Subtraction and Comparison

 λ n.n(λ x. false)(true)

- Subtraction: m-n
 - λm. λn. nPRED m
- Comparison
 - λn. λm. isZero(subtract n m)
 - If the predecessor function applied n times to m yields zero, then it is true that??
 - greaterOrEqual
 - lessOrEqual= λn . λm . isZero(subtract m n)

Division

```
if(a>=b) then
    return 1+ (a-b)/b);
else
    return 0
```

if_then_else= $_{def} \lambda cond.\lambda then_{do}. \lambda else_{do}. Cond (then_{do}) (else_{do})$

The problem here is that we need to express recursion without

b) (zero)

- a/b
 - if a>=b then 1+ (a-b)/b else 0
- , a = 2 then = (a = 2), a elec e
- divide=λa. λb. if_then_else(greaterOrEqual a b) (suc
- divide= λa. λb. if_then_else(greater b a) (zero) (succ (self (subtract a b) b)
 - divide seven three
 - if_then_else(greaterOrEqual seven three) (succ(self (subtract seven three) three) (zero)

explicitly calling itself

- (succ(self (subtract seven three) three)
- (succ (if_then_else(greaterOrEqual four three) (succ(self (subtract four three) three) (zero)))

Little bit of creativity + little bit of elegance

- Self application
 - sa = $\lambda x. x x$
- This function takes an argument x, which is apparently a function

- Loop : (λ x. x x) (λx. x x)
- $\Omega = (\lambda x. xx) (\lambda x. xx)$
- The Omega Combinator is just the simplest function which infinitely recurs without calling itself.
- $Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$

Y Combinator

Y combinator can be defined as

```
• Y = \lambda t. (\lambda x. t (x x)) (\lambda x. t (x x)
```

- $Yz=(\lambda t. (\lambda x. t (x x)) (\lambda x. t (x x)))z$
- $=(\lambda x. z (x x)) (\lambda x. z (x x))$

```
Yz = (\lambda x . z (x x)) (\lambda g . z (g g))

= z (\lambda g . z (g g)) (\lambda g . z (g g))

=z (Yz)

=z ((\lambda g . z (g g)) (\lambda h . z (h h)))

=z (z ((\lambda h . z (h h)) (\lambda h . z (h h))))

=z (z (Yz) ...
```

Yt=t(Yt)=t(t(Yt))=...

Y Combinator

- Y combinator can be defined as
 - $Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$
- Yf=f(Yf)=f(f(Yf))=...

• Fact:=Y (λ f. λ n. If_then_else (isZero n) one (mult n(f(pred n))

Calculating factorial

```
    T= (λ f. λ n. If_then_else (isZero n) one (mult n(f(pred n))
    Fact=YT Fact 2= (YT) two
```

• =T (YT) two

•= (λ f. λ n. If_then_else (isZero n) one (mult n(f(pred n)) (YT) two

•

```
divide=λa. λb. if_then_else(greaterOrEqual a b) (succ (self (subtract a b) b) (zero)
```

Division again!

```
D:= \( \lambda f. \) \( \lambda a. \) \( \lambda b. \) \( \text{if_then_else}(\) \( \text{greaterOrEqual b a}) \) \( \text{Zero}) \( \text{(succ}(f \) \( \text{(subtract a b) b}) \) \( \text{YD=D(YD)} \) \( \text{YD five two} \) \( \text{=> D(YD) five two} \) \( \text{=> if_then_else}(\) \( \text{greaterOrEqual two five}) \( \text{(Zero)} \) \( \text{(succ}(\text{YD (subtract five two) two}) \) \( \text{=> succ}(\text{YD three two}) \) \( \text{=> succ}(\text{YD three two}) \) \( \text{== b. } \) \( \text{YD (succ}(\text{YD (subtract five two) two}) \) \( \text{=> succ}(\text{YD three two}) \) \( \text{== b. } \) \( \text{YD (subtract five two}) \) \( \text{== b. } \) \( \text{YD (subtract five two}) \) \( \text{== b. } \) \( \text{YD (subtract five two}) \) \( \text
```

Summation

To compute sum of natural numbers from 0 to n

$$\sum_{i=0}^{n} i = n + \sum_{i=0}^{n-1} i$$

$$R \equiv (\lambda r n. Z n O(n S(r(Pn))))$$

Fibonacci Series

- F(n)=f(n-1)+f(n-2) if n>2
 =1 else

- $Y := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$
- F := Y (λf. λn.if_then_else (LessThanOrEqual two) one (f(Pred n) succ f(Pred(pred n))))

Tail Recursion

Tail recursion is a situation where a recursive call is the last thing a function does before returning, and the function either returns the result of the recursive call or (for a procedure) returns no result. A compiler can recognize tail recursion and replace it by a more efficient implementation.

Recursive sum

```
tailrecsum(5, 0)
tailrecsum(4, 5)
tailrecsum(3, 9)
tailrecsum(2, 12)
tailrecsum(1, 14)
tailrecsum(0, 15)
15
```

```
function tailrecsum(x, running_total = 0) {
    if (x === 0) {
        return running_total;
    } else {
        return tailrecsum(x - 1, running_total + x);
    }
}
```

```
function recsum(x) {
    if (x === 0) {
        return 0;
    } else {
        return x + recsum(x - 1);
    }
}
```

```
recsum(5)
5 + recsum(4)
5 + (4 + recsum(3))
5 + (4 + (3 + recsum(2)))
5 + (4 + (3 + (2 + recsum(1))))
5 + (4 + (3 + (2 + (1 + recsum(0)))))
5 + (4 + (3 + (2 + (1 + 0))))
5 + (4 + (3 + (2 + 1)))
5 + (4 + (3 + 3))
5 + (4 + 6)
5 + 10
15
```

□ If the continuation is empty and there are no backtrack points, nothing need be placed on the stack; execution can simply jump to the called procedure, without storing any record of how to come back. This is called LAST—CALL OPTIMIZATION
□A procedure that calls itself with an empty continuation and no backtrack points is described as TAIL RECURSIVE, and last–call optimization is sometimes called TAIL–RECURSION OPTIMIZATION

factorial

```
Fact(acc,n) {
    return n==1?acc:Fact(acc*n,n-1);
}
```

```
T= (\lambda f. \lambda n. If_then_else (isZero n) one (mult n(f(pred n)))
```

Introduction to Typed Lambdas

Introducing types

☐ Even though the lambda calculus is untyped, a large majority of the lambda terms that we look at can be given types
☐ In fact, looking at the types of the terms provides insight into the kind of functions these terms represent
\square So, wherever possible, we mention the types of the functions. We use capital letters A, B, to represent arbitrary types and the \rightarrow symbol to represent function types.
\square A \rightarrow B represents the type of functions from A to B, i.e., functions that given A-typed arguments, return B-typed results.
\square We use a bracketing convention to parse type expressions with multiple \rightarrow symbols

Type definition

- Greek letter ι ("iota") to denote a basic type
- The base types are things like the type of integers or the type of Booleans
- The type $A \rightarrow B$ is the type of functions from A to B.
- The type A × B is the type of pairs <x, y>, where x has type A and y has type B
- The type 1 is a one-element type.
 - You can think of 1 as an abridged version of the booleans, in which there is only one boolean instead of two.
 - You can think of 1 as the "void" or "unit" type in many programming languages: the result type of a function that has no real result.

- When we write types, we adopt the convention that \times binds stronger than \rightarrow , and \rightarrow associates to the right.
- $A \times B \rightarrow C$
- is $(A \times B) \rightarrow C$
- $A \rightarrow B \rightarrow C$
- is $A \rightarrow (B \rightarrow C)$

Introducing Types

- We are going to construct functions to represent typed objects
- In general, an object will have a type and a value
- We need to be able to:
 - i) construct an object from a value and a type
 - ii) select the value and type from an object
 - iii) test the type of an object
- We will represent an object as a type/value pair
- $def make_obj type value = \lambda s. (s type value)$

def selectSecond= λ first. λ second.second def value obj =obj selectSecond

Extracting type and/or value

```
• def selectFirst=\lambdafirst. \lambdasecond. first

    def type obj=obj selectFirst

• we can use these functions to define a (type, value) pair and then access the type
• def myObj ⟨type⟩ ⟨value⟩=\lambdas.(s ⟨type⟩⟨value⟩)
• type myObj=myObj selectFirst
               =\lambda s. (s \langle type \rangle \langle value \rangle) selectFirst
               = (selectFirst (type)(value))
             = (\lambda first \lambda type \rangle \lambda value \rangle)
             = (\lambda \text{second.}(\text{type})) (value)
             =(type)
```

 Once types are defined, however, we should only manipulate typed objects with typed operations to ensure that the type checks aren't overridden.

Type Boolean

```
☐ We will represent the boolean type as one:
□def bool_type = one
□ Constructing a boolean type involves preceding a boolean value with bool_type:
☐ def MAKE_BOOLEAN = make_obj bool_type
☐which expands as:
☐ We can now construct the typed booleans TRUE and FALSE from the untyped versions
 by:
☐ def TRUE = MAKE BOOLEAN true
☐ which expands as:
\square \lambda s.(s bool type true)
```

Type boolean

- def FALSE = MAKE_BOOLEAN false
- which expands as:
- λs.(s bool_type false)

We will use numbers to represent types and numeric comparison to test the type

```
def istype t obj = equal (type obj) t
```

- The test for a boolean type involves checking for bool_type:
- def isbool = istype bool_type
- This definition expands as:
- λobj.(equal (type obj) bool_type)

Self application in typed lambda calculus

Even though self-application allows calculations using the laws of the lambda calculus, what it means conceptually is not at all clear
\Box We can see some of the problems by just trying to give a type to sa = λx . x x .
☐ Suppose the argument x is of type A.
\square But, since x is being applied as a function to x, the type of x should be of the form A \rightarrow
\square How can x be of type A as well as A \rightarrow B?
\Box Is there a type A such that A = (A \rightarrow B)?
lue In traditional mathematics (set theory), there is no such type.
\square The concept of "domains" which can be used to represent types (instead of traditional sets)
☐ This led to the development of an elegant theory of domains, which serves as the foundation for the mathematical meaning of programming languages.

Objects in lambda calculus

- \square Self application is used very fundamentally in implementing object-oriented programming languages. Suppose we have an object x with a method m.
- \square We might invoke this method by writing something like x.m(y).
- □ Inside the method m, there would be references to keywords like "self" or "this" which are supposed to represent the object x itself.
- □One way of solving the problem is to translate the method m into a function m' that takes two arguments: in addition to the proper argument y, the object on which the method is being invoked. So, the definition of m' looks like:
- \square m' = λ self. λ y. . . . the body of m . . .
- \Box The method call x.m(y) is then translated as x.m' (x)(y).

Objects in lambda calculus

- \Box The object x has a collection of such functions encoding the methods.
- \Box The method call x.m(y) is then translated as x.m'(x)(y).
- ☐This is a form of self application.
- \Box The function m', which is a part of the structure x, is applied to the structure x itself.

Expressiveness of Lambda Calculus

- The λ -calculus can express
 - data types (integers, booleans, lists, trees, etc.)
 - branching (using booleans)
 - recursion
- This is enough to encode Turing machines
- Encodings can be done
- But programming in pure λ -calculus is painful
 - add constants (0, 1, 2, ..., true, false, if-then-else, etc.)
 - add types