

Machine Learning in Turbulent Reactive Flow Simulations

Zhuyin Ren, Xingyu Su Tsinghua University

Weiqi Ji, Sili Deng
Massachusetts Institute of Technology

Progress and Challenges in Turbulent Combustion Simulation

- DNS not practical for many decades
- RANS/LES requires statistical modeling for small scales

Laminar jet flame Smooke et al. (1996)

LES of lab-scale flames Zhou et al. (2017)

LES of a gas turbine engine GE Aviation (2015)

- Multi-scale multi-physics
 - Multiphase, radiation, acoustic
- Nonlinear combustion chemistry
 - A large number of chemical species
 - A wide range of time scales

- Turbulence/chemistry interactions
 - Strong coupling between mixing and reaction at the smallest scales
- Mixed modes of combustion processes

Challenges: Chemical Kinetics and Turbulence-Chemistry Interaction

• The k^{th} species mass fraction transport equation is

$$\frac{\partial}{\partial t}(\rho Y_k) + \frac{\partial}{\partial x_i}(\rho u_i Y_k) = \frac{\partial}{\partial x_i}\left(\rho D_k \frac{\partial Y_k}{\partial x_i}\right) + \frac{S_k}{S_k}$$

Transport equation in RANS/LES simulations

$$\frac{\partial}{\partial t}(\bar{\rho}\overline{Y_k}) + \frac{\partial}{\partial x_i}(\bar{\rho}\overline{u_i}\overline{Y_k}) + \frac{\partial}{\partial x_i}(\bar{\rho}u_i''Y_k'') = \frac{\partial}{\partial x_i}(\bar{\rho}D_k\frac{\partial\overline{Y_k}}{\partial x_i}) + \frac{\overline{S_k}}{\overline{S_k}}$$

complexity of non

Effects of turbulence fluctuations on mean reaction rate

$$\overline{S_k(T,Y)} \neq S_k(\overline{T},\overline{Y})$$

- S_k is highly non-linear
- Number of species ~10⁴
- Chemical time scale 10⁻⁹ 10¹ s

- Flamelet: assume that species are confined to low-dimensional manifold determined by laminar flames
- TPDF (Transported Probability Density Function): represent the turbulent reacting flow by the joint PDFs, treat mean reaction rate exactly

Challenges: Chemical Kinetics and Turbulence-Chemistry Interaction

• The k^{th} species mass fraction transport equation is

$$\frac{\partial}{\partial t}(\rho Y_k) + \frac{\partial}{\partial x_i}(\rho u_i Y_k) = \frac{\partial}{\partial x_i}\left(\rho D_k \frac{\partial Y_k}{\partial x_i}\right) + S_k$$

Transport equation in RANS/LES simulations

$$\frac{\partial}{\partial t}(\bar{\rho}\overline{Y_k}) + \frac{\partial}{\partial x_i}(\bar{\rho}\overline{u_i}\overline{Y_k}) + \frac{\partial}{\partial x_i}(\bar{\rho}u_i''Y_k'') = \frac{\partial}{\partial x_i}(\bar{\rho}D_k\frac{\partial\overline{Y_k}}{\partial x_i}) + \overline{S_k}$$

Effects of turbulence fluctuations on mean reaction rate

$$\overline{S_k(T,Y)} \neq S_k(\overline{T},\overline{Y})$$

- S_k is highly non-linear
- Number of species ~10⁴
- Chemical time scale 10⁻⁹ 10¹ s

- 1) Adaptive combustion modeling
- 2) Efficient chemistry integration
- 3) Dimension reduction for UQ
- 4) Automatic discovery of kinetic model

Opportunities of ML in Turbulent Combustion Simulations

Efficient and high-fidelity turbulent combustion simulations

- Flame identification for adaptive combustion modeling
- Model reduction and tabulation for chemistry integration
- Dimension reduction for uncertainty quantification
- Automatic discovery of chemical kinetic model

Flame Identification for Adaptive Combustion Modeling

Combustion modes of Spray A:

jet into hot air

Post-ignition
zone

Premixed reaction
fronts

Flamelet model

zone

Pre-ignition zone with realistic chemistry

Chemically inactive

Xu et al. (2018)

- Adaptive modeling speedup factor of 3~4
- Identification of local combustion mode is key for adaptive combustion modeling

Species transport

Flame Identification Approaches

Flame Index (FI)

$$FI = \nabla Y_{Fuel} \cdot \nabla Y_{Oxygen}$$
 Yamashita et al. (1996)

Lifted jet flame, Yamashita et al. (1996)

Computational Explosive Mode Analysis (CEMA)

$$\frac{D\boldsymbol{\omega}(\boldsymbol{y})}{Dt} = \boldsymbol{J}_{\boldsymbol{\omega}} \frac{D\boldsymbol{y}}{Dt} = \boldsymbol{J}_{\boldsymbol{\omega}}(\boldsymbol{\omega} + \boldsymbol{s})$$

Lu et al. (2010)

CEM = the positive eigenvalue λ_e of J_{ω}

Premixed flame, Xu et al. (2019)

Local extinction

Auto-ignition

Premixed flame propagation

non-premixed (not in this flame)

Exuberance of ML in Flame Identification

 Capability of ML in high-dimensional/non-linear decision boundary will certainly benefit the flame identification and adaptive modeling

Learn model switching policy via reinforcement learning

Unsupervised learning

Opportunities of ML in Turbulent Combustion Simulations

Efficient and high-fidelity turbulent combustion simulations

- Flame identification for adaptive combustion modeling
- Model reduction and tabulation for chemistry integration
- Dimension reduction for uncertainty quantification
- Automatic discovery of chemical kinetic model

Progress in Chemistry Acceleration Approaches

Chemistry integration

$$\frac{d\boldsymbol{\phi}}{dt} = S(\boldsymbol{\phi})$$

- Model reduction
 - Graph-based: on/off-line mechanism reduction
 - Physics-based: QSSA, RCCE
 - Manifold-based: ILDM, PCA

- In-situ Adaptive Tabulation (ISAT)
- Hybrid ISAT-RCCE

DRG, Lu & Law (2005)

Speed-up factor of 1000 for statistically stationary problem

Progress and Challenges of Tabulation via Neural Network

Applications of NN for tabulation dated back to 1996

- Fundamental challenge is on the design of training datasets
 - Small-scale pre-simulation

• Abstract problems, e.g., linear eddy models, laminar flames

Christo et al. (1996)

Sen & Menon (2010)

Exuberance of ML in Chemistry Acceleration

ML could revolutionize the tabulation and reduced order modeling

- Including transport process (Raissi, Babaee & Givi, PRF, 2019)
- Auto-encoder based non-linear reduced order modeling (Dr. Carlberg's talk)

Opportunities of ML in Turbulent Combustion Simulations

Efficient and high-fidelity turbulent combustion simulations

- Flame identification for adaptive combustion modeling
- Model reduction and tabulation for chemistry integration
- Dimension reduction for uncertainty quantification
- Automatic discovery of chemical kinetic model

UQ Framework for Turbulent Combustion Simulations

Surrogate (ML) model is essential for UQ of expensive combustion simulations

■ "Small data" for high-dimensional uncertainties → employ dimension reduction

^{*} Engine contour plot from Ansys

Active Subspaces for Parametric Dimension Reduction

- Model input parameters $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d] \sim \pi_{\mathbf{x}}$
- Model output $f(\mathbf{x})$
- Subspace method $f(\mathbf{x}) = g(\mathbf{S}^T\mathbf{x})$, $\mathbf{x}_r = \mathbf{S}^T\mathbf{x} \in \mathbb{R}^r$
 - Sensitivity analysis: subset of $\{x_i\}$ as the basis
 - Active subspace: linear combination of $\{x_i\}$ as the basis

$$C = \int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^T \pi_{\mathbf{x}} d\mathbf{x} = \begin{bmatrix} \mathbf{W}_1, \mathbf{W}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{\Lambda}_2 \end{bmatrix} \begin{bmatrix} \mathbf{W}_1^T, \mathbf{W}_2^T \end{bmatrix}$$

 Λ_1 : large eigenvalues, W_1^T : active subspace

 Λ_2 : small eigenvalues, W_2^T : inactive subspace

• f(x) varies a lot in active subspace, keeps constant in inactive subspace.

Active Subspaces for High-dimensional Kinetic Uncertainties

■ Ignition of H₂, parameters: 33 rate constants, prediction: ignition delay time

- One-dimensional active subspace is observed for hydrogen ignition
- 1~5 dims active subspace for other fuels: methane (257-dims), DME (178-dims)

Ji et al. (2018)

Active Subspaces for Kinetic Uncertainties in Turbulent Flames

- Predict lifted of height H in Cabra flame, parameters: 21 rate constants
 - RANS/PDF, 2000 CPU hours per case
 - One-dimensional active subspace is identified and make the UQ tractable

Cabra et al. (2002)

Exuberance of ML in Uncertainty Quantification

• Challenges of active subspace comes from evaluating $\nabla f(\mathbf{x})$

$$C = \int \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^T \pi_{\mathbf{x}} d\mathbf{x} = \begin{bmatrix} W_1, W_2 \end{bmatrix} \begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix} \begin{bmatrix} W_1^T, W_2^T \end{bmatrix}$$

Differential programing enables 'lazy' and efficient adjoint sensitivity analysis

- Physics Informed Neural Network (Prof. Karniadakis's talk)
 - Gradient to physics model parameters is readily available
- Reduced models to accelerate evaluations of both $f(\mathbf{x})$ and $\nabla f(\mathbf{x})$ (Prof. Willcox's talk)

Opportunities of ML in Turbulent Combustion Simulations

Efficient and high-fidelity turbulent combustion simulations

- Flame identification for adaptive combustion modeling
- Model reduction and tabulation for chemistry integration
- Dimension reduction for uncertainty quantification
- Automatic discovery of chemical kinetic model (MIT)

Automatic Discovery of Chemical Kinetic Model

- Needs for autonomous discovery of chemical kinetic model
 - Build model for various practical "fuels": wood, polymer etc.
 - Foundation for the data-driven turbulent combustion modeling
- Challenges: current data-driven kinetic models are limited to known reactions

Practical "fuels"

California forest fire by Noah Berger (2019)

Learn flame dynamics

Huang et al. (2019)

Limitation of current approaches

- Fundamental physics law for chemical kinetic model
 - Law of Mass Action Guldberg (1879)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$R = -k[CH_4][O_2]^2 = -\exp(\ln k_f + \ln[CH_4] + 2\ln[O_2])$$

Neural Network Representation of Kinetic Model

(Unpublished Work)

- Fundamental physics law for chemical kinetic model
 - Law of Mass Action

Arrhenius Law Arrhenius (1889)

$$k = AT^{b} \exp(-\frac{Ea}{RT})$$

$$\downarrow$$

$$\ln k = \ln A + b \ln T - \frac{Ea}{R} \frac{1}{T}$$
(A linear operation)

A: pre-factor, b: fitting para, Ea: activation energy

Neural Network Representation of Kinetic Model

(Unpublished Work)

- Fundamental physics law for chemical kinetic model
 - Law of Mass Action & Arrhenius Law

Neural Network Representation of Kinetic Model

(Unpublished Work)

- Reactive Neural Network: generalize to multiple reaction steps
 - Number of hidden nodes = number of reactions
 - Digital twins of physics-based kinetic model in ML world

Automatic Discovery of Kinetic Model: Case Studies I

Synthesized network with 5 species and 4 reactions

$$2x_1 \overset{k_1}{\rightarrow} x_2$$

$$x_1 \overset{k_2}{\rightarrow} x_3$$

$$x_3 \overset{k_3}{\rightarrow} x_4$$

$$x_2 + x_4 \overset{k_4}{\rightarrow} x_5$$
 Searson et al. (2014)

Training data

Ground truth

x_1	-2	-1	0	0
x_2	1	0	0	-1
x_3	0	1	-1	0
x_4	0	0	1	-1
x_5	0	0	0	1

(stoichiometric matrix)

0.1	0.2	0.13	0.3			
(rate constants)						
(rate constants)						

Learned model

x_1	-2	-1 0		0
x_2	1	0	0	-1
x_3	0	1	-1	0
x_4	0	0	0.99	-1
x_5	0	0	0	1

0.1 0.2	0.13	0.3
---------	------	-----

The network learns both reaction formula and rates

Automatic Discovery of Kinetic Model: Case Studies II

Bio-diesel fuel production from palm oil, with temperature dependence

$$TG + ROH \xrightarrow{k_1} DG + R'CO_2R$$

$$DG + ROH \xrightarrow{k_2} MG + R'CO_2R$$

$$MG + ROH \xrightarrow{k_3} GL + R'CO_2R$$
Darnoko & Cheryan (2000)

Ground truth

TG	-1	0	0	
DG	1	-1	0	
MG	0	1	-1	
GL	0	0	1	
ROH	-1	-1	-1	
R'CO2R	1	1	1	

Learned model

TG	-1	0	0
DG	1	-1	0
MG	0	1	-1
GL	0	0	1
ROH	-1	-1	-1
R'CO2R	1	1	1

18.61 | 19.13 | 7.93

14.54 14.42 6.47

palmoiltoday.net

(Pre-factor A) | 18.60 | 19.13 | 7.93

(Activation energy Ea) | 14.54 | 14.42 |

The network can learn temperature dependence

Automatic Discovery of Kinetic Model: Case Studies III

27

- MAPK (mitogen-activated protein kinases) catalysis reaction of proteins in cell signaling
 - Catalyst presents in both reactants and products

$$S + MAPKKK \longrightarrow S + MAPKKK*,$$
 $MAPKKK * + MAPKK \longrightarrow MAPKKK * + MAPKK*,$
 $MAPKK * + MAPK \longrightarrow MAPKK* + MAPK*,$
 $MAPK * + TF \longrightarrow MAPK* + TF*,$
 $MAPKKK* \longrightarrow MAPKKK,$
 $MAPKKK* \longrightarrow MAPKKK,$
 $MAPKK* \longrightarrow MAPKK,$
 $MAPKK* \longrightarrow MAPKK,$
 $TF* \longrightarrow TF.$

"Reactive Sindy" Hoffmann 2019

Learned model (identical to ground truth)

S	0	0	0	0	0	0	0	0
MAPKKK	-1	0	0	0	1	0	0	0
MAPKKK*	1	0	0	0	-1	0	0	0
MAPKK	0	-1	0	0	0	1	0	0
MAPKK*	0	1	0	0	0	-1	0	0
MAPK	0	0	-1	0	0	0	1	0
MAPK*	0	0	1	0	0	0	-1	0
TF	0	0	0	-1	0	0	0	1
TF*	0	0	0	1	0	0	0	-1

Exuberance of ML in Automatic Model Discovery

- Interpretable physics-ML models could automatically discover "knowledge"
- Physics-ML models also take promises of capacity and autonomy from ML

Algorithms in ML can be readily applied to equivalent Physics-ML models

Conclusions

- ML is promising for efficient and high-fidelity turbulent combustion simulations
- Four challenging tasks are discussed:
 - Flame Identification | Chemistry Acceleration
 - Uncertainty Quantification | Model Inference
- Promise of ML models for turbulent combustion modeling:
 - High-dimensionality/nonlinearity (Identification | Acceleration)
 - Differentiable programing (Uncertainty Quantification | Inference)
 - Physics embedded (Inference)
- Other ML models: PDE-Net, LSTM, GAN, RL

Acknowledgements

We would like to acknowledge:

- Wantong Wu and Wenwen Xie @ Tsinghua
- Dr. Hua Zhou @UNSW Sydney
- Prof. Tianfeng Lu @UConn
- Prof. Youssef M. Marzouk and Dr. Olivier Zahm @ MIT

The work at Tsinghua is supported by National NSF of China No.91841302

Thanks for your attention!