QCM n° 8

Un peu de calcul.

Échauffement n°1 Soit $A = \left\{ \frac{p \arctan(n)}{1+p} , (n,p) \in \mathbb{N}^2 \right\}$. Déterminer, s'ils existent, les inf, sup, min et max de A.

Échauffement n°2 Inverser la matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{pmatrix}$.

Échauffement n°3 Effectuer le produit suivant en n'utilisant que des opérations élémentaires sur les lignes et colonnes des matrices : $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 8 \\ -7 & 9 & 10 \\ 1 & 5 & -6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Soient a, b et c des réels.

- \square si $a \leq 0$ alors $(-a)^2 \geq 0$.
- \Box Si $a^2 + b^3 < 0$ alors b < 0.
- \square Si $a^2 + b^2 + c^2 = 0$, alors (a, b, c) = (0, 0, 0).
- \square Si $a \neq b$, $b \neq c$ et $a \neq c$ alors $(a b + c)^2 \neq 0$.

Question $\mathbf{n}^{\circ}\mathbf{2}$ Soit $A \subset \mathbb{R}$.

 \square A a un sup dans \mathbb{R} .

 \square si A a un max, elle a un sup.

 \square A a un sup dans $\bar{\mathbb{R}}$.

 \square si A a un sup, elle a un max.

Question n°3	Soit $A \subset \mathbb{R}$ ayant une borne sup	érieure notée a .
$\Box \ a \in A.$ $\Box \ a \notin A.$ $\Box \ \text{pour tout } \varepsilon$	$>0,]a-\varepsilon, a+\varepsilon[\cap A\neq\varnothing.$	
Question n°4	Soit $a, b, c, d \in \mathbb{Z}^*$. Alors :	
\square s'il existe u et v entiers tels que $au + bv = 4$ alors $\operatorname{pgcd}(a, b) = 4$.		
\square si $7a - 9b = 1$ alors a et b sont premiers entre eux.		
\square si a divise b et b divise c et c divise a, alors $ a = b $.		
\square « a et b premiers entre eux » équivaut à « $\operatorname{ppcm}(a,b) = ab $ ».		
\square si a divise c	et b divise d , alors ab divise cd .	
\square si 9 divise ab et si 9 ne divise pas a , alors 9 divise b .		
\square si a divise b ou a divise c , alors a divise bc .		
\square « a divise b » équivaut à « $\operatorname{ppcm}(a,b) = b $ ».		
\square si a divise b, alors a n'est pas premier avec b.		
\square si a n'est pas premier avec b , alors a divise b ou b divise a .		