Отчёт по работе 5.2.2 и 5.2.3

Изучение спектров атома водорода и молекулы йода Карташов Констанин, Бичина Марина Б04-005

I Анотация

Цель работы: Изучить спектр излучение водорода. Изучить спектр поглощения паров йода.

Оборудование:

- ⊳ Монохроматор-спектрометр
- ⊳ Неоновая и Ртутная лампа для калибровки
- ⊳ Водородная лампа
- Кювета с парами йода и лампа накаливания

II Теоретическая часть

і Спектр водорода

Длины волн спектральных линий водородоподобных атомов описываются формулой Бальмера:

$$\frac{1}{\lambda_{n,m}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),$$

которая для серии Бальмера водорода $(n=2, m \in \{3,4,5,6\})$ принимает вид:

$$\frac{1}{\lambda} = R\left(\frac{1}{4} - \frac{1}{m^2}\right) \tag{1}$$

іі Спектр йода

Оптические переходы (переходы, связанные с излучением фотонов в видимом диапазоне длин волн, т. е. фотонов с энергией порядка двух электрон-вольт) соответствуют переходам между различными электронными состояниями молекулы. При этом обычно происходят также изменения её вращательного и колебательного состояний. На рис. 1 показаны энергетические уровни двухатомной молекулы: электронные энергетические уровни обозначены пунктирными линиями, а электронноколебательные сплошными линями. При больших колебательных энергиях электронноколебательные уровни начинают сближаться. При слишком большой энергии колебания происходит диссоциация молекулы.

Энергетическое положение линий поглощения описывается выражением:

$$h\nu_{0,n_2} = E_2 - E_1 + h\nu_2 \left(n_2 + \frac{1}{2}\right) - \frac{h\nu_1}{2}$$
 (2)

Рис. 1: Электронные и электронно-колебательные энергетические уровни двухатомной молекулы

Линия	Ne, 1	Ne, 2	Ne, 3	Ne, 4	Ne, 5	Ne, 6	Ne, 7	Ne, 8
θ	2638	2600	2542	2536	2500	2476	2466	2428
λ , Å	7032.41	6929.47	6717.04	6678.28	6598.96	6532.88	6506.53	6402.24
Линия	Ne, 9	Ne, 10	Ne, 11	Ne, 12	Ne, 13	Ne, 14	Ne, 15	Ne, 16
θ	Ne, 9	Ne, 10	Ne, 11	Ne, 12	Ne, 13	Ne, 14	Ne, 15	Ne, 16
λ , Å	6382.99	6334.42	6304.79	6266.49	6217.26	6163.59	6143.06	6096.14
Линия	Ne, 17	Ne, 18	Ne, 19	Ne, 20	Ne, 21	Ne, 22	Ne, 23	_
θ	2296	2278	2250	2234	2206	2186	1938	_
λ , Å	6074.34	6030	5975.53	5944.83	5881.89	5852.49	5400.56	_
Линия	Hg, 1	Hg, 2	Hg, 3	Hg, 4	Hg, 5	Hg, 6	_	_
θ	2156	2142	1960	1542	874	314	_	_
λ , Å	5791	5770	5461	4916	4358	4047	_	_

Таблица 1: Калибровочные данные

III Экспериментальная часть

і Калибровка спектрометра

Приготовим спектрометр к работе. Добьёмся попадания сфокусированного света от неоновой лампы на входную щель спектрометра. Подберём размер щели таким образом, чтобы спектральные лини были отчётливо видны. Запишем показания барабана θ для различных спектральных линий. Проделаем то же самое для ртутной лампы. Данные записаны в таблице 1. По полученным данным построим калибровочный график (рис. 2). Калибровочную кривую найдём методом наименьших квадратов для многочлена четвёртой степени (даёт наилучшие результаты в данной задаче). Полученное значение:

$$f_{\text{калиб}}(\theta) = 1.036 \cdot 10^{-10} \theta^4 - 3.938 \cdot 10^{-7} \theta^3 + 0.0007589 \theta^2 - 0.008151\theta + 3986$$
 (3)

Точность определения показаний спектрометра $\Delta \theta \approx \pm 5$. Точность определения длины волны:

$$\Delta \lambda = f_{\text{калиб}}'(\theta) \cdot \Delta \theta \approx (4.142 \cdot 10^{-10} \theta^3 - 1.181 \cdot 10^{-6} \theta^2 + 0.001518 \theta - 0.008151) \Delta \theta \quad (4)$$

Рис. 2: Измеренные значения и калибровочный график

Линия	H_{α}	H_{β}	H_{γ}	H_{δ}
θ	2486	1490	846	428
λ , Å	6560	4867	4337	4094
$\Delta \lambda$, Å	15	5	4	3

Таблица 2: Спектральные линии водорода

іі Спектр Водорода

Заменим ртутную лампу на водородную лампу. Получим в спектрометре изображение спектральных линий водорода. Измерим показание спектрометра для каждой линии, затем по калибровочному графику найдём длины волн спектров. Определим ошибки по формуле (4). Данные запишем в табл. 2.

По измеренным данным построим график зависимости $1/\lambda(n)$, где n=3 соответствует линии H_{α} , n=4 – H_{β} , n=5 – H_{γ} , n=6 – H_{δ} (рис. 3). Видим, что отношение длин волн соответствует формуле (1). Найдём значение постоянной Ридберга R построением кривой по формуле (1) численным методом наименьших квадратов. Получим значение с погрешностью метода $R=10.978\pm0.007$ мкм⁻¹

ііі Спектр молекулы йода

Заменим водородную лампу на кювету с газом йода и осветим её сзади лампой накаливания. Получим на окуляре спектрометра серию тёмных полос поглощения.

Рис. 3: График зависимости $1/\lambda(n)$

Линия	θ	λ , Å	$\Delta \lambda$, Å	\mathcal{E}_{arphi} , э B	$\Delta \mathcal{E}_{\varphi}$, эВ
$n_{1,0}$	2368	6249	13	1.984	0.004
$n_{1,5}$	2280	6043	11	2.052	0.004
$n_{ m rp}$	1778	5192	7	2.388	0.003

Таблица 3: Спектральные линии йода

Найдём одну из самых длинноволновых хорошо видных линий поглощения $(n_{1,0})$, линию $(n_{1,5})$ — шестой по счёту линии от выбранной, (n_{rp}) — границу схождения спектра. Вычислим длины волн соответствующие этим линиям и энергии соответствующих квантов света, ошибки найдём по формуле (4). Данные занесём в таблицу 3.

Вычислим энергию колебательного кванта возбуждённого состояния молекулы йода:

$$\mathcal{E}_2 = \frac{\mathcal{E}_{1,5} - \mathcal{E}_{1,0}}{5} = 0.0136 \text{ } 9B, \ \Delta \mathcal{E}_2 = \frac{\sqrt{\Delta \mathcal{E}_{1,5}^2 - \Delta \mathcal{E}_{1,0}^2}}{5} \approx 0.001 \text{ } 9B,$$

получили $h\nu_2 = 0.014 \pm 0.001$ эВ.

Пользуясь тем, что энергия колебательного кванта в основном состоянии $h\nu_1=0.027$ эВ, а энергия возбуждения атом $E_A=0.94$ эВ, найдём энергию электронного

перехода по формуле (2):

$$h\nu_{\text{\tiny 3Л}} = h\nu_{1,0} - \frac{h\nu_2}{2} + \frac{3h\nu_1}{2} = 2.017 \pm 0.004 \text{ B}.$$

Определим энергию диссоциации молекулы в основном D_1 и возбуждённом состоянии D_2 :

$$D_1 = h\nu_{\rm rp} - E_A = 1.448 \pm 0.003 \ {\rm 9B}, \ D_2 = h\nu_{\rm rp} - h\nu_{\rm 9J} = 0.371 \pm 0.005 \ {\rm 9B}.$$

IV Выводы

- 1. Получили калибровочный график для спектрометра. Оценили погрешность значений.
- 2. Измерили спектр водорода. По полученным данным проверили формулу Ридберга и получили значение постоянной Ридберга $R=10.978\pm0.007~\rm mkm^{-1}$, что соответствует табличному значению $10.973731~\rm mkm^{-1}$.
- 3. Нашли энергии: колебательного кванта возбуждённого состояния молекулы йода $h\nu_2=0.014\pm0.001$ эВ, электронного перехода $h\nu_{\rm эл}=2.017\pm0.004$ эВ, диссоциации молекулы в основном состоянии $D_1=1.448\pm0.003$ эВ, диссоциации молекулы в возбуждённом состоянии $D_2=0.371\pm0.005$ эВ.