

Service Manual

Service Manual

KC550

Model : KC550

REVISED HISTORY

Editor	Date	Issue	Contents of Changes	S/W Version
Y.W.YUN	5/26	0.1		

* The information in this manual is subject to change without notice and should not be construed as a commitment by LGE Inc. Furthermore, LGE Inc. reserves the right, without notice, to make changes to equipment design as advances in engineering and manufacturing methods warrant.

* This manual provides the information necessary to install, program, operate and maintain the KC550.

Table Of Contents

1. INTRODUCTION	7	6. Trouble shooting.....	84
1.1 Purpose	7	6.1 Trouble shooting test setup.....	84
1.2 Regulatory Information.....	7	6.2 Power on Trouble.....	85
1.3 ABBREVIATION	9	6.3 Charging trouble	88
2. GENERAL PERFORMANCE	11	6.4 LCD display trouble.....	90
2.1 H/W Features.....	11	6.5 Camera Trouble	93
2.2 Technical specification.....	12	6.6 Receiver & Speaker trouble	95
3. TECHNICAL BRIEF	19	6.7 Microphone trouble	97
3.1 KC550 Component Block diagram.....	19	6.8 Ear-Mic Jack Detection trouble.....	98
3.2 Main Chip Introduction	20	6.9 Vibrator trouble	99
3.3 Baseband Part Introduction	22	6.10 Keypad back light trouble.....	100
3.4 Power Management Unit	38	6.11 SIM & uSD trouble	103
3.5 Power ON/OFF	43	6.12 RF Troubleshooting	106
3.6 SIM interface.....	47	6.13 RF Receiver path Troubleshooting	110
3.7 Memory	48	6.14 RF Transmitter path Troubleshooting	113
3.8 LCD Display.....	50		
3.9 Keypad Switching & Scanning	53		
3.10 Keypad back-light illumination	54		
3.11 LCD back-light illumination	55		
3.12 JTAG interface connector	57		
3.13 Audio.....	58		
3.14 USB charging circuit	62		
3.15 BLUETOOTH.....	63		
3.16 FM Radio.....	66		
3.17 Micro SD external memory card slot....	67		
3.18 18pin Multi Media Interface connector	69		
4. RF circuit technical brief	71		
4.1 General Description	71		
4.2 Receiver part.....	73		
4.3 Transmitter part.....	74		
4.4 RF synthesizer	75		
4.5 DCXO.....	76		
4.6 Front End Module control.....	76		
4.7 Power Amplifier Module	77		
4.8 Mode Selection	78		
5. PCB layout.....	79		
5.1 Main PCB component placement	79		
6. Trouble shooting.....	84		
6.1 Trouble shooting test setup.....	84		
6.2 Power on Trouble.....	85		
6.3 Charging trouble	88		
6.4 LCD display trouble.....	90		
6.5 Camera Trouble	93		
6.6 Receiver & Speaker trouble	95		
6.7 Microphone trouble	97		
6.8 Ear-Mic Jack Detection trouble.....	98		
6.9 Vibrator trouble	99		
6.10 Keypad back light trouble.....	100		
6.11 SIM & uSD trouble	103		
6.12 RF Troubleshooting	106		
6.13 RF Receiver path Troubleshooting	110		
6.14 RF Transmitter path Troubleshooting	113		
7. Download & S/W upgrade.....	118		
7.1 Download program user guide.....	118		
7.2 Multi-Download Program Setting	119		
8. CIRCUIT DIAGRAM	121		
9. BGM PIN MAP.....	131		
10. PCB LAYOUT.....	137		
11. RF Calibration.....	145		
11.1 Test Equipment Setup	145		
11.2 Calibration Step	145		
12. Stand-alone Test	151		
12.1 Test Program Setting	151		
12.2 Tx Test.....	153		
12.3 Rx Test.....	154		
13. ENGINEERING MODE	155		
14. EXPLODED VIEW & REPLACEMENT PART LIST	157		
14.1 Exploded View	157		
14.2 Replacement Parts	159		
14.3 Accessory	182		

1. INTRODUCTION

1.1 Purpose

This manual provides the information necessary to repair, calibration, description and download the features of the KC550.

1.2 Regulatory Information

A. Security

Toll fraud, the unauthorized use of telecommunications system by an unauthorized part (for example, persons other than your company's employees, agents, subcontractors, or person working on your company's behalf) can result in substantial additional charges you°Øre your telecommunications services. System users are responsible for the security of own system.

There are may be risks of toll fraud associated with your telecommunications system. System users are responsible for programming and configuring the equipment to prevent unauthorized use. LGE does not warrant that this product is immune from the above case but will prevent unauthorized use of common-carrier telecommunication service of facilities accessed through or connected to it. LGE will not be responsible for any charges that result from such unauthorized use.

B. Incidence of Harm

If a telephone company determines that the equipment provided to customer is faulty and possibly causing harm or interruption in service to the telephone network, it should disconnect telephone service until repair can be done. A telephone company may temporarily disconnect service as long as repair is not done.

C. Changes in Service

A local telephone company may make changes in its communications facilities or procedure. If these changes could reasonably be expected to affect the use of the KC550 or compatibility with the network, the telephone company is required to give advanced written notice to the user, allowing the user to take appropriate steps to maintain telephone service.

D. Maintenance Limitations

Maintenance limitations on the KC550 must be performed only at the LGE or its authorized agents. The user may not make any changes and/or repairs expect as specifically noted in this manual. Therefore, note that unauthorized alterations or repair may affect the regulatory status of the system and may void any remaining warranty.

1. INTRODUCTION

E. Notice of Radiated Emissions

The KC550 complies with rules regarding radiation and radio frequency emission as defined by local regulatory agencies. In accordance with these agencies, you may be required to provide information such as the following to the end user.

F. Pictures

The pictures in this manual are for illustrative purposes only; your actual hardware may look slightly different.

G. Interference and Attenuation

An KC550 may interfere with sensitive laboratory equipment, medical equipment, etc. Interference from un suppressed engines or electric motors may cause problems.

H. Electrostatic Sensitive Devices

ATTENTION

Boards, which contains Electrostatic Sensitive Device(ESD), are indicated by the sign.

Following information is ESD handling: Service personnel should ground themselves by using a wrist strap when exchange system boards.

When repairs are made to a system board, they should spread the floor with anti-static mat which is also grounded. Use a suitable, grounded soldering iron. Keep sensitive parts in these protective packages until these are used. When returning system boards or parts such as EEPROM to the factory, use the protective package as described.

1.3 ABBREVIATION

For the purposes of this manual, following abbreviations apply:

APC	Automatic Power Control
BB	Baseband
BER	Bit Error Ratio
CC-CV	Constant Current - Constant Voltage
CLA	Cigar Lighter Adapter
DAC	Digital to Analog Converter
DCS	Digital Communication System
dBm	dB relative to 1 milli-watt
DSP	Digital Signal Processing
EEPROM	Electrical Erasable Programmable Read-Only Memory
EGPRS	Enhanced General Packet Radio Service
EL	Electroluminescence
ESD	Electrostatic Discharge
FPCB	Flexible Printed Circuit Board
GMSK	Gaussian Minimum Shift Keying
GPIB	General Purpose Interface Bus
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
IPIU	International Portable User Identity
IF	Intermediate Frequency
LCD	Liquid Crystal Display
LDO	Low Drop Output
LED	Light Emitting Diode

1. INTRODUCTION

LGE	LG Electronics
OPLL	Offset Phase Locked Loop
PAM	Power Amplifier Module
PCB	Printed Circuit Board
PGA	Programmable Gain Amplifier
PLL	Phase Locked Loop
PSTN	Public Switched Telephone Network
RF	Radio Frequency
RLR	Receiving Loudness Rating
RMS	Root Mean Square
RTC	Real Time Clock
SAW	Surface Acoustic Wave
SIM	Subscriber Identity Module
SLR	Sending Loudness Rating
SRAM	Static Random Access Memory
STMR	Side Tone Masking Rating
TA	Travel Adapter
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator
VCTCXO	Voltage Control Temperature Compensated Crystal Oscillator
WAP	Wireless Application Protocol
8PSK	8 Phase Shift Keying

2. GENERAL PERFORMANCE

2. GENERAL PERFORMANCE

2.1 H/W Feature

Item	Feature	Comment
Standard Battery	Li-ion, 900mAh	
AVG TCVR Current	260mA typ	@PL5
Standby Current	2 mA typ	@PP9
Talk time	6 hours (GSM TX Level 10)	
Standby time	Over 450 hours (Paging Period:9, RSSI: -85dBm)	
Charging time	Under 3 hours	
RX Sensitivity	EGSM : -105dBm↓ , DCS/PCS : -105dBm↓	
TX output power	EGSM : 33dBm (@PL 5) DCS/PCS: 30dBm (@PL 0)	
GPRS compatibility	Class 12	
SIM card type	3V Small	
Display	240 x 320 pixels, 2.4 inch QVGA, 262K color, TFT	
Status Indicator	Soft icons, 0 ~ 9, #, *, Scroll, Send, End/PWR, Clear AF/Camera double action, Volume Up, Volume Down	
ANT	Built in antenna	
EAR Phone Jack	18pin multi port Headset jack (W/O remote controller)	
PC Synchronization	Yes	
Speech coding	HR/EFR/FR/AMR	
Data and Fax	Yes	
Vibrator	Yes	
Buzzer	No	
Voice Recoding	Yes	
C-Mic	Yes	
Receiver	Yes	
Travel Adapter	Yes	
Options	Bluetooth hands-free kit, Data Kit	

2. GENERAL PERFORMANCE

2.2 Technical specification

Item	Description	Specification																																																																																																																	
1	Frequency Band	EGSM <ul style="list-style-type: none"> • TX: $890 + 0.2 \times n$ MHz • RX: $935 + 0.2 \times n$ MHz ($n = 1 \sim 124$) • TX: $890 + 0.2 \times (n-1024)$ MHz • RX: $935 + 0.2 \times (n-1024)$ MHz ($n = 975 \sim 1023$) DCS1800 <ul style="list-style-type: none"> • TX: $1710 + (n-511) \times 0.2$ MHz ($n = 512 \sim 885$) • RX: TX + 95 MHz PCS1900 <ul style="list-style-type: none"> • TX: $1850.2 + (n-512) \times 0.2$ MHz ($n = 512 \sim 810$) • RX: TX + 80MHz 																																																																																																																	
2	Phase Error	RMS < 5 degrees , Peak < 20 degrees																																																																																																																	
3	Frequency Error	< 0.1ppm																																																																																																																	
4	Power Level	EGSM <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Level</th><th>Power</th><th>Toler.</th><th>Level</th><th>Power</th><th>Toler.</th></tr> </thead> <tbody> <tr><td>5</td><td>33 dBm</td><td>± 2dB</td><td>13</td><td>17 dBm</td><td>± 3dB</td></tr> <tr><td>6</td><td>31 dBm</td><td>± 3dB</td><td>14</td><td>15 dBm</td><td>± 3dB</td></tr> <tr><td>7</td><td>29 dBm</td><td>± 3dB</td><td>15</td><td>13 dBm</td><td>± 3dB</td></tr> <tr><td>8</td><td>27 dBm</td><td>± 3dB</td><td>16</td><td>11 dBm</td><td>± 5dB</td></tr> <tr><td>9</td><td>25 dBm</td><td>± 3dB</td><td>17</td><td>9 dBm</td><td>± 5dB</td></tr> <tr><td>10</td><td>23 dBm</td><td>± 3dB</td><td>18</td><td>7 dBm</td><td>± 5dB</td></tr> <tr><td>11</td><td>21 dBm</td><td>± 3dB</td><td>19</td><td>5 dBm</td><td>± 5dB</td></tr> <tr><td>12</td><td>19 dBm</td><td>± 3dB</td><td></td><td></td><td></td></tr> </tbody> </table> DCS1800/PCS1900 <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Level</th><th>Power</th><th>Toler.</th><th>Level</th><th>Power</th><th>Toler.</th></tr> </thead> <tbody> <tr><td>0</td><td>30 dBm</td><td>± 2dB</td><td>8</td><td>14 dBm</td><td>± 3dB</td></tr> <tr><td>1</td><td>28 dBm</td><td>± 3dB</td><td>9</td><td>12 dBm</td><td>± 4dB</td></tr> <tr><td>2</td><td>26 dBm</td><td>± 3dB</td><td>10</td><td>10 dBm</td><td>± 4dB</td></tr> <tr><td>3</td><td>24 dBm</td><td>± 3dB</td><td>11</td><td>8 dBm</td><td>± 4dB</td></tr> <tr><td>4</td><td>22 dBm</td><td>± 3dB</td><td>12</td><td>6 dBm</td><td>± 4dB</td></tr> <tr><td>5</td><td>20 dBm</td><td>± 3dB</td><td>13</td><td>4 dBm</td><td>± 4dB</td></tr> <tr><td>6</td><td>18 dBm</td><td>± 3dB</td><td>14</td><td>2 dBm</td><td>± 5dB</td></tr> <tr><td>7</td><td>16 dBm</td><td>± 3dB</td><td>15</td><td>0 dBm</td><td>± 5dB</td></tr> </tbody> </table>						Level	Power	Toler.	Level	Power	Toler.	5	33 dBm	± 2 dB	13	17 dBm	± 3 dB	6	31 dBm	± 3 dB	14	15 dBm	± 3 dB	7	29 dBm	± 3 dB	15	13 dBm	± 3 dB	8	27 dBm	± 3 dB	16	11 dBm	± 5 dB	9	25 dBm	± 3 dB	17	9 dBm	± 5 dB	10	23 dBm	± 3 dB	18	7 dBm	± 5 dB	11	21 dBm	± 3 dB	19	5 dBm	± 5 dB	12	19 dBm	± 3 dB				Level	Power	Toler.	Level	Power	Toler.	0	30 dBm	± 2 dB	8	14 dBm	± 3 dB	1	28 dBm	± 3 dB	9	12 dBm	± 4 dB	2	26 dBm	± 3 dB	10	10 dBm	± 4 dB	3	24 dBm	± 3 dB	11	8 dBm	± 4 dB	4	22 dBm	± 3 dB	12	6 dBm	± 4 dB	5	20 dBm	± 3 dB	13	4 dBm	± 4 dB	6	18 dBm	± 3 dB	14	2 dBm	± 5 dB	7	16 dBm	± 3 dB	15	0 dBm	± 5 dB
Level	Power	Toler.	Level	Power	Toler.																																																																																																														
5	33 dBm	± 2 dB	13	17 dBm	± 3 dB																																																																																																														
6	31 dBm	± 3 dB	14	15 dBm	± 3 dB																																																																																																														
7	29 dBm	± 3 dB	15	13 dBm	± 3 dB																																																																																																														
8	27 dBm	± 3 dB	16	11 dBm	± 5 dB																																																																																																														
9	25 dBm	± 3 dB	17	9 dBm	± 5 dB																																																																																																														
10	23 dBm	± 3 dB	18	7 dBm	± 5 dB																																																																																																														
11	21 dBm	± 3 dB	19	5 dBm	± 5 dB																																																																																																														
12	19 dBm	± 3 dB																																																																																																																	
Level	Power	Toler.	Level	Power	Toler.																																																																																																														
0	30 dBm	± 2 dB	8	14 dBm	± 3 dB																																																																																																														
1	28 dBm	± 3 dB	9	12 dBm	± 4 dB																																																																																																														
2	26 dBm	± 3 dB	10	10 dBm	± 4 dB																																																																																																														
3	24 dBm	± 3 dB	11	8 dBm	± 4 dB																																																																																																														
4	22 dBm	± 3 dB	12	6 dBm	± 4 dB																																																																																																														
5	20 dBm	± 3 dB	13	4 dBm	± 4 dB																																																																																																														
6	18 dBm	± 3 dB	14	2 dBm	± 5 dB																																																																																																														
7	16 dBm	± 3 dB	15	0 dBm	± 5 dB																																																																																																														

2. GENERAL PERFORMANCE

Item	Description	Specification	
5	Output RF Spectrum (due to modulation)	EGSM	
		Offset from Carrier (kHz).	Max. dBc
		100	+0.5
		200	-30
		250	-33
		400	-60
		600 ~ 1,200	-60
		1,200 ~ 1,800	-60
		1,800 ~ 3,000	-63
		3,000 ~ 6,000	-65
		6,000	-71
		DCS1800/PCS1900	
		Offset from Carrier (kHz).	Max. dBc
		100	+0.5
		200	-30
		250	-33
		400	-60
		600 ~ 1,200	-60
		1,200 ~ 1,800	-60
		1,800 ~ 3,000	-65
		3,000 ~ 6,000	-65
		6,000	-73
6	Output RF Spectrum (due to switching transient)	EGSM	
		Offset from Carrier (kHz)	Max. (dBm)
		400	-19
		600	-21
		1,200	-21
		1,800	-24

2. GENERAL PERFORMANCE

Item	Description	Specification				
6	Output RF Spectrum (due to switching transient)	DCS1800/PCS1900				
		Offset from Carrier (kHz).				
		400	Max. (dBm)			
		600	-22			
		1,200	-24			
		1,800	-27			
7	Spurious Emissions	Conduction, Emission Status				
8	Bit Error Ratio	EGSM BER (Class II) < 2.439% @ -102dBm				
		DCS1800/PCS1900 BER (Class II) < 2.439% @ -100dBm				
9	Rx Level Report accuracy	± 3 dB				
10	SLR	8 ± 3 dB				
11	Sending Response	Frequency (Hz)	Max.(dB)	Min.(dB)		
		100	-12	-		
		200	0	-		
		300	0	-12		
		1,000	0	-6		
		2,000	4	-6		
		3,000	4	-6		
		3,400	4	-9		
		4,000	0	-		
12	RLR	2 ± 3 dB				
13	Receiving Response	Frequency (Hz)	Max.(dB)	Min.(dB)		
		100	-12	-		
		200	0	-		
		300	2	-7		
		500	*	-5		
		1,000	0	-5		
		3,000	2	-5		
		3,400	2	-10		
		4,000	2			
		* Mean that Adopt a straight line in between 300 Hz and 1,000 Hz to be Max. level in the range.				

2. GENERAL PERFORMANCE

Item	Description	Specification	
14	STMR	13 ± 5 dB	
15	Stability Margin	> 6 dB	
16	Distortion	dB to ARL (dB)	Level Ratio (dB)
		-35	17.5
		-30	22.5
		-20	30.7
		-10	33.3
		0	33.7
		7	31.7
		10	25.5
17	Side Tone Distortion	Three stage distortion $< 10\%$	
18	System frequency (26 MHz) tolerance	≤ 2.5 ppm	
19	32.768KHz tolerance	≤ 30 ppm	
20	Power consumption	Standby - Normal ≤ 2 mA(@PP9)	
21	Talk Time	EGSM/Lvl 7 (Battery Capacity 900mA):180min EGSM/Lvl12(Battery Capacity 900mA): 320min	
22	Standby Time	Under conditions, at least 300 hours: 1. Brand new and full 900mAh battery 2. Full charge, no receive/send and keep GSM in idle mode. 3. Broadcast set off. 4. Signal strength display set at 3 level above. 5. Backlight of phone set off.	
23	Ringer Volume	At least 65 dB under below conditions: 1. Ringer set as ringer. 2. Test distance set as 50 cm	
24	Charge Current	Fast Charge : < 450 mA Slow Charge: < 200 mA	
25	Antenna Display	Antenna Bar Number	Power
		7	>-92 dBm ~
		7 → 5	-97dBm ~ -93dBm
		5 → 4	-100dBm ~ -98dBm
		4 → 2	-103dBm ~ -101dBm
		2 → 1	-105dBm ~ -104dBm
		1 → 0	< -106 dBm

2. GENERAL PERFORMANCE

Item	Description	Specification	
26	Battery Indicator	Battery Bar Number	Voltage($\pm 0.05V$)
		3	3.76V~4.2V
		2	3.68V~3.75V
		1	3.55V~3.65V
		0	3.41V~
27	Low Voltage Warning	3.58V $\downarrow \pm 0.05V$ (Call)	
		3.51V $\downarrow \pm 0.05V$ (Standby)	
28	Forced shut down Voltage	3.3 ± 0.05 V	
29	Battery Type	Li-ion Battery or Li-Polymer Battery Standard Voltage = 3.7 V Battery full charge voltage = 4.2 V Capacity: 900mAh	
31	Travel Charger	Switching-mode charger Input: 100 ~ 240 V, 50/60Hz Out put: 5.1, 0.7A	

2. GENERAL PERFORMANCE

* EDGE RF Specification (Option: is not serviced for “EDGE mode”)

Item	Description	Specification																																																																																																																				
1	RMS EVM	$\leq 9\%$																																																																																																																				
2	Peak EVM	$\leq 30\%$																																																																																																																				
3	95 th Percentile EVM	$\leq 15\%$																																																																																																																				
4	Origin Offset Suppression	$\geq 30\text{dB}$																																																																																																																				
5	Power Level	EGSM <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Level</th><th style="text-align: center;">Power</th><th style="text-align: center;">Toler.</th><th style="text-align: center;">Level</th><th style="text-align: center;">Power</th><th style="text-align: center;">Toler.</th></tr> </thead> <tbody> <tr><td style="text-align: center;">5</td><td style="text-align: center;">27dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">13</td><td style="text-align: center;">17dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td></tr> <tr><td style="text-align: center;">6</td><td style="text-align: center;">27dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">14</td><td style="text-align: center;">15dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td></tr> <tr><td style="text-align: center;">7</td><td style="text-align: center;">27dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">15</td><td style="text-align: center;">13dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td></tr> <tr><td style="text-align: center;">8</td><td style="text-align: center;">27dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">16</td><td style="text-align: center;">11dBm</td><td style="text-align: center;">$\pm 5\text{dB}$</td></tr> <tr><td style="text-align: center;">9</td><td style="text-align: center;">25dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">17</td><td style="text-align: center;">9dBm</td><td style="text-align: center;">$\pm 5\text{dB}$</td></tr> <tr><td style="text-align: center;">10</td><td style="text-align: center;">23dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">18</td><td style="text-align: center;">7dBm</td><td style="text-align: center;">$\pm 5\text{dB}$</td></tr> <tr><td style="text-align: center;">11</td><td style="text-align: center;">21dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">19</td><td style="text-align: center;">5dBm</td><td style="text-align: center;">$\pm 5\text{dB}$</td></tr> <tr><td style="text-align: center;">12</td><td style="text-align: center;">19dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td></td><td></td><td></td><td></td><td></td></tr> </tbody> </table> DCS1800, PCS1900 <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Level</th><th style="text-align: center;">Power</th><th style="text-align: center;">Toler.</th><th style="text-align: center;">Level</th><th style="text-align: center;">Power</th><th style="text-align: center;">Toler.</th></tr> </thead> <tbody> <tr><td style="text-align: center;">0</td><td style="text-align: center;">26dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">8</td><td style="text-align: center;">14dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td></tr> <tr><td style="text-align: center;">1</td><td style="text-align: center;">26dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">9</td><td style="text-align: center;">12dBm</td><td style="text-align: center;">$\pm 4\text{dB}$</td></tr> <tr><td style="text-align: center;">2</td><td style="text-align: center;">26dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">10</td><td style="text-align: center;">10dBm</td><td style="text-align: center;">$\pm 4\text{dB}$</td></tr> <tr><td style="text-align: center;">3</td><td style="text-align: center;">24dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">11</td><td style="text-align: center;">8dBm</td><td style="text-align: center;">$\pm 4\text{dB}$</td></tr> <tr><td style="text-align: center;">4</td><td style="text-align: center;">22dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">12</td><td style="text-align: center;">6dBm</td><td style="text-align: center;">$\pm 4\text{dB}$</td></tr> <tr><td style="text-align: center;">5</td><td style="text-align: center;">20dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">13</td><td style="text-align: center;">4dBm</td><td style="text-align: center;">$\pm 4\text{dB}$</td></tr> <tr><td style="text-align: center;">6</td><td style="text-align: center;">18dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">14</td><td style="text-align: center;">2dBm</td><td style="text-align: center;">$\pm 5\text{dB}$</td></tr> <tr><td style="text-align: center;">7</td><td style="text-align: center;">16dBm</td><td style="text-align: center;">$\pm 3\text{dB}$</td><td style="text-align: center;">15</td><td style="text-align: center;">0dBm</td><td style="text-align: center;">$\pm 5\text{dB}$</td></tr> </tbody> </table>	Level	Power	Toler.	Level	Power	Toler.	5	27dBm	$\pm 3\text{dB}$	13	17dBm	$\pm 3\text{dB}$	6	27dBm	$\pm 3\text{dB}$	14	15dBm	$\pm 3\text{dB}$	7	27dBm	$\pm 3\text{dB}$	15	13dBm	$\pm 3\text{dB}$	8	27dBm	$\pm 3\text{dB}$	16	11dBm	$\pm 5\text{dB}$	9	25dBm	$\pm 3\text{dB}$	17	9dBm	$\pm 5\text{dB}$	10	23dBm	$\pm 3\text{dB}$	18	7dBm	$\pm 5\text{dB}$	11	21dBm	$\pm 3\text{dB}$	19	5dBm	$\pm 5\text{dB}$	12	19dBm	$\pm 3\text{dB}$						Level	Power	Toler.	Level	Power	Toler.	0	26dBm	$\pm 3\text{dB}$	8	14dBm	$\pm 3\text{dB}$	1	26dBm	$\pm 3\text{dB}$	9	12dBm	$\pm 4\text{dB}$	2	26dBm	$\pm 3\text{dB}$	10	10dBm	$\pm 4\text{dB}$	3	24dBm	$\pm 3\text{dB}$	11	8dBm	$\pm 4\text{dB}$	4	22dBm	$\pm 3\text{dB}$	12	6dBm	$\pm 4\text{dB}$	5	20dBm	$\pm 3\text{dB}$	13	4dBm	$\pm 4\text{dB}$	6	18dBm	$\pm 3\text{dB}$	14	2dBm	$\pm 5\text{dB}$	7	16dBm	$\pm 3\text{dB}$	15	0dBm	$\pm 5\text{dB}$						
Level	Power	Toler.	Level	Power	Toler.																																																																																																																	
5	27dBm	$\pm 3\text{dB}$	13	17dBm	$\pm 3\text{dB}$																																																																																																																	
6	27dBm	$\pm 3\text{dB}$	14	15dBm	$\pm 3\text{dB}$																																																																																																																	
7	27dBm	$\pm 3\text{dB}$	15	13dBm	$\pm 3\text{dB}$																																																																																																																	
8	27dBm	$\pm 3\text{dB}$	16	11dBm	$\pm 5\text{dB}$																																																																																																																	
9	25dBm	$\pm 3\text{dB}$	17	9dBm	$\pm 5\text{dB}$																																																																																																																	
10	23dBm	$\pm 3\text{dB}$	18	7dBm	$\pm 5\text{dB}$																																																																																																																	
11	21dBm	$\pm 3\text{dB}$	19	5dBm	$\pm 5\text{dB}$																																																																																																																	
12	19dBm	$\pm 3\text{dB}$																																																																																																																				
Level	Power	Toler.	Level	Power	Toler.																																																																																																																	
0	26dBm	$\pm 3\text{dB}$	8	14dBm	$\pm 3\text{dB}$																																																																																																																	
1	26dBm	$\pm 3\text{dB}$	9	12dBm	$\pm 4\text{dB}$																																																																																																																	
2	26dBm	$\pm 3\text{dB}$	10	10dBm	$\pm 4\text{dB}$																																																																																																																	
3	24dBm	$\pm 3\text{dB}$	11	8dBm	$\pm 4\text{dB}$																																																																																																																	
4	22dBm	$\pm 3\text{dB}$	12	6dBm	$\pm 4\text{dB}$																																																																																																																	
5	20dBm	$\pm 3\text{dB}$	13	4dBm	$\pm 4\text{dB}$																																																																																																																	
6	18dBm	$\pm 3\text{dB}$	14	2dBm	$\pm 5\text{dB}$																																																																																																																	
7	16dBm	$\pm 3\text{dB}$	15	0dBm	$\pm 5\text{dB}$																																																																																																																	
6	Output RF Spectrum (due to modulation)	EGSM <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center;">Offset from carrier(kHz)</th><th style="text-align: center;">Max. dBc</th></tr> </thead> <tbody> <tr><td style="text-align: center;">100</td><td style="text-align: center;">+0.5</td></tr> <tr><td style="text-align: center;">200</td><td style="text-align: center;">-30</td></tr> <tr><td style="text-align: center;">250</td><td style="text-align: center;">-33</td></tr> <tr><td style="text-align: center;">400</td><td style="text-align: center;">-54</td></tr> <tr><td style="text-align: center;">600 ~ <1,200</td><td style="text-align: center;">-60</td></tr> <tr><td style="text-align: center;">1,200 ~ <1,800</td><td style="text-align: center;">-60</td></tr> <tr><td style="text-align: center;">1,800 ~ <3,000</td><td style="text-align: center;">-63</td></tr> <tr><td style="text-align: center;">3,000 ~ <6,000</td><td style="text-align: center;">-65</td></tr> <tr><td style="text-align: center;">6,000</td><td style="text-align: center;">-71</td></tr> </tbody> </table>	Offset from carrier(kHz)	Max. dBc	100	+0.5	200	-30	250	-33	400	-54	600 ~ <1,200	-60	1,200 ~ <1,800	-60	1,800 ~ <3,000	-63	3,000 ~ <6,000	-65	6,000	-71																																																																																																
Offset from carrier(kHz)	Max. dBc																																																																																																																					
100	+0.5																																																																																																																					
200	-30																																																																																																																					
250	-33																																																																																																																					
400	-54																																																																																																																					
600 ~ <1,200	-60																																																																																																																					
1,200 ~ <1,800	-60																																																																																																																					
1,800 ~ <3,000	-63																																																																																																																					
3,000 ~ <6,000	-65																																																																																																																					
6,000	-71																																																																																																																					

2. GENERAL PERFORMANCE

Item	Description	Specification	
6	Output RF Spectrum (due to modulation)	DCS1800, PCS1900	
		Offset from carrier(kHz)	Max. dBc
		100	+0.5
		200	-30
		250	-33
		400	-54
		600 ~ <1,200	-60
		1,200 ~ <1,800	-60
		1,800 ~ <3,000	-63
		3,000 ~ <6,000	-65
		6,000	-71
7	Output RF Spectrum (due to switching transient)	EGSM	
		Offset from carrier(kHz)	Max. dBm
		400	-23
		600	-26
		1,200	-27
		1,800	--30
		DCS1800, PCS1900	
		Offset from carrier(kHz)	Max. dBm
		400	-23
		600	-26
		1,200	-27
		1,800	-30

3. TECHNICAL BRIEF

3.1 KC550 Component Block diagram

KC550 is composed with 5 different PCB part such as main PCB, Key PCB, Key FPCB, LCD FPCB and Flash FPCB/

The functional component arrangement is mentioned below diagram.

Figure 1 KC550 Functional block diagram

3. TECHNICAL BRIEF

3.2 Main Chip Introduction

Figure 2 Application View of the S-GOLDRadioTM Block Diagram

3.2.1 General Description

With the latest member of the S-GOLD family, S-GOLDRadioTM, Infineon Technologies introduces the world's first single-chip solution for feature-rich mobile phones. The EDGE-capable device combines all digital and analog functions of the baseband, a quad-band RF transceiver, and the power management circuitry into a single chip. With an option for memory stacking ("Package on Package", JEDEC compliant) the key functions of a mobile phone are now combined into a single device, providing all the benefits that come from a maximum level of integration. Full software re-use from the proven Infineon EDGE platform, MP-ELite, enables fast time-to-market using a comprehensive development kit available to all customers today.

S-GOLDRadioTM is tailored to fit the requirements of EDGE-enabled feature phones with a standard set of multimedia applications such as:

3. TECHNICAL BRIEF

- Still picture imaging up to 2 MPixel
- MPEG4 video encode/decode
- Video streaming
- MP3 playback
- Java applications.

This single chip solution allows for very small form factor phones with a high degree of power efficiency.

Its low cost structure makes multimedia feature-enhanced EDGE phones very affordable for price-sensitive market segments. S-GOLDRadioTM's small footprint, competitive cost position, and low power consumption also makes it the perfect fit for EDGE-capable data cards.

S-GOLDRadioTM's baseband processing is powered by an ARM926EJ-S CPU and a TEAKLite® DSP core.

The ARM926EJ-S is a powerful standard controller and particularly suited for wireless systems. It is supported by a wide range of tools and application SW.

The TEAKLite® is an established DSP core for wireless applications with approved firmware for GSM signalprocessing. The Infineon Technologies DSP firmware and software modules for FR, HR, EFR and AMR-NB vocoding and channel encoding allow a short time to market. Additionally, S-GOLDRadioTM supports multislot operation modes:

HSCSD (up to class 10), GPRS for high speed data applications (up to class 12) and EGPRS (up to class 12) without additional external hardware.

A wide choice of communication interfaces allows complex data and multimedia system designs.

Furthermore, S-GOLDRadioTM contains its own Power Supply and Battery Management. Its design is optimized for all mobile platform needs (such as graphic displays with backlights) and internal needs (analog components, loudspeaker, USB, etc.). S-GOLDRadioTM is driven directly from re-chargeable batteries such as Li-Ion or Li-Polymer batteries. S-GOLDRadioTM Power Management provides different supply voltages by using highly efficient DCDC converters, DCDC boost converters and linear, low-dropout regulators (LDOs). In addition, it supports battery charging, generates stand-by voltages and supports different low power modes.

The S-GOLDRadioTM RF capability features a quad-band transceiver for EGSM/GSM900/GSM1800/GSM1900, and it is designed for voice and data transfer applications. Its architecture consists of a direct conversion receiver and a quad-band polar transmitter for GSM/EDGE.

Accurate output power setting is ensured by an integrated power control loop, which supports linear and non-linear power amplifiers. The entirely integrated quad-band RF oscillator and Sigma-Delta synthesizer give the S-GOLDRadioTM HSCSD and GPRS/EDGE capabilities.

Figure 2 shows a typical application example: The S-GOLDRadioTM as a single chip solution acting as a multifunctional engine in a complete mobile phone platform.

3. TECHNICAL BRIEF

3.3 Baseband Part Introduction

Figure 3 S-GOLDRadioTM Baseband Block Diagram

3.3.1 Block Description

Connectivity

S-GOLDRadioTM offers a variety of connectivity options common in today's feature phone applications:

- USB 2.0 Full Speed (12 Mbps)
- IrDA Controller

Supports Infrared SIR Mode Transceivers

- RS-232 over a 16C550 compliant UART
- MMC/SD Memory Card Interface
 - Low Voltage Capable
 - SDIO expandable (using external components)

3. TECHNICAL BRIEF

- Ready to connect to the Infineon's Bluemoon Family Bluetooth Transceivers
 - HCI (H5) optimized USIF (Universal Serial Interface)
 - Dedicated PCM-style digital audio interface (I2S)
 - Dedicated power supply
- Microcontroller-Like Extension Interface
 - For multimedia companions (for example, complex display/camera modules or graphic accelerators)
- External Memory Interface
 - Supporting:
 - SDRAM
 - Cellular RAM
 - Burst Flash
 - SRAM
 - NAND flashes (error correction capability in HW)
- User Interface (Keypad)
 - Supporting up to 74 keys with multiple key-press capability
- SIM Card interface (USIM)
 - ISO 7816 compatible
- Analogue Measurement Unit
 - For various general purpose measurements such as battery voltage, battery, VCXO and environmental temperature, battery technology, transmission power, offset, on-chip temperature, etc.

Security

S-GOLDRadioTM has the following security features:

- Secure Boot and Flash Update
- SHA1 HW acceleration
- Secure Debug
- 128-bit customer defined efuse key
- Anti-intrusion logic.

Audio

Besides the telephony voice CODECs supplied by the Firmware running on the TEAKLite® DSP core, the ARM926 core enables running high-quality audio CODECs such as MPEG-1/2 Layer-3 Decode (MP3), AAC+ or AAC++. Audio streaming is supported according to the 3GPP PSS Release 4 standard.

The output of audio and voice codecs can be mixed and routed to the integrated Hi-Fi Stereo voiceband supporting CD-Quality. Alternatively, the audio can also be sinked to a mono loudspeaker using the integrated hands-free amplifier.

3. TECHNICAL BRIEF

Video and Imaging

S-GOLDradioTM allows connecting an external camera module over an ITU-R BT656 compliant interface and a display module over a microcontroller-like parallel or serial interface. Furthermore, ARM's MOVE coprocessor is integrated to accelerate video encoding algorithms (for example, H.263 or MPEG-4). This fulfills basic multimedia requirements and allows connecting commodity cameras and displays without the need of an additional multimedia IC. The computational power for encoding and decoding still pictures (JPEG) and video sequences (H.263 or MPEG-4) is provided by the integrated ARM926 core.

Over-the-air interface JPEG pictures and H.263 or MPEG-4 videos can be sent or received as MMS by means of (E)GPRS.

S-GOLDradioTM also enables video down-streaming because of its DSP and ARM performances.

Supported "still pictures" multimedia scenarios are:

- **View Finding for a Picture Snapshot:** Captured frames are transferred from the camera IF to the display IF at up to 15 fps (depending on the camera used) in QCIF resolution (depending on the display used). Downscaling and color conversion is done by the camera and display interface logic. Therefore, view finding for a snapshot is possible without burdening the CPU. However, picture rotation and/or overlay are performed by SW if required.
- **Shooting:** The captured picture, with up to 1.31 MPixel resolution (SXGA 1280 x 1024), is transferred within 1/15 sec to external memory.¹⁾ Then, JPEG compression is done by SW, while the viewfinder is frozen so that the user can immediately see the snapshot on the display.
- **Photo Flash:** Under low light conditions usually a photo flash is required. To activate the flash at the right time, a general purpose timer unit (GTPU) can be used that is triggered by the frame synchronization signal (VSYNC) from the camera interface.
- **Processing:** JPEG thumbnail generation, picture overlay, picture rotation and other picture processing tasks are performed by SW.
- **Viewing:** A JPEG picture is decoded, down-scaled and format converted by SW and then transferred to the display interface. JPEG thumbnails can also be transferred directly to the display interface after decoding by SW without additional downscaling.
- **Storage:** JPEG pictures can be stored on an MMC/SD card, a Flash or a PC.
- **Sending/Receiving:** JPEG thumbnails can be sent/received as MMS (E-GPRS). Full resolution JPEG pictures can be sent/received as e-mail or downloaded from the internet.

Supported "video sequence" multimedia scenarios:

- **Record Video Sequences:** Captured frames in QCIF resolution are transferred to internal memory at 15 fps. H.263 or MPEG-4 encoding is performed on-the-fly by SW with the support of the MOVE coprocessor.

The audio recording is performed on the DSP (GSM AMR CODEC). Multiplexing of audio and video streams is performed by the ARM.

3. TECHNICAL BRIEF

• **View Finding during Video Encoding:** During video recording the user needs to see what is being recorded. Therefore, the captured frames are not only encoded but also transferred to the display interface. If only every second frame from the camera is used for encoding, viewfinding is possible without burdening the CPU. However, if each frame from the camera has to be encoded, due to low camera frame rate, the YCbCr4:2:2 to YCbCr4:4:4 color conversion and further downscaling is performed by SW.

Picture rotation and overlay has to be done in SW in any case.

• **Storage:** Compressed H.263 or MPEG-4 videos can be stored on an MMC/SD, a Flash or a PC.

• **Viewing:** De-multiplexing of audio and video streams is performed by the ARM. The H.263 or MPEG-4 decoding is also done by SW on the ARM and then the frames are transferred to the display interface.

Audio decoding (GSM-AMR) is done on the DSP.

The audio/video synchronization is done by time stamp feedback from the DSP to the ARM.

• **Sending/Receiving:** H.263 or MPEG-4 videos can be sent/received as MMS (E-GPRS), as e-mail or downloaded from the internet.

Higher Multimedia Performance

If higher multimedia performance is required, an external multimedia IC can be connected to S-GOLDRadioTM because it contains a multimedia IC interface module. The camera and display interface pins are used in a multiplex mode to connect an external multimedia IC to the S-GOLDRadioTM multimedia IC interface module. The display and camera are connected to the multimedia IC, which contains functions (in HW and/or SW) to process still images and video data.

This configuration is intended for higher-end graphics features (for example, high quality video streaming, video conferencing, hardware-assisted 2D/3D graphics functions, etc.).

3. TECHNICAL BRIEF

3.3.2 External Devices connected to memory interface

Table 1 Memory interface

Device	Name	Maker	Remark
FLASH	K5D1G12ACE-D075	SAMSUNG	1G(128Mx8) NAND
SDRAM	K5D1G12ACE-D075	SAMSUNG	512M(32Mx16) SDRAM
LCD	TX08D13VM0AAA	TMD	16bit access 2times transmission
Multimedia IC	215-0638018	AMD	Multimedia processing

3.3.3 RF Interface

S-GOLDRadio uses this interface to control RF IC and Peripherals. 6 signals are provided switch on/off RF ICs Periodically each TDMA frame.

Table 2. RF Interface Spec.

T_OUT		
Resource	Interconnection	Description
PABS	PA_BAND	TX RF band select
PAMODE	PA_MODE	PAM Mode select
FE1	VC1	FEM control
FE2	VC2	FEM control
PAEN	PA_EN	PAM Power on
VRAMP	TX_RAMP	APC

3. TECHNICAL BRIEF

3.3.4 USART Interface

KC550 have a USART Driver as follow :

- USART1 : Hardware Flow Control / SW upgrade / Calibration

Table 3. USIF Interface Spec.

USART_0(USART1)		
Resource	Name	Remark
USART0_TXD	UART_TX	Transmit Data
USART0_RXD	UART_RX	Receive Data
USART0_CTS	ACCEL_INT	Interrupt
USART0_RTS	MMC_DETECT	GPIO
DSPOUT_0	JACK_DETECT	Interrupt

3.3.5 ADC channel

BBP ADC block is composed of 7 external ADC channel. This block operates charging process and other related process by reading battery voltage and other analog values.

Table 4 S-GOLDRadio ADC channel usage

ADC channel		
Resource	Interconnection	Description
M0	BATT_ID	Battery IC check
M1	RF_TEMP	RF block temperature measure
M2	N.C.	
M7	H/W VERSION	S-GOLDRadio H/W version detect
M8	VSUPPLY	Battery supply voltage measure
M9	N.C.	
M10	REMOTE_ADC	Remote control key detect

3. TECHNICAL BRIEF

3.3.6 GPIO map

Over a hundred allowable resources, KC550 is using as follows except dedicated to SIM and Memory. KC550 GPIO(General Purpose Input/Output) Map, describing application, I/O state, and enable level, is shown in below table.

Table 5 S-GOLDRadio GPIO pin Map

Port Function	Net Name	Description
#Keypad		
KP_IN0	NONE	
KP_IN1	KP_IN(1)	
KP_IN2	KP_IN(2)	
KP_IN3	KP_IN(3)	
KP_IN4	KP_IN(4)	
KP_IN5	KP_IN(5)	
KP_IN6	KP_IN(6)	
KP_OUT0	KP_OUT(0)	
KP_OUT1	KP_OUT(1)	
KP_OUT2	KP_OUT(2)	
KP_OUT3	KP_OUT(3)	
#USART0		
USART0_RXD	UART_RX	
USART0_TXD	UART_TX	
USART0_RTS_N	MMC_DETECT	
USART0_CTS_N	ACCEL_INT	
DSPOUT0	JACK_DETECT	
#USB		
USB_DPLUS	USB_DP	
USB_DMINUS	USB_DM	
#CIF:Camera Interface		
CIF_D0	MM_AD0	
CIF_D1	MM_AD1	
CIF_D2	MM_AD2	

3. TECHNICAL BRIEF

CIF_D3	MM_AD3	
CIF_D4	MM_AD4	
CIF_D5	MM_AD5	
CIF_D6	MM_AD6	
CIF_D7	MM_AD7	
CIF_PCLK		
CIF_HSYNC	MM_WAIT	
CIF_VSYNC		TP
CLKOUT2	GPO_CTRL1	
CIF_PD_GPIO	HS_SEL	N.A
CIF_RESET_GPIO	GPO_CTRL2	
#Display_Interface		
DIF_D0	MM_AD8	
DIF_D1	MM_AD9	
DIF_D2	MM_AD10	
DIF_D3	MM_AD11	
DIF_D4	MM_AD12	
DIF_D5	MM_AD13	
DIF_D6	MM_AD14	
DIF_D7	MM_AD15	
DIF_CS1	MM_CS0	
DIF_CS2	REMOTE_INT	
DIF_CD	MM_A16	
DIF_WR	MM_WR	
DIF_RD	MM_RD	
DIF_HD	MM_INT	
DIF_VD	BT_INT	
DIF_RESET1_GPIO	HOOK_DETECT	
#I2C		
I2C_SCL	I2C_SCL	
I2C_SDA	I2C_SDA	
PM_INT	NONE	

3. TECHNICAL BRIEF

#Chip Card (USIM1)		
CC_IO	SIM_IO	
CC_CLK	SIM_CLK	
CC_RST	SIM_RST	
#MMCI: Multimedia Card IF		
MMCI_CMD	MMCI_CMD	
MMCI_DAT0	MMCI_DAT0	
MMCI_CLK	MMCI_CLK	
#USIF: Universal Serial IF		
USIF_TXD_MTSR	UART_BT_TX	
USIF_RXD_MRST	UART_BT_RX	
USIF_SCLK	BT_VCxo_EN	
#I2S1: DAI-PCM		
I2S1_CLK0	I2S1_CLK	
I2S1_RX	I2S1_RX	
I2S1_TX	I2S1_TX	
I2S1_WA0	I2S1_WA0	
#MMCI: SD-Extension		
MMCI_DAT1	MMCI_DAT1	
MMCI_DAT2	MMCI_DAT2	
MMCI_DAT3	MMCI_DAT3	
#Voiceband: Analog Interface		
EP_N	SND_L	
EP_P	SND_R	
HS_N	EAR_N	
EP_CM	NA	
HS_P	EAR_P	
MIC1_N	MIC_N	
MIC1_P	MIC_P	
MIC2_N	HS_MIC_N	
MIC2_P	HS_MIC_P	
VMIC	VMIC	

3. TECHNICAL BRIEF

#Measurement		
M0	BAT_ID	
M1	RF_TEMP	
M2	JACK_TYPE	
M7	GND	
M8	VBAT	
M9	LOAD	
M10	REMOTE_ADC	
#Bandgap reference: Analog Interface		
VREF2	GND	
IREF2	GND	
#JTAG		
TDO	TDO	
TDI	TDI	
TMS	TMS	
TCK	TCK	
TRST_n	TRST_N	
RTCK	RTCK	
#Debug		
TRIG_IN	TRIG_IN	
MON1	MON1	
MON2	MON2	
#External Bus Interface (EBU)		
#FCDP: Flash Controller DMA Port		
FCDP_RBN FCDP		
#GSM TDMA Timer: GSM Control		
T_OUT1	NONE	
T_OUT2	NONE	
T_OUT3	UART_BT_RTS	
T_OUT4	UART_BT_CTS	
T_OUT5	FLIP_OPEN	
T_OUT6	PA_MODE_2	

3. TECHNICAL BRIEF

T_OUT7	KP_OUT(4)	
T_OUT8	DSR	
#Other Functional Pins: Clocks and control		
CLKOUT0	LCD_ID	
F26M	NONE	
F32K	F32K	
OSC32K	OSC32K	
RESET_N	nRESET	
VDD_FUSE_FS	GND	
RTC_OUT	NONE	
PMU_SCMODE_OUT	NONE	
VCXO_EN	NONE	
#Extra I/Os & Interrupt Inputs		
DSPIN0	CLK32K	
DSPIN1	CHG_EOC	
#Digital Power supply		
VDD_MAIN	VSD1_1V5	
VSS_MAIN	GND	
VDDP_EBU1	VSD2_1V8	
VSSP_EBU	NONE	
VDDP_DIG	NONE	
VDDP_SIM	NONE	
VDDP_MMC	NONE	
VDD_RTC	NONE	
VSS_RTC	NONE	
VDD_PLL	NONE	
VDD_USB	NONE	
#Analog Power Supply		
VAUDIO	VAUDIO_2V5	
VSS_MS	GND	
VSS_EP	GND	
AGND_MS1~2	GND	

3. TECHNICAL BRIEF

#RF Front-end		
TX2	TXHB	
TX1	TXLB	
RX1	EGSM_RXP	
RX1X	EGSM_RXN	
RX2	GSM900_RXP	
RX2X	GSM900_RXN	
PABIAS	NA	
PABS	PA_BAND	
RX3	DCS1800_RXP	
VDET TP		
PAMODE	PA_MODE	
RX3X	DCS1800_RXN	
FE1	VC1	
FE2	VC2	
PAEN	PA_EN	
RX4	PCS1900_RXP	
VRAMP	TX_RAMP	
RX4X	PCS1900_RXN	
#Baseband I/O		
FSYS3	26M_OUT	
FSYS2	26M_BT	
#Reference Oszillator / PLL		
REFR	NA	
XOX	26MHz	
XO	26MHz	
#Power Supply		
VDDTX	VRF3_2V85	
VDDVCO	VRF3_2V85	
VDDTRX	VRF2_1V5	
VDDDIG	VRF3_2V85	
VDDMS	VRF3_2V85	

3. TECHNICAL BRIEF

VDDXO	VRF1_2V85	
VDDPLL	VRF3_2V85	
VDDRX	VRF3_2V85	
#Ground Balls		
VSSRF1	GND	
VSSRF2	GND	
VSSRF3	GND	
VSSRF4	GND	
VSSRF5	GND	
VSSRF6	GND	
VSSRF7	GND	
VSSRF8	GND	
VSSRF9	GND	
VSSRF10	GND	
VSSRF11	GND	
VSSRF12	GND	
VSSRF13	GND	
VSSRF14	GND	
#Linear Voltage Regulators		
VAUDIO	VAUDIO_2V5	
VBAT_AUDIO	VBAT	
VSS_AUDIO	GND	
VLED	TP	
VAUX	VAUX_2V9	
VVIB	VVIB_2V8	
VBAT_LDO1	VBAT	
VSS_LDO1	GND	
VMMC	VMMC	
VUSB	VUSB_3V1	
VBAT_BSW_USB_MMC	VBAT	
VIO	VIO_2V82	
VIOb	NONE	

3. TECHNICAL BRIEF

VSIM	VSIM_2V8	
VBAT_LDO2	VBAT	
VSS_LDO2	GND	
VPLL	VPLL_1V5	
VRF2	VRF2_1V5	
VDD_RF2PLL	VBAT	
VRF1	VRF1_2V85	
VRF3	VRF3_2V85	
VBAT_RF13	VBAT	
VSS_LDO3	GND	
#Charger and RTC		
CH_SOURCE	GND	
CH_GATE	NA	
SENSE_IN1	VBAT	
SENSE_IN2	VBAT	
VDD_REF	GND	
VDDCHARGE	VCHG, VBUS_USB	
VSS_CHARGER	NONE	
CHARGE_UC / SCAN_IN1	VRTC_2V0	
VRTC	NONE	
#Reference		
IREF1	GND	
A_GND	GND	
VREF1		
#LED's		
BL1_PWM / VSENSE1	TP	
BL2_PWM	TP	
BL3_PWM	TP	
FLASH_ON	NONE	
TXONPA	NONE	
VSS_FLASH	GND	
FLASH_SINK	KEY_BL	

3. TECHNICAL BRIEF

#Step Down Converter 1 (SD1)		
VBAT_SD1	VBAT	
VSD1	VSD1_1V5	
SD1_FB	VSD1_1V5	
SD2_SD1_SUBST	GND	
VSS_SD1	GND	
SD1_FBL	GND	
VDDANA_SW	NONE	
VSSANA_SW	NONE	
#Step Down Converter 2 (SD2)		
VBAT_SD2	VBAT	
VSD2	VSD2_1V8	
SD2_FB	VSD2_1V8	
SD2_FBL	GND	
VSS_SD2	GND	
SD2_SD1_SUBST	GND	
#Step Up Converter (SU1)		
SU_GATE	NA	
SU_GND	GND	
SU_FBF	NA	
SU_ISENSE	NA	
VBAT_SU	NA	
VSS_SU	GND	
#Control Logic		
LPBCL_ECHO	NA	
WDOG / SCAN_IN2	NONE	
ON_OFF / SCAN_RESET	PWRON	
ON_OFF2 / SCAN_CLK	NONE	
VSS_DIG	NONE	
ON_OFF_OUT	NONE	
RESET2_N / VSENSE2	NA	
PO_RESET_N / SCAN_OUT2	PO_RESET	

3. TECHNICAL BRIEF

SLEEP_N / SCAN_ENABLE	NONE	
SCANMODE	NONE	
I2C_INT / SCAN_OUT1	NONE	
I2C_CLK	NONE	
I2C_DAT	NONE	
#Audio Loudspeaker Amplifier		
VBAT_MONO NA		
VSS_MONO NA		
MONO_OUTP NA		
MONO_OUTN NA		
MONO_INP NA		
MONO_INN NA		

3. TECHNICAL BRIEF

3.4 Power Management Unit

3.4.1 General Description

S-GOLDRadio integrates a Power Management Unit for Lithium-Ion battery driven applications that require different power rails. The S-GOLDRadio PMU provides two fully integrated, highly efficient, step-down converters for the main loads such as cores and memories. Both step-down converters support low power modes (PFM) for maximum efficiency at all times, the output voltages are stable under all load conditions.

For supply voltages higher than the battery voltage, the S-GOLDRadio PMU provides a step-up converter.

This step-up converter provides the supply voltage to, for example, serial connected LED°Øs used in display backlight. A number of LDOs are available to provide different supply rails for different needs. In addition, the S-GOLDRadio PMU supports charging of the battery and generates the power-on reset. It also provides stand-by voltages and supports different low power modes. See Figure 4.

S-GOLDRadio_PMU.vsd

Figure 4 S-GOLDRadioTM PMU Block Diagram

General Features

- Software controlled charging of Lithium-Ion batteries
- Different low power modes for very low power consumption
- Temperature monitoring with built-in over-temperature warning.

Switched Power Supplies

- Two fully integrated step-down converters with PFM low power modes:
 - 400 mA high efficiency step-down converter (SD1) with 1.5 V output voltage
 - 300 mA high efficiency step-down converter (SD2) with 1.8 V output voltage
- One step-up converter:
 - 5.6 V ... 25 V, 120 mA step-up converter (SU1) for the main LCD backlight, keypad backlight and photo flash.

Linear Low Dropout (LDO) Regulators

- General Purpose LDOs:
 - 2.9 V, 150 mA, ultra low drop (VAUX)
 - 2.62 V, 100 mA (VIO)
 - 1.8 V / 2.9 V, 22 mA, ultra low drop (VSIM)
 - 1.8 V / 2.9 V, 150 mA, ultra low drop (VMME)
 - 2.8 V, 140 mA, ultra low drop (VVIB)
 - 3.1 V, 40 mA, ultra low drop (VUSB)
- Low Noise LDOs:
 - 2.5V, 220 mA (VAUDIOa)
 - 2.85 V, 20 mA (VRF1)
 - 1.5 V, 80 mA (VRF2)
 - 2.85 V, 150 mA (VRF3)

Low Power LDOs

- 1.5 V, 20 mA (VPLL)
- 2.0 V, 4 mA (VRTC).

LED Control

- 3x PWM modulated control signal
- Current Sink Support for photo flash LED driver
- Support for serial connected LEDs
- Support for Trickle and Indicator LED

3. TECHNICAL BRIEF

Charger

The charger unit controls the charging of LiON batteries. It generates the power-on reset after battery insertion or charger connection.

- Constant current charging (active trickle charge mode)
- Pre-charge for deep discharged batteries (trickle charge mode)
- Charging through USB
- Charging up to 10 V charger voltage
- Withstands charger voltages up to 15 V
- Switched charging (charge current/voltage adjusted in the charger unit)
- Charger detection
- Battery over-voltage detection, battery voltage monitoring
- Power-on reset
- Software controlled charging
- Common Charge and Accessory Pin.

Motor Driver

- Single ended linear controlled 140 mA motor driver for 2.8 V vibrator
- Optional PWM controlled, internal pass device used as a switch.

Audio Amplifier

- Battery driven 400 mW differential audio amplifier for driving 8 ohm loudspeaker
- Three gain stages including overdrive for ringing tones
- >90 dB PSRR (4 kHz).

Interfaces

- I2C control interface for device configuration
- PMU is configured in software via registers
- Power-on reset generation
- Interrupt (event) line to indicate status change.

3. TECHNICAL BRIEF

Control Unit

- Pulse width modulated (PWM) LED driver for dimmed light
- Device ON/OFF switching
- Over-temperature warning
- System start-up state machine
- Under-voltage shut down with defined system behavior
- Charger detection
- Battery insertion/removal detection
- Independent LDO switch on
- Software and hardware programmable voltages
- System watchdog timer with on-chip oscillator.

Figure 5 S-GOLDradio PMU circuit diagram

3. TECHNICAL BRIEF

3.4.2 Charging

SM-POWER provides together with an external p-channel FET Siliconix NDC652P an external AC-adapter a complete charge control function for charging of Li-Ion or Li-Ion-Polymer batteries. Either a 1-cell Li-Ion or Li-Ion-Polymer battery with 4.1, 4.2 or 4.4 Volts may be used.

Figure 6 Battery Block Indication

1. Charging method : CC-CV
2. Charger detect voltage : 4.0V
3. Charging time : 3h
4. Charging current : 450mA
5. CV voltage : 4.2V
6. Cutoff current : 100mA
7. Full charge indication current (icon stop current) : 100mA
8. Recharge voltage : 4.15V
9. Low battery alarm
 - a. Idle : 3.58V~3.48V
 - b. Dedicated : 3.51V~3.41V
10. Low battery alarm interval
 - a. Idle : 3min
 - b. Dedicated:1min
11. Switch-off voltage : 3.35V
12. Charging temperature adc range
 - a. ~ -20 °C: low charging voltage operation (3.8V ~ 4.0V) .
 - b. -20°C ~ 60°C: standard charging (up to 4.2 V)
 - c. 60°C ~ : low charging voltage operation (3.8V ~ 4.0V)

3.5 Power ON/OFF

3.5.1 ON/OFF Switching Sequence

After the ON-trigger (either from ON_OFF1/2 pin or charger) SGR PMU Subsystem follows a well-defined startup sequence to ensure a proper system start up.

State power supply is connected and ON is triggered: (enter point of System Startup State Machine)

- ON_OFF1 is low (or ON_OFF2 is high, or VCH>3.2V)
- VRTC is active
- I2C_INT is high
- On-chip oscillator calibrated and running, reference and bias calibrated and running Startup Sequence from System Startup State Machine
- Start SD1 in active mode
- After time TE1 start SD2 in active mode
- After TDEL1 delay, start LDOs in the sequence: VRF1, VIO, VPLL, VAUX (all started with delay to each other)
- After TE2 delay (settling of the DCXO) force signal I2C_INT to low. Comparator for VAUX voltage supervision is enabled
- After TE3 (settling S-GOLDRadio Power Management Unit GPIOs) RESET_N/RESET2_N are released

3. TECHNICAL BRIEF

Figure 7 Power Up and Down Sequence triggered by ON_OFF1

3. TECHNICAL BRIEF

Figure 8 Power supply start up

3. TECHNICAL BRIEF

END

Figure 9 Remote power on and End-key power on circuit

Remote Power On

Figure 10 Remote power on and End-key power on circuit

3.6 SIM interface

KC550 supports 1.8V & 3V plug in SIM, SIM interface scheme is shown in (Figure 10).

SIM_IO, SIM_CLK, SIM_RST ports are used to communicate with BBP(S-GOLDRadio) and the SIM power supply enabled by BBP (_SIM_EN).

SIM Interface

SIM_CLK : SIM card reference clock

SIM_RST : SIM card Async /sync reset

SIM_IO : SIM card bidirectional reset

Figure 11 SIM CARD Interface

3. TECHNICAL BRIEF

3.7 Memory

The K5D1G12ACE is a Multi Chip Package Memory which combines 1Gbit Nand Flash Memory and 512Mbit synchronous high data rate Dynamic RAM.

Offered in 128Mx8bits, the NAND Flash is 1Gbit with spare 32Mbit capacity. The device is offered in 1.8V Vcc. Its NAND cell provides the most cost-effective solution for the solid state mass storage market. A program operation can be performed in typical $200\mu s$ on the 528-bytes and an erase operation can be performed in typical 2ms on a 16K-bytes block. Data in the page can be read out at 42ns cycle time per byte. The I/O pins serve as the ports for address and data input/output as well as command input. The on-chip write control automates all program and erase functions including pulse repetition, where required, and internal verification and margining of data. Even the write-intensive systems can take advantage of the device's extended reliability of 100K program/erase cycles by providing ECC(Error Correcting Code) with real time mapping-out algorithm. The device is an optimum solution for large nonvolatile storage applications such as solid state file storage and other portable applications requiring non-volatility.

The 512Mb Mobile SDRAM is 536,870,912 bits synchronous high data rate Dynamic RAM organized as $4 \times 8,388,608$ words by 16 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.

3. TECHNICAL BRIEF

1G NAND(Small Block x8bit) +512M SDR SDRAM

Figure 12 NAND Flash memory & SDRAM MCP circuit diagram

3. TECHNICAL BRIEF

3.8 LCD Display

LCD module include:

- LCD : 240 x 320 262K Colors TFT LCD
- Backlight : 5 piece of white LED illumination

LCD module is connected to main board thru 37 pins connector.

Table 6 LCD FPC Interface Spec.

Pin No.	Pin Name	I/O	Description
1	GND	-	Ground
2	PWM	O	PWM signal output for backlight control
3	DTX3	I	Interface Mode
4	DTX1	I	Interface Mode
5	DTX1	I	Interface Mode
6	VSYNC-O	O	Vsync Interface out
7	RD	O	Read
8	WR	I/O	Write
9	RS	I/O	Address/Data select
10	CS	I/O	Chip Select
11	D15	I/O	Data[15] for LCD
12	D14	I/O	Data[14] for LCD
13	D13	I/O	Data[13] for LCD
14	D12	I/O	[12] for LCD
15	D11	I/O	Data[11] for LCD
16	D10	I/O	Data[10] for LCD
17	D9	I/O	Data[9] for LCD
18	D8	I/O	Data[8] for LCD
19	D7	I/O	Data[7] for LCD
20	D6	I/O	Data[6] for LCD
21	D5	I/O	Data[5] for LCD
22	D4	I/O	Data[4] for LCD
23	D3	I/O	Data[3] for LCD
24	D2	I/O	Data[2] for LCD

3. TECHNICAL BRIEF

Pin No.	Pin Name	I/O	Description
25	D1	I/O	Data[1] for LCD
26	D0	I/O	Data[0] for LCD
27	LCD-ID	I	Manufacture ID
28	VCC1	I	Logic
29	VCC1	I	Analog
30	RESET	I/O	LCD reset
31	MLED5	O	LED Cathode
32	MLED4	O	LED Cathode
34	MLED3	O	LED Cathode
34	MLED2	O	LED Cathode
35	MLED1	O	LED Cathode
36	MLED	I	LED Anode
37	GND	-	Ground

3. TECHNICAL BRIEF

Figure 13 37pin LCD connector circuit

3.9 Keypad Switching & Scanning

The keypad interface is a peripheral which can be used for scanning keypads up to 5 rows (outputs from Port Control Logic) and 6 columns (inputs to PCL). The number of rows and columns depend on settings of the PCL.

Figure 14 Key FPCB part key matrix

Figure 15 Key PCB part key matrix

Volume up & down, Clear, Send, End/Power on keys are located on the Key PCB. And MP3 hot key, Camera AF trigger & shutter, numeric keys are connected by Key FPCB.

3. TECHNICAL BRIEF

3.10 Keypad back-light illumination

There are two kind of white LEDs on the Key FPCB and Key PCB for keypad illumination. Keypad Back-light is controlled by GPIO port of the S-GOLDRADIO(KEY_BL) and by Backlight charge pump IC(BD6095).

Figure 16 Key PCB Back-light LEDs

KEY BACKLIGHT

Figure 17 Key FPCB Back-light LEDs

3.11 LCD back-light illumination

Employed the BD6095 is a dual charge pump designed to support both the white LED backlight and flash applications for systems operating with lithium-ion/polymer batteries. The backlight charge pump is capable of driving up to five LEDs at a total of 65mA for backlight. The current sinks may be operated individually or in parallel for driving higher current LEDs. To maximize power efficiency, the charge pump operates in 1X, 1.33X, 1.5X, or 2X mode, where the mode of operation is automatically selected by comparing the forward voltage of each LED with the input voltage.

Figure 18 LCD Back light unit and Key backlight charge pump IC

Table 8 Charge pump IC LCD part current setting table

The writing/reading operation is based on the I²C slave standard.

- Slave address

A7	A6	A5	A4	A3	A2	A1	R/W
1	1	1	0	1	1	0	1/0

3. TECHNICAL BRIEF

Address	W/R	Register data								Function
		D7	D6	D5	D4	D3	D2	D1	D0	
00h	W	-	-	-	-	-	-	-	SFTRST	Software Reset
01h	W	-	LED5MD(1)	LED5MD(0)	LED4MD	-	WPWMEN	ALCEN	MLEDMD	LED, ALC Control
02h	W	FLASHEN	TORCHEN	SLEDEN	MLEDEN	-	-	LDO2EN	LDO1EN	Power Control
03h	W	-	IMLED(6)	IMLED(5)	IMLED(4)	IMLED(3)	IMLED(2)	IMLED(1)	IMLED(0)	"Main Group" LED Current Setting at non-ALC mode
04h	W	-	ISLED(6)	ISLED(5)	ISLED(4)	ISLED(3)	ISLED(2)	ISLED(1)	ISLED(0)	"Sub Group" LED Current Setting
05h	W	-	-	-	IFTLED(4)	IFTLED(3)	IFTLED(2)	IFTLED(1)	IFTLED(0)	Flash LED "Torch mode" Current Setting
06h	W	-	-	-	IFFLED(4)	IFFLED(3)	IFFLED(2)	IFFLED(1)	IFFLED(0)	Flash LED "Flash mode" Current Setting
07h	W	LDO2VSEL(3)	LDO2VSEL(2)	LDO2VSEL(1)	LDO2VSEL(0)	LDO1VSEL(3)	LDO1VSEL(2)	LDO1VSEL(1)	LDO1VSEL(0)	LDO1, LDO2 Vout Setting
08h	W	THL(3)	THL(2)	THL(1)	THL(0)	TLH(3)	TLH(2)	TLH(1)	TLH(0)	Main Current transition
09h	-	-	-	-	-	-	-	-	-	-
0Ah	-	-	-	-	-	-	-	-	-	-
0Bh	W	ADCYC(1)	ADCYC(0)	GAIN(1)	GAIN(0)	STYPE	VSB	MDCIR	SBIASON	ALC mode setting
0Ch	W	SOFS(3)	SOFS(2)	SOFS(1)	SOFS(0)	SGAIN(3)	SGAIN(2)	SGAIN(1)	SGAIN(0)	ADC Data adjustment
0Dh	R	-	-	-	-	AMB(3)	AMB(2)	AMB(1)	AMB(0)	Ambient level
0Eh	W	-	IU0(6)	IU0(5)	IU0(4)	IU0(3)	IU0(2)	IU0(1)	IU0(0)	Main Current at Ambient level 0h
0Fh	W	-	IU1(6)	IU1(5)	IU1(4)	IU1(3)	IU1(2)	IU1(1)	IU1(0)	Main Current at Ambient level 1h
10h	W	-	IU2(6)	IU2(5)	IU2(4)	IU2(3)	IU2(2)	IU2(1)	IU2(0)	Main Current at Ambient level 2h
11h	W	-	IU3(6)	IU3(5)	IU3(4)	IU3(3)	IU3(2)	IU3(1)	IU3(0)	Main Current at Ambient level 3h
12h	W	-	IU4(6)	IU4(5)	IU4(4)	IU4(3)	IU4(2)	IU4(1)	IU4(0)	Main Current at Ambient level 4h
13h	W	-	IU5(6)	IU5(5)	IU5(4)	IU5(3)	IU5(2)	IU5(1)	IU5(0)	Main Current at Ambient level 5h
14h	W	-	IU6(6)	IU6(5)	IU6(4)	IU6(3)	IU6(2)	IU6(1)	IU6(0)	Main Current at Ambient level 6h
15h	W	-	IU7(6)	IU7(5)	IU7(4)	IU7(3)	IU7(2)	IU7(1)	IU7(0)	Main Current at Ambient level 7h
16h	W	-	IU8(6)	IU8(5)	IU8(4)	IU8(3)	IU8(2)	IU8(1)	IU8(0)	Main Current at Ambient level 8h
17h	W	-	IU9(6)	IU9(5)	IU9(4)	IU9(3)	IU9(2)	IU9(1)	IU9(0)	Main Current at Ambient level 9h
18h	W	-	IUA(6)	IUA(5)	IUA(4)	IUA(3)	IUA(2)	IUA(1)	IUA(0)	Main Current at Ambient level Ah
19h	W	-	IUB(6)	IUB(5)	IUB(4)	IUB(3)	IUB(2)	IUB(1)	IUB(0)	Main Current at Ambient level Bh
1Ah	W	-	IUC(6)	IUC(5)	IUC(4)	IUC(3)	IUC(2)	IUC(1)	IUC(0)	Main Current at Ambient level Ch
1Bh	W	-	IUD(6)	IUD(5)	IUD(4)	IUD(3)	IUD(2)	IUD(1)	IUD(0)	Main Current at Ambient level Dh
1Ch	W	-	IUE(6)	IUE(5)	IUE(4)	IUE(3)	IUE(2)	IUE(1)	IUE(0)	Main Current at Ambient level Eh
1Dh	W	-	IUF(6)	IUF(5)	IUF(4)	IUF(3)	IUF(2)	IUF(1)	IUF(0)	Main Current at Ambient level Fh

3.12 JTAG interface connector

Figure 19 JTAG interface connector

In case of KC550 mass production, the JTAG interface connector will not be mount on board. That is only for developing and software debugging purpose.(It will not be mounted on mass production PCB)

3. TECHNICAL BRIEF

3.13 Audio

KC550 Audio signal flow diagram as following diagram.

Figure 20 Audio signal flow diagram

3.13.1 Audio amplifier sub system IC with Codec

The WM8990 is an ultra-low power hi-fi Codec designed for multimedia handsets. A powerful 1W speaker driver can operate in class D or AB modes, providing total flexibility to the system designer. Low leakage, high PSRR and pop/click suppression enable direct battery connection for the speaker supply. A flexible input configuration supports two microphone inputs (single-ended or differential), a stereo line input, and a mono differential line input. Four headphone drivers support fully differential headset drive, providing excellent crosstalk performance and bass response, maximising stereo effects, and allowing the removal of large and expensive headphone capacitors. The headphone outputs can also be configured to drive an ear speaker. A fully differential path to these outputs direct from the input pins is available to maximise signal quality and minimise power consumption. Stereo 24-bit sigma-delta ADCs&DACs provide hi-fi quality audio playback, with a flexible digital audio interface supporting most commonly-used clocking schemes. An integrated low power PLL provides additional flexibility.

Figure 21 Audio amplifier Sub-system IC

3. TECHNICAL BRIEF

Figure 22 Audio signal distribute analog switch

3.13.2. Microphone circuit

Figure 23 Microphone circuit

3. TECHNICAL BRIEF

Figure 24 S-GOLDradioTM Audio Front End Block Diagram

Figure 25 S-GOLDradioTM Audio Front End Circuit

3. TECHNICAL BRIEF

3.14 USB charging circuit

The USB charging circuit is a fully integrated USB VBUS voltage single-cell Li-ion battery charger circuit.

The charger uses a CC/CV charge profile required by Li-ion batteries. CC charging current and End of charging current is programmable IREF & IMIN resistors.

IREF resistor between this pin and the GND pin to set the charge current limit determined by the following equation: software debugging purpose.

$$ICC = 6820/33K = 207mA$$

The End Of Charging current is set by IMIN That can be programmed by the as following equation:

$$IEOC = 550/5.1K = 107mA$$

Figure 26 USB charging circuit

3.15 BLUETOOTH

General Features

The BlueCore 5-FM BGA is a single chip radio and baseband IC for Bluetooth 2.4 GHz systems including enhanced data rates (EDR) to 3Mbits/s. It includes an integrated FM receiver with stereo audio output stage and an RDS demodulator.

With the on-chip CSR Bluetooth software stack, it provides a fully compliant Bluetooth system to v2.0+EDR of the specification for data and voice communications.

3. TECHNICAL BRIEF

Bluetooth Radio

- Common TX/RX terminal simplifies external matching, eliminates external antenna switch
- No external trimming is required In production
- Bluetooth v2.0 + EDR Specification compliant

Bluetooth Transmitter

- +6 dBm RF Transmit power with level control from on-chip 6-bit DAC over a dynamic range > 30dB
- Class 2 and Class 3 support without the need for an external power amplifier or TX/RX switch.

Bluetooth Receiver

- Integrated channel filters
- Digital demodulator for improved sensitivity and co-channel rejection
- Real time digitized RSSI available on HCI interface
- Fast AGC for enhanced dynamic range
- Channel classification for AFH

Synthesiser

- Fully integrated synthesizer requires no external VCO varactor diode, resonator or loop filter
- Compatible with crystals between 7.5 and 40MHz(in multiples of 250KHz) or an external clock

Audio

- Single-ended stereo analogue output
- 16-bit 48 kHz digital audio bit stream output

Baseband and Software

- Internal 48Kbyte RAM, allows full speed data transfer, mixed voice and data, and full piconet operation, including all medium rate packet types
- Logic for forward error correction, header error control, access code correlation. CRC, demodulation, encryption bit stream generation, whitening and transmit pulse shaping. Supports all Bluetooth v 2.0 + EDR features incl. ESCO and AFH
- Transcoders for A-law, u-law and linear voice from host and A-law, u-law and CVSD voice over air

Physical Interfaces

- Synchronous serial interface up to 4Mbits/s for system debugging
- UART interface with programmable baud rate up to 4Mbits/s with an optional bypass mode
- USB v1.1 interface
- I2C slave for FM
- Two audio PCM interfaces (input and output)
- Analogue stereo (output only)

Figure 28. Bluetooth / FM Radio Block Diagram

3. TECHNICAL BRIEF

3.16 FM Radio

- Simultaneous operation with Bluetooth
- Support of US/Europe (87.5 to 108 MHz) and Japanese (76 to 90 MHz) FM band
- Wide dynamic range AGC
- Soft mute and stereo blend
- Adjustment-free stereo decoder and AFC
- Autonomous search tuning function (up/down) with programmability (threshold setting)
- RDS demodulator
- Audio output available over Bluetooth audio interface or dedicated audio output
- Control of FM via Bluetooth HCI or I2C
- Adaptive filter to suppress narrow band interference in the FM channel

3.17 Micro SD external memory card slot

The MicroSD Memory Module has eight exposed contacts on one side. The S-GOLDRadio is connected to the module using a dedicated eight-pin connector

Table 7 Micro SD memory pad assign.

Figure 39 Micro SD pin assignment

SD mode			
Pin No.	Name	Type	Description
1	DAT2	I/O	Data bit [2]
2	CD/DAT3	I/O	Data bit [3]
3	CMD	I/O	Command response
4	VDD	Power	Power supply
5	CLK	I	Clock
6	VSS	Ground	Power ground
7	DAT0	I/O	Data bit [0]
8	DAT1	I/O	Data bit [1]

3. TECHNICAL BRIEF

Table 8 Micro SD memory card detect truth table.

	Micro SD card status	
	it is removed	it is inserted
TF_DETECT	High	Low

Figure 30 Micro SD socket circuit with power control

3.18 18pin Multi Media Interface connector

Table 9 Multi media interface pin assign

KC550 MMI		
	Pin Function	Description
1	FM_ANT	FM radio antenna / Audio ground
2	HS_MIC	Headset microphone signal
3	TV_OUT	TV_OUT signal
4	HSO_L	Headset left sound
5	HSO_R	Headset right sound
6	USB_DP/ REMOTE_INT	USB+/ Remote control interrupt
7	USB_DM/ REMOTE_ADC	USB-/ Remote control Key ADC
8	JACK_DETECT	Headset detect (active low)
9	VBAT	Battery voltage
10	VBAT	Battery voltage
11	RPWRON	Remote power on (active high. 2.0~V)
12	VCHG	Charger voltage
13	VCHG	Charger voltage
14	DSR	DSR
15	VBUS_USB	USB VBUS
16	UART_TX	Trace TX data(Debug)
17	UART_RX	Trace RX data(Debug)
18	GND	Power GND

3. TECHNICAL BRIEF

Figure 31 MMI 18pin connector circuit

4. RF circuit technical brief

4.1 General Description

The RF transceiver is integrated in S-GOLDRadio(PMB8888), which supports quad-band operation for voice and data transfer applications. The whole transceiver function is integrated in main IC, PMB8888 provides 4 LNA inputs for RF receiving and two outputs for PAM input for High/Low band. A direct conversion receiver and a quad-band polar transmitter for GSM and EDGE with integrated PGA functionality.

Figure 32. PMB 6272 Function Block Diagram

4. RF circuit technical brief

Figure 33 TX IQ

4.2 Receiver part

Figure 34. Receiver Block Diagram of S-GOLDRadio

The constant gain direct conversion receiver contains all active circuits for a complete receiver chain for GSM/GPRS/EDGE (see Figure 30). The GSM850/900/DCS1800/ PCS1900 LNAs with balanced inputs are fully integrated. No inter-stage filtering is needed. The orthogonal LO signals are generated by a divider-by-four for GSM850/900 band and a divider-by-two for the DCS1800/PCS1900 band. Down conversion to baseband domain is performed by low/high band quadrature direct down conversion mixers. The baseband chain contains a LNB (low noise buffer), channel filter, output buffer and DC-offset compensation. The 3rd order low pass filter is fully integrated and provides sufficient suppression of blocking signals as well as adjacent channel interferers and avoids anti-aliasing through the baseband ADC. The receive path is fully differential to suppress on-chip interferences. Several gain steps are implemented to cope with the dynamic range of the input signals. Depending on the baseband ADC dynamic range, single- or multiple gain step switching schemes are applicable. Furthermore an automatic DC-offset compensation can be used (depending on the gain setting) to reduce the DC-offset at baseband-output. A programmable gain correction can be applied to correct for front end- and receiver gain tolerances.

4. RF circuit technical brief

4.3 Transmitter part

The GMSK transmitter supports power class 4 for GSM850 and GSM900 as well as power class 1 for DCS1800 and PCS1900. The digital transmitter architecture is based on a very low power fractional-N Sigma-Delta synthesizer without any external components (see Figure39). The analog I/Q modulation data from the baseband is converted to digital, filtered and transformed to polar coordinates. The phase/frequency signal is further processed by the Sigma-Delta modulation loop. The output of its associated VCO is divided by four or two, respectively, and connected via an output buffer to the appropriate single ended output pin. This configuration ensures minimum noise level. The 8PSK transmitter supports power class E2 for GSM850 and GSM900 as well as for DCS1800 and PCS1900. The digital transmitter architecture is based on a polar modulation architecture, where the analog modulation data (rectangular I/Q coordinates) is converted to digital data stream and is subsequently transformed to polar coordinates by means of a CORDIC algorithm. The resulting amplitude information is fed into a digital multiplier for power ramping and level control. The ready processed amplitude signal is applied to a DAC followed by a low pass filter which reconstructs the analog amplitude information. The phase signal from the CORDIC is applied to the Sigma-Delta fractional-N modulation loop. The divided output of its associated VCO is fed to a highly linear amplitude modulator, recombining amplitude and phase information. The output of the amplitude modulator is connected to a single ended output RF PGA for digitally setting the wanted transmit power. The PA interface of SMARTi-PM supports direct control of standard dual mode power amplifiers (PA's) which usually have a power control input VAPC and an optional bias control pin VBIAS for efficiency enhancement. In GMSK mode, the PA is in saturated high efficiency mode and is controlled via its VAPC pin directly by the baseband ramping DAC. In this way both up- / down-ramping and output power level are set. In 8PSK mode, the ramping functionality is assured by an on-chip ramping generator, whereas output power is controlled by the PGA's as described above.

Figure 35. Transmitter Architecture Block Diagram

4.4 RF synthesizer

The transceiver contains a fractional-N sigma-delta synthesizer for the frequency synthesis in the RX operation mode. For TX operation mode the fractional-N sigma-delta synthesizer is used as Sigma-Delta modulation loop to process the phase/frequency signal. The 26MHz reference signal is provided by the internal crystal oscillator. This frequency serves as comparison frequency of the phase detector and as clock frequency for all digital circuitry. The divider in the feedback path of the synthesizer is carried out as a multi-modulus divider (MMD). The loop filter is fully integrated and the loop bandwidth is about 100 kHz to allow the transfer of the phase modulation. The loop bandwidth is automatically adjusted prior to each slot (OLGA²). To overcome the statistical spread of the loop filter element values an automatic loop filter adjustment (ALFA) is performed before each synthesizer startup. The fully integrated quad-band VCO is designed for the four GSM bands (850, 900, 1800, 1900 MHz) and operates at double or four times transmit or receive frequency. To cover the wide frequency range the VCO is automatically aligned by a binary automatic band selection (BABS) before each synthesizer startup.

4. RF circuit technical brief

4.5 DCXO

The transceiver contains a fully integrated 26MHz digitally controlled crystal oscillator (DCXO) with three outputs for the system clock, one output for the GSM baseband and two additional for other subsystems (GPS, Bluetooth, etc.). The only external part of the oscillator is the crystal itself. The overall pulling range of the DCXO consists of eight subranges. The subrange closest to the '0ppm' at the middle AFC-value is selected during the calibration process in the mobile's production and is used for the rest of the lifetime. The frequency tuning is performed along the selected subrange by programming the frequency control word (XO_TUNE) via the three wire bus ("3Wbus").

4.6 Front End Module control

Implemented in the Transceiver are two outputs for direct control of front end modules with two logic input pins to select RX- and TX-mode as well as low- and high band operation.

Figure 36. FEM Circuit Diagram

4.7 Power Amplifier Module

Figure 37. PA Module

subsystems

PIN	Name	Description
1	MODE GMSK/EDGE	Power control mode. L=GMSK, H=EDGE
2	DCS/PCS_IN	RF input(DCS/PCS) DC Blocked
3	BS	Band Select
4	REVD1	Reserved
5	VBATT	DC Supply
6	VRAMP	Analog PA Bias Control(All Bands, EDGE Mode) Analog Output Power Control(All Bands, GMSK Mode)
7	GSM_IN	RF input(EGSM) DC Blocked
9	GSM_OUT RF	Output(EGSM) DC Blocked
10,11	GND	Ground
12	REVD2	Reserved
13~15	GND	Ground
16	DCS/PCS_OUT RF	Output(DCS/PCS) DC BlockedD
Pad	Pad	Ground pad grid is device underside.

4.8 Mode Selection

MODE circuitry selects GMSK modulation (logic 0) or EDGE modulation (logic 1). VRAMP controls the output power for GMSK modulation and provides bias optimization for EDGE modulation depending on the state of MODE control.

5. PCB layout

5.1 Main PCB component placement

Main PCB Top

5. PCB layout

Main PCB bottom

5. PCB layout

KEY PCB Bottom

KEY PCB TOP

5. PCB layout

F-KEY TOP

5. PCB layout

F-LCD TOP

F-LCD Bottom

6. Trouble shooting

6. Trouble shooting

6.1 Trouble shooting test setup

Equipment setup

Power on all of test equipment

- Connect PIF-UNION JIG or dummy battery to the DUT for power up.
- Connect mobile switch cable between Communication test set and DUT when you need to make a phone call.
- Follow trouble shooting procedure

6.2 Power on Trouble

Check Points

- Battery Voltage(Need to over 3.35V)
- Power-On Key detection (PWRON signal)

6. Trouble shooting

Linear Low Dropout (LDO) Regulators

- General Purpose LDOs:
 - 2.9 V, 150 mA, ultra low drop (**V_{AUX}**)
 - 2.62 V, 100 mA (**V_O**)
 - 1.8 V / 2.9 V, 22 mA, ultra low drop (**V_{SIM}**)
 - 1.8 V / 2.9 V, 150 mA, ultra low drop (**V_{MME}**)
 - 2.8 V, 140 mA, ultra low drop (**V_{IB}**)
 - 3.1 V, 40 mA, ultra low drop (**V_{USB}**)
- Low Noise LDOs:
 - 2.5 V, 220 mA (**V_{AUDIOa}**)
 - 2.85 V, 20 mA (**V_{RF1}**)
 - 1.5 V, 80 mA (**V_{RF2}**)
 - 2.85 V, 150 mA (**V_{RF3}**)

Low Power LDOs

- 1.5 V, 20 mA (**V_{PPLL}**)
- 2.0 V, 4 mA (**V_{RTC}**)

Linear Low Dropout (LDO) Regulators

- General Purpose LDOs:
 - 2.9 V, 150 mA, ultra low drop (**V_{AUX}**)
 - 2.62 V, 100 mA (**V_IO**)
 - 1.8 V / 2.9 V, 22 mA, ultra low drop (**V_{SIM}**)
 - 1.8 V / 2.9 V, 150 mA, ultra low drop (**V_{MME}**)
 - 2.8 V, 140 mA, ultra low drop (**V_{VIB}**)
 - 3.1 V, 40 mA, ultra low drop (**V_{USB}**)
- Low Noise LDOs:
 - 2.5 V, 220 mA (**V_{AUDIOa}**)
 - 2.85 V, 20 mA (**V_RF1**)
 - 1.5 V, 80 mA (**V_RF2**)
 - 2.85 V, 150 mA (**V_RF3**)

Low Power LDOs

- 1.5 V, 20 mA (**V_PLL**)
- 2.0 V, 4 mA (**V_{RTC}**).

6. Trouble shooting

6.3 Charging trouble

Check Points

- Connection of TA (check TA voltage 5.1V)
- Charging Current Path component voltage drop
- Battery voltage

1 Charging method : CC-CV

2 Charger detect voltage : 4.0 V

3 Charging time : 3h

4 Charging current : 450 mA

5 CV voltage : 4.2 V

6 Cutoff current : 100 mA

7 Full charge indication current (icon stop current) : 100 mA

8 Recharge voltage · 4.15 V

4.2V~3.76V

3.75V~3.68V

3.65V~3.41V

3.51V~3.41V

6. Trouble shooting

6. Trouble shooting

6.4 LCD display trouble

Check Points

- LCD assembly status (LCD FPCB, Connector on FPCB)
- EMI filter and connector soldering
- Connector combination

Check
connection of F-LCD
Check Data signal via FL301~FL304

6. Trouble shooting

6. Trouble shooting

6.5 Camera Trouble

Check Points

- Connectors combination
- FPCB status

Check the
connector
combination

6. Trouble shooting

6.6 Receiver & Speaker trouble

Check Points

- Speaker pin contact
- Audio amp soldering
- SUB PMIC soldering

RECEIVER

6. Trouble shooting

6.7 Microphone trouble

Check Points

- Microphone hole
- MICBIAS & Signal come from
- Audio signal level of the Microphone
- Soldering of components

6. Trouble shooting

6.8 Ear-Mic Jack Detection trouble

Ear-Jack Signal
FL307

6.9 Vibrator trouble

Check Points

-Connectors combination

6. Trouble shooting

6.10 Keypad back light trouble

Check Points

- Signal path is connected well
- Analog SW is working properly

Key Matrix and LEDs on KEY PCB

6. Trouble shooting

KEYPAD

KEY BACKLIGHT

Numeric Key Matrix and LEDs on F-KEY

6. Trouble shooting

6.11 SIM & uSD trouble

SIM Check Points

- Power is working
- Socket soldering
- Proper SIM is used

SIM & MMC Connector

TP1
TP2
TP3
TP4
TP5

6. Trouble shooting

6. Trouble shooting

uSD Check Points

- Power is working
- Socket soldering
- Card detect is working

MicroSD_DETECT SIGNAL

6. Trouble shooting

6.12 RF Troubleshooting

6.12.1 General Circuits Troubleshooting

Fig 1 Troubleshooting flowchart of general circuits

6. Trouble shooting

6.12.2 Power circuit

Fig 2 Debugging flowchart of Power circuit

Fig 3 Power circuit (U104)

- ✓ Output voltage (=LDO output of U102)
 - check LDO output voltage of U102
 - I.e. VRF1_2V85 (C125),
VRF2_1V5 (C118),
VRF3_2V85 (C121)

6. Trouble shooting

6.12.3 DCXO circuit

Fig 4 Debugging flowchart of DCXO circuit

Fig 5 DCXO circuit (X100)

✓ The output voltage of X100 is 820mV_{p-p}.

Fig 6 Waveform of DCXO

6.12.4 RF Switch (Mobile Switch) circuit

Fig 7 Debugging flowchart of RF S/W circuit

✓ Part Description of RF Switch

SW500: Mobile Switch (RF S/W) Connector

U104: Baseband Processor including RF transceiver

✓ Check point of RF S/W (Mobile S/W)

Fig 8 RF S/W circuit (U501)

6. Trouble shooting

6.13 RF Receiver path Troubleshooting

6.12.4 RF

Fig 9 Troubleshooting flowchart of RF Receiver path

6.13.1 FEM Circuit

Fig 10 Debugging flowchart of FEM circuit

✓ Part Description of FEM

Application	Mode	VC1	VC2
EGSM	Tx	High	Low
	Rx	Low	Low
DCS1800	Tx	Low	High
	Rx	Low	Low

✓ Check point of FEM

Fig 11 FEM circuit (U501)

6. Trouble shooting

✓ When GSM band called, it must seem as below. (yellow is VC1, blue is VC2)

✓ When D/PCS band called, it must seem as below. (yellow is VC1, blue is VC2)

6.14 RF Transmitter path Troubleshooting

Fig 12 Troubleshooting flowchart of RF Transmitter path

6. Trouble shooting

6.14.1 Transmitter Circuit

Fig 13 Transmitter circuit (U104)

✓ Check point of PAM

- Transmitter output power (=R505, L572) is approximately 3dBm.

6.14.1 PAM Circuit

✓ PAM circuit contains as below

- Band select switching circuitry (BS) to select GSM (Logic 0) and DCS/PCS (Logic1).
- VRAMP controls the level of output power for GMSK modulation and shape of Tx burst.
- For GMSK operation, set the PA_EN input High, and PA_MODE2 low(0.5v)

Operational status	PA_EN	PA_BAND	PA_MODE2	TX_RAMP
Standby/PA off	0	X	X	X
Low Band GMSK Tx	1	0	0	Active
Low Band EDGE Tx	1	0	1	X
High Band GMSK Tx	1	1	0	Active
High band EDGE Tx	1	1	1	X

X= don't care

Fig 14 Debugging flowchart of PAM circuit

✓ When EGSM band called, it must seem as below.

6. Trouble shooting

✓ When D/PCS band called, it must seem as below.

6. Trouble shooting

Fig 15 PAM circuit (U500)

6.14.3 FEM Circuit

See the 1.2.1 FEM Circuit.

7. Download & S/W upgrade

7. Download & S/W upgrade

7.1 Download program user guide

1. After “GSMULTI” folder copy, paste C:\

2. “MultiGSM.exe” execution file execute

7.2 Multi-Download Program Setting(Model-Base)

■ Multi-Download Program Execution → Setting : Configuration

■ Setting Completed

7. Download & S/W upgrade

■ Stand-by Condition: “Wait phone connecting” confirm → Phone connection

8. CIRCUIT DIAGRAM

9. BGM Pin Map

9. BGM Pin Map

BGA IC Pin Check (U104, PMB8888)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
A		VRF1	VLPLL	CHAR	VDD_CHAR	VREF	VMM_C	VSIM_S02	VSD2	VBAT_SD2	VSS_SD1	SD1_FB	VBAT_SD1	VSD1	SD1_FEU	KP_IN_1	T_OU_T3		A		
B	VRF3	VBAT_RF1	VDD_RF2P	VRF2	IREF	A_GND	VUSB	VBAT_LDO	S02_FB	S02_FBL						KP_IN_5	KP_IN_2	KP_IN_3	T_OU_T7	B	
C			VSSRF	SENS_E_IH2		VBAT_BSW	VIO	VRTC	POL_ESET		SD2_SD1					KP_O_UT0	KP_O_UT1	USIF_D_TXD	DIF_D_6	C	
D				SENS_E_INT		VSS_LDO2	VDE_RCF	LPBC_K_EC	ON_O_FF	PWM_BL1	VAUX	VVIB	KP_O_UT3	KP_O_UT2	I2S1_TX		KP_IN_VDD_RTC	OSC3_ZK	F32K	D	
E	VAUD	VBAT	VSS_AUD	AGND			FLAS_H_SIN	VSS_MAIN	PWM_BL3	RESE_T2_N	PWM_BL3	VSS_LDO1	T_OU_T6	I2S1_RX		USIF_RXD	DIF_D_VSS_RTC			E	
F	MIC1_N	IIS_N	VSS_AGND			I2C_SCL										DIF_H	DIF_D_8	FCDP_RBN	RCSE_T_N		
G	MIC1_P	EP_P	M8	M2		I2C_SDA										DIF_D_1	DIF_D_4	DIF_D_2	EBU_A_3	CLKO_UT0	
H	MIC2_P	VSS_AGND	M0	M7		DSPI_N1										DIF_D_6	DIF_D_V	USAR_T0_T	EBU_A_20	EBU_A_0	
J	MIC2_N		M1	M9		DSPO_UT0										USAR_T0_R	EBU_A_6	EBU_A_1	EBU_A_13	EBU_A_5	
K	VSS_AGN	EP_N	HS_P	VSS_AGN		DSPI_N0										EBU_A_10	EBU_A_2	EBU_A_7	EBU_A_8	EBU_RAS_	
L	VDDR_X	VMIC	VREF	IREF		MON1										EBU_A_16	EBU_A_4	EBU_A_9	EBU_A_11	EBU_A_17	
M	RX4X	VSSRF	PAEN	VDD_FUSE												EBU_A_18	EBU_A_12	USB_DMIN	EBU_A_14	EBU_A_19	
N	RX4	VSSRF	VSSH_F	FE1		TRIG_IN										EBU_A_15	EBU_CAS_22	EBU_WR_n	EBU_BC0_		
P	RX3X	VSSRF	VRAM_P	VDDM_S	FE2											EBU_BCI_1	USB_DPLU	EBU_BFCL		EBU_RD_n	
R	RX3	VSSRF		PAB5			RTCK			NNCI_DAT	NNCI_CLK	CIF_D4	CIF_D5	CIF_DAD_8	CIF_DAD_0		EBU_A_21	EBU_CS0_		EBU_CS1_	
T	RX2X	VSSRF	VDDT_RX				VDDIG	TDI	TDO	NNCI_DAT	NNCI_CLK	CIF_D7	CIF_D2	CIF_DAD_7	CIF_DAD_4		EBU_A_23	EBU_CS2_	CKE	EBU_A_23	
U	RX2	VSSRF	VSSRF				VSSRF2	FSYS	TMS	CC_CLK	NNCI_CMD	CLKO_UT2	EBU_AD_1	CIF_D1	EBU_AD_6	EBU_SDCL	EBU_BFCL	EBU_A_24		EBU_SOCL	
V	RX1X	VSSRF	TX1	VSSRF	VSSRF	VDDP_LL	VDDV_X0X	X0	TRST_B	CC_RST	CC_ST	CIF_V_SYNC	CIF_H_SYNC	CIF_D6	CIF_D0	EBU_AD_1	EBU_AD_1	EBU_AD_6	EBU_AD_2	VDDP_EBU	
W	VSSRF	RX1	TX2	VDDT_X	VDDV_CO	VDDP_LL	X0X	X0		CIF_R_ESET	CIF_P_D	CIF_P_CLK	CIF_PAD_1	EBU_AD_1	EBU_AD_1	EBU_AD_9	EBU_AD_3	EBU_AD_1	NC		

 : Not in use

9. BGM Pin Map

BGA IC Pin Check (U101, K5D1G12ACE-D075)

	1	2	3	4	5	6	7	8	9	10
A		DN <u>U</u>							DN <u>U</u>	DN <u>U</u>
B	DN <u>U</u>	NC	DQ <u>6d</u>	VDD <u>d</u>	VSS <u>n</u>	VCC <u>n</u>	NC	A <u>3d</u>	NC	DN <u>U</u>
C	VSS <u>d</u>	DQ <u>2d</u>	DQ <u>1d</u>	CLE <u>n</u>	C <u>En</u>	A <u>0d</u>	A <u>1d</u>	A <u>2d</u>		
D	VDDQ <u>d</u>	DQ <u>4d</u>	DQ <u>3d</u>	A <u>LEN</u>	W <u>EN</u>	BA <u>0d</u>	BA <u>1d</u>	A <u>10d</u>		
E	VSSQ <u>d</u>	DQ <u>6d</u>	DQ <u>5d</u>	R <u>EN</u>	R/ <u>Bn</u>	RAS <u>d</u>	NC	C <u>Sd</u>		
F	VDDQ <u>d</u>	NC	DQ <u>7d</u>	W <u>Pn</u>	NC	CAS <u>d</u>	W <u>Ed</u>	VSS <u>d</u>		
G	VSS <u>d</u>	DQ <u>Md</u>	NC	NC	NC	A <u>12d</u>	CKE <u>d</u>	VDD <u>d</u>		
H	VDD <u>d</u>	DQ <u>QMd</u>	CLK <u>d</u>	NC	NC	A <u>8d</u>	A <u>9d</u>	A <u>11d</u>		
J	VSSQ <u>d</u>	NC	DQ <u>8d</u>	IO <u>0n</u>	IO <u>2n</u>	IO <u>4n</u>	IO <u>6n</u>	A <u>7d</u>		
K	VDDQ <u>d</u>	DQ <u>9d</u>	DQ <u>10d</u>	NC	NC	NC	NC	A <u>6d</u>		
L	VSSQ <u>d</u>	DQ <u>11d</u>	DQ <u>12d</u>	IO <u>1n</u>	IO <u>3n</u>	IO <u>5n</u>	IO <u>7n</u>	A <u>5d</u>		
M	VDD <u>d</u>	DQ <u>13d</u>	DQ <u>14d</u>	NC	NC	NC	NC	A <u>4d</u>		
N	DN <u>U</u>	NC	DQ <u>15d</u>	VSS <u>d</u>	VSS <u>n</u>	VCC <u>n</u>	VCC <u>n</u>	DN <u>U</u>	DN <u>U</u>	
P	DN <u>U</u>	DN <u>U</u>						DN <u>U</u>	DN <u>U</u>	

 : Not in use

BGA IC Pin Check (U203, WM8990)

● : Not in use

9. BGM Pin Map

BGA IC Pin Check (U502, BC5FM)

	1	2	3	4	5	6	7	8	9	10
A	A1	A2	A3	A4	A5	A6	A7	●	●	●
B	B1	B2	B3	B4	●	B6	●	B8	B9	B10
C	C1	C2	C3	●	●	●	●	C9	C10	
D	●	D2	D3				●	●	●	
E	●	E2	E3				E8	●	●	
F	F1	F2	F3				F8	●	●	
G	G1	G2	G3				G8	G9	G10	
H	H1	H2	H3	H4	H5	H6	H7	●	H9	H10
J	J1	J2	J3	●	J5	J6	●	J8	●	J10
K	K1	K2	K3	K4	K5	●	K7	K8	●	●

● : Not in use

9. BGM Pin Map

BGA IC Pin Check (U206, M180)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
A	NC	GPIOA1	GPIOA4	GPIOA17	GPIOA13	GPIOA12	TESTEN	SBUS2	SDC0CMO	SDC0CLK	GPIOC6	GPIOC3	GPIOC7	RESETB	NC	A	
B	GPIOA5	GPIOA0	GPIOA6	GPIOA2	GPIOA15	GPIOA11	SOG	SBUS1	SDC0DQ2	SDC0DQ1	GPIOC5	GPIOC1	GPIOC2	INT0B	DQ3	B	
C	GPIOA3	GPIOA8	NC	GPIOA18	GPIOA14	GPIOA9	SBU0	SDC0CD	SDC0WP	SDC0DQ3	SDC0DQ0	GPIOC4	GPIOC0	DQ5	DQ4	C	
D	GPIOA7	GOE	GPIOA19											DQ0	DQ7	DQ6	D
E	LCD07	LCD02	LCD03											DQ1	DQ2	DQ10	E
F	LCD05	LCD06	LCD06											DQ9	DQ12	DQ11	F
G	LCD010	LCD09	LCD01											DQ8	DQ14	DQ13	G
H	LCD08	LCD04	LCD013											DQ15	BE0	BE1	H
J	LCD012	LCD011	LCD017											I_VDQT	WAITB	CSB	J
K	LCD015	LCD016	LCD014											I_VDQT	WEB	AD19	K
L	DCLK	GS	LS											MR	OEB	AD20	L
M	GPIOD2	GPIO06	SS											AD0	AD22	AD21	M
N	GPIO1	GPIO3	GPIO2	VDDR7	RESETB_CORE	SDA	VDD_EFUSE	VPODATA5	VPODATA6	VPODATA5	VPODATA4	I_TESTA	AD2	AVSSDA	VDCR2A	N	
P	GPIO4	GPIO5	GPIOE1	GPIOE0	SCL	PVSS	WP0VYNO	WP0HRZP	VPODATA7	VPODATA8	VPODATA3	VPODATA1	COL_SELECT	AVSSDI	RSET	COMP	P
R	NC	GPIO00	GPIO03	GPIOE4	VPOCLK0	PVDD	SR0CLK1	SR0CLK0	VPODATA9	VPODATA8	VPODATA2	VPODATA0	VPOCLK	VDDRD	AVSSBG	NC	R

: Not in use

9. BGM Pin Map

BGA IC Pin Check (U101 in Key PCB, BD6095)

F		LDO1O	SSENS	VBAT1	SBIAS	
E	VBATLDO	LDO2O	GC2	GC1	SGND	VIO
D	WPWMIN	LED1	FLASHCNT	SDA	SCL	C1N
C	LED3	LED2		RESETB	C1P	C2N
B	LED4	LED5	LEDGND	VOUT	VBATCP	C2P
A		LEDFL	CPGND	C3N	C3P	

1 2 3 4 5 6

: Not in use

10. PCB LAYOUT

KC550-MAIN-SPFY0174101-1.1-TOP

10. PCB LAYOUT

KC550-MAIN-SPFY0174101-1.1-BOTTOM

10. PCB LAYOUT

KC550-SLIDE-KEY-1.0-TOP

KC550-SLIDE-KEY-1.0-BTM

10. PCB LAYOUT

KC550-SPCY0129901-1.0

10. PCB LAYOUT

KC550-SPCY0129901-1 .0

10. PCB LAYOUT

KC550-F_KEY-SPCY0130101-1.0

10. PCB LAYOUT

KC550-F_KEY-SPCY0130101-1.0

10. PCB LAYOUT

KC550-SPCY0130001-1.0

11. RF Calibration

11.1 Test Equipment Setup

11.2 Calibration Step

11.2.1 Turn on the Phone.

11.2.2 Execute “HK_30.exe”

11. RF Calibration

11.2.3 Click “SETTING” Menu

11.2.4 Setup “Ezlooks’ menu such as the following figure

11. RF Calibration

11.2.5 Setup “Line System” menu such as the following figure

11.2.6 Setup Logic operation such as the following figure

11. RF Calibration

11.2.7 Select “MODEL”.

11.2.8 Click “START” for RF calibration

11.2.9 RF Calibration finishes.

11.2.10 Calibration data will be saved to the following folder.

Saving format:
year/month/day_PASS

11. RF Calibration

Notices:

1. The state of Phone is “test mode” during the CALIBRATION.
2. Calibration program automatically changes either “normal mode” or “ptest mode”.
3. RF Calibration steps as follow:

TX Channel compensation: EGSM->DCS->PCS->EDGE EGSM->EDGE DCS->EDGE PCS

RX Channel compensation: EGSM->DCS->PCS

4. Phone Operation Mode

< Normal Mode >

< ptest Mode>

12. Stand-alone Test

12.1 Test Program Setting

- ① Set COM Port.
- ② Check PC Baud rate.
- ③ Confirm EEPROM & Delta file prefix name.(mpelite)

- ④ Click "Update Info" for communicating Phone and Test-Program.

12. Stand-alone Test

- ⑤ For the purpose of the Standalone Test, Change the Phone to “ptest mode” and then Click the “Reset” bar.
- ⑥ Select “Non signaling” in the Quick Bar menu. Then Standalone Test setup is finished.

12. Stand-alone Test

12.2 Tx Test

① Click “Non signaling mode” bar and then confirm “OK” text in the command line.

② Put the number of TX Channel in the ARFCN.
 ③ Select “Tx” in the RF mode menu and “PCL” in the PA Level menu.
 ④ Finally, Click “Write All” bar and try the efficiency test of Phone.

12. Stand-alone Test

12.3 Rx Test

- ① Put the number of RX Channel in the ARFCN.
- ② Select “Rx” in the RF mode menu.
- ③ Finally, Click “Write All” bar and try the efficiency test of Phone.

- ④ The Phone must be changed “normal mode” after finishing Test.
- ⑤ Change the Phone to “normal mode” and then Click the “Reset” bar.

13. ENGINEERING MODE

Engineering mode is designed to allow a service man/engineer to view and test the basic functions provided by a handset. The key sequence for switching the engineering mode on is “2945#*#” Select.

Pressing END will switch back to non-engineering mode operation. Use Up and Down key to select a menu and press ‘select’ key to progress the test. Pressing ‘back key’ will switch back to the original test menu.

[1] BB TEST

[1-1] Battery Info

[1-1-1] BattInfo

[1-2] Bluetooth Test

[1-2-1] Enter Test Mode

[1-2-2] OnOff Test

[1-2-3] Headset Test

[1-2-4] BT Test1

[1-2-5] BT Test2

[1-2-6] Xhtml Compose Print

[1-2-7] Xhtml Print Test

[2] Model Version

[2-1] Version

[3] Eng Mode

[3-1] Cell environ

[3-2] PS Layer Info

[3-2-1] Mobility

[3-2-2] RadioRes

[3-2-1] Gprs

[3-3] Layer1 Info

[3-4] Reset Information

[3-5] Memory Configuraron

[3-6] MemGenConf

[3-7] MemAllUse

[3-8] MemDetUse

[3-9] MemDump

[3-10] Change Frequency Band

[4] Call Timer

[5] Factory Reset

[6] MF TEST

[6-1] All Auto Test

[6-2] Backlight

[6-2-1] BacklightOn

[6-2-2] BacklightOff

[6-3] Audio

[6-3-1] Audio Test

[6-4] Vibrator

[6-4-1] VibratorOn

[6-4-2] VibratorOff

[6-5] LCD

[6-5-1] Auto LCD

[6-6] Key pad

[6-7] Mic Speaker

[6-8] Camera

[6-8-1] Camera Main Preview

[6-8-2] FlashOn

[6-8-3] FlashOff

[6-8-4] CameraFlashBunning

[6-9] FM Radio

[6-9-1] FM Radio Test

[6-10] Touchpad Test

[7] Network selection

[7-1] Automatic

[7-2] EGSM

[7-3] EGSM

[7-4] DCS

[7-5] PCS

14. EXPLODED VIEW & REPLACEMENT PART LIST

14.1 EXPLODED VIEW

#6	BATTERY COVER ASSY	I	ACGA002160I		
#5	COVER ASSY, REAR	I	ACGM010740I		
#4	COVER ASSY, FRONT	I	ACGK010570I		
#3	COVER ASSY, SLIDE(LOWER)	I	ARDY000470I		
#2	COVER ASSY, SLIDE(UPPER)	I	ACGS001670I		
#1	COVER ASSY SLIDE	I	ACGQ002350I		
NO.	DESCRIPTION	Q'TY	ACGS001580I		REMARK

NO.	DESCRIPTION	Q'TY	DRAWING NO.	REMARK
75	TAPE, PROTECTION	I	MTAB024520I	
74	RAIL ASSY, SLIDE	I	ARDY000480I	
73	DECO, CAMERA(MIRROR)	I	MDAD003660I	
72	TAPE, DECO	I	MTAA015640I	
71	DECO, CAMERA(PLATE)	I	MDAD003560I	
70	TAPE, DECO	I	MTAA015310I	
69	COVER, BATTERY	I	MCJA005820I	
68	SCREW MACHINE	4	GMZ70019003	
67	CAP, SCREW	I	MCCH013040I	
66	DECO(내면 SHEET)	I	MDAY003900I	
65	SCREW MACHINE	6	GMEY001120I	
64	CAP, MULTIMEDIA CARD	I	MCCG001100I	
63	WINDOW, CAMERA	I	MWAE003260I	
62	DECO, CAMERA	I	MDAD003550I	
61	TAPE, WINDOW	I	MTAD008140I	
60	CAP, MOBILE SWITCH	I	MCCF005150I	
59	INSULATOR(BUTTON)	2	MTAB021310I	
58	BUTTON, CAMERA	I	MBJL005720I	
57	BUTTON, VOLUME	I	MBJL005270I	
56	PAD, CAMERA	I	MPBT005580I	
55	PAD, CONNECTOR(CAMERA)	I	MPBU002320I	
54	CAP, EARPHONE JACK	I	MCCC005260I	
53	INSULATOR(MMI CAP)	I	MTAB022800I	
52	COVER, REAR	I	MCJN008080I	
51	SPRING, LOCKER	I	MSDC000830I	
50	LOCKER, BATTERY	I	MLEA004460I	
49	LABEL, A/S	I	MLAB000480I	
48	TAPE, SHIELD	I	MTAC006940I	
47	FRAME	I	MFEZ001550I	
46	FILTER, SPEAKER	I	MFBG003930I	
45	SPEAKER	I	SUSY002480I	
44	PAD, SPEAKER	I	MPBN005440I	
43	TAPE, FLASH LENS	I	MTAD008520I	
42	LENS, FLASH	I	MLCE000910I	
41	PAD, FLASH LED	I	MPBZ020400I	
40	ANTENNA, GSM, FIXED	I	SNGF0035302	
39	PCB ASSY, FLEXIBLE	I	SACY007380I	
38	CAMERA	I	SVCY001710I	
37	VIBRATOR, MOTOR	I	SJMY0008405	
36	PCB ASSY, MAIN	I	SAFY025720I	
35	CAN ASSY, SHIELD	I	ACKA000860I	
34	PCB ASSY, FLEXIBLE	I	SACY007370I	
33	KEYPAD, MAIN	I	MKAG000640I	
32	SCREW MACHINE	I	GMZ70019007	
31	PAD, CONNECTOR(F-KEY)	I	MPBU002330I	
30	TAPE, MOTOR	I	MTAF001610I	
29	COVER, FRONT	I	MCJK008390I	
28	TAPE, DECO	I	MTAA015300I	
27	DECO, FRONT	I	MDAG003460I	
26	CAP, SCREW	2	MCCH012790I	
25	SCREW MACHINE	6	GMZ7002640I	
24	RAIL ASSY, SLIDE	I	ARDY000470I	
23	PAD	I	MPBZ020840I	
22	PAD	I	MPBZ021190I	
21	TAPE, SHIELD	2	MTAC006680I	
20	RECEIVER	I	SURY001340I	
19	PCB ASSY, FLEXIBLE	I	SACY007560I	
18	INSULATOR	I	MIDZ016230I	
17	INSULATOR(SHORT 빙자)	I	ADCA007970I	
16	PCB ASSY, KEYPAD	I	SAEY006150I	
15	DOMESHEET, SUB	I	ADCA007970I	
14	KEYPAD ASSY, SUB	I	AKAD000100I	
13	LCD MODULE	I	SVLM002780I	
11	MAGNET, SWITCH	I	MMA000090I	
10	STOPPER	2	MSGY002400I	
9	PAD, RCV(FILTER)	I	MFBG002500I	
8	INSULATOR(TOP SIDE)	I	MIDZ017360I	
7	INSULATOR(SHORT 빙자)	I	MIDZ016220I	
6	PAD, LCD	I	MPBG007280I	
5	COVER SLIDE UPPER	I	MCJW001690I	
4	TAPE, WINDOW	I	MTAD008130I	
3	MAIN WINDOW LCD	I	MWAC009420I	
2	SLIDE UPPER PROTECTION	I	MTAB021300I	
1	KEYPAD PROTECTION	I	MIDZ0168202	
NO.	DESCRIPTION	Q'TY	DRAWING NO.	REMARK

ASS'Y EXPLODED VIEW

NO.	DESCRIPTION	Q'TY	ACGS0015801	REMARK
9	BATTERY COVER ASSY		ACGA0021601	
8	COVER ASSY, REAR		ACGM0107401	
7	COVER ASSY, FRONT		ACGK0105701	
6	PCB ASSY MAIN		SAFY0257201	
5	BUTTON ASSY MAIN		MKAG0006401	
4	SLIDE HINGE ASSY		ARDY0004701	
3	PCB ASSY SUB		SAEY0061501	
2	BUTTON ASSY SUB		AKAD0001001	
1	COVER ASSY, SLIDE(UPPER)		ACGS0016701	

14. EXPLODED VIEW & REPLACEMENT PART LIST

14.2 Replacement Parts <Mechanic component>

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

Level	Location No.	Description	Part Number	Spec	Color	Remark
1		GSM(SLIDE)	TGLL0016401		Black	
2	AAAY00	ADDITION	AAAY0293801		Black	
3	ACGA00	COVER ASSY,BATTERY	ACGA0021601		Black	I, #6
4	ARDY00	RAIL ASSY,SLIDE	ARDY0004801	CAMERA COVER	TITAN GRAY	74
4	GMZZ00	SCREW MACHINE	GMZZ0019003	3.5 mm,1.5 mm,MSWR3 ,N ,+ ,-,NYLOK Coating (ZnB-BLACK)	Black	68
4	MCCH00	CAP,SCREW	MCCH0130401	MOLD, PC LUPOY SC-1004A, , , ,	Black	67
4	MCJA00	COVER,BATTERY	MCJA0058201	MOLD, PC LUPOY SC-1004ML, , , ,	Black	69
4	MDAD00	DECO,CAMERA	MDAD0035601	COMPLEX, (empty), 0.3, , ,	Transparent	71
4	MDAD01	DECO,CAMERA	MDAD0036601	ELECTROFORMING, Cu, 0.3, , ,	Transparent	73
4	MDAY00	DECO	MDAY0039001	CUTTING, NS, 1.05mm, , ,	Black	66
4	MTAA00	TAPE,DECO	MTAA0153101	COMPLEX, (empty), , , ,	Without Color	70
4	MTAA01	TAPE,DECO	MTAA0156401	COMPLEX, (empty), , , ,	Without Color	72
4	MTAB00	TAPE,PROTECTION	MTAB0245201	COMPLEX, (empty), 0.35, , ,	Without Color	76
2	APEY00	PHONE	APEY0562901		Black	
3	ACGM00	COVER ASSY,REAR	ACGM0107401		Black	H, #5
4	MBJL00	BUTTON,SIDE	MBJL0052701	COMPLEX, (empty), , , ,	Black	57
4	MBJL01	BUTTON,SIDE	MBJL0057201	COMPLEX, (empty), , , ,	Black	58
4	MCCC00	CAP,EARPHONE JACK	MCCC0052601	COMPLEX, (empty), , , ,	Black	54
4	MCCF00	CAP,MOBILE SWITCH	MCCF0051501	CUTTING, NS, 0.2, , ,	Black	60
4	MCCG00	CAP,MULTIMEDIA CARD	MCCG0011001	MOLD, PC LUPOY SC-1004ML, , , ,	Black	64
4	MCJN00	COVER,REAR	MCJN0080801	MOLD, PC LUPOY SC-1004ML, , , ,	Black	52
4	MDAD00	DECO,CAMERA	MDAD0035501	ELECTROFORMING, Cu, 0.3, , ,	Silver	62
4	MFBC00	FILTER,SPEAKER	MFBC0039301	COMPLEX, (empty), , , ,	Black	46
4	MFEZ00	FRAME	MFEZ0015501	PRESS, STS, , , ,	Silver	47
4	MIDZ00	INSULATOR	MIDZ0179801	5PI X 1.5PI X 0.05T	Yellow	
4	MLAB00	LABEL,A/S	MLAB0004801	PRINTING, (empty), , , ,	Without Color	49

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
4	MLCE00	LENS,FLASH	MLCE0009101	MOLD, PC LUPOY SC-1004ML, , , ,	Black	42
4	MLEA00	LOCKER,BATTERY	MLEA0044601	MOLD, PC LUPOY SC-1004ML, , , ,	Black	50
4	MPBN00	PAD,SPEAKER	MPBN0054401	COMPLEX, (empty), , , ,	Black	44
4	MPBT00	PAD,CAMERA	MPBT0055801	COMPLEX, (empty), , , ,	Black	56
4	MPBU00	PAD,CONNECTOR	MPBU0023201	COMPLEX, (empty), , , ,	Black	55
4	MPBZ00	PAD	MPBZ0204001	CUTTING, NS, 1.4, , , ,	White	41
4	MSDC00	SPRING,LOCKER	MSDC0008301		Without Color	51
4	MTAB00	TAPE,PROTECTION	MTAB0213101	COMPLEX, (empty), 0.35, , ,	Without Color	59
4	MTAB01	TAPE,PROTECTION	MTAB0228001	COMPLEX, (empty), 0.35, , , ,	Without Color	53
4	MTAC00	TAPE,SHIELD	MTAC0069401	COMPLEX, (empty), , , ,	Silver	48
4	MTAD00	TAPE,WINDOW	MTAD0081401	COMPLEX, (empty), , , ,	Without Color	61
4	MTAD01	TAPE,WINDOW	MTAD0085201	COMPLEX, (empty), , , ,	Without Color	43
4	MWAE00	WINDOW,CAMERA	MWAE0032601	MOLD, Tempered Glass, , , ,	Black	63
3	ACGQ00	COVER ASSY,SLIDE	ACGQ0023501		Black	#1
4	ACGK00	COVER ASSY,FRONT	ACGK0105701		Black	G, #4
5	MCJK00	COVER,FRONT	MCJK0083901	MOLD, PC LUPOY SC-1004ML, , , ,	Black	29
5	MDAG00	DECO,FRONT	MDAG0034601	MOLD, POM LUCEL FW-700A, , , ,	Black	27
5	MICZ00	INSERT	MICZ0021601	M1.4XL2.5	Silver	
5	MPBU00	PAD,CONNECTOR	MPBU0023301	COMPLEX, (empty), , , ,	Black	31
5	MTAA00	TAPE,DECO	MTAA0153001	COMPLEX, (empty), , , ,	Without Color	28
5	MTAF00	TAPE,MOTOR	MTAF0016101	COMPLEX, (empty), , , ,	Without Color	30
4	ACGS00	COVER ASSY, SLIDE(UPPER)	ACGS0016701		Black	A, #2
5	MCJW00	COVER,SLIDE(UPPER)	MCJW0016901	CASTING, Al Alloy, , , ,	Black	5
5	MFBB00	FILTER,RECEIVER	MFBB0025001	COMPLEX, (empty), , , ,	Without Color	9
5	MIDZ00	INSULATOR	MIDZ0162201	COMPLEX, (empty), , , ,	Without Color	
5	MIDZ001	INSULATOR	MIDZ0173601	COMPLEX, (empty), , , ,	Without Color	8
5	MMAA00	MAGNET,SWITCH	MMAA0000901	G7000 12x2x0.7t	Metal Silver	11

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
5	MPBG00	PAD,LCD	MPBG0072801	COMPLEX, (empty), , , ,	Without Color	6
5	MSGY00	STOPPER	MSGY0024001	COMPLEX, (empty), , , ,	Black	
5	MTAD00	TAPE,WINDOW	MTAD0081301	COMPLEX, (empty), , , ,	Without Color	4
5	MWAC00	WINDOW,LCD	MWAC0094201	MOLD, PMMA HI835M, , , ,	Without Color	3
4	AKAD00	KEYPAD ASSY,SUB	AKAD0001001	SLIDE FUNCTION	Black	B, 14
4	ARDY00	RAIL ASSY,SLIDE	ARDY0004701		TITAN GRAY	D, #3, 24
5	MIDZ00	INSULATOR	MIDZ0175901	COMPLEX, (empty), , , ,	Without Color	
5	MIDZ01	INSULATOR	MIDZ0175902	INSULATOR MOVING PLATE	Without Color	
5	MIDZ02	INSULATOR	MIDZ0175903	INSULATOR BUMPER	Without Color	
5	MSGY00	STOPPER	MSGY0024001	COMPLEX, (empty), , , ,	Black	10
4	GMZZ00	SCREW MACHINE	GMZZ0019007	M1.4,1.5 mm,MSWR3 ,N ,+,-,NYLOK Coating , , , , ,	WHITE SILVER	32
4	GMZZ01	SCREW MACHINE	GMZZ0026401	1.4 mm,1.7 mm,MSWR3(FZW) ,A ,+,-,; ,RWH ,+ ,1.4 ,1.7 ,NYLON ,WHITE ,[empty] ,[empty]	White	25
4	MCCH00	CAP,SCREW	MCCH0127901	MOLD, PC LUPOY SC-1004A, , , ,	Silver	26
4	MIDZ01	INSULATOR	MIDZ0162201	COMPLEX, (empty), , , ,	Without Color	7
4	MIDZ02	INSULATOR	MIDZ0162301	COMPLEX, (empty), , , ,	Without Color	18
4	MIDZ03	INSULATOR	MIDZ0168202	COMPLEX, (empty), , , ,	Without Color	1
4	MKAG00	KEYPAD,MAIN	MKAG0006401	COMPLEX, (empty), , , ,	Black	E, 33
4	MLAZ00	LABEL	MLAZ0038303	PRINTING, (empty), , , ,	White	
4	MPBZ00	PAD	MPBZ0208301	CUTTING, NS, 1.4, , ,	White	
4	MPBZ01	PAD	MPBZ0208401	CUTTING, NS, 1.4, , ,	White	23
4	MPBZ05	PAD	MPBZ0211901	CUTTING, NS, 1.4, , ,	Without Color	22
4	MRDY00	REINFORCE	MRDY0000601	COMPLEX, (empty), , , ,	White	
4	MTAB00	TAPE,PROTECTION	MTAB0213001	COMPLEX, (empty), , , ,	Without Color	2
4	MTAC00	TAPE,SHIELD	MTAC0066801	COMPLEX, (empty), , , ,	Gold	21
4	MTAK00	TAPE,CAMERA	MTAK0009801	COMPLEX, (empty), , , ,	Black	

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	MIDZ00	INSULATOR	MIDZ0162201	COMPLEX, (empty), , , ,	Without Color	
6	MPBU00	PAD,CONNECTOR	MPBU0024701	COMPLEX, (empty), , , ,	Black	
6	MPBU01	PAD,CONNECTOR	MPBU0024801	COMPLEX, (empty), , , ,	Black	
6	ADCA00	DOME ASSY,METAL	ADCA0079201	KC550 main. 5pi D(LGF)	White	
6	MPBH00	PAD,MIKE	MPBH0037001	COMPLEX, (empty), , , ,	Black	
6	ADCA00	DOME ASSY,METAL	ADCA0079701	KC550 slide. 5pi D	White	15, 17
6	MTAC00	TAPE,SHIELD	MTAC0074101	COMPLEX, (empty), , , ,	Gold	
6	MTAC01	TAPE,SHIELD	MTAC0074102	COMPLEX, (empty), , , ,	Gold	
3	GMEY00	SCREW MACHINE,BIND	GMEY0011201	1.4 mm,3 mm,MSWR3(BK) ,N ,+ ,NYLOK	Without Color	65
3	MLAK00	LABEL,MODEL	MLAK0006301	LG (30.5x21.5 4-1R)	Pearl White	
5	ACKA00	CAN ASSY,SHIELD	ACKA0008601	KC550 SHIELD CAN ASSY	Silver	35
6	MCBA00	CAN,SHIELD	MCBA0031001	PRESS, STS, , , ,	Without Color	
6	MIDZ00	INSULATOR	MIDZ0174501	COMPLEX, (empty), , , ,	Green	
6	MIDZ01	INSULATOR	MIDZ0174701	COMPLEX, (empty), , , ,	Blue	
6	MIDZ02	INSULATOR	MIDZ0174801	COMPLEX, (empty), , , ,	Blue	
6	MTAC00	TAPE,SHIELD	MTAC0072601	COMPLEX, (empty), , , ,	Silver	
5	MLAZ00	LABEL	MLAZ0038301	PID Label 4 Array	Without Color	

14. EXPLODED VIEW & REPLACEMENT PART LIST

<Main component>

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

Level	Location No.	Description	Part Number	Spec	Color	Remark
4	SNGF00	ANTENNA,GSM,FIXED	SNGF0035302	3.0 ,-2.0 dBd,, internal, GSM900/1800/1900 ; ,TRIPLE ,-2.0 ,50 ,3.0		40
4	SUSY00	SPEAKER	SUSY0024801	PIN ,8 ohm,90 dB,16 mm,3.4T, Spring Contact ; , , , , ,CONTACT		45
4	SACY00	PCB ASSY,FLEXIBLE	SACY0075601	F-LCD		19
5	SACB00	PCB ASSY, FLEXIBLE,INSERT	SACB0046801	F-LCD		
5	SACE00	PCB ASSY,FLEXIBLE,SMT	SACE0070201	F-LCD		
6	SACC00	PCB ASSY,FLEXIBLE,SMT BOTTOM	SACC0046801	F-LCD		
7	BAT401	BATTERY,CELL,LITHIUM	SBCL0001701	2 V,0.5 mAh,CYLINDER ,Reflow type BB, Max T 1.67, phi 4.8, Pb-Free		
7	C101	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	C102	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
7	C103	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
7	C424	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	L101	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
7	L102	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
7	R432	RES,CHIP,MAKER	ERHZ0000485	4700 ohm,1/16W ,J ,1005 ,R/TP		
7	VA1	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA2	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
6	SACD00	PCB ASSY,FLEXIBLE,SMT TOP	SACD0059701	F-LCD		
7	CN101	CONNECTOR,BOARD TO BOARD	ENBY0039001	54 PIN,0.4 mm,ETC , ,H=1.5, P4S Header		
7	CN102	CONNECTOR,BOARD TO BOARD	ENBY0044601	54 PIN,0.4 mm,STRAIGHT , , , , ,0.40MM ,STRAIGHT MALE ,SMD ,[empty] , ,		
6	SPCY	PCB,FLEXIBLE	SPCY0129901	POLYI ,0.2 mm,DOUBLE ,F_LCD ; , , , , , ,		
4	SACY01	PCB ASSY,FLEXIBLE	SACY0073701	F_KEY		34
5	SACB00	PCB ASSY, FLEXIBLE,INSERT	SACB0045401	F_KEY		
5	SACE00	PCB ASSY,FLEXIBLE,SMT	SACE0068301	F_KEY		
6	SACC00	PCB ASSY,FLEXIBLE,SMT BOTTOM	SACC0045401	F_KEY		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
7	CN101	CONNECTOR,BOARD TO BOARD	ENBY0043601	20 PIN,0.4 mm,STRAIGHT , , ; , ,0.40MM ,STRAIGHT ,MALE ,SMD ,[empty] , ,		
6	SACD00	PCB ASSY,FLEXIBLE,SMT TOP	SACD0057701	F_KEY		
7	AFCAM	SWITCH,TACT	ESCY0005301	1 V,1 A,HORIZONTAL ,1 G, ; ,10C2P ,[empty] ,[empty] ,[empty] , ,[empty]		
7	C101	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C102	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C103	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
7	C104	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C105	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C106	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C107	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	C108	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
7	C109	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	L101	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
7	L102	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
7	L103	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
7	LD101	DIODE,LED,CHIP	EDLH0013701	WHITE ,ETC ,R/TP ,SIDEVIEW ; ; ,[empty] ,2.9~3.75 ,30mA , , ,120mW ,[empty] ,[empty] ,2P		
7	LD102	DIODE,LED,CHIP	EDLH0013701	WHITE ,ETC ,R/TP ,SIDEVIEW ; ; ,[empty] ,2.9~3.75 ,30mA , , ,120mW ,[empty] ,[empty] ,2P		
7	MIC101	MICROPHONE	SUMY0010603	PIN ,42 dB,4.72*3.76*1.25 ,MEMS MIC , , ,OMNI ,1.5TO5V , ,SMD		
7	R102	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	R103	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	U101	IC	EUSY0362601	SSON004 ,4 ,R/TP ,Hall IC ; ; ,IC,CMOS		
7	VA101	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA102	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA103	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA104	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA105	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA106	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA107	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		
7	VA108	VARISTOR	SEVY0003601	5.6 V , ,SMD ,100pF, 1005		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
7	VA109	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA110	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA111	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
6	SPCY01	PCB,FLEXIBLE	SPCY0130101	POLYI ,0.2 mm,DOUBLE ,F_KEY ; , , , , , ,		
4	SAEY00	PCB ASSY,KEYPAD	SAEY0061501			C, 17
5	SAEB00	PCB ASSY,KEYPAD,INSERT	SAEB0025601			
5	SAEE00	PCB ASSY,KEYPAD,SMT	SAEE0028701			
6	SAEC00	PCB ASSY,KEYPAD,SMT BOTTOM	SAEC0027201			
7	C102	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C103	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
7	C104	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C105	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C106	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C107	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	C108	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
7	C109	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
7	C110	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
7	CN101	CONNECTOR,FFC/FPC	ENQY0014301	37 PIN,0.3 mm,STRaight , , ; , ,0.30MM ,FFC/FPC ,STRaight ,BOTH ,SMD ,[empty] ,[empty] ,		
7	CN102	CONNECTOR,BOARD TO BOARD	ENBY0044701	54 PIN,0.4 mm,STRaight , , ; , ,0.40MM ,STRaight ,FEMALE ,SMD ,[empty] , ,		
7	R104	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
7	R106	RES,CHIP,MAKER	ERHZ0000420	150 ohm,1/16W ,J ,1005 ,R/TP		
7	U101	IC	EUSY0230104	CSP ,36 PIN,R/TP ,SUB PMIC,ALC,2LDO_150mA,1.33X ; ,IC,Sub PMIC		
7	VA101	VARISTOR	SEVY0001001	14 V, ,SMD ,50pF, 1005		
7	VA102	VARISTOR	SEVY0001001	14 V, ,SMD ,50pF, 1005		
7	VA103	VARISTOR	SEVY0001001	14 V, ,SMD ,50pF, 1005		
7	VA104	VARISTOR	SEVY0001001	14 V, ,SMD ,50pF, 1005		
7	VA105	VARISTOR	SEVY0001001	14 V, ,SMD ,50pF, 1005		
7	VA106	VARISTOR	SEVY0001001	14 V, ,SMD ,50pF, 1005		
7	VA107	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
7	VA108	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA109	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA110	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA111	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA112	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA113	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
7	VA114	VARISTOR	SEVY0003601	5.6 V, ,SMD ,100pF, 1005		
6	SAED00	PCB ASSY,KEYPAD,SMT TOP	SAED0026701			
7	LD101	DIODE,LED,CHIP	EDLH0011901	WHITE ,1608 ,R/TP ,PB-FREE(ZENER)		
7	LD102	DIODE,LED,CHIP	EDLH0011901	WHITE ,1608 ,R/TP ,PB-FREE(ZENER)		
7	LD103	DIODE,LED,CHIP	EDLH0011901	WHITE ,1608 ,R/TP ,PB-FREE(ZENER)		
7	LD104	DIODE,LED,CHIP	EDLH0011901	WHITE ,1608 ,R/TP ,PB-FREE(ZENER)		
7	LD105	DIODE,LED,CHIP	EDLH0011901	WHITE ,1608 ,R/TP ,PB-FREE(ZENER)		
7	LD106	DIODE,LED,CHIP	EDLH0011901	WHITE ,1608 ,R/TP ,PB-FREE(ZENER)		
7	R101	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	R102	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	R103	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	R105	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	R107	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
7	R108	RES,CHIP,MAKER	ERHZ0000402	10 ohm,1/16W ,J ,1005 ,R/TP		
6	SPEY00	PCB,KEYPAD	SPEY0055201	FR-4 ,0.5 mm,BUILD-UP 4 ,; , , , , , ,		
4	SURY00	RECEIVER	SURY0013401	ASSY ,107 dB,32 ohm,11*07 ,; , , , , ,CONNECTOR ,		20
4	SVCY00	CAMERA	SVCY0017101	CMOS ,MEGA ,5M AF [Micon 1/3.2", MI5130, MIPI, FPCB]		38
4	SVLM00	LCD MODULE	SVLM0027801	MAIN ,240*320 ,42.2*60*1.5t ,262k ,TFT ,TM ,uPD161707 ,		13
		LCD MODULE	SVLM0027802	MAIN ,240*320 ,42.2*60*1.5t ,262k ,TFT ,TM ,uPD161707 ,		
3	SAFY00	PCB ASSY,MAIN	SAFY0257201			F, 36
4	SAFB00	PCB ASSY,MAIN,INSERT	SAFB0085901			
5	SACY00	PCB ASSY,FLEXIBLE	SACY0073801	F_FLASH		39
6	SACE00	PCB ASSY,FLEXIBLE,SMT	SACE0068401	F_FLASH		
7	SACD00	PCB ASSY,FLEXIBLE,SMT TOP	SACD0057801	F_FLASH		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
8	EDLM00	DIODE,LED,MODULE	EDLM0009501	white ,1 LED,2.0x1.6x0.7t ,R/TP ,		
7	SPCY01	PCB,FLEXIBLE	SPCY0130001	POLYI,0.2 mm,DOUBLE ,F-FLASH ;, , , , , ,		
5	SJMY00	VIBRATOR,MOTOR	SJMY0008405	3 V.,08 A,10pi*2.7t,12mm ;,3V , , ,12000rpm , , ,31ohm		37
4	SAFF01	PCB ASSY,MAIN,SMT	SAFF0173701			
5	SAFC00	PCB ASSY,MAIN,SMT BOTTOM	SAFC0108101			
6	ANT500	ANTENNA,GSM,FIXED	SNGF0036701	3.0 ,-2.0 dBd, ,internal, bluetooth chip ; ,SINGLE ,-2.0 ,50 ,3.0		
6	C203	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C204	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , [empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
6	C205	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , [empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
6	C206	CAP,TANTAL,CHIP	ECTH0001704	22 uF,10V ,M ,L_ESR ,2012 ,R/TP ;, , [empty] ,[empty] ,[empty] , ,2.2X1.25X1.2MM ,[empty] ,[empty] ,[empty]		
6	C207	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C208	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C209	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C210	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C211	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C212	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C213	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C214	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C216	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C219	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
6	C221	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , [empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
6	C222	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , [empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
6	C227	CAP,TANTAL,CHIP	ECTH0005202	100 uF,4V ,M ,L_ESR ,2012 ,R/TP ;, , [empty] ,[empty] ,[empty] , , [empty] ,[empty] ,[empty] ,[empty] ,[empty]		
6	C229	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C230	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C231	CAP,TANTAL,CHIP	ECTH0005202	100 uF,4V ,M ,L_ESR ,2012 ,R/TP ;, , [empty] ,[empty] ,[empty] , , [empty] ,[empty] ,[empty] ,[empty]		
6	C232	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	C233	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C234	CAP,CHIP,MAKER	ECZH0001217	470 nF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C235	CAP,CHIP,MAKER	ECZH0001217	470 nF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C236	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C237	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C238	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C239	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C240	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C241	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C242	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C243	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C244	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C245	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C262	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C263	CAP,TANTAL,CHIP	ECTH0004807	10 uF,10V ,M ,STD ,1608 ,R/TP ; , , [empty] ,[empty] , , -55TO+125C , ,[empty] ,[empty] ,[empty] ,[empty]		
6	C264	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C265	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C266	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C267	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C276	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C278	VARISTOR	SEVY0004301	18 V , ,SMD ,10pF, 1005		
6	C279	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C280	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
6	C301	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C302	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C303	CAP,CHIP,MAKER	ECZH0000901	24 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C304	CAP,CHIP,MAKER	ECZH0000901	24 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C305	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C306	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C307	CAP,CHIP,MAKER	ECZH0000901	24 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C308	CAP,TANTAL,CHIP	ECTH0004807	10 uF,10V ,M ,STD ,1608 ,R/TP ; , , [empty] ,[empty] , , -55TO+125C , ,[empty] ,[empty] ,[empty] ,[empty]		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	C309	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C310	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C311	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C313	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C314	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C315	CAP,CHIP,MAKER	ECZH0000901	24 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C316	CAP,CHIP,MAKER	ECZH0003503	1 uF,25V ,K ,X5R ,HD ,1608 ,R/TP		
6	C317	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C318	RES,CHIP,MAKER	ERHZ0000420	150 ohm,1/16W ,J ,1005 ,R/TP		
6	C319	RES,CHIP,MAKER	ERHZ0000420	150 ohm,1/16W ,J ,1005 ,R/TP		
6	C320	CAP,CHIP,MAKER	ECZH0001122	680 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	C321	CAP,CHIP,MAKER	ECZH0001122	680 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	C322	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
6	C323	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C324	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C401	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C403	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C404	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C405	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C406	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C408	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C409	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C410	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C416	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C417	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C418	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C419	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C503	CAP,CERAMIC,CHIP	ECCH0000129	120 pF,50V,J,NP0,TC,1005,R/TP		
6	C528	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C531	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C532	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C533	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	C534	CAP,CERAMIC,CHIP	ECCH0000179	22 nF,16V ,K ,X5R ,HD ,1005 ,R/TP		
6	C535	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C536	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C537	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C538	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C539	CAP,CERAMIC,CHIP	ECCH0002002	47000 pF,10V ,K ,B ,HD ,1005 ,R/TP		
6	C540	CAP,CHIP,MAKER	ECZH0001216	220 nF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C541	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C542	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C543	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C544	CAP,CHIP,MAKER	ECZH0001126	820 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	C545	CAP,CHIP,MAKER	ECZH0001126	820 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	C546	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C547	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C548	CAP,CHIP,MAKER	ECZH0000822	1.5 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C549	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C550	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C551	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C553	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C554	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	CN202	CONNECTOR,BOARD TO BOARD	ENBY0034201	24 PIN,0.4 mm,ETC , ,GB042 H=1.0, Socket		
6	CN302	CONNECTOR,I/O	ENRY0006401	18 PIN,0.4 mm,ANGLE , ,H=2.5, Reverse Type		
6	CN401	CONNECTOR,ETC	ENZY0016301	3 PIN,3.0 mm,ETC , ,H-2.0		
6	FB201	FILTER,BEAD,CHIP	SFBH0007103	75 ohm,1005 ,CHIP BEAD, 300mA		
6	FB205	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
6	FB206	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
6	FB207	FILTER,BEAD,CHIP	SFBH0000909	60 ohm,1005 ,		
6	FB208	FILTER,BEAD,CHIP	SFBH0000909	60 ohm,1005 ,		
6	FB304	FILTER,BEAD,CHIP	SFBH0008103	1000 ohm,1005 ,chip bead, 200mA,DCR0.9ohm ; , , ,SMD ,R/TP		
6	FB305	FILTER,BEAD,CHIP	SFBH0008103	1000 ohm,1005 ,chip bead, 200mA,DCR0.9ohm ; , , ,SMD ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	FB306	FILTER,BEAD,CHIP	SFBH0008103	1000 ohm,1005 ,chip bead, 200mA,DCR0.9ohm ;, , ,SMD ,R/TP		
6	FB307	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	FB500	FILTER,BEAD,CHIP	SFBH0008101	600 ohm,1005 ,		
6	FB501	FILTER,BEAD,CHIP	SFBH0008101	600 ohm,1005 ,		
6	FL301	FILTER,EMI/POWER	SFEY0007101	SMD ,1CH,1608Feedthru ESD/EMI filter for power Pb-free		
6	FL302	FILTER,EMI/POWER	SFEY0007101	SMD ,1CH,1608Feedthru ESD/EMI filter for power Pb-free		
6	FL305	VARISTOR	SEVY0008302	5.5 V,30% ,SMD ,1409Size (4CH)		
6	FL306	VARISTOR	SEVY0008302	5.5 V,30% ,SMD ,1409Size (4CH)		
6	FL307	VARISTOR	SEVY0008302	5.5 V,30% ,SMD ,1409Size (4CH)		
6	FL500	FILTER,DIELECTRIC	SFDY0002601	2450 MHz,2.0*1.25*1.0 ,SMD ,2400M~2500M, IL 3.8, 8pin, U-B, 34.2_j95, BT (CSR BC41B143A) ;, ,BPF ,2450 ,100 ,SMD ,R/TP		
6	L202	INDUCTOR,SMD,POWER	ELCP0010001	2.2 uH,M ,2.5x2.0x1.0 ,R/TP ,chip MLCI ;, ,20% , , , ,NON SHIELD ,2.5X2X1MM ,[empty] ,R/TP		
6	L203	INDUCTOR,SMD,POWER	ELCP0010001	2.2 uH,M ,2.5x2.0x1.0 ,R/TP ,chip MLCI ;, ,20% , , , ,NON SHIELD ,2.5X2X1MM ,[empty] ,R/TP		
6	L205	INDUCTOR,CHIP	ELCH0004703	1 nH,S ,1005 ,R/TP ,		
6	L301	INDUCTOR,CHIP	ELCH0009114	100 nH,J ,1005 ,R/TP ,coil		
6	L302	INDUCTOR,CHIP	ELCH0010302	100 nH,J ,1608 ,R/TP ,chip coil		
6	L303	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
6	L304	INDUCTOR,CHIP	ELCH0010302	100 nH,J ,1608 ,R/TP ,chip coil		
6	L307	INDUCTOR,SMD,POWER	ELCP0009404	1 uH,M ,2.8*2.6*1 ,R/TP ,Power inductor ;, ,1uH ,20% , ,1.3A ,0.072ohm , , ,SHIELD ,2.8X2.6X1MM ,[empty] ,[empty] ,Inductor,Wire Wound,Chip		
6	L507	INDUCTOR,CHIP	ELCH0004730	33 nH,J ,1005 ,R/TP ,		
6	L508	INDUCTOR,CHIP	ELCH0003823	470 nH,K ,1608 ,R/TP ,chip coil,PBFREE		
6	L509	INDUCTOR,CHIP	ELCH0004713	6.8 nH,J ,1005 ,R/TP ,		
6	L510	INDUCTOR,CHIP	ELCH0004730	33 nH,J ,1005 ,R/TP ,		
6	L584	INDUCTOR,CHIP	ELCH0001409	10 nH,J ,1005 ,R/TP ,PBFREE		
6	Q401	TR,BJT,NPN	EQBN0017601	VMT3 ,0.15 W,R/TP ,		
6	Q402	TR,BJT,NPN	EQBN0017601	VMT3 ,0.15 W,R/TP ,		
6	R211	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R214	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	R222	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R223	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R232	RES,CHIP,MAKER	ERHZ0000485	4700 ohm,1/16W ,J ,1005 ,R/TP		
6	R233	RES,CHIP,MAKER	ERHZ0000485	4700 ohm,1/16W ,J ,1005 ,R/TP		
6	R301	RES,CHIP,MAKER	ERHZ0000407	1000 Kohm,1/16W ,J ,1005 ,R/TP		
6	R302	RES,CHIP,MAKER	ERHZ0000467	330 Kohm,1/16W ,J ,1005 ,R/TP		
6	R303	RES,CHIP,MAKER	ERHZ0000529	1.5 Kohm,1/16W ,J ,1005 ,R/TP		
6	R304	RES,CHIP,MAKER	ERHZ0000443	2200 ohm,1/16W ,J ,1005 ,R/TP		
6	R305	RES,CHIP,MAKER	ERHZ0000405	10 Kohm,1/16W ,J ,1005 ,R/TP		
6	R306	RES,CHIP,MAKER	ERHZ0000405	10 Kohm,1/16W ,J ,1005 ,R/TP		
6	R309	RES,CHIP,MAKER	ERHZ0000483	47 ohm,1/16W ,J ,1005 ,R/TP		
6	R310	RES,CHIP,MAKER	ERHZ0000483	47 ohm,1/16W ,J ,1005 ,R/TP		
6	R311	RES,CHIP,MAKER	ERHZ0000483	47 ohm,1/16W ,J ,1005 ,R/TP		
6	R314	RES,CHIP,MAKER	ERHZ0000439	200 Kohm,1/16W ,J ,1005 ,R/TP		
6	R315	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R316	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R320	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R401	RES,CHIP,MAKER	ERHZ0000405	10 Kohm,1/16W ,J ,1005 ,R/TP		
6	R402	RES,CHIP,MAKER	ERHZ0000485	4700 ohm,1/16W ,J ,1005 ,R/TP		
6	R403	RES,CHIP,MAKER	ERHZ0000486	47 Kohm,1/16W ,J ,1005 ,R/TP		
6	R404	RES,CHIP,MAKER	ERHZ0000486	47 Kohm,1/16W ,J ,1005 ,R/TP		
6	R405	RES,CHIP,MAKER	ERHZ0000486	47 Kohm,1/16W ,J ,1005 ,R/TP		
6	R406	RES,CHIP,MAKER	ERHZ0000486	47 Kohm,1/16W ,J ,1005 ,R/TP		
6	R407	RES,CHIP,MAKER	ERHZ0000486	47 Kohm,1/16W ,J ,1005 ,R/TP		
6	R408	RES,CHIP,MAKER	ERHZ0000467	330 Kohm,1/16W ,J ,1005 ,R/TP		
6	R410	RES,CHIP	ERHY0000298	3.3M ohm,1/16W,J,1005,R/TP		
6	R411	RES,CHIP,MAKER	ERHZ0000483	47 ohm,1/16W ,J ,1005 ,R/TP		
6	R412	RES,CHIP,MAKER	ERHZ0000486	47 Kohm,1/16W ,J ,1005 ,R/TP		
6	R422	RES,CHIP,MAKER	ERHZ0000404	1 Kohm,1/16W ,J ,1005 ,R/TP		
6	R504	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	R514	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	R515	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R516	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R517	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R518	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R519	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R520	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R521	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R526	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R527	RES,CHIP,MAKER	ERHZ0000456	2.2 ohm,1/16W ,J ,1005 ,R/TP		
6	R590	RES,CHIP,MAKER	ERHZ0000496	560 ohm,1/16W ,J ,1005 ,R/TP		
6	R592	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R593	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R594	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R596	INDUCTOR,CHIP	ELCH0004721	2.2 nH,S ,1005 ,R/TP ,		
6	R597	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R598	RES,CHIP,MAKER	ERHZ0000451	27 ohm,1/16W ,J ,1005 ,R/TP		
6	R599	RES,CHIP,MAKER	ERHZ0000451	27 ohm,1/16W ,J ,1005 ,R/TP		
6	R600	RES,CHIP,MAKER	ERHZ0000236	2000 ohm,1/16W ,F ,1005 ,R/TP		
6	S401	CONN,SOCKET	ENSY0018601	16 PIN,ETC , .254 mm,UIM 8P, Micro SD Dupli-Socket		
6	SW500	CONN,RF SWITCH	ENWY0002304	STRAIGHT ,SMD ,0.8 dB,MUSE MODEL		
6	U202	IC	EUSY0270602	MICRO SMD ,24 PIN,R/TP ,2BUCK 2LDO,2.5x2.5 ; ,IC,Sub PMIC		
6	U203	IC	EUSY0343501	CSP ,42 PIN,R/TP ,Audio CODEC with Class AB,D dual speaker driver, Dual DAC ; ,IC,Audio Codec		
6	U204	IC	EUSY0340301	uMLP ,10 PIN,R/TP ,typ Rdson 0.4ohm, 1.4X1.8 ; ,IC,Analog Switch		
6	U301	IC	EUSY0250501	SC70 ,5 PIN,R/TP ,Comparator, pin compatible to EUSY0077701		
6	U302	IC	EUSY0338301	uMLP ,10 PIN,R/TP ,High Speed USB Siwitch 2.0 3.7pF 6.5ohm 1.4X1.8		
6	U303	IC	EUSY0264502	DFN ,14 PIN,R/TP ,700mA Boost converter ; ,IC,DC,DC Converter		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	U401	IC	EUSY0362601	SSON004 ,4 ,R/TP ,Hall IC ,;, ,IC,CMOS		
6	U502	MODULE,ETC	SMZY0015801	84 Ball 0.5pitch, BGA , Bluetooth+FM (6.0*6.0*1.0)		
6	VA201	VARISTOR	SEVY0004401	18 V, ,SMD ,40pF, 1005		
6	VA202	VARISTOR	SEVY0004401	18 V, ,SMD ,40pF, 1005		
6	VA203	VARISTOR	SEVY0004301	18 V, ,SMD ,10pF, 1005		
5	SAFD00	PCB ASSY,MAIN,SMT TOP	SAFD0106601			
6	C101	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C102	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C103	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C104	CAP,CHIP,MAKER	ECZH0001216	220 nF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C105	CAP,CHIP,MAKER	ECZH0001215	1 uF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C106	CAP,CHIP,MAKER	ECZH0001216	220 nF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C107	CAP,CHIP,MAKER	ECZH0001215	1 uF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C108	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C109	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C110	CAP,CHIP,MAKER	ECZH0001215	1 uF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C111	CAP,CHIP,MAKER	ECZH0000816	12 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C112	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C113	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C114	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C115	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C116	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C117	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C118	CAP,CHIP,MAKER	ECZH0001215	1 uF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C119	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C120	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C121	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C122	CAP,CERAMIC,CHIP	ECCH0000129	120 pF,50V,J,NP0,TC,1005,R/TP		
6	C123	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C124	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C125	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C126	CAP,CHIP,MAKER	ECZH0001216	220 nF,10V ,K ,X5R ,TC ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	C127	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C128	CAP,CHIP,MAKER	ECZH0001216	220 nF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C129	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C130	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C131	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C132	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C133	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C134	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C135	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C136	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C137	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C138	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C139	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C140	CAP,CHIP,MAKER	ECZH0025502	22000000 pF,6.3V ,M ,X5R ,HD ,2012 ,R/TP ; ,0.85t ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,[empty]		
6	C141	CAP,CHIP,MAKER	ECZH0025502	22000000 pF,6.3V ,M ,X5R ,HD ,2012 ,R/TP ; ,0.85t ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,[empty]		
6	C142	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
6	C143	CAP,CERAMIC,CHIP	ECCH0005604	10000000 pF,6.3V ,M ,X5R ,TC ,1608 ,R/TP , , ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,[empty] ,0.8 mm		
6	C144	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C145	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C146	CAP,CHIP,MAKER	ECZH0001216	220 nF,10V ,K ,X5R ,TC ,1005 ,R/TP		
6	C147	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C201	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C202	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
6	C215	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C217	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C218	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C220	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C223	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C224	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C225	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	C226	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C228	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C246	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C249	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C250	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C251	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C252	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C253	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C254	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C255	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C256	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C257	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C258	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C259	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C260	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C261	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C272	VARISTOR	SEVY0004001	18 V, ,SMD ,3pF, 1005		
6	C273	VARISTOR	SEVY0004001	18 V, ,SMD ,3pF, 1005		
6	C274	VARISTOR	SEVY0004001	18 V, ,SMD ,3pF, 1005		
6	C275	VARISTOR	SEVY0004001	18 V, ,SMD ,3pF, 1005		
6	C294	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C312	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C325	CAP,CERAMIC,CHIP	ECCH0000147	2.2 nF,50V,K,X7R,HD,1005,R/TP		
6	C326	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C327	CAP,CERAMIC,CHIP	ECCH0000198	2.2 uF,6.3V ,M ,X5R ,TC ,1005 ,R/TP		
6	C411	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C412	CAP,CHIP,MAKER	ECZH0003103	0.1 uF,10V ,K ,X7R ,HD ,1005 ,R/TP		
6	C413	CAP,CHIP,MAKER	ECZH0003503	1 uF,25V ,K ,X5R ,HD ,1608 ,R/TP		
6	C414	CAP,CHIP,MAKER	ECZH0003503	1 uF,25V ,K ,X5R ,HD ,1608 ,R/TP		
6	C415	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C500	CAP,CHIP,MAKER	ECZH0000830	33 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C510	CAP,CHIP,MAKER	ECZH0000802	1 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	C511	CAP,TANTAL,CHIP	ECTH0004804	33 uF,10V ,M ,L_ESR ,3216 ,R/TP		
6	C512	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C513	CAP,CERAMIC,CHIP	ECCH0000175	2.7 pF,50V ,B ,NP0 ,TC ,1005 ,R/TP		
6	C514	CAP,CERAMIC,CHIP	ECCH0000175	2.7 pF,50V ,B ,NP0 ,TC ,1005 ,R/TP		
6	C515	CAP,CERAMIC,CHIP	ECCH0000185	5.6 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C516	CAP,CERAMIC,CHIP	ECCH0000185	5.6 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C517	CAP,CERAMIC,CHIP	ECCH0000180	3.3 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C518	CAP,CERAMIC,CHIP	ECCH0000180	3.3 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	C519	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C520	CAP,CERAMIC,CHIP	ECCH0000112	15 pF,50V,J,NP0,TC,1005,R/TP		
6	C521	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C522	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
6	C523	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
6	C524	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
6	C525	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C526	CAP,CHIP,MAKER	ECZH0000813	100 pF,50V ,J ,NP0 ,TC ,1005 ,R/TP		
6	C527	CAP,CHIP,MAKER	ECZH0001126	820 pF,50V ,K ,X7R ,HD ,1005 ,R/TP		
6	C555	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
6	C570	CAP,CERAMIC,CHIP	ECCH0000701	1.2 pF,50V ,C ,NP0 ,TC ,1005 ,R/TP		
6	CN301	CONNECTOR,BOARD TO BOARD	ENBY0039101	54 PIN,0.4 mm,ETC , ,H=1.5, P4S Socket		
6	CN304	CONNECTOR,BOARD TO BOARD	ENBY0043701	20 PIN,0.4 mm,STRAIGHT , , , , ,0.40MM ,STRAIGHT ,FEMALE ,SMD ,[empty] , ,		
6	D101	DIODE,SWITCHING	EDSY0017301	VSM ,15 V,100 mA,R/TP ,PB-FREE		
6	D102	DIODE,SWITCHING	EDSY0010001	UMD2 ,30 V,2 A,R/TP ,SCHOTTKY BARRIER DIODE		
6	D103	DIODE,SWITCHING	EDSY0010001	UMD2 ,30 V,2 A,R/TP ,SCHOTTKY BARRIER DIODE		
6	D201	DIODE,SWITCHING	EDSY0011901	EMD2 ,30 V,1 A,R/TP ,VF=1.5V(IF=200mA) ,IR=30uA(VR=10V)		
6	D202	DIODE,SWITCHING	EDSY0011901	EMD2 ,30 V,1 A,R/TP ,VF=1.5V(IF=200mA) ,IR=30uA(VR=10V)		
6	FB202	FILTER,BEAD,CHIP	SFBH0007103	75 ohm,1005 ,CHIP BEAD, 300mA		
6	FB203	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	FB204	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	FB301	FILTER,EMI/POWER	SFEY0010501	SMD ,SMD ,18 V,4ch. EMI_ESD Filter (100Ohm,15pF), Pb-free		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	FB302	FILTER,EMI/POWER	SFEY0010501	SMD ,SMD ,18 V,4ch. EMI_ESD Filter (100Ohm,15pF), Pb-free		
6	FB303	FILTER,EMI/POWER	SFEY0010501	SMD ,SMD ,18 V,4ch. EMI_ESD Filter (100Ohm,15pF), Pb-free		
6	FL303	FILTER,EMI/POWER	SFEY0010501	SMD ,SMD ,18 V,4ch. EMI_ESD Filter (100Ohm,15pF), Pb-free		
6	FL304	FILTER,EMI/POWER	SFEY0010501	SMD ,SMD ,18 V,4ch. EMI_ESD Filter (100Ohm,15pF), Pb-free		
6	L101	INDUCTOR,CHIP	ELCH0003827	47 nH,J ,1005 ,R/TP ,chip coil		
6	L102	INDUCTOR,CHIP	ELCH0003827	47 nH,J ,1005 ,R/TP ,chip coil		
6	L104	INDUCTOR,SMD,POWER	ELCP0007403	10 uH,M ,2.8*2.8*1.0 ,R/TP ,Coil type , Shield type		
6	L105	INDUCTOR,SMD,POWER	ELCP0007403	10 uH,M ,2.8*2.8*1.0 ,R/TP ,Coil type , Shield type		
6	L201	INDUCTOR,CHIP	ELCH0003823	470 nH,K ,1608 ,R/TP ,chip coil,PBFREE		
6	L204	INDUCTOR,CHIP	ELCH0004703	1 nH,S ,1005 ,R/TP ,		
6	L206	INDUCTOR,CHIP	ELCH0004703	1 nH,S ,1005 ,R/TP ,		
6	L207	INDUCTOR,CHIP	ELCH0004703	1 nH,S ,1005 ,R/TP ,		
6	L208	INDUCTOR,CHIP	ELCH0004703	1 nH,S ,1005 ,R/TP ,		
6	L401	INDUCTOR,CHIP	ELCH0004722	47 nH,J ,1005 ,R/TP ,		
6	L402	INDUCTOR,CHIP	ELCH0005009	100 nH,J ,1005 ,R/TP ,		
6	L403	INDUCTOR,CHIP	ELCH0004722	47 nH,J ,1005 ,R/TP ,		
6	L501	INDUCTOR,CHIP	ELCH0001056	2.7 nH,S ,1005 ,R/TP ,PBFREE		
6	L502	INDUCTOR,CHIP	ELCH0001402	18 nH,J ,1005 ,R/TP ,Pb Free		
6	L503	INDUCTOR,CHIP	ELCH0001031	15 nH,J ,1005 ,R/TP ,PBFREE		
6	L504	INDUCTOR,CHIP	ELCH0009110	5.1 nH,J ,1005 ,R/TP ,chip coil		
6	L505	INDUCTOR,CHIP	ELCH0001057	3.9 nH,S ,1005 ,R/TP ,PBFREE		
6	L570	INDUCTOR,CHIP	ELCH0004718	5.6 nH,S ,1005 ,R/TP ,		
6	L571	INDUCTOR,CHIP	ELCH0004721	2.2 nH,S ,1005 ,R/TP ,		
6	L572	INDUCTOR,CHIP	ELCH0004704	4.7 nH,S ,1005 ,R/TP ,		
6	Q201	TR,FET,N-CHANNEL	EQFN0005201	SOT-323 ,.29 W,25 V,.7 A,R/TP ,N-Channel MOSFET, Pb free		
6	Q301	TR,BJT,NPN	EQBN0017601	VMT3 ,0.15 W,R/TP ,		
6	R104	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R105	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R106	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	R108	RES,CHIP,MAKER	ERHZ0000441	22 ohm,1/16W ,J ,1005 ,R/TP		
6	R109	RES,CHIP,MAKER	ERHZ0000441	22 ohm,1/16W ,J ,1005 ,R/TP		
6	R111	RES,CHIP,MAKER	ERHZ0000477	390 Kohm,1/16W ,J ,1005 ,R/TP		
6	R112	RES,CHIP,MAKER	ERHZ0000485	4700 ohm,1/16W ,J ,1005 ,R/TP		
6	R113	RES,CHIP,MAKER	ERHZ0000204	100 Kohm,1/16W ,F ,1005 ,R/TP		
6	R114	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R115	RES,CHIP,MAKER	ERHZ0000267	3300 ohm,1/16W ,F ,1005 ,R/TP		
6	R117	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R119	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R121	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R124	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R125	RES,CHIP,MAKER	ERHZ0000267	3300 ohm,1/16W ,F ,1005 ,R/TP		
6	R126	RES,CHIP,MAKER	ERHZ0000404	1 Kohm,1/16W ,J ,1005 ,R/TP		
6	R128	RES,CHIP,MAKER	ERHZ0000405	10 Kohm,1/16W ,J ,1005 ,R/TP		
6	R129	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R131	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R132	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R134	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R135	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R136	RES,CHIP,MAKER	ERHZ0000444	22 Kohm,1/16W ,J ,1005 ,R/TP		
6	R137	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R138	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R139	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R140	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R141	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R142	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R143	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R144	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R145	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R146	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	R147	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R148	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R149	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R150	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R151	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R152	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R153	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R154	RES,CHIP,MAKER	ERHZ0000443	2200 ohm,1/16W ,J ,1005 ,R/TP		
6	R155	RES,CHIP,MAKER	ERHZ0000443	2200 ohm,1/16W ,J ,1005 ,R/TP		
6	R204	RES,CHIP,MAKER	ERHZ0000509	75 ohm,1/16W ,J ,1005 ,R/TP		
6	R207	RES,CHIP,MAKER	ERHZ0000485	4700 ohm,1/16W ,J ,1005 ,R/TP		
6	R208	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R217	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R219	RES,CHIP,MAKER	ERHZ0000505	680 ohm,1/16W ,J ,1005 ,R/TP		
6	R220	RES,CHIP,MAKER	ERHZ0000412	1200 ohm,1/16W ,J ,1005 ,R/TP		
6	R221	RES,CHIP,MAKER	ERHZ0000463	33 ohm,1/16W ,J ,1005 ,R/TP		
6	R224	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	R226	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R227	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R228	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R229	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R230	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R312	RES,CHIP,MAKER	ERHZ0000405	10 Kohm,1/16W ,J ,1005 ,R/TP		
6	R313	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R415	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R416	RES,CHIP,MAKER	ERHZ0000404	1 Kohm,1/16W ,J ,1005 ,R/TP		
6	R417	RES,CHIP,MAKER	ERHZ0000540	7.5 ohm,1/16W ,J ,1005 ,R/TP		
6	R418	RES,CHIP,MAKER	ERHZ0000406	100 Kohm,1/16W ,J ,1005 ,R/TP		
6	R419	RES,CHIP	ERHY0000128	15K ohm,1/16W,F,1005,R/TP		
6	R420	RES,CHIP,MAKER	ERHZ0000530	5.1 Kohm,1/16W ,J ,1005 ,R/TP		
6	R421	RES,CHIP,MAKER	ERHZ0000268	33 Kohm,1/16W ,F ,1005 ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

Level	Location No.	Description	Part Number	Spec	Color	Remark
6	R500	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R501	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R502	RES,CHIP,MAKER	ERHZ0000204	100 Kohm,1/16W ,F ,1005 ,R/TP		
6	R503	THERMISTOR	SETY0006301	NTC ,10000 ohm,SMD ,1005, 3350~3399k, J, R/T, PBFREE		
6	R505	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R507	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R508	RES,CHIP,MAKER	ERHZ0000412	1200 ohm,1/16W ,J ,1005 ,R/TP		
6	R509	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R510	RES,CHIP,MAKER	ERHZ0000434	1 ohm,1/16W ,J ,1005 ,R/TP		
6	R591	PCB ASSY,MAIN,PAD SHORT	SAFP0000501			
6	SPFY	PCB,MAIN	SPFY0174101	FR-4 ,0.8 mm,STAGGERED-10 , ; , , , , , ,		
6	U101	IC	EUSY0294203	FBGA ,107 PIN,ETC ,FULLY 1.8V 1G(128Mx8) NAND+512M(32Mx16) SDRAM ; ,IC,MCP		
6	U102	IC	EUSY0227901	SON5-P-0.35(fSV) ,5 PIN,R/TP ,2-INPUT AND GATE, Pb Free		
6	U103	IC	EUSY0173801	SC70JW ,8 PIN,R/TP ,5 Individual Load Switch		
6	U104	IC	EUSY0347801	BGA ,293 PIN,R/TP ,EDGE RF BB PM Onechip BB ; , ,IC,Digital Baseband Processor		
6	U105	IC	EUSY0173801	SC70JW ,8 PIN,R/TP ,5 Individual Load Switch		
6	U201	IC	EUSY0240001	MICROPAK ,6 PIN,R/TP ,SINGLE BIT UNIT-DIRECTIONAL TRANSLATOR / PB FREE		
6	U206	IC	EUSY0351801	BGA ,193 PIN,R/TP ,5M Camera,D1,Audio,MIPI ; , ,IC,Digital Signal Processors		
6	U304	IC	EUSY0345201	3*3 QFN ,10 PIN,R/TP ,3xis Accelerometer ; ,IC,A/D Converter		
6	U402	IC	EUSY0160401	SOT-23 ,3 PIN,R/TP ,DC MOTOR DRIVER / INTEGRATED RELAY		
6	U403	IC	EUSY0351601	DFN ,12 PIN,R/TP ,Dual Charger IC (Bypass) ; , ,IC,Charger		
6	U500	PAM	SMPY0017901	dBm, %, A, dBc, dB,5x5 ,SMD ,IFX Linear Edge ; , , , , , ,R/TP ,R/TP ,		
6	U501	FILTER,SEPERATOR	SFAY0011401	850.900 ,1800.1900 , dB, dB, dB, dB,4532 ,GSM Quad band FEM.		
6	X101	X-TAL	EXXY0018404	26 MHz,10 PPM,8 pF,40 ohm,SMD ,3.2*2.5*0.6 ,12ppm at -30'C ~ +85'C, C0 1.0pF, C1 3.6fF ; ,26 ,10PPM ,8 , , ,SMD ,R/TP		
6	X102	X-TAL	EXXY0024301	32.768 KHz,20 PPM,12.5 pF,70 Kohm,SMD ,3.2*1.5*0.9 , -40'C ~ +85'C, C0 1.05pF, C1 fF ; ,32.768 ,20PPM ,12.5 , ,SMD ,R/TP		

14. EXPLODED VIEW & REPLACEMENT PART LIST

14.3 Accessory

Note: This Chapter is used for reference, Part order is ordered by SBOM standard on GCSC

Level	Location No.	Description	Part Number	Spec	Color	Remark
3	ADEY00	DATA KIT	ADEY0015501	KC550 DATA KIT FOR GBR	Without Color	
3	SBPL00	BATTERY PACK,LI-ION	SBPL0094902	3.7 V,900 mAh,1 CELL,PRISMATIC ,553443,INNERPACK,EUROP ;,;,PRISMATIC ,,,BLACK , ,EUROP Type	Black	
		BATTERY PACK,LI-ION	SBPL0095802	3.7 V,900 mAh,1 CELL,PRISMATIC ,553443,INNERPACK,EUROP ;,;,PRISMATIC ,,,BLACK , ,	Black	
3	SGDY00	DATA CABLE	SGDY0010904	;,[empty] ,[empty] ,[empty] ,18 ,BLACK ,6.2mm Plug Datacable ,[empty]		
3	SGEY00	EAR PHONE/EAR MIKE SET	SGEY0003721	; ,RMS 20mW(0.56V,RMS) ,16Ohm+/-2.4Ohm 1KHZ ,116dB+/-3dB 1KHZ,3mW ,116dB 1KHZ ,96dB 100HZ ,[empty] ,BLACK ,18P MMI CONNECTOR ,Earphone,Stereo		
3	SSAD00	ADAPTOR,AC-DC	SSAD0025001	100-240V ,5060 Hz,5.1 V.,7 A,CE ,AC-DC ADAPTOR ; ,85Vac~264Vac ,5.1V, +0.15V, -0.2V ,700mA ,5060 , ,WALL 2P ,I/O CONNECTOR ,		
		ADAPTOR,AC-DC	SSAD0025002	100-240V ,5060 Hz,5.1 V.,7 A,CE ,AC-DC ADAPTOR ; ,85Vac~264Vac ,5.1V +0.15V, -0.2V ,700mA ,5060 , ,WALL 2P ,I/O CONNECTOR ,		

Note

Note
