Interrogation écrite n°10

NOM: Prénom: Note:

1. On considère la famille $\mathcal{F} = (u_1, u_2, u_3)$ où $u_1 = (1, 2, 1)$, $u_2 = (-1, 0, 3)$ et $u_3 = (2, 2, -2)$. Calculer le rang de \mathcal{F} . La famille \mathcal{F} est-elle libre? Engendre-t-elle \mathbb{R}^3 ? Est-ce une base de \mathbb{R}^3 ?

On applique la méthode du pivot de Gauss.

$$\operatorname{rg}(u_1, u_2, u_3) = \operatorname{rg} \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 2 \\ 1 & 3 & -2 \end{pmatrix} \underset{\substack{C_2 \leftarrow C_2 + C_1 \\ C_3 \leftarrow C_3 - 2C_1}}{=} \operatorname{rg} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & -2 \\ 1 & 4 & -4 \end{pmatrix} \underset{\substack{C_3 \leftarrow C_3 + C_2 \\ 1 & 4 & -4 \end{pmatrix}}{=} \operatorname{rg} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 4 & 0 \end{pmatrix} = 2$$

Ainsi $\operatorname{rg}(u_1, u_2, u_3) = 2 \neq 3$ donc (u_1, u_2, u_3) n'est pas libre, n'engendre pas \mathbb{R}^3 et n'est pas une base de \mathbb{R}^3 .

Remarque. On aurait pu directement remarquer que $u_3 = u_1 - u_2$ de sorte que $rg(u_1, u_2, u_3) = rg(u_1, u_2) = 2$ car u_1 et u_2 ne sont clairement pas colinéaires.

2. On note E l'ensemble des applications de classe C^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} et pour $f \in E$, on pose D(f) = f'. Montrer que D est un endomorphisme de E. Déterminer son noyau et son image. D est-il injectif? surjectif?

Soit $f \in E$. Alors f est de classe \mathcal{C}^{∞} sur \mathbb{R} donc f' également. Ainsi, $D(f) = f' \in E$. Soient $(f,g) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Alors

$$D(\lambda f + \mu g) = (\lambda f + \mu g)' = \lambda f' + \mu g' = \lambda D(f) + \mu D(f)$$

donc D est bien linéaire. Il en résulte que $D \in \mathcal{L}(E)$.

Clairement, Ker D est l'ensemble des applications constantes de \mathbb{R} dans \mathbb{R} .

Montrons que Im D = E. Tout d'abord, Im D \subset E comme vu plus haut. Soit $g \in$ E. Comme g est continue sur \mathbb{R} , elle possède une primitive f sur \mathbb{R} . Ainsi f' = g. Mais comme g est de classe \mathcal{C}^{∞} sur \mathbb{R} , f' l'est également de même que f. Ainsi $f \in$ E et on peut écrire $g = D(f) \in$ Im D. Par conséquent, $E \subset$ Im D puis E = Im D par double inclusion.

Puisque Ker D n'est pas nul, D n'est pas injectif. Par contre, Im D = E donc D est surjectif.

3. Soit u un endomorphisme d'un espace vectoriel E vérifiant $u^2 - 3u + 2 \operatorname{Id}_{E} = 0$. Justifier que u est un automorphisme de E et déterminer u^{-1} .

On vérifie que

$$u \circ \left(\frac{3}{2}\operatorname{Id}_{\mathsf{E}} - \frac{1}{2}u\right) = \left(\frac{3}{2}\operatorname{Id}_{\mathsf{E}} - \frac{1}{2}u\right) \circ u = \operatorname{Id}_{\mathsf{E}}$$

Ainsi $u \in GL(E)$ et $u^{-1} = \frac{3}{2} \operatorname{Id}_E - \frac{1}{2} u$.

4. Montrer que l'ensemble \mathcal{A} des suites arithmétiques réelles est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. Donner une base et la dimension de \mathcal{A} . On justifiera sa réponse.

$$\mathcal{A} = \left\{ (a + nr)_{n \in \mathbb{N}}, \ (a, r) \in \mathbb{R}^2 \right\}$$
$$= \left\{ a(1)_{n \in \mathbb{N}} + r(n)_{n \in \mathbb{N}}, \ (a, r) \in \mathbb{R}^2 \right\}$$
$$= \text{vect}((1)_{n \in \mathbb{N}}, (n)_{n \in \mathbb{N}})$$

Ceci montre que \mathcal{A} est bien un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. Montrons que la famille $((1)_{n\in\mathbb{N}},(n)_{n\in\mathbb{N}})$ est une base de \mathcal{A} . Soit $(a,r)\in\mathbb{R}^2$ tel que $a(1)_{n\in\mathbb{N}}+r(n)_{n\in\mathbb{N}}=(0)_{n\in\mathbb{N}}$. En évaluant aux rangs 0 et 1, on obtient a=0 et a+r=0 de sorte que a=r=0. La famille $((1)_{n\in\mathbb{N}},(n)_{n\in\mathbb{N}})$ est donc libre et, comme elle engendre \mathcal{A} , c'est une base de \mathcal{A} . On en déduit que dim $\mathcal{A}=2$.

5. On considère l'endomorphisme f de \mathbb{R}^3 tel que f((x, y, z)) = (2x - 3y + 4z, -x + y + 5z, 8x - 11y + 2z). Déterminer des bases respectives du noyau et de l'image de f ainsi que le rang de f.

Tout d'abord,

$$\operatorname{Im} f = \{(2x - 3y + 4z, -x + y + 5z, 8x - 11y + 2z)\} = \operatorname{vect}((2, -1, 8), (-3, 1, -11), (4, 5, 2))$$

$$\begin{pmatrix} 2 & -3 & 4 \\ -1 & 1 & 5 \\ 8 & -11 & 2 \end{pmatrix} \xrightarrow{C_2 \leftarrow 2C_2 + 3C_1} \begin{pmatrix} 2 & 0 & 0 \\ -1 & -1 & 7 \\ 8 & 2 & -14 \end{pmatrix} \xrightarrow{C_3 \leftarrow C_3 + 7C_2} \begin{pmatrix} 2 & 0 & 0 \\ -1 & -1 & 0 \\ 8 & 2 & 0 \end{pmatrix}$$

On en déduit que ((2, -1, 8), (0, -1, 2)) est une base de Im f et donc que rg f = 2. De plus,

$$(x,y,z) \in \operatorname{Ker} f \iff \begin{cases} 2x - 3y + 4z = 0 \\ -x + y + 5z = 0 \\ 8x - 11y + 2z = 0 \\ 12x - 2L_2 + L_1 \\ 13x - 4L_1 \end{cases} \begin{cases} 2x - 3y + 4z = 0 \\ -y + 14z = 0 \\ y - 14z = 0 \end{cases} \iff \begin{cases} x = 19z \\ y = 14z \end{cases}$$

Ainsi Ker f = vect((19, 14, 1)) et ((19, 14, 1)) est une base de Ker f

6. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Quelles inclusions ou égalités existe-il *toujours* entre les sous-espaces vectoriels $Im(g \circ f)$, $Ker(g \circ f)$, Im g, Ker g, Im f, Ker f? On justifiera ces inclusions.

Montrons que $\operatorname{Ker} f \subset \operatorname{Ker} (g \circ f)$. Soit $x \in \operatorname{Ker} f$. Alors $f(x) = 0_F$ donc $g \circ f(x) = g(0_F) = 0_G$ car g est linéaire. Ainsi $x \in \operatorname{Ker} (g \circ f)$.

Montrons que $\text{Im}(g \circ f) \subset \text{Im}\, g$. Soit $z \in \text{Im}(g \circ f)$. Alors il existe $x \in E$ tel que $z = g \circ f(x)$. En posant $y = f(x) \in F$, alors z = g(y) donc $z \in \text{Im}\, g$.