Differential Privacy and Generalization Analysis A 387

Proof of Lemma 1 388

By applying Theorem 8 from Dwork et al. [8] to gradient computation, we can get the Lemma 1. 389

Lemma 1. Let A be an (ϵ, δ) -differentially private gradient descent algorithm with access to train-390 ing set S of size n. Let $\mathbf{w}_t = \mathcal{A}(S)$ be the parameter generated at iteration $t \in [T]$ and $\hat{\mathbf{g}}_t$ the 391 empirical gradient on S. For any $\sigma > 0$, $\beta > 0$, if the privacy cost of A satisfies $\epsilon \leq \sigma/13$, $\delta \leq \sigma\beta/(26\ln(26/\sigma))$, and sample size $n \geq 2\ln(8/\delta)/\epsilon^2$, we then have 392 393

$$\mathbb{P}\left\{|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i| \geq \sigma\right\} \leq \beta \quad \textit{for every } i \in [d] \textit{ and every } t \in [T] \;.$$

Proof Theorem 8 in Dwork et al. [8] shows that in order to achieve generalization error τ with 394 probability $1 - \rho$ for a (ϵ, δ) -differentially private algorithm (i.e., in order to guarantee for every 395 function ϕ_t , $\forall t \in [T]$, we have $\mathbb{P}[|\mathcal{P}[\phi_t] - \mathcal{E}_S[\phi_t]| \geq \tau] \leq \rho$), where $\mathcal{P}[\phi_t]$ is the population 396 value, $\mathcal{E}_S\left[\phi_t\right]$ is the empirical value evaluated on S and ρ and τ are any positive constant, we can set the $\epsilon \leq \frac{\tau}{13}$ and $\delta \leq \frac{\tau \rho}{26 \ln(26/\tau)}$. In our context, $\tau = \sigma$, $\beta = \rho$, ϕ_t is the gradient computation 397 398 function $\nabla \ell(\mathbf{w}_t, \mathbf{z})$, $\mathcal{P}\left[\phi_t\right]$ represents the population gradient \mathbf{g}_t^i , $\forall i \in [p]$, and $\mathcal{E}_S\left[\phi_t\right]$ represents 399 the sample gradient $\hat{\mathbf{g}}_t^i, \forall i \in [p]$. Thus we have $\mathbb{P}\left\{\left|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i\right| \geq \tau\right\} \leq \rho \text{ if } \epsilon \leq \frac{\sigma}{13}, \delta \leq \frac{\sigma\beta}{26\ln(26/\sigma)}$. 400

A.2 Proof of Lemma 2 401

Lemma 2. SAGD with DPG-LAP (Alg. 1) is $(\frac{\sqrt{T \ln(1/\delta)}G_1}{n\sigma}, \delta)$ -differentially private. 402

Proof At each iteration t, the algorithm is composed of two sequential parts: DPG to access the 403 training set S and compute $\tilde{\mathbf{g}}_t$, and parameter update based on estimated $\tilde{\mathbf{g}}_t$. We mark the DPG as 404 part A and the gradient descent as part B. We first show A preserves $\frac{G_1}{n\sigma}$ -differential privacy. Then according to the *post-processing property* of differential privacy (Proposition 2.1 in [7]) we have 405 406 $\mathcal{B} \circ \mathcal{A}$ is also $\frac{G_1}{n\sigma}$ -differentially private. 407

The part \mathcal{A} (DPG-Lap) uses the basic tool from differential privacy, the "Laplace Mechanism" (Def-408 inition 3.3 in [7]). The Laplace Mechanism adds i.i.d. Laplace noise to each coordinate of the 409 output. Adding noise from $Lap(\sigma)$ to a query of G_1/n sensitivity preserves $G_1/n\sigma$ -differential 410 privacy by (Theorem 3.6 in [7]). Over T iterations, we have T applications of a DPG-Lap. By the advanced composition theorem (Theorem 3.20 in [7]), T applications of a $\frac{G_1}{n\sigma}$ -differentially private 412 algorithm is $(\frac{\sqrt{T\ln(1/\delta)}G_1}{n\sigma}, \delta)$ -differentially private. So SAGD with DPG-Lap is $(\frac{\sqrt{T\ln(1/\delta)}2G_1}{n\sigma}, \delta)$ -differentially private. 413

A.3 Proof of Theorem 1 415

414

Theorem 1. Given $\sigma > 0$, let $\tilde{\mathbf{g}}_1,...,\tilde{\mathbf{g}}_T$ be gradients computed by DPG-LAP in SAGD. Set the number of iterations $2n\sigma^2/G_1^2 \leq T \leq n^2\sigma^4/(169\ln(1/(\sigma\beta))G_1^2)$, then for $t \in [T]$, $\beta > 0$, $\mu > 0$:

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\| \ge \sqrt{d}\sigma(1+\mu)\right\} \le d\beta + d\exp(-\mu) .$$

Proof The concentration bound is decomposed into two parts: 418

$$\mathbb{P}\left\{\|\hat{\mathbf{g}}_t - \mathbf{g}_t\| \geq \sqrt{d}\sigma(1+\mu)\right\} \leq \underbrace{\mathbb{P}\left\{\|\hat{\mathbf{g}}_t - \hat{\mathbf{g}}_t\| \geq \sqrt{d}\sigma\mu\right\}}_{T_1: \text{ empirical error}} + \underbrace{\mathbb{P}\left\{\|\hat{\mathbf{g}}_t - \mathbf{g}_t\| \geq \sqrt{d}\sigma\right\}}_{T_2: \text{ generalization error}}.$$

In the above inequality, there are two types of error we need to control. The first type of error,

referred to as empirical error T_1 , is the deviation between the differentially private estimated gradient 420

 $\hat{\mathbf{g}}_t$ and the empirical gradient $\hat{\mathbf{g}}_t$. The second type of error, referred to as generalization error T_2 , is 421

the deviation between the empirical gradient $\hat{\mathbf{g}}_t$ and the population gradient \mathbf{g}_t . 422

The second term T_2 can be bounded thorough the generalization guarantee of differential privacy.

Recall that from Lemma 1, under the condition in Theorem 3, we have for all $t \in [T]$, $i \in [d]$:

$$\mathbb{P}\left\{|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i| \ge \sigma\right\} \le \beta.$$

So that we have

$$\mathbb{P}\left\{\|\hat{\mathbf{g}}_t - \mathbf{g}_t\| \ge \sqrt{d}\sigma\right\} \le \mathbb{P}\left\{\|\hat{\mathbf{g}}_t - \mathbf{g}_t\|_{\infty} \ge \sigma\right\} \le d\mathbb{P}\left\{|\hat{\mathbf{g}}_t^i - \mathbf{g}_t^i| \ge \sigma\right\} \le d\beta. \tag{3}$$

Now we bound the second term T_1 . Recall that $\tilde{\mathbf{g}}_t = \hat{\mathbf{g}}_t + \mathbf{b}_t$, where \mathbf{b}_t is a noise vector with each coordinate drawn from Laplace noise Lap(σ). In this case, we have

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_{t} - \hat{\mathbf{g}}_{t}\| \ge \sqrt{d}\sigma\mu\right\} \le \mathbb{P}\left\{\|\mathbf{b}_{t}\| \ge \sqrt{d}\sigma\mu\right\} \le \mathbb{P}\left\{\|\mathbf{b}_{t}\|_{\infty} \ge \sigma\mu\right\} \tag{4}$$

$$\leq d\mathbb{P}\left\{|\mathbf{b}_t^i| \geq \sigma\mu\right\} = d\exp(-\mu).$$
 (5)

The second inequality comes from $\|\mathbf{b}_t\| \le \sqrt{d} \|\mathbf{b}_t\|_{\infty}$. The last equality comes from the property of Laplace distribution. Combine (3) and (4), we complete the proof.

430 A.4 Proof of Lemma 3

Lemma 3. SAGD with DPG-SPARSE (Alg. 2) is $(\frac{\sqrt{C_s \ln(2/\delta)}2G_1}{n\sigma}, \delta)$ -differentially private.

Proof At each iteration t, the algorithm is composed of two sequential parts: DPG-Sparse (part A) 432 and parameter update based on estimated $\tilde{\mathbf{g}}_t$ (part \mathcal{B}). We first show \mathcal{A} preserves $\frac{2G_1}{n\sigma}$ -differential 433 privacy. Then according to the post-processing property of differential privacy (Proposition 2.1 434 in [7]) we have $\mathcal{B} \circ \mathcal{A}$ is also $\frac{2G_1}{n\sigma}$ -differentially private. 435 The part A (DPG-Sparse) is a composition of basic tools from differential privacy, the "Sparse 436 Vector Algorithm" (Algorithm 2 in [7]) and the "Laplace Mechanism" (Definition 3.3 in [7]). In 437 our setting, the sparse vector algorithm takes as input a sequence of T sensitivity G_1/n queries, 438 and for each query, attempts to determine whether the value of the query, evaluated on the private 439 dataset S_1 , is above a fixed threshold $\gamma + \tau$ or below it. In our instantiation, the S_1 is the private data 440 set, and each function corresponds to the gradient computation function $\hat{\mathbf{g}}_t$ which is of sensitivity 441 G_1/n . By the privacy guarantee of the sparse vector algorithm, the sparse vector portion of SAGD 442 satisfies $G_1/n\sigma$ -differential privacy. The Laplace mechanism portion of SAGD satisfies $G_1/n\sigma$ -443 differential privacy by (Theorem 3.6 in [7]). Finally, the composition of two mechanisms satisfies 444 $\frac{2G_1}{n\sigma}$ -differential privacy. For the sparse vector technique, only the query that fails the validation, 445 corresponding to the 'above threshold', release the privacy of private dataset S_1 and pays a $\frac{2G_1}{n\sigma}$ 446 privacy cost. Over all the iterations T, We have C_s queries fail the validation. Thus, by the advanced composition theorem (Theorem 3.20 in [7]), C_s applications of a $\frac{2G}{n\sigma}$ -differentially private algorithm 447 448 is $(\frac{\sqrt{C_s \ln(2/\delta)} 2G_1}{n\sigma}, \delta)$ -differentially private. So SAGD with DPG-Sparse is $(\frac{\sqrt{C_s \ln(2/\delta)} 2G_1}{n\sigma}, \delta)$ -449 450

451 A.5 Proof of Theorem 3:

Theorem 3. Given $\sigma>0$, let $\tilde{\mathbf{g}}_1,...,\tilde{\mathbf{g}}_T$ be the gradients computed by DPG-SPARSE in SAGD. With a budget $n\sigma^2/(2G_1^2)\leq C_s\leq n^2\sigma^4/(676\ln(1/(\sigma\beta))G_1^2)$, then for $t\in[T],\beta>0$, $\mu>0$:

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\| \ge \sqrt{d}\sigma(1+\mu)\right\} \le d\beta + d\exp(-\mu) \ .$$

Proof The concentration bound can be decomposed into two parts:

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\| \geq \sqrt{d}\sigma(1+\mu)\right\} \leq \underbrace{\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \hat{\mathbf{g}}_{s_1,t}\| \geq \sqrt{d}\sigma\mu\right\}}_{T_1: \text{ empirical error}} + \underbrace{\mathbb{P}\left\{\|\hat{\mathbf{g}}_{s_1,t} - \mathbf{g}_t\| \geq \sqrt{d}\sigma\right\}}_{T_2: \text{ generalization error}}.$$

455 So that we have

$$\mathbb{P}\left\{\|\hat{\mathbf{g}}_{s_1,t} - \mathbf{g}_t\| \ge \sqrt{d}\sigma\right\} \le \mathbb{P}\left\{\|\hat{\mathbf{g}}_{s_1,t} - \mathbf{g}_t\|_{\infty} \ge \sigma\right\} \le d\mathbb{P}\left\{|\hat{\mathbf{g}}_{s_1,t}^i - \mathbf{g}_t^i| \ge \sigma\right\} \le d\beta. \quad (6)$$

Now we bound the second term T_1 by considering two cases, by depending on whether DPG-3

answers the query $\tilde{\mathbf{g}}_t$ by returning $\tilde{\mathbf{g}}_t = \hat{\mathbf{g}}_{s_1,t} + \mathbf{v}_t$ or by returning $\tilde{\mathbf{g}}_t = \hat{\mathbf{g}}_{s_2,t}$. In the first case, we

458 have

$$\|\tilde{\mathbf{g}}_t - \hat{\mathbf{g}}_{s_1,t}\| = \|\mathbf{v}_t\|$$

459 and

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \hat{\mathbf{g}}_{s_1,t}\| \ge \sqrt{d}\sigma\mu\right\} = \mathbb{P}\left\{\|\mathbf{v}_t\| \ge \sqrt{d}\sigma\mu\right\} \le d\exp(-\mu).$$

The last inequality comes from the $\|\mathbf{v}_t\| \leq \sqrt{d} \|\mathbf{v}_t\|_{\infty}$ and properties of the Laplace distribution.

In the second case, we have

$$\|\hat{\mathbf{g}}_t - \hat{\mathbf{g}}_{s_1,t}\| = \|\hat{\mathbf{g}}_{s_2,t} - \hat{\mathbf{g}}_{s_1,t}\| \le |\gamma| + |\tau|$$

462 and

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_{t} - \hat{\mathbf{g}}_{s_{1},t}\| \geq \sqrt{d}\sigma\mu\right\} = \mathbb{P}\left\{|\gamma| + |\tau| \geq \sqrt{d}\sigma\mu\right\} \\
\leq \mathbb{P}\left\{|\gamma| \geq \frac{2}{6}\sqrt{d}\sigma\mu\right\} + \mathbb{P}\left\{|\tau| \geq \frac{4}{6}\sqrt{d}\sigma\mu\right\} \\
= 2\exp(-\sqrt{d}\mu/6)$$

463 Combining these two cases, we have

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_{t} - \hat{\mathbf{g}}_{s_{1},t}\| \geq \sqrt{d}\sigma\mu\right\} \leq \max\left\{\mathbb{P}\left\{\|\mathbf{v}_{t}\| \geq \sqrt{d}\sigma\mu\right\}, \mathbb{P}\left\{|\gamma| + |\tau| \geq \sqrt{d}\sigma\mu\right\}\right\} \\
\leq \max\left\{d\exp(-\mu), 2\exp(-\sqrt{d}\mu/6)\right\} \\
= d\exp(-\mu).$$
(7)

Combine (6) and (7), we complete the proof.

465

B Non-asymptotic Convergence analysis

In this section, we present the proof of Theorem 2, 4, 5.

468 B.1 Proof of Theorem 2 and Theorem 4

- The proof of Theorem 2 consists of two parts: We first prove that the convergence rate of a gradient-
- based iterative algorithm is related to the gradient concentration error α and its iteration time T.
- Then we combine the concentration error α achieved by SAGD with DPG-Lap in Theorem 1 with
- the first part to complete the proof of Theorem 2. To simplify the analysis, we first use α and ξ to
- denote the generalization error $\sqrt{d\sigma(1+\mu)}$ and probability $d\beta + d\exp(-\mu)$ in Theorem 1 in the
- following analysis. The details are presented in the following theorem.
- Theorem 6. Let $\tilde{\mathbf{g}}_1,...,\tilde{\mathbf{g}}_T$ be the noisy gradients generated in Algorithm 1 through DPG oracle
- over T iterations. Then, for every $t \in [T]$, $\tilde{\mathbf{g}}_t$ satisfies

$$\mathbb{P}\{\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\| \ge \alpha\} \le \xi,$$

- where the values of α and ξ are given in Section A.
- 478 With the guarantee of Theorem 6, we have the following theorem showing the convergence of
- 479 SAGD.
- **Theorem 7.** let $\eta_t = \eta$. Further more assume that ν , β and η are chosen such that the following
- conditions satisfied: $\eta \leq \frac{\nu}{2L}$. Under the Assumption A1 and A2, the Algorithm 1 with T iterations,
- 482 $\phi_t(\tilde{\mathbf{g}}_1,...,\tilde{\mathbf{g}}_t) = \tilde{\mathbf{g}}_t$ and $\mathbf{v}_t = (1-\beta_2)\sum_{i=1}^t \beta_2^{t-i}\tilde{\mathbf{g}}_i^2$ achieves:

$$\min_{t=1,...,T} \|\nabla f(x_t)\|^2 \le (G+\nu) \times \left(\frac{f(\mathbf{w}_1) - f^*}{\eta T} + \frac{3\alpha^2}{4\nu}\right)$$
(8)

- with probability at least $1 T\xi$.
- We can now tackle the proof of our result stated in Theorem 7.
- **Proof** Using the update rule of RMSprop, we have $\phi_t(\tilde{\mathbf{g}}_1,...,\tilde{\mathbf{g}}_t) = \tilde{\mathbf{g}}_t$ and $\psi_t(\tilde{\mathbf{g}}_1,...,\tilde{\mathbf{g}}_t) = \tilde{\mathbf{g}}_t$
- 486 $(1-\beta_2)\sum_{i=1}^t \beta_2^{t-i} \tilde{\mathbf{g}}_i^2$. Thus, we can rewrite the update of Algorithm 1 as:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta_t \tilde{\mathbf{g}}_t / (\sqrt{\mathbf{v}_t} + \nu) \text{ and } \mathbf{v}_t = (1 - \beta_2) \sum_{t=1}^t \beta_2^{t-t} \tilde{\mathbf{g}}_i^2.$$

Let $\Delta_t = \tilde{\mathbf{g}}_t - g_t$, we obtain:

$$f(\mathbf{w}_{t+1}) \tag{9}$$

$$\leq f(\mathbf{w}_{t}) + \langle \mathbf{g}_{t}, \mathbf{w}_{t+1} - \mathbf{w}_{t} \rangle + \frac{L}{2} \| \mathbf{w}_{t+1} - \mathbf{w}_{t} \|^{2} \tag{10}$$

$$= f(\mathbf{w}_{t}) - \eta_{t} \langle \mathbf{g}_{t}, \tilde{\mathbf{g}}_{t} / (\sqrt{\mathbf{v}_{t}} + \nu) \rangle + \frac{L\eta_{t}^{2}}{2} \| \frac{\tilde{\mathbf{g}}_{t}}{(\sqrt{\mathbf{v}_{t}} + \nu)} \|^{2}$$

$$= f(\mathbf{w}_{t}) - \eta_{t} \langle \mathbf{g}_{t}, \frac{\mathbf{g}_{t} + \Delta_{t}}{\sqrt{\mathbf{v}_{t}} + \nu} \rangle + \frac{L\eta_{t}^{2}}{2} \| \frac{\mathbf{g}_{t} + \Delta_{t}}{\sqrt{\mathbf{v}_{t}} + \nu} \|^{2}$$

$$\leq f(\mathbf{w}_{t}) - \eta_{t} \langle \mathbf{g}_{t}, \frac{\mathbf{g}_{t}}{\sqrt{\mathbf{v}_{t}} + \nu} \rangle - \eta_{t} \langle \mathbf{g}_{t}, \frac{\Delta_{t}}{\sqrt{\mathbf{v}_{t}} + \nu} \rangle + L\eta_{t}^{2} \left(\| \frac{\mathbf{g}_{t}}{\sqrt{\mathbf{v}_{t}} + \nu} \|^{2} + \| \frac{\Delta_{t}}{\sqrt{\mathbf{v}_{t}} + \nu} \|^{2} \right)$$

$$= f(\mathbf{w}_{t}) - \eta_{t} \sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} - \eta_{t} \sum_{i=1}^{d} \frac{\mathbf{g}_{t}^{i} \Delta_{t}^{i}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} + L\eta_{t}^{2} \left(\sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2}}{(\sqrt{\mathbf{v}_{t}^{i}} + \nu)^{2}} + \sum_{i=1}^{d} \frac{[\Delta_{t}]_{i}^{2}}{(\sqrt{\mathbf{v}_{t}^{i}} + \nu)^{2}} \right)$$

$$\leq f(\mathbf{w}_{t}) - \eta_{t} \sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} + \frac{\eta_{t}}{2} \sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2} + [\Delta_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} + \frac{L\eta_{t}^{2}}{\nu} \left(\sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} + \sum_{i=1}^{d} \frac{[\Delta_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} \right)$$

$$= f(\mathbf{w}_{t}) - \left(\eta_{t} - \frac{\eta_{t}}{2} - \frac{L\eta_{t}^{2}}{\nu} \right) \sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu} + \left(\frac{\eta_{t}}{2} + \frac{L\eta_{t}^{2}}{\nu} \right) \sum_{i=1}^{d} \frac{[\Delta_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i}} + \nu}.$$

Given the parameter setting from the theorem, we see the following condition hold:

$$\frac{L\eta_t}{\nu} \le \frac{1}{4}.$$

489 Then we obtain

$$f(\mathbf{w}_{t+1}) \leq f(\mathbf{w}_{t}) - \frac{\eta}{4} \sum_{i=1}^{d} \frac{[\mathbf{g}_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i} + \nu}} + \frac{3\eta}{4} \sum_{i=1}^{d} \frac{[\Delta_{t}]_{i}^{2}}{\sqrt{\mathbf{v}_{t}^{i} + \nu}}$$
$$\leq f(\mathbf{w}_{t}) - \frac{\eta}{G + \nu} \|\mathbf{g}_{t}\|^{2} + \frac{3\eta}{4\epsilon} \|\Delta_{t}\|^{2}.$$

The second inequality follows from the fact that $0 \le \mathbf{v}_t^i \le G^2$. Using the telescoping sum and rearranging the inequality, we obtain

$$\frac{\eta}{G+\nu} \sum_{t=1}^{T} \|\mathbf{g}_{t}\|^{2} \leq f(\mathbf{w}_{1}) - f^{*} + \frac{3\eta}{4\epsilon} \sum_{t=1}^{T} \|\Delta_{t}\|^{2}.$$

Multiplying with $\frac{G+\nu}{\eta T}$ on both sides and with the guarantee in Theorem 1 that $\|\Delta_t\| \leq \alpha$ with probability at least $1-\xi$, we obtain

$$\min_{t=1,...,T} \|\mathbf{g}_t\|^2 \le (G+\nu) \times \left(\frac{f(\mathbf{w}_1) - f^*}{\eta T} + \frac{3\alpha^2}{4\nu}\right),\,$$

with probability at least $1 - T\xi$.

495

496

We may now present the proof of our Theorem 2.

- **Theorem 2.** Given training set S of size n, for $\nu > 0$, if $\eta_t = \eta$ with $\eta \le \nu/(2L)$, $\sigma = 1/n^{1/3}$,
- 499 iteration number $T = n^{2/3}/(169G_1^2(\ln d + 7\ln n/3))$, $\mu = \ln(1/\beta)$ and $\beta = 1/(dn^{5/3})$, then
- 500 SAGD with DPG-LAP algorithm yields:

$$\min_{1 \le t \le T} \left\| \nabla f(\mathbf{w}_t) \right\|^2 \le \mathcal{O}\left(\frac{\rho_{n,d} \left(f(\mathbf{w}_1) - f^* \right)}{n^{2/3}} \right) + \mathcal{O}\left(\frac{d\rho_{n,d}^2}{n^{2/3}} \right) ,$$

- with probability at least $1 \mathcal{O}(1/(\rho_{n,d}n))$.
- Proof First consider the gradient concentration bound achieved by SAGD (Theorem 1 and Theorem 3) that if $\frac{2n\sigma^2}{G_1^2} \leq T \leq \frac{n^2\sigma^4}{169\ln(1/(\sigma\beta))G_1^2}$, we have

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\| \ge \sqrt{d}\sigma(1+\mu)\right\} \le d\beta + d\exp(-\mu), \ \forall t \in [T].$$

Then bring the setting in Theorem 2 that $\sigma=1/n^{1/3}$, let $\mu=\ln(1/\beta)$ and $\beta=1/(dn^{5/3})$, we have

$$\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\|^2 \le d(1 + \ln d + \frac{5}{3} \ln n)^2 / n^{2/3},$$

- with probability at least $1 1/n^{5/3}$, when we set $T = n^{2/3} / \left(169G_1^2 (\ln d + \frac{7}{3} \ln n) \right)$.
- Connect this result with Theorem 7, so that we have $\alpha^2 = d(1 + \ln d + \frac{5}{3} \ln n)^2 / n^{2/3}$ and $\xi = 1/n^{5/3}$.
- Bring the value α^2 , ξ and $T = n^{2/3} / \left(169G_1^2 (\ln d + \frac{7}{3} \ln n) \right)$ into (8), with $\rho_{n,d} = O(\ln n + \ln d)$,
- 509 we have

$$\min_{t=1,...,T} \|\nabla f(\mathbf{w}_t)\|^2 \le O\left(\frac{\rho_{n,d} \left(f(\mathbf{w}_1) - f^{\star}\right)}{n^{2/3}}\right) + O\left(\frac{d\rho_{n,d}^2}{n^{2/3}}\right)$$

with probability at least $1 - O\left(\frac{1}{\rho_{n,d}n}\right)$ which concludes the proof.

- **Theorem 4.** Given training set S of size n, for $\nu > 0$, if $\eta_t = \eta$ which are chosen with $\eta \le \nu/(2L)$,
- noise level $\sigma=1/n^{1/3}$, and iteration number $T=n^{2/3}/\left(676G_1^2(\ln d+\frac{7}{3}\ln n)\right)$, then SAGD with
- DPG-SPARSE algorithm yields:

$$\min_{1 \leq t \leq T} \left\| \nabla f(\mathbf{w}_t) \right\|^2 \leq \mathcal{O}\left(\frac{\rho_{n,d} \left(f(\mathbf{w}_1) - f^{\star} \right)}{n^{2/3}} \right) + \mathcal{O}\left(\frac{d\rho_{n,d}^2}{n^{2/3}} \right) ,$$

- with probability at least $1 \mathcal{O}(1/(\rho_{n,d}n))$. 514
- **Proof** The proof of Theorem 4 follows the proof of Theorem 2 by considering the case $C_s = T$. \Box 515
- **B.2** Proof of Theorem 5 516
- **Theorem 5.** Consider the mini-batch SAGD with DPG-LAP. Given S of size n, with $\nu > 0$, $\eta_t = \eta \le \nu/(2L)$, noise level $\sigma = 1/n^{1/3}$, and epoch $T = m^{4/3}/\left(n169G_1^2(\ln d + \frac{7}{3}\ln n)\right)$, then:

$$\min_{t=1,...,T} \|\nabla f(\mathbf{w}_t)\|^2 \le \mathcal{O}\left(\frac{\rho_{n,d}\left(f(\mathbf{w}_1) - f^{\star}\right)}{(mn)^{1/3}}\right) + \mathcal{O}\left(\frac{d\rho_{n,d}^2}{(mn)^{1/3}}\right),\,$$

- with probability at least $1 \mathcal{O}(1/(\rho_{n,d}n))$. 519
- **Proof** When mini-batch SAGD calls **DPG** to access each batch s_k with size m for T times, we 520
- have mini-batch SAGD preserves $(\frac{\sqrt{T\ln(1/\delta)}G_1}{m\sigma}, \delta)$ -deferential privacy for each batch s_k . Now 521
- consider the gradient concentration bound achieved by DPG-Lap (Theorem 1) that if $\frac{2m\sigma^2}{G_*^2} \leq T \leq$ 522
- $\frac{m^2\sigma^4}{169\ln(1/(\sigma\beta))G_1^2}$, we have 523

$$\mathbb{P}\left\{\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\| \ge \sqrt{d}\sigma(1+\mu)\right\} \le d\beta + d\exp(-\mu), \ \forall t \in [T].$$

- Then bring the setting in Theorem 5 that $\sigma = 1/(nm)^{1/6}$, let $\mu = \ln(1/\beta)$ and $\beta = 1/(dn^{5/3})$, we 524
- 525

$$\|\tilde{\mathbf{g}}_t - \mathbf{g}_t\|^2 \le d(1 + \ln d + \frac{5}{3} \ln n)^2 / n^{2/3},$$

- with probability at least $1 1/n^{5/3}$, when we set
- $T = (mn)^{1/3} / (169G_1^2(\ln d + \frac{7}{3}\ln n)).$ 527
- Connect this result with Theorem 7, so that we have $\alpha^2=d(1+\ln d+\frac{5}{3}\ln n)^2/(mn)^{1/3}$ and $\xi=1/n^{5/3}$. Bring the value α^2 , ξ and $T=(mn)^{1/3}/\left(169G_1^2(\ln d+\frac{7}{3}\ln n)\right)$ into (8), with
- $\rho_{n,d} = O(\ln n + \ln d)$, we have

$$\min_{t=1,\dots,T} \|\nabla f(\mathbf{w}_t)\|^2 \le O\left(\frac{\rho_{n,d} \left(f(\mathbf{w}_1) - f^*\right)}{(mn)^{1/3}}\right) + O\left(\frac{d\rho_{n,d}^2}{(mn)^{1/3}}\right),$$

with probability at least $1 - O\left(\frac{1}{\rho_{n,d}n}\right)$. Here we complete the proof.

532