集合

目次

集合	1
集合って何だ?	2
集合の書き方	3
ラッセルのパラドックス	4
集合の演算	5
集合の包含(ほうがん)関係	6
∈と⊂、区別できますか?	6

集合って何だ?

数学の世界にはいろいろな"モノ"がある. たとえば1や3のような数字はモノである.もっと難しい数字,たとえば-2や $\frac{5}{3}$,あるいは $\sqrt{6}$ や π (= 3.1415…) だってモノである.

数字でなくともよい. 文字aや ζ もモノとみなせる. あるいは関数 $f(x)=x^2 v h(x,y)=x/y$ もモノと考えられる.

こういった"モノ"を集めたのが**集合**である. 集合はたとえば

$$X = \{1, 2, 3\} \tag{1}$$

とかける. この式では集合の枠 $\{ \}$ の中に, 1,2,3という 3 つの数字が入っている. つまり, Xは 3 つの数字を集めた集合である. これを, 1,2,3を元 (げん) にもつ集合という.

集合Xは、1を元としてもつ。 このことを、

$$1 \in X \quad \succeq h , \quad 1 \ni X$$
 (2)

とかく. 1 一方, Xは6を元としてもたない. これは,

$$6 \notin X \quad \succeq \mathcal{D} , \quad 6 \not\ni X$$
 (3)

とかく.2

元をひとつも含まない集合を**空集合**といい、 \emptyset とかく. 形式的にかくと、 $\emptyset = \{\}$ である.

 $^{^{1}}$ 集合Xがクワ" ϵ "を使って1を取り込んでいるイメージである.

²等しくないというため、=に線を引いて≠にしたのと同じ.

集合の書き方

前節では、集合がもつ元を

$$X = \{1, 2, 3, 4, 5, 6, 7, 8\} \tag{4}$$

のように書き連ねてあらわした. このように具体的に元を列挙する のではなく,

$$\mathbb{Z} = \{ n \mid n \text{ は整数} \} \tag{5}$$

のように、元の満たすべき条件を書くことがある.

そもそも考える世界を \mathbb{R} (実数の集合) だけに限って、 \mathbb{R} に含まれる元の中で、特定の条件を満たすもの

$$\mathbb{Q} = \left\{ \frac{p}{q} \in \mathbb{R} \,\middle|\, p : \mathbf{2}, q : \mathbf{4}, \mathbf{5} \right\} \tag{6}$$

とかくこともある(この場合の⊕は有理数である).

例えば、№を自然数の集合({1,2,3,...})とすると、

$$A = \{ n \in \mathbb{N} \mid n < 5 \} = \{ 1, 2, 3, 4 \} \tag{7}$$

である.

ラッセルのパラドックス

本論には関係ないが、集合について面白いことがある.

実は、集合Xが自分自身を元として含むことは、特に禁止されていない。 つまり、 $X = \{X, a, b\}$ という無限 \mathcal{N} という無限 \mathcal{N} というまされる。

Xを、「集合をあつめた集合」(**集合族**)として、Xの部分集合

$$\mathcal{S} := \{ A \in X \mid A \notin A \} \tag{8}$$

というのを考えてみよう. つまり、Sは「自分自身を元として含まない集合Aのあつまり」である.

定義より明らかに $S \subset X$ であるが、これに加えてSがXの元(つまり $S \in X$) と仮定しよう. すると

- 1. $S \in S$ なら、Sの定義より $S \notin S$ が成立する.明らかに矛盾.
- 2. $S \notin S$ なら、Sの定義より $S \in S$ である。やはり矛盾する。

したがって、SはXの元ではない.

ここで、もし8が

$$\mathcal{S} = \{ \sharp \, \widehat{\cap} \, A \mid A \notin A \} \tag{9}$$

と定義されたとする. 先ほどのように「SはXの元ではない」という言い訳が効かないので、矛盾してしまう. このように、実は $\{a \in X \mid ...\}$ における $\in X$ は、必要不可欠なのである.

集合の演算

- 1. **和集合**……集合 $A \ B$ の両方に含まれる元をあつめた集合を $A \cap B$ とかく. つまり, $A \cap B \coloneqq \{x \mid x \in A \text{ かつ } x \in B\}$ である.
- 2. **共通部分**……集合AとBの少なくとも一方に含まれる元をあつめた集合を $A \cup B$ とかく. つまり, $A \cup B \coloneqq \{x \mid x \in A \text{ または } x \in B\}$ である.

具体例でみてみよう.

$$A = \{1, 2, 3, 4, 5\}, \quad B = \{1, 3, 5, 7, 9\} \tag{10}$$

とする.

$$A \cap B = \{1, 3, 5\}$$
 $A \cup B = \{1, 2, 3, 4, 5, 7, 9\}$ (11)

また、「集合AからBを取り除いたもの」,きちんというと「集合Aの元のうち,集合Bの元でないものをあつめた集合」を, $A \setminus B$ とかく.つまり, $A \setminus B \coloneqq \{x \in A \mid x \notin B\}$ である.

上のA, Bを使うと,

$$A \setminus B = \{2, 4\} \quad B \setminus A = \{7, 9\}$$
 (12)

集合の包含(ほうがん)関係

集合Aのすべての元が集合Bの元であるとき,BはAを含む</mark>,あるいはAはBに含まれるという. 記号は $A \subset B$ または $B \supset A$ である. 3 これも具体例でみてみよう.

$$A = \{1\}, \quad B = \{1, 2\} \quad C = \{1, 3\}$$
 (13)

このとき, $A \subset B$ かつ $A \subset C$ である. $A \subset A$ でもある. また, $B \not\subset A$ である. なお, $B \subset C$ ではないし, $C \subset B$ でもない.

定義からわかるように、A = Bのときも $A \subset B$ (かつ $A \supset B$) である. これを強調するために、 $A \subseteq B$ とかくこともある. 特に $A \neq B$ であるとき、 $A \subseteq B$ とかき、BはAより真に大きい

∈と⊂、区別できますか?

集合として

$$X := \{1, 2, \{1\}, \{1, 2, 3\}\} \tag{14}$$

を考える. このとき,

 $1 \in X$ $2 \in X$ $3 \notin X$ $\{1\} \in X$ $\{1,2\} \notin X$ $\{1,2,3\} \in X$ (15) である。また、

 $\{1\}\subset X\quad \{1,2\}\subset X\quad \{1,2,3\}\not\subset X\quad \{2\}\subset X\quad \{2,3\}\not\subset X$ (16) である.

 $^{^3}$ Cとつは、 \le と \ge の関係だと思ってよい. ただし、 $a \not\le b$ と $a \not\ge b$ は両立しないのに対し、 $A \not\in B$ かつ $A \not\in B$ はありうる.