Achmad Imam Kistijantoro Anggrahita Bayu Sasmita Yudistira Dwi Wardhana Asnar Rahmat Mulyawan Infall Syafalni

IF2130/II2130 – Organisasi dan Arsitektur Komputer

sumber: Greg Kesden, CMU 15-213, 2012

Representasi Informasi – Tiny Floating Point Example

Tiny Floating Point Example

▶ 8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	exp	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized numbers	0	0000	010	-6	2/8*1/64 = 2/512
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	•••				
	0	0110	110	-1	·
N. 1. 1	0	0110	111	-1	15/8*1/2 = 15/16 closest to I below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to I above
	0	0111	010	0	10/8*1 = 10/8
	•••				
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

Distribution of Values

- ▶ 6-bit IEEE-like format
 - e = 3 exponent bits
 - \rightarrow f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

▶ 6-bit IEEE-like format

- e = 3 exponent bits
- ▶ f = 2 fraction bits
- ▶ Bias is 3

	S	exp	frac
•	1	3-bits	2-bits

Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - \rightarrow All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - ▶ Normalized vs. infinity

End of Segment

