This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-074082

(43) Date of publication of application: 16.03.1999

(51)Int.CI.

H05B 33/22

H05B 33/10

(21)Application number: 09-234699

(71)Applicant: SEIKO EPSON CORP

(22)Date of filing:

29.08.1997

(72)Inventor: KANBE SADAO

KIGUCHI HIROSHI

(54) LUMINESCENT DISPLAY

(57)Abstract:

PROBLEM TO BE SOLVED: To easily discharging an organic EL material to prevent the mixing between luminescent layers, by forming a trapezoidal cross-section wherein the side, contacting the transparent electrode of a ridge, is longer than an opposite side.

SOLUTION: A substrate with a ridge is formed of ridges 61, an ITO transparent electrode 62, a glass substrate 63, an insulating layer 64, and TFT elements 65. A solution, wherein a red, green, and blue organic EL material is melted between the ridges 61, is discharged by using an ink jet printing device. After that, the solution is dried to remove a solvent, and lithium—contained aluminium is sputtered to make a counter electrode. A portion; for receiving an organic EL material, and relatively opened large compared with a luminous area, can be formed because of forming the banks 61 having a trapezoid, wherein the sides of the ridges

61, in contact with ITO transparent electrode 62, is longer than an opposite side; thereby enlarging a margin to a deflection for selectively injecting a solution wherein the red, green, and blue organic EL material is melted by a discharge device.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開登号

特開平11-74082

(43)公開日 平成11年(1999)3月16日

(51) Int.CL⁶

織別配号

ΡI

H 0 5 B 33/22 33/10 H 0 5 B 33/22 33/10

審査請求 未請求 請求項の数1 OL (全 4 頁)

(21) 出願番号

物類平9-234699

(71) 出願人 000002369

セイコーエプソン株式会社

(22)出鏡日

平成9年(1997)8月29日

京京都新宿区西新宿2丁目4番1号

(72) 発明者 神戸 貞男

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(72) 発明者 木口 治史

長野県諏訪市大和3丁目3番5号 セイコ

ーエブソン株式会社内

(74)代銀人 弁壁士 鈴木 喜三郎 (外2名)

(54) 【発明の名称】 発光ディスプレイ

(57)【要約】

【課題】ガラス基板上に形成された土手で仕切られた発 光層部分に、発光材料を正確に入れられない。

【解決手段】ガラス基板63上に形成された主手61の 断面形状を台形にし、その土手61で仕切られて形成さ れる凹部に発光材料を突出することにより、発光材料を 受け入れ易くした。

【特許請求の範囲】

【請求項】】少なくとも、適明電極、適明電極上に形成 される2種以上の色を出す発光層、及びその発光層を仕 切る土手、発光層と土手を覆り対向電極よりなる発光デ ィスプレイにおいて、土手の断面形状が、透明電極側に 接する辺が対辺より長い台形であることを特徴とする発 光ディスプレイ。

【発明の詳細な説明】

 $\{00001\}$

係わり、更に詳しくは有機発光材料(以後有機EL材料 という〉を用いた発光ディスプレイに関する。

[0002]

【従来の技術】近年液晶表示体がワードプロセッサー、 パーソナルコンピュータ等の表示部として盛んに用いる れている。この液晶表示体は非発光素子であり、明るさ の点、特に反射型ディスプレイで用いるとき問題とな る。とこへきて隣型、軽量の特徴を有する有機EL材料 を用いた発光ディスプレイが注目されている。

す。図において1はアルミニウム電極を、2は有機EL 材料を、3はITO透明電極を、4はガラス基板を、5 は電源をそれどれ示す。

【①①①4】図よりわかる様に透明基板がわずかに厚み を要求される他はマイクロメータのオーダーであり、非 **鴬に薄いディスプレイである。**

【① 005】との発光ディスプレイの製造方法は以下の 通りである。まず透明基板にスパッター法、又は蒸着法 等により「TO透明電極を作製する。しかる後、ホトリ ソグラフィー法等により所望の形状の電極を形成する。 更に、この基板状にスピンコート法、蒸着法等により有 機匠し材料を成験し発光層とする。更にこの上に仕事関 数の低い金属。例えば、マグネシウム。カルシウム、ア ルミニウム、リチウム、銀」あるいはこられ金属の合金 を蒸着法、スパッター法等により成職することにより対 向電極とする。

【0006】以上が基本の工程であるが、発光効率を上 げるために、更に透明電極と発光層の間にホール輸送 圏、倒えば、N、N ゚ージフェニルーN, N゚ー(2, 4-ジメチルフェニル)-1,1 -ビフェニル-4, 4. ジアミン層を設けてもよい。また発光層と対向電極。 の間に電子輸送層、例えば2-(4-ビフェニル)-5 - (4-tert-ブチルフェニル) - 1, 3、4-オ キシジアゾール層を設けてもよい。

【①①07】この対向する電極間に電界を印可すること により発光させることが出来る。この発光ディスプレイ の特徴として、10ボルト以下の電圧で駆動できること がある。この有機EL材料を用いた発光ディスプレイは 将来有望な技術であるが、フルカラー化をねらう場合間 題があった。即ち、赤、緑、青をどのように則々に区分 50 【発明の実施の形態】以下実施例により詳しく説明す

けするかが問題であった。。しかしここへきてリソグラ イフィー法等により電極上に発光層を仕切る土手を形成 し、その土手内に吐出装置を用い赤、緑、青の有機EL 材を溶解した溶液を吐出し、吐出後溶媒を乾燥除去し、 発光層とする方法が注目されている。

[0008]

【発明が解決しようとする課題】従来、土手はホトリソ グラフィー法により形成されていた。そしてその形状 は、図2、図3に示す様に矩形が一般的であった。最 【発明の属する技術分野】本発明は発光ディスプレイに 10 近、道テーバを付け、対向電極に接する主手の鋭角を利 用し、土手に一種のマスクの役割をさせて、対向電極蒸 着後の電極に切れ目をいれ、短冊状に電極を作る方法が 提案されている。

【0009】尚、図2は矩形状の土手を有す、短冊上に 区切られた透明電極付き基板上に有機EL材料を溶解し た溶液を吐出装置により吐出する工程を示す概念図であ る。また、図3はマトリクス状に、TFT案子と、この **素子と直結するITO透明電極とを配置した土手を有す** 基板上に、有機EL材料を溶解した溶液を吐出装置によ 【0003】との発光ディスプレイの断面図を図1に示 20 り吐出する工程を示す概念図である。図2、3において 21.31は有機EL材料を溶解した溶液を吐出するノ ズルを、22、32は有機EL材料を、23、33は土 手を、24、34はITO適明電極を、25、35はガ ラス基板を、36は絶縁層を、37はTFT素子をそれ

> 【0010】従来の土手はこれらの図に示す様に、矩形 であるか、透明電極に接する辺の方が短い、すなわち逆 テーパを有する形状であった。そのため、発光部分に対 して有綴EL村を打ち込む面積が狭くなる欠点が有る。 30 このため吐出装置による赤、緑、青をうち分けることが 困難になる欠点があった。

【①①11】本発明はこの様な課題を解決するためにな されたもので、その目的は吐出装置による有機EL材料 を困難を伴うこと無く吐出でき、発光層間の交じり合い の無い、良好な発光ディスプレイを提供するためになさ れたものである。

[0012]

【課題を解決するための手段】上記課題を解決するため に、請求項1の本発明の発光ディスプレイは、少なくと 40 も、透明電極、透明電極上に形成される2種以上の色を 出す発光圏、及びその発光層を仕切る土手、発光層と土 手を覆う対向電極よりなる発光ディスプレイにおいて、 土手の断面形状が、透明電極に接する辺が対辺より長い 台形であることを特徴としている。

【0013】この様な土手を形成することにより発光面 箱に比べて、比較的大きく開いた、有機EL材料を受け 止める部分を形成できる。そのため吐出装置の振れのマ ージンも大きくなる。

[0014]

る。

【0015】 (実施例1) ITO電極帽40マイクロメ ータ、穹極間10マイクロメータで配置された短冊状電 極付きガラス蟇板に非感光性ポリイミドSE-812

(日産化学製)を、回転速度2000ggm、回転時間 20秒の条件でスピンコートした。この基板を80度C 30分間プレベークした後、マスクをし、露光した。露 光後、エッチングを行い、160度Cで30分間ポスト ベークをし、図4に示す土手付き基板を得た。図におい ス基板を示す。との基板に赤、緑、青の有機EL村を溶 解する溶液をディスペンサにより吐出した。最後にMg /Ag(1:10)台金を蒸着し、透明電極に直交する ように電極を形成し、対向電極とした。

【0016】とのようにして得た発光ディスプレイをマ トリクス駆動した。

【0017】(実施例2) 図5に示す土手の形状を有す 金属型と、シリコン樹脂(東芝シリコーン製)を用いシ リコン樹脂型を作成した。この型をTFT素子とこのT F T素子に直結した! T O 透明電極がマトリクス上に形 20 23. 土手 成されたガラス基板に密着させ、この型の回りにガラス 前駆体(ETSB-7000、テー・エス・ピー開発セ ンター製〉を設置し、シリコン樹脂型と基板の形成する 空間にガラス前駆体を室温で進入させた。進入が完結し たところで室温に放置し固化させた。固化したところで シリコン樹脂型を取り外し、200度Cで2時間焼成。 し、図6に示すような土手付き基板を得た。図において 61は土手を、62は!TO透明電極を、63はガラス 基板を、64は絶縁層を、65はTFT素子をそれぞれ 示す。この基板の主手の間にインクジェットプリンティ 30 41. 土手 ング装置を用い、赤、緑、青の有機EL材料を溶かした **恣波を吐出した。その後、乾燥、溶媒除去してから、リ** チウム2%入りアルミニウムをスパッター法によりスパ ッタして対向電極とした。

[0018]

【発明の効果】以上述べたように本発明の発光ディスプ レイは、吐出装置を用い効率よく、各色の発光層間の復 ざりもなく製造できる。

【図面の簡単な説明】

【図1】発光ディスプレイの断面図。

*【図2】短冊状の電極を有す発光ディスプレイの製造工 程を示す概念図。

【図3】マトリクス状にTFT素子とITO電極を有す 発光ディスプレイの製造工程を示す概念図。

【図4】本発明の発光ディスプレイの土手の形状を示す 断面図。

【図5】本発明の発光ディスプレイの土手の形成するシ リコン樹脂型とシリコン樹脂型を形成する金型を示す筋 面团。

て41は土手を、42はITO透明電極を、43はガラ(10)【図6】本発明の発光ディスプレイの土手の形状を示す 断面図。

【符号の説明】

- 1. アルミニウム電極
- 2. 有機EL村斜
- 3. 【了〇透明電極
- 4. ガラス基板
- 5. 電源
- 21. ノズル
- 22. 有機EL紂科
- - 24. | TO透明電極
 - 25. ガラス基板
 - 31. ノズル
 - 32. 有機Eし材料
 - 33. 土季
 - 34. | TO透明電極
 - 35. ガラス基板
 - 36. 絶縁層
 - 37. TFT素子
- - 42. | 丁〇透明電極
 - 4.3. ガラス基板
 - 51. 金型
 - 52. シリコン樹脂型
 - 61. 土季
 - 62. ! TO透明電極
 - 63. ガラス基板
 - 64. 絶縁層
 - 65. TFT素子

***49**

【図1】

【図2】

[**23**]

[図4]

[図5]

【図6】

