The function
$$f(x)=(x-3)^2+\frac{1}{2}$$
 has domain $D_f:(-\infty,\infty)$ The function $f(x)=(x-3)^2+\frac{1}{2}$ has domain $D_f:(-\infty,\infty)$ and range $D_f:\left[\frac{1}{2},\infty\right)$ $\lim_{x\to a} x \to a^{-1}f(x)$
$$\lim_{x\to a} f(x)$$

$$\lim_{x\to a} x \to a^{-1}\frac{f(x)-f(a)}{x-a}=f(a)$$

$$\lim_{x\to a} x\to a^{-1}\frac{f(x)-f(a)}{x-a}=f(a)$$

$$\lim_{x\to a} x\to a^{-1}\frac{f(x)-f(a)}{x-a}=f(a)$$

$$\int_{x\to a} \sin x\,dx$$

$$\int_{x\to a} \sin x\,dx=-\cos x+C$$

$$\int_{a} \sin x\,dx=-\cos x+C$$

$$\int_{a} \int_{a}^{b} \int$$