#### Floating Wind Solutions

# Evaluation of Mooring Load Reduction Devices for Floating Wind

Yusuf Arikan, Sr. Project Manager Alex Keierleber, Senior Engineer Rose Walker, Engineer



OFFSHORE ENGINEERING









#### Floating Offshore Wind Mooring Design Challenges

 Mooring design tensions are governed by the peak tensions that occur only few times during extreme storm events

Design Tension =  $LF_M$  x Mean Tension +  $LF_D$  x Dynamic Tension

| Load Factors<br>(ULS)      | Design Consequence Class        |     |  |  |  |  |  |  |
|----------------------------|---------------------------------|-----|--|--|--|--|--|--|
|                            | 1 - Redundant 2 - Non-redundant |     |  |  |  |  |  |  |
| Mean (LF <sub>M</sub> )    | 1.3                             | 1.5 |  |  |  |  |  |  |
| Dynamic (LF <sub>D</sub> ) | 1.75                            | 2.2 |  |  |  |  |  |  |
|                            | Dnv-ST-0119                     |     |  |  |  |  |  |  |



- Peak mooring tensions are governed by mooring stiffness and FOWT response
- Anchor sizes are also governed by high design tensions



## Evaluation of Mooring Load Reduction Devices for Floating Wind



#### Mooring Load Reduction Devices – Dublin Offshore

- Patented by Dublin Offshore
- LRD comprised of a rigid shaft with a buoyant top and weighted end, and two attachment arms for mooring line connection;
- The neutrally buoyant LRD is oriented vertically in unloaded states, and rotates to extend the overall length of the mooring system when tension is applied;
- The LRD is scalable to suit site-specific metocean conditions.



https://www.dublinoffshore.ie



#### Mooring Load Reduction Devices – TFI Marine

- Patented by TFI Marine
- Custom shaped polymer-based plastic spring with steel structure
- Changes mooring system response
- Suitable for catenary and taut moorings with chain and synthetic ropes
- Several LRDs can be installed in series in a single mooring line



https://www.tfimarine.com



#### Mooring Load Reduction Devices – Mooring Stiffness

- K<sub>1</sub> = Mooring Line Stiffness = EA/L
- K<sub>LrD</sub> = LRD Stiffness (Non-Linear)
- K<sub>ML</sub> = Mooring System Stiffness

$$K_{ML} = \frac{K_1 \times K_{LRD}}{K_1 + K_{LRD}}$$

- Soft LRD stiffness governs the system stiffness
- Ex: If  $K_1 = 1.0$ ,  $K_{IRD} = 0.1$ ,  $K_{MI} = 0.099$
- $K_{ML} \sim K_{LRD}$



### Mooring Load Reduction Devices – TFI LRD (Taut)



**LRD Stiffness Curves** 

**Mooring System Response – Peak Load Reduction** 

**Floating Wind Solutions** 



### Mooring Load Reduction Devices – Dublin Offshore



https://www.dublinoffshore.ie/media/pages/technology/6f4e7419f6-1635594571/how-it-works.pdf



Mooring Load Reduction Devices – TFI (Catenary)





Static Displacement (m)

Static Displacement (m)

- Initial increased mooring hang-off loads due to LRD self-weight
- With FOWT offset, tension equilibrium is reached
- Peak load reduction is achieved at higher offsets
- As water depth increases efficacy of LRD decreases as mooring stiffness decreases

Floating Wind Solutions



## Case Studies for 50m to 1200m Water Depths

#### Mooring Design Premise

- 4 taut mooring configurations with polyester rope and chain systems are developed with no LRD's
  - 50m, 100m, 500m, and 1,200m water depths
  - Investigated for the critical head-on environment
- Configurations are then modified with one LRD on each mooring line and evaluated for the same environmental conditions;
- Rope and chain MBL and line hang-off angle are changed to optimize strength utilization
- 50yr extreme environment (DLC 6.2 parked)

| Parameter | Hs   | Tp  | Surface Current | Wind Speed @ 10m |
|-----------|------|-----|-----------------|------------------|
|           | (m)  | (s) | (m/s)           | (m/s)            |
| Value     | 12.5 | 20  | 0.5             | 38               |



Floating Wind Solutions

#### Base Mooring Configurations – No LRD (50m, 100m)











#### Base Mooring Configuration – No LRD (500m, 1200m)

- Polyester MBL: 2500Te & 2000Te
- Chain OD @ 500m: 170mm
- Chain OD @ 1200m: 150mm
- Top and Bottom Chain Length: 30m
- Pre-Tension @ 500m: 12.5% of Poly MBL
- Pre-Tension @ 1200m : 10% of Poly MBL







## Mooring Configuration Summary – No LRD

| Water<br>Depth | Hang-Off<br>Angle | Preload               | Polyester<br>Line<br>MBL <sup>(1)</sup> | Chain OD | Chain<br>MBL <sup>(2)(3)</sup> | Anchor<br>Radius | Total ML<br>Length | Overall Strength Utilization(4) |
|----------------|-------------------|-----------------------|-----------------------------------------|----------|--------------------------------|------------------|--------------------|---------------------------------|
| m              | degrees           | % of Polyester<br>MBL | Te                                      | mm       | Te                             | m                | m                  | -                               |
| 50             | 83.7              | 10%                   | 2,500                                   | 170      | 2,606                          | 1,198            | 1,195              | 80.7%                           |
| 100            | 81                | 10%                   | 2,500                                   | 170      | 2,606                          | 1,038            | 1,039              | 87.0%                           |
| 500            | 60                | 12.5%                 | 2,500                                   | 170      | 2,606                          | 980              | 1,090              | 88.9%                           |
| 1,200          | 25                | 10%                   | 2,000                                   | 150      | 2,098                          | 601              | 1,326              | 85.1%                           |

- 1\ Polyester axial stiffness (30XMBL).
- 2\ Considering 10mm of corrosion.
- 3\ Polyester line MBL controls for strength.
- 4\ Maximum allowable overall strength utilization = 95%, calculated per DnV-ST-0119, consequence class 1.

Similar ML Lengths



#### Mooring Configurations for 50m and 100m – with DO LRD

| Water<br>Depth | Configuration            | LRD<br>SWL | Rope<br>MBL | Pre-<br>Tension | Hang-Off<br>Angle | Anchor<br>Radius | ML<br>Length | Strength<br>Utilization | Max<br>Tension |
|----------------|--------------------------|------------|-------------|-----------------|-------------------|------------------|--------------|-------------------------|----------------|
|                |                          | Te         | Те          | % MBL           | Degrees           | m                | m            | -                       | Te             |
|                | Base Configuration       | -          | 2,500       | 10              | 83.7              | 1,198            | 1,195.4      | 80.7%                   | 1,243          |
|                | 800Te LRD, 2000Te Poly   | 800        | 2,000       | 10              | 83.7              | 1,198            | 1,175.6      | 71.0%                   | 743            |
| 50m            | 800Te LRD, 1500Te Poly   | 800        | 1,500       | 10              | 83.7              | 1,029            | 1,007.6      | 81.0%                   | 636            |
| Sulli          | 800Te LRD, 1000Te Poly   | 800        | 1,000       | 44%             | 83.7              | 1,029            | 1,007.9      | .7%                     | 441            |
|                | 800Te LRD, 1000Te Poly   | 800        | 1,000       | 10              | 83.5              | 942              | 920.7        | 88.9%                   | 470            |
|                | 800 Te LRD, 1400Te Poly, | 800        | 1,400       | 10              | 83.2              | 771              | 762.2        | 88.9%                   | 656            |



#### Mooring Configurations for 50m WD – with DO LRD





#### Mooring Configurations for 500m & 1200m WD – with DO LRD

| Water<br>Depth | Configuration                          | LRD<br>SWL | Rope<br>MBL | Pre-<br>Tension | Hang-Off<br>Angle | Anchor<br>Radius | ML<br>Length | Strength<br>Utilizatio<br>n | Max<br>Tension |
|----------------|----------------------------------------|------------|-------------|-----------------|-------------------|------------------|--------------|-----------------------------|----------------|
|                |                                        | Те         | Te          | % MBL           | Degrees           | m                | m            | -                           | Te             |
| <b>500</b> m   | Base Configuration                     | - (        | 2,500       | 12.5            | 60                | 980              | 1,089.9      | 88.9%                       | 1,407          |
|                | 800Te LRD, 1500Te Poly                 | 800        | 1,500       | 12.5            | 60                | 975              | 1,067.1      | 72.2%                       | 678            |
|                | 800Te LRD, 1000Te Poly                 | 800        | 1,000       | 12 5            | 60                | 975              | 1,067.6      | 79.4%                       | 494            |
|                | 800Te LRD,1000Te Poly<br>HOA: 46.5 deg | 800        | 1,000       | 12.5            | 46.5              | 557              | 719.6        | <b>2%</b><br>91.9%          | 587            |
|                | 800Te LRD, 1400Te Poly<br>HOA: 40 deg  | 800 (      | 1,400       | 12.5            | 40                | 439              | 635.8        | 90.1%                       | 781            |



#### Mooring Response for 100m with and without DO LRD









#### Results Comparison Summary

| Water<br>Depth | Mooring<br>Line MBL<br>Reduction | Max<br>Tension<br>Reduction | Mean<br>Tension<br>Reduction | Anchor<br>Radius<br>Reduction | Mooring<br>Length<br>Reduction |
|----------------|----------------------------------|-----------------------------|------------------------------|-------------------------------|--------------------------------|
| 50m            | 44%                              | 48.2%                       | 35.7%                        | 34.7%                         | 36.2%                          |
| 100m           | 52%                              | 53.5%                       | 33.6%                        | 25.4%                         | 27.0%                          |
| 500m           | 44%                              | 47.4%                       | 18.0%                        | 55.2%                         | 41.6%                          |
| 1,200m         | 40%                              | 49.1%                       | 13.2%                        | -5.8%                         | 0.0%                           |



#### Key Takeaways

- Mooring and anchor designs are governed by the peak mooring tension that occurs only few times during extreme conditions.
- Mooring load reduction devices can effectively reduce mooring peak and mean tensions by altering the mooring stiffness characteristics.
- LRDs can come in different shapes and forms with different response behavior.
- LRDs can be customized based on FOWT response, mooring configuration, metocean, and water depth to reduce mooring and anchor strength requirements and/or to reduce mooring footprint.





#### Floating Wind Solutions

#### For any questions, please contact

Yusuf Arikan, Sr. Project Manager Renewables <a href="mailto:yusuf.arikan@2hoffshore.com">yusuf.arikan@2hoffshore.com</a>



