

Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae

Mint Evolutionary Genomics Consortium*

*Correspondence: buell@msu.edu

https://doi.org/10.1016/j.molp.2018.06.002

Background

- Chemical diversity is a key driver in evolutionary diversification
- Specialized metabolites are made from a small group of precursors
 - Ex: terpenes are precursors for monoterpenes, sesquiterpenes, and iridoids
- Lamiaceae is a family rich in terpenoids
 - For plants anti-microbial, anti-herbivory, and pollinator attraction
 - For us health, food flavoring, and agricultural purposes
 - Menthol peppermint
 - Nepetalactone catnip
 - Agnuside progesterone normalization
 - Caryphyllene food aromatic (pepper)

Key points:

- Monoterpenes and iridoids are both derived from GPP
- GPP is produced by the MEP pathway
- Sesquiterpenes are produced by the MVA pathway
- MVA and MEP pathways compete for IPP

Background

- Extensive flavonoid diversity exists in Lamiaceae
 - GM-MS and LC-MS identified 64 iridoids, 44 monoterpenes, and 39 sesquiterpenes across all species investigated
- However, evolutionary mechanisms (i.e. selective pressures) driving diversity are unknown

Goal – analyze transcriptomes and metabolomes of 48 phylogenetically diverse species of Lamiaceae to reveal evolutionary mechanics underlying chemodiversity

Transcriptome-based phylogeny

- RNA extracted from young leaves of 48 species and 4 outgroups
- Transcriptome assembled for each species
- 520 single-copy nuclear genes identified from angiosperm database to be present in transcriptome of all 52 species
 - Maximum-likelihood tree constructed based on sequences of these 520 genes

Metabolite profiling

- Untargeted metabolite profiling of young leaf tissue
- GC-MS used to identify monoterpenes, sesquiterpenes, and 2 volatile iridoids
- LC-MS used to identify iridoids
- Data is "binary" 2 possibilities for each metabolite
 - Detected
 - Not detected

Orthologous grouping of proteins

- Previously constructed transcriptomes used to predict proteomes for each species
- Proteins predicted from proteomes clustered into orthologous groups
 - Orthologous from common ancestor (i.e. a family/class of proteins with similar function)
- Analysis of genes/protein groups involved in TCA cycle used to validate transcriptional representation
 - Detected a similar number of genes with little variation in copy number
 - Detected genes had similar levels of expression (Z-scores)
 - Conclusion read depth is sufficient for analysis

Overview of phylogenomic method

Iridoid pathway

- Species clustered/ordered by iridoid pathway gene orthogroup expression levels
- 2 distinct clusters:
 - Group I non-iridoid producing
 - Group II iridoid producing
- 3 iridoid producing species (NECA, NEMU, PHFR) clustered in Group I
 - Use of genes from different orthogroups to produce iridoids
 - Independent evolution of iridoid pathway

Iridoid pathway

- 4 orthogroups had very significant differences (P<0.001) in expression between Groups I and II
- Many species in Group I (no iridoids) had no detectable GES expression – key gatekeeping step

Mono- and sesquiterpene pathways

- Species clustered/ordered by mono- and sesquiterpene pathway gene orthogroup expression levels
- Overall weak relationship between orthogroup expression levels and mono- and sesquiterpene diversity
 - Primary driver is not gene expression, but rather gene family expansion (i.e. number of genes in each orthogroup)

Mono- and sesquiterpene pathways

- Number of genes in TPS orthogroups controls mono- and sesquiterpene diversity
 - TPSb and TPSc monoterpenes
 - TPSa sesquiterpenes

Mono- and sesquiterpene pathways

- Negative relationship between GGPPS-LSU, MDS, and HDS orthogroup occupancy and sesquiterpene diversity
- Positive relationship between MDD orthogroup occupancy and sesquiterpene diversity
- Conclusion Sesquiterpene precursors are provided primarily by MVA pathway, MEP

Discussion

- In Nepetoideae, mono- and sesquiterpene volatiles serve as key defense compounds, in place of iridoid glycosides used by other species
 - Structural analysis shows that primary form of iridoids in family Nepeta is nepetalactone – much more volatile than traditional iridoids used by non-Nepetoideae species
 - Nepetalactones resemble insect pheromones – play role in plant-insect signaling

Discussion

- In general, production of iridoids and monoterpenes is inversely correlated
 - GES controls flux into iridoid or monoterpene pathway
- Iridoid production is associated with enhanced gene expression
- Mono- and sesquiterpene production is associated with increased orthogroup size

