Sprawozdanie z pierwszego zadania projektowego z przedmiotu "Struktury danych i Złożoność obliczeniowa"

Michał Zajdel (263932)

Grupa projektowa: INEK00026P

Kod grupy: K03-37h

Prowadzący: Dr. Inż. Dariusz Banasiak

Spis treści

1.	Wstęp	3
	Opis eksperymentu	3
2.	Graf nieskierowany i algorytmy minimalnego drzewa rozpinającego	4
	Użyte algorytmy i ich złożoności obliczeniowe	4
	Opis algorytmów	4
	Wyniki	5
	Wykresy	7
	Wnioski i uwagi	9
3.	Graf skierowany i problem najkrótszej ścieżki	10
	Użyte algorytmy i ich złożoności obliczeniowe	10
	Opis algorytmów	10
	Wyniki	11
	Wykresy	13
	Wnjoski	

1. Wstęp

Poniższe opisy struktur danych, oraz eksperymentów wykonanych na tych strukturach danych, zostały napisane na podstawie programu, który został załączony do folderu. Kod źródłowy programu znajduje się w folderze "Kod źródłowy". Projekt został napisany w IDE CLion od firmy JetBrains. W folderze znajduje się także arkusz kalkulacyjny o nazwie "Pomiary do projektu 2", w którym znajdują się wszystkie pomiary zrobione na rzecz projektu. W sprawozdaniu przedstawiłem tylko średnie pomiarów czasu, w celu zredukowania miejsca, które zajmują tabele przedstawiające te pomiary czasu. W tabelach przedstawiających średnie pomiary czasu zostały wzięte pod uwagę wszystkie wykonane pomiary dla danej operacji.

Opis eksperymentu

Dla każdego z poniższych algorytmów zmierzono czas zajmujący na poszczególną operację dla następujących wielkości grafów:

- 10 wierzchołków
- 25 wierzchołków
- 75 wierzchołków
- 100 wierzchołków

Oraz poszczególnych gęstości grafów:

- 25%
- 50%
- 75%
- 99%

Przy pomiarze czasu nie zostało wzięte pod uwagę generowanie grafów o poszczególnych ilościach wierzchołków i gęstości. Przy generowaniu krawędzi tych grafów użyto liczb losowych do wypełnienia wag krawędzi, jednak żródłowe i docelowe wierzchołki wygenerowano przy pomocy funkcji która traciła losowość przy większych parametrach gęstości. Liczby losowe wygenerowano przy pomocy funkcji std::random_device oraz std::uniform_int_distribution. Aby wykonać pomiar czasu użyto funkcji QueryPerformanceCounter.

Kod źródłowy projektu, plik wykonywalny, PDF sprawozdania oraz arkusz .xlsx zawierający pomiary można znaleźć na repozytorium na GitHub:

https://github.com/Huntarman/GraphsAndAlgorithms

2. Graf nieskierowany i algorytmy minimalnego drzewa rozpinającego

Użyte algorytmy i ich złożoności obliczeniowe

- Algorytm Kruskal'a
 - O Złożoność obliczeniowa : $\Theta(E * \log V) = \Theta(E * \log E)$
- Algorytm Prim'a
 - Złożoność obliczeniowa : $\Theta(E * \log V)$

Zaimplementowanie algorytmu Kruskala czy Prima przy użyciu macierzy może wydłużyć czas trwania algorytmu. W takim przypadku algorytm za każdym razem będzie musiał brać pod uwagę E możliwych połączeń z innymi wierzchołkami.

Opis algorytmów

Algorytm Kruskala, polega na posortowaniu wszystkich krawędzi grafu w zależności od ich wag (od najmniejszej do największej), oraz dodawaniu ich do tablicy przechowującej krawędzie minimalnego drzewa rozpinającego, pomijając krawędzie, które stworzyłyby cykl w MST.

Wykrywanie cyklów w moim projekcie zostało zaimplementowane przy pomocy algorytmu Union-Find. Sortowanie krawędzie, zostało zaimplementowane przy pomocy kolejki priorytetowej, bazującej na kopcu typu min.

Algorytm kończy swoje działanie kiedy w tablicy wierzchołków MST pojawi się V-1 krawędzi, co będzie oznaczało że wszystkie wierzchołki zostały połączone

Algorytm Prima, polega na przechodzeniu przez kolejne wierzchołki, w kolejności krawędzi o najmniejszych wagach. Zaczynając od losowej/wybranej krawędzi, algorytm dodaje do kolejki priorytetowej krawędzie tego wierzchołka, po czym wyciąga z korzenia kopca krawędź o najmniejszej wadze. Jeśli ta krawędź nie tworzy cyklu w MST, algorytm dodaje ją do MST i przechodzi do wierzchołka docelowego tej krawędzi. Jeśli wierzchołek został już odwiedzony, krawędzi nie są dodawane do kolejki priorytetowej. Jeśli wierzchołek tworzy cykl, korzeń po s-pop'owaniu swojego korzenia, będzie w korzeniu miał kolejną krawędź o najmniejszej wadze.

Algorytm kończy swoje działanie kiedy w tablicy wierzchołków MST pojawi się V-1 krawędzi, co będzie oznaczało że wszystkie wierzchołki zostały połączone

Wyniki

Poniżej znajdują się tabele przedstawiające średnie czasy wykonywania algorytmów MST.

		Graf		erunk	owy						
			Algorytm								
	Macierz Ilość wierzchołków Ilość wierzchołków										
	10	0			2	5					
	Gęst	tość			Gęs	tość					
25%	50%	75%	99%	25%	50%	75%	99%				
Cz	zas w mikro	osekundach		C	zas w mikr	osekundacł	١				
11,949	19,273	23,643	23,791	90,804	120,067	132,938	148,487				
			Mad	ierz							
	Ilość wier	zchołków			Ilość wier	zchołków					
	7.	 5			10	00					
	Gęst	tość			Ges	tość					
25%	50%	75%	99%	25%	50%	75%	99%				
Cz	as w mikro	osekundach		Czas w mikrosekundach							
958,869	1148,296	1383,378	1536,045	1719,426	2094,252	2591,879	3052,488				
·			Lis	ta	·						
	Ilość wier:	zchołków		Ilość wierzchołków							
	10	0			2	5					
	Gęst	tość		Gęstość							
25%	50%	75%	99%	25%	50%	75%	99%				
Cz	Czas w mikrosekundach				Czas w mikrosekundach						
13,889	18,348	19,711	20,581	80,134	100,201	105,005	122,434				
·	•	•	Lis	ta	·	·	·				
	Ilość wier:	zchołków		Ilość wierzchołków							
	7.			100							
	Gęst	tość		Gęstość							
25%	50%	75%	99%	25%	50%	75%	99%				
	as w mikro	osekundach		Czas w mikrosekundach							
907,227		1116,129	1200,56	1469,292							

		Graf		erunk	owy					
Algorytm Prima										
Macierz										
	Ilość wierz	chołków			Ilość wier	zchołków				
	10)			2	5				
	Gęst				Gęst					
25%	50%	75%	99%	25%	50%	75%	99%			
Cz	zas w mikro	sekundach	1	C	zas w mikr	osekundacł	1			
11,394	15,105	22,942	26,978	87,607	112,34	142,421	158,295			
			Mad	cierz						
	Ilość wierz	chołków			Ilość wier	zchołków				
	75	;			10	00				
	Gęst	ość		Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
Cz	zas w mikro	sekundach		Czas w mikrosekundach						
1039,081	1329,963	1459,495	1688,941	1750,202	2200,744	2704,13	3293,314			
			Lis	ta						
	Ilość wierz	chołków		Ilość wierzchołków						
	10)		25						
	Gęst	ość		Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
Cz	zas w mikro	sekundach		Czas w mikrosekundach						
10,785	15,111	19,752	22,791	90,65	115,862	120,373	133,943			
Lista										
	Ilość wierz	chołków		Ilość wierzchołków						
	75	;		100						
	Gęst	ość		Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
Czas w mikrosekundach				Czas w mikrosekundach						
835,491	943,981	985,386	1084,253	1530,004	2053,016	2318,854	2685,728			

Wykresy

Wnioski i uwagi

Algorytmy wykonują się w poprawny sposób, a w większości przypadków czas ich wykonywania rośnie zgodnie z założoną złożonością – im więcej jest wierzchołków i krawędzi tym dłuższy czas wykonywania. Czas wykonania obu algorytmów w obu implementacjach jest zbliżony w przypadku niskiej ilości/gęstości krawędzi, jednak im bardziej ta rosnie tym dłużej będzie wykonywał się algorytm bazujący na macierzy incydencji.

3. Graf skierowany i problem najkrótszej ścieżki

Użyte algorytmy i ich złożoności obliczeniowe

Algorytm Dijkstry

o Złożoność obliczeniowa : $\Theta(E + V \log V)$

Algorytm Bellmana-Forda

o Złożoność obliczeniowa : $\Theta(V * E)$

Zaimplementowanie tych algorytmów przy użyciu macierzy może wydłużyć czas trwania algorytmu. W takim przypadku algorytm za każdym razem będzie musiał brać pod uwagę V – 1 możliwych połączeń z innymi wierzchołkami.

Opis algorytmów

Algorytm Dijkstry, polega na aktualizowaniu najkrótszych aktualnych ścieżek nieodwiedzonych wierzchołków. Początkowo droga wszystkich wierzchołków poza startowym wynosi nieskończoność, w programie jednak użyta została maksymalna wartość 32 bitowej liczby naturalnej. Algorytm aktualizuje ścieżki i drogi wierzchołków, do których wychodzą krawędzie, Po czym w kolejnej iteracji powtarza to działanie, biorąc pod uwagę wierzchołek o najmniejszej aktualnej drodze, jeśli nie jest odwiedzony.

Algorytm kończy działanie kiedy zostały odwiedzone wszystkie wierzchołki.

Algorytm Bellmana-Forda, wykonuje V-1 iteracji, kolejno zmieniając drogi wierzchołów, zaczynając od pierwszej krawędzi wierzchołka o indeksie 0 w każdej z nich. Algorytm w każdej iteracji przechodzi przez wszystkie krawędzie wszystkich wierzchołków. Jeśli dana krawędź zmniejszyłaby całkowitą drogę docelowego wierzchołka, następuje zmiana i krawędzie które wychodzą z tego wierzchołka prawdopodobnie także będą zmieniały drogę. Algorytm po V – 1 operacjach zwróci najkrótszą drogę do każdego wierzchołka.

Algorytm kończy działanie kiedy wykonane zostało V-1 operacji, lub w trakcie całej operacji nie zaszła <u>żadna</u> zmiana – co oznacza że minimalna ścieżka została już znaleziona.

Wyniki

Poniżej znajdują się tabele przedstawiające średnie czasy wykonywania algorytmów SPP.

		Gra		unkov	wy					
Algorytm Dijkstry										
Macierz										
llość	wierz	chołków			Ilość wierz	zchołków				
	10)		25						
	Gęst	ość			Gęst	ość				
25%	50%	75%	99%	25%	50%	75%	99%			
Czas w	mikro	sekundach		C	zas w mikro	osekundach	Ì			
3,526 5	,104	6,3	7,659	31,951	45,903	54,637	63,431			
			Mad	ierz						
llość	wierz	chołków			Ilość wierz	chołków				
	75	5			10	0				
	Gęst	ość		Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
Czas w	mikro	sekundach		Czas w mikrosekundach						
486,567 71	1,59	929,785	1131,3	1082,466	1641,792	2208,442	2702,348			
			Lis	ta						
llość	wierz	chołków			Ilość wierz	chołków				
	10)			25	5				
	Gęst	ość		Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
Czas w	mikro	sekundach		Czas w mikrosekundach						
3,494 4	,975	5	5,979	24,025	31,122	31,157	31,447			
			Lis	ta						
llość	chołków		Ilość wierzchołków							
	<u> </u>		100							
	ość		Gęstość							
25%	50%	75%	99%	25%	50%	75%	99%			
Czas w mikrosekundach				Czas w mikrosekundach						

		Gra	f kieı	runko	wy					
Algorytm Bellmana-Forda										
Macierz										
	Ilość wierzo	hołków		Ilość wierzchołków						
	10			25						
	Gęsto			Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
Cz	as w mikros	sekundach			zas w mikro	sekundach				
2,122	3,979	5,845	7,658	31,185	61,356	94,245	124,587			
			Mad	ierz						
	Ilość wierzo	hołków			Ilość wierz					
	75				10					
	Gęsto			Gęstość						
25%	50%	75%	99%	25%	50%	75%	99%			
	as w mikros			Czas w mikrosekundach						
973,341	1827,388	2772,599	3514,318	2306,775	4464,349	6446,121	8263,222			
			Lis	ta						
	Ilość wierzo	hołków		Ilość wierzchołków						
	10			25						
	Gęsto				Gęst					
25%	50%	75%	99%	25%	50%	75%	99%			
	as w mikros			Czas w mikrosekundach						
0,801	1,246	1,393	1,53	3,789	5,772	7,679	9,494			
			Lis	ta						
	Ilość wierzo	hołków		Ilość wierzchołków						
	75			100						
Gęstość					Gęst					
25%	50%	75%	99%	25%	50%	75%	99%			
Czas w mikrosekundach				Czas w mikrosekundach						
33,437	53,777	77,141	95,432	59,906	95,46	130,286	155,004			

Wykresy

Wnioski

W wypadku algorytmów SPP zaimplementowanych przeze mnie – ich czas wykonywania rośnie w przewidziany sposób. Algorytm Bellmana-Forda wykonuje się w krótszym czasie niż algorytm Dijkstry - algorytm Dijkstry ma niższą złożoność obliczeniową. W przypadku problemu SPP wyraźnie widać, że jeden algorytm wykonuje się o wiele szybciej niż drugi.