Challenge Answers:

1. The flux shows that the models are at steady state conditions (ignoring time discretization) as when the model converges, the flux remains constant with depth (flow in = flow out and is constant across all cells).

Figure 1: Homogenous Model outputs on the left and the equal thickness layer Heterogenous Model outputs on the right; both models show that the flux within each column remains constant with depth, displaying that each has reached a steady-state equilibrium in their respective columns.

Groundwater Modelling – Homework 1

2. The modeled flux for the homogenous and heterogenous models were both equal to the direct calculation of flux using the harmonic mean hydraulic conductivity (K_{eq}). The calculation for flux (q) uses the following equations:

$$q = K_{eq} \frac{dh}{dL}$$
; $dh = (h_{top} - h_{bottom})$, $dL = (z_{top} - z_{bottom})$

where dh/dL is the change in head over the change of length within the column.

Direct solution for flux								Direct solution for flux							
	K	num cells	Z	K zone cell	K cell	Н	q		K	num cells	z	K zone cell	K cell	Н	q
zone 1	0.0004	12						zone 1	0.0004	6.5					
zone 2	0.01	0	60	1	0.0004	100		zone 2	0.01	5.5	60	1	0.0004	100	
zone 3	0.0001	0	55	1	0.0004	91.66667	0.000667	zone 3	0.0001	0	55	1	0.0004	85.11905	0.00119
			50	1	0.0004	83.33333	0.000667				50	1	0.0004	70.2381	0.00119
Keq	0.0004		45	1	0.0004	75	0.000667	Keq	0.000714		45	1	0.0004	55.35714	0.00119
q	0.000667		40	1	0.0004	66.66667	0.000667	q	0.00119		40	1	0.0004	40.47619	0.00119
			35	1	0.0004	58.33333	0.000667				35	1	0.0004	25.59524	0.00119
			30	1	0.0004	50	0.000667				30	1	0.0004	10.71429	0.00119
			25	1	0.0004	41.66667	0.000667				25	2	0.01	2.976191	0.00119
			20	1	0.0004	33.33333	0.000667				20	2	0.01	2.380952	0.00119
			15	1	0.0004	25	0.000667				15	2	0.01	1.785714	0.00119
			10	1	0.0004	16.66667	0.000667				10	2	0.01	1.190476	0.00119
			5	1	0.0004	8.333333	0.000667				5	2	0.01	0.595238	0.00119
			0	1	0.0004	0	0.000667				0	2	0.01	0	0.00119

Figure 2: Direct solutions for the homogenous (left) and heterogenous (right) models. Both of the directly solved fluxes (q in the bold outlined box) are equal to the fluxes between each cell of their respective models.

3. The K_{eq} is closer to the lowest K of the heterogenous model due to energy conservation laws. When water passes through layers with a low K, it uses more energy to move through the system, resulting in less energy to flow through the remainder of the system. This is seen as a rapid head change in the low K upper layer, and then a gradual change to the 0 m head boundary at the base of the column within the high (relatively speaking) K lower layer. (Refer back to Figure 1's head w/ depth graphs).