Table of Contents

1	Student Score Predictor2					
	1.1	Pro	ject Objective	2		
	1.2	Cor	ncepts Covered	2		
	1.2.	.1	Supervised Learning	2		
1.2.2		.2	Linear Regression	3		
	1.2.	.3	Cost Function: Mean Squared Error (MSE)	4		
	1.2.	.4	Model Evaluation Metrics	4		
	1.3	Pro	cess Followed	4		
	1.3.	.1	Data Collection:	4		
	1.3.	.2	Data Visualization:	4		
	1.3.	.3	Splitting the Data:	4		
	1.3.	.4	Training the Model:	4		
	1.3.	.5	Making Predictions:	4		
	1.4	Eva	lluation:	5		
	1.5	Key	v Learnings	5		
2	Tita	nic S	Survival Predictor	6		
	2.1	Pro	ject Objective	6		
	2.2	Cor	ncepts Covered	6		
	2.2.1		Supervised Learning (Classification)	6		
	2.2.	.2	Logistic Regression	6		
	2.2.	.3	Feature Encoding	6		
	2.2.	.4	Handling Missing Values	6		
	2.2.	.5	Feature Scaling	7		
	2.2.	.6	Model Evaluation Metrics	7		

	2.3 Pro	ocess Followed	8
	2.3.1	Data Collection:	8
	2.3.2	Data Cleaning & Preprocessing:	8
	2.3.3	Splitting the Data:	8
	2.3.4	Feature Scaling:	8
	2.3.5	Training the Model:	8
	2.3.6	Making Predictions:	8
	2.3.7	Evaluation:	8
	2.4 Key	y Learnings	8
3		ned Reflection	

PROJECT 1 - STUDENT SCORE PREDICTOR

1 Student Score Predictor

1.1 Project Objective

The goal was to predict a student's exam score based on the number of study hours they put in.

We used **Linear Regression** as this is a case of predicting a continuous numerical value.

1.2 Concepts Covered

1.2.1 Supervised Learning

o We had labeled data: hours studied (input) and scores obtained (output).

o The model learns the relationship between these two variables.

1.2.2 Linear Regression

o A statistical method that fits a straight line to data points, expressed as:

$$y = mX + c$$

where:

- yyy = predicted score
- XXX = study hours
- mmm = slope (change in score per hour of study)
- ccc = intercept (score if hours studied = 0)

1.2.3 Cost Function: Mean Squared Error (MSE)

- Measures the average squared difference between predicted and actual values.
- Formula:

$$MSE = rac{1}{n} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

Lower MSE = better fit.

1.2.4 Model Evaluation Metrics

- o **RMSE** (Root Mean Squared Error): \sqrt{MSE} , easier to interpret in the same units as the target.
- R² Score: Proportion of variance in the dependent variable explained by the model.

1.3 Process Followed

1.3.1 Data Collection:

We loaded the dataset (hours vs scores).

1.3.2 Data Visualization:

Used scatter plots to visually confirm a positive correlation.

1.3.3 Splitting the Data:

Used train test split to divide into training and testing sets.

1.3.4 Training the Model:

Fitted LinearRegression from scikit-learn on training data.

1.3.5 Making Predictions:

Used the model to predict test set results.

1.4 Evaluation:

o Calculated MSE, RMSE, and R² score to judge performance.

1.5 Key Learnings

- Linear regression is best suited when the relationship is linear.
- Overfitting can be avoided by splitting data into train and test sets.
- R² close to 1 indicates a strong model fit.

PROJECT 1 - TITANC SURMVAL PREDICTOR

2 Titanic Survival Predictor

2.1 Project Objective

The goal was to predict whether a passenger survived the Titanic disaster using passenger details such as class, age, sex, fare, and more. We used **Logistic Regression** as the target variable (survived or not) is binary.

2.2 Concepts Covered

2.2.1 Supervised Learning (Classification)

- Input features: passenger details
- Output label: Survived (1 = survived, 0 = did not survive)

2.2.2 Logistic Regression

 Unlike linear regression, logistic regression predicts probabilities of belonging to a class using the sigmoid function:

$$\sigma(z) = rac{1}{1+e^{-z}}$$

 The output is mapped between 0 and 1, then classified into binary categories.

2.2.3 Feature Encoding

 Converted categorical data (like "male"/"female") into numeric form using one-hot encoding.

2.2.4 Handling Missing Values

Missing numeric values (e.g., Age) were filled with the median.

o Missing categorical values were filled with the mode.

2.2.5 Feature Scaling

 Used StandardScaler to standardize numerical features so that they have a mean of 0 and standard deviation of 1. This helps gradient-based models converge faster.

2.2.6 Model Evaluation Metrics

- Accuracy: Proportion of correct predictions.
- Confusion Matrix: Table showing True Positives, False Positives, True
 Negatives, False Negatives.
- o Precision, Recall, F1-score:
 - Precision: TP / (TP + FP)
 - Recall: TP / (TP + FN)
 - F1-score: Harmonic mean of precision and recall.

2.3 Process Followed

2.3.1 Data Collection:

Loaded train.csv from the Titanic dataset.

2.3.2 Data Cleaning & Preprocessing:

- Dropped irrelevant columns like Name, Ticket, Cabin.
- Filled missing values:
 - Age → median value
 - Embarked → most frequent value
- Converted Sex and Embarked into numeric using one-hot encoding.

2.3.3 Splitting the Data:

Train/test split with 80% training and 20% validation.

2.3.4 Feature Scaling:

Applied StandardScaler to numerical columns.

2.3.5 Training the Model:

Fitted LogisticRegression to the scaled training data.

2.3.6 Making Predictions:

Predicted on the validation set.

2.3.7 Evaluation:

- Calculated accuracy.
- Displayed classification report and confusion matrix.

2.4 Key Learnings

Logistic regression is ideal for binary classification problems.

- Preprocessing is crucial models fail if missing values are not handled.
- Scaling improves model stability.
- Metrics beyond accuracy are important when dealing with imbalanced datasets.

3 Combined Reflection

Across both projects:

- We moved from predicting continuous values (regression) to predicting categorical outcomes (classification).
- We learned:
 - o How to load and preprocess datasets.
 - How to handle missing data.
 - o The difference between regression and classification models.
 - The importance of splitting data and evaluating models using proper metrics.
 - o How scaling and encoding impact model performance.