Script 11

Limits and Continuity

11.1 Journal

3/4: Throughout this sheet, we let $f, g: A \to \mathbb{R}$ be real-valued functions with domain $A \subset \mathbb{R}$, unless otherwise specified.

Definition 11.1. Let $a \in LP(A) \subset \mathbb{R}$. A **limit** of f at a is a number $L \in \mathbb{R}$ satisfying the following condition: for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Lemma 11.2. Limits are unique: if L and L' are both limits of f at a point a, then L = L'.

Proof. Let the limit of f at a be L, and suppose for the sake of contradiction that the limit of f at a is also equal to L' where $L \neq L'$. Then by consecutive applications of Definition 11.1, we have that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$; and that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - a| < \delta$, then $|f(x) - L'| < \epsilon$. If we let $\epsilon = \frac{|L - L'|}{2}$, then $\epsilon > 0$ by Script 8. Thus, choosing only x in the range prescribed by the δ corresponding to this ϵ , we have

$$\begin{split} |L - L'| &= |L - f(x) + f(x) - L'| \\ &\leq |L - f(x)| + |f(x) - L'| & \text{Lemma 8.8} \\ &= |f(x) - L| + |f(x) - L'| & \text{Exercise 8.5} \\ &< 2\epsilon \\ &= |L - L'| \end{split}$$

But $|L - L'| \not < |L - L'|$, so we have a contradiction.

Definition 11.3. If L is the limit of f at a, we write

$$\lim_{x \to a} f(x) = L$$

Exercise 11.4. Give an example of a set $A \subset \mathbb{R}$, a function $f : A \to \mathbb{R}$, and a point $a \in LP(A)$ such that $\lim_{x\to a} f(x)$ does not exist.

Proof. Let $A = \mathbb{R}$, let $f: A \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

and consider $0 \in LP(\mathbb{R})$ (by Corollary 5.4). Now suppose for the sake of contradiction that $\lim_{x\to a} f(x) = L$. Then by Definitions 11.3^[1] and 11.1, for all $\epsilon > 0$, there exists some $\delta > 0$ such that if $x \in \mathbb{R}$ and $0 < |x - 0| = |x| < \delta$, then $|f(x) - L| < \epsilon$. If we let $\epsilon = 0.5$, then $\epsilon > 0$. Choosing a corresponding δ , we

¹I will not cite this definition again for the sake of concision.

have by an extension of Exercise 8.9 that all $x \in (-\delta, 0) \cup (0, \delta)$ satisfy $|f(x) - L| < \epsilon$. This would include objects $y \in (0, \delta)$ and $z \in (-\delta, 0)$. We have by the definition of f that f(y) = 1 and f(z) = 0; thus, we have

$$1 = |f(y) - f(z)|$$

$$= |f(y) - L + L - f(z)|$$

$$\leq |f(y) - L| + |f(z) - L|$$

$$< 0.5 + 0.5$$

$$= 1$$

But $1 \not< 1$, so we have a contradiction.

Theorem 11.5. Let $x \in A$. Then the following are equivalent:

- (a) f is continuous at x.
- (b) For every $\epsilon > 0$, there exists $\delta > 0$ such that if $y \in A$ and $|y x| < \delta$, then $|f(y) f(x)| < \epsilon$.
- (c) Either $x \notin LP(A)$ or $\lim_{y\to x} f(y) = f(x)$.

Proof. To illustrate that statements a-c are equivalent, it will suffice to verify that $a \Rightarrow b$, $b \Rightarrow c$, and $c \Rightarrow a$. Note that this foregoes the need for explicit proofs of "backwards implications" such as $b \Rightarrow a$ since that implication, for example, follows from $b \Rightarrow c \Rightarrow a$. Let's begin.

To prove that $a \Rightarrow b$, let $\epsilon > 0$ be arbitrary and look to find a $\delta > 0$ such that if $y \in A$ and $|y - x| < \delta$, then |f(y) - f(x)|.

We first locate δ . To do so, begin by defining the region $R = (f(x) - \epsilon, f(x) + \epsilon)$ (clearly R contains f(x)). Since R is open by Corollary 4.11 and f is continuous at x, we have by Definition 9.9 that there exists an open set S with $x \in S$ such that $S \cap A \subset f^{-1}(R)$. It follows by Theorem 4.10 that there exists a region (a,b) such that $x \in (a,b)$ and $(a,b) \subset S$. Thus, since (a,b) is an open interval by Corollary 4.11 and Lemma 8.3, we have by Lemma 8.10 that there exists a number $\delta > 0$ such that $(x - \delta, x + \delta) \subset (a,b)$.

As we will now show, this δ satisfies the desired property. Let y be an arbitrary element of A such that $|y-x|<\delta$. Then by Exercise 8.9, $y\in(x-\delta,x+\delta)$. It follows by consecutive applications of Definition 1.3 that $y\in(a,b)$, hence $y\in S$. This result combined with the fact that $y\in A$ by definition implies by Definition 1.6 that $y\in S\cap A$. Thus, by Definition 1.3 again, $y\in f^{-1}(R)$. Consequently, by Definition 1.18, $f(y)\in R$. Therefore, by Exercise 8.9 one more time, $|f(y)-f(x)|<\epsilon$.

To prove that $b \Rightarrow c$, let x be an arbitrary element of \mathbb{R} . We divide into two cases $(x \notin LP(A))$ and $x \in LP(A)$. If $x \notin LP(A)$, then we are done. If $x \in LP(A)$, then by the hypothesis, we know that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $y \in A$ and $0 < |y - x| < \delta$, then $|f(y) - f(x)| < \epsilon$. It follows by Definition 11.1 that f(x) is the limit of f at x, meaning that $\lim_{y \to x} f(y) = f(x)$, and we are done.

To prove that $c \Rightarrow a$, we divide into two cases $(x \notin LP(A))$ and $\lim_{y \to x} f(y) = f(x)$.

Suppose first that $x \notin LP(A)$. To demonstrate that f is continuous at x, Definition 9.9 tells us that it will suffice to confirm that for every region R containing f(x), there exists an open set S containing x such that $S \cap A \subset f^{-1}(R)$. Let R be an arbitrary region with $f(x) \in R$. Since $x \notin LP(A)$, Definition 3.13 asserts that there exists a region (hence an open set by Corollary 4.11) S such that $x \in S$ and $S \cap (A \setminus \{x\}) = \emptyset$. It follows by Script 1 that $S \cap A = \{x\}$. But since $f(x) \in R$ implies by Definition 1.18 that $x \in f^{-1}(R)$, we have by Definition 1.3 that $S \cap A \subset f^{-1}(R)$. Therefore, S is an open set containing x such that $S \cap A \subset f^{-1}(R)$.

Now suppose that $\lim_{y\to x} f(y) = f(x)$. To demonstrate that f is continuous at x, Definition 9.9 tells us that it will suffice to confirm that for every region (a,b) containing f(x), there exists an open set S containing x such that $S\cap A\subset f^{-1}((a,b))$. Let (a,b) be an arbitrary region with $f(x)\in (a,b)$. Then since (a,b) is an open interval by Lemma 8.3, Lemma 8.10 asserts that there exists $\epsilon>0$ such that $(f(x)-\epsilon,f(x)+\epsilon)\subset (a,b)$. With regard to this ϵ , since $\lim_{y\to x} f(y)=f(x)$ by hypothesis, we have by Definition 11.1 that there exists a $\delta>0$ such that if $y\in A$ and $0<|y-x|<\delta$, then $|f(y)-f(x)|<\epsilon$. Let $S=(x-\delta,x+\delta)$. Clearly, S contains x. Additionally, we can confirm that $S\cap A\subset f^{-1}((a,b))$: if we let y be an arbitrary element of $S\cap A$, then Definition 1.6 asserts that $y\in S$ and $y\in A$. It follows from the former condition by Exercise 8.9 that $|y-x|<\delta$. This combined with the fact that $y\in A$ implies that $|f(y)-f(x)|<\epsilon$. Thus, by Exercise 8.9 again, $f(y)\in (f(x)-\epsilon,f(x)+\epsilon)$. Consequently, by Definition 1.3, $f(y)\in (a,b)$. As such, we have by Definition 1.18 that $y\in f^{-1}((a,b))$, as desired.

Exercise 11.6.

(a) Let $a, b \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be given by f(x) = ax + b. Show that f is continuous at every $x \in \mathbb{R}$.

(b) Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be given by $f(x) = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$. Show that f is not continuous at 0.

Proof of a. To prove that f is continuous at every $x \in \mathbb{R}$, let x be an arbitrary element of \mathbb{R} ; then by Theorem 11.5, it will suffice to show that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $y \in A$ and $|y-x| < \delta$, then $|f(y)-f(x)| < \epsilon$. Let $\epsilon > 0$ be arbitrary. We divide into two cases $(a=0 \text{ and } a \neq 0)$. If a=0, then choose $\delta = 1^{[2]}$. This makes it so that for any $y \in A$ such that $|y-x| < \delta = 1$, we have $|f(y)-f(x)| = |b-b| = 0 < \epsilon$, as desired. If $a \neq 0$, then choose $\delta = \frac{\epsilon}{|a|}$. This makes it so that for any $y \in A$ such that $|y-x| < \delta = \frac{\epsilon}{|a|}$, we have

$$|a| |y - x| < \epsilon$$

$$|ay - ax| < \epsilon$$

$$|ay + b - (ax + b)| < \epsilon$$

$$|f(y) - f(x)| < \epsilon$$

as desired. \Box

Proof of b. To prove that f is not continuous at 0, Theorem 11.5 tells us that it will suffice to show that for some $\epsilon > 0$, no $\delta > 0$ exists such that if $x \in \mathbb{R}$ and $|x - 0| = |x| < \delta$, then $|f(x) - 1| < \epsilon$. Let $\epsilon = 1$, and suppose for the sake of contradiction that $\delta > 0$ is a number such that if $x \in \mathbb{R}$ and $|x| < \delta$, then $|f(x) - 1| < \epsilon$. Clearly, $0 \in \mathbb{R}$ and by the definition of δ and Definition 8.4, $|0| < \delta$. However, $|f(x) - 1| = |0 - 1| = 1 \not< 1 = \epsilon$, a contradiction.

3/9: **Exercise 11.7.** Show that the absolute value function $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x| is continuous.

Proof. To prove that the absolute value function is continuous, Theorem 9.10 tells us that it will suffice to show that it is continuous at every $x \in \mathbb{R}$. To do this, let x be an arbitrary element of \mathbb{R} ; then by Theorem 11.5, it will suffice to verify that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $y \in \mathbb{R}$ and $|y - x| < \delta$, then $||y| - |x|| < \epsilon$. Let $\epsilon > 0$ be arbitrary. Then choose $\delta = \epsilon$. This makes it so that for any $y \in A$ such that $|y - x| < \delta$, we have $||y| - |x|| \le |y - x| < \delta = \epsilon$ (with the first inequality coming from Lemma 8.8), as desired.

Given real-valued functions f and g, we define new functions f+g, fg, fg and $\frac{1}{f}$ by

$$(f+g)(x) = f(x) + g(x)$$
 $(fg)(x) = f(x) \cdot g(x)$ $\frac{1}{f}(x) = \frac{1}{f(x)}$

where $f(x) \neq 0$ in the definition of $\frac{1}{f}$. We wish to understand the limits of f + g, fg, and $\frac{1}{f}$ in terms of the limits of f and g.

Lemma 11.8. If $\lim_{x\to a} f(x) = L > 0$, then there exists a region R with $a \in R$ such that f(x) > 0 for all $x \in R \cap A$ such that $x \neq a$. Moreover, if f is continuous at a, then f(x) > 0 for all $x \in R \cap A$. The analogous statement is true if $\lim_{x\to a} f(x) = L < 0$.

Proof. We divide into two cases $(\lim_{x\to a} f(x) = L > 0 \text{ and } \lim_{x\to a} f(x) = L < 0).$

Suppose first that $\lim_{x\to a} f(x) = L > 0$. Choose $\epsilon = L$. Then we have by Definition 11.1 that there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x-a| < \delta$, then |f(x)-L| < L. Let $R = (a-\delta, a+\delta)$. Clearly, $a \in R$. Now let x be an arbitrary element of $R \cap A$ such that $x \neq a$. It follows from the first condition by Definition 1.6 that $x \in R$ and $x \in A$. Following from the former condition again, we have by Exercise 8.9 that $|x-a| < \delta$. Additionally, since $x \neq a$, Definition 3.1 asserts that x > a or x < a, i.e., x - a > 0 or x - a < 0; either way, Script 8 implies that 0 < |x-a|. To recap, we know that $x \in A$ and $0 < |x-a| < \delta$,

²This choice is arbitrary; it can be any nonzero value, as we will soon see.

so we have by the initial implication that $|f(x) - L| < L = \epsilon$. Therefore, by the lemma from Exercise 8.9, we have -L < f(x) - L < L, i.e., 0 < f(x) (which we obtain by adding L to both sides of the inequality as permitted by Definition 7.21).

Moreover, if f is continuous at a, then by Theorem 11.5, $a \notin LP(A)$ or $\lim_{x\to a} f(x) = f(a)$. But by Definition 11.1, $a \in LP(A)$, so we have $\lim_{x\to a} f(x) = f(a)$. The first part of this proof guarantees the existence of a region R such that f(x) > 0 for all $x \in R \cap A$ such that $x \neq a$. The fact that f(a) = L > 0 takes care of the case where x = a.

The proof is symmetric in the other case.

- 3/11: **Theorem 11.9.** Suppose that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$. Then
 - (a) $\lim_{x\to a} (f+q)(x) = L+M$.
 - (b) $\lim_{x\to a} (fg)(x) = L \cdot M$.
 - (c) Suppose that $\lim_{x\to a} f(x) = L \neq 0$. Then $\lim_{x\to a} \frac{1}{f}(x) = \frac{1}{L}$.

Proof of a. To prove that $\lim_{x\to a} (f+g)(x) = L+M$, Definition 11.1 tells us that it will suffice to show that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x-a| < \delta$, then $|(f+g)(x) - (L+M)| < \epsilon$. Let $\epsilon > 0$ be arbitrary. Consider $\frac{\epsilon}{2}$. Since $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, we have by consecutive applications of Definition 11.1 that there exists a $\delta_1 > 0$ such that if $x \in A$ and $0 < |x-a| < \delta_1$, then $|f(x) - L| < \frac{\epsilon}{2}$; and there exists a $\delta_2 > 0$ such that if $x \in A$ and $0 < |x-a| < \delta_2$, then $|g(x) - M| < \frac{\epsilon}{2}$. Now choose $\delta = \min(\delta_1, \delta_2)$. This makes it so that for any $x \in A$ such that $0 < |x-a| < \delta$, we have $|f(x) - L| < \frac{\epsilon}{2}$ and $|g(x) - M| < \frac{\epsilon}{2}$, so

$$|(f+g)(x) - (L+M)| = |f(x) - L + g(x) - M|$$

$$\leq |f(x) - L| + |g(x) - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

as desired. \Box

Proof of b. To prove that $\lim_{x\to a}(fg)(x)=LM$, Definition 11.1 tells us that it will suffice to show that for every $\epsilon>0$, there exists a $\delta>0$ such that if $x\in A$ and $0<|x-a|<\delta$, then $|(fg)(x)-LM|<\epsilon$. Let $\epsilon>0$ be arbitrary. Since $\lim_{x\to a}f(x)=L$ and $\lim_{x\to a}g(x)=M$ (and $\min(\frac{\epsilon}{2(|L|+1)},1)$ and $\frac{\epsilon}{2(|M|+1)}$ are both greater than zero), we have by consecutive applications of Definition 11.1 that there exists a $\delta_1>0$ such that if $x\in A$ and $0<|x-a|<\delta_1$, then $|f(x)-L|<\min(\frac{\epsilon}{2(|M|+1)},1)^{[3]};$ and there exists a $\delta_2>0$ such that if $x\in A$ and $0<|x-a|<\delta_2$, then $|g(x)-M|<\frac{\epsilon}{2(|M|+1)}.$ Now choose $\delta=\min(\delta_1,\delta_2).$ This makes it so that for any $x\in A$ such that $0<|x-a|<\delta$, we have $|f(x)-L|<\min(\frac{\epsilon}{2(|L|+1)},1)$ and $|g(x)-M|<\frac{\epsilon}{2(|M|+1)}.$

Before we get into the body of the proof, we need a couple of preliminary results. By Script 8, we have $|a| = |a-b+b| \le |a-b| + |b|$, so $|a|-|b| \le |a-b|$. Thus, since |f(x)-L| < 1, we have $|f(x)|-|L| \le |f(x)-L| < 1$, which means that |f(x)| < 1 + |L|. Additionally, we have

$$f(x)g(x) - LM = f(x)g(x) - f(x)M + f(x)M - LM$$

= $f(x)(g(x) - M) + M(f(x) - L)$

³When we choose a compound ϵ (i.e., one that makes use of a min expression), it means that $|f(x) - L| < \frac{\epsilon}{2(|L|+1)}$ and |f(x) - L| < 1. Basically, whichever quantity is smaller is what min evaluates to, and whichever is bigger is still greater than |f(x) - L| by transitivity.

With these results, we are ready to introduce the main inequality:

$$\begin{split} |(fg)(x) - LM| &= |f(x)(g(x) - M) + M(f(x) - L) \\ &\leq |f(x)| \cdot |g(x) - M| + |M| \cdot |f(x) - L| \\ &< (1 + |L|) \cdot \frac{\epsilon}{2(|L| + 1)} + |M| \cdot \frac{\epsilon}{2(|M| + 1)} \\ &= \frac{\epsilon}{2} \cdot \frac{1 + |L|}{1 + |L|} + \frac{\epsilon}{2} \cdot \frac{|M|}{|M| + 1} \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon \end{split}$$

Proof of c. To prove that $\lim_{x\to a}\frac{1}{f}(x)=\frac{1}{L}$, Definition 11.1 tells us that it will suffice to show that for every $\epsilon>0$, there exists a $\delta>0$ such that if $x\in A$ and $0<|x-a|<\delta$, then $|\frac{1}{f}(x)-\frac{1}{L}|<\epsilon$. Let $\epsilon>0$ be arbitrary. Since $\lim_{x\to a}f(x)=L$ and $\min(|L|,\epsilon|L|^2)>0$, we have by Definition 11.1 that there exists a $\delta_1>0$ such that if $x\in A$ and $0<|x-a|<\delta_1$, then $|f(x)-L|<\min(|L|,\epsilon|L|^2)$. Additionally, since $L\neq 0$, Theorem 11.8 asserts that there exists a region R containing a such that for all $x\in (R\cap A)\setminus\{a\}$, $f(x)\neq 0$ (since $L\neq 0$ implies L>0 or L<0). It follows by Lemma 8.10 that there exists a δ_2 such that $(a-\delta_2,a+\delta_2)\subset R$. Let $\delta=\min(\delta_1,\delta_2)$.

At this point, we know by this definition of δ that if $x \in A$ and $0 < |x - a| < \delta$, then $|f(x) - L| < \min(|L|, \epsilon |L|^2)$ and $f(x) \neq 0$. Before we get into the body of the proof, we need one more preliminary result. It follows from the fact that |f(x) - L| < |L| that

$$|f(x)| = |f(x)| - |L| + |L|$$

 $\leq |f(x) - L| + |L|$
 $< |L| + |L|$
 $= 2|L|$

With these results, we are ready to introduce the main inequality:

$$\left| \frac{1}{f}(x) - \frac{1}{L} \right| = \left| \frac{1}{f(x)} - \frac{1}{L} \right|$$

$$= \left| \frac{L - f(x)}{f(x) \cdot L} \right|$$

$$= \frac{|f(x) - L|}{|f(x)| \cdot |L|}$$

$$< \frac{\epsilon |L|^2}{|f(x)|}$$

$$= \frac{\epsilon |L|}{|f(x)|}$$

$$< \frac{\epsilon |L|}{2|L|}$$

$$= \frac{\epsilon}{2}$$

$$< \epsilon$$

Corollary 11.10. If f and g are continuous at a, then f + g and fg are continuous at a. Also, $\frac{1}{f}$ and $\frac{g}{f}$ are continuous at a, provided that $f(a) \neq 0$.

Proof. Since f is continuous at a, we have by Theorem 11.5 that either $a \notin LP(A)$ or $\lim_{x\to a} f(x) = f(a)$. Similarly, we have that either $a \notin LP(A)$ or $\lim_{x\to a} g(x) = g(a)$. We divide into four cases $(a \notin LP(A))$ and $a \notin LP(A)$, $a \notin LP(A)$ and $\lim_{x\to a} g(x) = g(a)$, $\lim_{x\to a} f(x) = f(a)$ and $a \notin LP(A)$, and $\lim_{x\to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$. If $a \notin LP(A)$ (this takes care of the first three cases), then by Theorem 11.5, f+g is continuous at a. If $\lim_{x\to a} f(x) = f(a)$ and $\lim_{x\to a} g(x) = g(a)$, then by Theorem 11.9, $\lim_{x\to a} (f+g)(x) = f(a) + g(a) = (f+g)(a)$. Therefore, by Theorem 11.5, f+g is continuous at a.

The proofs of the second and third cases are symmetric to that of the first. The fourth case can be handled by letting $\frac{g}{f} = g \cdot \frac{1}{f}$ and applying the third and second cases.

Definition 11.11. A polynomial (in one variable with real coefficients) is a function f of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

for some $n \in \mathbb{N} \cup \{0\}$, where $a_i \in \mathbb{R}$ for $0 \le i \le n$. A **rational function** (in one variable with real coefficients) is a function of the form $h(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials in one variable with real coefficients.

Corollary 11.12. Polynomials in one variable with real coefficients are continuous. A rational function in one variable with real coefficients $h(x) = \frac{f(x)}{g(x)}$ is continuous at all $a \in \mathbb{R}$ where $g(a) \neq 0$.

Proof. We induct on the degree n of the polynomial. For the base case n=0, we have by Definition 11.11 that f is a function of the form $f(x)=a_0$ for some $a_0\in\mathbb{R}$. Thus, by Exercise 11.6, f is continuous at every $x\in\mathbb{R}$ (since ax+b is continuous for a=0 and $b=a_0$). Therefore, by Theorem 9.10, f is continuous. Now suppose inductively that all functions of the form $f(x)=a_nx^n+\cdots+a_0$ are continuous; we seek to prove that all functions of the form $\tilde{f}(x)=a_{n+1}x^{n+1}+\cdots+a_0$ are continuous. By the inductive hypothesis, we know that x^n is continuous. Thus, by Theorem 9.10, x^n is continuous at every $x\in\mathbb{R}$. Additionally, by Exercise 11.6, $a_{n+1}x$ (where a_{n+1} is an arbitrary element of \mathbb{R}) is continuous at every $x\in\mathbb{R}$. The last two results combined with Corollary 11.10 tell us that $a_{n+1}x^{n+1}$ is continuous at every $x\in\mathbb{R}$. In addition, since f is continuous, Theorem 9.10 asserts that f is continuous at every $x\in\mathbb{R}$. Thus, by Corollary 11.10 again, $g(x)=a_{n+1}x^{n+1}+f(x)=a_{n+1}x^{n+1}+\cdots+a_0$ is continuous at every $x\in\mathbb{R}$. By one more application of Theorem 9.10, g(x) is continuous.

Now we move on to proving that $h(x) = \frac{f(x)}{g(x)}$ is continuous at all $a \in \mathbb{R}$ such that $g(a) \neq 0$. By the above, f and g (as polynomials) are continuous. Thus, by Theorem 9.10, f and g are continuous at every $a \in \mathbb{R}$. Therefore, by Corollary 11.10, $h = \frac{f}{g}$ is continuous at all $a \in \mathbb{R}$, provided that $g(a) \neq 0$, as desired.

Now we want to look at limits of the composition of functions. We assume here (for 11.13-11.15) that $a \in A, g: A \to \mathbb{R}$, and $f: I \to \mathbb{R}$, where I is an open interval containing g(A). It is not quite true in general that if $\lim_{x\to a} g(x) = M$ and $\lim_{y\to M} f(y) = L$, then $\lim_{x\to a} f(g(x)) = L$, but it is true in some cases.

Theorem 11.13. If $\lim_{x\to a} g(x) = M$ and f is continuous at M, then $\lim_{x\to a} f(g(x)) = f(M)$.

Proof. To prove that $\lim_{x\to a} f(g(x)) = f(M)$, Definition 11.1 tells us that it will suffice to show that for all $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x-a| < \delta$, then $|f(g(x)) - f(M)| < \epsilon$. Let $\epsilon > 0$ be arbitrary. Then since f is continuous at M, Theorem 11.5 implies that there exists a $\delta' > 0$ such that if $y \in I$ and $|y-M| < \delta'$, then $|f(y) - f(M)| < \epsilon$. It follows by Definition 11.1 that there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x-a| < \delta$, then $|g(x) - M| < \delta'$.

We will now prove that this δ is the desired δ . Let x be an arbitrary element of A that satisfies $0 < |x-a| < \delta$. Then we know that $|g(x)-M| < \delta'$. Additionally, it follows from the fact that $x \in A$ by Definition 1.18 that $g(x) \in g(A)$. Thus, by Definition 4.4, $g(x) \in \overline{g(A)}$. Consequently, by Definition 1.3, $g(x) \in I$. Indeed, we now know that $g(x) \in I$ and $|g(x)-M| < \delta'$, so we can determine that $|f(g(x))-f(M)| < \epsilon$, as desired.

3/17: **Remark 11.14.** This theorem can also be rewritten as

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$$

which can be remembered as "limits pass through continuous functions."

Corollary 11.15. If g is continuous at a and f is continuous at g(a), then $f \circ g$ is continuous at a.

Proof. Since g is continuous at a, we have by Theorem 11.5 that either $a \notin LP(A)$ or $\lim_{x\to a} g(x) = g(a)$. We now divide into two cases. If $a \notin LP(A)$, then by Theorem 11.5, $f \circ g$ is continuous at a. If $\lim_{x\to a} g(x) = g(a)$, then this combined with the fact that f is continuous at g(a) implies by Theorem 11.13 that $\lim_{x\to a} f(g(x)) = f(g(a))$. It follows by Definition 1.25 that $\lim_{x\to a} (f \circ g)(x) = (f \circ g)(a)$. Therefore, by Theorem 11.5, $f \circ g$ is continuous at a.