ниу итмо

Факультет Информационных Технологий и Программирования Направление "Прикладная Математика и Информатика"

Лабораторная работа №4 курса "Методы Оптимизации"

Выполнили студенты:

Антонов Кирилл Владимирович, M3237 Чмыхалов Артемий Витальевич, M3237 Якупова Айша Рустемовна, M3234

Факультет: ИТИП

Цель работы:

Разработать программы для безусловной минимизации функций многих переменных

1.1. Реализация Методов Ньютона: а) классический метод, б) с одномерным поиском (одномерный метод), в) с направлением спуска

Для поиска направления спуска при решении СЛАУ использовался метод Гаусса.

Рассмотрим функцию:

$$f_1(x_1, x_2) = \cos(x_1 + 3.14) + x_2 * x_2$$
; Начальное приближение $\{1,1\}^T$

Метод	Количество итераций	Результат минимизации
Обычный метод	5	-1
Ньютона		
Метод Ньютона с	4	-1
одномерным поиском		
Метод Ньютона с	8	-1
направлением спуска		

Значение параметра alpha в одномерном поиске:

0.806059

0.989911

0.994581

6.3685e-11

Обычный метод Ньютона:

С одномерным поиском:

С направлением спуска:

1.
$$\{1,1\}^{7}$$

Метод	Кол-во итераций	Результат минимизации
Обычный метод	5	-1
Ньютона		
Метод Ньютона с	4	-1
одномерным поиском		
Метод Ньютона с	9	-1
направлением спуска		

2.
$$\{-0.8,23\}^T$$

Обычный метод	9	-1
Ньютона		
Метод Ньютона с	4	-1
одномерным поиском		
Метод Ньютона с	3	-1
направлением спуска		

3.
$$\{128, -7.5\}^T$$

Обычный метод	3	-1
Ньютона		
Метод Ньютона с	18	-1
одномерным поиском		
Метод Ньютона с	3	-1
направлением спуска		

4.
$$\{-87.23, -7.5\}^T$$

Обычный метод	3	-1
Ньютона		
Метод Ньютона с	5	-1
одномерным поиском		
Метод Ньютона с	3	-1
направлением спуска		

Количество итераций методов зависит от начального приближения. Меньше всего итераций произошло на начальной точке, где знак начального приближения совпадал со знаком результата.

Далее рассмотрим другую функцию:
$$f_2(x_1,x_2)=124*(x_1-2)^2+2*(x_1+x_2)^2$$
 Начальное приближение $\{1,1\}^T$

Метод	Кол-во итераций	Результат минимизации
Обычный метод	2	0
Ньютона		
Метод Ньютона с	2	1.30952e-10
одномерным поиском		
Метод Ньютона с	2	1.48134e-10
направлением спуска		

Значение параметра alpha в одномерном поиске:

Обычный метод Ньютона:

С одномерным поиском:

С направлением спуска:

1.2 Исследование работы методов на функции $f_1(x) = x_1^2 + x_2^2 - 1.2x_1x_2$, $x_0 = (4,1)^T$ и сравнение с минимизацией методом наискорейшего спуска

Метод	Кол-во итераций	Результат минимизации
Обычный метод Ньютона	2	4.7979e-65
Метод Ньютона с одномерным поиском	2	1.04218e-10
Метод Ньютона с направлением спуска	2	1.71091e-10
Метод Наискорейшего спуска	14	6.50684e-09

Обычный метод Ньютона:

С одномерным поиском:

С направлением спуска:

Исследование работы методов на функции $f_2(x) = 100 * (x_2 - x_1^2)^2 + (1 - x_1)^2; x_0 = (-1.2, 1)^T$ и сравнение с минимизацией методом наискорейшего спуска

Метод	Кол-во итераций	Результат минимизации
Обычный метод Ньютона	7	1.68398e-30
Метод Ньютона с одномерным поиском	14	2.032298e-9
Метод Ньютона с направлением спуска	6	4.04338e-10
Метод Наискорейшего спуска	8301	8.056368e-7

Обычный метод Ньютона:

С одномерным поиском:

С направлением спуска:

Вывод:

Суть методов Ньютона заключаются в нахождении направления спуска путём решения СЛАУ

$$H(f(x^k)) * p^k = grad(f(x^k))$$

Метод с одномерной оптимизацией, как видно из названия, использует одномерную оптимизацию для нахождения мин. точки на данном срезе(относительно p^k) Метод с направлением спуска, позволяет убеждаться, что мы каждый раз идем в направлении убывания. Т.е. острый угол с градиентом.

Классический метод Ньютона выдаёт достаточно точный результат в данных квадратичных функциях и тратит меньше остальных итераций. Для не квадратичных же функций это не факт, что выполняется. Как мы видим в пункте 1.1 метод Ньютона с одномерным поиском стал лучше остальных по точности ответа и использующий меньшее число итераций, но на функции $f_2(x) = 100 * (x_2 - x_1^2)^2 + (1 - x_1)^2$ метод Наискорейшего спуска сделал столько же итераций, сколько и классический, причем меньше одномерного.

Но если смотреть на результаты опытов в целом, то метод Ньютона с одномерным поиском выдаёт сравнительно хорошие результаты по сравнению с остальными методами и не затрачивает много времени на написание, особенно при уже реализованном методе одномерного поиска.

Траектория классического метода выглядит зигзагообразной, из-за того что мы каждый раз перескакиваем минимум, но эта проблема решается в одномерном методе.

2. Реализовали квазиньютоновские методы и сравнили результаты с лучшим методом 1 пункта (Метод Ньютона с одномерным поиском)

Большое преимущество квазиньютоновских методов в том, что они 1-го рода из-за этого не считают Гессиан 2 рода и из-за это имеют меньше затрат на подсчёты.

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

	Метод Бройдена- Флетчера-Шено	Метод Пауэлла	Метод Ньютона с одномерным
	Флетчера шено		поиском
$x_0 = (0,0)$	142	76	3
Количество			
итераций			
$x_0 = (0,0)$ график	7-6-5-4-3-3-101234567		11 11 11 11 11 11 11 11 11 11 11 11 11
$x_0 = (-20, -22)$	240	140	27
Количество			
итераций			

$x_0 = (-20, -22))$ график	5-4-3-2-101234		
$x_0 = (13, 23)$ Количество итераций	275	368	34
$x_0 = (13, 23)$ график	0 -6-5-4-3-2-1012345		

 $f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$

	$f(x) = (x_1 + x_2 - 1)$	$(x_1 + x_2 - 7)^{-1}$	
	Метод Бройдена- Флетчера-Шено	Метод Пауэлла	Метод Ньютона с одномерным поиском
$x_0 = (0,0)$	[-3.7793, -3.2832]	[3.58443, -1.84813]	[-2.8051182, 3.1313125]
$x_0 = (0,0)$ Количество итераций	20	14	8
$x_0 = (0,0)$ график			
$x_0 = (-20, -22)$	[-3.7793, -3.28319]	[-3.7793, -1.8481]	[3, 2]
$x_0 = (-20, -22)$ Количество итераций	5	55	8
$x_0 = (-20, -22))$ график			
$x_0 = (13, 23)$ ответ	[3, 2]	[3, 2]	[3, 2]
$x_0 = (13, 23)$ Количество итераций	7	6	6
$x_0 = (13, 23)$ график			

 $f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$

) () (]	Метод Бройдена-	Метод Пауэлла	Метод Ньютона с
		l wierod naysma	• •
	Флетчера-Шено		одномерным
			поиском
$x_0 = (0, 0, 0, 0)$	[0, 0, 0, 0]	[0, 0, 0, 0]	[0, 0, 0, 0]
ответ			
$x_0 = (0, 0, 0, 0)$	0	0	0
Количество итераций			

$x_0 = (-20, -22, -20, -22)$ ответ	[3.70468E-4, - 3.704639E-5, 0.001705, 0.001705]	[3.67477E-4, - 3.67469E-5, 0.0017, 0.0017]	[0.026905, - 0.00267, 0.046757, 0.046727]
x_0 = $(-20, -22, -20, -22)$) количество итераций	37	37	133094
$x_0 = (13, 23, 13, 23)$ ответ	[-3.7046818E-4, 3.70463895E-5, - 0.001706, - 0.001706]	[-3.67476E-4, 3.67468E-5, - 0.0017, -0.0017]	[-0.026742, 0.00265339, - 0.0464777, - 0.0464470]
$x_0 = (13, 23, 13, 23)$ количество итераций	37	37	133894

P.s. рисовать в 4D мы пока не научились(

$$f(x) = 100 - \frac{2}{1 + \left(\frac{x_1 - 1}{2}\right)^2 + \left(\frac{x_2 - 1}{3}\right)^2} - \frac{1}{1 + \left(\frac{x_1 - 2}{2}\right)^2 + \left(\frac{x_2 - 1}{3}\right)^2}$$

		,	,
	Метод Бройдена- Флетчера-Шено	Метод Пауэлла	Метод Ньютона с одномерным поиском
$x_0 = (0,0)$ Количество итераций	4	5	6
$x_0 = (0,0)$ график		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
$x_0 = (-20, -22)$ Количество итераций	45	45	5
$x_0 = (-20, -22))$ график		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
$x_0 = (13, 23)$ Количество итераций	101	102	5
$x_0 = (13, 23)$ график	-10 -4 -2 0	-12 -12 -13 -1 -1 -1 -2 3	0 -2 -4 -4 -4 -2 0 2

Вывод:

Заметим, что в квазиньютоновских методов растёт экспоненциально, из-за того, что мы приближаем Гессиан(не считаем, а аппроксимируем), в то время как Ньютоновские методы имеют константную погрешность. Однако эту проблему можно решить рестартами.

На основе этих опытов мы получили: функция №2 показывает, что выбор начального приближения может очень сильно повлиять на найденный глобальный минимум. Метод Ньютона хорошо себя показал на трехмерных функциях при наличии точного Гессиана, но на больших размерностях из-за накапливаемой погрешности ему становилось очень плохо, с чем методы Бройдена-Флетчера-Шено и Пауэлла справляются при помощи итерационного метода.

Ссылка на гит: https://github.com/Matrixoid/MethOpt_labs/tree/master/lab4