Calcolatori Elettronici Esercitazione 4

M. Sonza Reorda – M. Monetti

M. Rebaudengo – R. Ferrero

L. Sterpone – E. Vacca

Politecnico di Torino Dipartimento di Automatica e Informatica

Esercitazione 4 - Obiettivi

- Salti e controllo del flusso del programma
- Array (vettori e matrici)

Si scriva un programma in linguaggio
 Assembly MIPS che scriva in un vettore
 definito di 20 elementi di tipo word i primi 20
 valori della serie di Fibonacci.

- Serie di Fibonacci
 - vet[i] = vet[i-1] + vet[i-2] => vet = 1, 1, 2, 3, 5, 8, ...

- Scrivere un programma che, dati due operandi opa e opb di tipo word in memoria, del valore rispettivo di 2043 e 5, esegua un'operazione tra interi scelta dall'utente e salvi il risultato nella variabile word res
- A seconda dell'intero digitato dall'utente, il programma deve eseguire:
 - \bullet 0 \rightarrow res = a+b
 - $\blacksquare 1 \rightarrow res = a-b$
 - \blacksquare 2 \rightarrow res = a*b
 - $3 \rightarrow res = a/b$ (divisione intera).

Implentazione

Occorre implementare un costrutto switch:

```
switch (espressione)
   {
    case val1: sequenza1;
        break;
    case val2: sequenza2;
        break;
    ...
    default: sequenza_def;
}
```

- Si possono utilizzare:
 - operazioni di compare e salti condizionati a blocchi di istruzioni
 - una tabella di jump e un'unica istruzione di salto incondizionato

```
.data
tab: .word somma, sottrazione, moltiplic, divisione
...
.code
...
lw $t2, tab($t0)
jr $t2
somma: ...
sottrazione: ...
```

- Si scriva un programma MIPS che, dati due vettori di 4 word ciascuno come matrici riga e colonna, ne calcoli il prodotto.
- Si ricorda che

Se $x = (x_1, x_2, ..., x_n)$ e $y = (y_1, y_2, ..., y_n)$ sono due vettori a n componenti, il prodotto fra il vettore colonna x e il vettore riga y coincide con la matrice di ordine $n \cdot n$ in cui l'elemento di indice ij è dato dal prodotto tra la i-esima componente di x e la j-esima componente di y. In formule:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} (y_1 \quad y_2 \quad \cdots \quad y_n) = \begin{pmatrix} x_1 y_1 & x_1 y_2 & \cdots & x_1 y_n \\ x_2 y_1 & x_2 y_2 & \cdots & x_2 y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n y_1 & x_n y_2 & \cdots & x_n y_n \end{pmatrix}$$

 Si scriva un programma in grado di generare una tavola pitagorica (10x10) e memorizzarla.

Sia data la seguente tabella di word:

154	123	109	86	4	?
412	-23	-231	9	50	?
123	-24	12	55	-45	?
?		?	?	?	?

 Implementare in Assembly MIPS il programma che scriva la somma di ciascuna riga e colonna rispettivamente nell'ultima colonna e riga.