1 Stări sigure/nesigure

1.1 Exercițiul 1

Se <u>consideră următoarea</u> stare:

	Are	Maxim
A	3	9
В	2	4
С	2	7

Disponibil: 3

Este această stare sigură? Menționați ordinea de execuție a proceselor.

Dacă unul dintre cele trei procese primește din această stare o resursă, starea devine nesigură. Care este/sunt procesul/procesele?

1.2 Exercițiul 2

Se <u>consideră următoa</u>rea stare:

	Are	Max
A	0	6
В	0	5
С	0	4
D	0	7

Disponibil: 10

În urma unei cereri de forma (1,1,2,4), noua stare este sigură? Arătați care este ordinea de execuție a proceselor.

În urma unei cereri de forma (1, 2, 2, 4), noua stare este sigură? Arătaţi care este ordinea de execuţie a proceselor.

1.3 Exercițiul 3

Se <u>consideră starea</u>

	Are	Max					
A	70	45					
В	60	40 15					
С	60						
TOTAL: 150							

Este această stare sigură? Arătați care este ordinea de execuție a proceselor.

Dacă apare un proces nou, D, cu Max=60 şi Are=25, este noua stare sigură? Care este ordinea de execuție a proceselor?

Determinați valoarea maximă pentru Has_D astfel încât noua stare să fie sigură.

2 Algoritmul bancherului. Resurse multiple

2.1 Exercitiul 1

Se consideră matricile R și C, descrise astfel:

$$R = \left(\begin{array}{cccc} 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{array}\right), \ C = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

Se consideră A=(2,1,0,0). Determinați valoarea vectorului E. Este aceasta o situație de impas? Care dintre cele trei procese pot fi executate inițial pentru ca impasul să poată fi evitat?

2.2 Exercițiul 2

Se consideră matricile Max și C, descrise astfel:

$$Max = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 2 & 7 & 5 & 0 \\ 6 & 6 & 5 & 6 \\ 4 & 3 & 5 & 6 \\ 0 & 6 & 5 & 2 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 0 & 3 & 3 & 2 \end{pmatrix}$$

Se consideră A = (2, 1, 0, 0). Determinați valoarea vectorului E. Este aceasta o situație de impas? Care dintre cele cinci procese pot fi executate inițial pentru ca impasul să poată fi evitat?

Ce se întâmplă dacă o cerere (0,1,0,0) a fost garantată pentru procesul al treilea?

2.3 Exercitiul 3

Se consideră matricile R și C, descrise astfel:

$$R = \begin{pmatrix} 3 & 2 & 2 \\ 6 & 1 & 3 \\ 3 & 1 & 4 \\ 4 & 2 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 6 & 1 & 2 \\ 2 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Se consideră E=(9,3,6). Determinați valoarea vectorului A. Este aceasta o situație de impas? Care dintre cele cinci procese pot fi executate inițial pentru ca impasul să poată fi evitat?

Determinați o ordine de execuție a proceselor care poate conduce la o stare nesigură, după utilizarea unuia dintre procesele determinate mai sus.

Dacă procesul P_1 realizează o cerere parțială (1,0,1), care dintre celelalte procese poate fi executat ulterior pentru ca starea să fie sigură?

2.4 Exercițiul 4

Pentru execițiul anterior, se consideră linia (3,1,m) pentru procesul P_3 din matricea R. Determinați valorile lui m astfel încât starea rezultată să poată fi sigură (determinați procesele care pot fi execuate inițial) sau nesigură, după o execuție inițială a proceselor P_1 , P_2 sau P_4 .

3 Detectie

3.1 Exercitiul 5

Se consideră starea următoare:

$$R = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{array}\right), \quad C = \left(\begin{array}{cccccc} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

E=(2,1,1,2,1) iar A=(0,0,0,0,1). Care dintre cele patru procese se află într-o stare de impas?

3.2 Exercitiul 6

Se consideră starea unui sistem descris prin

	R_1	R_2	R_3	R_4	R_1	R_2	R_3	R_4	R_1	R_2	R_3	R_4
P_1	0	0	1	2	0	0	1	2				
P_2	2	0	0	0	2	7	5	0				
P_3	0	0	3	4	6	6	5	6				
P_4	2	3	5	4	4	3	5	6				
P_5	0	3	3	2	0	6	5	2				
	C				R (Max)]	Neces	ar = 3	?	

Determinați vectorul E și matricea cu resursele necesare, știind că A=(2,1,0,0).

Este aceasta o situație de impas? Este această stare sigură? Care proces este/nu poate ajunge într-o situație de impas?

Poate fi o cerere inițială de forma (0, 1, 0, 0) satisfăcută pentru P_3 ?

3.3 Exercitiul 7

Într-un sistem 3 procese partajează 4 resurse (exclusive). Fiecare proces folosește cel mult 2 resurse. Este posibil impasul pentru această stare?

Pentru un sistem cu N procese și M resurse, într-o situație ca cea de mai sus, care este valoarea maximă a cererilor pentru ca impasul să nu aibă loc? Desigur, niciun proces nu va folosi mai mult de M resurse!