COM4511/COM6511 - Speech Technology

Lecture 16 Diarisation

Thomas Hain t.hain@sheffield.ac.uk
Spring Semester

Terms

- Speaker identification determine which of the set of enrolled speakers a test speaker matches
- Speaker verification determine if a test speaker matches a specific speaker
- Speaker diarization "who spoke when" segment and label a continuous recording by speaker

Dealing with multiple speakers

- Speaker diarization is the "who spoken when" task: given a recording, divide it into segments, where each segment corresponds to speech of a single speaker
- ▶ Each recording contains multiple speakers unlike what we have assumed so far for speech recognition and speaker verification
- Multiple speakers in a recording is realistic many possible domains, e.g.:
 - Broadcast media
 - ▶ Telephone conversations
 - Call centres
 - Meeting recordings

A basic system

- A basic approach to diarization:
 - Segment the recording into a sequence of short pieces, each assumed to be a single speaker.
 - Then treat as a speaker verification task between all pairs of segmented utterances
- Guaranteed to fail on segments with overlapping speakers!

Measuring speaker diarization – Diarization error rate

- There are three main type of error to consider in speaker diarization:
 - Missed speech (E_{miss}): system labels a segment as non-speech, but segment is attributed to a speaker in the reference
 - False-alarm speech (E_{fa}): system attributes segment to a speaker, but segment is labelled as non-speech in the reference
 - Speaker error (E_{spkr}): system attributes segment to a speaker different to the reference attribution
- These errors are computed in a time-based way: each is expressed as a fraction of the scored time in the reference
- The diarization error rate (DER) is computed as a sum of these errors

$$DER = E_{miss} + E_{fa} + E_{spkr}$$

Note that E_{miss} and E_{fa} arise from the speech activity detection

Segmental purity metrics

• Cluster purity, p_i , of cluster i and the average cluster purity, acp, are:

$$p_{i.} = \sum_{j=1}^{N_s} \frac{n_{ij}^2}{n_{i.}^2}, \quad acp = \frac{1}{N} \sum_{i=1}^{N_c} p_{i.} n_{i.}$$
 (1)

 n_i is the number of frames in cluster i, $n_{.j}$ is the number of frames uttered by speaker j, n_{ij} is the frame count in cluster i spoken by speaker j, N_c is the cluster count, N_s is the number of speakers and N is the number of frames.

• Speaker purity, $p_{.j}$, of speaker j and average speaker purity, asp, are:

$$p_{.j} = \sum_{i=1}^{N_c} \frac{n_{ij}^2}{n_{.j}^2}, \quad asp = \frac{1}{N} \sum_{j=1}^{N_s} p_{.j} n_{.j}$$
 (2)

• An overall purity calculation combines both cluster and speaker purity measures:

$$K = \sqrt{acp * asp} \tag{3}$$

Typical distribution of errors

The tasks for diarisation

- Feature Extraction
 - Acoustic and location !
- Speech Activity Detection (SAD)
 - no speaker separation
- Speaker segmentation
 - timing information
- Speaker Clustering
 - Cope with small clusters and unknown cluster numbers

Tranter & Reynolds 2006

Classical - Bayesian Information Criterion

- Question: How to find out if data stems from two sources or one.
 - Compare using one model ore two to describe the data

k log(n) - k is number of parameters, n is number of data points

$$\Delta BIC = \frac{1}{2} [n_z \log(|\Sigma_z|) - n_x \log(|\Sigma_x|) - n_y \log(|\Sigma_y|)]$$
$$-\lambda \left(\frac{d(d+3)}{4}\right) \log n_z$$

The ICSI-SRI approach

Clustering

Training and relabelling iteratively

Current Framework for Speaker Diarisation

Segment a recording, and attach a speaker label to each segment.

- I. Split the recording into segments
- 2. Speech activity detection: identify whether each segment is speech or non-speech, discard non-speech
- 3. Represent the speech segments using some form of fixed length embedding: i-vector, x-vector, d-vector...
- 4. Compare all pairs of segments using a scoring metric such as PLDA
- 5.Cluster the segments using an algorithm such as agglomerative hierarchical clustering

Segmentation and Speech Activity Detection

- Speech activity detection (SAD) typically carried out using an LSTM or TDNN neural network trained on a large amount of diverse data
 - Binary output: speech vs. non-speech
 Possibly with data augmentation noise, reverb, etc.
- Following SAD, segment into short fixed-length segments (typically 2s) Assumes each segment contains speech from a single speaker
 - In practice can use overlapping segments (overlap by 0.5s at start and end) Relatively short segment duration for embedding computation

13

Speaker Embeddings and Clustering

- ▶ Compute a speaker representation for each segment i-vector - typically 64-128 dimension x-vector / d-vector - typically 128-256 dimension can reduce the dimension by performing PCA on the set of embeddings for a recording
- Score all segment pairs typically use PLDA
 Cluster segments many possible clustering algorithms: Agglomerative hierarchical clustering can work well
- Only need to compute pairwise segment scores once Score for a cluster pair is obtained by averaging the pairwise scores between the segments in each cluster
- Determine the number of clusters
 Clustering stopping criterion determines the number of clusters
 Define a prior distribution on the number of speakers, and apply to
 clustering Bayesian models with a prior on number of clusters Variational
 Bayes (VB) HMM, Hierarchical Dirichlet Process (HDP) HMM, distancedependent Chinese Restaurant Process (ddCRP),...

Thomas Hain

Multi-channel diarisation - crosstalk

Scoring	Channel	#Segs	#Spkrs	DER%					
Data: TBL									
NIST	SDM	2030	82	16.6					
	IHM	8478	40	393.9					
SHEF	SDM	2030	82	27.8					
	IHM	8478	40	335.9					

Solutions: Cross-talk features or combined modelling

Multi-channel diarisation - multi-channel models

Input are permutations of all channels (A)

Also pairwise option(B)

DNN		#Segs	MS%	FA%	SE%	DER%				
TRN	OV	CT	#Segs	W13 /0	1'A /0	SE 70	DER //			
Data: TBL										
TBL	X		6732	4.3	2.4	1.2	8.0			
TBL	X	X	7136	4.3	2.4	1.7	8.4			
TBL			7269	4.3	2.5	1.5	8.3			
TBL		X	2964	4.6	3.7	1.4	9.7			

Rosanna Milner, Thomas Hain (2017). DNN approach to speaker diarisation using speaker channels, in Proc ICASSP 2017.

DIHARD

- R&D in speaker diarization has been very domaindependent
 - ▶ 1990s broadcast news (Hub4)
 - ▶ 2000s multi-microphone meeting recordings (AMI, NIST RT)
 - ▶ 2010s conversational telephone speech (Switchboard)
 - ▶ 2015 general media
- ▶ Had the effect of fragmenting the field
- ▶ Since 2018 the DIHARD Challenge (https://coml.lscp.ens.fr/dihard/) has focused on "speaker diarization for challenging recordings where there is an expectation that the current state-of-the-art will fare poorly" diverse set of data sets used

Some hot topics in diarization

- Overlapping speech most systems do not explicitly deal with this
- Speech activity detection is still a significant cause of error
- Development of end-to-end systems
- Bayesian approaches (learning the number of speakers/ clusters from the data)
 - Dirichlet process GMMs
- Use of supervised learning

Some references

- D Garcia-Romero et al (2017), "Speaker diarization using deep neural network embeddings", ICASSP. https://ieeexplore.ieee.org/document/7953094
- ▶ G Sell et al (2018), "Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the Inaugural DIHARD Challenge", Interspeech. https://www.isca-speech.org/archive/ Interspeech 2018/abstracts/ 1893.html
- K Church et al (2017), "Speaker diarization: A perspective on challenges and opportunities from theory to practice", ICASSP. https://ieeexplore.ieee.org/abstract/document/7953098