

UESTC4004 Digital Communications

Demodulation and Detection

Student Feedback Meetings

- Lead GTA, Bang Huang will schedule meetings with volunteer students to gather feedback about course delivery
- Your feedback is important for the improvement
- The meetings will take place after each 5 lectures block
- Students volunteering to provide feedback are requested to contact Bang Huang 15320295034@163.com

Lecture Preview

- Decoding the received signal
 - Baseband Demodulation
 - Matched Filter
 - Baseband Detection
 - Maximum likelihood detector

Detection of Binary Signal in Gaussian Noise

• For any binary channel, the transmitted signal over a symbol interval (0,T) is:

$$s_{i}(t) = \begin{cases} s_{0}(t) & 0 \le t \le T & \text{for a binary } 0 \\ s_{1}(t) & 0 \le t \le T & \text{for a binary } 1 \end{cases}$$

• The received signal r(t) degraded by noise n(t) and possibly degraded by the impulse response of the channel $h_c(t)$, is

$$r(t) = s_i(t) * h_c(t) + n(t)$$
 $i = 0,1$

where n(t) is assumed to be zero mean AWGN process with probability density function

$$p(n_0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{n_0}{\sigma_0} \right)^2 \right]$$

• For ideal distortionless channel where $h_c(t)$ is an impulse function and convolution with $h_c(t)$ produces no degradation, r(t) can be represented as:

$$r(t) = s_i(t) + n(t) \quad i = 0,1 \quad 0 \le t \le T$$

Detection of Binary Signal in Gaussian Noise

Demodulation and Detection

- ■The digital receiver performs two basic functions:
 - \Box Demodulation by using **matched filter** h(t), to recover a waveform to be sampled at t = nT.
 - □ Detection through **detector**, decision-making process of selecting possible digital symbol

$$z(T) > \gamma_0$$

where H_1 and H_0 are the two possible binary hypothesis

影频的影响

The input to the matched filter h(t) is the received signal r(t)

$$r(t) = s_i(t) + n(t) \quad i = 0,1 \quad 0 \le t \le T$$

- Let $s_1(t)=a_1$ and $s_0(t)=a_0$ and σ_0^2 is the noise variance
- The ratio of instantaneous signal power to average noise power , (S/N)T, at a time t=T, out of the sampler is:

$$\left(\frac{S}{N}\right)_{T} = \frac{a_{i}^{2}}{\sigma_{0}^{2}}$$

$$\int_{(N)_{T}} \frac{1}{\sigma_{0}^{2}} \frac{1}$$

- We need to achieve maximum (S/N)_T
- It is the matching filter h(t) which does this job.

• Matched filter is a filter that is matched to the waveform s(t), for producing maximum output signal-to-noise ratio. Matched filter has an impulse response

$$h(t) = \begin{cases} ks(T-t) & 0 \le t \le T \\ 0 & else \ where \end{cases}$$

- h(t) is a shifted and inverted version of the original signal waveform
- k is some arbitrary constant

Signal Waveform

Impulse response of matched filter

Example Matched Filter

• Assuming the symbol waveform s(t) of duration 2 sec in figure below, write only the equation of the impulse response h(t) of the corresponding matching filter. Also plot h(t).

- Matched filter reduces the received signal to a single variable z(T), after which the detection of symbol is carried out
- We will us a *maximum likelihood detector* that allows us to
 - formulate the decision rule that operates on the data
 - optimize the detection criterion

How to Choose the threshold?

- Maximum Likelihood Ratio test and Maximum a posteriori (MAP) criterion:
- If

$$p(s_0|z) > p(s_1|z) - > H_0$$

• else

$$p(s_1|z) > p(s_0|z) - > H_1$$

- Problem is that a posteriori probability are not known.
- Solution: Use Bay's theorem:

$$p(s_i|z) = \frac{p(z|s_i)p(s_i)}{p(z)}$$

$$\Rightarrow \frac{p(z|s_1)P(s_1)}{P(z)} \stackrel{H1}{\underset{<}{>}} \frac{p(z|s_0)P(s_0)}{P(z)} \Rightarrow p(z|s_1)P(s_1) \stackrel{H1}{\underset{<}{>}} p(z|s_0)P(s_0)$$

How to Choose the threshold?

■ MAP criterion:

$$L(z) \triangleq \frac{p(z|s_1)}{p(z|s_0)} \stackrel{H^1}{\underset{H^0}{>}} \frac{P(s_0)}{P(s_1)} \Leftarrow likelihood\ ratio\ test\ (LRT)$$

■ When the two signals, $s_0(t)$ and $s_1(t)$, are equally likely, i.e., $P(s_0) = P(s_1) = 0.5$, then the decision rule becomes

$$L(z) = \frac{p(z|s_1)}{p(z|s_0)} \int_{H_0}^{H_1} (z) dz = \max_{z \in S} likelihood \ ratio \ test$$

■ This is known as maximum likelihood ratio test because we are selecting the hypothesis that corresponds to the signal with the maximum likelihood.

Discussion

What will change in MAP criterion if the probabilities of s_0 and s_1 are not equal?

Detection of symbol

Assume that input noise is a Gaussian random process and receiving filter is linear

$$p(n_0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{n_0}{\sigma_0} \right)^2 \right]$$

Then output is another Gaussian random process

$$p(z \mid s_0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{z - a_0}{\sigma_0} \right)^2 \right]$$

$$p(z \mid s_1) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{z - a_1}{\sigma_0}\right)^2\right]$$
 Where σ_0 is the noise variance σ_0 is the noise variance.

$$L(z) = \frac{p(z|s_1)}{p(z|s_0)} \int_{H_0}^{H_1} (z) dz = \max_{i} likelihood \ ratio \ test$$

• Substituting the pdfs

$$L(z) = \frac{p(z \mid s_1)}{p(z \mid s_0)} > 1 \Rightarrow \frac{\frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma_0} (z - a_1)^2\right]}{\frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma_0} (z - a_0)^2\right]} > 1$$

$$H0$$

$$H0$$

$$H0$$

■ Hence:

$$\exp \left[\frac{z(a_1 - a_0)}{\sigma_0^2} - \frac{(a_1^2 - a_0^2)}{2\sigma_0^2} \right] < 1$$

• Taking the log of both sides will give

$$\Lambda = \ln\{L(z)\} = \frac{z(a_1 - a_0)}{\sigma_0^2} - \frac{(a_1^2 - a_0^2)}{2\sigma_0^2} > 0$$

$$H0$$

$$H1$$

$$\Rightarrow \frac{z(a_1 - a_0)}{\sigma_0^2} > \frac{(a_1^2 - a_0^2)}{2\sigma_0^2} = \frac{(a_1 + a_0)(a_1 - a_0)}{2\sigma_0^2}$$

$$H0$$

threshold $70^{\frac{2}{2}} \frac{91195}{2}$

• Hence

$$H_{1}$$

$$z > \frac{\sigma_{0}^{2}(a_{1} + a_{0})(a_{1} - a_{0})}{2\sigma_{0}^{2}(a_{1} - a_{0})}$$

$$H_{0}$$

$$H_{1}$$

$$z > \underbrace{(a_{1} + a_{0})}_{2} \Delta \gamma_{0}$$

$$H_{0}$$

where z is the minimum error criterion and γ_0 is optimum threshold

• For antipodal signal, $s_1(t) = -s_0(t) \Rightarrow a_1 = -a_0$

$$H_1$$
 $z > 0$
 H_0

Discussion

 If the transmitted symbols are not equally likely, would it make any impact on the value of optimal threshold?

Probability of error

Error will occur if s_1 is sent $\rightarrow s_0$ is received or s_0 is sent $\rightarrow s_1$ is received

$$P(e \mid s_1) = \int_{-\infty}^{\gamma_0} p(z \mid s_1) dz$$

$$P(e \mid s_0) = \int_{\gamma_0}^{\infty} p(z \mid s_0) dz$$

Probability of Error

■ The total probability of error is the sum of the errors

$$P_{B} = \sum_{i=1}^{2} P(e, s_{i}) = P(e \mid s_{1})P(s_{1}) + P(e \mid s_{0})P(s_{0})$$

■ If we consider equi-probable transmission i.e., $P(s_1)=P(s_0)=0.5$ then

$$P_B = \frac{1}{2}(P(e|s_1) + P(e|s_0))$$

- By symmetry $P(e|s_1) = P(e|s_0)$
- Therefore

$$P_B = P(e|s_1) = P(e|s_0)$$

• Numerically, P_B is the area under the tail of either of the conditional distributions

$$p(z|s_1)$$
 or $p(z|s_2)$

$$P_B = \int_{\gamma_0}^{\infty} \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left| -\frac{1}{2} \left(\frac{z - a_0}{\sigma_0} \right)^2 \right| dz$$

$$\Rightarrow u = \frac{(z - a_0)}{\sigma_0}$$

$$= \int_{\frac{(a_1 - a_0)}{2\sigma_0}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{u^2}{2}\right] du$$

$$P_B = Q\left(\frac{a_1 - a_0}{2\sigma_0}\right) \Leftarrow equation B.18$$

$$P_B = Q \left(\frac{a_1 - a_0}{2\sigma_0} \right) \Leftarrow equation B.18$$

• The above equation cannot be evaluated in closed form (Q-function)

$$Q(x) \cong \frac{1}{x\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right]$$

Example

• Find the probability of bit error for a binary signaling with equally probable signals $a_0 = -1$ and $a_1 = 1$ and noise distribution of the received signal is given as below:

Review Questions

- What is the purpose of a matched filter?
- For a given waveform s(t), plot the matched filter impulse response h(t).

• Will the probability of error be more when the transmitted bits amplitudes a_i(t) are ±5 instead of ±1? Justify please.