Занятие 9. Последние интегралы

15.03.22

Старые задачи

- 1. Вычислите интегралы (возможно интегрирование по гантели!)
 - (a) $\int_{0}^{1} \frac{\sqrt{x(1-x)}}{(x+1)^3} dx;$
 - (b) $\int_{0}^{2} \frac{\sqrt{x(2-x)}}{x+3} dx;$
 - (c) $\int_{0}^{1} x^{\alpha} (1-x)^{1-\alpha} dx$, при $-1 < \Re \alpha < 2$.
- 2. Существует ли функция f, голоморфная в окрестности нуля и такая что
 - a) $f(\frac{1}{n}) = \frac{1}{n}\cos(n\pi);$
 - b) $f(\frac{1}{n}) = e^{-n}$;
 - c) $\left| f(\frac{1}{n}) \frac{\cos n\pi}{2n+1} \right| < \frac{1}{n^2}$

Новые задачи

- 1. Пусть φ регулярная ветвь функции $\log z$, определенная в области с разрезом $\arg z = \alpha, \alpha \in (0, 2\pi)$, и такая что $\varphi(0) = 1$. Вычислите $\varphi(-1)$ в зависимости от α .
- 2. Пусть φ регулярная ветвь функции $\sqrt{(z^2-1)(z^2-4)}$ в области $\mathbb{C}\setminus([-2,-1]\cup[1,2])$, положительная на отрезке (-1,1). Вычислите значения φ в точках 3,-3,i,-i.
- 3. Докажите, что функция $f(z) = \sqrt[8]{\sqrt{z} + \sqrt{z-1}}$ допускает выделение регулярной ветви в области $(\mathbb{C} \setminus \mathbb{R}) \cup [0,1]$.