时间序列分析及应用

原俊青

浙江工业大学 理学院

Email: 2308050@qq.com

手机: 13858020375

课程介绍

- 授课方式: PPT+板书 + 视频 + R程序
- 考评方式:签到,课堂表现,作业,随堂小测验 小组课题汇报,课程论文报告
- 主要参考教材:《应用时间序列分析》 何书元 北京大学出版社
- 《金融时间序列分析》Ruey S. Tsay 王远林译 人民邮电出版社
- 《时间序列分析及应用 R语言》
 [美] Jonathan D. Cryer, Kung-Sik Chan 著,潘红宇 等译机械工业出版社 2011
- 《Python 金融大数据分析》[德] Yves Hilpisch 著, 姚军 译, 人民邮电出版社 2016

Textbook:

目 录

雅 审	
第1章 引论	1
1.1 时间序列举例	1
1.2 建模策略	6
1.3 历史上的时间序列图	6
1.4 本书概述	7
月墓	7
第2章 基本概念	8
2.1 时间序列与随机过程	8
2.2 均值、方差和协方差	8
2.3 平稳性	11
2.4 小结	14
习趣	14
附录 A 期望、方差、协方是和相关系数	18
第3章 趋势	20
3.1 确定性趋势与旋机趋势	20
3.2 常数均值的估计	20
3.3 同行方法	22
3.4 资料估计的可靠性和有效性	26
3.5 医归结果的解释	29
3.6 残差分析	31
3.7 小绪	36
月鼈	37
第4章 子稳时间序列模型	40
4.1 一般线性过程	40
4.2 推动平均过程	41
4.3 自同约过程	48
4.4 自同归附动平均保合模型	56
6.5 可遊性	57
4.6 小结	58
习题	58
附录 B AR(2) 过程的平稳城	61
附录C ARMA(p. q) 模型的自相关函数…	62
跑录 C ARMA(p, q) 模型的自框关函数 ···	62

译者序

第5章 非平稳时间序列模型	in j
5.1 通过差分平稳化	(
5.2 ARIMA 模型 ·······	(
5.3 ARIMA 模型中的含数項	1
5.4 其他变换	
5.5 小蛸	1
习篇	7
附录 D 延迟算子 ····································	1
第6章 模型识别	7
6.1 样本自相关函数的性质	
6.2 偏自相关函数和扩展的自相关函数]
6.3 对一些模拟的时间序列数据的识别	
6.4 非平稳性	
6.5 其他识别方法	5
6.6 一些真实时间序列的识别	5
6.7 小罐	
母題	
第7章 参数估计	
7.1 矩估计	- 10
7.2 最小二乘估计	- 10
7.3 极大似然与无条件最小二乘	- 11
7.4 估计的性质	- 11
7.5 参数估计例证 ······	- 11
7. 6 自助法估计 ARIMA 模型 ·········	
7.7 小绪	
月曜	
罗 8 章 模型诊断	
8.1 残差分析	
8.2 过度似合和参数冗余	- 13
8.3 小结	
习题	
第9章 预测	
9.1 最小均方误差预衡	
9.2 确定性趋势	
9.3 ARIMA 預測 ······	- 13

一般性总结

✓ 按照时间的顺序把一个随机事件变化发展 的过程记录下来就构成了一个时间序列。

✓ 对时间序列进行观察、研究,找寻它变化 发展的规律,预测它将来的走势就是时间 序列分析。

Time Series Analysis

- Economic Forecasting
- Sales Forecasting
- Budgetary Analysis
- Stock Market Analysis
- Process and Quality Control
- •Inventory Studies etc.

Video 4. Dr. Jim Simons (Founder of a famous Hedge-Fund Company) http://open.163.com/movie/2015/12/D/A/MBAGIU8HN_MBB2JJIDA.html
8:35-16:53 (4-Simons.mp4)

Applications

Weather Forecast

Open Lectures from NetEase (TED Talk or Khan College):

1. The Age of Big Data, produced by BBC (1-Big Data.mp4) http://open.163.com/movie/2015/10/I/Q/MB4FVOABQ_MB4G0J5IQ.html

2.How to use Big Data to make a better decision, produced by TEDTalk (2-TED Talk.mp4)

http://open.163.com/movie/2016/1/E/V/MBCBMP41R_MBCBN6SEV.html?recomend=2

3. Data is the new Oil (Dr. Andreas Weigend, Former Chief Scientist at Amazon) http://open.163.com/movie/2016/9/8/E/MBUUHL4QU_MBVE8IS8E.html_6:00-8:30-9:40 (3-Data Oil.mp4)

Outline

- 准备知识
- ② 时间序列的特点
- ③ 时间序列的几个案例
- 建模策略

准备知识

课程基础

- 一定的数理统计知识
- 了解R软件的基本操作。该软件最新版可以从www.r-project.org上获 得,本课程主要使用了R的TSA程序包。为了更好的体验感,本课 程使用了RStudio来进行讲解. 最新版可 在https://www.rstudio.com/products/rstudio/download/上下载。

时间序列的特点

含义

• 按时间次序排列的随机变量序列

目的

- 建立数据生成模型
- 基于历史数据, 对未来进行预测或预报

注:

• 观测值是由随机过程产生的, 并不独立。

LA 1878-1992期间年降水量的时间序列图

- > library(TSA)
- > win.graph(width=4.875, height=2.5,pointsize=8)
- > data(larain); plot(larain,ylab='Inches',xlab='Year',type='o')

LA 当年降水量与去年降水量的散点图:相关系数约为-0.033,从预测和建模角度,基本无研究意义。

- > win.graph(width=3,height=3,pointsize=8)
- > plot(y=larain,x=zlag(larain),ylab='Inches',
 xlab='Previous Year Inches')

某化工过程中颜色属性的时间序列图

- > win.graph(width=4.875, height=2.5,pointsize=8)
- > data(color)
- > plot(color,ylab='Color Property',xlab='Batch',type='o')

当前颜色值与前期颜色值的散点图:相关系数约为0.555,趋势明显 但不是很强烈。

> win.graph(width=3,height=3,pointsize=8)

> plot(y=color,x=zlag(color),ylab='Color Property',
 xlab='Previous Batch Color Property')

加拿大野兔时间序列图

- > win.graph(width=4.875, height=2.5,pointsize=8)
- > data(hare); plot(hare,ylab='Abundance',xlab='Year',type='o')

当年与上一年野兔丰度的散点图:相关系数约为0.703,相关性明显。

- > win.graph(width=3, height=3,pointsize=8)
- > plot(y=hare,x=zlag(hare),ylab='Abundance',
 xlab='Previous Year Abundance')

Dubuque月平均气温的时间序列图:具有非常明显的周期性,为季节性模式。

- > win.graph(width=4.875, height=2.5,pointsize=8)
- > data(tempdub); plot(tempdub,ylab='Temperature',type='o')

滤油器月销售量的时间序列图

> data(oilfilters); plot(oilfilters,type='o',ylab='Sales')

加入月度标识之后的时间序列图:比之前更能显示出季节性规律。

- > plot(oilfilters,type='l',ylab='Sales')
- > points(y=oilfilters,x=time(oilfilters),
 pch=as.vector(season(oilfilters)))

建模策略

- 模型识别:选择合适的时间序列模型,遵从简约原则。
- 模型拟合:利用历史数据估计模型参数,常用的方法有最小二乘和极大似然。
- 模型诊断:评估模型是否合理:比如拟合程度、模型假设条件;若 无不足,则可进行预测。

注:

- Einstein: Everything should be made as simple as possible, but not simpler.
- 反复进行, 直到找到理想的、可接受的模型。