CS653 Analysis of Algorithms

1 Mathematical Foundations

1.1 Common functions

Reading: CLRS 3.2

- Monotonicity: Definitions of monotonically increasing/decreasing or strictly increasing/decreasing functions.
 Important note: In this course, since functions are used to represent time complexity, we restrict our attention to only increasing functions that map positive number(s) to positive number.
- Ceilings and floors: $\lceil x \rceil$ and $\lfloor x \rfloor$, where x can be any real number.

$$x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1, \lceil n/2 \rceil + \lfloor n/2 \rfloor = n.$$

- Modular arithmetic: $a \mod n = a |a/n| n$. $a \equiv b \mod n$ iff $a \mod n = b \mod n$.
- Polynomials: $p(n) = \sum_{i=0}^{d} a_i n^i$. (Note: Coefficients a_i and degree d are constants.)
- Exponentials: $a^0 = 1$, $a^{-1} = \frac{1}{a}$, $a^m \cdot a^n = a^{m+n}$, $a^m/a^n = a^{m-n}$.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
. (Note: $e = 2.71828...$)

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$$
.

• Logarithms: $\log n = \log_2 n$ or $\log_c n$ for some c we don't care about.

$$\log(ab) = \log a + \log b, \log(\frac{a}{b}) = \log a - \log b.$$

$$\log_a b = \frac{\log_c b}{\log_c a}$$
.

$$\log_a b^n = n \log_a b \neq (\log_a b)^n, a^{\log_a n} = n, a^{\log_c b} = b^{\log_c a}.$$

$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

• Factorials: $n! = n \cdot (n-1) \cdots 2 \cdot 1$.

$$n! = n \cdot (n-1)!$$
, $0! = 1$. (Recursive definition)

Sterling's approximation: $n! = \sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n}))$. (Note: Θ means having the same order of magnitude.)

The following approximation also holds: $n! = \sqrt{2\pi n} (\frac{n}{e})^n e^{\alpha_n}$, where $\frac{1}{12n+1} < \alpha_n < \frac{1}{12n}$.

$$\log n! = \Theta(n \log n).$$

• Functional iteration: A function f applied iteratively i times to an initial argument n. Defined recursively, $f^{(0)}(n) = n$ and $f^{(i)}(n) = f(f^{(i-1)}(n))$ for i > 0. (Note: The distinction between $f^{(i)}(n)$ and $f^{i}(n)$.)

For example, if
$$f(n) = 2n$$
 then $f^{(i)}(n) = 2^{i}n$.

- The log star function: $\log^* n = \min\{i \ge 0 : \log^{(i)} n \le 1\}$, which is a very slowly growing function. $\log^* 2 = 1$, $\log^* 4 = 2$, $\log^* 16 = 3$, $\log^* 65536 = 4$, $\log^* 2^{65536} = 5$.
- Fibonacci numbers: $F_0 = 0, F_1 = 1, F_i = F_{i-1} + F_{i-2}$ for $i \ge 2$.

 $F_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt{5}}$, where $\phi = \frac{1+\sqrt{5}}{2} = 1.61803...$ is called the golden ratio, $\hat{\phi} = \frac{1-\sqrt{5}}{2} = -0.61803...$ is the conjugate of ϕ , and both are roots of equation $x^2 = x + 1$.

1.2 Asymptotic notation

Reading: CLRS 3.1

• Used to compare the growth rate or order of magnitude of increasing functions. "Asymptotic" describes the behavior of functions in the limit, for sufficiently large values of variables.

1

• f(n) = O(g(n)) if $\exists c, n_0$ such that $f(n) \le cg(n)$ for $n \ge n_0$.

- $f(n) = \Omega(g(n))$ if $\exists c, n_0$ such that $f(n) \ge cg(n)$ for $n \ge n_0$.
- $f(n) = \Theta(g(n))$ if $\exists c_1, c_2, n_0$ such that $c_1g(n) \le f(n) \le c_2g(n)$ for $n \ge n_0$.
- f(n) = o(g(n)) if $\forall c \exists n_0$ such that f(n) < cg(n) for $n \ge n_0$.
- $f(n) = \omega(g(n))$ if $\forall c \exists n_0$ such that f(n) > cg(n) for $n \ge n_0$.
- Remarks:
 - In CLRS, the above notation is defined as sets of functions. For example, $f(n) \in O(g(n))$.
 - Comparison of growth rates of two functions: $O(\leq)$, $\Omega(\geq)$, $\Theta(=)$, o(<), $\omega(>)$.
 - f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$, and f(n) = o(g(n)) iff $g(n) = \omega(f(n))$.
 - $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - f(n) = O(g(n)) if f(n) = o(g(n)), and $f(n) = \Omega(g(n))$ if $f(n) = \omega(g(n))$.
 - An alternative definition for f(n) = o(g(n)) is $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Likewise, an alternative definition for $f(n) = \omega(g(n))$ is $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.
 - Asymptotic notation ignores constant factors and lower-order terms.
 - Rule of thumb: constant \leq polylogarithmic \leq polynomial \leq exponential \leq superexponential. Example: $1, \sqrt{\log n}, \ln n, (\log n)^2, \sqrt{n}, \sqrt{n} \log n, n, n \log n, n^2, n^{\log \log n}, 2^n, n 2^n, n!, 2^{2^n}$.
 - Taking logarithms helps: If f(n) = O(g(n)) then $\log f(n) = O(\log g(n))$ and if $\log f(n) = o(\log g(n))$ then f(n) = O(g(n)).
 - Be cautious when seeing asymptotic notations in summations and recursions. For examples, $\sum_{i=1}^{n} O(i)$ and T(n) = T(n-1) + O(n).

1.3 Summations/Series

Reading: CLRS A

- Property of linearity: $\sum_{i=1}^{n}(ca_i+b_i)=c\sum_{i=1}^{n}a_i+\sum_{i=1}^{n}b_i$ and $\sum_{i=1}^{n}\Theta(f(i))=\Theta(\sum_{i=1}^{n}f(k))$.
- Arithmetic sum/series: $\sum_{i=1}^{n} i = 1 + 2 + \cdots + n = \frac{1}{2}n(n+1)$.
- Geometric sum/series: $\sum_{i=0}^{n} r^i = 1 + r + r^2 + \dots + r^n = \frac{r^{n+1}-1}{r-1}$ for $r \neq 1$. $1 + r + r^2 + \dots = \frac{1}{1-r}$ for |r| < 1.
- Harmonic series: $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \ln n + \gamma + \frac{\varepsilon}{2n}$ for $\gamma = 0.5772156649\dots$ (Euler's constant) and $0 < \varepsilon < 1$. Example: Prove that $ln(n+1) < H_n < \ln n + 1$. (Approximation by integrals)

Remark: Use integrals to bound summations: Assume f(x) is monotonically decreasing, then $\int_{m}^{n+1} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x) dx$. (What if the function is monotonically increasing?)

- Binomial series: $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$.
- Other useful sums:

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$$
. (A direct proof starting with $\sum_{j=1}^{i} (2j-1) = i^2$)

$$\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$$
. (Proved by induction)

$$\sum_{i=1}^{n} ix^{i-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}$$
. (Proved by using derivatives)

1.4 Proof techniques

• Proving by contradiction:

The following three statements are logically equivalent:

- 1. If *A* then *B*.
- 2. If not *B* then not *A*.
- 3. If A and not B then not C, where C is a proved fact or axiom.

Example: Use contradiction to prove that (a) There are infinitely many prime numbers and (b) $\sqrt{2}$ is irrational.

• Proving by induction:

The following statements are mathematically equivalent:

- 1. P(n) for integers $n \ge c$.
- 2. Simple integer induction: P(c) and $P(n-1) \rightarrow P(n)$. (What are inductive basis, inductive hypothesis, and inductive step?)
- 3. General integer induction: P(c) and $(\forall i : c \le i \le n-1)P(i) \to P(n)$.

Example: Use induction to prove that (a) $\sum_{i=1}^{n} i^3 = (\sum_{i=1}^{n} i)^2$ and (b) Every positive composite integer can be expressed as a product of prime numbers.

1.5 Solving recurrences

Reading: CLRS 4.3-4.5

- Recurrence is an equation or inequality that defines a function in terms of the function's values on smaller inputs. For example, $T(1) = \Theta(1)$ (boundary condition) and $T(n) = 2T(\frac{n}{2}) + \Theta(n)$ for $n \ge 2$ (recurrence) or almost equivalently, T(1) = 1 and $T(n) = 2T(\frac{n}{2}) + n$ for $n \ge 2$.
- Remark: We may neglect some technical details due to our interest in asymptotic solutions:
 - Relax the integer argument requirement on functions. For example, use T(n/2) instead of $T(\lfloor n/2 \rfloor)$ or $T(\lceil n/2 \rceil)$.
 - Assume boundary condition $T(n) = \Theta(1)$ for small n if not given explicitly. Asymptotically, $\Theta(1)$ is the same as any constant c no matter how large it is.
 - Use $\Theta(f(n))$ or f(n) at will in the recursive definition since this will have no affect on the final answer when expressed in Θ ..
- The iteration method: Apply recurrence until a summation pattern can be figured out.

Example:
$$T(n) = 3T(\frac{n}{4}) + n$$
. (Assume $n = 4^k$.)

Example: Solve
$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$
 by iteration.

• The recursion-tree method: Similar to the iteration method, use a tree for bookkeeping. Suitable for solving recurrence in big-O, where the function appears more than once on the right-hand-side of the recursive equation

Example:
$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + n$$
.

Example: Solve
$$T(n) = T(\alpha n) + T((1 - \alpha)n) + n$$
, where $0 < \alpha < 1$, by recursion tree.

• The master method:

Theorem: If
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 for $a \ge 1$ and $b > 1$, then

(a) if
$$f(n) = O(n^{(\log_b a) - \varepsilon})$$
 for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$;

(b) if
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$;

(c) if
$$f(n) = \Omega(n^{(\log_b a) + \varepsilon})$$
 for $\varepsilon > 0$ and if $af(\frac{n}{b}) \le cf(n)$ for $c < 1$ and all large n , then $T(n) = \Theta(f(n))$.

Remark: The master method does not cover all cases.

Example:
$$T(n) = 3T(\frac{n}{4}) + n \log n$$
. $(a = 3, b = 4, \text{ and } f(n) = n \log n$. Case (c) applies.)

Example: Solve
$$T(n) = 4T(\frac{n}{2}) + f(n)$$
 by the master theorem for $f(n) = n, n^2, n^3$.

Example: $T(n) = 2T(\frac{n}{2}) + n \log n$. (The master theorem does not work.)

• The substitution method: Guess and verify.

Example: Let $T(n) \le cn$ for $n \le 49$ and $T(n) \le T(\frac{n}{5}) + T(\frac{3n}{4}) + cn$ for $n \ge 50$. (Guess $T(n) \le 20cn$ and then prove by induction. Can the recursion tree method be used?)

Remarks:

- Making a good guess.
- To prove T(n) = O(f(n)), sometimes we use an inequality stronger than $T(n) \le cf(n)$ in the induction, such as $T(n) \le 20cf(n)$ in the earlier example or $T(n) \le cf(n) d$ which can be used for solving $T(n) = 2T(\frac{n}{2}) + 1$.
- Avoid using asymptotic notation in the inductive proof.

Example: T(n) = T(n-1) + n. What is wrong with the following proof?

First guess T(n) = O(n).

Inductive basis: For n = 1, T(1) = 1 = O(1).

Inductive step: Assume T(n-1) = O(n-1)

$$T(n) = T(n-1) + n$$

$$= O(n-1) + n$$

$$= O(n).$$