Transfer Operators (Mini-courses at Suzhou University)

Yuxiang Jiao

Contents

1		Introduction to Transfer Operators	3
	1.1	Definitions	3
	1.2	The Ruelle's Perron-Frobenius theorem	5
	1.3	The Lasota-Yorke inequality	6
	1.4	Quasi-compactness	8
	1.5	The Spectral gap	10
	1.6	The Hilbert metric	11
	1.7	Hyperbolic cases	13
2		Positive Transfer Operators with Dini Continuous Potentials	14
	2.1	Introduction	14
	2.2	The Ruelle's Perron-Frobenius theorem	16
	2.3	A generalized RPFT of the Dini case	19
	2.4	A probability point of view	21

Introduction to Transfer Operators

Notes of a mini course at Suzhou University, taught by Huyi Hu.

§1.1 Definitions

Setting

- X compact metric space, \mathscr{B} the Borel σ -algebra, ν a probability measure on (X,\mathscr{B}) .
- $T:(X,\mathscr{B}) \to (X,\mathscr{B})$ measurable.
- \mathcal{B} a Banach space consisting of functions defined on X. Let \mathcal{B}^* be the dual space of \mathcal{B} , where for $q \in \mathcal{B}^*$, we can write

$$\langle g, f \rangle = \int f \cdot g d\nu, \quad \forall f \in \mathcal{B}.$$

 ν is called a **reference measure**.

Example 1.1.1

- 1. $\mathcal{B} = L^p(X, \nu)$ and $\mathcal{B}^* = L^q(X, \nu)$ for $1 \leq p < \infty$.
- 2. $\mathcal{B} = C(X)$ and $\mathcal{B}^* = \{\text{signed measures on } X\}$.
- 3. $\mathcal{B} = H^s(X)$ and $\mathcal{B}^* = H^{-s}(X)$, the Sobolev spaces.

Definition 1.1.2. The **Koopman operator** $\mathcal{F}: \mathcal{B} \to \mathcal{B}$ is defined by

$$\mathcal{F}f = f \circ T, \quad \forall f \in \mathcal{B}.$$

Definition 1.1.3. The (Perron-Frobenius-Ruelle) transfer operator $\mathcal{L}: \mathcal{B}^* \to \mathcal{B}^*$ is the dual operator of \mathcal{F} , that is, for any $g \in \mathcal{B}^*$,

$$\langle \mathcal{L}g, f \rangle = \langle g, \mathcal{F}f \rangle, \quad \forall f \in \mathcal{B}.$$

Annotation 1.1.4 We can always think transfer operators acting on the measure space. Even though a function we should view as a density with respect to the reference measure.

Proposition 1.1.5

- 1. \mathcal{L} is a linear operator.
- 2. \mathcal{L} preserves integral: $\int (\mathcal{L}f) d\nu = \int f d\nu$.
- 3. \mathcal{L} is a contraction, that is, $\|\mathcal{L}\|_{L^1} \leqslant 1$.
- 4. \mathcal{L} is a positive operator.
- 5. \mathcal{L}^k is a transfer operator associated to T^k .

Note that $L^{\infty}(X,\nu)^* \supseteq L^1(X,\nu)$, then if we want to define the transfer operator on L^1 , we need to check whether it is well-defined.

Lemma 1.1.6

Suppose T is nonsingular with respect to ν , i.e. $\forall E \in \mathscr{B}$ with $\nu(E) = 0, \nu(T^{-1}E) = 0$. Then $\forall f \in L^1(X,\nu), \mathcal{L}f \in L^1(X,\nu)$.

Proof. For every $E \in \mathcal{B}$, let

$$\mu(E) = \int_E \mathcal{L}f d\nu = \int_{T^{-1}E} f d\nu.$$

Because T is nonsingular, we have μ is absolutely continuous with respect to ν . Then μ admits a density, that is, $\mathcal{L}f \in L^1(X,\nu)$.

Proposition 1.1.7

For any nonnegative $h\in L^1(X,\nu)$, $\mathcal{L}h=h$ iff the measure $\mathrm{d}\mu=h\mathrm{d}\nu$ is T-invariant. In particular, $\mathcal{L}c=c$ for any nonzero constant c iff ν is T-invariant.

Proposition 1.1.8

Assume for ν -a.e. $x \in X$, there exists $E \in \mathscr{B}$ with $x \in E, \nu(E) < 0$ and $T^{-1}E = \bigcup_{i=1}^N E_i, 1 \le N \le \infty$, such that $\{E_i\}$ are pairwise disjoint and $T|_{E_i}$ is one-one onto E, and $\frac{\mathrm{d}(\nu \circ T)}{\mathrm{d}\nu}$ exists and not equal to 0. Then for every $f \in L^1(X, \nu)$,

$$\mathcal{L}f(x) = \sum_{y \in T^{-1}x} f(y) \frac{1}{\frac{\mathrm{d}(\nu \circ T)}{\mathrm{d}\nu}(y)}$$

for ν -a.e. $x \in X$.

Remark 1.1.9 — If $X\subset\mathbb{R}^n$ and ν is the Lebesgue measure, and T is piecewise differentiable. By Sard's theorem, the Jacobian

$$|\det D_y T| \neq 0$$
, $\nu - \text{a.e. } x \in X, y \in T^{-1}y$.

So,

$$\mathcal{L}f(x) = \sum_{y \in T^{-1}x} f(y) \frac{1}{|\det D_y T|}$$

is well-defined. In particular, if T is injective, then

$$\mathcal{L}f(x) = f(T^{-1}x) \frac{1}{|\det D_{T^{-1}x}T|}.$$

Definition 1.1.10. Given a potential function $\phi: X \to \mathbb{R}$, the transfer operator \mathcal{L}_{ϕ} is defined by

$$\mathcal{L}_{\phi}f(x) = \sum_{y \in T^{-1}x} e^{\phi(y)} f(y).$$

Remark 1.1.11 — If we take $\phi(x) = -\log \frac{d(\nu \circ T)}{d\nu}(x)$, then \mathcal{L}_{ϕ} coincides with the earlier definition of transfer operators.

Lemma 1.1.12

Suppose X is a compact metric space and $T:X\to X$ is continuous. For every $\phi\in C(X)$, let $\mathcal{L}_\phi:C(X)\to C(X)$ be the transfer operator and $\mathcal{L}_\phi^*:\mathcal{M}(X)\to\mathcal{M}(X)$ be the dual. Then there exists $\lambda\in\mathbb{R}_+$ and $\nu\in\mathcal{M}(X)$ such that $\mathcal{L}_\phi^*\nu=\lambda\nu$.

Suppose $\mathcal{L}_{\phi}^* \nu = \lambda \nu$. Then $\frac{1}{\lambda} \mathcal{L}_{\phi}$ is the transfer operator \mathcal{L} defined earlier for (X, ν) . In fact, for every $f, g \in C(X)$,

$$\int \left(\frac{1}{\lambda} \mathcal{L}_{\phi} g\right) \cdot f d\nu = \int \frac{1}{\lambda} \mathcal{L}_{\phi} \left(g \cdot f \circ T\right) d\nu = \int \mathcal{F} f \cdot g d\nu.$$

Definition 1.1.13. The measure ν satisfying $\mathcal{L}_{\phi}^*\nu = \nu$ is called a **conformal measure** for \mathcal{L}_{ϕ} .

If we assume that $\exists \nu \in \mathcal{M}(X)$ and $\lambda > 0$ such that $\mathcal{L}_{\phi}^* \nu = \lambda \nu$, we further assume that $\exists h \in L^1(\nu)$ with $h \geqslant 0$ such that $\mathcal{L}_{\phi} h = \lambda h$. Then we get $\mathrm{d}\mu = h \mathrm{d}\nu$ is a T-invariant measure. This is because for every $f \in C(X)$,

$$\langle h\nu, f\circ T\rangle = \langle \mathcal{L}^*\nu, h(f\circ T)\rangle = \langle \nu, \mathcal{L}(h(f\circ T))\rangle = \langle \nu, (\mathcal{L}h)f\rangle = \langle h\nu, f\rangle.$$

At this time, we define

$$\psi(x) = \phi(x) + \log h(x) - \log h(Tx) - \log \lambda,$$

then

$$\mathcal{L}_{\psi}g(x) = \frac{1}{\lambda h(x)} \mathcal{L}_{\phi}(hg)(x).$$

In particular, if we take g=1, then we get $\mathcal{L}_{\psi}1=1$. Let $\mathrm{d}\mu=h\mathrm{d}\nu$, we also have $\mathcal{L}_{\psi}^{*}\mu=\mu$.

Definition 1.1.14. \mathcal{L}_{ψ} is called the **normalized transfer operator** of \mathcal{L}_{ϕ} .

§1.2 The Ruelle's Perron-Frobenius theorem

Let M be a compact Riemannian manifold. A map $T:M\to M$ is called **expanding** if there exists $\rho\in(0,1)$ such that for every $x,y\in M$ close enough,

$$d(x,y) \geqslant \rho^{-1}d(x,y).$$

Notation 1.2.1. C^{α} , $C^{1+\alpha}$: α -Hölder (Df is α -Hölder, resp) continuous functions/maps.

Theorem 1.2.2 (Ruelle's Perron-Frobenius Theorem)

Let $T:X\to X$ be a $C^{1+\alpha}$ expanding map and $\phi\in C^\alpha$. Then $\exists \lambda\in\mathbb{R}_+, \nu\in\mathcal{M}(X)$ and $h\in C^\alpha$ with h>0 such that

$$\mathcal{L}_{\phi}^* \nu = \lambda \nu, \quad \mathcal{L}_{\phi} h = \lambda h, \quad \int h \mathrm{d}\nu = 1.$$

Consequently, the measure μ given by $d\mu = h d\nu$ is invariant.

Sketch of the proof. Let ν be the fixed point of the map

$$\mu \mapsto \overline{\mathcal{L}}_{\phi}^* \mu = \frac{\mathcal{L}_{\phi}^* \mu}{\|\mathcal{L}_{\phi}^* \mu\|},$$

this shows the existence of ν and λ . Denote $\overline{\mathcal{L}}_{\phi} = \frac{1}{\lambda} \mathcal{L}_{\phi}$, take the space

$$\mathcal{H} = \mathcal{H}_J = \left\{ f \in C^{\alpha} : f > 0, \int f d\nu = 1, \frac{f(x)}{f(y)} \leqslant e^{Jd(x,y)^{\alpha}}, \forall x, y \in M \right\},\,$$

where J is fixed constant. Then $\mathcal H$ is compact by Arzela-Ascoli. Besides, $\overline{\mathcal L}_\phi\mathcal H\subset\mathcal H$ for J large enough. By Schauder fixed point theorem, $\mathcal L_\phi$ has a positive eigenfunction.

Remark 1.2.3 — The invariant measure μ is a Gibbs measure and an equilibrium of ϕ . That is,

$$P(T,\phi) = h_{\mu}(T) + \int \phi d\mu.$$

Also, the system has exponential decay of correlations with respect to μ . (See §1.5, §1.6)

Remark 1.2.4 — If $\phi = -\log |\det D_x T|$, then ν is the Lebesgue measure and $\mathrm{d}\mu = h\mathrm{d}\nu$ is the absolutely continuous invariant measure.

Remark 1.2.5 — The same arguments still apply on invariant subsets $S \subset M$ if T has a Markov partition on S.

Remark 1.2.6 — Since $\|\mathcal{L}\|_{L^1(\nu)} \leqslant 1$ and $\mathcal{L}h = h$ means that 1 is the largest eigenvalue in $L^1(\nu)$. It can also be proved that:

- 1. If T is topologically transitive, then μ is ergodic and 1 is simple.
- 2. If T is topologically mixing, then μ is mixing and 1 is the unique eigenvalue on \mathbb{S}^1 .

§1.3 The Lasota-Yorke inequality

Let $B_w = L^1(X, \nu)$ and denote $\|\cdot\|_w = \|\cdot\|_{\mathcal{B}_w} = \|\cdot\|_{L^1(\nu)}$ be a weaker norm. Suppose there is a stronger norm $\|\cdot\| = \|\cdot\|_{\mathcal{B}}$ on $L^1(X, \nu)$, and assume that

$$\mathcal{B} := \{ f \in \mathcal{B}_w : ||f||_{\mathcal{B}} < \infty \}$$

forms a Banach space. We assume that ${\cal B}$ satisfying the following assumptions.

Assumption (Compactness). The inclusion $\mathcal{B} \hookrightarrow \mathcal{B}_w$ is compact, that is, the unit ball in \mathcal{B} is compact in \mathcal{B}_w .

Assumption (Lower semicontinuity). For any sequence $\{f_n\} \subset \mathcal{B}$ with $f_n \to f \nu$ -a.e.,

$$||f|| \leq \liminf_{n} ||f_n||.$$

Assumption (Openness). For any nonnegative function $f \in \mathcal{B}$, the set $\{f > 0\}$ is almost open with respect to the reference measure.

Definition 1.3.1. A set S is almost open w.r.t. ν if \exists open set $U \supset S$ such that $\nu(U \setminus S) = 0$.

Example 1.3.2

1. \mathcal{B} is the space of α -Hölder continuous functions with the norm

$$||f|| = ||f||_{L^1} + \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}}.$$

2. \mathcal{B} is the space of C^1 functions with the norm

$$||f|| = ||f||_{L^1} + ||Df||.$$

3. $X = I = [0, 1], \mathcal{B}$ is the space of functions with bounded variation. Take the norm

$$||f|| = ||f||_{L^1} + \bigvee_{0}^{1} f.$$

Let $\mathcal{B}_w = L^1(X, \nu)$ and \mathcal{L} be a transfer operator w.r.t. a reference measure ν .

Theorem 1.3.3

Suppose there exists a Banach space $\mathcal B$ satisfying the Compactness assumption. And there exists $\theta\in(0,1), B>0$ such that

$$\|\mathcal{L}f\|_{\mathcal{B}} \leqslant \theta \|f\|_{\mathcal{B}} + B \|f\|_{\mathcal{B}_w}, \quad \forall f \in \mathcal{B}.$$
 (LY)

Then there exists $h \in \mathcal{B}_w$ such that $\mathcal{L}h = h$. Further, if \mathcal{B} satisfies Lower semicontinuity assumption, then $h \in \mathcal{B}$.

Definition 1.3.4. The inequality (LY) is called the Lasota-Yorke inequality.

Proof. By (LY), inductively,

$$\|\mathcal{L}^n f\|_{\mathcal{B}} \leqslant \theta^n \|f\|_{\mathcal{B}} + B\left(\sum_{i=0}^{n-1} \theta^i\right) \|f\|_{\mathcal{B}_w}.$$

Hence, $\{\mathcal{L}^n f\}$ is bounded in \mathcal{B} . Let

$$f_n = \frac{1}{n} \sum_{i=0}^{n-1} \mathcal{L}^i f,$$

then there exists $h \in \mathcal{B}_w$ which is a limit point of $\{f_n\}$ in \mathcal{B}_w . Then $\mathcal{L}h = h$. Furthermore, there exists a sequence in $\{f_n\}$ converges to h ν -a.e.. Then if \mathcal{B} satisfies Lower semicontinuity assumption, $h \in \mathcal{B}$.

Another form of Lasota-Yorke inequality used frequently is

$$\|\mathcal{L}^n f\|_{\mathcal{B}} \leqslant A\theta^n \|f\|_{\mathcal{B}} + B \|f\|_{\mathcal{B}_m}, \quad \forall n \geqslant 0,$$

where $\theta \in (0,1), A, B > 0$ are constants.

Application

Recall the BV space we have mentioned in example 1.3.2, we can check that \mathcal{B} satisfies the assumptions of Compactness and Lower semicontinuity.

Let $T: I \to I$ be a piecewise C^2 map, such that $\exists S = \{x_1, x_2, \cdots, x_n\} \subset I$ with:

- (i) $\Delta := \inf_{x \in I \setminus S} |T'(x)| > 2$,
- (ii) $\sup_{x \in I \setminus S} \frac{|T''(x)|}{|T'(x)|^2} < K < \infty$.

Let ν be the Lebesgue measure.

Theorem 1.3.5

Then T has an absolutely continuous invariant measure with $\frac{\mathrm{d}\mu}{\mathrm{d}\nu}\in\mathcal{B}.$

Proof. Take $\theta = 2/\Delta, B = 2K + 2c$ where $c = \min\{\nu(T([x_{i-1}, x_i)))\}$, we can show that

$$\bigvee_{0}^{1} \mathcal{L}f \leqslant \theta \bigvee_{0}^{1} f + B \int_{0}^{1} |f| d\nu.$$

Hence \mathcal{L} satisfies (LY), the statement follows.

§1.4 Quasi-compactness

Let \mathcal{B} and \mathcal{B}_w be Banach spaces with norm $\|\cdot\|$ and $\|\cdot\|_w$, respectively. Let $\mathcal{P}:\mathcal{B}_w\to\mathcal{B}_w$ be an operator with $\mathcal{PB}_w\subset\mathcal{B}_w$. Suppose that

- (i) For $\{x_n\}\subset\mathcal{B}$ with $\{x_n\}\leqslant 1,\lim_{n\to\infty}\|x_n-x\|_w=0,$ implies $x\in\mathcal{B}$ and $\|x\|\leqslant 1.$
- (ii) $\exists H>0$ such that $\|\mathcal{P}^n\|_w\leqslant H, \forall n\geqslant 0.$
- (iii) $\exists \theta \in (0,1), B > 0$ such that $\|\mathcal{P}f\| \leqslant \theta \|f\| + B \|f\|_{w}, \forall f \in \mathcal{B}$.
- (iv) The map $\mathcal{P}:\mathcal{B} o\mathcal{B}_w$ is compact, that is, \mathcal{P} maps bounded sets to compact sets.

Theorem 1.4.1 (Ionescu-Tulcea and Marinescu's Theorem)

Then \mathcal{P} is quasi-compact in \mathcal{B} , and $\sigma_{\rm ess}(\mathcal{P}|_{\mathcal{B}}) \leqslant \theta$. In particular,

- 1. the operator $\mathcal{P}: \mathcal{B} \to \mathcal{B}$ has finitely many number of eigenvalues $\lambda_1, \cdots, \lambda_p$ of modulus 1 of finitely multiplicity;
- 2. there is a decomposition of \mathcal{P} into

$$\mathcal{P} = \sum_{i=0}^{p} \lambda_i \pi_i + \mathcal{Q},$$

where π_i are projection to the eigenspace of λ_i and \mathcal{Q} is a bounded operator such that $\mathcal{Q}\pi_i = \pi_i \mathcal{Q} = 0, \pi_i^2 = \pi_i, \pi_i \pi_j = 0$ for $i \neq j$ and $\rho(\mathcal{Q}) < 1$.

Remark 1.4.2 — The inequality $\|\mathcal{P}f\| \le \theta \|f\| + B\|f\|_w$ was used by W.Doeblin and R.Fortet (1937) and is called the **Doeblin-Fortet inequality**.

Remark 1.4.3 — Lasota and Yorke (1973) obtained the inequality for the transfer operators of piecewise expanding maps on the unit interval with the Banach space $\mathcal{B}=BV$.

Sketch of the proof. We have $\|\mathcal{P}^n f\| \leqslant \theta^n \|f\| + B(1-\theta)^{-1} \|f\|_w$. So $\|\mathcal{P}^n\|_{\mathcal{B}}, \|\mathcal{P}^n\|_w$ are uniformly bounded and hence $\sigma(\mathcal{P}) \leqslant 1$. Let λ be an eigenvalue with module 1, take

$$\mathcal{B}_{\lambda} = \{x \in \mathcal{B} : ||x||_{w} \leqslant 1, \mathcal{P}x = \lambda x\}.$$

Then \mathcal{B}_{λ} is bounded in \mathcal{B} and hence compact in \mathcal{B}_{w} . Therefore, \mathcal{B}_{λ} is finitely dimensional.

It takes some work to prove that there are only finite number of eigenvalues on \mathbb{S}^1 , we just accept this conclusion. Then for every $\lambda \in \mathbb{S}^1$, take

$$\pi_{\lambda} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\lambda^k} \mathcal{P}^k.$$

The statement follows.

Definition 1.4.4. An operator $\mathcal P$ on a Banach space $\mathcal B$ is called **quasi-compact** if there exists $\theta \in [0, \rho(\mathcal P))$ and closed subspaces F and H that satisfy the following conditions:

- (i) $\mathcal{B} = F \oplus H$;
- (ii) $\mathcal{P}F \subset F$ and $0 < \dim F < \infty$;
- (iii) $\mathcal{P}H \subset H$ and $\rho(\mathcal{P}|_H) \leqslant \theta$.

Assumption (Assumption P). Suppose $\mathcal{P}: \mathcal{B}_w \to \mathcal{B}_w$ is an operator satisfying the following:

- (i) There exists H>0 such that for any $f\in\mathcal{B}_w, n\in\mathbb{N}, \|\mathcal{P}^nf\|_w\leqslant H\|f\|$.
- (ii) There exists $\theta \in (0,1), A, B > 0$ such that for any $f \in \mathcal{B}, n \in \mathbb{N}$,

$$\|\mathcal{P}^n f\| \leqslant A\theta^n \|f\| + B \|f\|_{w}$$
.

Theorem 1.4.5

Suppose $\mathcal{P}:\mathcal{B}_w\to\mathcal{B}_w$ is an operator of a Banach space \mathcal{B}_w . Assume there is a Banach space $\mathcal{B}\subset\mathcal{B}_w$ with satisfies the assumptions of Compactness, Lower semicontinuity and Openness. Besides, $\mathcal{PB}\subset\mathcal{B}$ and \mathcal{P} satisfies the assumption above. Then $\mathcal{P}|_{\mathcal{B}}$ is quasicompact and $\rho(\mathcal{P}|_H)\leqslant\theta$.

Recall a spectral decomposition of an Axiom A system.

Theorem 1.4.6

Let $f:M\to M$ be an Axiom A diffeomorphism, and $\Omega(f)$ be the non wandering set. One can write $\Omega(f)=\Omega_1\cup\dots\cup\Omega_s$, where the Ω_i are pairwise disjoint closed sets, such that

- (i) $f(\Omega_i) = \Omega_i$ and $f|_{\Omega_i}$ is topologically transitive.
- (ii) $\Omega_i=X_{i,1}\cup\cdots\cup X_{i,n_i}$ with $X_{i,j}$ are pairwise disjoint closed sets, $f(X_{i,j})=X_{i,j}$ and $f^{n_i}|_{X_{i,j}}$ is topologically mixing.

Theorem 1.4.7

Suppose \mathcal{B} and \mathcal{B}_w satisfy the assumptions of Compactness, Lower semicontinuity and Openness, and the transfer operator \mathcal{L} satisfies Assumption P. Then

- 1. T has a finite number of ergodic absolutely continuous invariant measures μ_1, \dots, μ_n with density functions $h_1, \dots, h_n \in \mathcal{B}$, respectively.
- 2. For each $1 \leqslant i \leqslant n$, there exists a finite collection of disjoint sets $\{\Lambda_{i,j}\}_{j=1}^{n_i}$ such that
 - (i) $d\mu_i = h_i d\nu$, and $\{h_i > 0\} = \Lambda_{i,1} \cup \cdots \cup \Lambda_{i,n_i}$;
 - (ii) for $j = 1, \dots, n_i, \mathcal{L}h_{i,j} = h_{i,j+1}$, where $h_{i,j} = h_i \mathbb{1}_{\Lambda_{i,j}}$;
 - (iii) for $j=1,\cdots,n_i,T\Lambda_{i,j}=\Lambda_{i,j+1},$ and $(\Lambda_{i,j},T^{n_i}|_{\Lambda_{i,j}},h_{i,j}\mathrm{d}\nu)$ is exact, and therefore is mixing.

Sketch of the proof. A fact shows that all the eigenvalues of $\mathcal L$ on $\mathbb S^1$ are roots of unity. Take k>0 such that $\lambda_i=1$ for every eigenvalue $\lambda_i\in\mathbb S^1$. Then 1 is the only eigenvalue of $\mathcal L^k$ on $\mathbb S^1$. Write $\mathcal L^k=\pi+\mathcal Q^k$ where π is the projection to the eigenspace of eigenvalue 1. Denote $\mathcal E=\pi(\mathcal B), \mathcal E_+=\{h\in\pi(\mathcal B):h\geqslant 0\}$ and $\mathcal E_+(1)=\{h\in\mathcal E_+:\int h\mathrm{d}\nu=1\}$. $\mathcal E_+$ is convex.

For every distinct extreme points h_1, h_2 of $\mathcal{E}_+(1)$, we have $\min\{h_1, h_2\} = 0$, ν -a.e.. Besides, $\mathcal{E}_+(1)$ only has finitely many extremal points $\{h_i\}$. Let $\Lambda_i = \{h_i > 0\}$, the statement follows. \square

§1.5 The Spectral gap

Definition 1.5.1. A linear operator \mathcal{P} has a spectral gap if 1 is a simple eigenvalue and

$$\sigma(\mathcal{P}) = \{1\} \cup \mathcal{S}, \text{ where } \mathcal{S} \subset \{z \in \mathbb{C} : |z| \leqslant z < 1\}.$$

If $\mathcal P$ have a spectral gap, then we can write $\mathcal P=\pi+\mathcal Q$, where π is the projection onto the eigenspace of 1, and $\sigma(\mathcal Q)<1$. Let h be an eigenvector of 1. For every $f\in\mathcal B$, write f=ah+g, where $ah=\pi f$ and $g=\mathcal Qg$. Then $\mathcal P^ng=\mathcal Q^ng\to 0$ exponentially fast.

From spectral gap to decay of correlation

In probability, the **covariance** of two random variable ξ and η are given by

$$Cov(\xi, \eta) = \mathbf{E}[(\xi - \mathbf{E}\xi)(\eta - \mathbf{E}\eta)] = \mathbf{E}(\xi\eta) - \mathbf{E}\xi\mathbf{E}\eta.$$

The correlation of ξ and η are given by

$$\operatorname{Cor}(\xi, \eta) = \frac{\operatorname{Cov}(\xi, \eta)}{\sigma_{\xi} \sigma_{n}} = \frac{\mathbf{E}(\xi \eta) - \mathbf{E} \xi \mathbf{E} \eta}{\sigma_{\xi} \sigma_{n}},$$

where σ_ξ^2 and σ_η^2 are variances of $\xi,\eta,$ respectively. In particular, if ξ and η are independent, then the covariance of ξ and η is zero.

In a dynamical system (M,T), for functions $f,g:M\to\mathbb{R}$, we usually study the $\mathrm{Cov}(f\circ T^n,g)$. It naturally to guess that

$$\operatorname{Cov}(f \circ T^n, g) = \int f \circ T^n \cdot g d\mu - \int f d\mu \int g\mu \to 0.$$

Which corresponds to the mixing property. Decay of correlations concerns the rates of convergence. Let $f \in \mathcal{B}$ and $g \in \mathcal{B}^*$, then

$$Cov(f \circ T^n, g) = \left| \int f \cdot \mathcal{L}^n g d\mu - \int f d\mu \int g d\mu \right| \leq \|f - \langle \mu, f \rangle\|_{\mathcal{B}} \|\mathcal{L}^n g - \langle \mu, g \rangle\|_{\mathcal{B}^*}.$$

Then the rate of $\mathcal{L}^n g - \langle \mu, g \rangle \to 0$ leads to a rate of decay of correlations.

Definition 1.5.2. A system (T, μ) has **exponential decay of correlations** for functions in \mathcal{B} and \mathcal{B}^* , if there exists $\tau \in (0, 1)$ such that $\forall f \in \mathcal{B}, g \in \mathcal{B}^*$,

$$\|\operatorname{Cov}(f \circ T^n, g)\| \leqslant C \cdot \tau^n,$$

where C = C(f, g) is a constant depending on f, g.

Let $\mathcal L$ be a normalized transfer operator, that is $\mathcal Lc=c$. We assume that $\mathcal L$ has a spectral gap. Then we can write

$$\mathcal{L} = \pi + \mathcal{Q}$$

such that $\sigma(\mathcal{Q})<1.$ Besides, $\pi(g)=\langle \mu,g\rangle$, hence \mathcal{L} has an exponential decay of correlations.

Annotation 1.5.3 A spectral gap leads to an exponential speed of mixing.

§1.6 The Hilbert metric

Let V be a vector space.

Definition 1.6.1. A cone $C \subset V$ is a subset such that

- (i) If $f \in \mathcal{C}$, then $\alpha f \in \mathcal{C}, \forall \alpha \in \mathbb{R}_+$.
- (ii) If $f, f \in \mathcal{C}$, then $f + q \in \mathcal{C}$.

We require further $0 \notin \mathcal{C}$ and $\mathcal{C} \cap -\mathcal{C} = \varnothing$.

Example 1.6.2

- 1. $V = \mathbb{R}^2$ and $C = \{x = (x_1, x_2) : 0 < x_2 \le 2x_1\}$.
- 2. $V = \mathbb{R}^n$ and $C = \{x = (x_1, \dots, x_n) : x_i > 0, i = 1, \dots, n\}$.
- 3. $V = C^0(X)$ and $C = \{ f \in C^0(X) : f(x) > 0, \forall x \in X \}$.

Definition 1.6.3. The projective metric (Hilbert metric) $\Delta(\cdot, \cdot)$ on a given cone \mathcal{C} is given by

$$\Delta(f,g) = \log \frac{a(f,g)}{b(f,g)}, \quad \forall f, g \in \mathcal{C},$$

where $a(f,g) = \inf \{a : ag - f \in \mathcal{C}\}, b(f,g) = \sup \{b : f - bg \in \mathcal{C}\}.$

Remark 1.6.4 — $\Delta(\cdot, \cdot)$ is usually viewed as a metric defined on the **projective space** of C.

Lemma 1.6.5

- 1. $\Delta(f,g)=0$ iff $f=\alpha g$ for some $\alpha\in\mathbb{R}_+.$
- 2. $\Delta(f,g) = \Delta(g,f)$.
- 3. $\Delta(f,h) \leq \Delta(f,g) + \Delta(g,h)$.

Theorem 1.6.6

Let V_1, V_2 be two vector spaces and $\mathcal{A}: V_1 \to V_2$ be a linear map such that $\mathcal{A}(\mathcal{C}_1) \subset \mathcal{C}_2$ for cones $\mathcal{C}_i \subset V_i, \mathcal{C}_i \cap -\mathcal{C}_i = \varnothing$. Let Δ_i be the Hilbert metric corresponding to \mathcal{C}_i . Set $\Gamma = \sup_{f,g \in \mathcal{A}(\mathcal{C}_i)} \Delta_2(f,g)$, we have

$$\Delta_2(\mathcal{A}f, \mathcal{A}g) \leqslant \tanh\left(\frac{\Gamma}{4}\right)\Delta_1(f, g), \quad \forall f, g \in \mathcal{C}_1.$$

If we take $V = V_1 = V_2$, then we have $\forall f, g \in \mathcal{C}$,

$$\Delta(\mathcal{A}^n f, \mathcal{A}^n g) \leqslant \left(\tanh \frac{\Gamma}{4}\right)^n \Delta(f, g) \to 0$$

exponentially fast.

Application

Let $T:M\to M$ be an expanding map with the expanding constant $\rho^{-1}>1$. Let ϕ be an α -Hölder potential function. Then there exists $\nu\in\mathcal{M}(M)$ and $h\in C^{\alpha}$ with h>0 such that

$$\mathcal{L}_{\phi}^* \nu = \lambda \nu, \quad \mathcal{L}_{\phi} h = \lambda h, \quad \int h \mathrm{d}\nu = 1.$$

Let $\mathcal{L} = \mathcal{L}_{\psi}$ be the normalized transfer operator. We have $\mathcal{L}1 = 1$ and $\mathcal{L}^*\mu = \mu$ and μ is an absolutely continuous invariant measure. Let $\mathcal{B} = C^{\alpha}(M)$.

Aim 1.6.7. To show that
$$\forall f \in \mathcal{B}, \|\mathcal{L}f - \langle \mu, f \rangle\| \leqslant Cr^n, r < 1.$$

Let $J_0>0$ such that $|\phi(x)-\phi(y)|\leqslant J_0d(x,y)^{\alpha}$. Take J>0 sufficiently large such that $\rho^{-\alpha}(1+J_0/J)<1$. Denote $J'=\rho^{-\alpha}(J_0+J)$. Define

$$C = C_J(M) = \{ f \in C^\alpha : f > 0, |\log f(x) - \log f(y)| \leqslant Jd(x, y)^\alpha, \forall x, y \in M \},$$

and we fix the Hilbert metric Δ on \mathcal{C} .

Lemma 1.6.8
$$\mathcal{L}C_J(M) \subset C_{J'}(M)$$
.

Lemma 1.6.9 $\exists \Gamma > 0$ such that $\Delta(f, 1) \leqslant \Gamma$ for every $f \in C_{J'}(M)$.

Then for every $f \in C_J$, we have

$$\Delta(\mathcal{L}^n f, 1) \leqslant \left(\tanh \frac{\Gamma}{4}\right)^n \Delta(f, 1) = r^n \Delta(f, 1).$$

Assume that $\Delta(\mathcal{L}^n f, 1) = \log(a_n/b_n)$, by definition

$$a_n - \mathcal{L}^n f, \mathcal{L}^n f - b_n \in C_J$$
.

In particular, $a_n > \mathcal{L}^n f > b_n$. Because $|\log a_n - \log b_n| \leqslant Cr^n$, we get

$$|\mathcal{L}^n f(x) - \langle \mu, f \rangle| \le C' r^n, \quad \forall x \in M.$$

This implies that $Cov(f \circ T^n, g) \to 0$ exponentially fast for every $f \in C_J$. For every $f \in C^{\alpha}$, we can choose $a, b \in \mathbb{R}, a \neq 0$ such that $af + b \in C_J(M)$, then the conclusion also holds.

§1.7 Hyperbolic cases

Till now, we have only considered the expanding maps. Now we consider the hyperbolic cases. Let $T:M\to M$ be a C^r Anosov diffeomorphism, $r\geqslant 1$. That is, there exists constant $\lambda>1,C>0$, and a splitting $TM=E^u\oplus E^s$ such that for every $x\in M,n\geqslant 0$,

$$\begin{cases} \|DT_x^n v\| \geqslant C^{-1} \lambda^n \|v\|, & \forall v \in E_x^u; \\ \|DT_x^n v\| \leqslant C \lambda^n \|v\|, & \forall v \in E_x^s. \end{cases}$$

For each $x\in M$, take $\gamma^s(x)$ such that $\gamma(x)\subset W^s_{\mathrm{loc}}(x)$ and $T(\gamma^s(x))\subset \gamma^s(T(x))$. Denote

$$\Gamma^s := \{ \gamma^s(x) : x \in M \} .$$

For any $f \in C^1(M)$, define the (weaker) norm by

$$||f||_{w} = \sup_{\gamma \in \Gamma^{s}} \sup_{\substack{\varphi \in C^{1}(\gamma), \\ ||\varphi||_{C^{1}(\gamma)} \leq 1}} \left| \int_{\gamma} f \varphi dm_{\gamma} \right|,$$

where m_{γ} is the Lebesgue measure on γ . Denote by $\partial^u f$ be the directional derivative along W^u , and set

$$||f|| = ||f||_w + ||\partial^u f||_w.$$

Let \mathcal{B} and \mathcal{B}_w be the completion of $C^1(M)$ with respect to $\|\cdot\|$ and $\|\cdot\|_w$, respectively.

Lemma 1.7.1

- 1. The unit ball of \mathcal{B} is compact in \mathcal{B}_w .
- 2. $\forall \{f_n\} \subset \mathcal{B} \text{ with } f_n \to f \text{ ν-a.e., } \|f\|_{\mathcal{B}} \leqslant \liminf_{n \to \infty} \|f_n\|_{\mathcal{B}}$

Recall that for a diffeomorphism $T:M\to M$, we consider the transfer operator

$$\mathcal{L}f(x) = f(T^{-1}x) \frac{1}{|\det D_{T^{-1}x}T|} = \frac{f(T^{-1}x)}{JT(T^{-1}x)}.$$

Theorem 1.7.2

1. There exists H>0 such that for any $f\in C^1(X)$,

$$\|\mathcal{L}^n f\|_w \leqslant H \|f\|_w, \quad \forall n \geqslant 0.$$

2. $\exists \theta \in (0,1), A > 0$ and $B_n > 0$ for each n, such that for any $f \in C^1(X)$,

$$\|\mathcal{L}^n f\| \leqslant A\theta^n \|f\| + B_n \|f\|_w, \quad \forall n \geqslant 0.$$

Positive Transfer Operators with Dini Continuous Potentials

Notes of a mini course at Suzhou University, taught by Yunping Jiang. [Lecture Notes]

§2.1 Introduction

• Dynamics: $f: X \to X$, induces a group/semigroup $\{f^n\}_{n \in \mathbb{Z}/\mathbb{N}}$.

Aim 2.1.1. For $x_0 \in X$, the forward limit $f^n(x_0) \to ?$ (study the future of x_0).

We consider the ω -limit set $\omega(x_0)$. In a invertible case, for example

Example 2.1.2

If x_0 is a fixed point, then $\omega(x_0) = \{x_0\}$. If x_0 is periodic, then $\omega(x_0) = \operatorname{Orb}(x_0)$.

In a non-invertible case, we construct the space

$$X_{\infty,f} = \{(\cdots, x_n, x_{n-1}, \cdot, x_1, x_0) : x_n \in X, fx_n = x_{n-1}\}$$

to record the history of x_0 . Which is called an **inverse limit**.

Example 2.1.3

Let $\mathbb{S}^1=\{z\in\mathbb{C}:|z|=1\}\,,\,f:\mathbb{S}^1 o\mathbb{S}^1,z\mapsto z^2.$ The inverse limit can be viewed as

$$\Sigma^- = \prod_{-\infty}^{-1} \left\{ 0, 1 \right\}.$$

Given a dynamical system $f: X \to X$, let

 $P_n \coloneqq \left\{ \text{the set of all periodic points of period } n \right\}, \quad F_n = \left\{ x \in X : f^n(x) = x \right\}.$

Then $F_n = \bigcup_{d|n} P_d$, hence $\sharp F_n = \sum_{d|n} \sharp P_d$. By the Möbius inversion, we have

$$\sharp P_n = \sum_{d|n} \mu(d) \sharp F_{n/d}.$$

Definition 2.1.4. The topological entropy is

$$h(f) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log \sharp F_n.$$

Definition 2.1.5. The **zeta function** of the system is defined as

$$\zeta(z) = \exp\left(\sum_{n=1}^{\infty} \frac{\sharp F_n}{n} z^n\right).$$

Fact 2.1.6. $\zeta(z)$ is analytic in the disk of radius e^{-h} centered at 0.

Definition 2.1.7. A partition $X = X_0 \cup \cdots \cup X_{d-1}$ is called a Markov partition for f if

- (i) each $X_i \neq \emptyset$, compact,
- (ii) $X_i \cap X_j = \emptyset$,
- (iii) $f|_{X_i}$ is one-one,
- (iv) $f(X_i) = \bigcup_{k=1}^{m_i} X_{i_k}$.

If f has a Markov partition η_0 , define $A = (a_{ij})_{d \times d}$, where

$$a_{ij} = \begin{cases} 1, & f(X_i) \supset X_j; \\ 0, & \text{otherwise.} \end{cases}$$

Let

$$\Sigma_A := \{ \omega = (i_0, i_1, \cdots) : i_n \in \{0, 1, \cdots, d-1\}, a_{i_{n-1}i_n} = 1 \},$$

let $\sigma_A:\Sigma_A o \Sigma_A$ be the shift map. We have (if it is a conjugate)

$$\sharp F_{n,f} = \sharp F_{n,\sigma_A} = \operatorname{tr}(A^n),$$

$$\zeta(z) = \exp\left(\sum_{n=1}^{\infty} \frac{\operatorname{tr}(A^n)}{n} z^n\right) = \exp\left(-\operatorname{tr}(\log(\operatorname{Id} - zA))\right) = \frac{1}{\det(\operatorname{Id} - zA)}.$$

Theorem 2.1.8

For a mixing map $f:X\to X$ with a Markov partition. Then the unweighted zeta function $\zeta(z)$ is a rational function with a unique smallest pole $1/\rho(A)$ where $h(f)=\log\rho(A)$.

Theorem 2.1.9 (Perron-Frobenius)

If A is an $n\times n$ positive matrix, then A has a unique simple, positive, maximal eigenvalue ρ with a positive eigenvalue.

Remark 2.1.10 — $\rho = \rho(A)$ is the spectral radius, $\rho = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}$.

Example 2.1.11

Let $I=[0,1], I_0=[0,a], I_1=[b,1],$ where a< b. Let $f:I_0\to I, I_1\to I$ linearly respectively. Then f admits a Markov partition $\{I_0,I_1\}$ with $A=\begin{bmatrix}1&1\\1&1\end{bmatrix}$. Then

$$\sharp F_{n,f} = 2^n, \quad \zeta(z) = \frac{1}{1 - 2z}.$$

In general, we would like to consider a weighted zeta function for a weight ψ as follows

$$\zeta(z) = \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n} \left(\sum_{x \in F_n} \prod_{i=0}^{n-1} \psi(f^i x)\right)\right).$$

Note that if $\psi \equiv 1$, then $\zeta(z)$ coincides with the unweighted zeta function. Define the pressure

$$P(\log \psi) = \limsup_{n \to \infty} \frac{1}{n} \log \left(\sum_{x \in F_n} \exp \left(\sum_{i=0}^{n-1} \log \psi(f^i(x)) \right) \right).$$

Fact 2.1.12. $\zeta(z)$ is analytic in a disk of radius e^{-P} centered at 0.

§2.2 The Ruelle's Perron-Frobenius theorem

Setting

- ullet X a compact metric space.
- $f: X \to X$ a locally expanding map, that is, $\exists C > 0, 0 < a < 1, \lambda > 1$ such that

$$d(f^n x, f^n y) \geqslant C\lambda^n d(x, y),$$

 $\forall x, y \in X, d_n(x, y) = \max_{0 \le i \le n-1} d(f^i x, f^i y) \le a$ (the Bowen metric).

- f is mixing: $\forall U \subset X$ open, there exists n such that $f^n(U) = X$.
- $C(X)=\{$ the space of all continuous functions φ with the norm $\|\varphi\|=\sup_{x\in X}|\varphi(x)|\}$.

For every $\varphi \in C(X)$, we define the **modulus of continuity**

$$\omega_{\varphi}(t) = \max_{d(x,y) \leqslant t} |\varphi(x) - \varphi(t)|.$$

Then we know that $\omega_{\varphi}(t) \to (0)(t \to 0)$.

- If $\omega_{\varphi}(t)\leqslant Ct^{\alpha}$ for some $C>0,0<\alpha\leqslant 1,$ then φ is called α -Hölder.
- We call φ is Dini if

$$\int_0^a \frac{\omega_{\varphi}(t)}{t} \mathrm{d}t < \infty.$$

Then we have

$$C^{\mathrm{H}}(X) = \bigcup_{0 < \alpha \leqslant 1} C^{\alpha}(X) \subset C^{\mathrm{Dini}}(X).$$

Let ω be a modulus of continuity, that is, ω is nonnegative, increasing and $\omega(t) \to 0 (t \to 0^+)$. We also call it **Dini** if

$$\int_0^a \frac{\omega(t)}{t} \mathrm{d}t < \infty.$$

For a modulus of continuity, we define the space

$$C^{\omega} := \{ \varphi \in C(X) : \exists C > 0, \omega_{\omega}(t) \leqslant C\omega(t) \}.$$

If ω is Dini, let

$$\widetilde{\omega}(t) = \sum_{n=1}^{\infty} \omega(\lambda^{-n}t),$$

which is also a modulus of continuity. $C^{\widetilde{\omega}}$ plays an important role in later studies. (See §2.3)

Definition 2.2.1. A positive $\psi \in C(X)$ is called a **potential**. Given a potential, the **transfer operator** is defined by

$$\mathcal{L}\varphi(x) = \sum_{y \in f^{-1}x} \psi(y)\phi(y).$$

Fact 2.2.2. If $\psi \in C^{\alpha}(X)$, then $\mathcal{L}: C^{\alpha} \to C^{\alpha}$.

Fact 2.2.3. If $\psi \in C^{\omega}$ and ω is Dini, then $\mathcal{L}: C^{\omega} \to C^{\omega}$.

Theorem 2.2.4 (Ruelle's Frobenius-Perron Theorem)

Suppose $f:X\to X$ is locally expanding and mixing. For any $\psi\in C^\alpha(X)$, $\mathcal L$ has a unique, maximal, positive and simple eigenvalue $\rho=\rho(\mathcal L)$ (the spectral radius) with a positive eigenfunction $\varphi_0\in C^\alpha(X)$.

For K > 0, s > 0, let

$$C_{K,s}^{\alpha} = \left\{ \varphi \in C^{\alpha}(X) : \varphi(x) \geqslant s, |\log \varphi(x) - \log \varphi(y)| \leqslant K d(x,y)^{\alpha}, \forall x, y, d(x,y) \leqslant a \right\}.$$

Lemma 2.2.5

Any bounded sequence in $C^{\alpha}_{K,s}$ has a convergent subsequence in C(X) whose limit is in $C^{\alpha}_{K,s}$.

WLOG, assume $\min_{x \in X} \psi(x) = 1$ and let

$$K_0 = \sup_{d(x,y) \leqslant a} \frac{|\log \psi(x) - \log \psi(y)|}{d(x,y)^{\alpha}}.$$

Lemma 2.2.6

Let $0 < s < 1, K > \frac{K_0}{\lambda^{\alpha} - 1}$. Then $\forall \varphi \in C^{\alpha}(X)$ nonnegative, $\|\varphi\| = 1$, there exists N > 0, such that $\mathcal{L}^n \varphi \in C^{\alpha}_{K,s}$.

Proof. Since $\|\varphi\|=1$, take $y_0\in X, \varphi(y_0)=1$, choose an open neighborhood of $U\ni y_0$ such that $\varphi|_U\geqslant s$. By mixing, there exists $n_0\geqslant 0$ such that $f^{n_0}(U)=X$. Consider

$$\widetilde{\varphi}(x) = \mathcal{L}^{n_0} \varphi(x) = \sum_{y \in f^{-n_0} x} \left(\prod_{i=0}^{n_0 - 1} \psi(f^i y) \right) \varphi(y) \geqslant s.$$

Besides, for every $x, y \in X$ closed enough,

$$\mathcal{L}\widetilde{\varphi}(x) = \sum_{x' \in f^{-1}x} \psi(x')\widetilde{\varphi}(x') \leqslant \sum_{y' \in f^{-1}y} \psi(y')\widetilde{\varphi}(y')e^{(K_0 + K')d(x', y')^{\alpha}}.$$

Note that $d(x,y) \geqslant \lambda d(x',y')$, hence $(K_0+K')d(x',y')^{\alpha} \leqslant \lambda^{-\alpha}(K_0+K')d(x,y)^{\alpha}$. By induction, we have

$$\mathcal{L}^n \widetilde{\varphi}(x) \leqslant \mathcal{L}^n \widetilde{\varphi}(y) e^{K_n d(x,y)^{\alpha}},$$

where
$$K_n = K_0 \sum_{i=1}^n \lambda^{-i\alpha} + \lambda^{-n\alpha} K' \to \frac{K_0}{\lambda - 1} (n \to \infty)$$
.

Remark 2.2.7 — This lemma shows that a transfer operator can improve the Hölder norm in some sense.

By this lemma, we only need to find positive eigenvalue in C_{Ks}^{α} . Define

$$S = \{ \mu > 0 : \exists \varphi \in C_{K,s}^{\alpha}(X), \mathcal{L}\varphi \geqslant \mu \varphi \}.$$

Lemma 2.2.8 $S \neq \emptyset$ and bounded.

Proof of RFP Theorem. Take $\rho=\sup S$, there exists $\lambda_n\to\rho, \lambda_n\in S$. Then there exists φ_n such that $\mathcal{L}\varphi_n\geqslant \lambda_n\varphi_n$. Assume that $\min\varphi_n=s$, then $\{\varphi_n\}\subset C_{K,s}^\alpha$ is bounded. Take a subsequence converges to φ_0 . Then $\varphi_0\geqslant \rho\varphi_0$. By mixing, we have

$$\mathcal{L}\varphi_0 = \rho\varphi_0$$
, and $\dim E_\rho = 1$ where $E_\rho = \{\varphi \in C^\alpha : \mathcal{L}\varphi = \rho\varphi\}$.

The maximal of ρ follows by the previous lemma.

Application

Suppose M is a compact Riemannian manifold, $f:M\to M$ is $C^{1+\alpha}$. A probability measure ν is called f-invariant if $\nu(f^{-1}A)=\nu(A)$ for every $A\in \mathcal{B}$. We say ν is **smooth** if

$$\nu(A) = \int_A p(y) \mathrm{d}y$$

for some $p(y) \in C(M)$.

Lemma 2.2.9

Suppose $f:M\to M$ is C^1 and $J(f)\neq 0$, and suppose $\mathrm{d}\nu=\alpha(y)\mathrm{d}y$. Then ν is f-invariant iff

$$\sum_{y \in f^{-1}x} \frac{p(y)}{J(f)(y)} = p(x).$$

Theorem 2.2.10 (Krzyzewski-Szlenk)

Suppose $f:M\to M$ is C^{1+lpha} , locally expanding and mixing. Then f has a unique smooth f-invariant probability measure with an α -Hölder continuous density.

Proof. Take $\psi=\frac{\|J(f)\|}{|J(f)|},$ then $\min\psi=1$ and $\psi\in C^{lpha}_{K_0,1}.$ Consider the transfer operator

$$\mathcal{L}\varphi(y) = \sum_{x \in f^{-1}y} \psi(x)\varphi(x).$$

Then there exists $p(x) \in C^{\alpha}$ such that

$$\sum_{y \in f^{-1}x} \frac{p(y)}{J(f)(y)} = \mu_0 p(y),$$

where $\mu_0 = \frac{\rho}{\|J(f)\|} = 1.$ Normalize p, the statement follows.

For $\psi(x) > 0$, let

$$\mathcal{L}\varphi(x) = \sum_{y \in f^{-1}x} \psi(y)\varphi(y).$$

Then

$$\mathcal{L}^{n}\varphi(x) = \sum_{y \in f^{-n(x)}} \left(\prod_{i=0}^{n-1} \psi(f^{i}y) \right) \varphi(y),$$

write $G_n(y) = \prod_{i=0}^{n-1} \psi(f^i y)$, then

$$\mathcal{L}^n \varphi(x) = \sum_{y \in f^{-1}x} G_n(y) \varphi(y).$$

§2.3 A generalized RPFT of the Dini case

Suppose $\omega(t)$ is a modulus of continuity.

Example 2.3.1

- 1. $\omega(t)=t^{\alpha}, 0<\alpha\leqslant 1, \alpha\text{-H\"older}.$
- 2. $\omega(t) = \frac{1}{|\log t|^{\alpha}}, \alpha > 1.$
- 3. $\omega(t) = e^{-\alpha |\log \log t|^{\beta}}, \beta > 1.$

Recall $\widetilde{\omega}(t) = \sum_{n=1}^{\infty} \omega(\lambda^{-n}t)$, where λ is the expanding constant of f.

Lemma 2.3.2

Suppose ω is Dini, then

$$\widetilde{\omega}(t) \leqslant \frac{1}{\log \lambda} \int_0^t \frac{\omega(s)}{s} ds \leqslant \sum_{n=0}^{\infty} \omega(\lambda^{-n}t).$$

It follows that $\widetilde{\omega}$ is also a modulus of continuity. But in general, $\widetilde{\omega}(t)$ is not Dini anymore.

Theorem 2.3.3 (A Generalized RPFT)

Assume $f:X\to X$ is locally expanding and mixing. Assume ψ is a Dini potential and $\omega(t)=\omega_{\psi}(t)$. Then the spectral radius $\rho=\rho(\mathcal{L})$ is not an eigenvalue of $\mathcal{L}:C^{\omega}(X)\to C^{\omega}(X)$. Instead, ρ is the unique maximum, positive and simple eigenvalue of $\mathcal{L}:C^{\widetilde{\omega}}(X)\to C^{\widetilde{\omega}}(X)$.

Proof. Firstly, we check that $\mathcal{L}:C^{\widetilde{\omega}}(X)\to C^{\widetilde{\omega}}(X)$. For every $\varphi\in C^{\widetilde{\omega}}(X)$, we have

$$\begin{aligned} |\mathcal{L}\varphi(y) - \mathcal{L}\varphi(x)| &\leqslant \sum_{x' \in f^{-1}x, y' \in f^{-1}y} |\psi(y')\varphi(y') - \psi(x')\varphi(x')| \\ &\leqslant \sum_{x', y'} |\psi(y') - \psi(x')||\varphi(y')| + |\varphi(y') - \varphi(x')||\psi(x')| \\ &\leqslant K(\omega(\lambda^{-1}d(x, y)) + \widetilde{\omega}(\lambda^{-1}d(x, y))) = K\widetilde{\omega}(d(x, y)). \end{aligned}$$

Hence $\mathcal{L}\varphi\in C^{\widetilde{\omega}}(X)$.

Recall $G_n(x) = \prod_{i=0}^{n-1} \psi(f^i x)$, then

$$\mathcal{L}^{n}\varphi(x) = \sum_{x' \in f^{-n}x} G_{n}(x')\varphi(x').$$

Proposition 2.3.4 (Dini distortion property)

Assume $\psi \in C^{\omega}$, then $\exists K_0 > 0$ such that for every $x, y \in X, d_n(x, y) \leqslant a$,

$$\left|\log \frac{G_n(x)}{G_n(y)}\right| \leqslant K_0 \widetilde{\omega}(d(f^n x, f^n y)).$$

Then for every $\varphi \in C^{\omega}, x, y \in X, d_n(x, y) \leqslant a$, we have

$$\mathcal{L}^{n}\varphi(x) = \sum_{x' \in f^{-n}x} G_{n}(x')\varphi(x')$$

$$\leq \sum_{y' \in f^{-n}y} G_{n}(y')e^{K_{0}\sum_{i=1}^{n}\omega(\lambda^{-i}d(x,y))}\varphi(y')e^{K'\omega(\lambda^{-n}d(x,y))}$$

$$\leq \mathcal{L}^{n}\varphi(y)\exp\left(K_{0}\sum_{i=1}^{n}\omega(\lambda^{-i}d(x,y)) + K'\omega(\lambda^{-n}d(x,y))\right).$$

This implies that if ψ is only Dini continuous, even $\mathcal{L}^n\varphi$ is in $C^\omega(X)$, the limit point will not be in $C^\omega(X)$ in general. In particular, every non-negative eigenvector of \mathcal{L} can only be in $C^{\widetilde{\omega}}(X)$.

For K, s > 0, define

$$C_{K,s}^{\widetilde{\omega}} = \left\{ \varphi \in C(X) : \varphi(x) \geqslant s, |\log \varphi(x) - \log \varphi(y)| \leqslant K\widetilde{\omega}(d(x,y)) \right\}.$$

Lemma 2.3.5 Any bounded sequence in $C_{K,s}^{\widetilde{\omega}}$ has a convergent subsequence.

Assume $\min_{x \in X} \psi(x) = 1$.

Lemma 2.3.6 Let
$$0 < s < 1, K \geqslant K_0$$
, then $\mathcal{L}(C_{K,s}^{\widetilde{\omega}}) \subset C_{K,s}^{\widetilde{\omega}}$.

Let $S=\left\{\mu:\exists \varphi\in C_{K,s}^{\widetilde{\omega}},\mathcal{L}\varphi\geqslant \mu\varphi\right\}$. Then $S\neq\varnothing$ and S is bounded. Let $\rho=\sup S$, then there exists $\varphi_0\in C_{K,s}^{\widetilde{\omega}}$ such that $\mathcal{L}\varphi_0=\rho\varphi_0$.

Theorem 2.3.7 (Generalized KS Theorem)

Assume $f:M\to M$ is a $C^{1+\omega}$ locally expanding and mixing map where ω is Dini. Then f has a unique smooth f-invariant probability measure whose density is in $C^{\widetilde{\omega}}(M)$.

Geometric Interpretation

For
$$\psi \in C^{\alpha}(X)$$
, let

$$\mathcal{D}_{\alpha} = \{ \varphi \in C^{\alpha}(X) : \varphi > 0, \|\varphi\| = 1 \},$$

and define $F(\varphi) = \frac{\mathcal{L}\varphi}{\|\mathcal{L}\varphi\|} : \mathcal{D}_{\alpha} \to \mathcal{D}_{\alpha}$. Then RPFT implies F has a unique fixed point in \mathcal{D}_{α} and moreover,

$$||F^n \varphi - \varphi_0|| \le C\mu^n ||\varphi - \varphi_0||, \quad \forall n.$$

Now we consider

$$\mathcal{D}_{\omega} = \{ \varphi \in C^{\omega}(X) : \varphi > 0, \|\varphi\| = 1 \},$$

then $F: \mathcal{D}_{\omega} \to \mathcal{D}_{\omega}$. By generalized RPFT, F has no fixed point in \mathcal{D}_{ω} . Instead, F has a fixed point in $\partial \mathcal{D}_{\omega} \subset \mathcal{D}_{\widetilde{\omega}}$. Furthermore, $\forall \varphi \in \mathcal{D}_{\omega}$,

$$||F^n\varphi - \varphi_0|| \to 0, \quad n \to \infty.$$

Two convergences above are very similar with the following complex analysis theorem.

Theorem 2.3.8 (Denjoy-Wolff)

Let $\mathbb{D}=\{z\in\mathbb{C}:|z|\leqslant1\}$, let $F:\mathbb{D}\to\mathbb{D}$ be an analytic map and is not elliptic Möbius transformation (not an injection). Then

- (1) f has a unique fixed point $p \in \mathbb{D}$ such that for every $z \in \mathbb{D}$, $f^n(z) \to p$ exponentially fast.
- (2) $\exists p \in \partial \mathbb{D}$ such that $f^n(z) \to p$ for every $z \in \mathbb{D}$.

Annotation 2.3.9 This conclusion reminds me of the Poincaré disc model.

Indeed, the proof of this theorem applying the hyperbolic metric on \mathbb{D} . Can we do this for \mathcal{L} ? Yes. The hyperbolic metric on \mathbb{D} can also be viewed as a cross ratio. We can also define a "cross ratio" on \mathcal{L} similarly. That is the **Hilbert metric**. For some detailed discussion, see section The Hilbert metric.

§2.4 A probability point of view

Let $\mathcal{B}(X)$ be the Borel σ -algebra on X. Let $\mathcal{M}(X)$ be the space of all finite Borel measures on X. By Riesz representation theorem, $\mathcal{M}(X)$ corresponds to the space of all positive functionals on C(X), given by

$$\langle \mu, f \rangle = \int f d\mu, \quad \forall f \in C(X), \mu \in \mathcal{M}(X).$$

Endowing $\mathcal{M}(X)$ with the weak* topology, then every bounded closed set is compact in $\mathcal{M}(X)$. Let $\operatorname{Prob}(X)^f$ the space of all f-invariant probability measures on X. Then $\operatorname{Prob}(X)^f$ is non-empty, convex. Every extremal point of $\operatorname{Prob}(X)^f$ is an ergodic f-invariant measure.

For a transfer operator $\mathcal L$ with a Dini continuous potential φ . Take $\varphi_0 \in C^{\widetilde{\omega}}(X)$ such that $\mathcal L \varphi_0 = \rho \varphi_0$, where $\rho = \rho(\mathcal L)$. Consider

$$\widetilde{\psi} = \frac{\psi \varphi_0}{\rho \varphi_0 \circ f}, \quad \widetilde{\mathcal{L}}\varphi(x) = \sum_{x' \in f^{-1}x} \widetilde{\psi}(x')\varphi(x'),$$

then $\widetilde{\mathcal{L}}1=1,\,\widetilde{\mathcal{L}}$ is called the **normalized transfer operator** of \mathcal{L} . Let $\mathcal{L}^*,\,\widetilde{\mathcal{L}}^*$ be the dual operators of $\mathcal{L},\,\widetilde{\mathcal{L}}$, respectively. Then μ is f-invariant iff $\widetilde{\mathcal{L}}^*\mu=\mu$. In fact,

$$\mathcal{L}^n \varphi = \rho^n \varphi_0 \widetilde{\mathcal{L}}^n \left(\frac{\varphi}{\varphi_0} \right), \quad \mathcal{L}^{*n} \nu = \frac{\rho^n}{\varphi_0} \widetilde{\mathcal{L}}^{*n} (\varphi_0 \nu).$$

Probability view

We consider

$$P_n\varphi(x) = (\widetilde{\mathcal{L}}^n\varphi)(f^nx) = \sum_{x' \in f^{-n}(f^nx)} \widetilde{G}_n(x')\varphi(x').$$

Then $P_n 1 = 1$ for every $n \geqslant 1$.

Annotation 2.4.1 It looks like taking a conditional expectation with respect to a partition given by local stable manifolds.

Lemma 2.4.2

 $\mathcal{P} = \{P_n\}_{n=1}^{\infty}$ is a compatible chain of Markovian projections, i.e.

- (i) $P_mP_n=P_nP_m=P_m,$ for every $m\geqslant n\geqslant 1.$
- (ii) Let $\Gamma_n=\operatorname{Im} P_n,$ then for every $\varphi\in C(X), \chi\in\Gamma_n,$

$$P_n(\varphi \chi) = \chi P_n \varphi.$$

Let $P_n^*: M(X) \to M(X)$ be the dual of P_n , then $P_n(\operatorname{Prob}(X)) \subset \operatorname{Prob}(X)$. Let

$$\mathcal{G}_n = \{ \mu \in \operatorname{Prob}(X) : P_n^* \mu = \mu \},\,$$

then $\mathcal{G}_m\subset\mathcal{G}_n$ for every $m\geqslant n$. Let $\mathcal{G}_\infty=\bigcap_{n=0}^\infty\mathcal{G}_n$, then $\mathcal{G}_\infty
eq\varnothing$.

Annotation 2.4.3 For every f-invariant measure μ given by the transfer operator, we have $\langle \mu, P_n \varphi \rangle = \langle \mu, \widetilde{\mathcal{L}}^n \varphi \rangle = \langle \mu, \varphi \rangle$, hence $\mu \in \mathcal{G}_n, \forall n \geqslant 0$.

Lemma 2.4.4

Any $\mu \in \mathcal{G}_{\infty}$ is a **Gibbs measure** associated with ψ , i.e. $\exists C = C(r) > 0$ such that

$$C^{-1} \leqslant \frac{\mu(B_n(x,r))}{\rho^{-n}G_n(x)} = \frac{\mu(B_n(x,r))}{\exp\left(-n\log\rho + \sum_{i=0}^{n-1}\log\psi(f^ix)\right)} \leqslant C,$$

where $B_n(x,r) = \{ y \in X : d_n(x,y) \le r \}$.

Let \mathscr{B}_n be the σ -algebra generated by Γ_n , then $\mathscr{B}_{n+1} \subset \mathscr{B}_n$, write $\mathscr{B}_{\infty} = \bigcap_{n=1}^{\infty} \mathscr{B}_n$.

Definition 2.4.5. A measure $\mu \in \mathcal{G}_{\infty}$ is called **ergodic** if $\mu(B) = 0$ or 1 for every $B \in \mathscr{B}_{\infty}$.

Take $\mu \in \mathcal{G}_{\infty}$, for every $\chi \in \Gamma_n$, we have

$$\langle \mu, \chi P_n \varphi \rangle = \langle \mu, P_n(\varphi \chi) \rangle = \langle \mu, \varphi \chi \rangle,$$

hence $P_n\varphi = \mathbf{E}(\varphi|\mathscr{B}_n), \ \mu-\text{a.e.}$ the conditional expectation. Then $\{P_n\varphi\}_{n\geqslant 0}$ forms a backward martingale, hence

$$P_n \varphi \to \mathbf{E}(\varphi | \mathscr{B}_{\infty}), \quad \mu - \text{a.e. and } L^1.$$

Lemma 2.4.6

- 1. If $\mu_1, \mu_2 \in \mathcal{G}_{\infty}$ are ergodic, then either $\mu_1 = \mu_2$ or $\mu_1 \perp \mu_2$.
- 2. $\mu \in \mathcal{G}_{\infty}$ is ergodic iff μ is an extremal point of \mathcal{G}_{∞} .

Lemma 2.4.7 $\sharp \mathcal{G}_{\infty} = 1$.

Proof. By the inequality given by lemma 2.4.4, we can show that for every $\mu_1, \mu_2 \in \mathcal{G}_{\infty}, \mu_1$ and μ_2 are mutually absolutely continuous.

Lemma 2.4.8

Suppose $\mathcal{P}=\{P_n\}_{n=1}^\infty$ is a compatible chain of Markovian projections, then the followings are equivalent:

- (1) $\sharp \mathcal{G}_{\infty} = 1$.
- (2) $\forall \varphi \in C(X), P_n \varphi$ pointwise converge to a constant.
- (3) $\forall \varphi \in C(X), P_n \varphi$ uniformly converge to a constant.

Theorem 2.4.9

Suppose X is a compact metric space and $f:X\to X$ is a locally expanding and mixing map. For any $\psi\in C^{\mathrm{Dini}}(X), \omega(t)=\omega_{\psi}(t),$ we have

- 1. $\rho=\rho(\mathcal{L})$ is the unique maximal positive simple eigenvalue of $\mathcal{L}:C^{\widetilde{\omega}}(X)\to C^{\widetilde{\omega}}(X)$ with a positive eigenfunction $\varphi_0,\mathcal{L}\varphi_0=\rho\varphi_0$.
- 2. there is a unique probability measure ν_0 on X such that $\mathcal{L}^*\nu_0 = \rho\nu_0$.
- 3. Take $\langle \nu_0, \varphi_0 \rangle = 1$, then for every $\varphi \in C(X)$,

$$\rho^{-n}\mathcal{L}^n\varphi \Longrightarrow \langle \nu_0, \varphi \rangle \varphi_0.$$

4. The probability measure $\mu_0=\varphi_0\nu_0$ is the unique Gibbs measure associated with ψ and is ergodic.