3-) Sea j:[a,b] integrable y f(x)=0 pora algún x ∈]c,d[, con accodab cualesquiera. Veames que [bf(x)dx=0.

Dado que f integrable $\Rightarrow \exists \text{IE}[R/f]^{\circ}f = \text{I}$. Consideremos $R \in P([a,b])/P_n = \{a,a+\frac{b-a}{n},a+2\frac{b-a}{n},...,b\}$. Dentro de R, vernos que, por hipóteris, $\exists t_i \in [x_{i-1},x_i] \forall i \in \{1,...,n\}, x_i \in P_n$, con $\exists t_i \in [a,a+2\frac{b-a}{n},...,b]$. Alora P_n la partición exiquetada $\exists P_n, t_i \in [a,a+2\frac{b-a}{n},x_i] \neq [a,b] = \sum_{i=1}^{n} \exists \{t_i\}(x_i-x_{i-1}) = 0$, pero Salvenos que, al ser inf $\{\exists \{[x_{i-1},x_i]\}\} \leq \exists \{t_i\} \leq \exists \{t_i\} \in [a,b] = \sum_{i=1}^{n} \exists \{t_i\}(x_i-x_{i-1})\} = 0$. For ser $\exists \{t_i\}(x_i-x_i)\} = \sum_{i=1}^{n} \exists \{t$

Sea $f:[a,b] \rightarrow \mathbb{R}$ continua $/f(x) \ge 0$ $\forall x \in [a,b]$. Supongamos que $\exists x_0 \in [a,b]/f(x_0) > 0$ y problemos que $\int_a^b f(x) dx > 0$.

Como por el Teorema de Wierstrass, al ser f continua en un internalo cerrado y ocatado, alcanza un máximo absoluto, M>O/ $f(x) \le M$ $\forall x \in [a,b]$. Por ello, es avidente que S(f,Pn)>0 Así, dado que $I(f,Pn) \le I \le S(f,Pn)$, deducimos que I>0.

(5-)