POMIAR OPÓŹNIENIA PRZY ZASTOSOWANIU CHARAKTERYSTYKI FAZOWEJ WZAJEMNEJ GESTOŚCI WIDMOWEJ MOCY

I. Cel ćwiczenia

Celem ćwiczenia jest poznanie zasady pomiaru małych opóźnień sygnałów losowych przy zastosowaniu charakterystyki fazowej wzajemnej gęstości widmowej mocy.

II. Zagadnienia

- 1. Widmo amplitudowe, widmo mocy, gęstość widmowa mocy definicje, sposób wyznaczania przy zastosowaniu FFT, zastosowanie.
- 2. Wzajemna gęstość widmowa mocy: definicja, sposoby wyznaczania, przykładowe przebiegi modułu i fazy dla dwóch wzajemnie opóźnionych sygnałów losowych. Funkcja koherencji.
- 3. Zasada wyznaczania opóźnienia na podstawie przebiegu fazy wzajemnej gęstości widmowej mocy, błędy pomiaru i ich minimalizacja.

III. Przebieg ćwiczenia

Do wykonania ćwiczenia wykorzystany zostanie komputer PC i program DASYLab.

1. Wyznaczanie wzajemnej gestości widmowej mocy (WGWM)

1.1. Zbudować w programie DASYLab układ przedstawiony na rys. 1. Funkcje modułów: *Generator00:* Noise, Amplitude = 10V; *Filter00:* Low Pass, At 300 Hz, Order 2, Butterworth; *Delay00:* Delay Data by 0,002 Seconds; *Data Windo00:* obydwa bloki: Window: Hanning, Vector Lenght: 1024, Energy Correction; *FFT00:* Cross Spectrum of TwoReal Signals; *Block Aver00:* Running, Average; *Polar/Cart00:* Cartesian > Polar, Angle in Radian; *Counter00:* Blocks, Continous, Block; *Digital Me00:* Last value; *Y/t Chart00-01:* Auto Scaling.

Rys. 1. Układ do wyznaczania charakterystyki fazowej WGWM

- 1.2. Ustawić w menu programu *Experiment/Experiment Setup* opcje: Sample Rate = 1000 Hz, Block Size = 1024. Uruchomić program i zaobserwować przebiegi modułu i fazy WGWM i ich zmiany w miarę wzrostu liczby uśrednień.
- 1.3. Zaobserwować zmiany charakterystyki fazowej dla różnych wartości opóźnienia nastawy modułu *Delay00:* Delay Data by: 2, 5, 10 ms. Zwrócić uwagę na nieciągłości charakterystyki fazowej WGWM spowodowane tzw. "zawijaniem fazy".

2. Zastosowanie charakterystyki fazowej wzajemnej gęstości widmowej mocy do pomiaru opóźnienia

2.1. Układ z rysunku 1 rozbudować o dodatkowe moduły (rys. 2). Funkcje modułów: Select00 (grupa Statistics > Position in Signal): Dialog Box => Value.., Choose value as: Contex dept., Unit: rad; Value: \${VAR_1} (oznacza to, że wybierana będzie wartość dla częstotliwości przekazywanej przez zmienną globalną 1); Digital Me01: Name: Faza, Last value; Formuła00: -1000*IN(0)/(2*PI*\${VAR_1}); Digital Me02: Name: Opoźnienie, Last value, Decimals: 3; Slider00: Min Value: 0, Max Value: 250, Resolution: 250; Var Set00: Global Variable: \${VAR_1}.

Rys. 2. Układ do wyznaczania opóźnienia na podstawie charakterystyki fazowej WGWM

- 2.2. Dla nastaw modułów *Delay00*: Delay Data by 0,002 Seconds, *Slider00*: 200 uruchomić program i zaobserwować wskazania mierników. Zwrócić uwagę na zmiany wyniku pomiaru opóźnienia w miarę wzrostu liczby uśrednień.
- 2.3. Dla tych samych ustawień modułu *Delay00* porównać wyniki wyznaczania opóźnienia dla nastaw modułu *Slider00* w zakresie 10÷200 przy tej samej liczbie uśrednień.
- 2.4. Układ z rys. 2 rozbudować o dodatkowe moduły umożliwiające symulację zakłóceń w sygnale opóźnionym (rys. 3). Funkcje modułów: *Generator01:* Noise, Amplitude = 1V; *Formuła01:* IN(0)+IN(1); *Statistics00:* obydwa bloki: Variance, Running; *Formula02:* Blok 1: IN(0)/IN(1); Blok 2: 10*log(IN(0)/IN(1)); *Digital Me03:* obydwa bloki: Name: SNR, Last value.

Rys. 3. Układ z symulacją zakłóceń sygnału opóźnionego

- 2.5. Sprawdzić działanie układu i poprawność pomiaru opóźnienia dla wybranej wartości częstotliwości (np. 200 Hz) i kilku wartości stosunku sygnał/szum. Zmieniać amplitudę szumu w module *Generator01* w zakresie 1÷10 V. Zwrócić uwagę na konieczność zwiększenia liczby uśrednień przy wzroście zaszumienia sygnału opóźnionego.
- 2.6. Do układu z rysunku 3 dodać tor do wyznaczania funkcji koherencji (rys. 4). Nastawy nowych modułów: *Transfer00:* Output Function: Coherence Function, Running; *Y/t Chart02:* Auto Scaling.

Rys. 4. Tor do wyznaczania funkcji koherencji

- 2.7. Zmieniając amplitudę szumu w module *Generator01* w zakresie 1÷10 V zaobserwować przebieg funkcji koherencji. Zwrócić uwagę na konieczność zastosowania uśredniania przy wyznaczaniu przebiegu tej funkcji.
- 2.8. Rozbudować układ o tor do wyznaczania odchylenia standardowego opóźnienia (rys. 5). Nastawy nowych modułów: *Select01:* Dialog Box => Value.., Choose value as: Contex dept., Unit: rad; Value: \${VAR_1}; *Digital Me04:* Name: Koh(f₀), Last value, Decimals: 3; *Formuła03:* 1000/(2*PI*\${VAR_1})*sqrt((1-IN(1))/(2*IN(0)*IN(1))); *Digital Me05:* Name: Std opóźnienia(f₀); Last value, Decimals: 3.

Rys. 5. Układ do badania metody wyznaczania opóźnienia z fazy WGWM

2.9. Uruchomić układ i przeprowadzić kilka eksperymentów dla różnych wartości SNR. Zwrócić uwagę na konieczność zastosowania uśredniania i kompromisowego doboru częstotliwości f₀ z punktu widzenia minimalizacji błędów pomiaru opóźnienia. Dobrać optymalne wartości parametrów analizy, przeprowadzić badania dla kilku wartości SNR, wyniki zestawić w tabeli.

IV. Pytania kontrolne

- 1. Podać definicję wzajemnej gęstości widmowej mocy i omówić sposoby jej wyznaczania.
- 2. Wyjaśnić konieczność i omówić metody wygładzania estymatorów gęstości widmowej mocy.
- 3. Podać definicję funkcji koherencji.
- 4. Przedstawić zasadę wyznaczania opóźnienia sygnałów losowych na podstawie przebiegu fazy wzajemnej gęstości widmowej mocy.
- 5. Jak można określić odchylenie standardowe i przedział ufności dla opóźnienia?
- 6. Omówić optymalny dobór parametrów analizy przy wyznaczaniu opóźnienia z fazy wzajemnej gęstości widmowej mocy.

Literatura

- 1. Bendat J.S, Piersol A.G.: Metody analizy i pomiaru sygnałów losowych. PWN, Warszawa 1976
- 2. Hasse L. i in.: Sygnały przypadkowe, szumy, Wyd. Politechniki Gdańskiej, 1998.
- 3. Smith S.W.: Cyfrowe przetwarzanie sygnałów. Praktyczny przewodnik dla inżynierów i naukowców. Wyd. BTC, Warszawa 2007.
- 4. Hagel R., Szuta J.: Podstawy miernictwa wielkości stochastycznych, Wyd. Politechniki Śląskiej, 1985.
- 5. Zieliński T.P.: Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań. WKiŁ, Warszawa 2005.
- 7. Lyons R.G.: Wprowadzenie do cyfrowego przetwarzania sygnałów. WKiŁ, W-wa 1999.
- 8. Bendat J.S., Piersol A.G.: Engineering applications of correlation and spectral analysis. J. Wiley, New York 1993.