PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

61

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 90/15065 A1 C07H 21/00, 21/04 (43) International Publication Date: 13 December 1990 (13.12.90) (21) International Application Number: PCT/US90/03138 (72) Inventor; and (75) Inventor/Applicant (for US only): FROEHLER, Brian, C. (22) International Filing Date: 5 June 1990 (05.06.90) [US/US]; 2310 Monserat Avenue, Belmont, CA 94002 (30) Priority data: (74) Agents: REED, Dianne, E. et al.; Irell & Manella, 545 361,045 5 June 1989 (05.06.89) US Middlefield Road, Suite 200, Menlo Park, CA 94025 (60) Parent Application or Grant (63) Related by Continuation (81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), US. 361,045 (CIP) Filed on 5 June 1989 (05.06.89) (71) Applicant (for all designated States except US): GILEAD SCIENCES, INC. [US/US]; 344 Lakeside Drive, Foster City, CA 94404 (US). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: EXONUCLEASE-RESISTANT OLIGONUCLEOTIDES AND METHODS FOR PREPARING THE SAME

(57) Abstract

A method is provided for making 3' and/or 5' end-capped oligonucleotides so as to render the oligonucleotide resistant to degradation by exonucleases. The exonuclease degradation resistance is provided by incorporating two or more phosphoramidate and phosphoromonothioate and/or phosphorodithioate linkages at the 5' and/or 3' ends of the oligonucleotide, wherein the number of phosphoramidate linkages is less than a number which would interfere with hybridization to a complementary oligonucleotide strand and/or which would interfere with RNAseH activity when the oligonucleotide is hybridized to RNA.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

NT	Austria	ES	Spain	мс	Manus
NU	Australia	FI	Finland		Monaco
18	Barbados	PR	France	MG	Madagascar
Ε	Belgium	GA	Gabon	ML	Mali
F	Burkina Fasso	GB	United Kingdom	MR	Mauritania
G	Bulgaria	GR	Greece	MW	Malawi
J	Benin	HU	Hungary	NL	Netherlands
R	Brazil	11	rsungary Italy	NO	Norway
A	Canada	JP		R	Romania
P	Central African Republic	KP	Japan	SD	Sudan
C	Congo	N.F	Democratic People's Republic	SE	Sweden
H	Switzerland	1/6	of Korea	SN	Senegal
M	Cumeroon	KR	Republic of Korea	SU	Soviet Union
8	Germany, Federal Republic of	Li	Liechtenstein	TD	Chad
ĸ	Denmark	LK	Sri Lanka	TG	Tago
**	- Cumark	LU	Luxembourg	US	United States of America

5

EXONUCLEASE-RESISTANT OLIGONUCLEOTIDES AND METHODS FOR PREPARING THE SAME

Description

10

15

35

Technical Field

The present invention is directed to oligonucleotides containing a 3'- and/or 5'-capped terminal and which are thereby rendered resistant to degradation by exonucleases. The exonuclease-resistant oligonucleotides have two or more phosphoramidate internucleotide linkages at one or both termini which render the oligonucleotides resistant to degradation.

20 <u>Background</u>

DNA molecules contain internucleotide phosphodiester linkages which are degraded by exonucleases present in cells, culture media and human serum. For example, degradation by exonucleases in tissue culture media of DNA may be observed within about 25 30 minutes to about six hours. Synthetic oligodeoxynucleotides with phosphodiester linkages are routinely used in genetic engineering, for example, to locate specific RNA or DNA fragments from a library. The longterm stability of an oligonucleotide for this utility is 30 not a major concern, since the oligonucleotide is usually not exposed to the relatively stringent environment of the culture medium, therefore exonuclease degradation is not a substantial problem.

However, it is in fact frequently desirable to produce oligodeoxynucleotides which are stable (i.e., for more than several hours or days) for long-term uses. For

example, a oligodeoxynucleotide with phosphodiester linkages can be used to block protein synthesis by hydrogen bonding to complementary messenger RNA thereby providing a tool for use in an antisense fashion.

Exonuclease-stable oligodeoxynucleotides could also be utilized to form triple-helix DNA which would interfere with the transcription process or with DNA replication, by competing with naturally occurring binding factors or by gene destruction. However, in order to utilize synthetic oligonucleotides in this manner, they must be stable to exonucleases, the major activity of which in cells and serum appears to be 3' to 5', i.e., digestion

The present invention is accordingly directed to such exonuclease-stable oligonucleotides.

of oligonucleotides begins starting at the 3' end.

Related Art:

The following references relate to one or more aspects of the presently claimed invention:

20 Froehler, <u>Tet. Lett. 27</u>(46):5575-5578 (1986), describes polymer-bound deoxynucleoside H-phosphonate diesters as precursors to phosphoramidate, thiophosphate and phosphate triester analogs of DNA.

Froehler et al., <u>Nuc. Acids Res.</u> 16(11):48314839 (1988), describe the synthesis of a 15-mer containing 12 phosphoroamidate linkages derived from primary and secondary amines. The chemistry of the process is summarized in the figure shown on page 4833 of the reference.

Froehler et al., Nuc. Acids Res. 14(13):5399-5407 (1986), describe the synthesis of deoxyoligo-nucleotides via deoxynucleoside H-phosphonate intermediates. The chemistry of this process is essentially shown in scheme 2 on page 5401 of the reference.

5

10

15

20

30

35

Froehler, European Patent Publication No. 219342-A2, published 2 April 1987, is similar to the t achings of the latter two references in that the synthesis of DNA via deoxynucle side H-phosphonate intermediates is shown.

Letsinger et al., <u>Nuc. Acids Res. 14</u>(8):3487-3499 (1986), describe complexes of polyuridylic acid (poly U) and polythymidylic acid (poly dT) with oligonucleotides possessing different pendant groups that are linked to the oligonucleotide chain at the internucleotide phosphodiester linkages.

Stein et al., <u>Nuc. Acids Res. 16</u>(8):3209-3221, (1988) present a study of oligodeoxynucleotides modified so as to contain phosphorothicate linkages. The authors, in addition to evaluating a number of other physicochemical properties of such oligonucleotides, study the susceptibilities of the compounds to a number of endonucleases and exonucleases. The authors found a significant decrease in the T_m of fully substituted phosphorothicate oligodeoxynucleotides compared to diester controls (Figure 3), i.e., a 15-20°C decrease in T_m and a 30-40 Kcal/mole decrease in ΔH for fully substituted molecules (p. 3215).

Brill et al., <u>Tet. Lett.</u> <u>29</u>(43):5517-5520

25 (1988) describe the preparation of dinucleoside phosphorodithioates by sulfur oxidation of thiophosphate triesters.

Agrawal, <u>Tet. Lett.</u> 28(31):3539-3542 (1987) describe the automated synthesis of oligodeoxynucleosides containing methylphosphonate linkages, using nucleoside methylphosphonamidites as starting materials. The authors conclude that two adjacent methylphosphonate linkages at the 3' end provides protection against degradation by snake venom phosphodiesterase and spleen phosphodiesterase (and, like Stein et al., the authors do

not valuat nucl ase stability of th oligonucleotides in serum, tissue culture medium or cells).

PCT publication W089/05358, inventors Walder et al., describe oligodeoxynucleotides modified at the 3' terminus so as to render the oligonucleotide chain resistant to degradation within cells and body fluids. Disclosed modifications at the 3'-terminal phosphodiester linkage include replacement of that linkage with an alkyl or aryl phosphotriester, hydrogen phosphonate, an alkyl or aryl phosphonate, an alkyl or aryl phosphoramidate, a phosphorothicate, or a phosphoroselenate, although the preferred modification is stated to be the incorporation of a 3'-terminal phosphotriester linkage.

15 <u>Disclosure of the Invention</u>

25

30

Accordingly, it is a primary object of the invention to address the above-mentioned need in the art and to provide exonuclease-resistant oligonucleotides.

It is another object of the invention to
provide exonuclease-resistant oligonucleotides modified
at the 3'-terminus so that the initially present
phosphodiester linkages are replaced with a specified
number of phosphoramidate linkages.

It is still another object of the invention to provide such exonuclease-resistant oligonucleotides which additionally contain phosphoromonothicate and/or phosphorodithicate linkages.

It is yet another object of the invention to provide exonuclease-resistant oligonucleotides which are capable of hybridizing to a complementary oligonucleotide strand.

It a further object of the invention to provide methods of making such exonuclease-resistant oligonucleotides.

It is still a further object of the invention to provide a method for end-capping olig nucleotides with moieties which can perf rm multiple functions, such as aiding in transport, serving as chromophoric tags, or enabling cross-linking.

Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention.

In a first aspect, the present invention provides oligonucleotides having two or more phosphoramidate linkages at the 3' terminus and/or 5' terminus, which oligonucleotides are resistant to 15 exonuclease degradation. The number of phosphoramidate linkages is at least 1 and less than a number which would interfere with hybridization to a complementary oligonucleotide strand, and/or less than a number which would interfere with RNAse activity when said oligonucleotide 20 is hybridized to RNA. Preferably, at least 2, and more preferably on the order of about 2 to 10, phosphoramidate linkages are incorporated at either or both the 3' terminus and the 5' terminus. The phosphoramidate linkages may be substituted with any one of a number of 25 different types of moieties as will be described in detail hereinbelow.

In another aspect, exonuclease-resistant are provided which have the following formulas I, II or III, i.e., containing phosphoramidate linkages as just described as well as phosphoromonothicate and/or phosphorodithicate linkages:

30

5

5

$$T-O = \begin{cases} X_i & B \\ O = P & O \end{cases} \quad O = P \\ Y_i & N \\ R^1 \quad R^2 \end{cases} OH$$

10

15

25

30

wherein each n, m, i, j and s is independently an integer and each s is in the range of about 2 to 10; each n and m is independently from 1 to about 50; s + n in formulas I and II is less than 100; and s + s + m in formula III is less than about 100; each i varies from 1 to n; each j varies from 1 to m; T is hydrogen or a hydroxylprotecting group; R¹ and R² are moities independently selected from the group consisting of hydrogen,

hydrocarbyl substituents of 20 carbon atoms or less, and 35

-7-

oxyhydrocarbyl of 20 carbon atoms or less and 1-3 oxy groups, wherein said hydrocarbyl and oxyhydrocarbyl substituents are linear or branched alkyl of 1 to 20 carbon atoms, linear or branched alkenyl of 2 to 20 carbon atoms, cycloalkyl or cycloalkenyl of 3 to 20 carbon atoms, linear or branched alkoxy of 1 to 20 carbon atoms, or aryl of 6 to 18 carbon atoms, with the proviso that R¹ and R² are not both hydrogen;

each B is independently a protected or unprotected heterocyclic base;

each X_i and X_j is independently 0 or S; and each Y_i and Y_j is independently R, -SR or -OR, where R is as defined for R^1 and R^2 .

The present invention also provides methods for preparing such end-capped oligonucleotides.

Modes for Carrying Out the Invention

20

25

30

35

As used herein the terms "polynucleotide" and "oligonucleotide" shall be generic to polydeoxyribo-nucleotides (containing 2'-deoxy-D-ribose or modified forms thereof), to polyribonucleotides (containing D-ribose or modified forms thereof), and to any other type of polynucleotide which is an N-glycoside of a purine or pyrimidine bases, or modified purine or pyrimidine bases.

The term "nucleoside" will similarly be generic to ribonucleosides, deoxyribonucleosides, or to any other nucleoside which is an N-glycoside of a purine or pyrimidine base, or modified purine or pyrimidine base. There is no intended distinction in length between the term "polynucleotide" and "oligonucleotide" and these terms will be used interchangeably.

It will be appreciated that as used herein the terms "nucleoside" and "nucleotides" will include those moieties which contain not only the known purine and pyrimidine bases, i.e., adenine, thymine, cytosine,

guanine and uracil, but also other heterocyclic bases which contain protecting groups or have been otherwise modified or derivatized.

By "modified nucleosides" or "modified nucleotides" as used herein are intended to include those compounds containing one or more protecting groups such as acyl, isobutyryl, benzoyl, or the like, as well as any of the wide range of modified and derivatized bases as known in the art. Examples of such modified or derivatized bases include 5-fluorouracil, 5-bromouracil, 10 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methyl-15 adenine, 1-methylpseudouracil, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-ethylguanine, 3-methylcytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-20 mannosylqueosine, 5'-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, 25. uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine.

Modified nucleosides or nucleotides can also include modifications on the sugar moiety, for example, wherein one or more of the hydroxyl groups are replaced with halogen or aliphatic groups, or functionalized as ethers, amines, etc.

The polynucleotides according to the present invention may be of any length, but lengths of about

thr e to about fifty nucleotides are particularly useful for most genetic engineering applications. According to the present invention, the 3' end and/or the 5' end of the polynucleotide will contain at least two

- phosphoramidate internucleotide linkages. The remaining internucleotide linkages may be phosphodiester linkages, phosphorothicate linkages or phosphorodithicate linkages, or any other internucleotide linkage, other than a phosphoramidate, or combinations of these other linkages.
- Methods for preparing such non-phosphoramidate linkages are known in the art, e.g., as taught by Froehler et al., Nuc. Acids Res. 14:5399-5467 (1986), and Froehler, B., Tet. Lett. 27:5575-5578 (1986), cited above and incorporated by reference herein.
- Internucleotide phosphodiester linkages are prepared from hydrogen phosphonate linkages preferably by oxidation with, e.g., aqueous iodine. A typical procedure involves treatment of the hydrogen phosphonate in 0.1 M iodine in Pyr/NMI/H₂O/THF (5:1:5:90) for about 2-3 minutes, followed by treatment with 0.1 M iodine in Et₃/H₂O/THF (5:5:90) for another approximately 2-3 minutes.

Phosphoromonothioate linkages are formed from the initially present hydrogen phosphonate linkages by treatment with sulfur. The reaction is carried out at approximately room temperature for on the order of 20 minutes in a solvent system which typically includes a sulfur solvent such as CS₂ along with a basic solvent such as pyridine. Other suitable solvent systems include CS₂/lutidine and CS₂/triethylamine; CS₂ is preferred as the sulfur solvent because it acts to dissolve elemental sulfur. The following scheme illustrates the postulated reaction:

WO 90/15065

5

15

20

25

30

PCT/US90/03138

(RO)₂-P-H ---> (RO)₂-P-S-S ---> (RO)₂-P-S-S
$$S_n S_n S_n$$

10 (See, e.g., Stein et al., cited above.)

To form hydrogen phosphorodithioate linkages, sulfurization of the hydrogen phosphoromonothioate linkages is effected using conditions identical to those just described for the preparation of the phosphoromonothioate moiety. (Note: the term "phosphorothioate" as used herein is intended to encompass both "phosphoromonothioate" and "phosphorodithioate" linkages.)

Structure of the End-Capped Oligonucleotides:

The oligonucleotides of the invention, as noted above, are resistant to degradation under both physiological and tissue culture conditions, and in particular are resistant to degradation by exonucleases.

In order that the oligonucleotide be resistant to such enzymatic degradation, it is modified so that phosphodiester linkages initially present at the 3' terminus are replaced with a selected number of phosphoramidate linkages, that number being at least one and less than a number which would cause interference with hybridization to a complementary oligonucleotide strand, and/or less than a number which would interfere with RNAseH activity when said the oligonucleotide is hybridized to RNA. Such a modification may additionally or alternatively be made at the 5' terminus.

It is preferred that the number of phosphoramidate linkages be selected such that the melting temperature of any duplex formed with complement is

lowered by less than about 10°C relative to that obtained with an oligonucleotide containing only the initial phosphodiester linkages. Preferably, the number of phosphoramidate linkages is such that the melting temperature of a duplex formed is lowered by less than about 5°C. The number of phosphoramidate linkages present is typically and preferably between about 2 and 10, more preferably between about 2 and 8, and most preferably between about 2 and 6.

The phosphoramidate linkage has the formula

$$-O-P-N < R^{1}$$

10

wherein the R^1 and R^2 moieties are substituents which 20 must be selected so as not to interfere with hybridization with complement. In most cases, the groups \mathbb{R}^{1} and \mathbb{R}^{2} are independently selected from the group consisting of hydrogen, hydrocarbyl substituents of 20 carbon atoms or less, and oxyhydrocarbyl substituents 25 of 20 carbon atoms or less containing 1-3 oxy groups, with the proviso that R¹ and R² are not both hydrogen, i.e., the phosphoramidate linkages herein are always N-substituted. In this case, it is preferred that one of the two substituents be hydrogen. Suitable hydrocarbyl 30 and oxyhydrocarbyl substituents include, for example, linear or branched alkyl of 1-20 carbon atoms, linear or branched alkenyl of 2-20 carbon atoms, cycloalkyl or cycloalkenyl of 3-20 carbon atoms, linear or branched alkoxy of 1-20 carbon atoms, or aryl of 6-18 carbon 35 atoms. The hydrocarbyl substituent may be, for example, an alkoxy substituent having the f rmula $CH_3O-(CH_2)_x$ or a straight chain alkyl group having the formula

5

20

25

30

 $CH_3(CH_2)_V$ - where x is an integer in the range of 1-20, inclusive, preferably in the range of 1-10, inclusive, and y is an integer in the range of 0-15, inclusive. Examples of preferred oligonucleotide linkages within the aforementioned groups are wherein one of \mathbb{R}^1 and \mathbb{R}^2 is H and the other is either 2-methoxyethyl, dodecyl, or \underline{n} propyl. (The 2-methoxyethyl and dodecyl linkages are sometimes referred to herein as "MEA" and "C12", respectively.)

The R^1 and R^2 groups may also be, in addition 10 to the foregoing, macromolecular species such as sugars, polypeptides, chromophoric groups, lipophilic groups, polymers, steroid hormones, or the like.

"Lipophilic" groups refer to moieties which are chemically compatible with the outer cell surface, i.e., 15 so as to enable the oligonucleotide to attach to, merge with and cross the cell membrane. Examples of such lipophilic groups are fatty acids and fatty alcohols (in addition to the long chain hydrocarbyl groups described above).

Examples of preferred polypeptides that can be used for R¹ and/or R² include transferrin and epidermal growth factor (EGF), while suitable non-polypeptide polymers include ionic, nonionic and zwitterionic polymers. Examples of a particularly preferred polymer is polyethylene glycol.

Steroid substituents include any of the general family of lipid compounds which comprise sterols, bioacids, cardiac glycosides, seponans, and sex hormones, which include the following basic structure:

5

Examples of steroids include natural corticosteroid hormones (produced by the adrenal glands), sex hormones (progesterone, androgens, and estrogens).

These various R¹ and R² groups can confer any of a variety of desired properties to the oligonucleotide. For example, if R¹ or R² is a polymer such 15 as polyethylene glycol, a polypeptide or a lipophilic group such as a long-chain hydrocarbyl moiety, such a group may facilitate transport or permeation of the oligonucleotide through cell membranes, thus increasing the cellular uptake of the oligonucleotide. 20 group may also be a group which affects target DNA or RNA to which the oligonucleotide will bind, such as providing covalent linkages to the target strand to facilitate cleavage or intercalation of the oligonucleotide to the The R^1 and R^2 groups may additionally 25 target strand. serve a cutting function (e.g., a site for cutting the complementary strand), or a receptor function (e.g., a receptor ligand).

It will be appreciated by those skilled in the
art that the oligonucleotides of the present invention
can include other phosphoramidate N-substituents not
explicitly disclosed herein so long as those substituents
confer exonuclease resistance and do not interfere with
hybridization to a complementary oligonucleotide strand.

WO 90/15065

5

30

Th invention also ncompasses oligonucleotide compositions containing oligonucleotides of the following formula I, II or III, i.e., wherein phosphoromonothicate and/or phosphorodithicate linkages are incorporated in addition to the phosphoramidate linkages:

T-O
$$\stackrel{B}{\longrightarrow} O \stackrel{B}{\longrightarrow} O \stackrel{X_i}{\longrightarrow} O \stackrel{B}{\longrightarrow} O \stackrel{X_i}{\longrightarrow} O \stackrel{B}{\longrightarrow} O \stackrel{X_i}{\longrightarrow} O \stackrel{B}{\longrightarrow} O \stackrel{A}{\longrightarrow} O \stackrel{A}$$

in which B, T, R¹, R², X_i, X_j, Y_i, Y_j, n, m, i, j and s are as defined above. In these structures, it is preferred that "s," which defines the number of phosphoramidate linkages, be in the range of 2-8, more preferably in the range of 2-6. It is also preferred that m and n be within the aforementioned ranges.

Synthetic Methods:

According to one embodiment of the present invention, the 3'-capped oligonucleotides may be prepared

by first preparing a polymer-bound polynucleoside with the formula IV

$$TO = O = P = O = O = P$$

(IV)

5

35

wherein P is a solid state polymeric support, or other 10 type of solid support, and B the base portion of a nucleoside, i.e., a purine or pyrimidine base, or any modified purine or pyrimidine base. As is conventional in oligonucleotide syntheses, the functional groups on the base, i.e., the amine groups, will be appropriately 15 protected during the course of the synthesis and removed after the completed polynucleotide is removed from the polymer support. As is the convention, in the formula shown above in IV, the linkage to the polymer support is through the 3' hydroxy group, the free hydroxy group is 20 the 5' group of the nucleoside. The group T is a conventional hydroxy-protecting group used in oligonucleotide synthesis, preferably the DMT group (dimethoxytrityl) or MMT group (monomethoxytrityl). The polymer-bound polynucleoside hydrogen phosphonate 25 (IV) is preferably prepared by treating the DBU (1.8-diazabicyclo[5.4.0]undec-7-ene ammonium salt) of a 5'-protected (preferably, 5 DMT) nucleoside hydrogen phosphonate with a polymer-bound nucleoside, linked to support through its 3'-hydroxyl group in the presence of 30 an activating agent, as is known in the art. preparing such polymer-bound polynucleoside hydrogen phosphonates are disclosed, for example, by Froehler, B., et al., Nuc. Acids Res. 16:4831-4839 (1988); Froehler,

B., et al., Nuc. Acids Res. 14:5399-5467 (1986); and

35

Froehler, B., et al., Nucleosides and Nucleotides 6:287-291 (1987). Then, one or more nucleoside hydrogen phosphonates may be added (to make the two or more internucleotide linkages at the 3' end of the polynucleotide) by sequentially deprotecting the 5'-hydroxyl group of the polymer-bound polynucleotide, and condensing with the next nucleoside hydrogen phosphonate. The oligonucleotide chain elongation will proceed in conformance with a predetermined sequence in a series of condensations, each one of which results in the 10 addition of another nucleoside to the oligomer. condensation is typically accomplished with dehydrating agents, which are suitably phosphorylating agents or acylating agents such as isobutylchloroformate, diphenylchlorophosphate, organic acid anhydrides (such as 15 acetic anhydride, isobutyric anhydride or trimethyl acetic anhydride) and organic acid halides such as pivaloyl chloride, pivaloyl bromide, 1-adamantylcarboxylic chloride or benzoyl chloride. The preferred 20 condensing agent is pivaloyl chloride in pyridine acetonitrile. Prior to the addition of each successive nucleoside hydrogen phosphonate, the 5'-protecting group or the carrier bound nucleotide is removed. Typically, for removal of the DMT group, this is done by treatment with 2.5% volume/volume dichloroacetic acid/CH2Cl2, 25 although 1% weight/volume trichloroacetic $\operatorname{acid}/\operatorname{CH}_2\operatorname{Cl}_2$ or ZnBr2-saturated nitromethane are also useful. Other deprotection procedures suitable for other known protecting groups will be apparent to those of ordinary 30 skill in the art.

The carrier is preferably washed with anhydrous pyridine/acetonitrile (1/1,v/v) and the condensation reaction is completed in as many cycles as are required to form the desired number of 3'-end internucleotide bonds which will be converted to phosphoramidates. After

VO 90/15065 -17PCT/US90/03138

5

35

the required number of synthetic cycles, the carrier-bound polynucleotide hydrogen phosphonate is oxidized to convert the hydrogen phosphonate internucleotide linkages to phosphoramidate linkages, preferably by treatment with the desired amine NHR¹R² with R¹ and R² as defined earlier and CCl₄ as described in Froehler, et al., Nucleic Acids Research 16:4831-4839 (1988). Although carbon tetrachloride is preferred, other mild oxidizing agents may be utilized.

After the oxidation to form the phosphoramidate 10 internucleotide linkages, the oligonucleotide is then completed by methods which form nonphosphoramidate linkages, such as phosphodiester linkages, phosphorothicate linkages or phosphorodithicate linkages, by methods known in the art referenced above and 15 incorporated by reference herein. The preferred method for completing the oligonucleotide is to continue the sequence using 5'-protected nucleoside hydrogenphosphonates. In the instance where the 5' end will not be capped, after the last 5'-protected nucleoside 20 hydrogen phosphonate has been added, all of the hydrogen phosphonate linkages are oxidized to produce diester linkages, preferably by aqueous iodine oxidation or oxidation using other oxidizing agents, such as N-chlorosuccinimide, N-bromosuccinimide or salts or 25 periodic acid. This will result in all of the internucleotide linkages, except for the 3'-end capped linkages which are phosphoramidate linkages, being phosphodiester linkages. Thereafter, the oligonucleotide may be separated from the carrier, using conventional 30 methods, which in the preferred instance is incubation with concentrated ammonium hydroxide. Any protecting groups may be removed as described above using about 2% dichloroacetic acid/CH2Cl2, or about 80% acetic acid, or

by other conventional methods, depending on the nature of

WO 90/15065

PCT/US90/03138

the protecting groups. The desired oligonucleotide is then purified by HPLC, polyacrylamide gel electrophor sis or using other conventional techniqu s. The following schemes illustrate various

5 synthetic processes within the scope of the invention:

-

.

5

Scheme 1

TO
$$Q_i$$
 Q_i Q

oxidizing agent

. 15

20

25

T: protecting group

P: protecting group or solid state carrier

i: varies from 1 to 5

Q: hydrogen or -NR¹R² (with the proviso that

at least one Qi is hydrogen)

30

B: a purine or pyrimidine base R^1, R^2 : see text

5

Scheme 2a

10

- 1) 5' blocked nucleoside H phosphonate and pivaloyl chloride as activator
- 2) remove 5' blocking group
 3) HNR¹R²/oxidizing agent
- 4) optional repetition of steps 1-3

20

15

25

T, P, X_i , Y_i , R^1 , R^2 = as defined in text and in Scheme 1

30

5

Scheme 2b

10

5' - blocked nucleoside

20

25

30

T, X_i , Y_i , R^1 , R^2 , s, n, = as defined in text and in Schemes 1 and 2a

Scheme 3

5

$$TO = \begin{bmatrix} O & B \\ O & P \\ I & O \end{bmatrix} O - P$$

$$S \quad (s \ge 2)$$

HNR¹R², oxidizing agent

15

10

$$TO = \begin{bmatrix} O & B \\ O & P \\ O & S \end{bmatrix} O - P$$

$$R^{1} R^{2}$$

20

25

1) remove T

- 2) condense 5' blocked nucleoside H-phosphonate, H-phosphorothioate or H-phosphorodithioate with pivaloyl chloride as activator
- 3) remove 5' blocking group
- 4) repeat steps 2) & 3)

5) oxidize to form phosphodiester, phosphorothicate and/or phosphorodithioate linkages

30

6) condense with additional 5' - blocked nucleoside phosphonates, optionally react with HNR¹R² in the presence of an oxidizing agent

$$TO = \begin{bmatrix} O & B \\ O & P \\ O & P \\ N & R^1 & R^2 \end{bmatrix} = \begin{bmatrix} X_j & B \\ O & P \\ Y_j & O \end{bmatrix}_T = \begin{bmatrix} O & B \\ O & P \\ O & P \\ R^1 & R^2 \end{bmatrix} = O - P$$

5

10

15

-23-

The foregoing discussion has revolved around the consecutive addition of mononucleoside hydrogen phosphonates, but it will be understood that one or more nucleotides can be added in a given cycle by using a polynucleotide, such as a di- or trinucleotide.

It will also be understood that while the above method has been described in connection with use of a solid state carrier if the object oligonucleotide is small, i.e., containing, for example, only five nucleotides (therefore having only four internucleotide linkages, two of which are phosphoramidate linkages) it is feasible to conduct the synthesis without the use of a solid state support. In such an instance a conventional 3'-hydroxy protecting group may be used which is different from the 5'-protecting group used in the synthesis, so that the 5'-protecting group may be selectively removed while the 3'-protecting group remains intact.

It will also be appreciated that the two or

more phosphoramidate linkages need not each contain the
same R¹ and R² groups. This may be accomplished by
generating the first internucleotide hydrogen phosphonate
linkage, and then oxidizing it with a first amine,
generating the second hydrogen phosphonate

internucleotide linkage, and then oxidizing it in the presence of a second (different) amine. This would result in a capped oligonucleotide having mixed phosphoramidate internucleotide linkages.

In another embodiment of the present invention,

a 5'-capped oligonucleotide may be made. In such an
instance, the above method may be modified by first
forming a polymer-bound oligonucleotide having only
hydrogen phosphonate internucleotide linkages which may
then be oxidized to form phosphodiesters (or

35 phosphorothicate or phosphorodithicate linkages). Then

for the last two (or more) cycles, the 5'-end cap is formed when the last two or more nucleosides are added, followed by reaction with the amine NHR¹R². Alternatively, the 5' end may be added by adding a polynucleotide, such as a tri- or tetranucleotide containing the desired phosphoramidate internucleotide linkages.

In still another embodiment, a combination of both of the above methods for making a 5' and a 3' endcapped oligonucleotide may be utilized. The first two (or more) internucleotide linkages on the 3'-bound oligonucleotide may be oxidized to form the phosphoramidate linkages, then the non-terminal portion of the oligonucleotide may be made (having phosphodiesters, phosphorothicate or phosphorodithicate internucleotide linkages), with the final two (or more) linkages being phosphoramidates, formed as described above.

20

5

Methods of Use:

The uses of 5'- or 3'-phosphoramidate-capped oligonucleotides as made in accordance with the present invention may be as therapeutic agents against viral diseases (such as HIV, hepatitis B, cytomegalovirus), cancers (such as leukemias, lung cancer, breast cancer, 25 colon cancer) or metabolic disorders, immune modulation agents, or the like, since the present end-capped oligonucleotides are stable within the environment of a cell as well as in extracellular fluids such as serum, and can be used to selectively block protein synthesis, 30 transcription, replication of RNA and/or DNA which is uniquely associated with the disease or disorder. end-capped oligonucleotides of the invention may also be used as therapeutics in animal health care, plant gene regulation (such as plant growth promoters) or in human 35

diagnostics, such as to stabilize DNA probes to detect microorganisms, oncogenes, genetic defects, and the like, and as research reagents to study gene functions in animal cells, plant cells, microorganisms, and viruses. There may also be dermatologic applications for treatment of diseases or for cosmetic purposes. There are many other potential uses which derive from the stability of the oligonucleotide to exonuclease degradation, thus prolonging oligonucleotide integrity within the

10 relatively stringent environment of the cells.

It is to be understood that while the invention has been described in conjunction with the preferred

15 specific embodiments thereof, that the foregoing description and the examples which follow are intended to illustrate and not limit the scope of the invention.

Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled to which the invention pertains.

Example 1

Polymer-bound polynucleoside H-phosphonates wer prepared as described by Froehler et al., supra, on control pore glass using the DBU salt of the protected nucleoside H-phosphonate. The diester linkages were generated by aqueous I_2 oxidation and the amidate linkages by amine/CCl4 oxidation. After two couplings the polynucleoside H-phosphonate was oxidized with a solution of 2-methoxyethylamine in Pyr/CCl₄ (1:5:5) (20 min.) followed by twelve more couplings and oxidation 10 with aq. I2 (0.1 M in N-methyl morpholine/water/THF, 5:5:90) to generate a 15-mer containing two phosphoramidate linkages at the 3' end and twelve diester The oligomer was removed from the solid support, deprotected with conc. NH4OH (45°C/18 hr.), and 15 purified by HPLC (PRP) using an acetonitrile (CH3CN) gradient in 50 mM aqueous TEAP. The DMT was removed from the product fraction (80% acetic acid/R.T./2 hrs.), evaporated, desalted and evaporated. Approximately 1 μg of purified product was 5' end-labeled with T4 poly-20 nucleotide kinase and γ - ^{32}P ATP for further characterization.

Example 2

Polymer-bound polynucleoside H-phosphonates were prepared as in the preceding example on control pore glass using the DBU salt of the protected nucleoside H-phosphonate. After twelve couplings the polynucleoside H-phosphonate was oxidized with aq. I₂ (0.1 M in N-methyl morpholine/water/THF, 5:5:90) followed by two more couplings and oxidation with a solution of 2-methoxy-ethylamine in Pyr/CCl₄ (1:5:5) (20 min.) to generate a 15-mer containing twelve diester linkages at the 3' end and two phosphoramidate linkages at the 5' end. The oligomer was removed from the solid support, deprotected

with conc. NH₄OH (45°C/18 hr.) and purified by HPLC (PRP) using an acetonitrile (CH₃CN) gradient in 50 mM aqueous TEAP. The DMT was removed from the product fraction (80% acetic acid/R.T./2 hrs.), evaporated, desalted and evaporated.

Example 3

Polymer-bound polynucleoside H-phosphonates were prepared as described as in the preceding examples on control pore glass using the DBU salt of the protected 10 nucleoside H-phosphonate. The diester linkages were generated by aqueous I_2 oxidation and the amidate linkages by amine/CCl4. After two couplings the polynucleoside H-phosphonate was oxidized with a solution of 2-methoxyethylamine in Pyr/CCl₄ (1:5:5) (20 min.) 15 followed by ten more couplings and oxidation with aq. I2 (0.1 M in N-methyl morpholine/water/THF, 5:5:90) to generate a 13-mer containing two phosphoramidate linkages at the 3' end and ten diester linkages. 20 followed by two more couplings and oxidation with a solution of 2-methoxyethylamine in Pyr/CCl₄ (1:5:5) (20 min.) to generate a 15-mer containing two phosphoramidate linkages at the 3' end, ten diester linkages, and two phosphoramidate linkages at the 5' end. The oligomer was removed from the solid support and deprotected with conc. 25 $\mathrm{NH_{A}OH}$ (45°C/18 hr.) and purified by HPLC (PRP) using an acetonitrile (CH3CN) gradient in 50 mM aqueous TEAP. DMT was removed from the product fraction (80% acetic acid/R.T./2 hrs.), evaporated, desalted and evaporated.

30

35

5

Example 4

The procedure of Example 1 was repeated using dodecylamine to generate a 15-mer containing two phosphoramidate linkages at the 3' end and twelve diester linkages, wherein the phosphoramidate linkages are such

that one of R^1 and R^2 as defined earlier herein is hydr gen and the other is dodecyl.

Example 5

The procedure of Example 2 was repeated using dodecylamine in place of 2-methoxyethylamine, so as to yield a 15-mer containing twelve diester linkages at the 3' end and two phosphoramidate linkages at the 5' end, wherein the phosphoramidate linkages are substituted as in the preceding example, i.e., one of R¹ and R² is hydrogen and the other is dodecyl.

Example 6

The procedure of Example 3 was repeated using dodecylamine in place of 2-methoxyethylamine, to give rise to a 15-mer containing two phosphoramidate linkages at the 3' end, ten diester linkages, and two phosphoramidate linkages at the 5' end, wherein the phosphoramidate is N-substituted as in the preceding two examples.

Example 7

The procedure of Example 1 was repeated using propylamine to generate a 15-mer containing two phosphoramidate linkages at the 3' end and twelve diester linkages, wherein the phosphoramidate linkages are such that one of R¹ and R² as defined earlier herein is hydrogen and the other is n-propyl.

30

35

25

Example 8

The procedure of Example 2 was repeated using propylamine in place of 2-methoxyethylamine, so as to yield a 15-mer containing twelve diester linkages at the 3' end and two phosphoramidate linkages at the 5' end, wherein the phosphoramidate linkages are substituted as

in the preceding example, i.e., one of \mathbb{R}^1 and \mathbb{R}^2 is hydrogen and the other is <u>n</u>-propyl.

Example 9

The procedure of Example 3 was repeated using propylamine in place of 2-methoxyethylamine, to give rise to a 15-mer containing two phosphoramidate linkages at the 3' end, ten diester linkages, and two phosphoramidate linkages at the 5' end, wherein the phosphoramidate is N-substituted as in the preceding two examples.

Example 10

The following Example describes hybridization stability studies performed using end-capped oligonucleotides as described and claimed herein.

Oligonucleotides containing end-caps were tested for their ability to form stable duplexes with complementary single-stranded DNA sequences; the various oligonucleotides tested were outlined below in Table 1. Duplex stability was measured by determining the melting temperature $T_{\rm m}$ in solution over a range of temperatures. The experiment was conducted in a solution containing 150 mM NaCl, 5 mM Na_HPO_4 and 3 μ M DNA at a pH of 7.1.

20

The results obtained and set forth in Table 1 show that binding to complementary sequences is not materially affected by 3'-end-cap modification.

Table 1

Comp und T_m (°C) 5 10 61.0 (MEA) HŃ HN 15 осн3 20 25 (C12) ΗŃ 30 5' TCCAGTGATTTTTTTCTCCAT 61.5 35 (diester control)

Example 11

40 Several additional oligonucleotides also end-capped at the 3' terminal two internucleotide linkages were tested for their ability to form stable duplexes with complementary single stranded DNA sequences, as described in the preceding example. Results are set forth in Table 2. 45

Table 2

5	Compound	T _m (°C)
10	O O	58.5
15	осн ³ осн ³	
20		
25	O O O	59.5
30		
35	5' TCTCCCTCTTT-OH (diester)	56.5

Example 12

The following example was used to determine the efficacy of end-capped oligodeoxynucleotides virus inhibition and cellular toxicity using oligonucleotides capped at two terminal 3'-end internucleotide linkages with 2-methoxyethylamine and dodecylamine.

The acute infection assay used the MOLT-4 cell line which is susceptible to HIV infection. Measurement of HIV p24 was used to assay for inhibition of virus

replication 7 days after infection with virus at a multiplicity of infection of approximately 0.1. Approximately 1 x 106 cells were preincubated with oligonucleotide, washed, infected with virus stock and then incubated for 7 days in oligonucleotide. HIV p24 5 levels in the supernatant were measured by radioimmunoassay and compared with control infections lacking oligonucleotide. Results are expressed as the percent of control p24 found in cultures containing oligonucleotide. Sequences of antisense oligonucleotides 10 were complementary to HIV targets listed in Table 3. Toxicity data was obtained by incubation of 3'-end-capped oligonucleotides with uninfected cells, followed by a comparison with cell numbers with control cultures incubated in the absence of oligonucleotide. 15 results are expressed as the percent reduction of cell numbers obtained by incubation in oligonucleotide for 7 days compared to controls. The effective inhibition of HIV replication using low levels (0.5 to 5 μM) of capped oligodeoxynucleotides supports the conclusion that 20 significant nuclease degradation of the oligonucleotides of the invention does not occur either extracellularly or intracellulary.

Table 3

	Target sequence	HIV Inhibition	Toxicity
5	PBS		
	5'AGAGATTTTCCACAC3'		
	-methoxyethylamine		
	0.5 μΜ	70%	0%
	5.0 μM	90%	0%
10	50.0 μM		4%
	-C12	,	
	0.5 μΜ	0%	0%
	5.0 μM	90%	2 %
15	50 μM	*	5%
	NEF		
	5 TTGCCACCCATCTTA3		
	-methoxyethylamine		
20	2.5 μM	75%	0%
	5.0 μM	80%	0%
	10.0 µM	90%	0%
	50 μ m		0%
	100 μM		0%
25			
	propylamine		
	2.5 μM	65%	0%
	5.0 μM	80%	0%
	50 μM	*	3%
30	100 μΜ	*	3%

^{* --} not done under HIV inhibition column.

10

20

Claims

- An oligonucleotide resistant to degradation under physiological conditions, which oligonucleotide is modified so that the phosphodiester linkages at the 3' 5 and/or 5' termini are replaced with phosphoramidate linkages, the number of said linkages being at least 1 and less than a number which would interfere with hybridization to a complementary oligonucleotide strand, and/or less than a number which would interfere with RNAseH activity when said oligonucleotide is hybridized to RNA.
- The oligonucleotide of claim 1 wherein the phosphoramidate has the formula: 15

$$-0-P-N <_{R^2}^{R^1}$$

- wherein \mathbb{R}^1 and \mathbb{R}^2 are substituents which do not interfere 25 with hybridization with complement.
- The oligonucleotide of claim 2 wherein \mathbb{R}^1 and R² are independently selected from the group consisting of hydrogen, hydrocarbyl substituents of 20 30 carbon atoms or less, and oxyhydrocarbyl substituents of 20 carbon atoms or less containing 1 to 3 oxy groups, provided that R^1 and R^2 are not both hydrogen.
- The oligonucleotide of claim 3 wherein one 35 of ${\ensuremath{\mathsf{R}}}^1$ and ${\ensuremath{\mathsf{R}}}^2$ is hydrogen and the other is an oxyhydrocarbyl substituent having the structure $CH_3O-(CH_2)_X$ -

wh rein x is an integer in the range of 1 to 20, inclusive.

- 5. The oligonucleotide of claim 4 wherein x is 2 and the oxyhydrocarbyl substituent is 2-methoxyethyl.
 - 6. The oligonucleotide of claim 3 wherein one of \mathbb{R}^1 and \mathbb{R}^2 is hydrogen and the other is a hydrocarbyl substituent is a straight-chain alkyl moiety having the formula $\mathrm{CH_3(CH_2)_{Y^-}}$ wherein y is an integer in the range of 0 to 15, inclusive.
 - 7. The oligonucleotide of claim 6 wherein y is 11 and said hydrocarbyl substituent is dodecyl.
 - 8. The oligonucleotide of claim 6 wherein y is 2 and said hydrocarbyl substituent is \underline{n} -propyl.
- 9. The oligonucleotide of claim 1 wherein the 20 oligonucleotide is modified at both the 3' and the 5' termini.

15

- 10. The oligonucleotide of claim 2 wherein one of \mathbb{R}^1 and \mathbb{R}^2 is hydrogen and the other is a polymer.
- 11. The oligonucleotide of claim 2, wherein one of \mathbb{R}^1 and \mathbb{R}^2 is hydrogen and the other is a sugar moiety.
- 30 12. The oligonucleotide of claim 2, wherein one of \mathbb{R}^1 and \mathbb{R}^2 is hydrogen and the other is a chromophore.

- 13. The oligonucle tide of claim 2, wherein one of \mathbb{R}^1 and \mathbb{R}^2 is hydrogen and the other is a steroid moiety.
- 5 14. The oligonucleotide of claim 1, wherein the number of said linkages is in the range of about 2 to 10.
- 15. The oligonucleotide of claim 1, further including 2 to 10 phosphorothicate linkages at either the 3' terminus, the 5' terminus, or both.
- 16. A method for synthesizing a polynucleotide stable to degradation by 3' exonucleases comprising the steps of:
 - (a) treating a nucleotide of the formula

TO
$$P = Q$$
 $S = (S \ge 2)$

wherein T is a protecting group, P is a protecting group or a solid state carrier, and each B is independently a protected or unprotected heterocyclic base, i varies from 1 to s; each Q_i is hydrogen or -NR¹R², provided that at least one Q_i is hydrogen; with an amine of the formula HNR¹R² wherein R¹ and R² are defined in Claim 1, in the presence of an oxidizing agent sufficient to form the product of the formula

- (b) removing the blocking group T,
- (c) condensing a 5'-bl cked nucleoside H-phosphonate, H-phosphorothioate or H-phosphorodithioate, with the 5'-terminal hydroxy group of the carrier bound nucleotide in the presence of an activating agent;
 - (d) removing the 5'-blocking group of the 5'-terminal nucleoside;
- (e) sequentially repeating steps (c) and (d) using 5'-blocked nucleoside H-phosphonate, H-phosphorothioate and/or H-phosphorodithioate, until said polynucleotide of desired length is obtained;
- (f) forming phosphodiester, phosphorothicate
 and/or phosphorodithicate internucleotide linkages by
 oxidation;
 - (g) separating said polynucleotide from P.

INTERNATIONAL SEARCH REPORT

I, CLA	SIFICATION OF CUT	International Application No PC	T/US90/03138
Accordi	SSIFICATION OF SUBJECT MATTER (if several company to International Patent Classification (IDS)	assification symbols apply, indicate all) 3	-/ 0030/03130
	INT. CL. (5): CO7H 21/00;	National Classics II	
	U.S. CL.: 536/27; 435/6	CO/H 21/04	
(). FIEL	DS SEARCHED		
	Minimum Docu	Imentation Searched 4	
Classifica	tion System .	Classification Symbols	
I	J.S. 536/27; 435/6		
	Documentation Searched oth to the Extent that such Docume	er than Minimum Documentation ents are included in the Fields Searched 5	
		The fields Searched 5	
	·		
III. DOCI	MENTS CONSIDERED TO BE RELEVANT 14		
ategory •	Citation of Document, 15 with indication, where a	appropriate, of the relevant passages 17	Relevant to Claim No. 18
1	Nucleic Acids Research	, Volume 14, No.8,	1-16
	issued 1986 (Oxford, E	ngland),	
	Letsinger et al. "Effe groups at phosphorus of	cts of pendant	
	properties of d-ApA and	n binding	
	see pages 3487-3499, e	alogues,"	1
	pages 3493-3494.	specially,	İ
A	Nucleic Acids Research	, Volume 14, No. 13,	1-16
	readed tage (OXIOLG' E	าตไลท์สำโ	
- 1	Froehler et al., "Synth	nesis of DNA	
ļ	via deoxynucleoside H-r intermediates, see page	onosphonate	
ļ	page	SB 0099-0407.	
A	Nucleic Acids Research,	Volume 16. No. 11	1-16
1	readed tags (Oxiord' Er	nal and l	1-10
- 1	rroenler et al, "Phosph	oramidate analogues	
i	or bur, synthesis and f	hermal etabilit.	
į	of heteroduplexes, see	pages 4831-4839.	
- 1			
1			
Special "A" docu	categories of cited documents: 15	"T" later document published after the	international filing data
	ment defining the general state of the art which is not dered to be of particular relevance	cited to understand the principle	with the application but or theory underlying the
filing		"X" document of particular relevance	
"L" docur which	nent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step	annot be considered to
"O" docur	ment referring to an oral disclosure, use antibities	"Y" document of particular relevance	the claimed invention
		document is combined with one o ments, such combination being of	magnitive step when the
	nent published prior to the international filing date but han the priority date claimed	in the art. "&" document member of the same pa	
	ICATION	or the dame pa	tent raminy
ite of the A	Actual Completion of the International Search 2	Date of Mailing of this International Sear	Ch Report 1
30	August 1990	02 OCT 1990	
	Searching Authority 1		
	A/US	Signature of Authorized Officer thung	
	a / U 3	GARY \mathcal{O} L. KUNZ \mathscr{O}	

Category *	ENTS C NSIDERED T BE RELEVANT (CONTINUED FROM THE SECOND SHEE	
	Citation of Document, 14 with indication, where appropriate, of the relevant passages 17	Relevant to Claim No
A	Nucleic Acids Research, Volume 16, No.8, issued 1988, (Oxford, England), Stein et a "Physicochemical properties of phosphorothioate oligodeoxynucleotides," see pages 3209-3221.	1-16
A	Tetrahedron Letters, Volume 27, No. 46, issued 1986, (Great Britain), Brian C. Froehler, "Deoxynucleoside H-phosphonate Diester Intermediates in the Synthesis of Internucleotide Phosphate Analogues," see pages 5575-5578.	1-16
A	Nucleosides and Nucleotides, Volume 6, No. 1 and 2, issued 1987, "The Use of Nucleoside H-phosphonates in the synthesis of Deoxyoligonucleotides", see pages 287-291 by Brian C. Froehler et al.	1-16

THIS PAGE BLANK (USPTO)