PROBLEM NO: 01 DATE: 22/02/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Write a C program to calculate the where n is a given positive integer. Compute the sum of $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...\frac{1}{n}$ for n=2 ,n=2021 and n=10000.

*** WORKING RULE:**

Step 1: Read n

Step 2: Set sum=0, i=0

Step 3: compute sum=sum 1/I

Step 4: set i=i+1

Step 5 : if i≤n go to step 3

Step 6: print sum

Step 7: stop

******* ASCENDING ORDER OF n INTEGERS *******

PROBLEM NO: 02 DATE: 06/03/2023

ROLL NO: 1153

*** STATEMENT OF THE PROBLEM:**

Write a C program to enter n integers into an array and sort the integers in ascending order. Calculate also the number of swap required to sort the given array of integers.

*** WORKING RULE:**

Step 1: Read n

Step 2: Read x_i $0 \le i \le n$

Step 3: Set i=1

Step 4 : Set j=i+1

Step 5 : If $x_i < x_j$ go to step 7

Step 6 : Interchange x_i and x_i

Step 7: If j < n set j=j+1 and go to step 5

Step 8: Print x_i

Step 9 : If I < n-1 set i=j+1 and go to step 4

Step 10: Stop

PROBLEM NO:03 DATE:09/03/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Solve the following interpolation problem. Find f(x) for x=0.20+(R+1)/100 using Newton Gregory Forward interpolation formula.

х	f(x)	х	f(x)
0.20	1.5651272616	0.95	1.7819658019
0.35	1.6062738825	1.10	1.8288130283
0.50	1.6485022329	1.25	1.8768918511
0.65	1.6918407511	1.40	1.9262346485
0.80	1.7363186230	1.55	1.9768746499

in which R denotes last digit of your Roll Number.

***** WORKING RULE:

NEWTON'S FORWARD INTERPOLATION FORMULA

If y=f(x) is known for (n+1) equally spaced arguments $x_i = x_0 + ih$ (i=0,1,2,3..,n) and y_i be the corresponding entries then the Newton's Forward Interpolation Formula with x_0 as the starting point and $u = \frac{x_0 - x_0}{h}$ is

$$f(x) \approx f(x_0) + \binom{u}{1} \Delta f(x_0) + \binom{u}{2} \Delta^2 f(x_0) + \binom{u}{3} \Delta^3 f(x_0) + \dots + \binom{u}{n} \Delta^n f(x_0).$$

********NEWTON'S BACKWARD INTERPOLATION ********

PROBLEM NO: 04 DATE:16/03/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Solve the following interpolation problem. Find f(x) for x=0.20+(R+1)/100 using Newton Gregory Forward interpolation formula.

х	f(x)	х	f(x)
0.20	1.5651272616	0.95	1.7819658019
0.35	1.6062738825	1.10	1.8288130283
0.50	1.6485022329	1.25	1.8768918511
0.65	1.6918407511	1.40	1.9262346485
0.80	1.7363186230	1.55	1.9768746499

in which R denotes last digit of your Roll Number.

***** WORKING RULE:

NEWTON'S FORWARD INTERPOLATION FORMULA

If y=f(x) is known for (n+1) equally spaced arguments $x_i = x_0 + ih$ (i=0,1,2,3..,n) and y_i be the corresponding entries then the Newton's Forward Interpolation Formula with x_0 as the starting point and $u = \frac{x_i - x_0}{h}$ is

$$f(x) \approx f(x_0) + \binom{u}{1} \Delta f(x_0) + \binom{u}{2} \Delta^2 f(x_0) + \binom{u}{3} \Delta^3 f(x_0) + \dots + \binom{u}{n} \Delta^n f(x_0).$$

PROBLEM NO- 05: DATE: 22/3/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

From the following table compute f(x)=0.29+(R+3)/100 by Lagrange Interpolation Formula :

x	f(x)
0.24	0.21462
0.30	0.28493
0.42	0.39617
0.50	0.43752
0.61	0.49031
0.69	0.55286
0.83	0.69756

where R denotes the last digit of your Roll Number.

❖ WORKING RULE: LAGRANGE INTERPOLATION FORMULA

$$f(x) \simeq L_n(x) = \omega(x) \sum_{r=0}^n \frac{f(x_r)}{(x-x_r)\omega'(x_r)} = \omega(x) \sum_{r=0}^n \frac{f(x_r)}{D_r}$$
where $\omega(x) = (x-x_0)(x-x_1)(x-x_2)....(x-x_{n-1})(x-x_n)$,
$$\omega'(x_r) = (x_r-x_0)(x_r-x_1)..(x_r-x_{r-1})(x_r-x_{r+1})....(x-x_n) \text{ and}$$

$$D_r = (x_r-x_0)(x_r-x_1)..(x_r-x_{r-1})(x-x_r)(x_r-x_{r+1})....(x-x_n).$$

****NEWTON DIVIDED DIFFERENCE INTERPOLATION******

PROBLEM NO-06: DATE: 27/03/2023

ROLL NO: 1153

*** STATEMENT OF THE PROBLEM:**

From the following table compute $f(1.30 + \frac{(R+1)}{100})$ by Newton Divided Difference

X	f(x)
0.24	0.21462
0.30	0.28493
0.42	0.39617
0.50	0.43752
0.61	0.49031
0.69	0.55286
0.83	0.69756

where R denotes the last digit of your Roll Number.

*** WORKING RULE:**

NEWTON DIVIDED DIFFERENCE INTERPOLATION FORMULA

$$f(x) \simeq L(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + (x - x_0)(x - x_1)$$

$$(x - x_2)f(x_0, x_1, x_2, x_3) + \dots + (x - x_0)(x - x_1)\dots(x - x_n)f(x_0, x_1, x_2, \dots x_n)$$
where $f(x_0, x_1, x_2, \dots, x_n) = \frac{f(x_0, x_1, x_2, \dots, x_{n-1}) - f(x_1, x_2, \dots, x_n)}{x_0 - x_1}$.

RESULT:

SIGNATURE OF THE TEACHER

PROBLEM NO: 07 DATE: 01/04/2023

ROLL NO: 1153

*** STATEMENT OF THE PROBLEM:**

Evaluate the following integral by Trapezoidal rule correct upto 3D using 13 ordinates.

$$\int_{10^{\circ}}^{50^{\circ}} \frac{dx}{(1 + a \sin^4 x)^{\frac{3}{2}}}$$

Here b =
$$\frac{1+R}{20}$$
,

Where R denotes the last digit of your roll number.

*** WORKING RULE: TRAPEZOIDAL RULE**

Composite Trapezoidal rule for number of ordinates $(n + 1) \ge 3$:

$$I_T^C = \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3 + ... + y_{n-1})]$$

where h is the width of each subinterval and y_i is the ordinate at $x_i = x_0 + ih$, (i=0,1,...,n).

PROBLEM NO-08: DATE: 05/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Compute the value of the following integral correct to 5D by Simpson's Rule using 13 ordinates:

$$\int_{q}^{4} \frac{q+2x^2+x^3}{1+x\cosh(x+1)} dx$$

Where
$$q = \frac{2+R}{10}$$

Where R denotes last digit of Roll Number.

♦ WORKING RULE: SIMPSON'S ½ RULE

Composite Simpson's $\frac{1}{3}$ rule for odd number of ordinates $n+1 \ge 3$ where n is a multiple of two is:

$$I_S^C = \frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_3 + y_5 + \dots + y_{n-1}) + 2(y_2 + y_4 + y_6 + \dots + y_{n-2})]$$

where h is the width of each subinterval and y_i is the ordinate at $x_i = x_0 + ih(i=0,1,...,n)$.

$$I_S^C =$$
 (correct up to 5 decimal place).

PROBLEM NO: 09 DATE: 06/04/2023

ROLL NO: 1153

STATEMENT OF THE PROBLEM:

Compute the value of the following integral correct to 5D by Weddle's Rule using 13 ordinates:

$$\int_{20^{\circ}}^{40^{\circ}} \frac{dx}{(1 - a \sin^2 x)^{\frac{3}{2}}}$$

Where $a = \frac{(1+R)}{10}$. R denotes the last digit of roll number.

***** WORKING RULE: WEDDLE'S RULE

Composite Weddle's rule for 13 ordinates :

$$I_{W}^{C} = \frac{3h}{10} [(y_0 + y_{12}) + 5(y_1 + y_5 + y_7 + y_{11}) + (y_2 + y_4 + y_8 + y_{10}) + 6(y_3 + y_9) + 2y_6]$$

where h is the width of each subinterval and y_i is the ordinate at $x_i = x_0 + ih$, (i=0,1...,12).

* RESULT:

$$I_{W}^{C}$$
 = (correct up to 5 decimal place).