

c) { (x,5) | 1x151,[g|c|]. Noen randpuntte er med
andre ille
Mengden en
Nowhen å pen eller
luttet

Mengden er å pen-

f) { (x,y) | x+2g=19

Alle punkter i mengden er vandpunkter. Det er okke andre vandpunkter. Mengden er Cukhet.

g) 2 (x,y) & (R2 (x og a rasjonale) (Kij) der bide Xogg
hihr dist. e mjuner ----- 1R2 or panditur (u,v) der hverhen a eller v Randpanhtme til menjelen en hele R2 Mengden er hverhen åpen eller lukhet. h) { (x,4,2) & IR3 | x2+y1+22<19 Ball med sentrum (0,0,0) og vadies 1 Randpanhton 3(x,4,2) / x2+1+2=17

er ihre med. Der for er morgelen å pen.

i) $\frac{1}{2}(X_1Y_1+1) = \frac{1}{2} \frac{1}{2}$ Det er hinger seterter

Det som ligger utentom hala i h) Rand punkten 3x+1+2=19 or med. Mengden on Cullet.

5.1. Her gite:

4)
$$\vec{a}_{1}$$
 $\vec{b} \in |\vec{R}^{n}$, $\vec{X}_{n} \rightarrow \vec{b}$

Scal vie \vec{L}_{1} $\vec{n} - \vec{a}| = |\vec{b} - \vec{a}|$

Hint: \vec{V} is \vec{h} \vec{v} \vec{v} \vec{a}
 $|\vec{1}\vec{X}_{n} - \vec{a}| - |\vec{b} - \vec{a}| \le |\vec{X}_{n} - \vec{b}|$
 $|\vec{X}_{n} - \vec{a}| - |\vec{b} - \vec{a}| \le |\vec{X}_{n} - \vec{b}|$
 $|\vec{X}_{n} - \vec{a}| = |\vec{X}_{n} - \vec{b} + \vec{b} - \vec{a}|$
 $|\vec{X}_{n} - \vec{b}| + |\vec{b} - \vec{a}|$
 $|\vec{X}_{n} - \vec{b}| > |\vec{X}_{n} - \vec{a}| - |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| + |\vec{X}_{n} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| - |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| - |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| - |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| - |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| - |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| = |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{X}_{n}| > |\vec{b} - \vec{a}| = |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| \le |\vec{b} - \vec{a}| > |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| = |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| = |\vec{b} - \vec{a}|$
 $|\vec{b} - \vec{a}| = |\vec{b} - \vec{a}|$

9) a) A man metrice

$$(\vec{X}_{n}) \leq \vec{R} \leq \vec{K}_{n} \leq \vec{K}_{n} + \vec{K}_{n} = \vec{K}_{n} + \vec{K}_{n} + \vec{K}_{n} = \vec{K}_{n} + \vec{K}_{n} + \vec{K}_{n} + \vec{K}_{n} = \vec{K}_{n} + \vec$$

b) Anter Boxen invertible

os (xn) filx sue at

Bxn > 0, de vie Xn -> 0

Busin Sett $\vec{y}_n = \vec{B}\vec{x}_n$, vet $\vec{z}\vec{y}_n \rightarrow \vec{0}$, $\vec{x}_n = \vec{B}\vec{y}_n \xrightarrow{n \rightarrow \infty} \vec{0}$ for put a)

c) Cithe mouther. Stelvise et det fins Xn sig Xn +30.

Vet at når Cille er mvert ber si fins Wisninger av CX=0 der X ≠ 0. K<n d< sette Xn= X for elle n X — X + 0.

Set ming 5.2.2

Hus $\vec{X}_n \rightarrow \vec{X}$ og \vec{X}_{n_k} en del følge si vie $\vec{X}_{n_k} \rightarrow \vec{X}$.

Han $N_1 < N_2 < N_3 < c N_k < N_{k+1} < \cdots$ må he $N_k > k$. Si nör k > Ner $N_k > N$ by or her $|X_n - \widehat{X}| < \varepsilon$ Dette viser at $X_{n_k} = \overline{X_n} = X$.

3) She vie { Injo T. bullet interval med In I Int, for alle 4. og l(In) - o Da fin nøyschig et tul X s.e. X & In for alle u ω_s . $\bigcap_{n=1}^{\infty} T_n = \{x\}$. In = [an, bn], Int, c In må ha an & ant, & bnt, & bn Detre qui a, < a, < a, < a, < an < b, < jant er en vohsende følge oppdil begrenset au f.ehr. bi. Fra halkulus vet vi at 39ng er konvergent. Fins X s.a. On -> X Det hlest et (an < x) for alle n. Videre har vi at x $b_n = a_n + (b_n - a_n) = a_n + e(I_n) \rightarrow x$ Så bu honvergere mot x. Viden en ? bus en autogende folge Da mi (X & bu) for alle in. Si in har an EXEby forcher si xe [an, bn] = In for ellen.

Viser éndyaghet au she x

Ja y ‡ x. Anta fivit y < x

Siden and x si mi y < an

var ner stor, dos. y e Cambus

nar ner stor. The Tilfelle y>x

bhi pe samme mit ved a bruke

at ba > x

1)
$$f(x) = x^2$$
. Shall use at f the en uniform thousandly.

Bens

Ye $E = 1$, $A \in S > 0$
 $X = \frac{1}{5}$, $Y = \frac{1}{5} + \frac{5}{2}$, here $A = \frac{1}{5} + \frac{5}{2} = \frac{$

3) $A \subset \mathbb{R}^{m}$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ Beris $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{a})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et $1f(\vec{u})-f(\vec{v})(\leq k|\vec{u}-\vec{v}|)$ $f: A \rightarrow \mathbb{R}^{m}$. Anta det fin k

plut et

 $\frac{5.4}{3}$) X_{n}, y_{n} befolding i to lond i ain. $X_{n+1} = 1.1 \times n + 0.001 y_{n} - 0.5$ $y_{n+1} = 0.95 y_{n} + 0.0002 \times n + 0.2$ $X_{1} = 50, y_{1} = 8$ S k d sknie n ATLAB p_{myrnn} $5) \times n, y_{n} \times n + 0.01 \times n$