SLUO LECTURE SERIES

Calorimetry I

LECTURE # 13

Jim Brau

University of Oregon

January 7, 1999

Calorimetry I

Jim Brau University of Oregon

SLUO Detector Techniques Series

Introduction

- Calorimeters are used to measure energy of neutral and charged particles
 - neutral particles cannot be momentum analyzed
 - electrons can be measured with better precision, and identified with a calorimeter
 - as energy increases
 - momentum measurements are less precise $[\sigma_p/p \sim p]$
 - energy measurements become more precise $[\sigma_E/E \sim 1/E^{1/2}]$
 - jets are often best measured by total absorption rather than measurement of individual particles

Introduction (cont.)

- Fundamental underlying principle: conservation of energy
 - convert energy of incident particle to detector response
 - ionization
 - Cerenkov radiation from charged particles
 - scintillation of excited molecules
 - acoustic energy
 -
- Details of this conversion complicate measurement
 - this is especially true for strongly interacting particles (hadrons)

Outline

- Introduction
 - examples of important applications
- Electromagnetic showers
 - fundamental processes
 - characteristics of showers
- Electromagnetic Calorimeters
 - resolution
 - examples of calorimeters
- Next week: Hadron Calorimetry

EM and Hadronic Sub-detectors

- Calorimeters are subdivided into electromagnetic and hadronic subdetectors
 - Electromagnetic interactions develop over shorter distances than hadronic interactions
 - Fundamental processes of signal generation differ, calling on different optimization

Evolution of Calorimeters

Nuclear Physics

 the advances of solid state detectors in the '50s broadened the technique of total absorption and energy measurement of nuclear radiation

Cosmic Rays

1958 - JETP 7, 348 (1958)
 Grigorov, Murzin and Rapoport report construction of first sampling calorimeter

Particle Physics

 First electromagnetic calorimeters, eventually hadronic calorimeters became essential components

Evolution of Calorimeters (cont.)

Uranium/Compensation

- in an effort to advance energy resolution, Willis et al introduced uranium calorimeters (197**5**) to "compensate" for the lost energy in nuclear collisions.
- Zeus took the emerging understanding of the underlying mechanisms in hadronic showers to build the best hadronic calorimeter to date, uranium - scintillator
- High Precision Electromagnetic Calorimetry
 - Crystals have continued to advance
 - Other techniques, as well, are pushing the performance limits
 - e.g.. accordion liquid argon
 - scintillating fiber calorimeters

Evolution of Calorimeters (cont.)

- Today, calorimeters are in widespread use in particle physics
 - 4π detectors at colliders
 - energy measurements
 - particle identification
 - triggers
 - neutrino detectors at accelerators
 - underground proton decay detectors
 - underground neutrino detectors
- and in astrophysics
 - space-based detectors (--GLAST)
 - air showers

Examples of Calorimetry in Discovery

- Discovery of the anti-proton
 - Total absorption lead glass detector used to identify anti-proton annihilations.
- Discovery of the τ
 - Detection of electron-muon + missing energy events identified.
- Charm Spectroscopy
 - The radiative lines were studied in charmonium. (see figure)
- Discovery of the W
 - High transverse energy electron was detected and measured, and the recoiling neutrino was deduced and shown to balance the electron. (see figure)

Examples of Calorimetry in Discovery (cont.)

- Measurement of A_{LR}
 - The SLD Calorimeter provides the primary instrument for triggering and event tagging.
- W mass measurement
 - Di-jet events are reconstructed .
- $e+e- \rightarrow \gamma + missing energy$
 - Measurements of EM showers, combined with missing energy in the hadron calorimeter. (see figure)
- Higgs -> $\gamma \gamma$ (future?)
 - The preferred channel for discovery at LHC has an enormous background; high precision is demanded. (see figure)

Charm Spectroscopy

The Crystal Ball

Discovery of the W

 High transverse energy electron was detected and measured, and the recoiling neutrino was deduced and shown to balance the electron

e+e- -> γ + missing energy

LEPC Open Session

12 November 1998

Photonic events with missing $\overline{E_{T}}$

- ullet Standard Model measurement $\mathrm{e^+e^-}
 ightarrow
 uar{
 u}\gamma(\gamma)$
- New physics: $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ ($\tilde{\chi}_1^0$ LSP), $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ (light \tilde{G} LSP), $\nu^* \bar{\nu}^*$

Single photon recoil mass

Acoplanar photons recoil mass

Higgs -> $\gamma \gamma$ at the LHC

 Outstanding EM resolution is needed to discover the Higgs -> γ γ at a hadron collider (LHC)

Ideal Calorimeter

- excellent energy resolution
- stable calibration
- excellent position resolution
- large dynamic range
- excellent shower containment with multi-shower separation
- compact
- fast (high rate capability)
- operates in a magnetic field
- inexpensive
- robust

Compromise is always required

Electromagnetic and Hadronic Showers

- Electromagnetic
 - multiplication through pair production and bremsstrahlung
 - mean free path $9X_0/7$ for γ $X_0/\ln(E/k)$ for e
 - no invisible energy

- Hadronic
 - multiplication through multiparticle production in nuclear
 - interactions
 - mean free path~ λ
 - nuclear binding energy and neutrinos invisible

- In matter high energy electrons and photons interact <u>primarily</u> through electromagnetic interactions with the nucleus (and at lower energies with the atomic electrons)
- Electrons
 - Bremsstrahlung (nuclear)
- Photons
 - Compton scattering (atomic electrons)
 - pair production (nuclear)
 - photoelectric effect (atomic electrons)

Electromagnetic Showers: Electrons

Bremsstrahlung

$$dE/dx|_{brems} \cong E/X_0$$

$$\times_{0} \sim \frac{716 \text{ gm cm}^{2} \text{ A}}{2(2+1) \ln(287/\sqrt{z})}$$

Electromagnetic Showers: Electrons (cont.)

• Electron energy loss

Electromagnetic Showers: Electrons (cont.)

• Critical Energy (E_c)

At high energy, the energy loss of an electron from bremsstrahlung dominates over ionization loss.

At a low enough energy, the ionization loss becomes important.

The energy at which ionization loss equals bremsstrahlung loss, is the critical energy (E_c)

(eg. $E_c \sim 7$ MeV for Lead - see last and next transparencies)

Electromagnetic Showers: Electrons (cont.)

• Critical energies of materials

Electromagnetic Showers: Photons

Electromagnetic Showers: Photons (cont.)

Photon cross sections

Many important properties of an EM shower can be understood by a simple model:

- after one radiation length a photon produces an e⁻ e⁺ pair
- the electron and positron each emit one bremsstrhalung photon after another radiation length.
- → This sequence leads to a cascading number of particles (N), which is

$$N(t) = 2^{t}$$
 (for t steps)

→ and each particle has an energy (E)

$$E(t) = E_0 / 2^{t}$$

Illustration of simple model of shower

• Longitudinal development scales with the radiation length (X_0)

$$X_0 \cong 180 \text{ A} / Z^2 \text{ g/cm}^2$$

(higher Z materials have shorter radiation lengths),

• Transverse dimension scales with the Moliere radius (R_M)

$$R_{\rm M} \cong 21~{\rm MeV}~X_0~/~E_{\rm c}$$

where $E_{\rm c} \cong 550~{\rm MeV}~/~Z$

Typical Scales for EM Calorimeters

Material	Atomic	Critical	Radiation		Moliere
•	No.	Energy	Length (X_0)		Radius
		(E_c)	•	Č	(R_M)
	(\mathbf{Z})	(MeV)	(g/cm^2)	(cm)	(cm)
Beryllium	_4	116	65.19	35.28	6.4
Carbon	_6	84	42.70	18.8_	4.7
Aluminum	13	43	24.01	8.9_	4.4
Iron	26	22	13.84	$1.7\overline{6}$	1.7
Copper	29	20	12.86	1.43	1.5
Tungsten	74	8.1	6.76	0.35	0.9
Lead	82	7.3	6.37	0.56	1.6
Uranium	92	6.5	6.00	0.32	1.0

EM Showers: Longitudinal Development

- Electrons generate photons through bremsstrahlung and photons produce electrons and positrons through pair production
- The observed development depends on the minimum kinetic energy of an electron or a positron that can be detected (known as the cut-off energy).

This means the shower maximum will occur when the energy falls to E_c :

$$E_c = E_0 / 2^{\text{t-max}},$$
or
$$t\text{-max} \sim \ln (E_0 / E_c)$$

EM Showers: Longitudinal Development (cont.)

• Approximate formula $(t=x/X_0)$:

$$dE/dt = E b^{\alpha+1} t^{\alpha} e^{-bt} / \Gamma(\alpha+1)$$

b ~ 0.5 (material dependent)

$$\alpha = 0.5 \ln(E_0/E_c)$$
 -1.1

$$(+0.8 \text{ for } \gamma)$$

so
$$t_{max} = \alpha / b \sim ln(E_0/E_c) -$$

$$t_{95\%} = t_{\text{max}} + 0.08 Z + 9.6$$

EM Showers: Longitudinal Development (cont.)

 Best fits are achieved with b adjusted for material and energy

Longitudinal development (cont.)

An example of longitudinal development (30 GeV electron induced shower in iron)

Longitudinal development (cont.)

- Effect of critical energy on longitudinal energy distribution
 - shower maximum

Figure 2.19 Longitudinal distribution of energy deposition in a 6-GeV electron shower (after Bathow et al. 1970).

Electromagnetic Showers: Radial distribution

Scales with Moliere radius

Al(Z=13)
$$R_M = 4.4 \text{ cm}$$

Cu(Z=29) $R_M = 1.5 \text{ cm}$
Pb(Z=82) $R_M = 1.6 \text{ cm}$

• ~90% of energy is within R_M , and ~95% of energy is within $2 R_M$.

Electromagnetic Showers: Calorimetry

- The energy of the incident electron or photon is proportional to the total track length of the electrons and positrons in the EM shower
- Therefore, by measuring the electron+ positron track lengths, one measures a variable which is proportional to energy
- Measurements of:
 - Cerenkov radiation from e⁻ & e⁺
 - scintillation from molecules in calorimeter
 - ionization of the detection medium

Electromagnetic Showers: Calorimetry (homogeneous or sampling)

• Homogeneous calorimeter: calorimeters in which the shower is "observed" throughout the detector examples: lead glass, NaI, CsI, BGO, BaF

Sampling calorimeter: calorimeters in which the shower is sampled by an "active" readout medium alternated with denser radiator material

examples: scintillator sandwich, scintillating fiber, liquid argon, silicon, liquid scintillator

Electromagnetic Calorimetry: homogeneous vs. sampling tradeoffs

- Homogeneous
 - better energy resolution
 - observation of full shower
 - limited spatial resolution
 - segmentation
 is limited to
 preserve
 energy
 resolution

- Sampling
 - limited energy resolution
 - sampling fluctuation
 - good spatialresolution
 - segmentation gives detailed shower shape information

Electromagnetic Showers: Fluctuations

- The measurement of energy will be limited in precision by fluctuations in the EM shower and in the measurement process
- The shape of an EM shower fluctuates only modestly, and resolution of an EM calorimeter is usually limited by other effects (assuming full containment has been achieved)
 - Dominant fluctuation in the shower is the depth of the first pair conversion.

EM Calorimeters: Energy Resolution

- Sampling Fluctuations (a)
- Noise (b)
- Pedestal Fluctuations (b)
- Nonuniformities (c)
- Calibration errors (c)
- Incomplete shower containment (leakage) (c)

$$\sigma/E = a/\sqrt{E} \oplus b/E \oplus c$$

EM Calorimeters: Energy Resolution (sampling fluctuations)

The calorimeter is measuring total track length. This track length (S) will fluctuate as S ^{1/2} so that the energy measurement will have an error which scales as (since E ~ S)

$$\sigma / E \sim E^{-1/2}$$

• In a sampling calorimeter we have the further scaling law that the resolution will scale with the sampling thickness

$$\sigma$$
 / E ~ t 1/2 / E 1/2

The limiting resolutions are

$$(\sigma / E)_{shower} \sim 0.005 E^{-1/2}$$

 $(\sigma / E)_{sampling} \sim 0.04 (1000 \Delta E / E)^{1/2}$

EM Calorimeters: Energy Resolution (longitudinal, leakage)

50 GeV EM Shower

Examples of EM Calorimeters (pdg)

•	NaI(Tl)	$2.7\%/E^{1/4}$
•	Lead Glass	5%/E 1/2
	Lead-liq. argon	$7.5\%/$ E $^{1/2}$
	Lead-scin. sand.	9%/E 1/2
	Lead-scin. spaghetti	$13\%/~{\rm E}^{~1/2}$
	Prop. wire chamber	23%/E 1/2

- most of these resolutions must be added in quadrature with the appropriate constant term, typically on the order of 1%, or a bit smaller.
- Better resolution has been achieved with most advanced crystals (eg. CsI)

Position and Pointing Resolution

- The measurement of the impact point of a photon entering an EM calorimeter is limited by the transverse fluctuations in the shower, and the measurement errors of this measurement.
- This measurement involves determining the centroid of the shower as a function of depth in the calorimeter
- Typically, the achievable resolution is: few mm / $E^{1/2}$

Position and Pointing Resolution (cont.)

- More challenging than position impact position measurement, is a measurement of the direction of the incident particle
 - This is particularly important at high luminosity colliders where multiple event occur within the same beam crossing (or readout window)
- Atlas has acheived about
 40 mrad / E ^{1/2} (see figure)
- Position resolution often reflects on the electron identification performance

Examples of Recent Advances in EM Calorimeters

- Accordion liquid argon calorimeter
- Radiation resistant crystals
- Silicon luminosity monitors
- Scintillating Fiber
- CsI
 - CLEO
 - KTeV
 - BaBar (thallium doped)
 - BELLE (thallium doped)

Accordion Liquid Argon Calorimeter

- fast readout
 - combines electrode and transmission line
- amenable to very fine readout

Accordion Liquid Argon Calorimeter (cont.)

 Excellent performance has been demonstrated in beam tests

Accordion Liquid Argon Calorimeter (cont.)

 Atlas measures the position of the shower at front and back of calorimeter to get a vector

Liquid Krypton (in ATLAS tests)

- better sampling fraction
- double to signal
- saturated drift velocity

Radiation resistant Crystal Calorimeters

- CMS Plans a 83,000 crystal calorimeter in the hostile environment of the LHC
 - 1 krad/day

Radiation resistant Crystal Calorimeters (cont.)

- PbWO₄ (Lead Tungstate)
 - very dense
 - fast
 - intrinsically rad hard
- Radiation damage mechanism now better understood
 - scintillation light yeild is not significantly damaged by radiation
 - predominant radiation damage effect is radiation induced absorption
- Rad-hard crystal R&D continues

Silicon Calorimetry: Luminosity Monitors

- SLD built first silicon luminosity monitor (installed in 1991); it has provided reliable performance.
- OPAL improved on the design with a silicon calorimeter that achieves < 0.04% luminosity measurement

Silicon Calorimetry: OPAL Luminosity Monitor (cont.)

Cluster Energy 44.998 Gev Layer with max. Shower 6 Tower with max. Shower 12 Row with max. Shower 9

Cluster Energy 44.836 Gev Løyer with max. Shower 7 Tower with max. Shower 4 Row with max. Shower 10

Silicon Calorimetry: OPAL Luminosity Monitor (cont.)

Scintillating Fiber EM Calorimeters

- Latest application KLOE:
 - scintillating fiber (1 mm diameter) -lead calorimeter at DAFNE, the phi factory at Frascati
 - Fiber:Lead:Glue = 50:40:10
 - Beam test performance:

$$\sigma/E = (4.96 \pm 0.01)\% / \sqrt{E}$$

• Very fast:

$$\sigma_T = 71.7 \pm 1.0 \text{ psec} / \sqrt{E}$$

Cesium Iodide

- CLEO has an excellent history with CsI and BaBar and BELLE will soon.
- KTeV has completed physics run with CsI
 - outstanding performance has been achieved.

$$\sigma / E = 2\% / \sqrt{E \oplus 0.2\% \oplus 0.4\%}$$

• The π /e rejection is 680/1, based on a shape χ^2

Compact, Highly Segmented Calorimeter for the NLC

- Highly segmented silicon/tungsten
 EM calorimeter for the NLC
 - motivated by desire to separate EM showers from charged tracks in the jet environment
 - 4 million readout cells, very dense

Summary

- Electromagnetic Showers are very well understood theoretically.
- Electromagnetic Calorimeters are continuing to advance many varieties.
 For example:
 - crystals
 - accordion liquid argon
 - silicon sampling
 - scintillating fibers
- Optimization is always a trade-off between competing constraints.

100 GeV Hadronic Shower

•

Hadronic Showers

- Hadronic Showers are much more complex than EM showers, and hadron resolution is more limited (eg. the best performance of hadron calorimeters is ~ 30% / E ^{1/2})
- Next week Hadronic Calorimetry

References

- William J. Willis, New Directions in Calorimetery, in Techniques and Concepts of High-Energy Physics VIII, edited by Thomas Ferbel (1995).
- C.W.Fabjan et al, Iron Liquid-argon and Uranium liquid-argon Calorimeters for Hadron Energy Measurements, NIM 141, 61 (1977).
- Ugo Amaldi, Fluctuations in Calorimetry Measurements, Physica Scripta 23, 409 (1981).