HOMEWORK 5 SOLUTIONS - MATH 4341

Problem 1. Let X be a topological space and $Y \subset X$. Show that IntY is equal to the set of all points $x \in X$ such that some neighborhood of x is a subset of Y.

Proof. Let $x \in \text{Int} Y$. Since

$$Int Y = \bigcup_{\substack{U \subset Y \\ U \text{ open in } X}} U,$$

there exists $U \subset Y$ such that U is open in X and $x \in U$. Then U is a neighborhood of x which is also a subset of Y.

Let $x \in X$ such that some neighborhood U of x is a subset of Y. Since $U \subset Y$ is open in X, we have $x \in U \subset \text{Int} Y$.

Problem 2. Let X be a topological space and $Y \subset X$. Show that:

- (1) $\operatorname{Int} Y = X \setminus \overline{(X \setminus Y)}$.
- (2) $\overline{Y} = X \setminus \operatorname{Int}(X \setminus Y)$.

Proof. (1) is equivalent to $\overline{X \setminus Y} = X \setminus \text{Int}Y$. By definition we have

$$\overline{X \setminus Y} = \bigcap_{\substack{X \setminus Y \subset V \\ V \text{ closed in } X}} V$$

Let $U = X \setminus V$. Then $X \setminus Y \subset V$ is equivalent to $X \setminus Y \subset X \setminus U$, which means that $U \subset Y$. Moreover, V is closed in X is equivalent to U is open in X. Hence

$$\overline{X \setminus Y} = \bigcap_{\substack{U \subset Y \\ U \text{ open in } X}} (X \setminus U)$$

$$= X \setminus \bigcup_{\substack{U \subset Y \\ U \text{ open in } X}} U$$

$$= X \setminus \text{Int} Y.$$

(2) is obtained from (1) by replacing Y by $X \setminus Y$.

Problem 3. Let X be a topological space and $Y, Z \subset X$. Show that:

- $(1) \ \overline{Y \cup Z} = \overline{Y} \cup \overline{Z}.$
- (2) $\overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z}$. Find an example where $\overline{Y \cap Z} \neq \overline{Y} \cap \overline{Z}$.
- (3) $\operatorname{Int} Y \cup \operatorname{Int} Z \subset \operatorname{Int}(Y \cup Z)$. Find an example where $\operatorname{Int} Y \cup \operatorname{Int} Z \neq \operatorname{Int}(Y \cup Z)$.

(4) $\operatorname{Int} Y \cap \operatorname{Int} Z = \operatorname{Int} (Y \cap Z)$.

Proof. (1) Since $\overline{Y} \cup \overline{Z}$ is a closed subset containing $Y \cup Z$, it contains $\overline{Y \cup Z}$. Hence $\overline{Y \cup Z} \subset \overline{Y} \cup \overline{Z}$.

Since $Y \subset \overline{Y \cup Z}$ and the latter set is closed, we have $\overline{Y} \subset \overline{Y \cup Z}$. For the same reason $\overline{Z} \subset \overline{Y \cup Z}$. Hence $\overline{Y} \cup \overline{Z} \subset \overline{Y \cup Z}$.

(2) Since $Y \cap Z \subset Y \subset \overline{Y}$ and the latter set is closed, we have $\overline{Y \cap Z} \subset \overline{Y}$. For the same reason $\overline{Y \cap Z} \subset \overline{Z}$. Hence $\overline{Y \cap Z} \subset \overline{Y} \cap \overline{Z}$.

Take $Y = (-\infty, 0)$ and $Z = (0, \infty)$ in $X = \mathbb{R}$. Then $\overline{Y \cap Z} = \overline{\emptyset} = \emptyset$ and $\overline{Y} \cap \overline{Z} = (-\infty, 0] \cap [0, \infty) = \{0\}$. Hence $\overline{Y \cap Z} \neq \overline{Y} \cap \overline{Z}$.

(3) Since $\operatorname{Int} Y \cup \operatorname{Int} Z \subset Y \cup Z$ and $\operatorname{Int} Y \cup \operatorname{Int} Z$ is open in X, we have $\operatorname{Int} Y \cup \operatorname{Int} Z \subset \operatorname{Int}(Y \cup Z)$.

Take $Y = (-\infty, 0]$ and $Z = [0, \infty)$ in $X = \mathbb{R}$. Then $IntY \cup IntZ = (-\infty, 0) \cup (0, \infty) = \mathbb{R} \setminus \{0\}$, and $Int(Y \cup Z) = Int\mathbb{R} = \mathbb{R}$. Hence $IntY \cup IntZ \neq Int(Y \cup Z)$.

(4) Since $\operatorname{Int} Y \cap \operatorname{Int} Z \subset Y \cap Z$ and $\operatorname{Int} Y \cap \operatorname{Int} Z$ is open in X, we have $\operatorname{Int} Y \cap \operatorname{Int} Z \subset \operatorname{Int}(Y \cap Z)$.

Since $\operatorname{Int}(Y \cap Z) \subset Y \cap Z \subset Y$ and $\operatorname{Int}(Y \cap Z)$ is open in X, we have $\operatorname{Int}(Y \cap Z) \subset \operatorname{Int}Y$. Similarly, $\operatorname{Int}(Y \cap Z) \subset \operatorname{Int}Z$. Hence $\operatorname{Int}(Y \cap Z) \subset \operatorname{Int}Y \cap \operatorname{Int}Z$.

Problem 4. Let \mathbb{R}_{ℓ} be the set of all real numbers \mathbb{R} with the lower limit topology, and \mathcal{I} be the set of all irrational real numbers. Prove that

- (1) $\partial \mathcal{I} = \mathbb{R}_{\ell}$.
- (2) \mathcal{I} is dense in \mathbb{R}_{ℓ} .

Proof. (1) Let x be any real number. For any neighborhood $U \subset \mathbb{R}_{\ell}$ of x, there exist real numbers a < b such that $x \in [a,b) \subset U$. The interval [a,b) contains infinitely many irrational numbers and infinitely many rational numbers, so it intersects both \mathcal{I} and $\mathbb{Q} = \mathbb{R}_{\ell} \setminus \mathcal{I}$. Hence U intersects both \mathcal{I} and $\mathbb{Q} = \mathbb{R}_{\ell} \setminus \mathcal{I}$. This implies that $x \in \partial \mathcal{I}$. Hence $\partial \mathcal{I} = \mathbb{R}_{\ell}$.

(2) Since $\mathbb{R}_{\ell} = \partial \mathcal{I} \subset \overline{\mathcal{I}}$, we must have $\overline{\mathcal{I}} = \mathbb{R}_{\ell}$. Hence \mathcal{I} is dense in \mathbb{R}_{ℓ} .