Zákon lomu svetla

RNDr. Viera Stupáková

Lom svetla

Pri prechode svetla z jedného optického prostredia do druhého optického prostredia nastáva lom svetla – svetlo sa láme, to znamená, že mení svoju rýchlosť a smer.

Pokusy s lomom - videá

stratená minca

nájdená minca

Lom svetla

Hlavné pojmy:

- 1. Optické rozhranie hranica medzi dvoma optickými prostrediami
- 2. Dopadajúci lúč
- 3. Bod dopadu bod optického rozhrania, do ktorého dopadá lúč
- 4. Kolmica dopadu k kolmica na opt. rozhranie prechádzajúca bodom dopadu
- 5. Rovina dopadu rovina, v ktorej leží dopadajúci lúč a kolmica dopadu
- 6. Lomený lúč
- 7. Uhol dopadu α uhol medzi kolmicou dopadu a dopadajúcim lúčom
- 8. Uhol lomu β

Zákon lomu svetla (ZLS)

Pri lome svetla je pre dané dve optické prostredia podiel sínusu uhla dopadu α a sínusu uhla lomu β vždy rovnaký a rovný číslu n.

Číslo n sa nazýva index lomu prostredia (prostredia, do ktorého sa svetlo láme)

$$\frac{\sin\alpha}{\sin\beta} = \frac{v_1}{v_2} = \mathbf{n}$$

- $\sin \alpha$ (čítame "sínus alfa"), $\sin \beta$ matematické funkcie, ktoré určíme pomocou kalkulačky
- v₁, resp. v₂ je rýchlosť svetla v prostredí číslo 1, resp. 2

Overenie zákonu lomu

Uhol dopadu	Uhol lomu	$\sin \alpha$	sin β	$\sin \alpha$
α	β			$n = \sin \beta$
30°	19,5°	0,50	0,33	1,51
45°	28°	0,70	0,48	1,49
60°	35,3°	0,87	0,58	1,50
90°	42°	1,00	0,68	1,49

Záver: Vidíme, že "n" je pri rôznych uhloch rovnaké (odchýlky sú spôsobované zaokrúhľovaním).

Kolmý dopad bez lomu svetla ($\alpha = \beta = 0^{\circ}$)

Vo všeobecnosti platí, že $\alpha \neq \beta$. Iba v jednom prípade pri lome svetla platí, že $\alpha = \beta$ a to vtedy, ak svetlo dopadá <u>kolmo</u> na optické rozhranie.

Lom svetla ku kolmici ($\alpha > \beta$)

- svetlo pri prechode optickým rozhraním spomalí (v₁ > v₂)
- svetlo prechádza z opticky redšieho prostredia do opticky hustejšieho prostredia,

- napr. zo vzduchu do vody n = 1,33;
- zo vzduchu do skla
 n =1,50

Lom svetla od kolmice ($\alpha < \beta$)

- svetlo pri prechode optickým rozhraním zrýchli (v₁ < v₂)
- svetlo prechádza z opticky hustejšieho prostredia do opticky redšieho prostredia

n < 1

- napr. z vody do vzduchu n = 0,75;
- zo skla do vzduchu n =0,67

Ďakujem za pozornosť

