

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers/Processors

- Representations
 - 2's complement representation for fixed-point N-bit INT
 - Std. IEEE754 FP32/64 representation
- Fixed-point INT arithmetic vs. Floating-point (FP) arithmetic
 - General operations: Addition/subtraction, multiplication, division
 - Special DSP operations: fused multiply-and-accumulate (MAC), butterfly unit, general matrix-matrix multiplication (GEMM), ...
- Efficient multiplication/division algorithms
- Efficient implementation of adder, multiplier, and divider
- Should deal with the problem of overflow/underflow, divide by 0, ...
- The representation of infinity, NAN, ...

(Fixed-Point) Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands,
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

(Fixed-Point) Integer Subtraction

• Example: 7 - 6 = 7 + (-6)

+7: 0000 0000 ... 0000 0111

–6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Overflow detection

Operation	Α	В	Result indicating overflow
A+B	>=0	>=0	<0
A+B	<0	<0	>=0
А-В	>=0	<0	<0
A-B	<0	>=0	>=0

Overflow Detection Logic

- Overflow occurs when adding:
 - 2 positive numbers and the sum is negative
 - 2 negative numbers and the sum is positive
 - => sign bit is set with the value of the result
 - Overflow if: Carry into MSB ≠ Carry out of MSB
 - Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 - Use MIPS addu, addui, subu instructions
 - Saturated arithmetic
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC
 value, to return after corrective action

Designing Arithmetic Logic Unit (ALU)

- ALU performs arithmetic and logical operations
 - add, sub: two's complement adder/subtractor with overflow detection
 - and, or, nor : logical AND, logical OR, logical NOR
 - slt (set on less than): two's complement adder with inverter, check sign bit of result

32-Bit ALU ← Group Bit-Slice ALU

- Design trick 1: divide and conquer
 - Break the problem into simpler problems, solve them and glue together the solution
- Design trick 2: solve part of the problem and extend

A 4-bit ALU Example

 Design trick 3: take pieces you know (or can imagine) and try to put them together

4-bit ALU

Overflow Detection Logic

Overflow = CarryIn[N-1] XOR CarryOut[N-1]

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit (byte) and 16-bit INT data
- SIMD (single-instruction, multiple-data) extension ISA
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8x8-bit, 4x16-bit, or 2x32-bit configurable ALU operations
- On overflow, usually applying saturating arithmetic
 - Result is replaced by the largest representable value
 - E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

3-Step Multiplication in MIPS

```
mult $t1, $t2 # t1 * t2
```

- No destination register: product could be ~2⁶⁴; need two special registers to hold it
- 3-step process:

X \$t2

Hi

Lo

mfhi \$t3

\$t3

0001111111111111111111111111111111111

mflo \$t4

\$t4

Observations

- 1 clock per cycle => too slow
 - Ratio of multiply to add 5:1 to 100:1
- Half of the bits in multiplicand always 0
 - => 64-bit adder is wasted
- 0's inserted in right of multiplicand as shifted
 - => least significant bits of product never changed once formed
- Instead of shifting multiplicand to left, shift product to right?
- Product register wastes space => combine Multiplier and
 Product register

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Concluding Remarks

- 2 steps per bit because multiplier and product registers combined
- MIPS registers Hi and Lo are left and right half of Product register
 - => this gives the MIPS instruction MultU
- What about signed multiplication?
 - The easiest solution is to make both positive and remember whether to complement product when done (leave out sign bit, run for 31 steps)
 - Apply definition of 2's complement
 - sign-extend partial products and subtract at end
 - Booth's Algorithm is an elegant way to multiply signed numbers using same hardware as before and save cycles

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

Adder Reduction Tree

- Can be pipelined
- Several multiplication performed in parallel

MIPS Multiplication Instructions

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- MIPS multiply instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

Long Division Algorithm

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Algorithm and Hardware (Ver.1)

2*n*-bit dividend and *n*-bit divisor yield *n*-bit quotient and remainder

Observations

- Half of the bits in divisor register always 0
 - => 1/2 of 64-bit adder is wasted
 - => 1/2 of divisor is wasted
- Instead of shifting divisor to right, shift remainder to left?
- 1st step cannot produce a 1 in quotient bit (otherwise quotient is too big for the register)
 - => switch order to shift first and then subtract
 - => save 1 iteration
- Eliminate Quotient register by combining with Remainder register as shifted left

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT division) generate multiple quotient bits per step
 - Still require multiple steps

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mflo to access result

Concluding Remarks

- Observations: Divide vs. Multiply
- Divide can use the same hardware as multiply
 - just need ALU to add or subtract, and 64-bit register to shift left or shift right
- Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide

Floating Point (FP)

- Representation for non-integral real-valued numbers
 - Including very small and very large numbers
- Scientific notation

In binary

■
$$\pm 1.xxxxxxxx_2 \times 2^{yyyy}$$

$$(-1)^S \times (1+F) \times 2^{(E-Bias)}$$

 The programming language C use the name float (or double) for single-precision (or double-precision) FP numbers.

Standard FP Representation

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - 32-bit single-precision (SP) FP
 - 64-bit double-precision (DP) FP

IEEE 754 Standard (1/2)

- Regarding single precision (SP), DP similar
- Sign bit S:

$$(-1)^S \times (1+F) \times 2^{(E-Bias)}$$

1 means negative0 means positive

- Significand F.
 - To pack more bits, leading 1 implicit for normalized numbers
 - 1 + 23 bits single, 1 + 52 bits double
 - always true: 0 ≤ Significand < 1
 <p>(for normalized numbers)
- Note: 0 has no leading 1, so reserve exponent value 0 just for number 0

IEEE 754 Standard (2/2)

Exponent E:

- Need to represent positive and negative exponents
- Also want to compare FP numbers as if they were <u>integers</u>, to help in value comparisons
- If use 2's complement to represent?
 e.g., 1.0 x 2⁻¹ versus 1.0 x2⁺¹ (1/2 versus 2)

If we use integer comparison for these two words, we will conclude that 1/2 > 2!!!

Biased (Excess) Notation

- let notation 0000 be most negative, and 1111 be most positive
- Example: Biased 7

IEEE 754 Standard

Using biased notation

- the bias is the number subtracted to get the real number
- IEEE 754 uses bias of 127 for single precision:
 Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision
- The example becomes

1/2	0	0111 1110	000 0000 0000 0000 0000
2	0	1000 0000	000 0000 0000 0000 0000

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 00000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110⇒ actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant

single: 23 bits double: 52 bits

- SP : approx 2⁻²³
 - Equivalent to 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 decimal digits of precision
- DP : approx 2⁻⁵²
 - Equivalent to 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 decimal digits of precision

Floating-Point Representation Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- SP: 1011111101000...00
- DP: 1011111111101000...00

Floating-Point Representation Example

What number is represented by the single-precision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Bias Exponent = 10000001₂ = 129
- Sol. $x = (-1)^1 \times (1 + 01_2) \times 2^{(129 127)}$ = $(-1) \times 1.25 \times 2^2$ = -5.0

Concluding Remarks

What have we defined so far? (SP float)

Exponent	Significand	Object
0	0	???
0	nonzero	<u>???</u>
1-254	anything	+/- floating-point
255	0	<u>???</u>
255	nonzero	???

Zero and Special Numbers

- Represent 0?
 - exponent all zeroes
 - significand all zeroes too
 - What about sign?
 - +0: 0 0000000 000000000000000000000
 - -0: 1 0000000 000000000000000000000
- Why two zeroes?
 - Helps in some limit comparisons
- Special numbers
 - Range: $1.0 \times 2^{-126} \approx 1.8 \times 10^{-38}$
 - What if result too small? (>0, < 1.8x10⁻³⁸ => Underflow!)
 - What if result too large? (> 3.4x10³⁸ => Overflow!)

Gradual Underflow

- Represent denormalized numbers (denorms)
 - Exponent : all zeroes
 - Significand : non-zeroes
 - Allow a number to degrade in significance until it become 0 (gradual underflow)

- The smallest normalized number
 - 1.0000 0000 0000 0000 0000 0000 \times 2⁻¹²⁶

Representation for +/- Infinity

- In FP, divide by zero should produce +/- infinity, not overflow
- Why?
 - OK to do further computations with infinity, e.g., X/0 > Y may be a valid comparison
- IEEE 754 represents +/- infinity
 - Most positive exponent reserved for infinity
 - Significands all zeroes

Representation for Not a Number

- What do I get if I calculate sqrt(-4.0) or 0.0/0.0?
 - If infinity is not an error, these should not be either
 - They are called Not a Number (NaN)
 - Exponent = 255, Significand nonzero
- Why is this useful?
 - Hope NaNs help with debugging?
 - They contaminate: op(NaN,X) = NaN
 - OK if calculate but don't use it

IEEE 754 Encoding of FP Numbers

What have we defined so far? (single-precision)

Exponent	Significand	<u>Object</u>	
0	0	0	
0	nonzero	denom	
1-254	anything	+/- fl. pt. #	
255	0	+/- infinity	
255	nonzero	NaN	

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2}$ (i.e. 0.5 + -0.4375)
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

Floating-Point Addition Algorithm

Basic addition algorithm:

compute Ye - Xe (to align binary point)

- (1) right shift the smaller number, say Xm, that many positions to form $Xm \times 2^{Xe-Ye}$
- (2) compute $Xm \times 2^{Xe-Ye} + Ym$

if demands normalization, then normalize:

- (3) left shift result, decrement result exponent right shift result, increment result exponent(3.1) check overflow or underflow during the shift
- (4) round the mantissacontinue until MSB of data is 1(NOTE: Hidden bit in IEEE Standard)
- (5) if result is 0 mantissa, set the exponent

FP Adder Hardware

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2}$ (i.e. 0.5×-0.4375)
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: $+ve \times -ve \Rightarrow -ve$
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- Much more complex than integer arithmetic
- Doing it in one clock cycle would take too long
- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significand instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
- FP ↔ integer conversion is not trivial
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS (1/2)

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPS ISA supports 32 x 64-bit FP reg's
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - lwc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS (2/2)

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - e.g. c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bclt, bclf
 - e.g., bc1t TargetLabel

more examples, please refer to Fig. 3.17-18, p. 222-223

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp) #$f16=5.0(in Mem.)
    lwc1 $f18, const9($gp) #$f18=9.0(in Mem.)
    div.s $f16, $f16, $f18 #$f16=5.0/9.0
    lwc1 $f18, const32($gp) #$f18=32.0(in Mem)
    sub.s $f18, $f12, $f18 #f18=fahr-32.0
    mul.s $f0, $f16, $f18 #$f0=(5/9)*(fahr-32)
    jr $ra
```


FP Example: Matrix Multiplication (1/3)

- $X = X + Y \times Z$
 - All 32 x 32 matrices, 64-bit double-precision elements
- C code:

```
void mm (double x[][], double y[][], double z[][]) {
  int i, j, k;
  for (i = 0; i! = 32; i = i + 1)
    for (j = 0; j! = 32; j = j + 1)
     for (k = 0; k! = 32; k = k + 1)
      x[i][j] = x[i][j] + y[i][k] * z[k][j];
}
```

Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

FP Example: Matrix Multiplication (2/3)

MIPS code:

```
li $t1, 32
                   # t1 = 32 (row size/loop end)
   li $s0, 0
                   # i = 0; initialize 1st for loop
L1: li $s1, 0
                   # j = 0; restart 2nd for loop
L2: 1i $s2, 0 # k = 0; restart 3rd for loop
   addu t2, t2, t2, t2 = i * size(row) + j
   sll $t2, $t2, 3 # $t2 = byte offset of [i][j]
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(f2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   1.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```


FP Example: Matrix Multiplication (3/3)

\$11 \$t0, \$s0, 5 # \$t0 = i*32 (size of row of y)addu \$t0, \$t0, \$s2 # \$t0 = i*size(row) + k sll \$t0, \$t0, 3 # \$t0 = byte offset of [i][k] addu \$t0, \$a1, \$t0 # \$t0 = byte address of y[i][k] 1.d f18, 0(t0) # f18 = 8 bytes of y[i][k]mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]addiu \$s2, \$s2, 1 # \$k k + 1 bne \$s2, \$t1, L3 # if (k != 32) go to L3 s.d f4, 0(t2) # x[i][j] = f4addiu \$s1, \$s1, 1 # \$j = j + 1bne \$s1, \$t1, L2 # if (j != 32) go to L2 addiu \$s0, \$s0, 1 #\$i = i + 1 bne \$s0, \$t1, L1 # if (i != 32) go to L1

Variant FP Format

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Extra Bits for Rounding

- Why rounding after addition?
 - Because not every intermediate results is truncated
 - To keep more precision
- Guard and round bits: extra bits to guard against loss of bits during intermediate additions
 - to the right of significand
 - can later be shifted left into significand during normalization
- Sticky bit
 - Additional bit to the right of the round digit
 - Better fine tune rounding

 Get the same results as if the intermediate results were calculated to infinite precision and then rounded.

Example

- Try to add 2.98x10⁰ and 2.34x10²
 - only 3 decimal digits are allowed

- with 2 more guard bits during computation
- perform rounding at last

With guard bits and rounding → more accurate results

Rounding Methods

- Round to zero or Truncation
 - The result closet to zero is returned.
 - Nothing is added to the least significant bit.
- Round up
 - The more positive result closest to the infinitely precise result is returned.
 - If the result is positive and either the guard or the sticky bit is 1, the result is rounded.
 - If the result is negative, the result is not rounded because the unrounded result is the most positive result that is closest to the infinitely precise result.
- Round down
 - The more negative result is returned.
- Round to nearest

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
у	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - 16x8-bit adds; 8x16-bit adds; 4x32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)
 - ARM NEON multimedia instruction extension
 - Intel SSE, SSE2 FP instructions

ARM NEON Instructions

- NEON supports all the subword data type you can imagine except 64-bit
 FP numbers
 - 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers
 - 32-bit FP numbers

Data transfer	Arithmetic	Logical/Compare	
VLDR.F32	VADD.F32, VADD{L,W}{S8,U8,S16,U16,S32,U32}	VAND.64, VAND.128	
VSTR.F32	VSUB.F32, VSUB{L,W}{S8,U8,S16,U16,S32,U32}	VORR.64, VORR.128	
VLD{1,2,3.4}.{I8,I16,I32}	VMUL.F32, VMULL{S8,U8,S16,U16,S32,U32}	VEOR.64, VEOR.128	
VST{1,2,3.4}.{I8,I16,I32}	VMLA.F32, VMLAL{S8,U8,S16,U16,S32,U32}	VBIC.64, VBIC.128	
VMOV.{I8,I16,I32,F32}, #imm	VMLS.F32, VMLSL{S8,U8,S16,U16,S32,U32}	VORN.64, VORN.128	
VMVN.{I8,I16,I32,F32}, #imm	VMAX.{S8,U8,S16,U16,S32,U32,F32}	VCEQ.{I8,I16,I32,F32}	
VMOV.{I64,I128}	VMIN.{S8,U8,S16,U16,S32,U32,F32}	VCGE.{S8,U8,S16,U16,S32,U32,F32}	
VMVN.{I64,I128}	VABS.{S8,S16,S32,F32}	VCGT.{S8,U8,S16,U16,S32,U32,F32}	
	VNEG.{S8,S16,S32,F32}	VCLE.{S8,U8,S16,U16,S32,U32,F32}	
	VSHL.{S8,U8,S16,U16,S32,S64,U64}	VCLT.{S8,U8,S16,U16,S32,U32,F32}	
	VSHR.{S8,U8,S16,U16,S32,S64,U64}	VTST.{I8,I16,I32}	

Right Shift and Division

- Left shift by i places multiplies an integer by 2i
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - 11111011₂ >> 2 = 11111110₂ = -2
 - Rounds toward -∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

APPENDIX

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 x 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```


x86 assembly code:

```
1. vmovsd (%r10), %xmm0 # Load 1 element of C into %xmm0
2. mov %rsi, %rcx # register %rcx = %rsi
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add %r9, %rcx # register %rcx = %rcx + %r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
  element of A
7. add \$0x1, \%rax  # register \%rax = \%rax + 1
8. cmp %eax, %edi # compare %eax to %edi
9. vaddsd %xmm1, %xmm0, %xmm0 # Add %xmm1, %xmm0
10. jg 30 \langle dgemm + 0x30 \rangle # jump if eax > edi
11. add \$0x1,\$r11d # register \$r11 = \$r11 + 1
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```


Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=4)
5. for (int j = 0; j < n; j++) {
     m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i][j]
  * /
7.
  for ( int k = 0; k < n; k++ )
8. c0 = mm256 \text{ add } pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
                mm256 mul pd(mm256 load pd(A+i+k*n),
10.
                mm256 broadcast sd(B+k+j*n));
    mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
13. }
```


Optimized x86 assembly code:

```
1. vmovapd (%r11), %ymm0  # Load 4 elements of C into %ymm0
2. mov %rbx, %rcx
                # register %rcx = %rbx
                # register %eax = 0
3. xor %eax, %eax
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8, %rax
                # register %rax = %rax + 8
6. vmulpd (%rcx), %ymm1, %ymm1 # Parallel mul %ymm1, 4 A elements
7. add %r9,%rcx
                    # register %rcx = %rcx + %r9
8. cmp %r10,%rax
                      # compare %r10 to %rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax
11. add $0x1, %esi
                        # register % esi = % esi + 1
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```

