

Universität Ulm

Abgabe: 10:50 Uhr

Dr. Gerhard Baur Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2020

Punktzahl: 20

Zwischenklausur Analysis 1:

- **1.** Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + |x 1|.
 - (a) Zeigen Sie, dass f nicht injektiv ist. (2)
 - (b) Zeigen Sie, dass f nicht surjektiv ist. (2)
 - (c) Schränken Sie den Definitions- und Wertebereich der Funktion f so ein, dass Sie bijektiv auf ihr Bild abbildet. Beweisen Sie Ihre Aussage. (4)
- **2.** Zeigen Sie, dass für alle natürlichen $n \in \mathbb{N}$ mit $n \geq 2$ gilt: (4)

$$\prod_{k=1}^{n-1} \left(1 + \frac{1}{k}\right)^k = \frac{n^n}{n!}$$

- 3. Beweisen oder widerlegen Sie die folgenden Aussagen:
 - (a) Es gibt keine injektive Funktion $f: \mathbb{Z} \to \mathbb{N}$. (2)
 - (b) Es seien I, J zwei reelle Intervalle. Wir definieren $I \cdot J := \{a \cdot b \mid a \in I \land b \in J\}$. Dann gilt (2) $\sup I \cdot \sup J = \sup(I \cdot J)$.
 - (c) Es sei $\varepsilon > 0$ beliebig. Für jede komplexe Zahl $z \in \mathbb{C}$ gibt es irrationale Zahlen $\xi, \eta \in \mathbb{R} \setminus \mathbb{Q}$ (2) mit $|z (\xi + i\eta)| < \varepsilon$.
 - (d) Für $a, b \in \mathbb{C}$ sei die Relation \sim definiert durch (2)

$$a \sim b :\Leftrightarrow |a - b| \le 1.$$

Dann ist durch \sim eine Äquivalenzrelation auf $\mathbb C$ definiert.