Question 1:

1. John plans to buy a laptop. He has shortlisted some of the models based on his requirements.

He has also collected the list of models available in two stores A and B. Given his shortlist and the list of model numbers of the laptops available in A and B; help John to perform the following tasks.

- 1. List the model number of laptops available in at least one of the stores.
- 2. List the model number of laptops in John's shortlist but not available in any of the stores.

Design:

main()

- 1. Read the size of shortlist and number of laptops in A and B into n1, n2, n3
- 2. Read the elements into 3 arrays S,A,B
- 3. for i = 0 to n2-1 // printing model numbers only in shop A
 - a. if (search (B, A[i], n3))
 - i. continue
 - b. else
 - i. print(A[i]) // add spaces while printing
- 4. for i = 0 to n3-1 // printing model numbers only in shop B
 - a. if (search (A, B[i], n2))
 - i. continue
 - b. else
 - i. print(B[i]) // add spaces while printing
- 5. for i = 0 to n2-1 // printing model numbers that are common in both shops A and B
 - a. if (search (B, A[i], n3))
 - i. print(A[i]) // add spaces while printing
- 6. flag = 0
- 7. for i = 0 to n1-1 // model numbers that are in shopping list but not in shops A or B
 - a. if (search (A, S[i], n2) or search (B, S[i], n3))

i. continue

b. else

i. print(S[i]) // add spaces while printing

ii. flag = 1

8. if(flag == 0)

a. print(-1)

Evaluation criteria : [4 marks]

1 mark for line 3

1 mark for line 4

0.5 marks for line 5

1 mark for line 7

0.5 marks for line 8

search(A, key,n):

//returns true if element is found in array A else returns false

1. for i = 0 to n-1

a. if(key == A[i])

i. return true

2. return false

Evaluation criteria : [2 mark]

Question 2:

John has collected the prices of the laptops from different stores and prepared a list of prices. To select a laptop, he decided to sort the list in the non-decreasing order of price. He observed that in the list there were sequences of prices in non-decreasing order. He wanted to prepare the final sorted list of prices.

Design:

Question 2

Declare global variables start, end.

print_prices(A, i, j):

- 1. for k = i to j
 - a. print(A[k]) // add spaces while printing

Evaluation criteria : [0.5 mark]

longest sorted sequence(A, n):

- 1. $max_length = 1$
- 2. start = 0 // global variable
- 3. end = 0 // global variable
- 4. length = 1
- 5. index = 0
- 6. For i=1 to n-1
 - a. if $(A[i-1] \le A[i])$
 - i. length ++
 - b. else
 - i. if(length >= max_length) // selects the rightmost sequence in the array
 - 1. \max length = length
 - 2. start = index
 - 3. end = start + max_length-1
 - ii. length = 1
 - iii. index = i
- 7. if(length > = max length)
 - a. max length = length

- b. start = index
- c. end = start + max length-1

Evaluation criteria : [1 mark]

sort_prices(A, n):

// sort function to sort the prices of the given array (students are allowed to use any sorting algorithm)

1. merge_sort(A, 0, n-1)

merge_sort(A, l, r):

// merge sort for sorting a given array

- 1. if l<r
 - a. q = (1+r)/2
 - b. merge_sort (A, l, q)
 - c. $merge_sort(A, q+1,r)$
 - d. merge(A, l, q, r)

merge(A,p,q,r):

// merge procedure for merge sort

- 1. $n_1 = q-p+1$
- 2. $n_2 = r-q$
- 3. let $L[0 \ \ n_1]$ and $R[0 \ \ n_2]$ be new arrays
- 4. for i = 0 to $n_1 1$
 - a. L[i] = A[p+i]
- 5. for j = 0 to $n_2 1$
 - a. R[j] = A[q + j+1]
- 6. $L[n_1] = \infty$
- 7. $R[n_2] = \infty$
- 8. i = 0
- 9. j = 0

10. for
$$k = p$$
 to r

a. if
$$L[i] \le R[j]$$

i.
$$A[k] = L[i]$$

ii.
$$i = i + 1$$

b. else

i.
$$A[k] = R[j]$$

ii.
$$j = j+1$$

Evaluation criteria : [1 marks]

three way merge(A, d1, d2, n):

// extending the two way merge function to merge the given 3 arrays

1.
$$n_1 = d1 + 1$$

2.
$$n_2 = d2 - d1$$

3.
$$n_3 = n - d2 - 1$$

4. let
$$L[0....n_1]$$
, $M[0....n_2]$, $R[0....n_3]$ be new arrays

5. for
$$i = 0$$
 to $n_1 - 1$

a.
$$L[i] = A[i]$$

6. for
$$j = 0$$
 to $n_2 - 1$

a.
$$M[j] = A[d1 + j + 1]$$

7. for
$$k = 0$$
 to $n_3 - 1$

a.
$$R[k] = A[d2 + k + 1]$$

8.
$$L[n_1] = \infty$$

9.
$$M[n_2] = \infty$$

10.
$$R[n_3] = \infty$$

11.
$$i = 0$$

12.
$$j = 0$$

13.
$$k = 0$$

14. For
$$1 = 0$$
 to $n - 1$

a. if
$$L[i] \leq M[j]$$

- i. If $L[i] \le R[k]$
 - 1. A[1] = L[i]
 - 2. i = i + 1
 - 3. print (1)
- ii. else
 - 1. A[1] = R[k]
 - 2. k = k + 1
 - 3. print (3)
- b. else
 - i. if $M[j] \le R[k]$
 - 1. A[1] = M[j]
 - 2. j = j+1
 - 3. print (2)
 - ii. else
 - 1. A[1] = R[k]
 - 2. k = k+1
 - 3. print(3)

Evaluation criteria : [1.5 marks]

 $/\!/No$ marks shall be awarded if the two way merge is used two times to merge the given three arrays