Pólya Urn Models

Stefan Grosskinsky Warwick Mathematics Institute

September 21, 2019

These notes and supplementary material are available on https://github.com/sgrosskinsky/urns

State space $\mathbb{N} \times \mathbb{N}$ Configurations $\underline{x} = (x_1, x_2) \in \mathbb{N}^2$ Random process $(\underline{X}(n) : n = 0, 1, ...)$ with $\underline{X}(0) = (1, 1)$

State space
$$\mathbb{N} \times \mathbb{N}$$
 Configurations $\underline{x} = (x_1, x_2) \in \mathbb{N}^2$
Random process $(\underline{X}(n) : n = 0, 1, ...)$ with $\underline{X}(0) = (1, 1)$

$$(x_{1},x_{2}) \xrightarrow{\frac{x_{1}}{x_{1}+x_{2}}} (x_{1}+1,x_{2})$$

$$(x_{1},x_{2}) \xrightarrow{\frac{x_{2}}{x_{1}+x_{2}}} (x_{1},x_{2}+1)$$

$$= \mathbb{P}[\underline{X}(n+1) = (x_{1},x_{2}+1)|\underline{X}(n) = \underline{x}]$$

State space
$$\mathbb{N} \times \mathbb{N}$$

Configurations
$$\underline{x} = (x_1, x_2) \in \mathbb{N}^2$$

Random process
$$(\underline{X}(n): n = 0, 1, ...)$$
 with $\underline{X}(0) = (1, 1)$

$$(x_1, x_2) \xrightarrow{\frac{x_1}{x_1 + x_2}} (x_1 + 1, x_2)$$

$$(x_1, x_2) \xrightarrow{\frac{x_2}{x_1 + x_2}} (x_1, x_2 + 1)$$

$$= \mathbb{P}[\underline{X}(n+1) = (x_1, x_2 + 1) | \underline{X}(n) = \underline{x}]$$

State space
$$\mathbb{N} \times \mathbb{N}$$

Configurations
$$x = (x_1, x_2) \in \mathbb{N}^2$$

Random process
$$(\underline{X}(n): n = 0, 1, ...)$$
 with $\underline{X}(0) = (1, 1)$

$$(x_1, x_2) \xrightarrow{\frac{x_1}{x_1 + x_2}} (x_1 + 1, x_2)$$

$$(x_1, x_2) \xrightarrow{\frac{x_2}{x_1 + x_2}} (x_1, x_2 + 1)$$

$$= \mathbb{P}[\underline{X}(n+1) = (x_1, x_2 + 1) | \underline{X}(n) = \underline{x}]$$

State space
$$\mathbb{N} \times \mathbb{N}$$

Configurations
$$\underline{x} = (x_1, x_2) \in \mathbb{N}^2$$

Random process
$$(\underline{X}(n): n = 0, 1, ...)$$
 with $\underline{X}(0) = (1, 1)$

$$(x_1, x_2)$$
 (x_1, x_2)
 (x_1, x_2+1)
 (x_1, x_2+1)

State space
$$\mathbb{N} \times \mathbb{N}$$

Configurations
$$\underline{x} = (x_1, x_2) \in \mathbb{N}^2$$

Random process
$$(\underline{X}(n): n = 0, 1, ...)$$
 with $\underline{X}(0) = (1, 1)$

State space $\mathbb{N} \times \mathbb{N}$ **Configurations** $\underline{x} = (x_1, x_2) \in \mathbb{N}^2$

Random process $(\underline{X}(n): n = 0, 1, ...)$ with $\underline{X}(0) = (1, 1)$

State space
$$\mathbb{N} \times \mathbb{N}$$
 Configurations $\underline{x} = (x_1, x_2) \in \mathbb{N}^2$
Random process $(\underline{X}(n) : n = 0, 1, ...)$ with $\underline{X}(0) = (1, 1)$

Distribution at time n

For all
$$n \ge 0$$
 we have $\mathbb{P}[\underline{X}(n) = \underline{x}] = \frac{1}{n+1} \delta_{|\underline{x}|, n+2}$.

Induction.
$$\mathbb{P}[\underline{X}(n+1) = (k, n+3-k)] = \frac{1}{n+1} \left[\frac{k-1}{n+2} + \frac{n+2-k}{n+2} \right] = \frac{1}{n+2}$$

Distribution at time *n*

For all
$$n \ge 0$$
 we have $\mathbb{P}[\underline{X}(n) = \underline{x}] = \frac{1}{n+1} \delta_{|\underline{x}|, n+2}$.

Induction.
$$\mathbb{P}[\underline{X}(n+1) = (k, n+3-k)] = \frac{1}{n+1} \left[\frac{k-1}{n+2} + \frac{n+2-k}{n+2} \right] = \frac{1}{n+2}$$

Fraction of type *i*:
$$\xi_i(n) = \frac{X_i(n)}{|\underline{X}(n)|} = \frac{X_i(n)}{n+2}$$

Distribution at time *n*

For all $n \ge 0$ we have $\mathbb{P}[\underline{X}(n) = \underline{x}] = \frac{1}{n+1} \delta_{|\underline{x}|,n+2}$.

Induction.
$$\mathbb{P}[\underline{X}(n+1) = (k, n+3-k)] = \frac{1}{n+1} \left[\frac{k-1}{n+2} + \frac{n+2-k}{n+2} \right] = \frac{1}{n+2}$$

Fraction of type *i*:
$$\xi_i(n) = \frac{X_i(n)}{|\underline{X}(n)|} = \frac{X_i(n)}{n+2}$$

Scaling limit

$$(\xi_1, \xi_2)(n) \to (U, 1 - U)$$
 in distribution as $n \to \infty$,

where U is a uniform random variable on [0, 1].

Proof.
$$\mathbb{P}[\xi_1(n) \leq u] = \mathbb{P}[X_1(n) \leq u(n+2)] = \frac{1}{n+1} \lfloor u(n+2) \rfloor \to u$$
, $u \in (0,1)$.

Extensions/Applications

[H.M. Mahmoud, Pólya urn models. CRC Press. 2008]

- k > 2 types of balls $\rightarrow k + n$ balls at time $n \ge 0$
- different initial conditions $a \in \mathbb{N}^k \to \text{Dirichlet multinomial}$

$$\mathbb{P}\left[\underline{X}(n) - \underline{a} = \underline{x}\right] \propto \prod_{i=1}^{k} \frac{\Gamma(x_i + a_i)}{x_i! \Gamma(a_i)} \, \delta_{|\underline{x}|,n}$$

- generalized schemes for adding balls
- a simple model for growth processes with **linear reinforcement** can describe biological growth, evolution of market shares, ...

Extensions/Applications

[H.M. Mahmoud, Pólya urn models. CRC Press. 2008]

- k > 2 **types** of balls $\rightarrow k + n$ balls at time $n \ge 0$
- different initial conditions $a \in \mathbb{N}^k \to \text{Dirichlet multinomial}$

$$\mathbb{P}\left[\underline{X}(n) - \underline{a} = \underline{x}\right] \propto \prod_{i=1}^{k} \frac{\Gamma(x_i + a_i)}{x_i! \Gamma(a_i)} \, \delta_{|\underline{x}|, n}$$

- generalized schemes for adding balls
- a simple model for growth processes with **linear reinforcement** can describe biological growth, evolution of market shares, ...

Generalized Pólya Urn/Balls in boxes $(\underline{X}(n): n \geq 0)$ on \mathbb{N}^k

$$\mathbb{P}\big[\underline{X}(n+1) = \underline{x} + \underline{e}_i \big| \underline{X}(n) = \underline{x}\big] = \frac{f_i x_i^{\gamma}}{\sum_{j=1}^k f_j x_j^{\gamma}}$$

with **fitness** $f_i > 0$ and **reinforcement parameter** $\gamma \geq 0$

[Oliviera, RS&A **34**(4): 454 (2009); Jiang et al., Proc. 2016 ACM SIGMETRICS, arxiv:1604.02097]

Generalized Pólya Urn Models

• No reinforcement $\gamma = 0, p_i = f_i / \sum_j f_j \rightarrow \text{Multinomial}$

$$\mathbb{P}\big[\underline{X}(n) - \underline{X}(0) = \underline{x}\big] = \frac{n!}{x_1! \cdots x_n!} p_1^{x_1} \cdots p_n^{x_n} \, \delta_{|\underline{x}|,n}$$

Generalized Pólya Urn Models

• No reinforcement $\gamma = 0, p_i = f_i / \sum_j f_j \rightarrow \text{Multinomial}$

$$\mathbb{P}\big[\underline{X}(n) - \underline{X}(0) = \underline{x}\big] = \frac{n!}{x_1! \cdots x_n!} p_1^{x_1} \cdots p_n^{x_n} \, \delta_{|\underline{x}|,n}$$

weak LLN and CLT

For all i = 1, ..., k, as $n \to \infty$ in distribution

$$\xi_i(n) = rac{X_i(n)}{|\underline{X}(n)|} o p_i \quad ext{and} \quad rac{X_i(n) - p_i n}{\sqrt{n p_i (1 - p_i)}} o \mathcal{N}(0, 1) \; .$$

Proof.
$$X_i(n) = X_i(0) + \sum_{t=1}^{n} Y_t \text{ with } Y_1, Y_2, \dots \text{ i.i.d. Be}(p_i)$$

Generalized Pólya Urn Models

• No reinforcement $\gamma = 0, p_i = f_i / \sum_j f_j \rightarrow \text{Multinomial}$

$$\mathbb{P}\big[\underline{X}(n) - \underline{X}(0) = \underline{x}\big] = \frac{n!}{x_1! \cdots x_n!} p_1^{x_1} \cdots p_n^{x_n} \, \delta_{|\underline{x}|,n}$$

weak LLN and CLT

For all i = 1, ..., k, as $n \to \infty$ in distribution

$$\xi_i(n) = rac{X_i(n)}{|\underline{X}(n)|} o p_i \quad ext{and} \quad rac{X_i(n) - p_i n}{\sqrt{n p_i (1 - p_i)}} o \mathcal{N}(0, 1) \;.$$

Proof.
$$X_i(n) = X_i(0) + \sum_{t=1}^n Y_t \text{ with } Y_1, Y_2, \dots \text{ i.i.d. Be}(p_i)$$

• Superlinear reinforcement $\gamma > 1, f_i = 1$

limiting behaviour

$$m(n) := \max X_i(n) \to \infty$$
 and $n - m(n) \to Y < \infty$

in distribution as $n \to \infty$.

Wealth distribution in UK

Wealth distribution in UK

