

Design and Analysis of Algorithms I

Asymptotic Analysis

Big-Oh: Relatives (Omega & Theta)

Omega Notation

<u>Definition</u>: $T(n) = \Omega(f(n))$ If and only if there exist

constants c, n_0 such that

$$T(n) \ge c \cdot f(n) \quad \forall n \ge n_0$$
.

Picture

$$T(n) = \Omega(f(n))$$

Tim Roughgarden

Theta Notation

<u>Definition</u>: $T(n) = \theta(f(n))$ if and only if

$$T(n) = O(f(n))$$
 and $T(n) = \Omega(f(n))$

Equivalent: there exist constants c_1, c_2, n_0 such that

$$c_1 f(n) \le T(n) \le c_2 f(n)$$

$$\forall n \geq n_0$$

Let $T(n)=\frac{1}{2}n^2+3n$. Which of the following statements are true ? (Check all that apply.)

bu

24

$$T(n) = O(n).$$

$$T(n) = \Omega(n).$$
 $[n_0 = 1, c = 4]$

$$T(n) = \Theta(n^2).$$
 $[n_0 = 1, c_1 = 1/2, c_2 = 4]$

$$T(n) = O(n^3).$$
 $[n_0 = 1, c = 1/2]$

Little-Oh Notation

<u>Definition</u>: T(n) = o(f(n)) if and only if for all constants c>0, there exists a constant n_0 such that

$$T(n) \le c \cdot f(n) \quad \forall n \ge n_0$$

Exercise: $\forall k \geq 1, n^{k-1} = o(n^k)$

Where Does Notation Come From?

"On the basis of the issues discussed here, I propose that members of SIGACT, and editors of compter science and mathematics journals, adopt the O, Ω , and Θ notations as defined above, unless a better alternative can be found reasonably soon".

-D. E. Knuth, "Big Omicron and Big Omega and Big Theta", SIGACT News, 1976. Reprinted in "Selected Papers on Analysis of Algorithms."