This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

A

lat. Cl.:

C 66 g. 33/02

BUNDESREPUBLIK DEUTSCHLAND

Deutsche KL: 39 b5, 33/02

Behördeneigentu**m**

Offenlegu	ngsschrift 1720768
	Aktenzeichen: P 17 20 768.0 (F 54461) Anmeldetag: 2. Januar 1968
	Offenlegungstag: 15. Juli 1971
Austellungspriorität:	
•	
	
	-
Aktenzeichen: «	-
Bezeichnung:	Kunststoffe auf Isocyanathasis und Verfahren zu ihrer Herstellung
Zusatz zu:	
Ausscheidung sus:	-
Annelder:	Farbenfabriken Bayer AG, 5090 Leverkusen
Vertreter:	
Als Erfinder bensunt:	Diehr, Hans-Joschim, Dr.; Merten, Rudolf, Dr.; Piechota, Helmut, Dr.; Uhlig, Konrad, Dr.; 5090 Leverkusen
	Unionspriorität Datum: Land: Aktenzeichen: " Bezeichnung: Zusatz zu: Ausscheidung aus: Anmelder: Vertreter:

FARBENFABRIKEN BAYER AG

1720768

LEVERKUSEN-Bayerwark 2 8, Dez. 1967 Perent-Aberliang GM/BS

Kunststoffe auf Isocyanatbasis und Verfahren zu ihrer Herstellung

Die Polymerisation von Verbindungen mit aliphatischen und aromatischen Isocyanatgruppen ist bekannt und in vielfacher Variation beschrieben. Im allgemeinen verwendet man bei dieser Polymerisation alkalische Katalysatoren. Diese bewirken eine Umwandlung der NCO-Gruppen in Isocyanurat-Ringe, wobei diese Reaktion im allgemeinen in Substanz bzw. in Lösung su definierte Anteile an Isocyanurat-Ringe enthaltenden Polymeren oder auch unter vollstämiger Ausreaktion der vorhandenen NCO-Gruppen geführt wird. Bei Verwendung von Verbindungen mit mehr als einer Isocyanatgruppe im Molekül führt diese Trimerisation im allgemeinen unter unkontrollierbaren Bedingungen zu einem völlig vernetzten und spröden Material. Als weitere Schwierigkeit bei den Polymerisationsreaktionen muß die Tatsache angesehen werden, das im allgemeinen eine Inkubationsseit vorhanden ist, die einen Beginn dieser Reaktion su einem definierten Zeitpunkt praktisch unmöglich macht. Lediglich bei Verwendung von sehr aktiven Katalysatoren kann die exotherm verlaufende Polymerisation von NCO-Gruppen bereits

109829/1430

bei Raumtemperatur gestartet werden. Jedoch ist es dann and praktisch unmöglich, die Reaktion in die Hand su bekommen. Deshalb werden derartige Polymerisationsreaktionen im allgemeinen mit schwach wirksamen (basischen) Aktivatoren bei erhöhten Temperaturen durchgeführt. Ferner wurden bereits Polymerisationsreaktionen unter Verwendung von phenolischen Mannichbasen beschrieben, die sich von einem gegebenenfalls durch Halogen- oder C4-O5-Alkylrost substituierten Phenel oder Thiophenol ableiten. Spesiell verwendet wurde das 2,4,6-Trisdimethylaminomethylphenol, wobei letsteres insbesondere susammen mit einem Epoxid sur Ersielung einer hinreichenden Aktivität eingesetst werden soll. Die hierbei erhaltenen Reaktionsprodukte besitsen jedoch einen starken Geruch nach Amin, der einer praktischen Verwendung hinderlich ist. Zudem führen die verwendeten Amin-Komponenten zu einem wenig gleichmäßigen Ablauf der Polymerisationsreaktion und hierdurch zu einem technisch nicht in jeder Hinsicht befriedigenden Verfahrensprodukt.

Ferner ist bekannt, alkoxylierte Kondensationsprodukte
aus Aminen, Oxoverbindungen und Phenolen mit mindestens
swei freien o- und/oder p-Stellungen als Polyhydroxylverbindungen sur Umsetsung mit Isocyanaten, beispielsweise
auf dem Schaumstoffsektor, heransusiehen, ohne daß jedoch
in diesen Pällen eine wesentliche Polymerisationsreaktion
der Isocyanatgruppen beobachtet werden kann.

Le A 11 180

- 2 -109829/1430 Überraschenderweise wurde nun gefunden, daß man Kunststoffe auf Basis von Polyisocyanaten mit vorteilhaften technologischen Eigenschaften erhält, wenn man eine Verbindung mit mehr als einer Isocyanatgruppe, gegebenenfalls in Gegenwart eines Treibmittels und gegebenenfalls mit unterschüssigen Anteilen von Verbindungen mit aktiven Wasserstoffatomen, gegebenenfalls unter Zusatz von Stabilisatoren und üblichen Hilfsmitteln, mit solchen Mannichbasen von Phenolen als Katalysatoren zur Reaktion bringt, die einbaufähige ein- oder mehrkernige Mannichbasen aus sekundaren Aminen, vorzugsweise Dimethylamin, Formaldehyd und Phenolen darstellen und die zusätzlich zu der substituierten Aminomethylgruppierung und der phenolischen OH-Gruppe noch mindestens eine weitere Gruppe mit gegenüber Isocyanatgruppen reaktionsfähigen Wasserstoffatomen enthalten.

Erfindungsgemäß werden also Katalysatoren verwendet, die im Molekül freie OH-, SH-, -COOH, -CO2MH2-MH- oder MH2-Gruppen and halten und demnach bei der Polymerisationsreaktion unter gleichzeitiger Reaktion dieser Gruppen in das Polymere eingebaut werden. Gegenüber den bereits früher beschriebenen Katalysatoren seichnen sie sich durch einen wesentlich geringeren Geruch nach der Schaumstoffherstellung sowie auch durchweg durch eine höhere Aktivität aus. Diese wird offensichtlich durch die Tatsache bedingt, daß der Katalysator durch Reaktion mit dem Polyisocyanat in eine mit diesem verträgliche Form gebracht wird, so daß die Polymerisations-reaktion gleichmäßiger abläuft. Stark hydrophile und

unverträgliche Katalysatoren müssen zur Erzielung optimaler Aktivität zusammen mit Emulgiermitteln oder ähnlich wirkenden Mitteln eingesetzt werden

Die aus dem Stand der Technik bekannten Hydroxylgruppen enthaltenden Mannichbasen aus Aminoalkoholen zeigen praktisch keine Aktivität im Sinne der Polymerisationsreaktion der NCO-Gruppe, denn hierfür ist die Mitverwendung von sekundären Aminen wie vorzugsweise Dimethylamin swingend. Besonders wirksame Katalysatoren werden erhalten, wenn die eingesetzten Phenole mit mindestens zwei freien o- und/oder p-Stellungen mit etwa gleichen Anteilen an Dimethylamin und einem Aminoalkohol kondensiert werden, wobei zur Erhöhung der Anfangsverträglichkeit der Katalysatoren in den Polyisocyanaten zusätzlich höhere Alkyl-, Cycloalkyl- oder Aralkylreste von besonderer Bedeutung sind.

Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden
Kunststoffen durch Polymerisation von Verbindungen mit mehr
als einer Isocyanatgruppe im Molekül in Gegenwart von Mannichbasen von Phenolen, dadurch gekennzeichnet, daß man gegebenenfalls in Gegenwart von Treibmitteln, unterschüssigen
Anteilen von Verbindungen mit aktiven Wasserstoffatomen und
Stabilisatoren als Mannichbasen von Phenolen solche einbaufähigen ein- oder mehrwertigen Mannichbasen aus sekundären

Aminen, Formaldehyd und Phenolen verwendet, die zusätzlich zu der substituierten Aminomethylgruppe und der phenolischen OH-Gruppe mindestens eine weitere Gruppe mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen enthalten.

Die Erfindung betrifft ferner Kunststoffe, die nach diesem Verfahren erhältlich sind, vorzugsweise Schaumstoffe.

Als Polyisocyanate kommen aliphatische und vorzugsweise aromatische mehrwertige Isocyanate in Frage, z. B. Alkylendiisocyanate wie Tetra- und Hexamethylendiisocyanat, Arylendiisocyanate und ihre Alkylierungsprodukte wie die Phenylendiisocyanate, Naphthylendiisocyanate, Diphenylmethandiisocyanate, Toluylendiisocyanate, Di- und Triisopropylbenzoldiisocyanate und Triphenylmethantriisocyante, p-Isocyanatophenyl-thiophosphorsäure-triester, p-Isocyanato-phenylphosphorsäure-triester, Aralkyldiisocyanate wie 1-(Isocyanatophenyl)-athylisocyanat oder die Nylylendiisocyanate sowie auch die durch die verschiedensten Substituenten wie Alkoxy, Nitro, Chlor oder Brom substituierten Polyisocyanate, ferner mit unterschüssigen Mengen von Polyhydroxylverbindungen wie Trimethylolpropan, Hexantriol, Glycerin, Butandiol modifizierte Polyisocyanate. Als erfindungsgemäß zu verwendende Polyisocyanate kommen ferner die gemäß der deutschen Patentanmeldung F 52 393 IVb/12 o herstellbaren Polyisocyanate in Frage. Als vorzugsweise in Frage kommendes Polyisocyanat sei das durch Anilin-Formaldehyd-Kondensation

und anschließende Phosgenierung herstellbare Polyisocyanat genannt. Genannt seien ferner acetalmodifisierte Isocyanate sowie polymerisierte Isocyanate mit Isocyanuratringen sowie höhermolekulare Polyisocyanate, die durch Umsetzung von monomeren Polyisocyanaten mit höhermolekularen Verbindungen mit reaktionsfähigen Wasserstoffatomen, vorzugsweise höhermolekularen Polyhydroxylverbindungen, Polycarboxylund Polyamino-Verbindungen, herstellbar sind. Es können natürlich auch Mischungen verschiedener Isocyanate eingesetzt werden, wobei in diesem Falle auch Monoisocyanate wie Phenylisocyanat oder Naphthylisocyanat mitverwendet werden können.

Die Polymerisationsreaktion der Isocyanatverbindung kann in Gegenwart von Verbindungen mit aktiven Wasserstoffatomen vorgenommen werden. Bei Verwendung von Wasser, welches vorzugsweise verwendet wird, kann hierdurch ein gegebenenfalls susätslicher Treibeffekt erreicht werden, ansonsten wird man im allgemeinen organische Verbindungen mit mehreren aktiven Wasserstoffatomen einsetsen. In Prage kommen hier, einseln oder in Mischung neben Polyaminen oder Aminoalkoholen, vorzugsweise nimer- und höhermolekulare Hydroxylverbindungen oder ihre Gemische, wie sie in breiter Form sur Herstellung von Polyurethan-Kumststoffen bekannt sind, sowie die üblichen Mono- und Polyalkohole wie Butanol, Cyclohexanol, Bensylalkohol, Äthylenglykol, Propylenglykol, Glycerin, Trimethylolpropan bzw. deren Addukte mit Alkylenoxiden wie Äthylen- und/oder Propylenoxid. Als polyfunktionelle

Starter kommen hierfür auch Kondensationsprodukte obiger Polyalkohole mit Polycarbonsäuren wie Adipin-, Sebacin-, Malein-, Phthal- oder Terephthalsäure in Frage. Zahlreiche derartige Verbindungen sind in "Polyurethanes, Chemistry and Technology", Bd. I und II, Saunders-Frisch, Interscience Publishers 1962 und 1964, und in Kunststoffhandbuch, Bd. VII, Vieweg-Höchtlen, Carl-Hanser-Verlag, München, 1966, beschrieben.

Nach dem Verfahren können homogener Festkörper, Lacke, Überzüge, Schaum- und Zellkörper erhalten werden. Die Herstellung von Schaumstoffen ist bevorzugt.

Eine Treibreaktion zur Herstellung von Schaumkörpern wird durch Verwendung von Wasser oder von zusätzlichen Treibmitteln durchgeführt. Als meibmittel können neben den sich unter Abspaltung von Gasen, beispielsweise von Stickstoff, zersetzenden Verbindungen, z. B. Azo-Verbindungen oder Sulfonylaziden, insbesondere niedersiedende Kohlenwasserstoffe und ihre Halogenierungsprodukte Verwendung finden, z. B. halogenierte Methane oder Äthane, Chlorfluormethane, Äthylendichlorid, Vinylidenchlorid.

Als Zusatzmittel werden zur Erleichterung der Vermischungsund Verschäumungsreaktionen die üblichen Emulgatoren und Schaumstabilisatoren verwendet, z.B. höhere Alkyl- bzw. Arylsulfonsäuren und ihre Salze, Schwefelsäureester von Ricinusöl oder Ricinolskure und ihre Salse, Öl- oder Stearinskuresalse, basische Gruppen enthaltende Silicon- öle, Siloxan- und Alkylenoxid-Anteile enthaltende Misch-kondensationsprodukte.

Als Katalysatoren werden gemäß der vorliegenden Erfindung z. B. Mannichbasen aus Phenolen mit mindestens swei kondensationsfähigen o- und/oder p-Stellungen, Formaldehyd und Mischungen aus Dimethylamin und sekundären Aminoalkoholen verwendet. Darüber hinaus werden als Katalysatoren aber ganz allgemein solche einbaufähigen ein- oder mehrkernige Mannichbasen aus sekundären Aminen, vorzugsweise Dimethylamin, Formaldehyd und Phenolen verwendet, die zusätzlich zu der substituierten Aminomethylgruppe und der phenolischen OH-Gruppe noch mindestens eine weitere Gruppe mit gegenüber Isocyanaten reaktionsfähigen Wasserstoffatomen enthalten. Solche gegenüber Isocyanaten reaktionsfähige Wasserstoffatome sind z. B. in den Gruppierungen OH, COOH, CO2NH2, NH2, NHR (R = Alkyl, Cycloalkyl, Aryl, Aralkyl) und SH euthalten.

Als Phenole kommen sur Herstellung der Katalysatoren in Frage: Phenol, Kresole, Kylenole, Isocotyl-, Isononyl-, Isododecyl- und Cyclohexylphenole mit den Substituenten in o-, vorzugsweise p-Stellung, die durch Umsetsung von Phenol mit Styrol erhaltenen Phenäthylphenole, ferner Polyphenole wie Hydrochinon, 4,4'-Dihydroxy-diphenylmethan, Salicylsäure bzw. ihre Salse, Hydroxyalkylester der Salicylsäure, Salicylsäureamid, Saligenin-Hydroxyalkyläther.

Als sekundäre Aminoalkohole kommen speziell Dialkanolamine
wie Diäthanol- oder Dipropanolamin sowie N-Alkylalkanolamine
wie N-Methyl-, N-Äthyl- oder N-Butyläthanolamin in Frage.
Zur Kondensation mit den Phenolen kommen aber auch Aminocarbonsäuren wie Alanin (oder ihre Salze) oder Polyamine wie

1,3-Propylendiamin, Disthylentriamin oder Aminothiole in Frage.

Die Mengenverhältnisse zwischen dem sekundären Aminoalkohol bzw. der Aminocarbonsäure (oder ihrem Salz) bzw. Polyamin bzw. Aminothiol und dem Dimethylamin wird man vorteilhaft so einstellen, daß pro Molekul mindestens eine katalytisch wirksame Dimethylaminomethylgrupps und mindestens eine einbaufähige Gruppe mit gegenüber Isocyanaten reaktiven Wasserstoffatomen eingeführt werden. Dies erreicht man bei monosubstituierten Phenolen durch Verwendung gleicher molekularer Anteile von Dimethylamin und sekundärem Aminoalkohol bzw. der Aminocarbonsäure (oder ihrem Salz) bzw. Diamin bzw. Aminothiol, während man bei Verwendung oder Mitverwendung von Phenol 33 - 66 Mol.-% Dimethylamin verwenden sollte. Katalysatoren mit anderen funktionellen Gruppen, z.B. vom Salicylsäureamid abgeleitet, werden in analoger Weise durch Mannichreaktion wit Formaldehyd und dem sekundären Amin, speziell Dimethylamin, hergestellt.

Die zur Herstellung des Katalysators eingesetzten Phenolund anderen Komponenten können natürlich jeweils in Form ihrer Mischungen verwendet werden, wobei für Mischungen aus monosubstituierten Phenolen und unsubstituiertem Phenolobige Mengenverhältnisse sinngemäß einzusetzen sind. Die Anteile an Formaldehyd werden durch die kondensationsfähigen Gruppierungen im eingesetzten Phenol bestimmt. Sofern die Formaldehydmenge der Aminmenge entspricht, werden einkernige Mannichbasen erhalten, während bei höheren Formaldehydmengen durch entsprechende Reduktion des Aminanteils 109829/1430

auch mehrkernige Katalysatoren gewonnen werden können. Beispielsweise entsteht aus zwei Mol p-Isononylphenol, einem Mol Dimethylamin und einem Mol Diäthanolamin mit drei Mol Formaldehyd ein statistisch zweikernig aufgebautes Kondensationsprodukt.

Die Kondensation von Phenol, sekundärem Amin und Formaldehyd erfolgt s. B. nach den in den US-Patentschriften 2,033,092 und 2,220,834 gegebenen Lehren.

Neben den erfindungsgemäß su verwendenden Katalysatoren können auch die üblichen in der Isocyanat-Chemie bekannten Katalysatoren, s. B. organische Metallverbindungen wie Pb- oder Sn-Salse, anorganische und organische mehrbasische Metallsalse sowie tertiäre Amine wie Dimethylbensylamin oder Endosthylenpiperasin mitverwendst werden. Im allgemeinen entstehen in den Schaumstoffen laut IR-spektroskopischen Analysen, je nach Bedingungen, insbesondere in Abhängigkeit von der erreichten Reaktionstemperatur, mehr oder minder hohe Anteile an Carbodiimid-Strukturen, deren Anteil in den Schaumstoffen durch Mitverwendung der sur Herstellung von Carbodiimiden bekannten Katalysatoren, besonders 3- und 5-wertigen organischen Phosphor-Verbindungen wie Phospholinen, Phospholinoxiden, tertiären Phosphinen, (cyclischen) Estern, Amiden und Esteramiden der phosphorigen und der Phosphorsäure, erhöht werden kann. Weitere Einselheiten über Emulgator, Katalysator etc. können z. B. "Polyurethanes, Chemistry and Technology", Bd. I und II, Saunders-Frisch, Interscience Publishers, 1962 und 1964, entnommen werden.

Die Herstellung von Schaumstoffen erfolgt in der üblichen und allgemein bekannten Weise, vorzugsweise auf maschinellem Wege, durch Vermischen der Reaktionskomponenten und Ausgießen in eine entsprechende Formvorrichtung. Die Menge an Treibmitteln wird hierbei durch das gewünschte Raumgewicht bestimmt. Man wird im allgemeinen zwischen 1 und 100, vorzugsweise zwischen 5 und 50 Gewichtsteilen eines Fluorchlormethans oder eine entsprechende Menge eines anderen Treibmittels, bezogen auf die Isocyanat-Komponente, zum Einsatz bringen. Im allgemeinen werden Raumgewichte zwischen 15 und 200 oder auch höher, vorzugsweise zwischen 20 und 200 kg/m³, angestrebt.

Die Menge an Verbindunge: mit proteitiven Wasserstoffatomen wird man im allgemeinen so einstellen, daß noch eine hinreichende Menge an freien Tsocyanat-Gruppen für die Polymerisationsreaktion zur Verfügung steht. Vorzugsweise wird
man die Menge jedoch so bemessen, daß mindestens 50 %, vorzugsweise über 70 %, der insgesamt eingesetzten IsocyanatMenge für die Polymerisationsreaktion zur Verfügung stehen.
Die Menge an Katalysator wird im wesentlichen durch seinen
Aufbau bestimmt, wobei keine Relation mehr zwischen dem
Stickstoffanteil und seiner Aktivität eintritt. Ein gewisses Maß stellt der im folgenden beschriebene Aktivitätstest dar. Im allgemeinen kann man zwischen 0,5 und 15 Gew.-%
an Katalysatorkomponente, bezogen auf die Isocyanatkomponente,
einsetzen.

Le A 11 180

Zusätzlich zu den bei der Kunststoff-Herstellung eingesetzten Komponenten können die üblichen Hilfsmittel wie
Pigmente, Parbstoffe, Weichmacher, Plammschutsmittel wie
Antimon-, Phosphor- oder Halogen-Verbindungen sugemischt werden.

In gleicher Weise erfolgt die Herstellung von Lacken und Feststoffen nach prinsipiell bekannten Methoden. Lacke werden unter Mitverwendung von Lösungsmitteln aufgebracht und, gegebenenfalls nach Zusats von üblichen Lackhilfsmitten und Pigmenten, auf den verschiedensten Substraten wie Hols, Glas, Metall oder Papier applisiert. Die Kondensation kann auch bei erhöhter Temperatur su Ende geführt werden. Feststoffe werden durch Eingießen der mit dem Katalysator versetzten Polyisocyanat(gemisch)e in Formen, gegebenenfalls unter Kühlen oder Machheisen, hergestellt.

Eine IR-spektroskopische Untersuchung der erhaltenen Kunststoffe, Lacke, Überzüge und Schaumstoffe zeigt hohe Anteile an Isocyanuratringen neben geringen Mengen von Carbodiimidgruppierungen.

A) Bestimmung der Aktivität:

25 Gew.-Teile Toluylen-2,4-diisocyanat werden auf 20° gebracht und dann unter Schütteln mit 0,1 ml eines (im allgemeinen flüssigen) Katalysators versetst. Man schüttelt noch

Le A 11 180

5 Sekunden nach und bestimmt dann die Temperatur in Abhängigkeit von der Zeit. Als charakteristische Größen werden die Zeiten genommen, nach denen die Mischungen eine Temperatur von 50 und 75° C erreichen. In diesem Aktivitätstest bringt 2,4,6-Tris-dimethylaminomethyl-phenol einen Wert von 50° C nach 175 Sekunden und 75° C nach 200 Sekunden.

B) Herstellung der zu verwendenden Katalysatoren

Allgemeine Arbeitsvorschrift: Das Phenol, die Dimethylaminmenge, letztere in Form einer 25 figen wäßrigen Lösung, und die Alkanolaminmenge werden bei etwa 25° vorgelegt, und dann wird im Verlauf von 30 Minuten die erforderliche Formaldshydmengs, im allgemeinen in Form der 40 figen wäßrigen Lösung, sugetropft. Man heizt noch etwa 1 Stunde auf 30° C nach und erhöht dann die Temperatur im Verlauf von weiteren 2 Stunden auf 80° C. Nach 2 Stunden bei 80° C trennt man durch Zugabe von Kochsalz organische und wäßrige Phase und engt die organische Phase bei 70°C/12 Torr ein; gegebeuenfalls muß die organischen Anteilen befreit werden. Desgleichen ist es möglich, die Abtrennung der wäßrigen Phase durch Kochsalzzugabe zu unterlassen und die Kombination direkt bei 70 - 80°C/12 Torr einsuengen.

Einzelheiten über die einzusetzenden Mengen, Ausbeuten und Eigenschaften der Reaktionsprodukte gehen aus der nachfolgenden Tabelle hervor.

- 13 -

	Aktivität nach Sekunden 50° C 75° C	240	30	001	120
•	Aktivitat Sekunden 50º C	125	23	20	06
	6P25	11490	242	1962	9810
	GewTle. Ausbeute	533	298	301	. 548
Tabelle 1	Gewrle. CH_O (in Form einer 40 %igen wiskigen Lösung	180	. 09	09	06
	GewTle. Athanol- amin	150 H-Methyl- Ethenolamin	105 Distha- nolamin	75 M-Methyl- Athanolamin	105 Disthanol- amin
	GevTle. Dimethyl- smin (in 25 %iger vääriger Form	180	45	45	75
	GewTelle Phenol	188 Phenol	220 Isononyl- phenol (1)		■
	Hr. Ge	B 1 18	B: 2 22	в 3 220	# # #

Beispiele 1- 4:

Allgemeine Arbeitsvorschriften

100,0 Gewichtsteile durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung erhaltenes Polyaryl-polymethylen-polyisocyanat werden zu einer Mischung aus 6,0 Gewichtsteilen Katalysator, 15,0 Gewichtsteilen Monofluortrichlormethan und 1,0 Gewichtsteilen eines Polysiloxan-Polyäther-Copolymerisats gegeben, mit einem elektrisch angetriebenen Rührer intensiv vermischt und in vorbereitete Packpapierformen gegossen.

In der Tabelle 2 sind die Reaktionszeiten und Eigenschaften der erhaltenen Polyisocyanurat-Schaumstoffe angegeben.

Beispiele 5 - 8:

100,0 Gewichtsteile durch Aullin-Formaldehyd-Kondensation und anschließende Phosgenierung erhaltenes Polyaryl-polymethylen-polyisocyanat verrührt man mit einer Mischung aus 6 Gewichtsteilen Katalysator, 15 Gewichtsteilen Monofluor-trichlormethan, 1 Gewichtsteil eines Polysiloxan-Polyäther-Copolymerisats und 10 Gewichtsteilen eines Sucrose/Propylen-oxid-Polyäthers der OH-Zahl 380. Anschließend wird die Reaktionsmasse in Papierforsen gefüllt.

Die Reaktionszeiten und Eigenschaften der erhaltenen Schaumstoffe sind in Tabelle 3 aufgezeichnet.

Le A 11 180

- 15 -

C	V
•	Þ
r	7
1	ġ
1	
•	

Beispiel	Katalyss- tor	† 84	**	4 00	,	Oberf1Kohe	pe pe	Zellbild	Raungewicht kg/m ³
-	H 4	8	150	240	8	leicht spröde	prode	sehr fein	43
8	B 2	30	35	55	9	E	*	mittelfein	64
M	E B	25	55	82	9		*	sehr fein	. 12
+	4	2	8	125	110	*		sehr fein	61
				2	Tabelle 3	m			
2	B 1	5	8	8	235	weniger spröde	språde	mittelfein	37
9	. B 2	09	85	110	125	*		sehr fein	; ;
7	M	.09	8	120	200		*	sehr fein	3
ထ	+ M	9	130	160	270	.	*	sehr fein	2.4

tg = Stelgseit Die Beurteilung der Oberfläche erfolgte 24 Stunden nach der Herstellung Americang: t_R = Rübrseit - t_A = Abbindeseit (innen)

Beispiel 9:

50 Gewichtsteile des in Beispiel 1 beschriebenen Isocyanats werden mit 1 Gewichtsteil des nach B 2 erhaltenen Katalysators vermischt in einer geschlossenen Form unter Druck zu einem homogenen Pormkörper auskondensiert. (Die Reaktion wird durch 2stündiges Nachheizen auf 80° vervollständigt.) Man erhält einen praktisch unbrennbaren Kunststoff mit hoher Festigkeit.

Beispiel 10:

25 Gewichtsteile des aus 3 Mol Hexamethylendiisocyanat un 1 Mol Wasser erhaltenen Biuretdiisocyanats werden nach Lösung in 25 Gewichtsteilen einer Lösungsmittelkombination aus gleichen Teilen Äthylacetat, Butylacetat und Glykolmonomethylätheracetat mit 2 Gewichtsteilen des nach B 3 erhaltenen Katalysators versetzt und auf Glas, Papier und Gewebe aufgebracht. Durch Nachheizen bei 80° (2 Stunden) wird die Reaktion zu Ende geführt. Man erhält einen praktisch unbrennbaren Überzug.

Le A 11 180

- 17 -

Patentanepriiche

- 1. Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Kunststoffen durch Polymerisation von Verbindungen mit mehr als einer Isocyanatgruppe im Molekül in
 Gegenwart von Mannichbasen von Phenolen, dadurch gekennseichnet, daß man gegebenenfalls in Gegenwart von
 Treibmitteln, unterschüssigen Anteilen von Verbindungen
 mit aktiven Wasserstoffatomen und Stabilisatoren als
 Mannichbasen von Phenolen solche einbaufähigen ein- oder
 mehrkernigen Mannichbasen aus sekundären Aminen, Formaldehyd und Phenolen verwendet, die susätslich zu der
 substituierten Aminomethylgruppe und der phenolischen
 OH-Gruppe mindestens eine weitere Gruppe mit gegenüber
 Isocyanaten reaktionsfähigen Wasserstoffatomen enthalten.
- 2. Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Schaumstoffen durch Polymerisation von Verbindungen mit mehr als einer Isocyanatgruppe im Molekül in
 Gegenwart von Mannichbasen von Phenolen, dadurch gekennzeichnet, daß man in Gegenwart von Treibmitteln, gegebenenfells
 in Gegenwart von unterschüssigen Anteilen von Verbindungen mit
 aktiven Wasserstoffatomen und Stabilisatoren, als Mannichbasen von Phenolen solche einbaufähigen ein- oder mehrkernigen Mannichbasen aus sekundären Aminen, Formaldehyd
 und Phenolen verwendet, die zusätzlich zu der substituierten Aminomethylgruppe und der phenolischen OH-Gruppe
 mindestens eine weitere Gruppe mit gegenüber Isocyanaten
 reaktionsfähigen Wasserstoffatomen enthalten.

Le A 11 180 107 5 0 75 18 - 109829/1430

- 3. Verfahren gemäß Anspruch 1 und 2, dadurch gekennzeichnet, dass solche Mannichbasen verwendet werden, die mit Dimethylamin als sekundärem Amin erhalten worden sind.
- 4. Verfahren gemäss Anspruch 1 und 2, dadurch gekennzeichnet, dass solche Mannichbasen verwendet werden, die mit Dimethylamin und sekundären Aminoalkoholen als sekundäres Amin erhalten worden sind.
- 5. Kunststoffe erhältlich nach den Verfahren gemäss Anspruch 1 bis 4.
- 6. Schaumstoffe erhältlich nach den Verfahren gemäss Anspruch 1 bis 4.

Le A 11 180

- 19 -

ORIGINAL INSPECTED