Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar

ENGENHARIA INFORMÁTICA PROJECTO DE REDES 2012 / 2013

Trabalho prático Nº 1

Alunos: 11046 Vasco Marques 11598 Bruno Calças

OBJECTIVOS:

- Análise de soluções tecnológicas para a implementação de redes wireless;
- Projecto de redes wireless de acordo com as tecnologias consideradas adequadas para os requisitos operacionais e para as condicionantes identificadas no terreno;

TOPOLOGIA DA REDE:

Figura 1 - Topologia da rede.

DIAGRAMA DA REDE:

NECESSIDADES DE LARGURA DE BANDA EM CADA SITE:

- □ Paços do Concelho Ponto central; site onde se localizam os serviços partilhados e o acesso à Internet.
- \square Bombeiros 5Mbps
- ☐ Piscinas 15Mbps
- ☐ Oficina 5Mbps
- \Box CIN 6Mbps
- \square Museu 10Mbps
- \square Biblioteca 20Mbps
- ☐ Ed. Salgueiro Maia 19 Mbps

Site	Comprimento [m]
Paços do Concelho	10
Bombeiros	20
Edifício Salgueiro Maia	3
Biblioteca	15
CIN Alviela	30
Oficinas	12
Piscinas	6
Museu	12

Fresnel Ellipsoid

Correcção aos Gráficos:

- Linhas vermelhas são as marcam o obstáculo mais alto na linha de vista.
- Linhas verdes são as novas linhas de vistas sem obstáculos
- Linhas cinzentas são os postes para subir as antenas
- Linhas pretas são para auxiliar os cálculos das distâncias e alturas dos pontos de interesse

1.1.1 Paços do Concelho – Biblioteca

- o Distância 273m
- o Determinar linha de vista

Neste cenário, foi exemplificado pelo professor na aula prática, que pretendia ligar Paços do Concelho à Biblioteca em que foi necessário ter em consideração alguns dos aspectos importantes, nomeadamente a largura de banda necessária em cada site, a distância, a existência de linha de vista entre os dois pontos. Assim pode-se concluir que existe linha de vista entre os dois pontos, uma vez que não existe nenhum obstáculo que impeça a linha de vista, portanto fizeram-se alguns cálculos que verificou-se. Concluindo os cálculos que se obtiveram nas seguintes tabelas:

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

Na tabela seguinte pode-se observar a existência da linha de vista entre as duas localidades e proceder a respectiva ligação das mesmas.

LINHA DE VISTA	
Altura do Prédio:	107.7m
Altura do Obstáculo:	89m
Existe linha de vista?	SIM

Neste caso verificou-se a existência de linha de vista entre as duas localidades, colocou-se a altura do prédio 107.7 metros e a altura do obstáculo 89 verificando o cálculo para determinar se há ou não linha de vista (h-R>=89).

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

Neste passo para obter o cálculo do balanço de potências procedeu-se na escolha de um AP, de modo a ter necessidade de largura de banda que liga a Biblioteca cerca de 20Mbps, portanto AP deverá possuir um Data Rate maior ou igual a este valor, portanto escolheu-se o AP2620 da Enterasys 802.11/g com a antena modo de 54Mbps e um ganho de 5dBi e uma sensibilidade de -81dBm.

Balanço de Potências (AP e Antena)	
Ap:	2620
Data Rate:	802.11/g
Frequência:	2.4 a 2.4835 GHz
Antena Modo (Mbps):	54 Mbps
GHz:	2.4 / 5
Ganho:	2 / 5 dBi
Sensibilidade:	81

Apartir dos dados preenchidos na tabela acima pode-se efectuar os cálculos para verificar se o Link Budjet é suficiente para atingir o receptor. Então tem de se calcular o EIRP sendo o emissor Paços do Concelho, o tamanho do cabo deste é de 21 metros, e o ganho da antena escolhida é de 5 dBi, ou seja não pode ser o valor do EIRP superior a 20 isto porque em Portugal não corresponde à lei que é permitida.

EIRP	
EIRP:	20
Perdas nos conectores:	1
Perdas nos cabos:	2,2
Ganho da antena:	10
Tx(Dbm):	8,8

De seguida procede-se ao calculo do Link Budget em que é necessário também calcular as perdas em espaço livre, em que foi necessário utilizar a frequência do AP e a distância entre os dois pontos em (Km).

Perdas de Espaço Livre	
Frequência:	2,4
Distância (Kms):	0,273
Perdas:	88,77747778

No resultado obtido nas perdas de espaço livre, pode-se calcular o Link Budget, para isso foi necessário o valor do ganho do receptor e o tamanho do cabo. Deste modo, de acordo com a fórmula, obtemos o Link Budget, que neste caso se encontra com 10dB ou seja entre os 6 e 10 dB está óptimo.

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

Neste último passo com todos os cálculos efectuados anteriormente pode-se calcular o Link Budget e pode-se verificar a potência transmitida a esta distância está de acordo com o ganho e a sensibilidade da antena, conclui-se que a ligação tem um bom sinal, de acordo com o valor do Link Budget.

ERS		
ERS (dB):	-75,3	
Link Budjet		
Link Budjet:	6,522522225	

Portanto para a conclusão deste cenário, verificou-se a existência de Linha de Vista.

1.1.2 Paços do Concelho – Edifício Salgueiro Maia

- o Distância 722m
- o Determinar linha de vista

Neste cenário é parecido com o anterior, portanto é com intuito prosseguir mais a frente para os respectivos cálculos e analisá-los.

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

Na tabela seguinte pode-se observar a existência da linha de vista entre as duas localidades e proceder a respectiva ligação das mesmas.

LINHA DE VISTA	
Altura do Prédio:	107.7m
Altura do Obstáculo:	79m
Existe linha de vista?	SIM

Neste caso verificou-se a existência de linha de vista entre as duas localidades, colocou-se a altura do prédio 107.7 metros e a altura do obstáculo 79 verificando o cálculo para determinar se há ou não linha de vista (h-R>=89).

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

O AP escolhido para o Edifico Salgueiro Maia é igual ao dos Paços do Concelho com excepção da antena que é diferente, pois tem um ganho inferior.

Balanço de Potências (AP e Antena)	
Ap:	2620
Data Rate:	802.11/g
Frequência:	2.4 a 2.4835 GHz
Antena Modo (Mbps):	54 Mbps
GHz:	2.4 / 5
Ganho:	2 / 5 dBi
Sensibilidade:	81

EIRP	
EIRP:	30
Perdas nos conectores:	1
Perdas nos cabos:	2,2
Ganho da antena:	10
Tx(Dbm):	18,8

Perdas de Espaço Livre	
Frequência:	2,4
Distância (Kms):	0,722
Perdas:	97,22496879

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

Neste último passo com todos os cálculos efectuados anteriormente pode-se calcular o Link Budget e pode-se verificar a potência transmitida a esta distância está de acordo com o ganho e a sensibilidade da antena, conclui-se que a ligação tem um bom sinal, de acordo com o valor do Link Budget.

ERS		
ERS (dB):	-75,3	
Link Budjet		
Link Budjet:	8,0750313214	

Portanto para a conclusão deste cenário, verificou-se a existência de Linha de Vista.

- o Distância 154m
- Determinar linha de vista

Neste cenário é parecido com o anterior, portanto é com intuito prosseguir mais a frente para os respectivos cálculos e analisá-los.

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

LINHA DE VISTA	
Altura do Prédio:	107.7m
Altura do Obstáculo:	94.9m
Existe linha de vista?	SIM

Neste caso verificou-se a existência de linha de vista entre as duas localidades, colocou-se a altura do prédio 107.7 metros e a altura do obstáculo 94.9 verificando o cálculo para determinar se há ou não linha de vista (h-R>=89).

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

Neste passo para obter o cálculo do balanço de potências procedeu-se na escolha de um AP, de modo a ter necessidade de largura de banda que liga aos Bombeiros cerca de 20Mbps, portanto AP deverá possuir um Data Rate maior ou igual a este valor, portanto escolheu-se o AP2620 da Enterasys 802.11/g com a antena modo de 36Mbps e um ganho de 5dBi e uma sensibilidade de -81dBm.

Balanço de Potências (AP e Antena)	
Ap:	2605
Data Rate:	802.11/g
Frequência:	2.4 a 2.4835 GHz
Antena Modo (Mbps):	36 Mbps
GHz:	2.4 / 5
Ganho:	2 / 5 dBi
Sensibilidade:	-81

Apartir dos dados preenchidos na tabela acima pode-se efectuar os cálculos para verificar se o Link Budjet é suficiente para atingir o receptor. Então tem de se calcular o EIRP sendo o emissor Paços do Concelho, o tamanho do cabo deste é de 20 metros, e o ganho da antena escolhida é de 5 dBi, ou seja não pode ser o valor do EIRP superior a 20 isto porque em Portugal não corresponde à lei que é permitida.

	EIRP
EIRP:	15
Perdas nos conectores:	1
Perdas nos cabos:	2,2
Ganho da antena:	10
Tx(Dbm):	3,8

De seguida procede-se ao calculo do Link Budget em que é necessário também calcular as perdas em espaço livre, em que foi necessário utilizar a frequência do AP e a distância entre os dois pontos em (Km).

Perdas de Espaço Livre	
Frequência:	2,4
Distância (Kms):	0,154
Perdas:	83,80463925

No resultado obtido nas perdas de espaço livre, pode-se calcular o Link Budget, para isso foi necessário o valor do ganho do receptor e o tamanho do cabo. Deste modo, de acordo com a fórmula, obtemos o Link Budget, que neste caso se encontra com 10dB ou seja entre os 6 e 10 dB está óptimo.

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

Neste último passo com todos os cálculos efectuados anteriormente pode-se calcular o Link Budget e pode-se verificar a potência transmitida a esta distância está de acordo com o ganho e a sensibilidade da antena, conclui-se que a ligação tem um bom sinal, de acordo com o valor do Link Budget.

	ERS	
ERS (dB):	-75,3	
Link Budjet		
Link Budjet:	6,495360749	

Portanto para a conclusão deste cenário, verificou-se a existência de Linha de Vista.

1.1.4 Paços do Concelho – Museu Municipal

Não foram tiradas as coordenadas GPS, é um edifício que se encontra em frente aos Paços do Concelho, existindo clara linha de vista entre eles, a uma distância inferior a 100m.

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

Para avaliar no enunciado existe claramente linha de vista entre eles, para isto prossegui para o cálculo de potências (AP e Antena).

LINHA DE VISTA	
Altura do Prédio:	
Altura do Obstáculo:	
Existe linha de vista?	SIM

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

Neste passo para obter o cálculo do balanço de potências procedeu-se na escolha de um AP, de modo a ter necessidade de largura de banda que liga aos Bombeiros cerca de 20Mbps, portanto AP deverá possuir um Data Rate maior ou igual a este valor, portanto escolheu-se o AP2620 da Enterasys 802.11/g com a antena modo de 36Mbps e um ganho de 5dBi e uma sensibilidade de -81dBm.

Balanço de Potências (AP e Antena)		
Ap:	2620	
Data Rate:	802.11/g	
Frequência:	2.4 a 2.4835 GHz	
Antena Modo (Mbps):	36 Mbps	
GHz:	2.4 / 5	
Ganho:	2 / 5 dBi	
Sensibilidade:	-81	

	EIRP
EIRP:	20
Perdas nos conectores:	1
Perdas nos cabos:	2,2
Ganho da antena:	10
Tx(Dbm):	8,8

De seguida procede-se ao calculo do Link Budget em que é necessário também calcular as perdas em espaço livre, em que foi necessário utilizar a frequência do AP e a distância entre os dois pontos em (Km).

Perdas de Espaço Livre	
Frequência:	2,4
Distância (Kms):	0,55
Perdas:	94,86147862

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

ERS		
ERS (dB):	-75,3	
Link Budjet		
Link Budjet:	0,438521376	

1.1.5 Bombeiros - Piscinas

- o Distância 195m
- o Determinar linha de vista

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

Para avaliar no enunciado existe claramente linha de vista entre eles, para isto prossegui para o cálculo de potências.

LINHA DE VISTA	
Altura do Prédio:	100.6
Altura do Obstáculo:	100.6
Existe linha de vista?	SIM

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

Neste passo para obter o cálculo do balanço de potências procedeu-se na escolha de um AP, de modo a ter necessidade de largura de banda que liga aos Bombeiros cerca de 20Mbps, portanto AP deverá possuir um Data Rate maior ou igual a este valor, portanto escolheu-se o AP2620 da Enterasys 802.11/g com a antena modo de 36Mbps e um ganho de 5dBi e uma sensibilidade de -81dBm.

Balanço de Potências (AP e Antena)	
Ap:	2620
Data Rate:	802.11/g
Frequência:	2.4 a 2.4835 GHz
Antena Modo (Mbps):	36 Mbps

Trabalho prático Nº1

		Trabanio	ρ
GHz:	2.4 / 5		
Ganho:	2 / 5 dBi		
Sensibilidade:	-81		

	EIRP
EIRP:	20
Perdas nos conectores:	1
Perdas nos cabos:	2,2
Ganho da antena:	10
Tx(Dbm):	8,8

De seguida procede-se ao calculo do Link Budget em que é necessário também calcular as perdas em espaço livre, em que foi necessário utilizar a frequência do AP e a distância entre os dois pontos em (Km).

Perdas de Espaço Livre		
Frequência:	2,4	
Distância (Kms):	0,195	
Perdas:	85,85491706	

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

ERS		
ERS (dB):	-75,3	
Link Budjet		
Link Budjet:	9,445082939	

Piscinas - Oficinas 1.1.6

- Determinar linha de vista

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

Para avaliar no enunciado existe claramente linha de vista entre eles, para isto prossegui para o cálculo de potências. No entanto para avaliar a linha de vista obtivemos os seguintes cálculos.

LINHA DE VISTA		
Altura do Prédio:	93.7	
Altura do Obstáculo:	84.7	
Existe linha de vista?	SIM	

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

Balanço de Potências (AP e Antena)		
Ap:	2620	
Data Rate:	802.11/g	
Frequência:	2.4 a 2.4835 GHz	
Antena Modo (Mbps):	54 Mbps	
GHz:	2.4/5	
Ganho:	2/5 dBi	
Sensibilidade:	-81	

	EIRP
EIRP:	20
Perdas nos conectores:	1
Perdas nos cabos:	2,2
Ganho da antena:	10
Tx(Dbm):	8,8

De seguida procede-se ao calculo do Link Budget em que é necessário também calcular as perdas em espaço livre, em que foi necessário utilizar a frequência do AP e a distância entre os dois pontos em (Km).

Perdas de Espaço Livre		
Frequência:	2,4	
Distância (Kms):	0,364	
Perdas:	91,2762551	

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

	ERS	
ERS (dB):	-75,3	
Link Budjet		
Link Budjet:	4,023747493	

Paços do Concelho - Centro de Interpretação do Alviela 1.1.7

- Determinar linha de vista

1º PASSO - AVALIAR A EXISTÊNCIA DE LINHA DE VISTA

Para avaliar no enunciado existe claramente linha de vista entre eles, para isto prossegui para o cálculo de potências.

LINHA DE VISTA		
Altura do Prédio:	107.7	
Altura do Obstáculo:	68	
Existe linha de vista?	NÃO	

2º PASSO - CALCULAR O BALANÇO DE POTÊNCIAS

Balanço de Potências (AP e Antena)			
Localidades:	Paços do Concelho	CIN Alviela	
Ap:	2620	2620	
Data Rate:	802.11/g	802.11/g	
Frequência:	2.4 a 2.4835 GHz	2.4 a 2.4835 GHz	
Antena Modo (Mbps):	36 Mbps	36 Mbps	
GHz:	2.4 / 5	2.4 / 5	
Ganho:	2 / 5 dBi	2 / 5 dBi	
Sensibilidade:	81	81	
Antenas:	WS-AIO-2S14090	WS-AIO-2S07060	
Tipo:	Indoor / Outdoor	Indoor / Outdoor	
GHz	2.4 a 2.4835 GHz	2.4 a 2.4835 GHz	

EIRP		
EIRP:	20	
Perdas nos conectores:	1	
Perdas nos cabos:	2,2	
Ganho da antena:	10	

	Trabalho	prático Nº1
Tx(Dbm):	8,8	

De seguida procede-se ao calculo do Link Budget em que é necessário também calcular as perdas em espaço livre, em que foi necessário utilizar a frequência do AP e a distância entre os dois pontos em (Km).

Perdas de Espaço Livre					
Frequência:	2,4				
Distância (Kms):	3,974				
Perdas:	112,087821				

3º PASSO - CALCULAR A POTÊNCIA QUE CHEGA AO RECEPTOR

ERS				
ERS (dB):	-75,3			
Link Budjet				
Link Budjet:	-16,73878209			

□ Tabela Final

Estação base	Ganho da antena	Comp.	PIRE (dBm)	Pot. recebida	Estação subscritora	Ganho da antena	Comp. do cabo	PIRE	Pot. recebida	Ligação wireless		
		cabo								Dist.	Modo	Margem
Paços	10 dBi	10m	20 dBm	-77,57747778 dBm	Biblioteca	10 dBi	15m	20 dBm	-59,97747778 dBm	273	20Mbps	6,522522
Paços	10 dBi	10m	20 dBm	-96,02496879 dBm	Ed. Salgueiro Maia	10 dBi	3m	20 dBm	-68,42496879 dBm	722	19Mbps	8,075031
Paços	10 dBi	10m	20 dBm	-67,60463925 dBm	Bombeiros	10 dBi	15m	20 dBm	-67,60463925 dBm	154	5Mbps	0,438521
Paços	10 dBi	10m	20 dBm	-83,66147862 dBm	Museu	10 dBi	12m	20 dBm	-83,66147862 dBm	100	10Mbps	0,438521
Bombeiros	10 dBi	20m	20 dBm	-74,65491706 dBm	Piscinas	10 dBi	6m	20 dBm	-74,65491706 dBm	195	15Mbps	9,445083
Piscinas	10 dBi	6m	20 dBm	-80 dBm	Oficinas	10 dBi	12m	20 dBm	-80	365	5Mbps	4,023747
Paços	10 dBi	10m	20 dBm	-101 dBm	CIA	10 dBi	30m	20 dBm	-101	3974	6Mbps	16,7388

☐ Previsão de custos.

AP / Antenas	Preço
Enterasys HiPath AP2605 Wireless Access Point	179,82 €
Enterasys Hipath AP2620 Wireless Access Point	309,00 €
Antena externa WS-AIO-2S14090	292,71 €
Cabo(m)	000,16 €
Total	781,69 €

□ Formulário

Elipsóide de Fresnel = RAIZQ((d1 * d2 * % * n) / (d1 + d2))

 Λ = Velocidade da Luz / Frequência

PIRE = Potência de transmissão (TX) – (tamanho do cabo * perdas do cabo(metro) + número de conectores * perdas dos conectores) + Ganho da Antena

 $\mathbf{n} = 1$

Lp (**Perdas de espaço livre**) = 92,45 + 20 * LOG10(Frequência(GHZ)) + 20 * LOG10(Distância)

Link Budjet = PIRE – Lp + Ganho da Antena Receptora – (Comprimento do cabo *0.21 + 2*0.5) + Sensibilidade

Potência Recebida (dBm) = Ganho da Antena Emissora + Ganho da Antena Receptora + Tx - Lp

☐ Lista do equipamento necessário com as devidas características (antenas, equipamento activo, cabos...)

Product Name: Enterasys HiPath AP2620 – Wireless access point – WS-AP2620

Manufacture Part: WS-AP2620

Product Description: Enterasys HiPath AP2620 – Wireless access point

Device Type: Wireless access point

Data Link Protocol: IEEE 802.11b, IEEE 802.11a, IEEE 802.11g

Product Name: Enterasys HiPath AP2620 – Wireless access point – WS-AP2620

Manufacture Part: WS-AP2620

Product Description: Enterasys HiPath AP2620 – Wireless access point

Device Type: Wireless access point

Data Link Protocol: IEEE 802.11b, IEEE 802.11a, IEEE 802.11g