This document contains solution for selected problems from "Set Theory: A First Course" by Daniel W. Cunningham.
Javid Jafari, 2019.

Exercises 1.1

- 1. By definition of $a \notin A/B$ we have $\neg(a \in A/B)$, it means that $a \notin A$ or $a \in B$ and by supposition we know $a \in A$. thus it can not be the case that $a \notin A$, so $a \in B$.
- 2. By definition of $A \subseteq B$ we know that for all $x, x \in A \Rightarrow x \in B(*)$. Suppose $x \in C \land x \notin B$. by $x \notin B$ and contraposition of (*) we have $x \notin A$. by supposition we can make claim that $x \in C \land x \notin A$, so we can write for all x ($x \in C \land x \notin B \Longrightarrow x \in C \land x \notin A$) which is definition of $C/B \subseteq C/A$.
- 3. For all x we have, $x \in A \land x \notin B \Rightarrow x \in C(*)$. Suppose an x that $x \in A \land x \notin C$, by $x \notin C$ and (*) using modus tollens we have $\neg(x \in A \land x \notin B)$ which is equal to say that $x \notin A \lor x \in B$. by the last sentence and $x \in A$ from supposition, we have $x \in B$. thus we can say $x \in A \land x \notin C \Rightarrow x \in B$ which is definition of $A/C \subseteq B$.
- 4. Suppose an x such that $x \in A$, by $A \subseteq B$ we know $x \in B$ and by $x \subseteq C$, $x \in C$. so we can say that for all $x, x \in A \Rightarrow x \in B \land x \in C$ which is definition of $A \subseteq B \cap C$.
- 5. We prove this by contradiction. Suppose there exist an a such that $a \in A$ but $a \notin B/C$ wich is equal to say that $a \notin B \vee a \in C$. by $a \in A$ from our supposition and $A \subseteq B$ from problem's supposition, we get $a \in B(*)$, thus it can not be the case that $a \notin B$, so it must be the case that $a \in C$ which together with (*) contradict problem's supposition $B \cap C = \emptyset$.
- 6. Suppose an x such that $x \in A/(B/C)$ which is equal to say that $x \in A \land x \notin B/C$. The second conjunct is equal to $x \notin B \lor x \in C$. At least one of the disjuncts must be true, if $x \notin B$, by supposition we have $x \in A$, so we can write $x \in A/B$. we can also say $x \in A/B \cup C$. if $x \in C$ then $x \in C \cup A/B$. We can conclude that $x \in A/(B/C) \Rightarrow x \in A/B \cup C$ which is definition of $A/(B/C) \subseteq A/B \cup C$.

7. $A \not\subset C$ means that there exist an a such that $a \in A$ and $a \notin C$. by $a \notin C$ and $A/B \subseteq C$ we know that $a \notin A/B$ which means that $a \notin A$ or $a \in B$. because of $a \in A$ it is only possible $a \in B$. so we have $a \in A$ and $a \in B$ which means $A \cap B \neq \emptyset$.

Exercises 1.5

- 1. By paring axiom we get the set $\{\{u\}, \{v, w\}\}$. Now by union axiom there exist a set that contains member of member of this set, i.e. $\{u, v, w\}$.
- 2. By the pairing axiom for every two set there is a set that contains them. take both set A, then we get $\{A\}$.
- 3. Axiom of regularity says that every non-empty set S contains at least one set x such that $x \cap S = \emptyset$. because the set $\{A\}$ contains just one set A, it must be the case that $A \cap \{A\} = \emptyset(*)$. Now suppose that $A \in A$, together with the fact that $A \in \{A\}$, there must be a common object in the two sets which contradict our first result (*).
- 4. By the axiom of regularity the set $\{A,B\}$ must contain a set which has nothing in common with that (i.e. $\exists (S \in \{A,B\})S \cap \{A,B\})$). Because the set $\{A,B\}$ just contains two set, it must be A or B, it could not be be B because $A \in B$ and $A \in \{A,B\}$, it just remains A, so $A \cap \{A,B\} = \emptyset$. Clearly, $B \notin A$ because it contradicts former claim.
- 5. According to the regluarity axiom the set $\{A, B, C\}$ must contains a member x which $A \notin x$ and $B \notin x$ and $C \notin x$. x could not be B, because by problem supposition we know that $A \in B$. By the same justification x is not C, it just remains A, therefore the third conjugnt implies that $C \notin A$.
- 6. By power set axiom we have $\mathcal{P}(A)$. Now by subset axiom we can define $\{x \in \mathcal{P}(A) : x \in B\}$ which is equal to $\mathcal{P}(A) \cap B$.
- 9. To prove $A = \emptyset$ we must show that for all $x \ x \in A \Leftrightarrow x \in \emptyset$. the \Rightarrow side is vacuously true because we supposed A to have no member. the \Leftarrow side is true because empty set doesn't have any member.

10. Suppose that for an $x \phi(x, y_0)$ and $\phi(x, y_1)$ are both true, we prove that $y_0 = y_1$. Since $\forall z (z \in y_0 \leftrightarrow z = x)$ and $\forall z (z \in y_1 \leftrightarrow z = x)$ we have $\forall z (z \in y_0 \leftrightarrow z \in y_1)$, thus $y_0 = y_1$ and ϕ describe uniquely such a y. So by $\phi(x, y)$ and replacement axiom for every set A we have a set $\{\{x\} : x \in A\}$.

Exercises 2.1

- 1. Let $x \in A$, then it is also true to say $x \in A \lor x \in B$, so $A \subseteq A \cup B$. if $x \in A \cap B$ it is in both A and B, so it is in A, thus $A \cap B \in A$.
 - 5. i.e. $A \notin A$.
- 8. $x \in A \cap (B \cup C)$ iff $x \in A \land x \in B \cup C$ iff $x \in A \land (x \in B \lor x \in C)$ iff $(x \in A \land x \in B) \lor (x \in A \land x \in C)$ iff $x \in (A \cap B) \cup (A \cap C)$.
- 12. $x \in C/(A \cup B)$ iff $x \in C \land x \notin A \cup B$ iff $x \in C \land (x \notin A \lor x \notin B)$ iff $(x \in A \land x \in B \lor x \in A \land x \in C)$ iff $x \in (A \cap B) \cup (A \cap C)$.
- 16. $x \in (A \cup B)/(A \cap B)$ iff $(x \in A \lor x \in B) \land (x \notin A \lor x \notin B)$. Assume $x \in A$, one disjunct of $(x \notin A \lor x \notin B)$ must be true, the first leads to contradiction, so it must be $x \notin B$. we have $x \in A \land x \notin B$ which is equal to $x \in A/B$, then it is also true to say that $x \in A/B \cup B/A$. Suppose $x \in B$ then we can prove the former sentence just by previous reasoning.
- 20. Let $x \in \mathcal{P}(A)$ then $x \subseteq A$. Since $A \subseteq B$ then $x \subseteq B$ (by transitivty of \subseteq), so $x \in \mathcal{P}(B)$.
- 21. Let $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. if $x \in \mathcal{P}(A)$ we can say that $x \subseteq A$, we can say for every $t, t \in x \to t \in A$, and also $t \in x \to (t \in A \lor t \in B)$ which is equal to say $x \subseteq A \cup B$, so by definition of power set, we have $x \in \mathcal{P}(A \cup B)$.
- 24. let $A = \{\emptyset\}$ and $B = \emptyset$, then we have $P(\{\emptyset\}/\emptyset) = \{\emptyset, \{\emptyset\}\}\} \neq P(\{\emptyset\})/P(\emptyset) = \{\emptyset, \{\emptyset\}\}/\{\emptyset\} = \{\{\emptyset\}\}\}.$

- 25. if $C \in \mathcal{F}$, we can write $\bigcup \mathcal{F} = C \cup X_1 U X_2 ...$ for every $X_n \in \mathcal{F}$. So it is obviously true to say $C \subseteq C \cup X_1 U X_2 ... = \bigcup \mathcal{F}$.
- Second Proof: if $C \in \mathcal{F}$ we can say for every member of C there exist some set (namely, C) that belongs to \mathcal{F} , so by union axiom it also belongs to \mathcal{F} .
- 26. Suppose $\cap \mathcal{F} \not\subset C$ which means that there is some $a, a \in \cap \mathcal{F} \ a \notin C$, on the other hand $a \in \cap \mathcal{F}(*)$ means that a belongs to every member of \mathcal{F} which C is among them (by problems supposition), so it must be true to say $a \in C$. by (*) it leads to contradiction.
- 28. $A \subseteq C$ for all $C \in \mathcal{F}$, means that every thing in A belongs to all member of \mathcal{F} which means $A \subseteq \bigcap \mathcal{F}$.
- 29. Suppose $\bigcup \mathcal{F} \not\subset A$, that is, there is some $a, a \in \bigcup \mathcal{F}(*)$ but $a \notin A$. Since $C \subseteq A$ for all $C \in \mathcal{F}$, there is no $C \in \mathcal{F}$ such that $a \in C$, which contradicts (*), so $\bigcup \mathcal{F} \subseteq A$.
- 30. Let $x \in \bigcup \mathcal{P}(A)$, there is some $X, X \in \mathcal{P}(A)(*)$ such that $x \in X(**)$. Because of (*) we have $X \subseteq A(***)$, then by (**) and (***) we have $x \in A$. so $\bigcup \mathcal{P}(A) \subseteq A$.
- Now we prove $A \subseteq \bigcup \mathcal{P}(A)$. Suppose $x \in A$, then there is some set X such that $x \in X$ and $X \subseteq A$ which means $X \in \mathcal{P}(A)$ (for example $\{x\}$). it is equal to say $A \subseteq \bigcup \mathcal{P}(A)$.
 - 31. Let $X \in A$, then $X \subseteq X \cup X_1 \cup X_2 \dots = \bigcup A$, so $X \in \mathcal{P}(\bigcup A)$.
- 32. if $C \in \mathcal{F}$ then $C \subseteq \bigcup \mathcal{F}$ (by Theorem 25¹), and also $\mathcal{P}(C) \subseteq \mathcal{P}(\bigcup \mathcal{F})$ (by Theorem 20), so we have $\mathcal{P}(C) \in \mathcal{P}(\mathcal{P}(\bigcup \mathcal{F}))$
- 33. It is about the collection of sets that contained by something. Suppose there exist such a set, call it A, i.e. $A = \{x : \exists y (x \in y)\}$. By axiom of regularity we know that $A \notin A$, which means it does not belong to any set $(\neg \exists y (A \in y))$, but by pairing axiom we have $\{A\}$ such that $A \in \{A\}$. so supposition of the existence of A leads to contradiction.

¹Exercise Number 25

34. It is contraposition of Theorem 2.1.3. $\{x : \phi(x)\}$ is a set(not a proper class) $\Leftrightarrow \exists A \forall x (\phi(x) \to x \in A)$, so $\{x : \phi(x)\}$ is a proper class (not a set) \Leftrightarrow . $\forall A \exists x (\phi(x) \land x \notin A)$.

Exercises 2.2

- 6. Since $Y = A \cap B \in \mathcal{P}(A)$ and $\mathcal{P}(A) \in \mathcal{P}(\mathcal{P}(\cup \mathcal{F}))$ by Theorem 32 in Exercises 2.1. we can conclude that $\mathcal{P}(A) \subseteq \cup \mathcal{P}(\mathcal{P}(\cup \mathcal{F}))$, then $Y \in \cup \mathcal{P}(\mathcal{P}(\cup \mathcal{F}))$. so there exists a set satisfying condition $Y = A \cap B$ for some $A \in \mathcal{F}$ and some $B \in \mathcal{G}$ by Theorem 2.1.3.
- 7. We prove it by contradiction. Suppose there is an element x in $(\bigcup \mathcal{F}) \cap (\bigcup \mathcal{G})$ but not in $\bigcup \{A \cap B : A \in \mathcal{F} \land B \in \mathcal{G}\}$. then there is an x such that $x \in \bigcup \mathcal{F} \land x \in \bigcup \mathcal{G}$. it means that there is some $C \in \mathcal{F}$ which $x \in C$ and some $D \in \mathcal{G}$ which $x \in D(*)$. but $x \notin \bigcup \{A \cap B : A \in \mathcal{F} \land B \in \mathcal{G}\}$ means that there is no $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that $x \in A$ and $x \in B$, it is in contradiction with (*).(proof of right to left side is similar).
- 8. Because $Y = A \cup B \subseteq \bigcup \mathcal{F} \cup \bigcup \mathcal{G}$ we have $Y \in \mathcal{P}(\bigcup \mathcal{F} \cup \bigcup \mathcal{G})$, by Theorem 2.1.3 there is a set satisfying this property.
- 9. Let $x \in (\cap \mathcal{F}) \cup (\cap \mathcal{G})$ but $x \notin \cap \{A \cup B : A \in \mathcal{F} \land B \in \mathcal{G}\}$, $x \in (\cap \mathcal{F})$, so it means that $x \in f$ for every $f \in \mathcal{F}(*)$ or $x \in \cap \mathcal{G}$ which means $x \in g$ for every $g \in \cap \mathcal{G}(**)$. the second part means that there are some $A \in \mathcal{F}$ and $B \in \mathcal{G}$ such that $x \notin A \cup B$ which means that $x \notin A \land x \notin B$ for some A and B. it is in contradiction with both (*) and (**) (proof of right to left side is similar).
- 11. Let $x \in \bigcup (\mathcal{F} \cup \mathcal{G})$, it means there is some $X \in (\mathcal{F} \cup \mathcal{G})$ and $x \in X$. if $X \in \mathcal{F}$ we can say there is some $X \in \mathcal{F}$ and $x \in X$ which is equal to say $x \in \bigcup \mathcal{F}$, then $x \in (\bigcup \mathcal{F} \cup \bigcup \mathcal{G})$ is also true. But if $X \in \mathcal{G}$, then $x \in \bigcup \mathcal{G}$ and also $x \in (\bigcup \mathcal{F} \cup \bigcup \mathcal{G})$.
- 12. $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$ iff x belongs to every member of $(\mathcal{F} \cup \mathcal{G})$, i.e. it must belong to every $f \in \mathcal{F}$ and every $g \in \mathcal{G}$, which is equal to say $x \in (\bigcap \mathcal{F} \cap \bigcap \mathcal{G})$.

- 13. Let $x \in \bigcup (\mathcal{F} \cap \mathcal{G})$, it means that there is some $X \in (\mathcal{F} \cap \mathcal{G})$ which $x \in X$. it means there is some $X, X \in \mathcal{F} \wedge X \in \mathcal{G}(^*)$. from $(^*)$ we can conclude two propositions, there is some $X \in \mathcal{F}$ and there is some $Y \in \mathcal{G}$ which $x \in X$ and $x \in Y$, it is equal to $x \in (\bigcup \mathcal{F} \cap \bigcup \mathcal{G})$, so $\bigcup (\mathcal{F} \cap \mathcal{G}) \subseteq (\bigcup \mathcal{F} \cap \bigcup \mathcal{G})$ (the converse is not hold because of existential quantification rules).
- 14. $x \in \mathcal{P}(\cap \mathcal{F})$ iff $x \subseteq \cap \mathcal{F}$ iff every $y, y \in x$ then $y \in \cap \mathcal{F}$. $y \in \cap \mathcal{F}$ iff $y \in C$ for every $C \in \mathcal{F}$, it means $x \subseteq C$, so $x \in \mathcal{P}(C)$ for every $C \in \mathcal{F}$. it is equal to say $x \in \cap \{\mathcal{P}(C) : C \in \mathcal{F}\}$.
- 16. Let $x \in \mathcal{P}(\bigcup \mathcal{F})$ then $x \subseteq \bigcup \mathcal{F}$ which means that for every $t, t \in x$ then $t \in \bigcup \mathcal{F}$, but we kow $t \in \bigcup \mathcal{F}$ iff $t \in X$ for some $X, X \in \mathcal{F}$. but from supposition we know that for every $C \in \mathcal{F}$, $C \subseteq A$, so $X \subseteq A$, thus $t \in A$. we can conclude that $x \subseteq A$ and $x \in \mathcal{P}(A)$. also it is true to say that $x \in \mathcal{P}(C)$ for some C, therfore $x \in \bigcup \{\mathcal{P}(C) : C \in \mathcal{F}\}$.

Exercises 3.1

- 2. let $x \in (A \cup B) \times C$, it means that x = (u, v) which $u \in A \cup B$ and $v \in C$. $u \in A \cup B$ is true iff $u \in A$ or $u \in B$. if $u \in A$ then $(u, v) \in A \times C$. it is also true to say $(u, v) \in (A \times C) \cup (B \times C)$. if $u \in B$ then $(u, v) \in B \times C$, similarly $(u, v) \in (A \times C) \cup (B \times C)$.
- 3. $x \in (A/B) \times C$ iff $x = (u, v) \in A/B \times C$ iff $u \in A$ and $u \notin B$ and $v \in C$. from $u \in A$ and $v \in C$ we know $(u, v) \in A \times C$. from $u \notin B$ we can say $(u, v) \notin B \times C$, so $x \in A \times C \wedge x \notin B \times C$ which is definition of $x \in A \times C/B \times C$.

Exercises 3.2

- 1. Suppose that empty set is not a relation, so for some $s, s \in \emptyset$ such that $s \neq (u, v)$ for any u, v. but empty set has no member and it contradicts with supposition.
- 2.1. $x \in dom(R^{-1})$ iff $(x, y) \in R^{-1}$ for some y, iff $(x, y) \in R^{-1}$ then $(y, x) \in R$ for some y, so $x \in ran(R)$.

- 2.2. Let $y \in ran(R^{-1})$, so there is some x, such that $(x, y) \in R^{-1}$. it is also true to say that $(y, x) \in R$ for some x, so $y \in dom(R)$.
 - $2.3 (u, v) \in (R^{-1})^{-1}$, iff $(v, u) \in (R^{-1})$ iff $(u, v) \in R$.
- 3. let $y \in R[A]$, so there is some $x \in A$ such that $(x, y) \in R$. because $A \subseteq B$, we can conclude that $x \in B$. so we can say there is some $x \in B$ such that $(x, y) \in R$, so $y \in R[B]$.
- 5. let $(u, v) \in R | (A \cup B)$, it means that $(u, v) \in R$ and $u \in A \cup B$. if $u \in A$, we can conclude that $(u, v) \in R | A$ and also $(u, v) \in (R | A) \cup (R | B)$. if $u \in B$, with similar argument we can conclude that $(u, v) \in (R | A) \cup (R | B)$.
- 6. let $x \in fld(R)$, so $x \in dom(R) \cup ran(R)$. which means that there is some $y \in ran(R)$ such that $(x,y) \in R$ or $(y,x) \in R$ for some $y \in dom(R)$. for both situation, we know that $(x,y) = \{\{x\}, \{x,y\}\} \in R$, so $\{x\}, \{x,y\} \in \bigcup R$, thus $x,y \in \bigcup \bigcup R$. (it is true similarly for (y,x))
- 7. R|A is a set because $R|A \subseteq R$. and $R^{-1}[B], R[C] \subseteq \bigcup \bigcup R$. and $RoS \subseteq dom(S) \times ran(R)$. all of them are set.
- 8. Define for every $x \in \mathcal{G}$, $\phi(x,y) := y = R[x]$, We prove uniquess of this definition: Assume x = x'(1) we prove R[x] = R[x']. let $u \in R[x]$ then $(v,u) \in R$ for some $v \in x$, so by (1) $v \in x'$, so there is some $v \in x'$ such that $(v,u) \in R$ which is means that $v \in R[x']$, so R[x] = R[x']. then by axiom of replacement there exist a set U that containss R[x] for every $x \in \mathcal{G}$. Assume that \mathcal{G} is not empty, so there is some $C \in \mathcal{G}$, then R[C], then R[C] is empty or non-empty, in both case U is not empty(in the first case U is equal to $\{\emptyset\}$).
- 9. let $x \in A$ then $(x, y) \in R$ for some y, we know for every $(x, y) \in R$ iff $(y, x) \in R^{-1}$. thus we have $(x, y) \in R$ and $(y, x) \in R^{-1}$, it means that $(x, x) \in R^{-1}oR$. by $R^{-1}oR \subseteq R$ we can conclude $(x, x) \in R$, so R is reflexive.
 - 10. let $(x,y) \in R$, then $(y,x) \in R^{-1}$, because $R^{-1} \subseteq R$ then $(y,x) \in R$.

- 11. Let $(x,y) \in R$ and $(y,z) \in R$, we can conclude that $(x,z) \in RoR$, by assumption $(x,z) \in R$. thus R is transitive.
- 12. By Theorem 3.2.7 we have $R^{-1} = (R^{-1}oR)^{-1} = R^{-1}o(R^{-1})^{-1} = R^{-1}oR = R$. thus $R^{-1}oR = RoR \subseteq R$ by Exercise 11 R is transitive. Because of $R = R^{-1}$ we can say $R^{-1} \subseteq R$, by Exercise 10, R is symmetric.
- 14. Let $(x, y), (y, z) \in \cap \mathcal{G}$ then both of them are in every $C \in \mathcal{G}$. because C is transitive and $(x, y), (y, z) \in C$ we can conclude that $(x, z) \in C$ for every $C \in \mathcal{G}$, thus $(x, z) \in \cap \mathcal{G}$ and $\cap \mathcal{G}$ is transitive.
- 15. Let $x \in A$, because R is reflexive $(x, x) \in R$ and also $(x, x) \in R^{-1}$, thus R^{-1} is reflexive. let $(x, y) \in R^{-1}$, then $(y, x) \in R$, because R is symmetric $(x, y) \in R$, thus $(y, x) \in R^{-1}$ and R^{-1} is symmetric.
- Let $(x,y), (y,z) \in R^{-1}$, then $(y,x), (z,y) \in R$, because of transitivity of R we have $(z,x) \in R$, then $(x,z) \in R^{-1}$, so R^{-1} is transitive.
- 16. Let $(x,y) \in RoR$, then $(x,t) \in R$ and $(t,y) \in R$ for some t. because R is transitive $(x,y) \in R$. to prove converse, let $(x,y) \in R$, because R is symmetric, $(y,y) \in R$. so we can conclude that $(x,y) \in RoR$.
- 17. Let $(x, y) \in S$, because $y \in A$ and R is reflexive on A, $(y, y) \in R$. so we can say $(x, y) \in RoS$. again, we can say that $(x, x) \in R$, then $(x, y) \in SoR$.
- 18. Suppose $S \subseteq R(*)$ and $(x,y) \in SoR$. then $(x,t) \in R$ and $(t,y) \in S$ for some t. because of (*) $(t,y) \in R$, on the other hand R is transitive, so $(x,y) \in R$.
- Let $(x,y) \in R$, S is reflexive on A so we have $(y,y) \in S$, therefore $(x,y) \in SoR$
- To prove the converse, assume SoR = R and $(x, y) \in S$, because R is reflexive $(x, x) \in R$, so we have $(x, y) \in SoR = R$, therefore $S \subseteq R$.
- 21. Let $x \in R[A]/R[B]$, it means that $(a, x) \in R$ for some $a \in A$ and there is no $b \in B$ such that $(b, x) \in R$, the latter means for every $(y, x) \in R$ then $y \notin B(*)$. so by first, we can say there is some $a \in A$ such that $(a, x) \in R$ and by (*) $a \notin B$. therefore $x \in R[A/B]$.

- 22. Let $(x,y) \in RoS$ and $(t,y) \in RoS$. then $(x,z) \in S$ and $(z,y) \in R$ for some z. on the other hand, $(t,u) \in S$ and $(u,y) \in R$ but because R is single root relation we can say z = u, thus $(x,u) \in S$ and $(t,u) \in S$. but because S is single root we have t = x.
- 23. Let $(u, y) \in S$ and $(v, y) \in S$. because dom(R) = ran(S) and $y \in ran(S)$ there is some t such that $(y, t) \in R$ thus $(u, t) \in RoS$ and $(v, t) \in RoS$ fo some t. but because RoS is single root u = v.
- 24. $x \sim x$ because for all $x \in A$ there is some $C \in P$ such that $x \in C$ and $x \in C$. let $x \sim y$, so there is some $C \in P$ such that $x \in C$ and $y \in C$, because "and" is comutative it is true that $y \sim x$. Let $x \sim y$ and $y \sim z$, so there is some $C \in P$, $x \in C$ and $y \in C$. and there is some $D \in P$ such that $y \in D$ and $z \in D$. but because P is partition $C \cap D = \emptyset$ or C = D, because y is in both of them the first case can not be true, so C = D, so $x \sim z$.

Exercises 3.3

- 1.(lemma 3.3.5) Let $y \in F$, then there is some $x \in dom(F)$ such that y = F(x), but from supposition, we have y = F(x) = G(x) for all x in their ommon domain, it means that $(x, y) \in G$.
- 1.(lemma 3.3.13) Suppose F is a one-to-one function, let $(x, y), (z, y) \in F$ it means that F(x) = y = F(z), but because F is one-to-one, we can say z = x, thus for every $(x, y), (z, y) \in F$ we have x = z.
- 2. $y \in F[A]$ iff y = F(x) for some $x \in A$, but because $A \subseteq B \subseteq dom(F)$, we have y = F(x) for some $x \in B$, thus $y \in F[B]$.
- 3. Let $x \in A \subseteq dom(F)$, then there is unique $y = F(x) \in F[A]$, but because $F(x) \in B$ iff $x \in F^{-1}[B]$ (by definition), we can say $F(x) \in F[A]$ iff $x \in F^{-1}[F[A]]$.
- 4. Let $f(x) \in f[A]$, it means there is some $u \in A$ such that f(x) = f(u), but because f is one-to-one, x = u, thus $x \in A$.

- 5. Assume $g[A] \cap g[B] \neq \emptyset$, so there is some $a \in g[A], g[B]$. it means that there is some $u \in A$ such that a = g(u) and some $v \in B$ such that a = g(v), so g(u) = g(v) for some $v \in B$ and $u \in A$, but g is one-to-one and we have u = v, it means $u \in A \cap B$ which contradicts with assumption $A \cap B = \emptyset$.
- 6. $A \subseteq F^{-1}[F[A]]$ by Exercise 3. we prove other side. let $x \in F^{-1}[F[A]]$ then $F(x) \in F[A]$ which means that there is some $z \in A$ such that F(x) = F(z), but because F is one-to-one, we can say x = z and $x \in A$.
- 7. $x \in F^{-1}[C]$, iff $F(x) \in C$, because $C \subseteq D$, thus we have $F(x) \in D$, so $x \in F^{-1}[D]$.
- 8. Let $y \in C$, because F is onto there is some $x \in X$ such that $y = F(x) \in C$, then $x \in F^{-1}[C]$, because of $F^{-1}[C] \subseteq F^{-1}[D]$, we have $x \in F^{-1}[D]$, the last sentence is true iff $F(x) \in D$, thus $C \subseteq D$.
- 9. $x \in F^{-1}[C \cap D]$ iff $F(x) \in C \cap D$, because $F(x) \in C$ we have $x \in F^{-1}[C]$ and because of $F(x) \in D$, we can say $x \in F^{-1}[D]$ so $x \in F^{-1}[C] \cap F^{-1}[D]$. to prove converse, let $x \in F^{-1}[C] \cap F^{-1}[D]$, we have $F(x) \in C$ and $F(x) \in D$ wich means $F(x) \in C \cap D$, so $x \in F^{-1}[C \cap D]$.
- 10. We have $F \subseteq G$ by assumption so we just prove $G \subseteq F$. let $(x,y) \in G$, because $x \in A$ and F is a function from A to B, there must be some $(x,z) \in F$, because both $(x,z),(x,y) \in F$ by definition of function we have z=y, so $(x,y) \in F$.
- 11(a). Let $(x, y), (x, z) \in \bigcup \mathcal{C}$, then there are some $f, g \in \mathcal{C}$ such that $(x, y) \in f$ and $(x, z) \in g$, by assumption either $(x, y), (x, z) \in f$ or $(x, y), (x, z) \in g$, in both case by definition of function we have y = z, so $\bigcup \mathcal{C}$ is a function.
- 11(b). Let $(x, y), (z, y) \in \bigcup \mathcal{C}$ then there are some $f, g \in \mathcal{C}$ such that $(x, y) \in f$ and $(z, y) \in g$, by assumption either $(x, y), (z, y) \in f$ or $(x, y), (z, y) \in g$, both of them are one-to-one, so in either case we have x = z.
- 12. Let $y \in f[f^{-1}[C]]$, then there is some $x \in f^{-1}[C]$ such that y = f(x), but $x \in f^{-1}[C]$ means that $f(x) \in C$, so $y \in C$.

- 13. One side is provided by last exercise. we prove other side. let $y \in C$, because f is onto, there must be some $x \in A$ such that y = f(x), so $f(x) \in C$ iff $x \in f^{-1}[C]$ iff $f(x) \in f[f^{-1}[C]]$.
- 14. Suppose $y \in (FoG)[A]$, it means that there is some $x \in A$ such that z = G(x) and y = F(z)(*), so $z \in G[A]$ and because of (*) $y \in F[G[A]]$.
- 15. Let G[X] = G[Y] for some $X, Y \in \mathcal{P}(A)$, it means that f[X] = f[Y] i.e. $y \in f[X]$ iff $y \in f[Y]$. let $x \in X$ then $f(x) \in f[Y]$ which means there is some $y \in Y$ such that f(x) = f(y), because f is one-to-one y = x. the converse is similar.
- 16. $x \sim x$ because it is always true that F(x) = F(x), so \sim is reflexive. let $x \sim y$ which means F(x) = F(y), it is also true to say F(y) = F(x), so $y \sim x$. let $x \sim y$ and $y \sim z$, it means that F(x) = F(y) and F(y) = F(x), because of transitivity of = we have F(x) = F(z) which means that $x \sim z$ holds, so \sim is transitive.
- 18. Let $(x,y) \in F$ which means $(x,f(x)) \in F$, so y = f(x) by problems assumption we have f(y) = x, it means that $(y,x) \in F$. to prove the other side, let $x \in A$, there is some $(x,y) \in F$ such that F(x) = y, because F is symmetric we also have $(y,x) \in F$, so F(y) = x, by substition of later we have F(F(x)) = x.
- 19. Suppose that F(F(x)) = F(x) for all $x \in A$, let $(x,y) \in F$ and $(y,z) \in F$, it means that F(x) = y and F(y) = z, from supposition we have F(F(x)) = F(y) = F(x) = y, so we have F(x) = z which means that $(x,z) \in F$, so F is transitive.
- 20(a). let $x \in \bigcup_{i \in I} A_i$, it means that there is some $i \in I$ such that $x \in A_i$, because $A_i \subseteq B_i$ for all $i \in I$, we have $x \in B_i$, so we have last statement for some $i \in I$, it means that $x \in \bigcup_{i \in I} B_i$.
- 21. Let $C = \{A_i, i \in I\}$ be the range of indexed function. According to Theorem 3.3.24 there is a function $H : C \to \bigcup_{i \in I} A_i$ such that for all $A_i \in C$, $H(A_i) \in A_i$, so let $x : I \to \bigcup_{i \in I} A_i$ such that for each $i \in I$, $x(i) = H(A_i)$.

22. Let $(A_n, n \in N^+)$ be an indexed function such that $A_n = \{x \in R \mid 0 < x < \frac{1}{n}\}$, by axiom of choice we have a indexed function $(x_n, n \in N^+)$ such that $x_n \in A_n$ which means that $0 < x_n < \frac{1}{n}$.

Exercises 3.4

- 1. We want to prove that \leq is partial order. for every x we have $x \leq x$ and x + x = 2x and is even, so we have $x \leq x$ for all x and relation is reflexive. let $x \leq y$ and $y \leq x$, it means that $x \leq y$ and x + y = 2k. also we have $y \leq x$ and y + x = 2k, because \leq is a anti-symmetric relation, we have x = y. so \leq is also anti-symmetric. let $x \leq y$ and $y \leq z$, we have $x \leq y$ and $y \leq z$, and also x + y = 2k and y + z = 2k', by transitivity of \leq we have $x \leq z$ and also sum of them is even, because x + z = 2k y + 2k' y = 2(k + k' y). 1(a). No, because some members are not comparable, for example 2 and 3. sum of them is an odd number.
- 1(b). Yes, because the usual order is total and sum of two odd number is always even.
- 1(c). It has no lower and upper bound.
- 1(d). maximal: 4,5. minimal: 1,2.
- 2.1 Assume that $x \prec x$, it means that $x \leq x$ and $x \neq x$ but it is imposible. 2.2 Let $x \prec y$, then $x \leq y$ (*) and $x \neq y$. because \leq is antisymmetric we have either $x \not\leq y$ or $y \not\leq x$. because of (*) $y \not\leq x$ so we have $y \not\prec x$.
- 2.3 Suppose $x \prec y$ and $y \prec z$, by transivity of \leq we have $x \leq z$, it remains to prove $x \neq z$, assume it's negation x = z, so we have $x \prec y$ and $y \prec x$ which is in contradiction with asymmetric property of \prec .
- 2.4 for every x and y we have x = y or $x \neq y$, if first conclusion follows, if $x \neq y$, because \leq is total we have $x \leq y$ or $y \leq x$, in conjunct with $x \neq y$ follows that $x \prec y$ or $u \prec x$ or x = y.
 - 3. greatesst lower bound is 5 and least upper bound is 60.
- 4. Because $x \leq b$ for every $x \in S$ it is also among upper bounds of S. Assume that it is not least upper bounds, so it is not the case that $b \leq x$ for every x among upper bounds. so there is some l among upper bounds such that $bnot \leq l$, but because l is in upper bounds we have $b \leq l$ which contradicts latter.

- 5. because $l \leq g$ for every l among lower bounds, we have also $g' \leq g$. also from similar argument we kno what $g \leq g'$, because of antisymmetry we have g = g'.
- 6. (a) upper bound= $\{\{a, b\}, \{a, b, c\}\}\}$, lub= $\{a, b\}$. lower bound= $\{a, \emptyset\}$, glb= $\{a\}$.
- (b) upper bound= $\{\{a, b\}, \{a, b, c\}\}\}$, lub= $\{a, b\}$. lower bound= $\{\emptyset\}$.
 - 7. An argument similar to Lemma 3.4.10.
- 8. Upper Bound = $\{N, Q^+, Q, R^+, R\}$. least upper bound is N. (Does it have a maximal element? think of Zorn lemma)
 - 9. No.
- 10. Let h(x) = h(y), so we have $h(x) \le h(y)$ and $h(y) \le h(x)$. also $x \le y$ and $y \le x$. so because \le is antisymmetric we have x = y.
- 11. Reflexive: let x7inA, we have $h(x) \leq' h(x)$ because order is reflexive, thus by definition of \leq we have $x \leq x$. Antisymmetry: let $x \leq y$ and $y \leq x$, so we have $h(x) \leq' h(y)$ and $h(y) \leq'$

Antisymmetry: let $x \leq y$ and $y \leq x$, so we have $h(x) \leq h(y)$ and h(x) we have h(x) = h(y), because h is one-to-one x = y.

Transitive: let $x \leq y$ and $y \leq z$, it means that $h(x) \leq' h(y)$ and $h(y) \leq' h(z)$, because of transitivity we have $h(x) \leq' h(z)$, thus $x \leq z$.

- 12. From last Exercise we know that \leq is poset. we need to prove that it is total. let $x, y \in A$, by totallity of \leq' we have either $h(x) \leq' h(y)$ or $h(y) \leq' h(x)$, from this we can conclude that either $x \leq y$ or $y \leq x$.
- 13. Becuase $a \leq x$ for every $x \in S$ it is also among lower bound of S. assume that it is not greatest lower bound of S. so it is not the case that $x \leq a$ for all x in lower bound. so there is some l among lower bound such that $l \not \leq a$, but because l is lower bound of S and $a \in S$ we have $l \leq a$ which is in contradiction with latter.

14. $x \leq_C y$ iff $x \leq y$ and $x, y \in C$. Reflexive: for every $x \in C$ we have $x \leq x$, thus $x \leq_C x$.

Antisymmetry: let $x \leq_C y$ and $y \leq_C x$, it means that $x, y \in C$ and $x \leq y$ and $y \leq x$, thus x = y.

Transitive: let let $x \leq_C y$ and $y \leq_C z$, it means $x, y, z \in C$ and $x \leq y$ and $y \leq z$, thus by $x \leq z$ and $x, z \in C$ we have $x \leq_C z$.

if \leq is total, for every $x, y \in A$ we have either $x \leq y$ or $y \leq x$, because $C \subseteq A$ it is also true to say that for every $x, y \in A$ we have $x \leq y$ or $y \leq x$ which means that $x \leq_C y$ or $y \leq_C x$.

- 15. Let $x \leq y$ and $a \in P_x$, then we have $a \leq x$, by transitivity we can say $a \leq y$ so $x \in P_y$. to prove converse, let $P_x \subseteq P_y$, because \leq is reflexive we have $x \leq x$, so $x \in P_x$, thus $x \in P_y$ and also $x \leq y$. define $f(x) = P_x$ for every x. f is a isomorphic function.
- 16(a). Because C is a chain, we have $x \leq y$ or $y \leq x$ for all $x, y \in C$, thus we have $h(x) \leq' h(y)$ or $h(y) \leq' h(x)$ which both belong to h[C].
- 16(b). if h[C] is a chain, then for all $u, v \in h[C]$ we have u = h(x) and v = h(y) for some $x, y \in C$ such that $h(x) \leq' h(y)$ or $h(y) \leq' h(x)$, then also we have $x \leq y$ or $y \leq x$.by Exercise 10 we know that h is one-to-one, thus this is true for all distinct element of C.
- 16(c) let $u \in A$ such that $x \leq u$ for all $x \in C$, it is also true that $h(x) \leq' h(a)$ for all $x \in C$, in other word, for all $h(x) \in C$ there is some h(a) such that $h(x) \leq' h(a)$.
- 16(d). There is some $u \in B$ such that $y \leq' u$ for all $y \in h[C]$, it means that u = h(x) for some $x \in A$ (because h is onto) and $y \leq' h(x)$. but for all $y \in h[C]$ there is a unique $t \in C$ such that y = h(t) because h is one-to-one, thus we have $h(t) \leq' h(x)$ for all $t \in C$ and some $x \in A$, so we can conclude that $t \leq' x$ for some $x \in A$ and all $t \in C$.
- 17. Let $x \in A$ then $(x, x) \in \preceq$ or equivalently $\{\{x\}, \{x, x\}\} = \{\{x\}\} \in \preceq$, it means that $\{x\} \in \bigcup \preceq$, and also $x \in \bigcup \bigcup \preceq$, so $A \subseteq \bigcup \bigcup \preceq$. To prove converse, let $x \in \bigcup \bigcup \preceq$, it means that there is some $C \in \bigcup \preceq$ such that $x \in C$. but $C \in \bigcup \preceq$ means that there is some $D \in \preceq$ and $C \in D$, but every member of \preceq are in the form of (u, v), it means that $C = \{u\}$ or $C = \{u, v\}$ which means that x = u or x = v but because $\preceq \subseteq A \times A$, we

have $u, v \in A$ so $x \in A$, thus $A = \bigcup \bigcup \preceq$ but by Exercise number 6 of 3.2 we have $\bigcup \bigcup \preceq = fld(\preceq)$ thus $fld(\preceq) = A$.

18(a), Let $\preceq \subseteq \preceq'$, we have $\bigcup \preceq \subseteq \bigcup \preceq'$, also $\bigcup \bigcup \preceq \subseteq \bigcup \bigcup \preceq'$, so by Exercise 6 of 3.2 we have $fld(\preceq) \subseteq fld(\preceq')$.

Exercises 3.5

1. Assume f(x) = f(y), it means that [x] = [y]. because A/ is singleton we have x = y which means x = y, thus f is one-to-one. Assume some $y \in [x]$ such that $x \neq y$, then we have [x] = [y] so f(x) = f(y) but f is one-to-one, thus x = y which is contradiction. 2.

Exercises 4.1

- 1. Because I and K both are inductive set, $\emptyset \in I \cap J$. let $x \in I \cap J$, it means $x \in I$ and $x \in J$, so $x^+ \in I$ and $x^+ \in J$, thus we have $x^+ \in I \cap J$.
- 2. We know that $A \subseteq A^+$, by Theorem 4.1.10 for every transitive set A we have $\bigcup A^+ = A$, thus we have $\bigcup A^+ \subseteq A^+$.
- 3. IF $A \subseteq \mathcal{P}(A)$, then $\bigcup A \subseteq \bigcup \mathcal{P}(A)$, by Exercise 2.1, 30 we have $\bigcup A \subseteq A$. to prove converse let $\bigcup A \subseteq A$, then $\mathcal{P}(\bigcup A) \subseteq \mathcal{P}(A)$ by Exercise 2.1,31 $A \subseteq \mathcal{P}(\bigcup A)$, so we have $A \subseteq \mathcal{P}(A)$.
 - 4.if $\bigcup A \subseteq A$, then $\bigcup \bigcup A \subseteq \bigcup A$.
- 5. Let $x \in \bigcup \cap \mathcal{A}$, it means that there is some $C \in \bigcap \mathcal{A}$ such that $x \in C$. but we have $C \in B$ for all $B \in \mathcal{A}$, thus $x \in B$ for all $B \in \mathcal{A}$ because all member of \mathcal{A} are transitive, thus we have $x \in \bigcap \mathcal{A}$.

Let $x \in \bigcup \bigcup \mathcal{A}$, it means that there is some $C \in \bigcup \mathcal{A}$ such that $x \in C$, if $C \in \bigcup \mathcal{A}$ then there is some $B \in \mathcal{A}$ such that $C \in B$, but because B is transitive we have $x \in B$, it means that $x \in \bigcup \mathcal{A}$ so $x \in \bigcup \bigcup \mathcal{A} \subseteq \bigcup \mathcal{A}$.

7. Let $I = \{n \in \omega : n \neq n^+\}$, obviously $0 \in I$, let $n \in I$, so $n \neq n^+$ then by Thorem 4.1.12 we have $n^+ \neq (n^+)^+$, so $I = \omega$.

- 8. $n \neq n^+$ means that $n \not\subseteq n^+$ or $n^+ \not\subseteq n$, obviously $n \subseteq n^+$, thus we just have $n^+ \not\subseteq n$.
- 9. Let $n \subseteq m$, if $m \in n$ then $m \subseteq n$ (by Theorem 4.1.11), so we have n = m, thus $n \in n$ which is contradiction.
- Proof 2. Let $m \in \omega$ and $I = \{n \in \omega : (m \in n \to n \not\subseteq m)\}$, we have $0 \in I$ vacuously. let $n \in I$, it means that $m \in n \to n \not\subseteq m$. let $m \in n^+$ which means that m = n or $m \in n$. if first, by Exercise 8 we have $n^+ \not\subseteq m$. if $m \in n$, then $n \not\subseteq m$, then $n^+ \not\subseteq m$.
- 10. Let m = n in Exercise 9, then if $n \in n$ we have $n \not\subseteq n$ which is contradiction.
 - 11. if $\bigcup A = A$ then $\bigcup A \subseteq A$.

Let $x \in A$, then $x \in \bigcup A$, which means that there is some $y \in A$ such that $x \in y$.

Exercises 4.2

- 1. 2. Let $j, k \in A$ and f(j) = f(k) and $j \neq k$. because h is onto, we have some $x, y \in \omega$ such that j = h(x), k = h(y), thus we have f(h(x)) = f(h(y)), but by (2) we have $h(x^+) = f(h(x)) = f(h(y)) = h(y^+)$ it means that $x^+ = y^+$, thus x = y and it means that j = h(x) = h(y) = k which is contradiction.
- 3. Let $I = \{n \in \omega : h(n) \in h(n^+)\}$, $0 \in I$ because $h(0) = a \in f(a)$ it means $h(0) \in f(h(0))$ or equavalently $h(0) \in h(0^+)$.

Assume $n \in I$, it means that $h(n) \in h(n^+)$, because $h(n), h(n^+) \in A$ by (b) we have $f(h(n)) \in f(h(n^+))$ which mean that $h(n^+) \in h((n^+)^+)$, so $n^+ \in I$, thus $I = \omega$.

- 4.(a) is a set, because $\mathcal{S} \subseteq \mathcal{P}(A)$.
 - (b) is non-empty, because A itself satisfies condition.
- (c) $y \in C = \bigcap S$ because $y \in B$ for all $B \in S$. let $x \in F[C]$ it means that there is some $t \in C$ such that x = f(t), but $t \in C$ means that $t \in B$ for all

 $B \in C$ for which we have $F[B] \subseteq B$, thus $x = f(t) \in B$ for all $B \in C$, so $x \in C$.

- (d) for every $B \subseteq A$, if $y \in B$ and $F[B] \subseteq B$ then $B \in \mathcal{S}$ and because $C = \bigcap \mathcal{S}$ we have $C \subseteq B$.
- (e) By (c) we kno that $F[C] \subseteq C$, because $F[C], C \subseteq A = dom(F)$ by Exercise 3.3, 2 we have $F[F[C]] \subseteq F[C]$ and because $y \in F[C]$ we have $F[C] \in \mathcal{S}$, thus $F[C] \subseteq C$. The other side hold by (c) again, thus we have F[C] = C.

Exercises 4.3

- 1. Assume that $n \neq 0$, by Theorem 4.1.6 we have $n = k^+$ for some $k \in \omega$. then we have $m + k^+ = 0$, so by (A2) we have $(m + k)^+ = 0$ which means that $m + k \in 0$, but it is contradiction because $0 = \emptyset$. similar argument can be given for m = 0.
- 2. Assume $m \neq 0$ and $n \neq 0$, so we have $m.k^+ = 0$ for some k, then by (M2) we have m.k + m = 0. by previous exercise we have m = 0 and it is contrdiction.
- 3. Let $I = \{p \in \omega : m + p = n + p \to m = n\}$ we prove it is an inductive set. $0 \in I$ trivially, let $p \in I$ and assume $m + p^+ = n + p^+$, by (A2) we have $(m+p)^+ = (n+p)^+$ so we have m+p=n+p, but $p \in I$ thus m=n. so we have $p^+ \in I$ and $I = \omega$.
- 4. Let $I = \{n \in \omega : 0.n = 0\}, 0 \in I$ trivially. let $n \in I$, we have $0.n^+ = 0.n + 0$ but because 0.n = 0 we have $0.n^+ = 0$ thus $n^+ \in I$.
- 5. for a $m \in \omega$ let $I = \{n \in \omega : m^+.n = m.n + n\}$. $0 \in I$ because $m^+.0 = m.0 + 0 = 0$. Let $n \in I$, we have $m^+.n^+ = m^+.n + m^+$ (by (A2)) but because $n \in I$ we have $m^+.n^+ = (m.n + n) + m^+$

$$= m.n + (n + m^{+})$$
 by Associative prop

$$= m.n + (n + m)^{+}$$
 by (A2)

$$= m.n + (m + n)^{+}$$
 by Commutative prop

$$= m.n + (m + n^{+})$$
 by (A2)

$$= (m.n + m) + n^{+}$$
 by Associative prop

$$= m.n^{+} + n^{+}$$
 by (M2)

thus $n^+ \in I$ and $I = \omega$.

6. Let $n \in \omega$ and $I = \{m \in \omega : m.n = n.m\}$, $0 \in I$ because 0.n = 0 by Exercise 4, and 0 = n.0 by (M1), thus 0.n = n.0. Assume $m \in I$, then

$$m^+.n = m.n + n$$
 by previous exercise
= $n.m + n$ because $m \in I$
= $n.m^+$ by (M2)

so we have $m^+ \in I$ and $I = \omega$.

7. Let $I = \{n \in \omega : (\exists k \in \omega) n = 2.k \lor (\exists i \in \omega) n = 2.i + 1\}$. $0 \in I$ because 0 = 2.0 for k = 0. Let $n \in I$, then either there is some $k \in \omega$ such that n = 2.k or there is some $i \in \omega$ such that n = 2.i + 1. Assume that the first sentence is true. then let $n^+ = n + 1$ but because the first hold, we have $n^+ = 2.k + 1$ thus n^+ is odd and $n^+ \in I$. Now assume that the second, then $n^+ = n + 1 =$, by replace n with hypothesis, for some $i \in \omega$ we have

$$n^{+} = (2.i + 1) + 1$$

= $2.i + (1 + 1)$ by Associative
= $2.i + 2$ because $1 + 1 = 2$
= $2.i^{+}$ by (M2)

so n^+ is even, thus $n^+ \in I$ and $I = \omega$.

8. Let $I = \{n \in \omega : \neg (n \text{ is even and } n \text{ is odd})\}$, assume that 0 is even and is odd, if it is odd, then 0 = 2.i + 1 for some $i \in \omega$. but then $0 = (2.i)^+$ so zero is successor of a number which is contradiction. thus it is not the case that n is both even and odd, thus $0 \in I$.

Let $n \in I$, then by n is not even or is not odd. if first, there is no $k \in \omega$ such that n = 2.k and so $n^+ = 2.k + 1$, thus n^+ is not odd and is in I. if second, then there is no $i \in \omega$ such that n = 2.i + 1 and also $n^+ = 2.i^+$ (from previous exercise), thus n^+ is not even, so $n^+ \in I$.

9. For $m, n \in \omega$ let $I = \{k \in \omega : m^{n+k} = m^n . m^k\}$. because $m^{n+0} = m^n = m^n . 1 = m^n . m^0$, so $0 \in I$. Let $k \in I$, we have

$$m^{n+k^+} = m^{(n+k)^+}$$
 by (A2)
 $= m^{n+k}.m$ by (E2)
 $= (m^n.m^k).m$ because $k \in I$
 $= m^n.(m^k.m)$ by Associativ-

ity

$$= m^n.m^{k^+}$$
 by (E2)

so $k^+ \in I$.

10. For $m, n \in \omega$ let $I = \{k \in \omega : (m.n)^k = m^k.n^k\}$. because $(m.n)^0 = 1 = 1.1 = m^0.n^0$ then we have $0 \in I$. let $k \in I$, we have $(m.n)^{k^+}$

$$= (m.n)^k.(m.n)$$
 by (E2)
 $= m^k.n^k.(m.n)$ because $k \in I$
 $= m^k.n^k.(n.m)$ by Theorem 4.1.13
 $= m^k.(n^k.n).m$ by Theorem 4.1.12
 $= m^k.n^{k^+}.m$ by (E2)
 $= m^k.m.n^{k^+}$ by Theorem 1.4.13
 $= m^{k^+}.n^{k^+}$ by (E2)

Thus, $k^+ \in I$ and $I = \omega$.

11. For $m, n \in \omega$ let $I = \{k \in \omega : (m^n)^k = m^{n \cdot k}\}$. because $(m^n)^0 = 1 = m^{n \cdot 0}$, 0 belongs to I. let $k \in I$, then $(m^n)^{k^+}$

$$= (m^n)^k \cdot (m^n)$$
 by (E2)

$$= m^{n \cdot k} \cdot m^n$$
 because $k \in I$

$$= m^{n \cdot k + n}$$
 by Exercise 9

$$= m^{n \cdot k^+}$$
 by (M2) 9

so $k^+ \in I$, thus $I = \omega$.

Exercises 4.4

1. let $I = \{n \in \omega : 1 \subseteq n^+\}$. because $1 = 0^+$ we have $0 \in I$. assume $n \in I$, then $1 \subseteq n^+$ iff $1 = n^+$ or $1 \in n^+$. if first, we know that $n^+ \in (n^+)+$, thus $1 \in (n^+)+$. if second, $1 \in (n^+)^+$ by transitivity. in either case $1 \subseteq (n^+)^+$, thus $(n^+)^+ \in I$.

Proof two: by Lemma 4.4.6 we have $0 \le n$ for every $n \in \omega$. by Lemma 4.4.7 we have $0^+ \in n^+$, which means $1 \in n^+$ for all $n \in \omega$.

- 2. if $m \in n^+$ then $m \in n$ or m = n, in both case we have $m \in n$.
- 3. Let $n \in a$, by Theorem 4.4.9 we have $a \in n^+$ or $n^+ \in a$ or $n^+ = a$. we prove the first is imposible. if $a \in n^+$ then either $a \in n$ or a = n. if first,

then we have both $a \in n$ and $n \in a$ which contradicts the trichotomy law. if a = n then we have $n \in n$ by assumption which is again contradiction. thus it just remain $n^+ \in a$ or $n^+ = a$ which is equal to $n^+ \in a$.

- 4. Let $J = \{n \in I : n \in a \lor a \subseteq n\}$, we know that I is inductive, thus $0 \in I$.because $a \in \omega$ by Lemma 4.4.6 $0 \in a$, thus $0 \in J$. let $n \in J$. then $n \in I$ and $n \in a$ or $a \subseteq n$. if first, because ω is transitive, we have $n \in \omega$, by Lemma 4.4.7 $n^+ \in a^+$, it means that $n^+ \in a$ or $n^+ = a$, in either case $n^+ \in J$. if $a \subseteq n$, then because $n \subseteq n^+$ we have $a \subseteq n^+$, so $n^+ \in J$.
 - 5. By Corollary 4.4.10 if $m \in n$ then $m \subset n$, so $max(m, n) = m \cup n = n$.
- 6. Let $I = \{p \in \omega : m \in n \to m + p \in n + p\}$. if $m \in n$ then $m + 0 \in n + 0$, so $0 \in I$. let $p \in I$ and assume that $m \in n$, then we have $m + p \in n + p$, by Lemma 4.4.7 $(m + p)^+ \in (n + p)^+$. by (A2) $m + p^+ \in n + p^+$, thus $p^+ \in I$ and $I = \omega$.

7.Let $I = \{ p \in \omega : m + p \in n + p \to m \in n \}$. Clearly $0 \in I$. let $p \in I$, if $m + p^+ \in n + p^+$ then $(m + p)^+ \in (n + p)^+$ by (A2). By Corollary 4.4.8 we have $(m + p) \in (n + p)$ but then because $p \in I$ we have $m \in n$, thus $p^+ \in I$.

- 8. let $m, n \in \omega$ and $I = \{p \in \omega : m \in n \to m.p^+ \in n.p^+\}$. if $m \in n$ and p = 0, then $m.1 \in n.1$ iff $m.0^+ \in n.0^+$, thus $0 \in I$. Assume $m \in n$ and let $p \in I$, then $m.p^+ \in n.p^+$, by Theorem 4.4.11(1) we have $m.p^+ + m \in n.p^+ + m$, also because $m \in n$ again by Theorem 4.4.11(1) we have $n.p^+ + m \in n.p^+ + n$, then by transitivity we have $m.p^+ + m \in n.p^+ + n$ which means that $m.(p^+)^+ \in n.(p^+)^+$, thus $p^+ \in I$.
- 9. Assume $m.p^+ \in n.p^+$, by Theorem 4.4.9 for every $m, n \in \omega$ we have $m \in n$ or m = n or $n \in m$. if $n \in m$ by previous Exercise we have $n.p^+ \in m.p^+$, by transivity we have $m.p^+ \in m.p^+$ which is contradiction.
- 10. (1) Let m + p = n + p, by Theorem 4.4.9 we have either $m \in n$ or $n \in m$ or m = n. if first then by Theorem 4.4.11(1) we have $m + p \in n + p$ which is contradiction. Suppose the second holds, then $n + p \in m + p$ and again contradiction. the third case just remains.

- (2) Assume $p \neg 0$ and m.p = n.p, just like above we have either $m \in n$ or $n \in m$ or m = n. by Theorem 4.4.11(2) we get that the only possible case is m = n.
- 11. Let $m \in \omega$ and $I = \{p \in \omega : m \in m + p^+\}$. we know that $m \in m^+ = m + 1 = m + 0^+$, thus $0 \in I$. let $p \in I$, then we have $m \in m + p^+$. by Theorem 4.4.11(1) we have $m + 1 \in m + p^+ + 1$. because $m \in m + 1$ and transivity we have $m \in m + p^+ + 1$. by Associavity and (M2), Proposition 4.3.4 we conclude that $m \in m + (p^+)^+$, thus $p^+ \in I$.
- 12. Let $I = \{n \in \omega : m \in n \to m + p^+ = n\}$ for some $p \in \omega$. $0 \in I$ vacuously. let $n \in I$ and if $m \in n^+$ then either $m \in n$ or m = n. if first then because $n \in I$ we have $m + p^+ = n$, then $m + p^+ + 1 = n + 1$, thus we have $m + (p^+)^+ = n^+$ for some $p' = p^+ \in \omega$, thus $n^+ \in I$. if m = n then m + 1 = n + 1, which is equal to $m + 1 = n^+$, then we can say $m + p = n^+$ for some $p \in \omega$. thus in either case $n^+ \in I$.
- 13. One side follows from exercise 12, let's prove the other side. if $m+p^+=n$ for some $p \in \omega$, by Exercise 11 we have $m \in m+p^+$, then $m \in n$.
- 14.(a) Let $I = \{n \in \omega : m \in n \to F(m) \in F(n)\}$. Clearly $0 \in I$. let $n \in I$ and suppose that $m \in n^+$, then either $m \in n$ or m = n. if $m \in n$ then because $n \in I$ we have $F(m) \in F(n)$. but then because $F(n) \in F(n^+)$ by transitivty we have $F(m) \in F(n^+)$. if m = n then F(m) = F(n), again by replacing F(n) in $F(n) \in F(n^+)$ we get $F(m) \in F(n^+)$, thus $n^+ \in I$ and $I = \omega$.
- (b) Assume that F(m) = F(n)(*) for some $m, n \in \omega$ then we have either m = n or $m \in n$ or $n \in m$. if $m \in n$ by previous exercise we have $F(m) \in F(n)$ which contradicts (*), similarly this hold for $n \in m$, then it just remain that m = n.
- 15. Let $S = F[\omega]$, because $S \subseteq \omega$ by Theorem 4.4.13 it has a least element l such that l = F(k) for some $k \in \omega$. but again $k^+ \in \omega$ thus we have $F((k^+)^+) \in F(k^+)$, so $F(k^+) \in S$, it follows then $F(k^+) \in F(k)$ and both $F(k), F(k^+) \in S$ and F(k) is least element which is contradiction.

- 16. Let $U = \{x \in n^+ : e \subseteq x \text{ for all } e \in E\}$, thus U is upper bound of E. By well-ordering U has a least element m. we prove that $m \in E$. Assume that $m \notin E$. it means that $x \in m$ for all $x \in E$ (*)(and it is not possible x = m for any case). Certainly $m \neq 0$ because $E \neq \emptyset$ (when $E = \emptyset$ we would have $U = n^+$ which contains 0), thus we have $m = k^+$ for some $k \in \omega$. thus we can rewrite (*) like this : $x \in k^+$ for all $x \in E$, by Exercise 2 we have $x \in k$ for all $x \in E$, thus $k \in U$, but on the other hand we have $k \in m$ (because $k \in k^+ = m$) and m is least element which is a contradiction, thus $m \in E$.
- 17. Let $I = \{n \in \omega : F[n^+] \text{ has a largest element}\}$. clearly $0 \in I$ because $F[0^+]$ has just one element F(0). Assume $n \in I$ then $F[n^+]$ has a largest element m. $F[(n^+)] = F[n^+ \cup \{n^+\}] = F[n^+] \cup F[\{n^+\}]$ then $F[n^+]$ just have one element $k = F(n^+)$, by trichotomy law we have just one of either $k \in m$ or m = k or $m \in k$, if first or two then m is largest, if the third then k is largest.