Uváznutí při přidělování prostředků

Z FITwiki

Obsah

- 1 Základní pojmy
- 2 Stav systému
- 3 SR prostředky
 - 3.1 Detekce uváznutí
 - 3.1.1 Speciální typy systémů
 - 3.1.1.1 Systém s okamžitým přidělením
 - 3.1.1.2 Systém s prostředky kapacity 1
 - 3.1.1.3 Systém s jednotkovými požadavky
 - 3.2 Zotavení z uváznutí
 - 3.3 Prevence proti uváznutí
 - 3.3.1 Bankéřův algoritmus
- 4 CR prostředky
 - 4.1 Neomezený systém
 - 4.2 Systém se známými producenty
 - 4.3 Systém se známými producenty a konzumenty

Základní pojmy

Graf alokace prostředků

prostředky, procesy, přidělení a čekání

Uváznutí

každý proces má přiděleny nějaké prostředky (s omezenou kapacitou) a žádný nemůže pokračovat protože čeká na některý z blokovaných prostředků

Kdy nastává uváznutí?

- 1. Pouze jeden proces může používat přidělený prostředek
- 2. Proces, který má přidělené prostředky, se při alokaci dalších nevzdá přidělených prostředků, uvolní je až po ukončení
- 3. Proces získává prostředky sekvenčně, oddělenými alokacemi
- 4. Prostředek nemůže být preemptivně odebrán, proces sám uvolňuje prostředky

Problémy uváznutí

- Detekce Jak zjistit které procesy uvázly?
- **Zotavení** Jak se z uváznutí dostat?
- Prevence Jak se uváznutí vyhnout?

Typy prostředků

- Serially Reusable (SR) opakované použitelné
- Consumable Resources (CR) jednorázové použitelné

Stav systému

Stav systému

- reprezentuje stav alokace prostředků
- stav je měněn procesy při požadavky, získání a uvolnění prostředku

Pokud není proces v daném stavu systému blokovaný může změnit jeho stav

Přechody stavů systému

- požadavek (request)
- přidělení (allocation)
- uvolnění (release)

Blokovaný proces

nemůže změnit stav systému

Uváznutý proces

je blokován a není odblokován ani při následných změnách stavu

Stav uváznutí

stav systému ve kterém je alespoň jeden uváznutý proces

Prevence uváznutí

omezení přechodů mezi stavy tak aby stavy uváznutí byly nedostupné

Bezpečný stav

nelze se z něj dostat do stavu uváznutí

SR prostředky

SR prostředky - opakovaně použitelné - serially reusable

- Prostředek se skládá z konstantního počtu stejných jednotek
- Jednotka je buďto volná nebo přidělená.
- Proces může uvolnit jednotku, pokud ji má přidělenu.

Graf alokace SR prostředků

- ukazuje stav systému pro SR prostředky
- Prostředek může být přidělen do maximální kapacity
- lze žádat maximálně o jeho celou kapacitu.

Detekce uváznutí

hledá procesy, které nejsou zablokovány a mohou přivést systém do jiného stavu (požadavkem, přidělením, uvolněním)

Procesy jsou zablokovány, pokud jejich požadavek nemůže být uspokojen ani nemohou uvolnit prostředky.

Redukce grafu alokace prostředků

nezablokovaným procesem p - odstraňuje hrany z/do p přidělením požadovaných prostředků, dokončením procesu a jejich následným uvolněním.

Neredukovatelný graf

nelze žádným procesem redukovat -> stav uváznutí.

Úplně redukovatelný graf

je možné odstranit všechny hrany nějakou sekvencí redukcí. Všechny sekvence vedoucí k úplně redukovanému grafu jsou ekvivalentní.

Algoritmus detekce

- Postupně prochází graf a redukuje jej
- Při každé úspěšné redukci je potřeba průchod opakovat.
- Složitost *O*(*mn*²)

Nutnou podmínkou uváznutí je cyklus v grafu alokace SR. Pokud graf neobsahuje cyklus nemůže nastat uváznutí - opačně to neplatí.

Speciální typy systémů

Systém s okamžitým přidělením

přiděluje prostředky ihned. V grafu alokace SR prostředků pak zůstavají pouze neuspojitelné požadavky.

Nutnou a postačující podmínkou uváznutí v systému s okamžitým přidělováním je knot v grafu alokace

Knot

- silná komponenta, ze které nevede žádná hrana ven, ale pouze dovnitř. Silná komponenta grafu je maximálně silně souvislý graf.

Systém s prostředky kapacity 1

všechny prostředky mají kapacitu pouze 1

Nutnou a postačující podmínkou uváznutí v systému s prostředky kapacity 1 je cyklus v grafu alokace

Systém s jednotkovými požadavky

procesy žádají o maximálně jednu jednotku prostředku

Nutnou a postačující podmínkou uváznutí v systému s jednotkovými požadavky je knot v grafu alokace

Zotavení z uváznutí

- a) násilným ukončením procesu
- b) odebráním prostředků
 - Přímé blokující požadavek na prostředky je ukončen chybou "prostředky odebrány"
 - Nepříme návrat k předchozímu stavu (rollback na checkpoint)

Výběr procesu pro odebrání SR prostředků podle:

- priorita procesu
- cena znovuprovedení
- typ procesu (systémový, uživatelský, ...)

Po odebrání se změní stav (graf) a přepočítá se.

Prevence proti uváznutí

omezuje přechody tak, aby se uváznutí vyhnula:

Metody:

- Sdílení prostředků (ale to porušuje podmínku výlučnosti).
- Přidělovat vždy všechny prostředky najednou jednomu procesu jedním požadavkem (neefektivní).
- Každému procesu umožnit držet vždy jen jeden prostředek (ne vždy možné některé procesy mohou potřebovat držet více prostředků v jeden okamžik).
- Používat neblokující požadavky (tryLock): Blokujícím způsobem proces žádá jen pokud ještě žádné prostředky nevlastní, o další žádá neblokujícím způsobem. Pokud se nepodaří získat všechny, musí se všech vzdát a žádat znovu.
- Prostředky žádat v pevném pořadí, pak nemůže vzniknout uváznutí (nejpoužívanější).

Bankéřův algoritmus

- Každý proces v systému deklaruje svoje maximální požadavky na prostředky
- Je kontrolováno zda: <počet přidělených prostředků> + <počet požadovaných prostředků> <= <deklarované maximum>
- Princip algoritmu:
 - Povolit pouze takové přidělení, po kterém existuje alespoň jedna posloupnost uspokojení maximálních požadavků všech procesů.

CR prostředky

- CR jednorázově použitelné consumable resources
- počet dostupných prostředků se mění konzumováním a produkcí
- počet jednotek není omezen

Neomezený systém

- Stav uváznutí všechny procesy zablokované
- Zotavení Pokud není některý proces zablokovaný může vyprodukovat libovolný počet prostředků a tím ostatní uvolnit
- Prevence Žádný stav systému není bezpečný (prevence není možná)

Systém se známými producenty

- Stav uváznutí uváznutí pro všechny zúčastněné procesy (neexistuje žádný postup redukcí vedoucí na stav,kde proces není zablokován)
- Zotavení zrušení zablokovaného procesu, pokud možno ne producenta
- Prevence Žádný stav systému není bezpečný (prevence není možná)
- Zablokování může nastat při požadavku i přidělení
- Nutnou podmínkou uváznutí je cyklus v grafu alokace
- Pořadí redukcí v grafu alokací je důležité (mění se počet jednotek)

Systém se známými producenty a konzumenty

pro každý prostředek je definována množina producentů a konzumentů tohoto prostředku

- Všechny stavy jsou bezpečné pokud je graf blokovaných požadavků redukovatelný
- Na pořadí redukcí nezáleží
- Systém není bezpečný pokud neexistuje alespoň jeden proces, který nic nekonzumuje

Citováno z "http://wiki.fituska.eu/index.php?

title=Uv%C3%A1znut%C3%AD_p%C5%99i_p%C5%99id%C4%9Blov%C3%A1n%C3%AD_prost%C5%99edk%C5%AF&oldid=13403"
Kategorie: Státnice 2011 | Pokročilé operační systémy

Stránka byla naposledy editována 16. 6. 2016 v 08:40.