```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing, svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```

```
In [2]: #Step-2: Reading the Dataset
    df=pd.read_csv(r"C:\Users\sudheer\Downloads\bottle.csv.zip")
    df
```

C:\Users\sudheer\AppData\Local\Temp\ipykernel_21928\3553939000.py:2: DtypeWar ning: Columns (47,73) have mixed types. Specify dtype option on import or set low_memory=False.

df=pd.read_csv(r"C:\Users\sudheer\Downloads\bottle.csv.zip")

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O25
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Ni
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Ni
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Ni
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Ni
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Ni
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.

	CSI_CIII	Bu_Ciit	Sta_ID	Deptii_iD	Deptillii	1_uegc	Samily	OZIIII_L	Silieta	OZC
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.

864863 rows × 74 columns

```
In [4]: df=df[['Salnty','T_degC']]
df.columns=['Sal','Temp']
```

```
In [5]: df.head()
```

Out[5]:

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45

```
In [6]: #Step-3: Exploring the Data Scatter - plotting the data scatter
sns.lmplot(x="Sal",y="Temp", data = df, order = 2, ci = None)
df.describe()
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 2 columns):
    # Column Non-Null Count Dtype
--- 0 Sal 817509 non-null float64
1 Temp 853900 non-null float64
dtypes: float64(2)
memory usage: 13.2 MB
```



```
In [7]: #Step-4: Data cleaning - Eliminating NaN OR missing input numbers
df.fillna(method ='ffill', inplace = True)
```

C:\Users\sudheer\AppData\Local\Temp\ipykernel_21928\3221840372.py:2: SettingW
ithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method ='ffill', inplace = True)

```
In [10]: # Step-5: Training Our Model
X = np.array(df['Sal']).reshape(-1, 1)
y = np.array(df['Temp']).reshape(-1, 1)
#Seperating the data into independent and dependent variables and convert
#Now each dataset contains only one column
```

```
In [11]: X_train,X_test,y_train,y_test = train_test_split(X, y, test_size = 0.25)
# Splitting the data into training data and test data
regr = LinearRegression()
regr.fit(X_train, y_train)
print(regr.score(X_test, y_test))
```

0.20335285158916128

```
In [19]: #step-6: Exploring Our Results
    y_pred = regr.predict(X_test)
    plt.scatter(X_test, y_test, color = 'b')
    plt.plot(X_test, y_pred,color='k')
    plt.show()
    # Data scatter of predicted values
```



```
In [20]: # Step-7: Working with a smaller Dataset
df500 = df[:][:500]
# Selecting the 1st 500 rows of the data
sns.lmplot(x = "Sal", y ="Temp", data = df500, order = 1, ci = None)
```

Out[20]: <seaborn.axisgrid.FacetGrid at 0x1cd0642aa40>


```
In [21]: df500.fillna(method = 'ffill', inplace = True)
X = np.array(df500['Sal']).reshape(-1, 1)
y = np.array(df500['Temp']).reshape(-1, 1)
df500.dropna(inplace = True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25)
regr = LinearRegression()
regr.fit(X_train, y_train)
print("Regression:",regr.score(X_test, y_test))
y_pred = regr.predict(X_test)
plt.scatter(X_test, y_test, color = 'b')
plt.scatter(X_test, y_pred, color = 'k')
plt.show()
```

Regression: 0.8344986643204961


```
In [22]: #Step-8: Evaluation of model
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    #Train the model
    model = LinearRegression()
    model.fit(X_train, y_train)
    #Evaluating the model on the test set
    y_pred = model.predict(X_test)
    r2 = r2_score(y_test, y_pred)
    print("R2 score:",r2)
```

R2 score: 0.8344986643204961

Step-9:Conclusion:

Dataset we have taken is poor for Linear Model, but with the smaller data works well with Linear Model.

In []: