머신러님응용 제03강

Basic Methods for Regression 2

첩단공학부 김동하교수

제03강 Basic Methods for Regression 2

1	모형의 과적합에 대해 학습한다.	
2	주성분 회귀분석에 대해 학습한다.	
3	벌점화 회귀분석에 대해 학습한다.	

> 과적합

> 주성분 회귀분석

> Ridge 회귀분석

➤ Lasso 회귀분석

03강. Basic Methods for Regression 1

1) 모형의 과적합이란

◆과적합 또는 과대적합 (Overfitting)

- 모형이 학습데이터를 과하게 학습하는 것을 의미.
- $Y_i = f^*(X_i) + \epsilon_i, i = 1, \dots, n$
- 학습시키는 모형은 관계 f^* 만을 학습하길 원함.
- 데이터의 정보를 과하게 학습할 경우 오차항 ϵ_i 의 정보도 모형에 녹아들게 됨. -> 과적합
- 과적합할 경우 모형의 예측 성능 저하.

1) 모형의 과적합이란

◆과소적합 (Underfitting)

- 반대로, 모델이 너무 단순해서 데이터의 구조 및 패턴을 정확히 반영하지 못하는 경우도 생길 수 있음.
 - ▶ 과소적합 (Underfitting)
- 과소적합이 일어날 경우에도 모형의 성능이 저하.

1) 모형의 과적합이란

◆과적합 또는 과대적합 (Overfitting)

출처: https://ko.wikipedia.org/wiki/%EA%B3%BC%EC%A0%81%ED%95%A9

2) 과적합 방지를 위한 해결책

◆선형모형에서 과적합을 피하려면?

 입력데이터에서 중요한 정보만을 추출한 후 선형모형을 적합 -> 주성분 회귀분석

- 선형모형에서 모수를 적합할 때 추가 제약조건을 부여 -> 벌점화 회귀분석
 - Ridge Regression
 - Lasso Regression

03강. Basic Methods for Regression 1

1) 차원축소기법

◆분석 대상이 되는 변수의 수를 줄이고, 주요한 정보만을 추출하기 위한 방법론

◆주로 고차원 자료 분석에서 사용함.

1) 차원축소기법

◆ 변수 선택 (Feature selection)

• 기존 변수 중 중요한 일부 변수만을 빼내는 기법.

◆ 변수 변환 (Feature transformation)

■ 기존 변수를 조합해 새로운 변수를 만드는 기법.

2) 주성분분석

Principal Component Analysis (PCA)

■ 대표적인 차원 축소 기법 중 하나 (변수 변환에 기초)

 기존 변수들의 선형 변환을 통해 데이터를 잘 설명하는 새로운 변수들을 찾고, 이를 이용해 데이터의 차원을 축소.

2) 주성분분석

Principal Component Analysis (PCA)

출처: http://matrix.skku.ac.kr/math4ai-intro/W12/

3) 주성분 개수 결정

- ◆최적의 주성분 개수 선정
 - 주성분 중에서 데이터의 주요 정보를 갖고 있는 최적의 주성분 개수를 구해야 함.

Scree Plot을 이용해 결정

3) 주성분 개수 결정

Scree Plot

 PCA 분석 결과를 이용해 고유값-주성분의 분산 변화를 보는 그래프.

■ 분산 변화율이 완만해지는 주성분의 수를 선정.

4) 주성분 회귀분석

◆주성분분석 + 선형회귀모형

 설명 변수 데이터에 주성분분석을 적용하여 설명 변수의 차원을 축소

 주성분분석을 통해 얻은 축소 데이터를 이용해 종속변수를 예측하는 선형회귀모형 적합

4) 주성분 회귀분석

- ◆주성분회귀분석의 장단점
 - 과적합을 막을 수 있기 때문에 더 좋은 예측 성능을 기대할 수 있음.
 - 다중 공선성 문제를 해결할 수 있음.
 - 다만, 모형의 해석이 어려움.
 - ▶ 각각의 주성분은 기존 설명 변수들의 선형결합된 형태이기 때문.

♦ Fat dataset

 252명 남성에 대한 나이, 몸무게, 키 등의 신체 정보와 비만도를 측정한 자료.

 나머지 정보를 이용해 비만도 (brozek)를 예측하는 모형을 구축해보자.

◆ Fat dataset 불러오기

```
data_file = "./data/fat.csv"
fat = pd.read_csv(data_file)
print(fat.shape)
fat.head()
```

(252, 18)

	brozek	siri	density	age	weight	height	adipos	free	neck
0	12.6	12.3	1.0708	23	154.25	67.75	23.7	134.9	36.2
1	6.9	6.1	1.0853	22	173.25	72.25	23.4	161.3	38.5
2	24.6	25.3	1.0414	22	154.00	66.25	24.7	116.0	34.0
3	10.9	10.4	1.0751	26	184.75	72.25	24.9	164.7	37.4
4	27.8	28.7	1.0340	24	184.25	71.25	25.6	133.1	34.4

◆주성분분석 적용

■ 반드시 설명 변수 데이터를 표준화하는 작업이 선행.

	siri	density	age	weight	height	adipos	free	neck	chest	abdom
0	-0.820246	0.801647	-1.740073	-0.841246	-0.656205	-0.477058	-0.484401	-0.738665	-0.918048	-0.683533
1	-1.562573	1.565061	-1.819583	-0.193462	0.574790	-0.559456	0.966512	0.209365	-0.858621	-0.887963
2	0.736245	-0.746240	-1.819583	-0.849769	-1.066536	-0.202398	-1.523123	-1.645475	-0.597144	-0.432643

◆주성분분석 결과

(252, 10)

	pc1	pc2	pc3	pc4	pc5	рс6	pc7
0	-2.555110	-0.642961	1.847360	0.353975	-0.215243	-0.259544	-0.056970
1	-1.434682	-2.932980	0.672117	0.377292	-0.034448	-0.200036	-0.586670
2	-2.157678	1.387028	2.872635	-1.240407	1.526779	0.591437	0.039899

◆최적의 주성분 수 계산 (Scree Plot)

◆ 최적의 주성분 수 계산 (Scree Plot)

- ◆ 3개의 주성분 정보를 이용해 비만도를 예측하는 선형회귀모형 적합
 - ➤ brozek ~ pc1 + pc2 + pc3

```
pca_fat = pd.concat([yfat,pca_xfat[['pc1', 'pc2', 'pc3']]], axis=1)
## 설형모형 적합
pcalmfit = smf.ols(formula='brozek~pc1+pc2+pc3', data=pca_fat).fit()
print(pcalmfit.summary())
```

◆ 3개의 주성분 정보를 이용해 비만도를 예측하는 선형회귀모형 적합

	coef	std err	t	P> t
Intercept	18.9385	0.154	122.910	0.000
pc1	1.6608	0.048	34.525	0.000
pc2	3.2789	0.101	32.524	0.000
рс3	0.7015	0.148	4.748	0.000

03강. Basic Methods for Regression 1

1) 벌점화 회귀분석

- ◆ 벌점 함수를 이용한 회귀분석
 - 일반적인 선형회귀 추정 방법은 제곱손실함수를 최소화하는 최소제곱법.

- 데이터에 내재되어 있는 오차 및 다중 공선성에 민감하게 반응할 수 있음.
- 이를 해결하기 위해 모수가 상대적으로 둔감하게 반응하도록 벌점화 함수를 추가.

1) 벌점화 회귀분석

- ◆ 벌점 함수를 이용한 회귀분석
 - 제곱손실함수 + 벌점화함수 = 벌점화된 손실함수

벌점화된 손실함수를 최소화하는 모수를 추정
 -> 벌점화 회귀분석

◆제곱손실함수

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$

◆벌점함수

$$pen(\beta_1, \cdots, \beta_p)$$

◆ 벌점화된 손실함수

$$\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1}x_{i1}-\cdots-\beta_{p}x_{ip}\right)^{2}+\lambda\times pen(\beta_{1},\cdots,\beta_{p})$$

- ◆ 벌점함수의 종류
 - 여러가지 벌점 함수가 존재.
 - 두 가지 벌점 함수에 대해 학습할 것.

◆ 벌점함수의 종류

•
$$pen(\beta_1, \dots, \beta_p) = \sum_{j=1}^p \beta_j^2$$

> Ridge regression (능형 회귀) - L_2 벌점함수 사용

•
$$pen(\beta_1, \dots, \beta_p) = \sum_{j=1}^p |\beta_j|$$

ightharpoonup Lasso regression (라쏘 회귀) - L_1 벌점함수 사용

◆둘 모두 벌점화 함수를 이용해서 모형의 성능을 향상.

- ◆Lasso의 경우 모수 추정량이 정확히 0이 되는 모수가 존재.
 - 변수 선택의 기능

- ◆ 조율모수: λ > 0
 - 모수에 부여하는 벌점의 크기를 결정하는 모수
 - 조율모수의 크기에 따라 다른 모수가 추정됨.
 - $\lambda = 0$ -> 일반적인 최소제곱법
 - $\lambda = \infty$ -> 설명변수의 모든 기울기는 0으로 추정

- ◆최적의 조율모수를 선택해야 함.
 - 검증자료 또는 교차검증법을 이용.

- ◆교차검증법
 - 데이터를 훈련용과 검증용으로 교차하여 선택하는 방법.
 - 다양한 조율모수에 대해서 교차검증을 이용한 손실 점수를 계산하고, 이를 최소로 하는 최적의 조율모수를 선택.
 - 선택된 조율모수를 이용해 최종 모형을 학습.

◆교차검증법

Test Data	Train Data	Train Data	Train Data	Train Data
Train Data	Test Data	Train Data	Train Data	Train Data
Train Data	Train Data	Test Data	Train Data	Train Data
Train Data	Train Data	Train Data	Test Data	Train Data
Train Data	Train Data	Train Data	Train Data	Test Data

출처: https://heytech.tistory.com/113

- Ridge regression
 - 최적의 조율 모수 선택

- Ridge regression
 - 최적의 조율 모수 선택

```
best alpha = alphas[list(rmse==min(rmse)).index(True)]
plt.plot(alphas, rmse, label=Ridge. name )
plt.axvline(best alpha, color = 'r')
plt.legend(loc = 'lower right')
plt.xscale("log")
plt.xlabel('alpha')
plt.ylabel('Root Mean Square Error')
plt.tight layout()
plt.show()
```

- Ridge regression
 - 최적의 조율 모수 선택

- Ridge regression
 - 최적의 조율 모수를 이용해서 최종 모형 학습

```
optimal ridge = Ridge(best alpha)
optimal ridge.fit(xfat st, yfat)
print(optimal ridge.intercept )
print(optimal ridge.coef )
18.938492063492067
[ 7.42009341e+00 -1.87004321e-01 -6.62524123e-03 2.48887207e-01
 -1.99545282e-03 -5.57956160e-02 -1.77200971e-01 1.21347867e-03
 1.80509937e-02 1.55655884e-02 -3.18267718e-02 8.22217091e-02
 -6.06869824e-02 4.70068114e-03 -4.43648926e-02 3.02468282e-02
 3.04227118e-02
```

- Lasso regression
 - 최적의 조율 모수 선택

- Lasso regression
 - 최적의 조율 모수 선택

```
best_alpha = alphas[list(rmse==min(rmse)).index(True)]
plt.plot(alphas, rmse, label=Lasso. name )
plt.axvline(best alpha, color = 'r')
plt.legend(loc = 'lower right')
plt.xscale("log")
plt.xlabel('alpha')
plt.ylabel('Root Mean Square Error')
plt.tight layout()
plt.show()
```

- Lasso regression
 - 최적의 조율 모수 선택

- Lasso regression
 - 최적의 조율 모수를 이용해서 최종 모형 학습

```
optimal lasso = Lasso(best alpha)
optimal lasso.fit(xfat st, yfat)
print(optimal lasso.intercept )
print(optimal lasso.coef )
18.938492063492067
7.57372300e+00 -1.37753930e-01 -0.00000000e+00
                                                0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
 0.00000000e+00 0.00000000e+00 0.0000000e+00 6.41373707e-03
 0.00000000e+00 0.00000000e+00 0.0000000e+00 2.68691580e-04
 0.00000000e+001
```


다음시간안내

Basic Methods for Classification