

Embodied Human Activity Recognition Sha Hu Yu Gong, Greg Mori

Sha Hu, Yu Gong, Greg Mori Simon Fraser University

Contributions

- A novel task of intelligently moving an embodied agent in 3D environments to recognize ongoing human activities;
- A reinforcement learning based approach that learns an effective policy, outperforming heuristic baselines;
- Datasets preparation, code and videos are at:

Figure 1. An embodied agent is operating in a 3D environment.

Embodied Human Activity Recognition (EHAR):

The agent is tasked to intelligently move around using cues from its egocentric observations so that it can accurately classify an ongoing human activity.

Task Formulation

- EHAR as Contextual Partially-Observable Markov Decision Processes, defined by $\langle \mathcal{H} \times \mathcal{P}_0, L, \mathcal{S}, \mathcal{O}, \mathcal{A}, T, R \rangle$:
 - **H**: human activity senarios; e.g., ExPI [1] & AIST++[2]
 - \blacksquare \mathcal{P}_0 : the agent's starting positions;
 - *L*: the agent is allowed to take up to L actions;
 - O: the agent receives 2D human skeletons and its positions as observations;
 - A: the agent moves along axes in the spherical coordinate system to acquire new observations.

- **Evaluation Metrics:**
 - accuracy against observation ratios;
 - average accuracy across all time steps.

Approach

The goal of the agent is to learn which movement to take based on its observations to maximize the chances of correctly classifying the activity.

- The agent contains:
 - An Activity Recognition Network that receives 2D human skeletons and predicts an activity label based on observations up to the current time;
 - A Policy Network that receives representations of the recognition state, current visual observation and spatial positions; and predicts an movement decision for the next time step.

Two-phase training:

Phase 1: Imitation Learning from Oracle;

Oracle is:

- greedy: one-step cross-entropy reduction;
- unrealistic: require the true label and act on hindsight.
- Phase 2: Fine-tuning by reinforcement learning.

Results and Findings

Experimental setup: we use real motion capture data from ExPI[1] and AIST++[2] to simulate embodied agents and evaluate our method.

Figure 4. Curves of accuracy against observation ratios on ExPl.

			acc@10	acc@30	acc@50	acc@70	acc@90	acc@100	acc
ORACLE			55.56	67.41	80.74	89.63	93.33	94.81	77.53
PASSIVE	No-act		49.63	47.41	51.85	57.04	61.48	62.96	52.79
EMBODIED	Heuristic	Towards	48.89	42.96	50.37	57.78	59.26	59.26	50.64
		H-ROTATE	44.44	48.15	55.56	46.67	33.33	29.63	45.23
		V-ROTATE	45.19	48.15	57.04	62.22	60.74	60.00	54.52
		RANDOM	49.93 ± 1.44	45.78 ± 1.22	51.26 ± 0.62	56.74 ± 2.07	60.59 ± 2.74	62.07 ± 3.12	52.45 ± 0.86
	Learning	PPO ONLY	46.07 ± 0.81	50.52 ± 1.43	62.07 ± 3.53	67.11 ± 4.40	65.63 ± 5.70	65.48 ± 6.28	58.51 ± 2.45
		IL ONLY	49.33 ± 1.12	53.04 ± 1.12	63.70 ± 2.10	65.33 ± 2.53	65.78 ± 2.64	63.70 ± 3.98	59.61 ± 0.78
		OURS	50.81 ± 1.24	56.30 ± 1.05	66.37 \pm 1.62	$\textbf{71.70} \pm 2.06$	74.81 ± 1.57	74.96 ± 1.77	64.27 ± 0.33

- Oracle acts as "best case" performance of an agent
 - potential improvements exist: gap between ours and oracle.
- Comparisons:
 - passive agent VS. embodied agents;
 - heuristic agents VS. our agent;
 - ours VS. ablations of training phases.

0.15 0.15 -0.15 0.10 0.10-0.10 -0.05 -0.05 -0 20 40 60 80 0 120 240 360 (b) azimuth (c) elevation (a) distance

Figure 5. Histograms of our **learned** agent's positions.

- Learned agent's spatial behavior patterns:
 - agent's movements span widely;
 - no cannonical position favored for EHAR; good viewpoints might be diverse.

(b) $t \in [1, 20]$

a=0/1 means $\rho \pm \Delta \rho$; a=2/3 means $\Phi \pm \Delta \phi$; a=4/5 means $\theta \pm \Delta \theta$; a=6 means hovering.

Figure 6. Histograms of our learned agent's actions across different stages of episodes.

- Learned agent's temporal behavior patterns:
 - agent's active adjustments of its 3D positions by movements;

(d) $t \in [41, 60]$

good viewpoints change along with motions of human activities.