Quiz Wednesday, January 22nd & Brute Force, Power X 20 min (Beginning of Class)

If that resistors in Series combine via addition.

Resistors in Parallel

$$I_{S} = \frac{V_{S}}{R_{1}} + \frac{V_{S}}{R_{2}} + \dots + \frac{V_{S}}{R_{N}}$$

$$I_S = V_S \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} \right)$$

$$I_{S}$$
 R_{2}

Resistors in Parallel

$$\frac{by \ KCL}{I_{S} = I_{1} + I_{2} + ... + I_{N}}$$

$$\frac{by \ Ohm's \ law}{I_{1} = \frac{V_{S}}{R_{1}}}$$

$$\frac{V_{S}}{R_{2}} = \frac{V_{S}}{R_{2}}$$

$$\frac{V_{S}}{R_{1}} = \frac{V_{S}}{R_{2}}$$

$$\frac{V_{S}}{R_{1}} = \frac{V_{S}}{R_{2}}$$

$$\frac{1}{R_{1}} + \frac{1}{R_{2}} + ... + \frac{1}{R_{N}}$$

more than two resistors in parallel

Reg R_1 R_2 R_3 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_6 R_6

Voltage + Current Division

Vo Hage division | divider

Ts R, by KVL
$$V_{5} - V_{1} - V_{2} = 0 \qquad V_{1} = I_{5} R_{1}$$

$$V_{5} - V_{1} + V_{2} \qquad V_{2} = I_{5} R_{2}$$

$$V_{5} = I_{5} R_{1} + I_{5} R_{2}$$

$$V_{5} = I_{5} R_{1} + I_{5} R_{2}$$