Here is a cool paper!

Albert Gu, Frederic Sala, Beliz Gunel & Christopher Re Stanford University

Siba Smarak Panigrahi (SSP)

McGill University and Mila

Oct 21, 2022

Learning Mixed-Curvature Representations in Products of Model Spaces

Albert Gu, Frederic Sala, Beliz Gunel & Christopher Re Stanford University

Siba Smarak Panigrahi (SSP)

McGill University and Mila

Oct 21, 2022

Outline

- Season 1: Pilot
 - Why do we need this paper?
 - O What do I additionally need to know?

Outline

- Season 1: Pilot
 - Why do we need this paper?
 - What do I additionally need to know?
- Season 2: Into the Product Spaces
 - How to construct product spaces?
 - O How to optimize on product spaces while learning curvatures?

Outline

- Season 1: Pilot
 - Why do we need this paper?
 - O What do I additionally need to know?
- Season 2: Into the Product Spaces
 - How to construct product spaces?
 - O How to optimize on product spaces while learning curvatures?
- Season 3: Swan Song
 - What experiments do they do?
 - What are we concluding then? (with a couple of personal thoughts)

Season 1: Pilot

- Spherical spaces are wonderful for cyclical structure
- Hyperbolic spaces for hierarchical structure
- Most data is not structured (this uniformly)!

- Spherical spaces are wonderful for cyclical structure
- Hyperbolic spaces for hierarchical structure
- Most data is not structured (this uniformly)!

- To better capture the geometry of data:
 - Product of constant curvature spaces to obtain range of (non-constant) curvatures
 - Even better, we can learn the curvature and embedding simultaneously!

- Spherical spaces are wonderful for cyclical structure
- Hyperbolic spaces for hierarchical structure
- Most data is not structured (this uniformly)!

- To better capture the geometry of data:
 - Product of constant curvature spaces to obtain range of (non-constant) curvatures
 - Even better, we can learn the curvature and embedding simultaneously!

- Model spaces of constant curvature include:
 - Euclidean (curvature = 0)
 - Hyperbolic (curvature = negative)
 - Spherical (curvature = positive)

- Model spaces of constant curvature include:
 - Euclidean (curvature = 0)
 - Hyperbolic (curvature = negative)
 - Spherical (curvature = positive)
- Authors also provide a way to compute

- Means on these mixed spaces (and provide its computational complexity)
 - T = $\{p_1, p_2, \dots, p_n\}$ in manifold M (dimension r), mean is $\mu(T) := argmin_p \sum_i (d_M^2(p, pi))$
 - Essential for downstream applications like analogy tasks with word embeddings, for clustering, and for centering before applying PCA.

- Model spaces of constant curvature include:
 - Euclidean (curvature = 0)
 - Hyperbolic (curvature = negative)
 - Spherical (curvature = positive)
- Authors also provide a way to compute

- Means on these mixed spaces (and provide its computational complexity)
 - T = $\{p_1, p_2, \dots, p_n\}$ in manifold M (dimension r), mean is $\mu(T) := argmin_p \sum_i (d_M^2(p, pi))$
 - Essential for downstream applications like analogy tasks with word embeddings, for clustering, and for centering before applying PCA.

Lemma 2. Let \mathcal{P} be a product of model spaces of total dimension r, $T = \{p_1, \ldots, p_n\}$ points in \mathcal{P} and w_1, \ldots, w_n weights satisfying $w_i \geq 0$ and $\sum_{i=1}^n w_i = 1$. Moreover, let the components of the points in \mathcal{P} , $p_{i|\mathbb{S}^j}$ restricted to each spherical component space \mathbb{S}^j fall in one hemisphere of \mathbb{S}^j . Then, Riemannian gradient descent recovers the mean $\mu(T)$ within distance ϵ in time $O(nr \log \epsilon^{-1})$.

What do I additionally need to know?

- Embeddings, distortion, and mAP:
 - \circ d_{II}, d_V are distances for metric spaces U and V
 - \circ f: U -> V is an embedding from U to V
 - O Distortion: between a pair of points a, b is defined as

$$\frac{|d_V(f(a),f(b))-d_U(a,b)|}{d_U(a,b)}$$

Average over all pairs of points := average distortion (D_{avg}) (lower is better)

What do I additionally need to know?

- Embeddings, distortion, and mAP:
 - \circ d_{II}, d_V are distances for metric spaces U and V
 - \circ f: U -> V is an embedding from U to V
 - O Distortion: between a pair of points a, b is defined as

$$\frac{|d_V(f(a),f(b))-d_U(a,b)|}{d_U(a,b)}$$

- Average over all pairs of points := average distortion (D_{avg}) (lower is better)
- Mean Average Precision (mAP): for unweighted graph G = (V, E) (higher is better)

$$\text{mAP}(f) = \frac{1}{|V|} \sum_{a \in V} \frac{1}{\deg(a)} \sum_{i=1}^{|\mathcal{N}_a|} |\mathcal{N}_a \cap R_{a,b_i}| / |R_{a,b_i}|$$

$$N_a$$
 = neighborhood of a = $\{b_1,\ldots,b_{\deg(a)}\}$

 R_{a,b_i} = smallest set of nearest points required to retrieve i-th neighbor of a in f

Product Manifolds

- Smooth manifolds: $M_1 M_2 ..., M_K$; M = (cartesian) product manifold = $M_1 x M_2 x ... x M_K$
- \circ Point p in M is represented by $\,p=(p_1,\ldots,p_k):p_i\in M_i$
- \circ Similarly, $v \in T_pM$ can be written $(v_1, \ldots, v_k) : v_i \in T_{p_i}M_i$
- \circ If g_i is metric associated with M_i , then M is also Riemannian with metric g

$$g(u,v) = \sum_{i=1}^{k} g_i(u_i,v_i)$$

i.e., product metric decomposes into the sum of the constituent metrics

Product Manifolds

- Smooth manifolds: $M_1 M_2 ..., M_K$; M = (cartesian) product manifold = $M_1 \times M_2 \times ... \times M_K$
- \circ Point p in M is represented by $\,p=(p_1,\ldots,p_k):p_i\in M_i$
- \circ Similarly, $v \in T_p M$ can be written $(v_1, \dots, v_k) : v_i \in T_{p_i} M_i$
- \circ If g_i is metric associated with M_i , then M is also Riemannian with metric g

$$g(u,v) = \sum_{i=1}^{k} g_i(u_i,v_i)$$

i.e., product metric decomposes into the sum of the constituent metrics

Distances

- \circ Key idea: Optimization (taking a step) on manifold can be performed in tangent space and transferred to manifold through exponential map, i.e., $\operatorname{Exp}_p:T_pM\to M$
- Interestingly, exponential map and squared distances decompose in product space

$$\operatorname{Exp}_{p}(v) = (\operatorname{Exp}_{p_{1}}(v_{1}), \dots, \operatorname{Exp}_{p_{k}}(v_{k})), \qquad d_{\mathcal{P}}^{2}(x, y) = \sum_{i=1}^{k} d_{i}^{2}(x_{i}, y_{i})$$

i.e., shortest path between points in product space is shortest path traveled in each component

Hyperbolic Model

- \circ For hyperboloid \mathbb{H}^d_K , points in \mathbb{R}^{d+1} such that $\{p\in\mathbb{R}^{d+1}:\|p\|_*=-K^{1/2},p_0>0\}$
- \circ Minkowski product is defined as $\langle p,q
 angle_* := p^T J q = -p_0 q_0 + p_1 q_1 + \ldots + p_d q_d$
 - norm as $\|p\|_* = \langle p, p \rangle_*^{\frac{1}{2}}$
 - hyperbolic distance \mathbb{H}^d is $d_H(p,q) = \operatorname{acosh}(-\langle p,q\rangle_*)$
 - Also note that $J = \begin{bmatrix} -1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{R}^{(d+1)x(d+1)}$

Hyperbolic Model

- \circ For hyperboloid \mathbb{H}^d_K , points in \mathbb{R}^{d+1} such that $\{p\in\mathbb{R}^{d+1}:\|p\|_*=-K^{1/2},p_0>0\}$
- \circ Minkowski product is defined as $\langle p,q
 angle_*:=p^TJq=-p_0q_0+p_1q_1+\ldots+p_dq_d$
 - norm as $\|p\|_* = \langle p,p \rangle_*^{\frac{1}{2}}$
 - hyperbolic distance \mathbb{H}^d is $d_H(p,q) = \operatorname{acosh}(-\langle p,q\rangle_*)$
 - Also note that $J = \begin{bmatrix} -1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \in \mathbb{R}^{(d+1)\times(d+1)}$

Spherical Model

Similar to hyperbolic model, differences being

Season 2: Into the Product Spaces

- Consider product space as $\mathcal{P} = \mathbb{S}^{s_1} \times \mathbb{S}^{s_2} \times \cdots \times \mathbb{S}^{s_m} \times \mathbb{H}^{h_1} \times \mathbb{H}^{h_2} \times \cdots \times \mathbb{H}^{h_n} \times \mathbb{E}^e$
 - \circ $s_i h_i$ and e are dimensions of spherical, hyperbolic, and euclidean spaces

- Consider product space as $\mathcal{P} = \mathbb{S}^{s_1} \times \mathbb{S}^{s_2} \times \cdots \times \mathbb{S}^{s_m} \times \mathbb{H}^{h_1} \times \mathbb{H}^{h_2} \times \cdots \times \mathbb{H}^{h_n} \times \mathbb{E}^e$
 - \circ $s_i h_i$ and e are dimensions of spherical, hyperbolic, and euclidean spaces
 - o has m+n+1 components, with total dimension being $\sum_i s_i + \sum_j h_j + e$
 - o signature is the number of components of each type and their dimensions

- Consider product space as $\mathcal{P} = \mathbb{S}^{s_1} \times \mathbb{S}^{s_2} \times \cdots \times \mathbb{S}^{s_m} \times \mathbb{H}^{h_1} \times \mathbb{H}^{h_2} \times \cdots \times \mathbb{H}^{h_n} \times \mathbb{E}^e$
 - \circ $s_i h_i$ and e are dimensions of spherical, hyperbolic, and euclidean spaces
 - \circ has m+n+1 components, with total dimension being $\sum_i s_i + \sum_j h_j + e$
 - o signature is the number of components of each type and their dimensions
 - we can thus say signature is (1, spherical, s_1), (2, spherical, s_2), ...
 - note, there is no such signature (i.e., there is only one euclidean component if exists in product), since product of $\mathbb{E}^{r_1}, \dots, \mathbb{E}^{r_n}$ is equal to single space $\mathbb{E}^{r_1+\dots+r_n}$

- Consider product space as $\mathcal{P} = \mathbb{S}^{s_1} \times \mathbb{S}^{s_2} \times \cdots \times \mathbb{S}^{s_m} \times \mathbb{H}^{h_1} \times \mathbb{H}^{h_2} \times \cdots \times \mathbb{H}^{h_n} \times \mathbb{E}^e$
 - \circ $s_i h_i$ and e are dimensions of spherical, hyperbolic, and euclidean spaces
 - \circ has m+n+1 components, with total dimension being $\sum_i s_i + \sum_j h_j + e$
 - o signature is the number of components of each type and their dimensions
 - we can thus say signature is (1, spherical, s_1), (2, spherical, s_2), ...
 - note, there is no such signature (i.e., there is only one euclidean component if exists in product), since product of $\mathbb{E}^{r_1}, \dots, \mathbb{E}^{r_n}$ is equal to single space $\mathbb{E}^{r_1+\dots+r_n}$
- Estimating signature
 - (empirical) discrete curvature of given data
 - (theoretical) sectional curvature distribution
 - matching them both to obtain signature

- Suppose we already have a signature
 - To obtain the embeddings we minimize a loss (basically a stable form of distortion)

$$\mathcal{L}(x) = \sum_{1 \leq i \leq j \leq n} \left| \left(\frac{d_{\mathcal{P}}(x_i, x_j)}{d_G(X_i, X_j)} \right)^2 - 1 \right|$$

- Suppose we already have a signature
 - To obtain the embeddings we minimize a loss (basically a stable form of distortion)

$$\mathcal{L}(x) = \sum_{1 \leq i \leq j \leq n} \left| \left(\frac{d_{\mathcal{P}}(x_i, x_j)}{d_G(X_i, X_j)} \right)^2 - 1 \right|$$

Algorithm 1 R-SGD in products

13: return $x^{(T)}$

```
1: Input: Loss function L: \mathcal{P} \to \mathbb{R}

2: Initialize x^{(0)} \in \mathcal{P} randomly

3: for t = 0, \dots, T - 1 do

4: h \leftarrow \nabla L(x^{(t)})

5: for i = 1, \dots, m do

6: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^S(h_i)

7: for i = m + 1, \dots, m + n do

8: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^H(h_i)

9: v_i \leftarrow Jv_i

10: v_{m+n+1} \leftarrow h_{m+n+1}

11: for i = 1, \dots, m + n + 1 do

12: x_i^{(t+1)} \leftarrow \operatorname{Exp}_{x^{(t)}}(v_i)
```

- Compute Euclidean gradient
 - w.r.t to ambient space of the embedding

- Suppose we already have a signature
 - To obtain the embeddings we minimize a loss (basically a stable form of distortion)

$$\mathcal{L}(x) = \sum_{1 \le i \le j \le n} \left| \left(\frac{d_{\mathcal{P}}(x_i, x_j)}{d_G(X_i, X_j)} \right)^2 - 1 \right|$$

Algorithm 1 R-SGD in products

13: return $x^{(T)}$

```
1: Input: Loss function L : \mathcal{P} \to \mathbb{R}

2: Initialize x^{(0)} \in \mathcal{P} randomly

3: for t = 0, \dots, T - 1 do

4: h \leftarrow \nabla L(x^{(t)})

5: for i = 1, \dots, m do

6: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^S(h_i)

7: for i = m + 1, \dots, m + n do

8: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^H(h_i)

9: v_i \leftarrow Jv_i

10: v_{m+n+1} \leftarrow h_{m+n+1}

11: for i = 1, \dots, m + n + 1 do

12: x_i^{(t+1)} \leftarrow \operatorname{Exp}_{x_i^{(t)}}(v_i)
```

- Compute Euclidean gradient
 - w.r.t to ambient space of the embedding
- Hyperboloid and spherical models have lower dimensions than the embedding space
 - Project gradient vector *h* into tangent spaces

- Suppose we already have a signature
 - To obtain the embeddings we minimize a loss (basically a stable form of distortion)

$$\mathcal{L}(x) = \sum_{1 \le i \le j \le n} \left| \left(\frac{d_{\mathcal{P}}(x_i, x_j)}{d_G(X_i, X_j)} \right)^2 - 1 \right|$$

Algorithm 1 R-SGD in products

13: return $x^{(T)}$

```
1: Input: Loss function L : \mathcal{P} \to \mathbb{R}

2: Initialize x^{(0)} \in \mathcal{P} randomly

3: for t = 0, \dots, T - 1 do

4: h \leftarrow \nabla L(x^{(t)})

5: for i = 1, \dots, m do

6: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^S(h_i)

7: for i = m + 1, \dots, m + n do

8: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^H(h_i)

9: v_i \leftarrow Jv_i

10: v_{m+n+1} \leftarrow h_{m+n+1}

11: for i = 1, \dots, m + n + 1 do

12: x_i^{(t+1)} \leftarrow \operatorname{Exp}_{x_i^{(t)}}(v_i)
```

- Compute Euclidean gradient
 - o w.r.t to ambient space of the embedding
- Hyperboloid and spherical models have lower dimensions than the embedding space
 - Project gradient vector h into tangent spaces
 - Take the step with these vectors in tangent space and Exponential map

- Suppose we already have a signature
 - To obtain the embeddings we minimize a loss (basically a stable form of distortion)

$$\mathcal{L}(x) = \sum_{1 \le i \le j \le n} \left| \left(\frac{d_{\mathcal{P}}(x_i, x_j)}{d_G(X_i, X_j)} \right)^2 - 1 \right|$$

Algorithm 1 R-SGD in products

```
1: Input: Loss function L : \mathcal{P} \to \mathbb{R}

2: Initialize x^{(0)} \in \mathcal{P} randomly

3: for t = 0, ..., T - 1 do

4: h \leftarrow \nabla L(x^{(t)})

5: for i = 1, ..., m do

6: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^S(h_i)

7: for i = m + 1, ..., m + n do

8: v_i \leftarrow \operatorname{proj}_{x_i^{(t)}}^H(h_i)

9: v_i \leftarrow Jv_i

10: v_{m+n+1} \leftarrow h_{m+n+1}

11: for i = 1, ..., m + n + 1 do

12: x_i^{(t+1)} \leftarrow \operatorname{Exp}_{x_i^{(t)}}(v_i)

13: return x^{(T)}
```

- Compute Euclidean gradient
 - o w.r.t to ambient space of the embedding
- Hyperboloid and spherical models have lower dimensions than the embedding space
 - \circ Project gradient vector h into tangent spaces
 - Take the step with these vectors in tangent space and Exponential map
 - \circ Since g_p of product space decomposes we can carry these steps independently in each component

$$\operatorname{proj}_{x}^{S}(h) = h - \langle h, x \rangle x \qquad \operatorname{proj}_{x}^{H}(h) = h + \langle h, x \rangle_{*} x$$

How do we simultaneously learn the curvature?

- First note that, for all values of K, there exists a hyperbolic (K < 0) or a spherical (K > 0) model
- Further, note that we can emulate all curvature (K) values on the corresponding standard models
 - \circ For instance, given points p, q on \mathbb{S}_{1/R^2} of radius R, then

$$d(p,q) = R \cdot d_{\mathbb{S}_1}(p/R, q/R)$$

• Hence, we can work with models of curvature 1 rather than K.

How do we simultaneously learn the curvature?

- First note that, for all values of K, there exists a hyperbolic (K < 0) or a spherical (K > 0) model
- Further, note that we can emulate all curvature (K) values on the corresponding standard models
 - \circ For instance, given points p, q on \mathbb{S}_{1/R^2} of radius R, then

$$d(p,q) = R \cdot d_{\mathbb{S}_1}(p/R, q/R)$$

- \circ Hence, we can work with models of curvature 1 rather than K.
- Note, the loss depends only on squared distances (in turn is sum of distances in components).
 - We can consider R as parameter and optimize for the curvature!

How to estimate the signature?

- As stated earlier, we will
 - o find the sectional curvature distribution and
 - o empirically estimate the discrete curvature from data
 - o to match them and estimate signature

How to estimate the signature?

- As stated earlier, we will
 - find the sectional curvature distribution and
 - empirically estimate the discrete curvature from data
 - o to match them and estimate signature
- **Sectional curvature**: linearly independent x, y in tangent space T_pM , spanning a two-dimensional subspace U, the sectional curvature $K_p(x, y)$ is defined as the Gaussian curvature of the surface Exp(U).

$$K(x,y) := \frac{(x,y,x,y)}{\|x\|^2 \|y\|^2 - \langle x,y \rangle^2}$$

How to estimate the signature?

- As stated earlier, we will
 - find the sectional curvature distribution and
 - empirically estimate the discrete curvature from data
 - o to match them and estimate signature
- **Sectional curvature**: linearly independent x, y in tangent space T_pM , spanning a two-dimensional subspace U, the sectional curvature $K_p(x, y)$ is defined as the Gaussian curvature of the surface Exp(U).

$$K(x,y) := rac{(x,y,x,y)}{\|x\|^2 \|y\|^2 - \langle x,y \rangle^2}$$

Lemma 1. Let $M = M_1 \times M_2$ where M_i has constant curvature K_i . For any $u, v \in T_pM$, K_1, K_2 are both non-negative, the sectional curvature satisfies $K(u, v) \in [0, \max\{K_1, K_2\}]$. K_1, K_2 are both non-positive, the sectional curvature satisfies $K(u, v) \in [\min\{K_1, K_2\}, 0]$. $K_i < 0$ and $K_j > 0$ for $i \neq j$, then $K(u, v) \in [K_i, K_j]$.

The derivation of this lemma enables us to obtain a distribution of sectional curvature!

$$K((x_1, x_2), (y_1, y_2)) = \frac{\alpha_1 K_1}{\alpha_1 + \alpha_2 + \beta} + \frac{\alpha_2 K_2}{\alpha_1 + \alpha_2 + \beta}$$

$$lpha_i = \|x_i\|^2 \|y_i\|^2 - \langle x_i, y_i \rangle^2 ext{ for } i = 1, 2$$
 and $eta = \|x_1\|^2 \|y_2\|^2 + \|x_2\|^2 \|y_1\|^2$

W.L.O.G and using Cauchy-Schwarz inequality, we get $0 \le K((x_1, x_2), (y_1, y_2)) \le \frac{\alpha_1}{\alpha_1 + \alpha_2} K_1 + \frac{\alpha_2}{\alpha_1 + \alpha_2} K_2$.

$$K((x_1, x_2), (y_1, y_2)) = \frac{\alpha_1 K_1}{\alpha_1 + \alpha_2 + \beta} + \frac{\alpha_2 K_2}{\alpha_1 + \alpha_2 + \beta}$$

$$\alpha_i = \|x_i\|^2 \|y_i\|^2 - \langle x_i, y_i \rangle^2 \text{ for } i = 1, 2$$
 and $\beta = \|x_1\|^2 \|y_2\|^2 + \|x_2\|^2 \|y_1\|^2$

W.L.O.G and using Cauchy–Schwarz inequality, we get $0 \le K((x_1,x_2),(y_1,y_2)) \le \frac{\alpha_1}{\alpha_1+\alpha_2}K_1 + \frac{\alpha_2}{\alpha_1+\alpha_2}K_2$.

Algorithm 2 Sectional curvature distribution

- 1: Input: Dimensions d_1, d_2
- 2: $a_1 \leftarrow \chi^2(d_1 1)$
- 3: $b_1 \leftarrow \chi^2(d_1 1)$
- 4: $t_1 \leftarrow \text{Beta}((d_1 1)/2, (d_1 1)/2)$
- 5: $c_1 \leftarrow a_1^{1/2} b_1^{1/2} (2t_1 1)$
- 6: $a_2 \leftarrow \chi^2(d_2 1)$
- 7: $b_2 \leftarrow \chi^2 (d_2 1)$
- 8: $t_2 \leftarrow \text{Beta}((d_2 1)/2, (d_2 1)/2)$
- 9: $c_2 \leftarrow a_2^{1/2} b_2^{1/2} (2t_2 1)$
- 10: $\alpha_1 \leftarrow a_1b_1 c_1^2$
- 11: $\alpha_2 \leftarrow a_2 b_2 c_2^2$
- 12: $\beta \leftarrow a_1 b_2 + a_2 \bar{b}_1$
- 13: **return** $\frac{\alpha_1}{\alpha_1 + \alpha_2 + \beta} K_1 + \frac{\alpha_2}{\alpha_1 + \alpha_2 + \beta} K_2$

Use Algorithm 2 to obtain sectional curvature distribution

- note the input to algorithm is dimensions of manifolds
- Also observe that Lemma 1 is for product of 2 model spaces only

How to get the discrete curvature from graph data?

Figure 3: Geodesic triangles in differently curved spaces: compared to Euclidean geometry in which it satisfies the parallelogram law (Center), the median am is longer in cycle-like positively curved space (Left), and shorter in tree-like negatively curved space (Right). The relative length of am can be used as a heuristic to estimate discrete curvature.

How to get the discrete curvature from graph data?

Figure 3: Geodesic triangles in differently curved spaces: compared to Euclidean geometry in which it satisfies the parallelogram law (Center), the median am is longer in cycle-like positively curved space (Left), and shorter in tree-like negatively curved space (Right). The relative length of am can be used as a heuristic to estimate discrete curvature.

Authors use the following equation to estimate the curvature

$$\xi_M(a,b,c) := d_M(a,m)^2 + d_M(b,c)^2/4 - \left(d_M(a,b)^2 + d_M(a,c)^2\right)/2$$

How to get the discrete curvature from graph data?

Figure 3: Geodesic triangles in differently curved spaces: compared to Euclidean geometry in which it satisfies the parallelogram law (Center), the median am is longer in cycle-like positively curved space (Left), and shorter in tree-like negatively curved space (Right). The relative length of am can be used as a heuristic to estimate discrete curvature.

Authors use the following equation to estimate the curvature

$$\xi_{M}(a,b,c) := d_{M}(a,m)^{2} + d_{M}(b,c)^{2}/4 - \left(d_{M}(a,b)^{2} + d_{M}(a,c)^{2}\right)/2$$

$$\xi_{G}(m;b,c;a) = \frac{1}{2d_{G}(a,m)}\xi_{G}(a,b,c)$$

$$\xi_{G}(m;b,c) = \frac{1}{|V|-1}\sum_{a\neq m}\xi_{G}(m;b,c;a)$$

The authors prove three lemmas before they give their algorithm for discrete curvature estimation:

- Lemma 3: their estimation works for lines
- Lemma 4: their estimation technique works for cycles
- Lemma 5: their estimation technique works for trees

The authors prove three lemmas before they give their algorithm for discrete curvature estimation:

- Lemma 3: their estimation works for lines
- Lemma 4: their estimation technique works for cycles
- Lemma 5: their estimation technique works for trees

Lemma 3. Suppose a lies on the same geodesic line as b, m, c; in other words, WLOG $d_G(a, b) \le d_G(a, c)$ and suppose $d_G(a, c) = d_G(a, b) + d_G(b, m) + d_G(m, c)$. Then $\xi(m; b, c; a) = 0$.

Lemma 4. Consider a cycle graph C with nodes b, m, c such that (m, b) and (m, c) are neighbors. Then for all $a \in C$, $\xi(m; b, c; a)$ is either 0 or positive.

Lemma 5. Consider a tree graph T with nodes b, m, c such that (m, b) and (m, c) are neighbors. Then for all $a \in T$, $\xi(m; b, c; a)$ is either 0 or negative.

The authors prove three lemmas before they give their algorithm for discrete curvature estimation:

- Lemma 3: their estimation works for lines
- Lemma 4: their estimation technique works for cycles
- Lemma 5: their estimation technique works for trees

Lemma 3. Suppose a lies on the same geodesic line as b, m, c; in other words, WLOG $d_G(a, b) \le d_G(a, c)$ and suppose $d_G(a, c) = d_G(a, b) + d_G(b, m) + d_G(m, c)$. Then $\xi(m; b, c; a) = 0$.

Lemma 4. Consider a cycle graph C with nodes b, m, c such that (m, b) and (m, c) are neighbors. Then for all $a \in C$, $\xi(m; b, c; a)$ is either 0 or positive.

Lemma 5. Consider a tree graph T with nodes b, m, c such that (m, b) and (m, c) are neighbors. Then for all $a \in T$, $\xi(m; b, c; a)$ is either 0 or negative.

Algorithm 3 Empirical estimation of sectional curvature distribution

- 1: Input: Graph G = (V, E)
- 2: $m \leftarrow \text{Uniform}(V)$
- 3: $b \leftarrow \text{Uniform}(\mathcal{N}(m)) \{ \mathcal{N}(v) \text{ is the neighbor set of } v \}$
- 4: $c \leftarrow \text{Uniform}(\mathcal{N}(m))$
- 5: $a \leftarrow \text{Uniform}(V)$
- 6: $K \leftarrow \xi(m; b, c; a)$
- 7: **return** *K*

Use moment matching to get K₁ and K₂ i.e.,

- get first and second moments from the above distribution and
- the outputs of algorithm 3 applied to random planes (m,b,c) of graph data

Season 3: Swan Song

What experiments do they do?

	Cycle	Tree	Ring of Trees
	V = 40, E = 40	V = 40, E = 39	V = 40, E = 40
$(\mathbb{E}^3)^1$	0.1064	0.1483	0.0997
$(\mathbb{H}^3)^1$	0.1638	0.0321	0.0774
$(\mathbb{S}^3)^1$	0.0007	0.1605	0.1106
$(\mathbb{H}^2)^1 \times (\mathbb{S}^1)^1$	0.1108	0.0538	0.0616

Matching Geometries:

- Best distortion values with the geometry of embedding space matching that of data
- Authors consider a fixed total dimension of 3, and obtain results with different signatures

	Cities	CS PhDs	Power	Facebook	
	V = 312	V = 1025, E = 1043	V = 4941, E = 6594	V = 4039, E = 88234	
	D_{avg}	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	
\mathbb{E}^{10}	0.0735	0.0543 0.8691	0.0917 0.8860	0.0653 0.5801	
\mathbb{H}^{10}	0.0932	0.0502 0.9310	0.0388 0.8442	0.0596 0.7824	
\mathbb{S}^{10}	0.0598	0.0569 0.8329	0.0500 0.7952	0.0661 0.5562	
$(\mathbb{H}^5)^2$	0.0756	0.0382 0.9628	0.0365 0.8605	0.0430 0.7742	
$(\mathbb{S}^5)^2$	0.0593	0.0579 0.7940	0.0471 0.8059	0.0658 0.5728	
$\mathbb{H}^{5} imes\mathbb{S}^{5}$	0.0622	0.0509 0.9141	0.0323 0.8850	0.0402 0.7414	
$(\mathbb{H}^2)^5$	0.0687	0.0357 0.9694	0.0396 0.8739	0.0525 0.7519	
$(\mathbb{S}^2)^5$	0.0638	0.0570 0.8334	0.0483 0.8818	0.0631 0.5808	
$(\mathbb{H}^2)^2 \times \mathbb{E}^2 \times (\mathbb{S}^2)^2$	0.0765	0.0391 0.8672	0.0380 0.8152	0.0474 0.5951	
Best model	$\mathbb{S}_{1.0}^5 \times \mathbb{S}_{1.1}^5$	$\mathbb{H}^2_{.3} \times \mathbb{H}^2_{.6} \times \mathbb{H}^2_{1.5} \times (\mathbb{H}^2_{1.2})^2$	$\mathbb{H}^5_{3.4}\times\mathbb{S}^5_{12.6}$	$\mathbb{H}^5_{0.3}\times\mathbb{S}^5_{3.5}$	
$D_{ m avg}$ improvement over single space	0.8%	28.89%	16.75%	32.55%	

	Cities	CS PhDs	Power	Facebook	
	$ V \!=\!312$	V = 1025, E = 1043	$ V \!=\!4941, E \!=\!6594$	V = 4039, E = 88234	
	D_{avg}	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	
\mathbb{E}^{10}	0.0735	0.0543 0.8691	0.0917 0.8860	0.0653 0.5801	
\mathbb{H}^{10}	0.0932	0.0502 0.9310	0.0388 0.8442	0.0596 0.7824	
\mathbb{S}^{10}	0.0598	0.0569 0.8329	0.0500 0.7952	0.0661 0.5562	
$(\mathbb{H}^5)^2$	0.0756	0.0382 0.9628	0.0365 0.8605	0.0430 0.7742	
$\stackrel{}{(\mathbb{S}^5)^2}$ $\mathbb{H}^5 imes\mathbb{S}^5$	0.0593	0.0579 0.7940	0.0471 0.8059	0.0658 0.5728	
$\mathbb{H}^5 imes\mathbb{S}^5$	0.0622	0.0509 0.9141	0.0323 0.8850	0.0402 0.7414	
$(\mathbb{H}^2)^5$	0.0687	0.0357 0.9694	0.0396 0.8739	0.0525 0.7519	
$(\mathbb{S}^2)^5$	0.0638	0.0570 0.8334	0.0483 0.8818	0.0631 0.5808	
$(\mathbb{H}^2)^2 \times \mathbb{E}^2 \times (\mathbb{S}^2)^2$	0.0765	0.0391 0.8672	0.0380 0.8152	0.0474 0.5951	
Best model	$\mathbb{S}^5_{1.0} \times \mathbb{S}^5_{1.1}$	$\mathbb{H}^2_{.3} \times \mathbb{H}^2_{.6} \times \mathbb{H}^2_{1.5} \times (\mathbb{H}^2_{1.2})^2$	$\mathbb{H}^5_{3.4}\times\mathbb{S}^5_{12.6}$	$\mathbb{H}^5_{0.3} \times \mathbb{S}^5_{3.5}$	
$\overline{D_{\mathrm{avg}}}$ improvement over single space	0.8%	28.89%	16.75%	32.55%	

Fix total dimension (d) = 10

cities graph (intrinsic structure is S²) embeds well into product with spherical component(s)

Similarly, PhDs (tree-like structure) in product with hyperbolic component(s)

 Even with data which matches a single constant curvature space, product space does not harm the performance

In products of identical spaces, the curvatures can be non-uniform, instead of identical

	Cities	CS PhDs	Power	Facebook	
	V = 312	V = 1025, E = 1043	V = 4941, E = 6594	V = 4039, E = 88234	
	D_{avg}	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	
\mathbb{E}^{10}	0.0735	0.0543 0.8691	0.0917 0.8860	0.0653 0.5801	
\mathbb{H}^{10}	0.0932	0.0502 0.9310	0.0388 0.8442	0.0596 0.7824	
\mathbb{S}^{10}	0.0598	0.0569 0.8329	0.0500 0.7952	0.0661 0.5562	
$(\mathbb{H}^5)^2$	0.0756	0.0382 0.9628	0.0365 0.8605	0.0430 0.7742	
$(\mathbb{S}^5)^2$	0.0593	0.0579 0.7940	0.0471 0.8059	0.0658 0.5728	
$\mathbb{H}^5 imes\mathbb{S}^5$	0.0622	0.0509 0.9141	0.0323 0.8850	0.0402 0.7414	
$(\mathbb{H}^2)^5$	0.0687	0.0357 0.9694	0.0396 0.8739	0.0525 0.7519	
$(\mathbb{S}^2)^5$	0.0638	0.0570 0.8334	0.0483 0.8818	0.0631 0.5808	
$(\mathbb{H}^2)^2 \times \mathbb{E}^2 \times (\mathbb{S}^2)^2$	0.0765	0.0391 0.8672	0.0380 0.8152	0.0474 0.5951	
Best model	$\mathbb{S}^5_{1.0} \times \mathbb{S}^5_{1.1}$	$\mathbb{H}^2_{.3} \times \mathbb{H}^2_{.6} \times \mathbb{H}^2_{1.5} \times (\mathbb{H}^2_{1.2})^2$	$\mathbb{H}^{5}_{3.4} \times \mathbb{S}^{5}_{12.6}$	$\mathbb{H}^5_{0.3}\times\mathbb{S}^5_{3.5}$	
$\overline{D_{\mathrm{avg}}}$ improvement over single space	0.8%	28.89%	16.75%	32.55%	

	CS PhDs	Power	Facebook	
Estimated Signature	$\mathbb{H}^5_{1.3}\times\mathbb{H}^5_{0.2}$	$\mathbb{H}^5_{1.8}\times\mathbb{S}^5_{1.7}$	$\mathbb{H}^5_{0.9}\times\mathbb{S}^5_{1.6}$	

- Fix total dimension (d) = 10
- cities graph (intrinsic structure is S^2) embeds well into product with spherical component(s)
- Similarly, PhDs (tree-like structure) in product with hyperbolic component(s)
- Even with data which matches a single constant curvature space, product space does not harm the performance
- In products of identical spaces, the curvatures can be non-uniform, instead of identical

	Cities	CS PhDs	Power	Facebook
	V = 312	V = 1025, E = 1043	V = 4941, E = 6594	V = 4039, E = 88234
	D_{avg}	$D_{ m avg}$ mAP	$D_{ m avg}$ mAP	D_{avg} mAP
\mathbb{E}^{10}	0.0735	0.0543 0.8691	0.0917 0.8860	0.0653 0.5801
\mathbb{H}^{10}	0.0932	0.0502 0.9310	0.0388 0.8442	0.0596 0.7824
\mathbb{S}^{10}	0.0598	0.0569 0.8329	0.0500 0.7952	0.0661 0.5562
$ (\mathbb{H}^5)^2$	0.0756	0.0382 0.9628	0.0365 0.8605	0.0430 0.7742
$(\mathbb{S}^5)^2$	0.0593	0.0579 0.7940	0.0471 0.8059	0.0658 0.5728
$\mathbb{H}^5 imes\mathbb{S}^5$	0.0622	0.0509 0.9141	0.0323 0.8850	0.0402 0.7414
$(\mathbb{H}^2)^5$	0.0687	0.0357 0.9694	0.0396 0.8739	0.0525 0.7519
$(\mathbb{S}^2)^5$	0.0638	0.0570 0.8334	0.0483 0.8818	0.0631 0.5808
$(\mathbb{H}^2)^2 \times \mathbb{E}^2 \times (\mathbb{S}^2)^2$	0.0765	0.0391 0.8672	0.0380 0.8152	0.0474 0.5951
Best model	$\mathbb{S}^5_{1.0} \times \mathbb{S}^5_{1.1}$	$\mathbb{H}^2_{.3} \times \mathbb{H}^2_{.6} \times \mathbb{H}^2_{1.5} \times (\mathbb{H}^2_{1.2})^2$	$\mathbb{H}^{5}_{3.4} \times \mathbb{S}^{5}_{12.6}$	$\mathbb{H}^5_{0.3}\times\mathbb{S}^5_{3.5}$
$\overline{D_{\mathrm{avg}}}$ improvement over single space	0.8%	28.89%	16.75%	32.55%

Fix total dimension (d) = 10

cities graph (intrinsic structure is S²) embeds well into product with spherical component(s)

Similarly, PhDs (tree-like structure) in product with hyperbolic component(s)

 Even with data which matches a single constant curvature space, product space does not harm the performance

In products of identical spaces, the curvatures can be non-uniform, instead of identical

	CS PhDs	Power	Facebook	
Estimated Signature	$\mathbb{H}^5_{1.3}\times\mathbb{H}^5_{0.2}$	$\mathbb{H}^5_{1.8}\times\mathbb{S}^5_{1.7}$	$\mathbb{H}^5_{0.9}\times\mathbb{S}^5_{1.6}$	

Heuristic allocation of signature and curvature:

- Given d₁, d₂, find K₁, K₂; report corresponding space with min. D_{avg}
- The curvature signs match that with the products of two models spaces with min. D_{avg}

	Dim 50			Dim 100		
	WS-353	Simlex	MEN	WS-353	Simlex	MEN
Euclidean	0.6628	0.2738	0.7217	0.6986	0.2923	0.7473
Hyperbolic	0.6787	0.2784	0.7117	0.6846	0.2832	0.7217
2 Hyperbolics	0.6955	0.2870 0.2837	0.7246	0.7297	0.3168	0.7450
5 Hyperbolics	0.7048		0.7270	0.7379	0.3212	0.7530

- Spearman rank correlation between obtained scores and annotated ratings on the word similarity dataset
- Hyperbolic embedding learnt with $P(y|w,u) = \sigma\left((-1)^{1-y}(-\cosh(d(\alpha_u,\gamma_w)) + \theta)\right)$

	Dim 50			Dim 100		
	WS-353	Simlex	MEN	WS-353	Simlex	MEN
Euclidean	0.6628	0.2738	0.7217	0.6986	0.2923	0.7473
Hyperbolic	0.6787	0.2784	0.7117	0.6846	0.2832	0.7217
2 Hyperbolics	0.6955	0.2870 0.2837	0.7246	0.7297	0.3168	0.7450
5 Hyperbolics	0.7048		0.7270	0.7379	0.3212	0.7530

- Spearman rank correlation between obtained scores and annotated ratings on the word similarity dataset
- Hyperbolic embedding learnt with $P(y|w,u) = \sigma\left((-1)^{1-y}(-\cosh(d(\alpha_u,\gamma_w)) + \theta)\right)$
- In literature, hyperbolic embeddings perform favorably against Euclidean word vectors in low dimensions (d = 5, 20), but less so in higher dimensions (d = 50, 100).
- Hypothesis is that in high dimensions, <u>a product of multiple smaller-dimension hyperbolic spaces will substantially improve performance</u> (as shown in the table)

	Dim 50			Dim 100		
	WS-353	Simlex	MEN	WS-353	Simlex	MEN
Euclidean	0.6628	0.2738	0.7217	0.6986	0.2923	0.7473
Hyperbolic	0.6787	0.2784	0.7117	0.6846	0.2832	0.7217
2 Hyperbolics	0.6955	0.2870 0.2837	0.7246	0.7297	0.3168	0.7450
5 Hyperbolics	0.7048		0.7270	0.7379	0.3212	0.7530

- Spearman rank correlation between obtained scores and annotated ratings on the word similarity dataset
- Hyperbolic embedding learnt with $P(y|w,u) = \sigma\left((-1)^{1-y}(-\cosh(d(\alpha_u,\gamma_w)) + \theta)\right)$
- In literature, hyperbolic embeddings perform favorably against Euclidean word vectors in low dimensions (d = 5, 20), but less so in higher dimensions (d = 50, 100).
- Hypothesis is that in high dimensions, <u>a product of multiple smaller-dimension hyperbolic spaces will substantially improve performance</u> (as shown in the table)

Total Dim d / Model	\mathbb{R}^d	$(\mathbb{H}^d)^1$	$(\mathbb{H}^{d/2})^2$	$(\mathbb{H}^{d/5})^5$	$(\mathbb{H}^2)^{d/2}$
50	0.3866	0.3424	0.3928	0.4181	0.4209
100	0.5513	0.3738	0.4310	0.4731	0.5216

- Analogy tasks: again observe product of multiple smaller-dimension hyperbolic spaces improve performance
- Design (somewhat like a) parallelogram in the product space with $d^2(a,b)=d^2(c,d)$ and $d^2(a,c)=d^2(b,d)$
 - o Pair- a:b :: c:d
 - Simply reflect a w.r.t b-c geodesic (at mean m of b-c)

What are we concluding then?

- Product of model spaces improve representations
- We saw how to learn embeddings and curvatures, estimate signatures, and compute mean
- Experiments which validate above claims along with importance of products of smaller hyperbolic spaces than a single space

What are we concluding then?

- Product of model spaces improve representations
- We saw how to learn embeddings and curvatures, estimate signatures, and compute mean
- Experiments which validate above claims along with importance of products of smaller hyperbolic spaces than a single space

A couple of personal thoughts

- The signature estimation can be carried out for product of two model spaces
- In the table supporting their claim "signature estimation matches curvature"
 - o no exact numbers corresponding to distortion values
 - although we simply need the curvature signs, but it would be be good to observe difference between distortion values estimated curvatures and actual least distortion values
- Is there another way to identify dimensions (rather than doubling until reach the final total dimension)?
 - We are missing several combinations of product spaces (can they be discarded?)

Thank You!

Thank You!

