Einführung in die Stochastik - Mitschrieb

$Vor lesung \ im \ Wintersemester \ 2011/2012$

Sarah Lutteropp

17. November 2011

Inhaltsverzeichnis

1	Des	kriptive Statistik 5				
	1.1	Der Grundraum				
	1.2	Absolute und relative Häufigkeit				
	1.3	Histogramm				
	1.4	Lagemaße				
	1.5	Streuungsmaße				
	1.6	Empirischer Korrelationskoeffizient				
2	Ereignisse und Zufallsvariablen 9					
	2.1	Definition				
	2.2	Beispiele				
	2.3	Bemerkung (Mengentheoretische Operationen) 9				
	2.4	Definition				
	2.5	Definition				
	2.6	Definition				
	2.7	Bemerkungen (Rechenregeln für Indikatorfunktionen) 11				
	2.8	Definition				
3	Diskrete Wahrscheinlichkeitsräume 13					
	3.1	Motivation				
	3.2	Definition				
	3.3	Folgerung				
	3.4	Satz				
	3.5	Definition + Satz 15				
	3.6	Definition				
	3.7	Definition				
	3.8	Definition				
	3.9	Satz				
4	Kor	nbinatorik 17				
	4.1	Grundregeln				
	4.2	Satz				
	4.3	Beispiel (Urnenmodelle)				

	4.4	Definition	18
	4.5	Satz	18
	4.6	Beispiel (Geburtstagsproblem)	19
	4.7	Beispiel	19
	4.8	Beispiel (Besetzungsmodelle)	19
5	\mathbf{Der}	Erwartungswert	20
	5.1	Definition	20
	5.2	Satz	20
	5.3	Folgerung	21
	5.4	Satz (Transformationsformel)	21
	5.5	Beispiele	22
6	Die	hypergeometrische Verteilung und die Binomialvertei-	_
	lung	••	23
	6.1	Definition	23
	6.2	Satz	24
	6.3	Motivation	24
	6.4	Definition	24
	6.5	Satz	25
7	Mel	hrstufige Experimente	26
	7.1	Beispiel	26
	7.2	Definition	26
	7.3	Satz	27
	7.4	Beispiel	27
8	\mathbf{Bed}	lingte Wahrscheinlichkeiten	29
	8.1	Definition	29
	8.2	Satz	29
	8.3	Bemerkung (Zusammenhang zu Übergangswahrscheinlichkei-	
		ten)	30
	8.4	Satz (Multiplikationsformel)	30
	8.5	Satz	30
	8.6	Beispiel	31
	8.7	Beispiel (Ziegenproblem)	31
	8.8	Beispiel (Simpson-Paradoxon)	32
9	Sto	chastische Unabhängigkeit	33
	9.1	Definition	33
	9.2	Bemerkung	33

Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Stochastik" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Günther Last gehalten wird.

Deskriptive Statistik

1.1 Der Grundraum

 $\emptyset \neq \Omega = \text{Grundraum (Grundgesamtheit, Merkmalsraum, Stichprobenraum)}$ Annahme: Ω ist diskret(endlich oder abzählbar unendlich) (Häufig $\Omega \subseteq \mathbb{R}$)

1.2 Absolute und relative Häufigkeit

$$x_1,\ldots,x_n\in\Omega$$
 ("Daten")
 $h(\omega)=\mathrm{card}\left\{j\in\{1,\ldots,n\}\colon x_j=\omega\right\},\omega\in\Omega,$ absolute Häufigkeit von ω

Bemerkung
$$\sum_{\omega \in \Omega} h(\omega) = n$$

Definition $\frac{1}{n}h(\omega)$ = relative Häufigkeit von ω $h(A) = \operatorname{card} \{j \in \{1, \dots, n\} : x_j \in A\}, A \subset \Omega$ = absolute Häufigkeit von A, $\frac{1}{n}h(A)$ = relative Häufigkeit von A

1.3 Histogramm

$$x_1, \dots, x_n \in \mathbb{R}, b_1 < b_2 < \dots < b_s \text{ mit } b_1 \leq \min_{1 \leq i \leq n} x_i, b_s > \max_{1 \leq i \leq n} x_i$$

TODO: BILD
 $d_j(b_{j+1} - b_j) = h([b_j, b_{j+1})) = \operatorname{card} \{i \in \{1, \dots, n\} : b_j \leq x_i < b_{j+1}\}$

1.4 Lagemaße

Definition Ein **Lagemaß** ist eine Abbildung $l: \mathbb{R}^n \to \mathbb{R}$ mit

$$l(x_1 + a, \dots, x_n + a) = l(x_1, \dots, x_n) + a$$

[&]quot;Verschiebungskovarianz". $x_1, \ldots, x_n, a \in \mathbb{R}$

1.4 Lagemaße 6

1.4.1 Arithmetisches Mittel

 $x_1, \ldots, x_n \in \mathbb{R}, \bar{x} := \frac{1}{n} \sum_{j=1}^n x_j$ "Schwerpunkt der Daten"

Fakt
$$\sum_{j=1}^{n} (x_i - t)^2 \xrightarrow{t} \text{Min}$$

Lösung: $t = \bar{x}$

"Prinzip der kleinsten Quadrate"

Beweis
$$\frac{1}{n}\sum_{j=1}^{n}(x_j-t)^2=t^2-2\bar{x}t+\frac{1}{n}\sum_{j=1}^{n}x_j^2=(t-\bar{x})^2+\frac{1}{n}\sum_{j=1}^{n}x_j^2-(\bar{x})^2$$

1.4.2 Median, Quantile

 $x_1, \ldots, x_n \in \mathbb{R} \Rightarrow x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$ geordnete Stichprobe

Definition

$$x_{1/2} := \begin{cases} x_{(\frac{n+1}{2})} & \text{, falls } n \text{ ungerade} \\ \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}) & \text{, falls } n \text{ gerade} \end{cases}$$

heißt **Median** von x_1, \ldots, x_n .

Fakt
$$\sum_{j=1}^{n} |x_j - x_{1/2}| = \min_{t} \sum_{j=1}^{n} |x_j - t| Übungsaufgabe$$

Bemerkung Der Median ist "robust" gegenüber "Ausreißern". Ist etwa $x_1 = \ldots = x_9 = 1$ und $x_{10} = 1000(n = 10)$, so gilt $\bar{x} = 100, 9, x_{1/2} = 1$

$$x_p := \begin{cases} x_{(\lfloor n \cdot p + 1 \rfloor)} & \text{, falls } n \cdot p \notin \mathbb{N} \\ \frac{1}{2} (x_{(n \cdot p)} + x_{(n \cdot p + 1)}) & \text{, falls } n \cdot p \in \mathbb{N} \end{cases}$$

p-Quantil von x_1, \ldots, x_n .

Interpretation Mindestens $p \cdot 100\%$ der Daten liegen links von x_p und mindestens $(1-p) \cdot 100\%$ liegen rechts von x_p . $x_{1/4}$ = unteres Quartil, $x_{3/4}$ = oberes Quartil

1.5Streuungsmaße

Definition Eine Abbildung $\sigma: \mathbb{R}^n \to \mathbb{R}$ mit

$$\sigma(x_1 + a, \dots, x_n + a) = \sigma(x_1, \dots, x_n)$$
 (Translationsinvarianz)

heißt Streuungsmaß.

1.5.1Empirische Varianz

$$s^2 := \frac{1}{n-1} \sum_{j=1}^n (x_j - \bar{x})^2 =$$
 empirische Varianz von x_1, \dots, x_n

1.5.2 Empirische Standardabweichung

$$s:=+\sqrt{s^2}=$$
empirische Standardabweichung von x_1,\ldots,x_n

1.5.3Spannweite

$$x_{(n)}-x_{(1)}=$$
 Spannweite von x_1,\ldots,x_n

1.5.4 Quartilsabstand

$$x_{(3/4)} - x_{(1/4)} =$$
Quartilsabstand von x_1, \dots, x_n

Empirischer Korrelationskoeffizient

$$(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^2$$
 TODO: BILD
Gesucht: Gerade $y = a + b \cdot x$ so, dass

$$(*)$$
 $\sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{a,b}{\rightarrow} \text{Min}$

Definition
$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_j - \bar{x})^2 \ \sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_j - \bar{y})^2$$

$$\sigma_{xy} = \frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x})(y_j - \bar{y})$$
 empirische Kovarianz $\sigma_x^2 > 0, \sigma_y^2 > 0.$

Lösung von (*):
$$b^* = \frac{\sigma_{xy}}{\sigma_{x^2}}, a^* = \bar{y} - b^* \cdot \bar{x}$$

$$\min_{\substack{a,b \ a,b}} \sum_{j=1}^{n} (y_j - a - bx_j)^2 \stackrel{!}{=} \min_{\substack{b \ b}} \sum_{j=1}^{n} (y_i - \bar{y} - b(x_j - \bar{x}))^2 = \dots$$

"lineare Regression"

Einsetzen von a^* und b^* in die Zielfunktion:

$$0 \le \sum_{j=1}^{n} (y_j - a^* - b^* x_j)^2 = \dots = n\sigma_y^2 (1 - (\frac{\sigma_{xy}}{\sigma_x \sigma_y})^2)$$

Definition $r_{xy}:=rac{\sigma_{xy}}{\sigma_x\sigma_y}$ heißt empirischer Korrelationskoeffizient (Pearson).

Folgerung $|r_{xy}| \le 1$ Es gilt $r_{xy} = \pm 1 \Leftrightarrow$ Punktewolke liegt exakt auf der Geraden $y = a^* + b^*x$. Dabei ist $b^* > 0$, falls $r_{xy} = 1$ und $b^* < 0$, falls $r_{xy} = -1$.

Dieser empirische Korrelationskoeffizient ist ein Maß für die (affin) lineare $Abh \ddot{a}ngigkeit zwischen den x_j und den y_j$.

Ereignisse und Zufallsvariablen

2.1 Definition

Gegeben sei eine Grundmenge Ω . Die Elemente von Ω heißen **Elementarereignisse**. Teilmengen von Ω heißen **Ereignisse**. (Idee: $\omega \in \Omega$ ist Ausgang eines zufälligen Versuchs.)

Interpretation Ein Ereignis $A \subset \Omega$ "tritt ein", wenn $\omega \in A$.

2.2 Beispiele

- (i) (Münzwurf) $\Omega = \{0, 1\} (\text{oder } \Omega = \{W, Z\})$
- (ii) (m Münzwürfe) $\Omega = \{0,1\}^m (A = \{\omega = (\omega_1,\ldots,\omega_m): \sum_{j=1}^m \omega_j \geq k\} \text{ Ereignis })$
- (iii) Werfen von 2 Würfeln $\Omega = \{1, \dots, 6\}^2$
- (iv) Brownsche Bewegung (TODO: BILD) Bewegung eines Blütenpollens in einer Flüssigkeit \Rightarrow Zukunftsmusik $\Omega = C([0,1], \mathbb{R}^2)$

2.3 Bemerkung (Mengentheoretische Operationen)

```
Seien A, B, A_1, A_2, \ldots \subset \Omega.

A \cap B = \{\omega \in \Omega : \omega \in A \text{ und } \omega \in B\} = \text{"A und B treten ein"}

A \cup B = \text{"A oder B treten ein"}

\bar{A} \equiv A^c := \Omega \setminus A = \{\omega \in \Omega : \omega \notin A\} = \text{"A tritt nicht ein"}
```

2.4 Definition 10

 $A \backslash B = A \cap B^c \hat{=}$ "A tritt ein, aber nicht B" $A \subset B \hat{=}$ "wenn A, dann B" $\emptyset \hat{=}$ "unmögliches Ereignis" $\Omega \hat{=}$ "sicheres Ereignis"

Abkürzung $AB = A \cap B$

2.4 Definition

Eine Abbildung $X: \Omega \to \mathbb{R}$ heißt (reelle) **Zufallsvariable**. Für $\omega \in \Omega$ heißt $X(\omega)$ **Realisierung** der Zufallsvariable zu ω .

Idee Mit $\omega \in \Omega$ bekommt auch $X(\omega)$ einen zufälligen Charakter.

Definition
$$X^{-1} \colon \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\Omega) = \{A \colon A \in \Omega\}$$
 ist definiert durch $X^{-1}(A) = \{\omega \in \Omega \colon X(\omega) \in A\}$ ("Urbild von A unter X")

Bemerkung

•
$$X^{-1}(A \cap B) = X^{-1}(A) \cap X^{-1}(B), A, B \subset \mathbb{R}$$

•
$$X^{-1}(A \cup B) = X^{-1}(A) \cup X^{-1}(B)$$

•
$$X^{-1}(\bigcup_{j=1}^{\infty} A_j) = \bigcup_{j=1}^{\infty} X^{-1}(A_j)$$

•
$$X^{-1}(\bigcap_{j=1}^{\infty} A_j) = \bigcap_{j=1}^{\infty} X^{-1}(A_j)$$

Vereinbarung Es sei X eine Zufallsvariable und $t \in \mathbb{R}$. Wir setzen

•
$$\{X = t\} := \{\omega : X(\omega) = t\} (= X^{-1}(t))$$

•
$$\{X \ge t\} := \{\omega \colon X(\omega) \ge t\}$$

2.5 Definition

Sind X, Y Zufallsvariablen, so definiert man

•
$$(X + Y)(\omega) = X(\omega) + Y(\omega)$$

•
$$(X - Y)(\omega) = X(\omega) - Y(\omega)$$

•
$$(X \cdot Y)(\omega) = X(\omega) \cdot Y(\omega)$$

2.6 Definition 11

 $\omega \in \Omega,$ neue Zufallsvariablen $X+Y, X-Y, X\cdot Y$ analog für $a \in \mathbb{R}$

- $aX(\omega) = a \cdot (X(\omega))$
- $\min(X, Y) = (X \wedge Y)(\omega) := \min\{X(\omega), Y(\omega)\}\dots$

2.6 Definition

Sei $A \subset \Omega$. Die Funktion $1_A : \Omega \to \mathbb{R}$ ist definiert durch

$$1_A(\omega) = \begin{cases} 1 & \text{, falls } \omega \in A \\ 0 & \text{, falls } \omega \notin A \end{cases}$$

und heißt Indikatorfunktion von A.

2.7 Bemerkungen (Rechenregeln für Indikatorfunktionen)

- $1_{\emptyset} \equiv 0$
- $1_{\Omega} \equiv 1$
- $(1_A)^2 = 1_A$
- $1_{A^c} = 1 1_A$
- $\bullet \ 1_{A \cap B} = 1_A \cdot 1_B$
- $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$
- $A \subset B \Leftrightarrow 1_A \leq 1_B$
- $1_{A \wedge B} = |1_A 1_B|$

2.8 Definition

Seien $A_1, \ldots, A_n \subset \Omega$. Die Zufallsvariable

$$X := \sum_{j=1}^{n} 1_{A_j}$$

heißt Zählvariable oder Indikatorsumme.

2.8 Definition 12

Bemerkung

- $\{X = 0\} = \{\omega \colon X(\omega) = 0\} = A_1^c \cap \dots A_n^c$
- $\{X=n\}=A_1\cap\ldots\cap A_n$
- $\{X=k\}$ = "genau k der Ereignisse A_1,\ldots,A_n treten ein" = $\bigcup_{T\subset\{1,\ldots,n\},|T|=k} (\bigcap_{j\in T} A_j\cap\bigcap_{j\notin T} A_j^c) (T\subset\{1,\ldots,n\},|T|=\mathrm{card}\ T=k)$

Diskrete Wahrscheinlichkeitsräume

3.1 Motivation

Zufallsexperiment mit Ausgängen in Ω n-malige, 'unabhängige' Wiederholung \Rightarrow Ergebnis $(a_1,\ldots,a_n)\in\Omega^n$ $r_n(A):=\frac{1}{n}\sum_{j=1}^n 1_A(a_j), A\subset\Omega$ relative Häufigkeit von A $0\leq r_n(A)\leq 1, r_n(\emptyset)=0, r_n(\Omega)=1$ $r_n(A\cup B)=r_n(A)+r_n(B), A\cap B=\emptyset$ empirisches Gesetz über Stabilisierung relativer Häufigkeiten: $r_n(A) \underset{n\to\infty}{\leadsto} ?$

3.2 Definition

Ein Paar (Ω, \mathbb{P}) bestehend aus einer diskreten Menge $\Omega \neq \emptyset$ und einer Funktion $\mathbb{P} \colon \mathcal{P} \to \mathbb{R}$ heißt diskreter Wahrscheinlichkeitsraum, falls:

- (P1) $\mathbb{P}(A) \geq 0, A \subset \Omega$
- (P2) $\mathbb{P}(\Omega) = 1$
- (P3) $\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mathbb{P}(A_j), A_i \cap A_j = \emptyset, i \neq j$ Diese Eigenschaft heißt σ -Additivität.

Man nennt \mathbb{P} Wahrscheinlichkeitsmaß (auf Ω) (oder Wahrscheinlichkeitsverteilung) und $\mathbb{P}(A)$ heißt Wahrscheinlichkeit von A.

3.3 Folgerung 14

3.3 Folgerung

- a) $\mathbb{P}(\emptyset) = 0$
- b) $\mathbb{P}(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} \mathbb{P}(A_j), A_i \cap A_j = \emptyset, i \neq j$
- c) $0 \leq \mathbb{P}(A) \leq 1, A \subset \Omega$
- d) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B), A, B \subset \Omega$
- e) $A \subset B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$ (Monotonie)
- f) $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ (Komplementärwahrscheinlichkeit)
- g) $\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} A_j$ (Subadditivität)
- h) $A_n \subset A_{n+1}, n \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$ (Stetigkeit von unten)
- i) $A_n \supset A_{n+1}, n \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$ (Stetigkeit von oben)

Beweis • a): $A_j = \emptyset, j \in \mathbb{N}$ (P3) 1 $\mathbb{P}(\emptyset) = 0$.

- b): $A_{n+1} = A_{n+2} = \ldots = \emptyset$ in P3!
- c) + f): Für $A \subset \Omega$ gilt nach b) (für n = 2):

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) \stackrel{(b)}{=} \mathbb{P}(A) + \mathbb{P}(A^c)$$

• d): Nach b) gilt $\mathbb{P}(A) = \mathbb{P}(A \backslash B) + \mathbb{P}(A \cap B)$, $\mathbb{P}(B) = \mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B)$ und somit $\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(A \backslash B) + \mathbb{P}(B \backslash A) + \mathbb{P}(A \cap B) \stackrel{(b)}{=} \mathbb{P}(A \cup B)$

• e): Wegen $B = A \cup (B \setminus A)$ folgt² $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \ge \mathbb{P}(A)$

• g):
$$B_1 := A_1, B_2 := A_2 \setminus A_1, \dots, B_n := A_n \setminus (\bigcup_{j=1}^{n-1} A_j), n \ge 2.$$

Dann gilt $B_n \subset A_n$ und $\bigcup_{j=1}^n B_j = \bigcup_{j=1}^n A_j$ sowie $B_i \cap B_j = \emptyset, i \neq j$.

Es folgt aus (P3):

$$\mathbb{P}(\bigcup_{j=1}^{\infty} A_j) \stackrel{!}{=} \mathbb{P}(\bigcup_{j=1}^{n} B_j) \stackrel{(P3)}{=} \sum_{j=1}^{n} \mathbb{P}(B_j) \stackrel{e)}{\leq} \sum_{j=1}^{n} \mathbb{P}(A_j) \ (\infty \text{ ist zugelassen})$$

• h) + i): Übungsaufgabe

 $^{{}^{1}\}mathbb{P}(\emptyset) = \mathbb{P}(\emptyset \cup \emptyset) = \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset) = 2 \cdot \mathbb{P}(\emptyset)$ ²(aus der Additivität)

3.4 Satz 15

3.4 Satz

Seien $A_1, \ldots, A_n \subset \Omega$. Setze

$$S_k := \sum_{1 \le i_1 < \dots < i_k \le n} \mathbb{P}(A_{i_1} \cap \dots \cap A_{i_k})$$

Dann gilt

• a)
$$\mathbb{P}(\bigcup_{j=1}^{n} A_j) = \sum_{k=1}^{n} (-1)^{k-1} S_k$$
 'Siebformel'

• b)
$$\mathbb{P}(\bigcup_{j=1}^{n} A_j) \le \sum_{k=1}^{2s+1} (-1)^{k-1} S_k, s = 0, \dots, \lfloor \frac{n-1}{2} \rfloor$$

 $\mathbb{P}(\bigcup_{j=1}^{n} A_j) \ge \sum_{k=1}^{2s} (-1)^{k-1} S_k, s = 1, \dots, \lfloor \frac{n}{2} \rfloor$

Beweisidee für Siebformel vollständige Induktion nach n:

$$\underline{\mathbf{n}} = \underline{\mathbf{2}} : \mathbb{P}(A_1 \cup A_2) \stackrel{(d)}{=} \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) = S_1 - S_2 \\
\underline{\mathbf{n}} = \underline{\mathbf{3}} : \mathbb{P}(\underline{A_1 \cup A_2} \cup A_3) \stackrel{(d)}{=} \mathbb{P}(A_1 \cup A_2) + \mathbb{P}(A_3) - \mathbb{P}((A_1 \cup A_2) \cap A_3)^3 \\
\stackrel{(d)}{=} \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) + \mathbb{P}(A_3) - \mathbb{P}(A_1 \cap A_3) - \mathbb{P}(A_2 \cap A_3) + \mathbb{P}(A_1 \cap A_2) \\
\underline{A_2 \cap A_3} = S_1 - S_2 + S_3$$

3.5 Definition + Satz

a) Sei (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum. Dann heißt $p: \Omega \to \mathbb{R}$ definiert durch $p(\omega) := \mathbb{P}(\{\omega\})$ Wahrscheinlichkeitsfunktion (von \mathbb{P}). Es gilt $\mathbb{P}(A) = \sum_{\omega \in A} p(\omega), A \subset \Omega$.

b) Sind Ω diskret und $p \colon \Omega \to \mathbb{R}$ eine Abbildung mit $p(\omega) \geq 0$ und $\sum_{\omega \in \Omega} p(\omega) = 1$, so erhält man vermöge $\mathbb{P}(A) := \sum_{\omega \in A} p(\omega)$ einen diskreten Wahrscheinlichkeitsraum.

Beweis • a) σ -Additivität $(A = \bigcup_{\omega \in A} \{\omega\})$ • b) σ -Additivität: Großer Umordnungssatz! (Analysis)

3.6 Definition

 $|\Omega| =: n < \infty$. Definiere $\mathbb{P}(A) = \frac{|A|}{n}$. Dann heißt (Ω, \mathbb{P}) (ein diskreter Wahrscheinlichkeitsraum!) Laplace-Raum. Man nennt P Gleichverteilung auf

('homogene Münze', 'Würfeln', ...)

 $[\]overline{{}^{3}(A_{1} \cup A_{2}) \cap A_{3} = (A_{1} \cap A_{3}) \cup (A_{2} \cap A_{3})}$

3.7 Definition 16

3.7 Definition

Sei $\Omega \neq \emptyset$ beliebig! (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum $\Leftrightarrow \exists$ abzählbare Menge $\Omega_0 \subset \Omega$, $\exists p \colon \Omega \to [0, \infty)$ mit $p(\omega = 0)$ für alle $\omega \notin \Omega_0$, und $\sum_{\omega \in \Omega_0} p(\omega) = 1$, und $\mathbb{P}(A) = \sum_{\omega \in A \cap \Omega_0} p(\omega)$, $A \subset \Omega$.

Wiederholung (Ω, \mathbb{P}) Wahrscheinlichkeitsraum

$$p: \Omega \to [0, 1], \sum_{\omega \in \Omega} p(\omega) = 1$$

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), A \subset \Omega$$

$$p(\omega) := \mathbb{P}(\{\omega\})$$

 $\begin{array}{l} \Omega \text{ allgemeine Menge, } \Omega_0 \subset \Omega \text{ diskret} \\ p \colon \Omega \to [0,1], \sum_{\omega \in \Omega_0} p(\omega) = 1, p(\omega) = 0, \omega \notin \Omega_0 \\ \mathbb{P}(A) := \sum_{\omega \in A} p(\omega) := \sum_{\omega \in A \cap \Omega_0} p(\omega) \\ \Omega_0 = \text{Träger von } \mathbb{P} \end{array}$

3.8 Definition

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum mit Träger Ω_0 . Es sei $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Dann heißt die Funktion $\mathbb{P}^X : \mathbb{P}(\mathbb{R}) \to \mathbb{R}$ definiert durch $\mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)), B \subset \mathbb{R}$ Verteilung um X.

3.9 Satz

In der Situation von Definition 3.8 ist $(\mathbb{R}, \mathbb{P}^X)$ ein diskreter Wahrscheinlichkeitsraum mit Träger $B_0 := X(\Omega_0) = \{X(\omega) : \omega \in \Omega_0\}$

Beweis. Für $B \subset \mathbb{R}$.

$$\mathbb{P}^{X}(B) = \mathbb{P}(\{\omega \colon X(\omega) \in B\})$$
$$\stackrel{!}{=} \mathbb{P}(\{\omega \colon X(\omega) \in B \cap B_{0}\})$$

Definiert man für $t \in \mathbb{R}$

$$p_t = \mathbb{P}(\{\omega \colon X(\omega) = t\}) = \mathbb{P}(X = t)$$

so ergibt sich aus der $\sigma\text{-}\mathrm{Additivit}$ ät von $\mathbb P$

$$\mathbb{P}^X(B) = \sum_{t \in B \cap B_0} \mathbb{P}(\{\omega \colon X(\omega) = t\}) = \sum_{t \in B \cap B_0} p_t$$

Kombinatorik

|A| = card(A) = Anzahl der Elemente einer endlichen Menge A

4.1 Grundregeln

$$\begin{array}{l} A_1,\ldots,A_k \text{ endliche Menge} \\ \text{(i)} \ A_i\cap A_j=\emptyset, i\neq j \Rightarrow \left|\bigcup_{j=1}^n A_j\right| = \sum\limits_{j=1}^n A_j \\ \text{(ii)} \ |A_1\times\ldots\times A_n| = \prod\limits_{j=1}^k |A_j| \end{array}$$

(ii)
$$|A_1 \times \ldots \times A_n| = \prod_{j=1}^k |A_j|$$

4.2 Satz

Es sollen k-Tupel (a_1, \ldots, a_k) durch sukzessives Festlegen von a_1, a_2, \ldots, a_k nach folgenden Regeln gebildet werden:

- $\bullet\,$ es gibt j_1 Möglichkeiten für die Wahl von a_1
- \bullet es gibt (dann) j_2 Möglichkeiten für die Wahl von a_2
- ullet es gibt (dann) j_k Möglichkeiten für die Wahl von a_k

Dann gibt es genau $j_1 \cdot \ldots \cdot j_k$ solcher Tupel.

4.3 Beispiel (Urnenmodelle)

Betrachte Urne mit n durchnummerierten Kugeln. Es werden k Kugeln nach folgenden Regeln gezogen: $(M := \{1, \dots, n\})$

4.4 Definition 18

Beachtung der Reihenfolge Zurücklegen (Wiederholung)	ja	nein
ja	k-Permutationen aus	k-Kombinationen aus
	M mit Wiederholung,	M mit Wiederholung,
	Per_k^n	Kom_k^n
nein	k-Permutationen aus	k-Kombinationen aus
	M ohne Wiederholung,	M ohne Wiederholung,
	$Per_{k,\neq}^n$	$Kom_{k,\neq}^n$

4.4 Definition

 $M = \{1, \dots, n\} (n \in \mathbb{N})$

- $Per_k^n := M^k$
- $Per_{k,\neq}^n := \{(a_1, \dots, a_k) \in M^k : a_i \neq a_j \text{ für } i \neq j\}$
- $Kom_k^n := \{(a_1, \dots, a_k = \in M^k : a_1 \le a_2 \le \dots \le a_k\}$
- $(Kom_{k,\neq}^n := \{(a_1,\ldots,a_k) \in M^k : a_1 < a_2 < \ldots < a_k\}$

4.5 Satz

- (i) $|Per_k^n| = n^k$
- (ii) $|Per_{k,\neq}^n| := n^{\underline{k}} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$
- (iii) $|Kom_k^n| = \binom{n+k-1}{k}$
- (iv) $|Kom_{k,\neq}^n| = \binom{n}{k}$

Beweis. (i): 4.1.(ii)

- (ii) Satz 4.2
- (iv) Betrachte Äquivalenzrelation

$$(a_1, \ldots, a_k) \sim (b_1, \ldots, b_k) \Leftrightarrow \{a_1, \ldots, a_k\} = \{b_1, \ldots, b_k\}$$

auf $Per_{k,\neq}^n$. Jede Äquivalenzklasse hat k! Elemente! Es folgt

$$|Kom_{k,\neq}^n| \cdot k! = |Per_{k,\neq}^n| = n^{\underline{k}}$$

(iii) Die Abbildung $g\colon Kom_k^n\to Kom_{k,\neq}^{n+k-1}$ definiert durch

$$(a_1,\ldots,a_k)\mapsto (a_1,a_2+1,a_3+2,\ldots,a_k+k-1)$$

ist eine Bijektion! (Umkehrabbildung!) Es $\mathrm{folgt}(!)$

$$|Kom_k^n| = |Kom_{k,\neq}^{n+k-1}| = \binom{n+k-1}{k}$$

4.6 Beispiel (Geburtstagsproblem)

Wie groß ist die Wahrscheinlichkeit, dass unter k rein zufällig ausgewählten Personen mindestens zwei am selben Tag Geburtstag haben?

Antwort Betrachte $\Sigma = Per_k^n$ mit n = 365, und der Laplace-Verteilung. Es sei $A := \{(a_1, \ldots, a_k) \in \Omega : \text{ es gibt } i, j \in \{1, \ldots, k\} \text{ mit } i \neq j, a_i = a_j\}$. Es gilt

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^c)$$

$$= 1 - \mathbb{P}(Per_{k,\neq}^n)$$

$$\stackrel{!}{=} 1 - \frac{|Per_{k,\neq}^n|}{card\Omega}$$

$$= 1 - \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n^k}$$

$$= 1 - \frac{n}{n} \cdot \frac{(n-1)}{n} \cdot \dots \cdot \frac{n-k+1}{n}$$

$$= 1 - (1 - \frac{1}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n})$$

$$\begin{array}{l} \underline{k=23:} \ \mathbb{P}(A)\approx 0,507>\frac{1}{2} \\ n=\binom{49}{6}, k=4004, \mathbb{P}(A)=0,5001>\frac{1}{2} \end{array}$$

4.7 Beispiel

n Personen bringen (zu einer Feier) je ein Geschenk mit. Geschenke werden "rein zufällig" verteilt. Mit welcher Wahrscheinlichkeit bekommt mindestens eine Person ihr eigenes Geschenk?

→ Siebformel!

4.8 Beispiel (Besetzungsmodelle)

k Teilchen sollen auf n nummerierte Fächer verteilt werden. Analogie zu Urnenmodell: Nummer der Kugel $\hat{=}$ Nummer des Fachs, Nummer der Ziehung

					_
ê N	Nummer des Teilchens				
	Mehrfachbesetzungen Unterscheidbare Teilchen	ja		nein	
	ja		Maxwell-	Kom_k^n	Bose-
		Boltzmann		Einstein-Statistik	
	nein	$\begin{array}{c} Per_{k,\neq}^n \\ \text{Dirak-S} \end{array}$	Fermi-	$Kom_{k,\neq}^n$	
		Dirak-S	tatistik	,	
Cu i	· · · 1 D1 · · 1				

Statistische Physik

Der Erwartungswert

 $p(\omega) = \mathbb{P}(\{\omega\}), (\Omega, \mathbb{P})$ diskreter Wahrscheinlichkeitsraum

5.1 Definition

• Der Erwartungswert einer Zufallsvariablen $X: \Omega \to \mathbb{R}$ existiert (genauer: X ist integrierbar bezüglich \mathbb{P}), falls

$$\sum_{\omega \in \Omega} |X(\omega)| p(\omega) < \infty \tag{5.1}$$

In diesem Fall heißt

$$\mathbb{E} X = \mathbb{E}[X] := \sum_{\omega \in \Omega} X(\omega) p(\omega)$$

(Physik: $\langle X \rangle = \mathbb{E}[X]$) Erwartungswert von X.

• Ist $X \ge 0$ eine Zufallsvariable, so heißt

$$\mathbb{E} X := \sum_{\omega \in \Omega} X(\omega) p(\omega) \in [0,\infty]$$

ebenfalls Erwartungswert von X.

5.2 Satz

Sei $L^1 \equiv L^1(\mathbb{P}) := \{X \colon X \text{ erfüllt 5.1}\}$. Dann ist L^1 ein reeller Vektorraum. Genauer:

- (i) $\mathbb{E}[X+Y] = \mathbb{E}X + \mathbb{E}Y, X, Y \in L^1$
- (ii) $\mathbb{E}[aX] = a\mathbb{E}X, X \in L^1, a \in \mathbb{R}$
- (iii) $\mathbb{E}1_A = \mathbb{P}(A), A \subset \Omega$

5.3 Folgerung 21

- (iv) $X \le Y \Rightarrow \mathbb{E}X \le \mathbb{E}Y$
- (v) $|\mathbb{E}X| \leq \mathbb{E}|X|$

Beweis. (i) $|(X+Y)(\omega)| \le |X(\omega)| + |Y(\omega)|$. Also $X+Y \in L^1(\mathbb{P})$ und

$$\sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) p(\omega) \stackrel{!}{=} \sum_{\omega \in \Omega} X(\omega) p(\omega) + \sum_{\omega \in \Omega} Y(\omega) p(\omega)$$

(ii) analog

(iii)
$$\mathbb{E}1_A = \sum_{\omega \in \Omega} p(\omega) = \mathbb{P}(A)$$

$$(iv) + (v) Übungsaufgabe$$

5.3 Folgerung

Seien $A_1,\ldots,A_n\subset\Omega$ und $X:=\sum\limits_{j=1}^n1_{A_j}$. Dann gilt $\mathbb{E}X=\sum\limits_{j=1}^n\mathbb{P}(A_j)$. (Gilt auch für ∞ viele Ereignisse.)

5.4 Satz (Transformationsformel)

Seien $X: \Omega \Rightarrow \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$. Definiere $g(X): \Omega \to \mathbb{R}$ durch

$$g(X)(\omega) = g(X(\omega)).$$

Dann ist $g(X) \in L^1(\mathbb{P})$ genau dann, wenn

$$\sum_{x \colon \mathbb{P}(X=x) > 0} |g(x)| \mathbb{P}(X=x) < \infty$$

1

In diesem Fall gilt

$$\mathbb{E}g(x) = \sum_{x \colon \mathbb{P}(X=x) > 0} g(x)\mathbb{P}(X=x)$$

Beweis. Es gilt

$$\sum_{\omega \in \Omega} \left| g\left(X(\omega) \right) \right| p(\omega) = \sum_{x \in \mathbb{R} \colon \mathbb{P}(X=x) > 0} \left| g(x) \right| \sum_{\omega \in \Omega \colon X(\omega) = x} p(\omega)$$

$$\Omega = \bigcup_{x \in \mathbb{R}: \ X(\omega) = x, \mathbb{P}(X = x) > 0} \{\omega \colon X(\omega) = x\} \cup \Omega', \mathbb{P}(\Omega') = 0$$

 $[\]overline{{}^{1}\mathbb{P}(X=x) = \mathbb{P}(\{\omega \in \Omega \colon X(\omega) = x\})}$

5.5 Beispiele 22

$$\begin{split} &= \sum |g\left(X(\omega)\right)|p(\omega) = \sum_{\omega \notin \Omega'} |g\left(X(\omega)\right)|p(\omega) \\ &= \sum_{x \in \mathbb{R} \colon \mathbb{P}(X=x) > 0} \sum_{\omega \in \{\omega \in \Omega \colon X(\omega) = x\}} |g(X(\omega))|p(\omega) \\ &= \sum_{x \cdots} |g(x)|\mathbb{P}(X=x) \end{split}$$

Ist das endlich, so gilt die Rechnung auch ohne Betragsstriche! Insbesondere gilt

$$\mathbb{E}X = \sum_{x \in \mathbb{R}} x \mathbb{P}(X = x) (g(x) \equiv x)$$

5.5 Beispiele

• Würfelwurf, X=Augenzahl, $\mathbb{P}(X = j) = \frac{1}{6}$.

$$\mathbb{E}X = \sum_{j=1}^{6} j \cdot \mathbb{P}(X = j) = \frac{6 \cdot 7}{2} \cdot \frac{1}{6} = \frac{7}{2} = 3, 5$$

• Zweifacher Würfelwurf, X= Maximum der Augenzahlen ($\Omega=\{1,\ldots,6\}^2,\mathbb{P}=$ Gleichverteilung)

$$\mathbb{P}(X=1) = \frac{1}{36}$$

$$\mathbb{P}(X=2) = p((1,2)) + p((2,1)) + p((2,2)) = \frac{3}{36}$$

$$\frac{\text{Allgemein:}}{\text{Es folgt}} \, \mathbb{P}(X=j) = \frac{2j-1}{36}, j = 1, \dots, 6$$

$$\mathbb{E}X = \sum_{j=1}^{6} j \cdot \frac{2j-1}{36} \stackrel{?}{\approx} 4,47$$

Die hypergeometrische Verteilung und die Binomialverteilung

Urne mit Kugeln
$$\underbrace{1,2,\ldots,r}_{rot},\underbrace{r+1,\ldots,r+s}_{schwarz}$$
 $r,s\in\mathbb{N}_0,r+s>0.$

6.1 Definition

- $\bullet \ n$ mal Ziehen ohne Zurücklegen
- $a_j := \text{Nummer der } j\text{-ten gezogenen Kugel}$
- $\Omega = Per_{n,\neq}^{r+s}$
- \bullet $\mathbb{P} =$ Gleichverteilung ("unabhängiges", "rein zufälliges" Ziehen)
- $A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j \le r\} \hat{=} \{\text{j-te gezogene Kugel ist rot}\}$
- $X := \sum_{j=1}^{n} 1_{A_j}$ = Anzahl der gezogenen roten Kugeln

 \mathbb{P}^X (die Verteilung von X)heißt **hypergeometrische Verteilung** mit Parametern r,s,n, kurz:

$$X \sim Hyp(n, r, s), n \le r + s$$

$$\mathbb{P}^X = Hyp(n, r, s)$$

6.2 Satz 24

6.2Satz

Es gilt

• (i)
$$\mathbb{E}X = n \cdot \frac{r}{r+s}$$

• (ii)
$$\mathbb{P}(X=k) = \frac{\binom{r}{s}\binom{s}{n-k}}{\binom{r+s}{s}}, k=0,\ldots,r \wedge n$$

Beweis. (i) Es gilt (Symmetrieargument!) $|A_i| = r \cdot (r+s-1)^{n-1}$ $\begin{aligned} |\Omega| &= (r+s)^{\underline{n}} \Rightarrow \mathbb{P}(A_j) = \frac{|A_j|}{|\Omega|} = \frac{r}{r+s} \\ \text{Aus 5.3 folgt } \mathbb{E}X &= n \cdot \frac{r}{r+s} \end{aligned}$

(ii)
$$|\{X = k\}| \stackrel{!}{=} \binom{n}{k} r^{\underline{k}} s^{\underline{n-k}}$$

$$\Rightarrow \mathbb{P}(X = k) = \frac{\binom{n}{k} r^{\underline{k}} s^{\underline{n-k}}}{(r+s)^{\underline{n}}} = \frac{\binom{r}{k} \binom{s}{n-k}}{\binom{r+s}{n}}$$

6.3 Motivation

X Zufallsvariable, $\sum_{k=1}^{r} \mathbb{P}(X = x_n) = 1$

 X_1, X_2, \ldots, X_n "unabhängige" Wiederholungen von X (= Ergebnis eines zufälligen Versuchs)

 $\bar{X} := \frac{1}{n}(X_1 + \ldots + X_n)$ Zufallsvariable!

Mit $h_j := card\{i \in \{1, \dots, n\}: X_i = x_j\}$ gilt $\bar{X} \stackrel{!}{=} \frac{1}{n}(h_1x_1 + h_2x_2 + \dots + h_nx_n)$ empirisches Gesetz über Stabilität relativer Häufigkeiten

$$\underset{n\to\infty}{\to} \mathbb{P}(X=x_1)x_1 + \ldots + \mathbb{P}(X=x_r)x_r \stackrel{!}{=} \mathbb{E}X$$

$$X \sim Hyp(n,r,s) = \mathbb{P}^X, n \le r + s$$

$$X \sim Hyp(n, r, s) = \mathbb{P}^X, n \le r + s$$
$$\mathbb{P}(X = k) = \frac{\binom{r}{s}\binom{s}{n-k}}{\binom{r+s}{n}}, k = 0, \dots, n$$

Wegen $\binom{m}{l} := 0$ für m < l gilt: $\mathbb{P}(X = k) = 0$ für k < r und für n - k > ls(k < n - s)

Definition 6.4

Binomial verteilung:

- \bullet n maliges Ziehen aus einer Urne mit r+s Kugeln mit Zurücklegen
- $\Omega = Per_n^{r+s} = \{(a_1, \dots, a_n) : 1 \le a_i \le r + s, i = 1, \dots, n\}$
- P Gleichverteilung

$$X := \sum_{i=1}^{n} 1_{A_j}, A_j := \{(a_1, \dots, a_n) \in \Omega \colon a_j \le r\}$$

 \mathbb{P}^X heißt Binomialverteilung mit Parametern
n und $p:=\frac{r}{r+s}$. Man schreibt auch $Bin(n,p) := \mathbb{P}^X$.

6.5 Satz 25

6.5 Satz

Es gilt

1.
$$\mathbb{E}X = np$$

2.
$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, 0 \le k \le n$$

Beweis. 1.
$$|A_j| = r \cdot (r+s)^{n-1}$$

 $|\Omega| = (r+s)^n \leadsto \mathbb{P}(A_j) = \frac{|A_j|}{|\Omega|} = \frac{r}{r+s} = p$
Folgerung 5.3 $\leadsto \mathbb{E}X = np$.

2.
$$card\{X = k\} = \binom{n}{k} r^k s^{n-k}$$

 $\rightsquigarrow \mathbb{P}(X = k) = \frac{\binom{n}{k} r^k s^{n-k}}{(r+s)^k (r+s)^{n-k}}$

Bemerkung Bin(n,p) ist für jedes $p \in [0,1]$ definiert.

Mehrstufige Experimente

7.1Beispiel

Urne mit einer roten und drei schwarzen Kugeln

- 1. Experiment Kugel ziehen, Farbe notieren, Kugel und eine weitere Kugel derselben Farbe zurücklegen
- 2. Experiment Erneut Kugel ziehen

Modell:
$$\Omega := \{0, 1\} \times \{0, 1\}, \quad (0 = s, 1 = r)$$

Konstruction von
$$\mathbb{P}$$
 $p(\omega) := \mathbb{P}(\{\omega\})$
 $p(1,1) := \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{50} = \frac{1}{10}$

$$\begin{array}{c} \textbf{Konstruktion von} \ \mathbb{P} \quad p(\omega) := \mathbb{P}(\{\omega\}) \\ p(1,1) := \frac{1}{4} \cdot \frac{2}{5} = \frac{2}{20} = \frac{1}{10} \\ p(1,0) := \frac{1}{4} \cdot \frac{3}{5} = \frac{3}{20} \\ p(0,1) := \frac{3}{4} \cdot \frac{1}{5} = \frac{3}{20} \\ p(0,0) := \frac{3}{4} \cdot \frac{4}{5} = \frac{12}{20} \end{array} \right\} 1. \ \text{Pfadregel}$$

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Betrachte $B := \{(1, 1), (0, 1)\}$. Dann gilt

$$\mathbb{P}(B) = p(1,1) + p(0,1) = (2.$$
 Pfadregel)

$$= \frac{2}{20} + \frac{3}{20} = \frac{1}{4} \stackrel{!}{=} \mathbb{P}(\text{erste Kugel ist rot})$$

(TODO: Bild(Baumdiagramm))

7.2Definition

Mehrstufige Experimente $\Omega = \Omega_1 \times ... \times \Omega_n \ (\Omega_j = Grundraum \ für \ j$ -tes Teilexperiment)

$$\omega = (a_1, \ldots, a_n) \in \Omega$$

Problem: Definiere $p(\omega) = \mathbb{P}(\{\omega\})$

7.3 Satz

1. Startverteilung
$$p_1 \colon \Omega_1 \to [0,1]$$
 $\sum_{\omega \in \Omega_1} p_1(\omega) = 1$

2. Übergangswahrscheinlichkeiten $p_2(a_2|a_1) \ge 0$ $\sum_{a_2 \in \Omega_2} p_2(a_2|a_1) \stackrel{!}{=} 1$

 $(p_2(a_2|a_1) = Wahrscheinlichkeit, dass 2.$ Versuch das Ergebnis a_2 liefert unter der Bedingung, dass 1. Versuch Ergebnis a_1 geliefert hat.)

$$p_3(a_3|a_1, a_2) \ge 0$$
 $\sum_{a_3 \in \Omega_3} p_3(a_3|a_1, a_2) = 1$

$$p_n(a_n|a_1,\ldots,a_{n-1}) \ge 0$$
 $\sum_{a_n \in \Omega_n} p_n(a_n|a_1,\ldots,a_{n-1}) = 1$

Setze für $\omega = (a_1, \ldots, a_n) \in \Omega$

$$p(\omega) := p_1(a_1) \cdot p_2(a_2|a_1) \cdot p_3(a_3|a_1, a_2) \cdot \dots \cdot p_n(a_n|a_1, \dots, a_{n-1})$$
 1. Pfadregel

Schließlich sei

$$\mathbb{P}(A) := \sum_{\omega \in A} p(\omega), \quad A \subset \Omega \qquad \text{Produkt von Übergangswahrscheinlichkeiten}$$

7.3 Satz

 (Ω, \mathbb{P}) ist diskreter Wahrscheinlichkeitsraum.

Beweis. zu zeigen: $\sum_{\omega \in \Omega} p(\omega) = 1$

Induktion (oder direkt)! Zum Beispiel gilt für n=2

$$\sum_{\omega \in \Omega} p(\omega) = \sum_{(a_1, a_2) \in \Omega_1 \times \Omega_2} p_1(a_1) p_2(a_2 | a_1) = \sum_{a_1 \in \Omega_1} \sum_{a_2 \in \Omega_2} p_1(a_1) p_2(a_2 | a_1)$$

$$\sum_{a_1 \in \Omega_1} p_1(a_1) \cdot 1 = 1.$$

7.4 Beispiel

Unabhängige Experimente $(\Omega_j, \mathbb{P}_j), j = 1, ..., n$, diskrete Wahrscheinlichkeitsräume, $p_i(a_i) = \mathbb{P}_i(\{a_i\})$

Idee: "Unabhängiges" Durchführen der zugehörigen Experimente

$$\Omega := \Omega_1 \times \ldots \times \Omega_n, p(\omega) := p_1(a_1) \cdot \ldots \cdot p_n(a_n), \omega = (a_1, \ldots, a_n) \in \Omega$$

$$(p_2(a_2|a_1) = p_2(a_2), \dots, p_n(a_n|a_1, \dots, a_{n-1}) = p_n(a_n))$$

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega)$$

7.4 Beispiel 28

Man nennt $\mathbb P$ das $\mathbf{Produkt}$ von $\mathbb P_1,\dots,\mathbb P_n$ und schreibt

$$\mathbb{P} := \bigotimes_{i=1}^{n} \mathbb{P}_{i}.$$

z.B. kann
$$\Omega = \Omega_1 \times \Omega_2$$
, $\Omega_1 = \Omega_2 = \{1, \dots, 6\}$
 $p_1(a_1) = p_2(a_2) = \frac{1}{6}$
Dann ist

$$p(a_1, a_2) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$

und \mathbb{P} ist die Laplace-Verteilung auf Ω .

Bedingte Wahrscheinlichkeiten

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum.

8.1 Definition

Sei $B \subset \Omega$ mit $\mathbb{P}(B) > 0$. Dann heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

bedingte Wahrscheinlichkeit von $A\subset \Omega$ unter der Bedingung B. Alternativ: $P_B(A):=\mathbb{P}(A|B)$

8.2 Satz

 P_B ist ein Wahrscheinlichkeitsmaß auf Ω . Dabei ist $P_B(A) = 1$ falls $B \subset A$ und $P_B(A) = 0$ falls $A \cap B = \emptyset$. Es gilt:

$$p_B(\omega) := \begin{cases} \frac{p(\omega)}{\mathbb{P}(B)} & \text{, falls } \omega \in B \\ 0 & \text{, sonst} \end{cases} \quad \text{mit } p_B(\omega) := \mathbb{P}_B(\{\omega\})$$

Beweis ist klar! $(\sum_{\omega \in \Omega} p_B(\omega) = \frac{1}{\mathbb{P}(B)} \sum_{\omega \in B} p(\omega) = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.)$

Motivation Für $A \subset B$

$$\frac{h_n(A)}{h_n(B)} = \frac{\frac{1}{n}h_n(A)}{\frac{1}{n}h_n(B)} \leadsto \frac{\mathbb{P}(A)}{\mathbb{P}(B)}.$$

(Zusammenhang zu Übergangs-8.3 Bemerkung wahrscheinlichkeiten)

$$\Omega=\Omega_1\times\Omega_2,\quad p(\omega)=p_1(a_1)p_2(a_2|a_1),\quad \omega=(a_1,a_2)$$
 Für $a_1\in\Omega_1$ sei

$$B := \{a_1\} \times \Omega_2.$$

Für $a_2 \in \Omega_2$ sei

$$A := \Omega_1 \times \{a_2\}.$$

Es gilt $A \cap B = \{(a_1, a_2)\},\$

$$\mathbb{P}(A \cap B) = \sum_{\omega \in A \cap B} p(\omega) = \sum_{(b_1, b_2) \in A \cap B} p_1(b_1) p_2(b_2 | b_1) = p_1(a_1) p_2(a_2 | a_1),$$

$$\mathbb{P}(B) = \sum_{b_2 \in \Omega_2} p(a_1|b_2) = \sum_{b_2 \in \Omega_2} p_1(a_1)p_2(b_2|a_1) = p_1(a_1)$$

Es folgt

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \stackrel{p_1(a_1) > 0}{=} p_2(a_2|a_1)$$

Satz (Multiplikationsformel) 8.4

Seien $A_1, \ldots, A_n \subset \Omega$ mit $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$. Dann gilt

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2) \cdot \ldots \cdot \mathbb{P}(A_n|A_1 \cap \ldots \cap A_{n-1})$$

Beweis. Für n=2:

$$\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 | A_1)$$

$$\frac{\text{Allgemein:}}{n=3: \text{ rechte Seite: } \mathbb{P}(A_1) \cdot \frac{\mathbb{P}(A_1 \cap A_2)}{\mathbb{P}(A_1)} = \frac{\mathbb{P}(A_1 \cap A_2 \cap A_3)}{\mathbb{P}(A_1 \cap A_2)} = \mathbb{P}(A_1 \cap A_2 \cap A_3) \qquad \Box$$

Satz 8.5

Sei A_1, A_2, \ldots Zerlegung von $\Omega(\bigcup A_i = \Omega, A_i \cap A_j = \emptyset, i \neq j)$.

1.
$$\mathbb{P}(B) = \sum_{j=1}^{\infty} \mathbb{P}(A_j) \mathbb{P}(B|A_j)$$
 Formel der totalen Wahrscheinlichkeit

2. ¹ Für $\mathbb{P}(B) > 0$, so gilt

$$\mathbb{P}(A_k|B) = \frac{\mathbb{P}(A_k)\mathbb{P}(B|A_k)}{\sum_{j=1}^{\infty} \mathbb{P}(A_j)\mathbb{P}(B|A_j)}, \quad k = 1, 2, \dots$$

¹Formel von Bayes

8.6 Beispiel 31

(Man vereinbart $\mathbb{P}(B|A_i)\mathbb{P}(A_i) := 0$, falls $\mathbb{P}(A_i) = 0$)

Beweis. 1. $B = B \cap \Omega = \bigcup_{j=1}^{\infty} \underbrace{B \cap A_j}_{\text{paarweise disjunkt}}$ Aus der σ -Additivität von $\mathbb P$

folgt

$$\mathbb{P}(B) = \sum_{j=1}^{\infty} \mathbb{P}(B \cap A_j) = \sum_{j=1}^{\infty} \mathbb{P}(B|A_j)\mathbb{P}(A_j)$$

2. rechte Seite der Behauptung: $\frac{\mathbb{P}(B \cap A_k)}{\mathbb{P}(B)} \stackrel{!}{=} \mathbb{P}(A_k|B)$

8.6 Beispiel

Eine Krankheit komme bei 4% der Bevölkerung vor². Ein Test spreche bei 90% der Kranken an und bei 20% der Gesunden!

Modell

- \bullet Ω : Menge der Personen in Deutschland
- $K \subset \Omega$: Menge der kranken Personen
- $A \subset \Omega$: Menge der (hypothetisch) positiv getesteten Personen
- \mathbb{P} = Gleichverteilung auf Ω

Dann

 $\mathbb{P}(K|A) = \text{Wahrscheinlichkeit}, \text{ dass eine positiv getestete Person krank ist}$

$$\stackrel{Bayes}{=} \frac{\mathbb{P}(K)\mathbb{P}(A|K)}{\mathbb{P}(K)\mathbb{P}(A|K) + \mathbb{P}(K^c)\mathbb{P}(A|K^c)} \quad (K = A_j, K^c = A_k)$$

$$= \frac{0,04 \cdot 0,9}{0,04 \cdot 0,9 + 0,96 \cdot 0,2} = \frac{0,036}{0,036 + 0,192} = \frac{0,036}{0,228} = 0,158$$

8.7 Beispiel (Ziegenproblem)

Ausgelassen.

²Die Mediziner sprechen von "Prävalenz".

8.8 Beispiel (Simpson-Paradoxon)

Zulassung von Studenten in Berkeley (1973)

• Zulassungsrate Männer: 44%

 \bullet Zulassungsrate Frauen: 35%

<u>Aber:</u> Zulassungsraten der Männer in den einzelnen Fächern kleiner als die der Frauen

Erklärung

- $A = Zulassung^3$
- $B = \text{Frau}^4$
- $K_j =$ Bewerbung für Fach j

Dann kann gelten

$$\mathbb{P}(A|B) < \mathbb{P}(A|B^c)$$

aber

$$\mathbb{P}(A|B\cap K_j) > \mathbb{P}(A|B^c\cap K_j), \quad j=1,2,\ldots$$

Denn:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \sum_{j} \frac{\mathbb{P}(A \cap B \cap K_{j})}{\mathbb{P}(B)} \frac{\mathbb{P}(B \cap K_{j})}{\mathbb{P}(B \cap K_{j})}$$

$$= \sum_{j} \underbrace{\mathbb{P}(K_{j}|B)}_{\text{Bewerbungsrate der Frauen im j-ten Fach}} \underbrace{\mathbb{P}(A|B \cap K_{j})}_{\text{siehe oben}}$$

analog

$$\mathbb{P}(A|B^c) = \sum \mathbb{P}(K_j|B^c)\mathbb{P}(A|B^c \cap K_j)$$

Die absolute Erfolgsquote ist eine gewichtete Summe der relativen Erfolgsquoten.

 $^{^3}$ Ereignis, dass rein zufällig ausgewählter Bewerber erfolgreich ist mit seiner Bewerbung.

 $^{^4}$ Ereignis, dass zufällig ausgewählte weibliche Bewerberin erfolgreich ist.

Stochastische Unabhängigkeit

 (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum.

9.1 **Definition**

 $A_1, \ldots, A_n \subset \Omega$ heißen stochastisch unabhängig, falls

$$\mathbb{P}(\bigcap_{j \in T} A_j) = \prod_{j \in T} \mathbb{P}(A_j), \quad T \subseteq \{1, \dots, n\}, |T| \ge 2.$$

$$(2^n - n - 1 \text{ Gleichungen.})$$

9.2Bemerkung

1. A, B stochastisch unabhängig

$$\Leftrightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

$$\begin{array}{l}
\mathbb{P}(B)>0 \\ \Leftrightarrow & \mathbb{P}(A|B) = \mathbb{P}(A) \text{ (Interpretation!)} \\
\Leftrightarrow & \mathbb{P}(B|A) \stackrel{\mathbb{P}(B)>0}{=} \mathbb{P}(B)
\end{array}$$

$$\Leftrightarrow \mathbb{P}(B|A) \stackrel{\mathbb{P}(B)>0}{=} \mathbb{P}(B)$$

- 2. $\mathbb{P}(B) = 0 \rightsquigarrow A$ und B sind stochastisch unabhängig
 - $\mathbb{P}(B) = 1 \rightsquigarrow A$ und B sind stochastisch unabhängig
- 3. A, B, C unabhängig \Leftrightarrow

$$\begin{array}{l} \mathbb{P}(A\cap B) = \mathbb{P}(A)\mathbb{P}(B) \\ \mathbb{P}(A\cap C) = \mathbb{P}(A)\mathbb{P}(C) \\ \mathbb{P}(B\cap C) = \mathbb{P}(B)\mathbb{P}(C) \end{array} \right\} \text{ paarweise stochastische Unabhängigkeit}$$

$$\mathbb{P}(A\cap B\cap C)=\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$$

¹Wenn die Kenntnis des Eintretens von B keinerlei Rückschlüsse auf das Eintreten von A zulässt.