FORD OTOSAN

Real Time Thermal Management Model Development

Mutlu Şimşek 17.10.2016 GT CONFERENCE 2016

CONTENT

- Introduction
- Thermal Management Model in GT-SUITE
- GT-SUITE-RT Real Time Modeling
- HIL Simulators
- Vehicle Test Cycle for Model Validation
- Desktop Model Validation
- HIL Model Validation
- HIL Model Validation with Integrated Engine Performance Model
- Conclusion
- Question & Answer

INTRODUCTION

- More stringent emission regulations, more complex diesel powertrains
 - Complex thermal management systems (pump, fan, AGS, etc.)
 - Increasing number of ECU calibratables
 - Increasing demand for hardware and software validation tests
 - Increasing demand for analytical tools and HIL & SIL simulators
- Plant models required for software validation on HIL & SIL simulators
 - > Easy to create engine plant models (mapped, empirical, etc.)
 - Hard to create empirical thermal thermal management models
- Real time capable analytical thermal management models for HIL simulators
 - > Available with the start of the project for thermal system optimization
 - Minimal effort to convert to a real time model
 - No change in results when converted to a real time model
- Various benefits
 - Reduced test requirements
 - Integration of calibration teams at early phase of the project
 - Almost no additional cost
 - Repeatable HIL simulations
 - Simulations in extreme conditions
 - > Future intelligent powertrains

- Created in GT-SUITE
- Stand alone engine & vehicle thermal management model
- Consists of four sub-models
- Predicts coolant, oil, boost and egr temperatures
- Modular, i.e. can be integrated with any type of model
- Runs faster than real time

Coolant Circuit Model

- Consists of components in the cooling system
- Head & block heat rejection is mapped as a function of engine speed & injection quantity
- ➤ EGR Cooler inlet conditions are mapped as a function of engine speed & injection quantity

Oil Circuit Model

- Simple oil circuit model
- Consists of oil cooler, oil sump, oil pump, and heat addition parts

Friction Model

Heat addition to oil from piston cooling jets and friction is mapped as a function of engine speed & injection quantity

Underhood Model

- Simple 1D underhood model
- Consists of condenser, CAC, radiator, fan and ram air parts

GT-SUITE-RT – REAL TIME MODELING

- Thermal management model is converted to a real time model in GT-SUITE with almost no change in model
- RT model represents the plant for HIL testing
- Speed optimized special GT-SUITE-RT solver
- Identical results with the standard solver
- 30-50% faster than the standard GT-SUITE solver
- Less computational fluctuations
- Provided as an executable, dynamic library and static library
- Can be used from GT-SUITE, Simulink & SIL/HIL applications
- Run models locally on PC and HIL platforms

RT Model Generation in GT-SUITE

RT Model mask in Simulink

HIL SIMULATORS

- ASP (Advanced Support Package) is required from dSPACE.
- 4th core of the DS1006
 QC Processor Board is
 used for GT Power RT
 application to establish
 an Ethernet interface.

VEHICLE TEST CYCLE FOR MODEL VALIDATION[®]

- Transient cycle from on road vehicle tests
- 1693 seconds (28 minutes) duration
- Acceleration & deccelaration at the beginning of the cycle
- Cruising at the end of the cycle
- 37 °C ambient temperature

DESKTOP MODEL VALIDATION RESULTS

- Inupts taken from test data (engine speed, quantity, CAC & EGRC inlet conditions, etc.)
- Coolant, oil, boost temperature results are in good correlation with test results
- Peaks in coolant temperature due to intarder usage
- EGR Cooler gas outlet temperature correlation not reported due to low egr rates
- The model runs 3x faster than real time

HIL MODEL VALIDATION RESULTS

- Desktop model converted to a real time model & run on HIL platform
- Inputs taken from test data (engine speed, quantity, CAC & EGRC inlet conditions, etc.) (open loop)
- The results are identical to desktop model results.
- Confirmed that GT-SUITE and GT-SUITE-RT solvers produce the same results.

HIL MODEL WITH INTEGRATED ENGINE MODEL"

- RT thermal management model is integrated with an engine performance model
- Engine performance model is created using an in-house code.
- Some of the inputs are calculated by the engine performance model. The remaining inputs are taken from test data.

HIL MODEL WITH INTEGRATED ENGINE MODEL¹²

- The integrated model run on HIL platform (closed loop).
- Deviation in inputs calculated by the engine performance model (CAC inlet conditions, injected quantity, etc.)
- Deviation in temperature predictions at most 1 °C.

CONCLUSION

- Real time capable thermal management model validated with desktop simulations
- The thermal model converted to a real time model with no change in results with HIL simulations
- Negligible changes in temperature predictions even when integrated with a low fidelity engine performance model
- Used for software development & calibration on HIL & SIL platforms
- Possible future use cases
 - Reduced tests for sofware validation
 - Possible to test extreme conditions (e.g. 50 °C ambient temperature)
 - Repeatable HIL simulations for software validation
 - Possible to use in conjunction with future intelligent powertrains
 - > Integration of calibration teams at early phase of a project

FORD OTOSAN

THANK YOU

