FYS-STK4155 Project 1

Bendik Steinsvåg Dalen & Gabriel Sigurd Cabrera September 26, 2019

Abstract

1 Introduction

yvycjyukioyjfchdxcgfjhbk

- 2 Data
- 3 Method
- 4 Results

Figure 1: The resulting function after performing a standard least square regression analysis using polynomials in x and y up to fifth order on the Franke function

	β_0	β_1	β_2	β_3	β_4	β_5	β_6	β_7	β_8	β_9	β_{10}	β_{11}	β_{12}	β_{13}	β_{14}	β_{15}	β_{16}
SLS	0.00789	0.322	2.46	4.81	5.61	1.76	0.322	1.85	4.3	5.97	2.83	2.46	4.3	5.97	4.23	4.81	5.97
k-fold	0.0321	4.03	94	474	517	79.5	4.03	57.3	260	301	60.1	93.9	260	261	57.1	474	301
	0 0	Ω	0		•	•	•	•	•	•	•	•				•	•

	β_{17}	β_{18}	β_{19}	β_{20}
SLS	4.23	5.61	2.83	1.76
k-fold	57.1	517	60.1	79.5

Table 1: The variance of β for the standard least square regression and for k-fold validation

5 Discussion

	MSE	R^2
SLS	0.015	0.84
k-fold	0.012	0.87

Table 2: MSE and R2 for a and b

Figure 2: The Mean Squared Error for the Ridge method for different values of λ

Figure 3: R^2 -score for the Ridge method for different values of λ

6 Appendix

6.1 Part c math

We are too show that

$$C(\boldsymbol{X},\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2 = \mathbf{E} \left[(\boldsymbol{y} - \tilde{\boldsymbol{y}})^2 \right] = \frac{1}{n} \sum_{i} (f_i - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 + \frac{1}{n} \sum_{i} (\tilde{y}_i - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 + \sigma^2$$
(1)

Figure 4: The Mean Squared Error for the Lasso method for different values of λ

Figure 5: R^2 -score for the Lasso method for different values of λ

$$\mathbf{E}\left[(\boldsymbol{y}-\tilde{\boldsymbol{y}})^2\right] = \frac{1}{n}\sum_{i}(y_i - \tilde{y}_i)^2 = \frac{1}{n}\sum_{i}(f_i + \varepsilon - \tilde{y}_i)^2$$
(2)

$$= \frac{1}{n} \sum_{i} (f_i + \varepsilon - \tilde{y}_i + \mathbf{E}[\tilde{\boldsymbol{y}}] - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 \qquad | \text{ introduce } a = f_i - \mathbf{E}[\tilde{\boldsymbol{y}}] \text{ and } b = \tilde{y}_i - \mathbf{E}[\tilde{\boldsymbol{y}}]$$
(3)

$$= \frac{1}{n} \sum_{i} (a - b + \varepsilon)^2 = \frac{1}{n} \sum_{i} \left(a^2 - 2ab + b^2 - 2b\varepsilon + \varepsilon^2 + 2a\varepsilon \right) \tag{4}$$

$$= \frac{1}{n} \sum_{i} (f_{i} - \mathbf{E}[\tilde{\boldsymbol{y}}])^{2} + \frac{1}{n} \sum_{i} (\varepsilon^{2}) + \frac{1}{n} \sum_{i} (\tilde{y}_{i} - \mathbf{E}[\tilde{\boldsymbol{y}}])^{2} - 2 \frac{1}{n} \sum_{i} \varepsilon (\tilde{y}_{i} - \mathbf{E}[\tilde{\boldsymbol{y}}]) + 2 \frac{1}{n} \sum_{i} \varepsilon (f_{i} - \mathbf{E}[\tilde{\boldsymbol{y}}])$$
(5)

$$-2\frac{1}{n}\sum_{i}\left(f_{i}-\mathbf{E}[\tilde{\boldsymbol{y}}]\right)\left(\tilde{y}_{i}-\mathbf{E}[\tilde{\boldsymbol{y}}]\right)$$
(6)

$$= \frac{1}{n} \sum_{i} (f_i - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 + \frac{1}{n} \sum_{i} (\tilde{y}_i - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 + \sigma^2 - 2\mathbf{E}[\varepsilon] \frac{1}{n} \sum_{i} (\tilde{y}_i - \mathbf{E}[\tilde{\boldsymbol{y}}]) + 2\mathbf{E}[\varepsilon] \frac{1}{n} \sum_{i} (f_i - \mathbf{E}[\tilde{\boldsymbol{y}}])$$
(7)

$$-2\frac{1}{n}\sum_{i}\left(f_{i}-\mathbf{E}[\tilde{\boldsymbol{y}}]\right)\left(\tilde{y}_{i}-\mathbf{E}[\tilde{\boldsymbol{y}}]\right)$$
(8)

$$= \frac{1}{n} \sum_{i} (f_i - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 + \frac{1}{n} \sum_{i} (\tilde{y}_i - \mathbf{E}[\tilde{\boldsymbol{y}}])^2 + \sigma^2 \quad \blacksquare$$

$$(9)$$

Figure 6: The terrain-data we are studying, from Møsvatn Austfjell in Norway

Where $\frac{1}{n}\sum_{i}(f_{i}-\mathbf{E}[\tilde{\boldsymbol{y}}])$ is the bias and $\frac{1}{n}\sum_{i}(\tilde{y}_{i}-\mathbf{E}[\tilde{\boldsymbol{y}}])^{2}$ is the variance. (skal vi gjøre noe annet og?)