THE REZNICHENKO PROPERTY AND THE PYTKEEV PROPERTY IN HYPERSPACES

LJUBIŠA D.R. KOČINAC

ABSTRACT. We investigate two closure-type properties, the Reznichenko property and the Pytkeev property, in hyperspace topologies.

1. Introduction

Let X be a space (we suppose that all spaces are Hausdorff). For a subset A of X and a family A of subsets of X we put $A^c = X \setminus A$ and $A^c = \{A^c : A \in A\}$. By 2^X we denote the family of all closed subsets of X. If A is a subset of X, then we write

$$A^- = \{ F \in 2^X : F \cap A \neq \emptyset \},$$

$$A^+ = \{ F \in 2^X : F \subset A \}.$$

There are many known topologies on 2^X . The most popular among them is the Vietoris topology $V = V^- \vee V^+$, where the *lower Vietoris topology* V^- is generated by all sets A^- , $A \subset X$ open, and the *upper Vietoris topology* V^+ is generated by sets B^+ , B open in X.

Let Δ be a subset of 2^X . Then the *upper* Δ -topology, denoted by Δ^+ (and first studied in abstract in [19] and then in [5]), is the topology whose subbase is the collection

$$\{(D^c)^+ : D \in \Delta\} \cup \{2^X\}.$$

We consider only such subsets Δ of 2^X which are **closed for finite unions** and **contain all singletons**. In that case the above collection is a base for Δ^+ because we have

$$(D_1^c)^+ \cap (D_2^c)^+ = (D_1^c \cap D_2^c)^+ = ((D_1 \cup D_2)^c)^+ \text{ and } D_1 \cup D_2 \in \Delta.$$

Two important special cases, in which we are especially interested in this paper, are $\Delta = \mathbb{F}(X)$ – the family of all finite subsets of X, and $\Delta = \mathbb{K}(X)$ – the collection of compact subsets of X. The $\mathbb{F}(X)^+$ -topology will be denoted by Z^+ and the $\mathbb{K}(X)^+$ -topology by F^+ . The F^+ -topology is known as the

²⁰⁰⁰ Mathematics Subject Classification. 54A25, 54B20, 54D20, 54D55.

Key words and phrases. Selection principles, Δ -cover, ω -cover, k-cover, Δ ⁺-topology, Z⁺-topology, upper Fell topology, Reznichenko property, Pytkeev property, Hurewicz property, groupability.

Supported by the Ministry of Science, Technology and Development, Republic of Serbia, grant $\rm N^{\circ}$ 1233.

upper Fell topology (or the co-compact topology) [10]. The Fell topology F on 2^X is the topology $\mathsf{V}^- \vee \mathsf{F}^+$.

We investigate two closure type properties of 2^X , the Reznichenko property and the Pytkeev property, which are intermediate between sequentiality and the countable tightness property that have been studied in [4] and [12].

Let us fix some terminology and notation that we need.

Let \mathcal{A} and \mathcal{B} be sets whose members are families of subsets of an infinite set X. Then (see [24], [14]):

 $S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n \ b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n \in \mathbb{N}$ and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B} .

If \mathcal{C} is a family of subsets of a space X then an open cover \mathcal{U} of X is called a \mathcal{C} -cover if each $C \in \mathcal{C}$ is contained in an element of \mathcal{U} . $\mathbb{F}(X)$ -covers and $\mathbb{K}(X)$ -covers are customarily called ω -covers and k-covers, respectively. We suppose that \mathcal{C} -covers we consider are non-trivial, i.e. that X does not belong to the cover.

For a topological space X and a point $x \in X$ we denote:

- 1. OC the family of (open) C-covers of X.
- 2. Ω the family of ω -covers of X.
- 3. \mathcal{K} the family of k-covers of X.
- 4. $\Omega_x = \{A \subset X : x \in \overline{A} \setminus A\}.$

We also need the notion of groupability (see [17]).

A countable C-cover \mathcal{U} of a space X is groupable if there is a partition $(\mathcal{U}_n : n \in \mathbb{N})$ of \mathcal{U} into pairwise disjoint finite sets such that for each $C \in \mathcal{C}$, for all but finitely many n there is a $U \in \mathcal{U}_n$ such that $C \subset U$. A countable set $A \in \Omega_x$ is groupable if there is a partition $(B_n : n \in \mathbb{N})$ of A into finite sets such that each neighborhood of x has nonempty intersection with all but finitely many B_n .

Let us denote:

- 5. OC^{gp} the family of groupable C-covers of X.
- 6. Ω^{gp} the family of groupable ω -covers of X.
- 7. \mathcal{K}^{gp} the family of groupable k-covers of X.
- 8. Ω_x^{gp} the family of groupable elements of Ω_x .

Let us mention that considering the space 2^X , $\Delta \subset 2^X$ and $S \in 2^X$ we shall use the symbol Δ_S^+ to denote Ω_S with respect to Δ^+ -topology on 2^X . We use Ω_S and \mathcal{K}_S studying the Z^+ - and F^+ -topology on 2^X . Similarly for $(\Delta_S^+)^{gp}$ Ω_S^{gp} and \mathcal{K}_S^{gp} .

2. The Reznichenko property

In 1996, Reznichenko introduced (in a seminar at Moscow State University) the following property for a space X: For each $A \subset X$ and each $x \in \overline{A} \setminus A$ there is a countable infinite family \mathcal{A} of finite pairwise disjoint subsets of A such that each neighborhood of x meets all but finitely many elements of \mathcal{A} . It is the same as to say that each countable element of Ω_x is a member of Ω_x^{gp} . This property was studied further in [18] (under the name weakly Fréchet-Urysohn), [9]. In [16] and [17] this property was called the Reznichenko property and function spaces $C_p(X)$ having this property were studied (see also [23]). In [15] this property was considered in function spaces $C_k(X)$.

Evidently, if a space X has the Reznichenko property then it has countable tightness.

Here we investigate the Reznichenko property in hyperspaces.

Theorem 1. For a space X and a family $\Delta \subset 2^X$ (closed for finite unions and containing all singletons) the following statements are equivalent:

- (1) $(2^X, \Delta^+)$ has the Reznichenko property;
- (2) For each open set $Y \subset X$ and each open Δ -cover \mathcal{U} of Y there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of finite pairwise disjoint subsets of \mathcal{U} such that each $D \in \Delta$ belongs to some $U \in \mathcal{U}_n$ for all but finitely many n.

Proof. (1) \Rightarrow (2): Let Y be an open subset of X and let \mathcal{U} be an open Δ -cover of Y. Then $\mathcal{A} := \mathcal{U}^c$ is a subset of 2^X and $Y^c \in Cl_{\Delta^+}(\mathcal{A})$. Indeed, let $D \in \Delta$ be a subset of Y. There is a $U \in \mathcal{U}$ such that $D \subset U \subset Y$ and thus $Y^c \subset U^c \subset D^c$, i.e. $U^c \in (D^c)^+$ and $Y^c \in (D^c)^+$. So, $Y^c \in (D^c)^+ \cap \mathcal{A}$, that is $Y^c \in Cl_{\Delta^+}(\mathcal{A})$. Apply (1) to find a sequence $(\mathcal{A}_n : n \in \mathbb{N})$ of finite pairwise disjoint subsets of \mathcal{A} such that each Δ^+ -neighborhood of Y^c intersects \mathcal{A}_n for all but finitely many n. For each n let $\mathcal{U}_n = \mathcal{A}_n^c$. The sets $\mathcal{U}_n \subset \mathcal{U}$ are pairwise disjoint (because \mathcal{A}_n 's are) and witness for \mathcal{U} that Y satisfies (2). Let $D \subset Y$ be an element from Δ . Then $(D^c)^+$ is a Δ^+ -neighborhood of Y^c , so that there is n_0 such that $(D^c)^+ \cap \mathcal{A}_n \neq \emptyset$ for each $n > n_0$. So, for each $n > n_0$ there exists a set $A_n \in \mathcal{A}_n$ with $A_n \subset D^c$, i.e. $D \subset A_n^c \in \mathcal{U}_n$. This means that (2) holds.

 $(2) \Rightarrow (1)$: Let \mathcal{A} be a subset of 2^X and $S \in 2^X$ a point such that $S \in Cl_{\Delta^+}(\mathcal{A}) \setminus \mathcal{A}$. Then $\mathcal{U} := \mathcal{A}^c$ is a (non-trivial) Δ -cover of the open set $S^c \subset X$. Apply (2) to S^c and \mathcal{U} . One can choose a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ of finite pairwise disjoint subsets of \mathcal{U} such that for each $D \subset Y$ belonging to Δ for all but finitely many n there is a $V \in \mathcal{V}_n$ with $D \subset V$. Let for each n, $\mathcal{B}_n = \mathcal{V}_n^c$. Then the collection $\{\mathcal{B}_n : n \in \mathbb{N}\}$ witnesses (1). Let $(D^c)^+$ be a Δ^+ -neighborhood of S. Then $S \subset D^c$ implies $D \subset S^c$ so that there is $m \in \mathbb{N}$ such that for all n > m there exists a member $B_n \in \mathcal{B}_n$ with $D \subset B_n$, and consequently $B_n^c \in (D^c)^+$. This shows that $(D^c)^+ \cap \mathcal{B}_n \neq \emptyset$ for all but finitely many n and completes the proof of the theorem. \square

In fact, we shall prove a general result regarding the Reznichenko property in hyperspaces.

Theorem 2. Let X be a space and let Δ and Σ be subsets of 2^X closed for finite unions and containing all singletons. Then the following statements are equivalent:

- 2^X satisfies S₁(Δ⁺_A, (Σ⁺_A)^{gp}) for each A ∈ 2^X;
 Each open set Y ⊂ X satisfies S₁(OΔ, OΣ^{gp}).

Proof. (1) \Rightarrow (2): Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of Δ -covers of Y. Then $(\mathcal{U}_n^c: n \in \mathbb{N})$ is a sequence of subsets of 2^X and $Y^c \in Cl_{\Delta^+}(\mathcal{U}_n^c)$ for each $n \in \mathbb{N}$. Applying (1) we find a sequence $(U_n^c : n \in \mathbb{N})$ such that for each n $U_n \in \mathcal{U}_n$ and $\mathcal{F} = \{U_n^c : n \in \mathbb{N}\} \in (\Sigma_{Y^c}^+)^{gp}$. There is a partition $\mathcal{F} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$ of \mathcal{F} such that each Σ^+ -neighborhood of Y^c meets all but finitely many sets \mathcal{F}_n . For each n let $\mathcal{V}_n = \mathcal{F}_n^c$. The sets \mathcal{V}_n are pairwise disjoint, finite subsets of $\{U_n : n \in \mathbb{N}\}$ and show that this set is a groupable Σ -cover of Y. Let $S \subset Y$ be a member of Σ . Then $(S^c)^+$ is a Σ^+ -neighborhood of Y^c , so that there is n_0 such that $(S^c)^+ \cap \mathcal{F}_n \neq \emptyset$ for each $n > n_0$. So, for each $n > n_0$ there exists a set $F_n \in \mathcal{F}_n$ which is a subset of S^c , i.e. $S \subset F_n^c \in \mathcal{V}_n$. This means that $\{U_n : n \in \mathbb{N}\}$ is a groupable Σ -cover of Y, hence (2) holds.

 $(2) \Rightarrow (1)$: Let $(\mathcal{A}_n : n \in \mathbb{N})$ be a sequence of subsets of 2^X such that a point $E \in 2^X$ belongs to $Cl_{\Delta^+}(\mathcal{A}_n) \setminus \mathcal{A}_n$ for each n. For each n put $\mathcal{U}_n = \mathcal{A}_n^c$. Apply (2) to the open set E^c and the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of Δ -covers of E^c . We choose a sequence $(U_n:n\in\mathcal{U}_n)$ such that for each n $U_n\in\mathcal{U}_n$ and $\mathcal{G} = \{U_n : n \in \mathbb{N}\}\$ is a groupable Σ -cover of E^c . Suppose that the partition $\mathcal{G} = \bigcup_{n \in \mathbb{N}} \mathcal{G}_n$ witnesses groupability of \mathcal{G} . Let for each $n, A_n = U_n^c \in \mathcal{A}_n$ and $\mathcal{B}_n = \mathcal{G}_n^c$. Then the collection $\{\mathcal{B}_n : n \in \mathbb{N}\}$ witnesses that $\{A_n : n \in \mathbb{N}\}$ a groupable element of Σ_E^+ . Indeed, let $(S^c)^+$ be a Σ^+ -neighborhood of E. Then $E \subset S^c$ implies $S \subset E^c$ so that there is k such that for all n > k there exists a member $G_n \in \mathcal{G}_n$ with $S \subset G_n$, and consequently $G_n^c \in (S^c)^+$. This shows that $(S^c)^+ \cap \mathcal{B}_n \neq \emptyset$ for all but finitely many n. \square

The condition (2) in this theorem can be called the (Δ^+, Σ^+) -selectively Reznichenko property (of 2^X).

Let us recall that a space X is said to have countable strong fan tightness [22] if for each sequence $(A_n : n \in \mathbb{N})$ of subsets of X and each $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$ there is a sequence $(x_n : n \in \mathbb{N})$ such that for each $n \ x_n \in A_n$ and $x \in$ $\{x_n:n\in\mathbb{N}\},$ i.e. if for each $x\in X$ the selection hypothesis $\mathsf{S}_1(\Omega_x,\Omega_x)$ is satisfied.

It was shown in [6] that $(2^X, Z^+)$ (resp. $(2^X, F^+)$) has countable strong fan tightness if and only if each open set $Y \subset X$ satisfies $S_1(\Omega,\Omega)$ (resp. $\mathsf{S}_1(\mathcal{K},\mathcal{K})$).

According to [17] a space X satisfies $S_1(\Omega, \Omega^{gp})$ if and only if all finite powers of X have the Gerlits-Nagy property [11] (equivalently, the Hurewicz property as well as the Rothberger property). Recall that X has the Rothberger property [21] if it satisfies $S_1(\mathcal{O}, \mathcal{O})$, where \mathcal{O} is the family of open covers of X. X has the Hurewicz property [13] if for each sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X there is a sequence $(\mathcal{V}_n : n \in \mathbb{N})$ such that for each n \mathcal{V}_n is a finite subset of \mathcal{U}_n and each $x \in X$ belongs to $\cup \mathcal{V}_n$ for all but finitely many n.

Letting in Theorem 2 $\Delta = \Sigma = \mathbb{F}(X)$ (resp. $\Delta = \Sigma = \mathbb{K}(X)$) we obtain the following two important corollaries.

Corollary 3. For a space X the following statements are equivalent:

- (1) $(2^X, Z^+)$ has the Reznichenko property and countable strong fan tight-
- (2) If Y is an open subset of X, then all finite powers of Y have the Gerlits-Nagy property.

Corollary 4. For a space X the following are equivalent:

- (1) $(2^X, \mathsf{F}^+)$ has the Reznichenko property and countable strong fan tightness;
- (2) Each open set $Y \subset X$ satisfies $S_1(\mathcal{K}, \mathcal{K}^{gp})$.

Similarly to the proof of Theorem 2 we can prove

Theorem 5. Let X be a space and let Δ and Σ be subsets of 2^X closed for finite unions and containing all singletons. Then the following statements are equivalent:

- (1) 2^X satisfies $\mathsf{S}_{fin}(\Delta_A^+,(\Sigma_A^+)^{gp})$ for each $A\in 2^X$; (2) Each open set $Y\subset X$ satisfies $\mathsf{S}_{fin}(O\Delta,O\Sigma^{gp})$.

A space X is said to have countable fan tightness [1], [2] if for each $x \in X$ it satisfies $S_{fin}(\Omega_x,\Omega_x)$, i.e. if whenever $(A_n:n\in\mathbb{N})$ is a sequence of subsets of X and $x \in \bigcap_{n \in \mathbb{N}} \overline{A}_n$ there are finite sets $B_n \subset A_n$, $n \in \mathbb{N}$, such that $x \in \bigcup_{n \in \mathbb{N}} B_n$.

In [6] it was proved that $(2^X, Z^+)$ (resp. $(2^X, F^+)$) has countable fan tightness if and only if each open set $Y \subset X$ satisfies $\mathsf{S}_{fin}(\Omega,\Omega)$ (resp. $S_{fin}(\mathcal{K},\mathcal{K})$. A result in [17] states that all finite powers of of a space X have the Hurewicz property if and only if X belongs to the class $S_{fin}(\Omega,\Omega)$.

As the corollaries of Theorem 5 we have:

Corollary 6. For a space X the following statements are equivalent:

- (1) $(2^X, Z^+)$ has both the Reznichenko property and countable fan tight-
- (2) If Y is an open subset of X, then each finite power of Y has the Hurewicz property.

Corollary 7. For a space X the following are equivalent:

- (1) $(2^X, F^+)$ has the Reznichenko property and countable fan tightness;
- (2) Each open set $Y \subset X$ satisfies $S_{fin}(\mathcal{K}, \mathcal{K}^{gp})$.

3. The Pytkeev property

A space X has the Pytkeev property if for each $A \subset X$ and each $x \in \overline{A \setminus \{x\}}$ there is a countable collection $\{A_n : n \in \mathbb{N}\}$ of (countable) infinite subsets of A which is a π -network at x, i.e. each neighborhood of x contains some A_n . This property was introduced in [20] and then studied in [18] (where the name Pytkeev space was used) and [9]. Pytkeev's property in function spaces $C_p(X)$ was studied in [23].

Every (sub)sequential space has the Pytkeev property [20, Lemma 2] and every Pytkeev space has the Reznichenko property [18, Corollary 1.2].

In this section we consider the Pytkeev property in hyperspaces with Δ^+ -topologies. We begin by the following general result.

Theorem 8. If X is a space and Δ and Σ subsets of 2^X containing all singletons and closed for finite unions, then the following are equivalent:

- (1) 2^X has the (Δ^+, Σ^+) -Pytkeev property, i.e. for each $A \subset 2^X$ and each $S \in Cl_{\Delta^+}(A \setminus \{S\})$ there is a family $\{\mathcal{B}_n : n \in \mathbb{N}\}$ of countable infinite subsets of A which is a π -network at S with respect to the Σ^+ -topology.
- (2) For each open set $Y \subset X$ and each Δ -cover \mathcal{U} of Y there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of infinite subsets of \mathcal{U} such that $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a (not necessarily open) Σ -cover of Y.
- **Proof.** (1) \Rightarrow (2): Let \mathcal{U} be a Δ -cover of Y. Then $\mathcal{A} := \{U^c : U \in \mathcal{U}\}$ is a subset of 2^X and $Y^c \in Cl_{\Delta^+}(\mathcal{A})$. Apply (1) to find a sequence $(\mathcal{B}_n : n \in \mathbb{N})$ of countable infinite subsets of \mathcal{A} such that the set $\{\mathcal{B}_n : n \in \mathbb{N}\}$ ia a Σ^+ -network at Y^c . For each n denote by \mathcal{U}_n the subset $\{U : U^c \in \mathcal{B}_n\}$ of \mathcal{U} . We claim that $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a Σ -cover of Y. For any $S \subset Y$ with $S \in \Sigma$, the set $(S^c)^+$ is a Σ^+ -neighborhood of Y^c and therefore there is $m \in \mathbb{N}$ such that $\mathcal{B}_m \subset (S^c)^+$. Therefore, for each $U^c \in \mathcal{B}_m$ we have $U^c \subset S^c$, i.e. $S \subset \cap \{U : U^c \in \mathcal{B}_m\}$. This means that the collection $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is indeed a Σ -cover of Y.
- (2) \Rightarrow (1): Let \mathcal{A} be a subset of 2^X and let $S \in Cl_{\Delta^+}(\mathcal{A} \setminus \{S\})$. Then S^c is an open subset of X and the family $\mathcal{U} \equiv \mathcal{A}^c := \{A^c : A \in \mathcal{A}\}$ is an open Δ -cover of S^c . Apply (2) to the set S^c and its Δ -cover \mathcal{U} and choose infinite sets $\mathcal{U}_n \subset \mathcal{U}$, $n \in \mathbb{N}$, such that the family $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a Σ -cover of S^c . Put for each n

$$\mathcal{A}_n = \{ U^c : U \in \mathcal{U}_n \}.$$

Then each \mathcal{A}_n is an infinite subset of \mathcal{A} . We prove that the collection $\{\mathcal{A}_n : n \in \mathbb{N}\}$ is a π -network at $S \in (2^X, \Sigma^+)$.

Let $(E^c)^+$, $E \subset X$ and $E \in \Sigma$, be a Σ^+ -neighborhood of S. Then $S \subset E^c$ implies $E \subset S^c$ so that there is some $i \in \mathbb{N}$ with $E \subset \cap \mathcal{U}_i$. Further we have $\mathcal{A}_i \subset (E^c)^+$, i.e. (1) holds. \square

As consequences of this theorem we obtain the following two results.

Corollary 9. For a space X the following statements are equivalent:

- (1) $(2^X, \mathsf{Z}^+)$ has the Pytkeev property;
- (2) For each open set $Y \subset X$ and each ω -cover \mathcal{U} of Y there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of infinite countable subsets of \mathcal{U} such that $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is an (not necessarily open) ω -cover of Y.

Corollary 10. For a space X the following statements are equivalent:

- (1) $(2^X, \mathsf{F}^+)$ has the Pytkeev property;
- (2) For each open set $Y \subset X$ and each k-cover \mathcal{U} of Y there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of countable infinite subsets of \mathcal{U} such that $\{\cap \mathcal{U}_n : n \in \mathbb{N}\}$ is a (not necessarily open) k-cover of Y.

Problem 11. If $(2^X, F^+)$ has the Pytkeev property, is $(2^X, F^+)$ sequential? What about $(2^X, Z^+)$?

Remark A It is known that the space $(2^X, \mathsf{F})$ is compact with no assumptions on X and that a Hausdorff space X is locally compact if and only if $(2^X, \mathsf{F})$ is Hausdorff. According to a result from [18], each compact Hausdorff space of countable tightness is a Pytkeev space. On the other hand, in [12] (see also [4]) it was shown that for a locally compact Hausdorff space X the tightness of $(2^X, \mathsf{F})$ is countable if and only if X is hereditarily separable and hereditarily Lindelöf. So we have:

Theorem 12. For a locally compact Hausdorff space X the following assertions are equivalent:

- (a) $(2^X, F)$ has countable tightness;
- (b) $(2^X, \mathsf{F})$ has the Reznichenko property;
- (c) $(2^X, \mathsf{F})$ has the Pytkeev property;
- (d) X is both hereditarily separable and hereditarily Lindelöf.

Remark B According to results from [3] and [7] one can suppose that in some models of ZFC (in which each compact Hausdorff space of countable tightness is sequential) we have: For a locally compact Hausdorff space X each of the conditions (a)–(d) in the previous theorem is equivalent to the assertion $(2^X, \mathsf{F})$ is a sequential space.

Remark C Let us consider a selective version of the Pytkeev property. Call a space X selectively Pytkeev if for each sequence $(A_n : n \in \mathbb{N})$ of subsets of X and each point $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n \setminus \{x\}}$ there is an infinite family $\{B_n : n \in \mathbb{N}\}$ of countable infinite sets which is a π -network at x and such that for each n $B_n \subset A_n$. Then one can prove the statements similar to those in Theorem 8 and Corollaries 9 and 10.

References

- A.V. Arhangel'skii, Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Doklady 33 (1986), 396–399.
- [2] A.V. Arhangel'skii, Topological Function Spaces, Kluwer Academic Publishers, 1992.
- [3] Z. Balogh, On compact Hausdorff spaces of countable tightness, Proc. Amer. Math. Soc. 105 (1989), 755-764.
- [4] C. Costantini, L. Holá and P. Vitolo, Tightness, character and related properties of hyperspace topologies, preprint (2002).
- [5] G. Di Maio and L. Holá, On hit-and-miss hyperspace topologies, Rend. Accad. Sci. Fis. Mat. Napoli 62 (1995), 103–124.
- [6] G. Di Maio, Lj.D.R. Kočinac and E. Meccariello, Selection principles and hyperspace topologies, preprint, 2003.
- [7] A. Dow, On the consistency of the Mrowka-Moore solution, Topology Appl. 44 (1992), 125–141.
- [8] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [9] A. Fedeli and A. Le Donne, *Pytkeev spaces and sequential extensions*, Topology Appl. 117 (2002), 345–348.
- [10] J. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff spaces, Proc. Amer. Math. Soc. 13 (1962), 472–476.
- [11] J. Gerlits and Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982), 151–161.
- [12] J.-C. Hou, Character and tightness of hyperspaces with the Fell topology, Topology Appl. 84 (1998), 199–206.
- [13] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401–421.
- [14] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, Combinatorics of open covers (II), Topology Appl. 73 (1996), 241–266.
- [15] Lj.D.R. Kočinac, Closure properties of function spaces, Applied General Topology (to appear).
- [16] Lj.D. Kočinac and M. Scheepers, Function spaces and a property of Reznichenko, Topology Appl. 123 (2002), 135–143.
- [17] Lj.D.R. Kočinac and M. Scheepers, *Combinatorics of open covers (VII): Groupability*, Fund. Math. (to appear).
- [18] V.I. Malykhin and G. Tironi, Weakly Fréchet-Urysohn and Pytkeev spaces, Topology Appl. 104 (2000), 181–190.
- [19] H. Poppe, Eine Bemerkung über Trennungsaxiome in Raumen von abgeschlossenen Teilmengen topologisher Raume, Arch. Math. 16 (1965), 197–198.
- [20] E.G. Pytkeev, On maximally resolvable spaces, Trudy Matem. Inst. Matem. 154 (1983), 209–213 (In Russian: English translation: Proc. Steklov Inst. Math. 4 (1984), 225–230).
- [21] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50–55.
- [22] M. Sakai, Property C" and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917–919.
- [23] M. Sakai, The Pytkeev property and the Reznichenko property in function spaces, preprint, 2002.
- [24] M. Scheepers, Combinatorics of open covers (I): Ramsey Theory, Topology Appl. 69 (1996), 31–62.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES AND MATHEMATICS, UNIVERSITY OF NIŠ, VIŠEGRADSKA 33, 18000 NIŠ, SERBIA

E-mail address: lkocinac@ptt.yu