第六讲 重因式

- 一、k重因式
- 二、重因式的判别与求法

三、思考题

-、k重因式

定义 设p(x)为数域P的不可约多项式, $f(x) \in P[x]$,

若
$$p^{k}(x)|f(x)$$
, 但 $p^{k+1}(x)+f(x)$,

则称 p(x)为 f(x)的 k 重因式.

若 k > 1, 则称 p(x) 为 f(x) 的重因式.

若 k=1, 则称 p(x) 为 f(x) 的单因式.

(若 k = 0, p(x) 不是 f(x) 的因式)

二、重因式的判别和求法

1. 若f(x)的标准分解式为:

$$f(x) = cp_{1}^{r_{1}}(x)p_{1}^{r_{2}}(x)\cdots p_{s}^{r_{s}}(x)$$

则 $p_i(x)$ 为 f(x)的 r_i 重因式 . $i=1,2,\cdots s$

$$r_i = 1$$
 时, $p_i(x)$ 为单因式;

$$r_i > 1$$
 时, $p_i(x)$ 为重因式.

2. 定理1.3.4

若不可约多项式 p(x) 是 f(x) 的 k 重因式($k \ge 1$),则它是 f(x)的微商 f'(x)的 k-1 重因式.

证: 假设 f(x) 可分解为

$$f(x) = p^k(x)g(x)$$
, 其中 $p(x) + g(x)$.

$$\therefore f'(x) = p^{k-1}(x) \Big(kg(x)p'(x) + p(x)g'(x) \Big)$$

$$\Rightarrow p^{k-1}(x) | f'(x)$$
.

$$: p(x) + g(x) \perp p(x) + p'(x),$$

$$\therefore p(x) + kg(x)p'(x), \Rightarrow p(x) + h(x)$$

$$\Rightarrow p^k(x) + f'(x)$$

 $\therefore p(x)$ 是 f'(x)的 k-1重因式

注意 定理6的逆命题不成立,即

p(x)为 f'(x) 的 k-1 重因式,但 p(x)未必是 f(x) 的 k 重因式.

推论1.3.5

若不可约多项式 p(x)是 f(x)的 k重因式 $(k \ge 1)$, 则 p(x)是 f(x),f'(x),…, $f^{(k-1)}(x)$ 的因式, 但不是 $f^{(k)}(x)$ 的因式。

推论1.3.6

不可约多项式 p(x)是 f(x)的重因式

 $\Leftrightarrow p(x)$ 是f(x)与f'(x)的公因式.

推论1.3.7

多项式 f(x)没有重因式 \Leftrightarrow (f(x), f'(x)) = 1.

性质1

$$f(x) \in \mathbf{P}[x]$$
, 若 $(f(x), f'(x)) = p_1^{r_1}(x) \cdots p_s^{r_s}(x)$,

其中 $p_i(x)$ 为不可约多项式,则 $p_i(x)$ 为 f(x)

的 r_{i+1} 重因式.

说明

根据推论3、4可用辗转相除法,求出 (f(x),f'(x)) 来判别 f(x)是否有重因式. 若有重因式, 还可由 (f(x),f'(x)) 的结果写出来.

例1. 判别多项式f(x) 有无重因式.

$$f(x) = x^5 - 10x^3 - 20x^2 - 15x - 4$$

性质2

不可约多项式p(x)为f(x)的k重因式

 $\Leftrightarrow p(x)$ 为(f(x),f'(x))的k-1重因式.

注:

f(x)与 $\frac{f(x)}{(f(x),f'(x))}$ 有完全相同的不可约因式,

且 $\frac{f(x)}{(f(x),f'(x))}$ 的因式皆为单因式.

例2 设 $f(x) = x^5 - 6x^4 + 16x^3 - 24x^2 + 20x - 8$, 求一个多项式与 f(x)有完全相同的不可约因式, 但无重因式。

解: 所求多项式为:

$$\frac{f(x)}{(f(x),f'(x))} = x^3 - 4x^2 + 6x - 4.$$

思考题

1. 设 $f(x) = x^3 + ax + b \in P[x]$. 求 f(x)有重因式的充分必要条件.

2. 设复系数多项式 f(x) 没有重因式, 证明:

$$(f(x)+f'(x),f(x))=1.$$