50003 - Models of Computation - Lecture $7\,$

Oliver Killane

02/11/21

Lecture Recording

Lecture recording is available here

Note for reader

We will reference to state by set $State \triangleq (Var \rightarrow \mathbb{N})$.

Lemmas

Lemma

A small proven proposition that can be used in a proof. Used to make the proof smaller.

Also know as an "auxiliary theorem" or "helper theorem".

Corollary

A theorem connected by a short proof to another existing theorem.

If B is can be easily deduced from A (or is evident in A's proof) then B is a corollary of A.

Lemmas

- 1. $\forall r \in \mathbb{N}. \forall E_1, E_1', E_2 \in SimpleExp.[E_1 \to^r E_1' \Rightarrow (E_1 + E_2) \to^r (E_1' + E_2)]$
- 2. $\forall r, n \in \mathbb{N}. \forall E_2, E_2' \in SimpleExp. [E_2 \rightarrow^r E_2' \Rightarrow (n + E_2) \rightarrow^r (n + E_2')]$

Corollaries

- 1. $\forall n_1 \in \mathbb{N}. \forall E_1, E_2 \in SimpleExp.[E_1 \to^* n_1 \Rightarrow (E_1 + E_2) \to^* (n_1 + E_2)]$
- 2. $\forall n_1, n_2 \in \mathbb{N}. \forall E_2 \in SimpleExp.[E_2 \rightarrow^* n_2 \Rightarrow (n_1 + E_2) \rightarrow^* (n_1 + n_2)]$
- 3. $\forall n, n_1, n_2, \in \mathbb{N}. \forall E_1, E_2 \in SimpleExp.[E_1 \rightarrow^* n_1 \land E_2 \rightarrow^* n_2 \land n = n_1 + n_2 \Rightarrow (E_1 + E_2) \rightarrow^* n]$

Connecting \downarrow and \rightarrow^* for SimpleExp

$$\forall E \in SimpleExp, n \in \mathbb{N}.[E \Downarrow n \Leftrightarrow E \to^* n]$$

We prove each direction of implication separately. First we prove by induction over E using the property P:

$$P(E) = ^{def} \forall n \in \mathbb{N}. [E \Downarrow n \Rightarrow E \rightarrow^* n]$$

Base Case

Take arbitrary $n \in \mathbb{N}$ to show $P(n) - n \downarrow n \Rightarrow n \rightarrow^* n$.

- (1) $n \to^0 n$ (*n* is in the normal form) (2) $n \Downarrow n$ (*n* is in the normal form)
- (3) $n \Downarrow n \land n \rightarrow^* n$ (By 1 & 2)
- $(4) \quad n \downarrow n \Rightarrow n \to^* n \quad (By 3)$

Inductive Step

Take some arbitrary E, E_1, E_2 such that $E = E_1 + E_2$. Inductive Hypothesis

$$\forall n_1 \in \mathbb{N}. [E_1 \Downarrow n_1 \Rightarrow E_1 \to^* n_1]$$

$$\forall n_2 \in \mathbb{N}. [E_2 \Downarrow n_2 \Rightarrow E_2 \to^* n_2]$$

To show P(E): $\forall n \in \mathbb{N}. [(E_1 + E_2) \downarrow n \Rightarrow (E_1 + E_2) \rightarrow^* n].$

- Assume $(E_1 + E_2) \Downarrow n$
- $\exists n_1, n_2 \in \mathbb{N}. [E_1 \Downarrow n_1 \land E_2 \Downarrow n_2]$ (By 1 & definition of B-ADD)
- $(3) \quad E_1 \to^* n_1$

(By 2 & IH)

(4) $E_2 \rightarrow^* n_2$

- (By 2 & IH)
- (5) Chose some $n \in \mathbb{N}$ such that $n = n_1 + n_2$
- (6) $(E_1+E_2) \rightarrow^* n$

(By 3,4,5 Corollary 3)

(7) $E \to^* n$ (By 6, definition of E)

Hence assuming $E \downarrow n$ implies $E \rightarrow^* n$, so P(E).

Next we work the other way, to show:

$$\forall E \in SimpleExp. \forall n \in \mathbb{N}. [E \to^* n \Rightarrow E \downarrow n]$$

- Take arbitrary $E \in SimplExp$ such that $E \to^* n$ (Initial setup) (1)
- (2)Take some $m \in \mathbb{N}$ such that $E \downarrow m$ (By totality of \Downarrow)
- (By 1,2 & uniqueness of result for \rightarrow) (3)n = m
- (4) $E \Downarrow n$ (By 3)

It is also possible to prove this without using normalisation and determinacy, by induction on E.

Multi-Step Reductions

Lemma:

$$\forall r \in \mathbb{N}. \forall E_1, E_1', E_2. [E_1 \to^r E_1' \Rightarrow (E_1 + E_2) \to^r (E_1' + E_2)]$$

To prove $\forall r \in \mathbb{N}.[P(r)]$ by induction on r:

Base Case

- Base case is r = 0.
- Prove that P(0) holds.

Inductive Step

- Inductive Case is r = k + 1 for arbitrary $k \in \mathbb{N}$.
- Inductive hypothesis is P(k).
- Prove P(k+1) using inductive hypothesis.

Proof of the Lemma

By induction on r: Base Case: Take some arbitrary $E_1, E_1', E_2 \in SimpleExp$ such that $E_1 \to^0 E_1'$.

- $E_1 = E'_1$ $(E_1 + E_2) = (E'_1 + E_2)$ $(E_1 + E_2) \to^0 (E'_1 + E_2)$ (By definition of \rightarrow^0)
- (By 1)
- (By definition of \rightarrow^0)

Inductive Step: Take arbitrary $k \in \mathbb{N}$ such that P(k)

- Take arbitrary E_1, E_1', E_2 such that $E_1 \to E_1'$ (Initial setup)
- (2)Take arbitrary E_1'' such that $E_1'' \to E_1'$
- (3)(By 2 & IH)
- (By 2 & rule S-LEFT) (4)
- $(E_1 + E_2) \xrightarrow{k} (E_1'' + E_2)$ $(E_1'' + E_2) \xrightarrow{k+1} (E_1' + E_2)$ $(E_1 + E_2) \xrightarrow{k+1} (E_1' + E_2)$ $(3,4, \text{ definition of } \rightarrow^{k+1})$ (5)

Determinacy of \rightarrow for Exp

We extend simple expressions configurations of the form $\langle E, s \rangle$.

$$E \in Exp ::= n|x|E + E|\dots$$

Determinacy:

$$\forall E, E_1, E_2 \in Exp. \forall s, s_1, s_2 \in State. [\langle E, s \rangle \rightarrow \langle E_1, s_1 \rangle \land \langle E, s \rangle \rightarrow \langle E_2, s_2 \rangle \Rightarrow \langle E_1, s_1 \rangle = \langle E_2, s_2 \rangle]$$

We prove this using property P:

$$P(E,s) \triangleq \forall E_1, E_2 \in Exp. \forall s_1, s_2 \in State. [\langle E,s \rangle \rightarrow \langle E_1, s_1 \rangle \land \langle E,s \rangle \rightarrow \langle E_2, s_2 \rangle \Rightarrow \langle E_1, s_1 \rangle = \langle E_2, s_2 \rangle]$$

Base Case: E = x

Take arbitrary $n \in \mathbb{N}$ and $s \in State$ to show P(n, s)

- take $E_1 \in Exp$, $s_1 \in State$ such that $\langle n, s \rangle \to \langle E_1, s_1 \rangle$ (Initial setup) (1)
- take $E_2 \in Exp, s_2 \in State$ such that $\langle n, s \rangle \to \langle E_2, s_2 \rangle$ (Initial setup) (2)
- (3) $n = E_1 \wedge s = s_1$ (By 1 & inversion on definition of E.NUM)
- $n = E_2 \wedge s = s_2$ (4)(By 2 & inversion on definition of E.NUM)
- $E_1 = E_2 \wedge s_1 = s_2$ $\langle E_1, s_1 \rangle = \langle E_2, s_2 \rangle$ (5)(By 3 & 4)
- (By 5 & definition of configurations) (6)

Base Case: E = x

Take arbitrary $x \in Var$ and $s \in State$ to show P(n, s)

```
(Initial setup)
(1)
         take E_1 \in \mathbb{N}, s_1 \in State such that \langle x, s \rangle \to \langle E_1, s_1 \rangle
(2)
         take E_2 \in \mathbb{N}, s_2 \in State such that \langle x, s \rangle \to \langle E_2, s_2 \rangle
                                                                                                   (Initial setup)
(3)
                                    E_1 = s(x) \land s_1 = s
                                                                                                   (By 1 & inversion on definition of E.VAR)
                                    E_2 = s(x) \land s_2 = s
E_1 = E_2 \land s_1 = s_2
\langle E_1, s_1 \rangle = \langle E_2, s_2 \rangle
(3)
                                                                                                   (By 2 & inversion on definition of E.VAR)
(5)
                                                                                                   (By 3 & 4)
```

(6)(By 5 & definition of configurations)

 \dots Inductive Step \dots

Syntax of Commands

 $C \in Com ::= x := E[\text{if } B \text{ then } C \text{ else } C[C; C|skip] \text{ while } B \text{ do } C$

Determinacy

$$\forall C, C_1, C_2 \in Com. \forall s, s_1, s_2 \in State. [\langle C, s \rangle \rightarrow_c \langle C_1, s_1 \rangle \land \langle C, s \rangle \rightarrow_c \langle C_2, s_2 \rangle \Rightarrow \langle C_1, s_1 \rangle = \langle C_2, s_2 \rangle]$$

• Confluence

$$\forall C, C_1, C_2 \in Com. \forall s, s_1, s_2 \in State. [\langle C, s \rangle \rightarrow_c^* \langle C_1, s_1 \rangle \land \langle C, s \rangle \rightarrow_c^* \langle C_2, s_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_1, c_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow \exists C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in State. [\langle C_1, s_1 \rangle \rightarrow C_2, c_2 \rangle \Rightarrow C' \in Com. \exists s' \in C$$

• Unique Answer

$$\forall C \in Com.s_1s_2 \in State. [\langle C, s \rangle \rightarrow_c^* \langle skip, s_1 \rangle \land \langle C, s \rangle \rightarrow_c^* \langle skip, s_2 \rangle \Rightarrow s_1 = s_2]$$

No Normalisation

There exist derivations of infinite length for while.

Connecting \downarrow and \rightarrow^* for While

- 1. $\forall E, n \in Exp. \forall s, s' \in State. [\langle E, s \rangle \downarrow_e \langle n, s' \rangle \Leftrightarrow \langle E, s \rangle \rightarrow_e^* \langle n, s' \rangle]$
- 2. $\forall B, b \in Bool. \forall s, s' \in State. [\langle B, s \rangle \downarrow_b \langle b, s' \rangle \Leftrightarrow \langle B, s \rangle \rightarrow_b^* \langle b, s' \rangle]$
- 3. $\forall C \in Com. \forall s, s' \in State. [\langle C, s \rangle \Downarrow_c \langle s' \rangle \Leftrightarrow \langle C, s \rangle \rightarrow_c^* \langle skip, s' \rangle]$

For Exp and Bool we have proofs by induction on the structure of expressions/booleans.

For ψ_c it is more complex as the $\psi_c \Leftarrow \to_c^*$ cannot be proven using totality. Instead **complete/strong induction** on length of \rightarrow_c^* is used.