What's the Problem?

MagicWorks[™] are struggling

- Analytics queries too slow
- Data volumes are growing
- Their servers are at capacity
- Queries are already tuned by SQL experts

Azure SQL Data Warehouse

Agenda

Service architecture Elastic performance and scalability Table storage **Business Continuity** Workload Management Service Integration

But first...

Who likes Drinking Games?

Scaling out: The ultimate team game...

Target workload: Analytics

Store large volumes of data Consolidate disparate data into a single location Shape, model, transform and aggregate data Perform query analysis across large datasets Ad-hoc reporting across large data volumes All using simple SQL constructs

"SQL on SQL"

SQLDW Service Architecture

SMP

Symmetric Multi-Processing (ie: A Standard SQL Server)

MPP

Massively Parallel Processing

Fully managed PaaS

Connectivity

Windows or Linux

ODBC

OLEDB

JDBC

ADO.NET

PHP

Separation of compute from storage

Separation of compute from storage

Separation of compute from storage

Instance

Logical server

Database

Schemas

Tables

Views

Stored Procedures

UDFs

Security

Logins

Users

Certificates

Demo: Creating & Connecting to Azure SQLDW

Nodes:

```
SELECT [pdw_node_id] AS node_id
,     [type] AS node_type
,     [name] AS node_name
FROM sys.[dm_pdw_nodes]
:
```

Distributions:

Lab 001 – Connecting to SQLDW 10 mins

Elastic performance & scalability

Scale up architecture

One bucket (motherboard)

Contains all the water (resources)

Drinking through straws (logical procs)

Want more resources?

Buy a bigger bucket

Sometimes you only get one straw...

Scaling out

Independently scale compute

Data Warehouse Units

Normalized amount of compute Converts to billing units i.e. what you pay

Relates directly to number of compute nodes

DWU
100
200
300
400
500
600
1000
1200
1500
2000
3000
6000

Service objective

```
SELECT
        db.[name]
                               AS [db name]
        ds.[edition]
                               AS [db edition]
        ds.[service objective] AS [db slo]
        sys.[database service objectives] AS ds
FROM
        sys.[databases]
                                             AS db
JOIN
        ds.[database id] = db.[database_id]
ON
        ds.[edition] = 'DataWarehouse'
WHERE
```

Changing Service Level Objectives (SLO)

```
ALTER DATABASE ContosoDW MODIFY
```

```
(service_objective = 'DW1000'
```

) ;

Changing Service Level Objectives (SLO)

Set-AzureRmSqlDatabase

- -DatabaseName "Database"
- -ServerName "Server"
- -RequestedServiceObjectiveName "DW1000"

300 DWUs As An MPP diagram

500 DWUs As An MPP diagram

Pause and resume workload

Pausing compute in SQLDW

DW500

Pausing compute in SQLDW

Suspend-AzureRmSqlDatabase

- -ResourceGroupName "ResourceGroup"
- -ServerName "Server"
- -DatabaseName "Database"

Resume-AzureRmSqlDatabase

- -ResourceGroupName
- "ResourceGroup"
- -ServerName "Server"
- -DatabaseName "Database"

Table Storage

Table Storage: Row store & Column store

Scaling out: Impact of distributions on tables

Column store

Data

7074067 73667674 747476400607346060704607747_67076_770674006706_ 25894-589245-285928592-5845829582-58258295849058-28592-

5829458240598294852905840958958459028590285920458294582598205895829 0582945082905825-2502-45905-93245,vitoortkgldkggjwov j4o534585-0348565920345234059=3405943==

5923405=23950345923=509235=239560235932=46942306496046940693=460436 93b069,hb05,b6905869347 87-987q89-9s8q-89-89 89-89-89mq89wert8t9et8-t-=8349652-

=856=8=98t0e=t9e0t=e9t09=90=39560=659450693=565096=35695=69305=69,v w06=62=96069,b]si5=96292500000-2034857,23552534,26262569085923458958294582342-52935-2385349085295-

25894-589245-285928592-5845829582-58258295849058-28592-

5829458240598294852905840958958459028590285920458294582598205895829 0582945082905825-2502-45905-93245, vitoortkgldkg vlgjwov j4o534585-0348565920345234059=3405943==

5923405=23950345923=509235=239560235932=46942306496046940693=460436 93b069,hb05,b6905869347 87-987g89-9s8g-89-89 89-89-89mg89wer-

t8t9et8-t-=8349652-=856=8=98t0e=t9e0t=e9t09=90=39560=659450693=565096=35695=69305=69,v w06=62=96069,b]si5=96292500000-

2034857,23552534,26262569085923458958294582342-52935-2385349085295-

25894-589245-285928592-5845829582-58258295849058-28592-582945824059829485290584095892034857,23552534,262625690859234589582

5829458240598294852905840958958459028590285920458294582598205895829 0582945082905825-2502-45905-93245, vitoortkgldkggjwov j4o534585-

5923405=23950345923=509235=239560235932=46942306496046940693=460436 93b069,hb05,b6905869347 87-987g89-9s8g-89-89 89-89-89mg89wer-

t8t9et8-t-=8349652-=856=8=98t0e=t9e0t=e9t09=90=39560=659450693=565096=35695=69305=69.v

w06=62=96069,b]si5=96292500000-2034857,23552534,26262569085923458958294582342-52935-2385349085295-

5829458240598294852905840958958459028590285920458294582598205895829 0582945082905825-2502-45905-93245, vitoortkgldkg vlgjwov j4o534585-0348565920345234059=3405943==

5923405=23950345923=509235=239560235932=46942306496046940693=460436 93b069, hb05, b6905869347 87-987g89-9s8g-89-89 89-89-89mg89wer-

t8t9et8-t-=8349652-=856=8=98t0e=t9e0t=e9t09=90=39560=659450693=565096=35695=69305=69,v

w06=62=96069,b]si5=96292500000-2034857,23552534,26262569085923458958294582342-52935-2385349085295-

25894-589245-285928592-5845829582-58258295849058-28592-58294582405982948529058409589

Row Group

Segments Column store

2034857, 23552534, 26262569085923458958294582342-52935-2385349085295-25894-589245-285928592-5845829582-58258295849058-28592-

582945824059829485290584095895845902859028592045829458259820589582905829450

82905825-2502-45905-93245,vitoortkgldkggjwov j4o534585-0348565920345234059=3405943==

5923405=23950345923=509235=239560235932=46942306496046940693=46043693b0 005,b6905869347 87-987g89-9s8g-89-89 89-89-89mg89wer-t8t9et8-t-=8349652 356=8=98+0e=+9e0+=e9+09=90=39560=659450693=565096=35695=69305=69.vw06= •9,b]si5=96292500000-2034857,23552534,26262569085923458958294582342-

52935-2385349085295-25894-589245-285928592-5845829582-58258295849058-285 58294582405982948529058409589584590285902859204582945825982058958290582 82905825-2502-45905-93245, vitoortkqldkq vlqjwov j4o534585-

0348565920345234059=3405943=-5923405=23950345923=509235=239560235932=46942306496046940693=46043693b06 b05,b6905869347 87-987q89-988q-89-89 89-89-89mq89wer-t8t9et8-t-=8349652-=856=8=98t0e=t9e0t=e9t09=90=39560=659450693=565096=35695=69305=69,vw06=62=9

6069.blsi5=96292500000-2034857.23552534.26262569085923458958294582342-52935-2385349085295-25894-589245-285928592-5845829582-58258295849058-28592-

582945824059829485290584095892034857,23552534,26262569085923458958294

2034857, 23552534, 26262569085923458958294582342-52935-2385349085295-25894-589245-285928592-5845829582-58258295849058-28592-

582945824059829485290584095895845902859028592045829458259820589582905829<u>4</u>50 82905825-2502-45905-93245,vitoortkgldkggjwov j4o534585-

0348565920345234059=3405943=-5923405=23950345923=509235=239560235932=46942306496046940693=46043693b06

b05,b6905869347 87-987g89-9s8g-89-89 89-89-89mg89wer-t8t9et8-t-=8349652 856=8=98+0=+960+=69+09=90=39560=659450693=565096=35695=69305=69305=69306= 9,b]si5=96292500000-2034857,23552534,26262569085923458958294582342-52935-2385349085295-25894-589245-285928592-5845829582-58258295849058-285 58294582405982948529058409589584590285902859204582945825982058958290582

82905825-2502-45905-93245, vitoortkgldkg vlgjwov j4o534585-0348565920345234059=3405943==

5923405=23950345923=509235=239560235932=46942306496046940693=46043693b06 b05,b6905869347 87-987g89-9s8g-89-89 89-89-89mg89wer-t8t9et8-t-=8349652-=856=8=98t0e=t9e0t=e9t09=90=39560=659450693=565096=35695=69305=69,vw06=62=9 6069.blsi5=96292500000-2034857.23552534.26262569085923458958294582342-

52935-2385349085295-25894-589245-285928592-5845829582-58258295849058-28592-582945824059829485290584095892034857,23552534,26262569085923458958294

Why does ColumnStore help?

Name	▼ Species	*
Hedwig	Owl	
Mrs. Norris	Cat	
Crookshanks	Cat	
Pigwidgeon	Owl	
Nagini	Snake	
Errol	Owl	
Scabbers	Rat	
Fawkes	Phoenix	
Hermes	Owl	
Fluffy	Dog	

Name	✓ Species	- 1
Mrs. Norris	Cat	
Crookshanks	Cat	
Fluffy	Dog	
Hedwig	Owl	
Pigwidgeon	Owl	
Errol	Owl	
Hermes	Owl	
Fawkes	Phoenix	
Scabbers	Rat	
Nagini	Snake	

Name	Species
Mrs. Norris: 1	Cat: 2
Crookshanks: 1	Dog: 1
Fluffy: 1	Owl: 4
Hedwig: 1	Phoenix: 1
Pigwidgeon: 1	Rat: 1
Errol: 1	Snake: 1
Hermes: 1	
Fawkes: 1	
Scabbers: 1	
Nagini: 1	

Run Length Encoding

Indexes

Primary Indexing

```
Heap = Base Row Store
Clustered Index (CI) = Base Row Store maintained as a B-Tree
Clustered Columnstore Index (CCI) = Base Column Store
```

Secondary Indexing

Non Clustered Index (NCI) = Secondary B-Tree Index

NCI can be on Heap

NCI can be on Clustered Columnstore Index (NCI on CCI)

Business Continuity and Disaster Recovery

Storage Snapshots

System RPO

8 hours

Snapshot frequency

Every few hours (generally 4)

Snapshot retention

7 days

Restore

Same server overwrite (fastest) In-region Geo restore

Restoring in the Portal

Snapshots

```
SELECT
        [run id]
                                     AS bkup run id
        [session_id]
                                     AS session id
                                     AS request id
        [request id]
                                     AS bkup name
        [name]
        [submit_time]
                                     AS bkup submit time
        [start time]
                                     AS bkup start time
        [end time]
                                     AS bkup_end_time
        [total elapsed time]
                                    AS bkup duration ms
        [total elapsed time]/1000.0 AS bkup duration sec
        sys.pdw_loader_backup_runs
FROM
```

Workload Management

Concurrent queries

Concurrency slots

Additional Compute!

Resource classes

Dynamic

Increases resource consumption as you scale

No increase in concurrency as you scale

Static

Maintain resource consumption as you scale Increase concurrent queries as you scale

Consume Slots

Increase memory Isolate resources

Resource classes

```
-- Pre-req
CREATE USER data loader FOR LOGIN data loader
-- Add user to static rc
EXEC sp_addrolemember 'staticrc40', 'data loader'
-- Remove user from static rc
EXEC sp droprolemember 'staticrc40', 'data loader'
```


Slot consumption with static rc

Memory Allocation for dynamic rc

Memory allocation for staticrc

Integration with other services

Common Integration points

Cloud Data Warehouse

ADL & SQLDW

Warehouse

The On-Demand Processor

Summary

What did we learn?

Scale-out distributed query engine

Fully managed Completely elastic Platform as a Service (PaaS)

De-coupled storage from compute

· Distributed Scale-Out queries will speed up their analytics

PetaByte scale storage can handle their growth

Can elastically scale to handle unforeseen circumstances

Azure SQLDW Gen 1

100 DWUs

100 DWUs = 1 Compute Node

1000 DWUs

6000 DWUs is a 1-to-1 mapping of compute to distributions

60x

60x

Azure SQLDW Gen 2

Node Sizing

Separate Column Store

Caching

Gen 1 DWU	G1 Nodes	G1 Concurrency	Gen 2 DWU	G2 Nodes	G2 Concurrency
100	1	4			
200	2	8			
300	3	12			
400	4	16			
500	5	20			
600	6	24			
1000	10	32	1000c	2	32
1200	12	32			
1500	15	32	1500c	3	32
2000	20	48	2000c	4	48
			2500c	5	48
3000	30	64	3000c	6	64
			5000c	10	64
6000	60	128	6000c	12	128
			7500c	15	128
			10000c	20	128
			15000c	30	128
			30000c	60	128