Resolución en lógica de primer orden

Paradigmas de Lenguajes de Programación

Departamento de Computación, FCEyN, UBA

28 de septiembre de 2017

Forma clausal

- Es una forma normal conjuntiva, en notación de conjuntos.
- Análogo a la forma clausal del marco proposicional.
- Pero requiere tener en cuenta los cuantificadores.
- ▶ El pasaje a forma clausal consiste en seis pasos de conversión.
 - 1. Escribir la fórmula en términos de $\land, \lor, \neg, \forall, \exists$ (i.e. eliminar implicación).
 - 2. Pasar a forma normal negada.
 - 3. Pasar a forma normal prenexa (opcional).
 - 4. Pasar a forma normal de Skolem.
 - 5. Pasar matriz a forma normal conjuntiva.
 - 6. Distribuir cuantificadores universales.

Forma normal negada

El conjunto de fórmulas en forma normal negada (FNN) se define inductivamente como:

- 1. Para cada fórmula atómica A, A y $\neg A$ están en FNN.
- 2. Si $A, B \in FNN$, entonces $(A \lor B), (A \land B) \in FNN$.
- 3. Si $A \in \text{FNN}$, entonces $\forall x.A, \exists x.A \in \text{FNN}$.

Ejemplos

- ▶ $\neg \exists x.((P(x) \lor \exists y.R(x,y)) \supset (\exists z.R(x,z) \lor P(a)))$ no está en FNN.
- ▶ $\forall x.((P(x) \lor \exists y.R(x,y)) \land (\forall z.\neg R(x,z) \land \neg P(a)))$ está en FNN.

Forma normal negada

Toda fórmula es lógicamente equivalente a otra en FNN.

Dem.

Por inducción estructural usando:

Ejemplos

- ▶ $\neg \exists x. (\neg (P(x) \lor \exists y. R(x, y)) \lor (\exists z. R(x, z) \lor P(a)))$ se transforma en
- $\blacktriangleright \forall x.((P(x) \vee \exists y.R(x,y)) \wedge (\forall z.\neg R(x,z) \wedge \neg P(a)))$

Forma normal prenexa

Fórmula de la forma $Q_1x_1 \dots Q_nx_n.B$, $n \geq 0$, donde

- ► B sin cuantificadores (llamada matriz)
- \triangleright x_1, \ldots, x_n son variables
- $ightharpoonup Q_i \in \{\forall,\exists\}$

Forma prenexa

Toda fórmula A es lógicamente equivalente a una fórmula B en forma prenexa.

Demostración

Por inducción estructural usando (las fórmulas se asumen rectificadas):

$$(\forall x.A) \land B \iff \forall x.(A \land B) \qquad (\forall x.A) \lor B \iff \forall x.(A \lor B) \\ (A \land \forall x.B) \iff \forall x.(A \land B) \qquad (A \lor \forall x.B) \iff \forall x.(A \lor B) \\ (\exists x.A) \land B \iff \exists x.(A \land B) \qquad (\exists x.A) \lor B \iff \exists x.(A \lor B) \\ (A \land \exists x.B) \iff \exists x.(A \land B) \qquad (A \lor \exists x.B) \iff \exists x.(A \lor B)$$

Nota: Con estas equivalencias basta, si asumimos que A está en FNN.

Ejemplo

- 1. $\forall x. \neg P(x) \land (\exists y. Q(y) \lor \forall z. P(z))$
- 2. $\forall x. \neg P(x) \land (\exists y. (Q(y) \lor \forall z. P(z)))$
- 3. $\exists y.(\forall x.\neg P(x) \land (Q(y) \lor \forall z.P(z)))$
- 4. $\exists y.(\forall x.\neg P(x) \land \forall z.(Q(y) \lor P(z)))$
- 5. $\exists y. \forall z. (\forall x. \neg P(x) \land (Q(y) \lor P(z)))$
- 6. $\exists y. \forall z. \forall x. (\neg P(x) \land (Q(y) \lor P(z)))$

Forma normal de Skolem

- Hasta ahora tenemos una fórmula que:
 - 1. está escrita en términos de $\land, \lor, \neg, \forall, \exists$,
 - 2. si tiene negaciones, solamente se aplican a átomos (forma normal negada),
 - (opcionalmente) si tiene cuantificadores, se encuentran todos en el prefijo (forma normal prenexa).
- El proceso de pasar una fórmula a forma normal de Skolem se llama skolemización.
- El objetivo de la skolemización es
 - 1. eliminar los cuantificadores existenciales
 - 2. sin alterar la satisfactibilidad.

Eliminación de cuantificadores existenciales

- → ¿Cómo eliminamos los ∃ sin cambiar la satisfactibilidad?
- Introducimos "testigos" para los mismos.
 - Todo cuantificador existencial se instancia en una constante o función de skolem.
 - ▶ Ejemplo: $\exists x.P(x)$ se skolemiza a P(c) donde c es una nueva constante que se agrega al lenguaje de primer orden.
 - Estas funciones y constantes se suelen conocer como parámetros.

¿Cómo se altera el significado de la fórmula?

Prop.

Si A' es el resultado de skolemizar A, entonces A es satisfactible sii A' es satisfactible.

- ► Consecuencia: La skolemización preserva insatisfactibilidad.
- Esto es suficiente para poder aplicar el método de resolución, tal como veremos.

¿Preservación de validez?

- ▶ ¿Podremos eliminar los cuantificadores existenciales, usando Skolemización, sin alterar la validez?
- ► Esto es mucho más fuerte que preservar satisfactibilidad...
- Respuesta: No.
- ▶ Ejemplo: $\exists x.(P(a) \supset P(x))$ es válida pero $P(a) \supset P(b)$ no lo es.
- Tal como se mencionó, la skolemización sí preserva satisfactibilidad y ello es suficiente para el método de resolución.

Skolemización

Cada ocurrencia de una subfórmula

$$\exists x.B$$

en A se reemplaza por

$$B\{x \leftarrow f(x_1, \ldots, x_n)\}$$

donde

- •{• ← •} es la operación usual de sustitución (sustituir todas las ocurrencias libres de una variable en una expresión fórmula o término - por otra expresión).
- Si ∃x.B forma parte de una fórmula mayor, decimos que x depende de las variables libres de B, y sólo de ellas (por ejemplo, en ∀z.∀y.∃x.P(y,x) la x depende de y).
- ▶ f es un símbolo de función nuevo y las x_1, \ldots, x_n son las variables de las que depende x en B.

Definición de forma normal de Skolem (1/2)

- Sea A una sentencia rectificada en FNN.
 - ▶ No es necesario que esté en forma prenexa.
- ► Una forma normal de Skolem de A (escrito SK(A)) es una fórmula sin existenciales que se obtiene recursivamente como sigue.
- ▶ Sea A' cualquier subfórmula de A.
 - ▶ Si A' es una fórmula atómica o su negación, SK(A') = A'.
 - ▶ Si A' es de la forma $(B \star C)$ con $\star \in \{\lor, \land\}$, entonces $\mathbf{SK}(A') = (\mathbf{SK}(B) \star \mathbf{SK}(C))$.
 - ▶ Si A' es de la forma $\forall x.B$, entonces $SK(A') = \forall x.SK(B)$.
 - Sigue en siguiente diapositiva.

Definición de forma normal de Skolem (2/2)

- ▶ Si A' es de la forma $\exists x.B$ y $\{x, y_1, \dots, y_m\}$ son las variables libres de B^1 , entonces
 - 1. Si m > 0, crear un nuevo símbolo de función de Skolem, f_x de aridad m y definir

$$SK(A')=SK(B\{x \leftarrow f_x(y_1,\ldots,y_m)\})$$

2. Si m=0, crear una nueva constante de Skolem c_x y

$$SK(A')=SK(B\{x \leftarrow c_x\})$$

Nota: dado que A está rectificada, cada f_x y c_x es única.

¹Notar que se ligan en A dado que A es sentencia

Ejemplos

Considere la fórmula

$$\forall x. \left(P(a) \vee \exists y. (Q(y) \wedge \forall z. (P(y,z) \vee \exists u. Q(x,u))) \right) \vee \exists w. Q(w)$$

La forma normal de Skolem es:

$$\forall x. (P(a) \lor (Q(g(x)) \land \forall z. (P(g(x), z) \lor Q(x, f(x))))) \lor Q(c)$$

Ejemplos

Considere la sentencia:

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x,f(x),g(x))$
- 2. Alternativa 2 (azul, rojo)
 - 2.1 $\forall x.\exists y.\exists z.R(x,y,z)$
 - 2.2 $\forall x. \exists y. R(x, y, h(x, y))$
 - 2.3 $\forall x.R(x, k(x), h(x, k(x)))$
- 3. La skolemización no es determinística.
- Es mejor skolemizar de afuera hacia adentro.

Forma clausal

Hasta ahora tenemos una fórmula que:

- 1. está escrita en términos de $\land, \lor, \neg, \forall$;
- 2. si tiene negaciones, solamente se aplican a átomos (forma normal negada);
- si tiene cuantificadores, son universales (forma normal de Skolem);
- 4. si está en forma normal prenexa y tiene cuantificadores, éstos se encuentran todos en el prefijo.

$$\forall x_1 \dots \forall x_n . B$$

Forma clausal

$$\forall x_1 \dots \forall x_n . B$$

1. Pasar B a forma normal conjuntiva B' como si fuera una fórmula proposicional arrojando

$$\forall x_1 \dots \forall x_n . B'$$

2. Distribuir los cuantificadores sobre cada conjunción usando la fórmula válida $\forall x.(A \land B) \iff \forall x.A \land \forall x.B$ arrojando una conjunción de cláusulas

$$\forall x_1 \ldots \forall x_n. C_1 \wedge \ldots \wedge \forall x_1 \ldots \forall x_n. C_m$$

donde cada C_i es una disyunción de literales

3. Se simplifica escribiendo $\{C_1, \ldots, C_m\}$.

Ejemplo

$$\forall x. \forall z. (P(a) \lor (Q(g(x)) \land (P(g(x), z) \lor Q(x, f(x))))) \lor Q(c)$$

1. Pasamos la matriz a forma normal conjuntiva

$$\forall x. \forall z. ([P(a) \lor Q(g(x)) \lor Q(c)] \land [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)])$$

2. Distribuimos los cuantificadores

$$\forall x. \forall z. [P(a) \lor Q(g(x)) \lor Q(c)] \land \forall x. \forall z. [P(a) \lor P(g(x), z) \lor Q(x, f(x)) \lor Q(c)]$$

3. Pasamos a notación de conjuntos

$$\left\{ \{ P(a), Q(g(x)), Q(c) \}, \\
\{ P(a), P(g(x), z), Q(x, f(x)), Q(c) \} \right\}$$

Forma clausal - Resumen

- 1. Escribir la fórmula en términos de $\land, \lor, \neg, \forall, \exists$ (i.e. eliminar implicación)
- 2. Pasar a forma normal negada
- 3. Pasar a forma normal prenexa
- 4. Pasar a forma normal de Skolem (puede hacerse antes de 3)
- 5. Pasar matriz a forma normal conjuntiva
- 6. Distribuir cuantificadores universales

Nota: todos los pasos preservan validez lógica, salvo la skolemización (que preserva la satisfactibilidad).

Resolución en lógica proposicional

Consideremos la siguiente fórmula:

$$(\forall x.P(x)) \land \neg P(a)$$

- Es satisfactible? NO.
- Su forma clausal es

$$\{\{P(x)\}, \{\neg P(a)\}\}$$

▶ ¿Podemos aplicar la regla de resolución?

$$\frac{\{A_1, \dots, A_m, Q\} \quad \{B_1, \dots, B_n, \neg Q\}}{\{A_1, \dots, A_m, B_1, \dots, B_n\}}$$

No. P(x) y P(a) no son idénticos, son ... unificables.

Ahora sí, la Regla de resolución

$$\frac{\{B_1,\ldots,B_k,A_1,\ldots,A_m\}\quad \{\neg D_1,\ldots,\neg D_j,C_1,\ldots,C_n\}}{\sigma(\{A_1,\ldots,A_m,C_1,\ldots,C_n\})}$$

donde σ es el MGU de $\{B_1, \ldots, B_k, D_1, \ldots, D_j\}$.

- ▶ Asumimos que las cláusulas $\{B_1, \ldots, B_k, A_1, \ldots, A_m\}$ y $\{\neg D_1, \ldots, \neg D_j, C_1, \ldots, C_n\}$ no tienen variables en común; en caso contrario se renombran las variables.
- ▶ Observar que $\sigma(B_1) = \ldots = \sigma(B_k) = \sigma(D_1) = \ldots = \sigma(D_j)$.
- La cláusula $\sigma(\{A_1,\ldots,A_m,C_1,\ldots,C_n\})$ se llama resolvente (de $\{B_1,\ldots,B_k,A_1,\ldots,A_m\}$ y $\{\neg D_1,\ldots,\neg D_j,C_1,\ldots,C_n\}$).

Método de resolución

- Las siguientes nociones son análogas al caso proposicional.
 - Cláusula vacía
 - Paso de resolución
 - Refutación
- ► Al igual que en el caso proposicional contamos con el siguiente resultado.

Teorema de Herbrand-Skolem-Gödel Cada paso de resolución preserva satisfactibilidad.

Ejemplo

Supongamos que dado A, obtenemos $\neg A$, lo convertimos a forma clausal y nos queda: $C_1 \land C_2 \land C_3$ donde

- $C_1 = \forall z_1. \forall x. (\neg P(z_1, a) \vee \neg P(z_1, x) \vee \neg P(x, z_1))$
- $C_2 = \forall z_2. (P(z_2, f(z_2)) \vee P(z_2, a))$
- ► $C_3 = \forall z_3.(P(f(z_3), z_3) \lor P(z_3, a))$

Abreviado (sin cuantificadores + notación de conjuntos):

$$\left\{ \{ \neg P(z_1, a), \neg P(z_1, x), \neg P(x, z_1) \}, \\
\{ P(z_2, f(z_2)), P(z_2, a) \}, \\
\{ P(f(z_3), z_3), P(z_3, a) \} \right\}$$

Ejemplo

$$\begin{split} &C_1 = \{\neg P(z_1,a), \neg P(z_1,x), \neg P(x,z_1)\}, \\ &C_2 = \{P(z_2,f(z_2)), P(z_2,a)\}, \\ &C_3 = \{P(f(z_3),z_3), P(z_3,a)\}. \end{split}$$

- 1. De C_1 y C_2 con $\{z_1 \leftarrow a, x \leftarrow a, z_2 \leftarrow a\}$: $C_4 = \{P(a, f(a))\}$
- 2. De C_1 y C_3 con $\{z_1 \leftarrow a, x \leftarrow a, z_3 \leftarrow a\}$: $C_5 = \{P(f(a), a)\}$
- 3. De C_1 y C_5 con $\{z_1 \leftarrow f(a), x \leftarrow a\}$: $C_6 = \{\neg P(a, f(a))\}$
- 4. De C_4 y C_6 :

Otro ejemplo

- Consideremos las siguientes fórmulas:
 - $ightharpoonup F_1: \forall x. \forall y. (P(x,y) \supset P(y,x))$
 - ► F_2 : $\forall x. \forall y. \forall z. ((P(x,y) \land P(y,z)) \supset P(x,z))$
 - $ightharpoonup F_3: \forall x. \exists y. P(x,y)$
- Establecen que P es simétrica, transitiva y total

Apelar al método de resolución para probar que P es reflexiva

Tenemos que probar

$$F_1 \wedge F_2 \wedge F_3 \supset \forall x. P(x, x)$$

Para ello, basta con probar que

$$\neg (F_1 \land F_2 \land F_3 \supset \forall x. P(x, x))$$

es insatisfactible.

Notar que $\neg (F_1 \land F_2 \land F_3 \supset \forall x. P(x, x))$ es equivalente a $F_1 \land F_2 \land F_3 \land \neg \forall x. P(x, x)$.

Otro ejemplo (cont.)

Pasamos la siguiente fórmula a forma clausal.

$$\neg (F_1 \land F_2 \land F_3 \supset \forall x. P(x,x))$$

- Donde
 - $ightharpoonup F_1: \forall x. \forall y. (P(x,y) \supset P(y,x))$
 - $F_2: \forall x. \forall y. \forall z. ((P(x,y) \land P(y,z)) \supset P(x,z))$
 - $ightharpoonup F_3: \forall x. \exists y. P(x,y)$
- Sus formas clausales son:
 - $ightharpoonup C_1: \{\neg P(x,y), P(y,x)\}$
 - $C_2: \{\neg P(x,y), \neg P(y,z), P(x,z)\}$
 - $C_3: \{P(x, f(x))\}$
- Finalmente, nos queda hallar una refutación a partir del conjunto de cláusulas

$$\{C_1, C_2, C_3, \{\neg P(a, a)\}\}\$$

Otro ejemplo (cont.)

$$C_1 = \{\neg P(x, y), P(y, x)\},\$$

$$C_2 = \{\neg P(x, y), \neg P(y, z), P(x, z)\},\$$

$$C_3 = \{P(x, f(x))\},\$$

$$C_4 = \{\neg P(a, a)\}.$$

- 1. De C_2 y C_4 con $\{x \leftarrow a, z \leftarrow a\}$: $C_5 = \{\neg P(a, y), \neg P(y, a)\}$
- 2. De C_3 y C_5 con $\{x \leftarrow a, y \leftarrow f(a)\}$: $C_6 = \{\neg P(f(a), a)\}$
- 3. De C_1 y C_6 con $\{x \leftarrow a, y \leftarrow f(a)\}$: $C_7 = \{\neg P(a, f(a))\}$
- 4. De C_3 y C_7 con $\{x \leftarrow a\}$:

Diferencias con proposicional

1. En proposicional

$$\frac{\{Q, A_1, \dots, A_m\} \quad \{\neg Q, B_1, \dots, B_n\}}{\{A_1, \dots, A_m, B_1, \dots, B_n\}}$$

2. En primer orden

$$\frac{\{B_1,\ldots,B_k,A_1,\ldots,A_m\}\quad \{\neg D_1,\ldots,\neg D_j,C_1,\ldots,C_n\}}{\sigma(\{A_1,\ldots,A_m,C_1,\ldots,C_n\})}$$

donde σ es el MGU de $\{B_1, \ldots, B_k, D_1, \ldots, D_j\}$.

Regla de resolución binaria

$$\frac{\{B,A_1,\ldots,A_m\}\quad \{\neg D,C_1,\ldots,C_n\}}{\sigma(\{A_1,\ldots,A_m,C_1,\ldots,C_n\})}$$

donde σ es el MGU de $\{B, D\}$.

- Es incompleta.
- ▶ Ejemplo: intentar refutar $\{\{P(x), P(y)\}, \{\neg P(v), \neg P(w)\}\}$

Regla de resolución binaria

Se puede recuperar la completitud incorporando una regla adicional: factorización.

$$\frac{\{B_1,\ldots,B_k,A_1,\ldots,A_m\}}{\sigma(\{B_1,A_1,\ldots,A_m\})}$$

donde σ es el MGU de $\{B_1, \ldots, B_k\}$.

En el ejemplo anterior

```
    {{P(x), P(y)}, {¬P(v), ¬P(w)}}
    {{P(x), P(y)}, {¬P(v), ¬P(w)}, {P(z)}} (fact.)
    {{P(x), P(y)}, {¬P(v), ¬P(w)}, {P(z)}, {¬P(u)}} (fact.)
    {{P(x), P(y)}, {¬P(v), ¬P(w)}, {P(z)}, {¬P(u)}, □} (resolución (binaria))
```