Sebastian Mohr - 23141808 - Part II

a

$$\omega = (ac * b)^{\omega}$$

It's an infinite loop, that can starts with the a transformation. Afterwards it can revolve around c or take path b, which brings it back to the state where the next transformation is a.

b

 $\omega = \emptyset + ((authReg(acceptaccess * release)) + (authRegreject))^{\omega}$

To reach the accepted state q_0 , the automaton can take 3 different paths:

- 1. 0 transitions, start state is accepted state.
- 2. The transition goes to q_1 and back to q_0 , with authReq and reject each executing once.
- 3. The transition goes to q_1 with transition authReq. Afterwards it reaches q_2 by executing accept once, then $access\ 0-\infty$ times. Executes release once to reach final state q_0 .

The automaton is a loop, which means it can execute infinite times.

C

The automaton accepts $\omega = (a * b * c)^{\omega}$, which translates to:

- 0∞ times a
- 0∞ times b
- exactly 1 times *c*

This process can loop inifinite times, that means that the accepting state always has to have a c leading to it.

d

The automaton accepts $\omega = a((aa) * bb)^{\omega}$, which translates to:

- exactly 1 *a*
- and then looping the following:
 - \circ 0 ∞ times a and a
 - \circ exactly 1 times b and b

e

LTL-formula: $F(p \rightarrow Gq)$

Alphabet: $\Sigma := \{\emptyset, \{p\}, \{q\}, \{p,q\}\}$

The given LTL-formula means: in the Future p leads to Globally q being true

As the automaton switches to the accepted state q_1 when executing p, there is a path that proves the LTL-formula.

Also the automaton can switch to accepted state q_2 when executing q first. There the entire alphabet loops over the state, so the LTL-formula can also be proved.

That means, that the Büchi automaton accepts the runs staisfying the LTL-formula.

f

Alphabet: $\Sigma := 2^{\{p,q\}}$

LTL-formula: (\varnothing) V G ((p V \varnothing) U (q V $\{p,q\}$))

There are 2 different ways to reach an accepted state in this automaton:

- The automaton accepts \emptyset , which means it already starts in an accepting state.
- The automaton accepts only p or \emptyset , until at least one q or $\{p,q\}$ is put in. Afterwards the entire alphabet is staying in the accepted state.

g

The automaton accepts $G p V F (p \Lambda q)$, which translates to:

- *Globally p* is true, **OR**
- ullet in the *Future* p **AND** q are true