6.4 Comparing the Strength of Acids and Bases

pages 582-590 in Health

**Reminder: A base is a proton (H +) acceptor and an acid is a proton donor.

A strong base readily accepts a proton.

Comparing the strength of acids and bases allows us to make predictions about chemical reactions. (Referring to Table 14)

ex: When sodium bicarbonate and hydrofluoric acid are combined in an aqueous solution, what reaction is likely to occur?

$$HCO_3^- + HF$$

If we look at our table we can see that HF is a stronger acid than HCO_3^- therefore HF will act as the acid in the reaction and give up the proton

$$HCO_3^- + HF \implies H_2CO_3 + F^-$$

base₂ acid₁ acid₂ base₁

In addition, the K_a and K_b values can help us determine hydronium and hydroxide ion concentrations within a solution of weak acid or base.

K _a and K _b Values					
Name of Acid	Acid	Ka	Name of Base	Base	Kb
Sulfuric acid	H ₂ SO ₄	large	hydrogen sulfate ion	HSO ₄ -	very small
Hydrochloric acid	HC1	large	chloride ion	C1-	very small
Nitric acid	HNO ₃	large	nitrate ion	NO ₃ -	very small
Hydronium ion	H ₃ O ⁺	55.5	water	H ₂ O	1.8 x 10 ⁻¹⁶
Hydrogen sulfate ion	HSO ₄ -	1.2 × 10 ⁻²	sulfate ion	SO ₄ 2-	8.3 x 10 ⁻¹³
Phosphoric acid	H ₃ PO ₄	7.5 x 10 ⁻³	dihydrogen phosphate ion	H ₂ PO ₄ -	1.3 × 10 ⁻¹²
Hexaaquairon(III) ion	Fe(H ₂ O) ₆ 3+	6.3 x 10 ⁻³	penta a quahydroxoiron (III) ion	Fe(H ₂ O) ₅ OH ²⁺	1.6 x 10 ⁻¹²
Hydrofluoric acid	HF	7.4 × 10 ⁻⁴	fluoride ion	F-	1.4 x 10-11
Formic acid	HCO ₂ H	1.8 × 10 ⁻⁴	formate ion	HCO2"	5.6 x 10 ⁻¹¹
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3 x 10 ⁻⁵	benzoate ion	C6H5CO2	1.6 x 10 ⁻¹⁰
Acetic acid	CH ₃ CO ₂ H	1.8 × 10 ⁻⁵	acetate ion	CH ₃ CO ₂ -	5.6 x 10 ⁻¹⁰
Hexaaquaaluminum ion	A1(H2O)63+	7.9 x 10 ⁻⁶	pentaaquahydroxoaluminum ion	A1(H2O)5OH2+	1.3 × 10-9
Carbonic acid	H ₂ CO ₃	4.2 × 10 ⁻⁷	hydrogen carbonate ion	HCO ₃ -	2.4 x 10 ⁻⁸
Hydrogen sulfide	H ₂ S	1 × 10 ⁻⁷	hydrogen sulfide ion	HS*	1 × 10 ⁻⁷
Dihydrogen phosphate ion	H2PO4-	6.2 x 10 ⁻⁸	hydrogen phosphate ion	HPO ₄ 2-	1.6 x 10-7
Hypochlorous acid	HC1O	3.5 × 10 ⁻⁸	hypochlorite ion	C10-	2.9 x 10 ⁻⁷
Ammonium ion	NH ₄ +	5.6 x 10 ⁻¹⁰	ammonia	NH ₃	1.8 x 10 ⁻⁵
Hydrocyanic acid	HCN	4.0 × 10 ⁻¹⁰	cyanide ion	CN-	2.5 x 10 ⁻⁵
Hexaaquairon(II) ion	Fe(H ₂ O) ₆ ²⁺	3.2 × 10 ⁻¹⁰	penta a quahydroxoiron(II) ion	Fe(H ₂ O) ₅ OH ⁺	3.1 × 10 ⁻⁵
Hydrogen carbonate ion	HCO ₃ -	4.8 x 10 ⁻¹¹	carbonate ion	CO32-	2.1 × 10-4
Hydrogen phosphate ion	HPO ₄ 2-	3.6 x 10 ⁻¹³	phosphate ion	PO43-	2.8 x 10 ⁻²
Water	H ₂ O	1.8 × 10 ⁻¹⁶	hydroxide ion	OH-	55.5
Hydrogen sulfide ion	HS-	1 × 10 ⁻¹⁹	sulfide ion	S2-	1 x 10 ⁵

Finding ion concentrations for **weak** acids and bases require the following approach.

Remember that if you look on your chart of strong and weak acids and you see a small K_a value, you have a weak acid

Steps:

- 1. Write the balanced ionization or dissociation equation.
- 2. Find the K_a value from the relative strengths of acids and chart. K_b values will be given in the question.
- 3. Use the equilibrium constant expression to solve for the concentrations.

Note - the reason why we cannot use the same method for strong acids and bases is because weak acids or bases do not completely ionize.

Ex) Calculate the hydrogen ion concentration in a 0.10 M acetic acid solution.

Ex) Calculate the hydroxide ion concentration in a 0.025 M solution of analine, $C_6H_5NH_2$, a weak base with $K_b = 4.3 \times 10^{-10}$.

Calculating [OH-] in WEAK Acids and [H₃O+] in WEAK Bases

Again, we may be asked to find [OH -] in an **acid** or the $[H^+]$ in a **base**.

Remember that we are calculating the ion concentrations for acid/base **solutions**, which means they are mixed with water.

If we mix an acid with water, we are adding OH $^-$ to the acid because water does ionize a bit. Therefore, we can use K $_{\rm w}$ to calculate [OH $^-$].

Ex) What is [OH-] for a 0.100 M solution of HNO₂?

Likewise, if we are adding water to a base, we are actually adding H $^+$ ions. We also use K_w to calculate $[H_3O^+]$ in a basic solution.

Ex) What is the $[H_3O^+]$ in a 0.025 M solution of NaOH (a strong base)?

Ex) For the last two examples, are the solutions acidic or basic?

6.4 - Comparing the Strength of Acids and Bases Assignment

Hint: check to see whether you are dealing with a strong or weak acid/base before starting the question.

	Time check to see whether you are dealing with a strong or weak acting once object starting the question
1.	Calculate [H ⁺] in a 2.00 L solution of HCl in which 3.65 g of HCl is dissolved.
2.	Calculate [H $^{+}$] in a solution containing 3.20 g of HNO $_{3}$ in 250 mL of solution.
3.	An acetic acid ($HC_2H_3O_2$) solution is 0.25 M. Find [H_3O^+].
,	
4.	A 500.0 mL solution contains 12.0 g of hydrofluoric acid. Calculate [H ⁺].

5. When 1.22 g of benzoic acid (C_6H_5COOH) is dissolved to make 1.00L of solution, the resulting equilibrium [H ⁺] = $8.0x10^4$ M. Determine the K_a of the acid. (<i>Hint: think ICEBOX</i>)
6. Calculate [H+] and [OH-] at 25° C in:
a. a 5.0 M NaOH solution. NaOH is a strong base.
b. a 0.025 M Ca(OH) ₂ solution. Ca(OH) ₂ is a strong base.
c. a 0.10 M hypochlorous acid solution.
d. a 0.010 M Nitrous acid solution.