1 Introduction

2 Weak Formulation

In order to apply some of the results from the lecture, we need to derive the weak formulation of the given problem

Find
$$u \in C^2(\Omega) : -\Delta u + u = \cos(\pi x)\cos(\pi y)$$
 in Ω (1)

$$\partial_n u = 0$$
 on $\partial \Omega$. (2)

Multiplying with an arbitary $v \in C^2(\Omega)$ and integrating over Ω gives us

$$-\int_{\Omega} \Delta u v \, \mathrm{d}\boldsymbol{x} + \int_{\Omega} u v \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} f v \, \mathrm{d}\boldsymbol{x}$$

where $f = \cos(\pi x)\cos(\pi y)$ and $\mathbf{x} = (x, y)$. Using Green's first formula and (2) we can obtain the weak formulation

$$\int_{\Omega} \nabla u \nabla v \, d\boldsymbol{x} + \int_{\Omega} u v \, d\boldsymbol{x} = \int_{\Omega} f v \, d\boldsymbol{x}$$

From now on, we will denote the left hand side of the equation by a(u, v) and the right hand side by F(v). Thus, we obtain the weak formulation

Find
$$u \in H^1(\Omega)$$
: $a(u, v) = F(v) \quad \forall v \in H^1(\Omega)$ (3)

3 Existence and Uniqueness of a Solution

We can already see, that our bilinear form $a(\cdot,\cdot)$ is the inner product associated with the norm on our function space $H^1(\Omega)$. We want to use the Riesz representation theorem to prove existence and uniqueness of a solution. In order to do so, it remains to show that our functional $F(\cdot)$ is linear and bounded. Linearity follows from the properties of integration. Using Hoelder's inequality, we show that

$$F(u) = ||fu||_{L^{1}(\Omega)}$$

$$\stackrel{\text{Hid.}}{\leq} ||f||_{L^{2}(\Omega)} ||u||_{L^{2}(\Omega)}$$

$$\leq ||1||_{L^{2}(\Omega)} (||u||_{L^{2}(\Omega)} + ||u||_{L^{2}(\Omega)})$$

$$\leq c ||u||_{H^{1}(\Omega)},$$

where c depends on our domain Ω . For our case, we have $\Omega = [0, 1]^2$, in particular this means that Ω is bounded and our constant c is finite. Therefore, $F(\cdot)$ is a bounded, linear functional and we can apply the Riesz representation theorem.

4 Finding the Analytical Solution

Now that we know that a unique solution exists, we want to actually compute it. We will use the ansatz $u = C\cos(\pi x)\cos(\pi y)$, with its gradient $\Delta u = 2\pi^2 u$. Inserting in (1) gives us

$$-2C\pi^2\cos(\pi x)\cos(\pi y) + C\cos(\pi x)\cos(\pi y) = \cos(\pi x)\cos(\pi y)$$
 (4)

$$\Rightarrow -2C\pi^2 + C = 1 \tag{5}$$

$$\Leftrightarrow C = \frac{1}{1 - 2\pi^2} \tag{6}$$

This leaves us with the solution $u = \frac{1}{1-2\pi^2}\cos(\pi x)\cos(\pi y)$.