IZVODI ZADACI (II deo)

U ovom delu ćemo pokušati da vam objasnimo traženje izvoda složenih funkcija.

Prvo da razjasnimo koja je funkcija složena? Pa, najprostije rečeno, to je svaka funkcija koje nema u tablici (tamo su samo elementarne funkcije) i čiji izvod se ne može naći primenom datih pravila.

Evo par primera:

Primer 1.

Nađi izvod funkcije
$$y = (1+5x)^{12}$$

Kako da razmišljamo?

Da je data funkcija $y = x^{12}$, njen izvod bi bio $y` = 12 x^{11}$, i to ne bi bio problem. Ali mi umesto x-sa imamo 1+5x i to nam govori da je funkcija složena! Radimo isto kao za elementarnu funkciju, i dodamo izvod od onog što je složeno! Dakle: $y = (1+5x)^{12}$ $y` = 12(1+5x)^{11}(1+5x)` [od jedinice je izvod 0, a od 5x je izvod 5]$ $y` = 12 (1+5x)^{11} *5$

Primer 2.

$$y = \sqrt{\sin x}$$

Podsetimo se : ako je y = \sqrt{x} izvod je $y = \frac{1}{2\sqrt{x}}$, ali pošto unutar korena imamo sinx, funkcija je složena!

$$y = \sqrt{\sin x}$$

$$y = \frac{1}{2\sqrt{\sin x}} (\sin x)$$

 $y' = 60 (1+5x)^{11}$

$$y = \frac{1}{2\sqrt{\sin x}} \cos x$$

Primer 3.

Nađi izvod funkcije $y = e^{x^2 + 2x - 3}$

Znamo da je $(e^x)=e^x$. A pošto umesto x-sa imamo izraz x^2+2x-3 , to se znači radi o složenoj funkciji.

$$y = e^{x^2 + 2x - 3}$$

$$y' = e^{x^2 + 2x - 3} (x^2 + 2x - 3)$$

$$y' = e^{x^2 + 2x - 3} (2x + 2)$$

Primer 4.

Nađi izvod funkcije $y = \ln \frac{1+x}{1-x}$

Od $\ln x$ funkcije izvod je $\frac{1}{x}$, ali ovde je umesto x- sa izraz $\frac{1+x}{1-x}$ pa radimo kao složenu funkciju! Dakle:

$$y = \ln \frac{1+x}{1-x}$$

$$y = \frac{1}{\frac{1+x}{1-x}} \left(\frac{1+x}{1-x} \right)$$
 ovde pazimo, jer je $\left(\frac{1+x}{1-x} \right)$ izvod količnika!

$$y' = \frac{1}{\frac{1+x}{1-x}} \frac{(1+x)'(1-x) - (1-x)'(1+x)}{(1-x)^2}$$
 skratimo po 1-x

$$y = \frac{1}{1+x} \frac{1-x+1+x}{1-x}$$

$$y = \frac{1}{1+x} \frac{2}{1-x}$$
 u imeniocu je razlika kvadrata...

$$y = \frac{2}{1 - x^2}$$
 konačno rešenje!

ZNAČI: Radimo sve isto kao da je elementarna funkcija i pomnožimo sve sa izvodom od onog što je složeno!

Ako nismo ovo baš razumeli evo tablice izvoda složene funkcije, y = f(u) a u = g(x) pa je y' = f'(u) g'(x)

2.
$$(u^n) = nu^{n-1}u$$

3.
$$(a^u)'=a^u \ln a u'$$

4.
$$(e^{u})=e^{u}u$$

5.
$$(\log_a u) = \frac{1}{u \ln a} u$$

6.
$$(\ln u) = \frac{1}{u}u$$

$$7. \quad \left(\frac{1}{u}\right)^{\cdot} = -\frac{1}{u^2}u^{\cdot}$$

8.
$$\sqrt{u} = \frac{1}{2\sqrt{u}}u$$

11. (tgu)'=
$$\frac{1}{\cos^2 u}u$$
'

12. (ctgu)'=
$$-\frac{1}{\sin^2 u}u$$
'

13. (arcsinu)'= $\frac{1}{\sqrt{1-u^2}}u$ '

14. (arccosu)'= -
$$\frac{1}{\sqrt{1-u^2}}u$$
'

15. (arctgu)'=
$$\frac{1}{1+u^2}u$$
'

16. (arcctgu)'= -
$$\frac{1}{1+u^2}u$$
'

ZADACI:

1. Nađi izvod funkcije a) $y = \sin^5 x$

b)
$$y = \sin 5x$$

Rešenje:

Ovde moramo voditi računa, $\sin^5 x$ ćemo raditi kao drugi tablični, jer važi $\sin^5 x = (\sin x)^5$ dok ćemo $\sin 5x$ raditi kao deveti tablični, to jest kao $\sin u$, gde je u = 5x

 $y' = \cos 5x = 5\cos 5x$

a)
$$y = \sin^5 x$$
 b) $y = \sin 5x$
 $y' = 5\sin^4 x(\sin x)$ $y' = \cos 5x(5x)$

2. Nađi izvod funkcije
$$y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}$$

Rešenje: Ovde imamo višestruko složenu funkciju...**Najpre idemo izvod ln u, gde je u** = $\sqrt{\frac{1-\sin x}{1+\sin x}}$

$$y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}$$

 $y' = 5\sin^4 x \cos x$

$$y = \frac{1}{\sqrt{\frac{1-\sin x}{1+\sin x}}} \left(\sqrt{\frac{1-\sin x}{1+\sin x}} \right)$$
 sada radimo izvod $\sqrt{u} = \frac{1}{2\sqrt{u}} u$ gde je $u = \frac{1-\sin x}{1+\sin x}$

$$y = \frac{1}{\sqrt{\frac{1-\sin x}{1+\sin x}}} \frac{1}{2\sqrt{\frac{1-\sin x}{1+\sin x}}} (\frac{1-\sin x}{1+\sin x})$$
 pazi : $\frac{1-\sin x}{1+\sin x}$ je izvod količnika

$$y' = \frac{1}{2\frac{1-\sin x}{1+\sin x}} \frac{(1-\sin x)'(1+\sin x) - (1+\sin x)'(1-\sin x)}{(1+\sin x)^2}$$

$$y' = \frac{1}{2\frac{1-\sin x}{1+\sin x}} \frac{-\cos x(1+\sin x) - \cos x(1-\sin x)}{(1+\sin x)^2}$$

$$y = \frac{1}{2\frac{1-\sin x}{1+\sin x}} \frac{-\cos x - \cos x \sin x - \cos x + \cos x \sin x}{(1+\sin x)^2}$$

$$y = \frac{1}{2\frac{1-\sin x}{1+\sin x}} \frac{-2\cos x}{(1+\sin x)^2}$$
 pokratimo šta može...

$$y = \frac{-\cos x}{(1-\sin x)(1+\sin x)}$$
 u imeniocu je razlika kvadrata

$$y = \frac{-\cos x}{1-\sin^2 x}$$
 znamo da je $\sin^2 x + \cos^2 x = 1$

$$y = \frac{-\cos x}{\cos^2 x}$$
 skratimo cos x

$$y = \frac{-1}{\cos x}$$
 konačno rešenje!

3. Nađi izvod funkcije
$$y = arc tg \frac{1+x}{1-x}$$

Rešenje: Kako razmišljamo?

Moramo raditi kao (arctgu)'=
$$\frac{1}{1+u^2}u$$
' gde je $u = \frac{1+x}{1-x}$

$$y = arc tg \frac{1+x}{1-x}$$

$$y = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \left(\frac{1+x}{1-x}\right)$$
 pazi : $\frac{1+x}{1-x}$ je izvod količnika i odmah ostalo'sredjujemo'

$$y' = \frac{1}{1 + \frac{(1+x)^2}{(1-x)^2}} \frac{(1+x)'(1-x) - (1-x)'(1+x)}{(1-x)^2}$$

$$y' = \frac{1}{\frac{(1-x)^2 + (1+x)^2}{(1-x)^2}} \frac{1(1-x) + 1(1+x)}{(1-x)^2}$$
 pokratimo (1-x)²

$$y = \frac{1}{1 - 2x + x^2 + 1 + 2x + x^2} \frac{1 - x + 1 + x}{1}$$
 sredimo malo...

$$y = \frac{2}{2 + 2x^2} = \frac{2}{2(1 + x^2)} = \frac{1}{(1 + x^2)}$$
 Dakle, konačno rešenje je: $y = \frac{1}{(1 + x^2)}$

4. Nađi izvod funkcije
$$y = \arcsin \frac{2x}{1+x^2}$$

Rešenje: Radimo po formuli (arcsinu)'= $\frac{1}{\sqrt{1-u^2}}u$ ' gde je u = $\frac{2x}{1+x^2}$

$$y = \arcsin \frac{2x}{1+x^2}$$

$$y' = \frac{1}{\sqrt{1 - (\frac{2x}{1 + x^2})^2}} (\frac{2x}{1 + x^2})^{x}$$

$$y = \frac{1}{\sqrt{1 - \frac{4x^2}{(1 + x^2)^2}}} \frac{2(1 + x^2) - 2x2x}{(1 + x^2)^2}$$
 sredjujemo dalje izraz pod korenom...

$$y = \frac{1}{\sqrt{\frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2}}} \frac{2 + 2x^2 - 4x^2}{(1+x^2)^2}$$

$$y = \frac{1}{\sqrt{\frac{1+2x^2+x^4-4x^2}{(1+x^2)^2}}} \frac{2-2x^2}{(1+x^2)^2}$$

$$y = \frac{1}{\sqrt{\frac{1 - 2x^2 + x^4}{(1 + x^2)^2}}} \frac{2(1 - x^2)}{(1 + x^2)^2}$$

$$y = \frac{1}{\sqrt{\frac{(1-x^2)^2}{(1+x^2)^2}}} \frac{2(1-x^2)}{(1+x^2)^2}$$

$$y = \frac{1}{\frac{1-x^2}{1+x^2}} \frac{2(1-x^2)}{(1+x^2)^2}$$
 pokratimo... i dobijamo konačno rešenje $y = \frac{2}{1+x^2}$

Podsetimo se teorijskog dela iz izvoda višeg reda...

Izvodi višeg reda

$$y''=(y')'$$
 drugi izvod je prvi izvod prvog izvoda
 $y'''=(y'')'$ treći izvod je prvi izvod drugog izvoda
 $y^{(n)}=(y^{n-1})'$ n-ti izvod je prvi izvod (n-1)-vog izvoda

Znači da ovde praktično nema ničeg novog, jer mi ustvari uvek tražimo prvi izvod i naravno moramo da idemo redom, prvi izvod, pa drugi, pa treći itd...

Evo nekoliko primera:

Primer 1.

Odredi drugi izvod sledećih funkcija:

a)
$$y = 3x^2 - 4x + 5$$

b)
$$y = e^{-x^2}$$

$$\mathbf{v)} \quad y = \frac{1+x}{1-x}$$

Rešenja:

a)
$$y = 3x^2 - 4x + 5$$

 $y' = 6x - 4$
 $y'' = 6$

b) $y = e^{-x^2}$ Pazi, ovo je složena funkcija...

 $y'=e^{-x^2}(-x^2)'=e^{-x^2}(-2x)=-2xe^{-x^2}$ evo ga prvi izvod , sad radimo kao izvod proizvoda, a konstanta –2 ostaje ispred...

$$y'' = -2[x'e^{-x^2} + (e^{-x^2})'x]$$

$$y'' = -2[e^{-x^2} + (-2xe^{-x^2})x]$$
 pa je $y'' = -2[e^{-x^2} - 2x^2e^{-x^2}]$

$$y'' = -2 e^{-x^2} [1-2 x^2]$$
 evo drugog izvoda

v) $y = \frac{1+x}{1-x}$ Najpre radimo kao izvod količnika...

$$y' = \frac{(1+x)'(1-x) - (1-x)'(1+x)}{(1-x)^2}$$

$$y' = \frac{1(1-x)+1(1+x)}{(1-x)^2}$$

$$y' = \frac{1 - x + 1 + x}{(1 - x)^2}$$

 $y = \frac{2}{(1-x)^2}$ sada tražimo drugi izvod, ali radi lakšeg rada ćemo napisati $\frac{2}{(1-x)^2} = 2(1-x)^{-2}$ i ovo dalje radimo kao složenu funkciju...

$$y = 2(1-x)^{-2}$$

$$y'' = 2(-2)(1-x)^{-2-1}$$

$$y'' = -4(1-x)^{-3}$$

$$y'' = \frac{-4}{(1-x)^3}$$

Primer 2.

Data je funkcija $f(x) = e^x \sin x$.

Dokazati da je tačna jednakost: f''(x) - 2f'(x) + 2f(x) = 0

Rešenje:

Mi dakle moramo naći prvi i drugi izvod funkcije $f(x) = e^x \sin x$ i to treba da zamenimo u datoj jednakosti!

$$f(x) = e^x \sin x$$

$$f'(x) = (e^x) \sin x + (\sin x) e^x$$

 $f'(x) = e^x \sin x + \cos x e^x$ Našli smo prvi izvod, sad tražimo drugi...

$$f''(x) = (e^x \sin x)' + (\cos x e^x)'$$

$$f''(x) = (e^x)'\sin x + (\sin x)'e^x + (\cos x)'e^x + (e^x)'\cos x$$

$$f''(x) = e^x \sin x + \cos x e^x - \sin x e^x + e^x \cos x$$

$$f''(x) = 2e^x \cos x$$

Sada se vraćamo u početnu jednakost:

$$f''(x) - 2f'(x) + 2f(x) =$$
 zamenimo...

$$2e^{x}\cos x - 2(e^{x}\sin x + \cos x e^{x}) + 2e^{x}\sin x =$$

$$2e^{x}\cos x - 2e^{x}\sin x - 2\cos xe^{x} + 2e^{x}\sin x = \text{sve se potire...=0}$$

Time smo dokazali da je zaista f''(x) - 2f'(x) + 2f(x) = 0

Primer 3.

Nadji n- ti izvod funkcije:

a)
$$y = e^{-2x}$$

b)
$$y = \sin x$$

Rešenje:

a)
$$y = e^{-2x}$$

Pazi, izvod složene funkcije...

$$y' = e^{-2x}(-2x)' = -2 e^{-2x}$$

$$y^{**} = -2 (-2 e^{-2x}) = 4 e^{-2x}$$

$$y^{"}=4(-2e^{-2x})=-8e^{-2x}$$

$$v^{iv} = -8(-2 e^{-2x}) = 16 e^{-2x}$$

•••••

Pitamo se kako će izgledati n-ti izvod?

Tu već nastaju mali problemi. Iz nekoliko prvih izvoda, najčešće 5,6 njih mi trebamo naći n-ti izvod.

Probamo da uočimo kako se ponašaju odredjeni članovi u izvodima.

Recimo, kod ovog primera se e^{-2x} javlja u svim izvodima, a ove brojke ćemo malo prepraviti...

$$y' = -2 e^{-2x} = (-2)^1 e^{-2x}$$

$$y^{"} = 4 e^{-2x} = (-2)^2 e^{-2x}$$

$$y^{"} = -8 e^{-2x} = (-2)^3 e^{-2x}$$

$$y^{iv} = 16 e^{-2x} = (-2)^4 e^{-2x}$$

Vidimo da (-2) ima onaj stepen koji je izvod u pitanju!

Iz ovoga zaključujemo da će n-ti izvod biti : $y^{(n)} = (-2)^n e^{-2x}$

Međutim, ovde posao nije gotov. Neki profesori zahtevaju da se ova formula dokaže i primenom matematičke indukcije. I u pravu su!

Proučite Matematičku indukciju (naravno na sajtu) i probajte da radi vežbe uradite ovaj dokaz.

b) $y = \sin x$

 $y = \cos x = \sin(x + \frac{\pi}{2})$ veza u prvom kvadrantu (pogledaj temu II godina prebacivanje u I kvadrant)

$$y' = -\sin x = \sin(x + 2\frac{\pi}{2})$$

$$y'' = -\cos x = \sin(x + 3\frac{\pi}{2})$$

$$y^{(4)} = \sin x = \sin(x + 4\frac{\pi}{2})$$
 itd.

•••••

Vidimo da svaki izvod možemo izraziti preko sinusa i još primećujemo da koji je izvod u pitanju taj je broj

uz
$$\frac{\pi}{2}$$
. Dakle n-ti izvod je $y^{(n)} = \sin(x + n\frac{\pi}{2})$

I ovo naravno treba dokazati indukcijom!

NAPOMENA:

Ako funkcije u=u(x) i v=v(x) imaju u tački x_0 izvode do reda n, tada njihova linearna kombinacija au + bv , gde a i b pripadaju skupu R i njihov proizvod u \circ v imaju takodje izvode do reda n u tački x_0 i pri tome važi:

1.
$$(au+bv)^{(n)} = a u^{(n)} + b v^{(n)}$$

2.
$$(\mathbf{u} \circ \mathbf{v})^{(\mathbf{n})} = \binom{n}{0} u^{(n)} v + \binom{n}{1} u^{(n-1)} v' + \binom{n}{2} u^{(n-2)} v'' + \dots + \binom{n}{n-1} u' v^{(n-1)} + \binom{n}{n} u v^{(n)}$$

Ova druga formula je poznata i kao Lajbnicova formula!