Lorsigned
$$\begin{array}{ccc}
\text{Cigned} & \text{Signed} \\
01 & \Rightarrow & 001 \\
0 & = & + \\
1 & = & -
\end{array}$$

If both operands have the same sign:

- Add the magnitudes of the operands
- Use the sign of the operands

If the operands have different signs:

- Subtract the smaller magnitude from the larger magnitude
- Use the sign of the number with the larger magnitude.

This requires more complicated logic to compare and subtract.

As we will see with the other 2 representations, there is an easier way when you are dealing with binary numbers.

 Table 5.1
 Interpretation of four-bit signed integers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

115

2's subtruction

0111

! Add / Sub - (bit) 0 - perform addition, 1- subtraction

Result within: -2^{N-1} and $2^{N-2}-1$ Overflow when $c_{N-1} \oplus c_N$

Critical-path May - for largest path of gales

In- delay for note adder

In-1- for subtructor

In-1- for subtructor