## Practice Problems (Weeks 13 and 14)

Friday, April 25, 2025 12:42 PM



A simple example. Consider the optimization problem

minimize 
$$x^2 + 1$$
  
subject to  $(x-2)(x-4) \le 0$ ,

with variable  $x \in \mathbf{R}$ .

- (a) Analysis of primal problem. Give the feasible set, the optimal value, and the optimal solution.
- (b) Lagrangian and dual function. Plot the objective x² + 1 versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian L(x, λ) versus x for a few positive values of λ. Verify the lower bound property (p\* ≥ inf<sub>x</sub> L(x, λ) for λ ≥ 0). Derive and sketch the Lagrange dual function g.
- (c) Lagrange dual problem. State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ\*. Does strong duality hold?

## Solution.

(a) The feasible set is the interval [2,4]. The (unique) optimal point is  $x^* = 2$ , and the optimal value is  $p^* = 5$ .

The plot shows  $f_0$  and  $f_1$ .



(b) The Lagrangian is

$$L(x,\lambda) = (1+\lambda)x^2 - 6\lambda x + (1+8\lambda).$$

The plot shows the Lagrangian  $L(x, \lambda) = f_0 + \lambda f_1$  as a function of x for different values of  $\lambda \geq 0$ . Note that the minimum value of  $L(x, \lambda)$  over x (i.e.,  $g(\lambda)$ ) is always less than  $p^*$ . It increases as  $\lambda$  varies from 0 toward 2, reaches its maximum at  $\lambda = 2$ , and then decreases again as  $\lambda$  increases above 2. We have equality  $p^* = g(\lambda)$  for  $\lambda = 2$ .



For  $\lambda > -1$ , the Lagrangian reaches its minimum at  $\tilde{x} = 3\lambda/(1+\lambda)$ . For  $\lambda \leq -1$  it is unbounded below. Thus

$$g(\lambda) = \left\{ \begin{array}{ll} -9\lambda^2/(1+\lambda) + 1 + 8\lambda & \lambda > -1 \\ -\infty & \lambda \leq -1 \end{array} \right.$$

which is plotted below.



We can verify that the dual function is concave, that its value is equal to  $p^* = 5$  for  $\lambda = 2$ , and less than  $p^*$  for other values of  $\lambda$ .

(c) The Lagrange dual problem is

maximize 
$$-9\lambda^2/(1+\lambda) + 1 + 8\lambda$$
  
subject to  $\lambda \ge 0$ .

The dual optimum occurs at  $\lambda = 2$ , with  $d^* = 5$ . So for this example we can directly observe that strong duality holds (as it must — Slater's constraint qualification is satisfied).



Weak duality for unbounded and infeasible problems. The weak duality inequality,  $d^* \leq p^*$ , clearly holds when  $d^* = -\infty$  or  $p^* = \infty$ . Show that it holds in the other two cases as well: If  $p^* = -\infty$ , then we must have  $d^* = -\infty$ , and also, if  $d^* = \infty$ , then we must have  $p^* = \infty$ .

Solution.



Weak duality for unbounded and infeasible problems. The weak duality inequality,  $d^* \leq p^*$ , clearly holds when  $d^* = -\infty$  or  $p^* = \infty$ . Show that it holds in the other two cases as well: If  $p^* = -\infty$ , then we must have  $d^* = -\infty$ , and also, if  $d^* = \infty$ , then we must have  $p^* = \infty$ .

Solution.

(a)  $p^* = -\infty$ . The primal problem is unbounded, i.e., there exist feasible x with arbitrarily small values of  $f_0(x)$ . This means that

$$L(x,\lambda) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x)$$

is unbounded below for all  $\lambda \succeq 0$ , i.e.,  $g(\lambda) = -\infty$  for  $\lambda \succeq 0$ . Therefore the dual problem is infeasible  $(d^* = -\infty)$ .

(b) d\* = ∞. The dual problem is unbounded above. This is only possible if the primal problem is infeasible. If it were feasible, with f<sub>i</sub>(x̃) ≤ 0 for i = 1,...,m, then for all λ ≥ 0,

$$g(\lambda) = \inf(f_0(x) + \sum_i \lambda_i f_i(x)) \le f_0(\tilde{x}) + \sum_i \lambda_i f_i(\tilde{x}),$$

so the dual problem is bounded above.

Problems with one inequality constraint. Express the dual problem of

minimize 
$$c^T x$$
  
subject to  $f(x) \le 0$ ,

with  $c \neq 0$ , in terms of the conjugate  $f^*$ . Explain why the problem you give is convex. We do not assume f is convex.

Solution. For  $\lambda = 0$ ,  $g(\lambda) = \inf_{x} c^{T} x = -\infty$ . For  $\lambda > 0$ ,

$$\begin{split} g(\lambda) &= &\inf_{x}(\boldsymbol{c}^T\boldsymbol{x} + \lambda f(\boldsymbol{x})) \\ &= &\lambda\inf_{x}((\boldsymbol{c}/\lambda)^T\boldsymbol{x} + f(\boldsymbol{x})) \\ &= &-\lambda f^*(-\boldsymbol{c}/\lambda), \end{split}$$

i.e., for  $\lambda \geq 0$ , -g is the perspective of  $f^*$ , evaluated at  $-c/\lambda$ . The dual problem is

minimize 
$$-\lambda f^*(-c/\lambda)$$
  
subject to  $\lambda \ge 0$ .



Dual of general LP. Find the dual function of the LP

minimize  $c^T x$ subject to  $Gx \leq h$ 



Dual of general LP. Find the dual function of the LP

minimize 
$$c^T x$$
  
subject to  $Gx \leq h$   
 $Ax = b$ .

Give the dual problem, and make the implicit equality constraints explicit.

## Solution.

(a) The Lagrangian is

$$\begin{array}{lcl} L(x,\lambda,\nu) & = & c^T x + \lambda^T (Gx - h) + \nu^T (Ax - b) \\ & = & (c^T + \lambda^T G + \nu^T A)x - \lambda^T h - \nu^T b, \end{array}$$

which is an affine function of x. It follows that the dual function is given by

$$g(\lambda,\nu) = \inf_x L(x,\lambda,\nu) = \left\{ \begin{array}{ll} -\lambda^T h - \nu^T b & c + G^T \lambda + A^T \nu = 0 \\ -\infty & \text{otherwise.} \end{array} \right.$$

(b) The dual problem is

maximize 
$$g(\lambda, \nu)$$
  
subject to  $\lambda \succeq 0$ .

After making the implicit constraints explicit, we obtain

maximize 
$$-\lambda^T h - \nu^T b$$
  
subject to  $c + G^T \lambda + A^T \nu = 0$   
 $\lambda \succeq 0$ .



Equality constrained least-squares. Consider the equality constrained least-squares prob-

minimize 
$$||Ax - b||_2^2$$
  
subject to  $Gx = h$ 

where  $A \in \mathbb{R}^{m \times n}$  with  $\operatorname{rank} A = n$ , and  $G \in \mathbb{R}^{p \times n}$  with  $\operatorname{rank} G = p$ .

Give the KKT conditions, and derive expressions for the primal solution  $x^*$  and the dual solution  $\nu^*$ .

## Solution.

(a) The Lagrangian is

$$\begin{array}{lcl} L(x,\nu) & = & \|Ax - b\|_2^2 + \nu^T (Gx - h) \\ & = & x^T A^T A x + (G^T \nu - 2A^T b)^T x - \nu^T h, \end{array}$$

with minimizer  $x = -(1/2)(A^TA)^{-1}(G^T\nu - 2A^Tb)$ . The dual function is

$$g(\nu) = -(1/4)(G^T\nu - 2A^Tb)^T(A^TA)^{-1}(G^T\nu - 2A^Tb) - \nu^Th$$

(b) The optimality conditions are

$$2A^{T}(Ax^{*}-b) + G^{T}\nu^{*} = 0, \quad Gx^{*} = h.$$





Derive the KKT conditions for the problem

minimize 
$$\operatorname{tr} X - \log \det X$$
  
subject to  $Xs = y$ ,

with variable  $X \in \mathbf{S}^n$  and domain  $\mathbf{S}^n_{++}$ .  $y \in \mathbf{R}^n$  and  $s \in \mathbf{R}^n$  are given, with  $s^T y = 1$ . Verify that the optimal solution is given by

$$X^* = I + yy^T - \frac{1}{s^T s} ss^T.$$

Solution. We introduce a Lagrange multiplier  $z \in \mathbb{R}^n$  for the equality constraint. The KKT optimality conditions are:

$$X \succ 0$$
,  $Xs = y$ ,  $X^{-1} = I + \frac{1}{2}(zs^T + sz^T)$ . (4.30.A)

We first determine z from the condition Xs = y. Multiplying the gradient equation on the right with y gives

$$s = X^{-1}y = y + \frac{1}{2}(z + (z^{T}y)s).$$
 (4.30.B)

By taking the inner product with y on both sides and simplifying, we get  $z^Ty = 1 - y^Ty$ . Substituting in (4.30.B) we get

$$z = -2y + (1 + y^T y)s,$$

and substituting this expression for z in (4.30.A) gives

$$X^{-1} = I + \frac{1}{2}(-2ys^T - 2sy^T + 2(1 + y^Ty)ss^T)$$
  
=  $I + (1 + y^Ty)ss^T - ys^T - sy^T$ .

Finally we verify that this is the inverse of the matrix  $X^*$  given above:

$$\begin{split} \left(I + (1 + y^T y)ss^T - ys^T - sy^T\right)X^* \\ &= (I + yy^T - (1/s^T s)ss^T) + (1 + y^T y)(ss^T + sy^T - ss^T) \\ &- (ys^T + yy^T - ys^T) - (sy^T + (y^T y)sy^T - (1/s^T s)ss^T) \\ &= I. \end{split}$$

To complete the solution, we prove that  $X^* \succ 0$ . An easy way to see this is to note that

$$X^\star = I + yy^T - \frac{ss^T}{s^Ts} = \left(I + \frac{ys^T}{\|s\|_2} - \frac{ss^T}{s^Ts}\right) \left(I + \frac{ys^T}{\|s\|_2} - \frac{ss^T}{s^Ts}\right)^T.$$

Infeasible start Newton method and initially satisfied equality constraints. Suppose we use the infeasible start Newton method to minimize f(x) subject to  $a_i^T x = b_i$ , i = 1, ..., p. (a) Suppose the initial point  $x^{(0)}$  satisfies the linear equality  $a_i^T x = b_i$ . Show that the linear equality will remain satisfied for future iterates, i.e., if  $a_i^T x^{(k)} = b_i$  for all k. (b) Suppose that one of the equality constraints becomes satisfied at iteration k, i.e., we have  $a_i^T x^{(k-1)} \neq b_i$ ,  $a_i^T x^{(k)} = b_i$ . Show that at iteration k, all the equality constraints are satisfied. Solution. Follows easily from  $r^{(k)} = \left(\prod_{i=0}^{k-1} (1 - t^{(i)})\right) r^{(0)}.$