

한국어 임베딩 4장

4.1 NPLM(Neural Probabilistic Language Model)

모델 기본구조

- 기존 언어 모델의 단점인 존재하지 않는 n-gram이 포함된 문장이 나타날 확률 값을 0으로 부여한다. 문장의 장기 의존성 문제, 단어/문장 간 유사도를 계산할 수 있게 고안되었다.
- 자체적으로 단어 임베딩 역활 자체를 수행 가능하다.

•

NPLM: Neural Probabilistic Language Mode

NPLM 기본 구조

Figure 1: Neural architecture: $f(i, w_{l-1}, \cdots, w_{l-n+1}) = g(i, C(w_{l-1}), \cdots, C(w_{l-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

기본 아이디어:

직전까지 등장한 n-1개 단어들로 다음 단어를 맞추는 n-gram 언어 모델

Page 01

NPLM의 학습

- 단어 시퀀스가 주어졌을 때 다음 단어가 무엇인지 맞추는 과정에서 학습된다.
- 직전까지 등장한 n-1개의 단어들로 다음 단어를 맞추는 n-gram 언어 모델이다.
- 즉, 조건부 확률을 최대화 시킨다는 말과 그 의미가 같다. EX) "발", "없는", "말이" 세 개 단어가 주어졌다고 가정해보자

- 그 다음 단어로는 무수히 많은 단어가 올 수 있지만 우리가 가진 말뭉치에서는 "천리"라는 단어가 가장 자주 나온다 했을시에, "천리"라는 단어가 들어가야 조건부 확률이 최대가 됨을 의미한다!
- 또한 다음 시퀀스인 "없는", "말이", "천리" 로 주어진 경우 다음 단어도 비슷한 계산 식으로 "간다"로 잘 맞춤을 의미한다.
- 또한 NPLM의 말단에는 소프트맥스 함수를 둠으로써 확률 벡터엣 가장 높은 요소의 인 덱스에 해당하는 단어가 실제 정답 단어와 일치하도록 학습한다.
- 지금까지 NPLM의 알고리즘을 알아봤다면 어떤 입력 값들이 들어가는지 알아보자
 - C(W_t) = [00010]*[111825, 101219, 4613, 2357, 17241]
 - 여기서 앞의 0이 포함된 행렬은 예측행을 포함하는 원핫벡터의 내적이다.
 - 또한 만약 뒤의 특정 행 23 5 7이 있을시 각각이 입력층, 은닉층, 출력층을 의미한다.
 - 이를 y_w_t = b + W_x + Utanh(d+H_x)에 넣어 스코어 벡터를 계산한다.(딥러닝과 동일)
 - 이 후 이를 소프트맥스 함수에 적용하고 특정 인덱스와 비교후 역전파 하는 식으로 학습이 이루어지게 된다.

0

NLPM과 의미 정보

4.2 Word2Vec

Skip-Gram과 CBOW라는 두가지 모델로 제안되었다.

이 두 모델을 근간으로 하되, 네거티브 샘플링 등 학습 최적화 기법을 제안한 내용이 논문에서 청모 제시되었다,

모델 기본 구조

CBOW : 주변에 있는 문맥 단어들을 가지고 타깃 단어 하나를 맞추는 과정에서 학습된다.

Skip-gram : 타깃 단어를 가지고 주변 문맥 단어가 무엇일지 예측하는 과정에서 학습된다.

CBOW

Skip-Gram

Skip-gram이 같은 말뭉치로도 더 많은 학습 데이터를 확보할 수 있어 임베딩 품질이 CBOW보다 좋은 경향이 있다. 위의 그림만 봐도 Output 결과의 갯수가 다르다!

학습 데이터 구축

- Skip-gram 모델의 학습 데이터를 구축하는 과정
 - 포지티브 샘플 : 타깃 단어와 그 주변에 실제로 등장한 문맥 단어 쌍
 - 。 네거티브 샘플 : 타깃 단어와 그 주변에 등장하지 않는 단어 쌍
- ex) 개울가 (에서 속옷 빨래 를 하는) 남녀...
 - 포지티브 샘플: (빨래, 에서), (빨래, 속옷), (빨래, 를), (빨래, 하는)
 - 네거티브 샘플: (빨래, 책상), (빨래, 안녕), (빨래, 자동차), -무수히 많다.

이런식으로 구성시 네거티브 샘플이 많이 생길수 있고 기준이 애매하므로 → 희귀한 단어가 네거티브 샘플로 좀 더 잘 뽑힐 수 있도록 설계됨.

$$P(w_i) = \frac{f(w_i)^{3/4}}{\sum_{j=0}^{n} f(w_j)^{3/4}}$$

하지만 이와는 별개로 자주 등장하는 단어는 학습에서 제외하는 서브 샘플링이란 기법도 적 용이 된다. → 고빈도 단어의 경우 등장 횟수만큼 모두 학습시키는 것이 비효율적이라는 생 각에서 근거!

모델 학습

- word2vec은 이제 이렇게 구성한 학습 데이터를 가지고 이진분류 학습을 한다. 즉 해당 쌍이 포지티브 샘플(+) 인지, 네거티브 샘플(-) 인지 학습한다.
- 이 때, 업데이트 되는 매트릭스는 2가지인데, 둘 다d차원의 단어 벡터의 행렬이다.(U(타 깃), V(문맥))
- 이 후 아래과 같은 로그우도 함수를 최대화 하는 식으로 학습된다.
- 하나의 매트릭스 u는 각 중심 단어를 행으로 차원을 가지는 행렬이고, v는 각 주변 단어 를 행으로 차원을 가지는 행렬이다.여기서 차원은 하이퍼 파라미터다. 보통 100~300 정도가 적당하다고 한다.

튜토리얼

4.3 FastText — word2vec이 안되는데 무슨..

- 페이스북에서 개발해 공개한 단어 임베딩이다.
- 각 단어를 문자 단위 n-gram으로 표현한다.

모델 기본 구조

fastText

fastText from facebook. 「Enriching Word Vectors with Subword Information」, Bonjanowski et al., 2016

「Advances in Pre-Training Distributed Word Representation」, Mikolov et al., 2017

: 개별 단어가 아닌 n-gram 단위의 character embedding 방법론.

: fastText 완성

fīi

Page 26

fastText

기존 언어 모델의 비판

■ 단어의 형태학적 특성을 반영하지 못했다.

기존의 Word2Vec과 GloVe 등은 단어 단위의 개별적 임베딩을 하기 때문에 teach, teacher, teachers 등과 같이 실제 유사한 의미를 가짐에도 불구하고 임베딩 벡터가 유사하게 구성되지 않았다.

■ 희소한 단어를 임베딩하기 어렵다.

기존의 Word2Vec은 Distribution hypothesis를 기반으로 학습하기 때문에, 출현 횟수가 많은 단어는 임베딩을 잘하지만, 출현 횟수가 적은 단어는 제대로 임베딩을 하지 못한다.

Page 27

fastText

fastText 모델 구조

- 단어의 시작과 끝에 〈. 〉를 추가해 단어 경계를 표현.
- 각 단어를 문자(character) 단위 n-gram으로 표현.
- 그리고 〈원래 단어〉를 추가.
- 아래와 같이 5개의 문자 단위 n-gram 벡터의 합으로 원래 단어의 임베딩을 표현.

"슈퍼마켓"

$$\rightarrow u_{\text{pain}} = \left(z_{\text{pain}} + z_{\text{pain}} + z_{\text{pain}} + z_{\text{pain}} + z_{\text{pain}} + z_{\text{pain}} \right) / 5$$

Page 28

fastText

fastText 모델 구조

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1,\ldots,x_N . The features are embedded and averaged to form the hidden variable.

- 1. Look-up table을 이용해 단어의 임베딩을 구함.
- 2. 단어 벡터들을 평균을 Input으로 사용.
- 3. 나머지는 Skip-gram 모델과 같음.
- 4. Skip-gram과 마찬가지로 Negative Sampling을 사용.

$$P(+|t,c) = \frac{1}{1 + exp(-u_t v_c)}$$
최대가 되야 함.

*fastText의 로그우도 함수 $L(\theta) = log P(+|t_p,c_p) + \sum_{i=1}^k log P(-|t_{n_i},C_{n_i})$ 1개의 포지티브 샘플 k개의 네거티브 샘플

Page 29

fastText

fastText 효과

- n-gram의 문자단위 임베딩으로 Out-of-Vocabulary(OOV)를 처리할 수 있다.
- 단어의 내부 구조를 반영할 수 있다. (BPE; Byte Pair Encoding 알고리즘과 유사)
- 새로운 단어가 등장해도 기존의 n-gram vector를 찾아서 summation하면 재학습 과정 없이 대응할 수 있음.
- 어휘의 구문적(syntactic) 변화 규칙을 잘 잡아낼 수 있다.
- 한글을 자소 단위로 분해하여 한국어 임베딩에서 효과가 높다.
- 연구진들이 fastText로 학습된 언어의 임베딩 벡터와 코드를 공개했음!

Page 30

한글 자소와 FastText

4.4 LSA(Latent Semantic Analysis) - 잠재 의미 분석

• 특이값 분해를 수행해 데이터의 차원 수를 줄여 계산 효율성을 키워 행간에 숨어 있는 잠재 의미를 이끌어내기 위한 방법론이다.

PPMI 행렬

• 점별 상호 정보량(PMI): 두 확률변수 사이의 상관성을 계량화한 지표다.

$$PMI(x,y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

- 분자가 분모가 작을 경우 PMI는 음수가 된다. 하지만 이 경우는 말뭉치가 엄청 큰 경우 두 단어가 함께 등장할 확률로서 매우 작은 크기를 가진다.. 즉 잘 안일어난다. 10억개 가운데 1개
- 따라서 우리는 이러한 PMI 지표 대신 양의 값만을 사용하는 PPMI(Positive Pointwise Mutual Information)을 사용한다.
- PPMI(A,B) = max(PMI(A,B), 0)
- SPMI: PMI에서 logk값을 빼준 값이다. Word2Vec에서 사용된다.
- SPMI(A,B) = PMI(A,B) logk

행렬 분해로 이해하는 Wrod2Vec

• 특이값 분해(SVD)

Truncated SVD

시그마의 대각원소 주에 상위 몇 개만 추출해서 여기에 대응하는 U와 V의 원소도 함께 제거해 더욱 차원을 줄인 형태로 분해하는 것!

- 위의 시그마가 대각행렬들이 잠재적인 의미를 가진 단어 임베딩이다.
- 즉 LSA를 적용하면 단어와 문맥 간의 내재적인 의미를 효과적으로 보존할 수 있 게 되어 문서간 유사도 측정 등 모델의 성능 향상에 도움을 줄 수 있다.
- 추가적으로 데이터의 노이즈, 희소성을 줄일 수 있다.

튜토리얼