Optical Communication Systems: Networks

Introduction to optical networks

Introduction to optical networks

- Introduction to optical networks
 - Evolution of TLC networks
 - Architecture of TLC networks
 - Optical TLC networks
 - Multiplation techniques
 - o First generation networks
 - Second generation networks
 - o All-optical networks
 - Evolution of optical networks.

Evolution of TLC networks (1)

- Growing bandwidth request for TLCs
- Internet traffic doubles every 4-6 months
- Broadband access networks (DSL)
- Broadband private networks for business
- Boradband corporate private networks
- Cost reduction traffic increase

Evolution of TLC networks (2)

- Privatisation of service providers
 - Deregulation
 - Startup service providers
 - Cost reduction
 - New technologies
- Data traffic overcomes voice traffic
 - New business models
 - New network achitectures

Introduction to optical networks

- Introduction to optical networks
 - Evolution of TLC networks
 - Architecture of TLC networks
 - Optical TLC networks
 - Multiplation techniques
 - o First generation networks
 - o Second generation networks
 - o All-optical networks
 - Evolution of optical networks.

Architecture of TLC networks (1)

- Public networks
 - Service providers, carriers, operators
 - Different types of operators
- LEC: local services
- IXC: long-haul services
- Metro carriers vs. long-haul carriers
 - Often they coincide but...
 - Different network architectures!

Architecture of TLC networks (2)

- The case with USA
 - Before 1984: AT&T monopoly
 - 1984: TLC deregulation act
 - AT&T competes with other carriers (MCI, Sprint) in the long-haul space
 - Baby Bells (ILECs) e competitors (CLECs) for local traffic
- o In Italy:
 - Competition after liberalization of providers
 - Telecom, Fastweb, Wind, Tiscali ...

Architecture of TLC networks (3)

Classification

LAN: a few km

MAN: tens – hundreds of km

WAN: hundreds – thousands of km

Architecture of TLC networks (4)

- Public networks based on optical fibers
 - Submarine networks
 - Terrestrial networks
 - Access, metro, long-haul networks

Architecture of TLC networks (5)

- Services...
 - Connection-oriented vs. connectionless
- Switching of...
 - circuit: telephone
 - Guarantee of bandwidth
 - Orderly delivery
 - Fixed multiplexing
 - packet: "bursty" traffic
 - Average bandwidth, peak bandwidth
 - Unorderly delivery
 - Statistical multiplexing

Architecture of TLC networks (6)

- Statistical multiplexing
 - Bandwidth is better exploited
 - Buffering dei packets
 - Variable delivery delay

Architecture of TLC networks (7)

- IP network: packet services
 - Connectionless services
 - Packets are routed as independent units
 - TCP ensures the re-ordering of packets
 - The networks is "best effort" (as the frame relay)
- ATM network (asynchronous transfer mode): virtual circuits
 - Management of QoS

Architecture of TLC networks (8)

- Modern model of service
 - Connection bandwidth is growing
 - Rapid delivery of necessary bandwidth
 - When needed where needed...
 - Reliability 99.999%
 - Today: multiple services on multiple networks
 - Tomorrow: migration towards a single architecture which may deliver multiple services

Introduction to optical networks

- Introduction to optical networks
 - Evolution of TLC networks
 - Architecture of TLC networks
 - Optical TLC networks
 - Multiplation techniques
 - First generation networks
 - Second generation networks
 - All-optical networks
 - Evolution of optical networks

Optical TLC networks (1)

- Huge transmission capacity
- Common infrastructure for multiple services
- Flexible bandwidth management
 - When needed where needed...
- High bit-rate links from short to long distances
- Optical fibers are installed in all networks...
 possibly except for access networks

Optical TLC networks (2)

- Bandwidth growth over the past 20 years
 - Pushed by DSL technologies

Multiplation techniques

- Multiplation techniques
 - TDM, requires high-speed electronics of photonics
 - WDM: virtual fibers
 - Metro and long-haul networks
- TDM+WDM leads to 1
 Tb/s capacities
- Better 32 x 2.5 Gbit/s or 10 x 8 Gbit/s ?

First generation optical networks

- First generation optical networks
 - Sonet/SDH (USA/Europa)
 - Optical layer as transmission medium for high-capacity and low BER
 - Electrical signal processing
- Second generation optical networks
 - Perform some intelligent operations optically
 - o Routing, switching...

Second generation optical networks (1)

- Second generation optical networks
 - Difficult for electronics to handle high bitrates
 - Processing of an ATM packet with 53 bytes
 - 100 Mb/s: 4.24 μs for the entire operation
 - 10 Gb/s: 42.4 ns for the entire operation
 - All-optical switching/routing
 - Wavelength-routing networks
 - The optical network provides a *lightpath* between sender and receiver

Second generation optical networks (2)

- Lightpath: end-to-end optical connection at given wavelength on each link
- At each node, routing/switching of lightpaths
- Devices for optical networking
 - Optical line terminals (OLT)
 - Optical add/drop multiplexers (OADM)
 - Optical cross-connects (OXC)

Second generation optical networks (3)

- Wavelength-routing network
 - Example of actual network

Layer model (1)

- Layer model for TLC networks
 - Each layer provides services to the layer above it
 - Each layer receives services from the layer below it
 - SAP (Service Access Point)
 - Each layer multiplexes data from the upper level by adding overhead
 - Each network element implements a portion of the stack only

Layer model (2)

- It is important to define functions and interfaces of each layer
 - Standardization for inter-operability

Layer model (3)

 Different standards and implementations for each layer

 Each type of optical network that we will consider here provides a layer

 Each layer may be divided in sublayers

Layer model (4)

Layer model ISO/OSI

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data link
1 Physical

Levels

- o Physical
- o Data-link
- Network
- Trasport
- Session
- Presentation
- Application

Layer model (5)

- Physical layer: transmission medium which provides bandwidth
- Data-link layer: manages framing, multiplexing, demultiplexing, MAC (media access control layer)
- Network layer: provides packets or virtual circuits (VC)
 - VC: end-to-end connection with fixed QoS and orderly delivery (ATM)
 - packets: connectionless service with statistical multiplexing (IP)

Layer model (6)

- Transport layer: it ensures the end-toend delivery, well-ordered, error-free
- Upper layers: not of interest in this course

- Modern networks: multiple stacks on top of each other
 - IP over Sonet, IP over ATM over Sonet

Layer model (7)

IP over Sonet

- The Sonet network provides point-to-point connections to the IP
- Each stack includes different sub-layers

Layer model (8)

- IP over ATM over Sonet
 - Sonet infrastructure, over with the ATM network is created to provide services to IP users

- The IP network sees the ATM network as a datalink layer
- The ATM network uses
 Sonet as a data-link
 layer

Sonet / SDH

- First generation networks
 - Sonet/SDH as transmission layer
 - End-to-end connections with circuit switching
 - Multiplexing of low bit rate fluxes
 - Demultiplexing of individual fluxes at nodes
 - High reliability(99.999%)
 - Efficient network monitoring and management
 - Network elements: line terminals, ADM, DCS, regenerators

Optical layer (1)

- Second generation networks
 - Optical layer: server layer, provides services at the optical level to client layers
 - Wavelength-routing networks: the optical layer provides lightpaths to upper layers
 - In the future: it will also provide VC and packets

Optical layer (2)

- Client layers: IP, ATM, Sonet, Gigabit Ethernet, ESCON, Fibre Channel
- Example: Sonet over optical
 - The optical later provides lightpath
 - For Sonet terminals, these are like fibers
 - Lightpath
 - Permanent
 - Circuit switching
- At the moment most of the optical layer acts at the physical level

Optical layer (3)

- IP over optical and Sonet over optical
 - Sonet and IP use lightpaths as transmission medium
 - Multiplexing in the optical layer:
 - o Lightpath, bands, fibers, fiber ensembles

Optical layer (4)

- Why using multiple layers with similar functionalities?
 - Cost reductions
 - Different layers operate in efficient way at different bitrates
 - Optical layer: processing of wide bandwidth wavelength-by-wavelength
 - Sonet: processing of small quantities of bandwidth with low bit-rate flux
 - Fault management

All-optical networks (1)

- Transparence of a lightpath with respect to bitrate and protocols
- In general, transparence with respect to
 - Services, bitrate, protocols
 - ex. Telephone network (voice, data, fax)
- All optical network
 - From sender to receiver at the optical level
 - Fully transparent network

All-optical networks (2)

- Nontransparent network(opaque)
 - Single bitrate and protocol
 - ex. 2.5 Gb/s, Sonet service
- "Practical" (real) network
 - Handles a range of bitrates and different protocols
 - ex. Max. 10 Gb/s, Sonet and IP services
 - It is not possible to completely eliminate electronics
 - Signal regeneration
 - Wavelength conversion

All-optical networks (3)

- Regeneration
 - 1R: amplification (optical amplifiers)
 - 2R: 1R + reshaping
 - 3R: 2R + retiming
 - Requires clock extraction
 - Loss of transparency
 - 3R trasparent: optical, or with "programmable" electronics
 - Modern networks
 - o 2R or 3R regeneration
 - O-E-O conversion where necessary

All-optical networks (4)

Table 1.1 Different types of transparency in an optical network.

	Transparency type		
Parameter	Fully transparent	Practical	Nontransparent
Analog/digital Bit rate Framing protocol	Both Arbitrary Arbitrary	Digital Predetermined maximum Selected few	Digital Fixed Single

Optical packet switching (1)

- Wavelength-routing networks
 - Lightpath circuit switching
 - Future evolution
 - Providing packets or VCs (IP, ATM)
- Optical level TDM (OTDM)
 - Lightpath shared among several connections
 - OTDM
 - Fixed
 - Statistical: optical packet switching

Optical packet switching (2)

- Optical switching nodes
 - Higher Bitrates with respect to electronics
 - Ideally, all functions done optically
 - In practice, some functions remain in electrical domain
 - Buffering, complex operations

Optical Communication Systems (1)

- Wavelength, frequency
 - Three windows: 800, 1300 e 1550 nm
- Channel spacing in WDM systems
 - 0.8 nm means 100 GHz
- Bitrate [Gb/s]
- Spectrum
- Bandwidth [GHz]
- Spectral efficiency[bitrate/bandwidth]
 - About 0.4 bit/s/Hz in optical systems (OOK)

Optical Communication Systems (2)

ITU-T Grid

- Standard grid for DWDM systems at 1550 nm
 - Grid equispaced in frequency anchored at 193.1 THz (1552.524 nm)
- Channel spacing 50 or 100 GHz

Optical Communication Systems (3)

- Optical power, losses
 - dBW: absolute power with reference to 1W
 - dBm: absolute power with reference to 1 mW
 - o 1 mW means -30 dBW and 0 dBm
 - Fiber loss[dB/km]
 - A signal that propagates for 120 km in a fiber with loss of 0.25 dB/km loses 30 dB
 - 30 dB means attenuation by a factor 1000

Introduction to optical networks

- Introduction to optical networks
 - Evolution of TLC networks
 - Architecture of TLC networks
 - Optical TLC networks
 - Multiplation techniques
 - o First generation networks
 - o Second generation networks
 - o All-optical networks
 - Evolution of optical networks

Evolution of optical networks (1)

- Objective: the highest capacity over the longest possible distance
 - Capacity keeps growing
 - Cost of bit per km keeps decreasing
- Transmission medium
 - Optical fiber

Evolution of optical networks (2)

Evolution of optical networks (3)

- 1960: first waveguides
- 1970: low loss optical fibers
- o 1970-1980 (a)
 - Multimode fibers
 - LED sources at 800 or 1300 nm
 - Wideband
 - Low power
 - Strong intermodal dispersion
 - 32 140 Mb/s with regenerators every 10 km
 - Still used today for low cost connections

Evolution of optical networks (4)

- o 1984 (b)
 - Monomode fibers
 - Fabry Perot Laser MLM at 1300 nm
 - Regeneration every 40 km
 - Bitrate > 100 Mb/s
- o End of 1980
 - Fabry Perot Laser MLM at 1550 nm
 - Limiting factor: chromatic dispersion
 - Dispersion-shifted fibers

Evolution of optical networks (5)

- o 1990 (c)
 - Single mode laser with DFB
 - Bitrate > 1 Gb/s
- Today (d)
 - EDFA optical amplifiers
 - Large bandwidth amplification
 - WDM systems with hundreds of channels
 - Regeneration after hundreds-thousands of km
 - Bitrate > 1 Tb/s (40 Gb/s per channel)

Evolution of optical networks (6)

- Dispersion compensation
- Nonlinear effects
- Available bandwidths for WDM
 - o C, L with EDFA
 - S, U with Raman amplification

Table 1.2 Different wavelength bands in optical fiber. The ranges are approximate and have not yet been standardized.

Band	Descriptor	Wavelength range (nm)
O-band	Original	1260 to 1360
E-band	Extended	1360 to 1460
S-band	Short	1460 to 1530
C-band	Conventional	1530 to 1565
L-band	Long	1565 to 1625
U-band	Ultra-long	1625 to 1675

Evolution of optical networks (7)

- In recent years...
 - 1980-1990: first generation networks
 - FDDI: MAN networks at 100 Mb/s
 - ESCON: SAN networks at 200 Mb/s
 - Sonet (USA), SDH (Europe, Japan)
 - 1990-2000: Second generation networks
 - Optical LANs
 - Wavelength-routing networks
 - Commercial OADM e OXC
 - o FTTC, FTTH
 - Optical packet switching