Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

> Отчёт по лабораторной работе №5 по дисциплине «Математическая статистика»

> > Выполнил студент: Самутичев Евгений Романович группа: 3630102/70201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1	Hoc	становка задачи	2
2	Teo 2.1 2.2 2.3	рия Двумерное нормальное распределение	3 3 3 3 4 4
3	Pea	лизация	6
4	Рез ; 4.1 4.2	ультаты Коэффициенты корреляции	7 7 9
5	Обс 5.1 5.2	суждение Коэффициенты корреляции	14 14 14
6	При	иложения	15
C	пис	сок иллюстраций	
	1 2 3 4 5 6 7 8	$\begin{array}{l} \rho = 0.0, n = 20 \\ \rho = 0.0, n = 60 \\ \rho = 0.0, n = 100 \\ \rho = 0.5, n = 20 \\ \rho = 0.5, n = 60 \\ \rho = 0.5, n = 100 \\ \rho = 0.9, n = 20 \\ \rho = 0.9, n = 60 \\ \end{array}$	9 10 10 11 11 12 12
	9	$\rho = 0.9, n = 100 \dots \dots$	13

1 Постановка задачи

Сгенерировать двумерные выборки размера 20,60,100 для нормального двумерного распределения $N(x,y,0,0,1,1,\rho)$. Коэффициент корреляции ρ взять равным 0,0.5,0.9 Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9 \cdot N(x,y,0,0,1,1,0.9) + 0.1 \cdot N(x,y,0,0,10,10,-0.9)$$

. Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределенной нормально (или просто нормальной) если её плотность вероятности определена формулой

$$N(x, y, m_1, m_2, \sigma_1, \sigma_2, \rho) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-m_1)^2}{\sigma_1^2} - 2\rho \frac{(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2} \right] \right)$$
(1)

Можно показать [1, стр. 133-134] что компоненты X,Y двумерной нормальной случайной величины также распределены нормально с математическими ожиданиями $m_X = m_1, m_Y = m_2$ и среднеквадратическими отклонениями $\sigma_X = \sigma_1, \sigma_Y = \sigma_2$. В свою очередь параметр ρ называют коэффициентом корреляции. Его значение будет раскрыто далее.

2.2 Ковариация и коэффициент корреляции

Ковариацией двух случайных величин X и Y называется величина:

$$K_{XY} = \mathbf{M} \left[(X - m_X)(Y - m_Y) \right] \tag{2}$$

В свою очередь коэффициентом корреляции называется

$$\rho_{XY} = \frac{K_{XY}}{\sigma_X \sigma_Y} \tag{3}$$

Коэффициент корреляции характеризует зависимость между случайными величинами X и Y. Именно его мы задаем в двумерном нормальном распределении как ρ . Если случайные величиныX и Y независимы, то $\rho_{XY}=0$ т.к. в этом случае очевидно $K_{XY}=0$.

2.3 Выборочные коэффициенты корреляции

2.3.1 Пирсона

Пусть по выборке значений $\{x_i, y_i\}_{i=1}^n$ двумерной случайной величины (X, Y). Естественной оценкой для ρ_{XY} служит выборочный коэффициент корреляции (Пирсона):

$$r = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(4)

Важным для приложений свойством является то что при данной оценке гипотеза $\rho_{XY} \neq 0$ (о наличии зависимости между случайными) величинами может быть принята на уровне значимости 0.05 если выполнено:

$$|r|\sqrt{n-1} > 2.5\tag{5}$$

это можно найти к примеру в [1, стр. 538]

2.3.2 Квадрантный

Выборочным квадрантным коэффициентом корреляции называется величина:

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n} \tag{6}$$

, где n_1, n_2, n_3, n_4 - количества элементов выборки попавших соответственно в I, II, III и IV квадранты декартовой системы координат с центром в (med x, med y) и осями $x_1=x-\text{med }x, y_1=y-\text{med }y,$ где med - выборочная медиана.

Формулу (6) можно переписать эквивалентным образом:

$$r_Q = \frac{1}{n} \sum_{i=1}^n \operatorname{sign}(x_i - \operatorname{med} x) \operatorname{sign}(y_i - \operatorname{med} y)$$
(7)

Важным свойством этой оценки является робастность. Её мы можем проверить используя схему засорения (смесь нормальных распределений).

2.3.3 Спирмена

На практике нередко требуется оценить степень взаимодействия между качественными признаками изучаемого объекта. Качественным называется признак, который нельзя измерить точно, но который позволяет сравнивать изучаемые объекты между собой и располагать их в порядке убывания или возрастания их качества. Для этого объекты выстраиваются в определённом порядке в соответствии с рассматриваемым признаком. Процесс упорядочения называется ранжированием, и каждому члену упорядоченной последовательности объектов присваивается ранг, или порядковый номер.

Например, объекту с наименьшим значением признака присваивается ранг 1, следующему за ним объекту — ранг 2, и т.д. Таким образом, происходит сравнение каждого объекта со всеми объектами изучаемой выборки. Если объект обладает не одним, а двумя качественными признаками — переменными X и Y, то для исследования их взаимосвязи используют выборочный коэффициент корреляции между двумя последовательностями рангов этих признаков.

Обозначим ранги, соотвествующие значениям переменной X, через u, а ранги, соотвествующие значениям переменной Y - через v. Выборочный коэффициент ранговой корреляции Cnupmeha определяется как выборочный коэффициент корреляции Пирсона между рангами u, v переменных X,Y:

$$r_S = \frac{\frac{1}{n} \sum_{i=1}^n (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\frac{1}{n} \sum_{i=1}^n (u_i - \bar{u})^2 \frac{1}{n} \sum_{i=1}^n (v_i - \bar{v})^2}}$$
(8)

2.4 Эллипс равновероятности

Рассмотрим выражение для плотности двумерного нормального распределения (1) несколько подробнее, а именно найдем линии уровня или что равносильно проекции сечения графика плотности плоскостями параллельными xOy на плоскость xOy:

$$N(x, y, m_1, m_2, \sigma_1, \sigma_2, \rho) = const$$

, или что равносильно:

$$\frac{(x-m_1)^2}{\sigma_1^2} - 2\rho \frac{(x-m_1)(y-m_2)}{\sigma_1 \sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2} = const$$
 (9)

Во всех точках каждого из таких эллипсов плотность двумерного нормального распределения $N(x,y,m_1,m_2,\sigma_1,\sigma_2,\rho)$ постоянна. Поэтому они и называются эллипсами равноверо-ятности [2, стр. 44-45]. Отметим что в предельном случае $\rho=1$:

$$\left(\frac{x - m_1}{\sigma_1} - \frac{y - m_2}{\sigma_2}\right)^2 = const$$

, такое уравнение задает семейство прямых паралелельных прямой:

$$\frac{x - m_1}{\sigma_1} = \frac{y - m_2}{\sigma_2} \tag{10}$$

Аналогично рассматривается предельный случай $\rho=-1.$

3 Реализация

Работа выполнена с использованием языка **Python** в интегрированной среде разработки **PyCharm**, были задействованы библиотеки:

- NumPy векторизация вычислений, работа с массивами данных, включая вычисление среднего и дисперсии
- SciPy модуль stats для генерации данных по распределениям, вычисления коэффициентов корелляции
- Matplotlib построение эллипсов рассеяния

Исходный код работы приведен в приложении.

4 Результаты

4.1 Коэффициенты корреляции

n=20	r	r_S	r_Q
E(z)	0.0	0.0	0.0
$E(z^2)$	0.1	0.1	0.1
D(z)	0.053556	0.053729	0.054264
n = 60	r	r_S	r_Q
E(z)	0.0	0.0	0.0
$E(z^2)$	0.02	0.02	0.02
D(z)	0.016997	0.017097	0.018564
n = 100	r	r_S	r_Q
E(z)	0.0	0.0	0.0
$E(z^2)$	0.01	0.01	0.01
D(z)	0.010095	0.010177	0.010416

Таблица 1: $\rho=0$

n=20	r	r_S	r_Q
E(z)	0.5	0.5	0.3
$E(z^2)$	0.3	0.2	0.2
D(z)	0.03309	0.036427	0.046232
n = 60	r	r_S	r_Q
E(z)	0.49	0.47	0.33
$E(z^2)$	0.25	0.23	0.12
D(z)	0.009512	0.010584	0.014097
n = 100	r	r_S	r_Q
E(z)	0.5	0.48	0.33
$E(z^2)$	0.25	0.23	0.12
D(z)	0.006043	0.00652	0.008687

Таблица 2: $\rho = 0.5$

n=20	r	r_S	r_Q
E(z)	0.891	0.86	0.7
$E(z^2)$	0.797	0.75	0.52
D(z)	0.002823	0.005097	0.02752
n = 60	r	r_S	r_Q
E(z)	0.899	0.882	0.71
$E(z^2)$	0.809	0.78	0.51
D(z)	0.000641	0.001065	0.008925
n = 100	r	r_S	r_Q
E(z)	0.898	0.885	0.71
$E(z^2)$	0.807	0.784	0.5
D(z)	0.000417	0.000637	0.004951

Таблица 3: $\rho=0.9$

n=20	r	r_S	r_Q
E(z)	-0.0	0.5	0.5
$E(z^2)$	1.0	0.3	0.3
D(z)	0.448101	0.078135	0.039344
n = 60	r	r_S	r_Q
E(z)	-0.6	0.48	0.56
$E(z^2)$	0.5	0.26	0.33
D(z)	0.079885	0.027009	0.01148
n = 100	r	r_S	r_Q
E(z)	-0.7	0.47	0.56
$E(z^2)$	0.51	0.24	0.33
D(z)	0.029483	0.015814	0.006452

Таблица 4: Смесь нормальных распределений

4.2 Эллипсы равновероятности

Рис. 1: $\rho = 0.0, n = 20$

Рис. 2: $\rho = 0.0, n = 60$

Рис. 3: $\rho = 0.0, n = 100$

Рис. 4: $\rho = 0.5, n = 20$

Рис. 5: $\rho = 0.5, n = 60$

Рис. 6: $\rho = 0.5, n = 100$

Рис. 7: $\rho = 0.9, n = 20$

Рис. 8: $\rho = 0.9, n = 60$

Рис. 9: $\rho = 0.9, n = 100$

5 Обсуждение

5.1 Коэффициенты корреляции

Для начала воспользуемся (5) для анализа экспериментов по которым были получены таблицы 1, 2. Выясним можно ли принять гипотезу о зависимости между случайными величинами на уровне значимости $\alpha=0.05$ для n=100 по коэффициенту Пирсона.

$$0\sqrt{100-1} \le 2.5, 4.98 \approx 0.5\sqrt{100-1} > \cdot 2.5$$

В эксперименте 1 эту гипотезу принять нельзя, а в эксперименте 2 можно. При этом в эксперименте 1 с.в. заведомо независимы, а в эксперименте 2 зависимы, так что все согласуется с теорией.

Из таблиц 1, 2 и 3 видно что r, r_S являются состоятельными оценками ρ_{XY} т.к. они все ближе к нему с ростом n.

Из таблицы 4 видим что r_Q устойчивая к выбросам (робастная) оценка. Квадрантный коэффициент корреляции показывает лучшие результаты в устойчивости.

5.2 Эллипсы равновероятности

Видно что чем ближе ρ к 1, тем эллипс равновероятности становится все больше похож на прямую, заданную как (10). Т.е. наглядно показано как с.в. X,Y становятся линейно-зависимыми.

6 Приложения

1. Исходный код лабораторной https://github.com/zhenyatos/statlabs/tree/master/Lab5

Список литературы

- [1] **Вероятностные разделы математики.** Учебник для бакалавров технических направлений. // Под ред. Максимова Ю.Д. СПб «Иван Федоров», 2001. 592 с., илл
- [2] Вентцель Е.С. *Теория вероятностей: Учеб. для вузов.* 6-е изд. стер. М.: Высш. шк., 1999.-576 с.