Emission Sources - Maximum Allowable Emission Rates

Flexible Permit Numbers 49138, PSDTX768M1, PSDTX799, PSDTX802, PSDTX932 and PSDTX992M1

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant Name	Emission Rates		
No. (1)		(3)	lbs/hour	TPY (4)	
See Attachment D	See Attachment D	Final VOC MSS Cap	1427.29	99.07	
		Final VOC Flex Cap	5161.89	4171.95	
See Attachment D	See Attachment D	Final NO _x Emission Cap	948.18	34.97	
		Final NO _x Flex Cap	1028.46	1460.48	
See Attachment D	See Attachment D	Final CO MSS Cap	55926.75	37.70	
		Final CO Flex Cap	3921.32	7569.18	
See Attachment D	See Attachment D	Final SO ₂ MSS Cap	60.48	3.21	
		Final SO ₂ Flex Cap	15649.93	2160.47	
See Attachment D	See Attachment D	Final PM _{2.5} / PM ₁₀ MSS Cap***	28.42	6.23	
		Final PM _{2.5} / PM ₁₀ Flex Cap***	824.92	1482.72	
See Attachment D	See Attachment D	Final PM MSS Cap	28.42	6.23	
		Final PM Flex Cap	1020.67	1916.17	
See Attachment D	See Attachment D	Final H₂S MSS Cap	3.03	0.70	
		Final H₂S Flex Cap	157.03	15.61	
See Attachment D	See Attachment D	Final H₂SO₄ MSS Cap	0.92	0.31	
		Final H₂SO₄ Flex Cap	119.95	304.97	
See Attachment D	See Attachment D	Final NH₃ MSS Cap	663.78	1.10	
		Final NH₃ Flex Cap	115.53	367.97	
04STK_001	Coker East Heater (B-101-B)	NO _x	9.80	31.10	

Emission Sources - Maximum Allowable Emission Rates

04STK_002	Coker Middle Heater (B-101-A)	NOx	9.80	32.32
04STK_003	Coker West Heater (B-101-C)	NO _x	9.80	30.22
04STK_004	Coker Far West Heater(BA-3000)	NO _x	13.50	38.79
05STK_001	CUB Atmospheric Heater (H-3101)	NO _x	94.32	344.27
05STK_002	CUB South Vacuum Heater (H- 3102)	NO _x	17.90	62.50
05STK_004	CUB North Vacuum Heater (H- 2001)	NO _x	14.40	50.60
06STK_002	FCC Feed Preheater Heater (B-2)	NO _x	20.15	88.27
08STK_002	GP5E No. 2 Regenerator Heater	NO _x	2.10	6.13
08STK_003	GP5E Propane Dryer Heater	NO _x	0.14	0.62
15STK_001	CHD1 Charge Heater (B-1)	NO _x	16.65	47.04
20STK_001	HDC1st Stage West Heater (H-3301)	NO _x	1.36	4.38
20STK_002	HDC 1st Stage East Heater (H- 3302)	NO _x	3.00	12.10
20STK_003	HDC 2nd Stage Heater (H-3303)	NO _x	3.00	12.10
20STK_004	HDC Stabilizer Heater (H-3304)	NO _x	11.76	49.93
20STK_005	HDC Splitter Heater (H-3305)	NO _x	8.02	19.15
25STK_001	Isom Pretreater	NO _x	5.10	17.08

Emission Sources - Maximum Allowable Emission Rates

	Charge Heater (B-1)			
25STK_003	401)	NO _x	2.50	7.88
25STK_004	Isom Regeneration Heater (B-402)	NO _x	0.40	1.75
27STK_001	PTR3 Pretreater Heater (H-3401)	NO _x	11.04	48.36
27STK_002	PTR3 Stripper Reboiler (H-3402)	NO _x	8.36	36.62
27STK_003	PTR3 Reformer Heater (H-3403,4,5,6)	NO _x	77.40	211.03
27STK_004	PTR3 Debutanizer Reboiler(H-3408)	NO _x	5.40	21.02
28STK_001	PTR4 Pretreater Charge (B-7001)	NO _x	12.00	42.05
28STK_001	PTR4 Depent Reboiler (B-7002)	NOx	13.08	55.45
28STK_003	PTR4 Reformer Heater (B-7101-4)	NO _x	105.16	326.14
28STK_003	PTR4 Debutanizer Reboiler (B-7201)	NO _x	4.90	17.30
36STK_002e, 36STK_002w, 36STK_002i	CUA Atmospheric Heater B1-A	NO _x	25.29	100.74
36STK_004e, 36STK_004w, 36STK_004i	CUA Atmospheric Heater B1-B	NO _x	25.29	100.74
36STK_006	CUA Vacuum Heater B-2	NO _x	5.70	24.97
36STK_007	CUA Vacuum Heater B-3	NO _x	5.70	23.65
38STK_001	Furf 1 Extract Heater B-1	NO _x	3.40	12.70

Emission Sources - Maximum Allowable Emission Rates

		T	1	
38STK_001	Furf 1 Extract Heater B-2	NO _x	(5)	(5)
38STK_002	Furf 1 Extract Heater B2-A	NO _x	2.50	9.37
39STK_001	Furf 2 Extract Heater BA-1	NO _x	6.83	27.47
39STK_001	Furf 2 Extract Heater BA-2	NO _x	(6)	(6)
39STK_002	Furf 2 Extract Heater B-103	NO _x	1.50	5.87
40STK_001	HDF Lube Oil Heater (10-B-1)	NO _x	0.64	2.80
40STK_002	HDF Paraffin Wax Heater (20-B-1)	NO _x	0.51	2.21
47ENG_225	SIB Engine 225	NO _x	0.51	2.25
47ENG_226	SIB Engine 226	NO _x	0.51	2.25
47ENG_227	SIB Engine 227	NO _x	0.51	2.25
47ENG_228	SIB Engine 228	NO _x	0.51	2.25
47ENG_229	SIB Engine 229	NO _x	0.51	2.25
55STK_001	PP2 COGEN Turbine (24)	SO₃	2.00	4.40
57STK_033	PP3 Boiler No. 33	NO _x	42.78	187.38
57STK_034	PP3 Boiler No. 34	NOx	42.78	187.38
65STK_001	Cold Box Reactivation Heater	NO _x	0.23	0.89
27FUG_001	PTR3 Fugitive Area	Cl ₂	0.11	0.50
27VNT_001	Regenerator Vent	HCI	0.56	3.05
		HCI (During Scrubber Maintenance)	3.29	-
28FUG_001 Project Number: 177491	PTR4 Fugitive	Cl ₂	0.10	0.44

Emission Sources - Maximum Allowable Emission Rates

	Area			
28VNT_001	PTR4 Reactor Regeneration Vent	Cl ₂	0.40	1.90
		HCI	0.03	0.10
32VNT_002	SRU2/3 No. 2 Vent (Maintenance)	CS ₂	0.80	
		cos	7.70	
32VNT_003	SRU2/3 No. 3 Vent (Maintenance)	CS ₂	0.80	
		cos	7.70	
32VNT_002	SRU2/3 No. 2 and No. 3 Vent (Maintenance)	CS ₂	-	0.13
32VNT_003		cos	-	1.79

Emission Sources - Maximum Allowable Emission Rates

(1)		n point id	dentification - e	either specific	c equip	ment desiç	ınation or e	emission po	oint number f	rom plot
(2) (3)	VOC NO _x CO SO ₂ PM	- vol - tota - car - sul - par - par nor	ource name. For atile organic of al oxides of ni bon monoxid fur dioxide triculate matte triculate matte ancondensable on 10 microns	compounds itrogen e er, suspende er equal to e. Where F	as def ed in th or les	ined in Ti ne atmosp s than 10	tle 30 Tex ohere, incl o microns	as Admini uding PM₁ in diame	strative Coo o and PM _{2.5} ter, conden	sable and
	PM _{2.5}	- par	rticulate mattence ncondensable n 2.5 microns	er equal to e. Where F	PM is r					
	H_2S	- hyd	drogen sulfide)						
			furic acid mis	t						
		- am								
	-		fur trioxide							
		- chl								
			drogen chloric	de						
	CS_2	- car	bon disulfide							
			bonylsulfide							
(4)			annual emiss							
(5)			emitted from							
(6)	Emission	ns are	emitted from	the two hea	iters ar	e emitted	from the	same stac	k.	
*	Emission schedule		are based o	on and the	facilitie	s are limi	ted by the	e followinç	g maximum	operating
	H	Hrs/day	Days	/week	W	eeks/year	or <u>8,760</u>	<u>)</u> Hrs/yeaı	ſ	
***	PM _{2.5} ma	ay be u	p to 100 perc	ent of PM ₁₀						
								Date	October 16	5. 2012