

Understanding µProcessors A Startup Based Approach

IoT System Design

Startup's Objectives

- Education: Making people more knowledgeable / skilled
 - Schools, Training institutes
- Retail stores: Making goods available at certain place
 - Malls, Neighborhood general store
- Manufacturing: Translating raw material into finished goods
 - IC / PCB manufacturers, Automakers
- · Services: Enhancing experience,
 - Education, Travel & tourism, Hospitality, Banking, Healthcare,
 Security

Startup's Objectives

- Education: Making people more knowledgeable / skilled
 - Schools, Training institutes
- Retail stores: Making goods available at certain place
 - Malls, Neighborhood general store
- Manufacturing: Translating raw material into finished goods
 - IC / PCB manufacturers, Automakers
- Services: Enhancing experience,
 - Education, Travel & tourism, Hospitality, Banking, Healthcare,
 Security

For what kind of application you'll be using Microprocessor?

An Organization

Key Resources

- ·Resource1
- •Resource2
- •Resource3

Organizational structure and value creation process depends on the application

Education

Resources

- Teachers
- Infrastructure (Classes, Lab)
- Processes

Organizational structure and value creation process depends on the application

Manufacturing

Resources

- Machines
- •Humans
- Processes

Organizational structure and value creation process depends on the application

Retail

Resources

- ·Place
- •Humans
- Processes

Organizational structure and value creation process depends on the application

- A Key Person with core expertise (Could be multiple also)
- Basic infrastructure
 - Space,
 - Furniture (table, chair, clock)
 - Office stationary (notebook, pen etc)
 - Utilities (power, water etc)
 - Storage space (cabinets for files, warehouses for raw material)
 - Connectivity with external world (Telephone, internet, video conf)

- A Key Person with core expertise (Could be multiple also)
- Basic infrastructure
 - Space,
 - Furniture (table, chair, clock)
 - Office stationary (notebook, pen etc)
 - Utilities (power, water etc)
 - Storage space (cabinets for files, warehouses for raw material)
 - Connectivity with external world (Telephone, internet, video conf)
- Machines
 - PC / Laptop
 - Equipment, M/f machine etc

- A Key Person with core expertise
- Basic infrastructure
 - Space,
 - Furniture (table, chair, clock)
 - Office stationary (notebook, pen etc)
 - Utilities (power, water etc)
 - Storage space (cabinets for files, warehouses for raw material)
 - Connectivity with external world (Telephone, internet, video conf)
- Machines
 - PC / Laptop
 - Equipment, M/f machine etc

\$\$

Basic constituents of a Microprocessor: "A CPU", Basic bldng blocks (like Direct Mem Access, Registers, RAM, Timers, Phased Locked Loops etc), Some accelerators (say for image/video processing etc) and power & clock cycles.

- A Key Person
 - · Skills + Time

- Physical Resources
 - To support meeting the objective

- Money
 - To allow adding resources for normal operation and growth

- A Key Person
 - · Skills + Time

- Physical Resources
 - To support meeting the objective

- Money
 - To allow adding resources for normal operation and growth

Basic constituents of a Microprocessor:

- Central Processing Unit (CPU)
- Building blocks
- · Clock cycles & Power consumption

Typically the least important task is delegated first. Most important task is always executed by the Founder / CPU.

Founder / CPU may not want to loose time in interacting with external technician / hardware (memory/ext modules).

So Founder / CPU appoints a dedicated person / DMA (or I2C, UART, SPI modules) for that purpose.

At times Founder and CPU lack certain skillset which can be fulfilled by other resources.

Basic Structure of a

Founder/CEO vsCPU

- As the organization grows, Founder delegates its work to team members. On the other hand, fixed resources are at the disposal of CPU since beginning. CPU has to ensure that it is able to meet the objective without any further need of external resources.
- Founder must have some free time to strategize / innovate.
 CPU must have free clock cycles for future scaling.
- As the complexity of task grows, Founder / CPU restricts
 its role in managing resources and information flow, and
 making sure that the end objective is met.

Org Structure vsuP Architecture

- Nature of core activity
- Size Revenue, Manpower, Location
- Scale and future growth prospects
- Ecosystem

Org Structure vs uP Architecture

Org Structure & Resources	uP Architecture & Resources
Nature of core activity	Type of computation required (End Application)
Size - Revenue, Manpower, Geographical Locations	Complexity of processing and computation
Scale and future growth prospects	Supporting future development / versions
Ecosystem - External vendors	Availability of interfaces to interact with other modules in the system
Competitive (external) environment	??

Setting Priorities of a Boss

- A. Phone calls, door bells
- B. Government compliance (Return filing & reporting)
- C. Sales inquiry from a potential customer
- D. Inquiry from a team member
- E. Collaboration inquiry from a potential partner
- F. Blind inquiries (mail/phone) from potential vendors
- G. Clarification mail from a vendor executing your job
- H. Tech support to the existing customers
- I. Notices from various Govt departments
- J. Well being of team members (Medical emergency)
- K. Yaar ki shaadi

Setting Priorities of a Boss

- A. Phone calls, door bells
- B. Government compliance (Return filing & reporting)
- C. Sales inquiry from a potential customer
- D. Inquiry from a team member
- E. Collaboration inquiry from a potential partner
- F. Blind inquiries (mail/phone) from potential vendors
- G. Clarification mail from a vendor executing your job
- H. Tech support to the existing customers
- I. Notices from various Govt departments
- J. Well being of team members (Medical emergency)
 - K. Yaar ki shaadi Quiz: Prioritizethese.

Interrupting/Informing the CPU

- Set the priorities
- How would each interrupt be handled. Possibilities -
 - Leave everything immediately and serve the request. Once the request is served, come back and complete the unfinished task.
 - Serve the request only after completing its ongoing task.
 Once the interrupt is served, come back to the ongoing flow.
 - In case of multiple simultaneous requests, prioritize them.
 - •
 - •

Welcome to the world of Microprocessors

Image source - http://qige87.com/intel-wallpaper.html

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources = CEO's team

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources ≡ CEO's team
- CPU's clk cycles = CEO's time

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources ≡ CEO's team
- CPU's clk cycles = CEO's time
- Clk cycles of h/w blks = Team members' time

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources ≡ CEO's team
- CPU's clk cycles = CEO's time
- Clk cycles of h/w blks = Team members' time
- Idle CPU clock cycles MUST be avoided for power optimization (So is true with CEO's time)

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources ≡ CEO's team
- CPU's clk cycles = CEO's time
- Clk cycles of h/w blks = Team members' time
- Idle CPU clock cycles MUST be avoided for power optimization (So is true with CEO's time)
- Scaling CPU (or h/w blk) clock freq may help (Org may benefit by increasing/decreasing CEO's or others working hrs)

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources ≡ CEO's team
- CPU's clk cycles = CEO's time
- Clk cycles of h/w blks = Team members' time
- Idle CPU clock cycles MUST be avoided for power optimization (So is true with CEO's time)
- Scaling CPU (or h/w blk) clock freq may help (Org may benefit by increasing/decreasing CEO's or others working hrs)
- Cut power & clk of the unutilized h/w blk (≡?)

- $CPU \equiv CEO$ of an org
 - Both are must and have limited time!
- CPU's h/w resources ≡ CEO's team
- CPU's clk cycles ≡ CEO's time
- Clk cycles of h/w blks = Team members' time
- Idle CPU clock cycles MUST be avoided for power optimization (So is true with CEO's time)
- Scaling CPU (or h/w blk) clock freq may help (Org may benefit by increasing/decreasing CEO's or others working hrs)
- Cut power & clk of the unutilized h/w blk (≡?)
- Multi core system (multiple founder startup)

What is the Internet of Things

Image from

http://www.cchc.cl/informacion-a-la-comunidad/industria-de-la-construcci on/personaje/

Sensors

Measure values

Send raw data

Low power

Local Processing and Local Storage

Get data from sensors

Process

Send some data to

Edge/Fog Computing

Network and Internet

IoT Gateway

Gathers data from sensors

Protocols

- CoAP
- MQTT
- HTTP
- XMPP

Cloud Processing and Storage

Aggregate Data

Storage

Inferences

How did it start

Microcontroller

Small programmable device

Easy connectable

Arduino

Small programmable device

Easy connectable

Is open source

Has a simple to use software

Arduino Ethernet

Small programmable device
Easy connectable
Is open source
Has a simple to use software
Only around 4 simultaneous
networking
connections

Raspberry Pi

Computer

Runs Linux More software oriented

programming Full

Networking System

Raspberry Pi and Arduino

HARDWARE

SOFTWARE AND NETWORKING SYSTEM

Hardware

Good for sensors

Arduino \$25 ATmega328

\$30 PIC

LaunchPad \$4 MSP430

Good for some sensors and processing

STM32 \$30

ARM Cortex M0, M3, M4

Particle

\$35

ARM

WiFi

Internet

Espruino \$30 ARM Javascript

Good for processing and network

Raspberry Pi

\$35 900 MHz ARM, GPU 1 GB RAM

Intel® Galileo

\$50 400 MHz Quark x86 256 MB RAM

Intel®
Edison
\$70
1 GHz Dual Core Atom
x86 1 GB RAM
WiFi
BLE
4 GB Flash

Good for processing and network

Beaglebone Black \$45 1 GHz ARM, GPU 512 MB RAM 4 GB Flash

UDOO Neo

\$50 i.MX 6 Solo ARM, GPU ARM M4 512 MB or 1 GB RAM

Parallella \$99 1 GHz Dual Core Zynq ARM 16 or 64 Epiphany CPUs