Software Project Scheduling CPM (critical Path method)

Took	Prudecersore	most optimistic		Pers imoti
		likely	time	time,
		time,	m a	<u> </u>
	•	10	8	15
A	_	15	10	20
B				22
C	A.B	20	15	
	A	15	10	18
D		, 10	8	10
6	\mathbf{v}	•	8	18
F	B, C	15	12	19
, j	E,F	10	9	12
67				14.
,		, 1	. 1 .	

- 1. Draw the CPM Network.
- 2 Write down all the possible paths.
- 3. Find out the critical path.
- 4. find out the stack time associated with each task.

c path in stritical. 4. stack time fore A=5, D=15, E=15! (Part mely O Shew in O. expected time, te = a+ 4m+b Deviation, 5: = 6-a expected time fore path to A -> C -> F -> G te+te+te $t_{e}^{A} = \frac{8+40+15}{6} = \frac{63}{6} = 10.5$ total network- a expected time of time an and chemo za 1 total deviation, S:= \Sin + Sin + Sitter---Part- Ga amor 721 path Grat expected time (asit / Deviation (asit was cuter