Differential Equations

Samuel Lindskog

September 25, 2024

First-Order Differential Equations

Definition 1.1 (Order). The order of a differential equation is the order of the highest dericatice appearing in the equation.

Definition 1.2 (Normal form). The normal form of a first-order equation is a function f which relates a function x = x(t) with its first derivative.

$$x' = f(t, x)$$
.

A function x = x(t) is a solution of this equation on the time interval I: a < t < b if it is differentiabe on I and, when substituted into the equation, it satisfies the equation identically for every $t \in I$, i.e.

$$x'(t) = f(t, x(t))$$
, for every $t \in I$.

In other words to check if a function is a solution, substitute the function in question into the differential equation and check that it reduces to an identity.

Definition 1.3 (Initial value problem). Subjecting a differential equation involving x(t) and its derivatives to a condition $x(t_0) = x_0$ is called an initial value problem. The interval of existance of an IVP is the largest time interval where the solution is valid.¹

Definition 1.4 (General solution). The infinite set of solutions of a first-order equation is called the general solution of the equation.

Definition 1.5 (Nullclines and isoclines). The sets of points (t, x) where the slope field is zero are called nullclines², i.e. where

$$x' = f(t, x) = 0.$$

The set of points t, x where f(t,x) = k for some constant k are called isoclines.

Theorem 1.1 (Fundamental theorem of calculus).

$$\frac{d}{dt} \int_{a}^{t} g(s) ds = g(t)$$

Definition 1.6 (Seperable equation). A differential equation of the form

$$x' = f(x)g(t)$$

¹ A solution to an IVP is called a particular solution.

² These constant solutions f(t, x) = k for some constant k are called equilibrium solutions.

is called a seperable equation. We can obtain x through the following procedure:

$$\frac{dx}{dt} = f(x)g(t)$$

$$\int \frac{1}{f(x)} \frac{dx}{dt} dt = \int g(t) dt$$

$$\int \frac{1}{f(x)} dx = \int g(t) dt + C$$

The final form of the seperable equation is made possible by the chain rule, and a helpful step forward towards finding the solution is

$$e^{\int g(t)dt} = f(x) + c.$$

Definition 1.7 (Linear equation). A differential equation of the form

$$x' + p(t)x = q(t)$$

is called a first-order linear equation³. If a first-order equation can not be put into this form, the equation is called nonlinear.

Definition 1.8 (Homogeneous equation). A first-order linear differential equation is called homogeneous⁴ if it is of the form

$$x' + p(t)x = 0.$$

The solution is

$$Ce^{-\int p(t)dt}$$

Definition 1.9 (Integrating factor). A function $\mu(t)$ exists such that

$$\mu(t)(x'+p(t)x)=(\mu(t)x)'.$$

The function $\mu(t)$ is called an integrating factor and is given by

$$u(t) = e^{\int p(t)dt}$$

This can be used to solve linear equations by multiplying both sides by the integrating factor.

Definition 1.10 (Autonomous equation). An autonomous differential equation is a differential equation with no explicit time dependence, i.e.

$$\frac{dx}{dt} = f(x).$$

As described above, constant solutions to an autonomous equation are called steady-state or equilibrium solutions.

Definition 1.11 (Stable and unstable equilibrium). For stable equilibrium solutions, solutions with values of *x* close to the phase-line converge to the phase line. For unstable equilibrium solutions are not stable.⁵ The roots of f(x) = 0 are the equilibrium solutions.

³ This is also called the normal form of a first-order linear equation.

⁴ A homogenous equation is seperable.

⁵ If solutions near the phase line converge or diverge depending on how they approach, the solution is semistable. If all perturbations converge to the phase line, the solution is globally stable.

Theorem 1.2. Let x^* be an isolated critical point, or equilibrium, for the autonomous equation

$$\frac{dx}{dt} = f(x).$$

If $f'(x^*) < 0$, then x^* is stable. If $f'(x^*) > 0$, then x^* is unstable. If $f'(x^*) = 0$ then higher derivatives must be analysed to find information about stability.

Theorem 1.3 (Existence and uniqueness). Assume the function f(t, x)and its partial derivative $f_x(t,x)$ are continuous in a rectangle a < t <b, c < x < d. Then, for any value t_0 in a < t < b and x_0 in c < x < d, the initial value problem

$$x' = f(t, x)$$
$$x(t_0) = x_0$$

has a unique solution valid on some open interval $a < \alpha < t < \beta < b$ containing t_0 .

Second-order linear equations

Remark. Chapter two in the book deals with second-order differential equations of the form

$$ax'' + bx' + cx = f(t). (1)$$

Definition 1.12 (Hooke's law). Let *x* be displacement from equilibrium and *k* be the spring constant. Then

$$F_s = -kx$$

Definition 1.13 (Spring-mass equation). The spring-mass equation relates the acceleration of a mass on a spring with the force applied by the spring given by Hooke's law:

$$mx'' = -kx$$
.

For initial conditions $x(0) = x_0$ and x'(0) = 0 we find x(t) is

$$x(t) = x_0 \cos \sqrt{k/m}t.$$

Definition 1.14 (Damped Oscillator). If there is friction as the mass moves, the frictional force is a function of the velocity x' and the damping coefficient γ

$$F_d = -\gamma x'$$
.

Therefore the equation of motion is

$$mx'' = -\gamma x' - kx.$$

Remark. The damped spring-mass equation has the form⁶

$$ax'' + bx' + cx = 0.$$

For such an equation, there are always exactly two independent solutions $x_1(t)$ and $x_2(t)$, and so the general solution $\phi(t)$ is of the form

$$\phi(t) = c_1 x_1(t) + c_2 x_2(t).$$

Definition 1.15 (Characteristic equation). To solve equation 1, first note that $x(t) = e^{\lambda t}$ for some constant λ . Substituting $e^{\lambda t}$, we can solve for λ with the characteristic equation⁷

$$a\lambda^2 + b\lambda + c = 0.$$

The values of λ can be real or complex. If $b^2 - 4ac > 0$, then there are two real unequal eigenvalues, and hence there are two indpendent solutions, so the general solution is

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}.$$

In this case, if $|\lambda_1| = |\lambda_2|$, then the general solution is

$$x(t) = c_1 e^{\alpha t} + c_2 e^{-\alpha t}$$

Which is exponential. If $|\lambda_1| = a$, this equation can be written in terms of hyperbolic functions cosh and sinh as

$$x(t) = c_1 \cosh at + c_2 \sinh at$$

If $b^2 - 4ac = 0$ then the general solution is

$$x(t) = c_1 e^{\lambda t} + c_2 t e^{\lambda t}$$
.

If $b^2 - 4ac < 0$ then the eigenvalues are complex.

Definition 1.16 (Euler's formula).

$$e^{i\beta t} = \cos \beta t + i\sin \beta t$$
.

Theorem 1.4. If x(t) = g(t) + ih(t) is a complex-valued solution of differential equation 1, then its real and imaginary parts $x_1(t) = g(t)$ and $x_2(t) = h(t)$ are real-valued solutions.

Remark. As a consequence of theorem 1.4, if $\lambda_1 = \alpha + i\beta$, then the general solution to equation 1 is

$$x(t) = c_1 e^{\alpha t} \cos \beta t + c_2 e^{\alpha t} \sin \beta t.$$

If $\alpha < 0$, these solutions represent decaying oscillations, and if $\alpha > 0$ then these solutions represent growing oscillations. If $\alpha = 0$ then the solutions are purely oscillatory with frequency β and period $2\pi/\beta$.

⁶ An equation of this form is called a homogenour linear equation with constant coefficients.

⁷ The roots of this equation are called eigenvalues.