

Verteilergetriebe für ein Kraftfahrzeug

Publication number: DE19839481

Publication date: 2000-03-02

Inventor: JACOB WERNER (DE); KROEBER ERICH (DE)

Applicant: SCHAEFFLER WAELZLAGER OHG (DE)

Classification:

- international: B60K17/16; F16C19/18; F16C19/56; F16C25/08;
F16C33/58; F16H48/08; F16H57/02; B60K17/16;
F16C19/00; F16C19/02; F16C25/00; F16C33/58;
F16H48/00; F16H57/02; (IPC1-7): F16H48/08;
B60K17/16

- European: F16C19/18; F16C19/56; F16C25/08; F16H1/40;
F16H57/02F1

Application number: DE19981039481 19980829

Priority number(s): DE19981039481 19980829

Also published as:

WO0012916 (A1)

EP1105662 (A1)

EP1105662 (A0)

EP1105662 (B2)

EP1105662 (B1)

[Report a data error here](#)

Abstract of DE19839481

The present invention relates to an intermediate gearbox for vehicles in which the conical gear shaft (5) is mounted in a housing (1) on two angular continuous ball bearings (16, 17), wherein said ball bearings are arranged in tandem, are spaced from each other, comprise two rows, can carry a load on one side and define an O-shaped system. When compared with traditional bearings with conical rollers, this system provides for a substantially reduced friction torque as well as for a minimal wear of the bearings.

Data supplied from the esp@cenet database - Worldwide

(12) Offenlegungsschrift
(10) DE 198 39 481 A 1

(5) Int. Cl. 7:
F 16 H 48/08
B 60 K 17/16

DE 198 39 481 A 1

(21) Aktenzeichen: 198 39 481.0
(22) Anmeldetag: 29. 8. 1998
(43) Offenlegungstag: 2. 3. 2000

(71) Anmelder:

INA Wälzlager Schaeffler oHG, 91074
Herzogenaurach, DE

(72) Erfinder:

Jacob, Werner, 60598 Frankfurt, DE; Kröber, Erich,
66909 Krottelbach, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht
zu ziehende Druckschriften:

DE 35 22 600 A1
DE 21 32 891 A1
US 27 21 486
US 21 47 144
US 21 35 477

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(54) Verteilergetriebe für ein Kraftfahrzeug

(57) Eine Kegelritzelwelle (5) eines Verteilergetriebes eines Kraftfahrzeuges ist in einem Gehäuse (1) über zwei von einander beabstandete einseitig belastbare zweireihige Tandem-Schrägkugellager (16, 17) gelagert, die zueinander in O-Anordnung angeordnet sind. Gegenüber der klassischen Lagerung durch Kegelrollenlager wird durch die erfindungsgemäße Lagerung ein wesentlich geringeres Reibmoment und ein wesentlich geringerer Lagerverschleiß erreicht.

Beschreibung

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verteilergetriebe mit einer Kegelritzelwelle, die über zwei von einander beabstandete und axial vorgespannte Wälzlagern in einem Getriebegehäuse gelagert ist und die mit einem Kegelritzel über ein Tellerrad ein im Getriebegehäuse gelagertes Ausgleichsgetriebe antreibt, wobei im Ausgleichsgetriebe Achswellen gelagert sind, die über Abtriebs- und Ausgleichsräder miteinander in Wirkverbindung stehen.

Hintergrund der Erfindung

Mit derartigen Verteilergetrieben wird erreicht, daß Antriebsräder jeder Achswelle bei Kurvenfahrt trotz unterschiedlicher Drehzahl schlupffrei abrollen können. Eine Kegelritzelwelle oder eine Kardanwelle treibt über ein Kegelritzel ein Tellerrad an, das drehfest mit dem Ausgleichsgetriebe verbunden ist, in dessen Inneren Abtriebsräder und Ausgleichsräder gelagert sind. Bei Geradeausfahrt sind diese Ausgleichsräder im Ausgleichsgetriebe in Ruhe, so daß sich beide Achswellen in gleicher Drehzahl wie das Tellerrad drehen. Bei Kurvenfahrt tritt eine Drehzahlendifferenz zwischen beiden Achswellen auf. Dabei rotieren die Ausgleichsräder und bewirken, daß die Drehzahlzunahme der einen Achswelle gegenüber der Drehzahl des Tellerrades genauso groß ist, wie die Drehzahlabnahme der anderen Achswelle gegenüber dem Tellerrad.

Ein solch gattungsgemäßes Ausgleichsgetriebe ist beispielhaft in dem Fachbuch "Wälzlagern -- Berechnung und Gestaltung" von W. Hampp, Springer-Verlag Berlin/Heidelberg/New York in der Abb. 88 dargestellt. Die Kegelritzelwelle ist dabei über zwei voneinander beabstandete Kegelrollenlager gelagert, die in axialer Richtung vorgespannt sind. Die Vorspannung erfolgt derart, daß diese Kegelrollenlager mit Hilfe einer Schraubverbindung in axialer Richtung aufeinander zubewegt werden.

Nachteilig dabei ist, daß bedingt durch die Vorspannung der Kegelrollenlager zwischen Stirnfläche der Kegelrollen und Bordfläche der Lagerringe eine gleitende Reibung einsetzt, die zu einem Verschleiß an Kegelrollen und Bordflächen führt. Dieser Verschleiß wiederum ist für einen Vorspannungsverlust der Lagerung verantwortlich, in dessen Gefolge wiederum eine Spielvergrößerung in der Verzahnung zwischen Kegelritzel und Tellerrad mit ihren negativen Folgen eintritt.

Zusammenfassung der Erfindung

Der Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Lagerung der Kegelritzelwelle eines Verteilergetriebes zu entwickeln.

Erfundungsgemäß wird diese Aufgabe nach dem kennzeichnenden Teil von Anspruch 1 dadurch gelöst, daß die Wälzläger als einseitig belastbare zweireihige Tandem-Schrägkugellager ausgebildet sind, die zueinander in O-Anordnung angestellt sind.

Die Vorteile der erfundungsgemäß gegenüber der klassischen Lösung mit Kegelrollenlagern sind folgende: Bedingt durch das wesentlich geringere Reibmoment aufgrund fehlender Gleitreibung der erfundungsgemäß Lagerung ergeben sich zwangsläufig auch geringere Lagertemperaturen und demnach auch eine geringere Ölsumpftemperatur. Insgesamt wird also ein besserer Wirkungsgrad und eine geringere Verlustleistung der Lagerung erzielt. Beim Einbau der erfundungsgemäß Lagerung in ein Kraftfahrzeug wird

nun als Folgeleistung auf Grund der geringeren Verlustleistung ein niedrigerer Kraftstoffverbrauch möglich. Die um etwa 40°C geringeren Temperaturen des Ölsumpfes machen es auch möglich, daß für das Getriebegehäuse der Brennkraftmaschine ein leichterer Gehäusewerkstoff, beispielsweise eine Magnesiumlegierung verwendet werden kann, die sich wiederum gewichtsersparend bemerkbar macht.

Ein weiterer Vorteil ist ein geringerer Verschleiß der Lagerung, der nur etwa 1/10 des Verschleißanteils der klassischen Lösung beträgt. Dieser geringe Verschleiß sorgt dafür, daß ein axiales Verschieben der Kegelritzelwelle mit der bekannten negativen Spielvergrößerung in der Verzahnung zwischen Kegelritzel der Kegelritzelwelle und dem mit dem Ausgleichsgetriebe verbundenem Tellerrad vermieden ist.

Weitere vorteilhafte Ausgestaltungen der erfundungsgemäß Lösung sind in den Unteransprüchen 2 bis 6 beschrieben. So ist nach den Ansprüchen 2 und 3 vorgesehen, daß die Laufbahnen eines Lagers einen gleichen oder einen unterschiedlichen Durchmesser bzw. einen gleichen oder einen unterschiedlichen Druckwinkel aufweisen.

Nach einem weiteren Merkmal gemäß Anspruch 4 sollen die Lagerkugeln beider Laufbahnen eines Lagers in Käfigen geführt sein und einen gleichen oder einen unterschiedlichen Durchmesser aufweisen.

Aus Anspruch 5 geht hervor, daß das am Kegelritzel der Kegelritzelwelle benachbart angeordnete erste zweireihige Tandem - Schrägkugellager größer als das zugehörige zweite dimensioniert ist. Diese zweckmäßige Ausgestaltung wird deshalb vorgenommen, da in unmittelbarer Nähe des Kegelritzels die größten Belastungen sowohl in radialem als auch in axialer Richtung aufgenommen werden müssen.

Schließlich geht aus Anspruch 6 hervor, daß der Innenring des zweiten zweireihigem Tandem-Schrägkugellagers in axialer Richtung an einer verformbaren Hülse abgestützt ist. Nach Einstellen der gewünschten Vorspannung sorgt diese Hülse dafür, daß durch Einwirken einer Gegenkraft die Stellschraube ebenfalls unter Vorspannung gesetzt ist und so ein Lösen dieser Gewindeschraube nicht möglich ist.

Nach dem zweiten unabhängigen Anspruch 7 wird die Aufgabe der Erfindung auch dadurch gelöst, daß die Wälzläger als je zwei einseitig belastbare, einteilige Schrägkugellager in Tandemanordnung ausgebildet sind, die zueinander in O-Anordnung angestellt sind.

Die Erfindung wird an nachstehendem Ausführungsbeispiel näher erläutert.

Kurze Beschreibung der Zeichnungen

Fig. 1 einen Schnitt durch ein Verteilergetriebe eines Kraftfahrzeugs nach dem bisherigen Stand der Technik,

Fig. 2 einen Längsschnitt durch eine Kegelritzelwelle mit der erfundungsgemäß Lagerung.

Ausführliche Beschreibung der Zeichnungen

Das in Fig. 1 dargestellte Kraftfahrzeug-Verteilergetriebe weist ein Gehäuse 1 auf, in dem ein Ausgleichsgetriebe 2 über zwei Kegelrollenlager 3 gelagert ist. Ein Kegelritzel 4 einer Kegelritzelwelle 5 treibt ein Tellerrad 6 an, das wiederum das Ausgleichsgetriebe 2 in Bewegung setzt. Das Ausgleichsgetriebe 2 ist über Ausgleichsräder 7 und Abtriebsräder 8 mit je einer Achswelle 9 verbunden, die nicht dargestellte Räder antreiben. Die Kegelritzelwelle 5 ist ebenfalls im Gehäuse 1 über zwei weitere von einander beabstandete Kegelrollenlager 10 gehalten, die durch ein Gewinde 11 in axialer Richtung aufeinander zubewegt, d. h. unter Vorspannung gesetzt sind.

Die Innenringe 12 der Kegelrollenlager 10 sind mit einem

radial nach außen weisenden Bord 13 versehen, an dem die Stirnflächen der Kegelrollen 14 anlaufen. Durch die vorgespannten Kegelrollenlager 10 entsteht eine gleitende Reibung zwischen Stirnfläche der Kegelrollen 14 und Innenfläche der Borde 13, die zu einem Verschleiß durch Materialabtrag führt und sich negativ auf das Verteilergetriebe auswirkt. D. h., eine solche Lagerung der Kegelritzelwelle 5 nach dem Stand der Technik hat ein hohes Reibmoment, hohe Lager- und Ölttemperaturen sowie einen schlechten Wirkungsgrad. Außerdem führt der durch Verschleiß an den Kegelrollen und Bordflächen sich einstellende Vorspannungsverlust zu einer Spielvergrößerung in der Verzahnung zwischen Antriebskegelrad 4 und Tellerrad 6.

Die in Fig. 2 im dargestellte Kegelritzelwelle 5 eines Verteilergetriebes weist einen abgestuften Schaft 15 auf, an dessen rechtsseitigem Ende das Kegelritzel 4 liegt. Im Gehäuse 1 ist die Kegelritzelwelle 5 über zwei voneinander beabstandete Tandem-Schrägkugellager 16 und 17 gehalten, die jeweils einstückige Lagerinnenringe 18 und einstückige Lageraußenringe 19 aufweisen, die je zwei Schultern 20 und 21 besitzen. Die Lagerkugeln 22 und 23 weisen innerhalb der Lager 16 und 17 die gleiche Größe auf und sind jeweils in Lagerkäfigen 24 geführt. Der Figur ist weiter entnehmbar, daß innerhalb eines Lagers 16 und 17 die nicht näherbezeichneten Laufbahnen der Lagerkugeln 22 und 23 einen unterschiedlichen Durchmesser besitzen. Da in der Nähe des Kegelritzels 4 die größten radialen und axialen Belastungen der Kegelritzelwellen 5 auftreten, ist das Tandem-Schrägkugellager 16 wesentlich größer dimensioniert als das Tandem-Schrägkugellager 17. Durch die O-Anordnung der beiden Tandem-Schrägkugellager 16 und 17 zueinander ist sichergestellt, daß jeweils eines der Lager 16, 17 die Kraft in einer axialen Richtung aufnehmen kann, d. h. ein axiales Verschieben der Kegelritzelwelle 5 ist nicht möglich. In bekannter Weise wird nun die Vorspannung derart erzeugt, daß durch Aufschrauben des Gewindeteiles 11 auf den Schaft 15 der Kegelritzelwelle 5 das Kegelritzel 4 in Richtung Gehäuse 1; d. h. axial nach links bewegt wird, so daß beide Lager 16, 17 unter Vorspannung gesetzt sind. Zwischen Lager 16 und 17 ist auf dem Schaft 15 der Kegelritzelwelle 5 eine Hülse 25 angeordnet, die sich einerseits am Innenring 18 des Lagers 17 und andererseits an einem nicht bezeichneten Absatz des Schafes 15 abstützt. Beim Anziehen des Gewindeteiles 11 wird zunächst der Lagerinnenring 18 des Lagers 17 nach rechts verschoben, so daß auf die Hülse 25 eine Verformungskraft ausgeübt wird, d. h. diese wird sich verformen. Bedingt durch diese Verformung wird jedoch von der Hülse 25 eine Gegenkraft auf den Innenring 18 des Lagers 17 ausgeübt, so daß das Gewindeteil 11 mit dieser Gegenkraft beaufschlagt ist und sich demzufolge nicht vom Gewinde des Schafes 15 der Kegelritzelwelle 5 lösen kann.

Im Gegensatz zur klassischen Lagerung einer Kegelritzelwelle 5 mit Kegelrollenlagern 10 ist auch bei einer relativ starken Vorspannung nur Rollreibung vorhanden, d. h. der Verschleiß wird sehr stark reduziert.

Bezugszeichenliste

1 Gehäuse	60
2 Ausgleichsgetriebe	
3 Kegelrollenlager	
4 Kegelritzel	
5 Kegelritzelwelle	
6 Tellerrad	
7 Ausgleichsrads	
8 Abtriebsrad	
9 Achswelle	
10 Kegelrollenlager	
11 Gewindeteil	65

- 11 Gewindeteil
- 12 Innenring
- 13 Bord
- 14 Kegelrolle
- 15 Schaft
- 16 Tandem-Schrägkugellager
- 17 Tandem-Schrägkugellager
- 18 Innenring
- 19 Außenring
- 20 Schulter
- 21 Schulter
- 22 Lagerkugel
- 23 Lagerkugel
- 24 Käfig
- 25 Hülse

Patentansprüche

1. Verteilergetriebe für ein Kraftfahrzeug mit einer Kegelritzelwelle (5), die über zwei voneinander beabstandete und axial vorgespannte Wälzläger in einem Getriebegehäuse (1) gelagert ist und die mit einem Kegelritzel (4) über ein Tellerrad (6) ein im Getriebegehäuse (1) gelagertes Ausgleichsgetriebe (2) antreibt, wobei im Ausgleichsgetriebe (2) Achswellen (9) gelagert sind, die über Abtriebs- (8) und Ausgleichsräder (7) miteinander in Wirkverbindung stehen, dadurch gekennzeichnet, daß die Wälzläger als einseitig belastbare zweireihige Tandem - Schrägkugellager (16, 17) ausgebildet sind, die zueinander in O-Anordnung ange stellt sind.
2. Verteilergetriebe nach Anspruch 1, dadurch gekennzeichnet, daß die Laufbahnen eines Lagers (16, 17) einen gleichen oder einen unterschiedlichen Durchmesser aufweisen.
3. Verteilergetriebe nach Anspruch 1, dadurch gekennzeichnet, daß die Laufbahnen eines Lagers (16, 17) einen gleichen oder einen unterschiedlichen Druckwin kel aufweisen.
4. Verteilergetriebe nach Anspruch 1, dadurch gekennzeichnet, daß die Lagerkugeln (22, 23) beider Laufbahnen eines Lagers (16, 17) in Käfigen (24) geführt sind und einen gleichen oder einen unterschiedlichen Durchmesser aufweisen.
5. Verteilergetriebe nach Anspruch 1, dadurch gekennzeichnet, daß das dem Kegelritzel (4) der Kegelritzelwelle (5) benachbart angeordnete erste Tandem-Schrägkugellager (16) größer als das zugehörige zweite (17) dimensioniert ist.
6. Verteilergetriebe nach Anspruch 1, dadurch gekennzeichnet, daß der Innenring (18) des zweiten zweireihigen Tandem-Schrägkugellagers (17) in axialer Richtung an einer verformbaren Hülse (25) abgestützt ist.
7. Verteilergetriebe nach dem Oberbegriff von Anspruch 1, dadurch gekennzeichnet, daß die Wälzläger als je zwei einseitig belastbare, einteilige Schrägkugellager in Tandemanordnung ausgebildet sind, die zueinander in O-Anordnung ange stellt sind.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Fig. 1

Fig. 2

