Correlation (part 1)

Ryan Miller

Introduction

At this point we've discussed associations in the follow contexts:

- Relating two categorical variables contingency tables and differences in row/column proportions
- Relative one categorical and one quantitative variable side-by-side graphs and differences in means

Introduction

At this point we've discussed associations in the follow contexts:

- Relating two categorical variables contingency tables and differences in row/column proportions
- Relative one categorical and one quantitative variable side-by-side graphs and differences in means

This presentation will cover the remaining scenario, relating two quantitative variables

Pearson's Height Data

Francis Galton and Karl Pearson, two pioneers of modern statistics, lived in Victorian England at a time when the scientific community was fascinated by the idea of quantifying hereditable traits

Pearson's Height Data

- Francis Galton and Karl Pearson, two pioneers of modern statistics, lived in Victorian England at a time when the scientific community was fascinated by the idea of quantifying hereditable traits
- ► Wondering if height is hereditable, they measured the heights of 1,078 fathers and their (fully grown) first-born sons:

Father	Son	
65	59.8	
63.3	63.2	
65	63.3	
65.8	62.8	

Pearson's Height Data

Using a scatterplot an association is obvious:

But how do we summarize it?

Pearson's Correlation Coefficient

- Consider two variables, X and Y, and their average values, \bar{x} and \bar{y}
- ► The correlation coefficient, *r*, measures the strength of a *linear* association between *X* and *Y*

$$r_{xy} = \frac{1}{n-1} \sum_{i} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

Pearson's Correlation Coefficient

- ▶ Consider two variables, X and Y, and their average values, \bar{x} and \bar{y}
- ► The correlation coefficient, *r*, measures the strength of a *linear* association between *X* and *Y*

$$r_{xy} = \frac{1}{n-1} \sum_{i} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

As you can see, when above average values in X are accompanied by above average values in Y there is a positive contribution to the correlation between X and Y

Pearson's Correlation Coefficient

- \triangleright Consider two variables, X and Y, and their average values, \bar{x} and \bar{v}
- ▶ The correlation coefficient, r, measures the strength of a *linear* association between X and Y

$$r_{xy} = \frac{1}{n-1} \sum_{i} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

- As you can see, when above average values in X are accompanied by above average values in Y there is a positive contribution to the correlation between X and Y
- ▶ When above average values in X are accompanied by below average values in Y there is a negative contribution to the correlation between X and Y

Examples

Strength of Association

Whether a correlation is considered "strong" or "weak" depends on the discipline

	orrelation oefficient	Dancey & Reidy (Psychology)	Quinnipiac University (Politics)	Chan YH (Medicine)
+1	-1	Perfect	Perfect	Perfect
+0.9	-0.9	Strong	Very Strong	Very Strong
+0.8	-0.8	Strong	Very Strong	Very Strong
+0.7	-0.7	Strong	Very Strong	Moderate
+0.6	-0.6	Moderate	Strong	Moderate
+0.5	-0.5	Moderate	Strong	Fair
+0.4	-0.4	Moderate	Strong	Fair
+0.3	-0.3	Weak	Moderate	Fair
+0.2	-0.2	Weak	Weak	Poor
+0.1	-0.1	Weak	Negligible	Poor
0	0	Zero	None	None

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6107969/

Practice

- 1. Open the "Tips" dataset in the "data explorer" app
- Create a scatterplot using "tip" as the X variable and "tot_bill" as the Y variable
- 3. Describe whether you see an association
- 4. Describe the correlation coefficient between the two variables using the "Summarize the Data" tab