Machine Learning

- Lecture 8:
 - Clustering
 - □ k-mean Clustering
 - □ Fuzzy k-mean clustering

Clustering

- What is clustering?
- A statistical technique for discovering whether the individuals of a population fall into different groups by making quantitative comparisons of multiple characteristics.

Clustering

Example

Vehicle	Top speed	Colour	Air	Weight
	km/h		resistance	Kg
V1	220	red	0.30	1300
V2	230	black	0.32	1400
V3	260	red	0.29	1500
V4	140	gray	0.35	800
V5	155	blue	0.33	950
V6	130	white	0.40	600
V7	100	black	0.50	3000
V8	105	red	0.60	2500
V9	110	gray	0.55	3500

Clustering

- What is k-mean clustering?
 - An algorithm to group some objects based on attributes/features into k number of group.
 - **k** is positive integer number.
 - The grouping is done by minimizing the sum of squares of distances between data and the corresponding cluster centroid.

Example:

Suppose we have 4 objects as training data points and each object have 2 attributes.

Medicine	Attrib1	Attrib2
А	1	1
В	2	1
С	4	3
D	5	4

Our goal is to group these objects into K=2 group of medicine based on the two attributes

- □ The k-mean algorithm
- ☐ 3 steps
 - Repeat
 - 1. Determine the centroid coordinate
 - 2. Determine the distance of each object to the centroids.
 - Group the object based on minimum distance
 - Iterate until stable

Machine Learning

☐ The feature space

Medicine	Attrib1	Attrib2
Α	1	1
В	2	1
С	4	3
D	5	4

☐ Step1: Initial centroids:

- = c1 = (1,1)
- c2=(2,1)

☐ Step2: Objects-Centroids distance (Euclidean distance)

$$\mathbf{D}^{0} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix} \quad \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (2,1) & group - 2 \\ A & B & C & D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ Y \end{array}$$

 \square Example distance from (4,3) to c(1,1)

$$\sqrt{(4-1)^2+(3-1)^2}=3.61$$

☐ Step3:The element of group matrix G

$$\mathbf{D}^{0} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix} \quad \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (2,1) & group - 2 \end{array}$$

$$A \quad B \quad C \qquad D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X$$

$$\mathbf{G}^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

Machine Learning

Repeat step1: determine centroids

$$\mathbf{G}^0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

$$\mathbf{c}_2 = (\frac{2+4+5}{3}, \frac{1+3+4}{3}) = (\frac{11}{3}, \frac{8}{3})$$

□ Repeat step2: find distances

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \quad \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) & group - 2 \\ A & B & C & D \\ \hline \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ Y \end{array}$$

□ Repeat step3: object clustering

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \quad \mathbf{c}_{1} = (1,1) \quad group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) \quad group - 2 \\ A & B & C & D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ Y$$

$$\mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

☐ Should we repeat again?

$$\mathbf{G}^{0} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array} \qquad \qquad \mathbf{G}^{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \begin{array}{c} group - 1 \\ group - 2 \end{array}$$

$$A \quad B \quad C \quad D$$

□ yes

□ Repeat step1: find new centriods

$$\mathbf{c}_1 = (\frac{1+2}{2}, \frac{1+1}{2}) = (1\frac{1}{2}, 1)$$

$$\mathbf{c}_2 = (\frac{4+5}{2}, \frac{3+4}{2}) = (4\frac{1}{2}, 3\frac{1}{2})$$

□ Repeat step 2 and 3

$$\mathbf{D}^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.20 & 4.61 \\ 4.30 & 3.54 & 0.71 & 0.71 \end{bmatrix} \quad \mathbf{c}_{1} = (1\frac{1}{2}, 1) \quad group - 1 \\ \mathbf{c}_{2} = (4\frac{1}{2}, 3\frac{1}{2}) \quad group - 2 \\ A \quad B \quad C \quad D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad Y$$

$$\mathbf{G}^{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad group - 1 \\ group - 2$$

□ No change...STOP