$$U = \sum N_i U_i$$

$$N_i = N_{i,0} + \nu_i X$$

$$U = \left(N_{n_2 o_4, o} \, \underline{U}_{N_2 o_4} + N_{N_{0_2}, o} \, \underline{U}_{N_{0_2}}\right) + \left(\sqrt[3]{N_{n_2 o_4}} \, \underline{U}_{N_{n_2 o_4}} + \sqrt[3]{N_{n_2 o_4}} \, \underline{U}_{N_{0_2}}\right) \times$$

$$\left(\frac{\partial U}{\partial T}\right)_{v} = \left(N_{N_{2}O_{4}} C_{v, N_{2}O_{4}} + N_{N_{02}} C_{v, N_{02}}\right) +$$

$$\underbrace{ \left(\frac{\partial}{\partial x_{204}} \underbrace{U}_{N_{204}} + \frac{\partial}{\partial x_{202}} \underbrace{U}_{No_{2}} \underbrace{U}_{No_{2}} \right) \left(\frac{2X}{2T} \right)_{V} }_{Cxn}$$

$$C_{v,eff} = \sum_{i}^{C} N_{i} C_{v,i} + \Delta_{rxn} U \left(\frac{\partial X}{\partial T}\right)_{v}$$

the effective Cv is directly proportional to Δ_{rxn} U

- from later we know that dX/dT is strictly positive
- negative Δ_{rxn} U will give effective Cv less than linear combination of individual
- positive Δ_{rxn} U will give effective Cv higher than linear combination of individual Cv

actually need Ka now

for ideal gas

$$a_i = y_i \left(\frac{\rho}{1 \text{ bar}} \right)$$

say we start w/ 7 mole N204

	NrOy	NO_2	total
mitial	<u> </u>	6	1
change	$-\times$	+ 2X	+ X
final	-X	λX	1 + X

$$y_{N_{2}0_{4}} = \frac{1-x}{1+x}$$

$$Q_{N_{2}0_{4}} = \left(\frac{1-x}{1+x}\right)\left(\frac{\rho}{1 \text{ ber}}\right)$$

$$y_{N_{2}0_{4}} = \frac{2x}{1+x}$$

$$Q_{N_{2}0_{4}} = \left(\frac{2x}{1+x}\right)\left(\frac{\rho}{1 \text{ bar}}\right)$$

now into Ka

$$K_{a} = \frac{\left(\frac{2 \times 1}{1 + x}\right) \left(\frac{\rho}{1 \text{ bar}}\right)^{2}}{\left(\frac{1 - x}{1 + x}\right) \left(\frac{\rho}{1 \text{ bor}}\right)} = \frac{\left(\frac{4 x^{2}}{1 + x}\right) \rho}{1 - x} = \frac{4 \times \rho}{(1 + x)(1 - x)}$$

$$K_{a} = \frac{4 \times 2 \rho}{1 - x^{2}}$$

the P is troubling but since ideal gas $P_o = \frac{NRT}{V} \qquad P = \frac{NRT}{V}$

taking the ratio

$$\frac{\rho}{\rho_o} = \frac{NT}{N_o T_o} \implies \rho = \rho_o \frac{NT}{N_o T_o}$$

now we also know N = 1 + X from my table

$$\rho = \frac{(1+X)\top}{N_o T_o} \rho_o$$

$$K_{a} = \frac{4 \times^{2} (1+x) T P_{o}}{(1-x^{2}) N_{o} T_{b}}$$

$$K_a = \frac{4 \times^2 T}{(1-x)T_o} P_o Known$$

$$K_a = \frac{4 \times^2 T \cdot (.013)}{1 - \times (.298.15)}$$

now we need Drxn G° and Drxn H° and into about the Cv to do the rest. see coding on the following pages

cheg325 homework7 SIS 13.22

AUTHOR PUBLISHED April 18, 2025 kyle wodehouse

Continuing from the hand written portion...

we know

$$K_a^\circ(T) = \exp\left(rac{-\Delta_{ ext{rxn}}G^\circ}{RT}
ight)$$

import pandas as pd

of course we need to use some delightful formation values for the free energy here.

```
import numpy as np
from scipy.constants import R
from scipy.optimize import least_squares
from scipy.integrate import quad
a4 = pd.read_csv('appendix_a4.csv', index_col=1)
a4.head(3)
                        chemical_name
                                              state
                                                      delta_h_form
                                                                         delta_g_form
```

CH4 Methane -74.5 -50.5 g C2H6 Ethane **-**83.8 -31.9 g C3H8 Propane -104.7-24.3 remembering the reaction $N_2O_4 \leftrightharpoons 2NO_2$ components = ['N204', 'N02']

coeffs = np.array([-1,2])temp = a4.loc[components]

chemical_formula

```
G = (temp['delta_g_form'].astype(float) * coeffs).sum() * 1000
 print(f'\Delta G^{\circ}: {G:.1f}')
 K0 = np.exp(-G / R / 298.15)
 print(f'Kº: {K0:.3f}')
ΔGº: 4700.0
Kº: 0.150
now our kinda flowsheet is for each value of T we need to
 ullet calculate the new K_a value
```

```
    use that to find X

then we can graph C_{v,\mathrm{eff}} using numerical techniques
```

heat_capacity = pd.read_csv('appendix_cp.csv', index_col=1).fillna(0) # table from append heat_capacity = heat_capacity[['a', 'b', 'c', 'd']]

cp_data = np.array(heat_capacity.loc[species])

- def calcK_andX(T, species=components, coeffs=coeffs):

coeffs = np.array(coeffs)

```
delta_a, delta_b, delta_c, delta_d = (cp_data * coeffs[:, np.newaxis]).sum(axis=0)
     thermo_data = temp
     delta_H = (thermo_data['delta_h_form'].astype(float) * coeffs).sum() * 1000 # J/mol
     delta_G = (thermo_data['delta_g_form'].astype(float) * coeffs).sum() * 1000 # J/mol
     K_298 = np.exp(-delta_G / (R * 298.15))
     def delta_H_T(T):
         return (delta_H +
                 delta_a * (T - 298.15) +
                 (delta_b/2) * (T**2 - 298.15**2) +
                 (delta_c/3) * (T**3 - 298.15**3) +
                 (delta_d/4) * (T**4 - 298.15**4))
     def integrand(T):
         return delta_H_T(T) / (R * T**2)
     integral, _ = quad(integrand, 298.15, T)
     K_T = K_298 * np.exp(integral)
     def solve_for_x(X):
         return np.abs(K_T - 4 * X**2 * T * 1.013 / (1-X) / 298.15)
     X = least\_squares(solve\_for\_x, 0.5, bounds=(0,1), verbose=0).x[0]
     return K_T, X, delta_H_T(T)
 vectorized_calcK_andX = np.vectorize(calcK_andX)
 Ts = np.linspace(300,600,10000)
 Ks, Xs, deltaHs = vectorized_calcK_andX(Ts)
just like visualizing X as a function of temperature
 import matplotlib.pyplot as plt
 fig,ax = plt.subplots(dpi=300)
 plt.plot(Ts, Xs)
 ax.set(xlabel='Temperature (K)', ylabel='$X$', xlim=(300,600), ylim=(0,1));
```

1.0

8.0

```
0.6
\times
```

extent of reaction vs. temperature (K)

 $cveff = sum_cv(Ts, Xs) + (deltaHs - R * Ts) * np.gradient(Xs) / np.gradient(Ts)$

return N_n2o4 * calc_cv(params_n2o4) + N_no2 * calc_cv(params_no2)

a,b,c,d = coeffs

 $N_n2o4 = 1 - X$ $N_no2 = 2*X$

ax.plot(Ts, cveff) ax.grid(alpha=0.2)

600

500

return a + b*T + c*T**2 + d*T**3 - R

fig,ax = plt.subplots(figsize=(8,7), dpi=300)

350

if we assume $\Delta_{ ext{rxn}}H$ constant

 $K_298 = np.exp(-delta_G / (R * 298.15))$

 $K_T = K_298 * np.exp(delta_H/R * (1/298.15 - 1/T))$

coeffs = np.array(coeffs)

def solve_for_x(X):

return K_T, X, delta_H

300

400

```
400
effective C_V (J)
     300
     200
     100
```

ax.set(xlim=(300,600), xlabel='Temperature (K)', ylabel='effective \$C_V\$ (J)', title='eff

effective C_V (J) over 300-600K

mistakenly numbered the same as the other one! $\ln rac{K_a(T_2)}{K_a(T_1)} = -rac{\Delta_{ ext{rxn}} H^\circ}{R}igg(rac{1}{T_2}-rac{1}{T_1}igg)$ (13.1-22b)def calcK_andX(T, coeffs=coeffs):

delta_H = (temp['delta_h_form'].astype(float) * coeffs).sum() * 1000 # J/mol delta_G = (temp['delta_g_form'].astype(float) * coeffs).sum() * 1000 # J/mol

return np.abs($K_T - 4 * X**2 * T * 1.013 / (1-X) / 298.15$) $X = least_squares(solve_for_x, 0.5, bounds=(0,1), verbose=0).x[0]$

return N_n2o4 * calc_cv(params_n2o4) + N_no2 * calc_cv(params_no2)

 $cveff = sum_cv(Ts, Xs) + (deltaHs - R * Ts) * np.gradient(Xs) / np.gradient(Ts)$

ax.set(xlim=(300,600), xlabel='Temperature (K)', ylabel='effective \$C_V\$ (J)', title='eff

effective C_V (extensive) (J) over 300-600K

just out of curiosity, and using the simplified version of the equation provided by the textbook which is

450

Temperature (K)

500

550

600

```
500
```

fig, ax = plt.subplots(figsize=(8,7), dpi=300)

ax.plot(Ts, cveff, c='orange')

ax.grid(alpha=0.2)

600

300

200

filler

400 effective C_V (J)

100 400 350 450 500 600 300 550 Temperature (K)

without overlaying them i can't tell the difference. seems like this assumption would have been valid