

ANALOG 16-/32-Channel, 4 Ω, +1.8 V to +5.5 V and DEVICES ±2.5 V Analog Multiplexers

Data Sheet

ADG726/ADG732

FEATURES

1.8 V to 5.5 V single-supply operation ±2.5 V dual-supply operation On resistance: 4Ω at 25° C (+5 V single supply/ ± 2.5 V dual

0.5 Ω on-resistance flatness at 25°C (+5 V single supply/ ±2.5 V dual supply)

Rail-to-rail operation

Transition times: 23 ns typical at 25°C Single 32-to-1 channel multiplexer

Dual/differential 16-to-1 channel multiplexer

TTL-/CMOS-compatible inputs

48-lead TOFP or 48-lead, 7 mm × 7 mm LFCSP

APPLICATIONS

Optical applications Data acquisition systems Communication systems Relay replacement Audio and video switching **Battery-powered systems Medical instrumentation Automatic test equipment (ATE)**

GENERAL DESCRIPTION

The ADG726/ADG732 are monolithic, complementary metal oxide semiconductor (CMOS) 32-channel and dual 16-channel analog multiplexers. The ADG732 switches one of 32 inputs (S1 to S32) to a common output, D, as determined by the 5-bit binary address lines A0, A1, A2, A3, and A4. The ADG726 switches one of 16 inputs as determined by the 4-bit binary address lines A0, A1, A2, and A3.

On-chip latches facilitate microprocessor interfacing. The ADG726 may also be configured for differential operation by tying CSA and CSB together. An EN input is used to enable or disable the devices. When disabled, all channels are switched off.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, and leakage currents. They operate from a single supply of +1.8 V to +5.5 V and a ±2.5 V dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few ohms and is

Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.

closely matched between switches and very flat over the full signal range. These devices can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

The ADG726/ADG732 are available in a 48-lead LFCSP or a 48lead TQFP. For functionally equivalent devices with serial interface, see the ADG725/ADG731.

PRODUCT HIGHLIGHTS

- +1.8 V to +5.5 V single- or $\pm 2.5 \text{ V}$ dual-supply operation. These devices are specified and guaranteed with $+5 \text{ V} \pm 10\%$, +3 V \pm 10% single-supply, and \pm 2.5 V \pm 10% dual-supply rails.
- An on resistance of 4 Ω .
- Guaranteed break-before-make switching action.
- 48-lead LFCSP package or 48-lead TQFP package.

TABLE OF CONTENTS

INDEE OF CONTENTO		
Features	Absolute Maximum Ratings	9
Applications	ESD Caution	9
Functional Block Diagrams	Pin Configurations and Function Description	10
General Description1	48-Lead TQFP	10
Product Highlights	48-Lead LFCSP	12
Revision History	Typical Performance Characteristics	15
Specifications	Test Circuits	17
+5 V Single Supply	Terminology	20
+3 V Single Supply5	Outline Dimensions	21
±2.5 V Dual Supply7	Ordering Guide	21
Timing Characteristics		
REVISION HISTORY		
2/2021—Rev. B to Rev. C	Changes to Table 2	5
Changed CP-48-1 to CP-48-4Throughout	Changes to Table 3	
Changes to Figure 6	Changes to Table 5	9
Changes to Figure 7	Added Table 6; Renumbered Sequentially	10
Updated Outline Dimensions	Added Table 7	11
Changes to Ordering Guide	Changes to Figure 5	11
	Changes to Figure 8 to Figure 11	13
6/2015—Rev. A to Rev. B	Changes to Figure 13 and Figure 15 to Figure 17	14
Changes to Figure 4 and Table 6	Changes to Figure 25 to Figure 28	16
Added Figure 5 and Table 7; Renumbered Sequentially 11	Changes to Figure 29	
Added Figure 6 and Table 812	Moved Terminology Section	
Changes to Figure 7, Table 9, and Table 10	Changes to Terminology Section	18
Changes to Table 11	Updated Outline Dimensions	
-	Changes to Ordering Guide	
2/2015—Rev. 0 to Rev. A		
Updated Format	7/2002—Revision 0: Initial Version	
Changes to Features Section 1		

SPECIFICATIONS

+5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 1.

		ADG726/ADG732		ADG732		
-			−40°C to	−40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range			0 V to V _{DD}		V	V 0V V 1 10 A 5: 00
On Resistance	R _{ON}	4	5	_	Ωtyp	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$, see Figure 20
		5.5	6	7	Ω max	
On Resistance Match Between Channels	$\Delta R_{ m ON}$		0.3		Ωtyp	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
			0.8	1	Ω max	
On Resistance Flatness	R _{FLAT (ON)}	0.5			Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
			1	1.2	Ω max	
LEAKAGE CURRENTS						$V_{DD} = 5.5 \text{ V}$
Source Off Leakage	Is (Off)	±0.01			nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V}, \text{ see Figure 21}$
		±0.25	±1	±2	nA max	
Drain Off Leakage	I _D (Off)	±0.05			nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V}, \text{ see Figure 24}$
ADG726		±0.5	±2.5		nA max	
ADG732		±1	±5	±10	nA max	
Channel On Leakage	I _D , I _s (On)	±0.05			nA typ	$V_D = V_S = 1 \text{ V, or } 4.5 \text{ V, see Figure } 25$
ADG726		±0.5	±2.5		nA max	
ADG732		±1	±5	±10	nA max	
DIGITAL INPUTS						
Input High Voltage	V _{INH}		2.4	2.4	V min	
Input Low Voltage	V _{INL}		0.8	0.8	V max	
Input Current						
Low or High	I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.5	±0.5	μA max	
Digital Input Capacitance	C _{IN}	5			pF typ	
DYNAMIC CHARACTERISTICS ¹						
Transition Time	t _{TRANSITION}	23			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, see Figure 27
		34	40	48	ns max	$V_{S1} = 3 \text{ V/O V}, V_{S32} = 0 \text{ V/3 V}$
Break-Before-Make Time Delay	t_D	18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, see Figure 28
			1	1	ns min	
On Time (\overline{CS} , \overline{WR})	t_{ON} (\overline{CS} , \overline{WR})	18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, see Figure 29
		25	32	38.5	ns max	
Off Time $(\overline{CS}, \overline{WR})$	t_{OFF} (\overline{CS} , \overline{WR})	17			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, see Figure 29
		23	29	33	ns max	
On Time (EN)	ton (EN)	24			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, see Figure 30
		32	40	43	ns max	
Off Time (EN)	t _{OFF} (EN)	16			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, see Figure 30
, ,		22	25	25	ns max	
Charge Injection	Q _{INJ}	5			pC typ	$V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF, see Figure 31}$
Off Isolation	I _{SO}	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22
Channel-to-Channel Crosstalk	Стк	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23
–3 dB Bandwidth	BW				1 1 1 1 1	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 26
ADG726		34			MHz typ	
ADG732		18			MHz typ	
* ** ** **	<u> </u>		<u> </u>	L		

		ADG72	6/ADG732	ADG732		
		2705	−40°C to	−40°C to		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments
Off Switch Source Capacitance	Cs (Off)	13			pF typ	f = 1 MHz
Off Switch Drain Capacitance	C _D (Off)					
ADG726		170			pF typ	f = 1 MHz
ADG732		340			pF typ	f = 1 MHz
On Switch Drain, Source	C _D , C _S (On)					
Capacitance						
ADG726		175			pF typ	f = 1 MHz
ADG732		350			pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = 5.5 \text{ V}$
Positive Supply Current	I _{DD}	10			μA typ	Digital inputs = 0 V or 5.5 V
			20	20	μA max	

¹ Guaranteed by design; not subject to production test.

+3 V SINGLE SUPPLY

 V_{DD} = 3 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

	ADG726/ADG732		6/ADG732	ADG732			
			−40°C to	−40°C to			
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					l		
Analog Signal Range			0 V to V _{DD}		V		
On Resistance	Ron	7			Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$, see Figure 20	
		11	12	13	Ω max		
On Resistance Match Between Channels	ΔRon		0.35		Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$	
			1	1	Ω max		
On Resistance Flatness	R _{FLAT} (ON)		3		Ωtyp	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$	
LEAKAGE CURRENTS						V _{DD} = 3.3 V	
Source Off Leakage	Is (Off)	±0.01			nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}, \text{ see Figure 21}$	
		±0.25	±1	±2	nA max		
Drain Off Leakage	I _D (Off)	±0.05			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}, \text{ see Figure 24}$	
ADG726		±0.5	±2.5		nA max		
ADG732		±1	±5	±10	nA max		
Channel On Leakage	I _D , I _S (On)	±0.05			nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V, see Figure } 25$	
ADG726		±0.5	±2.5		nA max		
ADG732		±1	±5	±10	nA max		
DIGITAL INPUTS							
Input High Voltage	V _{INH}		2.0	2.0	V min		
Input Low Voltage	V _{INL}		0.7	0.7	V max		
Input Current							
Low or High	I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
			±0.5	±0.5	μA max		
Digital Input Capacitance	C _{IN}	5			pF typ		
DYNAMIC CHARACTERISTICS ¹							
Transition Time	t transition	34			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, see Figure 27	
		52	62	69	ns max	$V_{S1} = 2 \text{ V/O V}, V_{S32} = 0 \text{ V/2 V}$	
Break-Before-Make Time Delay	t _D	26			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 2 V$, see Figure 28	
			1	1	ns min		
On Time (\overline{CS} , \overline{WR})	t_{ON} (\overline{WR} , \overline{CS})	29			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$; $V_S = 2 \text{V}$, see Figure 29	
		43	52	60	ns max		
Off Time $(\overline{CS}, \overline{WR})$	t _{OFF} (WR, CS)	26			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$; $V_S = 2 \text{V}$, see Figure 29	
		38	42	55.5	ns max		
On Time (EN)	t _{on} (EN)	33			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$; $V_S = 2 \text{V}$, see Figure 30	
		48	55	63.5	ns max		
Off Time (EN)	toff (EN)	19			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$; $V_S = 2 \text{V}$, see Figure 30	
		25	28	28	ns max		
Charge Injection	Q _{INJ}	1			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 31}$	
Off Isolation	Iso	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22	
Channel-to-Channel Crosstalk	Стк	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23	
–3 dB Bandwidth	BW					$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 26	
ADG726		34			MHz typ		
ADG732		18			MHz typ		

		ADG72	6/ADG732	ADG732		
Parameter	Symbol	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Off Switch Source Capacitance	Cs (Off)	13			pF typ	f = 1 MHz
Off Switch Drain Capacitance	C _D (Off)					
ADG726		170			pF typ	f = 1 MHz
ADG732		340			pF typ	f = 1 MHz
On Switch Drain, Source Capacitance	C _D , C _S (On)					
ADG726		175			pF typ	f = 1 MHz
ADG732		350			pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = 3.3 \text{ V}$
Positive Supply Current	I _{DD}	5			μA typ	Digital inputs = 0 V or 3.3 V
			10	10	μA max	

¹ Guaranteed by design; not subject to production test.

±2.5 V DUAL SUPPLY

 V_{DD} = +2.5 V \pm 10%, V_{SS} = -2.5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

		ADG726/ADG732		ADG732			
_			−40°C to	−40°C to]		
Parameter	Symbol	+25°C	+85°C	+125°C	Unit	Test Conditions/Comments	
Analog SWITCH			\/ +a\/		v		
Analog Signal Range On Resistance	D.	_	V_{SS} to V_{DD}		-	V - V + a V L - 10 m A saa Figura 20	
Off Resistance	Ron	4 5.5	6	7	Ω typ $Ω$ max	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA, see Figure 20	
On Resistance Match Between	ΔR _{ON}	3.3	0.3	/	Ωtyp	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA	
Channels	ANON		0.5		12 typ	VS - VSS to VDD, 10S - TO THA	
			0.8	1	Ω max		
On Resistance Flatness	R _{FLAT} (ON)	0.5			Ωtyp	$V_S = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA	
			1	1.2	Ω max		
LEAKAGE CURRENTS						$V_{DD} = +2.75 \text{ V}, V_{SS} = -2.75 \text{ V}$	
Source Off Leakage	Is (Off)	±0.01			nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V},$	
						see Figure 21	
		±0.25	±0.5	±1	nA max		
Drain Off Leakage	I _D (Off)	±0.05			nA typ	$V_S = +2.25 \text{ V/}-1.25 \text{ V}, V_D = -1.25 \text{ V/}+2.25 \text{ V},$	
ADCTOC			. 2.5			see Figure 24	
ADG726 ADG732		±0.5	±2.5	.10	nA max		
	1 1 (0 =)	±1	±5	±10	nA max	V V +2.25 V/ 1.25 V con Figure 25	
Channel On Leakage	I _D , I _S (On)	±0.05	125		nA typ	$V_S = V_D = +2.25 \text{ V/}-1.25 \text{ V, see Figure 25}$	
ADG726 ADG732		±0.5 ±1	±2.5 ±5	±10	nA max nA max		
DIGITAL INPUTS		工	ΞЭ	±10	TIA IIIax		
Input High Voltage	V _{INH}		1.7	1.7	V min		
Input Low Voltage	VINH		0.7	0.7	V max		
Input Current	VINL		0.7	0.7	VIIIAX		
input current	l _{INL} or l _{INH}	0.005			μΑ typ	V _{IN} = V _{INL} or V _{INH}	
	INC OF TIME	0.003	±0.5	±0.5	μA max	VIN VINE S. VINI	
Digital Input Capacitance	C _{IN}	5		_0.0	pF typ		
DYNAMIC CHARACTERISTICS ¹		_			1 71		
Transition Time	t _{TRANSITION}	33			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, see Figure 27	
		45	51	56	ns max	$V_{S1} = 1.5 \text{ V/O V}, V_{S32} = 0 \text{ V/1.5 V}$	
Break-Before-Make Time Delay	t _D	15			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 1.5 V$, see Figure 28	
ŕ			1	1	ns min		
On Time (CS, WR)	t_{ON} (\overline{WR} , \overline{CS})	21			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 1.5 V$, see Figure 29	
		30	37	43	ns max	_	
Off Time $(\overline{CS}, \overline{WR})$	t_{OFF} (\overline{WR} , \overline{CS})	20			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 1.5 V$, see Figure 29	
		29	35	38	ns max	·	
On Time (EN)	ton (EN)	26			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 1.8 V$, see Figure 30	
		37		50	ns max		
Off Time (EN)	t _{OFF} (EN)	18			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 1.8 V$, see Figure 30	
		26	29	29	ns max		
Charge Injection	Q _{INJ}	1			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF, see Figure 31}$	
Off Isolation	Iso	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 22	
Channel-to-Channel Crosstalk	Стк	-72			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$, see Figure 23	
–3 dB Bandwidth	BW				'	$R_L = 50 \Omega$, $C_L = 5 pF$, see Figure 26	
ADG726		34			MHz typ	_	
ADG732		18			MHz typ		

		ADG72	6/ADG732	ADG732		
Parameter	Symbol	+25°C	−40°C to +85°C	−40°C to +125°C	Unit	Test Conditions/Comments
Off Switch Source Capacitance	Cs (Off)	13			pF typ	
Off Switch Drain Capacitance	C _D (Off)					
ADG726		137			pF typ	f = 1 MHz
ADG732		275			pF typ	f = 1 MHz
On Switch Drain, Source Capacitance	C _D , C _S (On)					
ADG726		150			pF typ	f = 1 MHz
ADG732		300			pF typ	f = 1 MHz
POWER REQUIREMENTS						
Positive Supply Current	I _{DD}	10			μA typ	$V_{DD} = 2.75 \text{ V}$
			20	20	μA max	Digital inputs = 0 V or 2.75 V
Negative Supply Current	Iss	10			μA typ	$V_{DD} = -2.75 \text{ V}$
			20	20	μA max	Digital inputs = 0 V or 2.75 V

¹ Guaranteed by design; not subject to production test.

TIMING CHARACTERISTICS

Parameter ^{1, 2, 3}	Limit at T _{MIN} , T _{MAX}	Unit	Test Conditions/Comments	
t ₁	0	ns min	CS to WR setup time	
t_2	0	ns min	CS to WR hold time	
t_3	10	ns min	WR pulse width	
t ₄	10	ns min	Time between WR cycles	
t ₅	5	ns min	Address, enable setup time	
t ₆	2	ns min	Address, enable hold time	

¹ See Figure 3.

Table 4.

³ Guaranteed by design and characterization, not production tested.

Figure 3 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while \overline{WR} is held low, the latches are transparent and the switches respond to changing the address and enable the inputs.

Input data is latched on the rising edge of \overline{WR} . The ADG726 has two \overline{CS} inputs. This enables the device to be used either as a dual 16-to-1 channel multiplexer or a differential 16-channel multiplexer. If a differential output is required, tie \overline{CSA} and \overline{CSB} together.

² All input signals are specified with tr = tf = 1 ns (10% to 90% of V_{DD}).

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 5.

1 abic 3.	
Parameter	Rating
V _{DD} to V _{SS}	7 V
V _{DD} to GND	−0.3 V to +7 V
V _{SS} to GND	+0.3 V to −7 V
Analog Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$ or 30 mA, whichever occurs first
Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	60 mA
Continuous Current, S or D	30 mA
Operating Temperature Range	
ADG726	−40°C to +85°C
ADG732	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance θ _{JA} (4-Layer Board)	
48-Lead LFCSP	25°C/W
48-Lead TQFP	54.6°C/W
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020

 $^{^1}$ Overvoltages at A, $\overline{\text{EN}}, \overline{\text{WR}}, \overline{\text{CS}},$ S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTION 48-LEAD TOFP

Figure 4. ADG726 Pin Configuration

Table 6. ADG726 Pin Function Description

Table 0. AD 072	o i ili i ulictioi	Description
Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16A to S1A	Source Terminal. This pin may be an input or output.
13, 14	V_{DD}	Most Positive Power Supply Potential.
15 to 18	A0 to A3	Logic Control Inputs.
19	CSA	Chip Select Pin A. CSA is active low. If a differential output configuration is required, tie CSA and CSB together.
20	CSB	Chip Select Pin B. CSB is active low. If a differential output configuration is required, tie CSB and CSA together.
21	WR	Write pin. When $\overline{\text{WR}}$ is low, the logic control inputs (A0 to A3) control which state the switches are in. On the rising edge of $\overline{\text{WR}}$, the logic control input data is latched.
22	EN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S1B to S16B	Source Terminal. This pin may be an input or output.
41	DB	Drain Terminal. This pin may be an input or output.
42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	DA	Drain Terminal. This pin may be an input or output.

Figure 5. ADG732 Pin Configuration

Table 7. ADG732 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16 to S1	Source Terminal. This pin may be an input or output.
13, 14	V_{DD}	Most Positive Power Supply Potential.
15 to 19	A0 to A4	Logic Control Inputs.
20	CS	Chip Select Pin. CS is active low.
21	WR	Write Pin. When \overline{WR} is low, the logic control inputs (A0 to A4) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.
22	ĒN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S17 to S32	Source Terminal. This pin may be an input or output.
41, 42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	D	Drain Terminal. This pin may be an input or output.

48-LEAD LFCSP

Figure 6. ADG726 Pin Configuration

Table 8. ADG726 Pin Function Description

-	o i in runctioi	1
Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16A to S1A	Source Terminal. This pin may be an input or output.
13, 14	V_{DD}	Most Positive Power Supply Potential.
15 to 18	A0 to A3	Logic Control Inputs.
19	CSA	Chip Select Pin A. CSA is active low. If a differential output configuration is required, tie CSA and CSB together.
20	CSB	Chip Select Pin B. CSB is active low. If a differential output configuration is required, tie CSB and CSA together.
21	WR	Write pin. When \overline{WR} is low, the logic control inputs (A0 to A3) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.
22	EN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.
23	GND	Ground (0 V) Reference.
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S1B to S16B	Source Terminal. This pin may be an input or output.
41	DB	Drain Terminal. This pin may be an input or output.
42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	DA	Drain Terminal. This pin may be an input or output.
	EPAD	Exposed Pad. The exposed pad must be connected to GND.

NOTES

1. NIC = NOT INTERNALLY CONNECTED. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE CONNECTED TO GND.

Figure 7. ADG732 Pin Configuration

Table 9. ADG732 Pin Function Description

Pin No.	Mnemonic	Description					
1 to 12, 45 to 48	S16 to S1	Source Terminal. This pin may be an input or output.					
13, 14	V_{DD}	Most Positive Power Supply Potential.					
15 to 19	A0 to A4	Logic Control Inputs.					
20	CS	Chip Select Pin. CS is active low.					
21	WR	Write Pin. When \overline{WR} is low, the logic control inputs (A0 to A4) control which state the switches are in. On the rising edge of \overline{WR} , the logic control input data is latched.					
22	EN	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The EN input signal is not latched by WR.					
23	GND	Ground (0 V) Reference.					
24	Vss	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.					
25 to 40	S17 to S32	Source Terminal. This pin may be an input or output.					
41, 42, 44	NIC	Not Internally Connected. Do not connect to this pin.					
43	D	Drain Terminal. This pin may be an input or output.					
	EPAD	Exposed Pad. The exposed pad must be connected to GND.					

Truth Tables

Table 10. ADG726 Truth Table

A3 ¹	A21	A11	A01	EN ¹	CSA	CSB	WR ¹	On Switch
X	Х	Х	Х	Х	1	1	$L \rightarrow H$	Latches control input data
Χ	Χ	Х	Χ	Χ	1	1	Х	No change in switch condition
Χ	Х	Χ	Χ	1	Х	X	X	None
0	0	0	0	0	0	0	0	S1A to DA, S1B to DB
0	0	0	1	0	0	0	0	S2A to DA, S2B to DB
0	0	1	0	0	0	0	0	S3A to DA, S3B to DB
0	0	1	1	0	0	0	0	S4A to DA, S4B to DB
0	1	0	0	0	0	0	0	S5A to DA, S5B to DB
0	1	0	1	0	0	0	0	S6A to DA, S6B to DB
0	1	1	0	0	0	0	0	S7A to DA, S7B to DB
0	1	1	1	0	0	0	0	S8A to DA, S8B to DB
1	0	0	0	0	0	0	0	S9A to DA, S9B to DB
1	0	0	1	0	0	0	0	S10A to DA, S10B to DB
1	0	1	0	0	0	0	0	S11A to DA, S11B to DB
1	0	1	1	0	0	0	0	S12A to DA, S12B to DB

A31	A2 ¹	A1 ¹	A01	EN ¹	CSA	CSB	WR ¹	On Switch
1	1	0	0	0	0	0	0	S13A to DA, S13B to DB
1	1	0	1	0	0	0	0	S14A to DA, S14B to DB
1	1	1	0	0	0	0	0	S15A to DA, S15B to DB
1	1	1	1	0	0	0	0	S16A to DA, S16B to DB

¹ X is don't care, L is low, and H is high.

Table 11. ADG732 Truth Table

A41	A3 ¹	A21	A11	A01	EN ¹	CS	WR ¹	Switch Condition
Χ	Х	Х	Х	Х	Х	1	$L \rightarrow H$	Latches control input data
Χ	Χ	Х	Х	Χ	Х	1	Х	No change in switch condition
Χ	Χ	Х	Х	Х	1	Χ	Х	None
0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	2
0	0	0	1	0	0	0	0	3
0	0	0	1	1	0	0	0	4
0	0	1	0	0	0	0	0	5
0	0	1	0	1	0	0	0	6
0	0	1	1	0	0	0	0	7
0	0	1	1	1	0	0	0	8
0	1	0	0	0	0	0	0	9
0	1	0	0	1	0	0	0	10
0	1	0	1	0	0	0	0	11
0	1	0	1	1	0	0	0	12
0	1	1	0	0	0	0	0	13
0	1	1	0	1	0	0	0	14
0	1	1	1	0	0	0	0	15
0	1	1	1	1	0	0	0	16
1	0	0	0	0	0	0	0	17
1	0	0	0	1	0	0	0	18
1	0	0	1	0	0	0	0	19
1	0	0	1	1	0	0	0	20
1	0	1	0	0	0	0	0	21
1	0	1	0	1	0	0	0	22
1	0	1	1	0	0	0	0	23
1	0	1	1	1	0	0	0	24
1	1	0	0	0	0	0	0	25
1	1	0	0	1	0	0	0	26
1	1	0	1	0	0	0	0	27
1	1	0	1	1	0	0	0	28
1	1	1	0	0	0	0	0	29
1	1	1	0	1	0	0	0	30
1	1	1	1	0	0	0	0	31
1	1	1	1	1	0	0	0	32

 $^{^{\}rm 1}\,\rm X$ is don't care, L is low, and H is high.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. On Resistance vs. V_D (V_s), Single Supply

Figure 9. On Resistance vs. V_D (V_S), Dual Supply

Figure 10. On Resistance vs. V_D (V_S) for Different Temperatures, Single Supply

Figure 11. On Resistance vs. V_D (V_S), Single Supply

Figure 12. On Resistance vs. V_D (V_S), Dual Supply

Figure 13. Leakage Currents vs. Temperature

Figure 14. ADG732 Charge Injection (Q_{INJ}) vs. V_D (V_S)

Figure 15. t_{ON}/t_{OFF} (EN) Time vs. Temperature

Figure 16. Logic Threshold Voltage vs. Supply Voltage (VDD)

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. Insertion Loss vs. Frequency

TEST CIRCUITS

Figure 20. On Resistance

Figure 21. Is (Off)

Figure 22. Off Isolation

Figure 23. Channel-to-Channel Crosstalk

Figure 24. I_D (Off)

Figure 25. I_D (On)

Figure 26. Bandwidth

Figure 27. Switching Time of Multiplexer, ttransition

Figure 28. Break-Before-Make Delay, topen

Figure 29. Write Turn-On and Turn-Off Time, t_{ON} , t_{OFF} (\overline{WR})

Figure 30. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

Figure 31. Charge Injection

TERMINOLOGY

Inn

I_{DD} represents the positive supply current.

 I_{SS}

Iss represents the negative supply current.

IN

IN represents the logic control input.

 $V_D (V_S)$

 $V_{\text{\scriptsize D}}$ and $V_{\text{\scriptsize S}}$ represent the analog voltage on the Dx pins and the Sx pins, respectively.

Ron

 R_{ON} represents the ohmic resistance between the Dx pins and the Sx pins.

 ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT(ON)}

R_{FLAT(ON)} is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

Is (Off) represents the source leakage current with the switch off.

I_D (Off)

I_D (Off) represents the drain leakage current with the switch off.

 I_D (On), I_S (On)

 I_D (On) and I_S (On) represent the channel leakage currents with the switch on.

 V_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

 V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

IINL, IINH

 $I_{\rm INL}$ and $I_{\rm INH}$ represent the low and high input currents of the digital inputs.

Cs (Off)

Cs (Off) represents the off switch source capacitance. It is measured with a reference to ground.

C_D (Off)

C_D (Off) represents the off switch drain capacitance. It is measured with reference to ground.

 C_D (On), C_S (On)

 C_D (On) and C_S (On) represent the on switch capacitances, which are measured with reference to ground.

 C_{IN}

C_{IN} is the digital input capacitance.

tTRANSITION

 $t_{TRANSITION}$ is the delay time measured between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

ton (EN

 t_{ON} (\overline{EN}) is the delay time between the 50% and 90% points of the \overline{EN} digital input and the switch on condition.

toff (EN)

 $t_{OFF}(\overline{EN})$ is the delay time between the 50% and 90% points of the \overline{EN} digital input and the switch off condition.

topen

 t_{OPEN} is the off time measured between the 80% points of both switches when switching from one address state to another

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

Off isolation is a measure of the unwanted signal coupling through an off switch.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-4

Figure 32. 48-Lead Frame Chip Scale Package [LFCSP] 7 mm × 7 mm Body and 0.75 mm Package Height (CP-48-4)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-026ABC

Figure 33. 48-Lead Thin Plastic Quad Flat Package [TQFP] (SU-48) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG726BCPZ	−40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG726BCPZ-REEL	-40°C to +85°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG726BSUZ	-40°C to +85°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG726BSUZ-REEL	-40°C to +85°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG732BCPZ	-40°C to +125°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG732BCPZ-REEL	-40°C to +125°C	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG732BSUZ	-40°C to +125°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG732BSUZ-REEL	-40°C to +125°C	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48

 $^{^{1}}$ Z = RoHS-Compliant Part

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG732BCPZ ADG726BCPZ ADG726BSUZ-REEL ADG732BSUZ-REEL ADG726BCPZ-REEL ADG726BSUZ ADG732BSUZ ADG732BCPZ-REEL