Sujet de TP n°2

On utilisera le script R « scriptTP2.R » disponible sur Campus.

Partie 1. (étude d'un AR(2))

<u>Notations.</u> $X_t = \mu + \phi_1 (X_{t-1} - \mu) + \phi_2 (X_{t-2} - \mu) + Z_t$

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 = (1 - r_1 z)(1 - r_2 z)$$

• r_1 et r_2 sont les inverses des racines z_1 et z_2 du polynôme $\phi(z)$, à savoir donc les racines du polynôme : $z \to z^2 - \phi_1 z - \phi_2$

<u>Deux cas</u>: r_1 et r_2 sont des réels $\neq 0$ dans] -1, +1[<u>ou</u> $r_1 = re^{i\theta}$ et $r_2 = re^{-i\theta}$ avec 0 < r < 1

- 1. Faire une simulation de taille n = 200 d'un AR(2) avec $\mu = 0$, $\sigma_Z = 1$, $r_1 = 0.9$ et $r_2 = 0.9$ et visualiser le chronogramme, ACF et PACF empiriques. Expliquer l'allure de la série ainsi que l'allure des ACF et PACF (sont-elles conformes à des résultats théoriques ?) (augmenter n si besoin).
- 2. Mêmes questions avec $\mu=0,\,\sigma_Z=1,\,r_1=0.9$ et $r_2=-0.9.$
- 3. Mêmes questions avec $\mu = 0$, $\sigma_Z = 1$, $r_1 = 0.1$ et $r_2 = -0.9$.
- 4. Mêmes questions avec $\mu=0$, $\sigma_Z=1$, r=0.9 et $\theta=90^\circ$, puis $\theta=60^\circ$, $\theta=20^\circ$ (augmenter la taille de n pour mieux comprendre la forme des ACF et PACF).
- 5. Essayer d'autres racines r₁ et r₂ complexes conjuguées à l'intérieur du disque unité.
- 6. Que se passe-t-il si l'une au moins des racines est sur le cercle unité ? A l'extérieur ?
- 7. Que peut-on dire des paramètres μ et σ_z^2 ?

Partie 2. (identification de modèles) On utilisera les jeux de données serie1, serie2, serie3 disponibles sur Campus.

- Visualiser les ACF et PACF de la première série de données (fichier serie1.Rdata). De quel type de processus s'agit-il? Essayer de donner la forme du polynôme φ(z) dans la décomposition ARMA de ce processus.
- 2. Visualiser les ACF et PACF de la deuxième série de données. Conclusion.

On dit que $\{X_t\}$ est un ARIMA(p, d, q) centré si le processus $\{\nabla^d X_t\}$ est un ARMA(p, q) centré où $\nabla = I - B$ est l'opérateur de différenciation et d = ordre de différenciation

3. Peut-on rendre compte du troisième jeu de données par un modèle de type ARIMA(p,d,q) ? Si oui, lequel ?