Discussion 07

Single Cycle Datapath

Aditya Balasubramanian aditbala [at] berkeley [dot] edu

Announcements <

Agenda

- SDS Review
- Single Cycle Datapath

SDS Review

Definitions (Pt. 1)

- Clk
 - Central timing unit of the entire SDS; usually only one clock per system
- State element
 - Any clocked element: stores values
 - Only does computation things at the rising edge of the clock
 - E.g. registers
- Logic element
 - Any unclocked elements: does not store value
 - Computes ALL THE TIME!
 - E.g. combinatorial logic elements (AND gates, OR gates, etc.)

Definitions (Pt. 2)

- Flip-flop
 - state element that stores 1 bit's value (0/1)
- Register
 - on -bit state element; created with no chained FFs
 - \circ D = input; Q = output
 - Reads value from D at clock tick, puts value into Q

Definitions (Pt. 3)

- Rising clock edge (RCE)
 - clk goes from 0 => 1; Usually instantaneous
 - Triggers all the state elements dependent directly on the clock
- Falling clock edge
 clk goes from 1 => 0
- Setup time
 - Time BEFORE RCE where input must be stable
- Hold time
 - Time AFTER RCE where input must be stable
- Clock-to-q time (c2q)
 - Time after RCE needed for value in Q to change

Definitions (Pt. 4)

- Combinational logic delay
 - Combinatorial delay between 2 state elements
 - Usually Sum of total delays within the path from the Q of one register to the D of another (or the same) register
- Critical path
 - Total delay between 2 state elements
 - Clk-to-q (reg1) + longest CL + setup time (reg2)
- Maximum clock frequency
 - 1 / minimum clock period

Equations

 $ext{max hold time} \leq t_{ ext{clock to q}} + ext{shortest CL}$

Any longer of a hold time means that value has potential to change

 $\overline{ ext{cycle}} ext{ time} \geq t_{ ext{clock to q}} + ext{longest CL} + t_{ ext{setup}}$

- Cycle time = clock period
- Any shorter cycle time means the values may not finish computing correctly in time

Single Cycle Datapath

What Even is a datapath?

- Given a program counter (the address of the instruction we need to execute)
- Update the registers to reflect the given instruction
- Every single update we need to make will be in the RISC-V Reference Card: VERY USEFUL
- Standard datapath accounts for all real RISC-V 32bit instructions
- No pseudoinstructions

12

Datapath Basics

- Wiring accounts for flow of data
- Control logic block does the hard work of "thinking"
- CL takes data/signal in from datapath \Rightarrow arrows point towards control logic
 - Instr[31:0]; BrEq; BrLT
- CL feeds signal back to datapath \Rightarrow arrows point away from control logic
 - Calculates signals to tell datapath what components of datapath to use
 - All other signals in standard datapath

Stages of a Single Cycle Datapath

Instruction Fetch (IF)

- 1. Update the value in PC
 - ∘ (**PCSel** = 0) PC = PC + 4
 - (PCSel = 1) PC = ALU output
- 2. Fetch instruction from IMEM at PC
 - IMEM is "Instruction memory", generally in the code section!

Credits to Rosalie Fang