### **First Order Autonomous**

#### **Autonomous**

$$\frac{dy}{dx} = f(y)$$

where there is no independent variable on right hand side

we can get information about the solution without actually solving it

## **Direction Field**



the integral curves of autonomous equation are translationally equal

## **Critical Point**

$$\frac{dy_0}{dx} = f(y_0) = 0$$

then  $y = y_0$  is an absolute value

#### method:

- I. find the critical points'
- 2. graph f(y) and compare it with 0

example:  $dy/dx = r \cdot y - w$ , where r and w are constant find critical point:

$$\frac{dy}{dx} = r \cdot y - w = 0 \Rightarrow y = \frac{w}{r}$$



when y > w/r, dy/dx > 0 and increases when y < w/r, dy/dx < 0 and decreases then we can graph f(y)



# **Logistic Equation**

the model is mostly used to describe how population increases

$$\frac{dy}{dx} = f(y) = ky = (a - by)y$$

where y is the population, k is the growth rate the model has the feature that when y increases the k decreases, and vice versa

$$(a - by)y = 0 \Rightarrow y = 0 \text{ or } y = a/b$$

when 0 < y < a/b, dy/dx > 0 and it first increases and then decreases

