

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2025/0262074 A1 **Bourang**

Aug. 21, 2025 (43) **Pub. Date:**

(54) MULTI-STENT AND MULTI-BALLOON APPARATUS FOR TREATING BIFURCATIONS AND METHODS OF USE

(71) Applicant: ADVANCED BIFURCATION SYSTEMS INC., Livermore, CA (US)

(72) Inventor: Henry Bourang, Turlock, CA (US)

Appl. No.: 19/203,508 (21)

(22) Filed: May 9, 2025

Related U.S. Application Data

- (60) Continuation of application No. 18/758,494, filed on Jun. 28, 2024, now Pat. No. 12,324,757, which is a continuation of application No. 17/898,137, filed on Aug. 29, 2022, now Pat. No. 12,053,400, which is a division of application No. 16/527,602, filed on Jul. 31, 2019, now Pat. No. 11,484,424, which is a continuation of application No. 14/971,615, filed on Dec. 16, 2015, now Pat. No. 10,406,010, which is a continuation of application No. 13/796,466, filed on Mar. 12, 2013, now Pat. No. 9,254,210, which is a continuation of application No. PCT/US2012/024366, filed on Feb. 8, 2012.
- (60) Provisional application No. 61/440,742, filed on Feb. 8, 2011.

Publication Classification

(51) Int. Cl. A61F 2/954 (2013.01)A61F 2/06 (2013.01)

A61F 2/82	(2013.01)
A61F 2/844	(2013.01)
A61F 2/852	(2013.01)
A61F 2/90	(2013.01)
A61F 2/958	(2013.01)
A61M 25/00	(2006.01)
A61M 25/10	(2013.01)

(52) U.S. Cl. CPC A61F 2/954 (2013.01); A61F 2/844 (2013.01); A61F 2/852 (2013.01); A61F 2/90 (2013.01); A61F 2/958 (2013.01); A61F 2002/061 (2013.01); A61F 2002/821 (2013.01); A61F 2002/826 (2013.01); A61F 2002/828 (2013.01); A61M 2025/0004 (2013.01); A61M 25/104 (2013.01); A61M 2025/1045 (2013.01)

(57)ABSTRACT

A system for treating a bifurcated vessel that includes a first delivery catheter and a second delivery catheter. The first delivery catheter carries a proximal first stent and a distal second stent. The first delivery catheter also has a first elongate shaft, a proximal first expandable member with the proximal first stent disposed thereover, and a distal second expandable member with the distal second stent disposed thereover. The proximal first expandable member and distal second expandable member are independently expandable of one another. The second delivery catheter carries a third stent. The second delivery catheter also has a second elongate shaft, and a third expandable member with the third stent disposed thereover. The third expandable member is independently expandable of the proximal first expandable member and the distal second expandable member.

へ <u>ヴ</u> Ш

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 4E

FIG. 4F

FIG. 4G

FIG. 4H

FIG. 4I

FIG. 4J

FIG. 5

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 6F

FIG. 6G

FIG. 6I

FIG. 7

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

MULTI-STENT AND MULTI-BALLOON APPARATUS FOR TREATING BIFURCATIONS AND METHODS OF USE

CROSS REFERENCE TO RELATED APPLICATION DATA

[0001] The present application is a continuation of U.S. patent application Ser. No. 18/758,494, filed Jun. 28, 2024, which is a continuation of U.S. patent application Ser. No. 17/898,137, filed on Aug. 29, 2022, now U.S. Pat. No. 12,053,400, which is a divisional of U.S. patent application Ser. No. 16/527,602, filed on Jul. 31, 2019, now U.S. Pat. No. 11,484,424, which is a continuation of U.S. patent application Ser. No. 14/971,615 filed on Dec. 16, 2015 now U.S. Pat. No. 10,406,010, which is a continuation of U.S. patent application Ser. No. 13/796,466, filed on Mar. 12, 2013 now U.S. Pat. No. 9,254,210, which is a continuation of PCT International App. No. PCT/US2012/024366, filed on Feb. 8, 2012, which claims the benefit of priority to U.S. Provisional Pat. App. No. 61/440,742, filed on Feb. 8, 2011; the entire contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] Angioplasty and stenting of blood vessels or other body lumens are commonly performed today. Angioplasty is often performed by expanding a balloon in a vessel in order to reduce or eliminate plaque or other blockages. In many cases, a stent is also implanted in the vessel in order to further ensure a positive clinical result. A stent is an implantable scaffold that is typically delivered percutaneously and deployed in a vein, artery, or other tubular body organ for treating an occlusion, stenosis, aneurysm, collapse, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall. The stent is radially expanded in situ, thereby expanding and/or supporting the vessel wall or body organ wall. In particular, stents are quite commonly implanted in the coronary, cardiac, pulmonary, neurovascular, peripheral vascular, renal, gastrointestinal and reproductive systems. Stents have also been successfully used to reinforce other body parts, such as the urinary tract, the bile duct, the esophagus, the tracheo-bronchial tree and the brain.

[0003] Stents may improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall. Stents also can be used to treat dissections in blood vessel walls that are caused by balloon angioplasty. In this situation, the stent is used to appose dissected intimal flaps of tissue which otherwise would extend into and block a vessel.

[0004] Conventional stents have also been used to treat more complex vascular problems, such as lesions at or near bifurcation points in the vascular system. A bifurcation is where a secondary artery (sometimes referred to as a side branch or daughter vessel) branches out of a typically larger vessel (sometimes referred to as the main branch or mother vessel). Stenting of bifurcations can present may challenges. For example, a stent that traverses the ostium of the side branch may obstruct blood flow into the side branch. Moreover, the struts in a stent may also block the side branch, limiting or preventing access to the side branch by another diagnostic or therapeutic device such as another catheter. This phenomenon is commonly referred to as "stent jailing." In still other situations, inflation of balloons and expansion of stents in a bifurcation can result in undesirable plaque

shifting, which is sometimes referred to as "snow plowing." Other challenges with treatment of a bifurcated vessel can be the result of vessel spasm, dissection, thrombosis, etc.

[0005] More recently stents and balloons have also been used to elute drugs locally to the treatment site. Drugs such as rapamycin, everolimus, biolimus A9 and other analogs of rapamycin, as well as paclitaxel are promising in reducing restenosis rates, yet many of the aforementioned challenges of treating a bifurcation still exist.

[0006] It would therefore be desirable to provide improved medical devices and methods for treating bifurcated vessels. It would also be desirable to provide improved medical devices and methods that are easier to use, safer, more reliable, and that provide a better clinical outcome compared with currently available medical devices.

[0007] Therefore, given the challenges of current stent technology, a need exists for improved stent delivery systems and methods, particularly for treating bifurcated vessels. At least some of these objectives will be met by the present invention.

BRIEF SUMMARY OF THE INVENTION

[0008] The present invention relates to methods and delivery systems used to dilate and/or deliver stents in a bifurcated vessel. Embodiments may be configured to stent at least a portion of a mother vessel and a portion of a daughter vessel.

[0009] In a first aspect of the present invention, a system for treating a patient's bifurcated vessel having a main branch and a side branch comprises a first delivery catheter and a second delivery catheter. The first delivery catheter carries a first stent which comprises a proximal stent and a distal stent. The first delivery catheter also has a first elongate shaft with a proximal and a distal end. A proximal expandable member has the proximal stent disposed thereover, and a distal expandable member has the distal stent disposed thereover. The proximal and distal expandable members are disposed adjacent the distal end of the first elongate shaft. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and the distal expandable members are independently expandable of one another.

[0010] The second delivery catheter carries a second stent, and also has a second elongate shaft with a proximal and a distal end. A second expandable member with the second stent disposed thereover is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members.

[0011] In another aspect of the present invention, a system for dilating a bifurcated vessel having a main branch and a side branch in a patient comprises a first delivery catheter and a second delivery catheter. The first delivery catheter has a first elongate shaft with a proximal and a distal end, a proximal expandable member, and a distal expandable mem-

ber. The proximal and distal expandable members are disposed adjacent the distal end of the first elongate shaft. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and distal expandable members are independently expandable of one another.

[0012] The second delivery catheter has a second elongate shaft with a proximal and a distal end, and a second expandable member. The second expandable member is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members.

[0013] The first delivery catheter may be adapted to deliver the proximal and distal stents to the main branch adjacent the bifurcation. The second delivery catheter may be adapted to deliver the second stent to the side branch adjacent the bifurcation. A portion of the second delivery catheter may be disposed under a portion of the proximal stent or under a portion of the distal stent, or under a portion of both. The second delivery catheter may be axially slidable relative to the first delivery catheter. The first elongate shaft may comprise a lumen which extends at least partially between proximal and distal ends of the first elongate shaft, and the lumen may be sized to slidably receive the second elongate shaft. The second delivery catheter may be fixed relative to the first delivery catheters so that relative axial movement between the two delivery catheters is prohibited.

[0014] Each of the stents may have a collapsed configuration suitable for delivery to the bifurcation, and a radially expanded configuration adapted to engage and support a vessel wall at the bifurcation or adjacent the bifurcation. Each of the stents may be crimped to its respective expandable member so as to prevent ejection of the stent during advancement through a patient's vasculature. A proximal end of the distal stent in the collapsed configuration may abut a distal end of the proximal stent in the collapsed configuration. A proximal end of the distal stent may abut a distal end of the proximal stent so as to form a sidehole in the first stent. The proximal end of the distal stent may comprise a notched region, and the distal end of the proximal stent may also comprise a notched region. The second delivery catheter may slidably pass through the side hole in the first stent. A proximal end of the second stent may comprise a beveled section adapted to fit flush against a sidewall of the proximal stent or a sidewall of the distal stent. A proximal end of the second stent in the radially expanded configuration may be aligned with and abut a side of both the proximal stent in the radially expanded configuration and a side of the distal stent in the radially expanded configuration.

[0015] A gap may separate the proximal and the distal expandable members when both the proximal and the distal expandable members are in the collapsed configuration. The gap may be disposed between a proximal end of distal expandable member and a distal end of the proximal expandable member. Expansion of the proximal and the

distal members may displace the proximal end of the distal expandable member relative to the distal end of the proximal expandable member so that the proximal end of the distal expandable member advances toward the distal end of the proximal expandable member. This may decrease the gap between the proximal and the distal expandable members. The proximal end of the distal expandable member may abut the distal end of the proximal expandable member when both the proximal and the distal expandable members are in the expanded configuration. The proximal expandable member, the distal expandable member, or the second expandable member may comprise a balloon. A proximal end of the second expandable member may abut a side of both the proximal and the distal expandable members when the proximal, the distal, and the second expandable members are in the radially expanded configuration.

[0016] At least one of the first elongate shaft or the second elongate shaft may comprise a guidewire lumen extending at least partially between its proximal and distal ends. The guidewire lumen may be sized to slidably receive a guidewire. The first elongate shaft may comprise a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and the proximal guidewire port may be closer to the proximal end of the first elongate shaft than the distal end of the first elongate shaft. The proximal guidewire port may be closer to the distal guidewire port than the proximal end of the first elongate shaft. The second elongate shaft may comprise a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and the proximal guidewire port may be closer to the proximal end of the second elongate shaft than the distal end of the second elongate shaft. The proximal guidewire port may be closer to the distal guidewire port than the proximal end of the second elongate shaft.

[0017] In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member, a distal expandable member and a first stent. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The first stent comprises a proximal stent and a distal stent. The proximal stent is disposed over the proximal expandable member, and the distal stent is disposed over the distal expandable member. A distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region. The two notched regions are adjacent one another to form a side hole in the first stent.

[0018] The second delivery catheter comprises a second expandable member and a second stent. The second expandable member is disposed near a distal end of the second delivery catheter, and the second stent is disposed over the second expandable member. The second delivery catheter passes through the side hole in the first stent. Advancing the first and the second delivery catheter positions the two catheters toward the bifurcation so that the side hole in the first stent may be aligned with the side branch. The second stent is radially expanded from a collapsed configuration to an expanded configuration, and the distal stent is radially expanded from a collapsed configuration.

[0019] Advancing the first and the second delivery catheters may comprise advancing the first delivery catheter or the second delivery catheter over a guidewire. Aligning the side hole may comprise advancing the first delivery catheter and the second delivery catheter until one or more of the delivery catheters engage a carina of the bifurcation.

[0020] Radially expanding the second stent may comprise expanding the second stent to engage a wall of the side branch or a wall of the main branch. Radially expanding the second stent may also comprise expanding the second expandable member. The second expandable member may comprise a balloon, and expanding the second expandable member may comprise inflating the balloon. The second stent may be radially expanded prior to radial expansion of the proximal stent or the distal stent.

[0021] Radially expanding the proximal stent may comprise expanding the proximal stent to engage a wall of the main branch. Radially expanding the proximal stent may also comprise expanding the proximal expandable member. The proximal expandable member may comprise a balloon, and expanding the proximal expandable member may comprise inflating the balloon. The proximal stent may be radially expanded before radial expansion of the distal stent. [0022] Radially expanding the distal stent may comprise expanding the distal stent to engage a wall of the main branch or a wall of the side branch. Radially expanding the distal stent may also comprise expanding the distal expandable member. The distal expandable member may comprise a balloon, and expanding the distal expandable member may comprise inflating the balloon.

[0023] The method may further comprise proximally retracting the second delivery catheter so that a proximal end of the second stent is aligned with the side hole in the first stent. A proximal end of the second stent may be aligned with an ostium of the side branch. Proximally retracting the second delivery catheter may comprise aligning a radiopaque maker on the second delivery catheter with a radiopaque marker on the first delivery catheter. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter under a portion of the first stent. The second delivery catheter may slide under a portion of the proximal stent or under a portion of the distal stent. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter through the side hole in the first stent. A proximal portion of the second stent may abut both a distal portion of the proximal stent and a proximal portion of the distal stent after radial expansion of the proximal stent, the distal stent, and the second stent. The distal portion of the proximal stent may abut the proximal portion of the distal stent after radial expansion of the stents.

[0024] In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member, a distal expandable member and a first stent. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The first stent comprises a proximal stent and a distal stent. The proximal stent is disposed over the proximal expandable member, and the distal stent is disposed over the distal expandable member. A distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises

a notched region. The notched regions are adjacent one another to form a side hole in the first stent.

[0025] The second delivery catheter comprises a second expandable member and a second stent. The second expandable member is disposed near a distal end of the second delivery catheter, and the second stent is disposed over the second expandable member. The second delivery catheter passes through the side hole in the first stent. Advancing the first and second delivery catheters positions them toward the bifurcation. The first stent and the second stent are positioned at the bifurcation such that the proximal stent is disposed in the main branch, the distal stent is disposed in the side branch, and the second stent is disposed in the main branch downstream of the bifurcation. The side hole in the first stent is aligned with the main branch and faces downstream of the bifurcation. The distal stent is radially expanded from a collapsed configuration to an expanded configuration. The proximal stent is radially expanded from a collapsed configuration to an expanded configuration. The second stent is radially expanded from a collapsed configuration to an expanded configuration.

[0026] In yet another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member and a distal expandable member. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter, and the expandable members are independently expandable from one another. The second delivery catheter comprises a second expandable member disposed near a distal end thereof. The first and second delivery catheters are advanced toward the bifurcation and the second expandable member is positioned in the side branch. The proximal and distal expandable members are positioned in the main branch so that the proximal expandable member is at least partially upstream of the bifurcation, and the distal expandable member is at least partially downstream of the bifurcation. The second expandable member is radially expanded from a collapsed configuration to an expanded configuration. The proximal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The distal expandable member is radially expanded from a collapsed configuration to an expanded configuration.

[0027] Radially expanding the second expandable member may comprise expanding the second expandable member into engagement with a wall of the side branch or the main branch. The second expandable member may comprise a balloon, and expanding the second expandable member may comprise inflating the balloon. The second expandable member may be expanded prior to radial expansion of the proximal expandable member or the distal expandable member.

[0028] Radially expanding the proximal expandable member may comprise expanding the proximal expandable member to engage a wall of the main branch. The proximal expandable member may comprise a balloon, and expanding the expandable member may comprise inflating the balloon. The proximal expandable member may be expanded before radial expansion of the distal expandable member, or before expansion of the second expandable member. The proximal expandable member may also be expanded simultaneously

with the distal expandable member, the second expandable member, or simultaneously with both.

[0029] Radially expanding the distal expandable member may comprise expanding the distal expandable member to engage a wall of the main branch or the side branch. The distal expandable member may comprise a balloon, and expanding the distal expandable member may comprise inflating the balloon. The distal expandable member may be expanded before expansion of the proximal expandable member or second expandable member.

[0030] The method may further comprise proximally retracting the second delivery catheter so that a proximal end of the second expandable member is aligned with an ostium of the side branch. Proximally retracting the second delivery catheter may comprise sliding the second delivery catheter under a portion of the proximal expandable member. Both the proximal and distal expandable members may be radially expanded simultaneously. A proximal portion of the distal expandable member may engage a distal portion of the proximal expandable member.

[0031] In still another aspect of the present invention, a method for treating a bifurcated vessel having a main branch and a side branch in a patient comprises providing a first delivery catheter and a second delivery catheter. The first delivery catheter comprises a proximal expandable member and a distal expandable member. The proximal and distal expandable members are disposed near a distal end of the first delivery catheter. The proximal and the distal expandable members are independently expandable from one another. The second delivery catheter comprises a second expandable member disposed near a distal end thereof. The first and second delivery catheters are advanced toward the bifurcation, and the proximal expandable member is positioned in the main branch adjacent the bifurcation. The distal expandable member is positioned in the side branch adjacent the bifurcation. The second expandable member is positioned in the main branch downstream of the proximal expandable member. The distal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The proximal expandable member is radially expanded from a collapsed configuration to an expanded configuration. The second expandable member is radially expanded from a collapsed configuration to an expanded configuration.

[0032] In yet another aspect of the present invention, a system for treating a patient with a trifurcated vessel having a main branch, a first side branch, and a second side branch comprises a first delivery catheter, a second delivery catheter and a third delivery catheter. The first delivery catheter carries a first stent. The first stent comprises a proximal stent and a distal stent. The first delivery catheter also has a proximal elongate shaft with a proximal and a distal end, and a distal elongate shaft with a proximal and distal end. The proximal elongate shaft comprises a proximal expandable member with the proximal stent disposed thereover, and the distal elongate shaft comprises a distal expandable member with the distal stent disposed thereover. The proximal and distal expandable members are disposed adjacent the distal end of the first delivery catheter. The proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the collapsed configuration profile. The proximal and distal expandable members are independently expandable of one another. The second delivery catheter carries a second stent, and also has a second elongate shaft with a proximal and a distal end, and a second expandable member with the second stent disposed thereover. The second expandable member is disposed adjacent the distal end of the second elongate shaft. The second expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The second expandable member is independently expandable of the proximal and the distal expandable members. The third delivery catheter carries a third stent. The third delivery catheter also has a third elongate shaft with a proximal and a distal end, and a third expandable member with the third stent disposed thereover. The third expandable member is disposed adjacent the distal end of the third elongate shaft. The third expandable member has a collapsed configuration and a radially expanded configuration. The collapsed configuration has a profile suitable for advancement through a blood vessel, and the expanded configuration has a larger profile than the profile in the collapsed configuration. The third expandable member is independently expandable of the second expandable member, and the proximal and the distal expandable members.

[0033] These and other embodiments are described in further detail in the following description related to the appended drawing figures,

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIG. 1 illustrates an exemplary embodiment of a system for treating a bifurcation.

[0035] FIG. 2 illustrates an exemplary embodiment of a stent delivery system for treating a bifurcation.

[0036] FIG. 3A illustrates a perspective view of two notched stents that form a side hole.

[0037] FIG. 3B illustrates a flat, unrolled view of the stents in FIG. 3A.

[0038] FIG. 3C illustrates a perspective view of a side hole formed by notching one stent in a pair of adjacent stents.

[0039] FIGS. 3D-3E illustrate how various stent geometries may conform to a bifurcated vessel.

[0040] FIGS. 4A-4J illustrate an exemplary method of treating a bifurcation.

[0041] FIG. 5 illustrates another exemplary method of treating a bifurcation.

[0042] FIGS. 6A-6J illustrate an exemplary method of stenting a bifurcation.

[0043] FIG. 7 illustrates another exemplary method of stenting a bifurcation.

[0044] FIG. 8 illustrates an exemplary balloon configura-

[0045] FIGS. 9A-9B illustrate an alternative embodiment of a balloon configuration.

[0046] FIGS. 10A-10B illustrate an exemplary embodiment of stent delivery system for treating trifurcated vessels.

DETAILED DESCRIPTION OF THE INVENTION

[0047] The present invention relates to medical devices and methods, and more particularly to stent and dilatation

delivery systems for treating bifurcated vessels having a main branch and a side branch. However, this is not intended to be limiting, and one of skill in the art will appreciate that the devices and methods described herein may be used to treat other regions of the body.

[0048] The scientific community is slowly moving away from a main branch vs. side branch model and nomenclature. It is now well accepted that a "mother" vessel bifurcates into two "daughter vessels," that are anatomically after the carina. The vessel that appears to be the continuation of the mother vessel is usually less angulated. The other vessel may be commonly referred to as the side branch, or a daughter vessel. Therefore, in this specification, the terms "main branch," "trunk," or "mother vessel" may be used interchangeably. Also in this specification, the terms "side branch vessel" and "daughter vessel" may also be used interchangeably. The terms "main branch stent," "trunk stent," or "mother stent" are interchangeable, and the term "side branch stent" is also interchangeable with the term "daughter stent." In the case where a main branch vessel bifurcates into two equally sized branches, one of the branches may still be considered to be the main branch or mother vessel, and the other branch may be considered a side branch or daughter vessel.

Systems for Treating a Bifurcation

[0049] Referring now to FIG. 1, a system 100 for treating bifurcations comprises a first catheter 101 and a second catheter 125. The first catheter includes a first elongate shaft 102 having a proximal region 104 and a distal region 112. A proximal expandable member, here a balloon 108, and a distal expandable member, also a balloon 110 are disposed near the distal region of the first catheter 101. A gap 113 separates the proximal expandable member 108 from the distal expandable member 110. The proximal expandable member is disposed on the first elongate shaft 102, and the distal expandable member 110 is disposed over an extended portion 112 of the first shaft 102. The extended portion 112 may be a stepped down, reduced diameter portion of the first shaft 102, or it may be a separate shaft that is coupled with the first shaft 102. The extended portion may also be a coextruded shaft that extends parallel to the first shaft. The extended portion 112 may be fixed relative to the first shaft 102, or it may also be slidably movable relative to the first shaft 102. Proximal 114a and distal 114b radiopaque markers may be disposed adjacent the distal expandable member 110 in order to allow a physician to visualize balloon location during fluoroscopy. Similarly, proximal 129a and distal 129b radiopaque markers may be disposed adjacent the proximal balloon 108. The markers are preferably positioned at the proximal and distal working ends of the respective balloon. An inflation lumen (not illustrated) allows the balloon 110 to be inflated from the proximal end of the first catheter. A guidewire lumen 118 extends from a distal port 115 at the distal end of the extension shaft to the proximal portion of the catheter and terminates in a Y-connector 120 having two ports 122, 124 with fittings such as Luer fittings. The Luer fittings may be used to fluidly couple the catheter with a balloon inflation device such as an Indeflator, a syringe, medical tubing, or other devices commonly used during a catheterization procedure. The guidewire lumen 118 is coupled with port 122, and thus the first catheter may be delivered over a guidewire GW which slidably passes from the distal port 115, through the extended portion 112, though the first catheter 102, and exits proximal port 122. This configuration is commonly referred to as an over-the-wire configuration. While not illustrated, one of skill in the art will also appreciate that the proximal guidewire port may also be located anywhere along the first delivery catheter, and in some preferred embodiments the proximal port 122 is located closer to the distal port 115 than the proximal end of the first catheter. This configuration is commonly referred to as Rx, or rapid exchange configuration. Both balloons may be inflated independently of one another, and thus balloon 108 has its own inflation lumen (not illustrated) which is passes through the first elongate shaft 102 and terminates at hub 116 which has a fitting such a Luer fitting to allow an inflation device such as an Indeflator to be fluidly coupled to the catheter. Both the proximal and distal expandable members may be expanded from a collapsed configuration having a low profile suitable for intravascular delivery to a target treatment site such as a bifurcated vessel, to a radially expanded configuration in which the balloons engage the walls of the target treatment site, such as a blood vessel wall.

[0050] The second catheter 125 also has an elongate shaft 126 having a proximal portion and a distal portion. An expandable member 134, here a balloon, is disposed on the elongate shaft 126, near it's distal end. A proximal 136a and distal 136b radiopaque marker may be coupled to the shaft 126 and aligned with the balloon 134 so that a physician may visualize the balloon under fluoroscopy. The radiopaque markers 136a, 136b are preferably located at the proximal and the distal working ends of the balloon 134. A proximal connector 130 is coupled to the proximal end of the shaft 126 and allows a syringe, inflation device, medical tubing, or other device to be fluidly coupled with an inflation lumen (not shown) which extends along the elongate shaft 126 and is fluidly coupled to the expandable member 134. A guidewire lumen 128 extends from a distal port 135 to a proximal port 132. In preferred embodiments, the proximal port 132 is closer to the distal port 135 than the proximal end of the elongate shaft 126. This configuration is often referred to as Rx or rapid exchange. The guidewire lumen may also optionally extend out the proximal end of the shaft to provide a catheter having what is commonly referred to as an over-the-wire configuration. In preferred embodiments, shaft 126 may extend slidably through a lumen 106 in the shaft 102 of the first catheter 101 so that the balloon 134 may be advanced or retracted relative to the distal balloon 110. In other embodiments, shaft 126 may be fixedly attached to shaft 102 with no relative movement between the two catheters. Balloon 134 may be expanded from a collapsed configuration having a low profile suitable for intravascular delivery to a target treatment site such as a bifurcated vessel, to a radially expanded configuration in which the balloons engage the walls of the target treatment site, such as a blood vessel wall. Any of the balloons 108, 110, 134 may be compliant, non-compliant, or semi-compliant. Moreover, any of the balloons 108, 110, 134 may have a substantially constant diameter, or they may be tapered to match the contours of a vessel. In preferred embodiments, the balloons are tapered and non-compliant.

[0051] FIG. 2 illustrates another catheter system 200 for treating a bifurcation. In this exemplary embodiment, catheter system 200 is similar to the system 100 of FIG. 1, with the major difference being that system 100 also includes three stents 152, 154, 158.

[0052] The first catheter carries a first stent which is comprised of two discrete stents, a proximal stent 152 is disposed over the proximal balloon 108 on the first catheter 101, and a distal stent 154 is disposed over the distal balloon 110. A proximal end of the distal stent 154 abuts with a distal end of the proximal stent 108. The abutting ends of the two stents are formed so that when the two stents abut one another, a side hole 156 is created, allowing the second elongate shaft 126 to pass therethrough. Exemplary embodiments of the stent side hole are disclosed in greater detail below. The side hole 156 is preferably disposed about midway between the proximal and distal stents 152, 154, however, by changing stent lengths or by further modifying the abutting ends of the stents, the side hole may be disposed anywhere between the ends of the two stents 152, 154. A second stent 158, comprised of a single stent is disposed over balloon 134 on the second delivery catheter. Other aspects of delivery system 200 generally take the same form as those previously described above with respect to catheter system 100. The stents 152, 154, 158 are preferably balloon expandable, but may also be self-expanding, or combinations of balloon expandable and self-expanding. The stents 152, 154, 158 are radially expandable from a collapsed or crimped configuration having a profile adapted for intravascular delivery through a vessel, to an expanded configuration in which the stents engage and provide support for a target tissue such as a vessel wall. The stents may have any length, and in preferred embodiments, the proximal stent 152, and the distal stent 154 are substantially the same length. One of skill in the art will appreciate that this is not intended to be limiting, and stent length is dependent upon the length of the target tissue being treated.

[0053] FIG. 3A illustrates a perspective view of the two stents 152, 154 in FIG. 2, with the delivery catheter removed for clarity. A proximal portion of distal stent 154 includes a notched region 154a, and similarly a distal portion of the proximal stent 152 also includes a notched portion 152a. The notched regions may be sized so that when the proximal portion of stent 154 abuts with the distal portion of stent 152. the two notched regions form a side hole 156 through which the second catheter 126 may pass. FIG. 3B illustrates the stents 152, 154 in the unrolled, flattened configuration to more clearly illustrate how the notched region may be cut into the stent. In this exemplary embodiment, the notched region is half of an ellipse, but in other embodiments, the notched region may be circular, rectangular, or other shapes may be employed. Also, in still other embodiments, the notch may be cut out of only one of the two abutting stents. FIG. 3C illustrates an exemplary embodiment of two stents 152, 154 that form a side hole 156 when the two stents abut one another. In this embodiment, a single notch 154a is cut out of only one of the stents, here stent 154 in this embodiment, although the notch could also be cut out of stent 152. [0054] For conventional cylindrical stents 175 having orthogonal ends, placement in a side branch may result in a region 178 of the side branch that is remains unscaffolded, as seen in FIG. 3D. Providing a stent 180 having a beveled end 182 may allow the stent to more accurately conform to the side branch anatomy, thereby providing more uniform scaffolding as seen in FIG. 3E.

Methods of Treating a Bifurcation

[0055] FIGS. 4A-4J illustrate an exemplary method of treating a bifurcated vessel using the system 100 of FIG. 1.

FIG. 4A illustrates the basic anatomy of stenotic lesion at a bifurcated vessel. The blood vessel BV includes a main branch MB and a side branch SB. At the bifurcation B, the vessel bifurcates into the side branch SB and a downstream portion of the main branch MB. The carina C is a keel-shaped ridge, process, or anatomical part of the bifurcation. A stenotic lesion L such as plaque, calcified deposits, or other narrowing material is disposed in the side branch, as well as in the main branch upstream and downstream of the bifurcation. The ostium O is the opening from the main branch MB into the side branch SB.

[0056] In FIG. 4B a guidecatheter or introducer catheter IC is introduced into the patient's vasculature, preferably percutaneously, or via cutdown. The introducer catheter IC is then advanced toward the target treatment area at the bifurcation. Two guidewires GW are then advanced through the introducer catheter. One guidewire is further advanced into the side branch SB past the side branch lesion L, and the other guidewire is advanced further into the main branch downstream of the main branch lesion L.

[0057] FIG. 4C shows the bifurcation treatment system 100 of FIG. 1 being advanced through the introducer catheter IC, over both guidewires GW. Both catheters 101, 125 are advanced distally until they engage the carina C, resisting further distal advancement. Both catheters may be advanced slightly distally, or retracted slightly proximally such that the first catheter 101 is positioned in the main branch MB with the proximal balloon 108 at least partially upstream of the bifurcation B, and the distal balloon 110 is at least partially downstream of the bifurcation B. Both balloons 108, 110 of course will be aligned with the lesion L in the main branch MB. The second catheter 125 is positioned in the side branch SB, preferably such that balloon 134 is slightly distal to the side branch lesion L.

[0058] FIG. 4D illustrates an optional step wherein the second catheter 125 is proximally retracted through a lumen (not shown) in the first catheter 101 so that proximal radiopaque marker 136a on the second catheter 125 is aligned with proximal radiopaque marker 129a on the first catheter 101. This may be seen in the partial cutaway in FIG. 4D. Thus, a portion of shaft 126 slides under proximal balloon 108 and through the shaft 102 of the first catheter 101. Furthermore, this ensures alignment of balloon 134 with the side branch lesion L, with the ostium of the side branch, and with the proximal 108 and distal 110 balloons. This aspect of the procedure, as well as any other aspect of the procedure may be visualized using fluoroscopy, ultrasound, or other imaging techniques suitable for catheterization procedures.

[0059] Once the balloons on both catheters are properly aligned with the lesion, the bifurcation, and with one another, the balloons may be radially expanded in any order in order to treat the lesion L. FIG. 4E illustrates a preferred first inflation wherein the balloon 134 on the second catheter 125 is expanded against the lesion L in the side branch SB. The balloon 134 may be inflated with saline, contrast media, combinations thereof, or with other fluids. The balloons are inflated to a pressure high enough to compact the plaque into the vessel wall, preferably greater than 10 atmospheres, more preferably 10 to 20 atmospheres, and even more preferably 15 to 25 atmospheres. Of course, one of skill in the art will appreciate that this pressure is not limiting, and a physician may inflate the balloon to any desired pressure. After the balloon is inflated once, or twice, or more, it is

deflated, and the plaque will be substantially reduced since it is pressed into the vessel wall, thereby reducing the stenotic lesion L.

[0060] FIG. 4F illustrates another preferred step, wherein the proximal balloon 108 is expanded next, after expansion of the balloon 134 in the side branch SB. The proximal balloon may be inflated with similar fluids and pressures as previously described above. This reduces the plaque in the main branch near the bifurcation, and upstream of the bifurcation. FIG. 4G illustrates the next preferred step wherein the distal balloon 110 is expanded using similar fluids and pressures as described above. Expansion of both proximal 108 and distal 110 balloons is a modified "kissing" balloon technique. Even though the balloons 108, 110 are separated by a gap, after inflation, the proximal end of the distal balloon 110 expands toward and abuts the distal end of the proximal balloon 108 which also advances toward the other balloon. Additional details on this are disclosed below in FIGS. 8 and 9A-9B. Expanding both the proximal and distal balloons 108, 110 ensures that the lesion L in the main branch, both upstream and downstream of the bifurcation is uniformly dilated. Optionally, the side branch balloon 134 may also be simultaneously expanded (not illustrated) so that all three balloons "kiss" one another.

[0061] After the lesion has been successfully dilated, both proximal and distal balloons 108, 110 (and side branch balloon 134, if also expanded) are deflated as illustrated in FIG. 4H. In FIG. 4I, both catheters 101, 125 are proximally retracted away from the bifurcation, and removed from the patient's body. Finally, in FIG. 4J, both guidewires GW and the introducer guidecatheter IC are also proximally retracted away from the bifurcation and removed from the patient's body. The blockage in the lumen is now substantially reduced, thereby improving blood flow across the bifurcation.

[0062] The exemplary method described above is not intended to be limiting. One of skill in the art will appreciate that a number of variations or changes may also be made. For example, any one or more of the balloons may be coated with a therapeutic agent such as an anti-restonois drug like rapamycin, everolimus, biolimus A9, other analogs of rapamycin, or paclitaxel to help reduce restenosis. Moreover, any order or combination of balloon inflation may also be used. For example, the proximal and distal balloons may be expanded prior to expansion of the side branch balloon, or the distal balloon maybe inflated before the proximal balloon. Other variations may include simultaneous inflation of the side branch balloon with the proximal balloon, or simultaneous inflation of the side branch balloon and the distal balloon. Any number of permutations are contemplated.

[0063] Additionally, in an alternative embodiment shown in FIG. 5, the distal balloon 110 of the first catheter 101 may be advanced into the side branch SB while the proximal balloon 108 remains in the main branch MB. The balloon 134 on the second catheter 125 may then be advanced into the main MB branch at least partially downstream of the bifurcation. Inflation of the balloons may follow any of the number of permutations discussed above.

[0064] FIGS. 6A-6J illustrate an exemplary method of stenting a bifurcation using the delivery system 200 previously described in FIG. 2 above. FIG. 6A illustrates the basic anatomy of stenotic lesion at a bifurcated vessel. The blood vessel BV includes a main branch MB and a side branch SB.

At the bifurcation B, the vessel bifurcates into the side branch SB and a downstream portion of the main branch MB. The carina C is a keel-shaped ridge, process, or anatomical part of the bifurcation. A stenotic lesion L such as plaque, calcified deposits, or other narrowing material is disposed in the side branch, as well as in the main branch upstream and downstream of the bifurcation. The ostium O is the opening from the main branch MB into the side branch SB

[0065] In FIG. 6B a guidecatheter or introducer catheter IC is introduced into the patient's vasculature, preferably percutaneously, or via cutdown. The introducer catheter IC is then advanced toward the target treatment area at the bifurcation. Two guidewires GW are then advanced through the introducer catheter. One guidewire is further advanced into the side branch SB past the side branch lesion L, and the other guidewire is advanced further into the main branch downstream of the main branch lesion L.

[0066] FIG. 6C shows the bifurcation treatment system 200 of FIG. 2 being advanced through the introducer catheter IC, over both guidewires GW. Both catheters 101, 125 are advanced distally until they engage the carina C, resisting further distal advancement. Both catheters may be advanced slightly distally, or retracted slightly proximally such that the first catheter 101 is positioned in the main branch MB with the proximal stent 152 at least partially upstream of the bifurcation B, and the distal stent 154 is at least partially downstream of the bifurcation B. Both stents 152, 154 of course will be aligned with the lesion L in the main branch MB. Furthermore, the notched regions 152a. **154***a* forming the side hole **156** will also be aligned with the ostium to the side branch. The second catheter 125 is positioned in the side branch SB, preferably such that stent 158 is slightly distal to the side branch lesion L. In this embodiment, the stents 152, 154, 158 are preferably balloon expandable. However, they may also be self-expanding, or combinations of balloon expandable and self-expanding.

[0067] FIG. 6D illustrates an optional step wherein the second catheter 125 is proximally retracted through a lumen (not shown) in the first catheter 101 so that proximal radiopaque marker 136a on the second catheter 125 is aligned with proximal radiopaque marker 129a on the first catheter 101. This may be seen in the partial cutaway in FIG. 6D. Thus, a portion of shaft 126 slides under proximal balloon 108, under proximal stent 152, and through the shaft 102 of the first catheter 101. Furthermore, this ensures alignment of stent 158 with the side branch lesion L, with the ostium of the side branch, and with the proximal 152 and distal 154 balloons. This aspect of the procedure, as well as any other aspect of the procedure may be visualized using fluoroscopy, ultrasound, or other imaging techniques suitable for catheterization procedures.

[0068] Once the stents on both catheters are properly aligned with the lesion, the bifurcation, and with one another, the balloons may be radially expanded thereby expanding the stents to treat the lesion. FIG. 6E illustrates a preferred first inflation wherein the balloon 134 on the second catheter 125 is expanded, thereby expanding stent 158 into the lesion L in the side branch SB. The balloon 134 may be inflated with saline, contrast media, combinations thereof, or with other fluids. The balloons are inflated to similar pressures as those previously described above. Of course, one of skill in the art will appreciate that these pressures are not limiting, and a physician may inflate the

balloon to any desired pressure. After the stent is expanded into the lesion, the balloon **134** is deflated. A second post-dilation may also be performed if necessary to further tack the stent into position.

[0069] FIG. 6F illustrates another preferred step, wherein the proximal balloon 108 is expanded next so as to radially expand the proximal stent 152 into the lesion L around the lesion and slightly upstream of the bifurcation. Expansion of stent 152 is performed after expansion of stent 158 in the side branch SB. The proximal balloon may be inflated with similar fluids and pressures as previously described above. FIG. 6G illustrates the next preferred step wherein the distal balloon 110 is expanded using similar fluids and pressures as described above, thereby expanding distal stent 154. The distal balloon is inflated while the proximal balloon is inflated. Expansion of both proximal 108 and distal 110 balloons is a modified "kissing" balloon technique. Even though the balloons 108, 110 are separated by a gap, after inflation, the proximal end of the distal balloon 110 expands toward and abuts the distal end of the proximal balloon 108 which also advances toward the other balloon. Additional details on this are disclosed below in reference to FIGS. 8. and 9A-9B. This helps ensure that the distal end of the proximal stent 152 abuts the proximal end of the distal stent 154, and that the side hole 156 abuts the proximal end of the side branch stent 158, thereby ensuring that the stent fully covers and scaffolds the bifurcation. Additionally, expanding both the proximal and distal balloons 108, 110 ensures that the proximal and distal stents 152, 154 are expanded uniformly in the main branch, both upstream and downstream of the bifurcation. Optionally, the side branch balloon 134 may also be simultaneously expanded (not illustrated) so that all three balloons "kiss" with one another.

[0070] After the lesion has been successfully stented, both proximal and distal balloons 108, 110 (and side branch balloon 134, if also expanded) are deflated as illustrated in FIG. 6H. In FIG. 6I, both catheters 101, 125 are proximally retracted away from the bifurcation, and removed from the patient's body. Finally, in FIG. 6J, both guidewires GW and the introducer guidecatheter IC are also proximally retracted away from the bifurcation and removed from the patient's body. The blockage in the lumen is now substantially reduced and scaffolded, thereby improving blood flow across the bifurcation.

[0071] The exemplary method described above is not intended to be limiting. One of skill in the art will appreciate that a number of variations or changes may also be made. For example, any one or more of the balloons, stents, or combinations of balloons/stents may be coated with a therapeutic agent such as an anti-restonois drug like rapamycin, everolimus, biolimus A9, other analogs of rapamycin, or paclitaxel to help reduce restenosis. Moreover, any order or combination of balloon/stent expansion may be employed. For example, the proximal and distal balloons/stents may be expanded prior to expansion of the side branch balloon/ stent, or the distal balloon/stent maybe inflated before the proximal balloon/stent. Other variations may include simultaneous expansion of the side branch balloon/stent with the proximal balloon/stent, or simultaneous inflation of the side branch balloon/stent and the distal balloon/stent. Any number of permutations are contemplated.

[0072] Additionally, in an alternative embodiment shown in FIG. 7, the distal stent 154 of the first catheter 101 may be advanced into the side branch SB while the proximal stent

152 remains in the main branch MB. The stent 158 on the second catheter 125 may then be advanced into the main MB branch at least partially downstream of the bifurcation. Inflation of the balloons may follow any of the number of permutations discussed above.

Exemplary Balloon Configurations

[0073] FIG. 8 illustrates one exemplary balloon configuration that may be used in any of the systems or method described above. Catheter shaft 302 includes a proximal balloon 304 and a distal balloon 306 coupled to the shaft 302. Both proximal and distal balloons 304, 306 have standard proximal tapers 308 and distal tapers 310. The tapered regions 308, 310 allow the balloon to be fixedly coupled to shaft 302 with a fluid tight seal. This may be accomplished by ultrasonic welding, adhesively bonding, suture wrapping, or other techniques known to those in the art. While this configuration is promising, the gap 308 separating the proximal and distal balloons 304, 306 will remain even after both balloons are inflated. Thus, a section of the vessel may remain undilated, or unstented, which is not optimal.

[0074] FIG. 9A illustrates another exemplary balloon configuration that may overcome some of the shortcomings of the previous embodiment. Shaft 302 includes a proximal balloon 304a and a distal balloon 306a. The proximal end 312a and the distal end 314a of each balloon is everted and attached to the shaft using similar techniques as those described above. In the unexpanded configuration of FIG. 9A. a gap 308 still exists when the balloons are uninflated. However, when both balloons 304a, 306a are inflated, because of the everted ends, the proximal end of each balloon will tend to move proximally, and the distal end of each balloon will also tend to move distally, as indicated by the arrows. Thus, the distal end of the proximal balloon 304a will move toward and abut the proximal end of the distal balloon 306a. This reduces or eliminates the gap 308 between the two balloons. Therefore, the vessel will be more uniformly dilated or stented. Also, in the case where stents are mounted over the balloons, the ends of the stents will also tend to move toward one another, therefore the gap between adjacent stents will also tend to close resulting in more uniform stenting.

Exemplary Stent Delivery Systems for Treating Trifurcations

[0075] The embodiments described above are preferably used to treat bifurcated vessels. However, the basic embodiment may be expanded upon in order to treat trifurcated vessels such that those with a main branch and two side branches. FIGS. 10A-10B illustrate one exemplary embodiment of a stent delivery system that may be used to stent a trifurcated vessel. Stent delivery system 1002 includes a first side branch stent delivery catheter 1004 and a second side branch stent delivery catheter 1006. Also, the main branch stent delivery catheter includes a proximal balloon 1012 with a stent 1010 disposed thereover, and a distal balloon with a stent 1018 disposed thereover and coupled to a central shaft 1008. The central shaft includes at least three lumens sized to accommodate the shafts of the first and second side branch catheters, and the main branch shaft. The shafts may be slidable disposed in the lumens, or they may be fixed. The first side branch stent delivery catheter includes a balloon

1030 and stent 1031 disposed thereover near the catheter distal end. It is disposed in a rapid exchange lumen of the main shaft such that the proximal port 1026 is closer to the distal end of the catheter than the proximal end of the catheter. The second side branch catheter is similarly configured and includes a balloon 1032 and a stent 1033 disposed thereover adjacent the distal end of the catheter. The second side branch catheter is disposed in a rapid exchange lumen of the main shaft such that the proximal port is closer to the distal end of the catheter than the proximal end. The main branch catheter includes proximal balloon 1012 having a proximal taper 1016 and a distal everted end 1014 that allows the distal end of the balloon to expand distally toward the distal main branch balloon upon inflation. In alternative embodiments, both ends of balloon 1012 may be tapered, everted, or the eproxima end may be everted and the distal end may be tapered. The distal main branch balloon preferably includes a distal taper 1020 and a proximal everted end 1022 that moves proximally toward the proximal main branch balloon upon inflation. A gap 1034 separates the proximal main branch stent from the distal main branch stent, thereby creating a space for the first and second side branch catheters to extend therepast. The gap may be created with the notches or other stent geometries previously described above, with the exception that two notches are required to form two gaps. During delivery, the two side branch catheters may be slidably disposed in the lumens of the main branch catheter. Upon reaching the target trifurcated vessel, the two side branch catheters may be distally extended from the lumens and exposed, passing through the gap 1034 between the proximal and distal main branch stents. The balloons may be independently inflatable thereby allowing inflation in any order to deploy stents upstream and downstream of the trifurcation, and in the two sidebranches. Kissing balloons may also be used. In an alternative embodiments, one or more of the balloons may not include a stent, and thus the a portion of the trifurcation may be dilated and a portion of the trifurcation may be stented.

[0076] While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

What is claimed is:

- 1. A system for treating a bifurcated vessel having a main branch and a side branch, said system comprising:
 - a first delivery catheter carrying a first stent, the first stent comprising a proximal stent and a distal stent, the first delivery catheter also having a first elongate shaft with a proximal end, a distal end, a proximal expandable member with the proximal stent disposed thereover, and a distal expandable member with the distal stent disposed thereover, the proximal and distal expandable members disposed adjacent the distal end of the first elongate shaft.
 - wherein the proximal and distal expandable members each have a collapsed configuration and a radially expanded configuration, the collapsed configuration having a profile suitable for advancement through a blood vessel, and the expanded configuration having a larger profile than the collapsed configuration profile,

- wherein the proximal and the distal expandable members are independently expandable of one another,
- wherein the proximal expandable member comprises a proximal everted end and the distal expandable member comprises a distal everted end, and
- wherein expansion of the proximal and distal expandable members causes the proximal everted end and the distal everted end to move toward one another;
- a second delivery catheter carrying a second stent, the second delivery catheter also having a second elongate shaft with a proximal and a distal end, and a second expandable member with the second stent disposed thereover, the second expandable member disposed adjacent the distal end of the second elongate shaft,
- wherein the second expandable member has a collapsed configuration and a radially expanded configuration, the collapsed configuration having a profile suitable for advancement through a blood vessel, and the expanded configuration having a larger profile than the profile in the collapsed configuration,
- wherein the second expandable member is independently expandable of the proximal and the distal expandable members
- 2. The system of claim 1, wherein the proximal stent and the distal stent are discrete stents.
- 3. The system of claim 2, wherein a distal portion of the proximal stent comprises a notched region, and a proximal portion of the distal stent comprises a notched region, the notched regions being adjacent one another to form a side hole in the first stent when the two expandable members are expanded and drawn toward one another.
- **4**. The system of claim **3**, wherein the second delivery catheter passes through the side hole in the first stent.
- 5. The system of claim 1, wherein a gap separates the proximal and the distal expandable members when both the proximal and the distal expandable members are in the collapsed configuration, the gap being disposed between the proximal everted end of the distal expandable member and the distal everted end of the proximal expandable member.
- 6. The system of claim 5, wherein expansion of the proximal and the distal expandable members displaces the proximal everted end of the distal expandable member relative to the distal everted end of the proximal expandable member so that the proximal everted end of the distal expandable member advances toward the distal everted end of the proximal expandable member, thereby decreasing the gap between the proximal and the distal expandable members.
- 7. The system of claim 6, wherein the proximal everted end of the distal expandable member abuts the distal everted end of the proximal expandable member when both the proximal and the distal expandable members are in the expanded configuration.
- **8**. The system of claim **1**, wherein the proximal expandable member, the distal expandable member, and the second expandable member each comprise a balloon.
- **9**. The system of claim **1**, wherein a proximal end of the second expandable member abuts a side of both the proximal and the distal expandable members when the proximal, the distal, and the second expandable members are in the radially expanded configuration.
- 10. The system of claim 1, wherein the first elongate shaft comprises a lumen which extends at least partially between

the proximal and distal ends of the first elongate shaft, and wherein the lumen is sized to slidably receive the second elongate shaft.

- 11. The system of claim 1, wherein the second delivery catheter is axially slidable relative to the first delivery catheter.
- 12. The system of claim 1, wherein at least one of the first elongate shaft or the second elongate shaft comprise circumferential walls that define a guidewire lumen extending at least partially between its proximal and distal ends, the guidewire lumen sized to slidably receive a guidewire.
- 13. The system of claim 12, wherein the first elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the proximal end of the first elongate shaft than the distal end of the first elongate shaft.
- 14. The system of claim 12, wherein the first elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the distal guidewire port than the proximal end of the first elongate shaft.
- 15. The system of claim 12, wherein the second elongate shaft comprises a proximal guidewire port and a distal guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the proximal end of the second elongate shaft than the distal end of the second elongate shaft.
- 16. The system of claim 12, wherein the second elongate shaft comprises a proximal guidewire port and a distal

- guidewire port adjacent the distal end thereof, and wherein the proximal guidewire port is closer to the distal guidewire port than the proximal end of the second elongate shaft.
- 17. The system of claim 1, wherein the proximal stent, the distal stent, and the second stent each have a collapsed configuration suitable for delivery to the bifurcation, and a radially expanded configuration adapted to engage and support a vessel wall at the bifurcation or adjacent the bifurcation.
- 18. The system of claim 17, wherein the proximal stent, the distal stent, and the second stent are crimped to the proximal expandable member, the distal expandable member, and the second expandable member, respectively, so as to prevent ejection of the stents during advancement through a patient's vasculature.
- 19. The system of claim 1, wherein the proximal everted end of the proximal expandable member is attached to the first elongate shaft, and the distal everted end of the distal expandable member is attached to the first elongate shaft.
- 20. The system of claim 1, wherein the proximal expandable member further comprises a distal everted end, and the distal expandable member further comprises a proximal everted end, and wherein the distal everted end of the proximal expandable member and the proximal everted end of the distal expandable member move toward one another when the proximal and distal expandable members are expanded.

* * * * *