

Analog Integrated Circuit Design and Applications Spring 2024

Nanometer Design Studies

Yung-Hui Chung

MSIC Lab

DECE, NTUST

Outline

- Transistor Design Considerations
- Deep-Submicron Effects
- Transconductance Scaling
- Design for Nanometer Transistors
- Opamp Design Examples
- Summary

- •In chapter 17, we have studied some second order effects.
- •In this lecture, we try to get something more!!

Nanometer Design Concept

- Conventional Design Concept
 - Using long-channel current equation to calculate the required bias and small-signal parameters
 - But, this is invalid for advanced CMOS process
- New Design Concept
 - Since current equation is not valid, only use it as a conceptual observation and direction
 - Using models in PDK to yield several curves for different conditions
 - For example, gm/Id design concept

Transistor Design Considerations

 V_{GS} is ranged from 300mV to 800 mV, $V_{TH} \sim 300$ mV

- A 5μm/40nm device,
- Black line: Actual current model
- Gray line: Square-law current model

Transistor Design Considerations

 V_{GS} - V_{TH} is ranged from 50mV to 350 mV, V_{TH} ~200mV

Triode or saturation region?

Deep-Submicron Effects

Velocity Saturation

Channel length: $1\mu m => 40nm (1/25)$, but VDD: 5V => 1V (1/5)

 Velocity Saturation: In a MOSFET, as V_{DS} and hence the electronic field along the source-drain path increase, the drift velocity (v) does not rise proportionally

$$I = Q_d \cdot v = WC_{ox} \left(V_{GS} - V_{TH}\right) \underline{v_{sat}}$$
 Q_d is the charge density (per unit length)
$$g_m = \frac{\partial I}{\partial V_{GS}} \bigg|_{V_{DS \; const}} = WC_{ox} v_{sat}$$

Deep-Submicron Effects

Mobility Degradation with Vertical Field

 The mobility of the charge carriers in the channel also declines as the gate-source voltage and the vertical field increase

Example 11.1 shows the declined g_m for large V_{GS} - V_{TH}

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})$$

Transconductance Scaling

$$g_m = \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}) = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = \frac{2I_D}{V_{GS} - V_{TH}}$$

Example 11.3

(I) With a constant $V_{GS}-V_{TH}$, doubling the width also doubles the transconductance and the drain current (Example 11.2). Since g_m/I_D is constant, to obtain this point on the g_m - I_D plane, we pass a straight line through the origin and (I_{DI}, g_{mI}) , continuing to reach $(2I_{DI}, 2g_{mI})$ [Fig. 11.9(b)]. Thus, all (I_D, g_m) combinations resulting from the scaling of W fall on this line if the overdrive is fixed.

Example 11.3

(II) If we begin with a greater overdrive, $(V_{GS}-V_{TH})_2$, (I_D, g_m) point is located elsewhere, at (I_{D2}, g_{m2}) , on the characteristic [Fig. 11.9(c)]. We again draw a straight line through the origin and (I_{D2}, g_{m2}) and continue to $(2I_{D2}, 2g_{m2})$. Thus, each such line in the g_m-I_D plane represents the possible (I_D, g_m) combinations that can be obtained by scaling W for a given overdrive

Example 11.3

(III) We draw a line through the origin and the point (I_{Dx}, g_{mx}) [Fig. 11.9(d)]. The intersection of the line and the g_m plot yields a "reference" point specifying the proper overdrive voltage, $(V_{GS}-V_{TH})_{0}$, and an acceptable (I_D, g_m) combination, (I_{D0}, g_{m0}) . If the width is scaled up by a factor of g_{mx}/g_{m0} (= I_{Dx}/I_{D0}), and the overdrive remains equal to $(V_{GS}-V_{TH})_{0}$, then the desired transconductance and current are obtained

Transistor Design

A typical transistor design problem specifies one of three ($I_{D'}$ g_m and $V_{DS,min}$) and seeks the other two then W/L

- Design for Given I_D and V_{DS,min}
- Design for Given I_D and g_m
- Design for Given g_m and V_{DS,min}
- Design for a Given g_m

$$g_{m} = \mu_{n} C_{ox} \left(\frac{W}{L}\right) V_{DS,min}$$

$$= \sqrt{2\mu_{n} C_{ox} \left(\frac{W}{L}\right) I_{D}}$$

$$= \frac{2I_{D}}{V_{DS,min}}$$

Table 11.1 Three scenarios encountered in transistor design.

- A	Case I	Case II	Case III
Given	ID, VDS, min	g _m , I _D	gm, VDS, min
To Be Determined	$\frac{W}{I}$, g_m	$\frac{W}{I}$, $V_{DS, min}$	$\frac{w}{l}$, I_D
Design Revision	g _m insufficient;	V _{DS, min} too large;	I_D too large;
	Raise I_D and $\frac{W}{L}$	Raise $\frac{W}{L}$	Raise $\frac{W}{L}$; Lower $V_{GS} - V_{TH}$

 I_D = 0.5 mA and $V_{DS,min}$ = 200 mV

Step 1 Select a "reference" transistor, with a width W_{REF} and a length equal to the minimum allowable value, L_{min} (e.g., $L_{min} = 40$ nm). Let us choose $W_{REF} = 5 \mu \text{m}$ as an example.

Step 2 Using the actual device models and a circuit simulator, plot the I_D - V_{DS} characteristics of the reference transistor for different values of $V_{GS} - V_{TH}$. In typical analog circuits, $V_{GS} - V_{TH}$ ranges from about 50 mV to about 600 mV. We can therefore construct the characteristics with the overdrive incrementing in steps of 50 mV.⁴ Figure 11.10 shows the results for $W_{REF}/L_{min} = 5 \mu \text{m}/40 \text{ nm}$. (Here, $V_{GS} - V_{TH}$ increments from 50 mV to 350 mV for clarity.)

在先進製程中,作圖是一件重要且必要的事!!

Step 3 Bearing in mind that our example specifies $I_D = 0.5$ mA and $V_{DS,min} = 200$ mV, we draw a vertical line at $V_{DS} = 200$ mV (Fig. 11.10) and find its intersection with the plots. Which plot should we select? If the device obeyed the square law, we would choose the plot for $V_{GS} - V_{TH} = V_{DS,min} = 200$ mV. However, the short-channel device remains in saturation even for $V_{GS} - V_{TH} = 350$ mV at $V_{DS} = 200$ mV. The situation is therefore more complex, but let us proceed with $V_{GS} - V_{TH} = 200$ mV for now.

Step 4 The foregoing procedure has yielded, for the reference transistor, one operating point that satisfies the V_{DS} requirement. The drain current, $I_{D,REF}$, however, may not be close to the necessary value, 0.5 mA in our example. What shall we do here? We must now *scale* the width of the transistor and hence its drain current. Since in Fig. 11.10, $I_{D,REF} \approx 100~\mu\text{A}$, we choose a transistor width of $(500~\mu\text{A}/100~\mu\text{A}) \times W_{REF} = 5W_{REF} = 25~\mu\text{m}$. 使用較小的參考電流產生偏壓!!

An Example: Current \uparrow , $W \uparrow \rightarrow g_m \uparrow$

Can we choose a higher overdrive voltage in Fig. 11.10? Suppose we select $V_{GS} - V_{TH} = 250 \text{ mV}$, obtaining $I_D = 200 \mu\text{A}$ for the reference transistor and a transconductance of about 2.3 mS from Fig. 11.11. If scaled up to 12.5 μ m so as to carry $500 \mu\text{A}$, the transistor exhibits a transconductance of $2.5 \times 2.3 \text{ mS} = 5.75 \text{ mS}$, a value *less* than that observed in the previous case (7.5 mS). This occurs because $g_m = 2I_D/(V_{GS} - V_{TH})$ in saturation. To obtain a high transconductance, therefore, we typically choose $V_{GS} - V_{TH} \approx V_{DS,min}$ even though it translates to a wider transistor.

Things cannot be so simple. For analog design, there is no free lunch, generally!!

Step 1 Using simulations, we plot g_m as a function of I_D for a reference transistor, e.g., with $W_{REF}/L_{min} = 5 \,\mu\text{m}/40 \,\text{nm}$ (Fig. 11.14).

Step 2 We identify the point (I_{D1}, g_{m1}) on the g_m - I_D plane and draw a line through the origin and this point, obtaining the intersection at $(I_{D,REF}, g_{m,REF}) = (240 \,\mu\text{A}, 2.4 \,\text{mS})$ and a corresponding overdrive.

Step 3 We multiply W_{REF} by $g_{m1}/g_{m,REF} = 4.2$ so as to travel on the straight line to point (I_{D1}, g_{m1}) while maintaining the same overdrive (Example 11.3). This completes the design of the transistor.

2. Design for Given I_D and g_m

3. Design for Given g_m and $V_{DS,min}$

 $(V_{GS} - V_{TH})_1 = V_{DS,min}$

Step 1 We use simulations to plot the g_m as a function of $V_{GS} - V_{TH}$ for the reference transistor (Fig. 11.17). Now, we select $(V_{GS} - V_{TH})_1 = V_{DS,min}$ and obtain the corresponding transconductance, $g_{m,REF}$. In this case, it is helpful to plot I_D on the same plane and find $I_{D,REF}$ at $(V_{GS} - V_{TH})_1$.

Step 2 To reach the required transconductance, g_{m1} , we scale the transistor width up by a factor of $g_{m1}/g_{m,REF}$. Note that I_D scales by the same factor.

4. Design for Given g_m

Q: How do we select the transistor's drain current, overdrive voltage, and dimensions?

Two scenarios:

- (1) We select a certain W/L and raise I_D until we obtain the desired transconductance, g_{m1} .
- (2) We select a reasonable value for I_D (perhaps according to a power budget) and increase W/L to obtain g_{m1} .
- (1) In this case, the required I_D , and hence the power consumption, may be excessive. More important, the overdrive voltage may be unacceptably large, leaving little headroom for voltage swings.
- (2) In this case, however, we may not be able to reach g_{mI} ; increasing W/L (and hence decreasing V_{GS}) eventually drives the device into the subthreshold region, where gm cannot exceed $I_D/(\xi V_T)$.

- Three Opamp design in the textbook
 - Opamp design example 1: a telescopic opamp
 - Opamp design example 2: a two-stage opamp
 - Opamp design example 3: a high-speed amplifier

Target specifications:

- Differential Output Voltage Swing = 1 Vpp
- Power Consumption = 2 mW
- Voltage Gain = 500
- Supply Voltage = 1 V

Design Concept:

- 1. Current arrangement
- 2. Output Swing => $V_{DS,min}$
- 3. ICMR => Vicm
- 4. Small-signal: DC => AC

Three observations:

- (1) $g_m r_o$ for L=40nm MOSTs, •pMOST: 5~7; nMOST: 7~10
- (2) Longer L, lower speed
- (3) $g_{m1} = 2I_{D1}/(V_{GS1} V_{TH1}) = 19mS$; it means r_o is about 530Ω

For this telescopic opamp,

 $A = Gm*Rout = 1000 = > Rout \sim 50k\Omega$

Rout= $(g_{m5.6}r_{o5.6})r_{o7.8} // (g_{m3.4}r_{o3.4})r_{o1.2}$

 $=> (g_{m5.6}r_{o5.6})r_{o7.8} \sim 100k\Omega$

 $=> g_{m5,6}r_{o5,6} \sim 200$, hard to achieve!!

-50

-60 -0.4

-0.3

-0.2

V_{DS} (V)

-0.1

Why do we design like above?

- ⇒Based on two reasons:
 - (1) Higher speed
 - (2) Ro balance (Rop~Ron)

- The slope of each single-ended output is approximately equal to 15 in the vicinity of *Vin* = 0, yielding a differential gain of 30, far below our target.
- Diff. gain is low to only 6.4 for max. output
- Fail to meet the target spec. But, we keep looking

Bias Circuits

(n-wells tied to sources)

- CMFB sensing: Resistor, Triode MOST, Source Follower
- Simple source follower cannot maintain a large output swing (shown in the right figure)
- Vocm cannot be a constant over the fullscale output range

CMFB Circuit

V_{in} (mV)

100

-20

-10

20

CMFB Loop: Concept

$$V_1 = V_{CM} - V_{GS21,22}$$

$$V_2 = V_{CM} + |V_{GS23,24}|$$

$$\alpha V_1 + \beta V_2 = (\alpha + \beta) V_{CM} - \alpha V_{GS21,22} + \beta |V_{GS23,24}|$$

where $R_N = R_1 = R_2$ and $R_P = R_3 = R_4$.

Error Amplifier (Err. Amp.)

Current Control (M_T)

Q: Explain why the OTA employs PMOS (rather than NMOS) input devices.

Transient response revealing CM loop instability. Why?

Design Summary

We have attempted to design a telescopic-cascode op amp for a voltage gain of 500 and a differential output swing of 1 Vpp. Neither specification could be met with a 1-V supply, but we have established the steps that one must complete in order to arrive at the final design. Specifically, we have dealt with the following general principles:

- 1. Allocation of V_{DS} and I_D to transistors according to required swings and power dissipation, respectively
- 2. Characterization and scaling of MOSFETs for allowable V_{DS} and desired current level (page 24)
- 3. Quick estimate of the achievable voltage gain
- 4. Use of dc sweep to study bias conditions and nonlinearity
- 5. Design of bias circuitry using current mirrors and low-voltage cascodes
- 6. Common-mode feedback design and compensation
- 7. Use of closed-loop transient analysis to study CM and differential stability

Two-Stage Opamp Design Flow (Textbook, pp. 487~495)

At the beginning, try to get your MOSFET plots, simulated using Hspice/Spectre models

Total bias branch current: $100 \mu A$

Branch current: $<1.9 \text{ mA/4} = 450 \mu\text{A}$

 $I=50 \mu A => (W/L)n = 10 \mu m/80 nm$

First stage output, $V_{xy,pp} = 50 \text{mV}$

 $V_{DS,N}$ = 150 mV and $V_{DS,P}$ = 200 mV

First stage gain = 50

Second stage gain = 10

$$A_{V2} = g_{m10} * (r_{o10} / / r_{o12}) > 10$$

V_{out1,2}: 0.5V output range

- Common-mode of Vx and Vy are not maintained
- The first stage needs a CMFB loop

Adding I_B to shift CM level

Closed-Loop Behavior

An **open-loop pole** around $[2\pi(100\text{k}||50\text{k})C_{in}]^{-1} \approx 95 \text{ MHz}$ is formed at the input of the op amp

High-Speed Amplifier Design Flow (Textbook, pp. 495~507)