Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-layerAddressing
- □ 5.5 Ethernet

- □ 5.6 Link-layer switches
- 5.8 Link virtualization:ATM, MPLS

Link Layer: Introduction

Some terminology:

- hosts and routers are nodes
- communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- layer-2 packet is a frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802.11 on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

transportation analogy

- trip from Princeton to Lausanne
 - limo: Princeton to JFK
 - plane: JFK to Geneva
 - train: Geneva to Lausanne
- tourist = datagram
- transport segment = communication link
- transportation mode = link layer protocol
- travel agent = routing algorithm

Link Layer Services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, dest
 - different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (chapter 3)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link Layer Services (more)

- flow control:
 - pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors:
 - signals sender for retransmission or drops frame
- error correction:
 - receiver identifies and corrects bit error(s) without resorting to retransmission
- half-duplex and full-duplex
 - with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC)
 - Ethernet card, PCMCI card, 802.11 card
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Adaptors Communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.

- receiving side
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-layerAddressing
- □ 5.5 Ethernet

- 5.6 Link-layer switches
- 5.8 Link Virtualization:ATM. MPLS

Error Detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Parity Checking

Single Bit Parity:

Detect single bit errors

Two Dimensional Bit Parity:

Detect and correct single bit errors

Internet checksum (review)

Goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

Sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected. But maybe errors nonetheless?

Checksumming: Cyclic Redundancy Check

- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (802.11 WiFi, ATM)

CRC Example

Want:

 $D \cdot 2^r XOR R = nG$

equivalently:

 $D \cdot 2^r = nG XOR R$

equivalently:

if we divide D.2r by G, want remainder R

$$R = remainder \left[\frac{D \cdot 2^r}{G} \right]$$

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-layerAddressing
- □ 5.5 Ethernet

- 5.6 Link-layer switches
- 5.8 Link Virtualization: ATM, MPLS

Multiple Access Links and Protocols

Two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple Access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
- collision if node receives two or more signals at the same time <u>multiple access protocol</u>
- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random Access
 - channel not divided, allow collisions
 - "recover" from collisions
- "Taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - on no *a priori* coordination among nodes
- two or more transmitting nodes "collision",
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

Assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

Pros

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted Aloha efficiency

Efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- □ prob that given node has success in a slot = $p(1-p)^{N-1}$
- □ prob that *any* node has a success = $Np(1-p)^{N-1}$

- max efficiency: find p* that maximizes Np(1-p)^{N-1}
- ☐ for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

Max efficiency = 1/e = .37

At best: channel used for useful transmissions 37% of time!

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure Aloha efficiency

 $P(success by given node) = P(node transmits) \cdot$

P(no other node transmits in $[p_0-1,p_0]$ · P(no other node transmits in $[p_0-1,p_0]$

$$= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

 $= p \cdot (1-p)^{2(N-1)}$

 \dots choosing optimum p and then letting n -> infty \dots

$$= 1/(2e) = .18$$

CSMA (Carrier Sense Multiple Access)

CSMA: listen before transmit:

If channel sensed idle: transmit entire frame

If channel sensed busy, defer transmission

human analogy: don't interrupt others while are talking!

CSMA collisions

collisions can still occur:

propagation delay means two nodes may not hear each other's transmission

collision:

entire packet transmission time wasted

note:

role of distance & propagation delay in determining collision probability

spatial layout of nodes

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

CSMA/CD collision detection

LAN technologies

Data link layer so far:

 services, error detection/correction, multiple access

Next: LAN technologies

- addressing
- Ethernet
- switches
- O PPP

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- 5.6 Link-layer switches
- 5.8 Link Virtualization: ATM, MPLS

MAC Addresses and ARP

- □ 32-bit IP address:
 - network-layer address
 - used to get datagram to destination IP subnet
- MAC (or LAN or physical or Ethernet) address:
 - function: get frame from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs)
 - burned in NIC ROM, also sometimes software settable

LAN Addresses and ARP

Each adapter on LAN has unique LAN address

LAN Address (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
- MAC flat address portability
 - can move LAN card from one LAN to another
- IP hierarchical address NOT portable
 - address depends on IP subnet to which node is attached

ARP: Address Resolution Protocol

Question: how to determine MAC address of B knowing B's IP address?

- Each IP node (host, router) on LAN has ARP table
- ARP table: IP/MAC address mappings for some LAN nodes
 - < IP address; MAC address; TTL>
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol: Same LAN (network)

- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - o dest MAC address = FF-FF-FF-FF-FF
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's)
 MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

Addressing: routing to another LAN

walkthrough: send datagram from A to B via R assume A knows B's IP address

two ARP tables in router R, one for each IP network (LAN)

- A creates IP datagram with source A, destination B
- A uses ARP to get R's MAC address for 111.111.111.110
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
- A's NIC sends frame
- R's NIC receives frame
- R removes IP datagram from Ethernet frame, sees its destined to B
- R uses ARP to get B's MAC address
- R creates frame containing A-to-B IP datagram sends to B

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- 5.6 Link-layer switches
- 5.8 Link Virtualization:ATM and MPLS

Ethernet

- "dominant" wired LAN technology:
- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- □ kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Star topology

- bus topology popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- today: star topology prevails
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble:

- □ 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet Frame Structure (more)

- Addresses: 6 bytes
 - if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- ☐ Type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- CRC: checked at receiver, if error is detected, frame is dropped

Ethernet: Unreliable, connectionless

- connectionless: No handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send acks or nacks to sending NIC
 - stream of datagrams passed to network layer can have gaps (missing datagrams)
 - gaps will be filled if app is using TCP
 - otherwise, app will see gaps
- Ethernet's MAC protocol: unslotted CSMA/CD

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from 4. If NIC detects another network layer, creates frame transmission while
- 2. If NIC senses channel idle, starts frame transmission If NIC senses channel busy, waits until channel idle, then transmits
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters **exponential backoff**: after *m*th collision, NIC chooses *K* at random from {0,1,2,...,2^m-1}. NIC waits K 512 bit times, returns to Step 2

Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits

Bit time: .1 microsec for 10 Mbps Ethernet; for K=1023, wait time is about 50 msec

See/interact with Java applet on AWL Web site: highly recommended!

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - heavy load: random wait will be longer
- first collision: choose K from {0,1}; delay is K 512 bit transmission times
- □ after second collision: choose K from {0,1,2,3}...
- □ after ten collisions, choose K from {0,1,2,3,4,...,1023}

CSMA/CD efficiency

- \Box T_{prop} = max prop delay between 2 nodes in LAN
- \Box t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - \circ as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

802.3 Ethernet Standards: Link & Physical Layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

Manchester encoding

- used in 10BaseT
- each bit has a transition
- allows clocks in sending and receiving nodes to synchronize to each other
 - no need for a centralized, global clock among nodes!

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 Link-layerAddressing
- □ 5.5 Ethernet

- 5.6 Link-layer switches
- 5.8 Link Virtualization:ATM, MPLS

Hubs

- ... physical-layer ("dumb") repeaters:
 - bits coming in one link go out all other links at same rate
 - all nodes connected to hub can collide with one another
 - no frame buffering

ono CSMA/CD at hub; host NICs detect collisions

Switch

- link-layer device: smarter than hubs, take active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: allows *multiple* simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' simultaneously, without collisions
 - not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)

Switch Table

- Q: how does switch know that A' reachable via interface 4, B' reachable via interface 5?
- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!
- Q: how are entries created, maintained in switch table?
 - something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface T	TL
Α	1	60

Switch table (initially empty)

Source: A

Dest: A'

Switch: frame filtering/forwarding

When frame received:

- 1. record link associated with sending host
- 2. index switch table using MAC dest address
- 3. if entry found for destination
 then {
 if dest on segment from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
 }
 else flood
 forward on all but the interface

forward on all but the interface on which the frame arrived

Self-learning, forwarding: example

- frame destination unknown: flood
- destination A location known:

selective send

MAC addr	interface T	TL
Α	1	60
Α'	4	60

Switch table (initially empty)

Interconnecting switches

switches can be connected together

- \square Q: sending from A to F how does S_1 know to forward frame destined to F via S_4 and S_3 ?
- A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

 \square Q: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4

Institutional network

Switches vs. Routers

- both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

Summary comparison

	<u>hubs</u>	<u>rout er s</u>	swit ches
traffic isolation	no	yes	yes
plug & play	yes	no	yes
opt imal rout ing	no	yes	no
cut t hr ough	yes	no	yes

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- 5.6 Hubs and switches
- 5.8 Link Virtualization:ATM and MPLS

Virtualization of networks

- Virtualization of resources: powerful abstraction in systems engineering:
- computing examples: virtual memory, virtual devices
 - Virtual machines: e.g., java
 - IBM VM os from 1960's/70's
- layering of abstractions: don't sweat the details of the lower layer, only deal with lower layers abstractly

The Internet: virtualizing networks

1974: multiple unconnected nets ... differing in:

- ARPAnet
- data-over-cable networks
- packet satellite network (Aloha)
- packet radio network

- addressing conventions
- packet formats
- error recovery
- routing

ARPAnet

satellite net

[&]quot;A Protocol for Packet Network Intercommunication", V. Cerf, R. Kahn, IEEE Transactions on Communications, May, 1974, pp. 637-648.

The Internet: virtualizing networks

Cerf & Kahn's Internetwork Architecture

What is virtualized?

- two layers of addressing: internetwork and local network
- new layer (IP) makes everything homogeneous at internetwork layer
- underlying local network technology
 - cable
 - satellite
 - 56K telephone modem
 - otoday: ATM, MPLS
 - ... "invisible" at internetwork layer. Looks like a link layer technology to IP!

ATM and MPLS

- ATM, MPLS separate networks in their own right
 - different service models, addressing, routing from Internet
- viewed by Internet as logical link connecting IP routers
 - just like dialup link is really part of separate network (telephone network)
- ATM, MPLS: of technical interest in their own right

Asynchronous Transfer Mode: ATM

- 1990's/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture
- □ Goal: integrated, end-end transport of carry voice, video, data
 - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
 - "next generation" telephony: technical roots in telephone world
 - packet-switching (fixed length packets, called "cells") using virtual circuits

ATM architecture

- adaptation layer: only at edge of ATM network
 - data segmentation/reassembly
 - roughly analagous to Internet transport layer
- ATM layer: "network" layer
 - o cell switching, routing
- physical layer

ATM: network or link layer?

Vision: end-to-end transport: "ATM from desktop to desktop"

ATM is a network technology

Reality: used to connect IP backbone routers

- "IP over ATM"
- ATM as switched link layer, connecting IP routers

ATM Adaptation Layer (AAL)

- ☐ ATM **Adaptation Layer** (AAL): "adapts" upper layers (IP or native ATM applications) to ATM layer below
- AAL present only in end systems, not in switches
- AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells
 - analogy: TCP segment in many IP packets

ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers, depending on ATM service class:

- AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation
- AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video
- AAL5: for data (eg, IP datagrams)

<u>ATM Layer</u>

Service: transport cells across ATM network

- analogous to IP network layer
- very different services than IP network layer

	Network Architecture	Service Model	Guarantees ?				Congestion
A			Bandwidth	Loss	Order	Timing	feedback
_	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

ATM Layer: Virtual Circuits

- VC transport: cells carried on VC from source to dest
 - call setup, teardown for each call before data can flow
 - each packet carries VC identifier (not destination ID)
 - every switch on source-dest path maintain "state" for each passing connection
 - link,switch resources (bandwidth, buffers) may be allocated to VC: to get circuit-like perf.
- Permanent VCs (PVCs)
 - long lasting connections
 - typically: "permanent" route between to IP routers
- Switched VCs (SVC):
 - dynamically set up on per-call basis

ATM VCs

- Advantages of ATM VC approach:
 - QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Drawbacks of ATM VC approach:
 - Inefficient support of datagram traffic
 - one PVC between each source/dest pair) does not scale (N*2 connections needed)
 - SVC introduces call setup latency, processing overhead for short lived connections

ATM Layer: ATM cell

- 5-byte ATM cell header
- 48-byte payload
 - Why?: small payload -> short cell-creation delay for digitized voice
 - halfway between 32 and 64 (compromise!)

Cell format

ATM cell header

- VCI: virtual channel ID
 - will change from link to link thru net
- PT: Payload type (e.g. RM cell versus data cell)
- CLP: Cell Loss Priority bit
 - CLP = 1 implies low priority cell, can be discarded if congestion
- HEC: Header Error Checksum
 - cyclic redundancy check

ATM Physical Layer (more)

Two pieces (sublayers) of physical layer:

- Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below
- Physical Medium Dependent: depends on physical medium being used

TCS Functions:

- Header checksum generation: 8 bits CRC
- Cell delineation
- With "unstructured" PMD sublayer, transmission of idle cells when no data cells to send

ATM Physical Layer

Physical Medium Dependent (PMD) sublayer

- SONET/SDH: transmission frame structure (like a container carrying bits);
 - bit synchronization;
 - bandwidth partitions (TDM);
 - several speeds: OC3 = 155.52 Mbps; OC12 = 622.08 Mbps; OC48 = 2.45 Gbps, OC192 = 9.6 Gbps
- □ TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps
- unstructured: just cells (busy/idle)

IP-Over-ATM

Classic IP only

- 3 "networks" (e.g.,LAN segments)
- MAC (802.3) and IP addresses

IP over ATM

- replace "network" (e.g., LAN segment) with ATM network
- ATM addresses, IP addresses

IP-Over-ATM

Datagram Journey in IP-over-ATM Network

- at Source Host:
 - IP layer maps between IP, ATM dest address (using ARP)
 - passes datagram to AAL5
 - AAL5 encapsulates data, segments cells, passes to ATM layer
- ATM network: moves cell along VC to destination
- at Destination Host:
 - AAL5 reassembles cells into original datagram
 - o if CRC OK, datagram is passed to IP

IP-Over-ATM

Issues:

- □ IP datagrams into ATM AAL5 PDUs
- from IP addresses to ATM addresses
 - just like IP addresses to 802.3 MAC addresses!

Multiprotocol label switching (MPLS)

- initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

MPLS capable routers

- a.k.a. label-switched router
- forwards packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- signaling protocol needed to set up forwarding
 - RSVP-TE
 - forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) !!
 - use MPLS for traffic engineering
- must co-exist with IP-only routers

MPLS forwarding tables

