|                           | Utech                                  |
|---------------------------|----------------------------------------|
| Name:                     |                                        |
| Roll No.:                 | In the same (V. Executing and Explored |
| Invigilator's Signature : |                                        |

### 2012

### CHEMICAL REACTION ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

#### GROUP - A

## ( Multiple Choice Type Questions )

1. Choose the correct alternatives for any *ten* of the following:

 $10 \times 1 = 10$ 

- i) The dimensions of rate constant for reaction  $A \rightarrow B$  are (litre/gmole)/min. The reaction order is
  - a) one

b) two

c) three

- d) zero.
- ii) Arrhenius equation shows the variation of ...... with temperature.
  - a) Reaction rate
- b) Rate constant
- c) Energy of activation
- d) Frequency factor.

5116(N) [ Turn over



- a) activation energy
- b) equilibrium constant
- c) heat of reaction
- d) none of these.
- iv) For the reaction  $SO_2 + \frac{1}{2}O_2 = SO_3$  carried out in presence of  $V_2O_5$  catalyst, the reaction
  - a) is considered as homogeneous
  - b) is considered as heterogeneous
  - c) may be either homogeneous or heterogeneous
  - d) none of these.
- v) The units of frequency factor in Arrhenius equation
  - a) is same as that of the rate constant
  - b) is different from the units of the rate constant
  - c) is unit less
  - d) none of these.
- vi) Which of the following is a characteristic of an elementary reaction?
  - a) The molecularity and order of the reaction is the same
  - b) The reaction rate constant is zero
  - c) The rate of the reaction is constant
  - d) The order of the reaction is always 1.



- vii) For any reaction, we may write conversion as a function of

  a) time

  b) temperature
- viii) For reaction under pore diffusion regime, the reaction rate

d)

all of these.

- a) varies directly with catalyst particle size
- b) varies inversely with catalyst particle size
- c) is independent of catalyst particle size
- d) none of these.

concentration

c)

- ix) Under strong pore diffusion regime an n th order reaction behaves like a
  - a)  $\frac{(n+1)}{2}$  order reaction b)  $\frac{(n-1)}{2}$  order reaction
  - c) zero order reaction d) n th order reaction.
- x) What will be the conversion, if we use a single PFR volume V instead of N number of PFR connected in series combination with a total volume of V?
  - a) Less b) Equal
  - c) More d) None of these.
- xi) Unreacted core model represents the reaction involving
  - a) combustion of coal
  - b) roasting of sulfide ores
  - c) carbon disulphide manufacturing
  - d) none of these.

- xii) For an autocatalytic reactor, for conversion up to the maximum rate, the suitable reactor set up is
  - a) CSTR

- b) PFR
- c) recycle reactor
- d) CSTR followed by PFR.

#### **GROUP - B**

#### (Short Answer Type Questions)

Answer any *three* of the following

 $3 \times 5 = 15$ 

- 2. At 500 K the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy of this reaction:
  - a) From Arrhenius' law
  - b) From Collision theory.
- 3. Write any *two* of the following:

 $2 \times 2\frac{1}{2}$ 

- i) Space time and Space volume
- ii) Significance of Residence Time Distribution
- iii) Derive the mathematical expression for rate constant of n th order reaction
- iv) Limitations of shrinking core model.
- 4. Derive the expression of rate of a 2nd order irreversible biomolecular reaction  $(A + B \rightarrow R)$ .
- 5. Prove that for a second order irreversible bimolecular reaction  $A+B\to \mathrm{Products}$ ,  $\ln(M-X_A)/M(1-X_A)=C_{A0}(M-1)Kt$  where  $M=C_{B0}/C_{A0}, M\neq 1$  (Symbols have their usual meaning).
- 6. Find the first order rate constant for the disappearance of A in the gas reaction 2A → R if, on holding the pressure constant, the volume of the reaction mixture is starting with 80% A decreases by 20% in 3 min.

5116(N)



Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. a) Obtain the half-life period for a first order isothermal constant volume reaction.
  - b) A reaction  $A \rightarrow P$  is carried out in batch reactor at different initial concentrations. Half-life for each run is noted. Calculate order of reaction and the rate constant from the half-life data given in table below:

| $C_{A0}$ (kmol/m <sup>3</sup> ) | 10    | 18·5 | 30   |
|---------------------------------|-------|------|------|
| t <sub>1/2</sub> (s)            | 100.0 | 54·0 | 33.3 |

- c) For the reaction in series  $A \xrightarrow{k_1} R \xrightarrow{k_2} S$  carried out in a batch reactor. Prove that slowest step is the rate determining step. 3 + 8 + 4
- 8. a) The primary reaction occurring in homogeneous decomposition of nitrous oxide is found to be  $N_2O\to N_2+\tfrac{1}{2}O_2 \text{ with rate } -r_{H_2O}=K_1[N_2O]^2/1+K_2[N_2O].$

Derive a mechanism to explain this observed rate.



b) The aqueous reaction  $A \rightarrow R + S$  proceeds as follows,

|                 | Thomas of Knowledge Staff Chillians |        |        |        |        |          |
|-----------------|-------------------------------------|--------|--------|--------|--------|----------|
| Time,<br>min    | 0                                   | 36     | 65     | 100    | 160    | $\infty$ |
| $C_A$ mol/litre | 0.1823                              | 0.1453 | 0.1216 | 0.1025 | 0.0795 | 0.0494   |

 $C_{A0}=0\cdot1823\quad \text{mol/lit},\quad C_{R0}=0\;,\quad C_{S0}=55\quad \text{mol/lit},$   $M=C_{R0}\,/\,C_{A0}\,\text{Derive the rate equation to represent the}$  reaction. 7+8

- 9. a) Deduce the performance equation of a recycle reactor.
  - b) At 600K, the gas phase reaction  $C_2H_4 + Br_2 \rightleftharpoons C_2H_4Br_2$  has rate constant  $k_1 = 500$  litre/mol.hr and  $k_2 = 0 \cdot 032 \, hr^{-1} \, .$

If a plug flow reactor is to be fed  $600\,\mathrm{m}^3/\mathrm{hr}$  of gas containing 60% Br<sub>2</sub> , 30% C<sub>2</sub>H<sub>4</sub> and 10% inerts by volume at  $600\mathrm{K}$  and 1.5 atm compute the volume of reactor vessel required to obtain 60% of the maximum conversion. 5+10

5116(N)

- 10. a) After 8 min in a batch reactor, reactant ( $C_{A0} = 1 \text{ mol/lit}$ ) is 80% converted, after 18 min conversion is 90%. Find the rate equation to represent this reaction.
  - b) At  $649^{\circ}$ C phosphine (PH<sub>3</sub>) decomposes as follows:  $4PH_{3} \longrightarrow P_{4}(g) + 6H_{2}; -r_{PHOS} = (10hr^{-1})C_{PH_{3}}. \text{ What size}$  of plug flow reactor operating at  $649^{\circ}$ C and  $4\cdot 6$  atm pressure is needed for 75 per cent conversion of 10 mol/ltr of feed contain 50 per cent phosphine (PH<sub>3</sub>) and rest inert. Feed rate is  $1\cdot 86$  kg mol/hr. Determine the size of PFR. 5+10
- 11. a) What is the expression for 'Dispersion number'? What will be its value for PFT and MFR?
  - b) For reactions other than first order, knowledge of the RTD is not sufficient to predict conversion. What is the other parameter? Why first order reaction need not this parameter?
  - c) Write down the names of different models of a real reactor according to the number of adjustable parameters that are extracted from RTD data. 5 + 5 + 5

========