[2024-2025]

группа 10-1

Ю. Г. Арутюнов 5 декабря 2024 г.

Квадратичный закон взаимности

Квадратичный закон взаимности Гаусса. Если p,q — различные нечётные простые числа, то

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$

Давайте это докажем.

- **1.** Рассмотрим множества остатков $P=\{1,2,\dots,\frac{p-1}{2}\}$ и $S=\{-1,-2,\dots,-\frac{p-1}{2}\}$. Будем называть остатки из множества P «первичными», а остатки из множества S «вторичными». Пусть также есть некоторое натуральное число a, взаимно простое с p. (a) Докажите, что во множестве $\{a, 2a, ..., \frac{\hat{p}-1}{2}a\}$ есть ровно по одному остатку из каждой пары $\pm 1, \pm 2, \dots, \pm \frac{p-1}{2}$.
 - **(б)** Обозначим за $\varepsilon(a)$ число вторичных остатков во множестве $\{a, 2a, \dots, \frac{p-1}{2}a\}$. Докажите, что $\left(\frac{a}{p}\right) = (-1)^{\varepsilon(a)}$.
 - **(в)** Докажите, что первичный остаток i при умножении на a становится вторичным тогда и только тогда, когда $\left[\frac{2ai}{p}\right]$ — нечетное число. Выведите отсюда, что четность

числа $\varepsilon(a)$ совпадает с четностью числа $\sum\limits_{i=1}^{p-1} \left\lceil \frac{2ai}{p} \right\rceil$.

То есть для доказательства закона взаимности достаточно проверить, что совпадают чётности чисел

$$\sum_{i=1}^{\frac{p-1}{2}} \left[\frac{2qi}{p} \right] + \sum_{i=1}^{\frac{q-1}{2}} \left[\frac{2pi}{q} \right] \ \text{и} \ \frac{p-1}{2} \cdot \frac{q-1}{2}.$$

- **2.** Рассмотрим на координатной плоскости прямоугольник с вершинами (0,0),(0,q),(p,q)(p,0) и прямую l с уравнением py = qx. Отметим целые точки строго внутри прямоугольника с чётной абсциссой, находящиеся ниже прямой l, и с чётной ординатой, находящиеся выше прямой l.
 - (a) Докажите, что число отмеченных точек ниже прямой l равно $\sum_{i=1}^{l} \left[\frac{2qi}{p}\right]$, а выше $-\sum_{i=1}^{\frac{q-1}{2}} \left[\frac{2pi}{q}\right]$
 - (б) Отмеченные точки, у которых обе координаты чётные, покрасим в красный цвет, а остальные — в синий. Докажите, что синих точек чётно.
 - (в) Завершите доказательство квадратичного закона взаимности.

Теперь можно и задачи порешать

- **3.** Найдите $\left(\frac{57}{179}\right)$.
- **4.** Докажите, что -3 квадратичный вычет по модулю нечетного простого числа p тогда и только тогда, когда р дает остаток 1 при делении на 6.
- **5.** Докажите, что при любом натуральном a все простые делители $a^2 5a + 5$ большие 5, имеют вид $5k \pm 1$.
- Найдите наименьший простой делитель числа $12^{2^{15}} + 1$.
- **7.** Найдите все натуральные *n* такие, что $3^{n} 1 \, \vdots \, 2^{n} 1$.
- **8.** Найдите все такие простые p, что p! + p точный квадрат.