Calcolatori Elettronici – I parte (CdL Ingegneria Informatica) Esame del 19 luglio 2017 – tempo a disposizione: 1 ora e 30 minuti

Compito Num. 1 COGNOME:	NOME:
1) (20%) Si consideri la sequenza di bit espressa in esadecimale del vostro numero di matricola) e sia: (i) a il numero che si otti complemento due, e (ii) b il numero che si ottiene interpretando la sia.	ene interpretando la sequenza suddetta nel sistema in
A) Individuare una notazione in virgola mobile ALFA che conser	ta di rappresentare senza errori entrambi i numeri a e b

- A) Individuare una notazione in virgola mobile ALFA che consenta di rappresentare senza errori entrambi i numeri a e b con il numero minimo possibile di bit mostrando la loro rappresentazione nella notazione individuata;
- B) indicare l'intervallo di rappresentazione della notazione ALFA tenendo conto che le configurazioni dell'esponente composte da tutti 0 e da tutti 1 sono riservate;
- C) calcolare gli eventuali errori assoluti che si commettono per rappresentare a e b nella notazione ALFA individuata al punto A se si tolgono 3 bit dalla mantissa;

isposta deve essere	e contenuta nello	spazio che segue	e	

2) (20%) Fornire lo schema di un circuito combinatorio che realizza un duplicatore di numeri in formato binario sul di un segnale di controllo C. Tale circuito ha 5 ingressi (X ₃ X ₂ X ₁ X ₀ e C) e 4 uscite (Y ₃ Y ₂ Y ₁ Y ₀) e si comporta come Quando C=0 l'uscita è uguale all'ingresso mentre quando C=1 l'uscita duplica l'ingresso. Se per esempio in ingre il numero 3 in formato binario, l'uscita vale 3 se C=0 e 6 se C=1. Illustrare concisamente il funzionamento del cir specificare il valore di uscita di ciascuna componente quando il registro si trova a 0011 e C=1. La risposta deve essere contenuta nello spazio che segue	e segue. esso c'è

3) (20%) Si consideri	un bus sincrono c	on linee separate pe	r dati e indirizzi	dotato dei segnali	di controllo $\overline{\text{MREQ}}$	\overline{RD} e
WAIT e una memoria	$_{\iota}$ con un tempo di r	isposta di 30 nsec di	al momento in cu	ui l'indirizzo è dispo	onibile sul bus.	

- A) Individuare una frequenza di funzionamento del bus che consente di completare una operazione di lettura in memoria senza necessità di asserire il segnale WAIT;
- B) tracciare e illustrare il diagramma di temporizzazione di una lettura in memoria alla frequenza di funzionamento calcolata al punto A;
- C) tracciare e illustrare il diagramma di temporizzazione di una lettura in memoria alla frequenza di funzionamento

calcolata al punto A supponendo che il tempo di risposta della memoria aumenti a 50 nsec.
La risposta deve essere contenuta nello spazio che segue

DOMANDE A RISPOSTA MULTIPLA (40%) Indicare in fondo al foglio se le seguenti affermazioni sono vere (con una croce su [V]) o false (con una croce su [F]). Nota Bene: risposte corrette +1, risposte sbagliate -1/3.

- 4) Si consideri un'unità disco RAID con spazio utilizzabile di memoria fisica pari a 1TB (2³⁰B) e con blocchi (strip) di 1 GB; indicare le affermazioni esatte tra le seguenti.
 - A) Il RAID di livello 2 con 4 dischi se si rompono 2 dischi qualunque non si perdono dati.
 - B) In un RAID di livello 0 con 4 dischi, ogni disco è da 256GB.
 - C) In un RAID di livello 1 con 4 dischi, ogni disco è da 512GB.
 - D) In un RAID di livello 5 con dischi da 512GB, ho bisogno di 3 dischi.
 - E) In un RAID di livello 5 con 5 dischi, se si rompono 2 dischi qualunque non si perdono dati.
 - F) In un RAID di livello 1 ho bisogno di una capacità di memoria totale di 2TB.
 - G) In un RAID di livello 3 se si rompe un disco qualunque è possibile recuperare i dati.
 - H) In un RAID di livello 4 con 5 dischi, ogni disco è da 512GB.
- 5) Con riferimento alle architetture CISC e RISC indicare se le seguenti affermazioni sono vere o false.
 - A) E possibile programmare al livello delle microistruzioni.
 - B) Esistono architetture ibride CISC/RISC.
 - C) In un'architettura RISC le istruzioni macchina devono essere decodificate prima di essere eseguite.
 - D) Le CPU dotate di microprogram counter non hanno bisogno di un program counter.
 - E) In un architettura RISC il livello della microprogrammazione è assente.
 - F) In linea di principio, in una architettura CISC è possibile modificare il linguaggio macchina senza ritoccare l'architettura della CPU.
 - G) In un'architettura con pipeline l'esecuzione completa di una istruzione richiede più cicli di clock.
 - H) Il microprogramma di un microprocessore CISC è contenuto nella cache di primo livello.
- 6) Con riferimento ai dispositivi di memoria secondaria, indicare se le seguenti affermazioni sono vere o false.
 - A) In una unità a disco le tracce sono a forma di spirale.
 - B) Il tempo di latenza di un'unità a disco corrisponde al tempo di spostamento sul settore desiderato di una traccia.
 - C) Sui cavi USB i dati vengono trasmessi in serie.
 - D) La burst rate di un'unità a disco tiene conto dei tempi dei tempi di posizionamento sul primo settore da leggere.
 - E) Le pendette USB sono realizzate mediante memorie a stato solido.
 - F) Un bus che lavora in DMA richiede controllori per ciascuna unità periferica connessa al bus.
 - G) La lettura di un dispositivo Blu-Ray avviene mediante un laser.
 - H) Le unità a stato solido utilizzano transistors per memorizzare i dati.
- 7) Considerando una CPU con architettura RISC, 12 stati di pipeline e un clock di 2 Ghz e supponendo di lavorare in condizioni ideali (assenza di stalli), indicare se le seguenti affermazioni sono vere o false.
 - A) Se nella pipeline si elimina uno stadio il tempo di esecuzione di un'istruzione rimane invariato.
 - B) In condizioni ideali si completa a regime una istruzione ogni nsec.
 - C) Il tempo di esecuzione di una istruzione è di 8 nsec.
 - D) La latenza della CPU è di 6 nsec.
 - E) Se nella pipeline si aggiunge uno stadio l'ampiezza di banda della CPU diminuisce.
 - F) Se la frequenza di clock scende a 1,5 Ghz il tempo di esecuzione di una istruzione diminuisce.
 - G) L'ampiezza di banda della CPU è di 2000 MIPS.
 - H) Un programma di 5 istruzioni richiede 8 nsec per essere eseguito.

```
Risposte domanda 4 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F] Risposte domanda 5 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F] Risposte domanda 6 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F] Risposte domanda 7 = A:[V][F] B:[V][F] C:[V][F] D:[V][F] E:[V][F] F:[V][F] G:[V][F] H:[V][F]
```