

a. Consider the simple full-wave battery charging circuit below. Assume $V_B = 6V$, $V_V = 0.6$ and $v_S = \sqrt{2}\sin(\omega t)$ V. Determine the fraction (percent) of time that both diodes is conducting. (15 points)

b. The circuit and diode parameters for the following circuit are $V_{PS} = 12V$, $R = 25k\Omega$, $V_V = 0.6V$ and $V_i = 0.2\sin(\omega t)V$. Determine the quiescent diode current and the time varying diode current. ($V_T = 26\text{mV}$) (10 points)

Al

-U; +i(m) + i(R) = 0.25in (wt)

11 = V = (57.02) + 25k

Consider the zener diode circuit shown below.

Let $V_I = 60 \text{V}$, $R_t = 150 \Omega$, and $V_{Z0} = 15.4 \text{V}$. Assume $r_z = 0$. The power rating of the diode is 4W and the minimum diode current is to be 15mA.

Assure $R_i = \emptyset$ a. Determine the range of Zener diode currents ($I_{Z(max)}$ and $I_{Z(min)}$) (15 points)

Grand
$$G$$
 = $\overline{I}_{z_{min}} = I_{z_{max}} (I_{z_{min}}) = 0.2597A = 259.7 \text{ m} A = I_{z_{max}}$

b. Determine the range of load resistance ($R_{L(max)}$ and $R_{L(min)}$) (15 points)

$$I_{L} = \frac{V_{Z}}{R_{L}}$$
 $I_{1} = \frac{60}{150} = 0.414$ $I_{Zmin} = 15mA$

a. The input signal voltage to the full-wave rectifier circuit shown below is $v_I = 160 \sin[2\pi(60)t] \text{ V}$.

Assume $V_V = 0.7V$ for each diode. Determine the required turns-ratio of the transformer to produce a peak output voltage of 100V. (20 points)