Lecture 2

Brennan Becerra

2024-01-17

For Hw1: Improper Integrals (Calc 2)

Ex:

$$\int_0^1 rac{1}{\displaystyle \underbrace{x}_{ ext{DNE at 0}}} \, dx = \lim_{a o 0} \int_a^1 rac{1}{x} \, dx \ = \lim_{a o 0} \ln(x)|_a^1$$

Ex:

$$\int_0^\infty e^{-\lambda t}\,dt = \lim_{b o\infty} \int_0^b e^{-\lambda t}\,dx$$

Vector Calculus Review

Section 1.2 - Inner Product (Dot Product)

Definition 1.11

If $\vec{x}=(x_1,x_2,\ldots,x_n), \vec{y}=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$ then the *inner product*, $\langle \vec{x},\vec{y}\rangle$ is:

$$\langle \vec{x}, \vec{y} \rangle = \langle x_1, x_2, \dots, x_n \rangle \cdot \langle y_1, y_2, \dots, y_n \rangle \ = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \in \mathbb{R}^n.$$

<u>Ex.</u>

$$\vec{x} = (1,0,2), \vec{y} = (2,-6,3). \ \langle \vec{x}, \vec{y} \rangle = (1)(2) + (0)(-6) + (2)(3) = 2 + 0 + 6 = 8.$$

The inner product lets us measure angles and distances.

Lemma 1.12

Let the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$, and $\lambda, \mu \in \mathbb{R}$.

Properties of the inner product (dot product):

- 1. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ (symmetric)
- 2. $\langle \lambda \mathbf{x} + \mu \mathbf{y}, \mathbf{z} \rangle = \lambda \langle \mathbf{x}, \mathbf{z} \rangle + \mu \langle \mathbf{y}, \mathbf{z} \rangle,$ $\langle \mathbf{x}, \lambda \mathbf{y} + \mu \mathbf{z} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle + \mu \langle \mathbf{x}, \mathbf{z} \rangle$ (bilinear)
- 3. $\langle \mathbf{x}, \mathbf{x} \rangle = |\mathbf{x}|^2$, which equals zero if and only if $\mathbf{x} = 0$.
- 4. $\langle \mathbf{x}, \mathbf{y} \rangle \le |\langle \mathbf{x}, \mathbf{y} \rangle| \le |\mathbf{x}||\mathbf{y}|$ (the Schwarz inequality).

Equation 1.2

$$\langle ec{x}, ec{y}
angle = |ec{x}| |ec{y}| \cos(heta)$$

where $heta \in [0,2\pi]$ and we can also say

$$heta = \cos^{-1}\left(rac{\langle ec{x}, ec{y}
angle}{|ec{x}||ec{y}|}
ight)$$

Notice that if $\vec{x} \perp \vec{y}$, then $\langle \vec{x}, \vec{y} \rangle = |\vec{x}| |\vec{y}| \cos\left(\frac{\pi}{2}\right) = 0$. This is because $\cos\left(\frac{\pi}{2}\right) = 0$.

Applications of inner product: Projection and Orthogonal **Decomposition**

Orthogonal Decomposition

The *Orthogonal Decomposition* of \vec{x} with respect to \vec{y} is:

$$ec{x}=ec{x}^{||}+ec{x}^{\perp}$$

- $lee ec x^{||}$ is parallel to ec y
- $oldsymbol{ec{x}}^{oldsymbol{\perp}}$ is orthogonal to $ec{y}$

To compute orthogonal decomposition:

- 1. The scalar component, $\lambda = \frac{\langle \vec{x}, \vec{y} \rangle}{|\vec{y}|}$
- 2. The projection $ec{x}^{||}=\lambda\hat{y}=rac{\stackrel{|y|}{\langleec{x},ec{y}
 angle}}{|ec{y}|^2}ec{y}$ 3. $ec{x}^{\perp}=ec{x}-ec{x}^{||}=ec{x}-rac{\stackrel{\langleec{x},ec{y}
 angle}{|ec{y}|^2}}ec{y}$