Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1	1. (Currently Amended). μ-law-to-A-law translating equipment,				
2	comprising:				
3	a timing pulse generator that generates a reference frame pulse;				
4	a μ -law signal receiving circuit that receives a μ -law PCM signal				
5	and outputs parallel µ-law PCM signals according to a reference frame				
6	pulse, said μ-law signal receiving circuit comprising:				
7	a line receiver that converts the μ-law PCM signal from bipolar to				
8	unipolar and outputs a unipolar μ-law signal,				
9	a frame buffer that temporarily stores the unipolar μ-law signal.				
10	a frame detector that detects the frame leading part of the unipolar				
11	μ-law signal and generates an address reset pulse				
12	synchronized with the frame leading position for writing to				
13	the frame buffer,				
14	a frame position comparator that measures the time lag in a				
15	position of a reference frame pulse and the address reset				
16	pulse for writing to the frame buffer and generates an				
17	address reset pulse for reading from the frame buffer, and				
18	a serial-parallel converter that converts and outputs a serial μ-law				
19	PCM signal read from the frame buffer to parallel μ-law				
20	PCM signals;				
21	a multiplexer that time-division multiplexes plural parallel μ -law				
22	PCM signals and outputs a time-division multiplexed μ -law PCM signal;				
23	a μ -law-to-A-law converter that converts the time-division				
24	multiplexed μ-law PCM signal to a time-division multiplexed A-law PCM				
25	signal;				
26	a demultiplexer that demultiplexes the time-division multiplexed				
27	A-law PCM signal and outputs plural parallel A-law PCM signals; and				
28	an A-law signal output circuit that receives the parallel A-law PCM				
29	signals and outputs a serial A-law PCM signal.				

1	2. (Original). μ-law-to-A-law translating equipment according to Claim			
2	comprising:			
3	respective plural and the same number of μ-law signal receiving			
4	circuits and A-law signal output circuits.			
	3. (Canceled).			
1	4. (Original). μ-law-to-A-law translating equipment according to Claim 1			
2	wherein:			
3	the A-law signal output circuit comprises:			
4	a parallel-serial converter that converts parallel A-law PCM signa			
5	to a serial A-law PCM signal; and			
6	a frame inserter that inserts a frame bit into the serial A-law PCM			
7	signal.			
1	5. (Original). μ-law-to-A-law translating equipment according to Claim 4			
2	wherein:			
3	the frame inserter inserts a frame bit according to a reference frame			
4	pulse.			
1	6. (Original). μ-law-to-A-law translating equipment according to Claim 4			
2	wherein:			
3	the A-law signal output circuit further comprises:			
4	a line driver that outputs a serial A-law PCM signal at a			
5	predetermined output amplitude level.			
1	7. (Currently Amended). A-law-to-μ-law translating equipment,			
2	comprising:			
3	a timing pulse generator that generates a reference frame pulse;			
4	an A-law signal receiving circuit that receives an A-law PCM			
5	signal and outputs parallel A-law PCM signals according to a reference			

6	frame pulse, said A-law receiving circuit comprises:				
7	a line receiver that converts an A-law PCM signal from bipolar to				
8	unipolar and outputs a unipolar A-law signal,				
9	a frame buffer that temporarily stores the unipolar A-law signal,				
10	a frame detector that detects the frame leading part of the unipolar				
11	A-law signal and generates an address reset pulse				
12	synchronized with the frame leading position for writing to				
13	the frame buffer,				
14	a frame position comparator that measures the time lag in a				
15	position of a reference frame pulse and the address reset				
16	pulse for writing to the frame buffer and generates an				
17	address reset pulse for reading from the frame buffer, and				
18	a serial-parallel converter that converts a serial A-law PCM signal				
19	read from the frame buffer to parallel A-law PCM signals;				
20	a multiplexer that time-division multiplexes plural parallel A-law				
21	PCM signals and outputs a time-division multiplexed A-law PCM signal;				
22	an A-law-to-μ-law converter that converts the time-division				
23	multiplexed A-law PCM signal to a time-division multiplexed μ-law PCM				
24	signal;				
25	a demultiplexer that demultiplexes the time-division multiplexed				
26	μ -law PCM signal and outputs plural parallel μ -law PCM signals; and				
27	a μ -law signal output circuit that receives parallel μ -law PCM				
28	signals and outputs a serial μ-law PCM signal.				
1	8. (Original). A-law-to-μ-law translating equipment according to Claim 7,				
2	comprising:				
3	respective plural and the same number of A-law signal receiving				
4	circuits and μ -law signal output circuits.				
	9. (Canceled).				
1	10. (Original). A-law-to-μ-law translating equipment according to Claim				
2	7, wherein:				

	3	the μ-law signal output circuit comprises:
•	4	a parallel-serial converter that converts parallel μ-law PCM signals
	5	to a serial μ-law PCM signal; and
	. 6	a frame inserter that inserts a frame bit into the serial μ-law PCM
	7	signal.
,		
	1	11. (Original) A-law-to-μ-law translating equipment according to Claim10,
	2	wherein:
•	. 3	the frame inserter adds a frame bit to the serial μ -law PCM signal
	4	according to a reference frame pulse.
	1	12. (Original) A-law-to-μ-law translating equipment according to Claim
	2 .	10, wherein:
	3	the μ-law signal output circuit further comprises:
	4	a line driver that outputs a serial μ -law PCM signal at a
	5	predetermined output amplitude level.
		13. (Canceled).
• •		14. (Canceled).