

Total #:	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ 3	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
10	3	3	3	1	#	

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_{0}^{#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0-4\beta_1+2\alpha_3 k^2}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{lphaeta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{#_{1}}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\ lpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\sharp 1}$ † lpha	0	0	0	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$
$\omega_{1}^{#2}$ † $^{\alpha}$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{l}(\alpha_0-4\beta_1)k$	0	0	0

? Quadratic pole
? Pole residue:
$$\frac{1}{\alpha_0} > 0$$
? Polarisations: | 2

 $\frac{\text{Unitarity conditions}}{\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}}$