Section 8.3: Base-b representation

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

2 October 2020

Which of the following is a multiple of 9?

- ► 800001000 **√**
- **800002000**
- **>** 800003000
- **800004000**

Answer at https://pollev.com/wtl/.

What we saw

Definition 8 1 1

Let $n, d \in \mathbb{Z}$. Then d is said to divide n if

$$n = dk$$
 for some $k \in \mathbb{Z}$.

We write $d \mid n$ for "d divides n", and $d \nmid n$ for "d does not divide n".

Theorem 8.1.16 (Division Theorem) and Definition 8.1.17

For all $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, there exist unique $q, r \in \mathbb{Z}$ such that

$$n = dq + r$$
 and $0 \leqslant r < d$.

Such q and r are denoted $n \underline{\text{div }} d$ and $n \underline{\text{mod }} d$ respectively.

Definition 8.2.1

- (1) A positive integer is *prime* if it has exactly two positive divisors.
- (2) A positive integer is *composite* if it has (strictly) more than two positive divisors.

Theorem 8.2.8 (Euclid)

There are infinitely many prime numbers.

Base-*b* representation — Why?

← digits used by ancient Babylonians in their base-60 system

Picture source:
https://www-history.
mcs.st-andrews.ac.
uk/HistTopics/
Babylonian_numerals.
html

- To represent 1231 in a tallying system, one uses 1231 strokes.
- To represent 1231 in the base-10 system, one uses 4 symbols.
- **Exponentially fewer symbols are needed:** $4 = \lceil \log_{10}(1231 + 1) \rceil$.
- Finitely many symbols are enough to represent infinitely many numbers.

Our main focus: an algorithm to change bases

Base-b representation

Fix $b \in \mathbb{Z}_{\geq 2}$.

(*)

Definition 8.3.1

that (*) holds.

The base-b representation of a positive integer n is

 $(a_{\ell}a_{\ell-1}\ldots a_0)_h$

where $\ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that $n = \frac{a_{\ell}b^{\ell} + a_{\ell-1}b^{\ell-1} + \cdots + a_0b^0}{a_{\ell}b^{\ell}}$ and $a_{\ell} \neq 0$.

The a_0, a_1, \ldots, a_ℓ here are called *digits*. Convention 8.3.2

We identify a positive integer with its base-b representation.

Example 8.3.3 (1) $1231 = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 1 \times 10^0 = (1231)_{10}$.

(2) $182 = 2 \times 3^4 + 0 \times 3^3 + 2 \times 3^2 + 0 \times 3^1 + 2 \times 3^0 = (20202)_3$.

Theorem 8.3.13 (main theorem of this lecture)

For any $n \in \mathbb{Z}^+$, there exist unique $\ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such

Special bases

Definition 8 3 4

- (1) Base-10 representations are called *decimal representations*.
- (2) Base-2 representations are called *binary representations*.
- (3) Base-8 representations are called octal representations.
- (4) Base-16 representations are called *hexadecimal representations*.
- (5) Base-60 representations are called *sexagesimal representations*.

Example 8.3.6

- (1) $(1231)_{10}$ is the decimal representation of 1231.
- (2) $(1000011)_2$ is the binary representation of 67 because

$$1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 67.$$

- (3) (117)₈ is the octal representation of 79 because $1 \times 8^2 + 1 \times 8^1 + 7 \times 8^0 = 79$.
- (4) (4D)₁₆ is the hexadecimal representation of 77 because $4\times16^1+13\times16^0=77$.

Convention 8.3.5. use A, B, C, D, E, F for 10, 11, 12, 13, 14, 15 respectively.

Algorithm for finding base-b representation

Algorithm 8.3.8 ($b \in \mathbb{Z}_{\geq 2}$ fixed)

```
1. input n \in \mathbb{Z}^+
2. q := n
3. \ell := 0
```

4. while
$$q \neq 0$$
 do

5.
$$a_{\ell} \coloneqq q \bmod b$$
 collect remainde 6. $q \coloneqq q \bmod b$ remove by base

7.
$$\ell := \ell + 1$$

collect remainders

9. **output**
$$(a_{\ell-1}a_{\ell-2}...a_1a_0)_b$$

Definition 8.1.17. q div b and q mod b denote respectively the quotient and the remainder when q is divided by b.

Why does this algorithm stop?

- Algorithm 8.3.8 ($b \in \mathbb{Z}_{\geqslant 2}$ fixed)
- 1. **input** $n \in \mathbb{Z}^+$ 2. q := n
- 3. $\ell \coloneqq 0$ 4. while $q \neq 0$ do
- 5. $a_{\ell} \coloneqq q \bmod b$
- 6. $q := q \operatorname{\underline{div}} b$
- 7. $\ell := \ell + 1$
- 8. end do
- 9. **output** $(a_{\ell-1}a_{\ell-2}...a_1a_0)_b$

Definition 8.1.17. $q \underline{\text{div }} b$ and $q \underline{\text{mod }} b$ denote respectively the quotient and the remainder when q is divided by b.

Let q_i be the value of the variable q when the stopping condition $q \neq 0$ of the **while** loop is checked the (i+1)th time.

larger than 0

- ▶ Then, as $b \ge 2$,
 - $n = q_0 > q_0 \frac{\text{div } b}{q_0 \frac{\text{div } b}{\text{div } b}} = q_1$ $> q_1 \frac{\text{div } b}{q_2 \frac{\text{div } b}{\text{div } b}} = q_3$:
- Since each $q_i \ge 0$, the **while** loop can be executed at most n times.
- ▶ In particular, this algorithm stops. <

Note 8.3.12. We implicitly used the Well-Ordering Principle here to deduce that, since

 $\{a_0, a_1, a_2, \ldots\} \subset \mathbb{Z}_{k_0}$

- Algorithm 8.3.8 ($b \in \mathbb{Z}_{\geq 2}$ fixed) 1. input $n \in \mathbb{Z}^+$
 - 2. q := n

8. end do

- 3. $\ell := 0$
- 4. while $q \neq 0$ do $a_{\ell} := q \mod b$

q is divided by b.

- 6. $q := q \operatorname{div} b$
- 7. $\ell := \ell + 1$
- 9. **output** $(a_{\ell-1}a_{\ell-2}...a_1a_0)_b$ Definition 8.1.17. q div b and q mod b denote respectively the

quotient and the remainder when

Let q_i be the value of the variable q when the stopping condition $q \neq 0$ of the while loop is checked the (i + 1)th time.

- Suppose the stopping condition of the while loop is checked $\ell+1$ times in total, where $\ell\in\mathbb{Z}_{\geq 0}$.
- ▶ Then $q_{\ell-1} > 0$ and $q_{\ell} = 0$ by the stopping condition of the **while** loop.
- As $q_i = bq_{i+1} + a_i$ for each $i \in \{0, 1, \dots, \ell 1\}$, $n = q_0 = bq_1 + a_0 = b(bq_2 + a_1) + a_0$
- $=b^2q_2+a_1b+a_0=b^2(bq_3+a_2)+a_1b+a_0$ $=b^3q_3+a_2b^2+a_1b+a_0$ because 'gl' == 0 $=b^{\ell}q_{\ell}+a_{\ell-1}b^{\ell-1}+\cdots+a_{1}b+a_{0}$
- $= a_{\ell-1}b^{\ell-1} + \cdots + a_1b + a_0$ as $a_{\ell}=0$.

non-zero hecause ightharpoonup Also $a_{\ell-1} = bq_{\ell} + a_{\ell-1} = q_{\ell-1} > 0$. executed the loop again to \triangleright So $n = (a_{\ell-1}a_{\ell-2} \dots a_1a_0)_h$.

2.1. For each $n \in \mathbb{Z}^+$, let P(n) be the proposition "n has at most one base-b representation". 2.2. (Base step)

2.2.1. Let $c \in \{1, 2, \ldots, b-1\}$. Suppose $c = a_{\ell}b^{\ell} + a_{\ell-1}b^{\ell-1} + \cdots + a_{0}b^{0}$ and $a_{\ell} \neq 0$, where $\ell \in \mathbb{Z}_{\geqslant 0}$ and $a_{0}, a_{1}, \ldots, a_{\ell} \in \{0, 1, \ldots, b-1\}$.

2.2.2. If we have $i \in \{1, 2, \ldots, \ell\}$ such that $a_{i} \geqslant 1$, then since i > 1

$$b-1\geqslant c=a_{\ell}b^{\ell}+a_{\ell-1}b^{\ell-1}+\cdots+a_0b^0\geqslant a_ib^i\geqslant 1\cdot b^1=b,$$
 which contradicts the choice of c .

- 2.2.3. This means $a_1 = a_2 = \cdots = a_\ell = 0$, and so $\ell = 0$. Cause must have a value at least 2.2.4. Thus $c = a_0 b_0 = a_0$.
- 2.2.4. Thus $c = a_0 b_0^{-1} a_0$. 2.2.5. Hence all base-*b* representations of *c* must be the same as $(c)_b$.
- 2.2.6. So P(c) is true.
- 2.3. (Induction step) Let $k \in \mathbb{Z}_{\geq b-1}$ such that $P(1), P(2), \ldots, P(k)$ are true. So P(k+1) is true.
- Let $k \in \mathbb{Z}_{\geqslant b-1}$ such that $P(1), P(2), \ldots, P(k)$ are true. So P(k+1) is true 2.4. Hence $\forall n \in \mathbb{Z}^+$ P(n) is true by Strong MI.

Uniqueness of base-b representation — a proof by Strong MI 2.1. For each $n \in \mathbb{Z}^+$, let P(n) be the proposition "n has at most one base-b representation".

2.3. (Induction step) 2.3.1. Let $k \in \mathbb{Z}_{\geq b-1}$ such that $P(1), P(2), \ldots, P(k)$ are true.

2.3.2. Let
$$\ell, m \in \mathbb{Z}_{\geqslant 0}$$
 and $a_0, a_1, \dots, a_\ell, d_0, d_1, \dots, d_m \in \{0, 1, \dots, b-1\}$ such that $a_\ell b^\ell + a_{\ell-1} b^{\ell-1} + \dots + a_0 b^0 = k+1 = d_m b^m + d_{m-1} b^{m-1} + \dots + d_0 b^0$ (*)

and $a_{\ell} > 0$ and $d_m > 0$. 2.3.3. The quotients one gets when these are divided by b are equal too, i.e., $a_{\ell}b^{\ell-1} + a_{\ell-1}b^{\ell-2} + \dots + a_1b^0 = (k+1)\underline{\text{div}}b = d_mb^{m-1} + d_{m-1}b^{m-2} + \dots + d_1b^0.$ (†)

2.3.4. Note that
$$1 \le (k+1) \underline{\text{div}} \ b \le (k+k) \underline{\text{div}} \ 2 = k$$
 because $k+1 \ge b \ge 2$.
2.3.5. So $P((k+1) \underline{\text{div}} \ b)$ is true by the induction hypothesis, i.e., $(k+1) \underline{\text{div}} \ b$ has at

most one base-b representation.

most one base-
$$b$$
 representation.
2.3.6. This implies $\ell = m$ and $a_i = d_i$ for all $i \in \{1, 2, ..., \ell\}$ in view of (†).
2.3.7. Substituting these back into (*) gives

 $a_{\ell}b^{\ell} + a_{\ell-1}b^{\ell-1} + \cdots + a_{1}b^{1} + a_{0}b^{0} = d_{m}b^{m} + d_{m-1}b^{m-1} + \cdots + d_{1}b^{1} + d_{0}b^{0}$

 $= a_{\ell}b^{\ell} + a_{\ell-1}b^{\ell-1} + \cdots + a_{1}b^{1} + d_{0}b^{0}$

2.3.8. Thus $a_0 = a_0 b^0 = d_0 b^0 = d_0$.

2.4. Hence $\forall n \in \mathbb{Z}^+$ P(n) is true by Strong MI. 2.3.9. So P(k + 1) is true.

Summary

What we saw

- base-b representation
- ► an algorithm for finding it, together with a proof that it always stops and gives the correct result
- uniqueness of base-b representation

Theorem 8.3.13 (main theorem of this lecture)

For any $b \in \mathbb{Z}_{\geq 2}$ and any $n \in \mathbb{Z}^+$, there exist unique $\ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that

$$n=a_\ell b^\ell+a_{\ell-1}b^{\ell-1}+\cdots+a_0b^0$$
 and $a_\ell
eq 0.$

Next

- greatest common divisor
- the Euclidean Algorithm
- a proof of the Fundamental Theorem of Arithmetic

A mathematical understanding of this concept of correctness is useful beyond the field of program verification. It provides a way of thinking that can improve all aspects of writing programs and building systems.

Leslie Lamport 2018