CALCULUS III FINAL REVIEW

CONVERGENCE: 10.3-10.5	
Convergence Notes	2
Tests for Positive Series	2
Tests for Non-Positive Series	3
Convergence Problems	4
10.5 Exercises	4
Power/Taylor Series: 10.6-10.8	
Power/Taylor Series Notes	9
Power Series	9
Taylor Series	10
Power/Taylor Series Problems	11
10.6 Exercises	17
10.8 Exercises	11
PARAMETRIC EQUATIONS: 11.1	
Parametric Problems	12
11.1 Exercises	12
ARC LENGTH, POLAR COORDINATES: 11.2-11.4	
11.2-11.4 Notes	13
Arc Length and Speed	
Polar Coordinates	
Area and Arc Length in Polar Coordinates	
Polar Coordinate Problems	14
11.2 Exercises	
11.3 Exercises	
11.4 Exercises	
Conic Sections: 11.5	
Conic Section Problems	16
11.5 Exercises	
Quiz Questions	
Quiz 3	17
Quiz 4	18
FINAL REVIEW QUESTIONS	

CONVERGENCE: 10.3-10.5

Convergence Notes

• Let $\sum_{n=1}^{\infty} a_n$ be given and note for which series convergence is known, i.e.:

Geometric: let $c \neq 0$, if |r| < 1, then **p-Series**: converges if p > 1.

$$\sum_{n=0}^{\infty} cr^n = \frac{c}{1-r}$$

$$\sum_{n=0}^{\infty} \frac{1}{n^p}$$

 $|r| > 1 \implies$ diverges $p < 1 \implies$ diverges

• The n^{th} Term Divergence Test: a relatively easy test that can be used to quickly determine if a test diverges if the $\lim_{n\to\infty}a_n\neq 0$. If $\lim_{n\to\infty}a_n=0$, then the test is inconclusive and other tests must be applied.

Tests for Positive Series

• **Direct Comparison Test**: use if dropping terms from the denominator or numerator gives a series b_n wherein convergence is easily found, then compare to the original series a_n as follows:

$$\sum_{n=1}^{\infty} b_n \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges } \leftarrow 0 \le a_n \le b_n$$

$$\sum_{n=1}^{\infty} b_n \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges } \leftarrow 0 \le b_n \le a_n$$

• **Limit Comparison Test**: use when the direct comparison test isn't convenient or when comparing two series. One can to take the dominant term in the numerator and denominator from a_n to form a new positive sequence b_n if needed.

Assuming the following limit $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ exists, then:

$$L>0 \implies \sum_{n=1}^{\infty} a_n \text{ converges} \iff \sum_{n=1}^{\infty} b_n \text{ converges}$$
 $L=0 \text{ and } \sum_{n=1}^{\infty} b_n \text{ converges} \implies \sum_{n=1}^{\infty} a_n \text{ converges}$
 $L=\infty \text{ and } \sum_{n=1}^{\infty} a_n \text{ converges} \implies \sum_{n=1}^{\infty} b_n \text{ converges}$

• Ratio Test: often used in the presence of a factorial (n!) or when the are constants raised to the power of $n(c^n)$.

Assuming the following limit
$$\rho = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|$$
 exists, then

$$ho < 1 \implies \sum a_n$$
 converges absolutely

$$\rho > 1 \implies \sum_{n=1}^{\infty} a_n$$
 diverges

$$\rho = 1 \implies$$
 test is inconclusive

• Root Test: used when there is a term in the form of $f(n)^{g(n)}$.

Assuming the following limit
$$C=\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$$
 exists, then

$$C < 1 \implies \sum a_n$$
 converges absolutely

$$C > 1 \implies \sum a_n$$
 diverges

$$C = 1 \implies$$
 test is inconclusive

• Integral Test: if the other tests fail and $a_n = f(n)$ is a decreasing function, then one can use the improper integral $\int_1^\infty f(x)dx$ to test for convergence.

Let $a_n = f(n)$ be a positive, decreasing, and continuous function $\forall x \geq 1$, then:

$$\int_{1}^{\infty} f(x) dx \text{ converges } \implies \sum_{n=1}^{\infty} a_n \text{ converges}$$

$$\int_{1}^{\infty} f(x) dx \text{ diverges } \implies \sum_{n=1}^{\infty} a_n \text{ diverges}$$

Tests for Non-Positive Series

• Alternating Series Test: used for series in the form $\sum_{n=0}^{\infty} (-1)^n a_n$

Converges if $|a_n|$ decreases monotonically $(|a_n+1|\leq |a_n|)$ and if $\lim_{n\to\infty}a_n=0$

• **Absolute Convergence**: used if the series $\sum a_n$ is not alternating; simply test if $\sum |a_n|$ converges using the test for positive series.

Convergence Problems

10.5 Exercises

Determine convergence or divergence using any method.

1.
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{7^n}$$

$$\implies \sum_{n=1}^{\infty} \frac{2^n}{7^n} + \sum_{n=1}^{\infty} \frac{4^n}{7^n}$$
Separate into two geometric series $r = \frac{2}{7} < 1$, $r = \frac{4}{7} < 1$

Both geometric series converge, thus the original series converges.

2.
$$\sum_{n=1}^{\infty} \frac{n^3}{n!}$$

$$\implies \rho = \lim_{n \to \infty} \left| \frac{(n+1)^3}{(n+1)!} \cdot \frac{n!}{n^3} \right|$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{(n+1)n!} \cdot \frac{n!}{n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{n^4 + n^3}$$

$$= \lim_{n \to \infty} \frac{n^3 + 3n^2 + 3n + 1}{n^4 + n^3} \cdot \frac{n^{-4}}{n^{-4}}$$

$$= \lim_{n \to \infty} \frac{n^{-1} + 3n^{-2} + 3n^{-3} + n^{-4}}{1 + n^{-1}} = 0$$
Apply the ratio test

 $\rho = 0 < 1$, thus the series converges.

3.
$$\sum_{n=1}^{\infty} \frac{n}{2n+1}$$

$$\implies \lim_{n \to \infty} \frac{n}{2n+1}$$
 Apply the n^{th} term test \uparrow
$$\implies \lim_{n \to \infty} \frac{n}{2n+1} = \frac{1}{2}$$
 by L'Hôpital's Rule

 $\lim_{n\to\infty}a_n\neq 0, \text{ thus the series diverges}.$

4.
$$\sum_{n=1}^{\infty} 2^{\frac{1}{n}}$$

$$\implies \lim_{n\to\infty} 2^{\frac{1}{n}} = 2^0 = 1$$

Apply the n^{th} term test $^{\uparrow}$

 $\lim_{n\to\infty} a_n \neq 0$, thus the series diverges.

$$5. \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

$$0 \le \sin n \le 1$$
 $\longleftrightarrow n \ge 1$ $0 \le \frac{\sin n}{n^2} \le \frac{1}{n^2}$ Apply the direct comparison test[†] $b_n = \frac{1}{n^2} \to \text{converges}$ by $p\text{-series}$

The larger (b_n) series converges, thus the smaller (a_n) converges.

6.
$$\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$$

$$\Rightarrow \rho = \lim_{n \to \infty} \left| \frac{(n+1)!}{(2n+2)!} \cdot \frac{(2n)!}{n!} \right|$$
 Apply the ratio test[†]

$$= \lim_{n \to \infty} \frac{(n+1)n!}{(2n+2)(2n+1)2n!} \cdot \frac{(2n)!}{n!}$$

$$= \lim_{n \to \infty} \frac{n+1}{(2n+2)(2n+1)} = \frac{n+1}{4n^2+6n+2}$$

$$= \lim_{n \to \infty} \frac{1}{8n+6} = 0$$
 By L'Hôpital's Rule

ho=0<1 , thus the series converges.

7.
$$\sum_{n=1}^{\infty} \frac{1}{n+\sqrt{n}}$$

$$0 \le n \le n+\sqrt{n} \qquad \qquad \leftarrow \forall n \ge 1$$

$$0 \le \frac{1}{n+\sqrt{n}} \le \frac{1}{n} \qquad \qquad \text{Apply the direct comparison test}^{\uparrow}$$

$$b_n = \frac{1}{n} \to \text{ diverges}$$

The smaller (b_n) series diverges, thus the larger a_n original series diverges.

8.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

f is positive, decreasing, and continuous for $x \geq 2$ Apply the integral test \uparrow

$$\implies \int_2^\infty f(x)dx = \lim_{R \to \infty} \int_2^R \frac{1}{x(\ln x)^3} dx \qquad \ln x = u, \quad xdu = dx$$

$$\implies \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x(u)^{3}} x du = \int_{2}^{R} \frac{1}{u} du$$

$$= -\frac{1}{2(u)^{2}}$$

$$= -\frac{1}{2 \ln^{2}(x)} + C \Big|_{2}^{\infty}$$

$$\implies 0 - \left(-\frac{1}{2 \ln^{2}(2)} \right) = \frac{1}{2 \ln^{2}(2)}$$

The improper integral converges, thus the original series converges.

$$9. \sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

$$\implies \rho = \lim_{n \to \infty} \left| \frac{(n+1)^3}{5^{n+1}} \cdot \frac{5^n}{n^3} \right|$$
$$= \lim_{n \to \infty} \frac{n^3 + 1}{5^n + 5^1} \cdot \frac{5^n}{n^3} = \frac{1}{5}$$

Apply the ratio test[↑]

 $ho=rac{1}{5}<1$, thus the series converges.

10.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 - n^2}}$$

11.
$$\sum_{n=1}^{\infty} \frac{n^2 + 4n}{3n^4 + 9}$$

12.
$$\sum_{n=1}^{\infty} n^{-0.8}$$

13.
$$\sum_{n=1}^{\infty} (0.8)^{-n} n^{-0.8}$$

14.
$$\sum_{n=1}^{\infty} 4^{-2n+1}$$

15.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

16.
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

17.
$$\sum_{n=1}^{\infty} (-1)^n \cos n^{-1}$$

18.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{\sqrt{n}}$$

$$19. \sum_{n=1}^{\infty} \left(\frac{n}{n+12} \right)^n$$

$$20. \sum_{n=1}^{\infty} (-1)^n \cos n^{-1}$$

Power/Taylor Series: 10.6-10.8

Power/Taylor Series Notes

Power Series

• Power series: a infinite series in the form:

$$F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

Where the constant c is the *center* of the power series F(x).

- Radius of convergence R: the range of values of the variable x whereby the power series F(x) converges.
 - Every power series converges at x = c, as $(x c)^0 = 1$, though the series may diverge for other values of x.
 - F(x) converges for |x-c| < R and diverges for |x-c| > R
 - \circ F(x) may converge of diverge at endpoints c-R and c+R
 - **Interval of convergence**: the open interval (c R, c + R) and possibly one of both of the endpoints, each must be tested.
 - In most cases, the ratio test[↑] can be used to find R.
 - If R > 0, then F is differentiable over the interval of convergence; the derivative and antiderivative can be obtained using the following:

$$F'(x) = \sum_{n=1}^{\infty} n a_n (x - c)^{n-1} \qquad F(x) dx = C + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - c)^{n+1}$$

• **Useful Power Series**: the following power series (more examples: Taylor series \(\psi \) can be used to drive expansions of other related functions via substitution, integration, or differentiation:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \leftarrow |x| < 1 \qquad \qquad e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Taylor Series

Power/Taylor Series Problems

10.6 Exercises

1.

10.8 Exercises

PARAMETRIC EQUATIONS: 11.1

Parametric Problems

11.1 Exercises

ARC LENGTH, POLAR COORDINATES: 11.2-11.4

11.2-11.4 Notes

Arc Length and Speed

•

Polar Coordinates

•

Area and Arc Length in Polar Coordinates

Polar Coordinate Problems

11.2 Exercises

1.

11.3 Exercises

1.

11.4 Exercises

CONIC SECTIONS: 11.5

Conic Section Problems

11.5 Exercises

QUIZ QUESTIONS

Quiz 3

Quiz 4

FINAL REVIEW QUESTIONS