Self-Supervised Convolutional Subspace Clustering Network

张军建 1, 李春光 1, 由翀 2, 齐宪标 3, 张洪刚 1, 郭军 1, 林宙辰 4

1 北京邮电大学 2 加州大学伯克利分校 3 深圳大数据研究院 4 北京大学

Introduction

 High-dimensional data often reside in lowdimensional structure(s)

- linear subspace in R³
- nonlinear manifold in R³

(S. Roweis & L. Saul: SCIENCE 2000)

High-dimensional data with multiple classes multiple low-dimension structures.

Examples

Motion Segmentation

- Facial / Handwriting Digits Image Clustering
- **Action Segmentation in Video**

Video Temporal Segmentation

Face Recognition/Clustering

Planar area in 3D vision

Cancer Subtypes in Gene Microarray

Planar Segmentation

Cancer Subtypes Clustering

Union of Subspaces

Subspace Clustering

Task:

Given data points lying in a union of subspaces,
 to segment the data points into each subspace

Don't know: basis of each subspace / dimension of each subspace / number of data points per subspaces / number of subspaces

Prior Work

- Iterative methods
 - -k-plane, q-flats, ...
- Statistical methods
 - Factorization, MPPCA, ...
- Algebraic methods
 - GPCA, ...
- Spectral clustering based methods
 - SSC, LRR/LRSC, LSR, EnSC, ...

Two-Step Approach

- Step 1: build a data affinity matrix
- Step 2: apply spectral clustering

Two-Step Approach

- Step 1: build a data affinity matrix
- Step 2: apply spectral clustering

Challenges:

- Distance based affinity fails
 - Two points nearby may belong to different subspaces
 - E.g., near the intersection of subspaces
 - Two points faraway may belong to same subspace
 - E.g., disjoint components, e.g. the yellow points

Two-Step Approach

- Step 1: build a data affinity matrix
- Step 2: apply spectral clustering

Self-Expressive Model:

 A point in a union of subspaces can be expressed as a linear combination of other data points, i.e.

$$\mathbf{x}_{j} = \sum_{i \neq j}^{N} c_{i} \mathbf{x}_{i} = c_{1} \mathbf{x}_{1} + c_{2} \mathbf{x}_{2} + c_{j-1} \mathbf{x}_{j-1} + c_{j+1} \mathbf{x}_{j+1} + \dots + c_{N} \mathbf{x}_{N},$$

Subspace-Preserving Property

• A solution c to $x_j = Xc$, $c_j = 0$ is said to be subspace-preserving if :

The non-zero coefficients in c only with the data points that belong to the same subspace as x_i

Sparse Subspace Clustering (SSC)

 SSC finds the sparsest linear combination in terms of other data points by solving

$$\min_{\mathbf{c}} \|\mathbf{c}\|_{1} \quad \text{s.t. } \mathbf{x}_{j} = X\mathbf{c}, \ c_{j} = 0$$

- If Gaussian noise:

$$\min_{\mathbf{c}} \|\mathbf{c}\|_{1} + \frac{\lambda}{2} \|\mathbf{x}_{j} - X\mathbf{c}\|_{2}^{2} \quad \text{s.t.} \quad c_{j} = 0$$

– If sparse corruption (i.e. outlying entries):

$$\min_{\mathbf{c}} \|\mathbf{c}\|_{1} + \lambda \|\mathbf{x}_{j} - X\mathbf{c}\|_{1} \quad \text{s.t.} \quad c_{j} = 0$$

– If subspaces are affine :

$$\min_{\mathbf{c}} \|\mathbf{c}\|_{1} \quad \text{s.t. } \mathbf{x}_{j} = X\mathbf{c}, \quad c_{j} = 0, \quad \mathbf{1}^{T}\mathbf{c} = 1$$

Theoretical guarantees:

Independent, disjoint, even with outliers, noisy, **affine**, missing entries, and etc.

Least Square Regression (LSR)

 LSR finds a linear combination in terms of other data points by solving

$$\min_{\mathbf{c}} \|\mathbf{c}\|_2^2 \quad \text{s.t. } \mathbf{x}_j = X\mathbf{c}, \ c_j = 0$$

- Theoretical guarantee (sufficient condition) :

The optimal solution is guaranteed to be subspace-preserving when subspaces are **independent**.

Low-Rank Representation (LRR)

 LRR finds linear combinations collectively with a regularization on the rank of C:

$$\min_{C} \operatorname{rank}(C) \quad \text{s.t.} \quad X = XC$$

$$\min_{C} \|C\|_{*} \quad \text{s.t.} \quad X = XC$$
 where $C = [\mathbf{c}_{1}, \mathbf{c}_{2}, ..., \mathbf{c}_{N}].$

– Theoretical guarantee (sufficient condition):

The optimal solution is guaranteed to be subspace-preserving when subspaces are **independent**.

^[1] G. Liu et al.: "Robust Subspace Segmentation by Low Rank Representation", ICML 2010.

^[2] G. Liu et al.: "Robust recovery of subspace structures by low-rank representation", TPAMI 2013.

^[3] P. Favaro et al.: "A closed form solution to robust subspace estimation and clustering," CVPR 2011.

^[4] R. Vidal & P. Favaro, "Low rank subspace clustering (LRSC)," Pattern Recognition Letters, vol. 43, pp. 47–61, 2014.

Applications are still limited ...

- Motion Segmentation
- Planar area in 3D vision

Planar Segmentation

- Facial / Handwriting Digits Image Clustering
- Action Segmentation in Video

Video Temporal Segmentation

However, visual data in its raw representation DO NOT always align with a union of subspaces. A suitable feature extraction step is needed.

Subspace Clustering in Feature Space

Latent feature space

- Kernel trick
 - e.g. KSSC (Patel et al. JSTSP'15), KLRR (Xiao et al. TNNLS'16)
- Matrix decomposition or learned transform
 - e.g. Latent LRR (Liu et al. ICCV'11), Latent SSC (Patel et al. ICCV'13)

Explicit feature space

- Designed features manually
 - e.g. SIFT, HOG, Scatter Transform, ...
- Learned via neural networks
 - e.g. MLP+SSC (Peng et al. IJCAl'16), DSCNet (Ji et al. NIPS'17)

Subspace Clustering in Feature Space

Pan Ji, et al.: Deep Subspace Clustering Network, NIPS 2017.

• e.g. MLP+SSC (Peng et al. IJCAl'16), DSCNet (Ji et al. NIPS'17)

Outline

- Introduction
- Related Work
- Our Proposal
- Experimental Results
- Summary

Our Goal

- Conv. Feature + Subspace Clustering → Jointly Trainable Framework
 - Conv. Feature Extraction
 - Self-expressive Model
 - Spectral Clustering

- 1. To exploit the supervision info. from clustering.
- 2. To build an end-to-end jointly trainable framework.

Conv. Feat. Extraction + Subspace Clustering

To exploit the supervision info. from clustering To form an end-to-end trainable framework Conv1 Conv2 Conv3 Stacked Convolutional Encoder Conv3' Conv2' Conv1' Stacked Convolutional Decoder 1. How to supervise conv. feature extraction? 2. How to supervise self-expressive model?

3. How to build an end-to-end trainable framework?

Our Proposal: Self-Supervised Conv. Subspace Clustering Network (S²ConvSCN)

Feature Extraction Module

Self-Expression Module

$$\mathcal{L}_{1} + \mathcal{L}_{2} = \lambda \left\| C \right\|_{\ell} + \frac{1}{2} \left\| Z - ZC \right\|_{F}^{2}$$

SCAE in S²ConvSCN for Conv. Feature Extraction

$$Q = 0$$

SCAE for Conv. Feature Extraction

$$Q = 0$$

SCAE + Self Expression

Q = 0

SCAE + Self Expression + Spectral Clustering

SCAE + Self Expression + Spectral Clustering

Reformulate Spectral Clustering

Spectral clustering

$$\operatorname{trace}\left(\mathbf{Q}^{T}\cdot L\cdot \mathbf{Q}\right) = \operatorname{trace}\left(\mathbf{Q}^{T}\cdot \left(D-A\right)\cdot \mathbf{Q}\right) = \sum_{i,j=1}^{N}\left|C_{ij}\right|\cdot \frac{1}{2}\left\|\mathbf{q}^{(i)}-\mathbf{q}^{(j)}\right\|_{2}^{2}$$
where $A = \left(\left|C\right| + \left|C^{T}\right|\right)/2$, $\mathbf{Q}^{T} = \left[\mathbf{q}^{(1)}, \mathbf{q}^{(2)}, ..., \mathbf{q}^{(N)}\right]$.

Connection to coefficients matrix of C w. r. t. Q :

$$\operatorname{trace}\left(\mathbf{Q}^{T}\cdot L\cdot \mathbf{Q}\right) = \sum_{i,\,j=1}^{N}\left|C_{ij}\right|\cdot\frac{1}{2}\left\|\mathbf{q}^{(i)}-\mathbf{q}^{(j)}\right\|_{2}^{2} = \left\|C\right\|_{\mathbf{Q}}$$

$$\left[\begin{array}{c}0, \ \mathbf{q}^{(i)}=\mathbf{q}^{(j)}: \text{in same subspace}\\1, \ \mathbf{q}^{(i)}\neq\mathbf{q}^{(j)}: \text{in different subspaces}\end{array}\right]$$

Spectral Clustering + Classification Block

Spectral Clustering + Classification Block

Spectral Clustering + Classification Block

Procedure for Training S²ConvSCN

 $\mathcal{L} = \mathcal{L}_0 + \gamma_1 \mathcal{L}_1 + \gamma_2 \mathcal{L}_2 + \gamma_3 \mathcal{L}_3 + \gamma_4 \mathcal{L}_4 \text{dure for training S}^2 \text{ConvSCN}$

Require: Input data, tradeoff parameters, maximum iteration T_{max} , T_0 , and t=1.

- Pre-train the stacked convolutional module via stacked CAE.
- (Optional) Pre-train the stacked convolutional module with the self-expressive layer.
- Initialize the FC layers.
- 4. Run self-expressive layer.
- Run spectral clustering layer to get the segmentation Q.
- 6. while t \leq T_{max} do Fixed Q, update the other parts T₀ epoches. Run spectral clustering once to update Q and set t \leftarrow t+1.
- 7. end while

Ensure: trained S^2 ConvSCN and Q.

Outline

- Introduction
- Related Work
- Our Proposal
- Experimental Results
- Summary

Details in Conv. Module

	Extended	l Yale B	ORL		
Layers	kernel size	channels	kernel size	channels	
encoder-1	5×5	10	3×3	3	
encoder-2	3×3	20	3×3	3	
encoder-3	3×3	30	3×3	5	
decoder-1	3×3	30	3×3	5	
decoder-2	3×3	20	3×3	3	
decoder-3	5×5	10	3×3	3	

Table 1. Network settings for Extended Yale B and ORL.

	COII	L20	COIL100		
Layers	kernel size	channels	kernel size	channels	
encoder-1	3×3	15	5×5	50	
decoder-1	3×3	15	5×5	50	

Table 4. Network settings for COIL20 and COIL100.

Keep the same as in DSCNet (Ji et al. NIPS'17)

Experimental Results

Methods	LRR	LRSC	SSC	AE+ SSC	KSSC	SSC-OMP	EDSC	AE+ EDS C	DSCNet- ℓ_1	DSCNet- ℓ_2	S^2 ConvSCN- ℓ_2	S^2 ConvSCN- ℓ_1
10 subjects												
Mean	22.22	30.95	10.22	17.06	14.49	12.08	5.64	5.46	2.23	1.59	1.18	1.18
Median	23.49	29.38	11.09	17.75	15.78	8.28	5.47	6.09	2.03	1.25	1.09	1.09
15 subjects												
Mean	23.22	31.47	13.13	18.65	16.22	14.05	7.63	6.70	2.17	1.69	1.14	1.12
Median	23.49	31.64	13.40	17.76	17.34	14.69	6.41	5.52	2.03	1.72	1.14	1.14
20 subject	s											
Mean	30.23	28.76	19.75	18.23	16.55	15.16	9.30	7.67	2.17	1.73	1.31	1.30
Median	29.30	28.91	21.17	16.80	17.34	15.23	10.31	6.56	2.11	1.80	1.32	1.25
25 subjects												
Mean	27.92	27.81	26.22	18.72	18.56	18.89	10.67	10.27	2.53	1.75	1.32	1.29
Median	28.13	26.81	26.66	17.88	18.03	18.53	10.84	10.22	2.19	1.81	1.34	1.28
30 subject	30 subjects											
Mean	37.98	30.64	28.76	19.99	20.49	20.75	11.24	11.56	2.63	2.07	<u>1.71</u>	1.67
Median	36.82	30.31	28.59	20.00	20.94	20.52	11.09	10.36	2.81	2.19	1.77	1.72
35 subject	s											
Mean	41.85	31.35	28.55	22.13	26.07	20.29	13.10	13.28	3.09	2.65	1.67	1.62
Median	41.81	31.74	29.04	21.74	25.92	20.18	13.10	13.21	3.10	2.64	1.69	1.60
38 subject	38 subjects											
Mean	34.87	29.89	27.51	25.33	27.75	24.71	11.64	12.66	3.33	2.67	1.56	1.52
Median	34.87	29.89	27.51	25.33	27.75	24.71	11.64	12.66	3.33	2.67	1.56	1.52
Table 2. Clustering Error (%) on Extended Vale P. The best results are in hold and the second has required									anlinad			

Table 2. Clustering Error (%) on Extended Yale B. The best results are in bold and the second best results are underlined.

No. Subjects	10 st	ıbjects	15 st	ıbjects	20 st	ıbjects	25 st	ıbjects	30 st	ıbjects	35 st	ıbjects	38 su	bjects
Losses	Mean	Median	Mean	Median										
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2(DSC [12])$	2.23	2.03	2.17	2.03	2.17	2.11	2.53	2.19	2.63	2.81	3.09	3.10	3.33	3.33
$L_0 + L_1 + L_2 + L_3$	1.58	1.25	1.63	1.55	1.67	1.57	1.61	1.63	2.74	1.82	2.64	2.65	2.75	2.75
$L_0 + L_1 + L_2 + L_4$	1.32	1.09	1.31	1.30	1.54	1.48	1.48	1.98	1.87	1.61	1.82	1.84	1.92	1.92
$L_0 + L_1 + L_2 + L_3 + L_4$	1.18	1.09	1.12	1.14	1.30	1.25	1.29	1.28	1.67	1.72	1.62	1.60	1.52	1.52

Table 3. Ablation Study on S²ConvSCN- ℓ_1 on Extended Yale B.

EDSC	27.25	14.86	38.13
AE+EDSC	26.25	14.79	38.88
$ ext{DSC-}\ell_2$	14.00	5.42	30.96
DSC- ℓ_1	14.25	5.65	33.62
S^2 ConvSCN- ℓ_2	11.25	2.33	27.83
S^2 ConvSCN- ℓ_1	10.50	2.14	26.67
Table 5. Clustering Error	r (%) on OI	RL, COIL20:	and COIL100.

More ablation study

Loss	ORL	COIL20	COIL100
\mathcal{L}_0	15.25	7.92	34.94
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2(DSC)$	14.25	5.65	33.62
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$	12.75	3.42	31.14
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_4$	12.25	3.27	28.53
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4$	10.50	2.14	26.67

Table 1. Ablation Study of S²ConvSCN- ℓ_1 .

Loss	ORL	COIL20	COIL100
\mathcal{L}_0	15.40	7.92	32.63
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2(DSC)$	14.25	5.65	30.96
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$	12.25	3.15	31.79
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_4$	12.00	2.75	28.17
$\mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4$	11.25	2.33	27.83

Table 2. Ablation Study of S^2 ConvSCN- ℓ_2 .

Summary

- ✓ S²ConvSCN := Convolution feature extraction
 - + Self-expression
 - + Spectral clustering

Thank you!

This work is jointly done with:

➤ For more information, please visit my homepage: http://www.pris.net.cn/teacher/lichunguang