Message Passing Interface

F.CS306 Parallel programming – Lecture 16

Topic Overview

- ♦ Collective мэдээлэл солилцоо
- « Barrier синхрончлол, Broadcast, Scatter, Gather үйлдлүүд
- ♦ Глобал Reduce үйлдэл

Collective мэдээлэл солилцоо

- ♦ Процесс бүлгийн үүсгэх мэдээлэл солилцоонууд.
- ♦ Communicator доторх бүх процессоор оролцох ёстой.
- ♦ Barrier синхрончлолт; Broadcast, scatter, gather; Глобал нийлбэр, глобал максимум гэх мэт.
- ♦ Синхрончлол үүсч болно, үгүй ч байж болно.
- ♦ Бүх мэдээлэл солилцоо blocking байна.
- ♦ Тад байхгүй.
- ♦ Хүлээн авах буфер нь илгээх буфертай яг ижил хэмжээтэй байх ёстой.

Barrier синхрончлол

- int MPI_Barrier(MPI_Comm_comm)
- ♦ MPI_Barrier нь ихэвчлэн шаардлагагүй байдаг:
 - ♦ Бүх синхрончлол нь өгөгдлийн дамжуулалтаар автомат хийгдэг: Шаардлагатай өгөгдөлтэй болохоос өмнө процесс үргэлжлэх боломжгүй.
 - ⋄ Хэрэв debug хийхэд хэрэглэж байгаа бол: Release хийж бүтээгдэхүүн болгохдоо устгадаг.

Broadcast

Scatter

 int MPI Scatter(void *sendbuf, int sendcount, MPI_Datatype sendtype,/void *recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI Comm comm) before scatter ABCDE after scatter

Жнь: root=1

Gather

Жнь: root=1

Global Reduction Operations

- ⋄ Глобал Reduce үйлдэл нь группын бүх гишүүн дээр биелдэг.
- $\Leftrightarrow d_0 \circ d_1 \circ d_2 \circ d_3 \circ \dots \circ d_{s-2} \circ d_{s-1}$
 - \diamond d_i = i *rank*-тай процесс дахь өгөгдөл, single хувьсагч, эсвэл vector
 - ♦ = холбогч үйлдэл
 - ♦ Жишээ: глобал нийлбэр, үржвэл; глобал хамгийн их эсвэл бага олох; глобал хэрэглэгчийн тодорхойлсон үйлдэл
- floating point rounding may depend on usage of associative law:
 - $\Leftrightarrow [(d_0 \circ d_1) \circ (d_2 \circ d_3)] \circ [\dots \circ (d_{s-2} \circ d_{s-1})]$
 - \Leftrightarrow (((((((d₀ d₁) d₂) d₃) ...) d_{s-2}) d_{s-1})

Predefined Reduction Operation Handles

Predefined operation handle	Function
MPI_MAX	Maximum
MPI_MIN	Minimum
MPI_SUM	Sum
MPI_PROD	Product
MPI_LAND	Logical AND
MPI_BAND	Bitwise AND
MPI_LOR	Logical OR
MPI_BOR	Bitwise OR
MPI_LXOR	Logical exclusive OR
MPI_BXOR	Bitwise exclusive OR
MPI_MAXLOC	Maximum and location of the maximum
MPI_MINLOC	Minimum and location of the minimum

MPI_REDUCE

Variants of Reduction Operations

♦ MPI_ALLREDUCE

- ♦ no root,
- returns the result in all processes

♦ MPI_REDUCE_SCATTER

result vector of the reduction operationis scattered to the processes into the real result buffers

♦ MPI_SCAN

- prefix reduction
- ♦ result at process with rank i := reduction of inbuf-values from rank 0 to rank i

MPI_ALLREDUCE

MPI_SCAN

done in parallel

Thanks.