# **EE610A: Analog VLSI Circuits Project / Simulation Assignment**

Submitted by : Rahul Kumar Gupta (21204408)

## Specifications:

| Input<br>stage | VDD  | CL   | Loop gain<br>(min) | -3dB Bandwidth of V0/Vi (min) | CMRR(@dc) |
|----------------|------|------|--------------------|-------------------------------|-----------|
| NMOS           | 1.8V | 10pF | 40 dB              | 100MHz                        | 80dB      |



\*Given prototype

Fig. 1. (a) Top level of the opamp. (b) Prototype internal schematic (without zero cancelling resistor). (c) CMFB of first stage. (d) CMFB of second stage.

#### **DESIGN METHODOLOGY**

- At first, I designed and tried to achieve the specifications by a simple Differential Amplifier structure as provided in the prototype schematic.
- 2. With theoretical calculations, the prototype circuit had the  $w_{u,loop}$  at  $g_m/2*pi*C_L$  ie. 100MHz(as per the specs)  $C_L$  = 10pF(fixed)  $g_m$ = 2\*pi mS
- 3. Since the specifications were not met with that design( even after bringing  $g_m$  to the desired value), I switched to telescopic cascode structure to increase  $R_{out}$  in order to achieve a high gain.
- 4. Also I used the below mentioned three relations to tweak the circuit and achieve the mentioned specifications.

$$g_{m} = \sqrt{\frac{2 \, \text{LmCox} \, \omega}{L} \, T}$$

$$\frac{g_{m}}{g_{03}} \propto \sqrt{\frac{wL}{T}}$$

$$Vov = \sqrt{\frac{2T}{4 \, \text{Lox} \, \omega}}$$

5. At first I tried to achieve the desired  $g_m$  value using the first relation and then I tried to get a high gain while keeping the gm almost constant.

#### **Design**



- 6. I also had to make two changes:
  - i) In the current mirror pulling down current, I had to increase the W/L of the transistors in order to match their Drain and Gate voltages  $\rightarrow$  for better current mirroring.
  - In order to keep the NMOS transistors all the same, I added more NMOS transistors and connected them in parallel.
  - ii) In the feedback path, I added a Capacitor to introduce a pole.

It was done to **cancel** the zero which affected the V<sub>o</sub>/V<sub>i</sub> plot at high frequencies.

The value of the capacitor was determined by approximate analysis and simulations.

| Name:  | m15       | m14       | m13       | m12       | m16      |
|--------|-----------|-----------|-----------|-----------|----------|
| Model: | cmosp     | cmosp     | cmosp     | cmosp     | cmosn    |
| Id:    | -2.48e-03 | -2.48e-03 | -2.48e-03 | -2.48e-03 | 1.25e-03 |
| Vgs:   | -7.04e-01 | -7.07e-01 | -7.04e-01 | -7.02e-01 | 5.95e-01 |
| Vds:   | -3.22e-01 | -2.79e-01 | -3.26e-01 | -3.78e-01 | 5.95e-01 |
| Vbs:   | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00 |
| Vth:   | -4.56e-01 | -4.56e-01 | -4.56e-01 | -4.56e-01 | 4.64e-01 |
| Vdsat: | -2.02e-01 | -2.04e-01 | -2.02e-01 | -2.01e-01 | 1.10e-01 |
| Gm:    | 1.81e-02  | 1.77e-02  | 1.81e-02  | 1.84e-02  | 1.68e-02 |
| Gds:   | 8.23e-04  | 1.15e-03  | 8.02e-04  | 6.15e-04  | 1.99e-04 |
| Gmb    | 5.61e-03  | 5.51e-03  | 5.62e-03  | 5.69e-03  | 4.58e-03 |
| Cbd:   | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00 |
| Cbs:   | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00 |
| Cgsov: | 2.70e-13  | 2.70e-13  | 2.70e-13  | 2.70e-13  | 1.48e-13 |
| Cgdov: | 2.70e-13  | 2.70e-13  | 2.70e-13  | 2.70e-13  | 1.48e-13 |
| Cgbov: | 3.01e-19  | 3.01e-19  | 3.01e-19  | 3.01e-19  | 3.26e-19 |
| Name:  | m11       | m10       | m9        | m7        | m3       |
| Model: | cmosn     | cmosn     | cmosn     | cmosn     | cmosn    |
| Id:    | 2.48e-03  | 2.48e-03  | 2.48e-03  | 2.48e-03  | 1.24e-03 |
| Vgs:   | 6.63e-01  | 6.61e-01  | 6.61e-01  | 6.59e-01  | 5.95e-01 |
| Vds:   | 2.58e-01  | 2.98e-01  | 3.02e-01  | 3.58e-01  | 5.39e-01 |
| Vbs:   | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00 |
| Vth:   | 4.66e-01  | 4.66e-01  | 4.66e-01  | 4.65e-01  | 4.64e-01 |
| Vdsat: | 1.48e-01  | 1.47e-01  | 1.47e-01  | 1.46e-01  | 1.10e-01 |
| Gm:    | 2.32e-02  | 2.36e-02  | 2.36e-02  | 2.39e-02  | 1.67e-02 |
| Gds:   | 1.20e-03  | 8.76e-04  | 8.53e-04  | 6.25e-04  | 2.10e-04 |
| Gmb    | 6.28e-03  | 6.38e-03  | 6.38e-03  | 6.46e-03  | 4.55e-03 |
| Cbd:   | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00 |
| Cbs:   | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00 |
| Cgsov: | 1.48e-13  | 1.48e-13  | 1.48e-13  | 1.48e-13  | 1.48e-13 |
| Cgdov: | 1.48e-13  | 1.48e-13  | 1.48e-13  | 1.48e-13  | 1.48e-13 |
| Cgbov: | 3.26e-19  | 3.26e-19  | 3.26e-19  | 3.26e-19  | 3.26e-19 |

| Name:  | m1       |
|--------|----------|
| Model: | cmosn    |
| Id:    | 1.25e-03 |
| Vgs:   | 5.95e-01 |
| Vds:   | 5.95e-01 |
| Vbs:   | 0.00e+00 |
| Vth:   | 4.64e-01 |
| Vdsat: | 1.10e-01 |
| Gm:    | 1.68e-02 |
| Gds:   | 1.99e-04 |
| Gmb    | 4.58e-03 |
| Cbd:   | 0.00e+00 |
| Cbs:   | 0.00e+00 |
| Cgsov: | 1.48e-13 |
| Cgdov: | 1.48e-13 |
| Cgbov: | 3.26e-19 |

| Name:  | m8       | m6       | m5       | m4       | m2       |
|--------|----------|----------|----------|----------|----------|
| Model: | cmosn    | cmosn    | cmosn    | cmosn    | cmosn    |
| Id:    | 1.24e-03 | 1.25e-03 | 1.24e-03 | 1.24e-03 | 1.25e-03 |
| Vgs:   | 5.95e-01 | 5.95e-01 | 5.95e-01 | 5.95e-01 | 5.95e-01 |
| Vds:   | 5.39e-01 | 5.95e-01 | 5.39e-01 | 5.39e-01 | 5.95e-01 |
| Vbs:   | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |
| Vth:   | 4.64e-01 | 4.64e-01 | 4.64e-01 | 4.64e-01 | 4.64e-01 |
| Vdsat: | 1.10e-01 | 1.10e-01 | 1.10e-01 | 1.10e-01 | 1.10e-01 |
| Gm:    | 1.67e-02 | 1.68e-02 | 1.67e-02 | 1.67e-02 | 1.68e-02 |
| Gds:   | 2.10e-04 | 1.99e-04 | 2.10e-04 | 2.10e-04 | 1.99e-04 |
| Gmb    | 4.55e-03 | 4.58e-03 | 4.55e-03 | 4.55e-03 | 4.58e-03 |
| Cbd:   | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |
| Cbs:   | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 |
| Cgsov: | 1.48e-13 | 1.48e-13 | 1.48e-13 | 1.48e-13 | 1.48e-13 |
| Cgdov: | 1.48e-13 | 1.48e-13 | 1.48e-13 | 1.48e-13 | 1.48e-13 |
| Cgbov: | 3.26e-19 | 3.26e-19 | 3.26e-19 | 3.26e-19 | 3.26e-19 |

# Following are the plots obtained at room temp.

1. Open Loop Gain and Phase



• Open Loop Gain obtained = 50.69 dB

#### 2. Closed Loop Gain and Phase

→Vo/Vi plot



- Closed Loop Gain obtained = 5.95 dB
- -3dB bandwidth = 87.09MHz

-3dB bandwidth is reduced in my design due to the addition of a pole.I added that pole(with cap. C2 in the circuit) in order to cancel the effect of a zero showing up at higher frequencies.



The above curve shows Vo/Vi without adding a pole.

- Loop Gain = Open Loop Gain Closed Loop Gain (in dB)
- Therefore, Loop Gain = 44.7 dB (verified by "Big inductor" method in LTspice)
- 3. Transient response of the non inverting amplifier with a 0.01 step input at  $v_i$ .



Vout reaches 1.219V at steady state. Ideal Vout = 1.2 + 2\*0.01 V = 1.22V

 $e_{ss} = 1.22 - 1.219$ 

 $e_{ss} = 0.001 \text{ V}$ 

4. Transient response of the non inverting amplifier with  $v_i = 150 \text{mV}(\cos(w_{3dB}t))$ 

### As per my design $w_{3dB} = 87.09MHz$



 $Green {\rightarrow} input \quad Blue {\rightarrow} output$ 

5. Transient response of the non inverting amplifier with  $v_i = 150 \text{mV}(\cos(w_{3dB}t/10))$ 



Green→ input Blue→output

- 6. Difference between input voltages for  $v_i = 150 \text{mV}(\cos(w_{3dB}t))$ 
  - $\rightarrow$  V1-V2 = 58 mV (approx)
  - $\rightarrow$  V1-V2 = 0 mV due to virtual short (theoretically)



\*Difference is shown by the red curve

7.Difference between input voltages for  $v_i = 150 \text{mV}(\cos(w_{3dB}t/10))$ 

 $\rightarrow$  V1-V2 = 11.35mV(max)

 $\rightarrow$ V1-V2 = 0 mV(theoretically)



\*Difference is shown by the red curve

## 8. Common Mode Rejection Ratio

### $\rightarrow$ Plotting Common Mode Gain

Acm = -38.82 dB



# $\rightarrow$ Plotting Differential Gain

Ad = 50.69 dB



 $CMRR = A_{d} - A_{CM} = 89.51 dB$ 

#### 9. ICMR calculation

The design approach for ICMR is as follows: -

- 1) Run a low frequency analysis on the Diff Amp circuit with different V<sub>CM</sub> values.
- 2) Using parametric analysis, the values of  $V_{\text{CM}}$  will be varied in steps of 0.3V ranging from 0 to 1.8V.

Using transient analysis, observe the gain for various V<sub>CM</sub> values and calculate ICMR<sup>+</sup> and ICMR<sup>-</sup> from a plot of Gain vs Vcm.



 $^*V_{out}$  plots for different values of  $V_{\text{CM.}}$ 

### Plot of Gain (dB) vs V<sub>CM</sub> (mV)



v

- In the above plot it can be seen that Gain is almost constant between 600mV and 1.2V.
- Therefore, an estimate of ICMR can be determined

ICMR+ = 1.2V

ICMR- = 0.6V

### 10. Below are the plots for different temperature values

### 10.1 Closed Loop Gain and Phase



# 10.2 Open Loop Gain and Phase

