

Olimpiada Natională de Matematică

Etapa Națională, Vaslui, 10 mai 2024

CLASA a V-a - solutii

- **Problema 1.** Vom spune despre o fracție zecimală periodică simplă f că are lunqimearedusă n (unde n este un număr natural nenul) dacă perioada sa are n cifre și f nu poate să fie reprezentată ca fracție zecimală periodică simplă cu o perioadă cu mai puține cifre. De exemplu, 0,(223) are lungimea redusă 3, iar 0,(2323) are lungimea redusă 2, deoarece 0,(2323)=0,(23).
 - a) Arătati că $f = 0.(2) \cdot 0.(3)$ este fracție periodică simplă de lungime redusă 3.
- b) Există două fracții periodice simple de lungime redusă 1, al căror produs să fie o fracție periodică simplă de lungime redusă 1?
- c) Există două fracții periodice simple de lungime redusă 3, al căror produs să fie o fracție periodică simplă de lungime redusă 3?
 - Soluție. a) $f = 0,(2) \cdot 0,(3) = \frac{2}{9} \cdot \frac{3}{9} = \frac{2}{27} = 0,(074)$ este fracție de lungime redusă $3 \dots 2\mathbf{p}$ b) Da, deoarece, de exemplu, $0,(3) \cdot 0,(6) = 0,(2) \dots 2\mathbf{p}$ c) Da, deoarece, de exemplu, $0,(270) \cdot 0,(370) = \frac{270}{9 \cdot 3 \cdot 37} \cdot \frac{370}{999} = \frac{100}{999} = 0,(100) \dots 3\mathbf{p}$

Problema 2. Fie $n \ge 2$ un număr natural. Considerăm numerele A = 33...3, cu n cifre 3 şi $B = 20 \cdot A + 6$. Determinați cifrele care apar în scrierea zecimală a numărului $A \cdot B$.

- Soluție. Avem $B = 66 \dots 6$, cu n+1 cifre $6 \dots 1$
- Observăm că $3 \cdot A = 99 \dots 9 = 10^n 1 \dots 2p$

Problema 3. Determinați perechile de numere naturale nenule a și b care verifică relația

 $a^{4\cdot a} = b^b$.

Soluție. Dacă $b \ge 4a$, atunci b > a, deci $b^b > a^{4a}$, iar inegalitatea este imposibilă în acest

Pentru b < 4a obtinem $b^b = a^{4a} = a^{4a-b}a^b$, deci b^b este divizibil cu a^b , ceea ce arată că b este

Obținem $(a^4)^a = ((na)^n)^a$, adică $a^4 = n^n a^n$, sau $a^{4-n} = n^n$. În cazul (I) obținem a = b = 1, în cazul (II) avem soluția $a=2,\,b=4,\,{\rm iar}$ în cazul (III) obținem $a=27,\,b=81\ldots 3p$ Observație. Din $a^a \mid b^b$ nu reiese $a \mid b$, după cum arată exemplul $4^4 \mid 10^{10}$, dar $4 \nmid 10$.

Problema 4. Fie n un număr natural nenul. Vom spune că o tablă $n \times n$ este specială dacă:

- în fiecare căsuță a tablei este pus un număr natural impar, de două cifre;
- numerele de pe tablă sunt diferite două câte două;
- produsul numerelor de pe fiecare linie și produsul numerelor de pe fiecare coloană este pătrat perfect.

Arătați că cea mai mare valoare a lui n pentru care există o tablă specială este 4.

Rezultă că pe tablă nu pot apărea numerele de două cifre care sunt multipli impari de 17 – 3 numere, de 19 – 3 numere, de 23 – 2 numere, de 29 – 2 numere, de 31 – 2 numere și de 37, de 41, de 43, de 47, de 53, de 59, de 61, de 67, de 71, de 73, de 79, de 83, de 89, de 97 – câte un număr; în total, 26 de numere. Cum în total există 45 de numere impare de două cifre, reiese că pe tablă nu pot apărea mai mult de 45 - 26 = 19 numere, deci $n \leq 4 \dots 2p$

11	$3 \cdot 11$	3^{3}	5^2
$5 \cdot 11$	$7 \cdot 11$	$3 \cdot 5$	$3 \cdot 7$
7^2	$3 \cdot 5^2$	13	$3 \cdot 13$
$3^2 \cdot 5$	$3^2 \cdot 7$	$5 \cdot 13$	$7 \cdot 13$

Observație. Pentru indicarea, fără explicație, a unei table corecte, se acordă 4 puncte.