Gandaki University

Manju Subedi

Bachelor of Information Technology (BIT) **BSM** 101

Exercise on Application of Derivatives

1. For the following problems use L'Hospital's Rule to evaluate the given limit.

(a)
$$\lim_{x \to -4} \frac{x^3 + 6x^2 - 32}{x^3 + 5x^2 + 4x}$$

(b)
$$\lim_{x \to 1} \frac{x^2 + 8x - 9}{x^3 - 2x^2 - 5x + 6}$$
(c)
$$\lim_{t \to 2} \frac{t^3 - 7t^2 + 16t - 12}{t^4 - 4t^3 + 4t^2}$$

(c)
$$\lim_{t \to 2} \frac{t^3 - 7t^2 + 16t - 12}{t^4 - 4t^3 + 4t^2}$$

(d)
$$\lim_{x \to \infty} x^2 e^{-x}$$

(e)
$$\lim_{w \to -\infty} \frac{w^2 - 4w + 1}{3w^2 + 7w - 4}$$

(f)
$$\lim_{y \to \infty} \frac{y^2 - \mathbf{e}^{6y}}{4y^2 + \mathbf{e}^{7y}}$$

2. For the following problems determine all the number(s) c which satisfy the conclusion of Rolle's Theorem for the given function and interval.

(a)
$$f(x) = x^2 - 2x - 8$$
 on $[-1, 3]$

(b)
$$g(t) = 2t - t^2 - t^3$$
 on $[-2, 1]$

(c)
$$f(x) = x^3 - 4x^2 + 3$$
 on $[0, 4]$

(d)
$$Q(z) = 15 + 2z - z^2$$
 on $[-2, 4]$

(e)
$$h(t) = 1 - \mathbf{e}^{t^2 - 9}$$
 on $[-3, 3]$

3. For the following problems determine all the number(s) c which satisfy the conclusion of the Mean Value Theorem for the given function and interval.

(a)
$$f(z) = 4z^3 - 8z^2 + 7z - 2$$
 on [2, 5]

(b)
$$f(x) = x^3 - x^2 + x + 8$$
 on $[-3, 4]$

(c)
$$g(t) = 2t^3 + t^2 + 7t - 1$$
 on [1, 6]

(d)
$$P(t) = e^{2t} - 6t - 3$$
 on $[-1, 0]$

(e)
$$f(t) = 8t + e^{-3t}$$
 on $[-2, 3]$

4. Show that the Taylor series about x = 0 for the function $f(x) = e^x$ is

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

1

Show also that this power series converges for all x.

5. Show that the Taylor series about x = 0 for the function $f(x) = \frac{1}{1-x}$ is

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \quad \text{for } |x| < 1$$