Cut locus and its applications

Jin-ichi Itoh

(Kumamoto University)

History of cut locus (1)

- H. Poincare (1905)
- S. Myers (1935-36)

g: analytic,

homeo. to sphere

finite tree

genus k 2k cycles

- T. Sakai (1977-78) symmetric space
- H. Gluck & D. Singer (1979)
 g: smooth metric
 with non-triangulable cut locus

K. Shiohama & M. Tanaka (1996)
 Alexandrov surface

distance function to the cut point on $S_p(M)$

J. Hebda (1994), J. I____ (1996)
 absolutely continuous

 Ambrose's problem (surface)

J. I__ & M. Tanaka (2001)
 Lipschitz continuous
 (L. Nirenberg & Y. Li)

M. Berger (2000)
 "Riem. geom. during the 2'nd half of 20 C."
 Jacob's last statement is unproved

- R. Sinclair & M. Tanaka "Loki"
- J. I & R. Sinclair "Thaw"

J. I____ & K. Kiyohara (2004)
 Ellipsoid case

Ellipsoids in general dimension

Joint work with K. Kiyohara

- [1] Cut loci and conjugate loci on Liouville surfaces. <u>Manuscripta Math.</u> 136 (2011), no. 1-2, 115-141.
- [2] The cut loci on ellipsoids and certain Liouville manifolds. *Asian J. Math.* 14 (2010), no. 2, 257–289.
- [3] Cut loci and conjugate loci on Liouville surfaces, preprint.

M: ellipsoid

ellipsoid
$$\sum_{i=0}^{n} \frac{u_i^2}{a_i} = 1 \qquad (0 < a_n < \dots < a_0)$$

$$J: = \left\{ (u_0, \dots, u_n) \in M \middle| u_{n-1} = 0, \sum_{i \neq n-1} \frac{u_i^2}{a_i - a_{i-1}} = 1 \right\}$$

C(p): cut locus of p

K₁(p): 1st. conjugate locus

(1) p ∉ J ⇒
C(p) is diffeo. to (n-1) dim. closed disk
C(p) ∋ p*: anti podal point of p
C(p) ⊂ {an elliptic coord. = const.}

(2) $p \in J \Rightarrow$ C(p) is diffeo. to (n-2) dim. closed disk C(p) : cod. 1 submanifold in $\{u_{n-1} = 0\}$

 $\mathsf{p} \in \mathsf{M} \ (u_i \neq 0) \Rightarrow$ $\mathsf{sing} \ (K_1(\mathsf{p})) : 3 \mathsf{ conn. Components}$ $\mathsf{one} \ \mathsf{cuspidal \ edge} \cong n-2 \mathsf{ dim. \ sphere}$ $\mathsf{two} \ \mathsf{cuspidal \ edges} \cong n-2 \mathsf{ dim. \ disks}$

 $M \cong S^n$ (close to round sphere) \Rightarrow Sing(K₁(p)) (2 \le i \le n-2):
2 conn. components a cuspidal edge $\cong S^{n-1-i} \times D^{i-1}$ $\cong D^{n-1-i} \times S^{i-1}$

$$K_i(p) \cap K_{i+1}(p) = \operatorname{Sing}(K_i(p)) \cap \operatorname{Sing}(K_{i+1}(p))$$

 $\cong S^{n-2-i} \times S^{i-1}$

FIGURE 1. Astroïde de Cayley, enveloppe des normales à un ellipsoïde triaxial de l'espace \mathbb{R}^3 . Un octant a été découpé et translaté pour une meilleure compréhension de la surface.

Fractal cut locus (j. w. with S. Sabau)

Theorem 1

$$2 \leq \forall k < \infty$$
,

 \exists Riem. metric at least k-differentiable on $S^{n(k)}$

$$\exists p \in S^{n(k)}$$
 s.t.

1 < Hausdorff dim. of C(p) < 2,

where
$$n(k) = \frac{3^{k+1}}{2} + 1$$
.

 $2 \le \forall k < \infty$, under magnetic fields β on $S^{n(k)}$

 \exists non-Riem., Finsler metric of Randers type at least k-differentiable on $S^{n(k)}$

 $\exists p \in S^{n(k)}$ s.t.

1 < Hausdorff dim. of C(p) < 2,

where
$$n(k) = \frac{3^{k+1}}{2} + 1$$
.

