Урок 46 Розрахунок опору провідника. Питомий опір речовини. Реостати Мета уроку:

Навчальна. Пояснити залежність опору від довжини, площі перерізу та матеріалу провідника; пояснити будову реостата.

Розвивальна. Розвивати логічне мислення учнів та показати практичну значущість отриманих знань.

Виховна. Формування таких якостей особистості, як відповідність, організованість, дисциплінованість, обов'язок.

Тип уроку: комбінований урок

Обладнання: навчальна презентація, комп'ютер, амперметр, вольтметр.

План уроку:

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

III. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

VII. ДОМАШНЄ ЗАВДАННЯ

Хід уроку

І. ОРГАНІЗАЦІЙНИЙ ЕТАП

Оголошення результатів самостійної роботи

II. ПЕРЕВІРКА ДОМАШНЬОГО ЗАВДАННЯ

ІІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ ТА ВМІНЬ

Ми вже знаємо:

Електричний onip — це фізична величина, яка характеризує властивість провідника протидіяти проходженню електричного струму.

Коли в металевому провіднику йде струм, вільні електрони, рухаючись напрямлено, зіштовхуються з йонами кристалічної ґратки металу — провідник чинить опір електричному струмові.

Від чого залежить опір провідника?

IV. ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Опір провідника

Опір провідника залежить від:

- довжини провідника
- площі поперечного перерізу провідника
- роду речовини

Проведемо дослід

В електричне коло вмикатимемо по черзі провідники, які виготовлені з однакового матеріалу, мають однаковий поперечний розріз, але різні довжини. Силу струму вимірюватимемо амперметром.

Опір провідника прямо пропорційний його довжині: $R \sim l$

Тобто, у довшому провіднику частинки, що рухаються напрямлено, зазнають на своєму шляху більшої протидії.

Проведемо дослід

Вмикатимемо в електричне коло по черзі провідники, які виготовлені з однакового матеріалу, однакової довжини, але мають різні поперечні перерізи.

Опір провідника обернено пропорційний площі його поперечного перерізу:

$$R \sim \frac{1}{S}$$

Збільшення товщини провідника рівнозначне «розширенню русла», яким рухаються заряди, тому й опір провідника зменшується.

Проведемо дослід

Тепер в електричне коло будемо по черзі вмикати провідники однакової довжини та площею поперечного перерізу, але виготовлені з різних речовин.

Опір провідника залежить від речовини, з якої цей провідник виготовлений.

Це пояснюється тим, що провідники з різних металів мають різні кристалічні структури, отже, гальмівна дія зіткнень йонів і вільних електронів виявляється різною.

Підсумовуючи результати дослідів, можна записати формулу:

$$R = \rho \frac{l}{S}$$

R – опір провідника;

l – довжина провідника;

S — площа поперечного перерізу провідника;

ho – питомий опір речовини.

Питомий опір речовини — це фізична величина, яка характеризує електричні властивості даної речовини й чисельно дорівнює опору виготовленого з неї провідника завдовжки $1\,$ м і площею поперечного перерізу $1\,$ м $^2.$

R

$$R = \rho \frac{l}{S}$$
 => $\rho = \frac{RS}{l}$

Одиниця питомого опору в СІ – ом-метр:

$$[\rho] = 1 \frac{OM \cdot M^2}{M} = 1 OM \cdot M$$

Зручніше виражати площу поперечного перерізу провідника у квадратних міліметрах. Тоді одиницею питомого опору буде:

$$1\frac{\mathrm{OM}\cdot\mathrm{MM}^2}{\mathrm{M}} = 1\cdot10^{-6}\,\mathrm{OM}\cdot\mathrm{M}$$

Питомі опори речовин визначають дослідним шляхом і заносять у таблиці (див. табл. 7 Додатка). Значення питомого опору істотно залежить від температури речовини, тому в таблицях обов'язково зазначають температуру, за якої справджуються подані значення.

3. Реостат

Реостат – це пристрій зі змінним опором, призначений для регулювання сили струму в електричному колі.

Будова двоконтактного повзункового реостату:

- 1, 6 клеми;
- 2 керамічний циліндр;
- 3 металевий дріт (обмотка);
 - 4 повзунок;
 - 5 металевий стрижень;

- умовне позначення на схемах

Принцип дії повзункового реостата ґрунтується на залежності опору провідника від його довжини. Пересуваючи повзунок уздовж обмотки, плавно збільшують або зменшують довжину ділянки, в якій проходить струм. У результаті опір реостата так само плавно збільшується або зменшується, а це, згідно із законом Ома, приводить до плавної зміни сили струму (настроюють гучність звуку радіоприймача, регулюють яскравість світіння лампи)

Важільні (секційні) реостати

Опір важільних реостатів змінюється стрибками, відповідно стрибками змінюється й сила струму. Важільні реостати застосовують для вмикання і вимикання електродвигунів.

V. РОЗВ'ЯЗУВАННЯ ЗАДАЧ

1. Обчисліть опір алюмінієвого дроту довжиною 80 см і площею поперечного перерізу 0.4 мм².

Дано:

$$l = 80 \text{ cm} = 0.8 \text{ m}$$

 $S = 0.4 \text{ mm}^2$
 $\rho = 0.028 \frac{\text{Ом} \cdot \text{mm}^2}{\text{M}}$
 $R = ?$

Розв'язання

$$R = \rho \frac{l}{S}$$

$$[R] = \frac{OM \cdot MM^{2}}{M} \cdot \frac{M}{MM^{2}} = OM$$

$$R = 0.028 \cdot \frac{0.8}{0.4} = 0.056 \text{ (OM)}$$

Відповідь: $R = 0.056 \, \text{Ом}.$

2. В освітлювальній мережі будинку використали 100 м мідного дроту, опір якого 850 мОм. Яка площа поперечного перерізу цього дроту?

Дано:

$$l = 100 \text{ м}$$

 $R = 850 \text{ мОм}$
 $= 0.85 \text{ Ом}$
 $\rho = 0.017 \frac{\text{Ом} \cdot \text{мм}^2}{\text{м}}$
 $S - ?$

$$R = \rho \frac{l}{S} = > S = \rho \frac{l}{R}$$
$$[S] = \frac{OM \cdot MM^2}{M} \cdot \frac{M}{OM} = MM^2$$
$$S = 0.017 \cdot \frac{100}{0.85} = 2 (MM^2)$$

Відповідь: $S = 2 \text{ мм}^2$.

3. Ніхромова спіраль для нагрівника електроплитки повинна мати електричний опір 48 Ом. Якої довжини має бути ніхромовий дріт, площею перерізу 0,2 мм², щоб виготовити таку спіраль?

Дано: R = 48 Om $S = 0.2 \text{ мм}^2$ $\rho = 1.1 \frac{\text{Om} \cdot \text{мm}^2}{\text{M}}$ l - ?

Розв'язання

$$R = \rho \frac{l}{S} = > l = \frac{RS}{\rho}$$

$$[l] = \frac{OM \cdot MM^{2}}{OM \cdot MM^{2}} = M$$

$$l = \frac{48 \cdot 0.2}{1.1} = 8.7 \text{ (M)}$$

Відповідь: l = 8,7 м.

4. У лабораторних роботах використовуються мідні з'єднувальні проводи, площа перерізу яких дорівнює 2 мм². Сила струму в них досягає 2 А. Яка напруга на такому проводі, якщо його довжина дорівнює 10 см?

Дано:

$$S = 2 \text{ мм}^2$$

 $I = 2 \text{ A}$
 $l = 10 \text{ см} = 0.1 \text{ м}$
 $\rho = 0.017 \frac{0 \text{м} \cdot \text{мм}^2}{\text{м}}$

$$I = \frac{U}{R} \qquad => \qquad U = IR$$

$$R = \rho \frac{l}{S}$$

$$U = I \cdot \rho \frac{l}{S}$$

$$[U] = A \cdot \frac{OM \cdot MM^2}{M} \cdot \frac{M}{MM^2} = A \cdot OM = A \cdot \frac{B}{A} = B$$

$$U = 2 \cdot 0.017 \cdot \frac{0.1}{2} = 0.0017 \text{ (B)}$$

Відповідь: U = 1,7 мВ.

VI. ПІДБИТТЯ ПІДСУМКІВ УРОКУ

Бесіда за питаннями

- 1. Як довести, що опір провідника прямо пропорційний його довжині?
- 2. Як залежить опір провідника від площі його поперечного перерізу?
- 3. За якою формулою обчислюють опір провідника?
- 4. Що таке питомий опір речовини?
- 5. Що таке реостат?
- 6. Які види реостатів ви знаєте? Чим вони відрізняються один від одного?

VII. ДОМАШН€ ЗАВДАННЯ

Вивчити § 30, Вправа № 30 (2, 4)

Виконане д/з відправте на Нитап,

Або на елетрону адресу Kmitevich.alex@gmail.com