Understanding quantum information and computation

By John Watrous

Lesson 11

General measurements

Descriptions of measurements

Measurements represent an interface between quantum and classical information:

- Performing a measurement on a system extracts classical information about its quantum state.
- In general, the system is changed (or destroyed) in the process.

Initially our focus will be on *destructive measurements* — which produce a classical outcome alone. (The post-measurement state of the system is not specified.)

Two ways to describe destructive measurements

- 1. As collections of matrices, one for each measurement outcome.
- 2. As *channels* whose outputs are always classical states (represented by diagonal density matrices).

Non-destructive measurements will be discussed later in the lesson. (They can always be described as compositions of destructive measurements and channels.)

Measurements as matrices

Suppose X is a system to be measured. For simplicity we will assume the following:

- The classical state set of X is $\{0, \ldots, n-1\}$.
- The set of measurement outcomes is $\{0, \ldots, m-1\}$.

Recollection: projective measurements

A *projective measurement* is described by a collection of projection matrices $\{\Pi_0, \ldots, \Pi_{m-1}\}$ satisfying this condition:

$$\Pi_0 + \cdots + \Pi_{m-1} = \mathbb{1}_X$$

If the state of X is ρ , each outcome α appears with this probability:

$$Tr(\Pi_{\alpha}\rho)$$

Measurements as matrices

Suppose X is a system to be measured. For simplicity we will assume the following:

- The classical state set of X is $\{0, \ldots, n-1\}$.
- The set of measurement outcomes is $\{0, \ldots, m-1\}$.

General measurements

A general measurement is described by a collection of positive semidefinite matrices $\{P_0, \ldots, P_{m-1}\}$ satisfying this condition:

$$P_0 + \cdots + P_{m-1} = 1_X$$

If the state of X is ρ , each outcome α appears with this probability:

$$Tr(P_{\alpha}\rho)$$

Measurements as matrices

General measurements

A general measurement is described by a collection of positive semidefinite matrices $\{P_0, \ldots, P_{m-1}\}$ satisfying this condition:

$$P_0 + \cdots + P_{m-1} = 1_X$$

If the state of X is ρ , each outcome α appears with this probability:

$$Tr(P_{\alpha}\rho)$$

We necessarily obtain a probability vector $(Tr(P_0\rho), ..., Tr(P_{m-1}\rho))$:

- These are nonnegative real numbers: $Q, R \ge 0 \Rightarrow Tr(QR) \ge 0$.
- These numbers sum to 1:

$$Tr(P_0\rho) + \cdots + Tr(P_{m-1}\rho) = Tr((P_0 + \cdots + P_{m-1})\rho) = Tr(\rho) = 1$$

Examples

Projections are always positive semidefinite, so every projective measurement is an example of a general measurement.

Example 1

A standard basis measurement of a qubit can be represented by $\{P_0, P_1\}$ where

$$P_0 = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad P_1 = |1\rangle\langle 1| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Measuring a qubit in the state ρ results in outcome probabilities as follows.

Prob(outcome = 0) = Tr(P₀
$$\rho$$
) = Tr(|0 $\rangle\langle$ 0| ρ) = \langle 0| ρ |0 \rangle

Prob(outcome = 1) = Tr(P₁
$$\rho$$
) = Tr(|1 $\rangle\langle 1|\rho\rangle$ = $\langle 1|\rho|1\rangle$

Examples

Example 2

Define P_0 and P_1 as follows.

$$P_{0} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \qquad P_{1} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Measuring a qubit in the $|+\rangle$ state results in outcome probabilities as follows.

Prob(outcome = 0) = Tr(P₀|+
$$\rangle$$
(+|) = Tr $\left(\begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\right) = \frac{5}{6}$

Prob(outcome = 1) = Tr(P₁|+
$$\rangle\langle$$
+|) = Tr $\left(\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}\right) = \frac{1}{6}$

Examples

Example 3

The *tetrahedral states* are defined as follows.

$$|\phi_0\rangle = |0\rangle$$

$$|\phi_1\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$$

$$|\phi_2\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}e^{2\pi i/3}|1\rangle$$

$$|\phi_3\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}e^{-2\pi i/3}|1\rangle$$

We can define a measurement $\{P_0, P_1, P_2, P_3\}$ as follows.

$$P_0 = \frac{|\phi_0\rangle\langle\phi_0|}{2} \qquad P_1 = \frac{|\phi_1\rangle\langle\phi_1|}{2} \qquad P_2 = \frac{|\phi_2\rangle\langle\phi_2|}{2} \qquad P_3 = \frac{|\phi_3\rangle\langle\phi_3|}{2}$$

Measurements as channels

Recall that classical (probabilistic) states can be represented by diagonal density matrices.

Any general measurement can be described as a *channel* Φ :

- The input system X is the system being measured.
- The classical states of the output system Y are the possible measurement outcomes $\{0, \ldots, m-1\}$.
- For every input state ρ of X, the output state $\Phi(\rho)$ is a diagonal density matrix.

Example: standard basis measurement

The $\frac{completely\ dephasing}{completely\ dephasing}$ channel Δ describes a standard basis measurement of a qubit:

$$\Delta(\rho) = \langle 0|\rho|0\rangle|0\rangle\langle 0| + \langle 1|\rho|1\rangle|1\rangle\langle 1|$$

Measurements as channels

Recall that classical (probabilistic) states can be represented by diagonal density matrices.

Any general measurement can be described as a *channel* Φ :

- The input system X is the system being measured.
- The classical states of the output system Y are the possible measurement outcomes $\{0, \ldots, m-1\}$.
- For every input state ρ of X, the output state $\Phi(\rho)$ is a diagonal density matrix.

Equivalence to matrix description

A channel Φ from X to Y has the property that $\Phi(\rho)$ is always diagonal if and only if

$$\Phi(\rho) = \sum_{\alpha=0}^{m-1} \text{Tr}(P_{\alpha}\rho) |\alpha\rangle\langle\alpha|$$

for a measurement $\{P_0, \dots, P_{m-1}\}.$

Partial measurements

Suppose that a pair of systems (X, Z) is in a state ρ and a measurement $\{P_0, \ldots, P_{m-1}\}$ is performed on X.

This results in a measurement outcome — and in addition the state of Z may change depending on the outcome.

Outcome probabilities

The probabilities for different measurement outcome probabilities to appear depend only on the measurement and the <u>reduced state</u> ρ_X of X.

Prob(outcome =
$$\alpha$$
) = Tr(P $_{\alpha}\rho_{X}$) = Tr(P $_{\alpha}$ Tr $_{Z}(\rho)$) = Tr((P $_{\alpha}\otimes \mathbb{I}_{Z})\rho$)

Partial measurements

Suppose that a pair of systems (X, Z) is in a state ρ and a measurement $\{P_0, \ldots, P_{m-1}\}$ is performed on X.

This results in a measurement outcome — and in addition the state of Z may change depending on the outcome.

States conditioned on measurement outcomes

To determine the state of Z conditioned on a given measurement outcome we can turn to the channel description of the measurement:

$$\Phi(\sigma) = \sum_{\alpha=0}^{m-1} \text{Tr}(P_{\alpha}\sigma) |\alpha\rangle\langle\alpha|$$

Applying this channel to X results in this state:

$$\sum_{\alpha=0}^{m-1} |\alpha\rangle\langle\alpha| \otimes \mathsf{Tr}_{\mathsf{X}}((\mathsf{P}_{\alpha} \otimes \mathbb{I}_{\mathsf{Z}})\rho)$$

The state of Z conditioned on the outcome α can be obtained by normalizing the matrix $Tr_X((P_\alpha \otimes \mathbb{I}_Z)\rho)$.

Partial measurements

Suppose that a pair of systems (X, Z) is in a state ρ and a measurement $\{P_0, \ldots, P_{m-1}\}$ is performed on X.

This results in a measurement outcome — and in addition the state of Z may change depending on the outcome.

Summary

When a measurement $\{P_0, \ldots, P_{m-1}\}$ is performed on X when (X, Z) is in the state ρ , the following happens:

- 1. Each outcome α appears with probability $Tr((P_{\alpha} \otimes \mathbb{I}_{Z})\rho)$.
- 2. Conditioned on obtaining the outcome α , the state of Z becomes

$$\frac{\mathsf{Tr}_{\mathsf{X}}((\mathsf{P}_{\mathsf{a}} \otimes \mathbb{I}_{\mathsf{Z}})\rho)}{\mathsf{Tr}((\mathsf{P}_{\mathsf{a}} \otimes \mathbb{I}_{\mathsf{Z}})\rho)}$$

Naimark's theorem

Naimark's theorem is a fundamental fact concerning measurements. It states that every general measurement can be implemented in the following way:

That is, a given general measurement $\{P_0, \ldots, P_{m-1}\}$ on X can be implemented as follows.

- 1. Introduce an initialized workspace system Y having classical states $\{0, \ldots, m-1\}$.
- 2. Perform a unitary operation U on the pair (Y, X).
- 3. Perform a standard basis measurement on Y.

Naimark's theorem is not difficult to prove... we just need to make a good choice for U and verify that it works.

Fact

For every positive semidefinite matrix P, there is a unique positive semidefinite matrix Q such that $Q^2 = P$. This matrix is denoted \sqrt{P} .

We can calculate \sqrt{P} using a spectral decomposition of P:

$$P = \sum_{k=0}^{n-1} \lambda_k |\psi_k\rangle\langle\psi_k| \quad \Rightarrow \quad \sqrt{P} = \sum_{k=0}^{n-1} \sqrt{\lambda_k} |\psi_k\rangle\langle\psi_k|$$

Naimark's theorem is not difficult to prove... we just need to make a good choice for U and verify that it works.

Any unitary matrix U that follows this pattern will work:

$$U = \begin{pmatrix} \sqrt{P_0} \\ \sqrt{P_1} \\ \vdots \\ \sqrt{P_{m-1}} \end{pmatrix}$$

$$u = \begin{pmatrix} \sqrt{P_0} \\ \sqrt{P_1} \\ \vdots \\ \sqrt{P_{m-1}} \end{pmatrix}$$

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can be made unitary.

$$\begin{array}{c|c} U(|0\rangle\langle 0|\otimes \rho)U^{\dagger} \\ = \begin{pmatrix} \sqrt{P_0} & & \\ \sqrt{P_1} & & \\ \vdots & & \\ \sqrt{P_{m-1}} & & \end{pmatrix} \begin{pmatrix} \rho & & \\ & & \\ \end{pmatrix} \begin{pmatrix} \sqrt{P_0} \sqrt{P_1} \cdots \sqrt{P_{m-1}} \\ & & \\ \end{pmatrix}$$

$$u = \begin{pmatrix} \sqrt{P_0} \\ \sqrt{P_1} \\ \vdots \\ \sqrt{P_{m-1}} \end{pmatrix}$$

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can be made unitary.

$$\begin{split} &U(|0\rangle\langle 0|\otimes \rho)U^{\dagger}\\ &=\begin{pmatrix} \sqrt{P_0}\rho\sqrt{P_0} & \cdots & \sqrt{P_0}\rho\sqrt{P_{m-1}}\\ &\vdots & \ddots & \vdots\\ \sqrt{P_{m-1}}\rho\sqrt{P_0} & \cdots & \sqrt{P_{m-1}}\rho\sqrt{P_{m-1}} \end{pmatrix}\\ &=\sum_{a,\,b=0}^{m-1}|a\rangle\langle b|\otimes\sqrt{P_a}\rho\sqrt{P_b} \end{split}$$

$$u = \begin{pmatrix} \sqrt{P_0} \\ \sqrt{P_1} \\ \vdots \\ \sqrt{P_{m-1}} \end{pmatrix}$$

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can be made unitary.

$$\sigma = U(|0\rangle\langle 0| \otimes \rho)U^{\dagger} = \sum_{a,b=0}^{m-1} |a\rangle\langle b| \otimes \sqrt{P_a} \rho \sqrt{P_b}$$

$$\sigma_{Y} = \sum_{a,b=0}^{m-1} Tr(\sqrt{P_a} \rho \sqrt{P_b}) |a\rangle\langle b|$$

$$Prob(outcome = a) = \langle a|\sigma_{Y}|a\rangle = Tr(\sqrt{P_a} \rho \sqrt{P_a}) = Tr(P_a \rho)$$

$$u = \begin{pmatrix} \sqrt{P_0} \\ \sqrt{P_1} \\ \vdots \\ \sqrt{P_{m-1}} \end{pmatrix}$$

We need to check two things: (1) that such a matrix U works correctly, and (2) that U can be made unitary.

That U can be made unitary follows from the fact that its first n columns are orthonormal. Denote these first n columns by $|\gamma_0\rangle, \ldots, |\gamma_{n-1}\rangle$.

$$|\gamma_c\rangle = \sum_{\alpha=0}^{m-1} |\alpha\rangle \otimes \sqrt{P_\alpha} |c\rangle \qquad \langle \gamma_c | \gamma_d \rangle = \langle c | \left(\sum_{\alpha=0}^{m-1} \sqrt{P_\alpha} \sqrt{P_\alpha}\right) |d\rangle = \langle c | d\rangle$$

Non-destructive measurements

Non-destructive measurements have not only a classical measurement outcome, but also a *post-measurement quantum state* of the system that was measured.

There are different specific ways to formulate them in mathematical terms.

Non-destructive measurements from Naimark's theorem

Consider a general (destructive) measurement $\{P_0, \ldots, P_{m-1}\}$ of a system X.

We can define a *non-destructive* measurement with the same outcome probabilities using Naimark's theorem.

$$u = \begin{pmatrix} \sqrt{P_0} \\ \sqrt{P_1} \\ \vdots \\ \sqrt{P_{m-1}} \end{pmatrix}$$

Conditioned on the outcome a the state of X becomes this:

$$\frac{\sqrt{P_{\alpha}\rho\sqrt{P_{\alpha}}}}{\mathsf{Tr}(P_{\alpha}\rho)}$$

Non-destructive measurements

Non-destructive measurements have not only a classical measurement outcome, but also a *post-measurement quantum state* of the system that was measured.

There are different specific ways to formulate them in mathematical terms.

Non-destructive measurements from Kraus matrices

Suppose M_0, \ldots, M_{m-1} are square matrices satisfying this equation:

$$\sum_{\alpha=0}^{m-1} M_{\alpha}^{\dagger} M_{\alpha} = 1$$

They specify a non-destructive measurement. For a system in the state p:

Pr(outcome =
$$\alpha$$
) = Tr($M_{\alpha}\rho M_{\alpha}^{\dagger}$) = Tr($M_{\alpha}^{\dagger}M_{\alpha}\rho$)

Conditioned on the outcome α the state of the measured system becomes this:

$$\frac{M_{a}\rho M_{a}^{\dagger}}{Tr(M_{a}\rho M_{a}^{\dagger})}$$

State discrimination & tomography

Quantum state discrimination

Let $\rho_0, \ldots, \rho_{m-1}$ be quantum states of a system X and let (p_0, \ldots, p_{m-1}) be a probability vector.

- An element $a \in \{0, ..., m-1\}$ is chosen at random according to the probabilities $(p_0, ..., p_{m-1})$.
- The system X is prepared in the state ρ_{α} .
- Goal: determine α by measuring X.

Quantum state tomography

Let p be an unknown quantum states of a system.

- Identical systems X_1, \ldots, X_N are each independently prepared in the state ρ .
- Goal: approximate ρ by measuring X_1, \ldots, X_N .

Discriminating pairs of states

Quantum state discrimination

Let $\rho_0, \ldots, \rho_{m-1}$ be quantum states of a system X and let (p_0, \ldots, p_{m-1}) be a probability vector.

- An element $a \in \{0, ..., m-1\}$ is chosen at random according to the probabilities $(p_0, ..., p_{m-1})$.
- The system X is prepared in the state ρ_{α} .
- Goal: determine α by measuring X.

When m = 2 for state discrimination, the goal is to distinguish between a pair of states.

Pairs of states are optimally discriminated by the Helstrom measurement.

Discriminating pairs of states

Pairs of states are optimally discriminated by the Helstrom measurement.

This is the projective measurement $\{\Pi_0, \Pi_1\}$ defined as follows.

$$\begin{split} p_0 \rho_0 - p_1 \rho_1 &= \sum_{k=0}^{n-1} \lambda_k |\psi_k\rangle \langle \psi_k| \\ S_0 &= \{k \in \{0, \dots, n-1\} : \lambda_k \geq 0\} \\ S_1 &= \{k \in \{0, \dots, n-1\} : \lambda_k < 0\} \end{split}$$

$$\Pi_0 = \sum_{k \in S_0} |\psi_k\rangle \langle \psi_k| \quad \text{and} \quad \Pi_1 = \sum_{k \in S_1} |\psi_k\rangle \langle \psi_k|$$

Pr(correct identification) =
$$\frac{1}{2} + \frac{1}{2} \sum_{k=0}^{n-1} |\lambda_k| = \frac{1}{2} + \frac{1}{2} ||p_0 \rho_0 - p_1 \rho_1||_1$$

The fact that this is optimal is known as the *Helstrom-Holevo theorem*.

Discriminating 3 or more states

Quantum state discrimination

Let $\rho_0, \ldots, \rho_{m-1}$ be quantum states of a system X and let (p_0, \ldots, p_{m-1}) be a probability vector.

- An element $a \in \{0, ..., m-1\}$ is chosen at random according to the probabilities $(p_0, ..., p_{m-1})$.
- The system X is prepared in the state ρ_{α} .
- Goal: determine α by measuring X.

When $m \ge 3$ states are to be discriminated, there is no known formula for an optimal measurement.

- An optimal measurement can be approximated using semidefinite programming.
- The *Holevo-Yuen-Kennedy-Lax* conditions allow a given measurement to be checked for optimality.

Discriminating 3 or more states

Example

Recall that the *tetrahedral states* are defined as follows.

$$|\phi_0\rangle = |0\rangle$$

$$|\phi_1\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$$

$$|\phi_2\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}e^{2\pi i/3}|1\rangle$$

$$|\phi_3\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}e^{-2\pi i/3}|1\rangle$$

The measurement $\{P_0, P_1, P_2, P_3\}$ discriminates these four states with minimum error.

$$P_0 = \frac{|\phi_0\rangle\langle\phi_0|}{2} \qquad P_1 = \frac{|\phi_1\rangle\langle\phi_1|}{2} \qquad P_2 = \frac{|\phi_2\rangle\langle\phi_2|}{2} \qquad P_3 = \frac{|\phi_3\rangle\langle\phi_3|}{2}$$

Quantum state tomography

Quantum state tomography

Let p be an unknown quantum states of a system.

- Identical systems X_1, \ldots, X_N are each independently prepared in the state ρ .
- Goal: approximate ρ by measuring X_1, \ldots, X_N .

Different variants of quantum state tomography are considered:

- Measurements can be local (each X_1, \ldots, X_N is measured separately) or global.
- \bullet Multiple strategies may be used to find a description of ρ from measurement data.

Qubit tomography

Suppose ρ is an unknown qubit state and X_1, \ldots, X_N are qubits independently prepared in the state ρ . Quantum state tomography can be performed as follows.

- 1. Perform the measurement $\{|+\rangle\langle+|, |-\rangle\langle-|\}$ on one-third of the systems.
 - Score +1 for each $|+\rangle\langle+|$ outcome
 - Score -1 for each $|-\rangle\langle -|$ outcome

Expected value for each measurement: $Tr(\sigma_x \rho)$

- 2. Perform the measurement $\{|+i\rangle\langle+i|, |-i\rangle\langle-i|\}$ on one-third of the systems.
 - Score +1 for each $|+i\rangle\langle+i|$ outcome
 - Score -1 for each $|-i\rangle\langle -i|$ outcome

Expected value for each measurement: $Tr(\sigma_y \rho)$

- 3. Perform the measurement $\{|0\rangle\langle 0|, |1\rangle\langle 1|\}$ on one-third of the systems.
 - Score ± 1 for each $|0\rangle\langle 0|$ outcome
 - Score -1 for each $|1\rangle\langle 1|$ outcome

Expected value for each measurement: $Tr(\sigma_z \rho)$

The density matrix ρ can now be approximated using this formula:

$$\rho = \frac{1 + \text{Tr}(\sigma_{x}\rho)\sigma_{x} + \text{Tr}(\sigma_{y}\rho)\sigma_{y} + \text{Tr}(\sigma_{z}\rho)\sigma_{z}}{2}$$

Qubit tomography

We can alternatively perform tomography using the tetrahedral measurement.

$$|\phi_0\rangle = |0\rangle$$

$$|\phi_1\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$$

$$|\phi_2\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}e^{2\pi i/3}|1\rangle$$

$$|\phi_3\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}e^{-2\pi i/3}|1\rangle$$

$$P_0 = \frac{|\phi_0\rangle\langle\phi_0|}{2}$$

$$P_0 = \frac{|\phi_0\rangle\langle\phi_0|}{2} \qquad P_1 = \frac{|\phi_1\rangle\langle\phi_1|}{2} \qquad P_2 = \frac{|\phi_2\rangle\langle\phi_2|}{2} \qquad P_3 = \frac{|\phi_3\rangle\langle\phi_3|}{2}$$

$$P_2 = \frac{|\phi_2\rangle\langle\phi_2|}{2}$$

$$P_3 = \frac{|\phi_3\rangle\langle\phi_3|}{2}$$

Key formula:

$$\rho = \sum_{k=0}^{3} \left(3 \operatorname{Tr}(P_k \rho) - \frac{1}{2} \right) |\phi_k\rangle \langle \phi_k|$$