Lecture 7: More on Quadratic Equations and Roots

Quadratic Equation Formula Derivation

Starting from the general quadratic equation:

$$ax^2 + bx + c = 0,$$
 $a \neq 0$

1. Divide by a:

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \quad \Rightarrow \quad x^2 + \frac{b}{a}x = -\frac{c}{a}$$

2. Complete the square: add $\left(\frac{b}{2a}\right)^2$ to both sides:

$$x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$$

3. Recognize the square and simplify the right side:

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

4. Take square roots and isolate x:

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \quad \Rightarrow \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Let $\Delta = b^2 - 4ac$ (the discriminant):

- When $\Delta > 0$: two distinct real roots
- ullet When $\Delta=0$: one double root
- When $\Delta < 0$: no real roots (or two complex conjugate roots)

Example: Analyze the roots of $x^2 + ax + 1 = 0$

- Consider the discriminant $\Delta = a^2 4$:
 - $\circ \hspace{0.1in}$ When a>2 or a<-2: two distinct roots
 - \circ When $a=\pm 2$: one double root
 - \circ When -2 < a < 2: no roots

Graphs of Quadratic Functions

The standard form $y=x^2$ gives a parabola opening upward. For $y=-x^2$, the parabola opens downward.

Key Points:

- For $y=x^2$, the vertex (minimum point) is at (0,0)
- $y = x^2 + c$: shifts the parabola up (c > 0) or down (c < 0)
- $y=(x+c)^2$: shifts the parabola left (c>0) or right (c<0)
- $y = ax^2$:
 - When a > 1: stretches vertically
 - \circ When 0 < a < 1: compresses vertically
 - \circ When a < 0: flips orientation

For any quadratic function $y = ax^2 + bx + c$, we can write:

$$y = a(x + \frac{b}{2a})^2 + c - \frac{b^2}{4a^2}$$

This form helps us graph using the above transformations.

Examples:

- $y=x^2-2x+1=(x-1)^2$: Standard parabola shifted right by 1. Vertex at (1,0). Intersects x-axis at x=1.
- $y=x^2-2x-3=(x-1)^2-4$: Shift right by 1, then down by 4. Roots at x=3,-1.
- $y = x^2 2x + 2 = (x 1)^2 + 1$: Shift right by 1, then up by 1. No x-intercepts.

Solving Quadratic Inequalities

Example:

- ullet For $x^2-2x-3>0$: Looking at the graph, solutions are x<-1 or x>3
- · General rule: Solution involves intervals between roots and infinities

Maximum and Minimum of Quadratic Functions

For
$$y = ax^2 + bx + c$$
:

• Vertex occurs at $x=-rac{b}{2a}$

- When a > 0: vertex is minimum
- When a < 0: vertex is maximum

Example: Maximum Area of Rectangle with Fixed Perimeter

Let L=a+b be half the perimeter. Area is:

$$A=ab=a(L-a)=-a^2+La=-(a-rac{L}{2})^2+rac{L^2}{4}$$

Maximum occurs at $a=\frac{L}{2}$ (square shape).

Note: For shapes with fixed perimeter, circle maximizes area.

Roots and Powers

Fundamental rules:

- $a^m a^n = a^{m+n}$
- $(a^m)^n = a^{mn}$

For fractional powers:

- $a^{\frac{m}{n}}=(a^{\frac{1}{n}})^m$
- $ullet \ a^{rac{1}{n}}=\sqrt[n]{a}$
- $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Definition: The nth root $\sqrt[n]{a}$ of a nonnegative number a is the nonnegative number whose nth power is a.

Important Notes:

- Odd roots: can handle negative numbers (e.g., $(-1)^3=-1$)
- Even roots: require non-negative numbers