1

Supplementary Material

A. Comparison with top-rank Algorithms

The proposed PSO-HV and DE-HL are compared with winners of CEC-2013 and CEC-2017 on 50 dimensions. From Tables VIII and IX, three winners (EBOwithCMAR, JSO, NBIPOP-ACMA-ES) show better performance than the proposed PSO-HV and DE-HL. The reason is that they integrate many evolutionary algorithms and strategies to adapt to more optimization problems than a single one. Although the proposed algorithms are inferior to the three winners in optimization results, they still have their advantages of a simple structure, easy application and competitive performance. Here we use EBOwithCMAR (the top-1 algorithm in CEC-2017) as an example to explain why we claim our proposed method's advantages. It has ten critical parameters that need to be fine-tuned and consists of six algorithms and strategies including Effective Butterfly Optimizer (EBO), Covariance Matrix Adapted Retreat (CMAR), sequential quadratic programming, linear population size reduction, data sharing strategy and multi-swarm strategy. Our proposed PSO-HV has only four parameters and uses only hierarchical learning, variable population and PSO. The proposed algorithms have significantly outperformed some top-rank algorithms.

TABLE S-I
ABLATION EXPERIMENT OF HIERARCHICAL LEARNING AND VARIABLE POPULATION MECHANISM ON 28 FUNCTIONS WITH 50-D

Func	PSO-I	HV	PSO-H		PSO-V	
	Mean error	Std.	Mean error (Sig.)	Std.	Mean error (Sig.)	Std.
f_1	6.33E-13	1.53E-13	0.00E+00 (-)	3.08E-13	2.29E-12 (+)	1.34E-11
f_2	4.83E+06	1.92E+06	8.02E+06 (+)	4.61E+06	3.38E+06 (-)	9.86E+05
f_3	1.19E+07	2.61E+07	4.95E+07 (+)	5.91E+07	9.58E+08 (+)	9.45E+08
f_4	4.02E+04	8.72E+03	1.01E+05 (+)	9.63E+03	1.05E+03 (-)	7.21E+02
f_5	3.21E-11	5.93E-11	1.38E-08 (+)	8.47E-08	5.31E-13 (-)	1.64E-12
f_6	4.72E+01	7.32E+00	5.15E+01 (+)	1.55E+01	5.75E+01 (≈)	2.86E+01
f_7	9.50E-01	5.11E-01	3.77E+00 (+)	9.59E+00	1.14E+02 (+)	1.93E+01
f_8	2.11E+01	4.61E-02	2.11E+01 (-)	4.20E-02	2.11E+01 (-)	3.37E-02
f_9	1.40E+01	2.88E+00	1.99E+01 (+)	4.80E+00	4.50E+01 (+)	5.36E+00
f_{10}	2.75E-01	2.27E-01	3.72E-01 (+)	3.24E-01	1.17E-01 (-)	7.87E-02
f_{11}	7.67E+00	4.25E+00	1.97E+01 (+)	5.44E+00	1.32E+02 (+)	2.82E+01
f_{12}	1.70E+01	4.89E+00	3.19E+01 (+)	9.95E+00	2.24E+02 (+)	6.08E+01
f_{13}	4.09E+01	2.13E+01	9.30E+01 (+)	2.83E+01	3.72E+02 (+)	7.17E+01
f_{14}	3.14E+02	1.61E+02	4.11E+02 (+)	1.95E+02	3.61E+03 (+)	6.89E+02
f_{15}	2.19E+03	7.21E+02	3.36E+03 (+)	7.86E+02	7.56E+03 (+)	9.28E+02
f_{16}	4.52E-01	1.67E-01	6.76E-01 (+)	1.84E-01	2.82E+00 (+)	5.37E-01
f_{17}	5.88E+01	1.87E+00	7.00E+01 (+)	6.13E+00	2.07E+02 (+)	4.34E+01
f_{18}	8.97E+01	1.01E+01	1.05E+02 (+)	1.22E+01	2.59E+02 (+)	7.31E+01
f_{19}	5.15E+00	6.47E-01	5.50E+00 (≈)	6.60E-01	1.22E+01 (+)	4.35E+00
f_{20}	2.28E+01	8.04E-01	2.44E+01 (+)	3.32E-01	2.13E+01 (-)	1.07E+00
f_{21}	8.72E+02	3.02E+02	8.08E+02 (-)	3.68E+02	8.63E+02 (≈)	3.53E+02
f_{22}	2.11E+02	8.99E+01	5.85E+02 (+)	2.74E+02	4.12E+03 (+)	9.61E+02
f_{23}	2.18E+03	7.06E+02	3.37E+03 (+)	9.28E+02	9.16E+03 (+)	1.53E+03
f_{24}	2.06E+02	9.91E+00	2.22E+02 (+)	1.80E+01	3.24E+02 (+)	1.32E+01
f_{25}	2.96E+02	9.03E+00	3.09E+02 (+)	1.32E+01	3.56E+02 (+)	1.47E+01
f_{26}	2.78E+02	4.82E+01	3.20E+02 (+)	5.04E+01	4.02E+02 (+)	5.25E+01
f_{27}	4.61E+02	1.83E+02	7.36E+02 (+)	1.67E+02	1.48E+03 (+)	1.25E+02
f_{28}	4.00E+02	3.86E-09	5.75E+02 (+)	7.05E+02	1.05E+03 (+)	1.32E+03
+/≈/-	PSO-HV VS		24/1/3		20/2/6	
+/≈/-			PSO-H VS		21/2/5	

 ${\bf TABLE~S\text{-}II}$ Wilcoxon Test Results Between PSO-HV and Related Algorithms on CEC-2017 Functions

		D=1	00			D=:	50			D=:	30	
Func	MAPSO	APABC	HGFOA	HPSO	MAPSO	APABC	HGFOA	HPSO	MAPSO	APABC	HGFOA	HPSO
	[45]	[46]	[57]	[56]	[45]	[46]	[57]	[56]	[45]	[46]	[57]	[56]
g_1	\approx	+	+	+	*	+	+	+	×	_	\approx	\approx
g_3	_	+	_	_	_	+	_	_	_	+	_	_
g_4	\approx	_	\approx	+	_	_	\approx	+	_	_	\approx	_
g_5	+	+	+	+	+	+	+	+	+	+	+	+
g_6	+	_	+	+	+	_	+	+	+	_	+	+
g_7	+	+	+	+	+	+	+	+	+	+	+	+
g_8	+	+	+	+	+	+	+	+	+	+	+	+
g_9	+	+	+	+	+	+	+	+	+	+	+	+
g_{10}	+	+	+	+	+	+	+	+	+	+	+	+
g_{11}	_	+	_	_	_	+	\approx	\approx	+	+	\approx	\approx
g_{12}	_	+	+	+	_	+	+	\approx	_	+	\approx	\approx
g_{13}	\approx	+	+	\approx	+	+	+	+	+	+	_	-
g_{14}	_	+	_	+	_	+	_	\approx	_	+	_	-
g_{15}	\approx	+	+	\approx	\approx	+	_	\approx	+	+	\approx	\approx
g_{16}	+	+	+	+	+	+	+	+	+	+	+	\approx
g_{17}	+	+	+	+	+	+	+	+	+	+	+	+
g_{18}	_	+	_	\approx	_	+	_	_	_	+	_	\approx
g_{19}	\approx	+	+	\approx	\approx	\approx	_	_	\approx	+	_	-
g_{20}	+	+	+	+	+	+	+	+	\approx	+	+	-
g_{21}	+	+	+	+	+	+	+	+	+	+	+	+
g_{22}	+	+	+	+	+	+	+	+	+	+	+	+
g_{23}	+	+	+	+	+	+	+	+	+	+	+	+
g_{24}	+	+	+	+	+	+	+	+	+	+	+	+
g_{25}	_	_	\approx	+	_	_	\approx	+	\approx	_	\approx	+
g_{26}	+	+	+	+	+	+	\approx	+	+	+	\approx	\approx
g_{27}	_	\approx	\approx	+	\approx	+	_	+	_	\approx	_	\approx
g_{28}	_	_	_	+	\approx	\approx	+	+	_	_	\approx	+
g_{29}	+	+	+	+	+	+	+	+	+	+	+	+
g_{30}	≈	+	+	+	_		+	+	≈	+	+	+
+/≈/−	15/6/8	24/1/4	21/3/5	23/4/2	16/5/8	23/2/4	19/4/6	22/4/3	17/5/7	23/1/5	15/8/6	15/8/6

 $\label{thm:condition} TABLE\ S-III$ Wilcoxon Test Results Between PSO-HV and Related Algorithms on CEC-2013 Functions

		D=1	00			D=:	50			D=3	30	
Func	MAPSO	APABC	HGFOA	HPSO	MAPSO	APABC	HGFOA	HPSO	MAPSO	APABC	HGFOA	HPSO
	[45]	[46]	[57]	[56]	[45]	[46]	[57]	[56]	[45]	[46]	[57]	[56]
f_1	_	_	+	+	_	_	+	+	_	_	+	\approx
f_2	\approx	+	_	+	_	+	_	+	_	+	_	+
f_3	≈	+	+	+	+	+	+	+	+	+	+	+
f_4	_	+	_	_	_	+	_	_	_	+	_	_
f_5	_	_	+	+	+	_	+	\approx	+	_	+	+
f_6	≈	_	\approx	+	_	_	\approx	\approx	_	_	\approx	\approx
f_7	+	+	+	+	+	+	+	+	+	+	+	+
f_8	\approx	\approx	_	\approx	+	+	\approx	\approx	\approx	\approx	_	_
f_9	+	+	+	+	+	+	+	+	+	+	+	+
f_{10}	\approx	+	+	+	_	+	+	+	_	+	+	+
f_{11}	+	_	+	\approx	+	_	_	_	+	_	+	_
f_{12}	+	+	+	+	+	+	+	+	+	+	+	+
f_{13}	+	+	+	+	+	+	+	+	+	+	+	+
f_{14}	_	_	+	_	\approx	_	+	_	\approx	_	+	_
f_{15}	+	+	+	+	+	+	+	+	+	+	+	+
f_{16}	+	+	+	+	+	+	+	+	+	+	+	+
f_{17}	+	_	+	+	+	_	+	\approx	+	_	+	-
f_{18}	+	+	+	+	+	+	+	+	+	+	+	+
f_{19}	+	_	+	+	\approx	_	+	\approx	\approx	_	+	\approx
f_{20}	\approx	\approx	\approx	\approx	_	+	+	_	_	_	_	_
f_{21}	\approx	_	+	\approx	+	_	\approx	_	\approx	_	\approx	\approx
f_{22}	_	_	+	\approx	+	_	+	+	+	_	+	\approx
f_{23}	+	+	+	+	+	+	+	+	+	+	+	+
f_{24}	+	+	+	+	+	+	+	+	+	+	+	+
f_{25}	+	+	+	+	+	+	+	+	+	+	+	+
f_{26}	+	_	+	\approx	+	_	\approx	_	_	_	_	-
f_{27}	+	+	+	+	+	+	+	+	+	+	+	+
f_{28}	≈	\approx	+	\approx	_	\approx	+	+	_	_	+	+
+/≈/-	15/8/5	15/3/10	23/2/3	19/2/7	19/2/7	17/1/10	21/4/3	17/5/6	16/4/8	15/1/12	21/2/5	16/5/7

 ${\it TABLE~S-IV}$ Wilcoxon Test Results Between PSO-HV and Other Comparison Algorithms on CEC-2017 Functions

			D	=100					Ι	D=50					Ι	D=30		
Func	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA
	[50]	[51]	[52]	[53]	[54]	[55]	[50]	[51]	[52]	[53]	[54]	[55]	[50]	[51]	[52]	[53]	[54]	[55]
g_1	≈	≈	+	≈	_	_	~	≈	+	_	_	_	≈	≈	+	_	_	-
g_3	_	+	+	_	_	_	_	+	+	_	_	_	_	_	+	_	_	-
g_4	_	\approx	+	\approx	_	_	_	\approx	+	_	_	_	-	+	+	_	_	-
g_5	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
96	+	+	+	\approx	-	+	+	\approx	+	-	+	+	+	-	+	-	_	+
97	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
g_8	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
g_9	+	\approx	+	+	+	+	+	_	+	+	+	+	+	+	+	+	+	≈
910	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
g_{11}	_	_	+	_	-	-	_	\approx	+	_	_	-	+	+	+	+	+	+
912	_	\approx	+	_	-	+	_	_	+	_	_	+	_	_	+	_	_	+
913	~	\approx	+	\approx	\approx	+	+	\approx	+	\approx	\approx	+	≈	\approx	+	_	_	+
g_{14}	_	\approx	+	\approx	_	_	_	_	+	_	_	_	_	\approx	+	_	_	-
915	~	\approx	+	\approx	\approx	+	+	\approx	+	_	_	+	+	\approx	+	_	_	+
916	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
g_{17}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
918	_	_	+	_	_	_	_	\approx	+	_	_	_	_	_	+	_	_	-
<i>g</i> 19	~	\approx	+	\approx	\approx	+	≈	\approx	+	_	_	+	+	+	+	_	_	+
920	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	\approx	\approx	+
g_{21}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
922	+	\approx	+	+	+	+	+	+	+	+	+	+	≈	+	+	+	+	+
923	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
924	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
g_{25}	~	\approx	+	\approx	\approx	_	~	+	+	_	_	_	≈	+	+	_	_	-
926	+	\approx	+	+	+	+	+	_	+	+	+	+	+	_	+	_	+	≈
927	+	\approx	+	+	+	+	+	+	+	+	+	+	+	+	+	\approx	_	+
g_{28}	_	_	+	_	_	_	~	+	+	~	+	_	_	_	+	_	_	_
929	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
g ₃₀	≈	_	+	_	_	+	_	≈	+	_	_	+	~	+	+	≈	_	+
+/≈/-	16/6/7	13/12/4	29/0/0	15/8/6	15/4/10	21/0/8	18/4/7	16/9/4	29/0/0	15/2/12	17/1/11	21/0/8	18/5/6	19/4/6	29/0/0	13/3/13	14/1/14	20/2/7

 ${\it TABLE~S-V}$ Wilcoxon Test Results Between PSO-HV and Other Comparison Algorithms on CEC-2013 Functions

			D	=100					Ι	D=50					Γ	D=30		
Func	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA
	[50]	[51]	[52]	[53]	[54]	[55]	[50]	[51]	[52]	[53]	[54]	[55]	[50]	[51]	[52]	[53]	[54]	[55]
f_1	≈	_	+	≈	-	_	-	-	+	≈	-	_	_	_	+	\approx	-	-
f_2	_	_	+	\approx	_	-	_	_	+	_	_	_	_	_	+	_	_	_
f_3	+	\approx	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+
f_4	_	+	+	_	-	_	-	+	+	_	-	_	_	+	+	_	-	_
f_5	_	_	+	_	-	+	-	_	+	_	-	+	_	_	+	_	-	+
f_6	_	_	+	\approx	_	_	_	_	+	_	_	_	_	\approx	+	_	_	_
f_7	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_8	~	_	_	+	\approx	\approx	≈	\approx	_	+	\approx	_	_	+	_	+	+	_
f_9	+	+	_	+	+	+	+	+	_	+	+	+	+	+	_	+	+	+
f_{10}	_	-	+	\approx	_	_	_	-	+	\approx	-	_	-	\approx	+	_	_	-
f_{11}	_	+	+	_	_	+	_	+	+	_	_	+	_	+	+	_	_	+
f_{12}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_{13}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_{14}	_	+	+	_	_	+	_	+	+	_	_	+	_	+	+	_	_	+
f_{15}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_{16}	+	\approx	+	+	+	_	+	_	+	+	+	_	+	_	+	+	+	_
f_{17}	_	+	+	_	_	+	_	+	+	_	_	+	_	+	+	_	_	+
f_{18}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_{19}	_	\approx	+	\approx	+	+	_	+	+	_	_	+	_	+	+	_	_	\approx
f_{20}	~	\approx	+	\approx	\approx	\approx	_	_	+	_	_	+	_	+	+	_	_	\approx
f_{21}	_	\approx	+	\approx	_	_	~	≈	+	_	\approx	_	≈	+	+	_	\approx	_
f_{22}	_	+	+	-	-	+	_	+	+	_	_	+	_	+	+	_	_	+
f_{23}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_{24}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f_{25}	+	+	+	+	+	+	+	+	+	+	+	+	+	≈	+	+	+	+
f_{26}	+	≈	+	≈	+	+	+	+	+	_	+	_	+	+	+	_	≈	-
f_{27}	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
f ₂₈	≈	-	+	≈	≈	≈	+	-	+	-	+	-	+	-	+	≈	-	≈
+/≈/-	13/4/11	15/6/7	26/0/2	13/9/6	14/3/11	18/3/7	14/2/12	18/2/8	26/0/2	13/2/13	14/2/12	18/0/10	14/1/13	20/3/5	26/0/2	13/2/13	12/2/14	16/3/9

TABLE S-VI Comparison Results on CEC 2017 on 100-D

Euro	D-100	TADCO	DEBCO	AW/DCO	LICI DCO	CIADE	LOTFWA	MAPSO	A DA DC	LICEOA	LIDCO DTA	DCO HV
Func	D=100	TAPSO $3.18E+03 (\approx)$	DEPSO 5.26E+03 (≈)	AWPSO 3.34E+11 (+)	HCLPSO 5.05E+03 (≈)	CJADE 3.80E-02 (-)	1.61E+02 (—)		APABC 3.82E+04 (+)	HGFOA 4.13E+04 (+)	HPSO-DTA 2.07E+04 (+)	PSO-HV 6.64E+03
a.	Mean Err. Median	3.18E+03 (≈) 1.49E+03	3.20E+03 (≈) 3.20E+03	3.32E+11 (+)	5.01E+03 (≈)	1.59E-03	4.08E+01	6.87E+03 (≈)	2.78E+04 (+)	3.46E+04 (+)	2.84E+04 (+)	1.77E+03
g_1	Std.	4.13E+03	4.75E+03	2.81E+10	3.11E+03	9.71E-02	3.69E+02	5.94E+03	2.34E+04	1.72E+04	1.49E+04	9.14E+03
	Mean Err.	4.02E+04 (-)	4.02E+05 (+)	4.60E+05 (+)	4.45E+04 (-)	7.05E+04 (—)	1.19E+04 (-)	4.50E+03 (-)	6.46E+05 (+)	2.99E+04 (-)	1.38E+05 (-)	1.77E+05
g_3	Median	3.58E+04	3.90E+05	4.59E+05	4.14E+04	1.09E-07	1.28E+04	4.95E+03	6.50E+05	2.94E+04	1.35E+05	1.74E+05
55	Std.	1.38E+04	8.36E+04	3.65E+04	1.16E+04	1.22E+05	3.56E+03	1.94E+03	3.70E+04	3.62E+03	2.39E+04	3.55E+04
	Mean Err.	1.85E+02 (-)	2.76E+02 (≈)	9.11E+04 (+)	2.45E+02 (≈)	9.64E+01 (-)	2.40E+02 (-)	2.62E+02 (≈)	2.10E+02 (-)	2.89E+02 (≈)	4.04E+02 (+)	2.83E+02
g_4	Median	1.93E+02	2.80E+02	9.46E+04	2.46E+02	8.05E+01	2.45E+02	2.57E+02	2.08E+02	2.92E+02	4.02E+02	2.91E+02
	Std.	5.11E+01	3.73E+01	1.27E+04	3.27E+01	5.65E+01	2.18E+01	3.67E+01	2.14E+01	4.46E+01	4.38E+01	3.54E+01
	Mean Err.	4.02E+02 (+)	1.46E+02 (+)	1.74E+03 (+)	2.99E+02 (+)	2.04E+02 (+)	3.99E+02 (+)	1.65E+02 (+)	3.57E+02 (+)	5.56E+02 (+)	2.73E+02 (+)	5.07E+01
g_5	Median	4.13E+02	1.41E+02	1.76E+03	2.87E+02	2.05E+02	3.85E+02	1.68E+02	3.58E+02	5.57E+02	2.79E+02	4.97E+01
	Std.	4.56E+01	1.76E+01	6.22E+01	4.20E+01	4.07E+01	3.85E+01	1.88E+01	2.79E+01	6.87E+01	2.92E+01	1.38E+01
a.	Mean Err. Median	9.73E-02 (+) 9.92E-02	2.20E-03 (+) 1.95E-03	1.14E+02 (+) 1.13E+02	3.80E-03 (≈) 1.45E-04	4.03E-13 (-) 4.55E-13	2.09E+01 (+) 2.28E+01	1.76E+00 (+) 1.83E+00	1.86E-13 (—) 2.27E-13	5.01E+01 (+) 5.02E+01	8.51E-01 (+) 8.28E-01	3.00E-04 1.74E-04
g_6	Std.	3.12E-02	1.66E-03	3.43E+00	1.10E-02	5.94E-14	7.26E+00	3.26E-01	7.66E-14	5.54E+00	1.12E-01	3.38E-04
	Mean Err.	6.01E+02 (+)	2.63E+02 (+)	6.70E+03 (+)	5.61E+02 (+)	4.15E+02 (+)	2.58E+02 (+)	4.58E+02 (+)	4.50E+02 (+)	1.25E+03 (+)	5.09E+02 (+)	1.42E+02
97	Median	5.79E+02	2.63E+02	6.81E+03	5.51E+02	3.99E+02	2.55E+02	4.67E+02	4.54E+02	1.32E+03	4.99E+02	1.39E+02
	Std.	1.02E+02	1.63E+01	4.15E+02	1.04E+02	4.87E+01	2.07E+01	5.09E+01	1.95E+01	1.75E+02	9.00E+01	6.85E+00
	Mean Err.	4.18E+02 (+)	1.56E+02 (+)	1.86E+03 (+)	3.05E+02 (+)	2.11E+02 (+)	4.43E+02 (+)	1.55E+02 (+)	3.63E+02 (+)	5.82E+02 (+)	3.05E+02 (+)	5.29E+01
g_8	Median	4.09E+02	1.59E+02	1.86E+03	2.98E+02	2.12E+02	4.37E+02	1.48E+02	3.80E+02	6.03E+02	3.16E+02	5.27E+01
	Std.	6.03E+01	2.08E+01	4.74E+01	6.39E+01	2.58E+01	2.65E+01	2.39E+01	4.73E+01	5.69E+01	4.63E+01	6.70E+00
	Mean Err.	9.35E+03 (+)	4.66E+00 (≈)	1.06E+05 (+)	1.98E+03 (+)	1.50E+03 (+)	1.18E+04 (+)	6.82E+02 (+)	7.60E+03 (+)	3.04E+04 (+)	8.38E+02 (+)	2.73E+01
g_9	Median Std.	8.26E+03 4.29E+03	2.90E+00	1.02E+05	1.47E+03	1.05E+03	1.17E+04	6.75E+02	8.13E+03	3.11E+04	7.22E+02	8.26E+00
			2.95E+00	1.20E+04	1.39E+03	9.70E+02	1.73E+03	1.79E+02	2.06E+03	4.75E+03	3.55E+02	5.21E+01
g_{10}	Mean Err. Median	1.14E+04 (+) 1.14E+04	6.94E+03 (+) 6.96E+03	3.00E+04 (+) 2.99E+04	1.19E+04 (+) 1.22E+04	9.72E+03 (+) 9.84E+03	9.89E+03 (+) 9.91E+03	1.25E+04 (+) 1.26E+04	9.96E+03 (+) 1.01E+04	1.42E+04 (+) 1.39E+04	1.13E+04 (+) 1.13E+04	3.54E+03 3.87E+03
310	Std.	1.16E+03	1.21E+03	3.22E+02	9.75E+02	3.27E+02	7.16E+02	1.08E+03	5.83E+02	1.08E+03	1.12E+03	1.21E+03
	Mean Err.	3.60E+02 (-)	1.13E+03 (-)	1.61E+05 (+)	8.21E+02 (-)	1.21E+03 (-)	1.18E+03 (-)	7.48E+02 (-)	6.95E+04 (+)	1.48E+03 (-)	1.98E+03 (-)	5.44E+03
g_{11}	Median	3.46E+02	6.05E+02	1.67E+05	8.03E+02	1.18E+03	1.21E+03	7.88E+02	7.34E+04	1.45E+03	1.77E+03	4.53E+03
011	Std.	7.46E+01	1.11E+03	2.90E+04	1.88E+02	3.84E+02	1.70E+02	1.27E+02	1.93E+04	3.44E+02	6.56E+02	2.45E+03
	Mean Err.	4.27E+05 (-)		1.54E+11 (+)	1.27E+06 (-)	6.10E+04 (-)	1.43E+07 (+)	1.48E+06 (-)	2.77E+07 (+)	4.59E+07 (+)	3.60E+07 (+)	3.66E+06
g_{12}	Median	3.85E+05	5.90E+05	1.52E+11	1.36E+06	4.47E+04	1.22E+07	1.23E+06	2.56E+07	5.28E+07	3.90E+07	2.94E+06
	Std.	2.11E+05	4.91E+06	1.54E+10	3.28E+05	2.88E+04	1.01E+07	8.26E+05	9.03E+06	1.99E+07	2.38E+07	1.78E+06
	Mean Err.	3.42E+03 (≈)	1.66E+03 (≈)	2.98E+10 (+)	3.80E+03 (≈)	$5.34E+03 \ (\approx)$	2.57E+04 (+)	5.49E+03 (≈)	1.58E+04 (+)	6.00E+04 (+)	3.29E+03 (≈)	2.66E+03
g_{13}	Median	1.67E+03	4.38E+02	2.99E+10	2.56E+03	2.72E+03	2.58E+04	3.08E+03	1.42E+04	5.74E+04	2.65E+03	1.91E+03
	Std.	5.40E+03	2.33E+03	4.64E+09	3.33E+03	6.66E+03	4.23E+03	5.59E+03	9.24E+03	2.39E+04	1.93E+03	2.76E+03
	Mean Err.	3.67E+04 (-) 2.80E+04	6.56E+05 (≈)	4.93E+07 (+)	2.56E+05 (≈)	6.73E+02 (-)	1.10E+05 (-)	1.01E+05 (-)	8.61E+06 (+) 8.32E+06	1.08E+03 (-)	1.06E+06 (+)	4.33E+05
g_{14}	Median Std.	2.80E+04 2.77E+04	1.17E+05 7.78E+05	5.25E+07 1.49E+07	2.13E+05 1.38E+05	5.25E+02 3.39E+02	9.05E+04 5.46E+04	9.24E+04 4.49E+04	8.32E+06 2.28E+06	9.71E+02 2.69E+02	7.63E+05 9.28E+05	3.37E+05 2.29E+05
	Mean Err.	7.66E+02 (≈)	2.19E+03 (≈)	1.49E+07 1.26E+10 (+)	7.51E+02 (≈)	3.39E+02 8.98E+02 (≈)	1.86E+04 (+)	4.49E+04 1.67E+03 (≈)	1.41E+04 (+)	1.40E+04 (+)	9.28E+03 (≈)	1.98E+03
015	Median	5.45E+02	1.25E+03 (~)	1.22E+10 (+)	6.30E+02 (~)	7.57E+02 (~)	1.91E+04	8.35E+02	1.08E+04	1.34E+04	1.02E+03 (~)	1.98E+03
g_{15}	Std.	6.99E+02	2.28E+03	3.56E+09	4.77E+02	7.86E+02	3.75E+03	1.81E+03	9.84E+03	6.23E+03	3.86E+02	2.08E+03
	Mean Err.	3.41E+03 (+)	2.32E+03 (+)	1.55E+04 (+)	3.02E+03 (+)	2.45E+03 (+)	2.58E+03 (+)	2.76E+03 (+)	3.31E+03 (+)	3.96E+03 (+)	2.73E+03 (+)	5.82E+02
g_{16}	Median	3.42E+03	2.26E+03	1.57E+04	2.92E+03	2.42E+03	2.49E+03	2.75E+03	3.24E+03	3.85E+03	2.73E+03	5.57E+02
310	Std.	6.69E+02	6.38E+02	2.39E+03	6.34E+02	3.70E+02	3.89E+02	4.91E+02	4.04E+02	6.33E+02	2.54E+02	3.10E+02
	Mean Err.	2.90E+03 (+)	1.62E+03 (+)	1.56E+06 (+)	2.48E+03 (+)	2.00E+03 (+)	1.82E+03 (+)	2.46E+03 (+)	2.42E+03 (+)	2.93E+03 (+)	2.13E+03 (+)	3.06E+02
g_{17}	Median	2.89E+03	1.79E+03	8.61E+05	2.53E+03	1.91E+03	1.86E+03	2.32E+03	2.39E+03	2.95E+03	2.12E+03	2.66E+02
	Std.	5.41E+02	4.67E+02	1.49E+06	5.16E+02	3.47E+02	2.16E+02	3.84E+02	2.97E+02	4.51E+02	1.87E+02	2.16E+02
	Mean Err.	1.36E+05 (-)	1.44E+05 (-)	7.59E+07 (+)	2.40E+05 (-)	2.46E+03 (-)	3.38E+05 (-)	2.67E+05 (-)	4.64E+06 (+)	7.72E+04 (-)	1.60E+06 (≈)	1.00E+06
g_{18}	Median	9.88E+04	1.44E+05	7.68E+07	2.33E+05	2.41E+03	3.18E+05	2.42E+05	4.66E+06	7.45E+04	1.38E+06	8.31E+05
	Std.	1.06E+05	2.60E+04	2.16E+07	8.71E+04	1.33E+03	7.61E+04	1.53E+05	1.88E+06	3.45E+04	6.09E+05	5.41E+05
_	Mean Err.	3.43E+03 (≈) 1.05E+03	1.32E+03 (≈) 4.60E+02	1.05E+10 (+) 1.01E+10	9.47E+02 (≈) 3.65E+02	4.55E+03 (≈) 9.81E+02	3.54E+05 (+) 3.79E+05	4.34E+03 (≈) 2.48E+03	8.07E+03 (+) 5.93E+03	2.00E+04 (+) 1.38E+04	9.94E+02 (≈) 8.21E+02	2.04E+03 6.03E+02
g_{19}	Median Std.	4.33E+03	1.36E+03	2.41E+09	1.23E+03	6.97E+03	1.38E+05	4.92E+03	4.91E+03	1.87E+04	6.92E+02	3.66E+03
	Mean Err.	2.42E+03 (+)	1.43E+03 (+)	5.19E+03 (+)	2.30E+03 (+)	1.85E+03 (+)	2.11E+03 (+)	1.97E+03 (+)	2.18E+03 (+)	2.34E+03 (+)	1.72E+03 (+)	4.35E+02
g_{20}	Median	2.34E+03	1.50E+03	5.25E+03	2.32E+03	1.89E+03	2.10E+03	1.80E+03	2.17E+03	2.36E+03	1.75E+03	3.93E+02
320	Std.	5.65E+02	4.56E+02	3.06E+02	3.10E+02	2.11E+02	2.53E+02	4.50E+02	1.87E+02	3.72E+02	2.65E+02	1.70E+02
	Mean Err.	6.32E+02 (+)	3.81E+02 (+)	2.47E+03 (+)	5.71E+02 (+)	4.15E+02 (+)	7.43E+02 (+)	3.80E+02 (+)	6.08E+02 (+)	9.26E+02 (+)	5.17E+02 (+)	2.76E+02
g_{21}	Median	6.28E+02	3.86E+02	2.47E+03	5.76E+02	4.12E+02	7.52E+02	3.82E+02	6.10E+02	9.35E+02	5.29E+02	2.75E+02
	Std.	5.47E+01	1.60E+01	1.45E+02	6.36E+01	2.39E+01	3.76E+01	2.14E+01	1.77E+01	1.23E+02	5.41E+01	9.87E+00
		1.22E+04 (+)						1.32E+04 (+)				
g_{22}	Median	1.36E+04	1.00E+02	3.15E+04	1.29E+04	1.14E+04	1.21E+04	1.32E+04	1.14E+04	1.66E+04	1.23E+04	1.00E+02
	Std.	4.39E+03	4.19E+03	5.73E+02	1.23E+03	6.95E+02	5.25E+02	1.82E+03	5.29E+02	2.02E+03	9.36E+02	1.13E+00
_	Mean Err. Median	8.56E+02 (+) 8.35E+02	6.72E+02 (+) 6.73E+02	4.59E+03 (+) 4.63E+03	8.10E+02 (+) 8.07E+02	6.66E+02 (+) 6.60E+02	1.35E+03 (+) 1.36E+03	6.66E+02 (+) 6.68E+02	7.30E+02 (+) 7.29E+02	1.60E+03 (+) 1.58E+03	7.66E+02 (+) 7.60E+02	5.85E+02 5.85E+02
g_{23}	Std.	6.88E+01	3.97E+01	5.17E+02	2.68E+01	1.85E+01	2.84E+01	1.79E+01	2.17E+01	1.57E+03	2.23E+01	2.32E+01
	Mean Err.	1.37E+03 (+)	9.62E+02 (+)	8.46E+03 (+)	1.34E+03 (+)	1.10E+03 (+)	1.78E+03 (+)	1.04E+03 (+)	1.22E+03 (+)	2.51E+03 (+)	1.24E+03 (+)	8.65E+02
g_{24}	Median	1.36E+03	9.53E+02	8.59E+03	1.35E+03	1.08E+03	1.77E+03	1.05E+03	1.23E+03	2.53E+03	1.24E+03	8.69E+02
324	Std.	7.35E+01	2.66E+01	6.40E+02	5.41E+01	4.16E+01	9.13E+01	3.03E+01	2.70E+01	3.09E+02	3.89E+01	2.44E+01
	Mean Err.	7.70E+02 (≈)	8.34E+02 (≈)	3.73E+04 (+)	7.81E+02 (≈)	7.64E+02 (≈)	7.37E+02 (-)	7.63E+02 (-)	7.35E+02 (-)	7.84E+02 (≈)	1.01E+03 (+)	8.31E+02
g_{25}	Median	7.81E+02	8.39E+02	3.71E+04	7.37E+02	7.64E+02	7.13E+02	7.71E+02	7.41E+02	7.79E+02	9.97E+02	8.37E+02
	Std.	7.32E+01	3.92E+01	4.66E+03	1.12E+02	4.60E+01	7.55E+01	4.31E+01	2.62E+01	6.41E+01	8.02E+01	6.72E+01
	Mean Err.	8.85E+03 (+)	2.46E+03 (≈)	5.12E+04 (+)	7.75E+03 (+)	5.48E+03 (+)	1.02E+04 (+)	4.82E+03 (+)	7.08E+03 (+)	1.63E+04 (+)	6.48E+03 (+)	3.00E+03
g_{26}	Median	8.88E+03	4.05E+03	5.13E+04	7.71E+03	5.44E+03	1.04E+04	4.77E+03	7.03E+03	1.43E+04	6.48E+03	3.03E+03
	Std.	7.31E+02	2.08E+03	3.98E+03	7.31E+02	5.30E+02	1.03E+03	3.15E+02	2.44E+02	3.84E+03	2.27E+02	2.26E+02
	Mean Err.	8.03E+02 (+)	6.93E+02 (≈)	8.32E+03 (+)	8.12E+02 (+)	8.27E+02 (+)	9.83E+02 (+)	6.75E+02 (-)	7.45E+02 (≈)	6.83E+02 (≈)	8.11E+02 (+)	7.26E+02
g_{27}	Median Std.	8.10E+02 4.30E+01	6.97E+02 2.46E+01	8.45E+03 1.03E+03	8.07E+02 4.95E+01	8.24E+02 6.57E+01	1.01E+03 9.10E+01	6.63E+02 4.48E+01	7.39E+02 3.75E+01	5.00E+02 2.55E+02	8.09E+02 3.78E+01	7.26E+02 3.64E+01
	Mean Err.	5.38E+02 (-)	6.29E+02 (-)	3.28E+04 (+)	5.65E+02 (-)	5.57E+02 (-)	6.13E+02 (-)	4.48E+01 6.01E+02 (-)	5.85E+02 (-)	6.28E+02 (-)	8.25E+02 (+)	6.83E+02
000	Median	5.43E+02 (-) 5.43E+02	6.29E+02 (-) 6.21E+02	3.28E+04 (+) 3.38E+04	5.66E+02 (-)	5.45E+02 (-)	6.13E+02 (-) 6.23E+02	6.01E+02 (-) 6.10E+02	5.83E+02 (-) 5.82E+02	6.26E+02 (-)	8.25E+02 (+) 8.27E+02	6.83E+02 6.81E+02
g_{28}	Std.	2.54E+01	3.58E+01	4.40E+03	3.09E+02	2.82E+01	4.15E+01	2.55E+01	1.45E+01	4.75E+01	5.11E+01	4.43E+01
	Mean Err.	3.26E+03 (+)	2.63E+03 (+)	6.43E+04 (+)	3.30E+03 (+)	2.39E+03 (+)	3.82E+03 (+)	2.91E+03 (+)	3.82E+03 (+)	4.83E+03 (+)	2.66E+03 (+)	1.10E+03
g_{29}	Median	3.18E+03	2.66E+03	5.35E+04	3.42E+03	2.39E+03	3.73E+03	2.76E+03	3.78E+03	4.75E+03	2.72E+03	1.03E+03
525	Std.	3.94E+02	4.79E+02	3.77E+04	4.49E+02	3.07E+02	2.79E+02	4.69E+02	3.05E+02	7.60E+02	2.45E+02	2.19E+02
	Mean Err.	7.74E+03 (≈)	6.18E+03 (-)	2.19E+10 (+)	4.10E+03 (-)	3.05E+03 (-)	3.58E+06 (+)	6.35E+03 (≈)	1.84E+04 (+)	4.29E+06 (+)	3.20E+04 (+)	9.17E+03
g_{30}	Median	6.97E+03	6.08E+03	2.19E+10	3.24E+03	3.00E+03	3.28E+06	5.12E+03	1.90E+04	3.90E+06	2.86E+04	8.05E+03
	Std.	4.06E+03	1.79E+03	7.13E+09	1.81E+03	2.04E+02	1.35E+06	3.65E+03	3.35E+03	1.89E+06	1.68E+04	2.53E+03
	+/≈/-	16/6/7	13/12/4	29/0/0	15/8/6	15/4/10	21/0/8	15/6/8	24/1/4	21/3/5	23/4/2	

TABLE S-VII
COMPARISON RESULTS ON CEC 2017 ON 50-D

Func	D=50	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	MAPSO	APABC	HGFOA	HPSO-DTA	PSO-HV
	Mean Err.	3.47E+03 (≈)	2.30E+03 (≈)	1.08E+11 (+)	9.81E+02 (-)	4.27E-10 (-)	2.10E+02 (-)	2.17E+03 (≈)	3.02E+04 (+)	1.09E+04 (+)	1.37E+04 (+)	2.67E+03
g_1	Median Std.	1.87E+03 3.64E+03	8.09E+02 3.37E+03	1.09E+11 1.70E+10	7.12E+02 8.31E+02	1.59E-12 9.41E-10	7.27E+01 3.46E+02	1.09E+03 2.53E+03	3.24E+04 1.19E+04	6.32E+03 7.36E+03	1.42E+04 7.21E+03	9.69E+02 3.66E+03
	Mean Err.	6.03E+02 (-)	9.47E+04 (+)	1.82E+05 (+)	4.42E+00 (-)	7.46E+03 (-)	3.10E-01 (-)	1.12E+02 (-)	2.72E+05 (+)	9.89E+02 (-)	2.20E+04 (-)	6.24E+04
g_3	Median	6.21E+01	8.88E+04	1.79E+05	2.01E+00	6.82E-13	1.99E-01	9.10E+01	2.66E+05	7.50E+02	1.81E+04	6.14E+04
	Std. Mean Err.	1.76E+03 4.37E+01 (-)	2.70E+04 1.85E+02 (≈)	2.64E+04 2.69E+04 (+)	6.55E+00 9.14E+01 (-)	2.09E+04 3.44E+01 (-)	3.47E-01 1.02E+02 (-)	9.01E+01 1.31E+02 (-)	3.04E+04 4.85E+01 (-)	8.84E+02 1.67E+02 (≈)	1.01E+04 2.03E+02 (+)	1.36E+04 1.72E+02
g_4	Median	2.85E+01	2.05E+02	2.62E+04	1.01E+02	2.85E+01	1.03E+02	1.19E+02	4.42E+01	1.59E+02	1.89E+02	1.69E+02
	Std.	4.50E+01	4.30E+01	5.58E+03	4.90E+01	3.97E+01	3.83E+01	2.86E+01	2.13E+01	3.84E+01	3.36E+01	4.11E+01
g_5	Mean Err. Median	1.32E+02 (+) 1.25E+02	5.99E+01 (+) 5.97E+01	7.21E+02 (+) 7.25E+02	1.04E+02 (+) 1.05E+02	6.66E+01 (+) 6.60E+01	1.45E+02 (+) 1.46E+02	6.60E+01 (+) 6.47E+01	1.14E+02 (+) 1.15E+02	1.98E+02 (+) 2.06E+02	1.08E+02 (+) 1.14E+02	1.83E+01 1.79E+01
95	Std.	3.01E+01	1.28E+01	4.82E+01	2.14E+01	9.76E+00	1.68E+01	1.18E+01	1.30E+01	3.94E+01	1.85E+01	4.78E+00
	Mean Err.	2.57E-02 (+)	7.78E-05 (≈)	9.65E+01 (+)	5.75E-13 (—)	3.73E-04 (+)	4.58E+00 (+)	1.22E+00 (+)	9.36E-14 (-)	3.05E+01 (+)	2.24E-01 (+)	7.17E-05
96	Median Std.	2.06E-02 1.79E-02	8.41E-06 2.61E-04	9.74E+01 6.15E+00	5.68E-13 1.93E-13	1.14E-13 2.26E-03	3.65E+00 4.07E+00	1.21E+00 5.56E-01	1.14E-13 4.93E-14	2.97E+01 7.10E+00	1.90E-01 1.28E-01	2.16E-05 1.41E-04
	Mean Err.	1.82E+02 (+)	1.01E+02 (+)	2.39E+03 (+)	1.82E+02 (+)	1.18E+02 (+)	1.14E+02 (+)	2.04E+02 (+)	1.56E+02 (+)	4.51E+02 (+)	1.75E+02 (+)	6.48E+01
g_7	Median	1.80E+02	9.95E+01	2.37E+03	1.88E+02	1.15E+02	1.14E+02	2.02E+02	1.55E+02	4.64E+02	1.70E+02	6.40E+01
	Std. Mean Err.	2.53E+01 1.32E+02 (+)	9.07E+00 5.96E+01 (+)	2.01E+02 7.42E+02 (+)	2.02E+01 9.77E+01 (+)	1.01E+01 6.20E+01 (+)	1.26E+01 1.43E+02 (+)	3.80E+01 6.99E+01 (+)	1.28E+01 1.15E+02 (+)	6.14E+01 2.05E+02 (+)	2.18E+01 1.10E+02 (+)	3.31E+00 1.77E+01
g_8	Median	1.30E+02	5.67E+01	7.43E+02	9.85E+01	6.18E+01	1.45E+02	6.67E+01	1.15E+02	2.03E+02	1.15E+02	1.61E+01
	Std. Mean Err.	2.39E+01 1.13E+03 (+)	1.29E+01 1.50E+00 (-)	4.63E+01 3.86E+04 (+)	2.09E+01 1.83E+02 (+)	9.54E+00	1.58E+01	1.71E+01 2.30E+02 (+)	1.30E+01	4.17E+01	1.33E+01	4.97E+00 1.50E+00
<i>g</i> 9	Median	9.09E+02	9.98E-01	3.85E+04 (+) 3.85E+04	1.83E+02 (+) 1.16E+02	1.24E+01 (+) 7.15E+00	3.29E+03 (+) 3.29E+03	2.30E+02 (+) 2.19E+02	5.28E+02 (+) 4.81E+02	6.20E+03 (+) 6.54E+03	5.62E+01 (+) 5.10E+01	4.54E-01
33	Std.	7.30E+02	1.62E+00	5.34E+03	1.83E+02	1.23E+01	1.13E+03	1.24E+02	2.74E+02	1.82E+03	3.10E+01	5.78E+00
	Mean Err.	4.47E+03 (+) 4.49E+03	2.98E+03 (+)	1.32E+04 (+)	4.06E+03 (+)	3.57E+03 (+)	4.45E+03 (+)	4.72E+03 (+) 4.82E+03	3.75E+03 (+)	7.35E+03 (+) 7.34E+03	4.43E+03 (+)	9.68E+02 9.32E+02
g_{10}	Median Std.	7.64E+02	3.03E+03 7.00E+02	1.33E+04 4.06E+02	4.04E+03 4.69E+02	3.61E+03 4.07E+02	4.54E+03 4.34E+02	8.08E+02	3.82E+03 3.75E+02	1.15E+03	4.28E+03 4.61E+02	9.32E+02 4.26E+02
	Mean Err.	1.44E+02 (-)	1.99E+02 (≈)	1.62E+04 (+)	1.45E+02 (-)	1.45E+02 (-)	1.88E+02 (-)	1.66E+02 (-)	3.52E+03 (+)	2.61E+02 (≈)	1.83E+02 (≈)	2.36E+02
g_{11}	Median	1.30E+02	1.93E+02	1.55E+04	1.42E+02	1.40E+02	1.87E+02	1.62E+02	3.57E+03	2.59E+02	1.89E+02	1.86E+02
	Std. Mean Err.	4.25E+01 7.67E+04 (-)	6.67E+01 2.28E+05 (-)	4.08E+03 4.19E+10 (+)	4.32E+01 3.24E+05 (-)	5.36E+01 7.25E+03 (-)	3.70E+01 2.96E+06 (+)	4.83E+01 5.11E+05 (-)	1.81E+03 4.62E+06 (+)	6.98E+01 6.30E+06 (+)	3.28E+01 3.02E+06 (≈)	1.39E+02 1.38E+06
g_{12}	Median	6.37E+04	2.14E+05	4.08E+10	2.81E+05	5.22E+03	2.72E+06	3.98E+05	4.86E+06	7.42E+06	2.50E+06	1.23E+06
	Std.	4.40E+04	1.30E+05	8.50E+09	2.00E+05	6.05E+03	1.62E+06	4.19E+05	2.04E+06	3.08E+06	2.32E+06	6.97E+05
g ₁₃	Mean Err. Median	4.21E+03 (+) 2.26E+03	1.90E+03 (≈) 8.78E+02	1.85E+10 (+) 1.67E+10	1.00E+03 (≈) 8.05E+02	1.59E+03 (≈) 9.05E+02	2.92E+04 (+) 2.99E+04	5.80E+03 (+) 2.84E+03	3.25E+04 (+) 2.91E+04	2.69E+04 (+) 2.75E+04	4.55E+03 (+) 4.92E+03	1.43E+03 8.50E+02
913	Std.	6.45E+03	2.71E+03	8.26E+09	8.34E+02	3.31E+03	8.69E+03	6.84E+03	1.96E+04	1.20E+04	2.95E+03	1.61E+03
	Mean Err.	9.51E+03 (-)	2.22E+04 (-)	1.01E+07 (+)	2.31E+04 (-)	8.83E+03 (-)	6.34E+03 (-)	3.66E+04 (-)	1.72E+06 (+)	3.17E+02 (-)	3.73E+04 (≈)	4.75E+04
g_{14}	Median Std.	4.85E+03 1.59E+04	2.09E+04 1.58E+04	8.55E+06 6.70E+06	1.64E+04 1.86E+04	2.88E+02 2.99E+04	4.46E+03 4.92E+03	2.70E+04 3.25E+04	1.29E+06 1.34E+06	3.10E+02 4.06E+01	3.07E+04 2.99E+04	4.12E+04 2.81E+04
	Mean Err.	6.91E+03 (+)	4.47E+03 (≈)	2.25E+09 (+)	5.01E+02 (-)	4.56E+02 (-)	1.08E+04 (+)	2.75E+03 (≈)	1.42E+04 (+)	1.38E+03 (-)	2.55E+03 (≈)	3.45E+03
g_{15}	Median	6.25E+03	3.21E+03	2.02E+09	3.63E+02	3.61E+02	1.08E+04	1.83E+03	1.30E+04	1.26E+03	2.36E+03	3.03E+03
	Std. Mean Err.	6.15E+03 1.32E+03 (+)	4.04E+03 8.54E+02 (+)	1.09E+09 5.45E+03 (+)	4.71E+02 1.09E+03 (+)	5.06E+02 8.80E+02 (+)	2.91E+03 9.28E+02 (+)	3.11E+03 9.63E+02 (+)	5.94E+03 1.19E+03 (+)	2.50E+02 1.16E+03 (+)	1.34E+03 8.10E+02 (+)	3.00E+03 2.87E+02
g_{16}	Median	1.38E+03	7.60E+02	5.41E+03	1.07E+03	9.14E+02	9.42E+02	8.47E+02	1.19E+03	1.23E+03	8.04E+02	2.50E+02
	Std.	4.03E+02	2.72E+02	5.99E+02	2.60E+02	2.26E+02	1.74E+02	3.46E+02	2.09E+02	3.24E+02	1.53E+02	1.51E+02
917	Mean Err. Median	1.01E+03 (+) 1.01E+03	7.68E+02 (+) 7.48E+02	3.93E+03 (+) 3.86E+03	7.82E+02 (+) 7.65E+02	6.37E+02 (+) 6.42E+02	8.05E+02 (+) 8.12E+02	9.66E+02 (+) 9.73E+02	8.65E+02 (+) 8.72E+02	8.26E+02 (+) 8.16E+02	5.95E+02 (+) 6.09E+02	2.23E+02 1.77E+02
917	Std.	2.73E+02	2.29E+02	5.70E+02	2.14E+02	1.42E+02	1.41E+02	2.37E+02	1.69E+02	2.25E+02	1.57E+02	1.36E+02
	Mean Err.	4.19E+04 (-)	1.34E+06 (≈)	4.29E+07 (+)	7.85E+04 (-)	5.89E+04 (-)	1.25E+05 (-)	1.48E+05 (-)	2.10E+06 (+)	5.01E+03 (-)	4.76E+05 (-)	7.71E+05
918	Median Std.	2.93E+04 3.46E+04	2.99E+05 2.12E+06	3.90E+07 1.93E+07	6.80E+04 4.28E+04	3.30E+02 2.22E+05	1.19E+05 4.61E+04	1.20E+05 1.29E+05	2.10E+06 9.32E+05	3.67E+03 4.43E+03	4.47E+05 2.11E+05	7.73E+05 4.15E+05
	Mean Err.	1.30E+04 (≈)	1.30E+04 (≈)	9.08E+08 (+)	1.21E+03 (-)	3.35E+02 (-)	8.92E+04 (+)	1.25E+04 (≈)	1.55E+04 (≈)	3.33E+02 (-)	1.15E+02 (-)	1.41E+04
g_{19}	Median	1.17E+04	1.22E+04	7.77E+08	2.69E+02	1.85E+02	7.39E+04	1.06E+04	1.43E+04	3.51E+02	1.08E+02	1.41E+04
	Std. Mean Err.	8.67E+03 7.44E+02 (+)	6.17E+03 4.22E+02 (+)	4.69E+08 1.91E+03 (+)	2.08E+03 5.61E+02 (+)	7.67E+02 3.84E+02 (+)	6.43E+04 5.84E+02 (+)	6.75E+03 5.20E+02 (+)	5.53E+03 6.58E+02 (+)	8.80E+01 6.73E+02 (+)	3.94E+01 3.08E+02 (+)	4.68E+03 4.60E+01
g_{20}	Median	7.32E+02	3.71E+02	1.92E+03	5.77E+02	4.01E+02	5.89E+02	5.23E+02	6.43E+02	6.80E+02	3.27E+02	3.39E+01
	Std.	2.79E+02	2.60E+02	1.37E+02	2.07E+02	1.23E+02	1.21E+02	2.16E+02	1.58E+02	2.20E+02	1.35E+02	5.82E+01
g_{21}	Mean Err. Median	3.32E+02 (+) 3.27E+02	2.63E+02 (+) 2.61E+02	9.86E+02 (+) 9.83E+02	3.01E+02 (+) 3.00E+02	2.60E+02 (+) 2.58E+02	3.49E+02 (+) 3.52E+02	2.69E+02 (+) 2.67E+02	3.20E+02 (+) 3.27E+02	4.01E+02 (+) 4.09E+02	2.98E+02 (+) 3.00E+02	2.20E+02 2.21E+02
921	Std.	2.78E+01	1.26E+01	5.32E+01	1.96E+01	1.02E+01	1.84E+01	1.45E+01	2.61E+01	3.03E+01	1.59E+01	4.63E+00
								4.72E+03 (+)			2.90E+03 (+)	
g_{22}	Median Std.	5.35E+03 1.60E+03	1.00E+02 1.18E+03	1.38E+04 4.97E+02	4.78E+03 2.14E+03	4.29E+03 1.60E+03	4.58E+03 2.32E+03	5.27E+03 2.02E+03	4.45E+03 1.10E+03	7.74E+03 1.60E+03	4.00E+03 2.28E+03	1.00E+02 6.87E-09
	Mean Err.	6.04E+02 (+)	4.92E+02 (+)	2.01E+03 (+)	5.52E+02 (+)	6.21E+02 (+)	6.61E+02 (+)	4.91E+02 (+)	5.65E+02 (+)	7.05E+02 (+)	5.42E+02 (+)	4.28E+02
g_{23}	Median	6.05E+02	4.93E+02	1.99E+03	5.51E+02	6.21E+02	6.59E+02	4.91E+02	5.66E+02	7.17E+02	5.40E+02	4.29E+02
	Std. Mean Err.	3.38E+01 6.98E+02 (+)	1.82E+01 5.63E+02 (+)	1.78E+02 2.34E+03 (+)	2.64E+01 6.31E+02 (+)	1.59E+01 5.56E+02 (+)	3.49E+01 7.27E+02 (+)	1.60E+01 5.63E+02 (+)	2.07E+01 8.27E+02 (+)	3.98E+01 7.34E+02 (+)	2.59E+01 6.17E+02 (+)	1.25E+01 4.99E+02
g_{24}	Median	6.96E+02	5.61E+02	2.35E+03	6.24E+02	5.54E+02	7.25E+02	5.62E+02	8.30E+02	7.43E+02	6.09E+02	4.96E+02
	Std.	4.53E+01	2.00E+01	2.41E+02	3.77E+01	1.20E+01	3.33E+01	1.63E+01	4.10E+01	8.19E+01	1.45E+01	8.95E+00
go. r	Mean Err. Median	5.42E+02 (≈) 5.59E+02	5.71E+02 (+) 5.78E+02	1.40E+04 (+) 1.40E+04	5.13E+02 (-) 5.20E+02	5.35E+02 (-) 5.29E+02	5.00E+02 (-) 5.16E+02	5.28E+02 (-) 5.20E+02	5.12E+02 (-) 5.18E+02	5.35E+02 (≈) 5.38E+02	5.82E+02 (+) 5.76E+02	5.48E+02 5.48E+02
g_{25}	Std.	4.33E+01	2.37E+01	2.46E+03	3.35E+01	3.87E+01	2.94E+01	2.53E+01	1.67E+01	4.18E+01	1.96E+01	2.35E+01
	Mean Err.	2.67E+03 (+)	7.41E+02 (-)	1.53E+04 (+)	2.01E+03 (+)	1.84E+03 (+)	3.36E+03 (+)	1.91E+03 (+)	2.20E+03 (+)	2.55E+03 (≈)	2.32E+03 (+)	9.99E+02
g_{26}	Median Std.	2.86E+03 1.14E+03	3.00E+02 8.34E+02	1.51E+04 1.35E+03	2.33E+03 8.39E+02	1.86E+03 1.53E+02	3.46E+03 5.46E+02	1.93E+03 1.53E+02	2.42E+03 6.55E+02	3.86E+03 2.19E+03	2.30E+03 2.55E+02	1.00E+03 2.05E+02
	Mean Err.	6.54E+02 (+)	6.22E+02 (+)	3.55E+03 (+)	6.37E+02 (+)	6.01E+02 (+)	7.33E+02 (+)	5.74E+02 (≈)	6.54E+02 (+)	5.11E+02 (-)	6.32E+02 (+)	5.69E+02
g_{27}	Median	6.50E+02	6.22E+02	3.53E+03	6.36E+02	5.91E+02	7.24E+02	5.68E+02	6.52E+02	5.00E+02	6.27E+02	5.63E+02
	Std. Mean Err.	7.42E+01 4.87E+02 (≈)	3.75E+01 5.13E+02 (+)	5.29E+02 8.21E+03 (+)	3.79E+01 4.85E+02 (≈)	4.50E+01 4.91E+02 (+)	5.51E+01 4.75E+02 (-)	4.37E+01 4.81E+02 (≈)	2.95E+01 4.87E+02 (≈)	3.77E+01 5.18E+02 (+)	4.00E+01 5.05E+02 (+)	3.23E+01 4.83E+02
g_{28}	Median	4.87E+02 (≈) 4.97E+02	5.13E+02 (+) 5.18E+02	8.21E+03 (+) 8.37E+03	4.85E+02 (≈) 4.78E+02	4.91E+02 (+) 4.97E+02	4.73E+02 (-) 4.63E+02	4.81E+02 (≈) 4.61E+02	4.87E+02 (≈) 4.88E+02	5.18E+02 (+) 5.10E+02	5.05E+02 (+) 5.06E+02	4.83E+02 4.68E+02
520	Std.	2.48E+01	2.55E+01	1.06E+03	2.41E+01	1.97E+01	2.01E+01	2.42E+01	1.35E+01	2.04E+01	1.73E+01	2.63E+01
0	Mean Err. Median	1.03E+03 (+) 1.01E+03	9.55E+02 (+) 9.34E+02	1.04E+04 (+) 9.25E+03	7.55E+02 (+) 8.18E+02	5.71E+02 (+) 5.63E+02	1.26E+03 (+) 1.29E+03	7.65E+02 (+) 7.59E+02	8.85E+02 (+) 8.73E+02	1.35E+03 (+) 1.38E+03	6.17E+02 (+) 5.69E+02	3.50E+02 3.40E+02
g_{29}	Std.	1.01E+03 3.00E+02	9.34E+02 2.64E+02	9.25E+03 6.60E+03	8.18E+02 1.92E+02	5.63E+02 1.34E+02	1.29E+03 1.86E+02	7.59E+02 2.57E+02	8.73E+02 1.71E+02	1.38E+03 2.60E+02	5.69E+02 1.78E+02	3.40E+02 3.25E+01
	Mean Err.	7.78E+05 (-)	1.04E+06 (≈)	2.16E+09 (+)	7.10E+05 (-)	6.76E+05 (-)	2.13E+07 (+)	7.93E+05 (-)	7.99E+05 (-)	2.80E+06 (+)	1.53E+06 (+)	1.02E+06
<i>g</i> 30	Median	7.62E+05	1.05E+06	2.05E+09	7.07E+05	6.62E+05	2.16E+07	7.76E+05	7.87E+05	2.45E+06	1.59E+06	1.03E+06
	Std. +/≈/−	1.02E+05 18/4/7	8.98E+04 16/9/4	8.31E+08 29/0/0	5.71E+04 15/2/12	9.90E+04 17/1/11	2.86E+06 21/0/8	8.80E+04 16/5/8	6.28E+04 23/2/4	1.04E+06 19/4/6	2.15E+05 22/4/3	1.07E+05
	1,,~,-	*31*TI I	* OI /I T	271010	. 31 41 1 4	. // 1/ 1 1	21/0/0	10/3/0	-31417	1/1710	1712	

TABLE S-VIII

COMPARISON RESULTS ON CEC 2017 ON 30-D

Func	D=30	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	MAPSO	APABC	HGFOA	HPSO-DTA	PSO-HV
- une	Mean Err.	3.63E+03 (≈)	2.05E+03 (≈)	4.07E+10 (+)	9.78E+01 (-)	3.37E-14 (-)	2.56E+02 (-)	3.31E+03 (≈)	1.32E+03 (-)	4.34E+03 (≈)	3.65E+03 (≈)	2.81E+03
g_1	Median	2.62E+03	1.39E+03	3.98E+10	1.71E+01	2.84E-14	6.34E+01	1.87E+03	1.33E+03	1.93E+03	2.10E+03	1.76E+03
"-	Std.	3.59E+03	2.17E+03	8.36E+09	3.01E+02	2.27E-14	3.75E+02	4.15E+03	8.87E+02	5.90E+03	3.83E+03	2.88E+03
	Mean Err.	3.99E-13 (-)	1.98E+04 (-)	7.96E+04 (+)	1.03E-10 (-)	3.18E+03 (-)	8.92E-04 (-)	2.59E+00 (-)	1.28E+05 (+)	1.83E+01 (-)	1.35E+03 (-)	2.51E+04
g_3	Median	2.84E-13	2.05E+04	8.16E+04	1.67E-11	2.27E-13	5.41E-04	1.57E+00	1.26E+05	1.78E+01	1.16E+03	2.30E+04
	Std.	3.95E-13	1.03E+04	1.36E+04	2.47E-10	6.84E+03	1.01E-03	3.27E+00	1.97E+04	1.11E+01	8.35E+02	9.85E+03
	Mean Err.	3.75E+01 (-)	1.14E+02 (+)	8.97E+03 (+)	5.32E+01 (-)	3.04E+01 (-)	5.88E+01 (-)	8.94E+01 (-)	3.57E+01 (-)	7.71E+01 (≈)	8.41E+01 (-)	1.08E+02
g_4	Median	5.86E+01	1.18E+02	8.53E+03	6.84E+01	3.99E+00	6.93E+01	8.83E+01	2.68E+01	7.49E+01	8.05E+01	1.15E+02
	Std.	2.95E+01	9.98E+00	3.43E+03	2.84E+01	2.99E+01	2.90E+01	5.42E+00	3.01E+01	2.44E+01	1.56E+01	1.66E+01
-	Mean Err. Median	5.52E+01 (+) 5.47E+01	3.12E+01 (+) 2.89E+01	3.80E+02 (+) 3.81E+02	3.86E+01 (+) 3.98E+01	4.74E+01 (+) 4.73E+01	6.74E+01 (+) 6.67E+01	3.87E+01 (+) 3.79E+01	4.74E+01 (+) 4.76E+01	8.91E+01 (+) 9.45E+01	4.72E+01 (+) 4.68E+01	8.37E+00 7.96E+00
g_5	Std.	1.41E+01	1.03E+01	3.36E+01	7.99E+00	5.09E+00	9.80E+00	1.03E+01	7.42E+00	1.61E+01	8.26E+00	3.13E+00
	Mean Err.	7.30E-03 (+)	4.42E-06 (-)	7.67E+01 (+)	2.45E-13 (—)	1.14E-13 (-)	3.94E-01 (+)	2.74E-01 (+)	2.90E-14 (-)	1.30E+01 (+)	2.42E-02 (+)	1.91E-05
96	Median	3.98E-03	1.37E-07	7.72E+01	2.27E-13	1.14E-13	8.50E-02	2.11E-01	0.00E+00	9.78E+00	1.42E-02	4.06E-06
30	Std.	1.04E-02	1.23E-05	7.62E+00	9.48E-14	0.00E+00	9.69E-01	3.43E-01	5.00E-14	6.16E+00	1.87E-02	4.45E-05
	Mean Err.	7.98E+01 (+)	5.22E+01 (+)	1.05E+03 (+)	7.89E+01 (+)	5.56E+01 (+)	6.24E+01 (+)	9.35E+01 (+)	7.57E+01 (+)	1.74E+02 (+)	7.22E+01 (+)	3.71E+01
97	Median	7.83E+01	5.17E+01	1.06E+03	7.98E+01	5.46E+01	6.07E+01	9.39E+01	7.61E+01	1.72E+02	8.36E+01	3.65E+01
	Std.	1.36E+01	5.50E+00	1.17E+02	9.90E+00	4.93E+00	8.68E+00	1.97E+01	7.96E+00	2.28E+01	2.55E+01	2.26E+00
	Mean Err.	5.61E+01 (+)	2.74E+01 (+)	3.42E+02 (+)	4.00E+01 (+)	5.15E+01 (+)	6.30E+01 (+)	3.60E+01 (+)	5.72E+01 (+)	7.09E+01 (+)	5.03E+01 (+)	9.08E+00
g_8	Median	5.27E+01	2.59E+01	3.40E+02	4.15E+01	5.20E+01	6.37E+01	3.38E+01	5.80E+01	6.77E+01	5.09E+01	8.95E+00
	Std.	1.53E+01	6.69E+00	2.65E+01	6.72E+00	4.74E+00	1.05E+01	1.06E+01	9.13E+00	1.74E+01	8.26E+00	3.19E+00
	Mean Err.	7.81E+01 (+)	2.49E-01 (+)	1.06E+04 (+)	7.33E+00 (+)	3.04E-01 (+)	2.45E-02 (≈)	5.01E+01 (+)	8.15E+01 (+)	4.44E+02 (+)	5.73E+00 (+)	4.81E-02
99	Median Std.	4.53E+01 1.02E+02	8.95E-02 4.20E-01	1.07E+04 2.00E+03	4.36E+00 1.36E+01	1.14E-13 6.00E-01	3.41E-13 1.63E-01	4.05E+01 4.14E+01	7.34E+01 4.74E+01	1.96E+02 5.65E+02	6.72E+00 3.48E+00	3.41E-13 1.69E-01
	Mean Err.	2.52E+03 (+)	2.08E+03 (+)	7.20E+03 (+)	1.97E+03 (+)	1.84E+03 (+)	2.41E+03 (+)	2.60E+03 (+)	1.92E+03 (+)	4.26E+03 (+)	2.18E+03 (+)	5.53E+02
g_{10}	Median	2.50E+03 (+)	2.06E+03 (+) 2.06E+03	7.27E+03 (+)	1.99E+03 (+)	1.83E+03	2.46E+03 (+)	2.61E+03	1.93E+03	4.25E+03	2.18E+03 (+) 2.18E+03	4.86E+02
310	Std.	5.78E+02	5.06E+02	2.68E+02	3.33E+02	2.65E+02	3.74E+02	5.71E+02	2.92E+02	4.92E+02	5.23E+02	3.37E+02
	Mean Err.	9.46E+01 (+)	1.02E+02 (+)	4.14E+03 (+)	5.02E+01 (+)	4.84E+01 (+)	9.96E+01 (+)	9.40E+01 (+)	1.44E+03 (+)	1.05E+02 (≈)	4.87E+01 (≈)	3.24E+01
g_{11}	Median	9.08E+01	9.10E+01	3.96E+03	5.07E+01	4.30E+01	1.00E+02	8.39E+01	1.20E+03	1.01E+02	4.42E+01	8.46E+00
	Std.	4.01E+01	3.95E+01	1.28E+03	2.03E+01	2.35E+01	2.72E+01	3.96E+01	1.09E+03	4.52E+01	2.29E+01	3.80E+01
	Mean Err.	2.23E+04 (-)	6.34E+04 (-)	5.76E+09 (+)	1.67E+04 (-)		4.35E+05 (+)	4.20E+04 (-)	8.40E+05 (+)	4.15E+05 (≈)	3.00E+05 (≈)	2.54E+05
g_{12}	Median	1.70E+04	2.46E+04	5.23E+09	1.33E+04	2.14E+03	3.44E+05	3.76E+04	8.09E+05	2.33E+05	2.78E+05	2.33E+05
	Std.	1.96E+04	1.70E+05	2.21E+09	1.11E+04	4.91E+03	4.20E+05	2.70E+04	3.99E+05	3.44E+05	2.56E+05	1.67E+05
	Mean Err.	1.16E+04 (≈)	1.13E+04 (≈)	2.45E+09 (+)	3.61E+02 (-)	1.70E+02 (-)	2.06E+04 (+)	1.92E+04 (+)	2.98E+04 (+)	3.34E+03 (-)	7.81E+02 (—)	1.17E+04
g_{13}	Median	6.64E+03	8.90E+03	2.06E+09	2.57E+02	1.12E+02	1.80E+04	1.55E+04	2.49E+04	3.10E+03	8.25E+02	9.57E+03
	Std. Mean Err.	1.52E+04	9.18E+03	1.59E+09	3.17E+02	2.05E+02	8.77E+03	1.46E+04	1.71E+04	9.58E+02	4.68E+02	8.82E+03
		4.47E+03 (-)	2.57E+04 (≈) 7.04E+03	4.48E+05 (+)	2.27E+03 (-)	2.80E+03 (-)	8.12E+02 (-)	1.89E+03 (-)	2.64E+05 (+) 2.23E+05	1.36E+02 (-)	5.91E+03 (-)	2.67E+04
g_{14}	Median Std.	1.14E+03 1.74E+04	6.51E+04	3.90E+05 2.65E+05	1.68E+03 2.00E+03	9.47E+01 9.42E+03	5.74E+02 6.30E+02	1.28E+03 1.75E+03	1.88E+05	1.24E+02 3.09E+01	5.24E+03 4.29E+03	1.27E+04 5.37E+04
	Mean Err.	5.31E+03 (+)	1.70E+03 (≈)	1.04E+08 (+)	2.61E+02 (-)	4.91E+02 (-)	1.12E+04 (+)	6.38E+03 (+)	1.25E+04 (+)	4.36E+02 (≈)	9.11E+02 (≈)	1.02E+03
g_{15}	Median	2.65E+03	9.20E+02	9.04E+07	1.53E+02	1.19E+02	1.00E+04	1.77E+03	9.58E+03	4.31E+02	8.04E+02	5.70E+02
913	Std.	7.04E+03	2.12E+03	5.66E+07	3.65E+02	1.46E+03	5.06E+03	9.07E+03	9.26E+03	9.87E+01	5.65E+02	1.30E+03
	Mean Err.	8.20E+02 (+)	7.62E+02 (+)	2.86E+03 (+)	4.87E+02 (+)	4.05E+02 (+)	5.48E+02 (+)	5.29E+02 (+)	6.41E+02 (+)	6.16E+02 (+)	2.99E+02 (≈)	1.23E+02
g_{16}	Median	8.46E+02	7.87E+02	2.75E+03	4.97E+02	4.00E+02	5.31E+02	5.10E+02	6.52E+02	6.27E+02	3.01E+02	1.99E+01
	Std.	2.88E+02	2.77E+02	4.73E+02	1.85E+02	1.38E+02	1.35E+02	2.69E+02	1.47E+02	2.13E+02	1.31E+02	1.55E+02
	Mean Err.	2.77E+02 (+)	3.44E+02 (+)	1.24E+03 (+)	9.55E+01 (+)		1.29E+02 (+)	8.98E+01 (+)	2.02E+02 (+)	1.41E+02 (+)	7.15E+01 (+)	4.15E+01
g_{17}	Median	2.73E+02	3.57E+02	1.15E+03	7.55E+01	2.61E+02	1.25E+02	7.26E+01	1.96E+02	1.24E+02	6.50E+01	2.77E+01
	Std.	1.74E+02	1.59E+02	2.84E+02	5.32E+01	5.27E+01	4.13E+01	4.59E+01	1.05E+02	6.33E+01	2.87E+01	5.20E+01
	Mean Err.	3.82E+04 (-)	6.13E+04 (-)	5.67E+06 (+)	6.15E+04 (-)	1.29E+04 (-)	5.58E+04 (-)	7.88E+04 (-)	3.81E+05 (+)	4.25E+02 (-)	1.17E+05 (≈)	1.92E+05
g_{18}	Median Std.	3.50E+04 2.05E+04	5.50E+04 3.37E+04	4.44E+06 3.76E+06	5.07E+04 5.15E+04	7.79E+01 3.87E+04	5.24E+04 2.68E+04	6.09E+04 5.11E+04	3.80E+05 2.05E+05	3.62E+02 1.53E+02	1.04E+05 7.37E+04	1.41E+05 1.43E+05
	Mean Err.	5.38E+03 (+)	4.87E+03 (+)	1.89E+08 (+)	1.75E+02 (—)	1.81E+02 (-)	9.26E+04 (+)	5.45E+03 (≈)	1.04E+04 (+)	1.26E+02 (-)	6.21E+02 (-)	3.29E+03
g_{19}	Median	4.05E+03	4.02E+03	1.74E+08	9.27E+01	9.43E+01	7.63E+04	3.46E+03	9.33E+03	1.13E+02	6.92E+02	2.75E+03
919	Std.	5.96E+03	3.37E+03	9.22E+07	1.74E+02	4.09E+02	7.34E+04	6.38E+03	5.72E+03	3.20E+01	3.49E+02	2.94E+03
	Mean Err.	2.52E+02 (+)	2.83E+02 (+)	7.61E+02 (+)	1.42E+02 (≈)	1.03E+02 (≈)	2.26E+02 (+)	1.39E+02 (≈)	2.17E+02 (+)	2.52E+02 (+)	7.23E+01 (-)	1.22E+02
g_{20}	Median	1.99E+02	2.13E+02	7.53E+02	1.62E+02	7.16E+01	2.31E+02	1.67E+02	1.97E+02	2.58E+02	6.25E+01	1.40E+02
	Std.	1.47E+02	1.26E+02	1.02E+02	6.98E+01	6.50E+01	6.13E+01	6.08E+01	9.32E+01	8.14E+01	3.65E+01	4.36E+01
	Mean Err.	2.54E+02 (+)	2.33E+02 (+)	5.67E+02 (+)	2.33E+02 (+)	2.27E+02 (+)		2.35E+02 (+)	2.52E+02 (+)		2.49E+02 (+)	2.10E+02
g_{21}	Median	2.55E+02	2.33E+02	5.66E+02	2.44E+02	2.27E+02	2.70E+02	2.34E+02	2.53E+02	2.72E+02	2.48E+02	2.09E+02
	Std.	1.41E+01	5.60E+00	3.83E+01	4.02E+01	5.50E+00	4.14E+01	8.38E+00	2.02E+01	5.92E+01	1.08E+01	3.49E+00
		4.88E+02 (≈)	1.00E+02 (+) 1.00E+02	5.13E+03 (+)	1.00E+02 (+)		1.00E+02 (+)	1.00E+02 (+)	2.29E+02 (+) 1.10E+02	1.00E+02 (+) 1.00E+02	1.00E+02 (+) 1.00E+02	1.00E+02 1.00E+02
g_{22}	Median Std.	1.00E+02 1.08E+03	1.00E+02 3.44E-01	4.96E+03 1.23E+03	1.00E+02 8.04E-01	1.00E+02 3.35E+02	1.00E+02 1.44E-10	1.00E+02 9.11E-01	1.10E+02 4.88E+02	1.00E+02 2.49E-01	1.00E+02 1.04E-01	1.00E+02 1.93E-11
\vdash	Mean Err.	4.30E+02 (+)	3.86E+02 (+)	1.12E+03 (+)	3.95E+02 (+)	4.21E+02 (+)	4.38E+02 (+)	3.88E+02 (+)	4.00E+02 (+)	4.55E+02 (+)	3.91E+02 (+)	3.48E+02
g ₂₃	Median	4.28E+02	3.84E+02 (+)	1.11E+03 (+)	3.96E+02 (+)	4.21E+02 (+) 4.21E+02	4.38E+02 (+)	3.87E+02 (+)	4.00E+02 (+) 4.02E+02	4.51E+02	3.93E+02 (+)	3.47E+02
323	Std.	2.04E+01	1.30E+01	1.37E+02	1.21E+01	6.16E+00	1.91E+01	1.17E+01	9.32E+00	2.93E+01	1.01E+01	6.88E+00
	Mean Err.	5.17E+02 (+)	4.46E+02 (+)	1.23E+03 (+)	4.73E+02 (+)	4.44E+02 (+)	4.99E+02 (+)	4.55E+02 (+)	5.06E+02 (+)	4.88E+02 (+)	4.67E+02 (+)	4.23E+02
g_{24}	Median	5.13E+02	4.45E+02	1.22E+03	4.74E+02	4.43E+02	4.99E+02	4.53E+02	5.30E+02	4.90E+02	4.69E+02	4.23E+02
	Std.	2.62E+01	7.86E+00	1.77E+02	1.42E+01	5.86E+00	1.77E+01	8.54E+00	8.82E+01	2.07E+01	1.18E+01	4.42E+00
	Mean Err.	3.90E+02 (≈)	3.91E+02 (+)	2.58E+03 (+)	3.87E+02 (-)	3.87E+02 (-)	3.87E+02 (-)	3.88E+02 (≈)	3.86E+02 (-)	3.92E+02 (≈)	3.93E+02 (+)	3.88E+02
g_{25}	Median	3.87E+02	3.89E+02	2.44E+03	3.87E+02	3.87E+02	3.87E+02	3.87E+02	3.85E+02	3.87E+02	3.93E+02	3.88E+02
	Std.	1.14E+01	7.22E+00	5.85E+02	9.83E-01	8.66E-01	9.47E-01	5.03E+00	1.42E+00	1.27E+01	3.61E+00	7.95E-01
	Mean Err.	1.31E+03 (+)	5.20E+02 (-)	6.82E+03 (+)	3.81E+02 (-)	1.19E+03 (+)	6.51E+02 (≈)	1.38E+03 (+)	1.00E+03 (+)	8.23E+02 (≈)	8.10E+02 (≈)	6.67E+02
926	Median	1.67E+03	2.00E+02	7.05E+03	3.00E+02	1.22E+03	3.00E+02	1.39E+03	7.83E+02	3.00E+02	3.00E+02	7.84E+02
\vdash	Std.	7.81E+02	4.99E+02	9.20E+02	3.94E+02	2.09E+02	6.97E+02	1.92E+02	6.34E+02	9.44E+02	5.94E+02	2.99E+02
0	Mean Err. Median	5.18E+02 (+) 5.17E+02	5.29E+02 (+) 5.29E+02	1.39E+03 (+) 1.39E+03	5.13E+02 (≈) 5.14E+02	5.06E+02 (-) 5.07E+02	5.32E+02 (+) 5.33E+02	5.06E+02 (-) 5.07E+02	5.16E+02 (≈) 5.17E+02	5.01E+02 (-) 5.00E+02	5.15E+02 (≈) 5.14E+02	5.13E+02 5.14E+02
g_{27}	Std.	1.00E+01	9.31E+00	2.13E+02	7.19E+00	5.07E+02 8.85E+00	5.33E+02 1.27E+01	1.12E+01	5.17E+02 5.08E+00	3.00E+02 2.99E+00	4.35E+00	9.39E+00
\vdash	Mean Err.	3.51E+02 (-)	3.50E+02 (-)	3.10E+03 (+)	3.37E+02 (-)	3.30E+02 (-)	3.58E+02 (-)	3.80E+02 (-)	4.01E+02 (-)	2.99E+00 3.90E+02 (≈)	4.32E+02 (+)	4.08E+02
g_{28}	Median	3.00E+02	3.00E+02 (-)	3.17E+03 (+)	3.00E+02 (-)	3.00E+02 (-)	3.81E+02 (-)	4.01E+02 (-)	4.01E+02 (-) 4.01E+02	4.05E+02 (≈)	4.32E+02 (+) 4.30E+02	4.08E+02 4.09E+02
328	Std.	6.33E+01	5.69E+01	7.91E+02	5.12E+01	4.87E+01	4.80E+01	4.77E+01	4.52E+00	5.30E+01	1.03E+01	1.33E+01
	Mean Err.	6.59E+02 (+)	6.61E+02 (+)	2.60E+03 (+)	4.73E+02 (+)		7.16E+02 (+)	5.44E+02 (+)	5.75E+02 (+)	8.20E+02 (+)	5.01E+02 (+)	4.38E+02
g_{29}	Median	6.31E+02	6.52E+02	2.57E+03	4.72E+02	4.80E+02	7.13E+02	5.00E+02	5.75E+02	7.86E+02	5.06E+02	4.33E+02
	Std.	1.50E+02	1.65E+02	3.50E+02	3.92E+01	4.93E+01	8.07E+01	1.08E+02	9.46E+01	9.75E+01	3.05E+01	2.76E+01
	Mean Err.	5.10E+03 (≈)	5.37E+03 (+)	2.13E+08 (+)	3.86E+03 (≈)	2.21E+03 (-)	3.44E+05 (+)	4.98E+03 (≈)	1.57E+04 (+)	1.26E+04 (+)	9.36E+03 (+)	4.25E+03
g ₃₀	Median	4.11E+03	4.81E+03	2.07E+08	3.78E+03	2.12E+03	3.53E+05	4.19E+03	1.52E+04	1.25E+04	9.24E+03	3.98E+03
\square	Std.	2.66E+03	1.73E+03	1.21E+08	8.39E+02	2.31E+02	1.75E+05	2.83E+03	6.41E+03	3.59E+03	1.78E+03	8.85E+02
	+/≈/-	18/5/6	19/4/6	29/0/0	13/3/13	14/1/14	20/2/7	17/5/7	23/1/5	15/8/6	15/8/6	

TABLE S-IX
COMPARISON RESULTS ON CEC 2013 ON 100-D

Mark	Func	D=100	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	MAPSO	APABC	HGFOA	HPSO-DTA	PSO-HV
Man Bar 1966 1967 1968												9.52E-07 (+)	2.21E-12
Main Br 1966 1967 29661 21660 19661 1966	f_1	Median											
Machine 1,000 1,	0.1	Std.	2.64E-09	2.69E-13	2.11E+04	1.86E-13	2.29E-13	1.06E-13	0.00E+00		2.06E-03	3.04E-06	
1.5							3.24E+05 (-)					1.06E+08 (+)	
Main Ref. April	fo												
Machine 1,000,000 1,000,	12												
1.5 Social 1.0 1													
Mem En Liberi 1966-96 3,585-90 185-90	£_												
Medias 1,515-04 1, 198-105 1, 198-105 1, 208-10	13												
1.5 1.5													
Meed Ent 1711													
Medium 175-11 1.185-13 1.676-04 2.586-12 0.185-02 1.085-02 1.	J4												
Mode													
Sect 1,000-11 1,000-12 3,000-10 1,													
Maria Err 1185-02 2 2088-02 2 3 3 4 4 5 2 3 5 4 5 5 5 5 5 5 5 5	f_5												
Medical No.													
Med March March													
Maca Ent 19Fe/10 (+) 47Fe/00 (+) 15EF-07 (+) 93EF-01 (+) 13EF-02 (+) 13E	f_6												
17							6.53E+01	4.30E+01	2.40E+01		6.54E+01	3.34E+01	
Mean Ent 1,15E-01 1,05E-00 1,14E-07 1,25E-01 1,68E-00 9,35E-00 7,07E-00 1,25E-01 2,21E-01 2,21E-0		Mean Err.	1.19E+02 (+)	4.47E+00 (+)	1.51E+07 (+)	9.18E+01 (+)	1.18E+02 (+)	1.18E+02 (+)	4.71E+01 (+)	3.99E+02 (+)	1.46E+02 (+)	1.01E+02 (+)	2.59E+00
Medium 1,150-01 (cs.) 2,156-01 (cs	f_7	Median	1.17E+02	4.30E+00	1.04E+07	9.24E+01	1.17E+02	1.15E+02	4.83E+01	3.78E+02	1.43E+02	1.03E+02	2.17E+00
Section Sect		Std.	1.32E+01	1.63E+00	1.44E+07	1.23E+01	1.68E+01	9.53E+00	7.07E+00	1.23E+02	3.09E+01	1.17E+01	9.71E-01
Section Sect		Mean Err.	2.13E+01 (≈)	2.12E+01 (-)	2.13E+01 (-)	2.13E+01 (+)	2.13E+01 (≈)	2.13E+01 (≈)	2.13E+01 (≈)	2.13E+01 (≈)	2.12E+01 (-)	2.13E+01 (≈)	2.13E+01
Section Sect	fs	Median	2.13E+01	2.12E+01	2.13E+01				2.13E+01		2.12E+01		2.13E+01
Mode Etc. 111E-02 (+) 515E-01 (+) 161E-02 (-) 115E-02 (+) 135E-02 (+) 136E-02 (+) 181E-01 (+) 181E-01 (+) 116E-02 (+) 116E-02 (+) 116E-02 (-) 116E	, ,												
Mode													
Mode March March	fo												
Most Birt 1418-02 - 1118-01 (-) 3218-04 (+) 1208-00 (2) 4798-02 (-) 5338-02 (-) 2378-00 (-) 2478-00 (-) 2598-00 (-) 2598-00 (-) 308-01	79												
Motimar 271E-02 9.85E-02 3.23E-04 1.23E-00 2.82E-02 3.13E-02 2.83E-02 1.04E-00 3.04E-00	\vdash												
Mean Err September Septe	f												
More Err. 1800	J 10												
Mediam 1828-12 5.578-01 3.588-03 5.158-03 1.148-13 4.588-02 1.128-10 1.128-10 1.598-01 1	\vdash												
Mem Mar. M													
Mem Err. S09E402 (+) 1.58E402 (+) 3.67E403 (+) 3.77E402 (+) 3.77E402 (+) 3.77E402 (+) 3.77E402 3.79E402 3.79E402	f11												
Mealm 6,948-02 1,558-02 3,048-02 3,788-02 3,788-02 3,788-02 1,788-02 1,508-03 1,118-03 3,048-02 5,788-03 1,118-03 3,048-02 1,118-03 3,048-02 1,118-03 1,048-03 1,118-03 1,048-03 1													
Median September Septemb													
Mean Err S96E02 (+) 3.89E402 (+) 3.89E402 (+) 6.29E402 (+) 5.97E402 (+) 8.03E402 (+) 1.73E403 (f_{12}								1.87E+02				
Media Part			6.45E+01	1.96E+01	2.84E+02	5.11E+01	5.05E+01	4.41E+01	3.63E+01	1.75E+02	1.23E+02	5.37E+01	9.19E+00
Media 1,12E-02 S.RIE-01 3,16E-02 5,17E-01 6,55E-01 6,44E-01 4,11E-01 9,97E-01 2,02E-02 6,56E-02 8,56E-02 1,57E-01 5,05E-02 1,57E-01 5,05E-02 1,57E-01 5,05E-02 1,57E-01 5,05E-02 1,57E-01 1		Mean Err.	8.96E+02 (+)	3.89E+02 (+)	3.68E+03 (+)	6.29E+02 (+)	5.97E+02 (+)	8.03E+02 (+)	3.49E+02 (+)	1.74E+03 (+)	1.39E+03 (+)	5.60E+02 (+)	1.11E+02
Mean Err. 238E+00 - 270E+03 (+) 3.10E+04 (+) 9.22E+01 (-) 178E+01 (-) 9.81E+03 (+) 4.70E+02 1.20E+00 (-) 1.57E+04 (+) 5.0E+02 (-) 8.79E+02 1.20E+03 1.20E+	f_{13}	Median	9.21E+02	3.75E+02	3.65E+03	6.21E+02	5.89E+02	8.09E+02	3.52E+02	1.76E+03	1.29E+03	5.38E+02	1.10E+02
Mediam 2.58E400 2.58E400 3.11E404 3.55E401 1.81E401 9.62E402 4.72E402 1.03E400 2.30E403 1.81E402 3.30E404 1.32E404		Std.	1.12E+02	5.81E+01	3.16E+02	5.17E+01	6.55E+01	6.44E+01	4.11E+01	9.97E+01	2.02E+02	6.86E+01	2.34E+01
Mediam 2.58E400 2.58E400 3.11E404 3.55E401 1.81E401 9.62E402 4.72E402 1.03E400 2.30E403 1.81E402 3.30E404 1.32E404		Mean Err.	2.83E+00 (-)			9.32E+01 (-)							
Mean Err. 1.58E40 6.45E402 5.18E402 9.77E401 2.02E-02 7.80E402 2.08E402 1.08E404 1.08E403 1.18E402 3.13E405 5.02E403 5.08E404 1.08E404 1.08E404	f14												
Mean Err. 16F-044 (+) 8.05E-03 (+) 3.05E+044 (+) 1.52E+04 (+) 1.42E+04 (+) 1.12E+04 (+) 1.52E+04 (+) 1.57E+04 (+) 1.57E+0	714												
Median 1,88E-04 8,04E-03 3,05E-04 1,42E-04 1,43E-04 1,10E-04 1,40E-04 1,40E-04 1,37E-04 3,17E-03 3,47E-03 1,27E-03													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	f												
	J15												
Std. 981E-01 952E-02 2.33E-01 2.96E-01 3.03E-01 9.00E-03 6.62E-01 2.45E-01 2.53E-01 3.11E-01 1.24E-02 1.47E-402 1.07E-402 1.07E-402 1.37E-403 1.10E-402 1.24E-402 1.24E-402 1.24E-402 1.24E-403 1.07E-402 1.37E-403 1.07E-403 1.27E-403 1.07E-403 1.07E-403													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	J16												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f ₁₇												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
Std. 9,44E+01 3,65E+01 (2) 1,73E+02 5,40E+01 4,8EE+01 1,70E+01 (1) 1,70E+01 (1) 1,0EE+01 (1) 1,0E													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f_{18}												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					4.37E+02	5.40E+01	4.88E+01	1.70E+01	6.78E+01			6.88E+01	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mean Err.	5.79E+00 (-)	1.13E+01 (≈)	1.07E+07 (+)	9.09E+00 (≈)	1.22E+01 (+)	1.48E+01 (+)	1.19E+01 (+)	1.01E+00 (-)	7.54E+01 (+)	1.73E+01 (+)	1.00E+01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f_{19}	Median	5.73E+00	1.11E+01	1.12E+07	8.91E+00	1.20E+01	1.42E+01	1.23E+01	1.05E+00		1.75E+01	9.60E+00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Std.	1.00E+00	1.46E+00	3.90E+06	1.30E+00	2.66E+00	2.65E+00	1.82E+00	2.27E-01	8.37E+00	2.11E+00	1.34E+00
Std. 2.00E-01 0.00E+00 2.13E-13 0.00E+00 5.42E-11 0.00E+00 0.00E+00 6.46E-07 0.00E+00 1.48E-01 0.00E+00		Mean Err.	4.99E+01 (≈)	5.00E+01 (≈)	5.00E+01 (+)	5.00E+01 (≈)	5.00E+01						
Std. 2.00E-01 0.00E+00 2.13E-13 0.00E+00 5.42E-11 0.00E+00 0.00E+00 6.46E-07 0.00E+00 1.48E-01 0.00E+00	f_{20}	Median											5.00E+01
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									0.00E+00				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							3.82E+02 (-)						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f_{21}												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	" "												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	foo												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	122												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J 23												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f_{24}												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f_{25}												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mean Err.		3.84E+02 (≈)	8.07E+02 (+)	3.03E+02 (≈)	6.24E+02 (+)	5.21E+02 (+)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f_{26}	Median											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Std.	1.12E+01	6.63E+01	2.80E+01	1.75E+02	1.33E+01	1.63E+01	3.41E+01				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	f27												
	1 2 1												
f28 Median Std. 3.79E+03 2.52E+03 2.46E+04 2.93E+03 3.09E+03 2.59E+03 2.87E+03 4.00E+03 1.13E+04 5.04E+03 2.60E+03 Std. 1.87E+03 2.16E+01 1.78E+03 1.20E+02 1.16E+03 2.00E+01 1.21E+03 5.19E+02 4.00E+03 9.43E+02 1.97E+03	\vdash												
Std. 1.87E+03 2.16E+01 1.78E+03 1.20E+02 1.16E+03 2.00E+01 1.21E+03 5.19E+02 4.00E+03 9.43E+02 1.97E+03	foo												
	J 28												
Ti ~- 131411 131011 201012 131401 141311 181311 13183 131310 23123 19121	\vdash												1.7/12+03
		+/≈/-	13/4/11	13/0//	20/0/2	13/7/0	14/3/11	10/3//	13/0/3	13/3/10	231213	191411	

TABLE S-X
COMPARISON RESULTS ON CEC 2013 ON 50-D

								.3 ON 50-D				
Func	D=50	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	MAPSO	APABC	HGFOA	HPSO-DTA	PSO-HV
f_1	Mean Err. Median	2.81E-13 (-) 2.27E-13	2.27E-13(-) 2.27E-13	7.61E+04 (+) 7.66E+04	6.33E-13 (≈) 6.82E-13	2.36E-13 (-) 2.27E-13	2.18E-13 (-) 2.27E-13	0.00E+00(-) 0.00E+00	2.23E-13 (-) 2.27E-13	1.65E-03 (+) 1.45E-03	3.60E-12 (+) 1.59E-12	6.33E-13 6.82E-13
J 1	Std.	9.74E-14	3.22E-14	1.09E+04	1.46E-13	4.46E-14	4.46E-14	0.00E+00	3.18E-14	4.70E-04	4.31E-12	1.53E-13
	Mean Err.	3.46E+05 (-)	2.83E+06(-)	1.23E+09 (+)	1.41E+06 (-)	2.49E+04 (-)	1.93E+06 (-)	2.35E+06(-)	2.22E+07(+)	1.69E+06 (-)	1.98E+07 (+)	4.83E+06
f_2	Median	2.86E+05	7.32E+05	1.21E+09	1.34E+06	2.02E+04	1.90E+06	2.11E+06	2.30E+07	1.75E+06	1.53E+07	4.65E+06
	Std. Mean Err.	1.77E+05 2.70E+08(+)	3.55E+06 7.11E+07 (+)	3.94E+08 5.25E+13 (+)	4.26E+05 1.74E+08(+)	1.85E+04 2.07E+07(+)	5.21E+05 1.30E+08(+)	9.34E+05 4.15E+07 (+)	5.06E+06 5.12E+09(+)	5.24E+05 3.77E+08 (+)	1.18E+07 6.06E+08 (+)	1.92E+06 1.19E+07
f_3	Median	1.76E+08	3.72E+07	7.55E+12	1.33E+08	8.06E+06	1.05E+08	2.78E+07	4.95E+09	2.93E+08	4.24E+08	3.79E+06
	Std.	2.86E+08	9.56E+07	1.46E+14	1.64E+08	2.91E+07	9.69E+07	3.85E+07	2.48E+09	2.65E+08	5.40E+08	2.61E+07
c	Mean Err.	5.69E+03 (-)	1.05E+05 (+)	1.11E+05 (+)	1.87E+03 (-)	8.33E+03 (-)	7.01E+02 (-)	2.81E+02(-)	1.68E+05(+)	1.54E+03 (-)	1.28E+04 (-)	4.02E+04
f_4	Median Std.	5.12E+03 3.00E+03	1.06E+05 1.47E+04	1.11E+05 1.37E+04	1.85E+03 7.28E+02	1.06E-03 1.63E+04	6.75E+02 2.56E+02	2.57E+02 1.06E+02	1.70E+05 1.49E+04	1.36E+03 5.22E+02	1.11E+04 4.19E+03	4.07E+04 8.72E+03
	Mean Err.	3.23E-13 (-)	1.14E-13(-)	1.56E+04 (+)	8.16E-13 (—)	3.03E-13 (-)	3.46E-03(+)	1.39E-08 (+)	1.14E-13 (-)	5.48E-02 (+)	1.78E-11 (≈)	3.21E-11
f_5	Median	3.41E-13	1.14E-13	1.55E+04	7.96E-13	3.41E-13	3.49E-03	1.14E-13	1.14E-13	5.74E-02	7.62E-12	1.28E-11
	Std. Mean Err.	7.67E-14 4.10E+01 (-)	0.00E+00 4.41E+01(-)	4.25E+03 8.01E+03 (+)	1.24E-13 4.44E+01 (-)	6.30E-14 4.39E+01 (-)	3.49E-04 4.35E+01 (-)	7.81E-08 4.42E+01(-)	0.00E+00 4.45E+01 (-)	1.00E-02 6.38E+01 (≈)	2.25E-11 4.64E+01 (≈)	5.93E-11 4.72E+01
f_6	Median	4.34E+01	4.37E+01(-)	8.03E+03 (+)	4.42E+01 (-)	4.34E+01 (-)	4.35E+01 (-) 4.35E+01	4.35E+01(-)	4.46E+01	4.91E+01	4.65E+01	4.62E+01
30	Std.	1.23E+01	1.57E+00	1.66E+03	8.66E-01	1.54E+00	1.43E-03	1.25E+00	1.92E+00	2.48E+01	6.87E-01	7.32E+00
	Mean Err.	7.93E+01(+)	7.69E+00 (+)	3.24E+03 (+)	3.90E+01(+)	5.51E+01(+)	8.02E+01(+)	3.44E+01 (+)	1.47E+02(+)	8.71E+01 (+)	5.25E+01 (+)	9.50E-01
f_7	Median Std.	7.75E+01 1.44E+01	7.00E+00 4.17E+00	2.30E+03 3.07E+03	3.93E+01 1.04E+01	5.69E+01 1.39E+01	8.05E+01 1.00E+01	3.39E+01 7.26E+00	1.46E+02 1.68E+01	9.11E+01 2.19E+01	5.51E+01 8.49E+00	7.71E-01 5.11E-01
	Mean Err.	2.11E+01 (≈)	2.11E+01(≈)	2.11E+01(-)	2.11E+01(+)	2.11E+01 (≈)	2.11E+01 (-)	2.11E+01 (+)	2.11E+01(+)	2.11E+01 (≈)	2.11E+01 (≈)	2.11E+01
f_8	Median	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01	2.11E+01
	Std.	6.49E-02	4.01E-02	3.08E-02	3.31E-02	7.33E-02	5.57E-02	3.21E-02	3.66E-02	2.64E-02	2.22E-02	4.61E-02
f_9	Mean Err. Median	4.08E+01(+) 4.13E+01	2.16E+01 (+) 2.17E+01	7.26E+01(-) 7.30E+01	4.04E+01(+) 3.89E+01	5.68E+01(+) 5.70E+01	2.98E+01(+) 2.96E+01	3.53E+01 (+) 3.44E+01	5.82E+01(+) 5.87E+01	4.63E+01 (+) 4.41E+01	4.56E+01 (+) 4.58E+01	1.40E+01 1.35E+01
19	Std.	5.11E+00	3.23E+00	1.49E+00	7.35E+00	2.44E+00	4.52E+00	7.25E+00	3.22E+00	4.67E+00	5.32E+00	2.88E+00
	Mean Err.	7.15E-02 (-)	1.77E-01(-)	1.00E+04 (+)	2.33E-01 (≈)	4.02E-02 (-)	4.53E-02 (-)	6.93E-02(-)	6.01E+00(+)	1.16E+00 (+)	6.77E+00 (+)	2.75E-01
f_{10}	Median	5.42E-02	1.40E-01	9.99E+03	2.07E-01	3.20E-02	3.70E-02	6.58E-02	5.88E+00	1.13E+00	4.21E+00	2.17E-01
	Std. Mean Err.	5.33E-02 2.57E-13 (-)	1.15E-01 2.25E+01 (+)	1.96E+03 1.27E+03 (+)	1.36E-01 2.73E-13 (-)	2.98E-02 1.95E-02 (-)	2.94E-02 1.27E+02(+)	3.73E-02 2.48E+01 (+)	1.35E+00 5.46E-14 (-)	5.30E-02 3.00E+02 (+)	5.04E+00 2.37E+00 (-)	2.27E-01 7.67E+00
f_{11}	Median	2.37E-13 (—) 1.14E-13	2.23E+01 (+) 2.23E+01	1.27E+03 (+) 1.31E+03	2.84E-13	0.00E+00	1.29E+02(+)	2.39E+01 (+)	5.68E-14 (-)	2.99E+02 (+)	2.03E+00 (-)	6.98E+00
0 1 1	Std.	3.93E-13	4.31E+00	1.53E+02	8.43E-14	1.39E-01	1.98E+01	6.58E+00	1.11E-14	3.51E+01	1.43E+00	4.25E+00
	Mean Err.	1.74E+02(+)	5.27E+01 (+)	1.23E+03 (+)	1.27E+02(+)	8.11E+01(+)	1.45E+02(+)	7.40E+01 (+)	4.49E+02(+)	3.05E+02 (+)	1.09E+02 (+)	1.70E+01
f_{12}	Median Std.	1.72E+02 3.55E+01	5.27E+01 1.04E+01	1.21E+03 1.28E+02	1.28E+02 2.49E+01	8.02E+01 1.52E+01	1.43E+02 2.35E+01	7.26E+01 1.82E+01	4.55E+02 6.78E+01	2.99E+02 5.56E+01	1.07E+02 2.38E+01	1.69E+01 4.89E+00
	Mean Err.	3.29E+02(+)	1.39E+02 (+)	1.29E+03 (+)	2.43E+02(+)	1.89E+02(+)	2.82E+02(+)	1.54E+02 (+)	5.70E+02(+)	4.32E+02 (+)	2.36E+02 (+)	4.09E+01
f_{13}	Median	3.29E+02	1.34E+02	1.28E+03	2.37E+02	1.88E+02	2.76E+02	1.46E+02	5.75E+02	4.28E+02	2.45E+02	3.63E+01
	Std.	5.71E+01	2.76E+01	1.31E+02	4.67E+01	3.17E+01	3.66E+01	4.22E+01	7.40E+01	3.83E+01	2.37E+01	2.13E+01
f_{14}	Mean Err. Median	7.97E-01 (-) 8.45E-01	1.09E+03 (+) 1.03E+03	1.38E+04 (+) 1.39E+04	2.66E+01 (-) 3.26E+00	1.49E-01 (-) 1.37E-01	4.33E+03(+) 4.40E+03	2.46E+02(≈) 1.94E+02	1.07E+00 (-) 8.08E-01	9.16E+03 (+) 9.89E+03	1.69E+02 (-) 1.48E+02	3.14E+02 2.85E+02
J14	Std.	6.87E-01	3.37E+02	3.59E+02	5.82E+01	1.04E-01	4.15E+02	1.86E+02	9.37E-01	1.76E+03	7.21E+01	1.61E+02
	Mean Err.	7.63E+03(+)	4.61E+03 (+)	1.43E+04 (+)	7.07E+03(+)	6.66E+03(+)	5.48E+03(+)	7.07E+03 (+)	7.89E+03(+)	9.98E+03 (+)	8.08E+03 (+)	2.19E+03
f_{15}	Median Std.	7.71E+03	4.51E+03 7.72E+02	1.44E+04 4.03E+02	6.93E+03 8.07E+02	6.75E+03	5.50E+03	7.00E+03 8.47E+02	7.91E+03 5.73E+02	1.03E+04 1.40E+03	8.14E+03	2.01E+03 7.21E+02
	Mean Err.	1.34E+03 1.76E+00(+)	3.61E-01(-)	3.40E+00 (+)	1.66E+00(+)	4.42E+02 1.56E+00(+)	5.13E+02 5.55E-02 (-)	2.02E+00 (+)	1.67E+00(+)	2.61E+00 (+)	7.63E+02 2.58E+00 (+)	4.52E-01
f_{16}	Median	1.51E+00	3.44E-01	3.43E+00	1.64E+00	1.40E+00	5.58E-02	1.94E+00	1.63E+00	2.57E+00	2.54E+00	4.12E-01
	Std.	9.88E-01	1.26E-01	3.07E-01	3.07E-01	5.66E-01	1.65E-02	5.65E-01	2.80E-01	3.02E-01	2.82E-01	1.67E-01
£	Mean Err. Median	5.15E+01 (-) 5.14E+01	8.67E+01 (+) 8.53E+01	2.49E+03 (+) 2.41E+03	5.12E+01 (-) 5.12E+01	5.08E+01 (-) 5.08E+01	1.13E+02(+) 1.11E+02	8.72E+01 (+) 8.43E+01	5.08E+01 (-) 5.08E+01	4.92E+02 (+) 4.83E+02	5.64E+01 (≈) 6.47E+01	5.88E+01 5.86E+01
f_{17}	Std.	2.85E-01	6.88E+00	3.01E+02	2.31E-01	3.60E-14	1.38E+01	1.27E+01	4.15E-02	7.24E+01	2.03E+01	1.87E+00
	Mean Err.	1.99E+02(+)	1.27E+02 (+)	2.44E+03 (+)	1.67E+02(+)	1.36E+02(+)	1.16E+02(+)	1.52E+02 (+)	5.10E+02(+)	4.74E+02 (+)	1.59E+02 (+)	8.97E+01
f_{18}	Median	1.81E+02	1.26E+02	2.45E+03	1.69E+02	1.37E+02	1.17E+02	1.38E+02	5.12E+02	4.66E+02	1.55E+02	8.82E+01
	Std. Mean Err.	7.29E+01 2.41E+00 (-)	1.59E+01 6.09E+00 (+)	2.48E+02 1.26E+06 (+)	2.71E+01 1.72E+00 (-)	1.09E+01 2.93E+00 (-)	1.19E+01 6.03E+00(+)	4.36E+01 5.48E+00(≈)	4.82E+01 4.15E-01 (-)	3.02E+01 2.76E+01 (+)	3.85E+01 6.09E+00 (≈)	1.01E+01 5.15E+00
f_{19}	Median	2.32E+00	5.96E+00 (+)	1.13E+06	1.66E+00	2.90E+00	6.21E+00	5.44E+00(~)	4.02E-01	2.64E+01	5.97E+00 (~)	5.05E+00
013	Std.	5.20E-01	7.83E-01	7.61E+05	4.12E-01	4.71E-01	1.09E+00	1.19E+00	1.16E-01	3.15E+00	7.02E-01	6.47E-01
c	Mean Err.	2.13E+01 (-)	2.11E+01(-)	2.49E+01 (+)	1.99E+01 (-)	1.99E+01 (-)	2.33E+01(+)	1.90E+01(-)	2.37E+01(+)	2.15E+01 (-)	2.06E+01 (-)	2.28E+01
f_{20}	Median Std.	2.10E+01 1.59E+00	2.12E+01 1.09E+00	2.49E+01 1.16E-01	2.00E+01 9.67E-01	1.99E+01 7.93E-01	2.34E+01 9.71E-01	1.90E+01 8.85E-01	2.40E+01 8.24E-01	2.14E+01 6.51E-01	2.04E+01 6.42E-01	2.29E+01 8.04E-01
	Mean Err.		9.70E+02(≈)	6.17E+03 (+)		7.88E+02 (≈)	2.00E+02 (-)	9.90E+02 (+)	2.51E+02 (-)		2.01E+02 (-)	
f_{21}	Median	8.36E+02	1.12E+03	6.18E+03	2.11E+02	1.12E+03	2.00E+02	1.12E+03	2.02E+02	8.36E+02	2.00E+02	8.36E+02
	Std.	2.90E+02	1.80E+02	3.73E+02 1.53E+04 (+)	1.49E+02	4.14E+02	1.45E-13	2.37E+02	1.44E+02	3.22E+02	2.16E+00 3.73E+02 (+)	3.02E+02
f_{22}	Mean Err. Median	4.02E+01 (-) 1.17E+01	1.10E+03 (+) 1.04E+03	1.53E+04 (+) 1.53E+04	3.94E+01 (-) 2.33E+01	1.19E+01 (-) 1.19E+01	6.04E+03(+) 6.05E+03	3.10E+02 (+) 3.00E+02	8.15E+00 (-) 8.44E+00	1.01E+04 (+) 1.04E+04	3.40E+02 (+)	2.11E+02 1.91E+02
122	Std.	6.90E+01	4.18E+02	4.15E+02	4.22E+01	1.91E+00	5.23E+02	2.16E+02	3.36E+00	1.45E+03	1.88E+02	8.99E+01
	Mean Err.	9.01E+03(+)	6.83E+03 (+)		8.50E+03(+)	7.29E+03(+)	6.66E+03(+)			9.65E+03 (+)	8.20E+03 (+)	2.18E+03
f_{23}	Median Std.	8.88E+03 1.40E+03	6.65E+03 1.49E+03	1.55E+04 4.82E+02	8.55E+03 1.32E+03	7.18E+03 7.24E+02	6.64E+03 6.08E+02	6.82E+03 1.23E+03	1.03E+04 9.48E+02	9.60E+03 9.32E+02	8.31E+03 1.10E+03	2.19E+03 7.06E+02
	Mean Err.	3.27E+02(+)	2.34E+02 (+)	6.04E+02 (+)	2.74E+02(+)	2.96E+02(+)	2.95E+02(+)	2.85E+02 (+)	3.65E+02(+)	3.40E+02 (+)	3.08E+02 (+)	2.06E+02
f_{24}	Median	3.26E+02	2.34E+02	5.98E+02	2.74E+02	2.86E+02	2.97E+02	2.89E+02	3.67E+02	3.40E+02	3.10E+02	2.04E+02
	Std.	1.33E+01	1.42E+01	5.89E+01	1.64E+01	2.89E+01	1.54E+01	1.90E+01	1.11E+01	1.24E+01	1.05E+01	9.91E+00
for	Mean Err. Median	3.61E+02(+) 3.59E+02	3.31E+02 (+) 3.33E+02	6.03E+02 (+) 6.05E+02	3.51E+02(+) 3.52E+02	3.65E+02(+) 3.69E+02	3.66E+02(+) 3.67E+02	3.41E+02 (+) 3.41E+02	4.07E+02(+) 4.07E+02	3.88E+02 (+) 3.89E+02	3.56E+02 (+) 3.54E+02	2.96E+02 2.95E+02
f_{25}	Std.	1.46E+01	1.24E+01	2.67E+01	1.25E+02	1.90E+01	9.28E+00	1.87E+01	9.94E+00	2.31E+00	9.46E+00	9.03E+02
	Mean Err.	3.95E+02(+)	3.26E+02 (+)	4.12E+02 (+)	2.00E+02 (-)	3.75E+02(+)	2.00E+02 (-)	3.27E+02 (+)	2.03E+02 (-)	2.42E+02 (≈)	2.02E+02 (-)	2.78E+02
		1.000	3.53E+02	4.03E+02	2.00E+02	4.26E+02	2.00E+02	3.59E+02	2.02E+02	2.00E+02	2.02E+02	3.04E+02
f_{26}	Median	4.06E+02		7.000 01			1.16E-01	7.64E+01	5.80E-01	9.28E+01	6.44E-01	4.82E+01
f_{26}	Median Std.	5.00E+01	6.00E+01	7.82E+01	5.32E-02	9.94E+01			1.82F±02(1.)			
_	Median Std. Mean Err.	5.00E+01 1.43E+03(+)	6.00E+01 8.68E+02 (+)	2.72E+03 (+)	1.19E+03(+)	1.50E+03(+)	1.26E+03(+)	1.10E+03 (+)	1.82E+03(+) 1.89E+03	1.60E+03 (+)	1.45E+03 (+)	4.61E+02
f_{26} f_{27}	Median Std. Mean Err. Median Std.	5.00E+01 1.43E+03(+) 1.43E+03 1.29E+02	6.00E+01 8.68E+02 (+) 8.68E+02 1.12E+02	2.72E+03 (+) 2.70E+03 1.70E+02	1.19E+03(+) 1.20E+03 2.19E+02	1.50E+03(+) 1.60E+03 2.71E+02	1.26E+03(+) 1.27E+03 9.20E+01	1.10E+03 (+) 1.12E+03 1.54E+02	1.89E+03 3.70E+02	1.60E+03 (+) 1.59E+03 1.09E+02	1.45E+03 (+) 1.48E+03 1.25E+02	4.61E+02 3.55E+02 1.83E+02
f ₂₇	Median Std. Mean Err. Median Std. Mean Err.	5.00E+01 1.43E+03(+) 1.43E+03 1.29E+02 5.94E+02(+)	8.68E+02 (+) 8.68E+02 1.12E+02 4.00E+02(-)	2.72E+03 (+) 2.70E+03 1.70E+02 9.39E+03 (+)	1.19E+03(+) 1.20E+03 2.19E+02 4.00E+02 (-)	1.50E+03(+) 1.60E+03 2.71E+02 8.20E+02(+)	1.26E+03(+) 1.27E+03 9.20E+01 4.00E+02 (-)	1.10E+03 (+) 1.12E+03 1.54E+02 4.00E+02(-)	1.89E+03 3.70E+02 4.00E+02 (≈)	1.60E+03 (+) 1.59E+03 1.09E+02 1.45E+03 (+)	1.45E+03 (+) 1.48E+03 1.25E+02 4.00E+02 (+)	4.61E+02 3.55E+02 1.83E+02 4.00E+02
_	Median Std. Mean Err. Median Std. Mean Err. Median	5.00E+01 1.43E+03(+) 1.43E+03 1.29E+02 5.94E+02(+) 4.00E+02	6.00E+01 8.68E+02 (+) 8.68E+02 1.12E+02 4.00E+02(-) 4.00E+02	2.72E+03 (+) 2.70E+03 1.70E+02 9.39E+03 (+) 9.31E+03	1.19E+03(+) 1.20E+03 2.19E+02 4.00E+02 (-) 4.00E+02	1.50E+03(+) 1.60E+03 2.71E+02 8.20E+02(+) 4.00E+02	1.26E+03(+) 1.27E+03 9.20E+01 4.00E+02 (-) 4.00E+02	1.10E+03 (+) 1.12E+03 1.54E+02 4.00E+02(-) 4.00E+02	1.89E+03 3.70E+02 4.00E+02 (≈) 4.00E+02	1.60E+03 (+) 1.59E+03 1.09E+02 1.45E+03 (+) 4.00E+02	1.45E+03 (+) 1.48E+03 1.25E+02 4.00E+02 (+) 4.00E+02	4.61E+02 3.55E+02 1.83E+02 4.00E+02 4.00E+02
f ₂₇	Median Std. Mean Err. Median Std. Mean Err.	5.00E+01 1.43E+03(+) 1.43E+03 1.29E+02 5.94E+02(+)	8.68E+02 (+) 8.68E+02 1.12E+02 4.00E+02(-)	2.72E+03 (+) 2.70E+03 1.70E+02 9.39E+03 (+)	1.19E+03(+) 1.20E+03 2.19E+02 4.00E+02 (-)	1.50E+03(+) 1.60E+03 2.71E+02 8.20E+02(+)	1.26E+03(+) 1.27E+03 9.20E+01 4.00E+02 (-)	1.10E+03 (+) 1.12E+03 1.54E+02 4.00E+02(-)	1.89E+03 3.70E+02 4.00E+02 (≈)	1.60E+03 (+) 1.59E+03 1.09E+02 1.45E+03 (+)	1.45E+03 (+) 1.48E+03 1.25E+02 4.00E+02 (+)	4.61E+02 3.55E+02 1.83E+02 4.00E+02

TABLE S-XI
COMPARISON RESULTS ON CEC 2013 ON 30-D

Func	D=30	TAPSO	DEPSO	AWPSO	HCLPSO	CJADE	LOTFWA	MAPSO	APABC	HGFOA	HPSO-DTA	PSO-HV
	Mean Err.	1.11E-13 (-)	0.00E+00 (-)	3.95E+04 (+)	2.76E-13 (≈)	1.78E-14 (-)	6.24E-14 (-)	0.00E+00 (-)	0.00E+00 (-)	3.68E-04 (+)	3.31E-13 (≈)	3.03E-13
f_1	Median	0.00E+00	0.00E+00	3.91E+04	2.27E-13	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.76E-04	2.27E-13	2.27E-13
	Std.	1.15E-13	1.07E-13	7.26E+03	9.44E-14	6.17E-14	1.02E-13	0.00E+00	0.00E+00	1.53E-04	1.56E-13	1.08E-13
	Mean Err.	1.59E+05 (-)	1.36E+06 (-)	4.25E+08 (+)	3.19E+05 (-)	5.69E+03 (-)	1.23E+06 (-)	1.54E+06 (-)	1.50E+07 (+)	4.27E+05 (-)	1.10E+07 (+)	3.50E+06
f_2	Median Std.	1.19E+05 1.33E+05	6.17E+05 1.51E+06	3.62E+08 1.64E+08	2.95E+05 1.40E+05	4.26E+03 4.33E+03	1.19E+06 4.87E+05	1.29E+06 1.11E+06	1.50E+07 3.18E+06	3.70E+05 2.08E+05	8.88E+06 7.13E+06	3.55E+06 1.16E+06
	Mean Err.	2.06E+08 (+)	3.01E+07 (+)	1.18E+15 (+)	3.09E+07 (+)	1.02E+06 (-)	2.31E+07 (+)	1.34E+07 (+)	9.39E+08 (+)	7.47E+07 (+)	7.15E+00 7.45E+07 (+)	3.09E+06
f_3	Median	4.49E+07	3.82E+06	1.28E+14	1.07E+07	2.62E+04	1.34E+07	8.73E+06	8.77E+08	4.85E+07	6.92E+07	1.70E+06
73	Std.	4.45E+08	8.65E+07	2.79E+15	6.64E+07	1.95E+06	2.50E+07	1.78E+07	5.61E+08	6.73E+07	5.09E+07	3.95E+06
	Mean Err.	6.28E+03 (-)	6.57E+04 (+)	6.33E+04 (+)	5.77E+02 (-)	2.74E+03 (-)	1.95E+03 (-)	2.57E+02 (-)	1.03E+05 (+)	9.41E+02 (-)	6.29E+03 (-)	2.95E+04
f_4	Median	5.41E+03	6.51E+04	6.24E+04	5.23E+02	4.59E-04	1.80E+03	2.05E+02	1.05E+05	8.50E+02	5.78E+03	2.94E+04
	Std.	4.00E+03	1.29E+04	1.07E+04	3.29E+02	8.61E+03	7.83E+02	1.63E+02	1.22E+04	5.12E+02	2.13E+03	7.48E+03
f_5	Mean Err. Median	1.45E-13 (-) 1.14E-13	1.14E-13 (—) 1.14E-13	9.41E+03 (+) 9.17E+03	3.37E-13 (-) 3.41E-13	1.23E-13 (—) 1.14E-13	3.41E-03 (+) 3.32E-03	1.18E-09 (+) 0.00E+00	1.05E-13 (-) 1.14E-13	1.69E-02 (+) 1.64E-02	1.05E-12 (+) 1.02E-12	6.58E-13 5.68E-13
J5	Std.	5.61E-14	4.82E-14	3.51E+03	7.18E-14	3.83E-14	5.20E-04	8.42E-09	3.09E-14	4.12E-03	4.91E-13	2.77E-13
	Mean Err.	8.08E+00 (-)	4.60E+01 (≈)	5.82E+03 (+)	1.42E+01 (-)	4.95E+00 (-)	1.31E+01 (-)	1.95E+01 (-)	1.75E+01 (-)	4.22E+01 (≈)	3.10E+01 (≈)	4.28E+01
f_6	Median	3.92E+00	4.49E+01	5.99E+03	1.39E+01	3.30E-12	1.48E+01	1.79E+01	1.79E+01	2.65E+01	2.67E+01	3.92E+01
	Std.	1.24E+01	2.72E+01	1.80E+03	1.42E+00	1.53E+01	4.68E+00	3.58E+00	3.71E+00	2.89E+01	1.78E+01	2.73E+01
	Mean Err.	7.66E+01 (+)	4.60E+00 (+)	2.83E+04 (+)	1.62E+01 (+)	2.28E+01 (+)	5.03E+01 (+)	2.21E+01 (+)	1.14E+02 (+)	5.54E+01 (+)	2.44E+01 (+)	4.40E-01
f_7	Median Std.	6.90E+01 3.14E+01	2.66E+00 5.14E+00	6.71E+03 6.40E+04	1.55E+01 7.45E+00	1.83E+01 1.33E+01	4.93E+01 1.28E+01	2.20E+01 5.51E+00	1.14E+02 2.04E+01	4.95E+01 2.05E+01	2.36E+01 5.08E+00	4.30E-01 2.29E-01
	Mean Err.	2.09E+01 (-)	2.10E+01 (+)	2.10E+01 (-)	2.09E+01 (≈)	2.09E+01 (≈)	2.08E+01 (-)	2.10E+01 (≈)	2.09E+01 (≈)	2.09E+01 (-)	2.09E+01 (-)	2.09E+01
f_8	Median	2.09E+01	2.10E+01	2.10E+01	2.09E+01	2.09E+01	2.08E+01	2.10E+01	2.10E+01	2.09E+01	2.09E+01	2.10E+01
	Std.	7.87E-02	4.65E-02	4.13E-02	4.87E-02	7.10E-02	7.34E-02	5.02E-02	5.26E-02	3.26E-02	6.91E-02	6.52E-02
	Mean Err.	2.09E+01 (+)	1.21E+01 (+)	3.96E+01 (-)	1.79E+01 (+)	2.78E+01 (+)	1.44E+01 (+)	1.71E+01 (+)	3.03E+01 (+)	2.48E+01 (+)	2.26E+01 (+)	8.09E+00
f_9	Median	2.08E+01	1.21E+01	3.97E+01	1.76E+01	2.79E+01	1.44E+01	1.67E+01	3.06E+01	2.51E+01	2.41E+01	7.91E+00
	Std. Mean Err.	3.71E+00	2.34E+00	1.36E+00	4.01E+00	2.01E+00	2.14E+00 4.95E-02 (-)	4.01E+00	2.34E+00	5.57E+00	2.97E+00	1.84E+00
f_{10}	Median	8.99E-02 (-) 7.39E-02	2.05E-01 (≈) 1.77E-01	5.15E+03 (+) 4.92E+03	1.82E-01 (-) 1.70E-01	5.37E-02 (—) 4.67E-02	4.95E-02 (—) 4.44E-02	6.75E-02 (—) 5.67E-02	2.82E+00 (+) 2.79E+00	9.11E-01 (+) 9.08E-01	1.25E+00 (+) 1.28E+00	2.44E-01 2.14E-01
J 10	Std.	6.04E-02	1.17E-01	1.28E+03	7.66E-02	3.49E-02	2.84E-02	4.32E-02	8.26E-01	1.17E-01	3.90E-01	1.43E-01
	Mean Err.	1.00E-13 (-)	1.23E+01 (+)	6.89E+02 (+)	1.00E-13 (-)	0.00E+00 (-)		1.49E+01 (+)	0.00E+00 (-)	1.20E+02 (+)	2.82E-01 (-)	3.22E+00
f_{11}	Median	5.68E-14	1.20E+01	7.02E+02	1.14E-13	0.00E+00	6.37E+01	1.49E+01	0.00E+00	1.25E+02	1.70E-03	2.29E+00
	Std.	1.93E-13	3.36E+00	9.52E+01	2.69E-14	0.00E+00	1.33E+01	5.64E+00	0.00E+00	2.63E+01	4.59E-01	2.74E+00
	Mean Err.	7.34E+01 (+)	2.74E+01 (+)	6.85E+02 (+)	4.90E+01 (+)	2.67E+01 (+)	7.22E+01 (+)	4.05E+01 (+)	1.57E+02 (+)	1.08E+02 (+)	5.03E+01 (+)	7.61E+00
f_{12}	Median Std.	7.06E+01 2.03E+01	2.79E+01 7.49E+00	6.90E+02 8.30E+01	4.68E+01 1.54E+01	2.50E+01 7.28E+00	7.26E+01 1.19E+01	3.69E+01 1.21E+01	1.56E+02 2.80E+01	1.08E+02 3.01E+01	5.33E+01 9.65E+00	7.00E+00 3.11E+00
	Mean Err.	1.50E+02 (+)	5.90E+01 (+)	6.91E+02 (+)	1.20E+02 (+)	6.29E+01 (+)	1.35E+02 (+)	8.69E+01 (+)	2.28E+02 (+)	1.76E+02 (+)	1.08E+02 (+)	1.36E+01
f_{13}	Median	1.51E+02	5.82E+01	6.72E+02	1.19E+02	6.38E+01	1.40E+02	7.98E+01	2.28E+02	1.68E+02	1.06E+02	1.17E+01
713	Std.	2.70E+01	2.07E+01	1.02E+02	2.82E+01	1.57E+01	2.51E+01	3.15E+01	2.31E+01	5.14E+01	2.54E+01	9.51E+00
	Mean Err.	4.05E-01 (-)	7.82E+02 (+)	7.38E+03 (+)	8.65E+00 (-)	9.27E-02 (-)	2.41E+03 (+)	2.35E+02 (≈)	3.87E-01 (-)	5.15E+03 (+)	5.77E+01 (-)	2.85E+02
f_{14}	Median	2.29E-01	8.14E+02	7.44E+03	1.18E+00	8.33E-02	2.42E+03	1.98E+02	1.04E-01	5.22E+03	5.53E+01	2.70E+02
	Std.	4.22E-01	2.64E+02	3.59E+02	2.88E+01	3.49E-02	3.29E+02	1.46E+02	7.06E-01	5.33E+02	2.33E+01	1.47E+02
£	Mean Err. Median	3.68E+03 (+) 3.75E+03	2.09E+03 (+) 2.21E+03	7.36E+03 (+) 7.41E+03	3.32E+03 (+) 3.35E+03	3.09E+03 (+) 3.10E+03	2.63E+03 (+) 2.66E+03	3.37E+03 (+) 3.29E+03	3.85E+03 (+) 3.86E+03	4.97E+03 (+) 5.14E+03	3.85E+03 (+) 3.83E+03	1.02E+03 9.87E+02
f_{15}	Std.	6.24E+02	4.98E+02	3.10E+02	4.79E+02	3.16E+02	2.54E+02	6.48E+02	4.94E+02	7.04E+02	6.93E+02	3.09E+02
	Mean Err.	1.39E+00 (+)	2.97E-01 (-)	2.56E+00 (+)	1.05E+00 (+)	1.41E+00 (+)	5.85E-02 (-)	1.36E+00 (+)	1.27E+00 (+)	1.41E+00 (+)	1.80E+00 (+)	4.45E-01
f_{16}	Median	1.23E+00	2.59E-01	2.57E+00	1.07E+00	1.17E+00	5.55E-02	1.36E+00	1.28E+00	1.47E+00	1.86E+00	4.24E-01
	Std.	7.70E-01	1.26E-01	2.38E-01	2.61E-01	7.08E-01	1.74E-02	3.66E-01	2.37E-01	5.12E-01	4.68E-01	1.95E-01
	Mean Err.	3.10E+01 (-)	4.80E+01 (+)	1.08E+03 (+)	3.05E+01 (-)	3.04E+01 (-)	6.36E+01 (+)	5.34E+01 (+)	3.05E+01 (-)	2.03E+02 (+)	1.19E+01 (-)	3.44E+01
f_{17}	Median Std.	3.09E+01 3.36E-01	4.73E+01 4.84E+00	1.10E+03 1.44E+02	3.05E+01 9.68E-02	3.04E+01 3.24E-14	6.37E+01 8.73E+00	5.15E+01 7.73E+00	3.04E+01 7.85E-02	1.87E+02 3.63E+01	8.56E+00 9.15E+00	3.45E+01 1.19E+00
	Mean Err.	1.03E+02 (+)	6.12E+01 (+)	1.10E+03 (+)	8.50E+01 (+)	6.39E+01 (+)	6.18E+01 (+)	7.73E+01 (+)	2.07E+02 (+)	2.27E+02 (+)	7.69E+01 (+)	5.80E+01
f_{18}	Median	8.44E+01	6.03E+01	1.11E+03	8.03E+01	6.43E+01	6.24E+01	7.24E+01	2.07E+02	2.22E+02	7.70E+01	5.69E+01
	Std.	4.52E+01	8.21E+00	1.21E+02	2.13E+01	7.52E+00	8.88E+00	1.93E+01	2.41E+01	2.83E+01	2.27E+01	8.79E+00
	Mean Err.	1.34E+00 (-)	3.91E+00 (+)	3.33E+05 (+)	1.19E+00 (-)	1.22E+00 (-)	3.32E+00 (≈)	3.07E+00 (≈)	1.99E-01 (-)	1.19E+01 (+)	2.97E+00 (≈)	3.10E+00
f_{19}	Median	1.31E+00	3.95E+00 6.36E-01	2.80E+05	1.18E+00	1.19E+00	3.39E+00	3.10E+00 8.01E-01	1.97E-01	1.15E+01	2.91E+00	3.14E+00
-	Std. Mean Err.	3.27E-01 1.20E+01 (-)	1.46E+01 (+)	2.52E+05 1.50E+01 (+)	1.49E-01 1.06E+01 (-)	1.81E-01 1.07E+01 (-)	7.79E-01 1.36E+01 (≈)	8.01E-01 1.07E+01 (-)	5.33E-02 1.27E+01 (-)	2.68E+00 1.23E+01 (-)	6.61E-01 1.13E+01 (-)	4.07E-01 1.35E+01
f_{20}	Median	1.18E+01	1.50E+01 (+)	1.50E+01 (+)	1.05E+01 (-)	1.07E+01 (-)	1.37E+01	1.07E+01 (-) 1.08E+01	1.28E+01	1.23E+01 (=)	1.11E+01	1.34E+01
320	Std.	1.11E+00	1.09E+00	4.68E-02	6.89E-01	7.17E-01	8.01E-01	6.79E-01	6.15E-01	5.73E-01	4.70E-01	9.48E-01
	Mean Err.	3.48E+02 (≈)	3.36E+02 (+)	2.89E+03 (+)	2.14E+02 (-)	3.17E+02 (≈)	2.00E+02 (-)	3.12E+02 (≈)	2.27E+02 (-)	3.30E+02 (≈)	2.51E+02 (≈)	
f_{21}	Median	3.00E+02	3.00E+02	2.85E+03	2.02E+02	3.00E+02	2.00E+02	3.00E+02	2.08E+02	3.00E+02	2.40E+02	3.00E+02
	Std.	8.07E+01	7.37E+01	2.36E+02	3.00E+01	6.48E+01	6.67E-02	5.95E+01	3.56E+01	7.86E+01	4.90E+01	7.50E+01
	Mean Err.	1.09E+02 (-)	5.36E+02 (+)	8.06E+03 (+)	8.93E+01 (-)	8.21E+01 (-)	2.98E+03 (+)	2.99E+02 (+)	1.97E+01 (-)	5.07E+03 (+)	2.28E+02 (≈)	2.11E+02
f_{22}	Median Std.	1.08E+02 3.61E+01	4.50E+02 2.73E+02	8.09E+03 3.35E+02	1.11E+02 4.10E+01	1.06E+02 4.10E+01	3.02E+03 3.92E+02	2.84E+02 1.42E+02	9.95E+00 2.61E+01	5.32E+03 6.85E+02	1.98E+02 6.02E+01	1.84E+02 7.34E+01
	Mean Err.	4.22E+03 (+)	3.55E+03 (+)	8.25E+03 (+)	3.63E+03 (+)	3.26E+03 (+)	3.09E+03 (+)	3.60E+03 (+)	4.91E+03 (+)	4.87E+03 (+)	3.76E+03 (+)	1.29E+03
f_{23}	Median	3.96E+03	3.54E+03	8.27E+03	3.71E+03	3.31E+03	3.07E+03	3.68E+03	4.91E+03	4.84E+03	3.71E+03	1.15E+03
	Std.	9.60E+02	8.60E+02	3.33E+02	6.44E+02	5.06E+02	3.53E+02	6.09E+02	6.02E+02	8.78E+02	1.15E+03	7.05E+02
	Mean Err.	2.63E+02 (+)	2.11E+02 (+)	3.91E+02 (+)	2.26E+02 (+)	2.40E+02 (+)	2.39E+02 (+)	2.32E+02 (+)	2.85E+02 (+)	2.56E+02 (+)	2.56E+02 (+)	2.01E+02
f_{24}	Median	2.63E+02 8.63E+00	2.07E+02 9.98E+00	3.89E+02	2.25E+02	2.35E+02	2.40E+02	2.31E+02	2.86E+02 6.16E+00	2.51E+02 1.67E+01	2.55E+02 1.13E+01	2.01E+02 5.42E-01
	Std. Mean Err.	2.82E+02 (+)	2.30E+02 (≈)	3.87E+01 4.02E+02 (+)	7.60E+00 2.61E+02 (+)	1.82E+01 2.74E+02 (+)	9.97E+00 2.75E+02 (+)	1.15E+01 2.61E+02 (+)	3.05E+02 (+)	3.04E+02 (+)	2.71E+02 (+)	2.33E+02
f_{25}	Median	2.82E+02 (+) 2.81E+02	2.05E+02 (≈) 2.05E+02	4.04E+02 (+)	2.69E+02 (+)	2.79E+02 (+)	2.75E+02 (+) 2.75E+02	2.64E+02 (+)	3.07E+02 (+)	3.04E+02 (+)	2.71E+02 (+) 2.69E+02	2.33E+02 2.47E+02
J 23	Std.	8.30E+00	3.34E+01	1.64E+01	2.02E+01	1.36E+01	8.64E+00	1.34E+01	6.18E+00	1.42E+00	9.72E+00	2.56E+01
	Mean Err.	2.94E+02 (+)	3.07E+02 (+)	2.70E+02 (+)	2.00E+02 (-)	2.36E+02 (≈)	2.00E+02 (-)	2.02E+02 (-)	2.01E+02 (-)	2.00E+02 (-)	2.01E+02 (-)	2.46E+02
f_{26}	Median	3.38E+02	3.19E+02	2.61E+02	2.00E+02	2.00E+02	2.00E+02	2.00E+02	2.01E+02	2.00E+02	2.00E+02	2.13E+02
	Std.	7.07E+01	3.62E+01	4.65E+01	1.41E-02	6.54E+01	2.14E-02	1.68E+01	3.40E-01	1.63E-02	2.76E-01	4.69E+01
f	Mean Err. Median	8.24E+02 (+) 8.17E+02	4.64E+02 (+) 4.62E+02	1.50E+03 (+) 1.50E+03	5.22E+02 (+) 5.14E+02	7.65E+02 (+) 8.15E+02	7.03E+02 (+) 7.18E+02	5.65E+02 (+) 5.51E+02	8.14E+02 (+) 1.03E+03	9.06E+02 (+) 8.97E+02	8.84E+02 (+) 9.04E+02	3.14E+02 3.13E+02
f_{27}	Std.	9.79E+01	7.95E+01	7.27E+01	9.54E+01	2.00E+02	1.08E+02	8.31E+01	3.38E+02	1.66E+02	7.62E+01	8.10E+00
	Mean Err.	3.74E+02 (+)	2.97E+02 (-)	4.88E+03 (+)	2.96E+02 (≈)	3.00E+02 (-)	2.50E+02 (≈)	2.96E+02 (-)	2.98E+02 (-)	4.17E+02 (+)	3.00E+02 (+)	3.00E+02
f_{28}	Median	3.00E+02	3.00E+02	4.73E+03	3.00E+02	3.00E+02	3.00E+02	3.00E+02	3.00E+02	3.01E+02	3.00E+02	3.00E+02
	Std.	3.37E+02	1.61E+02	5.10E+02	2.63E+01	6.43E-14	8.72E+01	2.80E+01	5.72E+00	3.86E+02	3.60E-10	1.22E-10
	+/≈/−	14/1/13	20/3/5	26/0/2	12/3/13	11/3/14	16/3/9	16/4/8	15/1/12	21/2/5	16/5/7	

 $\label{thm:comparison} TABLE\ S-XII$ Comparison Results for PSO-HV, DE-HL and Top-rank Algorithms on CEC 2017 on 50-D.

Man	Func		EBOwithCMAR	JSO	RB-IPOP-CMA-ES	LSHADE	PPSO	TLBO-FL	DYYPO	MOS-SOCO	PSO-HV	DE-HL
10	Tune	Mean Err										
Name of the color of	g_1											
96 Name Moder Stander												
between the state of	g_3											
γ γ												
No. Section 1. Signified 1.	g_4											
96 10mm 2.5mm 2.		Mean Err.	7.58E+00 (-)	1.64E+01(-)	2.79E+00 (-)					1.34E+02(+)		2.44E+01
96 1 1.1 1.0	g_5											
Name Name <t< td=""><td></td><td>Mean Err.</td><td>8.54E-08 (—)</td><td>1.09E-06(-)</td><td>1.63E-07 (-)</td><td>5.69E-05(≈)</td><td>3.18E+01(+)</td><td>4.51E+00(+)</td><td>3.84E+00(+)</td><td>0.00E+00(-)</td><td>7.17E-05(+)</td><td>2.67E-05</td></t<>		Mean Err.	8.54E-08 (—)	1.09E-06(-)	1.63E-07 (-)	5.69E-05(≈)	3.18E+01(+)	4.51E+00(+)	3.84E+00(+)	0.00E+00(-)	7.17E-05(+)	2.67E-05
γ6 λ	g_6	Std.	1.14E-07	2.63E-06	1.38E-07	3.71E-04	3.91E+00	1.70E+00	2.03E+00	0.00E+00	1.41E-04	2.44E-05
		Mean Err.	5.79E+01 (-)	6.65E+01(-)	5.66E+01 (-)	6.32E+01(-)	2.78E+02(+)	1.74E+02(+)	2.61E+02(+)	1.81E+02(+)	6.48E+01(≈)	7.47E+01
96 March 2.9E.0.01 3.18E.00 0.9E.0.01 2.9E.0.01 1.9E.0.01 4.9E.0.01 4.9E.0.01<	g_7	Std.	1.53E+00	3.47E+00	1.39E+00	1.71E+00	3.42E+01	4.38E+01	4.27E+01	2.26E+01	3.31E+00	3.72E+00
		Mean Err.	7.91E+00 (-)	1.70E+01(-)	2.58E+00 (-)	1.20E+01(-)	1.99E+02(+)	9.33E+01(+)	1.90E+02(+)	1.38E+02(+)	1.77E+01(-)	3.04E+01
γ9 δ λ	g_8	Std.	2.47E+00	3.14E+00	1.79E+00	2.28E+00	1.52E+01	1.58E+01	4.70E+01	2.46E+01	4.97E+00	6.55E+00
14 16 16 16 16 16 16 16		Mean Err.	0.00E+00 (≈)	0.00E+00(≈)	0.00E+00 (≈)	0.00E+00(≈)	6.06E+03(+)	1.30E+03(+)	3.51E+03(+)	1.21E+03(+)	1.50E+00(+)	0.00E+00
910 All Males Algebra System System System System Cylinder Cylinde	g_9	Std.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.28E+02	1.05E+03	1.86E+03	5.08E+02	5.78E+00	0.00E+00
14 16 16 16 16 16 16 16	_	Mean Err.	3.11E+03 (-)	3.14E+03(-)	1.73E+03 (-)	3.18E+03(-)	5.20E+03(+)	1.27E+04(+)	4.80E+03(+)	4.73E+03(+)	9.68E+02(-)	3.37E+03
91 (1) (1) (1) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	g_{10}	Std.	4.01E+02	3.67E+02	9.53E+02	2.55E+02	5.51E+02	3.97E+02	6.41E+02	7.01E+02	4.26E+02	3.94E+02
No. Solit No. Solit		Mean Err.	2.64E+01 (≈)	2.79E+01(+)	1.83E+02 (+)	4.86E+01(+)	1.27E+02(+)	1.69E+02(+)	1.90E+02(+)	1.95E+02(+)	2.36E+02(+)	2.24E+01
91% Side Allelic 3.584cm 1.784cm 1.784cm 2.984cm 3.984cm 3.984cm 3.984cm 3.084cm 3.08	g_{11}	Std.	3.36E+00	3.33E+00	5.20E+01	7.92E+00	1.45E+01	4.79E+01	5.19E+01	6.05E+01	1.39E+02	1.58E+00
14 14 15 15 15 15 15 15		Mean Err.	1.94E+03 (+)	1.68E+03(+)	2.44E+06 (+)	2.17E+03(+)	5.52E+05(+)	9.16E+05(+)	7.75E+06(+)	1.45E+05(+)	1.38E+06(+)	6.66E+02
913 (9 Most Price (19 Most	g_{12}	Std.	8.34E+02	5.23E+02	1.74E+07	4.52E+02	2.03E+05	8.94E+05	5.08E+06	8.95E+04	6.97E+05	2.12E+02
84 Sake 248-60 21,124-00 1,154-00 23,854-00 2,142	_	Mean Err.	4.14E+01 (≈)	3.06E+01(≈)	1.65E+03 (+)	6.27E+01(+)	8.47E+02(+)	8.01E+03(+)	7.55E+03(+)	1.09E+04(+)	1.43E+03(+)	2.94E+01
914 (1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	g_{13}	Std.	2.48E+01	2.12E+01	1.15E+03	2.83E+01	5.63E+02	5.14E+03	7.38E+03	1.26E+04	1.61E+03	2.42E+01
No.	a	Mean Err.	3.12E+01 (≈)	2.50E+01(≈)	2.42E+02 (+)	2.91E+01(≈)	1.95E+04(+)	8.63E+04(+)	2.89E+04(+)	3.78E+04(+)	4.75E+04(+)	2.57E+01
915 (9 b) Side (1 b) S.DEPORD 2.9EPORD 7.80EPORD 5.91EPORD 7.00EPORD 7.87EPORD 1.30EPORD 7.00EPORD 7.87EPORD 1.40EPORD 7.00EPORD 7.87EPORD 1.40EPORD 7.00EPORD 7.87EPORD 1.40EPORD 7.00EPORD 8.47EPORD 1.40EPORD 7.87EPORD 1.40EPORD 8.00EPORD 8.47EPORD 9.47EPORD 8.47EPORD 9.47EPORD 9.47EPORD <t< td=""><td>914</td><td>Std.</td><td>3.52E+00</td><td>1.87E+00</td><td>7.07E+01</td><td>2.92E+00</td><td>1.00E+04</td><td>4.96E+04</td><td>2.75E+04</td><td>3.23E+04</td><td>2.81E+04</td><td>9.04E-01</td></t<>	914	Std.	3.52E+00	1.87E+00	7.07E+01	2.92E+00	1.00E+04	4.96E+04	2.75E+04	3.23E+04	2.81E+04	9.04E-01
Marcount		Mean Err.	2.94E+01 (+)	2.39E+01(≈)	5.29E+02 (+)	4.08E+01(+)	1.19E+03(+)	6.88E+03(+)	8.24E+03(+)	1.22E+04(+)	3.45E+03(+)	1.99E+01
916 (1) (2) (3) (3) (3) (3) (4) (4) (4) (4) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	g_{15}	Std.	5.20E+00	2.49E+00	1.15E+02	9.92E+00	7.80E+02	5.91E+03	7.00E+03	7.87E+03	3.00E+03	1.09E+00
8 Id. 1.64e-02 (1.58E-02) 1.818E-02 (1.58E-02) 2.18E-02 (2.28E-02) 3.05E-02 (3.08E-02) 2.15E-02 (3.08E-02) 1.51E-02 (3.28E-02) 8.76E-02 (3.28E-02) 3.05E-02 (3.28E-02) 3.05E-02 (3.08E-02) 2.25E-02 (3.08E-02)		Mean Err.	3.46E+02 (-)	4.51E+02(+)	8.90E+02 (+)	3.77E+02(-)	1.24E+03(+)	8.47E+02(+)	1.31E+03(+)	1.40E+03(+)	2.87E+02(-)	4.31E+02
917 (91) Sid. 8.63E+01 8.61E+01 1.58E+02 7.46E+01 1.54E+02 4.12E+02 2.65E+02 2.18E+02 1.02E+02 2.24E+01 91 (8) Mean Er. 3.20E+01 (1) 2.43E+01 (2) 3.93E+01 (2) 2.99E+04 (2) 4.23E+01 (2) 3.24E+01 (2)	916	Std.	1.46E+02	1.38E+02	3.66E+02	1.18E+02	2.28E+02	3.05E+02	4.08E+02	2.55E+02	1.51E+02	8.76E+01
Side	017	Mean Err.	2.75E+02 (-)	2.83E+02(-)	3.98E+02 (+)	2.55E+02(-)	1.03E+03(+)	8.53E+02(+)	8.88E+02(+)	9.49E+02(+)	2.23E+02(+)	3.22E+02
918 b Sid. S.99E+00 2.02E+00 1.56E+02 1.11E+01 8.67E+04 5.13E+05 8.14E+04 9.98E+04 4.15E+01 8.44E+01 91 b Mean Er. 2.45E+01 (+) 1.41E+01(**) 1.39E+02 (+) 2.46E+01(*) 8.67E+03(**) 1.45E+01(**) 6.64E+03(**) 2.42E+04(**) 1.41E+04(**) 1.38E+01 92 b Mean Er. 2.45E+01(**) 1.40E+02(**) 5.77E+02(**) 1.40E+02(**) 8.62E+00 3.91E+03 9.40E+03 8.5E+00 1.32E+04 4.60E+01(**) 1.58E+01 92 b Mean Er. 1.47E+01 (**) 2.47E+01 (**) 5.47E+02(**) 1.79E+02 3.87E+02 2.79E+02 3.16E+02 4.60E+01(**) 1.58E+01 4.58E+01 4.60E+01(**) 1.58E+01 4.58E+01 4.60E+01(**) 4.58E+01 4.60E+01(**) 2.20E+02(**) 2.20E+03(**) 4.38E+02(**) 5.79E+03(**) 5.6EE+02(**) 4.5EE+01 4.6EE+00 7.31E+02 4.5EE+01 4.7EE+02 4.7EE+02 4.7EE+02 4.7EE+02 4.7EE+02 4.7EE+02 4.7EE+02 4.7EE+02 4.7EE+02	917	Std.	8.63E+01	8.61E+01	1.58E+02	7.46E+01	1.54E+02	4.12E+02	2.65E+02	2.18E+02	1.36E+02	1.02E+02
Sid. Soly-Biol Organia 2.02E+00 1.56E+02 1.11E+01 8.67E+03 3.13E+03 8.14E+04 9.98E+04 4.15E+05 8.44E-01 910 Mean Er. 2.45E+01 (+) 1.41E+04(c) 1.39E+02 (+) 2.46E+01(+) 8.67E+03(+) 1.45E+04(+) 9.64E+03(+) 2.42E+04(+) 1.10E+00 920 Mean Er. 1.47E+02(-) 1.40E+02(-) 5.47E+02(+) 1.74E+02(+) 7.00E+02(-) 1.04E+03(-) 6.54E+02(-) 7.98E+02(-) 4.60E+03(-) 1.52E+02 3.87E+02 2.79E+02 2.31E+02 5.82E+01 5.20E+02 2.79E+02 2.31E+02 2.31E+02 5.82E+01 5.20E+02 2.79E+02 2.31E+02 2.31E+02 3.82E+01 5.20E+03 5.20E+02 2.81E+02(-) 4.05E+01 3.60E+02(-) 4.60E+001 3.71E+00 3.22E+00 2.50E+03(-) 5.97E+03(-) 6.56E+03(-) 4.78E+03(-) 3.67E+03(-) 6.56E+03(-) 4.05E+01 3.07E+03(-) 6.56E+03(-) 4.78E+03(-) 5.07E+03(-) 6.56E+03(-) 4.78E+03(-) 5.07E+03(-) 6.56E+03(-) 4.78E+03(-) 5.07E+03(-)<	<i>(</i> 11.0	Mean Err.	3.20E+01 (+)	$2.43\text{E+}01(\approx)$	3.57E+02 (+)	3.93E+01(+)	2.09E+05(+)	1.15E+06(+)	1.81E+05(+)	1.88E+05(+)	7.71E+05(+)	2.24E+01
910 Sid. 3.94e400 2.26e400 4.7Feb1 8.82e400 3.91e403 9.40e403 8.8Ee403 1.32e404 4.68e403 1.70e4021 1.04e4024 7.06e4024 1.04e4034 6.54e4024 7.98e4024 4.60e4014 1.58e402 1.58e402 1.04e4034 6.64e4024 7.98e4024 4.60e4014 1.58e402 1.58e402 2.97e402 2.31e402 5.20e4014 5.20e401	918	Std.	5.99E+00	2.02E+00	1.56E+02	1.11E+01	8.67E+04	5.13E+05	8.14E+04	9.98E+04	4.15E+05	8.44E-01
8id. 3.948400 2.261400 4.718401 8.821400 3.918403 9.408403 8.851603 1.328404 4.686403 1.716400 920 Mean Err. 1.478402 (-) 1.408402 (-) 5.748401 1.748402 (-) 7.908401 1.928402 3.878402 2.9786402 2.318402 5.828401 5.208402 2.208402 1.308402 5.208403	<i>(</i> 110	Mean Err.	2.45E+01 (+)	$1.41\text{E+}01(\approx)$	1.39E+02 (+)	2.46E+01(+)	8.67E+03(+)	1.45E+04(+)	9.64E+03(+)	2.42E+04(+)	1.41E+04(+)	1.38E+01
920 Sid. 7.48E+01 7.74E+01 2.33E+02 7.93E+01 1.92E+02 3.87E+02 2.79E+02 2.31E+02 5.0E+01 5.0E+01 5.0E+01 5.0E+01 5.20E+01 2.20E+02 2.28E+02 4.0E+02 3.46E+02(+) 2.20E+02(**) 2.28E+02 2.28E+02 3.46E+02(+) 3.46E+02(+) 2.20E+02(**) 2.28E+02 3.20E+00 3.70E+00 2.14E+01 1.52E+01 4.0EE+02(+) 3.66E+02(+) 4.63E+00 7.31E+00 4.73E+02 3.20E+00 2.14E+01 1.52E+01 4.0EE+02(+) 3.0E+02(+) 4.63E+00 4.73E+02 4.73E+	919	Std.	3.94E+00	2.26E+00	4.77E+01	8.82E+00	3.91E+03	9.40E+03	8.85E+03	1.32E+04	4.68E+03	1.70E+00
Sid. 7.44E+01 7.74E+01 2.33E+02 7.93E+01 1.92E+02 3.87E+02 2.79E+02 2.31E+02 5.20E+02 2.50E+02 2.50E+02 2.20E+02 2.20E+02 <t< td=""><td>ano</td><td>Mean Err.</td><td>1.47E+02 (-)</td><td>1.40E+02(-)</td><td>5.47E+02 (+)</td><td>1.74E+02(+)</td><td>7.70E+02(+)</td><td>1.04E+03(+)</td><td>6.54E+02(+)</td><td>7.98E+02(+)</td><td>4.60E+01(-)</td><td>1.58E+02</td></t<>	ano	Mean Err.	1.47E+02 (-)	1.40E+02(-)	5.47E+02 (+)	1.74E+02(+)	7.70E+02(+)	1.04E+03(+)	6.54E+02(+)	7.98E+02(+)	4.60E+01(-)	1.58E+02
921 Std. 4.06E+00 3.77E+00 3.23E+00 1.95E+00 2.14E+01 1.52E+01 4.05E+01 2.05E+01 4.63E+00 7.31E+00 g_{22} Mean Err. 3.65E+02 (-) 1.49E+03(+) 2.05E+03 (+) 2.50E+03(+) 5.97E+03(+) 6.56E+03(+) 4.78E+03(+) 5.07E+03(+) 1.06E+03 4.78E+03(+) 5.07E+03(+) 1.06E+03 2.04E+03 2.04E+02 6.87E+09 1.16E+03 4.98E+02 6.60E+03(+) 6.40E+03(+) 9.46E+02 6.87E+09 1.16E+03 9.89E+02 6.60E+03(+) 6.60E+03(+) 5.99E+02(+) 4.88E+02(-) 4.88E+02(-) 4.88E+02(-) 4.98E+02(-) 5.06E+03(+) 5.66E+03(+) 6.66E+03(+) 5.99E+02(+) 4.88E+02(-) 4.88E+02(-) 4.88E+02(-) 1.06E+03(+) 5.66E+03(+) 6.66E+01(+) 5.99E+02(+) 4.88E+02(-) 4.88E+02(-) 1.06E+03(+) 6.56E+01(+) 7.31E+02(+) 5.22E+02(+) 4.99E+02(-) 5.15E+02(-) 5.15E+02(-) 5.06E+01(-) 5.06E+01(-) 7.79E+01 4.79E+01 7.25E+02(+) 5.25E+02(-) 5.14E+02(-) 5.45E+03(-) 5.	320	Std.	7.44E+01	7.74E+01	2.33E+02	7.93E+01	1.92E+02	3.87E+02	2.79E+02	2.31E+02	5.82E+01	5.20E+01
Std. 4.06E+00 3.77E+00 3.23E+00 1.95E+00 2.14E+01 1.52E+01 4.05E+01 2.05E+00 4.63E+00 7.31E+00 g_{22} Mean Err. 3.65E+02 (-) 1.49E+03(+) 2.05E+03 (+) 2.50E+03(+) 5.97E+03(+) 6.56E+03(+) 4.78E+03(+) 5.07E+03(+) 1.00E+02(-) 4.72E+02 g_{23} Std. 9.24E+02 1.75E+03 1.76E+03 1.61E+03 9.89E+02(-) 6.66E+02(+) 6.46E+02(+) 5.99E+02(+) 4.28E+02(-) 4.48E+02(-) g_{24} Mean Err. 5.06E+02(-) 6.34E+00 1.39E+01 5.06E+02(-) 1.06E+03(+) 6.66E+02(+) 6.46E+02(+) 5.99E+02(+) 4.28E+02(-) 4.88E+02(-) 5.06E+00 7.09E+01 3.40E+01 5.66E+01 2.73E+01 1.25E+01 7.45E+00 7.45E+00 g_{24} Mean Err. 5.06E+02(-) 5.07E+02(-) 5.06E+02(-) 1.08E+03(-) 6.75E+02(-) 7.31E+02(-) 8.22E+02(-) 4.99E+02(-) 5.15E+02(-) 5.06E+02(-) 3.05E+01 4.75E+01 3.05E+01 3.05E+01 3.05	<i>a</i> 21	Mean Err.	2.11E+02 (-)	$2.19\text{E}+02(\approx)$	2.06E+02 (-)	2.13E+02(≈)	4.33E+02(+)	2.81E+02(+)	4.02E+02(+)	3.46E+02(+)	2.20E+02(≈)	2.28E+02
9222 Std. 9.24E+02 1.75E+03 1.76E+03 1.61E+03 9.89E+02 6.40E+03 2.04E+03 9.46E+02 6.87E-09 1.16E+03 g_{23} Mean Err. 4.34E+02 (-) 4.30E+02 (-) 4.30E+02(-) 1.06E+03(-) 5.66E+02(+) 6.46E+02(+) 5.99E+02(+) 4.28E+02(-) 4.48E+02 (-) 5.06E+02 (-) 1.06E+03(+) 5.66E+02(+) 5.66E+01 (-) 5.99E+02(+) 4.28E+02(-) 4.48E+02 (-) 4.48E+02 (-) 5.06E+02 (-) 1.08E+03(+) 6.75E+02(+) 7.31E+02(+) 8.2EH02(+) 4.99E+02(-) 5.15E+02 (-) 5.06E+02 (-) 1.08E+03(+) 6.75E+02(+) 7.31E+02(+) 8.2EH02(+) 4.99E+02(-) 5.15E+02 (-) 5.06E+02 (-) 1.08E+03(+) 4.75E+01(-) 4.75E+01(-) 5.0EH01(-) 5.15E+02 (-) 5.15E+02 (-) 5.14E+02 (-) 5.41E+02 (-) 5.41E+02 (-) 5.14E+02 (-)	321	Std.	4.06E+00	3.77E+00	3.23E+00	1.95E+00	2.14E+01	1.52E+01	4.05E+01	2.05E+01	4.63E+00	7.31E+00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	922	Mean Err.	3.65E+02 (-)	1.49E+03(+)	2.05E+03 (+)	2.50E+03(+)	5.97E+03(+)	6.56E+03(+)	4.78E+03(+)	5.07E+03(+)	1.00E+02(-)	4.72E+02
923 Std. 8.16E+00 6.24E+00 1.39E+01 5.08E+00 7.09E+01 3.40E+01 5.66E+01 2.73E+01 1.25E+01 7.45E+02 924 Mean Err. 5.06E+02 (≈) 5.07E+02(≈) 4.91E+02 (~) 5.06E+02(≈) 1.08E+03(+) 6.75E+02(+) 7.31E+02(+) 8.22E+02(+) 4.99E+02(~) 5.15E+02 Std. 3.85E+00 4.13E+00 5.73E+00 2.33E+00 7.07E+01 4.75E+01 7.36E+01 5.02E+01 8.95E+00 5.95E+00 925 Mean Err. 4.89E+02 (≈) 4.81E+02(≈) 4.85E+02(≈) 5.41E+02(+) 6.16E+02(+) 5.21E+02(+) 5.12E+02(+) 4.80E+02(*) 4.80E+02(*) 926 Mean Err. 4.89E+02 (≈) 4.81E+02(≈) 6.55E+02 (~) 1.14E+03(~) 5.45E+03(+) 2.93E+03(+) 3.42E+03(+) 2.81E+03(+) 9.99E+02(~) 1.33E+03 926 Mean Err. 7.06E+02 (~) 1.13E+03(~) 6.55E+02 (~) 1.14E+03(~) 2.59E+03 6.02E+02(*) 7.82E+02(*) 7.82E+02(*) 7.82E+02(*) 9.99E+02(~) 1.33E+03 <td></td> <td>Std.</td> <td>9.24E+02</td> <td>1.75E+03</td> <td>1.76E+03</td> <td>1.61E+03</td> <td>9.89E+02</td> <td>6.40E+03</td> <td>2.04E+03</td> <td>9.46E+02</td> <td>6.87E-09</td> <td>1.16E+03</td>		Std.	9.24E+02	1.75E+03	1.76E+03	1.61E+03	9.89E+02	6.40E+03	2.04E+03	9.46E+02	6.87E-09	1.16E+03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g ₂₃	Mean Err.			4.23E+02 (-)				6.46E+02(+)			
$ \begin{array}{c} 924 \\ 818 $		Std.	8.16E+00	6.24E+00	1.39E+01	5.08E+00	7.09E+01	3.40E+01	5.66E+01	2.73E+01	1.25E+01	7.45E+00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g_{24}											
$ \begin{array}{c} 925 \\ \text{Std.} \\ \text{Q} \\ 247 \text{E} + 01 \\ \text{Q} \\ 286 \text{E} + 02 $	- '-											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g_{25}											
$ \begin{array}{c} 926 \\ 816 $												
Sid. 4.06E402 5.62E401 3.01E402 4.50E401 2.59E403 6.02E402 7.82E402 1.88E402 2.05E402 9.39E401 927	g_{26}											
$ \begin{array}{c} 927 \\ 818. \\ 928 \\ \hline \\ 938 \\ \hline \\ 930 \\ \hline \\ \hline \\ \hline \\ \hline \\ 930 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 930 \\ \hline \\ $												
$ \begin{array}{c} \text{Sid.} & 7.75 \pm 0.0 \\ \text{Sid.} & 7.75 \pm 0.0 \\ \end{array} \begin{array}{c} 1.11 \pm 0.0 \\ \text{S.86E+01} \\ \end{array} \begin{array}{c} 1.92 \pm 0.0 \\ \end{array} \begin{array}{c} 1.92 \pm 0.0 \\ \end{array} \begin{array}{c} 1.70 \pm 0.0 \\ \end{array} \begin{array}{c} 1.70 \pm 0.0 \\ \end{array} \begin{array}{c} 1.76 \pm 0.0 \\ \end{array} \begin{array}{c} 1.76 \pm 0.0 \\ \end{array} \begin{array}{c} 7.26 \pm 0.0 \\ \end{array} \begin{array}{c} 3.85 \pm 0.0 \\ \end{array} \begin{array}{c} 3.23 \pm 0.0 \\ \end{array} \begin{array}{c} 3.23 \pm 0.0 \\ \end{array} \begin{array}{c} 7.83 \pm 0.0 \\ \end{array} \begin{array}{c} 7.93 \pm 0.0 \\ \end{array} \begin{array}{c} 7.83 \pm 0.0 $	g_{27}											
$ \frac{928}{920} \begin{tabular}{lllllllllllllllllllllllllllllllllll$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	g_{28}											
929 Std. 1.97E+01 1.32E+01 1.99E+02 1.04E+01 2.09E+02 2.48E+02 3.06E+02 2.05E+02 3.25E+01 9.83E+00 930 Std. Mean Err. 6.18E+05 (-) 6.01E+05(-) 6.46E+06 (+) 6.54E+05(+) 7.81E+05(+) 1.16E+06(+) 1.54E+06(+) 8.21E+05(+) 1.02E+06(+) 6.26E+05 Std. 3.62E+04 2.99E+04 5.07E+06 7.33E+04 4.82E+04 3.15E+05 3.23E+05 1.57E+05 1.07E+05 4.27E+04												
Sid. 1.97E+01 1.32E+01 1.99E+02 1.04E+01 2.09E+02 2.48E+02 3.06E+02 2.05E+02 3.25E+01 9.83E+00 930 Mean Err. Sid. 3.62E+04 2.99E+04 5.07E+06 7.33E+04 4.82E+04 3.15E+05 3.23E+05 1.57E+05 1.07E+05 4.27E+04	g_{29}											
930 Std. 3.62E+04 2.99E+04 5.07E+06 7.33E+04 4.82E+04 3.15E+05 3.23E+05 1.57E+05 1.07E+05 4.27E+04												
Std. 3.62E+04 2.99E+04 5.07E+06 7.33E+04 4.82E+04 3.15E+05 3.23E+05 1.57E+05 1.07E+05 4.27E+04		Mean Err.										
+/≈/- 4/10/15	930				5 OFF OC	7.220.04	4.020.04	2.150.05	2 227 . 05	1.57E+05	1.070.05	4.27E+04
	930											4.27ET04

 $\label{table S-XIII}$ Comparison Results for PSO-HV, DE-HL and Top-Rank Algorithms on CEC 2013 on 50-D.

Func		NBIPOP-ACMA-ES	DRMA-LSCh-CMA	SHADE	MVMO-SH	TLBSaDE	SPSOABC	TPC-GA	PSO-HV	DE-HL
	Mean Err.	0.00E+00 (≈)	0.00E+00 (≈)	0.00E+00 (≈)	0.00E+00 (≈)	0.00E+00 (≈)	0.00E+00 (≈)	0.00E+00 (≈)	6.33E-13 (≈)	0.00E+00
f_1	Std.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.53E-13	0.00E+00
f_2	Mean Err.	0.00E+00 (-)	0.00E+00 (-)	2.66E+04 (+)	9.13E-04 (-)	1.68E+05 (+)	4.95E+05 (+)	4.76E+05 (+)	4.83E+06 (+)	8.81E-03
	Std.	0.00E+00	0.00E+00	1.13E+04	6.81E-04	2.85E+04	1.48E+05	2.14E+05	1.92E+06	1.38E-02
	Mean Err.	1.82E+01 (-)	9.95E+03 (≈)	8.80E+05 (+)	3.64E-04 (-)	7.08E+05 (+)	1.21E+08 (+)	1.06E+08 (+)	1.19E+07 (+)	8.16E+01
f_3	Std.	1.21E+02	3.97E+04	1.96E+06	1.62E-03	3.59E+05	1.18E+08	1.49E+08	2.61E+07	1.28E+02
	Mean Err.	0.00E+00 (-)	1.21E+02 (≈)	1.61E-03 (+)	2.14E-06 (≈)	6.58E+02 (+)	4.88E+03 (+)	3.33E+00 (+)	4.02E+04 (+)	9.77E-07
f_4	Std.	0.00E+00	5.34E+02	1.41E-03	1.17E-06	1.76E+02	1.20E+03	4.88E+00	8.72E+03	9.83E-07
	Mean Err.	0.00E+00 (≈)	4.95E-04 (+)	0.00E+00 (≈)	1.98E-08 (+)	0.00E+00 (≈)	0.00E+00 (≈)	0.00E+00 (≈)	3.21E-11 (≈)	0.00E+00
f_5	Std.	0.00E+00 (~)	2.31E-04	0.00E+00 (~)	1.09E-08 (+)	0.00E+00 (~)	0.00E+00 (~)	0.00E+00 (~)	5.93E-11	0.00E+00
	Mean Err.	0.00E+00 (-)	4.34E+01 (+)	4.28E+01 (-)	3.76E+01 (≈)	4.07E+01 (-)	4.05E+01 (-)	4.72E+01 (≈)	4.72E+01 (+)	4.34E+01
f ₆	Std.	0.00E+00 (-)	3.51E-09	5.52E+00	1.49E+01	6.96E+00	2.28E+01	4.72E+01 (∼) 1.40E+01	7.32E+00	1.96E-02
	Mean Err.	4.97E+00 (+)	1.54E+01 (+)	2.33E+01 (+)	4.32E+01 (+)	4.96E+01 (+)	7.34E+01 (+)	4.17E+01 (+)	9.50E-01 (+)	2.18E-01
	Std.	5.72E+00	1.37E+01	9.32E+00	8.24E+00	5.31E+00	1.17E+01	1.83E+01	5.11E-01	1.17E-01
	Mean Err.	2.11E+01 (≈)	2.11E+01 (≈)	2.09E+01 (-)	2.10E+01 (≈)	2.11E+01 (-)		2.12E+01 (≈)	2.11E+01 (≈)	2.11E+01
f ₈	Std.	4.52E-02	3.45E-02	1.68E-01	2.64E-01	2.71E+01 (-) 2.71E-02	2.11E+01 (+) 3.42E-02	3.84E-02	4.61E-02	7.57E-02
	Mean Err.	7.22E+00 (-) 2.29E+00	1.76E+01 (-)	5.54E+01 (+)	3.28E+01 (-)	6.09E+01 (+)	5.84E+01 (+)	7.30E+01 (+)	1.40E+01 (-)	5.02E+01
f ₁₀	Std.		2.81E+00	1.98E+00	4.57E+00	1.66E+00	3.92E+00	3.82E+00	2.88E+00	2.28E+00
	Mean Err.	0.00E+00 (≈)	1.89E-03 (≈)	7.37E-02 (+)	2.90E-04 (≈)	1.76E-02 (+)	1.55E-01 (+)	1.05E-01 (+)	2.75E-01 (+)	0.00E+00
	Std.	0.00E+00	3.26E-03	3.67E-02	1.45E-03	6.85E-03	8.10E-02	7.09E-02	2.27E-01	0.00E+00
f_{11} f_{12} f_{13}	Mean Err.	5.52E+00 (+)	6.13E+00 (+)	0.00E+00 (-)	3.61E+01 (+)	0.00E+00 (-) 0.00E+00	6.65E-02 (+)	5.57E+01 (+)	7.67E+00 (+)	5.16E-07
	Std.	2.97E+00	2.29E+00	0.00E+00	1.00E+01		2.39E-01	2.23E+01	4.25E+00	7.56E-07
	Mean Err.	5.37E+00 (-)	3.33E+01 (≈)	5.86E+01 (+)	8.96E+01 (+)	1.20E+02 (+)	1.73E+02 (+)	9.62E+01 (+)	1.70E+01 (-)	2.63E+01
	Std.	2.54E+00	7.06E+00	1.11E+01	2.17E+01	8.18E+00	3.23E+01	2.15E+01	4.89E+00	2.41E+00
	Mean Err.	7.60E+00 (-)	8.29E+01 (+)	1.45E+02 (+)	1.81E+02 (+)	2.19E+02 (+)	2.87E+02 (≈)	1.92E+02 (+)	4.09E+01 (≈)	4.91E+01
	Std.	5.47E+00	1.91E+01	1.95E+01	3.36E+01	1.74E+01	3.94E+01	5.04E+01	2.13E+01	1.42E+01
f_{14} f_{15}	Mean Err.	1.38E+03 (+)	5.08E+02 (+)	3.45E-02 (-)	2.40E+03 (+)	8.25E+02 (+)	2.64E+01 (+)	2.55E+03 (+)	3.14E+02 (+)	1.43E+01
	Std.	5.67E+02	2.19E+02	1.93E-02	7.20E+02	1.07E+02	8.03E+00	1.14E+03	1.61E+02	4.66E+00
	Mean Err.	1.55E+03 (-)	3.32E+03 (-)	6.82E+03 (+)	6.16E+03 (≈)	7.69E+03 (+)	7.42E+03 (+)	9.40E+03 (+)	2.19E+03 (-)	6.16E+03
f ₁₆	Std.	5.48E+02	7.58E+02	4.41E+02	5.62E+02	2.86E+02	5.46E+02	2.73E+03	7.21E+02	6.24E+02
	Mean Err.	8.78E-01 (≈)	1.06E-02 (—)	1.28E+00 (≈)	1.14E+00 (≈)	1.80E+00 (+)	1.37E+00 (+)	3.38E+00 (+)	4.52E-01 (—)	1.32E+00
	Std.	1.44E+00	3.32E-03	2.07E-01	2.05E-01	2.00E-01	1.88E-01	3.89E-01	1.67E-01	2.01E-01
f ₁₇	Mean Err.	5.74E+01 (+)	6.63E+01 (+)	5.08E+01 (-)	1.04E+02 (+)	7.95E+01 (+)	5.20E+01 (+)	1.15E+02 (+)	5.88E+01 (+)	5.09E+01
	Std.	2.73E+00	4.76E+00	4.57E-14	1.20E+01	1.81E+00	2.40E-01	2.00E+01	1.87E+00	5.55E-02
f ₁₈	Mean Err.	1.34E+02 (≈)	7.83E+01 (—)	1.37E+02 (≈)	1.05E+02 (-)	1.81E+02 (+)	2.16E+02 (+)	1.68E+02 (≈)	8.97E+01 (-)	1.32E+02
	Std.	1.00E+02	4.64E+00	1.29E+01	1.57E+01	7.64E+00	2.63E+01	1.02E+02	1.01E+01	8.36E+00
	Mean Err.	4.46E+00 (+)	3.39E+00 (≈)	2.64E+00 (-)	3.93E+00 (+)	7.57E+00 (+)	5.19E+00 (+)	8.92E+00 (+)	5.15E+00 (+)	3.02E+00
	Std.	5.93E-01	3.80E-01	2.83E-01	7.34E-01	4.78E-01	1.41E+00	3.17E+00	6.47E-01	1.25E-01
f ₂₀	Mean Err.	2.25E+01 (+)	1.87E+01 (-)	1.93E+01 (-)	1.96E+01 (≈)	1.93E+01 (-)	1.98E+01 (-)	2.34E+01 (+)	2.28E+01 (+)	2.06E+01
	Std.	1.18E+00	8.18E-01	7.70E-01	6.21E-01	3.55E-01	6.78E-01	7.93E-01	8.04E-01	1.65E+00
f_{21}	Mean Err.	1.98E+02 (≈)	6.95E+02 (+)	8.45E+02 (+)	2.49E+02 (≈)	3.12E+02 (≈)	8.96E+02 (+)	7.93E+02 (+)	8.72E+02 (+)	2.58E+02
	Std.	1.40E+01	4.01E+02	3.63E+02	1.91E+02	2.45E+02	2.90E+02	3.63E+02	3.02E+02	1.92E+02
f_{22} f_{23}	Mean Err.	1.45E+03 (+)	2.53E+02 (+)	1.33E+01 (≈)	2.76E+03 (+)	2.59E+03 (+)	5.11E+01 (+)	3.51E+03 (+)	2.11E+02 (+)	2.67E+01
	Std.	6.01E+02	1.44E+02	7.12E+00	8.38E+02	3.82E+02	1.40E+01	1.90E+03	8.99E+01	3.91E+00
	Mean Err.	1.71E+03 (-)	3.30E+03 (-)	7.63E+03 (+)	6.78E+03 (≈)	9.68E+03 (+)	9.04E+03 (+)	9.93E+03 (+)	2.18E+03 (-)	6.10E+03
220	Std.	8.09E+02	7.24E+02	6.58E+02	5.53E+02	3.99E+02	7.81E+02	3.15E+03	7.06E+02	4.68E+02
f_{24} f_{25}	Mean Err.	2.40E+02 (+)	2.21E+02 (+)	2.34E+02 (+)	2.43E+02 (+)	3.98E+02 (+)	3.08E+02 (+)	3.77E+02 (+)	2.06E+02 (+)	2.01E+02
	Std.	2.04E+01	1.41E+01	1.01E+01	7.77E+00	2.27E+00	2.13E+01	1.98E+01	9.91E+00	2.61E-01
	Mean Err.	2.48E+02 (-)	2.94E+02 (≈)	3.40E+02 (+)	3.24E+02 (+)	3.79E+02 (+)	3.65E+02 (+)	3.86E+02 (+)	2.96E+02 (≈)	2.84E+02
f ₂₆	Std.	5.06E+00	8.71E+00	3.09E+01	1.18E+01	2.88E+00	1.86E+01	4.06E+00	9.03E+00	1.66E+01
	Mean Err.	1.96E+02 (-)	2.91E+02 (+)	2.58E+02 (+)	2.03E+02 (+)	2.01E+02 (+)	3.97E+02 (+)	4.22E+02 (+)	2.78E+02 (+)	2.00E+02
	Std.	1.43E+01	6.28E+01	8.08E+01	2.49E+01	1.72E+00	9.87E+01	3.51E+01	4.82E+01	8.84E-06
f ₂₇	Mean Err.	7.28E+02 (+)	6.39E+02 (+)	9.36E+02 (+)	1.03E+03 (+)	2.17E+03 (+)	1.63E+03 (+)	2.03E+03 (+)	4.61E+02 (≈)	3.47E+02
	Std.	1.44E+02	1.56E+02	3.07E+02	1.33E+02	3.22E+01	1.99E+02	2.29E+02	1.83E+02	2.26E+01
f_{28}	Mean Err.	4.00E+02 (≈)	4.59E+02 (≈)	4.58E+02 (≈)	4.59E+02 (≈)	4.00E+02 (≈)	8.52E+02 (+)	4.59E+02 (≈)	4.00E+02 (+)	4.00E+02
3 20	Std.	0.00E+00	4.20E+02	4.13E+02	4.21E+02	0.00E+00	1.15E+03	4.24E+02	3.86E-09	7.19E-14
	+/≈/-	9/8/11	12/9/7	15/6/7	13/11/4	20/4/4	23/3/2	22/6/0	16/6/6	

Fig. S-1. The cumulative distribution curves of comparison algorithms on g_1 , g_3 - g_{16} .

Fig. S-2. The cumulative distribution curves of comparison algorithms on g_{17} - g_{30} .