Abhishek Kumar

No.- 20222756

- 5

Jacobi Method

Roll

Practical

Gauss-

```
| In[89]= GaussJacobi[A0_, b0_, X0_, maxiter_] := Module[{A = N[A0], b = N[b0],
    xk = X0, xk1, i, j, k = 0, n, m, OutputDetails}, size = Dimensions[A];
   n = size[[1]];
   m = size[[2]];
   If[n ≠ m, Print["Not a square matrix, cannot proceed with Gauss-Jacobi method"];
    Return[]];
   OutputDetails = {xk};
   xk1 = Table[0, {n}];
   While[k < maxiter,
    For [i = 1, i \le n, i++, xk1[[i]] = (1/A[[i,i]]) * (b[[i]] - Sum[A[[i,j]] * xk[[j]], xk[[j]])
             {j, 1, i-1} - Sum[A[[i, j]] * xk[[j]], {j, i+1, n});];
    k++;
    OutputDetails = Append[OutputDetails, xk1];
    xk = xk1;;
   colHeading = Table[X[s], {s, 1, n}];
   Print[NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
   Print["No. of iterations performed: ", maxiter];];
A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
b = \{10, -14, -33\};
X0 = \{0, 0, 0\};
```

X[1]	X[2]	X[3]
0	0	0
2.	-1.55556	4.71429
0.425397	-2.98413	4.55556
0.774603	-3.43845	3.92245
1.11871	-3.04067	3.84253
1.07112	-2.89044	4.00534
0.975953	-2.97867	4.04146
0.979148	-3.02644	4.00266
1.00422	-3.00813	3.98947
1.00584	-2.99391	3.99828
0.99947	-2.99729	4.00257
0.998428	-3.00132	4.0007
0.999985	-3.00083	3.9994
1.00041	-2.99974	3.99976
1.00004	-2.99976	4.00013
0.999898	-3.00004	4.00008

No. of iterations performed: 15

GaussJacobi[A, b, X0, 15]

```
In[84]= GaussJacobi[A0_, b0_, X0_, maxiter_] := Module[{A = N[A0], b = N[b0],
                            xk = X0, xk1, i, j, k = 0, n, m, OutputDetails}, size = Dimensions[A];
                        n = size[[1]];
                        m = size[[2]];
                        If[n ≠ m, Print["Not a square matrix, cannot proceed with Gauss-Jacobi method"];
                            Return[]];
                        OutputDetails = {xk};
                        xk1 = Table[0, {n}];
                        While[k < maxiter,
                            For[i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) * (b[[i]] - Sum[A[[i, j]] * xk[[j]], xk[[i]]) * (b[[i]] - Sum[A[[i, j]] * xk[[i]]) * (b[[i]] - Sum[A[[i, j]]) * (b[[i]] - Sum[A[[i]] - Sum[A[[i]]]) * (b[[i]] - Sum[A[[
                                                         {j, 1, i-1} - Sum[A[[i, j]] * xk[[j]], {j, i+1, n}]);];
                            k++;
                            OutputDetails = Append[OutputDetails, xk1];
                            xk = xk1;;
                        colHeading = Table[X[s], {s, 1, n}];
                        Print[NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
                        Print["No. of iterations performed: ", maxiter];];
            A = \{\{4, 1, 1\}, \{1, 5, 2\}, \{1, 2, 3\}\};
            b = \{2, -6, -4\};
            X0 = \{0.5, -0.5, -0.5\};
```

X[1]	X [2]	X[3]
0.5	-0.5	-0.5
0.75	-1.1	-1.16667
1.06667	-0.883333	-0.85
0.933333	-1.07333	-1.1
1.04333	-0.946667	-0.928889
0.968889	-1.03711	-1.05
1.02178	-0.973778	-0.964889
0.984667	-1.0184	-1.02474
1.01079	-0.987037	-0.982622
0.992415	-1.00911	-1.01224
1.00534	-0.993588	-0.9914
0.996247	-1.00451	-1.00605
1.00264	-0.996828	-0.995744
0.998143	-1.00223	-1.00299
1.00131	-0.998431	-0.997894
0.999081	-1.0011	-1.00148

GaussJacobi[A, b, X0, 15]

No. of iterations performed: 15

```
4 | Abhi_Gauss_Jacobi.nb
```

```
ln[79]= GaussJacobi[A0_, b0_, X0_, maxiter_] := Module[{A = N[A0], b = N[b0],
                            xk = X0, xk1, i, j, k = 0, n, m, OutputDetails}, size = Dimensions[A];
                        n = size[[1]];
                        m = size[[2]];
                         If[n ≠ m, Print["Not a square matrix, cannot proceed with Gauss-Jacobi method"];
                            Return[]];
                        OutputDetails = {xk};
                        xk1 = Table[0, {n}];
                        While[k < maxiter,
                             For[i = 1, i \le n, i++, xk1[[i]] = (1/A[[i, i]]) * (b[[i]] - Sum[A[[i, j]] * xk[[j]], xk[[i]]) * (b[[i]] - Sum[A[[i, j]] * xk[[i]]) * (b[[i]] - Sum[A[[i, j]]) * (b[[i]] - Sum[A[[i]] - Sum[A[[i]]]) * (b[[i]] - Sum[A[[
                                                         {j, 1, i-1} - Sum[A[[i, j]] * xk[[j]], {j, i+1, n}]);];
                            k++;
                            OutputDetails = Append[OutputDetails, xk1];
                            xk = xk1;;
                         colHeading = Table[X[s], {s, 1, n}];
                         Print[NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
                         Print["No. of iterations performed: ", k];];
            A = \{\{-3, 1, 0\}, \{2, -3, 1\}, \{0, 2, -3\}\};
            b = \{-2, 0, -1\};
            X0 = \{0, 0, 0\};
```

X[1]	X [2]	X[3]
0	0	0
0.666667	0.	0.333333
0.666667	0.555556	0.333333
0.851852	0.555556	0.703704
0.851852	0.802469	0.703704
0.934156	0.802469	0.868313
0.934156	0.912209	0.868313
0.970736	0.912209	0.941472
0.970736	0.960982	0.941472
0.986994	0.960982	0.973988
0.986994	0.982658	0.973988
0.994219	0.982658	0.988439
0.994219	0.992293	0.988439
0.997431	0.992293	0.994862
0.997431	0.996575	0.994862
0.998858	0.996575	0.997716

GaussJacobi[A, b, X0, 15]

No. of iterations performed: 15