CS124 lecture 18

Monday, April 6,2020

Input: (Xi, Mi) ien is blue (Xn-yi, Mn-j) yener rom

$$y = ax + b$$

if $y_i \ge ax_i + b$ $t_i = 0$ for blve, which $y_i \ge ax_i + b$ $t_i = ax_i + b - y_i$ Should be above line $t_i \ge (ax_i + b) - y_i$ for blue points $t_i \ge y_i - (ax_i + b)$ for green points

li = max (o, axi+bi-yi)

Assign valve fle) to race edge

li (initially fle) units of style cross edge)

boal: but as mych style as possible from s to T.

Linear Program Formulation

Var fe: Flow along each edge Déféée capacity constrains fsa+fba=fac+fad conservation flow constraints objective: Max for + for = flow going to T = max fsa + fra More Examples Max Mow 2

S-A-B-T is a wrong decision remaining capacity = ((1) - four (-1) breedy doesn't allow reverses, so > brisd "backedges" CAJ = D CSA = fSA = 1 fas = -1! Residual capacity: Cas-fas=1 Algorithm Definition: Residual capacity = c(2)-f(2) when f((u,v)) = -f((v,u))

Alg. Max S-T Flow Start w/ recidual capacity network - original / Find path (augmenting path) from 5 to T push as much flow as possible along path Widah flow valves, update capacities in residual cap until no more paru are found Runtime if ER, Ian be infinite runtime · bluen inhar capacities DF(is D(1E1) If max flow is f*, running time is D(max flow DFS runs) Edmoni-Karp Alg · D(E2V) WI capacities & R · Same algo as above, vous BFS insuad of DFS 2 cut n/ limit on amount mat can flow pierry mat connect to T max flow = min out! CLT = partition into two rets V, , V2 S = V, , T = V2 capacity of m = Z c((u,v))

<u>Claim.</u> Maximum flow = minimum ext
La sum of edges crossing the cut
lmp li cations.
· Intrary Camarinias -> Intrary Solvinon
(flow on each edge is an ins)
becare we push as much from as possible
on patus (by det of the algoritum)
to Intigir CP is an NP problem
· LP Prality
vowesponding minimization problem has same solution