知识点K2.14

离散系统稳定性判据

主要内容:

- 1.系统函数与系统特性
- 2.离散系统稳定性判据

基本要求:

- 1.掌握系统函数与系统特性
- 2.掌握离散系统稳定性判据

K2.14 离散系统稳定性判据(因果系统)

- (1) 离散系统稳定的时域充要条件: $\sum_{k=-\infty}^{\infty} |h(k)| < \infty$
- (2) 离散系统稳定性的Z域充要条件:

若LTI离散系统的系统函数H(z)的收敛域包含单位圆,则系统为稳定系统。

若LTI离散因果系统稳定,要求其系统函数H(z)的极点全部在单位圆内。

例1 某离散系统的差分方程为

$$y(k) + 0.2y(k-1) - 0.24y(k-2) = f(k) + f(k-1)$$

- (1) 求系统函数H(z);
- (2) 讨论因果系统H(z) 的稳定性;
- (3) 求单位样值响应h(k);
- (4) 求单位阶跃响应g(k)。

解: (1) 将差分方程两边取 z变换,得

$$Y(z) + 0.2z^{-1}Y(z) - 0.24z^{-2}Y(z) = F(z) + z^{-1}F(z)$$

$$H(z) = \frac{Y(z)}{F(z)} = \frac{1 + z^{-1}}{1 + 0.2z^{-1} - 0.24z^{-2}}$$

- (2) H(z) 极点是0.4和-0.6,在单位圆内,故系统稳定。
- (3) 将H(z)/z进行部分分式展开,得到

$$H(z) = \frac{1.4z}{z - 0.4} - \frac{0.4z}{z + 0.6} \quad |z| > 0.6$$

$$h(k) = \left[1.4(0.4)^k - 0.4(-0.6)^k\right] \varepsilon(k)$$

(4) 求阶跃响应

$$Y(z) = F(z)H(z) = \frac{z^2(z+1)}{(z-1)(z-0.4)(z+0.6)}$$

$$Y(z) = \frac{2.08z}{z - 1} - \frac{0.93z}{z - 0.4} - \frac{0.15z}{z + 0.6} \quad |z| > 1$$

$$g(k) = \left[2.08 - 0.93(0.4)^k - 0.15(-0.6)^k\right] \varepsilon(k)$$

(3) 离散因果系统稳定性判定——朱里准则

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_m z^m + b_{m-1} z^{m-1} + \dots + b_0}{a_n z^n + a_{n-1} z^{n-1} + \dots + a_0}$$

要判断A(z)=0的所有根的绝对值是否都小于1。

朱里列表:

第1行
$$a_n$$
 a_{n-1} a_{n-2} a_2 a_1 a_0 第2行 a_0 a_1 a_2 a_{n-2} a_{n-1} a_n 第3行 c_{n-1} c_{n-2} c_{n-3} c_1 c_0 第4行 c_0 c_1 c_2 c_{n-2} c_{n-1} 第5行 d_{n-2} d_{n-3} d_{n-4} d_0 第6行 d_0 d_1 d_2 d_{n-2}

第2n-3行 r, r₁

第3行按下列规则计算:

$$c_{n-1} = \begin{vmatrix} a_n & a_0 \\ a_0 & a_n \end{vmatrix} \qquad c_{n-2} = \begin{vmatrix} a_n & a_1 \\ a_0 & a_{n-1} \end{vmatrix} \qquad c_{n-3} = \begin{vmatrix} a_n & a_2 \\ a_0 & a_{n-2} \end{vmatrix} \qquad \dots$$

一直到第2n-3行,该行有3个元素。

朱里准则指出:

A(z)=0的所有根都在单位圆内的充要条件是:

(1)
$$A(1)>0$$
 (2) $(-1)^nA(-1)>0$

(3) $a_n > |a_0|$ $c_{n-1} > |c_0|$ $d_{n-2} > |d_0|$ $r_2 > |r_0|$ 对奇数行,其第1个元素必大于最后一个元素的绝对值。

特例:对二阶系统: $A(z)=a_2z^2+a_1z+a_0$,易得A(1)>0,A(-1)>0, $a_2>|a_0|$

例2 已知: $A(z)=4z^4-4z^3+2z-1$,判断系统稳定性。

解:

$$A(1)=1>0$$
 (-1) $^{4}A(-1)=5>0$

朱里列表:

根据朱里准则: 4>1, 15>4, 209>56 所以系统稳定。