Tout savoir sur la régression logistique

Partie 2

Présenté par Morgan Gautherot

Problème de classification

	Nb d'e-mails ouverts (x_1)	Nb de produits achetés (x_2)	Panier moyen (x_3)	Ouverture de l'e- mail (y)
1	12	3	120	1
2	0	1	40	0
3	30	10	1800	1
4	14	5	799	1
		•••		•••
m	25	2	260	0

Jeu d'entraînement pour la prédiction de prix de maison

Utiliser une droite

Panier moyen

Utiliser une droite

Similitude avec la régression linéaire

- Nous voulons une ligne séparant nos deux classes.
- Pour cela, nous utiliserons donc l'équation de la régression linéaire :

$$\hat{y} = w_0. x_0 + w_1. x_1 + w_2. x_2 + ... + w_n. x_n$$

- Pour la régression linéaire $\hat{y} \in R$
- Pour la régression logistique $0 \le \hat{y} \le 1$

La fonction sigmoïde

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$0 \le g(z) \le 1$$

Expression du modèle

 Cette fonction prend en entrée les variables et retourne une valeur entre 0 et 1.

$$\hat{y} = g(W^T X) = \frac{1}{1 + e^{-W^T X}}$$

- Plus \hat{y} est proche de 1, plus l'observation a de chance d'appartenir à la classe 1.
- Plus \hat{y} est proche de 0, plus l'observation a de chance d'appartenir à la classe 0.

Une fonction de coût de la régression linéaire

$$\min J(W) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

$$\min J(W) = \frac{1}{2m} \sum_{i=1}^{m} (\frac{1}{1 + e^{-w^T x^{(i)}}} - y^{(i)})^2$$

Fonction convexe pour la classification

$$Co\hat{u}t(\hat{y}, y) = \begin{cases} -\log(\hat{y}) & si \ y = 1\\ -\log(1 - \hat{y}) & si \ y = 0 \end{cases}$$

Siy = 1

Siy = 0

Fonction de coût pour la régression logistique

$$Co\hat{u}t(\hat{y},y) = \begin{cases} -\log(\hat{y}) & si \ y = 1\\ -\log(1-\hat{y}) & si \ y = 0 \end{cases}$$

$$Co\hat{u}t(\hat{y},y) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$

$$Co\hat{u}t(\hat{y},y) = -1\log(\hat{y})$$

$$Co\hat{u}t(\hat{y},y) = -1\log(1-\hat{y})$$

$$\min J(W) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log(\hat{y}^{(i)}) - (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Le gradient descent

Répéter jusqu'à la convergence {
$$w_j \coloneqq w_j - \alpha \frac{1}{m} \sum_{i=1}^m \; (\hat{y}^{(i)} - \; y^{(i)} \;) \,.\, x_j^{(i)} \text{(simultanément j = (0, ..., n)}$$