PERUI: A General Framework of Reduced Variance Stochastic Gradient Gradient and the Hybrid Implementation

Yawei Zhao

School of Computer National University of Defense Technology Changsha, China, 410073

Yuewei Ming

School of Computer National University of Defense Technology Changsha, China, 410073

Jianping Yin

School of Computer National University of Defense Technology Changsha, China, 410073

Algorithm 1 The general framework of variance reduced SGD: PERUI

```
Require: \omega^0 \in \mathbb{R}^d. \forall i \in [n], and [n] represents 1, 2, ...n.
  1: Probability: [i_t] \leftarrow \mathcal{P}([n]) where i_t \in 1, 2, ..., n. t is a
         positive integer;
        Epoch: the sequence \{m^0, m^1, ..., m^S\} \leftarrow \mathcal{E}([i_t]);
       Epoch: the
                                                                      of
                                                                                  the
                                                                                               epoch
                                                                                                                   size
  3: for s = 0, 1, 2, ..., S do
               \omega_0^s = \tilde{\omega}^s;
               g = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{\omega}^s);
  5:
                the size of the next epoch: m^s;
  6:
                for t < m^s do
  7:
                        Reduced
                                                                                                       variance:
  8:
         \begin{array}{l} \underbrace{v = \mathcal{R}(\nabla f_{i_t}(\omega_{i_t}^t) - \nabla f_{i_t}(\tilde{\omega}^s));} \\ \gamma_t^s = v + g; \\ \underline{\mathbf{U}} \mathbf{pdate:} \ \omega_{t+1}^s = \mathcal{U}(\eta_t, \omega_t^s, \gamma_t^s); \end{array} 
  9:
10:
                                                          \tilde{\omega}^{s+1} \leftarrow \mathcal{I}([w_s^s])
                Identification:
                                                                                                                  with
11:
        \substack{j \in \{1,2,...,m^s\}; \\ \textbf{return } \tilde{\omega}^S;}
```

Introduction Related work

The general hybrid framework of SGD

Conventionally, each $f_i(\omega)$ in the optimization problem **??** is a L-smooth function. That is, \exists a non-negative L, and \forall a and b, the following inequality holds.

$$f_i(a) \le f_i(b) + \nabla f_i(b)^{\mathrm{T}}(a-b) + \frac{L}{2} \| a-b \|^2$$
 (1)

Besides, the loss function $F(\omega)$ in the optimization problem $\ref{eq:convex}$ is γ -strongly convex, which means that \exists a nonnegative γ , and \forall a and b, the following inequality holds.

$$F(a) \ge F(b) + \nabla F(b)^{\mathrm{T}} (a - b) + \frac{\mu}{2} \parallel a - b \parallel^2$$
 (2)

Copyright © 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Example: HybridSVRG

Convergence analysis

Optimization

Constant learning rate with an acceleration factor Adaptive update sharing strategy

Discussion

Performance evaluation

In this section, we evaluate the performance of HybridSVRG by using a l_2 -regularized logistic regression on four datasets, namely, dna⁴, epsilon⁵, SUSY⁶, KDDCup2010⁷.

$$\min \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + exp(-y_i \omega^{\mathrm{T}} x_i) \right) + \lambda \parallel \omega \parallel^2$$
 (3)

- . Here, *n* is the size of the training data.

 The following algorithms will be used for comparison.
- **DownpourSGD:** An asynchronous version of SGD which is used to train neural network (Dean et al. 2012).
- PetuumSGD: The distributed version of SGD is implemented by using the asynchronous communication protocol, i.e., SSP (Xing et al. 2015). The learning rate in PetuumSGD is decayed with a fixed factor 0.95 at the end of an epoch.
- **SSGD:** It is the state-of-the-art distributed version of SGD, which adopts the variance reduction technique (Zhang, 0004, and Kwok 2015). The update rule in the SSGD has a variable θ which is used to update the parameters asynchronously. The details of SSGD can be referred in (Zhang, 0004, and Kwok 2015). Here, we set $\theta = 0.5$.
- HSAG: A hybrid SGD which is proposed in (Reddi et al. 2015).
- **KroMagnon:** A lock-free version of SGD which adopts variance reduction technique, and is proposed in (Mania et al. 2015).

ftp://largescale.ml.tu-berlin.de/largescale

http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html#epsilon

⁶ http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html#SUSY

⁷ https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

- HybridSVRG-lock:
- HybridSVRG:

Convergence Speedup Wait time Parallel threads

Conclusion

References

Dean, J.; Corrado, G.; Monga, R.; 0010, K. C.; Devin, M.; Le, Q. V.; Mao, M. Z.; Ranzato, M.; Senior, A. W.; Tucker, P. A.; Yang, K.; and Ng, A. Y. 2012. Large Scale Distributed Deep Networks. NIPS 1232–1240.

Mania, H.; Pan, X.; Papailiopoulos, D.; Recht, B.; Ramchandran, K.; and Jordan, M. I. 2015. Perturbed Iterate Analysis for Asynchronous Stochastic Optimization. <u>CoRR</u> abs/1511.08486 stat.ML.

Reddi, S. J.; Hefny, A.; Sra, S.; Póczos, B.; and Smola, A. 2015. On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants. arXiv.

Xing, E. P.; Yu, Y.; Ho, Q.; Dai, W.; Kim, J. K.; Wei, J.; Lee, S.; Zheng, X.; Xie, P.; and Kumar, A. 2015. Petuum: A New Platform for Distributed Machine Learning on Big Data . In SIGKDD.

Zhang, R.; 0004, S. Z.; and Kwok, J. T. 2015. Asynchronous Distributed Semi-Stochastic Gradient Optimization. <u>CoRR</u> abs/1508.01633.

Table 1: Design details

Name	Strategy	Return	Algorithm								
iname			SVRG	S2GD	mS2GD	EMGD	SVR-GHT	Prox-SVRG	SVRG ⁺⁺	Katyusha	synthetic
\mathcal{P}	uniformly	$i_t \sim \mathbb{U}$, namely, $P(i_t) = rac{1}{n}$	✓	✓	✓	✓	✓	✓	✓	✓	✓
	non-uniformly ¹	$i_t \sim \mathbb{N}$						✓			
	random	m^s is picked from $\{1,2,,C\}$ ran-			✓						
ε		domly									
<i>c</i>	constant	$m^s = C$	✓			✓	✓	✓		✓	✓
	ascent	2^sC							✓		
	descent	$P(m^{s}) = \frac{(1 - \mu \eta)^{\mathbf{m}^{s}} - t}{\sum\limits_{t=1}^{M} (1 - \mu \eta)^{M - t}}$ $\frac{1}{nP(i_{t})} \left(\nabla f_{i_{t}}(\omega^{s}) - \nabla f_{i_{t}}(\omega^{t}_{i_{t}}) \right)$ $\frac{1}{b} \sum\limits_{j=1}^{b} \left(\nabla f_{i_{t}}(\omega^{s}) - \nabla f_{i_{t}}(\omega^{t}_{i_{t}}) \right)$		✓							
\mathcal{R}	single	$\frac{\frac{t=1}{nP(i_t)}\left(\nabla f_{i_t}(\omega^s) - \nabla f_{i_t}(\omega_{i_t}^t)\right)}{\left(\nabla f_{i_t}(\omega^s) - \nabla f_{i_t}(\omega_{i_t}^t)\right)}$	√	√		√	√	√	✓	√	√
	mini-batch ²	$\frac{1}{b} \sum_{j=1}^{b} \left(\nabla f_{i_t}(\omega^s) - \nabla f_{i_t}(\omega_{i_t}^t) \right)$			✓						
и	steepest descent	$\omega_t^s - \eta_t * \gamma_t^s$	✓	✓	√			✓	✓	√	√
	steepest descent, shrink-	$\omega_t^s - \mathbb{B}_{\Delta_t}(\eta_s * \gamma_t^s)$ with $\Delta_s = \frac{C}{2^s}$ and				✓					
	ing domain	$\parallel \omega_t^s - \omega_{t-1}^s \parallel \leq \Delta_s$									
	steepest descent, sparse ³	$\mathbb{O}_k(\omega_t^s - \eta_t * \gamma_t^s)$					✓				
	random	pick w_{j}^{s} from $\{1,2,,m^{s}\}$ randomly $w_{j}^{m^{s}}$	✓								
\mathcal{I}	the last one	$w_j^{m^s}$	✓	✓	✓	✓	✓				✓
	average	$\sum_{j=1}^{m^s} w_j^s P(j)$						✓	✓		
	negative momentum	$\begin{pmatrix} \tau_1 \\ \tau_2 \\ 1 - \tau_1 - \tau_2 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} z_0 - \alpha \sum\limits_{i=1}^{m^s} \tilde{\gamma}_t^s \\ w^{s-1} \\ x_0 - \frac{1}{3L} \sum\limits_{i=1}^{m^s} \tilde{\gamma}_t^s \end{pmatrix}$								√	