Sections Cross

Fix measure spaces (X, M, M), (Y, N, V).

$$(X, m, \mu), (Y, n, \nu)$$

For ECXXX, define

$$\frac{X - section}{E_X = \{y \in Y \mid (x, y) \in E\}}$$

$$= \pi_Y(E \cap \{x\} \times Y)$$

$$\frac{\sqrt{-\text{section}}}{E} = \{x \in X \mid (x, y) \in E\}$$

$$= \pi_x (E_0 X \times \{y\})$$

Exercise: suppose (En) < Mon.

$$(E_i - E_j)_{x} = (E_i)_{x} - (E_j)_{x}$$

(4)
$$\chi_{E_i}(x,y) = \chi_{(\widehat{E}_i)_x}(y)$$

(Similarly for y-sections)

trop Let EEMON. YXEX, ExEN, YyeV, EYEM.

If we claim $S = \{E \subset X \times Y \mid E_X \in \eta \}$ is a σ -algorithming mble rectangles.

① If
$$(E_n) \subset \mathcal{S}$$
 , $(E_n)_{\chi} \in \mathcal{N}$, $(UE_n)_{\chi} = U(E_n)_{\chi} \in \mathcal{N}$.

Exercise Use the proposition to prove $L \otimes L \neq L^2 = (\chi \times \chi)^*$ -mble sets in \mathbb{R}^2 .

for f: XxY --- R, R or C, define

$$X$$
-section $f_x: \bigvee \longrightarrow \mathbb{R}$ by $f_x(y) = f(x, y)$

y-section
$$f_y: Y \longrightarrow R$$
 by $f'(x) = f(x, y)$

Coplary if f is Mon-nearmable, then $\forall x \in X$, f_x is η -mble, $\forall y \in Y$, f^y is η -mble.

Pf $\forall x \in X$, $G \in B_{colomain}$, $f_x^{-1}(G) = f_x^{-1}(G)_x \in \mathcal{N}$.

Thm: Suppose (X, m, μ) and (Y, n, ν) ore σ -finite. Then $\forall E \in M \otimes N$,

 \bigcirc the fix $\chi \mapsto \gamma(E_{\chi})$ and $y \mapsto \mu(E^{\gamma})$ are mble

(2)
$$(\mu \times \nu)(\xi) = \int \nu(\xi_x) d\mu(x) = \int \mu(\xi_y) d\nu(y)$$
.

et 1 c Mon be the subset for which 0 4 @ hold.

Step | $T := Set of mble rectangle <math>\leq \Lambda$ $f := Set of mble rectangle <math>\leq \Lambda$ $f := F \times G \Rightarrow [X \mapsto V(EX)] = V(G) \times_F is mble.$ $(\mu \times Y)(E) = \mu(F) \times (G) = \int V(G) \times_F d\mu.$

Step 2 TT is a 7-system $\mathbb{P} f \quad (F_1 \times G_1) \cap (F_2 \times G_2) = (F_1 \cap F_2) \times (G_1 \cap G_2) \quad \text{may be}$

 $\frac{S+ep 3}{\pi}$ / is a λ -system, so $\Lambda = m \circ \eta$ by the $\pi-1$ thin

pf 0 X×y ∈ T CA

 $0 \text{ If } E \in \Lambda, \text{ so } 0 \text{ a o hold. Then } x \mapsto \mathcal{V}(E')_x) = \mathcal{V}(E_x)' = \mathcal{V}(y) - \mathcal{V}(E_x)$ Similarly for $y \mapsto \mu((E')^y)$.

Moreover, $(u \times v)(E^c) = (u \times v)(x \times y) - (u \times v)(E)$ $= \int V(y) d\mu(x) - \int V(E_x) d\mu(x)$ $= \int V(y) - V(E_x) d\mu(x)$ $= \int V(E_x) d\mu(x)$ $= \int V(E_x) d\mu(x)$

and similarly for the other one. So E'EA.

Suppose
$$(E_k) \subset \Lambda$$
 is a disjoint sequence.
Then $\forall k$, $x \mapsto V((E_k)_x)$ is rule, and so are
$$x \mapsto \sum V((E_k)_x) = V(L(E_k)_x) = V((L(E_k)_x)$$
Sup of fruite sums = m b le.

Now
$$(\mu \times \nu)(\coprod_{E_{\kappa}}) = \sum_{(\mu \times \nu)(E_{\kappa})} = \sum_{(E_{\kappa})_{\chi}} \nu(E_{\kappa})_{\chi} d\mu(x)$$

$$= \int_{E_{\kappa}} \nu((E_{\kappa})_{\chi}) d\mu(x)$$

$$= \int_{E_{\kappa}} \nu((E_{\kappa})_{\chi}) d\mu(x)$$

and similarly for other integral.

Step 4 When is and V one σ -finite, write $X \times Y$ as an increasing union $X \times Y = \bigcup_{n} X_n \times Y_n \leftarrow f_{inite}$ measure.

Then for EEMON, write En = En Xnx yn.

$$X \mapsto V(\bar{t}_{\bar{x}}) = V(U(\bar{t}_{\bar{n}})_{\bar{x}}) = Im V((\bar{t}_{\bar{n}})_{\bar{x}})$$
 mble. Similarly for Y .

and
$$(u \times v)(E) = \lim_{x \to v} (u \times v)(E_n) = \lim_{x \to v} \int \mathcal{V}(E_n)_x d\mu(x)$$

$$= \int \lim_{x \to v} \mathcal{V}((E_n)_x) d\mu(x)$$

$$= \int \mathcal{V}(E_x) d\mu(x).$$