1. (18 points) For the circuit given below β =80, $V_{BE(ON)}$ = V_{Y} =0.8 V and V_{CESAT} =0.4 V. Please find the bias (all voltages and currents) of the transistor.

$$2 \times \frac{15}{60} = 40$$

$$\begin{array}{lll}
T_{8} = \frac{3V - 0BV}{500 + \frac{11250}{81}} & \frac{3.72}{638.90} \\
T_{8} = \frac{5mA}{81} = 61.8\mu A \\
T_{8} = \frac{3.44}{81} = 42.5\mu A
\end{array}$$

.

2. (20 points) For the circuit given below $\beta_1=100$, $\beta_2=19$, $V_{EB(ON)1}=1V$ and $V_{EB(ON)2}=1V$.

Find the node voltages
$$V_1$$
, V_2 , V_3 , V_4 and V_5 .

VECSAT = OV

VECSAT = OV

VECSAT = OV

VECSAT = OV

Assume Q_1 is active and Q_2 is active

11_8 = 13,1 MA = VE=20-5400x13,1×103

-> notaetive

- 3. (30 points, 10 each) For the circuit given below β =90, $V_{BE(ON)}$ = $V\gamma$ =0.5V and V_{CBSAT} =0.8V. Capacitors are very large. Answer the following:
 - a) Find the bias (all voltages and currents) of the transistor.
 - b) Find the peak-to-peak undistorted voltage swing.c) For the purposes of part-c of this question, assume that the DC collector current is
 - For the purposes of part-c of this question, assume that the DC confector current is 2.5mA and the transistor is at forward-active state (which may not be the correct solution). Find the voltage gain of the amplifier.

$$\frac{1}{9m} = \frac{26mV}{225mA} = 10.4 \Omega$$

$$\frac{1}{9m} = \frac{26mV}{225mA} = 10.4 \Omega$$

$$\frac{1}{9m} = \frac{36.2 \times 10^{3}8}{38}$$

$$\frac{1}{9m} = \frac{36.2 \times 10^{3}8}$$

$$\frac{1}{9m} = \frac{36.2 \times 10^{3}8}{38}$$

$$\frac{1}{9m}$$

4. (32 points) For the amplifier given above β =99, V_A = ∞ , n=1, C_1 = ∞ , C_2 = ∞ and $V_{BE(ON)} = V\gamma = 1V$.

- b) Draw the small signal equivalent circuit. Show the values of all components.
- c) Calculate the overall voltage gain, i.e. Ay=vo/vs. d) Calculate the input resistance, Rin.

\$10000x \$10000x

$$r_{\pi} = \frac{26 \text{ mV}}{0.5 \text{ mA}} = 5200 \text{ m} = 5200 \text{$$