

notas

notas

- Introduction to Decision Tree
- Converting categorical variables
- Splitting Data
- Decision Trees as flows of data
- Entropy & Gini
- Information gain
- Applying Decision Trees
- Overfitting problem
- Case study: classification problem

Decision Tree (classification)

Decision Tree (regression)

Repository Web

View ALL Data Sets

Search

Machine Learning Repository Center for Machine Learning and Intelligent Systems

Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	1564397

<=50K

Source:

Donor:

Ronny Kohavi and Barry Becker Data Mining and Visualization Silicon Graphics.

e-mail: ronnyk '@' live.com for questions.

>50K

>50K

<=50K

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Prediction task is to determine whether a person makes over 50K a year.

Converting Categorical Variables

```
income.workclass.head()
                               1 # Convert a single column from text categories to numbers
                               2 col = pd.Categorical(income["workclass"])
                               3 income["workclass"] = col.codes
          State-gov
                               4 income.workclass.head()
  Self-emp-not-inc
            Private
            Private
            Private
                                                                   1 col.categories[7]
                                                                   State-gov'
            1 col.categories
         Index([' ?', ' Federal-gov', ' Local-gov', ' Never-worked', ' Private',
                 'Self-emp-inc', 'Self-emp-not-inc', 'State-gov', 'Without-pay'],
               dtype='object')
```

Splitting Data

Decision Tree as Flows of Data

What income do people make?

We'll need to continue splitting nodes until we get to a point where all of the rows in a node have the same value for high_income.

PHASE ONE: COMPLETE

Entropy

Entropy is an indicator of how messy your data is.

Why Entropy in Decision Trees?

- The goal is to tidy the data.
- You try to separate your data and group the samples together in the classes they belong to.
- You maximize the purity of the groups as much as possible each time you create a new node of the tree
- Of course, at the end of the tree, you want to have a clear answer.

Mathematical definition of entropy

- Suppose a set of S items, these items fall into two categories:
 - +: n items
 - -: m items
 - \circ S = n+m
- p = n/S, q = m/S
- p + q = 1
- $E = -p \log(p) q \log(q)$

Generalization

c = pd.AA.unique()

Entropy using the frequency table of one attribute

high_income	
1	$E(x) = -\sum P(x_i) \log_b P(x_i)$
1	i=1
0	(2 2) (3 3)
0	$E(high_income) = -\left(\frac{2}{5} \times log_2 \frac{2}{5}\right) - \left(\frac{3}{5} \times log_2 \frac{3}{5}\right)$
1	$E(high_income) = 0.53 + 0.44$
	$E(high_income) = 0.97$

Entropy using the frequency table of two attributes

age	high_income	split_age
25	1	0
50	1	0 4
30	0	0 5
50	0	0
80	1	$\frac{1}{1}$
		5

split_age is based on median of age (suppose equal to 50)

$$E(T, X) = \sum_{c \in X} \frac{|X_c|}{|X|} E(T|X_c)$$

$$c_0 = \frac{4}{5} \times E([1, 1, 0, 0])$$

$$c_1 = \frac{1}{5} \times E([1])$$

$$E(T, X) = c_0 + c_1$$

$$= 0.17$$

Information Gain

$$IG(T,X) = E(T) - E(T|X)$$

Information Gain from X on T

The information gain is based on the decrease in entropy after a dataset is split on an attribute.

Constructing a decision tree is all about finding attribute that returns the **highest information gain** (i.e., the most homogeneous branches).

Entire population (30 instances)

$$E(Parent) = -\frac{16}{30}\log_2\left(\frac{16}{30}\right) - \frac{14}{30}\log_2\left(\frac{14}{30}\right) \approx 0.99$$

$$E(Balance < 50K) = -\frac{12}{13}\log_2\left(\frac{12}{13}\right) - \frac{1}{13}\log_2\left(\frac{1}{13}\right) \approx 0.39$$

$$E(Balance > 50K) = -\frac{4}{17}\log_2\left(\frac{4}{17}\right) - \frac{13}{17}\log_2\left(\frac{13}{17}\right) \approx 0.79$$

$$E(Balance) = \frac{13}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

$$E(Balance) = \frac{15}{30} \times 0.39 + \frac{17}{30} \times 0.79$$
$$= 0.62$$

$$IG(Parent, Balance) = E(Parent) - E(Balance)$$

= 0.99 - 0.62
= 0.37

 $p(^{\diamond}) = 1/13 \approx 0.08$

 $p() = 4/17 \approx 0.24$ $p(\diamondsuit) = 13/17 \approx 0.76$ Balance ≥ 50K

https://towardsdatascience.com/entropy-how-decision-trees-make-decisions-2946b9c18c8

Entire population (30 instances)

Split the Decision Tree from feature "Residence"

$$E(Residence = OWN) = -\frac{7}{8}\log_2\left(\frac{7}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) \approx 0.54$$

$$E(Residence = RENT) = -\frac{4}{10}\log_2\left(\frac{4}{10}\right) - \frac{6}{10}\log_2\left(\frac{6}{10}\right) \approx 0.97$$

$$E(Residence = OTHER) = -\frac{5}{12}\log_2\left(\frac{5}{12}\right) - \frac{7}{12}\log_2\left(\frac{7}{12}\right) \approx 0.98$$

$$E(Residence) = \frac{8}{30} \times 0.54 + \frac{10}{30} \times 0.97 + \frac{12}{30} \times 0.98 = 0.86$$

$$IG(Parent, Residence) = E(Parent) - E(Residence)$$

$$= 0.99 - 0.86$$

☆:7

= 0.99 - 0.86

= 0.13

$$p() = 5/12 \approx 0.42$$

 $p(\ \) = 7/12 \approx 0.58$

$$Gini(x) = 1 - \sum_{i=1}^{c} P(x_i)^2$$

$$Entropy(x) = -\sum_{i=1}^{c} P(x_i) \log_b P(x_i)$$

Gini index or Entropy is the criterion for calculating **Information Gain**. Both of them are measures of impurity of a node.

Evaluating Classifiers

Predicted Values

$$precision = \frac{TP}{(TP + FP)}$$

$$precision = \frac{TN}{(TN + FN)}$$

Evaluating Binary Classifiers

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}$$

$$TPR = \frac{\text{#true positives}}{\text{#true positives} + \text{#false negatives}}$$
Recall

$$TNR = \frac{\text{#true negatives}}{\text{#true negatives} + \text{#false positives}}$$

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

Receiver Operating Characteristic (ROC)

TPR (measure the impact of True Positive)

FPR = 1 - TNR (measure the impact of False Positive)

Applying Decision Tree

sklearn.tree.DecisionTreeClassifier

class sklearn.tree. **DecisionTreeClassifier** (criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False) [source]

sklearn.tree.DecisionTreeRegressor

class sklearn.tree. **DecisionTreeRegressor** (criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False) ¶ [source]

A general ML workflow

A general ML workflow

- 1. Load Libraries
- 2. Get data, including EDA
- 3. Clean, prepare and manipulate data (feature engineering)
- 4. Modeling (train and test)
- 5. Algorithm Tuning
- Finalizing the Model

```
1 import pandas as pd
 2 import numpy as np
 3 import seaborn as sns
 4 import matplotlib.pyplot as plt
 5 from sklearn.model selection import train test split
 6 from sklearn.tree import DecisionTreeClassifier
 7 from sklearn.neighbors import KNeighborsClassifier
 8 from sklearn.linear model import LogisticRegression
 9 from sklearn.model selection import KFold
10 from sklearn.model selection import cross val score
11 from sklearn.pipeline import Pipeline
12 from sklearn.model selection import GridSearchCV
13 from sklearn.metrics import accuracy score
14 from sklearn.metrics import classification report
15 from sklearn.metrics import confusion matrix
16 import pydotplus
17 from IPython.display import Image
18 from sklearn import tree
```

Load Libraries

Multi-level Donut Chart

Angular Gauge

Dot Plot

Pie Chart

Sociogram

Proportional Area Chart (Circle)

Waterfall Chart

Phase Diagram

Cycle Diagram

Population Pyramid

Boxplot

EXPLORATORY DATA ANALYSIS (EDA)

1000 - 10

A C D

0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	<=50K
1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	<=50K
3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	<=50K
4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	<=50K

workclass fnlwgt education education_num marital_status

age

for name in income.select_dtypes("object").columns.to_list():
 col = pd.Categorical(income[name])
 income[name] = col.codes

occupation relationship race

sex high income

	·	•	·								
	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	high_income
0	39	7	77516	9	13	4	1	1	4	1	0
1	50	6	83311	9	13	2	4	0	4	1	0
2	38	4	215646	11	9	0	6	1	4	1	0
3	53	4	234721	1	7	2	6	0	2	1	0
4	28	4	338409	9	13	2	10	5	2	0	0

Train and Test

Algorithm Tuning

```
1 # create a pipeline
 2 pipe = Pipeline([("classifier", DecisionTreeClassifier())])
 3
 4 # create a dictionary with the hyperparameters
 5 search space = [{"classifier":[DecisionTreeClassifier()],
                    "classifier criterion": ["gini", "entropy"]},
 6
                   {"classifier":[LogisticRegression()],
                    "classifier solver": ["liblinear"]},
                   {"classifier": [KNeighborsClassifier()],
10
                    "classifier n neighbors": [5,7]}]
12 # create grid search
13 kfold = KFold(n splits=num folds,random state=seed)
14 grid = GridSearchCV(estimator=pipe,
15
                       param grid=search space,
16
                       cv=kfold,
17
                       scoring=scoring,
18
                       n jobs=-1)
19
20 # fit grid search
21 best model = grid.fit(X train,y train)
```

0.807049 (0.004056) with: {'classifier': DecisionTreeClassifier(class weight=None, criterion='entropy', max depth=None,

0.774109 (0.008792) with: {'classifier': KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'), 'classifier__n_neighbors': 5}
0.783745 (0.009897) with: {'classifier': KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric params=None, n_jobs=None, n_neighbors=5, p=2,

warm start=False), 'classifier solver': 'liblinear'}

weights='uniform'), 'classifier n neighbors': 7}

```
Finalize
 2 predict = best model.predict(X test)
 3 print(accuracy score(y test, predict))
 4 print(confusion matrix(y test,predict))
                                              the Model
 5 print(classification report(y test,predict))
0.8191309688315677
[[4342 603]
 [ 575 993]]
              precision
                            recall
                                     f1-score
                                                 support
                    0.88
                               0.88
                                         0.88
                                                    4945
                    0.62
                               0.63
                                         0.63
                                                    1568
                                         0.82
                                                    6513
    accuracy
                               0.76
                                                    6513
                    0.75
                                         0.75
   macro avg
```

0.82

0.82

0.82

6513

1 # final model

weighted avg

Visualizing a Decision Tree Model

(<)(

Knowing when to use decision trees

The main advantages of using decision trees is that they're:

- Easy to interpret
- Relatively fast to fit and make predictions
- Able to handle multiple types of data
- Able to pick up nonlinearities in data, and usually fairly accurate

The main disadvantage of using decision trees is their **tendency to overfit.**

