High Level Design Document Al Course

Course Overview

Topic	Machine Learning Module (Introduction to AI)			
Course Schedule	 Self-paced blended learning course: 5 weeks (total approximately 30 hours) 			
	- Self-paced: Weekly Module Presentation & Exercises: 5 weeks (4 hours/week,			
	total 20 hours)			
	- Live weekly online session with Expert: up tp 2 hours/session (10 hours)			
Learning	Flexible online learning, self-paced by student			
Environment	Requirements PC:			
	- Recent PC/mac machine			
	- Stable internet connection			
Learning	 Understand the statistical and mathematical foundation of Machine Learning. 			
Objectives	 Understand the basics of python and the libraries used for Machine Learning 			
	algorithms.			
	 Apply Machine learning algorithms to real data sets using Python. 			
	 Build Machine learning projects based on the above learning and following the 			
	Data Science life cycle.			
Course	- Basics of Linear algebra			
Prerequisites	- Basics of the probability theory			
	- Basic calculus			
	- Basic knowledge in programming (such as Python, C++ or Java)			
Audience &	■ Target			
Characteristics	- Youth (age 18~35), interested in pursuing a career in innovation, technology,			
	business analysis/intelligence, product development, cyber security, or similar.			
	This course is also excellent for those considering learning more about AI and not			
	sure where to begin. As an introductory course it will provide the foundational			
	understanding to build on.			
	Characteristics			
	- Educational background: successfully completed high school level STEM courses			
	or higher education			
	 Level for understanding: possess basic knowledge in programming and statistics 			
	- Expectations: expects to obtain necessary knowledge and skills for machine			
	learning as a foundational module for AI			

Course Information

- 1- Introduction to Artificial Intelligence through Machine Learning
- 2- Suitable for beginners and non coding experts
- 3- Interaction with an expert instructor to help you achieve high understanding through blended learning, not just static content.
- 4- This is a free course, available to excited learners. Materials and access to learning platform is without cost.

Assessment

Criteria	Weight
Quiz	
 Quiz at the beginning of the course (just to test starting 	
knowledge, no weight against it)	
 Quiz at the end of the course 	50 %
Weekly Practice Exercises	
 Weekly exercises relating to the topics covered (10%/exercises) 	40%
Participation	10%
 Participation iof online sessions is mandatory 	
Total	100%

Certification

Qualification	Cut-off Rate
Attendance higher than	90 %
2. Total grade for assessment higher than	50 %
► Certified when both qualifications are met	-

Course Details

Module	Details	Duration
1	Module 1. Introduction to AI and Machine learning	6Н
	Objective: Get introduced to AI, ML and Python	(Total)
	Unit 1. Introduction to AI and its use	1h
	Unit 2. Introduction to Machine learning	1h
	Unit 3. Introduction to Python and Jupyter Setup	1h
	Practice Exercises	1h
	Live Session	2h
	Module 2. Python libraries for machine learning	6H
	Objective: Learn about the Python libraries used for Machine learning algorithms and	(Total)
	visualization	(Total)
2	Unit 1. The NumPy Package	1h
2	Unit 2. The Pandas Package	1h
	Unit 3. Visualization with MatplotLib and Seaborn	1h
	Practice Exercises	1h
	Live Session	2h
	Module 3. Statistics and Probabilities	6Н
	Objective: a quick revision for the mathematical fundamentals used in machine learning	(Total)
3	especially Statistics	(Total)
	Unit 1. Discrete probability distributions	1h
3	Unit 2. Continuous probability distributions	1h
	Unit 3. Desciptive statistics and Central limit theorem	1h
	Practice Exercises	1h
	Live session	2h
	Module 4. Machine learning algorithms (Part 1)	
	Objective: Get introduced to the Machine learning lifecycle and Be capable of conducting	6H (Total)
	data analysis by using Cluster Analysis and Linear Regression	(Total)
4	Unit 1. Data Preprocessing with Scikit-learn	1h
4	Unit 2. Unsupervised Learning	1h
	Unit 3. Linear Regression	1h
	Practice Exercises	1h
	Live Session	2h
	Module 5. Machine learning algorithms (Part 2)	6H
	Objective: Become familiar with common classification algorithms	(Total)
	Unit 1. Logistic regression and its performance metrics	1h
5	Unit 2. Naïve Bayes classification	1h
	Unit 3. K-nearest neighbor and support vector machines	1h
	Unit 4. Advanced topics in Machine Learning	1h
	Practice Exercises	1h
	Live session	2h