

i) We want a smaller tree -> less expensive computationally -> which one ii) We want a systematic way to guess how to build it! ____ soot mode

Quinlan's Brilliant Paper on DT (must need) -> Iterative Dichotomizer (ID3-1986)

Building a true top-down

1. A < the best decision attribute for next node < How?

2. Assign A as decision attribute for next node

3. For each value of A, create new descendant (node) (outlook?

4. Soot training examples to leaf nodes

5. It training examples perfectly classified, STOP, else iterrate over new leaf nodes.

attribute

Clusific

training A

B

data

perfectly

perfectly

rollie down

Outlook	Temp	Routine	WearGoat
Sunny	Cold	InDoors	N
Sunny	Warm	Outpoore	N
Cloudy	mrow	In Doors	N
Sunny	warm	Indoors	N
Cloudy	Gold	Indoor	~
Cloudy	cold	OutDoors	Υ
Sunny	Cold	Outpoon	~

Entropy lies b/W D & 1 ECS) max Entropy Max entropy is achieved when all outcomes are equally likely Min entropy is achieved when one outcome is certain & the others Recall, log p = log p; $E(S) = -\frac{1}{\log 2} (\log p + (1-p) \log (1-p)); P_{\Theta} = p$ $\frac{dE}{dp} = -\frac{1}{\log 2} \left(\log p + 1 \right) - \log \left(1 - p \right) - 1 \right)$ = - log2 log(p) $dI/dp = 0 \Rightarrow b = 1 - b \Rightarrow b = \frac{1}{2} \rightarrow critical point$ $d^{2} = -\frac{1}{\log_{2} dp} \left(\log \frac{p}{1-p} \right) = -\frac{1}{\log_{2} dp} \left(\log p - \log(1-p) \right)$ $= -\frac{1}{\log_2} \left(\frac{1}{p} + \frac{1}{1-p} \right)$ loss p(1-p) $p = \frac{1}{2}$ is a maxima € <0 for b=1 E(s) is maximum when prob of classifying (+) examples i.e Meg. (-) examples is equally likely!

Note: This is useless -> truth table example; imagine an attrobute where half the time the outcome is true & false the other haef of the time -> can't use that information for classification or decide whether its a good attroibute (B&C in but A is good since A > T -> outcome = T auther time)

Small or huge probability of classifying so examples as +', entropy (so low) = useful [1

Consider a two-class problem; (#2 - training examples only) $\pm (s) = - + by + b - by + c$

Next; how to reduce entropy? (High entropy is a problem . - -)

Information Gain:

Gain (S, A) = Expected reduction in entropy due to sorting on A $= \text{Entropy } (S) - \sum \frac{|S_V|}{|S|} \text{Entropy } (S_V)$ $V \in Values(A)$

whome S is a set of examples, A is an attribute, So is the subset of S for which attribute A has value V. Values (A) are all possible values that attribute A can take.

Ex: Routine / InDoors = values (A); A = routine

For each of the attribute A, in Gain (S, A), we'll count how many examples are there in the set for that value

Values (outlook) = { Sunny, Cloudy} S = [3+, 4-]

$$\begin{array}{ll} \left(S_{V}\right) & \left\{S_{Sunny} = [1+, 3-]\right\} & \left(S_{Sunny} + S_{Cloudy}\right) \\ \left\{S_{Cloudy} = [2+, 1-]\right\} & \left[S_{V}\right] & \left\{S_{V}\right\} & \left\{S_{V}\right\}$$

$$\begin{cases}
 \begin{bmatrix} 10 + , 0 - \end{bmatrix} \Rightarrow \pm (\hat{s}) = 0 \\
 \begin{bmatrix} 0 + , 10 - \end{bmatrix} \Rightarrow \pm (\hat{s}) = 0 \\
 \begin{bmatrix} 5 + , 5 - \end{bmatrix} \Rightarrow \pm (\hat{s}) = 1
\end{cases}$$

	J	Untlook	Temp	Humdity	Wind	Plan Tonnid
	D1	Su	Hot	High	Weak	Playtennis
	D2	Su	Hot	thigh		N
	D3	0	Hot		Strong	2
	D4	R	Mild	High	Weak	Y .
	D5	R	Crol	thi gh	Weak	Υ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	D6	R		Normal	Weak	~
	D7	0	Gol	Normal	Strong	N
	D8	Su	Cool	Normal	Strong	Y
	D9	Sil	Mied	High	Weak	N
	D10		Cool	Normal	Weak	~
	D 11	R	Mied	Normal	Weak	Y
		Su	Mild	Normal	strong	Y
	D12	0	Mild	High	strong	Y
	D13	0	Hot	Nogmal	Weak	Υ
	D14	R	Mild	High	strong	N
Can	I build	a DT?	which o	attroibute is	the best	classifier?
	Lets Chwo	se fumidi	ty;		S; L9	1+,5-)
& ()		S: [9+.	5-]; E	= 1 941	win	nd -
3		Humidi		-0,)(0	Weak	strong
8	Hi	gh/	Normal		[6+,2-]	[3+,3-]
	Γ	1	1		E=0.811	E= 4.0
	[3+,		[6+,1	-7		
	E = 0	.985	E = 0.			

Gain (S, humidity) = Entropy (Sample) = E(S) - $\sum \frac{|S_V|}{|S|}$ Entropy (Sy) = 0.940 - $(\frac{7}{14})$ Entropy (high) - $(\frac{7}{14})$ Entropy (normal) = 0.940 - $\frac{7}{14}$ * 0.985 - $\frac{7}{14}$ * 0.592 = 0.151

Gain (S, outlook) = 0.246

Gain (S, Humidity) = 0.151

Gain (S, wind) = 0.048

He largest W.

$$X D. R.V, H(x) = -\sum_{x \in X} b(x) \log b(x)$$

- 1) 0/20 -> p
- 2) H(x)>0 (why?)
- 3) $H(x) = E_{p} \left(-\log p(x)\right)$ Expectation
- 4) Hax) depends on p(x)

 prob. distribution
 - 5) H(x) is concave

Issues

- A) overfitting -> forme the tree!
- B) Bino-variance trade off in DT can be derived for the # of leaves in the tree.

 As we increase the # of leaves, the bias in the tree decreases (Recall: bias is always for the shortest tree) -) As we grow the tree -) bias decreases but variance may increase as well.

 $E(f(x)) = \sum_{x \in x} f(x) \beta(x)$

set fex) = - log p(x)

c) Use a diff set for validation to check for overfitting.

How to select best tree?

- a) Measure performance over training data
- b) Measure performance over reparate validation data set
- c) Minimize size (tree) & Minimize (misclassifications)