Отсчёт по работе 1.1.4

Измерение интенсивности радиационного фона Карташов Констанин Б04-005

1 Обобщение

Целью работы является применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона. Для измерений используется счётчик Мюллера-Гейгера, подключённый к компьютеру. Компьютер проводит 400 измерений длительностью в 10 секунд, фиксируя количество срабатываний счётчика за время одного измерения. После проведения измерений компьютер выводит статистические данные для 400 измерений длительностью в 10 секунд и количественные данные для 200 измерений длительностью в 20 секунд. Затем из данных для измерений в 20 секунд следует вывести статистические данные и проанализировать статистические данные для измерений в 10 и в 20 секунд. Результатом работы является $13,73\pm0,18$ частиц в среднем для измерений в 10 секунд и $27,48\pm0,36$ для измерений в 20 секнд.

2 Теоретическая часть

Радиационный фон состоит в основном из космических лучей прилетающих из Галактики и частиц возникающих при взаимодействии первых с атмосферой Земли. При прохождении таких частиц через счётчик Гейгера-Мюллера (далее - счётчик), счётчик генерирует короткие электрические импульсы, которые в этой работе будет фиксироваться при помощи компьютера.

Прохождение космических через счётчик — пуассоновский процесс. Для такого процесса среднеквадратичная ошибка числа обсчётов, измеренное за некоторый интервал времени равна квадратному корню из среднего числа отсчетов n_0 за тот же интервал: $\sigma = \sqrt{n_0}$. однако истинное среднее значение измеряемой величины неизвестно. поэтому в формулу для определения стандартной ошибки отдельного измерения приходится подставляет не истинное среднее значение n_0 , а измеренное значение n:

$$\sigma = \sqrt{n} \tag{1}$$

Из формулы (1) следует, что, с вероятностью 68%, измеренное число частиц n отличается от искомого среднего не более чем на \sqrt{n} . Результат измерения записывается вот так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измерениях среднее значеие числа сосчитаных за одно измерение частиц равно:

$$\bar{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

Стандартную ошибку отдельного измерения можно оценить по следущей формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \bar{n})^2}$$

$$\tag{4}$$

В соответствии с формулой (1) следует ожидать, что эта ошибка будет близка к $\sqrt{n_i}$, т. е. $\sigma_{\text{отд}} \approx \sigma_i = \sqrt{n_i}$, где в качестве n_i можно подставить любое из измеренных значений n. Ближе всего к значению $\sigma_{\text{отд}}$, определённому по формуле (4), лежит величина $\sqrt{\bar{n}}$, т. е.

$$\sigma_{\text{отл}} \approx \sqrt{\bar{n}}$$
 (5)

Величина \bar{n} из формулы (3), полученная путём усреднения резутатов по серии из N опытов сама является случайной величиной, для которой можно посчитать стандартную ошибку отклонения \bar{n} от n_0 :

$$\sigma_{\bar{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \bar{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}$$

$$\tag{6}$$

Аналогичным образом определяется относительная ошибка в определении среднего по всем измерения значения \bar{n} :

$$\varepsilon_{\bar{n}} = \frac{\sigma_{\bar{n}}}{\bar{n}} = \frac{\sigma_{\text{отд}}}{\bar{n}\sqrt{N}} \approx \frac{1}{\sqrt{\bar{n}N}}.$$
(7)

3 Экспериментальная часть

- 1. Включаем компьютер и проводим измерения.
- 2. После измерений следующие данные были вычислены компьютером (значения полученные для измерений длительностью в 10 секунд будут обозначатся с индексом X_1 , для измерений в 20 секунд с индексом X_2):

$$\bar{n}_1 = 13,73; \quad \sigma_{\bar{n}_1} = 0,181384; \quad \varepsilon_{\bar{n}_1} = 1,32107; \quad \sigma_1 = 3,62767.$$

- 3. Также компьютером подсчитано, что в пределах $\pm \sigma_1$ находится 67.9% измерений, а в пределах $\pm 2\sigma_1$ находится 92.6% измерений.
 - 4. Получим окончательный результат для измерений за 20 с

$$n_{t=10c} = \bar{n}_1 \pm \sigma_{\bar{n}_1} = 13,73 \pm 0,18.$$

- 5. Далее компьютером была составлина следщая таблица числа срабатываний счётчика за 20 с (табл. 1)
- 6. Гистограммы для распередений среднего числа отсчетов за 10 и 20 с строим на одном графике (рис. 1). При этом для второго распеределения цену деления по оси абцисс увеличивает в раза, чтобы положения максимумов распределений совпали.
- 7. Используя формулу (3), опредклим среднее число импульсов счётчика за 20 с:

$$\bar{n}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = 27,475.$$

8. Найдём среднеквадратичную ошибку отдельного измерения по формуле (4):

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n}_2)^2} \approx 5,029.$$

9. Убедимся в справедливости формулы (5):

$$\sigma_2 \approx \sqrt{\bar{n}_2}; \quad 5,029 \approx \sqrt{27,475} = 5,242.$$

- 10. В пределах $\pm \sigma_2$ находится 66% измерений, а в пределах $\pm 2\sigma_2$ находится 95% измерений.
- 11. Сравним среднеквадратичные ошибки отдельных измерений для двух распределений: $\bar{n}_1=13,73;\sigma_1=3,63;\bar{n}_2=27,46;\sigma_2=5,03$. Легко

№ опыта	1	2	3	4	5	6	7	8	9	10
0	38	27	26	36	34	27	25	22	26	26
10	34	27	32	34	29	29	34	26	28	36
20	28	31	28	22	27	27	27	33	30	25
30	31	24	28	29	25	34	25	33	29	27
40	35	31	30	22	30	24	19	31	23	43
50	15	29	37	27	30	20	23	24	29	21
60	34	29	32	30	19	26	19	21	17	20
70	35	23	29	27	37	30	33	30	31	24
80	26	33	17	27	29	23	24	34	22	17
90	31	30	41	26	28	21	28	28	22	32
100	28	21	20	24	28	27	32	25	24	22
110	30	21	32	20	28	24	30	27	30	27
120	25	25	29	34	33	28	26	23	29	26
130	31	31	31	24	29	24	33	16	29	22
140	37	25	25	32	27	17	23	29	22	26
150	30	27	33	33	30	27	18	26	22	26
160	26	28	28	19	30	29	25	25	24	25
170	29	26	28	36	30	31	24	32	34	33
180	26	35	18	22	27	21	23	21	42	25
190	27	27	35	25	26	33	29	22	21	29

Таблица 1: Число срабатываний счетчика за 10 с

Рис. 1: Гистограммы для $\tau=10$ с и $\tau=20$ с

видеть, что хотя абсолютное значение сигма во втором распределении больше, чем в первом, относительная полуширина второго распределения меньше:

 $\frac{\sigma_1}{\bar{n}_1} \cdot 100\% = 26\%; \quad \frac{\sigma_2}{\bar{n}_2} \cdot 100\% = 18\%.$

12. Определим стандартную ошибку для величины \bar{n}_2 и относительную ошибку нахождения \bar{n}_2 для $N_2=200$ измерений по 20 с. По формуле (6)

$$\sigma_{\bar{n}_2} = \frac{\sigma_2}{\sqrt{N_2}} = 0,356$$

Относительная ошибка первому равенству (7):

$$\varepsilon_{\bar{n}_2} = \frac{\sigma_{\bar{n}_2}}{\bar{n}_2} \cdot 100\% = 1,29\%,$$

по второму равенству:

$$\varepsilon_{\bar{n}_2} = \frac{100\%}{\sqrt{\bar{n}_2 N_2}} = 1,35\%;$$

Окончательный результат:

$$n_{t=20c} = \bar{n}_2 \pm \sigma_{\bar{n}_2} = 27,48 \pm 0,36.$$

4 Заключительная часть

Проведя измерения и проанализировав полученные данные мы показали, что процесс срабатывания счётчика Гейгера-Мюллера схож с пуассоновским процессом. Также мы нашли среднее число срабатывание счётчика за период в 10 и 20 с, стандартную ошибку этих измерений, и стандартную ошибку отклонения среднего числа от действительного.

В таблице 2 предствлены полученные результаты.

Таблица 2: Результаты работы

$n_{t=10c}$	$13,73 \pm 0,18$						
\bar{n}_1	13,73						
σ_1	3,63						
$\sigma_{ar{n}_1}$	0, 18						
$\varepsilon_{\bar{n}_1}$	1,32%						
$n_{t=20c}$	$13,73 \pm 0,18$						
\bar{n}_2	27,48						
σ_2	5,03						
$\sigma_{ar{n}_2}$	0,36						
$\varepsilon_{ar{n}_2}$	1,29%						