

Fysiska institutionen, UDIF

KF6 Bilaga

Fig. B1. Gamma-ray attenuation coefficients for sodium iodide versus gamma-ray energy: does not include Rayleigh scattering. (*Reprinted from "Harshaw Scintillation Phophors," The Harshaw Chemical Company, Cleveland,* 1962; *data from G. R. White, Natl. Bur. Strands (U.S.) Circ.* 583, 1957.)

Fig. B2. The "small detector" extreme in gamma-ray spectroscopy. The processes of photoelectric absorption and single Compton scattering give rise to the low-energy spectrum at the left. At higher energies, the pair production process adds a double escape peak shown in the spectrum at the right.

Fig. B3. The case of intermediate detector size in gamma-ray spectroscopy. In addition to the continuum from single Compton scattering and the full-energy peak, the spectrum at the left shows the influence of multiple Compton events followed by photon escape. The full-energy peak also contains some histories that began with Compton scattering. At the right, the single escape peak corresponds to initial pair production interactions in which only one annihilation photon leaves the detector without further interaction. A double escape peak as illustrated in fig B2 will also be present due to those pair production events in which both annihilation photons escape.

Fig. B4. Peak-to-total ratio (or the photofraction) for various solid cylinders of NaI(Tl) for a point gamma-ray source $10~\rm cm$ from the scintillator surface. (Courtesy of Harshaw Chemical Company.)

Fig. B5. Influence of surrounding materials on detector response. In addition to the expected spectrum (shown as a dashed line), the representative histories shown at the top, lead to the indicated corresponding features in the response function.

 $Fig.\ B6.\ Variation\ of\ scattered\ gamma-ray\ energy\ with\ scattering\ angle.$

Table 10. K x-rays: energies, relative intensities, and fluorescence yields

The most prominent K x-ray components are designated

Classical designation (Slegbahn notation)	Transition energy (see Table 9 for binding energles)
Kai	BE(K)-BE(L ₃)
K _{a2}	$BE(K)-BE(L_2)$
K ₀₁	$BE(K)-BE(M_3)$
K _{Ø2}	$BE(K)-BE(N_{2+3})$
K _{p3}	$BE(K)-BE(M_2)$
K _{β2} K _{β4}	$BE(K)-BE(N_{4+5})$
\\K _{p5}	$BE(K)-BE(M_{4+5})$
\	BE(K)-BE(O+)

Columns 2-5 of Table 10 give the energies (in keV) and relative intensities of the $K_{\alpha 2}$, $K_{\alpha i}$, $K_{\beta i}$, and $K_{\beta 2}$ lines. Energies are given in boldface type, followed by

intensities normalized to 100 for the $K_{\alpha 1}$ line. The energies of the $K_{\alpha 2}$ and $K_{\alpha 1}$ lines are taken from the tables of Bearden. (1) They have been rounded so that the uncertainty in the last digit is ≤ 5 units. The energies of the complex K_{gi} and K_{gz} lines are approximate weighted averages of the components, which can be separated only by instruments of high resolving power. For $\mathbb{Z} \ge 93$ the energies given are binding energy differences from Table 9.

The relative intensities are adjusted experimental values (and interpolations) from the tables of Salem, et al. (2) K_{a2}/K_{a1} values appear to be uncertain by <1% at Z = 20, increasing to ≈2% for high Z; K_{g1}/K_{g1} values appear to be uncertain by about 5% (slightly more for Z<20); K_{g3}/K_{g1} values are apparently accurate to ≈5%. For Z≥62 the K_{g1} and K_{g3} components of K_{g1} are given separately. The weak K_{g5} component (not included) is about 1.5% of the total K_{g} intensity for Pb (Z=82) and 6% for U (Z=92). The weak, forbidden component K_{c3} (K-L₁) is likewise not given; its intensity varies from 0.01% of K_{c1} for Nd (Z=60) to 0.2% for U (Z=92). The last column of Table 10 gives the K-fluorescence yield, ω_{K} . These data were calculated by Bambynek, et al. (3) from a semi-empirical formula. Uncertainties in ω_{K} vary from ≈25% for the lightest elements to ≈5% at Z=25 and ≈1-2% for the heaviest elements. The relative intensities are adjusted experimental

z	El	K _{ė2}	K _{a1}	K _{β1} ′	Κ _{β2} ΄	ω _K	z	EI	K _{a2}	Kαι	κ _{β1}	Κ _{β2} '	$\omega_{\mathbf{K}}$
3	. Li	0.05					33	As	10.5080	10.5437	11.72	11.86	0.567
4	Be	0.10	8						51.4	(100)	23.0		
5	В	0.18					34	Se	11,1814	11.2224	12.49	12.65	0.596
6	C	0.27					!		51.5	(100)	23.8		
7	N	0.39					35	Br	11.8776	11.9242	13.29	13.47	0.622
. 8	0	0.521	5						51.6	(100)	24.0		
9	F	0.67	7				36	Kr	12.598	12.649	14.11	14.32	0.646
10	Ne .	0.848	96						51.7	(100)	24.2	1,9	
11	Na	1.041	10				37	RЬ	13.3358	13.3953	14.96	15.19	0.669
12		1,253		1,302			1		51.9	(100)	24.3	2.5	
		(150		1.9			38	Sr	14.0979	14.1660	15.83	16.06	0.691
13	ΔI	1,48627	1.48670	1.5574		0.0357	Ι.		52.0	(100)	24.4	3.0	
	, w	(15		2.8			39	Υ	14.8829	14.9584	16.73	17.02	0.711
14	CI.	1,73938	1,73998	1.8359		0.0470	1		52.1	(100)	24.8	3.4	
1-7	.,	(15)		4.0		0.0	40	Zr	15.6909	15.7761	17.66	17.97	0.730
15	D	2,0127	2.0137	2.139		0.0604	1		52.3	(100)	25.2	3.7	
10	•	(15)		5.9		0,0001	41	Nb	16.5210	16.6151	18.62	18,95	0.748
16		2.30664	2.30784	2.464		0.0761	1 "		52.4	(100)	25.6	3.9	
10	ð	2.30004	£.50704	8.8		0.0701	42	Мо	17.3743	17.47934	19.60	19.97	0.764
44		2,6208	2.6224	2,816		0.0942	"*	1110	52.5	(100)	25.9	4.1	••
17	Ci					0.0942	43	Tc	18.251	18,387	20.61	21.01	0.779
		(15)	0)	12,0 3,191		0.115	1 70		52.6	(100)	26.3	4.3	V
18	Ar	2,95563	2.95770			0.115	1 44	Ru	19.1504	19.2792	21.65	22.07	0.793
		(154		15.8			44	NU	52.7		26.7	4.5	0.783
19	ĸ	3.3111	3.3138	3.590		0.138	4-	D.L		(100)			0.807
		(150		17.9			45	Rh	20.0737	20.2161	22.72	23.17	0.007
20	Ca	3.68809	3.69168	4.013		0.163	۱		52.8	(100)	27.0	4.6	0.010
		50.2	(100)	19.2			46	Pd	21.0201	21.1771	23.81	24.30	0.819
21	Sc	4.0861	4,0906	4.45		0.190	ــ ا		52.9	(100)	27.3	4.8	
		50.3	(100)	19.7			47	Ag	21.9903	22,16292	24,93	25.46	0.830
22	Ti .	4.50486	4.51084	4.93		0.219	l		53.0	{100}	27.3	5.0	
		50.3	(100)	20.1			48	Cd	22.9841	23.1736	26.09	26.64	0.840
23	Va .	4.94464	4.95220	5,43		0.250	Ι.		53.2	(100)	27.3	5.3	
		50.3	(100)	20.2			49	lη	24.0020	24.2097	27.27	27.86	0.850
24	Cr	5,40551	5.41472	5.95		0.282			53.3	(100)	27.8	5.4	_
		50.4	(100)	20.3			50	Sn	25.0440	25,2713	28.48	29.11	0.859
25	Mn	5.88765	5.89876	6.49		0.314	1		53.4	(100)	28.2	5.5	
		60.5	(100)	20.3			51	Sb	26,1108	26,3591	29.7	30.4	0.867
26	Fe	6,39084	6,40384	7.06		0.347			53.6	(100)	28.5	5.6	
	**	50.6	(100)	20.3			52	Te	27.2017	27.4723	31.0	31.7	0.875
27	Co	6.91530	6.93032	7,65		0.381			53.7	(100)	28.8	5.8	
	••	50.7	(100)	20.3			53	1	28,3172	28.6120	32.3	33.0	0.882
28	Ni	7,46089	7,47815	8.26		0.414	l		53.8	(100)	29.0	6.1	
	.,,,	50.8	(100)	20.4			54	Xe .	29,458	29.779	33,6	34.4	0.889
29	Cit	8,02783	8.04778	8.91		0.445	1		53.9	(100)	29.3	6.4	
	Ju	50.9	(100)	20.6			55	Cs	30.6251	30.9728	35.0	35.8	0.895
30	70	8.61578	8.63686	9.57	9.66	0.479	"	-	54.1	(100)	29.5	6.7	
	_"	51.0	(100)	20.8	4.4-	*****	56	Ba	31,8171	32.1936	36,4	37.3	0.901
31	Ga.	9,2248	9.2577	10.26	10.37	0.510	"		54.3	(100)	29.6	7.0	
٧.	O#	51.1	(100)	21.5	10.07	0.010	57	1.5	33.0341	33.4418	37.8	38.7	0.906
32	•	9,8553	9.8864	10.98	11.10	0.540	1 "		54.4	(100)	29.7	7.3	• • • • •
	L18	2,000,3	(100)	22.2	11.10	U.04U	I		J-1,4	(100)	25.7		

Tabell T2

Table 10. K x-rays: energies, relative intensities, and fluorescence yields (continued)

Z	티	K _{m2}	K _{e1}	· κ _{β1} '	K _{g2}	ω _K	Z	赶 …	Kas	K _{d1}	K _{p1}	K _{β2} ′	· ω,
58	Co .	34.2789	34.7197	39.2	40.2	0.911	70	Υъ	51,3540	52.3889	59,3	61.0	
		54.6	(100)	29.8	7.6		1		56.7	(100)	32.7	8.7	0.950
9	Pr	35.5502	36.0263	40.7	41.8	0.915	71	Lu	52.96 50	54.0698	61.2	63.0	0.953
		54.8	(100)	29.9	· 7.9				57.0	(100)	33.1	8.6	0.85
30	Nd	36.8474	37.3610	42.2	43.3	0.920	72	Hf	54.611	55,790	63.2	65.0	0.95
		54.9	(100)	30.0	8,3		1		57.2	(100)	33.5	8.5	0.95
1	Pm	38,1712	38.7247	43.8	44.9	0.924	73	Ta	56.277	57.532	65.2	67.0	0.95
		55.1	(100)	30.1	8.4		i i		57.4	(100)	33.7	8.5	0.95
2	Sm	39.5224	40.1181	45.4	46.6	0.928	74	W	57.9817	59.3182	67.2	69.1	0.95
		55.2	(100)	30.2	8.6		1		57.6	(100)	33.8	8.6	0.95
:3	Eu	40.9019	41.5422	47.0	48,3	0.931	75	Re	59.7179	61,140	69,2	71.2	0.95
		55.4	(100)	30,5	8.7		1		57.8	(100)	34.1	8.6	0.95
4	Gd	42,3089	42.9962	48.7	50,0	0.934	76	Os	61.487	63.000	71.3	73.4	0.96
		55.6	(100)	30.8	8.9		1		58.0	(100)	34.4	8.7	0.80
5	Tb	43,7441	44.4816	50,3	51.7	0.937	77	ir	63.287	64.896	73.5	75.6	0.96
		55.8	(100)	31.0	8.9		i		58.1	(100)	34.4	8.9	0.50
6	Dy	45,2078	45,9984	52.1	53,5	0.940	78	Pt	65.122	66,832	75.7	77.9	0.96
		56.0	(100)	31.2	8.9		i		58.3	(100)	34.4	9.1	0.50
	Ho	46.6997	47.5467	53.8	55.3	0.943	79	Αu	66.989	68,804	77.9	80.2	0.96
		56.2	(100)	31.5	8.8		1		58.6	(100)	34,5	9.4	0.50
8	Er	48.2211	49.1277	55.6	57.2	0.945	1 80	Hg	68.895	70.819	80.2	82.5	0.96
		56.4	(100)	31.9	8.8		1 **	•••	58.8	(100)	34.5	9.6	0.95
9	Tm	49,7726	50.7416	57.5	59.1	0.948	1 €81	Tł	70.832	72,872	82.5	84.9	0.00
		56.6	(100)	32.3	8.7		11"	••	59.0	(100)	34.6	9.9	0.96

Z	El	K _{er2}	K _{ai}	K _{∦3}	K _{p1}	K _{p2} ′	ωκ
82	Рь	72,804	74,969	84,450	84.936	87.3	0.969
		59,3	(100)	11,6	22.2	10.2	
83	8i	74.815	77.108	86,834	87.343	89.8	0.969
		59.5	(100)	11.6	22.1	10.5	
84	Po	76.862	79.290	89,25	89.80	92.4	0.970
		59.7	(100)	11.6	22.1	10.8	
85	.At	78.95	81.52	91.72	92.30	95.0	0.971
		60.0	(100)	11.6	22.1	11.0	
86	Rn	81.07	83.78	94.24	94,87	97.6	0.972
		60,2	(100)	11.6	22.2	11.3	
87	Fr	83.23	86.10	96.81	97.A7	100.3	0.972
		60,5	(100)	11.6	22.1	11.5	
88	Ra	85.43	88.47	99,43	100.13	103.0	0.973
		60.8	(100)	11.6	22.1	11.7	
89	Ac	87.67	90.884	102,10	102.85	105.8	0.974
		61.1	(100)	11.6	22.1	11.9	
90	Th	89.953	93,350	104,831	105,61	108.6	0.975
		61.3	(100)	11,6	22.1	12.0	
9.1	Pa	92,29	95,868	107.60	108,43	111.5	0.976
		61.6	(100)	11.6	22.0	12.1	
92	U	94,665	98,439	110.406	111,300	114.5	0.976
		61.9	(100)	11.6	22.0	12,3	
93	Nρ	97.08	101.07	113.31	114.24	117.5	0.977
		62.2	(100)	11.6	22.1	12.4	
94	Pu	99.55	103.76	116.27	117.26	120.6	0.977
		62.5	(100)	11.7	22.2	12,5	
95	Am	102.08	106.52	119.32	120.36	123,8	0.978
		62.8	(100)	11.7	22.2	12.7	
96	Cm	104.44	109.29	122,32	123.42	127.0	0.978
		63.2	(100)	11.8	22.3	12.8	
97	Bk	107.21	112.14	125.44	126.61	130.3	0.979
		63.7	(100)	11,8	22.3	13.0	
98	Cf	110.71	116.03	129,60	130.85	134.6	0.979
		64.2	(100)	11.9	22.4	13.2	
99	Es :	113,47	119.08	132,92	134.24	138.1	0.980
		64.5	(100)	11.9	22.4	13,4	-2000
00	Fm	116.28	122,19	136.30	137.69	141.7	0.980
		64.8	(100)	12.0	22.5	13.5	

J.A. Bearden, RMP 39 78(67)
S.I. Salem, S.L. Panossian, and R.A. Krause, ANDT 14 91(74)
W. Bambynek, B. Crasemann, R.W. Fink, H.-U. Freund, H. Mark, C.D. Swift, R.E. Price, and P.V. Rao, RMP 44 716(72)