Electron Mode in FRENSIE

Luke J. Kersting
NEEP
University of Wisconsin - Madison
SNL Meeting

May 14, 2015

Electron Transport in FRENSIE

Forward Mode

- Condensed History
- Secondary Particles
- Atomic Relaxation
- Simulation of hard electron transport events
 - Atomic excitation
 - Hard elastic scattering
 - Electroionization
 - Bremmstrahlung

Adjoint Mode

- Hybrid Multigroup/Continuous-Energy Monte Carlo using Boltzmann-Fokker-Planck Equation (BFP)
- Other Possible Adjoint Methods

Electron Transport in Monte Carlo Codes

MCNP

- Historically has only used a condensed-history approached with Goudsmit-Saunderson mutiple scattering techniques.
- MCNP6 implemented a single-event method for energies below 1 keV, were the condensed-history method no longer holds.

Penelope

- Implenments a mixed method that simulates soft (condensed-history) events below a cutoff energy/angle and hard (single-events) above.
- Uses Goudsmit-Saunderson Multiple Scattering

EGS

- Condensed History Method
- Historically used Molière Multiple Scattering Theory
- EGS5 implemented Goudsmit-Saunderson Multiple Scattering to take into account spin and relativistic effects needed in the MeV range

Electron Mode

Frensie

- Hard events implemented using cross-sectional data from MCNP6
- Condensed history method will be chosen in conjunction with an adjoint method
- Ultimately hope to implement a mixed method for forward transport

Current Capabilities

- Single Scattering Events from 100 GeV to 10 eV
- Elastic, Bremsstrahlung, Electroionization, Atomic Excitation
- Secondary particles created, but photons not tracked
- Atomic relaxation implemented

Known Issues

- Absorption at low energies
- Negative energy from Electroionization

Atomic Excitation

Reaction

- There is no angular deflection.
- There are no secondary particles.

- Energy dependent electron energy loss are tabulated in ACE tables.
- No sampling is required for this process.

Hard Elastic Scattering

Reaction

- There is no energy loss.
- There are no secondary particles.

- \bullet ACE tables provide histogram CDF of the outgoing angle cosine, $\mu,$ for 14-16 energy groups.
- for $\mu > 0.999999$ an analytical function, $f(\mu)$, derived from Molière's screening factor is used to compute the scattering angle

$$f(\mu) = \frac{A}{(\eta + 1 - \mu)^2}$$

$$\eta(E,Z) = \frac{1}{4} \left(\frac{\alpha mc}{0.885p} \right)^2 Z^{2/3} [1.13 + 3.76(\alpha Z/\beta)^2]$$

Electroionization

Reaction

- The subshell is directly sampled.
- A knock-on electron is ejected.
- The incident electron energy is reduced by the $E_{knock} + E_{binding}$.

- ACE tables provide CDF of the knock-on energy, E_{knock} , based on the incident electron energy.
- Conservation of momentum is used to find the scattering and ejection angles (which are sampled independently).
- The shell vacancy is handled using atomic relaxation data.

Electroionization Scattering Angle

Conservation of Momentum

$$(p_{knock}c + p_ac)^2 = (pc)^2 + (p'c)^2 - 2pp'cos(\theta)$$
$$cos(\theta) = \frac{(pc)^2 + (p'c)^2 - (p_{knock}c)^2}{2pp'}$$

Conservation of Energy

$$(T+m_ec^2)+(M_ac^2)=(T'+m_ec^2)+(T_a+M_ac^2+T_{knock}+m_ec^2)+E_{Binding}$$

Assume the binding energy is negligible

$$T = T' + T_{knock}$$

Solving you obtain:

$$cos(\theta) = \frac{T'}{T} \frac{p}{p'}$$
 and $cos(\phi) = \frac{T_{knock}}{T} \frac{p}{p_{knock}}$

Sampling Electroionization

The original sampling routine implemented in FRENSIE differed slightly from MCNP6 which caused the sampling of negative electrons energies.

- ACE tables provide CDF of the knock-on energy, E_{knock} , based on the incident electron energy.
- The original implementation randomly selected whether to sample the upper or lower energy bin.
- A correlated sample must be made to avoid non physical values.

Bremmstrahlung

Reaction

- A photon is ejected.
- ACE tables provide CDF of the photon energy, E_{γ} , based on the incident electron energy.
- The incident electron energy is reduced by the E_{γ} .
- The electron direction is assumed to be essentially unchanged.

- An analytical dipole function, $p(\mu)$, is used to sample the direction of the outgoing photon.
- MCNP6 also uses a table based scheme from their condensed history method.

$$p(\mu)d\mu=rac{(1-eta^2)}{2(1-eta\mu)^2}d\mu$$

Known Issues

Absorption at low energies

- At energies near the cutoff (10 eV) the reaction cross section is dominated by elastic scattering (by order 10⁷ for H)
- It is unlikely the electron will scatter below the cutoff energy
- A temporary fix is to raise the cutoff energy (to 15eV for H) to prevent indefinite elastic scattering
- MCNP notes this problem and suggests a minimum cutoff energy of 20eV

Testing

Test Problem

- 10 keV electron delta source in cold Hydrogen
- Set surface tallies on 5 spheres of increasing radius to measure the current and flux
- Radii of 0.005, 0.001, 0.0015, 0.002 and 0.0025 cm
- The electron energy cutoff was set to 15eV and secondary photons where not tracked

Verification

- Test results were verified with MCNP6
- The ratio of the surface flux from MCNP6 and FRENSIE were plotted
- The 3σ rule was used to look at the standard deviation of the flux ratio from the expected value of 1
- 68.27%, 95.45% and 99.73% of the ratios should be within 1,2 and 3σ respectfully to verify the sampling routines are the same to a near certainty

3σ Results

Radius (cm)	0.0005	0.0010	0.0015	0.0020	0.0025
1 σ	72.43%	66.84%	62.18%	57.58%	68.00%
2σ	72.43% 96.76%	93.16%	91.71%	93.43%	96.00%
3σ	99.46%	97.89%	97.93%	98.48%	98.50%

Table : Surface flux ratio and the percentage of energy bins within 1, 2 and 3 σ of the expected value

Possible Adjoint Methods

Hybrid Multigroup/Continuous-Energy BFP

- The same basic multigroup cross-section data can be used for forward and adjoint calculations.
- The adjoint transport model is nearly identical to the forward making implementation easy
- The transport equation is generalized for Monte Carlo transport of neutral and charged particles.
 - They implement for electrons and photons.

Other Possible Adjoint Methods

- 1980 Adjoint Electron Transport in the CSDA
 - Goudsmit and Saunderson Scattering
- 1995 Adjoint Electron-Photon Tansport using BFS in ITS
 - Multigroup/Continuous Energy
- 1996 Adjoint Multigroup/Continuous Energy BFP Equation
- 2005 Generalized Particle for Couple Adjoint γ $e^ e^+$ Transport
 - CSDA using Molière's multiple scattering