幾何学 I 9. 多様体上の1の分割と埋め込み定理

可微分多様体上の1の分割

M を可微分多様体とする. $\{U_{\alpha}\}$ を M の開被覆とするとき,M 上の可算個の C^{∞} 関数 $\lambda_i,\ i=1,2,\cdots$ で以下の性質を満たすものが存在する.

- (1) f v $\mathsf{v$
- (2) $\{\operatorname{supp}\lambda_i\}$ は局所有限である.
- (3) $x \in M$ について $\sum_i \lambda_i(x) = 1$ が成立する.
- (4) すべての i について、ある α が存在して , $\operatorname{supp} \lambda_i \subset U_\alpha$ が成り立つ .

上のような性質を満たす $\lambda_i,\ i=1,2,\cdots$ を開被覆 $\{U_{\alpha}\}$ に対する 1 の分割とよぶ .

コンパクト可微分多様体のユークリッド空間への埋め込み

1 の分割の応用として,コンパクト n 次元可微分多様体 M は,十分高い次元のユークリッド空間 \mathbf{R}^N に埋め込めることが証明できる.実際には,N=2n ととれることが,Whitney の定理として知られている.

ユークリッド空間 ${f R}^N$ 内の部分多様体 M に対して

$$\nu M = \{(x, v) \in \mathbf{R}^N \times \mathbf{R}^N \mid x \in M, \langle v, w \rangle = 0, w \in T_x M\}$$

は, $\mathbf{R}^N \times \mathbf{R}^N$ の部分多様体であり,M の \mathbf{R}^N における法束 (normal bundle) とよばれる.ここで, T_xM は,埋め込み写像の微分により, \mathbf{R}^N の線形部分空間と同一視している.