ML/DL for Everyone with PYTORCH

Lecture 10: CNN

Call for Comments

Please feel free to add comments directly on these slides.

Other slides: http://bit.ly/PyTorchZeroAll

ML/DL for Everyone with PYTORCH

Lecture 10: CNN

CNN

CNN for CT images

Asan Medical Center & Microsoft Medical Bigdata Contest Winner by GeunYoung Lee and Alex Kim https://www.slideshare.net/GYLee3/ss-72966495

Convolution layer and max pooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

https://ireneli.eu/2016/02/03/deep-learning-05-talk-about-convolutional-neural-network%EF%BC%88cnn%EF%BC%89/

Convolution in Action

Simple convolution layer Stride: 1x1

Simple convolution layer

Image: 1,3,3,1 image, Filter: 2,2,1,1, Stride: 1x1, No Padding

Simple convolution layer

Image: 1,3,3,1 image, Filter: 2,2,1,1, Stride: 1x1, With padding

Convolution with padding in Action

Convolution with stride in Action

Max pooling

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8		
3	4		

Max Pooling in Action

Avg Pooling in Action

3	3	2	1	0			
0	0	1	3	1	1.7	1.7	1.7
3	1	2	2	3	1.0	1.2	1.8
2	0	0	2	2	1.1	0.8	1.3
2	0	0	0	1			

CNN

Locally Connected Features


```
class Net(nn.Module):
   def init (self):
       super(Net, self).__init__()
       self.conv1 = nn.Conv2d(1, 10, kernel size=5)
       self.conv2 = nn.Conv2d(10, 20, kernel size=5)
       self.mp = nn.MaxPool2d(2)
       self.fc = nn.Linear(100???, 10) # ??? -> 10
   def forward(self, x):
       in size = x.size(0)
       x = F.relu(self.mp(self.conv1(x)))
       x = F.relu(self.mp(self.conv2(x)))
       x = x.view(in size, -1) # flatten the tensor
       x = self.fc(x)
       return F.log softmax(x)
```



```
class Net(nn.Module):
   def init (self):
       super(Net, self). init ()
       self.conv1 = nn.Conv2d(1, 10, kernel size=5)
       self.conv2 = nn.Conv2d(10, 20, kernel size=5)
       self.mp = nn.MaxPool2d(2)
       self.fc = nn.Linear(100???, 10) # ??? -> 10
   def forward(self, x):
       in size = x.size(0)
       x = F.relu(self.mp(self.conv1(x)))
       x = F.relu(self.mp(self.conv2(x)))
       x = x.view(in_size, -1) # flatten the tensor
       x = self.fc(x)
       return F.log softmax(x)
```

RuntimeError: size mismatch, m1: [64 x **320**], m2: [100 x 10]


```
class Net(nn.Module):
    def init (self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(1, 10, kernel size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel size=5)
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(\frac{320}{10}, 10) # 320 -> 10
    def forward(self, x):
        in size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = F.relu(self.mp(self.conv2(x)))
        x = x.view(in_size, -1) # flatten the tensor
        x = self.fc(x)
        return F.log softmax(x)
```

RuntimeError: size mismatch, m1: [64 x **320**], m2: [100 x 10]


```
class Net(nn.Module):
   def init (self):
       super(Net, self). init ()
       self.conv1 = nn.Conv2d(1, 10, kernel size=5)
       self.conv2 = nn.Conv2d(10, 20, kernel size=5)
       self.mp = nn.MaxPool2d(2)
       self.fc = nn.Linear(320, 10) # 320 -> 10
   def forward(self, x):
       in size = x.size(0)
       x = F.relu(self.mp(self.conv1(x)))
       x = F.relu(self.mp(self.conv2(x)))
       x = x.view(in size, -1) # flatten the tensor
       x = self.fc(x)
       return F.log softmax(x)
```

```
Train Epoch: 9 [46080/60000 (77%)]
                                         Loss: 0.108415
Train Epoch: 9 [46720/60000 (78%)]
                                         Loss: 0.140700
Train Epoch: 9 [47360/60000 (79%)]
                                         Loss: 0.090830
Train Epoch: 9 [48000/60000 (80%)]
                                         Loss: 0.031640
Train Epoch: 9 [48640/60000 (81%)]
                                         Loss: 0.014934
Train Epoch: 9 [49280/60000 (82%)]
                                         Loss: 0.090210
Train Epoch: 9 [49920/60000 (83%)]
                                         Loss: 0.074975
Train Epoch: 9 [50560/60000 (84%)]
                                         Loss: 0.058671
Train Epoch: 9 [51200/60000 (85%)]
                                         Loss: 0.023464
Train Epoch: 9 [51840/60000 (86%)]
                                         Loss: 0.018025
Train Epoch: 9 [52480/60000 (87%)]
                                         Loss: 0.098865
Train Epoch: 9 [53120/60000 (88%)]
                                         Loss: 0.013985
Train Epoch: 9 [53760/60000 (90%)]
                                         Loss: 0.070476
Train Epoch: 9 [54400/60000 (91%)]
                                         Loss: 0.065411
Train Epoch: 9 [55040/60000 (92%)]
                                         Loss: 0.028783
Train Epoch: 9 [55680/60000 (93%)]
                                         Loss: 0.008333
Train Epoch: 9 [56320/60000 (94%)]
                                         Loss: 0.020412
Train Epoch: 9 [56960/60000 (95%)]
                                         Loss: 0.036749
Train Epoch: 9 [57600/60000 (96%)]
                                         Loss: 0.163087
Train Epoch: 9 [58240/60000 (97%)]
                                         Loss: 0.117539
Train Epoch: 9 [58880/60000 (98%)]
                                         Loss: 0.032256
Train Epoch: 9 [59520/60000 (99%)]
                                         Loss: 0.026360
Test set: Average loss: 0.0483, Accuracy: 9846/10000 (98%)
```

Exercise 10-1: Implement CNN more layers

ML/DL for Everyone with PYTERCH Lecture 10-1: Advanced CNN

INCEPTION MODULES

INCEPTION MODULES 3x3 1

POOLING?

5x5 ?

INCEPTION MODULES

https://www.youtube.com/watch?v=VxhSouuSZDY

Why 1x1 convolution

Figure 6. 5×5 convolutions inside the Inception module using the naive model

Without 1x1 convolution:

 $5^2 * 28^2 * 192 * 32 = 120,422,400$ operations

Figure 7. 1×1 convolutions serve as the dimensionality reducers that limit the number of expensive 5×5 convolutions that follow

With 1x1 convolution:

$$1^2 * 28^2 * 192 * 16$$

$$+5^2 * 28^2 * 16 * 32$$

= 12,443,648 operations

Inception Module

Inception Module

```
| 1x1 Conv (24) | 1x1 Conv (24) | 1x1 Conv (16) | 1x1 Conv (16
```

```
class InceptionA(nn.Module):
   def init (self, in channels):
       super(InceptionA, self). init ()
       self.branch1x1 = nn.Conv2d(in channels, 16, kernel size=1)
       self.branch5x5 1 = nn.Conv2d(in channels, 16, kernel size=1)
       self.branch5x5 2 = nn.Conv2d(16, 24, kernel size=5, padding=2)
       self.branch3x3dbl 1 = nn.Conv2d(in channels, 16, kernel size=1)
       self.branch3x3dbl 2 = nn.Conv2d(16, 24, kernel size=3, padding=1)
       self.branch3x3dbl 3 = nn.Conv2d(24, 24, kernel size=3, padding=1)
       self.branch pool = nn.Conv2d(in channels, 24, kernel size=1)
   def forward(self, x):
       branch1x1 = self.branch1x1(x)
       branch5x5 = self.branch5x5 1(x)
       branch5x5 = self.branch5x5 2(branch5x5)
       branch3x3dbl = self.branch3x3dbl 1(x)
       branch3x3dbl = self.branch3x3dbl 2(branch3x3dbl)
       branch3x3dbl = self.branch3x3dbl 3(branch3x3dbl)
       branch pool = F.avg pool2d(x, kernel size=3, stride=1, padding=1)
       branch pool = self.branch pool(branch pool)
       outputs = [branch1x1, branch5x5, branch3x3dbl, branch pool]
       return torch.cat(outputs, 1)
```

```
class Net(nn.Module):
   def init (self):
       super(Net, self). init ()
       self.conv1 = nn.Conv2d(1, 10, kernel size=5)
       self.conv2 = nn.Conv2d(88, 20, kernel size=5)
       self.incept1 = InceptionA(in channels=10)
       self.incept2 = InceptionA(in channels=20)
       self.mp = nn.MaxPool2d(2)
       self.fc = nn.Linear(1408, 10)
   def forward(self, x):
       in size = x.size(0)
       x = F.relu(self.mp(self.conv1(x)))
       x = self.incept1(x)
       x = F.relu(self.mp(self.conv2(x)))
       x = self.incept2(x)
       x = x.view(in size, -1) # flatten the tensor
       x = self.fc(x)
       return F.log softmax(x)
```

Inception Module

```
Train Epoch: 9 [44800/60000 (75%)]
                                        Loss: 0.064180
Train Epoch: 9 [45440/60000 (76%)]
                                        Loss: 0.020339
Train Epoch: 9 [46080/60000 (77%)]
                                        Loss: 0.061476
Train Epoch: 9 [46720/60000 (78%)]
                                        Loss: 0.039662
Train Epoch: 9 [47360/60000 (79%)]
                                        Loss: 0.026798
Train Epoch: 9 [48000/60000 (80%)]
                                        Loss: 0.071569
Train Epoch: 9 [48640/60000 (81%)]
                                        Loss: 0.003835
Train Epoch: 9 [49280/60000 (82%)]
                                        Loss: 0.005564
Train Epoch: 9 [49920/60000 (83%)]
                                        Loss: 0.020116
Train Epoch: 9 [50560/60000 (84%)]
                                        Loss: 0.128114
Train Epoch: 9 [51200/60000 (85%)]
                                        Loss: 0.016599
                                        Loss: 0.006995
Train Epoch: 9 [51840/60000 (86%)]
Train Epoch: 9 [52480/60000 (87%)]
                                        Loss: 0.111267
Train Epoch: 9 [53120/60000 (88%)]
                                        Loss: 0.052126
Train Epoch: 9 [53760/60000 (90%)]
                                        Loss: 0.034962
Train Epoch: 9 [54400/60000 (91%)]
                                        Loss: 0.029465
Train Epoch: 9 [55040/60000 (92%)]
                                        Loss: 0.031482
Train Epoch: 9 [55680/60000 (93%)]
                                        Loss: 0.015132
Train Epoch: 9 [56320/60000 (94%)]
                                        Loss: 0.010435
Train Epoch: 9 [56960/60000 (95%)]
                                        Loss: 0.014344
Train Epoch: 9 [57600/60000 (96%)]
                                        Loss: 0.014952
Train Epoch: 9 [58240/60000 (97%)]
                                        Loss: 0.153132
Train Epoch: 9 [58880/60000 (98%)]
                                        Loss: 0.112024
Train Epoch: 9 [59520/60000 (99%)]
                                        Loss: 0.009406
```

Test set: Average loss: 0.0470, Accuracy: 9866/10000 (99%)

```
class Net(nn.Module):
   def init (self):
       super(Net, self). init ()
       self.conv1 = nn.Conv2d(1, 10, kernel size=5)
       self.conv2 = nn.Conv2d(88, 20, kernel size=5)
       self.incept1 = InceptionA(in channels=10)
       self.incept2 = InceptionA(in channels=20)
       self.mp = nn.MaxPool2d(2)
       self.fc = nn.Linear(1408, 10)
   def forward(self, x):
       in size = x.size(0)
       x = F.relu(self.mp(self.conv1(x)))
       x = self.incept1(x)
       x = F.relu(self.mp(self.conv2(x)))
       x = self.incept2(x)
       x = x.view(in size, -1) # flatten the tensor
       x = self.fc(x)
       return F.log softmax(x)
```

Exercise 10-2: Implement full inception v3/v4

Can we just keep stacking layers?

Not exactly...

Problems with stacking layers

Vanishing Gradients problem

Back propagation kind of gives up...

 Degradation problem - with increased network depth accuracy gets saturated and then rapidly degrades

Making shallow model deep...

a shallower model (18 layers)

a deeper counterpart (34 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution by construction:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

What is Residual Learning?

Deeper the network the harder it is to find the gradients

Residual learning makes it easier to find gradients

Deep Residual Learning

Residual net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

hope the 2 weight layers fit F(x)

$$let H(x) = F(x) + x$$

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Turning a plain net into ResNet

Network "Design"

plain net

- Keep it simple
- Our basic design (VGG-style)
 - all 3x3 conv (almost)
 - spatial size /2 => # filters x2 (~same complexity per layer)
 - Simple design; just deep!
- · Other remarks:
 - · no hidden fc
 - no dropout

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Performance with deeper ResNet

ImageNet experiments

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognit

ImageNet experiments

ImageNet Classification top-5 error (%)

What's the reasoning?

On identity mappings for optimization

- shortcut mapping: h = identity
- after-add mapping: f = ReLU
- What if f = identity?

Improving Forward/back propagation

Very smooth forward propagation

$$x_{l+1} = x_l + F(x_l)$$

$$x_{l+2} = x_{l+1} + F(x_{l+1})$$

$$x_{l+2} = x_l + F(x_l) + F(x_{l+1})$$

$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i)$$

Very smooth forward propagation

$$x_L = x_l + \sum_{i=l}^{L-1} F(x_i)$$

- Any x_l is directly forward-prop to any x_l , plus residual.
- Any x_L is an additive outcome.
 - in contrast to multiplicative: $x_L = \prod_{i=1}^{L-1} W_i x_i$

Becomes multiplicative in the case that h(x) is not identity

Exercise 10-3: Implement ResNet

Exercise 10-4: Implement DenseNet

