[Info 525]Logique

CLAVIER Paul September 16, 2013

Contents

1	1.1 Logique classique (< 1850)	3 3
2	De Morgan	3
3	Boole	3
4	Frege	3
5	Gentzen	3
6	Russel	4
7	7.1 Sémantique	4 4 4
8	8.1 Introduction	4 5 5
9	9.1 Sémantique	5 6 6

1 Définition

- Logique vient du grec Logos, qui veut dire à la fois raison et langage.
- "Étude du discours rationnel."
- "Étude de la raison dans le langage."
- "Science des conditions de vérités."

1.1 Logique classique (< 1850)

- Analyse du langage.
- Division de la grammaire: sujet attribut.
- Prédominance de la logique Aristotélicienne.
- Plusieurs périodes.

1.2 Logique moderne, symbolique axiomatique

- Mathématisation, algébrisation de la logique.
- Les relations perdent leur caractère grammatical.
- Un système d'axiomes choisis arbitrairement et soumis à des règles de déduction immédiates.
- Forme de pensée et une approche du logos différente.
- Système de réécriture , manipulation des signes sans sens.

Pas de définition unique: fonction de l'époque, du logicien, de l'objectif.

2 De Morgan

- Définit l'expression de l'induction mathématique.
- Auteur des lois de De Morgan

3 Boole

4 Frege

- Fondateur de la logique moderne et de son symbolisme.
- Publie des ouvrages

5 Gentzen

• Définit une déduction naturelle.

6 Russel

7 Méthodes

7.1 Sémantique

On va s'intéresser au sens d'une formule (table de vérité)

7.2 Syntaxique

Réécriture

$$\frac{\Gamma \vdash A, \Delta\Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta}$$

7.3 Types de logiques

- Logique des propositions (ordre 0).
- Logique des prédicats.
- Logiques déviantes.

8 Logique

8.1 Introduction

Le calcul des propositions ou des énoncés:

- des plus élémentaires (ordre 0)
- des plus fondamentaux
- des plus simples: propositions non analysée

Calcul:

- étudie les énoncés qui sont soit vrais, soit faux
- Vériconditionnel: comment les énoncés complexes deviennent vrais ou faux selon que énoncés qui le compose sont vais ou faux.

Définition : Un énoncé ou proposition est de qui est vrai ou faux

Notion simplificatrice de la vérité

On s'intéresse à la structure des propositions complexes

- indépendamment de leur contenu de signification
- $\bullet\,$ indépendamment de la langue naturelle

La logique est un langage

- Vocabulaire
- Syntaxe
- Sémantique

8.1.1 Vocabulaire

- 1. Ensemble infini dénombrable de proposition
 - désignés par une lettre minuscule
- 2. Ensemble d'opérateurs
 - négation: ¬
 - conjonction: \wedge
 - disjonction: \vee
 - implication: \rightarrow
 - équivalence: \leftrightarrow
- 3. Ensemble de séparateurs: $(,),[,],\{,\}$

8.1.2 Syntaxe

- Le vocabulaire peut donner lieu à de multiples assemblages de symboles
- Les assemblages qui font partie du langage sont appelés des formules
- Les formules sont obtenues à partir de règles de formation

Formules:

- 1. Toute proposition est une formule: formule atomique
- 2. Récurrence: Si A et B sont deux formules Alors $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$, ... sont des formules
- 3. Clôture: rien d'autre n'est une formule

Remarques:

- 1. Les parenthèses permettent de déterminer l'ordre d'application des règles
- 2. Langage objet et méta-langage
 - langage objet: objet de la théorie (langage des formules)
 - introduction de nouveaux symboles: A, B, ⇔, ⊨, ... qui permettent de parler des formules (langage de l'observateur)
- 3. L'ensemble des formules est infini dénombrable
- 4. Cet ensemble est récursif

9 Validité d'une formule

9.1 Sémantique

- La sémantique attribue une signification aux formules du langage
- Un proposition est soit vraie soit fausse

Définition: Le domaine sémantique est $\{V, F\}$

Définition : Interpréter une formule consiste à lui attribuer la valeur V ou F

Définition: On appelle assignation sur n propositions un ensemble d'interprétations de ces propositions. Elle définit un monde possible

Définition: L'interprétation est une fonction appelée fonction de vérité $\{assignations\} \longrightarrow \{V, F\}$. A partir de n propositions, il est possible de définir 2^{2^n}

Opérateur propositionnel:

- Les fonctions de vérité d'une ou de deux propositions constituent les définitions sémantiques des opérateurs propositionnels
- Ces opérateurs suffisent pour exprimer les fonctions de vérité de plus de 2 propositions

Définition : Une assignation qui rend vrai une formule est appelé un modèle pour cette formule

9.2 Validité et Consistance

Définition : Une formule est sémantiquement consistance, ou consistance, si elle admet au moins un modèle.

Définition: Une formule est dite valide si toutes ses assignations sont des modèles. Une formule valide est aussi appelée tautologie.

Théorème: Si une formule est valide (resp. inconsistante), la formule obtenue en substituant chaque occurrence d'une lettre de proposition par une formule quelconque est également valide (resp. inconsistante).

9.3 Remarque: Métalangage

- \bullet L'expression: "A est une formule valide" appartiens au métalangage, on la note: \vDash
- Le symbole \(\mathbb{E} \) ne peut pas apparaître dans une formule du langage objet

Remarque : \rightarrow est un opérateur logique comme les autres.

LOL