

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2022-1

[Cod: CM4F1 Curso: Análisis y Modelamiento Numérico I]

Solucionario Práctica Dirigida Nro 07

1. En el Departamento de San Martín en el 2017 cuenta con 210 790 familias, donde el $20\,\%$ de las rentas familiares anuales son bajos, el $70\,\%$ es considerado mediana y el $10\,\%$ es alta.

Se sabe que, año tras año, un 70% de las familias con renta baja permanecen en dicho tramo mientras que un 20% pasan a renta media y un 10% a renta alta. De las familias con renta media, permanecen en dicha renta un 60%, pasando un 30% a renta baja y un 10% a renta alta. Por último, el 60% de las rentas altas se mantienen, pasando un 30% a rentas medias y un 10% a rentas bajas.

Ayude a las autoridades del Departamento que pierdan el temor, no existe una distribución de renta estable.

- a) Modele el problema.
- b) Determine el polinomio característico usando el método de Krylov.
- c) Determine los valores y vectores propios.
- d) Indique si la distribución de renta es estable.

Solución:

a) Sean

x: Número de familias de renta baja.

y: Número de familias de renta media.

z: Número de familias de renta alta.

Donde, tenemos:

$$\begin{bmatrix} x^{(k+1)} \\ y^{(k+1)} \\ z^{(k+1)} \end{bmatrix} = \begin{bmatrix} 0.70 & 0.30 & 0.10 \\ 0.20 & 0.60 & 0.30 \\ 0.10 & 0.10 & 0.60 \end{bmatrix} \begin{bmatrix} x^{(k)} \\ y^{(k)} \\ z^{(k)} \end{bmatrix} k = 0, 1, \cdots$$

con

$$\left[egin{array}{c} x^{(0)} \ y^{(0)} \ z^{(0)} \end{array}
ight] = \left[egin{array}{c} 42158 \ 147553 \ 21079 \end{array}
ight]$$

b) Sea el polinomio característico general:

$$p(\lambda) = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3.$$

Aplicando el método de Krylov, se requiere resolver el sistema siguiente:

$$\begin{bmatrix} 87267,06 & 75884,4 & 42158 \\ 86634,69 & 103287,1 & 147553 \\ 36888,25 & 31618,5 & 21079 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} -90766,174 \\ -80500,701 \\ -39523,125 \end{bmatrix}$$

Resolviendo por el método LU, el polinomio característico es:

$$p(\lambda) = \lambda^3 - 1.9\lambda^2 + 1.1\lambda - 0.2.$$

c) La primera tabla con tol=0,00001 y error absoluto es:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Error
0					42158	147553	21079	
1	75884,4	103287,1	31618,5	103287,1	0,7346939	1	0,3061224	147551
2	0,844898	0,8387755	0,3571429	0,844898	1	0,886902	0,4227053	0,2653061
:								
16	0,9999936	0,8461397	0,4615289	0,9999936	1	0,8461452	0,4615319	0,0000083

Donde $\lambda_1 = 0.9999936$ y $v_1 = (1 \ 0.8461452 \ 0.4615319)^T$.

La segunda tabla con tol = 0,00001 y error absoluto es:

k	$y1_k$	$y2_k$	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Error
0					42158	147553	21079	
1	-52697,5	263487,5	0	263487,5	-0,2	1	0	147552
2	-1,18	2,14	-0,16	2,14	-0,5514019	1	-0,0747664	0,3514019
:								
39	$-2,\!4999281$	2,500024	-0,0000959	2,500024	-0,9999617	1	-0,0000383	0,0000096

Donde $\lambda_2 = 0.3999962$ y $v_1 = (-0.9999617 \ 1 \ -0.0000383)^T$.

La tercera tabla con q = 0.6, tol = 0.00001 y error absoluto es:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Err
0					42158	147553	21079	
1	263487,5	-52697,5	316185	316185	0,8333333	-0,1666667	1	14755
2	7,9166667	2,0833333	$-5,\!8333333$	7,9166667	1	0,2631579	-0,7368421	1,7368
:								
17	-10,000165	5	5,0001653	-10,000165	1	-0,4999917	-0,5000083	0,000

Donde $\lambda_3 = 0.5000017 \text{ y } v_1 = (1 - 0.4999917 - 0.5000083)^T$.

d) La distribución de renta es estable, debido a que $\lambda_1 = 1$, por consiguiente las autoridades deben estar tranquilos.

5. Una población de aves tiene un territorio dividido en tres regiones R_1 , R_2 y R_3 . Cada año y debido a diversas razones se produce las migraciones entre las distintas regiones:

En R_1 , un 60% permanece en R_1 , un 10% emigra a R_2 y un 30% emigra a R_3 .

En R_2 , un 10 % emigra a R_1 , un 80 % permanece en R_2 y un 10 % emigra a R_3 .

En R_3 , un 10 % emigra a R_1 , un 20 % emigra a R_2 y un 70 % permanece en R_3 .

Además la situación inicial de 100 aves que es la población total, que el 30 % viven en R_1 , un 20 % viven en R_2 y un 50 % viven en R_3 .

- a) Modele el problema.
- b) Determine el polinomio característico usando el método de Leverrier.
- c) Determine los valores y vectores propios.
- d) Indique si la distribución de renta es estable.

Solución:

a) Sean

x: Cantidad de aves de la región R_1 .

y: Cantidad de aves de la región R_2 .

z: Cantidad de aves de la región R_3 .

Donde, tenemos:

$$\left[egin{array}{c} x^{(k+1)} \ y^{(k+1)} \ z^{(k+1)} \end{array}
ight] = \left[egin{array}{c} 0,60 & 0,10 & 0,10 \ 0,10 & 0,80 & 0,20 \ 0,30 & 0,10 & 0,70 \end{array}
ight] \left[egin{array}{c} x^{(k)} \ y^{(k)} \ z^{(k)} \end{array}
ight] k = 0,1,\cdots$$

con

$$\left[egin{array}{c} x^{(0)} \ y^{(0)} \ z^{(0)} \end{array}
ight] = \left[egin{array}{c} 30 \ 20 \ 50 \end{array}
ight]$$

b) Sea el polinomio característico general:

$$p(\lambda) = \lambda^3 + b_1 \lambda^2 + b_2 \lambda + b_3.$$

Aplicando el método de Leverrier, se tiene:

$$B_1 = \left[egin{array}{ccc} 0.6 & 0.1 & 0.1 \ 0.1 & 0.8 & 0.2 \ 0.3 & 0.1 & 0.7 \end{array}
ight] \ \Rightarrow \ b_1 = -rac{2.1}{1} = -2.1$$

Luego

$$B_2 = \left[egin{array}{cccc} -0.86 & -0.06 & -0.06 \ -0.01 & -1.01 & -0.11 \ -0.23 & -0.03 & -0.93 \end{array}
ight] \Rightarrow b_2 = -rac{-2.8}{2} = 1.4$$

Análogamente

$$B_3 = \left[egin{array}{ccc} 0.3 & 0.0 & 0.0 \ 0.0 & 0.3 & 0.0 \ 0.0 & 0.0 & 0.3 \end{array}
ight] \ \Rightarrow \ b_3 = -rac{0.9}{3} = -0.3$$

El polinomio característico es:

$$p(\lambda)=\lambda^3-2.1\lambda^2+1.4\lambda-0.3.$$

c) La primera tabla con tol = 0,00001 y error absoluto es:

k	$y1_k$	$y2_k$	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Error
0					30	20	50	
1	25	29	46	46	0,5434783	0,6304348	1	49
2	0,4891304	0,7586957	0,926087	0,926087	0,528169	0,8192488	1	0,188814
:								
23	0444449	1,0000041	0,7777918	1,00000041	0,4444472	1	0,7777886	0,0000072

Donde $\lambda_1 = 1,0000041 \text{ y } v_1 = (0,4444472 \text{ 1 } 0,7777886)^T.$

La segunda tabla con tol = 0,00001 y error absoluto es:

	\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Erro
	0					30	20	50	
	1	40	6,6666667	53,333333	53,333333	0,75	0,125	1	49
Ì	2	1,125	$-0,\!2291667$	0,9791667	1,125	1	-0,2037037	0,8703704	0,32870
ĺ	:								
Ì	54	-1,0001113	-0,9999258	2,0000371	2,0000371	-0,5000464	-0,4999536	1	0,00000

Donde $\lambda_2 = 0.4999907$ y $v_2 = (-0.5000464 - 0.4999536 1)^T$.

La tercera tabla con q = 0.58, tol = 0.00001 y error absoluto es:

\boldsymbol{k}	$y1_k$	$y2_k$	$y3_k$	λ_k	$x1_k$	$x2_k$	$x3_k$	Err
0					30	20	50	
1	$-77,\!380952$	$-1767,\!8571$	2083,3333	2083,3333	-0,0371429	-0,8485714	1	49
2	0,8044218	$-41,\!127551$	40,595238	$-41,\!127551$	-0,0195592	1	-0,987057	1,987
:								
27	0	50	-50	50	0	1	-1	0

Donde $\lambda_3 = 0.6 \text{ y } v_3 = (0 \ 1 \ -1)^T$.

- d) La distribución de renta es estable, debido a que $\lambda_1=1$, por consiguiente las migraciones está en equilibrio.
- 6. En un estudio sobre la resistencia a bajas temperaturas del bacilo de la fiebre tifoidea, se expusieron cultivos del bacilo durante diferentes periodos de tiempo a $-5^{\circ}C$. Los siguientes datos representan:

$x(ext{tiempo en semanas})$	0	0,5	1	2	3	5	9	15
$y(\% ext{ bacilos supervivientes})$	100	42	14	7,5	0,4	0,11	0,05	0,002

4

- a) Determine el polinomio de interpolación de Newton.
- b) Evalue la interpolación cuando x = 5.5.
- c) Determine el polinomio de aproximación Spline con $x^* = 3$.
- d) Evalue la aproximación cuando x = 5,5.
- e) Indique la gráfica para ambos casos.

Solución:

a) La tabla de diferencia dividida, donde $D_i=f[x_k,\cdots,x_{k+i}],\,i=1,\cdots,7$ es:

\boldsymbol{k}	x_k	$f[x_k]$	D_1	D_2	D_3	D_4	D_5	D_6	D_7
0	0	100	-116	60	$-13,\!5$	0,06	0,6090926	-0,1098769	0,0091199
1	0,5	42	-56	33	$-13,\!32$	3,1054630	-0,3797997	0,0269218	
2	1	14	-6,5	-0,3	0,6545833	-0,1228348	0,0105670		
3	2	7,5	-7,1	2,3183333	-0,3280952	0,0251037			
4	3	0,4	-0,145	0,0216667	-0,0017472				
5	5	0,11	-0,015	0,0007					
6	9	0,05	-0,008						
7	15	0,002							

El polinomio anidado de interpolación de Newton es:

$$P_6(x) = 100 + x\{-116 + (x - 0.5)[60 + (x - 1)\{-13.5 + (x - 2)[0.06 + (x - 3)\{0.6090926 + (x - 5)[-0.1098769 + 0.0091199(x - 9)]\}]\}\}.$$

- b) Evaluando se tiene: $P_6(5,5) = 50,12598615$.
- c) Sea el spline lineal de tipo: $\varphi(x) = a_1 + a_2 x + a_3 (x-3)_+$. La matriz M es:

$$M = egin{bmatrix} 1 & 0 & 0 \ 1 & 0.5 & 0 \ 1 & 1 & 0 \ 1 & 2 & 0 \ 1 & 3 & 0 \ 1 & 5 & 2 \ 1 & 9 & 6 \ 1 & 15 & 12 \ \end{bmatrix}$$

Donde

$$M^T M \left[egin{array}{c} a_1 \ a_2 \ a_3 \end{array}
ight] = M^T \left[egin{array}{c} 100 \ 42 \ 14 \ 7,5 \ 0,4 \ 0,11 \ 0,05 \ 0,002 \end{array}
ight]$$

El sistema ha resolver es:

$$\begin{bmatrix} 8 & 35,5 & 20 \\ 35,5 & 345,25 & 244 \\ 20 & 244 & 184 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 164,062 \\ 51,230 \\ 0,544 \end{bmatrix}$$

El ajuste spline lineal resuelto por el método de Cholesky es:

$$\varphi(x) = 67,854912 - 25,765095x + 26,794179(x - 3)_{+}$$

- d) Evaluando se tiene: $\varphi(5,5) = -6.867663$.
- e) El gráfico de Newton es:

El gráfico de spline es:

- 7. Sea la función gamma γ , diferenciable que satisface $\gamma(x+1)=x\cdot\gamma(x),\ \forall x>0$. Una empresa tiene el comportamiento de su producción dado por $x_k=\frac{1}{2},1,\frac{3}{2},2,\frac{5}{2},\cdots$. Ayudale ha determinar el comportamiento de su producción.
 - a) Determine el polinomio de interpolación de Newton.

- b) Evalue la interpolación cuando x = 0.7.
- c) Determine el polinomio de aproximación cuadrático.
- d) Evalue la aproximación cuadrático cuando x = 0.7.
- e) Indique la gráfica para ambos casos.

Solución:

a) Evaluando, se tiene:

\boldsymbol{k}	x_k	$\gamma(x_k)$
1	0,5	1,7724539
2	1	1
3	1,5	0,8862269
4	2	1
5	2,5	1,3293404

La tabla de diferencia dividida, donde $D_i = f[x_k, \cdots, x_{k+i}], \ i=1,\cdots,7$ es:

\boldsymbol{k}	x_k	$f[x_k]$	D_1	D_2	D_3	D_4
0	0,5	1,7724539	$-1,\!5449078$	1,3173616	$-0,\!574846133$	0,279437133
1	1	1	$-0,\!2275462$	0,4550924	-0,015971867	
2	1,5	0,8862269	0,2275462	0,4322346		
3	2	1	0,6586808			
4	2,5	1,3293404				

El polinomio anidado de interpolación de Newton es:

$$P_4(x) = 1,7724539 + (x - 0.5)\{-1,5448078 + (x - 1)[1,3173616 + (x - 1.5)\{-0.574846133 + 0.279437133(x - 2.5)\} + (x - 0.5)[1,3173616 + (x - 1.5)[1,3173616 + (x - 1.5)[1,31736$$

- b) Evaluando se tiene: $P_4(0,7) = 1,339401152$.
- c) Sea el ajuste polinomial cuadrático siguiente: $\varphi(x) = a_1 + a_2 x + a_3 x^2$. La matriz M es:

$$M = \left[egin{array}{cccc} 1 & 0.5 & 0.25 \ 1 & 1 & 1 \ 1 & 1.5 & 2.25 \ 1 & 2 & 4 \ 1 & 2.5 & 6.25 \ \end{array}
ight]$$

Donde

$$M^T M \left[egin{array}{c} a_1 \ a_2 \ a_3 \end{array}
ight] = M^T \left[egin{array}{c} 1,7724539 \ 1 \ 0,8862269 \ 1 \ 1,3293404 \end{array}
ight]$$

El sistema ha resolver es:

$$\begin{bmatrix} 5 & 7,5 & 13,75 \\ 7,5 & 13,75 & 28,125 \\ 13,75 & 28,125 & 61,1875 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 5,9880212 \\ 8,5389183 \\ 15,745502 \end{bmatrix}$$

El ajuste spline lineal resuelto por el método de Cholesky es:

$$\varphi(x) = 2,6790397 + x\{-2,2610752 + 0,6946099x\}$$

- d) Evaluando se tiene: $\varphi(0,7) = 1,436645911$.
- e) El gráfico de Newton es:

El gráfico de spline es:

13 de Julio del 2022