Ling 473 Assignment 3 Due 4:30pm on Thursday August 17, 2017

- 1. (15 points) In Lecture 3, we looked at the outcomes of rolling two fair dice. For this problem, we will consider weighted dice—one white, and one red. For each die, 1 and 6 are twice as likely to show as the other four values.
 - a. What is the probability that the total showing on the two dice will be 7?
 - b. What is the probability that the total showing on the two dice will be 9 or higher?
 - c. What is the probability that the red die will show a higher number than the white one?
- 2. (30 points) The following is the first paragraph of Ernest Hemmingway's *The Old Man and The Sea*. It has been POS-tagged using the online Brill tagger at the *Center for Sprogteknologi* at Københavns Universitet. A few minor changes have been applied.

PRP VE	BD DT	JJ	NN	WP	VBD	RE	RB II		DT NN		IN	DT	NNP	NN	IP	CC	PRP	VBD	VBN	CD				NNS RE		N	VBC		DT NI	N	
he wa	s an	old	man	who	fish	ed a	lone	in	a sl	kiff	in	the	gul	fst	ream	and	he	had	gor	e ei	ghty-	fou	r day	/s no	ow w	ithou	t tak	cing	a f	ish	
INDT	כנ	CI		NNS	DT	NN N	/BD V	BN	IN	PR	Р.	СС	IN		D	NNS	IN		D	- NN	DT	NN	POS	NNS		VBD	VBN	PRP	IN	DT	-
in the	firs	t f	orty	days	s a	boy	nad b	een	wit	hhi	m .	but	aft	er f	orty	day	s wi	thou	ta	fis	h	boy	/ 's	par	ent	s had	told	him	that	the	2
JJ NN	I VBD	RB	RB			СС	RB		VBN	Τ,	WD1	ΓV	BZ I	DT	JJ	NN	II	ככוע		, co	DT	NN	VBC	VBN	N I	N PRP	\$ NN	IS	IN		
old ma	n was	noi	и de	finit	tely	and	final	lly	sala	ao,	whi	ichi	.s	the	worst	for	m o	f un]	Luck	+-			y hac	gor	ne a	t the:	ir or	ders	in		
DT	NN	W	DT	VBD		CD.]]]	INI	N I	от Т	J J	NN	v T	. PR	P VBC	TD (- INI	v J:) T	о ИВ	DT	כנ	NN	VB	IN	DT	NN	IN	PRP	ā	
anothe	er bo	at w	hic	n cau	ght t	three	goo	d f:	ish	the ·	fir	st we	eek	. it	mad	le th	ne bo	oy sa	d t	o see	the	old	man	come	in	each	day	with	his		
NN	33	Icc	PF	RP RB		VBD	IN	Ттс	VВ	PF	RPV	/B	DT		DT	VBD	I	NNS	Icc	DT	NN	СС	INN		cc	DT	NN	WDT	VBD	_]	
skiff		+						-	1		-		1	ther					-			-	-	poon	+	+			+	4	
VBD	IN	_	DT	NN	. DT	NN	IVB	DV	'RNI		N.	INN		NNS	cc	Пу	BD		DRD	VBD	II	м Ті	от Ти	IN	IN	77		INN	一	1	
furle		\rightarrow			11-		_	-		_			\rightarrow			+-									\vdash	perma			at .	1	
		_				_						_						_											-		

This assignment does not require programming, but if you wish to work with an electronic version of this information, you can refer to the following file:

/opt/dropbox/16-17/473/assignment3/old-man.txt

- a. How many bigrams does the sample contain?
- b. In a bigram model, we assume that a POS tag depends only on the POS tag of the preceding word. Calculate $P(. \mid NN)$, assuming that the counts in the above sample are perfectly representative.
- c. We are interested in the probability of the bigram DT JJ in the sample text. What is the value of P(DT JJ)?
- d. A trigram model predicates a POS tag on the POS tags of the preceding bigram. Calculate $P(NN \mid DT JJ)$ for the sample.
- e. Assume this sample characterizes a larger corpus. Assume that measured probabilities are <u>independent</u>. Estimate P(DT JJ | NN) for the corpus. (Hint: this will use Bayes' Theorem.) Show your work.

3. (15 points) For phonetic elicitation with a group of American test subjects, we are using three word lists:

```
A = { gnat, beet }
B = { loon, fee }
C = { peel, pool, he, sand }
```

The test protocol is as follows: One of the lists is selected at random. Then, the subject is asked to pronounce a randomly selected word from that list. What is the probability that the word will have a high/close vowel (as opposed to low/open)? If you are not familiar with vowel phonetics, you can check the Lecture 5 recording, or listen to samples on http://en.wikipedia.org/wiki/Vowel.

4. (30 points) A classifier has portioned a set of eight biomedical documents into

```
C = \{ \text{ mentions the IL-2R } \alpha\text{-promoter} \}  (6 documents), and \overline{C} (the rest).
```

The gold standard indicates that only three documents actually mention the Interleukin-2 receptor alpha promoter, and we determine that exactly one of them is (incorrectly) in \bar{C} . In testing a post-processing heuristic, we select a document at random from C and move it in the class \bar{C} . Next, we randomly select a document from \bar{C} .

- a. What is the probability that the document we selected from \bar{C} mentions the IL-2R α -promoter (according to the gold standard)?
- b. Next, we note that the document we selected from \bar{C} does, in fact (according to the gold standard), mention the IL-2R α -promoter. Given this additional information, what is the probability that the document that we transferred from C to \bar{C} mentioned (according to the gold standard) the IL-2R α -promoter (i.e., that we moved it to the wrong class)?