Méthode de Galerkine discontinue (GD) espace - temps appliquée à l'équation d'advection 1D

Sana AMRI et Krystal LEGER* Sous la direction de Juliette RYAN[†]

May 28, 2017

^{*}Elèves de MACS 2, SupGalilée - Université Paris 13

[†]ONERA Calcul Haute Performance - LAGA Université Paris 13

Contents

I	RESOLUTION NUMERIQUE DE L'EQUATION D'ADVECTION 1D	4
1	Méthode de Galerkine discontinue appliquée uniquement en espace 1.1 Méthode de Galerkine discontinue 1.1.1 Discrétisation spatiale du domaine 1.1.2 Espace fonctionnel discret	 5
	1.1.3 Formulation variationnelle 1.1.4 Conditions aux interfaces 1.2 Discrétisation temporelle 1.2.1 Méthode Euler explicite 1.2.2 Méthode Runge Kutta d'ordre 2 1.2.3 Méthode RK3b	 11 12 14
2	Méthode de Galerkine discontinue espace-temps 2.1 Discrétisation du domaine 2.2 Espace fonctionnel discret 2.3 Formulation variationnelle 2.4 Conditions aux interfaces 2.5 Vers la résolution d'un système matricielle 2.6 Parallélisme	 19 20 22 23

INTRODUCTION

A l'origine utilisée pour la résolution stationnaire de transport de neutrons, la méthode de Galerkine Discontinues (GD) permet aujourd'hui de résoudre de nombreux problèmes tels que les équations d'Euler, de Navier-Stockes, ou même de Maxwell. Cette méthode fait le lien entre la méthode des volumes finis et des éléments finis.

On discrétise le domaine en cellules formant un maillage. Puis, comme la méthode des éléments finis, on se place dans une base de fonctions définies sur tout l'ensemble de discrétisation. Le problème est ainsi mis sous formulation variationnelle en le multipliant par des fonctions tests appartenant au même ensemble que la base de fonction. On cherche ainsi à approcher chaque maille par une fonction qui est polynomiale sur la cellule concernée et valant zéro ailleurs. Ainsi, bien que les fonctions de formes soient définies sur tout l'espace de discrétisation, on ne leurs imposent pas de continuité aux interfaces, ce qui fait le lien avec les volumes finis. Les hypothèses de régularité sur la solution ne concernent que l'intérieur de chaque cellule. Le principe de conservation des flux permet, de la même manière que pour la méthode des volumes finis, de régulariser les valeurs aux interfaces.

Au cours de ce projet nous avons découvert la méthode GD en résolvant numériquement l'équation d'advection en 1D. Nous avons utilisé la méthode GD uniquement en espace et approximé le temps par diverses méthodes de différences finies. Cette méthode de résolution est aujourd'hui la plus répandue.

Puis, nous avons appliqué la méthode GD en espace et en temps. Autrement dit, nous avons considéré le temps comme une variable d'espace. Cette méthode, assez original, permet d'aboutir à un système de résolution matriciel du type $AU_h=B$ où A est une matrice tridiagonale par bloc. Cette méthode à l'avantage d'être parallélisable. En effet, à l'aide d'un développement de Taylor, il est possible de rendre cette matrice diagonale par bloc et donc permettre la résolution du système sur plusieurs machines.

Part 1

RESOLUTION NUMERIQUE DE L'EQUATION D'ADVECTION 1D

1 Méthode de Galerkine discontinue appliquée uniquement en espace

1.1 Méthode de Galerkine discontinue

Dans cette section, nous étudierons la méthode de Galerkine appliquées uniquement en espace dans le cas de l'équation de transport en 1D.

• La forme générale d'une équation de transport s'écrit sous la forme :

$$\frac{\partial u}{\partial t} + div \ F(u) = 0 \tag{1}$$

lci on suppose que l'équation est linéaire F(u) = vu, avec v une constante.

• Dans cette partie, on cherche une fonction $u:[0,T]\times[a,b]\to\mathbb{R}$ différentiable, solution de :

$$\begin{cases} \frac{\partial u}{\partial t} + v \partial_x u = 0 & [0, T] \times [a, b] \\ u(t = 0, x) = u_0(x) & en \ t = 0 \\ u(t, x = a) \coloneqq u_a(t) = u_0(a - vt) & en \ x = a \ (si \ v > 0) \\ u(t, x = b) \coloneqq u_b(t) = u_0(b - vt) & en \ x = b \ (si \ v < 0) \end{cases}$$
(2)

On impose:

- 1. une condition initiale en temps u_0 afin d'avoir unicité de la solution
- 2. des conditions aux limites à l'implémentation du schéma car le problème est hyperbolique.

1.1.1 Discrétisation spatiale du domaine

On définit un maillage régulier du segment [ab] par :

- N+1 points x_i
- N cellules $K_i =]x_i, x_{i+1}[$ de longueurs constantes $h = x_{i+1} x_i$
- \bullet Sur chaque cellule, on considère le point milieu $\mathbf{x}_{i+\frac{1}{2}} = \frac{x_i + x_{i+1}}{2}$
- x_1 et x_{N+1} sont les points où les conditions limites sont atteintes.

On considère l'ensemble de discrétisation $\Omega_h = \bigcup_{i=1}^N K_i$ en N cellules disjointes qui fait apparaître les arêtes du maillage (qui sont les points x_i dans le cas d'un segment).

Voici ci-dessous un schéma du maillage adopté :

Figure 1: Maillage équation de transport 1D

1.1.2 Espace fonctionnel discret

La méthode de Galerkin consiste à approcher la solution u sur chaque cellule K_i par un polynôme $v_{|K_i}$ de degré q. C'est pourquoi, on introduit l'espace :

$$V_h^i := \{ v \in L^2(\Omega_h) \mid v_{|K_i} \in P^q(K_i) \}$$

avec $P^q(K_i)$ est l'ensemble des fonctions polynomiales de degré au plus égal à q de $\mathsf{K}_i o \mathbb{R}$.

Dans la suite, on impose q = 1.

L'espace V_h^i est un espace de Hilbert (comme sous espace fermé de $\mathsf{L}^2(\Omega_h)$) de dimension fini $\mathsf{q}{+}1$.

Ainsi, on peut donc définir $\{ arphi_0^i, \ arphi_1^i \}$ une base de V_h^i où :

$$\varphi_0^i(x) = \begin{cases} 1 & dans \ K_i \\ 0 & sinon \end{cases}$$

$$\varphi_1^i(x) = \begin{cases} x - x_{i + \frac{1}{2}} & dans \ K_i \\ 0 & sinon \end{cases}$$

Ainsi, la solution numérique restreinte à la cellule K_i est notée :

$$u_{|K_i}(t,x) = \sum_{i=0}^{q} a_j^i(t)\varphi_j^i(x) = a_0^i(t)\varphi_0^i(x) + a_1^i(t)\varphi_1^i(x)$$
(3)

Sur chaque cellule K_i , l'équation (2) devient

$$\frac{\partial u_{|K_i}(t,x)}{\partial t} + v\partial_x u_{|K_i}(t,x) = 0 \tag{4}$$

Remarques:

1. La solution numérique sur Ω_h s'écrit :

$$u_h(t, x) = \sum_{i=1}^{N} u_{|K_i}(t, x) = \sum_{i=1}^{N} (\sum_{j=0}^{q} a_j^i(t) \varphi_j^i(x)) = \sum_{i=1}^{N} a_0^i(t) \varphi_0^i(x) + a_1^i(t) \varphi_1^i(x)$$

- 2. On a 2N inconnues $a_i^i(t)$ qui dépendent du temps.
- 3. Par soucis de clarté, on notera : $\mathbf{a}^i_j(\mathbf{t})\coloneqq\mathbf{a}^i_j,\quad u_{|K_i}(t,x)\coloneqq u_{|K_i} \text{ et } \varphi^i_j(x)\coloneqq\varphi^i_j$

L'espace de discrétisation sur Ω_h est ainsi défini par $V_h \coloneqq \overset{N}{\underset{i=1}{\cup}} V_h^i$ dont chaque élément peut s'écrire comme combinaison linéaire de la base orthogonale $\mathsf{F} = \{\varphi_0^i, \ \varphi_1^i, \ \mathsf{i} \in \llbracket 1, \ N \rrbracket \}.$

1.1.3 Formulation variationnelle

Sachant que $\mathsf{u}_h \in \mathsf{V}_h$ s'écrit

$$\begin{array}{rcl} u_h(t,\,x) & = & \displaystyle \sum_{i=1}^N u_{|K_i}(t,\,x) \ avec, \\ \\ u_{|K_i}(t,x) & = & a_0^i(t)\varphi_0^i(x) + a_1^i(t)\varphi_1^i(x) \end{array}$$

Trouver $u_h \in V_h$ vérifiant (2) pour un instant t fixé, revient donc à determiner les coefficients $\{a_0^i(t), a_1^i(t)\}_{i \in [\![1,N]\!]}$

Formulation variationnelle:

1. On multiplie l'équation (4) par chaque éléments de la base F de V_h . ce qui nous amène au système suivant de $2N^2$ équations :

$$\begin{cases} \frac{\partial u_{|K_i}}{\partial t} \varphi_0^\alpha + v \partial_x u_{|K_i} \varphi_0^\alpha = 0 &, \ pour \, i, \ \alpha \in [\![1, \ N]\!] \\ \\ \frac{\partial u_{|K_i}}{\partial t} \varphi_1^\alpha + v \partial_x u_{|K_i} \varphi_1^\alpha = 0 &, \ pour \, i, \ \alpha \in [\![1, \ N]\!] \end{cases}$$

On intègre chaque équation sur les cellules K, et on applique la formule de Green sur les termes de dérivées et

2. On intègre chaque équation sur les cellules K_i et on applique la formule de Green sur les termes de dérivées en espace :

$$\begin{cases} \frac{\partial}{\partial t} \int_{K_{i}} u_{|K_{i}} \varphi_{0}^{\alpha} dx + v \int_{\partial K_{i}} (u_{|K_{i}} \cdot \overrightarrow{n}) \varphi_{0}^{\alpha} d\sigma(x) - v \int_{K_{i}} \frac{\partial \varphi_{0}^{\alpha}}{\partial x} u_{|K_{i}} dx = 0, \ pour \, i, \ \alpha \in \llbracket 1, \ N \rrbracket \\ \frac{\partial}{\partial t} \int_{K_{i}} u_{|K_{i}} \varphi_{1}^{\alpha} dx + v \int_{\partial K_{i}} (u_{|K_{i}} \cdot \overrightarrow{n}) \varphi_{1}^{\alpha} d\sigma(x) - v \int_{K_{i}} \frac{\partial \varphi_{0}^{\alpha}}{\partial x} u_{|K_{i}} dx = 0, \ pour \, i, \ \alpha \in \llbracket 1, \ N \rrbracket \end{cases}$$

$$(5)$$

Remarques:

- (a) $\int_{K_i} \, \varphi_j^\alpha \, dx$, $j \in \{0,1\}$ est non nul uniquement lorsque $\alpha = i.$
- (b) $\frac{\partial \varphi_0^i(x)}{\partial x}=0$ et $\frac{\partial \varphi_1^i(x)}{\partial x}=\varphi_0^i(x)$
- (c) Ce système d'équations est la projection de la solution de l'équation de transport (1) sur l'espace V_h .

3. Après simplification, on obtient les 2N équations suivantes :

$$\begin{cases} \frac{\partial}{\partial t} \int_{K_i} u_{|K_i} \, \varphi_0^i \, dx + v \int_{\partial K_i} (u_{|K_i} \cdot \overrightarrow{n}) \, \varphi_0^i \, d\sigma(x) = 0 &, \ pour \, i \in \llbracket 1, \ N \rrbracket \\ \\ \frac{\partial}{\partial t} \int_{K_i} u_{|K_i} \, \varphi_1^i \, dx + v \int_{\partial K_i} (u_{|K_i} \cdot \overrightarrow{n}) \, \varphi_1^i \, d\sigma(x) - v \int_{K_i} \varphi_0^i u_{|K_i} \, dx = 0 &, \ pour \, i \in \llbracket 1, \ N \rrbracket \end{cases}$$

4. En substituant $u_{|K_i}$ par sa projection sur K_i , on obtient :

$$\begin{cases} \frac{\partial}{\partial t} \int_{K_i} [a_0^i \varphi_0^i + a_1^i \varphi_1^i] \varphi_0^i \, dx \, + v \int_{\partial K_i} (u_{|K_i} \cdot \overrightarrow{n}) \, \varphi_0^i d\sigma(x) \, = 0 &, \; pour \, i \in \llbracket 1, \; N \rrbracket \\ \\ \frac{\partial}{\partial t} \int_{K_i} [a_0^i \varphi_0^i + a_1^i \varphi_1^i] \varphi_1^i \, dx \, + v \int_{\partial K_i} (u_{|K_i} \cdot \overrightarrow{n}) \, \varphi_1^i \, d\sigma(x) \, - v \int_{K_i} \varphi_0^i [a_0^i \varphi_0^i + a_1^i \varphi_1^i] \, dx \, = 0 &, \; pour \, i \in \llbracket 1, \; N \rrbracket \end{cases}$$

7

Remarques:

(a) On ne substitue pas les $u_{|K_i}$ qui sont sur le bord des cellules, car les intégrales de bord doivent être **conservatives**. Autrement dit, on doit avoir :

$$\lim_{\substack{x \to x_i \\ x \in K_{i-1}}} u(t,x) = \lim_{\substack{x \to x_i \\ x \in K_i}} u(t,x)$$

L' intégrale de bord sur ∂K_i représente la somme des flux entrants ou sortants de K_i . Ce qui sort de K_{i-1} vers K_i doit être identique à ce qui entre dans K_i depuis K_{i-1} . On s'interessera aux valeurs prises aux interfaces un peu plus bas.

(b) On note:

- $C_{0,0} = \int_{K_i} \varphi_0^i \varphi_0^i dx = x_{i+\frac{1}{2}} x_{i-\frac{1}{2}} = h$
- \bullet ${\rm C}_{1,0}={\rm C}_{0,1}{=}{\int_{K_i}\varphi^i_0\varphi^i_0\,dx}=0$ (caractère orthogonal de la base)
- $C_{1,1} = \int_{K_i} \varphi_1^i \varphi_1^i dx = \frac{h^3}{12}$

On obtient ainsi l'EDO en temps suivante :

$$\begin{cases}
\frac{\partial}{\partial t}a_0^i = \frac{-v}{C_{0,0}} \int_{\partial K_i} (u_{|k_i} \cdot \overrightarrow{n}) \varphi_0^i d\sigma(x) &, pour i \in [1, N] \\
\frac{\partial}{\partial t}a_1^i = \frac{-v}{C_{1,1}} \int_{\partial K_i} (u_{|k_i} \cdot \overrightarrow{n}) \varphi_1^i d\sigma(x) + \frac{vC_{0,0}}{C_{1,1}} a_0^i &, pour i \in [1, N]
\end{cases}$$
(6)

1.1.4 Conditions aux interfaces

La solution numérique étant discontinue entre les arêtes¹, il existe donc deux valeurs des variables de chaque coté d'une interface x_i . On doit avoir conservativité des intégrales de bords, c'est pourquoi on determine les flux sur chaque interface.

• Points intérieurs :

On s'interésse ici, aux points intérieurs x_i , $i \in [\![2,\ N]\!]$

On rappel que l'on doit avoir le principe de conservativité :

$$\lim_{\substack{x \to x_i \\ x < x_i}} u_{|K_{i-1}}(t,x) = \lim_{\substack{x \to x_i \\ x > x_i}} u_{|K_i}(t,x) \overset{notation}{\Longleftrightarrow} u_{|K_{i-1}}(t,x_i^-) = u_{|K_i}(t,x_i^+)$$

- Si le flux est entrant v > 0:

$$\begin{split} \int_{\partial K_{i}} (u_{|k_{i}}.\overrightarrow{n}) \, \varphi_{0}^{i} d\sigma(x) &= \int_{K_{i}} \partial_{x} (u_{|k_{i}} \varphi_{0}^{i}) dx, \; (Formule \; de \; Stokes) \\ &= \int_{K_{i}} \frac{d}{dx} (u_{|k_{i}} \varphi_{0}^{i}) dx \\ &= u_{|K_{i}}(t, \, x_{i+1}^{-}) \times \varphi_{0}^{i}(x_{i+1}^{-}) - u_{|K_{i-1}}(t, \, x_{i}^{-}) \times \varphi_{0}^{i}(x_{i}^{+}) \; (car \; v > 0) \\ &= u_{|K_{i}}(t, \, x_{i+1}^{-}) - u_{|K_{i-1}}(t, \, x_{i}^{-}) \end{split}$$

$$\int_{\partial K_{i}} (u_{|k_{i}}.\overrightarrow{n}) \varphi_{1}^{i} d\sigma(x) = u_{|K_{i}}(t, x_{i+1}^{-}) \times \varphi_{1}^{i}(x_{i+1}^{-}) - u_{|K_{i-1}}(t, x_{i}^{-}) \times \varphi_{1}^{i}(x_{i}^{+})$$

$$= \frac{h}{2} [u_{|K_{i}}(t, x_{i+1}^{-}) + u_{|K_{i-1}}(t, x_{i}^{-})]$$

– Si le flux est sortant v<0 :

$$\int_{\partial K_{i}} (u_{|k_{i}}.\overrightarrow{n}) \varphi_{0}^{i} d\sigma(x) = \int_{K_{i}} \partial_{x} (u_{|k_{i}}\varphi_{0}^{i}) dx, (Formule \ de \ Stokes)$$

$$= \int_{K_{i}} \frac{d}{dx} (u_{|k_{i}}\varphi_{0}^{i}) dx$$

$$= u_{|K_{i+1}}(t, x_{i+1}^{+}) \times \varphi_{0}^{i}(x_{i+1}^{-}) - u_{|K_{i}}(t, x_{i}^{+}) \times \varphi_{0}^{i}(x_{i}^{+}) (car \ v < 0)$$

$$= u_{|K_{i+1}}(t, x_{i+1}^{+}) - u_{|K_{i}}(t, x_{i}^{+})$$

$$\begin{split} \int_{\partial K_i} (u_{|k_i}.\overrightarrow{n}) \, \varphi_1^i \, d\sigma(x) &= u_{|K_{i+1}}(t, \, x_{i+1}^+) \times \varphi_1^i(x_{i+1}^-) - u_{|K_i}(t, \, x_i^+) \times \varphi_1^i(x_i^+) \\ &= \frac{h}{2} [u_{|K_{i+1}}(t, \, x_{i+1}^+) + u_{|K_i}(t, \, x_i^+)] \end{split}$$

Remarque : Afin de facilité la lecture, on se permettra par la suite l'abus d'écriture suivant :

$$\lim_{x \to x_i} u_{|K_i}(t, x) \coloneqq u_{|K_i}(t, x_i)$$

¹Dans notre cas le maillage est un segment, donc les arêtes ne sont rien d'autres que les points de discrétisations en espaces $\{x_i\}_{i\in [\![1,N]\!]}$ On essaye de garder une écriture qui permettra de généraliser aisément dans le cas de l'application de la méthode GD en espace et en temps.

• Conditions aux bords :

Il s'agit des cas non traité dans les conditions aux interfaces.

– Cas i = 1 et
$$v > 0$$
 :

$$u(t, x_1) = u_a(t) = u_0(x_1 - vt)$$

- Cas i = N+1 et
$$v < 0$$
 :

$$u(t, x_{N+1}) = u_b(t) = u_0(x_{N+1} - vt)$$

1.2 Discrétisation temporelle

Pour toutes les discrétisations temporelles, on supposera v > 0

On rappelle le système (6) :

$$\begin{cases} \frac{\partial}{\partial t}a_0^i = \frac{-v}{C_{0,0}} \int_{\partial K_i} (u_{|k_i}.\overrightarrow{n})\,\varphi_0^i d\sigma(x) &, \ pour \ i \in \llbracket 1, \ N \rrbracket \\ \frac{\partial}{\partial t}a_1^i = \frac{-v}{C_{1,1}} \int_{\partial K_i} (u_{|k_i}.\overrightarrow{n})\,\varphi_1^i \,d\sigma(x) + \frac{vC_{0,0}}{C_{1,1}}a_0^i &, \ pour \ i \in \llbracket 1, \ N \rrbracket \end{cases}$$

v étant strictement positif, on a donc :

$$\begin{cases} \frac{\partial}{\partial t} a_0^i = \frac{-v}{C_{0,0}} [u_{|K_i}(t, x_{i+1}) - u_{|K_{i-1}}(t, x_i)] &, pour i \in [1, N] \\ \frac{\partial}{\partial t} a_1^i = \frac{-vh}{2C_{1,1}} [u_{|K_i}(t, x_{i+1}) + u_{|K_{i-1}}(t, x_i)] + \frac{vC_{0,0}}{C_{1,1}} a_0^i &, pour i \in [1, N] \end{cases}$$

$$(7)$$

Dans le système (7), on va approximer les termes contenant une dérivée en temps par différentes méthodes de différences finies.

- Instant initial t = 0 :
 - On cherche les coefficients $\{a_j^i(0)\}$.

$$\begin{cases} \int_{K_i} \, u_{|K_i}(0,x) \varphi_0^i(x) \, \, dx &= \int_{K_i} [a_0^i(0) \varphi_0^i(x) + a_1^i(0) \varphi_1^i(x)] \varphi_0^i(x) \\ \\ \int_{K_i} \, u_{|K_i}(0,x) \varphi_1^i(x) \, \, dx &= \int_{K_i} [a_0^i(0) \varphi_0^i(x) + a_1^i(0) \varphi_1^i(x)] \varphi_1^i(x) \end{cases}$$

$$\begin{cases} \int_{K_i} u_{|K_i}(0,x) \varphi_0^i(x) \ dx &= a_0^i(0) C_{0,0} \\ \\ \int_{K_i} u_{|K_i}(0,x) \varphi_1^i(x) \ dx &= a_1^i(0) C_{1,1} \end{cases}$$

– En utilisant la donnée $u(t=0\,,\,x)=u_0(x)$, on en déduit les coefficients $\{a^i_j(0)\}$:

$$\begin{cases} \int_{K_i} \, u_0(x) \varphi_0^i(x) \, \, dx &= a_0^i(0) C_{0,0} \\ \\ \int_{K_i} \, u_0(x) \varphi_1^i(x) \, \, dx &= a_1^i(0) C_{1,1} \end{cases}$$

$$\begin{cases}
a_0^i(0) &= \frac{1}{C_{0,0}} \int_{K_i} u_0(x) \varphi_0^i(x) dx \\
a_1^i(0) &= \frac{1}{C_{1,1}} \int_{K_i} u_0(x) \varphi_1^i(x) dx
\end{cases}$$
(8)

1.2.1 Méthode Euler explicite

Schéma du modèle

• On discrétise l'espace temps [0,T] en M+1 points t_n tels que $\triangle t = t_{n+1}$ - t_n soit constant, t_0 =0 et t_M = T . On a :

$$\begin{cases} \frac{\partial}{\partial t}a_0^i(t_n) = \frac{a_0^i(t_{n+1}) - a_0^i(t_n)}{\triangle t} + O(\triangle t) &, pour \ n \in \llbracket 0, \ M \rrbracket \\ \frac{\partial}{\partial t}a_1^i(t_n) = \frac{a_1^i(t_{n+1}) - a_1^i(t_n)}{\triangle t} + O(\triangle t) &, pour \ n \in \llbracket 0, \ M \rrbracket \end{cases}$$

ullet La solution de l'équation de transport est donc approchée par le schéma suivant pour n $\in \llbracket 0,M
rbracket$:

$$\begin{cases} \frac{[a_0^i]^{n+1}-[a_0^i]^n}{\triangle t} = \frac{-v}{C_{0,0}}[u_{|K_i}(t,\,x_{i+1})-u_{|K_{i-1}}(t,\,x_i)] &, \ pour \ i \in \llbracket 1, \ N \rrbracket \\ \frac{[a_1^i]^{n+1}-[a_1^i]^n}{\triangle t} = \frac{-vh}{2C_{1,1}}[u_{|K_i}(t,\,x_{i+1})+u_{|K_{i-1}}(t,\,x_i)] + \frac{vC_{0,0}}{C_{1,1}}[a_0^i]^n &, \ pour \ i \in \llbracket 1, \ N \rrbracket \end{cases}$$

avec la notation $[X]_{pas\ en\ espace}^{pas\ en\ temps}$.

Le schéma GD-EE est défini par :

$$\begin{cases} [a_0^i]^{n+1} = [a_0^i]^n - \frac{(\triangle t)v}{C_{0,0}} \times ([u_{|k_i}]_{i+1}^n - [u_{|k_{i-1}}]_i^n) &, pour \ i \in \llbracket 1, \ N \rrbracket \\ [a_1^i]^{n+1} = [a_1^i]^n - \frac{vh(\triangle t)}{2C_{1,1}} ([u_{|k_i}]_{i+1}^n + [u_{|k_{i-1}}]_i^n] + \frac{v(\triangle t)C_{0,0}}{C_{1,1}} [a_0^i]^n &, pour \ i \in \llbracket 1, \ N \rrbracket \end{cases}$$

RESULTATS D'ANALYSE^a:

- 1. Condition de stabilité (CFL) : $v^*dt < h^{\frac{3}{2}}$
- 2. Ordre du schéma : Le schéma est d'ordre 1 en temps et d'ordre 2 en espace.

aGuy Chavent, B.Cockburn. Consistance et stabilité des schemas LRG pour les lois de conservations scalaires. [Rapport de recherche] RR-0710, INRIA. 1987. <inria-00075842>

Test du schéma implémenté sur Matlab : On cherche à résoudre le système suivant :

$$\begin{cases} \frac{\partial u}{\partial t} + v \partial_x u = 0 & [0, 2] \times [-1, 1] \\ u(t = 0, x) = \sin(pi \times x) & en \ t = 0 \\ u(t, x = a) = \sin(pi(a - vt)) & en \ x = a \\ u(t, x = b) = \sin(pi(b - vt)) & en \ x = b \end{cases} \tag{9}$$

La solution exacte s'écrit :

$$u(x) = sin(pi(x - vt))$$

Voici ci-dessous un affichage de la solution obtenue² à l'instant T=2.

Figure 2: Methode GD & Euler explicite - équation de transport 1D

• Vérification de l'ordre du schéma :

On choisit un pas de discrétisation en temps et en espace qui vérifient la condition (CFL).

L'erreur de troncature Err doit satisfaire : $Err=O(dt)+O(h^2)$. Autrement dit, si on pose $dt_1 = \frac{dt}{4}$ et $h_1 = \frac{h}{2}$ alors la nouvelle erreur doit être de l'ordre :

$$Err1 = O(dt_1) + O(h_1^2) = \frac{1}{4} \times [O(dt) + O(h^2)] = \frac{1}{4} \times Err$$

Dans le test ci-dessus, on a consideré :

- N=100 cellules en espace et M=1000 cellules en temps pour calculer Err1
- N=200 cellules en espace et M=4000 cellules en temps pour calculer Err2

L'erreur a été calculé en norme L² discrète définie par :

$$Err = \sqrt{\sum_{i=1}^{N+1} h * (Uh(T, x_i) - Uexact(T, x_i))^2}$$

²Méthode d'implémentation - cf **ANNEXE 1**

1.2.2 Méthode Runge Kutta d'ordre 2

On discrétise l'espace temps [0,T] en M+1 points t_n tels que $\triangle t = t_{n+1}$ - t_n soit constant, t_0 =0 et t_M = T .

Par le système (6), on a :

$$\begin{cases} \frac{\partial}{\partial t} a_0^i = -\frac{v}{C_{0,0}} [u_{|K_i}(t, x_{i+1}) - u_{|K_{i-1}}(t, x_i)] &, pour i \in [1, N] \\ \frac{\partial}{\partial t} a_1^i = -\frac{vh}{2C_{1,1}} \times [u_{|K_i}(t, x_{i+1}) + u_{|K_{i-1}}(t, x_i)] + \frac{vC_{0,0}}{C_{1,1}} a_0^i &, pour i \in [1, N] \end{cases}$$

$$(10)$$

On cherche à se ramener sous la forme : Y'(t) = F(t, Y(t)) afin de pouvoir appliquer une méthode de Runge-Kutta.

• On pose pour $i \in [1, N]$:

$$Y_i(t) = \begin{pmatrix} y_1^i(t) \\ y_2^i(t) \end{pmatrix} = \begin{pmatrix} a_0^i(t) \\ a_1^i(t) \end{pmatrix} \tag{11}$$

et

$$F_{i}(t, Y(t)) = \begin{pmatrix} -\frac{v}{C_{0,0}} [u_{|K_{i}}(t, x_{i+1}) - u_{|K_{i-1}}(t, x_{i})] \\ -\frac{vh}{2C_{1,1}} \times [u_{|K_{i}}(t, x_{i+1}) + u_{|K_{i-1}}(t, x_{i})] + \frac{vC_{0,0}}{C_{1,1}} y_{1}^{i}(t) \end{pmatrix}$$
(12)

$$\text{avec } u_{|K_i}(t,\,x_{i+1}) = y_1^i(t) + \ y_2^i(t) \times \tfrac{h}{2} \ \text{pour } i \in \llbracket 1, \ N \rrbracket \ \text{et } u_{|K_{i-1}}(t,\,x_i) = \begin{cases} y_1^{i-1}(t) + y_2^{i-1}(t) \times \tfrac{h}{2} & si \ i \in \llbracket 2, \ N \rrbracket \\ u_0(x_1 - vt) & si \ i = 1 \end{cases}$$

• Pour un i fixé, on a donc $Y_i'(t) = F_i(t, Y(t))$

Ainsi,

$$Y'(t) = F(t, Y(t)) \iff \begin{cases} Y'_1(t) = F_1(t, Y(t)) \\ Y'_2(t) = F_2(t, Y(t)) \\ \vdots \\ Y'_i(t) = F_i(t, Y(t)) \\ \vdots \\ Y'_N(t) = F_N(t, Y(t)) \end{cases}$$
(13)

Attention : Chaque ligne du système contient 2 équations. Ce qui fait un total de 2N équations.

On applique une méthode de Runge Kutta 2 ($\alpha = \frac{1}{2}$ - tableau de Butcher) **sur le système (13)** : Pour chaque pas de temps $n \times \triangle t$, on calcule :

$$\begin{cases} K_1 &= F(t_n, Y^n) \\ K_2 &= F(t_{n+1}, Y^n + \triangle t \times K_1) \\ Y^{n+1} &= Y^n + \frac{\triangle t}{2} \times (K_1 + K_2) \end{cases}$$

- Remarques :
 - 1. K_1 et K_2 sont des vecteurs de tailles 2N.
 - 2. On note Y^n vecteur de 2N éléments à l'instant t_n .

La méthode RK2 est définie pour tout $i \in [\![1,\ N]\!]$ par :

$$\begin{cases}
K_{1,i} &= F_i(t_n, Y^n) \\
K_{2,i} &= F_i(t_{n+1}, Y^n + \triangle t \times K_1) \\
Y_i^{n+1} &= Y_i^n + \frac{\triangle t}{2} \times (K_{1,i} + K_{2,i})
\end{cases}$$
(14)

avec,

$$F_i(t_n, Y^n) = \begin{pmatrix} -\frac{v}{C_{0,0}}[u_{|K_i}(t_n, x_{i+1}) - u_{|K_{i-1}}(t_n, x_i)] \\ -\frac{vh}{2C_{1,1}} \times [u_{|K_i}(t_n, x_{i+1}) + u_{|K_{i-1}}(t_n, x_i)] + \frac{vC_{0,0}}{C_{1,1}} \times [y_1^i]^n \end{pmatrix}$$

RESULTATS D'ANALYSE^a

- 1. Condition de stabilité (CFL) : v*dt < 0.3*h
- 2. **Ordre du schéma** : Le schéma est d'ordre 2 en temps et d'ordre 2 en espace.

^aThèse de Christophe Drozo, ONERA, page 38

Test du schéma implémenté sur Matlab : On cherche à résoudre le système (14).

Voici ci-dessous un affichage de la solution obtenue³ à l'instant T=2.

Figure 3: Methode GD & RK2 - équation de transport 1D

• Vérification de l'ordre du schéma :

On choisit un pas de discrétisation en temps et en espace qui vérifient la condition (CFL).

L'erreur de troncature Err doit satisfaire : $Err=O(dt^2)+O(h^2)$. Autrement dit, si on pose $dt_1=\frac{dt}{2}$ et $h_1=\frac{h}{2}$ alors la nouvelle erreur doit être de l'ordre :

$$Err1 = O(dt_1^2) + O(h_1^2) = \frac{1}{4} \times [O(dt^2) + O(h^2)] = \frac{1}{4} \times Err$$

Dans le test ci-dessous, on a consideré :

- N=100 cellules en espace et M=400 cellules en temps pour calculer Err1
- N=200 cellules en espace et M=800 cellules en temps pour calculer Err2

 $^{^3}$ Méthode d'implémentation - cf **ANNEXE 2**

1.2.3 Méthode RK3b

Dans la méthode RK3b, on se ramène à un système déja établit dans la section 1.2.2, et définit par la formule (13) que l'on rappelle ici :

$$Y'(t) = F(t, Y(t)) \iff \begin{cases} Y'_1(t) = F_1(t, Y(t)) \\ Y'_2(t) = F_2(t, Y(t)) \\ \vdots \\ Y'_i(t) = F_i(t, Y(t)) \\ \vdots \\ Y'_N(t) = F_N(t, Y(t)) \end{cases}$$

avec.

$$Y_{i}(t) = \begin{pmatrix} y_{1}^{i}(t) \\ y_{2}^{i}(t) \end{pmatrix} = \begin{pmatrix} a_{0}^{i}(t) \\ a_{1}^{i}(t) \end{pmatrix} \ et \ F_{i}(t, Y(t)) = \begin{pmatrix} -\frac{v}{C_{0,0}}[u_{|K_{i}}(t, x_{i+1}) - u_{|K_{i-1}}(t, x_{i})] \\ -\frac{vh}{2C_{1,1}} \times [u_{|K_{i}}(t, x_{i+1}) + u_{|K_{i-1}}(t, x_{i})] + \frac{vC_{0,0}}{C_{1,1}}y_{1,i}(t) \end{pmatrix}$$
(15)

La méthode RK3b est définie pour tout $i \in [1, N]$ par :

$$\begin{cases}
K_{1,i} = Y_i^n + \Delta t \times F_i(t_n, Y^n) \\
K_{2,i} = \frac{3}{4} Y_i^n + \frac{1}{4} K_{1,i} + \frac{\Delta t}{4} F_i(t_{n+1}, K_1) \\
Y_i^{n+1} = Y_i^n + \frac{\Delta t}{6} [F_i(t_n, Y^n) + F_i(t_{n+1}, K_1) + 4F_i(t_{n+\frac{1}{2}}, K_2)]
\end{cases}$$
(16)

RESULTATS D'ANALYSE

- 1. Condition de stabilité (CFL) : v*dt < 0.41*h
- 2. Ordre du schéma : Le schéma est d'ordre 3 en temps et d'ordre 2 en espace.

Test du schéma implémenté sur Matlab : On cherche à résoudre le système (16).

Voici ci-dessous un affichage de la solution obtenue⁴ à l'instant T=1.

Figure 4: Methode GD & RK3b - équation de transport 1D

• Vérification de l'ordre du schéma :

On choisit un pas de discrétisation en temps et en espace qui vérifient la condition (CFL). Dans le test ci-dessous, on a consideré :

- N=100 cellules en espace et M=500 cellules en temps

L'erreur de troncature Err doit satisfaire : $Err=O(dt^3)+O(h^2)$. Autrement dit, si on pose $dt_1 = \frac{dt}{4}$ et $h_1 = \frac{h}{8}$ alors la nouvelle erreur doit être de l'ordre :

$$Err1 = O(dt_1^3) + O(h_1^2) = \frac{1}{64} \times [O(dt^2) + O(h^2)] = \frac{1}{64} \times Err$$

⁴Pour l'implémentation, on procède de manière analogue à la méthode RK2.

2 Méthode de Galerkine discontinue espace-temps

Dans cette section, on considère la variable de temps comme une variable d'espace. Autrement dit, le système (1) se réecrit de la façon suivante :

$$\nabla . \overrightarrow{G(u)} = 0 \tag{17}$$

où:

- $\bullet \ \overrightarrow{G(u)} = \begin{pmatrix} vu \\ u \end{pmatrix} ,$
- v est une constante non nulle
- l'opérateur $\nabla = \begin{pmatrix} \partial_x \\ \partial_t \end{pmatrix}$ Autrement dit, on cherche une fonction $u:[0,T]\times[a\,,\,b] \to \mathbb{R}$ différentiable, telle que :

$$\begin{cases} v\partial_x u + \partial_t u = 0 & [0, T] \times [0, 1] \\ u(t, 0) := g_1(t) & en \ x = 0 \\ u(0, x) := g_2(x) & en \ t = 0 \end{cases}$$
(18)

2.1 Discrétisation du domaine

On définit un maillage régulier du rectangle $[0,T[imes[0\,,\,1[$ par :

- N_x+1 points x_i sur [0, 1].
- $\bullet \ \ \mathsf{N}_x \ \text{intervalles} \ K_i^{[x]} =]\mathsf{x}_i \text{, } \mathsf{x}_{i+1}[\ \text{sur} \ [0 \,, \, 1[\ \text{telle que} \ h_x = x_{i+1} x_i \ \text{soit constant}.$
- N_t+1 points t_i sur [0,T[.
- $\bullet \ \ \mathsf{N}_t \ \text{intervalles} \ K_j^{[t]} =]\mathsf{t}_j, \, \mathsf{t}_{j+1}[\ \mathsf{sur} \ [0 \, , \, T[\ \mathsf{telle} \ \mathsf{que} \ h_t = t_{j+1} t_j \ \mathsf{soit} \ \mathsf{constant}.$
- ${\sf N}_x \times {\sf N}_t$ cellules $\varOmega_{ij} = K_i^{[x]} \times K_j^{[t]}$ d'aire constante $\Lambda = h_t \times h_x$
- Sur chaque intervalle K_i et K_j , on considère respectivement les points milieux $\{x_{i+\frac{1}{2}}=\frac{x_i+x_{i+1}}{2}\}_{i\in \llbracket 1,\,N_x\rrbracket}$ et $\{t_{j+\frac{1}{2}}=\frac{t_j+t_{j+1}}{2}\}_{j\in \llbracket 1,\,N_t\rrbracket}$
- La décomposition du domaine $\Omega_h = \bigcup_{\substack{1 \leq i \leq N_x \\ 1 \leq j \leq N_t}}^N \Omega_{ij}$ en $\mathbb{N}_x \times \mathbb{N}_t$ cellules disjointes fait apparaître les arêtes du maillage :

$$\Gamma = \Gamma_v + \Gamma_h$$

οù,

 $ightarrow \Gamma_v$ est l'ensemble des arêtes verticales (cf schéma ci-dessous) définie par :

$$\Gamma_v = \{\sigma_{1,j}^{[v]}, \sigma_{2,j}^{[v]}, \dots, \sigma_{N_x+1,j}^{[v]}, \ \forall j \in [1, N_t]\}$$

 $ightarrow \Gamma_h$ est l'ensemble des arêtes horizontales (cf schéma ci-dessous) définie par :

$$\Gamma_h = \{\sigma_{i,1}^{[h]}, \sigma_{i,2}^{[h]}, \dots, \sigma_{i,N_t+1}^{[h]}, \forall i \in [1, N_x]\}$$

Voici ci-dessous un schéma du maillage adopté.

Figure 5: Schéma du maillage 2D

2.2 Espace fonctionnel discret

• La méthode de Galerkin consiste à approcher la solution u sur chaque cellule Ω_{ij} par un polynôme $u_{|\Omega_{ij}}$ de degré q. C'est pourquoi, on introduit l'espace :

$$W_h^{ij} := \{ v \in L^2(\Omega) \mid v_{|\Omega_{ij}} \in P^q(\Omega_{ij}) \}$$

où $P^q(\Omega_{ij})$ est l'ensemble des fonctions polynomiales de degré au plus égal à q de $\Omega_{ij} \to \mathbb{R}$. Dans la suite, **on impose q=1**.

- Notons que sur chaque arête, on a une discontinuité de première espèce de la solution.
- Les polynômes de n variables, de degré inférieur ou égal à q, forme un espace linéaire de dimension :

$$\frac{n^{q+1}-1}{n-1}$$

lci, on a n=2 et q=1, c'est pourquoi ${\cal W}_h^{ij}$ est de dimension 3.

 \bullet On définit ainsi $\{\varphi_0^{i,j},\ \varphi_1^{i,j},\ \varphi_2^{i,j}\}$ une base de W_h^{ij} où :

$$\varphi_0^{i,j}(t, x) = \begin{cases} 1 & dans \ \Omega_{ij} \\ 0 & sinon \end{cases}$$

$$\varphi_1^{i,j}(t, x) = \begin{cases} x - x_{i + \frac{1}{2}} & dans \ \Omega_{ij} \\ 0 & sinon \end{cases}$$

$$\varphi_2^{i,j}(t, x) = \begin{cases} t - t_{j+\frac{1}{2}} & dans \ \Omega_{ij} \\ 0 & sinon \end{cases}$$

ullet La solution numérique restreinte à $arOmega_{ij}$ s'écrit comme combinaison linéaire de la base définit ci-dessus :

$$u_{|\Omega_{ij}}(t,x) = a_0^{i,j} \times \varphi_0^{i,j}(t,x) + a_1^{i,j} \times \varphi_1^{i,j}(t,x) + a_2^{i,j} \times \varphi_2^{i,j}(t,x)$$

• Sur Ω_h , la solution \mathbf{u}_h peut s'écrire comme combinaison linéaire de la base $\mathsf{E} = \{ \varphi_0^{i,j}, \ \varphi_1^{i,j}, \ \varphi_2^{i,j}, \ \mathbf{i} \in \llbracket 1, \ N_x \rrbracket, \ \mathbf{j} \in \llbracket 1, \ N_t \rrbracket \}$

$$u_h(t,x) = \sum_{i,j} u_{|\Omega_{ij}}(t,x)$$

ullet Sur chaque cellule $arOmega_{ij}$, l'équation (18) devient :

$$div(\overrightarrow{G}(u_{|\Omega_{ij}})) = 0 \tag{19}$$

2.3 Formulation variationnelle

Sachant que $u_h \in \Omega_h$ s'écrit

$$\begin{array}{rcl} u_h(t,\,x) & = & \displaystyle \sum_{i,j} u_{|\Omega_{ij}}(t,x) \ avec, \\ \\ u_{|\Omega_{ij}}(t,x) & = & a_0^{i,j} \times \varphi_0^{i,j}(t,\,x) + a_1^{i,j} \times \varphi_1^{i,j}(t,\,x) + a_2^{i,j} \times \varphi_2^{i,j}(t,\,x) \end{array}$$

Trouver $u_h \in \Omega_h$ vérifiant (18), revient donc à determiner les $3 \times \mathbb{N}_x \times \mathbb{N}_t$ coefficients $\{ a_0^{ij}, a_1^{ij}, a_2^{ij} \}_{i \in \llbracket 1, Nx \rrbracket, j \in \llbracket 1, Nt \rrbracket}$

Formulation variationnelle:

1. On multiplie l'équation **(19)** par chaque élément de la base E de Ω_h . Ce qui nous amène au système de $3\times \mathrm{N}_x^2\times \mathrm{N}_t^2$ équations suivant :

Pour tout $(i, \alpha) \in [1, N_x]^2$ et $(j, \beta) \in [1, N_t]^2$,

$$\begin{cases} div[\overrightarrow{G}(u_{|\Omega_{ij}}(t,x))]\varphi_0^{\alpha,\beta}(t,x) = 0 \\ div[\overrightarrow{G}(u_{|\Omega_{ij}}(t,x))]\varphi_1^{\alpha,\beta}(t,x) = 0 \\ div[\overrightarrow{G}(u_{|\Omega_{ij}}(t,x))]\varphi_2^{\alpha,\beta}(t,x) = 0 \end{cases}$$

2. On intègre chaque équation sur les cellules \varOmega_{ij} :

Pour tout $(i, \alpha) \in [1, N_x]^2$ et $(j, \beta) \in [1, N_t]^2$,

$$\begin{cases} \int_{\Omega_{ij}} div[\overrightarrow{G}(u_{|\Omega_{ij}}(t,x))] \times \varphi_0^{\alpha,\beta}(t,x) \ dxdt = 0 \\ \\ \int_{\Omega_{ij}} div[\overrightarrow{G}(u_{|\Omega_{ij}}(t,x))] \times \varphi_1^{\alpha,\beta}(t,x) \ dxdt = 0 \\ \\ \int_{\Omega_{ij}} div[\overrightarrow{G}(u_{|\Omega_{ij}}(t,x))] \times \varphi_2^{\alpha,\beta}(t,x) \ dxdt = 0 \end{cases}$$

Remarques:

- (a) $\int_{K_{ij}} \varphi_k^{\alpha,\beta}(t,x) \; dx dt$, $k \in \{0,1,2\}$ est non nul uniquement lorsque $\alpha=i$ et $\beta=j$. On a ainsi $3 \times \mathbb{N}_x \times \mathbb{N}_t$ équations.
- (b) Ce système d'équations est la projection de la solution de l'équation de transport (18) sur l'espace Ω_h
- (c) Par soucis de clarté, on notera $u_{|\Omega_{ij}}(t,x)\coloneqq u_{|\Omega_{ij}}$ et $\varphi_k^{i,j}(t,x)\eqqcolon \varphi_k^{i,j}$

3. Par la remarque (a), on s'est ramené à autant d'équations que d'inconnues.

Pour tout $i \in [1, N_x]$ $et j \in [1, N_t]$, le système précedent équivaut à :

$$\begin{cases} \int_{\Omega_{ij}} div [\overrightarrow{G}(u_{|\Omega_{ij}})\varphi_0^{i,j}] \ dxdt \ - \ \int_{\Omega_{ij}} \overrightarrow{G}(u_{|\Omega_{ij}}).(\nabla \varphi_0^{i,j}) \ dxdt = 0 \\ \\ \int_{\Omega_{ij}} div [\overrightarrow{G}(u_{|\Omega_{ij}})\varphi_1^{i,j}] \ dxdt \ - \ \int_{\Omega_{ij}} \overrightarrow{G}(u_{|\Omega_{ij}}).(\nabla \varphi_1^{i,j}) \ dxdt = 0 \\ \\ \int_{\Omega_{ij}} div [\overrightarrow{G}(u_{|\Omega_{ij}})\varphi_2^{i,j}] \ dxdt \ - \ \int_{\Omega_{ij}} \overrightarrow{G}(u_{|\Omega_{ij}}).(\nabla \varphi_2^{i,j}) \ dxdt = 0 \end{cases}$$

Remarques:

$$\text{(a) On a }\nabla\varphi_0^{i,j}(t,x)=\begin{pmatrix}0\\0\end{pmatrix}\text{, }\nabla\varphi_1^{i,j}(t,x)=\begin{pmatrix}1\\0\end{pmatrix}\text{, }\nabla\varphi_2^{i,j}(t,x)=\begin{pmatrix}0\\1\end{pmatrix}\text{, }\nabla\varphi_2$$

On applique la formule de Green, afin de faire apparaître les interfaces (que l'on determinera par la suite en utilisant le principe de conservativité) :

Ainsi, en simplifiant, on obtient pour tout $i \in [1, N_x]$ $et j \in [1, N_t]$,

$$\begin{cases}
\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_0^{i,j} d\sigma(x) d\sigma(t) = 0 \\
\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_1^{i,j} d\sigma(x) d\sigma(t) - \int_{\Omega_{ij}} v \times u_{|\Omega_{ij}} dx dt = 0 \\
\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_2^{i,j} d\sigma(x) d\sigma(t) - \int_{\Omega_{ij}} u_{|\Omega_{ij}} dx dt = 0
\end{cases} \tag{20}$$

2.4 Conditions aux interfaces

La solution numérique étant discontinue sur les arêtes Γ , il existe donc deux valeurs des variables de chaque coté d'une interface $\sigma_{i,j}^{[.]}$. On doit avoir conservativité des intégrales de bords, c'est pourquoi on determine les flux sur chaque interfaces.

Arêtes internes : On définit l'ensemble des arêtes internes par :

$$\begin{array}{lcl} \Gamma_{int} & = & \Gamma \smallsetminus \Gamma_{bord} \\ & o\grave{u} & \Gamma_{bord} & = \{\sigma_{1,j}^{[v]}, \forall j \in \llbracket 1,\, N_t \rrbracket \} \cup \{\sigma_{i,1}^{[h]}, \; \forall j \in \llbracket 1,\, N_x \rrbracket \} \end{array}$$

Figure 6: arêtes internes

Pour $k = \{0, 1, 2\}$, on a :

$$\begin{split} \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} \ d\sigma(x) d\sigma(t) &= \int_{\sigma_{i,j}^{[v]}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} d\sigma(x) d\sigma(t) \\ &+ \int_{\sigma_{i+1,j}^{[n]}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} d\sigma(x) d\sigma(t) \\ &+ \int_{\sigma_{i+1,j}^{[v]}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} d\sigma(x) d\sigma(t) \\ &+ \int_{\sigma_{i+1,j}^{[n]}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} d\sigma(x) d\sigma(t) \end{split}$$

De façon analogue au cas 1D, les intégrales doivent être conservatives. Ainsi, on doit donc avoir : Pour tout x_i tel que $i \in [\![2, \ N_x]\!]$ et t_j tel que $j \in [\![2, \ N_t]\!]$,

$$\begin{cases} \lim_{x \to x_i} u_{|\Omega_{i-1,j}}(t,x) = \lim_{x \to x_i} u_{|\Omega_{i,j}}(t,x) \\ x < x_i & x > x_i \\ \lim_{t \to t_j} u_{|\Omega_{i,j-1}}(t,x) = \lim_{t \to t_j} u_{|\Omega_{i,j}}(t,x) \\ t < t_j & t > t_j \end{cases} \xrightarrow{notation} \begin{cases} u_{|\Omega_{i-1,j}}(t,x_i^-) = u_{|\Omega_{i,j}}(t,x_i^+) \\ u_{|\Omega_{i,j-1}}(t_j^-,x) = u_{|\Omega_{i,j}}(t_j^+,x) \end{cases}$$

• Si le flux est entrant v > 0: (Le flux se déplace de $x_i -> x_{i+1}$ et de $t_i -> t_{i+1}$)

$$\begin{split} \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} \ d\sigma(x) d\sigma(t) &= \int_{t_j}^{t_{j+1}} [\overrightarrow{G}(u_{|\Omega_{ij}}(t,x_i^-)).(-\overrightarrow{n_2})] \times \varphi_k^{i,j}(t,x_i^+) d\sigma(t) \\ &+ \int_{x_i}^{x_{i+1}} [\overrightarrow{G}(u_{|\Omega_{ij}}(t_j^-,x)).(-\overrightarrow{n_1})] \times \varphi_k^{i,j}(t_j^+,x) d\sigma(x) \\ &+ \int_{t_j}^{t_{j+1}} [\overrightarrow{G}(u_{|\Omega_{ij}}(t,x_{i+1}^-)).(\overrightarrow{n_2})] \times \varphi_k^{i,j}(t,x_{i+1}^-) d\sigma(t) \\ &+ \int_{x_i}^{x_{i+1}} [\overrightarrow{G}(u_{|\Omega_{ij}}(t_{j+1}^-,x)).(\overrightarrow{n_1})] \times \varphi_k^{i,j}(t_{j+1}^-,x) d\sigma(x) \end{split}$$

Ainsi,

$$\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} \ d\sigma(x) d\sigma(t) = \int_{t_j}^{t_{j+1}} v[u_{|\Omega_{ij}}(t,x_{i+1}^-)\varphi_k^{i,j}(t,x_{i+1}^-) - u_{|\Omega_{i-1,j}}(t,x_i^-)\varphi_k^{i,j}(t,x_i^+)] d\sigma(t)$$

$$+ \int_{x_i}^{x_{i+1}} [u_{|\Omega_{ij}}(t_{j+1}^-,x)\varphi_k^{i,j}(t_{j+1}^-,x) - u_{|\Omega_{ij-1}}(t_j^-,x)\varphi_k^{i,j}(t_j^+,x)] d\sigma(x)$$

• Si le flux est sortant v < 0: (Le flux se déplace de $x_i < -x_{i+1}$ et de $t_j - > t_{j+1}$)

$$\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} d\sigma(x) d\sigma(t) = \int_{t_j}^{t_{j+1}} v[u_{|\Omega_{i+1,j}}(t, x_{i+1}^+) \varphi_k^{i,j}(t, x_{i+1}^-) - u_{|\Omega_{i,j}}(t, x_i^+) \varphi_k^{i,j}(t, x_i^+)] d\sigma(t) \\
+ \int_{x_i}^{x_{i+1}} [u_{|\Omega_{ij}}(t_{j+1}^-, x) \varphi_k^{i,j}(t_{j+1}^-, x) - u_{|\Omega_{ij-1}}(t_j^-, x) \varphi_k^{i,j}(t_j^+, x)] d\sigma(x)$$

Arêtes externes: Pour les arêtes sur le bord Γ_{bord} , on utilise les conditions du système (18):

- $u(0,x_i) = g_2(x_i), \forall i \in [1, N_x + 1]$
- $u(t_j, 0) = g_1(t_j), \forall j \in [1, N_t + 1]$

2.5 Vers la résolution d'un système matricielle

Dans cette partie, nous allons écrire la formulation variationnelle sous forme matricielle dans le cas ou le flux est entrant v>0.

Retour vers la formulation variationnelle (20) :

Dans l'objectif de simplifier le système (20) dans le cas où le flux est entrant (v>0), nous allons adopté certaines notations.

1. On pose ici certaines notations et on effectue des calculs formels, afin de facilité l'écriture des étapes qui vont suivre

(a)
$$C^{i,j}_{k_1k_2}(t,x) = C^{i,j}_{k_2k_1}(t,x) = \varphi^{i,j}_{k_1}(t,x) \times \varphi^{i,j}_{k_2}(t,x)$$
 avec $k_1,\ k_2 \in \{0,\ 1,\ 2\}$:

	$C_{0k}^{i,j}(t,x)$	$C_{1k}^{i,j}(t,x)$	$C_{2k}^{i,j}(t,x)$
k = 0	1	$x - x_{i+\frac{1}{2}}$	$t - t_{j + \frac{1}{2}}$
k = 1	$x - x_{i + \frac{1}{2}}$	$(x-x_{i+\frac{1}{2}})^2$	$(x-x_{i+\frac{1}{2}})(t-t_{j+\frac{1}{2}})$
k=2	$t - t_{j + \frac{1}{2}}$	$(x-x_{i+\frac{1}{2}})(t-t_{j+\frac{1}{2}})$	$(t-t_{j+\frac{1}{2}})^2$

(b)
$$C^{i-1,j}_{k_1k_2}(t,x)=arphi^{i-1,j}_{k_1}(t,x) imesarphi^{i,j}_{k_2}(t,x)$$
 avec $k_1,\ k_2\in\{0,\ 1,\ 2\}$:

	$C_{k_10}^{i-1,j}(t,x)$	$C_{k_1 1}^{i-1,j}(t,x)$	$C_{k_12}^{i-1,j}(t,x)$
$k_1 = 0$	1	$x - x_{i+\frac{1}{2}}$	$t - t_{j+\frac{1}{2}}$
$k_1 = 1$	$x - x_{i - \frac{1}{2}}$	$(x-x_{i-\frac{1}{2}})(x-x_{i+\frac{1}{2}})$	$(x-x_{i-\frac{1}{2}})(t-t_{j+\frac{1}{2}})$
$k_1 = 2$	$t - t_{j + \frac{1}{2}}$	$(t-t_{j+\frac{1}{2}})(x-x_{i+\frac{1}{2}})$	$(t-t_{j+\frac{1}{2}})^2$

	$C_{0k_2}^{i-1,j}(t,x)$	$C_{1k_2}^{i-1,j}(t,x)$	$C_{2k_2}^{i-1,j}(t,x)$
$k_2 = 0$	1	$x - x_{i-\frac{1}{2}}$	$t - t_{j + \frac{1}{2}}$
$k_2 = 1$	$x - x_{i + \frac{1}{2}}$	$(x-x_{i-\frac{1}{2}})(x-x_{i+\frac{1}{2}})$	$(t-t_{j+\frac{1}{2}})(x-x_{i+\frac{1}{2}})$
$k_2 = 2$	$t-t_{j+\frac{1}{2}}$	$(x-x_{i-\frac{1}{2}})(t-t_{j+\frac{1}{2}})$	$(t-t_{j+\frac{1}{2}})^2$

(c)
$$C_{k_1k_2}^{i,j-1}(t,x)=arphi_{k_1}^{i,j-1}(t,x) imesarphi_{k_2}^{i,j}(t,x)$$
 avec $k_1,\ k_2\in\{0,\ 1,\ 2\}$:

	$C_{k_10}^{i,j-1}(t,x)$	$C_{k_1 1}^{i,j-1}(t,x)$	$C_{k_12}^{i,j-1}(t,x)$
$k_1 = 0$	1	$x - x_{i+\frac{1}{2}}$	$t - t_{j + \frac{1}{2}}$
$k_1 = 1$	$x - x_{i + \frac{1}{2}}$	$(x - x_{i + \frac{1}{2}})^2$	$(x-x_{i+\frac{1}{2}})(t-t_{j+\frac{1}{2}})$
$k_1 = 2$	$t - t_{j - \frac{1}{2}}$	$(t-t_{j-\frac{1}{2}})(x-x_{i+\frac{1}{2}})$	$(t-t_{j-\frac{1}{2}})(t-t_{j+\frac{1}{2}})$

	$C_{0k_2}^{i,j-1}(t,x)$	$C_{1k_2}^{i,j-1}(t,x)$	$C_{2k_2}^{i,j-1}(t,x)$
$k_2 = 0$	1	$x - x_{i+\frac{1}{2}}$	$t - t_{j - \frac{1}{2}}$
$k_2 = 1$	$x - x_{i + \frac{1}{2}}$	$(x - x_{i + \frac{1}{2}})^2$	$(t-t_{j-\frac{1}{2}})(x-x_{i+\frac{1}{2}})$
$k_2 = 2$	$t - t_{j + \frac{1}{2}}$	$(x-x_{i+\frac{1}{2}})(t-t_{j+\frac{1}{2}})$	$(t-t_{j-\frac{1}{2}})(t-t_{j+\frac{1}{2}})$

• Remarque :

- Ce tableau nous permettra de calculer plus aisément les intégrales $\int_{t_j}^{t_{j+1}} C_{k_1k_2}(t,x) \ dt$ et $\int_{x_i}^{x_{i+1}} C_{k_1k_2}(t,x) \ dx$. Notons que la base

 $\mathsf{E} = \{\varphi_0^{ij}, \ \varphi_1^{ij}, \ \varphi_2^{ij}, \ \mathsf{i} \in \llbracket 1, \ N_x \rrbracket, \ \mathsf{j} \in \llbracket 1, \ N_t \rrbracket \} \text{ est orthogonale. Autrement dit, pour tout } k_1 \neq k_2, k_3 = k_3 + k_3 + k_4 + k_3 + k_4 + k_5 + k$

$$\int_{\Omega_{ij}} C_{k_1 k_2}(t, x) dt = 0$$

2. A partir ${f 1.}$, on établit les tableaux suivant :

(a)

$k_1 k_2 =$	{0,0}	{0,1}	$\{1,1\}$	{0,2}	{1,2}	{2,2}
$\int_{t_j}^{t_{j+1}} C_{k_1 k_2}^{ij}(t, x_{i+1}) dt$	h_t	$\frac{h_x h_t}{2}$	$\frac{h_x^2 h_t}{4}$	0	0	$\frac{h_t^3}{12}$
$\int_{x_i}^{x_{i+1}} C_{k_1 k_2}^{ij}(t_{j+1}, x) dx$	h_x	0	$\frac{h_x^3}{12}$	$\frac{h_x h_t}{2}$	0	$\frac{h_t^2 h_x}{4}$

(b) .

′ ,										
	$k_1 k_2 =$	(0,0)	(0,1)	(1,0)	(1,1)	(0,2)	(2,0)	(1,2)	(2,1)	(2,2)
	$\int_{t_j}^{t_{j+1}} C_{k_1 k_2}^{i-1,j}(t, x_i) dt$	h_t	$\frac{-h_x h_t}{2}$	$\frac{h_x h_t}{2}$	$\frac{-h_x^2 h_t}{4}$	0	0	0	0	$\frac{h_t^3}{12}$

(c) .

$k_1k_2 =$	(0,0)	(0,1)	(1,0)	(1,1)	(0,2)	(2,0)	(1,2)	(2,1)	(2,2)
$\int_{x_i}^{x_{i+1}} C_{k_1 k_2}^{i,j-1}(t_j, x) dx$	h_x	0	0	$\frac{h_x^3}{12}$	$\frac{-h_x h_t}{2}$	$\frac{h_x h_t}{2}$	0	0	$\frac{-h_t^2 h_x}{4}$

3. Sachant que $u_{|\Omega_{ij}}(t,x) = a_0^{i,j} \varphi_0^{i,j}(t,x) + a_1^{i,j} \varphi_1^{i,j}(t,x) + a_2^{i,j} \varphi_2^{i,j}(t,x)$, on a pour tout $k \in \{0,\ 1,\ 2\}$:

$$u_{|\Omega_{ij}}(t,x)\varphi_k^{i,j}(t,x) \quad = \quad a_0^{i,j}C_{0k}^{i,j}(t,x) + a_1^{i,j}C_{1k}^{i,j}(t,x) + a_2^{i,j}C_{2k}^{i,j}(t,x)$$

$$u_{|\Omega_{i-1,j}}(t,x)\varphi_k^{i,j}(t,x) \quad = \quad a_0^{i-1,j}C_{0k}^{i-1,j}(t,x) + a_1^{i-1,j}C_{1k}^{i-1,j}(t,x) + a_2^{i-1,j}C_{2k}^{i-1,j}(t,x)$$

$$u_{|\Omega_{i,j-1}}(t,x)\varphi_k^{i,j}(t,x) \quad = \quad a_0^{i,j-1}C_{0k}^{i,j-1}(t,x) + a_1^{ij}C_{1k}^{i,j-1}(t,x) + a_2^{ij}C_{2k}^{i,j-1}(t,x)$$

4. A partir de **3.**, le terme de flux **(21)** devient pour tout $k \in \{0, 1, 2\}$:

$$\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{i,j} \ d\sigma(x) d\sigma(t) = v \int_{t_j}^{t_{j+1}} [a_0^{i,j} C_{0k}^{i,j}(t,x_{i+1}) + a_1^{i,j} C_{1k}^{i,j}(t,x_{i+1}) + a_2^{i,j} C_{2k}^{i,j}(t,x_{i+1})] \ dt$$

$$- v \int_{t_j}^{t_{j+1}} [a_0^{i-1,j} C_{0k}^{i-1,j}(t,x_i) + a_1^{i-1,j} C_{1k}^{i-1,j}(t,x_i) + a_2^{i-1,j} C_{2k}^{i-1,j}(t,x_i)] \ dt$$

$$+ \int_{x_i}^{x_{i+1}} [a_0^{i,j} C_{0k}^{i,j}(t_{j+1},x) + a_1^{i,j} C_{1k}^{i,j}(t_{j+1},x) + a_2^{i,j} C_{2k}^{i,j}(t_{j+1},x)] \ dx$$

$$- \int_{x_i}^{x_{i+1}} [a_0^{i,j-1} C_{0k}^{i,j-1}(t_j,x) + a_1^{i,j-1} C_{1k}^{i,j-1}(t_j,x) + a_2^{i,j-1} C_{2k}^{i,j-1}(t_j,x)] \ dx$$

Après simplification (à l'aide du tableau 2.), le terme de flux s'écrit pour tout $i \in [1, N_x]$ $et j \in [1, N_t]$:

• Pour k = 0 :

$$\begin{split} D_0 = \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_0^{i,j} \ d\sigma(x) d\sigma(t) &= v(a_0^{i,j}h_t + a_1^{i,j}\frac{h_x h_t}{2} - a_0^{i-1,j}h_t - a_1^{i-1,j}\frac{h_x h_t}{2}) \\ &+ a_0^{i,j}h_x + a_2^{i,j}\frac{h_t h_x}{2} + a_0^{i,j-1}h_x + a_2^{i,j-1}\frac{h_t h_x}{2} \end{split}$$

• Pour k = 1 :

$$D_{1} = \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}) . \overrightarrow{n}] \varphi_{1}^{i,j} d\sigma(x) d\sigma(t) = v[a_{0}^{i,j} \frac{h_{x}h_{t}}{2} + a_{1}^{i,j} \frac{h_{x}^{2}h_{t}}{4} + a_{0}^{i-1,j} \frac{h_{x}h_{t}}{2} + a_{1}^{i-1,j} \frac{h_{x}^{2}h_{t}}{4}] + \frac{h_{x}^{3}}{12} (a_{1}^{i,j} + a_{1}^{i,j-1})$$

• Pour k = 2 :

$$\begin{split} D_2 &= \int_{\partial \Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_2^{i,j} \ d\sigma(x) d\sigma(t) &= \frac{h_t^3}{12} v(a_2^{i,j} - a_2^{i-1,j}) \\ &+ a_0^{i,j} \frac{h_x h_t}{2} + a_2^{i,j} \frac{h_t^2 h_x}{4} - a_0^{i,j-1} \frac{h_x h_t}{2} - a_2^{i,j-1} \frac{h_t^2 h_x}{4} \end{split}$$

5. Par ce qui a été fait en 3., on en déduit une simplification de la formulation variationnelle (20) que l'on rappelle ici : Pour tout $i \in [1, N_x]$ et $j \in [1, N_t]$,

$$\begin{cases} \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_0^{i,j} \ d\sigma(x) d\sigma(t) = 0 \\ \\ \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_1^{i,j} \ d\sigma(x) d\sigma(t) \ - \ \int_{\Omega_{ij}} v \times u_{|\Omega_{ij}} \ dx dt = 0 \\ \\ \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_2^{i,j} \ d\sigma(x) d\sigma(t) \ - \ \int_{\Omega_{ij}} u_{|\Omega_{ij}} \ dx dt = 0 \end{cases}$$

Sachant que $\int_{\Omega_{ij}}u_{|\Omega_{ij}}\;dxdt=a_0^{ij}h_xh_t$, le système s'écrit , par les calculs établis en 4.,

$$\begin{cases} D_0 = 0 \\ D_1 - v \times a_0^{i,j} h_x h_t = 0 \\ D_2 - a_0^{i,j} h_x h_t = 0 \end{cases}$$

• Ainsi, la formulation variationnelle dans le cas où le flux est entrant (v>0), se réécrit :

$$\begin{cases}
0 &= (v\alpha_{1} + \alpha_{2})a_{0}^{i,j} + (v\alpha_{3})a_{1}^{i,j} + (\alpha_{3})a_{2}^{i,j} \\
&+ (-v\alpha_{1})a_{0}^{i-1,j} + (-v\alpha_{3})a_{1}^{i-1,j} \\
&+ (\alpha_{2})a_{0}^{i,j-1} + (\alpha_{3})a_{2}^{i,j-1}
\end{cases}$$

$$\begin{cases}
0 &= (-v\alpha_{3})a_{0}^{i,j} + (v\alpha_{4} + \alpha_{6})a_{1}^{i,j} \\
&+ (v\alpha_{3})a_{0}^{i-1,j} + (v\alpha_{4})a_{1}^{i-1,j} \\
&+ (\alpha_{6})a_{1}^{i,j-1}
\end{cases}$$

$$\begin{cases}
0 &= (-\alpha_{3})a_{0}^{i,j} + (v\alpha_{7} + \alpha_{5})a_{2}^{i,j} \\
&+ (-v\alpha_{7})a_{2}^{i-1,j} \\
&+ (-\alpha_{3})a_{0}^{i,j-1} + (-\alpha_{5})a_{2}^{i,j-1}
\end{cases}$$
(22)

- 8	α_1	α_2	α_3	α_4	α_5	α_6	α_7
οù,	h_t	h_x	$\frac{h_x h_t}{2}$	$\frac{h_x^2 h_t}{4}$	$\frac{h_t^2 h_x}{4}$	$\frac{h_x^3}{12}$	$\frac{h_t^3}{12}$

1. Cas initial j = 1 ou i = 1:

- En utilisant la donnée g_2 et le fait que $\int_{x_i}^{x_{i+1}} g_2(x) \varphi_k^{i,1}(0,x) \, dx = a_k^{i,1} \int_{x_i}^{x_{i+1}} \varphi_k^{i,1}(0,x) \varphi_k^{i,1}(0,x) dx, \ k \in \{0,\ 1,\ 2\}$, on obtient les coefficients $\{a_0^{i,0}, a_1^{i,0}, a_2^{i,0}, i \in [\![1,\ N_x]\!]\}$.
- En utilisant la donnée g_1 et le fait que $\int_{t_j}^{t_{j+1}} g_1(t) \varphi_k^{1,j}(t,0) \ dt = a_k^{1,j} \int_{t_j}^{t_{j+1}} \varphi_k^{1,j}(t,0) \varphi_k^{1,j}(t,0) dt, \ k \in \{0,\ 1,\ 2\},$ on obtient les coefficients $\{\ \mathsf{a}_0^{0,j},\ \mathsf{a}_1^{0,j},\ \mathsf{a}_2^{0,j},\ \mathsf{j}\ \text{fixé}\}.$

2. Ecriture matricielle:

On cherche à établir l'écriture matricielle du système (22), pour un temps t_i fixé sachant que les coefficients $a_k^{i,j-1}$ à l'instant t_{j-1} sont connus.

•
$$A_1 = \begin{pmatrix} v\alpha_1 + \alpha_2 & v\alpha_3 & \alpha_3 \\ -v\alpha_3 & v\alpha_4 + \alpha_6 & 0 \\ -\alpha_3 & 0 & v\alpha_7 + \alpha_5 \end{pmatrix}$$
 et $A_2 = \begin{pmatrix} -v\alpha_1 & -v\alpha_3 & 0 \\ v\alpha_3 & v\alpha_4 & 0 \\ 0 & 0 & -v\alpha_7 \end{pmatrix}$

$$\bullet \ \, A_1 = \begin{pmatrix} v\alpha_1 + \alpha_2 & v\alpha_3 & \alpha_3 \\ -v\alpha_3 & v\alpha_4 + \alpha_6 & 0 \\ -\alpha_3 & 0 & v\alpha_7 + \alpha_5 \end{pmatrix} \text{ et } A_2 = \begin{pmatrix} -v\alpha_1 & -v\alpha_3 & 0 \\ v\alpha_3 & v\alpha_4 & 0 \\ 0 & 0 & -v\alpha_7 \end{pmatrix} \\ \bullet \ \, \overrightarrow{b_{1,j}} = \begin{pmatrix} \alpha_2 a_0^{1,j-1} + \alpha_3 a_2^{1,j-1} + b_1 \\ \alpha_6 a_1^{1,j-1} + b_2 \\ -\alpha_3 a_0^{1,j-1} - \alpha_5 a_2^{1,j-1} + b_3 \end{pmatrix} \text{ , } \overrightarrow{b_{i,j}} = \begin{pmatrix} \alpha_2 a_0^{i,j-1} + \alpha_3 a_2^{i,j-1} \\ \alpha_6 a_1^{i,j-1} \\ -\alpha_3 a_0^{i,j-1} - \alpha_5 a_2^{i,j-1} \end{pmatrix} \text{ (où } b_1, b_2 \text{ et } b_3 \text{ sont \'etablit \`a l'\'etape pr\'ec\'edente)}$$

$$\bullet \ \overrightarrow{u_{i,j}} = \begin{pmatrix} a_0^{ij} \\ a_1^{ij} \\ a_2^{ij} \end{pmatrix}$$

On cherche le vecteur U_h définit par :

$$U_h = \begin{pmatrix} \overrightarrow{u_{1,j}} \\ \overrightarrow{u_{2,j}} \\ \vdots \\ \overrightarrow{u_{i-1,j}} \\ \overrightarrow{u_{i,j}} \\ \vdots \\ \overrightarrow{u_{N_x,j}} \end{pmatrix}$$

tel que :

$$AU_h = B$$

οù.

$$A = \begin{pmatrix} A_1 & 0 & \dots & 0 & \dots & 0 \\ A_2 & A_1 & 0 & & & & & \\ 0 & A_2 & & 0 & & & & 0 \\ \vdots & 0 & & A_1 & 0 & & & \\ 0 & & 0 & A_2 & & 0 & & \\ \vdots & & & 0 & & & & 0 \\ 0 & \dots & 0 & \dots & 0 & A_2 & A_1 \end{pmatrix} \text{ et } B = \begin{pmatrix} \overrightarrow{b_{1,j}} \\ \overrightarrow{b_{2,j}} \\ \overrightarrow{b_{2,j}} \\ \vdots \\ \overrightarrow{b_{i-1,j}} \\ \overrightarrow{b_{i,j}} \\ \vdots \\ \overrightarrow{b_{N_x,j}} \end{pmatrix}$$

Remarque:

(a) La matrice A est inversible si et seulement si la matrice A_1 est inversible. Or det $(A_1) = 0 \iff h_x = h_t = 0$.

3 Affichage:

On a considère le problème suivant : v=1

$$\begin{cases} v\partial_x u + \partial_t u = 0 & [0, 2] \times [0, 1] \\ u(t, 0) \coloneqq -\sin(\pi t v) & en \ x = 0 \\ u(0, x) \coloneqq \sin(\pi x) & en \ t = 0 \end{cases}$$

Figure 7: GD Espace - temps

2.6 Parallélisme

Le parallélisme permet d'effectuer les calculs permettant la résolution numérique d'un problème sur plusieurs machine. Nous rappelons que pour v>0, nous avons :

$$\int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{ij} d\sigma(x) d\sigma(t) = \int_{t_j}^{t_{j+1}} v[u_{|\Omega_{ij}}(t, x_{i+1}^-) \varphi_k^{ij}(t, x_{i+1}^-) - u_{|\Omega_{i-1,j}}(t, x_i^-) \varphi_k^{ij}(t, x_i^+)] d\sigma(t) + \int_{x_i}^{x_{i+1}} [u_{|\Omega_{ij}}(t_{j+1}^-, x) \varphi_k^{ij}(t_{j+1}^-, x) - u_{|\Omega_{ij-1}}(t_j^-, x) \varphi_k^{ij}(t_j^+, x)] d\sigma(x)$$
(23)

Au temps $t\in]t_j,t_{j+1}[,\ u_{|\Omega_{ij}}(t,x)$ est connu, et ce pour tout $i\in [1,N_x].$

• Pour obtenir un système parallèle, nous avons besoin de connaître $u_{|\Omega_{i-1j}}(t,x_i^+)$. Pour cela, nous allons effectuer un développement de Taylor dans la cellule Ω_{i-1j}

Puisque nous considérons les points milieux de chaque cellule, nous allons effectuer ce développement de Taylor $\operatorname{en}(t_{j+1/2},x)$

On a:

$$u_{|\Omega_{i-1,j}}(t_{j+1/2}, x_i^+) = u_{|\Omega_{i-1,j-1}}(t_j, x_i^+) + \frac{h_t}{2} \partial_t u_{|\Omega_{i-1,j-1}}(t_j, x_i^+) + O(\frac{h_t^3}{8})$$

$$= a_0^{i-1,j-1} + a_1^{i-1,j-1}(x_i - x_{i-1/2}) + a_2^{i-1,j-1}(t_j - t_{j-1/2}) + \frac{h_t}{2} a_2^{i-1,j-1} + O(\frac{h_t^3}{8})$$
(24)

Finalement on obtient:

$$u_{|\Omega_{i-1,j}}(t_{j+1/2}, x_i^+) = a_0^{i-1,j-1} + a_1^{i-1,j-1} \frac{h_x}{2} + a_2^{i-1,j-1} h_t + O(\frac{h_t^3}{8})$$
 (25)

Ainsi, le terme de flux devient :

$$\begin{split} \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_k^{ij} \; d\sigma(x) d\sigma(t) & \simeq \qquad v \int_{t_j}^{t_{j+1}} [a_0^{i,j} C_{0k}^{i,j}(t,x_{i+1}) + a_1^{i,j} C_{1k}^{i,j}(t,x_{i+1}) + a_2^{i,j} C_{2k}^{i,j}(t,x_{i+1})] \; dt \\ & - v \left(a_0^{i-1,j-1} + a_1^{i-1,j-1} \frac{h_x}{2} + a_2^{i-1,j-1} h_t \right) \int_{t_j}^{t_{j+1}} \varphi_k^{i,j}(t,x) \; dt \\ & + \int_{x_i}^{x_{i+1}} [a_0^{i,j} C_{0k}^{i,j}(t_{j+1},x) + a_1^{i,j} C_{1k}^{i,j}(t_{j+1},x) + a_2^{i,j} C_{2k}^{i,j}(t_{j+1},x)] \; dx \\ & - \int_{x_i}^{x_{i+1}} [a_0^{i,j-1} C_{0k}^{i,j-1}(t_j,x) + a_1^{i,j-1} C_{1k}^{i,j-1}(t_j,x) + a_2^{i,j-1} C_{2k}^{i,j-1}(t_j,x)] \; dx \end{split}$$

- Après simplification (à l'aide du tableau 2.), le terme de flux s'écrit pour tout $i \in [1, N_x]$ et $j \in [1, N_t]$:
 - Pour k=0:

$$D_{0} = \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_{0}^{ij} d\sigma(x) d\sigma(t) \simeq v(a_{0}^{ij}h_{t} + a_{1}^{ij}\frac{h_{x}h_{t}}{2} - (a_{0}^{i-1,j-1} + a_{1}^{i-1,j-1}\frac{h_{x}}{2} + a_{2}^{i-1,j-1}h_{t})h_{t})$$
$$+a_{0}^{ij}h_{x} + a_{2}^{ij}\frac{h_{t}h_{x}}{2} - a_{0}^{i,j-1}h_{x} - a_{2}^{i,j-1}\frac{h_{t}h_{x}}{2}$$

- Pour k = 1:

$$\begin{split} D_1 = \int_{\partial\Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_1^{ij} \ d\sigma(x) d\sigma(t) & \simeq & v[a_0^{ij} \frac{h_x h_t}{2} + a_1^{ij} \frac{h_x^2 h_t}{4} - (a_0^{i-1,j-1} + a_1^{i-1,j-1} \frac{h_x}{2} + a_2^{i-1,j-1} h_t) \frac{-h_x h_t}{2}] \\ & + \frac{h_x^3}{12} (a_1^{ij} - a_1^{i,j-1}) \end{split}$$

- Pour k = 2:

$$\begin{split} D_2 &= \int_{\partial \Omega_{ij}} [\overrightarrow{G}(u_{|\Omega_{ij}}).\overrightarrow{n}] \varphi_2^{ij} \ d\sigma(x) d\sigma(t) &\simeq \frac{h_t^3}{12} v(a_2^{ij}) \\ &+ a_0^{ij} \frac{h_x h_t}{2} + a_2^{ij} \frac{h_t^2 h_x}{4} + a_0^{i,j-1} \frac{h_x h_t}{2} + a_2^{i,j-1} \frac{h_t^2 h_x}{4} \end{split}$$

• Sachant que $\int_{\Omega_{ij}}u_{|\Omega_{ij}}\;dxdt=a_0^{ij}h_xh_t$, le système s'écrit , par les calculs établis en 4.,

$$\begin{cases} D_0 = 0 \\ D_1 - v \times a_0^{ij} h_x h_t = 0 \\ D_2 - a_0^{ij} h_x h_t = 0 \end{cases}$$

• Ainsi, la formulation variationnelle dans le cas où le flux est entrant (v>0), se réécrit :

$$\begin{cases}
0 &= (v\alpha_{1} + \alpha_{2})a_{0}^{ij} + (v\alpha_{3})a_{1}^{ij} + (\alpha_{3})a_{2}^{ij} \\
+ (-v\alpha_{1})a_{0}^{i-1,j-1} + (-v\alpha_{3})a_{1}^{i-1,j-1} + (-v\alpha_{1}^{2})a_{2}^{i-1,j-1} \\
+ (-\alpha_{2})a_{0}^{i,j-1} + (-\alpha_{3})a_{2}^{i,j-1}
\end{cases}$$

$$0 &= (-v\alpha_{3})a_{0}^{ij} + (v\alpha_{4} + \alpha_{6})a_{1}^{ij} \\
+ (v\alpha_{3})a_{0}^{i-1,j-1} + (v\alpha_{4})a_{1}^{i-1,j-1} + (2v\alpha_{5})a_{2}^{i-1,j-1} \\
+ (-\alpha_{6})a_{1}^{i,j-1}$$

$$0 &= (-\alpha_{3})a_{0}^{ij} + (v\alpha_{7} + \alpha_{5})a_{2}^{ij} \\
+ (\alpha_{3})a_{0}^{i,j-1} + (\alpha_{5})a_{2}^{i,j-1}$$

$$\alpha_{4} \quad \alpha_{5} \quad \alpha_{6} \quad \alpha_{7}$$
(26)

où,
$$\begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 & \alpha_5 & \alpha_6 & \alpha_7 \\ h_t & h_x & \frac{h_x h_t}{2} & \frac{h_x^2 h_t}{4} & \frac{h_t^2 h_x}{4} & \frac{h_x^3}{12} & \frac{h_t^3}{12} \end{bmatrix}$$

• Ecriture matricielle :

On cherche à établir l'écriture matricielle du système (4), pour un temps t_j fixé sachant que les coefficients $a_k^{i-1,j-1}$ et $a_k^{i,j-1}$ à l'instant t_{j-1} sont connus.

$$\text{Posons}: \overrightarrow{u_{i,j}} = \begin{pmatrix} a_{0}^{ij} \\ a_{1}^{ij} \\ a_{2}^{ij} \end{pmatrix},$$

$$\overrightarrow{b_{1,j}} = \begin{pmatrix} \alpha_2 a_0^{1,j-1} + \alpha_3 a_2^{1,j-1} + b_1 \\ \alpha_6 a_1^{1,j-1} + b_2 \\ -\alpha_3 a_0^{1,j-1} - \alpha_5 a_2^{1,j-1} + b_3 \end{pmatrix} \text{ et } \overrightarrow{b_{i,j}} = \begin{pmatrix} v \alpha_1 a_0^{i-1,j-1} + v \alpha_3 a_1^{i-1,j-1} + v \alpha_1^2 a_2^{i-1,j-1} + \alpha_2 a_0^{i,j-1} + \alpha_3 a_2^{i,j-1} \\ -v \alpha_3 a_0^{i-1,j-1} - v \alpha_4 a_1^{i-1,j-1} - 2v \alpha_5 a_2^{i-1,j-1} + \alpha_6 a_1^{i,j-1} \\ -\alpha_3 a_0^{i,j-1} - \alpha_5 a_2^{i,j-1} \end{pmatrix}$$

et
$$A_1 = \begin{pmatrix} v\alpha_1 + \alpha_2 & v\alpha_3 & \alpha_3 \\ -v\alpha_3 & v\alpha_4 + \alpha_6 & 0 \\ -\alpha_3 & 0 & v\alpha_7 + \alpha_5 \end{pmatrix}$$

On cherche le vecteur U_h tel que :

$$AU_h = B$$

$$A = \begin{pmatrix} A_1 & 0 & \dots & \dots & \dots & 0 \\ 0 & A_1 & & & & \vdots \\ \vdots & \ddots & \ddots & & & \vdots \\ \vdots & & & A_1 & & & \vdots \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & & \ddots$$

CONCLUSION

La méthode de Galerkine discontinu regroupe les avantages des méthodes de volumes finis et d'élements finis. Nous avons particulièrement pu constater les différences entre ces méthodes car, en tant qu'élèves de MACS 2, nous avons étudié ces méthodes en parallèle de ce projet.

Vous trouverez un tableau dans la thèse de Sophie Gérald⁵ qui compare les différentes méthodes numérique (GD, VF, EF) en donnant une idée de leurs qualités selon certains critères.

Mené à bien ce projet, nous a permis de comprendre un important point concernant les méthodes numériques en général. La stabilité, la consistance et l'ordre d'un schéma ne suffisent pas à caractériser la qualité d'un schéma numérique. On doit également prendre en compte la méthode d'implémentation, car la capacité des machines utilisées pour mener à bien des calculs est limitée.

 $^{^5\}mathsf{Tableau}$ page 10 - https://tel.archives-ouvertes.fr/tel-00943621

ANNEXE 1 : Méthode d'implémentation du schéma GD - Euler explicite

Méthode d'implémentation

A chaque instant t_n , on obtient 2N coefficients qui permettent d'obtenir la solution projetée sur l'espace V_h .

$$u_h(t,x) = \sum_{i=1}^{N} a_1^i(t)\varphi_1^i(x) + a_2^i(t)\varphi_2^i(x)$$

ATTENTION : Sur matlab, les tableaux sont indexés à partir de 1, c'est pourquoi on a effectué un décalage d'indice ci-dessus.

1. On calcule le vecteur flux qui contient les valeurs aux interfaces et aux bord de [a, b]. Dans le cas, v > 0 sur chaque cellules K_i , on doit stocker :

$$F_{l} = \begin{pmatrix} u_{0}(x_{1} - vt_{n}) \\ u_{|K_{1}}(t_{n}, x_{2}) \\ \vdots \\ u_{|K_{1}}(t_{n}, x_{i+1}) \\ u_{|K_{N}}(t_{n}, x_{N+1}) \end{pmatrix} = \begin{pmatrix} u_{0}(x_{1} - vt_{n}) \\ a_{1}^{1}(t_{n}) + a_{2}^{1}(t_{n}) \times (x_{2} - x_{1+\frac{1}{2}}) \\ \vdots \\ a_{1}^{i}(t_{n}) + a_{2}^{i}(t_{n}) \times (x_{i+1} - x_{i+\frac{1}{2}}) \\ \vdots \\ a_{1}^{N-1}(t_{n}) + a_{2}^{N-1}(t_{n}) \times (x_{N} - x_{N-\frac{1}{2}}) \\ a_{1}^{N}(t_{n}) + a_{2}^{N-1}(t_{n}) \times (x_{N} - x_{N-\frac{1}{2}}) \end{pmatrix} = \begin{pmatrix} u_{0}(x_{1} - vt_{n}) \\ a_{1}^{1}(t_{n}) + a_{2}^{1}(t_{n}) \times \frac{h}{2} \\ \vdots \\ a_{1}^{i}(t_{n}) + a_{2}^{i}(t_{n}) \times \frac{h}{2} \\ \vdots \\ a_{1}^{N-1}(t_{n}) + a_{2}^{N-1}(t_{n}) \times \frac{h}{2} \end{pmatrix}$$

2. On définit également :

$$Ib = \begin{pmatrix} F_{l}(2) - F_{l}(1) & F_{l}(2) + F(1) \\ F_{l}(3) - F_{l}(2) & F_{l}(3) + F_{l}(2) \\ \vdots & \vdots & \vdots \\ F_{l}(i+1) - F_{l}(i) & F_{l}(i+1) + F_{l}(i) \\ \vdots & \vdots & \vdots \\ F_{l}(N) - F_{l}(N-1) & F_{l}(N) + F_{l}(N-1) \\ F_{l}(N+1) - F_{l}(N) & F_{l}(N+1) + F_{l}(N) \end{pmatrix}$$

Algorithm 1 Implémentation de la méthode GD en espace et Euler Explicite en temps

```
//Dans cet algorithme on ne stockera pas les u_h à chaque pas de temps. On cherche à avoir u_h au temps T final
// La matrice A contiendra tout les coefficients \mathbf{a}_{j \in \{1,2\}}^{i \in [\![1,\,N]\!]}
A \leftarrow zeros(N,2);
//On stocke les valeurs initiales au temps t = 0 dans la matrice A (méthode de Gauss Legendre)
(cf formule (7))
Pour ipdt allant de 1 à M
    t = \Delta t \times ipdt;
     //Ca|cu| du flux F_{I}:
          F_l(1) = u_0(x_1 - vt)
          Pour i allant de 2 à N+1
               F_l(i) = A(i, 1) + A(i, 2) * \frac{h}{2}
          Fin Pour
         //Calcul de la matrice lb :
          Pour i allant de 2 à N+1
          Ib(i,1) = F(i+1) - F(i);
          Ib(i,2) = F(i+1) + F(i);
          Fin Pour
          //Calcul des coefficients :
          Pour i allant de 1 à N
              A(i, 1) = A(i, 1) - \frac{(\triangle t)v}{C_{0,0}} \times Ib(i, 1)
A(i, 2) = A(i, 2) - \frac{vh(\triangle t)}{2C_{1,1}} \times Ib(i, 2) + \frac{v(\triangle t)C_{0,0}}{C_{1,1}} \times A(i, 1)
          Fin Pour
```

Fin Pour

La solution approchée au point x_i au temps T s'écrit donc :

$$U_h(T, x_i) = \sum_{j=1}^{N} A(j, 1) \times \varphi_1^j(x_i) + A(j, 2) \times \varphi_2^j(x_i)$$

$$= \sum_{j=1}^{N} [A(j, 1) \times \varphi_1^j(x_i) + A(j, 2) \times (x_i - x_{j+\frac{1}{2}})]$$

$$= A(i, 1) + A(i, 2) \times (x_i - x_{i+\frac{1}{2}})$$

$$= A(i, 1) + A(i, 2) \times (-\frac{h}{2})$$

ANNEXE 2 : Méthode d'implémentation du schéma GD - RK2

Algorithm 2 Méthode d'implémentation RK2

En utilisant les matrices FI et lb définis dans la méthode d'Euler explicite, on obtient à l'instant t_n :

$$K_{1,i} = \begin{pmatrix} -\frac{v}{C_{0,0}} \times Ib(i,1) \\ -\frac{vh}{2C_{1,1}} \times Ib(i,2) + \frac{vC_{0,0}}{C_{1,1}} \times Y^n(i,1) \end{pmatrix}$$

Le vecteur K_2 se determine à l'instant t_{n+1} . C'est pourquoi, on procède de la façon suivante :

- 1. On calcule la matrice K_1 de taille $2 \times N$.
- 2. On stocke $YY^{n+1} = Y^n + \triangle t \times K_1$ dans une matrice intermédiaire.
- 3. Pour determiner $K_2=F(t_{n+1},\ YY^{n+1})$, on mets à jour les matrices FI et Ib en utilisant YY^{n+1} .
- 4. On determine ainsi la matrice K_2 , définie par :

$$K_{2,i} = \begin{pmatrix} -\frac{v}{C_{0,0}} \times Ib(i,1) \\ -\frac{vh}{2C_{1,1}} \times Ib(i,2) + \frac{vC_{0,0}}{C_{1,1}} \times YY^{n+1}(i,1) \end{pmatrix}$$

5. On en déduit la solution à l'instant n+1, définit par :

$$Y_i^{n+1} = Y_i^n + \frac{\triangle t}{2} \times (K_1 + K_2)$$