WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

G02B 6/12, 6/42

A1

(11) Internationale Veröffentlichungsnummer:

WO 97/32228

(43) Internationales

Veröffentlichungsdatum:

PT, SE).

4. September 1997 (04.09.97)

(21) Internationales Aktenzeichen:

PCT/EP97/01019

- (22) Internationales Anmeldedatum: 28. Februar 1997 (28.02.97)
- (81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

(30) Prioritätsdaten:

196 07 670.6

29. Februar 1996 (29.02.96)

DE

- (71) Anmelder (für alle Bestimmungsstaaten ausser US): INSTITUT FUR MIKROTECHNIK MAINZ GMBH [DE/DE]; Carl-Zeiss-Strasse 18-20, D-55129 Mainz (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): PAATZSCH, Thomas [DE/DE]; Walpoldenstrasse 15, D-55116 Mainz (DE). SMAGLINSKI, Ingo [DE/DE]; Sommerringstrasse 23, D-55118 Mainz (DE).
- (74) Anwälte: FUCHS, Jürgen, H. usw.; Abraham-Lincoln-Strasse 7, D-65189 Wiesbaden (DE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: INTEGRATED OPTICAL 1xN SPLITTER
- (54) Bezeichnung: INTEGRIERT-OPTISCHER 1xN-VERZWEIGER

(57) Abstract

The invention relates to an integrated optical 1xN splitter with an input waveguide (1) and N output waveguides, at least the outermost output waveguides (2a,b) slanting in relation to each other. The 1xN splitter also has a divider (3) containing a region (5) which is upstream of the intersection point (4) of the inner edges (9, 10) of the outermost output waveguides (2a,b) and has the same refractive index as the waveguide cladding (16). The 1xN splitter is characterised by a low attenuation while providing a wide branching angle. The width of the divider (3) may, for example, increase or decrease. There may also be a closed region (3, 5), the two output waveguides (2a, b) being connected to each other via a cross-member (15) made of nuclear material.

(57) Zusammenfassung

Die Erfindung betrifft einen integriert-optischen 1xN-Verzweiger mit einem Eingangswellenleiter (1) und N Ausgangswellenleiter, wobei zumindest die äußersten Ausgangswellenleiter (2a, b) zueinander geneigt sind. Der 1xN-Verzweiger weist weiterhin eine Aufteilungsvorrichtung (3) auf, welche einen Bereich (5) enthält, der vor dem Schnittpunkt (4) der inneren Kanten (9, 10) der äußersten Ausgangswellenleiter (2a, b) liegt und denselben Brechungsindex besitzt wie der Wellenleitermantel (16). Der 1xN-Verzweiger zeichnet sich durch eine niedrige Verlustdämpfung bei gleichzeitig großem Verzweigungswinkel aus. Die Breite der Aufteilungsvorrichtung (3) kann beispielsweise zu- oder abnehmen. Es kann auch ein geschlossener Bereich (3, 5) vorliegen, wobei die beiden Ausgangswellenleiter (2a, b) über einen Steg (15) aus Kernmaterial miteinander verbunden sind.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Osterreich	GE	Georgien	NE	Niger
ΑÜ	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungam	NZ.	Neusceland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	rr	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Кепуа	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	· KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
Cl	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litanen	TD	Techad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	us	Vereinigte Staaten von Amerik
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

WO 97/32228 PCT/EP97/01019

Integriert-optischer 1xN-Verzweiger

Die Erfindung betrifft einen integriert-optischen 1xN-Verzweiger nach dem Oberbegriff des Anspruchs 1. Derartige Verzweiger können beispielsweise in der optischen Nachrichtentechnik oder in der Sensorik eingesetzt werden.

Die Übertragung von Signalen und Daten in der Nachrichtentechnik und Sensorik erfolgt zunehmend auf optischer Basis. Anstelle elektrischer Verbindungen werden mit Hilfe von Lichtwellenleitern optische Verbindungen geschaffen, die in ihrer Gesamtheit ein optisches Netz darstellen. Eine besondere Bedeutung kommen dabei den sogenannten passiven optischen Netzen zu, in denen die Datensignale auf eine Vielzahl von Kanälen gleichzeitig verteilt werden. Zum Aufbau solcher Netze werden optische 1xN-Verzweiger in großen Stückzahlen zu möglichst geringen Kosten benötigt.

Integriert-optische 1xN-Verzweiger werden derzeit vor allem in Glas-, Siliziumoder Polymer-Technik hergestellt. Im Vergleich zu den anderen Materialien haben
Polymere den großen Vorteil, daß sie durch Abformverfahren wie z.B. Spritzguß
oder Heißprägen sehr kostengünstig verarbeitet werden können. Außerdem
können in der Polymertechnik neben den wellenleitenden Bereichen auch
Faserführungsstrukturen in das Bauteil integriert werden, in welche die Fasern
ohne Nachjustage lediglich eingebracht werden müssen. Daraus resultiert eine
erhebliche Vereinfachung des Herstellungsprozesses.

Integriert-optische Wellenleiter weisen in der Regel einen Wellenleiterkern und einen Wellenleitermantel auf. Die Kern-Brechzahl ist dabei größer als die Mantelbrechzahl. Der Transport des optischen Signals findet im wesentlichen im Kern des Wellenleiters statt. Insbesondere im Bereich der Fernübertragung von

Daten und in der Sensorik wird eine sogenannte einmodige Wellenleitung benötigt. Solche zur einmodigen Übertragung geeignete Wellenleiter weisen bei den gängigen Wellenlängen (0.4-1.6 μ m) Kernabmessungen im Bereich von 3-10 μ m auf.

Die Berechnung der optischen Eigenschaften von wellenleitenden Strukturen kann beispielsweise durch 'Beam-Propagation-Simulation' (BPM-Simulationen) erfolgen. Dabei wird ein optisches Eingangsfeld vorgegeben und das weitere Feld entlang der wellenleitenden Struktur schrittweise durch numerische Verfahren berechnet. Bei diesen Rechnungen ist darauf zu achten, daß sowohl die Diskretisierung des Brechzahlfeldes als auch die 'Propagations'-Schrittweite nicht zu groß gewählt werden. Zur BPM sind derzeit verschiedene kommerzielle Programme erhältlich, die zum Teil auf unterschiedlichen numerischen Verfahren aufbauen. Zur Kontrolle der Ergebnisse ist es von Vorteil, die mit den verschiedenen numerischen Verfahren erhaltenen Werte auf Übereinstimmung zu überprüfen.

Einen Überblick zu integriert-optischen Verzweigern ist beispielsweise in W. Karthe: 'Integrierte Optik': Akademische Verlagsgesellschaft Leipzig 1991, S. 180-185 enthalten. Darin wird ein 'Standard-Verzweiger' mit einem Eingangswellenleiter und zwei Ausgangswellenleitern beschrieben. Zwischen den Ausgangswellenleitern ist eine Aufteilungsvorrichtung vorgesehen, welche den Eingangswellenleiter in die beiden Ausgangswellenleiter überführt und einen Brechungsindex aufweist, der sich vom Kern- und Mantelmaterial der Wellenleiter unterscheidet. In einer Ausführungsform sind die beiden Ausgangswellenleiter gegenüber dem Eingangswellenleiter geneigt und die Aufteilungsvorrichtung ist als spitz zulaufender Bereich zwischen den inneren Kanten der Ausgangswellenleiter ausgebildet.

In einer anderen Ausgestaltung des Y-Verzweigers wird die Spitze der Aufteilungsvorrichtung durch eine Abrundung ersetzt. Nachteilig daran ist, daß eine geringe Einfügedämpfung des Verzweigers nur erreicht werden kann, wenn

der Radius der Abrundung sehr klein (z.B. 0.1 μm) gewählt wird. Aufgrund des sich dabei ergebenden sehr hohen Aspektverhältnisses (Wellenleiterhöhe z.B. 8 μm) ist eine solche Ausgestaltung aber mit erheblichen technischen Schwierigkeiten verbunden. Dies gilt insbesondere für die Herstellung eines 1xN-Verzweigers in Abformtechnik, da bei zu großem Aspektverhältnis eine Trennung von Formwerkzeug und Formteil (sog. Entformung) nicht zerstörungsfrei durchzuführen ist.

Als weiterer Nachteil der Ausgestaltung ergibt sich, daß für eine gute Funktion des Verzweigers die Ausgangswellenleiter gegenüber dem Eingangswellenleiter nur um einen kleinen Winkel (z.B. < 1°) geneigt sein dürfen. Ein solch kleiner Neigungswinkel führt aber zu einer unerwünschten großen Gesamtlänge der wellenleitenden Bereiche des Verzweigers. Dies beruht darauf, daß die Ausgangsarme des Verzweigers prinzipiell so weit auseinander geführt werden müssen, bis ein Ankoppeln der Fasern möglich ist (d.h. mindestens zwei Fasern nebeneinander passen).

Für größere Winkel ist zwischen dem Eingangswellenleiter und den beiden Ausgangswellenleitern ein rechteckiger Bereich vorgesehen, der einen Brechungsindex aufweist, der niedriger ist als der des Eingangswellenleiters und der der Ausgangswellenleiter.

In der Veröffentlichung von M. Seino, M. Shina, T. Mekada, N. Nakajima: 'Low loss Mach-Zehnder modulator using mode coupling Y-branch waveguide'; Proc. 13th Europ. Cont'. Opt. Commun. ECOC, Helsinki 1987. S. 113--116 wird ein integriert-optischer Y-Verzweiger beschrieben, in welchem die Aufteilungsvorrichtung im vorderen Teil als im wesentlichen rechteckiger Bereich ausgebildet ist. Dieser Bereich reicht über den Schnittpunkt der inneren Kanten der Ausgangswellenleiter hinaus und hat einen anderen Brechungsindex als Wellenleiterkern und Mantel. Als bevorzugter Wert für den Brechungsindex im vorderen Teil der Aufteilungsvorrichtung wird das arithmetische Mittel aus Kernund Mantelbrechzahl angegeben.

Nachteilig an diesem Y-Verzweiger ist, daß der vordere Teil der Aufteilungsvorrichtung einen Bereich mit einem anderen Brechzahlwert als im Wellenleiterkern und Mantel aufweist. Dadurch ist keine Kompatibilität zu gängigen Herstellungsverfahren (die nur zwei Brechzahlwerte vorsehen) mehr gewährleistet. Zur Herstellung des Verzweigers muß also mit hohem Aufwand ein geeignetes, neues Herstellungsverfahren entwickelt werden.

In Z. Weissman, E. Marom, A. Hardy: 'Very low loss Y-junction power divider': Optics Lett. Vol 14 No. 5, S. 293 (1989) wird ein Y-Verzweiger beschrieben, in welchem die Aufteilungsvorrichtung einen im wesentlichen rechteckigen Bereich aufweist, der genau bis an den Schnittpunkt der inneren Kanten des Ausgangswellenleiters ausgedehnt ist und einen Brechungsindex besitzt, der dem des Wellenleitermantels entspricht. Weiterhin haben Eingangsund Ausgangswellenleiter eine unterschiedliche Breite.

Die in dieser Veröffentlichung durchgeführten BPM-Rechnungen zeigen, daß eine gute Funktion des Verzweigers mit einer Aufteilungsdämpfung kleiner 1 dB nur gewährleistet ist, wenn am Eingangswellenleiter die erste (antisymmetrische) Mode anliegt. Dies ist aber in der Regel nicht der Fall, da z.B. nach Austritt des Lichts aus der Einkoppelfaser im wesentlichen die nullte (symmetrische) Mode angeregt wird. Dieser Y-Verzweiger hat daher den entscheidenen Nachteil, daß vor dem Verzweiger spezielle Elemente zur selektiven Anregung der ersten Mode vorgesehen werden müssen. Durch solche Elemente wird aber die Gesamtdämpfung des Bauteils erheblich erhöht, da einerseits die Modenkonvertierung nicht verlustfrei erfolgen kann und außerdem die Gesamtlänge der wellenleitenden Bereiche zunimmt. Letzteres ist insbesondere für polymere Wellenleiter nachteilig, weil diese aufgrund ihrer hohen Materialabsorption auf kurze Wellenleiterlängen angewiesen sind.

Ein möglichst niedriger Dämpfungsverlust der 1xN-Verzweiger ist aber insbesondere für den Einsatz in der Telekommunikation wichtig, weil dadurch z.B. größere Übertragungsstrecken möglich werden.

Ein weiterer Nachteil besteht darin, daß die Breite des parallel zum vorderen Teil der Aufteilungsvorrichtung faufenden Wellenleiterkerns lediglich 1-2 μm (Wellenleiterhöhe: 3 μm) beträgt. Das Aspektverhältnis (Höhe:Breite) von ca. 2:1 bei gleichzeitigen Strukturbreiten von ca. 1 μm führt aber zu einer erheblichen Verringerung der möglichen Präzision bei der Wellenleiterherstellung. Aufgrund von Beugungseffekten ist dies insbesondere dann der Fall, wenn mittels UV-Lithographie ein Formwerkzeug zur Wellenleiterabformung hergestellt werden soll.

In Z. Weissman, E. Marom, A. Hardy: 'Novel passive multibranch power splitters for integrated optics'; Appl. Optics; Vol 29 No. 30, S. 4426 (1990) wird ein 1x4-Verzweiger beschrieben, der eine im vorderen Teil im wesentlichen rechteckige Aufteilungsvorrichtung aufweist. Die vorderste Kante der Aufteilungsvorrichtung liegt dabei genau am Schnittpunkt der inneren Kanten der Ausgangswellenleiter. Hinzu kommt, daß der Eingangswellenleiter in etwa vier mal breiter als die Ausgangswellenleiter ist. Nachteilig an dieser Ausführungsform ist, daß vor dem Verzweiger ein Taper integriert werden muß, der das Eingangsfeld vom anfänglichen Durchmesser um einen Faktor 4 aufweitet. Durch diesen Taper wird aber die Gesamtlänge des Bauteils erheblich erhöht, was insbesondere für polymere Wellenleiter von Nachteil ist.

Die JP 63-60405 beschreibt einen Y-Verzweiger mit einem Einschnitt im Verzweigungsbereich, der einen Brechungsindex aufweist, der im Bereich zwischen dem des Wellenleitermaterials und des Substratmaterials liegt. Dieser Einschnitt erstreckt sich bis in die Nähe des Eingangswellenleiters.

Es ist daher, ausgehend von Z. Weissman et al., Optics Lett. Vol 14 No. 5, S. 293 (1989), die Aufgabe der Erfindung, einen 1xN-Verzweiger zu schaffen, der eine möglichst kleine Einfügedämpfung aufweist und auf einfache Weise hergestellt werden kann.

Die Aufgabe wird mit einem integriert-optischen IxN-Verzweiger nach Anspruch 1 gelöst.

BPM-Rechnungen haben zu dem überraschenden Ergebnis geführt, daß dadurch, daß die Aufteilungsvorrichtung einen Bereich umfaßt, der vor dem Schnittpunkt der inneren Kanten der äußersten Ausgangswellenleiter liegt, die ertindungsgemäße Ausgestaltung der Aufteilungsvorrichtung eine sehr geringe Einfügedämpfung erreicht werden kann. Für einen Y-Verzweiger ist diese beispielsweise kleiner 0.1 dB bei einer Optimierung der Strukturmaße für eine einzelne Wellenlänge (z.B. $\lambda = 1.3 \, \mu m$) und kleiner 0.2 dB bei Optimierung auf zwei Wellenlängen (z.B. $1.3/1.55 \, \mu m$). Der Bereich, der denselben Brechungsindex aufweist wie der Wellenleitermantel, trägt in geradezu optimaler Weise zur Transformation des optischen Feldes vom Eingangswellenleiter in die Ausgangswellenleiter bei, wodurch sich eine kleine Einfügedämpfung bei gleichzeitig großen Aufzweigungswinkeln ergibt.

In einer bevorzugten Ausgestaltung der Erfindung weist der Verzweiger eine parallel zum Eingangswellenleiter liegende Symmetrieachse auf. Dadurch wird eine gleichmäßige Aufteilung für jeweils symmetrisch zueinander liegenden Ausgangswellenleiter erreicht. Es kann aber auch gewünscht sein, daß der Verzweiger keine Symmetrieachse aufweist und das optische Feld auf die einzelnen Ausgangsarme mit unterschiedlichen Anteilen aufgeteilt wird.

Weiterhin werden durch die Ausgestaltung der Aufteilungsvorrichtung vergleichsweise große Verzweigungswinkel 2° bis 5° für einen Y-Verzweiger ermöglicht. Dies hat den großen Vorteil, daß dadurch die Länge der wellenleitenden Bereiche erheblich reduziert werden kann. Dies ist insbesondere für polymere Wellenleiter aufgrund ihrer hohen intrinsischen Materialabsorption vorteilhaft. Ferner kann dadurch eine kleine Einfügedämpfung bei gleichzeitig großem Verzweigungswinkel erreicht werden.

Die erfindungsgemäße Ausgestaltung des 1xN-Verzweigers sieht vor. daß Eingangswellenleiter und Ausgangswellenleiter die gleiche Breite aufweisen. Dadurch werden keine Taper oder Modenkonverter vor dem Verzweigungspunkt henötigt, wodurch die Länge des Verzweigers beträchtlich reduziert werden kann.

Es ist weiterhin von Vorteil, wenn der Abstand des Bereichs vom Schnittpunkt aus Eingangswellenleiterkante und zugeordneter Kante des äußersten Ausgangswellenleiters kleiner ist als seine Längserstreckung vom Schnittpunkt der inneren Kanten der äußersten Ausgangswellenleiter.

In einer weiteren bevorzugten Ausgestaltung erstreckt sich der Bereich bis in den Eingangswellenleiter.

Die Aufteilungsvorrichtung kann entweder verschiedene voneinander getrennte Bereiche enthalten oder ein zusammenhängendes Gebiet sein. Letzteres ist insbesondere für die Herstellung von Wellenleitern in Abformtechnik von Vorteil, weil dadurch die Stabilität des Formeinsatzes erhöht wird und eine problemlose Entformung möglich ist.

In einer vorteilhaften Ausgestaltung weist die Aufteilungsvorrichtung im vorderen Bereich eine im wesentlichen konstante Breite auf. Dadurch werden kleine Aspektverhältnisse vermieden, welches insbesondere für die Trennung von Bauteil und Formeinsatz (sog. Entformung) von Vorteil ist. Es kann aber gewünscht sein, daß die Breite der Aufteilungsvorrichtung im vorderen Bereich kontinuierlich zunimmt und dadurch die Breite des dazu parallel laufenden Wellenleiterkerns erhöht wird.

Die Aufteilungsvorrichtung weist vorzugsweise mindestens im Bereich des Schnittpunktes eine im wesentlichen konstante Breite auf. Es besteht auch die Möglichkeit, daß die Aufteilungsvorrichtung und dies betrifft im wesentlichen den Bereich vor dem Schnittpunkt, sich in Richtung des Eingangswellenleiters verengt oder verbreitert.

Die Ausgangswellenleiter können hinter dem Schnittpunkt der inneren Kanten der äußersten Ausgangswellenleiter über einen Steg aus Wellenleiterkernmaterial miteinander verbunden sein.

In einer vorteilhaften Ausgestaltung der Erfindung wird der Eingangswellenleiter vor der Aufteilungsvorrichtung im wesentlichen stufenförmig verbreitert. Dies hat den großen Vorteil, daß dadurch auch der zum vorderen Bereich der Aufteilungsvorrichtung parallel liegende Wellenleiterkern verbreitert wird. Eine größere Breite führt aber zu einem kleineren Aspektverhältnis, wodurch eine einfachere und präzisere Herstellung des 1xN-Verzweigers möglich ist. Aufgrund der im Vergleich zur UV-Strahlung großen Strukturabmessungen ist es dabei insbesondere möglich, ein Formwerkzeug für Wellenleiter in Abformtechnik auch mittels UV-Lithographie herzustellen. Außerdem wird aufgrund der größeren Breite des Wellenleiterkerns daas Einfüllen des Kernmaterials in das Formteil beträchtlich vereinfacht.

Anstatt einer stufenförmigen Verbreiterung kann der Eingangswellenleiter auch auf einer Länge I, kontinuierlich verbreitert sein, solange das optische Feld in der Aufweitungsstrecke seine Breite nicht wesentlich vergrößert. Dieses ist bei hinreichend kleinem I, (z.B. gleich der zehnfachen Wellenleiterbreite des Eingangswellenleiters) gewährleistet. Durch die kontinuierliche Aufweitung ergibt sich der Vorteil, daß keine Eckbereiche wie bei der stufenförmigen Verbreiterung mehr auftreten. Daraus folgt eine erheblich einfachere Herstellung der Wellenleiter in Abformtechnik. Außerdem wird durch die fehlenden Eckbereiche das Einfüllen des Kernmaterials in das Formteil vereinfacht.

Vorzugsweise liegt die Verbreiterung des Eingangswellenleiters vor der Aufteilungsvorrichtung.

Das Verhältnis der Eingangswellenleiterbreiten vor und nach der Verbreiterung ist vorteilhafterweise größer als 1.5.

Die Aufteilungsvorrichtung kann auch so ausgestaltet sein, daß Eingangswellenleiter und Ausgangswellenleiter voneinander getrennt sind. Dadurch wird das Kernmaterial durch den Bereich vor dem Schnittpunkt vollständig unterbrochen. Die Aufteilungsvorrichtung weist hierbei vorzugsweise dieselbe Breite auf wie der Wellenleiterkern.

Die Unterbrechung des wellenleitenden Bereichs hat den Vorteil, daß die Aufteilungsvorrichtung durch die seitlichen Bereiche zusätzlich stabilisiert wird. Dadurch wird eine hohe Zentrizität der Aufteilungsvorrichtung gegenüber Eingangswellenleiter und Ausgangswellenleiter und somit eine hohe Aufteilungsgleichmäßigkeit des Verzweigers erreicht.

Die Herstellung der Wellenleiter in Abformtechnik erfolgt vorteilhaft dadurch. daß das Formwerkzeug mittels Röntgentiefenlithographie und nachfolgender Galvanoformung gefertigt wird. Im Gegensatz zur UV-Lithographie sind Beugungseffekte bei der Verwendung von Röntgenstrahlen erheblich reduziert, so daß das mittels BPM-Rechnungen optimierte Design mit großer Präzision in das Formwerkzeug übertragen werden kann. Dadurch ist es insbesondere möglich, den zum vorderen Bereich der Aufteilungsvorrichtung parallel laufende Wellenleiterkern in hoher Qualität herzustellen.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher erfäutert.

Es zeigen:

- Fig. 1 Y-Verzweiger gemäß einer ersten Ausführungsform,
- Fig. 2 Y-Verzweiger mit verbreitertem Eingangswellenleiter,
- Fig. 3 verschiedene Ausführungsformen bezüglich der Länge des vorderen Bereichs der Aufteilungsvorrichtung,

- Fig. 4 verschiedene geometrische Ausgestaltungen des vorderen Bereichs der Aufteilungsvorrichtung, und
- Fig. 5 einen Y-Verzweiger mit einer Unterbrechung des Wellenleiterkernmaterials.

Fig. 1 zeigt einen 2-dimensionalen Querschnitt eines symmetrischen (Symmetrieachse 8) Y-Verzweigers mit einem Eingangswellenleiter 1 und zwei Ausgangswellenleitern 2a,b. Eingangs- und Ausgangswellenleiter haben einen quadratischen Querschnitt mit einer Kantenlänge von d1 = 8 μ m (die Wellenleiterhöhe ist in der Figur 1 nicht gezeigt). Die Brechungsindizes liegen bei nM = 1.45 im Wellenleitermantel 16 und nK = 1.454 im Wellenleiterkern. Die angegebenen Wellenleiterparameter sind auf eine Standardglasfaser (SM 1300) angepaßt und es ist somit eine verlustfreie Einkopplung möglich. Die Wellenleitung bei den Standardwellenlängen 1.3/1.55 μ m erfolgt monomodig.

Die Ausgangswellenleiter 2a,b sind jeweils gegenüber dem Eingangswellenleiter 1 um einen Winkel $\gamma=2.5^\circ$ geneigt. Zwischen den Ausgangswellenleitern 2a,b befinden sich die Aufteilungsvorrichtung 3, welche aus Mantelmaterial des Wellenleiters besteht und einen Brechungsindex nM=1.45 aufweist. Die Aufteilungsvorrichtung besitzt einen Bereich 5, der vor dem Schnittpunkt 4 der inneren Kanten 9.10 der Ausgangswellenleiter 2a,b liegt und sich in den Verbreiterungsbereich oder Taperbereich 11 des Y-Verzweigers erstreckt, der in der hier gezeigten Darstellung am Schnittpunkt 6 aus Eingangswellenleiterkante 14 und zugeordneter Kante 12.13 des äußersten Ausgangswellenleiters 2a beginnt. Die Außeitungsvorrichtung 3 ist vorteilhaft als zusammenhängendes Gebiet mit im Bereich 5 konstanter Breite ausgeführt.

Für die Herstellung der Wellenleiter ist es vorteilhaft, alle Ecken mit einem Radius von 1-2 µm abzurunden (in Fig. 1 nicht gezeigt).

Fig. 2 zeigt einen erfindungsgemäßen Y-Verzweiger mit einer Verbreiterung 11 des Eingangswellenleiters 1. Wellenleiterbreite d1, Brechzahlen nM/nK und Aufteilungswinkel sind gleich den Werten in Figur 1. Die Verbreiterung 11 des Eingangswellenleiters erfolgt vorteilhaft auf einer Länge $I_0=20~\mu m$ auf einen Endwert von d2 = 16 μm . Das Verhältnis von Wellenleiterbreite nach und vor der Verbreiterung hat den Wert 2. Der zum vorderen Teil der Aufteilungsvorrichtung 3 parallel laufende Wellenleiterkern 7 hat eine Breite von 4.75 μm .

Der Bereich 5 der Aufteilungsvorrichtung 3 weist vorteilhaft eine Breite von ca. b = $6.5 \mu m$ und eine Länge von ca. $Z_0 = 95 \mu m$ auf.

In den Fig. 3a. b und c sind verschiedene Ausgestaltungen der Aufteilungsvorrichtung 3 dargestellt. In Fig. 3a befindet sich der vordere Bereich 5 der Aufteilungsvorrichtung 3 in der Nähe des Schnittpunktes 4 der inneren Kanten 9.10 der äußersten Ausgangswellenleiter 2a,b. Der Abstand des vorderen Bereichs 5 vom Schnittpunkt 6 aus Eingangswellenleiterkante 14 und zugeordneter Kante 12 des äußersten Ausgangswellenleiters 2a ist größer als sein Abstand vom Schnittpunkt 4.

In Fig. 3b ist der Abstand des vorderen Bereichs 5 vom Schnittpunkt 6 kleiner als sein Abstand vom Schnittpunkt 4 der inneren Kanten 9,10 der äußersten Ausgangswellenleiter 2a,b., In Fig. 3c erstreckt sich der Bereich 5 bis in den Eingangswellenleiter 1 und liegt vor dem Schnittpunkt 6 von Eingangswellenleiterkante 14 und zugeordneter Kante 12 des äußersten Ausgangswellenleiters 2a. Die Breite der Aufteilungsvorrichtung 3 ist geringer als die Breite des Eingangswellenleiters 1.

Fig. 4 zeigt einen Y-Verzweiger mit verbreitertem Eingangswellenleiter 1 analog zu Fig. 2. wobei verschiedene Ausführungsformen der Aufteilungsvorrichtung 3 dargestellt sind. Die Breite der Aufteilungsvorrichtung 3 kann beispielsweise zuoder abnehmen (Fig. 4a.b). Es kann auch ein geschlossener Bereich 3.5 (Fig. 4c)

vorliegen, wobei die beiden Ausgangswellenleiter 2a,b über einen Steg 15 aus Kernmaterial miteinander verbunden sind.

Je nach verwendeter Ausführungsform sind die einzelnen geometrischen Abmessungen durch Simulationsrechnungen zu optimieren. Dabei soll eine möglichst geringe Verlustdämpfung des Verzweigers sowie eine möglichst geringe Abhängigkeit der Aufteilungsgleichmäßigkeit von Schwankungen der geometrischen Maße (Fabrikationstoleranzen) erreicht werden.

Fig. 5 zeigt einen erfindungsgemäßen Y-Verzweiger mit verbreiterter Aufteilungsvorrichtung 3. In der gezeigten Ausführungsform entspricht die Breite der Aufteilungsvorrichtung 3 gerade der Breite d1 des Eingangswellenleiters 1. Wellenleiterbreite d1. Brechzahlen nM/nK und Aufteilungswinkel sind gleich den Werten in Fig. 1.

Die Verbreiterung der Aufteilungsvorrichtung 3 um den oben angegebenen Wert hat zur Folge, daß der wellenleitende Bereich an der Verzweigungsstelle unterbrochen wird. Durch Simulationsrechnungen auf Basis der oben angegebenen Werte für Brechzahlen. Wellenleiterbreite und Aufteilungswinkel ergibt sich, daß die Unterbrechung 17 des wellenleitenden Bereichs vorteilhaft auf einer Länge von $11 = 40-45 \,\mu\text{m}$ erfolgt. Dadurch wird erreicht, daß der Verzweiger eine sehr kleine Verlustdämpfung von weniger als 0.1 dB aufweist. Wählt man einen Wert für 11 außerhalb des angegebenen Bereichs, steigt die Verlustdämpfung an.

Patentansprüche

Integriert-optischer 1xN-Verzweiger mit einem Eingangswellenleiter (1) und N Ausgangswellenleitern, wobei zumindest die äußersten Ausgangswellenleiter (2a.b) zueinander geneigt sind, und mit einer Aufteilungsvorrichtung (3), die den gleichen Brechungsindex wie der Wellenleitermantel (16) aufweist,

dadurch gekennzeichnet,

daß die Aufteilungsvorrichtung (3) einen Bereich (5) umfaßt, der vor dem Schnittpunkt (4) der inneren Kanten (9,10) der äußersten Ausgangswellenleiter (2a,b) liegt.

- 2. 1xN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der 1xN-Verzweiger eine parallel zum Eingangswellenleiter (1) liegende Symmetrieachse (8) aufweist.
- 1xN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß N=2 ist und der Neigungswinkel zwischen den Ausgangswellenleitern (2a,b) und dem Eingangswellenleiter (1) 2° bis 5° beträgt.
- 4. IxN-Verzweiger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Eingangswellenleiter (1) und Ausgangswellenleiter (2a,b) dieselbe Breite aufweisen.
- 5. 1xN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Abstand des Bereichs (5) vom Schnittpunkt (6) aus Eingangswellenleiterkante (14) und zugeordneter Kante (12.13) des äußersten Ausgangswellenleiters (2a,b) kleiner ist als seine Längserstreckung vom Schnittpunkt (4).

- 6. ExN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Bereich (5) sich bis in den Eingangswellenleiter (1) erstreckt.
- 1xN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Aufteilungsvorrichtung (3) ein zusammenhängendes Gebiet ist.
- 8. 1xN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Aufteilungsvorrichtung (3) mindestens im Bereich des Schnittpunktes (4) eine im wesentlichen konstante Breite aufweist.
- 9. 1xN-Verzweiger nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Aufteilungsvorrichtung (3) sich in Richtung des Eingangswellenleiters (1) verengt.
- 10. 1xN-Verzweiger nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Aufteilungsvorrichtung (3) sich in Richtung des Eingangswellenleiters (1) verbreitert.
- 11. 1xN-Verzweiger nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Ausgangswellenleiter (2a,b) hinter dem Schnittpunkt (4) über einen Steg (15) aus Wellenleiterkernmaterial verbunden sind.
- 12. 1xN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich der Eingangswellenleiter (1) stufenförmig verbreitert.

- 13. 1xN-Verzweiger nach einem der Ansprüche 1 bis 11. dadurch gekennzeichnet, daß der Eingangswellenleiter (1) sich auf einer Länge la kontinuierlich verbreitert und daß la kleiner als die zehnfache Breite des Eingangswellenleiters (1) ist.
- 14. IxN-Verzweiger nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß die Verbreiterung des Eingangswellenleiters (1) vor der Aufteilungsvorrichtung (3) liegt.
- 15. IxN-Verzweiger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet. daß das Verhältnis der Eingangswellenleiterbreiten nach und vor der Verbreiterung größer als 1.5 ist.
- 16. 1xN-Verzweiger nach einem der Ansprüche 1 bis 4 oder 7, dadurch gekennzeichnet, daß die Aufteilungsvorrichtung (3) Eingangswellenleiter
 (1) und Ausgangswellenleiter (2a,b) voneinander trennt.

Bezugszeichenliste

l	Eingangswellenleiter
2a.b	Ausgangswellenleiter
3	Aufteilungsvorrichtung
4	Schnittpunkt
5	Bereich
6	Schnittpunkt
8	Symmetrieachse
9	innere Kante
10	innere Kante
12	zugeordnete Kante
13	zugeordnete Kante
14	Eingangswellenleiterkante
15	Steg
16	Wellenleitermantel
17	Unterbrechung

PCT/EP97/01019

Figur 1

Figur 2

Figur 3

Figur 4

Figur 5

INTERNATIONAL SEARCH REPORT

Inter. ..onal Application No PCT/EP 97/01019

			101/2. 37	7 0 2 0 2 2
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER G02B6/12 G02B6/42			
According to	o Internabonal Patent Classification (IPC) or to both national classi	fication and IPC		
B. FIELDS	SEARCHED			
Minimum d IPC 6	ocumentation searched (classification system followed by classification GO2B	tion symbols)		
	tion searched other than minimum documentation to the extent that			earched
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical	, search terms used)	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages		Relevant to claim No.
X	IEICE TRANSACTIONS ON COMMUNICATE vol. E75 - B, no. 9, 1 September pages 886-892, XP000321324 ICHIRO TANAKA ET AL: "GLASS WAVE BRANCHING DEVICES" see abstract; figure 1B	1992,		1-4,6,7, 9
X,P	ELECTRONICS LETTERS, vol. 32, no. 7, 28 March 1996, pages 652-654, XP000584164 CHAN H P ET AL: "LOW LOSS WIDE-/ SYMMETRIC Y-BRANCH WAVEGUIDE" see abstract; figures 1,3,4; tab			1-8,12, 14,15
A		-/		13
X Furt	her documents are listed in the continuation of box C.	Patent family	members are listed	n annex.
"A" docum consid "E" earlier filling "L" docum which citatio "O" docum other i "P" docum later ti	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) entireferning to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed	cited to understan invention "X" document of part cannot be conside involve an invent "Y" document of part cannot be conside document is comi ment, such comb in the art. "&" document member	nd not in conflict wind the principle or the icular relevance; the cred novel or cannot tree step when the do icular relevance; the cred to involve an in pined with one or me prination being obvious or of the same patent	th the application but secry underlying the claimed invention be considered to cument is taken alone claimed invention ventive step when the one other such docusts to a person skilled family
	8 June 1997		5. 06. 97	eevii 14pvit
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Authorized officer Jakober		

1

INTERNATIONAL SEARCH REPORT

Inter. _onal Application No PCT/EP 97/01019

		PCT/EP 97/01019	
	Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 7, no. 5, 1 May 1989, pages 753-757, XP000093552 RANGARAJ M ET AL: "LOW LOSS INTEGRATED OPTICAL Y-BRANCH" see abstract; figures 1,8	1,2,4, 6-8,16	
x	APPLIED OPTICS, vol. 29, no. 30, 20 October 1990, pages 4426-4428, XP002033132 WEISSMANN Z ET AL: "NOVEL PASSIVE MULTIBRANCH POWER SPLITTERS FOR INTEGRATED OPTICS" cited in the application see abstract; figure 1	1,2,5,7,	
	IEEE MICROWAVE AND GUIDED WAVE LETTERS, vol. 2, no. 5, May 1992, pages 188-190, XP000255114 BANBA S ET AL: "NOVEL SYMMETRICAL THREE-BRANCH OPTICAL WAVEGUIDE WITH EQUAL POWER DIVISION" see abstract; figure 1	1,2,4,9,11,16	

INTERNATIONALER RECHERCHENBERICHT

Inter. Lonales Aktenzeichen
PCT/EP 97/01019

IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES G02B6/12 G02B6/42			
Nach der In	ternationalen Patentklassifikation (IPK) oder nach der nationalen K	Classifikation und der IPK		
B. RECHE	RCHIERTE GEBIETE			
Recherchier	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb	bole)		
IPK 6	G02B			
Recherchier	te aber rucht zum Mindestprüfstoff gehörende Veröffentlichungen, s	poweit diese unter die recherchierten Gebiet	e failen	
Während de	r internationalen Recherche konsultierte elektronische Datenbank (l	Name der Datenbank und evtl. verwendete	Suchbegriffe)	
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Anga	be der in Betracht kommenden Tesle	Betr. Anspruch Nr.	
X	IEICE TRANSACTIONS ON COMMUNICAT Bd. E75 - B, Nr. 9, 1.September Seiten 886-892, XP000321324 ICHIRO TANAKA ET AL: "GLASS WAVE BRANCHING DEVICES"	1992,	1-4,6,7, 9	
	siehe Zusammenfassung; Abbildung	1B	1 0 10	
X,P	ELECTRONICS LETTERS, Bd. 32, Nr. 7, 28.März 1996, Seiten 652-654, XP000584164 CHAN H P ET AL: "LOW LOSS WIDE-A SYMMETRIC Y-BRANCH WAVEGUIDE" siehe Zusammenfassung; Abbildunge Tabelle 5		1-8,12, 14,15	
A	1000110		13	
'`				
		-/		
	tere Veröffentlichungen und der Fortsetzung von Feld C zu ehrnen	Siehe Anhang Patentfamilie	:	
'A' Veröffe aber n	Kategorien von angegebenen Veröffentlichungen : entlichtung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen	*T* Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlich Anmeldung nicht kollidiert, sondern m Erfindung zugrundeliegenden Prinzips Theorie angegeben ist	t worden ist und mit der ir zumVerständnis des der	
"L" Veröffe schein	ldedatum veröffentlicht worden ist entlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer en im Recherchenbericht genannten Veröffentlichung belegt werden	"X" Veröffentlichung von besonderer Bedet kann allein aufgrund dieser Veröffentli erfinderischer Tätigkeit beruhend betra	chung nicht als neu oder auf chtet werden	
soll od ausgef "O" Veröffe	ter die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bedet kann nicht als auf erfinderischer Tätigi werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann	teit beruhend betrachtet ener oder mehreren anderen Verbindung gebracht wird und	
P Veröffe	mulichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	"&" Veröffentlichung, die Mitglied derselbe	_	
}	Abschlusses der internationalen Recherche	Absendedatum des unternationalen Rec	herchenberichts	
1	8.Juni 1997			
Name und l	Postanschrift der Internationale Recherchenbehörde Europaisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Ripswijk	Bevollmächtigter Bediensteter		
	Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016 Jakober, F			

1

INTERNATIONALER RECHERCHENBERICHT

Inten....onales Aktenzeichen
PCT/EP 97/01019

		PCT/EP 97	/01015	
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Categorie Bezeichnung der Veröffentlichung, soweit erforderbich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.				
Kategorie*	Bezeichnung der Veröffenülichung, sowat erforderlich unter Angabe der in Betracht komme	euten Tate	Betr. Anspruch Nr.	
X	JOURNAL OF LIGHTWAVE TECHNOLOGY, Bd. 7, Nr. 5, 1.Mai 1989, Seiten 753-757, XP000093552 RANGARAJ M ET AL: "LOW LOSS INTEGRATED OPTICAL Y-BRANCH" siehe Zusammenfassung; Abbildungen 1,8		1,2,4, 6-8,16	
X	APPLIED OPTICS, Bd. 29, Nr. 30, 20.0ktober 1990, Seiten 4426-4428, XP002033132 WEISSMANN Z ET AL: "NOVEL PASSIVE MULTIBRANCH POWER SPLITTERS FOR INTEGRATED OPTICS" in der Anmeldung erwähnt siehe Zusammenfassung; Abbildung 1		1,2,5,7, 8	
	IEEE MICROWAVE AND GUIDED WAVE LETTERS, Bd. 2, Nr. 5, Mai 1992, Seiten 188-190, XP0000255114 BANBA S ET AL: "NOVEL SYMMETRICAL THREE-BRANCH OPTICAL WAVEGUIDE WITH EQUAL POWER DIVISION" siehe Zusammenfassung; Abbildung 1		1,2,4,9,	