The quadratic map. Exercises

- 1. Plot the Dynamical Plane (Julia and Fatou sets) of $Q_c(z) = z^2 + c$ for the following values of c.
 - (a) $c_0 = -\frac{1}{2} \frac{1}{10}i$. Prove that Q_{c_0} has an attracting fixed point.
 - (b) $c_1 = \frac{1}{2}i$. Prove that the Q_{c_1} has an attracting fixed point.
 - (c) $c_2 = -1$. Prove that Q_{c_2} has an attracting cycle of period two.
 - (d) $c_3 = \frac{1}{4}$. Prove that Q_{c_3} has neutral fixed point.
 - (e) $c_4 = -\frac{3}{4}$. Prove that Q_{c_4} has a neutral cycle of period two.

You can use the following algorithm to plot the Julia set of $Q_c(z) = z^2 + c$.

Choose and equal size grid in the square $[-2, 2] \times [-2, 2]$. Given N > 0 you can define the grid points using the following expression

$$z_{l,m} = -2 + 4l/N + (-2 + 4m/N)i,$$
 for $l, m = 0, \dots, N$

For every complex number $z_{l,m}$ in the grid check it if escapes or not under Q_c . Let M>0 and simply compute the first M iterates of $z_{l,m}$ under Q_c . If, at any iteration k< M, $|Q_c^k(z_{l,m})|>10$, we stop the iteration since the point $z_{l,m}$ escapes to ∞ . If $|Q_c^k(z_{l,m})|<10$ for all k< M then we assume that $z_{l,m}$ belong to the Filled-in Julia set of Q_c . For example you can plot the escaping points in red and the non-escaping points in black. The Julia set of Q_c is the common boundary between red and black points.

2. Plot the Mandelbrot set \mathcal{M} (two colors)

You can use the following algorithm. Choose and equal size grid in the square $[-2,2]\times[-2,2]$. Given N>0 you can define the grid of points using the following expression

$$c_{l,m} = -2 + 4l/N + (-2 + 4m/N)i,$$
 for $l, m = 0, \dots, N$

- (a) Plot in color #0 the set of escaping parameters, i.e., parameters $c_{l,m}$ such that the critical orbit $Q_{c_{l,m}}^n(0)$ escapes to infinity.
- (b) Plot in color #1 the set of bounded parameters, i.e., parameters $c_{l,m}$ such that the critical orbit $Q_{c_{l,m}}^n(0)$ is bounded.
- 3. Plot the Mandelbrot set \mathcal{M} (many colors)

As in part I take a grid of parameters $c_{l,m}$. Then,

(a) Plot in color #0 the set of escaping paramters.

- (b) Plot in color #1 the set of parameters $c_{l,m}$ converging towards a fixed point.
- (c) Plot in color #2 the set of paramters $c_{l,m}$ converging towards a peroidic orbit of period two.
- (d) Plot in color #3 the set of paramters $c_{l,m}$ converging towards a periodic orbit of period three.
- (e) Plot in color #4 the set of paramters $c_{l,m}$ converging towards a periodic orbit of period four.
- (f) Plot in color #5 the set of paramters $c_{l,m}$ converging towards a periodic orbit of period five.

You can use the following algorithm. Choose and equal size grid in the square $[-2,2] \times [-2,2]$. Given N > 0 you can define the grid points using the following expression

$$c_{l,m} = -2 + 4l/N + (-2 + 4m/N)i,$$
 for $l, m = 0, \dots, N$

For every parameter $c_{l,m}$ in the grid check if the critical point 0 escapes under the map $Q_{c_{l,m}}(z) = z^2 + c_{l,m}$.

- 4. Dynamical plane of a Siegel disk. Basically, a Siegel disk is a Fatou component where points rotate around an indifferent fixed point. We denote the Golden mean by $\varphi = \frac{\sqrt{5}-1}{2} = 0.6180339887...$ and consider the parameter $c_{\varphi} = \frac{1}{2}e^{2\pi i\varphi} \frac{1}{4}e^{4\pi\varphi}$.
 - (a) Plot de Dynamical plane of $Q_c(z) = z^2 + c_{\varphi}$.
 - (b) Compute the fixed points of Q_c and their multipliers.
 - (c) Plot in the dynamical plane the orbit of several (five) points near the indifferent fixed point.