Lecture 3 (Chapter 9)

Parametric Curves and Polar Coordinates

Dr M. Loan

Department of Physics, SCUPI

© 2023, SCUPI

Learning Objectives

- Locate points in a plane by using polar coordinates.
- Convert points between rectangular and polar coordinates.
- Sketch polar curves from given equations.
- Convert equations between rectangular and polar coordinates.
- Identify symmetry in polar curves and equations.

Polar Coordinates

- The rectangular coordinate system (or Cartesian plane) provides a means of mapping points to ordered pairs and ordered pairs to points. This is called a oneto-one mapping from points in the plane to ordered pairs.
- The polar coordinate system provides an alternative method of mapping points to ordered pairs.
- The Cartesian coordinate system can therefore be represented as an ordered pair in the polar coordinate system.
- The first coordinate is called the radial coordinate and the second coordinate is called the angular coordinate.
- Every point in the plane can be represented in this form.

Polar Coordinates

- In the Cartesian coordinate system, every point has only one representation, but in the polar coordinate system, each point has many representations.
- For instance, the point $(1, 5\pi/4)$ could be written as $(1, -3\pi/4)$ or $(1, 13\pi/4)$ or $(-1, \pi/4)$.

• In fact, since a complete counterclockwise rotation is given by an angle 2π , the point represented by polar coordinates (r,θ) is also represented by

$$(r, \theta + 2n\pi)$$
 and $(-r, \theta + (2n+1)\pi)$

where n is an integer.

Relationship between Polar and Cartesian Coordinates

The connection between polar and Cartesian coordinates can be seen from

$$x = r \cos \theta,$$
 $y = r \sin \theta$ (1)
 $r = \sqrt{x^2 + y^2},$ $\tan \theta = y/x$ (2)

Note that

- Eqs. (2) do not uniquely determine θ when x and y are given because, as θ increases through the interval $0 < \theta < 2\pi$, each value of $\tan \theta$ occurs twice.
- Therefore, in converting from Cartesian to polar coordinates, it's not good enough just to find r and θ that satisfy Eqs. (2).
- We must choose ϑ so that the point (r, θ) lies in the correct quadrant.

Example

Represent the point with Cartesian coordinates (1, -1) in terms of polar coordinates.

Solution:

If we choose r to be positive, then Eqs. (2) give

$$r = \sqrt{x^2 + y^2} = \sqrt{2}$$
$$\tan \theta = \frac{y}{x} = -1$$

Since the point (1, -1) lies in the fourth quadrant, we can choose

$$\theta = -\pi/4$$
 or $\theta = 7\pi/4$.

Thus one possible answer is $(\sqrt{2}, -\pi/4)$; another is $(\sqrt{2}, 7\pi/4)$

Polar Curves

The **graph of a polar equation** $r = f(\theta)$, or more generally $F(r, \theta) = 0$, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Polar Curves

- (a) Sketch the curve with polar equation $r = 2 \cos \theta$
- (b) Find a Cartesian equation for this curve.

Solution:

(a) We find the values of r for some convenient values of θ and plot the corresponding points (r, θ) . Then we join these points to sketch the curve, which appears to be a circle.

θ	$r=2\cos\theta$
0	2
$\pi/6$	$\sqrt{3}$
$\pi/4$	$\sqrt{2}$
$\pi/3$	1
$\pi/2$	0
$2\pi/3$	-1
$3\pi/4$	$-\sqrt{2}$
$5\pi/6$	-√3
π	-2

We have used only values of θ between 0 and π , because if we let θ increase beyond , we obtain the same points again.

Polar Curves

(b) Find a Cartesian equation for this curve.

Solution:

To convert the given equation to a Cartesian equation we use

$$x = r \cos \theta$$
, $y = r \sin \theta$, $x^2 + y^2 = r^2$,
 $\tan \theta = y/x$

From $x = r \cos \theta$, we have $\cos \theta = x/r$, so the equation $r = 2 \cos \theta$ becomes r = 2x/r, which gives $r^2 = 2x \Rightarrow x^2 + y^2 = 2x \Rightarrow x^2 + y^2 - 2x = 0$ $(x - 1)^2 + y^2 = 1$

which is an equation of a circle with centre (1, 0) and radius 1.

Polar Curves - Example

Sketch the curve $r = 1 + \sin \theta$.

Solution:

We first sketch the graph of $r = 1 + \sin \theta$ in Cartesian coordinates (Fig. 1a) by shifting the sine curve up one unit.

 $r=1+\sin\theta$ in Cartesian Coordinates, $0\leq\theta\leq2\pi$

Polar Curves - Example

Solution (Contd.)

This enables us to read at a glance the values of r that correspond to increasing values of θ . For instance, we see that as θ increases from 0 to $\pi/2$, r (the distance from 0) increases from 1 to 2, so we sketch the corresponding part of the polar curve in Fig. 1(b).

• As θ increases from $\pi/2$ to π , r decreases from 2 to 1, so we sketch the next

part of the polar curve in Fig. 1(c).

Polar Curves - Example

- As θ increases from π to $3\pi/2$, r decreases from 0 to 1 (Fig. 1c).
- Finally, as θ increases from $3\pi/2$ to 2π , r increases from 0 to 1 (Fig. 1d)
- If we let ϑ increase beyond 2π or decrease beyond 0, we would simply retrace our path.
- Putting together the parts of the curve from Figure 1a–1d, we sketch the complete curve in part 1e. It is called a **cardioid** because it's shaped like a heart.

Fig. 1e

Homework 1 – 9.3

Sketch the curve with the given polar equations by first sketching the graph of r as a function of θ in Cartesian coordinates.

$$r = 1 - 2\sin 4\theta$$

$$r = 3 + 4\cos\theta$$

Common Polar Curves

Symmetry in Polar Equations

- (a) If a polar equation is unchanged when θ is replaced by $-\theta$, the curve is symmetric about the polar axis.
- (b) If the equation is unchanged when r is replaced by -r, or when θ is replaced by $\theta + \pi$, the curve is symmetric about the pole. (This means that the curve remains unchanged if we rotate it through 180° about the origin.)
- (c) If the equation is unchanged when θ is replaced by $\theta \pi$, the curve is symmetric about the vertical line $\theta = \pi/2$.

Using Symmetry to Graph a Polar Equation

Find the symmetry of the rose defined by the equation

$$r = 3 \sin 2\theta$$

and create a graph.

Solution:

Suppose the point (r, θ) is on the graph of $r = 3 \sin 2\theta$.

(i) To test for symmetry about polar axis, first try replacing θ with $-\theta$. This gives $r = 3\sin(2(-\theta)) = -3\sin(2\theta)$

Since this changes the original equation, this test is not satisfied. However, returning to the original equation and replacing r by -r and θ with $\pi-\theta$ yields

$$-r = 3\sin(2(\pi - \theta)) = 3\sin(-2\theta) = -3\sin 2\theta$$
$$r = 3\sin 2\theta$$

This demonstrates that the graph is symmetric with respect to the polar axis.

Using Symmetry to Graph a Polar Equation

Solution (Contd.):

(ii) To test for symmetry with respect to the pole, first replace r by -r which yields $-r = 3 \sin 2\theta \Rightarrow r = -3 \sin 2\theta$

Therefore the equation does not pass the test for this symmetry.

However, returning to the original equation and replacing θ by $\theta+\pi$ gives

$$r = 3\sin(2(\theta + \pi)) = 3\sin(2\theta + 2\pi) = 3\sin 2\theta$$

Since this agrees with the original equation, the graph is symmetric about the pole.

(ii) To test for symmetry with respect to the vertical line, $\theta = \pi/2$, first replace both r by -r and θ by $-\theta$

$$-r = 3\sin(-2\theta)$$
$$r = 3\sin(2\theta)$$

Therefore the graph is symmetric about the vertical line $\theta = \pi/2$.

Using Symmetry to Graph a Polar Equation

To graph the function, tabulate the values of θ from 0 to $\pi/2$ and reflect the resulting graph.

$\boldsymbol{\theta}$	r
0	0
$\pi/6$	2.6
$\pi/4$	3
$\pi/3$	2.6
$\pi/2$	0

Homework 2 – 9.3

- (i) Determine the symmetry of the graph determined by the equation $r=2\cos 3\theta$ and create a graph.
- (ii) Determine the symmetry of the graph determined by the equation $r^2 = 9\cos\theta$ and create a graph.

To find the tangent to the polar curve $r = f(\theta)$, regard θ as a parameter and write its parametric equations as

$$x = r \cos \theta = f(\theta) \cos \theta,$$
 $y = r \sin \theta = f(\theta) \sin \theta$

The slope to the cuve is given by

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{(dr/d\theta)\sin\theta + r\cos\theta}{(dr/d\theta)\cos\theta - r\sin\theta}$$

We locate the horizontal tangents by finding the point where $dy/d\theta = 0$ (provided that $dy/d\theta \neq 0$).

We locate the vertical tangents by finding the point where $dx/d\theta = 0$ (provided that $dy/d\theta \neq 0$).

If we are looking for tangent lines at the pole, then r=0, and $dy/dx=\tan\theta$ if $dr/d\theta\neq 0$.

Q. No. 52. Ex. 9.3:

Find the points where the tangent line is horizontal or vertical on the curve $r = e^{\theta}$

Solution:

$$r = e^{\theta} \Rightarrow x = r \cos \theta = e^{\theta} \cos \theta, \qquad y = e^{\theta} \sin \theta$$

$$\Rightarrow \frac{dy}{d\theta} = e^{\theta} \sin \theta + e^{\theta} \cos \theta = e^{\theta} (\sin \theta + \cos \theta)$$

$$\frac{dx}{d\theta} = e^{\theta} \cos \theta - e^{\theta} \sin \theta = e^{\theta} (\cos \theta - \sin \theta)$$
We locate the horizontal tangents by finding the point where $\frac{dy}{d\theta} = 0$

$$e^{\theta}(\sin\theta + \cos\theta) = 0 \Rightarrow \tan\theta = -1 \Rightarrow \theta = -\frac{\pi}{4} + n\pi$$

The horizontal tangents are at

$$\left(e^{\pi(n-1/4)}, \quad \pi(n-1/4)\right)$$

Solution (Contd.):

We locate the vertical tangents by finding the point where $dx/d\theta = 0$

$$e^{\theta}(\cos \theta - \sin \theta) = 0$$

 $\Rightarrow \tan \theta = 1$
 $\theta = \frac{\pi}{4} + n\pi$, (n is an integer)

The vertical tangents are at

$$\left(e^{\pi(n+1/4)}, \quad \pi(n+1/4)\right)$$

Q. No. 67. Ex. 9.3

Let P be any point (except the origin) on the curve $r=f(\theta)$. If ψ is the angle between the tangent line at P and the radial line OP, show that

$$\tan \psi = \frac{r}{dr/d\theta}$$

[Hint: Observe that $\psi = \phi - \theta$].

Solution:

$$\tan \psi = \tan(\phi - \theta) = \frac{\tan \phi - \tan \theta}{1 + \tan \phi \tan \theta}$$

$$\tan \psi = \frac{(dy/dx) - \tan \theta}{1 + (dy/dx) \tan \theta} = \frac{(dy/d\theta)/(dx/d\theta) - \tan \theta}{1 + (dy/d\theta)/(dx/d\theta) \tan \theta}$$

$$\tan \psi = \frac{(dy/d\theta) - (dx/d\theta) \tan \theta}{(dx/d\theta) + (dy/d\theta) \tan \theta}$$

$$\tan \psi = \left(\frac{[(dr/d\theta) \sin \theta + r\cos \theta] - \tan \theta[(dr/d\theta) \cos \theta - r\sin \theta]}{[(dr/d\theta) \cos \theta - r\sin \theta] + \tan \theta[(dr/d\theta) \sin \theta + r\cos \theta]}\right)$$

$$\tan \psi = \frac{r\cos \theta + r \cdot \sin^2 \theta / \cos \theta}{(dr/d\theta) \cos \theta + (dr/d\theta) \cdot \sin^2 \theta / \cos \theta}$$

$$\tan \psi = \frac{r}{dr/d\theta}$$