STAT5010 Advanced Statistical Inference

Fall 2023

Lecture 1: Introduction, Sufficiency and Exponetial families

Lecturer: Tony Sit Scribe: Peiming Lai and Zhengyao Sun

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Inference Problem

- 1. You are given a collection of probability mesures $\{P_{\theta} : \theta \in \Theta\}$ on a sample space $(\mathcal{X}, \mathcal{F})$, where \mathcal{X} is a set and \mathcal{F} is a σ -field on \mathcal{X} .
- 2. Observe $X \sim P_{\theta}$ for some $\theta \in \Theta$.
- 3. Infer θ from X.

Let $L(\theta, \delta(X))$ be the loss in estimating θ by $\delta(X)$, an estimator. Define $R(\theta, \delta) = E_{X \sim P_{\theta}} L(\theta, \delta)$ to be the risk function of the estimator δ .

Example 1.1.1 Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\theta, 1), \ \Theta = \mathbb{R}, \ \mathcal{X} = \mathbb{R}^n$

$$X = (x_1, \dots, x_n)$$

$$P_{\theta}(A) = \frac{1}{\left(\sqrt{2\pi}\right)^n} \int_A e^{-\sum_{i=1}^n \frac{(x_i - \theta)^2}{2}} dx_1 \dots dx_n$$

$$L(\theta, \delta(X)) = (\theta - \delta(x))^2. \text{ Proposed estimators: } \begin{cases} \delta_1(X) = \bar{X} \\ \delta_2(X) = 0 \end{cases}$$

$$c.f. \begin{cases} R(\theta, \delta_1) = E(\bar{X} - \theta)^2 = \frac{1}{n} \\ R(\theta, \delta_2) = E(\theta^2) = \theta^2 \end{cases}$$

Strategy 1 (Unbiasedness)

Definition 1.1 (Unbiasedness) We say $\delta(X)$ is unbiased for θ if $E_{X \sim p_{\theta}}(\delta(X)) = \theta, \forall \theta \in \Theta$

Since $E(\delta_1(x)) = E(\frac{1}{n}\sum_{i=1}^n x_i) = \theta$ whereas $E(\delta_2(x)) = 0$, we shall show later that δ_1 is the "best" amongst the class of all unbiased estimators in this problem.

Strategy 2 (Minimaxity)

We can look at $\sup_{\theta \in \Theta} R(\theta, \delta)$ for comparison and $\delta_{minimax} = \arg \min_{\delta} \sup_{\theta \in \mathbb{R}} R(\theta, \delta)$. In our example, $\sup_{\theta \in \mathbb{R}} R(\theta, \delta_1) = \frac{1}{n}, \sup_{\theta \in \mathbb{R}} R(\theta, \delta_2) = +\infty$. We shall show that δ_1 is the best minimax estimator for this problem.

^{*} To rule out estimators like δ_2 , we need some strategies.

Strategy 3 (Bayes / Average Risk Optimality)

Assume θ is random and has a distribution π . In this case, we may compare estimitators via Bayes risk, which is defined as $E_{\theta \sim \pi} R(\theta, \delta)$.

In our example, let $\pi \sim N(\mu, \tau)$

Bayes risk of δ_1 is

$$E_{\theta \sim \pi} R(\theta, \delta_1) = E_{\theta \sim \pi} \left(\frac{1}{n}\right) = \frac{1}{n}$$

Bayes risk of δ_2 is

$$E_{\theta \sim \pi} R(\theta, \delta_2) = E_{\theta \sim \pi} (\theta^2) = \mu^2 + \tau$$

In this case, we shall show that there is a third estimator δ_3 which is the "best".

Strategy 4 What happens when n is large?

In this case, by WLLN, $\delta_1(X) = \bar{X}_n \xrightarrow{p} \theta$. Also, $\delta_2 \xrightarrow{p} 0$. We shall analyse the asymptotic normality in more details if time allows.

1.2 Sufficiency

Definition 1.2 (Statistic) A statistic T is a measurable function form $(\mathcal{X}, \mathcal{F})$ to $(\mathbb{R}^k, \mathcal{B}_{\mathbb{R}^k})$.

Definition 1.3 (Sufficient Statistic) A statistic T is said to be sufficient for θ (or $\{P_{\theta}: \theta \in \Theta\}$) of the conditional distribution of $(X \mid T)$ is free of $\theta, \forall \theta \in \Theta$.

Definition 1.4 (Conditional Distribution)

1. Suppose (X,Y) are discrete random variables with a probability mass function P(x,y) on a countable set \mathcal{X} . Then, the conditional distribution of X given Y=y has a pmf, given by $P(X=x\mid Y=y)$

$$= \frac{p(x,y)}{\sum_{(z,y)\in\mathcal{X}} p(z,y)}$$

2. if (X,Y) has a joint probability density function p(x,y) w.r.t. Lebesgue measure, then $(X \mid Y=y)$ has a pdf w.r.t. Lebesgue measure, given by

$$\frac{p(x,y)}{\int_{-\infty}^{\infty} p(z,y)dz}$$

In general, given (X,Y) a random vector in \mathbb{R}^2 , for every $y \in \mathbb{R}$, one can define a distribution function $F_{Y}(\cdot)$ satisfying:

$$E_Y(F_Y(x)I(Y \in B)) = P(x \le x, Y \in B) \quad \forall B \le \mathcal{B}_{\mathbb{R}}$$

Example 1.2.1

1. Let $X_1, \ldots, X_n \overset{\text{iid}}{\sim} N(0,1), X_{n+1}, \ldots, X_{2n} \overset{\text{iid}}{\sim} N(0,1)$. In this case (X_1, \ldots, X_n) is sufficient for θ . Given $(X_1 = x_1, \ldots, X_n = X_n)$ the distribution of $(X_{n+1}, \ldots, X_{2n})$ has a density w.r.t. Lebesgue measure given by $f(x_{n+1},\ldots,x_{2n}) = \frac{1}{(\sqrt{2\pi})^n} e^{-\sum_{i=n+1}^{2n} x_i^2/2}$. The joint distribution of $(X_1,\ldots,X_{2n} \mid X_1 = x_1\ldots,X_n = x_n)$ is $\delta_{x_1}\ldots\delta_{X_n}\times N(0,1)$.

2. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bin}(1, \theta)$, $\Theta = (0, 1)$, then we have $P(X_i = 1) = \theta$, $P(X_i = 0) = 1 - \theta$, for $i = 1, \ldots, n$ In this case $T(X) = \sum_{i=1}^n x_i$ is sufficient for θ . (Ex)

$$P(X_1 = x_1, \dots, X_n = x_n \mid T(X)) \perp \!\!\! \perp \theta$$

3. Let $x_1, \ldots, x_n \stackrel{\text{iid}}{\sim} N(\theta, 1), (x_1, \ldots, x_n)$ and $T(x) = \sum_{i=1}^n x_i$ are both sufficient for θ . Actually given T = t,

$$(X_1, \dots, X_n) \overset{\text{(Ex)}}{\sim} N \left(\left(\begin{array}{c} \frac{t}{n} \\ \vdots \\ \frac{t}{n} \end{array} \right), \left(\begin{array}{cccc} 1 - \frac{1}{n}, & -\frac{1}{n}, & \dots & -\frac{1}{n} \\ -\frac{1}{n}, & 1 - \frac{1}{n}, & \dots & \vdots \\ \vdots & \vdots & \ddots & 1 - \frac{1}{n} \end{array} \right) \right)$$

Definition 1.5 (Neyman-Fisher Factorisation Criterion, NFFC) Suppose $\{P_{\theta}: \theta \in \Theta\}$ is a collection of probability measures on (\mathcal{X}, F) , which are dominated by a σ -finite measure γ . Let $X \sim P_{\theta}$ for some $\theta \in \Theta$, then T is sufficient for $\theta \Leftrightarrow P_{\theta}(x) = g_{\theta}(T(x))h(x)$ a.s. γ for some $g_{\theta}(\cdot)$ and $h(\cdot)$, where $P_{\theta}(\cdot) = \frac{dP_{\theta}}{\partial \gamma}$, $P_{\theta}(A) = \int_{A} P_{\theta}(x)d\gamma$ (a.s. γ means: $\gamma \{X: p_{\theta}(x) \neq g_{\theta}(T(x))h(x)\} = 0$)

Proof: Assuming γ is a counting measure as a countable set \mathcal{X} (i.e. X is discrete) Let the family of pmf's be given by $\{P_{\theta} : \theta \in \Theta\}$ discrete)

1. \Leftarrow : Suppose $p_{\theta}(x) = g_{\theta}(T(x))h(x)$, $\forall x \in \mathcal{X}$. Need to show that T is sufficient.

$$\begin{split} P_{\theta}(X = x \mid T(X) = t) &= \frac{P_{\theta}(X = x, T(X) = t)}{P(T(X) = t)} = \left\{ \begin{array}{cc} 0 & T(x) \neq t \\ \frac{P(T(X) = t)}{P(X) \neq t} & T(X) = t \end{array} \right. \\ &= \left\{ \begin{array}{cc} 0 & T(x) \neq t \\ \frac{g_{\theta}(t)h(x)}{\sum_{y \in x: T(y) = t} g_{\theta}(t)h(y)} & T(x) = t \end{array} \right. \\ &= \left\{ \begin{array}{cc} 0 & T(x) \neq t \\ \frac{h(x)}{\sum_{y \in x: T(y) = t} h(y)} \perp \!\!\! \perp \theta & T(x) = t \end{array} \right. \end{split}$$

2. \Rightarrow : Suppose is sufficient for θ , so

$$P_{\theta}(X = x) = P_{\theta}(X = x, T(X) = t) = P_{\theta}(X = x \mid T(X) = t)P_{\theta}(T(X) = t)$$

$$\triangleq h(x)g_{\theta}(t)$$
as $P_{\theta}(X = x \mid T(X) = t)$ is free of θ by definition

Example 1.2.2

1. $X_1 \ldots X_n \stackrel{\text{iid}}{\sim} N(\theta, 1)$:

$$P_{\theta}(X) = \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\sum_{i=1}^{n} (x_{i} - \theta)^{2}/2}$$

$$= \underbrace{\left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{-\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}/2}}_{h(x)} \underbrace{e^{-n(\bar{x} - \theta)^{2}/2}}_{g_{\theta}(\bar{x}) \text{ or } g_{\theta}(T)}$$

2. $X_1 \ldots, X_n \stackrel{\text{iid}}{\sim} Benoulli(\theta)$:

$$P_{\theta}(X) = \theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{n - \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} I(0 \le X_i \le 1)$$

$$= (\frac{\theta}{1 - \theta})^{\sum_{i=1}^{n} x_i} (1 - \theta)^n \prod_{i=1}^{n} I(0 \le X_i \le 1)$$

1.3 Exponential families

Definition 1.6 The model $\{\mathbb{P}_{\theta} : \theta \in \Omega\}$ forms an s-dimensional exponential family if each \mathbb{P}_{θ} has density of the form:

$$p(x;\theta) = \exp\left(\sum_{i=1}^{s} \eta_i(\theta) T_i(x) - B(\theta)\right) h(x)$$

- $\eta_i(\theta) \in \mathbb{R}$ are called the natural parameters.
- $T_i(x) \in \mathbb{R}$ are its sufficient statistics, which follows from NFFC.
- $B(\theta)$ is the log-partition function because it is the logarithm of a normalization factor:

$$B(\theta) = \log \left(\int \exp \left(\sum_{i=1}^{s} \eta_i(\theta) T_i(x) \right) h(x) d\mu(x) \right) \in \mathbb{R}$$

• $h(x) \in \mathbb{R}$: base measure.

Example 1.3.1 Let $X_1, \ldots, X_n \overset{iid}{\sim} N(\theta, \sigma^2), \Theta = \mathbb{R} \times (0, \infty)$

$$\begin{split} P_{\theta}(x) &= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^n (x_i - \mu)^2 / \left(2\sigma^2\right)} \\ &= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n e^{-\sum_{i=1}^n x_i^2 / \left(2\sigma^2\right)} e^{+\theta \sum_{i=1}^n x_i / \sigma^2} \cdot e^{-\frac{n\theta}{2\sigma^2}} \\ T_1(X) &= \sum_{i=1}^n x_i^2), \quad \eta_1\left(\theta, \sigma^2\right) = -\frac{1}{2\sigma^2} \\ T_2(X) &= \sum_{i=1}^n x_i, \quad \eta_2\left(\theta, \sigma^2\right) = -\frac{\theta}{\sigma^2} \\ B\left(\theta, \sigma^2\right) &= \frac{nx^2}{2\sigma^2} - \frac{n}{2}\log\left(2\pi\sigma^2\right), \quad h(x) = 1 = \prod_{i=1}^n \left(X_i \in \mathbb{R}\right) \end{split}$$

Example 1.3.2 Example Let $x_1 \ldots, x_n \overset{iid}{\sim} Cauchy i.e.$ $P_{\theta}(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}$ is the density of P_{θ} , w.r.t. Lebesgue measure, In this case, $X_1, \ldots X_n$ is sufficient. $T = (X_{(1)}, \ldots, X_{(n)})$ is sufficient, where $(X_{(1), \ldots, X_{(n)}})$ are the order statistics of X. $(X_{(1)} \leq X_{(2)}) \leq \ldots \leq X(n)$