Método de Euler

Ma del Mar Alguacil Camarero Melani Álvarez Santos Montserrat Rodríguez Zamorano

11 de mayo de 2016

Índice

- Descripción general de un PVI
- Existencia y unicidad de solución
- Método de Euler
- **Artículo**

En una EDO intervienen:

- 1. una variable independiente, t
- 2. una variable dependiente, y = y(t)
- 3. derivadas hasta un cierto orden respecto de la variable

Escribiremos la ecuación ordinaria en la forma

$$f(t,y(t),y'(t),\ldots,y^{n)}(t))=0,\quad\forall t\in I$$

Definición

Se llama **orden de la ecuación** al mayor orden de derivación que aparece en la ecuación (1).

Concepto de solución

Definición

Una **solución** de la ecuación (1) es una función y(t) que cumple:

- y(t) está definida en un intervalo abierto $I \subset \mathbb{R}$,
- $y(t) \in C^n(I)$
- Se verifica que

$$f(t, y(t), y'(t), \dots, y^{n)}(t)) = 0, \quad \forall t \in I$$

Concepto de problema de valores iniciales

Definición

Un **problema de valores iniciales** para una ecuación diferencial ordinaria dada en (1) de orden n consiste en determinar las soluciones de la ecuación que en el punto $t_0 \in I$ verifican

$$y(t_0) = y_0, \ y'(t_0) = y_0^1, \ \dots, \ y^{n-1}(t_0) = y_0^{(n-1)}.$$
 (2)

A las condiciones dadas en (2) se les llama **condiciones** iniciales.

¿Cuándo está un PVI bien planteado?

- 1. existe solución
- 2. es única
- 3. depende continuamente de los datos del problema

En lo que sigue consideraremos

$$\begin{cases} y' = f(t, y(t)), & \forall t \in I \\ y(t_0) = y_0. \end{cases}$$

Existencia y unicidad de solución

Teorema

Considérese el PVI

$$y' = f(t, y) : y(t_0) = y_0$$
 (3)

y sea el rectángulo $D = [t_0 - a, t_0 + a] \times [y_0 - b, y_0 + b] \subset \mathbb{R}^2$ (con a, b > 0). Si se verifican las condiciones:

- 1. f(t, y) es una función continua en D.
- 2. Condición de Lipschitz

Entonces existe una única solución del problema, y(t), definida en un cierto intervalo $(t_0 - \delta, t_0 + \delta)$ (con $0 < \delta \le a$).

Esbozo demostración

1. Formulamos el PVI en forma de ecuación integral

$$y(t) = y_0 + \int_{t_0}^t f(x, y(x)) dx.$$
 (4)

- 2. Sucesión $\{y_n(t)\}$ cuyos elementos son los iterantes de Picard, se demuestra que $\lim_{n\to\infty} \{y_n(t)\} = y(t)$.
- 3. Se prueba que y(t) es solución de la ecuación (4).
- 4. Se demuestra que esa es la única solución del problema.

Descripción del método

El **método de Euler** tiene por objetivo obtener una aproximación del problema de valores iniciales:

$$\begin{cases} y' = f(t, y) & t \in (a, b) \\ y(a) = y_0 \end{cases}$$
 (5)

Método de Euler

Punto de vista 1. Interpretación geométrica

Punto de vista 2. Desarrollo de Taylor

Interpretación geométrica

- 1. Partimos de $(t_0, y(t_0))$
- 2. Construimos la recta tangente en dicho punto:

$$y - y_0 = f(t_0, y_0)(t - t_0)$$

- 3. Calculamos y_1 que es el valor de la recta tangente en el punto t_1
- 4. Tomamos y_1 como el segundo valor de la sucesión

Repetimos el mismo proceso descrito anteriormente partiendo esta vez de (t_1, y_1)

Así, se obtendrá una sucesión de segmentos T_i que forman una poligonal que aproximan la solución y(t).

Desarrollo de Taylor

- Se trata de un método de discretización. Se aproximará en los nodos.
- Consideraremos que los puntos de red están equiespaciados: $t_i = a + ih, \forall i = 1, \dots, n$
- h = (b a)/n es la longitud de paso

Utilizamos el polinomio de Taylor de primer orden para la función solución del p.v.i. y(t).

$$y(t) = y(t_i) + (t - t_i)y'(t_i) + \frac{(t - t_i)^2}{2}y''(\xi)$$

donde $\xi \in (a,b)$ y $\frac{(t-t_i)^2}{2}y''(\xi)$ es el término de error. Evaluamos la expresión anterior en t_{i+1} :

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

para algún número ξ_i en (t_i, t_{i+1}) .

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i)$$

Por ser y(t) la solución del p.v.i

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i).$$

Si prescindimos del término $\frac{h^2}{2}y''(\xi_i)$ que en principio no será nulo:

$$y(t_{i+1}) \approx y(t_i) + hf(t_i, y(t_i))$$

siendo el $\frac{h^2}{2}y''(\xi_i)$ el error cometido.

Se construye el método de Euler de la siguiente forma:

$$\begin{cases} y_i = y_0 \\ y_{i+1} = y_i + hf(t_i, w_i) \text{ para cada } i = 0, 1, \dots, n-1 \end{cases}$$
 (6)

A ésta última ecuación se le llama **ecuación en diferencias** asociada al método de Euler.

Ejemplo 1

Consideremos el problema de valores iniciales

$$\frac{dy}{dt} = y, \ y(0) = 1$$

t	У	dy dt	
0	1	1	
1	2	2	
2	4	4	
3	8	8	

Tomamos ahora h = 0.333.

t	У	dy dt	
0	1	1	
0.3333	1.3333	1.3333	
0.6667	1.7778	778 1.7778	
1.0000	2.3704	2.3704	

Tomamos ahora h = 0.2 y veamos si mejoramos la aproximación:

l t	У	<u>dy</u> dt
0	1	1
0.2000	1.2000	1.2000
0.4000	1.4400	1.4400
0.6000	1.7280	1.7280
0.8000	2.0736	2.0736
1.0000	2.4883	2.4883

Por último si tomamos h = 0,1

t	У	dy dt	
0	1	1	
0.1000	1.1000	1.1000	
0.2000	1.2100	1.2100	
0.3000	1.3310	1.3310	
0.4000	1.4641	1.4641	
0.5000	1.6105	1.6105	
0.6000	1.7716	1.7716	
0.7000	1.9487	1.9487	
0.8000	2.1436	2.1436	
0.9000	2.3579	2.3579	
1.0000	2.5937	2.5937	

Ejemplo 2:

Utilizamos el método de Euler para aproximar la solución del problema de valores iniciales

$$\frac{dy}{dt}=t^2+y^2, \ y(0)=1$$

en el intervalo [0,1].

Solución: En este caso $f(t, y) = t^2 + y^2$, de tal forma que

$$y_{n+1} = y_n + h(t_n^2 + y_n^2)$$

Esta vez tomamos un tamaño de peso más pequeño. Con h = 0.1 se obtiene

$$y_1 = 1 + (0,1)[(0)^2 + (1)^2] = 1,1$$

 $y_2 = 1,1 + (0,1)[(0,1)^2 + (1,1)^2] = 1,22$
 $y_3 = 1,22 + (0,1)[(0,2)^2 + (1,22)^2] = 1,37$

$$y_4 = 1,56$$

$$y_5 = 1,81$$

$$y_6 = 2, 16$$

$$y_7 = 2,66$$

$$y_8 = 3,41$$

$$y_9 = 4,64$$

$$y_{10} = 6,87$$

Estudio del error

¿Por qué las soluciones obtenidas por el método de Euler son inexactas?

- 1. Errores de redondeo
- 2. Errores del algoritmo empleado

Error de truncamiento local

$$y(t_n) = y(t_{n-1} + h) = y(t_{n-1}) + hy'(t_{n-1}) + \frac{h^2}{2}y''(\xi_{n-1})$$

para algun $\xi \in (t_{n-1}, t_{n-1} + h)$.

Υ

$$y_n = y_{n-1} + hf(t_{n-1}, y_{n-1}).$$

Suponiendo que $y_{n-1} = y(t_{n-1})$

$$y(t_n) - y_n = \frac{h^2}{2}y''(\xi_{n-1}).$$

 $Y \text{ si } |y''(t)| \leq M \, \forall t \in [t_0, t_n]$

$$|y(t_n)-y_n|\leq \frac{Mh^2}{2}. (7$$

Error de truncamiento global

$$y(t_n) - y_n = (y(t_{n-1}) - y_{n-1}) + h[f(t_{n-1}, y(t_{n-1}) - f(t_{n-1}, y_{n-1})] + h\tau_{n-1}$$
(8)

con
$$\tau_{n-1} = \frac{h}{2}y''(\xi_{n-1}).$$

Luego, si $|y''(t)| \leq M \, \forall t \in [t_0, t_n]$,

$$|\tau_{n-1}| \le \frac{Mh}{2}.\tag{9}$$

Error de truncamiento global (Continuación)

Teorema

Sea f continua y que satisface la condición de Lipschitz con la constante L en $D=\{(t,y)|a\leq t\leq b, -\infty < y < \infty\}$ y $\exists M$ tal que $|y''(t)|\leq M \ \forall t\in [a,b].$

Denotemos con y(t) la única solución del PVI

$$y' = f(t, y), a \le t \le b, y(a) = \alpha$$

y sean $y_0, y_1, ..., y_n$ las aproximaciones generadas con el método de Euler para algún entero positivo n. Entonces para cada i = 0, 1, 2, ..., n,

$$|y(t_i) - y_i| \le \frac{hM}{2I} [e^{L(t_i - a)} - 1]$$
 (10)

Análisis de la convergencia

Teorema

El método de Euler converge para cualquier PVI donde f satisface la condición de Lipschitz y la solución y es C^2 .

Demostración

Estabilidad: Para $0 \le t_i = ih + 0 \le T$, y es C^2 e $|y''| \le M$

$$|y(t_i) - y_i| \le e^{TL}|y(t_0) - y_0| + \frac{e^{TL} - 1}{L} \max_{1 \le i \le n} |\tau_{i-1}|.$$

• Consistencia: $|\tau_i| \leq \frac{hM}{2}$

La consistencia da una cota local y la estabilidad nos permite concluir la convergencia:

$$|y(t_n) - y_n| \le e^{LT}|y(t_0) - y_0| + \frac{e^{TL} - 1}{L}\frac{hM}{2}$$

Ventajas y desventajas

Ventajas

- Simplicidad.
- Convergente.
- Extensiones o refinamientos del método de Euler.

Desventajas

- Al reducir h el error de la fórmula decrece pero el de redondeo crece
- No es estable en el caso de que en el intervalo donde está no existe o no es única.
- Puede tener errores grandes.

Artículo

Artículo

Application of Legendre Neural Network for solving ordinary differential equations

- Nuevo método de resolución de problemas de valores iniciales y de contorno.
- Las soluciones que aproxima son continuas.
- Permite obtener la aproximación numérica en cualquier punto del dominio

Estructura

La entrada será un vector $x = (x_1, x_2, ..., x_h)$, de dimensión h.

- Utiliza el algoritmo del gradiente descendente para el aprendizaje de la red neuronal y para actualizar los pesos
- Se escribe la solución como suma de dos términos $y_t(x,p) = A(x) + F(x,N(x,p))$ donde A(x) es una solución particular, y N(x, p) es el resultado de usar la red neuronal con entrada x y parámetros p.

Artículo

Input data	Analytical [48]	LeNN	MLP
0.0000	0.0000	0.0000	0.0000
0.1000	-0.0199	-0.0195	-0.0191
0.2000	-0.0784	-0.0785	-0.0778
0.3000	-0.1724	-0.1725	-0.1782
0.4000	-0.2968	-0.2965	-0.3000
0.5000	-0.4463	-0.4468	-0.4421
0.6000	-0.6150	-0.6135	-0.6145
0.7000	-0.7976	-0.7975	-0.7990
0.8000	-0.9894	-0.9896	-0.9905
0.9000	-1.1867	-1.1869	-1.1839
1.0000	-1.3863	-1.3861	-1.3857

