

Linking genotype and phenotype: GWAS/PheWAS

Day 2

Single layer connection

- Find association between the changes in the genome and particular characteristics in the phenome
 - Disease
 - Body size, weight
 - Eye/coat color
 - Gene expression
- Multiple approaches
 - Candidate gene approach
 - Genome wide approach
 - Phenotype centered approach

cases (n=1,000) people with heart disease

controls (n=1,000) people without heart disease

Observation:

- Some characteristics of an individual seem to be inherited to their offspring, but differ between unrelated individuals

• Given:

- Genetics for a set of individuals (e.g., SNPs, microsatellite markers, ...)
- Phenotype for same set of individuals (e.g. height, hair color, disease status, gene-expression, ...)

Goal:

- Find genetic markers that explain the variance of the phenotype

• GWAS

- Genome-wide association study
- Compare genome-wide set of genetic variants in many individuals to single trait

PheWAS

- Phenome-wide associations study
- Compare many phenotypes in many individuals to single genetic variant (or other attribute) or single gene
- Logical inverse to GWAS

eQTL study

 Association between the a risk SNP and the expression of a nearby gene (expression quantitative trait locus (eQTL))

Trait: a distinguishing characteristic

Genotype: Genetic status of individual *i*

Phenotype: Status of a trait for individual i

Allele: Genetic state at a point in the genome

Locus: Position (or limited region) in genome

- Homozygous: maternal and paternal alleles are identical
- Heterozygous: maternal and paternal alleles differ

Haplotype: State of single set of chromosomes

Experimental design: GWAS

Case-control

- Compare 2 groups of individuals, one with trait/disease ("case") and one without ("control)
- Assumption: individuals in both groups provide unbiased allele frequency estimates from the underlying distribution
- Examples: disease, hair color

Quantitative traits

- Collect measurements of trait for large group of individuals
- Examples: height, biomarker concentration, gene expression

- **Objective:** Find genotypes/alleles significantly associated with phenotype
- Test for each SNP if allele frequency is different between case and control
 - Use odds ratio as measure of effect size: odds of disease with allele A/odds of disease with allele B
 - If allele frequency in case group higher than control group -> odds ratio > 1
 - Significance of odds ratio determined by chisquared test

- Not SNP, but genes in linkage disequilibrium with SNP may be the once responsible for effect
- Inheritance patterns: Dominant and recessive inheritance of disease variants
- Multiple testing correction: chance of finding significant hits rise with number of statistical tests performed
- Confounding factors: geographic ancestry, sex, age, ... require population stratification
- **Epistasis**: multiple loci (multiple SNPs) contribute to complex phenotype
- Not all SNPs are assayed (especially on SNP arrays): require imputation

Excursion: Linkage Disequilibrium

Decay of Linkage over successive generations

Linkage Within A Family Recombination Point Initial Generation Generation 1 Generation 2 Generation 3 Linkage between two points/

markers

Linkage Disequilibrium Within A Population

Population moves from Linkage Disequilibrium to Linkage Equilibrium over time

Direct and indirect associations

- Direct association: identified SNP is directly involved in phenotype (e.g., disease causing)
- Indirect association: SNP is not causative, but in LD with true causative SNP

Association ≠ Causation

Penetrance

- Risk of developing disease at any point associated with a specific SNP
- E.g. SNP rs6025 in Factor V Leiden associated with 6x risk increase for thrombosis, but most carriers clinically unaffected
- Small genetic effect = low penetrance

Heritability

- Total effect of genetic variants at multiple alleles contributing to the overall disease risk
- Can be estimated by twin studies
- Example: heritability of 40\$ = 40% of total variance in disease risk can be explained by genetic factors

Common disease/common variant hypothesis

Common diseases are likely influenced by common low penetrance variants

Multiple models of disease inheritance and penetrance possible for disease allele *A* possible

Common dominant: one or more copies of A increase risk of disease (i.e., a/A or A/A)

Common recessive: A/A required for disease

Additive: uniform linear increase in disease risk with each additional allele *A*

- If risk for disease is 3x for A, the risk for A/A is 2*3=6x higher
- Often used as default model in GWAS

Multiplicative: risk of diseases increases by factor of *k* for each additional allele

- If risk for disease is 3x A, the risk for A/A is $3^2=9x$ higher)

Manhattan Plot

- X axis: genome location
- Y axis: Negative logarithm of p-value

- Consider locations with significant p-value (here In red and blue)

1. Pick genotype encoding

Allelic encoding

- Test for association between one allele and a trait
- Assumes Hardy-Weinberg, low penetrance and XXX
- 2 cases for biallelelic locus:
 minor allele a and major allele A

Genotypic encoding

- Test for association between genotype and trait
- For a biallelelic locus we have 3 unordered genotypes cases: a/a, a/A and A/A
- Can be grouped to only contain two cases based on assumed inheritance model: e.g. for dominant A -> a/a vs (a/A or A/A)
- Power of statistical tests varies with encoding

2. Create contingency table

Contingency table for allelic encoding (allele counts)

	а	A	Total
Case	r_0	r ₁	R
Control	S ₀	S ₁	S
Total	n_0	n_1	N

Contingency table for genotypic encoding (counts)

	a/a	a/A	A/A	Total
Case	r_0	r ₁	r_2	R
Control	s ₀	S ₁	S_2	S
Total	n_0	n_1	n_2	N

Can be combined under dominant model

2. Calculate Effect size

- Calculation of relative risk of genotype: Only possible when exposure data of individuals is available over time
- Odds ratio used as alternative in Case-Control studies
 - Odds of event: P(event occurs)/P(event does not occur)

	а	Α
Case	r_0	r ₁
Control	s_0	S ₁

- Odds of allele a occurring in disease: r₀/s₀
- Odds Ratio between risk of allele X and allele Y occurring in a disease patient:

OR = odds of a in case/odds of A in case

$$= r_0/s_0 / r_1/s_1 = r_0 s_1 / r_1 s_0$$

Interpretation of odds ratio

- OR = 1: no association
- OR > 1: allele a increases risk of disease
- OR < 1: allele A increases risk of disease
- For rare diseases OR ≈ genotype relative risk

- Null hypothesis: risk of disease is identical between case and control groups
- Categorical data:
 - Chi-squared test
 - Cochran-Armitage trend test
 - Logistic regression models
- Quantitative data:
 - Linear regression models
- More complex models (include epistasis and confounding factors)
 - Linear mixed models
 - Bayesian approaches (incl. hierarchical models)

Chi-square test of independence

Observed

Expected	if	independent	(H_{c})	ر ((
----------	----	-------------	-----------	---------

	a	A	Total
Case	r_0	r_1	R
Control	s_0	S ₁	S
Total	n_0	n ₁	N

	a	A	Total
Case	Rn ₀ /N	Rn ₁ /N	R
Control	Sn ₀ /N	Sn ₁ /N	S
Total	n _o	n_1	N

$$\chi^2 = \sum_{\text{all cells}} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

- Large χ² statistic corresponds to refusal of H₀
- In case of genotype encoding: 2 χ² test required

```
import numpy as np
from scipy.stats import chi2_contingency

obs = np.array([[10, 10, 20], [20, 20, 20]])
  chi2, p, dof, ex = chi2_contingency(obs)
```


Obtain P-value for test statistic

p-value: probability of seeing the test statistic or something more extreme if H₀ was true

The p-value is thus the area under the χ^2 density to the right of the observed test statistic

```
from scipy.stats import chi2 p = 1 - \text{chi2.cdf}(<\chi^2 \text{ statistic>}, < \text{degrees of freedom>}) p = \text{chi2.sf}(<\chi^2 \text{ statistic>}, < \text{degrees of freedom>})
```


3. Control for multiple hypothesis testing

The more tests are being performed the higher the risk of making a type 1 error

- → Correct for multiple tests before interpretation required
- In single test case:
 - Reject H_0 if p-value $\leq \alpha$ (usually $\alpha \leq 0.05$)
- Type 1 error (false positive rate): probability of rejecting null hypothesis even though it's true
- Significance level: proportion of FP that investigator is willing to tolerate (e.g., 5%)
- Family-wise error rate (FWER): probability of making one or more type 1 errors in set of tests

Standard correction methods

Bonferroni correction

- Adjust threshold p-value by number of tests
- Reject H₀ if p-value α* ≤ α/n (n=number of tests)
- Šidák correction
 - $-\alpha^* \le 1 (1 \alpha)^{1/n}$
- False Discovery Rate (FDR) approaches
 - E.g., as described by Benjamini and Hochberg
 - Control for expected number of false positives among predictions declared significant

Source: xkcd

Permutation approaches

More complex: Regression models

• Terminology:

- Dependent variable y: output/outcome whose variation is studied
- Independent variables x: inputs/potential causes for variation

Goal
Find model to describe
relationship between
variables

- Categorical data: Logistic regression
- Quantitative data: Linear regression

Mathematical formulation Linear Regression

Model

Predict value of one variable through values of one or more other variables

 H_0 : independence of variables, i.e. $\beta_1 = 0$

Fit to data

Inputs:

Dependent variable Y: phenotype of individuals

y_i = continuous measurement of phenotype

Independent variable X: genotype of individuals at specific locus

 $x_i = 0$ for phenotype a/a

 $x_i = 1$ for phenotype a/A

 $x_i = 2$ for phenotype A/A

Mathematical formulation Logistic Regression

Logistic regression is similar to linear regression, but with binary outcomes

Outcome determined by an unobserved probability p_i

$$p_i = E[y_i|x_i]$$

equal to expected value of phenotype given genotype

Model

$$\ln\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_i$$

$$\log it(p_i)$$

Inputs:

Dependent variable y_i: phenotype of individuals

 $y_i = 0$ for control (i.e. no disease)

 $y_i = 1$ for case (i.e. disease)

Independent variable x_i: genotype of individuals at locus

 $x_i = 0$ for phenotype a/a

 $x_i = 1$ for phenotype a/A

 $x_i = 2$ for phenotype A/A

Interpreting model coefficients

- Test whether β₁ significantly differs from 0
 - Rejection of H_{0.} i.e. assumption of independence
 - Roughly equivalent to Chi-square test
 - P-value is determined during model fitting process in python

• β₁

- Linear model: linear association between a "unit" increase of x with a "unit" increase in outcome
- Logistic model: e^{eta_1} is estimate of odds ratio

Effect size: Strength of correlation

- Effect size in regression models:
 - variance of the experiment explained by the model
- Pearson's correlation coefficient r
 - On population level: Incorporates covariance of two variables and their independent standard deviations
 - On sample level: estimate covariance and standard deviation

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(1.1)

- with $\bar{y_i} = \frac{1}{n} \sum_{i=1}^n y_i$ being the mean of the observed data

Coefficient of Determination R²

- Proportion of variance of dependent variable explained by independent variable
- Total sum of squares: variability in the data

$$SS_{\text{tot}} = \sum_{i} (y_i - \bar{y})^2 \tag{2.1}$$

- Residual sum of squares: average amount to which data differs from prediction

$$SS_{\text{res}} = \sum_{i} (y_i - \hat{y}_i)^2 \tag{2.2}$$

- Coefficient of Determination follows from these two

$$R^2 = \frac{SS_{\text{tot}} - SS_{\text{res}}}{SS_{\text{tot}}} = 1 - \frac{SS_{\text{res}}}{SS_{\text{tot}}}$$
(2.3)

Adjusted R²

- Normal R2 increases by increasing number of explanatory variables in model
- Adjusts by degrees of freedom
- For sample size n and d explanatory variables:

$$\bar{R}^2 = 1 - \frac{SS_{\rm res}/(n-d-1)}{SS_{\rm tot}/(n-1)}$$
(3.1)

- Goal: Learn model coefficients β_0, β_1, \dots based on data
- Minimize the residuals for observed values for x and y
 - Residuals: remaining error between prediction and observed data, i.e. predicted observed

Obtain relevant information in Python

```
import statsmodels.formula.api as smf
# Train model
lm = smf.ols(formula='<dep_col> ~ <indep_col>',
             data=data).fit()
# Print coefficients
lm.params
# Obtain confidence intervals for coefficients
lm.conf_int()
# Obtain p-values for coefficients
lm.pvalues
# Summary of model
lm.summary()
```


Logistic regression in Python

```
import statsmodels.formula.api as smf
# Train model
lm = smf.logit(formula='<dep_col> ~ <indep_col>',
             data=data).fit()
# Extract data sets for functions that do not support
# direct formula notation
import patsy
f = '<dep_col> ~ <indep_col>'
y, X = patsy.dmatrices(f, df, return_type='dataframe')
# Alternative to statsmodels: scikit-learn
from sklearn import linear_model
regr = linear_model.LinearRegression()
regr.fit(X, y)
logr = linear_model.LogisticRegression()
logr.fit(X, y)
```


More complex models

 Factor in other confounding variables in the model in multiple regression models

$$y=\beta_0+\beta_1x_1+\beta_2x_2+\ldots+\beta_nx_n$$
 Feature 1 Feature 2 Feature n

- Examples for features for confounding factors
 - Ethnicity of sample
 - Sex of sample
 - Sequencing batch

- Plot residuals vs predicted values
 - Any non-random effects?
- Replicate results in independent study
- Biological validation

Summary: GWAS workflow

- Compare single SNP against range of phenotypes
- Same statistical methods apply to PheWAS that are also used in GWAS
- Manhattan Plots
 - Phenotype Categories on x-axis
 - Negative logarithm of pvalue on y-axis

Interesting Papers

Papers

- Bush and Moore, Chapter 11: Genome-Wide Association Studies, PLOS Comp Bio, 2012 (8)12
- Clarke et al., Basic statistical analysis in genetic casecontrol studies, Nature Protocols, 2011 (6)2
- Stephens and Balding, Bayesian statistical methods for genetic association studies, Nature Reviews Genetics, 2009 (10)

Books

- James, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning, Springer Texts, 2013*
- MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2005**

Blogs

- Erik Minikel's blog: http://www.cureffi.org/2014/11/21/genetics-25/

^{*} Can be officially and freely downloaded from http://www-bcf.usc.edu/~gareth/ISL/

^{**} Can be officially and freely downloaded from http://www.inference.phy.cam.ac.uk/itila/book.html

Some resources

Databases

- GWAS catalog (https://www.ebi.ac.uk/gwas/)
- PheWAS catalog (https://phewas.mc.vanderbilt.edu/)

Standalone tools

- PLINK
- Eigenstrat

Python modules

- pylmm
- fastlmm

R packages

- PheWAS package
- GenABEL

Trends in Biotechnology