Изучение концентрационных колебаний в реакции Белоусова-Жаботинского

Беляев Юрий Борисов Павел Фейзрахманов Эмир Группа Б04-202

Теоретическая часть

I. Модель Филда – Кереша – Нойеса

Предложенный механизм реакции Белоусова — Жаботинского описывает катализируемое ионами церия окисление малоновой кислоты.

Механизм реакции представляет собой совокупность трёх процессов (A, B и C) (табл. 1). Ключевой отличительной чертой является конкуренция между ионами Br^- и BrO_3^- за взаимодействие с ключевым промежуточным соединением — бромистой кислотой $HBrO_2$ (реакции R2 и R5 соответственно).

Процесс B, с одной стороны, имеет автокаталитическую стадию с HBrO₂ (R5, R6), с другой стороны, он может ингибироваться ионами Br⁻, которые запускают реакции, конкурирующие с реакциями R5 и R6, в результате ионы Br⁻ определяют преимущественный в конкурентный момент времени процесс (А или B).

Наиболее наглядно указанную особенность реализует следующая схема

	Реакция	Номер реакции				
Процесс А	$Br^- + BrO^{3-} + 2H^+ \rightarrow HBrO_2 + HOBr$	R3				
	$Br^- + HBrO_2 + H^+ \rightarrow 2HOBr$	R2				
	$(Br^- + HOBr + H^+ \rightarrow Br_2 + H_2O)$ 3	R1				
	$(Br2 + MA \rightarrow BrMA + Br- + H+) 3$	R8				
	$Br^{-} + BrO^{3-} + 3H^{+} + 3MA \rightarrow 3BrMA + 3H_{2}O$	A=R3+R2+R1+R8				
	$BrO^{3-} + HBrO_2 + H+ \rightarrow 2BrO_2^{\bullet} + H_2O$	R5				
Процесс В	$2M^{n+} + 2BrO_2^{\bullet} + 2H^{+} \rightarrow 2M^{(n+1)+} + 2HBrO_2$	R6				
	$2M^{n+} + BrO^{3-} + HBrO_2 + 3H^+ \rightarrow 2M^{(n+1)+} + H_2O + 2HBrO_2$	G = R5 + R6				
эпс		R4				
lpc	$2 \text{ HBrO}_2 \rightarrow \text{BrO}^{3-} + \text{HOBr} + \text{H}^+$	R1				
	$Br^- + HOBr + H^+ \rightarrow Br_2 + H_2O$ $Br_2 + MA \rightarrow BrMA + Br^- + H^+$	R8				
	$BrO^{3-} + 4M^{n+} + MA + 5H^{+} \rightarrow$	B=				
	$4M^{(n+1)+} + BrMA + 3H_2O$	2G+R4+R1+R8				
Процесс С	$M^{(n+1)^+} + MA + BrMA + H_2O \rightarrow M^{n^+} + fBr^- + H^+ + другие продукты$	С				
		•				

Примечание:

 Mn^+ , $M(^{n+1})^+$ — катионы катализатора в разных степенях окисления, например, Ce^{3+} и Ce^{4+} ; MA — малоновая кислота; BrMA —бромированное производное малоновой кислоты; f — стехиометрический фактор.

Оценки констант скорости стадий: $k_{(R3)}=2,1$ $M^{-3}c^{-1};$ $k_{(R2)}=2\cdot 10^9$ $M^{-2}c^{-1};$ $k_{(R5)}=1\cdot 10^4$ $M^{-2}c^{-1};$ $k_{(R4)}=4\cdot 10^7$ $M^{-1}c^{-1}.$

Таблица 1. Реакция Белоусова – Жаботинского по модели Филда – Кереша – Нойеса

На схеме голубым прямоугольником в левой части рисунка обозначена бромистая кислота (HBrO2), которая может расходоваться или в направлении, обозначенном красной стрелкой, или в направлении, обозначенном синей стрелкой, так или иначе приводя к образованию броммалоновой кислоты (Br-MA). В зависимости от количества ионов Br $^-$ реакция с HBrO $_2$ будет протекать по направлениям, обозначенным или красной стрелкой (много ионов Br $^-$, идёт реакция R2 $^-$ процесс A) или синей стрелкой (мало ионов Br $^-$, идёт реакции R4 $^-$ R6 $^-$ процесс B).

При расходовании $HBrO_2$ по процессу B в результате автокаталитического процесса G (R5+R6) её концентрация возрастает, а окисление Ce^{3+} до Ce^{4+} идёт с увеличивающейся скоростью (реакция R6). В результате в системе накапливается Ce^{4+} и Br-MA, что способствует запуску процесса C (обозначен рыжей стрелкой), который ведёт к накоплению ионов Br^- и восстановлению Ce^{4+} до Ce^{3+} – цикл замыкается.

Первой из предложенных упрощённых моделей реакции Белоусова — Жаботинского, базирующихся на механизме ФКН, является модель «Орегонатор» (табл. 2).

Реакция	Номер реакции (ФКН)	Реакция	Номер реакции (Орегонатор)			
$BrO^{3-} + Br^{-} \rightarrow HBrO_{2}$	R3	$A + Y \rightarrow X$	O1			
$HBrO_2 + Br^- \rightarrow P$	R2	$X + Y \rightarrow P$	O2			
$Ce^{3+} + BrO^{3-} + HBrO_2 \rightarrow$ 2 $HBrO_2 + Ce^{4+}$	R5+R6	$A + X \rightarrow 2X + Z$	О3			
$2HBrO_2 \rightarrow Q$	R4	$X + X \rightarrow Q$	O4			
$Ce^{4+} \rightarrow Ce^{3+} + fBr^{-}$	C	$Z \rightarrow f Y$	O5			
<u>Примечание</u> : A – это BrO_3^- , X – $HBrO_2$, Y – Br^- , Z – Ce^{4+} , P , Q – продукты реакции						

Таблица 2. Реакция Белоусова – Жаботинского по модели «Орегонатор»

Кинетические уравнения, описывающие изменение концентрации автокатализатора ([X] = [HBrO₂]), бромид-иона ([Y] = [Br $^-$]) и катализатора ([Z] = [Ce $^{4+}$]), имеют следующий вид

$$\frac{d[X]}{dt} = k_1 * [A] * [Y] - k_2 * [X] * [Y] + k_3 * [A] * [X] - 2k_4 * [X]^2$$

$$\frac{d[Y]}{dt} = -k_1 * [A] * [Y] - k_2 * [X] * [Y] + f * k_5 * [Z]$$

$$\frac{d[Z]}{dt} = k_3 * [A] * [X] - k_5 * [Z]$$

При расчётах можно использовать следующие оценки констант скорости:

$$k_1 = 1,34 \text{ M}^{-1}\text{c}^{-1}$$

 $k_2 = 1,6 \cdot 10^9 \text{ M}^{-1}\text{c}^{-1}$
 $k_3 = 8 \cdot 10^3 \text{ M}^{-1}\text{c}^{-1}$
 $k_4 = 4 \cdot 10^7 \text{ M}^{-1}\text{c}^{-1}$
 $k_5 = 1 \text{ c}^{-1}$

Обычно при записи этих уравнений используют безразмерные переменные α , η , ρ , τ , s, w, q, которые связаны с концентрациями соединений X, Y, Z, A и константами скоростей k1-k5 следующим образом

$$[X] = \frac{k_1[A]}{k_2} * \alpha$$

$$[Y] = \eta$$

$$[Z] = \frac{k_1 k_3 [A]^2}{k_2 k_5} * \rho$$

$$t = \frac{\sqrt{k_1 k_3} [A]}{\sqrt{k_1 k_3} [A]}$$

$$s = \sqrt{\frac{k_3}{k_1}}$$

$$w = \frac{k_5}{\sqrt{k_1 k_3} [A]}$$

$$q = \frac{2k_1 k_4}{k_2 k_3}$$

Тогда первые три уравнения перепишутся в виде

$$\frac{d\alpha}{d\tau} = s * (\eta - \eta * \alpha + \alpha - q * \alpha^{2})$$

$$\frac{d\eta}{d\tau} = s^{-1} * (-\eta - \eta * \alpha + f * \rho)$$

$$\frac{d\rho}{d\tau} = w * (\alpha - \rho)$$

Анализ этих уравнений п η оказал, что при любом f>0 имеется единственное стационарное решение:

$$\alpha_0 = \frac{1 - f - q + [(1 - f - q)^2 + 4q * (f + 1)]^{\frac{1}{2}}}{2q}$$

$$\eta_0 = \frac{f * \alpha_0}{1 + \alpha_0}$$

$$\rho_0 = \alpha_0$$

Для нахождения колебательных решений нужно определить собственные числа матрицы:

Если все три собственных числа данной матрицы имеют отрицательные действительные части, то малое возмущение стационарного состояния будет затухать, и система вернётся в состояние покоя. Однако, если хотя бы одно из собственных чисел будет иметь положительную действительную часть, малые возмущения начнут нарастать, при этом возможно появление колебаний.

II. Модель Лотка-Вольтерра

Для наглядности обсуждения процесса, приводящего к незатухающим колебаниям концентрации реагентов X и Y, можно использовать схему, описывающую взаимоотношения между популяциями «хищники» (рыси или волки) и «жертвы» (зайцы или кролики).

Процесс включает три стадии:

- 1) $A + X \rightarrow 2X$ кролики X размножаются, количество корма A не меняется;
- 2) $X + Y \rightarrow 2Y$ волки Y размножаются, поедая кроликов;
- 3) $Y \to P -$ волки гибнут.

Этому процессу соответствует следующая система кинетических уравнений:

$$\frac{dX}{dt} = k_1 * X - k_2 * X * Y$$

$$\frac{dY}{dt} = k_2 * X * Y - k_3 * Y$$

Величина A включена для удобства в константу скорости k_1 . Приравнивая производные к нулю, получаем стационарные концентрации:

$$\bar{X} = \frac{k_3}{k_2}, \qquad \bar{Y} = \frac{k_1}{k_2}$$

Для нахождения решения системы уравнений, при котором возможно изменение концентраций X и Y со временем, удобно рассматривать для малых отклонений от стационарного состояния:

$$X = \overline{X} + x, \qquad Y = \overline{Y} + y$$

$$\frac{dx}{dt} = k_1 * (\overline{X} + x) - k_2 * (\overline{X} + x) * (\overline{Y} + y)$$

$$\frac{dy}{dt} = k_2 * (\overline{X} + x) * (\overline{Y} + y) - k_3 * (\overline{Y} + y)$$

Пренебрегая членами второго порядка малости:

$$\frac{dx}{dt} = -k_2 \bar{X}y$$
$$\frac{dy}{dt} = k_2 \bar{Y}x$$

Заменяя \overline{X} и \overline{Y} на их выражение через константы скорости, получаем:

$$\frac{dx}{dt} = -k_3 y$$
$$\frac{dy}{dt} = k_1 x$$

Дифференцируем по времени второе уравнение:

$$\frac{\partial^2 y}{\partial t^2} = -k_1 k_3 y$$

Частным решением этого уравнения является, например:

$$y = y_0 * \sin \omega t$$
 , где $\omega = \sqrt{k_1 k_3}$

Таким образом, можно констатировать что процесс представляет собой незатухающие гармонические колебания во времени вокруг некоего состояния, описываемого найденным выше стационарным решением.

Практическая часть

Цель работы: ознакомление с колебаниями в гомогенных химических системах и расчёт кинетических параметров упрощённой схемы механизма реакции, описывающей колебания *Оборудование:* химический стакан на 25 мл – 3 шт., спектрофотометр UV-VIS PB 2201 Solar – 1 шт., кварцевая кювета толщиной 1 см – 2 шт., компьютер.

Реактивы: 1,5 М раствор серной кислоты (H_2SO_4) , кристаллический бромат калия $(KBrO_3)$, кристаллическая малоновая кислота $(HOOC-CH_2-COOH)$, 0,0005 М раствор сульфата церия $(Ce(SO_4)_2)$ в 1,5 М серной кислоте,

0,25 M раствор фероина (Fe(Phen) $_3$ SO $_4$) в 0,3 M серной кислоте.

Выполнение работы

Исследование колебаний в реакциях, катализируемых ионами церия <u>Серия 1</u>

Исследуем протекание реакции Белоусова-Жаботинского в трёх рабочих растворах с различной концентрацией малоновой кислоты, объём растворов — 10 мл, концентрации реагентов приведены в таблице 3. Для каждого из опытов готовим навески бромата калия $KBrO_3$ и малоновой кислоты, рассчитанные на общий объём рабочего раствора 10 мл. Каждую навеску помещаем в отдельный химический стакан и приливают в каждый по 4 мл 1,5 М серной кислоты H_2SO_4 .

Реагент	Опыт 1	Опыт 2	Опыт 3
[Ce(SO ₄) ₂], M	0,001	0,001	0,001
(BrO ₃ -), M	0,06	0,06	0,06
CH ₂ (COOH) ₂ , M	0,03	0,3	1,2
H ₂ SO ₄ , M	1,5	1,5	1,5
α =[BrO ₃ -]/[CH ₂ (COOH) ₂]	2	0,2	0,05
Режим колебаний	релаксацион- ный	переходный	квазигармониче- ский

Таблица 3. Концентрации реагентов в рабочих растворах 1-ой серии экспериментов.

Перед началом каждого опыта в химический стакан с приготовленным раствором бромата калия $KBrO_3$ (4 мл) приливаем соответствующий раствор малоновой кислоты (4 мл) и раствор $Ce(SO_4)_2$ (2 мл) согласно таблице 3 и интенсивно перемешиваем 1 минуту.

Заполняем кювету этим раствором на 2/3 и на спектрофотометре включаем регистрацию кинетики на длине волны 380 нм. Значения оптической плотности записываем каждую секунду. Нулём является 1,5 М раствор серной кислоты.

Результаты в приложении – рисунки 1–3. На рисунке 1 можно увидеть, что оптическая плотность слишком большая (за пределами измерения спектрофотометра). Это случилось из-за того, что было добавлено слишком много сульфата церия Ce(SO₄)₂, так что опыт 1 можно считать неудачным. Графики на рисунках 2, 3 объясняются тем, что при бОльших концентрациях малоновой кислоты реакция восстановления (и окисления) ионов церия происходит быстрее, то есть частота колебаний в опыте 3 больше, чем в опыте 2. Разница в амплитудах колебаний объясняется тем, что в опыте 3 ионов церия в целом осталось меньше, чем в опыте 2.

Серия 2

Исследуем зависимость периода и амплитуды колебаний от концентрации малоновой кислоты и бромата калия. Изучим протекание реакции в четырёх рабочих растворах, концентрации реагентов в растворах приведены в таблице 4.

Реагент	Опыт 4	Опыт 5	Опыт 6	Опыт 7	Опыт 8 Совпадает с опытом 3 (серии 1)
[Ce(SO ₄) ₂], M	0,001	0,001	0,001	0,001	0,001
(BrO ₃ -), M	0,06	0,06	0,1	0,01	0,06
CH ₂ (COOH) ₂ , M	0,8	1,5	1,2	1,2	1,2
H ₂ SO ₄ , M	1,5	1,5	1,5	1,5	1,5

Таблица 4. Концентрации реагентов в рабочих растворах 2-ой серии экспериментов

Для каждого из опытов готовим навески $KBrO_3$ малоновой кислоты, рассчитанные на общий объём рабочего раствора 10 мл (табл. 4). Каждую навеску помещают в отдельный химический стакан и приливают в каждый по 4 мл 1,5 М серной кислоты H_2SO_4 .

Аналогично опытам 1—3 перед началом каждого опыта в химический стакан с приготовленным раствором бромата калия $KBrO_3$ (4 мл) приливату соответствующий раствор малоновой кислоты (4 мл) и раствор $Ce(SO_4)_2$ (2 мл) согласно таблице 4 и интенсивно перемешиваем 1 минуту.

Заполняем кювету этим раствором на 2/3 и на спектрофотометре включаем регистрацию кинетики на длине волны 380 нм. Значения оптической плотности записываем каждую секунду. Нулём является 1,5 М раствор серной кислоты.

Результаты в приложении — рисунки 4—8. По этим графикам можно сказать, что при увеличении количества малоновой кислоты увеличивается частота колебаний концентраций. При увеличении концентрации бромат-ионов ${\rm BrO_3}^-$ увеличивается амплитуда колебаний.

Исследование колебаний в реакциях, катализируемых ионами железа

Исследуем колебания концентраций, когда катализатором является фероин $Fe(Phen)_3SO_4$.

Для проведения эксперимента подготовим навески $KBrO_3$ и малоновой кислоты, необходимых для приготовления двух растворов объёмом 3 мл каждый:

0,32 M KBrO₃ B 0,3 M H₂SO₄,

1,2 M малоновая кислота в 0,3 M H_2SO_4 .

При проведении эксперимента используем готовый 0,25 M раствор фероина $Fe(Phen)_3SO_4$ в 0,3 M растворе серной кислоты H_2SO_4 .

Для приготовления рабочего раствора смешиваем 3 мл KBrO₃ и 3 мл малоновой кислоты. Затем добавляем 0,05 мл раствора 0,25 M Fe(Phen)₃SO₄ и перемешиваем. Через 3 минуты заполняем кювету и включаем регистрацию кинетики на длине волны 500 нм. Нулём является 0,3 M раствора серной кислоты H₂SO₄.

Результат в приложении – рисунок 9. Колебания в системе отчётливо видны.

Вывод

Были изучены колебания в гомогенных химических системах. А также качественная зависимость частот и амплитуд этих колебаний от концентраций веществ, участвующих в реакциях.

Приложение

Рисунок 1. Зависимость оптической плотности от времени в опыте 1

Рисунок 2. Зависимость оптической плотности от времени в опыте 2

Рисунок 3. Зависимость оптической плотности от времени в опыте 3

Рисунок 4. Зависимость оптической плотности от времени в опыте 4

Рисунок 5. Зависимость оптической плотности от времени в опыте 5

Рисунок 6. Зависимость оптической плотности от времени в опыте 6

Рисунок 7. Зависимость оптической плотности от времени в опыте 7

Рисунок 8. Зависимость оптической плотности от времени в опыте 8

Рисунок 9. Зависимость оптической плотности от времени в опыте 9