香港考試及評核局2017年香港中學文憑考試:

化學 試卷二

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷共有甲、乙和丙三部。考生須選答任何兩部中的全部試題。
- (二) 答案須寫在所提供的 DSE(D) 答題簿內,每題(非指分題)必須另起新頁作答。
- (三) 本試卷的第 8 頁印有周期表。考生可從該周期表得到元素的原子序及相對原子質量。

考試結束前不可 將試卷攜離試場

甲部 工業化學

回答試題的所有部分。

- 1. (a) 回答以下短問題:
 - (i) 考慮哈柏法:
 - (1) 寫出該反應的化學方程式。
 - (2) 建議可怎樣從所得反應混合物把氨分離出來。 (2分)
 - (ii) 以下坐標圖顯示在一固定溫度下,某反應中的反應物 A(aq) 的濃度隨時間的變化:

提出對應 A(aq) 的反應級數,並加以解釋。

(2分)

(iii) 提出在化工廠中儲存甲醇的一項潛在危險。

(1分)

(b) 製造硫酸涉及以下從 SO₂(g) 到 SO₃(g) 的轉化:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -197 \text{ kJ mol}^{-1}$

(i) 氮氧化物 (NO 和 NO_2) 曾一度被用作這轉化的催化劑,而該催化過程被視為包含以下兩個步驟:

$$SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$$

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$

在同一草圖上,為以上的轉化繪畫**兩個**附標示的能線圖 (x-軸:反應坐標;y-軸:勢能):一個以氦氧化物為催化劑 (用**虛線**「----」);另一個沒有催化劑 (用**實線**「———」)。

(3分)

- 1. (b) (ii) 目前在工業上,是用一固體催化劑氧化釩(V)來進行從 SO₂(g) 到 SO₃(g) 的轉化。
 - (1) 該些反應物須先經淨化方通入盛有該催化劑的反應室。為什麼?
 - (2) 操作條件設定為 450 ℃ 和 1 atm 以達致 96% 轉化。提出為什麼**丕**宜藉以下各方法來進一步提升轉化百分率:
 - (I) 降低反應系統的溫度
 - (II) 增加反應系統的壓強
 - (3) 為提升轉化百分率,其中一個所用的反應物為稍微過量。從原料的角度 考慮, $SO_2(g)$ 抑或 $O_2(g)$ 會是稍微過量?解釋你的答案。

(4分)

(c) 光氣 (COCl₂) 是一重要化學品,它可從 CO(g) 和 Cl₂(g) 的反應製得:

 $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

(i) 寫出一化學方程式以顯示怎樣可從天然氣獲取 CO(g)。

(1分)

- (ii) 氯可藉流汞電解池過程製得。
 - (1) 寫出在陽極所發生變化的半反應式。
 - (2) 寫出在陰極所發生變化的半反應式。
 - (3) 解釋為什麼流汞電解池過程已逐漸被淘汰。

(3分)

(iii) 在某溫度下,如果把 CO(g) 的濃度變成原來的兩倍,而 Cl₂(g) 的濃度維持不變,新的反應速率將會變成原本速率的 2.83 倍。推定對應 CO(g) 的反應級數。 (注意:反應的級數**不**一定是整數。)

(2分)

- (iv) 分別解釋為什麼以上製得 COCl₂(g) 的過程可被視為:
 - (1) 綠色,或
 - (2) 非綠色。

(2分)

甲部完

乙部 物料化學

回答試題的所有部分。

- 2. (a) 回答以下短問題:
 - (i) 天然橡膠的部分結構如下所示:

提出為什麼當天然橡膠與硫共熱時變硬。

(2分)

(ii) 根據分子結構,解釋為什麼高密度聚乙烯 (HDPE) 分子較低密度聚乙烯 (LDPE) 分子裝填得更緊密。

(1分)

(iii) 化合物 A 的結構如下所示:

解釋A會否呈液晶特性。

(2分)

(b) 下圖顯示銅晶體的晶胞和鋅晶體的一部分結構:

銅晶體

- (i) 參考銅晶體的晶胞。
 - (1) 寫出銅原子的配位數。
 - (2) 推定在晶胞中銅原子的數目。

(2分)

2017-DSE-CHEM 2-4

- 2. (b) (ii) 參考鋅晶體的該部分結構。
 - (1) 寫出這類裝填的名稱。
 - (2) 寫出銅晶體和鋅晶體的裝填的一項相似之處。
 - (3) 討論銅晶體和鋅晶體的裝填的相異之處。

(4分)

(iii) 寫出能用來製造水龍頭的一種含有銅和鋅的合金的名稱。

(1分)

(c) 下圖顯示有機玻璃和聚羥基丁酸酯 (PHB) 的結構:

$$CH_3$$
 CH_2 CH_2

(i) 繪出有機玻璃的單體的結構,並寫出這單體的天然原料。

(2分)

(ii) 以下哪一項可由有機玻璃製成?

雨衣、隱形眼鏡、釣魚絲、食物保鮮紙

(1分)

- (iii) PHB 是一種熱塑性生物聚合物料。
 - (1) 「熱塑性」一詞是什麼意思?
 - (2) 基於 PHB 是生物聚合物料的事實,分別解釋為什麼它的生產和棄置可被 視為對環境友善。

(3分)

- (iv) PHB 可歸類為聚酯。
 - (1) 聚酯的生成常涉及縮合作用。寫出縮合作用的一個特徵。
 - (2) 基於 PHB 含有酯鍵合的事實,解釋為什麼它的棄置可被視為對環境友善。

(2分)

乙部完

丙部 分析化學

回答試題的所有部分。

3. (a) 回答以下短問題:

(i) 建議一項測試以分辨鈉離子和鉀離子。

(2分)

(ii) 建議一項化學測試以檢測二氧化硫氣體。

(2分)

(iii) 某有機化合物 X 與 2,4-二硝基苯肼反應生成一黃色固體 Z 。 Z 的結構如下所示:

已知X的分子式為CoHsO,繪畫X的結構。

(1分)

(b) 在酸性條件下, 羥基胺 (HONH₂) 與 Fe³⁺(aq) 離子反應的生成物包含 Fe²⁺(aq) 離子和一個 氦的氧化物。進行了包括以下兩個步驟的實驗,以推定該氧化物中 N 的氧化數。

步驟 (1): 把一個含 0.875 g 的 $HONH_2$ 和過量 $Fe_2(SO_4)_3$ 的水溶液在酸性條件下加熱直至反應完成,繼而把所得溶液稀釋至 250.0 cm³。

步驟 (2): 以 過 量 $H_2SO_4(aq)$ 把 25.00 cm³ 的 該 經 稀 釋 溶 液 酸 化 , 接 著 與 $0.0282 \text{ mol dm}^{-3} \text{ KMnO}_4(aq)$ 進行滴定直至達到終點。所涉及反應的化學方程如下:

 $MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \rightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(1)$

(i) 寫出在滴定終點的顏色變化。

(1分)

(ii) 進行了四次滴定,其結果如下所列:

次數	1	2	3	4
所用 KMnO ₄ (aq) 的體積 / cm ³	38.34	37.62	37.58	37.60

- (1) 計算在滴定中所用 KMnO₄(aq) 的合理平均體積。
- (2) 基於該實驗結果,計算在步驟 (1) 中為使反應完成所需的 $HONH_2(aq): Fe^{3+}(aq)$ 的摩爾比。 (相對原子質量:H=1.0, N=14.0, O=16.0)
- (3) 已知在 $HONH_2$ 中 N 的氧化數是 -1,並且 H 和 O 的氧化數保持不變,推定該氧化物中 N 的氧化數。

(6分)

(iii) 根據(ii)(3),提出該氧化物的合理實驗式。

(1分)

2017-DSE-CHEM 2-6

- 3. (c) 很多植物均含有用的有機化合物,藉適當的溶劑可把這些化合物萃取。
 - (i) 某植物的葉子含一有用的有機化合物 S,S 可緩緩地溶於某一暖和的有機溶劑, 並可藉這溶劑從該葉子萃取出來。
 - (1) 「回流加熱」是進行這類萃取的一個常用的方法。寫出這方法的優點。
 - (2) 經萃取後,可藉簡單蒸餾把萃取液中的溶劑除掉。繪畫一標示圖以顯示這 簡單蒸餾所需的裝置。
 - (3) 從萃取所得的 S 可能含其他有機雜質。建議一個把 S 從這些雜質分離出來的方法。

(4分)

(ii) 青蒿素是一個從某種植物獲得的有機化合物。青蒿素不能與 NaHCO₃(aq) 起反應。它的紅外光譜約在 1700 cm⁻¹處顯示一強吸收峰。提出下面 W、X、Y 和 Z 中哪一個會是青蒿素的可能結構。解釋你的答案。

特徵紅外吸收波數域 (伸展式)

鍵合	化合物類別	波數域 / cm ⁻¹
C=C	烯	1610至 1680
C=O	醛、酮、羧酸及其衍生物	1680至1800
C≡C	炔	2070 至 2250
C≣N	腈	2200 至 2280
O-H	帶「氫鍵」的酸	2500 至 3300
С–Н	烷、烯及芳烴	2840 至 3095
O-H	帶「氫鍵」的醇	3230 至 3670
N-H	胺	3350 至 3500

(3分)

丙部完 試卷完

PERIODIC TABLE 周期表

专之		11/1 1/1 1/1	7 8 9	CNOF	12.0 14.0 16.0 19.0	相對原子質量 13 14 15 16 17	Si P S CI	28.1 31.0 32.1 35.5	27 28 29 30 31 32 33 34 35	Co Ni Cu Zn Ga Ge As Se Br	58.9 58.7 63.5 65.4 69.7 72.6 74.9 79.0 79.9	50 51 52 53	Rh Pd Ag Cd In Sn Sb Te I	102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9	77 78 79 80 81 82 83 84	Ir Pt Au Hg T1 Pb Bi Po At	192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210)		
		Ш	5	A	10.8	13	A	27.0	-						-				
									H			-			-				
						質量			<u> </u>			 							
16	È.					相對原子			-					-				-	
五 万 万						relative atomic mass			26	Fe	55.8	44	Ru	101.1	92	SO	190.2		
						elative ato			25	Mn	54.9	43	Tc	(86)	75	Re	186.2		
† \	# \		7	/	/	, T			24	Ċ	52.0	42	Mo	95.9	74	*	183.9		
	1	H		,	•				23	>	50.9	41	Q.	92.9	73	Ta	180.9	105	
									22	Ξ	47.9	40	Zr	91.2	72	Ht	178.5	104	
									21	Š	45.0	39	⊼	88.9	57 *	Ľa	138.9	** 68	
禄		<u></u>	4	Be	0.6	12	Mg	24.3	20	C C	40.1	38	Sr	9.78	99	Ba	137.3	88	
GROUP 族)	3	Ľ	6.9	11	Na Na	23.0	19	¥	39.1	37	Rb	85.5	55	ű	132.9	87	

71	Ľ	175.0	103	Ľ	(260)
70	ΛÞ	173.0	102	%	(259)
69	Tm	168.9	101	Md	(258)
89	Er	167.3	100	Fm	(257)
<i>L</i> 9	Ho	164.9	66	Es	(252)
99	Dy	162.5	86	Ç	(251)
92	Tp	158.9	26	Bķ	(247)
64	PS Cq	157.3	96	Сш	(247)
63	Eu	152.0	95	Am	(243)
62	Sm	150.4	94	Pu	(244)
19	Pm	(145)	93	ď	(237)
9	ΡN	144.2	92	n	238.0
59	Pr	140.9	91	Pa	(231)
58	లి	140.1	8	Th	232.0