
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2008; month=10; day=20; hr=8; min=41; sec=57; ms=621;]

Validated By CRFValidator v 1.0.3

Application No: 10771695 Version No: 2.0

Input Set:

Output Set:

Started: 2008-09-16 15:39:43.541 **Finished:** 2008-09-16 15:39:47.792

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 251 ms

Total Warnings: 13
Total Errors: 108

No. of SeqIDs Defined: 37
Actual SeqID Count: 37

Err	or code	Error Description
E	287	Invalid WIPO ST.2 date format; Use (YYYY-MM-DD) in <141>
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (3)
E	300	Invalid codon found Phe SEQID (3) POS: 97

Input Set:

Output Set:

Started: 2008-09-16 15:39:43.541 **Finished:** 2008-09-16 15:39:47.792

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 251 ms

Total Warnings: 13
Total Errors: 108
No. of SeqIDs Defined: 37

Actual SeqID Count: 37

Err	or code	Error Description
E	300	Invalid codon found Phe SEQID (3) POS: 100
E	300	Invalid codon found Ala SEQID (3) POS: 103
E	300	Invalid codon found Ser SEQID (3) POS: 106
E	300	Invalid codon found Pro SEQID (3) POS: 109
E	300	Invalid codon found Arg SEQID (3) POS: 112
E	300	Invalid codon found Ser SEQID (3) POS: 115
E	300	Invalid codon found Ala SEQID (3) POS: 118
E	300	Invalid codon found Gly SEQID (3) POS: 121
E	300	Invalid codon found Arg SEQID (3) POS: 124
E	300	Invalid codon found Lys SEQID (3) POS: 127
E	300	Invalid codon found Ile SEQID (3) POS: 130
E	300	Invalid codon found Glu SEQID (3) POS: 133
E	300	Invalid codon found Phe SEQID (3) POS: 136
E	300	Invalid codon found Arg SEQID (3) POS: 139
E	300	Invalid codon found Gly SEQID (3) POS: 142
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (4)
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (8)
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna
E	336	Empty lines found between the proteins and the dna

Input Set:

Output Set:

Started: 2008-09-16 15:39:43.541 **Finished:** 2008-09-16 15:39:47.792

Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 251 ms

Total Warnings: 13

Total Errors: 108

No. of SeqIDs Defined: 37

Actual SeqID Count: 37

Err	or code	Error Description												
E	336	Empty lines found between the proteins and the dna This error has occured more than 20 times, will not be displayed												
E	355	Empty lines found between the amino acid numbering and the												
E	321	No. of Bases conflict, this line has no nucleotides SEQID (12)												
E	355	Empty lines found between the amino acid numbering and the												
E	321	No. of Bases conflict, this line has no nucleotides SEQID (19)												
E	320	Wrong Nucleic Acid Designator, ct in SEQID (20)												
W	213	Artificial or Unknown found in <213> in SEQ ID (22)												
W	213	Artificial or Unknown found in <213> in SEQ ID (23)												
W	213	Artificial or Unknown found in <213> in SEQ ID (24)												
W	213	Artificial or Unknown found in <213> in SEQ ID (25)												
W	213	Artificial or Unknown found in <213> in SEQ ID (26)												
W	213	Artificial or Unknown found in <213> in SEQ ID (27)												
W	213	Artificial or Unknown found in <213> in SEQ ID (28)												
W	213	Artificial or Unknown found in <213> in SEQ ID (29)												
W	213	Artificial or Unknown found in <213> in SEQ ID (30)												
W	213	Artificial or Unknown found in <213> in SEQ ID (31)												
W	213	Artificial or Unknown found in <213> in SEQ ID (32)												
W	213	Artificial or Unknown found in <213> in SEQ ID (33)												
W	213	Artificial or Unknown found in <213> in SEQ ID (34)												

SEQUENCE LISTING

<110> Hanke, Paul D. Li D'Elia, Lhing Yew Rayapati, John Crafton, Corey Walsh, Holly <120> Increased Lysine Production by Gene Amplification <130> 1533.1030002 <140> 10771695 <141> 2004-02-04 <150> 09/722,441 <151> 2000 11 28 <150> US 60/173,707 <151> 1999-12-30 <150> US 60/184,130 <151> 2000-02-22 <160> 37 <170> PatentIn version 3.0 <210> 1 <211> 1266 <212> DNA

<213> Corynebacterium glutamicum

< 40	0> 1	L															
, ,	gcc Ala	_	_	_										_	5 5	48	
_	cgc Arg		-		-	-	_			_	_		_	_	-	96	
	aat Asn															144	
_	ctt Leu 50		-		-		-				-	_		-	-	192	
_	atg Met	-	_		_				_	_				_		240	
_	gcc Ala	_	-						-	-	-					288	
	tct Ser	_	_						_	_				_	_	336	
	gtt Val	-	-		_		_		_	_	_		_			384	
_	atc Ile 130	_		_	_			_		_			_		_	432	
_	gtc Val		_	_		_				_			_	_		480	
_	gca Ala	_	_	_		_			_				_	_	_	528	
_	ggt Gly				_	_	_	_		_			_	_	_	576	

180 185 190

_	_	aag Lys 195		_		_	_	_	_	_		_	_	_		624
	_	att Ile	_		_	_	_	-	_		_	_	_			672
		ctt Leu	_	_	_	_			_		_				_	720
	_	ggc Gly		_		-				_	_	_	_			768
	-	gca Ala		-	_		-	-		-		-				816
		aag Lys 275														864
_	_	atc Ile			_	_	_	_	_		_				_	912
-		acc Thr		-		_			_		-	-	-		_	960
_		atg Met			_	_	_		_	-	_					1008
		ctt Leu		-	-	_	_			-					-	1056
	_	aag Lys 355					_		_			_	-	-	_	1104
-	-	gtc Val					-	-							_	1152
		gtg Val	-		-	-	_	-	_	-	-	-	-	_	-	1200
_		gag Glu	_		_	_			_	-	_	_	_	_		1248

405 410 415

1266

gca ggc acc gga cgc taa Ala Gly Thr Gly Arg

420

<210> 2

<211> 421

<212> PRT

<213> Corynebacterium glutamicum

<400> 2

Met Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala 1 5 10 15

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala 20 25 30

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp 35 40 45

Glu Leu Leu Glu Leu Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg 50 55 60

Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu 65 70 75 80

Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr 85 90 95

Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg 100 105 110

Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly 115 120 125

Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg 130 135 140

Leu	Ala	Ala	Ala	Leu 165	Asn	Ala	Asp	Val	Cys 170	Glu	Ile	Tyr	Ser	Asp 175	Val
Asp	Gly	Val	Tyr 180	Thr	Ala	Asp	Pro	Arg 185	Ile	Val	Pro	Asn	Ala 190	Gln	Lys
Leu	Glu	Lys 195	Leu	Ser	Phe	Glu	Glu 200	Met	Leu	Glu	Leu	Ala 205	Ala	Val	Gly
Ser	Lys 210	Ile	Leu	Val	Leu	Arg 215	Ser	Val	Glu	Tyr	Ala 220	Arg	Ala	Phe	Asn
Val 225	Pro	Leu	Arg	Val	Arg 230	Ser	Ser	Tyr	Ser	Asn 235	Asp	Pro	Gly	Thr	Leu 240
Ile	Ala	Gly	Ser	Met 245	Glu	Asp	Ile	Pro	Val 250	Glu	Glu	Ala	Val	Leu 255	Thr
Gly	Val	Ala	Thr 260	Asp	Lys	Ser	Glu	Ala 265	Lys	Val	Thr	Val	Leu 270	Gly	Ile
Ser	Asp	Lys 275	Pro	Gly	Glu	Ala	Ala 280	Lys	Val	Phe	Arg	Ala 285	Leu	Ala	Asp
Ala	. Glu 290	Ile	Asn	Ile	Asp	Met 295	Val	Leu	Gln	Asn	Val 300	Ser	Ser	Val	Glu
Asp	Gly	Thr	Thr	Asp	Ile 310	Thr	Phe	Thr	Суз	Pro 315	Arg	Ala	Asp	Gly	Arg 320
Arg	Ala	Met	Glu	Ile 325	Leu	Lys	Lys	Leu	Gln 330	Val	Gln	Gly	Asn	Trp 335	Thr
Asn	Val	Leu	Tyr 340	Asp	Asp	Gln	Val	Gly 345	Lys	Val	Ser	Leu	Val 350	Gly	Ala
Gly	Met	Lys 355	Ser	His	Pro	Gly	Val 360	Thr	Ala	Glu	Phe	Met 365	Glu	Ala	Leu
Arg	Asp	Val	Asn	Val	Asn	Ile	Glu	Leu	Ile	Ser	Ile	Ser	Glu	Ile	Arg

Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala 385 390 395 400 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr 405 410 415
Ala Gly Thr Gly Arg 420
<210> 3
<211> 1035
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (1)(1035)
(222) (1)(1033)
<pre><400> 3 atg acc acc atc gca gtt gtt ggt gca acc ggc cag gtc ggc cag gtt 48</pre>
Met Thr Thr Ile Ala Val Val Gly Ala Thr Gly Gln Val Gly Gln Val
1 5 10 15
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt 96
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc 144
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt 96 Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc 144
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 30 144 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly 35 40 45 acg gaa atc gag gta gaa gac att act cag gca acc gag gag tcc ctc 192
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly 35 40 45
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly 35 40 45 acg gaa atc gag gta gaa gac att act cag gca acc gag gag tcc ctc Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly 35 40 45 acg gaa atc gag gta gaa gac att act cag gca acc gag gag tcc ctc Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu 50 55 60
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc 144 Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly acg gaa atc gag gta gaa gac att act cag gca acc gag gag tcc ctc Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu 50 aag ggc atc gac gtt gcg ttg ttc tct gct gga ggc acc gct tcc aag 240 Lys Gly Ile Asp Val Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys 75 80
atg cgc acc ttt ttg gaa gag cgc aat ttc cca gct gac act gtt cgt Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg 20 25 30 ttc ttt gct tcc ccg cgt tcc gca ggc cgt aag att gaa ttc cgt ggc Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly 35 40 45 acg gaa atc gag gta gaa gac att act cag gca acc gag gag tcc ctc Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu 50 55 60 aag ggc atc gac gtt gcg ttg ttc tct gct gga ggc acc gct tcc aag Lys Gly Ile Asp Val Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys

		-		_	aag Lys	_	_		-				-			336
				-	aag Lys	-		_	-	_						384
					atg Met											432
-	-				gta Val 150	_			-					-	_	480
					gca Ala			_		_	_	_	_	-	_	528
_	-		-		aac Asn	-			_		_		_	_	_	576
-	-		-	-	gga Gly			-				-				624
_			-		aac Asn		Ī.,	_	_						_	672
-			_	_	cgc Arg 230		Ĩ.,		_	_						720
_		_	-		ggc Gly		_	-	_		_	_				768
	_	_			cac His	-	-		-	_	_			-		816
_		_			ttg Leu		-	_			-			-	-	864
_					gca Ala	_	_			_	_			_		912
_		_	_	_	tcc Ser 310		-	_	-		_		_	-		960

gtc gta tct ggc gat aac ctt cgc aag ggc gca gca ctg aac acc att 1008
Val Val Ser Gly Asp Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile
325 330 335

cag att gct gag ctg ctg gtt aag taa 1035 Gln Ile Ala Glu Leu Val Lys 340

<210> 4

<211> 344

<212> PRT

<213> Corynebacterium glutamicum

<400> 4

Met Thr Thr Ile Ala Val Val Gly Ala Thr Gly Gln Val Gly Gln Val 1 5 10 15

Met Arg Thr Phe Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg
20 25 30

Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly
35 40 45

Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu 50 55 60

Lys Gly Ile Asp Val Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys 65 70 75 80

Gln Tyr Ala Pro Leu Phe Ala Ala Ala Gly Ala Thr Val Val Asp Asn 85 90 95

Ser Ser Ala Trp Arg Lys Asp Asp Glu Val Pro Leu Ile Val Ser Glu 100 105 110

Val Asn Pro Ser Asp Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn 115 120 125

Pro Asn Cys Thr Thr Met Ala Ala Met Pro Val Leu Lys Pro Leu His

130 135 140

Asp Ala Ala Gly Leu Val Lys Leu His Val Ser Ser Tyr Gln Ala Val 150 155 Ser Gly Ser Gly Leu Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala 165 170 Ala Val Gly Asp His Asn Val Glu Phe Val His Asp Gly Gln Ala Ala 180 185 190 Asp Ala Gly Asp Val Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val 195 200 205 Leu Pro Phe Ala Gly Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp 215 Glu Glu Gln Lys Leu Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro 225 230 235 Asp Leu Lys Val Ser Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly 250 245 His Thr Leu Thr Ile His Ala Glu Phe Asp Lys Ala Ile Thr Val Glu

265

270

Gln Ala Gln Glu Ile Leu Gly Ala Ala Ser Gly Va

260