

IEEE ICDCS 2021

BiCord: Bidirectional Coordination among Coexisting Wireless Devices

Zihao Yu¹, Pengyu Li¹, Carlo Alberto Boano², Yuan He¹, Meng Jin¹, Xiuzhen Guo¹, Xiaolong Zheng³

¹School of Software and BNRist, Tsinghua University ²Graz University of Technology, ³Beijing University of Posts and Telecommunications

The rapid growth of the Internet of Things

Various types of technologies

An increasing number of devices

Crowded ISM bands

The coexistence of devices using different technologies

Devices of different technologies share the ISM bands

Cross-technology interference (CTI)

Low-power wireless device are vulnerable to cross-technology interference An unfair channel allocation due to power asymmetry

Gauging channel availability?

WISE (ICNP 2010); Smoggy-Link (ICNP 2016)

Low power devices suffer from dynamic interference Poor channel utilization: white space not utilized

Unidirectional information transfer?

ECC (MobiSys 2018)

Unutilized channel resources: Wi-Fi does not know the requirements of ZigBee Delay of low power devices: ZigBee waits for control packet from Wi-Fi

Need of bidirectional coordination

Problems to solve:

- How to improve the performance of low power nodes in both packet delivery rate and transmission delay?
- How to maximize the availability of the spectrum?

Design object of bidirectional coordination (BiCord):

- To make low power nodes request and obtain channel resources in time
- On-demand channel allocation for low-power nodes

Part I - Challenge

Challenge of bidirectional channel coordination

Cross-technology communication techniques: unsuitable! ZigFi (INFOCOM 2018), AdaComm (SECON 2019)

Part II – BiCord Design

BiCord Overview

- (i) Cross-technology signaling: ZigBee nodes directly inform the need to access the channel
- (ii) Adaptive white space allocation: WiFi devices provide on-demand channel allocation

Cross-technology signaling

Workflow

CSI analysis at Wi-Fi side:

To fully synchronize to ZigBee and decode its information

To detect the existence of a ZigBee transmission

Adaptive white space allocation

First phase: Learning phase

Adaptive white space allocation

Second phase: White space allocation

Part III – Evaluation

Evaluation Setup

- Commercial off-the-shelf Wi-Fi devices (Intel 5300 series) at location E and F
- Commercial ZigBee nodes (TelosB motes running Contiki 3.0) at location A-D

Evaluation: modules

TABLE I
THE PRECISION OF CROSS-TECHNOLOGY SIGNALING AT DIFFERENT LOCATION WITH DIFFERENT PARAMETERS.

Power (dBm)	0			-1			-3		
Packet Number	3	4	5	3	4	5	3	4	5
Location A Location B Location C	0.8548 0.8571 0.5862	0.9355 0.9057 0.7333	0.95 0.9649 0.8	0.8533 0.8 0.83	0.93 0.8333 0.8636	0.9714 0.9 0.9	0.8286 0.7183 0.72	0.9365 0.8571 0.8222	0.9525 0.9167 0.86
Location D	0.6125	0.71	0.73	0.7222	0.76	0.83	0.8	0.8636	0.91

TABLE II
THE RECALL OF CROSS-TECHNOLOGY SIGNALING AT DIFFERENT LOCATION WITH DIFFERENT PARAMETERS.

Power (dBm)	0			-1			-3		
Packet Number	3	4	5	3	4	5	3	4	5
Location A	0.88	0.9355	0.9828	0.8889	0.9538	0.9839	0.9155	0.9219	0.9825
Location B	0.7273	0.8955	0.8302	0.7727	0.8421	0.9483	0.62	0.7969	0.8182
Location C	0.73	0.7526	0.762	0.87	0.92	0.9	0.68	0.675	0.75
Location D	0.68	0.6383	0.67	0.63	0.7029	0.71	0.7358	0.78	0.82

Cross-technology signaling: Precision of 90.6%; Recall of 92%.

Adaptive white space allocation: 5 iterations.

Evaluation: comparison with state-of-the-art approach

Channel utilization: BiCord is higher than ECC by 50.6% Delay: BiCord outperforms ECC in average by 84.2%

Conclusion & Future Works

Conclusion:

- Need of channel coordination based on bidirectional interaction between constrained wireless devices (ZigBee) and more powerful appliances (Wi-Fi)
- Design of BiCord based on a cross-technology signaling method and an adaptive white space allocation scheme
- Evaluation of BiCord on commercial devices

Future Works:

Extension to other coexistence scenarios

Thanks

Q & A

zh-yu17@mails.tsinghua.edu.cn

http://tns.thss.tsinghua.edu.cn/sun/researches/InterferenceManagement.html