EMT4Plot2D Rifina Rizki Alfitasari_22305141047

Nama : Rifina Rizki Alfitasari

NIM : 22305141047

Kelas: Matematika B 2022

Menggambar Grafik 2D dengan EMT

Notebook ini menjelaskan tentang cara menggambar berbagai macam kurva dan grafik 2D dengan software EMT. EMT menyediakan fungsi plot2d() untuk menggambar berbagai kurva dan grafik dua dimensi (2D).

Plot Dasar

Ada beberapa fungsi yang sangat mendasar dari plot. Ada koordinat layar, yang selalu berkisar antara 0 hingga 1024 di setiap sumbu, tidak peduli apakah layarnya persegi atau tidak. Terdapat koordinat plot, yang dapat diatur dengan setplot(). Pemetaan antara koordinat tergantung pada jendela plot saat ini. Sebagai contoh, default shrinkwindow() menyisakan ruang untuk label sumbu dan judul plot.

Pada contoh, kita hanya menggambar beberapa garis acak dalam berbagai warna. Untuk detail mengenai fungsi-fungsi ini, pelajari fungsi-fungsi inti dari EMT.

```
>clg; // clear screen
>window(0,0,1024,1024); // use all of the window
>setplot(0,1,0,1); // set plot coordinates
>hold on; // start overwrite mode
>n=100; X=random(n,2); Y=random(n,2); // get random points
>colors=rgb(random(n),random(n),random(n)); // get random colors
>loop 1 to n; color(colors[#]); plot(X[#],Y[#]); end; // plot
>hold off; // end overwrite mode
>insimg; // insert to notebook
```


>reset;

Pentingnya untuk menyimpan grafik, karena perintah plot() akan menghapus jendela plot.

Untuk menghapus semua yang telah kita lakukan, kita gunakan reset().

Untuk menampilkan gambar hasil plot di layar notebook, perintah plot2d() dapat diakhiri dengan titik dua (:). Cara lain adalah perintah plot2d() diakhiri dengan titik koma (;), kemudian gunakan perintah insimg() untuk menampilkan gambar hasil plot.

Sebagai contoh lain, kita menggambar plot sebagai inset (grafik kecil) pada plot lain. Ini dilakukan untuk mendefinisikan jendela plot yang lebih kecil. Perhatikan bahwa jendela ini tidak menyediakan ruang untuk label sumbu di luar jendela plot, jadi Anda perlu menambahkan margin jika diperlukan. Selain itu, penting untuk menyimpan dan mengembalikan jendela plot penuh dan menjaga plot saat ini saat Anda membuat inset.

```
>plot2d("x^3-x");
>xw=200; yw=100; ww=300; hw=300;
>ow=window();
>window(xw,yw,xw+ww,yw+hw);
>hold on;
>barclear(xw-50,yw-10,ww+60,ww+60);
>plot2d("x^4-x",grid=6):
```


>hold off;
>window(ow);

Anda dapat membuat plot dengan beberapa gambar dengan cara yang sama. Untuk tujuan ini, ada fungsi utilitas bernama figure() untuk ini. Fungsi ini digunakan untuk membuat gambar baru atau jendela plot yang berbeda di mana Anda dapat membuat plot terpisah.

Aspek Plot

Secara default, jendela plot biasanya berbentuk persegi. Anda juga dapat mengubahnya dengan fungsi aspect(). Penting untuk diingat bahwa Anda harus mengatur ulang aspek plot ke nilai default setelah Anda selesai menggunakannya. Anda juga dapat mengubah aspek ini secara default melalui menu dengan opsi "Set Aspect" untuk mengatur rasio aspek tertentu atau sesuai dengan ukuran saat ini dari jendela grafik.

Tetapi Anda juga dapat mengubahnya untuk satu plot. Untuk melakukan ini, ukuran area plot saat ini diubah, dan jendela diatur ulang sehingga label-labelnya memiliki cukup ruang. Artinya, Anda dapat mengkustomisasi aspek plot untuk satu plot tertentu tanpa memengaruhi aspek plot yang lainnya.

>aspect(2); // rasio panjang dan lebar 2:1
>plot2d(["sin(x)","cos(x)"],0,2pi):

>aspect();
>reset;

Fungsi "reset()" digunakan untuk mengembalikan pengaturan plot ke default, termasuk rasio aspek (aspect ratio). Dengan kata lain, ini akan mengatur ulang semua pengaturan plot ke nilai-nilai awal atau bawaan.

Plots 2D di Euler

Euler Math Toolbox memiliki kemampuan untuk membuat plot 2D, baik untuk data maupun fungsi matematika. Fungsi yang digunakan untuk melakukan ini adalah "plot2d". Fungsi ini dapat digunakan untuk membuat plot fungsi matematika dan data.

Anda memiliki kemungkinan untuk membuat plot (grafik) di Maxima menggunakan Gnuplot atau dalam bahasa pemrograman Python menggunakan pustaka (library) Math Plot Lib (Matplotlib).

Euler dapat memplot plot 2D dari

- ekspresi
- fungsi, variabel, atau kurva berparameter,
- vektor nilai x-y,
- clouds of points in the plane,
- kurva implisit dengan level atau wilayah level.
- Fungsi yang kompleks

Gaya plot mencakup berbagai gaya untuk garis dan titik, plot batang, dan plot berbayang.

Plot Ekspresi atau Variabel

Ekspresi tunggal dalam "x" (misalnya "4*x^2") atau nama fungsi (misalnya "f") menghasilkan grafik fungsi.

Berikut ini adalah contoh paling dasar, yang menggunakan rentang default dan menetapkan rentang y yang tepat agar sesuai dengan plot fungsi.

Catatan: Jika Anda mengakhiri baris perintah dengan tanda titik dua ":", plot akan disisipkan ke dalam jendela teks. Jika tidak, tekan TAB untuk melihat plot jika jendela plot tertutup.

>plot2d("x^2"):

>aspect(1.5); plot2d("x^3-x"):

>a:=5.6; plot2d("exp(-a*x^2)/a"); insimg(30); // menampilkan gambar hasil plot setinggi 25 ba

Dari beberapa contoh sebelumnya Anda dapat melihat bahwa aslinya gambar plot menggunakan sumbu X dengan rentang nilai dari -2 sampai dengan 2. Untuk mengubah rentang nilai X dan Y, Anda dapat menambahkan nilai-nilai batas X (dan Y) di belakang ekspresi yang digambar.

Kisaran plot ditetapkan dengan parameter yang ditetapkan berikut ini

```
- a, b: rentang x (default -2,2)
```

- c,d: rentang y (default: skala dengan nilai)
- r: sebagai alternatif, radius di sekitar pusat plot
- cx, cy: koordinat pusat plot (default 0,0)

>plot2d(" x^3-x ",-1,2):

>plot2d("sin(x)",-2*pi,2*pi): // plot sin(x) pada interval [-2pi, 2pi]

>plot2d("cos(x)", "sin(3*x)", xmin=0, xmax=2pi):

Alternatif dari penggunaan titik dua (colon) untuk menampilkan plot dalam teks window adalah menggunakan perintah "insimg(lines)", yang memungkinkan Anda untuk memasukkan plot ke dalam teks window dengan menentukan jumlah baris teks yang diinginkan

Dalam opsi ini, plot dapat diatur untuk muncul - di jendela terpisah yang dapat diubah ukurannya,

- di jendela buku catatan.

Ada berbagai perintah khusus yang dapat digunakan untuk menghasilkan gaya-gaya plot yang berbeda.

Anda dapat menekan tombol "tabulator" (tab) pada keyboard untuk melihat plot tersebut. Ini adalah cara untuk mengungkapkan plot yang tersembunyi.

Untuk membagi jendela menjadi beberapa plot, gunakan perintah figure(). Pada contoh, kita memplot x^1 sampai x^4 ke dalam 4 bagian jendela. Perintah "figure(0)" digunakan untuk mengatur ulang jendela plot ke konfigurasi default.

```
>reset;
>figure(2,2); ...
```

for n=1 to 4; figure(n); $plot2d("x^"+n)$; end; ... figure(0):

Pada plot2d(), terdapat beberapa gaya alternatif yang tersedia dengan grid=x. Sebagai gambaran umum, kita dapat menampilkan berbagai gaya grid dalam satu gambar (lihat di bawah ini untuk perintah figure()). Gaya grid=0 tidak disertakan. Karena gaya ini tidak menampilkan grid dan frame.

```
>figure(3,3); ...
for k=1:9; figure(k); plot2d("x^3-x",-2,1,grid=k); end; ...
figure(0):
```


Jika argumen untuk plot2d() adalah sebuah ekspresi yang diikuti oleh empat angka, angka-angka ini adalah rentang x dan y untuk plot.

Atau, a, b, c, d dapat ditentukan sebagai parameter yang ditetapkan sebagai a=... ${\sf dst.}$

Pada contoh berikut, kita mengubah gaya grid, menambahkan label, dan menggunakan label vertikal untuk sumbu y.

>aspect(1.5); plot2d("sin(x)",0,2pi,-1.2,1.2,grid=3,xl="x",yl="sin(x)"):

>plot2d("sin(x)+cos(2*x)",0,4pi):

Gambar yang dihasilkan dengan menyisipkan plot ke dalam jendela teks disimpan dalam direktori yang sama dengan notebook, secara default dalam subdirektori bernama "images". Gambar-gambar tersebut juga digunakan oleh ekspor HTML.

Anda cukup menandai gambar mana saja dan menyalinnya ke clipboard dengan Ctrl-C. Tentu saja, Anda juga dapat mengekspor grafik saat ini dengan fungsi-fungsi pada menu File.

Fungsi atau ekspresi dalam plot2d dievaluasi secara adaptif. Untuk kecepatan yang lebih tinggi, matikan plot adaptif dengan adaptive dan tentukan jumlah subinterval dengan n=... Hal ini hanya diperlukan pada kasus-kasus yang jarang terjadi.

>plot2d("sign(x) *exp(-x^2)",-1,1,<adaptive,n=10000):

>plot2d("x^x", r=1.2, cx=1, cy=1):

Perhatikan bahwa x^x tidak didefinisikan untuk x<=0. Fungsi plot2d menangkap kesalahan ini, dan mulai memplot segera setelah fungsi didefinisikan. Hal ini berlaku untuk semua fungsi yang mengembalikan NAN di luar jangkauan definisinya.

>plot2d("log(x)",-0.1,2):

Parameter square=true (atau >square) memilih rentang y secara otomatis sehingga hasilnya adalah jendela plot persegi. Perhatikan bahwa secara default, Euler menggunakan ruang persegi di dalam jendela plot.

>plot2d(" x^3-x ",>square):

>plot2d(''integrate(" $\sin(x) * \exp(-x^2)$ ",0,x)'',0,2): // plot integral

Jika Anda membutuhkan lebih banyak ruang untuk label-y, panggil shrinkwindow() dengan parameter lebih kecil, atau tetapkan nilai positif untuk "lebih kecil" pada plot2d().

>plot2d("gamma(x)",1,10,yl="y-values",smaller=6,<vertical):</pre>

Ekspresi simbolik juga dapat digunakan, karena disimpan sebagai ekspresi string sederhana.

>x=linspace(0,2pi,1000); plot2d(sin(5x),cos(7x)):

>a:=5.6; expr &= exp(-a*x^2)/a; // define expression >plot2d(expr,-2,2): // plot from -2 to 2

>plot2d(expr,r=1,thickness=2): // plot in a square around (0,0)

>plot2d(&diff(expr,x),>add,style="--",color=red): // add another plot

>plot2d(&diff(expr,x,2),a=-2,b=2,c=-2,d=1): // plot in rectangle

>plot2d(&diff(expr,x),a=-2,b=2,>square): // keep plot square

>plot2d(" x^2 ",0,1,steps=1,color=red,n=10):

>plot2d(" x^2 ",>add,steps=2,color=blue,n=10):

Fungsi dalam satu Parameter

Fungsi plot yang paling penting untuk plot planar adalah plot2d(). Fungsi ini diimplementasikan dalam bahasa Euler dalam file "plot.e", yang dimuat pada awal program.

Berikut adalah beberapa contoh penggunaan fungsi. Seperti biasa dalam EMT, fungsi yang bekerja untuk fungsi atau ekspresi lain, Anda dapat mengoper parameter tambahan (selain x) yang bukan variabel global ke fungsi dengan parameter titik koma atau dengan koleksi panggilan.

>function $f(x,a) := x^2/a+a*x^2-x$; // define a function >a=0.3; plot2d("f",0,1;a): // plot with a=0.3

>plot2d("f",0,1;0.4): // plot with a=0.4

>plot2d({{"f",0.2}},0,1): // plot with a=0.2

 $>plot2d({{"f(x,b)",b=0.1}},0,1): // plot with 0.1$

>function $f(x) := x^3-x; \dots$

plot2d("f", r=1):

Berikut ini adalah ringkasan dari fungsi yang diterima

- ekspresi atau ekspresi simbolik dalam x
- fungsi atau fungsi simbolik dengan nama sebagai "f"
- fungsi-fungsi simbolik hanya dengan nama f

Fungsi plot2d() juga menerima fungsi simbolik. Untuk fungsi simbolik, nama saja sudah cukup.

Fungsi plot2d() memiliki kemampuan untuk menerima fungsi-fungsi simbolik sebagai argumennya. Untuk fungsi simbolik anda cukup dengan menyediakan nama fungsi tersebut.

>function $f(x) &= diff(x^x, x)$

>plot2d(f,0,2):

Tentu saja, untuk ekspresi atau ungkapan simbolik, nama variabel sudah cukup untuk memplotnya.

```
> expr &= sin(x) * exp(-x)
```

>plot2d(expr,0,3pi):


```
>function f(x) &= x^x;
>plot2d(f,r=1,cx=1,cy=1,color=blue,thickness=2);
>plot2d(&diff(f(x),x),>add,color=red,style="-.-"):
```


Untuk gaya garis, ada berbagai pilihan.

```
- style = "...". Pilih dari "-", "--", "-.", ".", ".-.", "-.-".
```

Warna dapat dipilih sebagai salah satu warna default, atau sebagai warna RGB.

⁻ color: Lihat di bawah untuk warna.

⁻ ketebalan: Defaultnya adalah 1.

- 0..15: indeks warna default.
- konstanta warna: putih, hitam, merah, hijau, biru, cyan, zaitun, abu-abu muda, abu-abu, abu-abu tua, oranye, hijau muda, pirus, biru muda, oranye muda, kuning
- rgb (merah, hijau, biru): parameter adalah real dalam [0,1].

>plot2d("exp(- x^2)", r=2, color=red, thickness=3, style="--"):

Berikut ini adalah pemandangan warna EMT yang sudah ditetapkan sebelumnya.

>aspect(2); columnsplot(ones(1,16),lab=0:15,grid=0,color=0:15):

Tetapi Anda bisa menggunakan warna apa pun.

>columnsplot(ones(1,16),grid=0,color=rgb(0,0,linspace(0,1,15))):

Menggambar beberapa kurva pada bidang koordinat yang sama

Memplot lebih dari satu fungsi (beberapa fungsi) ke dalam satu jendela dapat dilakukan dengan berbagai cara. Salah satu caranya adalah dengan menggunakan >add untuk beberapa pemanggilan ke plot2d secara bersamaan, kecuali pemanggilan pertama. Kita telah menggunakan fitur ini pada contoh di atas.

>aspect(); plot2d("cos(x)",r=2,grid=6); plot2d("x",style=".",>add):

>aspect(1.5); plot2d("sin(x)",0,2pi); plot2d("cos(x)",color=blue,style="--",>add):

Salah satu kegunaan >add adalah untuk menambahkan titik pada kurva.

>plot2d("sin(x)",0,pi); plot2d(2,sin(2),>points,>add):

Kita menambahkan titik persilangan dengan sebuah label(di posisi "cl" untuk center left), dan memasukkan hasilnya ke dalam notebook. Kita juga menambahkan judul ke dalam plot.

```
>plot2d(["cos(x)","x"],r=1.1,cx=0.5,cy=0.5, ...
    color=[black,blue],style=["-","."], ...
    grid=1);
>x0=solve("cos(x)-x",1); ...
    plot2d(x0,x0,>points,>add,title="Intersection Demo"); ...
    label("cos(x) = x",x0,x0,pos="cl",offset=20):
```


Dalam demo berikut ini, kita memplot fungsi sinc(x) = sin(x)/x dan ekspansi Taylor ke-8 dan ke-16. Kami menghitung ekspansi ini menggunakan Maxima melalui ekspresi simbolik. Plot ini dilakukan dalam perintah multi-baris berikut dengan tiga pemanggilan plot2d(). Perintah kedua dan ketiga memiliki set flag >add, yang membuat plot menggunakan rentang sebelumnya.

Kami menambahkan sebuah kotak label yang menjelaskan fungsi-fungsi tersebut.

>\$taylor(sin(x)/x,x,0,4)

$$\frac{x^4}{120} - \frac{x^2}{6} + 1$$

>plot2d("sinc(x)",0,4pi,color=green,thickness=2); ...
plot2d(&taylor(sin(x)/x,x,0,8),>add,color=blue,style="--"); ...
plot2d(&taylor(sin(x)/x,x,0,16),>add,color=red,style="--"); ...
labelbox(["sinc","T8","T16"],styles=["-","--","--"], ...
colors=[black,blue,red]):

Pada contoh berikut, kita menghasilkan Polinomial Bernstein.

>plot2d("(1-x)^10",0,1); // plot first function >for i=1 to 10; plot2d("bin(10,i)*x^i*(1-x)^(10-i)",>add); end; >insimg;

Metode ini melibatkan penggunaan sepasang matriks berukuran sama, yaitu matriks nilai-nilai \mathbf{x} dan matriks nilai-nilai \mathbf{y} .

Pembuatan sebuat matriks yang berisi nilai-nilai dengan setiap barisnya berisi sebuah Polinomial-Bernstein. Untuk membuat matriks ini, digunakan sebuah vektor kolom dengan elemen berindeks "i". Penjelasan lebih lanjut merujuk pada pengantar tentang bahasa matriks

```
>x=linspace(0,1,500);
>n=10; k=(0:n)'; // n is row vector, k is column vector
>y=bin(n,k)*x^k*(1-x)^(n-k); // y is a matrix then
>plot2d(x,y):
```


Perhatikan bahwa parameter warna dapat berupa vektor. Kemudian setiap warna digunakan untuk setiap baris matriks.

 $>x=linspace(0,1,200); y=x^{(1:10)}; plot2d(x,y,color=1:10):$

Metode lain adalah menggunakan vektor ekspresi(strings). Anda kemudian dapat menggunakan susunan warna, susunan gaya, dan susunan ketebalan dengan panjang yang sama.

>plot2d(["sin(x)","cos(x)"],0,2pi,color=4:5):

>plot2d(["sin(x)","cos(x)"],0,2pi): // plot vector of expressions

Kita bisa mendapatkan vektor seperti itu dari Maxima menggunakan makelist() dan mxm2str().

>v &= makelist(binomial(10,i)* x^i (1-x)^(10-i),i,0,10) // make list

>mxm2str(v) // get a vector of strings from the symbolic vector

```
(1-x)^10

10*(1-x)^9*x

45*(1-x)^8*x^2

120*(1-x)^7*x^3

210*(1-x)^6*x^4

252*(1-x)^5*x^5
```

210*(1-x)^4*x^6 120*(1-x)^3*x^7 45*(1-x)^2*x^8 10*(1-x)*x^9 x^10

>plot2d(mxm2str(v),0,1): // plot functions

Alternatif lain adalah dengan menggunakan bahasa matriks Euler.

Jika suatu ekspresi menghasilkan matriks fungsi, dengan satu fungsi di setiap baris, semua fungsi tersebut akan diplot ke dalam satu plot.

Untuk ini, gunakan vektor parameter dalam bentuk vektor kolom. Jika susunan warna ditambahkan maka akan digunakan untuk setiap baris plot.

>n=(1:10)'; plot2d("x^n",0,1,color=1:10):

Ekspresi dan fungsi satu baris dapat dianggap sebagai variabel global.

Jika Anda tidak dapat menggunakan variabel global, Anda perlu menggunakan fungsi dengan parameter tambahan, dan meneruskan parameter ini sebagai parameter titik koma.

Berhati-hatilah, untuk meletakkan semua parameter yang ditetapkan di akhir perintah plot2d. Dalam contoh ini kita meneruskan a=5 ke fungsi f, yang kita plot dari -10 hingga 10.

```
>function f(x,a) := 1/a*exp(-x^2/a); ...
plot2d("f",-10,10;5,thickness=2,title="a=5"):
```


Alternatifnya, gunakan koleksi dengan nama fungsi dan semua parameter tambahan. Daftar khusus ini disebut kumpulan panggilan, dan ini adalah cara yang lebih disukai untuk meneruskan argumen ke suatu fungsi yang kemudian diteruskan sebagai argumen ke fungsi lain.

Pada contoh berikut, kita menggunakan loop untuk memplot beberapa fungsi (lihat tutorial tentang pemrograman loop).

```
>plot2d({{"f",1}},-10,10); ...
for a=2:10; plot2d({{"f",a}},>add); end:
```


Kita dapat mencapai hasil yang sama dengan cara berikut menggunakan bahasa matriks EMT. Setiap baris matriks f(x,a) merupakan satu fungsi. Selain itu, kita dapat mengatur warna untuk setiap baris matriks. Klik dua kali pada fungsi getspectral() untuk penjelasannya.

>x=-10:0.01:10; a=(1:10)'; plot2d(x,f(x,a),color=getspectral(a/10)):

Label Teks

Dekorasi sederhana bisa menjadi

- judul dengan judul = "..."
- label x dan y dengan xl="...", yl="..."
- label teks lain dengan label("...",x,y)

Perintah label akan memplot ke plot saat ini pada koordinat plot (x,y). Hal ini memerlukan argumen posisional.

```
>plot2d("x^3-x",-1,2,title="y=x^3-x",yl="y",xl="x"):
```



```
>expr := "log(x)/x"; ...
plot2d(expr,0.5,5,title="y="+expr,xl="x",yl="y"); ...
label("(1,0)",1,0); label("Max",E,expr(E),pos="lc"):
```


Ada juga fungsi labelbox(), yang dapat menampilkan fungsi dan teks. Dibutuhkan vektor string dan warna, satu item untuk setiap fungsi.

```
>function f(x) &= x^2*exp(-x^2); ...
plot2d(&f(x),a=-3,b=3,c=-1,d=1); ...
plot2d(&diff(f(x),x),>add,color=blue,style="--"); ...
labelbox(["function","derivative"],styles=["-","--"], ...
colors=[black,blue],w=0.4);
```


Kotak ini secara default dijepit di bagian atas kanan, tetapi jika Anda menggunakan ">left," maka akan dijepit di bagian atas kiri. Anda dapat memindahkannya ke tempat mana pun yang Anda inginkan. Posisi jepitan ini adalah sudut kanan atas dari kotak, dan angka-angka tersebut merupakan pecahan dari ukuran jendela grafis. Lebar kotak akan disesuaikan secara otomatis.

Untuk plot titik, kotak label juga berfungsi. Tambahkan parameter ">points," atau vektor dari bendera, satu untuk setiap label.

Pada contoh berikut, hanya ada satu fungsi. Jadi, kita dapat menggunakan string sebagai pengganti vektor dari string. Kami mengatur warna teks menjadi hitam untuk contoh ini.

```
>n=10; plot2d(0:n,bin(n,0:n),>addpoints); ...
labelbox("Binomials",styles="[]",>points,x=0.1,y=0.1, ...
```

tcolor=black, >left):

Gaya plot ini juga tersedia di statplot(). Seperti di plot2d() warna dapat diatur untuk setiap baris plot. Masih banyak lagi plot khusus untuk keperluan statistik (lihat tutorial tentang statistik).

>statplot(1:10,random(2,10),color=[red,blue]):

Fitur serupa yaitu fungsi textbox().

Lebarnya secara default adalah lebar maksimal baris teks. Tapi itu bisa diatur juga oleh pengguna.

```
>function f(x) &= \exp(-x) \cdot \sin(2 \cdot pi \cdot x); ... plot2d("f(x)", 0, 2pi); ... textbox(latex("\text{text}{Example of a damped oscillation}) f(x) = e^{-x} \sin(2\pi x)"), w=0.85):
```


Label teks, judul, kotak label, dan teks lainnya dapat berisi string Unicode (lihat sintaks EMT untuk mengetahui lebih lanjut tentang string Unicode).

>plot2d("x^3-x",title=u"x → x³ - x"):

Label pada sumbu x dan y bisa vertikal, begitu juga dengan sumbunya.

>plot2d("sinc(x)",0,2pi,xl="x",yl=u"x → sinc(x)",>vertical):

LaTeX

Anda juga dapat memplot rumus LaTeX jika Anda telah menginstal sistem LaTeX. Saya merekomendasikan MiKTeX. Jalur ke biner "lateks" dan "dvipng" harus berada di jalur sistem, atau Anda harus mengatur LaTeX di menu opsi.

Perhatikan, penguraian LaTeX lambat. Jika Anda ingin menggunakan LaTeX dalam plot animasi, Anda harus memanggil latex() sebelum loop satu kali dan menggunakan hasilnya (gambar dalam matriks RGB).

Pada plot berikut, kami menggunakan LaTeX untuk label x dan y, label, kotak label, dan judul plot.

```
>plot2d("exp(-x)*sin(x)/x",a=0,b=2pi,c=0,d=1,grid=6,color=blue, ...
    title=latex("\text{Function $\Phi$}"), ...
    xl=latex("\phi"),yl=latex("\Phi(\phi)")); ...
textbox( ...
    latex("\Phi(\phi) = e^{-\phi} \frac{\sin(\phi)}{\phi}"),x=0.8,y=0.5); ...
label(latex("\Phi",color=blue),1,0.4):
```


Seringkali, kita menginginkan spasi dan label teks yang tidak konformal pada sumbu x. Kita bisa menggunakan xaxis() dan yaxis() seperti yang akan kita tunjukkan nanti.

Cara termudah adalah membuat plot kosong dengan bingkai menggunakan grid=4, lalu menambahkan grid dengan ygrid() dan xgrid(). Pada contoh berikut, kita menggunakan tiga string LaTeX untuk label pada sumbu x dengan xtick().

```
>plot2d("sinc(x)",0,2pi,grid=4,<ticks); ...
ygrid(-2:0.5:2,grid=6); ...
xgrid([0:2]*pi,<ticks,grid=6); ...
xtick([0,pi,2pi],["0","\pi","2\pi"],>latex);
```


Of course, functions can also be used.

```
>function map f(x) ...
if x>0 then return x^4
else return x^2
endif
endfunction
```

Parameter "peta" membantu menggunakan fungsi untuk vektor. Untuk plot, itu tidak perlu. Tapi untuk menunjukkan vektorisasi itu berguna, kita menambahkan beberapa poin penting ke plot di x=-1, x=0 dan x=1.

Pada plot berikut, kita juga memasukkan beberapa kode LaTeX. Kami menggunakannya untuk dua label dan kotak teks. Tentu saja, Anda hanya bisa menggunakannya

LaTeX jika Anda telah menginstal LaTeX dengan benar.

```
>plot2d("f",-1,1,xl="x",yl="f(x)",grid=6); ...
plot2d([-1,0,1],f([-1,0,1]),>points,>add); ...
label(latex("x^3"),0.72,f(0.72)); ...
label(latex("x^2"),-0.52,f(-0.52),pos="ll"); ...
textbox( ...
latex("f(x)=\begin{cases} x^3 & x>0 \\ x^2 & x \le 0\end{cases}"), ...
x=0.7,y=0.2);
```


Interaksi pengguna

Saat memplot suatu fungsi atau ekspresi, parameter >pengguna memungkinkan pengguna untuk memperbesar dan menggeser plot dengan tombol kursor atau mouse. Pengguna bisa

- perbesar dengan + atau -
- pindahkan plot dengan tombol kursor
- pilih jendela plot dengan mouse
- atur ulang tampilan dengan spasi
- keluar dengan kembali

Tombol spasi akan mengatur ulang plot ke jendela plot aslinya.

Saat memplot data, flag >user hanya akan menunggu penekanan tombol.

>plot2d($\{\{"x^3-a*x",a=1\}\},$ >user,title="Press any key!"):


```
>plot2d("exp(x)*sin(x)",user=true, ...
title="+/- or cursor keys (return to exit)"):
```

+/- or cursor keys (return to exit)

Berikut ini menunjukkan cara interaksi pengguna tingkat lanjut (lihat tutorial tentang pemrograman untuk detailnya).

Fungsi bawaan mousedrag() menunggu aktivitas mouse atau keyboard. Ini melaporkan mouse ke bawah, gerakan mouse atau mouse ke atas, dan penekanan tombol. Fungsi dragpoints() memanfaatkan ini, dan memungkinkan pengguna menyeret titik mana pun dalam plot.

Kita membutuhkan fungsi plot terlebih dahulu. Misalnya, kita melakukan interpolasi pada 5 titik dengan polinomial. Fungsi tersebut harus diplot ke dalam area plot yang tetap.

```
>function plotf(xp,yp,select) ...
d=interp(xp,yp);
plot2d("interpval(xp,d,x)";d,xp,r=2);
plot2d(xp,yp,>points,>add);
if select>0 then
   plot2d(xp[select],yp[select],color=red,>points,>add);
endif;
title("Drag one point, or press space or return!");
endfunction
```

Perhatikan parameter titik koma di plot2d (d dan xp), yang diteruskan ke evaluasi fungsi interp(). Tanpa ini, kita harus menulis fungsi plotinterp() terlebih dahulu, mengakses nilainya secara global.

Sekarang kita menghasilkan beberapa nilai acak, dan membiarkan pengguna menyeret titiknya.

```
>t=-1:0.5:1; dragpoints("plotf",t,random(size(t))-0.5):
```


Ada juga fungsi yang memplot fungsi lain bergantung pada vektor parameter, dan memungkinkan pengguna menyesuaikan parameter ini.

Pertama kita membutuhkan fungsi plot.

```
>function plotf([a,b]) := plot2d("exp(a*x)*cos(2pi*b*x)",0,2pi;a,b);
```

Kemudian kita memerlukan nama untuk parameter, nilai awal dan matriks rentang nx2, opsional garis judul.

Ada penggeser interaktif, yang dapat menetapkan nilai oleh pengguna. Fungsi dragvalues() menyediakan ini.

>dragvalues("plotf",["a","b"],[-1,2],[[-2,2];[1,10]], ... heading="Drag these values:",hcolor=black):

Dimungkinkan untuk membatasi nilai yang diseret menjadi bilangan bulat. Sebagai contoh, kita menulis fungsi plot, yang memplot polinomial Taylor berderajat n ke fungsi kosinus.

```
>function plotf(n) ...
plot2d("cos(x)",0,2pi,>square,grid=6);
plot2d(&"taylor(cos(x),x,0,@n)",color=blue,>add);
textbox("Taylor polynomial of degree "+n,0.1,0.02,style="t",>left);
endfunction
```

Sekarang kita masukkan derajat n bervariasi dari 0 hingga 20 dalam 20 perhentian. Hasil dragvalues() digunakan untuk memplot sketsa dengan n ini, dan untuk memasukkan plot ke dalam buku catatan.

```
>nd=dragvalues("plotf","degree",2,[0,20],20,y=0.8, ...
heading="Drag the value:"); ...
plotf(nd):
```


Berikut ini adalah demonstrasi sederhana dari fungsinya. Pengguna dapat menggambar jendela plot, meninggalkan jejak titik.

```
>function dragtest ...
plot2d(none,r=1,title="Drag with the mouse, or press any key!");
start=0;
repeat
   {flag,m,time}=mousedrag();
   if flag==0 then return; endif;
   if flag==2 then
      hold on; mark(m[1],m[2]); hold off;
   endif;
end
endfunction
```

>dragtest // lihat hasilnya dan cobalah lakukan!

Gaya Plot 2D

Secara default, EMT menghitung tick sumbu otomatis dan menambahkan label ke setiap tick. Ini dapat diubah dengan parameter grid. Gaya

default sumbu dan label dapat diubah. Selain itu, label dan judul dapat ditambahkan secara manual. Untuk menyetel ulang ke gaya default, gunakan reset().

```
>aspect();
>figure(3,4); ...
  figure(1); plot2d("x^3-x",grid=0); ... // no grid, frame or axis
> figure(2); plot2d("x^3-x",grid=1); ... // x-y-axis
> figure(3); plot2d("x^3-x",grid=2); ... // default ticks
> figure(4); plot2d("x^3-x",grid=3); ... // x-y- axis with labels inside
> figure(5); plot2d("x^3-x",grid=4); ... // no ticks, only labels
> figure(6); plot2d("x^3-x",grid=5); ... // default, but no margin
> figure(7); plot2d("x^3-x",grid=6); ... // axes only
> figure(8); plot2d("x^3-x",grid=7); ... // axes only, ticks at axis
> figure(9); plot2d("x^3-x",grid=8); ... // axes only, finer ticks at axis
> figure(10); plot2d("x^3-x",grid=9); ... // default, small ticks inside
> figure(11); plot2d("x^3-x",grid=10); ... // no ticks, axes only
> figure(0):
```


Parameter <frame mematikan frame, dan framecolor=blue mengatur frame menjadi warna biru.

Jika Anda menginginkan tanda centang Anda sendiri, Anda dapat menggunakan style=0, dan menambahkan semuanya nanti.

```
>aspect(1.5);
>plot2d("x^3-x",grid=0); // plot
>frame; xgrid([-1,0,1]); ygrid(0): // add frame and grid
```


Untuk judul plot dan label sumbu, lihat contoh berikut.

```
>plot2d("exp(x)",-1,1);
>textcolor(black); // set the text color to black
>title(latex("y=e^x")); // title above the plot
>xlabel(latex("x")); // "x" for x-axis
>ylabel(latex("y"),>vertical); // vertical "y" for y-axis
>label(latex("(0,1)"),0,1,color=blue): // label a point
```


Sumbu dapat digambar secara terpisah dengan xaxis() dan yaxis().

```
>plot2d("x^3-x",<grid,<frame);
>xaxis(0,xx=-2:1,style="->"); yaxis(0,yy=-5:5,style="->"):
```


Teks pada plot dapat diatur dengan label(). Dalam contoh berikut, "lc" berarti bagian tengah bawah. Ini menetapkan posisi label relatif terhadap koordinat plot.

>function $f(x) &= x^3-x$

```
>plot2d(f,-1,1,>square);
>x0=fmin(f,0,1); // compute point of minimum
>label("Rel. Min.",x0,f(x0),pos="lc"): // add a label there
```


Terdapat juga kotak teks.

```
>plot2d(&f(x),-1,1,-2,2); // function >plot2d(&diff(f(x),x),>add,style="--",color=red); // derivative >labelbox(["f","f'"],["-","--"],[black,red]): // label box
```


>plot2d(["exp(x)","1+x"],color=[black,blue],style=["-","-.-"]):


```
>gridstyle("->",color=gray,textcolor=gray,framecolor=gray); ...
plot2d("x^3-x",grid=1); ...
settitle("y=x^3-x",color=black); ...
label("x",2,0,pos="bc",color=gray); ...
label("y",0,6,pos="cl",color=gray); ...
reset():
```


Untuk kontrol lebih lanjut, sumbu ${\bf x}$ dan sumbu ${\bf y}$ dapat dilakukan secara manual.

Perintah fullwindow() memperluas jendela plot karena kita tidak lagi memerlukan tempat untuk label di luar jendela plot. Gunakan shrinkwindow() atau reset() untuk menyetel ulang ke default.

```
>fullwindow; ...
gridstyle(color=darkgray,textcolor=darkgray); ...
plot2d(["2^x","1","2^(-x)"],a=-2,b=2,c=0,d=4,<grid,color=4:6,<frame); ...
xaxis(0,-2:1,style="->"); xaxis(0,2,"x",<axis); ...
yaxis(0,4,"y",style="->"); ...
yaxis(-2,1:4,>left); ...
yaxis(2,2^(-2:2),style=".",<left); ...
labelbox(["2^x","1","2^-x"],colors=4:6,x=0.8,y=0.2); ...
reset:</pre>
```


Berikut adalah contoh lain, di mana string Unicode digunakan dan sumbunya berada di luar area plot.

```
>aspect(1.5);
>plot2d(["sin(x)","cos(x)"],0,2pi,color=[red,green],<grid,<frame); ...
    xaxis(-1.1,(0:2)*pi,xt=["0",u"&pi;",u"2&pi;"],style="-",>ticks,>zero); ...
    xgrid((0:0.5:2)*pi,<ticks); ...
    yaxis(-0.1*pi,-1:0.2:1,style="-",>zero,>grid); ...
    labelbox(["sin","cos"],colors=[red,green],x=0.5,y=0.2,>left); ...
    xlabel(u"&phi;"); ylabel(u"f(&phi;)"):
```


Merencanakan Data 2D

Jika x dan y adalah vektor data, maka data tersebut akan digunakan sebagai koordinat x dan y pada suatu kurva. Dalam hal ini, a, b, c,

dan d, atau radius r dapat ditentukan, atau jendela plot akan menyesuaikan secara otomatis dengan data. Alternatifnya, >persegi dapat diatur untuk mempertahankan rasio aspek persegi.

Merencanakan ekspresi hanyalah singkatan dari plot data. Untuk plot data, Anda memerlukan satu atau beberapa baris nilai x, dan satu atau beberapa baris nilai y. Dari rentang dan nilai x, fungsi plot2d akan menghitung data yang akan diplot, secara default dengan evaluasi fungsi yang adaptif. Untuk plot titik gunakan ">titik", untuk garis dan titik campuran gunakan ">addpoints".

Tapi Anda bisa memasukkan data secara langsung.

- Gunakan vektor baris untuk x dan y untuk satu fungsi.
- Matriks untuk x dan y diplot baris demi baris.

Berikut adalah contoh dengan satu baris untuk x dan y.

$>x=-10:0.1:10; y=exp(-x^2)*x; plot2d(x,y):$

Data juga dapat diplot sebagai poin. Gunakan points=true untuk ini. Plotnya berfungsi seperti poligon, tetapi hanya menggambar sudutnya saja.

```
- style="...": Pilih dari "[]", "<>", "o", ".", "..", "+", "*", "[]#", "< >#", "o#", "..#", "#", "|".
```

Untuk memplot kumpulan titik, gunakan >titik. Jika warna merupakan vektor warna, masing-masing titik

 ${\tt mendapat}$ warna berbeda. Untuk matriks koordinat dan vektor kolom, warna diterapkan pada baris matriks.

Parameter >addpoints menambahkan titik ke segmen garis untuk plot data.

```
>xdata=[1,1.5,2.5,3,4]; ydata=[3,3.1,2.8,2.9,2.7]; // data
>plot2d(xdata,ydata,a=0.5,b=4.5,c=2.5,d=3.5,style="."); // lines
>plot2d(xdata,ydata,>points,>add,style="o"): // add points
```


>p=polyfit(xdata,ydata,1); // get regression line
>plot2d("polyval(p,x)",>add,color=red): // add plot of line

Menggambar Daerah Yang Dibatasi Kurva

Plot data sebenarnya berbentuk poligon. Kita juga dapat memplot kurva atau kurva terisi.

```
- terisi=benar mengisi plot.
```

- style="...": Pilih dari "#", "/", "\", "\/".
- Fillcolor : Lihat di atas untuk mengetahui warna yang tersedia.

Warna isian ditentukan oleh argumen "fillcolor", dan pada <outline opsional, mencegah menggambar batas untuk semua gaya kecuali gaya default.

```
>t=linspace(0,2pi,1000); // parameter for curve
>x=sin(t)*exp(t/pi); y=cos(t)*exp(t/pi); // x(t) and y(t)
>figure(1,2); aspect(16/9)
>figure(1); plot2d(x,y,r=10); // plot curve
>figure(2); plot2d(x,y,r=10,>filled,style="/",fillcolor=red); // fill curve
>figure(0):
```


Dalam contoh berikut kita memplot elips terisi dan dua segi enam terisi menggunakan kurva tertutup dengan 6 titik dengan gaya isian berbeda.

>x=linspace(0,2pi,1000); plot2d(sin(x),cos(x)*0.5,r=1,>filled,style="/"):

>t=linspace(0,2pi,6); ...
plot2d(cos(t),sin(t),>filled,style="/",fillcolor=red,r=1.2):

>t=linspace(0,2pi,6); plot2d(cos(t),sin(t),>filled,style="#"):

Contoh lainnya adalah septagon yang kita buat dengan 7 titik pada lingkaran satuan.

```
>t=linspace(0,2pi,7); ...
plot2d(cos(t),sin(t),r=1,>filled,style="/",fillcolor=red):
```


Berikut adalah himpunan nilai maksimal dari empat kondisi linier yang kurang dari atau sama dengan 3. Ini adalah $A[k].v \le 3$ untuk semua baris A. Untuk mendapatkan sudut yang bagus, kita menggunakan n yang relatif besar.

```
>A=[2,1;1,2;-1,0;0,-1];
>function f(x,y) := max([x,y].A');
>plot2d("f",r=4,level=[0;3],color=green,n=111):
```


Poin utama dari bahasa matriks adalah memungkinkan pembuatan tabel fungsi dengan mudah.

```
>t=linspace(0,2pi,1000); x=cos(3*t); y=sin(4*t);
```

Kami sekarang memiliki nilai vektor x dan y. plot2d() dapat memplot nilai-nilai ini sebagai kurva yang menghubungkan titik-titik tersebut. Plotnya bisa

sebagai kurva yang menghubungkan titik-titik tersebut. Plotnya bisa diisi. Pada kasus ini dapat memberikan hasil yang bagus karena aturan belitan, yang digunakan untuk "fill".

>plot2d(x,y,<grid,<frame,>filled):

Vektor interval diplot terhadap nilai x sebagai wilayah terisi antara nilai interval yang lebih rendah dan lebih tinggi.

Hal ini dapat berguna untuk memplot kesalahan perhitungan. Tapi itu bisa juga dapat digunakan untuk memplot kesalahan statistik.

```
>t=0:0.1:1; ...
plot2d(t,interval(t-random(size(t)),t+random(size(t))),style="|"); ...
plot2d(t,t,add=true):
```


Jika x adalah vektor yang diurutkan, dan y adalah vektor interval, maka plot2d akan memplot rentang interval yang terisi pada bidang. Gaya isiannya sama dengan gaya poligon.

>t=-1:0.01:1; $x=\sim t-0.01, t+0.01\sim$; $y=x^3-x$; >plot2d(t,y):

Dimungkinkan untuk mengisi wilayah nilai untuk fungsi tertentu. Untuk ini, level harus berupa matriks 2xn. Baris pertama adalah batas bawah dan baris kedua berisi batas atas.

```
>expr := "2*x^2+x*y+3*y^4+y"; // define an expression f(x,y) >plot2d(expr,level=[0;1],style="-",color=blue): // 0 <= f(x,y) <= 1
```


Kita juga dapat mengisi rentang nilai seperti

>plot2d("(x^2+y^2)^2-x^2+y^2", r=1.2, level=[-1;0], style="/"):

>plot2d("cos(x)", "sin(x)^3", xmin=0, xmax=2pi, >filled, style="/"):

Grafik Fungsi Parametrik

Nilai x tidak perlu diurutkan. (x,y) hanya menggambarkan sebuah kurva. Jika x diurutkan, kurva tersebut merupakan grafik suatu fungsi.

Dalam contoh berikut, kita memplot spiral

Kita perlu menggunakan banyak titik untuk tampilan yang halus atau fungsi adaptif() untuk mengevaluasi ekspresi (lihat fungsi adaptif() untuk lebih jelasnya).

```
>t=linspace(0,1,1000); ... plot2d(t*cos(2*pi*t),t*sin(2*pi*t),r=1):
```


Sebagai alternatif, dimungkinkan untuk menggunakan dua ekspresi untuk kurva. Berikut ini plot kurva yang sama seperti di atas.

>plot2d("x*cos(2*pi*x)","x*sin(2*pi*x)",xmin=0,xmax=1,r=1):

>t=linspace(0,1,1000); r=exp(-t); x=r*cos(2pi*t); y=r*sin(2pi*t); >plot2d(x,y,r=1):

Pada contoh berikutnya, kita memplot kurvanya

dengan

>t=linspace(0,2pi,1000); r=1+sin(3*t)/2; x=r*cos(t); y=r*sin(t); ...
plot2d(x,y,>filled,fillcolor=red,style="/",r=1.5):

Menggambar Grafik Bilangan Kompleks

Serangkaian bilangan kompleks juga dapat diplot. Kemudian titik-titik grid akan dihubungkan. Jika sejumlah garis kisi ditentukan (atau vektor garis kisi 1x2) dalam argumen cgrid, hanya garis kisi tersebut yang terlihat.

Matriks bilangan kompleks secara otomatis akan diplot sebagai kisi-kisi pada bidang kompleks.

Pada contoh berikut, kita memplot gambar lingkaran satuan di bawah fungsi eksponensial. Parameter cgrid menyembunyikan beberapa kurva grid.

```
>aspect(); r=linspace(0,1,50); a=linspace(0,2pi,80)'; z=r*exp(I*a);...
plot2d(z,a=-1.25,b=1.25,c=-1.25,d=1.25,cgrid=10):
```


>aspect(1.25); r=linspace(0,1,50); a=linspace(0,2pi,200)'; z=r*exp(I*a); >plot2d(exp(z),cgrid=[40,10]):

>r=linspace(0,1,10); a=linspace(0,2pi,40)'; z=r*exp(I*a); >plot2d(exp(z),>points,>add):

Vektor bilangan kompleks secara otomatis diplot sebagai kurva pada bidang kompleks dengan bagian nyata dan bagian imajiner.

Dalam contoh, kita memplot lingkaran satuan dengan

```
>t=linspace(0,2pi,1000); ... plot2d(exp(I*t)+exp(4*I*t),r=2):
```


Plot Statistik

Ada banyak fungsi yang dikhususkan pada plot statistik. Salah satu plot yang sering digunakan adalah plot kolom.

Jumlah kumulatif dari nilai terdistribusi normal 0-1 menghasilkan jalan acak.

>plot2d(cumsum(randnormal(1,1000))):

Penggunaan dua baris menunjukkan jalan dalam dua dimensi.

>X=cumsum(randnormal(2,1000)); plot2d(X[1],X[2]):

>columnsplot(cumsum(random(10)),style="/",color=blue):

Itu juga dapat menampilkan string sebagai label.

```
>months=["Jan","Feb","Mar","Apr","May","Jun", ...
    "Jul","Aug","Sep","Oct","Nov","Dec"];
>values=[10,12,12,18,22,28,30,26,22,18,12,8];
>columnsplot(values,lab=months,color=red,style="-");
>title("Temperature"):
```


>k=0:10; >plot2d(k,bin(10,k),>bar):

>plot2d(k,bin(10,k)); plot2d(k,bin(10,k),>points,>add):

>plot2d(normal(1000), normal(1000), >points, grid=6, style=".."):

>plot2d(normal(1,1000),>distribution,style="0"):

>plot2d("qnormal",0,5;2.5,0.5,>filled):

Untuk memplot distribusi statistik eksperimental, Anda dapat menggunakan distribution=n dengan plot2d.

>w=randexponential(1,1000); // exponential distribution >plot2d(w,>distribution): // or distribution=n with n intervals

Atau Anda dapat menghitung distribusi dari data dan memplot hasilnya dengan >bar di plot3d, atau dengan plot kolom.

>w=normal(1000); // 0-1-normal distribution > $\{x,y\}$ =histo(w,10,v=[-6,-4,-2,-1,0,1,2,4,6]); // interval bounds v >plot2d(x,y,>bar):

Fungsi statplot() mengatur gaya dengan string sederhana.

>statplot(1:10,cumsum(random(10)),"b"):


```
>n=10; i=0:n; ...
plot2d(i,bin(n,i)/2^n,a=0,b=10,c=0,d=0.3); ...
plot2d(i,bin(n,i)/2^n,points=true,style="ow",add=true,color=blue):
```


Selain itu, data dapat diplot sebagai batang. Dalam hal ini, x harus diurutkan dan satu elemen lebih panjang dari y. Batangnya akan memanjang dari x[i] hingga x[i+1] dengan nilai y[i]. Jika x berukuran sama dengan y, maka x akan diperpanjang satu elemen dengan spasi terakhir.

Gaya isian dapat digunakan seperti di atas.

>n=10; k=bin(n,0:n); ...
plot2d(-0.5:n+0.5,k,bar=true,fillcolor=lightgray):

Data untuk plot batang (batang=1) dan histogram (histogram=1) dapat diberikan secara eksplisit dalam xv dan yv, atau dapat dihitung dari distribusi empiris dalam xv dengan >distribusi (atau distribusi=n). Histogram nilai xv akan dihitung secara otomatis dengan >histogram. Jika >even ditentukan, nilai xv akan dihitung dalam interval bilangan bulat.

>plot2d(normal(10000),distribution=50):

>k=0:10; m=bin(10,k); x=(0:11)-0.5; plot2d(x,m,>bar):

>columnsplot(m,k):

>plot2d(random(600)*6,histogram=6):

Untuk distribusi, terdapat parameter distribution=n, yang menghitung nilai secara otomatis dan mencetak distribusi relatif dengan n sub-interval.

>plot2d(normal(1,1000),distribution=10,style="\/"):

Dengan parameter even=true, ini akan menggunakan interval bilangan bulat.

>plot2d(intrandom(1,1000,10),distribution=10,even=true):

Perhatikan bahwa ada banyak plot statistik yang mungkin berguna. Silahkan lihat tutorial tentang statistik.

>columnsplot(getmultiplicities(1:6,intrandom(1,6000,6))):

>plot2d(normal(1,1000),>distribution); ...
plot2d("qnormal(x)",color=red,thickness=2,>add):

Ada juga banyak plot khusus untuk statistik. Plot kotak menunjukkan kuartil distribusi ini dan banyak outlier. Menurut definisinya, outlier dalam plot kotak adalah data yang melebihi 1,5 kali rentang 50% tengah plot.

>M=normal(5,1000); boxplot(quartiles(M)):

Fungsi Implisit

Plot implisit menunjukkan penyelesaian garis level f(x,y)=level, dimana "level" dapat berupa nilai tunggal atau vektor nilai. Jika level = "auto", akan ada garis level nc, yang akan tersebar antara fungsi minimum dan maksimum secara merata. Warna yang lebih gelap atau lebih terang dapat ditambahkan dengan >hue untuk menunjukkan nilai fungsi. Untuk fungsi implisit, xv harus berupa fungsi atau ekspresi parameter x dan y, atau alternatifnya, xv dapat berupa matriks nilai.

Euler dapat menandai garis level

dari fungsi apa pun.

Untuk menggambar himpunan f(x,y)=c untuk satu atau lebih konstanta c, Anda dapat menggunakan plot2d() dengan plot implisitnya pada bidang. Parameter c adalah level=c, dimana c dapat berupa vektor garis level. Selain itu, skema warna dapat digambar di latar belakang untuk menunjukkan nilai fungsi setiap titik dalam plot. Parameter "n" menentukan kehalusan plot.

```
>aspect(1.5);
>plot2d("x^2+y^2-x*y-x",r=1.5,level=0,contourcolor=red):
```


>expr := $"2*x^2+x*y+3*y^4+y"$; // define an expression f(x,y) >plot2d(expr,level=0): // Solutions of f(x,y)=0

>plot2d(expr,level=0:0.5:20,>hue,contourcolor=white,n=200): // nice

>plot2d(expr,level=0:0.5:20,>hue,>spectral,n=200,grid=4): // nicer

Ini juga berfungsi untuk plot data. Namun Anda harus menentukan rentangnya untuk label sumbu.

```
>x=-2:0.05:1; y=x'; z=expr(x,y);
>plot2d(z,level=0,a=-1,b=2,c=-2,d=1,>hue):
```


>plot2d("x^3-y^2",>contour,>hue,>spectral):

>plot2d(" x^3-y^2 ",level=0,contourwidth=3,>add,contourcolor=red):

>z=z+normal(size(z))*0.2; >plot2d(z,level=0.5,a=-1,b=2,c=-2,d=1):

>plot2d(expr,level=[0:0.2:5;0.05:0.2:5.05],color=lightgray):

>plot2d("x^2+y^3+x*y",level=1,r=4,n=100):

>plot2d(" x^2+2*y^2-x*y ",level=0:0.1:10,n=100,contourcolor=white,>hue):

Dimungkinkan juga untuk mengisi set

dengan rentang level.

Dimungkinkan untuk mengisi wilayah nilai untuk fungsi tertentu. Untuk ini, level harus berupa matriks 2xn. Baris pertama adalah batas bawah dan baris kedua berisi batas atas.

>plot2d(expr,level=[0;1],style="-",color=blue): // 0 <= f(x,y) <= 1

Plot implisit juga dapat menunjukkan rentang level. Maka level harus berupa matriks interval level 2xn, di mana baris pertama berisi awal dan baris kedua berisi akhir setiap interval. Alternatifnya, vektor baris sederhana dapat digunakan untuk level, dan parameter dl memperluas nilai level ke interval.

>plot2d("x^4+y^4",r=1.5,level=[0;1],color=blue,style="/"):

>plot2d("x^2+y^3+x*y",level=[0,2,4;1,3,5],style="/",r=2,n=100):

>plot2d("x^2+y^3+x*y",level=-10:20,r=2,style="-",dl=0.1,n=100):

>plot2d("sin(x)*cos(y)",r=pi,>hue,>levels,n=100):

Dimungkinkan juga untuk menandai suatu wilayah

Hal ini dilakukan dengan menambahkan level dengan dua baris.

```
>plot2d("(x^2+y^2-1)^3-x^2*y^3",r=1.3, ...

style="#",color=red,<outline, ...

level=[-2;0],n=100):
```


Dimungkinkan untuk menentukan level tertentu. Misalnya, kita dapat memplot solusi persamaan seperti

>plot2d("x^3-x*y+x^2*y^2", r=6, level=1, n=100):


```
>function starplot1 (v, style="/", color=green, lab=none) ...
    if !holding() then clg; endif;
    w=window(); window(0,0,1024,1024);
    h=holding(1);
    r=max(abs(v))*1.2;
    setplot(-r,r,-r,r);
    n=cols(v); t=linspace(0,2pi,n);
    v=v|v[1]; c=v*cos(t); s=v*sin(t);
    cl=barcolor(color); st=barstyle(style);
    loop 1 to n
        polygon([0,c[#],c[#+1]],[0,s[#],s[#+1]],1);
        if lab!=none then
            rlab=v[#]+r*0.1;
```

```
{col,row}=toscreen(cos(t[#])*rlab,sin(t[#])*rlab);
  ctext(""+lab[#],col,row-textheight()/2);
  endif;
end;
barcolor(cl); barstyle(st);
holding(h);
window(w);
endfunction
```

Tidak ada tanda centang kotak atau sumbu di sini. Selain itu, kita menggunakan jendela penuh untuk plotnya.

Kita memanggil reset sebelum kita menguji plot ini untuk mengembalikan default grafis. Ini tidak perlu dilakukan jika Anda yakin plot Anda berhasil.

>reset; starplot1(normal(1,10)+5,color=red,lab=1:10):

Terkadang, Anda mungkin ingin merencanakan sesuatu yang plot2d tidak bisa lakukan, tapi hampir.

Dalam fungsi berikut, kita membuat plot impuls logaritmik. plot2d dapat melakukan plot logaritmik, tetapi tidak untuk batang impuls.

```
>function logimpulseplot1 (x,y) ...
{x0,y0}=makeimpulse(x,log(y)/log(10));
plot2d(x0,y0,>bar,grid=0);
h=holding(1);
frame();
xgrid(ticks(x));
p=plot();
for i=-10 to 10;
if i<=p[4] and i>=p[3] then
ygrid(i,yt="10^"+i);
```

```
endif;
end;
holding(h);
endfunction
```

Mari kita uji dengan nilai yang terdistribusi secara eksponensial.

```
>aspect(1.5); x=1:10; y=-\log(random(size(x)))*200; ... logimpulseplot1(x,y):
```


Mari kita menganimasikan kurva 2D menggunakan plot langsung. Perintah plot(x,y) hanya memplot kurva ke dalam jendela plot. setplot(a,b,c,d) menyetel jendela ini.

Fungsi wait(0) memaksa plot muncul di jendela grafis. Jika tidak, pengundian ulang akan dilakukan dalam interval waktu yang jarang.

```
>function animliss (n,m) ...
t=linspace(0,2pi,500);
f=0;
c=framecolor(0);
l=linewidth(2);
setplot(-1,1,-1,1);
repeat
   clg;
   plot(sin(n*t),cos(m*t+f));
   wait(0);
   if testkey() then break; endif;
   f=f+0.02;
end;
framecolor(c);
linewidth(l);
endfunction
```

Tekan tombol apa saja untuk menghentikan animasi ini.

>animliss(2,3); // lihat hasilnya, jika sudah puas, tekan ENTER

Plot Logaritmik

EMT menggunakan parameter "logplot" untuk skala logaritmik. Plot logaritma dapat diplot menggunakan skala logaritma di y dengan logplot=1, atau menggunakan skala logaritma di x dan y dengan logplot=2, atau di x dengan logplot=3.

- logplot=1: y-logaritma
- logplot=2: x-y-logaritma
- logplot=3: x-logaritma

>plot2d("exp(x^3-x)* x^2 ",1,5,logplot=1):

>plot2d("exp(x+sin(x))",0,100,logplot=1):

>plot2d("exp(x+sin(x))",10,100,logplot=2):

>plot2d("gamma(x)",1,10,logplot=1):

>plot2d("log(x*(2+sin(x/100)))",10,1000,logplot=3):

Ini juga berfungsi dengan plot data.

>x=10^(1:20); y=x^2-x; >plot2d(x,y,logplot=2):

Contoh Soal

1. Gambarkan kurva

 x^3

>aspect(3,4); plot2d(x^3):

2. Gambarkan kurva

$$x^2 - 2x$$

>aspect(1.5); plot2d("x^2-2x"):

3. Gambarkan kurva

x + 1dan2x - 3

>plot2d(["x+1","2x-3"],-5,5):

4. Gambarkan kurva

sin(x)

>plot2d("sin(x)"); insimg(20)

Diketahui fungsi

$$a = 2^x$$

$$b = log x$$

5. Gambarkan kurva dari fungsi b

```
>function a(x) := 2^x;
>function b(x) := log(x);
>aspect(1.2); plot2d("b"):
```


6. Gambarkan kurva dari fungsi a

>plot2d("a",-2,5); insimg(15)

7. Gambarkan kurva

$$x^3 + y^2$$

>plot2d(" x^3+y^2 ", r=1.5, level=[0;1], color=blue, style="/"):

8.

>t=linspace(0,2pi,9);
>plot2d(cos(t),sin(t),>filled,style="/",fillcolor=red,r=1.2):

9. Gambarkan kurva

$$x^4 - y^2$$

>plot2d("x^4-y^2",>contour,>hue,>spectral):

10. Gambarkan 5 diagram batang (random)

>aspect(1.2); columnsplot(cumsum(random(5)),style="/",color=green):

Rujukan Lengkap Fungsi plot2d()

```
function plot2d (xv, yv, btest, a, b, c, d, xmin, xmax, r, n, ...
  logplot, grid, frame, framecolor, square, color, thickness, style, ...
  auto, add, user, delta, points, addpoints, pointstyle, bar, histogram,
  distribution, even, steps, own, adaptive, hue, level, contour, ...
  nc, filled, fillcolor, outline, title, xl, yl, maps, contourcolor, ..
 contourwidth, ticks, margin, clipping, cx, cy, insimg, spectral, ..
cgrid, vertical, smaller, dl, niveau, levels)
Multipurpose plot function for plots in the plane (2D plots). This function can do
plots of functions of one variables, data plots, curves in the plane, bar plots, grids
of complex numbers, and implicit plots of functions of two variables.
Parameters
          : equations, functions or data vectors
х,у
          : Plot area (default a=-2,b=2)
a,b,c,d
          : if r is set, then a=cx-r, b=cx+r, c=cy-r, d=cy+r
            r can be a vector [rx,ry] or a vector [rx1,rx2,ry1,ry2].
xmin, xmax : range of the parameter for curves
          : Determine y-range automatically (default)
          : if true, try to keep square x-y-ranges
square
          : number of intervals (default is adaptive)
n
          : 0 = no grid and labels,
arid
            1 = axis only,
            2 = normal grid (see below for the number of grid lines)
            3 = inside axis
            4 = no qrid
            5 = full grid including margin
            6 = ticks at the frame
            7 = axis only
            8 = axis only, sub-ticks
          : 0 = no frame
frame
framecolor: color of the frame and the grid
margin : number between 0 and 0.4 for the margin around the plot
color
          : Color of curves. If this is a vector of colors,
            it will be used for each row of a matrix of plots. In the case of
            point plots, it should be a column vector. If a row vector or a
            full matrix of colors is used for point plots, it will be used for
            each data point.
thickness : line thickness for curves
            This value can be smaller than 1 for very thin lines.
style
          : Plot style for lines, markers, and fills.
            For points use
            "[]", "<>", ".", "..", "...",
            "*", "+", "|", "-", "o"
"[]#", "<>#", "o#" (filled shapes)
"[]w", "<>w", "ow" (non-transparent)
            For lines use
            "-", "--", "-.", ".", ".-.", "-.-", "->"
            For filled polygons or bar plots use
            "#", "#0", "0", "/", "\", "\/",
            "+", "|", "-", "t"
          : plot single points instead of line segments
addpoints : if true, plots line segments and points
          : add the plot to the existing plot
add
          : enable user interaction for functions
user
          : step size for user interaction
          : bar plot (x are the interval bounds, y the interval values)
histogram : plots the frequencies of x in n subintervals
distribution = n: plots the distribution of x with n subintervals
          : use inter values for automatic histograms.
even
         : plots the function as a step function (steps=1,2)
steps
adaptive : use adaptive plots (n is the minimal number of steps)
         : plot level lines of an implicit function of two variables
          : draws boundary of level ranges.
```

If the level value is a 2xn matrix, ranges of levels will be drawn

in the color using the given fill style. If outline is true, it will be drawn in the contour color. Using this feature, regions of f(x,y) between limits can be marked.

hue : add hue color to the level plot to indicate the function

value

contour : Use level plot with automatic levels

nc : number of automatic level lines

title : plot title (default "")
xl, yl : labels for the x- and y-axis

smaller : if >0, there will be more space to the left for labels.

vertical :

Turns vertical labels on or off. This changes the global variable verticallabels locally for one plot. The value 1 sets only vertical text, the value 2 uses vertical numerical labels on the y axis.

filled : fill the plot of a curve

fillcolor: fill color for bar and filled curves

outline : boundary for filled polygons

logplot : set logarithmic plots
1 = logplot in y,
2 = logplot in xy,
3 = logplot in x

own :

A string, which points to an own plot routine. With >user, you get the same user interaction as in plot2d. The range will be set before each call to your function.

maps $\hspace{0.1in}:\hspace{0.1in}$ map expressions (0 is faster), functions are always mapped.

contourcolor : color of contour lines
contourwidth : width of contour lines

clipping : toggles the clipping (default is true)

title

This can be used to describe the plot. The title will appear above the plot. Moreover, a label for the x and y axis can be added with xl="string" or yl="string". Other labels can be added with the functions label() or labelbox(). The title can be a unicode string or an image of a Latex formula.

carid :

Determines the number of grid lines for plots of complex grids. Should be a divisor of the the matrix size minus 1 (number of subintervals). cgrid can be a vector [cx,cy].

Overview

The function can plot

- expressions, call collections or functions of one variable,
- parametric curves,
- x data against y data,
- implicit functions,
- bar plots,
- complex grids,
- polygons.

If a function or expression for xv is given, plot2d() will compute values in the given range using the function or expression. The expression must be an expression in the variable x. The range must be defined in the parameters a and b unless the default range [-2,2] should be used. The y-range will be computed automatically, unless c and d are specified, or a radius r, which yields the range [-r,r] for x and y. For plots of functions, plot2d will use an adaptive evaluation of the function by default. To speed up the plot for complicated functions, switch this off with <adaptive, and optionally decrease the number of intervals n. Moreover, plot2d() will by default use mapping. I.e., it will compute the plot element for element. If your expression or your functions can handle a vector x, you can switch that off with <maps for faster evaluation.

Note that adaptive plots are always computed element for element. If functions or expressions for both xv and for yv are specified, plot2d() will compute a curve with the xv values as x-coordinates

and the yv values as y-coordinates. In this case, a range should be defined for the parameter using xmin, xmax. Expressions contained in strings must always be expressions in the parameter variable \mathbf{x} .