23. Современные подходы к оцениванию состояния динамических систем

Рассмотрим дискретный случай. Динамическая система представляет собой математический объект, задаваемый уравнением системы (1) и уравнением наблюдения (2).

$$\mathbf{x}(k+1) = \mathbf{F}\,\mathbf{x}(k) + \mathbf{B}\,\mathbf{u}(k) + \mathbf{w}(k) \quad , \tag{1}$$

$$\mathbf{y}(k) = \mathbf{H} \, \mathbf{x}(k) + \mathbf{n}(k) \quad , \tag{2}$$

- где $\mathbf{x}(k)$ состояние системы на k-ом шаге, которое в общем случае представляет собой вектор параметров;
- $\mathbf{u}(k)$ управляющее воздействие, так же являющееся вектором;
- $\mathbf{y}(k)$ выход системы или т. н. наблюдение, в общем случае векторная величина, отражающая параметры системы, которые мы наблюдаем и по которым можем косвенно делать выводы о состоянии системы;
- ${f F}$ оператор, воздействующий на состояние системы при дискретном переходе с шага k на шаг k+1, описывающий изменение состояния системы во времени
- В оператор, описывающий влияние управляющего воздействия на состояние системы
- ${f H}$ оператор, описывающий связь между наблюдаемыми параметрами и состоянием системы;
- $\mathbf{w}(k)$ шум системы; $\mathbf{n}(k)$ шум наблюдения.

Подходы к оцениванию состояния динамических систем

	стояния динамических систем		
Метод	Краткое описание	Преимущества/недостат ки	
1. Рекуррентный метод наименьших квадратов	Используется минимизация суммы квадратов разностей между измеренными значениями параметров и их априорной оценкой	результаты только в	
2. Авторегрессионные модели	Модели временных рядов, в которых каждый последующий член линейно выражается через предыдущий.	1	
3. Гарантированный подход	Основан на теоретико-множественных моделях неопределенностей. Их свойства описываются при помощи геометрических и интегральных ограничений. Для этого подхода задача оценивания сводится к нахождению множеств всевозможных значений искомых величин с ограничениями на неопределенность.	необходимо моделировать множества всех	
а) Минимаксное гарантированное оценивание			
б) Метод эллипсоидов			
4. Рекуррентные алгоритмы оценивания	Основан на вероятностной математической интерпретации		

параметров Стохастический подход	свойств неопределенности, нашедшей применение в разработке алгоритмов оптимальной фильтрации Калмана	информации о вероятностных свойствах неопределенных параметров, которой в практических задачах бывает недостаточно для обеспечения работоспособности алгоритмов
Калмана (Linear Kalman Filter) и оптимальный Байесовский фильтр (Optimal Bayesian estimator)	2 этапа: предсказание и коррекция. На первом этапе в соответствии с моделью эволюции осуществляется экстраполяция вектора параметров, а на втором уточнение с соответствии с поступившим наблюдением. Байесовский фильтр основан оценке плотности вероятности	
	нелинейных операторов пр помощи рядов Тейлора	Требует расчета производных нелинейных уравнений системы Шум должен быть белым и распределенным по Гауссу
в) Сигма-точечный фильтр Калмана (Unscented Kalman filter)	Основано на сигма-точечном преобразовании	Качество оценок чуть лучше или чуть хуже, чем для ЕКГ в зависимости от модели. Требует реализацию разложения Холецкого (корень из матрицы). Работает немного медленнее
г) Последовательный метод Монте-Карло (Particle filter, Sequential Monte Carlo method)		Оценки как правило более точные, но требует значительных вычислительных ресурсов для численного моделирования плотностей вероятностей