QCM 1

lundi 29 janvier

Question 11

Ci-dessous, on veut définir des ensembles. Lequel est correctement écrit?

a.
$$E = \{1, 2$$

\ b.
$$F = \{1, 3, 2\}$$

c.
$$G = 1, 2$$

d.
$$H = (1, 2)$$

e. Aucune de ces expressions ne définit un ensemble.

Question 12

On considère l'ensemble $E = \{0, 1, 2, 3\}$. Cochez la(les) réponse(s) correctement écrite(s) :

a.
$$1 \subset E$$

c.
$$\{0\} \in E$$

$$\setminus$$
 d. $\{0,2\} \subset E$

e. Aucune des autres réponses

Question 13

Cochez la(les) réponse(s) correcte(s)

a.
$$\{x \in \mathbb{N}, -1 < x \le 3\} =]-1,3]$$

$$\$$
 b. $\{x \in \mathbb{N}, \ 0 < x < 4\} = \{1, 2, 3\}$

c.
$$\{x \in \mathbb{R}, x^2 = 4\} = \{16\}$$

\\ d.
$$\{x \in \mathbb{R}, x^2 = 4\} = \{2, -2\}$$

e. Aucune des autres réponses

Question 14

On considère le diagramme suivant représentant un ensemble E, trois sous-ensembles de E:A,B et C ainsi que a,b,c,d,e,f,g et h des éléments de E.

On a:

$$c. \ c \subset B \cup C$$

e. Aucune des autres réponses

Question 15

Soient E et F deux ensembles et $f:E\longrightarrow F$. On dit que f est injective si et seulement si

a.
$$\forall (x, x') \in E^2$$
, $x = x' \implies f(x) = f(x')$

\ \ b.
$$\forall (x,x') \in E^2, x \neq x' \implies f(x) \neq f(x')$$

c.
$$\forall (x, x') \in E^2$$
, $x = x'$ et $f(x) \neq f(x')$

d.
$$\forall (x, x') \in E^2$$
, $x \neq x'$ et $f(x) = f(x')$

e. Aucune des autres réponses

Question 16

Soit la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $f(x) = x^2$

a.
$$f(\{0,1\}) = [0,1]$$

b.
$$f^{-1}(\{4\}) = \{-16, 16\}$$

c.
$$f^{-1}(\{-1\}) = \emptyset$$

d. Aucune des autres réponses

Question 17

Soit I et J deux sous-ensembles de $\mathbb R$ et $f: \left\{ \begin{array}{ccc} I & \longrightarrow & J \\ x & \longmapsto & x^2 \end{array} \right.$ On a

- a. Si $I = J = \mathbb{R}$, f est surjective.
- \ \ \ b. Si $I = \mathbb{R}$ et $J = \mathbb{R}^+$, f est surjective.

$$\times$$
 c. Si $I = N$ et $J = N$, f est surjective. Non can un IN jor de valeur jory VZ

d. Aucune des autres réponses

Question 18

On considère deux ensembles finis quelconques A et B. On a

- a. $Card(A \cap B) = Card(A) \times Card(B)$.
- b. $Card(A \cap B) = Card(A) + Card(B)$
- c. $Card(A \cap B) = Card(A) + Card(B) Card(A \cup B)$
 - d. $Card(A \cap B) = Card(A \cup B) Card(A) Card(B)$
 - e. Aucune des autres réponses

Question 19

On considère l'ensemble $E = \{0, 1, 2, 3, 4\}$. Un 3-uplet de E est un élément de E^3 donc il est de la forme (a, b, c) avec a, b et c dans E. On a

- $_{\text{\tiny \ \ }}$ a. Le nombre de 3-uplets de E constitués d'éléments distincts est égal à $3\times 4\times 5.$
 - b. Le nombre de 3-uplets de E constitués d'éléments distincts est égal à 5^3 .
 - c. Le nombre de 3-uplets de E constitués d'éléments que lconques est égal à $3\times 4\times 5$.
- $\,\,\,\,\,\,\,$ d. Le nombre de 3-uplets de E constitués d'éléments que l
conques est égal à $5^3.$
 - e. Aucune des autres réponses

Question 20

Cochez la(les) bonne(s) réponse(s)

- a. Le nombre d'anagrammes du mot « MATH » est égal à 4
- b. Le nombre d'anagrammes du mot « MATH » est égal à 4!
 - c. Le nombre d'anagrammes du mot « ASSEZ » est égal à 5
 - d. Le nombre d'anagrammes du mot « ASSEZ » est égal à 5!
 - e. Aucune des autres réponses