Linear Regression Activity

Isaí Ambrocio

Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
sns.set_theme()

df = pd.read_csv("/content/ds_salaries.csv")
```

Exploratory Data Analysis (EDA)

df	,	,	•				
0 1 2 3 4 602 603 604 605 606	Unnamed: 0 work 0 1 2 3 4 602 603 604 605 606	_year exper 2020 2020 2020 2020 2020 2022 2022	ience_le	evel emplo MI SE SE MI SE SE SE SE SE MI		/pe \ FT	
		job_title	salary	salary_cı	urrency	salary_i	n_usd
0	Data	Scientist	70000		EUR		79833
1	Machine Learning	Scientist	260000		USD	2	60000
2	Big Data	a Engineer	85000		GBP	1	09024
3	Product Da ⁻	ta Analyst	20000		USD		20000
4	Machine Learning	g Engineer	150000		USD	1	50000

602	Data Engineer	154000	USD	154000
603	Data Engineer	126000	USD	126000
604	Data Analyst	129000	USD	129000
605	Data Analyst	150000	USD	150000
606	AI Scientist	200000	USD	200000
			1	-:
emptoyee ₀	_residence remote_r DE	0	any_location company_ DE	Size
1	JP	Ö	JP	S
1 2	GB	50	GB	M
3 4	HN	0	HN	S
4	US	50	US	L
602	US	100	US	M
603	US	100	US	M
604	US	0	US	M
605	US	100	US	M
606	IN	100	US	L

We check that there is no null data.

```
df.isnull().sum()
Unnamed: 0
                       0
work_year
                       0
experience_level
                       0
employment_type
                       0
job_title
                       0
salary
                       0
salary_currency
                       0
salary_in_usd
                       0
employee_residence
                       0
remote_ratio
                       0
company_location
                       0
company_size
                       0
dtype: int64
df1 = df.drop("Unnamed: 0", axis=1)
df1
```

work job title	_year (experience_leve	el (employment_	_type		
0 Scientist	2020	ľ	1I		FT	Data	
1 Scientist	2020	Ç	SE		FT	Machine Learning	
2	2020	Ç	SE		FT	Big Data	
Engineer 3	2020	ľ	1I		FT	Product Data	
Analyst 4	2020	<u> </u>	SE		FT	Machine Learning	
Engineer 							
602	2022	<u> </u>	SE		FT	Data	
Engineer 603	2022		SE		FT	Data	
Engineer 604	2022		SE		FT	Data	
Analyst 605	2022	9	SE		FT	Data	
Analyst 606	2022	ľ	1I		FT	AI	
Scientist							
sala remote ra		ary_currency s	sal	ary_in_usd	emplo	yee_residence	
0 700 0		EUR		79833		DE	
1 2600 0	00	USD		260000		JP	
2 850 50	00	GBP		109024		GB	
3 200 0	00	USD		20000		HN	
4 1500 50	00	USD		150000		US	
50							
 602 1540	00	USD		 154000		 US	
 602 1540 100 603 1260		USD USD		 154000 126000			
602 1540 100 603 1260 100 604 1290	00					US	
602 1540 100 603 1260 100 604 1290 0 605 1500	00 00	USD		126000		US	
602 1540 100 603 1260 100 604 1290	00 00 00	USD		126000 129000		US US US	

```
company_location company_size
0
                   DE
1
                   JΡ
                                  S
2
                   GB
                                  Μ
                                 S
3
                   HN
4
                   US
                                  L
602
                   US
                                 M
603
                   US
                                 M
                   US
604
                                 M
605
                                 М
                   US
606
                   US
[607 rows x 11 columns]
df1["experience_level"].unique()
array(['MI', 'SE', 'EN', 'EX'], dtype=object)
dummies=pd.get_dummies(df1["experience_level"],prefix="experience_leve
l")
```

Now, we use dummy.

```
dummies
     experience level EN
                             experience level EX experience level MI \
0
1
                          0
                                                  0
                                                                          0
2
                          0
                                                  0
                                                                          0
3
                          0
                                                  0
                                                                          1
4
                          0
                                                  0
                                                                          0
                                                                          0
602
                          0
                                                  0
603
                          0
                                                  0
                                                                          0
                          0
                                                                          0
604
                                                  0
605
                          0
                                                  0
                                                                          0
606
                                                                          1
     experience_level_SE
0
1
                          1
2
                          1
3
                          0
4
                          1
602
                          1
603
                          1
604
                          1
```

605 606		1 0		
[607 ro	ws x 4 colur	mns]		
df1 = p	d.concat([d	f1,dummies],axi	s= <mark>1</mark>)	
df1				
		erience_level e	mployment_type	
job_tit 0	2020	MI	FT	Data
Scienti 1	st 2020	SE	FT	Machine Learning
Scienti 2	st 2020	SE	FT	Big Data
Enginee		MI	FT	Product Data
Analyst				
4 Enginee	2020 r	SE	FT	Machine Learning
602 Enginee	2022 r	SE	FT	Data
603 Enginee	2022	SE	FT	Data
604	2022	SE	FT	Data
Analyst	2022	SE	FT	Data
Analyst 606	2022	MI	FT	AI
Scienti	st			
sa remote_	<pre>lary salary_ ratio \</pre>	_currency sala	ry_in_usd emplo	yee_residence
	0000	EUR	79833	DE
1 26	0000	USD	260000	JP
	5000	GBP	109024	GB
50 3 2	0000	USD	20000	HN
0 4 15	0000	USD	150000	US
50				
602 15	4000	IICD	154000	
602 15 100	4000	USD	154000	US

603	126000	USD	126000		US
100					
604 0	129000	USD	129000		US
605	150000	USD	150000		US
100 606	200000	USD	200000		IN
100	200000	030	200000		TIN
	company location	company size	experience_leve	ıl FN	
	erience_level_EX	\	experience_tere		
0	DE	L		0	
0 1	JP	S		Θ	
0 2					
2	GB	M		0	
0 3	HN	S		0	
0					
4 0	US	L		0	
602 0	US	M		0	
603	US	M		0	
0				•	
604 0	US	M		0	
605	US	M		Θ	
0	uc			0	
606 0	US	L		0	
0	experience_leve	l_MI experie	nce_level_SE 0		
1		Ö	ĭ		
2		0	1		
0 1 2 3 4		1 0	0 1		
602 603		0 0	1 1		
604		0	1		
605		0	1		
606		1	0		
[607	7 rows x 15 colum	ns]			
df1["employment_type	"].unique()			

```
array(['FT', 'CT', 'PT', 'FL'], dtype=object)
dummies=pd.get dummies(df1["employment type"],prefix="employment type"
df1 = pd.concat([df1,dummies],axis=1)
df1
     work year experience level employment type
job_title
          2020
                               ΜI
                                                FT
                                                                 Data
Scientist
          2020
                               SE
                                                FT
                                                    Machine Learning
1
Scientist
2
          2020
                               SE
                                                FT
                                                              Big Data
Engineer
                               ΜI
                                                FT
          2020
                                                           Product Data
Analyst
                                                     Machine Learning
          2020
                               SE
                                                FT
Engineer
. . .
          2022
                               SE
                                                FT
602
                                                                  Data
Engineer
          2022
                               SE
                                                FT
                                                                  Data
603
Engineer
604
          2022
                               SE
                                                FT
                                                                   Data
Analyst
                               SE
                                                FT
          2022
                                                                   Data
605
Analyst
606
          2022
                               ΜI
                                                FT
                                                                   ΑI
Scientist
     salary salary_currency salary_in_usd employee residence
remote ratio
0
      70000
                         EUR
                                       79833
                                                               DE
0
1
     260000
                         USD
                                      260000
                                                               JP
0
2
                         GBP
                                                               GB
      85000
                                      109024
50
3
      20000
                         USD
                                       20000
                                                               HN
0
4
     150000
                         USD
                                      150000
                                                               US
50
. .
     154000
                         USD
                                      154000
                                                               US
602
100
```

603 100	126000	USD	126000	US
604	129000	USD	129000	US
0 605	150000	USD	150000	US
100 606 100	200000	USD	200000	IN
expe	<pre>company_location erience_level_EX</pre>	company_size	experience_	level_EN
0	DE	` L		0
0	JP	S		0
0 2	GB	М		Θ
0 3	HN	S		0
0 4	US	L		0
0		_		
		м.		
602 0	US	М		0
603 0	US	М		0
604 0	US	М		0
605 0	US	М		0
606 0	US	L		0
U		. MT	1 1 65	1
0 1 2 3 4	experience_teve	1	ce_tevet_SE 0 1 1 0 1	employment_type_CT \ 0 0 0 0 0 0
602 603 604 605 606		0 0 0 0 0	1 1 1 1 0	 0 0 0 0 0
0 1	employment_type	_FL employmen 0 0	t_type_FT e 1 1	mployment_type_PT 0 0

2 3 4	0 0 0		1 1 1	0 0 0				
602 603 604 605 606	0 0 0 0		1 1 1 1	0 0 0 0				
[607 rows x 19 colum	ns]							
df1.columns								
<pre>Index(['work_year', 'experience_level', 'employment_type',</pre>								
correlacion=df1.corr	.()							
<pre><ipython-input-50-b5 correlacion="df1.com</pre" data="" default="" fals="" in="" numeric_only="" of="" s="" to="" will=""></ipython-input-50-b5></pre>	Frame.corr i e. Select or ilence this	is depreca nly valid	ted. In a futur	e version, it				
correlacion								
\	work_year	salary	salary_in_usd	remote_ratio				
work_year	1.000000	-0.087577	0.170493	0.076314				
salary	-0.087577	1.000000	-0.083906	-0.014608				
salary_in_usd	0.170493	-0.083906	1.000000	0.132122				
remote_ratio	0.076314	-0.014608	0.132122	1.000000				
experience_level_EN	-0.234542	-0.015845	-0.294196	-0.010490				
experience_level_EX	0.005446	0.014130	0.259866	0.041208				
experience_level_MI	-0.136382	0.074626	-0.252024	-0.127850				

```
0.294008 -0.065995
experience level SE
                                                 0.343513
                                                                0.113071
employment type CT
                      -0.053407 -0.008268
                                                 0.092907
                                                                0.065149
employment type FL
                                                -0.073863
                                                               -0.016865
                      -0.047729 -0.014568
employment_type FT
                      0.105342 0.025685
                                                 0.091819
                                                               -0.023834
employment type PT
                      -0.075845 -0.020006
                                                -0.144627
                                                               -0.002935
                      experience level EN
                                            experience level EX \
work_year
                                -0.234542
                                                       0.005446
salary
                                -0.015845
                                                       0.014130
salary in usd
                                -0.294196
                                                       0.259866
remote ratio
                                -0.010490
                                                       0.041208
experience level EN
                                 1.000000
                                                      -0.087108
experience_level_EX
                                -0.087108
                                                       1.000000
experience level MI
                                -0.302761
                                                      -0.155539
experience level SE
                                -0.381033
                                                      -0.195751
employment type CT
                                 0.066013
                                                       0.070739
employment_type_FL
                                -0.033537
                                                      -0.017229
employment type FT
                                -0.167828
                                                      -0.008698
                                 0.204028
                                                      -0.027379
employment type PT
                      experience level MI
                                            experience level SE
work year
                                -0.136382
                                                       0.294008
                                 0.074626
                                                      -0.065995
salary
salary in usd
                                -0.252024
                                                       0.343513
remote ratio
                                -0.127850
                                                       0.113071
experience level EN
                                -0.302761
                                                      -0.381033
experience level EX
                                -0.155539
                                                      -0.195751
experience level MI
                                 1.000000
                                                      -0.680373
experience level SE
                                -0.680373
                                                       1.000000
employment_type_CT
                                -0.028817
                                                      -0.047768
employment type FL
                                 0.068108
                                                      -0.034520
employment_type_FT
                                -0.006597
                                                       0.128381
employment type PT
                                -0.013805
                                                      -0.119762
                                           employment_type_FL
                      employment_type_CT
work year
                               -0.053407
                                                    -0.047729
                               -0.008268
                                                    -0.014568
salary
salary_in_usd
                                0.092907
                                                    -0.073863
remote ratio
                                0.065149
                                                    -0.016865
experience level EN
                                0.066013
                                                    -0.033537
experience level EX
                                0.070739
                                                    -0.017229
experience level MI
                               -0.028817
                                                     0.068108
experience level SE
                               -0.047768
                                                    -0.034520
employment type CT
                                1.000000
                                                    -0.007423
```

```
employment type FL
                               -0.007423
                                                     1.000000
employment type FT
                               -0.506989
                                                   -0.453089
employment type PT
                               -0.011795
                                                   -0.010541
                                          employment type PT
                     employment type FT
                                0.105342
                                                   -0.075845
work year
                                0.025685
                                                   -0.020006
salary
salary in usd
                                0.091819
                                                   -0.144627
remote ratio
                               -0.023834
                                                   -0.002935
                                                    0.204028
experience level EN
                               -0.167828
experience_level_EX
                               -0.008698
                                                   -0.027379
experience level MI
                               -0.006597
                                                   -0.013805
experience level SE
                                0.128381
                                                   -0.119762
employment type CT
                               -0.506989
                                                   -0.011795
employment type FL
                               -0.453089
                                                   -0.010541
employment_type_FT
                                1.000000
                                                   -0.719987
employment type PT
                               -0.719987
                                                    1.000000
alta corr = np.where((correlacion > 0.95) & (correlacion < 1))
baja corr = np.where((correlacion < -0.95) & (correlacion > -1))
correlacion
                     work year
                                   salary
                                           salary in usd
                                                           remote ratio
                       1.000000 -0.087577
                                                0.170493
                                                               0.076314
work year
salary
                      -0.087577 1.000000
                                               -0.083906
                                                              -0.014608
salary in usd
                      0.170493 -0.083906
                                                1.000000
                                                               0.132122
                      0.076314 -0.014608
remote ratio
                                                0.132122
                                                               1.000000
                                               -0.294196
                                                              -0.010490
experience level EN
                     -0.234542 -0.015845
experience level EX
                      0.005446 0.014130
                                                0.259866
                                                               0.041208
experience level MI
                     -0.136382 0.074626
                                               -0.252024
                                                              -0.127850
experience level SE
                      0.294008 -0.065995
                                                0.343513
                                                               0.113071
employment type CT
                     -0.053407 -0.008268
                                                0.092907
                                                               0.065149
                     -0.047729 -0.014568
employment type FL
                                               -0.073863
                                                              -0.016865
employment type FT
                      0.105342 0.025685
                                                0.091819
                                                              -0.023834
employment type PT
                     -0.075845 -0.020006
                                               -0.144627
                                                              -0.002935
```

```
experience level EN
                                            experience level_EX \
                                 -0.234542
work year
                                                        0.005446
salary
                                 -0.015845
                                                        0.014130
salary in usd
                                 -0.294196
                                                        0.259866
remote ratio
                                 -0.010490
                                                        0.041208
experience_level_EN
                                  1.000000
                                                       -0.087108
experience level EX
                                 -0.087108
                                                        1.000000
experience level MI
                                 -0.302761
                                                       -0.155539
experience level SE
                                 -0.381033
                                                       -0.195751
                                 0.066013
employment type CT
                                                        0.070739
employment type FL
                                 -0.033537
                                                       -0.017229
employment type FT
                                 -0.167828
                                                       -0.008698
employment type PT
                                                       -0.027379
                                  0.204028
                      experience level MI
                                            experience level SE
work year
                                 -0.136382
                                                        0.294008
                                                       -0.065995
salary
                                  0.074626
                                                        0.343513
salary in usd
                                 -0.252024
                                                        0.113071
remote ratio
                                 -0.127850
experience_level_EN
                                 -0.302761
                                                       -0.381033
experience_level_EX
                                 -0.155539
                                                       -0.195751
experience level MI
                                 1.000000
                                                       -0.680373
experience_level_SE
                                 -0.680373
                                                        1.000000
employment type CT
                                 -0.028817
                                                       -0.047768
employment_type_FL
                                 0.068108
                                                       -0.034520
employment type FT
                                 -0.006597
                                                        0.128381
employment type PT
                                 -0.013805
                                                       -0.119762
                                           employment type FL \
                      employment type CT
                                                     -0.047729
work year
                                -0.053407
                                -0.008268
                                                     -0.014568
salary
salary_in_usd
                                 0.092907
                                                     -0.073863
remote ratio
                                 0.065149
                                                     -0.016865
experience level EN
                                0.066013
                                                     -0.033537
experience level EX
                                0.070739
                                                     -0.017229
experience level MI
                                -0.028817
                                                      0.068108
experience_level SE
                                                     -0.034520
                                -0.047768
employment type CT
                                1.000000
                                                     -0.007423
employment type FL
                                -0.007423
                                                     1.000000
employment_type_FT
                                -0.506989
                                                     -0.453089
employment type PT
                                -0.011795
                                                     -0.010541
                      employment type FT
                                           employment type PT
work year
                                0.105342
                                                     -0.075845
                                 0.025685
salary
                                                     -0.020006
salary in usd
                                0.091819
                                                     -0.144627
remote ratio
                                -0.023834
                                                     -0.002935
experience level EN
                                -0.167828
                                                      0.204028
experience_level EX
                                                     -0.027379
                                -0.008698
experience_level_MI
                                -0.006597
                                                     -0.013805
```

```
experience level SE
                                0.128381
                                                    -0.119762
employment type CT
                               -0.506989
                                                    -0.011795
employment type FL
                               -0.453089
                                                    -0.010541
employment type FT
                                1.000000
                                                    -0.719987
employment type PT
                               -0.719987
                                                     1.000000
alta corr
(array([], dtype=int64), array([], dtype=int64))
baja corr
(array([], dtype=int64), array([], dtype=int64))
entrenamiento.
prueba=train test split(df1,test size=0.20,random state=42)
entrenamiento
     work year experience level employment type \
9
          2020
                              SE
                                               FT
227
                                               FT
          2021
                              MI
591
          2022
                              SE
                                               FT
          2022
                              SE
                                               FT
516
132
          2021
                              ΜI
                                               FT
71
          2020
                              ΜI
                                               FT
106
          2021
                              ΜI
                                               FT
270
          2021
                              ΕN
                                               FT
435
          2022
                              ΜI
                                               FT
102
                              ΜI
                                               FT
          2021
                               job title
                                             salary_currency \
9
                      Lead Data Engineer
                                             125000
                                                                 USD
227
                          Data Scientist
                                              75000
                                                                 EUR
591
                          Data Architect
                                             144854
                                                                 USD
516
                   Data Science Manager
                                                                 USD
                                             152500
132
     Applied Machine Learning Scientist
                                              38400
                                                                 USD
. .
                                                                 . . .
71
                          Data Scientist
                                              37000
                                                                 EUR
                      Research Scientist
106
                                             235000
                                                                 CAD
270
                           Data Engineer
                                              72500
                                                                 USD
435
                           Data Engineer
                                              70000
                                                                 GBP
102
                         BI Data Analyst
                                          11000000
                                                                 HUF
     salary_in_usd employee_residence remote ratio
company location \
            125000
                                    NZ
                                                   50
                                                                     NZ
                                    DE
                                                   50
                                                                     DE
227
             88654
```

591	144854	US	100	US
516	152500	US	100	US
132	38400	VN	100	US
71	42197	FR	50	FR
106	187442	CA	100	CA
270	72500	US	100	US
435	91614	GB	100	GB
102	36259	HU	50	US
9 227 591 516 132 71 106 270 435 102	company_size experi S L M M S L L L M	ence_level_EN expers 0 0 0 0 0 1 0 0	ience_level_EX	
9 227 591 516 132 71 106 270 435 102	experience_level_MI 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		E employment_t 1 0 1 1 0 0 0 0 0 0	type_CT \
9 227 591 516	employment_type_FL 0 0 0 0	employment_type_FT 1 1 1 1	employment_typ	De_PT 0 0 0 0

132	0	1	Θ
		• • •	
71	0	1	0
106	Θ	1	Θ
270	0	1	Θ
270 435	0	1	Θ
102	0	1	Θ
[485 rows x 1	9 columns]		

Model

$$Y = \beta X + \epsilon$$

$$\hat{Y} = \beta^{i} X$$

$$\beta X = \beta_{0}(1) + \beta_{1} x_{1} + \beta_{2} x_{2} + \beta_{3} x_{3} + \beta_{4} x_{4}$$

```
modelo=smf.ols(formula="salary in usd~salary+remote ratio+experience l
evel_EN+experience_level_EX+experience_level_MI+employment_type_CT+emp
loyment_type_FL+employment_type_FT",data=entrenamiento)
modelo=modelo.fit()
print(modelo.summary())
                            OLS Regression Results
Dep. Variable:
                        salary_in_usd
                                        R-squared:
0.264
Model:
                                   OLS Adj. R-squared:
0.252
Method:
                        Least Squares F-statistic:
21.37
                     Fri, 18 Aug 2023 Prob (F-statistic):
Date:
8.41e-28
                                        Log-Likelihood:
                             04:48:29
Time:
-6044.0
No. Observations:
                                   485
                                        AIC:
1.211e+04
Df Residuals:
                                   476
                                         BIC:
1.214e+04
Df Model:
                                     8
Covariance Type:
                            nonrobust
                          coef
                                  std err
                                                           P>|t|
```

[0.025	0.975]						
Intercept		9.787e+04	2.44e+(94	4.015	0.000	
salary	. 46e+05	-0.0067	0.00	93 -	2.251	0.025	-
0.013 remote_rat: 35.431	-0.001 io 241.809	103.1885	70.5	16	1.463	0.144	-
experience 9.23e+04	_level_EN	-7.485e+04	8886.54	1 7 -	8.423	0.000	-
experience 3.88e+04		6.662e+04	1.42e+0	94	4.698	0.000	
experience 6.06e+04	_level_MI -3.52e+04	-4.79e+04	6485.00	92 -	7.387	0.000	-
employment _{367.309}	1.53e+05	7.688e+04	3.89e+0		1.974	0.049	
	9.5 4 e+04		5.04e+0		0.073	0.941	-
employment ₁	_type_FT 8.17e+04	3.578e+04	2.34e+0	94	1.531	0.126	-
 Omnibus:			 242.000	Durhin-	Watson:		
1.979 Prob(Omnib	ıs):	-	0.000		Bera (JB):		
2005.484 Skew:	, .		2.000	Prob(JB			
0.00 Kurtosis:			12.123	Cond. N			
2.01e+07			======		.=======		
		assume that	t the cov	ariance	matrix of	the error	rs is
correctly s [2] The cou there are		mber is lar	ge, 2.01	e+07. Th	is might i	ndicate t	that
strong mul	ticollinea	rity or oth	ner numer:	ical pro	blems.		

Enhacing Model

Fitting a new linear regression model without remote_ratio to see if we get better performance.

```
df2 = df1.drop(["remote_ratio"], axis = 1)
```

```
modelo1=smf.ols(formula="salary_in_usd~salary+experience_level_EN+expe
rience_level_EX+experience_level_MI+employment_type_CT+employment_type
_FL+employment_type_FT",data=entrenamiento)
modelo1=modelo1.fit()
print(modelo1.summary())
```

OLS Regression Results

======== ======= Dep. Variable:	salary i	in usd	 R-squared:	==	
0.261	Satary_s	III_u3u I	· Squarea:		
Model:		OLS I	Adj. R-squared:	1	
0.250	Lanat C				
Method: 24.06	Least So	quares	-statistic:		
Date:	Fri, 18 Aug	g 2023 I	Prob (F-statist	ic):	
4.61e-28			•	, i	
Time:	03 :	:01:01	_og-Likelihood:	í	
-6045.1 No. Observations:		485	AIC:		
1.211e+04		405	110.		
Df Residuals:		477 I	BIC:		
1.214e+04		-			
Df Model:		7			
Covariance Type:	non	robust			
[0.025 0.975]	coef	std er	r t	P> t	
Intercept 5.95e+04 1.53e+		2.37e+0	4.469	0.000	
salary 0.013 -0.001	-0.0069	0.003	3 -2.341	0.020	
experience_level_E 9.28e+04 -5.78e+		8891.64	6 -8.470	0.000	-
experience_level_E 3.93e+04 9.51e+	X 6.72e+04	1.42e+0	4.735	0.000	
experience_level_M 6.13e+04 -3.59e+	I -4.862e+04	6473.969	9 -7.511	0.000	-
employment_type_CT 2536.143 1.56e+	7.909e+04	3.9e+0	2.030	0.043	
employment_type_FL 1e+05 9.79e+04		5.05e+0	4 -0.025	0.980	
employment_type_FT	3.516e+04	2.34e+0	1.503	0.133	-

1.08e+04

8.11e+04

```
Omnibus:
                              240.438
                                        Durbin-Watson:
1.986
Prob(Omnibus):
                                0.000
                                        Jarque-Bera (JB):
1967,629
Skew:
                                1.989
                                        Prob(JB):
0.00
Kurtosis:
                                      Cond. No.
                               12.031
2.01e+07
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
[2] The condition number is large, 2.01e+07. This might indicate that
there are
strong multicollinearity or other numerical problems.
```

Removing Salary

Fitting a new linear regression model without salary to see if we get better performance.

```
df3 = df1.drop(["salary"], axis = 1)
modelo2=smf.ols(formula="salary in usd~remote ratio+experience level E
N+experience level EX+experience level MI+employment type CT+employmen
t type FL+employment type FT", data=entrenamiento)
modelo2=modelo2.fit()
print(modelo2.summary())
                            OLS Regression Results
_____
Dep. Variable:
                        salary in usd
                                        R-squared:
0.256
Model:
                                  OLS Adj. R-squared:
0.246
Method:
                        Least Squares F-statistic:
23.50
                     Fri, 18 Aug 2023 Prob (F-statistic):
Date:
1.89e-27
Time:
                             03:01:13 Log-Likelihood:
-6046.6
No. Observations:
                                  485
                                        AIC:
1.211e+04
Df Residuals:
                                  477
                                        BIC:
```

1.214e+04 Df Model:			7			
	_					
Covariance	Type:	non	robust			
=======		=======	=======		=======	====
		coef	std err	t	P> t	
[0.025	0.975]					
Intercept	1 45 05	9.718e+04	2.45e+04	3.970	0.000	
4.91e+04 remote rati	1.45e+05	112.7886	70.716	1.595	0.111	_
26.165	251.743					
experience_ 9.27e+04	_		8923.178	-8.425	0.000	-
experience			1.42e+04	4.564	0.000	
3.7e+04	9.28e+04					
experience_ 6.13e+04			6506.373	-7.460	0.000	-
employment_	_type_CT	7.612e+04	3.91e+04	1.947	0.052	-
714.894 employment	1.53e+05	-4186.9851	5.07e+04	-0.083	0.934	
	9.54e+04		3.076+04	-0.003	0.954	-
employment_ 1.19e+04	_type_FT 8.03e+04	3.419e+04	2.34e+04	1.458	0.145	-
========	=======					=====
======= Omnibus:		21	35.750 Di	urbin-Watson:		
1.984		2.	JJ.730 D	ar bin-wacson.		
Prob(Omnibu	ıs):		0.000 Ja	arque-Bera (JB):	
1878.276 Skew:			1.949 P	rob(JB):		
0.00						
Kurtosis: 1.63e+03			11.817 C	ond. No.		
1.03e+03						
======						
Notes:						
[1] Standar		assume that	the covar:	iance matrix o	f the erro	rs is
correctly s	•	mbor is lar	aa 1 62au	no Thic might	indicato	+ h > +
there are	IUT LIUII IIU	mnei 12 rai	ye, 1.03e+0	93. This might	тпитсате	tilat
strong mult	icollinea	rity or othe	er numerica	al problems.		

Removing Remote Ratio & Employment Type

Fitting a new linear regression model without remote_ratio and employment_type to see if we get better performance.

```
df4 = df1.drop(["employment_type_CT", "employment_type_FL",
"employment_type_FT", "remote_ratio"], axis = 1)
modelo3=smf.ols(formula="salary in usd~salary+experience level EN+expe
rience level EX+experience level MI", data=entrenamiento)
modelo3=modelo3.fit()
print(modelo3.summary())
                            OLS Regression Results
_____
Dep. Variable:
                        salary in usd
                                        R-squared:
0.253
Model:
                                  0LS
                                        Adj. R-squared:
0.247
Method:
                        Least Squares F-statistic:
40.70
                     Fri, 18 Aug 2023 Prob (F-statistic):
Date:
2.24e-29
Time:
                             05:16:42
                                        Log-Likelihood:
-6047.6
No. Observations:
                                  485
                                        AIC:
1.211e+04
Df Residuals:
                                  480
                                        BIC:
1.213e+04
Df Model:
                                    4
Covariance Type:
                            nonrobust
===========
                          coef std err
                                                           P>|t|
[0.025]
            0.9751
Intercept
                     1.413e+05
                                 4276.518
                                              33.037
                                                           0.000
1.33e+05
             1.5e+05
salarv
                       -0.0068
                                    0.003
                                               -2.299
                                                           0.022
0.013
           -0.001
experience_level_EN -7.754e+04
                                 8570.685
                                               -9.048
                                                           0.000
          -6.07e+04
9.44e+04
experience level EX 6.913e+04
                                 1.42e+04
                                               4.883
                                                           0.000
           9.69e+04
4.13e+04
experience level MI
                     -4.91e+04
                                 6483.621
                                               -7.573
                                                           0.000
```

```
6.18e+04
           -3.64e+04
======
                               239.858
                                         Durbin-Watson:
Omnibus:
1.990
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
1925.137
Skew:
                                 1.990
                                         Prob(JB):
0.00
Kurtosis:
                                11.912
                                         Cond. No.
5.07e+06
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
[2] The condition number is large, 5.07e+06. This might indicate that
there are
strong multicollinearity or other numerical problems.
```

Selected Model

Based on the previous models, we consider that the 4th model explains the best the dependent variable. We can clearly see that it does **not** out-performs the rest of the models, the coefficients make the most sense of them all.

Leaving us with the columns:

- salary
- experience level EN
- experience level EX
- experience_level_MI

And our model:

```
\hat{Y} = \beta_0 + \beta_1 \text{(salary)} + \beta_2 \text{(experience\_level\_EN)} + \beta_3 \text{(experience\_level\_EX)} + \beta_4 \text{(experience\_level\_MI)}
```

 $\hat{Y} = 141300.0 - 0.0068$ (salary) - 77540.0 (experience_level_EN) + 69130.0 (experience_level_EX) - 49100.0 (experience_level_EX)

```
Intercept 141282.300520
salary -0.006834
experience_level_EN -77543.574397
experience_level_EX 69131.013881
experience_level_MI -49099.920182
dtype: float64
```

```
Intercept
                       141282.300520
salary
                           -0.006834
experience level EN
                       -77543.574397
experience level EX
                        69131.013881
experience level MI
                       -49099.920182
dtype: float64
y aprox = 141282.300520 - 0.006834 * prueba["salary"] - 77543.574397 *
prueba["experience_level_EN"] + \
            69131.013881 * prueba["experience_level_EX"] -
49099.920182 * prueba["experience level MI"]
print(y aprox)
563
       140323.832020
289
       140359.710520
76
        91498.980338
78
        90337.200338
182
        92032.032338
       140120.520520
249
365
       140335.108120
453
        91362.300338
548
       140605.392820
235
        91430.640338
Length: 122, dtype: float64
modelo3.predict(prueba.loc[:, ["salary", "experience_level_EN",
"experience_level_EX", "experience_level_MI"]])
       140323.877371
563
289
       140359.754174
        91499.012674
76
78
        90337.287645
182
        92032.039451
       140120.575491
249
365
       140335.152938
453
        91362.339141
548
       140605.424849
        91430.675907
Length: 122, dtype: float64
table =
pd.DataFrame({"Real":prueba["salary_in_usd"],"Prediccion":y_aprox,"Err
ores":prueba["salary in usd"]-y aprox})
table
       Real
                Prediccion
                                  Errores
     140250 140323.832020
563
                                -73.832020
```

```
289
     135000
             140359.710520
                              -5359.710520
76
     100000
              91498.980338
                               8501.019662
78
     270000
              90337.200338
                             179662.799662
                             -66027.032338
182
      26005
              92032.032338
249
             140120.520520
                              29879.479480
     170000
             140335.108120
365
     138600
                              -1735.108120
453
     120000
              91362.300338
                              28637.699662
548
     99050
             140605.392820
                             -41555.392820
235
     110000
              91430.640338
                              18569.359662
[122 rows x 3 columns]
plt.scatter(prueba["salary_in_usd"],y_aprox,color="gray")
plt.plot(prueba['salary in usd'],prueba['salary in usd'],color='red')
plt.xlabel("Datos reales")
plt.ylabel("Prediccion")
Text(0, 0.5, 'Prediccion')
```



```
l_residuos=len(table["Errores"])
plt.scatter(range(l_residuos),table["Errores"],color="gray")
plt.axhline(y=0,linestyle="--",color="black")
```

```
plt.xlabel("numero del residuo")
plt.ylabel("Valor del residuo")
Text(0, 0.5, 'Valor del residuo')
```



```
plt.hist(x=table["Errores"],color="orange", bins=30)
plt.title("Histograma residuos")
plt.xlabel("Residuos")
plt.ylabel("Frecuencia (proba)")

Text(0, 0.5, 'Frecuencia (proba)')
```



```
media=table["Errores"].mean()
std=table["Errores"].std()
Errores_est=(table["Errores"]-media)/std

stats.kstest(Errores_est,"norm")

KstestResult(statistic=0.08390914139054195,
pvalue=0.33786192266394016, statistic_location=0.11868717093119897,
statistic_sign=1)
```

The fourth model was selected for simplicity rather than perfomance (Principle of parsimony).

We have a base salary of our implicit rank (SE). From there, we see that someone with an entry rank (EN) is deducted a higher amount compared to the MID, while the Expert is given an increase. In the case of salary the coefficient is so small that it is not relevant.

Isai Ambrocio - A01625101