18.335 Problem Set 4

Due Friday, April 5, 2019.

Problem 1: Almost GMRES

We use the Arnoldi method to build up an orthogonal basis Q_n for \mathcal{K}_n , with $AQ_n = Q_nH_n + h_{n+1,n}q_{n+1}e_n^* = Q_{n+1}\tilde{H}_n$. GMRES then finds an approximate solution to Ax = b by minimizing $||Ax - b||_2$ for all $x \in \mathcal{K}_n$, giving an $(n+1) \times n$ least-square problem involving the matrix \tilde{H}_n .

Suppose that we **instead** find an approximate solution to Ax = b by finding an $x \in \mathcal{K}_n$ where b - Ax is $\perp \mathcal{K}_n$. Derive a small $(n \times n)$ or similar system of equations that you can solve to find the approximate solution x of this method.

Problem 2: Power method

Suppose A is a diagonalizable matrix with eigenvectors \mathbf{v}_k and eigenvalues λ_k , in decreasing order $|\lambda_1| \ge |\lambda_2| \ge \cdots$. Recall that the power method starts with a random \mathbf{x} and repeatedly computes $\mathbf{x} \leftarrow A\mathbf{x}/\|A\mathbf{x}\|_2$.

- (a) Suppose $|\lambda_1| = |\lambda_2| > |\lambda_3|$, but $\lambda_1 \neq \lambda_2$. Explain why the power method will not in general converge.
- (b) Give a way obtain λ_1 and λ_2 and \mathbf{v}_1 and \mathbf{v}_2 from the power method by simply keeping track of the *previous* iteration's vector in addition to the current iteration.

Problem 3: Shifted-inverse iteration

Trefethen, problem 27.5.

Problem 4: Arnoldi

Trefethen, problem 33.2.