DIGITALNI UPRAVLJAČKI SISTEMI

DRUGI TEORIJSKI TEST

lme	e i prezime:		Broj indeksa:
1.	a.	su mu svi polovi (zaokružiti tačan odgovor i. sa leve strane imaginarne ose; ii. unutar jediničnog kruga; iii. realni, ali sa pozitivni realnim delo	om;
	b.	iv. polovi nemaju uticaja na stabilnos Diskretni sistem je opisan karakterističnim Ispitati stabilnost datog procesa.	
	je a. stabilar b. graničr c. nestab	n; no stabilan;	$f(z) = z^3 + 0.1 z^2 + 0.2 z + 1$. Dati sistem
	funkcijama a. b. c. Ob	$G(z) = \frac{0.9}{z - 0.1'},$ $G(s) = \frac{0.9}{s - 0.1'},$	emenski diskretni dok su drugi vremenski
4.	Sistem ima Greška u us	a funkciju povratnog prenosa $W(s) = \frac{1}{s^2(s+1)}$. Na ulazu u sistem je signal $f(t)=t^2h(t)$ Da li je moguće elimisati grešku u staljenom

5.	Dat je kontinualan sistem o	opisan funkcijom prenosa	$G(s) = \frac{Ka}{s(s+a)}$	Diskretizovati dati sistem
----	-----------------------------	--------------------------	----------------------------	----------------------------

- a. Tustinovom aproksimacijom:
- b. Impulsno-invarijantnom aproksimacijom: ______
- c. Step-invarijantnom aproksimacijom: _______.

Za tako dobijene diskretne aproksimacije ispitati (u zavisnosti od parametara K, α i T, gde je T vreme odabiranja) kašnjenje procesa i statičko pojačanje.

- 6. Pokazati da je rampa-invarijantna diskretna aproksimacija sistema opisanog funkcijom prenosa G(s) $\frac{(z-1)^2}{zT}\mathcal{Z}\{\frac{G(s)}{s^2}\}$. Rešenje dati na poleđini testa.
- 7. Dat je kontinualni proces opisan funkcijom prenosa $G(s) = \frac{1}{(s+1)(s+2)}$.
 - a. Transformisati dati proces primenom prve i druge Ojlerove aproksimacije.
 - b. Ispitati stabilnost dobijenih aproksimacija u zavisnosti od vremena odabiranja.
- 8. Napisati (u diskretnom vremenskom domenu) jednačinu idealnog PID regulatora.

- 9. Opisati postupak i razloge modifikacije diferencijalnog dejstva kod realnog PID regulatora. Odgovor dati na poleđini testa.
- 10. Opisati postupke za rešavanje problema zaletanja integralnog dejstva (*anti-windup* postupke) kod realnih PID regulatora.
 - a. Ukoliko je regulator implementiran u pozicionoj formi;
 - b. Ukoliko je regulator implementiran u inkrementalnoj formi.