

Nr zad.	1	2	3	4	5	6	7	8	9	10	11	12	Razem
Max liczba pkt.	3	3	3	3	3	3	3	3	3	3	5	5	40
Liczba pkt.													

Kuratorium Oświaty w Katowicach

KONKURS PRZEDMIOTOWY Z MATEMATYKI Finał – 15 marca 2010 r.

Przeczytaj uważnie poniższą instrukcję:

- Test składa się z 12 zadań. Przy numerze każdego zadania została podana maksymalna liczba punktów możliwych do zdobycia za to zadanie.
- W części I (zadania od 1 do 8) wpisz TAK lub NIE obok <u>każdej</u> z trzech odpowiedzi, w kratce z lewej strony tekstu. Za każdy poprawny wpis otrzymasz 1 punkt – w sumie za każde z tych zadań możesz otrzymać maksymalnie 3 punkty.
- W części II (zadania od 9 do 12), podając rozwiązania, należy zapisać potrzebne obliczenia i uzasadnienia przeprowadzonych rozumowań.
- Margines po prawej stronie kartki jest przeznaczony na brudnopis.
- Zabronione jest korzystanie z kalkulatorów i korektorów pisma (ewentualne błędne zapisy należy wyraźnie skreślić).
- Na rozwiązanie wszystkich zadań masz 90 minut.
- Aby zostać laureatem musisz zdobyć co najmniej 36 punktów.

Autorzy zadań życzą Ci powodzenia! ©

Zadanie 1. (3 p.)

W romb o przekątnych długości 10 i 8 wpisano kwadrat o bokach równoległych do przekątnych.Prawdą jest, że:

- A. bok rombu ma długość $\sqrt{41}$.
 - B. pole rombu wynosi 80.
- C. pole kwadratu wynosi $\frac{1600}{81}$.

Zadanie 2. (3 p.)

Liczba dzieli się przez 11, jeśli różnica między sumą cyfr stojących na miejscach parzystych (licząc od prawej) a sumą cyfr na miejscach nieparzystych jest podzielna przez 11.

Aby liczba 394_0_8 była podzielna przez 11, w puste miejsce można wstawić:

- B. 8 i 9.
- C. 2 i 3.

Zadanie 3. (3 p.)

Wykresy funkcji y = 2x + b i y = ax + 3 przecinają oś OX w tym samym punkcie, gdy:

B.
$$a = -2$$
 i $b = -3$

C.
$$a = -\frac{3}{2}$$
 i $b = -4$

Zadanie 4. (3 p.)

Jeżeli $x + \frac{1}{x} = 7$ i $x \neq 0$, to wartość wyrażenia $x^2 + \frac{1}{x^2}$:

- A. jest liczbą całkowitą.
 - B. jest mniejsza od 47.
 - C. jest liczbą wymierną.

BRI	JDN	IOP	IS
-----	-----	-----	----

W trapez równoramienny o ramionach długości 2 i podstawach				
	ści 1 i 3 wpisano okrąg. Prawdą jest, że:			
	A. Średnica tego okręgu wynosi $\sqrt{3}$.			
	B. Pole tego trapezu wynosi $2\sqrt{3}$.			
	C. Pole koła wyznaczonego przez ten okrąg wynosi 3π .			
Zadaı	nie 6. (3 p.)			
Trójka	at ABC o obwodzie 50 cm podzielono za pomocą wysokości h va trójkąty o obwodach 30 cm i 36 cm. Prawdą jest, że:			
	A. Długość wysokości h wynosi 8 cm.			
	B. Otrzymane trójkąty mogą być równoramienne.			
	C. Można obliczyć pola tych trójkątów.			
Zadanie 7. (3 p.) Rzucamy dwiema sześciennymi kostkami do gry – jedną czerwoną, a drugą zieloną – na których są oczka od 1 do 6. Prawdą jest, że:				
	A. Wszystkich możliwych wyników jest 36.			
	B. Prawdopodobieństwo uzyskania sumy oczek równej 2 wynosi 1/18.			
	C. Zdarzenie A - "suma otrzymanych oczek wynosi 4" jest bardziej prawdopodobne od zdarzenia B - "wypadnie suma oczek większa niż 10".			
Zadaı	nie 8. (3 p.)			
pocią opusz	g długości 400 m jedzie z prędkością 60 km/h. Przejazd całego gu przez tunel (tzn. od wejścia czoła pociągu do chwili czenia tunelu przez ostatni wagon) trwa 2 minuty. dą jest, że:			
	A. Pociąg jedzie z prędkością 1000 m/min.			
	B. Tunel ma długość 2 km.			
	C. Maszynista jedzie przez tunel 1 minutę 36 sekund.			

Część II

Zadanie 9. (3 p.)

Wiadomo, że:

$$0.1 + 1 = 1^2$$

$$1 \cdot 2 + 2 = 2^2$$

$$2 \cdot 3 + 3 = 3^2$$

- a) Przedstaw w analogiczny sposób liczby: 4², 8², 57², n² (n oznacza liczbę naturalną).
- b) Czy kwadrat każdej liczby naturalnej można podobnie przedstawić? Odpowiedź uzasadnij.

BRUDNOPIS

Zadanie 10. (3 p.)

Uzasadnij, że dla każdej liczby naturalnej dodatniej n liczba $2^n + 2^{n+1} + 2^{n+5}$ jest podzielna przez 14.

BRUDNOPIS

Zadanie 11. (5 p.)

W sześcianie o krawędzi 2 dm zostały obcięte wszystkie naroża płaszczynami poprowadzonymi przez środki trzech krawędzi wychodzących z jednego wierzchołka.
Oblicz objętość i pole powierzchni całkowitej powstałej bryły.

Zadanie 12. (5 p.)

Student na egzaminie może otrzymać oceny: 5; 4; 3; 2. Otrzymana przez studenta na egzaminie ocena 2 oznacza, że nie zdał on egzaminu. Natomiast, gdy student otrzyma z egzaminu ocenę minimum 4, przyznawane jest mu stypendium.

Ocenę 5 otrzymało 5 studentów, 25% studentów dostało ocenę 4, 3/5 studentów ocenę 3, zaś pozostali nie zdali egzaminu. Średnia wszystkich ocen z egzaminu wyniosła 3,25.

Oblicz, ilu studentów nie zdało egzaminu, a ilu otrzyma stypendium.