

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 07 – Mapas de Karnaugh

Mapa de Karnaugh

- É uma representação gráfica (visual) da tabela verdade
- É usado para simplificar expressões ou circuitos lógicos

Nomenclatura do Mapa de Karnaugh

$A=0, B=0 \Rightarrow \overline{A}$	\overline{B}
$A=0, B=1 \Rightarrow \overline{A}$.	\boldsymbol{B}
$A=1, B=0 \Rightarrow A$	$\overline{\mathbf{B}}$

 $A=1, B=1 \Rightarrow A.B$

Α	В	S
0	0	1
0	1	0
1	0	1
1	1	0

Mapa de Karnaugh para 2 variáveis

Cada quadrante do Mapa de Karnaugh corresponde a uma linha da Tabela Verdade

Mapa de Karnaugh para 2 variáveis

O "endereço" de cada quadrante só muda em 1 bit em relação ao seu vizinho

$$S = \overline{A} \cdot \overline{B} + A \cdot \overline{B}$$

$$S = \overline{B} \cdot (\overline{A} + A)$$

$$S = \overline{B} \cdot 1$$

$$S = \overline{B}$$

Os dois termos da expressão diferem apenas pela variável A

Isso indica que a expressão é independe de A

No mapa, os termos adjacentes podem ser agrupados para simplificar a expressão (igual à Álgebra, mas de forma visual)

O termo agrupado elimina uma variável → S= B

(**B** é o "endereço" do par de "1s", ou seja, a intersecção das variáveis que não "mudam")

Exemplo

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

1)

А	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

Exemplo

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

2)

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	1

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

2)

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	1

S=\overline{A}.\overline{B}+\overline{A}.\overline{B}+\overline{A}.\overline{B}+\overline{A}.\overline{B}}

Simplificação da Expressão por \(\text{Algebra de Boole}\)

$$S = \overline{A} \cdot (\overline{B} + B) + A \cdot (\overline{B} + B)$$

$$S = \overline{A} \cdot 1 + A \cdot 1$$

$$S = \overline{A} + A$$

$$S = 1$$

Exemplo

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

3)	А	В	S
	0	0	0
	0	1	1
	1	0	1
	1	1	0

Dada a Tabela Verdade, determine a expressão lógica a partir da TV e faça a simplificação por meio do Mapa de Karnaugh

Mapa de Karnaugh para 3 variáveis

Nomenclatura do Mapa de Karnaugh

	А	В	C	S
$A=0, B=0, C=0 \Rightarrow \overline{A}.\overline{B}.\overline{C}$	0	0	0	S ₀
$A=0, B=0, C=1 \Rightarrow \overline{A}.\overline{B}.C$	0	0	1	S_1
$A=0, B=1, C=0 \Rightarrow \overline{A}.B.\overline{C}$	0	1	0	S ₂
$A=0, B=1, C=1 \Rightarrow \overline{A}.B.C$	0	1	1	S_3
$A=1, B=0, C=0 \Rightarrow A.\overline{B}.\overline{C}$	1	0	0	S ₄
$A=1, B=0, C=1 \Rightarrow A.\overline{B}.C$	1	0	1	S_5
$A=1, B=1, C=0 \Rightarrow A.B.\overline{C}$	1	1	0	S ₆
$A=1, B=1, C=1 \Rightarrow A.B.C$	1	1	1	S ₇

Mapa de Karnaugh para 3 variáveis

				-			
TV	para 3	3 vari	áveis			Má	apa de Karnaugh para 3 variáve
٨	D		C				

						IVI	apa de r	<u> </u>	n para s	variave	315
Α	В	С	S				$\overline{A}.\overline{B}.\overline{C}$	\overline{A} . \overline{B} . C	$\overline{A}.B.C$	\overline{A} . B . \overline{C}	-
0	0	0	S_0				Ī	3	1	В	
0	0	1	S_1			\overline{A}	S ₀	S ₁	S_3	S_2	
0	1	0	S ₂	\geq —						_	
0	1	1	S_3			\boldsymbol{A}	S_4	S_5	S_7	S_6	
1	0	0	S ₄				\overline{C}	(\overline{C}	
1	0	1	S ₅				$A.\overline{B}.\overline{C}$	$A.\overline{B}.C$	A.B.C	$A.B.\overline{C}$	
1	1	0	S ₆								
1	1	1	S ₇								

Mapa de Karnaugh para 3 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

$$\overline{A}.\overline{B}.\overline{C}$$
 $\overline{A}.\overline{B}.C$ $\overline{A}.B.C$ $\overline{A}.B.\overline{C}$

 $\overline{B} \qquad B$ $\overline{A} \qquad \overline{1} \qquad \overline{1} \qquad \overline{1} \qquad \overline{1}$ $A \qquad 0 \qquad 0 \qquad 0 \qquad 0$ $\overline{C} \qquad C \qquad \overline{C}$ $A \cdot \overline{B} \cdot \overline{C} \quad A \cdot \overline{B} \cdot C \quad A \cdot B \cdot \overline{C}$

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

$$\overline{A}.\overline{B}.\overline{C}$$
 $\overline{A}.\overline{B}.C$ $\overline{A}.B.C$ $\overline{A}.B.\overline{C}$

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

 $\overline{A}.\overline{B}.\overline{C}$ $\overline{A}.\overline{B}.C$ $\overline{A}.B.C$ $\overline{A}.B.\overline{C}$

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 3 variáveis

 \overline{A} , \overline{B} , \overline{C} \overline{A} , \overline{B} , \overline{C} \overline{A} , \overline{B} , \overline{C}

Pares

Exemplos de Agrupamentos

$$S = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Exemplo

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

1)

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

Obs.: As duas simplificações resultam em expressões diferentes, mas o comportamento do circuito é o mesmo (pode-se verificar isso através da Tabela Verdade de cada uma das expressões)

Expressões com o mesmo comportamento

$$S = \overline{A}C + A\overline{C} + \overline{B}C$$

$$S = \overline{A} C + A \overline{C} + A \overline{B}$$

Exemplo

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

2)

Α	В	С	S
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

Exemplo

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

3)

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Determine a expressão da Tabela Verdade e simplifique o circuito por meio do Mapa de Karnaugh

Expressão Simplificada a partir do MK:

$$S = \overline{A} \overline{C} + \overline{A} B + B \overline{C} + A \overline{B} C$$

Mapa de Karnaugh para 4 variáveis

	Α	В	С	D	S
$\overline{A}\overline{B}\overline{C}\overline{D}$	0	0	0	0	S ₀
$\overline{A}\overline{B}\overline{C}D$	0	0	0	1	S_1
$\overline{A}\overline{B}C\overline{D}$	0	0	1	0	S ₂
$\overline{A}\overline{B}CD$	0	0	1	1	S ₃
$\overline{A} B \overline{C} \overline{D}$	0	1	0	0	S ₄
$\overline{A}B\overline{C}D$	0	1	0	1	S ₅
$\overline{A}BC\overline{D}$	0	1	1	0	S ₆
$\overline{A}BCD$	0	1	1	1	S ₇
$A \overline{B} \overline{C} \overline{D}$	1	0	0	0	S ₈
$A \overline{B} \overline{C} D$	1	0	0	1	S ₉
$A \overline{B} C \overline{D}$	1	0	1	0	S ₁₀
$A \overline{B} C D$	1	0	1	1	S ₁₁
$AB\overline{C}\overline{D}$	1	1	0	0	S ₁₂
$AB\overline{C}D$	1	1	0	1	S ₁₃
$ABC\overline{D}$	1	1	1	0	S ₁₄
ABCD	1	1	1	1	S ₁₅

Α	В	С	D	S
0	0	0	0	S ₀
0	0	0	1	S ₁
0	0	1	0	S ₂
0	0	1	1	S ₃
0	1	0	0	S ₄
0	1	0	1	S ₅
0	1	1	0	S ₆
0	1	1	1	S ₇
1	0	0	0	S ₈
1	0	0	1	S ₉
1	0	1	0	S ₁₀
1	0	1	1	S ₄₄
1	1	0	0	S ₁₂
1	1	0	1	S ₁₃
1	1	1	0	3 ₁₄
1	1	1	1	S ₁₅

Mapa de Karnaugh para 4 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Hexa

	$\overline{m{C}}$		C				
_	1	1	1	1	\overline{B}		
\overline{A}	1	1	1	1	D	•	$H_1 = 1$
	1	1	1	1	- B		
A	1	1	1	1	\overline{B}	-	
	$\overline{m{D}}$	D		$\overline{m{D}}$			

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis $\overline{m{B}}$ 0 0 0 0 \boldsymbol{B} 0 0 A 0 $\overline{m{B}}$ 0 $\overline{m{D}}$

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis $\overline{m{B}}$ 0 0 0 0 \boldsymbol{B} 0 0 0 0 \boldsymbol{A} $\overline{m{B}}$

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis

Octeto

	($\boldsymbol{\mathcal{G}}$		
_	0	0	0	0	B	
\overline{A}	1	1	1	1	D	$O_1 = B$
	1	1	1	1	- B	
A	0	0	0	0	\overline{B}	•
	$\overline{m{D}}$	L)	$\overline{m{D}}$		

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis $\overline{m{B}}$ 0 0 $Q_1 = \overline{B} \, \overline{D}$ 0 0 0 0 \boldsymbol{B} 0 0 0 0 \boldsymbol{A} 0 $\overline{m{B}}$ 0

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis $\overline{m{B}}$ 0 0 $Q_1 = \overline{B}D$ 0 0 $Q_2 = B \overline{D}$ 0 0 A $\overline{m{B}}$ 0 0 $\overline{m{D}}$ $\overline{m{D}}$ $S = \overline{B}D + B\overline{D}$

Quadra

Exemplos de Agrupamentos

Mapa de Karnaugh para 4 variáveis $\overline{m{B}}$ $P_1 = \overline{B} \overline{C} D$ 0 0 $P_2 = \overline{A} B \overline{D}$ 0 0 0 0 A 0 $\overline{m{B}}$ 0 0 $\overline{m{D}}$ $\overline{m{D}}$ $S = \overline{A} B \overline{D} + \overline{B} \overline{C} D$

Pares

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

	Α	В	С	D	S
	0	0	0	0	0
	0	0	0	1	1
	0	0	1	0	1
1)	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	1
	0	1	1	0	0
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	1
	1	0	1	0	0
	1	0	1	1	1
	1	1	0	0	1
	1	1	0	1	1
	1	1	1	0	0
	1	1	1	1	1

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

Expressão da TV

	0	0	0	0	1
	0	0	0	1	0
`	0	0	1	0	1
)	0	0	1	1	0
	0	1	0	0	1
	0	1	0	1	1
	0	1	1	0	1
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	0
	1	1	0	0	1
	1	1	0	1	0

В

D

0

1

S

Exemplo

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

Α	В	С	D	S
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Determine a expressão da TV e simplifique o circuito por meio de Mapa de Karnaugh

Expressão da TV

$$S = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, C \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + \overline{A} \, B \, C \, \overline{D} + \overline$$

Minimize a expressão usando Mapa de Karnaugh

 $S = \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} D + \overline{A} \overline{C} D +$

Minimize as expressões usando Mapa de Karnaugh

 $S = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, \overline{C} \,$

Mapa de Karnaugh para 5 variáveis

TV para 5 variáveis

Α	В	С	D	E	S
0	0	0	0	0	S ₀
0	0	0	0	1	S ₁
0	0	0	1	0	S ₂
0	0	0	1	1	S ₃
0	0	1	0	0	S ₄
0	0	1	0	1	S ₅
1	1	0	1	1	S ₂₇
1	1	1	0	0	S ₂₈
1	1	1	0	1	S ₂₉
1	1	1	1	0	S ₃₀
1	1	1	1	1	S ₃₁

25=32 Combinações

Mapa de Karnaugh para 5 variáveis

			_			\overline{A}	A				_		
	Ī	Ō	1	D					Ī	Ō]	D	
_	\mathcal{S}_{o}	$\mathcal{S}_{\scriptscriptstyle 1}$	$\mathcal{S}_{\scriptscriptstyle 3}$	\mathcal{S}_{2}	<u>C</u>			<u></u>	\mathcal{S}_{16}	\mathcal{S}_{17}	\mathcal{S}_{19}	\mathcal{S}_{18}	(
В	$\mathcal{S}_{_{4}}$	\mathcal{S}_{5}	\mathcal{S}_7	\mathcal{S}_{6}			_	В	\mathcal{S}_{20}	\mathcal{S}_{21}	\mathcal{S}_{23}	\mathcal{S}_{22}	
D	\mathcal{S}_{12}	\mathcal{S}_{13}	\mathcal{S}_{15}	\mathcal{S}_{14}			_	В	\mathcal{S}_{28}	\mathcal{S}_{29}	\mathcal{S}_{31}	S_{30}	
B	\mathcal{S}_{s}	\mathcal{S}_{g}	\mathcal{S}_{11}	\mathcal{S}_{10}	<u>C</u>			D	\mathcal{S}_{24}	\mathcal{S}_{25}	\mathcal{S}_{27}	\mathcal{S}_{26}	(
	$\overline{m{E}}$	E	E	$\overline{m{E}}$					$\overline{m{E}}$	E	Ē	$\overline{m{E}}$	

Exemplos de Agrupamentos

Mapa de Karnaugh para 5 variáveis

Exemplos de Agrupamentos

Mapa de Karnaugh para 5 variáveis

1) Determine a expressão da TV e simplifique o circuito usando Mapa de Karnaugh

Α	В	С	D	E	S	
0	0	0	0	0	1	$\overline{A}\overline{B}\overline{C}\overline{D}\overline{E}$
0	0	0	0	1	0	
0	0	0	1	0	0	
0	0	0	1	1	1	$\overline{A}\overline{B}\overline{C}DE$
0	0	1	0	0	1	$\overline{A}\overline{B}C\overline{D}\overline{E}$
0	0	1	0	1	1	$\overline{A}\overline{B}C\overline{D}E$
0	0	1	1	0	0	
0	0	1	1	1	1	$\overline{A}\overline{B}CDE$
0	1	0	0	0	1	$\overline{A}B\overline{C}\overline{D}\overline{E}$
0	1	0	0	1	1	$\overline{A}B\overline{C}\overline{D}E$
0	1	0	1	0	1	$\overline{A}B\overline{C}D\overline{E}$
0	1	0	1	1	0	
0	1	1	0	0	0	
0	1	1	0	1	1	$\overline{A}BC\overline{D}E$
0	1	1	1	0	1	$\overline{A}BCD\overline{E}$
0	1	1	1	1	0	

Α	В	С	D	E	S	
1	0	0	0	0	0	
1	0	0	0	1	0	
1	0	0	1	0	0	
1	0	0	1	1	0	
1	0	1	0	0	0	
1	0	1	0	1	1	$A \overline{B} C \overline{D} E$
1	0	1	1	0	1	$A \overline{B} C D \overline{E}$
1	0	1	1	1	0	
1	1	0	0	0	0	
1	1	0	0	1	0	
1	1	0	1	0	0	
1	1	0	1	1	0	
1	1	1	0	0	1	$ABC\overline{D}\overline{E}$
1	1	1	0	1	1	$ABC\overline{D}E$
1	1	1	1	0	1	$ABCD\overline{E}$
1	1	1	1	1	1	ABCDE

1) Determine a expressão da TV e simplifique o circuito usando Mapa de Karnaugh

 $S = \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} \, \overline{E} + \overline{A} \, \overline{B$

 $S = C \overline{D} E + A B C + A C D \overline{E} + \overline{A} B D \overline{E} + \overline{A} B \overline{C} \overline{D} + \overline{A} \overline{B} \overline{D} \overline{E} + \overline{A} \overline{B} D E$

Mapa de Karnaugh com condições irrelevantes

- Condição Irrelevante: para determinadas combinações de entradas, a saída pode assumir o valor 0 ou 1 indiferentemente
- Para se utilizar a condição irrelevante no mapa de Karnaugh, deve-se adotar o valor que possibilite o maior agrupamento

Α	В	С	S
0	0	0	X
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Se escolhermos X=0, obtemos um agrupamento menor Expressão Simplificada a partir do MK $S = \overline{A}B + \overline{A}C$

Mapa de Karnaugh com condições irrelevantes

- Condição Irrelevante: para determinadas combinações de entradas, a saída pode assumir o valor 0 ou 1 indiferentemente
- Para se utilizar a condição irrelevante no mapa de Karnaugh, deve-se adotar o valor que possibilite o maior agrupamento

Α	В	С	S
0	0	0	X
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Se escolhermos X=1, obtemos um agrupamento maior

Expressão Simplificada a partir do MK: $S = \overline{A}$

Mapa de Karnaugh com condições irrelevantes

Simplifique as expressões das TVs usando Mapa de Karnaugh

1)	Α	В	С	S
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	X
	1	0	0	X
	1	0	1	1
	1	1	0	1
	1	1	1	1

Mapa de Karnaugh com condições irrelevantes

Simplifique as expressões das TVs usando Mapa de Karnaugh 1)

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	X
1	0	0	X
1	0	1	1
1	1	0	1
1	1	1	1

Se escolhermos X₁=0 e X₂=1, obtemos uma expressão mais simplificada

Expressão Simplificada a partir do MK: S = A

2)

Α	В	С	D	S
0	0	0	0	X
0	0	0	1	0
0	0	1	0	1
0	0	1	1	X
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	X
1	0	1	1	0
1	1	0	0	0
1	1	0	1	X
1	1	1	0	0
1	1	1	1	X

Mapa de Karnaugh com condições irrelevantes

Simplifique as expressões das TVs usando Mapa de Karnaugh

Mapa de Karnaugh com condições irrelevantes

Simplifique as expressões das TVs usando Mapa de Karnaugh

2)	Α	В	С	D	S
-,	0	0	0	0	X
	0	0	0	1	0
	0	0	1	0	1
	0	0	1	1	X
	0	1	0	0	1
	0	1	0	1	0
	0	1	1	0	1
	0	1	1	1	1
	1	0	0	0	0
	1	0	0	1	1
	1	0	1	0	X
	1	0	1	1	0
	1	1	0	0	0
	1	1	0	1	X
	1	1	1	0	0
	1	1	1	1	X

$$S = \overline{A} \overline{D} + \overline{A} C + A \overline{C} D$$

Próxima aula

Circuitos combinacionais