

					Pos.	Anz.	Ø	Länge	Bem.
					1	6	20	0.35	
					2	2	14	7.70	
					3	2	12	6.46	
					4	4	10	2.52	
					5	4	12	2.46	
	M	attensumme	enliste		6	4	10	2.50	
Pos.	Anz.	Bez/Typ	Breite	Länge	7	6	8	1.10	
1	7	R257A	2.30	1.00	8	4	10	3.48	
2	6	Q335A	2.30	1.74	9	4	10	2.45	
3	2	Q335A	0.85	1.74	50	16	10	0.70	
4	2	Q257A	1.72	3.51	51	4	8	0.70	
Gesa	mtgewi	cht 242.98	5 kg		Gesan	ntgewicht	81.680 k	g	

Pos.	Stck	Bezeichnung
1082	2	gekröpfter Kugelkopftransportanker 7.5to; Zulagebewehrung nach Herstellerangaben
2024	2	Ankerschiene 38/17 L=15cm verzinkt
4062	2	Philipp Power Duo-Schiene h=70mm, L=1.25m
SPA-1-07-260	2	Halfen Traganker SPA-1-07-260-A4
SPA-2-09-260	4	Halfen Traganker SPA-2-09-260-A4
SPA-N-05-260	26	Halfen Nadeln SPA-N-05-260-A4

TAB 1. Mindestwerte der Biegerollendurchmesser bei einmaligem Biegen (DIN EN 1992-1-1/NA, Tabelle NA.8.1a)										
D min2 +	Haken, Wink Schlaufen, B		Schrägstäbe oder andere gebogene Stäbe (D _{min 2})							
+ ds	Stabdurchn	nesser ds	Mindestwerte der Betondeckung rechtwinklig zur Biegeebene							
	<20mm	_20mm	>100mm >7 ds	>50mm >3 ds	_50mm _3 ds					
Normalbeton	4 ds	7 ds	10 ds	15 ds	20 ds					
Leichtbeton nach DIN EN 1992-1-1, 11.8.11	6 ds	10,5 ds	15 ds	22,5 ds	30 ds					

TAB 2. Mindestwerte de bei einm	r Biegerollendurchmes aligen Biegen (DIN EI	sser d _{br} für nach dem S N 1992-1-1/NA, Tabell	Schweißen gebogene e NA.8.1b)	Bewehrung			
a ds	Vorwiegend ruhe	ende Einwirkungen	Nicht vorwiegend ruhende Einwirkungen				
B D min	Schweißung außerhalb des Biegebereiches	Schweißung innerhalb des Biegebereiches	Schweißung auf der Außenseite der Biegung	Schweißung auf der Innenseite der Biegung			
für a <4 ds	20 ds	20 ds	100 ds	500 do			
für a _4 ds	Werte nach Tabelle TAB 1	20 US	100 05	500 ds			

	BETONDECKUNG	S-Haken - bei Baustahlgewebe	- bei Rundstahl (senkrechte Stäbe außen):	- bei Rundstahl (senkrechte Stäbe innen):
	d _{sbü} (Bügel)	 	Cvs Cvs	cvs cvs
	Abstandhalter			
	Verlegemaß c _V			
- 1	DALIOTOFFF			

	BAUSTOFFE		ı	Beton F	estigke	eitsklas	se			Retor	nstahl	Betondeckung Nennmaß c _v (mm)			Feuchtigkeitsklasse			
	Bauteil	C 25/30	C 30/37	C 35/45	C 40/50	C 45/55	C 50/60	LP	WU	BSt	BSt 500M (A)		oben	seitlich				WS
	Tragschale			Х						Х	Х	25	25	25	Х			
	Vorsatzschale			Х						Х	Х	35	35	35		Х		
1		t	T Rewehrungskorrosion										Retonan	ariff			—	\neg

유				Dewei	irunga	ROTTOS	51011							Dett	mangi	1111				
unbewe	Ka	arbona	itisieru	ing	_		-	_		-	(mit/			ittel)	che	m. An	griff	Ve	rschle	iß
X0	XC1	XC2	XC3	XC4	XD1	XD2	XD3	XS1	XS2	XS3	XF1	XF2	XF3	XF4	XA1	XA2	XA3	XM1	XM2	хмз
	Х																			
				Х							Χ									
	_	X0 XC1	Karbona X0 XC1 XC2	Karbonatisieru X0 XC1 XC2 XC3	Karbonatisierung X0 XC1 XC2 XC3 XC4 X X			Karbonatisierung	Name Chloride (o. Meerwasser) Chloride (o. Meerwasser) X0 XC1 XC2 XC3 XC4 XD1 XD2 XD3 XS1 X X X X X X X X X	Karbonatisierung	Karbonatisierung	Secondaria Chloride	Secondaria Chloride	Name	Secondaria Chloride (o. Meerwasser) Chloride (a. Meerwasser) Chlori	Secondaria Chloride	Name	Name Chloride	Secondaria Chloride	National Science Chloride (o. Meerwasser) Chloride (a. Meerwasser) Chloride (mit/ohne Taumittel) Chem. Angriff Verschle

BEWEHRUNG Biegemaße gelten von Außenkante zu Außenkante Stahl. $\label{eq:mindestbiegerollendurchmesser} \ D_{\min} \ nach \ DIN \ EN \ 1992-1-1/NA, \ Tabelle \ NA.8.1DEa$ Betonstabstahl - Positionen Alle Maße und Schnittlängen sind vor der Ausführung zu prüfen !!

<u>OBERFLÄCHEN</u>	Sichtbeton glatt	Einfüllseite	Feingeglättet	Sonderstr	uktur Alle Kante fasen			
Fertigteil - Position	Stück	Länge	Breite	Höhe	Volumen (m ³)	Gewicht (to.)		
10-124	1	7.18	1.79	0.43	3.38	8.45		

Gez.	Lang/wd	Sand- und Baustoffwerke Neumarkt GmbH & Co.KG			
stat.Pos W01		Neubau einer Ausstellungshalle, und Containerhalle mit Büro	819-19		
		Sandwichwand Pos. 10-124			
Maßstab	1:25	Gariawionwana 1 66. 16 121	Plan. Nr / Index / Status		
Planschlüssel		FT_XX_10-124_a_F			

Auftr. Nr