Aufgabenblatt 7

http://image.informatik.htw-aalen.de/~thierauf/

1. Arithmetische Ausdrücke werden normalerweise in Infix-Form geschrieben bei der die Rechenoperation zwischen den Operanten steht. Zum Beispiel im Ausdruck x+y steht die +-Operation zwischen den Operanten x und y. In der Postfix-Form schreibt man die Rechenoperation nach den Operanten. Der Infix-Ausdruck x+y lautet in Postfix-Schreibweise also xy+. Einige weitere Beispiele:

Infix	Postfix
$x \times y + z$	$xy \times z +$
$x \times (y+z)$	$\begin{array}{c} xy \times z + \\ xyz + \times \end{array}$
$(x+y)\times(y-z)$	$xy + yz - \times$
$x + y \times (z - y)$	$xyzy - \times +$

- a) Geben Sie eine kontextfreie Grammatik an, die arithmetische Ausdrücke mit den Operanden x, y und z und den Operationen $+, -, \times$ in Postfix-Form erzeugt.
- b) Geben Sie einen Ableitungsbaum und eine Linksableitung für $xyxy-\times+$ in ihrer Grammatik an.
- c) Ist ihre Grammatik eindeutig?
- **2.** Die Extended Backus-Naur-form, EBNF ist eine Beschreibungsmethode für Sprachen über einem Alphabet Σ . Es gibt eine Menge von Nicht-Terminalsymbolen N und Produktionen der Bauart $A = \alpha$, wobei α folgende Form und Bedeutung haben kann: für $a \in \Sigma$ und $\beta, \gamma \in N \cup \Sigma$
 - $\alpha = "a"$: ersetze A durch a,
 - $\alpha = \beta | \gamma$: ersetze A durch β oder γ .
 - $\alpha = \beta, \gamma$: ersetze A durch $\beta \gamma$.
 - $\alpha = [\beta]$: ersetze A durch β oder lasse A einfach weg.
 - $\alpha = \{\beta\}$: ersetze A durch β^n , für ein $n \geq 0$.

Begründen Sie, dass die Sprachen, die durch EBNF beschreibbar sind, genau die kontextfreien Sprachen sind.

- **3.** Geben Sie eine Turingmaschine an, die ihre Eingabe über $\{0,1\}$ als Binärzahl auffasst und die Funktion f(x) = x 1 berechnet.
- **4.** Geben Sie eine 2-Band Turingmaschine für folgende Sprache L über dem Alphabet $\{0,1\}$ an,

$$L = \{ w \mid w \text{ hat gleich viele Nullen und Einsen} \}.$$

- **5.** Sei $L = \{ x0y \mid x, y \in \{0, 1\}^* \text{ und } |x| = |y| \}$.
 - a) Geben Sie eine nichtdeterministische 2-Band Turingmaschine für L an.
 - b) Geben Sie eine (deterministische) 2-Band Turingmaschine für L an.