

Figure 5.4: The piecewise linear function plf(u).

In particular, for all n, the Haar basis vectors

$$h_0^0 = w_2 = \underbrace{(1, \dots, 1, -1, \dots, -1)}_{2n}$$

yield the same piecewise linear function  $\psi$  given by

$$\psi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/2 \\ -1 & \text{if } 1/2 \le x < 1 \\ 0 & \text{otherwise,} \end{cases}$$

whose graph is shown in Figure 5.5. It is easy to see that  $\psi_k^j$  is given by the simple expression



Figure 5.5: The Haar wavelet  $\psi$ .

$$\psi_k^j(x) = \psi(2^j x - k), \quad 0 \le j \le n - 1, \ 0 \le k \le 2^j - 1.$$

The above formula makes it clear that  $\psi_k^j$  is obtained from  $\psi$  by scaling and shifting.

**Definition 5.3.** The function  $\phi_0^0 = \operatorname{plf}(w_1)$  is the piecewise linear function with the constant value 1 on [0,1), and the functions  $\psi_k^j = \operatorname{plf}(h_k^j)$  together with  $\phi_0^0$  are known as the *Haar wavelets*.