Jonathan M. Salfity

jonathan.salfity@gmail.com | +1 310 634 4759 | linkedin.com/in/jsalfity | github.com/jsalfity Austin, TX | U.S. Citizen

SUMMARY

- PhD student in robotics, control theory, and AI/ML with corporate and start-up experience.
- Research north star is to blend the best outcomes of dynamics and control theory safety guaranteees, robustness, stability into emerging learned-based algorithms for safe, robust autonomous systems.
- Engineering strengths from high-level systems design to implementation in hardware and in simulation.

SOFTWARE & SKILLS

Python, C++, MATLAB, Docker | Robot Operating System (ROS), Gazebo | PyTorch, TensorFlow Robotic Mapping & Autonomy, Robotic Manipulation | Reinforcement Learning, Machine Learning Simulation | Systems Analysis, Mechatronics, Control Engineering | Edge Compute & Cloud Compute Technical Writing | Conference Publications | Patents | Leadership | Business Stakeholder Management

ACADEMIC

PhD., Mechanical Engineering, UT Austin, Systems & Control, Robotics, 2025 (expected)

Advisor: David Fridovich-Keil

Group: Control and Learning for Autonomous Robots

M.S., Mechanical Engineering, *UCLA*, Systems & Control, Robotics, *Department Fellow*, 2014 B.S., Mechanical Engineering, *UCLA*, *Cum Laude*, 2013

PROFESSIONAL

Gecko Materials

Bay Area, CA | 2021 - Current

Co-Founder / Advisor

• Co-founded Gecko Materials with a Stanford PhD recent graduate colleague. Bringing a biomimicry, purely mechanical, industrial grade adhesive to market. (geckomaterials.com)

Empiric Solutions

San Francisco, CA | 2020 - 2021

Software Engineer

- Developed backend AWS cloud resources (DynamoDB, S3, CDK) for life science IoT sensors.
- Author production API's for sensor data collection, processing, storage, and retrieval.

AI & Emerging Compute Lab, HP Labs | $HP\ Inc.$

Palo Alto, CA | 2016 - 2020

Roboticist & Research Engineer

- Designed and implemented proof of concepts (PoCs) for mobile robots, often with compute-constrained on-board processors utilizing off-board ML servers.
- Enhanced layers of the robotics stack through PoCs, including semantic mapping, autonomy, policy management, and human-robot interaction. Technologies developed led to patent filings and demonstrations for corporate executive stakeholders.
- Programmed with ROS middleware, developed APIs and data visualization software tools to integrate with on-premise and cloud ML servers. Used Turtlebot2, Turtlebot3, and Fetch Freight in hardware and in Gazebo simulation.
- Researched robotic control through deep reinforcement learning (DRL), focusing on robustness and generalization. Reviewed state-of-the-art in robotic control mechanisms based on DRL.
- Designed and conducted experiments extending OpenAI Baselines & OpenAI Gym Environments, improved DRL training schedules for robust and generalizable learned-based control policies. Contributions include an adversarial curriculum learning algorithm and sensitivity/robustness explainability.

Digital Manufacturing Lab, HP Labs | *HP Inc.* Palo Alto, CA & Singapore | 2019 - 2020 Robotics Principal Investigator for 3D Printing

- Led technical team of robotics and AI researchers from Prof. Pham Quang-Cương's CRI Group at Nanyang Technological University (NTU), bridging university research to HP 3D Print business unit post-processing automation.
- Developed manipulator robotic system for cleaning 3D Printed parts, transferred computer vision and robotic manipulator software to 3D Print business unit.
- Conducted preliminary research and demonstrations in robust 3D object classification, 3D part cleanliness evaluation, and visual-servoing for precise manipulation.
- Collaborated across HP 3D Print R&D and product teams to develop robotics and AI software and solutions for automated post-processing, formulating long term research projects, metrics, and results.

Hardware R&D, HP 3D Print | HP Inc.

San Diego, CA | 2014 - 2016

Control System and Servo Engineer

- Designed and implemented HP Fused-Deposition-Modeling 3D Printer prototype from first principles and performed system identification.
- Simulated digital twin of hardware with MATLAB and Simulink to conceptualize and prototype multiinput, multi-output control laws for three spatial-axes (xyz), extruder nozzle, and temperature.
- Partnered with firmware engineers to translate theoretical control laws to discrete algorithms for real-time implementation in C.

PUBLICATIONS & REPORTS

- H Nguyen, N Adrian, JLX Yan, J Salfity, W Allen, QC Pham. Development of a Robotic System for Automated Decaking of 3D-Printed Parts. IEEE International Conference on Robotics and Automation, Paris, France, May 2020
- J Salfity, D Murphy, M Anthony Lewis. Robust Reinforcement Learning Based Policy Development through Internal, External Parameter Variation. HP Data Science & Knowledge Discovery Summit, Vancouver, WA, August 2019
- W Staehler, **J Salfity**, T Paula, D Murphy. Multiple Policy Management for Multi-Skilled Agents. HP Data Science & Knowledge Discovery Summit, Vancouver, WA, August 2019
- J Salfity, H Horii, W Allen. Smart Mobile Robots with Human Emotion Detection. HP Data Science & Knowledge Discovery Summit, Vancouver, WA, May 2018
- J Salfity, D Murphy. Mobile Robot Map Building with the Automatic Exclusion of Known Objects using Object Recognition through Computer Vision. HP Data Science and Knowledge Discovery Summit, Vancouver, WA, May 2018

PATENTS

12 patents filed across robotic mobility, robotic manipulation, 3D Print, edge compute, AI/ML. 6 patents in the public domain:

- W Allen, J Salfity, Mobile Autonomous Fleet Control, WO2020122953A1
- K Erickson, J Salfity, L Zhao, Modules of Three-Dimensional Printers, WO2020046267A1
- J Salfity, W Allen, H Horii, Control System for Mobile Robots, WO2019088990A1
- J Salfity, D Murphy, Mobile Robots to Generate Reference Maps for Localization, WO2019089018A1
- J Salfity, D Murphy, W Allen, Mobile Robots to Generate Occupancy Maps, WO2019089017A1
- S Stodder, J Salfity, M Majette, Correction of Filament Parameters, WO2017086908A1