PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

C07K 14/47, C12N 15/12, 15/63, C07K 16/18, A61K 38/17, G01N 33/00

(11) Numéro de publication internationale:

WO 99/11663

A1 (43)

(43) Date de publication internationale:

11 mars 1999 (11.03.99)

(21) Numéro de la demande internationale:

PCT/FR98/01864

(22) Date de dépôt international:

28 août 1998 (28.08.98)

(30) Données relatives à la priorité:

97/10823

29 août 1997 (29.08.97)

_ |

(71) Déposant (pour tous les Etats désignés sauf US): GENSET [FR/FR]; 24, rue Royale, F-75008 Paris (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): BOUGUELERET, Lydie [FR/FR]; 108, avenue Victor Hugo, F-92170 Vanves (FR). CHUMAKOV, Ilya [FR/FR]; 196, rue des Chèvrefeuilles, F-77000 Vaux-le-Penil (FR).
- (74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: HUMAN DEFENSIN DEF-X, GENE AND DNAc, COMPOSITION CONTAINING SAME AND DIAGNOSTIC AND THERAPEUTIC APPLICATIONS
- (54) Titre: DEFENSINE HUMAINE DEF-X, GENE ET cDNA, COMPOSITION LES CONTENANT ET APPLICATIONS AU DIAGNOSTIC ET A LA THERAPIE

(57) Abstract

The invention concerns a novel human polypeptide defensin, homologous of HNP-4, its genomic DNA and DNAc, vectors, cells transformed by said vectors, the use of said polypeptide as antibiotic, cytotoxic, repairing and endocrine regulating agent or as pesticide as well as cosmetic or pharmaceutical compositions for treating microbial infections, in particular bacterial, fungal, and viral, or parasitic, cancers, inflammation and immunodeficiency. The invention also concerns diagnostic methods and kits for determining a microbial or parasitic infection and an inflammation, or for detecting predisposition to immunodeficiency or cancerous diseases.

(57) Abrégé

La présente invention concerne une nouvelle défensine polypeptidique humaine Def-X, homologue de l'HNP-4, son ADN génomique et ADNc, des vecteurs, des cellules transformées par lesdits vecteurs, l'utilisation dudit polypeptide comme agent antibiotique, cytotoxique, de réparation et de régulation endocrine ou comme pesticide ainsi que des compositions cosmétiques ou pharmaceutiques pour le traitement des infections microbiennes, notamment bactériennes, fongiques, et virales, ou parasitaires, de cancers, de l'inflammation et de déficit immunitaire. L'invention concerne également des méthodes et des kits de diagnostic pour la détermination d'une infection microbienne ou parasitaire et d'une inflammation, ou pour le dépistage de prédisposition à des déficiences immunitaires ou des maladies cancéreuses.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon -	LV	Lettonie	SZ	Swaziland
AZ	Azerbaidjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ '	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israēl	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon ·	NE	Niger	VN	Viet Nam
CG T	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ.	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		•
EE	Estonie	LR	Libéria	SG	Singapour		

WO 99/11663 PCT/FR98/01864

DEFENSINE HUMAINE DEF-X, GENE ET cDNA, COMPOSITION LES CONTENANT ET APPLICATIONS AU DIAGNOSTIC ET A LA THERAPIE

La présente invention concerne une nouvelle défensine polypeptidique humaine Def-X, homologue de l'HNP-4, son ADN génomique et ADNc.

L'invention concerne également des vecteurs de clonage et d'expression, des cellules transformées par lesdits vecteurs. L'invention a aussi pour objet l'utilisation desdits polypeptides comme agent antibiotique, cytotoxique, de réparation et de régulation endocrine ou comme pesticide ainsi que des compositions cosmétiques ou pharmaceutiques pour le traitement des infections microbiennes, notamment bactériennes, fongiques, et virales, ou parasitaires, de cancers, de l'inflammation et de déficit immunitaire. Enfin, l'invention comprend des méthodes et des kits de diagnostic pour la détermination d'une infection microbienne ou parasitaire et d'une inflammation, ou pour le dépistage de prédisposition à des déficiences immunitaires ou des maladies cancéreuses.

10

15

20

25

30

35

Les substances antimicrobiennes sont des éléments primordiaux de la défense des organismes multicellulaires. Parmi ces substances, on trouve aussi bien des composés inorganiques simples (péroxyde d'hydrogène, acide hypochloreux, oxyde nitrique) que des peptides et protéines complexes. Ils sont présents sur les premières lignes de défense, à la surface des muqueuses de différents organes, notamment dans les cellules épithéliales de l'intestin et des poumons, selon les espèces, ainsi que dans les organelles microbicides des cellules phagocytaires d'origine hématopoiétique, où ils furent tout d'abord mis en évidence. Leur synthèse de novo ou leur libération à partir de sites de stockage - organelles de type lysosomes, granules cytoplasmiques, capables de les stocker sous une forme inactive ou latente - peuvent être induites rapidement, ce qui les rend particulièrement importants dans les phases précoces de résistance aux infections (Martin et al., 1995).

Les protéines antimicrobiennes d'une taille inférieure à cent acides aminés sont arbitrairement appelées peptides antimicrobiens. Plusieurs familles de peptides antimicrobiens ont été identifiées, qui diffèrent quant à la présence en leur sein de ponts disulfures, quant à leur composition en acides aminés, à leur conformation structurelle et à leur spectre d'activité. Les peptides antimicrobiens comportant six cystéines conservées forment la famille des défensines. Cette famille est composée de peptides antimicrobiens présents dans de nombreuses espèces, abondants, d'environ 3-4 kDa (Ganz et Lehrer, 1994). Ces peptides sont formés de 30 à 40 acides aminés, dont six

10

15

20

30

35

cystéines invariantes qui forment trois liens disulfides intramoléculaires. Ils ont une conformation complexe, sont amphipathiques, riches en feuillets bêta anti-parallèles, mais dépourvus d'hélices alpha (Lehrer et Ganz, 1992). L'action antimicrobienne des défensines résulterait de leur insertion dans les membranes des cellules cibles, permettant la formation de canaux voltage-dépendants. White et al. (1995) décrivent les mécanismes possibles d'insertion membranaire et de formation de pores multimériques par les défensines, qui permettent la perméabilisation des membranes des cellules cibles, par exemple des cellules microbiennes ou tumorales. La structure cristallographique de la défensine humaine de neutrophile HNP-3 (voir ci-dessous) a été déterminée, et un mécanisme particulier de dimérisation des défensines humaines de neutrophile est en outre suggéré. La connaissance élargie de cette famille de peptides et la comparaison de leurs séquences et spectres d'activité permettront de mieux comprendre ces mécanismes et leurs spécificités, ainsi que les résidus acides aminés plus particulièrement impliqués dans ces phénomènes.

Les défensines se répartissent en trois familles de peptides, structurellement différents : les défensines "classiques", les bêta-défensines et les défensines des insectes. Ces familles présentent des différences concernant la position et l'espacement des résidus cystéines conservés, ainsi que ceux d'autres acides aminés conservés (proline, glycine) (Ganz et Lehrer, 1995).

Les défensines humaines, de type classique, proviennent essentiellement de deux sources. Elles ont d'abord été identifiées par purification peptidique à partir d'extraits de neutrophiles. Quatre défensines ont ainsi été isolées: "human neutrophil peptides" HNP-1, HNP-2, HNP-3, et HNP-4. Les trois premières sont des produits différents du même gène (Ganz et Lehrer, 1995). Ces trois peptides représentent 99 % du contenu des neutrophiles en défensines, alors que HNP-4 y est aussi présent, mais à des concentrations 100 fois plus faibles. Plus récemment, deux défensines entériques humaines, HD-5 et HD-6, ont été caractérisées dans l'intestin grêle et plus précisément dans les cellules de Paneth (Bevins et al., 1996). Alors que 16 gènes de défensines entériques ont été mis en évidence chez la souris, seuls ces deux homologues ont été identifiés chez l'homme (Mallow et al., 1996).

Les défensines ont une action antimicrobienne sur un large spectre de microorganismes in vitro (Martin et al., 1995). Ce spectre d'action, particulièrement large, comprend des bactéries, Gram-positives et Gram-négatives, plusieurs champignons, des mycobactéries, des parasites dont les spirochètes et plusieurs virus à enveloppe dont les virus HSV et HIV. Elles sont également cytotoxiques pour plusieurs

. 10

15

20

25

30

35

catégories de cellules normales et malignes, dont les cellules résistantes au TNF-alpha et au facteur cytolytique NK (Kagan et al., 1994). La grande quantité de cibles des défensines et leur abondance dans les cellules sanguines spécialisées dans la défense immunitaire, ainsi que l'augmentation dramatique de leur concentration au cours d'infections sévères, suggèrent que ces molécules joueraient un rôle important dans l'immunité naturelle aux infections et aux cancers. Notamment, l'augmentation de la transcription des gènes des défensines et la libération de granules cytoplasmiques contenant des défensines pré-synthétisées en réponse à des stimuli, contribuent à la réponse antimicrobienne locale, les défensines pouvant participer à la réaction d'inflammation, aux processus de réparation et à la régulation endocrine pendant l'infection. Les défensines hématopoïétiques pourraient contribuer au phénomène de lyse des cellules cancéreuses, phénomène médié par les neutrophiles au cours de la réponse immunitaire anticorps-dépendante. Le rôle physiologique précis des défensines entériques n'est pas clairement établi. Elles pourraient endiguer la prolifération de la flore intraluminale ou empêcher la translocation de bactéries à travers la muqueuse intestinale (Mallow et al., 1996). L'abondance de l'ARNm de défensine dans les cellules de Paneth renforce l'hypothèse que ces cellules épithéliales joueraient un rôle clé dans la défense immunitaire de l'intestin. Il a par ailleurs été montré que leur schéma d'expression coıncide avec l'apparition des cellules de Paneth au cours de l'embryogenèse. Mallow et al. (1996) ont suggéré que de faibles taux d'expression de défensines entériques chez le foetus serait le témoin d'une immaturité de la défense locale, ce qui prédisposerait les enfants nés prématurément à des infections dues aux microorganismes intestinaux.

Une concentration des défensines correspondant à 10 % du taux normal est constatée chez des patients atteints de "specific granule deficiency", une maladie rare du développement des granulocytes. Les sujets atteints souffrent d'infections fréquentes, provoquées par des bactéries communes (Ganz et Lehrer, 1995).

Les défensines modifiées biochimiquement sont de potentiels agents prophylactiques et thérapeutiques contre les infections (Ganz et Lehrer, 1995). La recherche concernant ces peptides antimicrobiens ou d'autres molécules participant de l'immunité naturelle, acquiert une importance particulière depuis que se développent des phénomènes de résistance des microorganismes aux antibiotiques traditionnels (Bevins et al., 1996).

La structure primaire de défensines, notamment des défensines humaines, a fait l'objet d'études récentes (White et al., 1995; Mallow et al., 1996). Les défensines

15

20

25

30

classiques comprennent 29 à 35 acides aminés, mais dérivent de précurseurs préproprotéines - comprenant 90 à 100 acides aminés. La maturation protéolytique des défensines humaines de neutrophiles en peptides matures est couplée avec leur adressage vers les granulocytes; la fonction du propeptide inclurait l'inactivation de la forme précurseur de la défensine et un support à l'acquisition de la conformation active du peptide mature (Martin et al., 1995). Les homologies peptidiques sont maximales au niveau des signaux peptides, et minimales au niveau des peptides matures, qui comportent néanmoins six résidus cystéines totalement conservés. Si la conservation de ces résidus semble nécessaire à l'acquisition de structures secondaires impliquées dans l'activité des défensines, les différences de séquences existant au sein de la très large famille de ces peptides antimicrobiens, notamment à leur extrémité N-terminale, mais aussi dans d'autres régions non conservées, semblent être des déterminants importants de leur spectre d'activité, et de leur efficacité antimicrobienne ou cytotoxique. L'identification de nouveaux membres de cette famille de peptides, et notamment de défensines humaines, est donc nécessaire à la compréhension de leur mécanisme d'action et de leur spécificité, ainsi qu'à leur utilisation comme agents anti-infectieux et/ou cytotoxiques, ou au dessin de peptides variants présentant des spectres spécifiques et/ou d'efficacité diminuée ou augmentée.

Sparkes et al. (1989), ont localisé le gène codant pour HNP-1 sur le chromosome 8, dans la région 8p23. Bevins et al. (1995), et Mallow et al. (1996), ont localisé les deux gènes codant pour HD-5 et HD-6 sur le chromosome 8, plus précisément dans la région 8p21-pter, région incluant la région précédemment identifiée comme portant les défensines hématopoïétiques. Les gènes codant pour les défensines entériques humaines HD-5 et HD-6 contiennent deux exons, alors que ceux codant pour les défensines hématopoïétiques en contiennent trois, les deux derniers exons codant pour le prépropeptide, aussi bien chez l'homme, que chez le cobaye et le lapin (Mallow et al., 1996). La comparaison des séquences génomiques des gènes HD-5 et HD-6 a révélé une très forte similarité des séquences flanquantes non codantes en 5', suggérant que celles-ci contiennent l'information nécessaire à la tissu-spécificité de l'expression de ces gènes; ces mêmes régions portent en outre de nombreux sites de fixation pour des facteurs de transcription, dont deux sites AP2 et six sites IL6, suggérant des voies de régulation de l'expression de ces gènes au cours des processus inflammatoires. De façon plus générale, le très important degré de similarité des séquences et de l'organisation génomique des défensines HNP-1, 2, 3, 4 et HD-5 et 6, a conduit Bevins et al. (1995) à

10

30

un modèle d'évolution tentant de relater l'organisation chromosomique de la famille, et les fractions homologues de chaque paire de gènes.

Il est enfin intéressant de noter que la région chromosomique 8p23 est impliquée dans de nombreuses pathologies, notamment cancéreuses : on citera par exemple le carcinome hépatocellulaire (Becker et al., 1996), le cancer du poumon non à petites cellules (Sundareshan et Augustus, 1996), le cancer de la prostate (Ichikawa et al., 1996), et le carcinome colorectal (Yaremko et al., 1994). Bien que ceci n'ait jamais été documenté, il est possible qu'une déficience en l'une ou l'autre des défensines humaines ait un rôle dans la prédisposition à de telles pathologies, ou dans leur développement.

La présente invention concerne une nouvelle défensine humaine, Def-X, homologue de la défensine HNP-4.

La présente invention a donc pour objet un polypeptide isolé choisi parmi les polypeptides suivants :

- 15 a) polypeptide dont la séquence d'acides aminés est la séquence SEQ ID N° 3;
 - b) polypeptide homologue, variant, ou modifié du polypeptide dont la séquence d'acides aminés est la séquence SEQ ID N° 3;
 - c) polypeptide dont la séquence d'acides aminés est la séquence d'acides aminés d'un fragment biologiquement actif d'un polypeptide tel que défini en a) ou b);
- 20 d) polypeptide comprenant au moins un fragment tel que défini en c).

Dans la présente description, on entendra désigner également par « polypeptide » une protéine ou un peptide.

Selon un mode préféré, le polypeptide selon l'invention est caractérisé en ce qu'il est constitué de l'un au moins des fragments suivants :

- 25 a) peptide signal dont la séquence d'acides aminés est la séquence SEQ ID N° 4, correspondant à la séquence comprise entre la position 1 et la position 19, extrémités comprises, de la séquence d'acides aminés SEQ ID N° 3;
 - b) région pro dont la séquence d'acides aminés est la séquence SEQ ID N° 5, correspondant à la séquence comprise entre la position 20 et la position 63, extrémités incluses, de la séquence d'acides aminés SEQ ID N° 3;
 - c) peptide mature dont la séquence d'acides aminés est la séquence SEQ ID N° 6, correspondant à la séquence comprise entre la position 64 et la position 94, extrémités incluses, de la séquence d'acides aminés SEQ ID N° 3; ou
 - d) fragment homologue, variant ou modifié d'un peptide selon a), b) ou c).

5.

10

15

20

25

30

35

De façon encore préférée, les polypeptides selon la présente invention correspondent à la structure primaire de la défensine mature définie précédemment, c'est-à-dire la structure correspondant à la séquences d'acides aminés SEQ ID N° 6 suivante :

lle Cys His Cys Arg Val Leu Tyr Cys lle Phe Gly Glu His Leu Gly Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr

ses homologues, variants ou formes modifiées ainsi que leurs fragments biologiquement actifs et les polypeptides les contenant.

Il est bien entendu que les polypeptides de l'invention sont sous forme non naturelle, c'est-à-dire qu'ils ne sont pas pris dans leur environnement naturel mais qu'ils ont pu être obtenus par purification à partir de sources naturelles ou bien obtenus par recombinaison génétique ou par synthèse chimique comme cela sera décrit ci-après.

Par « polypeptide homologue », on entend un polypeptide dont la séquence d'acides aminés présente au minimum 80 %, et préférentiellement 90 %, d'acides aminés en commun.

Par « polypeptide variant », on entend désigner un polypeptide muté ou correspondant à un polymorphisme pouvant exister, notamment chez l'être humain et pouvant présenter une troncature, une substitution, une délétion et/ou une addition d'au moins un acide aminé comparé au polypeptide selon l'invention.

Par « polypeptide modifié », on entend désigner un polypeptide obtenu par recombinaison génétique ou par synthèse chimique comme cela sera décrit ci-après, présentant une modification par rapport à la séquence normale. Ces modifications pourront notamment porter sur les domaines pré-, pro- ou mature du polypeptide selon l'invention, sur les acides aminés à l'origine d'une spécificité de spectre ou d'efficacité de l'activité, ou à l'origine de la conformation structurale, de la charge, ou de l'hydrophobicité, et de la capacité de multimérisation et d'insertion membranaire du polypeptide selon l'invention. On pourra ainsi créer des polypeptides d'activité équivalente, augmentée ou diminuée, et de spécificité équivalente, plus étroite, ou plus large. Les modifications pourront aussi porter sur les séquences impliquées dans la maturation, le transport et l'adressage du polypeptide.

Par « fragment biologiquement actif » d'un polypeptide selon l'invention, on entend désigner un fragment polypeptidique ayant conservé au moins une activité du polypeptide dont il est issu, en particulier :

 capable d'être reconnu par un anticorps spécifique d'un polypeptide selon l'invention; et/ou

10

15

- capable d'agir comme antibiotique ; et/ou
- capable d'agir comme agent cytotoxique; et/ou
- capable d'agir comme agent antitumoral; et/ou
- capable de moduler la réparation de tissu, la régulation endocrine ou le processus d'inflammation, notamment durant une infection.

Selon l'invention, les fragments biologiquement actifs de polypeptides selon l'invention auront au minimum 10 acides aminés, de préférence 15 acides aminés.

Comme cela a été indiqué précédemment, parmi les fragments biologiquement actifs, un fragment préféré est le peptide mature de séquence d'acides aminés SEQ ID N° 6.

Parmi les homologues du peptide mature, il faut citer les polypeptides dans lesquels jusqu'à 5 acides aminés ont été modifiés, tronqués à l'extrémité N- ou C-terminale, ou bien délétés, ou bien ajoutés, ce qui représente environ 80 % de la séquence.

Les fragments biologiquement actifs de ce peptide mature comportent de préférence de 10 à 15 acides aminés, dont l'intérêt pourra être de pouvoir être obtenus facilement par synthèse chimique.

Comme cela est indiqué, les modifications du polypeptide mature auront pour objectif notamment de :

- 20 moduler l'activité de la défensine,
 - modifier sa spécificité, tant au niveau des microorganismes sur lesquels elle est active que sur sa localisation tissulaire,
 - modifier sa biodisponibilité.

Les composés précédents peuvent être obtenus en utilisant la chimie combinatoire, dans laquelle il est possible de faire varier systématiquement des parties de polypeptide avant de les tester sur des modèles, cultures cellulaires ou des microorganismes par exemple, pour sélectionner les composés les plus actifs ou présentant les propriétés recherchées.

La synthèse chimique présente également l'avantage de pouvoir utiliser :

- 30 des acides aminés non naturels, ou
 - des liaisons non peptidiques.

Ainsi, afin d'améliorer la durée de vie des peptides, il pourra être intéressant d'utiliser des acides aminés non naturels, par exemple sous forme D, ou bien des analogues d'acides aminés, notamment des formes soufrées par exemple.

5.

15

20

25

30

35

Enfin, la structure de la défensine mature ou de ses homologues, variants ou modifiés, de même que les fragments correspondant, pourront être intégrés dans des structures chimiques de type polypeptidique ou autres. Ainsi, il pourra être intéressant de prévoir aux extrémités N- et C-terminales des composés non reconnus par les protéases.

L'invention comprend également les acides nucléiques codant pour un polypeptide selon l'invention.

Selon un mode préféré, les acides nucléiques selon l'invention seront choisis parmi les acides nucléiques suivants :

- a) acide nucléique de séquence SEQ ID N° 1 (génomique);
- 10 b) acide nucléique de séquence SEQ ID N° 2 (cDNA);
 - c) acide nucléique équivalent, homologue, muté ou modifié, par rapport aux acides nucléiques selon a) ou b);
 - d) fragment des séquences a), b) ou c) ayant au moins dix bases;
 - e) acide nucléique capable de s'hybrider avec l'une des séquences telles que définies en a), b), c) ou d).

Il est entendu que la présente invention ne concerne pas les séquences génomiques dans leur environnement chromosomique naturel ; il s'agit de séquences qui ont été isolées, c'est-à-dire qu'elles ont été prélevées directement ou indirectement, leur environnement ayant été au moins partiellement modifié.

Il peut ainsi s'agir d'ADN génomique, d'ADNc, ou d'ARN, comportant ou non des nucléotides non naturels ; il peut s'agir d'acides nucléiques naturels isolés, ou d'acides nucléiques de synthèse.

Par acide nucléique équivalent, on entendra un acide nucléique codant pour les polypeptides selon l'invention, compte tenu de la dégénérescence du code génétique, et les ADNc et ARN correspondants.

Par acide nucléique homologue, on entendra un acide nucléique dont la séquence présente une homologie d'au moins 80 %, de préférence 90 %, avec les séquences nucléiques selon l'invention.

Par acide nucléique muté, on entendra tout acide nucléique codant pour un polypeptide variant selon l'invention, et tout acide nucléique comportant, par rapport aux séquences SEQ ID N° 1 et SEQ ID N° 2, au moins une mutation dans les séquences promotrices et/ou régulatrices, lesquelles pourront avoir un effet sur l'expression du polypeptide notamment sur son taux d'expression et la tissu-spécificité de celle-ci. Les séquences présentant un polymorphisme présent chez l'être humain sont donc incluses dans l'invention. Parmi ces polymorphismes, certains pourront conduire à des

15

20

25

30

déficiences immunitaires, de réponse aux infections, à des prédispositions et/ou au développement de cancers.

Par acide nucléique modifié, on entendra tout acide nucléique codant pour un polypeptide modifié selon l'invention, ou tout acide nucléique obtenu par mutagenèse selon des techniques bien connues de l'homme de l'art, et comportant des modifications par rapport aux séquences normales, notamment des mutations dans les séquences régulatrices et/ou promotrices, notamment conduisant à une modification du taux et/ou de la tissu-spécificité de l'expression du polypeptide.

La présente invention concerne l'ensemble des amorces et sondes, qui pourront être marquées selon des méthodes bien connues de l'homme du métier, permettant de mettre en évidence, notamment par des techniques basées sur l'hybridation ou sur l'amplification, par exemple par PCR, les séquences nucléiques selon l'invention, y compris de discriminer les séquences normales des séquences mutées.

Parmi les fragments d'acides nucléiques intéressants, il faut citer en particulier les oligonucléotides anti-sens, c'est-à-dire dont la structure assure, par hybridation avec la séquence cible, une inhibition de l'expression du produit correspondant. Il faut encore citer les oligonucléotides sens qui, par interaction avec des protéines impliquées dans la régulation de l'expression du produit correspondant, induiront soit une inhibition, soit une activation de cette expression.

Il pourra s'agir de séquences qui agissent aussi bien au niveau des séquences exoniques ou introniques décrites que sur les séquences flanquantes, notamment les promoteurs et/ou régions 5' UTR.

La présente invention concerne également des vecteurs de clonage ou d'expression comportant une séquence nucléotidique telle que décrite précédemment.

Ces vecteurs de clonage ou d'expression pourront comporter des éléments assurant l'expression de la séquence dans une cellule hôte, notamment des séquences promotrices et des séquences de régulation efficaces dans ladite cellule.

Le vecteur en cause pouvant être à réplication autonome ou bien destiné à assurer l'intégration de la séquence au sein des chromosomes de la cellule hôte.

Dans le cas de systèmes à réplication autonome, en fonction de la celluie hôte, procaryote ou eucaryote, on utilisera de préférence des systèmes de type plasmidique ou des systèmes viraux, les virus vecteurs pouvant être notamment des adénovirus (Perricaudet et al., 1992), des rétrovirus, des poxvirus ou des virus

10

15

20

25

30

35

herpétiques (Epstein et al., 1992). L'homme de métier connaît les technologies utilisables pour chacun de ces virus.

Ainsi, il est connu d'utiliser comme vecteur viral des virus défectifs dont la culture est effectuée dans des cellules de complémentation, ceci évitant les risques éventuels de prolifération d'un vecteur viral infectieux.

Lorsque l'on souhaitera l'intégration de la séquence dans les chromosomes de la cellule hôte, il sera nécessaire de prévoir de part et d'autre de la séquence nucléotidique à intégrer une ou plusieurs séquences provenant de la cellule hôte afin d'assurer la recombinaison. Il s'agit là également de procédés qui sont largement décrits dans la technique antérieure. On pourra, par exemple, utiliser des systèmes de type plasmidique ou viral; de tels virus seront, par exemple, les rétrovirus (Temin, 1986) ou les AAV, Adenovirus Associated Virus (Carter, 1993).

L'invention concerne également les cellules procaryotes ou eucaryotes transformées par un vecteur tel que décrit précédemment et ceci afin d'assurer l'expression d'une défensine Def-X naturelle, normale ou variante, ou modifiée, ou bien, par exemple, d'un de ses fragments.

Comme cela a été indiqué précédemment, la présente invention concerne également les polypeptides obtenus par culture des cellules ainsi transformées et récupération de la protéine exprimée, ladite récupération pouvant être effectuée de façon intracellulaire ou bien de façon extracellulaire dans le milieu de culture lorsque le vecteur a été conçu pour assurer la sécrétion de la protéine par le biais, par exemple, d'une séquence "signal", le polypeptide étant sous forme d'un pré-polypeptide ou prépro-polypeptide. Les constructions permettant la sécrétion des polypeptides sont connues, aussi bien pour des systèmes procaryotes que des systèmes eucaryotes. Dans le cadre de la présente invention, certains des polypeptides Def-X pourront comporter leur propre système de sécrétion ou d'insertion membranaire.

Il est bien entendu que les polypeptides recombinants selon l'invention peuvent être obtenus sous forme glycosylée ou non glycosylée et présenter ou non la structure tertiaire naturelle.

Parmi les cellules utilisables pour la production de ces polypeptides, il faut citer bien entendu les cellules bactériennes (Olins et Lee, 1993), mais également les cellules de levure (Buckholz, 1993), de même que les cellules animales, en particulier les cultures de cellules de mammifère (Edwards et Aruffo, 1993) mais également les cellules d'insectes dans lesquelles on peut utiliser des procédés mettant en oeuvre des baculovirus par exemple (Luckow, 1993).

15

20

25

35

Les cellules ainsi obtenues peuvent permettre de préparer des polypeptides naturels, variants ou modifiés, Def-X, mais également des fragments de ces polypeptides, notamment des polypeptides pouvant correspondre aux fragments biologiquement actifs.

La présente invention concerne, en outre, les mêmes polypeptides selon l'invention mais obtenus par synthèse chimique et pouvant comporter des acides aminés non naturels ou modifiés.

Les polypeptides selon la présente invention, en particulier la défensine mature, de même que les homologues, dérivés ou polypeptides matures modifiés, peuvent être obtenus par synthèse chimique et ce en utilisant l'une quelconque des nombreuses synthèses peptidiques connues, par exemple les techniques mettant en œuvre des phases solides ou des techniques utilisant des phases solides partielles, par condensation de fragments ou par une synthèse en solution classique.

Lorsque les composés selon la présente invention sont synthétisés par la méthode en phase solide, l'acide aminé C-terminal est fixé sur un support solide inerte et comporte des groupes protecteurs de son groupement amino en alpha (et si cela est nécessaire, des protections sur ses groupes fonctionnels latéraux).

A la fin de cette étape, le groupe protecteur du groupement amino terminal est éliminé et on fixe le second acide aminé comportant lui aussi les protections nécessaires.

Les groupes protecteurs N-terminaux sont éliminés après que chaque acide aminé a été fixé, par contre on maintient, bien entendu, la protection sur les chaînes latérales.

Lorsque la chaîne polypeptidique est complète, on clive le peptide de son support et on élimine les groupes de protection latéraux.

La technique de synthèse en phase solide est décrite notamment dans Stewart et al. (1984) et Bodanszky (1984).

Il ne sera pas ici évoqué les détails de la synthèse, il convient simplement de rappeler que les groupes protecteurs préférés pour les groupements alpha-amino sont des groupes protecteurs de type uréthane (BOC ou FMOC). Quant aux réactifs de couplage, ils sont très nombreux, parmi eux il faut bien entendu citer plus particulièrement la N,N'-diisopropyl-carbodiimine (DIC) mise en œuvre en général dans le DMF ou le DCM.

Lorsque l'on souhaitera utiliser des amino-acides non naturels, il pourra être nécessaire de prévoir d'autres types de réactif et en particulier d'autres types de système de protection.

10

15

20

25

30

35

La présente invention concerne également les anticorps polyclonaux ou monoclonaux obtenus par réaction immunologique d'un organisme humain ou animal avec un agent immunogène constitué par un polypeptide selon l'invention, notamment un polypeptide obtenu par culture d'une des cellules précédemment décrites, ou par synthèse chimique comme indiqué précédemment.

L'invention s'étend donc aux anticorps monoclonaux et polyclonaux ou un de leurs fragments, anticorps chimériques, capables de reconnaître spécifiquement un polypeptide selon l'invention.

L'invention comprend aussi les anticorps selon l'invention, caractérisés en ce qu'ils sont marqués.

Les anticorps marqués pourront être, par exemple, immunoconjugués à des enzymes telles que la péroxydase ou la phosphatase alcaline, ou marqués à l'aide de composés fluorescents, de la biotine ou encore radiomarqués. Les techniques de marquage sont bien connues de l'homme du métier et ne seront pas développées dans la présente description.

L'invention s'étend également à l'utilisation d'un polypeptide selon l'invention comme agent antimicrobien, notamment antibactérien, antifongique, antiviral et/ou antiparasitaire, comme agent cytotoxique, à visée notamment anticancéreuse, et/ou comme agent de modulation des processus d'inflammation, de réparation tissulaire et de régulation endocrine, notamment corticostatique.

Selon un autre aspect, l'invention concerne une composition pharmaceutique comprenant un polypeptide selon l'invention, pouvant être associée à un véhicule pharmaceutiquement acceptable.

Une telle composition pourra être administrée par voie systémique, locale ou topique.

Son mode d'administration, sa posologie, ses formes galéniques optimales pourront être déterminés selon les critères généralement pris en compte dans l'établissement d'un traitement adapté à un patient, notamment son âge, son poids corporel, la tolérance de traitement, ses effets secondaires constatés, etc.

L'invention comprend également une composition pharmaceutique comprenant un vecteur selon l'invention capable d'exprimer *in vivo* un polypeptide selon l'invention, pouvant être associé à un véhicule pharmaceutiquement acceptable.

Il est également possible de prévoir l'expression de polypeptides ou leurs fragments in vivo, notamment par le biais de la thérapie génique et en utilisant les vecteurs qui ont été décrits précédemment.

20

25

30

Dans le cadre de la thérapie génique, il est possible également de prévoir l'utilisation des séquences des gènes ou des ADNc précédemment décrits, "nus", cette technique a notamment été développée par la société Vical, qui a montré qu'il était, dans ces conditions, possible d'exprimer le polypeptide dans certains tissus sans avoir recours au support d'un vecteur viral notamment.

Toujours dans le cadre de la thérapie génique, il est également possible de prévoir l'utilisation de cellules transformées ex-vivo, lesquelles pourront être ensuite réimplantées, soit telles quelles, soit au sein de systèmes de type organoïde, tel que cela est également connu dans l'état de la technique (Danos et al. 1993). On peut également envisager l'utilisation d'agents facilitant le ciblage d'un type cellulaire déterminé, la pénétration dans les cellules ou le transport vers le noyau.

Les dites compositions pharmaceutiques sont, selon l'invention, destinées à la prévention et/ou au traitement des infections microbiennes, notamment les infections microbiennes d'origines bactériennes, de bactéries Gram-positives ou Gram-négatives, mycobactériennes, fongiques et virales, ou parasitaires, notamment de spirochètes.

Selon un mode préféré, l'invention concerne avantageusement les compositions pharmaceutiques selon l'invention caractérisées en ce que les infections virales sont des infections liées à des virus à enveloppe, notamment les virus HSV et HIV.

L'invention a également pour objet des compositions pharmaceutiques selon l'invention, destinées à la prévention et/ou au traitement des cancers, notamment les mélanomes, le cancer du foie, de la prostate, du poumon non à petites cellules ou le carcinome colorectal.

L'invention comprend, en outre, des compositions pharmaceutiques selon l'invention, destinées à augmenter les défenses immunitaires, à augmenter les défenses immunitaires en cas d'immunodéficience acquise ou à prévenir l'immunodéficience, notamment pour le traitement du psoriasis, ou à moduler les processus inflammatoires dans les cas notamment de maladies à inflammation chronique.

Les polypeptides selon la présente invention sont plus particulièrement utilisables sous forme topique externe, par exemple sur la peau et les muqueuses. Ces formes topiques externes peuvent être aussi bien à usage pharmaceutique, dermatologique qu'à usage cosmétique.

En particulier, ces compositions peuvent être utilisées comme agent antiseptique pharmaceutique ou bien comme antiseptique dans certains cosmétiques, soit

10

15

20

25

30

pour assurer un nettoyage de la peau ou des phanères et/ou à titre de conservateur des compositions.

Les compositions topiques selon la présente invention peuvent être utilisées notamment dans certaines affections cutanées, oculaires, vaginales ou buccales. Elles peuvent également être utilisées comme agent cosmétique additionnel, notamment dans certains shampooings traitants.

L'invention concerne également la mise en évidence de l'absence ou d'une quantité anormale de protéine ou d'acide nucléique correspondant à la défensine X comme marqueur d'une infection ou de pathologies qui seront décrites ci-après.

L'invention concerne également la mise en évidence d'une forme anormale de la protéine ou la présence d'un acide nucléique anormal correspondant à une défensine mutée qui peut éventuellement être totalement inactive. Dans ce cas, la présence de cette forme anormale peut être un marqueur de prédisposition à certaines affections, notamment l'immunodéficience et/ou des cancers.

C'est pourquoi, la présente invention concerne une méthode de diagnostic d'une immunodéficience et/ou d'une prédisposition à certains types de cancers, caractérisée en ce qu'on met en évidence dans un prélèvement de patient la présence d'une défensine anormale et/ou d'une séquence codant pour une défensine anormale.

Les méthodes de diagnostic selon la présente invention permettent, notamment, la mise en évidence d'une immunodéficience, et/ou d'une prédisposition à un ou des cancers, notamment ceux cités précédemment, en particulier dans des familles à risque. Ce type de diagnostic sera en général effectué par mise en évidence des formes mutées de la protéine ou des séquences d'acide nucléique.

Mais l'invention concerne également des méthodes de diagnostic de l'inflammation, d'immunodéficience, de prédisposition à des affections de type cancer et/ou d'infections dues à des microorganismes ou liées à un déficit immunitaire ou phénomène inflammatoire, caractérisées en ce qu'elles comprennent le dosage d'un polypeptide ou d'un acide nucléique selon l'invention dans un échantillon biologique et la comparaison du résultat dudit dosage obtenu avec la quantité de polypeptide ou d'acide nucléique présente normalement dans un échantillon biologique équivalent.

Dans ce cas, le dosage peptidique permettra, en général, une détection d'une infection microbienne ou parasitaire et/ou d'une inflammation. Les dosages peptidiques peuvent être réalisés par tout procédé connu, ELISA ou RIA par exemple. La mise en évidence d'une forme anormale de la défensine-X peut être réalisée, par exemple, à

15

20

25

30

35

l'aide d'un anticorps monoclonal spécifique de cette forme, en particulier les anticorps objet de l'invention.

Selon un mode de réalisation préféré, l'invention comprend avantageusement les méthodes caractérisées en ce qu'elles mettent en œuvre une sonde et/ou une amorce oligonucléotidique selon l'invention.

On préfèrera en général les méthodes dans lesquelles tout ou partie de la séquence correspondant au polypeptide Def-X est amplifiée préalablement par dosage d'acide nucléique selon l'invention, ces méthodes d'amplification pouvant être réalisées par des méthodes dites PCR ou PCR-like. Par PCR-like on entendra désigner toutes les méthodes mettant en oeuvre des reproductions directes ou indirectes des séquences d'acides nucléiques, ou bien dans lesquelles les systèmes de marquage ont été amplifiés, ces techniques sont bien entendu connues, en général il s'agit de l'amplification de l'ADN par une polymérase; lorsque l'échantillon d'origine est un ARN il convient préalablement d'effectuer une transcription réverse. Il existe actuellement de très nombreux procédés permettant cette amplification, par exemple les méthodes dites NASBA "Nucleic Acid Sequence Based Amplification" (Compton 1991), TAS "Transcription based Amplification System" (Guatelli et al. 1990), LCR "Ligase Chain Reaction" (Landegren et al. 1988), "Endo Run Amplification" (ERA), "Cycling Probe Reaction" (CPR), et SDA "Strand Displacement Amplification" (Walker et al. 1992), bien connues de l'homme du métier.

L'invention concerne en outre des kits ou nécessaires de diagnostic pour la détermination d'une infection microbienne ou parasitaire, d'une inflammation, d'une immunodéficience et/ou d'une prédisposition à des affections de type cancer, caractérisés en ce qu'ils comprennent un anticorps selon l'invention.

Les kits ou nécessaires de diagnostic pour la détermination d'une infection microbienne ou parasitaire, d'une inflammation, d'une immunodéficience et/ou de prédisposition à des affections de type cancer, caractérisés en ce qu'ils comprennent une sonde et/ou une amorce selon l'invention font également partie de l'invention.

L'invention a, enfin, pour objet l'utilisation de polypeptide selon l'invention comme pesticide, notamment pour la culture de végétaux d'intérêt industriel comme, par exemple, les plantes vivrières telles que le mais, le blé, le soja, le riz ou le colza, les plantes fourragères, les arbres fruitiers, la vigne ou les plantes ornementales.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture des exemples ci-après, illustrés par les figures dont les légendes sont décrites ci-dessous.

Légendes des figures

Figure 1

Séquence génomique de hDef-X.

Est présentée la totalité de la séquence d'ADN génomique de hDef-X qui présente une

5 homologie significative avec le gene codant pour hDef-4 (HNP-4).

La séquence présente les sites suivants, dont la présence est déduite par homologie avec la séquence hDef-4 :

	•	CAAT box	1711-1714
	•	TATA box	1758-1767
10	•	mRNA start	1836
	•	exon 1	1836-1874
	•	site d'épissage 1	GTCAGT
	•	insertion Alu	2155-2335
	•	insertion fragment de L1	2710-2780
15	•	site d'épissage 2	CAG
	• '	exon 2	3394-3577
	•	début de phase codante	3406
	•	site d'épissage 3	GTGAGA
	• '	site d'épissage 4	CAG
20	•	exon 3	4164-4379
	•	fin de phase codante	4276
	•	site de polyadénylation	4374-4379.

Figure 2

Alignement des séquences génomiques des défensines humaines Def-X et Def-4 (HNP-

25 4).

Alignement de la totalité de la séquence d'ADN génomique de la nouvelle défensine Def-X présentant une homologie avec l'ADN génomique de hDef-4 (GenBank accession number U18745).

Les annotations présentent les positions sur la séquence de hDef-4 des signaux CAAT box, TATA box, sites d'épissage, débuts et fins d'introns/d'exons, début de transcription, site de polyadénylation.

Figure 3

Alignement des séquences d'ADNc de hDef-4 (HNP-4) et hDef-X.

Les séquences présentent une homologie globale de 61,4 %. L'alignement révèle une insertion d'environ 75 bases en aval du codon STOP, présentes sur la séquence de hDef-

4, mais non sur celle de hDef-X; l'homologie forte reprend sur toute la région comprise entre l'extrémité de cette insertion et celle de l'ADNc. En dehors de cette région d'insertion, le degré d'homologie entre séquences nucléiques est donc remarquable.

Figure 4

5 Séquence peptidique de la protéine hDef-X.

La position des sites de clivage du signal peptide et de la région pro ont été déduites de l'alignement des séquences peptidiques de hDef-4 et hDef-X.

Figure 5

10

20

25

30

Alignement des séquences peptidiques des défensines humaines connues hDef-1, hDef-4, hDef-5, et hDef-6 avec hDef-X.

- * L'étoile indique un acide aminé conservé sur les cinq séquences.
- Le point indique un acide aminé dont la classe est conservée sur les cinq séquences (acide aminé soit identique, soit faisant l'objet d'une substitution conservative).
- ^ six flèches indiquent les positions des six cystéines conservées au travers de la classe des défensines classiques et responsables de la structure tridimensionnelle nécessaire à l'activité de ces peptides.

EXEMPLES

Exemple 1: Identification du gene codant pour hDef-X

Isolement du BAC B0725B12

Afin d'analyser la région 8p23 du génome humain, notamment dans la région connue comme portant des gènes codant pour des défensines humaines, on a isolé un BAC ("Bacterial Artificial Chromosome") correspondant à ladite région. Une banque de BACs couvrant le génome humain complet a été préparée à partir de l'ADN d'une lignée lymphoblastique humaine dérivée de l'individu n° 8445 des familles du CEPH. Cette lignée a été utilisée comme source d'ADN de haut poids moléculaire. L'ADN a été partiellement digéré par l'enzyme de restriction BamH1, puis cloné au site BamH1 du plasmide pBeloBacII. Les clones ainsi obtenus ont été "poolés" et criblés selon une procédure d'analyse tridimensionnelle précédemment décrite pour le criblage des banques de YACs ("Yeast Artificial Chromosome") (Chumakov et al., 1992 et 1995). Les pools tridimensionnels obtenus ont été criblés par PCR à l'aide des amorces encadrant le marqueur SHGC-10793, pour Neutrophil defensin 4 precursor (GeneBank : numéro d'accession U18745); un clone du BAC B0725 B12 a été ainsi isolé.

20

25

30

35

Après digestion par l'enzyme de restriction NotI, la taille de l'insert porté par ce BAC a été déterminée sur un gel d'agarose 0,8 % après migration par électrophorèse en champ alterné (CHEF) (4 heures à 9Volts/cm, avec un angle de 100°, à 11°C en tampon 0,5 x TAE). On a ainsi mis en évidence que le BAC B0725B12 porte un insert de 220 kb, avec un site interne pour l'enzyme NotI.

Localisation chromosomique du BAC B0725B12 par hybridation in situ fluorescente (FISH)

La localisation chromosomique du BAC dans la région candidate 8p23.1-23.2 a été confirmée par hybridation in situ fluorescente (FISH) sur chromosomes métaphasiques, selon la méthode décrite par Cherif et al., (1990).

Séquençage de l'insert du BAC B0725B12

Afin de séquencer l'insert du BAC B0725B12, on a préparé une banque de sous-clones à partir de l'ADN soniqué de ce BAC.

Les cellules issues d'un litre de culture "overnight" ont été traitées par lyse alcaline selon les techniques classiques. Après centrifugation du produit obtenu dans un gradient de chlorure de césium, 12 µg d'ADN du BAC B0725B12 ont été purifiés. 3 µg d'ADN ont été soniqués afin d'obtenir des fragments dont les tailles se distribuent uniformément de 1,2 kb à 1,5 kb. Les fragments obtenus ont été traités dans un volume de 50 µl avec 2 unités de Vent polymérase pendant 20 minutes à 70°C, en présence des 4 déoxytriphosphates (100 µM). Les fragments aux extrémités franches résultant de cette étape ont été séparés par électrophorèse en gel 1 % d'agarose à bas point de fusion (60 Volts pendant 3 heures). Les fragments groupes selon leurs tailles ont été excisés et les bandes obtenues traitées par l'agarose. Après extraction au chloroforme et dialyse sur colonnes Microcon 100, l'ADN en solution a été ajusté à une concentration de 100 ng/µl. Une ligation a été effectuée "overnight" en mettant en présence 100 ng de l'ADN fragmenté du BAC B0725B12 et 20 ng d'ADN du vecteur BluescriptSK linéarisé par digestion enzymatique, et traité par la phosphatase alcaline. Cette réaction a été réalisée dans un volume final de 10 µl en présence de 40 unités/µl de T4 ADN ligase (New England Biolabs). Les produits de ligation ont ensuite servi à transformer par électroporation, soit une souche XL-Blue (pour les plasmides multicopies), soit une souche D10HB (pour les sous-clones issus du BAC). Les clones lacZ⁻ résistant à l'antibiotique ont été repiqués individuellement en microplaques pour stockage et séquençage.

On a ainsi obtenu 960 sous-clones correspondant à l'insertion de fragments de 1,2 kb à 1,5 kb au site BamHI (rendu franc) du plasmide BluescriptSK.

15

20

25

Les inserts de ces sous-clones ont été amplifiés par PCR sur cultures bactériennes conduites "overnight", en utilisant les amorces des vecteurs flanquant les insertions. La séquence des extrémités de ces inserts (en moyenne 500 bases de chaque côté) a été déterminée par séquençage automatique fluorescent sur séquenceur ABI 377, équipé du logiciel ABI Prism DNA Sequencing Analysis (version 2.1.2).

Les fragments de séquence provenant des sous-BACs ont été assemblés par le logiciel Gap4 de R. Staden (Bonfield et al., 1995). Ce logiciel permet la reconstruction d'une séquence complète à partir de fragments de séquences. La séquence déduite de l'alignement des différents fragments est la séquence consensus.

On a enfin utilisé des techniques de séquençage dirigé (marche systématique de l'amorce) pour parfaire les séquences et relier les contigs.

Analyse des séquences pour l'identification de gènes

Les exons potentiels de l'insert du BAC B0725B12 ont été repérés par recherche d'homologie sur les banques publiques de protéines, d'acides nucléiques et d'EST (Expressed Sequence Tags).

Banques de données

On a utilisé des refontes locales des principales banques publiques. La banque de protéines utilisées est constituée par la fusion non redondante des banques Genpept (traduction automatique de GenBank, NCBI; Benson et al., 1996); Swissprot (George et al., 1996) et PIR/NBRF (Bairoch et al., 1996). Les doublons ont été éliminés par le logiciel "nrdb" (domaine public, NCBI; Benson et al., 1996). Les répétitions internes ont ensuite été masquées par le logiciel "xnu" (domaine public, NCBI; Benson et al., 1996). La banque résultante, dénommée NRPU (Non-Redundant Protein-Unique) a servi de référence pour les recherches d'homologies protéiques. Les homologies trouvées avec cette banque ont permis de localiser des régions codant potentiellement pour un fragment de protéine au moins apparenté à une protéine connue (exons codants). La banque d'EST utilisée est composée des sous-sections "gbest" (1-9) de Genbank (NCBI; Benson et al., 1996). Elle contient tous les fragments de transcrits publics.

Les homologies trouvées avec cette banque ont permis de localiser des régions potentiellement transcrites (présentes sur l'ARN messager).

La banque d'acides nucléiques (autres que les EST) utilisée contient toutes autres sous-sections de Genbank et de l'EMBL (Rodriguez-Tome et al., 1996) dont les doublons ont été éliminés comme précédemment.

Logiciels

10

15

20

25

On a utilisé l'ensemble de logiciels BLAST (Altschul et al. 1990) de recherche d'homologies entre une séquence et des banques de données protéiques ou nucléiques. Les seuils de signification utilisés dépendent de la longueur et de la complexité de la région testée ainsi que de la taille de la banque de référence. Ils ont été ajustés et adaptés à chaque analyse.

Exemple 2 : analyse des séquences nucléiques et peptidiques de hDef-X Structure du gène codant pour hDef-X

L'alignement du gène codant pour hDef-X avec ceux codant pour les défensines connues a permis de noter une homologie maximale entre hDef-X et hDef-4 (Figure 2). Le taux global d'homologie des deux séquences nucléiques est de 72 %. Les deux seules régions de l'ADN génomique de hDef-X ne présentant pas d'homologie avec celui de hDef-4 correspondent à deux zones d'insertion de séquence répétée dans la séquence de hDef-X, qui sont absentes sur la séquence de hDef-4 : un élément de type Alu (positions 2155 à 2335) et un fragment d'élément de Line 1 (positions 2710 à 2780).

On note une conservation importante de la région flanquant en 5' la région promotrice, d'où découle probablement une conservation importante des éléments de régulation de la stabilité du messager et de l'expression du gène.

La forte conservation de la séquence de l'exon 1, non traduit, permet de rattacher définitivement la défensine hDef-X à la classe des défensines classiques hématoporétiques, soit hDef-1, 2, 3 et 4, par opposition aux défensines entériques hDef-5 et 6, dont la séquence génomique ne comporte que deux exons, tous deux codants

L'alignement des ADNc de hDef-4 et hDef-X, indiquant une homologie supérieure à 60 %, est présenté Figure 3.

Analyse protéique

La séquence peptidique de la défensine selon l'invention est représentée Figure 4. Les trois domaines de la protéine sont positionnés comme suit :

• peptide signal:

aa 1-19

30 • région pro :

aa 20-63

peptide mature :

aa 64-94.

Les degrés d'homologies spécifiques entre hDef-4 et hDef-X ont été calculés, selon la région de la protéine concernée :

• peptide signal:

63,2 %

région pro :

5.

10

25

30

35

52.3 %

• peptide mature :

37,9 %.

L'homologie globale est de 49,5 %. Ces chiffres confirment la très forte homologie qui existe entre défensines, homologie maximale au niveau des peptides signaux et minimale au niveau des peptides matures.

On retrouve dans la séquence protéique primaire de Def-X les acides aminés conservés dans la classe des défensines classiques, notamment les six cystéines impliquées dans la structure tridimensionnelle de celles-ci (Figure 5).

Afin de prédire les structures secondaires présentes sur la défensine selon l'invention, on a utilisé les logiciels de prédiction de structure secondaire inclus dans le Protein Interpretation Package, Copyright MRC 1994, Medical Research Council, Hillsroad, Cambridge, United Kingdom.

Ces logiciels ont notamment permis de comparer les structures prédites de Def-X et HNP-4. Profils d'hydrophobicité, structures en alpha-hélices, feuillets β , amphiphilicité sont superposables dans les deux peptides, ce qui suggère des processus analogues d'insertion membranaire et de formation de canaux ioniques multimériques pour ces deux défensines.

Exemple 3: Recherche de mutations associées à des cas familiaux de cancers

20 Extraction de l'ADN génomique

L'ADN génomique de patients immunodéficients ou atteints de cancer, est extrait du sang veineux périphérique après lyse cellulaire, digestion protéique, partition organique et finalement précipitation alcoolique, selon des techniques classiques bien connues de l'homme de l'art.

Il est notamment intéressant d'étudier la présence de mutations dans l'ADN génomique d'individus issus de familles à fort taux cancer, tous types de cancers confondus. Une déficience dans un gène de défensine de granulocyte, tel hDef-X peut en effet avoir un rôle dans la prédisposition aux cancers, comme mentionné précédemment. Amplification de l'ADN génomique

Des amorces oligonucléotidiques sont utilisées pour l'amplification génomique des séquences exoniques dérivées du BAC B0725B12; elles sont prédites par analyse informatique, et définies à l'aide du logiciel OSP (Hillier et al., 1991).

Toutes ces amorces contiennent, en amont des bases spécifiquement ciblées par l'amplification, une queue oligonucléotidique universelle commune, destinée à permettre le séquençage des fragments amplifiés (PU : 5'-

10

15

20

25

30

35

TGTAAAACGACGGCCAGT-3' pour les amorces en amont, et RP : 5'-CAGGAAACAGCTATGACC-3' pour les amorces en aval).

Les amorces oligonucléotidiques sont synthétisées selon la méthode des phosphoramidites, sur un synthétiseur GENSET UFPS 24.1.

L'amplification de chaque séquence exonique prédite est réalisée par réaction d'amplification en chaîne par polymérase (PCR), dans les conditions suivantes :

Volume final	50 μΙ
ADN génomique	100 ng
MgCl2	2 mM
dNTP (pour chacun)	200 μΜ
Amorce (pour chacune)	7.5 pmoles
AmpliTaq Gold DNA polymerase (Perkin)	1 unité
Tampon de PCR $(10X = 0.1 \text{ M Tris HCl pH 8.3} 0.5 \text{ M KCl})$	1 X

L'amplification est réalisée dans un thermocycleur Perkin Elmer 9600 ou MJ Research PTC200 avec couvercle chauffant. Après un chauffage à 94°C pendant 10 minutes, 35 cycles sont effectués. Chaque cycle comprend : 30 secondes à 94°C, 1 minute à 55°C et 30 secondes à 72°C. Un segment final d'élongation de 7 minutes à 72°C termine l'amplification.

La quantité de produits d'amplification obtenue est déterminée sur microplaque de 96 puits, par fluorométrie, utilisant l'agent intercalant Picogreen (Molecular Probes).

Détection des polymorphismes/mutations

Les produits de l'amplification génomique par PCR sont séquencés sur séquenceur automatique ABI 377, en utilisant des amorces fluorescentes marquées par les fluorochromes ABI (Joe, Fam, Rox et Tamra) et l'ADN polymérase Thermosequanase (Amersham).

Les réactions sont réalisées en microplaques de 96 puits, sur thermocycleur Perkin Elmer 9600, dans des conditions classiques de cycles de température :

- 8 cycles : dénaturation : 5 sec. à 94°C ; hybridation : 10 sec. ; élongation : 30 sec. à 72°C, puis
 - 13 cycles: dénaturation: 5 sec. à 94°C; élongation: 30 sec. à 72°C.

6 unités de Thermosequanase, et 5-25 ng de produit d'amplification sont utilisés par réaction de séquence.

A l'issue des cycles d'amplification, les produits des réactions de séquence sont précipités dans l'éthanol, resuspendus dans du tampon de charge contenant de la formamide, dénaturés, et déposés sur gels d'acrylamide 4 %; les électrophorèses (2 heures 30 à 3 000 Volts) sont conduites sur séquenceurs ABI 377 équipés des logiciels ABI de collection et d'analyse (ABI Prism DNA Sequencing Analysis Software, version 2.1.2.).

Les séquences obtenues chez des patients atteints des déficiences étudiées, notamment chez des patients issus de familles à forte prédisposition aux cancers, sont comparées aux séquences obtenues chez des sujets contrôles, apparentés et non apparentés. Une analyse statistique (calcul de lod score) permet de conclure quant à la signification de la présence d'un site d'hétérozygotie et à son association avec une prédisposition aux cancers.

Exemple 4: Recherche de mutations ponctuelles

Les mutations ponctuelles identifiées comme indiqué ci-dessus, peuvent ensuite être mises en évidence chez des sujets présentant une potentielle déficience dans le gène codant pour hDef-X, selon de nombreuses méthodes connues de l'homme de l'art. Parmi celles-ci, on peut citer la liste non exhaustive suivante :

- séquençage
- « single nucleotide primer extension » (Syvanen et al., 1990)
- RFLP

10

- recherche de « single strand conformation polymorphism »
 - méthodes basées sur un clivage des régions misappariées (clivage enzymatique par la S1 nucléase, clivage chimique par différents composés tels que la pipéridine ou le tétroxide d'osmium)
 - mise en évidence d'hétéroduplex en électrophorèse
- méthodes basées sur l'utilisation d'« allele specific oligonucleotide » (ASO, Stoneking et al., 1991)
 - méthode OLA (« dual color oligonucleotide ligation assay, Samiotaki et al., 1994)
- méthode ARMS (« amplification refractory mutation system »), ou ASA (« allele specific amplification »), ou PASA (« PCR amplification of specific allele ») (Wu et al., 1989).

REFERENCES

Altschul, Stephen F., Gish W., Miller W., Myers E. W., & Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 215:403-10 (1990).

5

Bairoch A. & Apweiler R. The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 24: 21-25 (1996).

Becker S.A., Zou, Y.Z. & Slagle, B.L. Frequent loss of chromosome 8p in hepatitis B virus-positive hepatocellular carcinomas from China. Cancer Res. 56 (21): 5092-7 (1996).

Benson D. A., Boguski M., Lipman D. J. & Ostell J. GenBank. Nucleic Acids Res. 24: 1-5 (1996).

15

20

Bodansky M., Principles of peptide synthesis, (1984).

Bevins, C.L., Jones, D.E., Dutra, A., Schaffzin, J. & Muenke, M. Human enteric defensin genes: chromosomal map position and a model for possible evolutionary relationships. Genomics 31: 95-106 (1996).

Bonfield J. K., Smith K. F. & Staden R. A new DNA sequence assembly program. Nucleic Acids Res. 23: 4992-9 (1995).

25 Buckholz R.G. Yeast Systems for the Expression of Heterologous Gene Products. Curr. Op. Biotechnology 4: 538-542 (1993).

Carter B.J. Adeno-Associated virus vectors. Curr. Op. Biotechnology 3: 533-539 (1993).

Cherif D., Julier C., Delattre O., Derré J., Lathrop G.M., & Berger R.: Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy - Applications to regional mapping of chromosome 11. Proc.Natl.Acad.Sci. USA. 87: 6639-6643 (1990).

20

25

35

Chumakov I., Rigault P., Guillou S., Ougen P., Billault A., Guasconi G., Gervy P., Le Gall I., Soularue P., Grinas P. et al. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359: 380-386 (1992).

5 Chumakov I.M., Rignault P., Le Gall I. et al. A YAC contig map of the human genome. Nature 377 supplt: 175-183 (1995).

Compton J. Nucleic Acid Sequence-Based Amplification. Nature 350: 91-92 (1991).

Danos O., Moullier P. & Heard J.M. Réimplantation de cellules génétiquement modifiées dans des néo-organes vascularisés. Médecine/Sciences 9:62-64 (1993).

Edwards C.P. et Aruffo A. Current applications of COS cell based transient expression systems. Curr. Op. Biotechnology 4: 558-563 (1993).

Epstein A.: Les vecteurs herpétiques pour le transfert de gènes - Médecine/Sciences 8: 902-911 (1992).

Ganz T. & Lehrer R.I. Defensins. Curr. Op. Immunology. 6: 584-9 (1994).

Ganz T. & Lehrer R.I. Defensins. Pharmac. Ther. Vol. 66: 191-205 (1995).

George D. G., Barker W. C., Mewes H. W, Pfeiffer F. & Tsugita A. The PIR-International Protein Sequence Database. Nucleic Acids Res. 24: 17-20 (1996).

Guatelli J.C. et al. Isothermal in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl. Acad. Sci. USA 87: 1874-1878 (1990).

Hillier L. & Green P. OSP: a computer program for choosing PCR and DNA sequencing primers. PCR Methods Appl. 1: 124-8 (1991).

Ichikawa, T., Nihei, N., Kuramochi, H., Kawana, Y., Killary, A.M., Rinker-Schaeffer, C.W., Barrett, J.C., Isaacs, J.T., Kugoh, H., Oshimura, M. & Shimazaki, J. Metastasis suppressor genes for prostate cancer. Prostate Suppl. 6: 31-35 (1996).

- Kagan, B.L., Ganz, T. & Lehrer, R.I. Defensins: a family of antimicrobial and cytotoxic peptides. Toxicology 87: 131-149 (1994).
- Landegren U., Kaiser R., Sanders J. & Hood L.A ligase-mediated gene detection technique. Science241: 1077-1080 (1988).
 - Lehrer & Ganz. Defensins: endogenous antibiotic peptides from human leukocytes. Ciba Found. Sympo. 171: 276-290 (1992).
- Luckow V.A. Baculovirus systems for the expression of human gene products. Curr. Op. Biotechnology 4: 564-572 (1993).
 - Mallow, E.B., Harris, A., Salzman, N., Russel, J.P., DeBerardinis, R.J., Ruchelli, E., & Bevins, C.L. Human enteric defensins. Gene structure and developmental expression. J. Biol. Chem. 271 (8): 4038-4045 (1996).
 - Martin, E., Ganz, T. & Lehrer, R.I. Defensins and other endogenous peptide antibiotics of vertebrates. J. Leukocyte Biol. 58: 128-136 (1995).
- Olins P.O. et Lee S.C. Recent advances in heterologous gene expression in E. coli. Curr. Op. Biotechnology 4: 520-525 (1993).
 - Perricaudet M., Stratford-Perricaudet L., & Briand P.: La thérapie génique par adénovirus La Recherche 23: 471-473 (1992).
 - Rodriguez-Tome P., Stoehr P. J., Cameron G. N., & Flores T. P. The European Bioinformatics Institute (EBI) databases. Nucleic Acids Res. 24: 6-12 (1996).
- Samiotaki M., Kwiatkowksi M., Parik J., & Landegren U. Dual-color detection of DNA sequence variants through ligase-mediated analysis. Genomics 20: 238-242 (1994).
 - Sparkes, R.S., Kronenberg, M., Heinzmann, C., Daher, K.A., Klisak, I., Ganz, T. & Mohandas, T. Assignment of defensin gene(s) to human chromosome 8p23. Genomics 5 (2): 240-4 (1989).

Stewart, J.M. et Yound, J.D. Solid Phase Peptides Synthesis. Pierce Chem. Company, Rockford, 111, 2ème éd., (1984).

Stoneking M., Hedgecock D., Higuchi R.G., Vigilant L., & Erlich H.A. Population variation of human DNA control region sequences by enzymatic amplification and sequence-specific oligonucleotide probes. Am. J. Hum. Genet. 48: 370-382 (1991).

Sundareshan, T.S. & Augustus, M. Cytogenetics of non-small cell lung cancer: simple technique for obtaining high quality chromosomes by fine needle aspirate cultures. Cancer Genet. Cytogenet. 91 (1): 53-60 (1996).

Syvanen A.C., Aalto-Setala K., Harju L., Kontula K. & Soderlund H. A primer-guided nucleotide incorporation assay in the genotyping of Apo E. Genomics 8: 684-692 (1990).

15

-10

Temin H.M.: Retrovirus vectors for gene transfer. In Kucherlapati R., ed. Gene Transfer, New York, Plenum Press, 149-187 (1986).

Walker G.T., Fraiser M.S., Schram J.L., Little M.C., Nadeau J.G., & Malinowski D.P.

Strand displacement amplification: an isothermal in vitro DNA amplification technique.

Nucleic Acids Res. 20: 1691-1696 (1992).

White, S.H., Wimley, W.C. & Selsted, M.E. Structure, function, and membrane integration of defensins. Curr. Op. Structural Biology. 5: 521-527 (1995).

- Wu D.Y., Ugozzoli L., Pal B.K. & Wallace R.B. Allele-specific amplification of b-globin genomic DNA for diagnosis of sickle cell anemia. Proc. Natl. Acad. Sci. USA 86: 2757-2760 (1989).
- Yaremko, M.L., Wasylyshyn, M.L., Paulus, K.L., Michelassi, F. & Westbrook, C.A. Deletion mapping reveals two regions of chromosome 8 allele loss in colorectal carcinomas. Genes Chromosomes Cancer. 10 (1): 1-6 (1994).

20

REVENDICATIONS.

- 1) Polypeptide isolé choisi parmi les polypeptides suivants :
- a) polypeptide dont la séquence d'acides aminés est la séquence SEQ ID N° 3;
- 5 b) polypeptide homologue, variant ou modifié du polypeptide dont la séquence d'acides aminés est la séquence SEQ ID N° 3;
 - c) polypeptide dont la séquence d'acides aminés est la séquence d'acides aminés d'un fragment biologiquement actif d'un polypeptide tel que défini en a) ou b);
 - d) polypeptide comprenant au moins un fragment tel que défini en c).
 - 2) Polypeptide selon la revendication 1, caractérisé en ce qu'il est constitué de l'un au moins des fragments suivants :
 - a) peptide signal dont la séquence d'acides aminés est la séquence SEQ ID N° 4;
 - b) région pro dont la séquence d'acides aminés est la séquence SEQ ID N° 5;
 - c) peptide mature dont la séquence d'acides aminés est la séquence SEQ ID N° 6; ou
- 15 d) fragment homologue, variant ou modifié d'un peptide selon a), b) ou c).
 - 3) Polypeptide dont la séquence d'acides aminés est la séquence SEQ ID N° 6, ses homologues, variants ou formes modifiées ainsi que leurs fragments biologiquement actifs et les polypeptides les contenant.
 - 4) Acide nucléique codant pour un polypeptide selon l'une des revendications 1 à 3.
 - 5) Acide nucléique choisi parmi les acides nucléiques suivants :
 - a) acide nucléique de séquence SEQ ID N° 1;
 - b) acide nucléique de séquence SEQ ID N° 2;
- c) acide nucléique équivalent, homologue, muté ou modifié, par rapport aux acides nucléiques selon a) ou b);
 - d) fragment des séquences a), b) ou c) ayant au moins dix bases;
 - e) acide nucléique capable de s'hybrider avec l'une des séquences telles que définies en a), b), c) ou d).
- 6) Vecteur de clonage ou d'expression dans une cellule hôte appropriée d'une séquence nucléotidique, caractérisé en ce qu'il comporte une séquence selon l'une des revendications 4 et 5.
 - 7) Vecteur selon la revendication 6, caractérisé en ce qu'il comporte les éléments assurant l'expression de ladite séquence dans ladite cellule hôte.
 - 8) Cellule transformée par un vecteur selon l'une des revendications 6 et 7.

. 5

10.

15

20

25

- 9) Cellule selon la revendication 8, caractérisée en ce qu'il s'agit d'une cellule procaryote.
- 10) Cellule selon la revendication 8, caractérisée en ce qu'il s'agit d'une cellule eucaryote.
- 11) Procédé de production d'un polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'on cultive une cellule selon l'une des revendications 8 à 10 et en ce que l'on récupère le polypeptide produit.
- 12) Polypeptide susceptible d'être obtenu par la mise en œuvre du procédé selon la revendication 11.
- 13) Polypeptide selon l'une des revendications 1 à 3, caractérisé en ce qu'il est obtenu par synthèse chimique.
- 14) Anticorps monoclonal ou polyclonal ou un de leurs fragments, anticorps chimériques, caractérisé en ce qu'il est capable de reconnaître spécifiquement un polypeptide selon l'une des revendications 1 à 3, 12 et 13.
 - 15) Anticorps selon la revendication 14, caractérisé en ce qu'il est marqué.
- 16) Sonde ou amorce oligonucléotidique, caractérisée en ce qu'elle est constituée d'un acide nucléique selon l'une des revendications 4 et 5.
 - 17) Sonde selon la revendication 16, caractérisée en ce qu'elle est marquée.
- 18) Utilisation d'un polypeptide selon l'une des revendications 1 à 3, 12 et 13 comme agent antimicrobien et/ou antiparasitaire.
- 19) Utilisation d'un polypeptide selon l'une des revendications 1 à 3, 12 et 13 comme agent cytotoxique, notamment à visée anticancéreuse.
- 20) Utilisation d'un polypeptide selon l'une des revendications 1 à 3, 12 et 13 comme agent de modulation des processus de l'inflammation, de réparation tissulaire et de régulation endocrine, notamment corticostatique.
- 21) Composition pour usage topique externe, caractérisée en ce qu'elle comporte au moins un polypeptide selon l'une des revendications 1 à 3, 12 et 13.
- 22) Composition selon la revendication 21, caractérisée en ce qu'il s'agit d'une composition cosmétique.
- 23) Composition pharmaceutique comprenant un polypeptide selon l'une des revendications 1 à 3 et 12 et 13.
- 24) Composition pharmaceutique comprenant un vecteur selon l'une des revendications 6 et 7, capable d'exprimer *in vivo* un polypeptide selon l'une des revendications 1 à 3.

15

20

- 25) Composition pharmaceutique selon l'une des revendications 21, 23 et 24, caractérisée en ce qu'elle comprend un véhicule pharmaceutiquement acceptable.
- 26) Composition pharmaceutique selon l'une des revendications 21, 23 à 25, destinée à la prévention et/ou au traitement des infections microbiennes ou parasitaires.
- 27) Composition pharmaceutique selon la revendication 26, caractérisée en ce que les infections microbiennes ou parasitaires sont des infections d'origines bactériennes, de bactéries Gram-positives ou Gram-négatives, mycobactériennes, fongiques, ou liées à des spirochètes.
- 28) Composition pharmaceutique selon la revendication 26, caractérisée en ce que les infections virales sont des infections liées à des virus à enveloppe, notamment les virus HSV et HIV.
- 29) Composition pharmaceutique selon l'une des revendications 21, 23 à 25, destinée à la prévention et/ou au traitement de cancers, notamment les mélanomes.
- 30) Composition pharmaceutique selon la revendication 29, caractérisée en ce que le cancer est le cancer du foie, de la prostate, du poumon non à petites cellules ou le carcinome colorectal.
- 31) Composition pharmaceutique selon l'une des revendications 21, 23 à 25, destinée à augmenter les défenses immunitaires, à augmenter les défenses immunitaires en cas d'immunodéficience acquise ou à prévenir l'immunodéficience, notamment pour le traitement du psoriasis.
- 32) Composition pharmaceutique selon l'une des revendications 21, 23 à 25, destinée à moduler les processus inflammatoires, notamment dans les cas de maladies à inflammation chronique.
- 33) Méthode de diagnostic d'une immunodéficience et/ou d'une prédisposition à des affections de type cancer, caractérisée en ce qu'on met en évidence dans un prélèvement de patient la présence d'une défensine anormale et/ou d'une séquence codant pour une défensine anormale.
- 34) Méthode de diagnostic d'infections dues à des microorganismes ou liées à un déficit immunitaire ou à un phénomène inflammatoire, caractérisée en ce qu'elle comprend le dosage d'un polypeptide selon l'une des revendications 1 à 3 ou d'un acide nucléique selon l'une des revendications 4 et 5 dans un échantillon biologique et la comparaison du résultat dudit dosage obtenu avec la quantité dudit polypeptide, respectivement dudit acide nucléique, présente normalement dans un échantillon biologique équivalent.

15

- 35) Méthode de diagnostic d'inflammation, d'une immunodéficience et/ou d'une prédisposition à des affections de type cancer, caractérisée en ce qu'elle comprend le dosage d'un polypeptide selon l'une des revendications 1 à 3 ou d'un acide nucléique selon l'une des revendications 4 et 5 dans un échantillon biologique et la comparaison du résultat dudit dosage obtenu avec la quantité dudit polypeptide, respectivement dudit acide nucléique, présente normalement dans un échantillon biologique équivalent.
- 36) Méthode de diagnostic selon l'une des revendications 33 à 35, caractérisée en ce qu'elle met en œuvre un anticorps selon l'une des revendications 14 et 15.
- 37) Méthode de diagnostic selon l'une des revendications 33 à 35, caractérisée en ce qu'elle met en œuvre une sonde et/ou une amorce oligonucléotidique selon l'une des revendications 16 et 17.
- 38) Kit ou nécessaire de diagnostic pour la détermination d'une infection microbienne ou parasitaire, d'une inflammation, d'une immunodéficience et/ou de prédisposition à des affections de type cancer, caractérisé en ce qu'il comprend un anticorps selon l'une des revendications 14 et 15.
- 39) Kit ou nécessaire de diagnostic pour la détermination d'une infection microbienne ou parasitaire, d'une inflammation, d'une immunodéficience et/ou de prédisposition à des affections de type cancer, caractérisé en ce qu'il comprend une sonde et/ou une amorce selon l'une des revendications 16 et 17.
- 40) Utilisation d'un polypeptide selon l'une des revendications 1 à 3, 12 et 13, comme pesticide, notamment pour la culture de végétaux d'intérêt industriel.

1/16

ACACCATTTG 10	TCTTCATGTA 20	ACCCCATTAG 30	CTATACCCTC 40	TAGTGCAAGG 50	AAACCATAGG 60
GCCTAGGTCA	CACCATGAGG	CTGCNCTTAC	AAGTTATGCA	AAAACTATGG	ACTTGGGAGA
70	80	90	100	110	120
CCTGTGCGTA	ACAACATCAC	ACNCCAAATT	TAACCAGCTC	TCCCCATAAC	AGCACGCTCA
130	140	150	160	170	180
TGTGTTACTG	AGGAAATGCC	TGTGGATTGG	AGTGTGTTCT	GTGTGCAGGA	GGCTGGTCCA
190	200	210	220	230	240
GGTTTCACTT	CTGCAGGACA	CTGGACGTTT 270	CCCAAAACCA	GCAGACTTTC	CCCACGTGCA
250	260		280	290	300
CACACACCCC 310	TTCTCATTTT 320	GCCTCTACAT 330	CCATATCCAC 340	TGGGCCCTTC 350	AGGCACCTAC 360
TAATGCCCTA	GAACCTAAAA	CCATCATCTG	GGGCCCAGTT	CCCTGAATGG	CCCTAATCTC
370	380	390	400	410	420
TTCCTCTGCT	GGAATGAGTC	CAGTGCCCAC	TTCCTCCAAC	GGTGAAATTG	CTGGGCTGCT
	440	450	460	470	480
ACAGATCAGG	AACTCACTGC	TTCCTCATAG	GGGCAGCCGA	CTTCACTGCT	CTGCAACAGC
490	500	510	520	530	540
GACCACCCCT	AGCGAGGCTT	GAGATGCCTC	TTGCCTCCTT	AAGACTGAGG	GAGACGCTTC
550	560	570	580	590	600
AGCTCTCACT	CCACTGCCCC	AAGTCCTCCA	CAGCGCGGTG	CCTGCTGCCT	TCACACAGAG
610	620	630	640	650	660
CTGCAGGGGN	AGGTCCTGTG	TATCCGGCCT	GCTGGACCAG	CGCTGTGCAC 710	AACCCTCCCA
670	680	690	700		720
TGGCAACAGT	GGCTGCCCGG	CCTGCACACT	GGGCTTGGCA	ACCTCGCTGT 770	AGGTATTTAT
730	740	750	760		780
TCCCTCAGGA 790	GTGACTGCAT 800		TTTCCAGAAA 820		TTTACCTCAC 840
TATGAGGAGG 850	AGGAGGAGGA 860	- · · · · · · · · · · · · · · · · · · ·		TTTTAAAATG 890	TGCACTATTC 900
TCCCTAGGAC 910	TCCCCCTCAA 920				
CCAAGCATAN 970	GAGTAATCAT 980				

2/16

-					•
TGAACTGGCT	TTAGAACAAG	GTGTTTGAGC	ACACAGCACC	GTCTTGCTGC	CACCTTGGCC
1030	1040	1050	1060	1070	1080
		2000		20,70	2000
CCCTCCCTTC	TGAGACCTCT	CACACACATT	NACCTOTOR	CTABBBBBBB	CACCATTTCT
1090	1100	1110	1120	1130	1140
AGGCCCAAAN	CGGTCCTAAA			TCTAAGGTCA	AGAGAAGAGG
1150	1160	1170	1180	1190	1200
		•			
TGGTTGCTCC	CTCTAAGAAA	CCACATGTTG	CATGTACATC	CTTAATTCCG	GAAAGTCCAA
1210	1220	1230	1240	1250	1260
		2200			22.00
· · C	CTGCTTAGCA	ACACAACCCC	A C CTC CTA CT	CCTCTCTCTCCC	CCCCAMMONC
1270	1280	1290	1300	1310	1320
				•	
CAACACACCT	GTTTGTCCAA	ACAGCTTTGA	TTTGTTTTTA	TAGTTGGACC	CCAGGTTCCC
1330	1340	1350	1360	1370	1380
AGGAGGCTGG	TTCAGGCCAT	ATTCCABATC	CTCATCTGTG	TGTGAGTGGC	ATTCTTACCC
1390		1410	1420		1440
1350.	1400	1410	1120	. 1430	1110

	ACAGGGTGGA				
1450	1460	1470	1480	1490	1500
			•		•
ATTCTTTTGG	TCCAGATAGT	TCAGCCTCAG	CACCAGTGTA	GGCATCACAG	GGTCAATTGT
1510	1520	1530	1540	1550	1560
			-	** * * *	
CTTAGGAGTC	ATGGAGAATT	Сатасттест	ACCTACCTCC	CCCTCCCCAC	GGCTGACCAT
1570	1580	1590	1600	1610	1620
15/0	, 1360	1390	1000	1010	1020
AGACAAGGCA	TCCCTCTGTG				
1630	1640	1650	1660	1670	1680
			CAAT box		
				14	
CTGCTCTTAC	CAGCAGGTAT	TTAAACTACT	CAATAGAAAG	TAACCCTGAA	AATTAGGACA
1690	1700	1710	1720	1730	
1030			1,20		2.10
	TF	ATA box			
· ·	AAAGACCCTT				
1750	1760	1770	. 1780	1790	1800
					·
			->mF	WA	
ATGTGGCAAC	ATGAGGCCTG	GGACAGGGGA	CTGTCCTCTG	CCCACTCTGG	TAGCCTCACG
1810					
2010	2020	2500			
	Contra			•	
	Spsite				•
	>######				
	ATCTGTCAGT				
. 1870	1880	1890	1900	1910	1920
•					
CCAGGAAGCT	GTGTTCCCAA	TCTGACCCGT	GATTATGGG	CCACCTCAGA	GGGNACCCAG
1930	1940	1950	1960	1970	1980

:	TGAGGGAATA 1990	TTTTGCCATC 2000			GGCAGTGGCT 2030	ATGAGCTCAG 2040
	TTAATAAACT 2050	CAAGCAGTTT 2060		ACACATGTCC 2080	TACTTAACGT 2090	
	2110 TTCTTGGCCC	ATGGAGTTTT	2130 Alu insert CATTTNATTA	2140 NTTTATTTAT	2150 TTTGCAGAGA	2160 TGGAGTCTCA
	2170 	2180 CAAGCTGGTC		2200 GGGCTCAAGC 2260	2210 GATCTTCCTA 2270	2220 CTTTGGCCTT 2280
		GAGATTGCCT 2300		TCATGGGGGC		
	2350	GTTTTTTGCT 2360	2370	2380	2390	2400
	2410	ACGTAGGGTT 2420	2430	2440	2450	2460
	2470	TTTCCTTTGC 2480	2490	2500	2510	2520
	2530	TTATTGCCTG 2540	2550	2560	2570	2580
	2590 TTAGGTCTTC	2600 AATCCATTGA	2610	2620 GTATGTGGTA	2630	2640
	2650 ATACATATCT 2710	2660 CAAATTCTAA 2720	2670 GGTAGTATAT 2730	2680 ATTAGACACA 2740		
		GAAAATAATA	AACATATTTT	TATCTTTCAA		СТСТАТСТСА
	CTGAACTTGT 2830	TTCACCTATA 2840				
	GGAGACTGCT 2890					GCCCTTGAAT 2940

CCTGCAATGA 2950	ATTAGTTCTC 2960	TACTACAGTG 2970		CTGTTATGAG 2990	GGTCTGGATC 3000
TCTGAAGAGA 3010	AGAGCTCTCA 3020	TTTTCAGAAA 3030	ATAAGCAGGA 3040		GAAATTACTG 3060
AATTAAATCA 3070	CTGTTTCGAT 3080			GTAAATATTT 3110	AAACAGGTAA 3120
AAACAGAAAT 3130	AATGGTAGGG 3140	TCCTTATCAT 3150	CACCGTGAAT 3160	TCCAAGCTAG 3170	CATAGACACT 3180
AAACCTAGAG 3190	ATTCACACTA 3200			GAGGAGTCTC 3230	
GGAGGCCAAT 3250	GGACACCTGC 3260	AACCTCTCCA 3270			CACTGCAGCA 3300
TCCATCTCTG 3310	AGCCTTCTCG 3320			CCTGGCTCCT 3350	
			Spsite	CDS st	tart
ACATCCACTC 3370	CTGCTCTCCC	TCCTCTCCTC 3390	CAGGTGACTA	CAGTTATGAG	GACCCTCACC
3370	•				
		Exon 2	2		
	CCTTTCTCCT 3440	GGTGGCCCTT	CAGGCCTGGG 3460	CAGAGCCGCT 3470	CCAGGCAAGA
CTCCTCTCTG 3430 	CCTTTCTCCT 3440	GGTGGCCCTT 3450 GAAGCAGCCT	CAGGCCTGGG 3460 CCAGCAGATG	CAGAGCCGCT 3470 ACCAGGATGT	CCAGGCAAGA 3480 GGTCATTTAC
CTCCTCTCTG 3430 GCTCATGAGA 3490	CCTTTCTCCT 3440 TGCCAGCCCA 3500	GGTGGCCCTT 3450 GAAGCAGCCT 3510	CAGGCCTGGG 3460 CCAGCAGATG 3520	CAGAGCCGCT 3470 ACCAGGATGT 3530	CCAGGCAAGA 3480 GGTCATTTAC
CTCCTCTCTG 3430 GCTCATGAGA 3490	CCTTTCTCCT 3440 TGCCAGCCCA	GAAGCAGCCT 3510	CAGGCCTGGG 3460 CCAGCAGATG 3520 Sps	CAGAGCCGCT 3470 ACCAGGATGT 3530 ite ###	CCAGGCAAGA 3480 GGTCATTTAC 3540
CTCCTCTCTG 3430 GCTCATGAGA 3490 TTTTCAGGAG 3550 CTACAGACTA	CCTTTCTCCT 3440 TGCCAGCCCA 3500 ATGACAGCTG	GAAGCAGCCT 3510 CTCTCTTCAG 3570 CAGGAGACAG	CAGGCCTGGG 3460 CCAGCAGATG 3520 Sps>### GTTCCAGGTG 3580 GCTCTGGAAT	CAGAGCCGCT 3470 ACCAGGATGT 3530 ite ### AGAGATGCCA 3590 TGGATCTCAG	CCAGGCAAGA 3480 GGTCATTTAC 3540 GCATGCAGAG 3600
CTCCTCTCTG 3430 GCTCATGAGA 3490 TTTTCAGGAG 3550 CTACAGACTA 3610	CCTTTCTCCT 3440 TGCCAGCCCA 3500 ATGACAGCTG 3560 GACAGAAGGA 3620 GCTATACTTA	GAAGCAGCCT 3510 CTCTCTTCAG 3570 CAGGAGACAG 3630 ACATCTCTGG	CAGGCCTGGG 3460 CCAGCAGATG 3520 Sps>### GTTCCAGGTG 3580 GCTCTGGAAT 3640 TCCTGGATTT	CAGAGCCGCT 3470 ACCAGGATGT 3530 ite ### AGAGATGCCA 3590 TGGATCTCAG 3650 TCTCATATCT	CCAGGCAAGA 3480 GGTCATTTAC 3540 GCATGCAGAG 3600 TGGCAGATGT 3660 AAATGGAATA
CTCCTCTCTG 3430 GCTCATGAGA 3490 TTTTCAGGAG 3550 CTACAGACTA 3610 CACTTAGGTG 3670	CCTTTCTCCT 3440 TGCCAGCCCA 3500 ATGACAGCTG 3560 GACAGAAGGA 3620 GCTATACTTA 3680	GGTGGCCCTT 3450 GAAGCAGCCT 3510 CTCTCTTCAG 3570 CAGGAGACAG 3630 ACATCTCTGG 3690 AGATTTTTCT	CAGGCCTGGG 3460 CCAGCAGATG 3520 Sps>### GTTCCAGGTG 3580 GCTCTGGAAT 3640 TCCTGGATTT 3700	CAGAGCCGCT 3470 ACCAGGATGT 3530 ite ### AGAGATGCCA 3590 TGGATCTCAG 3650 TCTCATATCT 3710	CCAGGCAAGA 3480 GGTCATTTAC 3540 GCATGCAGAG 3600 TGGCAGATGT 3660 AAATGGAATA 3720 AAGATATGAC

CAAACAAGCT 3850	TAAGTATATA 3860		TCACCCTGTC 3890	TATATAGGAG 3890	GTTTTAGAAC 3900
3630	3000	3670	. 3680	3690	3900
CTGGAGAGGA	GCCTAAGAAT				
3910	3920	3930	3940	3950	396 0.
TCAACCAAAC	GAGAATGAGT	רייר כא אייר כייר	CTCTCACCAC	これだれなこれでれば	ጥርጥ እጥ ጥ እጥጥ
3970	3980	3990		4.010	4020
			•		
	GAGATTGTTT				
4030	4040	4050	4060	4070	4080
AACATGTGAC	TTCTCCAAGA	TTCCCTTTAC	CACCCACTGC	TGNACCCCGT	ACTCAGTTTC
4090	4100		4120	4130	4140
	•	Spsite ###<	·		
TGATGCTCTC	TCTGGGTCCC	** ** **	AAAGGGCTTG	ATCTGCCATT	GCAGAGTACT
4150	4160	4170	4180	4190	4200
>m>cmcc>mm	TTTGGAGAAC				
4210	4220	4230	4240	4250	4260
					,
	CDS stop	•	•		_
AATCTGCTGC	TACTAAGCTT	GCAGACTAGA	CAAAAAGAGT	TCATAATTTT	CTTTGAGCAT
4270		4290			4320
	•			-	
				•	Poly Ad
					>
TAAAGGGAAT	TGTTATTCTT	ATACCTTGTC	CTCGATTTCC	TGTCCTCATC	CCAAATAAAT
4330	4340	4350	4360		4380
* compcom * * c	>mc>mmmccc	CCTTTTTTTTTTT	· mmmmm		
ACTIGGIAAC 4390	ATGATTTCCG 4400				•
1000	-1100	. 110			

		10	20	. 30	40	-50	
DEF4	GGATCCC	CATTTGTCTT	CAGTGTAACC	C-ATTAGTTA	AACCGCCTACT	rgcaaggaaacca	
			:: ::::::				
DEFX						GCANGGANACCA	
		10	20	30	40	50	
		10	20	30	40	50	
	60	70	80	00	100		
DEF4						110	
DECA						VAATATGGACTTG	
6 B CW						: ::::::::::	
DEFX						ACTATGGACTTG.	
	60	70	. 80	90	100	110	
• • • •							
	120	130		150		170	
DEF4						CAATAACAGCTC	•
						: :::::::::::::::::::::::::::::::::::::	
DEFX	GGAGACC	rgtgcgtaac	AACATCACACI	ICCAAATTTAA	CCAGCTCTCC	CCATAACAGCAC	
*	120	130	. 140	150	160	170	
		•					
	180	190	200	210	220	230	
DEF4	TCTCCTAT	TGTTACTAGG	AAAATGCCTAT	GGATTGGAGT	GTGTTCTGTG	TGCAGGAGGCTG	
	::: : :					::::::::::	
DEFX	GCTCATG					TGCAGGAGGCTG	
	180	190	200	210	220	230	
						200	
	240	250	260	270	280	290	
DEF4					,	GACCTTCCCCAC	
						::: ::::::::	
DEFX						GACTTTCCCCAC	
JU:	240	250	· · · · · · · · · · · · · · · · · · ·	270	280	290	
		. 230	. 200	. 270	200	230	
	300	310	320	330	340	350	
DEF4				,		GCCCTTCAGGCA	
7017						SGCCCITCAGGCA	
DEFX						GCCCTTCAGGCA	
DELY	300	310	320	330	340		
	300	310	. 320	330	340	350	
	360	370	380	200	400	4:1.0	
DEEA					400	410	
DEF4						CCAAATAGCCCTA	
D. D. D. W.			1111111111	•			•
DEFX						CTGAATGGCCCTA	
	360	370	380	390	400	410	-
			,				
	420	430	440	450	460	470	
DEF4	ATTTCTT	CCTCTGCTG	SAATGAGTCCA	GTGCCCACTT	CCTCCAAAGG	rgaaattgctggg	
	:: ::::	::::::::::		:::::::::	::::::: ::	:::::::::::::::::::::::::::::::::::::::	Ċ
DEFX	ATCTCTT	CCTCTGCTG		GTGCCCACTT	CCTCCAACGG'	PGAAATTGCTGGG	
	420	430	440	450	460	470	
	480	490	500	510	520	530	
DEF4	CCTGCAA	CAGATCAGG	AACTCACTGCT	TC-TCATAGG	GGCAGCCGAC	TTCACTGCTCTGG	
	: ::: :	:::::::	:::::::::::	:: ::::::	:::::::::	:::::::::::	•
DEFX	C-TGCTA	CAGATCAGG	AACTCACTGCT	TCCTCATAGG	GGCAGCCGAC	TTCACTGCTCTGC	,
	480	490	500	510	520	530	
			-	_			

	540	550	560	57	0 5	580	590
DEF4		CCACCCCTA					
		:::::::					
DEFX		CCACCCCTA					
	540	550	56	0 5	70 -	580	590
			600	610	620	630	· ·
DEF4	CGCT	 				.co GTGCCTGG	
	::::	•				1::::::	
DEFX	CGCTTCAG	CTCTCACTC	CACTGCCC	CAAGTCCTC	CACAGCGCC	SGTGCCTG-0	CTGCCTTCA
	600	610	62	0 6	30	640	650
	640	650	660	670		, , , , , ,	. oʻ
DEF4		TGCAGGGG-		670 AGCACCCAA	680 GTCCTCCTC		
DB (1		::::::::	•			:::::::::	
DEFX		TGCAGGGGN					
	660	670		80	690	700	710
						* •	
	700	710	720	730	740		
DEF4	•	ATGGCGGCA					
DEFX	*::::::	TTGGCAACA				: ::::::	
DELY	72		30	740	750	760	770
					,,,,	700	,,,
	760	770	780	790	800	81	١٥
DEF4	GGTATTCA	TTCCCTCAG	GAACAACT	GCATTCTTT	TCTCATTTC	CAGAAACCT	CATCCCGT
		:::::::::					
DEFX		TTCCCTCAG					
•	. 78	0 /	90	800	810	820	830
	820	830	840		850	860)
DEF4	TTACCTCA	CTACAAGGA					
	:::::::						
DEFX		CTATGAGGA					TAAAATGT
	84	0 . 8	50	860	870	880	890
	870	880	890	900	910	926	· ·
DEF4		CTCCCTGGG					-
-,	:::::::::::::::::::::::::::::::::::::::					:::::	
DEFX	GCACTATT	CTCCCTAGG	ACTCCCCC	TCAAATAAC	CCAGGAGG	JACCATACC!	AGCTCATTC
	90	9 9	10	920	930	940	950
	000	0.40	050	0.60	07/		•
DEF4	930	940 CCCCCCCAC	950 ************************************	960			80 NCNCTCCTN
DEF4	: :: ::					:::::	
DEFX		CCCAAGCAT					
	96		70	980	990	1000	1010
2							
	990	1000				030	
DEF4							GTGATGCAA
משמח	ACCCTCC				:::::: :: PTCXCCXCX		·
DEFX	AGCCTGCC	CTGAACTG		TO40	1050	1060	
	104	- T	.	1010	1030	1000	٠.

	1050	1060	1070	1080	1090	1100
DEF4	GCTAACACC				AGG-GACTTCTG	
5050						
DEFX			TGCCACCTTG		GTGAGACCTCTG	
		1	070	780 109	0 1100	1110
	1110	1120	1130	1140	1150	1160
DEF4					TGACCTAGAC	
*	*****	: :: :	: : : :: ::	:::::::::::::::::::::::::::::::::::::::	. : :::::::::::::::::::::::::::::::::::	; ; ;; ;
DEFX					NCGGTCCTAAAA	
-	112	0 1	130 1	140 115	0 1160	1170
	1170	1.1	80 110	90 1200	1210	1220
DEF4					CCCTCTAGGAA-	
					:::::::	
DEFX					CCCTCTAAGAAA	
	11	.80	1190	1200 12	10 1220	
DEEA	123	_			1260 1 CCCTATCCAGCA	
DELA				:::: :::		ACACAAGCC
DEFX					 CCCTGCTTAGCA	
. 1				1260 12		
					•	
	1280				1320	
DEF4					CTTACTTGTCTG : : ::::	
						:: ::::
DEFX		CTCC-TCT	CACCCGGGCA'	PTCTCCAACACA	CCTGTTTGTCCA	AACAGCTTT
DEFX 1	GAGGTGGTA	CTCC-TCT		TTCTCCAACAÇA 1320 1	CCTGTTTGTCCA 330 134	
	GAGGTGGTA			1320 1	330 134	
1	GAGGTGGTA 290 13 1340	135	1310 0 136	1320 1	330 134 1380	1390
1	GAGGTGGTA 290 13 1340 GATTTGTTT	000 135 TTATGGTT	1310 0 136 AGACCCCAGG	1320 1 3 1370 G-CCTGGGAGGT	134 1380 CAGTTCAGACCA	0 1390 CATTCCAAA
DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::::	135 TTATGGTT	1310 0 136 AGACCCCAGG ::::::::	1320 1 0 1370 G-CCTGGGAGGT	134 1380 CAGTTCAGACCA	1390 CATTCCAAA
DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT	135 TTATGGTT :::: ::: TTATAGTT	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG	1320 1 1370 1370 C-CCTGGGAGGT :: ::::: CTCCCAGGAGGC	134 1380 CAGTTCAGACCA :::::::::: TGGTTCAGGCCA	1390 CATTCCAAA :::::::
DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT	135 TTATGGTT :::: ::: TTATAGTT	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG	1320 1 0 1370 G-CCTGGGAGGT	134 1380 CAGTTCAGACCA :::::::::: TGGTTCAGGCCA	1390 CATTCCAAA :::::::
DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::: GATTTGTTT 1350 1	135 TTATGGTT ::::::: TTATAGTT .360	1310 0 136 AGACCCCAGG ::::::: GGACCCCAGG 1370 10 14	1320 1 0 1370 G-CCTGGGAGGT :::::: PTCCCAGGAGGC 1380 1	1380 1380 CAGTTCAGACCA :::::::::: TGGTTCAGGCCA 390 140	1390 CATTCCAAA ::::::: TATTCCAAA 0
DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::: GATTTGTTT 1350 1	135 TTATGGTT :::::: TTATAGTT 360 14 GGTGTGTGG	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT	1320 1 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC	1380 1380 CAGTTCAGACCA ::::::::: TGGTTCAGGCCA 390 140 1440 CTCGCAAGGTGT	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA
DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::: GATTTGTTT 1350 1	135 TTATGGTT ::::::: TTATAGTT 360 14 CGTGTGTGGG	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT ::::::::::	1320 1 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC :::::::::::	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA
DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::: GATTTGTTT 1350 1 1400 TCCTCATCT ::::::::	135 TTATGGTT TTATAGTT 360 14 GGTGTGTGGG	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT ::::::::: GTGGCATTCT	1320 1 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC ::::::::::: TAGCCTAGCCTC	1380 1380 CAGTTCAGACCA :::::::::: TGGTTCAGGCCA 390 1440 CTCGCAAGGTGT ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA ::::::::
DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::: GATTTGTTT 1350 1 1400 TCCTCATCT ::::::::	135 TTATGGTT ::::::: TTATAGTT 360 14 CGTGTGTGGG	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT ::::::::::	1320 1 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC ::::::::::: TAGCCTAGCCTC	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA ::::::::
DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT ::::::: GATTTGTTT 1350 1 1400 TCCTCATCT ::::::::	135 TTATGGTT ::::::: TTATAGTT .360 14 TGTGTGTGTGG ::::::: TGTGTGTGA	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT ::::::::: GTGGCATTCT 1430	1320 1 1370 3-CCTGGGAGGT ::::::: PTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC ::::::::: TAGCCTAGCCTC 1440 1	1380 1380 CAGTTCAGACCA :::::::::: TGGTTCAGGCCA 390 1440 CTCGCAAGGTGT ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA ::::::::
DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1	135 TTATGGTT :::::::: TTATAGTT .360 14 TGTGTGTGTGG ::::::: TGTGTGTGA	1310 0 136 AGACCCCAGG ::::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT ::::::::: GTGGCATTCT 1430 70 14	1320 1 1370 3-CCTGGGAGGT :: ::::: PTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC :::::::::: PAGCCTAGCCTC 1440 1 80 1490	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA :::::::: ATACTATGA 0
DEF4 DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::::::	135 TTATGGTT :::::::: TTATAGTT .360 14 GTGTGTGTGG ::::::: TGTGTGTGA 1420 14 CCAGGCTCT	1310 0 136 AGACCCCAGG ::::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::::::::::::::::::::::::::::	1320 1 1370 3-CCTGGGAGGT ::::::: PTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC ::::::::: TAGCCTAGCCTC 1440 1 80 1490 TTAAATATTCCC ::::::::	1380 1380 CAGTTCAGACCA :::::::::::::::::::::::::::::::	1390 CATTCCAAA :::::::: TATTCCAAA 0 1450 ATACAACAA :::::::::::::::::::::::::::::
DEF4 DEFX DEF4 DEFX	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::::: TACACAG-0	135 TTATGGTT ::::::: TTATAGTT .360 14 GTGTGTGTGG ::::::: TGTGTGTGTGA .420 14 CCAGGCTCT ::::::::	1310 0 136 AGACCCCAGG ::::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::::::::::::::::::::::::::::	1320 1 1370 1370 1370 1370 1470 1430 1430 1430 1440 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA :::::::: TATTCCAAA 0 1450 ATACAACAA :::::::::: ATTCCAAA 0 1510 AGTTCAGCCT ::::::::
DEF4 DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::::::	135 TTATGGTT :::::::: TTATAGTT .360 14 GTGTGTGTGG ::::::: TGTGTGTGA 1420 14 CCAGGCTCT	1310 0 136 AGACCCCAGG ::::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::::::::::::::::::::::::::::	1320 1 1370 3-CCTGGGAGGT ::::::: PTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC ::::::::: TAGCCTAGCCTC 1440 1 80 1490 TTAAATATTCCC ::::::::	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA :::::::: TATTCCAAA 0 1450 ATACAACAA :::::::::::::::::::::::::::::
DEF4 DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::::: TACACAG-0	135 TTATGGTT ::::::: TTATAGTT 360 14 CGTGTGTGG ::::::: TGTGTGTGA L420 14 CCAGGCTCT :::::::: CCAGGCTGT	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::: GTGGCATTCT 1430 70 14 CCTGGTGGCT ::::::::: CCCAGTGGCT 1490	1320 1 1370 1370 1370 1370 1470 1430 1430 1430 1440 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490 1440 1490	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA :::::::: TATTCCAAA 0 1450 ATACAACAA :::::::::: ATTCCAAA 0 1510 AGTTCAGCCT ::::::::
DEF4 DEF4 DEFX DEF4	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::: TACACAG-0 1470	135 TTATGGTT ::::::: TTATAGTT 360 14 CGTGTGTGGA 1420 1420 1440 CCAGGCTCT ::::::: CCAGGCTGT 1480	1310 0 136 AGACCCCAGG :::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::: GTGGCATTCT 1430 70 14 CCCTGGTGGCT :::::::: CCCAGTGGCT 1490	1320 1 1370 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC :::::::: TAGCCTAGCCTC 1440 1 80 1490 TTAAATATTCCC :::::::: TTCCAATATTCTT 1500 40 1550	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA :::::::: ATACTATGA 0 1510 AGTTCAGCCT :::::::: AGTTCAGCCT 520
DEF4 DEF4 DEF4 DEF4 DEFX	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::: TACACAG-0 1470 1520 CAGCCACC ::::::::	135 TTATGGTT ::::::: TTATAGTT .360 14 TGTGTGTGGA L420 14 CCAGGCTCT ::::::: CCAGGCTCT 1480 0 15 AGCATAGGT	1310 0 136 AGACCCCAGG ::::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::: GTGGCATTCT 1430 70 14 CCTGGTGGCT :::::::: CCCAGTGGCT 1490 530 15 TATCATGGGGT ::::::::	1320 1 1370 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC :::::::: TAGCCTAGCCTC 1440 1 80 1490 TTAAATATTCCC :::::::: TTCAATATTCTT 1500 40 1550 CAATTGTCTTAC	1380 1380 CAGTTCAGACCA ::::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA :::::::: ATACTATGA 0 1510 AGTTCAGCCT :::::::: AGTTCAGCCT 20 1570 AATCCACAGT
DEF4 DEF4 DEFX DEF4 DEFX	GAGGTGGTA 290 13 1340 GATTTGTTT :::::::: GATTTGTTT 1350 1 1400 TCCTCATCT :::::::: TCCTCATCT 1410 1 1460 TATGCAGGG :::::: TACACAG-0 1470 1520 CAGCCACC ::::::::	135 TTATGGTT ::::::: TTATAGTT .360 14 TGTGTGTGGA L420 14 CCAGGCTCT ::::::: CCAGGCTCT 1480 0 15 AGCATAGGT	1310 0 136 AGACCCCAGG ::::::::: GGACCCCAGG 1370 10 14 GTGGCATTTT :::::::: GTGGCATTCT 1430 70 14 CCTGGTGGCT :::::::: CCCAGTGGCT 1490 530 15 TATCATGGGGT ::::::::	1320 1 1370 1370 3-CCTGGGAGGT ::::::: TTCCCAGGAGGC 1380 1 20 1430 GATCCTAGTCTC :::::::: TAGCCTAGCCTC 1440 1 80 1490 TTAAATATTCCC :::::::: TTCAATATTCTT 1500 40 1550 CAATTGTCTTAC	1380 1380 CAGTTCAGACCA :::::::::::::::::::::::::::::::	1390 CATTCCAAA ::::::: TATTCCAAA 0 1450 ATACAACAA :::::::: ATACTATGA 0 1510 AGTTCAGCCT :::::::: AGTTCAGCCT 20 1570 AATCCACAGT

	158			1600	1610		1630
DEF4					GTAGACGAGG		
DEFX					::::::::: TAGACAAGO		TCTGT
	1590				520 16		
	164	0 16	· Γ Ο	1660	1670	1600	1600
DEF4					TG70 TCTCAACTG0		1690 AGTTA
	: :::::	• • • • • •			::::::::	::: ::	:: ::
DEFX			•		TCTCAACTGC		AGGTĄ
1	040 10	650	1660	16/0	1680	1690	
		CAAT b				· ·	
DEF4		017		1720 	1730 TAGGACACCT	1740	1750
0664				*	:::::::::	•	
DEFX					TAGGACACCT		
1	700 1	710	1720	1730	1740	1750	
	TATA box	к					•
		1	770	1780	1790	1800	
DEF4	TTAAATAA						
DEFX	*.			:::::: CTTGTGCACA	:::::: GCTGCTGATO		
	1760	1770	1780	1790	1800	1810	
	1760	1770				1810	Sasina
•	1760	1820	mRNA sta	art>		1810	SpSite
DEF4	1810	1820	mRNA st	art> 1840		1860	
DEF4	1810 TGGAACAC	1820 AGGACTGCT	mRNA sta 1830 GTCTGCCC	art> 1840 TCTCTGCTCC	1850 CCCTGCCTAC	1860 CTTGAGGATC	TGTAA
	1810 TGGAACACA ::: ::: TGGGACAG	1820 AGGACTGCT ::::: GGGACTGTC	mRNA sta 1830 GTCTGCCC ::::::	art> 1840 TCTCTGCTCG :::::::	1850 CCCTGCCTAC :: :::	1860 CTTGAGGATC ::: : ::: CTTAACAATC	TGTAA
DEF4	1810 TGGAACACA ::: ::: TGGGACAG	1820 AGGACTGCT :::::: GGGACTGTC 1830	mRNA sta 1830 GTCTGCCC ::::::: CTCTGCCC 1840	art> 1840 TCTCTGCTCG ::::::::	1850 SCCCTGCCTAC :: ::: SCCTCACGTAC 1860	1860 CTTGAGGATC ::: : ::: CTTAACAATC 1870	TGTAA
DEF4	1810 TGGAACACA ::: ::: TGGGACAG	1820 AGGACTGCT :::::: GGGACTGTC 1830	mRNA sta 1830 1830 GTCTGCCC ::::::: CTCTGCCC 1840	art>	1850 CCCTGCCTAC :: :::: CCCTCACGTAC 1860	1860 CTTGAGGATC ::: : ::: CTTAACAATC 1870	TGTAA ::::: TGTCA
DEF4	1810 TGGAACAC. ::::::: TGGGACAG	1820 AGGACTGCT :::::: GGGACTGTC 1830 18	mRNA st. 1830 GTCTGCCC ::::::: CTCTGCCC 1840	art> 1840 TCTCTGCTCC :::::::: ACTCTGGTAC 1850 1890 TCACATTGAC	1850 CCCTGCCTAC :: ::: CCCTCACGTAC 1860 1900 GGTTTCAATAT	1860 CTTGAGGATC ::: : ::: CTTAACAATC 1870 1910 TGAAGCTGTC	TGTAA ::::: TGTCA 1920 GTCCCC
DEF4 DEF4 DEFX	1810 TGGAACAC. ::::::: TGGGACAG 1820 GTAACACA. :::::::	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : :::	mRNA st. 1830 GTCTGCCC. ::::::: CTCTGCCC. 1840 180 CTTAAACTT	art> 1840 TCTCTGCTCC :::::::: ACTCTGGTAC 1850 1890 TCACATTGAC ::::::::	1850 CCCTGCCTAC :: :::: CCCTCACGTAC 1860	1860 CTTGAGGATC :::::::: CTTAACAATC 1870 1910 TGAAGCTGTC AGGAAGCTGTC	TGTAA ::::: TGTCA 1920 TCCCC
DEF4 DEF4 DEFX	1810 TGGAACAC. ::::::: TGGGACAG 1820 GTAACACA. :::::::	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : :::	mRNA sta 1830 GTCTGCCC :::::: CTCTGCCC 1840 180 CTTAAACTT :::::::	art> 1840 TCTCTGCTCC :::::::: ACTCTGGTAC 1850 1890 TCACATTGAC ::::::::	1850 SCCTGCCTAC :: ::: SCCTCACGTAC 1860 1900 SGTTTCAATAT	1860 CTTGAGGATC ::: : ::: CTTAACAATC 1870 1910 TTGAAGCTGTC	TGTAA ::::: TGTCA 1920 TCCCC
DEF4 DEF4 DEFX	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC	mRNA sta 1830 GTCTGCCC ::::::: CTCTGCCC 1840 STTAAACTT ::::::: CTTAAACTT	art> 1840 TCTCTGCTCC :::::::: ACTCTGGTAC 1850 1890 TCACATTGAC :::::::: TCATACTGCC	1850 SCCCTGCCTAC :: ::: SCCTCACGTAC 1860 1900 SGTTTCAATAT ::: :: GGTTCCACCCA	1860 CTTGAGGATC :::::::: CTTAACAATC 1870 1910 TGAAGCTGTC AGGAAGCTGTC	TGTAA ::::: TGTCA 1920 TCCCC
DEF4 DEF4 DEFX	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890	mRNA st. 1830 GTCTGCCC :::::: CTCTGCCC 1840 180 CTTAAACTT 1900	art>	1850 SCCCTGCCTAC :: ::: SCCTCACGTAC 1860 1900 SGTTTCAATAT ::: :: GGTTCCACCCA	1860 SCTTGAGGATC :::::::::: SCTTAACAATC 1870 1910 STGAAGCTGTC :::::::::::::::::::::::::::::::::	TGTAA ::::: TGTCA 1920 GTCCCC :::: GTTCCCC
DEF4 DEF4 DEF4	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880 193 AGTCTGAC :::::::	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890 0 19 CTCTCACTC : ::	mRNA sta 1830 1830 GTCTGCCC ::::::: CTCTGCCC 1840 ISO CTTAAACTT 1900 ISO I	1840 TCTCTGCTCG ::::::::: ACTCTGGTAC 1850 1890 TCACATTGAC ::::::::::::::::::::::::::::::::::::	1850 SCCCTGCCTAC :: :::: SCCTCACGTAC 1860 1900 SGTTTCAATAT :::::: GGTTCCACCCA 1920 1960 ACCCAGCGTGA	1860 SCTTGAGGATO :::::::::: SCTTAACAATO 1870 1910 TTGAAGCTGTO :::::::::: AGGAAGCTGTO 1930 1970 AAGCCCCTGCT	TGTAA ::::: TGTCA 1920 GTCCCC :::: GTTCCC 1980 GGGGAA ::::
DEF4 DEF4 DEFX	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880 193 AGTCTGAC ::::::: AATCTGAC	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890 0 19 CTCTCACTC : :: CCGTGATTA	mRNA sta 1830 1830 GTCTGCCC ISSUE CTCTGCCC 1840 ISSUE CTTAAACTT 1900 ISSUE ISSUE	art> 1840 TCTCTGCTCG ::::::::: ACTCTGGTAG 1850 1890 TCACATTGAG :::::::::::::::::::::::::::::::::	1850 SCCCTGCCTAC :: :::: SCCTCACGTAC 1860 1900 SGTTTCAATAT :::::: GGTTCCACCC 1920 1960 ACCCAGCGTG	1860 CTTGAGGATO 1870 1910 TTGAAGCTGTO 1930 1970 AAGCCCCTGC	TGTAA ::::: TGTCA 1920 GTCCCC :::: GTTCCC 1980 GGGGAA ::::
DEF4 DEF4 DEF4	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880 193 AGTCTGAC ::::::: AATCTGAC	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890 0 19 CTCTCACTC : ::	mRNA sta 1830 1830 GTCTGCCC ::::::: CTCTGCCC 1840 ISO CTTAAACTT 1900 ISO I	1840 TCTCTGCTCG ::::::::: ACTCTGGTAC 1850 1890 TCACATTGAC ::::::::::::::::::::::::::::::::::::	1850 CCCTGCCTAC :: :::: CCCTCACGTAC 1860 1900 GGTTTCAATAT ::::::: GGTTCCACCCA 1920 1960 ACCCAGCGTGA CCCAGCGTGA	1860 CTTGAGGATO 1870 1910 TGAAGCTGTO 1930 1970 AAGCCCCTGC	TGTAA ::::: TGTCA 1920 GTCCCC :::: GTTCCC 1980 GGGGAA ::::
DEF4 DEF4 DEF4 DEFX	1810 TGGAACACA :::::::: TGGGACAG 1820 GTAACACA ::::::::: GTAATACA 1880 193 AGTCTGAC ::::::: AATCTGAC 1940	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890 0 19 CTCTCACTC : :: CCGTGATTA 1950	mRNA sta 1830 1830 GTCTGCCC ::::::: CTCTGCCC 1840 180 CTTAAACTT 1900 1900	art> 1840 TCTCTGCTCG ::::::::: ACTCTGGTAG 1850 1890 TCACATTGAG ::::::::: TCATACTGCG 1910 1950 CCCCAGAGGG ::::::::: CCTCAGAGGG 1970 2010	1850 CCCTGCCTAC :: :::: CCCTCACGTAC 1860 1900 GGTTTCAATAT :::::: GGTTCCACCCA 1920 1960 ACCCAGCGTGA .: ::: GNACCCAGTGG 1980 2020	1860 CTTGAGGATC ::::::::: CTTAACAATC 1870 1910 TGAAGCTGTC 1930 1970 AAGCCCCTGCC :::::::::: AGGGAA-TATC 1990 2030	TGTAA ::::: TGTCA 1920 STCCCC :::: STTCCC 1980 SGTGAA ::: STTGG
DEF4 DEF4 DEF4	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880 193 AGTCTGAC ::::::: AATCTGAC 1940 199 CTTCTATC	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890 0 19 CTCTCACTC : :: CCGTGATTA 1950 0 20 TGGGTGTC	mRNA sta 1830 1830 GTCTGCCC ISSUE CTCTGCCCA 1840 STTAAACTT 1900 STGGGGCCA ISSUE ISSUE ATGGGGCCA 1960 CTGGCGGCCA	art> 1840 TCTCTGCTCG :::::::: ACTCTGGTAG 1850 1890 TCACATTGAG :::::::: TCATACTGCG 1910 1950 CCCCAGAGGG :::::::: CCTCAGAGGG 1970 2010 6CTGGGGGGTA	1850 CCCTGCCTAC :::::: CCCTCACGTAC 1860 1900 GGTTTCAATAT :::::: GGTTCCACCCA 1920 1960 ACCCAGCGTGA :::::: GNACCCAGTGA 1980 2020 ATGGCTACTA	1860 CTTGAGGATC ::::::::: CTTAACAATC 1870 1910 TGAAGCTGTC 1930 1970 AAGCCCCTGCT ::::::::: AGGGAA-TATT 1990 2030 GCTAAGTCAA	TGTAA ::::: TGTCA 1920 TCCCC :::: GTTCCC 1980 TGTGAA ::: TTTG 2040 TAGAGA
DEF4 DEF4 DEF4 DEFX	1810 TGGAACACA ::::::: TGGGACAG 1820 GTAACACA :::::::: GTAATACA 1880 193 AGTCTGAC ::::::: AATCTGAC 1940 199 CTTCTATC	1820 AGGACTGCT :::::: GGGACTGTC 1830 18 AAAC : ::: ATACAAAAC 1890 0 19 CTCTCACTC : : : CCGTGATTA 1950 0 20 TGGGTGTC ::::	mRNA sta 1830 1830 GTCTGCCC ISSUE CTCTGCCCA 1840 ISSUE CTTAAACTT 1900 ISSUE ATGGGGCCA ISSUE ATGGGGCCA 1960 ISSUE ISSUE	art> 1840 TCTCTGCTCG ::::::::: ACTCTGGTAG 1850 1890 TCACATTGAG ::::::::: TCATACTGCG 1910 1950 CCCCAGAGGG ::::::::: CCTCAGAGGG 1970 2010 CCTGGGGGGTA	1850 CCCTGCCTAC :::::: CCCTCACGTAC 1860 1900 GGTTTCAATAT :::::: GGTTCCACCCA 1920 1960 ACCCAGCGTGA :::::: GNACCCAGTGA 1980 2020 ATGGCTACTA	1860 CTTGAGGATC ::::::::: CTTAACAATC 1870 1910 TTGAAGCTGTC 1930 1970 AAGCCCCTGCT :::::::: AGGGAA-TATT 1990 2030 GCTAAGTCAA	TGTAN ::::: TGTCA 1920 TCCCC :::: ETTCCC 1980 TGTGAN ::: TTTG 2040 TAGAGA ::

	2050	2060	207	0 208	30 20	90 2100
DEF4	AACTCAAAA					CAATAAAGACGAT
DEFX						::::::::::::::::::::::::::::::::::::::
	2050				2090	2100
					•	•
		2110				
DEF4		AATTOTTO				
DEFX						ATTCATGTTCTTG
				2140		2160
	•	•		نے		
DEF4					CAG	-GTCCTA
DEFX	GCCCATGGA	GTTTTCATTT	NATTANTTT			AGTCTCACTATGT
	2170	2180			2210	
DERA		-GGTCT		2160	TTC	
DEF4		:::::		GITT		
DEFX	TGCTCAAGC					TGGCCTTTGAAAG
	2230	2240	2250	2260	2270	2280
	•		•			. 0170
DEF4						2170 AATCAGGTT
DEFA						111111111
DEFX	CGCTGAGAT	TGCCTGTGTG		and the second s		GATTAATCAGATT
	2290	2300	2310	2320	2330	2340
	2180	2190	2200	2210	2220	2230
DEF4						TATTTACCCCTTC
	::::::		.::::::	::::::::		::::::::
DEFX						TATTTACCCATTC
	2350	2360	2370	2380	2390	2400
	2240	2250	2260	2270	2280	. 2290
DEF4						TTTCCCTCAGTTG

DEFX	TAACACGT	AGGGTTTGCAF 2420				TTTCACTCAGTTG 2460
	2410	2420	2430	2440	2450	2400
	2300	2310	2320	2330	2340	2350
DEF4						CTTGTCTATTTTC
						COMMCONCONTONO
DEFX	ATGGTTTC	2480		2500	2510	CTTGTCTATTTTC 2520
	2470	2400	2450	. 2500	2310	
	2360	2370	2380			
DEF4						TTACTCACGTCAAT
חפפע	: :::: C-NTTT					TTGCCCAGATTAAT
DEFX	2530	2540				

	2420	24	30	2440	2450	2460	2470
DEF4						TGGTTTCAGGT	
DEFX						TGGTTTCAGAT	
	2590			2610		2630	
					2510		2530
DEF4						TACATGTTGT	
DEFX					::::::: TGATTTTTG	TATGTGGTATA	11: :::
	2640			2660	2670	2680	2690
	25						
DEF4		GTATGCAC					
DEFX		:::: :: GTATACAT	-	ጥጥርጥል አርር	ጥ ል ርጥልጥልጥል	TTAGACACATA	.C.), » ФСФСФ
<i>-</i>						2740	
•			*				
	•		50			257	
DEF4						CTTACAC	,
DEFX	СТАТТТАС					::::::: ATCTTTCAATC	
				2780	2790	2800	2810
	•						
						20 . 263	
DEF4						TCATTGTCCTC	
DEFX						: ::::::: TTGCTGTCCTC	
<i>DD</i> (2860	
					:		
	2640	•				80 269	•
DEF4						CCTTCATGAG	
DEFX						CCTTCATGAG	
		80				2920	2930
	,						•
						2740 2	
DEF4						AATTCAGGTC1	
DEFX						AATTCAGGTC	· ·
			2950			2980	2990
							,
5554	2760					2800	
DEF4						AAATAAGAGG ::::::::	
DEFX						.AAATAAGCAG	
		000					40
		.					
DEE4						2860	
DEF4						AATTATAADAT ::::::::	
DEFX						GCAATATTAA	
	3050			. 30		090	

	2880			2910		
DEF4	CAGGAAATATTA			;aaaaatgcc ::: ::::		
DEFX	-AGTAAATATTT	'AAACAGG'I				
. 3	100 3110	31	.20	3130	3140	3150
	2940	2950	2960	2970	2980	
DEF4	TCAACTTCAACC					
•	: :: : ::: :	::: :: :::	:::::::		:: ::	
DEFX	TGAATTCCAAGC					AAAGCTGGG
	3160 3	170	3180	3190	3200	3210
29	90 3000	3010	3020	3030	3040	•
	AGAGCAGAGGAG					
	:::::::::::::::::::::::::::::::::::::::					
DEFX	AGAGCAGAGGAG					
	3220	3230	3240	3250	3260	3270
. 30	50 3060	3070	3080	3090	3100	
DEF4	AAATGCACACCT			· · · · · · · · · · · · · · · · · · ·		
0001	111111 1111			:: ::		
DELX	AAATGCCTACCT 3280	3290		-AGCATCC 3300	ATCTCTGAGC 3310	CTTCTCGCA 3320
	3200	3230.		3300	3310	3320
	10 3120					
DEF4	GAA-AGCTATAA					
DEFX	GCAGAGCTATAA					
DULK		3340		3360		3380
,						
_					exon2 -	
DÉF4	170 CTCCAGG			3200		3220 TTCTCTTCC
DELT				::::::		::::: :::
DEFX	CTCTCCTCCAGG	TGACTACAGT			CTCTCTGCCT	TTCTCCTGG
	3390	3400	3410	3420	3430	3440
	3230	3240	3250	3260	3270	3280
DEF4	TAGCCCTCCAG	STCCGGGCAG	CCCACTCC	AGGCAAGAGGT	GATGAGGCTC	CAGGCCAGG
	: ::::: ::::					::: ::::
DEFX	TGGCCCTTCAGG	CCTGGGCAGA 3460	AGCCGCTCC/ 3470	AGGCAAGAGCT 3480	CATGAGATGC	CAGCCCAGA 3500
	3430	3400	3470	J400 .	3430	3300
·	3290	3300		3320	3330	3340
DEF4	AGCAGCGTGGG	CAGAAGACC.			rgcatgggat/ : :: : :::	
DEFX	AGCAGCCTCCA					
	3510	3520	3530	3540	3550	3560

		>				
	3350	3360	3370	3380	3390	3400
DEF4						TAGAGAGACGG
						::::: ::: ::
DEFX						TAGACAGAAGG
DEEX						
*	3570	3580	3590	3600) 3(310
				3440		
DEF4	ATGGGAGAT	GGGCTCTGG	AATCACATCI	CAATGGTGGAT	rgtcacttago	STGGCTTTACTT
	: :::::		111 - 1111	::: ::: :::		
DEFX	ACAGGAGAC	AGGCTCTGG	AATTGGATC1	CAGTGGCAGAT	TGTCACTTAG	TGGCTATACTT
36	20 36:	30 3	640 3	3650 36	360 36	70
	* * * * * * * * * * * * * * * * * * * *					
	3470	3480	3490	3500	3510	3520
DEF4						AACAAATGTAA
						11 1111 111
DEFX						AAGAAATCTAA
				3710 37		
30	00 30	30 3	700	3/10 3/	120 31	
	2520	25.40	2556	25.60	2000	
				3560		,
DEF4						TCGCTAGGGTT
				i .		** *** **
DEFX	'.					TCACTAGATTT
. 37	40 3,7	50 3	760 3	3770 37	780 37	90
			•			
	3590	3600	3610	3620	3630	
DEF4	AAGATATGG	AGAGACAGA	TTGACCAGTT	CTTTCTGGATC	CTANACAAGTA	\-GATATTAT
	::::::	::::			: :::::	
DEFX						AGCTTAAGTAT
DEFX	AAGATATAA	GGAGATG	CTACCTAGT	CCTTCTGGAGG	CAGACAAACA	AGCTTAAGTAT
	AAGATATAA	GGAGATG	CTACCTAGT	CCTTCTGGAGG		
38	AAGATATAA 00 38	GGAGATG 10	CTACCTAGTT 3820	CCTTCTGGAGG 3830	CCAGACAAACA 3840	AGCTTAAGTAT 3850
38 36	AAGATATAA 00 38 40 3	GGAGATG 10 650	CTACCTAGTT 3820 3660	CCTTCTGGAGG 3830 3670	CCAGACAAACA 3840 3680 :	AAGCTTAAGTAT 3850 3690
38 36	AAGATATAA 00 38 40 3 AG-GGAAAA	GGAGATG 10 650 TATTTCATT	CTACCTAGTT 3820 3660 CTGCCAACAA	3830 3670 3AGGAAATTTT	3840 3680 AAAAACTGGAG	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG
38 36 DEF4	AAGATATAA 00 38 40 3 AG-GGAAAA	GGAGATG 10 650 TATTTCATT	CTACCTAGTT 3820 3660 CTGCCAACAA	3830 3670 3AGGAAATTTI	CCAGACAAACA 3840 3680 AAAAACTGGAG	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG
38 36 DEF4	AAGATATAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	3670 3670 3670 AAGGAAATTTI	CCAGACAAACA 3840 3680 AAAAACTGGAG : :: ::::: AGAACCTGGAG	AGCTTAAGTAT 3850 8690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4	AAGATATAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA	GGAGATG 10 650 TATTTCATT	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	3670 3670 3670 AAGGAAATTTI	CCAGACAAACA 3840 3680 AAAAACTGGAG	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG
38 36 DEF4 DEFX	AAGATATAA 00 38 40 3 AG-GGAAAA : ::::: ATAGGAAAA 3860	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	CCTTCTGGAGG 3830 3670 AAGGAAATTTA :::: :::: IAGGAGGTTTTA 3890	CCAGACAAACA 3840 3680 AAAAACTGGAG : :: ::::: AGAACCTGGAG 3900	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX	AAGATATAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::: CTGTCTATAT 3880	3830 3670 3670 AAGGAAATTTA 1:::::::::::::::::::::::::::::::	CCAGACAAACA 3840 3680 AAAAACTGGAC : :: ::::: AGAACCTGGAC 3900	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG :::::::: SAGGAGCCTAAG 3910 3750
38 36 DEF4 DEFX	AAGATATAA 00 38 40 3 AG-GGAAAA : ::::: ATAGGAAAA 3860 700 3 AGTATGTTC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	TCCTTCTGGAGG 3830 3670 AAGGAAATTTA ::::::::::::::::::::::::::	CCAGACAAACA 3840 3680 AAAAACTGGAC : :: ::::: AGAACCTGGAC 3900 3740 CACAAATCAG	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG :::::::: GAGGAGCCTAAG 3910 3750 AGCAAAAGAGAA
38 36 DEF4 DEFX	AAGATATAA 00 38 40 3 AG-GGAAAA : ::::: ATAGGAAAA 3860 700 3 AGTATGTTC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	TCCTTCTGGAGG 3830 3670 AAGGAAATTTA ::::::::::::::::::::::::::	CCAGACAAACA 3840 3680 AAAAACTGGAC : :: ::::: AGAACCTGGAC 3900 3740 CACAAATCAG	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG :::::::: SAGGAGCCTAAG 3910 3750
38 36 DEF4 DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3670 3730 3730	CCAGACAAACA 3840 3680 AAAAACTGGAG : :: ::::: AGAACCTGGAG 3900 3740 CACAAATCAGA	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG :::::::: GAGGAGCCTAAG 3910 3750 AGCAAAAGAGAA
38 36 DEF4 DEFX 3 DEF4	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3670 3730 3730	CCAGACAAACA 3840 3680 AAAAACTGGAG : :: ::::: AGAACCTGGAG 3900 3740 CACAAATCAGA	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG SELLE SAGGAGCCTAAG 3910 3750 AGCAAAAGAGAA
38 36 DEF4 DEFX 3 DEF4	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	CCCTTCTGGAGG 3830 3670 AAGGAAATTTTA SSSSSSSSSSSSSSSSSSSSSSSSS	CCAGACAAACA 3840 3680 AAAAACTGGAG SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG 3910 3750 AGCAAAAGAGAA
38 36 DEF4 DEFX 3 DEF4	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::::::::::::::::::::::::::	CCCTTCTGGAGG 3830 3670 AAGGAAATTTTA SSSSSSSSSSSSSSSSSSSSSSSSS	CCAGACAAACA 3840 3680 AAAAACTGGAG SIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG 3910 3750 AGCAAAAGAGAA
38 36 DEF4 DEFX DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG :::::::: AGGTGTGTG 3930 3770	CTACCTAGTT 3820 3660 CTGCCAACAA ::::::::: CTGTCTATAT 3880 3720 CTCTGATGGGG :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3670 3730 3730	CCAGACAAACA 3840 3680 CAAAAACTGGAC :::::::: AGAACCTGGAC 3900 3740 CACAAATCAGA ::::::: GAAAAGTGA-A 3960 3800	AGCTTAAGTAT 3850 6690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX 3 DEF4	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG :::::::: AGGTGTGTG 3930 3770 AATCCTGTA	CTACCTAGTT 3820 3660 CTGCCAACAA ::::::::: CTGTCTATAT 3880 3720 CTCTGATGGGG :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3670 3730 3730	CCAGACAAACA 3840 3680 CAAAAACTGGAC :::::::: AGAACCTGGAC 3900 3740 CACAAATCAGAC :::::::: GAAAAGTGA-A 3960 3800 ATTTATTCCT	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEFX DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG :::::::: AGGTGTGTG 3930 3770 AATCCTGTA	CTACCTAGTT 3820 3660 CTGCCAACAA ::::::::: CTGTCTATAT 3880 3720 CTCTGATGGGG :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3730 3730 3730	CCAGACAAACA 3840 3680 CAAAAACTGGAC ::::::::: AGAACCTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEF4 DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA ::::::: TGAGTCTCA	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG ::::::: AGGTGTGTG 3930 3770 AATCCTGTA	CTACCTAGTT 3820 3660 CTGCCAACAA ::::::::: CTGTCTATAT 3880 3720 CTCTGATGGGG ::::::::: CTGTGATGGGG 3940 3780 ATGAGCAGCA :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3670 3730 3730	CCAGACAAACA 3840 3680 3680 CAAAAACTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 36690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEFX DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTG :::::::: AGGTGTGTG 3930 3770 AATCCTGTA	CTACCTAGTT 3820 3660 CTGCCAACAA ::::::::: CTGTCTATAT 3880 3720 CTCTGATGGGG :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3730 3730 3730	CCAGACAAACA 3840 3680 CAAAAACTGGAC ::::::::: AGAACCTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 3690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEFX DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA ::::::: TGAGTCTCA 3980	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTGTG 3930 3770 AATCCTGTA ::::::: SAATCCTGTA 3990	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::: CTGTCTATAT 3880 3720 STCTGATGGG ::::::::: STGTGATGGG 3940 3780 ATGAGCAGCA :::::::::::::::::::::::::::::::	3670 3670 3670 3670 3670 3730 3730 3730	CCAGACAAACA 3840 3680 3680 AAAAACTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 36690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEF4 DEFX DEF4 DEFX 3820	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA ::::::: TGAGTCTCA 3980 3830	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTGTG 3930 3770 AATCCTGTA ::::::: SAATCCTGTA 3990 3840	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::: CTGTCTATAT 3880 3720 STCTGATGGG ::::::::: STGTGATGGG 3940 3780 ATGAGCAGCA ATGAGCAGCA 4000 3850	3670 3670 3670 3670 3670 3730 3730 3730	2CAGACAAACA 3840 3680 3680 3AAAAACTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEFX DEFX	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA :::::: TGAGTCTCA 3980 3830 TGTTTGTG	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTGTG 3930 3770 AATCCTGTA ::::::: CAATCCTGTA 3990 3840 CTACCGGCAC	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::: CTGTCTATAT 3880 3720 CTCTGATGGG :::::::: CTGTGATGGG 3940 3780 ATGAGCAGCA ATGAGCAGCA 4000 3850 CTAATGCAGCA	3670 3670 3670 3670 3670 3730 3730 3730	2CAGACAAACA 3840 3680 3680 3AAAAACTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 36690 GATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEF4 DEFX DEF4 DEFX 3820	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA :::::: TGAGTCTCA 3980 3830 TGTTTGTGC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTGTG :::::::: AGGTGTGTGTG 3930 3770 AATCCTGTA :::::::: CAATCCTGTA 3990 3840 CTACCGGCAG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::: CTGTCTATAT 3880 3720 CTCTGATGGG ::::::::: CTGTGATGGGG 3940 3780 ATGAGCAGCA ATGAGCAGCA 4000 3850 CTAATGCAGC	3670 3670 3670 3670 3670 3730 3730 3730	2CAGACAAACA 3840 3680 3680 3AAAAACTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG ::::::::::::::::::::::::::::::::::
38 36 DEF4 DEFX DEF4 DEFX DEF4 DEFX 3820	AAGATATAAA 00 38 40 3 AG-GGAAAA : :::::: ATAGGAAAA 3860 700 3 AGTATGTTC : ::::: AATGTGTTC 3920 3760 TGAGTCTCA :::::: TGAGTCTCA 3980 3830 TGTTTGTGC	GGAGATG 10 650 TATTTCATT :::::: TATTTCACC 3870 710 AGGTGTGTGTG :::::::: AGGTGTGTGTG 3930 3770 AATCCTGTA :::::::: CAATCCTGTA 3990 3840 CTACCGGCAG	CTACCTAGTT 3820 3660 CTGCCAACAA :::::::: CTGTCTATAT 3880 3720 CTCTGATGGG ::::::::: CTGTGATGGGG 3940 3780 ATGAGCAGCA ATGAGCAGCA 4000 3850 CTAATGCAGC	3670 3670 3670 3670 3670 3730 3730 3730	2CAGACAAACA 3840 3680 3680 3AAAAACTGGAC 3900 3740 CACAAATCAGAC ::::::::::::::::::::::::::::::::::	AGCTTAAGTAT 3850 3690 SATGGGCTTAAG ::::::::::::::::::::::::::::::::::

	3880			3910		•	
DEF4		TCCCTTTACCA				AGTCTTCCTCTC	GT.
DEFX		TCCCTTTACCA				ATGCTCTCTCTC	G
						4, 150	•
				xon3			-
	3940			3970		3990	
DEF4		•			•	TCTGCCGGCGAA	4C
DEEV		11111111111				:::: ACTGCATTTTT	
DEFX	4160	4170	4180	4190	4200	4210	
•	4100	1210	1100	1250	4200	42.10	
			e	xon3			·
		4010					-
DEF4						ACTGCTGCACG	G
		:: :: :::::					
DEFX						TCTGCTGCT	•-
	4220	4230	4240	4250	4260	4270	
			A	xon3			.
	4060	4070					-
DEF4						CATCATCGGTG	ST
		:::	•				
DEFX	A	CTAA					
					,		
		4100	e	xon3			
DEEA		4130				4170 TGAGCTCATAA	naı
DEF4	GITAGC	ITCACATGCTT	CIGCAGCIGA			::: ::::::	
DEFX						-GAGTTCATAAT	
D			•	4280		4300	• •
•		•					
•							
		4190					
DEF4						TAACATCTT-T	CT -
neev	: ::::			:: :::		CGATTTCCTGT	:
DEFX	4310	4320	4330	4340	4350	4360	CC
	4310	4320	4330	1310	,	4500	
	•	Poly Ad	,		•		
		>					•
	4240		4260	4270		4290	
DEF4	TGATC	CTAAATATATATA	CTCGTAACA	AGATGTCTTTG	TTTACACCTO	TTTGAAATTTG	AT .
		: ::::: :::			:::		,
DEFX		CCAAATAAATA				TTT	
	4370	4380	4390	4400	4410	Ť	

		10 .	20 :	30	40	50	60
DEF4	GTCTGC		recteeceere			,	
	•			: ::::::			:::::
DEFX			rggtagcctca				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10	20	30	40	- 50	60
		- 7					, 00
		70	80	- 90	100	1.10	120
DEF4	ATCGCC		CTGCTATTCT			= -, -,	
<i>D</i>		::::::			:: :::: :::		
DEFX			CTGCCTTTCT	*			
	0.0.00	70	80	90	100	110	120
•			•		200		
•		130	140	150	160	170	180
DEF4	GCAAGA		SAGGCTCCAGG				
		: : :::		:::: :::::			
DEFX			GAGATGCCAGC			and the second second	
		130	140	150	160	170	180
				, 200		2.0	
	•	190	200	210	220.	230	240
DEF4	ATTTCC		rgggataaaag				
			: ::: : ::				
DEFX			GAGATGACAG				
		190	200	210	220	230	240
		250	260	270	280	290	300
DEF4	GTCTGC	TCTTGC	AGATTAGTATT	CTGCCGGCGA	ACAGAACTTC	TGTTGGGAA	CTGCCTC
	:::::		::: :: :::			:: :::::	
DEFX	ATCTGC	CATTGC	AGAGTACTATA	CTGCATTTTT	GGAGAACATC	TGGTGGGAC	CTGCTTC
		250	260	270	280	290	300
		310	320	330	340	350	360
DEF4	ATTGGT	GGTGTG	AGTTTCACATA	CTGCTGCACG	CGTGTCGATT	AACGTTCTGC	TGTCCAA
	:: ::		: : : ::	:::::	: : :	::	
DEFX -	ATCCTT	GGTGAA	CGCTACCCAAT	CTGCTG	CTACT	λλ	
*		. 310	320		330	340	350
		•					
	,	370	. 380	390	400	410	420
DEF4	GAGAAT	TGTCATG	CTGGGAACGCC	ATCATCGGTG	GTGTTAGCTT	CACATGCTTC	TGCAGCT
					•		
DEFX							
•	•	360	370	380			390
						•	
		430		450			-
DEF4	GAGCT'	IGCAGAA	TAGAGAAAAAT	'GAGCTCATAA	\TTTGCTTTGA	GAGCTACAGG	AAATGGT
DEFX			TAGAGAAAAA-				
	40	0	410	420	430	440	450
			_ 1 _				
		490	500		520	530	
DEF4			ACTTTGTCCTT				
			:: :::::::				
DEFX	TGTTA		ACCTTGTCCT				
		460	470	480	490	500	. 510
	5.4.0		•		٠.	•	•
	540					•	
DEF4	AAG	•		•			• •
	::	•		•			
DEFX	ATG						

<5 MetArgThrLeuThr	,	tide 15 LeuLeuValAlaLeu	20
25 ProLeuGlnAlaArg	Propied 30 AlaHisGluMetPro	35	40
45	Propied 50 PheSerGlyAspAsp	· 55	60
65	Mature per 70 HisCysArgValLeu	75	. 80
85 ThrCysPheIleLeu	Mature per 90 GlyGluArgTyrPro	otide> 94 IleCysCysTyr	

Figure 4

•	SIGNAL		PRO	OPIECE				
DEF4 HUMAN	MRIIALLAAILLVAI	QVRA	GPLQAR-		GDEAPG	Q-EQRGPEI	OQDISIS	AWDKSS
DEF5 HUMAN	MRTIAILAAILLVAI	AQAQA	ESLQER-		ADEATT	Q-KQSGEDI	NODLAISI	FAGNGLS
DEF6 HUMAN	MRTLTILTAVLLVAI	QAKA	EPLQAED	DPLQAK	AYEADA	Q-EQRGANI	OQDFAVSI	FAEDASS
DEF1 HUMAN	MRTLAILAAILLVAI	LQAQA	EPLQAR-		ADEVAA	APEQIAAD:	PEVVVS	LAWDESL
DEFX	MRTLTLLSAFLLVAI	LQAWA	EPLQAR-		AHEMPA	Q-KQPPADI	DODVVIY	FSGDDSC
	*** ****		**		*	* .		
DEF4_HUMAN DEF5_HUMAN DEF6_HUMAN DEF1_HUMAN DEFX	ALQVSGSTRGM VO ALRTSGSQARA TO SLRALGSTRAF TO APKHPGSRKNM A	CSCRLV CYCRTG CHCRR- CYCRIP	PEPTIDE FCRRTELR RCATRESL SCYSTEYS ACIAGERR YCIFGEHL	SGVCEI YGTCTV YGTCIY	SGRLYR MGINHR QGRLWA	LCCR FCCL FCC		
		^ ^	^	•		^^		

LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES:

- (i) DEPOSANT:
 - (A) NOM: GENSET SA
 - (B) RUE: 24 RUE ROYALE
 - (C) VILLE: PARIS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75008
- (ii) TITRE DE L' INVENTION: POLYPEPTIDE DEFENSINE HUMAINE Def-X, ADN GENOMIQUE ET ADNC, COMPOSITION LES CONTENANT ET APPLICATIONS AU DIAGNOSTIC ET AU TRAITEMENT THERAPEUTIQUE
- (iii) NOMBRE DE SEQUENCES: 6
- (iv) FORME DECHIFFRABLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)

(2) INFORMATIONS POUR LA SEQ ID NO: 1:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 4415 PAIRES DE BASE
 - (B) TYPE: NUCLEOTIDE
 - (C) NOMBRE DE BRINS: DOUBLE
 - (D) CONFIGURATION: LINEAIRE
- (ii) TYPE DE MOLECULE: ADN
- (vi) ORIGINE:
 - (A) ORGANISME: Homo sapiens
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Exon 1
 - (B) EMPLACEMENT: 1836..1874
- (ix) CARACTERISTIQUE: .
 - (A) NOM/CLE: Exon 2
 - (B) EMPLACEMENT: 3394..3577
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: Exon 3
 - (B) EMPLACEMENT: 4161..4380

(ix) CARACTERISTIQUE:

- (A) NOM/CLE: start CDS
- (B) EMPLACEMENT: 3406..3408

(ix) CARACTERISTIQUE:

- (A) NOM/CLE: stop CDS
 (B) EMPLACEMENT: 4276..4278

(ix) CARACTERISTIQUE:

- (A) NOM/CLE: site de polyAdenylation (B) EMPLACEMENT: 4374..4379
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

60	AAACCATAGG	TAGTGCAAGG	СТАТАСССТС	ACCCCATTAG	TCTTCATGTA	ACACCATTTG
120	ACTTGGGAGA	AAAACTATGG	AAGTTATGCA	CTGCNCTTAC	CACCATGAGG	GCCTAGGTCA
180	AGCACGCTCA	TCCCCATAAC	TAACCAGCTC	ACNCCAAATT	ACAACATCAC	CCTGTGCGTA
240	GGCTGGTCCA	GTGTGCAGGA	AGTGTGTTCT	TGTGGATTGG	AGGAAATGCC	TGTGTTACTG
300	CCCACGTGCA	GCAGACTTTC	СССААААССА	CTGGACGTTT	CTGCAGGACA	GGTTTCACTT.
360	AGGCACCTAC	TGGGCCCTTC -	ССЛТАТССАС	GCCTCTACAT	TTCTCATTTT	CVCVCVCCCC
420	CCCTAATCTC	CCCTGAATGG	GGGCCCAGTT	CCATCATCTG	GAACCTAAAA	TAATGCCCTA
480	CTGGGCTGCT	GGTGAAATTG	TTCCTCCAAC	CAGTGCCCAC	GGAATGAGTC	TTCCTCTGCT
540	CTGCAACAGC	CTTCACTGCT	GGGCAGCCGA	TTCCTCATAG	AACTCACTGC	ACAGATCAGG
600	GAGACGCTTC	AAGACTGAGG	TTGCCTCCTT	GAGATGCCTC	AGCGAGGCTT	GACCACCCCT
660	TCACACAGAG	сстсстссст	CAGCGCGGTG	AAGTCCTCCA	CCACTGCCCC	AGCTCTCACT
720	AACCCTCCCA	CGCTGTGCAC	GCTGGACCAG	TATCCGGCCT	AGGTCCTGTG	CTGCAGGGGN
780	AGGTATTTAT	ACCTCGCTGT	GGGCTTGGCA	CCTGCACACT	GGCTGCCCGG	TGGCAACAGT
840	TTTACCTCAC	ACTGATGCCA	TTTCCAGAAA	TCTTTTCCCA	GTGACTGCAT	TCCCTCAGGA
900	TGCACTATTC	TTTTAAAATG	GAGTGGTACA	GGAGGGTGGA	AGGAGGAGGA	TATGAGGAGG
960	CCTGTGTATC	CCAGCTCATT	AGGGACCATA	ATAACCCAGG	TCCCCCTCAA	TCCCTAGGAC
1020	AAGCCTGCCC	GGTGGCCATT	CTGAGTGTAT	CCCACTCATG	GAGTAATCAT	CCAAGCATAN
1080	CACCTTGGCC	GTCTTGCTGC	ACACAGCACC	GTGTTTGAGC	TTAGAACAAG	TGAACTGGCT
1140	CAGGATTTCT	СТАААААТСТ	NAGGTCTCAC	GAGACACATT	TGAGACCTCT	CCCTCCCTTG
1200	AGAGAAGAGG	TCTAAGGTCA	GTCTGAACTC	AAATTGTTCA	CGGTCCTAAA	AGGCCCAAAN

TGC	STTGCTCC	CTCTAAGAAA	CCACATGTTG	CATGTACATC	CTTAATTCCG	GAAAGTCCAA	1260
CAZ	ACCTGCC	CTGCTTAGCA	ACACANGCCG	AGGTGGTACT	CCTCTCACCC	GGGCATTCTC	1320
CΛ	CACACCT	GTTTGTCCAA	ACAGCTTTGA	TTTGTTTTTA	TAGTTGGACC	CCAGGTTCCC	1380
λGC	AGGCTGG	TTCAGGCCAT	ATTCCAAATC	CTCATCTGTG	TGTGAGTGGC	ATTCTTAGCC	1440
TAC	SCCTCCTT	ACAGGGTGGA	TACTATGATA	CACAGCCAGG	CTGTCCCAGT	GGCTTTCAAT	1500
AT]	CTTTTGG	TCCAGATAGT	TCAGCCTCAG	CACCAGTGTA	GGCATCACAG	GGTCAATTGT	1560
CTT	ACGAGTC	ATGGAGAATT	CATAGTTGGT	AGCTACCTGG	GCCTGGCCAG	GGCTGACCAT	1620
λG/	CAAGGCA	TCCCTCTGTG	AACTCCTATT	TTAATGCCAG	CTTCCCAACA	AATTTCTCAA	1680
CTC	SCTCTTAC	CAGCAGGTAT	TTAAACTACT	CAATAGAAAG	TAACCCTGAA	AATTAGGACA	1740
CCI	GTTCCCA	AAAGACCCTT	AAATAGGGGA	AGTCCTTTCN	CTGCTTGTGC	ACAGCTGCTG	1800
ATC	STGGCAAC	ATGAGGCCTG	GGACAGGGGA	стстстстс	CCCACTCTGG	TAGCCTCACG	1860
TAC	CTTAACA	ATCTGTCAGT	АЛТАСЛАТАС	лааасттааа	CTTTCATACT	GCGGTTCCAC	1920
CCI	AGGAAGCT	GTGTTCCCAA	TCTGACCCGT	GATTATGGGG	CCACCTCAGA	GGGNACCCAG	1980
TG/	NGGGAATA	TTTTGCCATC	TGGGACTGTT	GGTTGCTGGG	GGCAGTGGCT	ATGAGCTCAG	2040
TT/	ATAAACT	CAAGCAGTTT	CCTTCCAAAC	ACACATGTCC	TACTTAACGT	GTCCAACAGA	2100
GA1	TGATCATA	CTCATANGCT	GCTAAAACAT	TANTTTTATT	TTGAGAAAAG	TCTATTCATG	2160
TTC	CTTGGCCC	ATGGAGTTTT	CATTTNATTA	NTTTATTTAT	TTTGCAGAGA	TGGAGTCTCA	2220
CT	ATGTTGCT	CAAGCTGGTC	TCCAACTCCT	GGGCTCAAGC	GATCTTCCTA	CTTTGGCCTT	2280
TG	AAAGCGCT	GAGATTGCCT	GTGTGAGCCA	TCATGGGGGC	TCACTGGCCC	ACTGATTAAT	2340
CA	GATTAATT	GTTTTTTGCT	ATTGAANTTG	TTTGACTTCC	TTGTATATTC	GGATATTTAC	2400
ĊC	ATTCTAAC	ACGTAGGGTT	TGCAAATATT	TTCTCTCATG	TTCTGTGTTG	CCTTTTCACT	2460
CA	GTTGATGG	TTTCCTTTGC	TGTGCAGGTG	CTTTAGTGTT	CAACGCAGCC	CCGCTTGTCT	2520
ΑT	TTTCCATT	TTATTGCCTG	TCCCTTTGAT	GTCATAGCCA	AGAAATAATT	GCCCAGATTA	2580
AT	GTCAAAAA	GCTTTATCCC	TATATATTCT	TCTAGTAGTT	TATGGTTTCA	GATCTTATGT	2640
TT	AGGTCTTC	AATCCATTGA	GTTGATTTTT	GTATGTGGTA	TAAGAAAAA	GACCACATGT	2700
AT	ACATATCT	CAAATTCTAA	GGTAGTATAT	ATTAGACACA	TACAATGTGT	CTATTTACAC	2760
AC	ATTGAGCT	GAAAATAATA	AACATATTT	TATCTTTCAA	TCAACTCTAT	CTCTATCTCA	2820

CTGAACTTGT TTCACCTATA GCCTGATGAG GTTGCTGTCC TCTCTACCCC AGCTCCTATA 2880 GGAGACTGCT CATCCCCTAA CCTCAAAAAC CCCTTCATGA GGGTGATAAT GCCCTTGAAT 2940 CCTGCAATGA ATTAGTTCTC TACTACAGTG GAATTCAGGT CTGTTATGAG GCTCTGGATC 3000 --TCTGAAGAGA AGAGCTCTCA TTTTCAGAAA ATAAGCAGGA TTTATTCCCT GAAATTACTG 3060 AATTAANTCA CTGTTTCGAT TACTTTTTGC AATATTAAAA GTAAATATTT AAACAGGTAA 3120 ANACAGAAAT AATGGTAGGG TCCTTATCAT CACCGTGAAT TCCAAGCTAG CATAGACACT 3180 AAACCTAGAG ATTCACACTA GAATGAAAGC TGGGAGAGCA GAGGAGTCTC AGAAGGATGT 3240 GGAGGCCAAT GGACACCTGC AACCTCTCCA ACGAAATGCC TACCTCCTCT CACTGCAGCA 3300 TCCATCTCTG AGCCTTCTCG CAGCAGAGCT ATAAATTCAG CCTGGCTCCT CCGTTCCCAC 3360 ACATCCACTC CTGCTCTCCC TCCTCTCCTC CAGGTGACTA CAGTTATGAG GACCCTCACC 3420 CTCCTCTCTG CCTTTCTCCT GGTGGCCCTT CAGGCCTGGG CAGAGCCGCT CCAGGCAAGA 3480 GCTCATGAGA TGCCAGCCCA GAAGCAGCCT CCAGCAGATG ACCAGGATGT GGTCATTTAC 3540 TTTTCAGGAG ATGACAGCTG CTCTCTTCAG GTTCCAGGTG AGAGATGCCA GCATGCAGAG 3600 CTACAGACTA GACAGAAGGA CAGGAGACAG GCTCTGGAAT TGGATCTCAG TGGCAGATGT 3660 CACTTAGGTG GCTATACTTA ACATCTCTGG TCCTGGATTT TCTCATATCT AAATGGAATA 3720 GAGAACCAAA GAAATCTAAG AGATTTTTCT TTCTCCAAAA ACTTGATTCC AAGATATGAC 3780 TGTGAAATTC ACTAGATTTA AGATATAAGG AGATGCTACC TAGTTCCTTC TGGAGCCAGA 3840 CAAACAAGCT TAAGTATATA GGAAAATATT TCACCCTGTC TATATAGGAG GTTTTAGAAC 3900 CTGGAGAGGA GCCTAAGAAT GTGTTCAGGT GTGTGTGTGA TGGGCAGGAA TGCAGAAAAG 3960 TGAAGCAAAG GAGAATGAGT CTCGAATCCT GTGTGACCAG CACTGCTCTG TGTATTTATT 4020 CCTATTGACT GAGATTGTTT GTGCTACCGG CTGTAATACA GCCAACATCA CTCATCAGCC 4080 AACATGTGAC TTCTCCAAGA TTCCCTTTAC CACCCACTGC TGNACCCCGT ACTCAGTTTC 4140 TGATGCTCTC TCTGGGTCCC CAGGCTCAAC AAAGGGCTTG ATCTGCCATT GCAGAGTACT 4200 ATACTGCATT TTTGGAGAAC ATCTTGGTGG GACCTGCTTC ATCCTTGGTG AACGCTACCC 4260 AATCTGCTGC TACTAAGCTT GCAGACTAGA GAALAAGAGT TCATAATTTT CTTTGAGCAT 4320 TAAAGGGAAT TGTTATTCTT ATACCTTGTC CTCGATTTCC TGTCCTCATC CCAAATAAAT 4380 4415 ACTTGGTAAC ATGATTTCCG GGTTTTTTTT TTTTT

5

(2) INFORMATIONS POUR LA SEQ ID	NO:	2:
---------------------------------	-----	----

-	i)	.) C#	(B)-	LONG TYPE	GUEUF E: NU	R: 45	3 PA PTIDE	VIRES E	DE	BASE	:	•			·.	
						NTIC			BLE .	•						
	<u>ذ</u>)	.i) T	YPE	DE N	10LEC	CULE:	, ADN	lc					-			,
	/>	ii C	RIGI	NF.								•				
		, 1, 0			NISM	1E: H	Iomo	sapi	ens							
	(>	i) S	EQUE	NCE	DESC	RIPT	CION:	SEC) I,D	NO:	2:			•		
ርጥርባ	מכררנ	ימר ח	ירייני	ተ አርር	יר יינ	רארכיי	י. ראכריי	ቦ ጥአን	י א א י	יייייי	ም ር እር		_m_n	r ame	AGG	
				·	10	21.001		ı ım	·	Cro	IGAC	. I AÇA	igi i		Arg	57
			СТС													105
Thr	Leu	Thr 5	Leu	Leu	Ser	Ala	Phe 10	Leu	Leu	Val	Ala.	Leu 15	Gln	Ala	Trp	
			CTC													153
Ala	20	Pro	Leu	Gin	Ala	Arg 25	Ala	His	Glu	Met	Pro 30	Ala	Gln	Lys	Gln	
ССТ	CCA	GCA	GAT	GAC	CAG	GAT	GTG	GTC	ATT	TAC	TTT	TCA	GGA	GAT	GΛC	201
Pro 35	Pro	·Ala	Asp	Asp	G1n 40	Asp	Val	Val	Ile	Tyr 45	Phe	Ser	Gly	Asp	Asp 50	
			CTT													249
Ser	Cys	Ser	Leu	Gln 55	Val	Pro	Gly	Ser	Thr 60	Lys	Gly	Leu	Ile	Cys 65	His	
															TGC	297
Cys	Arg	Val	Leu 70	Tyr	Cys	Ile	Phe	Gly 75	Glu	His	Leu	Gly	Gly 80	Thr	Cys	- · ·
			GGT										GCT	TGCA	GAC	346
Phe	Ile	Leu 85	Gly	Glu	Arg	Tyr	Pro 90	Ile	Cys	Cys	Tyr	95	,			
TAG	AGAA	AAA (GAGT'	TCAT.	аа т	TTTC	TTTG	A GC	ATTA	AAGG	GAA'	TTGT	TAT	TCTT.	ATACCT	406

TGTCCTCGAT TTCCTGTCCT CATCCCAAAT AAATACTTGG TAACATG

6

(2) INFORMATIONS POUR LA SEQ ID NO: 3:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 94 ACIDES AMINES
 - (B) TYPE: ACIDE AMINE
 - (C) NOMBRE DE BRINS: SIMPLE
 - (D) CONFIGURATION: LINEAIRE
- (ii) TYPE DE MOLECULE: PROTEINE
- (vi) ORIGINE:
 - (A) ORGANISME: Homo sapiens
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: PEPTIDE SIGNAL
 - (B) EMPLACEMENT: 1..19
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: REGION PRO
 - (B) EMPLACEMENT: 20..63
- (ix) CARACTERISTIQUE:
 - (A) NOM/CLE: PEPTIDE MATURE
 - (B) EMPLACEMENT: 64..94
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
- Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln
 1 5 10 15
- Ala Trp Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln 20 25 30
- Lys Gln Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly 35 40
- Asp Asp Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile 50 55 60
- Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly 65 70 75 80
- Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 85 90

(2) INFORMATIONS POUR LA SEQ ID NO: 4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 19 ACIDES AMINES
 - (B) TYPE: ACIDE AMINE
 - (C) NOMBRE DE BRINS: SIMPLE
 - (D) CONFIGURATION: LINEAIRE
- (ii) TYPE DE MOLECULE: PEPTIDE SIGNAL
- (vi) ORIGINE:
 - (A) ORGANISME: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Trp Ala

(2) INFORMATIONS POUR LA SEQ ID NO: 5:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 44 ACIDES AMINES
 - (B) TYPE: ACIDE AMINE
 - (C) NOMBRE DE BRINS: SIMPLE
 - (D) CONFIGURATION: LINEAIRE
- (ii) TYPE DE MOLECULE: REGION PRO
 - (vi) ORIGINE:
 - (A) ORGANISME: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln Lys Gln Pro 1 5 10 15

Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp Ser 20 25 30

Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu 35 40

8

(2) INFORMATIONS POUR LA SEQ ID NO: 6:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 31 ACIDES AMINES
 - (B) TYPE: ACIDE AMINE
 - (C) NOMBRE DE BRINS: SIMPLE
 - (D) CONFIGURATION: LINEAIRE
- (ii) TYPE DE MOLECULE: PEPTIDE MATURE
- (vi) ORIGINE:
 - (A) ORGANISME: Homo sapiens
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Ile Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly
1 10 15

Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 20 25 30

INTERNATIONAL SEARCH REPORT

Inte onal Application No PCT/FR 98/01864

. CLASSIFICATION OF SUBJECT MATTER PC 6 CO7K14/47 C12N IPC 6 C12N15/12 C12N15/63 C07K16/18 A61K38/17 G01N33/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X "PURIFICATION AND WILDE C G ET AL: 1,2,4, CHARACTERIZATION OF HUMAN NEUTROPHIL 6 - 18PEPTIDE 4, A NOVEL MEMBER OF THE DEFENSIN JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 19, 5 July 1989, pages 11200-11203, XP000027256 see the whole document X US 5 641 497 A (BEVINS CHARLES L ET AL) 1,2,4, 24 June 1997 6-18,20,23-27, 31-37 see the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 11 November 1998 07/12/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx, 31-651 epo nl, Panzica, G Fax: (+31-70) 340-3016

1

INTERNATIONAL SEARCH REPORT

Inte onal Application No

		PCT/FR 98/01864
Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
	US 5 242 902 A (MURPHY CHRISTOPHER J ET AL) 7 September 1993	1,4, 6-18,
	see column 1, line 1 - column 3, line 18 see table 1 see column 6, line 54 - column 8, line 40	21-27
*	WO 89 11291 A (INVITRON CORP) 30 November 1989	1,4, 6-18,21, 23-26
	see abstract see page 1, line 5 - page 4, line 27 see page 7, line 1 - page 12, line 18	23 20
	WO 94 21672 A (UNIV CALIFORNIA) 29 September 1994 see abstract	1-18
	WO 95 32287 A (MAGAININ PHARMA) 30 November 1995	1,4, 6-18, 23-28
-	see abstract see page 2 - page 18 	23-20
j		

INTERNATIONAL SEARCH REPORT

...formation on patent family members

Inte onal Application No PCT/FR 98/01864

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5641497	A 24-06-199	7 AU 4381493 A CA 2135194 A EP 0650494 A JP 7507213 T WO 9324513 A	30-12-1993 09-12-1993 03-05-1995 10-08-1995 09-12-1993
US 5242902	A 07-09-199	3 NONE	· · · · · · · · · · · · · · · · · · ·
WO 8911291	A 30-11-198	9 US 5032574 A AT 108662 T AU 633832 B AU 3778289 A DE 68916932 D DE 68916932 T EP 0378641 A JP 2504396 T JP 2795286 B US 5210027 A	16-07-1991 15-08-1994 11-02-1993 12-12-1989 25-08-1994 03-11-1994 25-07-1990 13-12-1990 10-09-1998 11-05-1993
WO 9421672	A 29-09-199	4 US 5459235 A AU 679739 B AU 6523994 A CA 2155739 A EP 0689550 A JP 8508165 T US 5821224 A	17-10-1995 10-07-1997 11-10-1994 29-09-1994 03-01-1996 03-09-1996 13-10-1998
WO 9532287	A 30-11-199	5 US 5550109 A AU 2654395 A US 5656738 A	27-08-1996 18-12-1995 12-08-1997

RAPPORT DE RECHERCHE INTERNATIONALE

a Internationale No

PCT/FR 98/01864

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C07K14/47 C12N15/12

G01N33/00

C07K16/18 C12N15/63

A61K38/17

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimate consultée (système de classification suivi des symboles de classement) CIB 6 C07K

Documentation consultee autre que la documentation minimale dans la mesure ou ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	WILDE C G ET AL: "PURIFICATION AND CHARACTERIZATION OF HUMAN NEUTROPHIL PEPTIDE 4, A NOVEL MEMBER OF THE DEFENSIN	1,2,4, 6-18
	FAMILY" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 19, 5 juillet 1989, pages 11200-11203, XP000027256 voir le document en entier	
(US 5 641 497 A (BEVINS CHARLES L ET AL) 24 juin 1997 voir le document en entier	1,2,4, 6-18,20, 23-27, 31-37
	voir le document en entrer	

X Voir la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de brevets sont indiqués en annexe
 Catégories spéciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée 	"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'apparlemenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document et associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier "&" document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
11 novembre 1998	07/12/1998
Nom et adresse postale de l'administration chargée de la recherche internationa Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Ale Fonctionnaire autorisé
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Panzica, G

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 98/01864

atégorie	Identification des documents cités, avec,le cas échéant. l'indicationdes passages pertinents	no, des revendications visées
(US 5 242 902 A (MURPHY CHRISTOPHER J ET AL) 7 septembre 1993	1,4, 6-18,
	voir colonne 1, ligne 1 - colonne 3, ligne 18	21-27
	voir tableau 1 voir colonne 6, ligne 54 - colonne 8, ligne 40	
	WO 89 11291 A (INVITRON CORP) 30 novembre 1989	1,4, 6-18,21, 23-26
٠	voir abrégé voir page 1, ligne 5 - page 4, ligne 27 voir page 7, ligne 1 - page 12, ligne 18	
	WO 94 21672 A (UNIV CALIFORNIA) 29 septembre 1994 voir abrégé	1-18
,	WO 95 32287 A (MAGAININ PHARMA) 30 novembre 1995	1,4, 6-18, 23-28
	voir abrégé voir page 2 - page 18 	23 20
		4

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs and membres de familles de brevets

Der e Internationale No PCT/FR 98/01864

Document brevet cité au rapport de recherche	Date de publication		mbre(s) de la lle de brevet(s)	Date de publication	
US 5641497 A	24-06-1997	AU	4381493 A	30-12-1993	
	•	CA	2135194 A	09-12-1993	
		EP	0650494 A	03-05-1995	
•	. •	JP	7507213 T	10-08-1995	
		WO	9324513 A	09-12-1993	
US 5242902 A	07-09-1993	AUCU	N		
WO 8911291 A	30-11-1989	US	5032574 A	16-07-1991	
		AT	108662 T	15-08-1994	
	•	ΑÙ	633832 B	11-02-1993	
		AU	3778289 A	12-12-1989	
		DE	68916932 D	25-08-1994	
	,	DE	68916932 T	03-11-1994	
•		ΕP	0378641 A	25-07-1990	
		JP	2504396 T	13-12-1990	
		JP	2795286 B	10-09-1998	
		US	5210027 A	11-05-1993	
WO 9421672 A	29-09-1994	US	5459235 A	17-10-1995	
•		AU	679739 B	10-07-1997	
•		AU	6523994 A	11-10-1994	
	•	CA	2155739 A	29-09-1994	
4.		EP	0689550 A	03-01-1996	
		JP	8508165 T	03-09-1996	
		US	5821224 A	13-10-1998	
WO 9532287 A	30-11-1995	US	5550109 A	27-08-1996	
		AU	2654395 A	18-12-1995	
	•	US	5656738 A	12-08-1997	

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

X	BLACK BORDERS
X	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
X	FADED TEXT OR DRAWING
X	BLURED OR ILLEGIBLE TEXT OR DRAWING
X	SKEWED/SLANTED IMAGES
, u	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox