### 신호처리를 이용한 원격제어

- Init O

작성자

팀장:이대영

팀원:김민중

이윤성

김태훈 정지윤

프로젝트 매니저 : 이상훈 강사님

- 1. 개요
- 2. 적용 기술 및 기능 구현
  - 1) 음성 신호 처리
  - 2) 영상 신호 처리
  - 3) 이더넷 통신 및 MCU 제어
  - 4) 모터 제어
- 3. 결과

# 개요

### 신호처리 네트워크를 활용한 디바이스 제어 시스템

• 음성 및 영상 신호처리를 통해 여러 가지 디바이스를 작동시킬 환경을 구성하고

이 시스템을 가정 및 산업에 적용하여 홈 오토메이션, 공장 자동화를 지원한다.









66AK2L06 (Keystone II Architecture)

# 개요

### 신호처리 네트워크를 활용한 디바이스 제어 시스템

|             |        |              |                       | _  |
|-------------|--------|--------------|-----------------------|----|
| 4byte <헤더># | 4byte₽ | 음성~          | 설명↵                   | ç  |
| 10001₽      | 1₽     | 촬<br>환       | FPGA B/D로 보냄₽         | ۰  |
| 10002       | 2₽     | 촬중, 촬영 중지↵   | FPGA B/D로 보냄₽         | ته |
| 100034      | 3₽     | 불켜↩          | Cortex-M4 B/D로 보냄     | ته |
| 10004       | 4₽     | 불꺼↩          | Cortex-M4 B/D로 보냄     | ته |
| 10005₽      | 5₽     | 블업, 블라인드 업↵  | Cortex-M4 B/D로 보냄     | ته |
| 10006₽      | 6₽     | 블따, 블라인드 다운♪ | Cortex-M4 B/D로 보냄     | ø  |
| 10007       | 7₽     | 구동과          | Cortex-M4 B/D로 보냄     | ته |
| 10008       | 8₽     | 속업, 속력 업₽    | Cortex-M4 B/D로 보냄     | ته |
| 10009₽      | 9₽     | 속따, 속력 다운    | Cortex-M4 B/D로 보냄     | ₽  |
| 100104      | 10₽    | 정지↵          | Cortex-M4 B/D로 보냄     | ته |
| 10011       | 11₽    | 스냅↩          | FPGA B/D로 보냄。 (Ctrl)▼ | ₽  |

+

4

| 이름↩ | 포트번호₽       | IP 주소₽ | ت  |
|-----|-------------|--------|----|
| 상훈₽ | PORT1=7001  | IP1=₽  | ته |
| 대영과 | PORT2=7002¢ | IP2=₽  | ę, |
| 민중ᆗ | PORT3=7003  | IP3=₽  | ٥  |
| 지윤↵ | PORT4=7004  | IP4=₽  | ç  |

# 적용 기술 및 기능 구현

### 모듈별 적용 기술

표 1 - 적용 기술

| 음성 신호 처리                   | 영상 신호 처리              | 네트워크 구성 및<br>디바이스 제어                 | 모터 제어                           |
|----------------------------|-----------------------|--------------------------------------|---------------------------------|
| ADC 및 증폭 회로 설계             | Visual/IR 카메라         | FW 레벨 네트워크 프로그래밍<br>(UDP 서버 및 클라이언트) | ACI 교류 유도 모터 제어                 |
| PCB 설계                     | 모션 인식<br>영상 프로그래밍     | MCU 제어<br>(STM Cortex-M4)            | 인버터 설정                          |
| TI DSP 활용<br>(TMS320C6678) | Xilinx<br>FPGA B/D 활용 | 릴레이 회로 설계                            | TI 고전압 DSP 활용<br>(TMS320F2806x) |
| TI RTOS 구동                 |                       |                                      | 타이머와 속도제어                       |
| IPC 병렬 프로세싱                |                       |                                      | PI제어기 이해                        |
| FFT 신호 처리                  |                       |                                      |                                 |
| 자연어 해석                     |                       |                                      |                                 |

# 1) 음성 신호처리

(1) 하드웨어



1) 음성 신호처리

(1) 하드웨어

① 구성도





#### (1) 하드웨어



#### (1) 하드웨어

② 회로도 - MIC, 반전 증폭기 - OrCAD, Altium Designer 사용



#### (1) 하드웨어

② 회로도 - ADC, SPI





### 1) 음성 신호 처리

#### (1) 하드웨어

③ PCB

- Altium Designer 사용



### 1) 음성 신호 처리

#### (1) 하드웨어

③ PCB





### 1) 음성 신호 처리

#### (1) 하드웨어

④ 증폭 파형 측정



# 1) 음성 신호처리

(1) 하드웨어



# 1) 음성 신호 처리

#### (1) 하드웨어

#### ⑤ DSP Board

- 명칭 : TMDXEVM6678LXE

- 코어 : TMS320C6678 (1 GHz, 8 Core)

- RAM: DDR3 512 MB - NAND, NOR Flash



#### (2) 소프트웨어



### 1) 음성 신호 처리

#### (2) 소프트웨어

② MessageQ 전달 구조



### 1) 음성 신호 처리

#### (2) 소프트웨어

② Fast Fourier Transform (FFT) - Butterfly 연산



#### (2) 소프트웨어

② Fast Fourier Transform (FFT) - Butterfly 연산



#### (2) 소프트웨어

② Fast Fourier Transform (FFT) - twiddle factor

$$W_{N} = e^{-j2\pi/N}$$

$$X_{m} = \sum_{n=0}^{N-1} x_{n} W_{N}^{mn}, \quad m = 0, 1, \dots, N-1$$

$$W_{8}^{6} = W_{8}^{14} = \dots$$

$$W_{8}^{7} = W_{8}^{15} = \dots$$

$$W_{8}^{7} = W_{8}^{15} = \dots$$

$$W_{8}^{9} = W_{8}^{16} = \dots$$

$$W_{8}^{10} = W_{8}^{10} = \dots$$

#### (2) 소프트웨어

③ Fast Fourier Transform (FFT) 흐름도

1) 음성 신호 처리

(3) 신호 처리 과정



(3) 신호 처리 과정



#### (3) 신호 처리 과정

32437

32222

#### ① 샘플링 데이터

- Sampling Rate: 100kHz



### 1) 음성 신호 처리

#### (3) 신호 처리 과정

② Fast Fourier Transform (FFT) - N: 1024



#### (3) 신호 처리 과정

③ 음성의 주파수 분포



# 1) 음성 신호 처리

- (3) 신호 처리 과정
  - ④ 음성데이터 샘플링



- (3) 신호 처리 과정
  - ④ 음성데이터 샘플링



### 1) 음성 신호 처리

### (3) 개발 중 문제점과 해결과정

- ① SPI 모듈의 CS(chip select)pin이 보드의 다른 칩과 겹침
  - → 다른 GPIO를 Chip Select Pin으로 사용하여 해결
- ② MIC-ADC BD의 가변저항을 0으로 돌려 보드의 오작동 발생
- ③ ADC 칩의 Alalog GND와 Digital GND의 전위차 때문에 과전류가 발생
  - → Alalog와 Digital의 전원 소스를 분리하여 해결
- ④ IPC 통신 중 데이터의 손실이 발생
  - →MessageQ를 이용하여 전송이 공유메모리에 매번 메모리 할당을 하지 않아 문제발생, 소스를 수정하여 해결

2) 영상 신호처리

(1) Motivation

# SECURITY CCTV



# 2) 영상 신호 처리

(1) Motivation





### 2) 영상 신호 처리

### (1) Motivation





### 2) 영상 신호 처리

#### (2) 하드웨어

#### ① Xilinx FPGA Board

- 명칭 : Zynq Board (ZYBO)

- 코어: 650MHz Doal ARM Cortex-A9

- RAM: DDR3 512 MB



#### ② Visual/IR USB Camera

- Sensor: CMOS

- Frame Rate: 30fps

- Minimum Illumination(Lux): 0.01

- FOV: 105°

- IR leds: 850nm



# 2) 영상 신호 처리

(2) 하드웨어



### 2) 영상 신호처리

#### (3) 소프트웨어





### 2) 영상 신호처리

#### (4) 처리 절차

① motion detection 흐름도



## 2) 영상 신호 처리

#### (4) 처리 절차

② motion detection 결과



카메라로 부터 영상을 받아옴



경계선 값을 구함



녹화 중 표시

모션 인식했을 떄 녹화화면

현재 시간 표시

모션 인식 표시

## 3) 이더넷 통신 및 MCU 제어

#### (1) 하드웨어

① Cortex-M4 Board

- 명칭 : STM32F407IGT - 코어 : Cortex-M4F



## 3) 이더넷 통신 및 MCU 제어

#### (1) 서버Test

```
77 Request
192.168.0.191
                     192,168,0,210
                                          ECH0
192.168.0.210
                     192.168.0.191
                                          ECHO
fe80::3c18:660a:f14... ff02::1:2
                                          DHCPv6
                                                     152 Solicit
fe80::a915:f39c:2ce... ff02::1:2
                                          DHCPv6
                                                                              192.168.0.210
                                                                                                    ECH0
192.168.0.199
                     255.255.255.255
                                          UDP
                                                       192.168.0.210
                                                                             192,168,0,191
                                                                                                    ECHO
                                                                                                                77 Response
n wire (616 bits), 77 bytes captured (616 bits) on inte fe80::3c18:660a:f14... ff02::1:2
                                                                                                    DHCPv6
msungE_31:12:8b (e8:11:32:31:12:8b), Dst: 02:00:00:00:0 fe80::a915:f39c:2ce... ff02::1:2
                                                                                                               152 Solicit X
                                                                                                    DHCPv6
                                                       192.168.0.199
                                                                              255.255.255.255
                                                                                                    UDP
                                                                                                               136 52052 → 1
rsion 4, Src: 192.168.0.191, Dst: 192.168.0.210
ol, Src Port: 8 (8), Dst Port: 7 (7)
                                                      n wire (616 bits), 77 bytes captured (616 bits) on interface 0
                                                      :00:00:00:00:00 (02:00:00:00:00), Dst: SamsungE 31:12:8b (e8:11
...6465666768696a6b6c6d6e6f707172737475767879
                                                      rsion 4, Src: 192.168.0.210, Dst: 192.168.0.191
                                                      ol, Src Port: 7 (7), Dst Port: 8 (8)
                                                      5465666768696a6b6c6d6e6f707172737475767879...
```

```
00 e8 11   32 31 12 8b 08 00 45 00
                                    ....E. 21....E.
00 80 11
         00 00 c0 a8 00 bf c0 a8
97 00 2b
         83 1e 61 62 63 64 65 66
                                     .....+ ..abcde1
                                    ghijklmn opgrstuv
sc 6d 6e 6f 70 71 72 73 74 75 76
33 34 35 36 37 38 39 30
                                    xyz12345 67890
```

```
...21.... ......E.
Bb 02 00  00 00 00 00 08 00 45 00
00 ff 11 38 c2 c0 a8 00 d2 c0 a8
08 00 2b e7 7a 61 62 63 64 65 66
                                          ..+ .zabcde
5c 6d 6e  6f 70 71 72 73 74 75 76
                                    ghijklmn opqrstuv
33 34 35 36 37 38 39 30
                                    xyz12345 67890
```

## 3) 이더넷 통신 및 MCU 제어

(1) 하드웨어



#### 3) 이더넷 통신 및 MCU 제어

#### (2) M4보드간 통신

```
43 7001 → 7004 Len=1
168.0.191
                  192,168,0,208
                                        UDP
                                                   43 7001 → 7004 Len=1
                                                                            168.0.191
                                                                                              192.168.0.208
                                                                                                                    UDP
168.0.208
                                                                             168.0.208
                                                                                              192.168.0.191
                                                                                                                    UDP
                                                                                                                                60 7004 → 7001 Len=1
                  192.168.0.191
                                        UDP
                                                   60 7004 → 7001 Len=1
                                                                            168.0.199
                                                                                               255.255.255.255
                                                                                                                    UDP
                                                                                                                               136 64884
.168.0.199
                                        UDP
                                                  136 64004 → 10505 Len=
                  255.255.255.255
                                                                            0::f87d:4bed:9ff... ff02::1:2
                                                                                                                    DHCPv6
                                                                                                                               151 Solicit XID: 0xf0cd
0::f87d:4bed:9ff... ff02::1:2
                                        DHCPv6
                                                  151 Solicit XID: 0xf0cc
                                                                            168.0.199
                                                                                               255.255.255.255
                                                                                                                               136 64007 → 10505 Len=
.168.0.199
                  255.255.255.255
                                        UDP
                                                  136 64007 → 10505 Len=
                                                                                                                    UDP
                                                  151 Solicit XID: 0xf0cc
                                                                            0::f87d:4bed:9ff... ff02::1:2
                                                                                                                    DHCPv6
                                                                                                                               151 Solicit XID: 0xf0cd
0::f87d:4bed:9ff... ff02::1:2
                                        DHCPv6
.168.0.185
                                        MDNS
                                                   83 Standard query 0x00
                                                                            168.0.185
                                                                                               224.0.0.251
                                                                                                                    MDNS
                                                                                                                                83 Standard query 0x00
                  224.0.0.251
                                                                            168.0.199
                                                                                                                               136 64010 → 10505 Len=
.168.0.199
                  255.255.255.255
                                        UDP
                                                  136 64010 → 10505 Len=
                                                                                               255.255.255.255
                                                                                                                    UDP
0::f87d:4bed:9ff... ff02::1:2
                                                  151 Solicit XID: 0xf0cc
                                                                            0::f87d:4bed:9ff... ff02::1:2
                                        DHCPv6
                                                                                                                    DHCPv6
                                                                                                                               151 Solicit XID: 0xf0cd
168.0.199
                  255.255.255.255
                                        UDP
                                                  136 64013 → 10505 Len=
                                                                            168.0.199
                                                                                               255.255.255.255
                                                                                                                               136 64013 → 10505 Len=
                                                                                                                    UDP
```

```
e (344 bits), 43 bytes captured (344 bits) on interface 0
ce\NPF {3F22FE2C-2DE0-4B22-957E-D1747E1C8ACE})
thernet (1)
                                                                          dation disabledl
2016 00:06:51.184659000 ₽₽₽oyα₽ g₽□₽
                                                                          se]
backet: 0.000000000 seconds]
                                                                          e]
1.184659000 seconds
lous captured frame: 0.000024000 seconds]
ous displayed frame: 0.256896000 seconds]
or first frame: 3.342721000 seconds]
     32 31 12 8b 08 00 45 00
                                ....F.
     00 00 c0 a8 00 bf c0 a8
                                ..v....
     82 fa 33
                                ...Y.\..
```

```
dation disabled]
se]
e]
```

#### 4) 모터 제어



USER\_setParams()가 동작한 이후 아래와 같은 결과

```
pUserParams->iqFullScaleCurrent_A = 10.0
pUserParams->iqFullScaleVoltage_V = 450.0
pUserParams->igFullScaleFreq_Hz = 800.0
pUserParams->numlsrTicksPerCtrlTick = 1
pUserParams->numCtrlTicksPerCurrentTick = 1
pUserParams->numCtrlTicksPerEstTick = 1
pUserParams->numCtrlTicksPerSpeedTick = 15
pUserParams->numCtrlTicksPerTrajTick = 15
                         systemFreq_MHz = 90.0
numCurrentSensors = 3
                         pwmPeriod_usec = 66.6666666
numVoltageSensors = 3
                         voltage_sf = 0.910222222222
offsetPole_rps = 20.0
                         current sf = 1.989
                         voltageFilterPole_rps = 2340.48
fluxPole rps = 100.0
zeroSpeedLimit = 0.000625 maxVsMag_pu = 0.6666666666
                         estKappa = 1.5
forceAngleFreq Hz = 1.0
maxAccel_Hzps = 20.0
maxAccel_est_Hzps = 2.0
directionPole_rps = 6.0
speedPole_rps = 100.0
dcBusPole rps = 100.0
```

1446

return;

fluxFraction = 1.0

indEst speedMaxFraction = 1.0

```
ACI Motor를 TMS320F28069로 제어 하기 위해서는 ADC_Handle,PLL_Handle,
GPIO_Handle,PWM_Handle등에 대한 레지스터가 등록되어야 합니다.
제어공학을 기반하여 DSP의 버전 및 매뉴얼 데이터 시트를 확인하고 코드를 잘 파악하여
인버터 설정, ADC Mechanism, PI제어기를 배워 익혔습니다.
     TIMER_Handle timerHandle[3]; //<! the timer handles
                                     //!< the watchdog handle
     WDOG Handle
                   wdogHandle;
     HAL AdcData t adcBias;
                                     //!< the ADC bias
                                      //!< the current scale factor, amps pu/cnt
                   current sf;
     _iq
                                     //!< the voltage scale factor, volts_pu/cn 880
163
                   voltage_sf;
     uint least8 t numCurrentSensors; //!< the number of current sensors
    uint_least8_t numVoltageSensors; //!< the number of voltage sensors</pre>
168#ifdef QEP
169 QEP_Handle
                   qepHandle[1];
                                      //!< the OEP handle
170 #endif
 172 } HAL_Obj;
  이번에는 FLASH_Handle을 살펴보도록 하자!
                245//! \brief Defines the flash (FLASH) handle
                247 typedef struct _FLASH_Obj_ *FLASH_Handle;
  _FLASH_Obj_는 아래와 같이 구현되어 있다.
230//! \brief Defines the flash (FLASH) object
231//!
232 typedef struct FLASH_Obj
233 {
       volatile uint16_t FOPT;
                                       //!< Flash Option Register
       volatile uint16 t rsvd 1:
                                       //!< Reserved
                                       //!< Flash Power Modes Register
       volatile uint16_t FPWR;
      volatile uint16 t FSTATUS;
                                       //!< Status Register
      volatile uint16_t FSTDBYWAIT;
                                       //!< Flash Sleep To Standby Wait Register
       volatile uint16 t FACTIVEWAIT: //!< Flash Standby to Active Wait Register 912
       volatile uint16 t FBANKWAIT;
                                       //!< Flash Read Access Wait State Register 913
       volatile uint16_t FOTPWAIT;
                                       //!< OTP Read Access Wait State Register
42 } FLASH_Obj;
301//! \brief Enumeration to define the pulse width modulation (PWM) sync modes
302//1
303 typedef enum
304 (
             Made EPWMxSYNC=(0 << 4),
305
      PWM SyncMode CounterEqualZero=(1 << 4),
306
307
      PWM SyncMode CounterEqualCounterCompareZero=(2 << 4),
308
      PWM_SyncMode_Disable=(3 << 4)
309 } PWM SyncMode e;
1435 void PNM setSyncMode(PNM Handle pwmHandle, const PNM SyncMode e syncMode)
1436 {
1437
        PWM_Obj *pwm = (PWM_Obj *)pwmHandle;
1438
1439
1440
        // clear the bits
1441
        pwm->TBCTL &= (~PWM_TBCTL_SYNCOSEL_BITS);
1442
1443
        // set the bits
1444
        pwm->TBCTL |= syncMode;
1445
```

```
이번에는 PWM_Handle을 살펴보도록 하자!
        933//! \brief Defines the pulse width modulation (PWM) handle
        935 typedef struct _PWM_Obj_ *PWM_Handle;
PWM Obj 는 아래와 같이 구현되어 있다.
871//! \brief Defines the pulse width modulation (PWM) object
872 //1
873 typedef struct PWM_Obj_
 875 volatile uint16_t
                                      //I< Time-Base Control Register
     volatile uint16_t
                         TBSTS:
                                      //!< Time-Base Status Register
     volatile uint16_t
                         TBPHSHR;
                                      //!< Extension for the HRPWM Phase Register
     volatile uint16_t
                         TBPHS:
                                      //IK Time-Base Phase Register
     volatile uint16 t
                         TBCTR:
                                      //I< Time-Base Counter
     volatile uint16 t
                         TBPRD:
                                      //!< Time-Base Period register set
                         TBPRDHR:
     volatile uint16_t
                                      //I< Time-Base Period High Resolution Register
     volatile uint16_t
                         CMPCTL;
                                      //!< Counter-Compare Control Register
     volatile uint16_t
                                      //I< Extension of HRPWM Counter-Compare A Register
                         CMPAHR:
                                      //!< Counter-Compare A Register
     volatile uint16_t
                         CMPA:
     volatile uint16_t
                         CMPB;
                                      //!< Counter-Compare B Register
                                      //I< Action-Qualifier Control Register for Output A (EPWMxA)
     volatile wint16 t
                         AOCTLA:
887
     volatile uint16 t
                         AOCTLB:
                                      //I< Action-Qualifier Control Register for Output B (EPWMxB)
888
     volatile uint16 t
                         AOSFRC:
                                      //IK Action qual SW force
     volatile uint16_t
                         AOCSFRC:
                                      //!< Action qualifier continuous SW force
     volatile uint16_t
                         DBCTL;
                                      //!< Dead-band control
     volatile uint16_t
                                      //IX Dead-band rising edge delay
                         DBRED:
     volatile uint16 t
                         DBFED:
                                      //!< Dead-band falling edge delay
     volatile uint16_t
                         TZSEL;
                                      //I< Trip zone select
     volatile uint16 t
                         TZDCSEL;
                                      //!< Trip zone digital comparator select
     volatile uint16 t
                         TZCTL:
                                      //I< Trip zone control
     volatile uint16 t
                         TZEINT:
                                      //!< Trip zone interrupt enable
     volatile uint16 t
                         TZFLG:
                                      //!< Trip zone interrupt flags
     volatile uint16_t
                         TZCLR;
                                     //!< Trip zone clear
      volatile uint16_t
                         TZFRC;
                                      //I< Trip zone force interrupt
      volatile uint16_t
                          ETSEL;
                                        //!< Event trigger selection
     volatile uint16_t
                          FTPS:
                                        //I< Event trigger pre-scaler
                                        //!< Event trigger flags
     volatile uint16_t
                          ETFLG;
      volatile uint16_t
                          ETCLR:
                                        //!< Event trigger clear
                                       //!< Event trigger force
     volatile uint16 t
                          ETFRC:
                          PCCTL;
                                        //I< PWM chopper control
     volatile uint16_t
     volatile uint16_t
                          rsvd_1;
                                        //!< Reserved
     volatile uint16_t
                                        //I< HRPWM Config Reg
                          HRCNFG:
                                        //!< HRPWM Power Register
     volatile uint16 t
                          HRPWR:
989
     volatile uint16_t
                          rsvd_2[4];
                                       //!< Reserved
     volatile uint16_t
                          HRMSTEP;
                                        //I< HRPWM MEP Step Register
      volatile uint16_t
                                        //IK Reserved
                          rsvd_3;
     volatile uint16_t
                          HRPCTL;
                                        //I< High Resolution Period Control
     volatile uint16_t
                                        //!< Reserved
                          rsvd 4:
     volatile uint16_t
                          TBPRDHRM:
                                       //I< Time-Base Period High Resolution mirror Register
     volatile uint16_t
                                        //!< Time-Base Period mirror register
                          TBPRDM:
     volatile uint16 t
                          CMPAHRM;
                                        //IK Extension of HRPWM Counter-Compare A mirror Register
                                        //!< Counter-Compare A mirror Register
     volatile uint16_t
                          CMPAM.
     volatile uint16_t
                          rsvd_5[2];
                                       //!< Reserved
     volatile uint16_t
                          DCTRIPSEL:
                                       //I< Digital Compare Trip Select
     volatile uint16 t
                          DCACTL;
                                        //!< Digital Compare A Control
     volatile uint16 t
                          DCBCTL;
                                        //!< Digital Compare B Control
      volatile uint16_t
                          DCFCTL;
                                        //!< Digital Compare Filter Control
     volatile uint16_t
                          DCCAPCTL:
                                       //!< Digital Compare Capture Control
     volatile uint16 t
                          DCFOFFSET:
                                       //IK Digital Compare Filter Offset
     volatile uint16_t
                          DCFOFFSETCNT;//I< Digital Compare Filter Offset Counter
925
     volatile uint16 t
                          DCFWINDOW;
                                       //!< Digital Compare Filter Window
      volatile uint16 t
                          DCFWINDOWCNT;//I< Digital Compare Filter Window Counter
928
     volatile uint16_t
                          DCCAP:
                                        //!< Digital Compare Filter Counter Capture
930 } PWM_Obj;
    5:4 SYNCOSEL
                             Synchronization Output Select. These bits select the source of the EPWMxSYNCO signal.
                             EPWMxSYNC:
                        00
```

CTR = zero: Time-base counter equal to zero (TBCTR = 0x0000)

CTR = CMPB : Time-base counter equal to counter-compare B (TBCTR = CMPB)

Disable EPWMxSYNCO signal

01

#### 4) 모터 제어



### 4) 모터 제어







 $C = \frac{R}{K_s^{series} \cdot K_s^{series}}, \quad D = \frac{1}{K_s^{series}}$ 

MATLAB으로 PID control logic을 설계해보았으며, 기존 입력식을뚜렷하게 파악하고 범위와 연결식을 계산하는과정에서 전송데이터 결과값과 원하는 값 비교하여 같게 만들어 보았습니다. 펄스 다이어그램을 그리기위해서는 각mode별로 고유벡터 값을 지정하여 상태변수의벡터 Transter function을 잘 파악하여 제어시스템을 설계해야 하는 것입니다.  $\dot{x}_1 = x_2 = 0$   $\dot{x}_2 = -\frac{1}{M}(x_1^2 + Mg) = 0$ 

 $\dot{x}_1 = \dot{y} = x_2$   $\dot{x}_2 = \ddot{y} = -\frac{1}{M}(y^2 + Mg) = -\frac{1}{M}(x_1^2 + Mg)$ 

$$\begin{split} &\Delta \dot{x}_{1}\!\!= x_{2\varepsilon} + \Delta x_{2} = \Delta x \\ &\Delta \dot{x}_{2} = -\frac{1}{M}[(x_{1\varepsilon} + \Delta x_{1})^{2} + Mg) = -\frac{1}{M}[(\sqrt{Mg} + \Delta x_{1})^{2} + Mg) \end{split}$$



# 프로젝트시연





결과 03 10 11 1970-01-01 09:11:56

**O3** 결과

## 팀원 소개

| 김민중  | 이윤성  | 이대영         | 정지윤                     | 이상훈 강사님               |
|------|------|-------------|-------------------------|-----------------------|
| 영상처리 | 모터제어 | 음성처리<br>PCB | 네트워크 구성<br>및<br>디바이스 제어 | 서버구축 및<br>모터제어<br>PCB |

## 감사합니다