

Modelos de Markov ocultos: Algoritmo de Viterbi

Albert Sanchis Alfons Juan Jorge Civera

Departamento de Sistemas Informáticos y Computación

Objetivos formativos

- Describir la aproximación de Viterbi para el cálculo de probabilidades con la que un Modelo Oculto de Markov genera cadenas.
- Calcular la probabilidad de una cadena mediante la aproximación de Viterbi.
- Obtener la secuencia de estados que genera una cadena con máxima probabilidad.
- Diferenciar entre la probabilidad con la que un Modelo Oculto de Markov genera una cadena y la probabilidad estimada mediante la aproximación de Viterbi.

Índice

1	Probabilidad de una cadena	3
2	Aproximación de Viterbi	4
3	Algoritmo de Viterbi	5
4	Algoritmo de Viterbi: implementación	6

1. Probabilidad de una cadena

■ Dado un *modelo oculto de Markov* $M = (Q, \Sigma, \pi, A, B)$ con estado final F, y una cadena $x = x_1 \cdots x_m \in \Sigma^+$,

$$P(x \mid M) = \sum_{q_1, \dots, q_m \in Q^+} P(x, q_1, \dots, q_m)$$

Ejemplo: tomemos x = ab

2. Aproximación de Viterbi

■ La *aproximación de Viterbi* es:

$$\tilde{P}(x \mid M) = \max_{q_1, \dots, q_m \in Q^+} P(x, q_1, \dots, q_m)$$

Ejemplo: tomemos x = ab

3. Algoritmo de Viterbi

■ Definimos V(q,t) como la probabilidad máxima de que en el instante t se alcance el estado q emitiendo el prefijo $x_1 \dots x_t$:

$$V(q,t) = \max_{\substack{q_1,\dots,q_t\\q_t=q}} P(x_1 \cdots x_t, q_1, \dots, q_t)$$

■ V(q,t) puede calcularse recursivamente:

$$V(q,t) = \begin{cases} \pi_q \, B_{q,x_1} & \text{si } t = 1\\ \max_{q' \in Q} V(q',t-1) \, A_{q',q} \, B_{q,x_t} & \text{si } t > 1 \end{cases}$$

Aproximación de Viterbi a $P(x \mid M)$:

$$\tilde{P}(x \mid M) = \max_{q \in Q} V(q, |x|) A_{q,F}$$

4. Algoritmo de Viterbi: implementación

- La función V() se representa como una matriz: $V_{q,t} \equiv V(q,t)$.
- Esta matriz define un grafo multietapa denominado trellis y permite el cálculo iterativo eficiente por programación dinámica.
- La secuencia óptima de estados se calcula recorriendo el trellis hacia atrás.
- Complejidad temporal: O(mb), donde m es la longitud de la cadena y b es el número de transiciones entre estados.

