Computational Analysis of Big Data

Week 5

Machine Learning 2

Mammals: 5

Non-mammals: 10

Could we have asked better questions?

What do we do when we have Big Data?

	Pclass1	Pclass2	Pclass3	Sexfemale	Sexmale	Embarkednan	EmbarkedC	EmbarkedQ	EmbarkedS	CabinFalse	CabinTrue	Passengerld	Age	SibSp	Parch	Fare	Survived
0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	1	22.0	1	0	7.2500	0
1	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	2	38.0	1	0	71.2833	1
2	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	3	26.0	0	0	7.9250	1
3	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	4	35.0	1	0	53.1000	1
4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	5	35.0	0	0	8.0500	0
5	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	6	NaN	0	0	8.4583	0
6	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	7	54.0	0	0	51.8625	0
7	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	8	2.0	3	1	21.0750	0
8	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	9	27.0	0	2	11.1333	1
9	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	10	14.0	1	0	30.0708	1
881	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	882	33.0	0	0	7.8958	0
882	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	883	22.0	0	0	10.5167	0
883	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	884	28.0	0	0	10.5000	0
884	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	885	25.0	0	0	7.0500	0
885	0.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	886	39.0	0	5	29.1250	0
886	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	887	27.0	0	0	13.0000	0
887	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	888	19.0	0	0	30.0000	1
888	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	889	NaN	1	2	23.4500	0
889	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	890	26.0	0	0	30.0000	1
890	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	891	32.0	0	0	7.7500	0

(Shannon)
$$Entropy = -\sum_{i} p(i) \log_2 p(i)$$

Input: Probability vector (a list of values between 0 and 1, which sums to 1)

Output: Entropy (a measure of how "spread out" the probability distribution is)

$$Entropy = -\sum_{i} p(i) \log_2 p(i)$$

Mammals: 0 Non-mammals: 8

$$p = [1, 0]$$

$$Entropy = -\sum_{i} p(i) \log_2 p(i)$$

Mammals: 0 Non-mammals: 8

$$p = [1, 0]$$

$$Entropy = -(1 \cdot \log_2(1) + 0 \cdot \log_2(0)) = 0$$

$$Entropy = -\sum_{i} p(i) \log_2 p(i)$$

Mammals: 0 Non-mammals: 8

$$p = [1, 0]$$

$$Entropy = -(1 \cdot \log_2(1) + 0 \cdot \log_2(0)) = 0$$

Mammals: 5
Non-mammals: 2

$$p = [2/7, 5/7]$$

Entropy =
$$-(2/7 \cdot \log_2(2/7) + 5/7 \cdot \log_2(5/7)) = 0.86$$

On steroids:

Ensemble Learning

Logistic regression O

Ensemble Learning

- Create and train many classification models
- Treat each model as a "voter"
- For each datapoint, classify it according to what models predicts it to be

Random Forest

model1

o 0	0.0	0.0	1.0	0.0	4.0											
		0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	1 22.0	1	0	7.2500	0
1 1	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	2 38.0	1	0	71.2833	1
2 0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	3 26.0	0	0	7.9250	1
3 1	0.1	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	4 35.0	1	0	53.1000	1
4 0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	5 35.0	0	0	8.0500	0
5 0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	6 NaN	0	0	8.4583	0
6 1	0.1	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	7 54.0	0	0	51.8625	0
7 0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	8 2.0	3	1	21.0750	0
8 0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	9 27.0	0	2	11.1333	1
9 0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	10 14.0	1	0	30.0708	1
881 0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	882 33.0	0	0	7.8958	0
882 0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	883 22.0	0	0	10.5167	0
883 0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	884 28.0	0	0	10.5000	0
884 0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	885 25.0	0	0	7.0500	0
885 0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	886 39.0	0	5	29.1250	0
886 0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	887 27.0	0	0	13.0000	0
887 1	0.1	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	888 19.0	0	0	30.0000	1
888 0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	889 NaN	1	2	23.4500	0
889 1	0.1	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	890 26.0	0	0	30.0000	1
890 0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	891 32.0	0	0	7.7500	0

Pclass1 Pclass2 Pclass3 Sexfemale Sexmale Embarkednan EmbarkedC EmbarkedQ EmbarkedS CabinFalse CabinTrue PassengerId Age SibSp Parch

Fare Survived

Random Forest

model2

0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	1 2	22.0	1	0 7.2500	0
1	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	2 3	88.0	1	0 71.2833	3 1
2	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	3 2	26.0	0	0 7.9250) 1
3	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	4 (35.0	1	0 53.1000) 1
4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	5 (35.0	0	0 8.0500	0
5	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	6 1	NaN	0	0 8.4583	0
6	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	7	64.0	0	0 51.8625	0
7	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	8	2.0	3	1 21.0750	0
8	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	9 2	7.0	0	2 11.1333	3 1
9	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	10	4.0	1	0 30.0708	3 1
881	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	882	33.0	0	0 7.8958	0
882	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	883 2	22.0	0	0 10.5167	0
883	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	884 2	28.0	0	0 10.5000	0
884	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	885	25.0	0	0 7.0500	0
885	0.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	886	9.0	0	5 29.1250	0
886	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	887	7.0	0	0 13.0000	0
887	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	888	9.0	0	0 30.0000) 1
888	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	889	NaN	1	2 23.4500	0
889	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	890 2	26.0	0	0 30.0000	1
890	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	891	32.0	0	0 7.7500	0

Pclass1 Pclass2 Pclass3 Sexfemale Sexmale Embarkednan EmbarkedC EmbarkedQ EmbarkedS CabinFalse CabinTrue PassengerId Age SibSp Parch

Fare Survived

Fare Survived

Pclass1 Pclass2 Pclass3 Sexfemale Sexmale Embarkednan EmbarkedC EmbarkedQ EmbarkedS CabinFalse CabinTrue PassengerId Age SibSp Parch

Random Forest

model3

0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	1	22.0	1	0	7.2500	0
1	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	2	38.0	1	0	71.2833	1
2	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	3	26.0	0	0	7.9250	1
3	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	4	35.0	1	0	53.1000	1
4	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	5	35.0	0	0	8.0500	0
5	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	6	NaN	0	0	8.4583	0
6	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	7	54.0	0	0	51.8625	0
7	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	8	2.0	3	1	21.0750	0
8	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	9	27.0	0	2	11.1333	1
9	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	10	14.0	1	0	30.0708	1
881	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	882	33.0	0	0	7.8958	0
882	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	883	22.0	0	0	10.5167	0
883	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	884	28.0	0	0	10.5000	0
884	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	885	25.0	0	0	7.0500	0
885	0.0	0.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	886	39.0	0	5	29.1250	0
886	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	1.0	0.0	887	27.0	0	0	13.0000	0
887	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	888	19.0	0	0	30.0000	1
888	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	889	NaN	1	2	23.4500	0
889	1.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	1.0	890	26.0	0	0	30.0000	1
890	0.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	1.0	0.0	891	32.0	0	0	7.7500	0

Ensemble Learning

- Create and train many classification models
- Treat each model as a "voter"
- For each datapoint, classify it according to what models predicts it to be

```
model1(x) = 1

model2(x) = 1

model3(x) = 0

model4(x) = 1

model5(x) = 1

model6(x) = 1

model7(x) = 0

model8(x) = 1

...

modeln(x) = 1
```

Logistic regression

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = f(\mathbf{x})$$

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = f(\mathbf{x})$$

$$\sigma(f(\mathbf{x})) = \begin{cases} 1, & \text{if } f(\mathbf{x}) \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = f(\mathbf{x})$$

$$\sigma(f(\mathbf{x})) = \frac{1}{1 + exp(-f(x))}$$

Linear regre

ssifier

$$w_0 + x_0 w_1 + x_1 w_2 + x_2 w_3 = f(\mathbf{x})$$

$$\sigma\left(f(\mathbf{x})\right) = \frac{1}{1 + exp\left(-f(x)\right)}$$

Logistic regression classifier

Output
$$\sigma\left(f(\mathbf{x})\right) = \frac{1}{1 + exp\left(-f(x)\right)}$$
Activation function

