POPL Assignment 2

Diamond Property: Let R be a binary relation. We say that R has diamond property if, whenever aRb and aRc, then $\exists d$ such that bRd and cRd.

 β -reduction as a binary relation: We can define $\stackrel{\beta}{\longrightarrow}$ as a binary relation between two λ terms t_1 and t_2 :

 $t_1 \xrightarrow{\beta} t_2$ iff t_2 can be obtained from t_1 using 1 β reduction step.

- 1. Show that $\stackrel{\beta}{\longrightarrow}$ does not have the Diamond property. That is, give an example λ -term t_1 such that
 - 1. $t_1 \xrightarrow{\beta} t_2$
 - $2. \ t_1 \xrightarrow{\beta} t_3$
 - 3. $\not\exists t_4 \text{ s.t. } t_2 \xrightarrow{\beta} t_4 \text{ and } t_3 \xrightarrow{\beta} t_4$

(5 Marks)

2. Non-associativity of Substitutions: Let M, N, and P be λ -terms. Assume $x \neq y$. Show that the order of substitution matters, i.e., in general

$$M[x:=N][y:=P]\not\equiv M[y:=P][x:=N]$$

(5 Marks)

3. Constrained-associativity of Substitutions: Let M, N, and P be λ -terms. Assume $x \neq y$ and $x \notin FV(P)$. Show that

$$M[x:=N][y:=P] \equiv M[y:=P][x:=N']$$
 where $N'=N[y:=P]$

(10 Marks)

4. Church Numerals: Explain with suitable examples, what simple arithmetic function does the following λ -term represents:

$$\lambda n.\ n\ (\lambda p\ z.\ z\ (succ\ (p\ true))(p\ true))\ (\lambda z.\ z\ zero\ zero)\ false$$

Here, succ, true, zero, false represent the λ -terms defined in the lectures. (5 Marks)