Question	# of Points Possible	# of Points Obtained	Grader	
# 1	20	20	IDK	
# 2	20	15.5	JBH	
# 3	20	14	8.3	
# 4	20	16	7.B	
# 5	20	19	M5	
Total	100	84.5		

For full credit when sketching: remember to label axes and make locations and amplitudes clear.

Before starting the exam, read and sign the following agreement.

By signing this agreement, I agree to solve the problems of this exam while adhering to the policies and guidelines of the University of Florida and EEL 4750 / EEE 5502 and without additional external help. The guidelines include, but are not limited to,

- The University of Florida honor pledge: "On my honor, I have neither given nor received unauthorized aid in doing this assignment."
- Only one 8.5 by 11 inch cheat sheet (double-sided) may be used
- No calculators or computers may be used
- No textbooks or additional notes may be used
- No collaboration is allowed
- No cheating is allowed

Zexi Lin.	Sept. 2	ιζ.	2019
Student	Date		

Full Name:

EEL 4750 / EEE 5502 (Fall 2019) - Exam 01

ExamID: 010001

Date: Sept. 23, 2019

Question #1: Consider discrete-time signal x[n] below.

(a) (7 pts) Sketch $z[n] = \sum_{k=-\infty}^{\infty} x[-n+4k]$ for $-8 \le n \le 8$.

/

(b) (7 pts) Express x[n] as a sum of shifted and amplified step functions (i.e., u[n]).

1/

(c) (6 pts) Is x[n] an energy signal, a power signal, or neither? If z[n] is an energy signal, compute its energy. If x[n] is a power signal, compute its power. If x[n] is neither, explain why.

V

Full Name:

EEL 4750 / EEE 5502 (Fall 2019) - Exam 01

ExamID: 010001

Date: Sept. 23, 2019

Question #2: Consider the discrete-time system expressed by the input-output relationship (* represents discrete-time convolution)

$$y[n] = \begin{cases} x[n] & \text{if } x[n] < 10 \\ 10 & \text{if } x[n] \ge 10 \end{cases}$$

(a) (7 pts) Is this system linear? Justify why.

Yes. It's linear.

when xin7 < 10.

01/11/11/2[n] = 01/1/11/2/2/1].

H(axter] + bxinf axin+bxin] = ay, [n] + bxin].

when x[n] 310.

\$ ay, in) +6 kin) + H (ax, in) +6 kin)

inot Lincon.

blance $\sqrt{(n+n)} = \begin{cases} x[n+n] & if x[n+n] > 10. \end{cases}$

Y[n+N] + H(x[n+N])

(c) (6 pts) Is this system memoryless? Justify why.

Yes. memoryless.

Becomse yin] is just a function orbent n.

Full Name: :

EEL 4750 / EEE 5502 (Fall 2019) - Exam 01

ExamiD: 010001

Date: Sept. 23, 2019

Question #3: Consider a discrete-time input x[n] and impulse response h[n].

Is a system defined by the impulse response h[n] BIBO stable? Justify why. (a) (6 pts)

Yos. It's BIBO Stable.

Becomp x[n] -> no. h[n] < no. X

(b) (7 pts) Sketch the output y[n] (for n = -8 to n = 8) for

 $y[n] = h[n] * (\delta[n+2] + 1)$

Sketch the output y[n] (for n = -8 to n = 8) for (c) (7 pts)

y[n] = h[n] * (2u[n-1])

Full Name: _____

ExamID: 010001

EEL 4750 / EEE 5502 (Fall 2019) - Exam 01

Date: Sept. 23, 2019

Question #4: Consider the Fourier Transform of a continuous-time signal x(t), shown below.

(a) (6 pts) Determine the Nyquist sampling rate for z(t) = x(t) * x(t) + 1.

Nwax= 20TI. SS= 252max=40TT.

(b) (7 pts) Sketch (for $\Omega = -60\pi$ to $\Omega = +60\pi$) the Fourier transform $X_s(\Omega)$ of the sampled signal $x_s(t)$ with a sampling rate of $\Omega_s = 20\pi$. Do we experience aliasing?

aliasing.

(c) (7 pts) Sketch (for $\Omega = -60\pi$ to $\Omega = +60\pi$) the Fourier transform $X_s(\Omega)$ of the sampled signal $x_s(t)$ with a sampling rate of $\Omega_s = 50\pi$. Do we experience aliasing?

not aliashy.

Full Name: .

EEL 4750 / EEE 5502 (Fall 2019) - Exam 01

ExamID: 010001

Date: Sept. 23, 2019

Question #5: Consider the following

$$h_1[n] = 4(1/2)^{n-3}u[n-3]$$
 , $H_2(z) = \frac{1-z^{-2}}{(1+4z^{-2})(2-z^{-1})}$

(True /(False) The DTFT any signal is periodic with a period of π . Briefly justify why.

(b) (7 pts) Compute the DTFT of $h_1[n]$.

X Lw) is periodic with period 2Ti.

(c) (8 pts) Sketch the pole-zero plot and the region-of-convergence for $H_2(z)$. Assume $H_2(z)$ is an anti-causal system. Is the system stable?

ZENOS: Z=O. 1.,-1 pols: Z= t2i, =.

um stable.