

#### UNIVERSIDADE FEDERAL DO CEARÁ

Campus Quixadá

Código: QXD0043

Descrição: Sistemas Distribuídos

# Capítulo 1 – Caracterização de Sistemas Distribuídos

Prof. Rafael Braga

## Agenda

- Introdução;
- Exemplos de sistemas distribuídos;
- Tendências em sistemas distribuídos;
  - Interligação em rede pervasiva e a Internet moderna;
  - Computação móvel e ubíqua;
  - Sistemas multimídia distribuídos;
  - Computação distribuída como serviço público;
- Enfoque no compartilhamento de recursos;
- Desafios;
- Estudo de caso: a World Wide Web;
- Resumo.

## Motivação

- Quais palavras você associa a Sistemas Distribuídos?
- https://www.menti.co m/guq4revsy8
- Código de votação:
  7798 9226



## Introdução

- Um Sistema Distribuído (SD) é aquele no qual os componentes localizados em computadores interligados em rede se comunicam e coordenam suas ações apenas passando mensagens.
  - Concorrência de componentes: processos executam em paralelo;
  - Falta de um relógio global: coordenação por mensagens;
  - Falhas de componentes independentes: projeto pensado na possibilidade de ocorrência de falhas.

## Introdução

- A principal motivação para construir e usar sistemas distribuídos é proveniente do desejo de compartilhar recursos. São recursos:
  - Componentes de *hardware* (discos, impressoras);
  - Entidades de software:
    - arquivos,
    - banco de dados,
    - objetos de dados de todos os tipos: fluxo de quadros de vídeos ou conexão de áudio de chamada de VOIP.

## Exemplos de Sistemas Distribuídos

| Finance and commerce                  | eCommerce e.g. Amazon and eBay, PayPal, online banking and trading                              |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------|--|
| The information society               | Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace. |  |
| Creative industries and entertainment | online gaming, music and film in the home, user-generated content, e.g. YouTube, Flickr         |  |
| Healthcare                            | health informatics, on online patient records, monitoring patients                              |  |
| Education                             | e-learning, virtual learning environments; distance learning                                    |  |
| Transport and logistics               | GPS in route finding systems, map services: Google Maps, Google Earth                           |  |
| Science                               | The Grid as an enabling technology for collaboration between scientists                         |  |
| Environmental management              | sensor technology to monitor earthquakes, floods or tsunamis                                    |  |

## Exemplos de Sistemas Distribuídos

- Pesquisa na Web
  - Valores indicam mais de 10 bilhões por mês;
  - Consiste em indexar todo o conteúdo da Web;
  - Estima-se que na Web há mais 63 bilhões da páginas e 1 trilhão de endereços únicos! -> processamento.
  - Destaque para a infraestrutura do Google.

#### Compartilhamento de Recursos e a Web

- Modelo Cliente servidor;
- A World Wide Web (www)
  - HTML
  - URLs
  - HTTP
  - Páginas dinâmicas
  - Serviços web (web services)

## Google

- Grande número de computadores;
- Sistema de arquivos distribuído;
- Armazenamento distribuído;
- Modelo de programação (paralelo e distribuído)



## Massively multiplayer online games (MMOGs)

- Jogos online com vários jogadores que oferecem experiência imersiva;
  - EverQuest II, da Sony;
  - EVE Online, da CCP Games;
- Sistemas capazes de suportar mais de 50.000 usuários online e simultâneos.
- Desafios:
  - Ter baixo tempo de resposta;
  - Propagação de eventos;
  - Manutenção de visão coerente;



## Negócios Financeiros

- Estão na vanguarda da tecnologia de SD;
- A ênfase está em itens de interesse (eventos);
- Exemplos de eventos:
  - Queda no preço de uma ação;
  - Comunicado dos últimos resultados do desemprego;
- Normalmente usam um estilo arquitetural conhecido como sistemas distribuídos baseados em eventos.

## Negócios Financeiros



Figura 1.2 Um exemplo de sistema de negócios financeiros.

#### Tendências em Sistemas Distribuídos

- O surgimento de tecnologia de redes pervasivas;
- O surgimento de computação ubíqua, combinado ao desejo de suportar mobilidade do usuário em SD;
- A crescente demando por serviços multimídia;
- A visão dos sistemas distribuídos como um serviço público.

#### Interligação em rede pervasiva e a Internet Moderna

 WiFi, WiMAX, Bluetooth, redes de telefonia móvel de 3ª e 4ª geração;



Figura 1.3 Uma parte típica da Internet.

## Computação móvel

- Integração de equipamentos pequenos e portáteis com os SD's;
- Computação móvel: é a execução de tarefas de computação enquanto o usuário está se deslocando de um lugar a outro ou visitando lugares diferentes;
- Problema:
  - conectividade variável (desconexão);

## Computação ubíqua

 Computação ubíqua tem como objetivo tornar a interação homem-computador invisível. Não invisível como se não pudesse ver, mas de uma forma que as pessoas nem percebam que estão dando comandos a um computador.

## Computação móvel e ubíqua



Figura 1.4 Equipamentos portáteis em um sistema distribuído.

#### Sistemas multimídia distribuídos

- É a capacidade de suportar diversos tipos de mídia de maneira integrada.
- Exemplos:
  - Transmissões de televisão ao vivo ou gravadas;
  - Acesso a catálogos de filmes (sob demanda);
  - Acesso a bibliotecas de músicas;
  - Teleconferência e telefonia integrados;
  - Webcasting.

## Computação distribuída como serviço público

- Commodity como água e eletricidade;
- Aplica-se a recursos físicos e serviços lógicos;
- Computação em nuvem
  - É definida como um conjunto de serviços de aplicativo, armazenamento e computação baseados na Internet.
  - Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service (laaS).

## Computação em Nuvem



Figura 1.5 Computação em nuvem.

## Computação em Nuvem

- Geralmente, as nuvens são implementadas em cluster de computadores para fornecer a escala e o desempenho necessários exigidos por tais serviços.
- Um cluster de computadores é um conjunto de computadores interligados que cooperam estreitamente para fornecer um único recurso de computação integrado de alto desempenho.

#### Enfoque no compartilhamento de recursos

- De modo geral as pessoas conhecem a importância do compartilhamento, mas não sabem como isso poderia ser implementado...
- Na prática, os padrões de compartilhamento de recursos variam amplamente na abrangência e no quanto os usuários trabalham em conjunto.
- O padrão de compartilhamento e a distribuição geográfica dos usuários determinam quais mecanismos o sistema deve fornecer para coordenar as ações dos usuários

#### Enfoque no compartilhamento de recursos

- O termo serviço é usado para designar uma parte distinta de um sistema computacional que gerencia um conjunto de recursos relacionados e apresenta sua funcionalidade para usuários e aplicativos.
  - Serviço de sistema de arquivos;
  - Serviço de impressão;
- O único acesso que temos ao serviço é por intermédio do conjunto de operações (métodos) que ele exporta.
  - Leitura, escrita e exclusão dos arquivos.

#### Enfoque no compartilhamento de recursos

- O termo servidor se refere a um programa em execução (um processo), que aceita pedidos de programas para efetuar um serviço.
- Os processos que realizam os pedidos são referidos como clientes e a estratégia geral é conhecida como computação cliente-servidor.
- O mesmo processo pode ser tanto cliente como servidor, pois, às vezes, os servidores solicitam operações em outros servidores.

#### **Desafios**

- Heterogeneidade;
- Sistemas abertos;
- Segurança;
- Escalabilidade;
- Tratamento de falhas;
- Concorrência;
- Transparência;
- Qualidade de serviço;

## Heterogeneidade

- A heterogeneidade (isto é, variedade e diferença) se aplica aos seguintes aspectos:
  - Redes;
  - Hardware de computador;
  - Sistemas operacionais;
  - Linguagens de programação;
  - Implementações de diferentes desenvolvedores.

## Heterogeneidade

- Middleaware refere-se a uma camada de software que fornece uma abstração de programação, assim como o mascaramento da heterogeneidade das redes, do hardware, dos sistemas operacionais e das linguagens de programação subjacentes.
- Exemplos:
  - Common Object Request Broker (CORBA)
  - Remote Method Invocation (RMI)

### Heterogeneidade e migração de código

- O termo migração de código, ou ainda, código móvel, é usado para se referir ao código de programa que pode ser transferido de um computador para outro e ser executado no destino;
- A estratégia de máquina virtual oferece uma maneira de tornar um código executável em uma variedade de computadores hospedeiros;
- Atualmente, a forma mais usada de código móvel é a inclusão de programas Java Script em algumas páginas Web;

#### Sistemas abertos

- Diz-se que um sistema computacional é aberto quando ele pode ser estendido e reimplementado de várias maneiras.
- Exemplos:
  - Requests for Comments (RFC);
  - World Wide Web Consortium (W3C);
- Resumindo:
  - Os sistemas abertos são caracterizados pelo fato de suas principais interfaces serem publicadas.

## Segurança

- O desafio é enviar informações sigilosas em uma ou mais mensagens, por uma rede, de maneira segura.
- Envolve também saber com certeza a identidade do usuário, ou outro agente, em nome de quem uma mensagem foi enviada.
- Esses problemas podem ser resolvidos com o uso de técnicas de criptografia;

## Segurança

- Ataque de negação de serviço (Denial of Service): bombardeando o serviço com um número grande de pedidos desnecessários, para sobrecarregar o servidor.
- Segurança de código móvel: um código móvel precisa ser manipulado com cuidado.
  - Exemplo: anexo de e-mail;



#### Escalabilidade

- Um sistema é escalável se permanece eficiente quando há um aumento significativo no número de recursos e de usuários.
- Desafios:
  - Controlar o custo dos recursos físicos O(n);
  - Controlar a perda de desempenho;
  - Impedir que os recursos de software se esgotem;
  - Evitar gargalos de desempenho.
- Principais técnicas
  - Replicação
  - Caching
  - Concorrência e Paralelismo

#### Escalabilidade



#### Escalabilidade

| Data          | Computadores | Servidores Web | Percentual |
|---------------|--------------|----------------|------------|
| Julho de 1993 | 1.776.000    | 130            | 0,008      |
| Julho de 1995 | 6.642.000    | 23.500         | 0,4        |
| Julho de 1997 | 19.540.000   | 1.203.096      | 6          |
| Julho de 1999 | 56.218.000   | 6.598.697      | 12         |
| Julho de 2001 | 125.888.197  | 31.299.592     | 25         |
| Julho de 2003 | ~200.000.000 | 42.298.371     | 21         |
| Julho de 2005 | 353.284.187  | 67.571.581     | 19         |

Figura 1.6 Crescimento da Internet (computadores e servidores Web).

#### Tolerância a Falhas

- Falhas são inevitáveis em sistemas computacionais
  - Resultados incorretos;
  - Interrupção não planejada do serviço antes de sua conclusão;
- Falhas em sistemas distribuídos são parciais
- Técnicas de tratamento de falhas mais comuns:
  - Detecção (ex: bits de paridade, somas de verificação)
  - Ocultamento (ex: retransmissão de mensagens)
  - Tolerância (ex: Informar o usuário do sistemas)
  - Recuperação (ex: Transações em BD's)
  - Redundância (ex: replicação de tabelas no DNS)
- Sistemas distribuídos devem oferecer alta disponibilidade de recursos mesmo diante da ocorrência de falhas
  - Disponibilidade: medida da proporção do tempo que um recurso está disponível para uso.

#### Concorrência

- Suporte para múltiplos acessos simultâneos a um ou mais recursos compartilhados
  - Possibilidade de inconsistências quando os recursos são alterados
- Serviços que representam recursos compartilhados devem ser responsáveis por garantir que as operações de acesso os mantenham em um estado consistente
  - Válido para servidores e objetos de aplicações
- Técnicas mais comuns:
  - Sincronização de acesso (ex: exclusão mútua distribuída)
  - Protocolos de controle de concorrência (ex: 2PC)

- Abstração/Ocultação, para usuários e programadores de aplicação, da separação dos componentes em um sistema distribuído
  - Sistema percebido como um "todo" coerente ao invés de uma coleção de partes independentes
- Uma medida de sucesso de um sistema distribuído é dada pela sua transparência:
  - Em que medida é indistinguível de um sistema centralizado com a mesma funcionalidade?

- Transparência de acesso:
  - Permite o acesso a componentes remotos e locais através das mesmas operações, ex:
    - Network File System
    - Google Docs
  - Transparência de localização
    - Permite o acesso a componentes sem conhecimento da sua localização física
    - Existência de um mecanismo que determina a localização baseada num nome
    - URL

- Transparência de concorrência, permite a execução de múltiplas operações sobre o mesmo conjunto de recursos sem causar interferência entre elas, ex: impressoras compartilhadas, leilão virtual.
- Transparência de escala, permite a expansão do sistema e de suas aplicações sem exigir mudanças significativas na infraestrutura existente
- Transparência de mobilidade (migração), permite a realocação de recursos e aplicações sem afetar o seu uso

- Transparência de replicação
  - O usuário desconhece a existência de várias cópias do recurso
  - Fundamental para o desempenho e tolerância a falhas

- Transparência de falhas
  - A presença de falhas no SD passa desapercebida pelos usuários;
  - Implica na ausência de um ponto único de falha



- Transparência de desempenho
  - Recursos adicionais são adicionados para suprir a nova demanda.
  - Serviços oferecidos pela Amazon (elasticidade)



- As duas formas mais importantes são:
  - Acesso e localização!
  - Suas presenças (ou ausências) afetam profundamente a maneira como os recursos são utilizados em um sistema distribuído
  - Também conhecidas como transparência de rede
- Exemplos de falta de transparência
  - Sistema distribuído onde só é possível acessar arquivos remotos via FTP.
  - Serviço de jogos online que precisa ser tirado do ar para acrescentar ou trocar um servidor;
  - Mais algum?

- Níveis de transparência
  - Nível de usuário: distribuição física dos recursos é imperceptível para os usuários das aplicações (ex: navegador da Web);
  - Nível do programador: distribuição física dos recursos é imperceptível tanto para os usuários quanto para os programadores das aplicações (ex: programação com middleware ou SO distribuído)
- Importante: transparência total pode ser indesejável ou até mesmo impossível na prática!!

#### Ciladas

- Premissas falsas que programadores inexperientes podem adotar ao implementar um Sistema Distribuído pela primeira vez:
  - A rede é confiável
  - A rede é segura
  - A rede é homogênea
  - A topologia não muda
  - A latência é zero
  - A largura de banda é infinita
  - O custo do transporte é zero
  - Há só um administrador

#### Exercícios

 Fazer todos os exercícios do capítulo 1 e entregar na próxima aula em modo manuscrito.