

#### WEST BENGAL STATE UNIVERSITY

B.Sc. Honours/Programme 1st Semester Examination, 2020, held in 2021

# MTMHGEC01T/MTMGCOR01T-MATHEMATICS (GE1/DSC1)

### **DIFFERENTIAL CALCULUS**

Time Allotted: 2 Hours Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

All symbols are of usual significance.

### Answer Question No. 1 and any five from the rest

1. Answer any *five* questions from the following:

 $2 \times 5 = 10$ 

- (a) Evaluate  $\lim_{x\to 0} (1+3x)^{\frac{2}{x}}$
- (b) Find  $\lim_{x\to 2} \sqrt{x-2}$  if it exists.
- (c) Show that  $f(x) = 2x^2 + 3x + 5$  is continuous for any real number x.
- (d) Find  $\frac{dy}{dx}$  if  $(\cos x)^y = (\sin y)^x$ .
- (e) If  $y = \frac{x}{x+1}$ , show that  $y_5(0) = 5!$ .
- (f) At what point is the tangent to the parabola  $y = x^2$  parallel to the straight line y = 4x 5.
- (g) Find the points of extremum value of the function  $f(x) = \sin x(1 + \cos x)$  in  $[0, 2\pi]$ .
- (h) If  $f(x, y) = x \log y$  then show that  $f_{xy} = f_{yx}$ .
- (i) Find the asymptotes of the curve  $x^3 6x^2y + 11xy^2 6y^3 + x + y + 5 = 0$ .
- (j) Find the radius of curvature of the curve xy = 12 at (3, 4).
- 2. (a) A function f is defined as follows:

 $f(x) = \begin{cases} x^2 + ax & , & \text{if } 0 \le x < 1\\ 3 - bx^2 & , & \text{if } 1 \le x \le 2 \end{cases}$ 

If  $\lim_{x\to 1} f(x) = 4$ , find the value of a and b.

4

## CBCS/B.Sc./Hons./Programme/1st Sem./MTMHGEC01T/MTMGCOR01T/2020, held in 2021

- (b) If  $f, g: D \to \mathbb{R}$  are two functions such that  $\lim_{x \to c} f(x)$  and  $\lim_{x \to c} g(x)$  exists finitely, then prove that  $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x)$ .  $\lim_{x \to c} g(x)$ .
- 3. (a) State and prove Lagrange's mean value theorem.
  - (b) If  $f(x, y) = \tan^{-1} \frac{y}{x} + \sin^{-1} \frac{y}{x}$ , find the value of  $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$  at the point (1, 1).
- 4. (a) If  $y = e^{a \sin^{-1} x}$ , prove that  $(1 x^2) y_{n+2} (2n+1) x y_{n+1} + (m^2 n^2) y_n = 0$ .
  - (b) Find the radius of curvature of the cycloid  $x = a(\theta \sin \theta)$ ,  $y = a(1 \cos \theta)$  at any point  $\theta$ .
- 5. (a) Show that the function f is continuous at x=1 but not differentiable at x=1 where

$$f(x) = \begin{cases} x+1 & \text{, if } 0 \le x < 1 \\ 3-x & \text{, if } 1 \le x \le 2 \end{cases}$$

- (b) Find the points on the curve  $y = 2x^3 15x^2 + 34x 20$  where the tangents are parallel to the straight line y + 2x = 0.
- 6. (a) If  $f(x, y) =\begin{cases} \frac{x^3 y}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x = 0, y = 0 \end{cases}$ prove that  $f_{yy}(0, 0) \neq f_{yy}(0, 0)$ .
  - (b) Find the nature of double points of the curve  $(2y+x+1)^2 = 4(1-x)^5$ .
- 7. (a) Determine the points of discontinuities of the function 4

$$f(x) = \begin{cases} \sin\frac{1}{x} & , & x \le 0 \\ 2x & , & 0 < x < 1 \\ 0 & , & x = 1 \\ \frac{x^2 - 1}{x - 1} & , & 1 < x \end{cases}$$

- (b) Prove that  $\frac{x}{1+x} < \log(1+x) < x$  for all x > 0.
- 8. (a) Determine the Taylor's series expansion of  $f(x) = \cos x$ .
  - (b) If a function f is differentiable on [0, 1] show that the equation  $f(1) f(0) = \frac{f'(x)}{2x}$  has at least one root in (0, 1).

#### CBCS/B.Sc./Hons./Programme/1st Sem./MTMHGEC01T/MTMGCOR01T/2020, held in 2021

9. (a) If u = f(x, y) and  $x = r\cos\theta$ ,  $y = r\sin\theta$  then prove that

$$\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2$$

(b) Show that the area of a rectangle inscribed in a circle is the maximum when it is a square.



10.(a) A function f is thrice differentiable on [a, b] and f(a) = 0 = f(b) and f'(a) = 0 = f'(b). Prove that there is a number c in [a, b] such that f'''(c) = 0.



(b) If u = f(y - z, z - x, x - y) then show that  $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$ .

5

11.(a) Show that the radius of curvature at any point  $(r, \theta)$  on the curve  $r = a(1-\cos\theta)$  varies as  $\sqrt{r}$ .

5

(b) If f(x) = 2|x| + |x-2|, find f'(1).

3

12.(a) Find the asymptotes of the following curve:

5

$$x = \frac{t^2}{1+t^3}$$
 ,  $y = \frac{t^2+2}{1+t}$ 

3

(b) If  $\lim_{x\to 0} \frac{\sin 2x + a \sin x}{x^3}$  be finite, find the value of 'a' and the limit.

13.(a) State and prove Leibnitz's theorem on successive differentiation.

5

(b) Find the radius of curvature of the curve  $y = xe^{-x}$  at its maximum point.

3

**N.B.:** Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.



1127