Eukaryotic Cells

- Found in plants, animals + fungi
- Have membrane bound nucleus / organelles
- Cell membrane phospholipid bilayer fatty acid tails in, phosphate heads out
- Nucleus contains the cells genetic information
 - Nucleolus membrane within nucleus containing the DNA strands
 - Nucleoplasm the jelly-like substance filling the nucleus
- Mitochondria releases energy contains ribosomes and genetic material
 - o Matrix the fluid filling the inside of the mitochondria
 - Cristae the folds in the internal membrane of the mitochondria
- Chloroplasts convert sunlight into sugar for plants and algae
 - o Grana the membrane-bound organelles containing the chlorophyll
 - Thylakoid a stack of grana
- Golgi apparatus the organelle transporting, packaging, and processing protein
 - Like a 'stack of pitta breads'
- Lysosomes releases lysozymes
 - To allow the cell to break down old / dead cells, to allow the cell to replace them
- Ribosomes the site of protein production
- Endoplasmic reticulum membranous tubules in cytoplasm of eukaryotic cells
 - Rough ER ribosomes on cisternae (membrane-enclosed sacs), protein synthesis
 - Smooth ER involved in synthesis of lipids / protein transport
- Cell wall only found in plants, algae, fungi
 Made of cellulose (plants) / chitin (fungi)
- Cell vacuole found in plants offers support and rigidity to the plant by making cells turgid

Prokaryotic Cells + Viruses

- Much smaller than eukaryotic cells
- Cytoplasm lacks membrane bound organelles
- Smaller ribosomes (70S instead of 80S)
- No nucleus single circular DNA molecules, free in the cytoplasm
- Cell wall made of murein a glycoprotein
- May also have:
 - Plasmids circular rings of DNA that bacteria can exchange with other bacteria
 - o Capsule -
 - Flagella used by the cell to move
- Viruses acellular (cannot form multicellular organisms), non-living (cannot reproduce)
 - o Genetic material not in a nucleus
 - Capsid the protein shell surrounding the virus
 - o Attachment protein the protein that attaches the virus to the host

Methods of Studying Cells

- Optical (light) microscopes max 1 500x magnification, use light to magnify small details
- Transmission Electron Microscopes TEM; fire a beam of electrons through a thin cross-section of cells. Shows internal (2D) structure of cell. Highest magnification / resolution
 - Must be dead vacuum required to allow electrons to travel a reasonable distance
- Scanning Electron Microscope SEM; fire electrons at cells, producing a 3D image of the cell. High magnification / resolution
- Magnification the ability to increase the size of an object
- Resolution the minimum distance between two objects close together that can still be discerned
- size of image $magnification = \frac{\text{size of image}}{\text{size of real object}}$
- Cell fractionation + ultracentrifugation
 - Cut up tissue sample in ice cold water + buffer solution
 - Homogenise break down whole cells
 - o Filter remove any debris + whole cells
 - Spin (low speed) nuclei
 - Spin (higher speed)
 - Spin (higher speed)

 - Spin (highest speed) ribosomes
- lodine in potassium iodide solution can be used to identify starch granules
- Artefacts a change that is visible through a microscope, that isn't meant to be there
 - Could be caused by damage to the cells, or something on a lens

Cell Replication

- Eukaryotic cells with the ability to divide have a cell cycle
- DNA replication occurs during interphase
- Mitosis the part of the cell cycle where an eukaryotic cell divides
 - Prophase
 - Metaphase
 - Anaphase
 - Telophase

 - Cytokinesis where the cell splits in two
- Mitosis is a controlled process
 - Uncontrolled cell division can lead to cancer
 - Some cancer treatments are aimed at preventing cell division
- Binary fission cell replication in prokaryotes
 - Replication of circular DNA + plasmids
 - Cytoplasm divides, producing 2 daughter cells
- Viruses
 - Do not undergo cell division
 - o Instead, invade a host cell, hijacking its' reproductive mechanisms

Transport Across Membranes

Diffusion

- Net movement of particles from an area of high concentration to an area of low concentration
- Passive does not use ATP
- Facilitated Diffusion
 - o Water-soluble compounds cannot diffuse through cell membrane
 - o Instead, they use a carrier / channel protein to diffuse into the cell
 - Carrier protein
 - Molecule binds to protein, changes shape, and is able to move into the cytoplasm
 - Specific each carrier protein is only able to transport 1 type of molecule
 - Channel protein
 - Molecule is able to pass through a 'channel' in the cell membrane
 - Specific each channel protein is only able to transport
- Simple Diffusion
 - Net movement of particles
 - o Phospholipid bilayer only allows lipid-soluble molecules to pass through
 - Water soluble molecules have to use a carrier protein to pass through

Osmosis

- Movement of water across a partially permeable membrane from a less concentrated solution to a more concentrated solution
- Passive does not use ATP
- Tries to make the water potential the same on both sides of a partially permeable membrane

Active Transport

- Transport of molecules against the concentration gradient, using ATP (energy)

Co-Transport

- Where a molecule is pulled through, into a cell, using an ion
- Carrier proteins
 - ATP is hydrolysed in the carrier protein, producing ADP (adenosine diphosphate)
 - The carrier protein pumps out all of a certain ion, creating a low concentration
 this causes that ion to diffuse into the cell
 - An ion may bind to the carrier protein, which helps 'drag' the larger molecule through, against the concentration gradient
- Example Sodium ions and Glucose
 - Some glucose will remain in the ileum (intestine) during digestion, as the concentration is equal on both sides of the membrane
 - Co-transport can be used to move more of the glucose into the cell

- All of the sodium is pumped out of the protein, into the bloodstream this creates a lower concentration
- A sodium ion binds to the co-transporter protein, dragging a glucose molecule through, into the protein. These are then pumped out of the cell

Improving the Rate of Transport

- Larger surface area (high surface area : volume ratio)
 - Microvilli small, hair like projections on epithelial cells increase SA: V ratio; sometimes called 'brush border'
 - Villi cells arranged in finger-like projections, ~1mm long, in ileum
- More carrier / channel proteins
 - More carrier / channel proteins allows for faster transport of non-lipid-soluble substances through the cell membrane

Fick's Law

$$rate\ of\ diffusion\ = \ \frac{surface\ area\ imes\ concentration\ difference}{thickness\ of\ membrane}$$

Cell Membrane

Phospholipid Bilayer – made up of phospholipids, in a bilayer, allowing lipid-soluble substances to enter / leave a cell

Plasma Membrane – membranes around + within cells, having the same basic structure as the phospholipid bilayer

Proteins

Extrinsic – on the surface of the membrane, or partially embedded in the membrane

Intrinsic – completely span the bilayer

Functions of Proteins

- 1. Transport in and out of cells
 - carrier proteins facilitated diffusion active transport
 - channel proteins
- 2. Receptors
 - for homones
 - for neurotransmitters
- 3. Antigens
 - for cell recognition
- 4. Structural Support
 - to give the membrane a stronger structure
- 5. Help cells adhere together
 - to create tissues
- 6. Digestive enzymes
 - in epithelial cells in the intestine, enzymes are embedded in the membrane
 - ----- this helps create a higher concentration gradient around the transporter protein

Fluid Mosaic – phospholipid bilayer – very flexible (fluid); many proteins, different sizes + shapes + phospholipids (mosaic)

The Immune System

Important Components

Thymus Gland – produced t-lymphocytes (which discriminate between self and non-self antigens

Bone Marrow – b-lymphocyte production (differentiate from bone marrow → discriminate between self and non-self antigens)

Lymph Nodes – filter the lymph to remove pathogens; contain phagocytes, mature b- and t-cells

Spleen / Kidney – filter the blood to remove antigens

Tonsils – remove antigens in the lymph, protect the respiratory system

- Phagocytosis
 - Phagocytes are attracted by chemotaxis towards the pathogen
 - Receptors on the membrane of the phagocyte recognise antigens on the pathogen
 - Pathogen is engulfed, forming a vesicle (phagosome)
 - Lysosomes fuse with the phagosome
 - Digestive enzymes in the lysosome hydrolyse the ingested bacteria, killing it
- The Inflammatory Response
 - Pathogens enter a wound
 - Platelets release blood clotting agents at the damaged site
 - MAST cells secrete FACTORS, increasing vasodilation, and vascular constriction (reducing blood supply to the affected areas)
 - Neutrophils secrete FACTORS that kill pathogens
 - Neutrophils and macrophages remove the pathogens by phagocytosis
 - Macrophages secrete hormones called CYTOKININS, attracting more lymphocytes. This activates cells involved in tissue repair
 - The inflammatory response continues until the pathogen is eliminated, and the wound repaired
- Phagocytosis is a non-specific defence mechanism
- Pathogens are digested by lysozyme enzymes in pathogens
- Pathogens are destroys=ed by phagocytosis, as part of the inflammatory response

Antibodies

- Antibody proteins on the exterior of a cell, allowing it to be identified
- B-Cells in the Immune Response
 - Immature b-cells divide by mitosis before birth, in the bone marrow
 - Each b-cell matures (b = bone)
 - Maturation involves the production of receptor modules (which are expressed in the plasma membrane of the b-cell)
 - Each b-cell has a different receptor, each binds to a different antigen
 - Mature b-cells circulate and concentrate in the lymphoid tissue
 - By birth, there are millions of different b-cells, each with a specific receptor

Effector Phase

- 1. T-helper cells have been activated
- 2. T-helper cells then come in contact with b-cells, with the corresponding antigen
- 3. T-cells bind to the surface of the b-cells, begin to secrete cytokines

4. Cytokines stimulate b-cells to undergo clonal expansion (by mitosis), differentiate to plasma cells, then produce antibodies

Antibodies

Y-shaped protein produced by b-lymphocytes (sometimes called b-cells)

Work in 4 ways:

- Agglutination clumping
 - Clumps of bacterial cells are formed (due to 2 binding sites)
 - Phagocytes locate the pathogen more quickly
- Opsonisation coating
 - Coat the pathogen, allowing the phagocyte to find it more quickly
- Lysis digesting
- Antitoxins neutralisation of toxins

Antibody Transcription

- Each lymphocyte will make different antibodies each lymphocyte has different DNA
- mRNA is different in each cell (due to different DNA)
- Each polypeptide chain will be different (primary structure)
- ∴ the antibodies each lymphocyte will make will be unique

HIV

HIV positive – infected with HIV

- Viruses often remain dormant in an infected persons' body, leading to AIDS many years later
- HIV causes the symptoms of AIDS
- AIDS
 - Number of T-helper cells becomes very low
 - Immune system cannot stimulate B-cells to produce antibodies or cytotoxic T-cells, to kill infected cells
 - Making the person more likely to die from secondary infection
- How does HIV replicate?
 - Enters bloodstream
 - Binds to CD4 antigen on T-helper cells
 - Capsid and membrane fuse, inserting viruses RNA and enzymes into the host
 - Viral reverse transcriptase enzymes convert RNA to DNA
 - DNA is copied to make double stranded DNA
 - DNA inserted into hosts' chromosomes
 - HIV DNA transcribed to mRNA, containing instructions for viral proteins and RNA
 - mRNA passes out of nucleus, into ribosomes, translation occurs, forming new viral particles
 - Viral particles bud from T-helper cells, surrounded by a bit of cell membrane, forming their lipid envelope
 - New virus can then infect other cells

Antibiotics

- First discovered by Alexander Fleming, 1928, by accident
- Antibiotics are ineffective against viruses
 - Viruses do not have cell walls

- Viruses lack metabolic pathways + cell structures
- Viruses are inside host cells, so antibiotics cannot reach them
- How to they work?
- Osmotic Lysis
 - Inhibit synthesis and assembly of peptidoglycans in bacterial cell walls
 - Only work while bacteria are growing
 - Penicillin works in this way
- Preventing Reproduction
 - Prevent DNA replication
 - Prevent mRNA synthesis (transcription)
 - Prevent transfer of amino acids to ribosomes (translation)
 - Prevent protein synthesis

Vaccination

- A weakened, killed, or attenuated, pathogen, administered to stimulate the production of antibodies
- Provide a level of immunity, reducing the likelihood of severe disease / death
- Endemic Diseases
 - Diseases can remain endemic despite a vaccination programme
 - Some people don't develop immunity
 - Vaccine may be administered after someone has been infected
 - Pathogen has a high mutation frequency, so antigens change regularly
 - There are too many variants / strains to vaccinate against
 - Some pathogens disguise themselves (coat in self antigens, burrow into cells, in inaccessible places)
 - Patients may object on religious, ethical, or social reasons (vaccine hesitancy)
- Features of a Successful Vaccination Programme
 - Economical to make few can be vaccinated if too expensive
 - Few / no side effects if it is too dangerous, patients are discouraged
 - Production, storage, and transport need to be viable it needs to reach patients safely
 - Trained staff need to administer vaccine correctly must be given correctly to be effective
 - Most of the population needs to be vaccinated to offer herd immunity preventing transmission through a community
- Antigenic Immunity
 - Viruses like flu mutate quickly
 - RNA is swapped between swine, avian, and human flus
 - This allows antigens to keep changing, requiring immunity to be built after each reinfection