S-CALCF

Scholarship 2018 Calculus

9.30 a.m. Friday 9 November 2018

FORMULAE AND TABLES BOOKLET

Refer to this booklet to answer the questions for Scholarship Calculus 93202Q.

Check that this booklet has pages 2–4 in the correct order and that none of these pages is blank.

YOU MAY KEEP THIS BOOKLET AT THE END OF THE EXAMINATION.

CALCULUS - USEFUL FORMULAE

ALGEBRA

Quadratics

If
$$ax^2 + bx + c = 0$$

then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Logarithms

$$y = \log_b x \Leftrightarrow x = b^y$$
$$\log_b(xy) = \log_b x + \log_b y$$

$$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b(x^n) = n\log_b x$$

$$\log_b x = \frac{\log_a x}{\log_a b}$$

Complex numbers

$$z = x + iy$$

$$= r \operatorname{cis} \theta$$

$$= r(\cos \theta + i \sin \theta)$$

$$\overline{z} = x - iy$$

$$= r \operatorname{cis} (-\theta)$$

$$= r(\cos \theta - i \sin \theta)$$

$$r = |z| = \sqrt{z\overline{z}} = \sqrt{(x^2 + y^2)}$$

 $\theta = \arg z$

where
$$\cos \theta = \frac{x}{r}$$

and
$$\sin \theta = \frac{y}{r}$$

De Moivre's Theorem

If n is any integer, then $(r \operatorname{cis} \theta)^n = r^n \operatorname{cis} (n\theta)$

Binomial Theorem

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + \binom{n}{n}b^{n} \qquad \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 \text{ or } (a \sec \theta, b \tan \theta)$$

$$\binom{n}{r} = {^{n}C_{r}} = \frac{n!}{(n-r)!r!}$$

Some values of $\binom{n}{r}$ are given in the table below.

84 126 10 11 55 462 55

COORDINATE GEOMETRY

Straight Line

Equation $y - y_1 = m(x - x_1)$

Circle

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$
has a centre (a,b) and radius r

Parabola

$$y^2 = 4ax$$
 or $(at^2, 2at)$
Focus $(a,0)$ Directrix $x = -a$

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ or } (a\cos\theta, b\sin\theta)$$
Foci $(c,0)$ $(-c,0)$ where $b^2 = a^2 - c^2$
Eccentricity: $e = \frac{c}{a}$

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ or } (a \sec \theta, b \tan \theta)$$

asymptotes
$$y = \pm \frac{b}{a}x$$

Foci
$$(c,0)$$
 $(-c,0)$ where $b^2 = c^2 - a^2$

Eccentricity:
$$e = \frac{c}{a}$$

CALCULUS

Differentiation

y = f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$
$\ln x$	$\frac{1}{x}$
e ^{ax}	ae^{ax}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
sec x	$\sec x \tan x$
cosec x	$-\csc x \cot x$
$\cot x$	$-\csc^2 x$

Integration

f(x)	$\int f(x) \mathrm{d}x$
x^n	$\frac{x^{n+1}}{n+1} + c$
	$(n \neq -1)$
$\frac{1}{x}$	
$\frac{f'(x)}{f(x)}$	

First principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Parametric Function

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

Product Rule

$$(f.g)' = f.g' + g.f'$$
 or if $y = uv$ then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

Quotient Rule

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$
 or if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

Composite Function or Chain Rule

$$(f(g))' = f'(g).g'$$
or if $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

NUMERICAL METHODS

Trapezium Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h \Big[y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1}) \Big]$$
where $h = \frac{b-a}{n}$ and $y_r = f(x_r)$

Simpson's Rule

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \Big[y_0 + y_n + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \Big]$$
where $h = \frac{b-a}{n}$, $y_r = f(x_r)$ and n is even.

TRIGONOMETRY

$$\csc \theta = \frac{1}{\sin \theta}$$
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Sine Rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Identities

$$\cos^2\theta + \sin^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

General Solutions

If
$$\sin \theta = \sin \alpha$$
 then $\theta = n\pi + (-1)^n \alpha$

If
$$\cos \theta = \cos \alpha$$
 then $\theta = 2n\pi \pm \alpha$

If
$$\tan \theta = \tan \alpha$$
 then $\theta = n\pi + \alpha$

where n is any integer

Compound Angles

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

Double Angles

$$\sin 2A = 2\sin A\cos A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$=2\cos^2 A - 1$$

$$=1-2\sin^2 A$$

Products

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A - B) - \cos(A + B)$$

Sums

$$\sin C + \sin D = 2\sin\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\sin C - \sin D = 2\cos\frac{C+D}{2}\sin\frac{C-D}{2}$$

$$\cos C + \cos D = 2\cos\frac{C+D}{2}\cos\frac{C-D}{2}$$

$$\cos C - \cos D = -2\sin\frac{C+D}{2}\sin\frac{C-D}{2}$$

MEASUREMENT

Triangle

Area =
$$\frac{1}{2}ab\sin C$$

Trapezium

Area =
$$\frac{1}{2}(a+b)h$$

Sector

Area =
$$\frac{1}{2}r^2\theta$$

Arc length = $r\theta$

Cylinder

Volume =
$$\pi r^2 h$$

Curved surface area = $2\pi rh$

Cone

$$Volume = \frac{1}{3}\pi r^2 h$$

Curved surface area = πrl where l = slant height

Sphere

Volume =
$$\frac{4}{3}\pi r^3$$

Surface area = $4\pi r^2$