Primeiro Relatório de Física Experimental 2

Henrique da Silva hpsilva@proton.me

11 de julho de 2022

Sumário

-4	T /		~
T	Intro	duç	cao

2 Tarefas

2.1	Gráfico de d em função de v_0
2.2	Estimação visual
2.3	Gráfico de d em função de v_0^2
2.4	Relação matemática entre $d \in v_0^2$
2.5	Verificação dos outros pisos
2.6	Verificação por gráfico di-log
2.7	Deslocamento d em função de velo-
	cidade inicial $v_0 \ldots \ldots \ldots$
2.8	Obtendo μ para os pisos

3 Conclusão

1 Introdução

Neste relatório, vamos discutir um objeto se movendo sobre uma superfície com atrito e suas grandezas relacionadas

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/fisicaexperimental2/Relatorio1

2 Tarefas

2.1 Gráfico de d em função de v_0

Deslocamento por Velocidade Inicial Piso 1 Autor: Henrique Pedro da Silva

2.2 Estimação visual

Estimando visualmente a partir do gráfico acima, podemos estimar o deslocamento d como o seguinte:

$$v_0 = 15m/s \to d = 23.2m$$

 $v_0 = 21m/s \to d = 44.2m$ (1)

2.3 Gráfico de d em função de v_0^2

${f 2.4}$ Relação matemática entre d e v_0^2

Podemos observar que há uma relação linear entre d e v_0^2 , e tentando um fit pelo SciDAVis conseguimos o seguinte:

$$d = 0.102 * V_0^2 \tag{2}$$

2.5 Verificação dos outros pisos

Deslocamento por Velocidade Inicial^2 Piso 2

Deslocamento por Velocidade Inicial^2 Piso 3 Autor: Henrique Pedro da Silva

Deslocamento por Velocidade Inicial^2 Piso 4 Autor: Henrique Pedro da Silva

Novamente fazendo fit pelo SciDAVis conseguimos o seguinte:

$$\begin{aligned} Piso \, 1 &\to d = 0.102 * V_0^2 \\ Piso \, 2 &\to d = 0.102 * V_0^2 \\ Piso \, 3 &\to d = 0.102 * V_0^2 \\ Piso \, 4 &\to d = 0.102 * V_0^2 \end{aligned} \tag{3}$$

Notamos que a relação continuar linear para todo tipo de piso.

2.6 Verificação por gráfico di-log

Grafico di-log do deslocamento por velocidade Piso 4 Autor: Henrique Pedro da Silva

Tínhamos como valor esperado n=2, e por um *fit* feito pelo SciDAVis conseguimos este como 1.983. Que esta bastante proximo do resultado esperado.

Logo podemos considerar que de fato, há uma relação quadrática entre a velocidade inicial V_0 e o deslocamento d.

2.7 Deslocamento d em função de velocidade inicial v_0

Temos que a forca de atrito é dada por

$$F = \mu * N = \mu * m * g \tag{4}$$

Inserindo isso na segunda lei de Newton teremos:

$$F = m * a$$

$$u * m * g = m * a$$

$$u * q = a$$

$$(5)$$

Também temos que:

$$V_f^2 = V_0^2 + 2 * a * d (6)$$

E como nosso V_f é 0, e nosso atrito sempre se opõe ao movimento podemos simplificar e re-escrever como:

Também temos que:

$$0 = V_0^2 - 2 * a * d$$

$$d = \frac{V_0^2}{2 * a} \tag{7}$$

Agora substituindo (5) em (7) finalmente temos uma equação que relaciona $d \mu$ e V_i

$$d = \frac{V_0^2}{2 * \mu * q} \tag{8}$$

2.8 Obtendo μ para os pisos

Agora vamos utilizar a relação que descobrimos entre μ d e V_0 para conseguir um μ para cada piso

Tínhamos que há uma relação linear entre d e V_0^2 que tinha forma de:

$$d = A * V_0^2 \tag{9}$$

Podemos então substituir isto no nosso (8)

$$A * V_0^2 = \frac{V_0^2}{2 * \mu * g}$$

$$\frac{1}{2 * \mu * g} = A$$

$$\mu = \frac{1}{A * g * 2}$$

$$\mu = \frac{1}{A * 9.8 * 2}$$
(10)

Com a equação (10) em mãos e utilizando os valores obtidos em (3) teremos o seguinte:

$$\mu do Piso 1 \rightarrow 0.500$$

$$\mu do Piso 2 \rightarrow 0.654$$

$$\mu do Piso 3 \rightarrow 0.810$$

$$\mu do Piso 4 \rightarrow 1.020$$
(11)

3 Conclusão

Observei que há uma relação quadrática entre o deslocamento e a velocidade inicial de lançamento.

Também que a massa nao importa.

As únicas coisas que importam para o deslocamento sao a velocidade inicial, a gravidade, e o coeficiente de atrito.

E nenhum desses fatores altera o fato da relação ser quadrática.

Vi também que posso fazer ajuste de dados de varias maneiras com o SciDAVis. E posso deduzir numericamente relações que nao seriam tao triviais de deduzir analiticamente.