Engineering Applications of Machine Learning and $Data\ Analytics$

Homework #3 [Due: 03/08/2021]

I acknowledge that this exam is solely my effort. I have done this work by myself. I have not consulted with others about this exam in any way. I have not received outside aid (outside of my own brain) on this exam. I understand that violation of these rules contradicts the class policy on academic integrity.

Name:			
Signature:			
Date:			
correct. No credit is g	iven for answers that are two PDFs on D2L. The f	wrong or illegible. Wri	or answers that are partially ite neatly.
Proble	m 1:	_ Problem 2:	
Proble	m 3:	_ :	
Т	otal:	_	

arizona.edu 1 March 04, 2022

1 The ℓ_2 Support Vector Machine [20pts]

In class, we discussed that if our data is not linearly separable, then we need to modify our optimization problem to include slack variables. The formulation that was used is known as the ℓ_1 -norm soft margin SVM. Now consider the formulation of the ℓ_2 -norm soft margin SVM, which squares the slack variables within the sum. Notice that non-negativity of the slack variables has been removed.

$$\arg\min_{\mathbf{w},b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + \frac{C}{2} \sum_{i=1}^n \xi_i^2$$
s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i \in [n]$

Derive the dual form expression along with any constraints. Work must be shown. *Hints*: Refer to the methodology that was used in class to derive the dual form. The solution is given by:

$$\arg\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - \frac{1}{2C} \sum_{i=1}^{n} \alpha_{i}^{2}$$

$$\text{s.t. } \alpha_{i} \geq 0 \quad \forall i \in [n] \quad \text{and} \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\downarrow = \quad \downarrow \text{ for } \mathbf{x}_{i} \neq \mathbf{x}_{j} \neq \mathbf{x}_{j}^{T} \neq \mathbf{x}_{j} \neq \mathbf{x}_{j}^{T} = \mathbf{x}_{j}^{T} + \mathbf{x}_{j}^{T} = \mathbf{x}_{j}^{T}$$

2 Domain Adaptation Support Vector Machines [20pts]

We now look at a different type of SVM that is designed for domain adaptation and optimizes the hyperplanes given by \mathbf{w}_S (source hyperplane) before optimizing \mathbf{w}_T (target hyperplane). The process begins by training a support vector machine on source data then once data from the target are available, train a new SVM using the hyperplane from the first SVM and the data from the target to solve for a new "domain adaptation" SVM.

The primal optimization problem is given by

$$\underset{\mathbf{w}_{T},\xi}{\operatorname{arg}} \quad \frac{1}{2} \|\mathbf{w}_{T}\|^{2} + C \sum_{i=1}^{n} \xi_{i} - B \mathbf{w}_{T}^{T} \mathbf{w}_{S}$$
s.t.
$$y_{i} (\mathbf{w}_{T}^{T} \mathbf{x}_{i} + b) \geq 1 - \xi_{i} \qquad \forall i \in \{1, \dots, n\}$$

$$\xi_{i} \geq 0 \qquad \forall i \in \{1, \dots, n\}$$

where \mathbf{w}_S is hyperplane trained on the source data (assumed to be known), \mathbf{w}_T is hyperplane for the target, $y_i \in \{\pm 1\}$ is the label for instance \mathbf{x}_i , C & B are regularization parameters defined by the user and ξ_i is a slack variable for instance \mathbf{x}_i . The problem becomes finding a hyperplane, \mathbf{w}_T , that minimizes the above objective function subject to the constraints. Solve/derive the dual optimization problem.

Note: I will give the class the solution to this problem prior to the due date because Problem #3 requires that you implement this algorithm in code.

3 Domain Adaptation SVM (Code) [20pts]

Implement the domain adaptation SVM from Problem #2. A data set for the source and target domains (both training and testing) have been uploaded to D2L. There are several ways to implement this algorithm. If I were doing this for an assignment, I would implement the SVM (both the domain adaptation SVM and normal SVM) directly using quadratic programming. You do not need to build the classifier (i.e., solve for the bias term); however, you will need to find \mathbf{w}_T and \mathbf{w}_S . To find the weight vectors, you will need to solve a quadratic programming problem and look through the documentation to learn how to solve this optiization task. The following Python packages are recommended:

- CVXOPT(https://cvxopt.org/)
- PyCVX (https://www.cvxpy.org/install/)

Note: Your solution can (and should) use any of the packages above.