English Consonants & Vowels

- Phonetics: a study on speech

articulatory phonetics (from mouth) \rightarrow how to produce speech acoustic phonetics (through air) \rightarrow how to transmit speech auditory phonetics (to ear) \rightarrow how to hear speech

Articulation

- Vocal tract:

- 5 speech organs = constrictors = articulators

Phonation Process in Larynx

- larynx = voicebox: voiced → can feel vibration

ex. v, z, l, m, a, i voiceless \rightarrow can't feel vibration ex. f, s, k, p, h

Oro-nasal Process in Velum

- nasal: when velum lowered ex. m, n, ng

Articulatory Process

- lips / tongue tip / tongue body

Control of Constrictors(Articulators)

- Each constrictor needs to be more specific in geometry constriction location(CL) / constriction degree(CD)
- Constriction location: Lips → bilabial / labiodental

Tongue body → palatal / velar

Tongue tip \rightarrow dental / alveolar / retroflex / palate-alveolar

- Constriction degree: stops > fricatives > approximants (/r, l, w, j/) > vowels

How to Produce English Consonants and Vowels

- constrictors(lips, tongue tip, tongue body) / CD / CL / velum / larynx
 - ex) /p/: lips / bilabial / stop / velum raised / larynx open
 - /b/: lips / bilabial / stop / velum raised / larynx closed
 - /d/: tongue tip / alveolar / stop / velum raised / larynx closed
 - /z/: tongue tip / alveolar / fricative / velum raised / larynx closed
 - /n/: tongue tip / alveolar / stop / velum lowered / larynx closed
 - * 모든 모음은 constrictor 로서 tongue body 만 사용(constrictor location 정의 X)
- Phonemes: individual sounds that form words
 - a combination of speech organs' actions

Acoustics

- Praat: duration > select(click and drag on waveform or spectrogram) \rightarrow
 - read a value (sec.) on the top \rightarrow zoom in (if not visible)

intensity \rightarrow show intensity \rightarrow click on green \rightarrow read a value (dB) on the right

pitch > show pitch → pitch setting > pitch range > 65-200Hz male / 145-276Hz female

 \rightarrow click on blue \rightarrow read a value (Hz) on the right

formant(모음 구별 수치) > show formants → place the cursor on one of the trajectories

→ read a value (Hz) on the left

- the number of occurrences of a repeating event per second (frequency, Hz) repeating event = vibration of vocal folds / repeating > sine wave = pure tone
 - repeating event violation of vocal lolas, repeating > sine wave pure tone
- * sine wave: frequency + magnitude(amplitude) (x 축 시간 / y 축 value, voltage)
- 모든 신호는 단순한 sine wave 들의 합으로 표현된다. (synthesis)

complex tone 이 반복하는 주기는 Fundamental Frequency 와 동일

spectrum: x 축 frequency / y 축 magnitude(amplitude)

spectrogram: spectrum 을 시간으로 visualize 한 것 (x 축 시간 / y 축 frequency)

sine wave(time-value graph)→spectrum: spectral analysis

- pure tone→spectral analysis: frequency 가 같은 sine wave 한 개

complex tone→spectral analysis: 일정한 간격의 sine wave 여러 개 (간격=pitch)

(Praat: Spectrum > View Spectrum Slice)

- source: 성대에서 나는 소리 (measured by EGG)

human voice source consists of harmonics

a complex tone = sum of pure tones at integer multiples of the lowest pure tone

the lowest pure tone = fundamental frequency(F0) = rate of vibration of the larynx

= the number of opening-closing cycles of the larynx per second

amplitude of pure tones gradually decreases

- filter: vocal tract 에 의해서 달라지는 소리
 - filter 의 spectrum → jigjagging with peaks and valleys (amplitude 의 패턴이 사라짐)

peaks/mountains: frequencies VT likes (formants)

valleys: frequencies VT does not like

- Synthesize Source: New > Sound > Create Sound as Pure Tone

> Tone frequency 100~1000Hz / Amplitude 1.0~0.55Pa (10 개의 pure tone) Combine > Combine to Stereo (10 개의 channel 을 가진 하나의 stereo) Convert > Convert to Mono (10 개의 pure tone 이 합쳐진 complex tone) 반복 주기: frequency 100Hz / Amplitude 1.0Pa 와 일치음: frequency 100Hz / Amplitude 1.0Pa 와 일치Spectrum > View Spectral Slice: gradually decrease / 10 개 / 100Hz

- F1: 모음의 height / F2: 모음의 frontness / backness F1 and F2 are enough to disambiguate vowels.

(Praat: New > Sound > Create Sound as VowelEditor)

Coding

- 코딩: 자동화 > 똑같은 과정을 쉽게 반복할 수 있기 위해서
- 모든 language 는 공통적으로 단어와 문법으로 이루어짐 단어: 정보를 담는 그릇
- Computer Language 의 단어: 변수(variable)

Computer Language 의 문법: 1. variable assigning

2. 'if' conditioning

3. 'for' loop

함수: 어떤 입력을 넣어야 자신이 원하는 출력이 나오는지 ex. Praat 입력: 마우스로 구간 설정 / Praat 출력: 소리

- Anaconda Prompt > 'Jupyter Notebook' 입력 원하는 디렉토리 > New > Python 3
- cell 생성: cell 선택 후 b(아래쪽에 생성) / a(위에 생성) / x(삭제)
- Run: Shift + Enter
- =: 오른쪽에 있는 정보를 왼쪽에 있는 variable 로 assign 한다 ex. a=1 > 정보: 1 / variable: a

Print: 어떤 변수를 넣으면 그 값을 출력함

- Comment 쓰기: cell 에 #을 쓴 후 내용 적기

Code 를 Markdown 으로 바꾼 후 내용 적기

- numpy: 라이브러리 중 하나 (수학적으로 계산 가능)

import numpy > numpy.A.D.f (numpy 라이브러리 안의 A 안의 D 안의 f 함수) from numpy import A > A.D.f (numpy 라이브러리에서 A 를 불러옴) from numpy import A.D > A.D.f (numpy 라이브러리에서 A 안의 D를 불러옴)

- float64: float 의 정밀함의 정도 (64 비트) / 메모리를 많이 차지함

행렬과 벡터

- 이미지, 소리, 텍스트 > 벡터 모든 데이터는 벡터로 나타낼 수 있음
- 흑백 이미지 > 2 차원 / 컬러 이미지 > 3 차원 / 영상 > 4 차원

Sound

- Sinusoidal: cos 이나 sin 과 같은 곡선 Phasor: sinusoidal 의 function 을 만드는 것
- π (무리수)

 $0 \sim \pi \sim 2*\pi$ (radians - sin/cos 의 입력값 / Θ)

 $0^{\circ} \sim 180^{\circ} \sim 360^{\circ} \text{ (degree)}$

- Phasor:

cos 함수

sin 함수

- 오일러 공식: $f(\theta) = e^{\theta i} = \cos(\theta) + \sin(\theta)i$ e = 2.71... (무리수) / i = imaginary (허수, $\sqrt{-1}$) 복소수 = a + bi (모든 수 표현 가능) > $f(\theta)$

$$\Theta = 0 > f(0) = e^0 = 1$$

$$\Theta = \frac{\pi}{2} > f(\frac{\pi}{2}) = \cos(\frac{\pi}{2}) + \sin(\frac{\pi}{2})i = i$$

$$\Theta = \pi > f(\pi) = \cos(\pi) + \sin(\pi)i = -1$$

 $\Theta = \frac{3\pi}{2} > f(\frac{3\pi}{2}) = \cos(\frac{3\pi}{2}) + \sin(\frac{3\pi}{2})I = -i$

복소평면 (complex plane): a 실수 / b 허수

Projection: x 축(a)에서 볼 때 > 허수(sin 그래프) y 축(b)에서 볼 때 > 실수(cos 그래프)

- \sin 과 \cos 음의 같음 (\sin 그래프와 \cos 그래프는 $\frac{\pi}{2}$ 의 차이) 인간의 귀는 phasor shift 는 구별하지 못함 / frequency 의 차이만 구별

Linear Algebra

행렬의 곱 계산법: 5*(-1) + 3*0 + 0*3 + 1*2 = -3

$$5*0 + 3*-1 + 0*-5 + 1*3 = 6$$

$$5*2 + 3*3 + 0*7 + 1*4 = 23$$

- Matrices: $\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$ (m 행 n 열 / m by n 행렬)
- Vector: a sequence of numbers a_1

 $\stackrel{a_1}{:}$ (m by 1 행렬 / column vector) / [a_1 ... a_n] (1 by n 행렬) a_m

- Vector Spaces: 여러 벡터들이 만들어내는 공간 / linear combinations stay in the space Linear Combinations: c*v + d*w (c, d: scalars / v, w: vectors)

 \mathbb{R}^n space consists of all vectors with n components (차원의 모든 공간 / 일부분 X)

- Column Space: A = $\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ > (2, 1) (-1, 3)을 linear combination 하면 모든 공간을 채움 column vector 가 column space 를 채움

col1 & 2 not on a line > independent

: Whole Space(vector 가 속해있는 space) = Column Space = 2 차원

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -0.5 \end{bmatrix} > (2, 1) (-1, -0.5)$$

col1 & 2 on a line > dependent

dim(whole space) = n rows / dim(column space) = n of independent columns

$$(2*Col1 = Col2)$$

$$(Col1 + Col2 = Col3)$$

(independent 한 column 2개)

$$A^T = \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{4}{1}$$
 (transpose) > Whole Space = 2 차원 / Column Space = 2 차원

(Column Space 는 Whole Space 보다 차원이 클 수 없음)

Column space 는 Column vector 보다 차원이 높을 수 없음

- Four spaces in a matrix: two whole spaces ${\it R}^{\it m}$ / ${\it R}^{\it n}$

$$A= \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
 Whole Space(column) = 3 차원 / Whole Space(row) = 2 차원 3 6

Column Space = 1 차원 / Row Space = 1 차원

Independent 한 column/row 의 개수: rank (column 과 row 의 rank 는 같음)

Null Space: Whole Space 에서 사용하지 않는 차원

Column space 와 orthogonal 한 space (기하학적 해석)

$$A_x = \begin{bmatrix} 1 & 2 \\ 2 & 3 & * \\ 4 & 6 \end{bmatrix} \times \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \times \text{null space } \begin{bmatrix} 0 & 2 & -2 & 1 \\ 0 & -1 & 1 & -\frac{1}{2} \end{bmatrix} \cdots (수학적 해석)$$

- Linear Transformation: A(행렬) * x = b(벡터) (기계 * 입력 = 출력)

입력 벡터와 출력 벡터의 차원은 다를 수 있음

Av = b (A transforms v to b)

- Detransformation: Inverse matrix

$$A^{-1} * b = x$$

dependent column > not invertible

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
 > a*d - b*c = 0 이 되는 경우 not invertible

- Eigenvector: transformation 후 원점과 일직선 상에 있는 vector (기하학적 해석)

Given matrix의 Eigenvector는 transformation 후의 결과값이 전의 벡터와 원점과 같은 선상에 있음

among all v, some v is parallel to Av > That v is eigenvector

Av = Vv (transformed 된 후의 vector 가 상수를 곱한 vector 와 같다)

Eigenvalue: 비율(V)

- 상관 관계(correlation)

두 개의 변수가 비례하는 관계

r=0 일 때 상관관계가 가장 낮음

일직선에 가까울수록 상관관계 높음

$$cos\Theta = r$$

$$\Theta = 90 > r = 0 / \Theta = 0 > r = 1$$

- inner product

맹점: sin, cos phasor 는 같은 frequency 의 wave 를 shift 할 경우 값이 달라짐

- > complex phasor $(e^{\Theta i})$ 를 사용하여 inner product (complex 값)
- > complex number plotting 불가능하므로 절댓값 (a+bi 의 절댓값 = (a,b)의 길이)