Problemi indecidibili (unsolvable problems)

linguaggi decidibili

Ricordiamo che:

un linguaggio A è decidibile, se vi è una Turing machine M (decisore) che accetta il linguaggio A e e si ferma su ogni stringa di input Decision

Turing Machine M

On Halt:

YES

Accept

Stringa

NO

Reject

Definizione

Un problema computazionale è decidibile se il corrispondente linguaggio è decidibile

linguaggi indecidibili

linguaggi indecidibili = linguaggi non decidibili Non esiste un procedimento di decisione (decisore):

Non esiste una Turing Machine che accetta il linguaggio e prende una decisione (halts) per ogni stringa di input.

(la macchina può prendere decisioni per qualche stringa ma non per tutte)

Per un linguaggio indecidibile, Il corrispondente problema è indecidibile (unsolvable):

Non esiste una Turing Machine (Algorithm) che per ogni input dà una risposta (yes (appartiene al linguaggio) or no (non appartiene al linguaggio)

(chiaramente per alcuni input si)

Definizione. Turing accettabile

- Abbiamo una Turing Machine (Algorithm) che
- 1_ per ogni input abbiamo una risposta se la stringa appartiene al linguaggio(yes)
- 2_ ma nulla possiamo dire se la stringa non appartiene al linguaggio

Abbiamo gia mostrato che esistono linguaggi indecidibili:

Affronteremo due particolari problemi:

Membership problem

Halting problem

Qui 16 5

Membership Problem

Input: • Turing Machine M

·String w

Question:

M accetta w?

 $w \in L(M)$?

linguaggio corrispondente:

 $A_{TM} = \{\langle M, w \rangle : M \text{ è una Turing machine che accetta la stringa } w\}$

Teorema: A_{TM} è indecidibile

(The membership problem non è decidible)

Supponiamo che Am sia decidibile

Supponiamo che Am è decidibile

Esiste una macchina H: Input string $\langle M, w \rangle$ →YES M accetta wM rigetta

Cambiamo, diagonalizziamo, definiamo la macchina Diag:

Diag accetta (yes) se H dice no; ovvero se M(w) = no Diag rigetta (no) se H dice si; ovvero se M(w) = s

Diag:

10/04/2021

+

Semplifichiamo Diag.

Definiamo Diag

Descrizione di Diag:

Diag accetta M se M rigetta M

Diag rigetta M se M accetta M

Descrizione di Diag:

Diag accetta (yes) Diag se Diag rigetta Diag (no)

Diag rigetta (no) Diag se Diag accetta Diag (yes)

Descrizione di D: Diag accetta M se M rigetta M Diag rigetta M se M accetta M

Al posto di M sostituiamo Diag

Cosa accade?:

Diag accetta Diag se Diag rigetta Diag (!!)

Diag rigetta Diag se Diag accetta Diag (!!)

Abbiamo mostrato:

Definizione di Turing accettabile

M accetta D se M(D) raggiunge uno stato finale.

Nulla è stato detto su cosa accade quando M rifiuta D

 $A_{TM} = \{\langle M, w \rangle : M \text{ è una Turing machine che accetta la stringa } w\}$

Amè Turing-Acceptable (semidecidibile)

Turing machine che accetta A_{M} :

Halting Problem

Input: • Turing Machine M

·String w

domanda: M si ferma nel processo di calcolo con stringa di input w?

linguaggio corrispondente:

 $HALT_{TM} = \{\langle M, w \rangle : M \text{ è una Turing machine che si ferma sull'input w } \}$

$A_{TM} = \{\langle M, w \rangle : M \text{ è una Turing machine che accetta la stringa } w\}$

$$HALT_{TM} = \{\langle M, w \rangle : M \text{ è una Turing machine che si ferma sull'input w } \}$$

Teorema: $HALT_{TM}$ è indecidibile

(The halting problem non è risolvibile)

dim:

idea di base:

Supponiamo che $HALT_{TM}$ è decidibile;

Proveremo che:

ogni linguaggio Turing-Acceptable è decidibile

contradizione!

Supponiamo che $HALT_{TM}$ è decidibile

 $Sia \ L \ un linguaggio Turing-Accettabile$ Turing-Semidecidibile

sia M_L la Turing Machine che accetta L

Proviamo che L è decidibile:

Costruiamo un decisore per L

Decider per L

Quindi L è decidibile

poichè L è stato scelto arbitrariamente, ogni linguaggio (Turing-) semidecidibile è decidibile

Ma vi è un linguaggio Turing-Accettabile (semidecidibile) che è indecidibile (Teor, visto in precedenza)

Contradizione!!!!

END OF PROOF

Uno sguardo sulla diagonalizzazione

Un altra dimostrazione

Teorema: HALT_{TM} è indecidibile

(The halting problem non è decidibile)

dim:

Idea di base:

Per assurdo: assumiamo che

l'halting problem decidibile;

Cercheremo di ottenere una contradizione via diagonalizzazione

Supponi che $HALT_{TM}$ è decidibile

${\it Guardiamo} \ {\it H}$

Decider per HALT_{TM}

Costruiamo la macchina H':

If M halts on input W Then Loop Forever Else Halt

Costruiamo la macchina F:

If M halts on input $\langle M \rangle$ Then loop forever

Else halt

calcola F con input se stesso

If
$$F$$
 halts on input $\langle F \rangle$

Then F loops forever on input $\langle F \rangle$ Else F halts on input $\langle F \rangle$

contradizione!!!

END OF PROOF

Idem precedente

Teorema 5.8 [Indecidibilità del problema della terminazione⁸] Siano dati un alfabeto Γ ed una codificazione che associa ad ogni macchina di Turing $\mathcal{M} = \langle \Gamma, b, Q, \delta, q_0, F \rangle$ una sua codifica $c_{\mathcal{M}} \in \Gamma^*$. La funzione

$$h(c_{\mathcal{M}}, x) = \begin{cases} 1 & se \ \mathcal{M} \ termina \ su \ input \ x \\ 0 & se \ \mathcal{M} \ non \ termina \ su \ input \ x \end{cases}$$

non è T-calcolabile.

90

Supponiamo che il predicato sia calcolabile, esista cioè una macchina di Turing h che calcola la funzione h. Costruiamo la macchina h' che calcola il predicato

h'(codice_M) =1 se M con input Codice_M termina =0 se M con input Codice_M non termina

90 35

h' è la composizione di due macchine:

la prima con input $codice_{M}$ fornisce $codice_{M}$ <u>b</u> $codice_{M,}$ la seconda è la macchina h che calcola il predicato della terminazione.

In altre parole h' è la macchina che verifica se una MT termina quando le viene fornito in input il proprio codice.

Possiamo ora costruire una nuova macchina h" che prende in input codice_M e calcola la funzione:

$$h''(codice_M) = 0$$
 se $h'(codice_M) = 0$
= indefinito altrimenti

90

```
\begin{array}{ll} h'(codice_{M}) &= 1 & se \ M \ (codice_{M}) \ termina \\ &= 0 & se \ M \ (codice_{M}) \ non \ termina \\ \\ h''(codice_{M}) &= 0 \ se \ h'(codice_{M}) = 0 \ (se \ M \ (codice_{M}) \ non \ termina) \\ &= indefinito \ altrimenti \ (se \ M \ (codice_{M}) \ termina) \\ \end{array}
```

termina con 0 se h' si è fermata con 0 e si mette a ciclare, se h' si è fermata con 1

90

37

calcoliamo h"(codice_{h"}):

$$h''(codice_{h''}) = indefinito$$
 se $h''(codice_{h''})$ è definita
= 0 se $h''(codice_{h''})$ è indefinita

In ogni caso abbiamo una contraddizione. Quindi non può esistere la macchina H.

$$h''(D_M) = 0$$
 se $h'(D_M) = 0$ Fine idem

$$h'(D_M) = 1$$
 se $M(D_M)$ termina
=0 se $M(D_M)$ non termina

90

Abbiamo mostrato

indecidibile HALT_{TM}

Adesso proviamo che:

$HALT_{TM}$ è Turing-Acceptable (semidecidibile)

Turing machine che accetta $HALT_{TM}$

Abbiamo gia mostrato che esistono linguaggi indecidibili:

L

Tesi di Church Turing

Fine indecidibilità.

Supponiamo $w=\langle M \rangle$ e calcoliamo $D(\langle M \rangle, \langle M \rangle)$

Teorema: Am è indecidibile

(The membership problem non è risolvibile)

Proof:

Idea di base:

Assumiamo che A_{M} è decidibile; Proveremo che ogni linguaggio è Turing-Acceptable

assurdo!

Allora avremo un decisore cosi definito:

Sia M_L il decisore per il linguaggio L

Cambiamo, diagonalizziamo, chiamiamo la macchina Diag.

Descrizione di Diag:

Diag accetta M se M rigetta M

Diag rigetta M se M accetta M

Mostriamo che:

