2

# 对称矩阵和二次型

## 对称矩阵的对角化

一个对称矩阵是一个满足  $A^T = A$  的矩阵 A,这种矩阵当然是方阵,它的主对角线元素是任意的,但其他元素在主对角线的两边成对出现

定理 1 如果 A 是对称矩阵,那么不同特征空间的任意两个特征向量是 正交的

一个矩阵 A 称为可**正交对角化**,如果存在一个正交矩阵 P (满足  $P^{-1} = P^T$ ) 和一个对角矩阵 D 使得

$$A = PDP^T = PDP^{-1}$$

定理 2 一个  $n \times n$  矩阵 A 可正交对角化的充分必要条件是 A 是对称 矩阵

矩阵 A 的特征值的集合有时称为 A 的谱

#### 定理 3 (对称矩阵的谱定理)

- 一个对称的  $n \times n$  矩阵 A 具有下述性质:
- a. A f n 个实特征值. 包含重复的特征值
- b. 对每一个特征值  $\lambda$ , 对应的特征空间的维数等于  $\lambda$  作为特征方程的根的 重数
- c. 特征空间相互正交, 这种正交性是在特征向量对应于不同特征值的意义 下成立的
- d. A 可正交对角化

### 二次型

计算  $x^Tx$  时的平方和及更一般形式的表达式称为二次型

 $\mathbb{R}^n$  上的一个二次型是一个定义在  $\mathbb{R}^n$  上的函数,它在向量 x 处的值可由表达式  $Q(x)=x^TAx$  计算,其中 A 是一个  $n\times n$  对称矩阵. 矩阵 A 称为关于二次型的矩阵

如果 x 表示  $\mathbb{R}^n$  中的向量变量,那么**变量代换**是下面形式的等式:

$$\boldsymbol{x} = P\boldsymbol{y} \ \vec{\boxtimes} \ \boldsymbol{y} = P^{-1}\boldsymbol{x} \tag{2.1}$$

其中 P 是可逆矩阵且 y 是  $\mathbb{R}^n$  中的一个新的向量变量. 这里 P 的列可确定  $\mathbb{R}^n$  的一个基,y 是相对于该基的向量 x 的坐标向量. 如果用变量代换(2.1)处理二次型  $x^TAx$ ,那么

$$\boldsymbol{x}^{T} A \boldsymbol{x} = (P \boldsymbol{y})^{T} A (P \boldsymbol{y}) = \boldsymbol{y}^{T} P^{T} A P \boldsymbol{y} = \boldsymbol{y}^{T} (P^{T} A P) \boldsymbol{y}$$
 (2.2)

且新的二次型矩阵是  $P^TAP$ . 因为 A 是对称的,故由定理 2,存在正交矩阵 P,使得  $P^TAP$  是对角矩阵 D,(2.2)中的二次型变为  $\boldsymbol{y}^TD\boldsymbol{y}$ 

### 定理 4 (主轴定理)

设 A 是一个  $n \times n$  对称矩阵, 那么存在一个正交变量代换 bmx = Py, 它 将二次型  $x^TAx$  变换为不含交叉乘积项的二次型  $y^TDy$ 

矩阵 P 的列称为二次型  $x^TAx$  的主轴

#### 

- a. 正定的,如果对所有  $x \neq 0$ ,有 Q(x) > 0
- b. 半正定的,如果对所有 x,有  $Q(x) \ge 0$
- c. 负定的,如果对所有  $x \neq 0$ ,有 Q(x) < 0
- d. 半负定的,如果对所有 x,有  $Q(x) \leq 0$
- e. 不定的,如果 Q(x) 既有正值又有负值

### 定理 5 (二次型与特征值)

设  $A \in n \times n$  对称矩阵, 那么一个二次型  $x^T A x$  是:

- a. 正定的, 当且仅当 A 的所有特征值是正数
- b. 负定的, 当且仅当 A 的所有特征值是负数
- c. 不定的, 当且仅当 A 既有正特征值, 又有负特征值