

Practical Haplotype Graph (PHG) to call genotypes from skim sequences to aid in genomic selection

<u>Lynn Johnson</u>¹, Dan C. Ilut¹, Zack Miller¹, Terry M. Casstevens¹, Peter J. Bradbury^{1,2}, Punna Ramu¹, Cinta M. Romay¹, Edward S. Buckler^{1,2,*}

¹Institute of Genomic Diversity, Cornell University, Ithaca, NY, USA. ²US Department of Agriculture – Agriculture Research Service (USDA-ARS).

* Correspondence should be addressed to E.S.B. (esb33@cornell.edu)

Introduction: Why a graph?

Biology Produces a consistent pattern of a genome

- Conserved genes (and other elements)
- Non-conserved intergenic regions of tremendous variation
- Architecture similar across many species

Maize Example:

- Representing genomic diversity and complexity is challenging
- Graphs can compactly represent sequence from multiple genomes
- Aligning to a pan-genome is better than aligning to a single reference

Why the PHG?

- PHG accepts sequence from multiple technologies (rAmpSeq, Nextera, Nanopore, etc.)
- By pulling taxa into consensus haplotypes, the haplotype graph can be built with low coverage input genomes
- We don't have good assemblies, intergenic regions are horrible
- PHG creates a useful graph even when the data isn't perfect

PHG Goals

- Identify the haplotype from low depth sequences
- Create custom genomes for alignment
- Call rare haplotypes
- Compress data

GATK tools

PHG docker instance

Calling genotypes from skim sequences using the PHG

1. Populate the database with haplotypes

2. Infer genotypes from skim sequences

Use HMM to find the best path through PHG

- Perfect match count: Number of sequence reads that match the haplotype sequence exactly.
- Mis-match count: Number of reads that map to a haplotype but do not match exactly.

PHG API

PHG Database schema

Current deployment:

- Maize -308 taxa
- Sorghum -140 taxa (under development)
- Cassava -348 taxa (under development)

In maize:

- Tested using W22 GBS sequence
- Pathway: 85% of nodes called correctly
- Error rate calling SNPs = 2% (compared to Axiom Array)

Common pipeline to call genotypes from technology independent skim sequences (GBS, rAmpSeq, Nextera, Nanopore, RNA-seq, DArT-seq, etc.)

PHG will be available as a docker image

Running PHG scripts in a docker container

- (1) docker run –name load_phg_container \
- -v localMachine:/pathToOutputDir:/tmpDir/outputDir \-v localMachine:/pathToReference:/tmpDir/refDir \
- -t phgdocker:latest \
- /LoadGenomeIntervals:sh config.txt ref.fa anchors.bed data.txt
- (2) docker run -name haplotypes_phg_container \
 -v localMachine/InputFiles/:/tmpDir/data/ \
- -v localMachine/InputFiles/Reference/:/tmpDir/data/reference/\
- -v localMachine/InputFiles/WGSBams/:/tmpDir/data/bam/DedupBAMS/\-v localMachine/DockerOutput/phgMaize.db:/tmpDir/output/phgMaizeDB.db\
- -t phgdocker:latest \
 /CreateHaplotypes.sh /tmpDir/data/config.txt taxon single anchors.bed
- (3) docker run –name consensus_phg_container \
- -v localMachine/InputFiles/Reference/ref.fa:/tmpDir/data/reference/ref.fa \-v localMachine/InputFiles/config.txt:/tmpDr/data/config.txt \
- -v localMachine/DockerOutput/phgMaize.db:/tmpDir/outputDir/phgMaize.db \
- -v localMachine/DockerOutput/gvcfsToLoad/:/tmpDir/data/outputs/gvcfs/
- -v localMachine/DockerOutput/fastasToLoad/:/tmpDir/data/fastas/\
- -t phgdocker:latest \
 /CreateConsensi.sh /tmpDir/data/config.txt ref.fa ref_version
- (4) docker run –name findPath_phg_container \
- -v localMachine/InputFiles/Reference/:/tmpDir/data/reference/\
- -v localMachine/InputFiles/GBSFastq/:/tmpDir/data/fastq/\
- -v localMachine/inputFiles/config.txt:/tmpDir/data/config.txt \-v localMachine/DockerOutput/FindPathDir/:/tmpFileDir/outputdir/ \
- -t phgdocker:latest \
- For more details: https://bitbucket.org/bucklerlab/practicalhaplotypegraph/wiki/Home

/FindPath.sh myTaxa config.txt CONSENSUS ref.fa HAP_METHOD ref_version PATH_METHOD

Acknowledgements

This work was generously supported by the USDA-ARS, the Bill & Melinda Gates Foundation (OPP1159867), and the NSF Plant Genome Research Project (IOS#1238014).