Write your name here Surname	Other na	ames
Pearson Edexcel GCE	Centre Number	Candidate Number
Chemisti Advanced Subsid Paper 2: Core Orga	iary	hemistry
Friday 10 June 2016 – At Time: 1 hour 30 minute		Paper Reference 8CH0/02
		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You may use a scientific calculator.
- For questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Show all your working in calculations and include units where appropriate.

P 4 9 8 3 8 A 0 1 2 8

Turn over ▶

Answer ALL questions.

Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⋈.

- 1 Alkanes are a homologous series of hydrocarbons.
 - (a) What is the name of this compound?

(1)

- **B** 2,3-dimethylhexane
- **D** 4,5,5-trimethylpentane
- (b) The number of structural isomers with the molecular formula C_5H_{12} is

(1)

- B 4
- **C** 5
- □ 6
- (c) Write the equation for reforming heptane into cycloheptane, showing the **skeletal** formulae of the organic molecules.

(2)

2

- (d) Ethane reacts with chlorine in the presence of ultraviolet light to form a mixture of products.
 - (i) In the initiation step, chlorine molecules are converted into radicals.

$$Cl_2 \rightarrow 2Cl^{\bullet}$$

Identify the type of bond broken and the type of bond fission occurring in this step.

(1)

		Bond broken	Bond fission
×	Α	π	heterolytic
X	В	σ	heterolytic
X	C	π	homolytic
X	D	σ	homolytic

(ii) Write the propagation steps to show the formation of C_2H_5Cl .

(2)

(iii) State how some butane, C_4H_{10} , is formed in the reaction.

(1)

(Total for Question 1 = 8 marks)

BLANK PAGE

- **2** Compounds with a carbon–carbon double bond are unsaturated.
 - (a) What is the name of the compound shown?

$$C = C$$

- **B** *E*-2-bromo-1-chloroprop-1-ene
- ☑ D Z-2-bromo-1-chloroprop-1-ene
- (b) Ethene reacts with bromine in the dark.
 - (i) What is the classification of the mechanism for the reaction between ethene and bromine?

(1)

(1)

- A electrophilic addition
- B electrophilic substitution
- C nucleophilic addition
- **D** nucleophilic substitution

(ii) Which of the following shows the formation of the intermediate in the mechanism for the reaction between ethene and bromine?

(1)

× A

 \mathbb{X} B

⋈ C

■ D

6

(c) Ethene reacts with steam to form ethanol in a reversible reaction.

$$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$$
 $\Delta H = -45 \text{ kJ mol}^{-1}$

At 300°C and a pressure of 65 atm, the equilibrium yield of ethanol is 5%.

(i) State the effect, if any, on the yield of ethanol when the temperature is **increased**.

(1)

(ii) State the effect, if any, on the yield of ethanol when the pressure is **decreased**.

(1)

(iii) What is the expression for the equilibrium constant, K_c , for this reaction?

(1)

(Total for Question 2 = 6 marks)

3	This q	uestion is about halogenoalkanes and kinetics.	
	(a) So	me halogenoalkanes are hydrolysed by aqueous potassium hydroxide.	
	(i)	Write the ionic equation for the hydrolysis of 2-bromobutane showing the structural formulae for the organic molecules.	(1)
	*(ii)	Devise an experiment to compare the rates of hydrolysis of 2-chlorobutane, 2-bromobutane and 2-iodobutane.	
		State the trend in the rates of reaction. Justify your answer.	(6)

(b) The graph shows the Maxwell-Boltzmann distribution of molecular energies of a gaseous system.

(i) On the graph, draw the Maxwell-Boltzmann distribution for the same system at a higher temperature.

(ii) Use the graph to explain why a small increase in temperature results in a large increase in the rate of a gaseous reaction.

(3)

(1)

(Total for Question 3 = 11 marks)

BLANK PAGE

- **4** Ethanol, C₂H₅OH, is a member of the homologous series of alcohols.
 - (a) Calculate the number of molecules in 55.2 kg of ethanol.

[Avogadro Constant = $6.02 \times 10^{23} \text{ mol}^{-1}$]

(2)

(b) Write the equation to represent the standard enthalpy change of formation of ethanol. Include state symbols.

(2)

(c) Ethanol burns completely in excess oxygen.

$$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$$

(i) The table shows some mean bond enthalpy data.

Bond	С—С	С—Н	с—о	О—Н	0=0	C=O
Mean bond enthalpy / kJ mol ⁻¹	347	413	358	464	498	805

Calculate the enthalpy change, in kJ mol⁻¹, for the complete combustion of 1 mol of ethanol.

(3)

12

(ii) Complete the reaction profile diagram for the combustion of ethanol and fully label the diagram.

(2)

enthalpy

$$C_2H_5OH(l) + 3O_2(g)$$

reaction pathway

(iii) A data book value for the standard enthalpy change of combustion of ethanol is -1367.3 kJ mol⁻¹.

Give the **main** reason why the value you calculated in (b)(i) is different from this data book value.

(1)

(Total for Question 4 = 10 marks)

- **5** The following procedure may be used to prepare 2-chloro-2-methylpropane.
 - **Step 1** Place 15 cm³ of 2-methylpropan-2-ol in a separating funnel and slowly add 30 cm³ of concentrated hydrochloric acid (an excess), while swirling the funnel.
 - **Step 2** When all the hydrochloric acid has been added, leave the mixture to stand for 20 minutes, shaking it gently at intervals.
 - **Step 3** Once the organic and aqueous layers have completely separated, discard the aqueous layer.
 - **Step 4** Add saturated sodium hydrogencarbonate solution, a little at a time, to the organic layer. After each addition, invert the separating funnel and open the tap.
 - **Step 5** Discard the aqueous layer.
 - **Step 6** Transfer the organic layer to a small flask, add a solid drying agent and swirl the flask.
 - **Step 7** Decant the liquid into a clean flask and distil it to collect pure 2-chloro-2-methylpropane.

Some data on the organic reactant and product are given in the table.

Data	2-methylpropan-2-ol	2-chloro-2-methylpropane
molar mass / g mol ⁻¹	74.0	92.5
boiling temperature / °C	82	51
density / g cm ⁻³	0.79	0.84

(a) Draw a diagram of a separating funnel, labelling the aqueous layer and the layer of 2-chloro-2-methylpropane that would be observed at the end of **Step 2**.

(2)

(b) Give the reason why sodium hydrogencarbonate solution is added to the organic layer in Step 4 and why it is important to open the tap after adding this solution	
(c) Which one of these anhydrous compounds may be used as a drying agent in Step 6 ?	(1)
	(1)
Step 6?	(1)
Step 6? ☑ A sodium chloride	(1)

(d) A student set up this apparatus for distillation in **Step 7** as shown.

(i) Describe **three** ways in which this apparatus must be modified for safe and efficient use. Assume the apparatus is suitably clamped.

(3)

(ii)	Give a suitable temperature range over which to collect the final product
	during the distillation.

(1)

(e) In the preparation, 15 cm³ of 2-methylpropan-2-ol produced 6.9 cm³ of 2-chloro-2-methylpropane.

The equation for the reaction is

$$(CH_3)_3COH + HCl \rightarrow (CH_3)_3CCl + H_2O$$

Calculate the percentage yield of 2-chloro-2-methylpropane, using data from the table.

Data	2-methylpropan-2-ol	2-chloro-2-methylpropane
molar mass / g mol ⁻¹	74.0	92.5
boiling temperature / °C	82	51
density / g cm ⁻³	0.79	0.84

(3)

(f) The mechanism for the reaction is in three stages.

Add curly arrows to the reactants in **Stages 2** and **3** to complete the mechanism.

(2)

(Total for Question 5 = 14 marks)

6 A student carries out two experiments to determine the enthalpy change that occurs when anhydrous sodium carbonate reacts to form hydrated sodium carbonate.

$$Na_2CO_3(s) + 10H_2O(l) \rightarrow Na_2CO_3.10H_2O(s)$$

(a) In the first experiment, the student determines the enthalpy change of solution for anhydrous sodium carbonate.

50.0g of distilled water is placed in a polystyrene cup and the temperature is recorded.

A sample of anhydrous sodium carbonate is added to the water, the mixture is stirred and the final temperature recorded.

The results for this experiment are shown in the table.

mass used / g	5.09
initial temperature / °C	27.0
final temperature / °C	32.4

Calculate the enthalpy change of solution, in kJ mol⁻¹, for anhydrous sodium carbonate.

Give your answer to an appropriate number of significant figures and include a sign.

[Use 4.18 J g⁻¹ °C⁻¹ as the specific heat capacity of water]

$$Na_2CO_3(s) + aq \rightarrow Na_2CO_3(aq)$$

(4)

(b) In the second experiment, the student determines the enthalpy change of solution for hydrated sodium carbonate.

$$Na_2CO_3.10H_2O(s) + aq \rightarrow Na_2CO_3(aq)$$
 $\Delta H = + 53.7 \text{ kJ mol}^{-1}$

Complete the Hess cycle and, together with your answer to (a) calculate the enthalpy change when anhydrous sodium carbonate reacts to form hydrated sodium carbonate. Include a sign in your answer.

(2)

$$Na_2CO_3(s) + 10H_2O(l)$$
 Na₂CO₃.10H₂O(s)

(c) Hydrated sodium carbonate slowly loses some water of crystallisation when left in air.

Explain how the enthalpy change in the second experiment would compare with the data book value if an old sample of hydrated sodium carbonate had been used.

(2)

(Total for Question 6 = 8 marks)

- 7 This question is about the identification of an alcohol, X.
 - (a) Alcohol **X** has the following percentage composition by mass:

carbon,
$$C = 68.2\%$$

hydrogen,
$$H = 13.6\%$$

oxygen,
$$O = 18.2\%$$

The molecular ion peak in the mass spectrum for alcohol **X** occurs at m/z = 88.

Use all of these data to show that the molecular formula for alcohol \boldsymbol{X} is $C_5H_{12}O$. Include your working.

(2)

(b) (i) When alcohol ${\bf X}$ is oxidised, a carboxylic acid is formed.

State what information this gives about alcohol **X**.

(1)

(ii) Draw the **displayed** formulae of the four possible structural isomers that could be alcohol **X**.

(3)

Alcohol 1	Alcohol 2
Alcohol 3	Alcohol 4

(iii) The mass spectrum of alcohol **X** has a major peak at m/z = 45.

Draw the structure of the species that could give this peak.

(1)

(iv) Alcohol X has a branched chain.		
il est lile in the second		
Identify alcohol X , explaining your reasoning.		(2)
		(2)
	(Total for Question 7 = 9 ma	rks)

- **8** Ethanedioic acid has two carboxylic acid groups.
 - (a) Ethanedioic acid, H₂C₂O₄, can be prepared from ethane-1,2-diol.

Give the reagents and condition required for this reaction.

(2)

Reagents

Condition

(b) The formula for ethanedioic acid crystals is H₂C₂O₄.nH₂O.

To determine the number of moles of water of crystallisation, n, in 1 mol of ethanedioic acid crystals, a student carried out the following procedure.

- Prepare 250.0 cm³ of a solution containing a known mass of about 1 g of ethanedioic acid crystals.
- Titrate 25.0 cm³ portions of the ethanedioic acid solution with 0.103 mol dm⁻³ sodium hydroxide solution, using phenolphthalein as indicator.

The student obtained these results:

mass of ethanedioic acid crystals = 1.09 g

mean titre = $16.20 \, \text{cm}^3$

The equation for the reaction is

$$H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$$

	(i) Describe how the student should prepare the 250.0 cm ³ of ethanedioic acid solution.	
	Joint Ion.	(4)
	(ii) Give the colour change at the end-point in this titration.	(1)
From	to	
	(iii) Calculate a value of n in the formula $H_2C_2O_4.nH_2O$ from these data.	(5)

	(Total for Question 8 = 14 m	arks)
		(2)
	Explain the effect of using damp crystals on the titre and on the value of n.	
	slightly damp.	
(iv)	The student thought that the ethanedioic acid crystals used may have been	

TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

The Periodic Table of Elements

0 (8)	(18)	4.0	<u> </u>	helium	2	20.2	Ne	neon 10	39.9	Δr	argon	18	83.8	ᅐ	krypton	36	131.3	Xe	xenon	54	[222]	R	radon	86		ted	
7					(17)	19.0	L	fluorine	35.5	כ	chlorine	17	79.9	Br	bromine	35	126.9	Ι	iodine	53	[210]	At	astatine	85		een repor	
9					(16)	16.0	0	oxygen	32.1	·	sulfur	16	79.0	Se	selenium	34	127.6	<u>a</u>	tellurium	52	[506]	8	polonium	84		116 have b	ticated
2					(15)	14.0	z	nitrogen 7	31.0	_	phosphorus	15	74.9	As	arsenic	33	121.8	Sb	antimony	51	209.0	Bi	bismuth	83		112-	but not fully authenticated
4					(14)	12.0	U	carbon	28.1	7	Ē	4	72.6	g	germanium	32	118.7	Sn	tin	20	207.2	Ъ	lead	78		atomic nun	but not fu
က					(13)	10.8	В	boron	27.0		aluminium	13	69.7	Ga	gallium	31	114.8	Г	indium	46	204.4	F	thallium	81		Elements with atomic numbers 112-116 have been reported	
					,							(12)	65.4	Zn	zinc	30	112.4	<u>გ</u>	cadmium	48	200.6	Ξğ	mercury	90		Elem	
												(11)	63.5	no	copper	29	107.9	Ag	silver	47	197.0	Αn	plog	6/	[272]	Rg G	oentgenium 111
												(10)	58.7	ï	nickel	28	106.4	Pq	palladium	46	195.1	꿉	platinum	8/	[271]	Os	darmstadtium r 110
												(6)	58.9	ဝ	cobalt	27	102.9	R	rhodium	45	192.2	Ļ	iridium	\	[368]	Mt	meitnerium 109
		1.0	I	hydrogen	-							(8)	55.8	Fe	iron	76	101.1	Ru	ruthenium	44	190.2	S	osmium	9/	[277]	¥	hassium 1
					_							(2)	54.9	Wn	manganese	25	[86]	ည	molybdenum technetium ruthenium	43	186.2	Re	rhenium	72	[564]	絽	bohrium 107
						mass	loc	umber				(9)	52.0	ڻ	chromium manganese	24	95.9	Wo	molybdenum	42	183.8	>	tungsten	/4	[596]	Sg	seaborgium 106
		Key	Key	relative atomic mass	atomic symbol	name atomic (proton) number				(2)	50.9	>	트	23	92.9	Q		41	180.9	<u>T</u>	tantalum	/3	[592]	g D	dubnium 105		
						relati	ato	atomic				(4)	47.9	ï	E	22	91.2	Zr	zirconium	40	178.5	Ŧ	hafnium	7/	[261]	₹	rutherfordium 104
												(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	La*	lanthanum	2/	[227]		_
2					(2)	9.0	Be	beryllium 4	24.3	Wa .	magnesium	12	40.1	Ca	calcinm	70	87.6	S	strontium	38	137.3	Ba	_	26	[526]	Ra	radium 88
_					(1)	6.9	:=	lithium 3	23.0	. Z	sodium	1	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	S	caesium	22	[223]	ŗ	francium 87

* Lanthanide series

140

 169
 173
 175

 Tm
 Yb
 Lu

 thulium
 ytterbium
 luterium

 69
 70
 71

167 **Er** erbium 89

159 **Tb**terbium 6

 Pr
 Nd
 Pm
 Sm
 Eu
 Gd

 praseodymium reodymium promethium 59
 60
 61
 62
 63
 64

5] [251] [254] [253]

Cf Es Fm

m californium einsteinium fermium mx

Bk berkelium of

[247] **Cm** curium 96

95

94

93

92

9

protactinium

238 [237] [242] [243]

U Np Pu Am

uranium neptunium plutonium americium

238

[231] Pa 91

Cerium 58 232 Th

103

102

* Actinide series

