5/29/2020

```
In [1]: %config IPCompleter.greedv=True
In [2]: import pandas as pd
        import numpy as np
        import matplotlib.pvplot as plt
         import seaborn as sns
         from sklearn.utils import resample
        from imblearn.over sampling import SMOTENC,RandomOverSampler,KMeansSMOTE
        from sklearn.impute import KNNImputer
         from sklearn.preprocessing import LabelEncoder
         import io
         import requests
         import numpy as np;
        from sklearn.preprocessing import StandardScaler
        from sklearn.linear model import Ridge, Lasso, RidgeCV, LassoCV, ElasticNet, ElasticNetCV, LinearRegression
        from sklearn.model selection import train test split
        import statsmodels.api as sm
         np.random.seed(0)
         sns.set()
        #pd.set option("display.max rows", None, "display.max columns", None)
        # machine learning
        from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC, LinearSVC
         from sklearn.ensemble import RandomForestClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive bayes import GaussianNB
        from sklearn.linear model import Perceptron
        from sklearn.linear model import SGDClassifier
         from sklearn.tree import DecisionTreeClassifier
```

Titanic

Step1: Acquire data

```
In [3]: #url="https://raw.githubusercontent.com/BigDataGal/Python-for-Data-Science/master/titanic-train.csv"
    #s=requests.get(url).content
    #train_df=pd.read_csv(io.StringIO(s.decode('utf-8')))
    train_df = pd.read_csv('./input/train.csv')

In [4]: #train_df = pd.read_csv('./input/train.csv')
    test_df = pd.read_csv('./input/test.csv')
    combine = [train_df, test_df]
```

Step2: Analyze the dataset

Observation:

Categorical: Survived, Sex, and Embarked. Ordinal: Pclass.

Continous: Age, Fare. Discrete: SibSp, Parch.

Note:

sibsp: Number of Siblings/Spouses Aboard

parch: Number of Parents/Children Aboard

In [7]: train_df.head()

Out[7]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [8]: train_df.tail()

Out[8]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

In [9]: test_df.head()

Out[9]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

In [10]: test_df.tail()

Out[10]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

Observation:

Ticket is a mix of numeric and alphanumeric data types. Cabin is alphanumeric.

Distribution of numerical feature

```
In [11]: TotalPassenger= 2208
         TrainingSample= train_df.shape[0]
         SamplePopulationPercent= (TrainingSample/TotalPassenger)*100
         SamplePopulationPercent
Out[11]: 40.35326086956522
In [12]: train df temp = pd.DataFrame({'SibSp':train df.SibSp })
         sibsp cnt=train df temp[train df temp.SibSp > 0].count()
         PercentageSibSp= (sibsp cnt/TrainingSample)*100
         PercentageSibSp
Out[12]: SibSp
                  31,762065
         dtype: float64
In [13]: train df temp = pd.DataFrame({'Parch':train df.Parch })
         parch cnt=train df temp[train df temp.Parch > 0].count()
         PercentageParch= (parch cnt/TrainingSample)*100
         PercentageParch
Out[13]: Parch
                  23,905724
```

In [14]: train_df.describe()

Out[14]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [15]: train_df.groupby(["Sex", "Age"])["Sex"].count()
```

```
Out[15]: Sex
                 Age
         female 0.75
                          2
                 1.00
                           2
                 2.00
                  3.00
                           2
                 4.00
                           5
         male
                 70.00
                          2
                 70.50
                          1
                 71.00
                          2
                 74.00
                           1
```

80.00

Name: Sex, Length: 145, dtype: int64

Distribution of numerical feature observation:

Total samples are 891 or 40% of the actual number of passengers on board the Titanic (2,224).

Survived is a categorical feature with 0 or 1 values.

Nearly 30% of the passengers had siblings and/or spouse aboard.

Fares varied significantly with few passengers (<1%) paying as high as \$512.

Few elderly passengers (<1%) within age range 65-80 and no female passenger with age greater than 63

Distribution of categorical feature

```
In [19]: train df['Cabin'].unique()
Out[19]: array([nan, 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
                 'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
                 'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101',
                 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
                 'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
                 'C87', 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
                 'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54',
                 'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
                 'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'B96 B98', 'E10', 'E44',
                 'A34', 'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14',
                 'B37', 'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38',
                 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68',
                 'B41', 'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48',
                 'E58', 'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
                 'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
                 'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
                 'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
                 'C148'l, dtype=object)
In [20]: | train df.groupby(["Cabin", "PassengerId"])["PassengerId"].count()
Out[20]: Cabin PassengerId
         A10
                584
                                1
                                1
         A14
                476
         A16
                557
         A19
                285
         A20
                600
         G6
                                1
                11
                                1
                 206
                252
                                1
                 395
         Т
                 340
         Name: PassengerId, Length: 204, dtype: int64
```

```
In [21]: train df.groupby(["Embarked"])["Embarked"].count().sort values(ascending=False)
Out[21]: Embarked
              644
              168
               77
         Name: Embarked, dtype: int64
In [22]: train df.groupby(["Ticket"])["Ticket"].count().sort values(ascending=False)
Out[22]: Ticket
         CA. 2343
                      7
         1601
                      7
         347082
         347088
         CA 2144
                      6
         PC 17601
                     1
          349239
          349240
          349241
                      1
          347464
         Name: Ticket, Length: 681, dtype: int64
```

Distribution of categorical feature observation:

Names are unique across the dataset (count=unique=891)

Sex variable as two possible values with 65% male (top=male, freq=577/count=891).

Cabin values have several dupicates across samples. Alternatively several passengers shared a cabin.

Embarked takes three possible values. S port used by most passengers (top=S)

Ticket feature has high ratio (22%) of duplicate values (unique=681).

Analyze by pivoting features.

Analyzing feature correlations by pivoting features against each other.

At this stage can be done for features which do not have any empty values. It also makes sense doing so only for features which are categorical (Sex), ordinal (Pclass) or discrete (SibSp, Parch) type.

```
In [25]: train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)
```

Out[25]:

_		SibSp	Survived
-	1	1	0.535885
	2	2	0.464286
	0	0	0.345395
	3	3	0.250000
	4	4	0.166667
	5	5	0.000000
	6	8	0.000000

In [26]: train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=Fa
lse)

Out[26]:

	Parch	Survived
3	3	0.600000
1	1	0.550847
2	2	0.500000
0	0	0.343658
5	5	0.200000
4	4	0.000000
6	6	0.000000

Pivoting features observation:

Pclass significant correlation (>0.5) among Pclass=1 and Survived.

Sex Sex=female had very high survival rate at 74%.

Sibsp Sibsp=1, one sibling has high rate of survival at 54%

Parch Parch=1,2,3 one, two or three parch has high rate of survival at 54%

Multivariate Analysis

Analyze by visualizing data by Correlating numerical features

```
In [27]: fig = plt.gcf()
g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)
```

Out[27]: <seaborn.axisgrid.FacetGrid at 0x17161271d90>

<Figure size 432x288 with 0 Axes>

Analyze by visualizing data by Correlating numerical features

Observations

Infants (Age <=4) had high survival rate.

Oldest passengers (Age = 80) survived.

Large number of 16-28 year olds did not survive.

Most passengers are in 16-40 age range.

Decisions

We should consider Age in our model training.

Complete the Age feature for null values .

We should band age groups.

Multivariate Analysis

Correlating numerical and ordinal features

```
In [28]: # grid = sns.FacetGrid(train_df, col='Pclass', hue='Survived')
grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend();
```

C:\Users\shivd\.conda\envs\MLProj\lib\site-packages\seaborn\axisgrid.py:243: UserWarning: The `size` parameter ha
s been renamed to `height`; please update your code.
warnings.warn(msg, UserWarning)

Correlating numerical and ordinal features

Observations

Pclass=3 had most passengers, however most did not survive

Infant passengers in Pclass=2 and Pclass=3 mostly survived.

Most passengers in Pclass=1 survived.

Pclass varies in terms of Age distribution of passengers.

Decisions

Consider Pclass for model training.

Multivariate Analysis

Correlating categorical features

In [29]: grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6)
 grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
 grid.add_legend()

C:\Users\shivd\.conda\envs\MLProj\lib\site-packages\seaborn\axisgrid.py:723: UserWarning: Using the pointplot fun ction without specifying `order` is likely to produce an incorrect plot. warnings.warn(warning)

C:\Users\shivd\.conda\envs\MLProj\lib\site-packages\seaborn\axisgrid.py:728: UserWarning: Using the pointplot fun ction without specifying `hue_order` is likely to produce an incorrect plot. warnings.warn(warning)

Out[29]: <seaborn.axisgrid.FacetGrid at 0x1716194c520>

Correlating categorical features

Observations

Female passengers had much better survival rate than males.

Exception in Embarked=C where males had higher survival rate.

This could be a correlation between Pclass and Embarked and in turn Pclass and Survived, not necessarily direct correlation between Embarked and Survived.

Males had better survival rate in Pclass=3 when compared with Pclass=2 for C and Q ports. Ports of embarkation have varying survival rates for Pclass=3 and among male passengers.

Decisions

Add Sex feature to model training.

Complete and add Embarked feature to model training.

Multivariate Analysis

Correlating categorical and numerical features

Combining multiple features for identifying correlations using a single plot. This can be done with numerical and categorical features which have numeric values.

```
In [30]: # grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'k', 1: 'w'})
grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6)
grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
grid.add_legend()
```

C:\Users\shivd\.conda\envs\MLProj\lib\site-packages\seaborn\axisgrid.py:243: UserWarning: The `size` parameter ha
s been renamed to `height`; please update your code.
warnings.warn(msg, UserWarning)

C:\Users\shivd\.conda\envs\MLProj\lib\site-packages\seaborn\axisgrid.py:723: UserWarning: Using the barplot funct
ion without specifying `order` is likely to produce an incorrect plot.
 warnings.warn(warning)

Out[30]: <seaborn.axisgrid.FacetGrid at 0x17162a506a0>

Correlating categorical and numerical features

Observations

Pclass=3 had most passengers, however most did not survive

Infant passengers in Pclass=2 and Pclass=3 mostly survived.

Most passengers in Pclass=1 survived.

Pclass varies in terms of Age distribution of passengers.

Decisions

Consider Pclass for model training.

Multivariate Analysis

Correlating categorical and numerical features

```
In [31]: # grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'k', 1: 'w'})
grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6)
grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
grid.add_legend()
```

Out[31]: <seaborn.axisgrid.FacetGrid at 0x17162c07550>

Correlating categorical and numerical features

Observations

Higher fare paying passengers had better survival. Port of embarkation correlates with survival rates.

Decisions

Consider banding Fare feature.

Data Preprocessing

Feature dropping

Creating new feature extracting from existing

5/29/2020

In the following code we extract Title feature using regular expressions. The RegEx pattern (\w+.) matches the first word which ends with a dot character within Name feature. The expand=False flag returns a DataFrame.

Titanic

Out[33]:

JUN		
Title		
Capt	0	1
Col	0	2
Countess	1	0
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
Mile	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6
Sir	0	1

Sex female male

Decisions

We can replace many titles with a more common name or classify them as Rare.

Out[34]:

	Title	Survived
0	Master	0.575000
1	Miss	0.702703
2	Mr	0.156673
3	Mrs	0.793651
4	Rare	0.347826

Decisions

We can convert the categorical titles to ordinal.

```
In [35]: title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
    #dataset['Title'] = dataset['Title'].map(title_mapping)
    #dataset['Title'] = dataset['Title'].fillna(0)

dataset['Title'] = dataset['Title'].replace('Rare', '5')
    dataset['Title'] = dataset['Title'].replace('Master', '4')
    dataset['Title'] = dataset['Title'].replace('Mrs', '3')
    dataset['Title'] = dataset['Title'].replace('Miss', '2')
    dataset['Title'] = dataset['Title'].replace('Mr', '1')
```

Out[35]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	7.2500	S	1
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	71.2833	С	3
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	7.9250	S	2
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	53.1000	S	3
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	8.0500	S	1

In [36]: test df.head()

Out[36]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	892	3	Kelly, Mr. James	male	34.5	0	0	7.8292	Q	1
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	7.0000	S	3
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	9.6875	Q	1
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	8.6625	S	1
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	12.2875	S	3

Decisions

Now droping the Name feature from training and testing datasets and Passengerld feature in the training dataset.

```
In [37]: train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
    test_df = test_df.drop(['Name'], axis=1)
    combine = [train_df, test_df]
    train_df.shape, test_df.shape
Out[37]: ((891, 9), (418, 9))
In [38]: train_df
```

Out[38]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	male	22.0	1	0	7.2500	S	1
1	1	1	female	38.0	1	0	71.2833	С	3
2	1	3	female	26.0	0	0	7.9250	S	2
3	1	1	female	35.0	1	0	53.1000	S	3
4	0	3	male	35.0	0	0	8.0500	S	1
886	0	2	male	27.0	0	0	13.0000	S	5
887	1	1	female	19.0	0	0	30.0000	S	2
888	0	3	female	NaN	1	2	23.4500	S	2
889	1	1	male	26.0	0	0	30.0000	С	1
890	0	3	male	32.0	0	0	7.7500	Q	1

891 rows × 9 columns

Converting a categorical feature

Decisions

Starting by converting Sex feature to a new feature called Gender where female=1 and male=0.

Embarked feature takes S, Q, C values based on port of embarkation. The Training dataset has two missing values. Simply filling these with the most common occurance.

```
In [39]: for dataset in combine:
              dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
          train df.head()
Out[39]:
             Survived Pclass Sex Age SibSp Parch
                                                   Fare Embarked Title
                  0
                              0 22.0
                                              0 7.2500
                             1 38.0
                                              0 71.2833
                                                                    3
                            1 26.0
                                              0 7.9250
                                                                    2
                             1 35.0
                                              0 53.1000
                  0
                             0 35.0
                                        0
                                                 8.0500
In [40]: freq port = train df.Embarked.dropna().mode()[0]
          freq port
Out[40]: 'S'
```

Out[41]:

	Embarked	Survived
0	С	0.553571
1	Q	0.389610
2	S	0.339009

```
In [42]: #for dataset in combine:
# dataset['Embarked'] = dataset['Embarked'].map( {'C': 0, 'Q': 1, 'S':2} ).astype(int)

# we will use get_dummies with that.
train_df_new=pd.get_dummies(train_df, columns=['Embarked'],drop_first=True)
train_df_new
```

Out[42]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Title	Embarked_Q	Embarked_S
0	0	3	0	22.0	1	0	7.2500	1	0	1
1	1	1	1	38.0	1	0	71.2833	3	0	0
2	1	3	1	26.0	0	0	7.9250	2	0	1
3	1	1	1	35.0	1	0	53.1000	3	0	1
4	0	3	0	35.0	0	0	8.0500	1	0	1
886	0	2	0	27.0	0	0	13.0000	5	0	1
887	1	1	1	19.0	0	0	30.0000	2	0	1
888	0	3	1	NaN	1	2	23.4500	2	0	1
889	1	1	0	26.0	0	0	30.0000	1	0	0
890	0	3	0	32.0	0	0	7.7500	1	1	0

891 rows × 10 columns

Out[43]:

	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Title	Embarked_Q	Embarked_S
0	892	3	0	34.5	0	0	7.8292	1	1	0
1	893	3	1	47.0	1	0	7.0000	3	0	1
2	894	2	0	62.0	0	0	9.6875	1	1	0
3	895	3	0	27.0	0	0	8.6625	1	0	1
4	896	3	1	22.0	1	1	12.2875	3	0	1
413	1305	3	0	NaN	0	0	8.0500	1	0	1
414	1306	1	1	39.0	0	0	108.9000	5	0	0
415	1307	3	0	38.5	0	0	7.2500	1	0	1
416	1308	3	0	NaN	0	0	8.0500	1	0	1
417	1309	3	0	NaN	1	1	22.3583	4	0	0

418 rows × 10 columns

In [44]: train_df

Out[44]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Title
0	0	3	0	22.0	1	0	7.2500	S	1
1	1	1	1	38.0	1	0	71.2833	С	3
2	1	3	1	26.0	0	0	7.9250	S	2
3	1	1	1	35.0	1	0	53.1000	S	3
4	0	3	0	35.0	0	0	8.0500	S	1
886	0	2	0	27.0	0	0	13.0000	S	5
887	1	1	1	19.0	0	0	30.0000	S	2
888	0	3	1	NaN	1	2	23.4500	S	2
889	1	1	0	26.0	0	0	30.0000	С	1
890	0	3	0	32.0	0	0	7.7500	Q	1

891 rows × 9 columns

Imputing the null values

```
In [45]: train_df_new.isna().sum()
Out[45]: Survived
                          0
         Pclass
                          0
         Sex
                          0
         Age
                       177
         SibSp
         Parch
                          0
         Fare
                          0
         Title
                          0
         Embarked Q
                          0
         Embarked S
         dtype: int64
In [46]: test_df_new.isna().sum()
Out[46]: PassengerId
                          0
         Pclass
                          0
         Sex
                          0
                         86
         Age
         SibSp
                          0
         Parch
         Fare
                          1
         Title
         Embarked_Q
                         0
         Embarked S
                          0
         dtype: int64
```

In [47]: imputer=KNNImputer(n_neighbors=3, weights='uniform', missing_values=np.nan) new_array=imputer.fit_transform(train_df_new) # impute the missing values #convert the nd-array returned in the step above to a Dataframe train_new_data=pd.DataFrame(data=np.round(new_array), columns=train_df_new.columns) train new data

Out[47]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Title	Embarked_Q	Embarked_S
0	0.0	3.0	0.0	22.0	1.0	0.0	7.0	1.0	0.0	1.0
1	1.0	1.0	1.0	38.0	1.0	0.0	71.0	3.0	0.0	0.0
2	1.0	3.0	1.0	26.0	0.0	0.0	8.0	2.0	0.0	1.0
3	1.0	1.0	1.0	35.0	1.0	0.0	53.0	3.0	0.0	1.0
4	0.0	3.0	0.0	35.0	0.0	0.0	8.0	1.0	0.0	1.0
886	0.0	2.0	0.0	27.0	0.0	0.0	13.0	5.0	0.0	1.0
887	1.0	1.0	1.0	19.0	0.0	0.0	30.0	2.0	0.0	1.0
888	0.0	3.0	1.0	15.0	1.0	2.0	23.0	2.0	0.0	1.0
889	1.0	1.0	0.0	26.0	0.0	0.0	30.0	1.0	0.0	0.0
890	0.0	3.0	0.0	32.0	0.0	0.0	8.0	1.0	1.0	0.0

891 rows × 10 columns

```
In [48]: train_new_data.isna().sum()
Out[48]: Survived
                       0
         Pclass
                       0
         Sex
                       0
         Age
                       0
         SibSp
         Parch
                       0
         Fare
                       0
         Title
                       0
         Embarked_Q
                       0
         Embarked_S
                       0
         dtype: int64
```

In [49]: imputer=KNNImputer(n_neighbors=3, weights='uniform', missing_values=np.nan) new_array=imputer.fit_transform(test_df_new) # impute the missing values #convert the nd-array returned in the step above to a Dataframe test_new_data=pd.DataFrame(data=np.round(new_array), columns=test_df_new.columns) test new data

Out[49]:

	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Title	Embarked_Q	Embarked_S
0	892.0	3.0	0.0	34.0	0.0	0.0	8.0	1.0	1.0	0.0
1	893.0	3.0	1.0	47.0	1.0	0.0	7.0	3.0	0.0	1.0
2	894.0	2.0	0.0	62.0	0.0	0.0	10.0	1.0	1.0	0.0
3	895.0	3.0	0.0	27.0	0.0	0.0	9.0	1.0	0.0	1.0
4	896.0	3.0	1.0	22.0	1.0	1.0	12.0	3.0	0.0	1.0
413	1305.0	3.0	0.0	23.0	0.0	0.0	8.0	1.0	0.0	1.0
414	1306.0	1.0	1.0	39.0	0.0	0.0	109.0	5.0	0.0	0.0
415	1307.0	3.0	0.0	38.0	0.0	0.0	7.0	1.0	0.0	1.0
416	1308.0	3.0	0.0	23.0	0.0	0.0	8.0	1.0	0.0	1.0
417	1309.0	3.0	0.0	22.0	1.0	1.0	22.0	4.0	0.0	0.0

418 rows × 10 columns

All Imputation done.

```
In [51]: combine_new = [train_new_data,test_new_data]
```

Create new feature combining existing features

Decision

Creating new feature for FamilySize = Parch + SibSp. to drop Parch and SibSp from our datasets.

Out[52]:

	FamilySize	Survived
3	4.0	0.724138
2	3.0	0.578431
1	2.0	0.552795
6	7.0	0.333333
0	1.0	0.303538
4	5.0	0.200000
5	6.0	0.136364
7	8.0	0.000000
8	11.0	0.000000

Decision

Creating another feature called IsAlone.

Decision

Droping Parch, SibSp, and FamilySize features in favor of IsAlone.

1 0.303538

```
In [54]: train1_df = train_new_data.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
    test1_df = test_new_data.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
    combine1 = [train1_df, test1_df]
    train1_df
```

Out[54]:

	Survived	Pclass	Sex	Age	Fare	Title	Embarked_Q	Embarked_S	IsAlone
0	0.0	3.0	0.0	22.0	7.0	1.0	0.0	1.0	0
1	1.0	1.0	1.0	38.0	71.0	3.0	0.0	0.0	0
2	1.0	3.0	1.0	26.0	8.0	2.0	0.0	1.0	1
3	1.0	1.0	1.0	35.0	53.0	3.0	0.0	1.0	0
4	0.0	3.0	0.0	35.0	8.0	1.0	0.0	1.0	1
886	0.0	2.0	0.0	27.0	13.0	5.0	0.0	1.0	1
887	1.0	1.0	1.0	19.0	30.0	2.0	0.0	1.0	1
888	0.0	3.0	1.0	15.0	23.0	2.0	0.0	1.0	0
889	1.0	1.0	0.0	26.0	30.0	1.0	0.0	0.0	1
890	0.0	3.0	0.0	32.0	8.0	1.0	1.0	0.0	1

891 rows × 9 columns

In [55]: test1_df

Out[55]:

	Passengerld	Pclass	Sex	Age	Fare	Title	Embarked_Q	Embarked_S	IsAlone
0	892.0	3.0	0.0	34.0	8.0	1.0	1.0	0.0	1
1	893.0	3.0	1.0	47.0	7.0	3.0	0.0	1.0	0
2	894.0	2.0	0.0	62.0	10.0	1.0	1.0	0.0	1
3	895.0	3.0	0.0	27.0	9.0	1.0	0.0	1.0	1
4	896.0	3.0	1.0	22.0	12.0	3.0	0.0	1.0	0
413	1305.0	3.0	0.0	23.0	8.0	1.0	0.0	1.0	1
414	1306.0	1.0	1.0	39.0	109.0	5.0	0.0	0.0	1
415	1307.0	3.0	0.0	38.0	7.0	1.0	0.0	1.0	1
416	1308.0	3.0	0.0	23.0	8.0	1.0	0.0	1.0	1
417	1309.0	3.0	0.0	22.0	22.0	4.0	0.0	0.0	0

418 rows × 9 columns

Decision

There is positive correlation between Gender and Survived. There is positive correlation between Title and Survived.

There is negative correlation between PClass and Fare.

We will further investigate using VIF.

Distribution for our continous data in the dataset:

```
In [57]: columns = ['Age', 'Fare']
         plt.figure(figsize=(10,15),facecolor='white')
         plotnumber = 1
         for column in columns:
             ax = plt.subplot(3,2,plotnumber)
             sns.distplot(train1_df[column])
             plt.xlabel(column,fontsize=10)
             plotnumber+=1
         plt.show()
         plt.figure(figsize=(10,15),facecolor='white')
         plotnumber = 1
         for column in columns:
             ax = plt.subplot(3,2,plotnumber)
             sns.distplot(train1 df[column])
             plt.xlabel(column,fontsize=10)
             plotnumber+=1
         plt.show()
```


Before doing log transformation, let's add 1 to each valuue in the column to handle exception when we try to find log of '0'.

Age seems to follow Gaussian whereas Fare is heavily left skewed

```
In [58]: columns = ['Fare']
    plt.figure(figsize=(10,15),facecolor='white')
    plotnumber = 1

plt.figure(figsize=(10,15),facecolor='white')
    plotnumber = 1

for column in columns:
        train1_df[column]+=1
        ax = plt.subplot(3,2,plotnumber)
        sns.distplot(np.log(train1_df[column]))
        plt.xlabel(column,fontsize=10)
        plotnumber+=1
    plt.show()
```

<Figure size 720x1080 with 0 Axes>


```
In [59]: imputer=KNNImputer(n neighbors=3, weights='uniform', missing values=np.nan)
         new_array=imputer.fit_transform(train1_df) # impute the missing values
         #convert the nd-array returned in the step above to a Dataframe
         train1 df=pd.DataFrame(data=np.round(new array), columns=train1 df.columns)
         train1 df
         train1 df.isna().sum(),test1 df.isna().sum()
Out[59]: (Survived
                         0
          Pclass
                         0
          Sex
                         0
          Age
          Fare
          Title
                         0
          Embarked Q
                         0
          Embarked S
                         0
          IsAlone
                         0
          dtype: int64,
          PassengerId
          Pclass
                          0
          Sex
                          0
          Age
          Fare
          Title
          Embarked_Q
          Embarked S
          IsAlone
          dtype: int64)
```

In [60]: train1_df.head()

Out[60]:

	Survived	Pclass	Sex	Age	Fare	Title	Embarked_Q	Embarked_S	IsAlone
0	0.0	3.0	0.0	22.0	8.0	1.0	0.0	1.0	0.0
1	1.0	1.0	1.0	38.0	72.0	3.0	0.0	0.0	0.0
2	1.0	3.0	1.0	26.0	9.0	2.0	0.0	1.0	1.0
3	1.0	1.0	1.0	35.0	54.0	3.0	0.0	1.0	0.0
4	0.0	3.0	0.0	35.0	9.0	1.0	0.0	1.0	1.0

```
In [61]: scaler =StandardScaler()
X_scaled = scaler.fit_transform(train1_df.drop("Survived", axis=1))
```

```
In [62]: from statsmodels.stats.outliers_influence import variance_inflation_factor
    variables = X_scaled

# we create a new data frame which will include all the VIFs
# note that each variable has its own variance inflation factor as this measure is variable specific (not model s
    pecific)
# we do not include categorical values for mulitcollinearity as they do not provide much information as numerical
    ones do
    vif = pd.DataFrame()

# here we make use of the variance_inflation_factor, which will basically output the respective VIFs
    vif["VIF"] = [variance_inflation_factor(variables, i) for i in range(variables.shape[1])]
# Finally, I like to include names so it is easier to explore the result
    vif["Features"] = train1_df.drop("Survived", axis=1).columns
    vif
```

Out[62]:

	VIF	Features
0	1.848594	Pclass
1	1.406100	Sex
2	1.311556	Age
3	1.583601	Fare
4	1.517758	Title
5	1.513002	Embarked_Q
6	1.444956	Embarked_S
7	1.343274	IsAlone

Decision

As we see the vif of all columns are less than 5, therefore there is no multicollinearity

Check for outliers

```
In [63]: fig, ax = plt.subplots(figsize=(15,10))
sns.boxplot(data=train1_df, width= 0.5,ax=ax, fliersize=3)
```

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0x171618fe7c0>


```
In [64]: q = train1_df['Age'].quantile(0.95)
# we are removing the top 5% data from the Age column
train1_df = train1_df[train1_df['Age']<q]

q = train1_df['Title'].quantile(0.99)
# we are removing the top 1% data from the Title column
train1_df = train1_df[train1_df['Title']<q]

q = train1_df['Embarked_Q'].quantile(0.99)
# we are removing the top 1% data from the Embarked_Q column
train1_df = train1_df[train1_df['Embarked_Q']<q]</pre>
```

Check for Imbalance Dataset

```
In [66]: | sns.countplot(train1_df['Survived'])
```

Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0x1716429b040>

Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0x17164052130>

Decision

The dataset got balanced using RandomOverSampler.

ML Training and Prediction

KNN or k-Nearest Neighbors

Support Vector Machines

Naive Bayes classifier

Decision Tree

Random Forrest

Decision Tree

```
In [70]: decision_tree = DecisionTreeClassifier()
   #decision_tree.fit(X_train, Y_train)
   decision_tree.fit(x_sampled,y_sampled)
   Y_pred = decision_tree.predict(X_test)
   acc_decision_tree = round(decision_tree.score(x_sampled,y_sampled) * 100, 2)
   acc_decision_tree

Out[70]: 97.11

In [71]: submission = pd.DataFrame({
        "PassengerId": test_new_data["PassengerId"],
        "Survived": Y_pred
        })
      submission.to_csv('./output/submission.csv', index=False)
```

Support Vector Machines

```
In [72]: # Support Vector Machines

svc = SVC()
svc.fit(x_sampled,y_sampled)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(x_sampled,y_sampled) * 100, 2)
acc_svc
Out[72]: 69.06
```

k-Nearest Neighbors algorithm

```
In [73]: knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(x_sampled,y_sampled)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(x_sampled,y_sampled) * 100, 2)
acc_knn
Out[73]: 86.83
```

Naive Bayes classifiers

```
In [74]: gaussian = GaussianNB()
    gaussian.fit(x_sampled,y_sampled)
    Y_pred = gaussian.predict(X_test)
    acc_gaussian = round(gaussian.score(x_sampled,y_sampled) * 100, 2)
    acc_gaussian
Out[74]: 77.62
```

Random Forests

Model evaluation

Out[76]:

	Model	Score
2	Random Forest	97.11
4	Decision Tree	97.11
1	KNN	86.83
3	Naive Bayes	77.62
0	Support Vector Machines	69.06

```
In [ ]:
```

In []: