AEC-Q200 REV D June 1, 2010

STRESS TEST QUALIFICATION FOR PASSIVE COMPONENTS

Automotive Electronics Council
Component Technical Committee

Acknowledgement

Any Document involving a complex technology brings together experience and skills from many sources. The Automotive Electronics Council would especially like to thank the technical committee members that provided input for this document and recognize the following co-authors:

Sustaining Members			
Robert Hulka, Jr.	Delphi	(765)451-8079	robert.s.hulka.jr@delphi.com
Bob Knoell	Visteon	(734)710-7687	rknoell@visteon.com
Ken Kirby Jr.	Visteon	(734)710-7689	kkirby10@visteon.com
Ron Haberl	Visteon	(734)710-7691	rhaberl@visteon.com
Hadi Mehrooz	Continental	(256)464-1481	hadi.mehrooz@continental-corporation.com
Jason Larson	Continental		
Tom Mitchell	Autoliv	(248)223-8165	thomas.mitchell@autoliv.com
Gary Fisher	JCI	(616)394-6356	gary.b.fisher@jci.com
Technical Members			
Steve Maloy	TDK	(770)487-1460	steve.maloy@tdktca.com
Patrick Neyman	Тусо		pneyman@tycoelectronics.com
Andy Mahard	Vishay	(847)862-0223	andy.mahard@vishay.com
Dave Richardson	Vishay	(770)887-2021	david.richardson@vishay.com
Ted Krueger	Vishay	+(886) 2-2914-2601	ted.krueger@vishay.com
Roger Roberts	Vishay		
Mary Carter-Berrios	Kemet	(650)361-2256	marycarterberrios@kemet.com
Daniel Vanderstraeten	AMIS	+32 (/55) .33.23.30	daniel.vanderstraeten@amis.com
Nick Lycoudes	Freescale	(480)413-3343	nick.lycoudes@freescale.com
Jeff Jarvis	AMRDEC	(256)842-0160	jeff.jarvis@amrdec.army.mil
Lanney McHargue	Murata	(770)319-5159	Imchargue@murata.com
Chris Reynolds	AVX	(843)444-2868	creynolds@avxus.com

NOTICE

AEC documents contain material that has been prepared, reviewed, and approved through the AEC Technical Committee.

AEC documents are designed to serve the automotive electronics industry through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than AEC members, whether the standard is to be used either domestically or internationally.

AEC documents are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action AEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the AEC documents. The information included in AEC documents represents a sound approach to product specification and application, principally from the automotive electronics system manufacturer viewpoint. No claims to be in conformance with this document shall be made unless all requirements stated in the document are met.

Inquiries, comments, and suggestions relative to the content of this AEC document should be addressed to the AEC Technical Committee on the link http://www.aecouncil.com.

Published by the Automotive Electronics Council.

This document may be downloaded free of charge, however AEC retains the copyright on this material. By downloading this file, the individual agrees not to charge for or resell the resulting material.

Printed in the U.S.A. All rights reserved

Copyright © 2010 by the Automotive Electronics Council. This document may be freely reprinted with this copyright notice. This document cannot be changed without approval from the AEC Component Technical Committee.

Table of Contents

Section	litie	Page(s
1.0	Scope	6
1.1	Description	6
1.2	Reference Documents	7
2.0	General Requirements	8-10
3.0	Qualification and Requalification	11-12
4.0	Qualification Tests	12-13
	Table 1 - Qualification Sample Size Requirements	14-15
	Table 2 - Table of Methods Referenced Tantalum and Ceramic Capacitors	16-17
	Table 2A - Ceramic/Tantalum Process Change Qualification guidelines for the Selected Test	18
	Table 2B - Acceptance Criteria for Ceramic COG SMD Capacitors	19
	Table 2C - Acceptance Criteria for Ceramic X7R and X5R SMD Capacitors	20
	Table 2D - Acceptance Criteria for Ceramic Tantalum and Niobium Oxide Capacitors	21
	Table 3 - Table of Methods Referenced Aluminum Electrolytic Capacitors	22-23
	Table 3A - Electrolytic Capacitor Process Change Qualification Guidelines for the Selected Test	24
	Table 4 - Table Methods Referenced Film Capacitors	25-26
	Table 4A - Film Capacitor Process Change Qualification Guidelines for the Selection of Test	27
	Table 5 - Table of Methods Referenced Magnetics (Inductors/Transformers)	28-29
	Table 5A - Inductive Products Process Change Qualification Guidelines for the selection of Test	30
	Table 6 - Table of Methods Referenced Networks (R-C/C/R)	31-32
	Table 6A/7A - Networks and Resistors Process Change Qualification Guidelines for Selection of Test	33
	Table 7 - Table of Methods Reference Resistors	34-35
	Table 7B - Acceptance Criteria for Carbon Film Leaded Fixed Resistors	36
	Table 7C - Acceptance Criteria for Metal Film Leaded Fixed Resistors	37
	Table 7D - Acceptance Criteria for Metal Oxide Leaded Fixed Resistors	38 39
	Table 7E - Acceptance Criteria for Wire Wound Leaded Fixed Resistors	39 40
	Table 7F - Acceptance Criteria for SMD Chip Resistors Table 8 - Table of Methods Referenced Thermistors	40 41-42
	Table 8A - Thermistor Process Change Qualification Guideline for the Selection of Test	41-42
	Table 9 - Table of Methods Referenced Trimmer Capacitors/Resistors	43 44-45
	Table 9A - Trimmers Capacitors/Resistors Process Change Qualification Guidelines for the	46
	Selection of Test	70
	Table 10 - Table of Methods Referenced Varistors	47-48
	Table 10A - Varistors Process Change Qualification Guidelines for the Selection of Test	49
	Table 11 - Table of Methods Referenced Quartz Crystals	50-51
	Table 11A - Quartz Crystal Process change Qualification guidelines for the Selection of Test	52
	Table 11B - Acceptance Criteria for Quartz Crystals	53
	Table 12 - Table of Methods Referenced Ceramic Resonators	54-55
	Table 12A - Ceramic Resonator Process Change Qualification Guidelines for the Selection of Test	56
	Table 12B - Acceptance Criteria for Ceramic Resonators	57
	Table 13 - Table of Methods Referenced Ferrite EMI Suppressors/Filters	58-59
	Table 13A - Ferrite EMI Suppressors/Filters Process Change Qualification / Guideline for the Selection of Test	60
	Table 14 - Table of Methods Referenced Polymeric Resettable Fuses	61-62
	Table 14A - Polymeric Resettable Fuses Process Change Qualification / Guideline for the Selection of Test	63

Table of Contents - Continued

<u>Section</u>	Title	Page(s)
	Appendix 1 - Definition of a Qualification Family	64-66
	Appendix 2 - Certificate of Design, Construction and Qualification (CDCQ)	67
	Appendix 3 - Qualification Test Plan Format - Example	68-69
	Appendix 4 - Data Presentation Format and Content - Example	70
	Production Part Approval – Parametric Verification Summary – Example	71
	Revision History	71-74
	Attachment 1 - AEC – Q200-001 - Flame Retardance	-
	Attachment 2 - AEC – Q200-002 - Human Body Model Electrostatic Discharge Test	-
	Attachment 3 - AEC - Q200-003 - Beam Load (Break Strength) Test	-
	Attachment 4 - AEC – Q200-004 - Resettable Fuse Test	-
	Attachment 5 - AEC – Q200-005 - Board Flex / Terminal Bond Strength Test	-
	Attachment 6 - AEC – Q200-006 - Terminal Strength Surface Mount / Shear Stress Test	-
	Attachment 7 - AEC – Q200-007 - Voltage Surge Test	-
	AEC-Q005 Pb-Free Requirements	-

Automotive Electronics Council

Component Technical Committee

STRESS TEST QUALIFICATION FOR PASSIVE ELECTRICAL DEVICES

1.0 SCOPE

1.1 Description

This specification defines the minimum stress test driven qualification requirements and references test conditions for qualification of passive electrical devices. This document does not relieve the supplier of their responsibility to meet their own company's internal qualification program or meeting any additional requirements needed by their customers. In this document, "user" is defined as all companies that adhere to this document. The user is responsible to confirm and validate all qualification and assessment data that substantiates conformance to this document.

1.1.1 Definition of Stress-Test Qualification

Stress-Test "Qualification" is defined as successful completion of test requirements outlined in this document. The minimum temperature range required for each passive electrical component type is listed below (maximum capability) as well as example applications typical of each grade (application specific):

GRADE	TEMPERATURE RANGE		PASSIVE COMPONENT TYPE Maximum capability unless otherwise	TYPICAL/EXAMPLE APPLICATION
	MINIMUM	MAXIMUM	specified and qualified	ALLEGATION
0	-50°C	+150°C	Flat chip ceramic resistors, X8R ceramic capacitors	All automotive
1	-40°C	+125°C	Capacitor Networks, Resistors, Inductors, Transformers, Thermistors, Resonators, Crystals and Varistors, all other ceramic and tantalum capacitors	Most underhood
2	-40°C	+105°C	Aluminum Electrolytic capacitors	Passenger compartment hot spots
3	-40°C	+85°C	Film capacitors, Ferrites, R/R-C Networks and Trimmer capacitors	Most passenger compartment
4	0°C	+70°C		Non-automotive

Qualification of the noted device type to its minimum temperature grade allows the supplier to claim the part as "AEC qualified" to that grade and all lesser grades. Qualification to temperatures less than the minimum specified above would allow the supplier to claim the part as "AEC qualified" at the lower grade only.

Determining the temperature grade of a passive component type or an application not mentioned above should be agreed to between the supplier and user.

1.1.2 Approval for Use in an Application

"Approval" is defined as user approval for use of the part being qualified in the intended application along with any applicable supplements and compliance to any applicable user packaging specification. The user's method of approval is beyond the scope of this document.

Automotive Electronics Council

Component Technical Committee

1.2 Reference Documents

Current revision of the referenced documents will be in effect at the date of agreement to the qualification plan. Subsequent qualification plans will automatically use updated revisions of these referenced documents.

1.2.1 Military/EIA

1. EIA-469	Destructive Physical Analysis (DPA)
2. MIL-STD-202	Test Methods for Electronic and Electrical Parts
3. EIA-198	Ceramic Dielectric Capacitors Classes I,II,III,IV
4. EIA-535	Tantalum Capacitors
5. J-STD-002	Solderability Spec
6. JESD22	JEDEC Standard
7. MIL-PRF-27	Test Methods for Inductors/Transformers
8. JESD201	Environmental Requirements for Tin Whisker Susceptibility of Tin and
	Tin Alloy Surface Finishes
9. JESD22-A121	Test Method for Measuring Whisker Growth on Tin and Tin Alloy
	Surface Finishes

1.2.2 Industrial

1. UL-STD-94	Test for Flammability of Plastic Materials
2. ISO-7637-1	Road Vehicle Electrical Disturbance
3. IEC ISO/DIS10605	ESD Human Body Model (modify Q200-002)
4. iNEMI	Recommendations for Pb-free Termination Plating

1.2.3 AEC

1. AEC-Q200-001 2. AEC-Q200-002 3. AEC-Q200-003 4. AEC-Q200-004 5. AEC-Q200-005 6. AEC-Q200-006 7. AEC-Q200-007	Flame Retardance Test ESD (Human Body Model) Test Beam Load (Break Strength) Test Polymeric Resettable Fuse Test Flame Retardance Test Measurement Methods for Resettable Fuses Voltage Surge Test
7. AEC-Q200-007 8. AEC-Q005	Voltage Surge Test Pb-Free Test Requirements

1.3 Glossary of Terms/Abbreviations

1. AEC	AUTOMOTIVE ELECTRONIC COUNCIL
2. ESD	ELECTROSTATIC DISCHARGE
3. FIT	FAILURE IN TIME
4. DWV	DIELECTRIC WITHSTANDING VOLTAGE
5. 8D	DISCIPLINED APPROACH FOR PROBLEM SOLVING PROCESS