Convolution, De-convolution, Transposed convolution, Fractional-stride convolution

Convolution (no padding, stride=1)

• Input: 4x4, Filter: 3x3, Output: 2x2 (2=4-3+1)

Convolution (padding, stride=1)

• Input: 5x5, Filter: 3x3, Output: 5x5

Convolution (padding, stride=2)

• Input: 6x6, Filter: 3x3, Output: 3x3

TRANSPOSED CONVOLUTION

Motivations

- Need to use a transformation going in the opposite direction of a normal convolution
 - Decoding layer of a convolutional auto-encoder
 - Project feature maps to a higher-dimensional space (up-sampling)

Operation

• Input: 5x5, Filter: 3x3, Output: 5x5, Stride=1

Stride=3,Filter=6

Stride=2,Filter=5

Stride=2,Filter=3

WHY IT IS CALLED TRANSPOSED CONV. FRACTIONAL-STRIDE CONV.

a b c d e f

 w_3 w_2 w_1

: Transpose filter & Do the convolution!

$w_2a + w_1b$	$w_3a + w_2b$	$w_3b + w_2c$	$w_3c + w_2d$	$w_3d + w_2e$	$w_3e + w_2f$
	$+ w_1 c$	$+ w_1 d$	$+ w_1 e$	$+ w_1 f$	

a 0 b 0 c 0 d 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	С	0	b	0	а	
---	--	---	---	---	---	---	---	---	--

w ₂ a	$\begin{vmatrix} w_3 a \\ + w_1 b \end{vmatrix}$	w_2b	$w_3b + w_1c$	<i>w</i> ₂ <i>c</i>	w_3c + w_1d	w_2d	w ₃ d + w ₁ e	w ₂ e	$w_3e + w_1f$	w ₂ f	
------------------	--	--------	---------------	--------------------------------	--------------------	--------	--	------------------	---------------	------------------	--

 a
 0
 b
 0
 c
 0
 d
 0
 e
 0
 f

 $w_3 \mid w_2 \mid w_1$

: Transpose filter & Do the convolution!

w_2a	$w_3a + w_1b$	w_2b	$w_3b + w_1c$	<i>w</i> ₂ <i>c</i>	$w_3c + w_1d$	w_2d	<i>w</i> ₃ <i>d</i> + <i>w</i> ₁ <i>e</i>	w ₂ e	$w_3e + w_1f$	w_2f
--------	---------------	--------	---------------	--------------------------------	---------------	--------	---	------------------	---------------	--------

TRANSPOSED CONVOLUTION SIDE EFFECTS

http://distill.pub/2016/deconv-checkerboard/

Checkerboard Artifacts

Alternatives

- The same holds for
 - Back propagation
- Solutions
 - Transposed convolution → Resize convolution
 - Jittering

IMPLEMENTATION

In TensorFlow

• Performing transposed convolution, by putting input into the backpropagation operation.