Cíle výuky: Po absolvování cviení student

- rozumí pojmu struktura, signatura, umí je formáln definovat a uvést píklady
- rozumí pojmm syntaxe predikátové logiky (jazyk, term, atomická formule, formule, teorie, volná promnná, otevená formule, sentence, instance, varianta) umí je formáln definovat a uvést píklady
- rozumí pojmm sémantiky predikátové logiky (hodnota termu, pravdivostní hodnota, platnost [pi ohodnocení], model, pravdivost/livost v modelu/v teorii, nezávislost [v teorii], dsledek teorie) umí je formáln definovat a uvést píklady
- rozumí pojmu kompletní teorie a jeho souvislosti s elementární ekvivalencí struktur, umí obojí definovat, aplikovat na píklad
- zná základní píklady teorií (teorie graf, uspoádání, algebraické teorie)
- umí popsat modely dané teorie

PÍKLADY NA CVIENÍ

Problem 1. Jsou následující formule variantami formule $(\forall x)(x < y \lor (\exists z)(z = y \land z \neq x))$?

- (a) $(\forall z)(z < y \lor (\exists z)(z = y \land z \neq z))$
- (b) $(\forall y)(y < y \lor (\exists z)(z = y \land z \neq y))$
- (c) $(\forall u)(u < y \lor (\exists z)(z = y \land z \neq u))$

Solution. Ozname $\psi = (x < y \lor (\exists z)(z = y \land z \neq x))$, formule je tedy $(\forall x)\psi$.

- (a) Ne, z není substituovatelná za x do ψ: vznikl by nový vázaný výskyt.
- (b) Ne, y má volný výskyt v ψ.
- (c) Ano, u je nová promnná: v takovém pípad lze variantu udlat vdy.

Problem 2. Mjme strukturu $\mathcal{A} = (\{a, b, c, d\}; \triangleright^A)$ v jazyce s jediným binárním relaním symbolem \triangleright , kde $\triangleright^A = \{(a, c), (b, c), (c, c), (c, d)\}.$

- I. Které z následujících formulí jsou pravdivé v A?
- II. Pro kadou z nich najdte strukturu \mathcal{B} (existuje-li) takovou, e $\mathcal{B} \models \varphi$ práv kdy $\mathcal{A} \not\models \varphi$.
- (a) $x \triangleright y$
- (b) $(\exists x)(\forall y)(y \rhd x)$
- (c) $(\exists x)(\forall y)((y \rhd x) \to (x \rhd x))$
- (d) $(\forall x)(\forall y)(\exists z)((x \rhd z) \land (z \rhd y))$
- (e) $(\forall x)(\exists y)((x \rhd z) \lor (z \rhd y))$

Solution. Struktury si meme pedstavit jako orientované hrany.

- (a) I. Ne, intuitivn formule vyjaduje, e relace $\rhd^{\mathcal{A}}$ obsahuje vechny dvojice (hrany), z definice $\operatorname{PH}^{\mathcal{A}}(x \rhd y)[e] = 0$ nap. pro e(x) = a, e(y) = a. II. Nap. $\mathcal{B}_0 = (\{0\}; \rhd^{\mathcal{B}_0})$ s $\rhd^{\mathcal{B}_0} = \{(0,0)\}$.
- (b) I. Ne, intuitivn graf nemá stok, z definice: $PH^{\mathcal{A}}(\varphi) = \max_{u \in A} PH^{\mathcal{A}}((\forall y)(y \triangleright x))[e(x/u)] = \max_{u \in A} \min_{v \in A} PH^{\mathcal{A}}(y \triangleright x)[e(x/u, y/v)] = 0$, nap. pro u = a meme vzít v = a. II. Nap. \mathcal{B}_0 jako výe.
- (c) I. Ano (x ohodnote nap. prvkem a), antecedent není splnn pro ádné ohodnocení y, tedy implikace je vdy splnna.
 - II. Nap. $\mathcal{B}_1 = (\{0,1\}; \triangleright^{\mathcal{B}_1}) \ s \triangleright^{\mathcal{B}_1} = \{(0,1)\}.$
- (d) I. Ne, II: Nap. \mathcal{B}_0 .

(e) I. Ne, II: Nap. \mathcal{B}_0 .

Problem 3. Dokate (sémanticky) nebo najdte protipíklad: Pro kadou strukturu \mathcal{A} , formuli φ , a sentenci ψ ,

- (a) $\mathcal{A} \models (\psi \to (\exists x)\varphi) \Leftrightarrow \mathcal{A} \models (\exists x)(\psi \to \varphi)$
- (b) $\mathcal{A} \models (\psi \to (\forall x)\varphi) \Leftrightarrow \mathcal{A} \models (\forall x)(\psi \to \varphi)$
- (c) $\mathcal{A} \models ((\exists x)\varphi \rightarrow \psi) \Leftrightarrow \mathcal{A} \models (\forall x)(\varphi \rightarrow \psi)$
- (d) $\mathcal{A} \models ((\forall x)\varphi \rightarrow \psi) \Leftrightarrow \mathcal{A} \models (\exists x)(\varphi \rightarrow \psi)$

Platí to i pro kadou formuli ψ s volnou prom
nnou x? A pro kadou formuli ψ ve které x není volná?

Solution. (a) Bylo by jednoduí vyuít tablo metodu, ale chceme procviit sémantický dkaz. Intuitivn, protoe je ψ sentence, ohodnocení x nehraje roli pi výpotu pravdivostní hodnoty ψ , tedy ekvivalence platí. Poítejme z definic: $A \models (\psi \to (\exists x)\varphi)$ platí práv kdy to platí pi kadém ohodnocení $e: \text{Var} \to A$. Poítejme pravdivostní hodnotu. Vyuijeme faktu, $e \ f_{\to}(a,b) = \max(1-a,b)$:

$$\begin{aligned} & \operatorname{PH}^{\mathcal{A}}(\psi \to (\exists x)\varphi)[e] \\ &= f_{\to}(\operatorname{PH}^{\mathcal{A}}(\psi)[e], \operatorname{PH}^{\mathcal{A}}((\exists x)\varphi)[e]) \\ &= \max(1 - \operatorname{PH}^{\mathcal{A}}(\psi)[e], \operatorname{PH}^{\mathcal{A}}((\exists x)\varphi)[e]) \\ &= \max(1 - \operatorname{PH}^{\mathcal{A}}(\psi)[e], \max_{a \in A} \operatorname{PH}^{\mathcal{A}}(\varphi)[e(x/a)]) \end{aligned}$$

Podobn pro formuli na pravé stran:

$$PH^{\mathcal{A}}((\exists x)(\psi \to \varphi))[e]$$

$$= \max_{a \in A} PH^{\mathcal{A}}(\psi \to \varphi)[e(x/a)]$$

$$= \max_{a \in A} (\max(1 - PH^{\mathcal{A}}(\psi)[e(x/a)], PH^{\mathcal{A}}(\varphi)[e(x/a)]))$$

Protoe ψ je sentence, neobsahuje volný výskyt promnné x, tedy $\mathrm{PH}^{\mathcal{A}}(\psi)[e(x/a)] = \mathrm{PH}^{\mathcal{A}}(\psi)[e]$. Z toho vidíme, e:

$$= \max_{a \in A} (\max(1 - \mathrm{PH}^{\mathcal{A}}(\psi)[e], \mathrm{PH}^{\mathcal{A}}(\varphi)[e(x/a)]))$$
$$= \max(1 - \mathrm{PH}^{\mathcal{A}}(\psi)[e], \max_{a \in A} (\mathrm{PH}^{\mathcal{A}}(\varphi)[e(x/a)]))$$

Ob pravdivostní hodnoty jsou stejné, tedy ekvivalence platí. Pro tento argument staí, aby x nebyla volná v ψ .

Pokud je x volná v ψ , tak ekvivalence neplatí. Nap. v jazyce $L = \langle c \rangle$ s rovností, kde c je konstantní symbol:

- φ $je \neg x = x$,
- ψ je x = c,
- $\mathcal{A} = (\{0,1\};0)$ (tj. $c^{\mathcal{A}} = 0$).

Máme $\mathcal{A} \not\models (x = c \to (\exists x) \neg x = x)$, protoe to neplatí pi ohodnocení e(x) = 0. Ale $\mathcal{A} \models (\exists x)(x = c \to \neg x = x)$, protoe x lze ohodnotit prvkem 1, a antecendent není splnn.

(b), (c), (d) se vyeí obdobn.

Problem 4. Rozhodnte, zda je T (v jazyce $L = \langle U, f \rangle$ s rovností) kompletní. Existují-li, napite dva elementárn neekvivalentní modely, a dv neekviv. kompletní jednoduché extenze:

- (a) $T = \{U(f(x)), \neg x = y, x = y \lor x = z \lor y = z\}$
- (b) $T = \{U(f(x)), \neg(\forall x)(\forall y)x = y, x = y \lor x = z \lor y = z\}$
- (c) $T = \{U(f(x)), \neg x = f(x), \neg(\forall x)(\forall y)x = y, x = y \lor x = z \lor y = z\}$
- (d) $T = \{U(f(x)), \neg(\forall x)x = f(x), \neg(\forall x)(\forall y)x = y, x = y \lor x = z \lor y = z\}$
- **Solution.** (a) Pozor, tato teorie je sporná. Uvdomte si, e $\neg x = y$ je spor: neplatí v ádném modelu, protoe neplatí pi ohodnocení e(x) = a, e(y) = a pro libovolný prvek $a \in A$. (Je ekvivalentní svému generálnímu uzávru $(\forall x)(\forall y)\neg x = y$.) Sporná teorie není kompletní, z definice, a vechny její extenze jsou také sporné, tedy nemá ádnou kompletní jednoduchou extenzi.
- (b) Není kompletní. Neformáln, T íká, e model má práv dva prvky, a výstupy f^A musí být uvnit U^A . Z toho víme, e $U^A \neq \emptyset$. Je-li jednoprvková, máme jediný model (a na izomorfismus), je-li dvouprvková, máme celkem ti navzájem neizomorfní (a také navzájem elementárn neekvivalentní) modely (kde f^A nemá pevný bod, má jeden pevný bod, nebo má dva pevné body, tj. je to identita):
 - $\mathcal{A}_1 = (\{0,1\}; U_1^{\mathcal{A}}, f_1^{\mathcal{A}}) \ kde \ U_1^{\mathcal{A}} = \{0\} \ a \ f_1^{\mathcal{A}} = \{(0,0), (1,0)\}, \ tj. \ f_1^{\mathcal{A}}(0) = 0, \ f_1^{\mathcal{A}}(1) = 0$
 - $A_2 = (\{0,1\};\{0,1\},\{(0,1),(1,0)\}),$
 - $A_3 = (\{0,1\};\{0,1\},\{(0,0),(1,0)\}),$
 - $\mathcal{A}_4 = (\{0,1\};\{0,1\},\{(0,0),(1,1)\}).$

(Nakreslete si obrázky!) Odpovídající kompletní jednoduché extenze lze zapsat jako $Th(A_i)$, kde i = 1, 2, 3, 4. Nebo:

- $T_1 = T \cup \{\neg(\forall x)U(x)\},$
- $T_2 = T \cup \{U(x), \neg f(x) = x\},\$
- $T_3 = T \cup \{U(x), (\exists x)f(x) = x, (\exists x)\neg f(x) = x\},\$
- $T_4 = T \cup \{U(x), f(x) = x\}.$
- (c) Obdobn, vyjaduje, e model má práv dva prvky, a f nemá ádný pevný bod. Je kompletní, jediný model a na izomorfismus je A_2 .
- (d) Model má práv dva prvky, a f má alespo jeden pevný bod. Není kompletní, její modely jsou a na izomorfismus A_3 a A_4 .

Dalí píklady k procviení

Problem 5. Urete volné a vázané výskyty promnných v následujících formulích. Poté je pevete na varianty, ve kterých nebudou promnné s volným i vázaným výskytem zárove.

- (a) $(\exists x)(\forall y)P(y,z) \lor (y=0)$
- (b) $(\exists x)(P(x) \land (\forall x)Q(x)) \lor (x=0)$
- (c) $(\exists x)(x > y) \land (\exists y)(y > x)$

Problem 6. Ozname φ formuli $(\forall x)((x=z) \lor (\exists y)(f(x)=y) \lor (\forall z)(y=f(z)))$. Které z následujících term jsou substituovatelné do φ ?

- (a) term z za promnnou x, term y za promnnou x,
- (b) term z za promnnou y, term g(f(y), w) za promnnou y,
- (c) term x za promnnou z, term y za promnnou z,

Problem 7. Jsou následující sentence pravdivé / livé / nezávislé (v logice)?

(a) $(\exists x)(\forall y)(P(x) \vee \neg P(y))$

- (b) $(\forall x)(P(x) \to Q(f(x))) \land (\forall x)P(x) \land (\exists x) \neg Q(x)$
- (c) $(\forall x)(P(x) \lor Q(x)) \to ((\forall x)P(x) \lor (\forall x)Q(x))$
- (d) $(\forall x)(P(x) \to Q(x)) \to ((\exists x)P(x) \to (\exists x)Q(x))$
- (e) $(\exists x)(\forall y)P(x,y) \rightarrow (\forall y)(\exists x)P(x,y)$

Problem 8. Rozhodnte, zda následující platí pro kadou formuli φ . Dokate (sémanticky, z definic) nebo najdte protipíklad.

- (a) $\varphi \models (\forall x)\varphi$
- (b) $\models \varphi \to (\forall x)\varphi$
- (c) $\varphi \models (\exists x)\varphi$
- (d) $\models \varphi \rightarrow (\exists x)\varphi$

K zamylení

Problem 9. Bu $L = \langle +, -, 0 \rangle$ jazyk teorie grup (s rovností). Teorie grup T sestává z tchto axiom:

$$x + (y + z) = (x + y) + z$$
$$0 + x = x = x + 0$$
$$x + (-x) = 0 = (-x) + x$$

Rozhodnte, zda jsou následující formule pravdivé / livé / nezávislé v T. Zdvodnte.

- (a) x + y = y + x
- (b) $x + y = x \rightarrow y = 0$
- (c) $x + y = 0 \rightarrow y = -x$
- (d) -(x+y) = (-y) + (-x)