

AMENDMENT TO THE CLAIMS

This listing of the claims with indicated amendments, deletions and cancellations (as well as inserted new claims) will replace all prior versions, and listings, of claims in the application:

LISTING OF THE CLAIMS

- 1. (currently amended) A process for producing an a dry image comprising the steps of:
 - (a) applying an opaque coating composition to the surface of a substrate <u>to</u> <u>form an opaque coating on the substrate</u>, wherein the surface is selected from the group consisting of <u>a light-emitting surfaces</u>, <u>a reflective surfaces</u>, <u>a glossy surfaces</u>, <u>and a luminescent surfaces</u>, and a combination thereof; and
- (b) contacting the coated substrate with a recording liquid,
 wherein the opaque coating composition includes an opaque coating agent
 comprising a polymeric polyacid and a polymeric polybase, and wherein the opaque coating
 contacted with the recording liquid becomes transparent upon printing as a result of the contact.
 - 2. (original) The process of claim 1, wherein the image is a metallic-looking image.
- 3. (currently amended) The process of claim 1, wherein the opaque coating composition on the substrate is cured or allowed to dry after being contacted with the recording liquid comprises a polyacid and a polybase.
- 4. (currently amended) The process of claim 3 1, wherein the polymeric polyacid contains two or more carboxylic, sulfonic and/or phosphonic acid groups and the polybase contains two or more primary, secondary or tertiary amine groups.

Claim 5 (canceled).

- 6. (original) The process of claim 1, wherein step (a) is repeated at least once, producing a multilayer coating on the substrate.
- 7. (currently amended) The process of claim 4, <u>further comprising repeating step (a) at least once prior to conducting step (b)</u>, wherein at least two different opaque coating compositions are used in the repeated application steps <u>of (a)</u>.

Claims 8-11 (canceled).

- 12. (currently amended) The process of claim 3, wherein the polyacid and polybase are polymericopaque coating on the substrate is allowed to dry.
- 13. (currently amended) The process of claim—12_1, wherein the polymeric polyacid is a carboxylic acid-containing polymer and the polymeric polybase comprises a nitrogenous polymer.
- 14. (currently amended) The process of claim 13, wherein the polymeric polyacid is selected from the group consisting of poly(acrylic acid), poly(acrylonitrile-acrylic acid), poly(styrene-acrylic acid), poly(butadiene-acrylonitrile acrylic acid), poly(butylacrylate-acrylic acid), poly(ethyl acrylate-acrylic acid), poly(ethylene-propylene-acrylic acid), poly(propylene-acrylic acid), alginic acid, phytic acid, and combinations thereof, and the polymeric polybase is selected from the group consisting of polyethyleneimine, polyvinylpyridine, polyallylamine, N-alkylated polyallylamine, (including N-alkylated and N,N-dialkylated polyallylamines), polyvinylaziridine, polyimidazole, polylysine, chitosan, poly(amino and alkylated amino)ethylenes, poly(alkylated amino)ethylene, ethoxylated polyethyleneimine, propoxylated polyethyleneimine, and combinations thereof.

Claims 15-20 (canceled).

- 21. (original) The process of claim 1, wherein the opaque coating composition is aqueous.
- 22. (original) The process of claim 1, wherein the opaque coating composition includes a film-forming binder.
- 23. (original) The process of claim 1, wherein the opaque coating composition further includes a colorant.
 - 24. (original) The process of claim 23, wherein the colorant is a pigment.
- 25. (original) The process of claim 24, wherein the pigment is selected from the group consisting of silica, titanium dioxide, calcium silicate and calcium carbonate.
 - 26. (original) The process of claim 23, wherein the colorant is a dye.
- 27. (currently amended) The process of claim 1, wherein the opaque coating agent represents approximately 5 wt.% to approximately 95 wt.% of the image-enhancing opaque coating composition, based upon total solids weight of the composition after drying.
- 28. (currently amended) The process of claim 1 22, wherein the film-forming binder represents approximately 1 wt.% to approximately 40 50 wt.% of the image-enhancing opaque coating composition, wherein the composition is an image enhancing composition.
- 29. (currently amended) The process of claim 28, wherein the film-forming binder represents approximately 1 wt.% to approximately 50 40 wt.% of the image-enhancing composition.
- 30. (original) The process of claim 29, wherein the film-forming binder represents approximately 1 wt.% to approximately 15 wt.% of the image-enhancing composition.

- 31. (original) The process of claim 1, wherein the opaque coating composition further includes an optical brightener.
- 32. (original) The process of claim 31, wherein the optical brightener represents approximately 0.01 wt.% to approximately 20 wt. % of the opaque coating composition.
- 33. (original) The process of claim 1, wherein the opaque coating composition further includes a crosslinking agent.
- 34. (original) The process of claim 33, wherein the crosslinking agent is ammonium zirconyl carbonate.
- 35. (original) The process of claim 33, wherein the crosslinking agent is zirconium acetate.
 - 36. (original) The process of claim 1, wherein the surface of the substrate is reflective.
 - 37. (original) The process of claim 36, wherein the reflective surface is metallic.
 - 38. (original) The process of claim 1, wherein the substrate is a paper/foil laminate.
 - 39. (original) The process of claim 1, wherein the substrate is a metallized film.
- 40. (original) The process of claim 1, wherein step (b) is performed using a writing instrument.

Claims 41-46 (canceled).

- 47. (currently amended) A process for producing an <u>a dry</u> image comprising the steps of:
 - (a) printing a preselected image on a substrate surface selected from the group consisting of <u>a</u> glossy surfaces, <u>a</u> reflective surfaces, <u>and a</u> luminescent surfaces, <u>and a combination thereof</u>;
 - (b) applying an opaque coating composition on the <u>substrate that is printed</u> with a preselected image to form an opaque coating; and
- (c) applying a recording liquid to the coated substrate,
 wherein the opaque coating composition includes an opaque coating agent
 comprising a polymeric polyacid and a polymeric polybase and the opaque coating is such that it
 becomes increasingly translucent or transparent upon printing as a result of being contacted with
 the recording liquid.
- 48. (currently amended) The process of claim 47, wherein the opaque coating composition comprises a polyacid and a polybase on the substrate is cured or allowed to dry after being contacted with the recording liquid.
- 49. (original) The process of claim 47, wherein the opaque coating composition further includes a colorant.
 - 50. (original) The process of claim 47, wherein the substrate has a reflective surface.
 - 51. (original) The process of claim 48, wherein the reflective surface is metallic.
 - 52. (original) The process of claim 48, wherein the reflective surface is holographic.
- 53. (original) The process of claim 47, wherein the substrate is comprised of a paper/foil laminate.

Application No. 09/812,712

Amendment dated March 24, 2003

Reply to Office Action of October 23, 2002

(

- 54. (original) The process of claim 47, wherein the substrate is comprised of a metallized film.
- 55. (original) The process of claim 47, wherein step(c) is carried out using a writing instrument.

Claims 56-62 (canceled).

- 63. (new) The process of claim 14, wherein the polyallylamine is N-alkylated polyallylamine, N,N-dialkylated polyamine, or a combination thereof.
 - 64. (new) The process of claim 17, wherein the polymeric polyacid is poly(acrylic acid).