

AI LUNAR LANDER

Alex Smith and Shreya Modi cs 4100

WHAT IS OUR ENVIRONMENT?

An API standard for reinforcement learning with a diverse collection of reference environments

ACTIONS

- Left Thruster
- Right Thruster
- Main Thruster (up)
- **Nothing**

STATE

Horizontal Position (x)

Angular Velocity (ω)

Vertical Position (y)

Left Leg Contact (I)

Horizontal Velocity (vx)

Right Leg Contact (r)

Vertical Velocity (vy)

AGENT

DEEP Q NETWORK

$$Q(s,a) = Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

HYPERPARAMETERS

Learning rate **a**, Gamma **y**, Epsilon **\varepsilon**, Epsilon Decay Rate,

Update_Frequency,

Hidden layer width,

Replay buffer

Neural Network Structure

REWARDS

- MEASURE THE POINTS PER EPISODE.
 - +100 TO +300 FOR LANDING SUCCESSFULLY BETWEEN THE FLAGS (CENTERED HIGHER)
 - +10 FOR EACH LEG MAKING CONTACT WITH THE GROUND
 - - 0.3 POINTS FOR EACH STEP TAKEN
 - A CRASH IS -100

STARTING COMPLETELY RANDOM

10 episodes

100 episodes

10 episodes

100 episodes

ISSUES WE FACED

Total Reward per Episode 200 Total Reward -200-400100 200 300 500 600 700 800 Episode

Update Frequency = 10

Update Frequency = 5

RESULTS AND ANALYSIS

WHY IS THIS IMPORTANT?

Think about this application deployed on a real scale

THANKS! Q&A