《高等微积分 1》第九周作业

本次作业在第十周星期三上课时间交,希望大家使用订在一起的散页纸.

- 1 设 f 在 **R** 上有各个高阶导数. 证明: 如果 f(x) = 0 有 n 个不同的零点,则对 $1 \le k \le (n-1)$, $f^{(k)}(x) = 0$ 至少有 (n-k) 个不同的零点.
- 2 设 0 < x < y. 证明:
 - (1) 当 $\alpha > 1$ 或者 $\alpha < 0$ 时, 有 $\alpha x^{\alpha 1}(y x) < y^{\alpha} x^{\alpha} < \alpha y^{\alpha 1}(y x)$.
 - (2) $\leq 0 < \alpha < 1$ $\forall n, \neq \alpha y^{\alpha-1}(y-x) < y^{\alpha} x^{\alpha} < \alpha x^{\alpha-1}(y-x)$.
 - $(3) \frac{y-x}{y} < \ln \frac{y}{x} < \frac{y-x}{x}.$
- 3 定义函数 $f:(1,+\infty)\to \mathbf{R}$ 为 $f(x)=(1-\frac{1}{x})^x$.
 - (1) 研究 f 在 $(1,+\infty)$ 的单调性.
 - (2) 证明: 对正整数 k < n, 有 $(1 \frac{k}{n})^n < (1 \frac{k}{n+1})^{n+1}$.
 - (3) 定义数列 $\{a_n\}_{n=1}^{\infty}$ 为 $a_n = \sum_{i=1}^n \left(\frac{i}{n}\right)^n$. 证明: $a_n < a_{n+1}$.
 - (4) 计算极限 $\lim_{x \to +\infty} f(x)$.
 - (5) 证明: 当 x > 1 时, $f(x) < \frac{1}{e}$.
 - (6) 证明: 对于正整数 k < n, 有 $(1 \frac{k}{n})^n < (\frac{1}{e})^k$.
 - (7) 证明: 对于正整数 n, 有 $a_n < \frac{e}{e-1}$.
 - (8) 证明: 极限 $\lim_{n\to\infty} a_n$ 存在.
 - (9) 设 k 是给定的正整数. 注意到, 对任何正整数 $n \ge k+1$, 有

$$a_n = 1 + f(\frac{n}{1})^1 + f(\frac{n}{2})^2 + \dots + f(\frac{n}{n-1})^{n-1} \ge 1 + \sum_{i=1}^k f(\frac{n}{i})^i.$$

证明:
$$\lim_{n \to \infty} a_n \ge \sum_{i=0}^k \left(\frac{1}{e}\right)^i$$
.

(10) 证明: $\lim_{n \to \infty} a_n = \frac{e}{e-1}$.

(10) 证明:
$$\lim_{n\to\infty} a_n = \frac{e}{e-1}$$
.