Aula prática 1

Estes exercícios têm como primeiro objetivo aplicar conhecimentos de memória representação de dados e de ficheiros apresentados ainda em Programação 1 e na primeira aula teórica de Programação 2.

1 – Pretende-se obter estatísticas de ocorrências de letras em textos na língua portuguesa. Desenvolva um programa que leia um ficheiro de texto e permita obter médias de ocorrências de todas as letras do alfabeto. Tenha em conta que todas as letras devem ser convertidas para o mesmo caso (maiúscula ou minúscula), todas as vogais acentuadas devem ser convertidas para não acentuadas e todas as cedilhas devem ser retiradas dos "cês" com cedilha.

Utilize o ficheiro de texto *lusiadas.txt* para testar o programa que desenvolveu. O ficheiro está codificado no formato ISO/IEC 8859-1 (Latin-1) e deverá por isso usar a seguinte tabela de conversão:

letra	valor decimal	valor hex	letra	valor decimal	valor hex	letra	valor decimal	valor hex
À	192	0xC0	Ó	211	0xD3	É	201	0xC9
Á	193	0xC1	Ô	212	0xD4	Ê	202	0xCA
Â	194	0xC2	Õ	213	0xD5	é	233	0xE9
Ã	195	0xC3	ó	243	0xF3	ê	234	0xEA
à	224	0xE0	ô	244	0xF4	Ú	218	0xDA
á	225	0xE1	õ	245	0xF5	ú	250	0xFA
â	226	0xE2	ĺ	205	0xCD	Ç	199	0xC7
ã	227	0xE3	í	237	0xED	ç	231	0xE7

Exemplo usando o ficheiro lusiadas.txt

```
Numero de letras no ficheiro 246944
Letra a = 13.89\%
Letra b = 0.97\%
Letra c = 3.21\%
Letra d = 4.98\%
Letra e = 13.28\%
Letra f = 1.24\%
Letra g = 1.46\%
Letra h = 1.05\%
Letra i = 5.28\%
Letra j = 0.41\%
Letra 1 = 2.47\%
Letra m = 4.42\%
Letra n = 5.45\%
Letra o = 11.35\%
Letra p = 2.25\%
Letra q = 1.67\%
Letra r = 6.82\%
Letra s = 8.36\%
Letra t = 4.83\%
Letra u = 4.37\%
Letra v = 1.72\%
Letra x = 0.15\%
Letra y = 0.00\%
Letra z = 0.37\%
```

2 – Os ficheiros áudio MP3 incorporam, para além da informação áudio, informação associada normalmente designada de *metadata*; esta informação pode incluir, entre outros, dados sobre o nome do artista, da faixa e do álbum, comentários, etc. Os dois formatos de *metadata* em MP3 são o ID3v1 e ID3v2.

Escreva um programa que leia a *metadata* de ficheiros MP3 no formato ID3v1. Quando essa informação está presente, os campos de informação encontram-se no fim do ficheiro. São utilizados no total 128 bytes, sendo inicializados por 3 bytes contendo o valor "TAG". A tabela em baixo resume os campos utilizados pelo formato ID3v1.

Campo	Comprimento (bytes)	Descrição
Cabeçalho	3	Valor de verificação "TAG"
Título	30	Título da música representado com carateres ASCII
Artista	30	Nome do artista representado com carateres ASCII
Álbum	30	Nome do álbum representado com carateres ASCII
Ano	4	Ano representado por 4 dígitos (carateres ASCII e não um inteiro)
Comentário	28 ou 30	Comentário associado à música
Byte-zero	1	Se o número da faixa estiver incluído então deverá ser 0. Nesse
		caso apenas são usados 28 bytes no comentário
Número	1	Número da faixa no álbum representado por um inteiro
Género	1	Género da música representado por um inteiro e definido de
		acordo com a tabela disponibilizada em:
		http://www.id3.org/id3v2.3.0#head-
		129376727ebe5309c1de1888987d070288d7c7e7

Utilize o ficheiro *musica.mp3* para testar o programa que desenvolveu.

```
Exemplo usando o ficheiro musica.mp3
```

Titulo - Particule Artista - Silence Album - L'autre endroit Ano - 2006 Número - 7 Género - Instrumental

3 – As páginas *web* utilizam HTML como linguagem de anotação. Os conteúdos podem ser associados a *tags*, conferindo-lhes diferentes propriedades. Uma dessas *tags* é a de ligação a outras páginas que é definida, por exemplo, assim:

```
<a href="http://fe.up.pt">Página da FEUP</a>
```

Escreva um programa que leia um ficheiro HTML e liste todas as ligações para outras páginas e nomes associados. A linguagem HTML é flexível na colocação de espaços e aspas nas *tags* mas neste exercício considere que todas as ligações são definidas exatamente como no exemplo anterior.

Utilize o ficheiro *pagina.html* para testar o programa que desenvolveu.

```
Exemplo usando o ficheiro pagina.html
Página da FEUP - http://fe.up.pt
```

Página de Prog2 no SiFEUP - https://www.fe.up.pt/si/(...)EEC0009&p_periodo=2S
Página da Prog2 no Moodle - https://moodle.fe.up.pt/1011/course/view.php?id=797
Livro "C How to Program" - http://proquestcombo.safaribooksonline.com/9780136085881

4 – O ficheiros BMP (Bitmap) são um formato muito popular para armazenamento de imagens que surgiu com os Sistemas Operativos OS/2 e Windows 3.0. Escreva um programa que leia informação de um ficheiro BMP, tendo em conta a especificação do formato indicado nas seguintes tabelas.

De uma forma simplificada, o ficheiro BMP tem a seguinte estrutura:

Campo	Comprimento (bytes)	Descrição
Cabeçalho Bitmap	14	Armazena informação geral do ficheiro Bitmap.
Cabeçalho DIB	108 (na versão 4)	Armazena informação detalhada sobre a imagem e define o formato de armazenamento de cada pixel
Array de pixéis	Variável	Valores dos pixéis da imagem. A cada linha são acrescentados bytes a 0 se o tamanho total dessa linha em bytes não for múltiplo de 4 (não é o caso da imagem de teste)

O cabeçalho Bitmap tem a seguinte estrutura:

Comprimento (bytes)	Descrição
2	Indicação de início do cabeçalho. Para BMP o valor é 0x42 0x4D, ou seja "BM" em ASCII
4	Tamanho total do ficheiro BMP em bytes
2	reservado
2	reservado
4	Offset, ou seja, endereço do byte em que o array de pixéis começa

O cabeçalho DIB na versão 4 tem a seguinte estrutura:

Comprimento (bytes)	Descrição
4	Tamanho deste cabeçalho (108 bytes)
4	Largura da imagem em pixéis (inteiro com sinal)
4	Altura da imagem em pixéis (inteiro com sinal)
2	Número de planos de cor usados; deve ser 1
2	Número de bits por pixel; valores típicos: 1, 4, 8, 16, 24 e 32
4	Método de compressão usado
4	Tamanho da imagem em bytes, ou seja, o tamanho do array de pixéis e não do ficheiro
	Resto do cabeçalho, que não é relevante para este exercício

No *array* de pixels a imagem é guardada linha a linha, <u>começando pela última linha</u> até à primeira. No caso de imagens de 24 bits, como a imagem de teste, cada pixel é definido por 3 bytes que correspondem aos valores de B, G e R, respetivamente.

Mais informações sobre o formato BMP podem ser encontradas na respetiva página na Wikipedia: http://en.wikipedia.org/wiki/BMP_file_format

Utilize o ficheiro *imagem.bmp* para testar o programa que desenvolveu.

Exemplo usando o ficheiro imagem.bmp

Tamanho total do ficheiro BMP: 1279322

Largura da imagem: 800 Altura da imagem: 533 Bits por pixel: 24

Valor RGB no pixel (0,0): 70 97 108 Valor RGB no pixel (443,408): 179 91 71

Exercício complementar

- 5 Escreva um programa que analise os seus ficheiros de código fonte em C e apresente as seguintes estatísticas para um determinado ficheiro:
 - Número de linhas de código
 - Tamanho médio de cada linha de código
 - Número de carateres
 - Número de vezes que utiliza as funções da biblioteca standard C printf e scanf.
 - Número de comentários (começados com /* e terminados com */)

Utilize os ficheiros que criou nesta ficha de exercícios para testar o seu programa.