Reg. No.

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, JULY 2024

First Semester

21MAB101T - CALCULUS AND LINEAR ALGEBRA

(For the candidates admitted from the academic year 2021-2022 onwards)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- Part B and Part C should be answered in answer booklet. (ii)

Time: 3 Hours

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1... The eigen values of A³ if $A = \begin{bmatrix} 0 & 2 & -7 \\ 0 & 0 & 3 \end{bmatrix}$

(A) $1^3, 2^3, 3^3$

(B) 1,2,3

(C) $1, \frac{1}{2^3}, \frac{1}{2^3}$

- 2 1 1.2 2. The eigen vectors corresponding to distinct eigen values of real symmetric matrix are
 - (A) Real and equal

(B) Distinct and complex

(C) Orthogonal

- (D) Equal and non-real
- The characteristic equation of the matrix $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ is

1 1 1,2

Max. Marks: 75

Marks BL CO PO

1,2 1

- (A) $\lambda^2 4\lambda + 5 = 0$
- (B) $\lambda^2 4\lambda 5 = 0$ (D) $\lambda^2 + 4\lambda + 5 = 0$
- (C) $\lambda^2 + 4\lambda 5 = 0$

- Write the quadratic form defined by the matrix $A = \begin{pmatrix} 6 & 1 & -7 \\ 1 & 2 & 0 \\ -7 & 0 & 1 \end{pmatrix}$ 4.
 - (A) $6x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 14x_1x_3$
 - (B) $6x_1^2 + x_2^2 + 6x_3^2 + x_1x_2 7x_1x_3$
 - (C) $6x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 14x_1x_3$
 - (D) $6x_1^2 + x_2^2 + 6x_3^2 + x_1x_2 14x_1x_3$
- 5. If $x = r \cos \theta$, $y = r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)} =$
 - (A) 1/r

(B) r^2

(C) - 1

6	The stationary points of the function (A) (0, 0) and (2, 0) (C) (1, 1) and (-2, 0)	1 $3x^2 - y^2 + x^3$ are (B) (0, 0) and (-2, 0) (D) (1, 1) and (2, 0)	1	2	2	1,2
7	If $f(x, y) = e^x \cos y$ then find f_{xy} (A) 1 (C) 2	(B) 0 (D) -1	1	2	2	1,2
8	If $z = x^2 + y^2 + 3xy$ then $\frac{\partial z}{\partial x}$ is (A) $2y+3x$ (C) $2x+3y$	(B) 3y	1	1	2	1,2
9.	Solution of $(D^2 + 4)y = 0$	(D) $2x$	1	2	3	1,2
	(A) $y = Ae^{2x} + Be^{-2x}$ (C) $y = A\cos\sqrt{2}x + B\sin\sqrt{2}x$	(B) $y = A\cos 2x + B\sin 2x$ (D) $y = A(x+B)e^{2x}$				
10.	The particular integral of $(D^2 + 4)y$ (A) $-\frac{x}{4}\cos(2x+5)$ (C) $-\frac{x}{2}\cos(2x+5)$	$= \sin(2x+5) \text{ is}$ (B) $\frac{x}{4}\sin(2x+5)$ (D) $-\frac{x}{2}\sin(2x+5)$	1	1	3	1,2
11.	If $y_1 = \cos x$, $y_2 = \sin x$ then the value (A) -1 (C) 1	e of $y_1y_2 - y_2y_1$ is (B) 0 (D) 1/2	1	2	3	1,2
12.	If two roots of the auxiliary equation then the corresponding complementa (A) $A\cos ax + B\sin ax$ (C) $Ae^{ax} + Be^{-ax}$	to become equal to the real number 'a' ry function is (B) $Ax + B$ (D) $(Ax + B)e^{ax}$	1,	2	3	1,2
13.	What is the curvature of a circle of ra (A) 1/3 (C) 3	dius 3 (B) -1/3 (D) 2	1	1	4	1,2
14.	The locus of center of curvature is ca (A) Radius of curvature (C) Evolute	lled (B) Envelope (D) Involute	1	2	4	1,2
15.	The curve which touches every member (A) Evolute (C) Circle	per of the family of curve is (B) Involute (D) Envelope	1 .	1	4	1,2

16.
$$\beta(m,n) = \frac{1}{(M+n)}$$
 (B) $\frac{1}{(M+n)}$ (C) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (D) $\frac{1}{(M+n)}$ (E) $\frac{1}{(M+n)}$ (E

22. a. Expand $e^x \sin y$ in powers of x and y as far as terms of the second degree.

(OR)

b. If
$$z = z(x, y)$$
 where $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$. Prove that
$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}.$$

23. a. Solve
$$(x^2D^2 + xD - 9)y = \frac{5}{x^2}$$
.

(OR)

b. Solve $y'' + y = \tan x$ by the method of variation of parameters.

- 8 4 3 1,2
- 24. a. Find the radius of curvature for the curve $y^2 = x^3 + 8$ at (-2,0).
- 8 3 4 1,2

(OR)

- b. Find the envelope of the family of straight lines $y = mx \pm \sqrt{a^2m^2 + b^2}$.
- 8 2 4 1,2

- 25. a. Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$
 - 2.3.4 + 3.4.5 +

b. Test the convergence of the series $\sum \frac{1.3.5...(2n-1)}{2.4.6...(2n)} x^n$.

PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions Marks BL CO PO

- 26. Reduce the quadratic form $x_1^2 + 5x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 6x_3x_1$ to canonical form by orthogonal reduction and find the rank, index, signature and the nature of the quadratic form.
 - 15 4 1 1,2 Fe
- 27. Find the volume of the greatest rectangular parallelopiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

* * * * *