Name:

USC ID:

Notes:

- Write your name and ID number in the spaces above.
- No books, cell phones or other notes are permitted. Only one letter size cheat sheet (back and front) and a calculator are allowed.
- Problems are not sorted in terms of difficulty. Please avoid guess work and long and irrelevant answers.
- ullet Show all your work and your final answer. Simplify your answer as much as you can.
- Open your exam only when you are instructed to do so.

Problem	Score	Earned
1	25	Barned
1	23	
2	30	
3	25	
4	25	
5	15	
Total	120	

1. A statistician is working on the amount of funding that companies obtain on a crwod-sourcing website and has developed the following model. She used 26 companies to obtain the model

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5$$

$$\hat{y} = 964.8 + 700.2x_1 + 317.5x_2 - 200.2x_3 + 15.3x_4 + 17.1x_5$$

The standard errors are:

$$s_{b_1} = 12.$$

 $s_{b_2} = 22.5$
 $s_{b_3} = 101.8$
 $s_{b_4} = 45.3$
 $s_{b_5} = 2.3$

- \hat{y} : the amount of funding obtained by a company in 1000 dollars
- x_1 : the average annual salary of the founders
- x_2 : the number of employees the startup hired
- x_3 : a dummy variable that is 1 when the company's field is information technology and 0 otherwise
- x_4 : the age of the company
- x_5 is a dummy variable taking value 1 if the founders had previous failures and 0 otherwise
- (a) Interpret the estimated coefficients $b_0 = 964.8$ and $b_5 = 17.1$.
- (b) Test, at the 5% level, the null hypothesis that the true coefficient on the dummy variable x_3 is 0 against the alternative that it is not 0.
- (c) Find and interpret a 80% confidence interval for the parameter β_1 .
- (d) If for the model, SSR=18147.5 (Regression Sum of Squares) and SSE = 17136.5 (Residual Sum of Squares), test the hypothesis that all the coefficients of the model are 0 (test overal significance of the model) using $\alpha = 1\%$.
- (e) Calculate R^2 for the regression line.

2. Assume that in a binary classification problem with one feature X, the distribution of X in class k=1 is

$$f_1(x) = \frac{x}{\sigma_1^2} \exp\left(\frac{-x^2}{2\sigma_1^2}\right), x \ge 0$$

and the distribution of X in class k=2 is

$$f_2(x) = \frac{1}{x\sqrt{2\pi}\sigma_2} \exp\left(\frac{-(\ln x - \mu_2)^2}{2\sigma_2^2}\right), x \ge 0$$

- (a) Are there any conditions under which the discriminant function is a linear function of x?
- (b) If $\sigma_1 = \sigma_2 = 1$, $\mu_1 = 10$, and $\pi_1 = \pi_2 = 0.5$, in what class will x = 10 be classified?

- 3. We perform best subset, forward stepwise, and backward stepwise selection on a single data set. For each approach, we obtain p+1 models, containing $0, 1, 2, \ldots, p$ predictors. Explain your answers:
 - (a) Which of the three models with k predictors has the smallest training RSS?
 - (b) Which of the three models with k predictors has the smallest test RSS?
 - (c) True or False:
 - i. The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k+1)-variable model identified by forward stepwise selection.
 - ii. The predictors in the k-variable model identified by backward stepwise are a subset of the predictors in the (k+1)- variable model identified by backward stepwise selection.
 - iii. The predictors in the k-variable model identified by backward stepwise are a subset of the predictors in the (k + 1)- variable model identified by forward stepwise selection.
 - iv. The predictors in the k-variable model identified by forward stepwise are a subset of the predictors in the (k+1)-variable model identified by backward stepwise selection.
 - v. The predictors in the k-variable model identified by best subset are a subset of the predictors in the (k+1)-variable model identified by best subset selection.

4. Consider the novel logistic regression method for binary classification (Y = 0 or Y = 1) with two features $\mathbf{X} = (X_1, X_2)$, formulated by

$$P(Y = 1|\mathbf{X}) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2}}$$

Assume that using a dataset of 200 observations, we obtained the following estimates:

	Coefficient	Standard Error
β_0	1	0.2
β_1	2	0.1
β_2	1	s
β_3	1	0.5

- (a) Determine the equation for the decision boundary for this classifier.
- (b) Sketch the decision boundary for this classifier and clearly show the regions for the positive class and the negative class.
- (c) Find all values of s that makes the coefficient β_2 statistically insignificant. You can consider the significance level to be $\alpha = 0.05$.

5. Consider the partitions that are shown in the following figure for predicting classes of the Iris dataset. Show the decision tree that corresponds to this partitioning. Assume uniform cutpoints for Petal width (0, 0.25, 0.5, ..., 2.25, 2.5) and also for sepal width (2.0, 2.25, 2.5,...,4).

Midterm Exam DSCI 552, Instructor: Mohammad Reza Rajati Oct 13, 2020

Scratch paper

Name:

USC ID:

Scratch paper

Name:

USC ID:

Cumulative Distribution Function, F(z), of the Standard Normal Distribution Table

Z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
Z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	_								T 1.1	

Cumulative Distribution Function, F(z), of the Standard Normal Distribution Table

Upper Critical Values of Student's t Distribution with ν Degrees of Freedom

For selected probabilities, α , the table shows the values $t_{\nu,\alpha}$ such that $P(t_{\nu} > t_{\nu,\alpha}) = \alpha$, where t_{ν} is a Student's t random variable with ν degrees of freedom. For example, the probability is .10 that a Student's t random variable with 10 degrees of freedom exceeds 1.372.

Probability of Exceeding the Critical Value												
ν	0.10	0.05	0.025	0.01	0.005	0.001						
1	3.078	6.314	12.706	31.821	63.657	318.313						
2	1.886	2.920	4.303	6.965	9.925	22.327						
3	1.638	2.353	3.182	4.541	5.841	10.215						
4	1.533	2.132	2.776	3.747	4.604	7.173						
5	1.476	2.015	2.571	3.365	4.032	5.893						
6	1.440	1.943	2.447	3.143	3.707	5.20						
7	1.415	1.895	2.365	2.998	3.499	4.782						
8	1.397	1.860	2.306	2.896	3.355	4,49						
9	1.383	1.833	2.262	2.821	3.250	4.29						
10	1.372	1.812	2.228	2.764	3.169	4.14						
11	1.363	1.796	2.201	2.718	3.106	4.02						
12	1.356	1.782	2.179	2.681	3.055	3.92						
13	1.350	1.771	2.160	2.650	3.012	3.85						
14	1.345	1.761	2.145	2.624	2.977	3.78						
15	1.341	1.753	2.131	2.602	2.947	3.73						
16	1.337	1.746	2.120	2.583	2.921	3.68						
17	1.333	1.740	2.110	2.567	2.898	3.64						
18	1.330	1.734	2.101	2.552	2.878	3.61						
19	1,328	1.729	2.093	2.539	2.861	3.57						
20	1.325	1.725	2.086	2.528	2.845	3.55						
21	1.323	1.721	2.080	2.518	2.831	3.52						
22	1,321	1.717	2.074	2.508	2.819	3.50						
23	1.319	1.714	2.069	2.500	2.807	3.48						
24	1.318	1.711	2.064	2.492	2.797	3.46						
25	1.316	1.708	2.060	2.485	2.787	3.45						
26	1.315	1.706	2.056	2.479	2.779	3.43						
27	1.314	1.703	2.052	2.473	2.771	3.42						
28	1.313	1.701	2.048	2.467	2.763	3.40						
29	1.311	1.699	2.045	2.462	2.756	3.39						
30	1.310	1.697	2.042	2.457	2.750	3.38						
40	1.303	1.684	2.021	2.423	2.704	3.30						
60	1.296	1.671	2.000	2.390	2.660	3.23						
100	1.290	1.660	1.984	2.364	2.626	3.17						
09	1.282	1.645	1.960	2.326	2.576	3.09						
ν	0.10	0.05	0.025	0.01	0.005	0.001						

F Table for $\alpha = 0.01$

	DF1	$\alpha = 0.01$																	
DF2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	Inf
1	4052.2	4999.5	5403.4	5624.6	5763.7	5859	5928.4	5981.1	6022.5	6055.8	6106.3	6157.3	6208.7	6234.6	6260.6	6286.8	6313	6339.4	6365.
2	98.503	99	99.166	99.249	99.299	99.333	99.356	99.374	99.388	99.399	99.416	99.433	99.449	99.458	99.466	99.474	99.482	99.491	99.49
3	34.116	30.817	29.457	28.71	28.237	27.911	27.672	27.489	27.345	27.229	27.052	26.872	26.69	26.598	26.505	26.411	26.316	26.221	26.12
4	21.198	18	16.694	15.977	15.522	15.207	14.976	14.799	14.659	14.546	14.374	14.198	14.02	13.929	13.838	13.745	13.652	13.558	13.46
5	16.258	13.274	12.06	11.392	10.967	10.672	10.456	10.289	10.158	10.051	9.888	9.722	9.553	9.466	9.379	9.291	9.202	9.112	9.0
6	13.745	10.925	9.78	9.148	8.746	8.466	8.26	8.102	7.976	7.874	7.718	7.559	7.396	7.313	7.229	7.143	7.057	6.969	6.8
7	12.246	9.547	8.451	7.847	7.46	7.191	6.993	6.84	6.719	6.62	6.469	6.314	6.155	6.074	5.992	5.908	5.824	5.737	5.6
8	11.259	8.649	7.591	7.006	6.632	6.371	6.178	6.029	5.911	5.814	5.667	5.515	5.359	5.279	5.198	5.116	5.032	4.946	4.85
9	10.561	8.022	6.992	6.422	6.057	5.802	5.613	5.467	5.351	5.257	5.111	4.962	4.808	4.729	4.649	4.567	4.483	4.398	4.31
10	10.044	7.559	6.552	5.994	5.636	5.386	5.2	5.057	4.942	4.849	4.706	4.558	4.405	4.327	4.247	4.165	4.082	3.996	3.90
11	9.646	7.206	6.217	5.668	5.316	5.069	4.886	4.744	4.632	4.539	4.397	4.251	4.099	4.021	3.941	3.86	3.776	3.69	3.60
12	9.33	6.927	5.953	5.412	5.064	4.821	4.64	4.499	4.388	4.296	4.155	4.01	3.858	3.78	3.701	3.619	3.535	3.449	3.36
13	9.074	6.701	5.739	5.205	4.862	4.62	4.441	4.302	4.191	4.1	3.96	3.815	3.665	3.587	3.507	3.425	3.341	3.255	3.16
14	8.862	6.515	5.564	5.035	4.695	4.456	4.278	4.14	4.03	3.939	3.8	3.656	3.505	3.427	3.348	3.266	3.181	3.094	3.00
15	8.683	6.359	5.417	4.893	4.556	4.318	4.142	4.004	3.895	3.805	3.666	3.522	3.372	3.294	3.214	3.132	3.047	2.959	2.86
16	8.531	6.226	5.292	4.773	4.437	4.202	4.026	3.89	3.78	3.691	3.553	3.409	3.259	3.181	3.101	3.018	2.933	2.845	2.75
17	8.4	6.112	5.185	4.669	4.336	4.102	3.927	3.791	3.682	3.593	3.455	3.312	3.162	3.084	3.003	2.92	2.835	2.746	2.65
18	8.285	6.013	5.092	4.579	4.248	4.015	3.841	3.705	3.597	3.508	3.371	3.227	3.077	2.999	2.919	2.835	2.749	2.66	2.56
19	8.185	5.926	5.01	4.5	4.171	3.939	3.765	3.631	3.523	3.434	3.297	3.153	3.003	2.925	2.844	2.761	2.674	2.584	2.48
20	8.096	5.849	4.938	4.431	4.103	3.871	3.699	3.564	3.457	3.368	3.231	3.088	2.938	2.859	2.778	2.695	2.608	2.517	2.42
21	8.017	5.78	4.874	4.369	4.042	3.812	3.64	3.506	3.398	3.31	3.173	3.03	2.88	2.801	2.72	2.636	2.548	2.457	2.3
22	7.945	5.719	4.817	4.313	3.988	3.758	3.587	3.453	3.346	3.258	3.121	2.978	2.827	2.749	2.667	2.583	2.495	2.403	2.30
23	7.881	5.664	4.765	4.264	3.939	3.71	3.539	3.406	3.299	3.211	3.074	2.931	2.781	2.702	2.62	2.535	2.447	2.354	2.25
24	7.823	5.614	4.718	4.218	3.895	3.667	3.496	3.363	3.256	3.168	3.032	2.889	2.738	2.659	2.577	2.492	2.403	2.31	2.21
25	7.77	5.568	4.675	4.177	3.855	3.627	3.457	3.324	3.217	3.129	2.993	2.85	2.699	2.62	2.538	2.453	2.364	2.27	2.16
26	7.721	5.526	4.637	4.14	3.818	3.591	3.421	3.288	3.182	3.094	2.958	2.815	2.664	2.585	2.503	2.417	2.327	2.233	2.13
27	7.677	5.488	4.601	4.106	3.785	3.558	3.388	3.256	3.149	3.062	2.926	2.783	2.632	2.552	2.47	2.384	2.294	2.198	2.09
28	7.636	5.453	4.568	4.074	3.754	3.528	3.358	3.226	3.12	3.032	2.896	2.753	2.602	2.522	2.44	2.354	2.263	2.167	2.06
29	7.598	5.42	4.538	4.045	3.725	3.499	3.33	3.198	3.092	3.005	2.868	2.726	2.574	2.495	2.412	2.325	2.234	2.138	2.03
30	7.562	5.39	4.51	4.018	3.699	3.473	3.304	3.173	3.067	2.979	2.843	2.7	2.549	2.469	2.386	2.299	2.208	2.111	2.00
40	7.314	5.179	4.313	3.828	3.514	3.291	3.124	2.993	2.888	2.801	2.665	2.522	2.369	2.288	2.203	2.114	2.019	1.917	1.80
60	7.077	4.977	4.126	3.649	3.339	3.119	2.953	2.823	2.718	2.632	2.496	2.352	2.198	2.115	2.028	1.936	1.836	1.726	1.60
120	6.851	4.787	3.949	3.48	3.174	2.956	2.792	2.663	2.559	2.472	2.336	2.192	2.035	1.95	1.86	1.763	1.656	1.533	1.38
Inf	6.635	4.605	3.782	3.319	3.017	2.802	2.639	2.511	2.407	2.321	2.185	2.039	1.878	1.791	1.696	1.592	1.473	1.325	