This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Applicant(s): KURZ et al. Filing Date: December 1, 2003 Serial No.:

Page 1 of 9 Customer No.: 31020

Reactive Site Binding

FIG. 1A

Chemical reaction to be catalyzed

FIG. 1B PROfusion™ affinity binding to transition state analog

FIG. 1C

Covalent binding to reactive substrate, transition state analog, or product

PROTEINS

Applicant(s): KURZ et al.

Filing Date: December 1, 2003 Serial No.: 2/9 Page 2 of 9 Customer No.: 31020

Enzyme-Substrate Chimeras

FIG. 2

2. Bi-molecular reaction

Attachment to solid phase, reaction with biotinylated substrate followed by capture on streptavidin resin, product immunoprecipitation with suitable antibody or gel-electrophoretic separation of modified and unmodified fusion (or cDNA portion)

Release from tag or solid support

PROTEINS

Applicant(s): KURZ et al.

Filing Date: December 1, 2003 Serial No.: 3/9 Page 3 of 9 Customer No.: 31020

Nucleases

FIG. 3

- Desoxyribonuclease
- Ribonuclease
- Restriction endonucleases

RNA - protein fusion

PROfusion™ DNases or endonucleases promote their self-cleavage from a tag or solid support. The use of the second strand is optional. Sequence-specific cleavage can be achieved through the choice of the target sequence. Similarly, this method can be used to alter the restriction site specificity of restriction enzymes after mutagenesis.

Ribonuclease

: .

RNA-protein fusion

PROfusionTM DNases promote their self-cleavage from a tag or solid support. The use of the second strand is optional. Sequence-specific cleavage can be achieved through the choice of the target sequence.

PROTEINS

Applicant(s): KURZ et al.

Filing Date: December 1, 2003 Serial No.: 1/O Page 4 of 9 Customer No.: 31020

Ligases

FIG. 4

- DNA ligase
- RNA ligase

RNA-proteinfusion

PROfusion[™] DNases or RNA ligases catalyze their attachment to a tag or solid support. The use of the second strand is optional. Sequence-specific cleavage can be achieved through the choice of the target sequence. The second substrate is either directly attached to the solid phase, or e.g. biotinylated to allow capture with immobilized streptavidin. Alternatively, the size-difference between precursor and product may be used for electrophoretical separation.

• RNA ligase

Canal Colombia San in a colombia

RNA-proteinfusion

PROfusion™ RNA ligases catalyze their attachment to a tag. Similar considerations as for DNA ligases apply.

BEST AVAILABLE COPY

PROTEINS

Applicant(s): KURZ et al.

Filing Date: December 1, 2003 Serial No.: Page 5 of 9 Customer No.: 31020

5/9

Polymerases and Terminal Transferases

FIG. 5

- Terminal transferase
- DNA polymerase
- RNA polymerase
- Reverse transcriptase

- Terminal transferase
- RNA polymerase
- Reverse transcriptase

RNA-protein fusion

PROfusion capture through attachment of biotinylated nucleotide triphosphates. For the selection of polymerase enzymes a second strand must be used. Following reaction, the modified PROfusion can be captured with streptavidin resins.

PROTEINS

Applicant(s): KURZ et al.

Filing Date: December 1, 2003 Serial No.: 6/9 Page 6 of 9 Customer No.: 31020

Kinases and tRNA Synthetases

FIG. 6

• Polynucleotide Kinase

RUA-protein-fusions

After phoshorylation, the kinase PROfusionsTM become substrates for ligation to allow the physical separation from the unmodified precursor.

• tRNA synthetase

RNA-protein-fisions

Attachment of biotinylated amino acids through PROfusions^{IM} with tRNA synthase activity. Successfully modified molecules may be captured on streptavidin supports. Note that the tRNA domain may also be attached to the cDNA portion.

PROTEINS

Applicant(s): KURZ et al.

Filing Date: December 1, 2003 Serial No.: 7/9 Page 7 of 9 Customer No.: 31020

Substrate Attachment

Applicant(s): KURZ et al. Filing Date: December 1, 2003 Serial No.: Page 8 of 9 Customer No.: 31020

8/9

Applicant(s): KURZ et al.
Filing Date: December 1, 2003 Serial No.: Page 9 of 9 Customer No.: 31020 9/9 3. Translation & Fusion Formation 2. Transcription 1. RT / PCR N-terminal extein capture (removal) of unligated product, optional) mRNA mRNA mRNA mRNA mRNA **Immobilization** C-Extein C-Extein C-Extein **◇C-Extein** C-Extein Induction Elution N-Extein, N-Extein N-Extein Intein Intein N-Extein N-Extein Intein FIG. 9 BEST AVAILABLE COPY

PROTEINS

Title: IMPROVED METHODS FOR GENERATING CATALYTIC