- 1) La période T_0 de ce signal est de 2π . $\omega_0 = 2\pi/T_0 = 1$. $f_0 = 1/T_0 = 1/2\pi$.
- 2) La fréquence d'échantillonnage doit être supérieure au double de la fréquence maximale de ce signal. Donc ici $f_s > 2.f_{max} \rightarrow f_s > 2.f_n \rightarrow f_s > 2/T_n \rightarrow f_s > 2\pi$.

- 3) Le signal s doit être périodique et respecter les conditions de Dirichlet suivante : le signal doit être continue par morceaux, monotone par morceaux et partout intégrable. $s(t) = 4/\pi \sin(2\pi f_0 t) + 4/3\pi \sin(2\pi (3f_0) t) + 4/5\pi \sin(2\pi (5f_0) t) + ...$
- 4) Si l'on tronque la somme à un ordre n :

$$s_n(t) = \sum_{k=1}^n (b_k \sin(2\pi kt/T_0))$$

5)
$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} s(t) \cos(k\omega t) dt$$

$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} s(t) \sin(k\omega t) dt$$

- 6) Pour ce signal:
 - $a_0 = 4\pi$.
 - $a_k = 0$.

 $b_k = 0$ lorsque k est pair.

 $b_k = 4/k\pi$ lorsque k est impair.

7) En python on calcule un terme : terme = (2*(1-(-1)**k)*np.sin(k*x))/(k*(np.pi));

8) Seul le calcul du terme change :

```
if k%2 == 0: #Pair
   terme = 2*np.pi;
else: #Impair
   terme = (2*np.pi)+(4/(k*x*np.pi))*np.sin((2*np.pi*k*x)*2*np.pi);
```

- 9) La convergence est « lente » (environ 1 / k). A partir de l'ordre N=79 on commence à observer un signal carré.
- 10) Il suffit de boucler de 1 à 100 par exemple et afficher le math.plot, on observer le résultat suivant :
- 11) On observe le phénomène de Gibbs. L' « overshoot » est de 8.95 % de l'amplitude de la discontinuité, ce qui est négligeable lorsque k est grand.

