BIOLOGY Chapter 5

5th

SECONDARY

METABOLISMO ENERGÉTICO

LA BABOSA MARINA Elysia chlorotica

METABOLISMO ENERGÉTICO

Conjunto de reacciones químicas que ocurren dentro de una célula.

FOTOSÍNTESIS

Metabolismo anabólico que realizan los organismos autótrofos como plantas y cianobacterias, en la cual, la energía solar lo transforman en energía química y así formar su alimento.

6 CO2 + 12 H2O + energía de la luz = C6 H12 O6 + 6 O2 + 6 H2O

HELICO | TEORY

<u>Importancia:</u>

- Forma el alimento.
- Brinda O2 ⇒ O3
- Reduce el efecto Invernadero.

Etapas o Fases:

Luminosa

- Fotoexitación.
- Fotolisis del agua
- Fotoreducción
- Fotofosforilación.

Oscura (ciclo de Calvin)

- Fijación del CO2
- Reducción
- Formación de glucosa
- Regeneración.

Tejido: Parénquima clorofiliano

Epidermis adaxial

Parénquima en empalizada

Haz vascular

Parénquima esponjoso

FASE LUMINOSA

Ocurre en la membrana tilacoidal, llamada también fase fotoquímica o fotodependiente

REACCIONES:

- FOTOEXCITACION: Libera electrones.
- FOTOLISIS DEL AGUA: Libera O2, electrones e H+.
- FOTOFOSFORILACION: Formación de ATP, a partir del ADP.
- **FOTORREDUCCION:** Formación de **NADPH** a partir de electrones, H+ y NADP+.

Productos: Oxígeno (del agua) se va al aire y **ATP** (trifosfato de adenosina) y **NADPH** (transportador de electrones reducido).

FASE LUMINOSA

HELICO | TEORY

FASE OSCURA

Ocurre en el estroma (matriz acuosa) del cloroplasto, llamada también Ciclo de Calvin - Benson

REACCIONES:

- 1. Fijación (Carboxilación)
- 2. Reducción del APG en PGAL
- 3. **Síntesis** de Glucosa
- 4. Regeneración de la Ribulosa

PGA = Ácido fosfoglicérico (fosfoglicerato)

G3P (PGAL) = Fosfogliceraldehído

Productos: GLUCOSA.

RESPIRACIÓN CELULAR

Catabolismo de moléculas combustibles (glucosa) para producir ATP.

Etapas de la respiración celular

ANAEROBICA	AEROBICA
No consume O2	Consume O2
En citosol:	En mitocondria:
- Glucólisis - Fermentación.	- Ciclo de Krebs (matriz) - Fosfor. Oxidativa (cresta)
1 Glucosa: 2 ATP	36 – 38 ATP

ANAEROBICA

ANAEROBICA

E R E I Ó FERMENTACIÓN LÁCTICA

Causada por algunos hongos y bacterias (lactobacillus)

De glucosa a ácido láctico Se obtiene yogurt, kéfir, etc

Levaduras

Azúcar

Etanol

anaeróbico Proceso CH3CH2OH + CO2 realizado por levaduras, hongos, algunas bacterias

FERMENTACIÓN ACÉTICA

Bacterias del genero "Acetobactes"

Producción de vinagre: etanol en ácido acético

Destruyen vino en cantidades excesivas

etobioracter aceti -- CH1COOH + H2O

conversión de los glúcidos en Ácido butírico por acción de bacterias (género Clostridium) en ausencia de O2

se caracteriza por tener olores pútridos y desagradables

RESPIRACIÓN CELULAR AERÓBICA

HELICO | TEORY

G U C Ó S S

0 S

F X D

CADENA RESPIRATORIA y FOSFORILACIÓN OXIDATIVA

BALANCE ENERGÉTICO FINAL DE ATP / GLUCOSA

BIOLOGY HELICOPRACTICE

5th

SECONDARY

METABOLISMO ENERGÉTICO

1.Es el componente del fotosistema II que participa en la fotólisis del H₂O durante la fase luminosa de la fotosíntesis .

- a) Feofitina.
- b) Quinona.
- c) Proteína Z.
- d) Plastocianina.

c) Proteína Z.

- 2. En el proceso de la glucólisis la glucosa se oxida hasta 2 moléculas de piruvato, además se reducen dos moléculas de
 - a) NADPH2.
 - b) NADH2.
 - c) Dihidroxiacetona.
 - d) Acetil CoA

a) NADPH2.

3.La Fotoexcitación de la clorofila A 680 en la que los electrones se cargan de energía y salen excitados a niveles superiores de energía tiene lugar en:

- a) El fotosistema II.
- b) El fotosistema I.
- c) La cadena rédox.
- d) El factor de acoplamiento

a) El fotosistema II.

4. La ferredoxina pasa los dos electrones a la enzima ferredoxina NADP-reductasa, que se activa, capta dos protones del estroma y se los transfiere, junto a los dos electrones, al ion NADP+, que se encuentra en el estroma. ¿Qué proceso describe el texto?

- a) La fotorreducción
- b) La fotoexcitación
- c) La fotofosforilación
- d) La quimiosmosis

5.En clase de Bioquímica el profesor explica: "El movimiento de los electrones por la cadena libera energía que se utiliza para bombear protones fuera de la matriz y formar un gradiente. Los protones fluyen de regreso hacia la matriz, a través de una enzima llamada ATP sintasa, para generar ATP". ¿Qué etapa de la respiración celular está describiendo el profesor?

- a) La glucólisis
- b) El ciclo de Krebs
- C) La fosforilación oxidativa
- d) La fotoexcitación

- 6. En la fase luminosa de la fotosíntesis se dan eventos moleculares orientados a captar y almacenar la energía luminosa la que va a ser almacenada en moléculas energéticas, si analizamos el esquema que se muestra a continuación, observamos todos los eventos de la fase luminosa. ¿Cuál de estos eventos garantiza la fotofosforilación?
- a) La fotoexcitación
- b) La fotólisis del agua
- C) La generación de un gradiente de protones
- d) La fotorreducción

BIOLOGY

7.-Durante el proceso de la respiración celular, la falta de O2 conduce a que las células afectadas opten por las fermentaciones, el esquema adjunto a continuación nos muestra uno de estos tipos de fermentación. De lo analizado en el esquema, ¿qué evento conduce a las células a la

obtención del lactato?

- a) Oxigenación del piruvato
- b) Deshidrogenación del piruvato
- C) Hidrogenación del piruvato
- d) Oxigenación del lactato

