ISFG Summer School 2025 - Workshops 10.1 and 10.2

Kinship Statistics and Pedigree Analysis

Teachers

Magnus Dehli Vigeland
Thore Egeland

Home page:

https://magnusdv.github.io/pedsuite/articles/web_only/course-isfg2025.html

Schedule

The course runs from 08 to 12 (CEST) each day, with a 15 minute break in the middle. The following schedule is tentative:

Sept 4 (Thu). Pedigree analysis: Basic

- 08:00-09:00 Pedigrees and measures of relatedness (MDV)
- 09:00-10:00 Exercises I
- 10:00–10:15 Break
- 10:15–11:00 Kinship testing (TE)
- 11:00–11:45 <u>Exercises II</u>
- 11:45–12:00 Summary and discussion

Sept 5 (Fri). Pedigree analysis: Advanced

- 08:00-09:00 Relatedness inference and pedigree reconstruction (MDV)
- 09:00–10:00 Exercises III
- 10:00–10:15 *Break*
- 10:15-11:00 Disaster victim identification (TE)
- 11:00–11:45 Exercises IV
- 11:45–12:00 Summary and discussion

Lecture 3: Relatedness inference and pedigree reconstruction

ISFG Summer School 2025 - Workshop 10.2

Kinship Statistics and Pedigree Analysis: Advanced

Magnus Dehli Vigeland

Recap: Identity by descent (IBD)

Recap: IBD coefficients

How many alleles are IBD in each locus?

Definition

- $\kappa_0 = P(0 \text{ alleles IBD})$
- $\kappa_1 = P(1 \text{ alleles IBD})$
- $\kappa_2 = P(2 \text{ alleles IBD})$

(at random autosomal locus)

Recap: Realised relatedness

Part I: Inference of *pairwise* relatedness

Pairwise inference: Main approaches

A. Based on IBD coefficients

- Typically with STR markers
- Maximum-likelihood estim.
- Assumes independence

- Complexity: Easy
- Accuracy: Poor (except PO/MZ)
- Scope: Close relationships

OLD SCHOOL

B. Based on IBD segments

- Requires lots of SNPs
- Two steps:
 - 1) SNPs \rightarrow IBD segments
 - 2) IBD segments → relatedness(Often different software)
- Complexity: Medium/high
- Accuracy: Better
- Scope: Close + distant

MODERN

Approach A

Maximum likelihood estimation of $\kappa = (\kappa_0, \kappa_1, \kappa_2)$

- Thompson (1975)
 - Given: marker genotypes for two individuals
 - The likelihood function

$$L(\kappa) = P(genotypes \mid \kappa)$$

- Find the point k which maximizes L!
 - Called the <u>maximum likelihood estimate</u> (MLE)
- Assumptions:
 - known allele freqs
 - HWE
 - no inbreeding

What are we estimating?

Answer: The *realised* coefficients!

Implementations

R

- pedsuite (forrel)
- SNPrelate, GWASTools (optimized for association studies)
- CrypticIBDcheck (as above, slow with many markers)
- +++

Other

- PLINK
- KING
- Beagle
- **-** +++

ibdsim2

ᅋᇼᄋ

ribd

pedt ols

pedprobr

paramlink2

segregatr

pedbuildr

Pairwise inference in R

Key functions

```
> ibdEstimate()  # estimate kappa
> showInTriangle()  # visualize!
> ibdBootstrap()  # bootstrap confidence
> checkPairwise()  # detect pedigree errors
```

Simulation

```
> markerSim()  # iid markers
> profileSim()  # complete profiles

(Both of these support conditioning on known genotypes)
```


Pairwise inference in R: Example


```
Simulate 100 SNPs for a pair of siblings
> library(pedsuite) # includes forrel
```

```
> ids = c("Al", "Bob")
> x = nuclearPed(children = ids)
```

> **x**

```
id fid mid sex <1> <2> <3> <4> <5>
```

Al 1 2 1 1/1 1/2 1/1 1/2 2/2

Bob 1 2 1 1/1 1/2 1/1 1/2 2/2

Only 5 (out of 100) markers are shown.

Pairwise inference in R: Example

Estimate kappa from the data

```
> k = ibdEstimate(dat)
```

> **k**

```
id1 id2 N k0 k1 k2
Al Bob 100 0.1486 0.55139 0.30002
```

- > showInTriangle(k, labels = T)

Application: Detecting pedigree errors

- Suppose x is a pedigree object with marker data
- The function checkPairwise(x) computes:
 - pedigree-based kappa for all pairs:
 kappaIBD(x)
 - marker-based kappa estimates for all pairs: ibdEstimate(x)
 - LR comparing the two (actually: generalised LR*)
 - Color-coded plot according to relationship claimed by pedigree

^{*}Egeland & Vigeland (FSI:Genetics, 2025): Kinship cases with partially specified hypotheses.

checkPairwise(): Example 1

checkPairwise(): Example 2

checkPairwise(): Example 2 - corrected

Pairwise inference: Main approaches

A. Based on coefficients

- Typically with STR markers
- Maximum-likelihood estim.
- Assumes independence

- Complexity: Easy
- Accuracy: Poor (except PO/MZ)
- Scope: Close relationships

OLD SCHOOL

B. Based on IBD segments

- Requires lots of SNPs
- Two steps:
 - 1) SNPs \rightarrow IBD segments
 - 2) IBD segments → relatedness(Often different software)
- Complexity: Medium/high
- Accuracy: Better
- Scope: Close + distant

MODERN

Remember: IBD comes in segments

Software for IBD detection

- More than 30 published programs!
- But beware: Some of them ...
 - require > N markers (N = huge number)
 - require > M samples
 - require phased data
 - require massive installation+setup
 - don't work
 - don't exist anymore

Most unsuitable for forensic applications

1	Software	Reference	Comments
2	PLINK	Purcell et al., 2007	Probabilistic,
3	BEAGLE HMM	Browning and Browning, 2007	Probabilistic,
4	GERMLINE	Gusev et al., 2009	Not probabili
5	Relate	Albrechtsen et al., 2009	Probabilistic,
6	KING	Manichaikul et al., 2010	
7	BEAGLE IBD	Browning and Browning, 2010	Probabilstic, I
8	fastIBD	Browning and Browning, 2011	
9	DASH	Gusev et al., 2011	
10	MCMC_IBDfinder	Moltke et al., 2011	
11	IBDLD	Han and Abney, 2011	Probabilistic,
12	ERSA	Huff et al., 2011	
13	IBD_Haplo	Brown et al., 2012	Probabilistic,
14	Refined IBD	Browning and Browning, 2013a	
15	IBDseq	Browning and Browning, 2013b	
16	IBD-Groupon	He, 2013	
17	HapFABIA	Hochreiter, 2013	
18	PREST-plus	Sun and Dimitromanolakis, 2014	Likelihood
19	Parente2	Rodriguez et al., 2015	
20	FISHR	Bjelland et al., 2017	
21	hmmIBD	Schaffner et al., 2018	Hidden Marko
22	DRUID	Ramstetter et al., 2018	
23	TRUFFLE	Dimitromanolakis et al., 2019	
24	RaPID	Naseri et al., 2019	PBWT on pha
25	TRIBES	Twine et al., 2019	
26	FastSMC	Nait Saada et al., 2020	Hash/Extend
27	IBIS	Seidman et al., 2020	Sliding Windo
28	Hap-IBD	<u>Zhou et al., 2020</u>	Error adjusted
29	iLash	Shemirani et al., 2021	Locality sensi
30	Phaseibd/TPBWT	Freyman et al., 2021	TPWBT
31	ancIBD	Ringbauer et al., 2024	
32	COANCESTRY	Wang, 2011	
33	NGSremix		
34	NgsRelate		
35	IBDMAP	Bercovici et al., 2010	HMM
0.0			

ibdfindr:

An R package for detecting IBD segments from SNP data

Input data

```
CHR
                CM A1 FREQ1 CW063 CP620
      MARKER
     rs944.. 0.00
                                AG
                                       ΑG
     rs464.. 0.33
                       0.64
                                AC
                                      AC
    rs1091.. 1.24
                       0.63
                                CC
                                      TT
     rs669..
                       0.57
                                CC
                                      CC
     rs376..
                                GG
                                      GT
     rs736.. 5.86
                       0.67
                                      CT
     rs667.. 6.77
                       0.56
                                      GG
                                AA
```

- Fits a continuous-time Hidden Markov Model
- Predicts IBD segments (Viterbi algorithm)
- Finds posterior IBD probs (forward-backward algorithm)

R code

```
library(ibdfindr)
ibd = findIBD(data)
plotIBD(ibd, chrom = c(6,9))
```


+ chrom 21, 22

Summary: Tools for pairwise kinship inference

Part II: Pedigree reconstruction

Pedigree reconstruction: Ultimate goal

Generally impossible - even in theory!

Data

A/A	A/C
G/A	A/A
C/C	C/C
C/G	G/G

True pedigree

Generally impossible - even in theory!

Generally impossible - even in theory!

Pedigree reconstruction: Naive approach

Step 1: Genders

Step 2: Estimate pairwise relationships

- Connect parent-child
- Exploit siblings

Step 3: Solve the puzzle!

Example

Better approach: Maximum likelihood

Idea:

- Generate a list of "all possible" pedigrees connecting the individuals
- Compute the likelihood of each pedigree
- Sort and output the best pedigrees

Key functions:

```
> buildPeds()  # generate pedigrees
> reconstruct()  # main function!
> plot()  # plot top hits
```


pedbuildr: Example

Same dataset as before:

```
Simulate 100 SNPs for a pair of siblings
   library(pedsuite)
   ids = c("Al", "Bob")
   x = nuclearPed(children = ids)
   x = markerSim(x, N = 100, ids = ids,
           alleles = 1:2, seed = 1234)
   X
 id fid mid sex <1> <2> <3> <4> <5>
           * 1 -/- -/- -/- -/-
     * * 2 -/- -/- -/-
  Al 1 2 1 1/1 1/2 1/1 1/2 2/2
     1 2 1 1/1 1/2 1/1 1/2 2/2
 Bob
Only 5 (out of 100) markers are shown.
  dat = list(subset(x, "Al"),
             subset(x, "Bob"))
```


pedbuildr: Example

```
pedbuildr
```

```
Reconstruct the most likely
```

library(pedbuildr)

```
r = reconstruct(dat)
```

```
Pedigree parameters:
  ID labels: Al, Bob
 Sex: 1, 1
 Extra: parents
 Age info: -
  Known PO: -
  . . .
```

Building pedigree list:

Computing the likelihood of 6 pedigrees.

plot(r, top = 3)

Optional parameters for restricting the search space

- extra: The max number of connecting individuals
 - default: extra = "parents" (suitable for small datasets)
- maxInbreeding: Default: 1/16 (e.g., first cousins)
- age: A vector of (relative) ages OR age inequalities, e.g. "Al > Bob"
- inferPO: If TRUE, an initial stage of pairwise IBD estimation is done
- knownPO: Known parent—offspring pairs
- allKnown: Is knownPO the complete list of POs?
- notPO: Pairs known not to be parent-offspring
- noChildren: Individuals known to have no children
- linearInb: Max incestuous generation gap (default: 0)
- connected: Set to FALSE to allow disconnected pedigrees
- **sexSymmetry**: Remove 'symmetric' versions. Default: TRUE

Your turn: Exercises!

Q: Do any of the children have the same father?

