BERT Overview

2019년 6월 29일

이동현 차석 (A.I. Plus Lab), ESTsoft Inc.

NLP's ImageNet moment has arrived (2018!)

독립적인 데이터로 학습됨

http://ruder.io/nlp-imagenet/ (Sebastian Ruder, 2018)

태스크별 데이터로만 학습됨

Multi-task NLP (GLUE) Benchmark

F	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP I	MNLI-m MI	NLI-mm	QNLI
	1	GLUE Human Baselines	GLUE Human Baselines	C	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2
+	2	Microsoft D365 AI & MSR	/MT-DNN-ensemble	Z	84.2	65.4	96.5	92.2/89.5	89.6/89.0	73.7/89.9	87.9	87.4	96.0
+	3	王玮	ALICE large (Alibaba DAMO NLP	,	83.9	65.3	95.2	92.0/89.3	90.3/89.4	74.1/90.5	88.0	87.7	95.7
				• •	• • • •								
+	9	Jacob Devlin	BERT: 24-layers, 16-heads, 1024-	C [*]	80.5	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7	85.9	92.7
	10	Neil Houlsby	BERT + Single-task Adapters	Z	80.2	59.2	94.3	88.7/84.3	87.3/86.1	71.5/89.4	85.4	85.0	92.4
	11	Alec Radford	Singletask Pretrain Transformer	Z	72.8	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1	81.4	87.4
	12	GLUE Baselines	BiLSTM+ELMo+Attn	Z	70.0	33.6	90.4	84.4/78.0	74.2/72.3	63.1/84.3	74.1	74.5	79.8

https://gluebenchmark.com/leaderboard (NYU, U Washington, DeepMind since 2018)

The Stanford Question Answering Dataset 2.0

Rank	Model	EM	F1				
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452	7 Mar 13, 2019	BERT + ConvLSTM + MTL + Verifier (single model) Layer 6 Al	84.924	88.204
1 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474	8 Apr 16, 2019	Insight-baseline-BERT (single model) PAII Insight Team	84.834	87.644
2 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286	8 Apr 11, 2019	SemBERT (single model) Shanghai Jiao Tong University	84.800	87.864
3 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (ensemble) Google Al Language https://github.com/google-research/bert	86.673	89.147	9 Jan 10, 2019	BERT + Synthetic Self-Training (ensemble) Google Al Language https://github.com/google-research/bert	84.292	86.967
4 Apr 13, 2019	SemBERT(ensemble) Shanghai Jiao Tong University	86.166	88.886	10 Dec 21, 2018	PAML+BERT (ensemble model) PINGAN GammaLab	83.457	86.122
5 Mar 16, 2019	BERT + DAE + AoA (single model) Joint Laboratory of HIT and iFLYTEK Research	85.884	88.621	10 Dec 13, 2018	BERT finetune baseline (ensemble) Anonymous	83.536	86.096
6 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (single model) Google Al Language https://github.com/google-research/bert	85.150	87.715	11 Dec 16, 2018	Lunet + Verifier + BERT (ensemble) Layer 6 Al NLP Team	83.469	86.043

https://rajpurkar.github.io/SQuAD-explorer/ (Stanford, since 2016)

The Korean Question Answering Dataset

127	2018.10.17	Human Performance	80.17	91.20
1	2019.06.04	BERT-CLKT-MIDDLE (single model) Anonymous	86.71	94.55
2	2019.06.03	LaRva-Kor-Large + CLaF (single) Clova Al LaRva Team (LPT)	86.79	94.37
3	2019.03.15	(BERT-CLKT) (single model) Anonymous	86.22	94.08
4	2019.05.07	LaRva-Kor+ + CLaF (single) Clova Al LaRva Team (LPT)	85.35	93.96
5	2019.04.24	LaRva-Kor+ (single) Clova Al LaRva Team (LPT)	85.25	93.94
6	2019.05.24	BBERT fine-tuned(ensemble) Oh Yeon Taek	83.99	92.89
7	2019.04.10	BERT-Kor (single) Clova AI LPT Team	83.79	92.63
8	2019.03.29	BERT insp. by GPT-2 + KHAIII (single) Kakao NLP Team		92.62

https://korquad.github.io/ (LG CNS, since 2019)

Deep Contextualized Word Representations (ELMo)

Deep contextualized word representations (Peters et al., AllenAI & UW, NAACL 2018) https://arxiv.org/pdf/1802.05365.pdf

Beyond Word Embeddings Part 2 (Aaron Bornstein, 2018) https://towardsdatascience.com/beyond-word-embeddings-part-2-word-vectors-nlp-modeling-from-bow-to-bert-4ebd4711d0ec

Universal Language Model Fine-tuning for Text Classification (ULMFiT)

Universal Language Model Fine-tuning for Text Classification (Howard, fast.ai & Ruder, DeepMind, ACL 2018) https://arxiv.org/pdf/1801.06146.pdf

Transformer: Self-Attention Layer!

Scaled Dot-Product Attention

Attention Is All You Need (Vaswani et al., Google, NIPS 2017) https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

like **K**ey-**V**alue Database(Memory) **Q**uery와 비슷한 **K**ey를 가진 **V**alue를 찾는다.

(실제로는 비슷한 정도로 중첩된 값 리턴)

Scaled Dot-Product Attention

Multi-Headed Attention

Attention Is All You Need (Vaswani et al., Google, NIPS 2017) https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Multi-Headed Attention

The Illustrated Transformer (Jay Alammar, 2018)

http://jalammar.github.io/illustrated-transformer/

Multi-Headed Attention

```
class MultiHeadedSelfAttention(nn.Module):
    """ Multi-Headed Dot Product Attention """

def __init__(self, cfg):
    super().__init__()
    self.proj_q = nn.Linear(cfg.dim, cfg.dim)
    self.proj_k = nn.Linear(cfg.dim, cfg.dim)
    self.proj_v = nn.Linear(cfg.dim, cfg.dim)
    self.drop = nn.Dropout(cfg.p_drop_attn)
    self.scores = None # for visualization
    self.n_heads = cfg.n_heads
```

```
def forward(self, x, mask):
    x, q(query), k(key), v(value) : (B(batch size), S(seq len), D(dim))
    mask : (B(batch size) x S(seq len))
    * split D(dim) into (H(n heads), W(width of head)); D = H * W
    0.00
    # (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
    q, k, v = self.proj q(x), self.proj k(x), self.proj v(x)
    q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
               for x in [q, k, v]
    # (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
    scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))
    if mask is not None:
        mask = mask[:, None, None, :].float()
        scores -= 10000.0 * (1.0 - mask)
    scores = self.drop(F.softmax(scores, dim=-1))
    # (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
    h = (scores @ v).transpose(1, 2).contiguous()
    # -merge-> (B, S, D)
    h = merge last(h, 2)
    self.scores = scores
    return h
```

Position-wise FeedForward

```
FFN(x_i) = max(0, x_iW_1 + b_1)W_2 + b_2) For every time steps
class PositionWiseFeedForward(nn.Module):
       FeedForward Neural Networks for each position """
    def init (self, cfg):
        super(). init ()
        self.fc1 = nn.Linear(cfg.dim, cfg.dim ff)
        self.fc2 = nn.Linear(cfg.dim ff, cfg.dim)
       #self.activ = lambda x: activ fn(cfg.activ fn, x)
   def forward(self, x):
       \# (B, S, D) \rightarrow (B, S, D ff) \rightarrow (B, S, D)
```

return self.fc2(gelu(self.fc1(x)))

Transformer Block


```
class Block(nn.Module):
    """ Transformer Block """
    def init (self, cfg):
        super(). init ()
        self.attn = MultiHeadedSelfAttention(cfg)
        self.proj = nn.Linear(cfg.dim, cfg.dim)
        self.norm1 = LayerNorm(cfg)
        self.pwff = PositionWiseFeedForward(cfg)
        self.norm2 = LayerNorm(cfg)
        self.drop = nn.Dropout(cfg.p drop hidden)
    def forward(self, x, mask):
        h = self.attn(x, mask)
        h = self.norm1(x + self.drop(self.proj(h)))
        h = self.norm2(h + self.drop(self.pwff(h)))
        return h
```

Attention Is All You Need (Vaswani et al., Google, NIPS 2017) https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformer


```
class Transformer(nn.Module):
    """ Transformer with Self-Attentive Blocks"""

def __init__(self, cfg):
    super().__init__()
    self.embed = Embeddings(cfg)
    self.blocks = nn.ModuleList([Block(cfg) for _ in range(cfg.n_layers)])

def forward(self, x, seg, mask):
    h = self.embed(x, seg)
    for block in self.blocks:
        h = block(h, mask)
    return h
```

Positional Encoding

Self-Attention itself can't deal with positional information! sine, cosine embedding / learned embedding

Embedding Layer


```
class Embeddings(nn.Module):
    "The embedding module from word, position and token_type embeddings."
    def __init__(self, cfg):
        super().__init__()
        self.tok embed = nn.Embedding(cfg.vocab size, cfg.dim) # token emb
        self.pos_embed = nn.Embedding(cfg.max_len, cfg.dim) # position emt
        self.seq embed = nn.Embedding(cfq.n seaments + 1, cfq.dim) # seam
        self.norm = LayerNorm(cfg)
        self.drop = nn.Dropout(cfg.p_drop_hidden)
    def forward(self, x, seg):
        seq len = x.size(1)
        pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
        pos = pos.unsqueeze(0).expand_as(x) # (S,) -> (B, S)
        e = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
        return self.drop(self.norm(e))
```

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., Google, NACCL 2019 Best Long Paper) https://arxiv.org/pdf/1810.04805.pdf

Transformer: Machine Translation

Attention Is All You Need (Vaswani et al., Google, NIPS 2017) https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformer: Machine Translation

Attention Is All You Need (Vaswani et al., Google, NIPS 2017) https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformer: How it works

As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

Attention Is All You Need (Vaswani et al., Google, NIPS 2017) https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Pros & Cons

- Long-term dependency
- Parallelization
- Superior Performance

- Time Complexity O(n^2)
- Maximum Lengths

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Transformer: OpenAl GPT

Pretraining: (left-to-right) Language Modeling

Improving Language Understanding by Generative Pre-Training (Radford, OpenAI et al., 2018)

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Transformer: OpenAl GPT

Finetuning with downstream tasks

Improving Language Understanding by Generative Pre-Training (Radford, OpenAI et al., 2018)

https://s3-us-west-2.amazonaws.com/openai-assets/research-cover s/language-unsupervised/language_understanding_paper.pdf

Transformer: Open AI GPT-2

- 10+ times Larger Data size (~40GB)
- 10+ times Larger Model size (1.5B parameters in 48 Transformer Blocks)
- Much Better Generation Capacity
- Zero-Shot Transfer Performance

Transformer: Google BERT

The two steps of how BERT is developed. You can download the model pre-trained in step 1 (trained on un-annotated data), and only worry about fine-tuning it for step 2. [Source for book icon].

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., Google, NACCL 2019 Best Long Paper) https://arxiv.org/pdf/1810.04805.pdf

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., Google, NACCL 2019 Best Long Paper) https://arxiv.org/pdf/1810.04805.pdf

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., Google, NACCL 2019 Best Long Paper) https://arxiv.org/pdf/1810.04805.pdf

Masked Language Modeling

```
# For masked Language Models
masked_tokens, masked_pos = [], []
# the number of prediction is sometimes less than max_pred when sequence is short
n_pred = min(self.max_pred, max(1, int(round(len(tokens)*self.mask_prob))))
# candidate positions of masked tokens
cand pos = [i for i, token in enumerate(tokens)
            if token != '[CLS]' and token != '[SEP]']
shuffle(cand_pos)
for pos in cand_pos[:n_pred]:
    masked_tokens.append(tokens[pos])
    masked_pos.append(pos)
    if rand() < 0.8: # 80%
        tokens[pos] = '[MASK]'
    elif rand() < 0.5: # 10%
        tokens[pos] = get_random_word(self.vocab_words)
```

```
class BertModel4Pretrain(nn.Module):
   "Bert Model for Pretrain: Masked LM and next sentence classification"
   def __init__(self, cfg):
       super(). init ()
                                                           def forward(self, input_ids, segment_ids, input_mask, masked_pos):
       self.transformer = models.Transformer(cfg)
                                                               h = self.transformer(input ids, segment ids, input mask)
       self.fc = nn.Linear(cfg.dim, cfg.dim)
                                                               pooled h = self.activ1(self.fc(h[:, 0]))
       self.activ1 = nn.Tanh()
                                                               masked_pos = masked_pos[:, :, None].expand(-1, -1, h.size(-1))
       self.linear = nn.Linear(cfg.dim, cfg.dim)
       self.activ2 = models.gelu
                                                               h_masked = torch.gather(h, 1, masked_pos)
       self.norm = models.LayerNorm(cfg)
                                                               h masked = self.norm(self.activ2(self.linear(h masked)))
       self.classifier = nn.Linear(cfg.dim, 2)
                                                               logits lm = self.decoder(h masked) + self.decoder bias
       # decoder is shared with embedding layer
                                                               logits clsf = self.classifier(pooled h)
       embed weight = self.transformer.embed.tok embed.weight
       n vocab, n dim = embed weight.size()
       self.decoder = nn.Linear(n_dim, n_vocab, bias=False)
                                                               return logits lm, logits clsf
       self.decoder.weight = embed weight
       self.decoder bias = nn.Parameter(torch.zeros(n vocab))
```

Google BERT official codes

Introduction

BERT, or **B**idirectional **E**ncoder **R**epresentations from **T**ransformers, is a new method of pre-training language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks.

Our academic paper which describes BERT in detail and provides full results on a number of tasks can be found here: https://arxiv.org/abs/1810.04805.

- BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Large, Cased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Uncased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Cased: 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Large, Cased: 24-layer, 1024-hidden, 16-heads, 340M parameters
- BERT-Base, Multilingual Cased (New, recommended): 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Multilingual Uncased (Orig, not recommended) (Not recommended, use Multilingual Cased instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
- BERT-Base, Chinese: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters

- * Official Repository
- * Tensorflow with TPU
- * 코드가 상당히 복잡함
- * 여러가지 pre-trained model 제공
- * 다국어 버젼있지만 성능 별로
- * github star 15000+

https://github.com/google-research/bert

Hugging Face's Pytorch Implementation

PyTorch Pretrained BERT: The Big & Extending Repository of pretrained Transformers

2 PASSED

This repository contains op-for-op PyTorch reimplementations, pre-trained models and fine-tuning examples for:

- · Google's BERT model,
- · OpenAl's GPT model,
- · Google/CMU's Transformer-XL model, and
- · OpenAI's GPT-2 model.

- * 제일 유명한 pytorch impl
- * 쉽게 가져다 쓸 수 있음
- * 여러 GPU로 큰 모델 학습가능
- * FP16 support (V100에서 속도업)
- * pretraining code 없음
- * github star 6000+

Hugging Face's Pytorch Implementation

```
import torch
from pytorch pretrained bert import BertTokenizer, BertModel, BertForMaskedLM
# OPTIONAL: if you want to have more information on what's happening, activate the
import logging
logging.basicConfig(level=logging.INFO)
# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Tokenized input
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = tokenizer.tokenize(text)
# Mask a token that we will try to predict back with `BertForMaskedLM`
masked index = 8
tokenized_text[masked_index] = '[MASK]'
assert tokenized_text == ['[CLS]', 'who', 'was', 'jim', 'henson', '?', '[SEP]', 'j
# Convert token to vocabulary indices
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
# Define sentence A and B indices associated to 1st and 2nd sentences (see paper)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# Convert inputs to PyTorch tensors
tokens tensor = torch.tensor([indexed tokens])
segments_tensors = torch.tensor([segments_ids])
```

https://github.com/dhlee347/pytorchic-bert

Pytorchic BERT

Pytorchic BERT

This is re-implementation of Google BERT model [paper] in Pytorch. I was strongly inspired by Hugging Face's code and I referred a lot to their codes, but I tried to make my codes **more pythonic and pytorchic style**. Actually, the number of lines is less than a half of HF's.

(It is still not so heavily tested - let me know when you find some bugs.)

```
cuda (8 GPUs)
Iter (loss=0.308): 100%| | 115/115 [01:19<00:00, 2.07it/s]
Epoch 1/3 : Average Loss 0.547
Iter (loss=0.303): 100%| | 115/115 [00:50<00:00, 2.30it/s]
Epoch 2/3 : Average Loss 0.248
Iter (loss=0.044): 100%| | 115/115 [00:50<00:00, 2.33it/s]
Epoch 3/3 : Average Loss 0.068
```

- * 매우 간결한 pytorch 구현
- * 가져다 쓰기보단 고쳐서 쓰도록 기능 최소화, 미니멀리즘(?)
- * Fine-tuning 매우 간단함
- * github star 170+

Pytorchic BERT: finetuning code

https://github.com/dhlee347/pytorchic-bert/blob/master/classify.py

감사합니다 Question & Answering