(b) (12 puntos) Considere el siguiente problema de optimización lineal

mín
$$ax_1 + bx_2$$

s.a. $5x_1 - 3x_2 \ge c$ $3x_1 - 4x_2 \le d$ $3x_1 \ge 0$.

Sabiendo que a+b+c+d=31, encuentre la solución óptima y los valores de los parámetros a, b, c y d para que el problema dual tenga como solución óptima a (5,-10) y valor de la función objetivo igual a 5c.

5c - 10 d = .5c.

$$\Rightarrow d = 0$$

$$x_{1} (5y_{1} + 3y_{2} - a) = 0$$

$$x_{2} (-3y_{1} - 4y_{2} - b) = 0$$

$$y_{3} (5x_{1} - 3x_{2} - c) = 0$$

$$y_{4} (3x_{1} - 4x_{2} - d) = 0$$

$$y_{2}(3x_{1}-4x_{2}-0)=0$$

$$3x_{1}=4x_{2}$$

$$c=5x_{1}-3x_{2}$$

= 55

40 = -20

Sea P) un problema no lineal con restricciones de igualdad y desigualdad:

$$\begin{array}{cccc} P) & \min & f(x) \\ & \text{s.a.} & g(x) & \leq & a \\ & h(x) & = & b \end{array}$$

Este problema se puede transformar a un problema irrestricto de la siguiente forma:

$$P)$$
 min $f(x)$ s.a. $g(x) \leq a \sim \min \ \mathcal{L}(x,\mu,\lambda) = f(x) + \mu(g(x)-a) + \lambda(h(x)-b)$ $h(x) = b$

Regularidad y Singularidad

Lagrange y KKT solo encuentran puntos críticos regulares, no singulares. Para encontrar los puntos singulares hay que buscar puntos en los que el Jacobiano no es de rango completo.

Nota: Al resolver problemas se deben buscar puntos regulares con condiciones KKT y aparte puntos singulares analizando la matriz Jacobiana. El mejor valor en la función objetivo es el óptimo.

Matriz Jacobiana

$$J(x) = \begin{pmatrix} \nabla g_1(x) \\ \nabla g_2(x) \\ \vdots \\ \nabla g_i(x) \end{pmatrix}$$

Suficiencia

Supongamos que el problema P) es convexo. Si x^* factible es un punto que satisface las condiciones de KKT (es regular), ese punto es mínimo global del problema.

Resumen KKT

Para que un punto crítico sea óptimo, se tienen que cumplir las condiciones de Lagrange v KKT:

Si, además, hay naturaleza de variables $(x \geq 0),$ entonces se cambia esta restricción a una de $\leq:$

$$-x \le 0$$

y se trabaja como una restricción más de desigualdad: $g(x) = -x \leq 0$