Directed Acyclic Transformer for Non-Autoregressive Machine Translation

Fei Huang, **Hao Zhou**, Yang Liu, Hang Li, Minlie Huang

Background

Autoregressive Translation (AT)

- Generate token by token
- Latency: ~600ms per sample*

*: Reported by Gu et al. *Non-autoregressive Machine Translation*. ICLR2018.

The latency is evaluated on IWLST16 En-De with batch size=1 on a Nvidia Tesla P100

Background

Autoregressive Translation (AT)

- Generate token by token
- Latency: ~600ms per sample*

Reduce the inference latency

- Generate all tokens in parallel (Gu et al., 2018)
- Latency: ~10x speed up*

*: Reported by Gu et al. *Non-autoregressive Machine Translation*. ICLR2018. The latency is evaluated on IWLST16 En-De with batch size=1 on a Nvidia Tesla P100

Challenges in NAT

- Multi-modality Problem:
 - NATs produce incorrect outputs that mix multiple possible translations

Challenges in NAT

- Multi-modality Problem:
 - NATs produce incorrect outputs that mix multiple possible translations

- Two causes:
 - Training: inconsistent labels in the reference sentences
 - Inference: cannot preserve correct lexical dependencies during inference

Our Proposed Method

- Utilize Directed Acyclic Graph (DAG)
 - to organize the decoding hidden states (and predicted tokens)

- In training: alleviate conflicts by assigning tokens to different vertices
- In inference: recover the translation following predicted transitions

Overall Architecture

• Step 1: Obtaining the vertex states $V = [v_1, \cdots, v_L]^T$

• Step 2: Predict the transition matrix E and sample a path A

$$P_{\theta}(A|X) = \prod_{i=1}^{M-1} P_{\theta}(a_{i+1}|a_i, X) = \prod_{i=1}^{M-1} \mathbf{E}_{a_i, a_{i+1}},$$

• Step 3: Predict the tokens on the selected path

Path $A = \{1, 3, 4, 5, 6, 9\}$

Reference Y = I went to the cinema .

$$P_{\theta}(Y|A, X) = \prod_{i=1}^{M} P_{\theta}(y_i|a_i, X) = \prod_{i=1}^{M} \operatorname{softmax}(\mathbf{W}_{P}\mathbf{v}_{a_i})$$

Probability Modelling

$$P_\theta(Y|X) = \sum_{A \in \Gamma} P_\theta(Y,A|X) = \sum_{A \in \Gamma} P_\theta(A|X) P_\theta(Y|A,X),$$
 All possible paths

Transition Probability
$$P_{\theta}(A|X) = \prod_{i=1}^{M-1} P_{\theta}(a_{i+1}|a_i,X) = \prod_{i=1}^{M-1} \mathbf{E}_{a_i,a_{i+1}},$$

Token Probability
$$P_{\theta}(Y|A,X) = \prod_{i=1}^{M} P_{\theta}(y_i|a_i,X) = \prod_{i=1}^{M} \operatorname{softmax}(\mathbf{W}_{P}\mathbf{v}_{a_i})$$

Cannot obtain multiple references or ground-truth graphs

An end-to-end Loss

$$\mathcal{L} = -\log P_{\theta}(Y|X) = -\log \sum_{A \in \Gamma} P_{\theta}(Y, A|X)$$

Intuitive Explanation

- Assign the single reference to paths sparsely
- Learn the DAG across different training instances

Sample 1: I went to the cinema . v_1 v_2 v_3 v_4 v_5 v_7 v_8

Sample 2:

$$\mathcal{L} = -\log P_{\theta}(Y|X) = -\log \sum_{A \in \Gamma} P_{\theta}(Y, A|X)$$

Why the objective fits our intuition?

$$\frac{\partial}{\partial \theta} \mathcal{L} = \sum_{A \in \Gamma} w_A \left[\frac{\partial}{\partial \theta} (-\log P_{\theta}(Y, A|X)) \right]$$

$$\mathcal{L} = -\log P_{ heta}(Y|X) = -\log \sum_{A \in \Gamma} P_{ heta}(Y,A|X)$$
 Enumerate All Paths

How to get the sum of probability efficiently?

Update the model by minimizing $\mathcal{L} = -\log f[M, L]$.

Dynamic Programming in PyTorch Operations

$$f_{i,u} = \mathbf{P}_{u,y_i} \sum_{v=1}^{u-1} f_{i-1,v} \; \mathbf{E}_{v,u}$$

Algorithm 2 Dynamic Programming Algorithm in Pytorch-like Parallel Pseudocode

```
Input: Target Length M, Graph Size L, Target Sentence Y, Transition Matrix \mathbf{E} \in \mathbb{R}^{L \times L}, Token Distributions \mathbf{P} \in \mathbb{R}^{L \times |\mathbb{V}|} Initialize a zero matrix f \in \mathbb{R}^{M \times L} f[1,1] := 1 for i=2,3,\cdots,M do f[i,:] := \mathbf{P}[:,y_i] \otimes (f[i-1,:] \times \mathbf{E}) # \otimes is the element-wise multiplication, \times is the vector-matrix multiplication end for
```

O(M) PyTorch Operations

After parallel prediction, decoding one sentence from the DAG

• Greedy

After parallel prediction, decoding one sentence from the DAG

• Greedy

After parallel prediction, decoding one sentence from the DAG

After parallel prediction, decoding one sentence from the DAG

0.2

Lookahead

Main Results

Model	Iter #	Avg (Gap↓ KD	Speedup
Transformer (Vaswani et al., 2017) Transformer (Ours)	M	0.45	0.49	1.0x 1.0x
CMLM (Ghazvininejad et al., 2019) SMART (Ghazvininejad et al., 2020b) DisCo (Kasai et al., 2020) Imputer (Saharia et al., 2020) CMLMC (Anonymous, 2021a)	10 10 ≈4 8 10	3.00 2.67 2.43 3.07 1.35	1.37 0.67 0.59 0.04 0.15	2.2x 2.2x 3.5x 2.7x 1.7x
Vanilla NAT (Gu et al., 2018) AXE [†] (Ghazvininejad et al., 2020a) CTC (Libovický & Helcl, 2018) GLAT (Qian et al., 2021a) OaXE [†] (Du et al., 2021) CTC + GLAT (Qian et al., 2021a) CTC + DSLP (Huang et al., 2021)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.78 7.36 9.41 6.05 5.4 3.52 3.44	8.26 4.34 3.47 2.59 2.0 1.98 0.73	15.3x 14.2x 14.6x 15.3x 14.2x 14.6x 14.0x
DA-Transformer + Greedy (Ours) + Lookahead + BeamSearch + BeamSearch + 5-gram LM	1 1 1 1	1.47 1.20 0.61 0.30	0.75 0.58 0.18 0.05	14.0x 13.9x 7.1x 7.0x

Avg Gap = BLEU gap against the best AT averaged on WMT14 En De and WMT17 Zh En

- 1. Outperforming existing **non-iterative NATs by 3 BLEU** without KD
- 2. Outperforming AT on some datasets
- 3. Achieving **7x~14x speedups in decoding**

Main Results

Model	Iter #	Avg (Gap↓ KD	Speedup
Transformer (Vaswani et al., 2017) Transformer (Ours)	M M	0.45	0.49 0	1.0x 1.0x
CMLM (Ghazvininejad et al., 2019) SMART (Ghazvininejad et al., 2020b) DisCo (Kasai et al., 2020) Imputer (Saharia et al., 2020) CMLMC (Anonymous, 2021a)	10 10 ≈4 8 10	3.00 2.67 2.43 3.07 1.35	1.37 0.67 0.59 0.04 0.15	2.2x 2.2x 3.5x 2.7x 1.7x
Vanilla NAT (Gu et al., 2018) AXE [†] (Ghazvininejad et al., 2020a) CTC (Libovický & Helcl, 2018) GLAT (Qian et al., 2021a) OaXE [†] (Du et al., 2021) CTC + GLAT (Qian et al., 2021a) CTC + DSLP (Huang et al., 2021)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.36 9.41 6.05 5.4 3.52 3.44	8.26 4.34 3.47 2.59 2.0 1.98 0.73	15.3x 14.2x 14.6x 15.3x 14.2x 14.6x 14.0x
DA-Transformer + Greedy (Ours) + Lookahead + BeamSearch + BeamSearch + 5-gram LM	1 1 1 1	1.47 1.20 0.61 0.30	0.75 0.58 0.18 0.05	14.0x 13.9x 7.1x 7.0x

4. BeamSearch (+ n-gram LM) > Lookahead > Greedy

Main Results

Provide flexible tradeoffs between quality and latency by tuning beam size and graph size

Diverse Generation

Facilitate diverse generation by sampling from DAG

Case Study

Source: 听起来很复杂? Reference: S- ounds tricky?

Vanilla NAT: It ounds sounds complicated?

DA-Transformer:

Rank	Hypotheses of BeamSearch	Score			
1	S- ounds complicated ?	-0.55	Fei Huang, Hao Zhou, Yang Liu, Hang Li,		
2	S- ounds very complicated ?	-0.66	Minlie Huang. Directed Acyclic Transformer		
3	Does that sound very complicated?	-0.79	for Non-Autoregressive Machine Translation. ICML 2022 (CCF-A, Patent Pending).		
4	S- ounds very complicated , huh ?	-0.94	icivil 2022 (CCF-A, Patent Pending).		

Quick Impact

Our Code Released in May

