Perturbations of Hermitian Matrices and Applications to Spectral Symbols

Barbarino Giovanni ¹ Stefano Serra-Capizzano ²

¹Scuola Normale Superiore, Pisa, Italy

²Insubria University, Como, Italy

Spectral Symbols

 \rightarrow The sequence $\{A_n\}_n$ has Spectral Symbol k(t)

$$\begin{cases} u''(x) = f(x) & x \in [0, 1] \\ u(0) = u(1) = 0 \end{cases}$$

$$\xrightarrow{FD} A_n u_n = f_n$$

$$\lambda_h(A_n) = 2 - 2\cos\left(\frac{h\pi}{n+1}\right)$$

 \rightarrow The sequence $\{A_n\}_n$ has Spectral Symbol k(t)

$$\begin{cases} u''(x) = f(x) & x \in [0, 1] \\ u(0) = u(1) = 0 \end{cases} \xrightarrow{FD}$$

$$A_n = \begin{bmatrix} 2 & -1 & & & \\ -1 & \ddots & \ddots & & \\ & \ddots & \ddots & -1 & \\ & & -1 & 2 & \\ & & & 0 & \\ \end{cases}$$

$$\lambda_h(A_n) = 2 - 2\cos\left(\frac{h\pi}{n+1}\right)$$

 $A_n u_n = f_n$

$$\begin{cases} u''(x) = f(x) & x \in [0,1] \\ u(0) = u(1) = 0 \end{cases} \xrightarrow{FD} A_n u_n = f_n$$

$$A_n = \begin{bmatrix} 2 & -1 & & & \\ -1 & \ddots & \ddots & & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix} \xrightarrow{2}$$

$$\lambda_h(A_n) = 2 - 2\cos\left(\frac{h\pi}{n+1}\right) \qquad k(t) = 2 - 2\cos(t)$$

 \rightarrow The sequence $\{A_n\}_n$ has Spectral Symbol k(t)

$$\begin{cases} u''(x) = f(x) & x \in [0,1] \\ u(0) = u(1) = 0 \end{cases} \xrightarrow{FD} A_n u_n = f_n$$

$$A_n = \begin{bmatrix} 2 & -1 & & & \\ -1 & \ddots & \ddots & & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix} \xrightarrow{A_n u_n} A_n u_n = f_n$$

$$\lambda_h(A_n) = 2 - 2\cos\left(\frac{h\pi}{n+1}\right) \qquad k(t) = 2 - 2\cos(t)$$

 \rightarrow The sequence $\{A_n\}_n$ has Spectral Symbol k(t)

Spectral Symbol

Let $\{A_n\}_n$ a matrix sequence, and $k:D\subseteq\mathbb{R}^m\to\mathbb{C}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n F(\lambda_i(A_n)) = \frac{1}{\mu(D)} \int_D F(k(t)) dt$$

for all $F \in C_c(\mathbb{C})$.

 $\frac{\#\{i: a < \lambda_i(A_n) < b\}}{n} \qquad \xrightarrow{n \to \infty} \qquad \frac{\mu\{t: a < k(t) < b\}}{\mu(D)}$

Spectral Symbol

Let $\{A_n\}_n$ a matrix sequence, and $k:D\subseteq\mathbb{R}^m\to\mathbb{C}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n F(\lambda_i(A_n)) = \frac{1}{\mu(D)} \int_D F(k(t)) dt$$

for all $F \in C_c(\mathbb{C})$.

$$\#\{i: a < \lambda_i(A_n) < b\}$$

$$\xrightarrow{n\to\infty}$$

$$\mu\{t : a < k(t) < b\}$$

$$\mu(D)$$

Spectral Symbol

Let $\{A_n\}_n$ a matrix sequence, and $k:D\subseteq\mathbb{R}^m\to\mathbb{C}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n F(\lambda_i(A_n)) = \frac{1}{\mu(D)} \int_D F(k(t)) dt$$

for all $F \in C_c(\mathbb{C})$.

$$\underline{\#\{i: a < \lambda_i(A_n) < b\}}$$

$$\xrightarrow{n\to\infty}$$

$$\frac{\mu\{t: a < k(t) < b\}}{\mu(D)}$$

Spectral Symbol

Let $\{A_n\}_n$ a matrix sequence, and $k:D\subseteq\mathbb{R}^m\to\mathbb{C}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n F(\lambda_i(A_n)) = \frac{1}{\mu(D)} \int_D F(k(t)) dt$$

for all $F \in C_c(\mathbb{C})$.

Equivalent Definition

Let $\{A_n\}_n$ a matrix sequence and $k:[0,1]\to\mathbb{R}$ measurable.

$${A_n}_n \sim_{\lambda} k \iff f(A_n) \xrightarrow{\mu} k$$

where f(X) is the piecewise linear interpolator of $\Lambda(X)$ over [0,1].

Equivalent Definition

Let $\{A_n\}_n$ a matrix sequence and $k:[0,1]\to\mathbb{R}$ measurable.

$${A_n}_n \sim_{\lambda} k \iff f(A_n) \xrightarrow{\mu} k$$

where f(X) is the piecewise linear interpolator of $\Lambda(X)$ over [0,1].

Equivalent Definition

Let $\{A_n\}_n$ a matrix sequence and $k:[0,1]\to\mathbb{R}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff f(A_n) \xrightarrow{\mu} k$$

where f(X) is the piecewise linear interpolator of $\Lambda(X)$ over [0,1].

Equivalent Definition

Let $\{A_n\}_n$ a matrix sequence and $k:[0,1]\to\mathbb{R}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff f(A_n) \xrightarrow{\mu} k$$

where f(X) is the piecewise linear interpolator of $\Lambda(X)$ over [0,1].

Equivalent Definition

Let $\{A_n\}_n$ a matrix sequence and $k:[0,1]\to\mathbb{R}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff f(A_n) \xrightarrow{\mu} k$$

where f(X) is the piecewise linear interpolator of $\Lambda(X)$ over [0,1].

Equivalent Definition

Let $\{A_n\}_n$ a matrix sequence and $k:[0,1]\to\mathbb{R}$ measurable.

$$\{A_n\}_n \sim_{\lambda} k \iff f(A_n) \xrightarrow{\mu} k$$

where f(X) is the piecewise linear interpolator of $\Lambda(X)$ over [0,1].

k

Hermitian Perturbations

Zero Distributed Matrices

Let N_n and R_n be Hermitian matrices s.t.

- $||N_n|| = o(1)$
- $\operatorname{rk}(R_n) = o(n)$

Given A_n Hermitian matrices, we get

$${A_n}_n \sim_{\lambda} k \iff {A_n + N_n + R_n}_n \sim_{\lambda} k$$

Idea of Proof

Cauchy Interlacing Theorem

$$\lambda_{i-rk(R_n)}(A_n) \le \lambda_i(A_n + R_n) \le \lambda_{i+rk(R_n)}(A_n)$$

Weyl Theorem

$$|\lambda_i(A_n) - \lambda_i(A_n + N_n)| \le ||N_n|$$

Hermitian Perturbations

Zero Distributed Matrices

Let N_n and R_n be Hermitian matrices s.t.

- $||N_n|| = o(1)$
- $\operatorname{rk}(R_n) = o(n)$

Given A_n Hermitian matrices, we get

$${A_n}_n \sim_{\lambda} k \iff {A_n + N_n + R_n}_n \sim_{\lambda} k$$

Idea of Proof

• Cauchy Interlacing Theorem

$$\lambda_{i-\mathsf{rk}(R_n)}(A_n) \le \lambda_i(A_n + R_n) \le \lambda_{i+\mathsf{rk}(R_n)}(A_n)$$

Weyl Theorem

$$|\lambda_i(A_n) - \lambda_i(A_n + N_n)| \le ||N_n||$$

Hermitian Perturbations

Zero Distributed Matrices

Let N_n and R_n be Hermitian matrices s.t.

- $||N_n|| = o(1)$
- $\operatorname{rk}(R_n) = o(n)$

Given A_n Hermitian matrices, we get

$$\{A_n\}_n \sim_{\lambda} k \longrightarrow \{A_n + N_n + R_n\}_n \sim_{\lambda} k$$

Idea of Proof

• Cauchy Interlacing Theorem

$$\lambda_{i-\mathsf{rk}(R_n)}(A_n) \le \lambda_i(A_n + R_n) \le \lambda_{i+\mathsf{rk}(R_n)}(A_n)$$

Weyl Theorem

$$|\lambda_i(A_n) - \lambda_i(A_n + N_n)| \le ||N_n||$$

Counterexample

$$A_{n} = \frac{1}{n} \begin{pmatrix} 1 & & & \\ 1 & 1 & & \\ & 1 & & \ddots & \\ & & \ddots & & 1 \\ & & 1 & \end{pmatrix} \sim_{\lambda} 0 \qquad R_{n} = \begin{pmatrix} & & \\ & & \\ & & & \\ & & & 1 \end{pmatrix}$$

$$A_{n} + R_{n} \sim \begin{pmatrix} & & 1 & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Counterexample

$$A_{n} = \frac{1}{n} \begin{pmatrix} 1 & & & \\ 1 & 1 & & \\ & 1 & \ddots & \\ & \ddots & & 1 \\ & & 1 & \end{pmatrix} \sim_{\lambda} 0 \qquad R_{n} = \begin{pmatrix} & & \\ & & \\ & & & \\ & & 1 & \end{pmatrix}$$

$$A_{n} + R_{n} \sim \begin{pmatrix} 1 & & & \\ & n^{-2} & & 1 & \\ & & n^{-2} & & \ddots & \\ & & & \ddots & & 1 \\ 1 & & & n^{-2} & \end{pmatrix} \sim_{\lambda} e^{2\pi i x}$$

Counterexample

$$A_{n} = \frac{1}{n} \begin{pmatrix} 1 & & & \\ 1 & 1 & & \\ & 1 & \ddots & \\ & & \ddots & 1 \\ & & 1 \end{pmatrix} \sim_{\lambda} \mathbf{0} \qquad R_{n} = \begin{pmatrix} & & \\ & & \\ n^{n-1} & & \end{pmatrix}$$

$$A_{n} + R_{n} \sim \begin{pmatrix} & 1 & & \\ & & 1 & \\ & & & \\ & & & n^{-2} & & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \\ 1 & & & & \\ & & & & \\ \end{pmatrix} \sim_{\lambda} \mathbf{e}^{2\pi i \mathbf{x}}$$

Theorem [Golinskii-Serra '07]

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$
- $||Y_n||, ||X_n|| = O(1)$

then

$$\{X_n+Y_n\}_n\sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

Theorem [Golinskii-Serra '07]

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$
- $||Y_n||, ||X_n|| = O(1)$

then

$$\{X_n + Y_n\}_n \sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

Theorem [Golinskii-Serra '07]

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$
- $||Y_n||, ||X_n|| = O(1)$

then

$$\{X_n+Y_n\}_n\sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

Theorem [Golinskii-Serra '07]

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$
- $||Y_n||, ||X_n|| = O(1)$

then

$$\{X_n + Y_n\}_n \sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

Theorem [Golinskii-Serra '07]

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$
- $||Y_n||, ||X_n|| = O(1)$

then

$$\{X_n+Y_n\}_n\sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

Conjecture

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$ $||Y_n||_1 + O(1)$

then

$$\{X_n + Y_n\}_n \sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

Theorem [Barbarino-Serra '17]

Let X_n Hermitian matrix of size n, with $\{X_n\}_n \sim_{\lambda} k$. If

then

$$\{X_n + Y_n\}_n \sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

Main Result

Theorem [Barbarino-Serra '17]

Let $\{X_n\}_n$ be an Hermitian sequence with spectral symbol $\{X_n\}_n \sim_{\lambda} k$. If

$$||Y_n||_2 = o(\sqrt{n})$$

then

$$\{X_n\}_n + \{Y_n\}_n \sim_{\lambda} k$$

Corollary

Let $\{X_n\}_n$ be an Hermitian sequence with spectral symbol $\{X_n\}_n \sim_{\lambda} k$. If

•
$$||Y_n||_1 = o(n)$$

•
$$||Y_n|| = O(1)$$

then

$$\{X_n\}_n + \{Y_n\}_n \sim_{\lambda} k$$

Theorem [Barbarino-Serra '17]

Let $\{X_n\}_n$ be an Hermitian sequence with spectral symbol $\{X_n\}_n \sim_{\lambda} k$. If

$$||Y_n||_2 = o(\sqrt{n})$$

then

$$\{X_n\}_n + \{Y_n\}_n \sim_{\lambda} k$$

Corollary

Let $\{X_n\}_n$ be an Hermitian sequence with spectral symbol $\{X_n\}_n \sim_{\lambda} k$. If

- $||Y_n||_1 = o(n)$
- $||Y_n|| = O(1)$

then

$$\{X_n\}_n + \{Y_n\}_n \sim_{\lambda} k$$

Theorem

If A, B are Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_n$ and $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le ||A - B||_2^2$$

Lemma

If A is an Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_n$, B is any matrix with eigenvalues $\Re(\beta_1) \geq \Re(\beta_2) \geq \cdots \geq \Re(\beta_n)$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le 2||A - B||_2^2$$

Theorem

If A, B are Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \dots \alpha_n$ and $\beta_1 \geq \beta_2 \geq \dots \geq \beta_n$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le ||A - B||_2^2$$

Real/Imaginary Part Schur Decomposition

Lemma

If A is an Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_n$ B is any matrix with eigenvalues $\Re(\beta_1) \geq \Re(\beta_2) \geq \cdots \geq \Re(\beta_n)$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le 2||A - B||_2^2$$

Theorem

If A, B are Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \dots \alpha_n$ and $\beta_1 \geq \beta_2 \geq \dots \geq \beta_n$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le ||A - B||_2^2$$

Real/Imaginary Part Schur Decomposition

Lemma

If A is an Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_n$, B is any matrix with eigenvalues $\Re(\beta_1) \geq \Re(\beta_2) \geq \cdots \geq \Re(\beta_n)$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le 2||A - B||_2^2$$

Theorem

If A, B are Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \dots \alpha_n$ and $\beta_1 \geq \beta_2 \geq \dots \geq \beta_n$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le ||A - B||_2^2$$

Real/Imaginary Part Schur Decomposition

Lemma

If A is an Hermitian matrices with eigenvalues $\alpha_1 \geq \alpha_2 \geq \ldots \alpha_n$, B is any matrix with eigenvalues $\Re(\beta_1) \geq \Re(\beta_2) \geq \cdots \geq \Re(\beta_n)$, then

$$\sum_{i=1}^{n} |\alpha_i - \beta_i|^2 \le 2||A - B||_2^2$$

Let $\{X_n\}_n \sim_{\lambda} k$ be an Hermitian sequence and $\|Y_n\|_2 = o(\sqrt{n})$

- Let $\alpha_1 \ge \alpha_2 \ge \dots \alpha_n$ be the eigenvalues of X_n and $\Re(\beta_1) \ge \Re(\beta_2) \ge \dots \ge \Re(\beta_n)$ be the eigenvalues of $X_n + Y_n$.
- Let $k_{n,\varepsilon} := \#\{i : |\alpha_i \beta_i| > \varepsilon\}$

$$\frac{k_{n,\varepsilon}}{n}\varepsilon^2 \le \frac{\sum_{i=1}^n |\alpha_i - \beta_i|^2}{n} \le \frac{\|Y_n\|_2^2}{n} \to 0$$

$$f(X_n + Y_n) - f(X_n) \xrightarrow{\mu} 0, \quad f(X_n) \xrightarrow{\mu} k \implies f(X_n + Y_n) \xrightarrow{\mu} k$$

$$\{X_n + Y_n\}_n \sim_{\lambda} k$$

Let $\{X_n\}_n \sim_{\lambda} k$ be an Hermitian sequence and $\|Y_n\|_2 = o(\sqrt{n})$

- Let $\alpha_1 \ge \alpha_2 \ge \dots \alpha_n$ be the eigenvalues of X_n and $\Re(\beta_1) \ge \Re(\beta_2) \ge \dots \ge \Re(\beta_n)$ be the eigenvalues of $X_n + Y_n$.
- Let $k_{n,\varepsilon} := \#\{i : |\alpha_i \beta_i| > \varepsilon\}$

 $\frac{k_{n,\varepsilon}}{\varepsilon^2} \leq \frac{\sum_{i=1}^n |\alpha_i - \beta_i|^2}{\sum_{i=1}^n |\alpha_i - \beta_i|^2} \leq \frac{\|Y_n\|_2^2}{\sum_{i=1}^n |\alpha_i - \beta_i|^2}$

$$f(X_n + Y_n) - f(X_n) \xrightarrow{\mu} 0, \quad f(X_n) \xrightarrow{\mu} k \implies f(X_n + Y_n) \xrightarrow{\mu} k$$

$$\{X_n+Y_n\}_n\sim_\lambda k$$

Let $\{X_n\}_n \sim_{\lambda} k$ be an Hermitian sequence and $\|Y_n\|_2 = o(\sqrt{n})$

- Let $\alpha_1 \ge \alpha_2 \ge \dots \alpha_n$ be the eigenvalues of X_n and $\Re(\beta_1) \ge \Re(\beta_2) \ge \dots \ge \Re(\beta_n)$ be the eigenvalues of $X_n + Y_n$.
- Let $k_{n,\varepsilon} := \#\{i : |\alpha_i \beta_i| > \varepsilon\}$

$$\frac{k_{n,\varepsilon}}{n}\varepsilon^2 \le \frac{\sum_{i=1}^n |\alpha_i - \beta_i|^2}{n} \le \frac{\|Y_n\|_2^2}{n} \to 0$$

$$f(X_n + Y_n) - f(X_n) \xrightarrow{\mu} 0, \quad f(X_n) \xrightarrow{\mu} k \implies f(X_n + Y_n) \xrightarrow{\mu} k$$

$$\{X_n+Y_n\}_n\sim_{\lambda} k$$

Let $\{X_n\}_n \sim_{\lambda} k$ be an Hermitian sequence and $\|Y_n\|_2 = o(\sqrt{n})$

- Let $\alpha_1 \geq \alpha_2 \geq \dots \alpha_n$ be the eigenvalues of X_n and $\Re(\beta_1) \geq \Re(\beta_2) \geq \dots \geq \Re(\beta_n)$ be the eigenvalues of $X_n + Y_n$.
- Let $k_{n,\varepsilon} := \#\{i : |\alpha_i \beta_i| > \varepsilon\}$

•

$$\frac{k_{n,\varepsilon}}{n}\varepsilon^2 \le \frac{\sum_{i=1}^n |\alpha_i - \beta_i|^2}{n} \le \frac{\|Y_n\|_2^2}{n} \to 0$$

$$f(X_n + Y_n) - f(X_n) \xrightarrow{\mu} 0, \quad f(X_n) \xrightarrow{\mu} k \implies f(X_n + Y_n) \xrightarrow{\mu} k$$

$${X_n + Y_n}_n \sim_{\lambda} k$$

Let $\{X_n\}_n \sim_{\lambda} k$ be an Hermitian sequence and $\|Y_n\|_2 = o(\sqrt{n})$

- Let $\alpha_1 \geq \alpha_2 \geq \dots \alpha_n$ be the eigenvalues of X_n and $\Re(\beta_1) \geq \Re(\beta_2) \geq \dots \geq \Re(\beta_n)$ be the eigenvalues of $X_n + Y_n$.
- Let $k_{n,\varepsilon} := \#\{i : |\alpha_i \beta_i| > \varepsilon\}$

•

$$\frac{k_{n,\varepsilon}}{n}\varepsilon^2 \le \frac{\sum_{i=1}^n |\alpha_i - \beta_i|^2}{n} \le \frac{\|Y_n\|_2^2}{n} \to 0$$

$$f(X_n + Y_n) - f(X_n) \xrightarrow{\mu} 0, \quad f(X_n) \xrightarrow{\mu} k \implies f(X_n + Y_n) \xrightarrow{\mu} k$$

$$\{X_n+Y_n\}_n\sim_{\lambda} k$$

Let $\{X_n\}_n \sim_{\lambda} k$ be an Hermitian sequence and $\|Y_n\|_2 = o(\sqrt{n})$

- Let $\alpha_1 \geq \alpha_2 \geq \dots \alpha_n$ be the eigenvalues of X_n and $\Re(\beta_1) \geq \Re(\beta_2) \geq \dots \geq \Re(\beta_n)$ be the eigenvalues of $X_n + Y_n$.
- Let $k_{n,\varepsilon} := \#\{i : |\alpha_i \beta_i| > \varepsilon\}$

•

$$\frac{k_{n,\varepsilon}}{n}\varepsilon^2 \le \frac{\sum_{i=1}^n |\alpha_i - \beta_i|^2}{n} \le \frac{\|Y_n\|_2^2}{n} \to 0$$

$$f(X_n + Y_n) - f(X_n) \xrightarrow{\mu} 0, \quad f(X_n) \xrightarrow{\mu} k \implies f(X_n + Y_n) \xrightarrow{\mu} k$$

$$\{X_n + Y_n\}_n \sim_{\lambda} k$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

FD

- a(x), c(x) bounded a.e. continuous functions
- b(x) bounded a.e. continuous function

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

$$b(x) \sim x^{\alpha} \implies \|B_n\|_2 = O(n^{-1-\alpha})$$

$$\alpha > -\frac{3}{2} \implies \|B_n\|_2 = o(\sqrt{n}) \qquad \alpha > -2 \implies \|B_n\|_2 = o(n)$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

FD

- a(x), c(x) bounded a.e. continuous functions
- *b*(*x*) integrable continuous function

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

$$b(x) \sim x^{\alpha} \implies \|B_n\|_2 = O(n^{-1-\alpha})$$

$$\alpha > -\frac{3}{2} \implies \|B_n\|_2 = o(\sqrt{n}) \qquad \alpha > -2 \implies \|B_n\|_2 = o(n)$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

FD

- a(x), c(x) bounded a.e. continuous functions
- *b*(*x*) integrable continuous function

$$\xrightarrow{FD} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

$$b(x) \sim x^{\alpha} \implies \|B_n\|_2 = O(n^{-1-\alpha})$$

$$\alpha > -\frac{3}{2} \implies \|B_n\|_2 = o(\sqrt{n}) \qquad \alpha > -2 \implies \|B_n\|_2 = o(n)$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

FE

• a(x), b(x), c(x) bounded measurable functions

$$\xrightarrow{FE} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

$$b(x) \sim x^{\alpha} \implies \|B_n\|_2 = O(n^{-1-\alpha})$$

$$\alpha > -\frac{3}{2} \implies \|B_n\|_2 = o(\sqrt{n}) \qquad \alpha > -2 \implies \|B_n\|_2 = o(n)$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

FE

• a(x), b(x), c(x) integrable functions

$$\xrightarrow{FE} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

$$b(x) \sim x^{\alpha} \implies \|B_n\|_2 = O(n^{-1-\alpha})$$

$$\alpha > -\frac{3}{2} \implies \|B_n\|_2 = o(\sqrt{n}) \qquad \alpha > -2 \implies \|B_n\|_2 = o(n)$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

FE

• a(x), b(x), c(x) integrable functions

$$\xrightarrow{FE} \{A_n\}_n + \{B_n\}_n + \{C_n\}_n \sim_{\lambda} a(x)(2 - 2\cos(\theta)),$$

$$b(x) \sim x^{\alpha} \implies \|B_n\|_2 = O(n^{-1-\alpha})$$

$$\alpha > -\frac{3}{2} \implies \|B_n\|_2 = o(\sqrt{n}) \qquad \alpha > -2 \implies \|B_n\|_2 = o(n)$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

- a(x), c(x) bounded a.e. continuous functions
- b(x) bounded a.e. continuous function
- $\{K_n\}_n \sim_{\lambda} \phi$ sequence of definite positive Hermitian matrices

$$\frac{PrecFD}{} \{K_n^{-1}(A_n + B_n + C_n)\}_n \sim_{\lambda} \frac{a(x)(2 - 2\cos(\theta))}{\phi(x)},
K_n = T_n(2 - 2\cos(\theta)) \sim_{\lambda} 2 - 2\cos(\theta)
= D_n(a^{1/2})T_n(2 - 2\cos(\theta))D_n(a^{1/2}) \sim_{\lambda} a(x)(2 - 2\cos(\theta))$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

- a(x), c(x) bounded a.e. continuous functions
- b(x) integrable continuous function
- $\{K_n\}_n \sim_{\lambda} \phi$ sequence of definite positive Hermitian matrices

$$\frac{PrecFD}{\longrightarrow} \{K_n^{-1}(A_n + B_n + C_n)\}_n \sim_{\lambda} \frac{a(x)(2 - 2\cos(\theta))}{\phi(x)},$$

$$K_n = T_n(2 - 2\cos(\theta)) \sim_{\lambda} 2 - 2\cos(\theta)$$

$$= D_n(a^{1/2})T_n(2 - 2\cos(\theta))D_n(a^{1/2}) \sim_{\lambda} a(x)(2 - 2\cos(\theta))$$

CDR Equations

$$\begin{cases} -(a(x)u'(x))' + b(x)u'(x) + c(x)u(x) = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta, \end{cases}$$

- a(x), c(x) bounded a.e. continuous functions
- *b*(*x*) integrable continuous function
- $\{K_n\}_n \sim_{\lambda} \phi$ sequence of definite positive Hermitian matrices

$$\xrightarrow{PrecFD} \{K_n^{-1}(A_n + B_n + C_n)\}_n \sim_{\lambda} \frac{a(x)(2 - 2\cos(\theta))}{\phi(x)},$$

$$K_n = T_n(2 - 2\cos(\theta)) \sim_{\lambda} 2 - 2\cos(\theta)$$

$$K_n = D_n(a^{1/2})T_n(2 - 2\cos(\theta))D_n(a^{1/2}) \sim_{\lambda} a(x)(2 - 2\cos(\theta))$$

CDR Equations

$$\begin{cases}
-\nabla \cdot \mathsf{A} \nabla u + \mathbf{b} \cdot \nabla u + c u = f, & \text{in } (0,1)^d, \\
u = 0, & \text{on } \partial((0,1)^d),
\end{cases}$$

CDR Equations

$$\begin{cases} -\nabla \cdot A \nabla u + \mathbf{b} \cdot \nabla u + c u = f, & \text{in } (0, 1)^d, \\ u = 0, & \text{on } \partial((0, 1)^d), \end{cases}$$

d-dimensional FD

- A(x) symmetric matrix of $C^1(0,1)^d$ bounded functions with bounded partial derivatives
- b(x) bounded continuous function
- c(x) bounded continuous function

$$\xrightarrow{FD} \{A_n + B_n + C_n\}_n \sim_{\lambda} \mathbf{1}(A(x) \circ H(\theta))\mathbf{1}^T.$$

Minimal Hypothesis

$$\mathbf{b}(\mathbf{x}) \sim \mathbf{x}^{\alpha} \implies \|B_{\mathbf{n}}\|_2 = O(n^{-1-d\alpha})$$

 $\frac{1}{2} - \frac{1}{2} \longrightarrow \|B\|_0 = o\left(\sqrt{n^d}\right)$ $\alpha > -1 - \frac{1}{2} \longrightarrow \|B\|_0 = o\left(n^d\right)$

CDR Equations

$$\begin{cases} -\nabla \cdot \mathsf{A} \nabla u + \mathsf{b} \cdot \nabla u + c u = f, & \text{in } (0,1)^d, \\ u = 0, & \text{on } \partial((0,1)^d), \end{cases}$$

d-dimensional FD

- A(x) symmetric matrix of $C^1(0,1)^d$ bounded functions with bounded partial derivatives
- b(x) L^2 continuous function
- c(x) bounded continuous function

$$\xrightarrow{FD} \{A_{\mathbf{n}} + B_{\mathbf{n}} + C_{\mathbf{n}}\}_{n} \sim_{\lambda} \mathbf{1}(A(\mathbf{x}) \circ H(\theta))\mathbf{1}^{T}.$$

Minimal Hypothesis

$$\mathbf{b}(\mathbf{x}) \sim \mathbf{x}^{\alpha} \implies \|B_{\mathbf{n}}\|_2 = O(n^{-1-d\alpha})$$

1 1

CDR Equations

$$\begin{cases}
-\nabla \cdot A \nabla u + \mathbf{b} \cdot \nabla u + c u = f, & \text{in } (0, 1)^d, \\
u = 0, & \text{on } \partial((0, 1)^d),
\end{cases}$$

d-dimensional FD

- A(x) symmetric matrix of $C^1(0,1)^d$ functions
- $\mathbf{b}(\mathbf{x}) L^2$ continuous function
- c(x) continuous function

$$\xrightarrow{FD} \{A_n + B_n + C_n\}_n \sim_{\lambda} \mathbf{1}(A(\mathbf{x}) \circ H(\theta))\mathbf{1}^T.$$

$$\mathbf{b}(\mathbf{x}) \sim \mathbf{x}^{\alpha} \implies \|B_{\mathbf{n}}\|_{2} = O(n^{-1-d\alpha})$$

$$\alpha > -\frac{1}{2} - \frac{1}{d} \implies \|B_{\mathbf{n}}\|_{2} = o\left(\sqrt{n^{d}}\right) \qquad \alpha > -1 - \frac{1}{d} \implies \|B_{\mathbf{n}}\|_{2} = o(n^{d})$$

Numerical Examples

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

- * Number of eigenvalues of $A_n+B_n+C_n$ with imaginary partial greater than α
- The graph of the real part of eigenvalues of A_n + B_n + C_n
 against the symbol

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

- . Number of eigenvalues of $A_n+B_n+C_n$ with imaginary parallel than c
- The graph of the real part of eigenvalues of A_n + B_n + C_n

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

- Number of eigenvalues of $A_n + B_n + C_n$ with imaginary part greater than ε
- The graph of the real part of eigenvalues of A_n + B_n + C_n
 against the symbol

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

- Number of eigenvalues of $A_n + B_n + C_n$ with imaginary part greater than ε
- The graph of the real part of eigenvalues of $A_n + B_n + C_r$ against the symbol

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

- Number of eigenvalues of $A_n + B_n + C_n$ with imaginary part greater than ε
- The graph of the real part of eigenvalues of $A_n + B_n + C_n$ against the symbol

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^5}$ for FD and FE discretizations
- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^3}$ and $K_n = T_n(2-2cos(\theta))$ in the preconditioned discretization
- $a_{1,1}(x,y) = c(x,y) = 1/xy$, $a_{2,2}(x,y) = -xy$, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^3}$ for a bidimensional FD discretization

- Number of eigenvalues of $A_n + B_n + C_n$ with imaginary part greater than ε
- The graph of the real part of eigenvalues of $A_n + B_n + C_n$ against the symbol

Offliers

N		50	100	200	400	800
FD-1-dim	$\varepsilon=10^{-1}$	4/8%	6/6%	10/5%	12/3%	14/1.75%
	$\varepsilon = 10^{-2}$	6/12%	8/8%	14/7%	20/5%	28/3.5%
FE	$\varepsilon=10^{-1}$	4/8%	6/6%	8/4%	12/3%	14/1.75%
	$\varepsilon = 10^{-2}$	4/8%	8/8%	12/6%	14/4.5%	26/3.25%
FD-2-dim	$\varepsilon=10^{-1}$	4/8.16%	2/2%	2/1.02%	2/0.5%	2/0.26%
	$\varepsilon = 10^{-2}$	8/16.33%	12/12%	30/15.31%	52/13%	92/11.74%
Prec	$\varepsilon=10^{-1}$	2/4%	2/2%	2/1%	2/0.5%	4/0.5%
	$\varepsilon = 10^{-2}$	6/12%	8/8%	10/5%	12/3%	16/2%

Table 1: Number and percentage of eigenvalues with imaginary part greater than ε .

FD

FΕ

2-dimension FD

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^7}$ for FD and FE discretizations
- $a_{1,1}(x,y) = a_{2,2}(x,y) = 1/\sqrt{xy}$, c(x,y) = 1/xy, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^5}$ for a bidimensional FD discretization

And we analyse...

• Number of eigenvalues of $A_n + B_n + C_n$ with imaginary part greater than ε

We consider the CDR equations with...

- $a(x) = c(x) = -\log(1-x)$, $b(x) = 1/\sqrt[4]{x^7}$ for FD and FE discretizations
- $a_{1,1}(x,y) = a_{2,2}(x,y) = 1/\sqrt{xy}$, c(x,y) = 1/xy, $a_{1,2}(x,y) = x + y$, $b_1(x,y) = b_2(x,y) = 1/\sqrt[4]{(xy)^5}$ for a bidimensional FD discretization

And we analyse...

• Number of eigenvalues of $A_n + B_n + C_n$ with imaginary part greater than ε

Offliers

N		50	100	200	400	800
FD-1-dim	$\varepsilon=10^{-1}$	8/16%	12/12%	18/9%	28/7%	40/5%
	$\varepsilon = 10^{-2}$	8/16%	14/14%	22/11%	34/8.5%	74/9.25%
FE	$\varepsilon=10^{-1}$	6/12%	12/12%	18/9%	26/6.5%	40/5%
	$\varepsilon = 10^{-2}$	4/8%	8/8%	12/6%	14/4.5%	26/3.25%
FD-2-dim	$\varepsilon=10^{-1}$	12/24.29%	20/20%	30/15.31%	44/11%	58/7.4%
	$\varepsilon=10^{-2}$	16/32.653%	24/24%	42/21.43%	64/16%	114/14.54%

Table 2: Number and percentage of eigenvalues with imaginary part greater than ε .

References

- G. Barbarino. Spectral measures. Proceedings of Cortona Meeting, 2018.
- G. Barbarino and S. Serra-Capizzano. Non-hermitian perturbations of hermitian matrix-sequences and applications to the spectral analysis of approximated pdes. 2018.
- R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics, Springer-Verlag, 1997.
- C. Garoni and S. Serra-Capizzano. Generalized Locally Toeplitz Sequences: Theory and Applications, volume II. Technical Report, Uppsala University, 2017.
- C. Garoni and S. Serra-Capizzano. *Generalized Locally Toeplitz Sequences:*Theory and Applications, volume I. Springer, 2017.
- Golinskii L. and Serra-Capizzano S. The asymptotic properties of the spectrum of nonsymmetrically perturbed jacobi matrix sequences. *J. Approx. Theory*, 144:84–102, 2007.
- S. Serra-Capizzano. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach. *Linear Algebra and its Applications*, 328(1-3):121–130, 2001.