MoskaliovYV 25112024-192902

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 1 на частоте 2.1 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 3 — Различные реализаци и Γ -образной цепи согласования

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.458	-126.8	27.453	105.6	0.022	55.5	0.461	-58.8

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouno, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 2 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 2.4 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 2.4 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 3.1 дБ, подключённый к плечу 1.

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm H}=1.6~\Gamma\Gamma$ ц и $f_{\rm B}=2.1~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 1.3 дБ
- 2) 0.6 дБ
- 3) 1 дБ
- 4) 0.2 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -3$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~{\rm Om}$ и доступной мощностью $6.4~{\rm дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

- 1) 0.6 mB_T
- 2) 2.6 mBT
- 3) 3.2 mB_T
- 4) 2.2 mBT

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.51 + 0.37$ і.

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -1.6 дБ
- 2) -4.4 дБ
- 3) -2.2 дБ
- 4) -0.6 дБ