CMPT440 - Formal Languages and Computability Midterm Practice

1. Webber Chap. 11 Exercise 1

Prove that $\{a^nb^nc^n\}$ is not regular.

Let M = (Q, {a, b, c}, G, q0, F) be any DFA over the alphabet {a, b, c}; we will show that L(M) \neq {aⁿbⁿcⁿ}. Consider the behavior of M on an arbitrarily long string of as. As it reads the string, M visits a sequence of states: first $\delta*(q0, \epsilon)$, then $\delta*(q0, a)$, then $\delta*(q0, a)$, and so on.

Eventually, since M has only finitely many states, it must revisit a state; that is, there must be some i and j with i < j for which $\delta*(q0, a^i) = \delta*(q0, a^j)$. Now by appending b^j and c^j to both strings, we see that $\delta*(q0, a^ib^jc^j) = \delta*(q0, a^jb^jc^j)$.

Thus M ends up in the same final state for both $a^ib^jc^j$ and $a^jb^jc^j$. If that is an accepting state, M accepts both; if it is a rejecting state, M rejects both. But this means that $L(M) \neq \{a^nb^nc^n\}$, since $a^jb^jc^j$ is in $\{a^nb^nc^n\}$ while $a^ib^jc^j$ is not. Since we have shown that $L(M) \neq \{a^nb^nc^j\}$ for any DFA M, we conclude that $\{a^nb^nc^n\}$ is not regular.

2. Webber Chap. 11 Exercise 7

Let $B = \{a^n b^n c^n \mid n \ge 0\}.$

Using the pumping lemma for regular languages, prove that B is not regular.

- (a) Assume that B is regular, so the pumping lemma holds for B. Let k be as given by the pumping lemma.
- (b) $x = a^k$ $y = b^k$ $z = c^k$ $xyz = a^n b^n c^n \in B$ and $|y| \ge k$ as required.
- (c) Let u, v, and w be as given by the pumping lemma, so that uvw = y, |v| > 0, and for all $i \ge 0$, $xuv^iwz \in B$.
- (d) Choose i = 2. Since v contains at least one b and nothing but bs, uv^2w has more bs than uvw. So xuv^2wz has more bs than cs and as, and $xuv^2wz \notin L$.
- (e) By contradiction, $B = \{a^n b^n c^n\}$ is not regular.