The implementation of entity extraction system based on semantic role labeling

IST664_M001 NLP Project, Instructor: Lu Xiao, Presented by Haiyang Sun, Hao Zhang, Xuehan Chen, Yanqi Yao, Yirong Wang

INCRODUCTION

Information Extraction (IE) is the process of extracting structured information from unstructured machine-readable documents

- 1. Find and understand limited relevant parts of texts
- 2. Gather information from many pieces of text

DATASET

- 1 EU rejects German call to boycott British
 lamb
 2 Peter Blackburn
- 3 BRUSSELS 1996-08-22
- 4 The European Commission said on Thursday it disagreed with German advice to consumers to shun British lamb until scientists determine whether mad cow disease can be
- transmitted to sheep
 5 Germany 's representative to the European
 Union 's veterinary committee Werner
 Zwingmann said on Wednesday consumers should
 buy sheepmeat from countries other than
 Britain until the scientific advice was
- clearer
 6 We do n't support any such recommendation
 because we do n't see any grounds for it the
 Commission 's chief spokesman Nikolaus van
 der Pas told a news briefing
- 7 He said further scientific study was required and if it was found that action was needed it should be taken by the European Union
- 8 He said a proposal last month by EU Farm Commissioner Franz Fischler to ban sheep brains spleens and spinal cords from the human and animal food chains was a highly specific and precautionary move to protect human health

Named Entity Recognition (NER) is the process of finding entities (people, cities, organizations, dates, ...) in a text.

NER is a subtask under Information Extraction.

Target:
Identify named entities
Classify named entities

CoNLL 2003 dataset provides sentences from newspaper/magazine.

Each word are correctly tagged.

Use python to get normal sentences from dataset.

-DOCSTART- -X- -X- 0

EU NNP B-NP B-ORG
rejects VBZ B-VP 0
German JJ B-NP B-MISC
call NN I-NP 0
to TO B-VP 0
boycott VB I-VP 0
British JJ B-NP B-MISC
lamb NN I-NP 0
. . 0 0

Peter NNP B-NP B-PER Blackburn NNP I-NP I-PER

BRUSSELS NNP B-NP B-LOC 1996-08-22 CD I-NP 0

The DT B-NP 0
European NNP I-NP B-ORG
Commission NNP I-NP I-ORG
said VBD B-VP 0
on IN B-PP 0
Thursday NNP B-NP 0
it PRP B-NP 0

Example:

EU NNP B-NP B-ORG

EU: word NNP: part-of-speech (POS) tag B-NP: syntactic chunk tag B-ORG: named entity tag

Four types of named entities:

-persons (B-PER)
-locations (B-LOC)
-organizations (B-ORG)
-names of miscellaneous entities that do not belong to the previous three groups (B-MISC)

GCN

PROCESS

To feed GCN model and generate the neural network, we must provide three matrices.

- 1. N*N matrix represent the dependencies between words in a sentence
- 2. N*D matrix represent features of each word
- 3. N*E matrix represent class of each word

With help of **Stanford Parser**, we write python code to generate every sentence's dependencies

Example:

0.244

-0.039

-0.273

-0.054

0.150

-0.336

N*N matrix represent the dependencies between words in a sentence.

(rejects-2,call-4) (rejects-2,lamb-8) (rejects-2,EU-1) (call-4,German-3) (lamb-8,to-5) (lamb-8,British-7) (lamb-8,boycott-6)

0.037

0.194

-0.203 0.212

-0.009

0.098

0.233

N * D matrix

-0.034 0.066 -0.187

-0.289 -0.083 0.091

-0.041 0.264 0.079

0.212

-0.106 -0.065

0.158 0.283

1/2	1	2	3	4	5	6	7	8
1	0	0	0	0	0	0	0	0
2	1	0	0	1	0	0	0	1
3	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	1	1	1	0

N * N matrix

N*E matrix represent class of each produces a node-level output Z (an N * E feature matrix, where E is the number of output features

-	 J	
	do	bj
	uu	رات —

EU	rejects	German	call	to	boycott	British	lamb
1	2	3	4	5	6	7	8
					nmod_		

We decided to use 300D word2vec to represent a word.

Word2vec is a two-layer neural net that processes text. Its input is a text corpus and its output is a set of vectors:

N*D matrix represent features of each word

A feature description xi for every node i; summarized in a $N \times D$ feature matrix X (N: number of nodes, D: number of input features)

	PER	LOC	ORG	MISC	0		
1	0	0	1	0	0		
2	0	0	0	0	1		
3	0	0	0	1	0		
4	0	0	0	0	1		
5	0	0	0	0	1		
6	0	0	0	0	1		
7	0	0	0	1	0		
8	0	0	0	0	1		

N * E matrix

CONCLUSION

In this project, we implemented an sentence entity extraction system based on deep learning and symantic role labeling. After training, the classifier reaches the accuracy of 86.02%. Although the accuracy is still a little bit lower than the state-of-art approach, we believe that there are still many things we can do to improve the accuracy.

Syracuse University

Reference

- [1] James H Martin and Daniel Jurafsky. Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition. Pearson/Prentice Hall Upper Saddle River, 2009.
 [2] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley framenet project. COLING/ACL-98, pages 86-90, 1998.
- [2] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley framenet project. COLING/ACL-98, pages 86-90, 1998 [3] C. J Fillmore. Frames and the semantics of understanding. Quaderni di Semantica, page 222-254, 1985.

- [4] P. N Johnson-Laird. Mental models. Harvard University Press, Cambridge, MA.
- [5] R. C. Schank and R. P Abelson. Scripts, plans, and knowledge. Proceedings of IJCAI-75, page 151-157, 1975.
- [6] Raymond R Smullyan. First-order logic, volume 43. Springer Science & Business Media, 2012.
- [7] James Allen. Natural language understanding. Pearson, 1995.