In [31]: import numpy as np
 import pandas as pd
 import statsmodels.api as sm
 import matplotlib.pyplot as plt
 import seaborn as sns
 sns.set()
 from sklearn.cluster import KMeans

Out[32]:

	внк	Rent	Size	Area Type	Area Locality	City	Furnishing Status	Tenant Preferred	Bathroom
0	2	10000	1100	1	Bandel	1	1	Bachelors/Family	2
1	2	20000	800	1	Phool Bagan, Kankurgachi	1	2	Bachelors/Family	1
2	2	17000	1000	1	Salt Lake City Sector 2	1	2	Bachelors/Family	1
3	2	10000	800	1	Dumdum Park	1	1	Bachelors/Family	1
4	2	7500	850	2	South Dum Dum	1	1	Bachelors	1
4714	2	15000	1000	2	Bandam Kommu	6	2	Bachelors/Family	2
4715	3	29000	2000	1	Manikonda, 6	6	2	Bachelors/Family	3
4716	3	35000	1750	2	Himayath Nagar, NH 7	6	2	Bachelors/Family	3
4717	3	45000	1500	2	Gachibowli	6	2	Family	2
4718	2	15000	1000	2	Suchitra Circle	6	1	Bachelors	2

4719 rows × 9 columns

```
In [33]: # Load your data into a pandas DataFrame
df = pd.read_csv('House_Rent_main6.csv')

# Identify the categorical variable(s) you want to encode
cat_cols = ['Area Locality']

# Perform one-hot encoding using pandas' get_dummies() function
df_encoded = pd.get_dummies(df, columns=cat_cols)

df_encoded
```

Out[33]:

	внк	Rent	Size	Area Type	City	Furnishing Status	Tenant Preferred	Bathroom	Area Locality_ Beeramguda, Ramachandra Puram, NH 9	Lo Boc
0	2	10000	1100	1	1	1	Bachelors/Family	2	0	
1	2	20000	800	1	1	2	Bachelors/Family	1	0	
2	2	17000	1000	1	1	2	Bachelors/Family	1	0	
3	2	10000	800	1	1	1	Bachelors/Family	1	0	
4	2	7500	850	2	1	1	Bachelors	1	0	
4714	2	15000	1000	2	6	2	Bachelors/Family	2	0	
4715	3	29000	2000	1	6	2	Bachelors/Family	3	0	
4716	3	35000	1750	2	6	2	Bachelors/Family	3	0	
4717	3	45000	1500	2	6	2	Family	2	0	
4718	2	15000	1000	2	6	1	Bachelors	2	0	
4719 r	4719 rows × 2234 columns									

4/19 rows × 2234 columns

In [34]: #Replacing string values with integer
 df_encoded["Tenant Preferred"].replace({"Bachelors/Family":"0", "Bachelors":"1
 df_encoded

Out[34]:

	внк	Rent	Size	Area Type	City	Furnishing Status	Tenant Preferred	Bathroom	Area Locality_ Beeramguda, Ramachandra Puram, NH 9	Area Locality_ in Boduppal, NH 2 2
0	2	10000	1100	1	1	1	0	2	0	0
1	2	20000	800	1	1	2	0	1	0	0
2	2	17000	1000	1	1	2	0	1	0	0
3	2	10000	800	1	1	1	0	1	0	0
4	2	7500	850	2	1	1	1	1	0	0
					•••					
4714	2	15000	1000	2	6	2	0	2	0	0
4715	3	29000	2000	1	6	2	0	3	0	0
4716	3	35000	1750	2	6	2	0	3	0	0
4717	3	45000	1500	2	6	2	2	2	0	0
4718	2	15000	1000	2	6	1	1	2	0	0

4719 rows × 2234 columns

In [60]: # Using K-Means Clustering

x = df_encoded.iloc[:,0:3] # 1st for rows and second for columns

Out[60]:

	ВНК	Rent	Size
0	2	10000	1100
1	2	20000	800
2	2	17000	1000
3	2	10000	800
4	2	7500	850
4714	2	15000	1000
4715	3	29000	2000
4716	3	35000	1750
4717	3	45000	1500
4718	2	15000	1000

4719 rows × 3 columns

```
In [61]: kmeans = KMeans(3) # Creating three clusters
kmeans.fit(x)
```

C:\Users\Asus\AppData\Local\Programs\Python\Python310\lib\site-packages\sklea
rn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

Out[61]: KMeans

KMeans(n_clusters=3)

In [62]: identified_clusters = kmeans.fit_predict(x)
 identified_clusters

C:\Users\Asus\AppData\Local\Programs\Python\Python310\lib\site-packages\sklea
rn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will
change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to supp
ress the warning
warnings.warn(

Out[62]: array([0, 0, 0, ..., 0, 0, 0])

```
In [92]: data_with_clusters = df_encoded.copy()
    data_with_clusters['Clusters'] = identified_clusters
    plt.scatter(data_with_clusters['Size'],data_with_clusters['Rent'],c=data_with_
    plt.title('Rent Stats\n', loc='left', fontsize=22)
    plt.xlabel('Size')
    plt.ylabel('Rent')
```

Out[92]: Text(0, 0.5, 'Rent')

Rent Stats


```
In [91]: data with clusters = df encoded.copy()
         data with clusters['Clusters'] = identified clusters
         plt.scatter(data with clusters['Size'],data with clusters['Rent'],c=data with
         plt.title('Rent Stats\n', loc='left', fontsize=22)
         plt.xlabel('Size')
         plt.ylabel('Rent')
         import matplotlib.patches as mpatches
         # create purple circle
         purple circle = mpatches.Circle((0.8, 0.8), radius=0.1, facecolor='purple')
         # add circle to plot
         plt.gca().add patch(purple circle)
         # add label text
         plt.text(0.85, 0.95, '1-BHK', color='purple',transform=ax.transAxes, fontsize=
                 verticalalignment='top', horizontalalignment='right', ha='center', va=
         #--
         # create purple circle
         cyan_circle = mpatches.Circle((0.8, 0.8), radius=0.1, facecolor='cyan')
         # add circle to plot
         plt.gca().add patch(cyan circle)
         # add label text
         plt.text(0.85, 0.85, '2-BHK', color='cyan',transform=ax.transAxes, fontsize=14
                 verticalalignment='top', horizontalalignment='right', ha='center', va=
         #--
         # create purple circle
         yellow circle = mpatches.Circle((0.8, 0.8), radius=0.1, facecolor='yellow')
         # add circle to plot
         plt.gca().add patch(yellow circle)
         # add Label text
         plt.text(0.85, 0.75, '3-BHK', color='yellow',transform=ax.transAxes, fontsize=
                 verticalalignment='top', horizontalalignment='right', ha='center', va=
         #--
```

Out[91]: Text(0.85, 0.65, '4-BHK')

Rent Stats

In []: