

K-mers & Kraken2

Plan

K-mers

Kraken2

LCA

Consensus taxonomy

Optimal K-mer size?

K-mers

K-mer: a sequence of set length

K is the length

Extract all possible k-mers from a sequence

E.g 3-mers

K-mer examples

Sequence	AAGTGCGT
3-mers	AAG AGT GTG TGC GCG CGT
4-mers	AAGT AGTG GTGC TGCG GCGT
5-mers	AAGTG AGTGC GTGCG TGCGT
6-mers	AAGTGC AGTGCG GTGCGT
7-mers	AAGTGCG AGTGCGT
8-mers	AAGTGCGT

Kraken2

Compares

- seq k-mers
- k-mers mapped to a genomic library

Genomic library

K-mer's taxonomy

LCA of all the organisms that contain the k-mer

Kingdom: Animalia | Phylum: Mollusca

Class: Cephalopoda | Order: Sepiida

Kingdom: Animalia | Phylum: Mollusca Class: Cephalopoda | Order: Octopoda

Kingdom: Animalia | Phylum: Mollusca | Class: Cephalopoda

Kingdom: Animalia | Phylum: Mollusca

Class: Cephalopoda | Order: Sepiida

Kingdom: Animalia | Phylum: Mollusca

Class: Bivalva | Order: Venerida

Kingdom: Animalia | Phylum: Mollusca

Kingdom: Animalia | Phylum: Arthropoda Class: Malacostraca | Order: Decapoda

Kingdom: Animalia | Phylum: Mollusca Class: Cephalopoda | Order: Octopoda

Kingdom: Animalia

Kingdom: Animalia | Phylum: Arthropoda Class: Malacostraca | Order: Decapoda

Kingdom: Animalia | Phylum: Arthropoda Class: Malacostraca | Order:Decapoda Infraorder: Caridea

Kingdom: Animalia | Phylum: Arthropoda Class: Malacostraca | Order: Decapoda

Domain: Eukaryota | Kingdom: Animalia Domain: Eukaryota | Kingdom: Plantae

Domain: Eukaryota

Genomic library

k-mer	LCA Classification		
AAA	Kingdom: Animalia Phylum: Mollusca		
AAC	Kingdom: Animalia Phylum: Mollusca Class: Cephalopoda		
AAG	Kingdom: Animalia		
AAT	Kingdom: Animalia Phylum: Mollusca		
ACA	Domain: Eukaryota		
ACC	Kingdom: Animalia Phylum: Mollusca Class: Cephalopoda		
ACG	Domain: Eukaryota		
ACT	Kingdom: Animalia		

Sequence k-mers

LCA classification in sequence

1st 3-mer	AAC	Class: Cephalopoda
2nd 3-mer	ACG	Domain: Eukaryota
3rd 3-mer	CGA	Phylum: Mollusca
4th 3-mer	GAT	Kingdom: Animalia
5th 3-mer	ATT	Order: Octopoda
6th 3-mer	TTA	Order: Octopoda
7th 3-mer	TAC	Phylum: Mollusca
8th 3-mer	ACC	Class: Cephalopoda
9th 3-mer	CCT	Kingdom: Animalia

Sequence classification from k-mer classifications

Consensus taxonomy classification of read

Optimal k-mer size?

- Shorter than Illumina read length (150-300bp)
- Too short and it won't be specific enough
 - There are only 64 unique 3-mers (AAA, AAC, AAG TTT)
 - Therefore only have 64 different taxonomies in genomic library
- Too long and it will be too specific
 - May get few classifications due to differences between individual
 - Finding large k-mers is computational expensive
 - Incredibly large database: >6e+60 unique 101-mers
- Kraken2 uses 35-mers by default
 - > 1.18e+21 unique 35-mers i.e. > 1.18 sextillion
 - 1 sextillion = one thousand million million

Recap

- K-mers
- Kraken2
- LCA
- Consensus taxonomy
- Optimal K-mer size?

Thank you!

Questions?

