1	
2	
3	
4	
5	The influence of sport expertise on response and
6	cognitive inhibition
7	
8	
9	
10	Dr Jack Brimmell ^{1*} , Dr Naomi Lee ¹ , and Matt Spokes ¹
11	
12	¹ Department of Performance, Health and Wellbeing, School of
13	Psychology, University of Worcester, U.K
14	
15	Word count: 6,085
16	
17	*Corresponding author is Dr Jack Brimmell, Department of Performance,
18	Health and Wellbeing, School of Psychology, University of Worcester,

U.K. For questions or comments email the corresponding author at
 j.brimmell@worc.ac.uk

21 Abstract

Research suggests that sporting experts show better response inhibition.
Less is known about how expert athletes use cognitive inhibition to
'forget' previous errors (termed expertise-induced-amnesia). Moreover,
whether the relevance of sporting expertise is greater at high-pressure,
compared to low-pressure is also unclear. The aim of the present study
was to examine if sporting expertise predicted response inhibition
(effectiveness and efficiency) and cognitive inhibition (error awareness)
and the impact of pressure levels on these relationships. Forty-five
participants completed a measure of sporting expertise and a modified
Stop Signal Task under two pressure conditions (i.e., high- and low-
pressure). Regression results suggested that expertise only significantly
predicted response inhibition effectiveness and efficiency at high-
pressure. Interestingly, error awareness at high- and low-pressure were
independent of sporting expertise. Finally, change scores across pressure
conditions were small and near zero for all participants, not just experts,
suggesting that all individuals performed similarly across low- and high-
pressure conditions. Sporting expertise appears to facilitate response
inhibition at high-pressure but the exact methods in which experts
'forget' errors and maintain performance remains unknown (i.e., might
not be cognitive inhibition).

4 3	
14	
4 5	
16	Keywords : Athletic Expertise; Cognitive Inhibition; Response Inhibition;
17	Expertise-Induced-Amnesia

48 Introduction

49	Perceptual-cognitive processes are important for expert sport
50	performance (Mann et al., 2007). The ability to successfully locate,
51	interpret, and utilise sensory information from the current environment
52	are perceptual skills that often allow experts to make better decisions
53	compared to their novice counterparts (McPherson, 2000). Consider a
54	soccer player who must locate and constantly update the location of
55	numerous artefacts (i.e., teammates, opponents, the ball) alongside
56	having to coordinate their own body and motor actions to best support
57	the team. In such a situation, the individual with greater expertise will
58	often be better equipped to perform better (i.e., experts outperform
59	novices; Klostermann & Moeinirad, 2020; Lebeau et al., 2016).
60	Perceptual-cognition is a broad construct that encompasses a variety of
61	processes including visual attention, anticipation, motor-planning, and
62	executive function (EF). The area of EF has become popular over recent
63	years with research examining the impact of inhibition (e.g., Hagyard et
64	al., 2021), shifting (e.g., Vestberg et al., 2012), updating (e.g., Wood et
65	al., 2016), and in more select cases, holistic EF models (i.e., inhibition,
66	shifting, and updating together; Brimmell et al., 2021; Scharfen &
67	Memmert, 2021), upon sport performance and sporting expertise.
68	Executive functions are believed to be a family of related, yet
69	distinct, attentional processes that help regulate and direct behaviour
70	(Zelazo & Carlson, 2012). Inhibition is perhaps the most researched EF
71	in sport (e.g., Brevers et al., 2018; Brimmell et al., 2021; Ducrocq et al.,

72 2016; Hagyard et al., 2021; Klostermann, 2020) and refers to the ability 73 to resist internal or external distraction or withhold a response that is no 74 longer task appropriate (Diamond, 2013). Theoretically, it has been 75 proposed that when trying to measure EFs like inhibition both EF 76 effectiveness and efficiency should be considered (Eysenck et al., 2007). 77 That is, an individual who can successfully inhibit when required could 78 be considered effective. But people vary in the number of resources (e.g., effort or time) required to be effective and those who can inhibit using 79 80 fewer resources could be called efficient (Eysenck et al., 2007). 81 The relevance of inhibition for sport performers is still a contested 82 subject with some research proposing weak tangible evidence. For 83 example, Bevan et al. (2020) concluded there was no relevance of 84 inhibition in sport when looking for far-transfer effects from lab-based 85 tasks to real-world sport. However, the notion that there is no 86 importance of inhibition is likely inaccurate and an oversimplification 87 with a wealth of evidence to suggest the contrary. For example, research 88 has attested to the relevance of inhibition training in sport performers 89 (Ducrocg et al., 2016), the interactive role between inhibition, visual 90 attention, and subsequent sport performance (Brimmell et al., 2021), the 91 ability to distinguish between sporting expertise levels based on 92 inhibition performance (Hagyard et al., 2021), and the notion that 93 increasing the inhibition requirements of a task can elicit changes in 94 visual attention and subsequent throwing performance (Klostermann, 95 2020).

Although we have evidence that experts have greater inhibition 96 97 (Hagyard et al., 2021) and that inhibition may, in part, aid sport 98 performance (Brimmell et al., 2021), the underlying effect of improved 99 inhibition remains unclear. Specifically, the exact functional purpose of inhibition in expert performers is less known. The underlying role of 100 101 inhibition is unlikely to be isolated to supporting any specific single 102 function or action and it is more likely that inhibition contributes across 103 numerous areas of sport performance. This notion is consolidated by 104 Diamond's (2013) model that parses inhibition into a multi-component construct comprising related, but divergent, forms of inhibition. 105 106 Specifically, and often neglected in sport research, inhibition is proposed 107 in Diamond's (2013) model to comprise cognitive inhibition (i.e., 108 supressing thoughts or memories), response inhibition (i.e., withholding 109 behavioural responses), and selective attention (i.e., orienting attention 110 to a certain location at the expense of others). 111 Given that each inhibition component is somewhat unique, it is 112 reasonable to suggest that each component could vary in its influence 113 upon expert sport performance. Response inhibition is the most studied 114 component of inhibition in sport (Brimmell et al., 2021; Hagyard et al., 115 2021). Tasks used to assess response inhibition are usually domain-116 general and are used to give an indication about how well someone can 117 stop a preplanned motor response (e.g., Stop Signal Task; Verbruggen et 118 al., 2019). This may be particularly relevant in complex sports where the 119 environment is constantly changing and certain motor actions can

quickly become incorrect (e.g., soccer). Selective attention may be more 120 121 consistently examined through eye-trackers in sport given that selective 122 attention often requires the individual to choose between ignoring 123 irrelevant stimuli or not (Diamond, 2013). Cognitive inhibition is 124 currently untested, but it might aid sports performers through an 125 enhanced ability to supress unwanted thoughts and memories (Diamond, 126 2013), potentially via an interference control mechanism that supports 127 intentional forgetting (Anderson & Levy, 2009). 128 The idea that sporting experts can be "oblivious" or forget certain 129 actions is not new. For example, expertise-induced-amnesia has been proposed as a method by which experts tend to avoid over-attending to 130 well-rehearsed actions and instead perform them more automatically 131 132 (Beilock & Carr, 2001). The consequence of this is that experts have been found to give impoverished episodic recollections of action despite 133 134 greater procedural knowledge (Beilock & Carr, 2001). Though originally describing an ability to episodically forget motor control, recent work 135 136 from Harris et al. (2019) suggested that this ability may extend to forgetting one's own mistakes. Harris et al. (2019) outlined that 137 138 forgetting a mistake may alleviate subsequent anxiety associated with 139 making that mistake, especially during high-pressure. However, this idea 140 remains untested experimentally and the mechanisms that allow one to 141 "forget" their mistake is unknown. It may be that greater inhibition 142 allows individuals to suppress or withhold thoughts surrounding their 143 past errors, thus "forgetting" them and instead focusing on current

performance. As a result, subsequent performance likely benefits and this effect may be greater at high-pressure (Harris et al., 2019).

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

The issue with not forgetting, or moving beyond prior errors, is that it can negatively influence subsequent performance by creating feelings of anxiety around the upcoming performance (Harris et al., 2019). This feeling of anxiety can be enhanced when pressure is high due to an increased sense of importance within the situation (Baumeister, 1984). Specifically, committing an error can pull attentional resources away from the current task and instead direct attentional focus toward the past mistake creating feelings of anxiety and increasing the perception that future errors will occur (Harris et al., 2019). At a higher level of pressure, experts may be better equipped, via an enhanced inhibition ability, to focus attention on the present task (goal-directed attention; Corbetta & Shulman, 2002) and avoid feelings of anxiety concerning past mistakes. There are numerous examples of sporting experts performing equivocally or better under pressure (e.g., Otten, 2009) and in heightened states of anxiety (e.g., Nibbeling et al., 2012) but again, no work has investigated the potential role of inhibition in helping experts move beyond errors.

In sum, recent research is mixed with some doubting the importance of response inhibition for sport performers (e.g., Bevan et al., 2020) while others suggest response inhibition is key (e.g., Hagyard et al., 2021). In addition, it may be that experts are more able to move past or forget previous errors due to an enhanced cognitive inhibition ability

(i.e., the ability to suppress thoughts and memories; Diamond, 2013). If this is accurate, and akin to how expertise-induced-amnesia models show experts have poorer episodic recollection of motor actions, it may be that those with greater expertise have poorer immediate error awareness. As these ideas remain unclear or untested, the aim of the present work was to assess whether sporting expertise predicted response inhibition (effectiveness and efficiency) and cognitive inhibition (error awareness). Finally, if experts are indeed able to maintain or improve performers under pressure (Harris et al., 2019; Otten, 2009), then their performance should be equivocal, or better, in high-pressure conditions compared to low-pressure conditions. The hypotheses were as follows:

H1) Individuals with higher sporting expertise will show enhanced response inhibition effectiveness (i.e., successfully inhibit significantly more often) than individuals with lower sporting expertise in both lowand high-pressure conditions.

H2) Individuals with higher sporting expertise will show greater response inhibition efficiency (i.e., will perform accurately using fewer resources) than individuals with lower sporting expertise in both low- and high-pressure conditions.

H3) Given the proposed extension of the expertise-induced-amnesia model (Harris et al., 2019), individuals with higher sporting expertise should show enhanced cognitive inhibition (i.e., fewer self-identified mistakes or a reduced 'error awareness') compared to individuals with lower sporting expertise in both low- and high-pressure conditions.

H4) Individuals with higher sporting expertise will either perform comparably across the low- and high-pressure conditions or show improvements in the high-pressure condition in comparison to those with lower sporting expertise who will perform worse in the high-pressure condition.

197 Method

Participants

198

An a priori power analysis was performed using G*Power software 199 200 (version 3.10). Previous research into sporting expertise and inhibition has reported medium effect sizes (e.g., $R^2 = .15$; Hagyard et al., 2021). 201 202 Therefore, to detect a medium effect size ($f^2 = .20$), with power = .80, at 203 an alpha value of .05, with one tested predictor (i.e., expertise), a sample 204 of 42 participants was needed. In total, 45 participants took part in the 205 present study ($M_{age} = 27.98$ years ± 10.29 years; Male = 23, Female = 206 21, Prefer not to say = 1). All participants were currently residing in the 207 United Kingdom, though some (n = 6) provided sporting expertise 208 information from a time playing elsewhere (i.e., Canada = 1, India = 2, 209 Iran = 1, Syria = 1, and Ukraine = 1). This information was factored into 210 the calculation of expertise (see below "Expertise" section). Informed 211 consent was acquired from all participants before the experiment 212 following procedures approved by a local ethics committee.

213 **Measures**

214 Expertise

215 Expertise was calculated based on the framework proposed by 216 Swann et al. (2015). An individual expertise score was based on 217 participants responses to A) highest performance level, B) success at 218 their highest level, C) experience (in years) at their highest level, D) 219 competitiveness of individuals main sport in country of play, and E) 220 global competitiveness of the individual sport. Components A-E were 221 given an individual score between 0-4 before being entered into the 222 following equation - $[(A + B + C/2)/3] \times [(D + E)/2]$ - which provided 223 an individual expertise score where higher scores represent higher 224 expertise. This procedure has been successfully applied in previous 225 research (Brimmell et al., 2021; Hagyard et al., 2021). 226 Inhibition 227 A modified version of the Stop Signal Task (SST; Verbruggen et al., 228 2019) was used to assess both response and cognitive inhibition (original 229 script available on https://millisecond.com and the authors' modified 230 script is available at: https://osf.io/xg3vd/? 231 view only=81b1f402b28a42ca978b08ee0b97e164. The SST was made up

view_only=81b1f402b28a42ca978b08ee0b97e164. The SST was made up
of 75% "go" trials and 25% "no-go" trials. "Go" trials involved a centrally
located arrow stimulus facing either left (requiring a "D" key response)
or right (requiring a "K" key response). The "no-go" trials were the same
as "go" trials but included a stop signal (i.e., an auditory beep). On these

trials, participants aimed to provide no response (i.e., inhibit responses).

To ensure all participants committed errors an adaptive procedure was

used for the stop signal delay (as outlined in Verbruggen et al., 2019).

236

After each successful inhibition (i.e., no response on a "no-go" trial) the delay increased by 50ms and after each unsuccessful inhibition (i.e., a response on a "no-go" trial) the delay decreased by 50ms.

The outcome variables for response inhibition included performance effectiveness (i.e., number of correct responses on "no-go" trials [no response] minus number of incorrect responses on "no-go" trials [responding when not appropriate]) and efficiency (i.e., stop signal reaction time [SSRT]¹; Verbruggen et al., 2019). High effectiveness scores reflect greater effectiveness while low efficiency scores outline greater efficiency. Therefore, it is predicted that greater sporting expertise will link to high effectiveness scores and low efficiency scores. For cognitive inhibition, the outcome variable was error awareness which was calculated as the percentage of errors on "no-go" trials recalled from total errors (i.e., [errors recalled / total errors made] * 100). To capture this, participants were informed at the beginning of the task to give double key presses on trials that they believed followed a 'no-go' trial error. That is, if the target arrow was facing left following a 'no-go' trial error they must press the "D" key twice to show awareness of this error. Following the expertise-induced-amnesia model low error awareness values are likely linked to higher sporting expertise. The task comprised two test blocks of 100 trials (one block of low-pressure trials and one block of high-pressure trials) as well as 5 practice trials.

Situational Stress

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

262 To assess whether divergent pressure conditions (i.e., high- and 263 low-pressure) were successfully created (see 'Pressure Manipulation' 264 below) situational stress was measured via the Stress Rating 265 Questionnaire (SRQ; Edwards et al., 2015). The SRQ assesses five bipolar 266 dimensions (e.g., calm to nervous) with each item answered on a 7-point 267 Likert scale. The SRQ was administered before any task instructions 268 were given (i.e., baseline-SRQ), and then again following each pressure-269 instruction set (i.e., low-pressure-SRQ) and high-pressure-SRQ). Larger 270 changes from baseline to post instruction indicate greater situational 271 stress. The SRO correlates with alternate established anxiety measures 272 (e.g., the State-Trait Anxiety Inventory; Edwards et al., 2015), has been 273 previously used to assess pressure instruction efficacy (Brimmell et al., 274 2021), and has satisfactory internal consistency ($\alpha = 87-.89$; Brugnera et 275 al., 2017).

Pressure Manipulation

276

277

278

279

280

281

282

283

284

285

The present study was interested in inhibition performance at varying levels of pressure given the capacity for sporting pressure to fluctuate (Harris et al., 2019). In the low-pressure condition the task instructions focused on basic information sufficient to complete the task with the general notion that such trials could be considered 'familiarisation'. This included information on which keys to hit to record a response and that the goal was to provide no response after the stop signal. The high-pressure condition instructions were designed to increase the perceived importance of such trials and imply that

individuals would be evaluated based on their performance. These instructions were based off previous work eliciting a similar response in soccer penalties (Brimmell et al., 2021) and based off literary recommendations (Gropel & Mesagno, 2019). Specifically, participants were informed that this block of trials was the most important, responses must be as fast and accurate as possible, only their best efforts were acceptable, and that performance on these trials were to be evaluated and analysed by the researchers. The instruction to use double key presses to indicate error awareness was given in both low- and high-conditions.

Procedure

For a visual overview of the procedure, see Figure 1. Initially, participants were welcomed to the laboratory before reading an information sheet and providing written informed consent. Next, the self-report measures of age, gender, sporting expertise, and baseline-SRQ were completed. Participants were then informed about the first test block of the SST which was always the low-pressure condition. This choice was made given the emphasis on 'practice' in this block and to avoid any issues arising from placing a 'practice' block after a 'serious' test block. After receiving the low-pressure instructions, participants completed the low-pressure-SRQ and the first SST test block. A similar protocol was used for the second SST test block. That is, they received instructions, this time the high-pressure instructions, before completing the high-pressure-SRQ and the second SST test block. Finally,

participants were debriefed, thanked for their time, and provided with the contact information for any relevant support networks that may be needed due to the elevated psychological pressure (e.g., Mind Charity).

The present study used an experimental cross-sectional design.

313 ****Figure 1 near here****

310

311

312

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Design, Data Processing, and Data Analysis

Data pre-processing and analyses were performed in RStudio (version 4.0.2; R Core Team, 2023). All associated materials are available via the Open Science Framework: https://osf.io/xg3vd/? view only=81b1f402b28a42ca978b08ee0b97e164. First, raw data pertaining to age, gender, sporting expertise, SRQ responses, and SST performance were converted to Excel files from Qualtrics (https://gualtrics.com) and Millisecond. Next, raw files were preprocessed in RStudio to create files for data analysis. The efficacy of the pressure manipulation instructions was assessed using within-subject ttests. Specifically, to understand the impact of the low-pressure instructions we examined mean SRQ changes from baseline to post-lowpressure instruction. Similarly, to assess the effectiveness of the highpressure instructions we examined mean SRQ changes from post-lowpressure instructions to post-high-pressure instructions. To assess H1, H2, and H3, regression analyses were used where expertise was entered as a continuous independent variable and response (effectiveness and efficiency) and cognitive (error awareness) inhibition were the continuous dependent variables, respectively.

To assess H4, change scores were calculated for each dependent variable. To create change scores, effectiveness, efficiency, and error awareness scores at low-pressure were subtracted from their corresponding score at high-pressure. These change scores were then entered as the dependent variable in regression models where sporting expertise was the predictor. To refer back to H4, change scores at or near zero suggest equivocal performance across low- and high-pressure conditions. Directional interpretation of the change scores was conditional to the variable. That is, positive change scores for effectiveness suggested improved performance in high-pressure vs low-pressure, negative efficiency change scores suggested improvements in the high-pressure condition compared to the low-pressure condition, and negative change scores for error awareness were indicative of a reduced percentage of errors recalled in the high-pressure condition compared to the low-pressure condition).

349 Results

Pressure Manipulation Check

The mean SRQ response at baseline was 11.38 (SD = 5.49), the mean SRQ response was 11.51 (SD = 5.43) after the low-pressure instructions, and the mean SRQ response was 13.09 (SD = 6.08) after the high-pressure instructions. The results of the t-test comparing baseline and low-pressure SRQ responses suggested a non-significant increase in SRQ responses (t(44) = .28, p = .785). However, the results of the t-test comparing SRQ responses at post-low-pressure and post-high-pressure

instructions outlined a significant difference (t(44) = 2.79, p = .008). The results suggested that participants experienced a significant increase in self-reported stress and that the pressure manipulation was successful. This is corroborated by the non-significant increase from baseline to post-low-pressure instruction. See Figure 2 for an overview of SRQ responses at baseline, low-pressure, and high-pressure conditions.

****Figure 2 near here****

Does expertise predict greater response inhibition effectiveness (H1) and efficiency (H2) in low- and high-pressure conditions

Regression results for the low-pressure condition suggested that expertise was not a significant predictor of response inhibition effectiveness (F(1, 43) = 2.61, p = .114; see Figure 3a) nor efficiency (F(1, 43) = 3.55, p = .066; see Figure 3b), and the R^2 values suggested that the models accounted for 5.7% ($R^2 = .057$) and 7.6% ($R^2 = .076$) of the variance, respectively. Within the high-pressure condition, expertise significantly predicted both response inhibition effectiveness (F(1, 43) = 7.29, p = .010; see Figure 3c) and efficiency (F(1, 43) = 4.99, p = .031; see Figure 3d). The F(1, 43) = 4.99, F(1, 4

****Figure 3 near here****

382	Does expertise predict cognitive inhibition (i.e., error awareness)
383	in low- and high-pressure conditions (H3)
384	Expertise did not significantly predict cognitive inhibition (i.e.,
385	error awareness) in either the low-pressure ($F(1, 43) = .75$, $p = .391$; see
386	Figure 4a) nor high-pressure ($F(1, 43) = .85$, $p = .360$; see Figure 4b)
387	condition. The R^2 values suggested that expertise accounted for 1.7% (R^2
388	= .017) of the variance in cognitive inhibition within the low-pressure
389	condition and 1.9% ($R^2 = .019$) of the variance in cognitive inhibition in
390	the high-pressure condition. These results opposed H3 and suggested
391	that those with greater expertise were not less able, or alternatively,
392	more able, to recall their errors than those with less expertise.
393	****Figure 4 near here****
394	Does higher expertise allow for comparable or improved response
395	and cognitive inhibition at high-pressure compared to low-
396	pressure (H4)
397	Expertise did not significantly predict effectiveness change scores
398	(F(1, 43) = .89, p = .352; see Figure 5a), efficiency change scores $(F(1, 43) = .89, p = .352;$
399	43) = .17, p = .682; see Figure 5b), nor error awareness change scores
100	(F(1, 43) = .66, p = .421; see Figure 5c) which suggests that
101	performance changes from low- to high-pressure conditions were
102	independent of sporting expertise. The \mathbb{R}^2 values from the individual
103	regressions suggested that sporting expertise accounted for 2% ($R^2 =$
104	020) of the variance in effectiveness $00/(D^2 - 0.04)$ of the variance in
	.020) of the variance in effectiveness, 0% ($R^2 = .004$) of the variance in

linear regressions allow us to comment on whether expertise may facilitate improvements under pressure however it was also hypothesised that performance may be comparable in experts (i.e., change scores at or near zero) which cannot be easily detected in regression analyses.

However, inspection of Figures 5a, 5b, and 5c seems to suggest that those with higher sporting expertise did not tend to cluster around zero.

412 ****Figure 5 near here****

Exploratory Analysis

Harris et al. (2019) used real-world NFL data to showcase that errors are more likely at high-pressure, and making an error increases the likelihood of subsequent errors in the moments that proceed. However, this notion is relatively untested in experimental work with athletes. This exploratory analysis was conducted using logistic regression to understand whether an error on the SST increased the likelihood of the following trial resulting in an error and whether this effect was more prominent at high-pressure. For this analysis, trials were first coded either as θ for correct or θ for error. Next, a new variable was created where trials were marked as θ for post-correct trials and θ for post-error trials. This new post-error variable was entered as the predictor while accuracy on the post-error trial (θ = incorrect and θ = correct) was the dependent variable. The code for the exploratory analysis is available via the Open Science Framework: https://osf.io/xg3vd/?view only=81b1f402b28a42ca978b08ee0b97e164.

429 Across the 45 participants, all of whom completed two test blocks, 430 there was a total of 10,512 trials within the SST that could be included in 431 the logistic regression. 8,310 trials were correct, and 2,202 trials were 432 errors. Regarding the post-error trial count, 8,315 were post-correct 433 trials and 2,197 were post-error trials. Next, we examined how the post-434 error status of the trial impacted the count of correct and incorrect 435 responses. There were 1,368 trials that were an error following a correct 436 trial, 6.947 trials that were correct following a correct trial, 834 errors 437 following an error trial, and 1,363 correct responses following an error 438 trial. This is visualised in Figure 6a. The results of the logistic regression 439 suggested that post-error trial was a significant predictor of accuracy (b) = -1.13, SE = .05, p < .001) and showed that committing an error 440 441 significantly decreased the likelihood of success on the following trial. 442 The odds ratio was .32, indicating the likelihood of an accurate response 443 after an error are reduced by 68%. 444 Finally, we examined how the pressure condition impacted post-

Finally, we examined how the pressure condition impacted posterror trial accuracy. As shown in Figure 6b, there was a somewhat equivocal distribution across pressure conditions suggesting pressure did not seem to lead to an increase in post-error trial mistakes, as predicted and outlined in Harris et al. (2019). This idea was corroborated by the logistic regression which showed that the post-error trial and pressure condition interaction was a non-significant predictor of accuracy (b = .16, SE = .11, p = .140).

****Figure 6 near here****

445

446

447

448

449

450

453 **Discussion**

454 The aim of the present study was to understand the predictive 455 capacity of sporting expertise upon the typically examined area of 456 inhibition - response inhibition (i.e., effectiveness and efficiency) and the 457 less understood area of cognitive inhibition (i.e., error awareness via an 458 expertise-induced-amnesia like state). Moreover, based on the work of 459 Harris et al. (2019), we wanted to examine whether sporting expertise 460 was more poignant for performance at levels of high-pressure compared 461 to low-pressure. The results offered partial support for our hypotheses. 462 Regarding H1 and H2, sporting expertise did not appear to predict either 463 response inhibition effectiveness or efficiency at low-pressure. However, 464 sporting expertise did predict both response inhibition effectiveness and 465 efficiency at high-pressure. For H3, there was no evidence that sporting 466 expertise was linked to cognitive inhibition (i.e., error awareness) in 467 either pressure condition contrary to hypotheses. Finally, H4 was also 468 not supported as expertise did not lead to comparable or improved 469 effectiveness, efficiency or error awareness at high-pressure compared to 470 low-pressure. Interestingly, our exploratory analyses support some ideas 471 from Harris et al. (2019) in that trials that immediately followed an error 472 were more likely to be an error themselves. However, this likelihood of 473 successive error was not increased at high-pressure. The findings are 474 interesting for the future of response and cognitive inhibition and are 475 discussed below.

476 Individuals with higher sporting expertise had improved 477 effectiveness and efficiency scores on the SST suggesting improved 478 response inhibition. However, the relationship was not guite so 479 straightforward and was not completely aligned to H1 and H2. That is, in 480 the low-pressure condition, sporting expertise did not predict 481 effectiveness or efficiency. The lack of effect at low-pressure may be 482 because all participants felt comfortable (i.e., low anxiety or low stress) 483 and were able to function successfully (Eysenck et al., 2007). This is 484 somewhat corroborated by the non-significant change in SRQ responses 485 from baseline to low-pressure suggesting that, overall, people did not feel 486 stressed and likely did not suffer from disrupted inhibition or goal-487 directed activity that is normally associated with feelings of 488 stress/anxiety/pressure (Corbetta & Shulman, 2002). Indicating that in 489 low-pressure situations novice and expert response inhibition 490 performance may be more aligned. This is a novel finding in this area as 491 research on EF often omits low- and high-pressure conditions (e.g., 492 Hagyard et al., 2021) and therefore, lacks the detail to make this 493 distinction. 494 Though sporting expertise was not a predictor at low-pressure. 495 those with increased expertise scored significantly higher on both 496 effectiveness and efficiency in the high-pressure condition providing 497 partial support for H1 and H2. This is, on face value, more aligned with 498 the previous research into expertise differences in response inhibition. 499 For example, Elferink-Gessner et al. (2018) showed that elite table tennis

players make fewer errors on a colour-word interference task than subelite players, Vestberg et al. (2012) outlined that high-division youth soccer players had better behavioural inhibition than low-division youth soccer players, and Hagyard et al. (2021), who treated expertise as a continuous variable, found a positive association between sporting expertise and performance on the SST. The addition here is that we can now specify that expertise is advantageous for improving response inhibition ability uniquely under high-pressure. As a result, we evidence that, experts contain, or have been able to develop, skills that protect against lapses in inhibitory control. The tricky component comes with understanding whether greater response inhibition helps create an expert, or if operating in an elite environment facilitates enhanced response inhibition (Hagyard et al., 2021).

The results pertaining H3 were unexpected. Those with more expertise did not report significantly fewer errors as we hypothesised and as could potentially be expected from the expertise-induced-amnesia supposition (Beilock & Carr, 2001). This could simply be because the initial application for expertise-induced-amnesia was to motor control and thus, is not relevant for cognitive processes. Another explanation could be that the expertise-induced-amnesia is relevant only to the well-learnt or 'perfected' skills of athletes and the current task was novel with little chance to achieve 'expertise'. The lack of ecological validity for athletes in the current task also supports this and perhaps efforts should be made to assess cognitive inhibition within a domain related to the

athlete. Although, these are somewhat contradictory to our expectations and that of recent research (e.g., Harris et al., 2019).

Instead, it could be that the task instructions promoted participants to remember errors. In our instructions we emphasised that a recalled error should be marked with double key press on the following trial. In doing so, we may have inadvertently drawn extra attention to this and made it seem more pertinent to remember errors rather than natural memory responses. This could also be supported by some of the previously cited research that suggest experts have better attentional control (e.g., Hagyard et al., 2021). The caveat to this, if experts had significantly better attention to errors, or followed task instructions more closely, then they should have recalled significantly *more* errors, which was also not the case. Further research is encouraged to take our available task code and look to improve and find a more natural way of detecting error awareness in athletes (e.g., ask individuals to recall all errors from the block at the end of each block).

Another explanation could come from neuropsychology. The free energy principle is a neuropsychological brain theory which outlines that adaptive systems (e.g., human brains) look to minimise uncertainty and thus, optimise value (i.e., 'reduce free energy'; Friston, 2010). In such accounts, uncertainty is accompanied by substantial metabolic outlays that arise because our brains predictions are inaccurate (and thus, the situation is uncertain; Friston, 2010). A rapid metabolic shift or reaction to this uncertainty can bring about increased interpretations of anxiety

that indeed may be linked to poorer task performance in the subsequent moments (as outlined in Harris et al., 2019). It may be that experts do not 'forget' their mistakes as per an expertise-induced-amnesia model (Beilock & Carr, 2001), and instead find mistakes less 'surprising' or are perhaps better analysers of their mistakes (i.e., less surprised about their origin). Due to the lack of surprise, metabolic cost and subsequent anxiety about the trial is reduced. The fact that individuals with higher expertise will almost certainly experience mistakes across their time within the sport makes each individual mistake feel less of an issue (i.e., less surprising) and instead, allows the expert to continue performing at a maintained or enhanced level. Indeed, expertise was linked with improved effectiveness and efficiency under high-pressure, just not error awareness.

Finally, predictions around H4 were not accurate. That is, expertise was not associated with equivocal (indexed through change scores near zero) nor improved (indexed by enhanced change scores) performance in effectiveness, efficiency, or error awareness at high-pressure compared to low-pressure. This is unusual as we anticipated that experts would show no deterioration in performance, or even show enhanced performance as per models of 'clutch' performance (Otten, 2009), compared to those with less expertise. This is somewhat contradictory to the significant findings associated with H1 and H2 in that, if expertise was important for greater response inhibition at high-pressure how come

expertise was not also a marked of maintained or improved change scores.

However, it could be that the pressure instructions did not have the desired impact despite the significant increase in SRQ scores between low- and high-pressure conditions. Indeed, a similar lack of effect of pressure manipulations has been shown to not evoke the described effect in previous research into EFs in athletes (Brimmell et al., 2021). It could also be that alongside the increase in SRQ responses individuals recruited additional resources to cope with the demands of the stressful situation. One potential resource pertinent to research (e.g., Edwards et al., 2017) and theory (i.e., Attentional Control Theory; Eysenck et al., 2007) is effort. It may be that individuals were able to increase the effort they put into the task in order to maintain performance. This can be somewhat verified by the information shown in Figure 5 as they show that change scores were typically always around zero, irrespective of expertise score. Potential positive resources like effort, or motivation, could be included in subsequent research as covariates.

A brief exploratory analyses was conducted to examine the interesting idea that errors can lead to more errors in subsequent moments. This idea stems from research using real-world data on NFL plays (Harris et al., 2019) and tennis matches (Harris et al., 2021). Yet, there is little experimental work that has examined this prospect within a controlled environment. The exploratory analysis partially supported previous work in that an error on the SST was significantly more likely to

lead to an error on the next trial within the SST. However, we did not find this result to be more prominent in the high-pressure condition as Harris et al. (2019) outlined the relationship would be. Rather than suggest pressure does not increase the likelihood of perpetual errors, this finding could have arisen for similar reasons that the change scores were not related to sporting expertise. That is, the recruitment of additional resources like effort or motivation could combat the self-fulfilling prophecy of continued mistakes within the SST at high-pressure.

One possible theoretical explanation for this is processing efficiency theory (Eysenck & Calvo, 1992). This theory suggests that the participants will recruit additional resources namely an increase in effort and motivation towards the task; the increase in these two resources is due to the presence of cognitive anxiety and used in combating what might be interpreted as poor performance in a task (Hardy et al., 2007). This would allow the participants in this study to compensate when making a mistake by applying the extra resources. One key point to note is that performance will be increased if the perception of success is at a suitable level meaning a performer is confident of success in the task (Eysenck, 2012). Again, within this study it could be that participants feel they have a good chance of being successful at the task if they were simply to apply more resources whilst under pressure.

Limitations

The present study has several limitations. First, the ecological validity of the task can be questioned. The inhibition task was selected

given its wide-spread use and established ability to tap inhibition ability (Verbruggen et al., 2019). However, it is void of any sporting context and thus, falls into similar issues of previous research concerned with how these findings can translate to real-world performance and whether the tasks are really relevant and key for sporting populations. Future work is encouraged to develop and utilise sport-specific tasks of executive functions like inhibition. Another potential limitation with the selected task is that methods of measuring cognitive inhibition are limited and thus the authors here attempted to operationalise the task and outcome measures based on personal applications of the theorised model of expertise-induced-amnesia (Beilock & Carr, 2001). It may be that any findings associated with error awareness were due to the task not doing as intended. Future researchers are encouraged to adapt this task and think about novel ways to assess how athletes may be able to move beyond errors and win points/matches/championships when it matters most.

Conclusion

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

The present study was the first to examine expertise as both a predictor of response inhibition (effectiveness and efficiency) and cognitive inhibition (error awareness) in both low- and high-pressure conditions. Sporting expertise does not appear to influence response inhibition at low-pressure, but sporting expertise is an important, and significant, factor for good response inhibition under high-pressure.

Sporting expertise does not make athletes any less (as hypothesised) or

more able to forget or recall their errors. Change scores were calculated between the low- and high-pressured conditions to see how performance changed on the SST task. Expertise was unable to predict these change scores suggesting performance was similar despite the pressure condition. In sum, response inhibition is important for expert performance under high-pressure and we need more research to understand how experts move past errors and maintain task focus.

Footnote:

¹To calculate SSRT the *n*th reaction time is found by multiplying the probability of responding on "no-go" trials by the total number of "go" trials. This creates the *n*th value which is matched to the corresponding reaction time from the complete distribution of "go" trial reaction times to give the *n*th reaction time. The average stop signal delay across all "no-go" trials is then taken away from the *n*th reaction time to give the SSRT. See Verbruggen et al. (2019) for a full description.

Figure 2. Individual Stress Rating Questionnaire responses at baseline (left), post low-pressure instruction (middle), and post high-pressure instruction (right).

Figure 3. Shows the relationship between sporting expertise and low-pressure effectiveness scores (Figure 3a), low-pressure efficiency scores (Figure 3b), high-pressure effectiveness scores (Figure 3c), and high-pressure efficiency scores (Figure 3d).

Figure 4. Shows the relationship between sporting expertise and low-pressure error awareness scores (Figure 4a) and high-pressure error awareness scores (Figure 4b).

Figure 5. Shows the relationship between sporting expertise and effectiveness change scores (Figure 5a), efficiency change scores (Figure 5b), and error awareness change scores (Figure 5c).

Figure 6. Shows the distribution of errors on post-correct, errors on post-error, correct on post-correct, and correct on post-error trials across the Stop Signal Task (Figure 6a) and the distribution of errors on post-correct, errors on post-error, correct on post-correct, and correct on post-error trials by pressure condition (low-pressure and high-pressure) across the Stop Signal Task (Figure 6b).

714	References
715	Anderson, M. C., & Levy, B. J. (2009). Suppressing unwanted
716	memories. Current Directions in Psychological Science, 18(4), 189-
717	194.
718	Baumeister, R. F. (1984). Choking under pressure: self-consciousness
719	and paradoxical effects of incentives on skillful
720	performance. Journal of Personality and Social Psychology, 46(3),
721	610.
722	Beavan, A., Spielmann, J., Mayer, J., Skorski, S., Meyer, T., & Fransen, J.
723	(2020). The rise and fall of executive functions in high-level football
724	players. Psychology of Sport and Exercise, 49, 101677.
725	Beilock, S. L., & Carr, T. H. (2001). On the fragility of skilled
726	performance: What governs choking under pressure?. Journal of
727	Experimental Psychology: General, 136(4), 701.
728	Brevers, D., Dubuisson, E., Dejonghe, F., Dutrieux, J., Petieau, M.,
729	Cheron, G., & Foucart, J. (2018). Proactive and reactive motor
730	inhibition in top athletes versus nonathletes. <i>Perceptual and Motor</i>
731	Skills, 125(2), 289-312.
732	Brimmell, J., Edwards, E. J., Smith, M., & Vaughan, R. S. (2021). Think,
733	see, do: Executive function, visual attention, and soccer penalty
734	performance. Sport, Exercise, and Performance Psychology, 10(2),
735	290.

736 Brugnera, A., Zarbo, C., Adorni, R., Tasca, G. A., Rabboni, M., Bondi, E., 737 Compare, A., & Sakatani, K. (2017). Cortical and cardiovascular 738 responses to acute stressors and their relations with psychological 739 distress. International Journal of Psychophysiology, 114, 38-46. 740 Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and 741 stimulus-driven attention in the brain. Nature Reviews 742 Neuroscience, 3(3), 201-215. 743 Diamond, A. (2013). Executive functions. Annual Review of 744 Psychology, 64(1), 135-168. 745 Ducrocq, E., Wilson, M., Vine, S., & Derakshan, N. (2016). Training 746 attentional control improves cognitive and motor task 747 performance. Journal of Sport and Exercise Psychology, 38(5), 521-748 533. 749 Edwards, E. J., Edwards, M. S., & Lyvers, M. (2015). Cognitive trait 750 anxiety, situational stress, and mental effort predict shifting 751 efficiency: Implications for attentional control 752 theory. *Emotion*, 15(3), 350. 753 Edwards, M. S., Edwards, E. J., & Lyvers, M. (2017). Cognitive trait 754 anxiety, stress and effort interact to predict inhibitory control. Cognition and Emotion, 31(4), 671-686. 755 756 Elferink-Gemser, M. T., Faber, I. R., Visscher, C., Hung, T. M., De Vries, S. J., & Nijhuis-Van der Sanden, M. W. (2018). Higher-level 757

- cognitive functions in Dutch elite and sub-elite table tennis
- 759 players. *PloS One, 13*(11), e0206151.
- 760 Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007).
- Anxiety and cognitive performance: attentional control
- 762 theory. *Emotion*, 7(2), 336.
- 763 Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The
- processing efficiency theory. Cognition & emotion, 6(6), 409-434.
- 765 Eysenck, M. (2012). Attention and arousal: Cognition and performance.
- 766 Springer Science & Business Media.
- 767 Friston, K. (2010). The free-energy principle: a unified brain
- theory?. Nature Reviews Neuroscience, 11(2), 127-138.
- 769 Gropel, P., & Mesagno, C. (2019). Choking interventions in sports: A
- 770 systematic review. *International Review of Sport and Exercise*
- 771 *Psychology*, *12*(1), 176-201.
- 772 Hagyard, J., Brimmell, J., Edwards, E. J., & Vaughan, R. S. (2021).
- Inhibitory control across athletic expertise and its relationship with
- sport performance. Journal of Sport and Exercise
- 775 *Psychology*, 43(1), 14-27.
- 776 Hardy, L., Beattie, S., & Woodman, T. (2007). Anxiety-induced
- performance catastrophes: Investigating effort required as an
- asymmetry factor. British journal of psychology, 98(1), 15-31.
- 779 Harris, D. J., Vine, S. J., Eysenck, M. W., & Wilson, M. R. (2019). To err
- again is human: Exploring a bidirectional relationship between

781 pressure and performance failure feedback. Anxiety, Stress, & 782 Coping, 32(6), 670-678. 783 Harris, D. J., Vine, S. J., Eysenck, M. W., & Wilson, M. R. (2021). 784 Psychological pressure and compounded errors during elite-level tennis. Psychology of Sport and Exercise, 56, 101987. 785 786 Klostermann, A. (2020). Perception and action in a far-aiming task: 787 Inhibition demands and the functionality of the Quiet Eye in motor performance. Psychology of Sport and Exercise, 50, 101736. 788 789 Klostermann, A., & Moeinirad, S. (2020). Fewer fixations of longer 790 duration? Expert gaze behavior revisited. German Journal of 791 Exercise and Sport Research, 50(1), 146-161. 792 Lebeau, J. C., Liu, S., Sáenz-Moncaleano, C., Sanduvete-Chaves, S., 793 Chacón-Moscoso, S., Becker, B. J., & Tenenbaum, G. (2016). Quiet 794 eye and performance in sport: A meta-analysis. *Journal of Sport* 795 and Exercise Psychology, 38(5), 441-457. Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). 796 797 Perceptual-cognitive expertise in sport: A meta-analysis. *Journal of* 798 Sport and Exercise Psychology, 29(4), 457-478. 799 McPherson, S. L. (2000). Expert-novice differences in planning strategies 800 during collegiate singles tennis competition. Journal of Sport and 801 Exercise Psychology, 22(1), 39-62.

802 Nibbeling, N., Daanen, H. A., Gerritsma, R. M., Hofland, R. M., & 803 Oudejans, R. R. (2012). Effects of anxiety on running with and 804 without an aiming task. *Journal of Sports Sciences*, 30(1), 11-19. 805 Otten, M. (2009). Choking vs. clutch performance: A study of sport 806 performance under pressure. Journal of Sport and Exercise 807 Psychology, 31(5), 583-601. 808 R Core Team. (2023). R: A language and environment for statistical 809 computing. Vienna, Austria: R Foundation for Statistical 810 Computing. Retrieved from https://www.R-project.org/ 811 Scharfen, H. E., & Memmert, D. (2021). Cognitive training in elite soccer 812 players: evidence of narrow, but not broad transfer to visual and 813 executive function. German Journal of Exercise and Sport 814 Research, 51(2), 135-145. 815 Swann, C., Moran, A., & Piggott, D. (2015). Defining elite athletes: Issues 816 in the study of expert performance in sport psychology. *Psychology* 817 of Sport and Exercise, 16, 3-14. Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, P. G., 818 819 Brockett, A. T., Brown, J. W., Chamberlain, S. R., Chambers, C. D., 820 Colonius, H., Colzato, L. S., Corneil, B. D., Coxon, J. P., Dupuis, A., 821 Eagle, D. M., Garavan, H., Greenhouse, I., Heathcote, A., Huster, R. 822 J., ... & Boehler, C. N. (2019). A consensus guide to capturing the 823 ability to inhibit actions and impulsive behaviors in the stop-signal 824 task. *Elife*, 8, e46323.

Vestberg, T., Gustafson, R., Maurex, L., Ingvar, M., & Petrovic, P. (2012). 825 826 Executive functions predict the success of top-soccer players. *PloS* 827 One, 7(4), e34731. 828 Wood, G., Vine, S. J., & Wilson, M. R. (2016). Working memory capacity, 829 controlled attention and aiming performance under 830 pressure. Psychological Research, 86, 510-517. 831 Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in 832 childhood and adolescence: Development and plasticity. *Child* 833 Development Perspectives, 6(4), 354-360.