

X-Class HiPerFET™ **Power MOSFET**

IXFT50N60X IXFQ50N60X IXFH50N60X

600V 50A D25 $73m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

TO-3P (IXFQ)

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Te	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	600	V	
V _{DGR}	$T_{_{\mathrm{J}}}$ = 25°C to 150°C, $R_{_{\mathrm{GS}}}$ = 1M Ω	600	V	
V _{GSS}	Continuous	±30	V	
V _{GSM}	Transient	±40	V	
I _{D25}	T _C = 25°C	50	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	120	Α	
I _A	T _C = 25°C	20	Α	
E _{AS}	T _C = 25°C	2	J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns	
P _D	T _C = 25°C	660	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in	
Weight	TO-268 TO-3P TO-247	4.0 5.5 6.0	g g g	

SymbolTest ConditionsCharacter $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	600			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			25 1	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			73	mΩ

Symbol	Test Conditions	Characteristic Values		
$(1_{J} = 25^{\circ}C, 1_{J}$	Jnless Otherwise Specified)	Min.	Тур.	Max
g_{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	17	28	S
R_{g_i}	Gate Input Resistance		1.1	Ω
C _{iss}			4660	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3300	pF
C _{rss}			30	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		230	pF
$C_{o(tr)}$	Time related $\int_{DS} V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		750	pF
t _{d(on)}	Resistive Switching Times		28	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		62	ns
t _{d(off)}	$R_{G} = 2\Omega$ (External)		60	ns
t,)	ri _G = 232 (External)		13	ns
$Q_{g(on)}$			116	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		28	nC
Q _{gd}			54	nC
R _{thJC}				0.19 °C/W
R _{thCS}	TO-247 & TO-3P		0.25	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_{J} = 25^{\circ}C, T_{J})$	Unless Otherwise Specified)	Min.	Тур.	Max	
I _s	$V_{GS} = 0V$			50	Α
SM	Repetitive, pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$			200	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \ \mathbf{Q}_{RM} \ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 25A$, -di/dt = 100A/ μ s $V_R = 100V$		195 1.6 16		ns µC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 25A$ Value vs.

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 25A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

V_{DS} - Volts

Fig. 15. Maximum Transient Thermal Impedance

IXFT50N60X IXFQ50N60X IXFH50N60X

