CLAIMS

What is claimed is:

1	1. An apparatus for measuring retardance in a sample, comprising:
2	a sample chamber for receiving the sample;
3	an illuminator for providing an illumination light;
4	optics for directing the illumination light toward the sample;
5	a detector for measuring an intensity of light incident on the detector;
6	optics for directing light that has interacted with the sample toward the detector;
7	a first polarizer for selectively transmitting light that is substantially circularly polarized;
8.	a second polarizer for selectively transmitting light that has a selected elliptical
9	polarization state;
10	a controller for varying a selected elliptical polarization state of the second polarizer to
11	correspond to a plural number of states χ_i with a chosen Poincare latitude and longitude within a
12	distance ε of a chosen pole of a Poincare sphere; and
3 -	a processor connected to the detector for determining the sample retardance from the
14	measured incident light intensity obtained when the second polarizer is set to each of the states
15	wherein none of the states χ_i corresponds to circular polarization.
1	2. The apparatus of claim 1, wherein the illumination light is transmitted by the
2	sample.

1	3	3.	The apparatus of claim 1, wherein the	illumination	light is refle	cted by the	
2	sample.						
1	4	1.	The apparatus of claim 1, wherein:				
2	· t	he firs	t polarizer is located between the illur	ninator and th	e sample ch	amber; and	
3		he sec	ond polarizer is located between the sa	ample chambe	er and the de	tector.	•
1.	. 5	5.	The apparatus of claim 1, wherein:			# .	
2	· t	he sec	ond polarizer is located between the il	luminator and	l the sample	chamber; ar	nd
3	t	the firs	st polarizer is located between the sam	ple chamber a	and the detec	ctor.	
1.	. (6.	The apparatus of claim 1, wherein the	e number of s	tates χ _i is 2.		
				•	•	*	
1	,	7.	The apparatus of claim 1, wherein the	e number of s	tates χ _i is 3.		
		•					ı
1		8.	The apparatus of claim 1, wherein the	e number of s	tates χ _i is 4.		•
	•					· · · · · · · · · · · · · · · · · · ·	-
1	9	9.	The apparatus of claim 1, wherein the	e second pola	rizer compri	ses an electr	o-optic
2	retarder	eleme	ent.				
	*	5				** • • • • • • • • • • • • • • • • • •	
1	e et	10.	The apparatus of claim 1, wherein the	e second pola	rizer compri	ses at least o	one
2	fixed re	tarder	and mechanical switching means.			ı	

i	11. The apparatus of claim 1, wherein the illumination light is substantially			
2	monochromatic.			
1	12. The apparatus of claim 1, wherein the illuminator comprises a broadband source			
2	and a filter.			
1	13. The apparatus of claim 1, wherein ε is 35 degrees or less.			
1.	14. The apparatus of claim 1, wherein ε is 20 degrees or less.			
1 -	15. An apparatus for measuring retardance in a sample, comprising:			
2	a sample chamber for receiving the sample;			
3	a source of illumination light;			
4	optics for directing the illumination light toward the sample;			
5	a detector for measuring an intensity of light incident on the detector;			
6	optics for directing light that has interacted with the sample toward the detector;			
7	a first polarizer for selectively transmitting light that is substantially circularly polarized;			
8	a second polarizer for selectively transmitting light that has one of a selected elliptical			
0				

10 a controller for varying the polarization state of the second polarizer to correspond to a plural number of states χ_i with a chosen Poincare latitude and longitude within a distance ε of a 11 chosen pole of a Poincare sphere; and 12 a processor connected to the detector for determining the sample retardance from the 13 measured incident light intensity obtained when the second polarizer is set to each of the states 14 15 χ_i; 16 wherein the number of states is five, and wherein one of the states χ_i corresponds to 17 circular polarization. 16. The apparatus of claim 15, wherein ε is 35 degrees or less. The apparatus of claim 15, wherein ε is 20 degrees or less. 17. 18. A method for measuring retardance in a sample in a sample chamber, comprising 1 2 the steps of: producing an illumination beam of light; 3 directing the illumination beam toward the sample; collecting directed illumination light that has interacted with the sample to form a 5 collected light beam; 6 directing the collected light beam toward a photodetector; 7 8 directing one of the illumination beam and the collected light beam through a circular 9 polarizer;

10	directing the other of the illumination beam and the collected light beam through a				
11	variable polarizer that expresses a plural number of elliptical polarization states χ_{i} ;				
12	measuring an intensity of light incident on the photodetector during each of the plural				
13	states χ_i , and				
14	calculating the retardance of the sample using th	ne photodetector lig	ght intensity		
15	measurements;				
16	wherein the number of states χ_i is four or less an	nd none of the state	s χ _i is circular.		
		# 			
1	19. The method of claim 18, wherein each o	f the plural states χ	i lies within a distance		
2	ϵ from a chosen pole of the Poincare sphere.				
1	20. The method of claim 19, wherein ε is 35	degrees or less.			
. 1	21. The method of claim 19, wherein ε is 20	degrees or less.			
1 .	The method of claim 18, further compris	sing the steps of:			
2,	measuring the intensity of light incident on the p	photodetector while	e the variable polarizer		
3	expresses a plurality of states χ_i and the sample is not p	resent in the sampl	e chamber; and		
4	using the measured intensities of light incident on the photodetector when the sample is				
5	not present to improve the calculation of sample retarda	ance.			

1.	23. The method of claim 22, wherein said measuring the intensity of light with the				
2	sample not present in the sample chamber comprises measuring the light intensity with the				
3	sample replaced by a calibration target of substantially no retardance and a calibration target of				
4	known retardance.				
1	24. A method for measuring retardance in a sample in a sample chamber, comprising				
2	the steps of:				
3	producing an illumination beam of light;				
4	directing the illumination beam toward the sample;				
5 .	collecting directed illumination light that has interacted with the sample to form a				
6	collected light beam;				
7	directing the collected light beam toward a photodetector;				
8	directing one of the illumination beam and the collected light beam through a circular				
9	polarizer;				
0	directing the other of the illumination beam and the collected light beam through a				
1	variable polarizer, wherein the variable polarizer expresses a plural number of polarization states				
2	χ_i including a plural number of elliptical polarization states and a circular polarization state;				
3	measuring an intensity of light incident on the photodetector during each of the plural				
4	states χ_i ; and				
5	calculating the retardance of the sample using the photodetector light intensity				
6	measurements,				
7	wherein the number of states w is five and one of the states w is circular				

1	25.	The method of claim 24, wherein each of the plural st	ates χ _i	lies within a dis	tance
2	ε from a chos	en pole of the Poincare sphere.			
1	26.	The method of claim 25, wherein ε is 35 degrees or le	ess.		
•	1 				
1	27.	The method of claim 25, wherein ε is 20 degrees or le	ess.		**************************************
1	28.	The method of claim 24, further comprising the steps	of		
2	measi	uring the intensity of light incident on the photodetector	while	the variable pol	arize
3	expresses a p	lurality of states χ_i and the sample is not present in the	sample	chamber; and	
4	using	the measured intensities of light incident on the photod	letector	when the samp	le is
5	not present to	improve the calculation of sample retardance.			
	•				
1	29.	The method of claim 28, wherein said measuring the	intensi	ty of light with	the
2	sample not p	resent in the sample chamber comprises measuring the	light in	tensity with the	
3	sample replaced by a calibration target of substantially no retardance and a calibration target of				
4	les avve matand	lamani			