OBSERVABILITY INEQUALITY AT TWO TIME POINTS FOR KDV EQUATIONS FROM MEASURABLE SETS

Abstract.

1. Introduction

Consider the linear KdV equation

$$u_t + u_{xxx} = 0$$
, $u(x, 0) = u_0 \in L^2(\mathbb{R})$.

Our result reads as follows.

Theorem 1.1. Let A, B be two measurable sets in \mathbb{R} with finite measure. Then for every t > 0, there exists C = C(t, A, B) > 0 so that when u(t, x) solves the KdV equation,

$$\int_{\mathbb{R}} |u_0|^2 \, \mathrm{d}x \le C \left(\int_{A^c} |u_0|^2 \, \mathrm{d}x + \int_{B^c} |u(t,x)|^2 \, \mathrm{d}x \right).$$

2. The proof

Let S(t) be the solution group of linear KdV equation, namely the solution of KdV is given by

$$u(t) = S(t)u_0 = G(t, x) * u_0,$$

where G is the fundamental solution of linear KdV equation, given by

$$G(t,x) = \begin{cases} \frac{1}{(3t)^{\frac{1}{3}}} \operatorname{Ai}(\frac{x}{(3t)^{\frac{1}{3}}}), & t > 0\\ \delta(x), & t = 0. \end{cases}$$

Here, Ai(x) is the Airy function defined via

$$\operatorname{Ai}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(xz + \frac{1}{3}z^3)} \, \mathrm{d}z.$$

²⁰¹⁰ Mathematics Subject Classification. 35Q55, 39A12.

Key words and phrases. KdV equation, unique continuation.

According to [Stein, p.330],

$$|\operatorname{Ai}(x)| \lesssim \begin{cases} (1+|x|)^{-\frac{1}{4}}, & x < 0, \\ e^{-\frac{2}{3}|x|^{\frac{3}{2}}}, & x \ge 0. \end{cases}$$

Define an operator $T: L^2(\mathbb{R}) \mapsto L^2(\mathbb{R})$

$$(Tf)(x) = \chi_B(x)S(t)(\chi_A f), \quad f \in L^2(\mathbb{R}).$$

Then we have the following

Proposition 2.1. Let A, B be two measurable sets in \mathbb{R} with $|A|, |B| < \infty$. Then the operator norm satisfies

$$||S(-t)T||_{\mathcal{L}(L^2(\mathbb{R}))} < 1.$$

Before give the proof of Proposition 2.1, we first show that Theorem 1.1 follows from Proposition 2.1.

Lemma 2.2. Proposition 2.1 implies Theorem 1.1.

Proof. Assume that Proposition 2.1 holds, we obtain

$$||T||_{\mathcal{L}(L^2(\mathbb{R}))} = ||S(t)S(-t)T||_{\mathcal{L}(L^2(\mathbb{R}))} \le ||T||_{\mathcal{L}(L^2(\mathbb{R}))} < 1.$$

Then for all $u_0 \in L^2(\mathbb{R})$,

$$\|\chi_B(x)S(t)(\chi_A u_0)\|_{L^2(\mathbb{R})} \le c_1\|u_0\|_{L^2(\mathbb{R})}$$

with some $0 \le c_1 < 1$. This implies that

$$\|\chi_B(x)S(t)\chi_A u_0\|_{L^2(\mathbb{R})}^2 \le c_1^2 \|\chi_A u_0\|_{L^2(\mathbb{R})} = c_1^2 \|S(t)\chi_A u_0\|_{L^2(\mathbb{R})}^2, \quad \forall u_0 \in L^2(\mathbb{R}),$$

where we used the conservation law $||u_0||_{L^2(\mathbb{R})} = ||S(t)u_0||_{L^2(\mathbb{R})}$ in the last step. From this, we find that with $c_2 = \sqrt{\frac{c_1^2}{1-c_1^2}+1}$

(2.1)
$$||S(t)\chi_A u_0||_{L^2(\mathbb{R})} \le c_2 ||S(t)\chi_A u_0||_{L^2(B^c)}, \quad \forall u_0 \in L^2(\mathbb{R}).$$

Now we have using (2.1) and conservation law again

$$||u_0||_{L^2(\mathbb{R})} = ||S(t)u_0||_{L^2(\mathbb{R})} \le ||S(t)\chi_A u_0||_{L^2(\mathbb{R})} + ||S(t)\chi_{A^c} u_0||_{L^2(\mathbb{R})}$$

$$\le c_2 ||S(t)\chi_A u_0||_{L^2(B^c)} + ||S(t)\chi_{A^c} u_0||_{L^2(\mathbb{R})}$$

$$\le c_2 ||S(t)u_0||_{L^2(B^c)} + (1+c_2)||S(t)\chi_{A^c} u_0||_{L^2(\mathbb{R})}$$

$$= c_2 ||u(t,\cdot)||_{L^2(B^c)} + (1+c_2)||u_0||_{L^2(A^c)}.$$

This proves Theorem 1.1.

Now we need to prove Proposition 2.1. To this end, we first note that we always have

$$||S(-t)T||_{\mathcal{L}(L^2(\mathbb{R}))} \le 1.$$

In fact, for all $f \in L^2(\mathbb{R})$

$$||S(-t)Tf||_{L^{2}(\mathbb{R})} = ||S(-t)\chi_{B}(x)S(t)(\chi_{A}f)||_{L^{2}(\mathbb{R})} \le ||S(t)(\chi_{A}f)||_{L^{2}(\mathbb{R})} = ||\chi_{A}f||_{L^{2}(\mathbb{R})} \le ||f||_{L^{2}(\mathbb{R})}.$$

Thus, it remains to show that

$$||S(-t)T||_{\mathcal{L}(L^2(\mathbb{R}))} \neq 1.$$

To show this, we need the following

Lemma 2.3. For every $t \neq 0$, T is a compact operator on $L^2(\mathbb{R})$.

Proof. We can rewrite the operator T as an integral operator:

$$(Tf)(x) = \int_{\mathbb{R}} \chi_A(x)G(t, x - y)\chi_B(y)f(y) dy := \int_{\mathbb{R}} K(t, x, y)f(y) dy.$$

We claim that for all $t \neq 0$,

(2.2)
$$\int_{\mathbb{R}} \int_{\mathbb{R}} K^2(t, x, y) \, \mathrm{d}x \, \mathrm{d}y < \infty.$$

Then T is a Hilbert-Schmidt operator and thus a compact operator on $L^2(\mathbb{R})$.

It remains to show (2.2). In fact, since $|G(t, x - y)| \le C(t)$

$$\int_{\mathbb{R}} \int_{\mathbb{R}} K^2(t, x, y) \, \mathrm{d}x \, \mathrm{d}y \le C^2(t) \int_{\mathbb{R}} \int_{\mathbb{R}} \chi_A(x) \chi_B(y) dx \, \mathrm{d}y = C^2(t) |A| |B| < \infty.$$

This proves (2.2).

Define the translation operator U_{λ} :

$$\mathcal{T}_{\lambda}f(x) = f(x - \lambda).$$

If A is a measurable set in \mathbb{R} and $\lambda \in \mathbb{R}$, we shall denote the set $\lambda + A = \{\lambda + x | x \in A\}$.

Lemma 2.4. Let C and C' be measurable sets in \mathbb{R}^n with $0 < |C|, |C'| < \infty$, let A_0 and B_0 be a measurable subset of C and C' with $|A_0| > 0$, $|B_0| > 0$, and let $\epsilon > 0$. Then there exists a translation $\lambda \in \mathbb{R}$ such that

$$|C| \le |C \cup (\lambda + A_0)| < |C| + \epsilon$$

and

$$|C'| \le |C' \cup (\lambda + B_0)| < |C'| + \epsilon.$$

Moreover, λ can be chosen such that at least one left inequality of the above is strict.

Proof. Define $h(\lambda) = |C \cup (\lambda + A_0)|$. We may express $h(\lambda)$ in terms of

$$h(\lambda) = \|\mathcal{T}_{\lambda}\chi_{A_0} - \chi_C\|_{L(\mathbb{R})}^2 + \langle \mathcal{T}_{\lambda}\chi_{A_0}, \chi_C \rangle.$$

Similarly, we can define $h'(\lambda) = |C' \cup (\lambda + B_0)|$. The strong continuity of U_{λ} implies that h and h' are continuous functions. Hence For every $\epsilon > 0$, there exists $\delta > 0$ such that

$$|C| \le |C \cup (\lambda + A_0)| < |C| + \epsilon$$

and

$$|C'| \le |C' \cup (\lambda + B_0)| < |C'| + \epsilon.$$

for $0 < \lambda < \delta$.

Choose σ such that $0 < 2\sigma < |A_0|$ and a ball $S_r = [-r, r]$ such that $|C \cap S_r^c| < \sigma$. Let $\lambda \in \mathbb{R}$ be such that $|\lambda| > 2r$. Since $A_0 \subset C$, we obtain $|\lambda C_0 \cap S_r| < \sigma$. Thus

$$h(\lambda) = |C \cup \lambda A_0|$$

$$\geq |C \cap S_r| + |\lambda C_0 \cap S_r'|$$

$$\geq |C| - \sigma + |\lambda A_0| - \sigma$$

$$= |C| + |A_0| - 2\sigma$$

$$> |C| = h(0).$$

This shows that h is not a constant, and h' is not a constant the same way. Hence the last claim of the Lemma 2.4 is true.

Go back to the proof of Proposition 2.1. Suppose by way of contradiction that

$$||S(-t)T||_{\mathcal{L}(L^2(\mathbb{R}))} = 1,$$

then by Lemma 2.3 there exists a function $f \in L^2(\mathbb{R})$ such that $||S(-t)Tf||_{L^2(\mathbb{R})} = ||f||_{L^2(\mathbb{R})}$. It is supported on B and S(t)f is supported on A.

Define $f_{\lambda} = \mathcal{T}_{\lambda} f$. Then $\operatorname{supp} f_{\lambda} = \lambda A$. Since

$$S(t)f_{\lambda} = S(t)\mathcal{T}_{\lambda}f$$

$$= \int_{\mathbb{R}} G(t, x - y)f(y - \lambda) dy$$

$$= \int_{\mathbb{R}} G(t, x - \lambda - y)f(y) dy$$

$$= \mathcal{T}_{\lambda}(S(t)f),$$

we have supp $S(t)f_{\lambda} = \lambda + B$.

Now we define a sequence $\{f_i\}_{i=1}^{\infty}$ recursively. By Lemma 2.4 with $\epsilon = \frac{1}{2^i}$, $C = A_{i-1}, A_0 = A$ and $C' = B_{i-1}, B_0 = B$, we choose a translation λ_i such that

$$|A_{i-1}| \le |A_{i-1} \cup (\lambda_i + A_0)| < |A_{i-1}| + \frac{1}{2^i},$$

and

$$|B_{i-1}| \le |B_{i-1} \cup (\lambda_i + B_0)| < |B_{i-1}| + \frac{1}{2^i},$$

and we set $A_i = A_{i-1} \cup (\lambda_i + A_0)$, $B_i = B_{i-1} \cup (\lambda_i + B_0)$. By the last sentence of Lemma 2.4, λ_i can be chosen such that at least one left inequality of the above two is strict. Using the above inequality recursively, we obtain

$$\left| \bigcup_{i=0}^{\infty} A_i \right| < |A| + 1, \quad \left| \bigcup_{i=0}^{\infty} B_i \right| < |B| + 1.$$

Define $f_i = \mathcal{T}_{\lambda_i} f$ and $f_0 = f$, then $\operatorname{supp} f_i \subset A_i \subset \bigcup_{i=0}^\infty A_i$ and $\operatorname{supp} S(t) f_i \subset B_i \subset \bigcup_{i=0}^\infty B_i$. We shall prove that the sequence $\{f_i\}_{i=0}^\infty$ are linearly independent. Denote the projection operator $E_U f = \chi_U f$. Since $A_m = A_0 \cup (\lambda_1 + A_0) \cup \cdots \cup (\lambda_m + A_0)$ and $B_m = B_0 \cup (\lambda_1 + B_0) \cup \cdots \cup (\lambda_m + B_0)$, we have $E_{A_m} f_i = f_i$ and $E_{B_m} S(t) f_i = S(t) f_i$ for all $i = 0, 1, \dots, m$. By the choice of λ_i , we have either $E_{A_m \setminus A_{m-1}} f_m \neq 0$ or $E_{B_m \setminus B_{m-1}} S(t) f \neq 0$, both can show that f_m is not a linear combination of f_0, f_1, \dots, f_{m-1} . This means that the sequence $\{f_i\}_{i=0}^\infty$ are linearly independent. Let $A' = \bigcup_{i=0}^\infty A_i$ and $B' = \bigcup_{i=0}^\infty B_i$, then the eigensppace of the new operator $S(-t)T = S(-t)\chi_{B'}S(t)(\chi_{A'}f)$ has infinitely many eigenfunctions of eigenvalue 1, which contradicts to the compact proposition of S(-t)T by Lemma 2.3. Thus we complete the proof of Proposition 2.1.

3. THE CASE ONE OF THE SETS HAS INFINITE MEASURE

drawing

Figure 1. drawing

ACKNOWLEDGEMENTS

Wang was supported by the National Natural Science Foundation of China under grant No. 11701535.

REFERENCES

- [1] F. Linares, G. Ponce, Introduction to nonlinear dispersive equations, 2nd edition. Springer, 2014.
- [2] G. Wang, M. Wang, Y. Zhang, Observability and unique continuation inequalities for the Schrödinger equation, J. Eur. Math. Soc. 21 (2019) 3513–3572.
- [3] B. Y. Zhang, Unique continuation for the Korteweg-de Vries equation, SIAM J. Math. Anal. 32 (1992) 55–71.
- [4] B. Y. Zhang, Unique continuation for the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 191–205.
- [5] W. O. Amerin, A. M. Berthier, On Support Properties of L^p -Functions and Their Fourier Transforms, J. Funct. Anal. 24 (1977) 258-267.