OBJECTIFS 👌

- Connaître la notion de base orthonormée. Savoir y lire les coordonnées d'un vecteur et donner l'expression de la norme d'un vecteur.
- Représenter un vecteur dont on connaît les coordonnées. Lire les coordonnées d'un vecteur.
- Connaître l'expression des coordonnées de \overrightarrow{AB} en fonction de celles de A et de B.
- Savoir calculer les coordonnées du milieu d'un segment.
- Savoir calculer le déterminant de deux vecteurs dans une base orthonormée, et connaître le lien avec la colinéarité.
- Résoudre des problèmes en utilisant la représentation la plus adaptée des vecteurs.

ı

Repères du plan

1. Bases du plan

EXERCICE 1

Parmi les bases ci-dessous, dire lesquelles sont orthogonales, orthonormées ou ne le sont pas.

1.
$$\vec{j}$$

$$2. \quad \vec{j} = \vec{i}$$

3.
$$\vec{j}$$

4.
$$\int_{\vec{i}}^{\vec{j}}$$

◆ Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/geometrie-reperee/#correction-1.

2. Coordonnées d'un vecteur

À RETENIR **	

EXERCICE 2

1. Pour chacun des vecteurs ci-dessous, lire ses coordonnées dans la base $(\vec{i}; \vec{j})$.

a. \vec{a} : **c.** \vec{i} :

2. Représenter le vecteur $\vec{c} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

3. Coordonnées d'un point

Pour toute la suite, sauf mention contraire, on se place dans un repère cartésien $(O; \vec{i}; \vec{j})$.

EXEMPLE \$

Dans le repère orthonormé ci-contre (où l'on a indiqué l'origine, l'axe des abscisses et l'axe des ordonnées), les coordonnées du vecteur \overrightarrow{OM} sont $\begin{pmatrix} -2\\1 \end{pmatrix}$, donc les coordonnées du point M sont (-2;1).

EXERCICE 3
Soient $A(3;5)$, $B(2;-1)$, $C(-2;-4)$ et $D(-1;2)$.
1. a. Calculer les coordonnées de E , milieu de $[AB]$
b. Calculer les coordonnées de F , milieu de $[CD]$
2. Montrer que <i>EFDA</i> est un parallélogramme.
◆ Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/geometrie-reperee/#correction-S

Utilisation des coordonnées

1. Opérations sur les vecteurs

EXERCICE 4

√Voir la correction : https://mes-cours-de-maths.fr/cours/seconde/geometrie-reperee/#correction-4.

2. Calcul de la norme

EXERCICE 5
Soient deux points $A(-1;1)$ et $B(3;4)$. On suppose le repère (O,\vec{i},\vec{j}) orthonormé. Calculer AB

3. Condition de colinéarité

EXEMPLE 🔋

EXERCICE 6

Par exemple, avec $\vec{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ -6 \end{pmatrix}$, on a

$$\det(\vec{u}; \vec{v}) = \det\left(\begin{pmatrix} -1\\3 \end{pmatrix} \Rightarrow \begin{pmatrix} 2\\-6 \end{pmatrix}\right)$$
$$= -1 \times (-6) - 2 \times 3$$
$$= 0$$

Il s'agit d'une sorte de « généralisation » du produit en croix.

·			
À RETENIR 99			

1. Dans le repère ci-contre, placer les points

1. Dans le repere ci-contre, placer les points A(-2;-1), B(2;-3), C(-4;4) et D(4;0).

.....

