Вопросы тестов по курсу «Глубокое обучение»

Александр Дьяконов (dyakonov.org)

версия 12.01.2023 (85 вопросов), темы:

- нейронные сети,
 - обучение НС,
 - PyTorch,
- свёрточные сети, архитектуры CNN,
- детектирование объектов, семантическая сегментация,
 - рекуррентные сети,
 - обработка текстов.

Ниже представлены вопросы, которые использовались для проверки знаний по курсу «Глубокое обучение».

- это не вопросы проверки знаний темы «Deep Learning», все вопросы контекстные и имеют отношение к конкретному курсу,
- курс был довольно сокрашённый (как по перечню тем, так и по глубине каждой темы),
- не все вопросы представлены,
- вопросы типа «из какой статьи рисунок» являются проверкой не знания статей, а понимания, что изображено на рисунках,
- некоторые формулировки сокращены, например в вопросах «Что при обратном распространении градиента передаётся» имеется в виду «какой градиент передаётся»,
- в каждом вопросе может быть несколько верных ответов, верные ответы не помечены.

◊ Какую функцию активации используют в последнем слое НС при решении задачи бинарной классификации?		◊ Что означает черта в конце названия метода в		
		pytorch?		
		□ inplace	□ private	
□ сигмоида	☐ softmax	□ hidden	□ forbidden	
□ тождественная	☐ ELU			
□ ReLU □ swish		◊ При реализации	softmax(a) на практике,	
A		применяют приём		
	вать в виде нейрона НС?	□ вычитается max		
□ линейная регрессия		□ прибавляется m		
□ линейный классифи	·	□ делится на max(•	
□ логистическая регре		□ умножается на г		
□ решающее дерево г	лубины 1	🗆 вычитается mea		
		прибавляется m		
◊ Какую функции акти	ивации используют в	□ делится на meai	n (a)	
последнем слое в (об	щей) задаче регрессии?	□ умножается на г	mean (a)	
□ сигмоида	\square softmax			
□ тождественная	□ ELU	◊ При вычислении	ı loss = F.cross_entropy(input,	
☐ ReLU	□ swish	target) тензор inpu	ıt имеет размеры 3×5. Какие	
		размеры у target?		
◊ Как реализована сиг	гмоида в pytorch?	□ 3×5	□ 1	
□ в виде функции tord	ch.nn.functional. sigmoid	□ 5×3	□ 3	
□ в виде модуля torch	ı.nn.Sigmoid	□ 3×3	□ 5	
□ передаётся как пара	аметр линейным модулям	□ 5×5	□ любые	
torch.nn.Linear(activati				
□ нет явной реализац		◊ Какая сложность	ь нахождения всех мёртвых	
•			eurons) от длины выборки m?	
◊ Скольких нейронов	с пороговой активацией		□ m log(m)	
достаточно для реали	·	□ sqrt(m)	\square m ² log(m)	
□ 4	□ 2	\Box m ²	\square m ³	
□ 3	□ 1	□ III	□ III	
		◊ Что при обратно	м распространении градиента	
◊ Теорема об универсальной аппроксимации		передаётся в переменную у гейта сложения?		
Хорника о (м.б. несі	колько вариантов)	_ g		
□ реализации любых	функций	□ zg	Υ.	
□ реализации непрер	ывных функций	8 □ xg		
□ реализации гладких	с функций	□ yg	(+)→z	
□ однослойных сетях		= 78 □ x	v – g	
□ двухслойных сетях		□ y	?*	
□ глубоких сетях		□ 0		
	 мации Пинкуса (м.б.	◊ Что при обратно	 м распространении градиента	
несколько вариантов)		•	еменную у гейта умножения?	
□ полиномиальные активации в 1м слое				
□ полиномиальные активации везде		_ s □ zg	w .	
□ неполиномиальные активации в 1м слое		<i>g</i> □ xg	<i>x</i>	
□ тождественные активации во 2м слое		□ yg	(*)→Z	
□ однослойные сети		□ x	$v \rightarrow c g$	
□ двухслойные сети		□ y	? ? *	
□ глубокие сети		□ y □ 0		
, 50				

◊ Что при обратном распространении градиента передаётся в переменную у тах-гейта при х>у?		◊ Инициализация Ксавьера (nn.init.xavier_uniform) выведена в предположении	
□ zg	x_{\leq}	🗆 однослойности сет	и
\square xg		🗆 большой глубины с	сети
□ yg	$ \begin{array}{c} \text{max} \rightarrow Z \\ \leftarrow g \end{array} $	□ равномерного раст	пределения сигналов
\Box x	y	🗆 отсутствия смещен	ия (bias=False)
\Box y	?		
□ 0		♦ Техника Early Stopp	oing применяется (отметьте все
		верные варианты):	
◊ Какие из перечислен	ных функций активаций	🗆 при обучении буст	инга
немонотонные?		🗆 при обучении нейр	оосетей
□ сигмоида	☐ swish	□ при работе сегмен	таторов
□ тождественная	□ ELU	□ при отсутствии сто	п-токенов
□ ReLU	☐ GELU		
		◊ В каких методах оптимизации градиент	
◊ Пусть х – тензор разм	ера 2×2, что выдаст	вычисляется не в тек	ущей точке?
x.unsqueeze(dim=1).sha	pe?	□ SGD	\square Adagrad
□ [2, 2]	□ [1, 2, 2]	\square momentum	☐ RMSprop
□ [4]	□ [2, 1, 2]	□ Нестерова	□ Adam
□ [4, 1]	□ [2, 2, 1]		
□ [1, 4]	□ нет верного ответа	◊ В каких методах оп	тимизации шаг делается не
		строго в сторону теку	/ щего градиента?
◊ Пусть х – тензор разм	ера 2×2, что выдаст х.	□ SGD	\square Adagrad
squeeze().shape?		\square momentum	☐ RMSprop
□ [2, 2]	□ [1, 2, 2]	□ Нестерова	☐ Adam
□ [4]	□ [2, 1, 2]		
□ [4, 1]	□ [2, 2, 1]	◊ В каких методах оп	тимизации шаг нормируется
□ [1, 4]	□ нет верного ответа	(градиент делится на что-то)?	
		□ SGD	☐ Adagrad
◊ Что выдаст следующий код?		\square momentum	☐ RMSprop
x = torch.Tensor([1, 2, 3])		□ Нестерова	☐ Adam
w = torch.tensor([1., 1, 1	.], requires_grad=True)		
z = w @ x		◊ Что означает буква D в названии метода	
z.backward()		оптимизации Adam?	
print(x.grad)		☐ Double	☐ Dummy
□ ошибку	□ [1, 1, 1]	☐ Descent	🗆 нет верного ответа
☐ None	□ [0, 0, 0]		
□ [1, 2, 3]	□ 0	◊ Где в Pytorch указь	івается необходимость
		перемешивания выборки (shuffle=True)?	
◊ Строчки кода ниже являются признаком		☐ TensorDataset	☐ backward
from torchvision import models		☐ DataLoader	□ при инициализации НС
resnet18 = models.resnet18(pretrained=True)		\square optimizer	·
□ обучения с учителем			
□ обучения без учителя □ ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬		♦ Где в Pytorch указы	івается размер батча
□ трансферного обучения 		(batch_size=512)?	
□ обучения с масками		☐ TensorDataset	□ backward
□ самообучения		☐ DataLoader	□ при инициализации НС
		\square optimizer	□ нет верного ответа

◊ Где в коде меняются па	раметры нейросети?	◊ При какой норми	ировке статистики считаются по
□ optimizer.zero_grad()		указанному региону?	
□ output = model(input)		☐ BatchNorm	
☐ loss = loss_fn(output, target)		☐ Layer Norm	
☐ loss.backward()		☐ Instance Norm	A
□ optimizer.step()		☐ Group Norm	н
		☐ Batch renormaliza	ation
◊ Где в коде вычисляются	градиенты в	□ нет верного отве	ета
вычислительном графе не	ейросети?		
□ optimizer.zero_grad()		◊ Что делается в Sr	napshot Ensemble?
□ output = model(input)		□ стекинг нейросе	тей
☐ loss = loss_fn(output, targ	get)	□ усреднение нейронки и другого метода	
□ loss.backward()			й с разной инициализацией
□ optimizer.step()		усреднение сетей с разными гиперпараметрами	
		🗆 усреднение сети	
◊ Где используется указан	ная формула?		
☐ Standard Dropout		◊ Тензор х имеет размер [1, 1, 28, 28], что выведет	
☐ Inverted Dropout	1	код?	
□ DropConnect	$y = \frac{1}{1-n} f(Wx) \circ m$	f = nn.Conv2d(in_ch	nannels=1, out_channels=1,
\Box Gradient clipping		kerne	el_size=3)
☐ BatchNorm		F.max_pool2d(f(x), kernel_size=2).shape	
		□ [1, 1, 28, 28]	
◊ После какой стоки логич	іно делать обрезку	□ [1, 1, 26, 26]	
градиента (clip_grad_norm	ı)?	□ [1, 1, 14, 14]	
□ optimizer.zero_grad()		□ [1, 1, 13, 13]	
□ output = model(input)		□ [1, 1, 11, 11]	
□ loss = loss_fn(output, target)		□ [1, 1, 5, 5]	
□ loss.backward()			
□ optimizer.step()		◊ Какая сеть считае	ется первой свёрточной?
		☐ LeNet-5	☐ GoogLeNet
◊ При обосновании какого	о метода упоминался	☐ AlexNet	☐ ResNet
эффект Covariate shift (сме	ещения распределений)?	□ VGG	□ нет верного ответа
☐ Standard Dropout	☐ Gradient clipping		
☐ Inverted Dropout	☐ BatchNorm	◊ В какой сети впер	рвые использовались ReLU и
☐ DropConnect	□ аугментация	maxpool?	
		☐ LeNet-5	☐ GoogLeNet
◊ Какие слои по-разному	работают в режимах	☐ AlexNet	☐ ResNet
train() и eval()?	•	□ VGG	□ нет верного ответа
☐ Dropout	☐ Linear		·
□ BatchNorm	□ conv2d	◊ В какой сети впе	рвые использовались
□ ReLU	□ нет верного ответа		ти («каскад») 3×3-свёрток?
		☐ LeNet-5	☐ GoogLeNet
◊ Какой параметр переда	ётся при инициализации	☐ AlexNet	☐ ResNet
программатора оптимиза		□ VGG	□ нет верного ответа
torch.optim.lr_scheduler?	1		
□ нейросеть	□ градиенты нейросети		
□ параметры нейросети	□ оптимизатор		

♦ В какой сети использовалась модульная архитектура и было всего 5М параметров?		♦ Подсчитайте IoU для прямоугольников на		
		рисунке.		
☐ LeNet-5	☐ GoogLeNet	□ 0	2	
☐ AlexNet	☐ ResNet	□ 1/4		
□ VGG	□ нет верного ответа	□ 1/3	1 -	
		□ 1/2	-	
◊ В какой сети впе	рвые использовали BatchNorm и	□ 2/3	_	
отказались от Drop		□ 3/4	0	1 2
□ LeNet-5	☐ GoogLeNet	□ нет верного ответа		
☐ AlexNet	☐ ResNet	· 		
□ VGG	□ нет верного ответа	♦ Вычислите Average Precis	sion (AP) для	указанного
		случая (рассматривается конкретный класс, с		-
◊ Выберите верны	е утверждения для «Squeeze-and-	округлить до десятых).		
Excitation» (SE) бло	• • • • • • • • • • • • • • • • • • • •	□ 0.5	conf	IoU>th
-		□ 0.6	0.6	true
□ не меняет размеры тензора□ делает перекалибровку каналов		□ 0.7	0.9	true
□ делает перекалиоровку каналов□ использует двухслойную нейросеть		□ 0.8	0.7	false
□ использует «узк	·	□ нет верного ответа	0.8	true
	· 			
◊ Тензор х имеет р	размер [1, 20, 30, 10], что выведет	◊ Выберите верные утверя	кдения для Р	R-CNN:
код?		□ использовался Selective Search		
ct = nn.ConvTranspose2d(in_channels=20,		\square использовался SVM		
out_channels=10, kernel_size=2)		\square использовалась bounding-box-регрессия		
ct(x).shape		□ использовался ROI Pooling слой		
□ [20, 10,29, 9]		□ использовалась Region P	roposal сеть (RPN)
□ [20, 10, 30, 10]				
□ [20, 10, 31, 11]		◊ Для чего нужна процеду	pa NMS (Non	Maximum
□ [1, 10,29, 9]		Suppression)?		
□ [1, 10, 30, 10]		□ для сокращения числа регионов		
□ [1, 10, 31, 11]				
		 ,□ для уменьшения числа параметров сети		
◊ Перед какими сл	оями разумно делать свёртку	, □ для уменьшения уверені	•	
без смещения (bia	s=False)?		•	
□ ReLU	•	◊ Пусть тензор имеет разм	еры 10×100×	:100 (10 –
☐ DropOut		,	•	-
□ BatchNorm		Pyramid Pooling слоя (см. р		
□ maxpool				
•		□ 4		1
◊ Как называется з	задача, в которой ответ	□ 16	H	\Rightarrow
представляется в виде приведённого рисунка?		□ 32	\vdash	+
Представляется в виде приведенного рисунка?		□ 160		
☐ Локализация☐ Семантическая сегментация		□ 200	- 1	
□ Детектирование объектов		□ 210		
□ Сегментация объ		□ 1600	_	
_ сстментация оо	DENIOD			_
		□ нет верного ответа		1 ,
			\	

♦ Пусть тензор имеет размеры 10×100×100 (10 –		◊ Пусть в SSD на масштабе (тензоре) 3×3×256		
число каналов), какой размер будет после ROI		используется 3 якоря, 10 классов. Какой размер		
Pooling слой с сеткой 5×5 (см. рис.)?		тензора классификации на это	м масштабе?	
□ 10		□ 3×10 □ 3	×3×11	
□ 25		□ 3×11 □ 3	×3×30	
□ 5×5		□ 3×30 □ 3	×3×31	
□ 5×10		□ 3×33 □ 3	×3×33	
□ 100×100		□ 3×3×10 □ H	ет верного ответа	
□ 1×5×5			·	
□ 10×5×5		♦ Пусть в SSD на масштабе (тен	зоре) 3×3×256	
□ 10×100×100		используется 3 якоря, 10 классов. Какой размер		
□ нет верного ответа		тензора BB-регрессии на этом масштабе?		
		□ 3×10 □ 3	×3×11	
◊ Выберите верные утве	рждения для Fast R-CNN:	□ 3×11 □ 3	×3×12	
□ использовался Selective		□ 3×12 □ 3	×3×33	
□ использовался SVM		□ 3×3×10 □ H	ет верного ответа	
□ использовалась bound	ing-box-регрессия		· 	
□ использовался ROI Poo		◊ Какой архитектуре соответствует рисунок?		
□ использовалась Region	Proposal сеть (RPN)	□ R-CNN	predict	
		☐ Fast R-CNN	1	
◊ Выберите верные утве	рждения для Faster R-CNN:	□ YOLO ←		
□ использовался Selectiv	e Search	□ SSD	T /3/	
□ использовался SVM		□ FPN	1	
□ использовалась bound	ing-box-регрессия	☐ U-net		
□ использовался ROI Poo	ling слой	(b) Sing	de feature map	
□ использовалась Region	Proposal сеть (RPN)			
		◊ Какой архитектуре соответст	зует рисунок?	
♦ Сеть YOLO строится для	я сетки 2×2, 10 классов, 2	☐ R-CNN	predict	
региона для каждого кла	асса. Сколько элементов в	☐ Fast R-CNN	predict	
выходном тензоре?		□ YOLO /	predict	
□ 4	□ 40	□ SSD	predict	
□ 10	□ 80	□ FPN ∠		
□ 20	□ нет верного ответа	☐ U-net (c) Pyr	amidal feature hierarchy	
◊ Из статьи про какую се	ть эта иллюстрация?	Сакой архитектуре соответст	 вует рисунок?	
□ R-CNN		□ R-CNN		
☐ Fast R-CNN		☐ Fast R-CNN	7 47	
		□ YOLO ←		
\square SSD		□ SSD	predict	
□ нет верного ответа		☐ FPN	ar Structure with (d)	
		☐ U-net	ar structure with (d)	
	(b) 8×8 feature map	♦ В FCOS два целевых региона	пересекаются. Для	
·		точки в пересечении какой рег	ион считается	
◊ Выберите верные утве	рждения для CornerNet:	целевым?		
□ безъякорная сеть		□ оба	□ наибольший	
□ использовался особый	вид пулинга	🗆 новый регион - пересечение	□ наименьший	
□ использовалась Region		🗆 случайный	□ никакой	
	· · · · · · · · · · · · · · · · · · ·			

CNN Aask Ask Het Horo otbeta
азмер выходного тензора Mask-регрессии
sk на масштабе 100×100, 10 классах, 8
□ 100×100×8
□ 100×100×10
□ 100×100×16
О×4 □ нет верного ответа
и про какую концепцию эта иллюстрация? е connections уарные ия ческий ного ответа
и про какую концепцию эта иллюстрация?
лойные LSTM $y_{\iota-1}$ y_{ι} $y_{\iota+1}$
e connections
nal dropout
ые модели
ного ответа
x_{t-1} x_{t} x_{t+1}
ith peephole connections
(- · / I I I I I I I I I I I I I I I I I I

♦ В приведённом коде, какой размер y hidden? Istm = nn.LSTM(input_size=3, hidden_size=3,		◊ В каком из этих представлений производится разложение матрицы логарифмов частот?□ w2v				
					☐ fasttext	
					☐ GloVe	
		□ 1×1×3	\Box [1×1×6, 1×1×6]	□ ELMo		
		□ 1×1×6	\Box [1×1×3, 1×1×3, 1×1×3]			
• •	□ нет верного ответа	♦ В каком из этих представлений представление слова равно сумме представлений n-грамм?				
◊ Какие активации исп	пользуются в LSTM-ячейке?	□ w2v				
□ сигмоида		☐ fasttext				
□ гиперболический та	нгенс	☐ GloVe				
□ ReLU		□ ELMo				
\square softmax						
□ ELU		♦ Что верно для (или используется в) word2vec?□ учитывается контекст слова				
◊ Какие активации исі	пользуются в GRU-ячейке?	☐ Negative Sampling				
□ сигмоида		☐ Hierarchical Softmax				
□ гиперболический тангенс		□ нужна размеченная выборка текстов				
□ ReLU						
□ softmax		♦ Что означает буква С в аббревиатуре CBOW?				
□ ELU		_ count				
		□ continuous				
♦ В каком полхоле ис	пользуется дискриминатор?	□ circle				
□ teacher forcing	полосу стел длеприили стер.	□ нет верного ответа				
□ professor forcing						
☐ free running						
□ scheduled sampling						
□ нет верного ответа						
RNN?	ого может использоваться в					
□ BN						
DO						
□ grad clipping□ teacher forcing						
	 ТВРТТ (для RNN) обозначает					
первая буква Т?						
☐ tensor	☐ tick					
☐ test	\square truncated					
□ time	□ нет верного ответа					
◊ Что из перечисленно	ого верно для ELMo?					
□ предтренировки без	•					
• • •	ва = л/к скрытых состояний					
□ двунаправленная яз	выковая модель (biLM)					
□ не учитывает контен	кст слова					