	Lucas Moura de Almerda RA: 112018 11415
	Exercícios: Introdução no sintema de ponto flutuante
	1) Represente o número (21,302) 5 no sistema F(4,6,4,5)
	P=4; t=6; m=4; M=5.
	De modo a representar um número portindo da base 5 para a hase 4, pameiro devemos parar rela base 10, ou siga:
	$(21,302)_{5} = 2.5 + 1.5^{\circ} + 3.5^{-1} + 0.5^{-2} + 2.5^{-3}$ = $(11,6160)_{10}$
	11 1 4 0,616 0,464 0,856 0,424 3 2 x 4 x 4 x 4 2),464 1)856 3)424 1)696
are of the	· (21,302) ₅ = (23,2131) ₄
	Podendo assim ser escrib de regunte forma 0,232131.42
	APRIL TO LOCAL STATE COLOR
	(1000) = E and ot: - when notes routed
ne lapted	(exprop) and any free out as yet as

THAT I COULT INST SENSON TO EVEN YOUR 2) Sija o sistema F(3,3,2,1). Quentos números podemos representor resse sistema? Na base drumal, determine a regino de "underflow" e overflow" desse sistema. F(3,3,2,1) -25e51 B=3; +=3; m=2; M=1 sinal de da 1-2,-1,0,13 6+,-4 61,23 60,1,24 60,1,23 Esse sistema é capaz de representar 144 números mais o zero, portento representando 145 números A fim de determinar as majores de underflow e overflow é recessário encontror os máximos/mínimos valores que podem sor representados por MAIOR VALOR positivo: +0, 222.3 = $(2,22)_3$ = $2.3^{\circ} + 2.3^{'} + 2.3^{'} = (2,89)_{10}$ MENOR WHOr positive 1+0,100 $\frac{3}{5} = (0,001)_3$ = $1.3^3 = (0,037)_{10}$ overflow overflow -2,89 -0,037 + 2,89 UNDERFOW: (-0,037; +0,037) | OVERFLOW: (-00;-2,89)U(+2,89,+00)

Exercícios: Introdução às raízes de funções reais 3) Determine uma aproximação da raiz de fix) = x + ln(x) pelo MIL com 4 casas deamais e em relativo inferior à 10'. Venfique o contério de convergência no função 4(x) escolhida. $X + \ln(x) = 0 \longrightarrow -X = \ln(x)$ de Bolsono (w) ln(x) -1,409 -0,5163 0,4 0,0892 0,6 0,5768 0,8 1,0000 40 Portoto pelo notodo gráfico e pelo teoroma de Bolgano, podemes aformer que existe uma raiz ¿ e (0,1)-I X = Y(x) - X = EX , primiromente aptironios o ontêrio de convogência: 火(x)=-ex 14'(x) 1 <1 -0 1-ex | <1 1 <1 - 0 ex >1 1 Como J esta contrato ex X>ln(4) no intornals (10; +00) 1x>01 a fundo 4(x) converge

ERX = |Xn+1 -Xn |

Churron $X_0 = 0.5$ e solomob que $Y(x) = e^{-x}$ $Y_1 = Y_1(x_0) = 0,6065$ ERX = 0,1756 $X_2 = Y_1(x_1) = 0,5450$ ERX = 0,1124 $Y_3 = Y_1(x_2) = 0,5797$ [ERX = 0,0595]

Como o ERX = 0,0595 (0,1 ; temo que a raza E = X3 = 0,5797

