Trees

Previous class

Regression-based Forecasting

Trees

- Flexible data-driven method
- Used for
 - Classification (called Classification Tree)
 - Regression (called Regression Tree)
- Transparent
- Easy interpretation
- Doesn't require enormous effort
- Method
 - ➤ **Recursive Partitioning**: Separating records into subgroups by creating splits on predictors

Recursive Partitioning

- Outcome variable Y
- Predictor variables $X_1, X_2, X_3, \dots X_p$
- Recursive Partitioning
 - Divides the p-dimensional space of predictors into non-overlapping multidimensional rectangles
- Accomplished recursively
 - > Operating on the results of prior division
- Idea is to divide the entire variable-space up into rectangles such that each rectangle is as homogeneous or pure
- Homogeneous or Pure meaning containing records mostly of one class

Data on Riding Mowers

 Riding-mower manufacturer would like to find a way of classifying families in a city into an owner or non-owner

Attributes

Income: Income of the household in thousand of dollars

Lot Size: Lot size in thousand of square foot

Ownership : Owner or Non-owner

Income	Lot_Size	Ownership
60	18.4	Owner
85.5	16.8	Owner
64.8	21.6	Owner
61.5	20.8	Owner

:

•

Scatter plot

Second split at Lot Size = 20

Second split at Lot Size = 20

Second split at Lot Size = 20

Third split at Income = 85

Third split at Income = 85

Exhaustive splits

Fully grown tree

Measures of Impurity

- Two popular measures
 - Gini Index
 - > Entropy measure
- Gini impurity index for a rectangle A is given by

$$I(A) = 1 - \sum_{k=1}^{m} p_k^2$$

- $lackbox{\bf p}_k$ is the proportion of records in rectangle A that belong to class k
- Measure takes values between 0 (when all records belong to same class) and $^{m-1}/_m$ (when all m classes are equally represented)

Gini Index with no split

Gini Index : No-split

Gini impurity index for no-split

$$= 1 - \sum_{k=1}^{m} p_k^2$$

$$=1-\left(\frac{1}{2^2}+\frac{1}{2^2}\right)=\frac{1}{2}$$

- \blacksquare p_k is the proportion of records in rectangle A that belong to class k
- Measure takes values between 0 (when all records belong to same class) and $^{m-1}/_m$ (when all m classes are equally represented)

Gini Index at First split of Income = 60

• Gini impurity index for <u>left</u> rectangle

$$= 1 - \sum_{k=1}^{m} p_k^2 = 1 - \left(\frac{7^2}{8^2} + \frac{1^2}{8^2}\right) = 0.219$$

• Gini impurity index for <u>right</u> rectangle

$$= 1 - \sum_{k=1}^{m} p_k^2 = 1 - \left(\frac{11^2}{16^2} + \frac{5^2}{16^2}\right) = 0.430$$

- Weighted Index = $\frac{8}{24} * 0.219 + \frac{16}{24} * 0.430 = 0.359$
- No split to first split \rightarrow 0.5 to 0.359
- This is the lowest drop that can be expected, hence the choice 60

Measures of Impurity

- Entropy
- Entropy for a rectangle A is given by

entropy(A) =
$$-\sum_{k=1}^{m} p_k * \log_2 p_k$$

- $lackbox{\bf p}_k$ is the proportion of records in rectangle A that belong to class k
- Measure takes values between 0 (when all records belong to same class) and $log_2(m)$ (when all m classes are equally represented)

Today's class mandatory steps

- Create a folder name "n. classification_tree" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "classification_tree_code.R", and all csv files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r /rproject/ n. classification_tree"
- Open RStudio project
- Open "classification_tree_code.R" file within RStudio

Example: Acceptance of Personal Loan

- Response : Bank customer accepting a loan (1) or not (0)
- Predictors (X)
 - ➤ Age, Experience, Income, Family Size, Education
 - ➤ Spending on Credit cards
 - ➤ Mortgage, Securities account
 - ➤ Online banking
 - >

Pruning a tree

- Step 1: Set the seed, create train and validation data
- Step 2: Run a tree with options cp = 0.00001, minsplit = 5 or 10, xval = 5 or 10
- Step 3: Plot the cp or relative error
- Step 4: Find "nsplit" value and its associated cp value from "size of the tree"
- Step 5: Prune the tree with the optimal cp
- Step 6: Predict the loan status for validation data.
- Step 7 : Develop confusion matrix and accuracy measures

Pruning – Key variables

- Complexity parameter (cp)
 - Any split that does not improve the fit by cp is not attempted
 - > Saves computing time by pruning off splits that are not worthwhile
- minsplit
 - > minimum number of observations that must exist in a node in order for a split to be attempted.

Pruned tree

Next class

Regression Tree

Thank You