# Question 4.13.5

#### AI25BTECH11040 - Vivaan Parashar

September 30, 2025

## 1 Question:

The set of lines ax + by + c = 0, where 3a + 2b + 4c = 0 are concurrent at the point

### 2 Solution:

We are given the fact that 3a + 2b + 4c = 0. This can be written as:

$$\implies \frac{3a}{4} + \frac{b}{2} = -c \tag{1}$$

$$\implies \begin{pmatrix} \frac{3}{4} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = -c \tag{2}$$

Any arbitrary point on the line ax + by + c = 0 satisfies the equation:

$$\mathbf{x}^{\mathrm{T}} \begin{pmatrix} a \\ b \end{pmatrix} = -c \tag{3}$$

From equations (2) and (3), we can clearly see that for all values of  $(a, b, c) \in \mathbb{R}^3$ , the point  $\mathbf{P} = \begin{pmatrix} \frac{3}{4} \\ \frac{1}{2} \end{pmatrix}$  satisfies the equation of the line ax + by + c = 0 (by substituting  $\mathbf{x} = \mathbf{P}$  in equation 3). Thus, all lines of the form ax + by + c = 0 where 3a + 2b + 4c = 0 are concurrent at the point  $\begin{pmatrix} \frac{3}{4} \\ \frac{1}{2} \end{pmatrix}$ .

## 3 Plot:

### Q 4.13.5



Figure 1: Graph of lines with randomly generated values of a and b satisfying 3a + 2b + 4c = 0. All lines are concurrent at the point  $\begin{pmatrix} \frac{3}{4} \\ \frac{1}{2} \end{pmatrix}$  (marked in red).