TEORÍA DE CIRCUITOS III Prueba BT2

25 de octubre de 2018

Los resultados se publicarán el día 31 de octubre.

La revisión del examen se realizará en horario de tutoría los días 6, 7 y 8 de noviembre.

El interruptor del circuito de la figura ha permanecido abierto un tiempo elevado, y se cierra en t = 0. En estas condiciones debe realizar el siguiente itinerario:

- 1. **(0,5p.)** Determinar las condiciones iniciales de las variables $u_C(0^+)$, $i_L(0^+)$, $i_R(0^+)$.
- 2. (**0,5p.**) Determinar los valores en régimen permanente de las variables $u_C(\infty)$, $i_L(\infty)$, $i_R(\infty)$.
- 3. (4p.) Dibujar el circuito en el dominio de Laplace para t>0, y resolverlo para obtener las expresiones analíticas de $I_L(s)$, $U_C(s)$, $I_R(s)$.
- 4. (1p.) Comprobar mediante los teoremas de valor inicial y valor final que las expresiones anteriores se ajustan a los resultados de los apartados 1 y 2.
- 5. (**1p.**) A partir de las expresiones obtenidas en el apartado 3, indique de forma razonada el tipo de transitorio existente en el circuito.
- 6. (3**p.**) Expresión en el dominio del tiempo de la variable $i_R(t)$.

Solución

1. La siguiente figura representa el circuito para $t = 0^-$.

En este circuito obtenemos:

$$i_L(0^-) = 0 \text{ A}$$

 $u_c(0^-) = 500 \text{ V}$

Mediante las condiciones de continuidad, obtenemos:

$$i_L(0^+) = 0 \text{ A}$$

 $u_c(0^+) = 500 \text{ V}$
 $i_R(0^+) = u_c(0^+)/R = 500 \text{ A}$

2. La siguiente figura representa el circuito para $t \to \infty$.

En este circuito obtenemos:

$$i_L(\infty) = \frac{E_g}{R + R_L} = 45,45 \,\text{A}$$

$$u_C(\infty) = \frac{R \cdot Eg}{R + R_L} = 45,45 \,\text{V}$$

$$i_R(\infty) = i_L(\infty)$$

3. La siguiente figura representa el circuito en el dominio de Laplace.

En este circuito se han indicado las corrientes de malla que se relacionan con las variables solicitadas:

$$egin{aligned} \mathbf{I_L(s)} &= \mathbf{I_a(s)} \\ \mathbf{I_R(s)} &= \mathbf{I_b(s)} \\ \mathbf{U_C(s)} &= R\mathbf{I_R(s)} = \mathbf{I_R(s)} \end{aligned}$$

Las ecuaciones de las mallas son:

$$\begin{pmatrix} 10+0,2\mathbf{s}+10/\mathbf{s} & -10/\mathbf{s} \\ -10/\mathbf{s} & 10/\mathbf{s}+1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I_a(s)} \\ \mathbf{I_b(s)} \end{pmatrix} = \begin{pmatrix} 0 \\ Eg/\mathbf{s} \end{pmatrix}$$

Resolviendo el sistema y empleando las relaciones anteriores se obtiene:

$$\begin{split} \mathbf{I_L(s)} &= \frac{25 \times 10^3}{\mathbf{s(s^2 + 60s + 550)}} \\ \mathbf{I_R(s)} &= 500 \frac{\mathbf{s^2 + 50s + 50}}{\mathbf{s(s^2 + 60s + 550)}} \\ \mathbf{U_C(s)} &= 500 \frac{\mathbf{s^2 + 50s + 50}}{\mathbf{s(s^2 + 60s + 550)}} \end{split}$$

4. Los resultados del teorema de valor inicial son:

$$\lim_{s \to \infty} \mathbf{sI_L}(\mathbf{s}) = i_L(0^+) = 0 \,\mathrm{A}$$
$$\lim_{s \to \infty} \mathbf{sI_R}(\mathbf{s}) = i_R(0^+) = 500 \,\mathrm{A}$$
$$\lim_{s \to \infty} \mathbf{sU_C}(\mathbf{s}) = u_c(0^+) = 500 \,\mathrm{V}$$

Los resultados del teorema de valor final son:

$$\lim_{s\to 0} \mathbf{sI_L}(\mathbf{s}) = i_L(\infty) = 45,45 \,\mathrm{A}$$

$$\lim_{s\to 0} \mathbf{sI_R}(\mathbf{s}) = i_R(\infty) = 45,45 \,\mathrm{A}$$

$$\lim_{s\to 0} \mathbf{sU_C}(\mathbf{s}) = u_C(\infty) = 45,45 \,\mathrm{V}$$

Estos resultados corresponden con los obtenidos en los apartados 1 y 2.

5. Las raíces del denominador son:

$$\mathbf{s}_1 = 0$$

 $\mathbf{s}_2 = -48,71$
 $\mathbf{s}_3 = -11,29$

Teniendo en cuenta que la fuente del sistema es E_g/\mathbf{s} , la primera raíz corresponde a la respuesta forzada. Las otras dos raíces corresponden a los polos del sistema y, por tanto, a la respuesta natural. Se trata de dos raíces reales y distintas, lo que implica un transitorio sobreamortiguado.

Otra forma de llegar a la misma conclusión es tener en cuenta que, al tratarse de un circuito de segundo orden, el polinomio debe ser de la forma $\mathbf{s}^2 + 2\alpha\mathbf{s} + \omega_o^2$. Por tanto,

$$\alpha = 30$$

$$\omega_o = 23,45$$

Dado que $\alpha > \omega_o$, se trata de un transitorio sobreamortiguado con exponentes $\mathbf{s}_1 = -\alpha - \sqrt{\alpha^2 - \omega_o^2} = -48,71$ y $\mathbf{s}_2 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} = -11,29$.

6. Desarrollamos la expresión $I_R(s)$ en fracciones parciales:

$$I_{\mathbf{R}}(\mathbf{s}) = 500 \frac{\mathbf{s}^2 + 50\mathbf{s} + 50}{\mathbf{s}(\mathbf{s}^2 + 60\mathbf{s} + 550)} = \frac{A}{\mathbf{s}} + \frac{B}{\mathbf{s} + 48,71} + \frac{C}{\mathbf{s} + 11,29}$$

Para determinar los tres coeficientes empleamos las siguientes expresiones:

$$A = \mathbf{sI_R(s)}|_{s=0} = 45,45$$

 $B = (\mathbf{s} + 48,71)\mathbf{I_R(s)}|_{s=-48,71} = -3,52$
 $C = (\mathbf{s} + 11,29)\mathbf{I_R(s)}|_{s=-11,29} = 458,06$

Consecuentemente, la expresión de la corriente por la resistencia para t>0 es:

$$i_R(t) = 45,45 - 3,52e^{-48,71t} + 458,06e^{-11,29t}$$

Tal y como se anticipó anteriormente, se trata de un transitorio sobreamortiguado que comienza en 500 A y tiende a 45,45 A.

La siguiente figura muestra el resultado gráfico de la simulación de este circuito en Ques, representando la evolución temporal de esta señal.

