

**AMENDMENTS TO THE CLAIMS:**

This listing of claims will replace all prior versions, and listings, of claims in the application:

**LISTING OF CLAIMS:**

1. (Currently Amended) An ink-jet ink comprising consisting essentially of a coloring composition containing a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C, the coloring particulate being dispersed in a water-based medium, wherein the oil-soluble dye is represented by general formula I:



wherein X represents a residual group of a color coupler; A represents -NR<sup>4</sup>R<sup>5</sup> or a hydroxy group; R<sup>4</sup> and R<sup>5</sup> each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group; B<sup>1</sup> represents=C(R<sup>6</sup>)- or =N-; B<sup>2</sup> represents -C(R<sup>7</sup>)= or -N=; R<sup>2</sup>, R<sup>3</sup>, R<sup>6</sup> and R<sup>7</sup> each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR<sup>51</sup>, -SR<sup>52</sup>, -CO<sub>2</sub>R<sup>53</sup>, -OCOR<sup>54</sup>, -NR<sup>55</sup>R<sup>56</sup>, -CONR<sup>57</sup>R<sup>58</sup>, -SO<sub>2</sub>R<sup>59</sup>, -SO<sub>2</sub>NR<sup>60</sup>R<sup>61</sup>, -NR<sup>62</sup>CONR<sup>63</sup>R<sup>64</sup>, -NR<sup>65</sup>CO<sub>2</sub>R<sup>66</sup>, -COR<sup>67</sup>, -NR<sup>68</sup>COR<sup>69</sup>,

or  $-NR^{70}SO_2R^{71}$ ;  $R^{51}$ ,  $R^{52}$ ,  $R^{53}$ ,  $R^{54}$ ,  $R^{55}$ ,  $R^{56}$ ,  $R^{57}$ ,  $R^{58}$ ,  $R^{59}$ ,  $R^{60}$ ,  $R^{61}$ ,  $R^{62}$ ,  $R^{63}$ ,  $R^{64}$ ,  $R^{65}$ ,  $R^{66}$ ,  $R^{67}$ ,  $R^{68}$ ,  $R^{69}$ ,  $R^{70}$  and  $R^{71}$  each independently represents a hydrogen atom, aliphatic group or aromatic group; and any of pairs,  $R^2$  and  $R^3$ ,  $R^3$  and  $R^4$ ,  $R^4$  and  $R^5$ ,  $R^5$  and  $R^6$ , and  $R^6$  and  $R^7$  may bond together to form a ring structure;  
wherein the ionic group-containing polymer is a vinyl polymer; and  
wherein the content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

Claims 2 and 3 (Canceled)

4. (Original) An ink-jet ink according to claim 1, wherein a relative dielectric constant at 25° C of the hydrophobic high-boiling-point organic solvent is from 3 to 12.

5. (Previously Presented) An ink-jet ink according to claim 1, wherein the ionic-group-containing vinyl polymer has at least one ionic group selected from the group consisting of carboxyl groups, sulfonic acid groups and mixtures thereof.

6. (Previously Presented) An ink-jet ink according to claim 1, wherein the hydrophobic high-boiling-point organic solvent is at least one hydrophobic high-boiling-point organic solvent selected from the group consisting of hydrophobic high-boiling-point organic solvents represented by following formulae S-1 to S-9:

Formula [ S - 1 ]



Formula [ S - 2 ]



Formula [ S - 3 ]



Formula [ S - 4 ]



Formula [ S - 5 ]



Formula [ S - 6 ]



Formula [ S - 7 ]



Formula [ S - 8 ]



and

Formula [ S - 9 ]



wherein: in the formula S-1, R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub> each independently represents an aliphatic group or an aryl group, and a, b and c each independently represents 0 or 1;

in the formula S-2, R<sub>4</sub> and R<sub>5</sub> each independently represents an aliphatic group or an aryl group, R<sub>6</sub> represents a fluorine atom, chlorine atom, bromine atom, iodine atom, alkyl group, alkoxy group, aryloxy group, alkoxycarbonyl group or aryloxycarbonyl group, d represents an integer from 0 to 3, and where d is more than 1, one R<sub>6</sub> may be different from another R<sub>6</sub>;

in the formula S-3, Ar represents an aryl group, e represents an integer from 1 to 6, and R<sub>7</sub> represents an e-valent hydrocarbon group or a hydrocarbon group that is mutually bonded by an ether bond;

in the formula S-4, R<sub>8</sub> represents an aliphatic group, f represents an integer from 1 to 6, and R<sub>9</sub> represents an f-valent hydrocarbon group or a hydrocarbon group that is mutually bonded by an ether bond;

in the formula S-5, g represents an integer from 2 to 6, R<sub>10</sub> represents a g-valent hydrocarbon group other than an aryl group, and R<sub>11</sub> represents an aliphatic group or an aryl group;

in the formula S-6, R<sub>12</sub>, R<sub>13</sub> and R<sub>14</sub> each independently represents a hydrogen atom, aliphatic group or aryl group, X represents or -N-CO- or -SO<sub>2</sub>-, and one of a pair R<sub>12</sub> and R<sub>13</sub> or R<sub>13</sub> and R<sub>14</sub> may bond together mutually to form a ring;

in the formula S-7, R<sub>15</sub> represents an aliphatic group, alkoxycarbonyl group, aryloxycarbonyl group, alkylsulfonyl group, arylsulfonyl group, aryl group or cyano group, R<sub>16</sub> represents a fluorine atom, chlorine atom, bromine atom, iodine atom,

aliphatic group, aryl group, alkoxy group or aryloxy group, h represents an integer from 0 to 3, and where h is more than 1, one R<sub>16</sub> may be different from another R<sub>16</sub>;

in the formula S-8, R<sub>17</sub> and R<sub>18</sub> each independently represents an aliphatic group or an aryl group, R<sub>19</sub> represents a fluorine atom, chlorine atom, bromine atom, iodine atom, aliphatic group, aryl group, alkoxy group or aryloxy group, i represents an integer from 0 to 4, and where i is more than 1, one R<sub>19</sub> may be different from another R<sub>19</sub>; and

in the formula S-9, R<sub>20</sub> and R<sub>21</sub> each independently represents an aliphatic group or aryl group, and j represents 1 or 2.

7. (Original) An ink-jet ink according to claim 1, wherein the content of the ionic-group-containing polymer is 1 to 70% by mass with respect to the total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

8. (Original) An ink-jet ink according to claim 1, wherein the content of the oil-soluble dye is 3 to 70% by mass with respect to the total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

9. (Original) An ink-jet ink according to claim 1, wherein average particle size of the coloring particulate is at most 100 nm.

10. (Previously Presented) An ink-jet ink according to claim 1, wherein the oil-soluble dye which is represented in said general formula I is a compound which is represented in the following general formula II:

General Formula II



wherein, R<sup>2</sup>, R<sup>3</sup>, A, B<sup>1</sup>, and B<sup>2</sup> are synonymous with R<sup>2</sup>, R<sup>3</sup>, A, B<sup>1</sup>, and B<sup>2</sup> in said general formula I:

R<sup>1</sup> represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -OR<sup>11</sup>, -SR<sup>12</sup>, -CO<sub>2</sub>R<sup>13</sup>, -OCOR<sup>14</sup>, -NR<sup>15</sup>R<sup>16</sup>, -CONR<sup>17</sup>R<sup>18</sup>, -SO<sub>2</sub>R<sup>19</sup>, -SO<sub>2</sub>NR<sup>20</sup>R<sup>21</sup>, -NR<sup>22</sup>-CONR<sup>23</sup>R<sup>24</sup>, -NR<sup>25</sup>CO<sub>2</sub>R<sup>26</sup>, -COR<sup>27</sup>, -NR<sup>28</sup>COR<sup>29</sup> or -NR<sup>30</sup>SP<sub>2</sub>R<sup>31</sup>;

R<sup>11</sup>, R<sup>12</sup>, R<sup>13</sup>, R<sup>14</sup>, R<sup>15</sup>, R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, R<sup>19</sup>, R<sup>20</sup>, R<sup>21</sup>, R<sup>22</sup>, R<sup>23</sup>, R<sup>24</sup>, R<sup>25</sup>, R<sup>26</sup>, R<sup>27</sup>, R<sup>28</sup>, R<sup>29</sup>, R<sup>30</sup>, and R<sup>31</sup> represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group;

D represents an atom group which forms a five-membered nitrogen-containing heterocyclic ring or a six-membered nitrogen-containing heterocyclic ring which may optionally be substituted by an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -OR<sup>81</sup>, -SR<sup>82</sup>, -CO<sub>2</sub>R<sup>83</sup>, -OCOR<sup>84</sup>, -NR<sup>85</sup>R<sup>86</sup>, -CONR<sup>87</sup>R<sup>88</sup>, -SO<sub>2</sub>R<sup>89</sup>, SO<sub>2</sub>NR<sup>90</sup>R<sup>91</sup>, -NR<sup>92</sup>CONR<sup>93</sup>R<sup>94</sup>, -NR<sup>95</sup>CO<sub>2</sub>R<sup>96</sup>, -COR<sup>97</sup>, -NR<sup>98</sup>COR<sup>99</sup> or -NR<sup>100</sup>SO<sub>2</sub>R<sup>101</sup>;

the heterocyclic ring may further form a condensed ring with another ring; and

$R^{81}$ ,  $R^{82}$ ,  $R^{83}$ ,  $R^{84}$ ,  $R^{85}$ ,  $R^{86}$ ,  $R^{87}$ ,  $R^{88}$ ,  $R^{89}$ ,  $R^{90}$ ,  $R^{91}$ ,  $R^{92}$ ,  $R^{93}$ ,  $R^{94}$ ,  $R^{95}$ ,  $R^{96}$ ,  $R^{97}$ ,  $R^{98}$ ,  $R^{99}$ ,  $R^{100}$ , and  $R^{101}$  represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group.

11. (Previously Presented) An ink-jet ink according to claim 10, wherein the compound which is represented in said general formula II is a compound which is represented in the following general formula III:

General formula III



wherein,  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$ , and  $R^7$  are synonymous with  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$ , and  $R^7$  in said general formula II;

$X^1$  and  $Y$  represent respectively independently  $-C(R^8)=$  or  $-N=$ ;  
 $R^8$  represents a hydrogen atom, an aliphatic group, or an aromatic group; and one of  $X^1$  or  $Y$  is always  $-N=$ , and  $X^1$  and  $Y$  are  $-N=$  at different times.

12. (Previously Presented) An ink-jet ink according to claim 1, wherein the oil-soluble dye which is represented in said general formula I is at least one compound selected from the group consisting of compounds which are represented in the following formulas IV-1 to IV-4:



(IV-1)



(IV-2)



(IV-3)



(IV-4)

wherein, A, R<sup>2</sup>, R<sup>3</sup>, B<sup>1</sup>, and B<sup>2</sup> are synonymous with A, R<sup>2</sup>, R<sup>3</sup>, B<sup>1</sup>, and B<sup>2</sup> in said general formula I;

R<sup>201</sup>, R<sup>202</sup>, and R<sup>203</sup> represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -OR<sup>11</sup>, -SR<sup>12</sup>, -CO<sub>2</sub>R<sup>13</sup>, -OCOR<sup>14</sup>, -NR<sup>15</sup>R<sup>16</sup>, -CONR<sup>17</sup>R<sup>18</sup>, -SO<sub>2</sub>R<sup>19</sup>, -SO<sub>2</sub>NR<sup>20</sup>R<sup>21</sup>, -NR<sup>22</sup>CONR<sup>23</sup>R<sup>24</sup>, -NR<sup>25</sup>CO<sub>2</sub>R<sup>26</sup>, -COR<sup>27</sup>, -NR<sup>28</sup>COR<sup>29</sup> or -NR<sup>30</sup>SO<sub>2</sub>R<sup>31</sup>;

$R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ ,  $R^{19}$ ,  $R^{20}$ ,  $R^{21}$ ,  $R^{22}$ ,  $R^{23}$ ,  $R^{24}$ ,  $R^{25}$ ,  $R^{26}$ ,  $R^{27}$ ,  $R^{28}$ ,  $R^{29}$ ,  $R^{30}$ , and  $R^{31}$  represent respectively independently a hydrogen atom, an aliphatic group or an aromatic group; and

$R^{201}$  and  $R^{202}$  may be combined with each other to form a ring structure.

13. (Currently Amended) A coloring composition comprising consisting essentially of a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C, the coloring particulate being dispersed in a water-based medium, wherein the oil-soluble dye is represented by general formula I:



wherein X represents a residual group of a color coupler; A represents  $-NR^4R^5$  or a hydroxy group;  $R^4$  and  $R^5$  each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group;  $B^1$  represents  $=C(R^6)-$  or  $=N-$ ;  $B^2$  represents  $-C(R^7)=$  or  $-N=$ ;  $R^2$ ,  $R^3$ ,  $R^6$  and  $R^7$  each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group,  $-OR^{51}$ ,  $-SR^{52}$ ,  $-CO_2R^{53}$ ,  $-OCOR^{54}$ ,  $-NR^{55}R^{56}$ ,  $-CONR^{57}R^{58}$ ,  $-SO_2R^{59}$ ,  $-SO_2NR^{60}R^{61}$ ,  $-NR^{62}CONR^{63}R^{64}$ ,  $-NR^{65}CO_2R^{66}$ ,  $-COR^{67}$ ,  $-NR^{68}COR^{69}$ , or  $-NR^{70}SO_2R^{71}$ ;  $R^{51}$ ,  $R^{52}$ ,  $R^{53}$ ,  $R^{54}$ ,  $R^{55}$ ,  $R^{56}$ ,  $R^{57}$ ,  $R^{58}$ ,  $R^{59}$ ,  $R^{60}$ ,  $R^{61}$ ,  $R^{62}$ ,  $R^{63}$ ,  $R^{64}$ ,  $R^{65}$ ,  $R^{66}$ ,  $R^{67}$ ,  $R^{68}$ ,  $R^{69}$ ,  $R^{70}$  and  $R^{71}$  each independently represents a hydrogen atom,

aliphatic group or aromatic group; and any of pairs, R<sup>2</sup> and R<sup>3</sup>, R<sup>3</sup> and R<sup>4</sup>, R<sup>4</sup> and R<sup>5</sup>,

R<sup>5</sup> and R<sup>6</sup>, and R<sup>6</sup> and R<sup>7</sup> may bond together to form a ring structure;

wherein the ionic group-containing polymer is a vinyl polymer; and

wherein the content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

14. (Currently Amended) An ink-jet recording method in which recording is conducted using an ink-jet ink on a recording material, the ink comprising consisting essentially of a coloring composition containing a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C, the coloring particulate being dispersed in a water-based medium, wherein the oil-soluble dye is represented by general formula I:



wherein X represents a residual group of a color coupler; A represents -NR<sup>4</sup>R<sup>5</sup> or a hydroxy group; R<sup>4</sup> and R<sup>5</sup> each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group; B<sup>1</sup> represents =C(R<sup>6</sup>)- or =N-; B<sup>2</sup> represents -C(R<sup>7</sup>)= or -N=; R<sup>2</sup>, R<sup>3</sup>, R<sup>6</sup> and R<sup>7</sup> each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group,

cyano group, -OR<sup>51</sup>, -SR<sup>52</sup>, -CO<sub>2</sub>R<sup>53</sup>, -OCOR<sup>54</sup>, -NR<sup>55</sup>R<sup>56</sup>, -CONR<sup>57</sup>R<sup>58</sup>, -SO<sub>2</sub>R<sup>59</sup>, -SO<sub>2</sub>NR<sup>60</sup>R<sup>61</sup>, -NR<sup>62</sup>CONR<sup>63</sup>R<sup>64</sup>, -NR<sup>65</sup>CO<sub>2</sub>R<sup>66</sup>, -COR<sup>67</sup>, -NR<sup>68</sup>COR<sup>69</sup>, or -NR<sup>70</sup>SO<sub>2</sub>R<sup>71</sup>; R<sup>51</sup>, R<sup>52</sup>, R<sup>53</sup>, R<sup>54</sup>, R<sup>55</sup>, R<sup>56</sup>, R<sup>57</sup>, R<sup>58</sup>, R<sup>59</sup>, R<sup>60</sup>, R<sup>61</sup>, R<sup>62</sup>, R<sup>63</sup>, R<sup>64</sup>, R<sup>65</sup>, R<sup>66</sup>, R<sup>67</sup>, R<sup>68</sup>, R<sup>69</sup>, R<sup>70</sup> and R<sup>71</sup> each independently represents a hydrogen atom, aliphatic group or aromatic group; and any of pairs, R<sup>2</sup> and R<sup>3</sup>, R<sup>3</sup> and R<sup>4</sup>, R<sup>4</sup> and R<sup>5</sup>, R<sup>5</sup> and R<sup>6</sup>, and R<sup>6</sup> and R<sup>7</sup> may bond together to form a ring structure; wherein the ionic group-containing polymer is a vinyl polymer; and wherein the content of the hydrophobic high-boiling-point organic solvent in the coloring composition is at least 25% by mass and not more than 95% by mass with respect to a total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent.

Claim 15 (Canceled)

16. (Original) An ink-jet recording method according to claim 14 wherein the recording material includes a substrate on which is provided an ink receiving layer containing a porous inorganic pigment.

17. (Currently Amended) An ink-jet recording method comprising the step of:  
(a) preparing an ink-jet ink containing consisting essentially of a coloring composition in which a coloring particulate containing an ionic-group-containing polymer, an oil-soluble dye, and a hydrophobic high-boiling-point organic solvent having a boiling point of at least 150°C are dispersed in an aqueous medium, wherein the oil-soluble dye is represented by general formula I:



wherein X represents a residual group of a color coupler; A represents -NR<sup>4</sup>R<sup>5</sup> or a hydroxy group; R<sup>4</sup> and R<sup>5</sup> each independently represents a hydrogen atom, aliphatic group, aromatic group or heterocyclic group; B<sup>1</sup> represents=C(R<sup>6</sup>)- or =N-; B<sup>2</sup> represents -C(R<sup>7</sup>)= or -N=; R<sup>2</sup>, R<sup>3</sup>, R<sup>6</sup> and R<sup>7</sup> each independently represent a hydrogen atom, halogen atom, aliphatic group, aromatic group, heterocyclic group, cyano group, -OR<sup>51</sup>, -SR<sup>52</sup>, -CO<sub>2</sub>R<sup>53</sup>, -OCOR<sup>54</sup>, -NR<sup>55</sup>R<sup>56</sup>, -CONR<sup>57</sup>R<sup>58</sup>, -SO<sub>2</sub>R<sup>59</sup>, -SO<sub>2</sub>NR<sup>60</sup>R<sup>61</sup>, -NR<sup>62</sup>CONR<sup>63</sup>R<sup>64</sup>, -NR<sup>65</sup>CO<sub>2</sub>R<sup>66</sup>, -COR<sup>67</sup>, -NR<sup>68</sup>COR<sup>69</sup>, or -NR<sup>70</sup>SO<sub>2</sub>R<sup>71</sup>; R<sup>51</sup>, R<sup>52</sup>, R<sup>53</sup>, R<sup>54</sup>, R<sup>55</sup>, R<sup>56</sup>, R<sup>57</sup>, R<sup>58</sup>, R<sup>59</sup>, R<sup>60</sup>, R<sup>61</sup>, R<sup>62</sup>, R<sup>63</sup>, R<sup>64</sup>, R<sup>65</sup>, R<sup>66</sup>, R<sup>67</sup>, R<sup>68</sup>, R<sup>69</sup>, R<sup>70</sup> and R<sup>71</sup> each independently represents a hydrogen atom, aliphatic group or aromatic group; and any of pairs, R<sup>2</sup> and R<sup>3</sup>, R<sup>3</sup> and R<sup>4</sup>, R<sup>4</sup> and R<sup>5</sup>, R<sup>5</sup> and R<sup>6</sup>, and R<sup>6</sup> and R<sup>7</sup> may bond together to form a ring structure;

wherein the ionic group-containing polymer is a vinyl polymer; and  
with the content of the hydrophobic high-boiling-point organic solvent in the coloring composition being at least 25% by mass and not more than 95% by mass with respect to total amount of the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling-point organic solvent,

- (b) disposing the ink-jet ink in a cartridge adapted for use in an ink-jet printer, and
- (c) using the cartridge in an ink jet printer for recording images.

18. (Original) An ink-jet recording method according to claim 17, wherein the step of preparing an ink-jet ink includes the sub-step of dispersing the ionic-group-containing polymer, the oil-soluble dye, and the hydrophobic high-boiling point organic solvent by a co-emulsifying dispersion technique.