Data Analytics EEE 4774 & 6777

Module 2

Model Selection

Spring 2022

Model Selection

Cross-Validation

- High computational complexity
 - even a single training may be expensive
 - combinations of multiple complexity parameters to tune
- Need a better approach for complex problems!

Curse of Dimensionality

Model Selection

Alternative approaches

Akaike Information Criterion (AIC)

$$2k - 2 \log p(D|w_{ML})$$
 k: # estimated parameters in the model

Bayesian Information Criterion (BIC)

$$k \log N - 2 \log p(D|w_{ML})$$

N: # data points in D

- Occam's razor
 - if several models are compatible with the observations, pick the simplest one
- Bayesian $p(M_i|D) \propto p(D|M_i) p(M_i)$ evidence prior

$$p(D|M_i) = \int p(D|w, M_i) p(w|M_i) dw$$

Comparing Models the Bayesian Way

Given an indexed set of models M_1, \ldots, M_m , and associated prior beliefs in the appropriateness of each model $p(M_i)$, our interest is the model posterior probability

$$p(M_i|\mathcal{D}) = \frac{p(\mathcal{D}|M_i)p(M_i)}{p(\mathcal{D})}$$

where the likelihood of the data \mathcal{D} is

$$p(\mathcal{D}) = \sum_{i=1}^{m} p(\mathcal{D}|M_i)p(M_i)$$

Model M_i is parameterized by θ_i , and the model likelihood, i.e., model **evidence**, is given by

$$p(\mathcal{D}|M_i) = \int p(\mathcal{D}|\theta_i, M_i) p(\theta_i|M_i) d\theta_i$$

In discrete parameter spaces, the integral is replaced with summation. Note that the number of parameters $\dim(\theta_i)$ need not be the same for each model.

Bayes Factor

Comparing two competing model hypotheses M_i and M_j is straightforward and only requires the Bayes Factor:

$$\frac{p(M_i|\mathcal{D})}{p(M_j|\mathcal{D})} = \underbrace{\frac{p(\mathcal{D}|M_i)}{p(\mathcal{D}|M_j)}}_{\text{Bayes' Factor}} \underbrace{\frac{p(M_i)}{p(M_j)}}_{\text{Bayes' Factor}}$$

which does not require integration/summation over all possible models.

Caveat

 $p(M_i|\mathcal{D})$ only refers to the probability relative to the set of models specified M_1, \ldots, M_m . This is not the *absolute* probability that model M fits 'well'.

Example: Fair or Biased coin?

Two models:

 M_{fair} : The coin is fair, M_{biased} : The coin is biased

For simplicity we assume $dom(\theta) = \{0.1, 0.2, \dots, 0.9\}.$

 $p(\theta|M)$

Figure: (a): Discrete prior model of a 'fair' coin $p(\theta|M_{fair})$. (b): Prior for a biased 'unfair' coin $p(\theta|M_{biased})$. In both cases we are making explicit choices here about what we consider to be a 'fair' and 'unfair'.

Example: Fair or Biased coin?

The model likelihood

For each model M, the likelihood is given by

$$p(\mathcal{D}|M) = \sum_{\theta} p(\mathcal{D}|\theta, M) p(\theta|M) = \sum_{\theta} \theta^{N_H} (1 - \theta)^{N_T} p(\theta|M)$$

This gives

$$0.1^{N_H} (1-0.1)^{N_T} p(\theta = 0.1|M) + ... + 0.9^{N_H} (1-0.9)^{N_T} p(\theta = 0.9|M)$$

Bayes factor

Assuming that $p(M_{fair}) = p(M_{biased})$ the posterior ratio is given by the Bayes' factor, i.e., the ratio of the two model likelihoods (evidences).

$$\frac{p(M_{fair}|\mathcal{D})}{p(M_{biased}|D)} = \frac{p(\mathcal{D}|M_{fair})}{p(\mathcal{D}|M_{biased})}$$

Example: Fair or Biased coin?

5 Heads and 2 Tails

Here $p(\mathcal{D}|M_{fair}) = 0.00786$ and $p(\mathcal{D}|M_{biased}) = 0.0072$. The Bayes' factor is

$$\frac{p(M_{fair}|\mathcal{D})}{p(M_{biased}|\mathcal{D})} = 1.09$$

indicating that there is little to choose between the two models.

50 Heads and 20 Tails

Here $p(\mathcal{D}|M_{fair}) = 1.5 \times 10^{-20}$ and $p(\mathcal{D}|M_{biased}) = 1.4 \times 10^{-19}$. The Bayes' factor is

$$\frac{p(M_{fair}|\mathcal{D})}{p(M_{biased}|\mathcal{D})} = 0.109$$

indicating that have around 10 times the belief in the biased model as opposed to the fair model.

'Automatic' Complexity penalization

Problem

You are told that the total score given from an unknown number of die is 9. What is the distribution of the number of die?

Model posterior

From Bayes' rule, we need to compute the posterior distribution over models

$$p(n|t) = \frac{p(t|n)p(n)}{p(t)}$$

Assume p(n) = const.

Likelihood

$$p(t|n) = \sum_{s_1,...,s_n} p(t, s_1, ..., s_n|n) = \sum_{s_1,...,s_n} p(t|s_1, ..., s_n) \prod_i p(s_i)$$

$$= \sum_{s_1,...,s_n} \mathbb{I}\left[t = \sum_{i=1}^n s_i\right] \prod_i p(s_i)$$

where $p(s_i) = 1/6$ for all scores s_i .

'Automatic' Complexity penalization

Figure: The likelihood of the total dice score, p(t|n) for n=1 (top) to n=5 (bottom) die. Plotted along the horizontal axis is the total score t. The vertical line marks the comparison for p(t=9|n) for the different number of die. The more complex models, which can reach more states, have lower likelihood, due to normalization over t.

'Automatic' Complexity penalization

The posterior p(n|t=9)

Occam's razor

- A posteriori, there are only 3 plausible models, namely n = 2, 3, 4 since the rest are either too complex, or impossible.
- As the models become more 'complex' (n increases), more states become
 accessible and the probability mass typically reduces.
- This demonstrates the Occam's razor effect which penalizes models which are over complex.

Bayesian approach includes Occam's razor

- A simple model H₁ makes only a limited range of predictions
- A more powerful model H_2 (e.g., with more free parameters than) predicts a greater variety of datasets
- H₂ does not predict the data sets in region C₁ as strongly as H₁
- With equal priors, if the dataset falls in region C₁, the less powerful model H₁ will be the more probable