Fig.1

Fig.2

Fig.3

Fig.4

		SAMPLEA	SCOMPARATIVE EXAMPLE A
TRANSMISSION LOSS & 1310	(dB/km)	0 . 29	0 .33
TRANSMISSION LOSS & 1380	(dB/km)	0.27	0 . 62
TRANSMISSION LOSS & 1550	(dB/km)	0.17	0 . 19
LOSS DIFFERENCE $\Delta \alpha (\alpha_{1550} - \alpha_{1310})$ (decomposed of the state	(dB/km)	0.12	0 . 14
OH-RELATED LOSS INCREASE A Ø1310	(dB/km)	0.03	0.31
CABLE CUTOFF WAVELENGTH	(mu)	1220	
ZERO DISPERSION WAVELENGTH	(mu)	1310	
MODE FIELD DIAMETER (AT WAVELENGTH OF 1550 nm)	(m n/)	7 . 6	
BENDING LOSS (AT WAVELENGTH OF 1550 nm AND IN BENDING OF 20nm)	(dB/m)	2	

Fig.5

Fig.6

Fig.7

8.6

	ہ ۔	т								ПО
OH- TRANS- FIBER LOSS LOSS AT TURE NICREASE WAVE- LENGTH MATERIAL LENGTH OF 1550nm (CLADDING OF 1380nm	PURE SILICA GLASS/ ≦0.10 ≦0.176 F-DOPED GLASS								Ge-DOPED GLASS 0.19 /PURE SILICA- GLASS	
TRANS- FIBER MISSION STRUC LOSS AT TURE (CORE LENGTH MATER) OF 1550nm (CLODIC)	(dB/km) MAI EKIAL)									
OH- TRELATED MISSION SINCE LOSS LOSS AT TINCREASE WAVE- AT WAVE-LENGTH M. LENGTH OF1550nm//	(dB/km)									0.31
	(nm) [(pshm/km) (pshm²/km) (pshm²/km) (dB/km) (dB/km)	≤0.31								0.62
TRANS- TRANS- MISSION MISSION LOSS LOSS AT AT 1310 nm 1380 nm	(dB/km)	≤0.32								0.33
DISPE- ZERO TRANSICA DISPE- MISSICA DISPE- MISSICA LOSS AT SLOPE AT 1550 nm	(ps/hm4/km)	0.0793	9080:0	0.0801	0.0789	0.0816	0.0800	0.0819	0.0790	0.0850
DISPE- RSION SLOPE AT 1550 nm	(ps/hm4/km)	0.0540	0.0544	0.0537	0.0531	0.0536	0.0547	0.0548	0.0544	0.0584
CHRO- MATIC DISPE- RSION AT 1550 nm	(ps/nm/km)	14.97	15.46	15.39	14.86	15.75	15.90	16.66	15.39	16.50
ZERO CHRO- DISPE- DISPE- RSION RSION WAVE- AT LENGTH 1550 nm	(nm)	1318	1313	1313	1318	1307	1312	1304	1317	1316
CABLE CUTOFF MFD AT RSION RSIC WAVE- 1310nm WAVE- AT LENGTH 1550	(m m)	8.53	8.06	8.57	8.37	8.33	8.72	8.92	8.92	9.13
CABLE CUTOFF WAVE- LENGTH	(nm)	1166	1230	1200	1135	1260	1184	1226	1133	1158
2a	(m m)	7.80	8.16	8.02	7.56	7.60	8.14	8.52	8.10	ı
ν	(%)	0.38	0.935	0.39	0.395	0.42	0.385	0.38	0.36	,
	-	SAMPLE B	SAMPLEC	SAMPLE D	SAMPLEE	SAMPLE F	SAMPLE G	SAMPLE H	SAMPLE B	COMPARATIVE

Fig.9

Fig.10

