## **HW5 Report**

## Jinxi Xiao 2021533005 ShanghaiTech University

#### **Abstract**

This report contains my solutions to the given problems as well as some of my own understandings. In addition, the sections listed in this report does not one-to-one correspond to the problems, but they do overall cover the whole problem set. <sup>1</sup>

As a result, I combine the 50 clean data in data package 2 and 200 generated large noises into a new data package, and such 200 generated data can be regarded as outliers. Visualization results can be found in Figure 1. The computed results would still be valid.

### 1. Dealing with clean data

The algorithm as well as the method for this part would be rather easy, for what we need to do is to follow the *Algorithm 1* in [1]. And here are my results:

For task one:

$$\mathbf{R}_l = \begin{bmatrix} 0.01386 & -0.95103 & -0.30879 \\ 0.90568 & -0.11893 & 0.40694 \\ -0.42374 & -0.28530 & 0.85968 \end{bmatrix}$$

$$\mathbf{u}_l = [0 \ 1.12647 \ -1.40540]^T$$

For task **two**:

$$\mathbf{R}_l = \begin{bmatrix} 0.67654 & -0.62614 & 0.38761 \\ -0.65838 & -0.75008 & -0.06252 \\ 0.32989 & -0.21290 & -0.91970 \end{bmatrix}$$

$$\mathbf{u}_l = [0\ 0.37342\ 0.19655]^T$$

# 2. Using RANSAC to handle noisy data

First of all, some detailed meth-**RANSAC** ods for can be found in https://vnav.mit.edu/material/15-RANSAC-notes.pdf https://en.wikipedia.org/wiki/Random\_sample\_consensus. My methods are based on these.

Notice that for data package 3, all points contain a certain degree of Gaussian White noises. However, due to the fact that all noises are within a small scale, all points can be regraded as inliers. As a result, there's no need to use RANSAC to filter outliers.



Figure 1. Self Generated data package. Blue dots are clean data and red crosses are outliers.

### 3. Validation for results

Suppose we have obtained the 3 DoF velocity in the reference frame as  $v_c$ , the basis matrix in the line frame expressed in the reference frame  $\{e_1, e_2, e_3\}$ , and the velocity in the line frame  $[0 \ u_u \ u_z]$ .

Define

$$v_{est} = u_u e_2 + u_z e_3$$

and

$$v_{gt} = (I - e_1 e_1^T) v_c$$

After normalization, the following constraint should be satisfied

$$|v_{qt} \cdot v_{est}| = 1$$

<sup>&</sup>lt;sup>1</sup>Codes are stored at my github repo

# References

[1] L. Gao, D. Gehrig, H. Su, D. Scaramuzza, and L. Kneip, "An n-point linear solver for line and motion estimation with event cameras," 2024.