

FIG.1a

FIG.1b

FIG.1d

AN ADHESIVE OR SEALANT COMPOSITION INCLUDING HIGH EFFICIENCY HEATING AGENTS AND METHODS OF USE Inventor: Robert H. Johnson, Jr. Docket No. JOH 004 N4

FORMED FIG. 2c

FIG.2d

FIG.2e

3/10

4/10

Inventor: Robert H. Johnson, Jr. Docket No. JOH 004 N4

FIG. 6

FIG.7

7/10

Table I

			·							
follows:	300 S. Steel	600°F	1120	998	805	718	583	268	251	224
y are as	3008	68°F	968	747	694	619	503	231	216	193
an Tudbur	400S. Steel	1000°F	180	138	129	= 2	93	43	40	36
novoukas icrons	4008	68°F	94	108	ō	06	73	34	3	28
The skin depths, based on the values of Monovoukas an Tudbury are as follows Skin Depths in microns	[ron	1000°F	138	901	66	88	72	33	3	27
on the vo Skin D	Low C Steel/Iron	200°F	72	56	52	46	38		9	<u>4</u>
s, based	Low	68° F	64	49	46	4	33	ਨ	4	<u></u>
skin depth	Nickel	600°F	9	47	44	39	32	<u>ত</u>	4	2
The	Ž	68° F	88	23	2	<u>6</u>	5	~	7	ဖ
		Freq.	200 KHz	335 KHz	388 KHz	488 KHz	738 KHz	3.5 MHz	4.0 MHz	5.0 MHz

AN ADHESIVE OR SEALANT COMPOSITION INCLUDING HIGH EFFICIENCY HEATING AGENTS AND METHODS OF USE Inventor: Robert H. Johnson, Jr.

Inventor: Robert H. Johnson, J Docket No. JOH 004 N4

8/10

					,			10								·			 -
5.0M			14%	14%	14%	214%	171%			%001	64%	7%	400%		857%				
4.0M		-420m	%8	8%	%21	200%	125%	633%	633%	%001	% 29	%0	317%		583%				
3.5M	% SD	owder 74	%0	%0	12%	317%	167%	883%	%006	%001	20%	17%	167%		%000				
738		of heating rate of iron powder74 - 420 µ	29%	21%	%12	200%	129%	943%	1229%	%001	43%		229%		159%				
488	Heating rate	ng rate	14%	14%	14%	200%	114%	%0001 %526	1371%	%00I	43%	29%	114%	25%	43%	800%	1343%	1200%	643%
388		of heati	%0	25%	25%	225%	125%		1450%	% 00l	20%	25%		25%		800% 800%	1300% 1343%	100% 1250%	600% 643%
335			%0	%0	%0	200%	%00I	933%	1300%	%001	%29	33%	%291	33%		%292	1167%	%0011	%009
5.0M	ΔOil	22	4	4	b .	60	48			28	81	2	112		240				
3.5M 4.0M 5.0M	ΔOil	20	2	2	4	48	30	152	152	24	91	0	92		140				
3.5M	IIO V	8	0	0	. 2	38	20	901	108	12	9	2	20		120				
738	li0 ∆	ଯ	2	4	5	14	6	99	98	2	3		91		6				
488	ΔOil	8	0.4	0.4	0.4	5.6	3.2	28	38.4	2.8	- -2	0.8	3.2	0.4	1.2	22.4	37.6	33.6	<u>∞</u>
388	ΔOil	8	0	0.4	0.4	3.6	2	15.6	23.2	9.1	0.8	0.4		0.4		12.8	20.8	20	9.6
335	AOil AOil	20	Ó	0	0	2.4	_ .2	1.2	15.6	1.2	0.8	4.0	2	4:0		9.5	4	13.2	7.2
	Susceptor	Sec	Ni Flake 15 - 20µ x lµ	Ni Flake 15-40µ×2µ	Ni Flake 30 x 0.4 µ	Ni Fiber 35×1000µ	Ni Fiber 35x 260 µ	C steel wool 38x1000µ	Csteel wool 45x 2000µ	Iron powder 74 - 420µ	Iron powder 35-150µ	300 SS Flake 50-150µ	300 SS Fiber 8x 4000µ	300 SS RapS Fb 75x3500µ	Ni Carbon Fiber 7x 6000µ	400SS Dn Fb22×3500µ	400 SS Wool 45x2000µ	400 SS Wool 45x4000µ	400 SS RapS Fb 150x 4500µ

Table II

AN ADHESIVE OR SEALANT COMPOSITION INCLUDING HIGH EFFICIENCY HEATING AGENTS AND METHODS OF USE Inventor: Robert H. Johnson, Jr. Docket No. JOH 004 N4

9/10

FIG. 13

Table III

Susceptor	388 Khz	488 KHz	388Khz	488 KHz
	ΔOil, F°	ΔOil, F°	Heating ra	te as %
	20 sec	20sec	of heatin	g rate of
	6 turn	6 turn	iron powder	74-420µ
Ni Flake 15 - 40x2µ	76	116	380%	557%
Ni Flake 30x0.4µ		108		386%
Ni Flake 15-20x2µ	36		180%	
300 SS Flake 50-150µ		28		100%
Ni Fiber 35 x 1000 µ	32	44	160%	157%
Ni Fiber 35 x 260 µ	12	12	60%	43%
300 SS fiber 8 x 4000 µ	130	196	650%	700%
Ni Carbon Fiber 7x 4000µ	86	116	430%	414%
400 SS Dn Fiber 22x3500μ	88	152	440%	543%
400 SS Wool 45x 2000µ	134	188	670%	671%
400 SS Wool 45x 4000µ		184		657%
C steel wool 38x l000µ	118	156	590%	557%
C steel wool 45 x 2000 µ	176	284	880%	1014%
Iron powder 74-420µ	20	28	100%	100%
Iron powder 35-150µ	2	8	10%	29%
300SS RapS Fb 75-3500µ		16		57%
400SS RapS Fb150x4500µ		100		357%

10/10

Table TV

Heating Agent	% Loading by weight	Optimum weld time 5.5 MHz	64% iron powder weld time as % of optimum weld time	Optimum weld time 3.6MHz
Iron powder 74 - 420μ	64%	22sec	% 001	No weld
C Steel Wool Fiber 38 x 1000µ	10% 15% 25% 35% 45%	14sec 10sec 5sec 3 sec 2 sec	157 % 220% 440 % 730 % 1100 %	25sec 15sec
S Steel Wool Fiber 45x2000µ	25%	7 sec 4 sec	310% 550%	40sec 25sec