Asst2: Spooky Searching results.pdf

Students: Aditya Oka (aao96, 01), Chris DeAngelis (cjd237)

Q1 Results

As the size of the array continues to increase, the time to complete gets longer gradually, as expected. However, as the size increases, the time it takes for threads to complete gets more efficient than processes.

1: Multi-threaded

Size of Array	Time (Milliseconds)
15	3.06
50	3.08
100	3.21667
150	3.2
250	3.06
500	6.4
750	8.44
1000	11.28
1500	20.58
2500	37.78
5000	79.26
7500	116.64
10000	161.16
15000	241.18
20000	324.98
25000	404.88

Time (Milliseconds) vs. Size of Array

2: Multi-processed

Size of Array	Time (Milliseconds)
15	5.88
50	5.64
100	5.68
150	6.12
250	5.62
500	10.1
750	22.28
1000	21.64
1500	32.78
2500	53.98
5000	105.35
7500	176.72
10000	215.66
15000	324.84
20000	432.46
25000	553.04

Q2 Results

The tradeoff point of performance for processes vs threads, when we are taking the time for processes to search an array of size 250, seems to be most similar to the time for threads to search an array of size 500. Looking at other tradeoff points of performance, we observed that the time for processes to search arrays of sizes 150, 500, 1000, 15000 matches the time for threads to search arrays of sizes 500, 1000, 1500, and 20000 respectively.

Q3 Results

For both multi-processed and multi-threaded searches, the more times the array is divided (i.e. the more threads/processes are created to search or the smaller the block) the longer it takes. This inefficiency starts building up as soon as even a single extra unnecessary thread/process is introduced. Therefore it is recommended to use only as many threads/processes as needed, based on this data.

1: Processes

Size of Block	Time (Milliseconds)
125	9.8
250	5.56

Time (Milliseconds) vs. Size of Block

2: Threads

Size of Block	Time (Millisecond)
25	36.42
50	15.68
125	5.48
250	3.12

Time (Millisecond vs. Size of Block

