Les Fiches Techniques 375

CHOIX DES ACIERS DE CÉMENTATION ET CARBONITRURATION

Le choix d'un acier de cémentation ou carbonitruration est essentiellement déterminé par la trempabilité permettant d'obtenir la résistance en sous-couche et à cœur et dans une moindre mesure la capacité de durcissement de la couche enrichie en carbone.

Le choix d'une trempe huile n'est pas compatible avec les aciers non alliés et le choix d'une trempe gaz limite à l'emploi d'aciers moyennement alliés de bonne trempabilité. La réduction des déformations oriente également le choix de la nuance. Les moindres déformations sont obtenues avec les milieux de trempe les moins drastiques. La tenue à la fatigue est une résultante des caractéristiques de la couche cémentée et des propriétés à cœur.

La cémentation se pratique sur des aciers dont la teneur en carbone ne dépasse pas généralement 0,25%. La carbonitruration produisant des couches plus faibles pourra être appliquée jusqu'à des teneurs en carbone de 0,30%. L'écart de teneur en carbone doit être suffisamment grand pour que la couche enrichie soit en compression sur le cœur, la chronologie des transformations martensitiques doit se faire d'abord à cœur avant la surface. Pour cela le point Ms du cœur doit être plus élevé que celui de la couche enrichie.

L'offre normalisée est celle de la norme NF EN 10084

ELÉMENTS D'ALLIAGE	DÉSIGNATION CONVENTIONNELLE	NF EN 10084	ANCIENNE NORME NF	USA
Non alliés	C10 - C10	C10E - C10R	XC10	1010
	C15 - C15 - C16 - C16	C15E - C15R - C16E - C16R	XC18	1015
Cr	17Cr3	17Cr3	17C2	
	28Cr4	28Cr4	28C4	
Cr-Mo	18CrMo4	18CrMo4 / 18CrMoS4	18CD4	4118
Mo-Cr	20MoCr4	20MoCr4 / 20MoCrS4	20CD4	
Mn-Cr	16MnCr5	16MnCr5 / 16MnCrS5	16MC5	5115
	16CrMnB5			
	20MnCr5	20MnCr5 / 20MnCrS5	20MC5	
Ni-Cr	14NiCr11		14NC11	
	14NiCr14	15NiCr13	14NC14	3312
	16NiCr4	16NiCr4 / 16NiCrS4		
	16NiCr6	17CrNi6-6	16NC6	
	20NiCr4		20NC6	
Ni-Cr-Mo	16NiCrMo13		16NCD13	
	17CrNiMo6	18CrNiMo7-6	17NCD6	
	18NiCrMo5		18NCD6	
	20NiCrMo2	20NiCrMo2 / 20NiCrMoS2	20NCD2	8620
	20NiCrMo7			4320

Nota : Il est toujours possible de carburer des aciers dont la teneur en carbone est élevée, il s'agit alors de surcarburation. Le résultat recherché est surtout la résistance à l'usure.