Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Next Item

1/1 points

1.

What is the "cache" used for in our implementation of forward propagation and backward propagation?

- It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
- We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.

Correct

Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.

- It is used to cache the intermediate values of the cost function during training.
- We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.

1/1 points

Among the following, which ones are "hyperparameters"? (Check all that

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

	number of iterations			
Correct				
	activation values $a^{[l]}$			
Un-selected is correct				
	learning rate $lpha$			
Correct				
	weight matrices $W^{\left[l ight]}$			
Un-selected is correct				
	bias vectors $oldsymbol{b}^{[l]}$			
Un-selected is correct				
	size of the hidden layers $n^{[l]}$			
Correct				
	number of layers L in the neural network			
Correct				

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Which of the following statements is true?

The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.

Correct

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

1/1 points

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$).

1/1 points

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 Key concepts Quantity and the property of the swing for-loops will allow you to

initialize the parameters for the model?

10/10 points (100%)

Quiz, 10 questions

Correct

1/1 points

Consider the following neural network.

Key concepts on Deep Neural Networks Quiz, 10 questions x_1 x_2 y_2 y_3

How many layers does this network have?

igcup The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers L is 4. The number of hidden layers is 4.
The number of layers \boldsymbol{L} is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer \boldsymbol{l} you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer \boldsymbol{l} , since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

Fal	lse

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

Which of the following statements are True? (Check all that apply).

 $oxed{ } W^{[1]}$ will have shape (4, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[1]}$ will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $oxed{ } W^{[1]}$ will have shape (3, 4)

Un-selected is correct

 $b^{[1]}$ will have shape (3, 1)

Un-selected is correct

 $oxed{ } W^{[2]}$ will have shape (3, 4)

Correct

Key concepts on Deep Neural Networks $^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

10/10 points (100%)

Quiz, 10 questions

	$b^{[2]}$ will have shape (1,	1)
--	-------------------------------	----

Un-selected is correct

 $oxed{ W^{[2]}}$ will have shape (3, 1)

Un-selected is correct

 $b^{[2]}$ will have shape (3, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $oxed{ W^{[3]}}$ will have shape (3, 1)

Un-selected is correct

 $b^{[3]}$ will have shape (1, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $oxed{ } W^{[3]}$ will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $oxed{b^{[3]}}$ will have shape (3, 1)

Un-selected is correct

1/1

Key concepts on Deepipts Neural Networks

10/10 points (100%)

Quiz, 10 questions

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $igcup W^{[l]}$ has shape $(n^{[l]},n^{[l-1]})$

Correct

True

