MQTT Protocol

Outline

- MQTT Protocol
- Usage Control (UCON)
- UCON in MQTT
- Performance

Internet of Things/Everything (IoT/IoE)

- Internet of Things (IoT)
 - Inter-networking of Cyber-Physical devices and other items embedded with:
 - Electronics
 - Software
 - Sensors
 - Actuators
 - Network connectivity
 - Enables these objects to collect and exchange data
- Internet of Everything (IoE)
 - Intelligent connection of
 - People
 - Process
 - Data
 - Things

Security in IoT

IoT application layer protocols do not have sufficient mechanisms for dynamic policy enforcement

Continuous Monitoring

- Continuous Monitoring on
 - Usage of resources
 - Policies
 - Attributes
 - Unusual behavior
- Continuous Monitoring for
 - Compromised component identification
 - Policy violation
 - Credentials' leakage

IoT Application Layer Protocols

- Most popular application layer protocols used nowadays:
 - CoAP: Constrained Application Protocol
 - MQTT: Message Queuing Telemetry Transport
 - XMPP: Extensible Messaging and Presence Protocol
 - AMQP: Advanced Message Queuing Protocol
 - WebSocket: Computer Communications Protocol
 - Alljoyn: Full stack of protocols intended for IoT. Not separable application layer protocol

Protocol	QoS	Communication Pattern	Target Devices
CoAP	YES	Req/Resp	Very constrained
MQTT	YES	Pub/Sub	Generic, small header
XMPP	NO	Req/Resp Pub/Sub	High memory consumption
HTTP	NO	Req/Resp	High performance
AMQP	YES	Pub/Sub	Ser-2-Ser communication
Web Socket	NO	Client/Server Pub/Sub	needs less power than HTTP still needs high power
AllJoyn	NO	Client/Server Pub/Sub	High computational power

Which Protocol to Focus on?

MQTT

- Introduced by IBM
- Uses Publish / Subscribe mechanism controlled by Broker
- Broker
 - Software component
 - Responsible for distributing messages from Publishers to interested Subscribers
- MQTT versions
 - MQTT-SN
 - S-MQTT

MQTT component details

- Many to many Pub to Sub relationship
- One Broker for every system
- Subs authenticated by Broker
- Pubs / Subs can be very constrained
- Pub can be even only a sensor
- Broker has to provide more computational power

Access Control

- What
 - Restrictions in order to enforce policies
- Effect
 - Permission / Denial of access to a specific resource

Access Control Policy

- Set of rules that allow/deny access
- Rules depend on attributes

• Access control --- t request time

Attribute mutability

- Conditions may change during time
- So do attributes
- New attribute values may affect conditions
- What if they violat

Why UCON

Usage Control - UCON

- Guarantees that subjects authorized once, remain authorized while a session is in progress
- Security policy based on attributes
- Policy evaluation of both mutable and immutable attributes
- Policy defines when a subject should be authorized
- UCON advantages
 - Continuity of control
 - Mutability of attributes

UCON in MQTT

Provide selective access after message delivery

Continuous control of Pubs/Subs on both authentication and access

Better management of information distribution

UCON in MQTT

Workflow sequence diagram

