

1 – Introduction

Advanced Methods for Mapping and Self-localization in Robotics MPC-MAP

Petr Gabrlik
Brno University of Technology
2025

AND COMMUNICATION

Motivation

The current use of (autonomous) mobile robots

Robot Vacuums

Motivation

- A widely used type of a consumer-grade robot
- Both dump and high-tech solutions
- Environment: indoor, 2D, uncontrolled
- Task / navigation goal: area coverage
- Localization: none, encoders, IMU, LiDAR SLAM
- Perception: tactile sensors, cameras, LiDAR etc.

Robotic Lawn Mower

- A similar task as a vacuum cleaner
- Both dump and high-tech solutions
- Environment: outdoor, 3D, partially controlled/uncontrolled
- Task / navigation goal: area coverage
- Localization: none, encoders, IMU, GNSS
- Perception: tactile sensors, cameras, LiDAR etc.

Source: wsj.com

Warehouse Robots

Motivation

- Robotic picker, pallet trucks, goods-to-person
- **Environment:** indoor, 2D, controlled/uncontrolled
- Task / navigation goal: go to location
- Localization: encoders, IMU, LiDAR-based localization in map, indoor localization systems (MoCap, UWB, fiducial markers etc.)
- Perception: cameras, depth-cameras, LiDARs etc.

Source: theverge.com

Food Delivery Robots

- A robotic replacement for waiters
- Environment: indoor, 2D, uncontrolled
- Task / navigation goal: go to location
- Localization: encoders, IMU, LiDAR-based localization in map, LiDAR SLAM
- Perception: tactile sensors, cameras, depth-cameras, LiDARs etc.

Source: globaltimes.cn

Cleaning Robots

Motivation

- Floor cleaning, UV disinfection
- Environment: indoor, 2D, uncontrolled
- Task / navigation goal: area coverage, go to location
- Localization: encoders, IMU, LiDAR-based localization in map, LiDAR SLAM
- Perception: tactile sensors, cameras, depth-cameras, LiDARs etc.

Source: healthcareitnews.com

Agricultural robots

- Seeding, harvesting, crop maintenance etc.
- **Environment:** outdoor/indoor, 3D, partially controlled/uncontrolled
- Task / navigation goal: go to location, area coverage, linear trajectories
- Localization: encoders, IMU, GNSS, indoor localization systems, LiDAR-based localization in map, LiDAR SLAM
- Perception: cameras, depth-cameras, LiDARs

Source: idnes.cz

Last-Mile Delivery Robots

Delivering goods to customers

Motivation

- Operates mainly on the pavements
- Environment: outdoor, 3D, uncontrolled
- Task / navigation goal: go to location
- Localization: encoders, IMU, GNSS
- Perception: cameras, depth-cameras, LiDARs etc.

Source: cambridgeindependent.co.uk

Self-Driving Cars

- Comprehensive task with human health risks
- Environment: outdoor, 3D, uncontrolled
- Task / navigation goal: go to location
- Localization: encoders, IMU, GNSS
- Perception: cameras, depth-cameras, LiDARs, radars

Source: marketwatch.com

Source: waymo.com

Problem Specification

Fundamental problems in autonomous mobile robotics

Course Details

The goals, lecturers, structure, resources

Motivation and goals

- Diving into the fundamental problems of mobile robotics.
- Understand robot navigation: self-localization, path planning, motion control and map building topics.
- Algorithm-focused course (no complex SW, no HW/robot, no communication..).
- Practice theory via practical tasks in the simulator.

Course parameters

- 3 credits (ECTS), ended with classified credit
- Total work: 72 hrs. (~24 hrs./credit)
- Lectures: 7 × 2 hrs. (optional, highly recommended)
- Labs: 7 × 2 hrs., weekly assignments individual homework with consultations during lab hours (compulsory)
- Total individual homework: 58 hrs., ~ 9 hrs./week (weekly projects, semestral project, self-study)

- Course supervisor
 - Ing. Petr Gábrlík, Ph.D.
- Lecturers

Ing. Petr Gábrlík, Ph.D. gabrlik@vut.cz SE1. 112

Ing. Tomáš Lázna, Ph.D. tomas.lazna@ceitec.vutbr.cz SE 1.112

Week	Lecture	Lab	Lab points	Lecturer
1	Introduction	Robot navigation demo	0	Gabrlik
2	Probabilistics Robotics	Uncertainty	10	Gabrlik
3	Kinematics and Motion Control	Motion Control	10	Lazna
4	Particle Filter	Particle Filter	10	Lazna
5	Kalman Filter and EKF	Kalman Filter and EKF	10	Gabrlik
6	Path Planning	Path planning	10	Lazna
7	SLAM	Individual work on project	50	Gabrlik

- Introduction to basic statistics and probability
- Normal distribution
- Covariance matrix
- Bayes theorem
- Markov localization
- Basic sensors

$$\mathbf{Cov} = \begin{bmatrix} \mathbf{Cov}(X, X) & \mathbf{Cov}(X, Y) & \mathbf{Cov}(X, Z) \\ \mathbf{Cov}(Y, X) & \mathbf{Cov}(Y, Y) & \mathbf{Cov}(Y, Z) \\ \mathbf{Cov}(Z, X) & \mathbf{Cov}(Z, Y) & \mathbf{Cov}(Z, Z) \end{bmatrix}$$

Kinematics of a differential drive

- Motion model
- How to follow a path?

Week 3: Kinematics and Motion Control

- 1. [1] HAN, Soonshin, ByoungSuk CHOI a JangMyung LEE. A precise curved motion planning for a differential driving mobile robot. Mechatronics [online]. 2008, 18(9), 486-494 [cit. 2022-02-04]. DOI: 10.1016/j.mechatronics.2008.04.001
- 2. [2] FOSSEN, Thor I. a Anastasios M. LEKKAS. Direct and indirect adaptive integral line-of-sight path-following controllers for marine craft exposed to ocean currents. International Journal of Adaptive Control and Signal Processing [online]. 2017, 31(4), 445-463 [cit. 2022-02-04]. DOI: 10.1002/acs.2550
- 3. https://www.turtlebot.com/

Week 4: Particle Filter (localization)

- Introduction to Monte Carlo methods
- What are particles?
- Random numbers sampling a vital element
- Particle filter algorithm 3 steps:
 - Prediction
 - Correction
 - Resampling
- Application of the PF to the localization problem
- Typical issues and how to solve them

[1] TRIEBEL, Rudolph. The Particle Filter. In: Machine Learning for Computer Vision [online]. Technische Universität München, 2017 [cit. 2021-02-19]. Available at:https://vision.in.tum.de/_media/teaching/ss2017/ml4cv/variationalinference.pdf

Week 5: Kalman Filter and EKF (localization)

- An algorithm for *filtering* and *prediction* in linear systems / *estimating* unknown variables.
- Suitable for fusing data from different sensors (different variables and sampling periods).
- Used for trajectory estimation for the Apollo program in the ~1960s one of the very first applications of the Kalman filter [1].
 - Combination of acceleration data and star position observation.

[2]

^[1] GREWAL, M. S. and ANDREWS, A. P., 2010. Applications of Kalman Filtering in Aerospace 1960 to the Present [Historical Perspectives]. *IEEE Control Systems Magazine*. June 2010. Vol. 30, no. 3, p. 69–78. DOI 10.1109/MCS.2010.936465.

- Configuration space
- Types of planners
- Workspace representation
- Graph-search algorithms: Dijsktra, A*, ...
- Avoiding obstacles
- Path smoothing

- Simultaneous localization and mapping
- Both tasks are addressed together
- Comprehensive algorithms
- Essential for indoor autonomous robots

- Weekly assignments in the weeks 2 to 6
- Task assignments available on the GitHub
- For each assignment you will prepare short,
 single A4 report describing your solution
- Each assignment task is documented via a few sentences and image(s) (if applicable)
- The deadline is next Wednesday 23:59
- During the week you can consult your solution with lecturers
- 0 to 10 points per assignment

Assignment (GitHub)

Report (pdf)

Study Resources

oduction 26

- Lectures
- Labs / Consultations
- GitHub repository: https://github.com/Robotics-BUT/MPC-MAP-Student
- Sebastian Thrun: <u>Probabilistic Robotics</u>* (Book) [1]
- Sebastian Thrun: <u>Artificial Intelligence for Robotics</u> (Udacity course)

[1]

Simulator

Lightweight, MATLAB-based robot simulator

- Custom-build, lightweight robot simulator
- The robot (the blue arrow) is controlled via linear/angular speed
- Two sensors available: 8-way lidar, GNSS receiver
- The goal is to navigate the robot to the goal location
- Robot can not hit the walls and leave the map
- Numerous maps are available
- A simulation loop is prepared to be filled with your custom functions for localization, path planning, motion control etc.
- The simulator is available on GitHub

The simulation visualization

Simulator

Semestral Project

The final project addressing a complete navigation problem

- The semestral project connects all the functions prepared within weekly assignments together
- The goal is to navigate the robot to the goal location:
 - With the minimal number of iterations

Semestral Project – Goals

- For diverse maps (incl. indoor, outdoor, combined)
- For different start poses and goal locations
- Without hitting walls and leaving the map

 A detailed semestral project assignment will be available on GitHub during the semester

- The project deadline: 8th week of the semester, Sunday 23:59
- Your solutions will be tested and evaluated by repeated runs with different simulator settings (up to 100 runs)
- The solution (code quality, algorithms, ideas) will be evaluated as well

- Scoring up to 50 points:
 - Reaching goal probability: 0 to 15 points
 - Number of iterations: 0 to 15 points
 - Technical solution: 0 to 20 points

Live Demonstration

A live demo illustrating the concepts and algorithms

Loki mobile robot

- Custom build platform for the research and development
- Differential drive

Live Demonstration

- ROS2 based, incl. Nav2 stack
- Sensors: encoders (odometry), 3D LiDAR, MoCap, IMU

1 – Introduction

Petr Gabrlik

gabrlik@vut.cz

Brno University of Technology Faculty of Electrical Engineering and Communication Department of Control and Instrumentation

Robotics and Al Research Group