برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

•		<u> </u>	-
1	مقداری اور سمتیه	1.1	
2	سمتي الجبرا	1.2	
3	كارتيسي محدد	1.3	
5	اكائبي سمتيات	1.4	
9	ميداني سمتيم	1.5	
9	سمتى رقبہ	1.6	
10	غیر سمتی ضرب	1.7	
14	سمتی ضرب یا صلیبی ضرب	1.8	
17	گول نلكى محدد	1.9	
20	1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب		
20	1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق		
25	1.9.3 نلكي لامحدود سطحين		
27	کروی محلد	1.10	
37	کا قانون	كولومب	2
37	قوت کشش یا دفع	2.1	
41	برقبی میدان کی شدت	2.2	
44	یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان	2.3	
49	يكسان چارج بردار بموار لامحدود سطح	2.4	
53	چارج بردار حجم	2.5	
54	مزید مثال	2.6	
61	برقی میدان کے سمت بہاو خط	2.7	
63	سوالات	2.8	

iv	ع:مان

65																															الاو	ِ پھی	اور	قانون	ے کا	گاؤس	3
65																																رج	چار	ساكن	,	3.1	
65																															نربہ	ا تج	ے ک	يراڈ مے	•	3.2	
66	٠									٠				•																	. ن	قانو	کا	گاؤس		3.3	
68																												ال	تعم	کا اس	ون َ	ے قان	کی	گاؤس	:	3.4	
68																														چار	فطہ	ij	3	3.4.			
70																								طح) س	نروى	ر ک	بردا	ارج	ن چا	کسا	پ	3	3.4.2	2		
70																					کیر	د ل	تدو	دمہ	ی ا	يدھ	ر س	بردا	ارج	ن چا	کسا	پ	3	3.4.3	;		
71																																ے تار	وري	م مح	ł	3.5	
73																									طح	. سد	دود	(مح	إر لا	_ ہمو	بردا	ارج	، چ	كساد	2	3.6	
73																						زق	اطاه	کا	- نون	ِ قا	کر	ۇس	ِ گا	جم پ	ے ج	و ھوٹی	چ	نتہائی	١	3.7	
76																																		هيلاو	2	3.8	
78																										ت	ساوا	, مہ	، کے	هيلاو	ىيى ي	دد م	محا	لکی ،	;	3.9	
80																											-							ں ھيلاو		3.10	
82																													_		-	•	-	سئلہ		3.11	
																																,					
85																																و	دبا	. برقی	ں اور	توانائي	4
85	٠						٠	•		٠			٠	•		٠			•												. (کا	اور	وانائي	ī	4.1	
86																																ئملہ	تک	کیری	5	4.2	
91																																	باو	رقى د	?	4.3	
92																										باو	ی د	ا برة	ح کا	چار	<i>ف</i> طہ	ü	2	4.3.			
93																				٠	و	دبا	قى	۱ بر	پيد	سے	ت	كثاف	رج ً	، چا	کیری	Ľ	2	4.3.2	2		
94																				٠					باو	ے د	برقي	کا	، تار	<i>نوری</i>	م مح	٦.	2	4.3.3	;		
94																										٠ ,	دباو	رقى	ی بر	ِں ک	ارجو	لہ چ	نقط	تعدد		4.4	
98																														زن:	ڈھلا	کی	باو	رقى د	!	4.5	
100																										إن:	ڈھلا ڈھلا	یں ا	.د م	محد	لکی	نا	2	4.5.			
101																										لان	ڈھا	ىيں	دد ،	، مح	کروی	5	2	4.5.2	!		
103																												•								4.6	
105																																					
																									٠,			_									
108								_																		ئی	تمانا	ت	كثاف	کی	دان	. م	ر قہ	ساكن	,	4.7	

113	، فو برق اور کپیسٹر	موصل،	5
113	برقی رو اور کثافت برقی رو	5.1	
115	استمراری مساوات	5.2	
117	موصل	5.3	
122	موصل کے خصوصیات اور سرحدی شرائط	5.4	
125	عکس کی ترکیب	5.5	
128	نيم موصل	5.6	
129	ذو برق	5.7	
134	کامل ذو برق کے سرحد پر برقی شرائط	5.8	
138	موصل اور ذو برقی کے سرحدی شرائط	5.9	
138	كپيستر	5.10	
139	5.10.1 متوازی چادر کپیسٹر		
141	5.10.2 ېم محوري کېيستر		
141	5.10.3 ېم کوه کېيسٹر		
142	سلسلہ وار اور متوازی جڑے کیپسٹر	5.11	
144	دو متوازی تاروں کا کپیسٹنس	5.12	
151	اور لاپلاس مساوات	پوئسن	6
153	مسئلہ یکتائی	6.1	
154	لاپلاس مساوات خطی ہے	6.2	
155	نلکی اور کروی محدد میں لاپلاس کی مساوات	6.3	
156	لاپلاس مساوات کمے حل	6.4	
162	پوئسن مساوات کے حل کی مثال	6.5	
165	لاپلاس مساوات کا ضربی حل	6.6	
172	عددی دہرانے کا طریقہ	6.7	
177		سوالات	7
177	توانائی باب کے سوالات	7.1	
		7.2	
		7.3	

عنوان

باب 6

پوئسن اور لاپلاس مساوات

گاوس کے قانون کی نقطہ شکل

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

یں E = abla V اور حاصل جواب میں $D = \epsilon E$ میں $D = \epsilon E$

$$\nabla \cdot (\epsilon \mathbf{E}) = -\nabla \cdot (\epsilon \nabla V) = \rho_h$$

لعيني

$$\nabla \cdot \nabla V = -\frac{\rho_h}{\epsilon}$$

حاصل ہوتاہے جہاں ہر طرف یکساں اخاصیت کے خطے میں €اٹل قیمت رکھتا ہے۔مساوات 6.2 پو کسن 2مساوات کہلاتا ہے۔

$$A=A_x a_x + A_y a_y + A_z a_z$$
آئيں کار تيسی محدد ميں پو نسن مساوات کی شکل حاصل کریں۔ یاد رہے کہ کسی بھی متغیرہ $abla \cdot A=rac{\partial A_x}{\partial x}+rac{\partial A_y}{\partial y}+rac{\partial A_z}{\partial z}$

کے برابر ہوتاہے۔اب چونکہ

$$\nabla V = \frac{\partial V}{\partial x} a_{X} + \frac{\partial V}{\partial y} a_{Y} + \frac{\partial V}{\partial z} a_{Z}$$

کے برابر ہے للذا

(6.3)
$$\nabla \cdot \nabla V = \frac{\partial}{\partial x} \left(\frac{\partial V}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial V}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\partial V}{\partial z} \right)$$
$$= \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

ہو گا۔

باب 6. پوئسن اور لاپلاس مساوات

عموماً $abla\cdot
abla$ کو abla کی کار تبیسی شکل abla می کار تبیسی شکل abla

(6.4)
$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho_h}{\epsilon}$$

حاصل ہوتی ہے۔

 $ho_h = 0$ کی حیارج کثافت کی غیر موجودگی، لینی $ho_h = 0$ کی صورت میں مساوات

$$(6.5) \nabla^2 V = 0$$

صورت اختیار کرلے گی جے لاپلاس 3 مساوات کہتے ہیں۔ جس جم کے لئے لاپلاس کی مساوات لکھی گئی ہو اس جم میں تجمی چارج کثافت صفر ہوتا ہے البتہ اس جم کی سرحد پر نقطہ چارج کیا فت پائی جاسکتیں ہیں۔ عموماً سطح پر موجود چارج سے جم میں پیدامیدان ہی حاصل کر نامطلوب ہوتا ہے۔ کارشیسی محدد میں لاپلاس کی مساوات

(6.6)
$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

صورت رکھتی ہے۔ $abla^2$ کو لاپلاسی عامل 4 کہا جاتا ہے۔

 $abla^2 V = 0$ ہو کہ جھ کھی ہو سکتی ہے اور اس کے سرحد پر کسی اللہ سماوات کہتا ہے کہ کسی کھی ہو سکتی ہے اور اس کے سرحد پر کسی قسم کا چارج ہو سکتا ہے۔ یہ ایک دلچیپ حقیقت ہے۔ جم کے سرحد پر عموماً ایک یا ایک سے زیادہ موصل سطحیں ہوتی ہیں جن پر برتی دباو V_1 ، V_0 وغیرہ پایا جاتا ہے اور جم کے اندر میدان کا حصول درکار ہوتا ہے۔ کبھی کبھار موصل سطح پر چارج یا جاتا ہے اور جم کے اندر میدان درکار ہوگا۔ اس طرح کبھی کبھار سرحد پر ایک جگہ چارج اور اس پر دوسری جگہ برتی دباو اور اس پر تیسرے جگہ عمودی بہاو دیا گیا ہوگا جبکہ جم کے اندر کے متغیرات درکار ہوں گے۔ اس کے برعکس ایسا بھی ممکن ہے کہ جم میں میدان یا برتی دباو معلوم ہو اور ان معلومات سے سرحد پر چارج یا بہاو یا برتی دباو حاصل کرنا ضروری ہوگا۔

یہاں یہ بتلانا ضروری ہے کہ V = 0 لاپلاس مساوات کا حل ہے۔یہ حل برقی دباو کی عدم موجود گی کو ظاہر کرتی ہے۔ہمیں عموماً ایسے مسکلوں سے دلچیسی ہوتی ہے جہاں برقی دباو پائی جائے۔اس لئے لاپلاس مساوات کے اس حل کو ہم عموماً نظرانداز کریں گے۔

ہم نے لاپلاس کی مساوات برقی دباو کے لئے حاصل کی۔ دیکھا یہ گیا ہے کہ انجینئری کے دیگر شعبوں میں کئی متغیرات لاپلاس کے مساوات پر پورا اترتے ہیں۔ یہ مساوات حقیقی اہمیت کا حامل ہے۔

اس باب میں ہم ایسی کئی مثالیں دیکھیں گے لیکن پہلے یہ حقیقت جاننا ضروری ہے کہ مساوات 6.6 کا کوئی بھی جواب ان تمام اقسام کے سرحدی معلومات کے لئے درست ہو گا۔ یہ انتہائی تشویشناک بات ہو گی اگر دو مختلف طریقوں سے لاپلاس مساوات کے جوابات حاصل کرنے کے بعد معلوم ہو کہ ان میں سے ایک ٹھیک اور دوسرا غلط جواب ہے۔آئیں اس حقیقت کا ثبوت دیکھیں کہ کسی بھی سرحدی حقائق کو مد نظر رکھتے ہوئے لاپلاس مساوات کا صرف اور صرف ایک ہی جواب حاصل ہوتا ہے۔

Laplace equation³ aplacian operator⁴

6.1. مسئلہ یکتائی

6.1 مسئلہ یکتائی

تصور کریں کہ ہم دو مختلف طریقوں سے لاپلاس مساوات کے دو جوابات V_1 اور V_2 حاصل کرتے ہیں۔ یہ دونوں جوابات لاپلاس مساوات پر پورااترتے ہیں لہذا

$$\nabla^2 V_1 = 0$$
$$\nabla^2 V_2 = 0$$

لکھا جا سکتا ہے جس سے

$$(6.7) \nabla^2(V_1 - V_2) = 0$$

حاصل ہوتا ہے۔اب اگر سر حدیر برتی دباو $V_{
m s}$ ہوتب دونوں جوابات سر حدیریہی جواب دیں گے لیعنی سر حدیر

$$V_{1s} = V_{2s} = V_s$$

يا

$$V_{1s}-V_{2s}=0$$

ہو گا۔ صفحہ 109 پر مساوات 4.80

$$\nabla \cdot (V\boldsymbol{D}) = V(\nabla \cdot \boldsymbol{D}) + \boldsymbol{D} \cdot (\nabla V)$$

کا ذکر کیا گیا جو کسی بھی مقداری V اور کسی بھی سمتیہ $m{D}$ کے لئے درست ہے۔موجودہ استعال کے لئے ہم V_1-V_2 کو مقداری اور V_1-V_2 کو مقداری اور $\nabla(V_1-V_2)$ کو مقداری اور کسی بھی سمتیہ لیتے ہوئے

$$\nabla \cdot [(V_1 - V_2)\nabla(V_1 - V_2)] = (V_1 - V_2)[\nabla \cdot \nabla(V_1 - V_2)] + \nabla(V_1 - V_2) \cdot \nabla(V_1 - V_2)$$
$$= (V_1 - V_2)[\nabla^2(V_1 - V_2)] + [\nabla(V_1 - V_2)]^2$$

حاصل ہوتا ہے جس کا تکمل پورے حجم کے لئے

(6.8)
$$\int_{-\infty} \nabla \cdot [(V_1 - V_2)\nabla(V_1 - V_2)] dh = \int_{-\infty} (V_1 - V_2)[\nabla^2(V_1 - V_2)] dh + \int_{-\infty} [\nabla(V_1 - V_2)]^2 dh$$

ہو گا۔صفحہ 83 پر مساوات 3.43 مسئلہ پھیلاو بیان کرتا ہے جس کے مطابق کسی بھی حجمی تکمل کو بند سطی تکمل میں تبدیل کیا جا سکتا ہے جہاں حجم کی سطح پر سطی تکمل حاصل کیا جاتا ہے۔یوں مندرجہ بالا مساوات کے بائیں ہاتھ کو سطی تکمل میں تبدیل کرتے ہوئے

$$\int_{-\infty} \nabla \cdot \left[(V_1 - V_2) \nabla (V_1 - V_2) \right] \mathrm{d}h = \oint_{-\infty} \left[(V_{1s} - V_{2s}) \nabla (V_{1s} - V_{2s}) \right] \cdot \mathrm{d}S = 0$$

حاصل ہوتا ہے جہاں سر حدی سطح پر $V_{1s}=V_{2s}=0$ ہونے کی بنا پر $V_{1s}=V_{2s}=0$ ہونے کی بنا پر والا ہوتا ہے۔ میاوات 6.8 میں دائیں ہاتھ میں میاوات 6.8 کے تحت $\nabla^2(V_1-V_2)=0$ ہے اور صفر کا تکمل صفر ہی ہوتا ہے۔ اس طرح میاوات 6.8 سے

$$\int_{\mathcal{S}} \left[\nabla (V_1 - V_2) \right]^2 \mathrm{d}h = 0$$

اب 6. پوئسن اور لاپلاس مساوات

کسی بھی تکمل کا جواب صرف دو صور توں میں صفر کے برابر ہو سکتا ہے۔ پہلی صورت یہ ہے کہ پچھ خطے میں تکمل کی قیمت مثبت اور پچھ خطے میں اس کی قیمت مثبت اور پچھ خطے میں اس کی قیمت مثنی ہو۔ اگر مثبت اور منفی جھے بالکل برابر ہوں تب تکمل صفر کے برابر ہوگا۔ موجودہ صورت میں $[\nabla(V_1-V_2)]^2$ کا تکمل لیا جا رہے ہے اور کسی بھی متغیر کا مربع کسی صورت منفی نہیں ہو سکتا للذا موجودہ تکمل میں ایسا ممکن نہیں ہے۔ تکمل صفر ہونے کی دوسری صورت یہ ہے کہ صفر کا تکمل علی حاصل کیا جا رہا ہو للذا

$$[\nabla (V_1 - V_2)]^2 = 0$$

ہی ہو گا یعنی

$$\nabla(V_1 - V_2) = 0$$

کے برابر ہے۔

اب $\nabla (V_1 - V_2) = 0$ کا مطلب ہے کہ $V_1 - V_2$ کی ڈھلان ہر صورت صفر کے برابر ہے۔ یہ تب ہی ممکن ہے جب $\nabla (V_1 - V_2) = 0$ قیت کسی محدد کے ساتھ تبدیل نہ ہو یعنی اگر حکمل کے پورے خطے میں

$$V_1-V_2=$$
 اٹل قیمت

ہو۔ جم کے سرحد پر بھی ہے درست ہو گا۔ مگر سرحد پر

$$V_1 - V_2 = V_{1s} - V_{2s} = 0$$

کے برابر ہے للذایہ اٹل قیمت از خود صفر ہے۔ یوں

$$(6.9) V_1 = V_2$$

ہو گا۔اس کا مطلب ہے کہ دونوں جوابات بالکل برابر ہیں۔

مسئلہ میکائی کو پو نسن مساوات کے لئے بھی بالکل اسی طرح ثابت کیا جا سکتا ہے۔ پو نسن مساوات کے دو جوابات V_1 اور V_2 پو نسن مساوات پر پورا $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$ اور $\nabla^2 V_2 = -\frac{\rho_h}{\epsilon}$ اور بھی $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$ مسئلہ میکت ہیں جن سے $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$ ماصل ہوتا ہے۔ سرحد پر اب بھی $\nabla^2 V_2 = -\frac{\rho_h}{\epsilon}$ ماصل ہوتا ہے۔ سرحد پر اب بھی $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$ میہاں سے آگے ثبوت بالکل میکائی لاپلاس کی ثبوت کی طرح ہے۔ $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$ میہاں سے آگے ثبوت بالکل میکائی لاپلاس کی ثبوت کی طرح ہے۔

مئلہ یکنائی کے تحت سرحدی حقائق کے لئے حاصل کئے گئے پوئٹن یالاپلاس مساوات کے جوابات ہر صورت برابر ہوں گے۔یہ ممکن نہیں کہ دو مختلف جوابات حاصل کئے جائیں۔

6.2 لاپلاس مساوات خطی ہر

تصور کریں کہ سرحدی شرائط لا گو کرنے کے بغیر لاپلاس مساوات کے دوحل V_1 اور V_2 حاصل کئے جائیں۔ یوں

$$\nabla^2 V_1 = 0$$

$$\nabla^2 V_2 = 0$$

لکھا جا سکتا ہے جن سے

$$\nabla^2(c_1 V_1 + c_2 V_2) = 0$$

مجمی لکھا جا سکتا ہے جہاں c₁ اور c₂ مستقل ہیں۔اس حقیقت کو یوں بیان کیا جاتا ہے کہ لاپلاس مساوات خطمی ⁵ہے۔

6.3 نلکی اور کروی محدد میں لاپلاس کی مساوات

نکی محدد میں ڈھلان کی مساوات صفحہ 101 پر مساوات 4.54 دیتا ہے جس سے

(6.10)
$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial V}{\partial z} \mathbf{a}_{z}$$
$$= -E_{\rho} \mathbf{a}_{\rho} - E_{\phi} \mathbf{a}_{\phi} - E_{z} \mathbf{a}_{z}$$

کھتے ہیں جہاں $E = -\nabla V$ کا استعال کیا گیا۔ نگلی محدد میں پھیلاو کی مساوات صفحہ 80 پر مساوات 3.37 دیتا ہے۔اس مساوات کو سمتیہ E کے لئے

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\rho} \frac{\partial (\rho E_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial E_{\phi}}{\partial \phi} + \frac{\partial E_{z}}{\partial z}$$

E=abla V اور دائیں ہاتھ E=abla V اور دائیں ہاتھ مساوات E=abla V

$$\nabla \cdot \nabla V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho} \frac{\partial}{\partial \phi} \left(\frac{1}{\rho} \frac{\partial V}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(\frac{\partial V}{\partial z} \right)$$

حاصل ہوتا ہے جہال دونوں جانب منفی علامت کٹ جاتے ہیں۔اس کو یوں

(6.11)
$$\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \rho} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left(\frac{\partial^2 V}{\partial \rho} \right) + \frac{\partial^2 V}{\partial z^2} \quad V = \frac{1}{\rho} \frac{\partial^2 V}{\partial \rho} \quad V = \frac{1}{\rho} \frac{\partial^2 V}{\partial$$

لکھا جا سکتا ہے جو نلکی محدد میں لابلاس مساوات ہے۔

كروى محدد ميں بالكل اسى

(6.12)
$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 V}{\partial \phi^2}$$

جبكه عمومى محدد ميں

(6.13)
$$\nabla^2 V = \frac{1}{k_1 k_2 k_3} \left[\frac{\partial}{\partial u} \left(\frac{k_2 k_3}{k_1} \frac{\partial V}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{k_1 k_3}{k_2} \frac{\partial V}{\partial v} \right) + \frac{\partial}{\partial w} \left(\frac{k_1 k_2}{k_3} \frac{\partial V}{\partial w} \right) \right]$$

حاصل کی جاسکتی ہے۔

مشق 6.1: مساوات 6.12 حاصل کریں۔

6.4 لاپلاس مساوات کے حل

لاپلاس مساوات حل کرنے کے کئی طریقے ہیں۔ سادہ ترین مسکلے، سادہ تکمل سے ہی حل ہو جاتے ہیں۔ ہم اسی سادہ تکمل کے طریقے سے کئی مسکلے حل کریں گے۔ یہ طریقہ صرف اس صورت قابل استعال ہوتا ہے جب میدان یک سمتی ہو یعنی جب یہ محدد کے تین سمتوں میں سے صرف ایک سمت میں تبدیل ہوتا ہو۔ چو نکہ اس کتاب میں محدد کے تین نظام استعال کئے جارہے ہیں المذا معلوم ایسا ہوتا ہے کہ کل نو مسئلے ممکن ہیں۔ در حقیقت ایسا نہیں ہے۔ کار تیسی محدد میں یہ سمت میں تبدیل ہوتے میدان کا حل اس طرح یہ محدد سے کسی زاویے پر سیدھی کیر کی سمت میں تبدیل ہوتے میدان کا حل اس طرح میدان کا حل اس طرح میدان کا حل اس محدد میں تبدیل ہوتے میدان اور یہ سمت میں تبدیل ہوتے میدان ہی جا گئل اسی طرح حل ہو گا۔ یوں کار تیسی محدد میں کسی بھی سمت میں تبدیل ہوتے میدان کے حل بالکل ایک جیسے ہوں گے لہذا کار تیسی محدد میں صرف ایک مسئلہ حل کرنادرکار ہے۔ نگی محدد میں و مسئلے پائے جاتے کے ساتھ تبدیل ہوتے میدان کو ہم کار تیسی محدد میں دکھے لیں گے لہذا یہاں کل دو مسئلے حل کرنادرکار ہے جبکہ کروی محدد میں بھی دو مسئلے پائے جاتے ہیں۔ آئیں ان تمام کو باری باری حل کریں۔

مثال 6.1: تصور کریں کہ V صرف x محدد کے ساتھ تبدیل ہوتی ہو۔ دیکھتے ہیں کہ الی صورت میں لاپلاس مساوات کا حل کیا ہو گا۔اس پر بعد میں غور کریں گے کہ حقیقت میں الی کون سی صورت ہو گی کہ V صرف x محدد کے ساتھ تبدیل ہوتا ہو۔الی صورت میں لاپلاس مساوات

$$\frac{\partial^2 V}{\partial x^2} = 0$$

شکل اختیار کر لے گا۔ چونکہ V کی قیمت صرف x پر منحصر ہے لہذا مندرجہ بالا مساوات کو

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = 0$$

کھا جا سکتا ہے۔ پہلی بار تکمل کیتے ہوئے

$$\frac{\mathrm{d}V}{\mathrm{d}x} = A$$

حاصل ہوتا ہے۔ دوبارہ تکمل لیتے ہوئے

$$(6.14) V = Ax + B$$

حاصل ہوتا ہے جو لاپلاس مساوات کا حل ہے۔ یہ کسی بھی سید ھی کیبر کی سمت میں تبدیل ہوتے برقی دباو کے مسئلے کو ظاہر کرتا ہے جہاں اس کلیر کو x کہا جائے گا۔ A اور B دو درجی تکمل کے مستقل ہیں جن کی قیمتیں سر حدی شرائط کی مدد سے حاصل کی جاتی ہیں۔

آئیں مساوات 6.14 کا مطلب سمجھیں۔اس کے مطابق برقی د باو کا دار ومدار صرف x پر ہے جبکہ y اور z کا اس کی قیمت پر کوئی اثر نہیں۔x کی کسی بھی قیمت پر لیغنی $x=x_0$ فیمنٹ میں کہ مساوات 6.14 میں متوازی چادر $x=x_0$ فیمنٹر کا حل ہے۔

ہم ایسے کپیسٹر کے دونوں چادروں پر برقی دباواور چادروں کا x محدد پر مقام بیان کرتے ہوئے A اور B کی قیمتیں حاصل کر سکتے ہیں۔یوں اگر کپیسٹر کی پہلی چادر x1 پر ہے جبکہ اس پر برقی دباو V1 ہے اور اسی طرح دوسری چادر x2 پر ہے جبکہ اس پر برقی دباو V2 ہے تب

$$V_1 = Ax_1 + B$$
$$V_2 = Ax_2 + B$$

ہو گا جس سے

$$A = \frac{V_1 - V_2}{x_1 - x_2}$$
$$B = \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$$

حاصل ہوتے ہیں۔ یوں چادروں کے در میان

(6.15)
$$V = \left(\frac{V_1 - V_2}{x_1 - x_2}\right) x + \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$$

ہو گا۔

اگر ہم پہلی چادر کو x=0 اور دوسری چادر کو d پر تصور کرتے جبکہ اسی ترتیب سے ان کی برقی دباو کو صفر اور V_0 کہتے تب ہمیں

$$(6.16) V = \frac{V_0 x}{d}$$

حاصل ہوتا جو نسبتاً آسان مساوات ہے۔

باب 5 میں ہم نے سطحی چارج کثافت سے بالترتیب برقی میدان، برقی دباو اور کپیسٹنس حاصل کئے۔ موجودہ باب میں ہم پہلے لا پلاس کے مساوات $E = -\nabla V$ ماوات کے حل سے برقی دباو حاصل کرتے ہیں۔ برقی دباو سے میدان بذریعہ $V = -\nabla V$ اور بہاو بذریعہ V = C = Q حاصل کرتے ہوئے سطحی چارج کثافت سے سطح پر کل چارج حاصل کرتے ہوئے V = C = Q حاصل کیا جاتا ہے۔ ان اقدام کو بالترتیب دوبارہ بیش کرتے ہیں۔

- لا پلاس مساوات حل كرتے ہوئے برقى دباو V حاصل كريں۔
- تکمل کے سرحدی شرائط سے تکمل کے مستقل کی قیمتیں حاصل کریں۔
- $oldsymbol{\Phi}$ اور $oldsymbol{D}=oldsymbol{\epsilon}oldsymbol{E}$ عاصل کریں۔
- $m{D}_S = D_n m{a}_N$ عاصل کریں جو سطح کے عمودی ہو گا۔
- چونکہ سطح پر سطحی چارج کثافت اور عمودی برقی بہاو برابر ہوتے ہیں لہذا $ho_S=D_n$ ہو گا۔ مثبت چارج کثافت کی صورت میں برقی بہاو کا موصل عادر سے اخراج جبکہ منفی چارج کثافت کی صورت میں برقی بہاو کا چادر میں دخول ہو گا۔
 - سطح پر چارج بذریعه سطحی تکمل حاصل کریں۔
 - $C = rac{Q}{V}$ ہوگا۔

آئیں ان اقدام کو موجودہ مثال پر لا گو کریں۔

چونکہ موجودہ مثال میں مساوات 6.16 کے تحت

$$V = \frac{V_0 x}{d}$$

ہے للذا

$$oldsymbol{E} = -
abla V = -rac{V_0}{d}oldsymbol{a}_{\mathrm{X}}$$

اور

$$oldsymbol{D} = -\epsilon rac{V_0}{d} oldsymbol{a}_{ ext{X}}$$

چو کلہ بہاو کی سمت مثبت سے منفی چادر کی جانب ہوتی ہے للذا مثبت چادر x=d پر جبکہ منفی چادر x=0 پر ہے۔ مثبت چادر پر

$$\left. \boldsymbol{D}_{\mathrm{S}} = \boldsymbol{D} \right|_{\mathrm{x}=d} = -\epsilon \frac{V_0}{d} \boldsymbol{a}_{\mathrm{X}}$$

کے برابر ہے۔چونکہ مثبت چادر کا

$$a_N = -a_X$$

ہے للذا برقی بہاو چادر سے خارج ہو رہا ہے۔ یوں

$$\rho_S = \epsilon \frac{V_0}{d}$$

ہو گا۔ا گر چادر کی سطح کار قبہ S ہو تب

$$Q = \int_{S} \rho_{S} \, dS = \int \epsilon \frac{V_{0}}{d} \, dS = \frac{\epsilon V_{0} S}{d}$$

ہو گا جس سے

$$C = \frac{\epsilon S}{d}$$

حاصل ہوتا ہے۔صفحہ 140 پر مساوات 5.54 یہی جواب دیتا ہے۔

اگر مندرجہ بالا مثال میں کیسٹر کو y یا z محدو پر رکھا جاتا تو کیسٹنس کی قیت یہی حاصل ہوتی للذاکار تیسی محدد کے لئے ایک مثال حل کر لیناکافی ہے۔ نکلی محدد میں z کے ساتھ تبدیل ہوتے برتی دباو کو حل کرنے سے کوئی نئی بات سامنے نہیں آتی۔ یہ بالکل کار تیسی محدد کے مثال کی طرح ہی ہے للذا ہم باری باری وادر φ کے ساتھ تبدیل ہوتے برتی دباو کے مسئلے حل کرتے ہیں۔

مثال 6.2: اس مثال میں صرف p کے ساتھ تبدیل ہوتے برقی دباو پر غور کرتے ہیں۔ایسی صورت میں لاپلاس کی مساوات

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) = 0$$

$$\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho \frac{\mathrm{d}V}{\mathrm{d}\rho} \right) = 0$$

صورت اختیار کر لے گی۔ یوں یا

$$\frac{1}{\rho} = 0$$

ہو گا جس سے

$$\rho = \infty$$

حاصل ہوتا ہے اور یا

یا

$$\frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho \frac{\mathrm{d}V}{\mathrm{d}\rho} \right) = 0$$

ہو گا۔اس تفر تی مساوات کو بار بار تھمل لے کر حل کرتے ہیں۔ پہلی بار تھمل لیتے ہوئے $\rho \frac{\mathrm{d} V}{\mathrm{d} \rho} = A$

 $dV = A \frac{d\rho}{\rho}$

حاصل ہوتا ہے۔ دوسری بار تکمل سے

$$V = A \ln \rho + B$$

حاصل ہوتا ہے۔ یہ ہم قوہ سطحیں نککی شکل کے ہیں۔ یوں یہ مساوات محوری تار کا برقی دباو دیتی ہے۔ ہم محوری تار کے بیر ونی تار $ho=\rho$ کو برقی زمین اور اندرونی تار ho=a کو V_0 برقی دباو پر تصور کرتے ہوئے

$$(6.20) V = V_0 \frac{\ln \frac{b}{\rho}}{\ln \frac{b}{a}}$$

حاصل ہوتا ہے۔ہم جانتے ہیں کہ کسی بھی شکل کے چارج سے لامحدود فاصلے پر برقی دباو صفر ہی ہوتا ہے۔اسی وجہ سے ہم لامحدود فاصلے کو ہی برقی زمین کہتے آرہے ہیں۔یوں لاپلاس مساوات کا پہلا حل یعنی مساوات 6.18 ہمارے امید کے عین مطابق ہے۔

مساوات 6.20 کو لے کر آگے بڑھتے ہوئے یوں

$$oldsymbol{E} = -
abla V = rac{V_0}{
ho} rac{1}{\ln rac{b}{a}} oldsymbol{a}_{
ho}$$

اور

$$D_n = D \bigg|_{\rho=a} = \frac{\epsilon V_0}{a \ln \frac{b}{a}}$$
$$Q = \frac{\epsilon V_0 2\pi a L}{a \ln \frac{b}{a}}$$

باب 6. پوئسن اور لاپلاس مساوات

حاصل ہوتے ہیں جن سے

(6.21)
$$C = \frac{2\pi\epsilon L}{\ln\frac{b}{a}}$$

حاصل ہوتا ہے۔ صفحہ 141 پر مساوات 5.55 یہی جواب دیتا ہے۔

ho
eq 0 مساوات 6.17 کو ho = 6 صرب دینے سے بھی مساوات 6.19 حاصل ہوتا ہے۔البتہ یہ ضرب صرف اس صورت ممکن ہے جب ho = 0 ہو۔یاد رہے کہ ho = 0 کی صورت میں ho = 0 ہو گا جو غیر معین ho = 0 ہو گا ہو گا گر ho = 0 ہو۔یاد رہے کہ ho = 0 کی صورت میں صاوات کا حل ہو گا گر معین ho = 0 ہو۔ان حقائق کو سامنے رکھتے ہوئے لاپلاس مساوات کا حل

$$(6.22) V = V_0 \frac{\ln \frac{b}{\rho}}{\ln \frac{b}{a}} \rho \neq 0$$

لکھنا زیادہ درست ہو گا۔

مثال 6.3: اب تصور کرتے ہیں کہ برقی دباو نکلی محدد کے متغیرہ 4 کے ساتھ تبدیل ہوتا ہے۔اس صورت میں لاپلاس مساوات

$$\frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} = 0$$

صورت اختیار کرے گا۔ یہاں بھی پہلا حل ho=
ho حاصل ہوتا ہے۔ ہم یہاں بھی ho=0 کو جواب کا حصہ تصور نہ کرتے ہوئے مساوات کو ho^2 سے ضرب دیتے ہوئے اس سے جان پڑاتے ہیں۔ یوں

$$\frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2} = 0 \qquad \rho \neq 0$$

رہ جاتا ہے۔ دو مرتبہ تکمل لینے سے

$$V = A\phi + B$$

حاصل ہوتا ہے۔الیں دو ہم قوہ سطحیں شکل میں دکھائی گئی ہیں۔آپ دیکھ سکتے ہیں کہ ho=0 کی صورت میں دونوں چادر آپس میں مل جائیں گی اور ان پر مختلف برتی دیاو ممکن نہ ہو گا۔یوں ho=0 قابل قبول جواب نہیں ہے۔یہاں ho=0 کو برتی زمین جبکہ $\phi=\phi$ پر V_0 برتی دیاو کی صورت میں

$$(6.23) V = \frac{V_0 \phi}{\phi_0} \rho \neq 0$$

حاصل ہوتا ہے۔اس سے

$$oldsymbol{E} = -rac{V_0}{\phi_0
ho}oldsymbol{a}_{\phi}$$

حاصل ہوتا ہے۔ان چادروں کے کپیسٹنس کا حصول آپ سے حاصل کرنے کو سوال میں کہا گیا ہے۔

مثال 6.4: کروی محدد میں ⊕ کے ساتھ تبدیلی کو مندرجہ بالا مثال میں دیکھا گیا لہذااسے دوبارہ حل کرنے کی ضرورت نہیں۔ہم پہلے r اور بعد میں € کے ساتھ تبدیلی کے مسلوں کو دیکھتے ہیں۔

یہ زیادہ مشکل مسکلہ نہیں ہے للذاآپ ہی سے سوالات کے جھے میں درخواست کی گئی ہے کہ اسے حل کرتے ہوئے برقی دباو کی مساوات

(6.24)
$$V = V_0 \frac{\frac{1}{r} - \frac{1}{b}}{\frac{1}{a} - \frac{1}{b}}$$

اور کپیسٹنس کی مساوات

$$(6.25) C = \frac{4\pi\epsilon}{\frac{1}{a} - \frac{1}{b}}$$

v=a حاصل کریں جہاں v=b>a پر برقی زمین اور وv=a پر کی دباوہ ہوا وہ م

مثال 6.5: کروی محد د میں 6 کے ساتھ تبدیل ہوتے برقی دیاو کی صورت میں لاہلاس مساوات

$$\frac{1}{r^2 \sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}V}{\mathrm{d}\theta} \right) = 0$$

صورت اختیار کرے گی۔اگرr
eq 0 اور 0
eq 0 ہول تب اس مساوات کو $r^2 \sin heta$ ہوئے ہوئے

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}V}{\mathrm{d}\theta}\right) = 0$$

 $\theta=0$ یا $\theta=0$ ہوں۔اس کے پہلی بار تکمل سے $\sin\theta=0$ یا $\sin\theta=0$ ہوں۔اس کے پہلی بار تکمل سے $\sin\theta$

 $dV = \frac{A d\theta}{\sin \theta}$

حاصل ہوتا ہے۔دوسری بار تکمل سے

(6.28)
$$V = A \int \frac{\mathrm{d}\theta}{\sin \theta} + B = A \ln \left(\tan \frac{\theta}{2} \right) + B$$

حاصل ہوتا ہے۔

یا

ی جم قوه سطحین مخروطی شکل رکھتے ہیں۔اگر $\frac{\pi}{2}$ بال $V=V_0$ اور $\theta=\theta$ پر $\theta=V_0$ ہوں جہاں $V=V_0$ ہے تب جم میں مخروطی شکل رکھتے ہیں۔اگر $V=V_0$ اور $V=V_0$ او

حاصل ہوتا ہے۔

آئیں الی مخروط اور سیدھی سطح کے مابین کپیسٹنس حاصل کریں جہاں مخروط کی نوک سے انتہائی باریک فاصلے پر سیدھی سطح ہو اور مخروط کا محور اس سطح کے عمود میں ہو یہلے برتی شدت حاصل کرتے ہیں۔

(6.30)
$$E = -\nabla V = -\frac{1}{r} \frac{\partial V}{\partial \theta} a_{\theta} = -\frac{V_0}{r \sin \theta \ln \left(\tan \frac{\theta_0}{2} \right)} a_{\theta}$$

مخروط کی سطح پر سطحی چارج کثافت یوں

$$\rho_S = D_n = -\frac{\epsilon V_0}{r \sin \theta_0 \ln \left(\tan \frac{\theta_0}{2}\right)}$$

ہو گا جس سے اس پر چارج

$$Q = -\frac{\epsilon V_0}{\sin \theta_0 \ln \left(\tan \frac{\theta_0}{2}\right)} \int_0^\infty \int_0^{2\pi} \frac{r \sin \theta_0 \, d\phi \, dr}{r}$$

ہو گا۔ تکمل میں رداس کا حد لا محدود ہونے کی وجہ سے چارج کی قیت بھی لا محدود حاصل ہوتی ہے جس سے لا محدود کیبیسٹنس حاصل ہو گا۔ حقیقت میں محدود جسامت کے سطحیں ہی پائی جاتی ہیں للذا ہم رداس کے حدود 0 تا 17 لیتے ہیں۔ایس صورت میں

(6.31)
$$C = \frac{2\pi\epsilon r_1}{\ln\left(\cot\frac{\theta_0}{2}\right)}$$

حاصل ہوتا ہے۔ یاد رہے کہ ہم نے لامحدود سطح سے شروع کیا تھاللذا چارج کی مساوات بھی صرف لامحدود سطح کے لئے درست ہے۔اس طرح مندرجہ بالا مساوات کپیسٹنس کی قریبی قیت ہوگی ناکہ بالکل درست قیت۔

6.5 پوئسن مساوات کے حل کی مثال

پوکسن مساوات تب حل کیا جا سکتا ہے جب ho_h معلوم ہو۔ حقیقت میں عموماً سرحدی برقی د باو وغیرہ معلوم ہوتے ہیں اور ہمیں ho_h ہی در کار ہوتی ہے۔ ہم پوکسن مساوات حل کرنے کی خاطر ایسی مثال لیتے ہیں جہال ہمیں ho_h معلوم ہو۔

سلیکان 7 کی پتر کی میں p اور n اقسام کے مواد کی ملاوٹ سے p اور n سلیکان پیدا کیا جاتا ہے۔ایک ہی سلیکان پتر کی میں p اور p اور p خطہ p خطہ p خطہ p اور p خطہ p خطہ p خطہ p اور p خطہ p خطب p خطہ p خطب p خطہ p خطب p خطب

فتم کا ہے۔ مزید ہے کہ دونوں جانب ملاوٹ کی مقدار کیساں ہے۔ آپ کو یاد ہو گا کہ q یا n خطہ ازخود غیر چارج شدہ ہوتا ہے البتہ q خطے میں آزاد احول ور n اور n خطے میں آزاد اکیگر ان n پرے جاتے ہیں۔ آزاد خول اور آزاد الکیگر ان q جانب پائے جاتے ہیں۔ یوں اس لیحے ہی آزاد خول q جانب جبہ آزاد الکیگر ان n جانب پائے جاتے ہیں۔ یوں اس لیح ہی آزاد خول q جانب اور آزاد الکیگر ان n وقت آزاد خول q جانب نفوذ q جانب نفوذ q جانب با اس خطب کا چارج کے اس حرکت کے جاتے ہیں۔ یوں اس لیح ہی آزاد خول q جانب اور آزاد الکیگر ان q وجانب نفوذ q کا خور ہو جاتا ہے۔ یوں دو چارج کی طرح ، سرحد کے دائیں لیعنی q جانب مثبت جبکہ اس کے بائیں جانب منفی چارج جمع ہو جاتا ہے۔ یوں دو چارد کیسیٹر پر چارج کی طرح ، سرحد کے دائیں لیعنی q جانب مثبت جبکہ اس کے بائیں جانب منفی چارج جمع ہو جاتا ہے۔ یوں دو چارد کیسیٹر پر چارج کی طرح ، سرحد کے دائیں لیعنی q جہ بائیں ہے دائیں جانب آزاد دخول کے حرکت اور دائیں جانب آزاد الکیٹر ان کے حرکت کو در میان برقی میدان کی طرح ، سرحد کے دائیں جانب آزاد الکیٹر ان کے حرکت کو دو کا گا انباز بڑھتا رہے گا جس سے بائیں جانب آزاد الکیٹر ان کے حرکت کو دو دو کی تھے البتہ برقی سکون کی حالت اختیار کرنے کے بعد صاف ظاہر ہے کہ سرحد کے دائیں جانب شبت جبکہ اس کے بائیں جانب شبت جبکہ اس کے بائیں جانب منفی چارج کیا جانب شبت چارج دونوں خالت اختیار کرنے کے بعد صاف ظاہر ہے کہ سرحد کے دائیں جانب شبت جبکہ اس کے بائیں جانب منفی چارج کے وارج شری کی وجہ سے ہے۔ سرحد کے دائیں جانب شبت جارہ دونوں جانب منفی چارج کے جارج سے کی وہ دسے ہے۔ سرحد کے دائیں جانب شبت جارہ دونوں جانب منفی چارج کے جارج سے کی دونوں جانب میں مدے خور ہیں کی دور سے ہے۔ سرحد کے دائیں ہوتے ہیں سرحد کے دونوں جانب سرحد کے دونوں جانب سرحد کے قریب بی رکھتے ہیں۔

سر حد کے دونوں جانب چارج کے انبار کو شکل میں د کھایا گیا ہے۔اس طرح کے انبار کو کئی مساوات سے ظاہر کرنا ممکن ہے جن میں غالباً سب سے سادہ مساوات

$$\rho = 2\rho_0 \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a}$$

ہے جہاں زیادہ سے زیادہ چارج کثافت ho_0 ہے جو ho_0 ہے جو ho_0 ہے جہاں زیادہ سے زیادہ جات کے لئے لو کس مساوات

$$\nabla^2 V = -\frac{2\rho_0}{\epsilon} \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a}$$

لعيني

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{2\rho_0}{\epsilon} \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a}$$

حل کریں۔ پہلی بار تکمل لیتے ہوئے

$$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{2\rho_0 a}{\epsilon} \operatorname{sech} \frac{x}{a} + A$$

حاصل ہوتا ہے جسے

$$E_x = -\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{2\rho_0 a}{\epsilon} \operatorname{sech} \frac{x}{a} - A$$

بھی لکھا جا سکتا ہے۔ تکمل کے متعقل A کی قبت اس حقیقت سے حاصل کی جاسکتی ہے کہ سرحدسے دور کسی قشم کا چارج کثافت یا برقی میدان نہیں پایا جاتا لہٰذا $x \to +\infty$ ہو گا جس ہے $x \to +\infty$ حاصل ہوتا ہے لہٰذا

(6.33)
$$E_x = -\frac{\mathrm{d}V}{\mathrm{d}x} = -\frac{2\rho_0 a}{\epsilon} \operatorname{sech} \frac{x}{a}$$

کے برابر ہے۔ دوسری بار تکمل لیتے ہوئے

$$V = \frac{4\rho_0 a^2}{\epsilon} \tan^{-1} e^{\frac{x}{a}} + B$$

حاصل ہوتا ہے۔ ہم برقی زمین کو عین سرحد پر لیتے ہیں۔ایسا کرنے سے $B=-rac{
ho_0 a^2\pi}{\epsilon}$ حاصل ہوتا ہے۔یوں

$$V = \frac{4\rho_0 a^2}{\epsilon} \left(\tan^{-1} e^{\frac{x}{a}} - \frac{\pi}{4} \right)$$

کے برابر ہو گا۔

شکل میں مساوات 6.32، مساوات 6.33 اور مساوات 6.34 د کھائے گئے ہیں جو بالترتیب تحجمی چارج کثافت، برقی میدان کی شدت اور برقی د باو دیتے ہیں۔

سر حد کے دونوں جانب کے مابین برقی دباو V_0 کو مساوات 6.34 کی مدد سے یوں حاصل کیا جا سکتا ہے۔

$$(6.35) V_0 = V_{x \to +\infty} - V_{x \to -\infty} = \frac{2\pi \rho_0 a^2}{\epsilon}$$

سرحد کے ایک جانب کل چارج کو مساوات 6.32 کی مددسے حاصل کیا جاسکتا ہے۔ یوں کل مثبت چارج

(6.36)
$$Q = S \int_0^\infty 2\rho_0 \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a} dx = 2\rho_0 a S$$

حاصل ہوتا ہے جہال ڈاپوڈ کا رقبہ عمودی تراش S اسے مساوات 6.35 سے می قیت مساوات 6.36 میں پر کرنے سے

$$Q = S\sqrt{\frac{2\rho_0 \epsilon V_0}{\pi}}$$

کھا جا سکتا ہے۔اس مساوات سے کیپیسٹنس کی قیت $C=rac{Q}{V_0}$ کھا جا سکتا ہے۔اس مساوات سے کیپیسٹنس کی قیت کے

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t} = C\frac{\mathrm{d}V_0}{\mathrm{d}t}$$

سے

$$C = \frac{dQ}{dV_0}$$

لکھا جا سکتا ہے للمذا مساوات 6.37 کا تفرق لیتے ہوئے

$$C = \sqrt{\frac{\rho_0 \epsilon}{2\pi V_0}} S = \frac{\epsilon S}{2\pi a}$$

حاصل ہوتا ہے۔اس مساوات کے پہلے جزوسے ظاہر ہے کہ برقی دباو بڑھانے سے کپیسٹنس کم ہوگی۔مساوات کے دوسرے جزوسے یہ اخذ کیا جا سکتا ہے کہ ڈابوڈ بالکل ایسے دو چادر کپیسٹر کی طرح ہے جس کے چادر کارقبہ S اور چادروں کے مابین فاصلہ 2πa ہو۔یوں برقی دباوسے کپیسٹنس کے گھنے کو یوں سمجھا جا سکتا ہے کہ برقی دباو بڑھانے سے a بڑھتا ہے۔

6.6 لاپلاس مساوات كا ضربى حل

گزشتہ تھے میں صرف ایک محدد کے ساتھ تبدیل ہوتے برقی دباو کے لاپلاس مساوات پر غور کیا گیا۔اس تھے میں ایسے میدان پر غور کیا جائے گا جہاں برقی دباو ایک سے زیادہ محدد کے ساتھ تبدیل ہوتا ہو۔ایسی صورت میں لاپلاس مساوات

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

صورت اختیار کرے گا۔ تصور کریں کہ ایسی مساوات کے حل کو دو تفاعل X(x) اور Y(y) کے حاصل ضرب X(x) کی شکل میں لکھا جا سکتا ہے جہاں X تفاعل کا آزاد متغیرہ صرف X اور Y تفاعل کا آزاد متغیرہ صرف X اور Y تفاعل کا آزاد متغیرہ صرف X اور X اور دوسرانسبتاً مشکل حل X اور X اور کرتا ہے۔ ایسا ہی ایک سادہ حل X اور X اور دوسرانسبتاً مشکل حل X اور کر اور کرتا ہے۔ ایسا ہی ایک سادہ حل X اور X اور کر ساتھ ہیں۔ ہم انجانے طور پر رد کر رہے ہو سکتے ہیں۔ ہم X اور X اور X اور X سکتے ہیں۔ ہم X اور X اور کرتا ہے۔ ایسا کی سکتے ہیں۔ ہم انجانے طور پر رد کر رہ کرتا ہے۔ ایسا کی سکتے ہیں۔ ہم X اور X ا

$$V_1 = X_1(x)Y_1(y) = 1x$$

 $V_2 = X_2(x)Y_2(y) = 1y$

کھاجا سکتا ہے جہاں $Y_1(y)=1$ اور $Y_2(x)=1$ برابر ہیں۔ یوں ہم دیکھتے ہیں کہ ہم x کو دو نفاعل کے ضرب کی صورت میں لکھ سکتے ہیں اور اس طرح y کو بنا پر ان جوابات کا مجموعہ y=1 بھی لاپلاس مساوات کا طرح y کو بھی دو نفاعل کے ضرب کی صورت میں لکھ سکتے ہیں۔ لاپلاس مساوات خطی ہونے کی بنا پر ان جوابات کا مجموعہ y=1 بھی لاپلاس مساوات کا حل ہو گا۔ یوں آپ د کیھ سکتے ہیں کہ ہم نے y=1 جواب کو ہر گزرد نہیں کیا۔ ایسے ہی ثبوت سے ہم د کیھ سکتے ہیں کہ ہم نے y=1 جواب کو ہر گزرد نہیں کیا۔ ایسے ہی ثبوت سے ہم د کیھ سکتے ہیں کہ ہم نے y=1 جواب کو بھی رد نہیں کیا گیا۔

اب آتے ہیں اصل مسکے پر۔ا گر V=XY مساوات 6.38 کا حل ہو تب

$$\frac{\partial^2 X(x)}{\partial x^2} Y(y) + X(x) \frac{\partial^2 Y(y)}{\partial y^2} = 0$$

ہو گا جسے

$$\frac{1}{X(x)}\frac{\partial^2 X(x)}{\partial x^2} = -\frac{1}{Y(y)}\frac{\partial^2 Y(y)}{\partial y^2}$$

کھا جا سکتا ہے۔ یہاں آئکھیں کھول دینے والی دلیل پیش کرتے ہیں۔ مساوات 6.30 میں بائیں جانب صرف x متغیرہ پایا جاتا ہے جبکہ دائیں جانب صرف y متغیرہ پایا جاتا ہے۔ یہاں آئکھیں کھول دینے والی دلیل پاتھ جوں کا توں رہے گا۔اب مساوات کہتا ہے کہ بائیں اور دائیں ہاتھ ہوں کا توں رہے گا۔اب مساوات کہتا ہے کہ بائیں اور دائیں ہاتھ برابر ہیں۔ ایسا صرف اور صرف اس صورت ممکن ہوگا کہ ناتو x تبدیل کرنے سے دایاں ہاتھ تبدیل ہوتا ہو لعنی اگر دونوں ہاتھ کی مستقل کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل ان کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل ان کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔

$$\frac{1}{X(x)}\frac{\partial^2 X(x)}{\partial x^2} = -\frac{1}{Y(y)}\frac{\partial^2 Y(y)}{\partial y^2} = m^2$$

اس مساوات کو د و اجزاء

$$\frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} = m^2$$
$$\frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} = -m^2$$

(6.41)
$$\frac{\partial^2 X(x)}{\partial x^2} - m^2 X(x) = 0$$
$$\frac{\partial^2 Y(y)}{\partial y^2} + m^2 Y(y) = 0$$

کی صورت میں لکھتے ہوئے باری باری حل کرتے ہیں۔

اس طرز کے مساوات آپ پہلے عل کر چکے ہول گے جہاں جواب اندازے سے لکھتے ہوئے مساوات کو حل کیا جاتا ہے۔اس طریقے کو استعال کرتے ہوئے مساوات 6.41 کے پہلے جزومیں

$$X(x) = e^{\omega x}$$

پر کرتے ہیں۔یوں $\omega^2 e^{\omega x}$ ہو گا لہذا پر کرتے ہیں۔یوں

$$\omega^2 e^{\omega x} - m^2 e^{\omega x} = 0$$

لکھا جائے گا جس سے

 $\omega = \mp m$

حاصل ہو گا۔ س کے دونوں قیمتیں استعال کرتے ہوئے یوں اصل جواب

$$(6.42) X(x) = A'e^{mx} + B'e^{-mx}$$

حاصل ہوتا ہے۔مساوات 6.41 کے دوسرے جزو کا جواب اس طرح

$$(6.43) Y(y) = C\cos my + D\sin my$$

حاصل ہوتا ہے۔ یوں مساوات 6.38 کا پوراحل

(6.44)
$$V = XY = \left(A'e^{mx} + B'e^{-mx}\right)\left(C\cos my + D\sin my\right)$$

لکھا جائے گا۔

آئیں مساوات 6.41 کے حل کو ایک مرتبہ دوبارہ حاصل کریں۔البتہ اس مرتبہ جواب کا اندازہ لگانے کی بجائے ہم ایک ایس ترکیب استعال کریں گے جو انتہائی زیادہ طاقتور ثابت ہو گا اور جو آگے بار بار استعال آئے گا۔

اس ترکیب میں ہم تصور کرتے ہیں کہ X(x) تفاعل کو طاقتی سلسلے 14

(6.45)
$$X(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

کی شکل میں لکھنا ممکن ہے جہاں a2 ،a1 ،a0 وغیرہ طاقتی سلسلے کے مستقل ہیں۔یوں

$$\frac{\partial X}{\partial x} = 0 + a_1 + 2a_2x^1 + 3a_3x^2 + 4a_4x^3 + \dots = \sum_{n=1}^{\infty} na_nx^{n-1}$$

اور

(6.46)
$$\frac{\partial^2 X}{\partial x^2} = 0 + 0 + 2 \times 1a_2 + 3 \times 2a_3x^1 + 4 \times 3a_4x^2 + \dots = \sum_{n=2}^{\infty} n(n-1)a_nx^{n-2}$$

لکھے جا سکتے ہیں۔مساوات 6.45 اور مساوات 6.46 کو مساوات 6.41 کے پہلے جزو میں پر کرتے ہیں

$$2 \times 1a_2 + 3 \times 2a_3x^1 + 4 \times 3a_4x^2 + \dots = m^2 \left(a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots \right)$$

جہاں ہم m^2X کو دائیں ہاتھ لے گئے ہیں۔ یہاں بائیں اور دائیں ہاتھ کے طاقتی سلسلے صرف اس صورت x کے ہر قیمت کے لئے برابر ہو سکتے ہیں جب دونوں جانب x کے برابر طاقت کے ضربیہ 15 مین برابر ہوں ایعنی جب

$$2 \times 1a_2 = m^2 a_0$$

$$3 \times 2a_3 = m^2 a_1$$

$$4 \times 3a_4 = m^2 a_2$$

يا

$$(n+2)(n+1)a_{n+2} = m^2 a_n$$

ہوں۔ جفت ضربیہ کو a_0 کی صورت میں یوں

$$a_{2} = \frac{m^{2}}{2 \times 1} a_{0}$$

$$a_{4} = \frac{m^{2}}{4 \times 3} a_{2} = \left(\frac{m^{2}}{4 \times 3}\right) \left(\frac{m^{2}}{2 \times 1} a_{0}\right) = \frac{m^{4}}{m!} a_{0}$$

$$a_{6} = \frac{m^{6}}{6!} a_{0}$$

لکھا جا سکتا ہے جسے عمومی طور پر

$$a_n = \frac{m^n}{n!} a_0 \qquad (\pi + n)$$

کھا جا سکتا ہے۔ طاق ضربیہ کو a_1 کی صورت میں

$$a_3 = \frac{m^2}{3 \times 2} a_1 = \frac{m^3}{3!} \frac{a_1}{m}$$
$$a_5 = \frac{m^5}{5!} \frac{a_1}{m}$$

لکھا جا سکتا ہے جس سے ان کی عمومی مساوات

$$a_n = \frac{m^n}{n!} \frac{a_1}{m} \qquad (\text{dis} n)$$

لکھی جاسکتی ہے۔انہیں واپس طاقتی سلسلے میں پر کرتے ہوئے

$$X = a_0 \sum_{0, \dots, \infty}^{\infty} \frac{m^n}{n!} x^n + \frac{a_1}{m} \sum_{1, \dots, \infty}^{\infty} \frac{m^n}{n!} x^n$$

يا

$$X = a_0 \sum_{0 = 1 - \infty}^{\infty} \frac{(mx)^n}{n!} + \frac{a_1}{m} \sum_{1 = 1 - \infty}^{\infty} \frac{(mx)^n}{n!}$$

حاصل ہوتا ہے۔ غور کرنے سے معلوم ہوتا ہے کہ مندرجہ بالا مساوات میں پہلا طاقتی سلسلہ دراصل cosh mx کے برابر

$$\cosh mx = \sum_{0 = -\infty}^{\infty} \frac{(mx)^n}{n!} = 1 + \frac{(mx)^2}{2!} + \frac{(mx)^4}{4!} + \cdots$$

اور دوسرا طاقتی سلسله sinh *mx*

$$\sinh mx = \sum_{n=1}^{\infty} \frac{m^n}{n!} x^n = mx + \frac{(mx)^3}{3!} + \frac{(mx)^5}{5!} + \cdots$$

کے برابر ہے۔ یول

$$X = a_0 \cosh mx + \frac{a_1}{m} \sinh mx$$

١

 $X = A \cosh mx + B \sinh mx$

کھا جا سکتا ہے جہاں a_0 اور $\frac{a_1}{m}$ یاان کی جگہ لکھے گئے A اور B کو سرحدی شرائط سے حاصل کیا جائے گا۔

cosh *mx* اور sinh *mx* کو

$$cosh mx = \frac{e^{mx} + e^{-mx}}{2}$$

$$sinh mx = \frac{e^{mx} - e^{-mx}}{2}$$

لكھ كر

$$X = A'e^{mx} + B'e^{-mx}$$

مجھی لکھا جا سکتا ہے جہاں 'A اور 'B دو نئے مستقل ہیں۔ یہ مساوات 6.42 ہی ہے۔

اسی طاقتی سلسلے کے طریقے کو استعال کرتے ہوئے مساوات 6.41 کے دوسرے جزو کا حل بھی دو طاقتی سلسلوں کا مجموعہ حاصل ہوتا ہے جہاں ایک طاقتی سلسلہ cos my اور دوسرا sin my کے برابر ہوتا ہے۔ یوں

$$(6.47) Y = C\cos my + D\sin my$$

لکھا جا سکتا ہے جو عین مساوات 6.43 ہی ہے۔ یوں

$$(6.48) V = XY = (A \cosh mx + B \sinh mx) (C \cos my + D \sin my)$$

یا

$$(6.49) V = XY = \left(A'e^{mx} + B'e^{-mx}\right)\left(C\cos my + D\sin my\right)$$

حاصل ہوتا ہے۔ اس آخری مساوات کا مساوات 6.44 کے ساتھ موازنہ کریں۔

شکل 6.1:
$$my = \sin^{-1}\left(\frac{1}{\sinh mx}\right)$$
 کی مساوات۔

مساوات 6.48 میں کل چار مستقل پائے جاتے ہیں جنہیں سرحدی شرائط سے حاصل کیا جاتا ہے۔آئیں ان مستقل کو دو مختلف سرحدی شرائط کے لئے حاصل کریں۔ پہلی صورت میں بجائے ہیہ کہ سرحدی شرائط سے ان مستقل کو حاصل کریں، ہم مستقل پہلے چنتے ہیں اور بعد میں ان چنے گئے مستقل کے مطابق سرحدی شرائط حاصل کرتے ہیں۔

تصور کریں کہ مساوات 8.48 میں A اور B دونوں یا C اور D دونوں صفر کے برابر ہیں۔ایسی صورت میں V=0 حاصل ہو گا جو برقی دباو کی عدم موجود گی کو ظاہر کرتی ہے۔ ہمیں عموماً برقی دباو کی موجود گی سے زیادہ دلچیسی ہوتی ہے۔آئیس ایک اور صورت دیکھیں۔

تصور کریں کہ A اور C صفر کے برابر ہے۔الی صورت میں مساوات 6.48 کو

 $(6.50) V = V_0 \sinh mx \sin my$

 $BD = V_0$ کھا جا سکتا ہے جہال $BD = V_0$ کھا گیا ہے۔ جو نکہ

يا

$$\sinh mx = \frac{1}{2} \left(e^{mx} - e^{-mx} \right)$$

y=y=0 گیت y=y=0 گیت y=y=0 گیت تقریباً بین جانده و گا جبکه بڑھتے x=0 ساتھ اس کی قیت تقریباً $y=e^{mx}$ گیت $y=e^{mx}$ گیت و باد کے جم توہ سطحیں y=(x-m) و خیرہ پر صفر کے برابر ہوگی۔ یوں صفر برقی دباو کے ہم قوہ سطحیں y=(x-m) و سطحیں و یاد کے ہم توہ سطحیں y=(x-m) و یاد کی ہم قوہ سطحیں و یاد کی جم ایس و یاد کی ہم قوہ سطحیں و یاد کی بین و یاد کرنے ہے و یاد کر میں و یاد کی بین و یاد کی بین و یاد کرنے ہے و یاد کر میں و یاد کرنے ہے کرنے ہے کرنے ہے کرنے ہے و یاد کرنے ہے کرنے

 $V_0 = V_0 \sinh mx \sin my$

 $my = \sin^{-1} \frac{1}{\sinh mx}$

x کے مختلف قیتوں کے لئے اس مساوات سے y کی قیمتیں حاصل کرتے ہوئے اس مساوات کے خط کو شکل 0.1 میں کھینچا گیا ہے۔

ان حقائق کو استعال کرتے ہوئے موصل ہم قوہ سطحیں شکل 6.2 میں دکھائی گئی ہیں۔ یہ سطحیں 2 محدد کی سمت میں لامحدود لمبائی رکھتی ہیں اور ان سے پیدا برقی دباو مساوات 6.50 دیتا ہے۔

ہم نے لاپلاس مساوات کے حل یعنی مساوات 6.50 کو لیتے ہوئے ان ہم قوہ سطحوں کو دریافت کیا جو ایسی برقی دیاو پیدا کرے گی۔ حقیقت میں عموماً موصل ہم قوہ سطحیں معلوم ہوں گی جن کا پیدا کردہ برقی دیاو درکار ہو گا۔آئیں ایسی ایک مثال دیکھیں۔

شكل 6.2: بم قوه سطحين اور ان پر برقى دباو.

شکل 6.3: موصل سطحوں سے گھیرے خطے میں لاپلاس مساوات متعدد اجزاء کے مجموعے سے حاصل ہوتا ہے۔

شکل 6.3 میں موصل سطحیں اور ان پر برتی دباو دیا گیا ہے۔ یہ سطحیں 2 سمت میں لا محدود لمبائی رکھتی ہیں۔سطحوں کے گھیرے خطے میں برتی دباو حاصل کرنا در کار ہے۔

یہاں سرحدی شرائط کچھ یوں ہیں۔y=0 وہ y=0 اور y=0 وہ سطوں کے یہاں سرحدی شرائط کچھ یوں ہیں۔ ونوں ہم قوہ سطوں کے مابین انتہائی باریک غیر موصل درز ہیں جن کی بناپر ان کے برقی دباو مختلف ہو سکتے ہیں۔ انس درز کے اثر کو نظرانداز کیا جائے گا۔

موجودہ مسکے میں بھی برقی دباو صرف x اور y کے ساتھ تبدیل ہوتا ہے لہذا مساوات 6.38 ہی اس مسکے کا لاپلاس مساوات ہے جس کا حل مساوات 6.48 ہیں اس مسکے کا لاپلاس مساوات ہوئے مساوات کے مستقل حاصل کرتے ہیں۔مساوات 6.38 میں x=0 پر برقی دباو صفر پر کرنے سے 6.48

 $0 = (A\cosh 0 + B\sinh 0) (C\cos my + D\sin my)$

 $0 = A \left(C \cos my + D \sin my \right)$

حاصل ہوتا ہے۔ لاکے تمام قیتوں کے لئے پیر مساوات صرف

A = 0

کی صورت میں درست ہو سکتا ہے لہٰذا پہلا مستقل صفر کے برابر حاصل ہوتا ہے۔y=0 مفر برقی دباو پر کرنے سے $0=B\sinh mx \ (C\cos 0+D\sin 0)$

 $0 = B \sin mx (C \cos 0 + D \sin mx)$

 $0 = BC \sinh mx$

کھا جائے گا جو x کی ہر قیت کے لئے صرف BC=0 کی صورت میں درست ہو گا۔اب چونکہ A=0 ہے لہذا B صفر نہیں ہو سکتا چونکہ ایسی صورت میں مساوات A=0 ہو ہواب چاہتے ہیں جس سے برقی دباو کے بارے میں علم حاصل ہو گا۔ یہ جو اب مساوات A=0 ہو۔اس کے A=0 برابر ہے۔اس طرح مساوات A=0

y=b مساوات میں مساوات میں y=b سے ہیں۔ y=b صورت اختیار کرلے ہیں۔ y=b مساوات میں مساوات میں y=b مساوات میں مساول میں مساول میں میں مساول می

ہم B یا D کو صفر کے برابر نہیں لے سکتے چونکہ الی صورت میں V = V جواب حاصل ہوتا ہے جس میں ہمیں کوئی دلچیبی نہیں۔ پیہ مساوات x کی ہر قیمت کے لئے صرف اس صورت درست ہوگا اگر

 $\sin mb = 0$

ہو جس سے

 $mb = n\pi$

حاصل ہوتا ہے جہاں

 $n=0,1,2,\cdots$

6.51 کے برابر ہو سکتا ہے۔اس طرح $m=rac{n\pi}{b}$ کا کھتے ہوئے مساوات

$$(6.52) V = V_1 \sinh \frac{n\pi x}{b} \sin \frac{n\pi y}{b}$$

x=d مسورت اختیار کرلے گا جہاں D کو V_1 کھا گیا ہے۔ مساوات 6.52 تین اطراف کے سطحوں پر صفر برتی دباو کے شراکط پر پورا اترتا حل ہے۔ البتہ V_1 کی قدم پر V_2 برتی دباو کے شرط کو مندرجہ بالا مساوات سے پورا کرنا ممکن نہیں۔ ہمیں عموماً بالکل اسی طرز کے مسلوں سے واسطہ پڑتا ہے جہاں آخری قدم پر معلوم ہوتا ہے کہ ہماری قمر دیوار کے ساتھ لگ گئی ہے جہاں سے ظاہری طور پر نگلنے کا کوئی راستہ نہیں۔ گھبرائیں نہیں۔ ہمیں در پیش مسلے کے تمام ممکنہ جوابات کو مساوات 6.52 کی شکل میں لکھا جا سکتا ہے۔ یوں ان تمام جوابات کا مجموعہ بھی قابل قبول حل ہوگا یعنی ہم

(6.53)
$$V = \sum_{n=0}^{\infty} V_n \sinh \frac{n\pi x}{b} \sin \frac{n\pi y}{b} \qquad (0 < y < b, n = 0, 1, 2, \cdots)$$

بھی لکھ سکتے ہیں جہاں n کی ہر قیت پر منفر د V_1 کو V_n سے ظاہر کیا گیا ہے۔ n اور V_n کی قیمتیں ایس کہ x=d ہیں جہاں x=d برقی دباوے شرط کو مساوات میں پر کرتے ہوئے

$$V_0 = \sum_{n=0}^{\infty} V_n \sinh \frac{n\pi d}{b} \sin \frac{n\pi y}{b}$$

لعني

$$V_0 = \sum_{n=0}^{\infty} c_n \sin \frac{n\pi y}{b}$$

ملتاہے جہاں

$$c_n = V_n \sinh \frac{n\pi d}{b}$$

لکھا گیا ہے۔

مساوات 6.54 فوریئر تسلسل 16 ہے جس کے مستقل با آسانی حاصل کئے جا سکتے ہیں۔ چونکہ ہمیں y < y < 0 کے خطے سے غرض ہے لہذا اس خطے کے باہر ہمیں برقی دباو سے کوئی غرض نہیں۔ ایس صورت میں ہم فوریئر تسلسل کے طاق یا جفت جوابات حاصل کر سکتے ہیں۔ طاق جوابات اس صورت حاصل ہوں گے اگر ہم y < y < 0 کو آدھا میعاد تصور کرتے ہوئے بقایا آدھے میعاد y < 0 < 0 پر برقی دباو کو y < 0 < 0 تصور کریں بعنی

$$V = +V_0 \qquad (0 < y < b)$$

$$V = -V_0 \qquad (b < y < 2b)$$

شکل 6.4: لاپلاس مساوات کے تحت کسی بھی نقطے پر برقی دباو قریبی نقطوں کے برقی دباو کا اوسط ہوتا ہے۔

اسی صورت میں فوریئر تسلسل کے مستقل

$$c_n = \frac{1}{b} \left[\int_0^b V_0 \sin \frac{n\pi y}{b} \, dy + \int_b^{2b} (-V_0) \sin \frac{n\pi y}{b} \, dy \right]$$

 $c_n = \frac{4V_0}{n\pi} \qquad (n = 1, 3, 5, \cdots)$ $c_n = 0 \qquad (n = 2, 4, 6, \cdots)$

— 2,4,0,···)

ماصل ہوتے ہیں۔اب چونکہ $\frac{n\pi d}{b}$ ماصل ہوتے ہیں۔اب چونکہ

$$V_n = \frac{4V_0}{n\pi\sinh(\frac{n\pi d}{b})} \qquad (n = 1, 3, 5, \cdots)$$

ہو گا اور پول مساوات 6.53 کو

$$V = \frac{4V_0}{\pi} \sum_{n=1, \text{dis}}^{\infty} \frac{1}{n} \frac{\sinh \frac{n\pi x}{b}}{\sinh \frac{n\pi d}{b}} \sin \frac{n\pi y}{b}$$

کھا جا سکتا ہے۔اس مساوات سے مختلف نقطوں پر برقی دباو V(x,y) حاصل کرتے ہوئے ان میں برابر برقی دباو رکھنے والے نقطوں سے گزرتی سطح ہم قوہ سطح ہوگی۔

6.7 عددی دہرانے کا طریقہ

لاپلاس مساوات حل کرنے کے کئی ترکیب ہم دیکھ چکے۔ کمپیوٹر کی مدد سے عدد می دہرانے 17 کے طریقے سے مساوات حل کئے جاتے ہیں۔آئیں لاپلاس مساوات اسی ترکیب سے حل کریں۔ تصور کرتے ہیں کہ کسی خطے میں برقی میدان صرف x اور y کے ساتھ تبدیل ہوتا ہے۔شکل 6.4 میں ایسی سطح د کھائی گئی ہے جے h چوڑائی اور استے بی لمبائی کے مربع کے ٹکڑوں میں تقسیم کیا گیا ہے۔اس میدان میں آپس میں قریبی پانچ نقطوں پر برقی دباہ V3 ،V2 ،V1 ،V2 اور V4 ہیں۔ا گریہ خطہ ہر جانب کیسال خاصیت رکھتا ہو اور یہ چارج سے پاک ہو تب $D=0 \cdot \nabla \cdot E=0$ اور $\nabla \cdot E=0$ ہوں گے جس سے دو محدد میں

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = 0$$

کھا جا سکتا ہے۔اب $E_x=-rac{\partial V}{\partial x}$ اور $E_y=-rac{\partial V}{\partial y}$ ہونے کی وجہ سے مندر جہ بالا مساوات

$$\frac{\partial^2 V}{\partial x} + \frac{\partial^2 V}{\partial y^2} = 0$$

صورت اختیار کر لیتی ہے جو لا پلاس مساوات ہے۔ شکل 6.4 میں نقطہ a اور نقطہ c اور کر کتی ہے جو لا پلاس مساوات ہے۔ شکل 6.4 میں نقطہ

$$\frac{\partial V}{\partial x} \bigg|_{a} \doteq \frac{V_1 - V_0}{h}$$

$$\frac{\partial V}{\partial x} \bigg|_{a} \doteq \frac{V_0 - V_3}{h}$$

$$\frac{\partial^2 V}{\partial x^2} \bigg|_0 \doteq \frac{\frac{\partial V}{\partial x} \bigg|_a - \frac{\partial V}{\partial x} \bigg|_c}{h} \doteq \frac{V_1 - V_0 - V_0 + V_3}{h^2}$$

لکھ سکتے ہیں۔ ہالکل اسی طرح ہم

$$\frac{\partial^2 V}{\partial y^2} \bigg|_0 \doteq \frac{\frac{\partial V}{\partial y} \bigg|_b - \frac{\partial V}{\partial y} \bigg|_d}{h} \doteq \frac{V_2 - V_0 - V_0 + V_4}{h^2}$$

بھی لکھ سکتے ہیں۔ان دو جوابات کو لا پلاس مساوات میں پر کرنے

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \doteq \frac{V_1 + V_2 + V_3 + V_4 - 4V_0}{h^2} = 0$$

 $V_0 \doteq \frac{V_1 + V_2 + V_3 + V_4}{I_1}$

(6.56)

حاصل ہوتا ہے۔ *المب*ائی جتنی کم ہو مندر جہ بالا مساوات اتنازیادہ درست ہو گا۔ الم کی لمبائی انتہائی جھوٹی کرنے سے مندر جہ بالا مساوات بالکل صحیح ہو گا۔ یہ مساوات کہتا ہے کہ کسی بھی نقطے پر برقی دباواس نقطے کے گرد چار نقطوں کے برقی دباو کا اوسط ہوتا ہے۔

عددی دہرانے کے طریقے میں تمام خطے کو شکل 6.4 کی طرز پر مربعوں میں تقسیم کرتے ہوئے مربع کے ہر کونے پر مساوات 6.56 کی مدد سے برقی د باو حاصل کیا جاتا ہے۔ تمام خطے پر بار باراس طریقے سے برقی د باو حاصل کی جاتی ہے حتٰی کہ کسی بھی نقطے پر متواتر جوابات میں تبدیلی نہ پائی جائے۔اس طریقے کو مثال سے بہتر سمجھا جا سکتا ہے۔ 174 باب 6. پوئسن اور لاپلاس مساوات

شکل 6.5: رقبہ عمودی تراش کو خانوں میں تقسیم کرتے ہوئے ہر کونے پر گرد کے چار نقطوں کا اوسط برقی دباو ہو گا۔

شکل 6.5 میں مربع شکل کے لامحدود لمبائی کے ڈبے کا عمودی تراش دکھایا گیا ہے۔اس کے چار اطراف صفر برقی دباو پر ہیں جبکہ نہایت باریک غیر موصل فاصلے پر چوتھی طرف سو دولٹ پر ہے۔اس ڈبے کو بوں خانوں میں تقتیم کیا گیا ہے کہ یا تو انہیں سولہ چھوٹے خانے تصور کیا جا سکتا ہے اور یا چار درمیانے جہامت کے خانے۔اس کے علاوہ پورے ڈبے کو ایک ہی بڑا خانہ بھی تصور کیا جا سکتا ہے۔آئیں ان خانوں کے کونوں پر مساوات 6.56 کی مدد سے برقی دباو حاصل کریں۔

اگرچہ کمپیوٹر پرایسے مسائل حل کرتے ہوئے تمام کونوں پر ابتدائی برقی دباو صفر تصور کرتے ہوئے آگے بڑھا جاتا ہے۔ قلم و کاغذ استعال کرتے ہوئے ذرہ سوچ کر چلنا بہتر ثابت ہوتا ہے۔ ہم پورے مربع شکل کو ایک ہی بڑا خانہ تصور کرتے ہوئے اس کے عین وسط میں برقی دباو حاصل کرتے ہیں۔ ایسا کرنے کی خاطر ہم بڑے خانے کے چار کونوں کو قریبی نقطے چنتے ہیں۔ یوں بڑے خانے کے چار کونوں کی برقی دباو زیر استعال آئے گی۔اب دو کونوں پر صفر برقی دباو ہے جبکہ دو کونے غیر موصل درز پر مشتل ہیں۔ درز کے ایک جانب صفر جبکہ اس کی دوسری جانب سووولٹ ہیں، للذا درز میں ان دو قیتوں کا اوسط یعنی پچاس وولٹ برقی دباو تصور کیا جا سکتا ہے۔ اس طرح بڑے خانے کے وسط میں

$$V = \frac{0 + 0 + 50 + 50}{4} = 25.0 \,\mathrm{V}$$

حاصل ہوتا ہے۔شکل 6.5 میں یہ قیمت د کھائی گئی ہے۔

آئیں اب چار در میانے جسامت کے خانوں کے کونوں پر برقی دباو حاصل کریں۔ یہاں بھی ہم ان خانوں کے کونوں کو چار قریبی نقطے چنتے ہیں۔اوپر دائیں بڑے خانے کے وسط میں برقی دباو حاصل کرنے کی خاطر اس خانے کے چار کونوں کے برقی دباو زیر استعال لائے جائیں گے۔یوں درز پر پچاس وولٹ تصور کرتے ہوئے

$$V = \frac{100 + 50 + 0 + 25}{4} = 43.8 \,\mathrm{V}$$

حاصل ہوتے ہیں۔اسی طرح نچلے بڑے خانے کے وسط میں بھی

$$V = \frac{50 + 100 + 25 + 0}{4} = 43.8 \,\mathrm{V}$$

حاصل ہوتا ہے۔ہم اس قیمت کو بغیر حل کئے شکل کو دیکھ کر ہی لکھ سکتے تھے چونکہ شکل کا اوپر والا آدھا حصہ اور اس کا نچلا آدھا حصہ بالکل یکساں ہیں للمذا ان دونوں حصوں میں بالکل یکساں برقی دباو ہو گا۔اس حقیقت کو یہاں سے استعمال کرنا شر وع کرتے ہیں۔اوپر اور نیچے بائیں بڑے خانے بالکل یکساں ہیں للمذا دونوں کے وسط میں

$$V = \frac{25 + 0 + 0 + 0}{4} = 6.2 \,\mathrm{V}$$

6.7. عددی دہرانے کا طریقہ

	0	V		7
0 V	7.0 7.1 7.1 7.1 7.1 9.7 9.8 9.8 9.8 9.8 7.0 7.1 7.1 7.1	18.6 18.7 18.7 18.7 24.8 24.8 25.0 25.0 18.6 18.7 18.7	43.0 42.6 42.8 42.8 52.5 52.6 52.6 52.6 43.0 42.6 42.8 42.8	100 V
	U	v		

شکل 6.6: چار بار دہرانے کے بعد جوابات تبدیل ہونا بند ہو جاتے ہیں۔یہی اصل جواب ہیں۔

حاصل ہوتے ہیں۔بقایا کونوں پر برقی دباو حاصل کرتے ہوئے نقطے کے بائیں، دائیں، اوپر اور نیچے نقطوں کو قریبی نقطے چنتے ہیں۔شکل 6.5 میں یہ تمام قیمت د کھائی گئی ہے۔

آئیں شکل میں اوپر سے نیچے چلتے ہوئے پہلے دائیں، پھر در میانے اور آخر میں بائیں قطار کے تمام کونوں پر برقی دباو حاصل کریں۔ہم یہی سلسلہ بار بار دہرائیں گے حتٰی کہ کسی بھی کونے پر متواتر حاصل کردہ جوابات تبدیل ہونا بند کر دیں۔ہر کونے پر برقی دباو مساوات 6.56 کے استعمال سے حاصل کیا جائے گا جہاں کونے کے اوپر، نیچے، دائیں اور بائیں نقطوں کے برقی وباو کو استعمال کیا جائے گا۔ یاد رہے کہ موصل سطحوں پر برقی وباو ہمیں پہلے سے ہی معلوم ہے لہٰذاان پر برقی وباو حاصل کرنے کی کوشش نہیں کی جائے گا۔

اس طرح دائیں قطار کے اوپر جانب 43.8 کی نئی قیمت

$$\frac{100 + 0 + 18.8 + 53.2}{4} = 43 \,\mathrm{V}$$

ہو جائے گی۔اوپر اور نچلے آدھے حصوں کی مشابہت سے ہم قطار کی نچلی قیمت بھی یہی لکھتے ہیں۔شکل 6.6 میں یہ قیمتیں د کھائی گئی ہیں۔مساوات 6.56 میں نئی سے نئی قیمتیں استعال کی جاتی ہیں۔یوں 53.2 کی نئی قیمت

$$\frac{100 + 43 + 25 + 43}{4} = 52.8 \,\mathrm{V}$$

ہو گی۔

در میانے قطار پر آتے ہیں۔ یہاں اوپر 18.8 کی نئ قیت

$$\frac{43 + 0 + 6.2 + 25}{4} = 18.6 \,\mathrm{V}$$

اب 6. پوئسن اور لاپلاس مساوات

ہو گی جو قطار کے نچلے کونے کی بھی قیمت ہے۔اس قطار کے در میانے نقطے کی نئی قیمت

$$\frac{52.8 + 18.6 + 9.4 + 18.6}{4} = 24.8 \,\mathrm{V}$$

ہو گی۔

ای طرح بائیں قطار کی نئی قیمتیں بھی حاصل کی جاتی ہیں۔ان تمام کو شکل 6.6 میں دکھایا گیا ہے۔ یہی سلسلہ دوبارہ دہرانے سے مزید نئے اور بہتر جوابات حاصل ہوں گے جنہیں گزشتہ جوابات کے نئیچے کھا گیا ہے۔شکل میں اس طرح چار بار دہرانے سے حاصل کئے گئے جوابات دکھائے گئے ہیں۔آپ دکھیے سکتے ہیں کہ کسی بھی نقطے کے آخری دو حاصل کردہ جوابات میں کوئی تبدیلی نہیں پائی جاتی ائی آخری جوابات کو حتی جوابات تسلیم کیا جاتا ہے۔

اگر ہم سوچ سے کام نہ لیتے ہوئے سیدھ وسیدھ مساوات 6.56 میں شر وغ سے دائیں، بائیں، اوپر اور نیچے نقطوں کی قیمتیں استعال کرتے، تب ہمیں قطعی جوابات دس مرتبہ دہرانے کے بعد حاصل ہوتے۔اگرچہ قلم و کاغذاستعال کرتے ہوئے آپ ضرور سوچ سمجھ سے ہی کام لیں گے البتہ کمپیوٹر استعال کرتے ہوئے ایسا کرنے کی ضرورت پیش نہیں آتی۔ کمپیوٹر کے لئے کیا ایک مرتبہ اور کیا دس ہزار مرتبہ۔

اس مثال میں ہم نے بہت کم نقطوں پر برقی دباو حاصل کی تا کہ دہرانے کا طریقہ با آسانی سمجھا جا سکے۔کمپیوٹر استعال کرتے ہوئے آپ زیادہ سے زیادہ نقطے چن سکتے ہیں۔ بہتر سے بہتر نتائج، زیادہ نقطے چن سکتے ہیں۔ بہتر سے بہتر نتائج، زیادہ نقطے چن سے حاصل ہوتا ہے ناکہ کم نقطوں پر زیادہ ہندسوں پر مبنی جوابات سے۔

باب 7

سوالات

7.1 توانائی باب کر سوالات

سوال 7.1:

سوال 7.2: برتی میدان $E = (y+z)a_{\mathrm{X}} + (x+z)a_{\mathrm{Y}} + (x+y)a_{\mathrm{Z}}$ میں $E = (y+z)a_{\mathrm{X}} + (x+z)a_{\mathrm{Y}} + (x+y)a_{\mathrm{Z}}$ اور نقطہ (0,0,2) اور بہاں سے نقطہ (0,1,2) لایا جاتا ہے۔ دونوں راستوں کا علیحہ ہ اور کل در کار توانائی حاصل کریں۔

جوابات: 0.2 J ، 0.2 J - اور 0

سوال 7.3: مثال 4.7 کے طرز پر L لمبائی ہم محوری تارییں مخففی توانائی حاصل کریں۔اندرونی تار کارداس a جبکہ بیرونی تار کارداس d ہے۔

$$W=rac{\pi La^2
ho_S^2}{\epsilon_0}\lnrac{b}{a}$$
:واب

7.2 كېيسىر

سوال 7.4: N(0,0,2) سے گزرتی y محدد کے متوازی کلیری چارج کثافت

$$\rho_L = 5 \, \frac{\text{nC}}{\text{m}} \qquad (-\infty < y < \infty, x = 0, z = 2)$$

- D پر M(5,3,1) ماصل کریں۔

$$oldsymbol{D}=rac{5 imes10^{-9}(5oldsymbol{a}_{ ext{X}}-1oldsymbol{a}_{ ext{Z}})}{2\pi imes26}$$
:باب

باب 7. سوالات

سوال 7.5: لا محدود موصل زمینی سطح z=0 کھتے ہوئے مندرجہ بالا سوال کو دوبارہ حل کریں۔

 $D = rac{5 imes 10^{-9}(40m{a}_{ ext{X}} - 112m{a}_{ ext{Z}})}{2\pi imes 884}$:باب

سوال 7.6: N(0,0,2) سے گزرتی y محدد کے متوازی کلیری چارج کثافت

 $\rho_L = 5 \frac{\text{nC}}{\text{m}} \qquad (-\infty < y < \infty, x = 0, z = 2)$

پایا جاتا ہے جبکہ z=0 پر لامحدود موصل زمینی سطح موجود ہے۔ سطح کے M(5,3,0) مقام پر سطحی چارج کثافت حاصل کریں۔

 $-0.1097 \, \frac{\text{nC}}{\text{m}^2}$:جواب

سوال 7.7: مثق 5.3 میں 300 درجہ حرارت پر سایکان اور جر مینیم کے مستقل دئے گئے ہیں۔اگر سایکان میں المو نیم کا ایک ایٹم فی 10⁷ سایکان اور جر مینیم کے مستقل دئے گئے ہیں۔اگر سایکان میں موصلیت کیا ہوگی۔سایکان کی تعدادی کثافت 10²⁸ × 5 ایٹم فی مربع میٹر ہے۔(ہر ملاوٹی المونیم کا ایٹم ایک عدد آزاد خول کی تعداد سے بہت زیادہ ہوتی ہے للذا الیمی صورت میں موصلیت صرف ملاوٹی ایٹوں کے پیدا کردہ آزاد خول ہی تعین کرتے ہیں۔)

 $800 \frac{S}{m}$ جواب:

 ho_S سوال 7.8: صفحہ 127 پر مثال 5.6 میں لا محدود موصل سطح z=0 میں z=0 میں پر پائے جانے والے نقطہ چارج Q سے پیدا سطحی چارج کثافت z=0ماصل کیا گیا۔موصل سطح میں پائے جانے والا کل چارج سطحی تکمل سے حاصل کریں۔

جوا**ب**: Q

سوال 7.9: صفحہ 118 پر تانبے کے ایک مربع میٹر میں کل آزاد چارج مساوات 5.13 میں حاصل کیا گیا۔ایک ایمپئیر کی برقی رو کتنے وقت میں اتنے چارج کا اخراج کرے گا۔

جواب: چار سواکتیس (431) سال۔

سوال 7.10: مساوات 5.71 میس فابست کریں۔ $\ln rac{h+\sqrt{h^2-b^2}}{b} = \cosh^{-1} rac{h}{b}$ تابت کریں۔

سوال 7.11: پانچ میٹر رداس کی موصل نکلی کا محور برقی زمین سے تیرا میٹر پر ہے۔ نکلی پر ایک سو وولٹ کا برقی د باوہے۔

- الی لکیری چارج کثافت کا زمین سے فاصلا اور اس کا ho_L حاصل کریں جو الی ہم قوہ سطح پیدا کرے۔
- موصل نکلی سے پیدا پیاس وولٹ کے ہم قوہ سطح کارداس اور اس کے محور کا زمین سے فاصلا دریافت کریں۔
 - نلکی پرزمین کے قریب اور اس سے دور سطی چارج کثافت حاصل کریں۔

 $0.73\,rac{pF}{m^2}$ د 1.65 م 1.65 م 1.45 م

7.3. لاپلاس

7.3 لايلاس

سوال 7.12: صفحہ 155 پر مساوات 6.13 عمومی محدد میں لا پلاسی دیتا ہے۔اس مساوات کو حاصل کریں۔

سوال 7.13: مثال 6.3 کو حتمی نتیج تک پہنچاتے ہوئے اس کا کبیسٹنس حاصل کریں۔

سوال 7.14: مثال 6.4 میں دیے مساوات 6.24 اور مساوات 6.25 حاصل کریں۔

سوال 7.15: مساوات 6.28 کے تکمل کو حل کریں۔

سوال 7.16: مساوات 6.29 حاصل كريں۔

سوال 7.17: مساوات 6.31 حل كريي-

سوال 7.18: مساوات 6.41 کے دوسرے جزو کا حل طاقق سلسلے کے طریقے سے حاصل کریں۔ ثابت کریں کہ اس حل کو مساوات 6.47 کی شکل میں لکھا جا سکتا ہے۔ باب 7. سوالات

7.3. لاپلاس

 σ :7.1 جدول

$\sigma, \frac{S}{m}$	چیر	$\sigma, \frac{S}{m}$	چيز
7×10^4	گريفائٿ	6.17×10^{7}	چاندى
1200	سليكان	5.80×10^{7}	تانبا
100	فيرائث (عمومي قيمت)	4.10×10^{7}	سونا
5	سمندری پانی	3.82×10^{7}	المونيم
10^{-2}	چهونا پتهر	1.82×10^{7}	ٹنگسٹن
5×10^{-3}	چکنی مٹی	1.67×10^{7}	جست
10^{-3}	تازه پانی	1.50×10^{7}	پيتل
10^{-4}	تقطیر شده پانی	1.45×10^{7}	نکل
10^{-5}	ریتیلی مٹی	1.03×10^{7}	لوبا
10^{-8}	سنگ مرمر	0.70×10^{7}	قلعى
10^{-9}	بيك لائث	0.60×10^{7}	كاربن سٹيل
10^{-10}	چینی مٹی	0.227×10^{7}	مینگنین
2×10^{-13}	بيرا	0.22×10^{7}	جرمينيم
10^{-16}	پولیسٹرین پلاسٹک	0.11×10^{7}	سٹینلس سٹیل
10^{-17}	كوارڻس	0.10×10^{7}	نائيكروم

 $\sigma/\omega\epsilon$ and ϵ_R :7.2 جدول

σ/ωε	ϵ_R	چير
	1	خالي خلاء
	1.0006	بوا
0.0006	8.8	المونيم اكسائد
0.002	2.7	عمير
0.022	4.74	بیک لائٹ
	1.001	كاربن ڈائي آكسائڈ
	16	جرمينيم
0.001	4 تا 7	شیشہ
0.1	4.2	برف
0.0006	5.4	ابرق
0.02	3.5	نائلون
0.008	3	كاغذ
0.04	3.45	پلیکسی گلاس
0.0002	2.26	پلاسٹک (تھیلا بنانے والا)
0.00005	2.55	پولیسٹرین
0.014	6	چینی مثلی
0.0006	4	پائریکس شیشہ (برتن بنانے والا)
0.00075	3.8	كوارڻس
0.002	2.5 تا 3	ر براز
0.00075	3.8	SiO ₂ سلیکا
	11.8	سليكان
0.5	3.3	قدرتی برف
0.0001	5.9	کھانے کا نمک
0.07	2.8	خشک مثلی
0.0001	1.03	سثائروفوم
0.0003	2.1	تٰیفلان
0.0015	100	ٹائٹینیم ڈائی آکسائڈ
0.04	80	تقطیر شدہ پانی
4		سمندري پاني
0.01	1.5 تا 4	خشک لکڑی

7.3. لاپلاس

 μ_R :7.3 جدول

μ_R	چيز
0.999 998 6	بسمت
0.999 999 42	پيرافين
0.999 999 5	لکڑی
0.999 999 81	چاندى
1.00000065	المونيم
1.00000079	بيريليم
50	نکل
60	ڈھلواں لوہا
300	مشين سٹيل
1000	فيرائك (عمومي قيمت)
2500	پرم بھرت (permalloy)
3000	ٹرانسفارمر پتری
3500	سيلكان لوبا
4000	خالص لوبا
20 000	میو میٹل (mumetal)
30 000	سنڈسٹ (sendust)
100 000	سوپرم بهرت (supermalloy)

جدول 7.4: اہم مستقل

$(1.6021892 \mp 0.0000046) \times 10^{-19} $ C e	
	اليكثران چارج
$(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$ m	اليكثران كميت
$(8.854187818\mp0.000000071) imes10^{-12}rac{\mathrm{F}}{\mathrm{m}}$	برقى مستقل (خالى
$4\pi 10^{-7}rac{ ext{H}}{ ext{m}}$ خالی خلاء) μ_0	مقناطیسی مستقل (
الى خلاء) c (2.997 924 574 \mp 0.000 000 011) $ imes$ 108 $rac{ ext{m}}{ ext{s}}$	روشنی کی رفتار (خ

باب 7. سوالات