Příklad

Let $\Omega \subset \mathbb{R}^d$ be Lipschitz. Consider the sequence v^n and u^n such that for some $p,q \in (1,\infty)$ there holds $u^n \to u$ weakly in $L^2(0,T;W^{1,p}(\Omega)), \ v^n \to v$ weakly in $L^q(0,T;L^q(\Omega))$. In addition, assume that for all $\varphi \in C_0^2((0,T) \times \Omega)$ there holds $\int_0^T \int_{\Omega} u^n \partial_t \varphi + v^n \Delta \varphi = 0$.

Show that there exists a subsequence u^{n_k} such that $u^{n_k} \to u$ strongly in $L^1(0,T;L^p(\Omega))$.

 $D\mathring{u}kaz \ (q \leqslant p)$

Chtěli bychom použít Aubinovo–Lionsovo lemma na u^n . K tomu potřebujeme vědět, že $\partial_t u^n$ existuje a je v nějakém prostoru $L^1(0,T;V_3)$. Navíc budeme chtít vědět, že posloupnosti u^n a $\partial_t u^n$ jsou omezené. K tomu máme

$$\int_0^T \int_{\Omega} u^n \partial_t \varphi = -\int_0^T \int_{\Omega} u^n v^n \Delta \varphi, \qquad \forall \varphi \in C_0^2((0,T) \times \Omega).$$

To je skoro definice derivace, kdyby vpravo bylo φ a ne $\Delta \varphi$. Tudíž si zadefinujeme $w^n: (0,T) \to W^{2,q'}(\Omega)^*$, kde $1 = \frac{1}{q} + \frac{1}{q'}$ tak, že pro skoro všechna $t \in (0,T)$:

$$\langle w^n(t), \psi \rangle_{W^{2,q'}(\Omega)^*} := \int_{\Omega} v^n(t) \Delta \psi, \qquad \forall \psi \in W^{2,q'}(\Omega).$$

To znamená, že $|\langle w^n(t), \psi \rangle_{W^{2,q'}(\Omega)^*}| \leq \int_{\Omega} |v^n(t)| \cdot |\Delta \psi| \leq ||v^n(t)||_q \cdot ||\Delta \psi||_{q'} \leq ||v^n(t)||_q \cdot ||\psi||_{2,q'}$. Tedy $||w^n(t)||_{W^{2,q'}(\Omega)^*} \leq ||v^n(t)||_q$ a $w^n \in L^q(0,T;W^{2,q'}(\Omega)^*) \subset L^1(0,T;W^{2,q'}(\Omega)^*)$.

Navíc u^n a v^n slabě konvergují, tudíž jsou omezené. Z omezenosti v^n vyplývá i omezenost w^n ($\|w_n\| \leq \|v_n\|$). Jediné, co zbývá z požadavků A–L, je $\partial_t u^n = w^n$. Pro libovolné $\tilde{\varphi} \in C_0^{\infty}((0,T))$, tj. $\psi \tilde{\varphi} \in C_0^2((0,T) \times \Omega)$, a pro $\tilde{\psi} \in C^2(\Omega) \stackrel{\text{dense}}{\subset} W^{2,q'}(\Omega)$:

$$\int_0^T \langle w^n, \psi \rangle_{W^{2,q'}(\Omega)^*} \tilde{\varphi} = \int_0^T \langle w^n \psi \tilde{\varphi} \rangle = \int_0^T \int_{\Omega} v^n(t) \Delta(\psi \tilde{\varphi}) =$$

$$= -\int_0^T \int_{\Omega} u^n \partial_t (\psi \tilde{\varphi}) = -\int_0^T (\partial_t \tilde{\varphi}) \int_{\Omega} u^n \psi = -\int_0^T (\partial_t \tilde{\varphi}) \langle u^n, \psi \rangle_{W^{2,q'}(\Omega)^*}.$$

Nyní už použijeme Aubinovo–Lionsovo lemma na

$$\left\{u^{n} \in L^{1}(0,T;W^{1,p}(\Omega)), \partial_{t}u^{n} \in L^{1}(0,T;W^{2,q'}(\Omega)^{*})\right\}$$

(omezenost u^n v L^1 vyplývá z omezenosti v L^2 a Hölderovy nerovnosti), čímž dostaneme, že $\{u^n\} \hookrightarrow \hookrightarrow L^1(0,T;L^p)$. $(W^{1,p}(\Omega) \hookrightarrow \hookrightarrow L^p$ víme ze Sobolevových vnoření, a oba tyto prostory jsou reflexivní, $L^p \hookrightarrow L^q \hookrightarrow W^{2,q'}(\Omega)^*$ z předpokladu $q \leqslant p$.)

Jelikož $\{u^n\}$ je omezená, tak vnořená bude prekompaktní, tudíž z ní lze vybrat (silně) konvergentní podposloupnost, která ale z $u^n \to u$ nemůže konvergovat jinam než k u. \Box

```
\begin{array}{c} D\mathring{u}kaz\ (p < q \leqslant \frac{dp}{d-p}\ (\text{ale to ani není potřeba})) \\ \text{Postup bude totožný jako v předchozím případě, jen budeme posloupnost vnořovat do } L^q \\ \text{(proto } q \leqslant \frac{dp}{d-p}) \text{ a následně použijeme, že norma } L^q \text{ je až na násobek větší než } L^p, \text{ tedy } \\ \text{(silná) konvergence v } L^q \text{ implikuje (silnou) konvergenci v } L^p \end{array}
\begin{array}{c} D\mathring{u}kaz\ (p < q) \\ \text{Je-li } p < q, \text{ tak } L^q \hookrightarrow L^p, \text{ tedy } v^n \text{ konvergují slabě i v } L^p \text{ a můžeme v zadání místo } q \text{ psát } \\ p \text{ a máme } q = p. \end{array}
```