All possible regressions and "best subset" regression

Two opposed criteria of selecting a model:

- Including as many covariates as possible so that the fitted values are reliable.
- Including as few covariates so that the cost of obtaining information and monitoring is not a lot.

Note:

There is not unique statistical procedure for selecting the best regression model.

Note:

Common sense, basic knowledge of the data being analyzed, and considerations related to invariance principle (shift and scale invariance) can not ever be set side.

Motivating example:

The "Hald" regression data

Y	X_1	X_2	X_3	X_4
78.5	7	26	6	60
74.3	1	29	15	52
104.3	11	56	8	20
87.6	11	31	8	47
95.9	7	52	6	33
109.2	11	55	9	22
102.7	3	71	17	6
72.5	1	31	22	44
93.1	2	54	18	22
115.9	21	47	4	26
83.8	1	40	23	34
113.3	11	66	9	12
109.4	10	68	8	12

 $[\]Rightarrow$ Total 13 observations.

3 methods which can be used are:

- (a) using the value of R^2 .
- (b) using the value of s^2 , the mean residual sum of square.
- (c) using Mallow C_p statistic.

(a) R^2 :

Example (continue):

In "Hald" data, there are 4 covariates, X_1, X_2, X_3 , and X_4 . All possible models are divided into 5 sets:

Set A:
$$Y = \beta_0 + \varepsilon \implies {4 \choose 0} = 1$$
 possible model.

Set B:
$$Y = \beta_0 + \beta_i X_i + \varepsilon$$
, $i = 1,2,3,4 \implies \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4$ possible models.

Set C:
$$Y = \beta_0 + \beta_i X_i + \beta_j X_j + \varepsilon$$
, $i \neq j$, $i, j = 1, 2, 3, 4 \implies \binom{4}{2} = 6$ possible models.

Set D:
$$Y = \beta_0 + \beta_i X_i + \beta_j X_j + \beta_k X_k + \varepsilon, i \neq j \neq k, i, j, k = 1,2,3,4 \Rightarrow$$

$$\binom{4}{3}$$
 = 4 possible models

Set E:
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$$
, \Rightarrow $\begin{pmatrix} 4 \\ 4 \end{pmatrix} = 1$ possible model.

 \Rightarrow Total $2^4 = 16$ models.

For every set, one or two models with large R^2 are picked. They are the following:

Sets	Models	R^2
Set B	$Y = \beta_0 + \beta_2 X_2 + \varepsilon$	0.666
	$Y = \beta_0 + \beta_4 X_4 + \varepsilon$	0.675
Set C	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$	0.979
	$Y = \beta_0 + \beta_1 X_1 + \beta_4 X_4 + \varepsilon$	0.972
Set D	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_4 X_4 + \varepsilon$	0.982
	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$	0.982
Set E	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$	0.982

Principle based on R^2 :

A model with large R^2 and small number of covariates should be a good choice since large R^2 implies the reliability of fitted values and a small number of covariates reduce the costs of obtaining information and monitoring.

Example (continue):

Based on the above principle, two models,

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

and

$$Y = \beta_0 + \beta_1 X_1 + \beta_4 X_4 + \varepsilon$$

are sensible choices!!

Note:

 X_2 and X_4 are highly correlated. The correlation coefficient is -0.973.

Therefore, it is not surprising that the two models have very close R^2 .

(b) Mean residual sum of square s^2 :

A useful result:

As more and more covariates are added to an already overfitted model, the mean residual sum of square will tend to stabilize and approach the true value of σ^2 provided that all important variables have been included. That is,

Example (continue):)

Again, we compute all s^2 for 16 possible models. We have the following table:

Sets	s ²	Average
		s^2
Set B	115.06(X_1), 82.39(X_2), 176.31(X_3), 80.35(X_4)	113.53
Set C	5.79(X_1, X_2), 122.71(X_1, X_3), 7.48(X_1, X_4), 41.54(X_2, X_3)	47.00
	86.89 (X_2, X_4), 17.59(X_3, X_4)	
Set D	$5.35(X_1, X_2, X_3), 5.33(X_1, X_2, X_3), 5.65(X_1, X_3, X_4)$	6.13
	$8.20(X_2,X_3,X_4)$	
Set E	$5.98(X_1, X_2 X_3, X_4)$	5.98

The plot of average s^2 against p (the number of covariates, including β_0) is

Principle based on s^2 :

A model with mean sum of square s^2 close to the estimate of σ^2 (the horizontal line) and with the fewest covariates might be a sensible model.

Example:

The estimate of σ^2 could be 6. The model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$

is sensible since its mean residual sum of square s^2 is 5.79 (close to 6) and the number of covariates are small compared with the other models with s^2 close to 6.

(c) Mallows C_p :

containing all possible covariates.

Mallows
$$C_p = \frac{RSS(p)}{s^2} - (n-2p)$$
,

where n is the sample size, p is the number of covariates including β_0 , RSS(p) is the residual sum of squares from a model containing p parameters, and s^2 is the mean residual sum of squares from the model

Intuition of Mallows C_p :

Suppose s^2 is the mean residual sum of squares from the full model (containing all possible covariates)

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{r-1} X_{r-1} + \varepsilon$$

and

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_{p-1} X_{p-1} + \varepsilon$$

is the true model, p < r. Then

 $\frac{RSS(p)}{n-p}$, the mean residual sum of squares from model p, should be a sensible estimate σ^2 accurately. That is, $\frac{RSS(p)}{n-p} \approx \sigma^2$. Thus, $RSS(p) \approx (n-p)\sigma^2$. Also, the mean residual sum of squares s^2 for the overfitted model $s^2 \approx \sigma^2$.

$$\Rightarrow C_p = \frac{RSS(p)}{s^2} - (n - 2p) \approx \frac{(n - p)\sigma^2}{\sigma^2} - (n - 2p) = (n - p) - (n - 2p) = p$$

Thus, (p, C_p) will falls close to the line of Y = X.

Note: $C_r = r$.

Principle based Mallows C_p :

The principle of selecting a best regression equation is to plot C_p versus p for every possible models. Then, choose some models with fewer covariates close to the line Y = X.

Example (continue):

For the motivating example, we calculate C_p for all 16 possible models. We then have the following table:

	$C_{\scriptscriptstyle p}$
Set A	443.2
Set B	$202.5\left(X_{1}\right)$,142.5 $\left(X_{2}\right)$,315.2 $\left(X_{3}\right)$,138.7 $\left(X_{4}\right)$
Set C	$2.7(X_1, X_2)$, 198.1 (X_1, X_3) , 5.5 (X_1, X_4) , 62.4 (X_2, X_3) ,
	$138.2(X_2, X_4), 22.4(X_3, X_4)$
Set D	$3(X_1, X_2, X_3), 3(X_1, X_2, X_4), 3.5(X_1, X_3, X_4), 7.3(X_2, X_3, X_4)$
Set E	$5(X_1, X_2, X_3, X_4)$

The point (p, C_p) value for the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ is close to the line Y = X. and the model also has fewer parameters. Therefore, we recommend this model as a sensible choice.