

Francesco Sermi

19 agosto 2024

Indice

Capitolo 1 Capitolo 1 Pagina 2 Pagina 2

Capitolo 1

Capitolo 1

(1) se r è razionale $(r \neq 0)$ e x è razionale, provare che r + x e rx sono irrazionali

Dimostrazione: Supponiamo per assurdo che $r \in \mathbb{Q}$ e x sia irrazionale, mentre r + x e rx siano razionali. Allora, $r + x = \frac{m}{n}$ con $m, n \in \mathbb{Z}$. Ma siccome $r \in \mathbb{Q} \implies \exists p, q \in \mathbb{Z} : r = \frac{p}{q}$ e

$$r + x = \frac{p}{q} + x = \frac{m}{n} \implies x = \frac{p}{q} - \frac{m}{n} = \frac{pn - qm}{qn} \implies x \in \mathbb{Q}$$

il che è assurdo.

Procediamo con rx alla solita maniera: se $rx \in \mathbb{Q} \implies \exists m, n \in \mathbb{Z} : rx = \frac{m}{n}$. Ma allora, sapendo che $r = \frac{p}{q}$ con $p, q \in \mathbb{Z}$ in virtù della sua razionalità, $x = \frac{m}{nr} = \frac{mq}{np} \implies x \in \mathbb{Q}$ il che è nuovamente assurdo.

(2) Provare che non esiste razionale q tale che $q^2 = 12$

Dimostrazione: si osservi il seguente lemma (di cui non daremo dimostrazione)

Lemma 1.1 (di Euclide)

Sia $n \in \mathbb{Z}$ e n è primo. Se n|ab e a è coprimo con b (o viceversa) allora $n|a \vee n|b$

Supponiamo per assurdo che $\exists q \in \mathbb{Q} : q^2 = 12$. Data la razionalità di q abbiamo che esistono $m, n \in \mathbb{Z} : q = \frac{m}{n}$ e m e n coprimi fra allora. Ciò implica che:

$$\frac{m}{n} = \sqrt{12} \implies \frac{m^2}{n^2} = 12 \implies m^2 = 12n^2$$

Questo vuol dire che m è pari. Siccome $2|m \implies \exists k \in \mathbb{Z} : m = 2k$ e dunque

$$m^2 = (2k)^2 = 4k^2 = 12n^2 \implies k^2 = 3n^2$$

Siccome il lato destro è divisibile per 3 allora si deve avere che anche il lato sinistro è divisibile per 3 e dunque, per il lemma di Euclide, si osserva che si deve avere che $3|k \implies \exists q \in \mathbb{Z} : k = 3q$. Si deduce che

$$k^2 = 9q^2 = 3n^2 \implies n^2 = 3q^2$$

dunque n^2 è divisibile per 3 e, sempre per il lemma di Euclide, n è divisibile per 3. Ma allora si giunge ad un assurdo siccome m=2k con 3|k e 3|n contro l'ipotesi di coprimità fra m e n

Un'ulteriore dimostrazione poteva essere effettuata basandosi sul fatto che $\sqrt{12} = 2\sqrt{3}$ dunque, tramite l'esercizio 1, sappiamo che rx è irrazionale se x è irrazionale e r razionale quindi la dimostrazione si riduceva a provare che $\sqrt{3}$ è irrazionale.

(3) Provare la seguente proposizione

Proposizione 1.1 Conseguenze degli assiomi moltiplicativi di cui gode il campo $\mathbb R$

Gli assiomi moltiplicativi di cui gode \mathbb{R} implicano le seguenti proprietà:

- ① Se $x \neq 0$ e $xy = xz \implies y = z$ ② Se $x \neq 0$ e $xy = x \implies y = 1$ ③ Se $x \neq 0$ e $xy = 1 \implies y = x^{-1}$
- 4 Se $x \neq 0$ mostrare che $(x^{-1})^{-1} = x$

Dimostrazione: per dimostrare la ①, banalmente, si ha che:

La ② segue direttamente dalla prima ponendo z=1, così come la ③ ponendo $z=x^{-1}$. Per la ④ si osserva che siccome $\forall x \neq 0, xx^{-1} = 1$ allora $\frac{1}{x}(\frac{1}{x})^{-1} = 1 \implies x\frac{1}{x}(\frac{1}{x})^{-1} = x \implies (\frac{1}{x})^{-1} = x$

(4) Sia $E \subset A$ con A insieme ordinato (totalmente? Il Rudin non ce lo fa sapere ma è abbastanza probabile). Supponiamo che α sia un minorante di E e β sia un maggiorante di E. Provare che $\alpha \leq \beta$

Dimostrazione: per definizione abbiamo che se α è un minorante allora $\forall x \in E, \alpha \leq x$ e se β è un maggiorante allora $\forall x \in E, x \leq \beta$. Per transitività si ha che $\alpha \leq \beta$

(5) Sia A un insieme non vuoto di numeri reali che è limitato inferiormente. Sia -A l'insieme di tutti i numeri -x, con $x \in A$. Mostrare che

$$\inf A = -\sup (-A)$$

Dimostrazione: sia $y \in \mathbb{R}$ un minorante di A. Allora si osserva che, per definizione, $\forall x \in A, y \leqslant x \implies$ $-y \ge -x$ dunque -A sarà limitato superiormente. Siccome $\forall E \subset \mathbb{R} \implies \exists \sup E, \inf E \in \mathbb{R}$ allora sappiamo che -A avrà $\sup(-A) \in \mathbb{R}$ che denoteremo con $z = \sup(-A)$ e mostriamo la tesi, ovvero che $\sup(-A) = -\inf A$: dobbiamo mostrare che -z è l'estremo inferiore. Per farlo si osserva che se $w > -z \implies z > -w$ dunque -wnon è un maggiorante di -A dunque $\exists y = -x (x \in A \text{ per def.}) \in -A, z > y > -w \implies -z < -y < w$ ma siccome $-y = -(-x) = x \implies x < w$ dunque w non è un minorante di A. Se invece supponiamo esista $w \in A: w < -z \implies -w > z \text{ ma } -w \in -A \text{ il che è assurdo siccome } \nexists w \in -A: w > \sup(-A)$. Dunque possiamo concludere che inf $A = -\sup(-A)$ siccome abbiamo dimostrato che:

- \bigcirc -z è un minorante di A;
- (2) $\forall x > -z \implies x \text{ non è un minorante}$
- (6) Fissato b > 1
 - (a) Se $m,n,p,q\in\mathbb{Z}, n>0, q>0$ e $r=\frac{m}{n}=\frac{p}{q}$ mostrare che

$$(b^m)^{\frac{1}{n}} = (b^p)^{\frac{1}{q}}$$

П

Dunque ha senso definire $b^r = (b^m)^{\frac{1}{n}}$

- (b) Mostrare che $b^{r+s}=b^rb^s$ se $r,s\in\mathbb{Q}$
- (c) Se x è reale, definiamo B(x) come l'insieme di tutti i numeri b^t , dove t è un numero razionale e $t \leq x$. Mostrare che

$$b^r = \sup B(r)$$

dunque ha senso definire

$$b^x = \sup B(x)$$

 $\forall x \in \mathbb{R}$

(d) Mostrare che $b^{x+y} = b^x b^y \forall x, y \in \mathbb{R}$

Dimostrazione: Per mostrare (a) si osserva che, dal teorema 1.21, si deve avere che esistono due numeri reali r_1 e r_2 che identificano univocamente $(b^m)^{\frac{1}{n}}$ e $(b^p)^{\frac{1}{q}}$ rispettivamente. La tesi dunque si ottiene mostrando che $r_1 = r_2$. Si osserva che $(r_1)^n = b^m$ e $(r_2)^q = b^p$ e, siccome r è razionale, possiamo scrivere che m = rn e p = rq. Dunque

$$(r_1)^n = b^{rn} (r_2)^q = b^{rq}$$

ma elevando la prima eguaglianza da entrambi le parti per q e la seconda per n si ottiene che

$$(r_1)^{nq} = b^{rnq}, (r_2)^{nq} = b^{nqr} \implies r_1 = r_2$$

Per mostrare la (b) si osserva che se $r,s\in\mathbb{Q}$ allora si ha che $\exists m,n,p,q\in\mathbb{Z}:r=\frac{m}{n}\,\mathrm{e}\,s=\frac{p}{q}.$ Dunque

$$b^{r+s} = b^{\frac{m}{n} + \frac{p}{q}} = b^{\frac{mq + np}{nq}}$$

come prima sappiamo che esisteranno r_1 e r_2 univocamente determinati tali che $r_1 = b^{r+s}$ e $r_2 = b^r b^s$ e vogliamo mostrare che $r_1 = r_2$. Adesso si osserva che

$$(b^{r+s})^{nq} = b^{mq+np} = (r_1)^{nq}$$

e

$$(b^r b^s)^{nq} = (b^r)^{nq} (b^s)^{nq} = (b^{\frac{m}{n}})^{nq} (b^{\frac{p}{q}})^{nq} = b^{mq} b^{pn} = b^{mq+np}$$

dunque $(b^{r+s})^{nq} = (b^r b^s)^{nq} \implies b^{r+s} = b^r b^s$.

Per mostrare la (c) bisogna innanzitutto osservare che, definendo B(x) come sopra si ha che, dati $t, s \in B(x), t \le s \implies b^t \le b^s$. Si può mostrare questo fatto in maniera abbastanza semplice ricordando come viene definita la relazione d'ordine \le sui razionali:

Lemma 1.2 b^x è crescente con $x \in \mathbb{Q}$

 b^x ristretta ai razionali è una funzione crescente

Dimostrazione: Supponiamo che $s,t \in \mathbb{Q}$ con $s \leq t$. Siccome s e t sono razionali, allora esisteranno $m,n,p,q \in \mathbb{Z}$ tali che $s = \frac{m}{n}$ e $t = \frac{p}{q}$. Dunque abbiamo che $s \leq t \iff mq \leq np$. Abbiamo che $b^s = (b^m)^{\frac{1}{n}}$ e $b^t = (b^p)^{\frac{1}{q}}$ e sappiamo che questi numeri identificano in maniera univoca, grazie al teorema 1.21, due distinti numeri reali (tranne nel caso in cui s = t). Si osserva che se $r_1 = (b^m)^{\frac{1}{n}} \implies (r_1)^n = b^m \implies (r_1)^{nq} = b^{mq} < b^{np} = (r_2)^{nq} \implies r_1 \leq r_2$ (prendere la radice non cambia la direzione della disuguaglianza siccome possiamo sfruttare l'identità $b^n - a^n = (b - a) \sum_{i=1}^n b^{n-i} a^{i-1}$ e osservare che $b^n \geq a^n \iff b \geq a$) □

Se consideriamo B(r) con r razionale, allora si ha banalmente che $b^r \in B(r)$ e dev'essere l'estremo superiore: infatti, se consideriamo $t > r \implies b^t > b^r$, dunque $b^t > b^r \geqslant b^x \implies b^t > b^x \forall x : b^x \in B(r)$ dunque t è un maggiorante di B(r). Mostriamo che $\forall x < r : b^x$ non è un maggiorante: se per assurdo $\exists \alpha < r : b^\alpha$ è maggiorante, allora $\forall y \leqslant \alpha, y \leqslant \alpha < r \implies b^y \leqslant b^\alpha < b^r$ il che è assurdo siccome $r \in B(r)$ e abbiamo che $b^\alpha < b^r \leqslant b^\alpha$. Per mostrare la (d) si osserva che dobbiamo mostrare, per il punto precedente, che sup $B(x + y) = \sup B(x) \sup B(y) = b^x b^y$. Per fare ciò faremo uso del seguente lemma

Lemma 1.3 Unicità del sup e inf

Sia $A \subseteq \mathbb{R}$ un insieme non vuoto limitato superiormente (inferiormente). Allora sup A (inf A) esiste ed è unico

Dimostrazione: l'esistenza del sup A è garantita dall'assioma di completezza (o di Dedekind) dei reali. Per dimostrare l'unicità, supponiamo per assurdo che il sup non sia unico ed esistano $m = \sup A$ $m' = \sup A$ con $m \neq m'$. Allora, per come è definito il sup, dobbiamo avere che $m \leq m'$ e $m' \leq m$ (siccome sia m e m' sono dei maggioranti e, per la precisione, il minore dei maggioranti) $\implies m = m'$

Torniamo all'esercizio e definiamo, prima di procedere, la sezione di Dedekind prodotto $B(x)B(y) = \{x \in \mathbb{Q} : \exists s \in B(x), t \in B(y) : x = st\}$ e si osserva che $\forall b^s \in B(x)$ e $\forall b^t \in B(y) \implies b^s b^t = b^{s+t} \in B(x+y)$ siccome $s \leq x$ e $t \leq y$ dunque $s+t \leq x+y$ dunque $B(x)B(y) \subseteq B(x+y)$. Tuttavia si osserva che $\forall z \in \mathbb{R} : b^z \in B(x+y)$ possiamo considerare invece i numeri razionali che soddisfano la seguente proprietà t-x e consideriamo a questo punto <math>g = t-p da cui avremo che g = t-p da cui avremo che g

$$b^t = b^{p+q} \stackrel{\text{per quanto visto sopra}}{=} b^p b^q \implies b^t \in B(x) B(y) \implies B(x+y) \subseteq B(x) B(y)$$

In conclusione, abbiamo quindi mostrato che B(x)B(y) = B(x+y). Ora però dobbiamo mostrare che sup $B(x+y) = \sup B(x)\sup B(y)$: si osserva innanzitutto che sup $B(x+y) = \sup B(x)B(y) \le \sup B(x)\sup B(y)$. Mostriamo che il sup $B(x)\sup B(y)$ è estremo superiore dell'insieme B(x)B(y), osservando che

- ① $\sup B(x) \sup B(y) \ge \sup B(x)B(y) \ge x \implies \sup B(x) \sup B(y) \ge x \ \forall x \in B(x)B(y) \ \text{dunque } \sup B(x) \sup B(y) \ \text{è maggiorante}.$
- ② $\forall x < \sup B(x) \sup B(y) : x$ non è un maggiorante. Per mostrare questo fatto si mostra che $\sup B(x)B(y) = \sup B(x) \sup B(y)$ per assurdo, supponendo (in virtù di quanto detto prima) che $\sup B(x)B(y) < \sup B(x) \sup B(y) \Longrightarrow \frac{\sup B(x)B(y)}{\sup B(y)} < \sup B(x)$ e, sempre ragionando alla stessa maniera, possiamo concludere che $\frac{\sup B(x)B(y)}{\sup B(x)} < \sup B(y)$: si osserva che la quantità $\frac{\sup B(x)B(y)}{\sup B(y)}$ non è un maggiorante di B(x) (per definizione di $\sup B(x)$ di cui la quantità $\frac{\sup B(x)B(y)}{\sup B(y)}$ è minore) e dunque $\exists r \in \mathbb{Q} : b^r \in B(x) : \frac{\sup B(x)B(y)}{\sup B(y)} < b^r \implies \frac{\sup B(x)B(y)}{b^r} < \sup B(y)$ $\Longrightarrow \exists s \in \mathbb{Q} : b^s \in B(y) : \frac{\sup B(x)B(y)}{b^r} < b^s$ (perché, ragionando come prima, se la quantità $\frac{\sup B(x)B(y)}{b^r} < \sup B(y)$ deve esistere un numero razionale per cui la disuguaglianza è stretta). Ma allora si giunge ad un assurdo siccome $\sup B(x)B(y) = \sup B(x+y) < b^s b^t = b^{s+t} \in B(x+y)$ che è un assurdo.

Dunque
$$\sup B(x+y) = \sup B(x) \sup B(y) \implies b^{x+y} = b^x b^y \forall x, y \in \mathbb{R}$$