CH9126 网络授时芯片

中文简介 版本: 1.1 http://wch.cn

1、概述

CH9126 基于 SNTP 协议的网络授时芯片。主要解决单片机等嵌入式设备时间同步问题。CH9126 具有两种工作模式: (1) 作为 SNTP 客户端,向 SNTP 服务器索取时间,并通过串口输出时间; (2) 作为 SNTP 时间服务器,以脉冲和串口数据作为基准时间,对 SNTP 客户端进行网络授时。

芯片内部还有一个独立的数据透传通道,可以实现以太网与串口数据透传。 下图为 CH9126 SNTP 功能框图:

模式一: SNTP CLIENT 应用

2、特点

- 内部自带以太网介质传输层(MAC)和物理层(PHY)。
- 支持 10/100M, 全双工/半双工自适应, 兼容 802.3 协议。
- 与 802.3x 全双工流控和半双工背压流控完全兼容。
- 支持 MDI/MDIX 线路自动转换。
- 支持 SNTP 服务器和 SNTP 客户端模式。
- 可以通过网络和串口配置芯片参数。
- 串口支持 5、6、7或者 8个数据位以及 1或者 2个停止位。
- 支持奇、偶、无校验、空白 0、标志 1 等校验方式。
- 波特率支持 300-921600bps。
- 授时精度为 10ms。
- 支持一个独立的数据通道,提供网络转串口的数据透传功能。

3、封装

封装形式	塑体尺寸	引脚间距		封装说明	订货型号
LQFP64M	10. 0*10. 0mm	0. 5mm	19.7mil	LQFP64M(10*10)贴片	CH9126

4、引脚

CH9126 引脚号	引脚名称	类型	引脚说明
2、12、17、 21、29、40、 42、45、63	VCC33	电源	3.3V 正电源输入端,外接 0.1uF 电源退耦电容
6、19、28、 43、54、64	VCC18	电源	1.8V 正电源输入端,外接 0.1uF 电源退耦电容
3、9、13、18、 20、37、41、	GND	电源	公共接地端

44、48				
14、15、16、				
22、23、24、				
25、32、33、				
34、35、38、				
39、46、47、	NC	_	保留引脚,悬空	
49、50、53、				
55、56、61、				
62				
1	RSETE	输入	外接 18K 电阻到地端	
4	RXP	以太网	以太网 RXP 信号	
4	KAP	信号	以太网 KAP 信亏	
5	RXN	以太网	以太网 RXN 信号	
3	KAN	信号	以太网 KAN 信号	
7	TXP	以太网	以太网 TXP 信号	
,	IAF	信号	以太M IAF 旧与	
8	TXN	以太网	以太网 TXN 信号	
0	IAN	信号	以太网 INN 占ち	
10	ΧI	输入	晶体振荡的输入端,需要外接 30MHz 晶体	
11	XO	输出	晶体振荡的反相输出端,需要外接 30MHz 晶体	
26	CMD_DATA	输入	命令和数据区分引脚	
27	MODVer	输入	芯片版本选择,目前保留,悬空	
30	PULSEIN	输入	标准 1 秒脉冲输入	
31	RESV	输入	预留调试脚,悬空	
36	RSTI	输入	外部复位输入,低电平有效,内置上拉电阻	
51	DIR	输出	485 通讯切换引脚	
52	ELINK	输出	以太网连接通讯指示灯驱动引脚	
57	RXD	输入	异步串口的串行数据输入,内置上拉电阻	
58	TXD	输出	异步串口的串行数据输出	
59	RESET	输入	恢复出厂设置,芯片上电检测,低电平有效	
60	PULSE0UT	输出	标准 1 秒脉冲输出	

5、功能说明

5.1. 功能简介

CH9126 工作在 SNTP CLIENT 模式, 时钟源是 SNTP 服务器时, 对时时间可以设置(默认是 10min), 出错会重试 3 次,每次等待的时间为 500ms。出错后再获取时间时返回相应的错误,对时的间隔依然为设置的参数值,不过每一次获取时间会触发一次对时,与 SNTP 服务器对时误差为 10ms。

CH9126 工作在 SNTP SERVER 模式,时钟源是脉冲时,提供授时服务。当 2s 尚未检测到脉冲即为出错,在下一次检测到脉冲则恢复,此时如果串口依然发送时间数据则更新时间,在客户端对时时,将返回未同步的时间信息。

CH9126 提供 1s 脉冲输出功能,每秒钟发出 100ms 脉宽的方波脉冲, 1s 精度系统误差不到万分之 0.28,与时间源的相对误差为 10ms,脉冲会在下一次时间同步时校准,校准的同步误差依然是 10ms 以内。

CH9126 的参数可以通过串口和网络配置两种方式,网络配置可以使用配置工具,用户也可以根据配置协议自行开发配置软件,串口配置则是在当前通讯的状态时命令状态时可以发送配置命令对 CH9126 进行参数的配置,具体命令见串口配置说明。

CH9126 配置的参数有: CH9126 名称、时钟源、本地 IP 地址、子网掩码、网关、目的 IP 地址、脉冲控制、通讯格式、串口通讯参数(波特率、数据位、停止位、校验位)。其中名称不超过 64 个字符;目的 IP 地址即为 SNTP 服务器的地址,工作在 SNTP SERVER 模式时,该参数可设置但无效;波特率支持范围为: 300-921600bps。

串口传输时,有两种状态,一是数据透传状态,二是命令控制状态,分别对应的是引脚 CMD_DATA 为高电平和低电平,串口配置和时间配置获取需要在命令控制状态下才可以进行,不然会当成串口透 传数据发送给网络,或者直接丢弃,如果不需要使用网络透传功能可以将该引脚直接拉低。

恢复出厂设置有两种方式,一是 RESET 引脚上电检测到低电平,并保持 500ms 以上,二是配置软件里有恢复出厂设置选项,单击即可恢复出厂设置。软件配置恢复出厂设置会导致芯片复位。

5.2. 配置说明

5.2.1. 串口配置说明

串口配置说明:配置时只允许一个参数配置,等到应答后方可进行下一个参数设置。串口接收缓存为 100 个字节,目前通讯的数据包不超过 100 个字节,超过则丢弃前一次收满的 100 个字节。配置命令需在串口通讯状态

详见 5. 2. 2 描述。

5. 2. 2. 配置命令说明

基本格式: 0x57 0xAB + 命令码 + 数据

其中发送的命令都会有响应,在下一条配置前需要等到上一条配置命令响应方可进行,响应分为两种:正确的响应和错误码的返回,正确的响应返回 0xAA,或者该条命令获取的参数,错误的情况返回 0xE0-0xEF,其中 E 表示错误,0-F 是对应的错误码。

不需要修改的参数可以获取该参数后不要修改,只修改需要修改的参数配置即可。一些参数的详细介绍在 5. 2. 3。

1、命令码: 0x51

功能:设置当前的时间

数据: 数据区则是时间数据,格式为: 年+月+日+小时+分钟+秒, BCD 码格式,比如: 0x16、0x11、0x22、0x14、0x44、0x57,表示 2016 年 11 月 22 日, 14 点 44 分 57 秒。

说明:该命令是实时有效的,随时配置则芯片会实时更改内部时间参数。

应答:正确响应则返回 0xAA。

2、命令码: 0x52 功能: 设置网络参数

数据:

大小 (字节)	名称	功能	备注
6	MAC 地址	设置 MAC 地址	暂时该参数不修改 MAC, 防
			止修改出错
4	IP 地址	设置芯片的 IP	
4	子网掩码	设置芯片的掩码	
4	网关	设置芯片网关	
4	保留		应不修改该参数
4	保留		应不修改该参数
1	网络连接类型	设置网络连接类型	建议不修改

1	保留		应不修改该参数
1	设置 TTL 参数	设置网络通信的	建议不修改
		TTL 参数	
2	保留		应不修改该参数
4	控制参数	芯片一些功能控制	按位操作
1	keepalive 功能使	keepalive 功能控	0: 关闭 keepalive
	能	制	1: 打开 keepalive
			建议打开,默认是打开
4	keepalive 空闲时	keepalive 的空闲	建议按照默认值
	间参数	时间设置	
4	keepalive 间隔时	keepalive 间隔时	建议按照默认值
	间参数	间设置	
4	keepalive 超时次	keepalive 超时次	建议按照默认值
	数	数参数	

5

说明:一些保留的参数,不要修改,可以先获取参数,在将要修改的参数改完并配置。

应答:正确响应则返回 0xAA

3、命令码: 0x53 功能:设置串口参数

数据:

奴1/白:			
大小 (字节)	名称	功能	备注
4	波特率	波特率参数设置	
1	数据位	数据位参数设置	
1	停止位	停止位参数设置	
2	接收打包长度	接收打包长度设置	接收处理的一个阈值,连续接收超过该值则会分包发送。
2	接收超时	接收超时设置	接收超时监控,一包数据发 送没有超过接收打包长度, 则会在该时间后发送该数 据包。
1	保留		应不修改该参数

说明:接收超时设置为 0 则,不进行超时判断,使用串口硬件的超时直接发送数据,如果数据量不是很大建议给一定的值。接收打包长度应不超过 1024。注意串口参数在返回应答后生效,外部此时应当给一定时间给 CH9126 设置,之后通讯就按照现在配置的参数工作。

应答:正确响应则返回 0xAA

4、命令码: 0x54

功能:设置通讯通道参数

数据:

大小 (字节)	名称	功能	备注
1	通道序号	配置的通道序号	由 0 开始
1	通道使能	该通道使能标志	0: 不使能
			1: 使能
1	通道工作模式	设置通道的工作类	1: TCP Server

		型	2. TCP Client
			3. UDP Server
			4. UDP Client
			5. SNTP Server
			6. SNTP Client
1	网络断开处理	设置网络断开,该	建议保持默认值
		通道的处理方式	0: 保持连接
			1: 丢弃连接
1	其他通道数据处理	设置其他通道数据	当数据接收不是当前通讯
		处理方式	的通道的处理方式。
			0: 保持最近所有的数据
			1:保存最后一包数据
			2. 不保存任何数据
4	目的 IP	设置该通道通讯的	
		目的 IP	
2	目的端口/	设置通讯目的端口	当该通道的模式不是 SNTP
	轮询时间	/设置 SNTP 访问服	的,则为通讯目的端口;当
		务器的间隔	通道的模式为 SNTP 是则为
			访问服务器的间隔,单位:
			10ms
1	本地端口随机使能		芯片本身并不取随机端口
			随机可以配置本地端口时,
			随机给定参数
2	本地端口		

说明:注意一些参数在不同的模式下是不一样的,比如 TCP Server 模式,不需要配置目的端口,配置也不会有效,该参数是无效的。在 SNTP 模式下端口是不需要配置的,SNTP 端口时默认的,参数也不需要修改。

应答:正确响应则返回 0xAA

5、命令码: 0x55 功能: 其他参数控制

数据: 控制参数时一个 32bit 参数, 用于一些芯片功能的控制;

bit31-1 保留; bit0: SNTP 模式的脉冲输出使能。

说明:

应答:正确响应则返回 0xAA

6、命令码: 0x56 功能:设置模块名称

数据:数据为模块名称的 ASC 数据。

说明:长度不应超过 63 字节。 应答:正确响应则返回 0xAA

7、命令码: 0x5E

功能: 执行配置, 并复位芯片

数据:无

说明:接收到该命令后会将上面配置的参数,保存到芯片里,并复位重新工作。

应答:正确响应则返回 0xAA

8、命令码: 0x61

功能: 获取时间参数

数据:无

说明:用于获取芯片时间参数

应答:与设置时间参数一样,时间出错则返回错误码错误码结构是 0xe0 与错误码相或的值。

7

9、命令码: 0x62 功能: 获取网络参数

数据:无

说明: 获取当前的网络参数

应答: 返回结构与上面的设置的参数结构一致

10、命令码: 0x63 功能: 获取串口参数

数据:无

说明: 获取当前的串口参数

应答: 返回结构与设置的参数结构一致

11、命令码: 0x64

功能: 获取传输通道的参数

数据: 当前通道序号

说明: 获取该通道的配置参数

应答: 返回通道参数与设置结构一致

12、命令码: 0x65 功能: 获取控制参数

数据:无

说明:获取当前控制参数信息 应答:返回当前的控制参数

13、命令码: 0x66 功能: 获取模块名称

数据:无

说明:获取模块名称参数 应答:当前的模块名称 14、命令码:0x67

说明:该命令码保留 15、命令码:0x68 功能:获取芯片ID号

数据:无

说明: 获取芯片的唯一 ID 号

应答:返回8字节芯片的唯一ID号

5.2.3. 配置参数详细说明

略。

6、时钟源

6.1. 串口和脉冲

实现方式: 1 秒钟标准脉冲作为时间校准, 串口发送时间数据作为对比, 串口数据出错不影响芯

片时间的计时,而 1 秒钟标准脉冲在 2 秒的时间内一直没有出现则芯片会报错,网络对时将返回不可用时间信息。

时间数据格式就是上面命令里描述的,可以随时写入芯片中,写入参数会立即生效。

6.2. SNTP 服务器

根据配置的目的 IP 地址即为 SNTP 服务器地址, windows 系统可以在控制面板->管理工具->服务里打开 windows time 服务,并在本地组策略编辑器->计算机配置->管理模板->系统->window 时间服务->时间提供程序里设置启用 Windows NTP 服务器。设置芯片目的 IP 地址为此电脑的 IP 地址,与电脑连接在局域网内即可自动与电脑对时。