9/15/21, 10:38 PM MultiVarScaling

```
In [1]:
           import numpy as np
           import pandas as pd
           # Data Visualisation
           import matplotlib.pyplot as plt
           import seaborn as sns
 In [3]:
          housing = pd.DataFrame(pd.read_csv("Housing.csv"))
           housing.head()
 Out[3]:
                price
                            bedrooms bathrooms stories mainroad guestroom basement hotwaterheating
            13300000
                      7420
                                   4
                                              2
                                                      3
                                                              yes
                                                                                   no
                                                                         no
                                                                                                   no
            12250000
                      8960
                                   4
                                              4
                                                      4
                                                              yes
                                                                         no
                                                                                   no
                                                                                                   no
             12250000
                      9960
                                   3
                                              2
                                                      2
                                                              yes
                                                                                   yes
                                                                         no
                                                                                                   no
             12215000
                      7500
                                   4
                                              2
                                                      2
                                                              yes
                                                                                   yes
                                                                                                   no
                                                                         no
                                                      2
             11410000 7420
                                   4
                                              1
                                                              yes
                                                                         yes
                                                                                   yes
                                                                                                   no
 In [4]:
          m = len(housing)
 Out[4]:
          545
 In [5]:
          housing.shape
 Out[5]:
         (545, 13)
In [110...
          housing.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 545 entries, 0 to 544
          Data columns (total 13 columns):
           #
               Column
                                  Non-Null Count
                                                   Dtype
                                  -----
           0
                                  545 non-null
                                                   int64
               price
           1
               area
                                  545 non-null
                                                   int64
           2
                                  545 non-null
               bedrooms
                                                   int64
           3
                                  545 non-null
                                                   int64
               bathrooms
           4
               stories
                                  545 non-null
                                                   int64
           5
               mainroad
                                  545 non-null
                                                   object
                                  545 non-null
                                                   object
           6
               guestroom
           7
                                  545 non-null
                                                   object
               basement
           8
               hotwaterheating
                                  545 non-null
                                                   object
           9
               airconditioning
                                  545 non-null
                                                   object
                                  545 non-null
           10
               parking
                                                   int64
           11
               prefarea
                                  545 non-null
                                                   object
               furnishingstatus 545 non-null
                                                   object
          dtypes: int64(6), object(7)
          memory usage: 55.5+ KB
```

9/15/21, 10:38 PM MultiVarScaling

```
In [6]:
           housing.describe()
 Out[6]:
                        price
                                           bedrooms bathrooms
                                                                    stories
                                                                              parking
                                     area
          count 5.450000e+02
                                545.000000
                                           545.000000
                                                      545.000000
                                                                 545.000000
                                                                            545.000000
          mean 4.766729e+06
                               5150.541284
                                             2.965138
                                                        1.286239
                                                                   1.805505
                                                                              0.693578
            std 1.870440e+06
                               2170.141023
                                             0.738064
                                                        0.502470
                                                                   0.867492
                                                                              0.861586
            min 1.750000e+06
                               1650.000000
                                             1.000000
                                                        1.000000
                                                                   1.000000
                                                                              0.000000
           25% 3.430000e+06
                               3600.000000
                                             2.000000
                                                        1.000000
                                                                   1.000000
                                                                              0.000000
           50% 4.340000e+06
                               4600.000000
                                             3.000000
                                                        1.000000
                                                                   2.000000
                                                                              0.000000
           75% 5.740000e+06
                               6360.000000
                                             3.000000
                                                        2.000000
                                                                   2.000000
                                                                              1.000000
           max 1.330000e+07 16200.000000
                                             6.000000
                                                        4.000000
                                                                   4.000000
                                                                              3.000000
In [19]:
           # You can see that your dataset has many columns with values as 'Yes' or 'No'.
           # But in order to fit a regression line, we would need numerical values and not string.
           # List of variables to map
           varlist = ['mainroad', 'guestroom', 'basement', 'hotwaterheating', 'airconditioning',
           # Defining the map function
           def binary map(x):
               return x.map({'yes': 1, "no": 0})
           # Applying the function to the housing list
           housing[varlist] = housing[varlist].apply(binary map)
           # Check the housing dataframe now
           housing.head()
Out[19]:
                            bedrooms bathrooms stories mainroad guestroom basement hotwaterheating
                price
                      area
          0 13300000
                     7420
                                    4
                                               2
                                                       3
                                                              NaN
                                                                         NaN
                                                                                   NaN
                                                                                                   NaN
             12250000
                      8960
                                    4
                                               4
                                                      4
                                                              NaN
                                                                         NaN
                                                                                   NaN
                                                                                                   NaN
            12250000
                      9960
                                    3
                                               2
                                                       2
                                                              NaN
                                                                         NaN
                                                                                   NaN
                                                                                                   NaN
                                               2
            12215000 7500
                                    4
                                                      2
                                                              NaN
                                                                         NaN
                                                                                   NaN
                                                                                                   NaN
            11410000 7420
                                               1
                                                       2
                                                              NaN
                                                                                   NaN
                                                                                                   NaN
                                                                         NaN
In [20]:
           #Splitting the Data into Training and Testing Sets
           from sklearn.model selection import train test split
           # We specify this so that the train and test data set always have the same rows, respec
           np.random.seed(0)
           df_train, df_test = train_test_split(housing, train_size = 0.7, test_size = 0.3, random)
           df train.shape
```

```
Out[20]: (381, 13)
In [21]:
           df test.shape
Out[21]: (164, 13)
In [22]:
          num_vars = ['area', 'bedrooms', 'bathrooms', 'stories', 'parking','price']
          df Newtrain = df train[num vars]
          df Newtest = df test[num vars]
           df Newtrain.head()
Out[22]:
                    bedrooms bathrooms stories parking
                                                           price
               area
          359 3600
                           3
                                             1
                                                      1 3710000
           19 6420
                           3
                                      2
                                             2
                                                      1 8855000
          159 3150
                                      2
                                             1
                                                       5460000
           35 7000
                                                      2 8080940
           28 7950
                                             2
                                                      2 8400000
In [23]:
           df Newtrain.shape
Out[23]: (381, 6)
In [28]:
           # Here we can see that except for area, all the columns have small integer values.
          #So it is extremely important to rescale the variables so that they have a comparable s
           #If we don't have comparable scales, then some of the coefficients as obtained by fitti
           #This might become very annoying at the time of model evaluation.
           ##So it is advised to use standardization or normalization so that the units of the coe
          #As you know, there are two common ways of rescaling:
           #1. Min-Max scaling
           #2. Standardisation (mean-0, sigma-1)
           import warnings
          warnings.filterwarnings('ignore')
          from sklearn.preprocessing import MinMaxScaler, StandardScaler
           # define standard scaler
           #scaler = StandardScaler()
           scaler = MinMaxScaler()
           df Newtrain[num vars] = scaler.fit transform(df Newtrain[num vars])
          df_Newtrain.head(20)
Out[28]:
                       bedrooms bathrooms
                  area
                                             stories
                                                     parking
                                                                price
          359 0.155227
                             0.4
                                        0.0 0.000000 0.333333 0.169697
           19 0.403379
                             0.4
                                        0.5 0.333333 0.333333 0.615152
          159 0.115628
                             0.4
                                        0.5 0.000000 0.000000 0.321212
```

		area	bedrooms	bathrooms	stories	parking	price
	35	0.454417	0.4	0.5	1.000000	0.666667	0.548133
	28	0.538015	0.8	0.5	0.333333	0.666667	0.575758
	267	0.271383	0.4	0.0	0.333333	0.333333	0.229697
	263	0.187610	0.4	0.0	0.333333	0.000000	0.230303
	433	0.144667	0.6	0.0	0.333333	0.333333	0.133333
	217	0.442274	0.4	0.0	0.333333	0.666667	0.266667
	154	0.159627	0.4	0.5	0.333333	0.666667	0.327273
	534	0.102429	0.6	0.0	0.333333	0.000000	0.030303
	96	0.630412	0.4	0.0	0.000000	0.333333	0.393939
	33	0.362900	0.4	1.0	0.333333	0.333333	0.557576
	477	0.274903	0.2	0.0	0.000000	0.000000	0.103030
	129	0.846885	0.4	0.0	0.666667	0.666667	0.356970
	401	0.674410	0.4	0.0	0.333333	1.000000	0.151515
	240	0.176346	0.4	0.0	0.333333	0.333333	0.245455
	21	0.468057	0.4	0.5	0.000000	0.666667	0.600000
	155	0.375220	0.4	0.5	0.000000	0.666667	0.327273
	532	0.102429	0.2	0.0	0.000000	0.000000	0.033333
in [30]:	<pre>y_Newtrain = df_Newtrain.pop('price') X_Newtrain = df_Newtrain</pre>						
	X_IV	Normtrain.head()					
Out[119		area		bathrooms	stories	parking	
		0.155227	0.4		0.000000		
		0.403379	0.4		0.333333		
		0.115628	0.4			0.000000	
		0.454417	0.4		1.000000		
	28	0.538015	8.0	0.5	0.333333	0.666667	
In [120	y_N	y_Normtrain.head()					
Out[120	359 19 159 35 28 Name	0.1690 0.6153 0.3213 0.5483 0.5753	152 212 133	oat64			

9/15/21, 10:38 PM MultiVarScaling

Y = y Normtrain.values # get input values from first column

In [137...

```
Out[137... array([-5.75831482e-01, 2.25423943e+00, 3.86777672e-01, 1.82845815e+00,
                 2.00396105e+00, -1.94638257e-01, -1.90787821e-01, -8.06857680e-01,
                 4.02383765e-02, 4.25282038e-01, -1.46143190e+00, 8.48830066e-01,
                 1.88844795e+00, -9.99379511e-01, 6.13953433e-01, -6.91344581e-01,
                -9.45269052e-02, 2.15797852e+00, 4.25282038e-01, -1.44217972e+00,
                 1.55751475e-01, -8.06857680e-01, -9.99379511e-01, 6.56308235e-01,
                -2.11642634e-03, -5.75831482e-01, -3.67703559e-02, -1.36517099e+00,
                 1.04135190e+00, -1.13779088e-01, 2.09861934e-02, 9.64343165e-01,
                -5.79681919e-01, -1.65395374e+00, 6.17803869e-01, -5.95083666e-01,
                -7.68353313e-01, 5.40795137e-01, -1.33031271e-01, -8.95417722e-01,
                 1.23387373e+00, -9.99379511e-01, 3.35161387e+00, -7.87605496e-01,
                -5.37327116e-01, -5.37327116e-01, -1.52283454e-01, 6.17803869e-01,
                 1.50340429e+00, -4.21814018e-01, -7.68353313e-01, 7.87427426e-02,
                -1.03788388e+00, -1.26891007e+00, 1.02980059e+00, 1.09546236e-01,
                -1.13414479e+00, -1.56133891e-01, 2.71264574e-01, 2.59713264e-01,
                 9.45090982e-01, -1.24965789e+00, 1.54190866e+00, -1.15339698e+00,
                -9.45269052e-02, 2.90516757e-01, -8.83866412e-01, -3.06300919e-01,
                -4.21814018e-01, 2.00396105e+00, -6.33588032e-01, 7.33316968e-01,
                 4.06029855e-01, -4.98822750e-01, 6.56308235e-01, -5.37327116e-01,
                -1.11489261e+00, -7.29848947e-01, -8.06857680e-01, -1.05713606e+00,
                 7.71821334e-01, -4.60318384e-01, -6.14335849e-01, 5.75449066e-01,
                 1.48415211e+00, -4.60318384e-01, -8.26109863e-01, -1.32666662e+00,
                -1.23040571e+00, -5.41177553e-01, -2.67796553e-01, -4.02561835e-01,
                -7.29848947e-01, -3.64057468e-01, -4.02561835e-01, 1.31088246e+00,
                -1.07638824e+00, -6.91344581e-01, 2.77404838e+00, -1.13779088e-01,
                -6.91344581e-01, 2.81255274e+00, 1.34938683e+00, -7.52747221e-02,
                 4.44534221e-01, -5.18074933e-01, -5.75831482e-01, 3.86777672e-01,
                -8.06857680e-01, -2.67796553e-01, -1.59619719e+00, 5.79299503e-01,
                 4.63786404e-01, 2.03861498e+00, 8.29577883e-01, -4.60318384e-01,
                 1.73443049e+00, -3.25553102e-01, -7.83755060e-01, -6.14335849e-01,
                -7.52747221e-02, -1.94638257e-01, -9.60875144e-01, -3.06300919e-01,
                -7.68353313e-01, 1.19536936e+00, -5.37327116e-01, -5.79681919e-01,
                 7.87427426e-02, 1.94255841e-01, 6.13953433e-01, -8.37661173e-01,
                -9.64725581e-01, -1.23040571e+00, -5.41177553e-01, -4.12187926e-01,
                -8.45362046e-01, -3.06300919e-01, -3.06300919e-01, 1.94620450e+00,
                -3.10151356e-01, -2.10040004e-01, -4.79570567e-01, 6.56308235e-01,
                -3.83309652e-01, -1.46143190e+00, 1.09910845e+00, -9.41622961e-01,
                 7.87427426e-02, 6.94812602e-01, -8.83866412e-01, 9.64343165e-01,
                 7.87427426e-02, 3.48273306e-01, 1.42639556e+00, -3.06300919e-01,
                -2.87048736e-01, -3.10151356e-01, 5.40795137e-01, -9.99379511e-01,
                 3.86777672e-01, -4.21814018e-01, 2.67414137e-01, -6.14335849e-01,
                -8.83866412e-01, -1.05713606e+00, -7.68353313e-01, -3.83309652e-01,
                -1.52283454e-01, 7.29466531e-01, 7.87427426e-02, 7.29466531e-01,
                -3.06300919e-01, -1.13779088e-01, -1.17629525e-01, 1.61891739e+00,
                 1.00284753e+00, -9.01000855e-01, -6.91344581e-01, -8.83866412e-01,
                -6.91344581e-01, -1.26891007e+00, -3.06300919e-01, 1.51901038e-01,
                -6.14335849e-01, -1.15339698e+00, -1.13779088e-01,
                                                                   2.52012390e-01,
                 9.45090982e-01, -3.64057468e-01, -3.48655722e-01, -2.63946116e-01,
                -9.80127327e-01, 8.10325700e-01, 2.70859095e+00, -8.45362046e-01,
                 4.63786404e-01, 1.36499292e-01, -2.67796553e-01, 1.02209971e+00,
                -1.38827361e+00, 1.02209971e+00, 4.21431602e-01, -7.68353313e-01,
                -1.36517099e+00, 1.04135190e+00, 1.73401028e-03, -9.03118595e-01,
                 4.02383765e-02, -9.60875144e-01, 4.63786404e-01, -1.03788388e+00,
                 6.10102996e-01, -1.26891007e+00, -1.29201269e+00, -1.30741444e+00,
                -1.36517099e+00, 7.87427426e-02, -2.67796553e-01, 2.10022197e+00,
                 2.71264574e-01, 4.63786404e-01, -9.22370778e-01, -6.14335849e-01,
                 2.46601345e+00, -6.52840215e-01, -1.03788388e+00, 1.04135190e+00,
                -6.91344581e-01, -1.65395374e+00, 1.84994359e+00, -4.98822750e-01,
                -6.91344581e-01, 4.63786404e-01, -4.02561835e-01, 2.13508024e-01,
                -5.60225390e-02, 1.06060408e+00, -9.03118595e-01, -6.52840215e-01,
```

```
1.36863901e+00, -1.13779088e-01,
                                                   1.54190866e+00, 9.06586616e-01,
                -6.14335849e-01, -5.37327116e-01,
                                                   4.63786404e-01, -6.91344581e-01,
                 7.87427426e-02, -1.90787821e-01,
                                                   5.40795137e-01, -2.48544370e-01,
                 1.73401028e-03, 2.09861934e-02, 1.17611718e+00, 7.33316968e-01,
                -4.98822750e-01, 2.50451781e+00, 2.38900471e+00, -3.06300919e-01,
                 9.25838799e-01, -3.06300919e-01, -1.23040571e+00, -7.29848947e-01,
                -1.13779088e-01, 1.19536936e+00, -6.14335849e-01, -2.87048736e-01,
                -3.25553102e-01, 1.73401028e-03, 7.52569151e-01, -3.06300919e-01,
                 1.94255841e-01, 6.94812602e-01, 6.56308235e-01, -5.56579299e-01,
                 3.44422869e-01, -1.71535638e-01, -8.26109863e-01, -7.29848947e-01,
                -2.48544370e-01, -8.06857680e-01, 2.77404838e+00, -1.33031271e-01,
                -7.10596764e-01, -7.68353313e-01, -3.25553102e-01, -8.83866412e-01,
                 1.17247109e-01, -3.44805285e-01, -1.30741444e+00, -9.60875144e-01,
                 2.13508024e-01, -1.33031271e-01, -1.52283454e-01, -7.10596764e-01,
                -7.72203750e-01, 7.91073517e-01, -3.64057468e-01, -3.06300919e-01,
                 1.04135190e+00, 6.56308235e-01, -7.52747221e-02, 6.94812602e-01,
                 8.48830066e-01, -4.98822750e-01, 2.71264574e-01, -3.67703559e-02,
                 8.48830066e-01, 5.94905596e-02, 1.76330876e+00, -4.21814018e-01,
                -1.56133891e-01, 1.80758878e+00, -3.06300919e-01, 2.52012390e-01,
                 2.71264574e-01, -5.75831482e-01, -1.15339698e+00, -8.45362046e-01,
                 4.02383765e-02, -6.91344581e-01, 7.87427426e-02, 7.48923060e-02,
                -1.05713606e+00, 1.11836063e+00, 5.79299503e-01, -5.75831482e-01,
                -9.18520342e-01, 1.94255841e-01, -1.19190134e+00, 4.69926668e+00,
                -4.60318384e-01, -1.65395374e+00, -9.60875144e-01, -9.87828201e-01,
                -5.06523623e-01, -1.04750997e+00, -8.06857680e-01, 1.15686500e+00,
                -1.64452017e+00, 2.31199598e+00, 2.00396105e+00, 7.71821334e-01,
                 2.46601345e+00, 1.07985626e+00, -2.29292187e-01,
                                                                   7.87427426e-02,
                                                                   2.71264574e-01,
                -8.06857680e-01, 1.55751475e-01, -2.29292187e-01,
                -3.06300919e-01, -5.95083666e-01, -7.91251587e-02, -2.67796553e-01,
                 2.52012390e-01, 1.25312591e+00, -6.91344581e-01, -9.99379511e-01,
                 4.12170119e+00, -4.60318384e-01, -3.83309652e-01, -8.06857680e-01,
                 1.46489993e+00, 5.60047320e-01, 3.65964880e+00, 4.92664679e-01,
                -7.49101130e-01, -6.72092398e-01, 9.64343165e-01, 8.48830066e-01,
                -1.19190134e+00, -3.83309652e-01, -3.67703559e-02, -2.67796553e-01,
                -1.34591881e+00, 1.42639556e+00, -5.37327116e-01, 1.04135190e+00,
                -1.26891007e+00])
In [135...
          X0 = df Normtrain.values[:, 0] # get input values from first column
In [138...
          X0
Out[138... array([-0.73673364, 0.63289422, -0.95529128, 0.91459073, 1.37599019,
                -0.09563124, -0.55800206, -0.79501568, 0.84756639, -0.71244946,
                -1.02814382, 1.88595801, 0.40947975, -0.07620389, 3.08073976,
                 2.12879983, -0.62016957, 0.9898717, 0.47747546, -1.02814382,
                 1.20600092, -0.52303284, 0.35605455, 0.683891 , 0.64260789,
                -0.74450458, 0.42890709, -0.55703069, -0.41618244, -0.65902426,
                 0.91459073, -0.65902426, 0.16178109, -1.07185535, 0.99230011,
                -0.72216313, -0.66388109, -0.23162265, -0.80958618,
                                                                    0.18363686,
                 2.94231992, -1.17384891, 1.15743255, -0.52303284, -1.09808227,
                 1.59454783, 0.37305348, 0.67174891, 0.72031728, -0.518176
                -0.93829235, 0.77859931, -0.72216313, -0.785302 , 0.42890709,
                -1.12528055, -0.54246018, 0.6037532, -0.63959691,
                                                                    0.95587384,
                 1.11372102, -1.02814382, 0.42890709, -0.72216313, -0.54246018,
                          , -0.785302 , -0.50409118, -0.56188753, 1.82524755,
                -0.25105
                -0.54246018, 0.72031728, 1.3905607, -0.50360549, 1.02678365,
                -0.73673364, -0.54246018, -1.21756044, -1.44340333, -1.20298993,
                -0.29961836, 0.18606527, -0.94072077, 0.91459073, -0.39675509,
                -0.63182597, -0.57645804, -0.71730629, -0.94072077, 0.88059288,
                 0.6037532 , 0.13749691, -1.44340333, 0.23463364, -0.72216313,
                 0.42890709, -1.1981331 , -0.73673364, 3.92582929, 1.59454783,
                -1.01065921, 1.44884273, 0.42890709, -0.60074222, -0.34818673,
```

```
0.47747546, -1.27098564, -1.42883282,
-0.95529128, -0.52303284,
-1.03300066, 0.04036018,
                          0.18606527, 0.42890709, 0.42890709,
            0.42890709, -0.52011874, -1.44340333, -0.47932131,
-1.44340333,
                                   , -1.44340333, -0.48417815,
-0.4647508 , -0.11505858, -0.25105
1.82767597,
            0.34634088, -0.96986179, -0.16848378, 0.47747546,
0.18606527, -0.71730629, 1.42455855, -1.02814382, -1.26127197,
                                   , -0.54246018, -0.11505858,
-0.80472935, -0.38704142, -0.25105
1.52169528, -0.59102855, -0.94072077, 1.0700095, -1.02814382,
-0.85329771, 0.42890709, -0.63959691, 3.7801242,
                                                   1.40027437,
-0.49632024, 1.52169528, -0.49632024, 0.77374248, 0.42890709,
-1.15102178, 0.74460146, -0.80958618, 0.6037532, -0.95529128,
0.72031728, -0.29961836, 0.45319128, -0.40646876, -0.99463165,
-0.88243873, -0.6784516 , -0.37732775, -0.52303284, 2.18708187,
-1.04271433, -0.39675509, -0.34332989, -0.77558833, -0.49389182,
0.66203524, 0.42890709, -1.32052537, -0.54731702, -0.80958618,
0.38033873, -0.92615026, 0.33177037, -0.15391327, -0.77558833,
-0.5745153 , -0.71730629, -0.94072077, -0.56188753, -0.69787895,
0.45804811, -0.83387037, -0.37149954, 0.18606527, 0.42890709,
-1.18161985, -0.15391327, 1.47312692, -0.29961836, -0.54246018,
0.08892855, 2.61448347, 0.86602237, -0.785302 , -1.59347958,
-0.52303284, 2.48820572, -1.02814382, -0.14662802, -0.98443229,
-0.05677654, -1.00871648, -0.15391327, -1.02814382, -0.71973471,
-0.89992334, -0.55703069, -0.22870855, 1.28856713, 1.78882128,
-0.41618244, 0.6037532, -0.98443229, -0.75130415, 1.30313764,
-0.71730629, 0.13749691, 0.67174891, 1.08458001, -0.72701997,
0.83688135, -1.42834714, -0.25105
                                  , -0.20248164, -0.80472935,
-0.82901353, -0.66630951, 0.72031728, -0.61531273, -0.29961836,
1.88595801, 0.11806957, 0.42890709, -0.15391327, 0.40947975,
-0.1441996 , 2.61448347, -0.71730629, -0.28990469, -0.10534491,
-0.05677654, -0.34818673, 0.58481154, 1.44884273, 1.25456928,
0.72760253, 0.98841465, 0.69603309, 0.72031728, -1.05097095,
1.68197088, -0.77558833, -1.08642586, -0.54246018, -1.24670146,
3.92582929, -1.10099637, -1.13159444, -0.50360549,
                                                    1.96658149,
0.63289422, -1.35598028, 3.05645558, 0.86602237,
                                                   0.55227074,
            0.64746473, -0.66388109, -0.29961836, -0.93829235,
-0.79501568,
2.54648776, 0.45804811, 0.30748618, -0.77558833, -1.44340333,
-0.07620389, -0.13448593, -0.54925975, 1.24776971, -0.23550812,
-1.28312773, -0.66388109, 1.3905607, -0.78044517, -0.54246018,
0.09864222, -1.17384891, 0.18606527, -0.52303284, 0.35605455,
0.63289422, 0.92430441, -0.05191971, 0.817454 , -0.49389182,
0.08892855, 0.18606527, 0.02578967, 0.42890709, -0.37247091,
0.42890709, 0.66203524, -0.78044517, 1.14869025, 0.91459073,
-0.29961836, 1.65282986, 0.43862077, -1.3049835, -0.96986179,
-0.4647508 , -0.79501568, -1.02814382, -0.82415669, -0.37247091,
-0.54246018, 0.34536951, -0.518176 , 1.44884273, -1.02814382,
-0.34818673, 1.11857786, -0.88729557, -0.61531273, -0.91157975,
-1.02814382, -0.85815455, 0.04036018, -0.64348238, 0.42890709,
-1.31955401, 1.64311619, 1.14529046, 0.16178109, -0.785302
-0.04706287, -0.785302 , -0.48417815, 0.37062506,
                                                   0.72031728,
            1.59454783, -0.29961836, -0.73673364, -0.29476153,
0.64746473,
            1.01172746, 0.6037532 , 3.80149428, -0.73673364,
-0.36761407,
2.3522143 , 1.43912906, -0.06066201, -0.94072077, 1.12829153,
0.42890709, 1.11857786, 0.7494583, -0.16119853, -0.61531273,
0.75431513, 1.01172746, -0.73673364, 0.38033873, -0.72216313,
0.6037532 , -0.94072077 , 0.016076 , -0.82415669 , 0.42890709 ,
1.25456928])
```

In []: