Population of blocks

20 marks

In this question, you will examine different possible attributes of interest for this population.

- a. Simple numerical attributes.
 - i. (1 mark) Summarize this population by the following attributes on the variates weight and perimeter: the population median, mean, and standard deviation (here computed using sd() with denominator N-1).

My answer follows

You would answer this by inserting some R code

```
popAttributesWeight <- list(median = median(blocks[,'weight']), mean = mean(blocks[,'weight'])
popAttributesWeight</pre>
```

```
## $median
## [1] 30
##
## $mean
## [1] 32.4
##
## $sd
## [1] 16.04098
```

ii. (2 marks) Repeat the above summaries but now conditional on the group to which each block belongs. Now include the number in each group.

Answer

```
groupA <- with(blocks, group =='A')
group_A_median <- with(blocks[groupA,],median(weight, na.rm = TRUE))
group_A_mean <- with(blocks[groupA,],mean(weight, na.rm = TRUE))
group_A_sd <- with(blocks[groupA,],sd(weight, na.rm = TRUE))
groupB <- with(blocks, group =='B')
group_B_median <- with(blocks[groupB,],median(weight, na.rm = TRUE))
group_B_mean <- with(blocks[groupB,],mean(weight, na.rm = TRUE))
group_B_sd <- with(blocks[groupB,],sd(weight, na.rm = TRUE))
group_A_median</pre>
## [1] 20
```

```
group_A_mean
## [1] 21.1
group_A_sd
```

[1] 7.304597

```
group_B_median

## [1] 40
group_B_mean

## [1] 43.7
group_B_sd

## [1] 14.35021
```

iii. (3 marks) On the basis of the above computed attributes, describe how each group differs from the whole population and from each other.

Answer

From the above computed attributes, group A's mean and median is only half the group B's. However, group B has a standard deviation that is around twice of group A's. While the whole population's mean and median is lied between group A and group B. The standard deviation is greater than both group A's and group B's

- b. Simple graphical attributes.
 - i. (8 marks) Draw (suitably labelled) histograms of the weight for the whole population, only the blocks in group A, and only the blocks in group B. Answer

```
A = blocks[blocks$group == "A",]
B = blocks[blocks$group == "B",]
xlim <- extendrange(blocks$weight)
ylim <- c(0,20)
breaks <- seq(min(xlim), max(xlim), length.out = 20)
savePar <- par(mfrow = c(3,1))
hist(blocks$weight, xlim = xlim,ylim = ylim, breaks = breaks, main = "Distribution of weightabline(v = mean(blocks[,'weight']), col = 'red', lty = 3, lwd = 5)
hist(A$weight, xlim = xlim,ylim = ylim, breaks = breaks, main = "Distribution of weights of abline(v = group_A_mean, col = 'red', lty = 3, lwd = 5)
hist(B$weight, xlim = xlim,ylim = ylim, breaks = breaks, main = "Distribution of weights of abline(v = group_B_mean, col = 'red', lty = 3, lwd = 5)</pre>
```

Distribution of weights of whole population

Distribution of weights of group 'A'

Distribution of weights of group 'B'

par(savePar)

- ii. (6 marks) Using formula notation (e.g., boxplot(weight ~ group, data = blocks, ...)) draw pairs of (suitably labelled) boxplots comparing the two groups:
 - first with respect to block weights and
 - then with respect to the perimeters.

Comment on how the two groups compare.

Show your code.

Answer

boxplot(weight~group, data = blocks)

The boxplot shows that the median weight of group B is around 40 and is much higher than group A's median which is around 20. Also, the range of group B is from about mid 20s to high 80s while group A's range is from around 10 to 40. When we look into the boxplot of perimeter, the median perimeter of group A is around 23 and is lower than group B's median which is around 30. And the range of group A is from around 15 to 28 while group B's range is from low 20's to almost 40. These results indicates group B is higher than group A in both weight and perimeter, which means mostly group B's blocks are heavier and bigger than group A's.