

Lausnir á völdum dæmum

Dæmahöfundar

- Arnar Bjarni Arnarson
- Bernhard Linn Hilmarsson
- Bjarki Ágúst Guðmundsson
- Hannes Kristján Hannesson
- Sigurður Jens Albertsson
- Unnar Freyr Erlendsson

Dæmayfirferð

- Arnar Páll Jóhannsson
- Atli Fannar Franklín
- Bergur Snorrason
- Gísli Freyr
- Guðni Nathan Gunnarsson
- Jón Ingi Ólafsson
- Kieran Horgan
- Ludo Pulles
- Ómar Högni Guðmarsson

	Keppendur	Dómarar
Stysta lausn	12	4
Lengsta lausn	18	31
	Tími	Lið
Fyrsta lausn	3:49:05	Bjarni Dagur Thor Kárason

Dæmið

Keppendur þurfa að fara á klósettið, en þeir eru mismikið í spreng. Skrifið út númer keppendanna í lækkandi röð eftir því hversu mikið þeir þurfa að fara á klósettið.

Sýnidæmi

Inntak:

3

1 2 3

Úttak:

3 2 1

Sýnidæmi

Inntak:

.

1 3 2 5 4

Úttak:

4 5 2 3 1

Hve mikið í spreng: 2 3 8 6 7 1 5 4

Stærra sýnidæmi

Númer keppanda: 1 2 3 4 5 6 7 8 Hve mikið í spreng: 2 3 8 6 7 1 5 4

Stærra sýnidæmi

Númer keppanda: 1 2 3 4 5 6 7 8 Hve mikið í spreng: 2 3 8 6 7 1 5 4

Stærra sýnidæmi

Númer keppanda: 1 2 3 4 5 6 7 8 Hve mikið í spreng: 2 3 8 6 7 1 5 4

Stærra sýnidæmi

Númer keppanda: 1 2 4 5 6 7 8 Hve mikið í spreng: 2 3 6 7 1 5 4

Úttak: 3

Stærra sýnidæmi

Númer keppanda: 1 2 4 5 6 7 8 Hve mikið í spreng: 2 3 6 7 1 5 4

Úttak: 3

Stærra sýnidæmi

Númer keppanda: 1 2 4 5 6 7 8 Hve mikið í spreng: 2 3 6 7 1 5 4

Úttak: 3

Stærra sýnidæmi

 Númer keppanda:
 1
 2
 4
 6
 7
 8

 Hve mikið í spreng:
 2
 3
 6
 1
 5
 4

Úttak: 3, 5

Stærra sýnidæmi

■ Úttak: 3, 5, 4, 7, 8, 2, 1, 6

Kóði

```
n = int(input())
   spreng = [ int(s) for s in input().split() ]
   buinn = [ False for i in range(n) ]
   for i in range(n):
        mest = 0
        mestKeppandi = None
        for j in range(n):
8
            if not buinn[j] and spreng[j] > mest:
                mest = spreng[j]
10
                mestKeppandi = j
        print(mestKeppandi + 1)
        buinn[mestKeppandi] = True
```

Stysta lausn	Keppendur ?	Dómarar 36
Lengsta lausn	?	45
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Sýnidæmi

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Sýnidæmi

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Sýnidæmi

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Sýnidæmi

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

```
1 7 5 8 6 3 2 4
5 6 3 2 4
```

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

```
1 7 5 8 6 3 2 4
5 6 3 2 4
3 2 4
```

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

```
7 5 8 6 3 2 4
6 3 2 4
```

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

```
1 7 5 8 6 3 2 4
5 6 3 2 4
3 2 4
```

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

```
1 7 5 8 6 3 2 4
5 6 3 2 4
3 2 4
2
```

Dæmið

Gefinn listi af tölum finndu fjölda ítrana sem það tekur að fjarlægja öll stök sem eru í vaxandi röð þangað til við endum með tóman lista.

```
1 7 5 8 6 3 2 4
5 6 3 2 4
3 2 4
```

Lausnarhugmynd

Getum hermt eftir ferlinu og ítrekað labbað í gegnum listann og fjarlægt stök ef þau eru allavega jafn stór og öll stök sem koma á undan.

Lausnarhugmynd

Getum hermt eftir ferlinu og ítrekað labbað í gegnum listann og fjarlægt stök ef þau eru allavega jafn stór og öll stök sem koma á undan.

Tímaflækjan á þessu er $O(n^2)$.

Lausnarhugmynd

Getum hermt eftir ferlinu og ítrekað labbað í gegnum listann og fjarlægt stök ef þau eru allavega jafn stór og öll stök sem koma á undan.

Tímaflækjan á þessu er $O(n^2)$. Getum við hermt eftir þessu ferli á hraðari máta?

Lausn frh.

Þegar við komum að staki *i* í listanum viljum við í hvaða ítrun það mun detta út.

Lausn frh.

Þegar við komum að staki *i* í listanum viljum við í hvaða ítrun það mun detta út.

Búum til nýjan lista L sem byrjar tómur

Lausn frh.

Þegar við komum að staki *i* í listanum viljum við í hvaða ítrun það mun detta út.

Búum til nýjan lista L sem byrjar tómur

Þegar við komum að staki i þá löbbum við í gegnum öll stök x í L og höldum utan um stærsta gildið x þannig að $x \ge a_i$

Lausn frh.

Pegar við komum að staki i í listanum viljum við í hvaða ítrun það mun detta út.

Búum til nýjan lista L sem byrjar tómur

Þegar við komum að staki i þá löbbum við í gegnum öll stök x í L og höldum utan um stærsta gildið x þannig að $x \ge a_i$

Breytum x í a_i , ef það finnst ekkert gildi $x \le a_i$ þá bætum við a_i aftast í L

Lausn frh.

Pegar við komum að staki i í listanum viljum við í hvaða ítrun það mun detta út.

Búum til nýjan lista L sem byrjar tómur

Pegar við komum að staki i þá löbbum við í gegnum öll stök x í L og höldum utan um stærsta gildið x þannig að $x \ge a_i$

Breytum x í a_i , ef það finnst ekkert gildi $x \le a_i$ þá bætum við a_i aftast í L

Svarið er núna fjöldi staka í L

Lausn frh.

Þegar við komum að staki *i* í listanum viljum við í hvaða ítrun það mun detta út.

Búum til nýjan lista L sem byrjar tómur

Pegar við komum að staki i þá löbbum við í gegnum öll stök x í L og höldum utan um stærsta gildið x þannig að $x \ge a_i$

Breytum x í a_i , ef það finnst ekkert gildi $x \le a_i$ þá bætum við a_i aftast í L

Svarið er núna fjöldi staka í L

Tímaflækjan á þessu er ennþá $O(n^2)$ en við getum gert betur.

Sýnidæmi

1 7 5 8 6 3 2 4

$$L = [$$

$$L = [$$

$$L = [7]$$

$$L = [7]$$

$$L = [75]$$

$$L = [8 5]$$

$$L = [8 5]$$

$$L = [8632]$$

$$L = [8632]$$

$$L = [8642]$$

Lausn frh.

Getum tekið eftir að L mun alltaf vera raðaður

Lausn frh.

Getum tekið eftir að L mun alltaf vera raðaður Í stað þess að skoða línulega öll stök í L þá getum við beitt helmingunarleit á L og getum þá fundið réttan stað fyrir a_i í O(log(k))

Lausn frh.

Getum tekið eftir að L mun alltaf vera raðaður

Í stað þess að skoða línulega öll stök í L þá getum við beitt helmingunarleit á L og getum þá fundið réttan stað fyrir a_i í O(log(k))

Heildartímaflækjan er núna $O(n \cdot log(k))$ þar sem svarið er k

Lausn 2

Fjöldi vaxandi raða í lista er jafnt lengd lengstu minnkandi hlutrunu í lista.

Lausn 2

Fjöldi vaxandi raða í lista er jafnt lengd lengstu minnkandi hlutrunu í lista.

Að finna lengstu minnkandi hlutrunu í lista er jafngilt því að finna lengstu vaxandi hlutrunu ef þú snýrð við listanum (eða margfaldar öll gildi með -1)

Lausn 2

Fjöldi vaxandi raða í lista er jafnt lengd lengstu minnkandi hlutrunu í lista.

Að finna lengstu minnkandi hlutrunu í lista er jafngilt því að finna lengstu vaxandi hlutrunu ef þú snýrð við listanum (eða margfaldar öll gildi með -1)

Getum fundið lengstu hlutrunu í tíma $O(n \cdot log(n))$ og skrifað síðan út lengdina á henni

	Keppendur	Dómarar
Stysta lausn	?	48
Lengsta lausn	?	94
	Tími	Lið
Fyrsta lausn	?	?

Dæmið

Gefið er lýsinga á hvernig strengur er skrifaður. Seigja fyrir alla mögulega strengi sem gæti verið skrifa hvert mesta magn strokleðurs myndi þurfa í versta falli.

Dæmið

Gefið er lýsinga á hvernig strengur er skrifaður. Seigja fyrir alla mögulega strengi sem gæti verið skrifa hvert mesta magn strokleðurs myndi þurfa í versta falli.

Lausn

- Telja fyrir hverja staðsetningu hversu oft stafurinn þar er strokaður út.
- Setja staf með hæsta kostnað við að stroka út á staðsetningu sem er oftast strokað út.

Dæmið

Gefið er lýsinga á hvernig strengur er skrifaður. Seigja fyrir alla mögulega strengi sem gæti verið skrifa hvert mesta magn strokleðurs myndi þurfa í versta falli.

Lausn

- Telja fyrir hverja staðsetningu hversu oft stafurinn þar er strokaður út.
- Setja staf með hæsta kostnað við að stroka út á staðsetningu sem er oftast strokað út.

Hvernig gerum við þetta hratt?

Lausn

Skilgreinum í hver skifti sem er strokað út y_i stafi frá staðsetningu at með bili (at - y_i, at)

Lausn

- Skilgreinum í hver skifti sem er strokað út y_i stafi frá staðsetningu at með bili (at - y_i, at)
- Röðum svo öllum bilum eftir byrjunarpunkt og svo eftir endapunkt

Lausn

Það munu vera mestalagi 2 · q bil og getum nú parað þessum bilum gráðugt við stafi sem hafa hæsta kostnað við að stroka út.

Lausn

- Það munu vera mestalagi 2 · q bil og getum nú parað þessum bilum gráðugt við stafi sem hafa hæsta kostnað við að stroka út.
- Heildar tímaflækja $O(m \cdot \log m + q \cdot \log q)$

Gagnaleki

Stysta lausn Lengsta lausn	Keppendur ? ?	Dómarar 64 2500
	Tími	Lið
Fyrsta lausn	?	?

Gagnaleki

Dæmið

Forritun.is var hakkað og 2500 tættum lykilorðum keppenda lekið á netið. Brjóttu eins mörg þeirra og þú getur.

Lausn 1 - "Brute force"

- Byrja á að búa til lykilorð sem koma til greina, t.d.:
 - Tölur minni en 10 000
 - Ensk orð hægt að finna orðalista á netinu
 - Ensk orð með tölum fyrir aftan
- Prófa að tæta hvert einasta lykilorð
- Getum gert þetta á okkar eigin tölvum

4

```
for taettLykilord in gagnaleki:
    for lykilord in mogulegLykilord:
        if taettLykilord == taetaLykilord(lykilord):
            print('%s:%s' % (taettLykilord, lykilord))
```

- Það eru 2500 tætt lykilorð
- Segjum að við ætlum að prófa n lykilorð, og það tekur x sekúndur að tæta lykilorð
- Þessi keyrsla mun taka 2500 · n · x sekúndur að keyra

```
for taettLykilord in gagnaleki:
    for lykilord in mogulegLykilord:
        if taettLykilord == taetaLykilord(lykilord):
        print('%s:%s' % (taettLykilord, lykilord))
```

```
for lykilord in mogulegLykilord:
   for taettLykilord in gagnaleki:
        if taettLykilord == taetaLykilord(lykilord):
        print('%s:%s' % (taettLykilord, lykilord))
```

```
for lykilord in mogulegLykilord:
    taettLykilord2 = taetaLykilord(lykilord)

for taettLykilord in gagnaleki:
    if taettLykilord == taettLykilord2:
    print('%s:%s' % (taettLykilord, lykilord))
```

- Núna mun keyrslan bara taka n · x sekúndur að keyra
- Getum prófað 2500 sinnum fleiri lykilorð á sama tíma
- Tíminn sem það tekur að tæta lykilorð, x, er ennþá hár

```
def brengla(s, at, u):
        magic = 'b058592efd277ae75f27bd99d1628fbd'
        if at >= len(s):
4
            return magic
        res = leggjaSaman(brengla(s, at+1, True),
6
                           brengla(s, at+1, False))
        for i in range(6):
8
            res = leggjaSaman(res, res)
9
10
        cnt = ord(s[at])
        for i in range(cnt):
            res = leggjaSaman(res, magic)
14
        return res
16
    def taetaLykilord(s):
18
        return brengla(s, 0, True)
```

```
def brengla(s, at):
        magic = 'b058592efd277ae75f27bd99d1628fbd'
        if at >= len(s):
4
            return magic
        res = leggjaSaman(brengla(s, at+1),
6
                           brengla(s, at+1))
        for i in range(6):
8
            res = leggjaSaman(res, res)
9
10
        cnt = ord(s[at])
        for i in range(cnt):
            res = leggjaSaman(res, magic)
14
        return res
16
    def taetaLykilord(s):
18
        return brengla(s, 0)
```

```
def brengla(s, at):
        magic = 'b058592efd277ae75f27bd99d1628fbd'
        if at >= len(s):
            return magic
4
        brengl = brengla(s, at+1)
        res = leggiaSaman(brengl,
                           brengl)
8
        for i in range(6):
            res = leggjaSaman(res, res)
10
        cnt = ord(s[at])
        for i in range(cnt):
            res = leggjaSaman(res, magic)
14
16
        return res
18
    def taetaLykilord(s):
        return brengla(s, 0)
19
```

```
def brengla(s, at):
        magic = 'b058592efd277ae75f27bd99d1628fbd'
        if at \geq= len(s):
            return magic
        res = brengla(s, at+1)
        for i in range(7):
            res = leggjaSaman(res, res)
8
9
        cnt = ord(s[at])
10
        for i in range(cnt):
            res = leggjaSaman(res, magic)
14
        return res
    def taetaLykilord(s):
16
        return brengla(s, 0)
```

Lausn 1 - "Brute force"

```
def brengla(s, at):
        magic = 'b058592efd277ae75f27bd99d1628fbd'
        if at >= len(s):
            return magic
        res = brengla(s, at+1)
        for i in range(7):
            res = leggjaSaman(res, res)
8
9
        cnt = ord(s[at])
10
        for i in range(cnt):
            res = leggiaSaman(res, magic)
14
        return res
   def taetaLykilord(s):
16
        return brengla(s, 0)
```

■ Tímaflækjan var $O(2^{\ell})$, en núna $O(\ell)$ fyrir ℓ stafa streng

- 1 ed15a97d084bf9f8ca7a1759c52561ad
- 2 9d6e02ac057374e029a1d4f39687f16a
- 3 4dc65bdb029aefc788c9928d67ea8127
- 4 feleb509ffc26aaee7f15027394d10e4
- 5 ae770e38fce9e59647190dc10aafa0a1
- 6 5ecf6767fa11607da640cb5adc12305e
- 7 0f27c096f738db65056888f4ad74c01b
- 8 bf8019c5f460564c6490468e7ed74fd8
- 9 6fd872f4f187d133c3b804285039df95

Lausn 2 - Finna mynstur

11 4bbdd0829a8b82ae73a6f753a68e59ad 12 77ea68012e48f65e0785c43c57d6382d 13 a416ff7fc2066a0d9b649125091e16ad 14 d04396fe55c3ddbd2f435e0dba65f52d 1.5 fc702e7ce981516cc3222af66badd3ad 16 289cc5fb7d3ec51c5700f7df1cf5b22d 17 54c95d7a10fc38cbeadfc4c7ce3d90ad 18 80f5f4f8a4b9ac7b7ebe91b07f856f2d 19 ad228c773877202b129d5e9930cd4dad 20 cfe9923303f589e63eefe804c6a90aea 21 fc1629b197b2fd95d2ceb4ed77f0e96a 22 2842c1302b70714566ad81d62938c7ea 23 546f58aebf2de4f4fa8c4ebeda80a66a

```
4bbdd0829a8b82ae73a6f753a68e59ad
    77ea68012e48f65e0785c43c57d6382d
    a416ff7fc2066a0d9b649125091e16ad
    d04396fe55c3ddbd2f435e0dba65f52d
    fc702e7ce981516cc3222af66badd3ad
   289cc5fb7d3ec51c5700f7df1cf5b22d
    54c95d7a10fc38cbeadfc4c7ce3d90ad
    80f5f4f8a4b9ac7b7ebe91b07f856f2d
    ad228c773877202b129d5e9930cd4dad
20
    cfe9923303f589e63eefe804c6a90aea
21
    fc1629b197b2fd95d2ceb4ed77f0e96a
22
    2842c1302b70714566ad81d62938c7ea
23
    546f58aebf2de4f4fa8c4ebeda80a66a
```

Lausn 2 - Finna mynstur

11 4bbdd0829a8b82ae73a6f753a68e59ad 12 77ea68012e48f65e0785c43c57d6382d 13 a416ff7fc2066a0d9b649125091e16ad 14 d04396fe55c3ddbd2f435e0dba65f52d 1.5 fc702e7ce981516cc3222af66badd3ad 16 289cc5fb7d3ec51c5700f7df1cf5b22d 17 54c95d7a10fc38cbeadfc4c7ce3d90ad 18 80f5f4f8a4b9ac7b7ebe91b07f856f2d 19 ad228c773877202b129d5e9930cd4dad cfe9923303f589e63eefe804c6a90ae fc1629b197b2fd95d2ceb4ed77f0e96 2842c1302b70714566ad81d62938c7e 546f58aebf2de4f4fa8c4ebeda80a66

111	9fd1534bba4fdd830a16f4445b0a59ad
112	b61d12959909b54cf97d689cfef999ad
113	cc68d1df77c38d16e8e3dcf5a2e8d9ad
114	e2b49129567d64e0d84a514e46d819ad
115	f900507335373caac7b0c5a6eac759ad
116	0f4c0fbd13f11474b71739ff8eb699ad
117	2597cf06f2aaec3ea67dae5832a5d9ad
118	3be38e50d164c40895e422b0d69519ad
119	522f4d9ab01e9bd2854a97097a8459ad
120	b5b22b806f537968ae8f4cd46862f82d
121	cbfdeaca4e0d51329df5c12d0c52382d
122	e249aa142cc728fc8d5c3585b041782d
123	f895695e0b8100c67cc2a9de5430b82d

```
9fd1534bba4fdd830a16f4445b0a59ad
    b61d12959909b54cf97d689cfef999ad
    cc68d1df77c38d16e8e3dcf5a2e8d9ad
114
    e2b49129567d64e0d84a514e46d819
     f900507335373caac7b0c5a6eac759ad
116
     0f4c0fbd13f11474b71739ff8eb699ad
    2597cf06f2aaec3ea67dae5832a5d9ad
118
    3be38e50d164c40895e422b0d69519ad
     522f4d9ab01e9bd2854a97097a8459ad
120
    b5b22b806f537968ae8f4cd46862f82d
121
     cbfdeaca4e0d51329df5c12d0c52382d
122
    e249aa142cc728fc8d5c3585b041782d
123
     f895695e0b8100c67cc2a9de5430b82d
```

```
111
     9fd1534bba4fdd830a16f4445b0a59ad
112
    b61d12959909b54cf97d689cfef999ad
113
     cc68d1df77c38d16e8e3dcf5a2e8d9ad
114
     e2b49129567d64e0d84a514e46d819ad
115
     f900507335373caac7b0c5a6eac759ad
116
     0f4c0fbd13f11474b71739ff8eb699ad
117
    2597cf06f2aaec3ea67dae5832a5d9ad
118
     3be38e50d164c40895e422b0d69519ad
119
     522f4d9ab01e9bd2854a97097a8459ad
    b5b22b806f537968ae8f4cd46862f82d
     cbfdeaca4e0d51329df5c12d0c52382
    e249aa142cc728fc8d5c3585b041782d
     f895695e0b8100c67cc2a9de5430b82d
```

```
def einsStafir(a, b):
    for l in range(len(a), 0, -1):
        if a[-l:] == b[-l:]:
        return l
    return 0
```

```
lykilord = ''
        best = 0
        for d1 in '0123456789':
            for d2 in '0123456789':
6
                taett = taetaLykilord(lykilord + d1 + d2)
8
                if taett == taettLykilord:
                    print('%s:%s' % (taett, lykilord + d1 + d2))
9
                     sys.exit(0)
10
                stafir = einsStafir(taett, taettLykilord)
                if stafir > best:
                    best = stafir
                    bestiStafur = d1
14
        lvkilord += bestiStafur
16
```

Lausn 3 - Skilja tætifallið (vísbending)

```
def leggjaSaman(a, b):
        for at in range (31, -1, -1):
4
            carry += heiltala(a[at]) + heiltala(b[at])
            s = stafur(carry % 16) + s
8
        return s
9
    def brengla(s, at):
10
        magic = 'b058592efd277ae75f27bd99d1628fbd'
        if at >= len(s):
                return magic
        res = brengla(s, at+1)
        for i in range(7):
16
            res = leggiaSaman(res, res)
        cnt = ord(s[at])
        for i in range(cnt):
18
19
            res = leggjaSaman(res, magic)
20
        return res
```

Lausn 3 - Skilja tætifallið (vísbending)

```
def leggjaSaman(a, b):
        return (a+b) % (2**128)
    def brengla(s, at):
        if at \geq= len(s):
                return magic
        res = brengla(s, at+1)
        for i in range(7):
            res = leggjaSaman(res, res)
10
        cnt = ord(s[at])
        for i in range(cnt):
            res = leggjaSaman(res, magic)
        return res
14
```

Skemmtileg tölfræði

- Minnsti fjöldi lína sem þarf til að leysa öll dæmi í Alfa: 512
- Fjöldi committa í Git repositoryinu okkar: 377
- Heildarfjöldi lína í öllum skrám sem við koma verkefnunum: 9681536