Tutorial 6

Formal Language and Automata Theory

February 13, 2023

Minimize the following DFA

Solution

HINT: Generate state transition diagram and equivalence classes to minimize it

Minimize the following DFA

Solution

HINT: Generate state transition diagram and equivalence classes to minimize it

Apply the concept of Myhill-Nerode relation to show that the following languages are not regular.

$$(\mathsf{a})\{ww|w\in\Sigma^*\}$$

Solution

HINT1: Consider any Myhill-Nerode relation \equiv with respect to the language $\{ww|w\in\Sigma^*\}$. Let a^k and a^m be two arbitrary members of the set, where k and m are positive integers and $k\neq m$.

By right congruence, if $a^k \equiv a^m$ then $a^kba^kb \equiv a^mba^kb$. But a^kba^kb is in the given language $\{ww|w \in \Sigma^*\}$ while a^mba^kb is not. So, a^k and a^m are in two separate equivalence classes and it is not the case that $a^k \equiv a^m$. Since this is true for any k and m, the number of partition classes for any Myhill-Nerode relation \equiv with respect to the language $\{ww|w \in \Sigma^*\}$ is infinite. Hence the language $\{ww|w \in \Sigma^*\}$ is nonregular.

(b)
$$\{a^{n^2}|n\geq 0\}$$

Solution

HINT1: Consider a^{m^2} , a^{k^2} with k > m. Now, if $a^{m^2} \equiv a^{k^2}$ then $a^{m^2+2m+1} = a^{(m+1)^2} \equiv a^{k^2+2m+1}$ by right congruence.

HINT2: But $k^2 < k^2 + 2m + 1 < k^2 + 2k + 1 = (k+1)^2$. Hence, $a^{k^2+2m+1} \not\subset L$ but $a^{(m+1)^2} \subset L$. Hence, it must be the case that there is no Myhill-Nerode relation such that $a^{m^2} \equiv a^{k^2}$.

Provide CFG for the following languages.

(a)
$$L = \{a^n b^m c^k \mid k = |n - m|\}$$

(a)
$$L = \{a^n b^m c^k \mid k = |n - m|\}$$

HINT: Split the problem into two cases: n = k + m and m = k + n. Solve both cases separately. Then combine using a single starting state.

Solution:

(a)
$$L = \{a^n b^m c^k \mid k = |n - m|\}$$

First case:

$$S_1
ightarrow a S_1 c |S_3| \epsilon$$

 $S_3 o aS_3b|\epsilon$

Second case:

$$S_2
ightarrow aS_2bS_4|\epsilon$$

$$S_4 o bS_4c|\epsilon$$

Combine:

$$S \rightarrow S_1 | S_2$$

(b)
$$L = \{a^n b^m c^k \mid n = m \text{ or } m \le k\}$$

(b)
$$L = \{a^n b^m c^k \mid n = m \text{ or } m \le k\}$$

HINT 1: For the first case n = m and k is arbitrary. Try to solve this independently.

(b)
$$L = \{a^n b^m c^k \mid n = m \text{ or } m \le k\}$$

HINT 1: For the first case n = m and k is arbitrary. Try to solve this independently.

HINT 2: In second case, n is arbitrary and $m \le k$. Try to solve this independently. Finally, Combine both grammars with a single starting state.

Solution:

(b)
$$L = \{a^n b^m c^k \mid n = m \text{ or } m \le k\}$$

First case:

$$S_1 \rightarrow AC$$

$$A
ightarrow aAb|\epsilon$$

$$C \to Cc|\dot{\epsilon}$$

Second case:

$$S_2 \rightarrow BD$$

$$B o aB | \epsilon$$

$$D \rightarrow bDc|E$$

$$E \rightarrow Ec|\epsilon$$

Combine:

$$S \rightarrow S_1 | S_2$$

(c) $L = \{w \in \{a, b\}^*\}$, where the length of w is odd and its middle symbol is a

(c) $L = \{w \in \{a, b\}^*\}$, where the length of w is odd and its middle symbol is a

HINT 1: There exists 4 possible combination of first and last symbols. Try to derive all four scenarios.

(c) $L = \{w \in \{a, b\}^*\}$, where the length of w is odd and its middle symbol is a

HINT 1: There exists 4 possible combination of first and last symbols. Try to derive all four scenarios.

HINT 2: Single-length string is also possible.

Solution:

(c) $L = \{w \in \{a, b\}^*\}$, where the length of w is odd and its middle symbol is a

$$S \rightarrow a|aSa|aSb|bSa|bSb$$

(d)
$$L = \{w \# x\}$$
, where w^R is a substring for x for $w, x \in \{0, 1\}^*$

(d)
$$L = \{w \# x\}$$
, where w^R is a substring for x for $w, x \in \{0, 1\}^*$

HINT 1: Divide the problem into 2 parts. Define rules for x.

(d) $L = \{w \# x\}$, where w^R is a substring for x for $w, x \in \{0, 1\}^*$

HINT 1: Divide the problem into 2 parts. Define rules for x.

HINT 2: Try to define w independently such that w^R ends with x.

Solution:

(d)
$$L = \{w \# x\}$$
, where w^R is a substring for x for $w, x \in \{a, b\}^*$

$$S \to WX W \to 0W0|1W1|\#X X \to 0X|1X|\epsilon$$