#### TD 4 – Réseaux de neurones

#### Exercice 1:

- 1- Rappeler le principe de l'apprentissage basé sur les réseaux de neurones.
- 2- L'apprentissage est-il incrémental?

#### Exercice 2 : Calcul élémentaire

Un neurone i reçoit des entrées de quatre autres neurones dont les signaux de sortie respectifs sont : 10, -20, 4 et -2. Les poids synaptiques associés à ces sorties sont respectivement : 0.8, 0.2, -1.0 et -0.9. Calculer la sortie du neurone i dans les situations suivantes (on supposera que le biais est nul) :

- 1. Le neurone i est linéaire.
- 2. Le neurone i a une fonction d'activation à seuil:

$$y_i = \begin{cases} 1 \text{ si } a_i \ge 0\\ 0 \text{ sinon} \end{cases}$$

où  $a_i$  dénote l'activation du neurone i (la somme pondéré de ses entrées).

3. Le neurone i est associé à une fonction d'activation logistique :

$$y_i = \frac{1}{1 + \exp(-a_i)}$$

#### Exercice 3: XOR



Le problème XOR: les deux points  $\triangle$  sont des exemples de la même classe, les deux points  $\bigcirc$  des exemples d'une autre classe. Les deux classes ne sont pas linéairement séparables.



En utilisant le réseau de neurones ci-dessus, et la fonction seuil, compléter le tableau suivant :

| $\mathbf{x}_1$ | x <sub>2</sub> | $\sigma_3$ | у <sub>3</sub> | $\sigma_4$ | У4 | $\sigma_5$ | <b>y</b> 5 |
|----------------|----------------|------------|----------------|------------|----|------------|------------|
| 0              | 0              |            |                |            |    |            |            |
| 0              | 1              |            |                |            |    |            |            |
| 1              | 0              |            |                |            |    |            |            |
| 1              | 1              |            |                |            |    |            |            |

## Exercice 4: Rétro-propagation du gradient

Soit le réseau de neurones suivant.



On initialise les poids comme suit :

$$w(0,3) = 0.2$$
  $w(1,3) = 0.1$   $w(2,3) = 0.3$   
 $w(0,4) = -0.3$   $w(1,4) = -0.2$   $w(2,4) = 0.4$   
 $w(0,5) = 0.4$   $w(3,5) = 0.5$   $w(4,5) = -0.4$ 

Pour xT = (1, 1), on obtient les valeurs suivantes, avec la fonction sigmoïde :

| Neurone formel $j$ | $\sigma_{j}$                                     | $y_j$                               |
|--------------------|--------------------------------------------------|-------------------------------------|
| 3                  | $0.2 + 0.1 \times 1 + 0.3 \times 1 = 0.6$        | $rac{1}{1+e^{-0.6}}\simeq 0.65$    |
| 4                  | $-0.3 + -0.2 \times 1 + 0.4 \times 1 = -0.1$     | $rac{1}{1+e^{0.1}}\simeq 0.48$     |
| 5                  | $0.4 + 0.5 \times 0.65 - 0.4 \times 0.48 = 0.53$ | $\frac{1}{1+e^{-0.53}} \simeq 0.63$ |

- 1- La sortie désirée (réelle) pour  $x^T = (1, 1)$  est u = 0. On souhaite appliquer l'algorithme de rétropropagation du gradient (voir en annexe) pour modifier les poids du RNA.
  - a. Calculer  $\delta_5$
  - b. On fixe  $\alpha = 1$ . Calculer les nouveaux poids w(i, j).
- 2- En utilisant les nouveaux poids :
  - a. Calculer la nouvelle valeur de y<sub>5</sub>. Est-elle inférieure ou supérieure à la précédente ?
  - b. L'algorithme va-t-il convergé ? (sortie obtenue y très proche de la sortie désirée u)

# **Exercices supplémentaires**

### Exercice S1:

| RID | age         | income | student | credit    | $C_i$ : buy |
|-----|-------------|--------|---------|-----------|-------------|
| 1   | youth       | high   | no      | fair      | $C_2$ : no  |
| 2   | youth       | high   | no      | excellent | $C_2$ : no  |
| 3   | middle-aged | high   | no      | fair      | $C_1$ : yes |
| 4   | senior      | medium | no      | fair      | $C_1$ : yes |
| 5   | senior      | low    | yes     | fair      | $C_1$ : yes |
| 6   | senior      | low    | yes     | excellent | $C_2$ : no  |
| 7   | middle-aged | low    | yes     | excellent | $C_1$ : yes |
| 8   | youth       | medium | no      | fair      | $C_2$ : no  |
| 9   | youth       | low    | yes     | fair      | $C_1$ : yes |
| 10  | senior      | medium | yes     | fair      | $C_1$ : yes |
| 11  | youth       | medium | yes     | excellent | $C_1$ : yes |
| 12  | middle-aged | medium | no      | excellent | $C_1$ : yes |
| 13  | middle-aged | high   | yes     | fair      | $C_1$ : yes |
| 14  | senior      | medium | no      | excellent | $C_2$ : no  |

Etant donné l'échantillon d'apprentissage ci-dessus, Utiliser Weka pour apprendre un réseau de neurones multicouches, et indiquer la classe de l'objet X suivant ?

$$\mathbf{X} = (age = youth, income = medium, student = yes, credit = fair)$$

### Exercice S2:

| sex    | height (feet) | weight (lbs) | foot size(inches) |
|--------|---------------|--------------|-------------------|
| male   | 6             | 180          | 12                |
| male   | 5.92 (5'11")  | 190          | 11                |
| male   | 5.58 (5'7")   | 170          | 12                |
| male   | 5.92 (5'11")  | 165          | 10                |
| female | 5             | 100          | 6                 |
| female | 5.5 (5'6")    | 150          | 8                 |
| female | 5.42 (5'5")   | 130          | 7                 |
| female | 5.75 (5'9")   | 150          | 9                 |

Déterminer la classe de l'objet suivant :

| sex | height (feet) | weight (lbs) | foot size(inches) |
|-----|---------------|--------------|-------------------|
| ?   | 6             | 130          | 8                 |

# **Annexes:**

## Algorithme 10.2 Apprentissage du perceptron multicouche.

```
tant que l'apprentissage n'a pas convergé faire tirer au hasard un point d'apprentissage pour chaque couche, en partant de celle du haut faire pour chaque neurone formel de cette couche faire calculer \delta_j pour chaque connexion w(i,j) menant au neurone formel j faire calculer \Delta w(i,j) = \alpha \, \delta_j \, y_i fin pour fin pour fin pour pour chaque connexion w(i,j) faire w(i,j) \leftarrow w(i,j) + \Delta w(i,j) fin pour fin pour fin pour
```

# Calcul de $\delta_i$ : $\delta_j = (u_j - y_j) \ \ y_j \ (1 - y_j)$