hw_05.Rmd

Vinay K L

2023-11-01

```
## Q1 Create a new column named genus and print out random 100 rows
## Answer
r library(dplyr)
## ## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats': ##
       filter, lag
## The following objects are masked from 'package:base': ## ##
intersect, setdiff, setequal, union
r library(neonDivData)
r #attaching the data frame neonDivData::data_plant
## # A tibble: 1,034,093 x 26 ##
                                    location_id siteID plotID
unique_sample_id subplotID subplot_id subsubplot_id ##
<chr>
            <chr> <chr> <chr>
                                           <chr>
<chr> ## 1 BART 006.b~ BART
                              BART ~ BART 006.basePl~ 31.4.1
           4 ## 2 BART_006.b~ BART
                                      BART_~ BART_006.basePl~
31
31.4.1
          31
                     4 ## 3 BART_006.b~ BART
                                               BART ~
BART_006.basePl~ 41.1.1
                                      1 ## 4 BART_006.b~ BART
                           41
BART ~ BART 006.basePl~ 41.4.1
                                             4 ## 5
                                  41
                  BART_~ BART_006.basePl~ 41.4.1
BART 006.b~ BART
4 ## 6 BART_006.b~ BART
                          BART_~ BART_006.basePl~ 41.4.1
41
           4 ## 7 BART_006.b~ BART
                                      BART_~ BART_006.basePl~
32.2.1
          32
                     2 ## 8 BART_006.b~ BART
                                                BART_~
BART_006.basePl~ 41.1.1
                                      1 ##
                                           9 BART_006.b~ BART
                           41
BART_~ BART_006.basePl~ 32.4.1
                                  32
                                             4 ## 10
BART_006.b~ BART
                  BART_~ BART_006.baseP1~ 32.4.1
4 ## # i 1,034,083 more rows ## # i 19 more variables:
observation_datetime <dttm>, taxon_id <chr>, ## #
<chr>, taxon_rank <chr>, variable_name <chr>, value <dbl>, ##
   unit <chr>, presence_absence <dbl>, boutNumber <chr>, ## #
nativeStatusCode <chr>, heightPlantOver300cm <chr>, ## #
heightPlantSpecies <chr>, release <chr>, sample area m2 <chr>,
      latitude <dbl>, longitude <dbl>, elevation <dbl>,
plotType <chr>, ...
r # saving the results on to a new data frame data_plant <-
data_plant %>% mutate(genus = sub("^\\s*([A-Za-z]+)\\s.*",
"\\1", taxon name))
r set.seed(777) # setting the seed for reproducibility
random_100_genus <- sample(unique(data_plant$genus), 100)</pre>
print(random_100_genus)
```

```
[1] "Pinus"
                          "Smilax"
                                           "Noccaea"
"Caperonia" ##
                 [5] "Lyonia"
                                      "Abronia"
"Bassia"
                                       [9] "Cynoglossum"
                 "Schoenoplectus" ##
                                  "Anthriscus" ## [13]
"Lasthenia"
                 "Galium"
                 "Packera"
                                  "Polygonella"
"Spermacoce"
"Amphiachyris" ## [17] "Gamochaeta"
                                         "Digitalis"
                 "Sarcodes" ## [21] "Pholistoma"
"Odontosoria"
"Sideritis"
                 "Tripterocalyx" "Manihot" ## [25] "Zornia"
"Consolea"
                 "Sedella"
                                  "Baptisia" ## [29]
                                  "Streptanthella" "Aralia" ##
"Diospyros"
                 "Myrsine"
[33] "Clermontia"
                                       "Diapensia"
                      "Cupania"
"Lasiacis" ## [37] "Physaria"
                                     "Erythroxylum"
"Pentodon"
                 "Marrubium" ## [41] "Callisia"
                 "Nandina"
                                  "Crumia" ## [45]
"Orbexilum"
"Petiveria"
                 "Lachnanthes"
                                  "Dichromanthus" "Castanea"
## [49] "Gaga"
                          "Sacciolepis"
                                           "Clusia"
"Gayophytum" ##
                 [53] "Jamesia"
                                       "Paronychia"
"Monotropa"
                 "Populus" ## [57] "Colocasia"
                                  "Indigofera" ##
"Lepuropetalon"
                 "Calylophus"
"Gratiola"
                 "Machaonia"
                                  "Trichomanes"
"Calycanthus" ## [65] "Pseudotsuga"
                                        "Muhlenbergia"
                 "Zinnia" ## [69] "Nuttallanthus" "Campsis"
"Nama"
"Erysimum"
                 "Garcinia" ## [73] "Echinocereus"
                                                      "Cissus"
"Triticum"
                 "Ctenitis" ## [77] "Bartonia"
                                                       "Striga"
                 "Galactia" ## [81] "Triodanis"
"Phoenicaulis"
"Forsythia"
                 "Crotalaria"
                                  "Prosartes" ## [85]
                 "Sinapis"
"Hybanthus"
                                  "Paxistima"
"Pithecellobium" ## [89] "Ionactis"
                                           "Achlys"
                 "Stipulicida" ## [93] "Chamaebatia"
"Dichondra"
"Laportea"
                 "Habenaria"
                                  "Pomaria" ## [97] "Oplonia"
"Deiregyne"
                 "Astelia"
                                  "Onoclea"
```

Q2 Create a new column taxon_name2 and split the taxon_name entries to only first two names

Answer

```
#Since the data frame already exists - not calling again
data_plant <- data_plant %>%
 mutate(taxon_name2 = sub("^(\\S+\\s+\\S+).*", "\\1", taxon_name)) #basic regex to split the taxon_anm
# To print out the random 100 values
set.seed(777) # for reproducibility purpose
randon_100_values <- sample(unique(data_plant$taxon_name2), 100)
print(randon_100_values)
##
     [1] "Vulpia myuros"
                                            "Artemisia tilesii"
##
     [3] "Elephantopus elatus"
                                            "Lupinus argenteus"
     [5] "Tradescantia hirsutiflora"
##
                                            "Symphyotrichum pilosum"
```

##	[7]	"Castilleja pilosa"	"Polygonum amphibium"
##		"Polygala cruciata"	"Zea mays"
##		"Burmannia capitata"	"Vaccinium tenellum"
##		"Geum spp."	"Prenanthes alba"
##		"Evolvulus sericeus"	"Ayenia sp."
##	[17]	"Salix sericea"	"Oxycaryum sp."
##	[19]	"Brodiaea sp."	"Oenothera acutissima"
##	[21]	"Chenopodium rubrum"	"Brassica tournefortii"
##	[23]	"Opuntia dillenii"	"Pinus jeffreyi"
##	[25]	"Freesia laxa"	"Sideroxylon sp."
##	[27]	"Carex prairea"	"Rubus nivalis"
##	[29]	"Abutilon grandifolium"	"Pinus clausa"
##		"Lactuca biennis"	"Bifora americana"
##		"Eugenia sp."	"Trepocarpus aethusae"
##		"Calycocarpum lyonii"	"Sporobolus heterolepis"
##		"Trillium grandiflorum"	"Pedicularis labradorica"
##		"Allotropa virgata"	"Opuntia polyacantha"
##		"Dicerandra linearifolia"	"Asclepias feayi"
##		"Mentzelia albicaulis"	"Andropogon sp."
##		"Ageratina jucunda"	"Amsinckia menziesii"
##		"Smilax tamnoides"	"Lepidium perfoliatum"
##		"Desmodium viridiflorum"	"Drepanocladus crassicostatus"
##		"Cirsium undulatum"	"Hymenopappus flavescens"
##		"Cinna latifolia"	"Trifolium hybridum"
##		"Salix pseudomonticola"	"Nymphaea odorata"
## ##		"Andropogon virginicus"	"Sedum pulchellum"
##		"Nasturtium sp." "Rhexia sp."	"Symphyotrichum novae-angliae"
##		"Silphium laciniatum"	"Ophioglossum nudicaule" "Polygonum hirsutum"
##		"Circaea ×intermedia"	"Rubus rosifolius"
##		"Rhodiola integrifolia"	"Sphaeralcea incana"
##	[69]		"Sinapis alba"
##		"Amaranthus spinosus"	"Salix fuscescens"
##		"Carphephorus odoratissimus"	"Prunella vulgaris"
##		"Silphium sp."	"Verbena halei"
##		"Rhynchospora chinensis"	"Pseudognaphalium obtusifolium"
##	[79]		"Abutilon theophrasti"
##	[81]	"Cunila origanoides"	"Logfia sp."
##		"Anemone cylindrica"	"Polygonum alpinum"
##	[85]	"Crepis acuminata"	"Primula angustifolia"
##	[87]	"Chasmanthium sp."	"Hibiscus sp."
##	[89]	"Rosa spp."	"Lycium exsertum"
##	[91]	"Betula pumila"	"Lupinus villosus"
##	[93]	"Oryzopsis asperifolia/Schizachne"	"Cymopterus purpurascens"
##	[95]	"Gilia flavocincta"	"Sida neomexicana"
##	[97]	"Alternanthera pungens"	"Hieracium scabrum"
##	[99]	"Odontosoria chinensis"	"Dichanthelium dichotomum"

Q3 Calculating species richness in three different plot size and then using left_join to combine the ouputs.

```
# Splitting down the plots in to three groups named n_1, n_10, n_100
# Richness for 1m^2 plots
n_1 <- data_plant %>%
 filter(sample_area_m2 == "1") %>%
  group_by(siteID) %>%
  summarize(richness_1m2 = n_distinct(taxon_name2))
# Richness for 10m^2 plots
n_10 <- data_plant %>%
  filter(sample_area_m2 %in% c("1", "10")) %>%
  group_by(siteID) %>%
  summarize(richness_10m2 = n_distinct(taxon_name2))
# Richness for 100m^2 plots
n_100 <- data_plant %>%
  filter(sample_area_m2 %in% c("1", "10", "100")) %>%
  group_by(siteID) %>%
  summarize(richness_100m2 = n_distinct(taxon_name2))
# JOining all the ``n_*`` data drames
n_all <- n_1 %>%
 left_join(n_10) %>%
 left_join(n_100)
## Joining with 'by = join_by(siteID)'
## Joining with 'by = join_by(siteID)'
```

Q4 Transform n_all to long data format using pivot_longer

Answer

Q5 Creating plt using ggplot2

Answer

```
library(ggplot2) #loading the library
```

```
# Question has spatial scale v/s richness graph. So selecting those column to plot
ggplot(n_all_long, aes(x = spatial_scale, y = richness, group = siteID)) +
geom_line(aes()) +
geom_point(aes(), size = 3) +
labs(
    x = "Spatial Scales",
    y = "Richness"
)
```

