MATH 271B 2020 FINAL

Name:_____

Question	Score	Maximum
1		10
2		20
3		20
4		20
5		20
6		10
Total		100

1. Consider for β standard one-dimensional Brownian motion:

$$dX_t = (t^2 \Sigma) d\beta_t, \quad X_0 = 0,$$

where Σ is an exponentially distributed random variable with parameter λ and independent of the Brownian motion.

- a) Find Y_t so that $M_t = \exp(X_t)Y_t$ is a martingale, specify with respect to which filtration.
- b) Compute the variance of M_t .
- c) Find a bound for $\mathbb{P}[\sup_{0 < s < t} |M_t| > \varepsilon]$.

2. Consider the Ornstein-Uhlenbeck process

$$dr_t = a(\bar{r} - r_t)dt + \sigma d\beta_t,$$

with a, \bar{r}, σ constants as a model for for the interest rate, (note that the rate can go negative). The price of a zero-coupon bond at time t when paying 1 at maturity T is

$$P(t, x, T) = \mathbb{E}[\exp(-\int_t^T r_s ds) \mid r_t = x].$$

a) Derive the Feynman-Kac formula for the bond price:

$$\frac{\partial P}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 P}{\partial x^2} + a(\bar{r} - x) \frac{\partial P}{\partial x} - xP = 0,$$
$$P(T, x, T) = 1.$$

b) Solve this partial differential equation for the price (Hint: try a solution of the form $A(\tau) \exp(B(\tau)x)$ with $\tau = T - t$ being time to maturity).

3. Let v be a continuous scalar valued process satisfying

$$0 \le v(t) \le \alpha(t) + \beta \int_0^t v(s)ds; 0 \le t \le T,$$

with $\beta \geq 0$ and α integrable. Show that

$$v(t) \le \alpha(t) + \beta \int_0^t \alpha(s) e^{\beta(t-s)} ds, 0 \le t \le T.$$

Can you relax the assumption about continuity?

4. Do problem 5.14 page 78 Øksendal.

5. Do problem 5.16 page 79 Øksendal.

- 6. Explain the terms:
 - a) Martingale.
 - b) Itô process.
 - c) Stopping time.
 - d) Quadratic variation.
 - e) Kolmogorov Backward Equation.

7	Plea	se order	the	tonics	helow	on s	scale	1_10	for	tonics	VO11	would	like t	0 800	covered	in	spring
١.	1 16a	se order	une	copics	DEIOM	on	a scare	1-10	101	tobics	you	would	HIVE 0	o see	covered	111	spring.

- Optimal Control.
- Diffusion limit, deriving SDE models from problems with rapidly fluctuating parameters.
- Itô-Calculus for Hibert Space Valued Processes
- Numerics for SDEs.
- Waves in random media and localization.
- Aspects of stochastic gradient descent in Machine Learning.
- Uncertainty Quantification and Kriging.
- Large Deviations.
- Graph based models.
- Mathematical Finance.
- Other topic(s) you would like to see covered: _____.