ASEN 6020 - HW 1 Spring 2025 - Jash Bhalavat

0		ASEN 6020 Spring 8020 Jash Bhalavat
Problem 1 ->	$ HW \# $ $ J_{RP} \leq J_{H} \rightarrow (\sqrt{2} - D[1 + \frac{1}{\sqrt{2}}] \leq J_{HR}^{22} - 1 + \frac{1}{\sqrt{2}} - J_{R}^{2} + J_{R}^{2} $ $ MW \# $	
	$ \frac{\sqrt{2} + \sqrt{2} - \sqrt{2} - 1}{\sqrt{2}(\sqrt{2} + 1) - 2} \leq \frac{\sqrt{2}}{\sqrt{2}(\sqrt{2} + 1)} - 2 \leq \frac{\sqrt{2}}{\sqrt{2}(\sqrt{2} + 1)} - 2 \leq \sqrt{2} $, <u>2-1</u>
4x 52-1=	$0 \to \sqrt{2} - (\sqrt{2} - 1) \le \sqrt{172} (\sqrt{12} - 1) = 0$ $(\sqrt{12} - a)^2 \le \frac{(2 - 1)^2}{1 + 1}$	agrane both sides)
square books side (32+922+03)	$2+x^2-2a\sqrt{2}-2ar\sqrt{2}+a^2+a^2r \le x^2-2x+1$	
(1+20/12 + 20m/2) >	0 92+322+322+322+322+2722+2722+322+242+24 + 2952+422+422+222+22252+4222	+ 4223
Divide by 422	$\frac{+J(1+2a\sqrt{2}+2a\sqrt{2}-a^{4})}{2} \geq 0$ $\frac{+J(1+2a\sqrt{2}+2a\sqrt{2}-a^{4})}{2} \geq 0$ $\frac{-2a^{2}-a^{4}}{2} + \frac{1}{2}(2a^{2}-a^{4}-9) + \frac{1}{2}(4a\sqrt{2}-a^{4}) + \frac{1}{2}(1+4a\sqrt{2}-a^{4})$	0 20
	$\frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{\alpha^2}{4} - \frac{9}{4\alpha^2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{\alpha^2}{4} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{\sqrt{2}}{\alpha} - \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha^2} + \frac{9}{2} \right) + \frac{1}{2} \left(\frac{1}{4\alpha$	(1) ≥0
	$(x^3 - x^2(7 + 4\sqrt{2}) + x(3 + 4\sqrt{2}) - 1 \ge 0)$ (x = 0.1466, 0.5715, 11.9388) roots <1 are insiderant the one assumption that $x>1$	as they violate
Now, rs	- Start from eqn. $0 \rightarrow \sqrt{2} - (2-1) \leq \frac{2-1}{1+2}$ (let $a=1$) $(\sqrt{2}-a)\sqrt{1+2} \leq 2-1 \rightarrow \sqrt{2}+2-a\sqrt{1+2}$	
	square both $\sqrt{r_{1}^{2}+2}+1 \leq r_{1}+q\sqrt{r_{1}} \rightarrow \sqrt{r_{1}^{2}+2}\sqrt{r_{1}^{2}+2}$ $\sqrt{r_{1}^{2}+2}\sqrt{r_{1}^{2}+2}+1 \leq 2q\sqrt{r_{1}^{2}+2}\sqrt{r_{1}^{2}+2}$	
0	2+ 22/2+2+ 2+ 22/2+2+ 4(2+2)+ 2/2+2+++++++++++++++++++++++++++++	
	52+62+12+2(22+2e+2+2)+1≤(1+2)(4a2+4	THE FAILTY

The contour plot below shows the cost of bi-elliptic vs Hohmann transfers for 1<l<r. The yellow region below is inaccessible (for this problem) because I > r. The blue region Hohmann transfers cost less than Bi-Elliptic transfers. This is different from when I > r because at no point here is the Bi-Elliptic transfer the optimal option.

Problem3 →	JH = Ja, - Jak + Jak - J
	= JH - JAA = JA - Jazz + Jazz
The same of	$\frac{1}{4} \left(\frac{1}{4} \frac$
	$g_{\perp}(1+q\epsilon, 1+\epsilon) = 0$ Taylor series expansion $\rightarrow g_{\perp}(1+q\epsilon, 1+\epsilon) = g_{\perp} _{\epsilon=0} \rightarrow \frac{\partial g_{\perp}}{\partial \epsilon} _{\epsilon=0} \rightarrow 0$
	81/c=0 = \frac{2}{1(1+1)} - \frac{21}{1(1+1)} + \frac{2}{1(1+1)} - \frac{2}{1(1+1)} + \frac{2}{1(1+1)} - \frac{2}{1(1+1)} + \frac{2}{1(1+1)} - \frac{2}{1(1+1)} + \frac{2}{1(1+1)} - \frac{2}{1(1+1)} - \frac{2}{1(1+1)} + \frac{2}{1(1+1)} - \fr
	Take partial observatives teen by lovery for completication
	$\frac{\partial}{\partial \epsilon} \left(\frac{2}{(0+9\epsilon)(1+1+9\epsilon)} \right) = \frac{9(29\epsilon+3)}{\sqrt{2}(9\epsilon+2)^2(9\epsilon+2)} \left(\frac{1}{9(4+1)(9\epsilon+2)} \left(\frac{39}{2} \right) \right) = \frac{39}{4}$
	$\frac{\partial}{\partial \epsilon} \left(\frac{2(1+\epsilon)}{1+2\epsilon(2+6)} \right) = \frac{(2+a)\epsilon^{2} + (2a^{2}+2a)\epsilon + 39 - 1}{\sqrt{2}(9\epsilon + 1)^{2}(2+1)\epsilon^{2} + 2)^{2} \sqrt{\frac{\epsilon+1}{(9\epsilon+1)(9\epsilon+\epsilon+2)}}} = \frac{39-1}{\sqrt{2}(9\epsilon + 1)^{2}(2+1)\epsilon^{2} + 2} = \frac{39-1}{\sqrt{2}(9\epsilon + 1)^{2}(2+1)(9\epsilon+\epsilon+2)} = \frac{39-1}{\sqrt{2}(9\epsilon + 1)^{2}(9\epsilon+1)(9\epsilon+\epsilon+2)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)(9\epsilon+\epsilon+2)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)(9\epsilon+1)(9\epsilon+\epsilon+2)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)(9\epsilon+1)(9\epsilon+1)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)(9\epsilon+1)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)(9\epsilon+1)} = \frac{39-1}{\sqrt{2}(9\epsilon+1)(9\epsilon+1)} = 39$
THE RESERVE OF THE PARTY OF THE	

(2)	ASEN 6020 Fring 2025 Josh Bhalavat
	THW#1)
	$\frac{1}{26}\left(\frac{3}{12(1+0)}\right) = -\frac{(a+1)6(96+2)-04+3}{\sqrt{2}(6+1)} = -\frac{3-9}{\sqrt{2}(6+1)} = -\frac{3-9}$
	$\frac{\partial}{\partial \epsilon} \left(\frac{2}{(1+\epsilon)(1+\epsilon)} \right) = -\frac{2\epsilon + 3}{5(\epsilon+1)(\epsilon+2)} \left(\frac{1}{\epsilon+1(\epsilon+2)} \right) = 0 = -\frac{3}{5(\epsilon+1)(\epsilon+2)} = -\frac{3}{4}$
	DE (1110) = - (81) (8=0)
Bringing then	
all lighter	26 6=0 9 4 9
	$x_1 = 1 + 36$, $x_2 = 1 + 6 \rightarrow 6 = \frac{x_1 - 1}{3} = x_2 - 1 \rightarrow x_2 = \frac{x_1}{3} - \frac{1}{3} + 1 = \frac{x_1}{3} + \frac{2}{3} = x_2$

Assuming I = 10 (as the optimal plane change cost is at this extremity).

The cost function for the 3 plane change maneuvers (divided into 3 plane changes - 2 at periapsis and 1 at apoapsis) is given below along with the restricted bi-elliptic maneuver (where the plane change occurs at the apoapsis):

froblen 4 ->	Di=90°, L < 10, 3x DV
	$N_{1} = \sqrt{\frac{1}{2}} + \frac{2u}{2i^{2}} + \frac{2u}{2i^{2}} - 2\sqrt{\frac{u}{2i}} - \frac{2u}{2i^{2}} + \frac{2u}{2i$
n=L	DV=AV, + AV2 + AV3 - Durde by Jr, and n= 22/2 = h AV = \int 1 + \frac{2\frac{1}{12}}{1+2} \text{(D(A)} + \int 1 + \frac{2\frac{1}{12}}{1+2} \text{(D(A)} + 2\frac{2}{1+2} \text{(D(A)} \)
	$\Delta \widetilde{V}_{18} = 2 \left(\frac{v_2}{1+v_2} - 1 + \sqrt{\frac{2}{2(1+v_2)}} \right) \Rightarrow \Omega L^{2} 10 \rightarrow \Delta \widetilde{V}_{18} = 0.8875$

A contour plot of the cost function is also provided above.

As expected, when the periapsis plane changes are small, the cost of the transfer is low. The lowest cost of the maneuver is 0.8851 which occurs when $\Delta i_1 = 1.4414^{\circ} \& \Delta i_3 = 1.4414^{\circ}$.

Compared to the single apoapsis maneuver cost (0.8875), this is lower. That's why it's more optimal compared to the single apoapsis maneuver.

Matlab's fsolve() function is used to numerically compute the roots of the cost function.

The plot below shows the optima value η^* for varying change in inclination (Δi). As seen, η^* settles down as I increases for a particular change in inclination. The η^* plots are not continuous as Matlab's fsolve() function tries to numerically solve the roots for the cost function.

The optimal η^* settles down as I increases. As seen, it also clearly depends on the Δi . When the parameters are known, this method can be used to find the optimal factor for the dog-leg maneuver.

(3) HW #1	To	EN 6020 ring 2025 and Bhalawat
1-2 DV6≤D	$\Delta Va \rightarrow \sqrt{1-e} - 17e \leq \chi \rightarrow \sqrt{1-e} \leq 1 (1-e \geq 0) \rightarrow 19\mu and 0$ $\leq 1 \rightarrow e \geq 0 - \Delta Vb \text{ is always better then } \Delta Va $ $\leq 0 \rightarrow \sqrt{1-e} - 17e \leq 17e - \sqrt{1+e} \rightarrow \sqrt{1-e} \leq -\sqrt{1+e} + 2e$ $-e \leq 4 - 4\sqrt{1+e} + 18 + 2e \rightarrow 2\sqrt{1+e} \leq 12 + 2e \rightarrow 2\sqrt{1+e} \rightarrow 4\sqrt{1+e}$ $4e \leq 2 + 4e + 19 \rightarrow 0 \leq e^{2} \qquad 2 \leq 0 \leq e \leq 1 \rightarrow e^{2} \geq 0 \rightarrow 1/4 $ $4e \leq 2 + 4e + 19 \rightarrow 0 \leq e^{2} \qquad 2 \leq 0 \leq e \leq 1 \rightarrow e^{2} \geq 0 \rightarrow 1/4 $	$2 \le e \le 1$ $2 \le e \le 1$ $2 \le e^2 + 4e + 4$
- 2:	$\Delta V_{0} \rightarrow 1+\ell-J_{1}+\ell \leq 2 \rightarrow 1 \leq J_{1}+\ell \Rightarrow 1 \leq 1+\ell \rightarrow \ell$ so always > 0 when $0 \leq \ell \leq 1 \Rightarrow \Delta V_{0}$ is always wetter $y = \Delta V_{0} \leq \Delta V_{0} \leq \Delta V_{0}$	

As seen, two-impulse periapsis is more optimal than two-impulse apoapsis and one-impulse maneuvers for this case. To further illustrate that, the normalized cost is computed at discrete e steps for all three maneuvers and it matches the analytical solution - two-impulse apoapsis is most optimal followed by two-impulse periapsis and followed by the one-impulse maneuver:

Problem 7 -	1-inpulse -> D/6= Vao-Vic	
3	2- minuse (1<2) -> DV = DV, + DV = JH - Jate 2 + V00 - 124 2	
	3-mpulse (L>N) - DV = DV, + D/2 = \frac{2u \ \lambda}{2rt \ \lambda} - \frac{\lambda}{2r} + \lambda \lambda - \frac{\frac{2u}{2rt}}{2rt} \frac{\frac{2u}{r}}{r} \frac{2u}{r} \frac{2u}{r} \frac{2u}{r} \frac{2u}{r} \frac{2u}{r} \fra	
	let R= 42 romalize by the To	
DESTRUCTION OF	$\nabla \hat{v}_0 = \hat{v}_{\infty} - 1$	
0 < R < 1	2R Y 2	
0-1		
R>1	DV = 1 HR - + +00 VR(1+R)	
	ΔVa ≤ ΔVD → 16-1 ≤ 1- √2R + 10- √2+R) ΔVa	
	JER + (R(1+R) < 2	
	2R + 2 \(\frac{14R2}{R(11R)^2} + \frac{2}{R(11R)^2} \)	
	2R+2 + 4.R . IR 52 Vio V2 2 2	
1		
	→ R≥52 ← avo ≤avo	
	DIG S DVC - YOUX S THE 1/4 YOU - JRCHED	
6	DVa shrays & DVc	
	ΔV ₆ ≤ ΔV ₆ → 1 - √2+ + √0= (1+R) ≤ √2+ − 1 + √0 - √2+DR	
	JER ≥1 - alway -> .) DV, ≤ DV.	