Hővezetési probléma 3 dimenzióban Gerbicz Róbert

A probléma: 3 dimenziós térben milyen hőmérséklet alakul ki az időtől függetlenül. Ennek érdekében a teret egybevágó rácspárhuzamos téglatestekre osszuk fel. Persze más módon is fel lehetett volna osztani, de az egyenletek felírásához ez a legkönnyebb, még egyszerűbb a helyzet, ha a boxok kockák.

Minden ilyen boxra írjuk fel az energiamegmaradási tételt:

$$0 = F_0 - \sum_{i=1}^{6} J_{0,i}$$

itt F_0 az Ω_0 cellában termelt hőmennyiség időegységenként. $J_{0,i}$ a 0 boxból a külső normálvektor irányában a szomszédos *i*-edik cellába távozó hőáram. 3 dimenzióban 6 szomszédja van minden boxnak.

A cellák középpontjaiból képzett duális gráfon az energiamegmaradási tétel az 1. Kirchoff törvénynek felel meg: a gráf minden pontjában az áramok előjeles összege nulla, ha az F_0 -t befutó áramnak értelmezzük.

Minden pontban felírható az energiamegmaradás-törvénye. Ehhez jelöljük l(m, j)-vel az m-edik box-al szomszédos boxokat. Ekkor az m-edik boxra felírhatjuk, hogy :

$$0 = F_m - \sum_{i=1}^{6} J_{m,l(m,i)}$$

A megmaradás miatt, ami a 0 boxból kiáramlik az az 1-es boxba beáramlik, feltéve, hogy a box felüleletén nincs forrás, illetve annak ellenkezője nyelő, így teljesül, hogy $J_{1,0} = -J_{0,1}$ teljesül, és általában:

$$J_{m.i} = -J_{i.m}$$

A fenti két megmaradási egyenletet összeadva:

$$0 = F_0 + F_1 - \sum_{i=1}^{6} J_{0,i} + J_{1,l(1,i)}$$

ez a két box energiamegmaradását írja le, amiben csak a 0 és 1 -es box hőtermelése időegységenként és a közös felüleleten átmenő áramok szerepelnek, a többi kiesik $J_{1,0} = -J_{0,1}$ miatt.

Általában egy tetszőleges Ω tartományra összeadva az egyenleteket kapjuk a globális megmaradási törvényt:

$$0 = \sum_{m} F_m - \sum_{m} \sum_{i=1}^{6} J_{m,l(m,i)}$$

Itt $\sum_m F_m$ az Ω tartomány hőtermelése időegységenként és a kettős szummában a belső áramok kiesnek, így csak a Γ peremen átmenő áramok maradnak meg.

Két box, például a i-edik boxból a j-dik boxba irányuló $J_{i,j}$ áramot ki lehet számolni a Fourier-féle törvény segítségével:

$$J_{i,j} = -\left(s * k * \frac{\partial u}{\partial n}\right)_{i,j}$$

, ahol $s_{i,j}$ a felület területe, $k_{i,j}$ a két cella hővezetőképességének harmónikus közepe:

$$k_{i,j} = \frac{2}{\frac{1}{k_i} + \frac{1}{k_j}}$$

u a hőmérséklet, n a mindenkori külső normálvektor, valamint $\frac{\partial u}{\partial n}$ a normálirányú derivált. Így például a 0-dik boxból kiáramló hő áramaira teljesül:

$$J_{0,1} = -\left(s * k * \frac{\partial u}{\partial x}\right)_{0+x}, J_{0,2} = -\left(s * k * \frac{\partial u}{\partial x}\right)_{0+y}$$

$$J_{0,3} = \left(s * k * \frac{\partial u}{\partial y}\right)_{0-x}, J_{0,4} = \left(s * k * \frac{\partial u}{\partial y}\right)_{0-y}$$

$$J_{0,5} = -\left(s * k * \frac{\partial u}{\partial z}\right)_{0+z}, J_{0,6} = \left(s * k * \frac{\partial u}{\partial z}\right)_{0-z}$$

0 + -x-el a box azon pontját a felüleletén jelöljük, mely a 0-tól + -x irányában fekszik. Így a Fourier törvény és az energiamegmaradási törvény segítségével kapjuk, hogy:

$$0 = F_0 + s_1 * \left\{ \left(k * \frac{\partial u}{\partial x} \right)_{0+x} - \left(k * \frac{\partial u}{\partial x} \right)_{0-x} \right\} +$$

$$+ s_2 * \left\{ \left(k * \frac{\partial u}{\partial y} \right)_{0+y} - \left(k * \frac{\partial u}{\partial y} \right)_{0-y} \right\} +$$

$$+ s_3 * \left\{ \left(k * \frac{\partial u}{\partial z} \right)_{0+z} - \left(k * \frac{\partial u}{\partial z} \right)_{0-z} \right\}.$$

Itt F_0 a 0-s box által időegységenként termelt hő, azaz $F_0 = |\Omega_0| * Q_0$, ahol $|\Omega_0| = h_1 * h_2 * h_3$ az Ω_0 box térfogata. És $s_1 = s_{0+x} = s_{0-x} = h_2 * h_3$ az x irányra merőleges felület területe a 0-dik boxnak, $s_2 = s_{0+y} = s_{0-y} = h_1 * h_3$ az y irányra merőleges felület területe, $s_3 = s_{0+z} = s_{0-z} = h_1 * h_2$ z irányra merőleges felület területe. Az egyenlet egy másik ekvivalens alakját kapjuk, ha leosztunk a térfogattal, azaz $h_1 * h_2 * h_3$ -mal.

A hőmérsékletekhez szükséges deriváltakat differencia-hányadosokkal közelíthetjük:

$$\left(k * \frac{\partial u}{\partial x}\right)_{0+x} \approx k_{0+x} * \frac{u_1 - u_0}{h_1}, \left(k * \frac{\partial u}{\partial y}\right)_{0+x} \approx k_{0-y} * \frac{u_0 - u_4}{h_2}$$

Itt h_1 a box hossza x irányban, h_2 az y irányban, h_3 a z irányban. Ezeket behelyesttesítve kapunk egy egyenletrendszert, aminek a megoldása adja a hőmérsékletek közelítéseit. Jelöljük y_m -mel a lineáris rendszerből adódó közelítéseket. Így a 0-s boxra felírható egyenlet:

$$0 = Q_0 + \frac{1}{h_1} * \left\{ k_{0+x} * \frac{y_1 - y_0}{h_1} - k_{0-x} * \frac{y_0 - y_3}{h_1} \right\} +$$

$$+ \frac{1}{h_2} * \left\{ k_{0+y} * \frac{y_2 - y_0}{h_2} - k_{0-y} * \frac{y_0 - y_4}{h_2} \right\} +$$

$$+ \frac{1}{h_3} * \left\{ k_{0+z} * \frac{y_5 - y_0}{h_3} - k_{0-z} * \frac{y_0 - y_6}{h_3} \right\}$$

Szorozzuk meg az egyenletet $h_1h_2h_3$ -mal, kapjuk:

$$0 = Q_0 * h_1 * h_2 * h_3 + h_2 * h_3 * \left\{ k_{0+x} * \frac{y_1 - y_0}{h_1} - k_{0-x} * \frac{y_0 - y_3}{h_1} \right\} +$$

$$+ h_1 * h_3 * \left\{ k_{0+y} * \frac{y_2 - y_0}{h_2} - k_{0-y} * \frac{y_0 - y_4}{h_2} \right\} +$$

$$+ h_1 * h_2 * \left\{ k_{0+z} * \frac{y_5 - y_0}{h_3} - k_{0-z} * \frac{y_0 - y_6}{h_3} \right\}$$

A differencia-képletekkel megőriztük az eredeti energiamegmaradási egyenletet, hiszen az áram képlete ugyan megváltozott: például:

$$J_{0,1}^{(h)} = -h_2 * h_3 * k_{0+x} * \frac{y_1 - y_0}{h_1}$$

, de most is teljesül, hogy a 0-ás boxból az 1-esbe távozó áram egyenlő 0-sból az 1-be folyó árammal A lokális megmaradási törvényekből a globális:

$$0 = \sum_{m} Q_{m} h_{1} h_{2} h_{3} - \sum_{m} \sum_{i=1}^{6} J_{m,l(m,i)}^{(h)}$$

dupla szummában ebben már csak a perem menti áramok szerepelnek, a többi kiesik.

A perem mentén olyan boxokat használjunk, melynek a középpontja a peremre esik, ezután a box külső felét elhagyjuk. Így a korábbi boxok helyett fél, negyed, nyolcad boxok jelennek meg, az eredeti box helyzetétől függően. Ezekre is szeretnénk egy egyenletet felírni az egynletrendszer lezárása érdekében, ezért a korábbi

$$j = -k * \frac{\partial u}{\partial n}$$

helyett alkalmazzunk egyet az

j = 0 szigetelt perem esetén.

j = adott érték előírt hőáram esetén.

 $j = \alpha * (u - T_0)$ turbulens hőcsere a külvilággal. Itt α a hőcsere együttható és T_0 a külső közeg adott hőmérséklete.

$$j = \epsilon * \sigma * (u^4 - T_0^4)$$
 lehűlés hősugárzással

Ha egy perempontban a hőmérséklet adott, akkor ott megmaradási egyenletet nem írunk fel a boxára: az előírt értéket vesszük figyelembe, amikor a szomszédos boxba irányuló áramot számítjuk.

Legyen 3*3*3-as boxunk, ahol a boxok számozása sorfolytonos, azaz:

25	26	27
22	23	24
19	20	21

16	17	18
13	14	15
10	11	12

7	8	9
4	5	6
1	2	3

5-öt tartalmazó lapon adott hőáram 11-et tartalmazó lapon szigetelt perem 15-öt tartalmazó lapon Newton-féle hőcsere törvény Ekkor a 14-es box egyenlete:

$$0 = Q_{14}h_1h_2h_3 + h_2h_3 \left\{ k_{14+x} \frac{y_{15} - y_{14}}{h_1} - k_{14-x} \frac{y_{14} - y_{13}}{h_1} \right\} +$$

$$+ h_1h_3 \left\{ k_{14+y} \frac{y_{17} - y_{14}}{h_2} - k_{14-y} \frac{y_{14} - y_{11}}{h_2} \right\} +$$

$$+ h_1h_2 \left\{ k_{14+z} \frac{y_{23} - y_{14}}{h_3} - k_{14-z} \frac{y_{5} - y_{11}}{h_3} \right\}$$

A 6-os boxra az egyenlet:

$$0 = Q_6 \frac{h_1 h_2 h_3}{4} + \frac{h_2 h_3}{2} \left\{ \alpha_6 \left(T_6 - y_6 \right) - k_{6-x} \frac{y_6 - y_5}{h_1} \right\} + \frac{h_1 h_3}{4} \left\{ k_{6+y} \frac{y_9 - y_6}{h_2} - k_{6-y} \frac{y_6 - y_3}{h_2} \right\} + \frac{h_1 h_2}{2} \left\{ k_{6+z} \frac{y_{15} - y_6}{h_3} + j_{n,6} \right\}$$

3-as boxra az egyenlet:

$$0 = Q_3 \frac{h_1 h_2 h_3}{8} + \frac{h_2 h_3}{4} \left\{ \alpha_3 (T_3 - y_3) - k_{3-x} \frac{y_3 - y_2}{h_1} \right\} + \frac{h_1 h_3}{4} \left\{ k_{3+y} \frac{y_6 - y_3}{h_2} - 0 \right\} + \frac{h_1 h_2}{4} \left\{ k_{3+z} \frac{y_{15} - y_6}{h_3} + j_{n,3} \right\}$$

Legyen most a felüleleten a hőmérséklet adott 3-edfokú polinom, például: $T[x, y, z] = a * x^3 + b * y * z + c * z^2$, hővezetési együttható azonosan 1, $h_1 = h_2 = h_3 = 1$ méter, ekkor mennyi legyen a belső hőtermelő cellák energiatermelése, hogy ott is T[x, y, z] legyen a kialakult hőmérséklet? Egy ilyen belső hőtermelő cella egyenlete ekkor:

$$0 = Q[x, y, z] - 6 * T[x, y, z] + T[x + 1, y, z] + T[x - 1, y, z] +$$

$$+T[x, y + 1, z] + T[x, y - 1, z] + T[x, y, z + 1] + T[x, y, z - 1]$$

behelyettesítve T[x,y,z] értékét kapjuk, hogy: Q[x,y,z] = -6*a*x-2*c kell,hogy teljesüljön.

Nézzük most a tanár-diák: n * n * n-es boxra:

z=1 lapon turbulens hőcsere a külvilággal: $T_0=290K$ $a=5W/(m^2*K)$

x = 1 és x = n és y = 1 és z = n lapon szigetelt perem

y = n-re az ablak miatt előírt hőáram: $j = 1W/m^2$

x+z=7síkon vannak a diákok (rácspontokban), hőtermelő cella $\mathbb{Q}[x,y,z]=5W/m^3$

fűtőtest: $Q[2, [n/2], 2] = 45W/m^3$

tábla előtt a tanár: (hővezető cella): $Q[[n/2], n-1, 2] = 15W/m^3$

Az általános három dimenziós probléma is megoldható számítógépes programmal. Ehhez a modellt helyezzük bele egy elég nagy téglatestbe. Nagy téglatesten kívül minden cella inaktív. Egy kis box élei legyenek H1, H2, H3 méter, és x irányban L1 darab box, y irányban L2, míg z irányban L3 darab box. Egy box típusa lehet

- 0: inaktív cella
- 1: belső hőtermelő cella
- 2: szigetelt perem
- 3: perempontban a hőmérséklet adott
- 4: előírt hőáram
- 5: turbulens hőcsere a külvilággal

Lehűlés hősugárzással nincs, hiszen az nemlineáris egyenletet jelentene. Továbbá kellenek: típus,k[i], j[i], y[i], a[i], Q[i], T[i] az i-edik cellára persze adott típusra nem mindegyiket használjuk.

A lineáris egyenletrendszer megoldható sávos Gauss eliminációval, ekkor a futásidőről belátható, hogy $2*L1^3*L2^3*L3$ műveletet használ (fele szorzás, másik fele összeadás). A sávos Gauss persze csak a sávban dolgozik, így nem kell az egész mátrixot tárolni, csak a sáv elemeit: A[x,y] = P[x,y-x+felsavszelesseg+1] a lineáris transzformáció a két mátrix elemei között. A félsávszélesség L1*L2, így a memóriaigény $16*L1^2*L2^2*L3$ byte, ha egy mátrixelemet egy double változóként tárolunk. Persze a tengelyek permutálásával, iletve adott változók cseréjével sokszor csökkenthető a memóriaigény és a futásidő is.

Tesztfeladat esetén tudjuk az elméleti megoldást is, így a hibavektornak például a maximum normája kiszámítható.

Idő másodpercben 3 különböző programmal a tanár diák termes hővezetési problémája különböző n-ekre. P4 Celeron 1.7 GHz-es gépen 256MB Rammal:

n	Mathematica	c	Pari-Gp
5	< 1 (0)	< 1	< 1
10	3 (0)	< 1	28
15	19 (1)	4	6120
20	94 (2)	29	memória
25	353 (6)	139	memória
30	1074 (17)	1406	memória

c-ben a sávos Gauss elimináció: $16 * n^5$ byte memóriát igényel és $2 * n^7$ a futásideje. n = 30-ra már a virtuális memóriát is használta, azért lassult le. A félsávszélesség= n^2 .

Pari-Gp azért nem szokott mondjuk c-hez viszonyítva ilyen lassú lenni, de itt most csak a sima Gauss eliminációt használja a matsolve parancs, és nem is a sávosat. $14 * n^6$ byte memóriaigénye és $2/3 * n^9$ ideig fut.

Mathematica ismeri a ritka mátrix technológiát: zárójelben, hogy mennyi idő alatt oldja meg a lineáris egyenletrendszert. De egy ritka mátrix felépítese nagyon lassú a Mathematicaban

Memória MB-ban:

n	Mathematica	С	Pari-Gp
5	< 13	< 1	< 1
10	17	2	13
15	34	13	152
20	74	52	memória
25	166	154	memória
30	460	376	memória