Formulario para Métodos Númericos I

Samantha Pérez Huerta

Marzo 2023

 \square Definión: Sea $f: x \longrightarrow \mathbb{R}$ f es continúa en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$. f es continúa en x si lo es en cada $x \in X$.

 $\mbox{$\mbox{$\mbox{$\square$}$ Definión: Sea $\{x\}_{n=1}^{\infty}$ una sucesión de números reales. La sucesión converge a un número x (el límite) si \forall $\mathcal{E} > 0$ \exists $N(\mathcal{E})$ tal que n > N(\mathcal{E})$ implica $|x_n - x| < \mathcal{E}$$

 \diamond Teorema: Sea $f: x \longrightarrow \mathbb{R}$ y $x_0 \mathcal{E} X,$ los siuientes enunciados son equivalentes:

- a) f es continúa en x_0
- b) Si $\{x\}_{n=1}^{\infty}$ es una sucesión en x y converge en $x_0 \lim_{n \to \infty} f(x) = f(x_0)$

 $\mbox{\fontfamily{\fontfamil$

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existe.

 \diamond Teorema: Si f es diferenciable en x_0 , etoinces f es continúa en x_0

 \diamond Teorema de Rolle: Supongamos que $f\in([a,b])$ y que es diferenciable en (a,b). Si f(a)=f(b)=0, entroces existirá un número c en (a,b) con $f^{'}(c)=0$

 \diamond Teorema del valor medio: Si $f \in C([a,b])$ y f es diferenciable en (a,b), entonces existirá un número c en (a,b) tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

(que representa la recta tangente)

 \diamond Teorema de valor extremo: Si $f \in C[a,b]$ entonces existirá $c_1,c_2 \in [a,b]$ con $f(c_1) \leq f(x) \leq f(c_2) \forall x \in [a,b]$. Si además f es diferenciable es (a,b), los números c_1 y c_2 estarán ya sea en los extremos de [a,b] o donde f sea cero.