

INTERNET PROTOCOL SECURITY

AN OVERVIEW OF IPSEC

OUTLINE:

- What Security Problem?
- Understanding TCP/IP.
- Security at What Level?
- IP Security.
- IPSec Security Services.
- Modes of operation.
- IPSec Security Protocols.
- Outbound/Inbound IPSec Processing.
- Real World Deployment Examples.

WHAT SECURITY PROBLEM?

Today's Internet is primarily comprised of:

- Public
- Un-trusted
- Unreliable IP networks

Because of this inherent lack of security, the Internet is subject to various types of threats...

INTERNET THREATS

Data integrity

The contents of a packet can be accidentally or deliberately modified.

Identity spoofing

The origin of an IP packet can be forged.

Anti-reply attacks

Unauthorized data can be retransmitted.

Loss of privacy

The contents of a packet can be examined in transit.

OSI Reference Model

Application Layer		
Presentation Layer		
Session Layer		
Transport Layer		
Network Layer		
Logical Link Layer		
Physical Layer		

Encapsulation of Data for Network Delivery

Application Layer Original Message

Packet Sent by Host A

Packet Received by intermediary Router

Packet Received by Host B

De-capsulation of Data from Network Delivery

De-capsulation of Data from Network Delivery

Data Link Layer

Data I

De-capsulation of Data from Network Delivery

Network Layer (IP)

Data 2

De-capsulation of Data from Network Delivery

Transport Layer (TCP, UDP)

Data 3

De-capsulation of Data from Network Delivery

Application Layer Message

SECURITY AT WHAT LEVEL?

Application Layer

Transport Layer

Network Layer

Data Link Layer

PGP, Kerberos, SSH, etc.

Transport Layer Security (TLS)

IP Security

Hardware encryption

SECURITY AT APPLICATION LAYER

(PGP, Kerberos, SSH, etc.)

- Implemented in end-hosts
- Advantages
- Extend application without involving operating system.
- Application can understand the data and can provide the appropriate security.
- Disadvantages
- Security mechanisms have to be designed independently of each application.

SECURITY AT TRANSPORT LAYER

Transport Layer Security (TLS)

- Implemented in end-hosts
- Advantages
- Existing applications get security seamlessly
- Disadvantages
- Protocol specific

SECURITY AT NETWORK LAYER

IP Security (IPSec)

- Advantages
- Provides seamless security to application and transport layers (ULPs).
- Allows per flow or per connection security and thus allows for very fine-grained security control.
- Disadvantages
- More difficult to to exercise on a per user basis on a multi-user machine.

SECURITY AT DATA LINK LAYER

- (Hardware encryption)
- Need a dedicated link between host/routers.
- Advantages
- Speed.
- Disadvantages
- Not scalable.
- Need dedicated links.

IP SECURITY (IPSEC)

 IPSec is a framework of open standards developed by the Internet Engineering Task Force (IETF).

Creates secure, authenticated, reliable communications over IP networks

IPSEC SECURITY SERVICES

- Connectionless integrity
 - Assurance that received traffic has not been modified. Integrity includes anti-reply defenses.
- Data origin authentication
 - Assurance that traffic is sent by legitimate party or parties.
- Confidentiality (encryption)
 - Assurance that user's traffic is not examined by non-authorized parties.
- Access control
 - Prevention of unauthorized use of a resource.

IPSEC MODES OF OPERATION

Transport Mode: protect the upper layer protocols

IP **TCP Data** Original IP Header Header Datagram Transport Mode IP **IPSec TCP** Data protected packet Header Header Header protected

Tunnel Mode: protect the entire IP payload

Tunnel Mode protected packet

New IP Header

IPSec Header

Original IP TCP Header

Header

Data

protected

TUNNEL MODE

Host-to-Network, Network-to-Network

SG = Security Gateway

TRANSPORT MODE

Host-to-Host

Application Layer	←	Application Layer
Transport Layer	←	Transport Layer
IPSec	←	IPSec
IP Layer	←	IP Layer
Data Link Layer	←	Data Link Layer
Host A		Host B

IPSEC SECURITY PROTOCOLS

- Authentication Header (AH)
- Encapsulating Security Payload (ESP)

IPSEC SECURITY PROTOCOLS

- Authentication Header (AH) provides:
- Connectionless integrity
- Data origin authentication
- Protection against replay attacks
- Encapsulating Security Payload (ESP) provides:
- Confidentiality (encryption)
- Connectionless integrity
- Data origin authentication
- Protection against reply attacks
- Both protocols may be used alone or applied in combination with each other.

OUTBOUND/INBOUND IPSEC PROCESSING

 The inbound and the outbound IPSec processing are completely independent.

OUTBOUND IPSEC PROCESSING

SPD = Security Policy Database

SAD = Security Association Database

SA = Security Association

2. Bypass IPSec.

3. Apply IPSec.

INBOUND IPSEC PROCESSING

SA = Security Association

INBOUND IPSEC PROCESSING

SPD = Security Policy Database

SAD = Security Association Database

SA = Security Association

CONCLUSION

The Internet was not created with security in mind.

Communications can be altered, examined and exploited.

• There is a growing need to protect **private information** crossing the **public networks** that make up the Internet infrastructure.

IPSec is a set of protocols and methodologies to create secure IP connections.

QUESTIONS?

