Tokamak 3D Equilibrium Reconstruction A Deep Learning approach

Lorenzo Rossi

Università di Rome "Tor Vergata"

July 10, 2022

Contents

- Introduzione
- Equilibrio del plasma
- Grad-Shafranov
- Deep Learning
- 5 Physics Informed Neural Network
- 6 PDE Neural Network
 - Struttura
 - Errore
- Condizioni al contorno
- Risultati
- Onsiderazioni

Introduzione

L'obiettivo di questa tesina è quello di fornire una ricostruzione 3D del plasma in forma analitica. Tramite le equazioni MHD (*MagnetoHydroDynamics*) è possibile considerare il plasma come un fluido conduttore soggetto all'azione di un campo magnetico.

Equilibrio

L'equilibrio è quella situazione in cui tutte le forze agenti su di essa hanno risultante nulla.

La ricostruzione dell'equilibrio del plasma è necessaria al miglioramento dell'efficienza fusionistica e alla protezione delle componenti che costituiscono il Tokamak.

Equilibrio del plasma

Assumendo che:

- Il plasma si trovi in regime stazionario: $\frac{\partial}{\partial t}=0$
- Riferimento in v ($\nu = 0$);

Si ottiene:

•
$$J \times B = \nabla p$$

•
$$\mu_0 J = \nabla \times B$$

•
$$\nabla \cdot B = 0$$

1

• Gradiente
$$\nabla f = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial x} \overrightarrow{j} + \frac{\partial f}{\partial x} \overrightarrow{k}$$
;

• Divergenza
$$\nabla \cdot f = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$
;

$$\bullet \ \, \mathsf{Rotore} \,\, \nabla \times f = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{k} & \overrightarrow{k} \\ \overrightarrow{i} & \overrightarrow{k} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_1 & f_2 & f_3 \end{vmatrix}$$

¹Dato $f(x, y, z) = f_1 \overrightarrow{i} + f_2 \overrightarrow{j} + f_3 \overrightarrow{k}$ si definiscono:

Grad-Shafranov

Per giungere infine all'equazione di Grad-Shafranov occorre supporre simmetria toroidale. In particolare:

$$\frac{\partial}{\partial \phi} = 0$$

Figure: Simmetria toroidale Tokamak

Equazione di Grad-Shafranov

$$p = f(\psi)$$

$$F = g(\psi)$$

$$\frac{\partial^2 \psi}{\partial r^2} - \frac{1}{r} \frac{\partial \psi}{\partial r} + \frac{\partial^2 \psi}{\partial z^2} = -\mu_0 r^2 \frac{dp}{d\psi} - \frac{1}{2} \frac{dF^2}{d\psi}$$

Limitazioni

Sebbene questo metodo consenta di ricostruire efficientemente l'equilibrio del plasma. Tuttavia:

- Il plasma non è sempre in regime stazionario;
- La simmetria toroidale non è sempre rispettata.

Una valida alternativa per ottenere più informazioni sul processo in questione viene fornita dal metodo Physics Informed Neural Network basati sul deep learning.

Deep Learning

Deep Learning

Il deep Learning è una branca del Machine Learning che studia l'apprendimento automatico tramite l'utilizzo di architetture stratificate dette **neural network multilayers**.

- L'unità fondamentale di una neural network multilayers è il neurone che esegue una singola operazione non lineare.
- Ogni neurone viene connesso con uno o più neuroni in base all'organizzazione della rete;
- L'architettura più utilizzata è di una rete stratificata in feedforwar
 - La connessione tra neuorni avviene solo tra livelli adiacenti
- Utilizzo della backpropagation: i pesi associati ad ogni neurone vengono aggiornati calcolando l'uscita della rete e propagando l'errore all'indietro verso i livell più alti

7 / 14

Physics Informed Neural Network

Physics Informed Neural Network

Il Physics Informed Neural Network è un metodo di deep learning basato su reti neurali per risolvere le PDE (*Partial Differential Equation*).

- Permettono di risolvere numericamente equazioni differenziali molto complesse;
- Le soluzioni delle PDE minimizzano una funzione di costo dipendente dalle equazioni fisiche;
- La funzione di costo deve essere ben modellata per aderire al modello preso in considerazione;
- Processo di training elevato;
- Si necessitano di condizioni al contorno;

PDE Neural Network - Struttura

Per la rete neurale si è scelto di utilizzare:

- Rete fullyconnect: ogni neurone di ogni livello è collegato con i neuroni del livello successivo;
- Backpropagation tramite di errore;
- Ogni neurone applica l'input una tangentoide;

PDE Neural Network

Input:
$$R \in [1,61,4.31], Z \in [-2.0250,2.0250], \phi \in \{0:0.5:2\pi\}$$
 Output: $p,B_r,B_z,B_\phi,I_r,I_z,I_\phi$ Weight Factor = $\alpha=\begin{bmatrix}1&0.001&0.01&1&1&1\end{bmatrix}$ $\nabla \cdot B=0$ \downarrow Loss1= $\frac{1}{r}\frac{\partial rB_r}{\partial r}+\frac{1}{r}\frac{\partial B_\phi}{\partial \phi}+\frac{\partial B_z}{\partial z}$ $\nabla \times B=\mu_0J$ \downarrow Loss2= $(\frac{1}{r}\frac{\partial B_z}{\partial \phi}-\frac{\partial B_\phi}{\partial z})\mathbf{r}+(\frac{\partial B_r}{\partial z}-\frac{\partial B_z}{\partial r})\phi-\frac{1}{r}(\frac{\partial (rB_\phi)}{\partial r}-\frac{\partial B_r}{\partial \phi})\mathbf{z}-\mu_0\mathbf{J}$ $J\times B=\nabla p$ \downarrow Loss3= $J_\phi B_z-J_z B_\phi-\frac{\partial p}{\partial R}+J_z B_r-J_r B_z-\frac{\partial p}{\partial \phi}+J_r B_\phi-J_\phi B_r-\frac{\partial p}{\partial Z}$ Vincoli al bordo p_0,B_{r0},B_{t0},B_{Z0} noti \downarrow Loss4= $\frac{mean(p-p_0)^2}{mean(p_0)^2}+\frac{mean(B_z-B_{z0})^2}{mean(B_z)^2}\frac{mean(B_r-B_{r0})^2}{mean(B_{z0})^2}\frac{mean(B_{z0}-B_{z0})^2}{mean(B_{z0})^2}\frac{mean(B_{z0}-B_{z0})^2}{mean(B_{z0})^2}$

Loss=[Loss1 Loss2 Loss3 Loss4 Loss5 Loss6]* $lpha^T$

Condizioni al contorno

La soluzione delle PDE in $\phi=\{0,2\pi\}$ potrebbe portare a soluzione diverse quando queste, per periodicità, devono essere identiche. Per evitare questo comportamento, occorre aggiungere una quinda funzione di costo:

$$Loss5 = \frac{mean(p - p_f)^2}{mean(p_f)^2} + \frac{mean(B_r - B_{r,f})^2}{mean(B_{r,f})^2} + \frac{mean(B_z - B_{z,f})^2}{mean(B_{z,f})^2} + \frac{mean(B_t - B_{t,f})^2}{mean(B_{t,f})^2}$$

$$Loss6 = \frac{mean(p - p_{i})^{2}}{mean(p_{i})^{2}} + \frac{mean(B_{r} - B_{r,i})^{2}}{mean(B_{r,i})^{2}} + \frac{mean(B_{z} - B_{z,i})^{2}}{mean(B_{z,i})^{2}} + \frac{mean(B_{t} - B_{t,i})^{2}}{mean(B_{t,i})^{2}}$$

Risultati

Risultato atteso:

Risultati

Figure: Risultato finale: 10000 epoche (16h di training)

- CPU Intel i7-11700 8c/16t @4.8Ghz;
- RAM:32GB DDR4;
- GPU:Nvidia RTX 3070;
- OS:Debian GNU Linux 10 ×86_64;

²Learning eseguito su una macchina Dell XPS 8940:

Considerazioni

- Il risultato ottenuto è congruente alla configurazione reale;
- L'addestramento tramite GPU può abbattere notevolmente il tempo di addestramento;
- Le PDE utilizzate assumono che $\frac{\partial}{\partial \phi} \neq 0$ e quindi la rete neurale potrebbe essere utilizzata anche per configurazioni asimmetriche;
- ullet Una maggiore risoluzione di ϕ può aumentare notevolmente la spesa computazionale.