Math 317 - Numerical Analysis

Tiago Salvador

McGill University

4 October, 2016

Theorem

For a fixed n = 1, 2, ..., let $f \in f^{n+1}[a, b]$ and $\{x_0, ..., x_n\}$ be distinct on [a, b]. Then for any $x \in [a, b]$, there exists $\xi(x) \in (a, b)$ such that

$$f(x) = L_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)\cdots(x-x_n).$$

Moreover,

$$|f(x)-L_n(x)| \leq \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} |(x-x_0)\cdots(x-x_n)|,$$

where
$$M_{n+1} = \max_{x \in [a,b]} |f^{(n+1)}(x)|$$
.

Equally-spaced nodes

In practice, the nodes are often chosen with equal spacing:

$$x_k = a + kh$$
 where for $k = 0, ..., n$.

where $h = \frac{b-a}{n}$.

Theorem (error bound equally-spaced nodes)

For equally-spaced nodes, we have the following error estimate for Lagrange interpolation

$$|f(x)-L_n(x)|\leq M_{n+1}\frac{h^{n+1}}{4(n+1)}.$$

Proof: See Assignment 2.

Runge's phenomenon

Q: As $n \to \infty$ $(h \to 0)$, does the error $|f(x) - L_n(x)| \to 0$ for all $x \in [a, b]$?

A: No... consider the function $f(x) = \frac{1}{1+25x^2}$.

Figure: Lagrange interpolation on equally-spaced nodes.

Runge's phenomenon

Figure: Chebyshev interpolation.

Runge's phenomenon

Figure: Hermite interpolation on equally-spaced nodes.

Hermite vs Lagrange

Figure: Comparison between Hermite and Lagrange interpolation on equally space nodes: $f(x) = \sin(x)$ (left); Runge function (right).

Splines vs Lagrange

Figure: Comparison between clampled cubic spline and Lagrange interpolation on equally space nodes: $f(x) = \sin(5x)$ (left); Runge function (right).

Natural vs Clamped

Figure: Comparison between clampled and natural cubic spline for $f(x) = x^4 + x + 1$.