例 题

1.	在操作系统结构设计中,层次结构的操作系统最显著的不足是?
	A. 不能访问更低的层次 B. 太复杂且效率低
	C. 设计困难 D. 模块太少
2.	下列选项中,操作系统提供给应用程序的接口是
	A. 系统调用 B. 中断 C. 库函数 D. 原语
3.	我们知道,有些 CPU 指令只能授权给操作系统内核运行,不允许普通用户程序使用。
	但是在以下操作中,可以不必具有此种特权。
	A. 设置定时器的初值 B. 触发 trap 指令(访管指令)
	C. 内存单元复位 D. 关闭中断允许位
4.	实时操作系统对可靠性和安全性的要求极高,它。
	A. 十分注意系统资源的利用率 B. 不强调响应速度
(C. 不强求系统资源的利用率 D. 不必向用户反馈信息
5.	在一个单处理机的系统中有 P1、P2 两个程序,若两个程序单独执行,则需要占用
	CPU、设备IO1、设备IO2的时间及顺序如下:
	程序 P1: CPU (25ms); IO1 (30ms); CPU (20ms); IO2 (20ms);
	CPU (20ms); IO1 (30ms); CPU (20ms).

程序 P2: CPU (20ms); IO1 (30ms); CPU (20ms); IO2 (20ms); CPU (10ms); IO2 (20ms); CPU (45ms)。

若该系统中:

- 1). IO1 和 IO2 为不同步的输入/输出装置,它们能够同时工作。
- 2). 设程序的优先级 P2 高于 P1。但是,当程序 P1 正在占用 CPU 时,即使程序 P2 需要占用 CPU,也不能打断程序 P1 的执行而必须等待。
- 3). 当使用 CPU 之后控制转向 IO1、IO2 时,或者使用 IO1、IO2 之后控制转向 CPU 时,由控制程序执行中断处理,但这段处理时间忽略不计。
- 4). 程序 P1、P2 同时进入计算机中。

试问:

- (1) 哪个程序先结束?
- (2) 程序全部执行结束需要多少时间?
- (3) 到程序全部执行完毕时的 CPU 利用率为多少?
- (4) 程序 P1 等待 CPU 的累计时间为多少?
- (5) 程序 P2 等待 CPU 的累计时间为多少?