LAB 2 Subham Beura CE 7th Sem B521060

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
```

```
lab2 = pd.read_csv("lab1_dataset.csv")
lab2.head(
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

print(lab2.isnull().sum()

0 age 0 sex ср 0 trestbps 0 chol 0 fbs restecg 0 thalach exang 0 oldpeak 0 0 slope ca 0 thal 0 target 0 dtype: int64

The dataset does not contain any null values across all columns, so no handling of missing values is necessary

from scipy.stats import shapiro

```
def check_normal_distribution(data,columns):
 results = {}
for column in columns:
  plt.figure(figsize=(8, 6))
   sns.histplot(data[column], kde=True)
   plt.title(f'Distribution of {column}')
   plt.xlabel(column)
  plt.ylabel('Frequency')
  plt.show()
  stat,p_value = shapiro(data[column])
   results[column] = {'stat':stat, 'p_value':p_value}
  if p_value > 0.05:
     results[column]['result'] = 'normal'
   else:
     results[column]['result'] = 'not normal'
  print(f"\n{column}: stat={stat}, p_value={p_value},
result={results[column]['result']}\n")
return results
numeric_columns =
lab2.select_dtypes(include=['int64','float64']).columns
normality_results = check_normal_distribution(lab2,numeric_columns)
```


Shapiro-Wilk Test Results for Normality

Featu re	Shapiro-Wilk statistic	p- value
age	0.986	0.005 8
sex	0.586	≈ Ø
ср	0.790	≈ Ø
trestb ps	0.966	≈ Ø
chol	0.947	≈ Ø
fbs	0.424	≈ Ø
restec g	0.679	≈ 0
thalac	0.976	≈ ()

 h

 exang
 0.591
 ≈ 0

 oldpe ak
 0.844
 ≈ 0

 slope
 0.745
 ≈ 0

 ca
 0.728
 ≈ 0

 thal
 0.751
 ≈ 0

 target
 0.634
 ≈ 0

Interpretation of p-values:

- p-value < 0.05: Indicates that the null hypothesis of normality is rejected, meaning the feature does not follow a normal distribution.
- p-value ≥ 0.05: Fails to reject the null hypothesis, suggesting the feature might follow a normal distribution.

Conclusion: Based on the p-values, all features have p-values less than 0.05, indicating that none of the features follow a normal distribution. The histogram plots further confirm this, showing various distributions that are not normally distributed.

```
trestbps
                                         chol
                                                   fbs
    age
           sex
                       ср
                                                            restecg \
0 0.952197 0.681005 1.973123 0.763956 -0.256334 2.394438 -1.005832
1 -1.915313  0.681005  1.002577 -0.092738  0.072199 -0.417635  0.898962
2 -1.474158 -1.468418 0.032031 -0.092738 -0.816773 -0.417635 -1.005832
3 0.180175 0.681005 0.032031 -0.663867 -0.198357 -0.417635 0.898962
4 0.290464 -1.468418 -0.938515 -0.663867 2.082050 -0.417635 0.898962
  thalach
           exang
                     oldpeak
                               slope
                                          ca
                                                   thal
                                                            target
0 0.015443 -0.696631 1.087338 -2.274579 -0.714429 -2.148873 0.914529
1 1.633471 -0.696631 2.122573 -2.274579 -0.714429 -0.512922 0.914529
2 0.977514 -0.696631 0.310912 0.976352 -0.714429 -0.512922 0.914529
3 1.239897 -0.696631 -0.206705 0.976352 -0.714429 -0.512922 0.914529
4 0.583939 1.435481 -0.379244 0.976352 -0.714429 -0.512922 0.914529
```

Understanding Data Standardization

Importance of Standardization

• **Equal Contribution:** Standardization ensures that all features contribute equally to the analysis, regardless of their original scale.

- Algorithm Efficiency: Many machine learning algorithms, such as those using gradient descent (e.g., linear regression, logistic regression), benefit from standardized data as it speeds up convergence.
- Comparability: Features with different scales can distort model predictions.
 Standardization prevents this by putting all features on a common scale.

2. Interpreting Standardized Values

- Positive Values: A positive standardized value indicates that the original feature value is above the mean of that feature. The greater the positive value, the further away from the mean it is.
- Negative Values: A negative standardized value indicates that the original feature value is below the mean of that feature. The more negative the value, the further below the mean it is.
- Values Close to Zero: Values close to zero mean that the original feature value is close to the mean.

Key Takeaway: Each value has been transformed such that the features now have a mean of 0 and a standard deviation of 1. This transformation is useful for algorithms sensitive to the scale of the input data, ensuring that all features contribute equally.

```
from sklearn.preprocessing import MinMaxScaler
numeric_columns = lab2.select_dtypes(include=['int64',
'float64']).columns
scaler = MinMaxScaler()
lab2[numeric_columns] = scaler.fit_transform(lab2[numeric_columns])
print(lab2.head())
```

```
trestbps
   age
         sex
                ср
                              chol
                                     fbs restecg thalach
                                                      exang \
0 0.708333 1.0 1.000000 0.481132 0.244292 1.0
                                           0.0 0.603053 0.0
1 0.166667 1.0 0.666667 0.339623 0.283105 0.0
                                          0.5 0.885496 0.0
2 0.250000 0.0 0.333333 0.339623 0.178082 0.0
                                          0.0 0.770992 0.0
3 0.562500 1.0 0.333333 0.245283 0.251142 0.0
                                          0.5 0.816794 0.0
4 0.583333 0.0 0.000000 0.245283 0.520548 0.0
                                          0.5 0.702290 1.0
 oldpeak slope ca
                   thal target
1.0
1.0
2 0.225806 1.0 0.0 0.666667
                           1.0
3 0.129032 1.0 0.0 0.666667
                           1.0
4 0.096774 1.0 0.0 0.666667
                           1.0
```

Understanding Data Normalization

Use of Normalization

Non-Gaussian Distribution:

- Normalization is useful when the data does not follow a Gaussian (normal) distribution.
- It's beneficial when you need all features to be on the same scale but do not want to make assumptions about the distribution.

Distance-Based Algorithms:

- Normalization is particularly beneficial for algorithms that compute distances between data points, such as:
 - K-Nearest Neighbors (KNN)
 - Neural networks
- It ensures that no feature dominates due to its scale.

Key Benefit: By normalizing, all numeric features in the dataset will be scaled to the range [0, 1]. This makes them suitable for various machine learning algorithms that require data to be on the same scale..

```
from imblearn.over_sampling import SMOTE
from sklearn.model_selection import train_test_split
X = lab2.drop('target', axis=1)
y = lab2['target']
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42, stratify=y)
smote = SMOTE(random_state=42)
X_train_balanced, y_train_balanced = smote.fit_resample(X_train,
y_train)
print("Original training set class distribution:")
print(y_train.value_counts())
print("\nBalanced training set class distribution:")
print(pd.Series(y_train_balanced).value_counts())
```

Original training set class distribution:

target

1.0 115

0.0 97

Name: count, dtype: int64

Balanced training set class distribution:

target

1.0 115

0.0 115

Name: count, dtype: int64

Class Distribution Analysis and Dataset Balancing

Original Class Distribution

- Class 1.0: 115 instances
- Class 0.0: 97 instances

Balanced Class Distribution

- Class 1.0: 115 instances
- Class 0.0: 115 instances

Impact of Balancing

Balancing the dataset typically improves the performance of classification models by:

- 1. Preventing bias towards the majority class
- 2. Ensuring equal representation of all classes

Balancing Techniques

Common methods include:

- OversamplingUndersampling
- Synthetic data generation (e.g., SMOTE)

Best Practice

It's recommended to assess how these balancing adjustments affect the model's

Subham Beura B521060 CE 7th Sem