CCNSimの使い方

東京工科大学コンピュータサイエンス学部 専任講師 金光 永煥(Hidehiro KANEMITSU) kanemitsuh@stf.teu.ac.jp

はじめに

- アルゴリズムの作成・反映手順については https://docs.google.com/document/d/15F-Jyic4gU-P508CX7rdpCiahWO5fXJPBLTWctt5FMg/edit?pli=1 (こあります.
- •このスライドでは, クラスとAPIについて説明します.
- 主に,
 - CCNRouter: ルータであり、パケット転送、キャッシング
 - CCNNode: オリジナルコンテンツ保持, コンテンツ要求
 - CCNMgr: CCNRouter / CCNNodeを生成・管理

があります.

大事なクラス:CCNMgr

- ノード, ルータを管理するクラスであり, シングルトン.
- •このクラスは、インスタンス化せずに直接、アクセスできる. (CCNMgr.getIns().メソッド名でアクセス)
- •ノードやルータは, ↓のハッシュマップ (ID, オブジェクト)で保持.
 - ノード集合: HashMap<Long, CCNNode> nodeMap
 - つまり、外部からはCCNMgr.getIns().getNodeMap()で、この集合を取得できる.
 - ルータ集合: HashMap<Long, CCNRouter> routerMap
 - つまり、外部からはCCNMgr.getIns().getRouterMap()で、この集合を取得できる.

大事なクラス:CCNNode

- CCNNodeクラス(AbstractNodeを継承)
 - IDには、NodeID(Long型)をもつ.
 - 自身が最初から持つコンテンツ領域:
 - HashMap<String, CCNContents> ownContentsMap
 - ・取得したコンテンツ領域:
 - LinkedBlockingQueue<CCNConents> contentsQueue.
 - これは、AbstractNodeで定義されている.
 - あとは, type: (ルータ/ノード), usedRouting(用いるFIB ルーティングアルゴリズム), receiver(データ受信処理用スレッド)をフィールド変数に持つ.

大事なクラス: CCNRouter

- CCNRouterクラス (AbstractNodeを継承)
 - IDはLong routerID, FIBは、FIB FIBEntry, PITは、PIT PITEntry, CSは、CS CSEntryとして保持.
 - Faceリストは,ルータ宛のもの(face_routerMap)とノード宛 (face_nodeMap)の二種類ある.
 - いずれもHashMap<Long, Face>であり、**<FaceID**, Faceオブジェクト>.
 - 肝心の宛先IDは, Face.pointerIDにセットされる(ルータIDやノードID)
 - Face.type(ノードだと0,ルータだと1)で,あて先のタイプを識別している.

FIBについて

- < Prefix, Faceリスト > の情報を持つ. 実際には,
 - HashMap<String, LinkedList<Face>> table; を保持している.
- Faceには,
 - Long FaceID,
 - Long pointerID (宛先ルータ/ノードのID) が入る.

CSについて

- キャッシュを保持するためのクラスであり、
 - HashMap<String, CCNContents> cacheMap のハッシュマップを保持している.形式は、<prefix, コンテン ツ>である.