Optimization Algorithm Notes

Depu Meng

April 21, 2019

Contents

1	Intr	oductio	on to Optimization Algorithms	1					
	1.1	Goal of the Course							
	1.2	2 Basic Concepts							
		1.2.1	Problem Definition	1					
	1.3	Optim	al Conditions	2					
		1.3.1	Unconstrained Optimization	2					
		1.3.2	Constrained Optimization	2					
	1.4	Descei	nt function	5					
	1.5		ergence of Algorithm	5					
		1.5.1	Search Methods	5					
2	Unc	onstrai	ned Optimization	7					
	2.1	Gradie	ent Based Methods	7					
		2.1.1	Determine Search Direction	7					
		2.1.2	Determine Step Factor – Line Search	8					
		2.1.3	Global Convergence	8					
		2.1.4	Steepest Descent Method	9					
		2.1.5	Newton Method	10					
		2.1.6	Quasi-Newton Method	11					
		2.1.7	Conjugate Gradient Method	13					
	2.2	Region Method	16						
		2.2.1	Trust Region Subproblem	16					
		2.2.2	How to select e_k	17					
3	Constrained Optimization								
	3.1	Quadr	atic Programming	19					
		3.1.1	Solution of Quadratic Programming	19					
		3.1.2	Equality Constrained Quadratic Programming	19					
		3.1.3	General Quadratic Programming	19					
	3.2	Equali	ity Constrained Problem	20					
		3.2.1	Lagrange-Newton method	20					
		3.2.2	Sequential Quadratic Programming method	21					
	3.3	Genera	al Nonlinear Constrained Problem	2.1					

iv CONTENTS

		3.3.1	Sequential Quadratic Programming method	21
		3.3.2	Penalty method	22
		3.3.3	Argumented Lagrange function method	24
		3.3.4	Barrier method	26
4	Con	vex Opt	timization	29
	4.1	Conve	x set	29
		4.1.1	Affine set	29
		4.1.2	Convex set	29
		4.1.3	Cone	29
		4.1.4	Proper cones and generalized inequalities	30
	4.2	Conve	x function	30
		4.2.1	First order condition	30
		4.2.2	Second order condition	30
		4.2.3	Properties of Convex functions	31
		4.2.4	Quasi-convex function	31
	4.3	Conve	x optimization	32
		4.3.1	Optimal condition	32
		4.3.2	Common convex optimizations	33
		4.3.3	The Lagrangian	35
5	Spai	rse Opti	imization	37
	5.1	Compi	ressed Sensing	37
		5.1.1	Problem formulation	37
		5.1.2	Pursuit Algorithms	37

1

Introduction to Optimization Algorithms

1.1 Goal of the Course

- Understand foundations of optimization
- Learn to analyze widely used optimization algorithms
- Be familiar with implementation of optimization algorithms

1.2 Basic Concepts

1.2.1 Problem Definition

Find the value of the decision variable s.t. objective function is maximized/minimized under certain conditions.

$$\min f(x)
s.t.x \in \mathcal{S} \subset \mathbb{R}^n$$
(1.1)

Here, we call S feasible region.

We often denote constrained optimization Problem as

Definition 1.2.1. Global Optimality. For global optimal value $x^* \in \mathcal{S}$,

$$f(x^*) < f(x), \forall x \in \mathcal{S} \tag{1.3}$$

Definition 1.2.2. Local Optimality. For local optimal value $x^* \in \mathcal{S}$, $\exists U(x^*)$, such that

$$f(x^*) \le f(x), \forall x \in \mathcal{S} \cap U(x^*) \tag{1.4}$$

Definition 1.2.3. Feasible direction. Let $x \in S$, $d \in \mathbb{R}^n$ is a non-zero vector. if $\exists \delta > 0$, such that

$$x + \lambda d \in \mathcal{S}, \forall \lambda \in (0, \delta)$$
(1.5)

Then d is a **feasible direction** at x. We denote F(x, S) as the set of feasible directions at x.

Definition 1.2.4. Descent direction. $f(x): \mathbb{R}^n \to \mathbb{R}$, $x \in \mathbb{R}^n$, d is a non-zero vector. If $\exists \delta > 0$, such that

$$f(x + \lambda d) < f(x), \forall \lambda \in (0, \delta)$$
(1.6)

Then d is a descent direction at x. We denote $D(x, f) = \{d | \nabla f(x)^T d < 0\}$ as the set of descent direction at x.

1.3 Optimal Conditions

1.3.1 Unconstrained Optimization

First-order necessary condition: f(x) is differentiable at x,

$$\nabla f(x) = 0 \tag{1.7}$$

Second-order necessary condition: f(x) is second-order differentiable at x,

$$\nabla f(x) = 0 \tag{1.8}$$

$$\nabla^2 f(x) \ge 0 \tag{1.9}$$

1.3.2 Constrained Optimization

Theorem 1.3.1. Fritz-John Condition

For constrained optimization problem

$$\min f(x)
s.t. g_i(x) \ge 0, i = 1, ..., n
h_i(x) = 0, i \in 1, ..., m$$
(1.10)

Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in S$, f and $g_i, i \in I(x)$ is differentiable at x, $h_j(x)$ is continuously differentiable at x. If x is local optimal, then there exists non-trivial $\lambda_0, \lambda_i \geq 0, i \in I(x)$ and μ_j , such that

$$\lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0$$
 (1.11)

Proof. (i) If $\{ \nabla h_j(x) \}$ is linearly dependent, then there exists non-trivial μ_j , such that

$$\sum_{j=1}^{m} \nabla \mu_j h_j(x) = 0 \tag{1.12}$$

Let $\lambda_0, \lambda_i, i \in I(x) = 0$, then (1.10) holds.

(ii) If $\{ \nabla h_i(x) \}$ is linearly independent, Denote

$$F_q = F(x, g) = \{d \mid \nabla g_i(x)^T d > 0, i \in I(x)\}$$
(1.13)

$$F_h = F(x, h) = \{d \mid \nabla h_j(x)^T d = 0, j = 1, ..., m\}$$
 (1.14)

If x is a optimal value, then appearently $F(x, \mathcal{S}) \cap D(x, f) = \emptyset$. Due to the independence of $\{ \nabla h_j(x) \}$, we have $F_g \cap F_h \subset F(x, \mathcal{S})$, then

$$F_q \cap F_h \cap D(x, f) = \emptyset \tag{1.15}$$

that is

$$\begin{cases}
\nabla f(x)^T d < 0 \\
\nabla g_i(x)^T d > 0, i \in I(x) \\
\nabla h_j(x)^T d = 0, j = 1, ..., m
\end{cases}$$
(1.16)

has no solution. Let

$$A = \{ \nabla f(x)^T, -\nabla g_i(x) \}^T, i \in I(x)$$

$$\tag{1.17}$$

$$B = \{-\nabla h_j(x)\}, j = 1, ..., m$$
(1.18)

Then (21) is equivalent to

$$\begin{cases} A^T d < 0 \\ B^T d = 0 \end{cases} \tag{1.19}$$

has no solution.

Denote

$$S_1 = \left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} | y_1 = A^T d, y_2 = B^T d, d \in \mathbb{R}^n \right\}$$
 (1.20)

$$S_2 = \left\{ \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} | y_1 < 0, y_2 = 0 \right\}$$
 (1.21)

 S_1, S_2 are non-trivial convex sets, and $S_1 \cap S_2 = \emptyset$. From Hyperplane Separation Theorem:

$$p_1^T A^T d + p_2^T B^T d \ge p_1^T y_1 + p_2^T y_2, \forall d \in \mathbb{R}^n, \forall \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in CL(S_2)$$
 (1.22)

Let $y_2 = 0, d = 0, y_1 < 0$, we have

$$p_1 \ge 0 \tag{1.23}$$

Let
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in CL(S_2)$$
 So that

$$(p_1^T A^T + p_2^T B^T)d \ge 0 (1.24)$$

$$(Ap_1 + Bp_2)^T d \ge 0 (1.25)$$

4 Chapter 1 Introduction to Optimization Algorithms

Let $d = -(Ap_1 + Bp_2)$, we have

$$Ap_1 + Bp_2 = 0 (1.26)$$

From above, we have

$$\begin{cases} Ap_1 + Bp_2 = 0 \\ p_1 \ge 0 \end{cases}$$
 (1.27)

Let $p_1 = {\lambda_0, ..., \lambda_{I(x)}}, p_2 = {\mu_1, ..., \mu_m}, i.e.,$

$$\begin{cases} \lambda_0 \bigtriangledown f(x) - \sum_{i \in I(x)} \lambda_i \bigtriangledown g_i(x) - \sum_{j=1}^m \mu_j \bigtriangledown h_j(x) = 0\\ \lambda_i \ge 0 \end{cases}$$
 (1.28)

Theorem 1.3.2. Kuhn-Tucker Condition

For constrained optimization problem

Denote $I(x) = \{i \in \{1,...,n\} | g_i(x) = 0\}$. For $x \in S$, f and $g_i, i \in I(x)$ is differentiable at x, $h_j(x)$ is continuously differentiable at x. $\{\nabla g_i(x), i \in I(x); \nabla h_j(x), j = 1,...,m\}$ is linearly independent. If x is local optimal, then $\exists \lambda_i \geq 0$ and μ_j , such that

$$\nabla f(x) - \sum_{i \in I(x)} \lambda_i \nabla g_i(x) - \sum_{j=1}^m \mu_j \nabla h_j(x) = 0$$
 (1.30)

Remark 1 (K-T condition). *The equation (1.3.2) can be rewritten as*

$$\nabla f(x) - \sum_{i=1}^{m} \lambda_i \nabla g_i(x) - \sum_{j=1}^{m} \mu_j \nabla h_j(x) = 0$$
 (1.31)

where $\lambda_i = 0, i \notin I(x)$. i.e.,

$$\lambda_i g_i(x) = 0, i = 1, ..., m$$
 (1.32)

Denote

$$\mathcal{L}(\mathbf{x}, \lambda, \mu) = f(x) - \sum_{i=1}^{m} \lambda_i g_i(x) - \sum_{i=1}^{m} \mu_j h_j(x)$$
(1.33)

as the Lagrange function, then the K-T condition can be formulated as

$$(K-T) \begin{cases} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda, \mu) = 0 \\ \nabla_{\lambda} \mathcal{L}(\mathbf{x}, \lambda, \mu) = 0 \\ \nabla_{\mu} \mathcal{L}(\mathbf{x}, \lambda, \mu) = 0 \\ \lambda_{i} \geq 0, i = 1, ..., m \\ \lambda_{i} g_{i}(\mathbf{x}) = 0, i = 1, ..., m \end{cases}$$

$$(1.34)$$

1.4 **Descent function**

Definition 1.4.1. Descent function. Denote solution set $\Omega \in X$, A is an algorithm on X, $\psi: X \to \mathbb{R}$. If

$$\psi(y) < \psi(x), \quad \forall x \notin \Omega, y \in \mathcal{A}(x)$$
 (1.35)

$$\psi(y) \le \psi(x), \quad \forall x \in \Omega, y \in \mathcal{A}(x)$$
 (1.36)

Then ψ is a **descent function** of (Ω, A) .

1.5 Convergence of Algorithm

Theorem 1.5.1. A is an algorithm on X, Ω is the solution set, $x^{(0)} \in X$. If $x^{(k)} \in \Omega$, then the iteration stops. Otherwise set $x^{(k+1)} = A(x^{(k)}), k := k+1$. If

- $\{x^{(k)}\}$ in a compact subset of X
- There exists a continuous function ψ , ψ is a descent function of (Ω, \mathcal{A})
- A is closed on Ω^C

Then, any convergent subsequence of $\{x^{(k)}\}\$ converges to $x, x \in \Omega$.

1.5.1 Search Methods

1.5.1.1 Line Search

Generate $d^{(k)}$ from $x^{(k)}$,

$$x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)} \tag{1.37}$$

. search α_k in 1-D space.

1.5.1.2 Trust Region

Generate local model $Q_k(s)$ of $x^{(k)}$,

$$s^{(k)} = \arg\min Q_k(s) \tag{1.38}$$

$$x^{(k+1)} = x^{(k)} + s^{(k)} (1.39)$$

2.1

Unconstrained Optimization

.1 Gradient Based Methods

$$\min_{x \in \mathbb{R}^n} f(x) \tag{2.1}$$

Algorithm 1: Example of gradient based algorithm

```
Data: Solution set \Omega, cost function f x^{(0)} \in \mathbb{R}^n, k := 0; while x^{(k)} \notin \Omega do  \begin{vmatrix} d^{(k)} = -H_k \bigtriangledown f(x^{(k)}), (H_k \text{ is a positive definite symmetrical matrix}); \\ \text{solve } \min_{\alpha_k \geq 0} f(x^{(k)} + \alpha_k d^{(k)}); \\ x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k := k+1 \\ \text{end} \end{vmatrix}
```

2.1.1 Determine Search Direction

2.1.1.1 First-order gradient method

For unconstrained optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \tag{2.2}$$

We have

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)}) + O(||x - x^{(k)}||^2)$$
 (2.3)

Set $d^{(k)} = - \nabla f(x^{(k)})$, when α_k is sufficiently small,

$$f(x^{(k)} + \alpha_k d^{(k)}) < f(x^{(k)})$$
(2.4)

2.1.1.2 Second-order gradient method - Newton Direction

$$f(x) = f(x^{(k)}) + \nabla f(x^{(k)})^T (x - x^{(k)})$$
(2.5)

$$+ \frac{1}{2}(x - x^{(k)})^T \nabla^2 f(x^{(k)})(x - x^{(k)}) + O(\|x - x^{(k)}\|^3)$$
 (2.6)

Set $d^{(k)} = -G_k^{-1} \nabla f(x^{(k)})$, where $G_k = \nabla^2 f(x^{(k)})$, i.e., Hesse matrix of f at $x^{(k)}$.

2.1.2 Determine Step Factor – Line Search

$$\min_{\alpha>0} \varphi(\alpha) = f(x^{(k)} + \alpha d^{(k)}) \tag{2.7}$$

2.1.2.1 Exact Line Search

Solve Line Search problem in finite iterations.

2.1.2.2 Inexact Line Search

In some cases, the exact solution of Line Search is not necessary, so we can use inexace line search to improve algorithm efficiency.

Goldstein Conditions

$$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0) \tag{2.8}$$

$$\varphi(\alpha) \ge \varphi(0) + (1 - \rho)\alpha\varphi'(0) \tag{2.9}$$

where $\rho \in (\frac{1}{2}, 1)$ is a fixed parameter.

However, the downside of Goldstein Conditions is that the optimal value might not lie in the valid area.

Wolfe-Powell Conditions

$$\varphi(\alpha) \le \varphi(0) + \rho \alpha \varphi'(0) \tag{2.10}$$

$$\varphi'(\alpha) \ge \sigma \varphi'(0) \tag{2.11}$$

where $\sigma \in (\rho, 1)$.

2.1.3 Global Convergence

Theorem 2.1.1. Assume f continuously differentiable on level set $L(x^{(0)}) = \{x | f(x) \le f(x^{(0)})\}$. Denote $\theta^{(k)}$ as the angle between $d^{(k)}$ and $-\nabla f(x^{(k)})$.

$$\theta^{(k)} \le \frac{\pi}{2} - \mu \tag{2.12}$$

If step factor is determined by following methods

- Exace Line Search
- Goldstein Conditions
- Wolfe-Powell Conditions

Then, there exists k, such that $\nabla f(x^{(k)}) = 0$, or $f(x^{(k)}) \to 0$ or $f(x^{(k)}) \to -\infty$.

Proof. (In the Wolfe-Powell Conditions case)

Suppose for all $k, \mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)}) \neq 0$ and $f(\mathbf{x}^{(k)})$ has finite lower bound. From (2.12), we have $\mathbf{d}^{(k)}$ is descent direction at point $\mathbf{x}^{(k)}$. So from Wolfe-Powell conditions, $f(\mathbf{x}^{(k)})$

decrease monotonically, so $f(\mathbf{x}^{(k)})$ is convergent sequence, then

$$f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)}) \to 0$$
 (2.13)

From (2.10), we have

$$-\rho\alpha\varphi'(0) \le \varphi(0) - \varphi(\alpha) \tag{2.14}$$

$$-\rho \alpha \mathbf{g}^{(k)T} \mathbf{d}^{(k)} \le f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)})$$
(2.15)

$$-\mathbf{g}^{(k)T}\mathbf{s}^{(k)} \le \frac{f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k+1)})}{\rho}$$
(2.16)

i.e.,

$$-\mathbf{g}^{(k)T}\mathbf{s}^{(k)} \to 0 \tag{2.17}$$

If $\mathbf{g}^{(k)} \to 0$ do not hold, i.e., $\exists \varepsilon > 0$ and subsequence $\{\mathbf{x}^{(k)}\}$ such that $\parallel \mathbf{g}^{(k)} \parallel \geq \varepsilon$, so

$$-\mathbf{g}^{(k)T}\mathbf{s}^{(k)} = \parallel \mathbf{g}^{(k)} \parallel \parallel \mathbf{s}^{(k)} \parallel \cos \theta_k \ge \varepsilon \parallel \mathbf{s}^{(k)} \parallel \sin \mu \tag{2.18}$$

then

$$\parallel \mathbf{s}^{(k)} \parallel \to 0 \tag{2.19}$$

Due to the continuously differentiability of f,

$$\mathbf{g}^{(k+1)T}\mathbf{s}^{(k)} - \mathbf{g}^{(k)T}\mathbf{s}^{(k)} = (\nabla f(\mathbf{x}^{(k+1)}) - \nabla f(\mathbf{x}^{(k)}))^T\mathbf{s}^{(k)}$$
(2.20)

$$= (\nabla^2 f(\mathbf{x}^{(k)})\mathbf{s}^{(k)} + o(\mathbf{s}^{(k)}))^T \mathbf{s}^{(k)}$$
(2.21)

$$= \mathbf{s}^{(k)T} \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{s}^{(k)} + o(\mathbf{s}^{(k)})^T \mathbf{s}^{(k)}$$
(2.22)

$$= o(\parallel \mathbf{s}^{(k)} \parallel) \tag{2.23}$$

then

$$\frac{\mathbf{g}^{(k+1)T}\mathbf{s}^{(k)}}{\mathbf{g}^{(k)T}\mathbf{s}^{(k)}} \to 1 \tag{2.24}$$

is conflict with (2.11), so

$$\mathbf{g}^{(k)} \to 0 \tag{2.25}$$

2.1.4 Steepest Descent Method

Steepest Descent Method is a Line Search Method.

$$x^{(k+1)} = x^{(k)} - \alpha_k \nabla f(x^{(k)})$$
 (2.26)

Algorithm 2: Steepest Descent Algorithm

 $\begin{aligned} \textbf{Data:} & \text{ Termination error } \epsilon, \text{ cost function } f \\ x^{(0)} \in \mathbb{R}^n, k &:= 0; \\ & \textbf{while} \parallel g^{(k)} \parallel \geq \epsilon \textbf{ do} \\ & \quad \mid d^{(k)} = -g^{(k)}; \\ & \text{ solve } \min_{\alpha_k \geq 0} f(x^{(k)} + \alpha_k d^{(k)}); \\ & \quad x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}, k &:= k+1; \\ & \text{ Compute } g^{(k)} = \nabla f(x^{(k)}) \\ & \textbf{end} \end{aligned}$

Steepest Descent Method has linear convergence rate generally.

2.1.5 Newton Method

Newton Method is also a Line Search Method.

$$f(x^{(k)} + s) \approx q^{(k)}(s)f(x^{(k)}) + g^{(k)^T}s + \frac{1}{2}s^TG_ks$$
 (2.27)

where $g^{(k)} = \nabla f(x^{(k)}),$ $G_k = \nabla^2 f(x^{(k)}).$ To minimize $q^{(k)}(s)$, we have

$$s = G_k^{-1} g^{(k)} (2.28)$$

Notice that $G_k^{-1}g^{(k)}$ is the Newton Direction.

Analysis on quadratic function

For positive definite quadratic function

$$f(x) = \frac{1}{2}x^{T}Gx - c^{T}x \tag{2.29}$$

In this case, $\nabla^2 f(x) = G$. Let $H_0 = G^{-1}$, then we have

$$d^{(0)} = H_0 \nabla f(x^{(0)}) \tag{2.30}$$

$$= G^{-1}(Gx^{(0)} - c) (2.31)$$

$$=x^{(0)} - G^{-1}c (2.32)$$

$$=x^{(0)} - x^* (2.33)$$

So that Newton Method can reach global optimal in 1 iteration for quadratic functions.

For general non-linear functions, if we follow

$$x^{(k+1)} = x^{(k)} - G_k^{-1} g^{(k)} (2.34)$$

we called it Newton Method.

Convergence Rate of Newton Method

Theorem 2.1.2. $f \in \mathcal{C}^2$, $x^{(k)}$ is sufficiently closed to optimal point x^* , where $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*)$ is positive definite, Hesse matrix of f satisfies Lipschitz Condition, i.e., $\exists \beta > 0$, such that for all (i, j),

$$|G_{ij}(x) - G_{ij}(y)| \le \beta \| x - y \|$$
 (2.35)

Then $\{x^{(k)}\} \to x^*$, and have quadratic convergence rate.

Proof. Denote $g(x) = \nabla f(x)$, then we have

$$g(x - h) = g(x) - G(x)h + O(\|h\|^2)$$
(2.36)

Let $x = x^{(k)}$, $h = h^{(k)} = x^{(k)} - x^*$, then

$$g(x^*) = g(x^{(k)}) - G(x^{(k)})(h^{(k)}) + O(\|h^{(k)}\|^2) = 0$$
(2.37)

From Lipschitz Condition, we can easily get $G(x^{(k)})^{-1}$ is finite. Then we left multiply $G(x^{(k)})^{-1}$ to Equation (2.37)

$$0 = G(x^{(k)})^{-1}g(x^{(k)}) - h^{(k)} + O(\|h^{(k)}\|^2)$$
(2.38)

$$= x^* - x^{(k)} + G(x^{(k)})^{-1}g(x^{(k)}) + O(\|h^{(k)}\|^2)$$
(2.39)

$$= x^* - x^{(k+1)} + O(\|h^{(k)}\|^2)$$
(2.40)

$$= -h^{(k+1)} + O(\|h^{(k)}\|^2)$$
 (2.41)

i.e.,

$$||h^{(k+1)}|| = O(||h^{(k)}||^2)$$
 (2.42)

Quasi-Newton Method

Newton Method has a fast convergence rate. However, Newton Method requires second-order derivative, if Hesse matrix is not positive definite, Newton Method might not work well.

In order to overcome the above difficulties, Quasi-Newton Method is introduced. Its basic idea is that: Using second-order derivative free matrix H_k to approximate $G(x^{(k)})^{-1}$. Denote $s^{(k)} = x^{(k+1)} - x^{(k)}, \, y^{(k)} = \bigtriangledown f(x^{(k+1)}) - \bigtriangledown f(x^{(k)}),$ then we have

$$\nabla^2 f(x^{(k)}) s^{(k)} \approx y^{(k)} \tag{2.43}$$

or

$$\nabla^2 f(x^{(k)})^{-1} y^{(k)} \approx s^{(k)}$$
 (2.44)

So we need to construct H_{k+1} such that

$$H_{k+1}y^{(k)} \approx s^{(k)}$$
 (2.45)

or

$$y^{(k)} \approx B_{k+1} s^{(k)} \tag{2.46}$$

we called (2.45), (2.46) Quasi-Newton Conditions or Secant Conditions.

Algorithm 3: Quasi-Newton Algorithm

```
\begin{aligned} \textbf{Data:} & \text{Cost function } f \\ x^{(0)} \in \mathbb{R}^n, H_0 = I, k := 0; \\ \textbf{while } & \text{some conditions } \textbf{do} \\ & d^{(k)} = -H_k g^{(k)}; \\ & \text{solve } & \min_{\alpha_k \geq 0} f(x^{(k)} + \alpha_k d^{(k)}); \\ & x^{(k+1)} = x^{(k)} + \alpha_k d^{(k)}; \\ & \text{generate } H_{k+1}, k := k+1 \\ \textbf{end} \end{aligned}
```

2.1.6.1 How to generate H_k

 H_k is the approximation matrix in kth iteration, we want to generate H_{k+1} from H_k

Symmetric Rank 1 Update Assume

$$H_{k+1} = H_k + a\mathbf{u}\mathbf{u}^T, \quad a \in \mathbb{R}, \mathbf{u} \in \mathbb{R}^n$$
 (2.47)

From the Quasi-Newton Conditions, we have

$$H_{k+1}\mathbf{y}^{(k)} = \mathbf{s}^{(k)} \tag{2.48}$$

$$H_k \mathbf{y}^{(k)} + a \mathbf{u} \mathbf{u}^T \mathbf{y}^{(k)} = \mathbf{s}^{(k)}$$
(2.49)

$$H_k \mathbf{y}^{(k)} + a \mathbf{u}^T \mathbf{y}^{(k)} \mathbf{u} = \mathbf{s}^{(k)}$$
 (2.50)

Let $\mathbf{u}=\mathbf{s}^{(k)}-H_k\mathbf{y}^{(k)}$, $a=\frac{1}{\mathbf{u}^T\mathbf{y}}$, clearly this is a solution of the equation. Here we have

$$H_{k+1} = \frac{(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})^T}{(\mathbf{s}^{(k)} - H_k \mathbf{y}^{(k)})^T \mathbf{y}^{(k)}}$$
(2.51)

(2.51) is *Symmetric Rank 1 Update*. The problem of Symmetric Rank 1 Update is that the positive-definite property of H_k can not be preserved.

Symmetric Rank 2 Update Assume

$$H_{k+1} = H_k + a\mathbf{u}\mathbf{u}^T + b\mathbf{v}\mathbf{v}^T, \quad a, b \in \mathbb{R}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$$
 (2.52)

such that Quasi-Newton Conditions stand. We can find a solution of $a, b, \mathbf{u}, \mathbf{v}$ that is

$$\begin{cases} \mathbf{u} = \mathbf{s}^{(k)}, & a\mathbf{u}^T\mathbf{y} = 1\\ \mathbf{v} = H_k\mathbf{y}^{(k)}, & b\mathbf{v}^T\mathbf{y} = -1 \end{cases}$$
(2.53)

So that we have

$$H_{k+1} = H_k + \frac{\mathbf{s}^{(k)}\mathbf{s}^{(k)T}}{\mathbf{s}^{(k)T}\mathbf{y}^{(k)}} - \frac{H_k\mathbf{y}^{(k)}\mathbf{y}^{(k)T}H_k}{\mathbf{y}^{(k)T}H_k\mathbf{y}^{(k)}}$$
(2.54)

We called (2.54) the DFP (Davidon-Fletcher-Powell) update.

From Quasi-Newton Condition (2.46), we can get the BFGS (Broyden-Fletcher-Goldfarb-Shanno) update

$$B_{k+1}^{(BFGS)} = B_k + \frac{\mathbf{y}^{(k)}\mathbf{y}^{(k)T}}{\mathbf{y}^{(k)T}\mathbf{s}^{(k)}} - \frac{B_k\mathbf{s}^{(k)}\mathbf{s}^{(k)T}B_k}{\mathbf{s}^{(k)T}B_k\mathbf{s}^{(k)}}$$
(2.55)

Inverse of SR1 update

Theorem 2.1.3 (Sherman-Morrison). $A \in \mathbb{R}^n \times \mathbb{R}^n$ is a non-singular matrix, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. If $1 + \mathbf{v}^T A^{-1} \mathbf{u} \neq 0$, then SR1 update of A is non-singular, and its inverse can be represented

$$(A + a\mathbf{u}\mathbf{v}^{T})^{-1} = A^{-1} - \frac{A^{-1}\mathbf{u}\mathbf{v}^{T}A^{-1}}{1 + \mathbf{v}^{T}A^{-1}\mathbf{u}}$$
(2.56)

Conjugate Gradient Method 2.1.7

Definition 2.1.1. Conjugate Direction. G is a $n \times n$ positive definite matrix, for non-zero vector set $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}\in\mathbb{R}^n$, if $\mathbf{d}^{(i)T}G\mathbf{d}^{(j)}=0, (i\neq j)$, then we called $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ is G-Conjugate.

Lemma 2.1.4. For non-zero conjugate vector set $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}\in\mathbb{R}^n$, $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ are linearly independent.

Proof. From Definition 2.1.1, we have

$$\mathbf{d}^{(i)T}G\mathbf{d}^{(j)} = 0, \forall i, j, i \neq j \tag{2.57}$$

if $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ is linearly dependent, there exists

$$\mathbf{d}^{(t)} = \sum_{j=0}^{k} c_j \mathbf{d}^{(j)} \tag{2.58}$$

then

$$\mathbf{d}^{(t)T}G\mathbf{d}^{(i)} = \sum_{j=0}^{k} c_j \mathbf{d}^{(j)}G\mathbf{d}^{(i)} = c_i \mathbf{d}^{(i)}G\mathbf{d}^{(i)} \neq 0$$
(2.59)

so that $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ are linearly independent.

Algorithm 4: Conjuagte Gradient Algorithm

```
\begin{aligned} &\textbf{Data:} \text{ Cost function } f \\ &x^{(0)} \in \mathbb{R}^n, \text{ positive definite matrix } G, \, k := 0; \\ &\text{Construct } \mathbf{d}^{(0)} \text{ such that } \mathbf{g}^{(0)T}\mathbf{d}^{(0)} < 0; \\ &\textbf{while } some \ conditions \ \mathbf{do} \\ & & \text{solve } \min_{\alpha_k \geq 0} f(\mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}); \\ & & \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{d}^{(k)}; \\ & & \text{Construct } \mathbf{d}^{(k+1)} \text{ such that } \mathbf{d}^{(k+1)}G\mathbf{d}^{(j)} = 0, j = 0, ..., k.; \\ & & k := k+1 \end{aligned}
```

Theorem 2.1.5 (Conjugate Gradient). For strictly convex quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$, apply conjugate gradient method combined with exact line search, then $\mathbf{x}^{(k+1)}$ is the global minima in manifold

$$\mathcal{V} = \{ \mathbf{x} | \mathbf{x} = \mathbf{x}^{(0)} + \sum_{j=0}^{k} \beta_j \mathbf{d}^{(j)}, \forall \beta_j \in \mathbb{R} \}$$
 (2.60)

Proof. Firstly, from Lemma 2.1.6, we have $\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}$ are linearly independent. So we only need to prove that for all k < n

$$\mathbf{g}^{(k+1)T}\mathbf{d}^{(j)} = 0, j = 0, ..., k \tag{2.61}$$

i.e., $\mathbf{g}^{(k+1)}$ is orthogonal with subspace $span\{\mathbf{d}^{(0)},...,\mathbf{d}^{(k)}\}.$

Due to the exact line search, $\forall j$

$$\mathbf{g}^{(j+1)T}\mathbf{d}^{(j)} = 0 \tag{2.62}$$

especially $\mathbf{g}^{(k+1)T}\mathbf{d}^{(k)} = 0$.

Notice that

$$\mathbf{g}^{(k+1)} - \mathbf{g}^{(k)} = G(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) = \alpha_k G \mathbf{d}^{(k)}$$
 (2.63)

so that we have $\forall j \leq k$

$$\mathbf{g}^{(k+1)T}\mathbf{d}^{(j)} = \left(\sum_{m=j+1}^{k} (\mathbf{g}^{(m+1)T} - \mathbf{g}^{(m)T}) + \mathbf{g}^{(j+1)T}\right)\mathbf{d}^{(j)}$$
(2.64)

$$= \sum_{m=j+1} \alpha_m \mathbf{d}^{(m)T} G \mathbf{d}^{(j)} + \mathbf{g}^{(j+1)T} \mathbf{d}^{(j)}$$
 (2.65)

$$=0 (2.66)$$

Lemma 2.1.6. For strictly convex quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$, apply conjugate gradient method combined with exact line search, $\mathbf{g}(\mathbf{x}) = \nabla f(\mathbf{x}) = G\mathbf{x} + \mathbf{c}$, we have

$$\mathbf{g}^{(k)T}\mathbf{g}^{(j)} = 0, \forall j = 0, ..., k - 1$$
(2.67)

Proof. From Theorem 2.1.5, we have

$$\mathbf{g}^{(k)T}\mathbf{g}^{(j)} = \mathbf{g}^{(k)T}(-\mathbf{d}^{(j)} + \sum_{i=0}^{j-1} \beta_i^{(j)} \mathbf{d}^{(i)}) = 0$$
 (2.68)

2.1.7.1 Quadratic function case

For $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T x$, G is a $n \times n$ positive definite matrix.

$$\mathbf{g}(\mathbf{x}) = G\mathbf{x} + \mathbf{c} \tag{2.69}$$

Set $\mathbf{d}^{(0)} = -\mathbf{g}^{(0)}$, exact line search for α_0 such that $\mathbf{g}^{(1)T}\mathbf{d}^{(0)} = 0$. Assume $\mathbf{d}^{(1)} =$ $-\mathbf{g}^{(1)} + \beta_0^{(1)} \mathbf{d}^{(0)}$, select $\beta_0^{(1)}$ such that $\mathbf{d}^{(1)} G \mathbf{d}^{(0)} = 0$

$$\beta_0^{(1)} = \frac{\mathbf{g}^{(1)T}\mathbf{g}^{(1)}}{\mathbf{g}^{(0)T}\mathbf{g}^{(0)}}$$
 (2.70)

Proof. From (92), we have

$$\mathbf{d}^{(1)T}G\mathbf{d}^{(0)} = 0 \tag{2.71}$$

$$\Leftrightarrow \mathbf{d}^{(1)T}(\mathbf{g}^{(1)} - \mathbf{g}^{(0)}) = 0 \tag{2.72}$$

$$\Leftrightarrow (\mathbf{g}^{(1)} + \beta_0^{(1)} \mathbf{g}^{(0)})^T (\mathbf{g}^{(1)} - \mathbf{g}^{(0)}) = 0$$
 (2.73)

$$\Leftrightarrow \mathbf{g}^{(1)T}\mathbf{g}^{(1)} - \beta_0^{(1)}\mathbf{g}^{(0)T}\mathbf{g}^{(0)} = 0$$
 (2.74)

$$\Leftrightarrow \ \beta_0^{(1)} = \frac{\mathbf{g}^{(1)T}\mathbf{g}^{(1)}}{\mathbf{g}^{(0)T}\mathbf{g}^{(0)}}$$
 (2.75)

Generally, we can select $\beta_j^{(k)}$ such that $\mathbf{d}^{(k)T}G\mathbf{d}^{(j)}=0, j=0,1,...,k-1$ that is

$$\mathbf{d}^{(k)T}G\mathbf{d}^{(j)} = 0 \tag{2.76}$$

$$(-\mathbf{g}^{(k)T} + \sum_{i=0}^{k-1} \beta_i^{(k)} \mathbf{d}^{(i)T}) G \mathbf{d}^{(j)} = 0$$
(2.77)

$$-\mathbf{g}^{(k)T}G\mathbf{d}^{(j)} + \beta_j^{(k)}\mathbf{d}^{(j)T}G\mathbf{d}^{(j)} = 0$$
 (2.78)

so we have

$$\beta_j^{(k)} = \frac{\mathbf{g}^{(k)T} G \mathbf{d}^{(j)}}{\mathbf{d}^{(j)T} G \mathbf{d}^{(j)}} = \frac{\mathbf{g}^{(k)T} (\mathbf{g}^{(j+1)} - \mathbf{g}^{(j)})}{\mathbf{d}^{(j)T} (\mathbf{g}^{(j+1)} - \mathbf{g}^{(j)})}$$
(2.79)

From Lemma 2.1.6, we have

$$\mathbf{g}^{(k)T}\mathbf{g}^{(j)} = 0, \forall j = 0, ..., k - 1$$
(2.80)

So

$$\beta_j^{(k)} = 0, j = 0, ..., k - 2 \tag{2.81}$$

$$\beta_j^{(k)} = 0, j = 0, ..., k - 2$$

$$\beta_{k-1}^{(k)} = \frac{\mathbf{g}^{(k)T}(\mathbf{g}^{(k)})}{\mathbf{g}^{(k-1)T}(\mathbf{g}^{(k-1)})}$$
(2.81)

2.2 **Trust Region Method**

Previously, we use a direction search strategy to determine a search direction, then use line search method to determine step length.

Now we discuss a new global convergence strategy – Trust-Region Method.

Definition 2.2.1 (Trust Region).

$$\Omega_k = \{ \mathbf{x} \in \mathbb{R}^n \mid \| \mathbf{x} - \mathbf{x}^{(k)} \| \le e_k \}$$
 (2.83)

We called Ω_k Trust Region, e_k is the Trust radius.

Suppose in this neighborhood, quadratic model $q^{(k)}(\mathbf{s})$ is a proper approximation of $f(\mathbf{x})$. We minimize the quadratic model in trust region, derive approximate minima $s^{(k)}$, and set $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)}.$

2.2.1 **Trust Region Subproblem**

$$\min_{\|\mathbf{s}\| \le e_k} q^{(k)}(\mathbf{s}) = f(\mathbf{x}^{(k)}) + \mathbf{g}^{(k)T}\mathbf{s} + \frac{1}{2}\mathbf{s}^T B_k \mathbf{s}$$
(2.84)

Where $\mathbf{s} = \mathbf{x} - \mathbf{x}^{(k)}$, $\mathbf{g}^{(k)} = \nabla f(\mathbf{x}^{(k)})$, $B_k = \nabla^2 f(\mathbf{x}^{(k)})$. e_k is the trust region radius.

2.2.2 How to select e_k

Denote the solution of the subproblem as $s^{(k)}$, then let

$$Act_k = f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)})$$
 (2.85)

$$Pre_k = q^{(k)}(\mathbf{0}) - q^{(k)}(\mathbf{s}^{(k)})$$
(2.86)

Define

$$r_k = \frac{\text{Act}_k}{\text{Pre}_k} = \frac{f(\mathbf{x}^{(k)}) - f(\mathbf{x}^{(k)} + \mathbf{s}^{(k)})}{q^{(k)}(\mathbf{0}) - q^{(k)}(\mathbf{s}^{(k)})}$$
(2.87)

to measure the difference between objective function and the quadratic approximate model.

We can update e_k according to r_k . If r_k is too small, that means our model can not fit the objective function well, so we need to decrease e_k . If r_k is close to 1, that means out model is good and we can increase r_k . Set the parameters $0 < \gamma_1 < \gamma_2 < 1$ and $0 < \eta_1 < 1 < \eta_2$, we can have the following update rule

$$e_{k+1} = \begin{cases} \eta_1 e_k & \text{if } r_k < \gamma_1 \\ e_k & \text{if } \gamma_1 < r_k < \gamma_2 \\ \min(\eta_2 e_k, \bar{e}) & \text{if } r_k \ge \gamma_2 \end{cases}$$
 (2.88)

Algorithm 5: Trust Region Algorithm

```
Data: Cost function f
x^{(0)} \in \mathbb{R}^n, e_0 \in (0, \bar{e}), \epsilon > 0, 0 < \gamma_1 < \gamma_2 < 1, 0 < \eta_1 < 1 < \eta_2, k := 0;
while \parallel \mathbf{g}^{(k)} \parallel \geq \epsilon \, \mathbf{do}
       solve the subproblem to derive s^{(k)};
       calculate r_k, update \mathbf{x};
      \begin{array}{l} \text{if } r_k > 0 \text{ then} \\ \mid \ \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{s}^{(k)} \end{array}
        \mathbf{x}^{(k+1)} = \mathbf{x}^{(k)}
       update e_k following (117);
      k := k + 1;
end
```

3

Constrained Optimization

3.1 Quadratic Programming

min
$$Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} = b_i, i \in \mathcal{E} = \{1, ..., m_e\}$
 $\mathbf{a}_i^T \mathbf{x} \geq b_i, i \in \mathcal{I} = \{m_e + 1, ..., m\}$ (3.1)

We assume that G is a symmetric matrix and $\mathbf{a}_i, i \in \mathcal{E}$ be linearly independent.

3.1.1 Solution of Quadratic Programming

If G be positive semi-definite matrix, the Quadratic Programming problem is a convex optimization problem, so any of its local minima is a global minima.

If G be positive definite matrix, the solution to the Quadratic Programming problem is unique, if exists.

If G be indefinite, there is no guarantee to the solution.

3.1.2 Equality Constrained Quadratic Programming

$$\min Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$$
s.t. $A\mathbf{x} = \mathbf{b}$ (3.2)

3.1.3 General Quadratic Programming

min
$$Q(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} = b_i, i \in \mathcal{E} = \{1, ..., m_e\}$
 $\mathbf{a}_i^T \mathbf{x} \ge b_i, i \in \mathcal{I} = \{m_e + 1, ..., m\}$ (3.3)

The idea is to remove or transform the inequality constraints. If the inequality constraint is not active near the solution, we can ignore the constraint; For the active inequality constraints, we can use equality constraints to replace them.

Theorem 3.1.1 (Active Set). Denote \mathbf{x}^* as a local minima of general quadratic problem (3.3), then \mathbf{x}^* must be a local minima of the equality constrained problem

(EQ)
$$\begin{cases} \min Q(\mathbf{x}) &= \frac{1}{2}\mathbf{x}^T G \mathbf{x} + \mathbf{c}^T \mathbf{x} \\ s.t. \ \mathbf{a}_i^T \mathbf{x} &= b_i, i \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*) \end{cases}$$
(3.4)

Meanwhile, if \mathbf{x}^* is a feasible point of (3.3), and the K-T point of (EQ), $\lambda^* \geq 0, i \in \mathcal{I}(\mathbf{x}^*)$, then \mathbf{x}^* must be the K-T point of (3.3).

Proof. Recall the K-T condition, we can get that there exists $\lambda_i \geq 0, i \in I(\mathbf{x}^*)$ and μ_i s.t.

$$\nabla Q(\mathbf{x}^*) - \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i - \sum_{j \in \mathcal{E}} \mu_j \mathbf{a}_j = 0$$
(3.5)

the K-T condition of (EQ) is there exists $\lambda_i, i \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*)$, s.t.

$$\nabla Q(\mathbf{x}^*) - \sum_{j \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*)} \lambda_j \mathbf{a}_j = 0$$
(3.6)

Appearently If \mathbf{x}^* satisfies (3.5), then it also satisfies (3.6). On the other hand, if \mathbf{x}^* satisfies (3.6) and $\lambda_i \geq 0, i \in I(\mathbf{x}^*)$, we have

$$\nabla Q(\mathbf{x}^*) - \sum_{j \in \mathcal{E} \cup \mathcal{I}(\mathbf{x}^*)} \lambda_j \mathbf{a}_j = 0$$
(3.7)

$$\Leftrightarrow \nabla Q(\mathbf{x}^*) - \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i - \sum_{j \in \mathcal{E}} \lambda_j \mathbf{a}_j = 0$$
 (3.8)

i.e., x^* satisfies (3.5).

3.2 Equality Constrained Problem

3.2.1 Lagrange-Newton method

$$\min f(\mathbf{x}) \tag{3.9}$$

$$s.t. \mathbf{c}(\mathbf{x}) = \mathbf{0} \tag{3.10}$$

where $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), ..., c_m(\mathbf{x}))^T$.

Denote $A(\mathbf{x}) = [\nabla \mathbf{c}(\mathbf{x})]^T = (\nabla c_1(\mathbf{x}), ..., \nabla c_m(\mathbf{x}))^T$. The K-T condition of the problem is there exists $\lambda \in \mathbb{R}^m$ s.t.

$$\nabla f(\mathbf{x}) - A(\mathbf{x})^T \lambda = \mathbf{0} \tag{3.11}$$

and $\mathbf{c}(\mathbf{x}) = \mathbf{0}$.

We can use Newton-Raphson method to solve the equations by

$$\begin{pmatrix} W(\mathbf{x},\lambda) & -A(\mathbf{x})^T \\ -A(\mathbf{x}) & 0 \end{pmatrix} \begin{pmatrix} \delta_x \\ \delta_\lambda \end{pmatrix} = -\begin{pmatrix} \nabla f(\mathbf{x}) - A(\mathbf{x})^T \lambda \\ \mathbf{c}(\mathbf{x}) \end{pmatrix}$$
(3.12)

where $W(\mathbf{x}, \lambda) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 c_i(\mathbf{x})$.

We called the method above as Lagrange-Newton Method.

Here we can define

$$\psi(\mathbf{x}, \lambda) = \| \nabla f(\mathbf{x}) - A(\mathbf{x})^T \lambda \|^2 + \| \mathbf{c}(\mathbf{x}) \|^2$$
(3.13)

so that ψ is a descent function to Lagrange-Newton method.

$$\nabla \psi(\mathbf{x}, \lambda)^T \begin{pmatrix} \delta_x \\ \delta_\lambda \end{pmatrix} = -2\psi(\mathbf{x}, \lambda) \neq 0$$
 (3.14)

Sequential Quadratic Programming method

(3.12) can be rewritten into

$$\begin{cases} W(\mathbf{x}, \lambda)\delta_x + \nabla f(\mathbf{x}) &= A(\mathbf{x})^T (\lambda + \delta_\lambda) \\ \mathbf{c}(\mathbf{x}) + A(\mathbf{x})\delta_x &= \mathbf{0} \end{cases}$$
(3.15)

From K-T condition, we notice that δ_x is the K-T point of the following Quadratic Programming problem

$$\min \quad \frac{1}{2} \mathbf{d}^T W(\mathbf{x}, \lambda) \mathbf{d} + \nabla f(\mathbf{x})^T \mathbf{d}
s.t. \quad \mathbf{c}(\mathbf{x}) + A(\mathbf{x}) \mathbf{d} = 0$$
(3.16)

So we can solve a Quadratic Programming subproblem to derive δ_x , we called this method Sequential Quadratic Programming.

3.3 **General Nonlinear Constrained Problem**

Sequential Quadratic Programming method

min
$$f(\mathbf{x})$$

 $s.t.$ $c_i(\mathbf{x}) = 0, \quad i \in \mathcal{E} = \{1, ..., m_e\}$
 $c_i(\mathbf{x}) \ge 0, \quad i \in \mathcal{I} = \{m_e + 1, ..., m\}$ (3.17)

Similarly, we can construct subproblem

min
$$\frac{1}{2}\mathbf{d}^T W \mathbf{d} + \mathbf{g}^T \mathbf{d}$$

s.t. $c_i(\mathbf{x}) + \mathbf{a}_i(\mathbf{x})^T \mathbf{d} = 0, i \in \mathcal{E}$ (3.18)
 $c_i(\mathbf{x}) + \mathbf{a}_i(\mathbf{x})^T \mathbf{d} \ge 0, i \in \mathcal{I}$

Here, W is the Hesse matrix (or its approximation) of the Lagrange function of (3.17), $\mathbf{g} = \nabla f(\mathbf{x}), A(\mathbf{x}) = (\mathbf{a}_1(\mathbf{x}), ..., \mathbf{a}_m(\mathbf{x}).$

Denote the solution to subproblem (3.18) as d, the corresponding Lagrange multiplier vector $\bar{\lambda}$, so we have

$$\begin{cases}
W\mathbf{d} + \mathbf{g} = A(\mathbf{x})^T \bar{\lambda} \\
\bar{\lambda}_i \ge 0, i \in \mathcal{I} \\
\mathbf{c}(\mathbf{x}) + A(\mathbf{x})\mathbf{d} = 0, i \in \mathcal{E} \\
\mathbf{c}(\mathbf{x}) + A(\mathbf{x})\mathbf{d} \ge 0, i \in \mathcal{I}
\end{cases}$$
(3.19)

3.3.2 Penalty method

For nonlinear constrained porblem (3.17), we can use objective function $f(\mathbf{x})$ and constraint function $\mathbf{c}(\mathbf{x})$ to construct *Penalty function*

$$P(\mathbf{x}) = P(f(\mathbf{x}), \mathbf{c}(\mathbf{x})) \tag{3.20}$$

We need the penalty function have the property that: for feasible points, $P(\mathbf{x}) = f(\mathbf{x})$, otherwise, $P(\mathbf{x}) > f(\mathbf{x})$.

To measure the destructiveness to the constraints, we define c(x)

$$\begin{cases}
c_i(\mathbf{x})_- = c_i(\mathbf{x}), & i \in \mathcal{E} \\
c_i(\mathbf{x})_- = |\min\{0, c_i(\mathbf{x})\}|, & i \in \mathcal{I}
\end{cases}$$
(3.21)

Consider simple penalty function

$$P_{\sigma}(\mathbf{x}) = f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
(3.22)

Denote $\mathbf{x}(\sigma)$ as the solution to unconstrained problem $\min P_{\sigma}(\mathbf{x})$, we have the following lemma:

Lemma 3.3.1 (Penalty method). *If* $\mathbf{x}(\sigma)$ *is a feasible point of nonlinear constrained problem* (3.17), *then* $\mathbf{x}(\sigma)$ *aslo is the solution to* (3.17).

Proof. From the definition of penalty function, we have $P(\mathbf{x}) = f(\mathbf{x})$, $\mathbf{x} \in \mathcal{S}$. If $\mathbf{x}(\sigma)$ is the solution to $\min P(\mathbf{x})$, i.e.,

$$P(\mathbf{x}(\sigma)) \le P(\mathbf{x}_0), \ \forall \mathbf{x}_0 \in \mathbb{R}^n$$
 (3.23)

$$f(\mathbf{x}(\sigma)) \le f(\mathbf{x}_0), \ \forall \mathbf{x}_0 \in \mathcal{S}$$
 (3.24)

that is, $\mathbf{x}(\sigma)$ is the solution to (3.17).

Algorithm 6: Penalty Method Algorithm

 $\begin{aligned} \textbf{Data: Cost function } f \\ x^{(0)} &\in \mathbb{R}^n, \sigma_0 > 0, \, \beta > 1, \, \epsilon > 0, \, k := 0; \\ \textbf{while } &\parallel \textbf{c}(\textbf{x}(\sigma_{k-1}))_- \parallel \geq \epsilon \, \textbf{do} \\ &\parallel \text{ solve the subproblem } \min_{\textbf{x} \in \mathbb{R}^n} P_{\sigma_k}(\textbf{x}) \text{ to get the solution } \textbf{x}(\sigma_k); \\ & \textbf{x}^{(k+1)} = \textbf{x}(\sigma_k), \, \sigma_{k+1} = \beta \sigma_k; \\ &k := k+1; \end{aligned}$

end

return: $\mathbf{x}(\sigma_{k-1})$

Theorem 3.3.2 (Convergence of Penalty method). If $\epsilon > \min_{\mathbf{x} \in \mathbb{R}^n} \| \mathbf{c}(\mathbf{x})_- \|$, then the algorithm can terminate in finite steps.

Lemma 3.3.3. Let $\sigma_{k+1} > \sigma_k > 0$, then we have $P_{\sigma_k}(\mathbf{x}(\sigma_k)) \leq P_{\sigma_{k+1}}(\mathbf{x}(\sigma_{k+1}))$, $\parallel \mathbf{c}(\mathbf{x}(\sigma_k))_- \parallel \geq \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1}))_- \parallel, f(\mathbf{x}(\sigma_k)) \leq f(\mathbf{x}(\sigma_{k+1})).$

Proof.

$$P_{\sigma_{k+1}}(\mathbf{x}(\sigma_{k+1})) = f(\mathbf{x}(\sigma_{k+1})) + \sigma_{k+1} \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) - \parallel^2$$
(3.25)

$$\geq f(\mathbf{x}(\sigma_{k+1})) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) \parallel^2$$
(3.26)

$$\geq \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sigma_k \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
 (3.27)

$$= P_{\sigma_k}(\mathbf{x}(\sigma_k)) \tag{3.28}$$

From the definition, we have

$$f(\mathbf{x}(\sigma_k)) + \sigma_{k+1} \parallel \mathbf{c}(\mathbf{x}(\sigma_k)) \parallel^2$$
(3.29)

$$\geq f(\mathbf{x}(\sigma_{k+1})) + \sigma_{k+1} \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) - \parallel^2$$
(3.30)

$$\geq f(\mathbf{x}(\sigma_{k+1})) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1})) \parallel^2$$
(3.31)

$$\geq f(\mathbf{x}(\sigma_k)) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_k)) \parallel^2$$
(3.32)

From the inequalities above, we have

$$\sigma_k(\parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1}))_- \parallel^2 - \parallel \mathbf{c}(\mathbf{x}(\sigma_k))_- \parallel^2)$$
(3.33)

$$\leq f(\mathbf{x}(\sigma_{k+1})) - f(\mathbf{x}(\sigma_k)) \tag{3.34}$$

$$\leq \sigma_{k+1}(\|\mathbf{c}(\mathbf{x}(\sigma_k))_-\|^2 - \|\mathbf{c}(\mathbf{x}(\sigma_{k+1}))_-\|^2)$$
 (3.35)

So that

$$\parallel \mathbf{c}(\mathbf{x}(\sigma_k))_{-} \parallel \geq \parallel \mathbf{c}(\mathbf{x}(\sigma_{k+1}))_{-} \parallel \tag{3.36}$$

Then

$$0 \le \sigma_k(\|\mathbf{c}(\mathbf{x}(\sigma_{k+1}))_-\|^2 - \|\mathbf{c}(\mathbf{x}(\sigma_k))_-\|^2) \le f(\mathbf{x}(\sigma_{k+1})) - f(\mathbf{x}(\sigma_k))$$
(3.37)

i.e.,

$$f(\mathbf{x}(\sigma_{k+1})) \ge f(\mathbf{x}(\sigma_k))$$
 (3.38)

Lemma 3.3.4. Denote $\bar{\mathbf{x}}$ as the solution to problem (3.17), then for all $\sigma_k > 0$,

$$f(\bar{\mathbf{x}}) \ge P_{\sigma_k}(\mathbf{x}(\sigma_k)) \ge f(\mathbf{x}(\sigma_k))$$
 (3.39)

24 Chapter 3 Constrained Optimization

Proof. For all $\sigma_k > 0$,

$$f(\bar{\mathbf{x}}) = \min_{\mathbf{x} \in \mathbb{R}^n} \lim_{\sigma \to \infty} f(\mathbf{x}) + \sigma \| \mathbf{c}(\mathbf{x})_{-} \|^2$$
(3.40)

$$\geq \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) + \sigma_k \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
 (3.41)

$$= f(\mathbf{x}(\sigma_k)) + \sigma_k \parallel \mathbf{c}(\mathbf{x}(\sigma_k)) \parallel^2$$
(3.42)

$$\geq f(\mathbf{x}(\sigma_k)) \tag{3.43}$$

Lemma 3.3.5. Let $\delta = \|\mathbf{c}(\mathbf{x}(\sigma))_-\|$, then $\mathbf{x}(\sigma)$ is also the solution to the problem

$$\min_{s.t.} \quad f(\mathbf{x})
s.t. \quad \|\mathbf{c}(\mathbf{x})\| \le \delta$$
(3.44)

Proof. The problem is equivalent to

$$\min_{s.t.} \quad f(\mathbf{x})
s.t. \quad \|\mathbf{c}(\mathbf{x})_{-}\| \le \|\mathbf{c}(\mathbf{x}(\sigma))_{-}\|$$
(3.45)

$$f(\mathbf{x}(\sigma)) + \sigma \parallel \mathbf{c}(\mathbf{x}(\sigma))_{-} \parallel^{2} = \min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x})_{-} \parallel^{2}$$
(3.46)

Then for all $\mathbf{x} \in \mathbb{R}^n$, we have

$$f(\mathbf{x}(\sigma)) + \sigma \parallel \mathbf{c}(\mathbf{x}(\sigma)) \parallel^2 \le f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
(3.47)

$$f(\mathbf{x}(\sigma)) - f(\mathbf{x}) \le \sigma(\|\mathbf{c}(\mathbf{x})\|^2 - \|\mathbf{c}(\mathbf{x}(\sigma))\|^2)$$
(3.48)

That is, if $\|\mathbf{c}(\mathbf{x})_{-}\| \leq \|\mathbf{c}(\mathbf{x}(\sigma))_{-}\|$, then

$$f(\mathbf{x}(\sigma)) - f(\mathbf{x}) \le \sigma(\|\mathbf{c}(\mathbf{x})\|^2 - \|\mathbf{c}(\mathbf{x}(\sigma))\|^2) \le 0$$
(3.49)

i.e., for all $\mathbf{x} \in \mathbb{R}^n$, $f(\mathbf{x}(\sigma)) \leq f(\mathbf{x})$.

3.3.3 Argumented Lagrange function method

3.3.3.1 Revisit Penalty method

Consider equality constrained problem

The Lagrange function of (3.50) is

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) - \lambda^T \mathbf{c}(\mathbf{x})$$
(3.51)

From K-T condition, we have for global optimal point x^* ,

$$\begin{cases} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^*) = 0 \\ \nabla_{\lambda} \mathcal{L}(\mathbf{x}^*, \lambda^*) = 0 \end{cases}$$
(3.52)

i.e., \mathbf{x}^* is a stable point of $\mathcal{L}(\mathbf{x}, \lambda)$. Notice that

$$\nabla \mathbf{x} \mathcal{L}(\mathbf{x}^*, \lambda^*) = \nabla f(\mathbf{x}^*) - \sum_{i} \lambda_i^* \nabla c_i(\mathbf{x}^*)$$
(3.53)

For the corresponding penalty function

$$P_{\sigma}(\mathbf{x}) = f(\mathbf{x}) + \sigma \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
(3.54)

we have the K-T condition is

$$\nabla P_{\sigma}(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) + 2\sigma \mathbf{c}^T(\mathbf{x}^*) \nabla \mathbf{c}(\mathbf{x}^*)$$
(3.55)

$$= \nabla f(\mathbf{x}^*) + \sum_{i} 2\sigma c_i(\mathbf{x}^*) \nabla c_i(\mathbf{x}^*) = 0$$
(3.56)

If we want (3.56) to be a good approximation of (3.53), i.e.,

$$\lambda_i^* \approx -2\sigma c_i(\mathbf{x}^*) \tag{3.57}$$

Notice that $c_i(\mathbf{x}^*) \approx 0$, so we need $|\sigma| \to \infty$.

3.3.3.2 **Argumented Lagrange function method**

Consider Argumented Lagrange function

$$\min_{\mathbf{x}, \lambda} P(\mathbf{x}, \lambda, \sigma) = \mathcal{L}(\mathbf{x}, \lambda) + \frac{\sigma}{2} \parallel \mathbf{c}(\mathbf{x}) \parallel^2$$
 (3.58)

The K-T condition of the function is

$$\begin{cases} \nabla_{\mathbf{x}} P(\mathbf{x}^*, \lambda^*, \sigma) = 0 \\ \nabla_{\lambda} P(\mathbf{x}^*, \lambda^*, \sigma) = 0 \end{cases}$$
(3.59)

$$\nabla_{\lambda} P(\mathbf{x}^*, \lambda^*, \sigma) = \mathbf{c}(\mathbf{x}) = 0 \tag{3.60}$$

$$\nabla_{\mathbf{x}} P(\mathbf{x}^*, \lambda^*, \sigma) = \nabla f(\mathbf{x}^*) - \sum_{i} (\lambda_i^* - \sigma c_i(\mathbf{x}^*)) \nabla c_i(\mathbf{x}^*)$$
 (3.61)

$$= \nabla f(\mathbf{x}^*) - \sum_{i} \lambda_i^* \nabla c_i(\mathbf{x}^*) = 0$$
 (3.62)

i.e., the K-T condition of P is similar to the original problem (3.50).

Theorem 3.3.6. Suppose \mathbf{x}^* and λ^* satisfy the K-T condition of (3.50), then there exists $\bar{\sigma}$ such that when $\sigma > \bar{\sigma}$, \mathbf{x}^* is the strict local minima of $P(\mathbf{x}, \lambda^*, \sigma)$.

Proof. Appearently if \mathbf{x}^* and λ^* satisfy the K-T condition of (3.50), then \mathbf{x}^* and λ^* also satisfy the K-T condition of (3.58).

For (3.58), we can always find $\bar{\sigma}$ when $\sigma > \bar{\sigma}$, the problem is convex. In this case, the K-T condition is sufficient and necessary condition of optimal points.

However, the optimal value λ^* remains unknown.

```
Algorithm 7: Argumented Lagrange Algorithm
```

```
Data: Cost function f
x^{(0)} \in \mathbb{R}^{n}, \sigma_{0} > 0, \alpha > 1, 0 < \beta < 1, \epsilon > 0, k := 0;
while \parallel \mathbf{c}(\mathbf{x}^{(k)} \parallel \geq \epsilon \operatorname{do})
\mid \mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \mathbb{R}^{n}} P(\mathbf{x}, \lambda^{(k)}, \sigma);
\lambda^{(k+1)} = \lambda^{(k)} - \sigma \mathbf{c}(\mathbf{x}^{(k+1)});
if \parallel \mathbf{c}(\mathbf{x}^{(k+1)} \parallel / \parallel \mathbf{c}(\mathbf{x}^{(k)} \parallel \geq \beta \operatorname{then})
\mid \sigma := \alpha \sigma
end
k := k + 1;
end
return: \mathbf{x}^{(k)}
```

3.3.4 Barrier method

$$\min_{s.t.} f(\mathbf{x})
s.t. g_i(\mathbf{x}) \ge 0, i = 1, ..., m$$
(3.63)

We use intS to denote the interior of feasible region, where $S = \{\mathbf{x} \mid g_i(\mathbf{x}) \geq 0, i = 1, ..., m\}$. Define Barrier function

$$B(\mathbf{x}, \theta) = f(\mathbf{x}) + \theta \psi(\mathbf{x}) \tag{3.64}$$

Where barrier factor θ is a small positive number, $\psi(\mathbf{x})$ is a continuous function. When $\mathbf{x} \to \partial S$, $\psi(\mathbf{x}) \to +\infty$. We can derive the approximate solution to the original problem (3.63)

Algorithm 8: Barrier Algorithm

$$\begin{aligned} &\textbf{Data: Cost function } f, \text{ feasible region } S \\ &x^{(0)} \in \textbf{int} S, \theta_0 > 0, 0 < \beta < 1, \epsilon > 0, k := 0; \\ &\textbf{while } \theta_k \psi(\mathbf{x}^{(k)} \geq \epsilon \textbf{ do} \\ & & \mathbf{x}^{(k+1)} = \arg\min_{\mathbf{x} \in \textbf{int} S} f(\mathbf{x}) + \theta_k \psi(\mathbf{x}); \\ & & \theta_{k+1} := \beta \theta_k; \\ & & k := k+1; \end{aligned}$$
 end
$$& \textbf{return: } \mathbf{x}^{(k)}$$

Theorem 3.3.7. Suppose $\theta_k > \theta_{k+1} > 0$, denote $\mathbf{x}(\theta) = \arg\min_{\mathbf{x}} B(\mathbf{x}, \theta)$, then

$$B(\mathbf{x}(\theta_k), \theta_k) \ge B(\mathbf{x}(\theta_{k+1}), \theta_{k+1}) \tag{3.66}$$

$$\psi(\mathbf{x}(\theta_k)) \le \psi(\mathbf{x}(\theta_{k+1})) \tag{3.67}$$

$$f(\mathbf{x}(\theta_k)) \ge f(\mathbf{x}(\theta_{k+1})) \tag{3.68}$$

Proof. Similar to Proof of Lemma (3.3.3),

$$B(\mathbf{x}(\theta_k), \theta_k) = f(\mathbf{x}(\theta_k)) + \theta_k \psi(\mathbf{x}(\theta_k))$$
(3.69)

$$\geq f(\mathbf{x}(\theta_k)) + \theta_{k+1} \psi(\mathbf{x}(\theta_k)) \tag{3.70}$$

$$\geq \min_{\mathbf{x} \in \text{int}S} f(\mathbf{x}) + \theta_{k+1} \psi(\mathbf{x}) \tag{3.71}$$

$$=B(\mathbf{x}(\theta_{k+1}),\theta_{k+1}) \tag{3.72}$$

From

$$f(\mathbf{x}(\theta_{k+1})) + \theta_k \psi(\mathbf{x}(\theta_{k+1})) \tag{3.73}$$

$$\geq f(\mathbf{x}(\theta_k)) + \theta_k \psi(\mathbf{x}(\theta_k)) \tag{3.74}$$

$$\geq f(\mathbf{x}(\theta_k)) + \theta_{k+1}\psi(\mathbf{x}(\theta_k)) \tag{3.75}$$

$$\geq f(\mathbf{x}(\theta_{k+1})) + \theta_{k+1}\psi(\mathbf{x}(\theta_{k+1})) \tag{3.76}$$

we have

$$\theta_k(\psi(\mathbf{x}(\theta_k)) - \psi(\mathbf{x}(\theta_{k+1}))) \le f(\mathbf{x}(\theta_{k+1})) - f(\mathbf{x}(\theta_k)) \le \theta_{k+1}(\psi(\mathbf{x}(\theta_k)) - \psi(\mathbf{x}(\theta_{k+1})))$$
(3.77)

notice that $\theta_k > \theta_{k+1} > 0$, so

$$\psi(\mathbf{x}(\theta_k)) \le \psi(\mathbf{x}(\theta_{k+1})) \tag{3.78}$$

Chapter 3 Constrained Optimization

$$f(\mathbf{x}(\theta_{k+1})) - f(\mathbf{x}(\theta_k)) \le \theta_{k+1}(\psi(\mathbf{x}(\theta_k)) - \psi(\mathbf{x}(\theta_{k+1}))) \le 0$$
(3.79)

$$f(\mathbf{x}(\theta_{k+1})) \le f(\mathbf{x}(\theta_k)) \tag{3.80}$$

4

Convex Optimization

4.1 Convex set

4.1.1 Affine set

Definition 4.1.1 (Affine set). A set $C \subset \mathbb{R}^n$ is affine if $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\theta \in \mathbb{R}$, we have

$$\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2 \in \mathcal{C} \tag{4.1}$$

Definition 4.1.2 (Affine hull). The set of all affine combinations of points in some set $C \subset \mathbb{R}^n$ is called the affine hull of C, denoted aff C:

$$\mathbf{aff}\mathcal{C} = \{\sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_1, ..., \mathbf{x}_k \in \mathcal{C}, \theta_1 + ... + \theta_k = 1\}$$

$$(4.2)$$

Remark 2. The affine hull is the smallest affine set that contains C.

Proof. For any affine set A contains C, we have

$$\sum_{i=1}^{k} \theta_i \mathbf{x}_i \in \mathcal{A}, \forall \mathbf{x}_1, ..., \mathbf{x}_k \in \mathcal{C}, \theta_1 + ... + \theta_k = 1$$

$$(4.3)$$

i.e.,
$$\operatorname{aff} \mathcal{C} \subset \mathcal{A}$$
.

4.1.2 Convex set

Definition 4.1.3 (Convex set). A set $C \subset \mathbb{R}^n$ is convex if $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $0 \le \theta \le 1$, we have

$$\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2 \in \mathcal{C} \tag{4.4}$$

Definition 4.1.4 (Convex hull). The set of all convex combinations of points in some set $C \subset \mathbb{R}^n$ is called the convex hull of C, denoted $\mathbf{conv}C$:

$$\mathbf{conv}\mathcal{C} = \{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_1, ..., \mathbf{x}_k \in \mathcal{C}, \theta_i \ge 0, \theta_1 + ... + \theta_k = 1 \}$$

$$(4.5)$$

Remark 3. The convex hull is the smallest convex set that contains C.

4.1.3 Cone

Definition 4.1.5 (Cone). A set C is called a cone, if $\forall \mathbf{x} \in C$ and $\theta \geq 0$ we have $\theta \mathbf{x} \in C$. A set C is called a convex cone if it is convex and a cone, i.e., $\forall \mathbf{x}_1, \mathbf{x}_2 \in C$ and $\theta_1, \theta_2 \geq 0$, we

have

$$\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C} \tag{4.6}$$

Definition 4.1.6 (Conic hull). The conic hull of set C is the set of all conic combinations of points in C, i.e.,

$$\{\sum_{i=1}^{k} \theta_{i} \mathbf{x}_{i} \mid \mathbf{x}_{i} \in \mathcal{C}, \theta_{i} \geq 0, i = 1, ..., k\}$$
(4.7)

4.1.4 Proper cones and generalized inequalities

4.2 Convex function

Definition 4.2.1 (Convex function). A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if $\operatorname{dom} f$ is a convex set and if $\forall x, y \in \operatorname{dom} f$ and θ with $0 \le \theta \le 1$, we have

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) \tag{4.8}$$

4.2.1 First order condition

Suppose f is differentiable

Theorem 4.2.1. Function f is convex if and only if $\operatorname{dom} f$ is a convex set and for $\forall x, y \in \operatorname{dom} f$, the following holds:

$$f(y) > f(x) + \nabla f(x)^T (y - x) \tag{4.9}$$

Remark 4. If $\nabla f(x^*) = 0$, then for $\forall y \in \mathbf{dom} f$, $f(y) \geq f(x^*)$, i.e., x^* is the global minimizer of f.

4.2.2 Second order condition

Suppose f is twice differentiable

Theorem 4.2.2. Function f is convex if and only if $\operatorname{dom} f$ is a convex set and for $\forall x \operatorname{dom} f$, the following holds:

$$\nabla^2 f(x) \succeq 0 \tag{4.10}$$

Remark 5. If $\nabla^2 f(x) \succ 0$ for $\forall x \mathbf{dom} f$, then f is strictly convex.

4.2.3 Properties of Convex functions

4.2.3.1 Jensen's Inequality

Theorem 4.2.3 (Jensen's Inequality). If f is convex, $x_1,...,x_k \in \operatorname{dom} f$, and $\theta_1,...,\theta_k \geq 0$ with $\theta_1 + ... + \theta_k = 1$, then

$$f(\theta_1 x_1 + \dots + \theta_k x_k) \le \theta_1 f(x_1) + \dots + \theta_k f(x_k) \tag{4.11}$$

4.2.3.2 Operations that preserve convexity

Nonnegative weighted sums If $f_1, ..., f_m$ are covex and $w_1, ..., w_m \ge 0$, then

$$f = w_1 f_1 + \dots + w_m f_m (4.12)$$

is convex.

If f(x,y) is convex w.r.t x for each $y \in \mathcal{A}$, and $w(y) \geq 0$ for each $y \in \mathcal{A}$, then the function

$$g(x) = \int_{\mathcal{A}} w(y)f(x,y)dy \tag{4.13}$$

is convex w.r.t x.

Composition with an affine mapping Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{n \times m}$, and $\mathbf{b} \in \mathbb{R}$. Define $g: \mathbb{R}^m \to \mathbb{R}$ by

$$g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b}) \tag{4.14}$$

with $\operatorname{dom} g = \{ \mathbf{x} \mid A\mathbf{x} + \mathbf{b} \in \operatorname{dom} f \}$. Then if f is convex, so is g.

Pointwise maximum If f_1 and f_2 are convex functions, then

$$f(x) = \max\{f_1(x), f_2(x)\}\tag{4.15}$$

with $\operatorname{dom} f = \operatorname{dom} f_1 \cap \operatorname{dom} f_2$ is also convex.

If f(x,y) is convex w.r.t x for each $y \in \mathcal{A}$, and $w(y) \ge 0$ for each $y \in \mathcal{A}$, then the function

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y) \tag{4.16}$$

is convex in x, where

$$\mathbf{dom}g = \{x \mid (x, y) \in \mathbf{dom}f, \forall y \in \mathcal{A}, \sup f(x, y) < \infty\}$$
(4.17)

4.2.4 Quasi-convex function

Definition 4.2.2 (Quasi-convex function). *A function* $f: \mathbb{R}^n \to \mathbb{R}$ *such at that its domain and* all its sublevel sets

$$S_{\alpha} = \{ x \in \mathbf{dom} f \mid f(x) < \alpha \}, \alpha \in \mathbb{R}$$
 (4.18)

are convex, then f is quasi-convex.

4.3 Convex optimization

A convex optimization problem is one of the form

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1, ..., m$
 $a_i^T \mathbf{x} = b_j$, $j = 1, ..., p$ (4.19)

where $f_0, ..., f_m$ are convex functions.

Remark 6. The equality constraint is linear if the problem is convex.

Proof. For equality constraint

$$\mathbf{c}(\mathbf{x}) = 0 \tag{4.20}$$

we can rewrite it into

$$\mathbf{c}(\mathbf{x}) \le 0 \tag{4.21}$$

$$-\mathbf{c}(\mathbf{x}) \le 0 \tag{4.22}$$

Due to the convexity of the problem, both c(x) and -c(x) are convex. i.e., c(x) is linear. \Box

4.3.1 Optimal condition

Theorem 4.3.1 (Optimal condition). Suppose (4.19) is differentiable. Let S denote the feasible set, then \mathbf{x}^* is optimal if and only if $\mathbf{x}^* \in S$ and

$$\nabla f_0(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) \ge 0, \forall y \in S$$
(4.23)

Proof. If x^* is optimal, then we can easily derive (4.23).

If (4.23) stands, then from Theorem 4.2.1,

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \nabla f_0(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \ge 0, \forall y \in S$$
 (4.24)

Lemma 4.3.2. For convex problem with equality constraints only, i.e.,

the optimal condition can be expressed as

$$\nabla f_0(\mathbf{x})^T \mathbf{u} \ge 0, \forall \mathbf{u} \in \mathcal{N}(A) \tag{4.26}$$

in other words,

$$\nabla f_0(\mathbf{x}) \perp \mathcal{N}(A)$$
 (4.27)

Proof. From Theorem 4.3.1, we have \mathbf{x}^* is optimal if and only if $A\mathbf{x} = \mathbf{b}$, for $\forall \mathbf{y}$ such that $A\mathbf{y} = \mathbf{b},$

$$\nabla f_0(\mathbf{x})^T(\mathbf{y} - \mathbf{x}) \ge 0 \tag{4.28}$$

i.e., $A(\mathbf{y} - \mathbf{x}) = 0$. Let $\mathbf{u} = \mathbf{y} - \mathbf{x}$, then

$$\nabla f_0(\mathbf{x})^T \mathbf{u} \ge 0, \forall \mathbf{u} \in \mathcal{N}(A)$$
(4.29)

further, if $\mathbf{u} \in \mathcal{N}(A)$, then, $-\mathbf{u} \in \mathcal{N}(A)$, so we have

$$\nabla f_0(\mathbf{x})^T \mathbf{u} = 0, \forall \mathbf{u} \in \mathcal{N}(A)$$
(4.30)

i.e.,

$$\nabla f_0(\mathbf{x}) \perp \mathcal{N}(A)$$
 (4.31)

Lemma 4.3.3 (Global optimality). Any locally optimal point is also globally optimal in convex optimization problems.

4.3.2 Common convex optimizations

4.3.2.1 Linear optimization

A general linear program (LP) has the form

$$\begin{array}{ll}
\min & \mathbf{c}^T \mathbf{x} + d \\
s.t. & G\mathbf{x} \le \mathbf{h} \\
& A\mathbf{x} = \mathbf{b}
\end{array} \tag{4.32}$$

where $G \in \mathbb{R}^{m \times n}$ and $A \in \mathbb{R}^{p \times n}$.

4.3.2.2 Quadratic optimization

A general quadratic program (QP) has the form

min
$$\frac{1}{2}\mathbf{x}^T P \mathbf{x} + \mathbf{q}^T \mathbf{x} + r$$

s.t. $G\mathbf{x} \le \mathbf{h}$ (4.33)
 $A\mathbf{x} = \mathbf{b}$

where $P \in \mathbf{S}^n_+$, $G \in \mathbb{R}^{m \times n}$ and $A \in \mathbb{R}^{p \times n}$.

Quadratically constrained quadratic program

min
$$\frac{1}{2}\mathbf{x}^T P_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$

s.t. $\frac{1}{2}\mathbf{x}^T P_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0, \quad i = 1, ..., m$ (4.34)
 $A\mathbf{x} = \mathbf{b}$

where $P_i \in \mathbf{S}_+^n, i = 0, ..., m$, the problem is called a *quadratically constrained quadratic program* (QCQP).

Second-order cone program

min
$$\mathbf{f}^T \mathbf{x}$$

 $s.t. \quad || A_i \mathbf{x} + \mathbf{b}_i || \le \mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i, \quad i = 1, ..., m$ (4.35)
 $F \mathbf{x} = \mathbf{g}$

Lemma 4.3.4. Any QCQP problem can be formulated as a SOCP problem.

Proof. The QCQP problem is equivalent to

$$\min \quad -r_0$$

$$s.t. \quad \frac{1}{2}\mathbf{x}^T P_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0, \quad i = 0, ..., m$$

$$A\mathbf{x} = \mathbf{b}$$
(4.36)

Then we need to prove that (4.36) can be formulated as (4.35).

$$\frac{1}{2}\mathbf{x}^T P_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0 \tag{4.37}$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + 2(\mathbf{q}_i^T \mathbf{x} + r_i) \le 0 \tag{4.38}$$

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + 2(\mathbf{q}_i^T \mathbf{x} + r_i) + (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$
(4.39)

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + (\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$
(4.40)

Since P_i is positive semi-definite, $P_i = A_i^T A_i$, then

$$\Leftrightarrow \mathbf{x}^T P_i \mathbf{x} + (\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2})^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$
(4.41)

$$\Leftrightarrow \|A_i \mathbf{x}\|^2 + \|\mathbf{q}_i^T \mathbf{x} + r_i + \frac{1}{2}\|^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$
 (4.42)

Let

$$A_i' = \begin{pmatrix} A \\ \mathbf{q}^T \end{pmatrix} \tag{4.43}$$

$$\mathbf{b}_i = \begin{pmatrix} \mathbf{0}_{n \times 1} \\ r_i + \frac{1}{2} \end{pmatrix} \tag{4.44}$$

From (4.37) and $\mathbf{x}^T P_i \mathbf{x} \geq 0$, we can derive that $\mathbf{q}_i^T \mathbf{x} + r_i \leq 0$, then, $\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2} \leq 0$.

Then (4.42) can be formulated as

$$||A_i'\mathbf{x} + \mathbf{b}_i||^2 \le (\mathbf{q}_i^T\mathbf{x} + r_i - \frac{1}{2})^2$$
 (4.45)

$$|| A_i' \mathbf{x} + \mathbf{b}_i ||^2 \le (\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})^2$$

$$\Leftrightarrow || A_i' \mathbf{x} + \mathbf{b}_i || \le -(\mathbf{q}_i^T \mathbf{x} + r_i - \frac{1}{2})$$

$$(4.45)$$

4.3.3 The Lagrangian

5

Sparse Optimization

5.1 Compressed Sensing

5.1.1 Problem formulation

$$(\mathbf{P}_0) \quad \begin{array}{ll} \min_{\mathbf{x} \in \mathbb{R}^n} & \parallel \mathbf{x} \parallel_0 \\ s.t. & A\mathbf{x} = \mathbf{b} \end{array}$$
 (5.1)

The definition above means to find the sparsest solution for underdetermined linear equation $A\mathbf{x} = \mathbf{b}$ ($A \in \mathbb{R}^{m \times n}, m << n$).

Definition 5.1.1 (spark). The spark of a given matrix A is the smallest number of columns from A that are linearly dependent.

Theorem 5.1.1. If a system of linear euqations $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x} obeying $\|\mathbf{x}\|_0 < \frac{spark(A)}{2}$, this solution is necessarily the sparsest possible.

Definition 5.1.2. The mutual coherence of a given matrix A is the largest absolute normalized inner product between different columns from A. Denoting the k-th column in A by \mathbf{a}_k , the mutual coherence is given by

$$\mu(A) = \max_{1 \le i \ne j \le n} \frac{|\mathbf{a}_i^T \mathbf{a}_j|}{\|\mathbf{a}_i\|_2 \|\mathbf{a}_j\|_2}$$
 (5.2)

Lemma 5.1.2. For any matrix $A \in \mathbb{R}^{m \times n}$, the following relationship holds:

$$spark(A) \ge 1 + \frac{1}{\mu(A)} \tag{5.3}$$

Then we have the following theorem:

Theorem 5.1.3. If a system of linear euqations $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x} obeying $\|\mathbf{x}\|_0 < (1 + \frac{1}{\mu(A)})/2$, this solution is necessarily the sparsest possible.

- 5.1.2 Pursuit Algorithms
- 5.1.2.1 Orthogonal Matching Pursuit
- 5.1.2.2 Basis Pursuit