2018年度 卒 業 論 文

ティルトロータ型 UAV における 低速飛行特性の解析

神戸大学工学部情報知能工学科 弓場 洋輝

指導教員 玉置 久 教授,浦久保 孝光 准教授

2019年2月13日

Copyright © 2019, Hiroki Yuba

ティルトロータ型 **UAV** における 低速飛行特性の解析

弓場 洋輝

要旨

貯水施設や発電機がある放流路など様々な放流路から構成される水系の運用について、水系に存在する種々の制約を満たしつつも、効率的に水資源を利用する水系 運用計画を作成することが肝要である。本研究では、効率的かつ実用的な水系運用 計画の作成問題を対象として、数理計画モデルの一構成法を示すとともに、その妥 当性について検討する。

現状では、水系支援システムは種々の制約の充足などの機能が十分ではなく、実用的なものではない。そのため、運用計画の作成は現場の人手による対応に委ねられる部分が多くなっている。本研究では、まず水系運用最適化問題を一般的に定義し、その定義に基づき、数理計画モデルとして定式化を行なう。構成した数理計画モデルを現実的な水系を対象とした計算例を通して、モデルの妥当性について検討する。

計算例より、制約を満たしつつ、水の効率的な運用がなされていることが確認できた.この結果より提案モデルが一定の妥当性を有するものと考えられる.水系運用計画を現実の運用に耐え得るものとするための、モデルのさらなる拡充・改良が今後の課題となる.

目 次

第1章	序論	1
第2章	実験機体	3
2.1	実験機の概要	3
2.2	搭載システム	3
第3章	力学モデル	5
3.1	座標系	5
3.2	縦運動の非線形モデル	5
3.3	縦運動の線形モデル	5
3.4	空気力モデル	5
第4章	パラメータ同定	6
4.1	データの前処理	6
4.2	パラメータの推定手法	6
第5章	低速飛行特性	7
5.1	線形モデル	7
5.2	空気力モデルの検証	7
5.3	CFD の解析結果との比較	7
第6章	結論	8
卸金		o

参考文献 10

付録

第1章 序論

地震や津波などの自然現象による災害発生時,大規模で広範囲に及ぶ被災地での 救助活動において,正確な情報収集を迅速かつ安全に行なうことが必要とされる. 被災地では,建物の崩壊や地盤沈下などの理由による交通網の混乱で,地上におけ る情報収集活動は困難となる.同時に,緊急を要する救援物資の運搬も難しくなる.

これらの課題に対し、地上状態の影響を受けない空の利用が有効であり、特に、無人航空機 (Unmanned Aerial Veheicle, UAV) は有用である。UAV は、その名前のとおり操縦者を機体に搭乗しない航空機であり、大規模災害時に有人操縦者が行なうには危険な任務を遂行することが可能である。災害調査や空撮を行ない、荷物の積載能力や離着陸能力によっては、運搬利用も可能である。ただし物資運搬で利用する場合は、救助者の近くを飛行するため対人安全性も考慮しなければならない。

UAV は、飛行機のような形状の固定翼機と、ヘリコプタのようなロータ (回転翼) を持つ回転翼機に大きく分けられ、それぞれ異なる特徴を持つ。固定翼機は、速い 巡航速度で飛行でき、推進効率も良いため長距離の飛行が可能であるが、一方で離 着陸に滑走路が必要である。回転翼機は、垂直離着陸で、ホバリングも可能であるが、一方で固定翼機に比べて巡航速度が遅く、推進効率が悪い。

現在,災害発生時にUAVが利用される場合,それぞれの長所と短所を考慮し,災害状況や用途によって使い分けられている.しかし,大規模災害発生時においては,従来のUAVでは任務を効率的に遂行することができないため,より高い性能を持つUAVの開発が望まれる.

そこで我々は、固定翼機と回転翼機のそれぞれの長所をあわせ持つ、ティルトロータ機に着目した。ティルトロータ機とは、推力を発生させるメインロータを機体に対して鉛直方向から水平方向まで可動させることで、固定翼機モードと回転翼機モードを切り替えることができる航空機である。このようなティルトロータを有した UAVは、大規模災害発生時の情報収集に適した機体であると考えられる。本研究で使用する UAV(以下開発機体と表記)は、エアロセンス株式会社と共同で開発を行なったものである。軽量かつ剛性の高い、対人安全性を考慮した独自形状機構を持つ、ティルトロータを有した小型 UAV である。機体の詳細は第2章で述べる。

本研究では、開発機体を対象とし、特に回転翼機モード時の飛行特性解析を行なう.

第2章 実験機体

本章では、実験を行なった開発機体の開発コンセプトと、設計や搭載システムの概要を述べる、機体は、災害発生時、回転翼機モードで離陸し、上空で固定翼機モードへと遷移して被災地へ向かう。そして被災地上空へ到着した後、回転翼機モードへと遷移し、ホバリング飛行しながら、情報収集や着陸可能地点の検出を行なう。

2.1 実験機の概要

本研究グループの目的である,大規模災害発生時の任務遂行には,狭隘地への進入が必要な場合がある。また救援物資の運搬に利用する場合,救助者に近い距離で着陸を行なう可能性もあり,対人安全性の強化が必要である。さらに,空撮や着陸可能地点の検出には,安定した飛行とホバリングを行なう必要がある。

以上を踏まえて、機体製作にあたり以下の3点

- 1. 機体サイズの小型化
- 2. 対人安全性を考慮
- 3. ヘリコプタと同等のホバリング性能

をコンセプトとしている.

2.2 搭載システム

Figure 2.1: Tilt rotor UAV

第3章 力学モデル

- 3.1 座標系
- 3.2 縦運動の非線形モデル
- 3.3 縦運動の線形モデル
- 3.4 空気力モデル

第4章 パラメータ同定

- 4.1 データの前処理
- 4.2 パラメータの推定手法

第5章 低速飛行特性

- 5.1 線形モデル
- 5.2 空気力モデルの検証
- 5.3 CFD の解析結果との比較

第6章 結論

本研究では,

謝辞

本研究を進めるにあたり、終始適切な御指導、御助言を賜りました、玉置久教授 に感謝、尊敬の念とともに厚く御礼申し上げます.

また、様々な貴重な御意見、御指導を頂きました太田能准教授、高木由美助手に 感謝の意を表します.

さらに、本研究に関して多くの有益な御助言を頂きました関西電力株式会社 牛尾剛氏、竹ノ下経氏に心から感謝の意を表します.

研究室生活を有意義なものとしていただいた,神戸大学大学院システム情報学研究科情報科学専攻玉置研究室の諸先輩方,および同回生諸氏に感謝いたします.

最後に、私を支えてくださった家族に心から感謝いたします.

参考文献

- [1] 細江, 他: "水系運転業務支援機能の開発," 中部電力技術開発ニュース, no. 117, pp. 17-18 (2005)
- [2] 鳩野, 他: "水力発電システム及びその運転計画方法," 特開 2010-1669, (2010)
- [3] Shyh-Jier Huang: "Enhancement of hydroelectric generation scheduling using ant colony system based optimization approaches," IEEE Transactions on Energy Conversion, vol. 16, no. 3, pp.296-301 (2001)
- [4] Shi-Chung Chang, Chun-Hung Chen, I-Kong Fong, Luh, P.B., "Hydroelectric generation scheduling with an effective differential dynamic programming algorithm," IEEE Transactions on Power Systems, vol. 5, no. 3, pp. 737-743 (1990)
- [5] JAN C. GRYGIER, JERY R. STEDINGER, "Algorithms for Optimizing Hydropower System Operation," Water Resources Research, vol. 21, no. 1, pp. 1-10 (1985)
- [6] IBM ILOG, "CPLEX 12," http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (2010)

付録

付録です.