

Lineare Algebra für Informatik - Woche 5

Cosmin Aprodu

Technische Universität München

Online, 13 Mai 2021

Dimension einer Basis

Falls $V \neq \emptyset$ ein endliches Erzeugendensystem hat, so ist die **Dimension** von V die Elementanzahl einer Basis von V. \rightarrow Jede Basis von V hat die gleiche Dimension (gleiche # an Vektoren).

Bemerkung: Falls V kein endliches Erzeugendensystem hat, schreiben wir: $\dim(V) = \infty$. In diesem Fall, heißt V unendlich-dimensional. Andernfalls, heißt V endlich-dimensional.

Eigenschaften von Dimensionen

Basisergänzungssatz: Sei $V \neq \emptyset$ einen Vektorraum und $S \subseteq V$ linear unabhängig. Dann gibt es eine Basis B von V mit $S \subseteq B$. B heißt eine Basisergänzung von S.

Beispiel 1:

Sei
$$V := \mathbb{R}^2$$
, $S := \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. Dann ist $B := S \cup \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ eine Basis von V mit $S \subseteq V$.

Beispiel 2:

Sei $V := \mathbb{R}^5$, $S := \{b_1, b_2, b_3, b_4\} \subseteq V$ und $v \in V$ einen Vektor so dass $v \notin \langle S \rangle$. Dann ist $B := \{b_1, b_2, b_3, b_4, v\}$ eine Basis von V mit $S \subseteq V$.

Bemerkung: Der Basisergänzungssatz gilt für $V \neq \emptyset$, wenn V sowohl endlich-dimensional als auch unendlich-dimensional ist.

Eigenschaften von Dimensionen (2)

Sei $v_1, \ldots, v_n \in V$ paarweise verschieden und $S = \{v_1, \ldots, v_n\}$. Dann gelten:

- S ist eine Basis von $V \Leftrightarrow \dim(V) = n$ und S linear unabhängig $\Leftrightarrow \dim(V) = n$ und $V = \langle S \rangle$.
- Falls $n < \dim(V)$, so folgt $V \neq \langle S \rangle$.
- Falls $n > \dim(V)$, so ist *S linear abhängig*.

Sei $U \subseteq V$ ein *Unterraum*. Dann gelten:

- $\dim(U) \leq \dim(V)$.
- Falls $\dim(U) = \dim(V) < \infty$, dann U = V.