LENA BARTELL

Cambridge, MA • lenabartell.com • github.com/lbartell • linkedin.com/in/lenabartell

SKILLS

TECHNIQUES

Computer vision (filtering, morphological image processing, registration, segmentation) • Microscopy • Machine learning (exploratory analytics, regularization, normalization, regression, classification, cross-validation) • Regression (linear, logistic, mixed-effects, random forest) • Data visualization (figure design, dashboards)

LANGUAGES, ETC.

Python (Pandas, NumPy, SciPy, scikit-learn, StatsModels, Matplotlib, Scrapy) • MATLAB • Flask/Dash • HTML/CSS • SQL (Postgres) • Inkscape (vector graphics) • Autodesk Inventor (3D CAD) • LaTeX • Tableau • Git

PROJECTS & EXPERIENCE

2018 - PRESENT

Let's Get Clinical: Predicting clinical trial drop-out rates (Insight Data Science project)

Fellow, Insight Data Science, Boston, MA

- · Extracted and cleaned data (continuous, categorial, text) from 40-table relational database using Python (pandas) and PostgreSQL
- · Modeled trial dropout rates using linear regression and random forests in Python (StatsModels, scikit-learn)
- · Deployed online app via Dash/Heroku to predict the number of patients that will drop out of a clinical trial (lrb-insight-project.herokuapp.com)

2012 - PRESENT

Injury-induced cellular dysfunction in articular cartilage (PhD thesis)

PhD Candidate, Cornell University, Ithaca, NY

- · Built and utilized custom mechanical testing equipment that interfaced with optical microscopy
- · Analyzed multi-dimensional imaging data sets (~20×1 GB) to segment, track, and classify cell behavior over space and time using MATLAB and Python
- · Quantified relationship between cell dysfunction and treatment using mixed-effects regression (linear, logistic)
- · Presented research quarterly in small-group meeting and at 7 scientific conferences
- · Mentored 5 researchers and cultivated collaborations with veterinary surgeons and biomedical engineers

2017 GUI for automated segmentation and classification of microscopy images (PhD thesis)

PhD Candidate, Cornell University, Ithaca, NY

- · Developed custom image segmentation and classification algorithm based on the watershed transform
- Deployed image algorithm as a portable GUI using MATLAB
 (GUI and tutorial: github.com/itaicohengroup/watershed cells gui)
- · Published training tutorial and distributed GUI to collaborators using GitHub

2015 - 2017

4D flow behavior of protective glass coatings (PhD thesis)

PhD Candidate, Cornell University, Ithaca, NY, in collaboration with Corning Inc., Corning, NY

- · Implemented and deployed N-dimensional Barnes smoothing interpolation in MATLAB
- · Compiled and analyzed large, multi-dimensional confocal microscopy data sets using MATLAB and Python
- · Coordinated collaboration with Corning Inc., including quarterly presentations and final reports

2016 WXPN radio "A to Z" marathon playlist analysis (Personal project)

- · Scraped playlist metadata from web and linked to additional open database APIs using Python (Scrapy)
- · Cleaned data and calculated summary statistics using Python (pandas, NumPy)
- · Created and shared interactive visualization using Tableau & Twitter (viz: public.tableau.com/views/XPN AtoZ/XPNA-Z, news coverage: thekey.xpn.org/2016/12/16/lena-bartell/)

2009 - 2011

X-ray dosimeters for diagnostic breast cancer imaging (Undergraduate thesis)

Undergraduate Researcher, University of Pennsylvania, Philadelphia, PA

- · Designed, constructed, and studied the response of a custom X-ray dosimeter
- \cdot Simulated measurement biases of existing dosimeters from first-principals using MATLAB

EDUCATION

2011 – 2018

Cornell University (Ithaca, NY) – Ph.D. in Applied Physics, Minor in Biomedical Engineering

2007 – 2011 Penn State University (State College, PA) – B.S. with Honors in Physics, Minors in Biomedical Engineering & Math

LENA BARTELL PAGE 2 OF 2

	Publications
2017	J.M. Middendorf, et al. <i>In vitro culture increases mechanical stability of human tissue engineered cartilage constructs by prevention of microscale scaffold buckling</i> . Journal of Biomechanics 64, 77-84
2017	L.R. Bartell, et al. Three-dimensional microscale flow of polymer coatings on glass during indentation. MRS Communications 7, 896-903
2017	L.R. Bartell, L.J. Bonassar, I. Cohen. A watershed-based algorithm to segment and classify cells in fluorescence microscopy images. ArXiv Computer Vision and Pattern Recognition arXiv:1706.00815
2016	C.R. Henak, <u>L.R. Bartell</u> , L.J. Bonassar, I. Cohen. <i>Multiscale Strain as a Predictor of Impact-Induced Fissuring in Articular Cartilage</i> . Journal of Biomedical Engineering 139, 031004
2015	L.R. Bartell, L.A. Fortier, L.J. Bonassar, I. Cohen. <i>Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer</i> . Journal of Biomechanics 48, 3440-3446
2010	L.R. Bartell, A.K. Carton, A.D.A. Maidment. <i>Angular dependence of mammographic dosimeters in digital breast tomosynthesis</i> . Proc. of Medical Imaging 7622, 76225L
	3 other publications: 2 submitted, 1 in preparation
	Patent
2017	"Buckling technique to determine tissue engineered construct readiness," U.S. Provisional Application (pending).
	AWARDS & FELLOWSHIPS
2016 - 2018	NIH Individual F31 Predoctoral Fellowship Grant
2012 - 2015	NSF Graduate Research Fellowship
2011 - 2012	Cornell Presidential Life Science Fellowship (1 year graduate training & stipend)
2011	Penn State Schreyer Honors College Evans Award for Research Achievement
2009	Goldwater Scholarship
2009	American Association of Physicists in Medicine Undergraduate Fellowship
2007 - 2011	Penn State Braddock Scholarship (4 years full tuition, room & board)
	Select Coursework
2017	Andrew Ng's Machine Learning Coursera Course – Free introduction to machine learning
2016	Google's Python Class – Free introduction to programming with Python
2015	Computer Vision – Image data acquisition and analysis with emphasis on techniques for robot vision
2014	Finding Your Scientific Voice Workshop – Intensive presentation and public speaking workshop
2014	Business as a Second Language – Introduction to business finances, marketing, etc. for engineering PhDs
2013	Commercializing University Technology – Course on bringing science to market, for MBAs and engineers
	Leadership Experience & Outreach
2016 – 2017	Homemade microscope outreach— Design & produce module teaching high school students about imaging
2015 – 2016	Student Employee – Cornell McGovern Center for Venture Development in the Life Sciences
2015	Leadership Assessment for Managers Course – Leadership exercises and self-assessment
2014 – 2015	Advisory Board Member – NIH Broadening Experiences for Scientific Training program at Cornell
2009 – 2011	President – Penn State University Society of Physics Students
	RESEARCH PRESENTATIONS
2015, 2017	Podium presentation, Orthopaedic Research Society
2014, 2016	Poster presentation, Orthopaedic Research Society
2014	Podium presentation, Society of Rheology
2013	Poster presentation, Gordon Research Conference: Soft Condensed Matter Physics
2011	Podium presentation, International Association of Physics Students