Chapter 1

GCSE Revision Questions - Vectors

1.

OAYB is a quadrilateral. $\overline{OA} = 3\mathbf{a}$ and $\overline{OB} = 6\mathbf{b}$.

(a) Express
$$\overline{AB}$$
 in terms of **a** and **b**. (1)

X is the point on AB such that AX : XB = 1 : 2 and $\overline{BY} = 5\mathbf{a} - \mathbf{b}$.

(b) Prove that
$$\overline{OX} = \frac{2}{5}\overline{OY}$$
. (1)

2.

PQRS is a parallelogram. N is the point on SQ such that SN:NQ=3:2

$$\overline{PQ} = \mathbf{a}$$

$$\overline{PS} = \mathbf{b}$$

(a) Write down, in terms of
$$\mathbf{a}$$
 and \mathbf{b} , an expression for \overline{SQ} .

 \overline{SQ}

(b) Express
$$\overline{NR}$$
 in terms of **a** and **b**. (3)

 \overline{NR}

APB is a triangle. N is a point on AP.

$$\overline{AB} = \mathbf{a}$$
 $\overline{AN} = 2\mathbf{b}$ $\overline{NP} = \mathbf{b}$

(a) Find the vector $,\overline{PB}$ in terms of **a** and **b**.

(1)

(b) B is the midpoint of AC. M is the midpoint of PB. Show that NMC is a straight line. (4)

 $\begin{array}{c} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

ABCDEF is a regular hexagon, with centre O.

$$\overline{OA} = \mathbf{a}, \ \overline{OB} = \mathbf{b}.$$

(a) Write the vector
$$\overline{AB}$$
 in terms of **a** and **b**.

(1)

(b) The line AB is extended to the point K so that AB : BK = 1 : 2. Write the vector \overline{CK} in terms of \mathbf{a} and \mathbf{b} . Give your answer in its simplest form..

 $\begin{array}{c} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

OAB is a triangle. $\overline{OA} = \mathbf{a}, \, \overline{OB} = \mathbf{b}.$

(a) Find \overline{AB} in terms of **a** and **b**.

(1)

(b) P is the point on AB such that AP:PB=3:1. Find \overline{OP} in terms of ${\bf a}$ and ${\bf b}$. Give your answer in its simplest form.

 $\begin{array}{c} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

OAB is a triangle. $\overline{OA}=2\mathbf{a},$ $\overline{OB}=3\mathbf{b}.$

(a) Find
$$AB$$
 in terms of **a** and **b**.

(1)

$$\overline{AB} = \dots$$

(b) P is the point on AB such that AP:PB=2:3. Show that \overline{OP} is parallel to the vector $\mathbf{a}+\mathbf{b}$.

 $\begin{array}{c} {\rm Diagram} \ {\bf NOT} \\ {\rm accurately} \ {\rm drawn} \end{array}$

OPT is a triangle. M is the midpoint of OP.

$$\overline{OT} = \mathbf{a}, \, \overline{TP} = \mathbf{b}.$$

(a) Express \overline{OM} in terms of **a** and **b**.

(2)

 $\overline{OM} = \dots$

(b) Express \overline{TM} in terms of **a** and **b**. Give your answer in its simplest form. (2)

 $\overline{OM} = \dots$

Diagram NOT accurately drawn

OAB is a triangle. $\overline{OA}=\mathbf{a},\,\overline{OB}=\mathbf{b}.$

(a) Find the vector \overline{AB} in terms of **a** and **b**.

(1)

$$\overline{AB} = \dots$$

(b) P is the point on AB such that AP: PB = 3: 2. Show that $\overline{OP} = \frac{1}{5}(2\mathbf{a} + 3\mathbf{b})$. (3)