# Introducción a la Computación Gráfica

#### Leonardo Flórez Andrea Rueda

Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas

#### **Profesores**

Ed. José Gabriel Maldonado, S.J., 2do piso, Departamento de Ingeniería de Sistemas.

Andrea Rueda

Leonardo Flórez

Martes: 10am a 12m.

Miércoles: 11am a 12m.

Viernes: 10am a 11am.
Jueves: 11am a 12m.

Contacto:

rueda-andrea@javeriana.edu.co florez-l@javeriana.edu.co

correos <u>deben</u> incluir en el asunto "[ICG]", si no, se asumen como no recibidos.

### ¿De qué trata este curso?

Temas que veremos

Temas que no veremos

### Objetivos

 Introducir los conceptos teóricos y matemáticos base para la construcción de aplicaciones de Computación Gráfica.

 Desarrollar habilidades básicas para diseñar y desarrollar entornos virtuales que faciliten la visualización de elementos, procesos o sistemas.

### RAE Resultados de Aprendizaje Esperados

- Afianzar conocimientos básicos de computación gráfica.
- Destreza para representar gráficamente elementos, procesos y/o sistemas del mundo real.
- Proponer soluciones a problemas del mundo real a través de una adecuada selección y utilización de los elementos gráficos con base en el análisis del problema y el diseño de la solución.
- Habilidad para implementar los elementos y aplicaciones gráficas en C++ y OpenGL.

#### Curso

Página del curso en Uvirtual:

```
uvirtual.javeriana.edu.co
```

- Programa del curso, planeación de sesiones, notas.
- Diapositivas contenidos.
- Enunciado, envío de talleres.
- Enunciado, desarrollo de parcial.
- Enunciado, envío entregas proyecto.

### Metodología

- Clases magistrales (presentación de temas).
- Talleres de aplicación de conceptos.
- Evaluación: parcial, proyecto final.
- Trabajo individual:
  - Tareas y ejercicios.
  - Preparación de clases.
  - Preparación de talleres.
  - Proyecto final.

### Evaluación

- Examen parcial (20%).
- Proyecto de desarrollo en el semestre (40%):
  - Entrega 0 (5%).
  - Entrega 1 (10%).
  - Entrega 2 (10%).
  - Entrega final (15%).
- Talleres (40%).

### Fechas importantes

• Examen parcial: semana 10 (23 al 30 de septiembre).

#### Talleres:

- Taller 1: lunes 29 de julio.
- Taller 2: lunes 26 de agosto.
- Taller 3: lunes 14 de octubre (festivo).
- Taller 4: lunes 4 de noviembre (festivo).
- Importante: para cada taller el enunciado se entregará una semana antes.

### Proyecto final

- Proyecto final (y talleres) se realizará en grupos de máximo dos integrantes.
- Objetivo: Juego Snake 3D, en primera persona.



https://hipertextual.com/2019/02/snake-juego-mas-popular-nokia

### Proyecto final

- Entrega 0: lunes 29 de julio. Requerimientos del juego (mecánica, interacción).
- Primera entrega: lunes 19 de agosto.
   Diseño de la aplicación que implemente el juego.
- <u>Segunda entrega</u>: lunes 7 de octubre. *Primera versión del prototipo.*
- Entrega final: lunes 18 de noviembre. Sustentación de la versión final de la aplicación.

#### Temas a tratar

- Introducción a la computación gráfica
- Sistemas de referencia, vectores, matrices
- Teoría del color y la percepción
- Primitivas gráficas 2D: líneas y polilíneas
- Rastreo y recorte de primitivas
- Transformaciones 2D y 3D
- Visualización 3D: vistas, cámaras, proyecciones
- Representación / modelado de objetos, superficies, sólidos
- Superficies visibles caras ocultas
- Modelos de iluminación y sombreado

#### Recomendaciones

- Dedicación, trabajo honesto y sincero.
- Rigor y formalidad propios del trabajo en Ingeniería.
- Siempre usar citaciones y referencias pertinentes de los medios consultados.
- Puntualidad en las clases.
- Intuición, recursividad, inquietud por aprender.
- Aprovechar los medios de contacto ante cualquier inquietud, sugerencia, problema, ...

¿Inquietudes?

¿Sugerencias?

¿Comentarios?

. . .

¿De qué trata este curso?

# ¿De qué trata este curso?

No es sólo geometría computacional.

No es sólo un curso de OpenGL.

 Conceptos básicos de computación gráfica para incentivar la exploración individual.

Algunos ejemplos...

### Visualización y realidad virtual



https://www.youtube.com/watch?v=wacNaAVGXdU

### Visualización científica

- Visualización de grandes cantidades de información.
- Estudio del comportamiento de procesos complejos.
- Presentar de manera concisa y significativa las tendencias y patrones de los datos.
- Facilitar la toma de decisiones informadas.





### Simulación



https://www.youtube.com/watch?v=bVsQfm7h2G8

### Simulación

$$egin{array}{l} v_{\!\scriptscriptstyle f} &= v_{\!\scriptscriptstyle o} + at \ x_{\!\scriptscriptstyle f} &= x_{\!\scriptscriptstyle o} + v_{\!\scriptscriptstyle o}\,t + rac{1}{2}at^2 \ v_{\!\scriptscriptstyle f}^{\scriptscriptstyle 2} &= v_{\!\scriptscriptstyle o}^{\scriptscriptstyle 2} + 2a\,(x_{\!\scriptscriptstyle f} - x_{\!\scriptscriptstyle o}) \ x_{\!\scriptscriptstyle f} &= x_{\!\scriptscriptstyle o} + rac{1}{2}(v_{\!\scriptscriptstyle f} + v_{\!\scriptscriptstyle o})\,t \end{array}$$





- Estudiar entidades matemáticas abstractas, fenómenos naturales.
- Animaciones de diversos tipos.
- Realizar predicciones, analizar comportamientos.

### Diseño Gráfico



https://www.youtube.com/watch?v=KEn4vx4yDMQ

### Diseño gráfico

- Producir imágenes que expresen un mensaje y atraigan la atención.
- Diseños y animaciones fotorrealistas de productos o escenas.







http://www.home-designing.com/ 2009/03/kids-room-designs-set-8

### Visualización Médica



https://www.youtube.com/watch?v=P0snTltG5Po

### Visualización médica



- Representaciones precisas y/o esquemáticas de fenómenos médicos y clínicos.
- Facilidad para identificar y visualizar procesos, funciones de órganos, tejidos y patologías.

http://www.gopixpic.com/413/human-head-anatomy-with-external-and-internal-carotid-arteries

# Videojuegos



https://www.youtube.com/watch?v=c0o6BPYKBiA

### Videojuegos

- Simulaciones, efectos especiales, herramientas para introducir realismo y fantasía a la vez.
- Sistemas de interacción con el usuario para el control de los videojuegos.





http://www.mcmbuzz.com/2011/12/01/videogames-are-not-just-for-christmas/http://www.deviantart.com/tag/videogames

#### Realidad Virtual



https://www.youtube.com/watch?v=v-mK5oNkr-I

### Realidad virtual

- Inmersión en un entorno simulado.
- Dispositivos
   especializados
   facilitan la interacción
   con los objetos
   virtuales.

http://www.medscape.com/viewarticle/721680

www.metaversed.com/home/attachment/audistandort-ingolstadtcave-des-vorseriencentersvirtual-reality-system-zur-einbau-und-montagesimulation/





# ¿Qué es Computación Gráfica?

# Computación gráfica

- Gráficos por computadora.
- Representación de datos de forma gráfica utilizando un computador.
- Creación, almacenamiento y manipulación (interacción) de modelos, imágenes y objetos.
- Aplicaciones en física, matemática, ingeniería, arquitectura, fenómenos naturales, medicina, entretenimiento, publicidad, ...

### Gráficos



Visión



Percepción

# Percepción



www.ledsmagazine.com/articles/print/volume-10/issue-2/features/understand-color-science-to-maximize-success-with-leds-part-4-magazine.html

### Percepción



dot-color.com/2013/07/16/how-much-color-gamut-do-displays-really-need-part-2-how-we-perceive-color/

# Percepción

#### Conceptos involucrados:

- Física
  - Iluminación
    - Espectro electromagnético.
  - Reflexión
    - Materiales.
    - · Geometría.
- Percepción
  - Fisiología y neurofisiología
  - Sicología de la percepción

# Fisiología del ojo



## Fisiología del ojo



## Fisiología del ojo



## Fisiología del ojo



askabiologist.asu.edu/rods-and-cones

#### Sistema visual humano



#### Sistema visual humano



wine4soul.files.wordpress.com/2012/10/visual-cortex.jpg

Ilusiones ópticas – imágenes ambiguas:





Tonos medios (halftoning):



How it's perceived

Tonos medios (halftoning):



Tonos medios (halftoning) en color:



# ¿Y cómo empezó?





Sketchpad - 1959







Ratón para computador - 1960



https://en.wikipedia.org/wiki/Computer\_mouse







Westworld - 1973





Tron - 1982

https://peryglproductions.wordpress.com/2013/11/14/from-tron-to-legacy-the-history-of-computer-generated-imagery-in-cinema/























Toy story - 1995





#### Actividad inicial

- Paso 1: escoger un tema o noticia de interés en Computación Gráfica. Escribirlo en el papel entregado. (15 minutos)
- Paso 2: explorar el tema, preparando una presentación rápida de hasta 5 minutos. (30 minutos)
- Paso 3: hacer la presentación del tema ante el grupo.

#### Referencias

- D. Hearn, M.P. Baker. Gráficos por computadora con OpenGL, 3a edición. Pearson Prentice Hall, 2006.
- J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes.
   Computer graphics: principles and practice, 2<sup>nd</sup> edition in C. Addison-Wesley, 1996.
- en.wikipedia.org/wiki/Computer\_graphics
- graphics.cs.uni-saarland.de/fileadmin/cguds/courses/ ws1011/cg1/slides/CG01-History\_Applications.pdf
- garryowen.csisdmz.ul.ie/~cs4815/resources/lect02.pdf
- www.langbein.org/publish/graphics/I/G-02-I\_2-handout.pdf