PEEPHOLE OPTIMIZATIONS:

1. NOT PROPABATZON:

$$\times_{q}$$
; $H_{q} : H_{q}$; Z_{q}
 \times_{q} ; R_{2} $(K)_{q} : R_{2}$ $(1-K)_{q}$; \times_{q}
 \times_{q} ; $C_{NOT}_{q_{1}q_{2}} : C_{NOT}_{q_{1}q_{2}}$; $\times_{q_{1}}$; $\times_{q_{2}}$

Move the X, so that $X_q X_q = I_q$ can be applied wherever possible.

2. HADAMARD REDUCTION:

$$P = R_{2}(y_{2})$$

$$P^{+} = R_{3}(3y_{2})$$

$$HH = T$$

$$HPH \rightarrow P^+HP^+$$
 $HP^+H \rightarrow PHP$

3. COMMUTATION + CANCELLATION RULES

CNOT CNOT = I

propagate (
$$R_2(k) R_2(k') = R_2(k+k').$$

instruction list,

a gate to propagate, RULES) {

if (a cancellation rule applies)

apply the rule and return the modified

list

if (a communication rule applies)

commute the gate and propagate

recursively

else return the original list.

4

4. Some os 3 with 2-QUBIT GOTES.

5. ROTATION MERBIND:

Assume all CNOT, Rz:

- 1. (Forget all R₂): Work out the symbolic value "everywhere".
- 2. For places in circuit with same symbolic value:

 Merge Rz.

This works in the sections between 4.

Quantum Circuit:

PHASE ORDERING:

Sequence of optimization:

Single qubit

Cancellation

There 2 are the

These 2 are the most helpful.

	ORIGINAL	Gesket	t(ket>	Nam	THII (ABOVE)
SPEED (RANK)				I	2
LOC	900	805	7 <i>75</i>	606	682
Mvlt	८ ८३	804	806	7(2	705
qcla	814	793	780	624	723
Reduction		(D ·) %	(0.6%.	24. <i>8%</i>	17.8%
Correctivels					l (THEOREM PROVER)