Lambda Calculus

- See the lambda calculus tutorial
- See the lambda calculus handout

The smallest universal programming language of the world

Common Functions

Identity

$$id = \lambda x. x$$

$$(\lambda x.\,x)M=M$$

Selection

$$fst = \lambda x. \, \lambda y. \, x$$

$$snd = \lambda x. \, \lambda y. \, y$$

:≡ Example

$$(\lambda x.\,\lambda y.\,x)MN=(\lambda x.\,M)N=M$$

$$(\lambda x.\,\lambda y.\,y)MN=(\lambda x.\,N)M=N$$

Substitutions

Arithmetic

zero

$$suc(zero) = 1$$

 $suc(suc(zero)) = 2 = suc(1)$

$$egin{aligned} 0 &\equiv \lambda s. \, (\lambda z. \, z) \equiv \lambda sz. \, z \ &1 \equiv \lambda sz. \, s(z) \ &2 \equiv \lambda sz. \, s(s(z)) \end{aligned}$$

Addition

- ullet e.g. $2S3\equiv SS3\equiv S4\equiv 5$
 - You can keep the z in to simplify the substituting

Multiplication

$$(\lambda xyz. x(yz))$$

∷ Example

$$(\lambda xyz.\, x(yz))22 \equiv (\lambda z.2(2z)) \equiv 4$$

Conditionals

$$T \equiv \lambda x y. x$$

$$F \equiv \lambda x y. \, y$$

Logical Operations

$$AND :\equiv \Lambda xy.\, y(\lambda uv.\, v) \equiv \lambda xyxyF$$

$$OR :\equiv \Lambda xy. \, x(\lambda uv. \, u) \equiv \lambda xyxTy$$

$$NOT :\equiv \lambda x.\, x(\lambda uv.\, v)(\lambda ab.\, a) = \lambda x.\, xFT$$

\equiv Examples

 $z \equiv \lambda x.\, xF \neg F$

f applied to a 0 times: $0fa\equiv (\lambda sz.\,z)fa\equiv a$ F applied to a: $Fa\equiv (\lambda xy.\,y)a\equiv \Lambda y.\,y\equiv 1$