Activités Mentales

24 Août 2023

On considère la fonction f, définie et dérivable sur $\mathbb R$ d'expression

$$f(x) = (2x-8)e^{-8x-8}$$
.

Étudier les variations de f sur $\mathbb R$

On considère la fonction f, définie et dérivable sur $\mathbb R$ d'expression

$$f(x) = (x+4)e^{-3x-7}.$$

On considère la fonction f, définie et dérivable sur $\mathbb R$ d'expression

$$f(x) = (10x - 8)e^{5x}.$$

On considère la fonction f, définie et dérivable sur $\mathbb R$ d'expression

$$f(x) = (-9x - 9)e^{-6x + 10}.$$

On considère la fonction f, définie et dérivable sur $\mathbb R$ d'expression

$$f(x) = (-9x + 9)e^{3x-6}.$$

Pour tout réel x, on a $f(x) = (2x-8)e^{-8x-8}$. On pose pour tout $x \in \mathbb{R}$,

$$u(x) = 2x - 8$$
 $v(x) = e^{-8x - 8}$
 $u'(x) = 2$ $v'(x) = -8e^{-8x - 8}$

et pour tout réel x on a

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 2e^{-8x-8} + (2x-8) \times (-8) e^{-8x-8}$$

$$= (2-16x+64)e^{-8x-8}$$

$$= (-16x+66)e^{-8x-8}$$

On a pour tout réel x, $f'(x) = (-16x + 66)e^{-8x-8}$.

Le signe de la dérivée est donnée par la fonction affine $x \mapsto -16x + 66$ car pour tout réel x, $e^{-8x-8} > 0$.

Or comme -16 < 0, cette fonction est décroissante sur \mathbb{R} et s'annule en $x = \frac{33}{8}$.

Finalement, le tableau de variation de f est

٠.	,	aa ao ramation ao j	
	x	$-\infty$ $\frac{33}{8}$	+∞
	f'(x)	+ 0	_
	f		

Pour tout réel x, on a $f(x) = (x+4)e^{-3x-7}$. On pose pour tout $x \in \mathbb{R}$,

$$u(x) = x + 4$$
 $v(x) = e^{-3x-7}$
 $u'(x) = 1$ $v'(x) = -3e^{-3x-7}$

et pour tout réel x on a

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= e^{-3x-7} + (x+4) \times (-3) e^{-3x-7}$$

$$= (1-3x-12)e^{-3x-7}$$

$$= (-3x-11)e^{-3x-7}$$

On a pour tout réel x, $f'(x) = (-3x - 11)e^{-3x-7}$.

Le signe de la dérivée est donnée par la fonction affine $x\mapsto -3x-11$ car pour tout réel $x,\ e^{-3x-7}>0.$

Or comme -3 < 0, cette fonction est décroissante sur \mathbb{R} et s'annule en $x = \frac{-11}{3}$.

Finalement, le tableau de variation de f est

٠.	,	aa aa ranaan aa j
	x	$-\infty$ $\frac{-11}{3}$ $+\infty$
	f'(x)	+ 0 -
	f	

Pour tout réel x, on a $f(x) = (10x - 8)e^{5x}$. On pose pour tout $x \in \mathbb{R}$,

$$u(x) = 10x - 8$$
 $v(x) = e^{5x}$
 $u'(x) = 10$ $v'(x) = 5e^{5x}$

et pour tout réel x on a

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= 10e^{5x} + (10x - 8) \times 5e^{5x}$$

$$= (10 + 50x - 40)e^{5x}$$

$$= (50x - 30)e^{5x}$$

On a pour tout réel x, $f'(x) = (50x - 30)e^{5x}$.

Le signe de la dérivée est donnée par la fonction affine $x\mapsto 50x-30$ car pour tout réel x, $e^{5x}>0$.

Or comme 50 > 0, cette fonction est croissante sur \mathbb{R} et s'annule en $x = \frac{3}{5}$. Finalement, le tableau de variation de f est

	y	
х	$-\infty$ $\frac{3}{5}$ +	-∞
f'(x)	- 0 +	
f		

Pour tout réel x, on a $f(x) = (-9x - 9)e^{-6x + 10}$. On pose pour tout $x \in \mathbb{R}$,

$$u(x) = -9x - 9$$
 $v(x) = e^{-6x+10}$
 $u'(x) = -9$ $v'(x) = -6e^{-6x+10}$

et pour tout réel x on a

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= -9e^{-6x+10} + (-9x-9) \times (-6)e^{-6x+10}$$

$$= (-9+54x+54)e^{-6x+10}$$

$$= (54x+45)e^{-6x+10}$$

On a pour tout réel x, $f'(x) = (54x + 45)e^{-6x+10}$.

Le signe de la dérivée est donnée par la fonction affine $x\mapsto 54x+45$ car pour tout réel x, $e^{-6x+10}>0$.

Or comme 54 > 0, cette fonction est croissante sur \mathbb{R} et s'annule en $x = \frac{-5}{6}$. Finalement, le tableau de variation de f est

x	$-\infty$ $\frac{-5}{6}$ $+\infty$
f'(x)	- 0 +
f	

Pour tout réel x, on a $f(x) = (-9x + 9)e^{3x-6}$. On pose pour tout $x \in \mathbb{R}$,

$$u(x) = -9x + 9$$
 $v(x) = e^{3x-6}$
 $u'(x) = -9$ $v'(x) = 3e^{3x-6}$

et pour tout réel x on a

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$= -9e^{3x-6} + (-9x+9) \times 3e^{3x-6}$$

$$= (-9 - 27x + 27)e^{3x-6}$$

$$= (-27x + 18)e^{3x-6}$$

On a pour tout réel x, $f'(x) = (-27x + 18)e^{3x-6}$.

Le signe de la dérivée est donnée par la fonction affine $x\mapsto -27x+18$ car pour tout réel $x,\ e^{3x-6}>0.$

Or comme -27 < 0, cette fonction est décroissante sur \mathbb{R} et s'annule en $x = \frac{2}{3}$.

Finalement, le tableau de variation de f est

٠.	,			as j see		
	x	$-\infty$		$\frac{2}{3}$		+∞
	f'(x)		+	0	_	
	f					/