```
In [1]:
             import pandas as pd
             import numpy as np
             import statistics
             from statistics import mean
             import matplotlib.pyplot as plt
In [ ]:
          df=pd.read_excel('C:\\Users\\eric.park\\Downloads\\vaccine_doses.xlsx')
In [ ]:

■ dft=df[['report_date','previous_day_at_least_one','previous_day_fully_vaccina
             #count NAs
In [ ]:
In [ ]:
             dft.isna().sum()
   Out[6]: report_date
                                                            0
             previous_day_at_least_one
                                                            9
                                                            9
             previous day fully vaccinated
             previous_day_3doses
                                                          372
             previous_day_total_doses_administered
                                                            1
             dtype: int64
In [ ]:
             #Data Type
In [ ]:
             dft.dtypes
   Out[7]: report_date
                                                           object
             previous day at least one
                                                          float64
             previous day fully vaccinated
                                                          float64
             previous_day_3doses
                                                          float64
             previous_day_total_doses_administered
                                                          float64
             dtype: object
In [ ]:
             dft.describe().applymap('{:,.2f}'.format)
    Out[8]:
                    previous_day_at_least_one previous_day_fully_vaccinated previous_day_3doses previou
                                     417.00
                                                                                     54.00
              count
                                                                417.00
                                   29,988.06
                                                                                 57,052.72
              mean
                                                              28,789.57
                std
                                   37,344.18
                                                              49,956.21
                                                                                 48,873.07
                                     204.00
                                                                  0.00
                                                                                  7,021.00
               min
               25%
                                    6,635.00
                                                               3,854.00
                                                                                 20,645.75
               50%
                                   13,171.00
                                                               9,226.00
                                                                                 36,666.00
               75%
                                   31,530.00
                                                              22,811.00
                                                                                 82,862.50
                                  165,905.00
                                                             244,701.00
                                                                                 176,118.00
               max
In [ ]:
             #box plot
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x2187092c340>

In []: | dft.hist(figsize=(18,8))

In []: ▶	#correlation		
In []: ▶	dft.corr()		
Out[11]:		previous_day_at_least_one	previous_day_fully_vaccinate
	previous_day_at_least_one	1.000000	-0.03609
	provious day fully vaccinated	0.036004	1 00000

previous_day_at_least_one	1.000000	-0.03609
previous_day_fully_vaccinated	-0.036094	1.00000
previous_day_3doses	0.877246	0.01329
previous_day_total_doses_administered	0.376057	0.56899

In []: ▶ #normalize the data

```
In [ ]:

    ★ from sklearn import preprocessing

            dft1=dft[['previous_day_at_least_one']]
In [ ]:
             dft1=dft1.dropna()
             d=preprocessing.normalize(dft1)
            norm_df=pd.DataFrame(d,columns=['a'])
             norm df.hist(figsize=(18,8))
   Out[47]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000218737C8E20
             >]],
                   dtype=object)
              350
              300
             250
             200
             150
             100
In [ ]:
         | dft2=dft[['previous_day_fully_vaccinated']]
             dft2=dft2.dropna()
             d=preprocessing.normalize(dft2)
             norm_df=pd.DataFrame(d,columns=['a'])
             norm df.hist(figsize=(18,8))
   Out[48]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000021873838A90
             >]],
                   dtype=object)
              400
             350
              300
              50
```

```
In [ ]:
         ▶ | dft3=dft[['previous_day_3doses']]
            dft3=dft3.dropna()
            d=preprocessing.normalize(dft3)
            norm df=pd.DataFrame(d,columns=['a'])
            norm_df.hist(figsize=(18,8))
```

Out[49]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002187383DD90 >]],

dtype=object)


```
In [ ]:
            dft4=dft[['previous_day_total_doses_administered']]
            dft4=dft4.dropna()
            d=preprocessing.normalize(dft4)
            norm_df=pd.DataFrame(d,columns=['a'])
            norm df.hist(figsize=(18,8))
```

Out[50]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000021873AD3100 >]], dtype=object)

df1=pd.read excel('C:\\Users\\eric.park\\Downloads\\vaccines by age.xlsx') In [2]:

In [5]: dft_age.isna().sum()

Out[5]: Date 0
At least one dose_cumulative 0

Second_dose_cumulative 897 third_dose_cumulative 4305

dtype: int64

In [7]: ▶ dft_age.dtypes

Out[8]:

At least one dose_cumulative int64
Second_dose_cumulative float64
third_dose_cumulative float64

dtype: object

	At least one dose_cumulative	Second_dose_cumulative	third_dose_cumulative
count	4,747.00	3,850.00	442.00
mean	2,118,820.53	1,231,565.42	1,755,697.18
std	3,387,902.81	2,550,252.97	2,225,109.43
min	0.00	0.00	0.00
25%	80,860.50	13,507.50	468,789.75
50%	943,317.00	193,616.50	816,695.50
75%	1,720,422.00	1,343,163.75	1,254,583.75
max	12,492,618.00	11,257,423.00	6,604,028.00

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x20181b29f70>

In [11]: dft_age.hist(figsize=(18,8))

In [12]: ▶ dft_age.corr()

Out[12]:

	dose_cumulative	Second_dose_cumulative	third_dose_cumulative
At least one dose_cumulative	1.000000	0.911421	0.980579
Second_dose_cumulative	0.911421	1.000000	NaN
third_dose_cumulative	0.980579	NaN	1.000000

At least one

In [13]: ► | from sklearn import preprocessing

```
In [14]: 

dft_age=dft1[['At least one dose_cumulative']]
    dft1_age=dft_age.dropna()
    d=preprocessing.normalize(dft1_age)
    norm_df=pd.DataFrame(d,columns=['a'])
    norm_df.hist(figsize=(18,8))
```



```
    dft_age=dft1[['Second_dose_cumulative']]

In [15]:
             dft2_age=dft_age.dropna()
             d=preprocessing.normalize(dft2_age)
             norm_df=pd.DataFrame(d,columns=['a'])
             norm_df.hist(figsize=(18,8))
```

Out[15]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000201819DED90 >]],


```
dft_age=dft1[['third_dose_cumulative']]
In [16]:
             dft3_age=dft_age.dropna()
             d=preprocessing.normalize(dft3_age)
             norm_df=pd.DataFrame(d,columns=['a'])
             norm_df.hist(figsize=(18,8))
```

Out[16]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000201819C2F10</pre> >]],

dtype=object)

