Example 4.11 Frame with distributed load (p. 274)

$$q = 1 \ k \, / \, {\rm ft}; \ L = 15 \ {\rm ft}; \ E = 30 \times 10^3 \ k \, / \, {\rm in}^2; \ A = 100 \, {\rm in}^2; \ I = 1000 \, {\rm in}^4$$

Use k-in units

Global equations at start of the element assembly process

Equations for element 1

$$E = 30000;$$
 $I = 1000;$ $A = 100;$ $q = \{0., -0.0833333\}$

Nodal coordinates

Length = 180.; Direction cosines:
$$\ell_s = 0.707107$$
 $m_s = 0.707107$

Element equations in local coordinates

$$\begin{pmatrix} 16666.7 & 0 & 0 & -16666.7 & 0 & 0 \\ 0 & 61.7284 & 5555.56 & 0 & -61.7284 & 5555.56 \\ 0 & 5555.56 & 666667. & 0 & -5555.56 & 333333. \\ -16666.7 & 0 & 0 & 16666.7 & 0 & 0 \\ 0 & -61.7284 & -5555.56 & 0 & 61.7284 & -5555.56 \\ 0 & 5555.56 & 333333. & 0 & -5555.56 & 666667. \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -7.5 & 0 & 0 \\ -7.5 & 0 & 0 \\ -7.5 & 0 & 0 \end{pmatrix}$$

Global to local transformation,
$$T = \left(\begin{array}{cccccc} 0.707107 & 0.707107 & 0 & 0 & 0 & 0 \\ -0.707107 & 0.707107 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.707107 & 0.707107 & 0 \\ 0 & 0 & 0 & 0 & -0.707107 & 0.707107 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array} \right)$$

Element equations in global coordinates

$$\begin{pmatrix} 8364.2 & 8302.47 & -3928.37 & -8364.2 & -8302.47 & -3928.37 \\ 8302.47 & 8364.2 & 3928.37 & -8302.47 & -8364.2 & 3928.37 \\ -3928.37 & 3928.37 & 666667. & 3928.37 & -3928.37 & 333333. \\ -8364.2 & -8302.47 & 3928.37 & 8364.2 & 8302.47 & 3928.37 \\ -8302.47 & -8364.2 & -3928.37 & 8302.47 & 8364.2 & -3928.37 \\ -3928.37 & 3928.37 & 333333. & 3928.37 & -3928.37 & 666667. \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} 5.3033 \\ -5.3033 \\ -225. \\ 5.3033 \\ -5.3033 \\ 225. \end{pmatrix}$$

The element contributes to {1, 2, 3, 4, 5, 6} global degrees of freedom.

Adding element equations into appropriate locations we have

Equations for element 2

$$E = 30000; \hspace{1cm} I = 1000; \hspace{1cm} A = 100; \hspace{1cm} q = \{0, \, 0\}$$

Nodal coordinates

Element node	Global node number	X	y
1	2	127.279	127.279
2	3	307.279	127.279

$$\mbox{Length} = 180.; \qquad \qquad \mbox{Direction cosines:} \ \ell_s = 1. \qquad \qquad m_s = 0.$$

Element equations in local coordinates

$$\begin{pmatrix} 16666.7 & 0 & 0 & -16666.7 & 0 & 0 \\ 0 & 61.7284 & 5555.56 & 0 & -61.7284 & 5555.56 \\ 0 & 5555.56 & 666667. & 0 & -5555.56 & 333333. \\ -16666.7 & 0 & 0 & 16666.7 & 0 & 0 \\ 0 & -61.7284 & -5555.56 & 0 & 61.7284 & -5555.56 \\ 0 & 5555.56 & 333333. & 0 & -5555.56 & 666667. \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \\ d_5 \\ d_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Global to local transformation,
$$T = \begin{pmatrix} 1. & 0. & 0 & 0 & 0 & 0 \\ 0. & 1. & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1. & 0. & 0 \\ 0 & 0 & 0 & 0. & 1. & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Element equations in global coordinates

$$\begin{pmatrix} 16666.7 & 0 & 0 & -16666.7 & 0 & 0 \\ 0 & 61.7284 & 5555.56 & 0 & -61.7284 & 5555.56 \\ 0 & 5555.56 & 666667. & 0 & -5555.56 & 333333. \\ -16666.7 & 0 & 0 & 16666.7 & 0 & 0 \\ 0 & -61.7284 & -5555.56 & 0 & 61.7284 & -5555.56 \\ 0 & 5555.56 & 333333. & 0 & -5555.56 & 666667. \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ \theta_2 \\ u_3 \\ v_3 \\ \theta_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {4, 5, 6, 7, 8, 9} global degrees of freedom.

Adding element equations into appropriate locations we have

8364.2	8302.47	-3928.37	-8364.2	-8302.47	-3928.37	0	0	
8302.47	8364.2	3928.37	-8302.47	-8364.2	3928.37	0	0	
-3928.37	3928.37	666667.	3928.37	-3928.37	333333.	0	0	
-8364.2	-8302.47	3928.37	25030.9	8302.47	3928.37	-16666.7	0	
-8302.47	-8364.2	-3928.37	8302.47	8425.93	1627.18	0	-61.7284	1
-3928.37	3928.37	333333.	3928.37	1627.18	1.33333×10^6	0	-5555.56	33
0	0	0	-16666.7	0	0	16666.7	0	
0	0	0	0	-61.7284	-5555.56	0	61.7284	-:
0	0	0	0	5555.56	333333.	0	-5555.56	66

Essential boundary conditions

Node	dof	Value
1	$\mathbf{u_1}\\ \mathbf{v_1}\\ \mathbf{\theta_1}$	0 0 0
3	$\mathbf{u_3}\\ \mathbf{v_3}\\ \mathbf{\theta_3}$	0 0 0

Remove {1, 2, 3, 7, 8, 9} rows and columns.

After adjusting for essential boundary conditions we have

$$\begin{pmatrix} 25030.9 & 8302.47 & 3928.37 \\ 8302.47 & 8425.93 & 1627.18 \\ 3928.37 & 1627.18 & 1.33333 \times 10^6 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} 5.3033 \\ -5.3033 \\ 225. \end{pmatrix}$$

Solving the final system of global equations we get

$$\{u_2=0.000601607,\ v_2=-0.00125474,\ \theta_2=0.000168509\}$$

Complete table of nodal values

	u	V	θ
1	0	0	0
2	0.000601607	-0.00125474	0.000168509
3	0	0	0

Computation of reactions

Equation numbers of dof with specified values: {1, 2, 3, 7, 8, 9}

Extracting equations {1, 2, 3, 7, 8, 9} from the global system we have

$$\begin{pmatrix} 8364.2 & 8302.47 & -3928.37 & -8364.2 & -8302.47 & -3928.37 & 0 & 0 & 0 \\ 8302.47 & 8364.2 & 3928.37 & -8302.47 & -8364.2 & 3928.37 & 0 & 0 & 0 \\ -3928.37 & 3928.37 & 666667. & 3928.37 & -3928.37 & 333333. & 0 & 0 & 0 \\ 0 & 0 & 0 & -16666.7 & 0 & 0 & 16666.7 & 0 & 0 \\ 0 & 0 & 0 & 0 & -61.7284 & -5555.56 & 0 & 61.7284 & -5555.56 \\ 0 & 0 & 0 & 0 & 5555.56 & 333333. & 0 & -5555.56 & 666667. \end{pmatrix}$$

$$\begin{pmatrix} u_1 \\ v_1 \\ \theta_1 \\ u_2 \\ v_2 \\ \theta_2 \\ u_3 \\ v_3 \\ \theta_3 \end{pmatrix} = \begin{pmatrix} R_1 + 5.3033 \\ R_2 - 5.3033 \\ R_3 - 225. \\ R_4 \\ R_5 \\ R_6 \end{pmatrix}$$

Substituting the nodal values and re-arranging

$$\begin{pmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \end{pmatrix} = \begin{pmatrix} 8364.2 & 8302.47 & -3928.37 & -8364.2 & -8302.47 & -3928.37 & 0 & 0 & 0 \\ 8302.47 & 8364.2 & 3928.37 & -8302.47 & -8364.2 & 3928.37 & 0 & 0 & 0 \\ -3928.37 & 3928.37 & 666667. & 3928.37 & -3928.37 & 333333. & 0 & 0 & 0 \\ 0 & 0 & 0 & -16666.7 & 0 & 0 & 16666.7 & 0 & 0 \\ 0 & 0 & 0 & 0 & -61.7284 & -5555.56 & 0 & 61.7284 & -5555.56 \\ 0 & 0 & 0 & 0 & 5555.56 & 333333. & 0 & -5555.56 & 666667. \end{pmatrix}$$

Carrying out computations, the reactions are as follows.

Label	dof	Reaction
R_1	\mathbf{u}_1	-0.579812
R_2	\mathbf{v}_1	11.4653
R_3	θ_1	288.462
R_4	\mathbf{u}_3	-10.0268
R_5	\mathbf{v}_3	-0.858707
R_6	$ heta_3$	49.1988

Sum of Reactions

dof: u -10.6066dof: v 10.6066dof: θ 337.661

Solution for element 1

 $E = 30000; \hspace{1cm} I = 1000; \hspace{1cm} A = 100; \hspace{1cm} q = \{0., \, -0.0833333\}$

Length = 180.; Direction cosines: $\ell_s = 0.707107$ $m_s = 0.707107$

Nodal values in global coordinates, $d^{T} = (0 \ 0 \ 0 \ 0.000601607 \ -0.00125474 \ 0.000168509)$

Global to local transformation, $T = \begin{pmatrix} 0.707107 & 0.707107 & 0 & 0 & 0 & 0 \\ -0.707107 & 0.707107 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.707107 & 0.707107 & 0 \\ 0 & 0 & 0 & 0 & -0.707107 & 0.707107 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Nodal values in local coordinates, $\mathbf{d}_{t}^{T} = T\mathbf{d} = (0 \ 0 \ 0 \ -0.000461833 \ -0.00131263 \ 0.000168509)$

Axial displacement interpolation functions, $N_u^T = \{1. -0.00555556 \text{ s}, 0.00555556 \text{ s}\}$

Axial displacement,
$$u(s) = \textbf{\textit{N}}_{u}^{T}\!\!\left(\begin{array}{c}d_{1}\\d_{4}\end{array}\right) = -2.56574 \times 10^{-6}~s$$

Axial force, EA du(s)/ds = -7.69721

Beam bending interpolation functions, $N_v^T =$

$$\left\{ 3.42936 \times 10^{-7} \text{ s}^3 - 0.0000925926 \text{ s}^2 + 1, \ 0.0000308642 \text{ s}^3 - 0.0111111 \text{ s}^2 + \text{s}, \\ 0.0000925926 \text{ s}^2 - 3.42936 \times 10^{-7} \text{ s}^3, \ 0.0000308642 \text{ s}^3 - 0.00555556 \text{ s}^2 \right\}$$

$$Transverse \ displacement, \ v(s) = \textit{N}_v^T \begin{pmatrix} d_2 \\ d_3 \\ d_5 \\ d_6 \end{pmatrix} = 5.65104 \times 10^{-9} \ s^3 - 1.0577 \times 10^{-6} \ s^2$$

Fixed-end displacement solution, =
$$-1.15741 \times 10^{-10} (180. - s)^2 s^2$$

Total transverse displacement,
$$v(s) = -1.15741 \times 10^{-10} \text{ s}^4 + 4.73177 \times 10^{-8} \text{ s}^3 - 4.8077 \times 10^{-6} \text{ s}^2$$

Bending moment, $M = EI d^2v(s)/ds^2 = -0.0416667 s^2 + 8.51719 s - 288.462$

Shear force, V(s) = dM/ds = 8.51719 - 0.0833333 s

Solution for element 2

$$E = 30000; \hspace{1cm} I = 1000; \hspace{1cm} A = 100; \hspace{1cm} q = \{0, \, 0\}$$

Length = 180.; Direction cosines: $\ell_s = 1$. $m_s = 0$.

Nodal values in global coordinates, $\mathbf{d}^{T} = (0.000601607 - 0.00125474 \ 0.000168509 \ 0 \ 0)$

Global to local transformation, $T = \begin{pmatrix} 1. & 0. & 0 & 0 & 0 & 0 \\ 0. & 1. & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1. & 0. & 0 \\ 0 & 0 & 0 & 0. & 1. & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Nodal values in local coordinates, $\mathbf{d}_{\ell}^{T} = T\mathbf{d} = (0.000601607 - 0.00125474 \ 0.000168509 \ 0 \ 0 \ 0)$

Axial displacement interpolation functions, $N_u^T = \{1. -0.00555556 \text{ s}, 0.00555556 \text{ s}\}\$

Axial displacement,
$$u(s) = \textit{N}_{u}^{T} \begin{pmatrix} d_{1} \\ d_{4} \end{pmatrix} = 0.000601607 - 3.34226 \times 10^{-6} \, s$$

Axial force, EA du(s)/ds = -10.0268

Beam bending interpolation functions, $N_v^T =$

$$\begin{aligned} & \left\{3.42936\times10^{-7}\,s^3 - 0.0000925926\,s^2 + 1,\, 0.0000308642\,s^3 - 0.01111111\,s^2 + s, \\ & 0.0000925926\,s^2 - 3.42936\times10^{-7}\,s^3,\, 0.0000308642\,s^3 - 0.00555556\,s^2 \right\} \end{aligned}$$

Transverse displacement, $\nu(s) = \textbf{\textit{N}}_{\nu}^T\!\!\left(\!\!\!\begin{array}{c} d_2 \\ d_3 \\ d_5 \\ d_6 \end{array}\!\!\right) =$

$$4.77059 \times 10^{-9} \text{ s}^3 - 1.75614 \times 10^{-6} \text{ s}^2 + 0.000168509 \text{ s} - 0.00125474$$

Bending moment, $M = EI d^2v(s)/ds^2 = 0.858707 s - 105.368$

Shear force, V(s) = dM/ds = 0.858707

Forces at element ends

	X	y	Axial force	Bending moment	Shear force
1	0 127.279	0 127.279	-7.69721 -7.69721	$-288.462 \\ -105.368$	8.51719 -6.48281
2	127.279 307.279	127.279 127.279	-10.0268 -10.0268	-105.368 49.1988	0.858707 0.858707

