

Técnicas y modelos de clasificación

1. Objetivo del laboratorio

Aprender el uso de la herramienta de Data Mining Weka.

2. Elementos a utilizar:

• Weka

3. Práctica 1 (Reglas de asociación)

Objetivo

- 1) Abrir weka
- 2) Seleccionar la opción Explorer
- 3) Abrir archivo "weather.arff"
- 4) Pulsa en la pestaña "Associate"
- 5) Pulsa en el cuadro que pone A priori
- 6) Configura los parámetros. Aquí el algoritmo empieza con un soporte mínimo en 1 y va bajando hasta el lowerBoundMinSupport marcado (0.1 por defecto). Esa bajada se hace en relación a la delta que por defecto es 0.05. metricType nos índica como se van a evaluar las reglas. Por último, outputsItemSets permite obtener todos los itemsets frecuentes cuando su valor está a True (cambiarlo a este valor). Realiza los siguientes pasos (para ejecutar el algoritmo pulsa Start) y copia los resultados en un documento Word.
 - a. Prueba con una configuración con soporte mínimo por defecto y confianza 0.6.
 - b. Prueba con una configuración con soporte mínimo 0.6 y confianza igual que la anterior.
 - c. Repite el proceso anterior con métrica para evaluar reglas Lift.
- 7) Escribe después de los resultados que diferencias hay entre cada uno de los pasos anteriores. Razona la respuesta.

4. Práctica 2 (Árboles de decisión)

Objetivo

- 1) Abrir archivo "bank.csv"
- 2) Seleccionamos la clase para clasificar. En este caso mortgage. Para decidir si darle una hipoteca o no.
- 3) Pulsa en la pestaña "Classify"
- 4) Pulsa el botón "Choose"
- 5) Selecciona el algoritmo J48 (C 4.5) en la carpeta trees.
- 6) Pulsa en el cuadro que pone J48. Realiza los siguientes pasos (para ejecutar el algoritmo pulsa Start) y copia los resultados en un documento Word.
 - a. Prueba con la confianza por defecto (0.25).
 - b. Aumenta la confianza a (0.75)
- 7) ¿Cuáles son sus accuracies? ¿Cuáles son los atributos de las reglas que más especializa? ¿Cuántas hojas tienen ambos arboles? Razona a que se deben dichas diferencias.
- 8) Obten los árboles de ambos experimentos. Botón derecho en cada experimento dentro del cuadro Result list. Después pulsar "Visualiza tree". Adjunta dichas imágenes al documento Word.

Data Mining

LAB 05

Técnicas y modelos de clasificación

5. Práctica 3 (Regresión)

Objetivo

- 1) Abrir archivo "icecream.csv"
- 2) Pulsa en la pestaña "Classify"
- 3) Pulsa el botón "Choose"
- 4) Selecciona LinearRegression en la carpeta functions.
- 5) Pulsa "Start". Soluciona el problema diviendo training y test en 80/20. Para ello usa la caja Test options. Copia los resultados en el documento Word.
- 6) Interpreta el modelo obtenido.
- 7) Abrir archivo "house.arff"
- 8) Repite los pasos anteriores.
- 9) Realiza el mismo experimento, pero con la opción Use training set. Copia los resultados en el documento Word.
- 10) Mira los "Summary" de ambos experimentos e interpreta las métricas.
- 11) Interpreta el mejor modelo obtenido.

6. Práctica 4 (Clustering)

Objetivo (2 puntos)

- 1) Abrir archivo "iris.arff"
- 2) Pulsa en la pestaña "Clustering"
- 3) Pulsa el botón "Choose"
- 4) Selecciona el algoritmo SimpleKMeans
- 5) Pulsa en el cuadro que pone SimpleKMeans. Realiza los siguientes pasos (para ejecutar el algoritmo pulsa Start) y copia los resultados en un documento Word.
 - a. Prueba con distancia Euclidea con 3 clusters y 4 clusters
 - b. Prueba con distancia de Manhattan con 3 clusters y 4 clusters
- 6) Que puedes interpretar de los diferentes clusters generados.
- 7) Visualizalos pulsando con el botón derecho en cada experimento y con la opción "Visualize cluster assigments". ¿Qué ocurre? Adjunta dichas gráficas al documento Word.

7. Forma de entrega del laboratorio:

La entrega consistirá en un fichero comprimido RAR con nombre LAB05-GRUPOxx.ZIP subido a la tarea LAB5 que contenga únicamente

1. La memoria del laboratorio en .pdf.

Las entregas que no se ajusten exactamente a esta norma NO SERÁN EVALUADAS.

8. Rúbrica de la Práctica:

1. IMPLEMENTACIÓN: Multiplica la nota del trabajo por 0/1

Siendo una práctica de Data Mining, todos los aspectos de programación se dan por supuesto. La implementación será:

- Original: Código fuente no copiado de internet. Grupos con igual código fuente serán suspendidos
- Correcta: El programa funciona y ejecuta correctamente todo lo planteado en los apartados de cada práctica.
- Comentada: Inclusión (obligatoria) de comentarios.
- En las gráficas que se realicen proporciona todos los datos que creas necesarios.

Data Mining

LAB 05

Técnicas y modelos de clasificación

2. MEMORIA DEL LABORATORIO

Obligatorio redacción clara y correcta ortográfica/gramaticalmente. Cada paso que se haga tiene que estar justificado.