Zadanie 7 - Raport

Jan Stusio

Czerwiec 2024

1 Wstęp

Celem zadania jest implementacja klasyfikatora Gaussowskiego Naiwnego Bayesa oraz wnioskowanie dla tego klasyfikatora oraz uczenie parametrów. Klasyfikator ten zakłada brak zależności między zmiennymi objaśniającymi oraz że wartości atrybutów pochodzą z rozkładu normalnego. Zadanie polegało również na porównaniu wyników tego klasyfikatora z klasyfikatorem drzewa decyzyjnego oraz SVM z zadania 4 dla najlepszych parametrów.

2 Implementacja

Klasa GaussianNB posiada metody fit oraz predict. Metoda fit uczy parametry klasyfikatora, natomiast metoda predict dokonuje klasyfikacji.

Metody są wywoływane przez cross_val_score z biblioteki sklearn, która przeprowadza walidację krzyżową z 5 podziałami, aby ocenić wydajność modelu.

3 Wyniki

Model	Accuracy	Accuracy \pm	Precision	Precision \pm	Recall	Recall \pm	F1	F1 ±
Gaussian Naive Bayes	0.953333	0.026667	0.958384	$\begin{array}{c} 0.023983 \\ 0.035671 \\ 0.014845 \end{array}$	0.953333	0.026667	0.953047	0.026862
Decision Tree	0.953333	0.033993	0.968350		0.960000	0.032660	0.966583	0.036606
SVM	0.980000	0.016330	0.981818		0.980000	0.016330	0.979950	0.016371

Table 1: Porównanie wyników klasyfikatorów na zbiorze danych Iris

4 Wnioski

Na podstawie przeprowadzonej analizy oraz uzyskanych wyników można sformułować następujące wnioski:

- Klasyfikator Gaussowskiego Naiwnego Bayesa osiągnął wysoką dokładność klasyfikacji (95.33%) na zbiorze
 danych Iris. Jest to wynik porównywalny z klasyfikatorem drzewa decyzyjnego (95.33%), jednak nieco gorszy
 niż klasyfikator SVM (98.00%).
- Wartości odchylenia standardowego dla wszystkich miar jakości klasyfikacji (Accuracy, Precision, Recall, F1) są niewielkie (wszystkie poniżej 0,04), co wskazuje na stabilność i powtarzalność wyników uzyskiwanych przez klasyfikator.
- Gaussowski Naiwny Bayes, pomimo swoich uproszczonych założeń dotyczących niezależności zmiennych objaśniających, okazał się być porównywalny do bardziej zaawansowanych metod klasyfikacji (badanych w zadaniu 4).
- Implementacja Gaussowskiego Naiwnego Bayesa nie wymaga strojenia hiperparametrów, więc może być szybszy do implementacjiś od SVM i drzewa decyzyjnego.

Gaussowski Naiwny Bayes jest klasyfikatorem niewiele gorszym od SVM i drzewa decyzyjnego, więc dostarcza w miarę dokładne wyniki klasyfikacji.