PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-188100

(43) Date of publication of application: 04.07.2003

(51)Int.CI.

H01L 21/203

(21)Application number: 2001-386824

(71)Applicant: JAPAN SCIENCE & TECHNOLOGY

CORP

(22)Date of filing:

19.12.2001

(72)Inventor: YOSHITAKE TAKESHI

(54) AMORPHOUS FERROSILICIDE FILM EXHIBITING SEMICONDUCTOR CHARACTERISTIC AND ITS FORMING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To solve the problem that a perfect amorphous ferrosilicide exhibiting semiconductor characteristics similar to those of β -FeSi2 has not yet attained by cluster ion beam deposition, molecular beam epitaxial growth, ion implantation, or RF magnetron sputtering.

SOLUTION: An amorphous FeSi2 film exhibiting semiconductor characteristics is attained by growing FeSi2 as a not granular but flat film, i.e., a continuous film, by sputtering on a substrate of lower than 400° C under Ar gas pressure not higher than 5 mTorr using an FeSi2 alloy target having an atomic ratio of 1:2 of Fe and Si components. Facing target sputtering is especially preferable.

LEGAL STATUS

[Date of request for examination]

15.01.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-188100 (P2003-188100A)

(43)公開日 平成15年7月4日(2003.7.4)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H01L 21/203

H01L 21/203

S 5F103

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

特顧2001-386824(P2001-386824)

(71)出願人 398020800

科学技術振興事業団

埼玉県川口市本町4丁目1番8号

(22)出窟日

平成13年12月19日(2001:12.19)

(72) 発明者 吉武 剛

福岡県太宰府市観世音寺1-9-8-303

(74)代理人 100108671

弁理士 西 義之

Fターム(参考) 5F103 AA08 BB60 DD30 CG03 HH03

LLO1 LLO4 LL20 NNO1 NNO4

NNO5 NN10 RRO6

(54) 【発明の名称】 半導体特性を示すアモルファス鉄シリサイド膜とその作製方法

(57)【要約】

【課題】 クラスターイオンビーム蒸着法、分子線エビ タキシャル成長法、イオン注入法、RFマグネトロンス パッタリング法において、β-FeSizに近い特性の 半導体特性を有する完全なアモルファス鉄シリサイドは これまで得られていない。

【構成】 FeとSiの成分原子比1:2のFeSiょ 合金ターゲットを用い、5mTorr以下の低いArガ ス圧力下で、400℃未満の基板上にスパッタリング法 によりFeSi,を粒状でない平坦な膜、すなわち連続 膜として成長させることにより半導体特性を示すアモル ファスFeSi、膜を得る。スパッタリング法は、対向 ターゲット式スパッタリング法が特に好ましい。

FP 03-0399 -00wo-71 04.3.9 GEARCH REPORT

【特許請求の範囲】

【請求項1】 スパッタリング法により得られた0.6~1.0 e Vのバンドギャップを有するアモルファスFeSi, 膜からなる半導体特性を示すアモルファス鉄シリサイド膜。

【請求項2】 FeとSiの成分原子比1:2のFeSi,合金ターゲットを用い、5mTorr以下の低いArガス圧力下で、400℃未満の基板上にスパッタリング法によりFeSi,を連続膜として堆積することにより半導体特性を示すアモルファスFeSi,膜を得ることを特徴とする請求項1記載のアモルファス鉄シリサイド膜の作製方法。

【請求項3】 スパッタリング法が、対向ターゲット式 スパッタリング法であることを特徴とする請求項2記載 のアモルファス鉄シリサイド膜の作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体特性を示す アモルファス鉄シリサイド膜およびその作製方法に関す る。

[0002]

【従来の技術】β-FeSi,は0.85eVのバンドギャップを持つ直接遷移型の半導体で太陽電池素子や通信用発受光素子への応用が期待されている。本発明者は、先にレーザーアブレーション法で基板上に堆積したままでβ相のFeSi,薄膜を堆積する方法を開発した(特開2000-178713号公報)。

【発明が解決しようとする課題】Siが69~72.5at%の範囲で安定な固溶体を作る5-FeSi₂相の非晶質膜が半導体特性を示すことが特公平1-31453号公報に開示されているが、この非晶質膜は、FeとSiを別々の密閉型坩堝から噴射させて蒸着するクラスターイオンビーム蒸着法で製作されており、Siが68at%のもので電気伝導度σの値は590°Kで~10⁻¹cm⁻¹であり、バンドギャップは1.258eVであり、β-FeSiスに近い特性を示していない。

【0003】良質なアモルファス構造膜を得るには、できるだけ高エネルギーな状態でかつ原子状の粒子を基板に到達させ、加熱されていない、あるいは冷却された低い温度の基板にて急冷させる必要があるが、クラスター 40イオンビーム蒸着法、分子線エビタキシャル成長法、イオン注入法などの他の既存の方法に比べて、アモルファス構造膜を得るには最も適していると考えられているRFマグネトロンスバッタリング法においても、通常の方法では、プラズマが堆積中の膜に接するために、膜が損傷を受けるとともにアニール的な効果を受けて微結晶が生成してしまい、完全なアモルファス膜は得にくくβーFeSi、に近い特性の半導体特性を有するアモルファス鉄シリサイドはこれまで得られていない。

[0004]

【課題を解決するための手段】本発明者は、高エネルギーな粒子堆積が可能なスパッタリング法を用いるととによって粒状でない平坦な膜、すなわち連続膜を堆積するとにより極めて良質なアモルファス状態のFeSi,が得られ、該アモルファス状態のFeSi,がβーFeSi,に近い特性の半導体特性を示すことを見いだした。

【0005】すなわち、本発明は、スパッタリング法により得られた0.6~1.0 e Vのバンドギャップを有するアモルファスFeSi、腹からなる半導体特性を示すアモルファス鉄シリサイド膜である。さらに、本発明は、FeとSiの成分原子比1:2のFeSi、合金ターゲットを用い、5mTorr以下の低いArガス圧力下で、400℃未満の基板上にスパッタリング法によりFeSi、を連続膜として堆積することにより0.6~1.0 e Vのバンドギャップを有するβ-FeSi、に近い特性の半導体特性を示すアモルファスFeSi、膜を作製する方法である。

【0006】アモルファスFeSi,は5mTorr以 7の低いArガス圧力下の低圧スパッタリング法により得られる。特に、対向ターゲット式スパッタリング法によって、より良質なアモルファスFeSi,膜を成長できる。

【0007】図1は、対向ターゲット式DCスパッタリング法の原理を示す概念図である。との方法では、電場Eと並行に印加された磁場Bによりプラズマがターゲット2およびターゲット3間に完全に閉じ込められ、ターゲット2および3と垂直方向に配置された基板1にブラズマが接しないために、中性粒子のみが基板1に堆積さ30 れ、成長膜がプラズマによる損傷を受けず、アニール的な効果を受けないために徴結晶が生成せず、より良質なアモルファス膜が得られる。また、堆積膜の表面温度上昇が少ないために連続膜(as-growth)が成長できる。

【0008】また、プラズマ接触による再スパッタが起こらないために得られた膜はターゲットからの組成ずれが極めて小さく、レーザーアブレーション法と同様に、FeSi,合金ターゲットを使用できる。さらに、5m torr以下、好ましくは1mtorr以下の低圧スパッタリングが可能なために、ターゲットからの放出粒子(原子)はスパッタ用のArガスにほとんど衝突することなく高エネルギーを維持したまま基板に到達する。同じスパッタリング法でも、RFマグネトロンスパッタリング法に比べて以上の2つの改善点により、より良質なアモルファス鉄シリサイド膜の成長が可能になる。

ーザーアブレーション法と同様に、アモルファス膜に有効な他の元素の添加による特性改善が容易に実現できる。通常のスパッタリング法ではプラズマが成膜中の膜50 に接しないようにしてアニール的な効果が作用しないよ

うにすることによって、良質なアモルファス膜を得ることができるが、対向ターゲット式スパッタリング法では ブラズマフリーであるために、アモルファス膜が容易に 得られる。したがって、積層化も容易である。大面積化 にも適し、工業的応用が容易である。

【0010】また、アモルファス鉄シリサイドは、磁性元素を添加することによる磁性半導体化や、水素化によるキャリア濃度の調整が可能である。さらに、アモルファス鉄シリサイドは、室温で成長する為に、基板加熱機構が不要である。

[0011]

【実施例】実施例1

対向ターゲット式DCスパッタリング装置((株)薄膜ソフト社製、ミラートロンスパッタリング装置MTSーL2000-2T)を用いて、パッタリング法によりSi(100)、(111)基板上に室温から400℃の温度範囲で膜厚約240nmの鉄シリサイド薄膜を作製した。比較のため400℃以上の温度範囲で同様に鉄シリサイド薄膜を作製した。ターゲットには組成比1:2のFeSi₂合金(99.99%)を使用した。スパッタリングチャンパー内はターボ分子ポンプを用いて10つかPa以下まで排気し、成膜時は15.0sccmのArガスを流入してガス圧を1.0mTorrとし、印加電圧、電流をそれぞれ950mV、6.0mAとした。堆積速度は1.0nm/minであった。

【0012】作成膜の評価はSEM観察、X線回折、光吸収スペクトル測定、電気抵抗測定により行った。X線回折測定により基板温度が400℃未満ではアモルファスな膜になっていることが分かった。吸収スペクトル測定により、アモルファスFeSi₂は0.6~0.7eVのパンドギャップを示した。

【0013】図2は、鉄シリサイドの膜表面形状の基板 温度に対する変化を示すSEM像を示す。基板温度に係 わらず、試料表面は極めて平滑である。800℃ではわ ずかにうねりのような凹凸が観察された。図3は、X線* *回析パターンの基板温度依存性を示す。基板温度が40 0°C未満でアモルファスFeSi,が得られ、400°C 以上ではβ-FeSi,が得られることが分かる。

【0014】図4は、光吸収スペクトルと吸収係数αの基板温度依存性を示す。アモルファスFeSi,膜はα=1.3~1.6×10⁵ cm⁻¹,多結晶β-FeSi,膜はα=5.0~7.8×10⁴ cm⁻¹である。図5は、光吸収スペクトルと光学パンドギャップEgの基板温度依存性を示す。アモルファスFeSi,膜は0,64~0.82 eV,多結晶β-FeSi,膜は0,84~0,94 eVである。図6は、シート抵抗および比抵抗ρの基板温度依存性を示す。アモルファスFeSi,膜の抵抗率ρは、3.2~7.3×10⁻³Ωcmであり、多結晶β-FeSi,膜の抵抗率ρは、1.0~3.2×10⁻¹Ωcmである。

【図面の簡単な説明】

【図1】図1は、対向ターゲット式DCスパッタリング 法の原理を示す概念図である。

【図2】図2の(a),(b)は、それぞれ、本発明の 20 方法により作製したアモルファス鉄シリサイドおよび多 結晶 β -FeSi,膜の表面SEM像を示す図面代用写 真である。

【図3】図3は、本発明の方法により作製された鉄シリサイドのX線回析バターンの基板温度依存性を示すグラフである。

【図4】図4は、本発明の方法により作製された鉄シリサイドの光吸収スペクトルと吸収係数 α の基板温度依存性を示すグラフである。

【図5】図5は、本発明の方法により作製された鉄シリ 30 サイドの光吸収スペクトルと光学バンドギャップEgの 基板温度依存性を示すグラフである。

【図6】図6は、本発明の方法により作製された鉄シリサイドのシート抵抗および比抵抗pの基板温度依存性を示すグラフである。

【図1】

[図2]

【図3】

【図4】

【図5】

【図6】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING

GRAY SCALE DOCUMENTS

☐ LINES OR MARKS ON ORIGINAL DOCUMENT

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

☐ OTHER: _

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.