LINEAR ALGEBRA – FINAL EXAMINATION

Semester 2, 2021-22 • Duration: 90 minutes

Student's name:	Proctor's signature	
Student ID:		
Vice chair of Dept. of Mathematics	Lecturer	Score and Examiner
Name	7~	
Dr. Nguyen Minh Quan	/	

INSTRUCTIONS:

- · Use of calculator is allowed.
- Each student is allowed two double-sided sheet of reference material (size A4 or similar).
- All other documents and electronic devices are forbidden.
- You must explain your answers in detail; no marks will be given for the answer alone.
- There are a total of 6 questions in this final examination.
- GOOD LUCK!

Question 1. (20 points)

Find a basis for the column space, row space and null space of A.

$$A = \begin{bmatrix} -4 & 3 & -27 & 16 \\ -8 & 6 & -42 & 24 \\ -16 & 12 & -92 & 53 \end{bmatrix}$$

Question 2. (20 points)

Let
$$x_1 = \begin{bmatrix} -2 \\ -2 \\ 1 \\ -2 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 5 \\ 4 \\ 1 \\ 5 \end{bmatrix}$ and $x_3 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}$, and write H=Span $\{x_1, x_2, x_3\}$.

Use the Gram-Schmidt process to find an orthogonal basis for H.

Question 3. (20 points)

Find the eigenvalues and eigenvectors of B, i.e. the λ which satisfies $det|B - \lambda I_3| = 0$

$$B = \left[\begin{array}{rrr} 2 & 0 & 4 \\ 3 & -4 & 5 \\ 1 & 0 & 5 \end{array} \right]$$

Question 4. (20 points)

Define the below linear transformation L: $R^2 \to R^4$. Find basis for range and kernel of L.

$$L\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 19x_2 \\ -3x_1 \\ 7x_1 - 14x_2 \\ 4x_1 + 12x_2 \end{array}\right]$$

Question 5. (20 points)

Let $S = \{u_1, u_2, u_3\}$, where

$$u_1 = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}, u_2 = \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}, u_3 = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ -\frac{2}{3} \end{bmatrix}$$

- a) Show that S is an orthonormal basis for R^3 .
- b) Express

$$w = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

as a linear combination of the vectors in S.

c) Let $V = span\{u_1, u_2\}$. Determine the orthogonal projection of

$$w = \left[\begin{array}{c} 1 \\ 2 \\ -1 \end{array} \right]$$

onto V.