Cross-section:

Cross-section calculated by *crosssection.f*, based on [1]. Command line:

When executed, create file *crosskaml.dat* with:

$$\frac{d^2\sigma(E_\nu, T_{e^+})}{dE_\nu dT_{e^+}}$$

Effective cross-section:

Based on L/E binning (fig.5 in [2]), we calculate an effective cross-section based on that particular energy binning with program *espectrokamland.le.f*:

gfortran -o e.exe espectrokamland.le.f -lmathlib -lkernlib

where the following is calculated:

$$\frac{d\sigma(E_{\nu})}{dE_{\nu}} = \int_{\tilde{T}_{e^{+}}^{min}}^{\tilde{T}_{e^{+}}^{max}} d\tilde{T}_{e^{+}} \int dT_{e^{+}} R(T_{e^{+}}, \tilde{T}_{e^{+}}) \frac{d^{2}\sigma(T_{\nu}, T_{e^{+}})}{dT_{\nu}dT_{e^{+}}}$$

where

$$R(T_{e^+}, \tilde{T}_{e^+}) = \frac{1}{\sqrt{2\pi\sigma_T^2}} \exp\left[-\left(\frac{\tilde{T}_{e^+} - T_{e^+}}{2\sigma_T}\right)^2\right]$$

with

$$\sigma_T = 0.065 \sqrt{T_{e^+}}$$

Statistical Analysis:

The χ^2 analysis is performed with routine *chi2.f* and subroutines *subchi2.f* and *subspec.f*:

gfortran -o c.exe chi
2.f subchi
2.f subspec.f -lmathlib

which calculates the rates and χ^2 of KamLAND. We used the following expression for the χ^2 , based on Poisson statystics:

$$\chi^2 = 2\sum_{i} \left[fR_i^{th} - R_i^{exp} + R_i^{exp} log\left(\frac{R_i^{exp}}{fR_i^{th}}\right) \right] + \left(\frac{1-f}{0.041}\right)^2$$

where the χ^2 is minimized in the total flux normalization factor f.

Flux and Data:

The Flux is calculated through the following parameterization:

$$\phi = \sum_{j=1,4} \phi_j \exp\left(a_{0,j} + a_{1,j}E_{\nu} + a_{2,j}E_{\nu}^2\right)$$

where the factors a and ϕ_i are provided by KamLAND, table 1.

Table 1: Neutrino flux parameters						
ϕ_i	0.570	0.295	0.078	0.057		
a_0	0.870	0.896	0.976	0.793		
a_1	-0.160	-0.239	-0.162	-0.080		
a_2	0910	-0.0981	-0.079	-0.1085		

We assume the same flux composition for all reactors. We use 22 reactors with the distances and contributions to total flux in KamLAND given by table 2

The data are presented in table 3, "graphically reduced" from KamLAND paper.

References

[1] P. Vogel and J. F. Beacom, "Angular distribution of neutron inverse beta decay, anti-neutrino(e) + p \rightarrow e+ + n," Phys. Rev. D **60**, 053003 (1999) doi:10.1103/PhysRevD.60.053003 [hep-ph/9903554].

Table 2: Reactors					
name	contribution (%)	distance (km)			
	30.9	160			
	13.8	179			
	9.0	191			
	7.9	88			
	7.6	138			
	7.5	214			
	7.4	146			
	3.8	349			
	3.5	351			
	1.3	141			
	1.2	295			
	0.9	138			
	0.8	401			
	0.7	431			
	0.6	561			
	0.4	754			
	0.2	830			
	0.2	783			
	0.8	712			
	0.6	735			
	0.5	709			
	0.5	986			

[2] A. Gando *et al.* [KamLAND Collaboration], "Constraints on θ_{13} from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND," Phys. Rev. D **83**, 052002 (2011) doi:10.1103/PhysRevD.83.052002 [arXiv:1009.4771 [hep-ex]].

Table 3: Reactors					
$\Delta E_{\nu} \; ({ m MeV})$	R_{th}	R_{ex}/R_{th}			
15.6597 - 24.6363	59.547829	0.395866			
24.6363 - 27.6942	105.21388	0.667727			
27.6942 - 29.4698	91.706429	0.629571			
29.4698 - 31.3440	119.44465	0.586645			
31.3440 - 33.1196	131.14526	0.804452			
33.1196 - 35.0925	161.02548	0.785374			
35.0925 - 36.7694	145.14534	0.732909			
36.7694 - 38.8409	184.27446	0.558029			
38.8409 - 41.1097	201.80777	0.558029			
41.1097 - 43.9704	245.68504	0.551669			
43.9704 - 47.0284	243.55714	0.489666			
47.0284 - 50.3822	230.59836	0.387917			
50.3822 - 53.9334	200.76579	0.467409			
53.9334 - 57.6819	176.71275	0.491256			
57.6819 - 61.7263	153.93623	0.585056			
61.7263 - 66.1652	131.16353	0.497615			
66.1652 - 71.7879	117.47219	0.575517			
71.7879 - 78.8903	92.720367	0.658188			
78.8903 - 86.6831	57.012432	0.612083			
86.6831 - 110.000	30.065214	0.279809			