ER IPT HACK_2023 Track 2: Calculations

YAV-SSV Team Approach

12-21 MAY 2023

КПІ ім. Ігоря Сікорського

Task

- The focus is on resource-intensive tasks performed by CERN for processing Large Hadron Collider experiment results.
- Investigate measurement the performance of these computational tasks.
- Investigate measurement of energy efficiency of these computational tasks

Overview - **Energy Consumption Measurement**

Overview - WLCG

- global collaboration of around
 170 computing centres
- more than 40 countries
- distribute and analyse the ~200
 Petabytes of data from Large
 Hadron Collider every year
- More: wlcg.web.cern.ch

Overview - WLCG Workload

Hardware

HEP Benchmark Suite

gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite

- Run workloads representative of the production applications running on WLCG
- Enable performance studies on heterogeneous hardware

```
HEPScore Benchmark
The general Replacement of proprietary HS06
 ref_series Consists of several CPU-intensive workloads
 weight 1. Executes workload in containers
         (Singularity/Docker)
   Each workload score is normalised to the
         score of the reference server, in order to
name: TestBermake it a dimensionless factor
```

More info:

- Source code repository
- **HEPScore** the HEP-specific benchmark

Challenges

• **Slow** computation

The benchmark will take 5+ hours to execute on modern hardware.

NOTE: ~20 GB of free disk space in your Singularity or Docker cache are

• **Unsterility** of the environment

 Hardware dependence - inability to parallelize tests, not obvious comparison between CPU and GPU

 Limited use of VM due to lack of access to the physical CPU

Experiment workflow

Setup:

- Stick to a single benchmark task (belle2-gen-sim-reco-bmk)
- Run locally (AMD Ryzen 5 5500U, 6 cores, 12 threads)
- Linux, perf (power/energy-pkg), cpupower, docker

Workflow:

For each available cpu frequency (1.4 GHz, 1.7 GHz, 2.1 GHz)

3. Save results

5 runs for each frequency

	1.4 GHz	1.7 GHz	2.1 GHz
Power consumption median, Joules	5927.65	5468.11	6267.85
Power consumption max, Joules	6023.65	5492.29	6960.44
Power consumption min, Joules	5907.67	5427.24	6210.68
Benchmark score median	85.697	102.808	138.308
Benchmark score max	85.7325	103.163	142.1775
Benchmark score min	85.2355	102.6305	136.533
Execution time median, s	688.5928424	569.9492953	417.5034929
Execution time max, s	690.952235	570.8386744	420.9916446
Execution time min, s	685.7868938	568.2845271	394.5543055
Score per joule median	0.014463152	0.018856345	0.021958646
Score per joule max	0.014506057	0.018910256	0.022269381
Score per joule min	0.014150142	0.018740637	0.02042651

Summary

- Limiting the CPU frequency reduces power consumption, until a certain point
- Performance and execution time changes monotonically depending on the frequency
- Score to Energy consumption ratio also decreases with limiting the frequency, which means there is more performance loss than energy efficiency gain
- There is no silver bullet: decision making should be careful and and focused on current problems to choose the best trade-off

Experiment 2

- Goal: validate measurement of power consumption
 - Same software setup as in main experiment
 - The laptop is disconnected from charging
 - Charge level of battery recorded before and after benchmark run (upower)
- **Important notice**: the laptop battery is not monitored as actively as the CPU (the info is updated only once every 30 seconds, with a certain step of accuracy), so the measurement is approximate.

Results - the ratio of perf's power consumption measurement to battery discharging (statistics of 3 runs):

	ratio			
frequency	mean	max	min	
1.7 GHz	0.606138015	0.668914919	0.57420385	
2.1 GHz	0.689998177	0.72618657	0.67078084	

Future Steps

- More detailed tests at different frequencies
- More comprehensive benchmarking
- Detailed metrics for power consumption
- Experiments on other platforms (e.g. Cloud VM)

```
System Information * * *
PowerTOP Version; v2.11-1-q7ef7f79 ran at Sun May 21 14:36:37 2023
Kernel Version; Linux version 5.15.0-1038-azure
System Name; Microsoft Corporation Virtual Machine Hyper-V UEFI Release v4.1
CPU Information; 4 Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz
OS Information; Ubuntu 20.04.6 LTS
Target: 1 units/s;System: 55.0 wakeup/s;CPU: 0.3% usage;GPU: 0 ops/s;GFX: 0 wakeups/s;VFS: 0 ops/s;
          Top 10 Power Consumers * * *
 Jsage;Events/s;Category;Description;PW Estimate
  0.0%; 12.7; Timer; tick_sched_timer; 50.6 mW
  0.0%; 5.3; Interrupt; [3] net_rx(softirq); 21.1 mW
  0.0%; 5.0; kWork; psi_avgs_work; 19.8 mW
 0.0%; 4.9;kWork;fb_flashcursor; 19.5 mW
  0.0%; 3.9; Process; [PID 824] /usr/sbin/chronyd -F -1; 15.9 mW
  0.0%; 3.4; Timer; hrtimer wakeup; 13.6 mW
 0.0%; 3.0; Interrupt; [6] tasklet(softirg); 12.1 mW
  0.1%; 2.6; Process; [PID 1399] python3 -u bin/WALinuxAgent-2.9.0.4-py2.7.egg -run-exthandlers ; 12.0 mW
  0.0%; 2.0; Process; [PID 14] [rcu sched]; 7.91 mW
 0.0%: 1.8:Process:[PID 39] [kcompactd0]: 7.13 mW
```

PowerTOP

Azure Virtual Machine

Source code:

github.com/andrii0yerko/ER-IPT-HACK_2023

Thank for your attention!