http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Intro to Probability

Instructor: Alexandre Bouchard Fall 2014

Plan for today:

- Definitions and basic properties.
- Examples.
 - Introduction of the notion of model.
- Going beyond equally weighted outcomes.

http://www.stat.ubc.ca/~bouchard/courses/stat302-fa2014-15/

Logistics

- Let me know if you cannot access website
- 'Homeworks' for next Monday:
 - Doodle under <u>Contact</u> tab.
 - Clickers (see links in <u>Syllabus</u> tab)
 - Piazza under Contact tab.
 - Pre-readings posted in Schedule tab
- Slides under <u>Files</u> tab
- Additional practice problems: Syllabus tab

Outline of the course

- Discrete probability models
- Conditioning and Bayes
- Expectation
- Continuous probability models
- Asymptotics

Discrete:

only a finite (not infinite) number of scenarios

Probability:

extension of the notion of proportion

Model:

a simplification of reality amenable to mathematical investigation

Note: we will make this more precise today

Definitions and basic properties

Ex. 9

Example: bag of distinct objects of same size

- Proportion of red shapes?
- Probability of drawing a red shape?
- Outcome: an individual object in the bag ex.: s =

Probability when outcomes are equally likely:

of outcomes # of outcomes

- Proportion of red shapes?
- Probability of drawing a red shape?
- Outcome: an individual object in the bag

Probability when outcomes are equally likely:

of outcomes of interest
of outcomes

Notation

This is a set of outcomes

Nickname: event

Typical notation: red, E, blue, F, ... $E = \{a, c, e\}$

- Proportion of red shapes?
- Probability of drawing a red shape?
- Outcome: an individual object in the bag

Probability when outcomes are equally likely:

of outcomes of interest # of outcomes

Def

Sample space Typical notation: S

This is a set of outcomes Nickname: event Typical notation: red, E, blue, F, .. $E = \{a, c, e\}$

- Proportion of red shapes?
- Probability of drawing a red shape?
- Outcome: an individual object in the bag

Probability when outcomes are equally likely:

of outcomes of interest # of outcomes

Sample space Typical notation: S

This is a set of outcomes Nickname: event Typical notation: red, E, blue, F, .. $E = \{a, c, e\}$

a

<u>d</u>

e

Notation: P, Q, ..

P is a function:

- input: an event
- output: a number in [0, 1]

 $P:2^S \rightarrow [0, 1]$

Example: P(E) = 3/5

Proportion of red shapes?

- Probability of drawing a red shape?
- Outcome: an individual object in the bag

Probability when outcomes are equally likely:

of outcomes of interest

of outcomes

Sample space Typical notation: S This is a set of outcomes Nickname: event Typical notation: red, E, blue, F, ... $E = \{a, c, e\}$

a

d

e

Notation: P, Q, ..

P is a function:

- input: an event
- output: a number in [0, 1]

 $P:2^S \rightarrow [0,1]$

Example: P(E) = 3/5

Proportion of red shapes?

- Probability of drawing a red shape?
- Outcome: an individual object in the bag

$$P(E) = |E| / |S|$$

Probability when outcomes are equally likely:

of outcomes of interest

of outcomes

Prop. I

- We know P(E)
 - Example: P(square) = 2/5
- What is $P(E^c)$?
 - Example: P(not square)
- E^c means:
 - the complement of E
 - the outcomes not in E
 - = $S \setminus E$ (minus, for sets)

- We know P(E)
 - Example: P(square) = 2/5
- What is $P(E^c)$?
 - Example: P(not square)
- E^c means:
 - the complement of E
 - the outcomes not in E
 - = $S \setminus E$ (minus, for sets)

- We know P(E), P(F)
 - Example: P(blue) = 2/5P(star) = 1/5
- What is $P(E \cup F)$?
 - Example: P(blue or star)

- We know P(E), P(F)
 - Example: P(blue) = 2/5P(star) = 1/5
- What is $P(E \cup F)$?
 - Example: P(blue or star)

$$P(E \cup F) = P(E) + P(F)$$

Prop. 2

- We know P(E), P(F)
 - Example: P(blue) = 2/5P(star) = 1/5
- What is $P(E \cup F)$?
 - Example: P(blue or star)
- Try now on:
 - Example: P(red) = 3/5P(square) = 2/5

$$P(E \cup F) = P(E) + P(F)$$

- We know P(E), P(F)
 - Example: P(blue) = 2/5P(star) = 1/5
- What is $P(E \cup F)$?
 - Example: P(blue or star)
- Try now on:
 - Example: P(red) = 3/5P(square) = 2/5

$$P(E \cup F) = P(E) + P(F)$$
 if E and F are disjoint,
i.e. $E \cap F = \emptyset$

Def. 2

Odds

- Equivalent, but less used terminology
- The odds of red shapes is #(red) / #(not red) = 3/2
- $odds(E) = P(E) / P(E^c)$ = P(E) / (I P(E))

Summary so far

- Outcome: a scenario, s =
- Sample space S: all the possible scenarios
- Event: a set of outcomes, e.g. $E = \{s \in S : s \text{ is red}\}$
- Probability: in the discrete, equally weighted case, P(E) = |E| / |S|
- Properties:
 - $P(E \cup F) = P(E) + P(F)$ when E & F are disjoint (non-overlapping)
 - $P(E^c) = I P(E)$

Another example where we build a model

Ex. 10

Another example: two coins

- You flip 2 coins (pennies). What is the probability that the 2 coins both show heads?
 - A. I/2
 - B. I/3
 - C. I/4
 - D. none of above

Probability that 2 coins show heads

- 1/2? Either they do, or they don't.
- I/3? Either both heads, both tails, or head-tail.
- 1/4? Imagine one coin is painted red, one is painted blue. There are then 4 possibilities:
 - red: head, blue: head
 - red: head, blue: tail
 - red: tail, blue: head
 - red: tail, blue: tail

Probability that 2 coins show heads

- 1/2? Either they do, or they don't.
- I/3? Either both heads, both tails, or head-tail.
- 1/4? Imagine one coin is painted red, one is painted blue. There are then 4 possibilities:
 - red: head, blue: head
 - red: head, blue: tail
 - red: tail, blue: head
 - red: tail, blue: tail

- These correspond to 3 different models
- None is 'true'
- But the third is more useful (accurate at doing predictions)

Why is this a model?

 Reality: a complex dynamical system

Stroboscopic image of a coin flip by <u>Andrew</u> Davidhazy

• Model: a 'bag' with 4 'objects' in it

How to decide which model?

Probability theory does not have the answer!

But..

- Probability theory still useful:
 - Given a model, it makes certain predictions
 - We can then test those predictions
- Example: law of large numbers
 - Relates probability to frequency in repeated experiments

Reality check

Dataset of 10,000 actual tosses of two coins available on the web (!)

All models are wrong

- Given the large number of throws, 0.247 may seem a bit far from 0.25 (we will formalize this idea later)
 - is there something fishy?
 - after reading the fine prints of the data, realized all throws started with same face in hand of thrower
 - see P. Diaconis' paper,
 http://tinyurl.com/yked5fk
- Essentially, all <u>models</u> are wrong, but some are useful. -- G. Box

Going beyond the equally weighted case

General rules of probability

Assume:

- a) $0 \le P(E) \le I$
- b) P(S) = I
- c) $P(E \cup F \cup ...) = P(E) + P(F) + ...$ if *E*, *F*, ... are all disjoint

Discrete, equally weighted

Definition (I):

P(E) = |E| / |S|

Properties (2):

- a) $0 \le P(E) \le I$
- b) P(S) = I
- c) $P(E \cup F) = P(E) + P(F)$ if E and F are disjoint

Not equally weighted (or not discrete)

Example: redundancy problem (ex. 11)

Redundancy is not always stupid

- Redundant systems:
 - create one or more duplicates of an important part of a machine
 - as long as one of the copies works, the machine works as a whole
 - the machine only fails when both copies break
- Many examples in biology (kidneys), engineering

Redundant server power supply

Ex. I I

Example of a typical reliability problem

- Known:
 - Power supply #I works 60% of the time at delivery
 - Power supply #2 works 70% of the time at delivery
 - You also observed that both power supplies work at delivery 40% of the time
- Question: what is the probability that both power supply are broken at delivery?

Strategy

- I. Define a probability space S
- 2. Define the known information as events, ex.: W_1 = power supplies #1 works
- 3. Define the goal in terms of the probability of an event
- 4. Use properties I and 2 to find that probability (see next 2 slides as well to make your life easier)

Prop. 3

De Morgan's law: Distributing complements

Prop. 4 Inclusion-exclusion:

Going between unions and intersections

From earlier:

$$P(E \cup F) = P(E) + P(F)$$
 if E and F are disjoint,
i.e. $E \cap F = \emptyset$

What if: we want the prob. of non-disjoint unions?

