Opérations sur les nombres relatifs

C'est dans les écrits du mathématicien perse Abu'l-Wafa (940-998) que l'on voit apparaître des **produits** de nombres **négatifs** par des nombres **positifs**.

Dans la vie, être **négatif**n'est pas une qualité! Cette
méfiance envers le négatif
correspond à une longue
difficulté mathématique:
ainsi, les **anciens Grecs** n'utilisaient pas
les nombres négatifs.

Pour mesurer la profondeur atteinte par ce plongeur en apnée, on utilise des nombres négatifs.

Les **Chinois** étaient les plus avancés: en 200 avant notre ère (on note – 200), ils utilisaient des **bâtons rouges** pour les quantités positives et des **bâtons** noirs pour les quantités négatives, un bâton noir «annulant», dans les sommes, un bâton rouge. Le bâton noir était l'«**opposé**» du bâton rouge, la somme des deux étant égale à zéro.

On attribue au mathématicien indien Brahmagupta (v. 598-v. 660) la découverte des «nombres» négatifs. Il a donné des règles de calcul permettant d'expliciter des débits dans les comptes: «Une clette retranchée du néant devient un bien, un bien retranché du néant devient une dette.»

Pour bien commencer

OCM

Dans chaque cas, une seule des trois réponses proposées est exacte. Laquelle ?

		A	В	C
1	La somme dont les termes sont 7 et 4 est égale à	28	74	11
2	Le produit dont les facteurs sont 10 et 5 est égal à	50	15	2
3	L'expression 3 × 6 + 7	est une somme	est un produit	n'est ni une somme, ni un produit
4	L'expression $3 \times (6 + 7)$	est une somme	est un produit	n'est ni une somme, ni un produit
5	L'opposé de +49 est	+94	-49	4,9
6	(-7) + (+3) =	4	-10	-4
7	(-9) + (-5) =	-14	+14	+45
8	(-6)-(+3) =	-3	3	9
9	(+12)-(-5) =	17	7	-7
10	-5+7 =	2	- 12	-2

Exercice 1 1 1 Indiquer, pour chacune des expressions suivantes, s'il s'agit d'une somme ou d'un produit, et préciser alors les termes ou les facteurs correspondants.

$$A = (12 + 4) \times 5$$

$$B = 12 + 4 \times 5$$

$$C = 12 \times 4 + 5$$
.

$$A = (12+4) \times 5$$
. $B = 12+4 \times 5$. $C = 12 \times 4 + 5$. $D = 12 \times (4+5)$.

Ocalculer chaque expression.

Exercice 2 10 a. Recopier la liste de nombres relatifs ci-dessous, puis entourer en vert les nombres positifs et en bleu les nombres négatifs.

b. Que remarque-t-on pour le nombre 0 ?

@ a. Écrire un nombre relatif dont la distance à zéro est égale à 2,5. Combien y a-t-il de possibilités ?

b. Quel est l'opposé de +7,5 ? de -18 ? de 0 ?

Exercice 3 Calculer chaque expression en détaillant les étapes.

$$A = 12-3-7+1-4$$
. $B = 14-(5-11)$. $C = (-8+2)+(5-9)$.

$$B = 14 - (5 - 11)$$

$$C = (-8 + 2) + (5 - 9)$$

$$D = (3-10)-(7+1)$$
. $E = 6 \times 4-3 \times 5$.

$$E = 6 \times 4 - 3 \times 5$$

$$F = 5 - 18:6 + 1.$$

Un nombre pair est un nombre entier divisible par ___, c'est-à-dire un nombre dont le chiffre des unités est ___ ou ___ ou ___ ou ___ ou ___

Recopier la liste de nombres ci-dessous, puis entourer en vert les nombres pairs et en bleu les nombres impairs.

15; 891; 26; 0; 17; 165; 98; 1; 1567; 54; 2; 780.

Activités

Activité 1 Multiplication de deux nombres relatifs de signes contraires

- Calculer les produits suivants en utilisant une calculatrice. $(-7) \times 2$; $(-4) \times 5$; $(-3) \times 10$; $6 \times (-2)$; $1 \times (-9)$; $8 \times (-10)$.
- Recopier et compléter cet extrait de la table de multiplication de 3. $3 \times 2 = \square$ $3 \times 1 = \square$ $3 \times 0 = \square$ $3 \times (-1) = \square$ $3 \times (-2) = \square$ $3 \times (-3) = \square$
- Recopier et compléter les égalités suivantes. $(-3) \times 2 = (-3) + (-3) = \square$; $(-2) \times 3 = (-2) + (-2) = \square$.

Quel semble être le signe du produit de deux nombres relatifs de signes contraires ? Quelle semble être l'opération qui permet d'obtenir la distance à zéro du produit de deux nombres relatifs de signes contraires ?

Activité 2 Multiplication de deux nombres relatifs négatifs

- Calculer les produits suivants en utilisant une calculatrice. $(-7) \times (-2)$; $(-4) \times (-5)$; $(-3) \times (-10)$; $(-6) \times (-2)$; $(-1) \times (-9)$; $(-8) \times (-10)$.
- Recopier et compléter cet extrait de la table de multiplication de -3. $(-3) \times 2 = \square$ $(-3) \times 1 = \square$ $(-3) \times 0 = \square$ $(-3) \times (-1) = \square$ $(-3) \times (-1) = \square$ $(-3) \times (-2) = \square$ Soustraire -3 revient

 à ajouter +3.
- Pour conclure Quelle semble être le signe du produit de deux nombres négatifs ? Quelle semble être l'opération qui permet d'obtenir la distance à zéro du produit de deux nombres négatifs ?
 - Obtient-on les mêmes conclusions pour le produit de deux nombres positifs ?

Activité 3 Multiplication d'un nombre relatif par – 1

Calculer les produits suivants en utilisant une calculatrice. $(+17)\times(-1)$; $(-12)\times(-1)$; $(-1)\times(+9)$; $(-1)\times(-20)$.

Multiplication de plusieurs nombres relatifs Activité 4

Indiquer le signe de chacun des produits suivants sans les calculer.

 $A = (-2) \times (+5).$

 $B = (-2) \times (+5) \times (-4)$. $C = (-2) \times (+5) \times (-4) \times (+3)$.

 $D = (-2) \times (+5) \times (-4) \times (+3) \times (+10)$. $E = (-2) \times (+5) \times (-4) \times (+3) \times (+10) \times (-7)$.

Quel est le signe d'un produit de :

- a. 18 facteurs négatifs ?
- b. 9 facteurs négatifs ?
- 8 facteurs négatifs et 10 facteurs positifs ?
- d. 8 facteurs négatifs et 15 facteurs positifs ?
- e. 7 facteurs négatifs et 4 facteurs positifs ?
- 7. 7 facteurs négatifs et 5 facteurs positifs ?

- Pour conclure Pour connaître le signe d'un produit, que doit-on compter ?
 - Dans quels cas un produit est-il positif? Dans quels cas est-il négatif?

Activité 5 Division de deux nombres relatifs

Recopier et compléter chacune des égalités suivantes en utilisant la règle de la multiplication de deux nombres relatifs.

$$a_{*}(+5) \times \square = +15$$
; donc: $\frac{+15}{+5} = \square$.

$$b_* (+5) \times \square = -15$$
 ; donc : $\frac{-15}{+5} = \square$.

G.
$$(-5) \times \square = +15$$
 ; donc: $\frac{+15}{-5} = \square$.

ol.
$$(-5) \times \square = -15$$
; donc: $\frac{-15}{-5} = \square$

Rappel: Le nombre par lequel il faut multiplier un nombre b différent de 0 pour obtenir un nombre a est égal au quotient a

Pour conclure On admet que:

- le quotient de deux nombres relatifs de même signe est un nombre positif.
- le quotient de deux nombres relatifs de signes contraires est un nombre négatif.
- la distance à zéro du quotient de deux nombres relatifs est égale au quotient des distances à zéro des deux nombres.

Applications

a. Calculer les quotients suivants.

$$A = \frac{-12}{-3}$$

 $A = \frac{-12}{-3}$ $B = \frac{-7}{+2}$ $C = \frac{+36}{-9}$ $D = \frac{+48}{+5}$

b. Quel est le signe du quotient de -11 par +9?

Quelle est la valeur exacte de la distance à zéro de ce quotient ?

c. Procéder comme dans la question 2b. pour déterminer la valeur exacte de chacun des quotients suivants.

$$A = \frac{+16}{-9}$$

 $A = \frac{+16}{-9}$ $B = \frac{-5}{-7}$ $C = \frac{+13}{-6}$ $D = \frac{-15}{+18}$