

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS PO Box 1450 Alexandria, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
10/512,056	10/21/2004	Norio Ito	0033-0959PUS1	8421	
2292 7590 04/30/2009 BIRCH STEWART KOLASCH & BIRCH PO BOX 747			EXAM	EXAMINER	
			BROOME, SAID A		
FALLS CHURCH, VA 22040-0747			ART UNIT	PAPER NUMBER	
			2628		
			NOTIFICATION DATE	DELIVERY MODE	
			04/30/2009	ELECTRONIC	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail $\,$ address(es):

mailroom@bskb.com

Application No. Applicant(s) 10/512.056 ITO ET AL. Office Action Summary Examiner Art Unit SAID BROOME 2628 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 24 March 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.3.5.8.10.11.14 and 22-28 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1,3,5,8,10,11,14 and 22-28 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 1) Notice of References Cited (PTO-892) 4) Interview Summary (PTO-413) Paper No(s)/Mail Date.

Paper No(s)/Mail Date 3/4/09

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) Information Disclosure Statement(s) (PTO/SB/08)

5) Notice of Informal Patent Application

6) Other:

Application/Control Number: 10/512,056 Page 2

Art Unit: 2628

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 3/24/09 has been entered.

Response to Amendment

- 1. This office action is in response to an amendment filed on 3/24/2009.
- 2. Claims 1, 3, 5, 8, 10, 11, 14 have been amended by the applicant.
- 3. Claims 2, 4, 6, 7, 9, 12, 13 and 15-21 have been cancelled.
- 4. Claims 22-28 have been added.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- Claims 1, 3, 5 and 8 are rejected under 35 U.S.C. 102(b) as being anticipated by Osaka et al. (hereinafter "Osaka". US Patent 6.023.277).

Art Unit: 2628

Regarding claim 1, Osaka describes a multimedia information generation apparatus for generating multimedia information including at least one two-dimensional image data or character information and at least two three-dimensional image data based on a plurality of viewpoints enabling stereoscopic vision, said multimedia information generation apparatus (col. 14 lines 16-24: "FIG. 8 is ...showing the configuration of a computer system...In this embodiment, a two-dimensional image and a three-dimensional (stereoscopic) image are switched between in...a display screen...", col. 16 lines 11-15: "...image file 50 according to this embodiment includes...three-dimensional image data 52 composed of combined stripes, and two-dimensional image data 53..." and Fig. 44: 1036a. 1036b), comprising:

a control information generation unit capable of generating, based on an input parameter, three-dimensional image display control information necessary for converting said three-dimensional image data for enabling stereoscopic vision in a desired from appropriate for a display unit (col. 1 lines 9-12: "...a display control apparatus and method for controlling a stereoscopic display device which allows a user to observe a stereoscopic image..." and col. 30 lines 25-28: "...a state in which the dragging operation...At this time the two-dimensional image painted in the window 33 is returned to the three-dimensional display."); and

a multimedia information generation unit generating said multimedia information constituted of said at least one two-dimensional image data or character information and said at least two three-dimensional image data, said control information, and header information necessary for reproducing data (col. 14 lines 47-53: "The display driver 6 comprises elements 7, 8, 9 and 10...An image painting unit 7 controls the painting of data actually painted on the stereoscopic display, namely a two-dimensional image handled heretofore and a three-

Art Unit: 2628

dimensional image..." and lines 57-63: "A screen controller 9 generates paint signals and distributes these signals to the image paint unit 7...A host computer 11 is capable of handling two-dimensional images and three-dimensional images.", where the display driver 6 comprises a paint unit 7 that generates the two and three dimensional images and also a screen controller that controls the display of the three dimensional images, col. 17 lines 41-47: "...the screen controller 9 notifies the image painting unit 7 of the stereoscopic image data to be displayed, its display position and size..."), and

said control information generation unit generating identification data for identifying said at least two three-dimensional image data and including said identification data in said three-dimensional image display control information, and only one said identification data being provided for said at least two three-dimensional image data (col. 16 lines 11-21: "A three-dimensional image file 50 according to this embodiment includes a...image format...described in the file header. The application analyzes the header, reads in the image data and causes the computer to paint the image." and col. 17 lines 24-26: "...it is determined, based upon the information in the file header 51, whether this window has three-dimensional image data.", where the information used to indicate the dimensions of the three-dimensional image data by using an identifier designating that the image is three-dimensional, therefore other formats, such as two-dimensional would be designated as welf).

Regarding claim 3, Osaka describes wherein said identification data is provided for the whole of said at least two three-dimensional image (col. 17 lines 41-47: "...the screen controller 9 controls the image painting unit 7 and the checkered mask-pattern painting unit 8 and causes a three-dimensional display to be presented at the position of the window of the stereoscopic

Art Unit: 2628

display 12." and col. 17 lines 24-26: "...it is determined, based upon the information in the file header 51, whether this window has three-dimensional image data.").

Regarding claim 5, Osaka describes an identifier for identifying each of at least said two-dimensional image data and said three-dimensional image data is set in advance (col. 16 lines 11-21: "A three-dimensional image file 50 according to this embodiment includes a file header 51 ...image format...described in the file header. The application analyzes the header, reads in the image data and causes the computer to paint the image.", where the file header identifies that images prior to generation of the stereoscopic images, col. 17 lines 24-26: "...it is determined, based upon the information in the file header 51, whether this window has three-dimensional image data."), and said identification data includes the identifier of said three-dimensional image data (col. 38 lines 5-11: "...it is determined, based upon the information in the file header 51, whether this window has three-dimensional image data.", where the information used to control the display of the three-dimensional image is based on the identifier designating that the image is three-dimensional).

Regarding claim 8, Osaka teaches a predetermined value that indicates that all image data included in said multimedia information are three-dimensional image data are three-dimensional images (col. 16 lines 11-15: "...image file 50 according to this embodiment includes...three-dimensional image data 52 composed of combined stripes..." and col. 38 lines 5-11: "...it is determined, based upon the information in the file header 51, whether this window has three-dimensional image data.", where the file header contains a pre-designated file extension that indicates whether the image is three-dimensional).

Art Unit: 2628

Claims 10 and 11 are rejected under 35 U.S.C. 103(a) as being unpatentable over Osaka in view of Akamatsu et al. (hereinafter "Akamatsu", US Patent 6.313.866).

Regarding claim 10, Osaka teaches a multimedia information reproduction apparatus (Fig. 12) for reproducing multimedia information generated by a multimedia information generation apparatus, said multimedia information generation apparatus generating said multimedia information constituted of at least one two-dimensional image data or character information and at least two three-dimensional image data, three-dimensional image display control information (col. 14 lines 16-24: "...the configuration of a computer system...In this embodiment, a two-dimensional image and a three-dimensional (stereoscopic) image are switched between in...a display screen..." and is shown in Fig. 12), and header information necessary for reproducing data (col. 16 lines 11-15: "...image file 50 according to this embodiment includes ...three-dimensional image data 52 composed of combined stripes, and two-dimensional image data 53..."), said multimedia information reproduction apparatus comprising:

a generation unit that generates three-dimensional image data from a two-dimensional image data (col. 21 lines 51-53: "The stereoscopic-image-data processing unit 306 combines a pair of left and right image data..." and lines 58-61: "The display control unit 303 receives stereoscopic-image data formed by the stereoscopic-image-data processing unit 306...and displays the received data..."), and

three-dimensional image data generated by said generation unit and three-dimensional image data included in said multimedia information (col. 16 lines 11-15: "...image file 50 according to this embodiment includes...three-dimensional image data 52 composed of

Art Unit: 2628

combined stripes, and two-dimensional image data 53..."). However, Osaka fails to teach a first synthesis unit that synthesizing said three-dimensional image data;

Akamatsu teaches a first synthesis unit that synthesizing said three-dimensional image data (col. 5 lines 4-11: "...a first image signal is input to an input terminal 11, while a second image signal is input to a second input terminal 12... The output terminal of the parallax control circuit 103 is connected to the three-dimensional image synthesizer 103.", where the synthesis unit synthesizes two input three-dimensional images, therefore one of ordinary skill in the art at the time of invention would have been capable of inputting the three-dimensional images generated by Osaka and synthesize the images), therefore it would have been obvious to one of ordinary skill in the art at the time of invention to modify the three-dimensional images of Osaka with the three-dimensional image synthesis of Akamatsu because this modification would provide an improved stereoscopic environment that enables display of both three-dimensional and two-dimensional image simultaneously, wherein accurate images are presented with accurate visual continuity through the display to lessen any noticeable discontinuities that would have been potentially displayed.

Regarding claim 11, Osaka teaches a second synthesis unit that synthesizes a plurality of two-dimensional image data wherein said generation unit generates the three-dimensional image data from the two-dimensional image data synthesized by said second synthesis unit (col. 41 lines 40-44: "...painting a synthesized image, obtained by alternately arraying at least two parallax images in the form of stripes, in the three-dimensional display zone...", in which a plurality of 2D images are subsequently synthesized to produce 3D image data).

Art Unit: 2628

Claims 14 and 22-28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Osaka in view of lizuka et al. (hereinafter "lizuka", US Patent 6,657,655).

Regarding claim 14, Osaka teaches a multimedia information reproduction apparatus (Fig. 12) for reproducing multimedia information generated by the multimedia information generation apparatus (col. 16 lines 11-15: "...image file 50 according to this embodiment includes...three-dimensional image data 52 composed of combined stripes, and two-dimensional image data 53...") as recited in claim 1, said multimedia information reproduction apparatus comprising, comprising:

a 2D/3D conversion unit converting page image (Fig. 44: element 1033a) into a threedimensional image (Fig. 45: element 1033a); and

three-dimensional image data included in said multimedia information (col. 16 lines 11-15: "...image file 50 according to this embodiment includes...three-dimensional image data 52 composed of combined stripes, and two-dimensional image data 53...");

However, Osaka fails to teach a page data decoding unit decoding graphic and character information included in said multimedia information to obtain a page image data. Iizuka teaches a page data decoding unit decoding graphic and character information included in said multimedia information to obtain a page image data (col. 21 lines 40-43: "The image-file processing unit 304 reads various types of image files, analyzes the contents of the read file, decodes compressed data if necessary, and converts the data into image data having a predetermined standard format.", where the image data representing the two-dimensional left and right images is decoded, therefore it would have been obvious to one of ordinary skill in the art at the time of invention to decode any image data including 2D image page data presented in

Art Unit: 2628

a 2D window, as shown by Osaka, Figs. 34 and 45), therefore it would have been obvious to one of ordinary skill in the art at the time of invention to modify the three-dimensional images of Osaka with the page data of lizuka because this modification would provide realistic two-dimensional window images represented in three dimensions stereoscopically where precise images are presented enabling accurate depth perception of any two-dimensional window or page data in a three-dimensional environment.

Regarding claim 22, Osaka teaches a second synthesis unit that synthesizes a plurality of two-dimensional image data, wherein said 2D/3D conversion unit converts the two-dimensional image data synthesized by said second synthesis unit into three-dimensional image data (col. 41 lines 40-44: "...painting a synthesized image, obtained by alternately arraying at least two parallax images in the form of stripes, in the three-dimensional display zone...", in which a plurality of 2D images are subsequently synthesized to produce 3D image data).

Regarding claim 23, Osaka teaches a first font image, or three-dimensional image, and a second font image, or two-dimensionally displayed image, corresponding to character information are provided (col. 16 lines 11-15: "...image file 50...includes...three-dimensional image data...and two-dimensional image data..."), and said first font image is used when the character information is three-dimensionally displayed, and said second font image is used when the character information is two-dimensionally displayed. (col. 16 lines 11-15: "...image file 50...includes...three-dimensional image data... and two-dimensional image data...").

Regarding claim 24, Osaka fails to teach said page data decoding unit uses said first or second font image to obtain the page image data. Iizuka teaches said page data decoding unit uses said first or second font image to obtain the page image data (col. 21 lines 40-43; "The

Art Unit: 2628

image-file processing unit 304 reads various types of image files, analyzes the contents of the read file, decodes compressed data if necessary, and converts the data into image data having a predetermined standard format.", where the image data representing the two-dimensional left and right images is decoded, therefore lizuka provides the capability to decode any image data including 2D image page data presented in a 2D window, as shown by Osaka, Figs. 34 and 45), therefore it would have been obvious to one of ordinary skill in the art at the time of invention to modify the three-dimensional images of Osaka with the page data of lizuka because this modification would provide realistic two-dimensional window images represented in three dimensions stereoscopically where precise images are presented enabling accurate depth perception of any two-dimensional window or page data in a three-dimensional environment.

Regarding claim 25, Osaka illustrates said 2D/3D conversion unit (Fig. 44: element 1033a) uses said first or second font image to obtain the three-dimensional image data (Fig. 45: element 1033a, therefore the system disclosed by Osaka, Fig. 28, contains one or more computer processing components that perform the equivalent functionality of a synthesis unit that synthesizes the 2D or 3D character data to obtain the three-dimensional, or stereoscopic image data, for display).

Regarding claim 26, Osaka teaches a first font image, or three-dimensional image, storage and a second font image, or two-dimensionally displayed image, (col. 16 lines 11-15: "...image file 50...includes...three-dimensional image data...and two-dimensional image data..."); and a switch selecting said first or said second font image (col. 12 lines 6-8: "...it is possible to switch between a two-dimensional display and a three-dimensional display...").

Art Unit: 2628

Regarding claim 27, Osaka teaches converting the second font image, or two-dimensional image, into the first font image, or three-dimensional image (col. 13 lines 50-52; "...a method of presenting a mixed display of a three-dimensional image and a two-dimensional image...").

Regarding claim 28, Osaka teaches said first font image, or three-dimensional image, which was generated through synthesis of the two-dimensional images, is comprised of a plurality of pieces of light/dark information and arranged so that apparent charter thickness is thin (col. 27 lines 62-65: "...the number of parallax images) reduces the aperture efficiency of the parallax barrier pattern, resulting in a darker observed image.", Figs. 24A, 24B, 51A-51C and 52A, where the character thickness is presented thin so the pieces may be synthesized for stereoscopic viewing).

Response to Arguments

Applicant's arguments with respect to claims 1, 3, 5, 8, 10, 11, 14 and 22-28 have been considered but are moot in view of the new ground(s) of rejection.

The applicant argues on pg. 11 2nd ¶ lines 1-2 of the remarks that Osaka does not disclose or suggest a multimedia information generation apparatus. However, Osaka clearly discloses a multimedia information generation apparatus (col. 14 lines 16-24: "FIG. 8 is...showing the configuration of a computer system...In this embodiment, a two-dimensional image and a three-dimensional (stereoscopic) image are switched between in...a display screen...").

The applicant argues on pg. 13 4th ¶ lines 1-4 of the remarks that Osaka fails to disclose or suggest generating the three-dimensional image from the two-dimensional image data and synthesizing said three-dimensional image data. However, the rejection has been maintained

Art Unit: 2628

because Osaka teaches generating the three-dimensional image from the two-dimensional image data (col. 41 lines 40-44: "...painting a synthesized image, obtained by alternately arraying at least two parallax images in the form of stripes, in the three-dimensional display zone..."), in which Akamatsu teaches synthesizing said three-dimensional image data (col. 5 lines 4-11: "...a first image signal is input to an input terminal 11, while a second image signal is input to a second input terminal 12... The output terminal of the parallax control circuit 103 is connected to the three-dimensional image synthesizer 103:", in which Akamatsu discloses synthesizing three-dimensional image data, thereby providing the capability of synthesizing the three-dimensional image data of Osaka).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to SAID BROOME whose telephone number is (571)272-2931. The examiner can normally be reached on M-F 8:30am-5pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ulka Chauhan can be reached on (571)272-7782. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR

Application/Control Number: 10/512,056 Page 13

Art Unit: 2628

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Said Broome/ Examiner, Art Unit 2628

/XIAO M. WU/

Supervisory Patent Examiner, Art Unit 2628