

WATTSKIT, Software-Defined Power Monitoring of Distributed Systems

CCGrid'17: Performance Modeling and Evaluation (Session 18B)

17th May, 2017 – 10:55

Authors:

Maxime	COLMANT	ADE
Pascal	FELBER	Uni
Romain	Rouvoy	Uni
Lionel	SEINTURIER	Uni

ADEME / UNIVERSITY LILLE 1 / INRIA
UNIVERSITY NEUCHÂTEL
UNIVERSITY LILLE 1 / INRIA / IUF
UNIVERSITY LILLE 1 / INRIA / IUF

TABLE OF CONTENTS

- 1. Introduction
- 2. Contributions
- 3. Conclusion

INTRODUCTION

THE GLOBAL ICT¹ FOOTPRINT²

Introduction 2/31

¹Information and Communications Technology

²The Climate Group. SMART 2020: Enabling the low carbon economy in the information age. 2008.

MULTI-CORE CPU ARCHITECTURES ARE EVERYWHERE!

Introduction 3/31

CASE STUDY

Introduction 4/31

Introduction 5/31

Introduction 6/31

Introduction 7/31

Introduction 8/31

Introduction 9/31

RESEARCH QUESTIONS

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Introduction 10/31

RESEARCH QUESTIONS

RQ2: Can we propose a uniform view of the service power consumption?

Introduction 11/31

CONTRIBUTIONS

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Contributions 12/31

RQ1: Can we model the software power consumption regardless of the underlying architecture?

Learning CPU Power Models

Contributions 12/31

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 PCs regrouped by component		sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	nolynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 PCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 PCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 PCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors PCs	multinla linaar	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06
???	ARM	???	???	???

Only for Intel or AMD architectures

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	multiple linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

HW sensors: coarse-grained CPU metrics

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	militinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

HPCs: fine-grained CPU metrics

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component	multiple linear by component	sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	polynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	imilitinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected	support vector	sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

Power models are mostly linear

Ref.	Processor(s)	Feature(s)	Regression(s)	Benchmarks
[Ber+10]	Core 2 Duo	14 HPCs regrouped by component		sampl.: μ-benchs eval.: SPEC CPU 06
[Col+15]	Xeon W3520 & i3 2120	non-halted cycles reference cycles	nolynomial	sampl.: stress eval.: PARSEC, SPECjbb
[CM05]	XScale PXA255	5 HPCs	multiple linear	eval.: SPEC CPU 00, Java CDC/CLDC
[Dol+15]	Xeon E3-1275	3 HPCs HW sensors	linear	sampl.: linpack, stream, iperf, IOR eval.: Quantum Espresso
[ERK06]	Turion, Itanium 2	HW sensors	multiple linear	sampl.: Gamut eval.: SPECs, Matrix, Stream
[IM03]	Pentium 4	15 HPCs	i militinie linear	eval.: μ-benchs, AbiWord, Mozilla, Gnumeric
[RRK08]	Core 2 Duo & Xeon, Itanium 2, Turion	HW sensors HPCs	multiple linear	sampl.: calibration suite eval.: SPECs, stream, Nsort
[Yan+14]	Xeon E5620 & E7530	7 components 91 preselected		sampl.: NPB, IOzone, CacheBench eval.: SPEC CPU 06, IOzone
[Zha+14]	Sandy Bridge	non-halted cycles	linear	eval.: Google, SPEC CPU 06

Non free or private workloads

1. Portability

- 1. Portability
- 2. Accuracy

- 1. Portability
- 2. Accuracy
- 3. Reproducibility

- 1. Portability
- 2. Accuracy
- 3. Reproducibility

Towards an automatic approach for learning CPU power models

OUR APPROACH:

OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

- Input workload injection
 - Configurable
 - PARSEC (open-source, multi-threaded)³
 - Run several applications (x264, vips, etc.)

³C. Bienia et al. "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors". In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation. 2009.

Our approach: Open-Testbed To Automatically Learn Power Models

- 2 Acquisition of raw input metrics
 - Automatically explore the high number of the available HPCs (Xeon W3520: 514 HPCs)
 - Take care of HPC multiplexing⁴

⁴Intel. Intel 64 and IA-32 Architectures Software Developer's Manual. 2015.

Our approach: Open-Testbed To Automatically Learn Power Models

- 3 Selection of relevant HPCs
 - Pearson coefficient (HPC ⇔ Power)
 - 1st phase: quickly filtering out uncorrelated HPCs (< 0.5) (Xeon W3250: 253 left out)
 - \cdot 2nd phase: full sampling for the remaining HPCs

OUR APPROACH: OPEN-TESTBED TO AUTOMATICALLY LEARN POWER MODELS

- Power model inference
 - · Minimize the number of HPCs
 - Robust ridge regression (SotA?)

Our approach: Open-Testbed To Automatically Learn Power Models

Relative errors for the PARSEC suite on a Xeon W3520.

$$P_{idle} = 92 \text{ W}; \ P_{CPU} = \frac{1.40 \cdot \text{l1i:reads}}{10^8} + \frac{7.29 \cdot \text{lsd:inactive}}{10^9}$$

SUMMARY

Portability

Beyond SotA: adaptive approach

SUMMARY

Portability

Beyond SotA: adaptive approach

Accuracy

Avg. error: 1.35%

SUMMARY

· Portability

Beyond SotA: adaptive approach

Accuracy

Avg. error: 1.35%

· Reproducibility

Built on open-source workloads

RQ2: Can we propose a uniform view of the service power consumption?

Contributions 21/31

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Distributed

Contributions 22/31

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Distributed

Contributions 22/31

- Code freely available: wattskit.powerapi.org
 - · Scala / Akka
 - · LoC: 8.7k
 - Docker
 - · AGPLv3

SD Power Meter For Monitoring Concurrent Apps

· On an Intel Xeon W3520

Monitoring freq.: 4Hz

· Avg. error: 2%

· Low overhead: 2 W

RQ2: Can we propose a uniform view of the service power consumption?

Challenges

- 1. Native
- 2. Distributed

Contributions 26/31

CURRENT COARSE-GRAINED SOLUTIONS

A SERVICE-LEVEL POWER MONITORING

CONCLUSION

CONTRIBUTIONS

WATTSKIT, Software-Defined Power Monitoring of Distributed Systems

Conclusion 31/31

CONTRIBUTIONS

WATTSKIT, Software-Defined Power Monitoring of Distributed Systems

• RQ1: Can we model the software power consumption regardless of the underlying architecture?

Open-testbed approach for learning multi-core power models

Conclusion 31/31

CONTRIBUTIONS

WATTSKIT, Software-Defined Power Monitoring of Distributed Systems

• RQ1: Can we model the software power consumption regardless of the underlying architecture?

Open-testbed approach for learning multi-core power models

 RQ2: Can we propose a uniform view of the service power consumption?

In width energy monitoring, thanks to WATTSKIT

Conclusion 31/31

Thanks for your attention.

Maxime COLMANT maxime.colmant@inria.fr

WattsKit, for distributed systems:

[Col+17]

http://wattskit.powerapi.org/

BitWatts, for virtualized environments:

http://bitwatts.powerapi.org/

REFERENCES I

- [Ber+10] R. Bertran et al. "Decomposable and Responsive Power Models for Multicore Processors Using Performance Counters". In: Proceedings of the 24th ACM International Conference on Supercomputing. 2010.
- [BL09] C. Bienia and K. Li. "PARSEC 2.0: A New Benchmark Suite for Chip-Multiprocessors". In: Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation. 2009.
- [CM05] G. Contreras and M. Martonosi. "Power Prediction for Intel XScale® Processors Using Performance Monitoring Unit Events". In: Proceedings of the International Symposium on Low Power Electronics and Design. 2005.
- [Col+15] M. Colmant et al. "Process-level Power Estimation in VM-based Systems". In: Proceedings of the 10th European Conference on Computer Systems (EuroSys). 2015.
- [Col+17] M. Colmant et al. "WattsKit: Software-Defined Power Monitoring of Distributed Systems". In: 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 2017.
- [Dol+15] M. F. Dolz et al. "An analytical methodology to derive power models based on hardware and software metrics". In: Computer Science Research and Development (2015).

REFERENCES II

- [ERK06] D. Economou, S. Rivoire, and C. Kozyrakis. "Full-System Power Analysis and Modeling for Server Environments". In: In Workshop on Modeling Benchmarking and Simulation. 2006.
- [IM03] C. Isci and M. Martonosi. "Runtime Power Monitoring in High-End Processors: Methodology and Empirical Data". In: Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture. 2003.
- [RRK08] S. Rivoire, P. Ranganathan, and C. Kozyrakis. "A Comparison of High-level Full-system Power Models". In: Proceedings of the Conference on Power Aware Computing and Systems. 2008.
- [The08] The Climate Group. SMART 2020: Enabling the low carbon economy in the information age. 2008. URL: http://gesi.org/article/43 (visited on 09/23/2016).
- [Yan+14] H. Yang et al. "iMeter: An integrated VM power model based on performance profiling".In: Future Generation Computer Systems (2014).
- [Zha+14] Y. Zhai et al. "HaPPy: Hyperthread-aware Power Profiling Dynamically". In: Proceedings of the USENIX Annual Technical Conference. 2014.