Chapter 3.

Dynamic Programming

Foundations of Algorithms, 5th Ed. Richard E. Neapolitan

Contents

- 3.1 The Binomial Coefficient
- 3.2 Floyd's Algorithm for Shortest Paths
- 3.3 Dynamic Programming and Optimization Problem
- 3.4 Chained Matrix Multiplication
- 3.5 Optimal Binary Search Trees
- 3.6 The Traveling Salesperson Problem

Dynamic Programming

- Dynamic Programming
 - is similar to divide-and-conquer in that
 - an instance of a problem is divided into smaller instances.
 - However, D.P. solves small instances first,
 - store the results, and later, whenever we need a result,
 - look it up instead of recomputing it.
 - The term "dynamic programming" comes from control theory,
 - "programming" means the use of an array (table)
 - in which a solution is constructed. (called *memoization*)
 - Dynamic Programming is a *bottom-up* approach,
 - whereas the divide-and-conquer is a *top-down* approach.

Dynamic Programming

- The steps in the design of Dynamic Programming:
 - 1. Establish a recursive property that
 - gives the solution to an instance of the problem.
 - 2. Solve an instance of the problem in a bottom-up fashion
 - by solving smaller instances first (using *memoization*).

- The Binomial Coefficient Problem:
 - The definition of binomial coefficient is given by:

$${\binom{n}{k}} = \frac{n!}{k!(n-k)!}, \text{ for } 0 \le k \le n.$$

- We cannot compute directly because n! is very large even for small n.
- Using the recursive property of the binomial coefficient:

$$-\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ 1 & k = 0 \text{ or } k = n \end{cases}$$

- We can eliminate the need to compute n! or k!.

ALGORITHM 3.1: Binomial Coefficient Using Divide-and-Conquer

```
int bin(int n, int k) {
    if (k == 0 || n == k)
        return 1;
    else
        return bin(n - 1, k - 1) + bin(n - 1, k);
}
```


- The Inefficiency of Algorithm 3.1:
 - Algorithm 3.1 computes $2 \binom{n}{k} 1$ terms to determine $\binom{n}{k}$. (Exercise 3.1.2)
 - The problem is that
 - the same instances are solved in each recursive call.
 - Recall that the *divide-and-conquer* approach is always *inefficient*
 - when an instance is divided into two smaller instances
 - that are *almost as large as* the original instance.


```
Top-Down
            bin(4, 2)
                    bin(3, 1)
                            bin(2, 0)
                            bin(2, 1)
                    bin(3, 2)
                             bin(2, 2)
                                                      Bottom-Up
```


- Design a more efficient algorithm using D.P.
 - *Establish* a recursive property:
 - Let B be an array that B[i][j] contains $\binom{n}{k}$.

$$-B[i][j] = \begin{cases} B[i-1][j-1] + B[i-1][j] & 0 < j < i \\ 1 & j = 0 \text{ or } j = i \end{cases}$$

- Solve an instance of the problem in a bottom-up fashion
 - by *computing the rows* in *B* in sequence
 - *starting* with the *first* row.

• You may recognize the array in this figure as *Pascal's triangle*.

ALGORITHM 3.1: Binomial Coefficient Using Divide-and-Conquer

```
int bin2(int n, int k) {
    int i, j;
    int B[n + 1][k + 1];
    for (i = 0; i <= n; i++)
        for (j = 0; j \leftarrow minimum(i, k); j++)
            if (j == 0 || j == i)
                 B[i][j] = 1;
            else
                 B[i][j] = B[i - 1][j - 1] + B[i - 1][j];
    return B[n][k];
```


- Time Complexity of Algorithm 3.2:
 - The parameters *n* and *k* are *not* the *size* of *input* to this algorithm.
 - Rather, they are the input, and the input size is
 - the *number of symbols* it takes to *encode* them.
 - For given n and k,
 - the number of passes for each value of *i* are:

i	0	1	2	3	 k	k + 1	 n
Number of passes	1	2	3	4	 k + 1	k + 1	 k + 1

- Time Complexity of Algorithm 3.2:
 - The total number of passes is:

$$-1 + 2 + 3 + 4 + \dots + k + (k+1) + (k+1) \dots + (k+1)$$

$$- = \frac{k(k+1)}{2} + (n-k+1)(k+1)$$

$$- = \frac{(2n-k+2)(k+1)}{2} \in \Theta(nk).$$

- We can argue that we have developed a *much more efficient* algorithm,
 - by using *dynamic programming* instead of *divide-and-conquer*.

- Improving the Performance of Algorithm 3.2
 - Take advantage of the fact that

$$-\binom{n}{k} = \binom{n}{n-k}.$$

- Use only a *one-dimensional array* indexed from 0 to k,
 - instead of creating the *entire two-dimensional* array *B*.
 - Once a row is computed,
 - we no longer need the values in the row that proceeds it.

- Finding the Shortest Paths in a Graph:
 - from each vertex to all other vertices (All Pairs Shortest Paths)

- Shortest path from v_1 to v_3 ?
 - $length[v_1, v_2, v_3] = 1 + 3 = 4$
 - $length[v_1, v_4, v_3] = 1 + 2 = 3$
 - $length[v_1, v_2, v_4, v_3] = 1 + 2 + 2 = 5$

- The Shortest Paths as an *Optimization Problem*:
 - There can be more than one *candidate solution*
 - to an instance of an optimization problem.
 - Each candidate solution has a value associated with it,
 - and a solution to the instance is any candidate solution
 - that has an optimal value (either minimum or maximum).
 - There can be more than one shortest paths from one vertex to another.
 - Our problem is to find *any one* of the shortest paths.

- The **Brute-Force** Approach:
 - Determine, for each vertex,
 - the *lengths of all the paths* from that vertex to each other vertex,
 - and compute the *minimum* of these lengths.
 - This algorithm is *worse* than *exponential time*.
 - The total number of paths from one vertex to another vertex is
 - $(n-2)(n-3)\cdots 1 = (n-2)!$ (factorial time)
 - This is often the case with many optimization problems.
 - Our goal is to find a more efficient algorithm for this problem.

• Floyd's Algorithm:

- A *cubic-time* algorithm for the problem of (*All Pairs*) *Shortest Paths*.
 - not *exponential*, but *polynomial*.
- Using dynamic programming,
 - First, we develop an algorithm
 - that determines *only the lengths* of the shortest paths.
 - After, we modify it to *produce shortest paths* as well.

- Data Structure for the Floyd's Algorithm
 - We represent a *weighted* (*directed*) graph containing *n* vertices
 - by an array (*adjacency matrix*) W where

•
$$W[i][j] = \begin{cases} weight\ on\ edge \end{cases}$$
 if there is an edge from v_i to v_j if there is no edge from v_i to v_j or $if\ i=j$

- We also define an array *D* as a matrix that
 - contains the lengths of the shortest paths in the graph.

W	1	2	3	4	5	D	1	2	3	4	5
1	0	1	∞	1	5	1	0	1	3	1	4
		0				2	8	0	3	2	5
3	∞	∞	0	4	∞	3	10	11	0	4	7
4	∞	∞	2	0	3	4	6	7	2	0	3
5	3	∞	∞	∞	0	5	3	4	6	4	0

- Solving the Problem:
 - If we can develop a way
 - to calculate the values in D from those in W,
 - we will have an algorithm for the Shortest Paths problem.
 - Let us create a sequence of n+1 arrays $D^{(k)}$,
 - where $0 \le k \le n$ and where
 - $D^{(k)}[i][j] = \text{length of a shortest path from } v_i \text{ to } v_j \text{ using only vertices}$ in the set $\{v_1, v_2, \dots, v_k\}$ as intermediate vertices.

- $D^{(0)}[2][5] = length[v_2, v_5] = \infty$
- $D^{(1)}[2][5] = minimum(length[v_2, v_5], length[v_2, v_1, v_5])$ $= minimum(\infty, 14) = 14.$
- $D^{(2)}[2][5] = D^{(1)}[2][5] = 14.$
- $D^{(3)}[2][5] = D^{(2)}[2][5] = 14.$
- $D^{(4)}[2][5] = minimum(length[v_2, v_1, v_5], length[v_2, v_4, v_5],$ $length[v_2, v_1, v_4, v_5], length[v_2, v_3, v_4, v_5]$ = minimum(14,5,13,10) = 5.
- $D^{(5)}[2][5] = D^{(4)}[2][5] = 5.$

- Solving the Problem:
 - Note that $D^{(n)}[i][j]$ is the length of a shortest path from v_i to v_j ,
 - because it is the length of a shortest path from v_i to v_j
 - that is allowed to pass through any of the other vertices.
 - Therefore, we have established that
 - $D^{(0)} = W \text{ and } D^{(n)} = D.$
 - To determine *D* from *W*,
 - we need only find a way to obtain $D^{(n)}$ from $D^{(0)}$.

- The steps for Dynamic Programming:
 - Establish a recursive property
 - with which we compute $D^{(k)}$ from $D^{(k-1)}$.
 - Solve an instance of the problem in a bottom-up fashion
 - by repeating the process for k = 1 to n.
 - This process creates the sequence:

- Two cases of Establishing Recursive Property:
 - 1. At least one shortest path from v_i to v_i does not use v_k ,
 - using only vertices in $\{v_1, v_2, \dots, v_k\}$ as intermediate vertices.
 - Then, $D^{(k)}[i][j] = D^{(k-1)}[i][j]$.
 - 2. All shortest paths from v_i to v_i do use v_k ,
 - using only vertices in $\{v_1, v_2, \dots, v_k\}$ as intermediate vertices.
 - Then, $D^{(k)}[i][j] = D^{(k-1)}[i][k] + D^{(k-1)}[k][j]$.

- Examples of Two Cases:
 - case 1: $D^{(5)}[1][3] = D^{(4)}[1][3] = 3$,
 - because when we include vertex v_5 ,
 - the shortest path from v_1 to v_3 is still $[v_1, v_4, v_3]$.
 - case 2: $D^{(2)}[5][3] = D^{(1)}[5][2] + D^{(1)}[2][3] = 4 + 3 = 7$,
 - because v_k cannot be an intermediate vertex on the subpath from v_i to v_k ,
 - that subpath uses only vertices in $\{v_1, v_2, \dots, v_{k-1}\}$ as intermediates.

A shortest path from v_i to v_j using only vertices in $\{v_1, v_2, \dots, v_k\}$

A shortest path from v_i to v_k using only vertices in $\{v_1, v_2, \cdots, v_k\}$

A shortest path from v_k to v_i using only vertices in $\{v_1, v_2, \cdots, v_k\}$

- Considering Two Cases:
 - Let $D^{(k)}[i][j]$ be the *minimum* of the values from either Case 1 or Case 2.
 - $D^{(k)}[i][j] = minimum(D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j]).$
 - Now we have established a recursive property (Step 1).
 - To accomplish Step 2,
 - create the sequence of arrays: D^0 , D^1 , D^2 , ..., D^n .

$$D^0$$
 1
 2
 3
 4
 5

 1
 0
 1
 ∞
 1
 5

 2
 9
 0
 3
 2
 ∞

 3
 ∞
 ∞
 0
 4
 ∞

 4
 ∞
 ∞
 2
 0
 3

 5
 3
 ∞
 ∞
 ∞
 0

- $D^{(1)}[2][4] = minimum(D^{(0)}[2][4], D^{(0)}[2][1] + D^{(0)}[1][4])$ = minimum(2, 9 + 1) = 2.
- $D^{(1)}[5][2] = minimum(D^{(0)}[5][2], D^{(0)}[5][1] + D^{(0)}[1][2])$ = $minimum(\infty, 3 + 1) = 4.$
- $D^{(1)}[5][4] = minimum(D^{(0)}[5][4], D^{(0)}[5][1] + D^{(0)}[1][4])$ = $minimum(\infty, 3 + 1) = 4.$
- $D^{(2)}[5][4] = minimum(D^{(1)}[5][4], D^{(1)}[5][2] + D^{(1)}[2][4])$ = minimum(4, 4 + 2) = 4.

ALGORITHM 3.3: Floyd's Algorithm for Shortest Paths

```
void floyd(int n, const int W[][MAX], int D[][MAX]) {
    int i, j, k;
    D = W;
    for (k = 1; k \le n; k++)
        for (i = 1; i <= n; i++)
            for (j = 1; j <= n; j++)
                D[i][j] = minimum(D[i][j], D[i][k] + D[k][j]);
```


- Why can we use only one array *D*?
 - because the *values* in the *k*th row and the *k*th column
 - are *not changed* during the *k*th iteration of the loop.
 - In the *k*th iteration, the algorithm assigns
 - D[i][k] = minimum(D[i][k], D[i][k] + D[k][k]), and
 - D[k][j] = minimum(D[k][j], D[k][k] + D[k][j])
 - During the kth iteration, D[i][j] is computed
 - from only its own value and values in the kth row and the kth column.
 - These values have maintained their values from the (k-1)st iteration.
- Time Complexity of Floyd's algorithm: $T(n) = n^3 \in \Theta(n^3)$.

- Producing the Shortest Paths:
 - Define an array *P*, where

$$P[i][j] = \begin{cases} \text{highest index of an itermediate vertex on the shortest path} \\ \text{from } v_i \text{ to } v_j, \text{ if at least one intermediate vertex exists.} \\ 0, \text{ if no intermediate vertex exists.} \end{cases}$$

P	1	2	3	4	5
1	0	0 0 5 5	4	0	4
2	5	0	0	0	4
3	5	5	0	0	4
4	5	5	0	0	0
5	0	1	4	1	0

ALGORITHM 3.4: Floyd's Algorithm for Shortest Paths 2

```
void floyd2(int n, const int W[][MAX], int D[][MAX], int P[][MAX]) {
    int i, j, k;
    for (i = 1; i <= n; i++)
        for (j = 1; j \le n; j++)
            P[i][i] = 0;
    D = W;
    for (k = 1; k \le n; k++)
        for (i = 1; i <= n; i++)
            for (j = 1; j <= n; j++)
                if (D[i][k] + D[k][j] < D[i][j]) {</pre>
                    P[i][j] = k;
                    D[i][j] = D[i][k] + D[k][j];
```


ALGORITHM 3.5: Print Shortest Path

```
void path(int q, int r) {
    if (P[q][r] != -1) {
        path(q, P[q][r]);
        cout << "v" << P[q][r] << " ";
        path(P[q][r], r);
```


3.3 Dynamic Programming and Optimization Problems

- The design of a D.P. algorithm for an *optimization problem*:
 - 1. Establish a recursive property
 - that gives the optimal solution to an instance of the problem.
 - 2. Compute the value of an optimal solution in a bottom-up fashion.
 - 3. Construct an optimal solution in a bottom-up fashion.
 - Note that *Steps 2* and *3* are ordinarily accomplished
 - at *about the same point* in the algorithm

3.3 Dynamic Programming and Optimization Problems

• The Principle of Optimality:

- An optimization problem can be solved using dynamic programming,
 - if and only if the *principle of optimality applies* in the problem.
- The principle of optimality is said to *apply* in a problem
 - if an *optimal solution* to an instance of a problem
 - always contains optimal solutions to all subinstances.

3.3 Dynamic Programming and Optimization Problems

- Example: the *Longest Paths* problem
 - Finding the *longest simple paths* from each vertex to all other vertices.
 - We restrict the path to be *simple*,
 - because *a cycle* can always create an arbitrarily long path
 - by repeatedly passing through the cycle.
 - Then, we can show that the principle of optimality *does not apply*.

- The optimal (longest) simple path from v_1 to v_4 is $[v_1, v_3, v_2, v_4]$.
- However, the subpath $[v_1, v_3]$ is not an optimal path from v_1 to v_4
 - length $[v_1, v_3] = 1$ and length $[v_1, v_2, v_3] = 4$.

- The Multiplication of Chained Matrices:
 - Suppose we want to multiply a 2×3 matrix and a 3×4 matrix:

$$-\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 & 9 & 1 \\ 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 29 & 35 & 41 & 38 \\ 74 & 89 & 104 & 83 \end{bmatrix}$$

- The resultant matrix is a 2×4 matrix.
- If we use the standard method of multiplying matrices
 - it takes three elementary multiplications.
 - For 29 in the product: 3 multiplications $(1 \times 7 + 2 \times 2 + 3 \times 6)$.
- Because there $2 \times 4 = 8$ entries in the product,
 - the total number of elementary multiplication is $2 \times 3 \times 4 = 24$.

- The number of *elementary multiplications*:
 - In general, to multiply an $i \times j$ matrix with a $j \times k$ matrix,
 - the number of elementary multiplications is $i \times j \times k$.
 - Consider the multiplication of the following four matrices:

```
- A \times B \times C \times D
-(20 \times 2) (2 \times 30) (30 \times 12) (12 \times 8)
```

- Matrix multiplication is an associative operation,
 - meaning the *order* in which we multiply *does not matter*.
 - for example, A(B(CD)) = (AB)(CD).

- The number of elementary multiplications:
 - There are *five different orders* with different number multiplications.

```
- A(B(CD)): 3,680
```

-(AB)(CD): 8,880

- A((BC)D): 1,232 (optimal order)

-((AB)C)D: 10,320

-(A(BC))D: 3,120

- *Our goal* is to develop an algorithm that
 - determines the *optimal order* for multiplying *n* chained matrices.

- The Brute-Force Approach:
 - Consider *all possible orders* and *take* the *minimum*.
 - We will show that this algorithm is at least exponential-time.
 - For a given *n* matrices: A_1, A_2, \dots, A_n ,
 - let t_n be the number of different orders.
 - Then, $t_n \ge t_{n-1} + t_{n-1} = 2t_{n-1}$, and $t_2 = 1$.
 - Therefore, $t_n \ge 2^{n-2}$. (at least exponential)

- Does the principle of optimality apply?
 - Show that the optimal order for multiplying *n* matrices includes
 - the optimal order for multiplying any subset of the *n* matrices.
 - Then, we can use dynamic programming to construct a solution.

$$A_1\left(\left(\left((A_2A_3)A_4\right)A_5\right)A_6\right)$$

- If this order is *optimal* for multiplying $A_1A_2A_3A_4A_5A_6$,
- then the *optimal order* for multiplying $A_2A_3A_4$ is this.

$$\left((A_2 A_3) A_4 \right)$$

- Multiplying A_{k-1} times A_k :
 - The number of columns in A_{k-1}
 - must equal to the number of rows in A_k .
 - If we let d_0 be the number of rows in A_1
 - and d_k be the number of columns in A_k for $1 \le k \le n$,
 - then, the dimension of A_k is $d_{k-1} \times d_k$.

- Creating a sequence of arrays:
 - For $1 \le i \le j \le n$, let

$$\mathbf{M}[i][j] = \begin{cases} \text{minimum number of multiplications needed to multiply} \\ A_i \text{ through } A_j, \text{ if } i < j. \\ 0, \text{ if } i = j. \end{cases}$$

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6$$

(5 × 2) (2 × 3) (3 × 4) (4 × 6) (6 × 7) (7 × 8)
 $d_0 \ d_1 \ d_2 \ d_3 \ d_4 \ d_5 \ d_6$

- To multiply A_4 , A_5 , and A_6 , we have two orders:
 - $(A_4A_5)A_6$: $d_3d_4d_5 + d_3d_5d_6 = 392$
 - $A_4(A_5A_6)$: $d_4d_5d_6 + d_3d_4d_6 = 528$
- Therefore, M[4][6] = minimum(392, 528) = 392.

- Establish the recursive property:
 - The *optimal order* for multiplying *six* matrices
 - must have *one of these factorizations*:
 - 1. $(A_1)(A_2A_3A_4A_5A_6)$
 - $(A_1A_2)(A_3A_4A_5A_6)$
 - 3. $(A_1A_2A_3)(A_4A_5A_6)$
 - 4. $(A_1A_2A_3A_4)(A_5A_6)$
 - 5. $(A_1A_2A_3A_4A_5)(A_6)$
 - Of these *factorizations*,
 - the one that *yields* the *minimum* number of multiplications
 - must be the optimal one.

- Establish the recursive property:
 - The number of multiplications for the *k*th factorization
 - is the *minimum number* needed to *obtain each factor*
 - *plus* the *number* needed to *multiply two factors*.
 - that is, $M[1][k] + M[k+1][6] + d_0d_kd_6$.
 - We have established that
 - $M[1][6] = \min_{1 \le k \le 5} (M[1][k] + M[k+1][6] + d_0 d_k d_6).$
 - We can generalize this result into:
 - $M[i][j] = \min_{i \le k \le j-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j)$, if i < j.
 - -M[i][i] = 0.


```
M[i][i] = 0 for 1 \le i \le 6
M[1][2] = \min_{1 \le k \le 1} (M[1][k] + M[k+1][2] + d_0 d_k d_2)
           = M[1][1] + M[2][2] + d_0d_1d_2 = 0 + 0 + 5 \times 2 \times 3 = 30.
M[1][3] = \min_{1 \le k \le 2} (M[1][k] + M[k+1][3] + d_0 d_k d_3)
           = minimum(M[1][1] + M[2][3] + d_0d_1d_3, M[1][2] + M[3][3] + d_0d_2d_3)
           = minimum(0 + 24 + 5 \times 2 \times 4, 30 + 0 + 5 \times 3 \times 4) = 64.
M[1][4] = \min_{1 \le k \le 3} (M[1][k] + M[k+1][4] + d_0 d_k d_4)
           = minimum(M[1][1] + M[2][4] + d_0d_1d_4, M[1][2] + M[3][4] + d_0d_2d_4, M[1][3] + M[4][4] + d_0d_3d_4)
           = minimum(0 + 72 + 5 \times 2 \times 6, 30 + 72 + 5 \times 3 \times 6, 64 + 0 + 5 \times 4 \times 6) = 132.
M[1][6] = 348.
```


ALGORITHM 3.6: Minimum Multiplications

```
int minmult(int n, int d[], int P[][MAX], int M[][MAX]) {
    int i, j, k, diagonal;
    for (i = 1; i <= n; i++)
        M[i][i] = 0;
    for (diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
        for (i = 1; i <= n - diagonal; i++) {
            j = i + diagonal;
            M[i][j] = \min_{i < k < i-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j);
             P[i][j] = a value of k that gave the minimum;
    return M[1][n];
```



```
int minimum(int i, int j, int &minK, int M[][MAX], int d[MAX]) {
   int minV = INF;
   for (int k = i; k <= j - 1; k++) {
        int value = M[i][k] + M[k+1][j] + d[i-1]*d[k]*d[j];
       if (minV > value) {
           minV = value;
           minK = k;
   return minV;
```


- Time Complexity of Algorithm 3.6 (Every-Case)
 - Basic Operation: the *instructions* executed for each value of *k*.
 - Input Size: n, the number of matrices to be multiplied.
 - Since we have a nested loop,
 - the number of passes through the k loop is
 - j 1 i + 1 = i + diagonal 1 i + 1 = diagonal.
 - the total number of times that the basic operation is done equals

$$\sum_{\substack{diagonal=1}}^{n-1} \left[(n - diagonal) \times diagonal \right] = \frac{n(n-1)(n+1)}{6} \in \Theta(n^3)$$

• Obtaining the *Optimal Order* from the array P.

P	1	2	3	4	5	6	
1		1	1	1	1	1	-
2			2	3	4	5	
3				3	4	5	
4					4	5	
5						5	
6							

$$P[2][6] = 6: P[2][5] & P[6][6]$$

•
$$P[2][5] = 4: P[2][4] \& P[5][5]$$

•
$$P[2][4] = 3: P[2][3] & P[4][4]$$

•
$$P[2][3] = 2: P[2][2] & P[3][3]$$

$$\bullet (A_1 A_2 A_3 A_4 A_5 A_6)$$

$$\bullet$$
(A_1)($A_2A_3A_4A_5A_6$)

$$\bullet (A_1) ((A_2 A_3 A_4 A_5) A_6)$$

$$\bullet (A_1) \left(\left((A_2 A_3 A_4) A_5 \right) A_6 \right)$$

$$\bullet (A_1) \left(\left(((A_2 A_3) A_4) A_5 \right) A_6 \right)$$

ALGORITHM 3.7: Print Optimal Order

```
void order(int i, int j, int P[][MAX]) {
    if (i == j)
        cout << "A" << i;
    else {
        int k = P[i][j];
        cout << "(";
        order(i, k, P);
        order(k + 1, j, P);
        cout << ")";
```


- A binary search tree (BST) is
 - a *binary tree* of items (*keys*) that come from an *ordered* set, such that
 - 1. Each node contains *one key*.
 - 2. The keys in the *left subtree* of a given node
 - are *less than* or *equal to* the key in that node.
 - 3. The keys in the *right subtree* of a given node
 - are *greater than* or *equal to* the key in that node.

- **Optimal** Binary Search Tree
 - Our goal is to organize the keys in a BST so that
 - the *average time* it takes to locate a key is *minimized*.
 - Optimal BST is a tree that is organized in this fashion.
 - This problem is not hard
 - if all keys have the *same probability* of being the *search key*.
 - We are concerned with the case
 - where the keys do **not** have the same probability.
 - We will discuss the case in which
 - it is known that the *search key is* **in** *the tree*.

ALGORITHM 3.8: Search Binary Tree

```
void search(node pointer tree, int keyin, node pointer& p) {
    bool found;
    p = tree;
    found = false;
    while (!found) {
        if (p->key == keyin)
            found = true;
                                           typedef struct node *node pointer;
        else if (keyin < p->key)
                                           typedef struct node {
            p = p->left;
                                               int key;
        else
                                               node pointer left;
            p = p->right;
                                               node pointer right;
                                           } nodetype;
```


- Evaluating the search time of a BST
 - The search time is the number of comparisons
 - done by procedure *search* to locate a key.
 - Our goal is to determine a binary search tree
 - for which the *average search time* is *minimal*.
 - Let K_1, K_2, \dots, K_n be the *n* keys in order,
 - and let p_i be the *probability* that K_i is the *search key*.
 - The average search time is $T_{avg} = \sum_{i=1}^{n} c_i p_i$
 - where c_i be the *number of comparisons* needed to find K_i in a given tree.

- An example:
 - n = 3, K = [10, 20, 30], p = [0.7, 0.2, 0.1]

- Finding an Optimal BST
 - by considering all binary search trees.
 - The number of *different* BSTs with a depth of n-1 is 2^{n-1} .
 - If a BST's depth is n-1,
 - a node can be either to the left or to the right of its parent.
 - It means there are two possibilities at each of those levels.
 - The time complexity of this brute-force approach is *exponential*.

- To apply the Dynamic Programming
 - Suppose that keys K_i through K_i are arranged in a tree
 - that minimizes $\sum_{m=1}^{J} c_m p_m$.
 - We will call such a tree **optimal** for those keys
 - and denote the *optimal value* by A[i][j].
 - Because it takes one comparison to locate a key containing one key,
 - $A[i][i] = p_i$.

- An example:
 - n = 3, K = [10, 20, 30], p = [0.7, 0.2, 0.1], then determine A[2][3].

- A[2][3] = 0.4
 - 1. $1 \times p_2 + 2 \times p_3 = 0.4$ (optimal)
 - 2. $2 \times p_2 + 1 \times p_3 = 0.5$

- Note that the *optimal tree* is
 - the *right subtree* of the optimal tree obtained from the previous tree.
- The *principle of optimality* applies:
 - Any subtree of an optimal tree must be *optimal* for the key in that subtree.

For each key, there is *one additional* comparison at the root.

- Establish the recursive property:
 - The average search time for tree k is
 - $-A[1][k-1]+A[k+1][n]+\sum_{m=1}^{n}p_{m}$.
 - The average search time for the *optimal tree* is given by
 - $A[1][n] = \min_{1 \le k \le n} (A[1][k-1] + A[k+1][n]) + \sum_{m=1}^{n} p_m,$
 - where A[1][0] and A[n+1][n] are defined to be 0.
 - In general,
 - $A[i][j] = minimum_{i \le k \le i} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m$, for i < j.
 - $-A[i][j] = p_i,$
 - -A[i][i-1] = A[i+1][j] = 0.

- Determining an Optimal BST:
 - We proceed by computing *in sequence* the values on *each diagonal*.
 - because A[i][j] is computed
 - from entries in the *i*th row but to the left of A[i][j],
 - and from entries in the jth column but beneath A[i][j].
 - Let an array *R* contain
 - the indices of the keys chosen for the root at each step.
 - R[i][j]: the index of the key in the root of an optimal tree
 - containing the *i*th through the *j*th keys.

ALGORITHM 3.9: Optimal Binary Search Tree

```
void optsearchtree(int n, float p[], float &minavg, int R[][MAX]) {
    int i, j, k, diagonal;
    float A[MAX][MAX];
    for (i = 1; i <= n; i++) {
        A[i][i] = p[i]; A[i][i - 1] = 0;
        R[i][i] = i; R[i][i - 1] = 0;
    A[n + 1][n] = 0;
    R[n + 1][n] = 0;
    for (diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
        for (i = 1; i <= n - diagonal; i++) {
             j = i + diagonal;
            A[i][j] = minimum_{i \le k \le j} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{j} p_m;
            R[i][j] = a value of k that gave the minimum;
    minavg = A[1][n];
```


ALGORITHM 3.9: Optimal Binary Search Tree

```
node_pointer tree(int i, int j, int R[][MAX], int keys[MAX]) {
   int k;
   node pointer p;
   k = R[i][j];
    if (k == 0)
        return NULL;
   else {
        p = (node pointer)malloc(sizeof(nodetype));
        p->key = keys[k];
        p->left = tree(i, k - 1, R, keys);
        p->right = tree(k + 1, j, R, keys);
        return p;
```


• An example:

•
$$n = 4, K = [10, 20, 30, 40], p = [3, 3, 1, 1].$$

A	1	2	3	4	R	1	2	3	4
1	3			14	1	1	1	2	2
2		3	5	8	2		2	2	2
3			1	3	3			3	3
4				1	4				4

preorder: 20 10 30 40

inorder: 10 20 30 40

- Time Complexity of Algorithm 3.9:
 - Basic Operation: the instructions executed for *each value of k*.
 - This include a comparison to test for the minimum.
 - Input Size: *n*, the *number of keys*.
 - The control of this algorithm is almost identical to Algorithm 3.6.
 - The only difference is that,
 - the basic operation is done diagonal + 1 times.
 - Therefore,

$$T(n) = \frac{n(n-1)(n+4)}{6} \in \Theta(n^3)$$

- The Traveling Salesperson Problem (TSP)
 - Suppose a *salesperson* is planning a *sales trip* that includes *20 cities*.
 - *Each city* is *connected* to some of the other cities by a road.
 - To *minimize* travel time,
 - we want to determine a *shortest route* that
 - *starts* at the salesperson's *home city*,
 - *visits* each of the cities *once*,
 - and ends up at the home city.

• Generalization of the TSP:

- In a weighted, directed graph,
 - find an *optimal tour* when at least one tour exists.
- A *tour* in a directed graph is a *path* from a *vertex* to *itself*
 - that *passes through* each of the other vertices *exactly once*.
 - also called a *Hamiltonian circuit*.
- An *optimal tour* in a *weighted*, directed graph is
 - such a path of *minimum length*.

• An example:

- We will consider v_1 to be the *starting vertex*.
- There are *three tours* and the lengths are:
 - $length[v_1, v_2, v_3, v_4, v_1] = 22$
 - $length[v_1, v_3, v_2, v_4, v_1] = 26$
 - $length[v_1, v_3, v_4, v_2, v_1] = 21$ (optimal tour)

- In general,
 - there can be an edge from *every vertex* to *every other vertex*.
 - the total number of tours is $(n-1)(n-2)\cdots 1=(n-1)!$
 - Factorial time complexity: worse than exponential!

- The *principle of optimality* applies:
 - Notice that if v_k is the *first vertex* after v_1 on an *optimal tour*,
 - the *subpath* of the tour from v_k to v_1
 - must be a *shortest path* from v_k to v_1
 - that passes through each of the other vertices *exactly once*.
 - Therefore, we can design an algorithm for the TSP
 - using the dynamic programming.

Formalization of the TSP:

- Let W be an *adjacency matrix* for a given graph G = (V, E).
- Let V be a set of all the vertices.
- Let A be a subset of V.
- Let $D[v_i][A]$ be the length of a shortest path from v_i to v_1
 - passing through each vertex in A exactly once.

- $V = \{v_1, v_2, v_3, v_4\}$
- If $A = \{v_3\}$,
 - $D[v_2][A] = lengh[v_2, v_3, v_1] = \infty.$
- If $A = \{v_3, v_4\}$,
 - $D[v_2][A] = \min(lengh[v_2, v_3, v_4, v_1], lengh[v_2, v_4, v_3, v_1])$ = $\min(20, \infty) = 20.$

- Establish the recursive property:
 - Because $V \{v_1, v_i\}$ contains
 - all the vertices except v_1 and v_i and the principle of optimality applies,
 - The length of an optimal tour is
 - $\min_{2 \le j \le n} (W[1][j] + D[v_j][V \{v_1, v_j\}]).$
 - In general, for $i \neq 1$ and $v_i \notin A$,
 - $D[v_i][A] = \min_{j:v_j \in A} (W[i][j] + D[v_j][A \{v_j\}])$, if $A \neq \phi$
 - $D[v_i][\phi] = W[i][1].$

$$A = \phi$$
: • $D[v_2][\phi] = W[2][1] = 1$
• $D[v_3][\phi] = W[3][1] = \infty$
• $D[v_4][\phi] = W[4][1] = 6$

$$A = \{v_2\}: \quad \bullet \ D[v_3][A] = \min_{j:v_j \in A} (W[3][j] + D[v_j][A - \{v_j\}])$$
$$= W[3][2] + D[v_2][\phi] = 7 + 1 = 8$$

ALGORITHM 3.11: The Dynamic Programming Algorithm for the TSP

```
void travel(int n, int W[][MAX], int P[][MAX], int &minlength) {
    int i, j, k, D[MAX][MAX];
    for (i = 2; i <= n; i++)
         D[i][\phi] = W[i][1];
    for (k = 1; k \le n - 2; k++)
         for (all subsets A \subseteq V - \{v_1\} containing k vertices)
              for (i such that i \neq 1 and v_i is not in A) {
                  D[i][A] = \min_{j:v_j \in A} (W[i][j] + D[j][A - \{v_j\}]);
                  P[i][A] = value of j that gave the minimum;
    D[1][V - \{v_1\}] = \min_{2 \le j \le n} (W[1][j] + D[j][V - \{v_1, v_j\}]);
    P[1][V - \{v_1\}] = value of j that gave the minimum;
    minlength = D[1][V - \{v_1\}];
```


• Handling Subsets using Bitwise Operations:

 2^{n-1}

• All subsets $A \subseteq V - \{v_1\}$: 0, 1, 2, 3, 4, 5, 6, 7

$$A = \phi$$
: 000 = 0
 $A = \{v_2\}$: 001 = 1
 $A = \{v_3\}$: 010 = 2
 $A = \{v_4\}$: 100 = 4
 $A = \{v_2, v_3\}$: 011 = 3
 $A = \{v_2, v_4\}$: 101 = 5
 $A = \{v_3, v_4\}$: 110 = 6
 $A = \{v_2, v_3, v_4\}$: 111 = 7

- Handling Subsets using Bitwise Operations:
 - All subsets A containing k vertices

```
int subset_size = pow(2, n - 1);
for (k = 1; k \le n - 2; k++)
    for (int A = 0; A < subset_size; A++) {
        if (count(A) != k) continue;
                       int count(int A) {
                           int cnt = 0;
                           for (; A != 0; A >>= 1)
                               if (A & 1) cnt++;
                           return cnt;
```


- Handling Subsets using Bitwise Operations:
 - for i such that $i \neq 1$ and v_i is not in A

```
for (i = 2; i <= n; i++) {
    if (isIn(i, A)) continue;
    .....
}</pre>
```

```
bool isIn(int i, int A) {
    return (A & (1 << (i - 2))) != 0;
}</pre>
```


- Handling Subsets using Bitwise Operations:
 - Minimum & Set Difference: $A \{v_i\}$

```
int minimum(int n, int i, int &minJ, int A, int W[][MAX], int D[][MAX]) {
    int minV = INF;
    for (int j = 2; j <= n; j++) {
        if (!isIn(j, A)) continue;
        int value = W[i][j] + D[j][diff(A, j)];
        if (minV > value) {
            minV = value;
            minJ = j;
    return minV;
                              int diff(int A, int j) {
                                  return (A \& \sim (1 << (j - 2)));
```


W	1	2	3	4
1	0	2	9	∞
2	1	0	6	4
3	∞	7	0	8
4	6	3	∞	0

D	0	1	2	3	4	5	6	7
1								21
2	1		∞		10		20	
3	∞	8			14	12		
4	1 ∞ 6	4	∞	∞				

P	0	1	2	3	4	5	6	7
1	0 0 0							3
2	0		2		4		3	
3	0	2			4	4		
4	0	2	2	4				

- Retrieving an *optimal tour* from the array *P*:
 - P[i][A]: the index of the first vertex after v_i
 - on a shortest path from v_i to v_1
 - that passes through all vertices in *A* exactly once.


```
void tour(int v, int A, int P[][MAX]) {
    if (A == 1)
        cout << P[v][A] << " -> 1 " << endl;
    else {
        cout << P[v][A] << " -> ";
        tour(P[v][A], diff(A, P[v][A]), P);
                       cout << "optimal tour: 1 -> ";
                       tour(1, pow(2, n - 1) - 1, P);
```


- Time Complexity of Algorithm 3.11:
 - Basic Operation: the instructions executed for each value of v_i .
 - Input Size: *n*, the *number of vertices* in the graph.
 - The total number of times the basic operation is done is given by

$$T(n) = \sum_{k=1}^{n-2} (n-1-k)k {n-1 \choose k}$$

$$= (n-1) \sum_{k=1}^{n-2} k {n-2 \choose k}$$

$$= (n-1)(n-2)2^{n-3} \in \Theta(n^2 2^n)$$

- What we have gained:
 - Our algorithm is still $\Theta(n^2 2^n)$ which is *exponential*.
 - When there are 20 cities and it takes 1 μ s to process 1 city,
 - Brute-force approach: $(n-1)! = 19! \mu S = 3857 years$
 - Dyn. Prog.: $(n-1)(n-2)2^{n-3} = 19 \times 18 \times 2^{17} \mu s = 45$ seconds
 - Can we solve the TSP in *polynomial* time?
 - Nobody solved it in polynomial time.
 - Nobody proved that it is impossible to solve it in polynomial time.

Any Questions?

