Chapter 4

The Duality Theorem

Draft date: 08-01-06

4.1 Primal-Dual Relationship

Consider the following LOP.

Problem 4.1.1

As you are invited to confirm, the simplex algorithm produces the following final tableau.

Tableau 4.1.2

$$\begin{bmatrix} 0 & 22 & 27 & 5 & -1 & 0 & 297 \\ 22 & 0 & 24 & 2 & 4 & 0 & 418 \\ \hline 0 & 0 & 727 & 199 & 57 & 22 & 18403 \end{bmatrix}$$

Tableau 4.1.2 shows the optimum solution $\mathbf{x}^* = (418, 297, 0 \mid 0, 0)^\mathsf{T}/22$ with corresponding optimum value $z^* = 18403/22$. Likewise, consider the dual LOP below.

Problem 4.1.3

Min.
$$w=73y_1+68y_2$$
 s.t.
$$y_1+5y_2\geq 22\\ 4y_1-2y_2\geq 31\\ 6y_1+3y_2\geq 29$$
 &
$$y_1, y_2\geq 0$$

Problem 4.1.3 has the following final tableau.

Tableau 4.1.4

$$\begin{bmatrix} 0 & 22 & -4 & 1 & 0 & 0 & 57 \\ 22 & 0 & -2 & -5 & 0 & 0 & 199 \\ 0 & 0 & -24 & -27 & 22 & 0 & 727 \\ \hline 0 & 0 & 418 & 297 & 0 & 22 & -18403 \end{bmatrix}$$

Tableau 4.1.4 shows the optimum solution $y^* = (199, 57 \mid 0, 0, 727)/22$ with corresponding optimum value $w^* = 18403/22$.

Curiously, this data shows certain repetitions of values. It looks like the values of \mathbf{x}^* show up in the final dual objective row, but switched around a little. Likewise, the values of \mathbf{y}^* appear in the final primal objective row, with a similar swap of some sort. To be more precise, the pattern seems to be that the *problem* values of \mathbf{x}^* are the final coefficients of the dual *slack* variables, while the *slack* values of \mathbf{x}^* are the final coefficients of the dual *problem* variables.

Problem 4.1.5

Max.
$$z = -22x_1 - 18x_2 - 27x_3 - 23x_4 + 16x_5 - 12x_6$$

s.t. $4x_1 + x_2 - 3x_3 + 2x_5 + 7x_6 \le 211$
 $6x_1 + 2x_3 + 5x_4 - x_5 + 8x_6 \le 189$
 $-5x_1 + 4x_2 - 2x_3 - x_5 - 7x_6 \le -106$
 $3x_1 + 9x_2 - 2x_4 + x_5 + 4x_6 \le 175$
& $x_1 + x_2 + x_3 + x_4 + x_5 + x_5 + x_6 \ge 0$

Workout 4.1.6 Consider Problem 4.1.5.

- (a) Use the Simplex algorithm to solve it.
- (b) Without solving the dual linear problem, use the final primal tableau to find the optimal dual variable values \mathbf{y}^* (including slacks).
- (c) Verify that y^* is dual feasible and optimal.

It will help to articulate this perceived pattern notationally. We return to the general descriptions of primals and duals below.

Problem 4.1.7

$$Max. \quad z = \sum_{j=1}^{n} c_j x_j \tag{1}$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \qquad (1 \leq i \leq m)$$
 (2)

$$\& \qquad \qquad x_j \geq 0 \qquad (1 \leq j \leq n) \tag{3}$$

Problem 4.1.8

$$Min. \quad w = \sum_{i=1}^{m} b_i y_i \tag{4}$$

s.t.
$$\sum_{i=1}^{m} a_{ij} y_i \geq c_j \qquad (1 \leq j \leq n)$$
 (5)

&
$$y_i \geq 0 \qquad (1 \leq i \leq m) \tag{6}$$

In order to describe the pattern we will need to look at the optimal primal objective row. Just as with all optimal values, let's use c_k^* for the final coefficient of x_k , as shown.

Notice that there is a 1 written instead of the more general d for the coefficient of z. Why did we do that?

It seems as though the pattern we have witnessed is given below.

That is,

$$y_i^* = c_{n+i}^* \quad (1 \le i \le m)$$
 and $y_{m+j}^* = c_j^* \quad (1 \le j \le n)$. (7)

Furthermore, we have also noticed time and again that, when the primal has an optimal solution, then so does its dual — in fact, with the same optimal value. Quite possibly, we could take advantage of the detailed pattern above to verify such a phenomenon in general. From (1) the value in question is

$$z^* = \sum_{j=1}^n c_j x_j^* \,. \tag{8}$$

From the Weak Duality Theorem (Inequality 1.4.7) we know that if the dual problem is feasible then its optimum is at most this value z^* . In fact we get equality.

Theorem 4.1.9 If a linear problem P has an optimum z^* then its dual linear problem D has an optimum w^* ; moreover, $z^* = w^*$.

Strong Duality Theorem

Proof. Because we already know that every feasible z and w satisfy $z \leq w$, we only need to find a feasible w for which w = z. For this we can turn to the y_i^* s defined in (7), and show that they satisfy inequalities (5) and (6) as well as the equality

$$z^* = \sum_{i=1}^m b_i y_i^* \ . \tag{9}$$

Workout 4.1.10 Show that the y_i^*s defined in (7) satisfy (6).

One of the things we can do is write out the optimal objective row, solving for z. With the substitutions from (7) we have

$$z = z^* - \sum_{j=1}^n y_{m+j}^* x_j - \sum_{i=1}^m y_i^* x_{m+j} .$$
(10)

Workout 4.1.11 Use equation (1) and the definition of the slack variables x_{n+j} to derive from equation (10) the equality

$$\sum_{j=1}^{n} c_j x_j = \left(z^* - \sum_{i=1}^{m} b_i y_i^* \right) + \sum_{j=1}^{n} \left(\left(\sum_{i=1}^{m} a_{ij} y_i^* \right) - y_{m+j}^* \right) x_j . \tag{11}$$

Interestingly, since these are equations that hold for any values of the x_j s, we may experiment with various choices. For example, if each $x_j = 1$ we obtain

$$\sum_{j=1}^{n} c_j = \left(z^* - \sum_{i=1}^{m} b_i y_i^*\right) + \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i^* - y_{m+j}^*\right) .$$

Unfortunately, that experiment tells us nothing to help us show that (5) or (9) hold.

Workout 4.1.12 What choice of values for the $x_j s$, plugged into (11), show immediately that (9) holds?

Now that (9) holds, we see that (11) reduces to

$$\sum_{j=1}^{n} c_j x_j = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i^* - y_{m+j}^* \right) x_j . \tag{12}$$

Of course, we can try similar experiments on equation (12).

Workout 4.1.13 What choice of values for the $x_i s$, plugged into (12), shows that

$$c_1 = \sum_{i=1}^m a_{i1} y_i^* - y_{m+1}^* ?$$

Workout 4.1.14 Do for any c_k what you did for c_1 and use your results to show that (5) holds.

Now that (5), (6) and (9) have been verified for the y_i^* s, the Duality Theorem has been proved. \diamond

Workout 4.1.15 Suppose P is a linear problem with 4 variables and 7 constraints.

- (a) If x_3^* is in the basis, what does that say about some optimal objective coefficient?
 - [i] In turn, what does that say about some optimal dual variable value?
 - [ii] In particular, what does that say about some optimal dual constraint?
- (b) If x_8^* is in the basis, what does that say about some optimal objective coefficient?
 - [i] In turn, what does that say about some optimal dual variable value?
 - [ii] Also, what does that say about some optimal primal constraint?

4.2 Complementary Slackness Conditions

Let us return to Problem 4.1.5 and its dual Problem 4.2.1.

Problem 4.2.1

Min.
$$w=211y_1+189y_2-106y_3+175y_4$$
 s.t.
$$4y_1+6y_2-5y_3+3y_4\geq -22\\y_1+4y_3+9y_4\geq -18\\-3y_1+2y_2-2y_3+2-27\\5y_2-2y_4\geq -27\\2y_1-y_2-y_3+y_4\geq -16\\7y_1+8y_2-7y_3+4y_4\geq -12$$
 & y_1 , y_2 , y_3 , $y_4\geq 0$