

Linear Models for Panel Data

Advanced Microeconometrics

Anders Munk-Nielsen 2022

Introduction

Child Penalty

Source: Kleven, Landais & Søgaard (2019; AEJ Applied Economics).

They use Fixed Effects, whereas previous literature used Pooled OLS.

Blitz Discussion

The female child penalty in wages

We want to know if females have a higher wage-penalty and estimate the model

$$\mathsf{wage}_{it} = \beta_1 \mathbf{1}\{\mathsf{child}\}_{it} + \beta_2 \mathbf{1}\{\mathsf{child}\}_{it} \mathbf{1}\{\mathsf{female}\}_i + c_i + u_{it}.$$

where $\mathbf{1}\{\text{child}\}$ is a dummy for having a child.

Discuss

- 1. Why is there no separate gender dummy? ($\beta_3 \mathbf{1} \{ \text{female} \}$)
- 2. Based on the graph, what are β_1 and β_2 approximatey? Interpret this. impact males

nterpret this. impact males | beta_2 is approx -0.25 - having a child penalizes earnings | by about .25 percent | continue for a percent | continu

this would be wages for females w/out children we are interested in variation of wages within ind that have children not those do not have children

3. Give inutitive (meaning: real-world) explanations for correlation

(positive or negative) between c_i and

- $3.1~1{child},~{g(\beta_1)=0} \rightarrow men~choose~jobs~with~little-to-no~paternity~leave(?)$ / preferring work to child-care
- 3.2 $1\{\text{child}\}1\{\text{female}\}$. $\text{E(\beta=2c_i<0)} \rightarrow \text{women choosing jobs with lower wages after child-preferring child-care to work}$

Positive view

Over time: total inequality \downarrow , so now almost only child-related inequality remains.

Where are we in the course?

Part	Торіс	Parameterization non-linear	Estimation non-linear	Dimension $dim(x)$	Numerical optimization	M-estimation (Part III)	Outcome (y_i)	Panel (c_i)
1	OLS	÷	÷	low	÷	✓	R	✓
II	LASSO	÷	✓	high	✓	÷	R	÷
IV	Probit	√	✓	low	✓	✓	{0,1}	÷
	Tobit	✓	✓	low	✓	✓	[0;∞)	÷
	Logit	√	✓	low	✓	✓	{1, 2,, <i>J</i> }	÷
	Sample selection	✓	✓	low	✓	✓	\mathbb{R} and $\{0,1\}$	÷
	Simulated Likelihood	✓	✓	low	✓	✓	Any	✓
	Quantile Regression	÷	✓	(low)	✓	✓	R	÷
	Non-parametric	√	(√)	∞	÷	÷	R	÷

Outline

Panel model

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}.$$

			Estimator				
Assumptions	Rank	Description	POLS	BE	RE	FE	FD
$E(u_{it} \mathbf{x}_{it},c_i)=0,\ c_i=c,$	X'X	No individual effects	√ + *	✓	✓	√	✓
$E(u_{it} \mathbf{X}_i,c_i)=0,\ c_i\simIID(0,\sigma_c^2),$	X'X	Random effects	✓	✓	√ + *	√	✓
$E(u_{it} \mathbf{X}_i,c_i)=0,\;E(c_i\mathbf{x}_{it})\neq 0,$	Χ'X	Fixed effects	÷	÷	÷	✓	✓
$E(u_{it} \mathbf{X}_i,c_i)=0$, $E(c_i\mathbf{x}_{it}) eq 0$, and u_{it} IID	Χ'X	Fixed effects	÷	÷	÷	√ + *	✓
$E(u_{it} \mathbf{X}_i,c_i)=0,\ E(c_i\mathbf{x}_{it}) eq 0 \ and \ \Delta u_{it} \ IID$	$\Delta \mathbf{X}' \Delta \mathbf{X}$	Fixed effects	÷	÷	÷	✓	√ + *
$E(u_{it} \mathbf{x}_{it},c_i)\neq 0$	-	Endogeneity	÷	÷	÷	÷	÷

 $\left(\div = \mathsf{inconsistent}, \, \checkmark = \mathsf{consistent}, \, \star = \mathsf{efficient} \right)$

Notation

Average: a "bar" denotes an average,

$$\overline{\mathbf{x}}_i \equiv \frac{1}{T} \sum_{t=1}^T \mathbf{x}_{it}$$

- Transformations:
 - Demeaning:

$$\ddot{\boldsymbol{x}}_{it} \equiv \boldsymbol{x}_{it} - \overline{\boldsymbol{x}}_i,$$

First-differences:

$$\Delta \mathbf{x}_{it} \equiv \mathbf{x}_{it} - \mathbf{x}_{it-1}$$
.

- ALWAYS define explicitly what you mean by mathematical symbols.
- **Estimator:** A "hat" denotes an estimator, e.g. $\hat{\beta}$ is an estimate of β .

No Unobserved Effects: $c_i = 0$

Zooming out on y

Adding an IID c_i : $E(x_i'c_i) = 0$ (Random Effects)

Adding an IID c_i : $E(x_i'c_i) = 0$ – pooled OLS

Zooming out on x

Allowing Endogeneity: $E(x_i'c_i) \neq 0$ (Fixed Effects)

Pooled OLS is inconsistent

Demeaning y_{it}

Demeaning y_{it} ... and zooming

Also demeaning x_{it}

POLS on Demeaned Data

Model

General linear panel data model

General Model

$$y_{it} = c_{it} + \mathbf{x}_{it}\boldsymbol{\beta}_{it} + u_{it}.$$

- Suppose we assume $u_{it} \sim \text{IID}(0, \sigma_u^2)$ (i.e. u_{it} independent of all variables, so in particular $E(u_{it}|\mathbf{x}_{it}, c_{it}, \beta_{it}) = 0$)
 - **Discuss:** "This model is too general and is not estimable ..." (CT, p. 699)
- Moving forward: our assumptions will impose structure.
 Throughout, we at least assume
 - $eta_{\it it}=eta$ (common slope), rules out many interesting effects
 - $c_{it} = c_i$ (time-constant individual specific effect)

Linear panel data model

Model

$$y_{it} = c_i + \mathbf{x}_{it}\beta + u_{it}.$$

- Error term: it is fruitful to write the model in terms of a composite error term, denoted v_{it}.
- Intercept? We can either
 - 1. Assume $E(c_i) = c$ and have no constant in \mathbf{x}_{it}

$$y_{it} = c + \mathbf{x}_{it}\beta + v_{it}, \quad v_{it} = c_i - c + u_{it}$$

2. Assume $E(c_i) = 0$ and have a constant in \mathbf{x}_{it} [preferred]

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + v_{it}, \quad v_{it} = c_i + u_{it}$$

 Usefulness: map assumptions about c_i, u_{it} into behavior of v_{it} and use results about cross-sectional OLS.

Assumptions

Assumption: strict (or strong) exogeneity (SE)

$$E(u_{it}|c_i, \mathbf{x}_{i1}, ..., \mathbf{x}_{iT}) = 0.$$

Assumption: contemporaneous exogeneity (CE)

$$\mathsf{E}(u_{it}|c_i,\mathbf{x}_{it})=0.$$

- SE rules out y_{it-1} as a regressor in \mathbf{x}_{it} .
 - We will prove this later...
 - ... but basically, *y_{it}* is in **x**_{*it*+1}...
- **Distinction:** Conditional ⇒ unconditional exogeneity
 - Conditional: $E(u_{it}|\mathbf{x}_{it}) = \mathbf{0}$ stricter
 - Unconditional: $E(\mathbf{x}_{it}u_{it}) = \mathbf{0}$ weaker

What do we observe?

- Model components: y_{it} , \mathbf{x}_{it} , c_i , u_{it} . Only $(y_{it}, \mathbf{x}_{it})$ observed.
- We can compute $E(y_{it}|\mathbf{x}_{it})$ for different values of \mathbf{x}_{it}
 - That is, we can maybe hope to estimate

$$\frac{\partial \mathsf{E}(y_{it}|\mathbf{x}_{it})}{\partial x_{itk}}.$$

The problem: By strict exogeneity, the model implies

$$\mathsf{E}(y_{it}|\mathbf{x}_{it}) = \mathsf{E}(c_i|\mathbf{x}_{it}) + \mathbf{x}_{it}\beta.$$

- If $E(c_i|\mathbf{x}_{it})$ varies with \mathbf{x}_{it} , then that is reflected in $\frac{\partial E(y_{it}|\mathbf{x}_{it})}{\partial \mathbf{x}_{itk}}$
- **Note:** the important part is whether $E(c_i|\mathbf{x}_{it}) = E(c_i)$ (not a function of \mathbf{x}_{it}),
 - ...not whether $E(c_i) = 0$
 - (if E(c_i) = c ≠ 0, this cannot be separately identified from the intercept)

Proving Inconsistency

- **Proposition:** POLS is inconsistent if $E(\mathbf{x}'_{it}c_i) \neq \mathbf{0}$ or $E(\mathbf{x}'_{it}u_{it}) \neq \mathbf{0}$.
- Proof: By definition, POLS is

$$\begin{split} \hat{\boldsymbol{\beta}}_{POLS} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{c} + \mathbf{u}) \\ &= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\boldsymbol{c} + \mathbf{X}'\mathbf{u}). \end{split}$$

• Take the plim and note that $\operatorname{plim}(N^{-1}T^{-1}X'X) = E(x'x)$,

$$\mathrm{plim} \hat{\boldsymbol{\beta}}_{POLS} = \boldsymbol{\beta} + \mathsf{E}(\mathbf{x}'\mathbf{x})^{-1} \big[\mathsf{E}(\mathbf{x}'c) + \mathsf{E}(\mathbf{x}'u) \big]$$

by contemporaneous exogeneity.

■ Thus: $p\lim \hat{\beta}_{POLS} = \beta$ if E(xc) = 0 and E(xu) = 0, but not otherwise.

Plan

- Now: different strategies based on $E(xc_i)$.
- Under **exogeneity** of the individual effect, $E(xc_i) = 0$:
 - Pooled OLS is consistent
 - Random Effects Estimator is efficient
- Under **endogeneity**, $E(xc_i) \neq 0$,
 - Fixed Effects (FE) estimator
 - First Differences (FD) estimator
 - Common feature: Transform data to eliminate c_i
 - Implication: only within-individual time variation identifies eta

Fixed Effects Model

Linear panel data model

Model

$$y_{it} = c_i + \mathbf{x}_{it}\boldsymbol{\beta} + u_{it}.$$

- Assume:
 - Strict exogeneity: $E(u_{it}|\mathbf{X}_i,c_i)=0$ $(\mathbf{X}_i\equiv(\mathbf{x}_{i1},...,\mathbf{x}_{iT}))$
 - Rank condition: (to be specified)
- Idea: perform within transformation,

$$\ddot{a}_{it} \equiv a_{it} - \overline{a}_i, \quad \overline{a}_i \equiv \frac{1}{T} \sum_{t=1}^{T} a_{it}$$

for variables $\ddot{y}_{it}, \ddot{x}_{it}, \ddot{u}_{it}$.

Within transformation

Starting point: model equation

$$y_{it} = \mathbf{x}_{it}\boldsymbol{\beta} + c_i + u_{it}.$$

Transformed equation

$$y_{it} - \overline{y}_{i} = (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i})\beta + \overbrace{c_{i} - \overline{c}_{i}}^{=0} + u_{it} - \overline{u}_{i}$$
$$\ddot{y}_{it} = \ddot{\mathbf{x}}_{it}\beta + \ddot{u}_{it}.$$

- Great success! c_i is eliminated from the equation!
- **Note:** no assumptions regarding c_i − except
 - Time-constant,
 - Functional form (additively separable).
 - \Rightarrow we can allow for arbitrary correlation between x and c_i

Fixed Effects Estimator

Fixed Effects (FE) Estimator

$$\hat{eta}_{\mathit{FE}} = (\ddot{\mathsf{X}}'\ddot{\mathsf{X}})^{-1}\ddot{\mathsf{X}}'\ddot{\mathsf{y}}.$$

(also called the Within Estimator)

- Does this work? Same steps as cross-sectional OLS:
 - Focus on the equation $\ddot{y}_{it} = \ddot{\mathbf{x}}_{it}\beta + \ddot{\mathbf{u}}_{it} \dots$
 - ... check conditions for OLS on this:
- Exogeneity: $E(\ddot{u}_{it}\ddot{\mathbf{x}}_{it}) = \mathbf{0}$.
- Rank condition: X'X must be invertible:

FE Assumptions

FE Assumptions for Consistency

- 1. $E(\ddot{\mathbf{x}}_{it}\ddot{u}_{it}) = \mathbf{0}$
- 2. X'X must be invertible

Challenge: translate assumptions on model primitives $(\mathbf{x}_{it}, u_{it}, c_i)$ to assumptions on transformed data $(\ddot{\mathbf{x}}_{it}, \ddot{u}_{it})$

Exogeneity: contemporaneous exogeneity $(E(u_{it}|\mathbf{x}_{it})=0)$ is insufficient

$$E(\ddot{\mathbf{x}}_{it}\ddot{u}_{it}) = E(\mathbf{x}_{it}u_{it}) - T^{-1}\sum_{s=1}^{T} \left[E(\mathbf{x}_{is}u_{it}) + E(\mathbf{x}_{it}u_{is}) \right] + E(\overline{\mathbf{x}}_{i}\overline{u}_{i})$$

- Strict exogeneity: $E(u_{it}|\mathbf{x}_i) = 0 \Rightarrow E(u_{it}\mathbf{x}_{is}) = 0 \ \forall t, s.$
- Alternative formulation of strict exogeneity:

$$E(y_{it}|\mathbf{x}_{i1},...,\mathbf{x}_{iT},c_i)=E(y_{it}|\mathbf{x}_{it},c_i).$$

• E.g. violated for dynamic models $(x_{it-1} \text{ may be relevant})$

FE Assumptions

FE Assumptions for Consistency

- 1. $E(\ddot{\mathbf{x}}_{it}\ddot{u}_{it}) = \mathbf{0}$
- 2. X'X must be invertible
 - Rank condition: what does this rule out?
 - Answer: variables
 - Examples: birth year, sex, genes, ethnic origin, etc.
- Discuss: in our "effect of education on wages," what sort of data requirements does this pose?

FE Graphically

- Inconsistency of POLS caused by Corr(x_{it}, c_i)
- Demeaning ⇒ points are neatly "on a line"

Example from Problem Set 4

Fertility and Female Labor

Consider this model of female occupation

$$\mathbf{1}\{i \text{ works in year } t\} = \mathbf{x}_{it}\beta + c_i + u_{it}.$$

where \mathbf{x}_{it} contains $\mathbf{1}\{\text{gives birth in year }t\}$. Which of the following stories violate strict/contemporaneous exogeneity

- Alice experiences health problems related to her birth and has stop working.
- Beth foresees a pandemic next year and is worried she may get fired, so she gets pregnant to be legally protected.
- Cynthia's firm shuts down. She is bored and accidentally has a baby. Now she abhors the thought of job interviews.
- Some men hate pregnant women.

Implementation with matrix algebra

- Cool result: you can do demeaning using matrices!
 - ⇒ faster computation

Demeaning matrix

$$\mathbf{Q}_{T} \equiv \mathbf{I}_{T \times T} - \frac{1}{T} \mathbf{1}_{T \times T} = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} - \begin{pmatrix} T^{-1} & \cdots & T^{-1} \\ \vdots & \ddots & \vdots \\ T^{-1} & \cdots & T^{-1} \end{pmatrix}$$

- Then $\ddot{\mathbf{x}}_i = \mathbf{Q}_T \mathbf{x}_i$.
- The exercises give hands on experience with this

Alternative Idea: LSDV

- Alternative idea: why not just estimate the c_i as parameters?
 - ⇒ Least Squares Dummy Variables (LSDV) Estimator
- How: simply add N dummies, $\{1_i\}_{i=1}^N$, to \mathbf{x}_{it} .
- Result: numerically the same as FE.
- Drawbacks:
 - Computationally: $(\mathbf{X}'\mathbf{X}')^{-1}$ takes a long time to compute $(N-1+K\times N-1+K$ inversion) and takes up a ton of RAM
 - Theoretically: Since $N \to \infty$ but $T \not\to \infty$, $\dim(\beta)$ increases in N!
 - High-dimensional problem; what does consistency mean? What is the "true" β, ∞-dimensional?
 - Known as the "incidental parameters problem"
- Conclusion: we always prefer OLS on within-transformed data to LSDV!

Inference

Asymptotic Distribution

Writing out:

$$\begin{split} \hat{\boldsymbol{\beta}}_{\textit{FE}} &= (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1}\ddot{\mathbf{X}}'(\ddot{\mathbf{X}}\boldsymbol{\beta} + \ddot{\mathbf{u}}) \\ &= \boldsymbol{\beta} + (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1}\ddot{\mathbf{X}}'\ddot{\mathbf{u}} \end{split}$$

 Similarly to cross-sectional OLS, if our assumptions hold on the transformed data, we get

$$\sqrt{N}(\hat{\boldsymbol{\beta}}_{\mathit{FE}} - \boldsymbol{\beta}) \overset{d}{\rightarrow} \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}).$$

- The "bread" is similar: $\mathbf{A} \equiv \mathbf{E}(\ddot{\mathbf{X}}_i'\ddot{\mathbf{X}}_i)$ ($\ddot{\mathbf{X}}_i$ is $T \times K$ so \mathbf{A} is $K \times K$).
- The "meat" is different
- Normality comes from the CLT again
 - "factor \times average $\stackrel{d}{\rightarrow}$ Normal"
 - $\frac{1}{N} \sum_{i} \sum_{t} \ddot{\mathbf{x}}_{it}' \ddot{u}_{it}$ is our average,
 - $\frac{1}{N} \sum_{i} \sum_{t} \ddot{\mathbf{x}}'_{it} \ddot{\mathbf{x}}_{it}$ is the "factor." (Note: $\frac{1}{T}$ cancelled out.)

Central Limit Theorem: Illustration

Columns are underlying distribution families, rows show the distribution of an *average* based on *N* draws. Note the x axis scale changing over rows!

Variance

- Question: what is the asymptotic variance?
- CLT says for a sample $\{\mathbf w_i\}_{i=1}^N$ with $\mathsf E(\mathbf w_i) = \mathbf 0_{1 imes \mathcal K}$, then

$$\frac{1}{\sqrt{N}}\sum_{i}\mathbf{w}_{i}\overset{d}{\rightarrow}\mathcal{N}(\mathbf{0},\mathbf{B}),\quad \mathbf{B}\equiv\mathsf{V}(\mathbf{w}_{i}).$$

- Our case: $\mathbf{w}_i := \sum_{t=1}^T \ddot{\mathbf{x}}_{it}' \ddot{u}_{it} \ (K \times 1)$
- Variance of a sum: recall $V(\sum_j a_j) = \sum_j \sum_{j'} Cov(a_j, a_{j'})$.

$$\begin{split} \mathsf{V}\left(\sum_{t=1}^{T}\ddot{\mathsf{x}}_{it}'\ddot{u}_{it}\right) &= \sum_{t=1}^{T}\sum_{s=1}^{T}\mathsf{Cov}(\ddot{\mathsf{x}}_{it}'\ddot{u}_{it},\ddot{\mathsf{x}}_{is}'\ddot{u}_{is}) \\ &= \sum_{t=1}^{T}\sum_{s=1}^{T}\mathsf{E}\left[\ddot{\mathsf{x}}_{it}'\ddot{u}_{it}\left(\ddot{\mathsf{x}}_{is}'\ddot{u}_{is}\right)'\right]. \\ &= \sum_{t=1}^{T}\sum_{s=1}^{T}\mathsf{E}\left(\ddot{\mathsf{x}}_{it}'\ddot{u}_{it}\ddot{u}_{is}\ddot{\mathsf{x}}_{is}\right). \end{split}$$

Since $Cov(\mathbf{a}, \mathbf{b}) = E(\mathbf{a}\mathbf{b}') - E(\mathbf{a})E(\mathbf{b})'$, $E(\ddot{u}_{it}) = 0$, and $(\mathbf{a}\mathbf{b})' = \mathbf{b}'\mathbf{a}'$.

Variance

We showed:

$$V\left(\sum_{t=1}^{T}\ddot{\mathbf{x}}_{it}'\ddot{u}_{it}\right) = \sum_{t=1}^{T}\sum_{s=1}^{T}\mathsf{E}\left(\ddot{\mathbf{x}}_{it}'\ddot{u}_{it}\ddot{u}_{is}\ddot{\mathbf{x}}_{is}\right) \quad (K\times K)$$

Law of Iterated Expectations (LIE) giver

$$\mathsf{E}\left(\ddot{\mathbf{x}}_{i\mathbf{t}}'\ddot{u}_{i\mathbf{t}}\ddot{u}_{is}\ddot{\mathbf{x}}_{is}\right) = \mathsf{E}\left[\ddot{\mathbf{x}}_{i\mathbf{t}}'\mathsf{E}\left(\ddot{u}_{i\mathbf{t}}\ddot{u}_{is}|\ddot{\mathbf{X}}_{i}\right)\ddot{\mathbf{x}}_{is}\right]$$

• In matrix form with $\ddot{\mathbf{X}}_i$ as $T \times K$:

$$V(\ddot{\mathbf{X}}_{i}\ddot{\mathbf{u}}_{i}) = E\left[\ddot{\mathbf{X}}_{i}'\underbrace{E\left(\ddot{\mathbf{u}}_{i}\ddot{\mathbf{u}}_{i}'|\ddot{\mathbf{X}}_{i}\right)}_{T\times T}\ddot{\mathbf{X}}_{i}\right] \quad (K\times K)$$

Assumption FE.3 (Homoskedasticity)

$$\mathsf{E}(\mathbf{u}_i\mathbf{u}_i'|\mathbf{x}_i,c_i)=\sigma_u^2\mathbf{I}_T.$$

Adding **FE.1**, this implies $V(\mathbf{u}_i|\mathbf{x}_i,c_i)=\sigma_u^2\mathbf{I}_T$.

Variance

Asymptotically, under FE.1 and FE.2:

$$\begin{split} & \sqrt{N} \left(\hat{\boldsymbol{\beta}}_{\textit{FE}} - \boldsymbol{\beta} \right) \overset{\textit{d}}{\rightarrow} \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1} \mathbf{B} \mathbf{A}^{-1}), \\ \mathbf{A} & \equiv \mathsf{E}(\ddot{\mathbf{X}}_i' \ddot{\mathbf{X}}_i), \quad \mathbf{B} \equiv \mathsf{E} \left[\ddot{\mathbf{X}}_i' \mathsf{E} \left(\ddot{\mathbf{u}}_i \ddot{\mathbf{u}}_i' | \ddot{\mathbf{X}}_i \right) \ddot{\mathbf{X}}_i \right]. \end{split}$$

Panel-robust Variance Estimator

$$\widehat{\mathsf{Avar}}(\hat{\boldsymbol{\beta}}_\mathit{FE}) = (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1} \left(\textstyle\sum_{i=1}^N \ddot{\mathbf{X}}_i' \hat{\hat{\mathbf{u}}}_i \hat{\hat{\mathbf{u}}}_i' \ddot{\mathbf{X}}_i \right) (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1},$$

where $\hat{\ddot{u}}_{it} = \ddot{y}_{it} - \ddot{\mathbf{x}}_{it} \boldsymbol{\beta}_{FE}$.

Variance Estimator under Homoskedasticity (FE.3)

$$\begin{split} \widehat{\mathsf{Avar}}(\hat{\boldsymbol{\beta}}_{\mathit{FE}}) &= & \hat{\sigma}_{\mathit{u}}^2 (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1}, \\ \hat{\sigma}_{\mathit{u}}^2 &= & \frac{\sum_{i=1}^N \sum_{t=1}^T \hat{u}_{it}^2}{NT - N - K}. \end{split}$$

Comment on $\hat{\sigma}_u^2$

• Under FE.3: We estimate

$$\hat{\sigma}_u^2 = \frac{\sum_i \sum_t \hat{\ddot{u}}_{it}^2}{NT - N - \mathbf{K}}.$$

- Usual df. correction: "-K": for efficiency, no effect asymptotically (as $N \to \infty$)
 - We have estimated K parameters in $\hat{\beta}_{FE}$
- New correction: "-N": This does matter the estimator is inconsistent without it.
 - We have estimated *N* "means"
 - LSDV: Here we explicitly estimated N dummies
 - ... and the two estimators are identical.

Digression: Cluster-robust Variance Estimation?

- We assumed IID across i (but not over time within i)
- In other settings, observations may be grouped in other forms of "clusters".
 - E.g. classrooms, markets, regions, etc.
- First note that we can always write

$$V(\mathbf{X}'\mathbf{u}) = V\left(\sum_{t=1}^{T} \sum_{i=1}^{N} \mathbf{x}'_{it} u_{it}\right)$$

$$= \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{s=1}^{T} \sum_{j=1}^{N} Cov(\mathbf{x}'_{it} u_{it}, \mathbf{x}'_{js} u_{js})$$

$$= \sum_{t=1}^{T} \sum_{i=1}^{N} \sum_{s=1}^{T} \sum_{j=1}^{N} E\left[\mathbf{x}'_{it} E\left(u_{it} u_{js} \middle| \mathbf{X}_{i}\right) \mathbf{x}_{js}\right].$$

- The crux is to ask which pairs are uncorrelated: $E(u_{it}u_{ij}|\mathbf{X})=0$?
- **FE.3:** $E(\ddot{u}_{it}\ddot{u}_{js}|\mathbf{X}_i) = \sigma^2$ only if $i = j \land s = t$ (and 0 otherwise).
- Independent individuals: $E(\ddot{u}_{it}\ddot{u}_{js}|\mathbf{X}_i)=0$ when $i\neq j$.
- **Serial correlation** within individuals: $E(\ddot{u}_{it}\ddot{u}_{is}|\mathbf{X}_i) \neq 0$ when $t \neq s$.
- Independently sampled *clusters*: Each *i* belongs to a cluster,

 $C \subset \{1, M\}$

More thoroughly

- Suppose there is a partition of the data: $\{\mathcal{G}_g\}_{g=1}^G$.
 - Each observation is in precisely one "cluster": $(i,t) \in \mathcal{G}_g$, and $\mathcal{G}_g \cap \mathcal{G}_{g'} = \emptyset$.
- Suppose clusters are drawn independently, but errors from the same cluster may be correlated.
- Then rewrite

$$\sum_{i} \sum_{t} \mathbf{x}'_{it} u_{it} = \sum_{g=1}^{G} \sum_{(i,t) \in \mathcal{G}_g} \mathbf{x}'_{it} u_{it}.$$

Our CLT then works on

$$\frac{1}{\sqrt{G}}\sum_{g=1}^{G}\mathbf{w}_{g}\overset{d}{\to}\mathcal{N}(\mathbf{0},\mathbf{B}).$$

- Where $\mathbf{w}_g = \sum_{(i,t) \in \mathcal{G}_g} \mathbf{x}_{it} u_{it}$.
- The variance, B, is then

$$V(\mathbf{w}_g) = \sum_{(i,t)\in\mathcal{G}_g} \sum_{(j,s)\in\mathcal{G}_g} \text{Cov}(\mathbf{x}'_{it}u_{it}, \mathbf{x}'_{js}u_{js})$$
$$= \sum_{(i,t)\in\mathcal{G}_g} \sum_{(i,s)\in\mathcal{G}_g} \mathbb{E}\left[\mathbf{x}'_{it}\mathbb{E}(u_{it}u_{is}|\mathbf{X})\mathbf{x}_{is}\right].$$

Cluster-robust std.err.

Cluster-robust std.err. (p. 865)

If $G \to \infty$ but the # of i in each g is fixed,

$$\widehat{\mathsf{Avar}}(\boldsymbol{\beta}_{\mathit{POLS}}) = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\textstyle\sum_{g=1}^{\mathit{G}} \mathbf{X}_g' \hat{\mathbf{u}}_g \hat{\mathbf{u}}_g' \mathbf{X}_g\right) \left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

- In practice: applied empirical papers always use clustered std.errs.
- **Tendency** that clustered std.errs. are bigger.
 - If there is correlation within clusters ⇒ only CRSE are consistent!
 - If there is none ⇒ the difference between CRSE and typical SE can be substantial!
- ⇒ With $N \ge 1$ mio., $se(\hat{\beta})$ can easily increase 10 times by clustering on municipality!
- What to cluster on? Not too few clusters need $G \to \infty$.
 - Typical: Individual, firm, municipality, market, year-month, etc.

Towards Visual Intuition: Blocks of E(uu'|X)

The FE estimator is

$$\hat{\boldsymbol{\beta}}_{\textit{FE}} = \boldsymbol{\beta} + (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1}\ddot{\mathbf{X}}'\ddot{\mathbf{u}}.$$

• If a CLT applies, then it always holds:

$$\mathsf{Avar}(\hat{\boldsymbol{\beta}}_{\mathit{FE}}) = \left[\mathsf{E}(\ddot{\mathbf{X}}'\ddot{\mathbf{X}})\right]^{-1} \mathsf{E}\left[\ddot{\mathbf{X}}'\mathsf{E}\left(\ddot{\mathbf{u}}\ddot{\mathbf{u}}'|\ddot{\mathbf{X}}\right)\ddot{\mathbf{X}}\right] \left[\mathsf{E}(\ddot{\mathbf{X}}'\ddot{\mathbf{X}})\right]^{-1}.$$

- **Problem:** $E\left(\ddot{\mathbf{u}}\ddot{\mathbf{u}}'|\ddot{\mathbf{X}}\right)$ is $NT \times NT$: way too many parameters \Rightarrow structure is needed.
 - IID over i and $t \Rightarrow \mathsf{E}\left(\ddot{\mathsf{u}}\ddot{\mathsf{u}}'|\ddot{\mathsf{X}}\right) = \sigma^2 \mathsf{I}_{NT}$ (fully diagonal)
 - IID over $i \Rightarrow E(\ddot{\mathbf{u}}\ddot{\mathbf{u}}'|\ddot{\mathbf{X}})$ has N identical blocks of size $T \times T$
 - IID over G clusters \Rightarrow $E\left(\ddot{\mathbf{u}}\ddot{\mathbf{u}}'|\ddot{\mathbf{X}}\right)$ has G blocks

E(üü′) with FE.3

Figure 1: Cov $(u_{it}, u_{js}) = 0$ if $i \neq j$ or $s \neq t$

E(üü') without FE.3

Figure 2: $Cov(u_{it}, u_{js})$

■ The N blocks are complex $T \times T$ matrices, but they are identical

RE model: Next lecture

Figure 3: $Cov(u_{it} + c_i, u_{js} + c_j)$

