Predictive Model for Average Avocado Prices December 16, 2020

Executive Summary:

<u>Introduction</u>:

$\underline{\mathbf{Methods}} :$

Exploratory Data Analysis:

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Term	Coef	SdError	F-Stat	pValue	2.5% CI	97.5% CI
(Intercept)	1.228	0.018	70.111	0.000	1.193	1.262
$\log_{-}total_{-}volume$	-0.029	0.001	-23.237	0.000	-0.031	-0.026
month2	-0.037	0.008	-4.712	0.000	-0.052	-0.021
month3	0.031	0.008	4.066	0.000	0.016	0.045
month4	0.094	0.008	12.402	0.000	0.079	0.109
month5	0.080	0.008	10.502	0.000	0.065	0.095
month6	0.134	0.008	16.547	0.000	0.118	0.149
month7	0.198	0.008	25.137	0.000	0.182	0.213
month8	0.223	0.008	27.667	0.000	0.207	0.239
month9	0.242	0.008	30.527	0.000	0.227	0.258
month10	0.192	0.008	24.207	0.000	0.176	0.207
month11	0.113	0.008	13.961	0.000	0.097	0.129
month12	0.026	0.008	3.202	0.001	0.010	0.043
typeorganic	0.367	0.005	67.379	0.000	0.356	0.377
${\it geography_bins2}$	0.160	0.005	33.397	0.000	0.150	0.169
${\it geography_bins3}$	0.309	0.005	61.764	0.000	0.299	0.318
geography_bins4	0.563	0.008	69.124	0.000	0.547	0.579

Table 1: Summary regression of final model

$\underline{ \ \, \mathbf{Model \ Fitting/Inferences:}}$

$\underline{\bf Conclusion}:$

Appendix A: Supplemental Tables

Table 2: Summary Statistics for all numerical independent features

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
$total_volume$	30,021	939,255	3,813,519	85	14,299	489,803	63,716,144
4046	30,021	299,107	1,289,108	0	783	115,156	22,743,616
4225	30,021	284,901	1,169,078	0	2,814	140,947	20,470,573
4770	30,021	21,629	100,919	0	0	$5,\!424$	2,546,439
total_bags	30,021	333,534	1,415,618	0	8,374	159,174	31,689,189
small_bags	30,021	232,126	950,503	0	5,956	112,938	20,550,407
large_bags	30,021	95,185	467,210	0	352	36,068	13,327,601
xlarge_bags	30,021	$6,\!223$	38,137	0	0	560	1,022,564

	Model	Number of	MSE	Adj.R.squared	F.statistics	AIC
		Features				
1	Initial Model	16.000	0.062	0.572	1879.873	1421.841
2	Stepwise Model	16.000	0.062	0.572	1879.873	1421.841
3	Model with Interaction	78.000	0.060	0.588	413.437	598.507
	Terms					
4	Stepwise Model with	77.000	0.060	0.588	418.808	597.053
	Interaction Terms					

Table 3: Regression validation metrics including MSE, R-squared adjusted, and AIC

	GVIF	Df	$GVIF^{(1/(2*Df))}$
log_total_volume	2.713	1.000	1.647
month	1.007	11.000	1.000
type	2.673	1.000	1.635
$_geography_bins$	1.031	3.000	1.005

Table 4

Appendix B: R Code

```
1 #### Packages ####
3 library (magrittr)
4 library (tidymodels)
5 library (lubridate)
6 library (corrplot)
7 library (MASS)
8 library (broom)
9 library (car)
10 library (tidyverse)
12
13 #### Parameters ####
14
  avocado_color <- "#A3B958"
16
17
18 #### Functions ####
19
  Explore Variable \leftarrow function (df, xvar, count = TRUE, x_axis) {
20
2.1
    group_df <- df %>%
22
       group_by({{xvar}}) %%
23
       summarise (average_price = mean (average_price),
24
                 count = n(),
25
                  .groups = "drop")
26
27
    ratio <- max(group_df$count) / max(group_df$average_price)
28
29
    if (count == TRUE) {
30
      p \leftarrow ggplot(group\_df, aes(x = factor(\{\{xvar\}\}), group = 1)) +
31
         geom_bar(aes(y = count), stat = "identity", fill = avocado_color, col = "white}
32
         geom_point(aes(y = average_price * ratio), size = 2, color = "black") +
33
         geom_line(aes(y = average_price * ratio), size = 1, color = "black") +
34
         scale_y_continuous (sec.axis = sec_axis (~./ratio, name = "Average Avocado Price
       in Dollars"),
                              label = scales::comma
36
37
      y_lab <- "Count"
38
39
40
    } else {
41
       p \leftarrow ggplot(group_df, aes(x = \{\{xvar\}\}, group = 1)) +
         geom_point(aes(y = average_price), size = 2, color = "black") +
42
43
         geom\_line(aes(y = average\_price), size = 1, color = "black")
44
       y_lab <- "Average Avocado Price in Dollars"
45
46
47
    p +
       labs(y = y_lab, x = x_axis) +
49
       theme_bw()
50
51
ValidationTable <- function(fit, model_type){
```

```
mod <- fit
54
     fit _summary <- tibble (Model = model_type,
                             "Number of Features" = length((coef(mod) \% \% names())[-1]),
56
                             MSE = mean(mod\$residuals^2),
57
                             Adj.R. squared = summary(mod)  adj.r. squared,
58
                             F. statistics = summary (mod) $ fstatistic [[1]],
59
                             AIC = AIC \pmod{1}
60
     return (fit _summary)
61
62
63
   #### Data ####
   avocado <- read_csv("data/avocado-updated-2020.csv")
66
67
68
   # descriptive statistics of the data
70
   summary(avocado %>%
71
              select_if(is.numeric))
72
73
74
75 # add deciles to continuous response
76
   avocado ‰%
77
78
     mutate (
       total_volume_bins = as_factor(cut(total_volume, breaks = 10,
79
                                            include.lowest = TRUE, labels = FALSE)),
80
       "4046_bins" = as_factor(cut(`4046`, breaks = 10,
81
                                     include.lowest = TRUE, labels = FALSE)),
82
       "4225_bins" = as_factor(cut('4225', breaks = 10,
83
                                     include.lowest = TRUE, labels = FALSE)),
       "4770_bins" = as_factor(cut(4770, breaks = 10,
85
                                      include.lowest = TRUE, labels = FALSE)),
86
       total_bags_bins = as_factor(cut(total_bags, breaks = 10,
87
                                          include.lowest = TRUE, labels = FALSE)),
88
       small_bags_bins = as_factor(cut(small_bags, breaks = 10,
89
90
                                          include.lowest = TRUE, labels = FALSE)),
91
       large_bags_bins = as_factor(cut(large_bags, breaks = 10,
                                          include.lowest = TRUE, labels = FALSE)),
92
       xlarge_bags_bins = as_factor(cut(xlarge_bags, breaks = 10,
93
                                           include.lowest = TRUE, labels = FALSE)))
94
95
   # add month
96
97
   avocado %
98
99
     mutate(month = factor(month(date)))
100
   # feature engineer
102
103
   price_by_location <- avocado %>%
105
     group_by(geography) %>%
     summarise (average_price = mean (average_price),
106
                .groups = "drop") %%
107
     mutate(average_price_bins = cut(average_price, breaks = 4,
108
                                       include.lowest = TRUE, labels = FALSE)) %>%
109
```

```
dplyr::select(geography, geography_bins = average_price_bins) %%
110
     distinct()
112
   avocado ‰%
113
     left_join(price_by_location, by = "geography") %>%
114
     modify_at("geography_bins", as_factor)
115
   # log tranformation of total_volume
118
119
   avocado %
120
     mutate(log_total_volume = log(total_volume)) %%
     mutate(log_total_volume_bins = as_factor(cut(log_total_volume, breaks = 10,
                                                      include.lowest = TRUE, labels = FALSE
123
       )))
124
   #### Explore ####
126
127
     target variable: average_avocado price
128
   ggplot(avocado, aes(average_price)) +
130
     geom_histogram(fill = avocado_color, bins = 30, col = "white") +
131
     theme_bw() +
     labs(x = "Average Avocado Price in Dollars", y = "Count") +
133
     scale_y_continuous(label = scales::comma)
134
135
136
   # continuous predictors
137
138
   Explore Variable (avocado, total_volume_bins, count = FALSE,
139
                    x_axis = "Total Number of Avocados Sold")
140
   ExploreVariable (avocado, log_total_volume_bins, count = FALSE,
141
                    x_axis = "Log of Total Number of Avocados Sold")
142
143
   Explore Variable (avocado, `4046_bins`, count = FALSE,
144
                    x_axis = "Total Number of Avocados with PLU 4046 Sold")
145
146
   Explore Variable (avocado, `4225_bins`, count = FALSE,
                    x_{axis} = "Total Number of Avocados with PLU 4225 Sold")
147
   {\tt ExploreVariable (avocado\,, `4770\_bins`, \ {\tt count} = FALSE,}
148
                    x_{axis} = "Total Number of Avocados with PLU 4770 Sold")
149
   ExploreVariable(avocado, total_bags_bins, count = FALSE,
                    x_axis = "Total Number of Bags Sold")
   ExploreVariable (avocado, small_bags_bins, count = FALSE,
                    x_{axis} = "Total Number of Small Bags Sold")
153
   Explore Variable (avocado, large_bags_bins, count = FALSE,
154
                    x_axis = "Total Number of Large Bags Sold")
155
   ExploreVariable (avocado, xlarge_bags_bins, count = FALSE,
156
                    x_axis = "Total Number of Extra Large Bags Sold")
157
158
159
   #
    categorical predictors
160
161
   Explore Variable (avocado, type, count = TRUE,
                    x_axis = "Avocado Type")
162
   Explore Variable (avocado, year, count = TRUE,
163
                    x_axis = "Year of Observation")
164
```

```
ExploreVariable (avocado, month, count = TRUE,
                     x_axis = "Month of Observation")
166
   ExploreVariable (avocado, geography, count = FALSE,
167
                     x_{-axis} = "Geography of The Avocado") +
168
     coord_flip()
169
   ExploreVariable (avocado, geography_bins, count = TRUE,
170
                     x_axis = "Geography of the Avocado Group")
172
173
   # correlation
174
175
176
   corr_table <- avocado %>%
     dplyr::select(total_volume, '4046', '4225', '4770', total_bags, small_bags,
177
                     large_bags, xlarge_bags, average_price) %>%
178
     cor()
179
180
   corr_table %>%
181
     \{.[order(abs(.[, 1]), decreasing = TRUE)\}
182
        order(abs(.[, 1]), decreasing = TRUE)] %%
183
     corrplot(method = "number", type = "upper")
184
185
186
   #### Model Development ####
187
188
189
   # select significant variables
190
   avocado ‰%
191
     dplyr::select (average_price,
192
                     log_total_volume,
193
                     month,
194
                     type,
195
                     geography_bins)
196
197
198
199 # split data into train and test set
200
201
   set . seed (123)
   avocado_split <- initial_split (avocado, strata = average_price)
203
204
   avocado_train <- training(avocado_split)
205
206
   avocado_test <- testing(avocado_split)
207
208
209
210
   # Initial model with all predictors
211
   init_fit \leftarrow lm(average\_price ~.,
212
                    data = avocado_train)
213
214
215
216 # variable selection using stepAIC
217
   step_fit <- stepAIC(init_fit , direction = "both", trace = FALSE)</pre>
219
220
```

```
221 # interaction
222
   int_fit <- lm(average_price ~ .*.,
223
224
                  data = avocado_train)
226
   # variable selection for interaction model
227
228
   int_step_fit <- stepAIC(int_fit , direction = "both", trace = FALSE)</pre>
229
230
231
232
   # generate iteration log
233
   init_fit_summary <- ValidationTable(init_fit, "Initial Model")</pre>
   step_fit_summary <- ValidationTable(step_fit, "Stepwise Model")</pre>
236 int_fit_summary <- ValidationTable(int_fit, "Model with Interaction Terms")
   int_step_fit_summary <- ValidationTable(int_step_fit, "Stepwise Model with
       Interaction Terms")
238
   bind_rows(init_fit_summary,
239
              step_fit_summary,
240
              int_fit_summary,
241
              int_step_fit_summary) %>%
242
243
     modify_if(is.numeric, round, 3)
244
245
246 # final model
247
   final_fit <- init_fit
248
249
   final_fit %>%
250
     tidy() %>%
251
     modify_if(is.numeric, round, 3)
252
253
254
   #### Model Diagnostic ####
255
256
   # add rownames
258
   avocado_train %
259
     rownames_to_column()
260
261
   # Residuals
262
   avocado_train %
264
265
     mutate(predict = predict(final_fit),
             rstudent = rstudent(final_fit))
266
267
268
269 ## Influential Observations
270 ## Cook's D plot
271 ## identify D values > 4/(n-p-1) as a guide;
272 ## Cook and Weisberg recommend 0.5 and 1 (R uses these guides in default diagnostic
       plots below)
cutoff \leftarrow 4/((nrow(avocado_train) - length(final_fit $coefficients) - 2))
```

```
275
   diag <- augment(final_fit) %>%
     mutate(Index = 1: nrow(.))
277
   diag %>%
     mutate(high\_cooksd = case\_when(
280
        .cooksd > cutoff ~ 1, TRUE ~ 0),
281
       col_stdresid = case_when(
282
          . std. resid > 0  1,
283
          . std. resid < 0 \ \tilde{} \ 0),
284
       high_hat = case_when(
285
         . hat > .1 ~1,
         TRUE \tilde{} 0))
287
288
   ## cook's distant ggplot
289
290
   ggplot(diag, aes(x = as.numeric(Index), y = .cooksd)) +
291
     geom_bar(stat = "identity", col = avocado_color) +
292
     labs(y = "Cook's Distance") +
293
     theme_minimal() +
294
     geom\_label(data = diag \%\% filter(.cooksd > cutoff + .001),
295
                 aes(label = Index), label.size = NA, size = 3) +
296
     scale_x_continuous(label = scales::comma)
297
298
300 ## Normality of Residuals
301
   ggplot(diag, aes(x = .std.resid)) +
302
     geom_histogram(bins = 30, col = "white", fill = avocado_color) +
303
     theme_bw() +
304
     labs (x = "Studentized Residuals",
          y = "Count") +
306
     scale_y_continuous(label = scales::comma)
307
308
309
   # studentize residual plot
310
311
312
   ggplot(diag, aes(x = Index, y = .std.resid)) +
     geom_point(alpha = 0.2, col = avocado_color) +
313
     labs(y = "Standard Residuals", x = "Index") +
314
     theme_bw() +
315
     theme(legend.position = "none") +
316
     geom_label(data = diag \%\% filter(.std.resid > 5 | .std.resid < -5),
317
                 aes(label = Index), label.size = NA, size = 3, hjust = -.25, vjust = .3) +
     scale_x_continuous(label = scales::comma)
319
320
321
   # outlier and influential points
322
323
324
   diag %>%
325
     filter(.std.resid > 5 \mid .std.resid < -5 \mid .cooksd > cutoff + .001) \%
326
     dplyr::select(average_price, log_total_volume, month, type, geography_bins)
327
328
329 ## VIF
330 ## vif score seem very close to 1
```

```
vif(final_fit) # closer to 1 the better; 5-10 is moderate
332
333
   #### Predictions
334
335
   # Account for sigma^2
336
337
   sd_fit <- sd(final_fit$resid)</pre>
338
339
340
   # predict
341
342
   avocado_test %
343
     mutate(average_price_preds = predict(final_fit, newdata = .))
344
345
346
347
   # errors
348
   avocado_test %
349
     mutate(average_price_error = average_price - average_price_preds)
350
351
   mse <- mean(avocado_test$average_price_error)^2
352
353
354
355 # create lift chart
356
   avocado_test %%%
357
     mutate(average_price_decile = ntile(average_price_preds, n = 10))
358
359
   decile_price <- avocado_test %%
360
     group_by(average_price_decile) %>%
361
     summarise (Actual = mean (average price),
362
                Predicted = mean(average_price_preds),
363
                .groups = "drop") %%
364
     gather (key, price, -average_price_decile)
365
366
367
   ggplot (decile_price,
          aes (x = factor (average_price_decile), y = price,
368
               group = key, color = key) +
369
     geom_line(size = 1) +
370
     geom_point(size = 2) +
371
     theme_bw() +
372
     scale\_color\_manual(values = c("black", avocado\_color)) +
373
     labs(x = "Decile",
374
          y = "Average Avocado Price in Dollars") +
     theme(legend.title = element_blank(), legend.position = c(0.15,.8))
```

Listing 1: Appendix of Code