Agenda for today

- Homework questions
- Suffix Trees
 - Introduction and definitions
 - Linear-time construction
 - Deterministic exact string matching
- Time permitting, further related topics
 - Suffix automata
 - -Suffix arrays

Suffix Trees

- ullet Given a string S of length m, a suffix tree T encodes all suffixes, i.e., S[i,m] for $1\leq i\leq m$
- Concatenation of symbols labeling edges along the path from root to leaf spells out suffix
- \bullet Leaves are numbered with i, the start index of the suffix
- Edges can be labeled with one or more symbols
- Internal (non-leaf) nodes must have more than one child
- No two children leaving a node can start with the same symbol
- Tremendously useful data structure for many problems

xtpxtd\$

Start	suffix	Start	suffix
	x t p x t d \$	4	x t d \$
2	tpxtd\$	5	t d \$
	p x t d \$	6	d \$

Problem: how to build

- Naive method too expensive:
 - Put suffix S[1, m] into the tree
 - -Then put S[i, m] into the tree for $2 \le i \le m$
 - $-m^2$ complexity
- Several linear-time suffix tree construction algorithms
- We will consider Ukkonen's algorithm, which has several key ideas, including
 - -Suffix links (similar to failure links)
 - -String indices instead of characters

Basic idea

- Build suffix tree incrementally from left-to-right
- Build "implicit" suffix trees (no end-of-string marker)
- Extend the implicit suffix trees from the previous step
- Convert implicit suffix tree to explicit in final step

Step 1: x t p x t d

Step 2: x t p x t d

Step 3: x t p x t d

Step 4: x t p x t d

Step 5: x t p x t d

Step 6: x t p x t d

Step 7: finalize

How can we use it?

- Exact match: e.g., how many times does xt occur?
- Algorithm: order n (size of pattern) rather than order m (size of text)
 - -Start at the root
 - Match pattern along branches in tree
 - Number of leaf nodes is the number of instances
 - Indices give you the locations
- Useful in scenarios where text is given in advance, and used for many pattern matches

Efficient construction

- To really make this tractable, several clever "tricks"
 - Suffix links (like failure links)
 - Represent sequences as beginning and ending indices
 - Automatic extension for leaves (via global "end" index)
 - Early stopping of suffix link extensions
 - Check only first letter when following suffix link extensions ("Skip/count" trick)
- In aggregate, these make for tractable suffix tree construction

Suffix links

- Note that every suffix of a suffix in the suffix tree must also be in the suffix tree
- For example: if abcd is in the tree, so are: bcd, cd, d
- If we extend a suffix, its suffixes will also be extended -e.g., if abcd+e, then bcd+e, cd+e, d+e, e
- Need to find them (via suffix links) to extend them
- Can use the suffix links of parents in tree for quick access

Finding suffix link for node X

- Go to parent node **Y**
- ullet Denote xlpha string labeling $Y o X, x \in \Sigma, lpha \in \Sigma^*$
- If Y is the root of the tree
 - If $\alpha = \epsilon$, set Z to Y
 - Else set Z to state reached from Y with transitions labeled α
- Else
 - Set Y to destination state of suffix link from Y
 - Set Z to state reached from Y with transitions labeled $x\alpha$
- ullet Create suffix link from X to Z

Some notes about suffix links

- Every previously created node (except root) has suffix link
- May require multiple transitions to generate all of string
- String is guaranteed to exist from suffix link of the parent (or root)
 - -Only one transition leaving each state per letter
 - Hence only need to check first letter (skip/count)

Begin/End indices: xyzabc

Begin/End indices: xyzabc

Global end index: xyzabc

Final "tricks"

- Two situations as yet unobserved
- Early stopping
 - The first node where an extension is found is sufficient
 - All subsequent suffix links will have a match
- Skip count
 - When finding suffix link, just match first character
 - Rest of characters on arc MUST match

Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

Example: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

8, e

Searching for occurrences

- Start at the root
- Search for match in tree
- Count the number of leaf nodes below point where word matches
- Linear in the length of the pattern, not the text
- Example: how many times does xt occur in text? t? py?

Characteristics of suffix trees

- ullet One transition out of each state for any given symbol in Σ
- Size requirements quite large: $O(m|\Sigma|)$ for length m
 - -m states, Σ continuations per state
 - Can hash, resulting in less space usage, but $O(n \log |\Sigma|)$ time to search, rather than O(n)
- With linear-time algorithm to build, construction not the problem
- Storage and use is the problem

Suffix automata

- One space saving idea: turn tree into directed acyclic graph (DAG)
- Convert tree to finite-state automaton with re-entrancies
 - Tree is a special case of FSA: start state at root, final states at leaves
 - -Further, tree is deterministic FSA
 - Minimize the tree to a minimal automaton
- Potentially massive space savings on final graph

Example suffix tree

Change to suffix automata: directed edges, final states

Change to suffix automata: collapse states

Change to suffix automata: collapse states

Change to suffix automata: collapse states

Deterministic suffix automata

- Large space savings. In this case:
 - from 16 final states, 8 internal states, 23 arcs
 - to 6 final states, 3 internal states, 11 arcs
- Can be achieved with well-known graph minimization algorithms
- One particular problem in exact match:
 - For a given final state, may have reached there via various paths
 - Hence extra work to identify indices of matches
- \bullet Can get additional space savings with ϵ transitions

Suffix automata with no ϵ transitions

Suffix automata with ϵ transitions

Suffix array

- Another clever space savings idea is the suffix array
- Note that, for text of length m, there are exactly m suffixes
- \bullet Thus, in an array of m ints, we can store the suffix indices in alphabetical order
- For any given pattern, all of the suffixes beginning with the pattern would be adjacent in the array
- Much better space usage, not bad exact match time

Suffix array: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

Suffix idx	Suffix	String pos
1	pr	15
2	pyxtpr	11
3	pyxtpzxtpyxtpr	3
4	pzxtpyxtpr	7
5	r	16
6	tpr	14
7	tpyxtpr	10
8	tpyxtpzxtpyxtpr	2
9	tpzxtpyxtpr	6
10	xtpr	13
11	xtpyxtpr	9
12	xtpyxtpzxtpyxtpr	1
13	xtpzxtpyxtpr	5
14	yxtpr	12
15	yxtpzxtpyxtpr	4
16	zxtpyxtpr 85	8

Building suffix array

- Each state in suffix tree has at most one arc for each letter
- If we sort the arcs leaving each node in alphabetical order
 - Follow a pre-order (depth first) traversal of the tree
 - Emit indices of leaf nodes as encountered

Example suffix tree

Suffix tree, letters again

Suffix tree, node order

Suffix tree, pre-order enumeration

Searching with suffix array

- Perform binary search on the suffix array: $O(n \log m)$
- Can do better than this with clever preprocessing
 - Want to avoid comparisons that are not necessary
- Suppose we have one match in the suffix array
 - The neighbors may or may not be matches
 - How many characters do we need to check?
 - If we know the *longest common prefix* (LCP) of the neighbors, we know where to begin
- Can build a binary search tree with pre-compiled LCP values at each node

Longest common prefix

- Have enough information to calculate pair-wise LCP in suffix tree
- In pre-order traversal of suffix tree to build the suffix array:
 - The LCP between suffix idx i and suffix idx i+1 is the depth in the tree of the lowest common ancestor node of the suffixes
 - (Recall that the depth of a node is the length of the string labeling arcs reaching that node)
- Critical lemma for easy LCP accumulation in binary tree: For any i, j such that j > i+1,

$$\mathrm{LCP}(i,j) = \min_{i \leq k \leq j-1} \mathrm{LCP}(k,k+1)$$

• In binary tree, take the smallest value from the two children

Suffix tree, pre-order enumeration

Suffix array: 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 x t p y x t p z x t p y x t p r

Suffix idx	Suffix	String pos	LCP(i, i+1)
1	pr	<u> </u>	1
2	pyxtpr	11	5
3	pyxtpzxtpyxtpr	3	1
4	pzxtpyxtpr	7	0
5	r	16	0
6	tpr	14	2
7	tpyxtpr	10	6
8	tpyxtpzxtpyxtpr	2	2
9	tpzxtpyxtpr	6	0
10	xtpr	13	3
11	xtpyxtpr	9	7
12	xtpyxtpzxtpyxtpr	1	3
13	xtpzxtpyxtpr	5	0
14	yxtpr	12	4
15	yxtpzxtpyxtpr	4	0
16	zxtpyxtpr	8	
	94		

Building binary tree

- Index node with first and last suffix array indices
- Split in half, point to left and right children
- Need to store two LCP numbers at each node
 - Note that the internal LCP does not include rightmost suffix
 - Will need to include rightmost suffix if combining as left child
 - Keep LCP both with and without rightmost suffix
- Use LCP to avoid comparing parts of pattern already found to match

Binary tree

Binary search

- Start at root
- Compare pattern with rightmost suffix of left child of current node
 - If pattern less-than suffix, go to left node and continue
 - If suffix less-than pattern, go to right node and continue
 - If pattern matches suffix, move down tree (rightmost child)
 - * Descend to first node with LCP $\geq n$ (length of pattern)
 - * All suffixes beneath node match pattern
 - * move to the left of the leftmost and right of rightmost to find further matches