Homework 12

Stat061-F23

Prof Amanda Luby

- 1. For the simple linear regression case ($y=\beta_0+\beta_1x+\epsilon$), show that $\hat{eta}_1=r\frac{\hat{\sigma}_y}{\hat{\sigma}_r}$.
- 2. Assuming the standard multiple linear model ($Y = \beta X + \epsilon$, where X is an $n \times p$ design matrix):
 - (a) Show that $\sigma^2 I = \Sigma_{\hat{y}} + \Sigma_{\hat{\epsilon}}$
 - (b) Using (a), conclude that $n\sigma^2 = \sum Var(\hat{Y}_i) + \sum Var(\hat{\epsilon}_i)$
- 3. Consider a multiple linear regression problem with design matrix \mathbf{X} and observations \mathbf{Y} . Let \mathbf{X}_1 be the matrix remaining when at least one column is *removed* from \mathbf{X} . (So \mathbf{X}_1 is the design matrix for a linear regression on \mathbf{Y} but with fewer predictors). Show that R^2 (non-adjusted) for the regression model calculated using design matrix \mathbf{X} is at least as large as the R^2 for the regression model using design matrix \mathbf{X}_1 .
- 4. Problem from Monday
- 5. Problem from Mon/Wed TBA