Discrete Mathematics

Chapter 1. Logic and proofs

- 1.1 Propositional Logic (명제논리)
- 1.2 Predicate Logic (술어논리)
- 1.3 Proof(증명)

Logic

- Logic = the study of correct reasoning
- Use of logic
 - In mathematics: to prove theorems
 - In computer science:
 - □ to **prove that programs** do what they are supposed to do
 - □ to the **queries** to databases & search engines
 - □ To **design** of digital logic circuits
 - □ To be used in AI (expert systems, automatic theorem provers,..)
 - It includes
 - □ 명제논리 (propositional logic)
 - □술어논리 (predicate logic)

Examples of Logic

Ex) Assume a sentence:

If you are older than 13 or you are with your parents then you can attend a PG-13 movie.

- 1) Parse: If (you are older than 13 or you are with your parents) then (you can attend a PG-13 movie)
- 2) Atomic (elementary) propositions:
- -A= you are older than 13 -B= you are with your parents
- C=you can attend a PG-13 movie
 - Translation: A \vee B \rightarrow C
- Ex) You can have free coffee if you are senior citizen and it is a Tuesday

 a

 b

 c

rewrite the sentence in propositional logic : $\mathbf{b} \wedge \mathbf{c} \rightarrow \mathbf{a}$

Propositional Logic

- **Propositional logic:** a formal language for representing knowledge and for making logical inferences
- A proposition is a statement that is either true or false.
- **A compound proposition** can be created from other propositions using logical connectives
- □ The truth of a compound proposition is defined by truth values of elementary propositions and the meaning of connectives.
- □ The truth table for a compound proposition: table with entries (rows) for all possible combinations of truth values of elementary propositions.

Section 1. Propositional Logic

- **Propositional logic:** a formal language for representing knowledge and for making logical inferences
- A *proposition* is a statement or sentence that can be determined to be either **true** or **false**. (**Assertion**: a declarative statement)
- Examples:
 - "John is a programmer" is a proposition(T)
 - "I wish I were wise" is not a proposition(F)
- Exercise
 - a. 100>99

b. 3 is not an even integer

c. 3-x = 5

- d. Take two aspirins
- e. Is he a CS major?

1.1 Logical Operations

- □ 주어진 명제를 논리 연산자(logical operators)를 사용, 합성하여 새명제를 만들고, 거기에 진리값을 부여함
- □ Simple proposition(단순명제): 하나의 문장이나 식으로 구성, 참이나 거짓을 구분하는것
- □ 논리연산자 (logical operators, Connectives): 단순명제들을 연결시켜주는 역할
- □ 합성명제 (Compound propositions): 여러 개의 단순명제가 연결되어 만들어진 명제
- □ 진리표(Truth Table): 단순명제들의 진리값에서 부터 논리연산자에 따라 단계적으로 진리값을 나타내는 표.

논리연산자 (Connectives)

If p and q are propositions, new *compound* **propositions** can be formed by using *connectives*

- Most common connectives:
 - Conjunction AND.
 - (Inclusive) disjunction OR
 - Exclusive disjunction OR
 - Negation
 - Implication
 - Double implication

Symbol ^ (P and Q)

Symbol v (P OR Q)

Symbol $\underline{\mathbf{v}}$, \oplus

Symbol ∼, ¬

Symbol \rightarrow , (if..then)

Symbol \leftrightarrow , (if and only if)

Truth table of conjunction

- □ The truth values of compound propositions can be described by *truth tables*.
- □ Truth table of *conjunction*

р	q	p ^ q
Т	Τ	Т
Т	F	H
F	Т	F
F	F	F

p ^ q is true only when both p and q are true.

Example

- Let p = "Tigers are wild animals"
- Let q = "Seoul is the capital of KangwonDo"
- □ p ^ q = "Tigers are wild animals and Seoul is the capital of KangwonDo"
- □ p ^ q is false. Why?

Truth table of disjunction

□ The truth table of (inclusive) *disjunction* is

р	q	pvq
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

 \square p \vee q is false only when both p and q are false

Ex) p= "It rains outside", q = "2 is a prime number" pvq = It rains outside or 2 is a prime number

Exclusive disjunction (XOR)

 \square "Either p or q" (but not both), in symbols p \oplus q

р	q	p <u>v</u> q
Т	Τ	F
Т	F	Т
F	Т	Т
F	L	F

- - \square Example: p = "today is March 1st", q = "today is March 2nd."
 - ightharpoonup p \oplus q = "Either today is March 1st" or today is March 1st"

Negation

■ Negation of p: in symbols ~p

р	~p
Т	F
F	Т

- ~p is false when p is true, ~p is true when p is false
 - Example: p = " 5 is a prime number"
 - ~p = "It is not true that 5 is a prime number"

More compound statements

- Let p, q, r be simple statements
- We can form other compound statements, such as
 - **■** (p∨q)^r
 - $p \lor (q \land r)$
 - (~p)√(~q)
 - **■** (p∨q)^(~r)
 - and many others...

Example: truth table of (pvq)^r

р	q	r	(p v q) ^ r
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	Т
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

Conditional propositions and logical equivalence

- □ A conditional proposition is of the form "If p then q"
- □ In symbols: $p \rightarrow q$
- **Example:** p = " John is a good swimmer" q = " He can cross the river"
 - $p \rightarrow q =$ "If John is a good swimmer then He can cross the river"
- Example: p: you drive over 65 mph q: you get a speeding ticket
- 1) $(p \rightarrow q)$ you will get a speeding ticket if you drive over 65 mph.
- 2) $(p \land \neg q)$ you drive over 65 mph, but you don't get a speeding ticket.
- 3) $(\neg p \rightarrow \neg q)$ if you do not drive over 65 mph then you will not get a speeding ticket
- 4) (q ^ ¬p) you get a speeding ticket, but you do not drive over 65mph.
- 5) $(\neg q \rightarrow \neg p)$ if you don't get a speeding ticket, then you don't drive over 65mph

Truth table of $p \rightarrow q$

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- \square Implication: $p \rightarrow q$, if P then Q, P implies Q
- False hypothesis implies any conclusion

Hypothesis and conclusion

- \neg p \rightarrow q is <u>true</u>, when <u>both p and q are true</u> or when <u>p is false</u>
 - If p is false, then truth value of $p \rightarrow q$, does not depend on the truth value of q (always true)

```
ex) P: 1>2, Q: 3<6
```

- $p \rightarrow q$ is true, since p is false, q does not matter
- $-q \rightarrow p$ is false, since q is true, p is false
- In a conditional proposition p → q,
 p is called the *hypothesis* (antecedents)
 q is called the *conclusion* (consequences)

Necessary and sufficient

- A *necessary* condition is expressed by the conclusion.
- A *sufficient* condition is expressed by the hypothesis.
 - Example:
 - "If John is a good swimmer then he can cross the river."
 - Necessary condition: "John can cross the river."
 - Sufficient condition: "John is a good swimmer"

Converse

□ The *converse* of $p \rightarrow q$ is $q \rightarrow p$

р	q	$p \rightarrow q$	$q \rightarrow p$
Т	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

These two propositions are <u>not</u> logically equivalent

Contrapositive

■ The *contrapositive* of the proposition $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

р	q	$p \rightarrow q$	~q → ~p
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

They are logically equivalent.

Implication

- □ The converse of $p \rightarrow q$ is $q \rightarrow p$.
- □ The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- □ The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$
- \square Examples: $p \rightarrow q$
 - (P)If it snows, (q) the traffic moves slowly.
- The converse: If the traffic moves slowly then it snows. $(q \rightarrow p)$
- The contrapositive: If the traffic does not move slowly, then it does not snow. $(\neg q \rightarrow \neg p)$
- The inverse: If it does not snow the traffic does not move slowly. $(\neg p \rightarrow \neg q)$

Further implication

- Ex) Give converse and contrapositive statement
 - "if it is raining, then I get wet
 - converse: if I get wet, then it is raining
 - contrapositive: if I don't get wet, then it is not raining
- Ex) Assume p is true, q is false. Find truth value of the following propositions
 - 1) $p \land q \rightarrow r$: true
 - 2) $p \lor q \rightarrow \sim r$: false
 - 3) $p \rightarrow (q \rightarrow r)$: true
 - 4) $p \land (q \rightarrow r)$: true

Double implication (equivalence)

□ The *double implication* "p if and only if q" is defined in symbols as $p \leftrightarrow q$

р	q	$p \leftrightarrow q$	$(p \rightarrow q) \land (q \rightarrow p)$
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	Т	Т

 $p \leftrightarrow q$ is logically equivalent to $(p \rightarrow q)^{\wedge}(q \rightarrow p)$

Tautology & Contradiction

■ A proposition is a tautology if its truth table contains only true values for every case □ A proposition is a

<u>Contradiction</u> if its truth table contains only <u>false</u>

values for every case

Example: $P \lor \neg P$

р	p ∨ (¬ p)	
Т	Т	
F	Т	

■ Example: p ^ ¬ p

р	p ^ (¬ p)
Т	F
F	F

De Morgan's laws for logic

□ The following pairs of propositions are logically equivalent:

Logical Equivalence

 compound proposition that always have the same truth value called logically equivalent

Ex)

Р	¬ P	¬(¬ P)
Т	F	Т
F	Т	F

=> So, proposition "P" is logically equivalent to the proposition "not(not P)"

Logical Equivalences

□ Identity Law
$$P \land T \leftrightarrow P, \quad P \lor F \leftrightarrow P$$
□ Domination Law
$$P \lor T \leftrightarrow T, \quad P \land F \leftrightarrow F$$
□ Idempotent
$$P \lor P \leftrightarrow P, \quad P \land P \leftrightarrow P$$
□ Double negation
$$\neg (\neg P) \leftrightarrow P,$$
□ Commutative
$$P \lor Q \leftrightarrow Q \lor P, \quad P \land Q \leftrightarrow Q \land P$$
□ Associative
$$(P \lor Q) \lor R \leftrightarrow P \lor (Q \lor R)$$

$$(P \land Q) \land R \leftrightarrow P \land (Q \land R)$$
□ Distributive
$$P \lor (Q \land R) \leftrightarrow (P \lor Q) \land (P \lor R)$$

$$P \land (Q \lor R) \leftrightarrow (P \land Q) \lor (P \land R)$$

□ Demorgan's
$$\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q$$

 $\neg (P \lor Q) \leftrightarrow \neg P \land \neg Q$

Proof of Logical Equivalence

- □ Proving Method 1) with truth table 2) without truth table

Ex) Verify that the propositions $\mathbf{R} = \sim (\mathbf{P} \wedge \mathbf{Q})$ and $\mathbf{S} = (\sim \mathbf{P}) \vee (\sim \mathbf{Q})$ are logically equivalent.

(proof) → with truth table

Table for R

Р	Q	P^Q	R
Т	Т	Т	F
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

Table for S

Р	Q	¬P	¬Q	R
Т	Т	F	F	F
Т	F	F	T	Т
F	Т	Т	F	Т
F	F	Т	T	Т

Proof of Logical Equivalence

Ex) Show that $\sim (P \vee (\sim P \wedge Q))$ and $\sim P \wedge \sim Q$

(proof) → without truth table

```
 \sim (P \lor (\sim P \land Q)) \Leftrightarrow \sim P \land \sim (\sim P \land Q) \text{ (by 1st Demorgan's)}   \Leftrightarrow \sim P \land [\sim (\sim P) \lor \sim Q] \text{ (by 2nd Demorgan's)}   \Leftrightarrow \sim P \land (P \lor \sim Q) \text{ (from double negation)}   \Leftrightarrow (\sim P \land P) \lor (\sim P \land \sim Q) \text{ (from distributive law)}   \Leftrightarrow \sim P \land \sim Q \text{ (Since, } \sim P \land P \Leftrightarrow F)
```

Therefore, $\sim (P \vee (\sim P \wedge Q))$ and $\sim P \wedge \sim Q$ are logically equivalent

Proof of Logical Equivalence

Example: Show $(p \land q) \rightarrow p$ is a tautology.

• **Proof:** (we must show $(p \land q) \rightarrow p <=> T$) $(p \land q) \rightarrow p <=> \neg (p \land q) \lor p$ (from logical inference rules) $<=> [\neg p \lor \neg q] \lor p$ by DeMorgan's rule $<=> [\neg q \lor \neg p] \lor p$ by Commutative rule $<=> \neg q \lor [\neg p \lor p]$ by Associative rule $<=> \neg q \lor [T]$ by tautology <=> T by Domination rule

Proof by using truth tables

<u>P</u>	Q	$P \wedge Q$	$(P \land Q) \rightarrow P$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

Application: inference

■ Assume we know the following sentences are true:

If you are older than 13 or you are with your parents then you can attend a PG-13 movie. You are older than 13. (– A= you are older than 13. – B= you are with your parents. – C=you can attend a PG-13 movie)

- $(A \lor B \to C) \land A$ is true
- With the help of the logic, we can infer the following statement (proposition):
 - You can attend a PG-13 movie or C is true

■ The field of Artificial Intelligence:

• Builds programs that act intelligently. • Programs often rely on symbolic manipulations

■ Expert systems:

• Encode knowledge about the world in logic. • Support inferences where new facts are inferred from existing facts following the semantics of logic

□ Theorem provers:

• Encode existing knowledge (e.g. about math) using logic. • Show some hypothesis is true