题	号	_		Ξ	四	五	总	分
得	分							
得	分	评阅人	—、选:	择题(共 8	、小题,每	小题 2 分	·, 共16	分)
			, ~2.	THE VIV	, 1,62, 4	7,62 2 7,7	, , , 10	,) , ,
$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\ln}{x}$	$\frac{1}{v(x^2 + x^2)}$	$\left(-\frac{y^2}{y^2}\right) \qquad ($)					
		(B)				(D) 不有	存在	
		数的下列 4				\		
(1) <i>J</i> (x,y	在点 (x_0,y_0)	处连续;	(2) f(x,y)) 往点 (x ₀ , y	·。) 处的两~	个偏导数	文 连续
$\Im f($	(x,y)	在点 (x_0, y_0)	处可微;	(4) f(x,y))在点(<i>x</i> ₀ , <i>y</i>	70)处的两个	个偏导数	女存在
A) 2=	⇒③=	⇒①, (B) ($3 \Rightarrow 2 \Rightarrow 0$	①, (C) ③	$\Rightarrow 4 \Rightarrow 1$), (D) 3:	$\Rightarrow 1) \Rightarrow$	4
. 设 <i>f</i> (x)为;	连续函数 ,	$F(t) = \int_{t}^{t}$	$dy \int_{0}^{t} f(x)$	dx,则 F' ((2) = ().	
				,				
(A) 2	f(2)	(B)	f(2);	(C) $-f$	f(2);	(D) 0		
. 级数	$\sum_{n=1}^{\infty} \left(-1\right)$	$)^{n} \ln \frac{n+1}{n} ($)					
(A) 绝	对收敛	枚; (B)	条件收敛;	(C) 发情	散; (D)	发散且一	股项不收	女敛于
. 幂级	数∑	$(1+\frac{1}{n})^{n^2}x^n \not=$	内收敛半径	为()			
	n=1	n						
(A) e^2		(B) $1/e^2$!	(C) $1/e$	(D) ϵ	?		
. 方程 y	y''-3y	$'+2y=e^x$ c	os 2x 的一/	个特解形式	是 ().		
(A) y	$= Ae^x$	$\cos 2x$;		(B) $y = Ax$	$ce^x \cos 2x + \frac{1}{2}$	$Bxe^x \sin 2x$;	
(C) y	$=Ae^{x}$	$\cos 2x + Be^x$	$\sin 2x$;	(D) $y = Ax$	$^{2}e^{x}\cos 2x +$	$Bx^2e^x \sin 2x$	<i>x</i> .	
		$\cos 2x + Be^x$ $x^2y'' + xy' - y$).
. 己知 (A) y=	方程 <i>x</i> : C ₁ x +		$y = 0 的 - 1$ $y = C_1 x + C$	个特解为 $y = \frac{1}{x}$; (C) y	$= x$,于是方 $c = C_1 x + C_2 c$	程的通解。 e ^x ;(D)y=	为(= C ₁ x + 0	C_2e^{-x} .

立叶级数的和函数,则 $S(8\pi)=($

(A) 0

(B) 1

(C) -1 (D) 2

得分 评阅人

二、填空题(共7小题8个空,每空3分,共24分)

- 1. 曲线 $\begin{cases} x^2 + y^2 + z^2 3x = 0 \\ 2x 3y + 5z 4 = 0 \end{cases}$ 在点(1,1,1) 的切线方程为_____
- 在点M 处沿z轴方向的方向导数为 $_$
- 3. 设空间区域 Ω 由 $z = \sqrt{x^2 + y^2}$ 和 $z = \sqrt{1 x^2 y^2}$ 所围成,则 $\iiint x^3 y^2 z dv =$ ____
- 4. 设C是由极坐标系下曲线: r = a, $\left(0 \le \theta \le \frac{\pi}{4}\right)$, 则 $\int_{C} e^{\sqrt{x^2 + y^2}} ds =$ _____
- 5. 若 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 被平行平面 $z = \pm h$ (0 < h < a) 截出的上下两部分, 则 $\iint_{\Sigma} \frac{dS}{dS} =$ ____
- 6. 已知 $\int_{a}^{b} \left[e^{x} \cos y + y f(x) \right] dx + \left(x^{3} e^{x} \sin y \right) dy$ 与路径无关,则 f(x) =_____
- 7. 函数 ln(1-x) 展开成 x 的幂级数为

得分	评阅人

| | **三、计算题**(共6小题,每小题 8 分,共48分)

- **1.**求过直线 $\begin{cases} x+5y+z=0 \\ x-z+4=0 \end{cases}$ 且与平面 x-4y-8z+12=0 夹成 $\frac{\pi}{4}$ 角的平面方程.
- **2.** y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确定的函数,其中 f, F 都有连续的一阶偏导数,求 $\frac{dz}{dx}$.
- 3. 计算 $I = \int_L (x^2 y) dx + (y^2 x) dy$, 其中 L 是沿逆时针方向以原点为中心,半径

第2页 共6页

为 a 的上半圆周.

4.
$$\iint_{D} \frac{x+y}{x^2+y^2} d\sigma$$
, $D: x^2+y^2 \le 1, x+y \ge 1$.

- 5. 计算 $\iint_{\Sigma} (z^2+x) dy dz z dx dy$,其中 Σ 是 $z=\frac{1}{2}(x^2+y^2)$ 介 z=0 于及 z=2 之间的部分的下侧。
- 6. 求幂级数 $\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$ 的收敛域及和函数。

得分	评阅人	四、	克田服 (共1.5.15 -	# 10 /\ \
			应用题(共1小题,是	共 10 分)

求旋转抛物面 $z=x^2+y^2$ 与平面x+y-2z-4=0之间的最短距离

一、DABBCCBB

$$= \frac{x-1}{16} = \frac{y-1}{9} = \frac{z-1}{-1} \qquad \frac{2}{9}(1, 2, -2) \qquad \frac{-4}{9} \qquad 0 \qquad \frac{\pi}{4}ae^a \qquad 0 \qquad 3x^2$$

$$-\left(x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \dots + \frac{1}{n}x^n + \dots\right)\left(-1 \le x < 1\right)$$

三、1. 解: 过直线
$$\begin{cases} x+5y+z=0 \\ x-z+4=0 \end{cases}$$
 的平面東为 $(1+\lambda)x+5y+(1-\lambda)z+4\lambda=0$

其法向量为 $\overrightarrow{n_1} = \{1 + \lambda, 5, 1 - \lambda\}$

已知平面的法向量为 $\vec{n} = \{1, -4, -8\}$

选择
$$\lambda$$
 使 $\cos \frac{\pi}{4} = \frac{\left| n \cdot n_1 \right|}{\left| n \mid \left| n_1 \right|}$, 得 $\lambda = -\frac{3}{4}$

所求平面x+20y+7z-12=0

2. 解:分别在各方程两端对x求导,得

$$-xf' \cdot y' + z' = f + xf', \quad F_y \cdot y' + F_z \cdot z' = -F_x$$

$$\therefore \frac{\mathrm{d}z}{\mathrm{d}x} = \frac{\begin{vmatrix} -x f' & f + x f' \\ F_y & -F_x \end{vmatrix}}{\begin{vmatrix} -x f' & 1 \\ F_y & F_z \end{vmatrix}} = \frac{(f + xf')F_y - xf' \cdot F_x}{F_y + xf' \cdot F_z}$$

3. 解:
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} = -1$$
, 故路径无关。

$$I = \int_{\overline{AB}} (x^2 - y) dx + (y^2 - x) dy = \int_a^{-a} x^2 dx = -\frac{2}{3}a^3$$

解法 2:

$$I = \oint_{L + \overline{BA}} (x^2 - y) dx + (y^2 - x) dy - \int_{\overline{BA}} (x^2 - y) dx + (y^2 - x) dy$$

$$= \iint_D 0 \cdot dx \, dy - \int_{-a}^a x^2 dx = -\frac{2}{3} a^3$$

第4页 共6页

4. **解**:作出积分区域 D如图所示,D用极坐标可表示为

$$0 \le \theta \le \frac{\pi}{2}, \frac{1}{\cos \theta + \sin \theta} \le r \le 1,$$

于是

$$\iint_{D} \frac{x+y}{x^{2}+y^{2}} d\Gamma = \int_{0}^{\frac{\pi}{2}} d\theta \int_{-\frac{1}{\cos\theta+\sin\theta}}^{1} \frac{r\cos\theta+r\sin\theta}{r^{2}} r dr = \int_{0}^{\frac{\pi}{2}} d\theta \int_{-\frac{1}{\cos\theta+\sin\theta}}^{1} (\cos\theta+\sin\theta) dr$$

$$= \int_0^{\frac{\pi}{2}} (\cos \theta + \sin \theta) (1 - \frac{1}{\cos \theta + \sin \theta}) d\theta = \int_0^{\frac{\pi}{2}} (\cos \theta + \sin \theta - 1) d\theta$$
$$= (\sin \theta - \cos \theta - \theta) \Big|_0^{\frac{\pi}{2}} = 2 - \frac{\pi}{2}$$

5. **解:** Σ_1 是 z=2 上侧

$$\iint\limits_{\Sigma} \left(z^2 + x\right) dy dz - z dx dy = \iint\limits_{\Sigma + \Sigma_1} \left(z^2 + x\right) dy dz - z dx dy - \iint\limits_{\Sigma_1} \left(z^2 + x\right) dy dz - z dx dy$$

$$= \iiint_{\Omega} 0 ds dy dz - \iint_{D} (-2) dx dy = 2 \iint_{D} dx dy = 8 \pi$$

6. 解: 收敛半径 $R = +\infty$,收敛域为 $(-\infty, +\infty)$

解微分方程得 $S(x) = Ce^{2x}$, S(0) = 1 得 $S(x) = e^{2x}$,

故
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n!} = e^{2x}$$

四、解: 令P(x,y,z)为抛物面 $z=x^2+y^2$ 上任一点,则P到平面x+y-2z-4=0的

距离
$$d = \frac{1}{\sqrt{6}} |x + y - 2z - 4|$$

作拉氏函数

$$F(x,y,z) = (x+y-2z-4)^2 + \lambda(z-x^2-y^2)$$

第5页 共6页

$$\begin{cases} F'_x = 2(x+y-2z-4) - 2\lambda x = 0 \\ F'_y = 2(x+y-2z-4) - 2\lambda y = 0 \\ F'_z = 2(x+y-2z-4)(-2) + \lambda = 0 \\ z = x^2 + y^2 \end{cases}$$

解此方程组得唯一驻点

$$x = \frac{1}{4}$$
, $y = \frac{1}{4}$, $z = \frac{1}{8}$.

由实际意义最小值存在,故

$$d_{\min} = \frac{1}{\sqrt{6}} \left| \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - 4 \right| = \frac{5\sqrt{6}}{8}$$