2022/10/04

Rain in Australia

2022년 파일럿 프로젝트 : 호주 강우 예측

Predict next-day rain in Australia

Name : 김태찬

E-Mail: ohapjijin135@gamil.com

목차

- 1. 개요
- 2. 데이터 설명
- 3. 데이터 분석 / 전처리
- 4. 데이터 시각화
- 5. 모델링
- 6. 평가
- 7. 결론

JOE YOUNG AND 1 COLLABORATOR - UPDATED 2 YEARS AGO

New Notebook

weatherAUS.csv (14.09 MB)

Compact Column

平 :: >

▲ Evapor

31% Other (79

10 of 23 columns V

Rain in Australia

Predict next-day rain in Australia

About this file

Date Date

This dataset contains about 10 years of daily weather observations from numerous Australian weather stations.

▲ MinTemp

RainTomorrow is the target variable to predict. It means -- did it rain the next day, Yes or No? This column is Yes if the rain for that day was 1mm or more.

Data Code (482) Discussion (20) Metadata

About Dataset

Context

Predict next-day rain by training classification models on the target variable RainTomorrow.

Content

This dataset contains about 10 years of daily weather observations from many locations across Australia.

RainTomorrow is the target variable to predict. It means -- did it rain the next day, Yes or No? This column is Yes if the rain for that day was

Usability 0 License Other (specified in description)

Expected update frequency

The date of o	observation
	. dabbaddada
	·
1Nov07	25Jun17

	location of the wea		in degree
	Canberra	2%	NA
	Sydney	2%	11
7	Other (138680)	95%	Other (14

▲ Location

minimum temp egrees celsius	perature	The maximum temperature in celsius
	1%	
	1%	506 unique va
er (143076)	98%	500 S. C.

506

unique values

The amount of rainfall The so-ca nperature in degrees recorded for the day in evaporati 24 hours 0 63% NA 0.2 6%

▲ Rainfall

Other (45619)

https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package

목표: 다음날 비가 올지 여부를 분류 모델을 사용하여 목표변수 RainTomorrow로써 예측한다.

설명: 이 데이터셋은 호주 전역 다양한 장소에서 10년동안 매일 관측된 자료를 포함한다. 예측해야하는 목표 변수는 RainTomorrow로써 Yes or No로 나뉠 수 있다. 만약 Yes라면 다음날 비가 1mm 이상이라는 의미가 된다.

2. 데이터 설명

Features

Date : 관측 날짜

Location : 관측 장소

MinTemp : 최저 기온(섭씨) MaxTemp : 최고 기온(섭씨

Rainfall : 일일 강우량(mm) Evaporation : 증발량(mm)

Sunshine: 일사 시간

WindGustDir : 일일 최고 풍향

WindGustSpeed : 일일 최고 풍속

WindDir9am : 오전 9시 풍향 WindDir3pm : 오후 3시 풍향

WindSpeed9am : 오전 9시까지의 평균 풍속 WindSpeed3pm : 오후 3시까지의 평균 풍속

Humidity9am : 오전 9시의 습도(%) Humidity3pm : 오후 3시의 습도(%)

Pressure9am : 오전 9시의 평균 해수면 대기압(hpa) Pressure3pm : 오후 3시의 평균 해수면 대기압(hpa)

Cloud9am : 오전 9시의 운량(okta) Cloud3pm : 오후 3시의 운량(okta) Temp9am : 오전 9시의 온도(섭씨) Temp3pm : 오후 3시의 온도(섭씨) RainToday : 일일 강우 유무(1mm이상)

Target

RainTomorrow : 다음날 일일 강우 유무(1mm 이상)

연산/데이터 관련 라이브러리 호출

import numpy as np
import pandas as pd

시각화 관련 라이브러리 호출

import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

#기계학습 관련 라이브러리 호출

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import f1_score

데이터 불러오기

df = pd.read_csv('weatherAUS.csv', index_col=None)

데이터 확인

d

	Date	Location	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustDir	WindGustSpeed	WindDir9am	 Humidity9am	Hu
0	2008- 12-01	Albury	13.4	22.9	0.6	NaN	NaN	W	44.0	W	 71.0	
1	2008- 12-02	Albury	7.4	25.1	0.0	NaN	NaN	WNW	44.0	NNW	 44.0	
2	2008- 12-03	Albury	12.9	25.7	0.0	NaN	NaN	WSW	46.0	W	 38.0	
3	2008- 12-04	Albury	9.2	28.0	0.0	NaN	NaN	NE	24.0	SE	 45.0	
4	2008- 12-05	Albury	17.5	32.3	1.0	NaN	NaN	W	41.0	ENE	 82.0	

145460 rows × 23 columns 크기의 데이터

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 145460 entries, 0 to 145459

Data #	columns (total Column	23 columns): Non-Null Count	Dtype
0	Date Location	145460 non-null 145460 non-null	object object
2	MinTemp	143975 non-null	float64
3	•	144199 non-null	float64
4	•	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object
dtype	es: float64(16)	, object(7)	

살펴본 결과...

- 1. 결측치가 존재, 이를 해결해야 한다.
- 2. 기계학습을 위해 데이터 타입을 변환시킬 필요가 있어 보인다.
- 3. 정규화가 필요해 보인다.

다음 날 비가 올지를 예측하기 위해서는 기준이 필요 호주는 아주 큰 대륙이기 때문에 지역에 따라서 같은 시간이여도 날씨가 매우 다르기 때문 따라서 해당 데이터를 지역에 따라서 나누어 생각해 볼 필요가 있음.

16 개의 float64 데이터와 7개의 object 타입의 데이터가 존재

#지역 확인

```
df['Location'].unique(), df['Location'].nunique()
(array(['Albury', 'BadgerysCreek', 'Cobar', 'CoffsHarbour', 'Moree',
       'Newcastle', 'NorahHead', 'NorfolkIsland', 'Penrith', 'Richmond',
       'Sydney', 'SydneyAirport', 'WaggaWagga', 'Williamtown',
       'Wollongong', 'Canberra', 'Tuggeranong', 'MountGinini', 'Ballarat',
       'Bendigo', 'Sale', 'MelbourneAirport', 'Melbourne', 'Mildura',
       'Nhil', 'Portland', 'Watsonia', 'Dartmoor', 'Brisbane', 'Cairns',
       'GoldCoast', 'Townsville', 'Adelaide', 'MountGambier', 'Nuriootpa',
       'Woomera', 'Albany', 'Witchcliffe', 'PearceRAAF', 'PerthAirport',
       'Perth', 'SalmonGums', 'Walpole', 'Hobart', 'Launceston',
       'AliceSprings', 'Darwin', 'Katherine', 'Uluru'], dtype=object),
49)
```

호주 전역의 49개 지역을 확인

결측치 확인

sydney_df.isnull().sum()

Date	0
Location	0
MinTemp	4
MaxTemp	2
Rainfall	7
Evaporation	51
Sunshine	16
WindGustDir	1038
WindGustSpeed	1038
WindDir9am	56
WindDir3pm	33
WindSpeed9am	26
WindSpeed3pm	25
Humidity9am	15
Humidity3pm	13
Pressure9am	21
Pressure3pm	19
Cloud9am	568
Cloud3pm	563
Temp9am	5
Temp3pm	4
RainToday	7
RainTomorrow	7
dtype: int64	

```
# 데이터 타입이 연속형인 데이터만 추출
```

floats = sydney_df

for col in floats.columns:

if floats[col] .dtype != 'float64':

floats = floats.drop(columns=col)

floats

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	Win
30176	19.5	22.4	15.6	6.2	0.0	NaN	
30177	19.5	25.6	6.0	3.4	2.7	NaN	
30178	21.6	24.5	6.6	2.4	0.1	NaN	
30179	20.2	22.8	18.8	2.2	0.0	NaN	
30180	19.7	25.7	77.4	NaN	0.0	NaN	
33515	8.6	19.6	0.0	2.0	7.8	37.0	
33516	9.3	19.2	0.0	2.0	9.2	30.0	
33517	9.4	17.7	0.0	2.4	2.7	24.0	
33518	10.1	19.3	0.0	1.4	9.3	43.0	
33519	7.6	19.3	0.0	3.4	9.4	35.0	

살펴본 결과 결측치들은 모든 float 특징들에 존재하나, 최고 풍속과 오전, 오후 운량에서 일정기간 관측이 안됨을 알 수 있다.

3. 데이터 분석 / 전처리 일정 기간동안 데이터가 수집되지 않은 경우... 1. 해당 특징을 사용하지 않는다. 2. 상관관계가 강한 다른 특징을 이용해 유추한다. 그 외에 연속적인 결측값의 빈도가 낮은 특징들은 근처 값들의 평균을 이용해 채운다.

변수들간 상관관계 파악하기

floats.corr(method='pearson')

	MinTemp	MaxTemp	Rainfall	Evaporation	Sunshine	WindGustSpeed	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	Pressure9am
MinTemp	1.000000	0.770461	0.012735	0.571549	-0.063352	0.152936	-0.294792	0.223307	0.052596	0.271891	-0.393417
MaxTemp	0.770461	1.000000	-0.139968	0.513437	0.327355	0.088114	-0.346385	0.151797	-0.187342	-0.152548	-0.389251
Rainfall	0.012735	-0.139968	1.000000	-0.126332	-0.307399	0.172323	0.154055	0.039840	0.331066	0.301590	-0.036914
Evaporation	0.571549	0.513437	-0.126332	1.000000	0.177359	0.299394	-0.076591	0.299602	-0.398800	-0.102956	-0.349273
Sunshine	-0.063352	0.327355	-0.307399	0.177359	1.000000	-0.036461	-0.059561	0.177092	-0.490316	-0.585325	-0.047863
WindGustSpeed	0.152936	0.088114	0.172323	0.299394	-0.036461	1.000000	0.311453	0.608910	-0.271754	-0.117879	-0.487213
WindSpeed9am	-0.294792	-0.346385	0.154055	-0.076591	-0.059561	0.311453	1.000000	0.198502	-0.192183	-0.152051	0.002851
WindSpeed3pm	0.223307	0.151797	0.039840	0.299602	0.177092	0.608910	0.198502	1.000000	-0.290423	-0.135652	-0.330808
Humidity9am	0.052596	-0.187342	0.331066	-0.398800	-0.490316	-0.271754	-0.192183	-0.290423	1.000000	0.659305	0.263610
Humidity3pm	0.271891	-0.152548	0.301590	-0.102956	-0.585325	-0.117879	-0.152051	-0.135652	0.659305	1.000000	0.154757
Pressure9am	-0.393417	-0.389251	-0.036914	-0.349273	-0.047863	-0.487213	0.002851	-0.330808	0.263610	0.154757	1.000000
Pressure3pm	-0.355855	-0.425367	0.003328	-0.303301	-0.095963	-0.419857	0.091525	-0.275674	0.251942	0.183305	0.963163
Cloud9am	0.259959	-0.096941	0.277358	-0.041986	-0.734493	0.035586	-0.070941	-0.061411	0.459622	0.498215	-0.011775
Cloud3pm	0.180220	-0.108205	0.229394	-0.040464	-0.751219	0.069810	-0.018180	-0.100485	0.359511	0.517362	-0.043864
Temp9am	0.939044	0.859225	-0.056187	0.609325	0.115385	0.191401	-0.330320	0.276907	-0.148065	0.128969	-0.419369
Temn?nm	n 7527n7	0.960453	-0 1/3620	∩ //77929	0.3/15615	U UV3383	-0.348675	O 132725	-0.157510	-0 213913	-0.346935

세 변수들 모두 0.7 이상의 상관계수를 가지는 변수들이 존재하지 않으나, WindGustSpeed는 WindSpeed9am,WindSpeed3am에 0.6 이상의 상관관계를 가지고 있다. Cloud9am과 Cloud3pm는 Sunshine과 0.6이상의 상관관계를 가지고 있다.

결측치 처리

• 방법 1(특징 제거)

#결측치 특징 제거

floats_1 = floats.drop(columns = ['WindGustSpeed', 'Cloud9am', 'Cloud3pm'])

#결측치 보간으로 처리

for col in floats_1.columns:
 floats_1[col].interpolate(inplace=True)
floats_1.isnull().sum()

MinTemp 0
MaxTemp 0
Rainfall 0
Evaporation 0
Sunshine 0
WindSpeed9am 0
WindSpeed3pm 0
Humidity9am 0
Humidity3pm 0
Pressure9am 0
Pressure3pm 0
Temp9am 0
Temp3pm 0
dtype: int64

```
3. 데이터 분석 / 전처리
                       # Feature와 Target값을 하나의 데이터 프레임으로 만든다.
                      floats_1['RainTomorrow'] = sydney_df['RainTomorrow']
                      floats_1.set_index(sydney_df['Date'], inplace=True)
                      sydney_df1 = floats_1
                       # Target 인코딩
                      sydney_df1.loc[sydney_df1['RainTomorrow'] == 'Yes', 'RainTomorrow'] = 1
                      sydney_df1.loc[sydney_df1['RainTomorrow'] == 'No', 'RainTomorrow'] = 0
                       # RainfallT 추가
                      sydney_df1['RainfallT'] = sydney_df1['Rainfall'].shift(-1)
                       # sydney_df1.drop(columns='RainfallT',inplace=True)
                       sydney_df1['RainfallT'].fillna(0,inplace=True)
                       # Rainfall 결측치 처리
                      sydney_df1['RainTomorrow'].isnull()
                      sydney_df1[(sydney_df1['RainTomorrow'].isnull()) & (sydney_df1['Rainfall'] < 1)]['RainTomorrow'].fillna(0)
                     Date
                     2010-06-18
                     2010-10-09
                      2010-11-12
                     2014-09-16
                     2014-10-31
                     2014-11-27
                     2014-11-28
                     |Name: RainTomorrow, dtype: int64
```

4. 데이터 시각화

최고 온도와 일사량 , 최저 온도와 일사량의 관계를 시각화 많은 상관성을 보이진 않음.

4. 데이터 시각화

• 오전과 오후의 풍속의 변화를 나타내었다. 전반적으로 오후에 바람이 더 강하게 부는 경향이 있음을 알 수 있다.

• 오전과 오후의 온도 변화를 나타낸다. 전반적으로 오후의 온도가 더 높음을 알 수 있다.

모델 성능에 영향을 줄 수 있는 요인들 :

- 1. 어떤 특징(feature)들을 사용 할 것인가? (추가 or 제거)
- 2 . 결측치를 어떻게 다룰 것인가?
- 3. 어떤 알고리즘을 이용해 학습시킬 것인가?
- 4. 모델의 파라미터들이 최적인가?

사용해 볼 모델 알고리즘 : KNN, 의사결정트리, 랜덤 포레스트

각각의 모델을 생성한 후 테스트 셋과의 정확도를 비교, 파라미터를 조정해 본다.

```
# X, y 설정하기
sel = ['MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation', 'Sunshine', 'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity9pm', 'Pressure9am', 'Te X = sydney_df1[sel]
y = sydney_df1[rainTomorrow']
# train, test 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y)

# KNW 모델 생성
model = KNeighborsClassifier(n_neighbors=8)
model.fit(X_train, y_train)
# 모델 예측
knn_pred = model.predict(X_test)
print("정확도 : {:.2f}".format(np.mean(knn_pred == y_test)))

정확도 : 0.82
```

```
# k값에 따른 정확도 확인
tr_acc = []
test_acc = []
k_nums = range(1, 22) # 1,3,5~21
for n in k_nums:
   # 모델 선택 및 학습
   model = KNeighborsClassifier(n_neighbors=n)
   model.fit(X_train, y_train)
   # 정확도 구하기
   acc_tr = model.score(X_train, y_train)
   acc_test = model.score(X_test, y_test)
   # 정확도 값 저장.
   tr_acc.append(acc_tr)
    test_acc.append(acc_test)
   print("k : ", n)
   print("train 정확도 {:.3f}".format(acc_tr) )
   print("test 정확도 {:.3f}".format(acc_test) )
```

train 성왁노 V.୪55 test 정확도 0.813 train 정확도 0.846 test 정확도 0.821 train 정확도 0.848 test 정확도 0.823 train 정확도 0.845 test 정확도 0.824 train 정확도 0.846 test 정확도 0.819 train 정확도 0.844 test 정확도 0.821 k: 11 train 정확도 0.849 test 정확도 0.818 k: 12 train 정확도 0.846 test 정확도 0.813 k: 13 train 정확도 0.846 test 정확도 0.819 k: 14 train 정확도 0.844 test 정확도 0.816 k: 15 train 정확도 0.845 test 정확도 0.816 k: 16 train 정확도 0.839 test 정확도 0.815 k: 17 train 정확도 0.844 test 정확도 0.816


```
5. 모델링
      # 의사결정트리
      # 모델 생성 및 학습
      model = DecisionTreeClassifier(max_depth=3,criterion="entropy", random_state=0).fit(X_train,y_train)
      # 예측
      tree_pred = model.predict(X_test)
      from sklearn import metrics
      # Model Accuracy, 얼마나 정확한가? 정확도
      print("Accuracy:", metrics.accuracy_score(y_test, tree_pred))
     Accuracy: 0.8133971291866029
```

```
# max_depth값에 따른 정확도 확인
tr_acc = []
test_acc = []
\max_{\text{nums}} = \text{range}(1, 22) # 1,3,5~21
for n in max_nums:
   # 모델 선택 및 학습
   model = DecisionTreeClassifier(max_depth=n, criterion="entropy")
   model.fit(X_train, y_train)
   # 정확도 구하기
   acc_tr = model.score(X_train, y_train)
   acc_test = model.score(X_test, y_test)
   # 정확도 값 저장.
   tr_acc.append(acc_tr)
   test_acc.append(acc_test)
   print("max_depth : ", n)
   print("train 정확도 {:.3f}".format(acc_tr) )
   print("test 정확도 {:.3f}".format(acc_test) )
```

max_depth : 1 train 정확도 0.762 test 정확도 0.762 max_depth : 2 train 정확도 0.825 test 정확도 0.810 max_depth : 3 train 정확도 0.838 test 정확도 0.813 max_depth: 4 train 정확도 0.841 test 정확도 0.804 max_depth : 5 train 정확도 0.846 test 정확도 0.803 max_depth : 6 train 정확도 0.861 test 정확도 0.810 max_depth : 7 train 정확도 0.883 test 정확도 0.805 max_depth: 8 train 정확도 0.892 test 정확도 0.810 max_depth: 9 train 정확도 0.912 test 정확도 0.785 max_depth : 10 train 정확도 0.930 test 정확도 0.797 max_depth : 11 train 정확도 0.944 test 정확도 0.782

랜덤 포레스트

```
model = RandomForestClassifier(n_estimators = 25) # 모델 만들기
model.fit(X_train,y_train) # 모델 훈련시키기 model.fit(입력, 출력)
r_pred = model.predict(X_test) # 학습된 모델로 예측하기
### model.score()를 이용해서 구하기
print( model.score(X_train, y_train) )
print( model.score(X_test, y_test) )
```

- 0.9992025518341308
- 0.8409090909090909

```
# n_estimators값에 따른 정확도 확인
tr_acc = []
test_acc = []
n_n = range(1, 60, 3) # 1,3,5~21
for n in n_nums:
   # 모델 선택 및 학습
   model = RandomForestClassifier(n_estimators=n)
   model.fit(X_train, y_train)
   # 정확도 구하기
   acc_{tr} = model.score(X_{train}, y_{train})
   acc_test = model.score(X_test, y_test)
   # 정확도 값 저장.
   tr_acc.append(acc_tr)
   test_acc.append(acc_test)
   print("n_estimators : ", n)
   print("train 정확도 {:.3f}".format(acc_tr) )
   print("test 정확도 {:.3f}".format(acc_test) )
```

train 성확노 0.992 test 정확도 0.822 n estimators: 19 train 정확도 0.996 test 정확도 0.825 n_estimators : 22 train 정확도 0.996 test 정확도 0.835 n_estimators: 25 train 정확도 0.997 test 정확도 0.827 n estimators : 28 train 정확도 0.999 test 정확도 0.833 n estimators: 31 train 정확도 1.000 test 정확도 0.841 n_estimators: 34 train 정확도 0.998 test 정확도 0.833 n estimators: 37 train 정확도 1.000 test 정확도 0.825 n_estimators: 40 train 정확도 0.999 test 정확도 0.834 n_estimators: 43 train 정확도 0.999 test 정확도 0.842 n_estimators: 46 train 정확도 1.000 test 정확도 0.847 n_estimators: 49 train 정확도 1.000 test 정확도 0.833 n_estimators: 52 train 정확도 1.000

랜덤 포레스트

```
model = RandomForestClassifier(n_estimators = 25) # 모델 만들기
model.fit(X_train,y_train) # 모델 훈련시키기 model.fit(입력, 출력)
r_pred = model.predict(X_test) # 학습된 모델로 예측하기
### model.score()를 이용해서 구하기
print( model.score(X_train, y_train) )
print( model.score(X_test, y_test) )
```

0.9992025518341308

```
# n_estimators값에 따른 정확도 확인
tr_acc = []
test_acc = []
n_n = range(1, 60, 3) # 1,3,5~21
for n in n_nums:
   # 모델 선택 및 학습
   model = RandomForestClassifier(n_estimators=n)
   model.fit(X_train, y_train)
   # 정확도 구하기
   acc_tr = model.score(X_train, y_train)
   acc_test = model.score(X_test, y_test)
   # 정확도 값 저장.
   tr_acc.append(acc_tr)
    test_acc.append(acc_test)
   print("n_estimators : ", n)
   print("train 정확도 {:.3f}".format(acc_tr) )
   print("test 정확도 {:.3f}".format(acc_test) )
```

train 성확노 0.992 test 정확도 0.822 n estimators: 19 train 정확도 0.996 test 정확도 0.825 n_estimators: 22 train 정확도 0.996 test 정확도 0.835 n_estimators: 25 train 정확도 0.997 test 정확도 0.827 n_estimators: 28 train 정확도 0.999 test 정확도 0.833 n estimators : 31 train 정확도 1.000 test 정확도 0.841 n_estimators: 34 train 정확도 0.998 test 정확도 0.833 n estimators: 37 train 정확도 1.000 test 정확도 0.825 n_estimators: 40 train 정확도 0.999 test 정확도 0.834 n_estimators: 43 train 정확도 0.999 test 정확도 0.842 n_estimators: 46 train 정확도 1.000 test 정확도 0.847 n estimators: 49 train 정확도 1.000 test 정확도 0.833 n_estimators: 52 train 정확도 1.000

6. 평가

F1 - score 를 사용해 모델을 평가

각 모델 별 점수

```
# 모델 평가
#F1-score를 활용
from sklearn.metrics import f1_score
print("KNN 모델의 f1 score: {:.2f}".format(f1_score(y_test, knn_pred)))
print("트리 모델의 f1 score: {:.2f}".format(f1_score(y_test, tree_pred)))
print("랜덤포레스트 모델의 f1 score: {:.2f}".format(f1_score(y_test, r_pred)))

KNN 모델의 f1 score: 0.58
트리 모델의 f1 score: 0.66
랜덤포레스트 모델의 f1 score: 0.68
```

6. 평가 # KNN f1-score from sklearn.metrics import classification_report print(classification_report(y_test, knn_pred, target_names=["no rain", "yes rain"])) precision recall f1-score support # DecisionTree f1-score 0.82 0.96 0.89 no rain from sklearn, metrics import classification_report 0.45 0.58 yes rain 0.81 print(classification_report(y_test, tree_pred, target_names=["no rain", "yes rain"])) 0.82 accuracy 0.82 0.71 0.73 macro avg recall f1-score support precision weighted avg 0.82 0.82 0.80 # RandomForest f1-score 0.86 0.92 0.89 607 no rain from sklearn.metrics import classification_report 0.74 0.59 0.66 229 yes rain print(classification_report(y_test, r_pred, target_names=["no rain", "yes rain"])) 0.83 836 accuracy 0.75 0.77 836 0.80 macro avg precision recall f1-score support 0.82 0.82 0.83 836 weighted avg 0.86 0.95 0.90 607 no rain 0.80 0.59 0.68 229 yes rain 0.85 836 accuracy 836 0.83 0.77 0.79 macro avg weighted avg 0.84 836 0.84 0.85

KNN < Decision Tree < Random Forest

호주 강우 예측을 위해 데이터를 선택하고 각각의 모델을 만들어 평가해 보았다.

랜덤포레스트 모델로 f1-score 0.68의 예측 모델을 만들 수 있었다.

추가로 고려해 볼 사항들

- 1. sydney 외의 다른 지역들의 모델은 어떨까?
- 2. Categorical 변수들도 사용한다면? 그 방법은?
- 3. 빈도가 높은 결측치를 보완하면 성능이 향상 될 것인가?
- 4. 다른 알고리즘들은 어떨까?

References

Kaggle Data: https://www.kaggle.com/datasets/jsphyg/weather-dataset-rattle-package

Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data.

An example of latest weather observations in Canberra: http://www.bom.gov.au/climate/dwo/IDCJDW2801.latest.shtml Definitions adapted from http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml Data source: http://www.bom.gov.au/climate/dwo/ and http://www.bom.gov.au/climate/data.

Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

지금까지 발표를 들어주셔서 감사합니다!