I. Intégrale

I.1. Fonction en escalier

<u>définition</u>: a < b, une subdivision de [a,b] est une suite finie notée $\sigma = (a_0,...,a_n)$ telle que $a_0 = a < a_1 < \cdots < a_n = b$ et le pas de σ est $\max_{0 < i < n-1} (a_{i+1} - a_i)$

<u>définition</u>: a < b, $\varphi : [a,b] \longrightarrow \mathbb{R}$ est une fonction en escalier s'il existe une subdivision $\sigma = (a_0, ..., a_n)$ de [a,b] (subdivision associée à f) telle que $\forall i \in \{0,...,n-1\}$ $\exists \lambda_i \in \mathbb{R} \ \forall x \in [a_i,a_{i+1}[\ \varphi(x) = \lambda_i] \}$

On définit alors l'intégrale de φ sur [a,b] par $\int_a^b \varphi = \int_a^b \varphi(t) dt = \sum_{i=0}^{n-1} (a_{i+1} - a_i) \lambda_i$

 $\underline{\textbf{1. linéarité}:} \ f,g: [a,b] \longrightarrow \mathbb{R} \quad \text{en escalier sur } [a,b], \ \alpha \in \mathbb{R} \quad \text{alors} \quad \int_a^b (f+\alpha g) = \int_a^b f + \alpha \int_a^b g dx$

2. positivité: $f:[a,b] \longrightarrow \mathbb{R}_+$ en escalier sur [a,b], alors $\int_a^b f \geq 0$

3. croissance: $f,g:[a,b] \longrightarrow \mathbb{R}$ en escalier sur [a,b] avec $f \leq g$, alors $\int_a^b f \leq \int_a^b g$

 $\underline{\textbf{4. inégalité des valeurs absolues :}} \ f: [a,b] \longrightarrow \mathbb{R} \quad \text{en escalier sur } [a,b] \ \text{, alors} \ \left| \int_a^b f \right| \leq \int_a^b |f|$

5. relation de Chasles : $f:[a,b] \longrightarrow \mathbb{R}$ en escalier sur [a,b] , alors

$$\forall \ c \in \left]a,b\right[\quad \int_a^b f = \int_a^c f + \int_c^b f$$

CHASLES Michel 1793 Épernon - 1880 Paris : Polytechnicien, Michel Charles obtient son doctorat sous la houlette de Poisson. Officier du génie, il enseigne la mécanique et la géodésie à l'École Polytechnique puis a une chaire de géométrie à la Sorbonne. Le pricipal de son œuvre sera publié sans son Traité de géométrie supérieure. On lui doit le nom d'homographie (du grec homos=semblable et graphikos=action d'écrire ou de dessinner). Élu à l'Académie des Sciences, Chasles a été le premier président de la Société Mathématique de France, et aussi membre à titre étanger de la Royal Society

I.2. Fonction continue

a < b , $f: [a, b] \longrightarrow \mathbb{R}$ continue sur [a, b],

On pose $\mathcal{A} {=} \{ \varphi : [a,b] \longrightarrow \mathbb{R}; \, \varphi \text{ en escalier sur } [a,b] \text{ et } \varphi \geq f \}$

 $\mathcal{B} {=} \{ \psi \, : \, [a,b] \, {\longrightarrow} \, \mathbb{R}; \, \psi \text{ en escalier sur } [a,b] \text{ et } \psi \leq f \}$

 $\text{alors inf}\{\int_a^b \varphi; \varphi \in \mathcal{A}\} = \sup\{\int_a^b \psi; \psi \in \mathcal{B}\}.$

Ce nombre commun est appelé intégrale de f sur [a,b] et noté $\int_a^b f(t)dt$ (ou $\int_a^b f$)

Interprétation géométrique : a < b, $f : [a,b] \longrightarrow \mathbb{R}$ continue sur [a,b], alors $\int_a^b f(x)dx$ représente l'aire algébrique de la partie du plan délimitée par les courbes d'équations x = a, x = b, y = 0, et y = f(x).

théorème : Sommes de Riemann : $f:[a,b] \longrightarrow \mathbb{R}$ continue sur [a,b],

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + \frac{k(b-a)}{n}\right) = \int_{a}^{b} f(t)dt$$

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{k(b-a)}{n}\right) = \int_a^b f(t)dt$$

Propriétés

 $\underline{\textbf{1. linéarité}} : f,g: [a,b] \longrightarrow \mathbb{R} \quad \text{continues sur } [a,b], \ \alpha \in \mathbb{R} \quad \text{alors} \quad \int_a^b (f+\alpha g) = \int_a^b f + \alpha \int_a^b g \int_a^b f + \alpha \int_a^b f +$

2. positivité: $f:[a,b] \longrightarrow \mathbb{R}_+$ continue sur [a,b], alors $\int_a^b f \ge 0$

3. croissance: $f,g:[a,b] \longrightarrow \mathbb{R}$ continues sur [a,b] avec $f \leq g$, alors $\int_a^b f \leq \int_a^b g$

 $\underline{\textbf{4. inégalité des valeurs absolues :}} \ f: [a,b] \longrightarrow \mathbb{R} \quad \text{continue sur } [a,b] \ \text{, alors} \ \left| \int_a^b f \right| \leq \int_a^b |f|$

 $\underline{\textbf{5. relation de Chasles:}}\ f:[a,b]\longrightarrow\mathbb{R}\ \ \text{continue sur }[a,b]$, alors

$$\forall c \in]a,b[\quad \int_a^b f = \int_a^c f + \int_c^b f$$

<u>6. théorème :</u> $f:[a,b] \longrightarrow \mathbb{R}_+$ (respectivement de signe fixe) continue sur [a,b], alors

$$\int_{a}^{b} f = 0 \iff f = \tilde{0}$$

7. valeur moyenne: $f: [a,b] \longrightarrow \mathbb{R}$, alors si $m = \inf_{x \in [a,b]} f(x)$ et $M = \sup_{x \in [a,b]} f(x)$

alors $m(b-a) \le \int_a^b f(x)dx \le M(b-a)$ $\frac{1}{b-a} \int_a^b f(x)dx$ s'appelle la valeur moyenne de f sur [a,b].

<u>Autres propriétés</u>: 1. Intégrales sur un segment symétrique: Soit a>0 et $f:[-a,a]\longrightarrow \mathbb{R}$ continue

Si
$$f$$
 est paire, alors $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$

Si
$$f$$
 est paire, alors $\int_{-a}^{a} f(x)dx = 0$

2. Intégrales d'une fonction périodique sur une période. : $f: \mathbb{R} \longrightarrow \mathbb{R}$ T-périodique et continue

$$\forall \ a \in \mathbb{R} \quad \int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx$$

PC Lycee Pasteur 2023 2024

II. Extension

 $f: [\min(a,b), \max(a,b)] \longrightarrow \mathbb{R} \quad \text{continue}$ on a défini $\int_a^b f$ si a < b

On pose
$$\int_a^b f = -\int_b^a f$$
 si $b < a$

$$et \int_{a}^{a} f = 0$$

La linéarité, la relation de Chasles restent vraies, l'inégalité des valeurs absolues devient

$$\left| \int_a^b f \right| \le \left| \int_a^b |f| \right| \quad \text{ou } \left| \int_a^b f \right| \le \int_{\min(a,b)}^{\max(a,b)} |f|$$

III. Primitive d'une fonction continue

 $\mathcal I$ intervalle de $\mathbb R$, $f:\mathcal I\longrightarrow \mathbb R$ continue sur $\mathcal I$, alors si $a\in\mathcal I$

$$x \longmapsto \int_a^x f(t)dt$$
 est l'unique primitive de f s'annulant en a

Donc toute fonction continue sur un intervalle admet des primitives et $\int_a^x f(t)dt = h(x) - h(a)$ pour toute primitive h de f.

IV. Cas des fonctions à valeurs complexes

 $f: [a,b] \longrightarrow \mathbb{C} \quad \text{continue sur } [a,b]$

alors
$$\int_a^b f = \int_a^b Re(f) + i \int_a^b Im(f)$$

Propriétés

La linéarité reste vraie, la relation de Chasles reste vraie

l'inégalité des modules devient
$$\left| \int_a^b f \right| \le \left| \int_a^b |f| \right|$$

$$\int_a^b (uv')(t)dt = [(uv)(t)]_a^b - \int_a^b (u'v)(t)dt$$

<u>Changement de variables</u>: $f:[a,b] \longrightarrow \mathbb{C}$ continue sur [a,b], $\varphi:[\alpha,\beta] \longrightarrow [a,b]$ de classe c^1 et bijective de $[\alpha,\beta]$ sur [a,b], alors

$$\int_{a}^{b} f(t)dt = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(u))\varphi'(u)du$$

<u>Inégalité de Taylor-Lagrange</u> : $f:[a,b]\longrightarrow \mathbb{C}$ de classe c^{n+1} sur [a,b], alors

$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) \right| \le \frac{(b-a)^{n+1}}{(n+1)!} \sup_{x \in [a,b]} |f^{n+1}(x)|$$

V. Fonctions continues par morceaux

V.1. Définition

[a,b] segment de \mathbb{R} , $f:[a,b] \longrightarrow \mathbb{K}$ est continue par morceaux (cpm) s'il existe une subdivision $\sigma=(a_0,a_1,..,a_n)$ de [a,b] (subdivision associée à f) telle que

$$\forall i \in \{0, 1, ..., n-1\} \quad f_i : [a_i, a_{i+1}] \longrightarrow \mathbb{K}$$
 est continue sur $[a_i, a_{i+1}]$

$$x \in]a_i, a_{i+1}[\longmapsto f(x)$$

$$a_i \longmapsto \lim_{x \mapsto a_{i+1}^+} f(x)$$

$$a_{i+1} \longmapsto \lim_{x \mapsto a_{i+1}^-} f(x)$$

 $f: \mathcal{I} \longrightarrow \mathbb{K}$ où \mathcal{I} est un intervalle de \mathbb{R}

donc f est cpm sur [a,b] équivaut à f continue sauf éventuellement en un nombre fini de points et f admet en tout point de [a,b] une limite à droite et une limite à gauche.

f est cpm sur $\mathcal I$ si f cpm sur tout segment de $\mathcal I$

Propriété : L'ensemble $\mathcal{CM}(\mathcal{I},\mathbb{K})$ des fonctions cpm sur \mathcal{I} est un sous-espace vectoriel de $\mathcal{F}(\mathcal{I},\mathbb{K})$.

V.2. Intégrale d'une fonction cpm sur un segment

<u>définition</u> : $f:[a,b] \longrightarrow \mathbb{K}$ cpm associée à la subdivision σ

$$\int_{a}^{b} f = \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f_{i}(t)dt$$

Cette valeur ne dépend pas de la subdivision associée à f choisie.

V.3. Propriétés de l'intégrale d'une fonction cpm sur un segment

2. positivité :
$$f: [a,b] \longrightarrow \mathbb{R}_+$$
 cpm sur $[a,b]$, alors $\int_a^b f \ge 0$

3. croissance:
$$f,g:[a,b]\longrightarrow \mathbb{R}$$
 cpm sur $[a,b]$ avec $f\leq g$, alors $\int_a^b f\leq \int_a^b g$

$$\underline{\textbf{4. inégalité des modules}:} \ f: [a,b] \longrightarrow \mathbb{C} \quad \text{cpm sur } [a,b] \ \text{, alors} \ \left| \int_a^b f \right| \leq \int_a^b |f|$$

5. relation de Chasles: $f:[a,b] \longrightarrow \mathbb{R}$ cpm sur [a,b], alors $\forall c \in]a,b[$ $\int_a^b f = \int_a^c f + \int_c^b f$

mais $f:[a,b] \longrightarrow \mathbb{R}_+$ (respectivement de signe fixe) cpm sur [a,b], alors $\int_a^b f = 0 \iff f = \tilde{0} \text{ est faux}$

V.4. Primitives d'une fonction cpm

 $\mathcal{I} \text{ intervalle de } \mathbb{R},\, f: \mathcal{I} \longrightarrow \mathbb{K} \text{ cpm sur } \mathcal{I} \text{ et } \quad a \in \mathcal{I}$

<u>définition</u>: Une primitive de f est une fonction F continue sur \mathcal{I} , avec F'=f en les points où f est continue

<u>théorème</u>: $f: \mathcal{I} \longrightarrow \mathbb{K}$ cpm sur $\mathcal{I} \quad a \in \mathcal{I}$

alors $x \longmapsto \int_a^x f(t)dt$ est la primitive de f s'annulant en a