

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CURSO DE GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO

BIANCA SILVA RIBEIRO DO VALLE GABRIELA FERREIRA DE SENA

IMPLEMENTAÇÃO DA APROXIMAÇÃO DE DERIVADA DE FUNÇÃO

Diferenças Finitas e Soma de Riemann: Uma Introdução Teórica

Introdução teórica às diferenças finitas e à soma de Riemann, duas ferramentas fundamentais no cálculo numérico e na aproximação de derivadas e integrais.

1. Diferenças Finitas

As diferenças finitas são um método para aproximar derivadas de uma função utilizando valores da função em pontos discretos. A ideia central é substituir o conceito de limite, presente na definição formal da derivada, por diferenças entre valores da função em pontos próximos.

1.1 Definições

Seja f(x) uma função definida em um intervalo [a, b]. Dividimos este intervalo em n subintervalos de tamanho igual h pontos xi são definidos como Xi onde i = 0, 1, 2, ..., n. b-a. Os a + ih,

Diferença Finita Progressiva (Forward Difference): Aproxima a derivada no ponto xi usando o valor da função em Xie Xi+1. É definida como: Af(xi) = f(xi+1) - f(xi) Aproximação da derivada: f'(xi) f(xi) = f(x+1) - f(x) h

Diferença Finita Regressiva (Backward Difference): Aproxima a derivada no ponto x usando o valor da função em Xie Xi-1. É definida como: f(xi) = f(xi) - f(Xi-1) Aproximação da derivada: $f'(xi) \approx f(xi) h = f(xi) - f(x-1) h$

Diferença Finita Central (Central Difference): Aproxima a derivada no ponto xi usando o valor da função em Xi-1 e Xi+1. É definida como: df(x) = f(x+1) - f(xi-1) Aproximação da derivada: $f'(xi) \approx df(xi) 2h = f(x+1) - f(x-1) 2h$

1.2 Ordem de Aproximação

A ordem de aproximação de um método de diferenças finitas indica a precisão da aproximação. Em geral, a diferença central tem uma ordem de aproximação maior do que as diferenças progressiva e regressiva.

1.3 Exemplo

Considere f(x) = cos(x). Sabemos que f'(x) = -sin(x). Vamos aproximar f'(0) com h = 0,1:

- Valor exato: f'(0) = 0
- Diferença progressiva: $(\cos(0,1) \cos(0)) / 0.1 \approx -0.05$
- Diferença centrada: (cos(0,1) cos(-0,1)) / 0,2 ≈ 0

2. Soma de Riemann

A soma de Riemann é um método para aproximar a integral definida de uma função, dividindo a área sob a curva em retângulos e somando suas áreas.

2.1 Definição

Seja f(x) uma função definida em um intervalo [a, b]. Dividimos este intervalo em n subintervalos de tamanho igual Ax = b-a. Escolhemos um ponto x em cada n subintervalo [i-1, xi]. A soma de Riemann é definida como:

 Σ -1 f(x) $\Delta\alpha$

2.2 Tipos de Soma de Riemann

A escolha do ponto x dentro de cada subintervalo define diferentes tipos de soma de Riemann:

Soma de Riemann à Esquerda: x Xi-1 (o ponto extremo esquerdo do subintervalo) Soma de Riemann à Direita: x = x (0 ponto extremo direito do subintervalo) Soma de Riemann do Ponto Médio: x= Xi-1+Xi (o ponto médio do 2 subintervalo)

2.3 Convergência

À medida que o número de subintervalos n tende ao infinito (e, portanto, Ax tende a zero), a soma de Riemann converge para a integral definida da função, desde que a função seja integrável no intervalo [a, b]. So $f(x)dx = \lim_{n \to \infty} 1 f(x) \Delta \alpha$

2.4 Exemplo

Vamos aproximar $\int_0^1 x^2 dx$ com n = 4 usando soma à esquerda:

 $\Delta x = 0.25$; Pontos: x = 0, 0.25, 0.5, 0.75

Soma: $[f(0) + f(0,25) + f(0,5) + f(0,75)] \cdot 0,25 = [0 + 0,0625 + 0,25 + 0,5625] \cdot 0,25 = 0,21875$

O valor exato é $1/3 \approx 0.333$.