Mini lecture

k-means clustering

Arthur Van Camp

Monday 15 May 2023

Introduction

Course information: arthurvancamp.github.io/mini-lecture

Course information: arthurvancamp.github.io/mini-lecture

Clustering is widely used

Social networks (Medical) imaging Market analysis Chemistry Gene sequencing

Clustering

Given: x_1, \ldots, x_n vectors,

and k: number of clusters, with $n \gg k$.

Required: Partition $\{x_1,...,x_n\}$ into $\{C_1,...,C_k\}$ such that each group (cluster) C_ℓ contains vectors that are close to each other.

 $\{C_1,\ldots,C_k\}$ is a partition of $\{x_1,\ldots,x_n\}$ if $C_1\cup C_2\cup\cdots\cup C_k=\{x_1,\ldots,x_n\}$ and $C_i\cap C_j=\emptyset$ for all $i\neq j$.

Clustering

Given: x_1, \ldots, x_n vectors,

and k: number of clusters, with $n \gg k$.

Required: Partition $\{x_1,...,x_n\}$ into $\{C_1,...,C_k\}$ such that each group (cluster) C_ℓ contains vectors that are close to each other.

 $\{C_1,\ldots,C_k\}$ is a partition of $\{x_1,\ldots,x_n\}$ if $C_1\cup C_2\cup\cdots\cup C_k=\{x_1,\ldots,x_n\}$ and $C_i\cap C_j=\emptyset$ for all $i\neq j$.

We will study *k*-means clustering.

k-means clustering

Idea: Find a partition $\{C_1, \dots, C_k\}$ such that

$$\sum_{\ell=1}^{k} \frac{1}{|C_{\ell}|} \sum_{x,y \in C_{\ell}} ||x - y||^{2}$$

is as small as possible.

$$\| \bullet \|$$
 is the Euclidean norm: $\| x \| = \sqrt{\sum_{i=1}^d x_i^2}$.

Exercise 1: Why is there a factor $\frac{1}{|G|}$?

k-means clustering

Idea: Find a partition $\{C_1, \dots, C_k\}$ such that

$$\sum_{\ell=1}^{k} \frac{1}{|C_{\ell}|} \sum_{x,y \in C_{\ell}} ||x - y||^{2}$$

is as small as possible.

$$\| \cdot \|$$
 is the Euclidean norm: $\|x\| = \sqrt{\sum_{i=1}^d x_i^2}$.

Exercise 1: Why is there a factor $\frac{1}{|C_i|}$?

A useful alternative expression

Find a partition $\{C_1, \ldots, C_k\}$ that minimises $\sum_{\ell=1}^k \frac{1}{|C_\ell|} \sum_{x,y \in C_\ell} ||x-y||^2$.

A useful alternative expression

Find a partition $\{C_1, \ldots, C_k\}$ that minimises $\sum_{\ell=1}^k \frac{1}{|C_\ell|} \sum_{x,y \in C_\ell} ||x-y||^2$.

Define $\mu_{\ell} = \sum_{x \in C_{\ell}} \frac{x}{|C_{\ell}|}$, the centroid of cluster C_{ℓ} . Then the same $\{C_1, \dots, C_k\}$ minimises

$$\sum_{\ell=1}^{k} \sum_{x \in G_{\ell}} ||x - \mu_{\ell}||^2.$$
 (Exercise 2)

However, finding a partition that minimises $\sum_{\ell=1}^{k} \sum_{x \in C_{\ell}} ||x - \mu_{\ell}||^2$ is NP-hard.

Exercise 2: solution

Compare

$$\begin{split} \sum_{x,y \in C_{\ell}} \|x - y\|^2 &= \sum_{x,y \in C_{\ell}} \left(\|x\|^2 + \|y\|^2 - 2\langle x, y \rangle \right) \\ &= 2|C_{\ell}| \sum_{x \in C_{\ell}} \|x\|^2 - 2 \sum_{x,y \in C_{\ell}} \langle x, y \rangle = 2|C_{\ell}| \sum_{x \in C_{\ell}} \|x\|^2 - 2 \sum_{x \in C_{\ell}} \langle x, \mu_{\ell} \rangle |C_{\ell}| = 2|C_{\ell}| \left(\sum_{x \in C_{\ell}} \|x\|^2 \right) - 2|C_{\ell}|^2 \|\mu_{\ell}\|^2 \end{split}$$

with

$$\begin{split} \sum_{x \in C_{\ell}} \|x - \mu_{\ell}\|^2 &= \sum_{x \in C_{\ell}} \left(\|x\|^2 + \|\mu_{\ell}\|^2 - 2\langle x, \mu_{\ell} \rangle \right) \\ &= \sum_{x \in C_{\ell}} \|x\|^2 + |C_{\ell}| \|\mu_{\ell}\|^2 - 2\sum_{x \in C_{\ell}} \langle x, \mu_{\ell} \rangle = 2\sum_{x \in C_{\ell}} \|x\|^2 + |C_{\ell}| \|\mu_{\ell}\|^2 - 2|C_{\ell}| \|\mu_{\ell}\|^2 = \left(\sum_{x \in C_{\ell}} \|x\|^2\right) - |C_{\ell}| \|\mu_{\ell}\|^2 \end{split}$$

to infer that $\sum_{x \in C_{\ell}} \|x - \mu_{\ell}\|^2 = \frac{1}{2|C_{\ell}|} \sum_{x,y \in C_{\ell}} \|x - y\|^2$. Therefore minimising $\sum_{\ell=1}^{k} \sum_{x \in C_{\ell}} \|x - \mu_{\ell}\|^2$ is tantamount to minimising $\sum_{\ell=1}^{k} \frac{1}{|C_{\ell}|} \sum_{x,y \in C_{\ell}} \|x - y\|^2$, as the former is a factor 2 larger than the latter.

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^k \sum_{x \in C_\ell} \|x - \mu_\ell\|^2$$

is as small as possible.

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^k \sum_{x \in C_\ell} \|x - \mu_\ell\|^2$$

is as small as possible.

Step 1: Choose
$$k$$
 points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^k \sum_{x \in C_\ell} \|x - \mu_\ell\|^2$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^{k} \sum_{x \in C_{\ell}} ||x - \mu_{\ell}||^{2}$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

- **a.** Define clusters: add x_i to cluster C_ℓ if μ_ℓ is the centroid closest to x_i .
- b. Update μ_{ℓ} by computing the new centroid of C_{ℓ} .

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^{k} \sum_{x \in C_{\ell}} ||x - \mu_{\ell}||^{2}$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

- a. Define clusters: add x_i to cluster C_ℓ if μ_ℓ is the centroid closest to x_i .
- b. Update μ_{ℓ} by computing the new centroid of C_{ℓ} .

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^{k} \sum_{x \in C_{\ell}} ||x - \mu_{\ell}||^{2}$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

- **a.** Define clusters: add x_i to cluster C_ℓ if μ_ℓ is the centroid closest to x_i .
- b. Update μ_{ℓ} by computing the new centroid of C_{ℓ} .

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^k \sum_{x \in C_\ell} ||x - \mu_\ell||^2$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

- a. Define clusters: add x_i to cluster C_ℓ if μ_ℓ is the centroid closest to x_i .
- b. Update μ_{ℓ} by computing the new centroid of C_{ℓ} .

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^{k} \sum_{x \in C_{\ell}} ||x - \mu_{\ell}||^{2}$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

- a. Define clusters: add x_i to cluster C_ℓ if μ_ℓ is the centroid closest to x_i .
- b. Update μ_{ℓ} by computing the new centroid of C_{ℓ} .

Reformulation: Find a partition $\{C_1, \ldots, C_k\}$ such that

$$\sum_{\ell=1}^k \sum_{x \in C_\ell} ||x - \mu_\ell||^2$$

is as small as possible.

Step 1: Choose k points (centroids) μ_1, \ldots, μ_k from $\{x_1, \ldots, x_n\}$.

- **a.** Define clusters: add x_i to cluster C_ℓ if μ_ℓ is the centroid closest to x_i .
- b. Update μ_{ℓ} by computing the new centroid of C_{ℓ} .

Exercise 3: Implement Lloyd's algorithm

Implement Lloyd's algorithm in Python in two dimensions (d = 2).

Given an input X of the form X = [X[0], X[1], ..., X[n]] and a k, implement Lloyd's algorithm.

Create some data sets to test your implementation on.

See arthurvancamp.github.io/mini-lecture/k-means.py