Question 1

Part a)

An aerodynamicist is testing a simulation he made that included viscous effects with a simulation he made excluding viscous effects. What kind of error is he testing here (multiple correct answers are possible)?

- a) Model errors
- b) Discretisation
- c) Round-off
- d) Iteration errors

Part b)

He can only test for this when he has established that the following errors are small (multiple correct answers are possible)?

- a) Model errors
- b) Discretisation errors
- c) Round-off errors
- d) Iteration errors

Question 2

Someone wants to solve the algebraic system of equations $A\mathbf{u} = \mathbf{f}$. When he plugs in the exact solution \mathbf{u} into this equation, and computes the residual \mathbf{r} , i.e.

$$r = Au - f$$

he finds that when he increases the mesh refinement, the magnitude of \mathbf{r} goes down. What has he established?

- a) Consistency
- b) Stability
- c) Convergence

Question 3

Consider the partial differential equation

$$\nabla^2 u = 0$$

on Ω . What kind of boundary conditions can be applied on the boundary $d\Omega$?

- Numerical
- Numerical and Dirichlet
- Numerical and Neumann
- Dirichlet and Neumann
- Dirichlet
- Neumann
- Numerical, Dirichlet and Neumann

Question 4

Consider the partial differential equation

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$

Part a)

How can this equation be qualified as?

- Hyperbolic
- Elliptic
- Parabolic
- Conic
- Biconic

Part b)

It is given that both u_1 and u_2 are solutions to the equation. What more is then a solution?

- u_1/u_2

Part c)

For the domain shown below, on what boundary can boundary conditions be applied (multiple answers can be correct)?

- A & D
- A & B
- B & C
- C & D
- Only A
- Only B
- Only C
- Only D • A & C
- B & D

Question 5

If one is to find characteristics of elliptic PDEs, what numbers can be expected for the slope of the lines (multiple answers can be correct)?

- Rational numbers
- Irrational numbers
- Integers
- Integers only if a source term is present
- Complex numbers

Question 6

Consider the stencil shown above: one is researching a Neumann boundary condition, $dM/dx = q_0$ at the left boundary. To approximate this derivative, a one-sided three-point stencil is used with equal spacing Δx , as shown above. This leads to the following Taylor table.

	M_1	M_2	M_3	
1	a	b	c	R_1
$\Delta x \frac{\partial M}{\partial x}$	0	b	C_1	R_2
$\Delta x^2 \frac{\partial^2 M}{\partial x^2}$	0	$\frac{b}{2}$	C_2	R_3
$\Delta x^3 \frac{\partial^3 M}{\partial x^3}$	0	$\frac{b}{6}$	C_3	R_4

Part a)

Compute the entry R_2 and C_3 .

Part b)

Solving this Taylor table leads to a matrix equation, shown below. Compute the entry A_{13} in terms of a, b and c, and compute j, the index next to q in the right-hand-side vector.

$$\frac{1}{\Delta x}\begin{bmatrix} A_{11} & A_{12} & A_{13} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} M_1 \\ \vdots \end{bmatrix} = \begin{bmatrix} q_j \\ \vdots \end{bmatrix}$$