Aprendizaje por refuerzo

Clase 24: meta RL

Para el día de hoy...

• Meta RL

Meta aprendizaje

• Los métodos que hemos revisados se hiperescializan

reinforcement learning Robot art by Matt Spangler, mattspangler.com

El problema

- Aprender una regla de adaptación
- $\theta^* = \arg\max_{\theta} \sum_{i=1}^n \mathbb{E}_{\pi_{\phi_i}(\tau)}[R(\tau)]$
- Donde: $\phi_i = f_{\theta}(\mathcal{M}_i)$

Relación con contextos

 ω : stack location

 ω : walking d

- Meta RL puede ser visto como política contextual donde la información de la tarea se infiere de la experiencia
- La información de la tarea puede ser acerca de la dinámica o la función de recompensa
- Las recompensas son una generalización de las metas

Adaptación

Explorar: recolectar tanta información como sea posible

Adaptar: utilizar los datos para obtener la política óptima

Algoritmo general

- En entrenamiento
 - Muestrar de una tarea i, recolectar datos D_i
 - Adaptar la política calculando $\phi_i = f(\theta, D_i)$
 - Recolectar datos D_i' con la política adaptada π_{ϕ_i}
 - Actualizar θ de acuerdo a $\mathcal{L}(D_i',\phi_i)$

Solución 1: recurrencia

- Duan et al. 2016, Wang et al. 2016, Heess et al. 2016
- Implementar una política como una red recurrente
- Entrenar en un conjunto de tareas

Un ejemplo

(a) Labryinth I-maze

(b) Illustrative Episode

Solución 2: optimización

Aprender una inicialización de parámetros para la cual un ajuste fino funcione

Algoritmo

while training:

for *i* in tasks:

- 1. sample k episodes $\mathcal{D}_i = \{(s, a, s', r)\}_{1:k}$ from π_{θ}
- 2. compute adapted parameters $\phi_i = \theta \alpha \nabla_{\theta} \mathcal{L}_i(\pi_{\theta}, \mathcal{D}_i)$
- 3. sample k episodes $\mathcal{D}'_i = \{(s, a, s', r)_{1:k}\}$ from π_{ϕ}

update policy parameters $\theta \leftarrow \theta - \nabla_{\theta} \sum_{i} \mathcal{L}_{i}(\mathcal{D}'_{i}, \pi_{\phi_{i}})$

Meta RL en robótica con demo de robot

- Tarea: realizar una tarea dada una sola demostración al robot
- Entrenamiento: ejecutar clonación del comportamiento para adaptación

$$\phi_i = heta - lpha
abla_ heta \sum_t ||\pi_ heta(o_t) - a_t^*||^2$$

Meta RL en robótica con demo de humano

 Tarea: realizar una tarea dada una sola demostración de un humano

$$\phi = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\psi}(\theta, \mathbf{d}^h)$$

 Entrenamiento: aprender una función de pérdida que adapte la política

$$\phi = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\psi}(\theta, \mathbf{d}^h)$$

POMDPs

POMDP como meta RL

- Enfoques
 - Política con memoria
 - Estimación explicita del estado

Modelo de creencias

POMDP for unobserved state

Goal state Where am I? p(h|c)So S1 S2

POMDP for unobserved task

$$a = "left", s = S0, r = 0$$

Estados de creencia de tareas

Comentarios

- Meta RL encuentra un procedimiento de adaptación que puede adaptar rápidamente la política a una nueva tarea
- Existen tres clases de soluciones: RNN, optimización y creencia de tareas.
- Existe conexión entre contextos y POMDPs
- Problemas abiertos: mejor exploración, definir distribución de tareas, meta aprendizaje en línea

RL multi-recompensa

"Toda meta puede ser descrita como la maximización de recompensas esperadas"

Racionalidad

- Teorema [Ramsey, 1931; von Neumann & Morgenstern, 1944]
- Dadas preferencias que satisfagan los axiomas, existe una función real U tal que:

$$U(A) \ge U(B) \leftrightarrow A \ge B$$

$$U([p_1, S_1; ...; p_n, S_n] = \sum_i p_i S_i$$

The Axioms of Rationality

Método de suma ponderada

$$\min_{x \in Q} \sum_{i=1}^{k} w_i f_i(x)$$

$$s. t \sum_{i=1}^{k} w_i = 1$$

 $w_i >= 0$ para $i = \{1, ..., k\}$

¿Pero... somos racionales?

Optimización multiobjetivo

- La vida es acerca de decidir
 - Individualmente
 - En grupo
- Típicamente involucran algún conflicto
- "Queremos todo"

Las 3 B

Un mejor ejemplo...

- Queremos comprar un nuevo auto y hemos identificado cuatro modelos que nos agradan: VW Golf, Opel Astra, Ford Focus, Toyota Corolla
- La decisión la será tomada de acuerdo a:
 - Precio
 - Consumo de combustible
 - Potencia
- ¿Cuál el la mejor alternativa?

		Alternatives			
		VW	Opel	Ford	Toyota
	Price (1,000 Euros)	16.2	14.9	14.0	15.2
Criteria	Consumption $\left(\frac{l}{100km}\right)$	7.2	7.0	7.5	8.2
	Power (kW)	66.0	62.0	55.0	71.0

Un poco de historia...

• La primera referencia a este tipo de situaciones se atribuye a Pareto (1896), quien escribió:

"We will say that the members of a collectivity enjoy maximum ophelimity in a certain position when it is impossible to find a way of moving from that position very slightly in such a manner that the ophelimity enjoyed by each of the individuals of that collectivity increases or decreases. That is to say, any small displacement in departing from that position necessarily has the effect of increasing the ophelimity which certain individuals enjoy, and decreasing that which others enjoy, of being agreeable to some and disagreeable to others."

El problema

$$\min_{x \in Q} F(x)$$

Donde:

$$Q = \{x \in \mathbb{R}^n | g_i(x) \le 0, i = 1, ..., I \text{ and}$$

$$h_{j(x)} = 0, j = 1 ..., m\}$$

$$F: Q \to \mathbb{R}^k$$

Dominancia de Pareto

- Sean $v, w \in R^k$. Entonces el vector v is menos que w ($v <_p w$), si $v_i < w_i$ para todo $i \in \{1, ..., k\}$. La relación \leq_p se define de forma análoga
- Un vector $y \in Q$ se dice que es dominado por un vector $x \in Q$ $(x \prec y)$ con respecto al problema multiobjetivo si

$$F(x) \leq_p F(y)$$
 y $F(x) \neq F(y)$
Si no, y se llama no dominado por x.

¿Y cómo encontramos esas soluciones de Pareto?

Se nos acabó el tiempo...

Para saber más

- Libros
 - Matthias Ehrgott: Multicriteria Optimization, Springer 2005
 - KaizaMiettinen: Nonlinear Multiobjective Optimization, Kluwer, 1999
 - Carlos Coello et al.: Evolutionary Algorithms for Solving Multiobjective Problems
 - Kalyanmoy Deb: Multi-objective Optimization using Evolutionary Algorithms
 - Curso de optimización multi-objetivo en PCIC;)

Para la otra vez...

• Cierre del curso

