SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- · For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

1. Considering only the principal values of the inverse trigonometric functions, the value of

$$\tan\left(\sin^{-1}\left(\frac{3}{5}\right) - 2\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right)$$
 is

- (A) $\frac{7}{24}$ (B) $\frac{-7}{24}$ (C) $\frac{-5}{24}$

Answer (B)

Sol.
$$\tan\left(\sin^{-1}\left(\frac{3}{5}\right) - 2\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)\right)$$

Let
$$\sin^{-1} \frac{3}{5} = \alpha$$
, $2\cos^{-1} \frac{2}{\sqrt{5}} = \beta \implies \cos \frac{\beta}{2} = \frac{2}{\sqrt{5}}$

$$\because \sin \alpha = \frac{3}{5} \implies \tan \alpha = \frac{3}{4} \quad \tan \beta = \frac{2 \tan \frac{\beta}{2}}{1 - \tan^2 \frac{\beta}{2}} = \frac{2 \times \frac{1}{2}}{1 - \frac{1}{4}} = \frac{4}{3}$$

$$\Rightarrow \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{\frac{3}{4} - \frac{4}{3}}{1 + 1} = -\frac{7}{24}$$

Let $S = \{(x, y) \in R \times R : x \ge 0, y \ge 0, y^2 \le 4x, y^2 \le 12 - 2x \text{ and } 3y + \sqrt{8}x \le 5\sqrt{8} \}$. If the area of the 2.

region S is $\alpha\sqrt{2}$, then α is equal to

- (A) $\frac{17}{2}$ (B) $\frac{17}{3}$ (C) $\frac{17}{4}$

Answer (B)

$$y^2 = 4x, y^2 = 12 - 2x \Rightarrow x = 2, y = \sqrt{8}$$

$$A = \int_0^2 2\sqrt{x} dx + \frac{1}{2} \times 3 \times \sqrt{8}$$

$$= \left[2 \times \frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{2} + 3\sqrt{2} = \frac{4}{3} \times 2\sqrt{2} + 3\sqrt{2} = \frac{17}{3} \sqrt{2}$$

$$\therefore A = \alpha \sqrt{2} \Rightarrow \alpha = \frac{17}{3}$$

Option (B) is correct.

3. Let $k \in R$. If $\lim_{x \to 0+} (\sin(\sin kx) + \cos x + x)^{\frac{2}{x}} = e^6$, then the value of k is

(A) 1

- (B) 2
- (C) 3
- (D) 4

Answer (B)

$$I = \lim_{x \to 0^+} (\sin(\sin kx) + \cos x + x)^{\frac{2}{x}} = e^6$$

$$\Rightarrow \ln I = \lim_{x \to 0^+} \frac{2}{x} (\sin(\sin kx) + \cos x + x - 1)$$

$$\Rightarrow \ln I = \lim_{x \to 0^+} 2 \left(\frac{\sin(\sin kx)}{\sin kx} \cdot \frac{\sin kx}{kx} \cdot \frac{kx}{x} + 1 - \frac{(1 - \cos x)}{x^2} \cdot x \right)$$

$$\Rightarrow$$
 $\ln / = 2(k+1)$ \Rightarrow $I = e^{2(k+1)} = e^6$

$$k+1=3 \implies k=2$$

4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then which of the following statements is TRUE?

- (A) f(x) = 0 has infinitely many solutions in the interval $\left[\frac{1}{10^{10}}, \infty\right]$.
- (B) f(x) = 0 has no solutions in the interval $\left| \frac{1}{\pi}, \infty \right|$.
- (C) The set of solutions of f(x) = 0 in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
- (D) f(x) = 0 has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$.

Answer (D)

$$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

$$f(x) = 0 \Rightarrow \sin\left(\frac{\pi}{x^2}\right) = 0$$

$$\Rightarrow \frac{\pi}{x^2} = n\pi$$

$$\Rightarrow x^2 = \frac{1}{n}$$

$$\Rightarrow x = \frac{1}{\sqrt{n}}$$

If
$$x \in \left[\frac{1}{10^{10}}, \infty\right)$$
 If $x \in \left[\frac{1}{\pi}, \infty\right)$ If $x \in \left(0, \frac{1}{10^{10}}\right)$

If
$$x \in \left[\frac{1}{\pi}, \infty\right)$$

If
$$x \in \left(0, \frac{1}{10^{10}}\right)$$

$$\frac{1}{\sqrt{n}} \in \left[\frac{1}{10^{10}}, \infty \right) \qquad \frac{1}{\sqrt{n}} \in \left[\frac{1}{\pi}, \infty \right) \qquad \sqrt{n} \in \left(10^{10}, \infty \right)$$

$$\frac{1}{\sqrt{n}} \in \left[\frac{1}{\pi}, \infty\right]$$

$$\sqrt{n} \in (10^{10}, \infty)$$

$$\sqrt{n} \in \left(0, 10^{10}\right] \qquad \qquad \sqrt{n} \in (0, \pi]$$

$$\sqrt{n} \in (0,\pi]$$

n infinite

$$n \in \left(0, \left(10^{10}\right)^{2}\right)$$

$$n \in (0, \pi^2]$$

$$n \in \left(0, \left(10^{10}\right)^2\right]$$
 $n \in \left(0, \pi^2\right]$ If $x \in \left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$

Finite values of n n = 1, 2, 3...9

$$n = 1, 2, 3 \dots 9$$

$$\sqrt{n} \in (\pi, \pi^2)$$

$$n \in (\pi^2, \pi^4)$$

$$n \in (9.8, 97.2...)$$

More than 25 solutions

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are)

correct answer(s).

- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: + 2 If three or more options are correct but ONLY two options are chosen, both of which

are correct:

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct

option;

Zero Marks: 0 If unanswered;

Negative Marks: -2 In all other cases.

5. Let S be the set of all $(\alpha, \beta) \in R \times R$ such that

$$\lim_{x \to \infty} \frac{\sin\left(x^2\right) \left(\log_e x\right)^{\alpha} \sin\left(\frac{1}{x^2}\right)}{x^{\alpha\beta} \left(\log_e (1+x)\right)^{\beta}} = 0$$

Then which of the following is (are) correct?

(A)
$$(-1,3) \in S$$

(B)
$$(-1,1) \in S$$

(C)
$$(1,-1) \in S$$

(D)
$$(1, -2) \in S$$

Answer (B,C)

Sol.

$$\lim_{x \to \infty} \frac{\sin\left(x^2\right) \sin\left(\frac{1}{x^2}\right) (\ln x)^{\alpha}}{x^{\alpha\beta} (\ln(1+x))^{\beta}} = 0$$

$$= \lim_{x \to \infty} \frac{\left(\sin x^2\right) \sin\left(\frac{1}{x^2}\right) \frac{1}{x^2}}{\left(\frac{1}{x^2}\right) x^{\alpha\beta} \left(\ln(1+x)\right)^{\beta}} = 0$$

It is possible if $\alpha\beta + 2 > 0$ $\alpha\beta > -2$

- (A) $\alpha\beta = -3$ (B) $\alpha\beta = -1$ (C) $\alpha\beta = -1$

- A straight line drawn from the point P(1,3,2), parallel to the line $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$, intersects the 6. plane $L_1: x-y+3z=6$ at the point Q. Another straight line which passes through Q and is perpendicular to the plane L_1 intersects the plane $L_2:2x-y+z=-4$ at the point R . Then which of the following statements is(are) TRUE?
 - (A) The length of the line segment PQ is $\sqrt{6}$
 - (B) The coordinates of R are (1,6,3)
 - (C) The centroid of the triangle PQR is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
 - (D) The perimeter of the triangle PQR is $\sqrt{2} + \sqrt{6} + \sqrt{11}$

Answer (A,C)

Sol. Equation of line parallel to $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$ through P(1,3,2) is

$$\frac{x-1}{1} = \frac{y-3}{2} = \frac{z-2}{1} = \lambda$$
 (let)

Now, putting any point $(\lambda+1,2\lambda+3,\lambda+2)$ in L_1

$$\lambda = 1$$

Point O(2,5,3)

Equation of line through Q(2,5,3) perpendicular to L_1 is

$$\frac{x-2}{1} = \frac{y-5}{-1} = \frac{z-3}{3} = \mu$$
 (Let)

Putting any point $(\mu+2,-\mu+5,3\mu+3)$ in L_2

$$\mu = -1$$

 \Rightarrow Point R(1,6,0)

(A)
$$PQ = \sqrt{1+4+1} = \sqrt{6}$$

(B) R(1,6,0)

(C) Centroid
$$\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$$

(D)
$$PQ + QR + PR = \sqrt{6} + \sqrt{11} + \sqrt{13}$$

- 7. Let A_1, B_1, C_1 be three points in the xy-plane. Suppose that the lines A_1C_1 and B_1C_1 are tangents to the curve $y^2 = 8x$ at A_1 and B_1 , respectively. If O = (0,0) and $C_1 = (-4,0)$, then which of the following statements is (are) TRUE?
 - (A) The length of the line segment OA_{l} is $4\sqrt{3}$
 - (B) The length of the line segment $A_{\rm l}B_{\rm l}$ is 16
 - (C) The orthocentre of the triangle $A_1B_1C_1$ is (0,0)
 - (D) The orthocentre of the triangle $A_{\rm i}B_{\rm i}C_{\rm i}$ is (1,0)

Answer (A, C)

Let
$$A_1 = (2t_1^2, 4t_1)$$
 and $B_1 = (2t_2^2, 4t_2)$

$$C \equiv (-4,0) \equiv (2t_1t_2, 2(t_1 + t_2))$$

$$\Rightarrow t_2 = -t_1 \text{ and } t_1(-t_1) = -2$$

$$t_1 = \sqrt{2}, t_2 = -\sqrt{2}$$

$$A_1 \equiv (4, 4\sqrt{2}), B_1 \equiv (4, -4\sqrt{2})$$

$$\therefore OA_1 = \sqrt{4^2 + (4\sqrt{2})^2} = 4\sqrt{3}$$

$$A_1 B_1 = 8\sqrt{2}$$

Altitude $C_1M: y=0$

Altitude $B_1N: \sqrt{2}x + y = 0$

 \therefore Orthocentre $\equiv (0,0)$

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If ONLY the correct integer is entered;

Zero Marks: 0 In all other cases.

8. Let $f:R\to R$ be a function such that f(x+y)=f(x)+f(y) for all $x,y\in R$, and $g:R\to (0,\infty)$ be a function such that g(x+y)=g(x)g(y) for all $x,y\in R$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right)g(0)$ is

Answer (51)

Sol.
$$f(x+y) = f(x) + f(y)$$

$$\Rightarrow f(x) = kx$$

$$f\left(\frac{-3}{5}\right) = 12 \Rightarrow k = -20$$

$$\therefore f(x) = -20x$$

$$g(x+y) = g(x)g(y) \Rightarrow g(x) = a^x$$

$$g\left(\frac{-1}{3}\right) = 2 \Rightarrow a = \frac{1}{8}$$

$$\therefore g(x) = \left(\frac{1}{8}\right)^x$$

$$\left(f\left(\frac{1}{4}\right) + g(-2) - 8\right)g(0) = (-5 + 64 - 8) \times 1 = 51$$

9. A bag contains N balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For i=1,2,3, let W_i, G_i, and B_i denote the events that the ball drawn in the i^{th} draw is a white ball, green ball, and blue ball, respectively, If the probability $P(W_1 \cap G_2 \cap B_3) = \frac{2}{5N}$ and the conditional probability $P(B_3 | W_1 \cap G_2) = \frac{2}{9}$, then N equals.......

Answer (11)

Sol. N Balls =
$$3W + 6G + (N-9)B$$

$$P(W_1 \cap G_2 \cap B_3) = \frac{2}{5N}$$

$$\Rightarrow \frac{3}{N} \times \frac{6}{N-1} \times \frac{N-9}{N-2} = \frac{2}{5N}$$

$$\Rightarrow N^2 - 48N + 407 = 0$$

$$P(B_3 | W_1 \cap G_2) = \frac{2}{\Omega}$$

N = 11 or 37

$$\Rightarrow \frac{P(W_1 \cap G_2 \cap B_3)}{P(W_1 \cap G_2)} = \frac{2}{9}$$

$$\Rightarrow \frac{\frac{2}{5N}}{\frac{3}{N} \times \frac{6}{N-1}} = \frac{2}{9}$$

$$\Rightarrow \frac{N-1}{45} = \frac{2}{9}$$

$$\Rightarrow N = 11$$

10. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023} + 2024x + 2025\right)}{\left(x^2 - x + 3\right)} + \frac{2}{e^{\pi x}} \frac{\left(x^{2023} + 2024x + 2025\right)}{\left(x^2 - x + 3\right)}$$

Then the number of solutions of f(x) = 0 in R is

Answer (01)

Sol.
$$f(x) = 0$$

$$\Rightarrow \frac{x^{2023} + 2024x + 2025}{\left(x^2 - x + 3\right)} \left[\frac{\sin x + 2}{e^{\pi x}}\right] = 0$$

$$\Rightarrow x^{2023} + 2024x + 2025 = 0$$

Let
$$g(x) = x^{2023} + 2024x + 2025$$

 $g'(x) = 2023x^{2022} + 2024 > 0 \forall x \in R$

- \therefore f(x)=0 has only one solution
- 11. Let $\vec{p}=2\hat{i}+\hat{j}+3\hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers α,β and γ , we have $15\hat{i}+10\hat{j}+6\hat{k}=\alpha(2\vec{p}+\vec{q})+\beta(\vec{p}-2\vec{q})+\gamma(\vec{p}\times\vec{q}), \text{ then the value of } \gamma \text{ is}$

Answer (2)

Sol.
$$2\vec{p} + \vec{q} = 5\hat{i} + \hat{j} + 7\hat{k}$$

$$\vec{p} - 2\vec{q} = 0\hat{i} + 3\hat{j} + \hat{k}$$

$$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 1 & -1 & 1 \end{vmatrix}$$

$$= \hat{i}(4) - \hat{j}(-1) + \hat{k}(-3)$$

$$= 4\hat{i} + \hat{j} - 3\hat{k}$$

$$15\hat{i} + 10\hat{j} + 6\hat{k} = \alpha(5\hat{i} + \hat{j} + 7\hat{k}) + \beta(3\hat{j} + \hat{k}) + \gamma(4\hat{i} + \hat{j} - 3\hat{k})$$

$$15 = 5\alpha + 4\gamma$$

$$10 = \alpha + 3\beta + \gamma$$

$$6 = 7\alpha + \beta - 3\gamma$$

$$\therefore \quad \alpha = \frac{7}{5}, \beta = \frac{11}{5}, \gamma = 2$$

- $\therefore \gamma = 2$
- 12. A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0, -\alpha)$ to the parabola $x^2 = -4ay$, where a > 0. Let

L be the line passing through $(0,-\alpha)$ and parallel to the directrix of the parabola. Suppose that L

intersects the parabola at two points A and B. Let r denote the length of the latus rectum and s denote the square of the length of the line segment AB. If r: s=1:16, then the value of 24a is_____Answer (12)

Sol.
$$x^2 = -4ay$$

Equation of normal

$$y = mx - 2a - \frac{a}{m^2}$$

$$-\alpha = -2a - \frac{a}{\frac{1}{6}} = -8a$$

$$\Rightarrow \alpha = 8a$$

Equation of required line

$$y = -\alpha$$

$$\Rightarrow$$
 y = -8a, solving with $x^2 = -4ay$

$$\Rightarrow x^2 = 32a^2$$

$$\Rightarrow x = \pm 4\sqrt{2}a$$

$$A\left(\frac{\alpha}{\sqrt{2}}, -\alpha\right), B\left(\frac{-\alpha}{\sqrt{2}}, -\alpha\right) \Rightarrow AB = \sqrt{2}\alpha$$

$$\Rightarrow \frac{r}{s} = \frac{4a}{2\alpha^2} = \frac{1}{16} \Rightarrow \frac{4a}{2 \times 64a^2} = \frac{1}{16}$$

$$\Rightarrow a = \frac{1}{2}$$

$$\Rightarrow$$
 24 $a = 12$

13. Let the function $f:[1,\infty) \to R$ be defined by

$$f(t) = \begin{cases} (-1)^{n+1} 2, & \text{if } t = 2n-1, n \in \mathbb{N}, \\ \frac{(2n+1-t)}{2} f(2n-1) + \frac{(t-(2n-1))}{2} f(2n+1), & \text{if } 2n-1 < t < 2n+1, n \in \mathbb{N}. \end{cases}$$

Define $g(x) = \int_1^x f(t)dt$, $x \in (1, \infty)$. Let α denote the number of solutions of the equation g(x) = 0 in the interval

(1,8] and
$$\beta = \lim_{x \to 1^+} \frac{g(x)}{x-1}$$
. Then the value of $\alpha + \beta$ is equal to

Answer (5)

Sol.
$$f(t) = \left(\frac{(2n+1)-t}{2}\right)(-1)^{n+1}2 + \left(\frac{t-(2n-1)}{2}\right)(-1)^{n+2}2, t \in (2n-1, 2n+1)$$
$$\Rightarrow f(t) = 2(-1)^{n+1}(2n-t), t \in (2n-1, 2n+1)$$
$$\Rightarrow g(x) = \int_{1}^{x} f(t)dt, x \in (1, 8]$$

$$\begin{cases} \int_{1}^{x} 2(2-t)dt, 1 < x \le 3, n = 1 \\ 3 \\ \int_{1}^{3} 2(2-t)dt + \int_{3}^{x} (2t-8)dt, 3 < x \le 5, n = 2 \\ 3 \\ \int_{1}^{3} 2(2-t)dt + \int_{3}^{5} (2t-8)dt + \int_{5}^{x} 2(6-t)dt, 5 < x \le 7, n = 3 \\ 3 \\ \int_{1}^{3} 2(2-t)dt + \int_{3}^{5} (2t-8)dt + \int_{5}^{7} 2(6-t)dt + \int_{7}^{x} (2t-16)dt, x \in (7,8], n = 4 \end{cases}$$

$$= \begin{cases}
-x^2 + 4x - 3, 1 < x \le 3, \\
x^2 - 8x + 15, 3 < x \le 5, \\
-x^2 + 12x - 35, 5 < x \le 7, \\
x^2 - 16x + 63, 7 < x \le 8
\end{cases} = \begin{cases}
-(x - 1)(x - 3), 1 < x \le 3, \\
(x - 3)(x - 5), 3 < x \le 5, \\
-(x - 5)(x - 7), 5 < x \le 7, \\
(x - 7)(x - 9), 7 < x \le 8,
\end{cases}$$

$$\Rightarrow g(x) = 0 \Rightarrow x = 3, 5, 7 \Rightarrow \alpha = 3$$

$$\beta = \lim_{x \to 1^{+}} \left(\frac{g(x)}{x - 1} \right) = \lim_{x \to 1^{+}} -\frac{(x - 1)(x - 3)}{x - 1} = 2$$

$$\Rightarrow \alpha + \beta = 5$$

SECTION 4 (Maximum Marks: 12)

[•] This section contains TWO (02) paragraphs.

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct numerical value is entered in the designated place;

Zero Marks: 0 In all other cases.

PARAGRAPH I

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

i. R has exactly 6 elements.

ii. For each $(a,b) \in R$, we have $|a-b| \ge 2$.

Let $Y = \{R \in X : \text{The range of } R \text{ has exactly one element } \}$ and $Z = \{R \in X : R \text{ is a function from } S \text{ to } S\}$.

Let n(A) denote the number of elements in a set A.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

14. If $n(X) = {}^m C_6$, then the value of m is

Answer (20)

Sol. $S = \{1, 2, 3, 4, 5, 6\}$ $R: S \to S$

Number of elements in R = 6 and for each $(a,b) \in R$; $|a-b| \ge 2$

 $X \rightarrow \text{set of all relation } R: S \rightarrow S$

lf

$$a = 1, b = 3, 4, 5, 6 \rightarrow 4$$

 $a = 2, b = 4, 5, 6 \rightarrow 3$
 $a = 3, b = 1, 5, 6 \rightarrow 3$
 $a = 4, b = 1, 2, 6 \rightarrow 3$
 $a = 5, b = 1, 2, 3 \rightarrow 3$
 $a = 6, b = 1, 2, 3, 4 \rightarrow 4$

Total number of ordered pairs (a, b)
s.t. $|a - b| \ge 2$
 $= 20$

 \therefore n(X) = number of elements in X

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

PARAGRAPH I

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

i. R has exactly 6 elements.

ii. For each $(a,b) \in R$, we have $|a-b| \ge 2$.

Let $Y = \{R \in X : \text{The range of } R \text{ has exactly one element } \}$ and $Z = \{R \in X : R \text{ is a function from } S \text{ to } S\}$.

Let n(A) denote the number of elements in a set A.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

15. If the value of n(Y) + n(Z) is k^2 , then |k| is _____

Ans (36)

Sol. $S = \{1, 2, 3, 4, 5, 6\}$ $R: S \to S$

Number of elements in R = 6 and for each $(a,b) \in R$; $|a-b| \ge 2$

 $X \to \text{set of all relation } R: S \to S$

lf	a = 1	b = 3, 4, 5, 6	\rightarrow	4
	a = 2	b = 4, 5, 6	\rightarrow	3
	<i>a</i> = 3	b = 1, 5, 6	\rightarrow	3
	a = 4	b = 1, 2, 6	\rightarrow	3
	a = 5	b = 1, 2, 3	\rightarrow	3
	a = 6	b = 1, 2, 3, 4	\rightarrow	4

Total number of ordered pairs (a, b) s. t. $|a - b| \ge 2 = 20$

 \therefore n(X) = number of elements in X

$$=^{20} C_6 :: m = 20$$

OFFICE ADDRESS: Plot number 35, Gopalpura Bypass Rd, near Riddhi Siddhi Circle, 10 B Scheme, Triveni Nagar, Gopal Pura Mode, Jaipur, Rajasthan 302020

 $Y = \{R \in X : \text{The range of R has exactly one element}\}$

From above, if range of R has exactly one element, then maximum number of elements in R will be 4.

$$\therefore n(Y) = 0$$

 $Z = \{R \in X : R \text{ is a function from } S \text{ to } S\}$

$$n(Z) = {}^{4} C_{1} \times {}^{3} C_{1} \times {}^{3} C_{1} \times {}^{3} C_{1} \times {}^{3} C_{1} \times {}^{4} C_{1}$$
$$= (36)^{2}$$

$$n(y) + n(z) = 0 + (36)^2 = k^2$$

 $\Rightarrow |k| = 36$

PARAGRAPH II

Let $f: \left[0, \frac{\pi}{2}\right] \to [0,1]$ be the function defined by $f(x) = \sin^2 x$ and let $g: \left[0, \frac{\pi}{2}\right] \to [0, \infty)$ be the

function defined by $g(x) = \sqrt{\frac{\pi x}{2} - x^2}$.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

16. The value of
$$2\int_{0}^{\frac{\pi}{2}} f(x)g(x)dx - \int_{0}^{\frac{\pi}{2}} g(x)dx$$
 is

Answer (0)

Sol.
$$f(x) = \sin^2 x, g(x) = \sqrt{\frac{\pi}{2}x - x^2}$$

Here
$$f\left(\frac{\pi}{2} - x\right) = \cos^2 x$$
, $g\left(\frac{\pi}{2} - x\right) = g(x)$

Let
$$l_1 = 2 \int_0^{\frac{\pi}{2}} f(x)g(x) = 2 \int_0^{\frac{\pi}{2}} \sin^2 x \cdot g(x) dx$$
 ...(1)

as
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$$

$$\Rightarrow l_1 = 2 \int_0^{\frac{\pi}{2}} \cos^2 x g(x) dx \qquad ...(2)$$

$$(1)+(2)$$

$$\Rightarrow 2l_1 = 2\int_0^{\frac{\pi}{2}} g(x)dx$$

$$\Rightarrow l_1 = \int_0^{\frac{\pi}{2}} g(x) dx$$

Let $f: \left[0, \frac{\pi}{2}\right] \to [0,1]$ be the function defined by $f(x) = \sin^2 x$ and let $g: \left[0, \frac{\pi}{2}\right] \to [0, \infty)$ be the function defined by $g(x) = \sqrt{\frac{\pi x}{2} - x^2}$.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

17. The value of $\frac{16}{\pi^3} \int_0^{f^2} f(x) g(x) d x$ is $\frac{10}{\pi^3}$

Answer (0.25)

Sol. According to Q .16

$$2\int_0^{\frac{\pi}{2}} f(x)g(x)dx = \int_0^{\frac{\pi}{2}} g(x)dx = l_1 \text{ (let)}$$

Now,
$$l_1 = \int_0^{\frac{\pi}{2}} g(x) dx = \int_0^{\frac{\pi}{2}} \sqrt{\frac{\pi}{2} x - x^2} dx$$

$$I_{1} = \int_{0}^{\frac{\pi}{2}} \sqrt{\left(\frac{\pi}{4}\right)^{2} - \left(\frac{\pi}{4} - x\right)^{2}}$$

Put
$$\frac{\pi}{4} - x = t$$

$$\Rightarrow dx = -dt$$

$$I_1 = -\int_{\frac{\pi}{4}}^{\frac{-\pi}{4}} \sqrt{\left(\frac{\pi}{4}\right)^2 - t^2} dt$$

$$l_{1} = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{\left(\frac{\pi}{4}\right)^{2} - t^{2}} dt$$

$$l_{1} = 2\int_{0}^{\frac{\pi}{4}} \sqrt{\left(\frac{\pi}{4}\right)^{2} - t^{2}} dt = 2\left[\frac{t}{2}\sqrt{\left(\frac{\pi}{4}\right)^{2} - t^{2}} + \frac{\pi^{2}}{32}\sin^{-1}\left(\frac{4t}{\pi}\right)\right]_{0}^{\frac{\pi}{4}}$$

$$l_1 = \frac{\pi^3}{32}$$

Now,
$$I = \frac{8}{\pi^3} l_1$$

$$I = \frac{1}{4} = 0.25$$

