UCA - L2 Maths

Colle 1 - 09/03

1 Questions de cours

Question 1.

Soit (Ω, \mathbb{P}) un espace de probabilité fini, et X une variable aléatoire sur (Ω, \mathbb{P}) .

Définir la variance de X et l'écart-type de X, puis montrer que

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

Question 2.

Enoncer et démontrer la formule de Pascal pour les coefficients binomiaux.

Question 3.

Enoncer et démontrer la formule des probabilités totales.

2 Exos classiques

Exercice 1

On lance un dé équilibre dont les six faces sont numérotées de 1 à 6. Soit X le point obtenu.

- 1. Donner la loi de X.
- ${f 2.}$ On lance deux fois le dé. Soit S la somme des points obtenus. Donner la loi de S.
- **3.** Calculer $\mathbb{E}[S]$ et Var(S).
- 4. Quelle est la probabilité que la somme S soit supérieure ou égale à 10?

Exercice 2

On jette 3 fois un dé à 4 faces, et on note a, b et c les résultats successifs obtenus. On note $Q(x) = ax^2 + bx + c$. Déterminer la probabilité que

- 1. Q ait deux racines réelles distinctes.
- ${\bf 2.}~Q$ ait une racine réelle double.
- $\mathbf{3.}\ Q$ n'ait pas de racine réelle.

Exercice 3

Montrer de deux manières que

$$\left(\begin{array}{c} 2n\\ n \end{array}\right) \ = \ \sum_{k=0}^{n} \left(\begin{array}{c} n\\ k \end{array}\right)^{2}.$$

- 1. En utilisant un argument de dénombrement.
- **2.** En considérant le polynôme $(X+1)^{2n}$.

Exercice 4

Soit A, B, C trois évènements. Montrer que

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C).$$

3 Exos plus abstraits

Exercice 1

Soit X, Y deux variables aléatoires indépendantes suivant la loi uniforme sur $\{1, \ldots, n\}$.

- **1.** Déterminer $\mathbb{P}(X = Y)$.
- **2.** Déterminer $\mathbb{P}(X \geq Y)$.
- **3.** Déterminer la loi de X + Y.

Exercice 2

Soit (Ω, \mathbb{P}) un espace de probabilité fini, et X_1, \ldots, X_n des variables aléatoires indépendantes sur (Ω, \mathbb{P}) .

- 1. Montrer que pour tout a > 0, $Var(aX_1) = a^2 Var(X_1)$.
- 2. Montrer que

$$\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n).$$

Exercice 3

Soit (Ω, \mathbb{P}) un espace de probabilité fini, et X une variable aléatoire sur (Ω, \mathbb{P}) .

1. Montrer que pour tout a > 0, on a

$$\mathbb{P}(|X| \ge a) \le \frac{1}{a} \mathbb{E}[|X|].$$

2. En déduire l'inégalité de Bienaymé-Tchébychev

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge a) \le \frac{1}{a^2} \text{Var}(X).$$

3. (à voir car nécessite exo 1). Soit $n \in \mathbb{N}^*$, X_1, \ldots, X_n des variables aléatoires indépendantes sur (Ω, \mathbb{P}) et $\varepsilon > 0$. On suppose qu'il existe $m \in \mathbb{R}$ et $\sigma > 0$ tels que $\mathbb{E}[X_i] = m$ et $\operatorname{Var}(X_i) = \sigma$ pour tout $i \in \{1, \ldots, n\}$.

Montrer que

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}-m\right)\right|\geq\varepsilon\right)\leq\frac{\sigma}{n\varepsilon^{2}}.$$

En déduire que $\lim_{n\to+\infty} \mathbb{P}\!\left(\left|\frac{1}{n}\sum_{i=1}^n (X_i-m)\right|\geq \varepsilon\right) = 0.$