

A Level · OCR · Physics

Structured Questions

Magnetic Fields

Magnetic Fields / Magnetic Fields Lines / Fleming's Left-Hand Rule / Force on a Current-Carrying Conductor / Magnetic Flux Density / Force on a Moving Charge / Motion of Charged Particles in a B Field / Velocity Selector

Scan here to return to the course

or visit savemyexams.com

Total Marks /6 **1 (a)** The diagram below shows the top-view of a long current-carrying wire. wire

The direction of the current in the wire is into the plane of the paper.

Draw at least **three** field lines to indicate the magnetic field pattern around this wire.

[2]

(2 marks)

(b) The arrangement shown in the diagram below is used to determine the magnetic flux density between the poles of a permanent magnet.

The magnet is placed on the digital balance. The current-carrying wire is horizontal and at right angles to the magnetic field between the poles of the magnet. The wire is fixed.

The following results are collected.

- length of the wire in the uniform field of the magnet = 6.0 ± 0.2 cm
- balance reading with no current in wire = 80.0 g

- balance reading with current in wire = 82.2 g
- current in wire = 5.0 ± 0.1 A

Calculate the magnetic flux density *B*, including the absolute uncertainty. Ignore the absolute uncertainty in the balance readings. Write your value for B to $\mathbf{2}$ significant figures and the absolute uncertainty to **1** significant figure.

B = ± T [4]
(4 marks)

