International Islamic University Chittagong (IIUC)

Department of Electronic and Telecommunication Engineering (ETE)
Semester End Examination

Program: B.Sc. (Engg) in ETESemester: Autumn 2023Course Code: PHY-1101Course Title: Physics-ITime: 2 hours 30 minutesFull Marks: 50

(i) Answer all the questions. The figures in the right hand margin indicate full marks. (ii) Course Outcomes (COs) and Bloom's Level are mentioned in additional Column.

Course Outcomes (COs) of this course				
CO1	Demonstrate an understanding of mechanics, waves, optics, heat and thermodynamics			
CO2	Apply basic physics laws and formulae to complex cases like; Fly wheel, Elastic bending, forced			
	oscillation, Compound Pendulum, Heat engine, Polarization etc.			

Bloom's Level of the Questions							
Letter Symbols	R	U	Ap	An	${f E}$	C	
Meaning	Remember	Understand	Ap ply	An alysis	E valuate	Create	

Part A

[1]	(a)	Illustrate your idea on capillarity.	U	CO1	2
	(b)	Derive the expression $I = \frac{1}{2}$, where the symbols have their usual		CO2	6
		meanings.	T T	G01	
	(c)	Mention some examples of capillarity.	U	CO1	2
[2]	(a)	Explain streamline motion of fluid in brief.	U	CO1	2
	(b)	Derive the equation of continuity for fluid in streamline motion.	An	CO2	6
	(c)	An incompressible liquid of density 1400 kgm ⁻³ is flowing through a horizontal pipeline in streamline motion at a speed of 7 ms ⁻¹ . What is the value of dynamic pressure?	Ap	CO2	2
		OR			
[2]	(a)	Express Bernoulli's theorem with equation.	U	CO1	2
	(b)	State and explain Torricelli's theorem with proper figure.	An	CO2	6
	(c)	A fluid of density 1100 Kgm ⁻³ is flowing through a narrow pipeline of inner radius 1.5 cm. If the value of coefficient of viscosity of the fluid is 140, determine the value of critical velocity.	Ap	CO2	2

Bismillahir Rahmanir Raheem

		Part B			
[3]	(a)	Illustrate your understanding on simple harmonic motion.	R	CO1	2
	(b)	Prove that $x = A \sin(\omega t + \delta)$ is a solution to the differential equation of simple harmonic motion.	An	CO2	6
	(c)	A particle in S.H.M is oscillating with amplitude 2m. If the energy of the particle is 80 Joule, determine the force constant of the medium.	AP	CO2	2
[4]	(a)	What do you understand about thermodynamic process? Mention some processes with required condition.	R	C01	1+2
	(b)	Explain first law of thermodynamics in detail.	U	CO1	5
	(c)	Show that the coefficient of performance of refrigerator can be much higher than 100 %.	An	CO2	2
		OR			
[4]	(a)	Elaborate on reversible process with example.	U	CO1	2
	(b)	Sketch Carnot heat engine and describe different parts.	U	CO1	5
	(c)	A Carnot engine has efficiency 30 %, it's temperature at source is 107°. Find the temperature of the sink.	Ap	CO2	3
[5]	(a)	Elaborate on coherent sources of light.	U	CO1	2
	(b)	Derive the expression $I = 4a^2cos^2\frac{\delta}{2}$, where the symbols have their usual meaning.	An	CO2	6
	(c)	Find the angle at which a light can be polarized while reflecting from a crystal of refractive index 1.7.	Ap	CO2	2