Lab03 — Klasyfikacja zbioru Iris

Tomasz Królikowski nr albumu: 153790

Repozytorium tego ćwiczenia na GitHub https://github.com/krolikowski80/studia WSB/tree/main/Wstep do AI/lab 3

1. Opis zadania

Celem zadania była klasyfikacja zbioru danych Iris przy użyciu algorytmu K-Nearest Neighbors (KNN) z wykorzystaniem bibliotek Python:

- numpy
- matplotlib
- pandas
- scikit-learn

Wszystkie wyniki zostały automatycznie zapisane do katalogu wyniki/.

2. Zbiór danych Iris

150 próbek, 4 cechy:

- sepal length
- sepal width
- petal length
- petal width

Podział danych:

- 70% trening
- 30% test

3. Dobór liczby sąsiadów (N)

Wykres: Accuracy vs Liczba Sąsiadów (N)

accuracy_vs_n

Najlepsza liczba sąsiadów to: 1

4. Macierz konfuzji

Tabela wyników:

Załączony plik: wyniki/confusion_matrix.xlsx

Wykres:

confusion_matrix

5. Wizualizacja podziału klas

Rzeczywisty podział klas:

Predykcja modelu KNN:

scatter_predicted

Wizualizacja 3D:

Wizualizacja 3D - rzeczywiste klasy

 $scatter3d_real$

6. Granica decyzyjna

Wizualizacja granicy decyzyjnej modelu KNN dla N=1

7. Wnioski

- Najlepsza liczba sąsiadów to 1.
- Model uzyskał wysoką skuteczność klasyfikacji.
- Wyniki i wykresy jasno pokazują skuteczność algorytmu.
- Wizualizacje potwierdzają prawidłowy podział klas.

8. Załączniki

Wszystkie wyniki i wykresy znajdują się w katalogu wyniki/.

- Plik z dokładnościami: accuracy_scores.xlsx
- Plik z macierzą konfuzji: confusion_matrix.xlsx
- Wykresy .png