

CDS Bootstapping

We assume that me have a vector of CDS market spreads for increasing matrities [5,,52,...,5N]. We now determine their associated survival probabilities [P(Ti), P(T2),..., P(TN)].

$$\frac{N=1}{PL_{N}} = S_{N} \sum_{n=1}^{N} \left(D(O,T_{n}) P(T_{n}) \Delta t_{n} \right)$$

$$PL_{1} = S_{1} \left(D(O,T_{1}) P(T_{1}) \Delta t_{1} \right)$$

$$DL_{N} = (I-R) \sum_{n=1}^{N} \left(D(O,T_{n}) \left(P(T_{N-1}) - P(T_{n}) \right) \right)$$

$$DL_{1} = (I-R) D(O,T_{1}) \left(P(T_{0}) - P(T_{1}) \right)$$

$$PL_{1} = DL_{1}$$

$$S_{1} D(O,T_{1}) P(T_{1}) \Delta t_{1} = (I-R) D(O,T_{1}) \left[P(T_{0}) - P(T_{1}) \right]$$

S, D (0,T,) P(T,) At = L D(0,T,) P(T.)

- LD(O,T,)P(T,)

$$S_{1}D(O,T_{1})P(T_{1})\Delta t_{1} + LD(O,T_{1})P(T_{1}) = LD(O,T_{1})P(T_{0})$$

$$P(T_{1})\left[S_{1}D(O,T_{1})\Delta t_{1} + LD(O,T_{1})\right] = LD(O,T_{1})P(T_{0})$$

$$P(T_{1})D(O,T_{1})\left[S_{1}\Delta t_{1} + L\right] = LD(O,T_{1})P(T_{0})$$
with $P(T_{0}) = 1$

$$P(T_{1}) = L$$

$$P(T_i) = \frac{L}{s_i \Delta t_i + L}$$

$$\frac{N=2}{PL_{N}} = S_{N} \sum_{n=1}^{N} \left(D(o,T_{n}) P(T_{n}) \Delta t_{n} \right)
PL_{2} = S_{2} \left[D(o,T_{1}) P(T_{1}) \Delta t_{1} + D(o,T_{2}) P(T_{2}) \Delta t_{2} \right]
PL_{N} = (I-R) \sum_{n=1}^{N} D(o,T_{n}) \left(P(T_{n-1}) - P(T_{n}) \right)
PL_{2} = (I-R) \left[D(o,T_{1}) \left(P(T_{0}) - P(T_{1}) \right) + D(o,T_{2}) \left(P(T_{1}) - P(T_{2}) \right) \right]
PL_{2} = DL_{2}$$

$$S_{2}\left[D(0,T_{1})P(T_{1})\Delta t_{1}+D(0,T_{2})P(T_{2})\Delta t_{2}\right]=\frac{1}{L}\left[D(0,T_{1})\left(P(T_{1})-P(T_{2})\right)+D(0,T_{2})\left(P(T_{1})-P(T_{2})\right)\right]$$

$$S_{2}D(0,T_{1})P(T_{1})\Delta t_{1} + S_{2}D(0,T_{2})P(T_{2})\Delta t_{2} = LD(0,T_{1})(1-P(T_{1})) + LD(0,T_{2}) \times (P(T_{1})-P(T_{2}))$$

$$S_{2}$$
 D(0, T_{1}) $D(T_{1})$ $D(T_{2})$ $D(T_{2})$ $D(T_{2})$ $D(T_{2})$ $D(D(T_{1}))$ $D(T_{2})$ $D(T_{2}$

$$S_{2} D(0,T_{2}) P(T_{2}) \Delta t_{2} + LD(0,T_{2}) P(T_{2}) = LD(0,T_{1}) - LD(0,T_{1}) P(T_{1}) + LD(0,T_{2}) P(T_{1}) Dt_{1}$$

$$- S_{2} D(0,T_{1}) P(T_{1}) Dt_{1}$$

P(TZ)) SZD(0,TZ) Atz + LD(0,TZ) /

$$P(\tau_{2}) \left[D(o_{72}) \left(s_{2} \Delta t_{2} + L \right) \right] = D(o_{77}) \left[L - P(\tau_{1}) \left(L + s_{2} \Delta t_{1} \right) \right]$$

$$+ D(o_{72}) \left[L - P(\tau_{1}) \left(L + s_{2} \Delta t_{1} \right) \right]$$

$$+ D(o_{72}) \left[L - P(\tau_{1}) \left(L + s_{2} \Delta t_{1} \right) \right]$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

$$+ D(o_{72}) \left(s_{2} \Delta t_{2} + L \right)$$

 $P(\pi_0) | D(O,\pi_0) \left(s_0 \Delta t_2 + L \right) | = D(O,\pi_1) \left(L - LP(\pi_1) - s_2 P(\pi_1) \Delta t_1 \right)$

$$N = 3$$
 $P(T_N) = \frac{N-1}{2} D(Q,T_N) \left[LP(T_{n-1}) - (L+DE_n S_N) P(T_n) \right] + \frac{P(T_{N-1}) L}{(L+DE_N S_N)} + \frac{P(T_{N-1}) L}{(L+DE_N S_N)}$

$$P(\tau_{3}) = \sum_{n=1}^{2} D(o_{5}\tau_{n}) \left[LP(\tau_{n-1}) - (L+\Delta t_{n} s_{3}) P(\tau_{n}) \right] + \frac{P(\tau_{2}) L}{(L+\Delta t_{3} s_{3})}$$

Note: The bookshapping Formulas above are implemented in the XLS

Improved Bootstrapping Example. xls

6

	iast term	0.9865	0.9626	P(Ta) [)
	lirst term		0.4211 - 0.0043	P(Ta) L L+ Ats S
	quotient	0.4794	0.4214	+
5,0t,+	พกร	0.0010	0.0018	>
15	fourth term		0.0013	
======================================	third term	0.0008	0.0004	- <u>M</u>
N C	second term	0.0003		
`	st term	0.0010		→ W=
				P(T _S)=:
	SURVIVAL PROB 100.00%	98.45% 97.26% 95.88%	94.37%	P(T ₂
	DF 0.9803	0.9514 0.9159 0.8756	0.8328	Δη
ULT	MARKET SPREAD 29.00	39.00 46.00 52.00	57.00	511
OF DEFA	dt dt		-	
PROBABILITY OF DEFAULT Recovery Rate 50%	TIME (Years) 0	28		