Gépelemek mechatronikai mérnököknek

Vári Gergő (MQHJ0H)

2025. október 2.

Karimás csőkötés tervezése

1. ábra: Összeállított modell

Gépelemek mechatronikai mérnököknek

BMEGEGIBMGE

4	TT/	• •	• •	1 4
Ι.	Haz	ZI T	ela	dat

Név: Vari Gergo
Neptun kód: MQHJ0H
Gyakorlatvezető: Szabó Gyula

1. A feladat bevezetése

A megadott adatokkal tervezzen egy csővéget vakkarimával lezáró csavarkötést és szilárdságilag ellenőrizze az elemeket.

2. A feladat értékelése

Az elérhető maximális pontszám 15 pont.

3. Adatok

A vezeték folyadékot szállít.

4. A feladat részletezése

- a) Vázolja fel méretarányosan a konstrukció előtervét!
- b) Számítsa ki a vakkarima minimálisan szükséges vastagságát, majd válasszon szabványos méretű lemezvastagságot!
- c) Válasszon megfelelő méretű lapos tömítést és számítsa ki a minimálisan szükséges tömítő erőt!
- d) Számítsa ki az üzemi nyomásból a csavarra jutó terhelést!
- e) Egy reális biztonsági tényező felvételével határozza meg a csavar előfeszítését és számítsa ki a szükséges meghúzási nyomatékot!
- f) Határozza meg a csavarban ébredő egyenértékű feszültséget és válassza ki a csavar megfelelő anyagát!
- g) Készítse el a kötés összeállítási rajzát! Jelölje rajta a főbb méreteket!

Beadási határidő: a hallgatói tájékoztatóban leírtaknak megfelelően

A feladat beadásával kijelentem, hogy ezt a feladatot meg nem engedett segítség nélkül, saját magam készítettem, és abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint idéztem, vagy azonos tartalomban, de átfogalmazva más tartalomból átvettem, egyértelműen, a forrás megadásával jelöltem. Ennek megszegése a TVSZ 135§ értelmében kerül szankcionálásra!

Tartalomjegyzék

1	Koı	nstrukció előterve	1				
2	Vakkarima vastagsága és karima szabványok						
	2.1	Szabvány -és anyagválasztás	2				
	2.2		3				
	2.3	Minimális vastagság	5				
3	Tömítés kiválasztása						
	3.1	Minimális tömítőerő	6				
	3.2	Szabvány -és anyagválasztás	7				
	3.3	Előterv	8				
4	Csa	avarra jutó terhelés	9				
5	Csa	Csavar előfeszítése és meghúzási nyomatéka					
	5.1	Csavar szabvány	9				
	5.2	Meghúzási nyomaték	10				
6	Csavar anyagválasztás						
	6.1	Redukált feszültség	11				
	6.2						
7	Öss	zeállítási rajz					

1 Konstrukció előterve

2. ábra: Konstrukció előtervének rajza

2 Vakkarima vastagsága és karima szabványok

2.1 Szabvány -és anyagválasztás

A 15 [bar] üzemi nyomás miatt a EN 1092-1 Type 11 - WNRF PN100 szabványt használtam a karimához. A vakkarimához ugyanezen okból a DIN 2527/E PN100 szabványt választottam. Munkaléces felületet választottam, hogy ne kelljen az egész sík felületet megmunkálni a tömítésnek. Anyagnak S235-es acélt választottam. ($\sigma_{\rm hajl} = 290\,[{\rm MPa}]$)

2.2 Előtervek

3. ábra: Karima előtervének rajza

4. ábra: Vakkarima előtervének rajza

$$D = 230 \, [\mathrm{mm}]$$

$$f = 3 \, [\text{mm}]$$

$$d_4 = 138 \, [\mathrm{mm}]$$

$$d_2=26\,[\mathrm{mm}]$$

$$K = 180 \, [\mathrm{mm}]$$

$$b = 32 \, [\mathrm{mm}]$$

D: vakkarima külső átmérő [mm]

f: kiugrás [mm]

 d_4 : tömítő felület külső átmérő [mm]

 d_2 : csavar lyukkör [mm]

K: csavarok középátmérő [mm]b: vakkarima magassága [mm]

2.3 Minimális vastagság

A terhelést egy d_t átmérőjű körön átadódva egyenletesen eloszlódónak veszünk és feltesszük hogy a törés egy egyenletes vonal mentén lesz. A vakkarimára ható erőt felvesszük a súlypontba (y_k, y_d) .

$$d_t = \frac{(d_1 - 2s) + d_4}{2} = 109 \,[\text{mm}] \tag{1}$$

$$y_k = \frac{k}{\pi} \tag{2}$$

$$y_d = \frac{2}{3} \frac{d_t}{\pi} \tag{3}$$

(4)

$$b_{\min} = \frac{d_t}{2} \sqrt{\frac{3p_{ii}}{\sigma_{\text{hajl}}} \left(1 - \frac{2}{3} \frac{d_t}{k}\right)} = 5.243 \,[\text{mm}]$$
 (5)

$$\sigma = \frac{d_t^2}{4} \frac{3p_{\ddot{\mathbf{u}}}}{b_{\min}^2} \left(1 - \frac{2}{3} \frac{d_t}{K} \right) = 7.783 \,[\text{MPa}] \tag{6}$$

$$n = \frac{\sigma_{\text{hajl}}}{\sigma} = 37.26 \left[-\right] \tag{7}$$

 d_t : tőmítés középátmérő [mm]

 d_1 : cső csatlakozás külső [mm]

s: falvastagság [mm]

 d_4 : tömítő felület külső átmérő [mm]

k: csavar lyukkör [mm]

 y_k, y_d : súlypont távolsága a vakkarima kör középpontjától [mm]

 b_{\min} : karima minimális vastagsága [mm]

 $p_{\ddot{\mathbf{u}}}$: belső üzemi nyomás [mm]

 σ_{hajl} : maximális hajlító feszültség [MPa]

 σ : hajlító feszültség minimális karima vastagsággal [MPa]

n: biztonsági tényező [-]

3 Tömítés kiválasztása

3.1 Minimális tömítőerő

$$z = \frac{d_{2t} - d_{1t}}{2} = 10 \,[\text{db}] \tag{8}$$

$$b_t^* = 9 + 0.2z = 11 \text{ [mm]}$$
 (9)

$$F_{\rm cső} = \frac{{\rm DN}^2 \pi}{4} p_{\ddot{\rm u}} = 7519.822 \,[{\rm N}]$$
 (10)

$$F_{\rm p} = \frac{\left(d_t^2 - {\rm DN}^2\right)\pi}{4} p_{\ddot{\rm u}} = 6457.151\,[{\rm N}] \tag{11}$$

$$F_{\text{t\"{o}m}} = n_t p_{\ddot{u}} \pi d_t b_t^* = 7345.2 \,[\text{N}]$$
 (12)

$$F_{\text{csavar "üzemi}} = F_{\text{cső}} + F_{\text{p}} + F_{\text{t\"{o}m}} = 21\,342.174\,[\text{N}]$$
 (13)

$$n_{\text{bizt}\,t} = 1.4 \left[-\right] \tag{14}$$

$$F_{\text{csavar szerelési}} = n_{\text{bizt}t} F_{\text{csavar üzemi}} = 29\,879.044 [N]$$
 (15)

z: fogak száma [db]

 b_t^* : tömítés hatásos szélessége [mm]

 $F_{cső}$: belső nyomásból származó csőerő [N]

 $F_{\rm p}$: belső nyomásból származó gyűrűfelületi erő [N]

 $F_{\text{t\"{o}m}}$: minimális tömítő erő [N]

 $F_{\text{csavar üzemi}}$: csavarokra ható üzemi erő [N]

 $n_{\mathrm{bizt}t}$: csavarokra ható szerelési erőhöz választott biztonsági tényező $\;[-]$

 $F_{\rm csavar\ szerelési}$: csavaroknál alkalmazott szerelési erő $\ [{\rm N}]$

3.2 Szabvány -és anyagválasztás

3.3 Előterv

5. ábra: Tömítés előtervének rajza

$$\begin{split} d_{1t} &= 95 \, [\text{mm}] \\ d_{2t} &= 115 \, [\text{mm}] \\ d_{3t} &= 154 \, [\text{mm}] \\ b_t &= 3 \, [\text{mm}] \\ b_m &= 5 \, [\text{mm}] \\ h_{\min} &= \frac{0.3 \, [\text{mm}]}{0.5 \, [\text{mm}]} \end{split}$$

 d_{1t} : tőmítés belső átmérő [mm]

 d_{2t} : tőmítés felfekvő felület külső átmérő [mm]

 d_{3t} : távtartó gyűrű külső átmérő [mm] b_t : távtartó gyűrű vastagság [mm]

 b_m : fém mag magasság [mm]

 h_{\min} : szerelés utáni/előtti távolsága

PTFE lemezeknek a vasmag tetejétől [mm]

4 Csavarra jutó terhelés

$$F_v = \frac{F_{\text{csavar szerelési}}}{n} = 3734.88 \,[\text{N}] \tag{16}$$

 F_v : csavar terhelése [N]

 $F_{\rm csavar\ szerelési}$: csavaroknál alkalmazott szerelési erő $\ [{\rm N}]$

n: csavarok száma [db]

5 Csavar előfeszítése és meghúzási nyomatéka

5.1 Csavar szabvány

$$p = 3 \, [\text{mm}]$$

$$d_{3_{\text{cs}}} = 20.319 \,[\text{mm}]$$

$$d_{2cs} = 22.051 \, [\text{mm}]$$

$$d_w = 33.6 \, [\mathrm{mm}]$$

$$b = 54 \, [\mathrm{mm}]$$

$$l = 100 \, [\mathrm{mm}]$$

$$\beta = 60 \, [^{\circ}]$$

$$\mu_{\min}^{} = {}^{0.1\,[-]}_{0.14\,[-]}$$

p: menet emelkedés [mm]

 d_{3cs} : orsó magátmérő [mm]

 d_{2cs} : csavar középátmérő [mm]

 β : menetprofil szöge [°]

 μ_{\min} : súrlódási tényező [-]

5.2Meghúzási nyomaték

$$\alpha = \arctan \frac{p}{d_{2\rm cs}\pi} = 2.48 \, [^{\circ}] \tag{17}$$

$$\mu_{\min}' = \frac{\mu_{\min}}{\cos \frac{\beta}{2}} \tag{18}$$

$$\rho'_{\min} = \arctan \mu'_{\max} = {}^{6.587}_{9.183}[^{\circ}]$$
(19)

$$d_a = \frac{d_w + M}{2} = 28.8 \,[\text{mm}] \tag{20}$$

$$M_{\rm csavar\, min}_{\rm max} = F_v \frac{d_{\rm 2cs}}{2} \tan \left(\alpha + \rho^{'}_{\rm min}_{\rm max}\right) = {}^{6571.065\, [{\rm Nmm}]}_{8499.683\, [{\rm Nmm}]} \eqno(21)$$

$$M_{\rm anya\, min}_{\rm max} = F_v \frac{d_a}{2} \mu'_{\rm min}_{\rm max} = {}^{5378.228\, [{\rm Nmm}]}_{7529.52\, [{\rm Nmm}]} \eqno(22)$$

(23)

$$M_{\rm megh\acute{u}z\acute{a}si\, min} = M_{\rm csavar\, min} + M_{\rm anya\, min} = {}^{11\,949.293\, [{\rm Nmm}]}_{16\,029.202\, [{\rm Nmm}]} \eqno(24)$$

 α : menetemelkedés szöge [°]

 μ_{\min} : súrlódási tényező [–] β : menetprofil szöge [°]

 d_a : anya felvekvő felület középátmérő [mm]

M: csavar [mm]

 d_{2cs} : menet középátmérő [mm]

 $M_{\text{csavar}\min}$: menet súrlódása [Nmm]

 F_v : csavar terhelése [N]

 ρ_{\min}' : látszólagos súrlódási félkúpszög [°] $\stackrel{\max}{\longrightarrow}$

 $\overrightarrow{M_{\rm anya\,min}}$: csavaranya felülete alatti súrlódás [Nmm]

 $M_{\rm meghúz\acute{a}si\, min}$: meghúzási nyomaték [Nmm]

6 Csavar anyagválasztás

6.1 Redukált feszültség

$$A_e = \frac{\left(\frac{d_{2cs} + d_{3cs}}{2}\right)^2 \pi}{4} = 352.49 \,[\text{mm}^2]$$
 (25)

$$\sigma = \frac{F_v}{A_e} = 10.6 \,[\text{MPa}] \tag{26}$$

$$K_p = \frac{\left(\frac{d_{2_{cs}} + d_{3_{cs}}}{2}\right)^3 \pi}{16} = 1866.88 \,[\text{mm}^3]$$
 (27)

$$M_{\rm csavar} = M_{\rm anya_{\rm max}}$$
 (28)

$$\tau = \frac{M_{\text{csavar}}}{K_p} = 4.033 \,[\text{MPa}] \tag{29}$$

$$\sigma_{\rm red} = \sqrt{\sigma^2 + 3\tau^2} = 12.691 \,[\text{MPa}]$$
 (30)

6.2 Méretezés

$$R_{\rm eH} = 180 \, [{\rm MPa}]$$
 (31)

$$n_{\rm biztcs} = \frac{R_{\rm eh}}{\sigma_{\rm red}} = 14.183 [-]$$
 (32)

 A_e : csavar erőt vivő keresztmetszet terület [mm²]

 d_{2cs} : menet középátmérő [mm]

 d_{3cs} : orsó magátmérő [mm]

 σ : húzó feszültség [MPa]

 F_v : csavar terhelése [N]

 K_p : csavar keresztmetszet poláris másodrendű nyomaték $[\text{mm}^3]$

 $\dot{M}_{\rm csavar}$: csavar mentén súrlódásból származó csavaró nyomaték [Nmm]

 $M_{\rm anya_{max}}$: csavaranya felülete alatti maximum súrlódás [Nmm]

 τ : csavaró feszültség [MPa]

 $\sigma_{\rm red}$: redukált feszültség [MPa]

 $R_{\rm eH}$: folyáshatár [MPa]

 N_{biztcs} : csavar biztonsági tényező [-]

