轉錄因子與DNA結合問題

張文綺

sarah321@mail.ncku.edu.tw

Central dogma

- The 'Central Dogma' is the process by which the instructions in DNA are converted into a functional product. It was first proposed in 1958 by Francis Crick, discoverer of the structure of DNA.
- The central dogma of molecular biology deals with the detailed residue-byresidue transfer of sequential information. It states that such information cannot be transferred from protein to either protein or nucleic acid (Francis Crick, 1957).

(https://www.cancer.gov/publications/dictionaries/cancer-terms/def/transcription https://www.yourgenome.org/facts/what-is-the-central-dogma)

Second position C G U A UGU UUU UAU UCU UUC phe tyr cys UGC UAC UCC ser U UGA Stop UUA UAA Stop **UCA** leu UGG trp UUG UAG G UCG Stop CUU CCU CAU CGU Third position (3'-end) his CAC CUC CCC CGC CCA pro leu arg CAA CGA CUA gln G CUG CCG CAG CGG ACU AAU **AGU** U AUU ser asn AAC **AGC** ACC AUC ile thr **ACA** AAA **AGA** AUA lys arg AUG met ACG AAG AGG GCU GAU GGU GUU asp GAC GGC GUC GCC GGA gly val ala GCA GAA GUA glu G GAG GGG GUG GCG

Initiation

Termination

First position (5'-end)

Protein structure

- Protein structure is crucial to protein function.
- The proper structure and function are required for the protein folding from a polypeptide chain to quaternary structure.
- Primary structure: the sequence of amino acids in the polypeptide chain
- Secondary structure: local folded structures that form within a polypeptide due to interactions between atoms of the backbone
- Tertiary structure: three-dimensional structure of monomeric and multimeric protein molecules
- Quaternary structure: the aggregation of two or more individual polypeptide chains that operate as a single functional unit

Transcription Factors (轉錄因子)

• Transcription factors (TFs) are proteins that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence.

- Transcription factors contain two domains:
 - DNA-binding domain (DBD): attaches to specific sequences of DNA
 - Activation domain (AD):

DNA-binding domain (DBD)

- TFs are classified into families according to their DBDs.
- Proteins with similar DBD sequences tend to bind very similar DNA sequences.
- Nuclear magnetic resonance spectroscopy and X-ray crystallography are applied to determine 3D structures of the DBDs-DNA Complex.

Structures of the DBDs of plant-specific TFs (P. Aggarwal, et al., 2010)

TCP transcription factors (P. Aggarwal, et al., 2010)

Motivations and problems

- Only a handful of TFs have been studied their DNA binding patterns.
 - only < 2% of eukaryotic TFs (M. T. Weirauch, et. al, 2014)
 - About 57% of Arabidopsis thaliana TFs (Data from PlantPAN 3.0 and PlantTFDB v4.0)
- Experimental protein structure determination is hard.
- Whether we can predict DNA binding sites by using polypeptide sequences or DNA-binding domain?
- Whether we can determine the key amino acids essential for DNA recognition from known TF-DNA pairs?
- Are there unknown features in polypeptide sequences which can be used to illustrate the interaction between TF and DNA?

TF families in Plants

Alpha-amylase (4)	AP2 (2304)	ARF (78)	ARID (5)	ARR-B (19)
AT-Hook (121)	Aux/IAA (1)	B3 (408)	BBR-BPC (15)	BES1 (22)
Bet_v_1 (2)	bHLH (1497)	bZIP (1048)	C2C2COlike (2)	C2H2 (552)
C3H (6)	C3H Zinc finger (140)	CAMTA (14)	CG-1(44)	CO-like (31)
CPP (19)	CSD (9)	Cupin_1 (1)	DBB (20)	Dehydrin (1)
Dof (101)	E2F (42)	E2F/DP (27)	EIL (15)	EIN3 (107)
ERF (330)	FAR1 (37)	G2-like (83)	GATA (483)	GeBP (23)
GRAS (139)	GRF (34)	HB-other (26)	HB-PHD (6)	HD-ZIP (252)
Homeodomain (1055)	HSF (74)	LBD (75)	LEA type 1 (1)	LEA_5 (1)
LFY (5)	LIM (2)	LOB (138)	LSD (14)	Lyase_aromatic (2)
M-type (46)	MADF (51)	MADS box (714)	MIKC (101)	mTERF (1)
MYB (235)	MYB-related (170)	Myb/SANT (1242)	NAC (974)	NAM (808)
NF-X1 (6)	NF-YA (25)	NF-YB (32)	NF-YC (24)	Nin-like (30)
PLATZ (1)	PsaH (1)	RAV (9)	Ribosomal protein L21P (1)	S1Fa-like (7)
SAP (1)	SBP (384)	Sox (24)	SRS (17)	STAT (1)
Storekeeper (13)	TALE (60)	TBP (58)	TCP (497)	TCR (55)
tify (1)	Trihelix (59)	trp (4)	Tryp_alpha_amyl (1)	VOZ (8)
Whirly (5)	WOX (39)	WRC (1)	WRKY (1733)	YABBY (25)
ZF-HD (48)	(Others) ¹ (55)			

^{1: (}Others): TFs without family information.

TF Browse by Families in PlantPAN 3.0 (http://plantpan.itps.ncku.edu.tw/TFsearch.php)

A case study

WRKY family (as a case study)

Structures of the WRKY DBD-DNA complex (C. M. Llorca, et al., 2014)

- The WRKY domain binds to a so called Wbox 5'-TTGAC(C/T)-3' in the promoters of target genes.
- The binding DNA is highly conserved in WRKY family.
- The DNA binding domain of WRKY family is called the WRKY domain.
 - Almost invariant amino acid sequence at the N-terminus
 - About 60 residues in length
 - Four-stranded antiparallel β-sheet

Positive set

- File Name: WRKY_info_table_positive
- Column Name:
 - TF identifier (TF_ID)
 - Protein sequence identifier (Pseq_ID)
 - Protein primary sequence (Pseq)
 - DNA- binding domain sequence (DBD_seq)
 - Binding matrix identifier (matrix_ID)

Note: Please don't use matrix_ID as a feature.

TF_ID Pseq_ID Pseq DBD_seq matrix_ID

AT1G13960 TFprotseq_12499 MSEKEEAPSTSKSTGAPSRPTLSLPPRPFSEMFFNGGVGFSPGPMTLVSNMFPD
SDEFRSFSQLLAGAMSSPATAAAAAAAATASDYQRLGEGTNSSSGDVDPRFKQNRPTGLMISQSQSPSMFTVPPGLSPAMLLDSPS
FLGLFSPVQGSYGMTHQQALAQVTAQAVQANANMQPQTEYPPPSQVQSFSSGQAQIPTSAPLPAQRETSDVTIIEHRSQQPLNVDK
PADDGYNWRKYGQKQVKGSEFPRSYYKCTNPGCPVKKKVERSLDGQVTEIIYKGQHNHEPPQNTKRGNKDNTANINGSSINNNRGS
SELGASQFQTNSSNKTKREQHEAVSQATTTEHLSEASDGEEVGNGETDVREKDENEPDPKRRSTEVRISEPAPAASHRTVTEPRII
VQTTSEVDLLDDGYRWRKYGQKVVKGNPYPRSYYKCTTPGCGVRKHVERAATDPKAVVTTYEGKHNHDLPAAKSSSHAAAAAQLRP
DNRPGGLANLNQQQQQQPVARLRLKEEQTT ADDGYNWRKYGQKQVKGSEFPRSYYKCTNPGCPVKKKVERSLDGQVTEII
YKGQHNHEP TFmatrixID_0663
AT1G13960 TFprotseq_12499 MSEKEEAPSTSKSTGAPSRPTLSLPPRPFSEMFFNGGVGFSPGPMTLVSNMFPD
SDEFRSFSQLLAGAMSSPATAAAAAAAAATASDYQRLGEGTNSSSGDVDPRFKQNRPTGLMISQSQSPSMFTVPPGLSPAMLLDSPS
FLGLFSPVQGSYGMTHQQALAQVTAQAVQANANMQPQTEYPPPSQVQSFSSGQAQIPTSAPLPAQRETSDVTIIEHRSQQPLNVDK
PADDGYNWRKYGQKQVKGSEFPRSYYKCTNPGCPVKKKVERSLDGQVTEIIYKGQHNHEPPQNTKRGNKDNTANINGSSINNNRGS
SELGASQFQTNSSNKTKREQHEAVSQATTTEHLSEASDGEEVGNGETDVREKDENEPDPKRRSTEVRISEPAPAASHRTVTEPRII
VQTTSEVDLLDDGYRWRKYGQKVVKGNPYPRSYYKCTTPGCGVRKHVERAATDPKAVVTTYEGKHNHDLPAAKSSSHAAAAAQLRP
DNRPGGLANLNQQQQQQPVARLRLKEEQTT ADDGYNWRKYGQKQVKGSEFPRSYYKCTNPGCPVKKKVERSLDGQVTEII
YKGQHNHEP TFmatrixID 0359

Matrices file

- File Name: All_matrices.meme
- Matrices format
 - position-specific weight matrix
 - MEME format (<u>http://meme-suite.org/doc/meme-format.html#min_motif_name</u>)

```
matrix ID
            MOTIF TF_motif_seq_0339
             etter-probability matrix: alength= 4 w= 6 nsites= 1 E= 0
Position: 1
              0.000000
                              0.000000
                                              0.000000
                                                               1.000000
              0.000000
                              0.000000
                                              0.000000
                                                               1.000000
              0.000000
                              0.000000
                                              1.000000
                                                               0.000000
              1.000000
                              0.000000
                                              0.000000
                                                               0.000000
              0.000000
                              1.000000
                                              0.000000
                                                               0.000000
              0.000000
                              0.500000
                                              0.000000
                                                               0.500000
```

Negative set -- 1/3

- File Name: WRKY_info_table_negative_one
- Modification:
 - Using matrices from other TF families
 - Randomly selecting matrices belong to other families

Modification

Negative set -- 2/3

- File Name: WRKY_info_table_negative_two
- Modification:
 - Using Non DNA-binding domain sequence
 - Randomly selecting the region outside of DNA-binding domain
 - The length is equal to DNA-binding domains'

Modification

MDEAKEENRRLKSSLSKIKKDFDILQTQYNQLMAKHNEPTKFQSKGHHQDKGEDEDREKVNEREELVSLS
LGRRLNSEVPSGSNKEEKNKDVEEAEGDRNYDDNEKSSIQGLSMGIEYKALSNPNEKLEIDHNQETMSLE
ISNNNKIRSQNSFGFKNDGDDHEDEDEILPQNLVKKTRVSVRSRCETPTMNDGCQWRKYGQKIAKGNPCP
RAYYRCTIAASCPVRKQVQRCSEDMSILISTYEGTHNHPLPMSATAMASATSAAASMLLSGASSSSSAAA

TNLNFSNNTNTLMNWGGGGNPSDQYRAAYGNINTHQQSPYHKIIQTRTAGSSFDPFGRSSSSHSPQINLD HIGIKNIISHQVPSLPAETIKAITTDPSFQSALATALSSIMGGDLKIDHNVTRNEAEKSP

Negative set -- 3/3

- File Name: WRKY_info_table_negative_three
- Modification:
 - Change the core sequence of matrices
 - Weight (possibility) ≥ 0.8
 - Change the nucleotide:
 - $A \rightarrow G$
 - $G \rightarrow A$
 - $T \rightarrow C$
 - $C \rightarrow T$

Modification

Problems You may face!

- Different length for each protein/DNA-binding domain sequence
- Different length for each binding matrix

TFmatrixID_0449:

Length: 8 bp

Core regions: 3rd - 7th

TFmatrixID_0534:

Length: 11 bp

Core regions: 5th - 11th

