

First assessment 2016

Diploma Programme Physics data booklet

Published June 2014 Revised edition published November 2016

Published on behalf of the International Baccalaureate Organization, a not-for-profit educational foundation of 15 Route des Morillons, 1218 Le Grand-Saconnex, Geneva, Switzerland by the

International Baccalaureate Organization (UK) Ltd
Peterson House, Malthouse Avenue, Cardiff Gate
Cardiff, Wales CF23 8GL
United Kingdom
Website: www.ibo.org

© International Baccalaureate Organization 2014

The International Baccalaureate Organization (known as the IB) offers four high-quality and challenging educational programmes for a worldwide community of schools, aiming to create a better, more peaceful world. This publication is one of a range of materials produced to support these programmes.

The IB may use a variety of sources in its work and checks information to verify accuracy and authenticity, particularly when using community-based knowledge sources such as Wikipedia. The IB respects the principles of intellectual property and makes strenuous efforts to identify and obtain permission before publication from rights holders of all copyright material used. The IB is grateful for permissions received for material used in this publication and will be pleased to correct any errors or omissions at the earliest opportunity.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of the IB, or as expressly permitted by law or by the IB's own rules and policy. See http://www.ibo.org/copyright.

IB merchandise and publications can be purchased through the IB store at http://store.ibo.org.

Email: sales@ibo.org

Contents

Mathematical equations
Fundamental constants
Metric (SI) multipliers
Jnit conversions3
Electrical circuit symbols
Equations—Core
Equations—AHL
Equations—Options

Mathematical equations

Area of a circle	$A = \pi r^2$, where r is the radius
Circumference of a circle	$C=2\pi r$, where r is the radius
Surface area of a sphere	$A=4\pi r^2$, where r is the radius
Volume of a sphere	$V = \frac{4}{3}\pi r^3$, where r is the radius

Fundamental constants

Quantity	Symbol	Approximate value		
Acceleration of free fall (Earth's surface)	g	9.81m s ⁻²		
Gravitational constant	G	$6.67 \times 10^{-11} \mathrm{Nm^2kg^{-2}}$		
Avogadro's constant	N _A	6.02×10 ²³ mol ⁻¹		
Gas constant	R	8.31JK ⁻¹ mol ⁻¹		
Boltzmann's constant	k _B	1.38×10 ⁻²³ JK ⁻¹		
Stefan-Boltzmann constant	σ	$5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$		
Coulomb constant	k	8.99×10 ⁹ Nm ² C ⁻²		
Permittivity of free space	\mathcal{E}_0	$8.85 \times 10^{-12} \mathrm{C}^2 \mathrm{N}^{-1} \mathrm{m}^{-2}$		
Permeability of free space	$\mu_{\scriptscriptstyle 0}$	$4\pi \times 10^{-7} \text{Tm A}^{-1}$		
Speed of light in vacuum	С	$3.00 \times 10^8 \mathrm{ms^{-1}}$		
Planck's constant	h	6.63×10 ⁻³⁴ Js		
Elementary charge	е	1.60×10 ⁻¹⁹ C		
Electron rest mass	m _e	$9.110 \times 10^{-31} \text{kg} = 0.000549 \text{u} = 0.511 \text{MeV} \text{c}^{-2}$		
Proton rest mass	$m_{\rm p}$	$1.673 \times 10^{-27} \text{ kg} = 1.007276 \text{ u} = 938 \text{ MeV c}^{-2}$		
Neutron rest mass	<i>m</i> _n	$1.675 \times 10^{-27} \text{ kg} = 1.008665 \text{ u} = 940 \text{ MeV c}^{-2}$		
Unified atomic mass unit	и	$1.661 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV c}^{-2}$		
Solar constant	S	$1.36 \times 10^3 \text{ W m}^{-2}$		
Fermi radius	R ₀	1.20×10 ⁻¹⁵ m		

Metric (SI) multipliers

Prefix	Abbreviation	Value
peta	Р	10 ¹⁵
tera	Т	10 ¹²
giga	G	10 ⁹
mega	M	10 ⁶
kilo	k	10 ³
hecto	h	10 ²
deca	da	10 ¹
deci	d	10 ⁻¹
centi	С	10 ⁻²
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 ⁻⁹
pico	р	10 ⁻¹²
femto	f	10 ⁻¹⁵

Unit conversions

1 radian (rad) $\equiv \frac{180^{\circ}}{\pi}$

Temperature (K) = temperature ($^{\circ}$ C) + 273

1 light year (ly) = 9.46×10^{15} m

1 parsec (pc) = 3.26 ly

1 astronomical unit (AU) = 1.50×10^{11} m

1 kilowatt-hour (kWh) = $3.60 \times 10^6 \text{ J}$

 $hc = 1.99 \times 10^{-25} \text{ Jm} = 1.24 \times 10^{-6} \text{ eV m}$

Electrical circuit symbols

Equations—Core

Note: All equations relate to the magnitude of the quantities only. Vector notation has not been used.

Sub-topic 1.2 – Uncertainties and errors	Sub-topic 1.3 – Vectors and scalars
If: $y = a \pm b$	
then: $\Delta y = \Delta a + \Delta b$	A_{\vee}
If: $y = \frac{ab}{c}$ then: $\frac{\Delta y}{y} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c}$	θ A _H
If: $y = a^n$	$A_{H} = A \cos \theta$
then: $\frac{\Delta y}{y} = \left n \frac{\Delta a}{a} \right $	$A_{V} = A \sin \theta$

Sub-topic 2.1 – Motion	Sub-topic 2.2 – Forces
v = u + at	F = ma
$s = ut + \frac{1}{2}at^2$	$F_{f} \leq \mu_{s} R$
$v^2 = u^2 + 2as$	$F_{f} = \mu_{d} R$
$s = \frac{(v+u)t}{2}$	
Sub-topic 2.3 – Work, energy and power	Sub-topic 2.4 – Momentum and impulse
$W = Fs\cos\theta$	p = mv
$E_{K} = \frac{1}{2}mv^{2}$	$F = \frac{\Delta p}{\Delta t}$
$E_{p} = \frac{1}{2}k\Delta x^{2}$	$F = \frac{\Delta p}{\Delta t}$ $E_{K} = \frac{p^{2}}{2m}$
$\Delta E_{p} = mg\Delta h$	2m
power = Fv	impulse = $F\Delta t = \Delta p$
$efficiency = \frac{useful \ work \ out}{total \ work \ in}$	
$= \frac{\text{useful power out}}{\text{total power in}}$	

Sub-topic 3.1 – Thermal concepts	Sub-topic 3.2 – Modelling a gas
$Q = mc\Delta T$	_ F
Q = mL	$p = \frac{F}{A}$
	$n = \frac{N}{N_{A}}$
	pV = nRT
	$\bar{E}_{K} = \frac{3}{2}k_{B}T = \frac{3}{2}\frac{R}{N_{A}}T$

Sub-topic 4.1 – Oscillations	Sub-topic 4.4 – Wave behaviour
$T = \frac{1}{f}$	$\frac{n_1}{n_2} = \frac{\sin \theta_2}{\sin \theta_1} = \frac{v_2}{v_1}$
Sub-topic 4.2 – Travelling waves	$s = \frac{\lambda D}{d}$
$c = f\lambda$	d d
Sub-topic 4.3 – Wave characteristics	Constructive interference: path difference = $n\lambda$
$I \propto A^2$	Destructive interference:
$I \propto x^{-2}$	path difference = $\left(n + \frac{1}{2}\right)\lambda$
$I = I_0 \cos^2 \theta$	$ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_$

Sub-topic 5.1 – Electric fields	Sub-topic 5.2 – Heating effect of electric currents
$\int_{-T} \Delta q$	Kirchhoff's circuit laws:
$I = \frac{\Delta q}{\Delta t}$	$\Sigma V = 0$ (loop)
$F = k \frac{q_1 q_2}{r^2}$	$\Sigma I=0$ (junction)
$k = \frac{1}{4\pi\varepsilon_0}$	$R = \frac{V}{I}$
$V = \frac{W}{q}$	$P = VI = I^2R = \frac{V^2}{R}$
$E = \frac{F}{q}$	$R_{\text{total}} = R_1 + R_2 + \dots$
I = nAvq	$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
	$ \rho = \frac{RA}{L} $
Sub-topic 5.3 – Electric cells	Sub-topic 5.4 – Magnetic effects of electric currents
$\varepsilon = I(R+r)$	$F = qvB\sin\theta$
	$F = BIL \sin \theta$

Sub-topic 6.1 – Circular motion	Sub-topic 6.2 – Newton's law of gravitation
$V = \omega r$	$F = G \frac{Mm}{r^2}$
$a = \frac{v^2}{r} = \frac{4\pi^2 r}{T^2}$	$g = \frac{F}{m}$
$F = \frac{mv^2}{r} = m\omega^2 r$	$g = G\frac{M}{r^2}$

Sub-topic 7.1 – Discrete energy and radioactivity	Sub-topic 7.2 – Nuclear reactions	
E = hf	$\Delta E = \Delta mc^2$	
$\lambda = \frac{hc}{E}$		

Sub-topic 7.3 – The structure of matter

Charge	Quarks			Baryon number
$\frac{2}{3}$ e	u	С	t	$\frac{1}{3}$
$-\frac{1}{3}e$	d	S	b	1/3

All quarks have a strangeness number of 0 except the strange quark that has a strangeness number of –1

Charge	L	eptons	3
-1	е	μ	τ
0	ν_{e}	ν _μ	ν _τ

All leptons have a lepton number of 1 and antileptons have a lepton number of -1

	Gravitational	Weak	Electromagnetic	Strong
Particles experiencing	All	Quarks, leptons	Charged	Quarks, gluons
Particles mediating	Graviton	W+, W-, Z0	γ	Gluons

Sub-topic 8.1 – Energy sources	Sub-topic 8.2 – Thermal energy transfer
$power = \frac{energy}{time}$	$P = e\sigma A T^4$
$power = \frac{1}{2}A\rho v^3$	$\lambda_{\text{max}}(\text{metres}) = \frac{2.90 \times 10^{-3}}{T(\text{kelvin})}$
	$I = \frac{\text{power}}{A}$
	$albedo = \frac{total\ scattered\ power}{total\ incident\ power}$

Equations—AHL

Sub-topic 9.1 – Simple harmonic motion	Sub-topic 9.2 – Single-slit diffraction
$\omega = \frac{2\pi}{T}$	$\theta = \frac{\lambda}{b}$
$a = -\omega^2 x$	Sub-topic 9.3 – Interference
$x = x_0 \sin \omega t; x = x_0 \cos \omega t$	$n\lambda = d\sin\theta$
$V = \omega x_0 \cos \omega t; V = -\omega x_0 \sin \omega t$	Constructive interference: $2dn = \left(m + \frac{1}{2}\right)\lambda$
$V = \pm \omega \sqrt{(x_0^2 - x^2)}$	Destructive interference: $2dn = m\lambda$
$E_{K} = \frac{1}{2}m\omega^{2}(x_{0}^{2} - x^{2})$	
$E_{T} = \frac{1}{2} m \omega^2 x_0^2$	
pendulum: $T=2\pi\sqrt{\frac{l}{g}}$	
mass-spring: $T=2\pi\sqrt{\frac{m}{k}}$	
Sub-topic 9.4 – Resolution	Sub-topic 9.5 – Doppler effect
$\theta = 1.22 \frac{\lambda}{b}$	Moving source: $f' = f\left(\frac{v}{v \pm u_s}\right)$
$R = \frac{\lambda}{\Delta \lambda} = mN$	Moving observer: $f' = f\left(\frac{v \pm u_o}{v}\right)$
	$\frac{\Delta f}{f} = \frac{\Delta \lambda}{\lambda} \approx \frac{\mathbf{v}}{\mathbf{c}}$

Sub-topic 10.1 – Describing fields	Sub-topic 10.2	– Fields at work
$W=q\Delta V_{ m e}$	$V_{\rm g} = -\frac{GM}{r}$	$V_{\rm e} = \frac{kQ}{r}$
$W = m\Delta V_{g}$	$g = -\frac{\Delta V_{\rm g}}{\Delta r}$	$E = -\frac{\Delta V_{\rm e}}{\Delta r}$
	$E_{p} = mV_{g} = -\frac{GMm}{r}$	$E_{\rm p} = qV_{\rm e} = \frac{kQq}{r}$
	$F_{g} = \frac{GMm}{r^2}$	$F_{\rm e} = \frac{kQq}{r^2}$
	$v_{\rm esc} = \sqrt{\frac{2GM}{r}}$	
	$v_{\text{orbit}} = \sqrt{\frac{GM}{r}}$	

Sub-topic 11.1 – Electromagnetic induction	Sub-topic 11.3 – Capacitance
$\Phi = BA\cos\theta$	$C = \frac{q}{V}$
$\varepsilon = -N \frac{\Delta \Phi}{\Delta t}$	$C_{\text{parallel}} = C_1 + C_2 + \dots$
$\varepsilon = Bvl$	$\frac{1}{C_{\text{corion}}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
$\varepsilon = BvlN$	C _{series} C ₁ C ₂
Sub-topic 11.2 – Power generation and transmission	$C = \varepsilon \frac{A}{d}$
$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$	$E = \frac{1}{2}CV^2$
$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$	au = RC
$R = \frac{V_0}{I_0} = \frac{V_{\text{rms}}}{I_{\text{rms}}}$	$q=q_0 \mathrm{e}^{-rac{t}{ au}}$
$P_{\text{max}} = I_0 V_0$	$I = I_0 e^{-\frac{t}{\tau}}$
$\bar{P} = \frac{1}{2} I_0 V_0$	$V = V_0 e^{-\frac{t}{\tau}}$
$\frac{\varepsilon_{\rm p}}{\varepsilon_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}} = \frac{I_{\rm s}}{I_{\rm p}}$	

Sub-topic 12.1 – The interaction of matter with radiation	Sub-topic 12.2 – Nuclear physics
E = hf	$R = R_0 A^{\frac{1}{3}}$
$E_{\text{max}} = hf - \Phi$	$R = R_0 A^{\frac{1}{3}}$ $N = N_0 e^{-\lambda t}$ $A = \lambda N_0 e^{-\lambda t}$
$E = -\frac{13.6}{n^2} eV$	$A = \lambda N_0 e^{-\lambda t}$
$mvr = \frac{nh}{2\pi}$	$\sin \theta \approx \frac{\lambda}{D}$
$P(r) = \psi ^2 \Delta V$	
$\Delta x \Delta p \ge \frac{h}{4\pi}$	
$\Delta E \Delta t \ge \frac{h}{4\pi}$	

Equations—Options

Sub-topic A.1 – The beginnings of relativity	Sub-topic A.2 – Lorentz transformations
x' = x - vt	$\gamma = \frac{1}{\sqrt{1 + \frac{1}{2}}}$
u'=u-v	$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$
Sub-topic A.3 – Spacetime diagrams	$x' = \gamma(x - vt); \Delta x' = \gamma(\Delta x - v\Delta t)$
$\theta = \tan^{-1}\left(\frac{v}{c}\right)$	$t' = \gamma \left(t - \frac{vx}{c^2} \right); \Delta t' = \gamma \left(\Delta t - \frac{v\Delta x}{c^2} \right)$
	$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$
	$\Delta t = \gamma \Delta t_0$
	$\Delta t = \gamma \Delta t_0$ $L = \frac{L_0}{\gamma}$
	$(ct')^2 - (x')^2 = (ct)^2 - (x)^2$
Sub-topic A.4 – Relativistic mechanics (HL only)	Sub-topic A.5 – General relativity (HL only)
$E = \gamma m_0 c^2$	$\frac{\Delta f}{f} = \frac{g\Delta h}{c^2}$
$E_0 = m_0 c^2$	
$E_{K} = (\gamma - 1)m_{0}c^{2}$	$R_{\rm s} = \frac{2GM}{c^2}$
$p = \gamma m_0 V$	$\Delta t = \frac{\Delta t_0}{\sqrt{1 - t_0}}$
$E^2 = p^2 c^2 + m_0^2 c^4$	$\Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{R_s}{r}}}$
$qV = \Delta E_{K}$	

Sub-topic B.1 – Rigid bodies and rotational dynamics	Sub-topic B.2 – Thermodynamics
$\Gamma = \mathbf{F} \mathbf{r} \sin \theta$	$Q = \Delta U + W$
$I = \sum mr^2$	$U = \frac{3}{2}nRT$ $\Delta S = \frac{\Delta Q}{T}$
$\Gamma = I\alpha$	2
$\omega = 2\pi f$	$\Delta S = \frac{\Delta Q}{T}$
$\omega_{\rm f} = \omega_{\rm i} + \alpha t$ $\omega_{\rm f}^2 = \omega_{\rm i}^2 + 2\alpha \theta$	$pV^{\frac{5}{3}}$ = constant (for monatomic gases)
$\theta = \omega_i t + \frac{1}{2}\alpha t^2$	$W = p\Delta V$
$L = I\omega$	$\eta = \frac{\text{useful work done}}{\text{energy input}}$
$E_{K_{\text{rot}}} = \frac{1}{2}I\omega^2$	$\eta_{Carnot} = 1 - rac{T_{cold}}{T_{hot}}$
Sub-topic B.3 – Fluids and fluid dynamics (HL only)	Sub-topic B.4 – Forced vibrations and resonance (HL only)
$B= ho_{ extsf{f}}V_{ extsf{f}}g$	$Q = 2\pi \frac{\text{energy stored}}{\text{energy dissipated per cycle}}$
$P = P_0 + \rho_f g d$	$Q = 2\pi \times \text{resonant frequency} \times \frac{\text{energy stored}}{\text{power loss}}$
Av = constant	
$\frac{1}{2}\rho V^2 + \rho gz + p = \text{constant}$	
$F_{\rm D} = 6\pi\eta r V$	
$R = \frac{\operatorname{vr} \rho}{\eta}$	

Sub-topic C.1 – Introduction to imaging	Sub-topic C.2 – Imaging instrumentation
$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$	$M = \frac{f_o}{f_e}$
$P = \frac{1}{f}$	Sub-topic C.3 – Fibre optics
$m = \frac{h_i}{h_o} = -\frac{v}{u}$	$n = \frac{1}{\sin c}$
$M = \frac{\theta_i}{\theta_0}$	$attenuation = 10 \log \frac{I}{I_0}$
$M_{\text{near point}} = \frac{D}{f} + 1; M_{\text{infinity}} = \frac{D}{f}$	Sub-topic C.4 – Medical imaging (HL only)
	$L_{\rm I} = 10\log\frac{I_{\rm 1}}{I_{\rm 0}}$
	$I=I_0 \mathbf{e}^{-\mu x}$
	$\mu x_{\frac{1}{2}} = \ln 2$
	$Z = \rho c$

Sub-topic D.1 – Stellar quantities	Sub-topic D.2 – Stellar characteristics and stellar evolution
$d(parsec) = \frac{1}{p(arc-second)}$	$\lambda_{\text{max}}T = 2.9 \times 10^{-3} \text{mK}$
$L = \sigma A T^4$	$L \propto M^{3.5}$
$b = \frac{L}{4\pi d^2}$	
Sub-topic D.3 – Cosmology	Sub-topic D.5 – Further cosmology (HL only)
$z = \frac{\Delta \lambda}{\lambda_0} \approx \frac{V}{C}$	$v = \sqrt{\frac{4\pi G\rho}{3}}r$
$z = \frac{R}{R_0} - 1$	$\rho_{\rm c} = \frac{3H^2}{8\pi G}$
$v = H_0 d$	
$T \approx \frac{1}{H_0}$	