Союз Советских Социалистических Республик "

Государственный комитет Совета Министров СССР по делам изобретений и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к авторскому свидетельству

- (61) Зависимое от авт. свидетельства
- (22) Заявлено 08.09.71 (21) 1697797/23-26 с присоединением заявки № —

(32) Приоритет —

Опубликовано 30.05.74. Бюллетень № 20

Дата опубликования описания 31.10.74

(11) 430060

(51) M. Kл. C 01f 7/46

(53) УДК 661.862.222 (088.8)

- (72) Авторы изобретения
- (71) Заявитель

Н. Н. Хавский, А. И. Лайнер, И. З. Певзнер, Ю. Р. Смирнов, И. В. Николаев, Л. А. Тимофеева и Р. Г. Гольцева Московский ордена Трудового Красного Знамени институт стали и сплавов

(54) СПОСОБ ОБЕСКРЕМНИВАНИЯ АЛЮМИНАТНЫХ **PACTBOPOB**

* 1

Изобретение относится к технологии получения глинозема.

Известно, что при переработке высококремнистых бокситов по способу спекания требуется проведение глубокого обескремнивания для получения глинозема высших марок, которое осуществляют в две стадии.

Известен способ проведения первой стадии процесса при атмосферном давлении в открытых мешалках в присутствии затравки гидро- 10 алюмосиликата натрия около 100 г/л при продолжительности процесса 6—8 час.

Однако по известному способу процесс продолжителен и необходимо введение больших

количеств затравки.

Цель изобретения — разработка эффективного способа обескремнивания алюминатных растворов, который позволит при атмосферном давлении добиться значения кремневого модуля более 200 при меньшей продолжительности процесса и меньшей затравке.

Для этого предлагается обескремнивание вести при воздействии ультразвука с частотой колебаний не менее 16 кгц и интенсивности, создающей кавитацию, в течение 12—15 мин 25 и затравку брать в количестве 20-30 г/л.

Пример. Процесс проводят в открытых мешалках на синтетических алюминатных растворах при концентрации Al₂O₃ 100 г/л $\alpha_{\text{каустический}} = 1,5 - 1,55$, SiO₂ 3-3,1 г/л. Исход- 30 табл. 2. 2

ный раствор смешивают с определенным когидроалюмосиликата личеством натрия (ГАСН) из расчета 20—30 г/л. Приготовленную таким образом пульпу подвергают воздействию ультразвука, которое осуществляют непосредственным введением волновода в стакан. В течение 15 мин в пульпе создают колебания частотой 16 кгц и интенсивностью 0,8 вт/см², достаточной для создания в обрабатываемом объеме кавитации. Затем в течение 2 час процесс обескремнивания продолжают в обычных условиях.

Результаты экспериментов в присутствии 25 г/л натриевого гидроалюмосиликата приве-

15 дены в табл 1.

В связи с тем, что продолжительность процесса сокращают примерно в 3 раза, соответственно снижается расход пара, электроэнергии, рабочей силы и пр. Кроме того, уменьшение количества затравки в 3—4 раза приводит к уменьшению удельных грузопотоков и облегчает операции отделения и промывки белого шлама. Таким образом, использование предлагаемого способа обескремнивания дает возможность снизить себестоимость глинозема.

Взаимосвязь влияния ультразвука и затравки в ее определенной дозировке, приводящая к интенсификации процесса обескремнивания алюминатных растворов, приведена в

Таблица 1

Название растворов	Coc	тав растворов	Модуль	Модуль	
	Al ₂ O ₃	Na ₂ O _{кауст.}	SiO ₂	каустичес- кий а _к	кремнивый Разі
Исходный раствор Раствор после обескрем- нивания	100 98,05	93,8 91,3	3,08 0,43	1,53 1,5	33 228

Таблица 2

	Состав раствора					
Название растворов		Al ₂ O ₃ , г/л	Na ₂ O _{кауст.} ,	SiO ₂ , г/л	Модуль каустичес- кий а _к	Модуль кремние- вый µ _{S1}
Исходный раствор Раствор с добавкой Г	ACH	100 99,06	93,8 91,0	3,08 0,68	1,53 1,51	33 146
10 г/л Раствор с добавкой Г	ACH	98,73	90,7	0,60	1,51	165
15 г/л Раствор с до б авкой Г 25 г/л	'ACH	98,05	91,3	0,43	1,50	228
Раствор с добавкой Г 50 г/л	ACH	94,17	84,8	0,36	1,48	262
Раствор с добавкой Г 75 г/л	ACH	92,76	82,9	0,34	1,47	270
Раствор с добавкой Г 100 г/л	ACH	91,82	82,1	0,32	1,47	290

Из таблицы видно, что приемлемую степень обескремнивания (MSi>200) достигают при добавке гидроалюмосиликата натрия в количестве 25 г/л. Дальнейшее увеличение количества затравки, хотя и приводит к некоторому увеличению степени обескремнивания, но в то же время значительно увеличивает потери глинозема и щелочи за счет ухудшения отмываемости шлама.

ультразвуком оптимальным является расход затравки ГАСН на обескремнивание в количестве 20—30 г/л.

Аналогично в случае использования нефелинового концентрата.

Предмет изобретения

Способ обескремнивания алюминатных растворов при атмосферном давлении в присутствии затравки гидроалюмосиликата натрия, отличающийся тем, что, с целью интенсификации процесса, обескремнивание ведут при Таким образом, при условии воздействия 10 воздействии ультразвука с частотой колебаний не менее 16 кгц и интенсивности, создающей кавитацию, в течение 12-15 мин и затравку берут в количестве 20-30 г/л.

Составитель С. Розенфельд

Редактор Ю. Аганова Техред Л. Акимова Корректор Л. Царькова Заказ 2915/15 Изд. № 1684 Тираж 537 Подписное ЦНИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий Москва, Ж-35, Раушская наб., д. 4/5

DERWENT-ACC-NO: 1975-27034W

DERWENT-WEEK: 197516

COPYRIGHT 2009 DERWENT INFORMATION LTD

TITLE: Aluminate solutions purification

silica is removed by adding

sodium hydroalumo silicate and

subjecting to ultrasonic

vibrations

PATENT-ASSIGNEE: MOSCOW STEEL ALLOYS INST[MOSCN]

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

SU 430060 A October 31, 1974 RU

APPLICATION-DATA:

PUB-NO	APPL-	APPL-NO	APPL-DATE
	DESCRIPTOR		
SU	N/A	1971SU-	September
430060A		1697797	8, 1971

INT-CL-CURRENT:

TYPE IPC DATE

CIPS C01F7/46 20060101

ABSTRACTED-PUB-NO: SU 430060 A

BASIC-ABSTRACT:

The silica is removed from aluminate soln. during the prodn. of alumina by adding sodium hydroalumosilicate. In order to intensify the process, the bath is subjected to ultrasonic vibrations at a frequency of is not <16 KHz for 12-15 min. The process is carried out at atmospheric pressure and sodium hydroaluminosilicate is added in an amount of 20-30 g/l. In an example, the initial aluminate soln. consists of (g/l) 100 Al2O3, 93.8 Na2O (caustic), 3.08 SiO2. After adding sodium hydroalumosilicate and subjecting to ultrasonic vibrations, the soln. consists of (g/l) 98.05 Al2O3 91.3 Na2O, and 0.43 SiO2.

TITLE-TERMS: ALUMINATE SOLUTION PURIFICATION
SILICA REMOVE ADD SODIUM SILICATE
SUBJECT ULTRASONIC VIBRATION

DERWENT-CLASS: E33

CPI-CODES: E34-C03;

CHEMICAL-CODES: Chemical Indexing M3 *01*

Fragmentation Code A313 A940 C108

C550 C730 C801 C802 C803 C804

C805 C807 M411 M720 N160

Chemical Indexing M3 *02*
Fragmentation Code A300 A313 A940
A990 C108 C550 C730 C801 C802
C803 C804 C805 C807 M411 M720
N160