Jessica Ahring

Inhaltsverzeichnis

LabVIEW

Glucose-Puls-Reaktor

Motivation

Analyse und Optimierung der Kommunikation

Ergebnis

Ausblick

Laboratory

- > Laboratory
- > Virtual

- > Laboratory
- > Virtual
- Instrument

- > Laboratory
- > Virtual
- Instrument
- > Engineering

- > Laboratory
- > Virtual
- Instrument
- > Engineering
- > Workbench

Kurzübersicht über die Programmiersprache

> Entwicklungsumgebung

Kurzübersicht über die Programmiersprache

- Entwicklungsumgebung
- Grafische Programmiersprache

- > Entwicklungsumgebung
- > Grafische Programmiersprache
- > Programmierung auf Blockdiagramm

Kurzübersicht über die Programmiersprache

- > Entwicklungsumgebung
- > Grafische Programmiersprache
- > Programmierung auf Blockdiagramm
- > Anzeige auf Frontpanel

- > Entwicklungsumgebung
- > Grafische Programmiersprache
- > Programmierung auf Blockdiagramm
- > Anzeige auf Frontpanel
- > Entwickelt von National Instruments (NI)

- > Entwicklungsumgebung
- > Grafische Programmiersprache
- > Programmierung auf Blockdiagramm
- > Anzeige auf Frontpanel
- > Entwickelt von National Instruments (NI)
- > VI = virtuelle Instrumente

Beispiel: Addition in LabVIEW

Abbildung: Blockdiagramm einer Addition in LabVIEW

Beispiel: Addition in LabVIEW

Abbildung: Frontpanel einer Addition in LabVIEW

Datenflussprinzip

Abbildung: Datenflussprinzip

Wieso LabVIEW?

> Ursprünglich für Messrechner entwickelt

- > Ursprünglich für Messrechner entwickelt
- Im IBG-1 Standardsprache für Messen, Steuern und Regeln

- Ursprünglich für Messrechner entwickelt
- Im IBG-1 Standardsprache für Messen, Steuern und Regeln
- Viele parallele Schleifen benötigt

- Ursprünglich für Messrechner entwickelt
- Im IBG-1 Standardsprache für Messen, Steuern und Regeln
- Viele parallele Schleifen benötigt
- Automatische Entstehung der Benutzeroberfläche

- > Ursprünglich für Messrechner entwickelt
- Im IBG-1 Standardsprache für Messen, Steuern und Regeln
- Viele parallele Schleifen benötigt
- Automatische Entstehung der Benutzeroberfläche
- Elexibel einsetzbar

- Ursprünglich für Messrechner entwickelt
- Im IBG-1 Standardsprache für Messen, Steuern und Regeln
- Viele parallele Schleifen benötigt
- Automatische Entstehung der Benutzeroberfläche
- Elexibel einsetzbar
- Hardware von NI und Software arbeiten gut zusammen

> Variablen, Queues, etc. enthalten

- > Variablen, Queues, etc. enthalten
- > Mehr Flexibilität

- > Variablen, Queues, etc. enthalten
- > Mehr Flexibilität
- > Durchbrechen Datenflussprinzip

- > Variablen, Queues, etc. enthalten
- > Mehr Flexibilität
- > Durchbrechen Datenflussprinzip
- > Erhöhte Komplexität

- > Variablen, Queues, etc. enthalten
- > Mehr Flexibilität
- > Durchbrechen Datenflussprinzip
- > Erhöhte Komplexität
- > Erhöhung des Speicherbedarfs des Programms

Abbildung: Datenübertragungstypen 1

Abbildung: Datenübertragungstypen 2

Glucose-Puls-Reaktor

> 1 Liter Behälter

Glucose-Puls-Reaktor

- > 1 Liter Behälter
- > Pumpen, Sensoren, Schläuche

Glucose-Puls-Reaktor

- > 1 Liter Behälter
- > Pumpen, Sensoren, Schläuche
- > Schnelle Probennahme

Glucose-Puls-Reaktor

- > 1 Liter Behälter
- > Pumpen, Sensoren, Schläuche
- > Schnelle Probennahme
- > Erkenntnisse über Reaktionsverläufe

Glucose-Puls-Reaktor-Programm

Abbildung: Kommunikation innerhalb des Programms und zum Reaktor

Motivation

> Zuverlässige und schnelle Kommunikation benötigt

- > Zuverlässige und schnelle Kommunikation benötigt
- Funktionsfähige Kommunikation vorhanden

Motivation

- > Zuverlässige und schnelle Kommunikation benötigt
- Funktionsfähige Kommunikation vorhanden
- Optimierungspotential:

- > Zuverlässige und schnelle Kommunikation benötigt
- Funktionsfähige Kommunikation vorhanden
- > Optimierungspotential:
 - > Speicherplatz

- > Zuverlässige und schnelle Kommunikation benötigt
- > Funktionsfähige Kommunikation vorhanden
- > Optimierungspotential:
 - > Speicherplatz
 - > Redundanzen

- > Zuverlässige und schnelle Kommunikation benötigt
- > Funktionsfähige Kommunikation vorhanden
- > Optimierungspotential:
 - > Speicherplatz
 - > Redundanzen
 - / Nedulidalizer
 - > Zeit

Benutzeroberfläche

Abbildung: Feld zur Benutzereingabe der Ventilschaltungen

Benutzeroberfläche - RT-Target

Abbildung: UI Main.vi

Benutzeroberfläche - RT-Target

Abbildung: RT Loop-UI Commands.vi

> Steuerung des RT-Targets: "RT Main.vi"

- > Steuerung des RT-Targets: "RT Main.vi"
- > Verwendung von drei SubVIs

- > Steuerung des RT-Targets: "RT Main.vi"
- > Verwendung von drei SubVIs
- > Verwendung einer gemeinsamen Queue

- > Steuerung des RT-Targets: "RT Main.vi"
- > Verwendung von drei SubVIs
- > Verwendung einer gemeinsamen Queue
- > 22 Zugriffe auf globale Variablen

- > Steuerung des RT-Targets: "RT Main.vi"
- > Verwendung von drei SubVIs
- > Verwendung einer gemeinsamen Queue
- > 22 Zugriffe auf globale Variablen
- > 3 Eigenschaftsknoten

- > Steuerung des RT-Targets: "RT Main.vi"
- > Verwendung von drei SubVIs
- > Verwendung einer gemeinsamen Queue
- > 22 Zugriffe auf globale Variablen
- > 3 Eigenschaftsknoten
- > Keine lokalen Variablen

- > Steuerung des RT-Targets: "RT Main.vi"
- > Verwendung von drei SubVIs
- > Verwendung einer gemeinsamen Queue
- > 22 Zugriffe auf globale Variablen
- > 3 Eigenschaftsknoten
- > Keine lokalen Variablen
- > Keine Optimierung möglich

RT-Target - FPGA

Abbildung: RT Main.vi

"FPGA Main.vi" ist state machine:

"FPGA Main.vi" ist state machine:

> safe state

..FPGA Main.vi" ist state machine:

- > safe state
- > manual

"FPGA Main.vi" ist state machine:

- > safe state
- > manual
- > control

FPGA

..FPGA Main.vi" ist state machine:

- > safe state
- > manual
- > control
 - > configuration

- > safe state
- > manual
- > control
 - > configuration
 - > ready to run

..FPGA Main.vi" ist state machine:

- > safe state
- > manual
- > control
 - > configuration
 - > ready to run
 - > run

> Zustand von Frontpanel-Objekt abhängig

- > Zustand von Frontpanel-Objekt abhängig
- > Änderungen durch RT über Read/Write Control

FPGA

- > Zustand von Frontpanel-Objekt abhängig
- > Änderungen durch RT über Read/Write Control
- > Werte und Einstellungen des Reaktors über FPGA I/O Nodes

- > Zustand von Frontpanel-Objekt abhängig
- > Änderungen durch RT über Read/Write Control
- > Werte und Einstellungen des Reaktors über FPGA I/O Nodes
- > Keine Optimierung

FPGA - Reaktor

Abbildung: FPGA Main.vi

Abbildung: FPGA Main.vi

> Umgebungsvariablen zur direkten Kommunikation

- > Umgebungsvariablen zur direkten Kommunikation
- Mit physikalisch vorhandenen Ventilen verbunden

- > Umgebungsvariablen zur direkten Kommunikation
- Mit physikalisch vorhandenen Ventilen verbunden
- Einstellungen, die Benutzer vornimmt, an Reaktor übertragen

- > Umgebungsvariablen zur direkten Kommunikation
- Mit physikalisch vorhandenen Ventilen verbunden
- Einstellungen, die Benutzer vornimmt, an Reaktor übertragen
- > Werte auf Benutzeroberfläche ausgegeben

- > Umgebungsvariablen zur direkten Kommunikation
- > Mit physikalisch vorhandenen Ventilen verbunden
- > Einstellungen, die Benutzer vornimmt, an Reaktor übertragen
- > Werte auf Benutzeroberfläche ausgegeben
- > Optimierung: Auskommentieren nicht verwendeter Werte

Umgebungsvariablen

not used					
air_mix 0	pressure_master_ai 0 air_O2 0				
	tmp_master_ai				
pH_master_ai 0	feed_amino_master_ai				
feed_gluc_master_ai	pO2_master_ai				
tmp_cool					

Abbildung: Nicht verwendete Daten

Abbildung: Auskommentierte Umgebungsvariablen

> Umgebungsvariablen zur direkten Kommunikation

- > Umgebungsvariablen zur direkten Kommunikation
- > Steuerung der Vent-Inoc Ventile

- > Umgebungsvariablen zur direkten Kommunikation
- > Steuerung der Vent-Inoc Ventile
- > Sechs Zugriffe

- > Umgebungsvariablen zur direkten Kommunikation
- > Steuerung der Vent-Inoc Ventile
- > Sechs Zugriffe
- > Keine Optimierung

Tabelle: Verwendung der verschiedenen Datenübertragungstypen im Glucose-Puls-Reaktor-Programm

Тур	В	В-Т	Т	T-F	F	T-R	F-R	B-R
Lokale	42	0	0	0	0	0	0	0
Globale (Z)	20	3	22	0	0	0	0	0
Funk. globale (Z)	6	0	0	0	0	0	0	0
Umgebungs. (Z)	5	12	0	0	0	6	0	40
E.Knoten	68	0	3	0	0	0	0	0
M.Knoten	0	0	0	1	0	0	0	0
R./W. Control	0	0	0	4	0	0	0	0
FIFO	0	0	0	1	0	0	0	0
Queue	1	0	1	0	0	0	0	0
Stream	0	2	0	0	0	0	0	0
FPGA I/O Node	0	0	0	0	0	0	2	0

^{© 2018} Ahring/ - Analyse und Optimierung der Kommunikation eines Glucose-Puls-Reaktor-Programms - 30

Benutzeroberfläche

Vor der Optimierung

Abbildung: Darstellung des Optimierungsprozesses-Schritt 0

^{© 2018} Ahring/ – Analyse und Optimierung der Kommunikation eines Glucose-Puls-Reaktor-Programms – 32

Lokale Variable "Connected?"

Abbildung: Vorher: Verwendung der lokalen Variablen "Connected?"

Lokale Variable "Connected?"

Abbildung: Nachher: Verwendung des Shift-Registers statt "Connected?"

Abbildung: Darstellung des Optimierungsprozesses-Schritt 0

Lokale Variable ..Connected?"

Abbildung: Darstellung des Optimierungsprozesses-Schritt 1

Abbildung: Anzeige des Schließungsfensters bei Beenden des Programms

Abbildung: Überprüfung der Zustände vorher

Abbildung: Überprüfung der Zustände Nachher (ohne lokale Variablen)

Abbildung: Darstellung des Optimierungsprozesses-Schritt 1

Lokale Variablen des Schließungsfensters

Abbildung: Darstellung des Optimierungsprozesses-Schritt 2

10 Verwendungen => nur in "UI Main.vi"

- > 10 Verwendungen => nur in "UI Main.vi"
- > Umwandlung in lokale Variablen

- > 10 Verwendungen => nur in "UI Main.vi"
- > Umwandlung in lokale Variablen
- > Keine Änderung aus anderen VIs möglich

- > 10 Verwendungen => nur in "UI Main.vi"
- > Umwandlung in lokale Variablen
- > Keine Änderung aus anderen VIs möglich
- > 10 Zugriffe auf globale Variable "All UI Loop Stop"

- > 10 Verwendungen => nur in "UI Main.vi"
- > Umwandlung in lokale Variablen
- > Keine Änderung aus anderen VIs möglich
- > 10 Zugriffe auf globale Variable "All UI Loop Stop"
- > + 9 lokale Variablen "All UI Loop Stop"

Abbildung: Darstellung des Optimierungsprozesses-Schritt 2

Abbildung: Darstellung des Optimierungsprozesses-Schritt 3

Abbildung: Vorher: Keine Rückgabe des UI - Initiate Connection.vi

Abbildung: Nachher: Rückgabe durch UI - Initiate Connection.vi

Abbildung: Vorher: Verwendung der globalen Variable

Abbildung: Nachher: Verwendung des Schieberegisters

Globale Variable "UI Command Stream"

Abbildung: Darstellung des Optimierungsprozesses-Schritt 4

Abbildung: Anzeige des Startfensters beim Starten des Programms

Abbildung: Programmierung der Startanzeige vorher

Abbildung: Auslagerung der Startanzeige in ein SubVI

Abbildung: Aufruf des Startanzeige-VI

Abbildung: Darstellung des Optimierungsprozesses-Schritt 4

Eigenschaftsknoten des Schließungsfensters

Abbildung: Anzeige des Schließungsfensters bei Beenden des Programms

Abbildung: Ausgelagertes Schliessungsfenster in einem VI

Eigenschaftsknoten des Schließungsfensters

Abbildung: Aufruf des Schliessungsfenster-VI

Eigenschaftsknoten des Schließungsfensters

Abbildung: Zugriff auf die Frontpanelobjekte des SubVIs mit Methodenknoten

Abbildung: Beenden des Schliessungsfenster-VI

Eigenschaftsknoten des Schließungsfensters

> Queue ist zur internen Kommunikation sinnvoll

- > Queue ist zur internen Kommunikation sinnvoll
- > Zugriffe auf funktionale globale Variable sinnvoll

- > Queue ist zur internen Kommunikation sinnvoll
- > Zugriffe auf funktionale globale Variable sinnvoll
- > 1 Eigenschaftsknoten

- > Queue ist zur internen Kommunikation sinnvoll
- > Zugriffe auf funktionale globale Variable sinnvoll
- > 1 Eigenschaftsknoten
- > 2 Lokale Variablen

Abbildung: Darstellung des Optimierungsprozesses-Schritt 7

Abbildung: Darstellung des Optimierungsprozesses-Schritt 8

Ergebnis

Tabelle: Verwendung der verschiedenen Datenübertragungstypen im Glucose-Puls-Reaktor-Programm - vorher

Тур	В	В-Т	Т	T-F	F	T-R	F-R	B-R
Lokale	42	0	0	0	0	0	0	0
Globale (Z)	20	3	22	0	0	0	0	0
Funk. globale (Z)	6	0	0	0	0	0	0	0
Umgebungs. (Z)	5	12	0	0	0	6	0	40
E.Knoten	68	0	3	0	0	0	0	0
M.Knoten	0	0	0	1	0	0	0	0
R./W. Control	0	0	0	4	0	0	0	0
FIFO	0	0	0	1	0	0	0	0
Queue	1	0	1	0	0	0	0	0
Stream	0	2	0	0	0	0	0	0
FPGA I/O Node	0	0	0	0	0	0	2	0

Tabelle: Verwendung der verschiedenen Datenübertragungstypen im Glucose-Puls-Reaktor-Programm – nachher

Тур	В	B-T	Т	T-F	F	T-R	F-R	B-R
Lokale	34	0	0	0	0	0	0	0
Globale (Z)	3	3	22	0	0	0	0	0
Funk. globale (Z)	6	0	0	0	0	0	0	0
Umgebungs. (Z)	0	12	0	0	0	6	0	31
E.Knoten	27	0	3	0	0	0	0	0
M.Knoten	17	0	0	1	0	0	0	0
R./W. Control	0	0	0	4	0	0	0	0
FIFO	0	0	0	1	0	0	0	0
Queue	1	0	1	0	0	0	0	0
Stream	0	2	0	0	0	0	0	0
FPGA I/O Node	0	0	0	0	0	0	2	0

Тур	Vorher	Nachher	Reduktion
Lokale Variablen	42	34	19%
Globale Variablen	20	3	85%
Funktionale globale Variablen	6	6	0%
Umgebungsvariablen	5	0	100%
Eigenschaftsknoten	68	27	60%
gesamt	141	70	50%

Ergebnis

Tabelle: Prozentuale Reduktion in Hinblick auf Datenübertragungstypen mit Berücksichtigung der Methodenknoten

Тур	Vorher	Nachher	Reduktion
gesamt ohne M. Methodenknoten	141 0	70 17	50% —
gesamt	141	87	48%

Tabelle: Prozentuale Reduktion in Hinblick auf Datenübertragungstypen im gesamten Programm

Тур	Vorher	Nachher	Reduktion
Lokal	42	34	19%
Global	45	28	38%
Funk. global	6	6	0%
Umgebungs.	63	49	22%
E.Knoten	71	30	58%
M.Knoten	1	18	
Andere	11	11	0%
gesamt	238	176	26%

Ausblick

> Optimierung der Anzahl der VIs

- > Optimierung der Anzahl der VIs
- Benutzeroberfläche

- > Optimierung der Anzahl der VIs
- > Benutzeroberfläche
 - > Erweiterung der Funktionen

- Optimierung der Anzahl der VIs
- > Benutzeroberfläche
 - > Erweiterung der Funktionen
 - > Benutzerfreundlichkeit

- > Optimierung der Anzahl der VIs
- > Benutzeroberfläche
 - > Erweiterung der Funktionen
 - > Benutzerfreundlichkeit
- > Motorsteuerung

Literatur I

Deutsch. Bd. 3., vollständig überarbeitete und erweiterte Auflage. 2007. Kap. 1, S. 19–20. 454 S. ISBN: 978-3-446-41109-8.

National Instruments. *Globale Variablen*. Deutsch. Artikelnummer:371361H-0113; Besucht: 27.09.2017. URL:

http://zone.ni.com/reference/de-XX/help/371361H-0113/lvconcepts/glob_variables/.

National Instruments. *Methoden des Datenaustauschs in LabVIEW*. Deutsch. Artikelnummer:371361L-0113; Besucht: 04.12.2017. URL: http://zone.ni.com/reference/de-XX/help/371361L-0113/lvconcepts/data_comm/.

Literatur II

National Instruments. Streamen von Daten und Senden von Befehlen zwischen Applikationen. Deutsch.

Artikelnummer:371361H-0113; Besucht: 04.12.2017. URL: http://zone.ni.com/reference/de-XX/help/371361H-0113/lvconcepts/networkstreams/.

National Instruments. Transferring Data between Devices or Structures Using FIFOs (FPGA Module). Englisch.

Artikelnummer:371599H-01; Besucht:06.10.2017. URL:

https://zone.ni.com/reference/en-

XX/help/371599H-

01/lvfpgaconcepts/fpga_transfer_data/.

Literatur III

National Instruments. Umsichtige Verwendung lokaler und globaler Variablen. Deutsch. Artikelnummer:371361H-0113; Besucht: 27 09 2017 URL:

http://zone.ni.com/reference/de-XX/help/371361H-0113/lvconcepts/using_local_and_global/.

National Instruments. Verwenden der Umgebungsvariablen in LabVIEW. Deutsch. Besucht:05.10.2017. URL:

http://www.ni.com/white-paper/4679/de/.

National Instruments. Vorschläge für die Verwendung von Ausführungssystemen und Prioritäten. Funktionale globale Variablen. Deutsch.

Artikelnummer:371361J-0113;Besucht:05.10.2017. URL: http://zone.ni.com/reference/de-XX/help/371361H-0113/lvconcepts/suggestions_for_exec/#Functional_Global_Variables.

Rahman Jamal und Andre Hagestedt. *LabVIEW Das Grundlagenbuch*. Deutsch. Bd. 4. Auflage. 2004. Kap. 13-Konventionelle Techniken in LabVIEW, S. 447–469. 560 S. ISBN: 3-8273-2051-8.

User. Field Programmable Gate Array. Deutsch.
Besucht:04.10.2017. URL: https://de.wikipedia.org/wiki/Field_Programmable_Gate_Array.

Tabelle: Umwandlung eines Boolean-Arrays in eine Zahl – Beispiel

vent_probe_clean	vent_probe	vent_puls	vent_puls_clean	False	run_motor_task	Dualzahl	Dezimalzahl	
F	F	F	F	F	Т	000001	1	
F	F	Т	F	F	Т	001001	9	
F	Т	F	Т	F	Т	010101	21	
Т	Т	Т	Т	F	F	111100	60	