Experiências com um Honeypot DNS: Caracterização e Evolução do Tráfego Malicioso

Tiago Heinrich, Felipe de Souza Longo, Rafael R. Obelheiro

Programa de Pós-Graduação em Computação Aplicada Universidade do Estado de Santa Catarina – Joinville

SBSeg 2017 Brasília, 7 de novembro de 2017

Roteiro

- Introdução
- 2 DNSpot: arquitetura e implementação
- Análise de tráfego
- Conclusão

Introdução

- O DNS desempenha um papel vital na Internet, tendo como principal funcionalidade traduzir nomes em endereços IP
- O DNS pode ser alvo de ataques
 - DoS contra usuários
 - falsificação de consultas/respostas/dados nos servidores
 - ★ redirecionamento de tráfego
 - vazamento de dados
 - histórico de consultas de usuários
 - ★ identificação de alvos para ataques
- O DNS também pode ser instrumento de ataques
 - DDoS
 - canais cobertos
 - C&C malware
 - exfiltração de dados

Negação de serviço distribuída por reflexão (DRDoS)

Incidência de ataques DRDoS usando o DNS

- Em 2016, o DNS foi usado em 47% dos ataques DRDoS, gerando em média 3.083 Mbps por ataque; ataques aumentaram de 10.500 para 18.500 por semana¹
- No 1º trimestre de 2017, 57% dos ataques DDoS observados eram baseados em reflexão, e o DNS foi um dos protocolos mais usados²

¹Arbor Networks, Worldwide infrastructure security report, vol. XII

²Akamai, *Q1 2017 state of the Internet/security report*

Objetivo e contribuições

- Objetivo: investigar os ataques que podem ser efetuados contra um servidor DNS recursivo aberto
 - honeypot específico para DNS

Contribuições

- arquitetura de honeypot que permite interação controlada com um servidor DNS recursivo aberto
- análise do tráfego coletado pelo honeypot em dois períodos
 - 2015: 49 dias
 - 2016–2017: 250 dias

Arquitetura do DNSpot

 Honeypot projetado especificamente para monitorar e analisar o tráfego DNS

Mecanismos de contenção

- Limite diário de consultas por IP de origem: reduz o tráfego enviado pelo DNSpot quando usado como refletor
 - consultas excedentes são processadas e armazenadas no BD, mas não respondidas
 - limite fixado em 30 nos nossos experimentos
- Mensagens falsas de erro: retorna mensagem de falha inespecífica do servidor (ServFail) com uma determinada probabilidade
 - ideia é aparentar inconfiabilidade, para não despertar suspeitas caso o honeypot falhe ou seja desligado
 - probabilidade fixada em 20% nos nossos experimentos
- Blacklists de nomes/sufixos: suprime respostas a varreduras por servidores recursivos abertos
 - p.ex., openresolverproject.org, dnsresearch.cymru.com

Implementação e coleta de dados

- DNSpot foi implementado em Python, usando Unbound para o servidor recursivo real e SQLite para o BD
- Datasets

Dataset	Início	Fim	Total (dias)
DS1	09/09/2015 07:57	28/10/2015 22:29	49,6
DS2	17/09/2016 08:00	25/05/2017 20:47	250,5

Indisponibilidade estimada em 0,5–1% dos 300,1 dias

Estatísticas de consultas

Transações	DS1		DS2		Total		
Hallsações	Quantidade	%	Quantidade	%	Quantidade	%	
Respondidas	488.289	12,1	1.600.386	4,9	2.088.675	5,7	
Válidas	391.050	80,1	1.280.425	80,0	1.671.475	80,0	
 ServFail falso 	97.249	19,9	319.961	20,0	417.210	20,0	
Não respondidas	3.547.306	87,9	30.758.542	95,1	34.305.848	94,3	
 Ignoradas 	3.544.876	99,9	30.243.241	98,3	33.788.117	98,5	
Erros	2.370	0,1	515.301	1,7	517.671	1,5	
Total	4.035.605	100,0	32.358.928	100,0	36.394.533	100,0	

- Total de 36,4M consultas processadas
- Fração de consultas respondidas caiu em DS2
 - mais erros, maior intensidade e duração de ataques DoS
- Taxa média de processamento de requisições aumentou de 81k/dia (0,96 tps) para 130k/dia (1,50 tps)

Volume de tráfego processado e esperado

Tipo	DS1		DS2		Total	
Προ	MB % MB		%	MB	%	
Tráfego processado	1.560,1	100,0	5.241,5	100,0	6.801,6	100,0
Consultas	165,1	10,6	1.196,4	22,8	1.361,5	20,0
Respostas	1.395,0	89,4	4.045,1	77,2	5.440,1	80,0
Tráfego esperado	14.775,6	_	34.775,9	_	49.551,5	_
Respostas	14.610,4	_	33.579,5	_	48.189,9	_
Redução de tráfego de resposta	13.215,4	90,5	29.534,4	84,9	42.749,8	88,7

- Total de 6,8 GB processados
- Restrição do número diário de consultas por endereço IP reduziu o tráfego de resposta em 88,7% (11,3% do pretendido)
 - aumento na proporção de consultas levou a uma redução menor em DS2
- Predominância de consultas ANY: 99,2% em DS1 e 94% em DS2 (94,6% no total)
 - especificações do DNS estão sendo alteradas para suprimir ANY

Tamanhos de consultas e respostas em DS2

- Consultas: 99,999% até 50 bytes
- Respostas: 43,9% até 100 bytes, 54,9% mais de 3.000 bytes
- Em DS1, um único RR (hehehey.ru ANY) apareceu em 97% das consultas (39 bytes) e 90,4% das respostas (3.850 bytes)

Top 5 países de origem

	DS1			DS2			
Posição	País	IPs distintos	%	País	IPs distintos	%	
1	China	1.287	30,0	China	28.705	15,6	
2	Estados Unidos	1.164	27,2	Estados Unidos	15.613	8,5	
3	Rússia	759	17,7	Brasil	9.838	5,3	
4	Alemanha	297	6,9	Coreia do Sul	6.815	3,7	
5	Canadá	94	2,2	Japão	6.398	3,5	
	outros	686	16,0	outros	117.195	63,5	
Total	73 países	4.287	100,0	161 países	184.564	100,0	

- Endereços podem representar origem de consultas ou vítimas de ataques DRDoS, que usam IP spoofing
- Diversidade aumentou tanto no número de países representados quanto na concentração de requisições
 - proporção do Top 5 caiu de 84% para 36,5%

Ataques DoS

- Para analisar ataques DoS, é necessário definir o que constitui um ataque desse tipo
 - não existe consenso na literatura

Definição

Um ataque DoS é formado por um conjunto com no mínimo 5 consultas com o mesmo IP de origem e com espaçamento máximo de 60 segundos entre consultas consecutivas, e pelas respostas a essas consultas

- Estabelecida empiricamente, considera que o DNSpot esteja sendo usado como um de vários refletores em um ataque DRDoS
- Não diferencia ataques DRDoS de ataques DoS contra o DNSpot, mas esses são pouco prováveis

Estatísticas de ataques DoS

		DS1	DS2		
N° de ataques		7.940	23.788		
Ataques/dia (média)		160,1	95,0		
Métricas	Total	Envolvidos em DoS	Total	Envolvidos em DoS	
IPs	4.287	3.499 (81,6%)	184.564	23.745 (12,9%)	
RRs	136	87 (64,0%)	4.982	840 (16,8%)	
N° de requisições	4.035.605	4.032.778 (99,9%)	32.358.928	30.661.228 (94,7%)	

- Redução na frequência de ataques e nas proporções de endereços IP, RRs e requisições envolvidos
 - explicada pela concentração de requisições (97%) em um único RR em DS1 e por um aumento nas consultas que não se encaixam na definição no final de DS2
 - proporção de requisições teve queda menos acentuada

Fator de amplificação de ataques DoS

 Fator de amplificação: razão entre o tamanho das respostas e o tamanho das consultas correspondentes

Fator de amplificação	DS1	DS2
Médio	96,3	74,1
Máximo	110,7	103,6

- Fator máximo foi comparável, mas o fator médio foi menor
 - ▶ 6,5% das consultas em DS2 tiveram fator de amplificação < 10</p>
 - nomes equivocados
 - medidas de contenção do tamanho de respostas, como filtragem de ANY
- Maiores fatores foram observados para consultas ANY cujas respostas contêm diversos registros DNSSEC
 - corrobora outras referências

Duração e intensidade dos ataques DoS

- Duração dos ataques aumentou
 - ▶ DS1: 95% dos ataques duraram menos de 9 min
 - ▶ DS2: 50% dos ataques duraram até 8 min, e 25% duraram 19+ min
- Número de requisições por ataque também aumentou
 - mediana 17× maior, demais medidas aumentaram 12×

Dataset	média	mediana	3° quartil	95° percentil	máximo
DS1	507,9	132,0	402,0	2.100,2	25.363
DS2	6.029,7	2.264,0	5.024,0	25.594,4	203.474

Particularidades observadas (1)

- Varreduras UDP e SIP: requisições malformadas que foram classificadas como varreduras UDP típicas de Nmap e, o mais surpreendente, varreduras SIP (porta padrão 5060/UDP)
- Domínios projetados para amplificação: diversos domínios contendo RRs que não possuem nenhum significado ou utilidade para uma consulta normal DNS, servindo apenas para gerar respostas próximas a 4 KB úteis para ataques DRDoS
 - nomes com 250+ registros A na mesma sub-rede
 - ▶ nomes com 30+ registros TXT com 99 x (xx...xx1, xx...xx2,...)
 - ★ domínios diferentes mas mesmos registros SOA, NS, MX, A

Desaparecimento e redução de domínios

- 4º domínio mais popular em DS1 expirou durante a coleta, fazendo respostas caírem de 3875 para 96 bytes, mas continuou sendo usado
- em DS2, 17 domínios desapareceram durante a coleta, mas as consultas não persistiram
 - atualização de ferramentas de ataque?

Particularidades observadas (2)

- Consultas por nomes equivocados: número significativo de consultas por domínios obviamente inexistentes (.3858, .pkt), ou com tipos aparentemente trocados (TXT inexistente vs ANY com 4 KB)
- Consultas de usuários finais (DS2)
 - nomes de sites populares: google.com, facebook.com, amazon.com
 - nomes usados por ferramentas anti-malware: avqs.mcafee.com
 - nomes usados para descoberta de serviços (DNS-SD) com endereços de redes privadas (192.168.*.*)
 - ▶ fator de amplificação < 10, aumento no número de IPs distintos</p>
 - ★ usuários finais usando o DNSpot como resolvedor regular? varreduras?

Discussão dos resultados

- Ataques DRDoS constituem o principal abuso
 - escolha adequada do nome consultado pode obter um fator de amplificação > 100, bem maior que os fatores típicos reportados (entre 28 e 54)¹
 - limitação diária de consultas por IP restringiu o tráfego gerado pelo DNSpot a 11,3% do volume pretendido
- Volume significativo de requisições para um servidor não anunciado publicamente
 - ▶ 1,4 requisições por segundo, tráfego médio potencial de 165 MB/dia
 - primeiras requisições recebidas segundos após a ativação do honeypot, primeiro ataque DRDoS em < 28 h
- Análise da evolução entre as duas coletas revela diminuição na frequência dos ataques, mas um aumento relevante na sua duração e intensidade

¹CERT.br, Recomendações para melhorar o cenário de ataques distribuídos de negação de serviço (DDoS), 2016.

Conclusão

Pergunta que deu origem à pesquisa

O que acontece com um servidor DNS recursivo exposto à Internet?

Conclusão

Pergunta que deu origem à pesquisa

O que acontece com um servidor DNS recursivo exposto à Internet?

Conclusões

- Vira refletor em ataques DRDoS!
- Esses ataques vêm aumentando em duração e intensidade
- 3. No geral o tráfego DNS também vem aumentando de intensidade
- Perspectivas futuras
 - manter a coleta de dados, conjugando análises de curto e longo prazo
 - usar uma rede de honeypots distribuídos para monitoramento e detecção de ataques ao DNS

Experiências com um Honeypot DNS: Caracterização e Evolução do Tráfego Malicioso

Tiago Heinrich, Felipe de Souza Longo, Rafael R. Obelheiro

Programa de Pós-Graduação em Computação Aplicada Universidade do Estado de Santa Catarina – Joinville

SBSeg 2017 Brasília, 7 de novembro de 2017

22 / 23

Distribuições empíricas da duração de ataques DoS

