Physikpraktikum für Naturwissenschaftler

Versuch: Wechselstromkreise

Durchgeführt am 10. Januar 2019 Betreuer: David Reinhardt

Gruppe 13

Felix Burr: felix.burr@uni-ulm.de Johannes Spindler: johannes.spindler@uni-ulm.de

Wir bestätigen hiermit, das Protokoll selbstständig erarbeitet zu haben und in genauer Kenntnis über dessen Inhalt zu sein.

Felix Burr

Johannes Spindler

Inhaltsverzeichnis

1	Einl	eitung	3			
2	Impedanzmessung an Widerstand, Kondensator und Spule					
	2.1	Versuchsaufbau und Durchführung	3			
	2.2	Messwerte und Ergebnisse	4			
		2.2.1 Messung am Widerstand	4			
		2.2.2 Messung am Kondensator	4			
		2.2.3 Messung an der Spule	4			
	2.3	Fehlerrechnung	4			
3	Impedanzmessung an einem unbekannten Zweipol)					
4	Fazi	it	4			

1 Einleitung

Aus dem Ohm'schen Gesetz ist der elektrische Widerstand R als konstantes Verhältnis der Spannung U zur Stromstärke I bekannt:

$$R = \frac{U(t)}{I(t)} = const \tag{1}$$

Das gilt für Gleich- wie Wechselspannungen, allerdings spricht man bei Wechselstromkreisen vom Scheinwiderstand |Z|, der als Betrag der (komplexwertigen) Impedanz Z definiert ist:

$$|Z| = \frac{U_0}{I_0} \tag{2}$$

 U_0 und I_0 bezeichnen die Amplitudenwerte von Spannung und Stromstärke.

Die Impedanz eines Zweipols fasst im Realteil den Wirkwiderstand R und im Imaginärteil den Blindwiderstand X zusammen. Während beim Wirkwiderstand die Sinuskurven von Spannung und Strom phasengleich sind, liegt beim Blindwiderstand eine Phasenverschiebung von $+90^{\circ}$ oder -90° vor. Diese Phasenverschiebung ist der Grund, warum Wirk- und Blindwiderstände einer Schaltung nicht einfach zu einem Gesamtwiderstand addiert werden dürfen, sondern als komplexwertige Impedanz Z verstanden werden.

Vektoriell betrachtet ist Z ein Vektor mit einer R-Komponente auf der x-Achse und einer X-Komponente auf der y-Achse. Dann ist der Winkel φ zwischen x-Achse und Z der Phasenwinkel und die Länge |Z| des Vektors der Scheinwiderstand.

Im ersten Versuch wird der Scheinwiderstand |Z| für einen Widerstand, einen Kondensator und eine Spule bestimmt. Im zweiten Versuch sollen Impedanz und Phasenverschiebung eines unbekannten Zweipols bestimmt werden und mit den Theoriewerten verglichen werden.

2 Impedanzmessung an Widerstand, Kondensator und Spule

2.1 Versuchsaufbau und Durchführung

Der zu messende Zweipol wird wie in Abbildung 1 mit einem bekannten Widerstand R_I , der zur Bestimmung von I dient, in Reihe geschaltet und an einen Frequenzgenerator und ein Oszilloskop angeschlossen. Auf Kanal 1 des Oszilloskops wird die Amplitude U_1 der am Zweipol anliegenden Spannung und auf Kanal 2 die Amplitude U_2 der an R_I anliegenden Spannung gemessen. Mit U_2 und $R_I = 82\Omega$ kann die Stromstärke berechnet werden:

$$I = \frac{U_2}{R_I}$$

Abbildung 1: Schaltbild zur Impedanzmessung (aus der Versuchsanleitung)

2.2 Messwerte und Ergebnisse

Tabelle 1: Messwerte für $U_1,\,U_2$ und daraus errechnete Werte für I und |Z|.

Messung	U_1 [V]	U_2 [V]	I [A]	$ \mathbf{Z} [\Omega]$
Widerstand	0,55	0,45	0,00549	100,222
Kondensator	1,2	$0,\!305$	0,00372	$322,\!623$
Spule	1,2	0,26	0,00317	$378,\!462$
Spule (digital)	1,16	$0,\!27$	0,00329	$352,\!296$

- 2.2.1 Messung am Widerstand
- 2.2.2 Messung am Kondensator
- 2.2.3 Messung an der Spule
- 2.3 Fehlerrechnung

$$\Delta R_2 = \left| \frac{\partial R_2}{\partial U_1} \right| \Delta U_1 + \left| \frac{\partial R_2}{\partial U_2} \right| \Delta U_2 = \frac{R_1 U_2}{U_1^2} \cdot \Delta U_1 + \frac{R_1}{U_1} \cdot \Delta U_2$$

3 Impedanzmessung an einem unbekannten Zweipol)

4 Fazit