JOURNÉE DE LA ROBOTIQUE UL 2023

Rétrospectif #4

ACQUISITION ET EXPLOITATION DE TRAJECTOIRES DE CONTRÔLES PRÉCISES FAITES PAR DES STATIONS TOTALES

Maxime Vaidis, Étudiant(e) au doctorat

Sous la supervision de : François Pomerleau

Affiliation: Norlab

CONTEXTE ET MOTIVATION

SLAM environnement souterrain du DARPA

Cartographie 3D avec lidar en forêt¹

Besoin de trajectoires de contrôles pour comparer et améliorer les algorithmes de SLAM

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

DISCUSSIONS ET RÉSULTATS

M. Vaidis, P. Giguere, F. Pomerleau et V. Kubelka, "Accurate outdoor ground truth based on total stations", in 2021 18th Conference on Robots and Vision (CRV), IEEE, mai 2021

- Possibilité d'avoir les 6 degrés de liberté d'un robot
- Précision meilleure que les GNSS

M. Vaidis, W. Dubois, A. Guénette, J. Laconte, V. Kubelka et F. Pomerleau, "Extrinsic calibration for highly accurate trajectories reconstruction", in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2023

- Calibration extrinsèque plus précise de 29%
- Pas besoin de points de contrôle

APPRENTISSAGE PROFOND POUR LA DÉTECTION D'ARBRES

Vincent Grondin, Étudiant(e) au doctorat

Sous la supervision de : Philippe Giguère

CONTEXTE ET MOTIVATION

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

DISCUSSIONS ET RÉSULTATS

LA RECONNAISSANCE VISUELLE DE LIEUX

Amar Ali-bey, Étudiant au doctorat

Sous la supervision de : Brahim Chaib-draa et Philippe Giguère

CONTEXTE ET MOTIVATION

Améliorer la précision du GPS (Navigation)

Améliorer la robustesse du SLAM en détectant les boucles

Localiser les images historiques

PROBLÉMATIQUE ET TRAVAUX DE RECHERCHE

Deux aspects importants

- Base de donnée d'entrainement du réseau de neurones
- 2. L'architecture du réseau de neurones

DISCUSSIONS ET RÉSULTATS

GSV-Cities: Toward Appropriate Supervised Visual Place Recognition (Neurocomputing 2022)

Introduction d'une nouvelle base de donnée comprenant **6ooK** images de places, qui a boosté les performances de toutes les méthodes existantes tout en réduisant leur temps d'entainement.

Le code et la base de donnée se trouvent ici: https://github.com/amaralibey/gsv-cities

MixVPR: Feature Mixing for Visual Place Recognition (WACV 2023)

Introdction d'une nouvelle architecture de réseau de neurones pour la reconnaissance visuelle de lieux.

Le code se trouve ici:

https://github.com/amaralibey/MixVPR

RÉSILIENCE EN CONDITION ADVERSE ET APPRENTISSAGE PAR RENFORCEMENT PROFOND POUR LA ROBOTIQUE

Luc Coupal, Étudiant au doctorat

Sous la supervision de : François Pomerleau et Philippe Giguère

Affiliation : Norlab

CONDITION ADVERSE EN ROBOTIQUE MOBILE

Propriétés:

- Dynamique faiblement comprise ou inconnue
- Environnement non structuré
- Non-stationnarité

APPRENDRE UNE POLITIQUE APPROXIMATIVEMENT QUASI OPTIMALE

POLITIQUE OPTIMALE ET CONDITION ADVERSE

Politique prudente

Politique téméraire

Erreur de dynamique

Non-stationnarité

$$a_t = \pi^*(a_t|s_t)$$

$$T_{----}$$

$$s_{t+1} = f(s_{t+1}|a_t, s_t)$$

RÉSILIENCE > ROBUSTESSE ET ADAPTATION FACE À L'ADVERSITÉ

Méthodes robustes

Méthodes adaptives

QUESTIONS POUR RÉTROSPECTIF #4