【华工包打听说明】

此答案由某位学生提供,包打整理无偿分享给大家,禁止用于资料买卖或他用

答案仅供参考,不保证正确。

更多资料欢迎大家关注包打听(QQ号、微信号或公众号)

校园资讯,问题答疑,感情树洞 万事皆可找包包

进入华工社群,探索华园更多玩法 黑市,学习群,二手交易,考试资料... 你能想到的,我们都愿意帮你实现

我们是华工包打听,由校内学生组建而成的校园自媒体立志成为陪伴华园学子度过漫长岁月的一盏灯

SCUT包打听(新

华工包打听

华工卫星站

包打听公众号

包打听QQ

由于华工包打听、华工卫星站好友人数已满,请加SCUT包打听或包打听QQ

更多资料、资讯,可加包打听公众号获取!

子 小

姓名

诚信应考, 考试作弊将带来严重后果!

华南理工大学期末考试

《线性代数与解析几何》(A)试卷(17-18年度第1学期)

注意事项: 1. 考前请将密封线内填写清楚;

- 2. 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;

4. 本试卷共 8 大题, 满分 100 分, 考试时间 120 分钟.

1. 1 10 (2) (0) (2) (1/3) 100 /3 , 3 10 (1/3) 1 1 2 2 0 /3 / 1 .										
题 号			三	四	五.	六	七	八	总 分	
得 分										

一、(15分)填空题.

- 1. 若n阶行列式D的值等于d,则将D的每个第(i,j)元素 a_{ij} 换到第(n-i+1,n-j+1)元素的位置上,得到的新行列式的值为____d___.

3. 设
$$n$$
为正整数, 矩阵 $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$, 则 $A^n = \begin{pmatrix} 1 & n & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2^n & 0 \\ 0 & 0 & 0 & 3^n \end{pmatrix}$

- 4. 与矩阵 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ 乘法可交换的所有矩阵为— $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$
- 5. 设 $\alpha_1 = (1, 4, 1), \alpha_2 = (2, 1, 0), \alpha_3 = (6, 2, -16), \beta = (2, t, 3), 当 t = 任意实数 时, \beta可由<math>\alpha_1, \alpha_2, \alpha_3$ 线性表出.
- 二、(18分)选择题:

1. 行列式
$$\begin{vmatrix} 8 & 27 & 64 & 125 \\ 4 & 9 & 16 & 25 \\ 2 & 3 & 4 & 5 \\ 1 & 1 & 1 & 1 \end{vmatrix} = (A).$$
(A) 12, (B) -12, (C) 16, (D) -16

得 分

2. 矩阵A是n阶方阵, A*是其伴随矩阵, 则下列结论错误的是(D).

- (A) 若A可逆, 则A*可逆 (B) 若A不可逆, 则A*也不可逆
- (C) $若|A^*| \neq 0$, 则A是可逆的 (D) $|AA^*| = |A|$.
- 3. 要下列齐次线性方程组有非零解, 只需条件(D) 满足:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

- (A) $m \le n$, (B) m = n, (C) m > n, (D) 系数矩阵的秩小于n.
- 4. 设3阶矩阵A的特征值为1, 0, -1, $f(x) = x^2 2x 1$, 则f(A)的特征值为(A)
- (A) -2, -1, 2, (B) -2, -1, -2, (C) 0, 1, -1, (D) 2, 0, -2.

- 5. 若矩阵A只和自己相似,则(\mathbf{C}).
- (A) A必为单位矩阵; (B) A必为零矩阵;
- (C) A必为数量矩阵; (D) A为任意对角矩阵.
- 6. 在下列二次型中, 属于正定二次型的是(C).
 - (A) $f(x_1, x_2, x_3) = x_1^2 + x_2^2$;
 - (B) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_1x_2 + x_3^2$;
 - (C) $f(x_1, x_2, x_3) = 4x_1^2 + 3x_2^2 + 6x_3^2 x_1x_2 x_1x_3$;
 - (D) $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$.
- 三、(7分)计算行列式

$$D = \begin{vmatrix} a & 2 & 3 & \cdots & n \\ 1 & a+1 & 3 & \cdots & n \\ 1 & 2 & a+2 & \cdots & n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 2 & 3 & \cdots & a+n-1 \end{vmatrix}.$$

$$D = \begin{vmatrix} a + \frac{(n-1)(n+2)}{2} & 2 & 3 & \cdots & n \\ a + \frac{(n-1)(n+2)}{2} & a+1 & 3 & \cdots & n \\ a + \frac{(n-1)(n+2)}{2} & 2 & a+2 & \cdots & n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a + \frac{(n-1)(n+2)}{2} & 2 & 3 & \cdots & a+n-1 \end{vmatrix} = \begin{pmatrix} (+3\cancel{)}\cancel{)} \\ \begin{vmatrix} a + \frac{(n-1)(n+2)}{2} & 2 & 3 & \cdots & n \\ 0 & a-1 & 0 & \cdots & 0 \\ 0 & 0 & a-1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a-1 \end{vmatrix}$$

$$= \begin{bmatrix} a + \frac{(n-1)(n+2)}{2} \\ a + \frac{(n-1)(n+2)}{2} \\$$

《线性代数与解析几何》试卷(A)第2页 共6页

四、(15分)求解下列非齐次线性方程组:

得	
分	

$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 7, \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = -2, \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 23, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 12, \end{cases}$$

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 7 \\
3 & 2 & 1 & 1 & -3 & -2 \\
0 & 1 & 2 & 2 & 6 & 23 \\
5 & 4 & 3 & 3 & -1 & 12
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 7 \\
0 & 1 & 2 & 2 & 6 & 23 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & -1 & -5 & | & -16 \\
0 & 1 & 2 & 2 & 6 & | & 23 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{cases} x_1 - x_3 - x_4 - 5x_5 = -16 \\ x_2 + 2x_3 + 2x_4 + 6x_5 = -2 \end{cases} \implies \begin{cases} x_1 = k_1 + k_2 + 5k_3 - 16 \\ x_2 = -2k_1 - 2k_2 - 6k_3 + 23 \\ x_3 = k_1 \\ x_4 = k_2 \\ x_5 = k_3 \end{cases}$$

通解:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = k_1 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{pmatrix} + k_3 \begin{pmatrix} 5 \\ -6 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -16 \\ 23 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

五、 (15 分) 在 \mathbb{R}^3 中, 求由基 ε_1 = (1,0,0), ε_2 = (1,1,0), ε_3 = (1,1,1)到基 η_1 = (1,2,3), η_2 = (2,3,1), η_3 = (3,1,2)的过渡矩阵, 并求向量 ξ = (1,0,1)在这两组基下的坐标.

分

$$\left(\varepsilon_{1}^{T} \quad \varepsilon_{2}^{T} \quad \varepsilon_{3}^{T} \mid \eta_{1}^{T} \quad \eta_{2}^{T} \quad \eta_{3}^{T} \right) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 3 & 1 & 2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & -1 & 2 \\ 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 3 & 1 & 2 \end{pmatrix}$$

$$+5$$

从基
$$\varepsilon_1, \varepsilon_2, \varepsilon_3$$
到基 η_1, η_2, η_3 的过渡矩阵 $P = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix}$

设 ξ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 的坐标为 (x_1, x_2, x_3)

$$x_1 \varepsilon_1 + x_2 \varepsilon_2 + x_3 \varepsilon_3 = \xi$$

$$\left(\mathcal{E}_{1}^{T}, \mathcal{E}_{2}^{T}, \mathcal{E}_{3}^{T}, \mathcal{E}^{T} \right) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$(x_1, x_2, x_3) = (0, -1, 1)$$

所以, ξ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 的坐标为(0,-1,1)

设 ξ 在基 η_1,η_2,η_3 的坐标为 (y_1,y_2,y_3)

$$y_1\eta_1 + y_2\eta_2 + y_3\eta_3 = \xi$$

$$\left(\eta_1^T, \eta_2^T, \eta_3^T, \xi^T \right) = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 1 & 0 \\ 3 & 1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1/9 \\ 0 & 1 & 0 & -2/9 \\ 0 & 0 & 1 & 4/9 \end{pmatrix}$$

$$(y_1, y_2, y_3) = \left(\frac{1}{9}, -\frac{2}{9}, \frac{4}{9}\right)$$

所以,*皆*在基
$$\eta_1, \eta_2, \eta$$
的坐标为 $\left(\frac{1}{9}, -\frac{2}{9}, \frac{4}{9}\right)$

六、(10分) 求过点(1,1,1), 且垂直于平面x-y+z=7和3x+2y-12z+5=0的平面方程.

$$\vec{n} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ 3 & 2 & -12 \end{vmatrix} = 10\vec{i} + 15\vec{j} + 5\vec{k}$$
 (+6 \cancel{j})

$$10(x-1)+15(y-1)+5(z-1)=0$$

平面方程:
$$2(x-1)+3(y-1)+(z-1)=0$$

即: $2x+3y+z-6=0$ (+4分)

七、
$$(15 分)$$
 设3阶实对称矩阵 $A = \begin{pmatrix} 6 & 2 & 4 \\ 2 & 3 & 2 \\ 4 & 2 & 6 \end{pmatrix}$, $\begin{bmatrix} \textbf{得} \\ \textbf{分} \end{bmatrix}$

(1) 求A的特征值、特征向量; (2) 求正交矩阵T, 使得 $T^{-1}AT$ 为对角形.

(1)

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 6 & -2 & -4 \\ -2 & \lambda - 3 & -2 \\ -4 & -2 & \lambda - 6 \end{vmatrix} = (\lambda - 2)^2 (\lambda - 11) \stackrel{\diamondsuit}{=} 0$$

特征值: $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = 11$

对 λ=2:

$$(\lambda E - A) = \begin{pmatrix} -4 & -2 & -4 \\ -2 & -1 & -2 \\ -4 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(\lambda E - A)X = 0$$
的基础解系: $\alpha_1 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

対应
$$\lambda$$
=2 的特征向量为: $\alpha_1 = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

对 λ=11:

$$(11E - A) = \begin{pmatrix} 5 & -2 & -4 \\ -2 & 8 & -2 \\ -4 & -2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

(11E-A)X=0的基础解系,也是对应 $\lambda=11$ 的特征向量 : $\alpha_3=egin{pmatrix}2\\1\\2\end{pmatrix}$

(2)
$$\alpha_1$$
, α_2 正交化: $\beta_1 = \begin{pmatrix} -1\\2\\0 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} -1\\0\\1 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} -1\\2\\0 \end{pmatrix} = \begin{pmatrix} -4/5\\-2/5\\1 \end{pmatrix}$

$$\beta_1,\beta_2,\alpha_3$$
单位化:
$$\begin{pmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{pmatrix}, \begin{pmatrix} -\frac{4}{3\sqrt{5}} \\ -\frac{2}{3\sqrt{5}} \\ \frac{\sqrt{5}}{3} \end{pmatrix}, \begin{pmatrix} 2/3 \\ 1/3 \\ 2/3 \end{pmatrix}$$

得正交矩阵
$$T = \begin{pmatrix} \frac{-1}{\sqrt{5}} & -\frac{4}{3\sqrt{5}} & \frac{2}{3} \\ \frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} & \frac{1}{3} \\ 0 & \frac{\sqrt{5}}{3} & \frac{2}{3} \end{pmatrix}$$

使得
$$T^{-1}AT = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 11 \end{pmatrix}$$

八、(5分) 设A是 $m \times n$ 矩阵, B是 $m \times k$ 矩阵, 且 $A = (\alpha_1, \alpha_2, ..., \alpha_n)$, $B = (\beta_1, \beta_2, ..., \beta_k)$ 是它们的列向量构成的分块矩阵. 假定对每个 β_j ,分块矩阵 (A, β_j) 的秩与A的秩相等. 令C = (A, B)为由A, B构成的分块矩阵, 证明: r(C) = r(A).

> 得 分

因为
$$r(A, \beta_i) = r(A)$$

 β_i 可以表示为 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 的线性组合 , $i=1,2,\cdots,k$

则 $\beta_1,\beta_2,\cdots,\beta_k,\alpha_1,\alpha_2,\cdots,\alpha_n$ 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示

所以, $r(A,B) \le r(A)$

 $abla r(A,B) \ge r(A)$

因此, r(C) = r(A, B) = r(A)