Bio 1M: Hominins — Chapter 56

1 Emergence — S 56.1

- Hominins refer to people and our upright ancestors
- Characterized by:
 - Walking upright
 - Specific changes in chewing design: teeth, jaws and skull

Taxonomy — https://en.wikipedia.org/wiki/Hominini

- Homonoidea, Hominidae, Homininiae, Hominini, Hominina, Homo
- Why so much detailed splitting?

_

Putting together the puzzle

- What did our common ancestor with chimpanzees look like?
- Which fossils are related to which other fossils?
- The key is which features are reliable indicators of relatedness?

Competition and replacement — Fig 56.2

- *H. erectus* replaced everything that came before it
- *H. sapiens* replaced everything that came before *it*

Modern humans

- Characterized by small face and teeth
- Less robust skeletal structure
- Evolved in Africa around 200 kya (thousand years ago)
- Took over most of the world in the last 50,000 years

Why are we here?

- Modern humans arose around 200 kya, but took over the world around 50 kya
- What happened?
 - Cultural change?
 - Evolutionary change?
 - * Sudden or gradual?
 - Why don't we see evidence?

*

Evaluating evidence

- There are a lot of theories and a great deal of expertise
- But expertise can also lead to over-confidence
- As with other examples, we try to make and test theories

_

Apelike ancestors — See First Hominin subsection

- Were our ancestors more like us, or more like apes?

 - _
 - _
- *

Observer bias

Upright posture — S56.3 Bipedalism

- How did upright posture and upright walking evolve?
- It's not known, but there are many theories:
 - Adaptation to walking on the ground instead of swinging through trees

*

- Adaptation for keeping cool
- Adaptation for harvesting food
- Adaptation for carrying food

Gradual evolution

- Hominins' evolution of upright posture was likely dependent on evolutionary history and circumstance
 - Built on previous adaptations
- Evolution of upright posture almost certainly led to further evolutionary change:
 - Carrying and storing things
 - Making and using tools

Studying evolution

- Evidence from fossils
 - knees, hips, backs, skulls all provide evidence about posture Fig 56.8
 - teeth and jaws provide evidence about diet
- Evidence from archaeology
 - hominin fossils may be found in particular placess
 - associated with fossils from things that hominins used to eat
 - or with tools

Back and forth evolution

- Very early hominins (6 mya) had facial and dental features that were similar to later hominins (2 mya)
 - Less similar to chimpanzees
 - But also less similar to Australopiths (3 mya)
- Is this surprising?

حاد

Hominin phylogenies

- Hominins had a large number of speciation and extinction events
 - Consistent with radiation and contraction
 - Likely provided more opportunities for adaptation in the long run
- The tree is not well understood, despite intensive study

_

2 Sociality

Complex foraging

- A key part of human evolution was shaped by **complex foraging** strategies of our ancestors they relied on many types of food, including types of food that are difficult to get or process
- What adaptations likely favored this strategy?

• What further adaptations might this strategy have favored?

_

Looping

• Lots of adaptations may be partly explained by adaptive loops

_

Complex foraging and co-operation

- Complex foraging may have promoted co-operation between females and males, since primate child care is not well suited to a hunting life style
- It may have promoted co-operation between people with different skills, since they might have access to food at different times
- It may have promoted co-operation among hunters, since hunting success is highly variable
- It may have promoted co-operation in teaching and learning

Complex foraging and thinking

- Complex foraging favors large brains that can learn a lot
- It also favors a long learning period
 - Sensitivity vs. crystallization
- It also favors communication

Complex foraging and gender roles

• How might complex foraging affect child care and sexual dimorphism?
_
_
Social behaviour
• As behaviour becomes more social, a wide variety of other adaptations may become available
 Mostly related to thinking and communication
• Leading to more opportunities for looping:
_
_
How social were early hominins?
• What kind of clues might be available?
_
-
Sexual dimorphism
ullet The extent of sexual dimorphism tells us at least something about social structures
_
_
• How do we know whose bones are male and female?
_
_
• How do we know whose teeth are male and female?
_
_

Bimodality

- Bimodality means having two peaks in a distribution
 - For example, a modern human height distribution would have a peak for men, and a peak for women
- If traits are strongly dimorphic, we should be able to tell by sampling, even if we don't know which fossils come from males and which from females https://www.cdc.gov/nchs/nhis/index.htm

Teeth

- Chimpanzees and (especially) gorillas have extreme sexual dimorphism in tooth size
- We can tell our ancestors have less dimorphism than that even if we can't tell the males from the females

Rate of development

 \bullet Why do human children develop so slowly?

• We are therefore very interested in how long it took our ancestors to mature

- Clues are available
 - $-\ \mathrm{Dental\ enamel} \mathtt{https://embryo.asu.edu/pages/human-evolution-inferred-tooth-grown}$
 - Molar development
- But it's a hard problem

Summary

- People evolved by the same basic rules as other organisms
- $\bullet\,$ Followed a very different path
- There is a lot we can learn about ourselves from biology
- And also a lot that we can't learn

© 2017–2018, Jonathan Dushoff and the 1M teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.