Вступительный экзамен по химии (письменный)

в 9 класс с углубленным изучением химии

ВАРИАНТ 1

- 1. Приведите не менее 4 примеров получения солей в реакциях замещения. Составьте уравнения предложенных реакций, расставьте коэффициенты.
- 2. Какая масса серной кислоты была нейтрализована гидроксидом натрия, если в результате реакции образовалось 7.1 г соли?
- 3. Атом элемента имеет электронную конфигурацию $1s^22s^22p^63s^23p^64s^23d^6$. Укажите номер периода, номер группы, тип подгруппы (главная или побочная) и максимальную степень окисления этого элемента, а также количество нейтронов в ядре самого распространенного из его изотопов.
- 4. Установите соответствие между формулой вещества и типом химических связей в нем:

ФОРМУЛА ВЕЩЕСТВА	ТИПЫ ХИМИЧЕСКИХ СВЯЗЕЙ В НЕМ		
A) C ₆₀	1) Ковалентная неполярная		
Б) Na ₂ S	2) Металлическая		
B) Cr(NO ₃) ₃	3) Ковалентная полярная		
Γ) CS ₂	4) Ионная		
Д) Pd	5) Ковалентная полярная и ионная		

A	Б	В	Γ	Д

- 5. Напишите электронную и электронно-графическую формулы: A) атома Mn; Б) иона Mn^{2+} . Укажите число неспаренных электронов в каждой из этих частиц.
- 6. При растворении в бромоводородной кислоте сплава массой 19.4 г, состоящего из железа и алюминия, выделился водород объемом 12.32 л (н.у.). Определите массовые доли металлов в сплаве.
- 7. Составьте уравнения реакций, соответствующих следующей схеме превращений:

$$C \to CO_2 \to KHCO_3 \to K_2CO_3 \to KBr \to KNO_3 \to KNO_2$$
 \downarrow Fe \leftarrow Fe₂O₃ \leftarrow Fe(OH)₃ \leftarrow KOH \to K₂[Zn(OH)₄] \to ZnSO₄ \to ZnS Расставьте коэффициенты, укажите условия протекания (там, где это необходимо).