Regression Assumptions

Derick Smith

MCSC 6020 G, Fall 2019

- We cleaned our data
- Performed variable selection
- Constructed a final model

$$y = \hat{y} + \varepsilon$$

$$\hat{y} = \sum_{j=0}^{N} \left\{ \beta_{j,k} x_k^{j \cdot \omega_{j,k}} \right\}_{\forall k}$$

$$\omega_{j,k} = \{0,1\}$$

$$\varepsilon \stackrel{iid}{\sim} \mathcal{N}(\mu = 0, \sigma^2)$$

9 Confirmed the validity of our β_i coefficients

$$H_0: \quad \beta_{j,k} \neq 0 \quad \forall j,k$$
 $H_a: \quad \beta_{j,k} = 0 \quad \exists j,k$

- We cleaned our data
- Performed variable selection
- Constructed a final mode

$$y = \hat{y} + \varepsilon$$

$$\hat{y} = \sum_{j=0}^{N} \left\{ \beta_{j,k} x_k^{j \cdot \omega_{j,k}} \right\}_{\forall k}$$

$$\omega_{j,k} = \{0,1\}$$

$$\varepsilon \stackrel{iid}{\sim} \mathcal{N}(\mu = 0, \sigma^2)$$

9 Confirmed the validity of our β_i coefficients

$$H_0:$$
 $\beta_{j,k} \neq 0 \quad \forall j,k$
 $H_a:$ $\beta_{j,k} = 0 \quad \exists j,k$

- We cleaned our data
- Performed variable selection
- Constructed a final model

$$y = \hat{y} + \varepsilon$$

$$\hat{y} = \sum_{j=0}^{N} \left\{ \beta_{j,k} x_k^{j \cdot \omega_{j,k}} \right\}_{\forall k}$$

$$\omega_{j,k} = \{0,1\}$$

$$\varepsilon \stackrel{iid}{\sim} \mathcal{N}(\mu = 0, \sigma^2)$$

① Confirmed the validity of our β_i coefficients

$$H_0:$$
 $\beta_{j,k} \neq 0 \quad \forall j,k$
 $H_a:$ $\beta_{j,k} = 0 \quad \exists j,k$

- We cleaned our data
- Performed variable selection
- Constructed a final model

$$y = \hat{y} + \varepsilon$$

$$\hat{y} = \sum_{j=0}^{N} \left\{ \beta_{j,k} x_k^{j \cdot \omega_{j,k}} \right\}_{\forall k}$$
 $\omega_{j,k} = \{0,1\}$
 $\varepsilon \stackrel{iid}{\sim} \mathcal{N}(\mu = 0, \sigma^2)$

o Confirmed the validity of our β_i coefficients

$$H_0:$$
 $\beta_{j,k} \neq 0 \quad \forall j,k$
 $H_a:$ $\beta_{j,k} = 0 \quad \exists j,k$

 $\alpha > p$: fail to reject H_0

- We made assumptions along the way
- In particular for errors:
 - Randomly independent
 - Constant variance
 - Normally distributed with mean zero

- We made assumptions along the way
- In particular for errors:
 - Randomly independent
 - Constant variance
 - Normally distributed with mean zero

- We made assumptions along the way
- In particular for errors:
 - ► Randomly independent
 - Constant variance
 - Normally distributed with mean zero

- We made assumptions along the way
- In particular for errors:
 - Randomly independent
 - Constant variance
 - Normally distributed with mean zero

- We made assumptions along the way
- In particular for errors:
 - Randomly independent
 - Constant variance
 - Normally distributed with mean zero

Test Assumptions

- Randomly independent:
 - (x_i, ε_i) plot structureless
- Constant variance:
 - (x_i, ε_i) plot points spread rectangularly
- Normally distributed with mean zero:
 - Q-Q plot close to one-to-one correlation between experimental and theoretical

Test Assumptions

- Randomly independent:
 - (x_i, ε_i) plot structureless
- Constant variance:
 - (x_i, ε_i) plot points spread rectangularly
- Normally distributed with mean zero:
 - Q-Q plot close to one-to-one correlation between experimental and theoretical

Test Assumptions

- Randomly independent:
 - (x_i, ε_i) plot structureless
- Constant variance:
 - (x_i, ε_i) plot points spread rectangularly
- Normally distributed with mean zero:
 - Q-Q plot close to one-to-one correlation between experimental and theoretical

Transform Model (If Invalid)

- If not structureless:
 - may exist autocorrelation
 - significant modification may be necessary beyond linear regression
- If non-normal:
 - Change flexibility using resampling (e.g. k-fold cross-validation or bootstrapping)
- If non-constant variance (and potentially non-normal):

$$y^* = \sqrt{y}$$

$$y^* = \sin^{-1}(y)$$

$$y^* = \log(y)$$

Transform Model (If Invalid)

- If not structureless:
 - may exist autocorrelation
 - significant modification may be necessary beyond linear regression
- If non-normal:
 - Change flexibility using resampling (e.g. k-fold cross-validation or bootstrapping)
- If non-constant variance (and potentially non-normal):

$$y^* = \sqrt{y}$$
$$y^* = \sin^{-1}(y)$$
$$y^* = \log(y)$$

Transform Model (If Invalid)

- If not structureless:
 - may exist autocorrelation
 - significant modification may be necessary beyond linear regression
- If non-normal:
 - Change flexibility using resampling (e.g. k-fold cross-validation or bootstrapping)
- If non-constant variance (and potentially non-normal):

$$y^* = \sqrt{y}$$
$$y^* = \sin^{-1}(y)$$
$$y^* = \log(y)$$

Let's Run Some Code

Summary

- Build your model thoughtfully
- Test your coefficients
- Test your assumptions!
- Transform as needed
- Rinse, repeat

$\mathbb{Q} \bigcup \varepsilon \tau \mathbb{I} \mathscr{O} \eta \varsigma?$