

大数据技术发展的两大方向和最新进展

孙元浩

星环科技 联合创始人兼CTO www.transwarp.io 2015年4月16日

方向一: SQL on Hadoop是Killer App

对SQL支持程度的制约阻碍了企业应用Hadoop技术

60%的Hadoop应用在SQL统计

Source: wikibon.org

SQL on Hadoop 技术

名称	计算引擎	ANSI SQL支持程度	存储过程	第一个版本发布时间
Cloudera Impala	类Dremel, 类MPP引擎	SQL92子集+SQL2003扩展	不支持	2011/10
Hortonworks Tez/Stinger	Map/Reduce 改进	SQL92子集+SQL2003 扩展	不支持	2012/5
Transwarp Inceptor	Spark	SQL99 + SQL2003	Oracle Compatible PL/SQL	2013/11
Databricks SparkSQL	Spark	HiveQL (SQL92 子集)	不支持	2014/6
MapR Drill	改进自OpenDremel	SQL92子集	不支持	2012/6立项,2014/11发布
IBM BigSQL v3	DB2/DPF like MPP Engine over HDFS	SQL 2003	不支持	2014/6
Pivotal HAWQ	Greenplum like MPP Engine over HDFS	SQL 2003	部分支持 (Postgres like)	2013/2
Splice Machine	Apache Derby + HBase	SQL 1999	不支持	2015 GA
Actian Vortex	MPP Engine over HDFS	SQL 2003	不支持	2014

Inceptor PL/SQL Compiler

Parallel Query Optimizer

Parallel Query Optimizer

- partition parallelism
- control flow parallelism
- pipeline parallelism

游标示例程序

A cursor can be parallelized if there is no loop-carried dependence or the dependence is inductive.

Transwarp Inceptor vs Greenplum DB

Transwarp Inceptor 4.1 vs Spark SQL 1.3

Inceptor性能 比SparkSQL的 加速比例

Inceptor4.1 vs SparkSQL1.3 Speedup

TPC-DS Query

ExecTime(SparkSQL1.3)/ExecTime(Inceptor4.1)

交互式OLAP分析: Distributed Cube

- · Cube是OLAP分析的常用技术
 - Slicing
 - Dicing
 - Rollup
 - Drill Up/Down
 - Pivot

如何定义一个Cube?

create table store_sales tblproperties('cache'='ram',

'holodesk.dimensions'='product, cities, time'
) as select * from store sales;00000

Cube on Transwarp Holodesk

Cube Size 256KB固定大小

Holodesk Cube带来的性能加速

Operation		SQL query
q1	count	select count(*) from store_sales
q2	measure	select sum(ss_sales_price) from store_sales
q3	aggregation	select sum(ss_sales_price) from store_sales group by ss_customer_sk
q4	drill down	select sum(ss_sales_price) from store_sales group by ss_sold_date_sk
q5	drill down	select sum(ss_sales_price) from store_sales group by ss_customer_sk, ss_sold_date_sk
q6	slice	select sum(ss_sales_price) from store_sales_r where ss_customer_sk=5000 group by ss_customer_sk,ss_sold_date_sk
q7	dice	select sum(ss_sales_price) from store_sales where ss_sold_date_sk between 2450629 and 2451816 group by ss_customer_sk
q8	pivot	select sum(ss_sales_price) from store_sales where ss_customer_sk > 5000 and ss_sold_date_sk between 2450629 and 2451816 group by ss_customer_sk,ss_sold_date_sk

执行时间(秒)

方向二: Hadoop加速Docker化

企业对多租户资源管控和弹性计算的需求促使Hadoop发生变革

企业大数据平台的切实需求

统一的企业大数据平台 (Data Hub)

需求一:资源弹性共享-提高资源利用率

灵活部署: Big Data + Application

资源调度: Auto-scaling + Self-healing

• 服务发现: Central Repository

需求二:隔离性-保障服务质量和安全性

 数据隔离: Data Sources, Access Pattern, Confidential Levels

• 计算隔离: CPU、Memory、I/O

• 应用隔离

Announcing Transwarp Operating System

Service Repository

Ring 0: Docker/Container Ring 1: Resource scheduler

Ring 2: Built-in system services

Ring 3: Central service repository (docker images)

可运行在裸机组成的集群中,或者是公有云上

	TRANSWARP Transwarp Operating System							
Containers		Scheduler			Syste	m Service		
Container Plugins	CPU/MEM	Disk	Network	coordination	orchestration	auto-scaling	discovery	
docker	priority-based scheduler	storage manager	VLAN manager	etcd	load balancer	replicator	name service	

TOS – automated deployment

通过Web、REST API or CLI 一键瞬间安装和部署集群自动根据服务的依赖性安装所需的其他服务组件

Service Repository

HDFS	YARN+ Ir Map/ Reduce	nceptor	Stream	Elastic Search	Hyperbase	Flum	e Sqoop	Oozie	Pig
		PANS P	NARP SYSTEM	Trar	nswarp O _l	perati	ng System		
Containers	5	Sc	heduler			System Service			
Container Plugins	CPU/MEM		Disk	Network	coordin	ation	orchestration	auto-scaling	discovery
docker	priority-base scheduler		storage nanager	VLAN manager	etc	d	load balancer	replicator	name service

TOS – Better Scheduler for Isolation

为什么要重写资源管理框架来代替YARN?

	资源粒度	隔离程度	依赖性	通用性	
YARN	CPU/MEM	进程级别、不精确	依赖某个HDFS	支持少量计算引擎	
Kubernetes	CPU/MEM	Container	不依赖Hadoop	支持通用Linux负载	
TOS	CPU,MEM, DISK,NETWORK	Container + Quota + VLAN	不依赖Hadoop	支持大数据及通用应用	
		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
HDFS1	Incentor1 Data Incentor3	Datamarts HDES2	Hyperbace Online	Stream Peal-time	

HDFS1	Inceptor1	Data Warehouse Apps		Datamarts Analysis Mining	HDFS2	Hyperbase HBase	Online Query Apps	Stream	Real-time LBS Apps
-------	-----------	---------------------------	--	---------------------------------	-------	--------------------	-------------------------	--------	--------------------------

TRANSWARP OPERATING SYSTEM

Transwarp Operating System

Containers
docker

	Scheduler	
CPU/MEM	Disk	Network
priority-based scheduler	storage manager	VLAN manager

System Service							
coordination orchestration auto-scaling discovery							
etcd	load balancer	replicator	name service				

TOS- auto-scaling & self-healing

动态扩容/收缩集群: Capacity Scheduler + Priority/Price-based Bidding (支持抢占)

自动修复集群: Replicator监测集群规模并保持该规模

HDFS1	V	vata Varehouse pps			Stream	Real-time LBS Apps	Stream
		NSWARP ATING SYSTEM	Trans	warp Operat	ing System		
Containers		Scheduler		System Service			
Container Plugins	CPU/MEM	Disk	Network	coordination	orchestration	auto-scaling	discovery
docker	priority-based scheduler	storage manager	VLAN manager	etcd	load balancer	replicator	name service

Big Data将成为Docker的主要应用之一

Q7: Where are you using or planning to use Docker over the next year? (Check all that apply)

Answered: 745 Skipped: 0

Transwarp Operating System

- ✓ automated hadoop deployment
- ✓ run any docker images
- ✓ better isolation
- ✓ auto-scaling & self-healing

vmblog.com

source: stackengine.com

StackEngine

Transwarp Operating System 将在2015Q2二季度末发布!

