Лабораторная работа No 10 ТИПОВЫЕ КАСКАДЫ НА ОПЕРАЦИОНЫХ УСИЛИТЕЛЯХ

Цели работы

Экспериментальное исследование свойств операционных усилителей изучение принципов работы типовых каскадов на операционных усилителях

Рис.2.9. Инвертирующий усилитель

Рис.2.10. Неинвертирующий усилитель

Рис.2.11. Сумматор

Рис.2.12. Схемы триггера Шмитта и релаксационного генератора

Рис.2.13. Интегратор

Рис.2.14. Дифференциатор

Задание 1: Интегратор

Для расчета параметров передаточной функции интегратора используем формулы 2.5 и 2.6:

```
T_H = RO * CO = 10 \text{ MOM } * 0.01 \text{ MK}\Phi = 0.1 \text{ c}
K = 1/(R1 * CO) = 1/(100 \text{ KOM } * 0.01 \text{ MK}\Phi) = 1000 \text{ c}^{-1}
TO = R1 * CO = 100 \text{ KOM } * 0.01 \text{ MK}\Phi = 1 \text{ c}
```

Задание 2: Дифференциатор

Для расчета параметров передаточной функции дифференциатора используем формулы 2.8 и 2.9:

```
KД = RO / R1 = 100 кОм / 1 кОм = 100

TO = RO * C1 = 100 кОм * 0,01 мкФ = 1 с

T1 - R1 * CO = 1 кОм * 100 пФ = 0,01 с
```

Задание 3: Триттер Шмитта

Для расчета порогового напряжения U для триггера Шмитта используем формулу 2 10:

```
U = (R2 / (RI + R2)) = (100 \text{ kOm} / (10 \text{ kOm} + 100 \text{ kOm})) = 0,909
```

Задание 4: Релаксационный генератор

Для расчета частоты генерируемого сигнала для релаксационного генератора используем формулы 2.11 и 2.12:

```
f=1/2*1* V(R1*R2*C1*C2)) R1 = 10 кОм, R2 = 20 кОм, C1 = 0,01 мкФ, C2 - 0,05 мкФ. Тогда: f=1/(2*\pi^*V(10~\text{кОм}*20~\text{кОм}*0,01~\text{мкФ}*0,05~\text{мкФ})) =1/ (2*t*0,1) = 159,15 Гц
```

Таким образом, частота генерируемого сигнала для этого релаксационного генератора составляет приблизительно 159,15 Г ц.