

Software Engineering I CS-382

- Lecture 13
- What we will cover: (Details of Analysis Modeling)
 - Chapter 8 Sections 8.7, and 8.8 in Pressman
 - Goal is to continue to develop the methods and tools available from Object Oriented Analysis for analysis modeling

Dependencies

- Both Associations and Aggregations are persistent relationships
- We also need to define and represent the transitory relationships as well
 - We do this through **Dependencies**

3

Dependencies II

- An example is the client-server relationship that exists between two classes.
 - The relationships exists only until the responsibility is satisfied and then it ends
 - Often one of the participants is a transitory object as well

In Class Dependencies Diagram

Can we think of any possible dependencies in our SafeHome?

5

In Class Dependencies Diagram II

Can we think of any possible dependencies in our Registrar System?

Static Modeling

- The modeling up to this point has been static
 - We were able to show all the collaborations between objects using our aggregation, association, and dependency diagrams
 - Note these can be combined onto a single Class Model diagram
 - Recall collaborations occur via passing of messages

Dynamic Modeling

- Now we want to build a **dynamic** model
 - This dynamic model will provide us details into the actual messages that are being transferred between the objects
 - Initially we will have rough definitions of these messages, but as we move thru to the design of the software they will be detailed further
- The behavioral model indicates how software will respond to external events or stimuli.

9

Steps to Creating the Behavioral (Dynamic) Model

- 1. Evaluate all use-cases to fully understand the sequence of interaction within the system.
- 2. Identify events that drive the interaction sequence and understand how these events relate to specific objects.
- 3. Create a **sequence diagram** for each use-case.
- 4. Build **state diagrams** as needed to model the behavior within any of the objects that must generate a message.
- 5. Review the behavioral model to verify accuracy and consistency.

The Sequence Diagram

- The sequence diagram adds the dynamic information missing in the Class Diagrams shown earlier
- The textbook defines a relatively complex Sequence Diagram
 - Again I think it is better to simplify things a little and only show the messages on this diagram.
 - Show the state diagrams that generate the output messages from input messages on separate diagrams (to follow)
- Therefore our Sequence Diagram will have:
 - Objects
 - Messages (solid arrow is message)
 - Returns (return messages dashed is response, if needed))

11

The Sequence Diagram II

- Our Sequence Diagram will have:
 - Objects
 - Messages (solid arrow is message)
 - Return messages (return messages dashed is response, if needed))
 - Durations

More on the Sequence Diagram

- Internally to the course there should be some logic to decide if student can take class
 - e.g. meets pre-reqs, section is not full, etc.
- We model this with State Diagrams (next)
 - They will provide a means for modeling the decision logic that takes place within the methods of the various classes we are designing

15

In-Class Sequence Diagram for SafeHome

State Representations

- In the context of behavioral modeling, two different characterizations of states must be considered:
 - the state of each class as the system performs its function and
 - the state of the system as observed from the outside as the system performs its function

State Representations II

- The state of a class takes on both passive and active characteristics [CHA93].
 - A **passive state** is simply the current status of all of an object's attributes.
 - The **active state** of an object indicates the current status of the object as it undergoes a continuing transformation or processing.

The Elements of the State Diagram

21

In-Class State Diagram for SafeHome

For Next Class

■ Begin Chapter 9 - Design