Week 6: Mechanistic Models in Ecology and Evolution

MSc/MRes CMEE 2014-15

Samraat Pawar

Imperial College London

November 11, 2014

- Mechanistic models aim to explain the PROCESSES underlying observed patterns
- Empirical or phenomenological models show relationships between observed data (e.g. population size as a function of temperature or rainfall), but provide no insights into why they are related

 Ecological studies have traditionally focused on Interactions and communities.

- Ecological studies have traditionally focused on Interactions and communities.
- For example, Larch Budmoth (http://www.sandyliebhold.com/pubs/science_DC1/) papers in your Readings directory

- Ecological studies have traditionally focused on Interactions and communities.
- For example, Larch Budmoth (http://www.sandyliebhold.com/pubs/science_DC1/) —
 papers in your Readings directory
 - Why the cycles?, Why the travelling waves?

- Ecological studies have traditionally focused on Interactions and communities.
- For example, Larch Budmoth (http://www.sandyliebhold.com/pubs/science_DC1/) —
 papers in your Readings directory
 - Why the cycles?, Why the travelling waves?

- Ecological studies have traditionally focused on Interactions and communities.
- For example, Larch Budmoth (http://www.sandyliebhold.com/pubs/science_DC1/) —
 papers in your Readings directory
 - Why the cycles?, Why the travelling waves? What mechanisms operate? (budmoth/parasitoid interaction? (budmoth/food quality interaction?)
- Another example, measles outbreaks (Papers in your Readings directory)

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{k}\right)} \tag{1}$$

• For example, the Ricker model can be thought of as mechanistic:

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{k}\right)} \tag{1}$$

• What is the mechanism?

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{k}\right)} \tag{1}$$

- What is the mechanism?
- Density dependence through scramble competition (Brannstrom & Sumpter 2005)

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{k}\right)} \tag{1}$$

- What is the mechanism?
- Density dependence through scramble competition (Brannstrom & Sumpter 2005)
- If the Ricker model and another model with contest competition were compared with data — that would be mechanistic modelling because one is trying to get at the underlying mechanism, scramble or contest competition

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{k}\right)} \tag{1}$$

- What is the mechanism?
- Density dependence through scramble competition (Brannstrom & Sumpter 2005)
- If the Ricker model and another model with contest competition were compared with data — that would be mechanistic modelling because one is trying to get at the underlying mechanism, scramble or contest competition
- But is this REALLY mechanistic? What are r and k really?

$$N_{t+1} = N_t e^{r\left(1 - \frac{N_t}{k}\right)} \tag{1}$$

- What is the mechanism?
- Density dependence through scramble competition (Brannstrom & Sumpter 2005)
- If the Ricker model and another model with contest competition were compared with data — that would be mechanistic modelling because one is trying to get at the underlying mechanism, scramble or contest competition
- But is this REALLY mechanistic? What are r and k really?
- Many (including yours truly!) now argue that we have not progressed far enough because the first level has been ignored!

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature (K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 E_D = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature (K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 E_D = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

- Surely there is more to thermal responses?
 - Oxygen limitation
 - Complexity of metabolic network
 - Hormonal regulation

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature (K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 E_D = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

- Surely there is more to thermal responses?
 - Oxygen limitation
 - Complexity of metabolic network
 - Hormonal regulation
- What about alternative models?

MECHANISTIC MODELLING

Next: A primer on mechanistic model fitting

MECHANISTIC MODELLING

Next: A primer on mechanistic model fitting

But first: A preview of the long practical

MECHANISTIC MODELLING: WHATS THE BIG IDEA?

- Use biological knowledge to construct models
- See if the models "agree well" with data
- Whichever model "agrees best" is most likely to have the right mechanisms
- Thats the one thats best for predictions (e.g.g population cycles), estimating rates (e.g. growth rates), etc.
- Dont use models you already know have the wrong mechanisms!

MECHANISTIC MODELLING: HOW TO BUILD THEM?

- Its an art, take practice (recall Levins' paper on the strategy of model building in biology)
- Build models one mechanism at a time in biology, it means start at the right level of organization!

MECHANISTIC MODELLING: HOW TO BUILD THEM?

- For example, the Boltzmann-Arrhenius model is a good first try describe and uncover mechanisms underlying individual level rates
- The next step would be to include high-temperature effects (e.g., the Schoolfield model)
- The next step would be to include species interactions with temperature dependence of individuals (or go in an evolutionary direction!)

FITTING MODELS TO DATA

Two common ways to do it:

- One-step forecasting (appropriate for discrete models)
- Ensemble fitting (appropriate for full time series or responses) this is what you will be doing in NLLS

There include maximum likelihood, bayesian methods, and Non-linear least squares (NLLS) optimization or fitting. You will use NLLS. Basically, this is how it works:

Start with an initial value for each parameter in the model

- Start with an initial value for each parameter in the model
- @ Generate the curve defined by the initial values

- Start with an initial value for each parameter in the model
- @ Generate the curve defined by the initial values
- Oalculate the residual sum-of-squares (rss)

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Oalculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — you will use the Levenberg-Marquardt algorithm in the lmfit package in python

- Start with an initial value for each parameter in the model
- @ Generate the curve defined by the initial values
- Oalculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — you will use the Levenberg-Marquardt algorithm in the lmfit package in python
- Adjust the parameters again so that the curve comes even closer to the points (rss decreases)

- Start with an initial value for each parameter in the model
- @ Generate the curve defined by the initial values
- Oalculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — you will use the Levenberg-Marquardt algorithm in the lmfit package in python
- Adjust the parameters again so that the curve comes even closer to the points (rss decreases)
- Repeat 4–5

- Start with an initial value for each parameter in the model
- @ Generate the curve defined by the initial values
- Calculate the residual sum-of-squares (rss)
- Adjust the parameters to make the curve come closer to the data points. This the tricky part — you will use the Levenberg-Marquardt algorithm in the lmfit package in python
- Adjust the parameters again so that the curve comes even closer to the points (rss decreases)
- Repeat 4–5
- Stop simulations when the adjustments make virtually no difference to the rss

Once the algorithm as converged (hopefully – but you may be surprised how well it usually works),

 Report the best-fit results, including sums of deviations of the data from the final model fit

Once the algorithm as converged (hopefully – but you may be surprised how well it usually works),

- Report the best-fit results, including sums of deviations of the data from the final model fit
- Then compare multiple models (Schoolfield vs. Gaussian-Gompertz in your case)

Once the algorithm as converged (hopefully – but you may be surprised how well it usually works),

- Report the best-fit results, including sums of deviations of the data from the final model fit
- Then compare multiple models (Schoolfield vs. Gaussian-Gompertz in your case)

Once the algorithm as converged (hopefully – but you may be surprised how well it usually works),

- Report the best-fit results, including sums of deviations of the data from the final model fit
- Then compare multiple models (Schoolfield vs. Gaussian-Gompertz in your case)

The precise parameter values you obtain will depend in part on the initial values chosen and the stopping criteria –

Once the algorithm as converged (hopefully – but you may be surprised how well it usually works),

- Report the best-fit results, including sums of deviations of the data from the final model fit
- Then compare multiple models (Schoolfield vs. Gaussian-Gompertz in your case)

The precise parameter values you obtain will depend in part on the initial values chosen and the stopping criteria – so different programs will not always give exactly the same results

Once the algorithm as converged (hopefully – but you may be surprised how well it usually works),

- Report the best-fit results, including sums of deviations of the data from the final model fit
- Then compare multiple models (Schoolfield vs. Gaussian-Gompertz in your case)

The precise parameter values you obtain will depend in part on the initial values chosen and the stopping criteria – so different programs will not always give exactly the same results <code>python</code> seems to have a better Levenberg-Marqualdt implementation than R

COMPARING MODELS

You can use information theory (including AIC and BIC) to compare models. The lower the AIC or BIC, the better. This is how you calculate them (using python syntax):

COMPARING MODELS

You can use information theory (including AIC and BIC) to compare models. The lower the AIC or BIC, the better. This is how you calculate them (using python syntax):

- residuals = Observations Predictions
- rss = sum(residuals ** 2)
- Then, AIC is n * log((2 * pi) / n) + n + 2 + n * log(rss) + 2 * k (what is n and k?)
- And BIC is n + n * log(2 * pi) + n * log(rss / n) + (log(n)) * (k + 1)
- For both AIC and BIC, If model A has AIC lower by 2-3 or more than model B, its better — Differences of less than 2-3 dont really matter

COMPARING MODELS

You can use information theory (including AIC and BIC) to compare models. The lower the AIC or BIC, the better. This is how you calculate them (using python syntax):

- residuals = Observations Predictions
- rss = sum(residuals ** 2)
- Then, AIC is n * log((2 * pi) / n) + n + 2 + n * log(rss) + 2 * k (what is n and k?)
- And BIC is n + n * log(2 * pi) + n * log(rss / n) + (log(n)) * (k + 1)
- For both AIC and BIC, If model A has AIC lower by 2-3 or more than model B, its better — Differences of less than 2-3 dont really matter

Also note that:

 R² = 1 - (rss/tss), where tss is total sum of squares: tss = sum((Observations - mean(Predictions)) ** 2) (a useful measure of goodness of fit – you should report it)

