Université Ferhat Abbas - Sétif-

Faculté de médecine

Département de médecine

Exploration des axes gonadotropes Féminin et masculin

Dr.M. BADREDINE

3^{ème} année médecine

2023 / 2024

Exploration des axes gonadotropes féminin et masculin

I. axe gonadotrope masculin

- 1. Rappel sur les androgènes
- 2. Exploration biologique des androgènes
 - a. Tests statiques
 - b. Tests dynamiques
- 3. Pathologies liées à l'axe gonadotrope masculin
 - a. Hyposécrétion des androgènes
 - b. Hypersécrétion des androgènes

II. axe gonadotrope féminin

- 1. Rappel sur les hormones sexuelles féminines
- 2. exploration biologique des hormones sexuelles femelles
 - a. Tests statiques
 - b. Tests dynamiques
- 3. Pathologies liées à l'axe gonadotrope féminin
 - a. Les troubles de la puberté chez la fille
 - b. Les aménorrhées

I. L'axe gonadotrope masculin

1. Rappel sur les androgènes

Les androgènes sont des hormones de nature stéroïde qui provoquent l'apparition des caractères sexuels masculins .

Ces hormones sont:

- le déhydroépiandrostérone sulfate (DHEAS)
 le déhydroépiandrostérone (DHEA)
 l'androstènedione (Δ 4 A)
- La testostérone : transformée en 5 α dihydrotestostérone (puissant activateur) sous l'action d'une 5α reductase.

Actions de la Testostérone :

- Chez le mâle:
- Nécessaire à la maturation et au bon fonctionnement des organes génitaux masculins
- Apparition des caractères sexuels secondaires (voix, pilosité)
- Emergence de la libido
- Nécessaire à la production de spermatozoïdes
- Chez la femme : la testostérone favorise l'atrésie folliculaire.

Régulation des androgènes

Figure 1 régulation de la sécrétion des androgènes

2. exploration biologique des androgènes

a. tests statiques

prélèvement:

- sang: sérum ou plasma
- tenir compte du taux des protéines vectrices (SHBG) et du mode de sécrétion
- urines des 24h : reflète la sécrétion glandulaire pendant une période de temps considérée de 24h
- salive : bonne corrélation avec la fraction libre plasmatique , indépendant du taux des protéines plasmatiques

paramètre à doser: testostérone, DHEA, DHEAS et Δ4A

Autres paramètres à doser: ACTH, FSH, LH, E2, inhibine

NB: Chez l'homme, l'œstradiol est formé dans les tissus périphériques à partir des androgènes surrénaliens et les testicules.

Méthode de dosage : immunodosage

b. tests dynamiques:

Ceux pour explorer les androgènes gonadiques :

- test LH-RH ou Gn-RH
- test au clomifène
- test au hCG

ceux qui explorent les androgènes cortico-surrénaliens :

- test au synactène
- test à la dexamétasone

i. test LH-RH ou Gn-RH

Injection de Gn-RH → augmentation de la sécrétion du LH et du FSH

- si réponse négative : il s'agit d'une hypogonadisme hypogonadotrophe d'origine hypophysaire
- en cas d'hypogonadisme hypogonadotrophe d'origine hypothalamique il y aura une correction de la carence en GnRH (test +)

ii. test au clomifène

il supprime le rétrocontrôle négatif de la testostérone sur l'hypothalamus → double le LH 7 jours plus tard

test au clomifène négatif + test au Gn-RH positif : il s'agit d'hypogonadisme hypogonadotrophe d'origine hypothalamique .

iii. Test au hCG

Il a un effet LH-like , il stimule la sécrétion de testostérone pour évaluer le bon fonctionnement des cellules de leydig

le test est utilisé dans la cryptorchidie (défaut de migration des testicules), l'ambiguité sexuelle et en cas de retard pubertaire.

- réponse positive : ↑ testostérone → bon fonctionnement des cellules de leydig → cryptorchidie
- réponse négative : anorchidie

iv. Test au synactène (test de stimulation)

c'est un test de synthèse : c'est un ACTH de synthèse $\rightarrow \uparrow$ du cortisol + androgène.

Ce test est utilisé pour détecter les carences en enzymes stéroidogènes de la Corticosurrénale (surtout le 21 hydroxylase).

v. Test à la dexamétasone (test de freination)

pour évaluer la source d'hyperandrogénisme (source surrénalienne ou testiculaire).

3. Pathologies liées à l'axe gonadotrope masculin

- a. Les troubles de la puberté chez le garçon
 - i. Hyposécrétion des androgènes : puberté retardée

Causes d'hypogonadisme	FSH	LH	Testostérone
Hypergonadotrope • Klinefelter(XXY) • Agénésie testiculaire • Tumeurs testiculaires • Ectopie testiculaire • Radiations et chimiothérapies	↑	↑	4
Hypogonadotrope • Déficience en GnRH • Syndrome de Kallman • Hypopituitarisme •Lésions hypothalamo-hypophysaires	+	+	\

Tableau 1 les causes d'hypogonadisme

ii. Hypersécrétion des androgènes : Pubertés précoces

	FSH	LH	testo	Causes
Pseudo-puberté	\	\	↑	-Hyperplasie congénitale des surrénales - tumeur des cellules de leydig - tumeur surrénale
Puberté précoce Vraie	↑	↑	↑	Tumeur hypothalamique Idiopathique
Testotoxicose	\	\	↑	Anomalie des protéines G au niveau de la membrane des cellules de Leydig (chez des enfants plus jeunes).

Tableau 2 les causes de la puberté précoce

iii. L'infertilité masculine : Chez l'homme adulte

Figure 2 algorithme diagnostic devant une infertité masculine

II. L'axe gonadotrope féminin

1. Rappel sur les hormones sexuelles femelles

les hormones sexuelles femelles sont des hormones synthétisées par les ovaires.

Deux grands types d'hormones "femelles" : les œstrogènes (E1,E2,E3) et la progestérone.

Ces 2 types d'hormones sont synthétisées en des périodes déterminées selon un cycle appelé cycle menstruel

La régulation endocrine de la reproduction fait intervenir un «dialogue hormonale» entre le complexe hypothalamus/adénohypophyse et les gonades.

La libération d'oestradiol et de progestérone est sous la dépendance des gonadotrophines hypophysaires, FSH et LH qui sont sous le contrôle d'une neurohormone hypothalamique, la GnRH (LH-RH)

La libération pulsatile de GnRH variant en fréquence et en amplitude tout le long du cycle menstruel, sous les influences stimulatrices ou inhibitrices de certains facteurs hormonaux ou neuroendocriniens.

Figure 3 régulation de la sécrétion des hormones sexuelles femelles

2. exploration biologique des hormones sexuelles femelles

a. tests statiques

- prélèvement: sang: sérum ou plasma
- chez une femme réglée : entre le 3^{ème} et le 5^{ème} jour du cycle
- chez une patiente en aménorrhée : pas de jours particulier
- Paramètres à doser : FSH, LH, progestérone, œstradiol, prolactine, AMH (hormone antimulleriene)
- Méthode de dosage : immunodosage

b. Tests dynamiques

i. test au clomifène :

le test au clomifène explore l'axe gonadotrope.

Nécessite que le rétrocontrôle hypothalamique soit fonctionnel et que l'hypophyse ait la capacité de répondre à la stimulation par la Gn-RH.

Le clomifène antagonise le rétrocontrôle négatif de l'œstradiol au niveau hypothalamique mimant une déplétion en œstrogènes, à condition que le niveau d'œstradiol soit suffisant

Dès le 3^{ème} jour de traitement, on a une élévation de la FSH et de la LH permettant une croissance folliculaire ovarienne avec production d'E2.

✓ Si réponse positive :

- L'augmentation de la FSH et de la LH (respectivement 50 % et 85 % par rapport à la valeur basale) est suivie d'une ovulation puis d'un décalage thermique.
- L'axe hypothalamo-hypophyso-ovarien est fonctionnel.
- La fin du cycle est marquée par des règles.

✓ Réponse négative :

- II n'existe aucune modification du taux des gonadotrophines, pas de décalage thermique, pas d'hémorragie de privation.
- II s'agit d'une insuffisance hypothalamique ou hypophysaire.

ii. Le test à la LH-RH (ou à la GnRH)

Le test à la LH-RH explore la fonction gonadotrope hypophysaire. Il teste la capacité de réponse de l'hypophyse à un apport exogène et ponctuel de Gn-RH.

Valeurs de Base	Réponse	Cas clinique
FSH, LH normale	FSH: x 1,5 à 3 LH: x 3 à 5	Normal
FSH, LH normale ou basse	FSH et LH: Réponse faible ou nulle	Hypopituitarisme fonctionnel ou organique
FSH, LH normale ou basse	FSH: réponse normale LH: réponse faible ou nulle	Réponse de type prépubertaire. Certaines anorexies mentales ou aménorrhées «psychogènes»
FSH, LH élevée	FSH et LH : Réponse +/- explosive	Hypogonadisme ovarien. Ménopause
FSH normale LH normale ou élevée	FSH: réponse normale LH: réponse Explosive	Syndrome des ovaires polykystiques

Tableau 2 réponses au test LH-RH

3. Pathologies liées à l'axe gonadotrope féminin

a. Les troubles de la puberté chez la fille

1- La puberté précoce

- Puberté vraie: activation prématurée de l'axe hypothalamo-hypophysaire avec augmentation du FSH et du LH

Causes : idiopathiques , atteinte cérébrale

- pseudo-puberté: indépendante de l'axe hypothalamo-hypophysaire , les ovaires restent immatures \to œstradiol \uparrow et LH \downarrow

causes: tumeur ovarienne ou surrénalienne.

2- La puberté retardée

Absence de signes cliniques de développement pubertaire à l'âge de 12 ans, et de règles à 15 ans. causes :

- retard de croissance
- hypogonadisme hypergonadotrophe :
 - syndrome de turner (XO)
 - défaillance ovarienne primitive

b. les aménorrhées

Aménorrhée = absence prolongée de règles.

- Aménorrhée primaire chez la jeune fille de 17 ans ou plus qui n'a jamais eu ses règles.

- Aménorrhée secondaire chez la femme n'ayant pas eu ses règles depuis au moins trois mois (grossesse en 1)

Dues à une perturbation d'un maillon de la chaîne hypothalamo-hypophyso-gonadique.

Interrogatoire + examen clinique + examens complémentaires = diagnostic étiologique.

Figure 4 arbre décisionnel devant une aménorrhée primaire

Figure 5 arbre décisionnel devant une aménorrhée secondaire