Topic 4: Vertex Cover Problem

Input: Graph G: G = (V, E)

Weight of each vertex (node): w_i ($i \in V$)

Output: Vertex cover S with the minimum total weight

Minimize
$$w(S) = \sum_{i \in S} w_i$$

where $S(S \subset V)$ is a vertex cover (i.e., each edge in E has at least one end in S).

Vertex Cover Problem → Set Cover Problem

We can use the greedy set cover algorithm for the vertex cover problem, which is an H(d)-approximation algorithm where d is the maximum degree of the graph (i.e., the maximum number of edges from each vertex (node)).

Discussions:

Let us assume that a set cover problem $U = \{s_1, s_2, ..., s_n\}$ with $S_1, S_2, ..., S_m$ is created from a vertex cover problem. Explain the characteristics of the created problem.

Pricing Method (Idea)

Edge e=(i, j) must be covered by vertex (node) v_i or v_j . Let p_e be the price that the edge e is willing to pay for being covered. The sum of prices over all edges incident to vertex (node) v_i should be equal to or less than w_i (since they do not have to pay more than the total cost w_i and they can use other nodes).

For each vertex
$$v_i$$
:
$$\sum_{e=(i,j)} p_e \le w_i \qquad p_{(i,j)} = p_{(j,i)}$$

If $\sum_{e=(i,j)} p_e = w_i$, v_i is tight.

Pricing Method (Algorithm)

Initialization of p_e : $p_e = 0$ for each edge e = (i, j).

Increase p_e : If neither vertex v_i nor v_j is tight, increase $p_{(i,j)}$ as much as possible under the condition: $\sum_{e=(i,j)} p_e \le w_i$

Selection of a vertex cover S: Select all tight vertexes.

Pricing Method (Algorithm)

```
We say a node i is tight (or "paid for") if \sum_{e=(i,j)} p_e = w_i.
procedure Vertex-Cover-Approx(G, w)
    Set p_e = 0 for all e \in E
    while \exists edge e = (i, j) such that neither i nor j is tight do
        Select e
        Increase p_e without violating fairness
    end while
    Let S = \text{set of all tight nodes}
    Return S.
end procedure
```

Fairness condition:
$$\sum_{e=(i,j)} p_e \le w_i$$

```
Weighted-Vertex-Cover-Approx(G, w) {
 foreach e in E
                                                  \sum p_e = w_i
    p_{e} = 0
                                                 e=(i,j)
 while (∃ edge i-j such that neither i nor j are tight)
    select such an edge e
    increase pe as much as possible until i or j tight
 S \leftarrow set of all tight nodes
 return S
```

Exercise 7-1:

Examine the dependency of the result S on the order of edges in which edges are selected to increase p_e . That is, create an example of the vertex cover problem where different results are obtained depending on the order of edges.

Pricing Method (Analysis)

Price Assignment:
$$\sum_{e=(i,j)} p_e \le w_i$$

For any vertex cover
$$S: \sum_{e \in E} p_e \le \sum_{i \in S} \sum_{e=(i,j)} p_e \le \sum_{i \in S} w_i = w(S)$$

For the vertex cover S by the algorithm: $w(S) \leq 2w(S^*)$

Since all vertexes v_i in S are tight,

$$\sum_{e=(i,j)} p_e = w_i \implies w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \le 2 \sum_{e \in E} p_e$$

(An edge e = (i, j) can be included at most twice.)

Since
$$\sum_{e \in E} p_e \le w(S)$$
 holds for any vertex cover S including S^* , $w(S) \le 2 \sum_{e \in E} p_e \le 2w(S^*)$

Exercise 7-2:

Create an example of the vertex cover problem where a good solution is not obtained by the pricing method (i.e., the obtained solution w(S) is close to $2w(S^*)$.

Exercise 7-3:

Create an example of the vertex cover problem where better results are always obtained (independent of the order) by the greedy set cover algorithm than the pricing method.

Exercise 7-4:

Create an example of the vertex cover problem where better results are always obtained (independent of the order) by the pricing method than the greedy set cover algorithm.