

Topical Meeting

Machine Learning

Overview:

Simulating Stochastic Processes with Quantum Devices

Part I

May 11th, 2022

Daniel Fink

About Me

- B.Sc. + M.Sc. Simulation Technology
- Since high school interested in *Machine Learning*
- Since university interested in Quantum Computing
- Ph.D. → Quantum Machine Learning

About Me

- B.Sc. + M.Sc. Simulation Technology
- Since high school interested in *Machine Learning*
- Since university interested in Quantum Computing
- Ph.D. → Quantum Machine Learning
- My focus: holism and real-world scenarios
- Application: simulation of stochastic processes

Agenda

- Today:
 - Simulation of stochastic processes
 - Why quantum computing is relevant here

Agenda

- Today:
 - Simulation of stochastic processes
 - Why quantum computing is relevant here
- Next time:
 - What is the connection to machine learning?

Simulating Stochastic Processes

Assume linear trend f(t)

Add some noise e_t

 $\rightarrow e_t$ is a stochastic process

Stock Price Trend

Stock Price Trend

An easy example: flipping a coin

0

1

Time Steps →

stationary

- Simulating = sampling trajectories
- Trajectory is governed by $P(\vec{X}|\vec{X})$

Why
Stochastic
Processes?

Theoretical statement: Quantum Models are "better"

→ Use less memory, can be more accurate, ...

Classical Topological Complexity: $d_c = \log_2 N$

Classical Topological Complexity: $d_c = \log_2 N$

(minimal memory requirement [in bits] to perfectly simulate a process)

Quantum Topological Complexity: d_q

Quantum Topological Complexity: d_q

(minimal memory requirement [in qubits] to perfectly simulate a process)

Quantum Topological Complexity: d_q

(minimal memory requirement [in qubits] to perfectly simulate a process)

Quantum Models need less memory i.e. $d_q < d_c$

Quantum Topological Complexity: d_q

(minimal memory requirement [in qubits] to perfectly simulate a process)

Quantum Models need less memory i.e. $d_q < d_c$

If
$$\hat{d}_a = \hat{d}_c \implies$$
 Quantum Models are more accurate

Well, nice!

So, what's the problem?

Problem

The models are hard to find / learn

Solution

Master Thesis

Developed a quantum learning algorithm for quantum simulation models, which uses only data as input.

Limitations

- Simple stochastic processes
 - → Discrete, binary, stationary, small Markov order
- Extension not straightforward
- Quantum computer was only simulated
- The theory is not yet fully developed

Skepticism

"I have not seen a single piece of evidence that there exists a meaningful [machine learning] task for which it would make sense to use a quantum computer and not a classical computer,"

- Ryan Sweke, Free University of Berlin, 2020.

Skepticism

"I have not seen a single piece of evidence that there exists a meaningful [machine learning] task for which it would make sense to use a quantum computer and not a classical computer,"

- Ryan Sweke, Free University of Berlin, 2020.

Skepticism

"I have not seen a single piece of evidence that there exists a meaningful [machine learning] task for which it would make sense to use a quantum computer and not a classical computer,"

- Ryan Sweke, Free University of Berlin, 2020.

Questions

- How to measure a quantum advantage?
- Do we have a practical advantage?
- Is the advantage useful?

•

Questions

- How to measure a quantum advantage?
- Do we have a practical advantage?
- Is the advantage useful?

...

→ We need a holistic view of using quantum devices for real-world scenarios

Thanks!

A discussion is highly welcome.