EFFECT OF 1.0 MeV ELECTRON IRRADIATION ON SHUNT

RESISTANCE IN Si-MINP SOLAR CELLS*

Wayne A. Anderson and Sonali Banerjee State University of New York at Buffalo Amherst, New York

Shunt resistance from 100 K-400°K is compared for diffused and ion-implanted cells, before and after irradiation. R_{sh} decreases from >10 $^7\Omega$ -cm 2 for T<250°K to $10^4\Omega$ -cm 2 at 400°K for non-irradiated diffused cells. Electron irradiation causes a more rapid decrease in R_{sh} for T>250°K. Ion-implanted cells exhibit a similar trend except that R_{sh} is significantly less for T<250°K and is more sensitive to irradiation at these low temperatures. The mechanism of R_{sh} appears to be a combination of multistep tunneling and trapping - detrapping in the defect states of the semiconductor. Radiation serves to increase the density of these states to decrease R_{sh} .

INTRODUCTION

Metal-Insulator-N⁺ silicon -p silicon (MINP) solar cells are basically a surface passivated cell offering high efficiency due to a reduction in loss mechanisms such as surface recombination. This type of cell now produces an efficiency in excess of 20% which makes it a likely candidate for space applications. Thus, a study of radiation effects becomes important.

This paper deals with the effects of 1.0 MeV electron irradiation on the shunt resistance (R_{sh}) of MINP solar cells which has not previously been well characterized. Since R_{sh} must be high to avoid loss in efficiency, any decrease in high R_{sh} due to irradiation becomes an area of concern for the designer of solar cells for space applications.

EXPERIMENTAL TECHNIQUES

MIN P solar cells were fabricated by ion implantation or diffusion. Diffused junctions were formed in 0.1-0.3 $^{\Omega}$ -cm, (100), ptype Si using a Carborundum phosphorous solid source at 950 $^{\circ}$ C for 5 minutes (ref. 1). A junction depth of about 0.3 $_{\mu}$ m gave good UV response. Figure 1 shows the cell structure which utilizes a reducedarea Al ohmic contact, Yb-Cr-Al layered grid, and a single layer Si0 antireflection (AR) coating. Other cells were implanted through the

^{*} Sponsored in part by Office of Naval Research Contract No. N0001485K0727.

courtesy of Mark Spitzer of Spire Corp., with 5 keV phosphorous to a dose of about $2.5 \times 10^{15}/\text{cm}^2$. After annealing (ref. 1), the cells were completed as described above. Total area efficiency up to 17% was achieved.

Solar cells were irradiated by 1.0 MeV electrons at fluence levels of $1 \times 10^{14} / \mathrm{cm}^2$, $1 \times 10^{15} / \mathrm{cm}^2$, and $1 \times 10^{16} / \mathrm{cm}^2$. Standard measurements were made of dark I-V, $I_{sc} - V_{oc}$, spectral response, diffusion length, and photovoltaic response at AM1.5 and AMO using an ELH lamp source. In addition, R_{sh} was determined by low voltage dark I-V data or low illumination $I_{sc} - V_{oc}$ date (ref. 2) from 100 K to 400 K. A liquid nitrogen cryostat was utilized for refrigeration and a Keithley Model 480 picoammeter for measuring low current values.

EXPERIMENTAL DATA

Photovoltaic data for a diffused MINP cell, edge-exposed implanted cell, and non-passivated implanted cell are given in Table 1. The diffused cell gave the highest value of $R_{\rm sh}$ before and after irradiation. It also suffered a greater loss in PV data since it was more finely tuned in the initial design. Previous studies (ref. 3) show MINP cells to outperform N⁺-P cells for electron fluence levels <1x10¹⁵/cm². The lower $R_{\rm sh}$ for implanted cells indicates effects of bulk damage from the implantation.

Figure 2 shows R_{sh} for the diffused cell with temperature as a variable. R_{sh} is independent of T for T<250 K and decreases thereafter. Irradiation causes a more rapid loss in R_{sh} at increased T. Implanted cell data of Figure 3 indicate R_{sh} to decrease with increased T for T>100 K. Again, irradiation served to further reduce R_{sh} . Shunt current (I_{sh}) was seen to depend linearly upon voltage and super-linearly upon radiation fluence as seen in Figure 4.

DISCUSSION

A number of observations regarding \mathbf{R}_{sh} may be listed and compared to a theoretical model.

- 1) R_{sh} of diffused cells is greater than for implanted ones. This suggests remaining implantation damage after annealing.
- 2) R_{sh} is independent of temperature below a threshold (T_t) after which it decreases rather rapidly with T (ref. 2).
- 3) Shunt current (I $_{\mbox{sh}}$) is linearly dependent on voltage but increases with T in a super-linear fashion (ref. 2).
- 4) Electron irradiation causes a decrease in $R_{\rm sh}$ below $T_{\rm t}$, little change in $T_{\rm t}$, and a superlinear increase in $I_{\rm sh}$.

A previous publication (ref. 2) explained temperature dependence of \mathbf{R}_{sh} by examining the influence of defect states on a captured

carrier. A carrier may traverse the space charge region via multistep tunneling which explains the temperature independence for $T < T_t$. Alternatively, R_{sh} may be due to thermal re-emission, the probability of which increases at increased temperatures. The following equations then prevail (ref. 4):

$$N_{t}(T) = N_{to} \exp[-A \exp(-E/kT)]t$$
 (1)

where $N_t(T) = \#$ carriers trapped $N_{to} = initial \#$ trapped carriers E = energy of the state. t = time

Also,
$$A = N_{eff} Sv_{th}$$
 (2)

where N_{eff} = density of states S = capture cross section v_{th} = thermal velocity

Conductivity due to released trapped charge is then given by

$$\Delta \sigma = \Delta N_{t}(T)q \Delta \mu \tag{3}$$

These equations predict an increase in free carriers above a certain threshold temperature. This increase is dependent upon the defect energy level, defect density, capture cross section, and temperature. Linear dependence on voltage satisfies V=IR. A superlinear dependence of $R_{\rm sh}$ and $I_{\rm sh}$ on temperature fits equation 1. The rapid increase of $I_{\rm sh}$ and decrease in $R_{\rm sh}$ with electron fluence indicates the role of defects introduced by irradiation and enforces the original premise that $R_{\rm sh}$ arises from defects in the bandgap.

REFERENCES

- 1) B. B. Rao, S. Banerjee, W. A. Anderson, and M. K. Han, "Excess Currents in MINP-Type Solar Cells", IEEE Trans. Elec. Rev., ED-32, 817-821, 1985.
- 2) S. Banerjee and W. A. Anderson, "Temperature Dependence of Shunt Resistance in Photovoltaic Devices", Appl. Phys. Lett., 49, 38-40, 1986.
- 3) M. Thayer, W. A. Anderson, and B. B. Rao, "Reliability of MINP Compared to MIS, SIS, and N/P Silicon Solar Cells Under 1.0 MeV Electron and Environmental Effects", IEEE Trans. on Elec. Dev., ED-31, 619-621,1984.
- 4) R. H. Bube, <u>Photoconductivity of Solids</u>, John Wiley & Sons, New York, 273-299, 1960.

TABLE 1

Photovoltaic Data Before and After Irradiation by 1.0 MeV Electrons to $10^{16}/\mathrm{cm}^2$

	v _{oc} (v)		$J_{sc}(mA/cm^2)d$		Shunt Resistance e)(\alpha - cm2)		
Sample	Before	After	Before	After	Before	After	
1 a)	0.632	0.494	43.1	19.7	8.4×10^6	9.3 x 10 ⁵	
2b)	0.608	0.506	40.8	23.8	5.0×10^4	1.6 x 10 ⁴	
3 ^c)	0.626	0.489	42.9	25.7	2.4×10^{5}	1.2×10^5	

- a) Diffused MINP cell with diffusion performed through a window in the oxide. Area = $2.0~{\rm cm}^2$.
- b) Ion-implanted MINP cell where junction edges are exposed. Area = 2.1 cm^2 .
- c) Ion-implanted without passivation. $Area = 4.0 cm^{2}.$
- d) Illuminated at 135 MW/cm^2 .
- e) @ 300 $^{\circ}$ K.

Figure 1. Diagram showing MINP solar cell design.

Figure 2. Temperature dependence of $R_{\text{S}h}$ for a diffused cell as a function of 1.0 MeV electron fluence.

Figure 3. Temperature dependence of R_{sh} for ion-implanted cells as a function of 1.0 MeV electron fluence.

Figure 4. Shunt current variation with bias voltage for a diffused cell as a function of 1.0 MeV electron fluence.