Session 2023 Brendan Le Pennec

Physique-chimie option physique

Mise en perspective didactique d'un dossier de recherche

Parcours de formation à et par la recherche

CPGE MPSI/MP

Lycée La Pérouse-Kérichen Brest - 2013-2015

Magistère de physique fondamentale

Orsay - 2015-2018

Master ICFP Parcours Matière Condensée

ENS Paris-Saclay - 2018

Stage de licence

CSNSM - Orsay - 6 semaines

Stage de master 1

Université de Mc Master -Canada – 3 mois

Stage de master 2

LPS - Orsay - 3 mois

Thèse de physique

Etude par Résonance Magnétique Nucléaire du magnétisme quantique dans les composés kagomé barlowite et claringbullite substitués au zinc

dirigée par le Pr. F. Bert

soutenue le 2 Décembre 2021

Laboratoire de Physique des Solides

Objet de la thèse

« Etude par Résonance Magnétique Nucléaire du magnétisme quantique

Objet de la thèse

« Etude par Résonance Magnétique Nucléaire

du magnétisme quantique

dans les composés kagomé barlowite et claringbullite

substitués au zinc »

Credits: HDR Julien Bobroff

$$E_{mag} = -J \sum_{(i,j)} \overrightarrow{S_i} . \overrightarrow{S_j}$$

Etat paramagnétique à haute température

Spins orientés aléatoirement

$$E_{mag} = -J \sum_{(i,j)} \overrightarrow{S_i} . \overrightarrow{S_j}$$

Etat paramagnétique à haute température

J>0 : état fondamental ferromagnétique

Spins orientés aléatoirement

Spins alignés pour minimiser l'énergie

$$E_{mag} = -J \sum_{(i,j)} \overrightarrow{S_i} . \overrightarrow{S_j}$$

Etat paramagnétique à haute température

Spins orientés aléatoirement

J>0 : état fondamental ferromagnétique

Spins alignés pour minimiser l'énergie

J<0 : état fondamental antiferromagnétique

Spins anti-alignés pour minimiser l'énergie

Etat paramagnétique à haute température

Etat paramagnétique à haute température

Quel état fondamental?

12/06/2023 BLP - Concours de l'agrégation externe spéciale 2023

Etat paramagnétique à haute température

Quel état fondamental?

« Frustration » magnétique

Etat fondamental

Etat paramagnétique à haute température

12/06/2023

Quel état fondamental?

Etat fondamental

$$|LSQ\rangle = + \dots$$

$$|LSQ\rangle = + \dots$$

Etat fondamental = superposition quantique de tous les pavages de singulets possible sur le réseau kagomé

Supraconductivité = LSQ + dopage ?

Crédits : Wikipédia

Supraconductivité = LSQ + dopage ?

Crédits : Wikipédia

Supraconductivité = LSQ + dopage ?

Crédits : Wikipédia

Ingrédients LSQ:

- ✓ Spins S=½
- ✓ Interaction AFM
- ✓ Réseau kagomé

Candidats expérimentaux au LSQ

Crédits photos : mindat Herbertsmithite Volborthite ** Brochantite * Barlowite Claringbullite Haydeeite 🔭 Kapellasite 🔭 Vesignieite 🔭

Candidats expérimentaux au LSQ

Crédits photos : mindat Herbertsmithite Volborthite ** Brochantite * Barlowite Claringbullite Haydeeite 🔭 Kapellasite Vesignieite 🔭

Barlowite Cu₄(OH)₆FBr

Barlowite Cu₄(OH)₆FBr

Zn_x-Barlowite

Zn_x-Barlowite

Zn_x-Barlowite

Noyaux = sondes du champ magnétique local

Noyaux = sondes du champ magnétique local

$$\frac{v_{res}(T) - v_0}{v_0} \propto \chi_{loc}(T)$$

Spectre RMN = histogramme des noyaux résonants à la fréquence v

✓ La position de la raie RMN change en fonction de la température

✓ La position de la raie RMN change en fonction de la température

✓ La raie RMN s'élargit lorsque T diminue

Résonance Magnétique Nucléaire sur différentes Zn_x-barlowites

Résonance Magnétique Nucléaire sur différentes Zn_x-barlowites

Conclusion

✓ Compréhension du spectre RMN des Zn_x-barlowites

✓ Méthode de mesure par RMN fiable dans les Zn-barlowites

✓ Isolation de la contribution intrinsèque aux plans kagomé

<u>Cahier des charges :</u>

- ✓ Filtre passe-bande
- ✓ Fréquence propre : 10kHz
- ✓ Bande passante : 1kHz

Séquence pédagogique : illustration du filtrage en MPSI

Notions et contenus	Capacités exigibles
8. Filtrage linéaire	

Fonction de transfert harmonique. Diagramme de Bode.

Mettre en œuvre un dispositif expérimental illustrant l'utilité des fonctions de transfert pour un système linéaire à un ou plusieurs étages.

Crédits: BO MPSI, MESR

Séance de TP de 2h avec un compte rendu par binôme

Etape 1: construction du circuit RLC (~30min)

Progression de la séance

Difficultés envisagées :

- ✓ Mauvais choix de (L,C)
- ✓ Problème de masse

Difficultés envisagées :

- ✓ Mauvais choix de (L,C)
- ✓ Problème de masse

Difficultés envisagées :

- ✓ Définition du diagramme de Bode
- ✓ Représentation logarithmique

Difficultés envisagées :

- ✓ Mauvais choix de (L,C)
- ✓ Problème de masse

Difficultés envisagées :

- ✓ Définition du diagramme de Bode
- ✓ Représentation logarithmique

Difficultés envisagées :

- ✓ Identification du problème
- ✓ Relier bande passante et facteur de qualité

Parcours de formation à et par l'enseignement

Brevet d'Aptitude aux Fonctions d'Animateur (BAFA)

Depuis 2013

Représentant des personnels nonpermanents du LPS

2018-2021

Tutorat d'élèves de L1 en difficulté scolaire

2015-2016

Monitorat de physique à l'université Paris-Saclay

TD de mathématiques pour la physique en L3/magistère d'Orsay

TD et TP d'optique géométrique en L1 BCST

TD de mécanique du point en L1 BCST

2018-2021

Préparation à l'agrégation de physique au centre de Montrouge

2022-2023

Stage facultatif de 3 jours au lycée Condorcet à Montreuil

Vers un LSQ sur le réseau kagomé

Credits: wikipédia

Credits: wikipédia

1986 1987 1973 1997

Invention des liquides de spins quantiques (LSQ)

12/06/2023

Découverte des cuprates supraconducteurs SC = LSQ + dopage?

Etat LSQ sur le réseau kagome

Différents cas de l'antiferromagnétisme

Schéma synoptique de l'expérience

