Session 2: Longitudinal Trajectory Analysis

Open a browser and visit:

https://healthdatascience.awsapps.com/start/

Enter the email you used to register for the workshop as your username.

Check your email for a verification code and then follow the instructions to create your account password.

After that you should be signed in.

By continuing, you agree to the **AWS Customer Agreement** or other agreement for AWS services, and the **Privacy Notice**. This site uses essential cookies. See our **Cookie Notice** for more information.

On your dashboard under **Applications**, click on Amazon SageMaker Studio link to open SageMaker.

• Look for the email also in your junk folder

Review: The Arivale Dataset

Review: Frailty Index is a Fraction of Health Defects

- Self-Report FI (35 items)
 - Disease (15 items)
 - Activity (9 items)
 - Satisfaction (6 items)
 - Medication (3 items)
 - Digestion (2 items)
- Lab FI (34 items)
 - o Blood test items (29 items)
 - Blood pressure items (5 items)
- Combined FI (69 items)
 - The combination of the above two

Session 2.1: DIABLO Analysis

- Session 1
 - Trends in data (PCA)
 - Multi-omic correlations
 - Identified clusters
 - Cluster eigenvalues
- Session 2.1
 - Trends in the outcome
 - Multi-omic model
 - Cross-validation

DIABLO Overview

- Data preparation
 - a. Outcome: self-reported frailty index
 - b. Baseline data only
 - c. Proteomics, metabolomics, and lab tests
- 2. sPLS-DA
 - a. Proteomics
 - b. Metabolomics
 - c. Lab tests
- 3. Block sPLS-DA (all three 'omics)
 - a. Sparsity parameter optimization
 - b. Model fitting

Frailty Index (FI): fraction of health deficits

- Self-Report FI (35 items) Baseline questionnaire (once)
 - Disease (15 items)
 - Activity (9 items)
 - Satisfaction (6 items)
 - Medication (3 items)
 - Digestion (2 items)
- Lab FI (34 items) Longitudinal, every 6 months
 - o Blood test items (29 items)
 - Blood pressure items (5 items)
- Combined FI (69 items)
 - The combination of the above two
- Comparison (Spearman's rank correlation of quintiles)

Session 1 (baseline labs)

- Self x Lab 0.367
- Self x Combined 0.730
- Lab x Combined 0.843

Frailty Index (FI): fraction of health deficits

- Self-Report FI (35 items) Baseline questionnaire (once) Session 2.1
 - Disease (15 items)
 - Activity (9 items)
 - Satisfaction (6 items)
 - Medication (3 items)
 - Digestion (2 items)
- Lab FI (34 items) Longitudinal, every 6 months

Session 2.2

Session 1 (baseline labs)

- Blood test items (29 items)
- Blood pressure items (5 items)
- Combined FI (69 items)
 - The combination of the above two
- Comparison (Spearman's rank correlation of quintiles)
 - Self x Lab
 - 0.367
 - Self x Combined 0.730
 - Lab x Combined 0.843

To the Notebook!

PCA of Baseline 'Omics Data

Color and shape: Frailty Index Quintile (e.g. Q5 are the most frail 20%)

sPLS-DA of Baseline 'Omics Data

sPLS-DA of Baseline 'Omics Data

Area Under ROC, predicting each quintile Block

		TENT 19 19 19 19 19 19 19 19 19 19 19 19 19	
SelfFI	Metabolites	Proteins	Clinical
Q1	0.7583	0.7519	0.7122
Q2	0.6429	0.6525	0.6236
Q3	0.5567	0.5419	0.5498
Q4	0.6800	0.6505	0.5912
05	0.8010	0.8223	0.7745

Proteomics (274)

Metabolomics (703)

Clinical Tests (47)

Block sPLS-DA

```
metabolite
                                                          protein
                                                                    clinical
                               metabolite
                                             0.0
                                                          0.1
                                                                     0.1
A matrix: 3 \times 3 of type dbl
                                   protein
                                             0.1
                                                          0.0
                                                                    0.1
                                   clinical
                                            0.1
                                                          0.1
                                                                    0.0
```


Block sPLS-DA

Visualizing DIABLO model components

Self-reported Frailty Index, DIABLO comp 1 - 2

Self-reported Frailty Index, DIABLO comp 3 - 4

DIABLO Model: Component 1

Proteins		Lab Tests		Metabolites	
FABP4	0.930	INSULIN	0.689	hydroxyasparagine	0.522
LEP	0.347	HOMA-IR	0.533	N-stearoyl-sphinganine	0.438
		LPIR	0.385	cortolone glucuronide	0.366
				N-stearoyl-sphingosine	0.311
				5-methylthioadenosine	0.275
			1-ca	1-carboxyethylphenylalanine	

DIABLO Model: Component 2

Proteins		Lab Tests		Metabolites	
AGRP	-0.763	BUN/CREAT	0.561	DHEA-S	-0.557
NT-proBNP	0.413	POTASSIUM	-0.318	androstenediol(3b,17b)S2	-0.452
NPPB	0.354	ALBUMIN	-0.453	pregnenediol-S	-0.292
GDF15	0.242	GFR, MDRD	-0.246	pregnenetriol-S2	-0.284
		PROTEIN	-0.232	pregnenediol-S2	-0.259
		CREATININE	-0.228	androstenediol(3a,17a)S	-0.253
		VIT D, 25-OH	0.227		
		EPA	0.124		

Session 2.2: Longitudinal Data Analysis

Session 2.2: Longitudinal Data Analysis

- Measurements repeated over time are often *correlated*, not independent
- Appropriate analytical methods depend on...
 - Number of repetitions (as few as 2, as many as thousands, millions)
 - Data type (categorical, counts, money, continuous) and missingness
 - Synchronous (e.g. stock prices, EEG) vs asynchronous (e.g. blood tests) data collection
 - Handling of collection failures (e.g. recollection of one failed tube out of 5 in a blood draw)
 - Systems biology ('omics) data can be expected to have a variety of data collection issues!

Potential goals

- Predict future values
- Identify unknown correlations among measured analytes (systems analysis)
- Determine differences between groups (e.g. treated vs untreated patients; same treatment of different patient subgroups)
- Identify causal relationships (causes precede effects in time).

Generalized Linear Mixed-Effects Models (GLMMs)

- Generalized Linear Model (GLM): $g(Y) \sim A + B + ... + \epsilon$
 - Response Y may be binary, categorical, or continuous
 - Link function g(x) maps Y to a continuous value
 - Must be invertible: $\mathbf{Y} \sim g^{-1}(g(\mathbf{Y}))$
 - $g(x) = x \text{ (Identity)}, = 1/x \text{ (inverse)}, = log(x), = x / (1+x) \text{ (logit)}, = Pr{ N(0,1) < x } \text{ (Probit)}$
 - Fixed effects (A + B + ...)
 - Explicit parameters
 - \circ **Error** ϵ **distribution** may be any distribution in the Exponential family
 - Gaussian, Poisson, Binomial, Negative Binomial, Bernoulli, Exponential, Gamma
- **GLMM**: $g(Y) \sim A + B + ... + (C + D + ... | Grouping) + \epsilon$
 - Random effects (C + D + ... | Grouping)
 - Identical within but independent across groups
 - Implicit parameters (no point estimates; average over a distribution)

Frailty Index increases with age

Frailty Index can be lowered by lifestyle changes

Polygenic Risk Score for Longevity (dl90_cs_PRS)

Frailty, Age, and Longevity

100 200

300

0.18

100 200

300 400

Days Since First Draw

