Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization

Noam Razin, Sadhika Malladi, Adithya Bhaskar, Danqi Chen, Sanjeev Arora, Boris Hanin

Princeton Language & Intelligence **Princeton ORFE**

Direct Preference Learning

(e.g. DPO; Rafailov et al. 2023)

Likelihood Displacement

Definition: When the probability of y^+ decreases during training

Benign

 \mathbf{Z} is as preferable as \mathbf{y}^+

Catastrophic

Z is substantially less preferable than y⁺

Likelihood displacement is prevalent, yet not well understood

(e.g. Pal et al. 2024, Yuan et al. 2024, Rafailov et al. 2024, Tajwar et al. 2024, Liu et al. 2024, Pang et al. 2024)

□ Question #1

Why does likelihood displacement occur?

□ Question #2

What are its implications?

Likelihood Displacement Can Cause Unintentional Unalignment

Setting: Train a language model to refuse unsafe prompts via DPO

① Results

Probability shifts from preferred refusals to harmful responses!

E.g., the refusal rate of Llama-3-8B-Instruct drops from 74.4% to 33.4%

Theory: Likelihood Displacement is Driven by the Embedding Geometry

Approach: Characterize evolution of log probabilities

№ Main Takeaway

Preferences with similar hidden embeddings lead to likelihood displacement!

Similarity measured by the Centered Hidden **Embedding Similarity (CHES) score**

CHES score of $(\mathbf{x}, \mathbf{y}^+, \mathbf{y}^-)$ $\left\langle \sum_{k=1}^{|\mathbf{y}^+|} \mathbf{h}_{\mathbf{x},\mathbf{y}_{\leq k}^+}, \sum_{k'=1}^{|\mathbf{y}^-|} \mathbf{h}_{\mathbf{x},\mathbf{y}_{\leq k'}^-} \right\rangle - \left\| \sum_{k=1}^{|\mathbf{y}^+|} \mathbf{h}_{\mathbf{x},\mathbf{y}_{\leq k}^+} \right\|^2$ ${f v}^+$ hidden embeddings y hidden embeddings

Identifying Sources of Likelihood Displacement

№ Main Takeaway

Data Filtering via CHES Score

№ Main Takeaway

Removing samples with high CHES scores mitigates unintentional unalignment

DPO + SFT

DPO

Setting: The same as in 1 — train a language model to refuse unsafe prompts via DPO

DPO over samples with lowest length-normalized CHES score DPO (gold data)