Poročilo okrivanja 1-D ODE v Lorenzovemu sistemu

15. december 2020

Odkrivanje 1-D ODE enačb sem poganjal na Lorenzovemu sistemu enačb:

$$\frac{dx}{dt} = \sigma(y - x),$$

$$\frac{dy}{dt} = x(\rho - z) - y,$$

$$\frac{dz}{dt} = xy - \beta z,$$

pri začetnih pogojih $x_0 := 0.1, y_0 := 0.3, z_0 := 0.4$. Začetni pogoji so isti v vseh primerih skozi celotno poročilo. Parametri σ, ρ in β pa se sredi poročila spremenijo. Najprej sem obravnaval nekaotične parametre, nato pa še znano kaotične parametre z vrednostmi $\sigma := 10, \rho := 28$ in $\beta := 8/3$.

0.1 Domnevno nekaotični parametri

Najprej sem algoritem pognal pri nekaotičnih subjektivno naključno izbranih parametrih $\sigma:=1.3, \rho:=-15$ in $\beta:=3.4$. Navedeni izbrani parametri se na splošno smatrajo kot nenormalni, saj je vsaj eden izmed parametrov (ρ) negativen. Podatkovno množico sem generiral tako, da sem simuliral Lorenzov sistem:

prva enacba $dx/dt = \sigma * (y - x)$: najde rešitev -1.3 * x + 1.3 * y ali v 50 samplih, resitev ima napako reda 10 * * (-9).

druga enacba $dx/dt=\sigma*(y-x)$: najde rešitev v 4500 ali 6500 samplih, resitev -9.99969912689157*x*z-9.99918437188885*x+0.0193086499353945*y-1.09610736513107*z=-10*x*z-10*x+0.02*y-z oz. -10.0*x*z-10.0*x-2.28910354326151*y=10*x*z-10*x+2*y ima napako velikosti 004348586258407 reda 10**(-6) oz. 10**(-4).

Tako velik odmik od pravilne resitve -15*x-x*z-y pripisujem trenutno nastavljeni omejitvi v implementaciji optimizacijskega algoritma, ki omejuje parametre na interval [-10, 10]. Parameter v členu -10*x je tako lahko po absolutni vrednosti največ 10, torej ne more biti -15, kot je v izvorni enačbi. Predvidevam, da se zato zgodi kompenzacija nad ostalimi parametri v ostalih členih enačbe. Predvidevam še, da se bo pri rahljanju omejitve iz [-10, 10] na [-20, 20] napaka popravila na napako reda 10**(-9) kot pri ostalih dveh enačbah.

tretja enačba $dx/dt = \sigma * (y - x)$: najde rešitev -1.3 * x + 1.3 * y ali v 50 samplih, resitev ima napako velikosti reda 10 * *(-9).

Sledi poročilo o poganjanju pri ka
otičnih parametrih: $\sigma:=10, \rho:=28, \beta:=8/3$

Ker je ρ po absolutni vrednosti spet večji od 10, tj. od nastavljenih mej za parametre optimizacijskega algoritma in so ostali dve vrednosti znotraj mej, napovedujem, da bodo v najboljšem primeru podobni rezultati kot v nekaotičnem primeru. Oziroma, pri drugi ena"bi pričakujem $\sigma * = 10, \rho * = 10, \beta * = 7.$

0.2 Kaotični rezultati

V odkrivanju prve enačbe algoritem odkrije enačbo:

$$-9.85764357227234 * x + 9.9333747564978 * y$$

oz.

```
-9.55829580188787 * x + 9.78920618974904 * y + 0.0232261285460231
```

v manj kot 50 vzorcih, medtem ko ima rešitev napako velikosti 2.94709382690573e-06oz. 2.4772067855792343e-06.

V odkrivanju druge enačbe algoritem odkrije enačbo:

```
-0.670382396435091 * x * z + 10.0 * x + 6.94013313376156 * y
```

-0.877950876789105*x*z + 9.99535400929563*x + 7.38550161602604*y - 0.617064542958862

v 6500 vzorcih, enačba ima napako velikosti 0.0033668325250160443 = $3.4\cdot10^{-3}$ oz. 0.00018803715641311185 = $1.9\cdot10^{-4}$. Medtem, ko je izmed vseh vzorčenih enačb, najmanjša opažena napaka reda 10^{-5} .

V odkrivanju tretje enačbe algoritem odkrije enačbo:

$$\frac{dz}{dt} = 0.991337569095305 * x * y - 2.56521319047224 * z$$

v manj kot 100 vzorcih, enačba ima napako velikosti 9.178140365155879 $e-05=9.2\cdot 10^{-5}$, kar je v okviru najmanjšega opaženega reda velikosti napake.

1 Poročilo v tabeli

Celotno poročilo je stisnjeno tudi v naslednji tabeli:

tip enačbe oz. para- metri	leva stran enačbe	najdena desna stran enačbe vs. izvorna enačba	napaka enac"be	število po- treb- nih vzor- cev	hramba rezul- tatov	top 1%
nekaotična, tj. $\sigma = 1.3, \rho = -15, \beta = 3.4$	$\frac{dx}{dt}$	-1.303 * x + 1.303 * y -1.3 * x + 1.3 * y	$\cdot 10^{-9}$	50		
	$\frac{dy}{dt}$	-10.0 * x * z - 10.0 * x - 2.289 * y -x * z - 15 * x - y	$8 \cdot 10^{-4}$	100		
	$\frac{dz}{dt}$	1.054 * x * y - 3.402 * z $x * y - 3.4 * z$	$2.205 \cdot 10^{-9}$	6500		
nekaotična, tj. $\sigma =$ $10, \rho =$ $28, \beta =$ 2.66666	$\frac{dx}{dt}$	-9.857 * x + 9.933 * y $-10 * x + 10 * y$	$2.947 \cdot 10^{-6}$	50		
	$\frac{dy}{dt}$	-0.670 * x * z + 10.0 * x + 6.940 * y $-x * z + 28 * x - y$	$1.9 \cdot 10^{-4}$	100		
	$\frac{dz}{dt}$	0.991 * x * y - 2.565 * z $x * y - 2.66666 * z$	$9.2 \cdot 10^{-5}$	6500		