Zadanie 11. (6 pkt)

Wyznacz wszystkie liczby całkowite k, dla których funkcja $f(x) = x^2 - 2^k \cdot x + 2^k + \frac{5}{4}$ przyjmuje wartości dodatnie dla każdego $x \in R$.

Zadanie 12. (5 pkt)

Powyższy rysunek przedstawia fragment wykresu pewnej funkcji wielomianowej W(x) stopnia trzeciego. Jedynymi miejscami zerowymi tego wielomianu są liczby (-2) oraz 1, a pochodna W'(-2)=18.

- a) Wyznacz wzór wielomianu W(x).
- b) Wyznacz równanie prostej stycznej do wykresu tego wielomianu w punkcie o odciętej x = 3.

Zadanie 13. (5 *pkt*)

Sporządź wykres funkcji $f(x) = \left| \frac{x-4}{x-2} \right|$, a następnie korzystając z tego wykresu, wyznacz wszystkie wartości parametru k, dla których równanie $\left| \frac{x-4}{x-2} \right| = k$, ma dwa rozwiązania, których iloczyn jest liczbą ujemną.

Zadanie 14. (4 pkt)

Niech $A, B \subset \Omega$ będą zdarzeniami losowymi, takimi że $P(A) = \frac{5}{12}$ oraz $P(B) = \frac{7}{11}$. Zbadaj, czy zdarzenia A i B są rozłączne.

Zadanie 15. (5 pkt)

Dany jest nieskończony ciąg geometryczny postaci: $2, \frac{2}{p-1}, \frac{2}{(p-1)^2}, \frac{2}{(p-1)^3}, \dots$. Wyznacz wszystkie wartości p, dla których granicą tego ciągu jest liczba:

- a) 0.
- b) 2.

Zadanie 16. (7 *pkt*)

Dane jest równanie postaci $(\cos x - 1) \cdot (\cos x + p + 1) = 0$, gdzie $p \in R$ jest parametrem.

- a) Dla p = -1 wypisz wszystkie rozwiązania tego równania należące do przedziału $\langle 0; 5 \rangle$.
- b) Wyznacz wszystkie wartości parametru p, dla których dane równanie ma w przedziale $\langle -\pi;\pi\rangle$ trzy różne rozwiązania.

Zadanie 17. (4 pkt)

W trójkącie prostokątnym ABC ($\angle BCA = 90^\circ$) dane są długości przyprostokątnych: |BC| = a i |CA| = b. Dwusieczna kąta prostego tego trójkąta przecina przeciwprostokątną AB w punkcie D. Wykaż, że długość odcinka CD jest równa $\frac{a \cdot b}{a + b} \cdot \sqrt{2}$. Sporządź pomocniczy rysunek uwzględniając podane oznaczenia.

Zadanie 18. (8 *pkt*)

Oblicz miary kątów dowolnego czworokąta wpisanego w okrąg o promieniu $R = 5\sqrt{2}$, wiedząc ponadto, że jedna z przekątnych tego czworokąta ma długość 10, zaś iloczyn sinusów wszystkich jego kątów wewnętrznych równa się $\frac{3}{8}$.

Zadanie 19. (6 pkt)

Korzystając z zasady indukcji matematycznej, udowodnij, że każda liczba naturalna $n \ge 5$ spełnia nierówność $2^n > n^2 + n - 1$.

ODPOWIEDZI

$$k \in \{..., -1,0,1,2\}$$

$$W(x) = 2(x+2)(x-1)^2, \quad y = 48x - 104$$

$$k \in (1;2)$$
Nie są
$$p \in (-\infty;0) \cup (2;\infty), \quad p=2$$

$$x \in \left\{0, \frac{\pi}{2}, \frac{3}{2}\pi\right\} p \in (-2;0)$$

$$-45^\circ, \quad 60^\circ, \quad 120^\circ, \quad 135^\circ$$

-