Por lo tanto usando el estadístico F_0 :

$$\mathbf{F_0} = \frac{\frac{SS(MR)_{RES} - SS(MC)_{RES}}{r}}{\frac{SS(MC)_{RES}}{n-p}}$$
 r=1, n-p=43

 $\operatorname{Como} F_0 = 1.447290828 < F_{1,43}(.05) = 5.39458 \\ noserechazala \\ hip \acute{o}tesis \\ deque ambos \\ coeficientes \\ puedans \\ eriguales.$

Problema 5

En el modelo propuesto en ii) analice los residuales estudentizados para la presencia de valores atípicos (en las x's o en las y's). Indique si existen observaciones influyentes. Pruebe la hipótesis de normalidad de los residuales.

Atípicos en las x's				
Balanceo				
1	0.357377			
25	0.331524			
44	0.343169			

Ya que su balanceo hii es mayor a .2 que equivale a la formula 2*p/n.

Valor de Corte: 0.6325

Valores por Arriba del Valor de Corte				
	DFFITS			
AK(1)	0.726278			
IN(15)	0.654614			
NV(33)	1.50044			

	CONSTANT	INC	PL	UR	VT	MS res
SIN AK (1)	-22.4101	0.0181473	0.727403	0.11044	-0.267466	450.391
SIN IN (15)	-46.4902	0.0231631	0.764065	0.0992132	-0.263587	449.876
SIN NV(33)	-80.0495	0.0226291	0.81956	0.0995557	-0.212537	350.058

Resultan ser entonces las observaciones 1, 15, 25, 33 y 44 son puntos influyentes y/o atípicos. La observación mas influyente resultó ser NV (33), ya que al no inlcuirla en el modelo cambian más notoriamente los coeficientes de los regresores, así como el MS res.

Prueba de normalidad: