Задача 2 - Игра «Жизнь»

Реализуйте параллельную версию игры «Жизнь» с использованием МРІ.

Дано поле размера NxN. Для распараллеливания будем использовать схему, изображенную ниже: поле разбито на линии длины N, крайние линии (темо-голубые) получаются от соседних процессов после каждой итерации пересчета «живых» клеток. Верхняя линяя первого процесса передается последниму процессу, нижняя последнего — первойму (т. е. поле замкнуто) , при этом будем передавать сначала в одном направлении, после завершения — в обратном, чтобы избежать дедлока.

Запустим программу с разными входными параметрами. Получим следующие результаты:

размер поля	1 024	2 048	3 072	4 096	5 120	6 144	7 168	8192
кол-во итераций								
50	0:01.90	0:04.17	0:09.11	0:16.40	0:25.32	0:36.79	0:50.40	1:05.28
	0:00.86	0:02.19	0:04.88	0:08.54	0:12.76	0:18.50	0:24.80	0:33.14
	0:00.64	0:01.44	0:02.50	0:04.91	0:07.13	0:09.68	0:12.56	0:17.45
	0:00.54	0:01.00	0:01.59	0:02.59	0:03.74	0:05.27	0:07.13	0:08.97
	0:00.67	0:00.94	0:01.25	0:01.99	0:02.39	0:03.31	0:04.31	0:06.30
100	0:02.20	0:07.79	0:17.41	0:31.26	0:48.48	1:09.56	1:35.11	2:04.42
	0:01.20	0:04.14	0:08.78	0:15.88	0:24.26	0:34.82	0:47.65	1:02.51
	0:00.66	0:02.60	0:04.52	0:08.72	0:12.66	0:17.87	0:24.42	0:31.99
	0:00.62	0:01.46	0:02.67	0:04.78	0:06.73	0:09.33	0:12.57	0:16.75
	0:00.74	0:01.25	0:01.78	0:02.75	0:04.25	0:04.96	0:07.21	0:09.13
150	0:02.91	0:11.39	0:25.48	0:45.81	1:10.68	1:41.88	2:22.62	3:02.62
	0:01.64	0:05.57	0:13.17	0:23.25	0:36.25	0:51.15	1:11.43	1:31.97
	0:00.85	0:04.22	0:06.22	0:11.56	0:18.30	0:26.40	0:35.40	0:46.47
	0:00.72	0:01.92	0:03.66	0:06.35	0:09.55	0:13.41	0:17.99	0:25.82
	0:00.75	0:01.43	0:02.34	0:03.91	0:05.43	0:07.39	0:10.30	0:13.75
200	0:03.77	0:14.91	0:33.41	1:00.19	1:32.71	2:13.50	3:02.14	4:01.53
	0:02.50	0:07.31	0:17.50	0:30.41	0:46.73	1:07.29	1:33.26	2:00.53
	0:02.33	0:03.71	0:08.60	0:14.95	0:24.21	0:34.00	0:45.10	1:04.23
	0:00.90	0:02.38	0:04.78	0:08.32	0:12.96	0:17.69	0:24.70	0:31.25
	0:00.84	0:01.70	0:02.86	0:04.69	0:06.59	0:09.91	0:13.35	0:15.87
250	0:04.61	0:18.44	0:41.30	1:14.47	1:54.50	2:45.10	3:49.53	4:57.55
	0:02.61	0:09.39	0:21.31	0:37.59	0:57.43	1:23.24	1:52.75	2:29.60
	0:01.26	0:04.95	0:10.70	0:18.27	0:28.53	0:42.70	0:58.26	1:15.32
	0:00.93	0:02.78	0:05.77	0:10.69	0:15.70	0:21.63	0:29.72	0:36.27
	0:00.87	0:01.85	0:03.54	0:05.66	0:07.96	0:11.16	0:15.54	0:20.28
300	0:05.53	0:21.96	0:49.20	1:28.75	2:16.22	3:16.32	4:34.68	5:54.52
	0:03.20	0:11.80	0:24.27	0:48.23	1:08.48	1:38.26	2:14.12	2:58.19
	0:01.79	0:05.49	0:12.66	0:22.73	0:33.54	0:50.45	1:07.87	1:34.82
	0:01.10	0:03.35	0:06.65	0:11.69	0:18.00	0:25.34	0:34.40	0:44.14
	0:00.93	0:02.24	0:03.86	0:06.28	0:09.53	0:13.79	0:17.19	0:23.65
350	0:06.36	0:25.32	0:56.92	1:42.87	2:38.32	3:47.98	5:18.17	7:21.63
	0:03.42	0:12.92	0:27.97	0:56.90	1:17.60	1:53.92	2:34.80	3:26.18
	0:01.78	0:07.8	0:14.55	0:27.97	0:38.39	0:57.91	1:18.52	1:48.80
	0:01.25	0:03.72	0:07.79	0:13.59	0:20.53	0:30.10	0:39.70	0:51.80
	0:00.99	0:02.37	0:04.59	0:07.21	0:10.73	0:15.44	0:20.81	0:27.38
400	0:07.22	0:28.83	1:04.89	1:56.95	3:00.40	4:17.19	5:51.94	8:25.94
	0:03.79	0:14.73	0:32.66	0:59.60	1:29.82	2:09.36	3:00.83	3:54.78
	0:01.98	0:07.69	0:16.41	0:31.70	0:46.24	1:05.29	1:23.70	1:57.67
	0:01.33	0:04.11	0:08.72	0:15.45	0:23.23	0:33.23	0:45.14	0:58.33
	0:01.26	0:08.46	0:04.84	0:07.71	0:12.36	0:17.55	0:23.18	0:33.18
450	0:08.60	0:32.28	1:12.52	2:11.10	3:21.31	4:49.72	6:34.32	8:45.38
	0:04.13	0:16.68	0:36.39	1:05.99	1:38.61	2:25.80	3:17.55	4:22.76
	0:02.30	0:08.50	0:18.37	0:33.40	0:50.54	1:12.79	1:32.85	2:12.93
	0:01.49	0:04.65	0:09.74	0:17.21	0:26.67	0:37.18	0:50.37	1:12.27
	0:01.12	0:02.74	0:05.50	0:09.11	0:13.76	0:19.29	0:26.82	0:36.92
500	0:09.10	0:35.77	1:20.74	2:25.19	3:42.71	5:20.99	7:14.40	9:40.23
	0:04.65	0:18.50	0:40.28	1:13.00	1:51.69	2:40.48	3:38.45	4:45.69
	0:02.27	0:09.43	0:20.75	0:36.95	0:58.56	1:16.87	1:49.62	2:25.66
	0:01.57	0:05.10	0:10.60	0:18.86	0:28.74	0:40.99	0:57.29	1:13.73
	0:01.32	0:03.20	0:05.84	0:10.12	0:14.92	0:21.18	0:28.61	0:36.70

Кол-во процессов: 2 - 4 - 8 - 16

можно заметить, что при увеличении кол-ва итераций и размера поля для 2 и 4 процессов ускорение практически отсутствует (ускорение нивелируется накладными расходами на передачу сообщений между процессами), при кол-ве процессов 8 заметно ускорение, при кол-ве процессов 16 — ускорение более значительное (при уеличении размера плоя с 1000 до 9000 получили ускорение более чем в два раза), но при этом ускорение не линейное (первая производная уменьшается). Это объяснаятся тем, что при увеличении поля и кол-ва итераций резко возрастает кол-ов MPI сообщений между процессами после каждной итерации.

При этом при увеличении кол-ва процесоов и постоянном размере поля (8192) и кол-ве итераций (500) ускорение практически линейное, т. е. накладные расходы на передачу сообщений очень малы.

Но для размера поля (1024) и кол-ва итераций (50) заметен спад после 8 процессов, т. к. расчетов производится значительно меньше, и «узким местом» становится передача MPI сообщений.

