組み込み開発の演習

このコンテンツでは Grove Beginner Kit を使用して 7個の組み込み開発の演習を行います。

加えて、Grove Beginner Kit 以外のデバイスが必要なスケッチも一つ用意しました。実施できない場合はスケッチを読んでみるところまでにします。

集合形式の場合には、講師がデモで動作を見せるかもしれません。

Arduino IDE の操作で覚えた方法で、次のスケッチを順に開いてマイコンボードに転送して組み込み開発を体験します。

番号	スケッチ名	演習する内容	スケッチの動 作	備考
1	01_BlinkLed.ino	デジタル出力	マイコンボー ド上の LED の 点滅 (Lチカ)	
2	02_BlinkExtLed.ino	デジタル出力	外部ポートの LED点滅	出力するポート以外 は全く同じコードに なることを確認しま す
3	03_BlinkLedByButton.ino	デジタル入力	ボタンを押し ている間だけ LED を点灯	
4	04_ToggleButton.ino	デジタル入力	ボタンを押す たびに LED を 点灯・消灯	
5	05_BlinkLedByRotary.ino	アナロ グ入力	ロータリース イッチ(ボリ ューム)で LED 点滅の速 度を変更	
6	06_BlinkLedByLightSensor.ino	アナロ グ入力	ライトセンサ ーの値で LED を点灯・消灯	部屋の明るさによっ ては、LED 点灯のし きい値 (点灯の条件の 値) を変更する必要が あります
7	07_DisplayEnvData.ino	I2C 環境セ ンサー ディス プレイ 表示	環境センサー (温度、湿 度)の値を読 み出してディ スプレイに表 示	IDE で環境センサー (DHT11)、液晶ディス プレイのライブラリ 追加が必要
8	08_DisplayEnvDataClcd.ino	外付け のキャ ラクタ ーディ スプレ イ表示	環境センサー の値を外付け のディスプレ イに表示	実行には外付けのキャラクターディスプレイ (LCD RGB Backlight) が必要 IDE で Grove - LCD RGB Backlight のライブラリ追加が必要

現在は、組み込み開発はボードで処理を実行できればいいだけではありません。

- IoT (=Internet of Things モノのインターネット)・・・クラウドに接続して、センサーデータを 収集したりクライド側からデバイスを操作したりする
- AI・・・クラウドと連携して、またはデバイス側で AI の処理を行う (エッジ AI と言います)

これらに対応するには、まず基本となる組み込み開発の知識が必要です。 今回の演習では、この組み込み開発の基礎を Grove Beginner Kit と Arduino IDE を使って体験しました。