

Data Science and Big Data Course

Spring 2024

Professor: Antonino Nocera

Team Work: Kamila Aburwais, Sepideh Hayati, Sahar Taheri

Imagine you're navigating through a maze of career opportunities....!!!

Content Table

- Project Overview
- Methodology and Architecture
- Analysis & Testing
- Limitation and Challenge
- Conclusion
- References

Introduction

This project rapidly evolving landscape of Big Data and Data Science, titled **"HR Maze Analytics"** delves into predicting job change intentions among candidates who have completed specialized training in data science. By leveraging machine learning algorithms and advanced analytics, the aim is to unravel the intricate interplay between educational background, professional experience, and career aspirations within the context of data science careers.

Project Objectives

- Optimize the Influence of Education/Experience on Job Change Decisions,
- 2. Leverage Big Data Tools for Scalable Data Processing,
- 3. Investigate Key Hypotheses on Job-Seeking Behavior,
- 4. Build and Evaluate Predictive Models.

Project Workflow

Dataset Acquisition & Ingestion

Dataset Cleaning & Preparation

Exploratory Dataset Analysis

Model Design & Training

Model Evaluation

•

Results Interpretation

Methodology & Architecture

Dataset Overview

HR Analytics: Job Change of Data Scientists

• Rows 2124

Columns 13

Usability 10

Target predicting job changing

Data collection purpose:

A Big Data and Data Science company wants to identify which candidates from their training courses intend to work for the company versus those seeking new employment.

- To optimize training costs and quality.
- The dataset includes demographics, education, experience information, and ...

Goal

To use this data to predict <u>candidates' job-seeking intentions</u> and understand the <u>factors influencing these decisions</u>

Tool and Techniques

- Virtual MachineBox Environment
- Hadoop (Mapper & Reducer)
- Spark
- Python Language
 - Pandas, Seaborn Libraries Python Language to Visualization
- Mongodb/PyMongoDb
- Machine Learning Models

Initial Hypotheses

#H1:

Candidates with longer experience are less likely to seek new job opportunities.

#H2:

Candidates enrolled in university courses are more likely to seek new job opportunities.

Reading Data

import findspark

findspark.init()

import pyspark

from pyspark.sql import SparkSession

spark = SparkSession.builder \
.master("local[1]") \ .appName("PySpark
Read CSV and Convert to JSON") \
.getOrCreate()

csv_file = '/home/ubuntu/aug_test.csv'

df = spark.read.csv(csv_file,
inferSchema=True, header=False)

df.show()

Results

_c12	_c11	_c10	_c9	7 _c8	_c7	_c6	_c5	_c4		3	_c3	_c2	_c1	_c0
22\t	1 1	Pvt Ltd	10000+	M 5	STEM	Graduate	no_enrollment	t expe	relevent	e Has	Female	0.91	city_16	10021
20\t	1	Pvt Ltd	100-500	M >20	STEM	Graduate	no_enrollment	t expe	relevent	e Has	Male		city_160	
20\t	>4	Pvt Ltd	10000+	M 10	STEM	Masters	no_enrollment	t expe	relevent	e Has	Male	0.92	city_103	10050
29\t	3	Pvt Ltd	500-999	M 15	STEM	Graduate	no_enrollment	t expe	relevent	e Has	Female	0.92	city_160	10162
35\t	1	Funded Startup	50-99	M 2	STEM	Graduate	Part time course	exper	relevent	e No	Female	0.92	city_103	10167
40\t	>4	Pvt Ltd	10/49	M >20	STEM	Masters	no_enrollment	t expe	relevent	e Has	Male	0.912999999999999	city_61	10171
3\t	>4	Pvt Ltd	100-500	M 11	STEM	Graduate	Full time course	t expe	relevent	e Has	Male		city_105	
33\t	1	Pvt Ltd	50-99	8 M:	STEM	Graduate	no_enrollment	t expe	relevent	e Has	Male	0.843	city_159	10217
60\t	1	Funded Startup	500-999	M >20	STEM	Masters	no_enrollment	t expe	relevent	e Has	Male	0.92	city_103	10230
9\t	1	null	null	M 17	STEM	Masters	no_enrollment	t expe	relevent	e Has	Male	0.92	city_160	10246
62\t	3	Pvt Ltd	1000-4999	M 11	STEM	Masters	no_enrollment	t expe	relevent	1 Has	null	0.767	city_162	1026
32\t	2	null	null	M 2	STEM	Masters	Part time course	exper	relevent	1 No	null	0.624	city_21	10260
45\t	never	null	null	M 6	STEM	Graduate	Full time course	exper	relevent	1 No	null	0.884	city_71	10279
20\t	1	Pvt Ltd	500-999	M 13	STEM	Graduate	no_enrollment	t expe	relevent	e Has	Male	0.92	city_160	10287
31\t	1	Public Sector	null	M 10	STEM	Masters	no_enrollment	t expe	relevent	e Has	Male	0.92	city_103	10304
8\t	1	NGO	100-500	M 1	STEM	Graduate	no_enrollment	exper	relevent	e No	Female	0.92	city_160	10308
106\t	1 1	null	10/49	M 11	STEM	Graduate	Full time course	t expe	relevent	e Has	Male	0.855	city_67	10311
12\t	2	Pvt Ltd	10000+	M >20	STEM	Graduate	Part time course	t expe	relevent	e Has	Male	0.91	city_16	10324
28\t	>4	Pvt Ltd	50-99	M 18	STEM	Graduate	no_enrollment	exper	relevent	e No	Male	0.92	city_103	10348
10\t	1	Funded Startup	50-99	r 15	Other	Graduate	no enrollment	t expe	relevent	e Has	Male	0.92	city 103	10394

only showing top 20 rows

Cleaning Data

```
from pyspark.sql.functions import round,when,regexp_replace, col
```

```
df_cleaned = df1.fillna("Others")
```

```
df_cleaned = df_cleaned.withColumn("experience",
when(df_cleaned["experience"] == ">20", "21")
.when(df_cleaned["experience"] ==
"<1","0").otherwise(regexp_replace(df_cleaned["experience"], "[^0-9]", "")))</pre>
```

```
df_cleaned = df_cleaned.withColumn("last_new_job",
when(col("last_new_job") == ">4", "5")
.otherwise(col("last_new_job")))
```

Results

Ĩ	10021 city_16	0.91 Female	yes	NO	Graduate	STEM	5	10000+	Pvt Ltd	
i.	10049 city_160	0.92 Male	yes	NO	Graduate	STEM	21	100-500	Pvt Ltd	
1	10050 city_103	0.92 Male	yes	NO	Masters	STEM	10	10000+	Pvt Ltd	
	10162 city_160	0.92 Female	yes	NO	Graduate	STEM	15	500-999	Pvt Ltd	
	10167 city_103	0.92 Female	No	Parttime	Graduate	STEM	2	50-99	Funded Startup	
	10171 city_61	0.91 Male	yes	NO	Masters	STEM	21	10-49	Pvt Ltd	
	10198 city_105	0.79 Male	yes	Fulltime	Graduate	STEM	11	100-500	Pvt Ltd	
	10217 city_159	0.84 Male	yes	NO	Graduate	STEM	8	50-99	Pvt Ltd	
	10230 city_103	0.92 Male	yes	NO	Masters	STEM	21	500-999	Funded Startup	
	10246 city_160	0.92 Male	yes	NO	Masters	STEM	17	others	Others	
	1026 city_162	0.77 Others	yes	NO	Masters	STEM	11	1000-4999	Pvt Ltd	
	10260 city_21	0.62 Others	No	Parttime	Masters	STEM	2	others	Others	
	10279 city_71	0.88 Others	No	Fulltime	Graduate	STEM	6	others	Others	nev
	10287 city_160	0.92 Male	yes	NO	Graduate	STEM	13	500-999	Pvt Ltd	
	10304 city_103	0.92 Male	yes	NO	Masters	STEM	10	others	Public Sector	
	10308 city_160	0.92 Female	No	NO	Graduate	STEM	1	100-500	NGO	
	10311 city_67	0.86 Male	yes	Fulltime	Graduate	STEM	11	10-49	Others	
L	10324 city_16	0.91 Male	yes	Parttime	Graduate	STEM	21	10000+	Pvt Ltd	
	10348 city 103	0.92 Male	No	NO	Graduate	STEM	18	50-99	Pvt Ltd	
	10394 city 103	0.92 Male	yes	NO	Graduate	Other	15	50-991	Funded Startup	
1	10394 CICY_103	0.92 Male	yes	Inol	draddate	other [131	30-33	runded Startup	

only showing top 20 rows

Mapper

Reducer

Mapper

Discretizing	Read and extract data	Tokenize	output
Def discretize_experience(experience): try:	header = True for line in sys.stdin: if header:	columns = line.strip().split(',')	columns[0] = str(discrete_experienc
if experience ==	if neader:		i e)
'>20': return 21 elif experience ==	print(line.strip()) header = False	discrete_experience = discretize_experience(columns[0])	print(",".join(columns))
'<1': return 0	continue		
else: return			
int(experience)			į
except ValueError: return experience			

HDFS

Result of mapp and reducer on HDFS

```
start-dfs.sh
start-yarn.sh
```

hdfs dfs -put /path/to/local/cleandata.csv /input_path/cleandata.csv

hdfs dfs -rm -r /new_output_path2 hadoop jar /usr/local/hadoop/share/hadoop/to ols/lib/hadoop-streaming-*.jar \ -input /input_path/cleandata.csv \ -output /new_output_path2 \ -mapper /home/ubuntu/mapper2.py \ -reducer /home/ubuntu/reducer2.py

hdfs dfs -cat /new_output_path2/part-00000

9106,city 104,0.92,Male,yes,NO,Graduate,STEM,21,50-99,Pvt Ltd,5,95 9134,city 21,0.62,Others,ves,NO,Graduate,STEM,7,50-99,Pvt Ltd,2,85 9149,city 23,0.9,Others.ves.NO,Masters.STEM,18,50-99,Pvt Ltd,3,60 915, city 103.0.92, Others, ves, NO, Masters, Humanities, 16, 1000-4999, Pvt Ltd, 1, 11 9163,city_21,0.62,Male,yes,NO,Graduate,Other,4,100-500,Pvt Ltd,1,24 9184,city_136,0.9,Male,yes,Parttime,Masters,STEM,3,10000+,Pvt Ltd,1,34 9195,city_21,0.62,Male,yes,NO,Graduate,STEM,10,100-500,Pvt Ltd,2,129 9205, city_143,0.74, Others, yes, NO, Graduate, STEM, 13, others, Others, 5, 37 9207, city_114,0.93, Male, yes, NO, High School, Others, 8,9, Pvt Ltd, never, 39 9208, city_21, 0.62, Others, No, Parttime, Graduate, STEM, 2, 10-49, Pvt Ltd, 1, 58 9209.city 121.0.78.Other.ves.NO.Graduate.STEM.0.50-99.Funded Startup.1.62 923,city 103,0.92,Male,ves,NO.Graduate,Humanities,21,50-99,Funded Startup,1,102 9234.city 61.0.91.Others.ves.NO.Graduate.STEM.21.9.Pvt Ltd.3.220 9237,city_65,0.8,Others,yes,NO,Phd,STEM,17,50-99,Pvt Ltd,5,41 9268, city 160, 0.92, Male, yes, NO, Others, Others, 21, 9, Pvt Ltd, 2, 26 9270, city 162, 0.77, Male, yes, Parttime, Graduate, STEM, 6, 10-49, NGO, 4, 31 9272,city 90,0.7, Male, yes, NO, Graduate, STEM, 20, 10-49, Pvt Ltd, 2,51 9275, city 158, 0.77, Male, yes, Parttime, Graduate, STEM, 13, others, Others, 5, 324 9291, city 16,0.91, Male, yes, NO, Masters, STEM, 15, 10-49, Pvt Ltd, 2, 15 9302,city 149,0.69,Others,yes,NO,Graduate,STEM,9,others,Others,2,152 9335,city 103,0.92,Male,No,NO,Phd,STEM,18,100-500,NGO,1,25 9345,city 16,0.91,Other,yes,NO,High School,Others,8,50-99,Pvt Ltd,1,18 9462, city 21,0.62, Others, No, Parttime, Others, Others, 1, others, Others, never, 204 9487, city 21,0.62, Male, No, Fulltime, Graduate, STEM, 5, others, Others, never, 141 9501, city 71,0.88, Male, yes, NO, Graduate, STEM, 5, 100-500, Others, 1, 20 9514, city 160, 0.92, Male, yes, Fulltime, High School, Others, 12, 100-500, Pvt Ltd, 1, 9 952,city 103,0.92, Male, yes, NO, Graduate, STEM, 7, 10000+, Pvt Ltd, 1,96 9544, city 21,0.62, Male, No, NO, Graduate, STEM, 4, others, Others, never, 190 9548,city 114,0.93, Male, yes, NO, Masters, STEM, 21, 50-99, Pvt Ltd, 5, 65 9556,city_40,0.78,Others,yes,NO,Graduate,STEM,20,others,Others,1,23 9561,city_28,0.94,Others,yes,NO,Masters,STEM,19,others,Others,2,72 9562,city_73,0.75,Male,yes,NO,Graduate,STEM,21,others,Others,1,167 9564, city 103, 0.92, Others, yes, NO, Graduate, STEM, 9, 1000-4999, Pvt Ltd, 3, 72 9586,city 103,0.92,Female,yes,NO,Masters,STEM,4,5000-9999,Public Sector,1,20 9618, city 103, 0.92, Female, yes, NO, Graduate, Humanities, 21, others, Others, 5, 22 9630,city 103,0.92, Male, yes, NO, Graduate, STEM, 21, 1000-4999, Pvt Ltd, 5, 43 9649,city_103,0.92,Male,yes,NO,Graduate,Business Degree,16,50-99,Pvt Ltd,1,33 9664,city_41,0.83,Male,yes,Parttime,Graduate,STEM,8,9,Pvt Ltd,2,86 9700,city_71,0.88,Female,No,NO,Graduate,Humanities,4,10000+,Pvt Ltd,2,34 9706,city_136,0.9,Male,No,NO,Masters,STEM,10,100-500,NGO,5,26 9707, city_103,0.92, Male, No, Fulltime, Graduate, STEM, 8, others, Others, 2,96 9726,city 160,0.92, Male, yes, NO, Graduate, STEM, 16, others, Others, 5,42 9740,city 103,0.92, Male, No, NO, Graduate, STEM, 21, 10000+, Pvt Ltd, 5, 21 9752, city 21,0.62,Others,yes,Fulltime,Graduate,STEM,6,others,Others,4,32 9753,city 37,0.79,Female,No,Fulltime,Graduate,STEM,4,others,Others,never,86 976,city_67,0.86,Male,yes,NO,Graduate,STEM,7,100-500,Pvt Ltd,2,57 9766,city_83,0.92,Male,yes,NO,Graduate,STEM,5,1000-4999,Pvt Ltd,2,14 9772, city_114,0.93, Male, No, NO, High School, Others, 5, others, Others, never, 32 9789,city_160,0.92,Male,yes,NO,Graduate,STEM,21,10000+,Pvt Ltd,5,4 9800,city 103,0.92,Others,No,NO,Masters,STEM,21,10000+,Pvt Ltd,3,59 9806,city_65,0.8,Male,yes,NO,Masters,STEM,15,10000+,Pvt Ltd,5,27 9827,city 138,0.84, Male, No. Fulltime, High School, Others, 2, others, Others, never, 112 9837.city 61.0.91.Male.ves.NO.Graduate.STEM.21.others.Others.1.42 9840,city 114,0.93, Male, No. Fulltime, High School, Others, 8, others, Public Sector, 1,81 9852, city_103,0.92, Male, yes, NO, Graduate, STEM, 21, others, Others, 3, 23

Converting to Json

Listing Files in Directory

for filename in os.listdir(input_directory):

if filename.startswith('part-'):

file_path =
os.path.join(input_directory,
filename) data = []

Read csv file

with open(file_path, mode='r', encoding='utf-8') as file: csv_reader = csv.DictReader(file,fieldnames=fieldn ames)

for row in csv_reader: data.append(row)

Writing Data to JSON Files

json_filename =
os.path.join(output_directory,
f"{filename}.json") with
open(json_filename, mode='w',
encoding='utf-8') as json_file:

json.dump(data, json_file, indent=4, ensure_ascii=False) print(f"Converted {file_path} to {json_filename}")

MongoDB

Mongodb

Create database

use your_database

Importing from Hadoop

View Data

```
mongo --host localhost --port
27017
use your_database
db.your_collection.find().prett
y()
```

All in Terminal

Results

```
" id" : ObjectId("66782a3171c97f29dcf53a7a"),
        "enrollee id" : 10348,
        "city" : "city 103",
        "city development index" : 0.92,
        "gender" : "Male",
        "relevent experience" : "No",
        "enrolled university" : 1,
        "education level" : "Graduate",
        "major discipline" : "STEM",
        "experience" : 18,
        "company size" : "50-99",
        "company type" : "Pvt Ltd",
        "last_new_job" : "5",
        "training hours" : "28",
        "target" : 0
        " id" : ObjectId("66782a3171c97f29dcf53a7b"),
        "enrollee id" : 10394.
        "city" : "city 103",
        "city development index" : 0.92,
        "gender" : "Male".
        "relevent experience" : "yes",
        "enrolled university" : 1,
        "education level" : "Graduate",
        "major discipline" : "Other",
        "experience": 15,
        "company_size" : "50-99",
        "company type" : "Funded Startup",
        "last new job" : "1",
        "training hours" : "10",
        "target" : 1
Type "it" for more
```

Work with data in PyMongo

Connect to mongodb

from pymongo import MongoClient import pandas as pd

client =
MongoClient('mongo
db://localhost:27017
/')
db =
client.your_database
collection =
db.your_collection

Fetch data from MongoDB

Convert to Pandas DataFrame

Send to sandbox

data = list(collection.find())

df = pd.DataFrame(data)

scp/path/to/sandbox/data.parquet user@your-sandbox-ip:/desired/path

Results

	_id	enrollee_id	city	city_development_index	gender	relevent_experience	enrolled_university	education_level	major_discipline	experience	company_size	company_t
0	66782a3171c97f29dcf53a68	10021.0	city_16	0.91	Female	yes	1	Graduate	STEM	5.0	10000+	Pvt
1	66782a3171c97f29dcf53a69	10049.0	city_160	0.92	Male	yes	1	Graduate	STEM	21.0	100-500	Pvt
2	66782a3171c97f29dcf53a6a	10050.0	city_103	0.92	Male	yes	1	Masters	STEM	10.0	10000+	Pvt
3	66782a3171c97f29dcf53a6b	10162.0	city_160	0.92	Female	yes	1	Graduate	STEM	15.0	500-999	Pvt
4	66782a3171c97f29dcf53a6c	10167.0	city_103	0.92	Female	No	2	Graduate	STEM	2.0	50-99	Funded Star
5	66782a3171c97f29dcf53a6d	10171.0	city_61	0.91	Male	yes	1	Masters	STEM	21.0	10-49	Pvt
6	66782a3171c97f29dcf53a6e	10198.0	city_105	0.79	Male	yes	0	Graduate	STEM	11.0	100-500	Pvt
7	66782a3171c97f29dcf53a6f	10217.0	city_159	0.84	Male	yes	1	Graduate	STEM	8.0	50-99	Pvt
8	66782a3171c97f29dcf53a70	10230.0	city_103	0.92	Male	yes	1	Masters	STEM	21.0	500-999	Funded Star
9	66782a3171c97f29dcf53a71	10246.0	city_160	0.92	Male	yes	1	Masters	STEM	17,0	others	Oth
4												+

Analysis & Testing

Steps

- Loading Data
- 2. Data Preprocessing
- 3. Selecting Features and Target
- 4. Visualization the distribution of categorical feature (Bar and Histogram plot)
- 5. Train-Test Split
- 6. Classification ML Model for prediction
- 7. Evaluate ML models
- 8. Analysis

H1: Candidates with <u>longer experience</u> are less likely to seek new job opportunities.

Data Preprocessing

 The experience column is converted to numerical values using the convert_experience function.

Features and Target (showing in bar plot)

- The feature (X) includes only the experience_category,
- The target (y) includes the changing_job

H1: Candidates with longer experience are less likely to seek new job opportunities.

• Decision tree for Model Prediction

- **Precision**: when the model predicts a candidate is looking for a job change, it is correct **72%** of the time.
- **Recall**: The model correctly identifies **83%** of the candidates who are looking for a job change.
- The **F1-score** is the harmonic mean of precision and recall.

Confusion Matrix (Evaluation)

0	(TN): 44	(FP): 92
1	(FN): 48	(TP): 241

- Positive/ Negative: Nl/L for job

- True/ False: Identified correctly/ incorrectly by model

Decision	Tree	Model Perfo	rmance:		
		precision	recall	f1-score	support
NL	0.0	0.48	0.32	0.39	136
L	1.0	0.72	0.83	0.77	289
accui	racy			0.67	425
macro	avg	0.60	0.58	0.58	425
weighted	avg	0.65	0.67	0.65	425

1: Candidates with <u>longer experience</u> are less likely to seek new job opportunities.

Random forest for Model Prediction

Changing the algorithm and considering more variables and re-examining their effect on the target.

- Education level, relevent experience
- Overall accuracy: 0.70

Given that the "experience" feature is the most important feature in the model:

- Individuals with less experience (class 0) are more likely to change jobs.
- Individuals with more experience (class 1) are less likely to change jobs.

Random Fore	st Model Perfo	rmance:		
	precision	recall	f1-score	support
NL 0.	0 0.54	0.45	0.49	136
L 1.	0.76	0.82	0.79	289
accurac	y		0.70	425
macro av	g 0.65	0.63	0.64	425
weighted av	g 0.69	0.70	0.69	425

H2 Candidates enrolled in university courses are more likely to look for new job opportunities.

Firstly, we made histogram plots in our sample code visualize the distribution of categorical features (enrolled_university, education_level, relevent_experience, major_discipline).

Here's what each part does:

H2: Candidates enrolled in university courses are more likely to look for new job opportunities.

Neural Network Model based on the figure results, the neural network (NN) model achieves an accuracy of **0.61**, with a **precision** of **0.57**, recall of **0.35**, and **F1-score of 0.43** for candidates likely to seek new job opportunities (class 1).

These metrics indicate that NN effectively identifies a substantial number of candidates who are actually looking for new job opportunities while maintaining a balanced performance in terms of precision and recall.

Therefore, NN is recommended for predicting candidates' likelihood to seek new job opportunities based on their experience.

Neural Network Model Performance (University Enrolled Candidates): precision recall f1-score support 0.66 0.83 0.73 255 0.57 0.35 0.43 170 0.64 425 0.61 0.59 425 weighted ave 0.62 0.64 0.61 425

Confusion Matrix: Neural Network (University Enrolled Candidates)

H2 Candidates enrolled in university courses are more likely to look for new job opportunities.

H2 Candidates enrolled in university courses are more likely to look for new job opportunities.

SVM Support Vector Machine show a precision, recall, and F1-score of 0.00 for candidates seeking new job opportunities (class 1), this means the model fails to correctly identify any of these candidates.

As a result, SVM does not effectively capture the relationship between candidates' experience and their likelihood to seek new job opportunities.

Therefore, SVM's performance in this regard is inadequate for drawing conclusions about this hypothesis

Support Vecto	r Machine (S)	VM) Model	Performan	ce:
	precision	recall	f1-score	support
0	0.60	1.00	0.75	255
1	0.00	0.00	0.00	170
accuracy			0.60	425
macro avg	0.30	0.50	0.37	425
weighted avg	0.36	0.60	0.45	425

Conclusion

This comparison helps evaluate the models' capabilities in validating hypotheses related to candidate job change behavior, such as the influence of university enrollment and work experience length.

Challenge & Limitation

- HDFs restrict connectivity in our devices, causing problems with VMs connecting effectively to intensive processes.
- The sandbox environment struggles to establish a reliable connection between MongoDB data storage and machine learning code files, leading to operational issues.
- In hypothesis 1, there are limitations in working with only one values, so we improved the problem in the second hypothesis.
- Attempts to use machine learning models for prediction were unsuccessful, even after switching models, as results remained inaccurate. Further efforts to categorize data into two columns did not yield useful outcomes.

References

DataSet Source:

<u>https://www.kaggle.com/datasets/arashnic/h</u>
<u>r-analytics-job-change-of-data-scientists</u>

DS&BD Course Notes:

https://elearning.unipv.it/course/view.php?id =6951

VM Environment Configuration:

https://drive.google.com/file/d/1KxCrpDNotz 2kuo-G8O5VvRp_YFNRNDdX/view

Any Questions?

Thank you سکرًا - Moteshakeram

Contact

Sepideh Hayati

Master Student Computer Engineering - Computer Science Track sepideh.hayati01@universitadipavia.it

SAHAR TAHERI

Master Student Computer Engineering - Computer Science Track sahar.taherimoghadar01@universitadipavia.it

Kamila Aburwais

Master Student Computer Engineering - Data Science Track kamilamustafaa.aburwais01@universitadipavia.it