Devoir surveillé n° 8 : corrigé

Problème 1 — Polynômes de Bernoulli – D'après ENAC 1995

Partie I -

1. a. On montre que d est injective et surjective.

Injectivité Soit $P \in \ker \phi$. Donc P est un polynôme constant. Il existe donc $\lambda \in \mathbb{R}$ tel que $P = \lambda$. Comme $P \in E$, on en déduit $\int_0^1 \lambda dx = 0$ i.e. $\lambda = 0$. Ainsi P = 0.

Surjectivité Soit $P \in \mathbb{K}[X]$. Comme D est clairement surjective, il existe $Q \in \mathbb{K}[X]$ tel que D(Q) = P. Posons $\lambda = \int_0^1 Q(t) dt$. Alors $Q - \lambda \in E$ et $D(Q - \lambda) = P$. Ainsi d est surjective.

 $\mathbf{b.} \ P = \varphi(Q) \iff Q = d(P) \iff (P \in E \ \mathrm{ET} \ P' = Q).$

2. a. Non. Il suffit de prendre P=1. On trouve $\Phi(P)=X-\frac{1}{2}$ et donc $\Phi(P)(0)=-\frac{1}{2}$ tandis que $\Phi(P(0))=\Phi(1)=X-\frac{1}{2}$.

b. Non. Il suffit à nouveau de prendre P=1. On trouve $\Phi(P)=X-\frac{1}{2}$ et donc $\Phi(P)(1-X)=\frac{1}{2}-X$ tandis que $\Phi(P(1-X))=\Phi(1)=X-\frac{1}{2}$.

3. a. On a $B_1' = B_0$ et donc il existe $\lambda \in \mathbb{R}$ tel que $B_1 = X + \lambda$. De plus, $\int_0^1 B_1(t)dt = 0$ donc $\lambda = -\frac{1}{2}$. D'où

$$B_1 = X - \frac{1}{2}$$

De même, $B_2'=B_1$ et donc il existe $\mu\in\mathbb{R}$ tel que $B_2=\frac{1}{2}X^2-\frac{1}{2}X+\mu$. De plus, $\int_0^1B_2(t)dt=0$ donc $\mu=\frac{1}{12}$. D'où

$$B_2 = \frac{1}{2}X^2 - \frac{1}{2}X + \frac{1}{12}$$

b. Remarquons tout d'abord que $B_n \in E$ pour $n \ge 1$. De plus, pour tout $n \in \mathbb{N}$, $B_{n+1} = \phi(B_n)$ et donc $B'_{n+1} = B_n$. Soit $n \ge 2$. On a :

$$B_n(1) - B_n(0) = \int_0^1 B'_n(t)dt = \int_0^1 B_{n-1}(t)dt = 0$$

 ${\rm car}\ B_{n-1}\in E.$

4. a. On a $P_{n+1} = (-1)^{n+1}B_{n+1}(1-X)$ et donc

$$P'_{n+1} = (-1)^{n+2}B'_{n+1}(1-X) = (-1)^nB_n(1-X) = P_n$$

b. D'après la question précédente, il suffit donc de montrer que $P_{n+1} \in E$ pour tout $n \in \mathbb{N}$. Or pour tout $n \in \mathbb{N}$

$$\int_{0}^{1} P_{n+1}(t)dt = (-1)^{n} \int_{0}^{1} B_{n+1}(1-t)dt = (-1)^{n} \int_{0}^{1} B_{n+1}(t)dt = 0$$

 ${\rm car}\ B_{\mathfrak n}\in E\ {\rm pour}\ \mathfrak n\geqslant 1.$

c. On a $P_0 = B_0 = 1$. De plus, $P_{n+1} = \phi(P_n)$ et $B_{n+1} = \phi(B_n)$ pour tout $n \in \mathbb{N}$. On en déduit donc par récurrence que $P_n = B_n$ pour tout $n \in \mathbb{N}$. Ainsi

$$\forall n \in \mathbb{N}, B_n(1-X) = (-1)^n B_n(X)$$

5. a. Soit $n \in \mathbb{N}$. En dérivant l'expression définissant Q_{n+1} , on obtient :

$$Q'_{n+1} = p^n \sum_{k=0}^{p-1} \frac{1}{p} B'_{n+1} \left(\frac{X+k}{p} \right) = p^{n-1} \sum_{k=0}^{p-1} \frac{1}{p} B_n \left(\frac{X+k}{p} \right) = Q_n$$

Vérifions que $Q_{n+1} \in E$:

$$\int_{0}^{1} Q_{n+1}(t)dt = p^{n} \sum_{k=0}^{p-1} \int_{0}^{1} B_{n+1} \left(\frac{t+k}{p} \right) dt$$

En effectuant le changement de variable $u=\frac{t+k}{p}$ dans chaque intégrale, on obtient :

$$\int_0^1 Q_{n+1}(t)dt = p^n \sum_{k=0}^{p-1} \int_{\frac{k}{p}}^{\frac{k+1}{p}} B_{n+1}(u)pdu = p^{n+1} \int_0^1 B_{n+1}(u)du = 0$$

en utilisant la relation de Chasles et car $B_{n+1} \in E$. Ainsi $Q'_{n+1} = Q_n$ et $Q_{n+1} \in E$ donc $Q_{n+1} = \varphi(Q_n)$ d'après **I.1.b**.

- **b.** On a $Q_0 = B_0 = 1$. Comme $Q_{n+1} = \varphi(Q_n)$ et $B_{n+1} = \varphi(B_n)$ pour tout $n \in \mathbb{N}$, on conclut par récurrence que pour tout $n \in \mathbb{N}$, $Q_n = B_n$. On a ainsi la relation demandée.
- **6.** a. Soit $n \in \mathbb{N}$. On a $R'_{n+1} = B'_{n+1}(X+1) B'_{n+1}(X) = B_n(X+1) B_n(X) = R_n$
 - **b.** Soit $n \in \mathbb{N}^*$. $R_n(0) = B_{n+1}(1) B_{n+1}(0) = 0$ car $n+1 \geqslant 2$.
 - c. On a $R_0 = 1$. Une récurrence simple montre que $R_n = \frac{X^n}{n!}$
 - d. D'après la question précédente :

$$\sum_{k=1}^{m} k^{n} = n! \sum_{k=1}^{m} R_{n}(k) = \sum_{k=1}^{m} B_{n+1}(k+1) - B_{n+1}(k) = n! (B_{n+1}(m+1) - B_{n+1}(1))$$

par télescopage.

Partie II -

1. a. Comme $\deg B_0=0$ et que $B_{n+1}'=B_n$ pour tout $n\in\mathbb{N}$, on en déduit par récurrence que $B_n^{(k)}=B_{n-k}$ pour $0\leqslant k\leqslant n$ et que $B_n^{(k)}=0$ pour k>n. D'après la formule de Taylor appliquée à B_n en 0, on a :

$$B_n = \sum_{k=0}^n \frac{B_n^{(k)}(0)}{k!} X^k = \sum_{k=0}^n \frac{B_{n-k}(0)}{k!} X^k = \sum_{k=0}^n \frac{b_{n-k}}{k!} X^k$$

b. Comme $B_0=1$, on a clairement $b_0=1$. Soit $n\in\mathbb{N}^*$. En intégrant la relation précédente entre 0 et 1, on a :

$$\int_0^1 B_n(t)dt = \sum_{k=0}^n \frac{b_{n-k}}{(k+1)!}$$

Or pour $n \ge 1$, $B_n \in E$ car $B_n = \varphi(B_{n-1})$ donc $\int_0^1 B_n(t) dt = 0$. En isolant le terme d'indice k = 0 de la somme, on en déduit :

$$b_n = -\sum_{k=1}^n \frac{b_{n-k}}{(k+1)!}$$

c. Soit $m \in \mathbb{N}^*$. D'après la question **I.4.c**, on a $B_{2m+1}(1-X) = -B_{2m+1}(X)$. En substituant 0 à X, on obtient $B_{2m+1}(1) = -B_{2m+1}(0)$. Mais comme $2m+1 \ge 2$, on a $B_{2m+1}(0) = B_{2m+1}(1)$ d'après la question **I.3.b**. Ainsi $b_{2m+1} = B_{2m+1}(0) = 0$.

2. a. En choisissant p = 2 et en substituant 0 à X dans la relation de la question I.5.b, on obtient :

$$B_n(0) = 2^{n-1} \left[B_n(0) + B_n \left(\frac{1}{2} \right) \right]$$

et donc

$$B_n\left(\frac{1}{2}\right) = \frac{b_n\left(1 - 2^{n-1}\right)}{2^{n-1}}$$

b. En choisissant p = 3 et en substituant 0 à X dans la relation de la question **I.5.b**, on obtient :

$$B_n(0) = 3^{n-1} \left[B_n(0) + B_n\left(\frac{1}{3}\right) + B_n\left(\frac{2}{3}\right) \right]$$

Mais comme $B_n(1-X)=(-1)^nB_n(X)$, on obtient en substituant $\frac{1}{3}$ à $X:B_n\left(\frac{2}{3}\right)=B_n\left(\frac{1}{3}\right)$ car n est pair. Par conséquent

$$B_n\left(\frac{1}{3}\right) = \frac{b_n\left(1 - 3^{n-1}\right)}{2 \times 3^{n-1}}$$

De même, en choisissant p = 4 et en substituant 0 à X dans la relation de la question $\mathbf{I.5.b}$, on obtient :

$$B_n(0) = 4^{n-1} \left[B_n(0) + B_n\left(\frac{1}{4}\right) + B_n\left(\frac{1}{2}\right) + B_n\left(\frac{3}{4}\right) \right]$$

Or on a vu plus haut que $2^{n-1}\left[B_n(0)+B_n\left(\frac{1}{2}\right)\right]=b_n$. De plus, pour les mêmes raisons que précédemment $B_n\left(\frac{1}{4}\right)=B_n\left(\frac{3}{4}\right)$. Par conséquent

$$B_n\left(\frac{1}{4}\right) = \frac{b_n\left(1 - 2^{n-1}\right)}{2 \times 4^{n-1}}$$

Enfin, en choisissant p = 6 et en substituant 0 à X dans la relation de la question I.5.b, on obtient :

$$B_{n}(0) = 6^{n-1} \left[B_{n}(0) + B_{n} \left(\frac{1}{6} \right) + B_{n} \left(\frac{1}{3} \right) + B_{n} \left(\frac{1}{2} \right) + B_{n} \left(\frac{2}{3} \right) + B_{n} \left(\frac{5}{6} \right) \right]$$

On a vu précédemment que $3^{n-1}\left[B_n(0)+B_n\left(\frac{1}{3}\right)+B_n\left(\frac{2}{3}\right)\right]=b_n$ et on a encore $B_n\left(\frac{1}{6}\right)=B_n\left(\frac{5}{6}\right)$. Par conséquent

$$B_n\left(\frac{1}{6}\right) = \frac{b_n\left(1 + 6^{n-1} - 2^{n-1} - 3^{n-1}\right)}{2 \times 6^{n-1}}$$

- **3.** a. Il suffit de prendre m = 1.
 - **b.** Comme $(-1)^m B_{2m-1}$ est la dérivée de $(-1)^m B_{2m}$, $(-1)^m B_{2m}$ est strictement croissante sur $\left[0,\frac{1}{2}\right]$ et elle est également continue sur cet intervalle. De plus, d'après la question **II.2.a**, $B_{2m}(0)$ et $B_{2m}\left(\frac{1}{2}\right)$ sont de signes opposés donc $(-1)^m B_{2m}$ s'annule une unique fois sur $\left[0,\frac{1}{2}\right]$ en vertu du théorème de la bijection monotone.
 - c. $(-1)^m B_{2m}$ est donc négative puis positive sur $\left[0,\frac{1}{2}\right]$. De plus, $(-1)^m B_{2m}$ ne s'annule qu'une fois sur $\left[0,\frac{1}{2}\right]$. On en déduit que $(-1)^{m+1} B_{2m+1}$ est strictement croissante puis strictement décroissante sur $\left[0,\frac{1}{2}\right]$. Comme 2m+1 est impair, on a $B_{2m+1}(0)=B_{2m+1}\left(\frac{1}{2}\right)=0$. Ainsi $(-1)^{m+1} B_{2m+1}$ est strictement positive sur $\left[0,\frac{1}{2}\right]$.
 - d. Soit l'hypothèse de récurrence :

$$HR(\mathfrak{m}): \, \ll (-1)^{\mathfrak{m}} B_{2\mathfrak{m}-1}$$
 est strictement positive sur $\left]0, \frac{1}{2}\right[.\, \, \gg 1]$

On a vu à la question **II.3.a** que HR(1) est vraie. Les questions **II.3.b** et **II.3.c** prouvent que $HR(m) \Rightarrow HR(m+1)$. On en conclut que HR(m) est vraie pour tout $m \in \mathbb{N}^*$.

Mais la question II.3.b prouve alors que $(-1)^m B_{2m}$ s'annule une unique fois sur $\left]0,\frac{1}{2}\right[$ pour tout $m \in \mathbb{N}^*$.

- e. Comme B_{2m} est continue sur $\left[0,\frac{1}{2}\right]$ et que $B_{2m}\left(\frac{1}{6}\right)$ et $B_{2m}\left(\frac{1}{4}\right)$ sont de signes opposés, on en déduit que $\theta_m \in \left]\frac{1}{4},\frac{1}{6}\right[$.
- **4. a.** La fonction $(-1)^m B_{2m}$ est strictement croissante sur $\left[0, \frac{1}{2}\right]$. De plus,

$$\left|B_{2m}\left(\frac{1}{2}\right)\right| = |b_{2m}|\frac{2^{2m-1}-1}{2^{2m-1}} \leqslant |b_{2m}|$$

pour $m \ge 1$ car, dans ce cas, $2^{2m-1}-1 \ge 0$. Les variations de $(-1)^m B_{2m}$ permettent donc de déduire que la borne supérieure de $|B_{2m}|$ est atteinte en 0 et vaut $|b_{2m}|$. Le résultat est encore valable pour m=0 puisque B_0 est constante égale à b_0 .

 $\textbf{b. On a } B_{2m}(1-t) = B_{2m}(t) \text{ pour tout } t \in \mathbb{R}. \text{ Les variations de } (-1)^m B_{2m} \text{ sur } \left[\frac{1}{2},1\right] \text{ se déduisent donc de celles sur } \left[0,\frac{1}{2}\right]: \text{ainsi } |B_{2m}| \text{ atteint sa borne supérieure sur } [0,1] \text{ en 0 et en 1 et celle-ci vaut } |b_{2m}|.$

Partie III -

```
1. def integrale(P):
    return sum([P[k]/(k+1) for k in range(len(P))])
2. def primitive(P):
    return [0]+[P[k]/(k+1) for k in range(len(P))]
3. def phi(P):
    Q=primitive(P)
    Q[0]=-integrale(Q)
    return Q
4. def B(n):
    res=[[1]]
    for _ in range(n):
        res.append(phi(res[-1]))
    return res
```