı
 SUBSON
 TTOR
 = ,E13.6./
= ,E13.6./
= ,E13.6)
 100 mm
 0000
mmmm
 EJE
000
 EJECTO
 ŧ
 ŧ
22 E
 MMMM
 AT

 11 11 11
11 11 11
 ã
 • 11 11 11 11
 ER.
 3.°760720
8.°7772
8.°170120
 .. A7A6
.. M2
000 000
700 000
4-4-1
 in in in in
0000000
mmmmmmm
 . - mmmm
70
-T14, MPWS
-T14, MPWS
-T14, P60P2
-T14, P60P20
-T14, P7P2
 8P7
80P70
 FURMAT("0"
-114" GM
-114" M7
-114" P8P7
-114" P80P7
END
 5
 17
 20
```

UF

#### 7.5.2 CLGDSP Sample Input

\$EUECT2 M6=4.5 \$

```
INPUT DATA FOR LASER CAVITY ANALYSIS BY NAMELIST.
CUPRENT VALUES ARE:
$CAU
GS≈.
 1.400000
 • M1=
 2.000000
 , A2A1=
 1.0000000
 , cc≥≕ 0.0000000
0.00000000
 + HPTS=
 21.
 FSP1= 10.00000
 40AU HPTS=5.PSP1=20.0 $
THEUT THE EJECTOR MODEL FROM THE FOLLOWING LIST:
"CPE" CONSTRNT-PRESSURE EJECTOR
"CAE" CONSTANT-AREA EJECTOR
"SSE" SUPERSONIC-SUPERSONIC EJECTOR
CHE
IMPUT THE ITERATION WARIABLE FROM THE FOLLOWING LIST:
"M6" PRIMARY HOZZLE EXIT MACH NUMBER
"A7A6" MIXING TUBE EXIT-TO-PRIMARY NOZZLE EXIT AREA RATIO
"WPWS" PRIMARY-TO-SECONDARY MASS FLOW RATIO
HEME.
IMPUT DATA FOR SUPERSONIC-SUBSONIC DIFFUSER SECTION BY MANELIST.
CUPPENT MALUES ARE:
$DIFUSP
 FHSD=
 1.0000000
 , A4A3=
 1.0000000
 3 7
 #DIFUSP #
IMPUT DATA FOR EUECTOR AMALYSIS BY MAMELIST.
CURPENT MALUES ARE:
$EJECT2
 GF'=
 1.400000
 MMPMM3=
 1.000000
 · 760150=
 1.0000000 ,
 10.00000
 116=
 1.010000
 A7A6=

 MPWS= 1.000000

 A8A7=
 1.0000000
 , ‡
```

#### 7.5.3 CLGDSP Sample Output

#### HIGH EHERGY CHEMICAL LASER SYSTEM SINULATION CHE-DIMENSIONAL AMALYSIS

H.L. ADDY C.D. MITTELSEN U.F. SANDBERG

#### I DANUARY 76

MECHANICAL ENGINEERING DEPARTMENT UNINEERSITY OF ILLINOIS AT UPBANA-CHAMPAIGN UPBANA: ILLINOIS 61801

COE SOLUTION WITH ITERATION ON WAYS

STISTEM DATA:

POINT 1 LASER CAPITY ENTRANCE CONDITIONS

FOIRT 2 LASER CAPITY EXIT AND HOPMAL SHOCK DIFFUSER ENTRANCE CONDITIONS

CS = 0.46000E+01

POINT 3 NORMAL SHOCK DIFFUSER EXIT AND SUBSCHICE DIFFUSER ENTRANCE CONDITIONS

S ≈ 0.140000E+01

M3 - 0.577350E+00 ASA1 = 0.100000E+01 F3F1 = 0.450000E+01 T3T1 = 0.168750E+01 P30P10 = 0.720874E+00 T30T10 = 0.100000E+01

POINT 4 SUBSONIC DIFFUSER EXIT AND SUDDEN ENLARGEMENT ENTRANCE CONDITIONS

GS = 0.1<0000E+01

#### 7.5.3 CLGDSP Sample Output (Cont.)

į

# POINT 5 CONSTANT-AREA EJECTOR SECONDARY NOZZLE CMIT CONDITIONS

GS = 0.140000E+01

# POINT 6 CONSTANT-APER EJECTOP PRIMARY NOZZLE EMIT CONDITIONS

GP = 0.140000E+01 MWPMWS = 0.100000E+01

WPWS = 0.265889E+01

# POINT 7 CONSTANT-APER EJECTOR EXIT AND SUBSONIC DIFFUSER ENTRANCE CONDITIONS

GM = 0.140000E+01 MMMMMS = 0.100000E+01

WMWS ≈ 0.365889E+01

M7 = 0.462037E+00 A7A1 = 0.104065E+01 P7P1 = 0.199966E+02 T7T1 = 0.172629E+01 F70P10 = 0.295838E+01 T70T10 = 0.100000E+01

#### POINT 8 SUBSONIC DIFFUSER EXIT COMDITIONS

GM = 0.140000E+01 MMMMMS = 0.100000E+01

WMWS = 0.365889E + 01

M8 = 0.462037E+00 A8A1 = 0.104065E+01 P8P1 = 0.199966E+02 T8T1 = 0.172629E+01 P80P10 = 0.295838E+01 T80T10 = 0.100000E+01

#### LASER CAVITY DATA:

HFTS = 5

001 = 0.000000E+00 002 - 0.000000E+00 GS. ABA1 = 0.140000E+01 = 0.100000E+01 111 - 0.200000E+01 ME = 0.200000E+01 P2P1 = 0.160000E+01 TET1 = 0.100000E+01 P20P10 = 0.100000E+01T20T10 = 0.100000E+01

#### NORMAL SHOCK DIFFUSER DATA:

## 7.5.3 CLGDSP Sample Output (Cont.)

## POINT 8 SUBSONIC DIFFUSEP EXIT CONDITIONS (Continued)

## SUBSONIC DIFFUSER DATA:

PSD	<u></u> -	0.100000E+01			a vacacation of
GS	=	0.140000E+01	A4A3		0.100000E+01
МЗ	~	g.577350E+00	114		0.577350E+00
P4P3	=	0.100000E+01	T4T3		0.100000E+01
		0.100000E+01	T40T30	=	0.100000E+01

# CONSTANT-AREA EJECTOR DATA:

propag = 0.295838E+01

```
= 0.140000E+01
 CP
 = 0.140000E+01
65
 MWPMWS = 0.100000E+01
 = 0.140000E+01
GH
 = 0.265889E+01
 WPWS.
 = 0.100000E+02
ATA6
 <u>= 0.462037E+00</u>
 ≥ 0.450000E+01
 M7
 T60T50 = 0.100000E+01
p60P50 = 0.347866E+03
 T7T50 = 0.959053E+00
P7P50 = 0.054522E+01
 T70750 = 0.100000E+01
P70P50 = 0.410388E+01
```

## HOPMAL SHOCK DIFFUSER - SUBSONIC DIFFUSER -CONSTANT-AREA EJECTOR DATA:

```
- 0.140000E+01
 GF'
 = 0.1400000E+01
ĞŞ.
 NUPMUS = 0.100000E+01
 = 0.140000E+01
GH
 ⇒ 0.100000E+82
 A7A6
 = 0.104065E+01
ATA2
 - p.2000000E+01
 ME
 = 0.265889E+01
HPMS
 ≤ 0.462037E+00
 M7
 - 0.450000E+01
ME
P60P2 = 0.196212E+04
 T60T20 = 0.100000E+01
P60P20 = 0.250768E+03
 T7T2 = 0.172629E+01
 ± 0.199966E+02
FTF2
 T70T20 = 0.100000E+01
```

## HOPMAL SHOCK BIFFUSER - SUBSONIC DIFFUSER -CONSTANT-APEA EJECTOP - SUBSONIC DIFFUSER DATA:

GS GM ATA2 ASA7	= 0.140000E+01 = 0.140000E+01 = 0.104065E+01 = 0.100000E+01	GP = 0.140000E+01 MWPMWS = 0.100000E+01 A7A6 = 0.100000E+02 WPWS = 0.265889E+01 M6 = 0.450000E+01
M2 M7 P60P2 P60P2	"	M8 = 0.462037E+80 T60720 = 0.100000E+01
F8P2 F8P2 F80P3	= 0.199966E+02	1872   = 0.172629E+01   180720 = 0.100000E+01

## 7.5.3 CLGDSP Sample Output (Cont.)

## POINT 8 SUBSONIC DIFFUSER EXIT CONDITIONS (Continued)

## SUBSONIC DIFFUSER DATA:

TO RESTART PROGRAM ENTEP "YES" TO STOP PROGRAM ENTEP "NO" HO

END OF EMECUTION

7.6 AN EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF A CONSTANT-AREA, SUPERSONIC-SUPERSONIC EJECTOR FOR VARIATIONS IN THE MIXING TUBE LENGTH-TO-DIAMETER (L/D) RATIO

The results presented in Section 3.0 of this report were principally for variations in primary and secondary stream Mach numbers,  $M_{\rm Pl}$  and  $M_{\rm Sl}$ , and secondary-to-primary area ratio,  $A_{\rm Sl}/A_{\rm Pl}$ . The effects of variations in the mixing tube length-to-diameter ratio were investigated only indirectly by means of the measurement of the flow non-uniformity at the mixing tube exit and the recompression pressure rise along the mixing tube wall. The need to investigate the effects of length-to-diameter ratio was recognized, and a series of experiments were conducted for an ejector configuration investigated in Section 3.0. This configuration was defined by:  $M_{\rm Sl} = 2.00$ ,  $M_{\rm Pl} = 2.50$ , and  $A_{\rm Sl}/A_{\rm Pl} = 0.88$ ; experimental data were presented for this ejector in Figs. 3.3 - 3,7, and 9. For this series of experiments, the experimental procedure was the same as outlined in Section 3.2, and the mixing tube length-to-diameter-ratios were: L/D = 5, 7.5, 10, 12.5, and 15.

The results of this investigation are presented in Figs. 7.6 - 1,2. As is evident from these figures, the overall ejector performance was nearly identical for all ejector configurations with  $L/D \ge 7.5$ . The largest values of  $P_{MS}/P_{S1}$  versus  $W_P/W_S$  were found for a mixing tube L/D = 10 (the configuration investigated in Section 3.0). The values of  $P_{MS}/P_{S1}$  versus  $W_P/W_S$  for mixing tube L/D = 7.5, 12.5 and 15 were slightly less than those for a mixing tube L/D = 10. Ejector performance at a mixing tube L/D = 5 was significantly degraded relative to the mixing tubes with large L/D ratios. This poor performance is due to the inadequate mixing and recompression length within

the L/D = 5 mixing tube. For the longer mixing tubes, frictional losses may tend to reduce the performance more than the gains made in achieving a more uniform velocity profile at the mixing tube exit; compare, for example, the performance results for L/D = 7.5, 10, 12.5, and 15 in light of the known flow non-uniformities for an L/D = 10, Figs. 3.3 - 7.9.

**



Maximum Ejector Compression Characteristics for Variations in Mixing Tube Length-to-Diameter Ratio  $({}^M_p/{}^M_S$  vs.  ${}^P_{MS}/{}^P_{S1}).$ Figure 7.6 - 1.



Maximum Ejector Compression Characteristics for Variations in Mixing Tube Lengch-to-Diameter Ratio  $(P_{p_0}/P_{S1}/P_{s1}).$ Figure 7.6 - 2.

### 8.0 PARTICIPATING PERSONNEL

Dr. A.L. Addy Professor of Mechanical Engineering Principal Investigator

Mr. C.D. Mikkelsen Graduate Research Assistant Ph.D. Candidate (Graduated October 1976)

Mr. M.R. Sandberg Graduate Research Assistant M.S. Candidate

Mr. Leroy Westendorf Instrument Maker

Ms. Kathryn Roberts Clerk-Typist III

Ms. Mary Reed Clerk-Typist JII