

MH

METAHEURÍSTICAS

Curso: 3^o Grupo: 1

Práctica 3 MDP

Autor: Mario Carmona Segovia

DNI: 45922466E E-mail: mcs2000carmona@correo.ugr.es

Profesor: Daniel Molina

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2020 - 2021

ÍNDICE

Índice

1.	Descripción del problema	5
2.	2.1.1. Representación de las soluciones	7
3.	Descripción de la Búsqueda Local	ç
	3.1. Funciones comunes))))
	3.2.1. Método de exploración del entorno	L 1 L 1 L 1
4.	Descripción del Greedy 4.1. Algoritmo de comparación	3
5.	Descripción del Algoritmo Genético15.1. Esquema de evolución y reemplazamiento15.1.1. Generacional15.1.2. Estacionario1	15
6.	6.1.2. Segundo esquema	
7.	7.2. Cálculo de la temperatura inicial	21 23 23
8.	Descripción del Algoritmo de Búsqueda Multiarranque Básica 2 8.1. Esquema de búsqueda	2 4
9.	9.1. Esquema de búsqueda	25 25

ÍNDICE

10.Desarrollo de la práctica 29
10.1. Compilación
10.2. Limpiar ficheros derivados de la compilación
10.3. Obtener resultados
10.4. Distribución de carpetas
11. Experimentos y Análisis de resultados 31
11.1. Descripción de los casos y valores de parámetros
11.2. Resultados obtenidos
11.2.1. Búsqueda Local
11.2.2. Greedy
11.2.3. Algoritmo Genético
11.2.4. Algoritmo Memético
11.2.5. Algoritmo Enfriamiento Simulado
11.2.6. Algoritmo Enfriamiento Simulado inteligente
11.2.7. Algoritmo de Búsqueda Multiarranque Básica
11.2.8. Algoritmo de Búsqueda Local Reiterada
11.2.9. Algoritmo de Búsqueda Local Reiterada con ES
11.2.10. Algoritmo de Búsqueda Local Reiterada con ES inteligente 46
11.2.11.Resultados globales
11.3. Análisis de resultados
11.3.1. Algoritmos sin múltiples trayectorias
11.3.2. Influencia de la posición inicial en los algoritmos de búsqueda local 49
11.3.3. Comparación de los algoritmos de múltiples trayectorias con el mejor al-
goritmo de única trayectoria
11.3.4. Comparación entre los algoritmos de múltiples trayectorias

Índice de figuras

1.	Evolución de la desviación - Algoritmos sin múltiples trayectorias	48
2.	Evolución del tiempo - Algoritmos sin múltiples trayectorias	48
3.	Evolución de la desviación - Influencia de la posición inicial en el BL	49
4.	Evolución del tiempo - Influencia de la posición inicial en el BL	50
5.	Evolución de la desviación - Comparación de los algoritmos de múltiples y única	
	trayectoria	51
6.	Evolución del tiempo - Comparación de los algoritmos de múltiples y única tra-	
	yectoria	51
7.	Evolución de la desviación - Comparación de los algoritmos de múltiples trayectorias	52
8.	Evolución del tiempo - Comparación de los algoritmos de múltiples trayectorias .	53

Índice de tablas

1.	Resultados BL_PM
2.	Resultados Greedy
3.	Resultados AGG-uniforme
4.	Resultados AGG-posicion
5.	Resultados AGE-uniforme
6.	Resultados AGE-posicion
7.	Resultados AM-(10,1.0)
8.	Resultados AM-(10,0.1)
9.	Resultados AM-(10,0.1,mej)
10.	Resultados ES
11.	Resultados ES-inte
12.	Resultados BMB
13.	Resultados ILS
14.	Resultados ILS-ES
15.	Resultados ILS-inte
16.	Resultados Globales

1. Descripción del problema

El Problema de la Máxima Diversidad (en íngles, Maximum Diversity Problem, MDP) consiste en la elección de un subconjunto de M puntos, de un conjunto mayor de N puntos. Este subconjunto debe maximizar la diversidad, Z; es decir, maximizar la distancia entre los elementos del subconjunto.

La fórmula para obtener la diversidad de un subconjunto es la siguiente:

$$Z = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} d_{ij}$$

Siendo:

- i y j índices de los elementos del conjunto
- $\bullet \ d_{ij}$ la distancia entre los puntos con índice i y j

2. Descripción de los aspectos comunes

2.1. Representación entera

2.1.1. Representación de las soluciones

Cada elemento del conjunto total se ha etiquetado con un número entero positivo, empezando por el cero.

Como una solución a este problema es un subconjunto de este conjunto total, he representado el subconjunto como un lista de enteros.

2.1.2. Función objetivo

La función objetivo valora como de buena es una solución. La calidad se mide como la suma total de todas las distancias entre los elementos que forman la solución. Una solución es de mayor calidad cuanto mayor es la distancia total, ya que a mayor distancia mayor diversidad en la solución.

Algorithm 1 Función objetivo

Input: solucion: lista con la etiquetas de los elementos que forman la solución.

Input: distancias: matriz que guarda la distancia entre cada par de elementos del conjunto total.

Output: distancia_total: es la distancia total que existe en la solucion.

```
    distancia_total ← 0.0
    /* Calculamos la suma de todas la distancias entre los elementos
    de la solución */
    solucion_size ← número de elementos en la solucion
    for i ∈ {0, ..., solucion_size - 1} do
    for j ∈ {i + 1, ..., solucion_size} do
    distancia_total ← sumar distancia entre i y j
    return distancia_total
```

Además de esta versión de la función objetivo se ha creado otra función objetivo que además de calcular la distancia total de una solución, calcula la contribución de cada elemento en la distancia total, es decir, calcula la distancia total de cierto elemento con el resto de elementos que conforman la solución. La distancia entre el elemento x e y será considerada tanto para la contribución de x como de y, de esta manera se aprovechan las operaciones realizadas para calcular la función objetivo.

Algorithm 2 Función objetivo (extendida)

Input: solución: lista con la etiquetas de los elementos que forman la solución.

Input: distancias: matriz que guarda la distancia entre cada par de elementos del conjunto total.

Output: distancia_total: es la distancia total que existe en la solucion.

Output: contribuciones: vector de flotantes que indican la contribución de cada elemento a la distancia_total.

```
2: distancia_total ← 0.0
/* Calculamos la suma de todas la distancias entre los elementos
4: de la solución */
solucion_size ← número de elementos en la solucion
6: for i ∈ {0, ..., solucion_size − 1} do
for j ∈ {i + 1, ..., solucion_size} do
8: distancia_total ← sumar distancia entre i y j
contribuciones ← sumar contribución al elemento i
10: contribuciones ← sumar contribución al elemento j
return distancia_total, contribuciones
```

2.2. Lectura de datos

Los datos utilizados para el problema están guardados en un archivo de texto plano. Este archivo contiene los siguiente datos:

- Nº de elementos del conjunto
- $\bullet~{\rm N}^{\rm o}$ de elementos que debe tener la solución
- Distancia entre cada par de elementos del conjunto

El formato de la información es el siguiente:

```
{Número de elementos del conjunto} {Número de elementos que debe tener la solución} {Elemento 0} {Elemento 1} {Distancia entre elemento 0 y elemento 1} {Elemento 0} {Elemento 2} {Distancia entre elemento 0 y elemento 2} ...
```

Para obtener esta información y colocarla en una estructura de datos más manejable para el programa, he creado la siguiente función:

2.3. Generación de soluciones aleatorias

He creado una función que se encarga de generar una lista de enteros aleatoria, que representa una solución. Esta función ha sido usada tanto en la BMB como en la ILS.

Algorithm 3 Leer archivo

Input: nombre_archivo: nombre del archivo de texto plano que contiene la información. Output: num_elem_selec: número de elementos que debe tener la solución al problema.

Output: distancias: matriz de distancias entre pares de elementos del conjunto.

```
archivo ← abrir el archivo con nombre "nombre_archivo"
numElemTotal ← obtener el número de elementos del conjunto completo
4: num_elem_selec ← obtener el número de elemento que debe tener la solución
distancias ← crear la matriz de distancias
while !final_archivo do

i, j ← obtener el par de elementos

8: distancias ← añadir distancia entre el par de elementos
```

return num_elem_selec, distancias

Algorithm 4 Generación aleatoria de una solución

Input: n: número de elementos que hay en el problema.

Input: m: número de elementos que debe tener la solución al problema.

Output: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Output: no_seleccionados: lista con las etiquetas de los elementos que no forman parte de la solución.

```
/* Generar la solución aleatoria */
    tamSolucion \leftarrow 0
    solucion \leftarrow Vacío
 5: while tamSolucion im do
        nuevoElem \leftarrow N\'umero aleatorio entre 0 y n - 1
        solucion \leftarrow A\tilde{n}adir\ el\ nuevoElem\ a\ la\ solución
        solucion \leftarrow Eliminar los elementos repetidos
        tamSolucion \leftarrow N\'umero\ de\ elementos\ actualmente\ en\ la\ soluci\'on
10: /* Generar los elementos no seleccionados a partir de la solución generada */
    no\_seleccionados \leftarrow Vacío
    for i \in \{0, ..., n-1\} do
        encontrado \leftarrow Comprobarsielelementoiestáenlasolución
        /* Si el elemento no está en la solución */
15:
        if !encontrado then
           no\_seleccionados \leftarrow A\~nadir\ el\ elemento\ i\ a\ los\ elementos\ no\ seleccionados
    return solucion, no_seleccionados
```

3. Descripción de la Búsqueda Local

Funciones comunes 3.1.

3.1.1. Operador de generación de vecino

Como operador de generación de vecino se ha utilizado el intercambio, que consiste en elegir un elemento de la solución y otro elemento no seleccionado para la solución, e intercambiarlos de listas. Su implementación en pseudocódigo es la siguiente:

Algorithm 5 Intercambio

Input: solucion_actual: lista con las etiquetas de los elementos que forman la solución actual.

Input: elemento_a_sustituir: índice del elemento que se quiere sustituir.

Input: no_seleccionados: lista con las etiquetas de los elementos que no forman parte de la solución.

Input: elemento_a_incluir: índice del elemento que se quiere incluir en la solución.

Input: distancias: matriz que guarda la distancia entre cada par de elementos del conjunto total.

Input: contribuciones_actual: vector de flotantes que contiene las contribuciones de cada elemento de la solución actual.

Output: nueva_solucion: lista con las etiquetas de los elementos que forman la nueva solución.

Output: nuevas_contribuciones: vector de flotantes que contiene las contribuciones de cada elemento de la nueva solución.

 $contri_elem_a_incluir \leftarrow 0$

 $nuevas_contribuciones \leftarrow contribuciones_actual$

4: /* Modificar las contribuciones de los elementos que no son intercambiados */

for $i \in solution_actual$ do

if i!= elemento_a_sustituir then

8: $nuevas_contribuciones \leftarrow restar\ distancia\ del\ elemento\ i\ al\ elemento_a_sustituir$ $nuevas_contribuciones \leftarrow sumar\ distancia\ del\ elemento\ i\ al\ elemento_a_incluir$ $contri_elem_a_incluir \leftarrow a\~nadir \ la \ distancia \ sumada \ a \ la \ contribuci\'on \ del \ nuevo \ elemento$ $nueva_solucion \leftarrow intercambiamos el nuevo elemento por el elemento elegido para ser sustituido$ $12:\ nuevas_contribuciones \leftarrow intercambiar\ también\ las\ contribuciones\ de\ los\ elementos\ intercambiados$ return nueva_solucion, nuevas_contribuciones

Factorización de la BL

3.1.2.

Dado que que la creación de un nuevo vecino sólo modifica un elemento de la solución original, por lo que el coste de la solución sólo es alterado por las distancias de ambos elementos involucrados en el operador de intercambio, parece mejor opción realizar una factorización de la función objetivo; es decir, en vez de volver a calcular todas las distancias de la nueva solución, sólo tenemos que restar las distancias del elemento sustituido al resto de elementos de la solución y

sumar las distancias del elemento incluido al resto de elementos de la solución. Su implementación en pseudocódigo es la siguiente:

Algorithm 6 Función objetivo factorizada

Input: solucion: lista con las etiquetas de los elementos que forman la solución.

Input: elemento_sustituido: índice del elemento que se ha sustituido.

Input: elemento_incluido: índice del elemento que se ha incluido en la solución.

Input: distancias: matriz que guarda la distancia entre cada par de elementos del conjunto total.

Input: coste_actual: suma de la distancia total de la solución actual.

Output: nuevo_coste: suma de la distancia total de la solución modificada.

Output: mejorado: variable booleana que indica si ha mejorado el coste de la función.

Output: elemento_incluido: índice del elemento que se ha incluido en la solución.

3.1.3. Generación de soluciones aleatorias

Tanto las soluciones de la Búsqueda Local del Primero Mejor como de la Búsqueda Local del Mejor se crean de forma aleatoria.

En el caso del Mejor se crea de forma aleatoria la solución inicial, y no se crea de forma aleatoria las soluciones vecinas, ya que en este algoritmo se examina todo el entorno, por lo que es absurdo gastar tiempo en crear una solución aleatoria cuando se van a examinar todas.

Para crear la solución inicial se van eligiendo elementos del conjunto de forma aleatoria hasta tener el número de elementos necesario para forma una solución. El resto de elementos del conjunto se introducen en la lista de no seleccionados.

En el caso del Primero Mejor se crea de forma aleatoria tanto la solución inicial, como las soluciones vecinas, ya que en este caso se cogerá como vecina la primera solución que mejora la actual, por lo que no se exploran siempre todos los vecinos.

La solución inicial se genera de la misma forma que en del Mejor. La solución vecina se crea sustituyendo el elemento que menos aporta por uno de los elementos no seleccionados, para que la creación sea aleatoria antes de empezar a generar vecinos para ver cuál mejora la solución

actual, se baraja de forma aleatoria los elementos no seleccionados, para que a la hora de recorre los elementos de forma iterativa sean aleatorios los elementos que nos vayamos encontrando, esta acción se realiza con la función *shuffle*.

3.2. Búsqueda Local del Primero Mejor

3.2.1. Método de exploración del entorno

En esta variante de la Búsqueda Local se van generando vecinos hasta encontrar uno que mejore la solución actual, si se encuentra uno que la mejore se continua con la búsqueda; si no se encuentra un vecino que la mejore, se para el proceso de búsqueda y nos quedamos con la solución actual. Además se puede parar el proceso si se llega a un límite de iteraciones, y se incrementa una iteración por cada llamada a al función objetivo.

Algorithm 7 Método de exploración del entorno (BL_PM)

 $solucion_actual \leftarrow generar\ solución\ inicial\ aleatoria$

iteraciones $\leftarrow 0$

 $hay_mejora \leftarrow true$

while iteraciones $\leq 100000 \& hay_mejora do$

 ${\it noSeleccionados Nuevo} \leftarrow barajar\ aleatoriamente\ la\ lista\ de\ elementos\ no\ seleccionados$

6: hay_mejora, elegido ← obtener el primer vecino que mejora el coste de la solución /* Si se encuentra un vecino que mejore el coste */

if hay_mejora then

 $solucion_modificada \leftarrow intercambiar \ el \ elemento \ elegido \ por \ el \ elemento \ de \ la \ solución$ que menos aporte

 $contribuciones_modi \leftarrow actualizar contribuciones con el nuevo elemento de la solución$

3.3. Búsqueda Local del Mejor

3.3.1. Método de exploración del entorno

En esta variante de la Búsqueda Local se genera todo el entorno de una solución, y se elige la solución que consiga una mayor mejora de la solución actual, si no se alcanza ninguna mejor se para el proceso de búsqueda. Además se puede parar el proceso si se llega a un límite de iteraciones, y se incrementa una iteración por cada llamada a al función objetivo. Su implementación en pseudocódigo es la siguiente:

Algorithm 8 Método de exploración del entorno (BL_M)

 $solucion_actual \leftarrow generar\ soluci\'on\ inicial\ aleatoria$

iteraciones $\leftarrow 0$

 $hay_mejora \leftarrow true$

while iteraciones $\leq 100000 \& hay_mejora do$

$$\label{eq:constraint} \begin{split} \text{noSeleccionadosNuevo} \leftarrow barajar\ aleatoriamente\ la\ lista\ de\ elementos\ no\ seleccionados\\ hay_mejora,\ \text{elegido} \leftarrow obtener\ el\ vecino\ que\ mejora\ en\ mayor\ medida\ el\ coste\ de\ la\ solución \end{split}$$

7: /* Si se encuentra un vecino que mejore el coste */

if hay_mejora then

 $solucion_modificada \leftarrow intercambiar \ el \ elemento \ elegido \ por \ el \ elemento \ de \ la \ solución \ que \ menos \ aporte$

 $contribuciones_modi \leftarrow actualizar contribuciones con el nuevo elemento de la solución$

4. Descripción del Greedy

4.1. Algoritmo de comparación

Para elegir que elemento incluir en la solución en cada momento se tiene en cuenta sus distancias con el resto de elementos.

En primer lugar al insertar el primer elemento se tiene en cuenta que el elemento insertado sea el que mayor distancia acumulada tenga.

Algorithm 9 Elegir primer elemento a insertar en la solución

Input: distancias: matriz que guarda la distancia entre cada par de elementos del conjunto total.

Input: no Seleccionados: lista de elementos no incluidos en la solución.

Output: elegido: elemento elegido para ser insertado.

```
distanciasAcu \leftarrow inicializar\ vector\ a\ 0.0
    noSeleccionados\_size \leftarrow n\'umero de elementos no seleccionados
    /* Calcular la distancia acumulada de cada elemento no seleccionado */
    for i \in \{0, ..., noSelectionados\_size - 1\} do
       for j \in \{i+1, ..., noSelectionados\_size\} do
           distanciasAcu \leftarrow aumentar\ distancia\ acumulada\ del\ elemento\ i
 8:
           distanciasAcu \leftarrow aumentar distancia acumulada del elemento j
    distAcuMax \leftarrow 0.0
    elegido \leftarrow vacio
    /* Elegir el elemento con mayor distancia acumulada */
    for i \in \{\text{noSeleccionados}\}\ do
       if distAcuMax < \{distancia acumulada de i\} then
           disAcuMax \leftarrow asigna\ la\ distancia\ acumulada\ del\ elemento\ i
           elegido \leftarrow i
16: return elegido
```

En el resto de elementos a insertar lo que que se tiene en cuenta es que tenga la mayor distancia de las mínimas distancias entre los elementos de la solución y los elementos no seleccionados.

Algorithm 10 Elegir el resto de elementos a insertar en la solución

Input: distancias: matriz que guarda la distancia entre cada par de elementos del conjunto total.

Input: solucion: lista de elementos incluidos en la solución.

Input: no Seleccionados: lista de elementos no incluidos en la solución.

Output: elegido: elemento elegido para ser insertado.

```
distanciaMin \leftarrow inicializar vector al máximo valor de un flotante

/* Calcular la distancia mínima entre cada elemento de la solución y el resto de elementos no seleccionados */

for i \in solucion do

for j \in noSeleccionados do

distanciaMin \leftarrow quedarse con lamínima distancia al elemento i

distMax \leftarrow -1

elegido \leftarrow vacio

/* Elegir el elemento con mayor distancia mínima */

9: for i \in solucion do

if distMax < {distancia mínima de i} then

distMax \leftarrow asigna la distancia mínima del elemento i

elegido \leftarrow i

return elegido
```

Se sigue el proceso de inserción de elementos hasta que la solución alcanza su tamaño necesario para ser válida como solución.

5. Descripción del Algoritmo Genético

5.1. Esquema de evolución y reemplazamiento

Para implementar el algoritmo genético hemos utilizado dos modelos:

5.1.1. Generacional

Algorithm 11 Modelo generacional

Input: poblacionIni: Primer padre.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: numGenesFactible: número de elementos necesarios para que la solución sea factible.

Input: probabilidadCruce: probabilidad de que una pareja de individuos se cruce.

Input: probabilidadMutacion: probabilidad de que un gen mute.

```
poblacionActual \leftarrow poblacionIni

iteraciones \leftarrow 0

while iteraciones < 100000 do

mejorPadre \leftarrow Primer elemento de la población actual

poblacionActual \leftarrow Realizar el operador de selección generacional

poblacionActual \leftarrow Realizar el operador de cruce

poblacionActual \leftarrow Realizar el operador demutación

poblacionActual \leftarrow Calcular el fitness de la población

poblacionActual \leftarrow Realizar el operador de reemplazo generacional

iteraciones \leftarrow iteraciones + número de evaluaciones

return fitness
```

return poblacionActual

Algorithm 12 Operador de reemplazo generacional

```
Input: poblacion: lista de individuos.
Input: mejorPadre: mejor individuo de la población anterior.
Output: poblacionActual: lista de individuos después del reemplazo.
    poblacionActual \leftarrow poblacion
    poblacionActual \leftarrow A\tilde{n}adir\ el\ mejorPadre
    poblacionActual \leftarrow Ordenardemayoramen or fitness
    /* Búsqueda del mejor padre */
    tam \leftarrow Tama\~no de poblacionActual
    encontrado \leftarrow 0
    for i \in \{0, ..., tam - 1\} do
        if encontrado == 2 then
           break
        fitness \leftarrow Obtener el \ fitness \ del \ cromosoma \ situado \ en \ la \ posición \ i \ de \ la \ poblacion \ Actual
        fitnessPadre \leftarrow Obtener\ el\ fitness\ del\ mejorPadre
        if fitness < fitnessPadre then
           break
        if fitness == fitnessPadre then
           cromosoma \leftarrow Obtener el cromosoma situado en la posición i de la poblacion Actual
18:
           if cromosoma == mejorPadre then
               encontrado \leftarrow encontrado + 1
               encontradoCromo \leftarrow cromosoma
    if encontrado == 2 then
        \texttt{poblacionActual} \leftarrow Eliminar\ cromosoma\ encontradoCromo
    else
        if encontrado == 1 then
            poblacionActual \leftarrow Eliminar un elemento de la población que no sea el mejor<math>Padre
```

Estacionario 5.1.2.

```
Algorithm 13 Modelo estacionario
Input: poblacionIni: Primer padre.
Input: distancias: matriz de distancias entre pares de elementos del conjunto.
Input: numGenesFactible: número de elementos necesarios para que la solución sea factible.
Input: probabilidad Cruce: probabilidad de que una pareja de individuos se cruce.
Input: probabilidadMutacion: probabilidad de que un gen mute.
Output: fitness: mejor fitness encontrado en la ejecución del algoritmo.
    poblacionActual \leftarrow poblacionIni
    iteraciones \leftarrow 0
    while iteraciones < 100000 \text{ do}
       nueva
Poblacion \leftarrow Vacío
       nueva
Poblacion \leftarrow Realizar el operador de selección estacionario
       nueva
Poblacion \leftarrow Realizar\ el\ operador\ de\ cruce
       nueva
Poblacion \leftarrow Realizar\ el\ operador\ de\ mutación
       nueva
Poblacion \leftarrow Calcular\ el\ fitness\ de\ la\ población
       poblacionActual \leftarrow Realizar\ el\ operador\ de\ reemplazo\ estacionario
       iteraciones \leftarrow iteraciones + número de evaluaciones
    return fitness
Algorithm 14 Operador de reemplazo estacionario
```

Input: poblacionActual: lista de individuos.

return poblacionActual

```
Input: nuevaPoblacion: lista de individuos.
Output: poblacionActual: lista de individuos después del reemplazo.
    poblacionActual \leftarrow A\tilde{n}adir\ toda\ la\ nuevaPoblacion
    poblacionActual \leftarrow Ordenar \ de \ mayor \ a \ menor \ fitness
    /* Eliminar los peores individuos */
    tam \leftarrow Tama\~no\ de\ nuevaPoblacion
    for i \in \{0, ..., tam - 1\} do
        poblacion Actual \leftarrow Eliminar\ el\ \'ultimo\ elemento\ de\ la\ lista
```

6. Descripción del Algoritmo Memético

6.1. Esquema de búsqueda

Todos los esquemas implementados se ejecutan cada 10 generaciones del algoritmo genético, y con una intensidad máxima de 400 iteraciones. Lo único que los diferencia es el número de cromosomas sobre los que se realiza la búsqueda local.

6.1.1. Primer esquema

En este esquema se realiza sobre toda la población.

Algorithm 15 Primer esquema de búsqueda

Input: poblacionIni: Primer padre.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: numGenesFactible: número de elementos necesarios para que la solución sea factible.

Input: probabilidadCruce: probabilidad de que una pareja de individuos se cruce.

Input: probabilidadMutacion: probabilidad de que un gen mute.

Output: fitness: mejor fitness encontrado en la ejecución del algoritmo.

```
poblacionActual \leftarrow poblacionIni
iteraciones \leftarrow 0
generacion \leftarrow 0
while iteraciones < 100000 do
    nuevaPoblacion \leftarrow Vacío
    nueva
Poblacion \leftarrow Realizar el operador de selección estacionario
    nueva
Poblacion \leftarrow Realizar\ el\ operador\ de\ cruce\ uniforme
    nueva
Poblacion \leftarrow Realizar\ el\ operador\ de\ mutación
    nueva
Poblacion \leftarrow Calcular\ el\ fitness\ de\ la\ población
    poblacionActual \leftarrow Realizar \ el \ operador \ de \ reemplazo \ estacionario
    iteraciones \leftarrow iteraciones + número de evaluaciones
    generacion \leftarrow generacion + 1
    if generacion == 10 then
       intensidad \leftarrow 400
        tam \leftarrow Tama\~no de la poblacionActual
       for i \in \{0, ..., tam - 1\} do
            cromosoma \leftarrow Obtener el cromosoma de la poblacion Actual situado en la posición i
            cromosoma \leftarrow Realizar una búsqueda local
       generacion \leftarrow 0
```

6.1.2. Segundo esquema

21: **return** fitness

En este esquema se realiza sobre el 10 % de la población.

Algorithm 16 Segundo esquema de búsqueda

Input: poblacionIni: Primer padre.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: numGenesFactible: número de elementos necesarios para que la solución sea factible.

Input: probabilidadCruce: probabilidad de que una pareja de individuos se cruce.

Input: probabilidadMutacion: probabilidad de que un gen mute.

Output: fitness: mejor fitness encontrado en la ejecución del algoritmo.

```
poblacionActual \leftarrow poblacionIni
    iteraciones \leftarrow 0
    generacion \leftarrow 0
    while iteraciones < 100000 do
        nueva
Poblacion \leftarrow Vacío
        nueva
Poblacion \leftarrow Realizar el operador de selección estacionario
        nuevaPoblacion \leftarrow Realizar\ el\ operador\ de\ cruce\ uniforme
        nueva
Poblacion \leftarrow Realizar el operador de mutación
        nueva
Poblacion \leftarrow Calcular\ el\ fitness\ de\ la\ población
        poblacionActual \leftarrow Realizar\ el\ operador\ de\ reemplazo\ estacionario
        iteraciones \leftarrow iteraciones + número de evaluaciones
        generacion \leftarrow qeneracion + 1
        if generacion == 10 then
           intensidad \leftarrow 400
           tam \leftarrow Tama\~no de la poblacionActual
            numCromosomas \leftarrow 0.1 * tam
            listaCromosomas \leftarrow Vacío
            tamLista \leftarrow 0
            while tamLista < numCromosomas do
                nuevo \leftarrow N\'{u}mero aleatorio entre 0 y tam - 1
               listaCromosomas \leftarrow A\tilde{n}adir\ nuevo
22:
                tamLista \leftarrow tamLista + 1
           for i \in \{0, ..., tamLista - 1\} do
               cromosoma \leftarrow Obtener el cromosoma de la poblacion Actual situado en la posición i
                cromosoma \leftarrow Realizar una búsqueda local
            generacion \leftarrow 0
    return fitness
```

6.1.3. Tercer esquema

En este esquema se realiza sobre el $10\,\%$ de los mejores de la población.

Algorithm 17 Tercer esquema de búsqueda

Input: poblacionIni: Primer padre.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: numGenesFactible: número de elementos necesarios para que la solución sea factible.

Input: probabilidadCruce: probabilidad de que una pareja de individuos se cruce.

Input: probabilidadMutacion: probabilidad de que un gen mute.

```
poblacionActual \leftarrow poblacionIni
    iteraciones \leftarrow 0
    generacion \leftarrow 0
    while iteraciones < 100000 do
       nueva
Poblacion \leftarrow Vacío
       nueva
Poblacion \leftarrow Realizar el operador de selección estacionario
       nuevaPoblacion \leftarrow Realizar\ el\ operador\ de\ cruce\ uniforme
       nueva
Poblacion \leftarrow Realizar\ el\ operador\ de\ mutación
       nueva
Poblacion \leftarrow Calcular\ el\ fitness\ de\ la\ población
       poblacionActual \leftarrow Realizar\ el\ operador\ de\ reemplazo\ estacionario
       iteraciones \leftarrow iteraciones + número de evaluaciones
       generacion \leftarrow qeneracion + 1
       if generacion == 10 then
           intensidad \leftarrow 400
           tam \leftarrow Tama\~no de la poblacionActual
            /* Obtener los cromosomas que se van a utilizar */
           numCromosomas \leftarrow 0.1 * tam
           /* Se recorre desde el principio porque la poblacionActual se encuentra ordenada de
    mayor a menor fitness */
           for i \in \{0, ..., numCromosomas - 1\} do
               cromosoma \leftarrow Obtener el cromosoma de la poblacion Actual situado en la posición i
               cromosoma \leftarrow Realizar una búsqueda local
23:
           generacion \leftarrow 0
    return fitness
```

7. Descripción del Algoritmo de Enfriamiento Simulado

Para este algoritmo he creado una variante en la que al crear una nueva solución se sustituye siempre por el elemento que menos contribuye a la solución, a diferencia del ES original en el que se sustituye por un elemento aleatorio. Con esta modificación se crea un ES inteligente. También se ha utilizado esta variante para crear otro algoritmo ILS.

7.1. Esquema de búsqueda

Algorithm 18 Esquema de búsqueda del ES

Input: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Input: no_seleccionados: lista con las etiquetas de los elementos que no forman parte de la solución.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: iter: número de evaluaciones actual.

Input: iter_max: número máximo de evaluaciones.

Output: mejor_solucion: lista con las etiquetas de los elementos que forman la nueva solución actual.

Output: no_seleccionados: lista con las etiquetas de los elementos que no forman parte de la nueva solución.

Output: mejor_fitness: mejor fitness encontrado en la ejecución del algoritmo.

Output: evaluaciones: número de evaluaciones al terminar el algoritmo.

```
/* Valores de los parámetros usados en el enfriamiento */ fi \leftarrow 0.3 mu \leftarrow 0.3 temp_final \leftarrow 0.001

/* Evaluación de la solución actual */ coste_actual \leftarrow Obtener el fitness de la solución actual

/* Fijar la mejor solución */ mejor_solucion \leftarrow solucion mejor_fitness \leftarrow coste_actual

/* Cálculo de la temperatura inicial */ temp_ini \leftarrow Cálculo de la temperatura inicial

/* Fijar temperatura actual */ temp \leftarrow temp_ini

/* Se suma uno para tener en cuenta la evaluación de la solución actual */ evaluaciones \leftarrow iter + 1
```

```
iteraciones \leftarrow 0
num\_exitos \leftarrow 0
num\_vec\_generador \leftarrow Vacío
tam\_sol \leftarrow Tama\~nodelasoluci\'onactual
num\_max\_vec\_generador \leftarrow 10*tam\_sol
num\_max\_exitos \leftarrow tam\_sol
while evaluaciones != iter\_max \&\& num\_exitos > 0 do
   num\_exitos \leftarrow 0
   num\_vec\_generador \leftarrow 0
   while num_exitos != num_max_exitos &&
            num\_vec\_generador != num\_max\_vec\_generador do
/* Generar un vecino */
       tam\_sol \leftarrow Tama\~no de la soluci\'on actual
       elem\_a\_sustituir \leftarrow N\'umero\ aleatorio\ entre\ 0\ y\ tam\_sol
       tam\_no\_seleccionados \leftarrow Tama\~no de los no seleccionados de la soluci\'onactual
       elem\_a\_incluir \leftarrow N\'umero\ aleatorio\ entre\ 0\ y\ tam\_no\_seleccionados
/* Evaluación del nuevo vecino */
       coste\_vecino \leftarrow Obtener\ el\ fitness\ de\ la\ solución\ con\ el\ nuevo\ vecino
       evaluaciones \leftarrow Incrementar en uno las evaluaciones
       num\_vec\_generador \leftarrow Incrementar\ en\ uno\ los\ vecinos\ generados
/* Comprobar si se sustituye la mejor solución */
        diferencia \leftarrow coste\_actual - coste\_vecino
/* Si la nueva solución es mejor que la actual */
       if diferencia < 0 then
           solucion ← Realizar el intercambio en la solución actual del nuevo vecino
           coste\_actual \leftarrow coste\_vecino
           if coste\_actual > mejor\_fitness then
               mejor\_fitness \leftarrow coste\_actual
               mejor\_solucion \leftarrow solucion
           num\_exitos \leftarrow Incrementar \ en \ uno \ los \ números \ de \ éxitos
       else
/* Si la nueva solución no es mejor que la actual */
            probabilidad \leftarrow N\'{u}mero\ aleatorio\ entre\ 0\ y\ 1
           limite \leftarrow exp((-diferencia)/(k*temp))
            if \ \mathrm{probabilidad} <= \mathrm{limite} \ then 
               solucion ← Realizar el intercambio en la solución actual del nuevo vecino
               coste\_actual \leftarrow coste\_vecino
               num\_exitos \leftarrow Incrementar en uno los números de éxitos
       if evaluaciones == iter\_max then
           Terminar bucle
   iteraciones \leftarrow Incrementar en uno las iteraciones
   temp \leftarrow Realizar\ el\ enfriamiento\ de\ la\ \overline{t}emperatura\ actual
no\_seleccionados \leftarrow Obtener los elementos no seleccionados a partir de la mejor solución
return mejor_fitness, mejor_solucion, no_seleccionados, evaluaciones
```

7.2. Cálculo de la temperatura inicial

Algorithm 19 Cálculo de la temperatura inicial

Input: mu: porcentaje de empeoramiento de la solución inicial.

Input: coste_actual: lista con las etiquetas de los elementos que no forman parte de la solución.

Input: *fi*: es la probabilidad de aceptar una solución.

Output: temp_ini: temperatura inicial.

```
temp\_ini \leftarrow (mu*coste\_actual) / (-log(fi))

return temp\_ini
```

7.3. Esquema de enfriamiento

```
Algorithm 20 Esquema de enfriamiento
```

Input: temp: temperatura actual.Input: temp_ini: temperatura inicial.Input: temp_final: temperatura final.

Input: iteraciones: número de iteraciones realizadas actualmente.

Output: nueva_temp: nueva temperatura.

```
/* Si se supera la temperatura final, esta se disminuye */
if temp_final >= temp_ini then
    temp_final \( \text{-temp_final} \) / 100

/* Se calcula la constante beta */
beta \( \text{-(temp_ini} - temp_final) / (iteraciones*temp_ini*temp_final) } nueva_temp \( \text{-temp} \) / (1 + beta*temp)
return nueva_temp
```

8. Descripción del Algoritmo de Búsqueda Multiarranque Básica

8.1. Esquema de búsqueda

Algorithm 21 Esquema de búsqueda del BMB

Input: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: m: número de elementos en la solución.

Output: mejor_solucion: lista con las etiquetas de los elementos que forman la nueva solución actual.

```
iteraciones\_max \leftarrow 10
iteraciones \leftarrow 0
mejor\_solucion \leftarrow Vac\'io
mejor\_fitness \leftarrow 0
iter\_fin \leftarrow 100000 / iteraciones\_max
while iteraciones != iteraciones\_max do
    solucion\_aleatoria \leftarrow Vacío
    no\_seleccionados\_aleatoria \leftarrow Vacío
    solucion\_aleatoria, no\_seleccionados\_aleatoria \leftarrow Generar solución aleatoria
    iter\_ini \leftarrow 0
    nuevo\_fitness, iter\_ini \leftarrow Realizar\ BL
    if nuevo\_fitness > mejor\_fitness then
        mejor\_fitness \leftarrow nuevo\_fitness
        mejor\_solucion \leftarrow solucion\_aleatoria
    iteraciones \leftarrow Incrementar en uno las iteraciones
return mejor_fitness, mejor_solucion
```

9. Descripción del Algoritmo de Búsqueda Local Reiterada

9.1. Esquema de búsqueda

Algorithm 22 Esquema de búsqueda del ILS

Input: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: m: número de elementos en la solución.

Output: mejor_solucion: lista con las etiquetas de los elementos que forman la nueva solución actual

```
iteraciones\_max \leftarrow 10
iteraciones \leftarrow 0
mejor\_fitness \leftarrow Vacío
/* Cálculo del número de mutaciones */
t \leftarrow 0.1 * m
iter_{-}fin \leftarrow 100000 / iteraciones_{max}
mejor\_solucion \leftarrow Vac\'io
no\_seleccionados \leftarrow Vacío
fitness\_actual \leftarrow Vacío
mejor\_solucion, no\_seleccionados \leftarrow Generar solución aleatoria
iter\_ini \leftarrow 0
mejor\_solucion, no\_seleccionados, mejor\_fitness \leftarrow Realizar BL
iteraciones != iteraciones\_max
while evaluaciones != iter\_max \&\& num\_exitos > 0 do
    nueva\_solucion \leftarrow mejor\_solucion
    nuevo\_no\_seleccionados \leftarrow no\_seleccionados
    nueva\_solucion, nuevo\_no\_seleccionados \leftarrow Realizar mutación de la nueva solución
    iter\_ini \leftarrow 0
    nuevo\_fitness, nueva\_solucion, nuevo\_no\_seleccionados \leftarrow Realizar\ BL
    if nuevo\_fitness > mejor\_fitness then
        mejor\_fitness \leftarrow nuevo\_fitness
       mejor\_solucion \leftarrow nueva\_solucion
        no\_seleccionados \leftarrow nuevo\_no\_seleccionados
    iteraciones \leftarrow Incrementar en uno las iteraciones
return mejor_fitness, mejor_solucion
```

Algorithm 23 Esquema de búsqueda del ILS con ES

Input: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: m: número de elementos en la solución.

 $\textbf{Output:} \ mejor_solucion: \ \text{lista con las etiquetas de los elementos que forman la nueva solución }$

actual.

```
iteraciones\_max \leftarrow 10
iteraciones \leftarrow 0
mejor\_fitness \leftarrow Vac\'io
/* Cálculo del número de mutaciones */
t \leftarrow 0.1 * m
iter_{-}fin \leftarrow 100000 / iteraciones_max
mejor\_solucion \leftarrow Vac\'io
no\_seleccionados \leftarrow Vacío
fitness\_actual \leftarrow Vacio
mejor\_solucion, no\_seleccionados \leftarrow Generar solución aleatoria
iter\_ini \leftarrow 0
mejor\_solucion, no\_seleccionados, mejor\_fitness \leftarrow Realizar\ ES
iteraciones != iteraciones\_max
while evaluaciones != iter\_max \&\& num\_exitos > 0 do
    nueva\_solucion \leftarrow mejor\_solucion
    nuevo\_no\_seleccionados \leftarrow no\_seleccionados
    nueva\_solucion, nuevo\_no\_seleccionados \leftarrow Realizar mutación de la nueva solución
    iter\_ini \leftarrow 0
    nuevo\_fitness, nueva\_solucion, nuevo\_no\_seleccionados \leftarrow Realizar\ ES
    if nuevo\_fitness > mejor\_fitness then
       mejor\_fitness \leftarrow nuevo\_fitness
       mejor\_solucion \leftarrow nueva\_solucion
        no\_seleccionados \leftarrow nuevo\_no\_seleccionados
    iteraciones \leftarrow Incrementar en uno las iteraciones
return mejor_fitness, mejor_solucion
```

Algorithm 24 Esquema de búsqueda del ILS con ES inteligente

Input: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: m: número de elementos en la solución.

 $\textbf{Output:} \ mejor_solucion: \ \text{lista con las etiquetas de los elementos que forman la nueva solución }$

actual

```
iteraciones\_max \leftarrow 10
iteraciones \leftarrow 0
mejor\_fitness \leftarrow Vac\'io
/* Cálculo del número de mutaciones */
t \leftarrow 0.1 * m
iter_{-}fin \leftarrow 100000 / iteraciones_max
mejor\_solucion \leftarrow Vac\'io
no\_seleccionados \leftarrow Vacío
fitness\_actual \leftarrow Vacio
mejor\_solucion, no\_seleccionados \leftarrow Generar solución aleatoria
iter\_ini \leftarrow 0
mejor\_solucion, no\_seleccionados, mejor\_fitness \leftarrow Realizar\ ES\ inteligente
iteraciones != iteraciones\_max
while evaluaciones != iter\_max \&\& num\_exitos > 0 do
    nueva\_solucion \leftarrow mejor\_solucion
    nuevo\_no\_seleccionados \leftarrow no\_seleccionados
    nueva\_solucion, nuevo\_no\_seleccionados \leftarrow Realizar mutación de la nueva solución
    iter\_ini \leftarrow 0
    nuevo\_fitness, nueva\_solucion, nuevo\_no\_seleccionados \leftarrow Realizar\ ES\ inteligente
    if nuevo\_fitness > mejor\_fitness then
       mejor\_fitness \leftarrow nuevo\_fitness
       mejor\_solucion \leftarrow nueva\_solucion
        no\_seleccionados \leftarrow nuevo\_no\_seleccionados
    iteraciones \leftarrow Incrementar en uno las iteraciones
return mejor_fitness, mejor_solucion
```

9.2. Operador de mutación

Algorithm 25 Operador de mutación

Input: solucion: lista con las etiquetas de los elementos que forman la solución actual.

Input: *no_seleccionados*: lista con las etiquetas de los elementos que no forman parte de la solución.

Input: distancias: matriz de distancias entre pares de elementos del conjunto.

Input: t: número de mutaciones.

Output: nueva_solucion: lista con las etiquetas de los elementos que forman la nueva solución actual.

Output: nuevo_no_seleccionados: lista con las etiquetas de los elementos que no forman parte de la nueva solución.

```
\begin{aligned} &num\_mutaciones \leftarrow 0 \\ &\textbf{while } num\_mutaciones   != t \textbf{ do} \\ &tam\_sol \leftarrow Tama\~no \ de \ la \ solucion \\ &elem\_a\_sustituir \leftarrow N\'umero \ aleatorio \ entre \ 0 \ y \ tam\_sol - 1 \\ &tam\_no\_seleccionados \leftarrow Tama\~no \ de \ los \ no \ seleccionados \\ &elem\_a\_incluir \leftarrow N\'umero \ aleatorio \ entre \ 0 \ y \ tam\_no\_seleccionados - 1 \\ &nueva\_solucion, \ nuevo\_no\_seleccionados \leftarrow Generar \ nueva \ soluci\'on \ intercambiando \\ &los \ elementos \ seleccionados \\ &num\_mutaciones \leftarrow Incrementar \ en \ uno \ el \ n\'umero \ de \ mutaciones \ realizadas \\ &\textbf{return } \ nueva\_solucion, \ nuevo\_no\_seleccionados \end{aligned}
```

10. Desarrollo de la práctica

La práctica la he implementado en C++, sin hacer uso de frameworks.

Para tomar los tiempos he utilizado el código del timer que se nos proporciona con la práctica. El resto de código está totalmente implementado por mi.

10.1. Compilación

Para compilar utilizo un archivo Makefile. Al ejecutar "make" en el terminal, se lanza su regla general, que genera todos los ejecutables, los ficheros objeto, y las carpetas necesarias. En el caso de los ejecutables crea dos por cada algoritmo, uno para depurar, y el otro para tomar tiempos con la opción de compilación -O2.

Para más información del Makefile abrir el archivo makefile y ver los comentarios y reglas que hay en él, el makefile se encuentra en la raíz del proyecto.

10.2. Limpiar ficheros derivados de la compilación

Para eliminar todos estos ficheros también hago uso del Makefile con la regla "make clean".

10.3. Obtener resultados

Para obtener los resultados he creado un script bash que ejecuta cada algoritmo con todos los casos y da como resultado un archivo CSV con los costes y tiempos del algoritmo en cada caso.

Para obtener los resultados de todos los algoritmos hay que ejecutar "./script_tiempos.sh" o ejecutar "make tiempos". Recomiendo esta última ya que da permisos al archivo para poder ejecutarse.

Y si se quiere obtener sólo el resultado de un algoritmo en concreto, se puede hacer ejecutando "./script_tiempos.sh <nombre del algoritmo sin extensión>".

Ejemplo:

- ./script_tiempos.sh BL_M
- ./script_tiempos.sh BL_PM
- ./script_tiempos.sh Greedy

Además de los CSV hay un archivo Excel de cada algoritmo que calcular la desviación de cada caso, la desviación media y el tiempo medio. Este archivo hay que modificarlo a mano, es decir, copiar y pegar los resultados del CSV.

Si se quiere ejecutar el archivo ejecutable de alguno de los algoritmos se debe ejecutar de la siguiente forma:

./<nombre del ejecutable> <seed> <nombre del fichero de datos con su ruta>

10.4. Distribución de carpetas

El proyecto está divido en las siguientes carpetas:

- $\bullet \ \operatorname{src} \leftarrow \operatorname{contiene} \ \operatorname{los} \ \operatorname{archivos} \ \operatorname{fuente}$
- \bullet include \leftarrow contiene los archivos de cabecera
- \bullet data \leftarrow contiene los archivos de datos de los distintos casos
- \bullet tablas \leftarrow contiene los CSV y Excel con los resultados
- bin \leftarrow contiene los ejecutables
- obj \leftarrow contiene los ficheros objeto

Además en la raíz del proyecto se encuentra el Makefile y el script de bash.

11. Experimentos y Análisis de resultados

11.1. Descripción de los casos y valores de parámetros

Los casos utilizados se agrupan por diferente cantidad de elementos para el conjunto y cantidad de elementos para la solución. Para obtener los tiempos se han utilizado casos con los siguientes tamaños:

- 500 elementos en el conjunto, y 50 elementos para la solución
- 2000 elementos en el conjunto, y 200 elementos para la solución
- 3000 elementos en el conjunto, y 300, 400, 500, ó 600 elementos para la solución

Los argumentos pasados a los algoritmos son los siguientes:

- Nombre del caso
- Semilla

Para todas las ejecuciones de los algoritmos con los distintos casos se ha utilizado la semilla con valor 0.

11.2. Resultados obtenidos

Todos los tiempos están expresados en segundos.

11.2.1. Búsqueda Local

Algoritmo Búsqueda Local del Primero Mejor			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	3,23	0,009096	
MDG-a_2_n500_m50	2,25	0,009857	
MDG-a_3_n500_m50	2,32	0,008824	
MDG-a_4_n500_m50	1,53	0,009175	
MDG-a_5_n500_m50	2,13	0,008875	
MDG-a_6_n500_m50	1,88	0,009707	
MDG-a_7_n500_m50	1,62	0,010312	
MDG-a_8_n500_m50	1,79	0,009197	
MDG-a_9_n500_m50	2,22	0,008761	
MDG-a_10_n500_m50	1,93	0,008628	
MDG-b_21_n2000_m200	0,73	0,217935	
MDG-b_22_n2000_m200	0,88	0,220469	
MDG-b_23_n2000_m200	1,20	0,221893	
MDG-b_24_n2000_m200	0,89	0,228545	
MDG-b_25_n2000_m200	0,87	0,224658	
MDG-b_26_n2000_m200	1,22	0,216504	
MDG-b_27_n2000_m200	1,31	0,219684	
MDG-b_28_n2000_m200	1,05	0,215919	
MDG-b_29_n2000_m200	1,21	0,221140	
MDG-b_30_n2000_m200	0,86	0,221838	
MDG-c_1_n3000_m300	0,68	0,434002	
MDG-c_2_n3000_m300	0,77	0,435650	
MDG-c_8_n3000_m400	0,41	0,617974	
MDG-c_9_n3000_m400	0,56	0,602094	
MDG-c_10_n3000_m400	0,60	0,590469	
MDG-c_13_n3000_m500	0,53	0,836042	
MDG-c_14_n3000_m500	0,34	0,805850	
MDG-c_15_n3000_m500	0,25	0,797442	
MDG-c_19_n3000_m600	0,39	1,009410	
MDG-c_20_n3000_m600	0,49	1,010500	

Tabla 1: Resultados BL_PM

11.2.2. Greedy

Algoritmo Greedy			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	24,63	0,00283	
MDG-a_2_n500_m50	21,77	0,00279	
MDG-a_3_n500_m50	23,50	0,00268	
MDG-a_4_n500_m50	23,39	0,00279	
MDG-a_5_n500_m50	24,98	0,00276	
MDG-a_6_n500_m50	22,74	0,00274	
MDG-a_7_n500_m50	24,36	0,00286	
MDG-a_8_n500_m50	24,61	0,00263	
MDG-a_9_n500_m50	19,67	0,00258	
MDG-a_10_n500_m50	26,99	0,00272	
MDG-b_21_n2000_m200	12,81	0,23355	
MDG-b_22_n2000_m200	12,53	0,23452	
MDG-b_23_n2000_m200	12,01	0,25347	
MDG-b_24_n2000_m200	12,48	0,24368	
MDG-b_25_n2000_m200	12,63	0,23630	
MDG-b_26_n2000_m200	12,21	0,26197	
MDG-b_27_n2000_m200	12,12	0,24787	
MDG-b_28_n2000_m200	12,58	0,22852	
MDG-b_29_n2000_m200	13,10	0,24468	
MDG-b_30_n2000_m200	12,53	0,22586	
MDG-c_1_n3000_m300	10,22	0,86770	
MDG-c_2_n3000_m300	10,55	0,82770	
MDG-c_8_n3000_m400	8,42	1,50415	
MDG-c_9_n3000_m400	8,47	1,53032	
MDG-c_10_n3000_m400	8,11	1,49027	
MDG-c_13_n3000_m500	7,15	2,24823	
MDG-c_14_n3000_m500	7,10	2,38319	
MDG-c_15_n3000_m500	7,21	2,18022	
MDG-c_19_n3000_m600	6,13	3,21624	
MDG-c_20_n3000_m600	6,24	3,22367	

Tabla 2: Resultados Greedy

11.2.3. Algoritmo Genético

Algoritmo Genético Generacional Uniforme			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	2,86	2,05134	
MDG-a_2_n500_m50	2,29	2,42187	
MDG-a_3_n500_m50	0,97	2,40216	
MDG-a_4_n500_m50	2,26	2,27867	
MDG-a_5_n500_m50	1,62	2,08868	
MDG-a_6_n500_m50	2,02	2,54159	
MDG-a_7_n500_m50	1,49	2,28424	
MDG-a_8_n500_m50	1,76	2,36072	
MDG-a_9_n500_m50	0,80	2,68403	
MDG-a_10_n500_m50	2,55	2,36472	
MDG-b_21_n2000_m200	1,27	52,48460	
MDG-b_22_n2000_m200	1,55	49,41550	
MDG-b_23_n2000_m200	1,14	55,40780	
MDG-b_24_n2000_m200	1,24	55,32120	
MDG-b_25_n2000_m200	1,53	44,71500	
MDG-b_26_n2000_m200	1,64	59,70840	
MDG-b_27_n2000_m200	1,29	55,97080	
MDG-b_28_n2000_m200	1,24	57,95830	
MDG-b_29_n2000_m200	1,92	49,19690	
MDG-b_30_n2000_m200	1,28	60,27940	
MDG-c_1_n3000_m300	1,15	169,7140	
MDG-c_2_n3000_m300	1,29	180,8270	
MDG-c_8_n3000_m400	0,87	262,0220	
MDG-c_9_n3000_m400	0,94	248,8020	
MDG-c_10_n3000_m400	1,28	295,1720	
MDG-c_13_n3000_m500	0,78	374,8730	
MDG-c_14_n3000_m500	0,96	376,7850	
MDG-c_15_n3000_m500	0,82	381,4910	
MDG-c_19_n3000_m600	0,70	555,2500	
MDG-c_20_n3000_m600	0,79	541,8560	

Tabla 3: Resultados AGG-uniforme

Algoritmo Genético Generacional Posición			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	3,12	0,68471	
MDG-a_2_n500_m50	3,90	0,68979	
MDG-a_3_n500_m50	2,89	0,69802	
MDG-a_4_n500_m50	2,84	0,69004	
MDG-a_5_n500_m50	3,18	0,69149	
MDG-a_6_n500_m50	2,48	0,68629	
MDG-a_7_n500_m50	1,79	0,68981	
MDG-a_8_n500_m50	2,57	0,68805	
MDG-a_9_n500_m50	1,41	0,68522	
MDG-a_10_n500_m50	3,46	0,69386	
MDG-b_21_n2000_m200	2,20	6,94798	
MDG-b_22_n2000_m200	2,78	6,86697	
MDG-b_23_n2000_m200	2,37	6,66475	
MDG-b_24_n2000_m200	2,22	5,96563	
MDG-b_25_n2000_m200	2,19	5,97550	
MDG-b_26_n2000_m200	2,40	5,96973	
MDG-b_27_n2000_m200	2,31	5,96078	
MDG-b_28_n2000_m200	2,53	5,99388	
MDG-b_29_n2000_m200	2,76	5,90010	
MDG-b_30_n2000_m200	2,19	7,05282	
MDG-c_1_n3000_m300	2,18	13,40250	
MDG-c_2_n3000_m300	2,45	13,64720	
MDG-c_8_n3000_m400	1,74	26,38530	
MDG-c_9_n3000_m400	1,81	23,31890	
MDG-c_10_n3000_m400	2,05	23,98740	
MDG-c_13_n3000_m500	1,63	38,72420	
MDG-c_14_n3000_m500	1,64	39,36490	
MDG-c_15_n3000_m500	1,56	40,33130	
MDG-c_19_n3000_m600	1,42	58,33060	
MDG-c_20_n3000_m600	1,48	57,41410	

Tabla 4: Resultados AGG-posicion

Algoritmo Genético Estacionario Uniforme			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	5,19	1,24700	
MDG-a_2_n500_m50	5,13	1,23490	
MDG-a_3_n500_m50	6,18	1,31716	
MDG-a_4_n500_m50	4,12	1,23839	
MDG-a_5_n500_m50	3,72	1,23140	
MDG-a_6_n500_m50	3,10	1,22887	
MDG-a_7_n500_m50	6,81	1,17513	
MDG-a_8_n500_m50	4,88	1,22157	
MDG-a_9_n500_m50	3,26	1,22962	
MDG-a_10_n500_m50	4,75	1,21637	
MDG-b_21_n2000_m200	5,60	12,09380	
MDG-b_22_n2000_m200	4,90	14,16980	
MDG-b_23_n2000_m200	4,25	12,09540	
MDG-b_24_n2000_m200	4,35	11,74830	
MDG-b_25_n2000_m200	4,00	13,95500	
MDG-b_26_n2000_m200	3,94	14,34370	
MDG-b_27_n2000_m200	4,02	12,72640	
MDG-b_28_n2000_m200	4,87	11,03590	
MDG-b_29_n2000_m200	3,98	12,71510	
MDG-b_30_n2000_m200	4,38	12,70990	
MDG-c_1_n3000_m300	4,98	25,88460	
MDG-c_2_n3000_m300	4,78	30,54290	
MDG-c_8_n3000_m400	3,47	45,42600	
MDG-c_9_n3000_m400	4,03	48,68960	
MDG-c_10_n3000_m400	3,65	47,76910	
MDG-c_13_n3000_m500	3,24	63,59920	
MDG-c_14_n3000_m500	3,30	62,87610	
MDG-c_15_n3000_m500	3,73	66,43930	
MDG-c_19_n3000_m600	2,97	88,10410	
MDG-c_20_n3000_m600	2,99	89,40250	

Tabla 5: Resultados AGE-uniforme

Algoritmo Genético Estacionario Posición			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	12,05	0,821339	
MDG-a_2_n500_m50	13,38	0,783013	
MDG-a_3_n500_m50	11,73	0,793680	
MDG-a_4_n500_m50	12,92	0,790551	
MDG-a_5_n500_m50	10,63	0,794508	
MDG-a_6_n500_m50	11,26	0,803923	
MDG-a_7_n500_m50	12,01	0,784719	
MDG-a_8_n500_m50	10,06	0,787745	
MDG-a_9_n500_m50	10,77	0,777115	
MDG-a_10_n500_m50	12,31	0,791747	
MDG-b_21_n2000_m200	8,37	6,986230	
MDG-b_22_n2000_m200	8,52	5,979240	
MDG-b_23_n2000_m200	8,33	6,991070	
MDG-b_24_n2000_m200	8,31	5,985400	
MDG-b_25_n2000_m200	8,18	5,953450	
MDG-b_26_n2000_m200	7,77	6,550930	
MDG-b_27_n2000_m200	8,05	6,354130	
MDG-b_28_n2000_m200	8,25	5,980130	
MDG-b_29_n2000_m200	8,82	5,952390	
MDG-b_30_n2000_m200	7,98	6,944240	
MDG-c_1_n3000_m300	7,19	15,23940	
MDG-c_2_n3000_m300	7,06	14,49210	
MDG-c_8_n3000_m400	6,42	24,42240	
MDG-c_9_n3000_m400	6,18	25,50000	
MDG-c_10_n3000_m400	5,95	25,19830	
MDG-c_13_n3000_m500	5,22	36,73110	
MDG-c_14_n3000_m500	5,22	38,16990	
MDG-c_15_n3000_m500	5,45	39,71850	
MDG-c_19_n3000_m600	4,86	52,45980	
MDG-c_20_n3000_m600	4,78	54,92730	

Tabla 6: Resultados AGE-posicion

11.2.4. Algoritmo Memético

Algoritmo Memético (10,1.0)			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	5,73	0,9600	
MDG-a_2_n500_m50	6,17	0,9432	
MDG-a_3_n500_m50	4,92	0,9652	
MDG-a_4_n500_m50	5,28	0,9502	
MDG-a_5_n500_m50	6,12	0,9410	
MDG-a_6_n500_m50	5,15	0,9308	
MDG-a_7_n500_m50	5,52	0,9514	
MDG-a_8_n500_m50	4,76	0,9153	
MDG-a_9_n500_m50	5,83	0,9425	
MDG-a_10_n500_m50	6,50	0,9690	
MDG-b_21_n2000_m200	4,20	10,6955	
MDG-b_22_n2000_m200	4,23	10,1560	
MDG-b_23_n2000_m200	4,08	10,3686	
MDG-b_24_n2000_m200	4,40	10,5511	
MDG-b_25_n2000_m200	3,93	10,2370	
MDG-b_26_n2000_m200	4,07	10,3353	
MDG-b_27_n2000_m200	3,63	10,6893	
MDG-b_28_n2000_m200	3,92	10,7476	
MDG-b_29_n2000_m200	4,10	10,4051	
MDG-b_30_n2000_m200	4,28	10,5951	
MDG-c_1_n3000_m300	3,38	22,1768	
MDG-c_2_n3000_m300	3,35	22,4184	
MDG-c_8_n3000_m400	3,04	29,3499	
MDG-c_9_n3000_m400	2,96	29,6037	
MDG-c_10_n3000_m400	3,03	29,7376	
MDG-c_13_n3000_m500	2,39	37,9994	
MDG-c_14_n3000_m500	2,20	37,3767	
MDG-c_15_n3000_m500	2,38	37,3277	
MDG-c_19_n3000_m600	2,11	46,6057	
MDG-c_20_n3000_m600	2,11	45,9050	

Tabla 7: Resultados AM-(10,1.0)

Algoritmo Memético (10,0.1)			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	2,42	1,3902	
MDG-a_2_n500_m50	1,72	1,5007	
MDG-a_3_n500_m50	2,85	1,2058	
MDG-a_4_n500_m50	1,42	1,6619	
MDG-a_5_n500_m50	2,39	1,3691	
MDG-a_6_n500_m50	1,51	1,8160	
MDG-a_7_n500_m50	1,36	1,4832	
MDG-a_8_n500_m50	1,81	1,4420	
MDG-a_9_n500_m50	1,71	1,8915	
MDG-a_10_n500_m50	2,54	1,5691	
MDG-b_21_n2000_m200	1,88	26,7251	
MDG-b_22_n2000_m200	2,03	27,3707	
MDG-b_23_n2000_m200	2,00	20,7778	
MDG-b_24_n2000_m200	1,84	26,9987	
MDG-b_25_n2000_m200	2,15	27,5935	
MDG-b_26_n2000_m200	1,79	24,4421	
MDG-b_27_n2000_m200	1,63	26,1138	
MDG-b_28_n2000_m200	2,06	25,9475	
MDG-b_29_n2000_m200	1,93	28,6723	
MDG-b_30_n2000_m200	1,75	30,0896	
MDG-c_1_n3000_m300	1,31	63,6325	
$MDG-c_2_n3000_m300$	1,61	68,9938	
MDG-c_8_n3000_m400	1,22	116,2590	
MDG-c_9_n3000_m400	1,63	100,8560	
MDG-c_10_n3000_m400	1,46	85,2201	
MDG-c_13_n3000_m500	1,38	132,2540	
MDG-c_14_n3000_m500	1,00	163,7750	
MDG-c_15_n3000_m500	1,07	120,2420	
MDG-c_19_n3000_m600	0,91	189,8850	
MDG-c_20_n3000_m600	1,09	162,3430	

Tabla 8: Resultados AM-(10,0.1)

Algoritmo Memético	(10,0.1)	Mejores
Caso	Desv	Tiempo
MDG-a_1_n500_m50	0,19	2,1148
MDG-a_2_n500_m50	1,26	2,4121
MDG-a_3_n500_m50	2,02	1,8862
MDG-a_4_n500_m50	1,77	2,4470
MDG-a_5_n500_m50	1,57	2,5367
MDG-a_6_n500_m50	1,64	2,0857
MDG-a_7_n500_m50	1,08	2,0600
MDG-a_8_n500_m50	1,59	2,2310
MDG-a_9_n500_m50	2,00	2,2897
MDG-a_10_n500_m50	1,86	1,5884
MDG-b_21_n2000_m200	2,06	32,2627
MDG-b_22_n2000_m200	1,81	31,7925
MDG-b_23_n2000_m200	1,92	38,8069
MDG-b_24_n2000_m200	1,62	31,8356
MDG-b_25_n2000_m200	1,74	39,0579
MDG-b_26_n2000_m200	2,13	42,0403
MDG-b_27_n2000_m200	1,65	38,5389
MDG-b_28_n2000_m200	1,54	35,7289
MDG-b_29_n2000_m200	1,10	$50,\!1483$
MDG-b_30_n2000_m200	1,56	34,0905
MDG-c_1_n3000_m300	1,09	131,4760
MDG-c_2_n3000_m300	1,40	83,4747
MDG-c_8_n3000_m400	1,35	$142,\!3760$
MDG-c_9_n3000_m400	1,05	188,6070
MDG-c_10_n3000_m400	1,42	$134,\!5760$
MDG-c_13_n3000_m500	1,13	$178,\!8560$
MDG-c_14_n3000_m500	0,79	189,8600
MDG-c_15_n3000_m500	1,05	182,9620
MDG-c_19_n3000_m600	0,91	234,7920
MDG-c_20_n3000_m600	1,56	360,2740

Tabla 9: Resultados AM-(10,0.1,mej)

11.2.5. Algoritmo Enfriamiento Simulado

Algoritmo Enfriamiento Simulado			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	3,46	0,004115	
MDG-a_2_n500_m50	3,75	0,001848	
MDG-a_3_n500_m50	2,89	0,002818	
MDG-a_4_n500_m50	2,33	0,003210	
MDG-a_5_n500_m50	2,24	0,003399	
MDG-a_6_n500_m50	2,75	0,003260	
MDG-a_7_n500_m50	4,31	0,002906	
MDG-a_8_n500_m50	3,48	0,001874	
MDG-a_9_n500_m50	3,07	0,003941	
MDG-a_10_n500_m50	3,65	0,002082	
MDG-b_21_n2000_m200	1,60	0,107855	
MDG-b_22_n2000_m200	1,46	0,119202	
MDG-b_23_n2000_m200	1,47	0,132320	
MDG-b_24_n2000_m200	1,86	0,082142	
MDG-b_25_n2000_m200	1,31	0,150983	
MDG-b_26_n2000_m200	1,74	0,109508	
MDG-b_27_n2000_m200	1,77	0,211285	
MDG-b_28_n2000_m200	1,32	0,161895	
MDG-b_29_n2000_m200	1,83	0,107835	
MDG-b_30_n2000_m200	1,64	0,104068	
MDG-c_1_n3000_m300	1,10	0,403152	
MDG-c_2_n3000_m300	1,31	0,418322	
MDG-c_8_n3000_m400	0,64	0,532294	
MDG-c_9_n3000_m400	0,89	0,574967	
MDG-c_10_n3000_m400	0,93	0,605257	
MDG-c_13_n3000_m500	0,78	0,750593	
MDG-c_14_n3000_m500	0,58	0,843429	
MDG-c_15_n3000_m500	0,47	0,747395	
MDG-c_19_n3000_m600	0,54	0,897482	
MDG-c_20_n3000_m600	0,58	0,878835	

Tabla 10: Resultados ES

11.2.6. Algoritmo Enfriamiento Simulado inteligente

Algoritmo Enfriamiento Simulado inteligente			
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	2,19	0,001577	
MDG-a_2_n500_m50	1,96	0,002493	
MDG-a_3_n500_m50	1,27	0,001479	
MDG-a_4_n500_m50	2,56	0,001835	
MDG-a_5_n500_m50	2,40	0,002344	
MDG-a_6_n500_m50	4,92	0,001188	
MDG-a_7_n500_m50	2,49	0,001808	
MDG-a_8_n500_m50	2,66	0,001884	
MDG-a_9_n500_m50	3,34	0,001643	
MDG-a_10_n500_m50	1,81	0,002509	
MDG-b_21_n2000_m200	1,10	0,047460	
MDG-b_22_n2000_m200	0,80	0,071476	
MDG-b_23_n2000_m200	0,92	0,053613	
MDG-b_24_n2000_m200	1,12	0,061628	
MDG-b_25_n2000_m200	1,26	0,049121	
MDG-b_26_n2000_m200	1,06	0,071879	
MDG-b_27_n2000_m200	1,29	0,056513	
MDG-b_28_n2000_m200	0,81	0,064387	
MDG-b_29_n2000_m200	0,90	0,074661	
MDG-b_30_n2000_m200	1,13	0,058523	
MDG-c_1_n3000_m300	0,55	0,175006	
MDG-c_2_n3000_m300	0,63	0,276090	
MDG-c_8_n3000_m400	0,48	0,365444	
MDG-c_9_n3000_m400	0,73	0,277408	
MDG-c_10_n3000_m400	0,74	0,194103	
MDG-c_13_n3000_m500	0,42	0,429891	
MDG-c_14_n3000_m500	0,38	0,705409	
MDG-c_15_n3000_m500	0,29	0,385588	
MDG-c_19_n3000_m600	0,35	0,933100	
MDG-c_20_n3000_m600	0,43	0,722338	

Tabla 11: Resultados ES-inte

11.2.7. Algoritmo de Búsqueda Multiarranque Básica

Algoritmo Búsqueda	Multiarranque Básica		
Caso	Desv	Tiempo	
MDG-a_1_n500_m50	1,31	0,047933	
MDG-a_2_n500_m50	1,18	0,049365	
MDG-a_3_n500_m50	0,80	0,047563	
MDG-a_4_n500_m50	1,48	0,048293	
MDG-a_5_n500_m50	1,67	0,047551	
MDG-a_6_n500_m50	0,96	0,047142	
MDG-a_7_n500_m50	1,00	0,048774	
MDG-a_8_n500_m50	0,48	0,049169	
MDG-a_9_n500_m50	0,88	0,049144	
MDG-a_10_n500_m50	1,01	0,055212	
MDG-b_21_n2000_m200	0,90	0,524166	
MDG-b_22_n2000_m200	0,93	0,531071	
MDG-b_23_n2000_m200	0,98	0,499756	
MDG-b_24_n2000_m200	1,10	0,516646	
MDG-b_25_n2000_m200	0,92	0,492388	
MDG-b_26_n2000_m200	1,01	0,553096	
MDG-b_27_n2000_m200	0,96	0,508929	
MDG-b_28_n2000_m200	0,92	0,581489	
MDG-b_29_n2000_m200	1,08	0,529014	
MDG-b_30_n2000_m200	0,98	0,543041	
MDG-c_1_n3000_m300	0,98	1,164430	
MDG-c_2_n3000_m300	1,10	1,021500	
MDG-c_8_n3000_m400	0,78	1,395820	
MDG-c_9_n3000_m400	0,74	1,438060	
MDG-c_10_n3000_m400	0,92	1,412480	
MDG-c_13_n3000_m500	0,60	1,884740	
MDG-c_14_n3000_m500	0,62	1,875270	
MDG-c_15_n3000_m500	0,53	1,943040	
MDG-c_19_n3000_m600	0,52	2,338360	
MDG-c_20_n3000_m600	0,55	2,654130	

Tabla 12: Resultados BMB

11.2.8. Algoritmo de Búsqueda Local Reiterada

Algoritmo Búsqueda	Local F	Reiterada
Caso	Desv	Tiempo
MDG-a_1_n500_m50	2,03	0,033767
MDG-a_2_n500_m50	0,90	0,034301
MDG-a_3_n500_m50	1,27	0,033301
MDG-a_4_n500_m50	1,38	0,034187
MDG-a_5_n500_m50	1,59	0,033240
MDG-a_6_n500_m50	1,20	0,034124
MDG-a_7_n500_m50	1,07	0,035086
MDG-a_8_n500_m50	1,29	0,034505
MDG-a_9_n500_m50	0,26	0,035406
MDG-a_10_n500_m50	1,24	0,034614
MDG-b_21_n2000_m200	0,66	0,316103
MDG-b_22_n2000_m200	0,64	0,393328
MDG-b_23_n2000_m200	0,89	0,339765
MDG-b_24_n2000_m200	0,51	0,352158
MDG-b_25_n2000_m200	0,70	0,322055
MDG-b_26_n2000_m200	0,52	0,289770
MDG-b_27_n2000_m200	1,08	0,292923
MDG-b_28_n2000_m200	0,56	0,294567
MDG-b_29_n2000_m200	0,61	0,296172
MDG-b_30_n2000_m200	0,72	0,291735
MDG-c_1_n3000_m300	0,25	0,725300
MDG-c_2_n3000_m300	0,55	0,606528
MDG-c_8_n3000_m400	0,34	0,995152
MDG-c_9_n3000_m400	0,43	0,864283
MDG-c_10_n3000_m400	0,46	0,819254
MDG-c_13_n3000_m500	0,35	1,066870
MDG-c_14_n3000_m500	0,19	1,195110
MDG-c_15_n3000_m500	0,10	1,101180
MDG-c_19_n3000_m600	0,26	1,358000
MDG-c_20_n3000_m600	0,33	1,507410

Tabla 13: Resultados ILS

11.2.9. Algoritmo de Búsqueda Local Reiterada con ES

Algoritmo Búsqueda Local Reiterada con ES				
Caso	Desv	Tiempo		
MDG-a_1_n500_m50	0,77	0,028409		
MDG-a_2_n500_m50	2,44	0,027653		
MDG-a_3_n500_m50	2,11	0,028456		
MDG-a_4_n500_m50	1,58	0,027744		
MDG-a_5_n500_m50	1,93	0,024637		
MDG-a_6_n500_m50	2,27	0,026710		
MDG-a_7_n500_m50	1,46	0,024261		
MDG-a_8_n500_m50	1,63	0,026385		
MDG-a_9_n500_m50	2,18	0,024964		
MDG-a_10_n500_m50	1,40	0,024995		
MDG-b_21_n2000_m200	2,38	0,221873		
MDG-b_22_n2000_m200	1,90	0,216851		
MDG-b_23_n2000_m200	2,18	0,217467		
MDG-b_24_n2000_m200	2,22	0,216852		
MDG-b_25_n2000_m200	2,17	0,217344		
MDG-b_26_n2000_m200	2,25	0,217916		
MDG-b_27_n2000_m200	2,14	0,216792		
MDG-b_28_n2000_m200	1,82	0,215707		
MDG-b_29_n2000_m200	2,20	0,216092		
MDG-b_30_n2000_m200	1,95	0,216012		
MDG-c_1_n3000_m300	2,09	0,371441		
MDG-c_2_n3000_m300	2,31	0,379389		
MDG-c_8_n3000_m400	1,69	0,521789		
MDG-c_9_n3000_m400	1,89	0,522062		
MDG-c_10_n3000_m400	1,96	0,528119		
MDG-c_13_n3000_m500	1,52	0,696165		
MDG-c_14_n3000_m500	1,35	0,696808		
MDG-c_15_n3000_m500	1,50	0,695371		
MDG-c_19_n3000_m600	1,36	0,876721		
MDG-c_20_n3000_m600	1,35	0,880387		

Tabla 14: Resultados ILS-ES

11.2.10. Algoritmo de Búsqueda Local Reiterada con ES inteligente

Algoritmo Búsqueda	Local R	teiterada con ES inteligente
Caso	Desv	Tiempo
MDG-a_1_n500_m50	1,81	0,009949
MDG-a_2_n500_m50	0,62	0,013450
MDG-a_3_n500_m50	0,59	0,010232
MDG-a_4_n500_m50	1,04	0,012122
MDG-a_5_n500_m50	1,90	0,012053
MDG-a_6_n500_m50	0,69	0,013853
MDG-a_7_n500_m50	1,54	0,012055
MDG-a_8_n500_m50	2,23	0,010995
MDG-a_9_n500_m50	0,43	0,013792
MDG-a_10_n500_m50	1,35	0,010735
MDG-b_21_n2000_m200	0,44	0,259702
MDG-b_22_n2000_m200	0,50	0,268967
MDG-b_23_n2000_m200	0,69	0,269102
MDG-b_24_n2000_m200	0,80	0,257674
MDG-b_25_n2000_m200	0,67	0,254422
MDG-b_26_n2000_m200	0,82	0,265124
MDG-b_27_n2000_m200	0,75	0,258520
MDG-b_28_n2000_m200	0,63	0,257008
MDG-b_29_n2000_m200	0,75	0,255919
MDG-b_30_n2000_m200	0,39	0,255056
MDG-c_1_n3000_m300	0,43	0,520209
MDG-c_2_n3000_m300	0,55	0,527669
MDG-c_8_n3000_m400	0,39	0,788177
MDG-c_9_n3000_m400	0,51	0,781022
MDG-c_10_n3000_m400	0,48	0,866956
MDG-c_13_n3000_m500	0,28	1,149970
MDG-c_14_n3000_m500	0,25	1,103060
MDG-c_15_n3000_m500	0,19	1,094690
MDG-c_19_n3000_m600	0,26	1,484650
MDG-c_20_n3000_m600	0,30	1,442260

Tabla 15: Resultados ILS-inte

11.2.11. Resultados globales

Algoritmo Greedy	Desv	Tiempo
Greedy	14,71	0,73
BL_PM	1,2	0,31
AGG-uniforme	1,41	131,69
AGG-posicion	2,32	13,50
AGE-uniforme	4,29	23,62
AGE-posicion	8,6	13,28
AM-(10,1.0)	4,13	15,09
AM-(10,0.1)	1,72	49,45
AM-(10,0.1,mej)	1,46	74,11
ES	1,86	0,27
ES-inte	1,37	0,17
BMB	0.93	0,76
ILS	0.75	0,46
ILS-ES	1,87	0,29
ILS-ES-inte	0.74	0,42

Tabla 16: Resultados Globales

11.3. Análisis de resultados

11.3.1. Algoritmos sin múltiples trayectorias

Figura 1: Evolución de la desviación - Algoritmos sin múltiples trayectorias

Figura 2: Evolución del tiempo - Algoritmos sin múltiples trayectorias

En este punto se va a analizar el comportamiento de los algoritmos que no utilizan múltiples

trayectorias.

En cuanto a la desviación, con la gráfica [1] se puede deducir que no hay grandes cambios entre los distintos algoritmos. El algoritmo BL_PM es el más estable, a diferencia de los algoritmos de enfriamiento simulado que en algunos casos tiene muchas desviación.

Una vez vista la desviación, ahora nos vamos a centrar en los tiempos obtenidos, con la gráfica [2] se pueden deducir lo siguiente:

Los algoritmos de enfriamiento simulado son más rápidos que los algoritmos de búsqueda local, aunque en el caso del algoritmo de enfriamiento simulado que no es inteligente no hay tanta diferencia con el algoritmo de búsqueda local. Esta diferencia de tiempo se debe a que la creación de las nuevas soluciones es más rápida en el caso de los algoritmos de enfriamiento simulado que en el caso de los algoritmos de búsqueda local.

Viendo los resultados de estos algoritmos en desviación y en tiempos, en mi opinión el mejor algoritmo para los casos utilizados es el algoritmo de enfriamiento simulado inteligente.

11.3.2. Influencia de la posición inicial en los algoritmos de búsqueda local

Figura 3: Evolución de la desviación - Influencia de la posición inicial en el BL

Figura 4: Evolución del tiempo - Influencia de la posición inicial en el BL

En cuanto a la desviación, con la gráfica [3] se puede comprobar como el algoritmo BMB es más estable en los resultados que el algoritmo de BL. Esto se debe a que el algoritmo BMB utiliza varias soluciones iniciales, y esto reduce la dependencia del algoritmo BL de la solución inicial. Y como se puede comprobar el algoritmo BMB obtiene resultados mejores o iguales, dependiendo del caso; que el algoritmo BL, y realizando menos evaluaciones en la ejecución del BL en cada iteración del algoritmo BMB.

Una vez vista la desviación, ahora nos vamos a centrar en los tiempos obtenidos, con la gráfica [4] se puede comprobar como el algoritmo BMB es siempre más lento que el algoritmo BL. Esto es debido a que en cada iteración del algoritmo BMB se deben hacer muchas copias de elementos para guardar la mejor solución, y además se debe iniciar muchas veces el algoritmo BL, por lo que la diferencia de tiempo es debido a esto. Si se consiguiese optimizar esta parte, el algoritmo BMB sería una mejor opción que el algoritmo BL ya que es más fiable al dar unos resultados más estables.

11.3.3. Comparación de los algoritmos de múltiples trayectorias con el mejor algoritmo de única trayectoria

Figura 5: Evolución de la desviación - Comparación de los algoritmos de múltiples y única trayectoria

Figura 6: Evolución del tiempo - Comparación de los algoritmos de múltiples y única trayectoria

En cuanto a la desviación, con la gráfica [5] se puede comprobar como todos los algoritmos de múltiple trayectoria son más estables en los resultados que el mejor algoritmo de una única trayectoria. En general también dan mejores resultados salvo el ILS-ES y en algunas ocasiones el BMB.

Una vez vista la desviación, ahora nos vamos a centrar en los tiempos obtenidos, con la gráfica [6] se puede comprobar lo mismo que se vio en la comparación del BMB y el BL, es decir, que los algoritmos de múltiples trayectorias, al tener que guardar la mejor solución y tener que iniciar varias veces los algoritmos de una única trayectoria, tardan siempre más que los algoritmo de un única trayectoria.

11.3.4. Comparación entre los algoritmos de múltiples trayectorias

Figura 7: Evolución de la desviación - Comparación de los algoritmos de múltiples trayectorias

Figura 8: Evolución del tiempo - Comparación de los algoritmos de múltiples trayectorias

En cuanto a la desviación, con la gráfica [7] se puede deducir que los algoritmos de múltiples trayectorias que utilizan en cada iteración un algoritmo inteligente ,como puede ser $BL_{-}PM$ ó ES-inte; obtiene mejor resultados que los algoritmos que utilizan algoritmos no inteligentes, como ES.

Una vez vista la desviación, ahora nos vamos a centrar en los tiempos obtenidos, con la gráfica [8] se puede deducir que los algoritmos de múltiples trayectorias que utilizan el algoritmo ES o alguna de sus variantes son más rápidos que los algoritmos que utilizan el algoritmo BL. Y además se puede deducir que el algoritmo BMB, que en cada iteración ejecuta el algoritmo BL sobre una solución aleatoria, siempre es más lento, que los algoritmos ILS, que en todas sus variantes en cada iteración se ejecuta el algoritmo BL ó ES sobre la mejor solución encontrada hasta el momento.

En resumen, por los resultados obtenidos es mejor opción utilizar algoritmos con múltiples trayectorias, como ILS, y que además utiliza un algoritmo inteligente para obtener la mejor solución.