CS 35L Software Construction Laboratory

Lecture 8.2

22nd May, 2019

Logistics

- Assignment 10 Signup Sheet
 - https://docs.google.com/spreadsheets/d/19bPoaFoi9r WZ-05hTJgUAqZPKWlAetRjFMniljwmZBs/edit?usp=sharing
- Assignment 8 Deadline
 - ▶ 29th May, 2019 11:55pm
- ► Hardware requirement for Week 8
 - Seeed Studio BeagleBone Green Wireless Development Board
 - ► Today's class

Review - Previous Lab

- **SSH**
 - ► Symmetric Key Encryption
 - ► Asymmetric Key Encryption
 - ► Server Validation
 - User Authentication

Digital Signature

Secret Key (symmetric) Cryptography

► A single key is used to both encrypt and decrypt a message

Public Key (Asymmetric) Cryptography

Two keys are used: a public and a private key. If a message is encrypted with one key, it has to be decrypted with the other.

Digital Signature

- ► An electronic stamp or seal
 - almost exactly like a written signature, except more guarantees!
- Is appended to a document
 - Or sent separately (detached signature)
- Ensures data integrity
 - document was not changed during transmission
 - intended to solve the problem of tampering and impersonation in digital communications.
- Based on Public Key Cryptography
- Reference

Steps for Generating a Digital Signature

SENDER:

- Generate a Message Digest
 - ► The message digest is generated using a set of hashing algorithms
 - ► Even the slightest change in the message produces a different digest
- Create a Digital Signature
 - ► The message digest is encrypted using the sender's private key. The resulting encrypted message digest is the digital signature
- Attach digital signature to message and send to receiver

Steps for Generating a Digital Signature

RECEIVER:

- ► Recover the Message Digest
 - Decrypt the digital signature using the sender's public key to obtain the message digest generated by the sender
- ► Generate the Message Digest
 - Use the same message digest algorithm used by the sender to generate a message digest of the received message
- Compare digests (the one sent by the sender as a digital signature, and the one generated by the receiver)
 - If they are not exactly the same => the message has been tampered with by a third party
 - ▶ We can be sure that the digital signature was sent by the sender (and not by a malicious user) because only the sender's public key can decrypt the digital signature and that public key is proven to be the sender's through the certificate.
 - If decrypting using the public key renders a faulty message digest, this means that either the message or the message digest are not exactly what the sender sent.

Digital Signature

Detached Signature

- Digital signatures can either be attached to the message or detached
- ► A detached signature is stored and transmitted separately from the message it signs
- Commonly used to validate software distributed in compressed tar files
- ► You can't sign such a file internally without altering its contents, so the signature is created in a separate file

Assignment 8 - Homework

- Answer 2 questions in the file hw.txt
- ► A file eeprom that is a copy of the file /sys/bus/i2c/devices/0-0050/eeprom on your BeagleBone.
- https://www.gnupg.org/gph/en/manual.html
- Generate a key pair with the GNU Privacy Guard's commands (choose default options when prompted)
- Export public key, in ASCII format, into hw-pubkey.asc
- Use the private key you created to make a detached clear signature eeprom.sig for eeprom
- Use given commands to verify signature and file formatting
 - ► These can be found at the end of the assignment spec

Assignment 8 - Homework

- GNU Privacy Guard (GnuPG)
 - ► GnuPG allows you to encrypt and sign your data and communications
- ▶ It features a versatile key management system, along with access modules for all kinds of public key directories.
- GnuPG, also known as GPG, is a command line tool with features for easy integration with other applications.
- Reference: https://gnupg.org/gph/en/manual.html#INTRO

Assignment 8 - Homework

- GNU privacy guard (> gpg [option])
 - --gen key generating new keys
 - --armor ASCII format
 - --export exporting public key
 - --import import public key
 - --detach-sign creates a file with just the signature
 - --verify verify signature with a public key
 - --encrypt encrypt document
 - --decrypt decrypt document
 - --list-keys list all keys in the keyring
 - --send-keys register key with a public server/-keyserver option
 - --search-keys search for someone's key

Presentations

- ► Today's Presentation:
 - ► Chester Hulse
 - Jackie Lam
- Next up:
 - ► Brian Phan
 - ► Henry Trinh

Questions?