Digital IC Design

Lec 2: Device and DC Characteristics

黄柏蒼 Po-Tsang (Bug) Huang bughuang@nycu.edu.tw

International College of Semiconductor Technology National Chiao Tung Yang Ming University

What is Transistor?

A Switch!

An MOS Transistor

The NMOS Transistor Cross Section

n areas have been doped with donor ions (arsenic) of concentration N_D - electrons are the majority carriers

p areas have been doped with acceptor ions (boron) of concentration N_A - holes are the majority carriers

Threshold Voltage Concept

The value of V_{GS} where strong inversion occurs is called the threshold voltage, V_T

Operation of NMOS

MOS Current

- $I_{DS} = WC_{ox}(V_{GS} V_{Th} V_{c}(x)) \mu E$
- $I_{DS} = WC_{ox}(V_{GS} V_{Th} V_c(x)) \mu(V_c(x)/dx)$
- When integrated over the channel:

$$I_{DS} = \frac{W}{L} \mu C_{ox} \left(V_{GS} - V_{Th} - \frac{V_{DS}}{2} \right) V_{DS}$$

Transistor saturates when $V_{GD} = V_{Th}$, - the channel pinches off at drain's side.

$$I_{DS} = \frac{W}{2L} \mu C_{ox} (V_{GS} - V_{Th})^2$$

The Threshold Voltage

$$V_T = V_{TO} + \gamma(\sqrt{|-2\phi_F|} + V_{SB}|-\sqrt{|-2\phi_F|})$$

where

 V_{T0} is the threshold voltage at V_{SB} = 0 and is mostly a function of the manufacturing process

 Difference in work-function between gate and substrate material, oxide thickness, Fermi voltage, charge of impurities trapped at the surface, dosage of implanted ions, etc.

V_{SB} is the source-bulk voltage

- ϕ_F = $-\phi_T ln(N_A/n_i)$ is the Fermi potential (ϕ_T = kT/q = 26mV at 300K is the thermal voltage; N_A is the acceptor ion concentration; $n_i \approx 1.5 \times 10^{10}$ cm⁻³ at 300K is the intrinsic carrier concentration in pure silicon)
- $\gamma = \sqrt{(2q\epsilon_{si}N_A)/C_{ox}}$ is the body-effect coefficient (impact of changes in V_{SB}) $(\epsilon_{si}=1.053x10^{-10}F/m$ is the permittivity of silicon; $C_{ox}=\epsilon_{ox}/t_{ox}$ is the gate oxide capacitance with $\epsilon_{ox}=3.5x10^{-11}F/m$)

Transistor Dimensions

- Parameter for design
 - ♦ W, L, tox, Vt

FinFET

Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - ◆ e.g. pass transistor passing V_{DD}
- $\bigvee_{g} = \bigvee_{DD}$

 - ◆ Hence transistor would turn itself off

- ◆ Called a degraded "1"
- ◆ Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}
- Transmission gates are needed to pass both 0 and 1

Pass Transistor Ckts

DC Response

- DC Response: V_{out} vs. V_{in} for a gate
- Ex: Inverter
 - ightharpoonup When $V_{in} = 0 \rightarrow V_{out} = V_{DD}$
 - ightharpoonup When $V_{in} = V_{DD} \rightarrow V_{out} = 0$
 - ◆ In between, V_{out} depends on transistor size and current
 - ♦ By KCL, must settle such that $I_{dsn} = |I_{dsp}|$

Transistor Operation

- Current depends on region of transistor behavior
- For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - ◆ Saturation?

NMOS Operation

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} < V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$

PMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{\rm dsp} < V_{\rm gsp} - V_{\rm tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$

$$V_{gsp} = V_{in} - V_{DD}$$
 $V_{tp} < 0$
 $V_{dsp} = V_{out} - V_{DD}$

I-V Characteristics

■ Make pMOS is wider than nMOS such that $\beta_n = \beta_p$

Current vs. Vout, Vin

Load Line Analysis

- For a given V_{in}:
 - ◆ Plot I_{dsn}, I_{dsp} vs. V_{out}
 - ◆ V_{out} must be where |currents| are equal in

DC Transfer Curve

■ Transcribe points onto V_{in} vs. V_{out} plot

Operating Regions

Revisit transistor operating regions

Region	nMOS	pMOS
A	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
Е	Linear	Cutoff

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\text{out}} = V_{DD}$
В	$V_{tn} \le V_{\text{in}} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
С	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
Е	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\text{out}} = 0$

Beta Ratio Effects

- If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$
- Called skewed gate
- Other gates: collapse into equivalent inverter

Noise Margins

How much noise can a gate input see before it does not recognize the input?

Logic Level

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristic

Regenerative

Regenerative Property

A chain of inverters

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
 - Gate capacitance
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - ◆ Called diffusion capacitance because it is associated with source/drain diffusion

The Gate Capacitance

$$C_{gate} = \frac{\varepsilon_{OX}}{t_{OX}} WL$$

$$= C_{permicron}^* W \qquad C_{permicron} = 2 \text{fF/um (>90 nm)}$$
or 1 fF/um (<=90 nm)
$$= C_0$$

Gate Capacitance with Operation Region

Parameter	Cutoff	Linear	Saturation
C_{gb}	$\leq C_0$	0	0
C_{gs}	0	$C_0/2$	2/3 C ₀
C_{gd}	0	C ₀ /2	0
$C_g = C_{gs} + C_{gd} + C_{gb}$	C_0	C_0	2/3 C ₀

Most important regions in digital design: saturation and cut-off

Diffusion Capacitance

The junction (or diffusion) capacitance is from the reverse-biased source-body and drain-body pn junctions.

Diffusion Capacitance

- \blacksquare C_{sb}, C_{db}
- Undesirable, called parasitic capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - ◆ Comparable to C_g for contacted diff
 - ♦ ½ C_g for uncontacted
 - Varies with process

Where Does Power Go in CMOS?

- Switching power
 - ◆ Charging/Discharging capacitors
- Leakage power
 - ◆ Transistors are imperfect switches
 - ◆ Junction diodes
- Short-circuit power
 - Both pull-up and pull-down on during transition

Dynamic Power Dissipation

Energy/transition =
$$C_L * V_{dd}^2$$

Power = Energy/transition *
$$f = C_L * V_{dd}^2 * f$$

$$E_{0 \to 1} = \int_{0}^{T} P_{DD}(t) dt = V_{DD} \int_{0}^{T} i_{DD}(t) dt = V_{DD} \int_{0}^{V_{DD}} C_{L} dv_{out} = C_{L} V_{DD}^{2}$$

$$E_{C} = \int_{0}^{T} P_{C}(t) dt = \int_{0}^{T} v_{out} i_{L}(t) dt = \int_{0}^{V_{DD}} C_{L} v_{out} dv_{out} = \frac{1}{2} C_{L} V_{DD}^{2}$$

- Not a function of transistor sizes!
- Need to reduce CL, Vdd, and f to reduce power.

Activity and Power Transition

 \blacksquare Energy consumed in N cycles, E_N ,

$$E_N = C_L \times V_{DD}^2 \times n_{0 \to 1}$$

 $n_{0\rightarrow 1}$: number of $0\rightarrow 1$ in N cycles

$$P_{avg} = \alpha_{0\to 1} \cdot C_L \cdot V_{DD}^2 \cdot f$$

Short Circuit

Short Circuit Current

Short circuit current is usually well controlled

Transistor Leakage

■ Transistors that are supposed to be off-leak

Input at V_{DD}

Input at 0

Sub-threshold Leakage

Sub-threshold current one of most compelling issues in low-energy circuit design!

Source of Leakage

Leakage Sources for Static CMOS Transistors

PN reverse bias junction leakage - I_B

- ◆ Electron-hole pair generation in the depletion region
- ◆ Band to band tunneling when the electric field approaches 10⁶V/cm

Subthreshold leakage - I_s

- ◆ Weak inversion current between source and drain
- It increase exponentially with the reduction of the threshold voltage
- SCE, DIBL make it even worse

Gate Induced Drain Leakage(GIDL) - I_B

 Occur at high electric field between drain and gate terminal

■ Punch-through - I_D

 Occur when the drain and source depletion approach each other

Gate Oxide Tunneling - I_G

◆ Due to the high electric field in the gate oxide- Direct tunnel since tox < 20A</p>

 $I_{off} = I_B + I_S + I_G$ in normal operating voltage range

I_B: be careful when back gate biased

 I_s : major contribution > 90%

I_G: can not be ignore from N90

Leakage Currents of Nano-Scale Transistors

I1 : p-n Junction Reverse Bias Current

12: Weak Inversion

I3 : DIBL (Drain-Induced Barrier Lowering)

14 : GIDL (Gate-Induced Drain Leakage)

15 : Punchthrough

16: Narrow Width Effect

17 : Gate Oxide Tunneling

18: Hot Carrier Injection

Power and Energy Figures of Merit

- Power consumption in Watts
 - determines battery life in hours
- Peak power
 - determines power ground wiring designs
 - ◆ sets packaging limits
 - impacts signal noise margin and reliability analysis
- Energy efficiency in Joules
 - ◆rate at which power is consumed over time
- Energy = power * delay
 - ◆Joules = Watts * seconds
 - ◆lower energy number means less power to perform a computation at the same frequency

Power versus Energy

CMOS Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0 \to 1} + t_{sc} V_{DD} I_{peak} P_{0 \to 1} + V_{DD} I_{leakage}$$

$$f_{0 \to 1} = P_{0 \to 1} * f_{clock}$$

$$P = C_L V_{DD}^2 f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1} + V_{DD} I_{leakage}$$

 Dynamic power Short-circuit Leakage power power