EGR 7050 Design and Analysis of Engineering experiments

Homework 2

- 1. The breaking strength of a fiber is required to be at least 150 psi. Past experience has indicated that the standard deviation of breaking strength is $\sigma=3$ psi. A random sample of four specimens is tested, and the results are y1 =145, y2 =153, y3 = 150, and y4 =147.
- (a) State the hypotheses that you think should be tested in this experiment.
- (b) Test these hypotheses using α = 0.05. What are your conclusions?
- (c) Find the P-value for the test in part (b).
- (d) Construct a 95 percent confidence interval on the mean breaking strength.

Solution:

- a) H_0 : $\mu=150$ H_1 : $\mu>150$ It is given in the question that, the breaking strength is required to be **at least** 150. Therefore, a test for H_1 : $\mu>150$ has been chosen.
- b) $\alpha = 0.05$

Output from JMP:

This Normal probability plot shows that all the points lie close to the line and within the error bounds.

Fig. 1 Normal quantile plot

Δ	Summary Statistics ■					
	Mean	148.75				
	Std Dev	3.5				
	Std Err Mean	1.75				
	Upper 95% Mean	154.31928				
	Lower 95% Mean	143.18072				
	N	4				

Fig. 2 Summary statistics

□ Confidence Intervals						
Parameter	Estimate	Lower CI	Upper CI	1-Alpha	Sigma	
Mean	148.75	145.8101	151.6899	0.950	3.000	
Std Dev	3.5	1.982713	13.04992			

Fig. 4 Confidence Intervals

2.16 d) 95% confidence interval of mean breaking strength

One sample z test

n = 4,
$$\sigma$$
 =3, $\bar{y}=\frac{145+153+150+147}{4}$ = 148.75, $\mu_0\,=\,150$

$$\begin{split} Z_0 &= \frac{\overline{y} - \mu_0}{\sigma / \sqrt{n}} \\ &= \frac{148.75 - 150}{3/2} \end{split}$$

From z table, $Z_{0.05}$ =1.645. Z_0 is not greater than $Z_{0.05}$. Hence, H_0 cannot be rejected

c) P-value is
$$P = 1 - \varphi(-0.8333) = 1 - 0.2033 = 0.7967$$

d) 95% C.I can be found by,
$$\bar{y} - Z\alpha_{/2}\frac{\sigma}{\sqrt{n}} \leq \ \mu \leq \ \bar{y} + Z\alpha_{/2}\frac{\sigma}{\sqrt{n}}$$

=
$$148.75 - (1.96) \left(\frac{3}{2}\right) \le \mu \le 148.75 + (1.96) \left(\frac{3}{2}\right)$$

$$=145.81\leq\,\mu\leq151.69$$

2. The shelf life of a carbonated beverage is of interest. Ten bottles are randomly selected and tested, and the following results are obtained:

Day	/S
-----	----

108	138
124	163
124	159
106	134
115	139

- a) We would like to demonstrate that the mean shelf life exceeds 120 days. Set up appropriate hypotheses for investigating this claim.
- b) Test these hypotheses using 0.01. What are your conclusions?
- c) Find the P-value for the test in part (b).
- d) Construct a 99 percent confidence interval on the mean shelf life.

Solution:

a) To find out if mean shelf life exceeds 120 days, the hypotheses would be

$$H_0: \mu = 120$$
 $H_1: \mu > 120$

b) $\alpha = 0.01$

Fig. 5 Normal quantile plot

Quantiles					
100.0%	maximum	163	Mean	131	
99.5%		163	Std Dev	19.54482	
97.5%		163	Std Err Mean	6.1806149	
90.0%		162.6	Upper 95% Mean	144.98152	
75.0%	quartile	144	Lower 95% Mean	117.01848	
50.0%	median	129	N	10	
25.0%	quartile	113.25			
10.0%		106.2			
2.5%		106			
0.5%		106			
0.0%	minimum	106			

Fig. 6 Summary statistics

Fig. 7 Test mean

Fig. 8 Confidence intervals

$$\begin{split} \overline{y} &= 131, \qquad S^2 = \sum_{i=1}^{10} \frac{(y_i - \overline{y})^2}{n-1} = 529 + 49 + 49 + 625 + 256 + 49 + 1024 + 784 + 9 + 64/9 = 382 \\ S &= \sqrt{382} = 19.54 \\ t_0 &= \overline{(y - \mu_0)/(s/\sqrt{n})} = 131 - 120 \, / \, (19.54/\sqrt{10}) \\ &= 11/6.18 \\ &= 1.78 \\ t_{0.01.9} &= 2.821 \end{split}$$

 t_0 not greater than $t_{0.01,9}$. Therefore, H_0 cannot be rejected.

c) P-value: **P =0.0544** for H_1 : $\mu > 120$ (from JMP)

d) The 99% CI is ,
$$\bar{y} - t\alpha_{/2,n-1} \frac{s}{\sqrt{n}} \le \mu \le \bar{y} + t\alpha_{/2,n-1} \frac{s}{\sqrt{n}}$$

$$131 - (3.250)(6.18) \le \mu \le 131 + (3.250)(6.18) = \textbf{110}.\,\textbf{915} \le \mu \le \textbf{151}.\,\textbf{0}$$

3. Consider the shelf life data in Problem 2.20. Can shelf life be described or modeled adequately by a normal distribution? What effect would the violation of this assumption have on the test procedure you used in solving Problem 2.15?

Solution:

From the normal quantile plot of the previous problem, it could be seen that all points lie close to the normal line and within the error bounds. Therefore, it can be modeled by a normal distribution.

4. Twenty observations on etch uniformity on silicon wafers are taken during a qualification experiment for a plasma etcher. The data are as follows:

5.34	6.65	4.76	5.98	7.25
6.00	7.55	5.54	5.62	6.21
5.97	7.35	5.44	4.39	4.98
5.25	6.35	4.61	6.00	5.32

- a) Construct a 95 percent confidence interval estimate of σ^2 .
- b) Test the hypothesis that $\sigma^2 = 1.0$. Use $\alpha = 0.05$. what are your conclusions?
- c) Discuss the normality assumption and its role in this problem.
- d) Check normality by constructing a normal probability plot. What are your conclusions?

Solution:

a)
$$\frac{(n-1)S^2}{\aleph_{\alpha/2,n-1}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\aleph_{1-(\alpha/2),n-1}^2}$$

Fig. 9 Summary statistics

From JMP, S = 0.8891, $S^2 = 0.7905$

C.I is
$$\frac{(n-1)S^2}{\aleph_{\alpha_{/2},n-1}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\aleph_{1-(\alpha_{/2}),n-1}^2}$$

$$\frac{(19)0.7905}{32.852} \le \sigma^2 \le \frac{(19)0.7905}{8.907}$$

$$0.457 \le \sigma^2 \le 1.686$$

b) Test the hypothesis that $\sigma^2=1.0$. Use $\alpha=0.05$. what are your conclusions? H_0 : $\sigma^2=1$ H_1 : $\sigma^2\neq 1$

Test statistic:

$$\aleph_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

$$=\frac{19(0.7905)}{1}$$
$$= 15.0195$$

Thus, \aleph_0^2 is neither greater than $\aleph_{\alpha/2,n-1}^2$ nor less than $\aleph_{1-(\alpha/2),n-1}^2$. Hence, H_0 cannot be rejected.

It is concluded that $\sigma^2 = 1$

c) Discuss the normality assumption and its role in this problem.

Normality assumption is important in variance test. Normality can be assumed only if the data is very close to the line else this might lead to incorrect conclusions.

Normal quantile plot all

though within the error

points lie close to line

bounds.

d) Check normality by constructing a normal probability plot. What are your conclusions?

Fig. 10 Normal quantile plot

Fig. 11 Test statistic

Fig. 12 Confidence intervals