

AFCCC/TN-96/06

Evaluation of the Homogeneity of Cloud Cover Climatology in Large Scale Regions

By
Capt Anthony J. Warren
Charles R. Coffin

MARCH 1996

DTIC QUALITY INSPECTED 4

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED.

Air Force Combat Climatology Center
859 Buchanan Street
Scott Air Force Base, Illinois 62225-5116

REVIEW AND APPROVAL STATEMENT

AFCCC/TN—96/006, *Evaluation of the Homogeneity of Cloud Cover Climatology in Large Scale Regions*, March 1996, has been reviewed and is approved for public release. There is no objection to unlimited distribution of this document to the public at large, or by the Defense Technical Information Center (DTIC) to the National Technical Information Service (NTIS).

LARRY J. WHITE, Maj, USAF
Chief, Systems Division

JAMES S. PERKINS
Scientific and Technical Information
Program Manager
18 March 1996

REPORT DOCUMENTATION PAGE

2. Report Date: March 1996
3. Report Type: Technical Note
4. Title: Evaluation of the Homogeneity of Cloud Cover Climatology in Large Scale Regions
6. Authors: Capt Anthony J. Warren and Charles R. Coffin
7. Performing Organization Name and Address: Air Force Combat Climatology Center, 859 Buchanan St., Scott AFB, Ill., 62225-5116.
8. Performing Organization Report Number: AFCCC/TN—96/003
12. Distribution/Availability Statement: Approved for public release; distribution unlimited.
13. Abstract: This technical note documents a study AFCCC completed to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). The sizes of these CEGs vary widely and are composed of a variable number of smaller regions known as Post Mission Evaluation regions (PMEs). AFCCC computed the monthly cloud-cover frequency distribution for each of the CEGs and PMEs from the Air Force's Real Time Nephanalysis (RTNEPH) database. In addition, AFCCC conducted a statistical comparison of the PMEs within each CEG to measure the homogeneity of the cloud climatology.
14. Subject Terms: REAL TIME NEPHANALYSIS, CONSOLIDATED EVALUATION GROUPINGS, POST MISSION EVALUATION REGIONS, CHI-SQUARE STATISTIC, PHI-COEFFICIENT, CLOUD COVER CLIMATOLOGY
15. Number of Pages: 28
17. Security Classification of Report: Unclassified
18. Security Classification of this Page: Unclassified
19. Security Classification of Abstract: Unclassified
20. Limitation of Abstract: UL

Standard Form 298

PREFACE

This technical note documents a study AFCCC conducted to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). This technical note documents a study AFCCC completed to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). The sizes of these CEGs vary widely and are composed of a variable number of smaller regions known as Post Mission Evaluation regions (PMEs). AFCCC computed the monthly cloud-cover frequency distributions for each of the CEGs and PMEs from the Air Force's Real Time Nephanalysis (RTNEPH) database. In addition, AFCCC conducted a statistical comparison of the PMEs within each CEG to measure the homogeneity of the cloud climatology.

CONTENTS

CHAPTER 1.	INTRODUCTION	1
1.1	Background	1
CHAPTER 2.	STATISTICAL METHODS	3
2.1	Comparison of Distributions	3
2.2	Cloud Cover Data	3
2.3	Interpretation of the Phi-Coefficient	3
2.4	Results	4
APPENDIX	DEFINITION OF CONSOLIDATED EVALUATION GROUPS (CEGS)	15
REFERENCES	17

FIGURES

Figure 1. Comparison of two distributions with a phi-coefficient of 0.05 4

Figure 2. Comparison of two distributions with a phi-coefficient of 0.20 4

Figure 3. Comparison of two distributions with a phi-coefficient of 0.35 4

Figure 4. Comparison of two distributions with a phi-coefficient of 0.50 4

Figure 5. Frequency distribution of phi-coefficients 4

TABLES

Table 1. PME regions which had similar cloud cover climatologies to their corresponding CEGs	4
Table 2. PME regions which had dissimilar cloud cover climatologies to their corresponding CEGs	6
Table 3. Possible alternative CEG regions for PME regions listed in Table 2	7
Table 4. Listing of the phi-coefficients for the comparison, by month, of each PME region with its original CEG.....	8
Table 5. Listing of the bad months for the CEGs that can be considered reasonable alternatives to the original CEGs (see Table 3)	10
Table 6. Listing of the phi-coefficients for the comparison, by month, of each PME region for the alternative CEGs.	13

**EVALUATION OF THE HOMOGENEITY OF CLOUD COVER
CLIMATOLOGY IN LARGE SCALE REGIONS**

Chapter 1

INTRODUCTION

1.1 Background. AFCCC (formerly designated USAFETAC) completed a study to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). The sizes of these CEGs vary widely and are composed of a variable number of smaller regions known as Post Mission Evaluation regions (PMEs). AFCCC computed the monthly cloud-cover frequency distributions for each of the CEGs and PMEs from the Air Force's Real Time Nephanalysis (RTNEPH)

database. In addition, AFCCC conducted a statistical comparison of the PMEs within each CEG to measure the homogeneity of the cloud climatology. The appendix contains a listing of the PMEs within each CEG.

Cloud climatology can vary greatly over very small distances, so caution must be used in concluding that the climatology in a given region is homogeneous. This study is a measure of the similarity of large-scale climatological features.

EVALUATION OF THE HOMOGENEITY OF CLOUD COVER CLIMATOLOGY IN LARGE SCALE REGIONS

Chapter 2

STATISTICAL METHODS

2.1 Comparison of Distributions. Testing the hypothesis, "Are two distributions statistically similar?" is not straightforward since the term similar is not precisely defined. The usual test hypothesis for comparing two distributions is, "Are two distributions statistically the same?" The chi-square test is used to evaluate this hypothesis. For each data category, the expected number E_i of observations, assuming the test hypothesis is true, is compared against the observed number of observations, O_i . The chi-square statistic, χ^2 is then calculated using (Fleiss, 1973):

$$\chi^2 = \sum_{i=1}^N \frac{(E_i - O_i)^2}{E_i}$$

where N is the total number of categories. This value is then compared against a critical value. If χ^2 exceeds this critical value, the test hypothesis is rejected.

There are several problems with the chi-square test. Primarily, it is very sensitive to sample size. Large sample sizes generally result in the test hypothesis being rejected; smaller samples result in the hypothesis being accepted. In addition, the test hypothesis is often too restrictive. Very often, the user is interested in knowing if two distributions are similar, not necessarily statistically identical. To overcome these two deficiencies, the phi-coefficient can be used. This coefficient is defined as (Fleiss, 1973):

$$\phi = \sqrt{\frac{\chi^2}{N}}$$

Values of the phi-coefficient close to zero indicate two distributions are nearly identical. Values around one indicate little similarity.

2.2 Cloud Cover Data. The cloud cover frequency distributions used in this study were initially divided into 21 classes. Class number 1 represented a cloud cover of zero percent. Class number 2 represented one to five percent, number 3 represented six to ten percent, and so on up to class number 21 which represented 100 percent cloud cover. The relative frequency of several classes was very small (in many cases less than one percent). It is inadvisable to

compute the chi-square statistic when classes have a low count. To overcome this we combined the original 21 classes into six larger classes:

- Class 1 (Old Class 1)
- Class 2 (Old Classes 2, 3, 4, 5, 6)
- Class 3 (Old Classes 7, 8, 9, 10, 11)
- Class 4 (Old Classes 12, 13, 14, 15)
- Class 5 (Old Classes 16, 17, 18, 19, 20)
- Class 6 (Old Class 21)

Chi-square and phi-coefficient values were computed for the cloud-cover frequency distribution of each PME and the corresponding CEG it was located within. A large amount of data was processed, as the monthly sample corresponding size within each PME was on the order of 10^6 .

2.3 Interpretation of the Phi-Coefficient. The phi-coefficient is a relative measure of the similarity of two distributions. As a guide to interpreting its significance, we have provided a comparison of four distribution sets for different values of the phi-coefficient: 0.05 (Figure 1), 0.20 (Figure 2), 0.35 (Figure 3), and 0.50 (Figure 4).

As a further guide to interpreting the phi-coefficient, Figure 5 depicts a plot of the relative frequency distribution and the cumulative frequency distribution of values of phi computed in this study. Based on the plots in Figures 1 through 5, we selected a value of phi of 0.35 as the discriminant between similar and non-similar distributions. About three-quarters of the distributions in this study were therefore classified as similar. In evaluating whether the cloud-cover climatology of a given PME was similar to that of the large CEG we used the following criterion: If the value of phi is less than 0.35 for 8 out of the 12 months, the climatologies are *similar*, otherwise the climatologies are classified as *dissimilar*.

2.4 Results. Table 1 lists those PME regions whose cloud-cover climatologies are similar to its corresponding CEG (see the appendix for a definition of each CEG). Table 2 lists those PME regions whose cloud-cover climatologies are dissimilar to its

CHAPTER 2

Figure 1. Comparison of two distributions with a phi-coefficient of 0.05.

Figure 2. Comparison of two distributions with a phi-coefficient of 0.20.

Figure 3. Comparison of two distributions with a phi-coefficient of 0.35.

Figure 4. Comparison of two distributions with a phi-coefficient of 0.50.

corresponding CEG. We conducted further analysis on these PME regions, comparing them against the remaining 18 CEGs to determine if this PME might better belong in one of these other regions. (We made no consideration for the proximity of the PME region to the CEG). Table 4 lists those CEGs in which at least three additional months had a phi-coefficient lower than 0.35. In some cases, no acceptable substitutes were found. Finally, Table 5 is listing of the phi-coefficients computed, by month, for the comparison of each PME region with its originally assigned CEG.

Due to the large numbers of bad matches in CEG 1, we broke this region up into two CEGs: 1a and 20. CEG 1a excluded the two arctic regions (1111 Antarctica and 1121 Arctic Ocean) which were

Distribution of Phi Coefficient

Figure 5. Frequency distribution of phi-coefficients.

transferred to CEG 20. The monthly values of phi for these two regions are listed in Table 6. The PME regions in CEG 1a now all showed similar climatologies. The new arctic CEG however indicated a poor fit. Because the climatologies of the two regions are 6 months out of phase, we also compared

results for a 6-month shift of region 1111. The comparison was still poor. There is some uncertainty if this indicates a real difference in climatology, or is an artifact of the RTNEPH, which has been shown to have difficulty discriminating between ice-cover and cloud-cover (Lowther et al., 1991).

Table 1. PME regions that had similar cloud cover climatologies to their corresponding CEGs.

CEG	PMEs
1	1111
2	117-124-125-126-127-512-514
3	111-112-113-114-116-211
4	152-212
5	118-141-143-145-154
6	115-151-221-222
7	323-324
8	144-146-147-415-417
9	312-313-321-931-932-933-934-935
10	723-732-741-913-914
11	721
12	915
13	413-414-1011
14	731-742-923
15	513
16	1012
17	133-134-1222-1243-1311-1312-1324-1334-1433-1434
18	135-422-1211-1223-1235-1241-1242-1313-1322-1323-1332-1333-1432
19	622-1212-1213-1214-1231-1232-1233-1321-1331-1421-1422

CHAPTER 2

Table 2. PME regions that had dissimilar cloud cover climatologies with their corresponding CEG.

CEG	PMEs
1	121-122-123-214-511-1121
2	1221
3	<i>none</i>
4	213
5	119
6	<i>none</i>
7	142-325
8	153-416
9	311-314-315-322-936
10	743
11	612-621-624-711-712-722
12	911-912-921-937
13	411-412
14	731-742-923
15	513
16	1013
17	131-132
18	<i>none</i>
19	421-623-1234-1411

Table 3. Possible alternative CEG regions for PME regions listed in Table 2.

CEG	PME	No of bad months	Alternates [Number of bad months in ()]
1	121	10	12(2), 5(7), 11(7), 14(7), 16(7)
	122	11	7(6), 11(7), 12(7), 5(8)
	123	11	12(6), 16(7), 19(7), 5(8), 7(8), 11(8), 14(8)
	214	7	12(1), 19(2), 18(3), 11(4)
	511	7	19(0), 12(2)
	1121	9	19(4), 14(5), 16(6)
2	1221	10	13(0), 17(0), 18(2), 11(4), 3(5)
4	213	6	<u>no satisfactory alternate</u>
5	119	6	10(0), 14(2), 16(2), 6(3)
7	142	8	5(3)
	325		18(2), 8(4), 12(4), 11(5), 13(5), 17(5), 2(6), 19(6)
8	153	7	5(4)
	416	6	5(4)
9	311	9	<u>no satisfactory alternate</u>
	314		<u>no satisfactory alternate</u>
	315		<u>no satisfactory alternate</u>
	322		16(3)
	936		7(4)
	743		14(2), 5(4)
11	612	9	17(6)
	621		6(10)
	624	11	18(8)
	711	6	13(3), 17(3)
	712		2(1), 8(3), 12(3), 18(4)
	732	5	<u>no satisfactory alternate</u>
12	911	6	<u>no satisfactory alternate</u>
	912	6	11(2), 18(3)
	921	5	6(0), 10(1), 14(1)
	937	7	5(2), 14(4)
13	411	7	<u>no satisfactory alternate</u>
	412	5	<u>no satisfactory alternate</u>
14	611	5	5(3)
	922	5	10(3)
16	1013	12	4(1), 8(2), 3(3), 11(3), 18(3), 2(6), 6(6)
17	131	6	12(3), 18(4), 19(4)
	132	8	11(2), 12(4), 18(4), 19(4)
19	421	6	<u>no satisfactory alternate</u>
	623	5	14(0), 16(3)
	1234	6	16(0), 14(1), 5(3), 10(3)
	1411	6	<u>no satisfactory alternate</u>
	1412	5	<u>no satisfactory alternate</u>

Table 4. Listing of the phi-coefficients for the comparison, by month, of each PME region with its original CEG.

CEG	PME	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	121	0.43	0.61	0.58	0.72	0.54	0.47	0.55	0.56	0.33	0.40	0.33	0.46
1	122	0.60	0.69	0.76	0.71	0.63	0.56	0.57	0.54	0.34	0.44	0.56	0.57
1	123	0.47	0.65	0.84	0.79	0.55	0.55	0.57	0.47	0.22	0.47	0.58	0.59
1	214	0.32	0.47	0.45	0.57	0.36	0.31	0.45	0.45	0.23	0.29	0.30	0.39
1	511	0.24	0.39	0.54	0.52	0.36	0.37	0.47	0.39	0.12	0.24	0.24	0.26
1	1111	0.16	0.28	0.35	0.39	0.30	0.27	0.35	0.28	0.38	0.21	0.23	0.20
1	1121	0.24	0.37	0.50	0.73	0.83	0.71	0.80	0.61	0.32	0.59	0.52	0.26
2	117	0.14	0.16	0.13	0.14	0.15	0.13	0.16	0.16	0.11	0.18	0.14	0.12
2	124	0.31	0.25	0.11	0.12	0.12	0.12	0.10	0.09	0.09	0.10	0.23	0.29
2	125	0.26	0.19	0.30	0.19	0.10	0.13	0.10	0.11	0.13	0.17	0.30	0.31
2	126	0.41	0.47	0.29	0.26	0.18	0.16	0.29	0.23	0.08	0.17	0.36	0.42
2	127	0.40	0.30	0.08	0.09	0.07	0.08	0.15	0.11	0.17	0.35	0.29	0.32
2	512	0.14	0.14	0.14	0.16	0.17	0.16	0.19	0.21	0.13	0.11	0.14	0.12
2	514	0.20	0.13	0.11	0.11	0.17	0.19	0.20	0.29	0.26	0.13	0.14	0.23
2	1221	0.50	0.52	0.36	0.28	0.36	0.39	0.43	0.48	0.42	0.31	0.46	0.54
3	111	0.14	0.16	0.12	0.05	0.34	0.19	0.21	0.18	0.15	0.27	0.18	0.22
3	112	0.14	0.10	0.11	0.14	0.22	0.06	0.17	0.17	0.19	0.28	0.12	0.15
3	113	0.12	0.08	0.07	0.08	0.16	0.09	0.13	0.16	0.15	0.20	0.10	0.10
3	114	0.21	0.15	0.10	0.12	0.21	0.09	0.15	0.20	0.12	0.14	0.13	0.19
3	116	0.15	0.13	0.30	0.14	0.10	0.15	0.14	0.22	0.14	0.13	0.19	0.16
3	211	0.22	0.22	0.26	0.21	0.17	0.18	0.22	0.26	0.22	0.23	0.24	0.23
4	152	0.25	0.25	0.25	0.19	0.22	0.10	0.25	0.27	0.15	0.33	0.22	0.21
4	212	0.07	0.08	0.07	0.05	0.05	0.02	0.05	0.07	0.04	0.08	0.08	0.07
4	213	0.21	0.28	0.29	0.33	0.40	0.36	0.50	0.45	0.47	0.38	0.24	0.23
5	118	0.46	0.24	0.18	0.12	0.12	0.29	0.26	0.28	0.12	0.23	0.41	0.52
5	119	0.42	0.29	0.28	0.10	0.25	0.51	0.55	0.56	0.48	0.14	0.17	0.40
5	141	0.16	0.14	0.18	0.09	0.12	0.14	0.09	0.09	0.09	0.15	0.14	0.16
5	143	0.27	0.20	0.23	0.19	0.22	0.34	0.26	0.29	0.33	0.17	0.23	0.33
5	145	0.32	0.26	0.19	0.07	0.12	0.24	0.38	0.39	0.24	0.10	0.17	0.34
5	154	0.33	0.30	0.31	0.14	0.13	0.19	0.22	0.20	0.12	0.08	0.21	0.30
6	115	0.34	0.31	0.28	0.22	0.18	0.30	0.37	0.28	0.35	0.26	0.33	0.37
6	151	0.19	0.19	0.24	0.15	0.20	0.35	0.23	0.18	0.09	0.14	0.16	0.09
6	221	0.13	0.13	0.07	0.16	0.15	0.34	0.36	0.30	0.37	0.14	0.15	0.11
6	222	0.28	0.23	0.25	0.14	0.09	0.13	0.14	0.13	0.15	0.19	0.22	0.27
7	142	0.17	0.35	0.38	0.37	0.38	0.56	0.64	0.56	0.47	0.32	0.26	0.21
7	323	0.14	0.09	0.12	0.18	0.23	0.15	0.08	0.05	0.13	0.27	0.26	0.17
7	324	0.08	0.19	0.17	0.07	0.19	0.46	0.28	0.28	0.36	0.34	0.30	0.06
7	325	0.90	0.43	0.46	0.72	0.65	0.31	0.23	0.09	0.29	0.87	1.09	0.90
8	144	0.11	0.09	0.05	0.08	0.08	0.11	0.20	0.18	0.19	0.13	0.07	0.09
8	146	0.24	0.23	0.21	0.23	0.21	0.19	0.14	0.25	0.26	0.23	0.32	0.31
8	147	0.11	0.15	0.15	0.11	0.10	0.08	0.23	0.06	0.13	0.11	0.08	0.19
8	153	0.57	0.62	0.61	0.50	0.37	0.21	0.27	0.15	0.31	0.43	0.41	0.29
8	415	0.47	0.40	0.31	0.16	0.10	0.11	0.08	0.15	0.19	0.30	0.38	0.52
8	416	0.35	0.36	0.38	0.45	0.39	0.25	0.19	0.26	0.25	0.36	0.32	0.26
8	417	0.33	0.33	0.29	0.32	0.30	0.23	0.43	0.33	0.23	0.29	0.38	0.38
9	311	0.67	0.59	0.43	0.23	0.24	0.37	0.55	0.49	0.44	0.32	0.41	0.61
9	312	0.29	0.22	0.21	0.15	0.04	0.47	0.65	0.58	0.58	0.05	0.30	0.34
9	313	0.15	0.14	0.12	0.05	0.21	0.19	0.12	0.19	0.31	0.37	0.26	0.14
9	314	0.33	0.37	0.39	0.24	0.09	0.37	0.36	0.41	0.51	0.19	0.18	0.39
9	315	0.08	0.09	0.06	0.35	0.25	0.55	0.68	0.65	0.53	0.32	0.14	0.03
9	321	0.15	0.21	0.33	0.06	0.15	0.07	0.34	0.14	0.33	0.37	0.19	0.21
9	322	0.61	0.71	0.72	0.34	0.09	0.25	0.33	0.41	0.42	0.12	0.26	0.69
9	931	0.21	0.25	0.26	0.16	0.11	0.05	0.07	0.07	0.28	0.13	0.39	0.23
9	932	0.24	0.25	0.16	0.17	0.21	0.25	0.33	0.29	0.21	0.34	0.30	0.18
9	933	0.13	0.02	0.04	0.20	0.15	0.35	0.66	0.63	0.40	0.20	0.07	0.09
9	934	0.04	0.10	0.09	0.10	0.10	0.12	0.19	0.28	0.24	0.08	0.04	0.07

Table 4 (continued).

	CEG	PME	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
9	935	0.31	0.28	0.15	0.24	0.17	0.26	0.40	0.46	0.42	0.19	0.23	0.28	
9	936	0.13	0.08	0.10	0.46	0.44	0.48	0.50	0.38	0.36	0.37	0.13	0.12	
10	723	0.05	0.08	0.12	0.16	0.16	0.16	0.12	0.15	0.10	0.13	0.11		
10	732	0.08	0.06	0.06	0.12	0.15	0.06	0.14	0.12	0.07	0.06	0.04	0.06	
10	741	0.51	0.50	0.43	0.19	0.13	0.26	0.30	0.31	0.19	0.07	0.23	0.50	
10	743	0.42	0.40	0.28	0.12	0.25	0.51	0.55	0.74	0.53	0.29	0.12	0.42	
10	913	0.21	0.19	0.04	0.17	0.30	0.32	0.29	0.29	0.32	0.12	0.09	0.13	
10	914	0.24	0.27	0.16	0.10	0.13	0.14	0.14	0.14	0.15	0.14	0.11	0.08	
11	612	0.63	0.72	0.75	0.53	0.23	0.50	0.63	0.64	0.42	0.23	0.26	0.42	
11	621	0.80	0.82	0.82	0.89	0.61	0.43	0.42	0.35	0.41	0.53	0.69	0.67	
11	624	0.72	0.74	0.78	0.72	0.48	0.35	0.36	0.35	0.28	0.40	0.55	0.68	
11	711	0.16	0.10	0.04	0.28	0.43	0.55	0.60	0.65	0.40	0.37	0.18	0.17	
11	712	0.43	0.41	0.37	0.16	0.21	0.39	0.43	0.38	0.08	0.07	0.08	0.32	
11	713	0.26	0.26	0.22	0.23	0.12	0.16	0.26	0.26	0.09	0.13	0.07	0.07	
11	721	0.18	0.18	0.20	0.22	0.38	0.27	0.26	0.13	0.26	0.22	0.17	0.13	
11	722	0.35	0.35	0.34	0.16	0.20	0.40	0.47	0.44	0.44	0.07	0.12	0.32	
12	911	0.48	0.45	0.29	0.23	0.09	0.32	0.40	0.38	0.15	0.20	0.43	0.44	
12	912	0.57	0.56	0.34	0.21	0.10	0.38	0.42	0.27	0.16	0.33	0.50	0.61	
12	915	0.13	0.04	0.14	0.16	0.26	0.33	0.38	0.33	0.22	0.29	0.11	0.12	
12	921	0.33	0.17	0.15	0.21	0.29	0.44	0.57	0.58	0.93	0.45	0.19	0.26	
12	937	0.42	0.43	0.35	0.08	0.25	0.24	0.26	0.45	0.63	0.37	0.23	0.38	
13	411	1.25	1.22	0.95	0.57	0.23	0.30	0.35	0.42	0.17	0.25	0.62	1.17	
13	412	0.40	0.40	0.54	0.52	0.21	0.21	0.24	0.26	0.11	0.13	0.15	0.37	
13	413	0.14	0.10	0.10	0.07	0.16	0.09	0.12	0.19	0.13	0.27	0.23	0.16	
13	414	0.31	0.31	0.26	0.14	0.10	0.18	0.21	0.27	0.39	0.12	0.07	0.27	
13	1011	0.36	0.47	0.36	0.33	0.12	0.08	0.07	0.12	0.16	0.08	0.12	0.34	
14	611	0.35	0.39	0.39	0.25	0.16	0.31	0.49	0.46	0.13	0.18	0.31	0.26	
14	731	0.37	0.33	0.36	0.29	0.29	0.16	0.09	0.08	0.08	0.14	0.19	0.22	
14	742	0.19	0.22	0.12	0.14	0.49	0.58	0.56	0.46	0.20	0.21	0.10	0.13	
14	922	0.22	0.27	0.23	0.10	0.44	0.63	0.66	0.54	0.39	0.07	0.17	0.21	
14	923	0.33	0.23	0.31	0.24	0.26	0.23	0.33	0.33	0.35	0.13	0.16	0.25	
15	513	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
16	1012	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.05	0.06	0.05	0.03	0.03
16	1013	0.47	0.46	0.53	0.60	0.72	0.78	0.82	0.98	1.13	0.93	0.65	0.52	
17	131	0.21	0.45	0.71	0.57	0.41	0.67	0.33	0.33	0.37	0.18	0.22	0.25	
17	132	0.37	0.52	0.41	0.76	0.54	0.57	0.72	0.41	0.14	0.16	0.10	0.21	
17	133	0.16	0.17	0.14	0.22	0.13	0.14	0.21	0.22	0.27	0.30	0.27	0.18	
17	134	0.31	0.30	0.13	0.13	0.28	0.28	0.29	0.24	0.12	0.10	0.24	0.33	
17	1222	0.19	0.08	0.14	0.11	0.13	0.19	0.21	0.17	0.05	0.17	0.22	0.16	
17	1243	0.04	0.04	0.05	0.07	0.04	0.05	0.05	0.07	0.04	0.05	0.05	0.04	
17	1311	0.08	0.09	0.10	0.15	0.17	0.16	0.12	0.16	0.23	0.14	0.18	0.19	
17	1312	0.29	0.24	0.27	0.19	0.13	0.08	0.11	0.13	0.18	0.29	0.20	0.22	
17	1324	0.25	0.21	0.13	0.13	0.21	0.28	0.39	0.32	0.15	0.12	0.18	0.27	
17	1334	0.18	0.17	0.14	0.05	0.06	0.08	0.08	0.09	0.20	0.22	0.19	0.24	
17	1433	0.06	0.04	0.03	0.02	0.04	0.07	0.11	0.09	0.19	0.05	0.04	0.07	
17	1434	0.08	0.05	0.05	0.04	0.09	0.13	0.14	0.15	0.30	0.17	0.14	0.10	
18	135	0.20	0.17	0.24	0.35	0.23	0.19	0.32	0.22	0.13	0.23	0.14	0.14	
18	422	0.25	0.30	0.30	0.25	0.23	0.24	0.14	0.14	0.09	0.15	0.12	0.13	
18	1211	0.31	0.28	0.20	0.17	0.22	0.26	0.26	0.20	0.12	0.08	0.08	0.22	
18	1223	0.16	0.11	0.10	0.11	0.10	0.19	0.19	0.12	0.03	0.02	0.06	0.11	
18	1235	0.11	0.06	0.03	0.04	0.14	0.20	0.23	0.22	0.11	0.12	0.12	0.09	
18	1241	0.23	0.19	0.16	0.06	0.11	0.17	0.21	0.20	0.21	0.24	0.14	0.23	
18	1242	0.12	0.12	0.12	0.17	0.22	0.21	0.23	0.24	0.25	0.09	0.13	0.12	
18	1313	0.27	0.24	0.18	0.25	0.16	0.19	0.34	0.40	0.22	0.18	0.21	0.16	
18	1322	0.12	0.13	0.16	0.22	0.31	0.41	0.50	0.53	0.22	0.19	0.16	0.12	
18	1323	0.07	0.06	0.17	0.26	0.22	0.22	0.23	0.20	0.12	0.12	0.12	0.05	
18	1333	0.18	0.15	0.14	0.11	0.07	0.09	0.11	0.15	0.16	0.09	0.15	0.15	
18	1431	0.10	0.12	0.05	0.06	0.10	0.17	0.25	0.21	0.23	0.14	0.06	0.05	
18	1432	0.16	0.14	0.18	0.11	0.20	0.20	0.14	0.17	0.11	0.07	0.12	0.13	

CHAPTER 2

Table 4 (continued).

CEG	PME	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
19	421	0.15	0.21	0.18	0.13	0.32	0.52	0.46	0.53	0.44	0.47	0.42	0.13
19	622	0.62	0.58	0.54	0.32	0.08	0.19	0.13	0.13	0.10	0.19	0.22	0.45
19	623	0.26	0.28	0.24	0.37	0.45	0.17	0.19	0.30	0.38	0.41	0.40	0.22
19	1212	0.14	0.23	0.09	0.11	0.15	0.33	0.44	0.45	0.26	0.25	0.19	0.20
19	1213	0.14	0.15	0.05	0.06	0.05	0.06	0.04	0.09	0.10	0.05	0.06	0.15
19	1214	0.05	0.10	0.07	0.05	0.17	0.20	0.28	0.27	0.16	0.18	0.12	0.09
19	1231	0.45	0.63	0.41	0.31	0.18	0.12	0.10	0.06	0.15	0.09	0.26	0.44
19	1232	0.14	0.10	0.03	0.10	0.13	0.29	0.37	0.43	0.53	0.32	0.23	0.10
19	1233	0.30	0.27	0.16	0.10	0.11	0.20	0.32	0.30	0.46	0.13	0.15	0.26
19	1234	0.38	0.26	0.17	0.18	0.36	0.37	0.40	0.38	0.61	0.29	0.30	0.33
19	1321	0.15	0.12	0.07	0.08	0.09	0.04	0.04	0.05	0.11	0.10	0.15	0.07
19	1331	0.20	0.16	0.07	0.09	0.26	0.38	0.37	0.33	0.53	0.19	0.13	0.12
19	1411	0.13	0.30	0.15	0.17	0.48	0.70	0.62	0.76	0.57	0.47	0.32	0.06
19	1412	0.29	0.54	0.49	0.38	0.18	0.27	0.16	0.24	0.20	0.39	0.42	0.29
19	1421	0.34	0.26	0.20	0.14	0.20	0.09	0.16	0.12	0.13	0.17	0.13	0.06
19	1422	0.29	0.20	0.08	0.10	0.09	0.19	0.22	0.16	0.23	0.14	0.19	0.11

Table 5. Listing of the bad months for the CEGs that can be considered reasonable alternatives to the original CEGs (see Table 3).

OLD CEG	PME	CEG	NUMBER OF BAD MONTHS WITH INDIVIDUAL MONTHS LISTED											
1	121	12	2	MAR	APR									
1	121	5	7	MAY	JUN	JUL	AUG	SEP	OCT	NOV				
1	121	11	7	JAN	FEB	MAR	APR	MAY	NOV	DEC				
1	121	14	7	FEB	MAY	JUN	JUL	AUG	SEP	OCT				
1	121	16	7	MAY	JUN	JUL	AUG	SEP	OCT	NOV				
1	122	7	6	FEB	MAY	JUL	AUG	OCT	NOV					
1	122	11	7	JAN	FEB	MAR	APR	MAY	NOV	DEC				
1	122	12	7	JAN	FEB	MAR	APR	MAY	NOV	DEC				
1	122	5	8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT			
1	123	12	6	FEB	MAR	APR	MAY	NOV	DEC					
1	123	16	7	FEB	MAR	JUN	JUL	AUG	SEP	OCT				
1	123	19	7	JAN	FEB	MAR	APR	SEP	NOV	DEC				
1	123	5	8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT			
1	123	7	8	JAN	FEB	MAY	JUN	JUL	AUG	OCT	NOV			
1	123	11	8	JAN	FEB	MAR	APR	MAY	OCT	NOV	DEC			
1	123	14	8	JAN	FEB	MAR	APR	MAY	AUG	SEP	DEC			
1	214	12	1	APR										
1	214	19	2	SEP	OCT									
1	214	18	3	FEB	APR	DEC								
1	214	11	4	FEB	MAR	APR	DEC							
1	511	19	0											
1	511	12	2	MAR	APR									
1	1121	19	4	MAR	APR	MAY	NOV							
1	1121	14	5	JAN	FEB	MAR	APR	MAY						
1	1121	16	6	JAN	MAR	APR	AUG	SEP	OCT					
2	1221	13	0											
2	1221	17	0											
2	1221	18	2	AUG	SEP									
2	1221	11	4	JUN	JUL	AUG	SEP							
2	1221	3	5	MAY	JUN	JUL	AUG	SEP						
5	119	10	0											
5	119	14	2	AUG	SEP									
5	119	16	2	JAN	DEC									
5	119	6	3	JUN	SEP	NOV								
7	142	5	3	AUG	NOV	DEC								

Table 5 (continued).

OLD CEG	PME	CEG	NUMBER OF BAD MONTHS WITH INDIVIDUAL MONTHS LISTED		
7	325	18	2	FEB	MAR
7	325	8	4	FEB	MAR JUL AUG
7	325	12	4	JAN	MAR JUN AUG
7	325	11	5	FEB	MAR JUN JUL AUG
7	325	13	5	JAN	FEB MAR APR DEC
7	325	17	5	JAN	FEB MAR APR DEC
7	325	2	6	JAN	FEB MAR APR JUN AUG
7	325	19	6	FEB	MAY JUN JUL AUG OCT
8	-153	5	4	JUN	JUL AUG SEP
8	416	5	4	JUN	JUL AUG SEP
9	322	16	3	JUN	JUL SEP
9	936	7	4	JUN	JUL AUG SEP
10	743	14	2	JUN	AUG
10	743	5	4	JAN	FEB AUG OCT
11	612	17	6	JAN	FEB MAR APR NOV DEC
11	621	6	10	JAN	FEB MAR APR JUN JUL AUG SEP NOV DEC
11	624	18	8	JAN	FEB MAR APR MAY OCT NOV DEC
11	711	13	3	JAN	FEB DEC
11	711	17	3	JAN	FEB DEC
11	712	2	1	JAN	
11	712	8	3	JAN	FEB MAR
11	712	12	3	MAY	JUN JUL
11	712	18	4	JAN	FEB MAR DEC
12	912	11	2	JUN	JUL
12	912	18	3	JUN	JUL AUG
12	921	6	0		
12	921	10	1	APR	
12	921	14	1	SEP	
12	937	5	2	JAN	APR
12	937	14	4	JAN	FEB APR DEC
14	611	5	3	JUL	AUG SEP
14	922	10	3	MAY	JUN JUL

CHAPTER 2

Table 5 (continued).

OLD CEG	PME	CEG	NUMBER OF BAD MONTHS WITH INDIVIDUAL MONTHS LISTED	
16	1013	4	1	DEC
16	1013	8	2	MAR DEC
16	1013	3	3	JAN FEB MAR
16	1013	11	3	JUL AUG SEP
16	1013	18	3	FEB MAR SEP
16	1013	2	6	JAN FEB MAR APR SEP DEC
16	1013	6	6	MAY JUN JUL AUG SEP OCT
17	131	12	3	JAN NOV DEC
17	131	18	4	MAR JUN NOV DEC
17	131	19	4	JAN OCT NOV DEC
17	132	11	2	APR OCT
17	132	12	4	JAN OCT NOV DEC
17	132	18	4	APR JUL SEP OCT
17	132	19	4	SEP OCT NOV DEC
19	623	14	0	
19	623	16	3	JUL AUG SEP
19	1234	16	0	
19	1234	14	1	SEP
19	1234	5	3	MAY JUN JUL
19	1234	10	3	JAN FEB DEC

Table 6. Listing of the phi-coefficients for the comparison, by month, of each PME region for the alternative CEGs.

CEG	PME	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1a	121	0.21	0.22	0.22	0.23	0.21	0.17	0.12	0.16	0.17	0.17	0.13	0.19
1a	122	0.32	0.25	0.20	0.15	0.24	0.19	0.14	0.17	0.18	0.19	0.26	0.25
1a	123	0.21	0.21	0.27	0.23	0.19	0.24	0.16	0.13	0.12	0.23	0.29	0.26
1a	214	0.36	0.31	0.33	0.27	0.23	0.15	0.09	0.09	0.14	0.16	0.26	0.23
1a	511	0.11	0.12	0.10	0.11	0.10	0.08	0.08	0.09	0.09	0.08	0.09	0.12
20	1111	0.07	0.11	0.15	0.18	0.17	0.13	0.16	0.12	0.23	0.11	0.11	0.08
20	1121	0.64	0.70	0.67	0.88	0.81	0.58	0.64	0.63	0.58	0.93	0.91	0.65

Appendix

DEFINITION OF CONSOLIDATED EVALUATION GROUPS (CEGs)

1. POLAR REGIONS

- 121 Kara Sea and Coast
- 122 Laptev Sea and Coast
- 123 Chukchi Sea and Coast
- 214 Svalbard
- 511 Greenland and Arctic Ocean
- 1111 Antarctica
- 1121 Arctic Ocean

2. SUBARCTIC REGION

- 117 Western Siberia
- 124 Central Siberia
- 125 Eastern Siberia
- 126 Kamchatka and Kuril Islands
- 127 Soviet Amur and Vladivostok
- 512 Canada
- 514 Mainland Alaska
- 1221 Bering Sea and Aleutians

3. RUSSIAN REGION

- 111 Barents Sea Coast
- 112 Western Russia
- 113 Northwest Russia
- 114 Moscow Rectangle
- 116 Gorkiy - Sverdlovsk
- 211 Scandinavia - Baltic Sea

4. NORTHERN EUROPEAN REGION

- 152 Northern Eastern Europe
- 212 NW Europe - North Sea
- 213 Iceland

5. NORTHERN CHINA REGION

- 118 Kazakhstan
- 119 South Soviet Asia
- 141 Northwest China
- 143 North Central China
- 154 North East China
- 154 Mongolia

6. MEDITERRANEAN REGION

- 115 Southwest Russia
- 151 Southern Eastern Europe
- 221 Greece and Turkey
- 222 W Mediterranean

7. INDIAN REGION

- 142 Tibet
- 323 Northern India, Bangladesh
- 324 Southern India
- 325 Sri Lanka

8. ASIAN EAST COASTAL REGION

- 144 South Central Asia
- 146 East China
- 147 Southeast China
- 153 North Korea
- 415 Japan
- 416 South Korea
- 417 Taiwan

9. ARID REGION

- 311 Israel and Adjacent States
- 312 Iraq
- 313 Arabian Peninsula
- 314 Iran
- 315 Egypt
- 321 Pakistan
- 322 Afghanistan
- 931 W Sahara & Mauritania
- 932 Morocco & Algeria
- 933 Libya
- 934 Mali & Niger
- 935 Chad & Sudan
- 936 Horn of Africa

10. SOUTHERN HEMISPHERE CONTINENTAL

- 723 Southeast Brazil
- 732 Bolivia & Paraguay
- 741 Northern Argentina
- 743 Uruguay
- 913 Southeast Africa
- 914 Madagascar

11. TROPICAL AMERICANA

- 612 Central America
- 621 Cuba
- 624 Antilles & Bahamas
- 711 Columbia & Northern Ecuador
- 712 Venezuela & Guianas
- 713 S Ecuador & S Colombia
- 721 Northern Brazil
- 722 Amazon Brazil

12. AFRICAN TROPICS

- 911 Humid West Africa
- 912 S Congo, S Gabon, S Za re
- 915 Humid Central Africa
- 921 Tanzania & S Kenya
- 937 N Uganda & N Kenya

13. ASIAN TROPICS

- 411 Southeast Asia
- 412 Philippines
- 413 N Indonesia & Malaysia
- 414 S Indonesia
- 1011 Papua New Guinea

14. VARIED WEST COASTAL

611 Mexico
731 Peru & N Chile
742 S Argentina & S Chile
922 Angola & Namibia
923 Union of South Africa

15. UNITED STATES

513 Contiguous United States

16. AUSTRALIAN REGION

1012 Australia
1013 New Zealand

17. HIGH LATITUDE SEAS

1222 Gulf of Alaska
1324 Iceberg Atlantic
1312 Rockall Atlantic
1311 Norwegian & Greenland Seas
133 North Cape Area
132 Barents Sea
131 Sea of Okhotsk
134 Komandorsky - Bering Sea
1243 W Drake Passage Pacific
1334 South Georgia Atlantic
1433 Macquarie - Antipodes So

18. MID-LATITUDE SEAS

1223 Midway - California Pacific
1323 Bermuda Atlantic
1322 Sargasso Atlantic
1313 Gibraltar Approaches
135 Sea of Japan
422 East China & Yellow Seas
1211 Volcano Is., NW Pacific
1242 Kermadec - Chatham Pacific
1235 Easter Island Pacific
1333 SW Atlantic
1332 Tristan de Cunha Atlantic
1432 SW Indian Ocean
1431 Amsterdam Indian Ocean
1241 Tasman Sea

19. TROPICAL SEAS

1212 Former Trust Pacific
1213 Hawaii - Kingman Pacific
1214 Clipperton Pacific
622 Caribbean Sea
623 Gulf of Mexico
1321 Cape Verde Atlantic
1412 Arabia Sea
1411 Bay of Bengal
421 South China Sea
1231 Solomons - Samoa Pacific
1232 Jarvis - Cook Pacific
1233 French Polynesia
1234 S Galapagos Pacific
1331 Ascension Atlantic
1422 Seychelles - Mauritius
1421 Cocos Indian Ocean

REFERENCES

Fleiss, J. L., *Statistical Methods for Rates and Proportions*, Wiley, 1973.

Lowther, R. P., M. T. Surmeier, R. W. Hartman, C. R. Coffin, and A. J. Warren, *RTNEPH Total Cloud Cover Validation Study*, USAFETAC/PR—91/020, USAF Environmental Technical Applications Center, Scott AFB, Ill., 1991.