評卷參考

本文件供閱卷員参考而設,並不應被視為標準答案。考生及沒有參與評卷工作的教師在詮釋文件內容時應小心謹慎。

化學科 卷一

甲部

題號	答案	題號	答案
第一部分		第二部分	
1.	A (46%)	25.	B (49%)
2.	D (77%)	26.	C (14%)
3.	B (73%)	27.	A (60%)
4.	D (74%)	28.	D (78%)
5.	C (70%)	29.	C (60%)
6.	A (72%)	30.	D (85%)
7.	B (87%)	31.	B (61%)
8.	D (88%)	32.	A (68%)
9.	B (87%)	33.	*
10.	B (82%)	34.	C (62%)
11.	B (77%)	35.	B (69%)
12.	C (66%)	36.	C (60%)
13.	C (58%)		
14.	A (79%)		
15.	A (60%)		
16.	D (38%)		
17.	A (73%)		
18.	C (68%)		
19.	B (73%)		
20.	B (55%)		
21.	D (55%)		
22.	C (84%)		
23.	D (53%)		
24.	C (59%)		,

* 本試題被删去。

註: 括號內數字為答對百分率。

關於「刪除試題」的説明

每年考試,香港考試及評核局如果認為多項選擇題試卷中某些試題欠理想,通常都會把這類試題酌量刪去。根據過往經驗,上述決定基於不同的理由;最常見的是由於試題的甄別力弱,未能把不同程度的考生分辨出來,換言之,大多數考生答題都只憑臆度。保留這類試題,恐會降低測試的效能,所以不得不把它刪去。這類試題雖經決定在考試中刪去不用,但仍刊登在試題專輯內,並予以標明,而本年的考試報告或會提出討論。

一般閱卷指引

- 1. 為保持評卷的一致性,閱卷員需按照在閱卷員會議中所議決的評卷參考作為評分的準則。
- 2. 本評卷參考不能就各試題羅列所有可能的答案。閱卷員可根據專業判斷,接納未列於本評卷 參考內其他正確和合理的答案。
- 3. 試題若列明要求答案的數量,而考生給予多於要求的答案,多答的部分則不會評閱。舉例說,試題要求考生列舉兩個例子,如考生列舉了三個,閱卷員只需評閱第一和第二個答案。
- 4. 如考生所答的題目超出試卷要求的答題數量,閱卷員須評閱所有答案,惟最低分的過量答案 將在計算總分時被剔除。
- 5. 答案若自相矛盾,得零分。
- 6. 除於有機合成的反應概要中,所有化學方程式均須平衡。能學的化學方程式應包含所涉及化學物種的正確物態符號。
- 7. 在試卷中,評核考生傳意技能的題目有 * 號標記。在此等題目,考生若能提供易明的答案, 便可獲得有效傳意的分數(每題 1 分)。若考生的答案含大量與題目無關的資料,及/或化學的概念錯誤,則不能獲得有效傳意的分數。

乙部

第一部分

2.	(a)	首先有白色沉澱生成,言 Ca(OH) ₂ (aq) + CO ₂ (g) → Ca	$aCO_3(s) + H_2O(l)$	字在下會溶解。	1 1
		CaCO3(s) + CO2(g) + H2O(l)	\rightarrow Ca(HCO ₃) ₂ (aq)		1
	(b)	溶液由橙色變成綠色。 Cr ₂ O ₇ ²⁻ (aq) + 3SO ₃ ²⁻ (aq) + 8	$3H^{+}(aq) \rightarrow 2Cr^{3+}(aq) + 3SO_{2}$	$_{4}^{2-}(aq) + 4H_{2}O(1)$	1 1
3.	(a)	鐵較鋁不活潑。			1
	, -	(i) 質量 原子比率 實驗式 = Fe ₃ O ₄	Fe 1.67 1.67 / 55.8 = 0.03	O 0.64 0.64 / 16 = 0.04	2

(ii) Fe₃O₄(s) + 4CO(g) → 3Fe(s) + 4CO₂(g)
 (iii) 在煙櫥內進行該實驗。
 (c) 與 Fe 相比, Zn 有較高反應性 / 是較強的還原劑。
 (b) 鍍鋅鐵物件的鋅層破裂時, 因鋅優先氧化而可防止鐵發生腐蝕。
 (c) 组製物品的表面被氧化為 Al₂O₃(s) / 氧化鋁。
 (d) 鋁製物品的表面被氧化為 Al₂O₃(s) / 氧化鋁。
 (d) 鋁製物品的表面被氧化為 Al₂O₃(s) / 氧化鋁。
 (e) 品製物品的表面被氧化為 Al₂O₃(s) / 氧化鋁。
 (iii) Fe₃O₄(s) + 4CO(g) → 3Fe(s) + 4CO₂(g)
 (iii) 在煙櫥內進行該實驗。
 1

分數

1

1

			<u>分數</u>
4.	(a)	可再充電的電池。	1
	(b)	它能提供高的電流/電壓/功率來開動引擎。	1
	(c)	鉛/鉛化合物是有毒的。/硫酸具腐蝕性/刺激性。	1
	(d)	(i) 把小量濃硫酸傾進大量水中。 配戴眼罩/護面罩/安全眼鏡/手套。	2 1
		(ii) 硫酸的摩爾數 = 2.48 / 98.1 = 0.0253 硫酸的摩爾濃度 = 0.0253 / 0.005 = 5.06 (M)	2
5.	•	方程式: NH ₃ + H ₂ O ⇌ NH ₄ ⁺ + OH ⁻	1
	•	解釋: 氨在水中稍微電離 / 離解。 / 氨在水中的電離 / 離解不完全。 方法: 分別量度 NH ₃ (aq) 及 NaOH(aq) 的 pH / 導電率 / 中和焓變 / 中和作用引致	1
	•	的溫度上升。 觀察: NH ₃ (aq) 的 pH / 導電率 / 中和焓變 / 中和作用引致的溫度上升低於	1
	•	NaOH(aq)的。 公平比較:	1
		pH – NH₃(aq) 和 NaOH (aq) 的濃度相同 導電率 – NH₃(aq) 和 NaOH (aq) 的濃度相同	
	•	中和焓變 – NH ₃ (aq) 和 NaOH (aq) 的份量相同 中和作用引致的溫度上升 – NH ₃ (aq) 和 NaOH (aq) 的體積和濃度相同 傳意分數	1
6.	(a)	取代反應	1
	(b)	光 / hv / 紫外線 / UV / 加熱 / 自由基引發劑	1
	(c)	橙色 / 棕色逐漸褪卻。 / 橙色 / 棕色慢慢地轉變為無色。	1
	(d)	Br 原子沒有穩定的貴氣體電子組態。/ Br 原子沒有穩定的八隅體電子組態。/ Br 原子的電子組態不符合八隅體規則。	1
	(e)	(i) $CH_2Br_2 / CHBr_3 / CBr_4$	1
		(ii) 使用大量並過量的 CH ₄ 。/ Br ₂ 是極限 / 限量反應物。	1

			分數
7.	(a)	油垢妨礙了電的傳導性/妨礙把銅鍍在該物件上。	1
	(b)	電解質是在熔融狀態或溶於水時,能夠導電的化合物。/ 電解質在熔融狀態或溶於水時,有可游動離子的物質。/ 電解質是當電流通過時,會發生分解的物質。	1
	(c)	$Cu^{2+} \cdot SO_4^{2-} \cdot H^+ \cdot OH^-$	1
J	(d)	銅(II)離子的氧化能力較氫離子的強。/ 銅(II)離子比氫離子較易進行還原。	quant de la constant
	(e)	$Cu \rightarrow Cu^{2+} + 2e^{-}$	1
	(f)	沒有可觀察的變化	1
	(g)	所涉及電子的摩爾數 = $2.28 \times 10^{22} / 6.02 \times 10^{23} = 0.0379$ 生成銅的質量 = $0.0379 \times 63.5 / 2 = 1.20$ (g)	2
8.	(a)	C_nH_{2n+2}	1
	(b)	断裂的共價鍵 C-H 和 O=O 形成的共價鍵 C=O 和 H-O	1 1
		(ii) 鍵形成過程所釋出的能量總和,多於鍵斷裂過程所吸收的能量總和。	1 .
		(iii) $\Delta H_{c}^{\bullet} = \Delta H_{f}^{\bullet} [CO_{2}(g)] + 2 \Delta H_{f}^{\bullet} [H_{2}O(1)] - \Delta H_{f}^{\bullet} [CH_{4}(g)]$ = $(-393.5) + 2(-285.9) - (-74.8)$ = $-890.5 \text{ (kJ mol}^{-1})$	2
	(c)	 天然氣較能完全燃燒但煤卻不。/ 燃燒煤時會產生煙灰/一氧化碳,但燃燒天然氣卻不會。 相對天然氣,煤帶有較多雜質。/ 燃燒煤時會產生較多污染物,例如SO₂、金屬化合物塵埃。 	1

第二部分

		<u>刀 数</u>
€.	(a) 節省化學品的成本 / 將化學品的危險減至最低程度 / 節省進行實驗的時間 / 減少化學品的消耗 / 減少化學廢料	1
	(b) 防止水倒吸。/ 防止水進入反應瓶。	1
	(c) 在量筒內的水位上升。/ 在量筒內的氣體體積減少。	1
	(d) 所用油酸甲酯的摩爾數 = $0.08/296 = 2.70 \times 10^{-4}$ 所需 $H_2(g)$ 的最小體積 = $(0.08/296) \times 24000 \text{ cm}^3 = 6.49 \text{ cm}^3$	3
	(e) (i)及 (ii) 10	2

Fe能作催化劑 - 例如在哈柏法中的Fe

Fe 生成帶顏色的化合物 - Fe2+(aq) 是綠色 / Fe3+(aq) 是黃色

		<u>分數</u>
11.	(a) (i) $-\log[H^{+}(aq)] = 7.0$ $[H^{+}(aq)] = 10^{-7} \text{ mol dm}^{-3} / 10^{-7} \text{ M}$	1
	(ii) $[OH^{-}(aq)] = [H^{+}(aq)] = 10^{-7} \text{ mol dm}^{-3}$ $[H_3O^{+}(aq)][OH^{-}(aq)]$ $= 10^{-7} \times 10^{-7}$ $= 10^{-14} \text{ (mol}^2 \text{ dm}^{-6})$	2
	(b) 因為 [H ₂ O(l)] >> [H ⁺ (aq)] 或 [OH ⁻ (aq)]	1
	(c) 水的 pH 會低於 7。 $H_2O(l)$ 的離解是吸熱的。溫度上升會令平衡位置向右移動。	1
12.	\bigcirc — \Box	3
13.	H ₃ CHIII, CH ₃	1
	C2H5 C2H5 手性中心 與鏡像不重合 / 重疊 具旋光性 傳意分數	1 1 1

					分數
1.	(a)	(i)	(1) 不受影響	N. C.	1
			(2) 速率 = k [CH ₃ COCH ₃ (aq)][H ⁺ (aq)]		1
		(ii)	$3H_2 + N_2 \rightleftharpoons 2NH_3$		1
		(iii)	$\log \frac{k_2}{k_1} = \frac{Ea}{2.3R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \implies \log 2 = \frac{Ea}{2.3R} \left(\frac{1}{298} - \frac{1}{308} \right)$ $Ea = 52.8 \text{ kJ mol}^{-1}$		2
	(b)	(i)	(1)		3
			能量 無催化劑 有催化劑 反應物 生成物		
			│		
			(2) 催化劑可被毒化。		1
		(ii)	以下任何 兩項 : • 使用了催化劑/酶。 • 所用的試劑 (O_2) 是無毒的。 • 原料(糖)是可再生的。 • 所生成的廢料是生物降解的。		2
		(iii)	以下任何 兩項 : 路線(2)所製得的乙酸較純。 路線(1)的發酵/曝氣氧化的速率較緩慢。 路線(2)不會消耗食物,但路線(1)卻會。		2
((c)	(i)	濃氯化鈉 (NaCl) 溶液 / 濃鹽水		1
		(ii)	廠房須靠海,因為容易取得原料。		1
		(iii)	$2\text{NaCl} + 2\text{H}_2\text{O} \rightarrow \text{Cl}_2 + \text{H}_2 + 2\text{NaOH}$		1
		(iv)	汞是有毒的。		1
		(v)	在膜電池可得到較多純的氫氧化鈉,但隔膜電池卻不。		1
			氯漂白劑可與氫氯酸反應生成有毒的氯氣。 $ClO^- + 2H^+ + Cl^- \rightarrow H_2O + Cl_2$		1

					分數
2.	(a)	(i)	(1)	晶格/晶體中的最小單位,把它重複可形成整個晶格/晶體。	1
			(2)	Cu 原子的數目 = $8(\frac{1}{8}) + 6(\frac{1}{2})$ = 4	1
		(ii)	電插	座	1
		(iii)		NO ₃ 具腐蝕性。 是有毒的。	1 1
	(b)	(i)		H I	
				CH ₂	1
		(ii)	加成	聚合	1
		(iii)	(1)	在發泡PS內的空氣是良好的熱絕緣體。	1
			(2)	注塑法	1
			(3)	• 發泡 PS 所佔的空間甚大。要收集、運送及儲存這些廢料是困難	1
				的。 把發泡 PS 廢料分類和清潔並不經濟。	1
		(iv)		的重複單位比較無規律地排序,令其聚合物分子的裝填不及 PS 般緊	1
			密。 與 PS	相比,HIPS的聚合物分子之分子間引力較弱。	1
	(c)	(i)	近晶	相内的分子有一定程度的二維有序性,形成界限分明的分層。	1
		(ii)	•	於液晶層兩面的兩塊起偏鏡是互相垂直。 當於液晶層施加電壓時,液晶分子會依電場方向定位。 偏振光穿透液晶層時,其偏振面不會轉動。 偏振光被第二月起偏鏡完全遮擋了,遂出現黑色像素。	1 1 1
		(iii)	(1)	納米材料的粒子大小小於100 nm/介乎1-100/1000 nm。	1
			(2)	納米材料粒子體積這麼細小,使用它們製造顯示屏可增加指定面積內	1

的像素數目/用作高解析度展示單位的閃爍體。

				分數
3.	(a)	(i)	加入酸化硝酸銀溶液。生成淺黃色沉澱。	1 1
		(ii)	色層法	1
		(iii)	把稀 $HCl(aq)$ 加進混合物以溶解 Fe_2O_3 。 把所得的混合物過濾以收集銅粉。	1 1
	(b)	(i)	黄色/橙色/紅色沉澱	1
		(ii)	加入酸化 $K_2Cr_2O_7(aq)$ 。 只有 Y 將橙色溶液變為綠色。	1 1
		(iii)	只有在 X 的質譜,於 m/Z 105 ($C_6H_5CO^+$) 或 43 (CH_3CO^+) 處出現顯著的峰。 只有在 Y 的質譜,於 m/Z 91 ($C_6H_5CH_2^+$) 或 29 (HCO^+) 處出現顯著的峰。	1 1
		(iv)	兩個化合物在波數範圍 (1680 至 1800 cm ⁻¹) 均展示特徵吸收峰,它是羰基的特	1
			徵。 由於這兩個化合物不帶有其他不同的官能基,從所提供資料不能把它們分辨 出來。	1
	(c)	(i)	(1) $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ 或 $(NH_4)_2SO_4 + 2NaOH \rightarrow 2NH_3 + Na_2SO_4 + 2H_2O$	1
			(2) $NH_3 + H^+ \rightarrow NH_4^+$ 或 $NH_3 + HCl \rightarrow NH_4Cl$	1
		(ii)	由紅色轉橙色	1
		(iii)	在滴定中所用 KOH 的摩爾數 = $0.100 \times 13.55 \times 10^{-3}$ 經步驟 (2) 後剩餘 H^{\dagger} 離子的摩爾數 = $0.100 \times 13.55 \times 10^{-3} \times 10$ = 0.01355	4
			在步驟 (2) 中所用 H^{\dagger} 離子的摩爾數 = $1.00 \times 50 \times 10^{-3}$ = 0.05	
			釋出 NH ₃ 的摩爾數 = 0.05 – 0.01355 = 0.03645	
			在樣本中 N 的質量 = 0.03645 × 14 = 0.5103 (g)	
			在樣本中 N 的質量百分率 = $\frac{0.5103}{3}$ × 100 = 17.01 (%)	
		(iv)	所測定的氦含量可能是來自奶粉內其他含氦的物質。	1

卷一

試卷一包含兩部分:甲部(多項選擇題)及乙部(傳統題)。在甲、乙兩部中,各包含第一部分和第二部分。第一部分的題目主要屬課程中的課題一至八,而第二部分主要屬課題九至十二。考生須回答所有部分的全部試題。

甲部 (多項選擇題)

本部共設 36 道多項選擇題。不計被刪去的一題,考生平均答對 23 題,表現大致良好。考生在以下各題的表現,顯示了一些他們常有的錯誤觀念。

- 1. 在題 1 ,只有少於半數考生正確選對答案 A 。這顯示很多考生對酸溶液有錯誤的觀念。如果某個酸溶液中 H (aq) 離子的濃度為 1 M ,則該酸溶液的 pH 便是零。即使二氧化碳沒有氫為其組成元素,但它在水中電離得出 H (aq) 離子,故此它是一個酸性化合物。在盛有非常稀的酸溶液的試劑瓶上便無須張貼「腐蝕性」危險警告標籤。
 - 題1. 下列的陳述,何者正確?

A.*	所有水溶液均含 H (aq) 離子。	(46%)
B.	所有酸溶液的 pH 均大於零。	(22%)

C. 所有酸性化合物均含氫為其組成元素。 (19%)

D. 在所有含酸溶液的試劑瓶上均須張貼「腐蝕性」危險警告標籤。 (13%)

2. 在題 16,超過一半考生未能選對答案 D。考生應考慮本題電化學反應的總反應式。由於在總反應式中「 $Fe^{2+}(aq)$ 對 $Cr_2O_7^{2-}(aq)$ 」的摩爾比是「6:1」,因此在該段時間後, $Fe^{2+}(aq)$ 的摩爾濃度便應是「0.5-6(0.5-0.47)」,即濃度為 0.32 M。

題16. 考慮下列一個實驗開始時的裝置:

一段時間後, $K_2Cr_2O_7(aq)$ 的濃度跌至 $0.47\,M$ 。這時 $FeSO_4(aq)$ 的濃度是多少?

A.	0.53 M	(23%)
B.	0.47 M	(25%)
Ċ.	0.41 M	(14%)
D.*	0.32 M	(38%)

3. 在題 26 ,考生的表現差劣。由於這化合物含有兩個 C=C 鍵,因而可有 4 種幾何排列: 順一順、反一反、順一反、反一順。然而,由於這是一個對稱的化合物,順一反 和 反一順 兩者其實具有相同的幾何排列,故此實際只剩下 3 個幾何異構體。

題 26. H₃C-CH=CH-CH=CH-CH₃ 有多少個幾何異構體?

A.	0		(14%)
B.	2		(44%)
C.*	3	•	(14%)
D.	4		(28%)

4. 在題 33 ,本試題因分辨能力低而被刪去。考生可能對該平衡反應體系中「生成 H₂(g) 的速率」一詞有不同理解,因而降低了本題的分辨能力。

題33. 考慮下列在固定體積的密閉容器中的平衡反應體系:

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$
 $\Delta H < 0$

下列何者當施於該體系時,會導致生成 H₂(g)的速率上升?

- (1) 加入 CO(g)
- (2) 升高溫度
- (3) 加入適當的催化劑
 - A. 只有 (1)
 - B. 只有 (2)
 - C. 只有 (1) 和 (3)
 - D. 只有 (2) 和 (3)

乙部 (傳統題)

題號	一般表現
1	考生在這題的表現良好。約有四分之三的考生能夠繪畫出一個氫分子的電子圖。然而,部分考生則錯誤使用了「Ag」或「At」作為其符號。 在 (c) 部,一些考生只能提出「蒸餾空氣」,但忽略了重要的字詞—「分餾」。
2	考生在這題的表現尚可。在 (a) 部,約有一半考生未能描述加入過量 CO ₂ (g) 後的進一步變化。再者,他們不懂書寫 Ca(OH) ₂ (aq) 和 Ca(HCO ₃) ₂ (aq) 的正確化學式,亦不懂書寫所需的化學反應式。在 (b) 部,僅有超過一半考生能說明正確的顏色變化,但其中甚多考生不懂書寫正確的化學 反應式。許多考生錯誤地把高錳酸鹽溶液 / KMnO ₄ (aq) / MnO ₄ -(aq) 等包括在答案內。
3	考生在這題的表現尚可。在 (b) 部,約有一半考生正確算出所需的實驗式。但當中甚多考生不懂書寫 Fe ₃ O ₄ (s) 與 CO(g) 反應的正確化學方程式。在 (c) 和 (d) 部,超過一半考生能解釋防止鍍鋅鐵和經陽極電鍍的鋁腐蝕的各項原理。然而,也有部分考生未能分辨這兩個原理。
4	考生在這題不同部分的表現差異甚大。考生在 (a) 和 (d)(ii) 部的表現優良,從中可見有關考生對摩爾濃度計算甚為熟悉。在 (b) 和 (c) 部,超過一半考生對鉛酸蓄電池的認識不足。在 (d)(i) 部,甚多考生錯誤地提出一個危險的步驟來稀釋濃硫酸,如使用移液管和容量瓶等儀器。
5	考生在這題的表現尚可。約有三分之二的考生能夠指出因 NH3 在水中 稍微電離,以致它是一弱鹼,而約有一半考生能夠寫出正確的化學方 程式。約有三分之一的考生能提出一合適的實驗方法以顯示 NH3 是一 個較 NaOH 弱的鹼,但約有一半考生在提出實驗方法時犯了概念上的錯 誤。常見的錯誤有「比較 HCI 與 NH3 / NaOH 進行中和作用的反應速 率」、「比較在中和 NH3/NaOH 樣本時所需 HCI 的量」及「比較當使 用 NH3 / NaOH 作電解質來建構化學電池時,電池所產生電壓的大小」 等。部分考生建議了錯誤的儀器來量度,例如使用伏特計來量度電路 的電流。最後,約有三分之一的考生未能正確提出進行公平測試所需 的合適條件。
6	考生在這題的表現尚可。在 (a) 部 , 約有三分之二的考生能夠寫出正確答案。然而,部分考生卻誤寫了「加成反應」或「聚合反應」。考生在 (b) 及 (c) 部的表現優良。在 (d) 部 ,超過一半考生能夠寫出正確答案,但卻有部分考生把溴原子 / 自由基誤寫成溴離子 (Br)。考生在 (e)(i) 部的表現良好,但有些考生給了「CH3」、「CCl4」或「1,2-二溴甲烷」等錯誤答案。在 (e)(ii) 部,約有一半考生未能正確指出需用過量甲烷來滿足要求。

題號	一般表現
7	考生在這題的表現尚可。在 (a) 部,約有四成的考生錯誤地指出該電鍍物件會被油垢染污。在 (b) 部,約有一半考生能夠給予正確答案。但有些考生錯誤地指出電解質能夠導電是因為它能讓電子通過,或只簡單地指出電解質能夠導電,而沒有給予進一步的闡述。考生在 (c) 部的表現優良,但卻有少數考生在答案中遺漏了 H [†] 和 OH [*] 。在 (d) 部,約有一半考生能夠給予正確答案,然而有些考生混淆了銅(II) 離子和氫離子的相對氧化能力。考生在 (e) 部的表現良好,儘管有些考生錯誤地給了在陰極所發生變化的半反應式。考生在 (f) 部的表現欠佳。只有約三分之一的考生能夠寫出正確答案,也有少數考生錯誤地指出溶液的顏色會變深或變淺,亦有少數考生錯誤寫了在電極上所發生的變化(大小改變/有紅棕色物質鍍在物件表面上),而沒有提及溶液所發生的可觀察變化。在 (g) 部,考生的表現令人滿意。然而,約有三分之一的考生沒有意識到需要用 2 摩爾電子來還原 1 摩爾的 Cu²+。
8	考生在這題的表現尚可。在 (a) 部,超過八成的考生能夠寫出正確答案。考生在 (b)(i) 部的表現欠佳。有少數考生錯誤地只寫出 CO ₂ 及 H ₂ O 的化學式,而沒有具體指出所斷裂和形成的鍵。有些考生在答案中遺漏了一個或兩個物種,亦有少數考生並沒有指出在 O ₂ 和 CO ₂ 中的是雙鍵,而錯誤地把鍵寫成 O—O 和 C—O。考生在 (b)(ii) 部的表現差劣。約有四分之一的考生只簡單地指出鍵形成所涉及的能量大於鍵斷裂所涉及的,而卻沒有清楚表明哪一個過程釋出能量;哪一個過程吸收能量。有少數考生錯誤地寫出在鍵斷裂時釋出能量,而在鍵形成時吸收能量。考生在 (b)(iii) 部的表現良好。然而,部分考生因為在計算中,在一些能量項上用了錯誤的「+/-」符號,或在 ΔH _f ° [H ₂ O(l)] 的能量項遺漏了系數「2」,因而未能得出正確答案。考生在 (c) 部的表現差劣。只有少於半數的考生能夠寫出較多以天然氣而較少用煤來發電的正確原因。
9	考生在這題的表現欠佳。在 (a) 部,約有三分之二的考生能夠寫出正確答案。然而,卻有少數考生錯誤地指出以微形實驗來進行這反應能增加反應速率。考生在 (b) 部的表現差劣。有些考生錯誤地寫出氫的密度比空氣的低,因此把管子末端置於倒置量筒的最高位置即可從量筒中收集到較純的氫。考生在 (c) 部的表現良好。然而,有些考生錯誤地提到在量筒中會有氣泡生成。在 (d) 部,約有三分之二的考生能夠寫出正確答案,但也有些考生在答案中給了不正確的單位,如 6.49 dm³ 或 0.00649 mol dm⁻³ 等。考生在 (e) 部的表現欠佳。只有約三分之一的考生能夠寫出正確答案。
10	考生在這題的表現令人滿意。在 (a)(i) 部,約有一半考生能夠寫出正確答案。有些考生錯誤地給 Na ₂ O 繪出了一個「疑似共價化合物」的電子圖,有些考生未能對應於 O ²⁻ 離子給予正確的最外層電子數目或正確離子電荷;有少數考生錯誤地指出氧化鈉與水反應會生成氫氧化鈉和氫氣。在 (a)(ii) 部,約有三分之二的考生能夠繪出 Cl ₂ O 的正確電子圖。有些考生遺漏了在氧原子上的孤電子對;約有四分之一考生只指出 Cl ₂ O 是否溶於水中,而沒有提及它具酸的特性;有少數考生錯誤地寫出 Cl ₂ O 與水反應會生成 HCl(aq),或 HCl(aq) 和 HOCl(aq) 的混合物。考生在 (b) 部的表現令人滿意,但也有部分考生並沒有給予具體例子來演示答案。

題號	一般表現		
11	考生在這題的表現差劣。在 (a)(i) 部,只有約一半考生能夠寫出正確答案,但有些考生未能在答案中給予正確的單位。考生在 (a)(ii) 部的表現差劣。只有約三分之一的考生能夠意識到在水中 H [†] 和 OH ^T 的濃度相同。大部分的考生都未能在答案中給予正確的單位。在 (b) 部,少於兩成的考生能夠寫出正確答案,頗多考生錯誤地寫出「水只是溶劑,因此 [H ₂ O] 是一常數」。考生在 (c) 部的表現差劣。只有很少數的考生能夠給予正確答案,約有一半考生錯誤地指出縱使平衡位置移向右方及 [H [†]] 增加,但由於水仍是中性,[H [†]] 和 [OH [†]] 仍是相等,因此 pH 仍會是 7。		
12	考生在這題的表現欠佳。約有一半考生在答案中遺漏了所需的氧化反應(氧化苯甲醛生成苯甲酸)或還原反應(還原苯甲醛生成苄醇)其中一個。有些考生在提及重鉻酸鉀溶液時漏了「酸化」。在酯化作用步驟中,有些考生給了不正確的催化劑 (H ⁺ 或 H ₂ SO ₄ (aq)) 或在反應中遺漏了「加熱」。		
13	考生在這題的表現尚可。少於半數的考生能夠以有系統地及合適 / 正確的術語寫出正確答案。常見的錯誤有:「一個含有手性碳原子的分子,而該手性碳原子與四個不同的分子鍵合」、「在平面偏振光下,分子會向不同方向旋轉」及「分子能與它的鏡像重疊 / 重合」。 不少考生未能認識「重疊 / 重合」這一詞的正確意思。亦有頗多考生未能準確地理解手性分子的旋光性。		

卷二

試卷二包含三部分。甲部為課題十三「工業化學」、乙部為課題十四「物料化學」 及丙部為課題十五「分析化學」。考生須回答兩個選取部分的所有試題。

題號	選題百分率 (%)	一般表現
甲部:1	49	考生在 (a) 部的表現令人滿意。然而,約有三分之一的考生未能從資料歸納出反應的速率方程;約半數考生未能寫出哈柏法的化學方程式;大部分考生未能計算活化能。考生在 (b) 部的表現欠佳。大部分考生未能在同一草圖上繪畫能線圖及只有約三分之一的考生能提出催化劑在長期使用下可被毒化。再者,大部分考生未能提出發酵路線為綠色的理由。考生在 (c) 部的表現尚可。八成的考生能指出汞電解池不被視為對環境友好是因為汞的本質有毒。再者,約剛少於一半的考生能提出濃鹽水或濃氯化鈉溶液為氯鹼工業的原料,而約有三分之二的考生能提出興建化學工廠的選址理由。然而,只有約四分之一的考生能寫出該電解的總反應式及指出膜電池較隔膜電池的優勝之處。
乙部:2	3	考生在 (a) 部的表現差劣。約有九成的考生未能解釋「晶胞」一詞的意義。約有七成的考生未能推算在指定晶胞內銅原子的數目,如「14」等錯誤答案頗為常見,可見考生對這個課題的認識不足。考生在 (b) 部的表現欠佳。約有一半考生能繪畫苯乙烯的結構,但超過四成的考生未能提供涉及聚合反應類別的正確名稱,如「縮合聚合」等錯誤答案頗為常見。考生在 (c) 部的表現差劣。只有約一成的考生能夠正確描述近晶相液晶分子如何排列,以及解釋為何在施加電壓時該像素呈黑色。
丙部:3	48	考生在 (a) 部的表現差劣。只有四成的考生能夠寫出一個化學測試以顯示 Br (aq) 的存在,有兩成的考生能正確建議以色層法作為可測定汽油樣本中辛烷含量的儀器方法。六成的考生未能建議一個從銅粉和氧化鐵(III) 混合物獲取銅粉的可行方法,大部分考生錯誤地建議加入稀磷酸或濃硫酸或與碳共熱。考生在 (b) 部的表現令人滿意。約有三分之二的考生能寫出當 X 和 Y 以 2,4-二硝基苯肼處理的觀察,以及能分辨 X 和 Y 的化學測試。此外,約有六成的考生未能指出質譜如何可分辨 X 和 Y ,但紅外光譜則不可。考生在 (c) 部的表現尚可。超過三分之二的考生能寫出步驟 (2) 的化學方程式。剛少於一半的考生能指出在終點的顏色變化。然而,大部分的考生未能正確計算奶粉樣本內含氮的質量百分率。

校本評核

所有學校考生均需要參加校本評核。今年共有來自 429 所學校共 154&7 名學生提交了校本評核分數。本年是第四年推行香港中學文憑校本評核,基於過往三年所累積的經驗,許多參與學校在運作上一般均頗為暢順。

為確保教師對校本評核的要求和評估方法的原則有充分的理解,在 2014年 10月,本科舉行了校本評核年度會議以及分組會議。這些會議向教師提供一些有關校本評核推行的一般性意見和總結,以及在校本評核的要求和行政事務處理上的調節的最新資訊。在會議上,本局亦向教師介紹一些能協助教師把實驗工作融入課堂的有用資源和支援。再者,教育局和香港考試及評核局也有為教師提供培訓課程及所需資源,提升他們的知識和技能,從而提升學校實施校本評核的信心。

根據參與學校呈交的評核數據以及學生的工作紙和報告樣本,可見學生的表現普遍令人滿意,也符合評核預期的要求。為處理個別教師和學校評分標準可能出現的差異,所有呈交的分數會使用統計以及專業判斷方式作出調整。值得欣喜的是本年度有75.1%學校的分數在「預期的範圍」之內,約有15.8%的學校呈交分數比預期的高,以及9.1%的學校呈交分數比預期的低。然而,大部分給分較高或低的學校所給的分數只稍微偏離預期的範圍,這是令人鼓舞的結果,大多數教師對校本評核的實施有充分的理解,故評分的標準大致恰當。

為教師提供持續的支援,並確保校本評核計畫可公平地施行,共有 24位區域統籌員在兩位監督的領導下處理教師就校本評核實施提出的疑問,以確保學校按規定的準則推行。區域統籌員和教師以電話、電子郵件、區域分享會和探訪學校等方式保持緊密的聯繫。前述溝通渠道有助增加監督、區域統籌員和教師之間的理解。此舉是為加強對教師進行校本評核的支援,讓區域統籌員/監督更了解校本評核在學校內施行的情況。教師和學生可從不同來源獲取的反饋意見顯示,故均頗為清楚了解校本評核的要點和要求。儘管如此,下面將提出一些意見和建議,可為校本評核的實施作出進一步的優化:

1. 實驗的多樣性

縱使除了在實驗類別上有關容量分析和定性分析的要求外,對作為校本評核課業的實驗類別的選擇並沒有嚴格規定的準則,如能讓學生接過過過,同類型的實驗必定有利於他們學習。對學校常常採用如「化學反應和能量」、「反應速率」和「化學平衡」課題中的實驗令人鼓舞。據觀察,只有較悠數學情報了製備實驗(特別是涉及有機反應的實驗)作為校本評核的課業。由於最之經驗,很多同學對於進行有機反應,以及從反應混合物中分離出生成物的正確程學的認識。足。讓學生多進行這類實驗可以提升學生在基本實驗的技巧。

2. 實驗報告的多樣性

校本評核接受不同形式的書面報告,如工作紙、短測以及簡單或全面的實驗報告等。教師一般都能以專業的方式設計相關的課業。再者,值得欣喜的是大部分的學生均能按教師所提出的要求來完成相關的書面報告。雖然校本評核沒有硬性規定書面報告的具體形式,但撰寫全面的實驗報告確有助於研習科學。以正確的方式建構並完成實驗報告,以及展示數據和實驗結果均十分重要。根據經驗,學生在首數次撰寫實驗報告時並不全面,例如忘記加上日期、實驗標題、實驗目的和參考資料等重要項目。雖然如此,在掌握了一些經驗後,學生一般都能以正確的方式完成全面的實驗報告。

3. 提供反饋促進學習

給學生呈交的報告提供反饋意見至為重要,這可以令學生知所改進,以及避免將來 犯上同類的錯誤。再者,學生收到教師所給的反饋後應多與教師討論,以了解自己 在進行實驗,以及完成書面課業時可如何改善。教師可以多為學生提供文字及其他 形式的反饋,透過校本評核來促進學習。

- 4. 學生在觀察及匯報常見離子化合物的外觀的表現 據觀察,一些學生在辨認一些常見離子化合物的顏色,和判斷這些物質在室溫下是 否溶於水時感到困惑。這可能是由於他們親自處理這些化合物的經驗較少。建議學 生在這方面須多加注意,教師亦可在課堂中多加入一些相關的實驗。
- 5. 學生在記錄和分析從實驗所得的數據的表現 據觀察,學生常在記錄實驗數據、進行計算和繪畫實驗裝置圖犯上錯誤。常見錯誤包 括在寫下數值數據和計算時用了不正確的有效數字、錯誤單位以及計算不正確等。 特別是觀察到有不少學生在進行滴定時,所記錄的滴定管讀數只有一個小數位,而 不是通過估算小數點後第二位的數值,寫下兩位小數的滴定管讀數。建議學生可在 這方面多加注意。

6. 防止抄襲

學生應按既定的要求,誠實及負責任地完成校本評核的課業。若抄襲等違規行為一經證實,學生將會被嚴懲。香港中學文憑考試規則清楚說明,若考生違反考試規則,他們可能被罰扣減分數、降級或取消部分或全部科目的考試資格。學生可參考《香港中學文憑考試校本評核簡介》(http://www.hkeaa.edu.hk/DocLibrary/Media/Leaflets/SBA_pamphlet_C_web.pdf)附錄內有關註明課業中所引用資料出處的示例。

結論

從 2015 年本科推行校本評核所見,學生的表現一般令人滿意,而教師在推行方面亦大致暢順。從以往三屆積累的經驗,絕大部分教師對校本評核的要求和預期目的均有更清晰的了解。教師更有經驗地為所教的班級選擇適當的實驗工作以評核學生的能力。最後,我們觀察到學生和教師所曾遇到的大部分疑問和挑戰,均大致得到適當的處理。

