

Gate Networks

Q course	
	ucla
created	@January 17, 2023 2:15 PM
updated	@January 17, 2023 3:49 PM
Ø URL	
	CS

Definitions

▼

Big Ideas

▼ Combinational Module (Gate Networks)

- ▼ created with Gate Networks
- ▼ eg. set {AND,OR} gate network

Resources

https://s3-us-west-2.amazonaws.c om/secure.notion-static.com/4a2e 7da1-0bfa-476f-b5fe-56eee9bf2fa 1/ch4.pdf

https://s3-us-west-2.amazonaws.c om/secure.notion-static.com/3384 29c3-6e7f-4eed-9458-cd59d1a6bf f4/cs51a CriticalPath.pdf

Gate Networks 1

▼ logic diagram (graphical representation)

 $\label{eq:Figure 4.4: a) Graphical representation (logic diagram)} Figure \ 4.4: \ a) \ Graphical representation (logic diagram)$

▼ net list (tabular representation)

C .	-		0	. [From	То	
Gate	Type	Inputs	Output			A_1	
Α	AND - 2	A_1	A_3		x_3		
		A_2			x_2	A_2	
B AN	AND - 3		B_4		x_2	B_1	
	AND - 3	B_1			x_1	B_2	
		B_2			x_0	B_3	
С		B_3	~		A_3	C_1	
, c	OR - 2	C_1 C_2	C_3		B_4	C_2	
		C_2			C_3	z	
Gates					Connections		
(b)							

▼ Hardware Description Language (HDL) (program)

▼ Universal Gates: {NAND, NOR}

▼ Universal Sets

- ▼ you can show a set of gates of a combinatorial module (gate network) is universal if it can be represented using only universal gates {NAND, NOR}
- ▼ e.g. NOT (inverter) and AND using universal gates

▼ Mixed-logic Notation and Complex gate structures

▼ e.g. showing gates as reimplemented unique gates

$$z = (x_{n-1} \dots x_1 x_0)'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1 + x_0'$$

$$z = x_{n-1} + \dots + x_1 + x_0'$$

$$z = x_{n-1} + \dots + x_1 + x_0'$$

$$z = x_{n-1} + \dots + x_1 + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

$$z = x_{n-1} + \dots + x_1' + x_0'$$

Complex gate structures

▼ Critical Path: Dynamic Programming - Longest Path

- ▼ gates have delay time in execution → finding the largest latency in the gate network tells us how fast the network will execute (the slowest chain)
- ▼ the latency can be written above the gate

$$t_{\text{tot}} = t_n = \max(t_1, ..., t_{n-1}) + d(G)$$

▼ Calculate Critical Path with Delay Table

▼ note how each gate changes its values as shown in the example

- ▼ the gate values are determined considering if inputs are all low (usually 0) then if inputs are all high (usually 1)
- ▼ e.g. gate A has low = 0 (bc with low inputs AND give 0) and has high = 1 (bc AND w high inputs gives 1) and o on
- ightharpoonup use the delay table s.t. L= load factor = fan-out in the propagation delays

Table 4.3: Characteristics of a family of CMOS gates

Gate	Fan-	Propagat	ion delays	Load factor	Size
type	in	t_{pLH}	t_{pHL}		
		[ns]	[ns]	[standard	[equiv.
				loads]	gates]
AND	2	0.15 + 0.037L	0.16 + 0.017L	1.0	2
AND	3	0.20 + 0.038L	0.18 + 0.018L	1.0	2
AND	4	0.28 + 0.039L	0.21 + 0.019L	1.0	3
OR	2	0.12 + 0.037L	0.20 + 0.019L	1.0	2
OR	3	0.12 + 0.038L	0.34 + 0.022L	1.0	2
OR	4	0.13 + 0.038L	0.45 + 0.025L	1.0	3
NOT	1	0.02 + 0.038L	0.05 + 0.017L	1.0	1
NAND	2	0.05 + 0.038L	0.08 + 0.027L	1.0	1
NAND	3	0.07 + 0.038L	0.09 + 0.039L	1.0	2
NAND	4	0.10 + 0.037L	0.12 + 0.051L	1.0	2
NAND	5	0.21 + 0.038L	0.34 + 0.019L	1.0	4
NAND	6	0.24 + 0.037L	0.36 + 0.019L	1.0	5
NAND	8	0.24 + 0.038L	0.42 + 0.019L	1.0	6
NOR	2	0.06 + 0.075L	0.07 + 0.016L	1.0	1
NOR	3	0.16 + 0.111L	0.08 + 0.017L	1.0	2
NOR	4	0.23 + 0.149	0.08 + 0.017L	1.0	4
NOR	5	0.38 + 0.038L	0.23 + 0.018L	1.0	4
NOR	6	0.46 + 0.037L	0.24 + 0.018L	1.0	5
NOR	8	0.54 + 0.038L	0.23 + 0.018L	1.0	6
XOR	2*	0.30 + 0.036L	0.30 + 0.021L	1.1	3
		0.16 + 0.036L	0.15 + 0.020L	2.0	

- **▼** delay prop. Low \rightarrow High if gate has (0/1) and High \rightarrow Low if (1/0) otherwise (0/0) and (1/1) have t=0 delay)
- ▼ fan-in in is the number of input variables
- ▼ fan-out is the number of output variables

Gate Networks 5

- ▼ load factor is a reference to the energy/cost it takes to use the gate
- ▼ size is arbitrary definition based on power consumption and delay prop.
 - ▼ size is now obsolete as transistors can be manufacture in billions to trillions per die

▼ Analysis of Gate Networks

▼ Functional Analysis

- ▼ define I/O switching expressions (typically letters with subscript)
- ▼ create a net list (tabular representation) of the binary function
- ▼ define high-level I/O variables
- \rightarrow use codes to represent as bitvectors
- ▼ create a high-level spec of the system

▼ Network characteristic

- ▼ input load factors
- ▼ fan-out factors
- ▼ delays
- ▼ e.g. logic diagram with SEs

Gate Networks 6

Figure 4.10: Gate network for analys

▼ e.g. binary function

Output expressions:

$$z_0 = T_2 + T_3$$

$$= x'_0 x'_1 x_2 + x_0 T_1$$

$$= x'_0 x'_1 x_2 + x_0 (x'_2 + x_3)$$

$$= x'_0 x'_1 x_2 + x_0 x'_2 + x_0 x_3$$

$$z_1 = T_5 + T_6$$

$$= x_1 x_2 x_3 + T'_4$$

$$= x_1 x_2 x_3 + (T_1 x'_0 x_1)'$$

$$= x_1 x_2 x_3 + T'_1 + x_0 + x'_1$$

$$= x_1 x_2 x_3 + x'_2 x'_3 + x_0 + x'_1$$

Reduced expressions

$$z_0=x_0'x_1'x_2+x_0x_2'+x_0x_3$$
 (no reduction possible) $z_1=x_0+x_1'+x_2$

▼ Hierarchical approach

- ▼ decompose the network in subnetworks (modules)
- ▼ analyze subnetworks separately
- ▼ substitute into gate network function
- ▼ e.g. creating subnetworks

7

Figure 4.11: Network for hierarchical analysis

▼ verify subnetwork satisfies binary function

▼ binary function (spec)

$$\begin{array}{ll} \text{Inputs:} & x,y,w \in \{0,1,\ldots,7\} \\ \text{Output:} & z \in \{0,1,\ldots,7\} \end{array}$$

Function:
$$z = \begin{cases} (y+1) \mod 8 & \text{if} \quad x \neq 0 \\ (w+1) \mod 8 & \text{if} \quad x = 0 \end{cases}$$

▼ subnetwork functions

$$\begin{split} M_1: & t = x_2 + x_1 + x_0 \\ t &= \begin{cases} 1 & \text{if} \quad x \neq 0 \\ 0 & \text{otherwise} \end{cases} \\ M_2: & \\ v_i &= y_i t + w_i t' \quad (i = 0, 1, 2) \\ & v &= \begin{cases} y & \text{if} \quad t = 1 \\ w & \text{if} \quad t = 0 \end{cases} \\ & v &= \begin{cases} y & \text{if} \quad t = 1 \\ w & \text{if} \quad t = 0 \end{cases} \\ M_3: & \\ z_2 &= v_2' v_1 v_0 + v_2 v_1' + v_2 v_0' \\ & z_1 &= v_1 v_0' + v_1' v_0 \\ & z_0 &= v_0' \end{split}$$

▼ create high level spec (net list, table)

High-level specification:

v_2	v_1	v_0	z_2	z_1	z_0		v	z
0	0	0	0	0	1		0	1
0	0	1	0	1	0		1	2
0	1	0	0	1	1		2	3
0	1	1	1	0	0	\rightarrow	3	4
1	0	0	1	0	1		4	5
1	0	1	1	1	0		5	6
1	1	0	1	1	1		6	7
1	1	1	0	0	0		7	0

▼ derive network function

From table, we get

$$z = (v+1) \bmod 8$$

SUMMARY