Propositional Logic

CS236 - Discrete Structures Instructor: Brett Decker Spring 2020 Section 1

Propositional Logic

We will now begin our study of logic. We will start with propositional logic. First, let's define the following terms: proposition, truth value, propositional logic, and compound propositions.

Proposition: Section 1.1*

A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

Proposition Example:

Are the following propositions?

- 1. The earth is round.
- 2. Are you sure the earth is round?
- 3. The sky is blue.
- 4. Look up.
- 5. Why does my head hurt?
- 6. My head hurts.

The sentences 1, 3, and 6 are propositions. Sentences 2, 4 and 5 are not.

Propositional Variable: Section 1.1*

A propositional variable is a letter that represents a proposition (traditionally, we start with p, q, r, s, ...).

Propositional Variable Example:

Let p = "The earth is round."

Let q = "The sky is blue."

We often call propositional variables atomic propositions. Thus, compound propositions are made up of atomic propositions and logic operators.

Truth Value: Section 1.1*

The *truth value* of a proposition is true, denoted by T, if it is a true proposition, and the truth value of a proposition is false, denoted by F, if it is a false proposition.

Propositional Variable Example:

Let p = "The earth is round."

The truth value of p is T (yes, the earth really is round).

Let q = "The sky is blue."

The truth value of q is T (let's not get too technical; people see the color blue when they look at the sky).

Propositional Logic: Section 1.1*

Propositional logic (also called propositional calculus) is the area of logic that deals with propositions.

Compound Propositions: Section 1.1*

New propositions formed from existing propositions using logical operators are called *compound propositions*.

Logic Operators

We will introduce five, core operators in propositional logic. These are negations, conjunction, disjunction, implication, and bi-implication, denoted as \neg , \land , \lor , \rightarrow , and \leftrightarrow , respectively.

Negation: Definition 1, Section 1.1*

Let p be a proposition. The *negation* of p, denoted by $\neg p$, is the statement "It is not the case that p."

Truth Table: Negation

We often represent propositions in a format that shows all of their possible truth values. We call this a *truth table*. The following is the truth table for negation:

p	$\neg p$
Т	F
F	Т

This shows that if the truth value of p is true (T), then the truth value of $\neg p$ is false (F).

Negation Example:

Let p = "The earth is round." $\neg p =$ The earth is *not* round.

Conjunction: Definition 2, Section 1.1*

Let p and q be propositions. The *conjunction* of p and q, denoted by $p \wedge q$, is the proposition "p and q." The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Truth Table: Conjunction

The following is the truth table for conjunction:

p	q	$p \wedge q$
Τ	T	Т
Τ	F	F
F	Т	F
F	F	F

Conjunction Example:

Let p = "The earth is round."

Let q = "The sky is blue."

 $p \wedge q =$ "The earth is round, and the sky is blue."

Disjunction: Definition 3, Section 1.1*

Let p and q be propositions. The disjunction of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Truth Table: Disjunction

The following is the truth table for disjunction:

p	q	$p \lor q$
Т	T	Т
T	F	Т
F	Т	Т
F	F	F

Disjunction Example:

```
Let p = "The earth is round."
Let q = "The sky is blue."
p \lor q = "The earth is round, or the sky is blue (or both)."
```

Implication: Definition 5, Section 1.1*

Let p and q be propositions. The *conditional statement* (or *implication*) $p \to q$, is the proposition "if p, then q." The conditional statement $p \to q$ is false when p is true and q is false, and is true otherwise. In the conditional statement $p \to q$, p is called the *premise*, and q is called the *consequence*.

Truth Table: Implication

The following is the truth table for the conditional statement, or implication:

p	q	$p \rightarrow q$
Т	Т	Τ
Т	F	F
F	Т	Т
F	F	Т

Implication Example:

Let p = "I hit my head."

Let q = "My head hurts."

 $p \rightarrow q =$ "I hit my head implies that my head hurts."

Notice that it is fine if my head hurts even if I haven't hit it (maybe I have a migraine) – that doesn't invalidate the proposition. But, if I hit my head and it doesn't hurt, then the above proposition is a false claim.

Bi-implication: Definition 6, Section 1.1*

Let p and q be propositions. The biconditional statement (or bi-implication) $p \leftrightarrow q$, is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise.

Truth Table: Bi-implication

The following is the truth table for the biconditional statement, or bi-implication:

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Bi-implication Example:

Let p = "I hit my head."

Let q = "My head hurts."

 $p \leftrightarrow q =$ "I hit my head if and only if my head hurts."

Notice that it is now unacceptable for my head to hurt if I haven't hit my head (a migraine would invalidate the proposition).

Precedence of Logical Operators

The following table shows the precedence of the five logical operators introduced above:

Precedence	Operator
1	¬
2	\wedge
3	V
4	\rightarrow
5	\leftrightarrow

Just like how multiplication,*, has higher precedence than addition, +, conjunction, \wedge has higher precedence than disjunction, \vee . With numbers, negation, -, also has highest precedence (just as negation, \neg , does in propositional logic).

Propositional Logic Examples:

Let p, q, and r be propositional variables where p = T, q = F, and r = T. Determine the truth values of the following:

- 1. $\neg p \lor q$
- 2. $p \lor q \lor r$
- 3. $q \to (p \land r)$
- 4. $p \leftrightarrow r$
- 5. $\neg [q \lor (p \land r)]$

For 1, plug in the values for p and $q: \neg T \lor F$. The negation binds tighter than disjunction, so we have $F \lor F$, which results in F. For 2, we have $T \lor F \lor T$. We can evaluate from left to right to get $T \lor T$ (since $T \lor F = T$), which results in T. For 3, we have $F \to (T \land T)$, which simplifies to $F \to T$, which evaluates to T (look at implication again if this is confusing). For $4, T \leftrightarrow T$ is T (remember for bi-implication the values must be the same on both sides of the operator for the proposition to evaluate to true). For 5, we have $\neg [F \lor (T \land T)]$, which simplifies to $\neg [F \lor T]$, which is $\neg [T]$, which evaluates to F. Note that the parentheses around $p \land r$ are redundant (since \land has higher precedence that \lor), but the brackets around $q \lor (p \land r)$ are essential.

Conclusion

Propositional logic is the basis for reasoning in the field of Computer Science (as well as Philosophy). See the book* for further examples and details.

^{*}All definitions are from Discrete Mathematics and Its Applications, by Kenneth H. Rosen.