Linguagens Formais e Autômatos

Prof: Maurilio Martins Campano Júnior

Formas Normais

- Suponha uma GLC = (V, T, P, S), onde P é formada de acordo com as seguintes regras (suponha que A, B, C são variáveis de V e a é terminal de T):
 - Forma Normal de Chomsky
 - $A \rightarrow BC$
 - $A \rightarrow a$
 - Forma Normal de Greibach
 - $A \rightarrow a\alpha$

• Uma GLC = (V, T, P, S), é dita estar na Forma normal de Greibach se todas as suas produções são da forma (suponha que A é uma variável de V, a é terminal de T e $\alpha \in V^*$):

• $A \rightarrow a\alpha$

 Portanto, a palavra vazia não pertence à linguagem gerada por uma gramática na FNC

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 1: Simplificação da gramática
 - Etapa 2: Renomeação das variáveis em uma ordem crescente qualquer
 - Etapa 3: transformação de produções para a forma $A_r \to A_s \alpha$ onde $r \le s$
 - Etapa 4: exclusão das recursões da forma $A_r \rightarrow A_r \alpha$
 - Etapa 5: um terminal no início do lado direito de cada produção
 - Etapa 6: produções na forma $A \rightarrow a\alpha$ onde α é composta por variáveis

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 1: Simplificação da gramática
 - Análoga à correspondente etapa do algoritmo referente à FNC

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 2: Renomeação das variáveis em uma ordem crescente qualquer
 - As variáveis da gramática são renomeadas em uma ordem crescente qualquer, como, por exemplo, A₁, A₂, ..., A_n, em que n é o cardinal do conjunto de variáveis. Diferentes critérios de renomeação podem resultar em diferentes gramáticas na forma normal de Greibach. Entretanto, todas são equivalentes (geram a mesma linguagem)

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 3: transformação de produções para a forma $A_r \to A_s \alpha$ onde $r \le s$
 - As produções são modificadas, garantindo que a primeira variável do lado direito é maior ou igual que a do lado esquerdo, considerando-se a ordenação da etapa anterior. As produções $A_r \rightarrow A_s \alpha$ tais que r > s são modificadas, substituindo-se a variável As pelas suas correspondentes produções $(A_s \to \beta_1 \mid ... \mid \beta_m)$, resultando em $A_r \to \beta_1 \alpha \mid$ $\beta_m \alpha$ e assim sucessivamente. Entretanto, como o conjunto de variáveis é finito, existe um limite para as produções crescentes, que pode ser a geração de um terminal $(A_r \rightarrow$ $a\alpha$) ou de uma recursão $(A_r \rightarrow A_r \alpha)$

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 4: exclusão das recursões da forma $A_r \rightarrow A_r \alpha$
 - As recursões (à esquerda) podem existir originalmente na gramática, ou serem geradas pela etapa anterior. A eliminação da recursão pode ser realizada, introduzindo-se variáveis auxiliares e incluindo-se recursão à direita ($B_r \rightarrow \alpha B_r$)

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 5: um terminal no início do lado direito de cada produção
 - Após a execução da etapa anterior, todas as produções da forma A_r → A_sα são tais que r < s. Consequentemente, as produções da maior variável A_n só podem iniciar por um terminal no lado direito. Assim, se, em A_{n-1} → A_nα, for substituído A_n pelas suas correspondentes produções (exemplo: A_{n-1} → aβα). A repetição do algoritmo para A_{n-2}, ..., A₁ resultará em produções exclusivamente da forma A_r → aα

- A transformação de uma GLC em uma Gramática na FNG segue os seguintes passos:
 - Etapa 6: produções na forma $A \rightarrow a\alpha$ onde α é composta por variáveis
 - É análoga à correspondente etapa do algoritmo relativo à forma normal de Chomsky

Dado a seguinte GLC, coloque na FNG

- $G = (\{S, A\}, \{a, b\}, P, S), onde:$
 - $S \rightarrow AA \mid a$
 - $A \rightarrow SS \mid b$

- $G = (\{S, A\}, \{a, b\}, P, S), onde:$
 - $S \rightarrow AA \mid a$
 - $A \rightarrow SS \mid b$
- Etapa 1: simplificação
- A gramática já se encontra simplificada

- $G = (\{S, A\}, \{a, b\}, P, S), onde:$
 - $S \rightarrow AA \mid a$
 - $A \rightarrow SS \mid b$
- Etapa 2: renomear
- Substitui S por A₁
- Substitui A por A₂
- $A_1 \rightarrow A_2 A_2 \mid a$
- $A_2 \rightarrow A_1 A_1 \mid b$

- $G = (\{A_1, A_2\}, \{a, b\}, P, A_1), \text{ onde:}$
 - $A_1 \rightarrow A_2 A_2 \mid a$
 - $A_2 \rightarrow A_1 A_1 \mid b$
- Etapa 3: ver se: $A_r \rightarrow A_s$ com $r \le s$, se sim substituir o A_s por o que ele gera
 - Substituindo:
 - $A_1 \rightarrow A_2 A_2 \mid a$
 - $A_2 \rightarrow A_2 A_2 A_1 \mid aA_1 \mid b$
 - Gerou recursão

- $G = (\{A_1, A_2\}, \{a, b\}, P, A_1), \text{ onde:}$
 - $A_1 \rightarrow A_2 A_2 \mid a$
 - $A_2 \rightarrow A_2 A_2 A_1 | aA_1 | b$
- Etapa 4: eliminar $A_r \to A_r X$ e substituir por o que ele gera e $B \to X$ e $B \to XB$ (Tirar a recursão da esquerda e passar para a direita)
 - $A_1 \rightarrow A_2 A_2 \mid a$
 - $A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB$
 - $B \rightarrow A_2A_1 \mid A_2A_1B$

- $G = (\{A_1, A_2, B\}, \{a, b\}, P, A_1), onde:$
 - $A_1 \rightarrow A_2 A_2 \mid a$
 - $A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB$
 - $B \rightarrow A_2A_1 \mid A_2A_1B$
- Etapa 5: ver se $A \rightarrow a\alpha$, (terminal como primeiro elemento)
 - $A_1 \rightarrow aA_1BA_2 \mid bBA_2 \mid aA_1A_2 \mid bA_2 \mid a$
 - $A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB$
 - $B \rightarrow aA_1BA_1 \mid bBA_1 \mid aA_1A_1 \mid bA_1 \mid aA_1BA_1B \mid bBA_1B \mid aA_1A_1B \mid bA_1B \mid aA_1A_1B \mid bA_1B$

- $G = (\{A_1, A_2, B\}, \{a, b\}, P, A_1), onde:$
 - $A_1 \rightarrow aA_1BA_2 | bBA_2 | aA_1A_2 | bA_2 | a$
 - $A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB$
 - $B \rightarrow aA_1BA_1 \mid bBA_1 \mid aA_1A_1 \mid bA_1 \mid aA_1BA_1B \mid bBA_1B \mid aA_1A_1B \mid bA_1B$
- Etapa 6: ver se: A → aα onde α é só variável, se não tiver, cria-se uma variável X e X → terminal
- OK

- Gramática original:
- $G = (\{S, A\}, \{a, b\}, P, S), \text{ onde:}$
 - $S \rightarrow AA \mid a$
 - $A \rightarrow SS \mid b$
- Gramática resultante:
- $G = (\{A_1, A_2, B\}, \{a, b\}, P, A_1), \text{ onde:}$
 - $A_1 \rightarrow aA_1BA_2 | bBA_2 | aA_1A_2 | bA_2 | a$
 - $A_2 \rightarrow aA_1 \mid b \mid aA_1B \mid bB$
 - $B \rightarrow aA_1BA_1 \mid bBA_1 \mid aA_1A_1 \mid bA_1 \mid aA_1BA_1B \mid bBA_1B \mid aA_1A_1B \mid bA_1B$

- a) $G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$, onde:
- P = {
 - $S \rightarrow AB$
 - $S \rightarrow SCB$
 - $S \rightarrow SB$
 - $S \rightarrow bB$
 - $S \rightarrow b$
 - $A \rightarrow a$
 - $A \rightarrow cC$
 - $A \rightarrow c$
 - $B \rightarrow bB$
 - $B \rightarrow b$
 - $C \rightarrow cC$
 - $C \rightarrow c$

- b) $G = (\{S, A, B\}, \{a, c, d\}, P, S)$, onde:
- P = {
 - $S \rightarrow aAd$
 - $S \rightarrow ad$
 - $S \rightarrow Bc$
 - $A \rightarrow Bc$
 - $B \rightarrow Ac$
 - $B \rightarrow a$
 - $B \rightarrow c$

- c) $G = (\{S, A, B\}, \{a, b\}, P, S)$, onde:
- P = {
 - $S \rightarrow ABS \mid BS \mid AS \mid AB \mid aA \mid a \mid aBAb \mid aAb \mid aBb \mid ab$
 - $A \rightarrow aA \mid a$
 - $B \rightarrow aBAb \mid aAb \mid aBb \mid ab$

- d) $G = (\{S, A, B\}, \{a, b\}, P, S)$, onde:
- P = {
 - $S \rightarrow AB$
 - $A \rightarrow aB$
 - $B \rightarrow bbB$
 - $B \rightarrow b$

- e) $G = (\{S, A\}, \{a, b\}, P, S)$, onde:
- P = {
 - $S \rightarrow AbA$
 - $S \rightarrow bA$
 - $S \rightarrow Ab$
 - $S \rightarrow b$
 - $S \rightarrow Aa$
 - $S \rightarrow a$
 - $A \rightarrow Aa$
 - $A \rightarrow a$

- f) $G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$, onde:
- P = {
 - $S \rightarrow AB \mid BCS \mid BS \mid bbB \mid b$
 - $A \rightarrow aA \mid a \mid cC \mid c$
 - $B \rightarrow bbB \mid b$
 - $C \rightarrow cC \mid c$

- g) $G = (\{S, A, B\}, \{a, c, d\}, P, S), onde:$
- P = {
 - $S \rightarrow aAd$
 - $S \rightarrow Bc$
 - $S \rightarrow c$
 - $A \rightarrow Bc$
 - $A \rightarrow c$
 - $B \rightarrow Ac$