

Énoncés des exercices

EXERCICE 1 [Indication] [Correction]

Etudier la convergence et calculer la somme de la série de fonctions $\sum f_n$ définie par : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}^+, f_n(x) = n \, x^2 \mathrm{e}^{-nx}$.

EXERCICE 2 [Indication] [Correction]

On considère la série de fonctions $\sum f_n$, avec : $\forall n \in \mathbb{N}^*, \forall x \in [0, \pi], f_n(x) = \sin x \cos^n x$.

- 1. Montrer que la série $\sum f_n$ est simplement convergente sur $[0,\pi]$.
- 2. Justifier rapidement pourquoi la convergence n'est pas uniforme sur $[0, \pi]$.
- 3. Prouver qu'il y a convergence normale sur $[a, \pi a]$, avec $0 < a < \frac{\pi}{2}$.
- 4. Calculer le reste d'indice N de $\sum f_n$ et montrer que celle-ci n'est pas CVU sur $]0,\pi]$.
- 5. Montrer qu'il y a convergence uniforme (mais pas normale) sur $[a, \pi]$, avec $0 < a < \pi$.

EXERCICE 3 [Indication] [Correction]

On considère la série $\sum f_n$, où : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}^+, f_n(x) = \frac{e^{-nx}}{(n+x)^2}$.

- 1. Etudier la convergence de cette série sur \mathbb{R}^+ .
- 2. Montrer que la somme S de cette série est continue sur \mathbb{R}^+ .
- 3. Prouver que l'application S est décroissante et positive sur \mathbb{R}^+ .
- 4. Préciser la valeur de l'application S à l'origine, et montrer que $\lim_{x \to +\infty} S(x) = 0$.
- 5. Etablir que la fonction S est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .
- 6. Prouver que l'application S est convexe sur \mathbb{R}^+ .
- 7. Montrer que S n'est pas dérivable en 0 en prouvant que $\lim_{x\to 0} S'(x) = -\infty$.

EXERCICE 4 [Indication] [Correction]

On étudie la série de fonctions $\sum f_n$ définie par : $\forall n \geq 2, \forall x \geq 0, f_n(x) = \frac{x e^{-nx}}{\ln n}$

- 1. Montrer qu'il y a convergence simple sur \mathbb{R}^+ .
- 2. Montrer qu'il y a convergence normale sur $[a, +\infty[$ (avec a > 0) mais pas sur \mathbb{R}^+ .
- 3. Montrer qu'il y a convergence uniforme sur \mathbb{R}^+ . Conséquence pour la somme S?
- 4. Montrer que la somme S est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .
- 5. Prouver que S n'est pas dérivable en 0 à droite.
- 6. Montrer que pour tout entier naturel k, on a : $\lim_{x\to\infty} x^k S(x) = 0$.

Page 1 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Indications ou résultats

Indication pour l'exercice 1 [Retour à l'énoncé]

- Si x = 0 c'est facile. Si x > 0, montrer que $\lim_{n \to \infty} n^2 f_n(x) = 0$. Soit $S = \sum f_n$. Montrer que S(0) = 0 et $S(x) = \frac{x^2 e^x}{(e^x 1)^2}$ si x > 0.
- Montrer que f_n est maximum en $x_n = 2/n$, puis qu'il n'y a pas CVN sur \mathbb{R}^+ .
- Montrer qu'il y a CVN sur $[a, +\infty[$, pour tout a > 0.
- Par un argument de continuité, montrer qu'il n'y a pas CVU sur \mathbb{R}^+ .

INDICATION POUR L'EXERCICE 2 | [Retour à l'énoncé]

- 1. Montrer que $S = \sum f_n$ existe sur $[0, \pi]$, avec $S(x) = \cot \frac{x}{2}$ sur $[0, \pi]$, et S(0) = 0.
- 2. Par un argument de continuité, montrer qu'il n'y a pas CVU sur [0, a], avec $0 < a \le \pi$.
- 3. Montrer que $\sum f_n$ est CVN sur $[a, \pi a]$, avec $a \in]0, \frac{\pi}{2}[$.
- 4. En étudiant le reste R_N d'indice N, montrer qu'il n'y a pas CVU sur $]0,\pi]$.
- 5. Se donner a dans $[0,\pi]$. Par symétrie, montrer qu'il n'y a pas CVN sur $[a,\pi]$. En étudiant le reste R_N d'indice N, montrer qu'il y a CVU sur $[a, \pi]$.

INDICATION POUR L'EXERCICE 3 | [Retour à l'énoncé]

- 1. Montrer que la série $\sum f_n$ est normalement convergente sur \mathbb{R}^+ .
- 2. La continuité de S découle d'un résultat du cours.
- 3. Sommer les inégalités $f_n(x) \ge f_n(y) \ge 0$, valables si $0 \le x \le y$.
- 4. On a $S(0) = \frac{\pi^2}{6}$. Utiliser ensuite $0 \le f_n(x) \le \frac{e^{-x}}{n^2}$.
- 5. Montrer qu'on peut appliquer le théorème de dérivation des séries de fonctions sur $[a, +\infty[$.
- 6. Montrer que la fonction S' est croissante.
- 7. Par l'absurde, on montre que la limite de S' en 0 n'est pas finie. On sera amené à utiliser la croissance de S' et le fait que les f'_n sont négatives.

INDICATION POUR L'EXERCICE 4 | [Retour à l'énoncé]

- 1. Vérifier que $\lim_{n\to\infty} n^2 f_n(x) = 0$.
- 2. Il y a CVN sur $[a, +\infty[$, pour tout a > 0, mais pas sur \mathbb{R}^+ .
- 3. En majorant le reste R_N , montrer que $\sum f_n$ est CVU sur \mathbb{R}^+ .
- 4. Il suffit de montrer que $\sum f'_n$ est CVU sur tout intervalle $I = [a, +\infty[$, avec a > 0.
- 5. Montrer que $\lim_{x\to 0+} \frac{S(x)}{x} = +\infty$.
- 6. Majorer $f_n(x)$ par $\frac{xe^{-nx}}{\ln 2}$, puis S(x) par $e^{-x}\varphi(x)$, avec $\varphi(x) = \frac{x}{(\ln 2)(e^x-1)}$.

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Corrigés des exercices

Corrigé de l'exercice 1 [Retour à l'énoncé]

– Convergence simple :

On constate que pour tout $n \geq 1$, $f_n(0) = 0$. Donc la série $\sum f_n(0)$ converge... Si x > 0, alors $0 < e^{-x} < 1$ et $\lim_{n \to \infty} n^3 e^{-nx} = \lim_{n \to \infty} n^3 (e^{-x})^n = 0$ (croissance comparée.) On en déduit $\lim_{n \to \infty} n^2 f_n(x) = 0$, ce qui prouve la convergence de la série $\sum f_n(x)$ (Riemann.) Finalement la série de fonctions $\sum f_n$ est simplement convergente sur \mathbb{R}^+ .

– Calcul de la somme :

Soit
$$S$$
 la somme de la série : $\forall x \in \mathbb{R}^+, S(x) = \sum_{n=1}^{\infty} f_n(x)$. On sait déjà que $S(0) = 0$.
Pour tout $x > 0$, et si $q = e^{-x}$, alors $0 < q < 1$ et $S(x) = x^2 T(q)$, avec $T(q) = \sum_{n=1}^{\infty} n q^n$.
On voit que $T(q) = q \sum_{n=1}^{\infty} n q^{n-1} = q \sum_{n=1}^{\infty} (n-1)q^{n-1} + \sum_{n=1}^{\infty} q^n = qT(q) + \frac{q}{1-q}$.
On en déduit $T(q) = \frac{q}{(1-q)^2}$, et donc $S(x) = x^2 \frac{e^{-x}}{(1-e^{-x})^2} = \frac{x^2 e^x}{(e^x - 1)^2}$.

- Convergence normale ou uniforme :

On constate que $f'_n(x) = nx(2 - nx)e^{-x}$ s'annule en $x_n = \frac{2}{n}$. En ce point la fonction positive f_n atteint son maximum $M_n = f_n(x_n) = \frac{4}{e^2 n}$.

- \diamond La série $\sum M_n$ n'est pas convergente (série harmonique.) On en déduit que la série de fonctions $\sum f_n$ n'est pas normalement convergente sur \mathbb{R}^+ .
- \diamond En revanche il y a convergence normale (donc uniforme) sur $[a, +\infty[$, pour tout a > 0. En effet dès que $\frac{2}{n} \leq a$ (c'est-à-dire $n \geq \frac{2}{a}$) la fonction f_n est décroissante sur $[a, +\infty[$. On en déduit que pour $n \geq \frac{2}{a}$, $\sup_{x>a} |f_n(x)| = f_n(a)$ (terme général d'une série CV.)
- \diamond On constate que $S = \sum f_n$ tend vers 1 en 0. Ainsi S n'est pas continue en 0, contrairement aux f_n . On en déduit qu'il n'y a pas CVU sur \mathbb{R}^+ .

On a représenté ici les fonctions sommes partielles S_N pour $0 \le N \le 6$, ainsi que la somme S de la série (c'est la courbe "au-dessus").

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

CORRIGÉ DE L'EXERCICE 2 [Retour à l'énoncé]

1. Si $x \in \{0, \pi\}$, alors $f_n(x) = 0$ pour tout n. Si $x \in]0, \pi[$, on a $|\cos x| < 1$ donc

$$\sum_{n=0}^{\infty} f_n(x) = \sin x \sum_{n=0}^{\infty} \cos^n x = \frac{\sin x}{1 - \cos x} = \cot \frac{x}{2}$$

La série $\sum f_n$ est donc CVS sur $[0,\pi]$ de somme $S(x)=\cot \frac{x}{2}$ sur $[0,\pi]$, et S(0)=0.

- 2. Les applications f_n sont continues sur $[0, \pi]$ mais la somme S est discontinue en 0. $\sum f_n$ n'est donc pas CVU sur $[0, \pi]$, ni sur aucun segment [0, a], avec $0 < a \le \pi$.
- 3. Soit $a \in]0, \frac{\pi}{2}[$. $\forall x \in [a, \pi a], |f_n(x)| \leq \cos^n a \text{ terme général d'une série CV car } |\cos a| < 1.$ On en déduit que $\sum f_n$ est normalement (donc uniformément) convergente sur $[a, \pi a]$.
- 4. Pour tout x de $]0,\pi]$ et pout tout n de \mathbb{N} :

$$R_N(x) = \sum_{n=N+1}^{\infty} f_n(x) = \sin x \sum_{n=N+1}^{\infty} \cos^n x = \frac{\sin x \cos^{N+1} x}{1 - \cos x} = (\cos^{N+1} x)(\cot x)$$

On constate que $R_n(x) \sim \cot \frac{x}{2}$ en 0. Donc $\lim_{x\to 0+} R_N(x) = +\infty$.

Cela confirme qu'il n'y a pas convergence uniforme sur $]0,\pi].$

5. On se donne un réel a dans l'intervalle $[0, \pi]$.

Remarquons que $|f_n(\pi - x)| = |f_n(x)|$.

La courbe $y=|f_n(x)|$ possède donc l'axe $x=\frac{\pi}{2}$ comme axe de symétrie.

La série $\sum f_n$ n'est pas normalement convergente sur $[a, \pi]$, car sinon elle le serait sur $[0, \pi - a]$ par restriction, ce qui est absurde car sur cet intervalle il n'y a pas même pas convergence uniforme.

Soit $\varepsilon > 0$. L'application $x \to \cot \frac{x}{2}$ est continue positive sur $]0, \pi]$, et nulle en $x = \pi$.

En particulier, il existe $\alpha \in]0,a]$ tel que $\pi - \alpha \leq x \leq \pi \Rightarrow \left|\cot \frac{x}{2}\right| \leq \varepsilon$.

On en déduit : $\forall x \in [\pi - \alpha, \pi], \forall N \in \mathbb{N}, |R_N(x)| = \left|\cos^{N+1}x \cot \frac{x}{2}\right| \leq \left|\cot \frac{x}{2}\right| \leq \varepsilon.$

Sur l'intervalle $[\alpha, \pi - \alpha]$, on a $|R_N(x)| = \left|\cos^{N+1}x \cot \frac{x}{2}\right| \le (\cos^{N+1}\alpha)\cot \frac{\alpha}{2}$.

Il existe un entier n_0 tel que $n \ge n_0 \Rightarrow 0 \le (\cos^{N+1} \alpha) \cot \frac{\alpha}{2} \le \varepsilon$.

On a alors, pour tout $n \ge n_0$ et tout x de $[\alpha, \pi]$ (donc tout x de $[a, \pi]$) : $|R_N(x)| \le \varepsilon$.

Ce résultat prouve que la série $\sum f_n$ est uniformément convergente sur $[a, \pi]$.

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Tous droits de l'auteur des œuvres récervés. Sauf autorisation la reproduction ainsi que toute utilisation des œuvres autre que la consultation

On a représenté ici les fonctions sommes partielles S_N pour $0 \le N \le 15$, ainsi que la somme S de la série (cette dernière courbe étant en trait gras). On s'est placé sur $[0, \pi]$ pour avoir une vue d'ensemble, puis sur $[0, \frac{\pi}{2}]$ et sur $[\frac{\pi}{2}, \pi]$.

CORRIGÉ DE L'EXERCICE 3 [Retour à l'énoncé]

1. Chaque application f_n est positive décroissante sur \mathbb{R}^+ .

En effet c'est le cas de $x \mapsto e^{-nx}$ et $x \mapsto \frac{1}{(n+x)^2}$. Donc $M_n = \sup_{x \ge 0} |f_n(x)| = f_n(0) = \frac{1}{n^2}$.

La série $\sum M_n$ étant convergente, $\sum f_n$ est normalement convergente sur \mathbb{R}^+ .

- 2. Les applications f_n sont continues sur \mathbb{R}^+ . La convergence normale (donc uniforme) de $\sum f_n$ implique donc la continuité de la somme S sur \mathbb{R}^+ .
- 3. Soient x et y deux réels tels que $0 \le x \le y$. Pour tout $n \ge 1$, on a $f_n(x) \ge f_n(y) \ge 0$. Si on somme ces inégalités pour tous les $n \ge 1$, on obtient $S(x) \ge S(y) \ge 0$. La fonction S est donc décroissante et positive (il n'était donc pas nécessaire de chercher à calculer la dérivée de S: d'ailleurs c'est l'objet de la question suivante.)
- 4. On a bien sûr $S(0) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Pour tout entier $n \ge 1$ et tout x de \mathbb{R}^+ , on a $0 \le f_n(x) = \frac{e^{-nx}}{(n+x)^2} \le \frac{e^{-x}}{n^2}$.

On en déduit $0 \le S(x) \le \frac{\pi^2}{6} e^{-x}$ et donc $\lim_{x \to \infty} S(x) = 0$.

5. Pour tout $n \ge 1$ et tout x de \mathbb{R}^+ , on a : $f'_n(x) = -\left(\frac{n}{(n+x)^2} + \frac{2}{(n+x)^3}\right)e^{-nx}$.

Soit a > 0: on va appliquer le théorème de dérivation des séries de fonctions sur $[a, +\infty[$.

$$x \mapsto \left(\frac{n}{(n+x)^2} + \frac{2}{(n+x)^3}\right)$$
 et $x \mapsto e^{-nx}$ sont positives décroissantes sur \mathbb{R}^+ .

L'application $x \mapsto f'_n(x)$ est donc négative croissante sur \mathbb{R}^+ .

On en déduit que
$$\sup_{x \ge a} |f_n'(x)| = |f_n'(a)| = \left(\frac{n}{(n+a)^2} + \frac{2}{(n+a)^3}\right) e^{-na} \underset{n \to \infty}{\sim} \frac{e^{-na}}{n}.$$

Cette dernière expression est le terme général d'une série convergente.

On en déduit que la série $\sum f'_n$ est normalement convergente sur $[a, +\infty[$.

Ainsi:

- \diamond Les fonctions f_n sont de classe \mathcal{C}^1 sur $I = [a, +\infty[$.
- \diamond La série $\sum f_n$ converge au moins en un point de I (il y a même CVN sur I!)
- \diamond La série $\sum f'_n$ est uniformément convergente sur I.

On en déduit que $\sum f_n$ est convergente sur I (on le savait déjà), que sa somme S est \mathcal{C}^1 sur I et que pour tout x de I on a : $S'(x) = \sum_{n=1}^{\infty} f'_n(x)$ (dérivation terme à terme.)

Puisque c'est vrai sur $[a, +\infty[$ pour tout a > 0, on en déduit que c'est vrai sur \mathbb{R}^{+*} .

Remarque:

On a $\sup_{x>0} |f'_n(x)| = |f'_n(0)| = \frac{1}{n} + \frac{2}{n^3}$ qui est le terme général d'une série DV.

On en déduit que la série $\sum f'_n$ n'est pas normalement convergente sur \mathbb{R}^+ .

Le résultat de la question 7 montrera d'ailleurs qu'elle n'est pas non plus uniformément convergente sur \mathbb{R}^+ sinon on pourrait appliquer le théorème de dérivation sur \mathbb{R}^+ et conclure à la dérivabilité de S sur cet intervalle.)

6. Les fonctions f'_n sont croissantes et négatives sur \mathbb{R}^+ et S' est la somme des f'_n sur \mathbb{R}^{+*} .

On en déduit que la fonction S' est croissante et négative sur \mathbb{R}^{+*} .

Précisément, le fait que S' soit croissante implique que S est convexe.

Cette convexité a lieu sur \mathbb{R}^+ (on peut ajouter le point x=0 par continuité.)

7. La fonction S' étant croissante, elle possède une limite quand $x \to 0$.

Pour montrer que S n'est pas dérivable en 0, il faut montrer que cette limite n'est pas finie (sinon on appliquerait le théorème de prolongement des fonctions de classe C^1 .)

On raisonne par l'absurde et on suppose que $\lim_{x\to 0} S'(x) = \lambda \in \mathbb{R}$.

Pour tout
$$N \ge 1$$
, on a alors : $\forall x > 0, \lambda \le S'(x) = \sum_{n=1}^{\infty} f'_n(x) \le S'_N(x) = \sum_{n=1}^{N} f'_n(x)$

Page 6 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

(On a utilisé le fait que S^\prime est croissante et que les f_n^\prime sont négatives.)

Comme c'est une somme <u>finie</u>, on peut faire tendre x vers 0 dans l'inégalité $\lambda \leq \sum_{n=1}^{N} f'_n(x)$.

On en déduit
$$\lambda \leq \sum\limits_{n=1}^N f_n'(0) = -\sum\limits_{n=1}^N \left(\frac{1}{n} + \frac{2}{n^3}\right) \leq -\sum\limits_{n=1}^N \frac{1}{n}$$
 pour tout $N \geq 1$.

Mais ce résultat est absurde car $\lim_{N\to+\infty}\sum_{n=1}^N\frac{1}{n}=+\infty$ (divergence de la série harmonique.)

On en déduit que $\lim_{x\to 0} S'(x) = -\infty$.

L'application S n'est donc pas dérivable en 0 (en ce point, sa courbe représentative présente une demi-tangente verticale dirigée vers le bas.)

On a représenté ici les courbes représentatives (sur l'intervalle [0, 0.25] car au-delà la convergence est trop rapide pour qu'on distingue bien les différents graphes) des fonctions sommes partielles S_N pour $1 \le N \le 5$, ainsi que celle de la somme S de la série (cette dernière courbe étant en trait gras).

Le tracé de droite représente y = S'(x) sur [0,1] (pour confirmer $\lim_{x\to 0} S'(x) = -\infty$.)

Corrigé de l'exercice 4 [Retour à l'énoncé]

1. Convergence simple:

On constate tout d'abord que pour tout $n \geq 2$, la fonction f_n est nulle en x = 0.

D'autre part, si x > 0, alors $\lim_{n \to \infty} n^2 e^{-nx} = 0$ et a fortiori $\lim_{n \to \infty} n^2 f_n(x) = 0$.

Cela prouve la convergence de la série $\sum f_n$ sur \mathbb{R}^+ .

2. Convergence normale:

Pour tout $n \ge 2$ et tout $x \ge 0$: $f'_n(x) = (1 - nx) \frac{e^{-nx}}{\ln n}$.

L'application positive f_n atteint donc son maximum M_n en $x = \frac{1}{n}$, et $M_n = \frac{1}{e n \ln n}$. La série $\sum M_n$ est divergente (série de Bertrand).

Page 7 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

On en déduit que la série de fonctions $\sum f_n$ n'est pas normalement convergente sur \mathbb{R}^+ .

En revanche, dès que $n \ge \frac{1}{a}$ (avec a > 0), alors f_n est décroissante sur $[a, +\infty[$.

Le maximum de $|f_n|$ sur $[a, +\infty[$ est donc $f_n(a)$, terme général d'une série CV.

On en déduit que la série de fonctions $\sum f_n$ est normalement (donc uniformément) convergente sur $[a, +\infty[$ (et plus généralement sur tout compact de \mathbb{R}^{+*} .)

Conséquence : la somme S de la série est continue sur \mathbb{R}^{+*} (la continuité en $x_0 > 0$ résulte de celle des f_n et de la CVU de $\sum f_n$ sur un compact de \mathbb{R}^{+*} contenant x_0 .)

3. Convergence uniforme:

Montrons que la série $\sum f_n$ est uniformément convergente sur \mathbb{R}^+ .

Pour cela on va majorer $R_N = \sum_{n=N+1}^{\infty} f_n$ sur \mathbb{R}^+ . Remarquons d'abord que $R_n(0) = 0$.

Pour tout x > 0 et tout n > N, on $a : 0 \le f_n(x) \le \frac{xe^{-nx}}{\ln N}$.

On en déduit par sommation sur n:

$$0 \le R_N(x) = \sum_{n=N+1}^{\infty} f_n(x) \le \frac{x}{\ln(N+1)} \sum_{n=N+1}^{\infty} (e^{-x})^n = \frac{xe^{-(N+1)x}}{\ln(N+1)(1-e^{-x})}$$
$$= \frac{xe^{-Nx}}{\ln(N+1)(e^x-1)}$$

On cherche une majoration valable sur \mathbb{R}^+ tout entier. On majore donc e^{-Nx} par 1.

On trouve alors
$$0 \le R_N(x) \le \frac{\varphi(x)}{\ln(N+1)}$$
, avec $\varphi(x) = \frac{x}{\mathrm{e}^x - 1}$.

Or φ est prolongeable par continuité en 0 (avec $\varphi(0) = 1$) et tend vers 0 en $+\infty$.

Elle est donc bornée sur \mathbb{R}^+ .

Finalement, il existe $M \ge 0$ (indépendant de N) tel que : $\forall x \ge 0, |R_N(x)| \le \frac{M}{\ln(N+1)}$.

On en déduit $\lim_{N\to\infty}\sup_{x\geq 0}|R_N(x)|=0$: la série $\sum f_n$ est donc CVU sur \mathbb{R}^+ .

Conséquence : on peut maintenant affirmer que $S = \sum_{n=0}^{+\infty} f_n$ est continue sur \mathbb{R}^+ .

4. Dérivabilité de la somme S sur \mathbb{R}^{+*} .

Puisque les applications f_n sont de classe C^1 sur \mathbb{R}^+ , il suffit de montrer que la série $\sum f'_n$ est uniformément convergente sur tout intervalle $I = [a, +\infty[$, avec a > 0.

Pour tout
$$x$$
 de I , on a dès que $n \ge \frac{1}{a}$: $|f'_n(x)| = (nx - 1)\frac{e^{-nx}}{\ln n} \le nf_n(x) \le nf_n(a)$.

Mais $v_n = nf_n(a)$ est encore le terme général d'une série convergente $(n^2v_n \to 0)$.

La série $\sum f_n$ est donc uniformément (car normalement) convergente sur I. On peut donc appliquer le théorème de dérivation des séries de fonctions sur cet intervalle.

Puisque a>0 est quelconque, on en déduit que S est de classe \mathcal{C}^1 sur \mathbb{R}^{+*} .

Plus précisément, pour tout
$$x > 0$$
, on a : $S'(x) = \sum_{n=2}^{\infty} f'_n(x) = \sum_{n=2}^{\infty} (1 - nx) \frac{e^{-nx}}{\ln n}$.

Page 8 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

5. Non dérivabilité de la somme S en 0.

On va montrer que $\lim_{x\to 0+}\frac{S(x)}{x}=+\infty$. Il en résultera (puisque S(0)=0) que la courbe y=S(x) présente une demi-tangente verticale à l'origine.

Posons, pour tout
$$x > 0$$
: $T(x) = \frac{S(x)}{x} = \sum_{n=2}^{\infty} \frac{e^{-nx}}{\ln n} = \sum_{n=2}^{\infty} g_n(x)$, avec $g_n(x) = \frac{e^{-nx}}{\ln n}$.

Les applications g_n sont décroissantes sur \mathbb{R}^{+*} .

Il en est donc de même de l'application T.

Pour montrer que $\lim_{x\to 0+} T(x) = +\infty$, il faut donc montrer que T n'est pas majorée.

Supposons donc par l'absurde que $T(x) \leq \lambda$, pour tout x > 0, avec λ un réel.

Alors pour tout entier $N \ge 2$ et tout x > 0: $\sum_{n=2}^{N} \frac{e^{-nx}}{\ln n} \le \lambda$ (car les g_n sont positives.)

Puiqu'il s'agit d'une somme finie, on peut faire tendre x vers 0.

On en déduit $\sum_{n=2}^{N} \frac{1}{\ln n} \le \lambda$ pour tout $N \ge 2$ ce qui est absurde car $\sum \frac{1}{\ln n}$ diverge.

Conclusion : l'application S n'est pas dérivable en 0 à droite.

6. Décroissance rapide de S en $+\infty$

On majore $f_n(x)$ par $\frac{xe^{-nx}}{\ln 2}$. On en déduit l'encadrement de S(x), pour tout x > 0.

$$0 \le S(x) = \sum_{n=2}^{\infty} f_n(x) \le \frac{x}{\ln 2} \sum_{n=2}^{\infty} (e^{-x})^n = \frac{xe^{-2x}}{(\ln 2)(1 - e^{-x})} = \frac{xe^{-x}}{(\ln 2)(e^x - 1)}$$

On sait que $\varphi(x) = \frac{x}{e^x - 1}$ est bornée sur \mathbb{R}^+ .

On en déduit l'existence d'un réel K tel que, pour tout x>0 : $0\leq S(x)\leq K\mathrm{e}^{-x}$.

Il en découle que pour tout entier naturel k, on a : $\lim_{x\to\infty} x^k S(x) = 0$.

On a représenté ici les sommes partielles S_N pour $2 \le N \le 15$.

Page 9 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Tous draits de l'autour des courses récorrée. Sont autorisation le reproduction pinci que toute utilisation des courses autre que le conquitation