عليرضا آخوندى

9731107

سوال اول:

فرمول فاصله L1 به صورت زیر است:

$$d(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

در ابتدا خوشه ها به شکل زیر هستند:

C2:

$$X = \frac{1 \times 3 + 2 \times 3 + 3 \times 3}{9} = 2$$
$$Y = \frac{1 \times 3 + 2 \times 3 + 3 \times 3}{9} = 2$$

C1:

$$X = \frac{4 \times 3 + 5 \times 3 + 6 \times 3 + 7 \times 1}{10} = 5.2$$
$$Y = \frac{1 \times 3 + 2 \times 4 + 3 \times 3}{10} = 2$$

حال خوشه ها به شكل زير تبديل مي شوند:

از آن جایی که شکل خوشه ها تغییری نکرده است به اجرا ادامه نمی دهیم.

سوال دوم: برای دسته بندی داده های مورد نظر از الگوریتم DBSCAN می توانیم استفاده کنیم. دلیل استفاده از این الگوریتم این است که مبنای خوشه بندی آن چگالی داده در یک ناحیه است و می تواند خوشه های پیچیده تری را نسبت به الگوریتم kmeans ایجاد کند و نسبت به outlier ها بهتر عمل می کند. حال اگر بخواهیم به خوشه بندی مشخص شده در شکل برسیم باید از این الگوریتم استفاده کنیم تا نواحی چگال را برای ما شناسایی کند.

حال برای خوشه بندی این مجموعه داده از پارامتر های زیر استفاده می کنیم:

minPoints = 2, eps = 1

پس از اجرای الگوریتم خروجی زیر حاصل می شود:

سوال سوم:

closed Frequent Itemset ها زیرمجموعه Closed Frequent Itemset ها محسوب می شوند. از طرفی این مجموعه، بسته بوده و مقدار support آن بزرگتر و یا مساوی minSup است. همچیین support ای بسته تعریف می شود که هیچ support ای از آن مجموعه وجود نداشته باشد که مقدار superset یکسانی با آن داشته باشد.

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

بسته بودن X به صورت زیر تعریف می شود:

حال اگر X یک closed frequent itemset باشد، می توان به یکی از نتایج زیر رسید:

$$S(X) \ge minsup > S(Y)$$

$$S(X) > S(Y) \ge minsup$$

اگر حالت اول رخ بدهد، که اصلا frequent itemset Y نمی باشد. اگر حالت دوم رخ بدهد، Y نها را داشته frequent itemset می باشد. پس اگر support می باشد. پس اگر support می باشد. پس اگر S(X) > S(Y) > minsup مقدار پشتیبانی frequent itemset ها را تعیین کنیم.

 $((de_{1} - 3 - e_{2}) = \frac{2}{3} - 0.66 = 0.6 \ V \text{ play })$ $((e_{2} - 3 - de_{2}) = \frac{2}{4} = 0.5 \ \text{K}$ $((e_{2} - 3 - de_{2}) = \frac{2}{4} = 0.5 \ \text{K}$ $((e_{2} - 3 - e_{2}) = \frac{2}{3} = 0.66 \ \text{V}$ $((e_{2} - 3 - e_{2}) = \frac{2}{3} = 0.66 \ \text{V}$ $((e_{2} - 3 - e_{2}) = \frac{2}{2} = 1 \ \text{V}$ $((e_{2} - 3 - e_{2}) = \frac{2}{3} = 0.66 \ \text{V}$ $((e_{2} - 3$

min)
P1 01 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P3 049 0.64 9 (63) P3 0.41 0 P4 0.48 0.44 0
P5 035 0.98 0.85 0.76 0
(4) P3 P3 P4 0.48 0.44 0 P4 0.44 0
(max x)
P1, P2 P3 0.64 0 P3, R4 P5 0.93 0.85 0 C25C1 P5 0.98 0.85 0.76 0 P3, R4 P5 0.93 0.85 0 C25C1
$ \begin{array}{c c} \hline & & \\ \hline & & & \\ \hline & & \\ $