

Transforming Lives.Inventing the Future.www.iit.edu

CS430

Introduction to Algorithms

Lec 5

Lan Yao

Outlines

- Recursion Tree
- Master Theorem and Extended Form
- Selection Sort and Bubble Sort

Ex5. (recurrence relation)

Prove that T(n)=O(n), while

$$T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1$$

then T(n)<= $c \left| \frac{n}{2} \right| + c \left[\frac{n}{2} \right] + 1 = cn + 1$

proof:

our goal is to prove:T(n)<=cn

Hypothesis: $T(\left|\frac{n}{2}\right|) \le c\left|\frac{n}{2}\right|$

$$T\left(\left\lceil \frac{n}{2}\right\rceil\right) <= c\left\lceil \frac{n}{2}\right\rceil$$

Adjust our goal to $T(n) \le cn-d$

Hypothesis: $T(\left|\frac{n}{2}\right|) \le c\left|\frac{n}{2}\right| - d$

then:
$$T(\left\lceil \frac{n}{2} \right\rceil) <= c \left\lceil \frac{n}{2} \right\rceil - d$$

$$|2| | 2|$$

$$T(n) \le c \left| \frac{n}{2} \right| - d + c \left| \frac{n}{2} \right| - d + 1 = cn - 2d + 1 = cn - (2d - 1)$$

when 2d-1>d, $T(n) \le cn-d$. (2d-1>=d=d>=1, which is easy to satisfy)

QED.

Recursion Tree

Ex1: Solve the upper bound of T(n), while $T(n)=3T(n/4)+cn^2$

$$c_{1} = \frac{c_{1}}{c_{1}} = \frac{$$

- Number of levels L: L=log₄n, for more accuracy, L=log₄n+1
 - Cost of the ith level: (3/16)ⁱ⁻¹cn²
 - How many leaves? $3^{\log_4 n} = n^{\log_4 3}$ Then the cost of all leaves is : $cn^{\log_4 3} = \Theta(n^{\log_4 3})$

Sum up all costs from all levels:

$$T(n) = cn^{2} \left[1 + \frac{3}{16} + \left(\frac{3}{16}\right)^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4} n}\right] + \Theta(n^{\log_{4} 3}) < cn^{2} \left[1 + \frac{3}{16} + \left(\frac{3}{16}\right)^{2} + \dots + \left(\frac{3}{16}\right)^{\infty}\right] + \Theta(n^{\log_{4} 3})$$

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \qquad T(n) = cn^2 \left(\frac{1}{1-\frac{3}{2}}\right) + \Theta(n^{\log_4 3}) = \frac{16}{13}cn^2 + \Theta(n^{\log_4 3}) = O(n^2)$$

Last example for Recursion Tree

EX2: Solve the upper bound of

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + O(n)$$

The number of levels--k: $(\frac{2}{3})^k n = 1$, then

$$c\left(\frac{2n}{3}\right) \qquad cn \qquad k = \log_{\frac{3}{2}} n = \frac{\lg n}{\lg \frac{3}{2}} = \frac{\lg n}{\lg 3 - 1} = \frac{1}{\lg 3 - 1} \lg n$$

$$T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + O(n) < cn \frac{1}{\lg 3 - 1} \lg n + cn = \frac{c}{\lg 3 - 1} n \lg n + cn$$
$$T(n) = O(n \lg n)$$

By Lan Yao

Master Theorem

Applicable for recurrence relation: T(n)=aT(n/b)+f(n)

- If your T(n) satisfies any of the following cases, the asymptotic bounds can be solved according to the Master Theorem;
- Not all cases are included in cases of Master Theorem.

Three Cases of Master Theory

If
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for some constants $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$. Case 2: If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log n)$. Case 3: If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and if $\operatorname{af}(n/b) < \operatorname{cf}(n)$ for some constant $c < 1$ and sufficiently lager n then $f(n) = \Theta(f(n))$.

$$T(n)=aT(n/b)+f(n)$$

 $T(n)=8T(n/2)+n^2$

Ex: Solve the upper bound of
$$T(n)=8T(n/2)+n^2$$

Derive Master Theorem, then we have $a=8$, $b=2$, $f(n)=n^2$
 $log_28=3$, $f(n)=O(n^2)=O(n^{3-1})$.
That is, when $E=1$, it holds for case 1.
So, $T(n)=O(n^3)$

Case1:
$$T(n) = aT(n/b) + f(n)$$
 If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constants $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ Case2:
$$If \ f(n) = \Theta(n^{\log_b a}) \ \text{then} \ T(n) = \Theta(n^{\log_b a} \log n) \ .$$

Case1:
$$T(n) = aT(n/b) + f(n)$$
 If $f(n) = O(n^{\log_b a - \varepsilon})$ for some constants $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ Case2: If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \log_b a)$.

Ex: Solve T(n)'s asymptotic bound when

$$T(n) = T(\frac{2n}{3}) + 1$$

then
$$\log_b a = \log_{\frac{3}{2}} 1 = 0$$
 and f(n)=1=n⁰

It matches case 2 and gives us: $T(n)=\Theta(\lg n)$

Case 3:

If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$ and if af(n/b) <= cf(n) for some constant c<1 and sufficiently

lager n then $T(n) = \Theta(f(n))$.

T(n)=aT(n/b)+f(n)

Ex: Solve T(n)'s asymptotic bound when

$$T(n) = 3T(\frac{n}{4}) + n \lg n$$

Solution: a=3, b=4, f(n)=nlgn

then $\log_b a = \log_4 3 = 0.8$

and f(n)=nlgn

$$f(n) = \Omega(n) = \Omega(n^{0.8+0.2})$$
.

It matches case 3 when ε =0.2 and gives us:

$$T(n)=\Theta(f(n))=\Theta(n\lg n)$$

Ex: Solve T(n)'s asymptotic bound when

$$T(n) = 2T(\frac{n}{2}) + n^2$$

Case1:

a=2, b=2, f(n)= n^2 , then $n^{\log_b a} = n$, that violates the first two cases. (Because the upper bound of n² is impossible to be n or $n^{1-\epsilon}$)

Case 3: Prove that $f(n)=n^2=\Omega(n^{1+\epsilon})$. If $f(n)=\Omega(n^{\log_b a+\epsilon})$

We can find 1 as the value of ε satisfying the above statement. So it matches case 3 and gives us:

$$T(n)=\Theta(f(n))=\Theta(n^2)$$

Extended Form of Master Theorem

Case 1: if
$$af(\frac{n}{k}) = cf(n)$$
 is true for some constant c<1, then T(n)= $\Theta(f(n))$

Case 2: if
$$af(\frac{n}{h}) = cf(n)$$
 is true for some constant c>1, then $T(n) = \Theta(n^{\log_b a})$

Case 3: if
$$af(\frac{n}{b}) = f(n)$$
 is true, then $T(n) = \Theta(f(n)\log_b n)$.

Proof

$$T(n) = f(n) \frac{C^{2+1}}{C-1} = f(n)(1+c+c^{2}+\cdots+c^{2})$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot (2+1) = f(n)(\log_{2}n+1)$$

$$\text{ when } n \Rightarrow \text{ polyty} n+1) = O(\log_{2}n+1)$$

$$O \text{ when } c<1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c<1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c<1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c<1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c<1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{2}n$$

$$O \text{ when } c=1, \quad T(n) = f(n) \cdot \log_{$$

Extended form of Master Theorem

Methodology

Step1: list values of a, b and f(n)

Step2: plug a and b in to evaluate af(n/b)

Step3: $set^{af(\frac{n}{b}) = cf(n)}$ and solve the value of c.

Step4: match the value of c to the above 3 cases.

Ex1. Solve the asymptotic bound of T(n), when $T(n) = 3T(\frac{n}{2}) + n$

$$a=3$$
, $b=2$, $f(n)=n$
 $af(b)=3f(a)=3.b=3n$

Suppose: $\frac{2}{2}n=cf(n)=c.n=cn$

then $c=\frac{2}{3}>1$ \rightarrow match c

(ase a gives you: $T(n)=O(n^{196})$
 $=O(n^{193})$

Ex2. Solve the asymptotic bound of T(n), when $T(n) = T(\frac{3n}{4}) + n$

$$T(n)=T(\frac{3n}{4})+n$$

$$\alpha=1, b=\frac{4}{3}, f(n)=n$$

$$\alpha f(\frac{1}{6})=1 \cdot f(\frac{2}{4}n)=\frac{2}{4}n$$

$$Supprose that = \alpha f(\frac{1}{6})=cf(n)$$

$$that is = \frac{2}{3}n=c \cdot n \Rightarrow c=\frac{2}{3}$$

$$case i gives us : T(n)=\Theta(f(n))$$

$$=\Theta(n)$$

case 1: when c<1, T(n)=O(f(n))case 2: when c>1, $T(n)=O(n^{logba})$ case 3: when c=1, $T(n)=O(f(n)log_h n)$

Ex3. Solve the asymptotic bound of T(n), when $T(n) = 2T(\frac{n}{2}) + n$

$$T(n) = 2T(\frac{1}{3}) + n$$
 $a = 1$, $b = 2$, $f(n) = n$
 $af(\frac{1}{6}) = 2f(\frac{1}{3}) = 2 \cdot \frac{1}{2} = n$

Suppose that $af(\frac{1}{6}) = cn \Rightarrow n = cn$
 $\Rightarrow c = 1 \Rightarrow case 3$

Case 3 gives us: $T(n) = O(f(n) \cdot log_n n)$
 $= O(n \cdot log n)$

case 1: when c<1, T(n)=O(f(n))case 2: when c>1, $T(n)=O(f^{logba})$ case 3: when c=1, $T(n)=O(f(n)log_n n)$

Algorithmic Analysis of other Sorts

- Selection Sort
- Bubble Sort

Selection Sort

Complexity of Selection Sort

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = O(n^2)$$

- •Best case: O(n²)
- Worst case:O(n²)
- Average case: O(n²)

Bubble Sort

Repeatedly stepping through the array, comparing adjacent elements and swapping them if they are in a wrong order until the list is sorted, which is confirmed by no swap.

Bubble Sort

Complexity of Bubble Sort

$$\sum_{n=1}^{n-1} i = \frac{n(n-1)}{2} = O(n^2)$$

- ●Best case: T(n)=n-1=O(n)
- Worst case:T(n)=O(n²)
- •Average case:

$$T(n) = \sum_{i=1}^{n-1} X_i p_i = \frac{1}{2} \sum_{i=1}^{n-1} X_i = \frac{1}{2} \times \frac{n(n-1)}{2} = \frac{1}{4} n^2 - \frac{1}{4} n$$
$$= O(n^2)$$