

Unidade Universitária: FACULDADE DE COMPUTAÇÃO E INFORMÁTICA				
Curso: CIENCIA DA COMPUTAÇÃO		Núcleo Temático: ALGORITMOS E PROGRAMAÇÃO		
Disciplina:		Código da Disciplina:		
ESTRUTURA DE DADOS I		ENEX50328		
Professor(es):		DRT:	Etapa:	
ANDRÉ KISHIMOTO		115671-9	3 ^a	
CHARLES BOULHOSA RODAMILANS		114629-8		
IVAN CARLOS ALCÂNTARA DE OLIVEIRA		116571-0		
JOAQUIM PESSOA FILHO		113084-7		
LEONARDO MASSAYUKI TAKUNO		116802-9		
Carga horária:	(02) Sala de Aula		Semestre Letivo:	
4h/a	(02) Laboratório		1º Semestre/2024	

Ementa:

Estudo dos tipos abstratos de dados (TAD) e seu mapeamento para estruturas de dados. Estudo de estruturas de dados lineares (vetores, listas, pilhas, filas e deques) e suas aplicações. Análise assintótica de operações em estruturas de dados lineares. Prática de implementação de estruturas de dados lineares com linguagem orientada a objetos.

Objetivos:

Fatos e Conceitos	Procedimentos e Habilidades	Atitudes, Normas e Valores
 Apresentar o conceito de tipo abstrato de dados e sua especificação formal Apresentar os diversos tipos de estruturas de dados, tanto como tipo abstrato de dado como a sua efetiva implementação Apresentar a análise de complexidade assintótica O(.) para cada uma das implementações de estruturas realizadas Apresentar aplicações de cada uma das estruturas de dados vistas no curso 	 Ser capaz de entender especificações formais de tipos abstratos de dados e produzir implementações que atendam a estas especificações Ser capaz de avaliar a complexidade assintótica O(.) de suas implementações Ser capaz de escolher estruturas de dados adequadas para diversos problemas 	 Compreender a importância de uma escolha de estrutura de dados para problemas computacionais. Compreender a importância da análise assintótica O(.) nas implementações de algoritmos envolvendo estruturas de dados. Compreender a importância do uso de padrões de projeto na implementação de algumas estruturas de dados.

Conteúdo Programático:

0. Apresentação da Linguagem Orientada à Objetos.

1. Tipos Abstratos de Dados.

- 1.1. Conceito de tipo abstrato de dado (TAD).
- 1.2. Especificação formal de TAD.

2. TAD Pilha.

- 2.1. Especificação formal do TAD pilha.
- 2.2. Implementação da interface TAD pilha (com vetor e lista).
- 2.3. Análise assintótica da implementação da interface TAD pilha.
- 2.4. Aplicações do TAD pilha.

3. TAD Fila.

- 3.1. Especificação formal do TAD fila e fila dupla (deque).
- 3.2. Implementação das interfaces TAD fila e fila dupla (deque).
- 3.3. Análise assintótica da implementação das interfaces TAD fila e fila dupla (deque).
- 3.4. Aplicações do TAD fila e fila dupla (deque).

4. TAD Lista.

- 4.1. Especificação formal do TAD lista (simples, duplamente ligada e circular).
- 4.2. Busca (iterativa e recursiva) e ordenação no TAD lista.
- 4.3. Implementação da interface TAD lista.
- 4.4. Análise assintótica da implementação da interface TAD lista.
- 4.5. Aplicações do TAD lista.

Metodologia:

- Aulas teóricas apresentando os conceitos propostos.
- Proposta de atividades práticas para a compreensão e fixação do conteúdo e das técnicas apresentadas.
- Aulas práticas para desenvolvimento de atividades relacionadas ao conteúdo teórico.
- Listas de Exercícios e Projetos Práticos individuais e / ou em grupo sintetizando o conteúdo do curso.
- Utilização do ambiente virtual e demais recursos em rede para postagem de notas de aula e avisos.

Critério de Avaliação:

N1 = P1 * 0.6 + Lab1 * 0.2 + Apl1 * 0.2

- P1: Avaliação do conteúdo teórico e prático da disciplina.
- Lab1: Atividades entregáveis referentes a modelagem e implementação dos TADs estudados.
- Apl1: Aplicação de TADs na resolução de problemas.

N2 = P2 * 0,6 + Lab2 * 0,2 + Apl2 * 0,2

- P2: Avaliação do conteúdo teórico e prático da disciplina.
- Lab2: Atividades entregáveis referentes a modelagem e implementação dos TADs estudados.
- Apl2: Aplicação de TADs na resolução de problemas.

Média intermediária (MI) do semestre:

MI = (N1 + N2) / 2 + NP

NP (Nota de participação): até 0,5 ponto – nota referente à Prova Integrada – definido como obrigatório pela UPM.

Critério de Aprovação:

Conforme Regulamento Acadêmico vigente.

Bibliografia Básica:

GOODRICH, M. T.; TAMASSIA, R., MOUNT, M.N. **Data Structures and Algorithms in C++. 2.ed**. New Yok: Wiley, 2011.

SZWARCFITER, J.L.; MARKENZON, L. Estruturas de Dados e seus Algoritmos. 3ª. ed. Rio de Janeiro: LTC, 2010.

ZIVIANI, N. **Projeto de Algoritmos: Com Implementações em Java e C++**. São Paulo: Cengage Learning, 2011.

Bibliografia Complementar:

ASCENCIO, A. F. G.; ARAÚJO, G. S. **Estrutura de dados: algoritmos, análise da complexidade e implementações em Java e C/C++**. São Paulo: Pearson Education do Brasil, 2011.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, L.R. **Introduction to algorithms**. Cambridge: The MIT Press, 2000.

FEOFILOFF, P. Algoritmos em linguagem C. Rio de Janeiro: Elsevier, Campus, 2009.

PUGA, S.; RISSETTI, G. Lógica de programação e estrutura de dados: com aplicações em Java. 2ª ed. São Paulo: Pearson, 2010.

VILLAS, M. V. Estruturas de dados: conceitos e técnicas de implementação. Rio de Janeiro: Campus, 2002.