

OANDHEI

Выполнил: студент 2 курса физического факультета Южного федерального университета Благодарный Александр Сергеевич Научный руководитель: канд. физ.-мат. наук Губский Дмитрий Семёнович

Введение

Оборудование для изучения законов механики

Какие датчики есть у современных устройств?

Цели и задачи

Цель:

Разработать Android-приложение с помощью которого можно провести лабораторную работу по изучению коэффициента трения - скольжения

Задачи:

- 1) Получить оптимальную формулу для вычисления коэффициента трения-скольжения
- 2) Построить алгоритм измерения неизвестных величин
- 3) Оценить инструментальную и методическую погрешности

Вывод формулы

(1)
$$\vec{F} = \overrightarrow{F_f} + \overrightarrow{F_g} + \overrightarrow{N}$$
 - Второй закон Ньютона

$$\begin{cases} ox: \mu N - mg \sin \alpha = -ma \\ oy: N = mg \cos \alpha \end{cases}$$
 - Проекции на координатные оси

(3)
$$\mu g \cos \alpha = -a + g \sin \alpha$$
 - Решение системы

(4)
$$\mu = \frac{g \sin \alpha}{g \cos \alpha} - \frac{a}{g \cos \alpha} = tg \alpha - \frac{a}{g \cos \alpha}$$
 - Решение выраженное через μ

Вывод формулы

Акселерометр помимо линейного ускорения, с которым двигается тело, измеряет ускорение свободного падения, а точнее их векторную сумму.

Акселерометр измеряет: $\vec{A} = \{A_x; A_y; A_z\}$, где A_x , A_y , A_z - проекции полного ускорения

(5) Тогда
$$\alpha = \arccos\left(\frac{A_Z}{|\vec{A}|}\right)$$
,

(6)
$$\mu = tg(\arccos\left(\frac{A_z}{|\vec{A}|}\right)) - \frac{a}{g\cos(\arccos\left(\frac{A_z}{|\vec{A}|}\right))}$$

Вывод формулы

(7) Очевидно, что
$$\cos(\arccos\left(\frac{A_Z}{|\vec{A}|}\right)) = \frac{A_Z}{|\vec{A}|}$$

(8)
$$\sin\left(\arccos\left(\frac{A_Z}{|\vec{A}|}\right)\right) = \sqrt{1 - \left(\frac{A_Z}{|\vec{A}|}\right)^2}$$

(9) _____ Тогда
$$\mu = rac{|ec{A}|g\sqrt{1-\left(rac{A_Z}{|ec{A}|}
ight)^2-a|ec{A}|}}{A_Z} =$$

$$\frac{g\sqrt{\left|ec{A}
ight|^{2}-A_{z}^{2}-a\left|ec{A}
ight|}}{A_{z}}$$
, раскрываем модуль

(10)
$$\mu = \frac{g\sqrt{A_x^2 + A_y^2 + A_z^2 - A_z^2} - a|\vec{A}|}{A_z}$$

График
$$\sin\left(\arccos\left(rac{A_Z}{|ec{A}|}
ight)
ight)$$
 —

полуокружность с центром в (0; 0), и радиусом 1.

Известно, что уравнение окружности имеет вид $x^2+y^2=R^2$, а уравнение положительной полуокружности соответственно $y=\sqrt{1-x^2}$

Вывод Формулы

(11) Откуда получаем
$$\mu = \frac{g\sqrt{{A_{x}}^{2} + {A_{y}}^{2}} - a|\vec{A}|}{A_{z}}$$

(12)Раскрыв модуль и неизвестное а, получаем:

$$\mu = \frac{g\sqrt{A_x^2 + A_y^2}}{A_z} - \frac{\sqrt{\left((A_x - A_{g_x})^2 + (A_y - A_{g_y})^2 + (A_z - A_{g_z})^2\right)\left(A_x^2 + A_y^2 + A_z^2\right)}}{A_z}$$
 Где, $\{A_{g_x}; A_{g_y}; A_{g_z}\} = \overrightarrow{A_g}$

Где,
$$\{A_{g_{\chi}};A_{g_{\chi}};A_{g_{z}}\}=\overline{A_{g}}$$

Расчет погрешности

(13)
$$\tilde{\mu} = \sqrt{\sum_{i=x,y,z} (\frac{\partial \mu}{\partial A_i})^2} \Delta A_i^2 - \text{Погрешность косвенных измерений}$$

При измерении необходимо пользоваться формулой:

(14)
$$\tilde{\mu} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 — Среднее квадратическое отклонение

(15) Где
$$\overline{x}=\frac{1}{n}\sum_{i=1}^n x_i$$
 , \overline{x} — среднее арифметическое, \mathbf{n} — количество измерений, x_i — результат і-ого измерения

Анализ данных

Описание алгоритма

Скриншоты приложения

Скриншоты выполнения лабораторной

Скриншоты датичиков

Вывод

- 1) Разработано Android-приложение с помощью которого можно провести лабораторную работу по изучению трения-скольжения
- 2) Получена формула для вычисления неизвестных величин
- 3) Оценена погрешность формулы и измерения
- 4) Построен алгоритм обработки данных

Спасибо за внимание!