Практика 12.

Шахматов Андрей, Б02-304

26 апреля 2024 г.

Содержание

1	1.1	1
2	1.2	1
3	2.2	1
4	2.3	2
5	2.6	2
6	3.1	2
7	3.2	2

1 1.1

Да так как D(x) - конечно ступенчатая функция на множестве $\mathbb{Q}_{[0,1]}$ с интегралом $\int_{[0,1]} D(x) \, \mathrm{d}x = \mu(\mathbb{Q}_{[0,1]}) = 0.$

2 1.2

Выбросим все множетсва меры нуль и получим:

$$\int_{[0,1]} x \, \mathrm{d}x = \frac{1}{2}$$

3 2.2

Пусть функция:

$$f(x) = \begin{cases} \frac{1}{x}, x \in (0, 1); \\ 2 - x, x \in [1, 2]; \\ -\frac{1}{x - 3}, x \in (2, 3). \end{cases}$$

Очевидно, что положительная и отрицательная части интеграла равны $+\infty$ и $-\infty$.

$4 \quad 2.3$

Разобъём область определения на два измеримых множества: $X_1 = \{x \in X \mid f(x) > g(x)\}$ и $X_2 = \mathbb{R} \setminus X_1$. Тогда на X_1 : $\max\{f(x),g(x)\} = f(x)$, из чего следует интегрируемость $\max\{f(x),g(x)\}$ на X_1 . Аналогично для X_2 . Тогда остаётся рассмотреть не произойдёт ли так, что на X_1 максимум интегрируется в $+\infty$, а на X_2 в $-\infty$. Предположим противное, то есть $\int_{X_1} f(x) \, \mathrm{d}x = +\infty$ и $\int_{X_2} g(x) \, \mathrm{d}x = -\infty$. Но тогда из монотонности интеграла и определения множества X_1 следует $\int_{X_1} f(x) \, \mathrm{d}x = -\infty$. Но тогда на одном множестве функция f интегрируема в $+\infty$, а на другом в $-\infty$, что означает не интегриуремость f на всём \mathbb{R} .

5 2.6

Будем делать всё по лемме 5.85

а) $|f| \le g \implies -g \le f \le g$, так как g - интегрируема с конечным интегралом, то она может быть оценена снизу ступенчатой с конечным интегралом:

$$-h \le f \le h$$

, что по лемме 5.85 означает интегрируемость с конечным интегралом.

- б) Функция может быть оценена константой $|f| \leq M$, так как $\int_X M \, \mathrm{d}x = M \mu X$ конечный, то по пункту а) имеем интегрируемость f.
- в) Так как функция непрерывна на компакте, то она ограничена, а так как компакт в \mathbb{R} , то он ограничен и замкнут, а значит измерим с конечной мерой.

6 3.1

Так как f - интегрируема, то она измерима, тогда f^2 - измерима. Тогда на измеримом множестве $X_1=\{x\in X\mid |f(x)<1|\}$ выполнено $|f|\leq f^2\leq f^4$, тогда по признаку 2.6 имеем, что f интегрируема на X_1 , аналогично со сменой знакак в неравенствах получим интегрируемость на множестве $X_2=\{x\in X\mid |f(x)\geq 1|\}$. Тогда так как f^2 интегрируема с конечным интегралом на X_1 и X_2 , то она интегрируема на $\mathbb{R}=X_1\sqcup X_2$.

7 3.2

Стоит отметить, что наличие конечного интеграла у модуля функции равносильно наличию конечного интеграла у самой функции. Тогда достаточно доказать для неотрицательной функции. Введём ступенчатую функцию:

$$\phi(x) = \sum_{n=1}^{\infty} n \chi_{\{x \in [a,b] | n \le f(x) \le n+1\}}(x)$$

Тогда верно

$$\phi \leq f \leq \phi + 1$$

По определению интеграла ступенчатой функции:

$$\int_{[a,b]} \phi(x) \, dx = \sum_{n=1}^{\infty} n\mu(x \in [a,b] \mid n \le f(x) \le n+1)$$

Тогда проинтегрировав неравенство получим:

$$\int_{[a,b]} \phi(x) \, dx \le \int_{[a,b]} f(x) \, dx \le \int_{[a,b]} \phi(x) \, dx + \mu([a,b])$$

Если $\mu A < +\infty$, то из неравенств немедленно следует требуемый факт.