

What is the harm

Quality of Service: degraded user experience

Harm of allocation: withhold opportunity or resources

Harm of representation: reinforce subordination along the line of identity, stereotype

What kind of harm your system might cause? To whom?

Legally Recognized Protected Classes

United States federal anti-discrimination law:

- Race Civil Rights Act of 1964
- Religion Civil Rights Act of 1964
- National origin Civil Rights Act of 1964
- Age (40 and over) Age Discrimination in Employment Act of 1967
- Sex Equal Pay Act of 1963 and Civil Rights Act of 1964
 - Sexual orientation and gender identity as of Bostock v. Clayton
- County Civil Rights Act of 1964
- Pregnancy Pregnancy Discrimination Act

Legally Recognized Protected Classes

- Familial status Civil Rights Act of 1968 Title VIII: Prohibits discrimination for having children, with an exception for senior housing. Also prohibits making a preference for those with children.
- Disability status Rehabilitation Act of 1973 and Americans with Disabilities Act of 1990
- Veteran status Vietnam Era Veterans' Readjustment Assistance Act of 1974 and Uniformed Services Employment and Reemployment Rights Act
- Genetic information Genetic Information Nondiscrimination Act

More than legally protected classes

Other societal categories like location, topical interests, (sub)culture etc.

Subpopulations may be application-specific, intersectional, subject to complex social constructs

"Most of the time, people start thinking about attributes like [ethnicity and gender...]. But the biggest problem I found is that these cohorts should be defined based on the domain and problem. For example, for [automated writing evaluation] maybe it should be defined based on [...whether the person is] a native speaker."

Holstein, Kenneth, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach. "Improving fairness in machine learning systems: What do industry practitioners need?." In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1-16. 2019.

Activity: Case study for a ML based hiring system

- Pick up a hiring system for a concrete domain (educational institution, tech company, government, etc.). Consider what is the goal of the hiring system for human first?
- Then consider an ML based such hiring system
 - Where are the sources of biases?
 - What are the potential harms for different stakeholder groups when they are treated with biases?
 - How do you plan to mitigate them?

Sources of Biases and Mitigation Strategies for ML Pipeline

Requirements

Data Collection

Data Cleaning

Data Labeling

Feature Engineering

Model Training

Model Evaluation

Model Deployment Model Monitoring Sources of Riaces and Mitigation

1.1.b Scrutinize resulting system vision for potential fairness-related harms to stakeholder

1.1.b Scrutinize resulting system vision for potential fairness-related harms to stakeholder groups, considering:

Types of harm (o.g., allocation, quality of service, stereotyping, denigration, over- or

 Types of harm (e.g., allocation, quality of service, stereotyping, denigration, over- or underrepresentation)

Tradeoffs between expected benefits and potential harms for different stakeholder groups

- Consider who the system will give power to and who it will take power from
- Consider which expected benefits you are willing to sacrifice to mitigate potential harms

Data Collection Data Cleaning Data Labeling

Require

- 1.2.a Solicit input on system vision and potential fairness-related harms from diverse perspectives, including:
- Members of stakeholder groups, including demographic groups
 - Consider whether any stakeholder groups would prefer that the system not exist or not be deployed in all contexts, what alternatives they would prefer, and why
- Domain or subject-matter experts
- Team members and other employees

ıvıodei Deployment ıvıoaeı Monitoring

Sources of Biases and Mitigation

Strate 2.2.a Define datasets needed to develop and test the system, considering:

- Desired quantities and characteristics, considering:
 - Relevant stakeholder groups, including demographic groups
 - Consider oversampling smaller stakeholder groups, but be aware of overburdening
 - Expected deployment contexts
- Potential sources of data
 - Consider reviewing all datasets from third-party vendors
- Collection, aggregation, or curation processes, including:
 - Procedures for obtaining meaningful consent from data subjects
 - People involved in collection, aggregation, or curation, including demographic groups
 - Consider whether people involved might introduce societal biases
 - Incentives for data subjects and people involved in collection, aggregation, or curation
 - Consider whether data subjects might feel undue pressure to provide data
- Software, hardware, or infrastructure involved in collection, aggregation, or curation
- (Regulations, Assumptions)

Requirem

Data Colle •

Sources of Biases and Mitigation Strategies for ML Dipoling 2.3. Based on potential fairness-related harms identified so far, define fairness criteria,

2.3. Based on potential fairness-related harms identified so far, define fairness criteria, considering:

- How criteria will be assessed (e.g., fairness metrics and benchmark dataset, system walkthroughs with diverse stakeholders or personas) at each subsequent stage of the lifecycle, including
 - People involved in assessment (e.g., judges), including demographic groups
 - Datasets needed to assess fairness criteria
- · Acceptable (levels of) deviation from fairness criteria
- Potential adversarial threats or attacks to fairness criteria
- · Assumptions made when operationalizing system vision via fairness criteria
 - · Consider whether these assumptions are sufficiently well justified

Feature . . _ . Model

- 3.3.a Assess fairness criteria according to fairness criteria definitions, considering:
- Acceptable (levels of) deviation from fairness criteria
- Tradeoffs between different fairness criteria
- Tradeoffs between performance metrics and fairness criteria
- Discrepancies between development environment and expected deployment contexts

Requirer

Data Col

Strate performance

- Source 5.1 Participate in public benchmarks
 - 5.1.a Participate in public benchmarks so that stakeholders can contextualize system
 - 5.1.b Revise system to mitigate any harms revealed by benchmarks; if this is not possible, document why, along with future mitigation or contingency plans, etc., and consider aborting deployment

- Requirer 5.2 Enable functionality for stakeholder feedback
 - 5.2.a Establish processes for responding to or escalating stakeholder feedback, including:

Data Col

Stakeholder comments or concerns Third-party audits

- 6.1 Monitor deployment contexts
 - 6.1.a Monitor deployment contexts for deviation from expectations, including: Unanticipated stakeholder groups, including demographic groups Adversarial threats or attacks
- 6.1.b Revise system (including datasets) to match actual deployment contexts; if this is not possible, document why, along with expected impacts on stakeholders, and consider rollback or shutdown
- 6.2 Monitor fairness criteria
- 6.3 Monitor stakeholder feedback
- 6.4 Revise system at regular intervals to capture changes in societal norms and expectations

Measuring Fairness

• Group Fairness – based on statistical parity

Measuring Fairness

• Individual Fairness

Individuals who are similar (with respect to the task) Should be treated similarly.

Fairness Toolkits

Al Fairness 360

Statistical Parity Difference

The difference of the rate of favor

 \rightarrow

by th

Euc

The a dista samp datas

 \rightarrow

1

The difference of true

Difference

Equal Opportunity

Average Odds Difference

The average difference of

Disparate Impact

The ratio of rate of favorable outcome for the unprivileged

Theil Index

Measures the inequality in benefit allocation for

Optimized Preprocessing

Use to mitigate bias in training data. Modifies training data features and labels.

Reweighing

Use to mitgate bias in training data. Modifies the weights of different training examples.

Adversarial Debiasing

Use to mitigate bias in classifiers. Uses adversarial techniques to maximize accuracy and reduce evidence of protected attributes in predictions.

Reject Option Classification

Use to mitigate bias in predictions. Changes predictions from a classifier to make them fairer.

Disparate Impact Remover

Use to mitigate bias in training data. Edits feature values to improve group fairness.

Learning Fair Representations

Use to mitigate bias in training data. Learns fair representations by obfuscating information about protected attributes.

Prejudice Remover

Use to mitigate bias in classifiers. Adds a discrimination-aware regularization term to the learning objective.

Calibrated Equalized Odds Post-processing

Use to mitigate bias in predictions. Optimizes over calibrated classifier score outputs that lead to fair output labels.

Equalized Odds Post-processing

Use to mitigate bias in predictions. Modifies the predicted labels using an optimization scheme to make predictions fairer.

Meta Fair Classifier

Use to mitigate bias in classifier. Meta algorithm that takes the fairness metric as part of the input and returns a classifier optimized for that metric.

Fairlearn Disparity in performance 83.6% Is the overall accuracy 12.9% Is the disparity in accuracy Edit configuration Sex Accuracy How to read this chart Overprediction Underprediction (predicted = 0, true = 1) Overprediction 79.4% (predicted = 1, true = 0) Min The bar chart shows the distribution of errors in each group. Errors are split into overprediction errors (predicting 1 when the true label is 0), and underprediction errors (predicting 0 when the true label is 1). The reported rates are obtained by dividing the number of errors by the 92.4% overall group size. .5% -10%

Fairlearn

algorithm	description	binary classification	regression	supported fairness definitions
fairlearn. reductions. ExponentiatedGradient	A wrapper (reduction) approach to fair classification described in A Reductions Approach to Fair Classification [5].	✓	~	DP, EO, TPRP, FPRP, ERP, BGL
fairlearn. reductions. GridSearch	A wrapper (reduction) approach described in Section 3.4 of A Reductions Approach to Fair Classification [5]. For regression it acts as a grid-search variant of the algorithm described in Section 5 of Fair Regression: Quantitative Definitions and Reduction-based Algorithms [4].	V	•	DP, EO, TPRP, FPRP, ERP, BGL
fairlearn. postprocessing. ThresholdOptimizer	Postprocessing algorithm based on the paper Equality of Opportunity in Supervised Learning [6]. This technique takes as input an existing classifier and the sensitive feature, and derives a monotone transformation of the classifier's prediction to enforce the specified parity constraints.	V	ж	DP, EO, TPRP, FPRP

Tool				ate Organization	open for anyone to contribute code?		Models	cover	vered		Group fairness					Individual			
	· ·	Open source user license	Deleges date.			code? Regression	Cla (binary	Multi-class outcome	Handles multi-class	Demographic parity	Equal opportunity / True positive parity / false positive error rate balance	Equal odds (True positive and false positive parity)	Disparate impact	Discovery rate	Omissi on rate	Counterfactual fairness	Sample distortion metrics	Other fairness metrics	Discribination
Scikit-fairness / scikit-		MIT	2019-03-31	N/A	J	1	1	X	X	./	1/	Х	X	X	X	X	Х	N/A	Bias mitigation Pre-processing: information
lego	python (skiedin)	IVIII	2019-03-31	IN/A	\ v	\ v	\ v	^	^	\ <u>`</u>	\ v	^	^	^	^	^	^	IN/A	filter
IBM Fairness 360	python 3.5+, R	Apache 2.0	2018-06-01	IBM	✓	X	V	✓	✓	✓	✓	✓	✓	✓	✓	х	✓	ules/generated/aif360.	Optimized Preprocessing, Disparate Impact Remover, Equalized Odds Post- processing, Reweighing, Reject Option Classification, Prejudice
Aequitas tool	python 3.6+	Custom	2018-02-13	UChicago	√	Х	√	Х	√	√	√	√	Х	√	√	Х	Х	N/A	N/A
Google What-if tool	Tensorboard / Jupyter or Colab notebook	Apache 2.0	2018-09-11	Google	√	√	√	√	√	√	√	Х	Х	Х	Х	√	Х	Group thresholds	Threshold optimization based on fairness constraints
PyMetrics audit-ai	python	MIT	2018-05-18	PyMetrics	Х	✓	V	X	X	X	Х	Х	✓	X	X	X	Х	Statistical tests to determine chance the disparity is due to random chance (ANOVA, 4/5th, fisher, zets, bayes factor, chi squared sim beta ratio, classifier posterior_probabilities)	N/A
Fairlearn	python	MIT	2018-05-15	Microsoft	√	√	√	Х	√	1	√	√	Х	Х	Х	X	Х	Group max / min / summary	Exponentiated Gradient, GridSearch, Threshold Optimizer

Figure 1: Open source toolkit feature summary table

Lee, M.S.A. and Singh, J., 2021, May. The landscape and gaps in open source fairness toolkits. In *Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems* (pp. 1-13).

Key Takeaways

- Fairness is tightly connected to other principles such as auditability, privacy
- Fairness is relevant to every stage of the ML pipeline, starting from the scoping to monitoring
- Consider and involve diverse stakeholders at various stages

Next

Design for Creativity