

算法与计算理论

课程内容

数据结构 概述 线性表 栈与队列

数组与广义表 串 树

图 查找 内部排序 外部排序

算法与计算理论

概述贪心分治回溯动态规划.....

•••••

计算模型 可计算理论 计算复杂性

TUD1 本章内容

有限自动机

图灵机

[S] 唐常杰等译, Sipser著, 计算理论导引(第3版), 机械工业.

参考资料:

[L] Lewis等著, 计算理论基础, 清华大学.

0. 引论--语言--什么是问题

MP模型

- 1. 确定性有限自动机 1943年McCulloeh和Pitts建立了模拟神经网络的自动机
- 2. 非确定性有限自动机 (1959, 英国Dana Stewart Scott, Michael O. Rabin)
- 3. 正则表达式 (1951年,数学家Stephen Cole Kleene)
- 4. 正则语言的泵引理 1961年由Y. Bar-Hillel、M. Perles和E. Shamir首次发表的

第1章 有限自动机

如何表示全体问题? 如何表示算法? 问题与算法哪个多?

问题与决定性问题

判定性问题(Decision Prob): 只需回答是与否的问题 "某数是否是偶数","某串长度是否是2的幂次" "某图是否连通","某图是否有k团","某数是否素数"

功能问题:

排序, 最大流, 最大团问题

本书只研究判定性问题:

- 1. 判定性问题能统一描述
- 2. 功能问题总能转化为判定性问题

例: 最大团问题如何转化为判定性问题?

"最大团"与"图是否有k团"

团: 完全子图, 即所有节点对都有边相连的子图.

两个问题目前都没有快速算法

若"最大团"有快速算法,则"图是否有k团"也有:
对图G运行最大团算法,得最大团的节点数m若m≥k,则有k团;否则没有k团.

若 "图是否有k团" 有快速算法,则 "最大团" 也有: 利用 "图是否有k团",二分搜索最大团节点数m.

- 1. left=0; right=n;
- 2.令k=(r-l)/2, 执行 "G是否有k团".

有则令left=k+1;没有则令right=k-1继续第2步. 直到left>right

判定性问题与字符串集合

判定性问题与字符串集合

给定有限字母表Σ, 例如{0,1} 每个输入是一个01串, 任意01串都可以是输入 "判定性问题"——对应"字符串集合"

字符串与语言

字母表: 任意一个有限集. 常用记号 Σ , Γ (读音:Gamma).

符号: 字母表中的元素: $\Sigma=\{0,1\}$, $\Gamma=\{a,b,c,d,...,z,空格\}$

字符串: 字母表中符号组成的有限序列

如: x=0011, y=love, z=math, 通俗地说即单词

串的长度: 序列的长度, 例: |x|=|y|=4

串的连接,例:yz=lovemath

串的反转R,例:(z)R=htam

空词(空串): 记为 ϵ , $|\epsilon|=0$, 长度为0

子串: th是math的子串

语言与Σ*

语言: 给定字母表 Σ , 称 Σ 上一些字符串的集合为 Σ 上的语言.

例. 令字母表 $\Sigma = \{0,1\}, \Sigma$ 上的语言举例

 $A = \{0,00,0000\}, B = \{0,1,01,000,001,...\}$

 $\Sigma^* = \{x \mid x \in \Sigma \perp \text{ change} \}$

Σ上的任意语言A都是Σ*的子集,即:A ⊆ Σ*.

空语言:∅

空串语言: {ε}

判定性问题与{0,1}上的语言——对应

P(A)集合A的幂集. 例: P({a,b})={∅,{a},{b},{a,b}}

P(Σ*)=P({0,1}*):全体判定性问题

Σ*的标准序

Σ*的标准序:长度按从小到大,同长度按数从小到大排列

例1: $\Sigma_1 = \{0,1\}$ $\Sigma_1^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ 例2: $\Sigma_2 = \{a, b, c, d, ..., z\}$

 $\Sigma_2^* = \{\varepsilon, a, b, ..., z, aa, ab, ..., az, ba, bb, ..., bz, ..., zz, aaa, ..., zzz, ..., aaaa, ...\}$

因此 Σ^* 是可数集合,与N等势,其基数为 λ_0

(x 是希伯来文中的Aleph,通常不发音。)

{0,1}^N

 $\Sigma = \{0, 1\}$, 注意与 Σ^* 的区别, Σ^* 是 Σ 上所有有限长度串集合

 $\Sigma^{\mathbb{N}}$: Σ 上所有无限长度串记为 $\Sigma^{\mathbb{N}}$, 即 $\{(x_i)_{i=1}^{\infty}: X_i \in \Sigma\}$

例: 0001100..., 010111...,

 Σ^{N} 中任一串 $(x_i)_{i=1}^{\infty}$ 可以看做一个映射 $f:N \to \Sigma_i$

其中N是自然数集, $f(i) = x_i$

串0001100...的映射

N	0	1	2	3	4	5	6	•••
f	0	0	0	1	1	0	0	

定理 {0,1}N不可数

{0,1}\是全体无限长的01串

证明: 假设 $\{0,1\}$ ^N可数,即可以排成一列(f(i))

按下面方法在 $\{0,1\}^N$ 中取一点 x,

x的第i位与f(i)的第i位相反

n	<i>f</i> (n)
1	1 1 1 0 1
2	0 0 0 0 0
3	0 1 1 1 1
4	1 1 1 0 0
• • •	•••
X	0 1 0 1

x与列表每个数不同 x不在列表中 所以{0,1}^N不可数.

 Σ^N 与R等势 其基数为 λ_1

■ {0,1}上的语言与{0,1}N──对应

任取Σ上的语言A (Σ *的一个子集), 如下表示:

对 Σ^* 字典序下第i个字符串w,

若 $w \in A \diamondsuit x_i = 1$; 若 $w \notin A \diamondsuit x_i = 0$,

 $(x_i)_{i=1}^{\infty} \in \Sigma^{N}$.

所以, Σ 上的语言与 Σ N——对应.

全体语言 $P(\Sigma^*)$ 与 Σ^N 是等势的。

Σ^*	3	0	1	00	01	10	11	000	001	
A	×	0	×	00	01	×	×	000	001	
g(A)	0	1	0	1	1	0	0	1	1	

计算理论研究对象:语言

全体程序是{0,1}* 的子集,至多可数 全体判定性问题与{0,1}*\等势,不可数 程序可数,问题不可数

数学的研究对象有数,函数,函数空间等计算理论的研究对象:问题即语言即字符串集合

- 0. 引论--语言--什么是问题
- 确定有限自动机
 有限自动机定义
 有限自动机举例
 有限自动机的设计
 正则运算
- 2. 非确定有限自动机
- 3. 正则表达式
- 4. 正则语言的泵引理

有限自动机(Finite Automaton)

起始状态q₁

转移: 箭头

♦状态图

状态: q₁,q₂,q₃

接受状态q2

δ	0	1
$\mathbf{q_1}$	\mathbf{q}_1	$\mathbf{q_2}$
$\mathbf{q_2}$	$\mathbf{q_3}$	$\mathbf{q_2}$
q_3	$\mathbf{q_2}$	$\mathbf{q_2}$

读头不能改写, 且只能右移

有限自动机(Finite Automaton)

◆ 运行:

从起始状态开始沿转移箭头进行.

◆ 输出:

输入读完处于接受状态则接受, 否则拒绝.

- ◆接受: 1, 11, 100, 101, 1101, ...
- ◆ 拒绝: ε, 0, 10, 110, 1010, ...

有限状态控制器

有限自动机

定义: 有限自动机(Deterministic Finite Automata)

是一个5元组($\mathbf{Q}, \Sigma, \delta, \mathbf{s}, \mathbf{F}$),

- 1) Q是有限集, 称为状态集;
- 2) Σ是有限集, 称为字母表;
- 3) δ : Q× Σ →Q是转移函数;
- 4) s∈Q是起始状态;
- 5) F⊆Q是接受状态集;

δ读音: delta

状态图等价于形式定义

Q={q₁,q₂,q₃}, 状态集

 $\Sigma = \{0,1\},$ 字母表

s=q1, 起始状态

 $F={q_2}接受状态集$

δ	0	1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2
$\mathbf{q_2}$	\mathbf{q}_3	\mathbf{q}_2
\mathbf{q}_3	\mathbf{q}_2	\mathbf{q}_2

DFA计算的形式定义

《北京理工大学 BEJING INSTITUTE OF TECHNOLOGY

- ◆ 设M = (Q,Σ,δ,s,F)是一个DFA,
 w = w₁w₂...w_n是字母表Σ上的一个字符串.
 - 若存在Q中的状态序列 $r_0, r_1, ..., r_n$,满足
 - 1) $r_0 = s$;
 - 2) $r_{i+1} = \delta(r_i, w_{i+1})$;
 - 3) $r_n \in F$

则M接受w, 记为δ(r₀,w)∈F

$$s \xrightarrow{W_1} r_1 \xrightarrow{W_2} r_2 \xrightarrow{\dots} r_{n-1} \xrightarrow{W_n} r_n$$

有限自动机的语言:正则语言

对有限自动机M, 若 A = { $w \in \Sigma^*$ | M接受w },

即A是有限自动机M的语言, 记为L(M)=A, 也称M识别A.

注: M的语言唯一. M不识别任何其它语言.

正则语言: 若存在DFA识别语言A,则称A是正则语言.

等价: 若两个有限自动机的语言相同,则称它们等价.

有限自动机的语言:正则语言

分析M₁:

在任何状态, 读到1后一定会进入接受状态q2.

在q3状态下,读入0或1都进入接受状态

因此 $L(M_1)=\{w\mid w\in\{0,1\}^*, w至少含一个1,$

且最后一个1后面含有偶数个0 }

任何其它语言都不是M₁的语言.

$$M_1 \xrightarrow{q_1} \xrightarrow{1} \xrightarrow{q_2} \xrightarrow{0} \xrightarrow{q_3}$$

$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, s = q_1, F = \{q_2\}))$$

δ	0	1		
\mathbf{q}_1	\mathbf{q}_1	$\mathbf{q_2}$		
$\mathbf{q_2}$	\mathbf{q}_1	$\mathbf{q_2}$		

L(M₂)={w | w∈{0,1}*, w是以1结束的非空串 }

$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, s = q_1, F = \{q_1\}))$$

δ	0	1
\mathbf{q}_1	\mathbf{q}_1	$\mathbf{q_2}$
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_2

L(M₃)={w | w∈{0,1}*, w为空或以0结束 }

$$M_4 = (\{q_1, q_2, r_1, r_2\}, \{a, b\}, \delta, s, F = \{q_1, r_1\}))$$

L(M₄)={w | w∈{a,b}*, w首尾字母相同的非空串 }

 $M_5 = (\{q_0, q_1, q_2\}, \{0, 1, 2, reset\}, \delta_i, s = q_0, F = \{q_0\})$

 $L(M_5)=\{w\mid w满足在最后一个reset之后的所有数字之和为3的倍数 \}$

$$\begin{split} \Sigma = & \{0,1,2,reset\} \\ A_i = & \{w \mid w满足在最后一个reset之后 的所有数字之和为i的倍数 \} \\ L(B_i) = & A_i. 设计自动机B_i. \\ B_i = & (Q_i, \Sigma, \delta_i, s = q_0, F = \{q_0\}) \\ Q_i = & \{q_0, q_1, q_2, ... q_{i-1}\} \\ \delta_i(q_0, 0) = & q_k \\ \delta_i(q_j, 1) = & q_{(j+1)mod\ i}. \\ \delta_i(q_j, 2) = & q_{(j+2)mod\ i}. \\ \delta_i(q_0, reset) = & q_0. \end{split}$$

有限自动机的设计(难点)

原则:自己即自动机

寻找需要记录的关键信息:

步骤1:确定状态

步骤2: 确定转移

设计识别下列语言的DFA:

例1: { w∈{0,1}* | w从1开始, 以0结束 }

例2: { w∈{0,1}* | w含有子串1010 }

例3: { w∈{0,1}* | w的倒数第2个符号是1 }

例4: { 0^k | k是2或3的倍数 }

例1: { w∈{0,1}* | w从1开始, 以0结束 }

 $\Sigma = \{0, 1\}$

步骤1:根据关键信息确定状态

空-->不接受

以0开始-->不接受

以1开始以0结束-->接受

以1开始以1结束-->不接受

步骤2: 确定转移函数

 M_6

例1: { w∈{0,1}* | w从1开始, 以0结束 }

运行举例: 1100, 101

对应自动机算法:

- 1. 当前为初始状态
- 2. 当有输入, 根据转移 函数转移当前状态
- 3. 若当前处于接受状态, 返回真, 否则返回假

有限自动机的设计

例2: { w∈{0,1}* | w含有子串1010 }

 $\Sigma = \{0, 1\}$

关键信息: ε, 1, 10, 101, 1010

例3: { w∈{0,1}* | w倒数第2个符号是1 }

只需关注最后两个符号

 Σ ={0,1}, 关键信息: ϵ , 0, 1, 00, 01, 10, 11

关键信息改进: ε, 1, 10, 11

有限自动机的设计

例4: { 0^k | k是2或3的倍数 }

 $\Sigma = \{0\}$

关键信息: ε,01,02,03,04,05.

记为: 0,1,2,3,4,5

例4: { 0^k | k是2或3的倍数 }

 Σ ={0}, 关键信息: ϵ ,0¹,0²,0³,0⁴,0⁵,

记为: 0,1,2,3,4,5 或 (0,0), (1,1), (0,2), (1,0), (0,1), (1,2)

 $\{0^k|k$ 是2或3的倍数 $\} = \{0^k|k$ 是2倍数 $\} \cup \{0^k|k$ 是3的倍数 $\}$

 $\{0^k|k是2和3的倍数\} = \{0^k|k是2倍数\} \cap \{0^k|k是3的倍数\}$?

{ 0^k | k是2和3的倍数 }

 Σ ={0}, 关键信息: ϵ ,0¹,0²,0³,0⁴,0⁵,

记为: 0,1,2,3,4,5 或 (0,0), (1,1), (0,2), (1,0), (0,1), (1,2)

 $\{0^k|k$ 是2和3的倍数 $\} = \{0^k|k$ 是2倍数 $\} \cap \{0^k|k$ 是3的倍数 $\}$

| 课堂练习

试着完成下列的DFA模型:

- 1. { w∈{a,b}* | w中的每一个a的前面都是一个b}
- 2. { w∈{a,b}* | w含有子串abab}
- 3. { w∈{a,b}* | w不包含子串aa和bb}
- 4. { w∈{a,b}* | w有奇数个a和偶数个b}
- 5. { w∈{a,b}* | w含有子串ab和ba}

正则运算

设A, B都是Σ上的正则语言, 正则运算:

定理: 正则语言对于正则运算是封闭的。


```
设字母表Σ由标准的26个字母组成
```

A={good, bad}, B={boy, girl}, 则

 $A \cup B = \{ good, bad, boy, girl \}$

A°B={ goodboy, goodgirl, badboy, badgirl }

 $A^* = \{\varepsilon, \text{ good, bad, goodgood, goodbad, ...}\}$

正则语言对补运算封闭

定理: 正则语言对补运算封闭

证明思路:

 $L(M_2)=\{w \mid w \in \{0,1\}^*, w 是以1结束的非空串 \}$

 $L(M_3)=\{w \mid w \in \{0,1\}^*, w$ 为空或以0结束 }

正则语言对补运算封闭

北京理工大学 BELING INSTITUTE OF TECHNOLOGY

定理: 正则语言对补运算封闭

证明:构造性证明

假设正则语言L=L(M);

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$M' = (Q, \Sigma, \delta, q_0, F'), \Leftrightarrow F' = Q - F$$

$$\forall x, x \in L(M) \Leftrightarrow \delta(q_0, x) \in F$$

$$\Leftrightarrow \delta(q_0, x) \notin F' \Leftrightarrow x \notin L(M')$$

所以
$$L(M') = \Sigma^* - L(M) = L(M)^C$$
.

证毕.

定理: 设A, B都是Σ上的正则语言, 则A∪B也是正则语言.

证明思路: 构造性证明

构造一个有限自动机,同步更新两个有限自动机

{ 0^k | k是2或3的倍数 }

有限状态控制器

定理: 设A, B都是Σ上的正则语言, 则A∪B也是正则语言.

证明思路: 构造性证明

构造一个有限自动机,同步更新两个有限自动机

{ 0^k | k是2或3的倍数 }

正则语言的并是正则语言

定理: 设A, B都是 Σ 上的正则语言, 则A \cup B也是正则语言.

证明: 设 M_1 =(Q_1 , Σ , δ_1 , s_1 , F_1)和 M_2 =(Q_2 , Σ , δ_2 , s_2 , F_2)是有限自动机,

 \square L(M₁)=A, L(M₂)=B.

 \Leftrightarrow M=(Q, Σ , δ ,s,F)

其中 $Q=Q_1\times Q_2$, $s=(s_1,s_2)$, $F=F_1\times Q_2\cup Q_1\times F_2$,

 $\delta: Q \times \Sigma \rightarrow Q, \forall a \in \Sigma, r_1 \in Q_1, r_2 \in Q_2,$

 $\delta((r_1,r_2), a) = (\delta_1(r_1,a), \delta(r_2,a)),$

即第1个分量按 M_1 的转移函数变化,第2个分量按 M_2 的转移函数变化。则 $\forall x (x \in L(M) \leftrightarrow x \in A \cup B)$

即 L(M) = A U B. 证毕

正则语言的交是正则语言

定理: 设A,B都是Σ上的正则语言, 则A∩B也是正则语言.

证明: 设M₁=(Q₁,
$$\Sigma$$
, δ ₁, s ₁, F ₁)和M₂=(Q₂, Σ , δ ₂, s ₂, F ₂)是有限自动机, 且 L(M₁)=A, L(M₂)=B, 令M=(Q, Σ , δ , s , F), 其中Q=Q₁×Q₂, s =(s ₁, s ₂), F = F ₁× F ₂, δ : Q× Σ \rightarrow Q, \forall a \in Σ , r ₁ \in Q₁, r ₂ \in Q₂, δ ((r ₁, r ₂) , a) = (δ ₁(r ₁,a), δ (r ₂,a)), 则 \forall x (x \in L(M) \leftrightarrow x \in A \cap B) 即 L(M) = A \cap B. 证毕

正则语言对相对补和对称差运算封闭

定理: 正则语言对补运算封闭

定理: 设A, B都是Σ上的正则语言, 则A∪B也是正则语言.

定理: 设A,B都是Σ上的正则语言,则A∩B也是正则语言.

推论:正则语言对相对补和对称差运算封闭。

相对补 $A-B=A \cap \sim B$

对称差 $A \oplus B = (A - B) \cup (B - A)$

第1章 有限自动机

- ◆ 0. 引论--语言--什么是问题
- ◆ 1. 确定有限自动机
- ◆ 2. 非确定有限自动机
 - 『非确定型机器
 - ¶NFA的形式定义
 - ¶ NFA计算的形式定义
 - ¶NFA举例
 - ¶ NFA设计
 - ¶ NFA和DFA等价
- **◆ 3. 正则表达式**
- ◆ 4. 正则语言的泵引理

非确定型机器

确定型有限自动机(DFA): Deterministic Finite Automaton

 $δ: Q \times Σ \rightarrow Q$, 下一个状态是唯一确定的

非确定型有限自动机(NFA): Nondeterministic Finite Automaton

每步可以0至多种方式进入下一步

转移箭头上的符号可以是空串ε,表示不读任何输入就可以转移过去

非确定型机器计算示例

非确定型机器计算示例

输入 01011

NFA的计算方式

- 1.设读到符号s, 对(每个副本)机器状态q,若q有多个射出s箭头,则机器把自己复制为成多个副本.
- 2. 对每个副本的状态,若其上有射出标 的箭头,则不读任何输入,机器复制出相应副本.
- 3. 读下一个输入符号, 若有符号则转1. 若无输入符号, 计算结束, 并且, 若此时有一个副本处于接受状态,则接受, 否则拒绝.

NFA的形式定义

定义: NFA是一个5元组(Q, Σ , δ ,s,F),

Q是状态集;

Σ是字母表;

 δ : Q× Σ_{ε} → P(Q) 是转移函数;

其中
$$\Sigma_{\varepsilon}$$
 = $\Sigma \cup \{\varepsilon\}$

s∈Q是起始状态;

F⊆Q是接受状态集;

状态图 与 形式定义 包含 相同信息

试写出该状态图 对应的形式定义

$$\delta(q_1,1) = \{q_1,q_2\}$$

$$\delta(q_2, \varepsilon) = \{q_3\}$$

$$\delta(q_2,1) = \emptyset$$

$$\delta(q_1,\varepsilon) = \emptyset$$

NFA的形式定义与DFA的形式定义-对比

定义: NFA是一个5元组($\mathbf{Q}, \Sigma, \delta, \mathbf{s}, \mathbf{F}$),

Q是状态集;

Σ是字母表;

 δ : Q× Σ_{ε} → P(Q) 是转移函数;

其中 $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

s∈Q是起始状态;

F⊆Q是接受状态集;

定义: DFA是一个5元组(Q, Σ , δ ,s,F),

- 1) Q是有限集, 称为状态集;
- 2) Σ是有限集, 称为字母表;
- 3) δ : $\mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ 是转移函数;
- 4) s∈Q是起始状态;
- 5) F⊆Q是接受状态集;

如何定义NFA的计算

NFA计算的形式定义

若 w能写作w= $w_1w_2...w_n$, $w_i \in \Sigma_\epsilon$,且 存在Q中的状态序列 r_0 , r_1 ,..., r_n ,满足

- 1) $r_0 = q_0$;
- 2) $r_{i+1} \in \delta(r_i, w_{i+1});$
- 3) $r_n \in F$

对于输入, NFA计算的路径可能不唯一.

NFA计算形式定义举例

N₁接受所有包含11或者101子串的字符串。

NFA举例

 $L(N_2)=\{w \mid w的倒数第三个字符是1\}$

 $\Sigma = \{0, 1\}$

NFA: 猜测能力


```
自己即自动机
寻找需要记录的关键信息
设计识别{0,1}上以下语言的NFA:
```

例1: { w∈{0,1}* | w从1开始,以0结束 }

例2: { w∈{0,1}* | w含有子串1010 }

例3: { w∈{0,1}* | w是倒数第2位是1 }

例4: { O^k | k是2或3的倍数 }

例1: { w∈{0,1}* | w从1开始, 以0结束 }

 Σ ={0,1}, 根据关键信息设计状态,

空, 以0开始, 以1开始以1结束, 以1开始以0结束

NFA计算举例

A = { w∈{0,1}* | w 从1开始, 以0结束 }

状态: (q₀, q₁, q₂)

{ w∈{0,1}* | w含有子串1010 }

Σ={0,1}, 关键信息: 忽略(ε), 1, 10, 101, 1010

NFA计算举例

B = { w∈{0,1}* | w含有子串1010 }

状态: $(q_0,q_1,q_2,q_3,q_4) = (Ignore(\epsilon), 1, 10, 101, 1010)$

10101100

NFA的设计

{ w∈{0,1}* | w倒数第2个符号是1 } Σ={0,1}, 关键信息: 忽略(ε), 1, 1x,

NFA计算举例

C = { w∈{0,1}* | w的倒数第2个符号是1 }

状态: $(q_0,q_1,q_2) = (忽略(\epsilon), 1, 1x)$

定理: 每个NFA都有一台等价的DFA.

构造DFA关键信息: 副本状态的集合.

起始?接受状态集?转移?

不确定: 在状态q₁读到1, 进入哪个状态? 确定: 在状态q₃读到1, 进入哪些状态? 进一步确定: 给定副本状态集, 读到符号1, 得到的副本状态集

每个NFA都有等价的DFA

NFA的确定化:子集法

- (1)确定起始状态S':将从 NFA N的起始状态S出发经过任意条ε弧所能到达的状态组成的集合作为确定化后的 DFA M的起始状态S'。
- (2)确定其它状态:从S'出发,经过对任意输入符号a∈∑的状态转移所能到达的状态(包括读入输入符号a之后所有可能的ε转移所能到达的状态)所组成的集合作为M的新状态。
- (3)如此重复,直到不再有新的状态出现为止。
- (4)<mark>确定接受状态</mark>:在所产生的状态中,含有原NFA接受态的子集作为DFA的接受态。

■ 构造和N等价的DFA M

$$N = (Q_1, \Sigma, \delta_1, q_1, \{q_4\})$$

$$M=(Q, \Sigma, \delta, s, F)$$

 $Q=P(Q_1), \Leftrightarrow s = S_1 = \{q_1\}$

令
$$S_2 = \{q_1, q_2, q_3\}$$
. 则有 $\delta(S_1, 0) = S_1, \delta(S_1, 1) = S_2,$

$$\delta(A, a) = E(\bigcup_{r \in A} \delta_1(r, a))$$

$$S_1 - 0 - S_1 - 1 - S_2$$

Q = {
$$S_1, S_2, ...$$
 },
s = S_1 ,
 $\delta(S_1, 0) = S_1$, $\delta(S_1, 1) = S_2$,

每个NFA都有等价的DFA

以原状态的子集 为新机器的状态

编号	δ	0	1
1	{q ₁ } 1	$\{q_1\}$	${q_1, q_2, q_3}^2$
2	$\{q_1, q_2, q_3\}$	${q_1, q_3}$ 3	${q_1, q_2, q_3, q_4}4$
3	$\{\mathbf{q}_1,\mathbf{q}_3\}$	{q ₁ }	$\{q_1, q_2, q_3, q_4\}$
4*	$\{q_1, q_2, q_3, q_4\}$	${q_1, q_3, q_4}5$	$\{q_1, q_2, q_3, q_4\}$
5*	$\{q_1, q_3, q_4\}$	${\{q_1, q_4\}}$ 6	$\{q_1, q_2, q_3, q_4\}$
6*	$\{\mathbf{q_1},\mathbf{q_4}\}$	$\{\mathbf{q_1}, \mathbf{q_4}\}$	$\{q_1, q_2, q_3, q_4\}$

N₁:包含11或者101子串的字符串

每个NFA都有等价的DFA

编号	δ	0	1
1	{q ₁ } 1	{q ₁ }	${q_1, q_2, q_3}$ 2
2	$\{q_1, q_2, q_3\}$	${\bf q_1, q_3}$ 3	${\bf q_1, q_2, q_3, q_4}$
3	$\{\mathbf{q}_1,\mathbf{q}_3\}$	$\{\mathbf{q_1}\}$	$\{q_1, q_2, q_3, q_4\}$
4*	$\{q_1, q_2, q_3, q_4\}$	$\{q_1, q_3, q_4\}$ 5	$\{q_1, q_2, q_3, q_4\}$
5*	$\{q_1, q_3, q_4\}$	${\{q_1, q_4\}}$ 6	$\{q_1, q_2, q_3, q_4\}$
6*	$\{\mathbf{q_1},\mathbf{q_4}\}$	$\{\mathbf{q_1},\mathbf{q_4}\}$	$\{q_1, q_2, q_3, q_4\}$

N₁:包含11或者101子串的字符串

每个NFA都有等价的DFA


```
证明: 设N=(Q<sub>1</sub>, \Sigma, \delta_1, s_1, F_1)是NFA,//构造一个DFA M=(Q,\Sigma,\delta, s, F) 令 Q = P(Q<sub>1</sub>), //Q1的幂集
F = \{ A \in Q : F_1 \cap A \neq \emptyset \},
s = E(\{s_1\}), E(A) = \{ q : \exists r \in A, r \not e \neq 0 \} \}
\delta: Q \times \Sigma \rightarrow Q, \quad \forall a \in \Sigma, \forall A \in Q,
\delta(A, a) = E(U_{r \in A} \delta_1(r, a))
M = (Q, \Sigma, \delta, s, F),
\emptyset \forall x (x \in L(M) \leftrightarrow x \in L(N)),
\emptyset L(M) = L(N).
证毕.
```


∀x

$\forall x (x \in L(M) \leftrightarrow x \in L(N))$

N接受w:
$$w=0101\epsilon1$$
 $q_1-0-q_1-1-q_1-0-q_1-1-q_2-\epsilon-q_3-1-q_4\in F_1$

构造和N等价的DFA

课堂练习

构造和N等价的DFA

课堂练习

state	0	1
0*	1	2
1	3	4
2	3	5
3	6	0
4*	7	4
5	8	4
6		0
7	8	4
8	6	0

正则运算的封闭性

定理:每个NFA都有等价的DFA。

推论:一个语言是正则的,当且仅当有一个NFA识别

它。

定理: 正则语言对并运算封闭.

定理: 正则语言对连接运算封闭.

定理: 正则语言对星号运算封闭.

证明方法: 构造一个NFA, 画状态图.

设DFA: $M_1=(Q_1,\Sigma,\delta_1,s_1,F_1)$, $L(M_1)=A$;

DFA: $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2), L(M_2) = B,$

构造识别A \cup B的NFA, N=(Q, Σ , δ ,s,F)。

令 Q = Q₁∪Q₂∪{s}, F = F₁∪F₂, s是N的初始状态;

$$\delta(\mathsf{s},\varepsilon) = \{\mathsf{s}_1,\mathsf{s}_2\}$$

 $\forall i=1,2, \forall r \in Q_i, \forall a \in \Sigma, \delta(r,a) = \{\delta_i(r,a)\}$

则 $L(N) = A \cup B$.

证明: 若A, B正则,则A°B正则

DFA: $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), L(M_1) = A,$

 $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2), L(M_2) = B_o$

构造识别A°B的NFA, N=(Q, Σ , δ ,s₁,F)。

令 Q = Q₁∪Q₂不交并, F = F₂, s₁是N的初始状态;

 $\forall r \in F_1, \delta(r, \varepsilon) = \{s_2\}$

 $\forall i=1,2, \forall r \in Q_i, \forall a \in \Sigma, \delta(r,a) = \{\delta_i(r,a)\}$

则 $L(N) = A^{\circ}B$.

证明若A正则,则A*正则

DFA:
$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), L(M_1) = A$$
,

构造识别A*的NFA, N=(Q, Σ , δ ,s,F)。

$$\Leftrightarrow Q = Q_1 \cup \{s\}, F = F_1 \cup \{s\}$$

 $\forall r \in Q_1, \forall a \in \Sigma, \delta(r,a) = \{\delta_1(r,a)\}$

$$\forall r \in F_1, \delta(r, \varepsilon) = \{s_1\},$$

$$\delta(s,\varepsilon) = \{s_1\},$$

则 $L(N) = A^*$.

第1章 有限自动机

- 0. 引论--语言--什么是问题
- 1. 确定有限自动机
- 2. 非确定有限自动机
- 3. 正则表达式 正则表达式 正则表达式与DFA等价
- 4. 正则语言的泵引理

正则表达式

定义: 称R是一个正则表达式, 若R是

- 1) a, a $\in \Sigma$;
- 2) ε;
- $3) \varnothing$;
- 4) (R₁∪R₂), R₁和R₂是正则表达式;
- 5) (R₁°R₂), R₁和R₂是正则表达式;
- 6) (R₁*), R₁是正则表达式;

每个正则表达式R表示一个语言,记为 L(R).

- 1) $L(a)=\{a\}$. 2) $L(\varepsilon)=\{\varepsilon\}$.
- 3) L(∅)= ∅
- 4) $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$.
- 5) $L((R_1^{\circ}R_2))=L(R_1)^{\circ}L(R_2)$.
- 6) $L((R_1^*))=(L(R_1))^*$

每个正则表达式R表示一个语言,记为L(R).例:

$$01\cup 10=\{01, 10\}$$

$$(\Sigma\Sigma)^* = \{w \mid w$$
是含有偶数个字符的字符串}

$$\varnothing^* = \{\varepsilon\}$$

正则表达式与DFA等价

定理2.3.1: 语言A是正则的⇔A可用正则表达式描述.

(⇐) 若语言A可用正则表达式描述,则 A是正则的.

证明方法: 数学归纳法

即,用DFA(NFA)识别正则表达式的基本形式,然后归纳

(⇒) 若语言A是正则的,

则A可用正则表达式描述.

证明方法:将DFA识别的语言变换为正则表达式

A可用正则表达式描述⇒A正则

数学归纳法

R是一个正则表达式, 若R是

- 1) a, $a \in \Sigma$
- 2) ε
- 3) Ø
- 4) $(R_1 \cup R_2)$
- 5) $(R_1^{\circ}R_2)$
- 6) (R₁*)

针对正则表达式进行归纳 例如: (ab∪a)*

A可用正则表达式描述⇒A正则

例:根据(ab∪a)*构造NFA

A正则⇒A可用正则表达式描述

证明方法:将DFA转换为等价的正则表达式

构造性证明:构造广义非确定有限自动机(GNFA)

转移箭头可以用任何正则表达式作标号,如ab^{*},ab∪a等。

GNFA读入符号段,不必一次读入一个符号

证明中的特殊要求:

起始状态无射入箭头.

唯一接受状态(无射出箭头).

其它状态到自身和其它每一个状态都有一个箭头.

手段: 一个一个地去掉中间状态.

正则表达式到NFA的转换

NFA到正则表达式的转换

(3)
$$A \xrightarrow{e_1} B \xrightarrow{e_3} C$$
 替换成 $A \xrightarrow{e_1 e_2^* e_3} B$

设q_{rip}为待删中间状态, 对任意两个状态q_i, q_j都需要修改箭头标号

举例: A正则⇒A有正则表达式

1. 添起始状态s,接受状态ac, 改掉其它接受状态

2. 删状态1

举例: A正则⇒A有正则表达式

3. 删除状态2

($(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*$ $((ba \cup a)(aa \cup b)^* \cup \epsilon)) \cup (a(aa \cup b)^*)$

4. 删除状态3

举例: A正则⇒A有正则表达式

3. 删除状态2

4. 删除状态3

- 0. 引论--语言--什么是问题
- 1. 确定有限自动机
- 2. 非确定有限自动机
- 3. 正则表达式
- 4. 正则语言的泵引理 非正则语言 泵引理

哪些是正则语言?

```
B = \{ 0^n 1^n \mid n \ge 0 \}
C = \{ ww \mid w \in \{0,1\}^* \}
D = \{ 1^k \mid k = 2^n, n \ge 0 \}
E = \{ w \mid w + 0 = 10 \cap \% = 10 \cap \%
```

▋ 非正则语言

F={ w | w中01和10的个数相等 }是正则的: 101、010、111001001、000110110 ∈ F 1010、0101 ∉ F

若干个1组成的子串(D_1)和若干个0组成的子串(D_2)交替出现若w以(D_1)开始则以(D_1)结束,若w以(D_2)开始则以(D_2)结束 $F = ((1+0+)*1+) \cup ((0+1+)*0+)$

F={ w | w中01和10的个数相等 }:

设计NFA状态:

起始状态

空, 0, 01, 010;

空, 1, 10, 101

泵引理

定理(泵引理): 设A是正则语言,则存在p>0(泵长度)使得 对任意w∈A, |w|≥p, 存在分割w=xyz满足:

- 1) 对任意 i ≥ 0, xyⁱz ∈ A;
- 2) |y| > 0;
- 3) $|xy| \le p$.

泵引理是一个充分非必要条件,它可以证明某个语言不是正则的,但不能证明某个语言是正则的。换句话说,如果一个语言不满足泵引理,那么它一定不是正则的;但如果一个语言满足泵引理,我们不能由此断定它是正则的,因为还有非正则语言也可能偶然满足泵引理的条件

泵引理

假设正则语言可以被DFA表示,设这个状态机为M,M有p个状态。 我们从该正则语言中选取一个长度p(pumping length, 可理解为等价 DFA的状态个数)的字符串s,且s可以被分成x,y,z三部分(s=xyz), 从状态q₁一直到状态q₁₃,如下图。

在DFA 的单状态性下,每读取一个字符,状态就会进行对应的转换,因此s 的p个字符在状态机中应该要移动p次,需要p+1个状态。但是因为状态机M 只有p个状态(状态之间的连线只有p-1条),根据鸽巢原理,肯定至少有两次移动在同一个状态上进行(成环)。我们可以假定这个状态为 q₉。

泵引理

从q₁到q₈可以设为x,q₈到q₁₃为z,而第一 个q。回到q。为y。这样子,pumping lemma的三个条件就会被满足。

条件1: $xy^iz \in A$ 。因为y无论怎么重复,都会 回到q。(回到状态机中,通过z字符串到达接收 状态),所以都会被这个DFA接受。

条件2: |y| > 0。因为y至少包含了两次,因此

显然大于0

条件3: $|xy| \le p$ 。由于|s| = |xyz| = p ,且在 需要p+1个状态进行转换的情况下DFA只有p个 状态,那么作为s的子串xy(或者假设|z|=0), |xy|的长度也不会超过p。

{ w∈{0,1}* | w倒数第2个符号是1 }

11011 1010

11011 : q₀-1- q₁- 101 - q₁- 1 - q₃-接受 1(101)ⁱ1: q₀-1- q₁- (101)ⁱ - q₁ - 1 - q₃-接受 11011=xyz

x=1, y=101, z=1. xyⁱz 被接受的原因?

取p为DFA状态个数.

由鸽巢原理,读前p个符号必有状态重复

泵引理的证明

- ◆ 定理(泵引理): 设A是正则语言,则存在p>0(泵长度)使得 对任意w∈A, |w|≥p, 存在分割w=xyz满足
 - 1) 对<u>任意</u> i ≥ 0, xyⁱz ∈ A;
 - 2) |y| > 0;
 - 3) $|xy| \leq p$.

证明: $\diamondsuit M = (Q, \Sigma, \delta, s, F)$ 且 $L(M) = A, \diamondsuit p = |Q|,$ 设 $w = w_1 w_2 ... w_n \in A, w_i \in \Sigma, \exists n \geq p, 则有$

$$s = r_0 \xrightarrow{W_1} r_1 \xrightarrow{\dots} r_{i-1} \xrightarrow{W_i} r_i \xrightarrow{\dots} r_{j+1} \xrightarrow{\dots} r_{n-1} \xrightarrow{W_n} r_n \in F$$

由鸽巢原理,存在 $i < j \le p$ 使得 $r_i = r_j$,令 $x = w_1 ... w_i$, $y = w_{i+1} ... w_j$, $z = w_{j+1} ... w_n$. 那么对 $\forall k \ge 0$, $xy^k z \in A$.

泵引理的等价描述

- ◆ 定理(泵引理): 设A是正则语言,则存在p>0(泵长度)使得 对任意w∈A, |w|≥p, 存在分割w=xyz满足:
 - 1) 对<u>任意</u> i ≥ 0, xyⁱz ∈ A;
 - 2) |y| > 0;
 - 3) $|xy| \le p$.

若A是正则语言,

则∃p>0

 $\forall w \in A(|w| \ge p)$

 $\exists x,y,z(|y|>0, |xy|\leq p, w=xyz)$

 $\forall i \geq 0, xy^iz \in A.$

若∀p>0

 $\exists w \in A(|w| \ge p)$

 $\forall x,y,z(|y|>0, |xy|\leq p, w=xyz)$

 $\exists i \geq 0, xy^iz \notin A.$

则A非正则语言

泵引理的应用实例4

L1 = { 0^m1ⁿ | m,n≥0 } 是正则语言吗?

L2 = { 0^m1ⁿ | m>=2,n≥4 } 是正则语言吗?

L3 = { 0ⁿ1ⁿ | n≥0 } 是正则语言吗?

泵引理的应用实例1

《北京理工大学 BELING INSTITUTE OF TECHNOLOGY

L3 = { 0ⁿ1ⁿ | n≥0 } 非正则

∵ 假定L3是正则语言,那么一定 存在一个P,对任意的∀ w ∈L3(|w|≤p)满足泵引 理。

```
令w=0^{p_1p}=xyz, \forall x,y,z(|y|>0,|xy|\leq p,w=xyz) 因为|xy|\leq p,所以y只能取k个0(1\leq k\leq p)即:y=0^k,x=0^{p-k}令i=0, xz=0^{p-|y|}1^p \notin B
```

:: L3非正则语言

```
若∀p>0

∃w∈A(|w|≥p)

∀x,y,z(|y|>0, |xy|≤p, w=xyz)

∃i≥0,

xy<sup>i</sup>z ∉ A.

则A非正则语言
```


L5= { ww | w∈{0,1}* } 非正则

```
    ∵ ∀p>0,
    令w=0P10P1
    ∀x,y,z(|y|>0, |xy|≤p, w=xyz)
    则y=0<sup>k</sup>, x=0<sup>p-k</sup>(1≤k≤p).
    令i=0,
    xz = 0<sup>p-|y|</sup>10P1 ∉ C
    ∴ C非正则语言
```

```
若∀p>0

∃w∈A(|w|≥p)

∀x,y,z(|y|>0, |xy|≤p, w=xyz)

∃i≥0,

xy<sup>i</sup>z ∉ A.

则A非正则语言
```


泵引理的应用实例3

: D非正则语言

L6= { 1^k | k=2ⁿ, n≥0 } 非正则

《北京理工大学 BEIJING INSTITUTE OF TECHNOLOGY

```
若∀p>0
∃w∈A(|w|≥p)
∀x,y,z(|y|>0, |xy|≤p, w=xyz)
∃i≥0,
xy<sup>i</sup>z ∉ A.
则A非正则语言
```


泵引理的应用实例3

业京理工大学 BEJING INSTITUTE OF TECHNOLOGY

```
L6= { 1<sup>k</sup> | k=2<sup>n</sup>, n≥0 } 非正则
  ∴ ∀p>0,
     \Rightarroww=1<sup>k</sup>, k=2<sup>p+1</sup>,
      \forall x,y,z(|y|>0, |xy|\leq p, w=xyz)
  w=xyz = 1^{2^p}11, z=11
  |xyz| = 1^{2^p} + 2 > = p
  y=1^{t}(1 \le t \le p), x=1^{2^{p-t}}, z=11
     今i=2,
   2^{p+1} < |xy^2z| = k + |y| < 2^{p+1} + t
       \leq 2^{p+1} + p < 2^{p+2}
           即 xy²z ∉ D
```

```
若∀p>0
∃w∈A(|w|≥p)
∀x,y,z(|y|>0, |xy|≤p, w=xyz)
∃i≥0,
xy<sup>i</sup>z ∉ A.
则A非正则语言
```

: D非正则语言

泵引理的应用实例4

迎北京理工大学 BELING INSTITUTE OF TECHNOLOGY

L7 = { 0^m1ⁿ | m≥n } 是正则语言吗?

∵ 假定L7是正则语言, 那么一定 存在一个P, 对任意的∀ w ∈L7(|w|≤p)满足泵引 理。

```
令w=0^{p+1}1^p=xyz, |w|=2P+1>P \forall x,y,z(|y|>0, |xy|\leq p, w=xyz) 因为|xy|\leq p, 所以y只能取k个0(1\leq k\leq p) 即: y=0^k, x=0^{p-k} 令i=0, xz=0^{p+1-|y|}1^p \notin L7
```

:: L7非正则语言

泵引理的应用实例4

L9 = { 0ⁱ1^j | i≥j } 是正则语言吗?

应用泵引理来证明非正则语言,一般采用反证法,需要一些创造性思维,证明的过程需要巧妙设计

L8 = { a³bncn-3 | n>=3 } 是正则语言吗?

:假定L8是正则语言,那么一定存在一个P,

对任意的∀ w ∈L7(|w|≤p)满足泵引理。

 \Rightarrow w= $a^3b^Pc^{P-3} = xyz$, |w|=2P>=P

 $\forall x,y,z(|y|>0, |xy|\leq p, w=xyz)$

y只能是下面三种情况:

1: $y=a^m$: $\diamondsuit i=2$, $xy^2w = a^{3+m}b^Nc^{N-3}$, $\notin L8$

2: $y=b^m$: $\diamondsuit i=2$, $xy^2w = a^3b^{N+m}c^{N-3}$, \notin L8

3: $y=a^rb^s$:⇒i=2, $xy^2w = a^3a^rb^sb^Nc^{N-3}$, ∉ L8

: L8非正则语言

L3 = { 0ⁿ1ⁿ | 0<=n<=100 } 是正则的?

有限的语言都是正则语言,不需要泵引理证明

泵引理是必要条件,只能证明某个语言不是正则语言不满足 =>不是正则 无限的语言,正则 => 满足泵引理

满足泵引理,不一定是正则的

与正则语言等价的定理:

Myhill-Nerode Theorem

下面的语言L不是正则的,但每个串都可以应用泵引理 $L = \{ca^nb^n \mid n>=1\} \ U \ \{c^kw \mid k\neq 1, w\in \{a,b\}^*\}$

A = {caⁿbⁿ | n>=1} 不是正则的; B = {ckw | k≠1,w ∈ {a,b}*} 是正则的; A中的任何串,都可以应用泵引理,因为w=(ε)(c)(aⁱbⁱ)

重复字符c生成的新串,最终都落入B中。

- 1.1 下图给出了两台DFA M_1 和 M_2 的状态图。 回答下述关于这两台机器的问题。
 - a. 它们的起始状态是什么?
 - b. 它们的接受状态集是什么?
 - c. 对输入aabb,它们经过的状态序列是什么?
 - d. 它们接受字符串aabb吗?
 - e.它们接受字符串。吗?
- 1.6 画出识别下述语言的DFA状态图。字母表为{0,1}
 - d. { w | w的长度不小于3, 并且第3个符号为0};
- 1.7. 给出下述语言的NFA,并且符合规定的状态数。 字母表为{0,1},语言: 0*1*0*0,3个状态。

本章作业

- 1.16(b) 将如右图的非确定有限自动机 转换成等价的确定有限自动机.
- 1.21(a) 将如右图的有限自动机转换成 等价的正则表达式.

- 1.22 在某些程序设计语言中, 注释出现在两个分隔符之间, 如/#和#/. 设C是所有有效注释串形成的语言. C中的成员必须以/#开始, #/结束, 并且在开始和结束之间没有#/. 为简便起见, 所有注释都由符号a和b写成; 因此C的字母表 Σ={a, b, /, #}.
 - a. 给出识别C的DFA.
 - b. 给出产生C的正则表达式.
- 1.29 使用泵引理证明下述语言不是正则的。
 - b. $A = \{ www \mid w \in \{a,b\}^* \}$

附录

在计算理论中,自动机主要被用来模拟和分析计算问题的可解性和复杂性。例如,有限自动机 (finite automata) 被用来描述和理解正则语言,图灵机 (Turing machine) 则被用来模拟任意的算法过程。

在编译器设计中,自动机被用于实现词法分析和语法分析,识别和解析编程语言中的语法结构。例如,有限自动机被用于实现词法分析器,将源代码分割为一系列的词素;推导自动机 (pushdown automata) 则被用于实现语法分析器,检查词素序列是否满足语法规则。

在人工智能和解析学中,自动机被用于实现状态机,描述和模拟复杂系统的行为。例如,在游戏编程中,状态机被用于描述和管理游戏角色的各种状态和行为。

在正则表达式中,自动机被用于实现模式匹配,识别和提取文本中满足特定模式的部分。例如,有限自动机被用于实现正则表达式的匹配引擎,检查文本是否满足正则表达式描述的模式。

字符串匹配问题

输入: 两个字符串T(ext),P(attern), (|T|=n, |P|=m)

输出: 所有P在T中出现的起点位置

例: T=abaababababababababaa, P=ababbababaa

输出13

直接法: 以每个位置为起点对比一遍P. 时间?

O((n-m+1)m). 能否利用已经看到的信息?

动态规划: 子结构[1:i], 决策量?

决策量设为T[1:i]的能成为P前缀的最大后缀(长度)

这就是字符串匹配的自动机算法

字符串匹配的自动机算法

动态规划: 子结构[1:i], 决策量?

决策量设为T[1:i]的能成为P前缀的最大后缀(长度)

这就是字符串匹配的自动机算法

令 $P_i = p_1 p_2 ... p_i$, $1 \le j \le m$, $P_0 = ε$ //代表状态0~m

转移函数: $\delta(j, a) = \max \{k \mid P_k \text{ is a suffix of } P_A \}$

是递推关系

definition of prefix function

```
少北京理工大学
BEIJING INSTITUTE OF TECHNOLOGY
```

```
\Sigma, \Sigma^*, prefix, suffix P = p_1 p_2 ... p_m \in \Sigma^* a pattern, P_j = p_1 p_2 ... p_j, 1 \le j \le m, P_0 = \varepsilon The transition function for P_i, 0 \le j \le m, a \in \Sigma, \delta(j,a) = \max\{ k \mid P_k \text{ is a suffix of } P_j a \} // \ge 0 The prefix function for P_i, 1 \le j \le m, \pi(j) = \max\{ k \mid k < j, P_k \text{ is a suffix of } P_j \} // \ge 0
```

example of prefix function

$$\Sigma = \{a,b,c\}, P = ababaca$$

 $\pi(j) = \max\{ k \mid k < j, P_k \text{ is a suffix of } P_j \},$
 $\pi(1) = ? P_1 = a,$
real suffixes of P_1 : $\varepsilon = P_0$,
 $\pi(5) = ? P_5 = ababa,$
real suffixes of P_5 : $\varepsilon = P_0$, $a = P_1$, ba, $aba = P_3$, baba

i	1	2	3	4	5	6	7
P[i]	a	b	a	b	a	c	a
π[i]	0	0	1	2	3	0	1

i		4	5	6	7	8	9	10	•••		
T[i]	•••	a	b	a	b	a	a	a	•••		
P ₅		a	b	a	b	a	С	a			$\pi(5)=3$
P ₃				a	b	a	b	a	С		$\pi(3)=1$
P ₁						a	b	a	b	• • •	$\pi(1)=0$
$\overline{P_0}$						ε	a	b	a		

computation of prefix function


```
Let P be a pattern with length m \pi(q) = \max\{k \mid k < q, P_k \text{ is a suffix of } P_q\}, ComputePF(P, \Sigma, m) 1. \pi[1]=0, k=0 2. For q=2:m // O(m) 3. while k>0 and P[k+1] \neq P[q], k=\pi[k] //totally O(m) 4. If P[k+1] == P[q], k=k+1 //totally O(m) 5. \pi[q]=k time complexity O(m) ? //aggregate analysis
```

KMP matcher


```
Let \pi be the transition function for a pattern P, T[1:n] = t_1t_2...t_n be a text KMPMatch(T, P, n, m) //m is the length of P 1. q = 0 2. For i = 1:n // O(n) 3. while q > 0 and P[q+1] \neq T[i], q = \pi[q] //totally O(n) 4. If P[q+1] = T[i], q = q+1 //totally O(n) 5. If q = m, Print(i-m); q = \pi[q] // print all place that P occur time complexity O(n) ? //aggregate analysis
```


i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and P[q+1] \neq T[i], q= π [q]
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0														
pattern	a	b	C	d	a	b	d								
q	1														

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and P[q+1] \neq T[i], q= π [q]
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0	1													
pattern	a	b	C	d	a	b	d								
q		2													

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and P[q+1] \neq T[i], q= π [q]
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
$\overline{\mathbf{q}}$	0	1	2												
pattern	a	b	c	d	a	b	d								
q			3												

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0	1	2	3											
pattern	a	b	c	d	a	b	d								
q				0											
pattern				a	b	C	d	a	b	d					
q															

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q															
pattern															
q				0											
pattern				a	b	C	d	a	b	d					
q				1											

e

example of KMP

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and P[q+1] \neq T[i], q= π [q]
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1										
pattern				a	b	C	d	a	b	d					
q					2										

•

example of KMP

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2									
pattern				a	b	c	d	a	b	d					
q						3									

e

example of KMP

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2	3								
pattern				a	b	c	d	a	b	d					
q							4								

e

example of KMP

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2	3	4							
pattern				a	b	c	d	a	b	d					
q								5							

•

example of KMP

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2	3	4	5	6					
pattern				a	b	c	d	a	b	d					
q										2					
								a	b	C	d	a	b	d	

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
\mathbf{q}															
pattern															
q										2					
pattern								a	b	c	d	a	b	d	
q										3					

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and P[q+1] \neq T[i], q= π [q]
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3				
pattern								a	b	c	d	a	b	d	
q											4				
pattern															
q															

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3	4			
pattern								a	b	c	d	a	b	d	
q												5			
pattern															
q															

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3	4	5		
pattern								a	b	c	d	a	b	d	
q													6		
pattern															
q															

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3	4	5	6	
pattern								a	b	c	d	a	b	d	
q														7	
q														0	
pattern															a

e

example of KMP

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

$$1. q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q															0
pattern															a
q															0