B) Discrete-Time Fourier Series (DTFS)
C) Z-transform
D) Hilbert transform
Answer: B) Discrete-Time Fourier Series (DTFS)
2. How many distinct complex exponentials are available to represent a periodic sequence with per
A) \(2N\)
B) $\backslash (N/2 \backslash)$
C) \(N\)
D) \(\\infty\)
Answer: C) \(N\)
3. What happens to the spacing of Fourier series coefficients as the period *N* of a signal increase
A) Spacing becomes coarser
B) Spacing remains constant
C) Spacing becomes finer
D) Spacing becomes random
Answer: C) Spacing becomes finer
4. Which property distinguishes the discrete-time Fourier transform (DTFT) from the continuous-tir
A) DTFT is aperiodic in frequency
B) DTFT is periodic in frequency
C) DTFT uses integrals for synthesis
D) DTFT cannot represent aperiodic signals
Answer: B) DTFT is periodic in frequency
5. How are the Fourier series coefficients of a periodic signal related to the Fourier transform of on
A) Coefficients are identical to the Fourier transform
B) Coefficients are \(1/N\) times samples of the Fourier transform
C) Coefficients are the derivative of the Fourier transform
D) Coefficients are unrelated to the Fourier transform
Answer: B) Coefficients are \(1/N\) times samples of the Fourier transform
6. What is the fundamental frequency \(\omega_0\) for a discrete-time periodic signal with period *N
A) $(\omega_0 = \pi/N)$
B) \(\omega_0 = 2\pi/N\)
C) \(\omega_0 = N/2\pi\)
D) \(\omega_0 = 1/N\)
Answer: B) \(\omega_0 = 2\pi/N\)

1. What is the primary decomposition method for representing discrete-time periodic signals? (East

A) Laplace transform

7. Which equation represents the synthesis step of the Discrete-Time Fourier Series (DTFS)? (Media A) \(x[n] = \sum_{k=0}^{N-1} a_k e^{jk \infty a_0 n}\) B) \(a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \infty a_0 n}\) C) \(X(\tomega) = \sum_{n=-\infty}^{\infty} x[n] e^{-jk \infty a_0 n}\) D) \(x[n] = \frac{1}{2\pi} \int_{-\pi}^{\infty} x[n] e^{-jk \omega n}\) **Answer:** A) \(x[n] = \sum_{k=0}^{\infty} \N-1\} a_k e^{-jk \omega n}\) 8. What is the analysis equation for the Discrete-Time Fourier Transform (DTFT)? (Hard)** A) \(X(\tomega) = \sum_{n=-\infty}^{\infty} x[n] e^{-jk \omega n}\) B) \(x[n] = \frac{1}{2\pi} \int_{-\pi}^{\infty} x[n] e^{-jk \omega n}\) C) \(a_k = \frac{1}{1} \{2\pi} \sum_{n=0}^{\infty} x[n] e^{-jk \omega n}\) D) \(X(\tomega) = \sum_{n=0}^{\infty} \{n-1\xing e^{-jk \omega n}\}\) **Answer:** A) \(X(\tomega) = \sum_{n=0}^{\infty} \{n-1\xing e^{-jk \omega n}\}\) **Answer:** A) \(X(\tomega) = \sum_{n=-\infty}^{\infty} x[n] e^{-jk \omega n}\)

- 9. How are the Fourier series coefficients of a periodic sequence with period *N* typically interprete
- A) As a finite sequence of length \(N\)
- B) As an aperiodic sequence
- C) As a periodic sequence with period \(N\)
- D) As a random sequence
- **Answer:** C) As a periodic sequence with period \(N\)

- 10. What is the effect of an LTI system on a complex exponential input signal? (Easy)**
- A) Time shift
- B) Amplitude scaling and phase shift
- C) Differentiation
- D) Frequency modulation
- **Answer:** B) Amplitude scaling and phase shift
