10.637: IN CLASS WORKSHEET, LAB 2

This worksheet should be filled in to the best of your ability during in-class time and returned to myself or the TA at the end of the class period on 09/21/23 or uploaded to Canvas by 11:59PM EDT (Thu). Please answer questions to the best of your ability. You may work with a partner and ask questions, but you must hand in your own work.

Name: Wenhao He

A. Stacked benzene

	single benzene energy (kJ/mol)	stacked benzene energy (kJ/mol)	binding energy (kJ/mol)	inter-benzene or C-C distance (Å)
MMFF94	70.058	226.278	86	3.020
GAFF	19.9033	57.6357	19	3.021

What additional constraints could help with this optimization?

angle = 90: 1-13-14; angle = 90: 1-13-18; angle = 90: 13-1-2; angle = 90: 13-1-6;

Circle one underlined choice in each of the following four questions:

How does the **GAFF** binding energy compare to the CCSD(T) reference:

Is it an overestimate or underestimate?

What about the **GAFF** separation distance:

Is it an overestimate or underestimate:

How does the MMFF94 binding energy compare to the CCSD(T) reference:

Is it an overestimate or underestimate?

What about the MMFF94 separation distance:

Is it an overestimate or underestimate:

B. More chemically diverse molecules and conformer searching

Molecule	Conformer	FF	$E_{ m tot}$	Dihedral Angle
			(kJ/mol)	(degrees)
Butane	anti	GAFF	4.606	180.0
Butane	gauche	GAFF	7.03153	67.8
Butane	anti	MMFF94	-21.2521	180.0
Butane	gauche	MMFF94	-17.9773	65.3
1,2-ethanediol	hydrogen bond	GAFF	2.63333	57.3
	gauche		2.03333	37.3
1,2-ethanediol	anti	GAFF	8.50248	180.0
1,2-ethanediol	regular gauche	GAFF	11.1894	68.1
1,2-ethanediol	hydrogen bond	MMFF94	67.262	50.0
	gauche		07.202	59.0
1,2-ethanediol	anti	MMFF94	79.4417	180.0
1,2-ethanediol	regular gauche	MMFF94	86.8163	77.1

Based on the table from the previous prompt, why is the gauche conformer lower in energy for 1,2-ethanediol?

because of hydrogen bond

How strong is the 1,2-ethanediol hydrogen bond (in the unit of kJ/mol) according to MMFF94? According to GAFF? MMFF94: _-8.5 ___; GAFF: __-19.6___

C.	Remdesivir	models for	· hydrogen	bonds cor	mpared to 1	,2-ethanediol:
\sim	Ittiidesiiii	III O W CID I O I	II / WI U CUI	DUIIUS CUI	mpurcu co i	q cuitaiicaicii

Based on the table below, rank the hydrogen bond strengths (1, 2, 3):

<u>3</u> 1,2-ethanediol <u>1</u> HB in tetrahydrofuranyl ring of remdesivir model <u>2</u> HB between ring and free hydroxyl on remdesivir model

\supset	suna nee ny droxy i on remdesi vii moder			
	remdesivir model	remdesivir model	HB energy (1-2): <u>-35.5</u>	
	1) (HB)	2) (no HB)		
	energy: 441.121	energy: 476.301		
	remdesivir model	remdesivir model	HB energy (3-2): <u>-15.3</u>	
	1) (HB)	3) (two HBSs)		
	energy: 441.121	energy: 425.877		

If you wanted to strengthen binding between a drug molecule and a protein by 75 kJ/mol, and
you knew the protein had up to 8 hydrogen bond acceptors in the active site, how many hydroxyl
groups should you add to the druglike molecule assuming they would form intermolecular
hydrogen bonds with the protein?8
Explain your reasoning: by experiemtn, inter molecular HB is about 10 kJ/mol, so we need 8*10 > 75

D. Accessing and getting familiar with the Linux command line.

What is the last number reported when these variables are 3 and 4? 64079