Конспект з квантової механіки

Андрій Жугаєвич (azh@lanl.gov) $14\ \text{лютого}\ 2012\ p.$

Ι	$\Pi_{\mathbf{l}}$	ринципи квантової механіки	4
	1	Математичний апарат квантової механіки	4
	2	Фізичні принципи квантової механіки	5
тт	Ο.	дночастинкове рівняння Шредингера	8
11			
	3	Одночастинкове рівняння Шредингера	
		3.1 Координатне представлення	
		3.2 Стаціонарне рівняння Шредингера	
		3.3 Імпульсне представлення	
		3.4 Гаусів пакет	
	4	Точні розв'язки рівняння Шредингера у просторі довільної розмірності	10
		4.1 Вільна частинка	10
		4.2 Потенціальний ящик	11
		4.3 Сферично симетричний потенціал	11
		4.4 Гармонічний осцилятор	12
	5	Одновимірне рівняння Шредингера: спектр	13
		5.1 Прямокутна яма	
		5.2 Дельта-яма	
		5.3 Взаємодія двох потенціальних ям	
		5.4 Кусково-інтегровні потенціали	
	6	Одновимірне рівняння Шредінгера: проходження бар'єру	
	U	6.1 Загальна теорія	
		6.2 Прямокутний бар'єр	
		· · · · · · · · · · · · · · · · · · ·	
	_	6.3 Резонансне тунелювання і квазістаціонарні рівні	
	7	Частинка в центральному полі: спектр	
		7.1 Оператор моменту імпульсу	
		7.2 Сферична яма	
		7.3 Кулонівський потенціал	19
	8	Частинка в центральному полі: задача розсіяння	20
		8.1 Загальні поняття	20
		8.2 Розсіяння на сфері	21
	9	Частинка в періодичному потенціалі	21
		9.1 Загальна теорія	21
		9.2 Модель Кроніга-Пені	23
	10	Спін	~ .
II	ΙHa	аближені методи	26
	11	Квазікласичне наближення	26
	12	Варіаційний метод	27
	13	Стаціонарна теорія збурень	28
		Нестаціонарна теорія збурень	
		14.1 Обмежені в часі збурення	
		14.2 Збурення з обмеженою зміною в часі	
		14.3 Періодичне збурення. Нерезонансний випадок	
		14.4 Періодичне збурення. Випадок резонансу	
		14.5 Переходи в неперервному спектрі	
		тто перелоди в пенерервному спектрі	52

IV Багаточастинкові системи	33
15 Багаточастинкові системи: загальна теорія	33
16 Система електронів	34
16.1 Детермінант Слейтера	34
	35
	37
	37
	39
16.6 Метод Хартрі-Фока у випадку незалежного від спіну гамільтоніану	40
16.7 Метод Хартрі-Фока для спарованих електронів	41
V Чисельні методи	43
• • • • • • • • • • • • • • • • • • • •	43
	43
	44
	45
	46
VI Фізичні моделі	48
	48
	48
	48
	49
	50
····	50
	52
	54
Література	54

Задачі до курсу квантової механіки

Андрій Жугаєвич (zhugayevych@univ.kiev.ua) 9 березня 2011 р.

1	Математичний апарат квантової механіки
3	Задачі загального характеру
4	Рух вільної частинки
5	Одновимірне рівняння Шредингера: спектр
6	Одновимірне рівняння Шредингера: проходження бар'єру
7	Тривимірне рівняння Шредингера: спектр
8	Частинка в центральному полі: задача розсіяння
9	Частинка в періодичному потенціалі
12	Квазікласичне наближення
13	Варіаційний метод
14	Стаціонарна теорія збурень
15	Нестаціонарна теорія збурень
20	Метод лінійної комбінації базисних функцій
22	Взаємодія квантових систем з електромагнітним полем
24	Двоатомна молекула
Po	зв'язки

§1. Математичний апарат квантової механіки

- 1. (3) Знайти оператори, спряжені до операторів $x, \frac{d}{dx}, x \frac{d}{dx}, \frac{d^n}{dx^n}, \exp\left(a \frac{d}{dx}\right)$. 2. (5) Знайти комутатори: a) $[r_i, p_j], [p_i, p_j];$ б) $[L_i, L_j], [r_i, L_j], [p_i, L_j], [L^2, \mathbf{L}], [p^2, \mathbf{L}];$ в) $[U(\mathbf{r}), \mathbf{p}],$ $[U(r), \boldsymbol{L}].$
- 3. (5) Знайти власні значення і власні функції операторів імпульсу і кінетичної енергії.
- 4. (10) Показати, що оператор трансляції має вигляд $\exp\left(a\frac{\mathrm{d}}{\mathrm{d}x}\right)$. Довести його унітарність. Знайти власні значення і власні функції. Узагальнити на багатовимірний випадок.
- 5. (5) Нехай (E,ψ) власний елемент оператора H, який залежить від параметра λ . Показати, що $\partial E/\partial \lambda=$ $\langle \psi | \partial H / \partial \lambda | \psi \rangle$.

§3. Задачі загального характеру

- 1. (10) Довести, що для гамільтоніану $H = \frac{p^2}{2m} + U(\boldsymbol{x})$ виконується співвідношення $\langle n|\boldsymbol{p}|n'\rangle = im\omega_{nn'}\langle n|\boldsymbol{x}|n'\rangle$.
- 2. (10) Показати, що сила з якою частинка діє на вертикальну стінку, розташовану в деякій точці, дорівнює $|\psi|^2 \delta U$, де δU – стрибок потенціалу в цій точці. Показати також, що у випадку нескінченно високої стінки цей вираз зведеться до $\frac{\hbar^2}{2m}\psi'^2$.
- 3. (3) Показати, що потік імовірності для частинки в стані з хвильовою функцією $A\psi_1 + B\overline{\psi_1}$ є сумою двох протилежних потоків.
- 4. (3) Показати, що в одновимірному випадку потік імовірності для частинки в стаціонарному стані не залежить від координати.
- 5. (5) Оцінити характерні енергії електрона в атомі за розміром останнього.
- 6. (20) Для двох заданих станів ψ_i і ψ_f знайти незалежний від часу гамільтоніан, який переводить один стан у другий за найшвидший час, за умови, що різниця між найбільшим і найменшим власними значеннями гамільтоніану дорівнює $\hbar\omega$.