Lesson 12

Foundations of College Algebra

Commutative and Associative Properties

Definition - Commutative Property

- If a, b are real numbers, then a + b = b + a.
- If a, b are real numbers, then $a \cdot b = b \cdot a$.

Definition - Associative Property

- If a,b,c are real numbers, then (a+b)+c=a+(b+c).
- If a, b, c are real numbers, then $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Examples

Use a commutative property to finish each statement.

- 1. 4 + x =
- $2. -3 \cdot d =$

Use the associative property to simplify.

- 1. $\left(\frac{5}{6} + \frac{8}{15}\right) + \frac{7}{15}$
- 2. 3(4x)
- 3. (y+12)+28

Distributive Property

Definition - Distributive Property

If a, b, c are real numbers, then $a(b+c) = a \cdot b + a \cdot c$ and $a(b-c) - a \cdot b - a \cdot c$.

Examples

Simplify using the distributive property.

- 1. 6(c-13)
- 2. $\frac{1}{4}(3q+12)$
- 3. $12\left(\frac{1}{6} + \frac{3}{4}s\right)$

Use the distributive property to write each addition as a multiplication.

- 1. $5 \cdot x 5 \cdot 12$
- 2. 15x + 15y

Identity and Inverse Properties

Definition - Identity Property

For any real number a, a + 0 = a and $a \cdot 1 = a$.

Definition - Inverse Property

- For any real number a, a + (-a) = 0.
- For any real number a except 0, $a \cdot \frac{1}{a} = 1$.

Examples

Simplify.

1.
$$\frac{1}{2} + \frac{7}{8} + \left(-\frac{1}{2}\right)$$

2.
$$\frac{3}{20} \cdot \frac{49}{11} \cdot \frac{20}{3}$$

Terms

Definition - Terms and Coefficients

A **term** is a constant, or the product of a constant and one or more variables.

Some terms are: 7, y, $5x^2$, 9a, and b^5 .

The constant that multiplies the variable is called the **coefficient**.

Note

- The coefficient of x is 1.
- The coefficient of -x is -1.

Definition - Like Terms

Terms that are either constants or have the same variables raised to the same powers are called **like terms**.

Example

Identify the like terms in the following.

1.
$$6z$$
, $3w^2$, 1, $6z^2$, $4z$, w^2

Combine Like Terms

How To - Combine Like Terms

- 1. Identify like terms.
- 2. Rearrange the expression so like terms are together.
- 3. Add or subtract the coefficients and keep the same variable for each group of like terms.

Examples

Simplify the expressions by combining like terms.

1. 10x + 3x

2. 4c + 2c + c

3. 7u + 2 + 3u + 1

4. 10a + 7 + 5a - 2 + 7a - 4

5. $3x^2 + 12x + 11 + 14x^2 + 8x + 5$

Simplify Expressions with Parentheses

Examples

Simplify using the distributive property.

1.
$$16 - 3(y + 8)$$

2.
$$18-4(x+2)$$

3.
$$(5m-3)-(m+7)$$

4.
$$(4y-1)-(y-2)$$

5.
$$5(2n+9)+12(n-3)$$

6.
$$6(7y+8)-(30y-15)$$

Write Word Phrases and Algebraic Expressions

Examples

Write each phrase in algebra	Use x for the unknown number.	Simplify th	ne expression if	possible
------------------------------	---------------------------------	-------------	------------------	----------

1. The difference of a number and three, divided by two

2. Four times the sum of a number and twelve.