

#### Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

# BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 10 – Circuitos de apoio: multiplexadores, demultiplexadores, gerador de paridade e verificador de paridade

#### Visão Geral



#### **Multiplexador**

<u>Multiplexador ou Seletor de Dados:</u> É um circuito lógico que tem diversas entradas e apenas uma saída. MUX seleciona uma única entrada para transmitir para a saída.

Entradas de Controle: permitem selecionar a entrada a ser transmitida.



# **Exemplo MUX 4x1**



## **Exemplo MUX 4x1**

Fatorando o circuito para apenas um nível de porta lógica AND:



## **Exemplo MUX 2x1**



#### Formas de Onda

Exemplo: A partir dos sinais de entrada e de controle abaixo, desenhe o sinal multiplexado na saída do MUX.





#### <u>Demultiplexador</u>

<u>Demultiplexador:</u> É um circuito lógico que realiza a função inversa à do MUX. Tem apenas uma única entrada que é enviada para uma de suas saídas.

Entradas de Controle: permitem selecionar para qual das saídas a entrada será enviada.



# **Exemplo DEMUX 1x4**



## **Exemplo DEMUX 1x4**

Fatorando o circuito para apenas um nível de porta lógica AND:



#### Formas de Onda

Exemplo: A partir dos sinais de entrada e de controle abaixo, desenhe as saídas dos sinais do DEMUX





## **Aplicações**

Multiplexação em recurso compartilhado:

•Ex.: Barramento.



## Expansão da Capacidade

A partir de circuitos multiplexadores de baixa capacidade pode-se formar um MUX de maior capacidade

Exemplo: projetar um MUX 4x1 a partir de MUXes 2x1



### **Expansão da Capacidade**

- A partir de circuitos demultiplexadores de baixa capacidade pode-se formar um DEMUX de maior capacidade
- Exemplo: projetar um DEMUX 1x4 a partir de DEMUXes 1x2



#### **Paridade**

- Um bit de paridade consiste em um bit extra anexado ao conjunto de bits do código a ser transferido de uma localidade para outra
- O bit de paridade pode ser 0 ou 1, dependendo do número de 1s contido no conjunto de bits do código
- No método que usa paridade par:
  - O valor do bit de paridade é determinado para que o número total de 1s no conjunto de bits do código (incluindo o bit de paridade) seja par

#### **Paridade**

#### Paridade par

- Exemplo 1:
  - Suponha que o conjunto de bits seja 1000011
  - Esse é o código ASCII de 7 bits do caractere 'C'
  - Esse conjunto tem três 1s; portanto, anexamos um bit de paridade par igual a 1 para tornar par o número total de 1s
  - O novo conjunto de bits, incluindo o bit de paridade:

**11000011** 

bit de paridade anexado

#### **Paridade**

#### Paridade par

- Exemplo 2:
  - Suponha que o conjunto de bits seja 1000001
  - Esse é o código ASCII de sete bits do caractere 'A'
  - Esse conjunto tem dois 1s; portanto, anexamos um bit de paridade par igual a 0 para tornar par o número total de 1s
  - O novo conjunto de bits, incluindo o bit de paridade:
    01000001

bit de paridade anexado

#### **Paridade**

- No método que usa paridade ímpar:
  - O valor do bit de paridade é determinado para que o número total de 1s no conjunto de bits do código (incluindo o bit de paridade) seja ímpar

#### **Paridade**

#### Paridade ímpar

- Exemplo 1:
  - Suponha que o conjunto de bits seja 1000011
  - Esse é o código ASCII de sete bits do caractere 'C'
  - Esse conjunto tem três 1s; portanto, anexamos um bit de paridade ímpar igual a 0 para tornar ímpar o número total de 1s
  - O novo conjunto de bits, incluindo o bit de paridade:

01000011

bit de paridade anexado

#### **Paridade**

#### Paridade ímpar

- Exemplo 2:
  - Suponha que o conjunto de bits seja 1000001
  - Esse é o código ASCII de sete bits do caractere 'A'
  - Esse conjunto tem dois 1s; portanto, anexamos um bit de paridade par igual a 1 para tornar ímpar o número total de 1s
  - O novo conjunto de bits, incluindo o bit de paridade:

11000001

bit de paridade anexado

#### **Paridade**

Aplicação: Detecção de erro na transmissão de dados



#### **Gerador e Verificador de Paridade**

Gera a paridade do dado a ser transmitido e verifica a paridade na recepção do dado







| A B C D P  0 0 0 0 0 0  0 0 1 1  0 0 1 0 1  0 0 1 0 1                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0       0       0       1       1         0       0       1       0       1         0       0       1       1       0         0       1       0       0       1         0       1       0       1       0         0       1       1       0       0         0       1       1       1       1 |  |
| 0       0       1       0       1         0       0       1       1       0         0       1       0       0       1         0       1       0       1       0         0       1       1       0       0         0       1       1       1       1                                           |  |
| 0     0     1     1     0       0     1     0     0     1       0     1     0     1     0       0     1     1     0     0       0     1     1     1     1                                                                                                                                     |  |
| 0     1     0     0     1       0     1     0     1     0       0     1     1     0     0       0     1     1     1     1                                                                                                                                                                     |  |
| 0     1     0     1     0       0     1     1     0     0       0     1     1     1     1                                                                                                                                                                                                     |  |
| 0     1     1     0     0       0     1     1     1     1                                                                                                                                                                                                                                     |  |
| 0 1 1 1 1                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                               |  |
| 1 0 0 0 1                                                                                                                                                                                                                                                                                     |  |
| 1 0 0 1 0                                                                                                                                                                                                                                                                                     |  |
| 1 0 1 0 0                                                                                                                                                                                                                                                                                     |  |
| 1 0 1 1 1                                                                                                                                                                                                                                                                                     |  |
| 1 1 0 0 0                                                                                                                                                                                                                                                                                     |  |
| 1 1 0 1 1                                                                                                                                                                                                                                                                                     |  |
| 1 1 1 0 1                                                                                                                                                                                                                                                                                     |  |
| 1 1 1 0                                                                                                                                                                                                                                                                                       |  |

#### Tabela Verdade da Paridade Par

✓ Expressão da TV:

$$P = \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, \overline{B} \, C \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + \overline{A} \, B \, C \, D \\ + A \, \overline{B} \, \overline{C} \, \overline{D} + A \, \overline{B} \, C \, D + A \, B \, \overline{C} \, D + A \, B \, C \, \overline{D}$$

| Α | В | С | D | Р |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |

#### **Expressão da TV:**

$$P = A \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, B \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, \overline{D} + \overline{A} \, \overline{B} \, \overline{C} \, D$$

$$+ \overline{A} \, B \, C \, D + A \, \overline{B} \, C \, D + A \, B \, \overline{C} \, D + A \, B \, \overline{C} \, \overline{D}$$



 $P = A \oplus B \oplus C \oplus D$ 

# Gerador-Verificador de Paridade Par



# Gerador-Verificador de Paridade Par



# Gerador-Verificador de Paridade Par



#### **Exercícios**

- 1. Projete um circuito multiplexador de 16x1 utilizando circuitos MUXes 8x1.
- 2. A partir do DEMUX 1x2 e dos sinais de entrada (E) e de controle (A) desenhe os sinais de saída demultiplexados.





## Soluções

1. Projete um circuito multiplexador de 16x1 utilizando circuitos MUXes 8x1.



## Soluções

2. A partir do DEMUX 1x2 e dos sinais de entrada (E) e de controle (A) desenhe os sinais de saída demultiplexados.





### **Tarefa**

#### Simule no Logisim o MUX 4:1



#### Próxima aula

- Aritmética computacional:
  - Adição e subtração