

Curso de Engenharia de Computação ECM253 – Linguagens Formais, Autômatos e Compiladores

Modelos de computação - Máquinas de estados finitos

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores
Curso de Engenharia de Computação
Instituto Mauá de Tecnologia – Escola de Engenharia Mauá
Prof. Marco Antonio Furlan de Souza
<marco.furlan@maua.br>

MAUÁ

Agenda

- Máquinas de estados finitos
- Softwares para máquinas de estados
- Máquinas de estados com saídas

MAUÁ

Agenda

- Máquinas de estados finitos
- Softwares para máquinas de estados
- Máquinas de estados com saídas

Conceitos

- Um computador pode ser entendido de forma abstrata como uma função de transição do tipo $T: S \times I \to S \times O$, onde S é o conjunto de estados, I é o conjunto de símbolos de entrada e O é o conjunto de símbolos de saída;
- A função T mapeia, de modo genérico, um par contendo um estado atual e um certo símbolo de entrada para um novo estado e uma saída a ser emitida neste estado;
- Se o conjunto de estados S é finito então esta função caracteriza uma **máquina de estados finito**;
- Se o conjunto $S \times I$ não for muito grande, pode-se **descrever** T com o auxílio de um **grafo**;
- Normalmente, para serem viáveis, a capacidade de informação de máquinas de estado finitos é pequena.

Aplicabilidade em Computação:

- Corretores ortográficos;
- Verificação gramatical;
- Indexação e busca em textos grandes;
- Reconhecimento de voz;
- Transformação de texto com XML e HTML;
- Protocolos de rede;
- ...e muito mais ...

Capacidade de informação

- Uma máquina de estados finito realiza computações por transições entre seus estados;
- Se a **capacidade de informação**¹ de tal máquina fosse C **bits**, ou seja, se cada estado pudesse ser identificado por um único valor de C bits de tamanho, então tal **máquina** teria, no máximo, 2^C **estados**;
- Então, se fôssemos utilizar máquinas de estados finitos para representar um computador real, com todas as possibilidades de endereçamento de memória e de disco, a quantidade de estados seria tão grande que sua **construção seria impraticável** (por exemplo, uma máquina com 512MB RAM e 60GB de disco possui 512 × 2³ × 2¹⁰ × 2¹⁰ + 60 × 2³ × 2¹⁰ × 2¹⁰ bits).

¹Conceito da *Teoria da Informação*, muito importante na teoria de redes de computadores, por exemplo.

Capacidade de informação

- Felizmente, mesmo para se descrever máquinas reais com máquinas de estados finitos, não é necessário utilizar tantos estados, pois, na prática:
 - Ignoram-se fatores físicos reais (complexidade de hardware, tempos de transmissão da informação, dissipação de calor);
 - Na descrição do comportamento de máquinas reais, ignoram-se grande parte dos estados possíveis, pois é apenas uma pequena parcela dos estados que são observáveis e desejáveis pelo projetista – os demais estados podem ser codificados em estados não desejáveis ou de erro e podem ser fortemente simplificados.

Exemplo de máquina de estados finitos

Máquina de vendas

- Considerar uma máquina de refrigerantes que deva contemplar os requisitos a seguir:
 - i. Inicialmente, a máquina não possui nenhum valor coletado;
 - ii. aceitar apenas moedas de R\$0,25, R\$0,50 e R\$1,00;
 - iii. O preço dos refrigerantes é fixado em R\$2,00;
 - iv. Pode-se depositar quantas moedas quiser, desde que sejam do tipo apresentado. Se o valor depositado fizer com que o valor coletado seja maior que R\$2,00, então a máquina deverá dispensar um troco adequado;
 - v. A máquina possui um único botão que, ao ser pressionado, dispensará um refrigerante, se o valor coletado for R\$2,00;
 - vi. Ao dispensar um refrigerante, a máquina retorna para seu estado inicial e está pronta para receber novos depósitos, repetindo o cenário acima.

- Exemplo de máquina de estados finitos
 - Máquina de vendas
 - A máquina descrita anteriormente pode ser assim formulada:
 - Conjunto de estados:

$$S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$$

Cada estado representa um acúmulo de dinheiro possível com os valores de moedas apresentado: s_0 é o estado inicial, R\$0,00; s_1 representa R\$0,25 acumulado; s_2 representa R\$0,5 acumulado; s_3 representa R\$0,75 acumulado; s_4 representa R\$1,00 acumulado; s_5 representa R\$1,25 acumulado; s_6 representa R\$1,50 acumulado; s_7 representa R\$1,75 acumulado e s_8 representa R\$2,00 acumulado. O estado s_8 é o estado da máquina do qual se poderá pressionar o botão e retirar o refrigerante.

Exemplo de máquina de estados finitos

- Máquina de vendas
 - Descrição da máquina (cont.)
 - Conjunto de símbolos de entrada:

$$I = \{m_{25}, m_{50}, m_{100}, b\}$$

Cada um dos **símbolos** (m_{25}, m_{50}, m_{100}) representam as **moedas aceitas** pela máquina; o **símbolo** b representa o **botão** que, ao ser pressionado, poderá dispensar ou não o refrigerante.

- Conjunto de símbolos de saída:

$$O = \{t_{25}, t_{50}, t_{75}, t_{100}, r, n\}$$

Cada um dos símbolos ($t_{25}, t_{50}, t_{75}, t_{100}$) representam os possíveis **trocos** dispensados pela máquina; o **símbolo** r representa o **refrigerante** que poderá ser dispensado pela máquina e o **símbolo** n representa "**nada**", ou seja, a máquina não emite nem troco e nem refrigerante. Para isto símbolo, poder-se-ia utilizar ϵ .

- Exemplo de máquina de estados finitos
 - Máquina de vendas
 - Descrição da máquina (cont.)
 - Função de transição de estados:

```
T = \{((s_0,b),(s_0,n)),((s_0,m_{25}),(s_1,n)),((s_0,m_{50}),(s_2,n)),((s_0,m_{100}),(s_4,n)),\\ ((s_1,b),(s_1,n)),((s_1,m_{25}),(s_2,n)),((s_1,m_{50}),(s_3,n)),((s_1,m_{100}),(s_5,n)),\\ ((s_2,b),(s_2,n)),((s_2,m_{25}),(s_3,n)),((s_2,m_{50}),(s_4,n)),((s_2,m_{100}),(s_6,n)),\\ ((s_3,b),(s_3,n)),((s_3,m_{25}),(s_4,n)),((s_3,m_{50}),(s_5,n)),((s_3,m_{100}),(s_7,n)),\\ ((s_4,b),(s_4,n)),((s_4,m_{25}),(s_5,n)),((s_4,m_{50}),(s_6,n)),((s_4,m_{100}),(s_8,n)),\\ ((s_5,b),(s_5,n)),((s_5,m_{25}),(s_6,n)),((s_5,m_{50}),(s_7,n)),((s_5,m_{100}),(s_8,t_{25})),\\ ((s_6,b),(s_6,n)),((s_6,m_{25}),(s_7,n)),((s_6,m_{50}),(s_8,n)),((s_6,m_{100}),(s_8,t_{50})),\\ ((s_7,b),(s_7,n)),((s_7,m_{25}),(s_8,n)),((s_7,m_{50}),(s_8,t_{25})),((s_7,m_{100}),(s_8,t_{75})),\\ ((s_8,b),(s_0,r)),((s_8,m_{25}),(s_8,t_{25})),((s_8,m_{50}),(s_8,t_{50})),((s_8,m_{100}),(s_8,t_{100}))\} \}
```

Esta função é melhor apreciada por uma tabela de estados ou por um diagrama de estados.

- Exemplo de máquina de estados finitos
 - Máquina de vendas
 - Descrição da máquina (cont.)
 - Tabela de estados:

	Próximo estado				Saída			
	Entrada				Entrada			
Estado	b	m_{25}	m_{50}	m_{100}	b	m_{25}	m_{50}	m_{100}
s_0	s_0	s_1	s_2	84	n	n	n	n
s_1	s_1	s_2	s_3	s_5	n	n	n	n
s_2	s_2	s_3	84	s_6	n	n	n	n
s_3	s_3	84	85	87	n	n	n	n
84	84	s_5	s_6	s_8	n	n	n	n
s_5	85	s_6	87	s_8	n	n	n	t_{25}
s_6	s_6	87	s_8	<i>s</i> ₈	n	n	n	t_{50}
87	87	<i>s</i> ₈	<i>s</i> ₈	<i>s</i> ₈	n	n	t_{25}	t_{75}
s_8	s_0	s_8	s_8	s_8	r	t_{25}	t_{50}	t ₁₀₀

- Exemplo de máquina de estados finitos
 - Máquina de vendas
 - Descrição da máquina (cont.)
 - Diagrama de estados:

MAUÁ

Agenda

- Máquinas de estados finitos
- Softwares para máquinas de estados
- Máquinas de estados com saídas

Softwares para máquinas de estados

- JFLAP: atende diversos tipos de máquinas de estados finitos e autômatos.
 - Site: http://www.jflap.org/>.
 - Programa:http://www.jflap.org/jflaptmp/may15-2011/withoutSource/JFLAP.jar.
- JFAST: específico para autômatos finitos.
 - Site: http://jfast-fsm-sim.sourceforge.net/>.
 - Programa:
 - http://sourceforge.net/projects/jfast-fsm-sim/files/.

Softwares para máquinas de estados

Exercício

 Testar o software JFLAP editando e simulando a máquina de vendas de refrigerantes apresentada anteriormente.

MAUÁ

Agenda

- Máquinas de estados finitos
- Softwares para máquinas de estados
- Máquinas de estados com saídas

Máquinas de estados com saídas

Conceitos

Definição. Uma máquina de estados finitos $M = (S,I,O,f,g,s_0)$ consiste em um **conjunto** S de **estados**, um **alfabeto finito** de **entrada**, um **alfabeto finito** de **saída**, uma **função de transição** f, que atribui a cada par de estado e entrada um novo estado, uma **função de saída** g, que atribui a cada par de estado e entrada uma saída e um **estado inicial** s_0 .

Máquinas de estados com saídas

Tipos

- Máquinas de Mealy: as saídas ocorrem nas transições entre estados. Todas as máquinas de estados finitos apresentados nesta aula são máquinas de Mealy;
- Máquinas de Moore: as saídas ocorrem nos estados. Assim, a modificação conceitual em relação às máquinas de Mealy é que a função g é definida apenas sobre os estados, e não sobre pares de estados e entradas.

- Comparação entre os tipos

- As máquinas de Mealy tem usualmente menos estados, mas a sua implementação é mais complexa que as máquinas de Moore;
- As máquinas de Moore são mais seguras de se usar, pois suas saídas ocorrem sempre em um estado e para haver a transição para um estado, é necessário ocorrer um ciclo de relógio (síncrono).

Teste seus conhecimentos

(1) Elaborar o diagrama de estados da máquina representada pela tabela de estados a seguir e então simulá-la.

		f	g		
	Entrada		Entrada		
Estado	0	1	0	1	
s_0	s_1	s_0	1	0	
s_1	s_3	s_0	1	1	
s_2	s_1	s_2	0	1	
s_3	s_2	s_1	0	0	

Teste seus conhecimentos

(2) Elaborar uma tabela de estados correspondente ao diagrama de estados a seguir:

Teste seus conhecimentos

- (3) Simular a máquina do exercício 2 e determinar a cadeia de saída para a seguinte cadeia de entrada 101011.
- (4) Construir um diagrama de estados para a máquina de Moore representada pela tabela de estados a seguir:

	Ent		
Estado	0	1	g
s_0	s_0	s_2	0
s_1	s_3	s_0	1
s_2	s_2	s_1	1
s_3	s_2	s_0	1