Inverse Laplace Transforms

Problem 1

$$\mathcal{L}^{-1}\left(\frac{1}{s^2-1}\right)$$

Step-by-Step Solution:

1. Decompose the expression:

We can rewrite $s^2 - 1$ as (s - 1)(s + 1), which suggests a partial fraction decomposition:

$$\frac{1}{s^2 - 1} = \frac{A}{s - 1} + \frac{B}{s + 1}$$

Solving for A and B, we get:

$$1 = A(s+1) + B(s-1)$$

Setting s=1, we find $A=\frac{1}{2},$ and setting s=-1, we find $B=-\frac{1}{2}.$

Therefore:

$$\frac{1}{s^2 - 1} = \frac{1/2}{s - 1} - \frac{1/2}{s + 1}$$

2. Inverse Laplace Transform:

Using the standard inverse Laplace transform formula:

$$\mathcal{L}^{-1}\left(\frac{1}{s-a}\right) = e^{at},$$

we can now invert both terms:

$$\mathcal{L}^{-1}\left(\frac{1}{s^2 - 1}\right) = \frac{1}{2}e^t - \frac{1}{2}e^{-t}.$$

This is also the hyperbolic sine function:

$$\mathcal{L}^{-1}\left(\frac{1}{s^2 - 1}\right) = \sinh(t).$$

Problem 2

$$\mathcal{L}^{-1}\left(\frac{s}{s^2+9}\right)$$

Step-by-Step Solution:

1. Recognize the standard form:

The expression $\frac{s}{s^2+a^2}$ is a standard Laplace transform pair. We know that:

$$\mathcal{L}^{-1}\left(\frac{s}{s^2+a^2}\right) = \cos(at).$$

2. Apply the formula:

Here, $a^2 = 9$, so a = 3. Therefore:

$$\mathcal{L}^{-1}\left(\frac{s}{s^2+9}\right) = \cos(3t).$$