Série 1

Dr. Safa Teboulbi

2024-2025

Exercice 1:

1/ Donner les éléments des bases 2 et 16.

2/ Donner un nombre dans chaque base.

Exercice 2:

1/ Donner ces nombres sous la forme polynomiale :

a/ $(715,364)_{10}$ b/ $(101,101)_2$ c/ $(FA1)_{16}$

 $d/(254,32)_8$

2/ Convertir en décimal les nombres binaires suivants :

 $a/(10110)_2$

 $b/(101,111)_2$

 $c/(0,1101)_2$

 $d/(111111110)_2$

3/ Convertir en décimal les nombres octaux suivants :

 $a/(362)_8$

 $b/(421)_8$

 $c/(35)_8$

 $d/(47)_8$

e/ (108)₈

4/ Convertir en décimal les nombres hexadécimaux suivants :

 $a/(9A)_{16}$

b/ $(0.25)_{16}$ c/ $(5F3)_{16}$ d/ $(1ABC, DE)_{16}$

e/ (2BC)₁₆

Exercice 3:

Trouver l'équivalent décimal des nombres suivants :

 $(508)_8$

 $(101)_2$ $(A9F1)_{16}$

 $(1001)_2$

 $(444)_8$

Exercice 4:

Effectuer les conversions de codes suivantes :

 $(3)_{10} = (?)_2 = (?)_8$ $(251)_8 = (?)_2$

 $(52004)_8 = (?)_2 = (?)_{16}$

 $(100001)_2 = (?)_8$ $(FA3)_{16} = (?)_2$

 $(9A2C)_{16} = (?)_2 = (?)_8$

Exercice 5:

Quelle est la plus grande valeur décimale qui peut être représentée par un nombre binaire de 8 bits et de 16 bits?