Course 4: 25.10.2021

2.3 Generated subspace

For a vector space V over K, we denote by S(V) the set of all subspaces of V. Sometimes, this set is denoted by $S_K(V)$ if we like to emphasize the field K.

Theorem 2.3.1 Let V be a vector space over K and let $(S_i)_{i\in I}$ be a family of subspaces of V. Then $\bigcap_{i\in I} S_i \in S(V)$.

Proof. For each $i \in I$, we have $S_i \in S(V)$, hence $0 \in S_i$. Then $0 \in \bigcap_{i \in I} S_i \neq \emptyset$. Now let $k_1, k_2 \in K$ and $x, y \in \bigcap_{i \in I} S_i$. Then $x, y \in S_i$, $\forall i \in I$. But $S_i \in S(V)$, $\forall i \in I$. It follows that $k_1x + k_2y \in S_i$, $\forall i \in I$, hence $k_1x + k_2y \in \bigcap_{i \in I} S_i$. Therefore, $\bigcap_{i \in I} S_i \in S(V)$.

Remark 2.3.2 In general, the union of two subspaces of a vector space is not a subspace. For instance, $S = \{(x,0) \mid x \in \mathbb{R}\}$ and $T = \{(0,y) \mid y \in \mathbb{R}\}$ are subspaces of the canonical real vector space \mathbb{R}^2 , but $S \cup T$ is not a subspace of \mathbb{R}^2 . Indeed, for instance, we have $(1,0), (0,1) \in S \cup T$, but $(1,0)+(0,1)=(1,1) \notin S \cup T$.

Now we are interested in how to "complete" a given subset of a vector space to a subspace in a minimal way. This is the motivation for the following definition.

Definition 2.3.3 Let V be a vector space and let $X \subseteq V$. Then we denote

$$\langle X \rangle = \bigcap \{ S \le V \mid X \subseteq S \}$$

and we call it the subspace generated by X or the subspace spanned by X.

Here X is called the *generating set* of $\langle X \rangle$.

If $X = \{x_1, \dots, x_n\}$, we denote $\langle x_1, \dots, x_n \rangle = \langle \{x_1, \dots, x_n\} \rangle$.

Remark 2.3.4 (1) $\langle X \rangle$ is the "smallest" (with respect to inclusion) subspace of V containing X.

- $(2) \langle \emptyset \rangle = \{0\}.$
- (3) If $S \leq V$, then $\langle S \rangle = S$.

Definition 2.3.5 A vector space V over K is called *finitely generated* if $\exists x_1, \ldots, x_n \in V \ (n \in \mathbb{N})$ such that $V = \langle x_1, \ldots, x_n \rangle$. Then the set $\{x_1, \ldots, x_n\}$ is called a *system of generators for* V.

Definition 2.3.6 Let V be a vector space over K and $x_1, \ldots, x_n \in V$ $(n \in \mathbb{N})$. A finite sum of the form

$$k_1x_1 + \cdots + k_nx_n$$

where $k_i \in K$, $x_i \in X$ (i = 1, ..., n), is called a (finite) linear combination of the vectors $x_1, ..., x_n$.

Let us now determine how the elements of a generated subspace look like.

Theorem 2.3.7 Let V be a vector space over K and let $\emptyset \neq X \subseteq V$. Then

$$\langle X \rangle = \{ k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^* \},$$

that is, the set of all finite linear combinations of vectors of X.

Proof. We prove the result in 3 steps, by showing that

$$L = \{k_1 x_1 + \dots + k_n x_n \mid k_i \in K, x_i \in X, i = 1, \dots, n, n \in \mathbb{N}^*\}$$

is the smallest subspace of V containing X.

(i) Let $x \in X$. Then $x = 1 \cdot x \in L$, hence $L \neq \emptyset$. Now let $k, k' \in K$ and $v, v' \in L$. Then $v = \sum_{i=1}^n k_i x_i$ and $v' = \sum_{j=1}^m k_j' x_j'$ for some $k_1, \ldots, k_n, k_1', \ldots, k_m' \in K$ and $x_1, \ldots, x_n, x_1', \ldots, x_m' \in X$. Hence

$$kv + k'v' = k\sum_{i=1}^{n} k_i x_i + k'\sum_{j=1}^{m} k'_j x'_j = \sum_{i=1}^{n} (kk_i)x_i + \sum_{j=1}^{m} (k'k'_j)x'_j \in L$$

because it is a finite linear combination of vectors of X. Hence we have $L \leq V$.

- (ii) Choose n = 1 and $k_1 = 1$ in order to see that $X \subseteq L$.
- (iii) Let $S \leq V$ be such that $X \subseteq S$. Let $k_1, \ldots, k_n \in K$ and $x_1, \ldots, x_n \in X$. Since $X \subseteq S$ and $S \leq V$, it follows that $k_1x_1 + \cdots + k_nx_n \in S$. Hence $L \subseteq S$.

Thus, we have $\langle X \rangle = L$ by the remark from the beginning of the proof.

Corollary 2.3.8 Let V be a vector space over K and let $x_1, \ldots, x_n \in V$. Then

$$\langle x_1, \dots, x_n \rangle = \{ k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n \}.$$

Example 2.3.9 (a) Consider the canonical real vector space \mathbb{R}^3 . Then

$$\langle (1,0,0), (0,1,0), (0,0,1) \rangle = \{ k_1(1,0,0) + k_2(0,1,0) + k_3(0,0,1) \mid k_1, k_2, k_3 \in \mathbb{R} \}$$

$$= \{ (k_1,0,0) + (0,k_2,0) + (0,0,k_3) \mid k_1, k_2, k_3 \in \mathbb{R} \}$$

$$= \{ (k_1,k_2,k_3) \mid k_1, k_2, k_3 \in \mathbb{R} \} = \mathbb{R}^3.$$

Hence \mathbb{R}^3 is generated by the three vectors.

(b) Consider the canonical vector space \mathbb{Z}_2^3 over \mathbb{Z}_2 . Then

$$\begin{split} \langle (\widehat{1}, \widehat{0}, \widehat{0}), (\widehat{0}, \widehat{1}, \widehat{0}) \rangle &= \{ k_1(\widehat{1}, \widehat{0}, \widehat{0}) + k_2(\widehat{0}, \widehat{1}, \widehat{0}) \mid k_1, k_2 \in \mathbb{Z}_2 \} \\ &= \{ (k_1, \widehat{0}, \widehat{0}) + (\widehat{0}, k_2, \widehat{0}) \mid k_1, k_2 \in \mathbb{Z}_2 \} = \{ (k_1, k_2, \widehat{0}) \mid k_1, k_2 \in \mathbb{Z}_2 \} \neq \mathbb{Z}_2^3 \,. \end{split}$$

Hence \mathbb{Z}_2^3 is not generated by the two vectors $(\widehat{1}, \widehat{0}, \widehat{0})$ and $(\widehat{0}, \widehat{1}, \widehat{0})$. But it is generated by $(\widehat{1}, \widehat{0}, \widehat{0})$, $(\widehat{0}, \widehat{1}, \widehat{0})$ and $(\widehat{0}, \widehat{0}, \widehat{1})$, hence it is finitely generated.

(c) Consider the subspace $S = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}$ of the canonical real vector space \mathbb{R}^3 . Let us write it as a generated subspace. Expressing x = y + z, we have:

$$S = \{(y+z, y, z) \mid y, z \in \mathbb{R}\} = \{(y, y, 0) + (z, 0, z) \mid y, z \in \mathbb{R}\}$$
$$= \{y(1, 1, 0) + z(1, 0, 1) \mid y, z \in \mathbb{R}\} = \langle (1, 1, 0), (1, 0, 1) \rangle.$$

Alternatively, one may express y or z by using the other two components and get other writings of S as a generated subspace.

Definition 2.3.10 Let V be a vector space over K and let $S, T \leq V$. Then we define the *sum* of the subspaces S and T as the set $S + T = \{s + t \mid s \in S, t \in T\}$.

If $S \cap T = \{0\}$, then S + T is denoted by $S \oplus T$ and is called the *direct sum* of the subspaces S and T.

Theorem 2.3.11 Let V be a vector space over K and let $S, T \leq V$. Then $S + T = \langle S \cup T \rangle$.

Proof. First, let $v = s + t \in S + T$, for some $s \in S$ and $t \in T$. Then $v = 1 \cdot s + 1 \cdot t$ is a linear combination of the vectors $s, t \in S \cup T$, hence $v \in \langle S \cup T \rangle$. Thus, $S + T \subseteq \langle S \cup T \rangle$.

Now let $v \in \langle S \cup T \rangle$. Then

$$v = \sum_{i=1}^{n} k_i v_i = \sum_{i \in I} k_i v_i + \sum_{j \in J} k_j v_j$$

where $I = \{i \in \{1, ..., n\} \mid v_i \in S\}$ and $J = \{j \in \{1, ..., n\} \mid v_j \in T \setminus S\}$. But the first sum is a linear combination of vectors of S, hence it belongs to S, whereas the second sum is a linear combination of vectors of T, hence it belongs to T. Thus, $v \in S + T$ and consequently $\langle S \cup T \rangle \subseteq S + T$.

Therefore,
$$S + T = \langle S \cup T \rangle$$
.

Corollary 2.3.12 Let V be a vector space over K and let $S, T \leq V$. Then $S + T \leq V$.

Proof. By Theorem 2.3.11. \Box

Theorem 2.3.13 Let V be a vector space over K and let $S, T \leq V$. Then

$$V = S \oplus T \iff \forall v \in V, \exists ! s \in S, t \in T : v = s + t.$$

Proof. \Longrightarrow . Assume that $V = S \oplus T$. Let $v \in V$. Then $\exists s \in S, t \in T$ such that v = s + t. Now suppose that $\exists s' \in S, t' \in T$ such that v = s' + t'. Then s + t = s' + t', whence $s - s' = t' - t \in S \cap T = \{0\}$. Hence s = s' and t = t', that show the uniqueness.

 \Leftarrow . Assume that $\forall v \in V$, $\exists ! s \in S$, $t \in T$ such that v = s + t. Then $V \subseteq S + T$. Clearly, we have $S + T \subseteq V$ and consequently V = S + T. Now suppose that $0 \neq v \in S \cap T$. Then v = v + 0 = 0 + v. But this is a contradiction, since we have the uniqueness of writing of v as a sum of an element of S and an element of S. Therefore, $S \cap T = \{0\}$ and thus, $V = S \oplus T$.

Example 2.3.14 Consider the canonical real vector space \mathbb{R}^2 . Then $\mathbb{R}^2 = S \oplus T$, where $S = \{(x,0) \mid x \in \mathbb{R}\}$ and $T = \{(0,y) \mid y \in \mathbb{R}\}$.

2.4 Linear maps

Definition 2.4.1 Let V and V' be vector spaces over K. A map $f: V \to V'$ is called:

(1) (K-)linear map (or (vector space) homomorphism or linear transformation) if

$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in V,$$

$$f(kv) = k f(v), \quad \forall k \in K, \forall v \in V.$$

- (2) isomorphism if it is a bijective K-linear map;
- (3) endomorphism if it is a K-linear map and V = V';
- (4) automorphism if it is a bijective K-linear map and V = V'.

Remark 2.4.2 (1) When defining a K-linear map, we consider vector spaces over the same field K.

(2) If $f: V \to V'$ is a K-linear map, then the first condition from its definition tells us that f is a group homomorphism between (V, +) and (V', +). Then we have f(0) = 0' and f(-v) = -f(v), $\forall v \in V$.

We denote by $V \simeq V'$ the fact that two vector spaces V and V' are isomorphic. We also denote

$$\begin{split} Hom_K(V,V') &= \left\{ f: V \to V' \mid f \text{ is K-linear} \right\}, \\ End_K(V) &= \left\{ f: V \to V \mid f \text{ is K-linear} \right\}, \\ Aut_K(V) &= \left\{ f: V \to V \mid f \text{ is bijective K-linear} \right\}. \end{split}$$

Let us now give a characterization theorem for linear maps.

Theorem 2.4.3 Let V and V' be vector spaces over K and $f: V \to V'$. Then

$$f$$
 is a K -linear map $\iff f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2)$,

 $\forall k_1, k_2 \in K, \forall v_1, v_2 \in V.$

Proof. \Longrightarrow . Let $k_1, k_2 \in K$ and $v_1, v_2 \in V$. Then

$$f(k_1v_1 + k_2v_2) = f(k_1v_1) + f(k_2v_2) = k_1f(v_1) + k_2f(v_2).$$

 \Leftarrow . Choose $k_1 = k_2 = 1$ and then $k_2 = 0$ to get the two conditions of a K-linear map.

Example 2.4.4 (a) Let V and V' be vector spaces over K and let $f: V \to V'$ be defined by f(v) = 0', $\forall v \in V$. Then f is a K-linear map, called the *trivial linear map*.

- (b) Let V be a vector space over K. Then the identity map $1_V: V \to V$ is an automorphism of V.
- (c) Let V be a vector space and $S \leq V$. Define $i: S \to V$ by i(v) = v, $\forall v \in S$. Then i is a K-linear map, called the *inclusion linear map*.
- (d) Let V be a vector space over K and $a \in K$. Define $t_a : V \to V$ by $t_a(v) = av, \forall v \in V$. Then t_a is an endomorphism of V.

Theorem 2.4.5 (i) Let $f: V \to V'$ be an isomorphism of vector spaces over K. Then $f^{-1}: V' \to V$ is again an isomorphism of vector spaces over K.

(ii) Let $f: V \to V'$ and $g: V' \to V''$ be K-linear maps. Then $g \circ f: V \to V''$ is a K-linear map.

Proof. (i) Since f is an isomorphism of vector spaces over K, f is bijective, hence so is f^{-1} . Now let $k_1, k_2 \in K$ and $v'_1, v'_2 \in V'$. We have to prove that

$$f^{-1}(k_1v_1' + k_2v_2') = k_1f^{-1}(v_1') + k_2f^{-1}(v_2').$$

Let us denote $v_1 = f^{-1}(v_1')$ and $v_2 = f^{-1}(v_2')$. Then $f(v_1) = v_1'$ and $f(v_2) = v_2'$, hence

$$k_1v_1' + k_2v_2' = k_1f(v_1) + k_2f(v_2) = f(k_1v_1 + k_2v_2).$$

Thus we have

$$f^{-1}(k_1v_1' + k_2v_2') = k_1v_1 + k_2v_2 = k_1f^{-1}(v_1') + k_2f^{-1}(v_2').$$

Hence f^{-1} is an isomorphism of vector spaces over K.

(ii) Let $k_1, k_2 \in K$ and $v_1, v_2 \in V$. We have:

$$(g \circ f)(k_1v_1 + k_2v_2) = g(f(k_1v_1 + k_2v_2)) = g(k_1f(v_1) + k_2f(v_2))$$

= $k_1g(f(v_1)) + k_2g(f(v_2)) = k_1(g \circ f)(v_1) + k_2(g \circ f)(v_2).$

Hence $g \circ f$ is a K-linear map.

Definition 2.4.6 Let $f: V \to V'$ be a K-linear map. Then the sets

$$\operatorname{Ker} f = \{ v \in V \mid f(v) = 0' \}, \quad \operatorname{Im} f = \{ f(v) \mid v \in V \}$$

are called the *kernel* and the *image* of the K-linear map f respectively.

Theorem 2.4.7 Let $f: V \to V'$ be a K-linear map. Then $\operatorname{Ker} f \leq V$ and $\operatorname{Im} f \leq V'$.

Proof. First, note that f(0) = 0', hence $0 \in \text{Ker } f \neq \emptyset$. Let $k_1, k_2 \in K$ and $v_1, v_2 \in \text{Ker } f$. We prove that $k_1v_1 + k_2v_2 \in \text{Ker } f$. Indeed, we have:

$$f(k_1v_1 + k_2v_2) = k_1f(v_1) + k_2f(v_2) = 0',$$

and so $k_1v_1 + k_2v_2 \in \text{Ker } f$. Hence $\text{Ker } f \leq V$.

Now note that $0' = f(0) \in \text{Im } f \neq \emptyset$. Let $k_1, k_2 \in K$ and $v_1', v_2' \in \text{Im } f$. We prove that $k_1v_1' + k_2v_2' \in \text{Im } f$. We have $v_1' = f(v_1)$ and $v_2' = f(v_2)$ for some $v_1, v_2 \in V$. It follows that

$$k_1v_1' + k_2v_2' = k_1f(v_1) + k_2f(v_2) = f(k_1v_1 + k_2v_2) \in \text{Im } f.$$

Hence $\operatorname{Im} f \leq V'$.

Theorem 2.4.8 Let $f: V \to V'$ be a K-linear map and let $X \subseteq V$. Then $f(\langle X \rangle) = \langle f(X) \rangle$.

Proof. If $X = \emptyset$, then we have $f(\langle \emptyset \rangle) = f(\{0\}) = \{f(0)\} = \{0'\} = \langle \emptyset \rangle = \langle f(\emptyset) \rangle$.

Now assume that $X \neq \emptyset$. By Theorem 2.3.7 we have

$$\langle X \rangle = \{ k_1 x_1 + \dots + k_n x_n \mid k_i \in K, \ x_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^* \}.$$

Since f is a K-linear map, it follows by Theorem 2.4.3 that

$$f(\langle X \rangle) = \{ f(k_1 x_1 + \dots + k_n x_n) \mid k_i \in K, \ x_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^* \}$$

$$= \{ k_1 f(x_1) + \dots + k_n f(x_n) \mid k_i \in K, \ x_i \in X, i = 1, \dots, n, \ n \in \mathbb{N}^* \}$$

$$= \langle f(X) \rangle.$$

Extra: Image crossfade

A black-and-white image of (say) $n = 1024 \times 768$ pixels can be viewed as a vector in the real canonical vector space \mathbb{R}^n , where each component of the vector is the intensity of the corresponding pixel.

Let us consider two vectors representing images:

Now consider the following intermediate images:

The vectors corresponding to the above images are the following linear combinations of the vectors v_1 and v_2 :

$$v_1, \quad \frac{8}{9}v_1 + \frac{1}{9}v_2, \quad \frac{7}{9}v_1 + \frac{2}{9}v_2, \quad \frac{6}{9}v_1 + \frac{3}{9}v_2, \quad \frac{5}{9}v_1 + \frac{4}{9}v_2, \quad \frac{4}{9}v_1 + \frac{5}{9}v_2, \quad \frac{3}{9}v_1 + \frac{6}{9}v_2, \quad \frac{2}{9}v_1 + \frac{7}{9}v_2, \quad \frac{1}{9}v_1 + \frac{8}{9}v_2, \quad v_2.$$

One may use these images as frames in a video in order to get a crossfade effect.

Reference: P.N. Klein, Coding the Matrix. Linear Algebra through Applications to Computer Science, Newtonian Press, 2013.