

Ch.1 Digital Systems and Binary Numbers

Digital systems

Digital vs Analog

• Digital : 한정된 숫자로 이산적인 값을 나타냄

• Analog : 무한적인 값들을 셀 수 없는 숫자로 나타냄

Digits vs Bits

Digits → discreate

Bits → binary digits

Digital Computer → digital system → bits!!

La Brinary Gyatems orbitaltical 型包

H/W in Digital Systems

Digital Computers

H/W: electronic components & electromechanical devices

S/W: programs composed of sequential instructions

∘ System S/W → OS, compliers

Basic Structure

Number Systems

- Base(Radix value) : 기수∕coefiicients : 계수
- Binary, Octal, Hexadecimal
- Base-r

Binary Number

- Bit : a digit in a binary number
- Byte: 8bits

Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)		
00	0000	00	0		
01	0001	01	1		
02	0010	02	2		
03	0011	03	3		
04	0100	04	4		
05	0101	05	5		
06	0110	06	6		
07	0111	07	7		
08	1000	10	8		
09	1001	11	9		
10	1010	12	A		
11	1011	13	В		
12	1100	14	C		
13	1101	15	D		
14	1110	16	E		
15	1111	17	F		

• Arithmetic Operations(연산) < b산다 똑같음

addition

subtraction

- (4) addition
- o + o = o carry = o0 + 1 = 1 carry = 01 + 0 = 1 carry = 0

1 + 1 = 0 carry = 1

o - o = o borrow=o 1 - 0 = 1 borrow=0

subtraction

o - 1 = 1 borrow=1

(3) multiplication

1 - 1 = 0 borrow=0 difference

Ly product

- Number base conversion(소수부, 정수부)
 - intger ⇒ divisions

fracion ⇒ multiplications ¼¥

Complements

MSB, LSB

- o (r-1)'s complement = (r의 n승-1) N(Base)
- o r's complement = (r의 n승) N(Base) = (r-1)'s complement + 1
 - 2의 보수 (첫 1)이 나오고 그 뒤로는 반대로 바꿀 것
- X=10/0/00 Y = 10000 ((⇒ ① X+(Lal 5al A+) Gumoll 30!

- ex. 0-1? ○ Subtraction(작은 거 - 큰 거)
 - M N(M < N) = M + r의 n승 N = M + 2의 보수 r의 n승
- Signed Binary Numbers

leftmost position

- Signed-1's complement: complementing all the bits including sign bit \(\rightarrow\) (000
- 3 × Signed-2's complement: taking 2's complement of all the bits including sign bit positive: 0 of the number => sign bit
- H(w: negative: 1
- Arithmetic operation → carry out은 버림 rank onto / edu-plf bocitions all

Binary Codes(숫자로 된 기호를 할당한다고 생각할 것)

- Digital System
 - binary numbers 말고 다른 이산적인 요소의 정보를 가지고 있음
 - 이를 binary code로 표현

· code assgining rules

- o n-bit binary code → 2의 n승 distinct combinations(0과 1로)
- 。 각각의 요소가 binary bit combination으로 나타내짐
- 。 같은 값을 가지는 요소는 x → 모호성을 방지

Binary Coded Decimal(BCD)

- 。 인간과 컴퓨터 간의 정보 교환을 위해선 전환이 필요 → 자연어를 BCD code로 처 리
- o addition, decimal arithmetic → binary operation과 같음
- 。 9를 초과하는 것은 meaning이 없다. ✓> 💪 덕생대 고등감 '

 $\frac{4}{+8} \frac{0100}{1000} \Rightarrow \text{mean } x$ $\frac{(+6)}{0(10)} \frac{0100}{100} \Rightarrow \text{mean } x$

American Standard Code for Information Interchange (ASCII)

	$b_7b_6b_5$								
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111	
0000	NUL	DLE	SP	0	@	P	`	p	
0001	SOH	DC1	!	1	A	Q	a	q	
0010	STX	DC2	"	2	В	R	b	r	
0011	ETX	DC3	#	3	C	S	c	S	
0100	EOT	DC4	\$	4	D	T	d	t	
0101	ENQ	NAK	%	5	E	U	e	u	
0110	ACK	SYN	&	6	F	V	f	v	
0111	BEL	ETB	4	7	G	W	g	W	
1000	BS	CAN	(8	H	X	h	X	
1001	HT	EM)	9	I	Y	i	y	
1010	LF	SUB	*	:	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	\	1		
1101	CR	GS	_	=	M]	m	}	
1110	SO	RS		>	N	\wedge	n	~	
1111	SI	US	/	?	O	_	O	DEL	

To defect any old combination errors.

- _O Connot detect any even combountion errors
- Error-Detecting Code: to detect the error in data communication or processing
 - o parity bit ! the total number of 1's either even or odd ⇒ even/odd parity

 exta b76

Binary Storage

Binary cell: a device that possesses two stable states(cpu)

o cell input / cell output

Heretives data

Heretives data

Heretives data

Heretives data

History

H

- Registers
 - groupt of n binary cells == an n-bit register
 - o n-bit register has 2의 n승 states ⇒ all possible n-bit strings
 - o register state ⇒ value, ASCII 해석될 수 있음
 - o 직렬(serial), 병렬(parallel) ୀ(0 가능

Register Transfer

- registers ar interconnected
 - 하나의 register의 content는 다른 것으로 transfer
 - content는 바뀔 수 있음
 - transforming circuit ⇒ data processing or data path element
- 。 따라서 컴퓨터는 register와 digital logic circuit이 필요

Binary logic

- deals with variables that have two values ⇒ {0,1}
- logic is based on Boolean Algebra operators
- · variables denoted by letters of alphabet.
- operations

$$3 \circ \text{not} \rightarrow \chi' = 2 \qquad \chi \not \equiv \text{Not}$$

$$\overline{\chi} = 2 \qquad 0 \qquad 1$$

Signal range for

logic 1

Signal

range for logic 0

Transition occurs between these limits

- logic gates
 - eletronic circuits operate on 1 or more input signals to produce an output signal Volts
- 🌓 ∘ signals ⇒ voltages(전압) or currents
 - as 0 or 1
 - defined by a range of voltage or current values
- circuit diagrams use graphical symbols for logic gates
 - ∘ register간의 logic gate들의 연결이 data를 변형할 수 있음
 - Logic gates represent interconnections of transistors and other electronic components
- timing diagrams ⇒ input, ouput signal 표현

