Ders #6-8

Otomatik Kontrol

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Prof.Dr.Galip Cansever

Kapalı döngü sistemin oluşturulmasından önce sistem modelinden geçici rejim cevabının analizi ile sistem tanımlanması önemlidir.

Transfer Fonksiyonu Kutuplar&Sıfırlar

Transfer Fonksiyonu:

Başlangıç koşulları sıfır kabul edilerek bir sistemin cevap fonksiyunu (çıkışı) ile sürücü fonksiyonu (giriş) arasındaki Laplas transformasyonları oranına transfer fonksiyonu denir.

Transfer fonksiyonu sistemin dinamik karakteristiklerini tanımlar. Sistem özelliğidir. Sistemin fiziksel yapısı hakkında bilgi vermez, farklı fiziksel sistemlerin transfer fonksiyonları aynı olabilir.

Kutuplar:

Transfer fonksiyonunun paydasının kökleridir. Kompleks kutuplar tüm sistemin enerji depolama karakteristikleri ile alakalı doğal frekanslarını temsil eder.

Kompleks kutuplar sistemin doğal frekanslarıdır, sensör ve hareketlendiricilerin **s** düzlemindeki yerlerinden bağımsızdır.

Kompleks kutuplar sistemin değişik iç enerji depolama elamanları arasında enerjinin serbestçe dolaştığı doğal frekansları temsil eder.

Sıfırlar:

Transfer fonksiyonunun payının kökleridir. Sensörler ve hareketlendiriciler ile tanımlanan enerji depolama karakteristikleri ile alakalı rezonans frekanslarını temsil eder.

Kompleks sıfırlar sistemin enerji sinki gibi davranacağı frekansları temsil eder.

$$G(s) = \frac{K(s+1)(s+15)}{s(s+3)(s+5)(s+8)^2}$$

Sıfırlar:-1, -15

Kutuplar:0, -3, -5, -8 (2 tane)

$$R(s) = \frac{1}{s} C(s)$$

$$S + 2$$

$$S + 5$$

$$C(s) = \frac{(s+2)}{s(s+5)}$$

$$C(s) = \frac{A}{s} + \frac{B}{(s+5)}$$

$$A = \frac{(s+2)}{(s+5)}\Big|_{s\to 0} = \frac{2}{5}$$

$$=\frac{(s+2)}{s}\Big|_{s\to -5} = \frac{3}{5}$$

$$C(s) = \frac{\frac{2}{5}}{s} + \frac{\frac{5}{5}}{s+5} \Rightarrow c(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$$

- 1. Giriş fonksiyonunun kutbu zorlanmış çözümü üretir. (Orjindeki kutup çıkışta birim basamak fonksiyonu oluşturdu)
- 2. Transfer fonksiyonunun kutbu doğal cevabı oluşturur. (-5 deki kutup e^{-5t} yi üretti)
- 3. Reel eksendeki kutup e^{-at} şekilinde üstel bir cevap üretir, bu kutup ne kadar solda ise üstel geçici cevap 0'a o kadar hızlı düşer
- 4. Sıfır hem kararlı halde hemde geçici rejimde büyüklüğün oluşmasına yardımcı olur.

Örnek:
$$C(s) = \frac{K_1}{s} + \frac{K_2}{(s+2)} + \frac{K_3}{(s+4)} + \frac{K_4}{(s+5)}$$

Sisteminin cevabi:

$$c(t) = K_1 + K_2 e^{-2t} + K_3 e^{-4t} + K_4 e^{-5t}$$

Zorlanmış Çözüm

Doğal Çözüm

Birinci Derece Sistem Cevabı ve Özellikleri

Eğer R(s)=1/s birim basamak ise
$$C(s) = \frac{a}{s(s+a)}$$

$$c(t) = 1 - e^{-at}$$

a' ya göre sistemi inceleyelim;

$$t = \frac{1}{a} \Rightarrow e^{-at} \Big|_{t=\frac{1}{a}} = e^{-1} = 0.37$$

$$x(t) = 1 - e^{-at} \Big|_{t=\frac{1}{a}} = 1 - 0.37 = 0.63$$
Otomatik Kontrol

Prof.Dr.Galip Cansever

Zaman Sabiti:

1/a'ya zaman sabiti denir.

Denklemler ve şekle göre e-at nin başlangıç değerinin %37 sine düşmesine kadar olan zaman veya birim basamak cevabının %63 üne ulaşıncaya kadar geçen süre olarak tanımlanabilir.

Zaman sabitinin birimi **1/saniye** dir. **a** parametresine de üstel frekans denir.

t=0'da e-at nin türevi a oldugu için t=0 da başlangıç eğimi a dır.

Böylece 1. derece sistemin geçici cevabı zaman sabiti olarak değerlendirilebilir.

Yükselme Zamanı, T_r:

Yükselme zamanı cevabın %10'nun dan %90'nına ulaşıncaya kadar geçen süre olarak tanımlanır.

$$c(t) = 1 - e^{-at}$$

Denkleminde c(t)=0.9 ve c(t)=0.1 zamanlarında fark alıncak olursa

$$0.9 = 1 - e^{-at} \implies -t_2 = \frac{\ln(0.1)}{a}$$

$$0.1 = 1 - e^{-at} \implies -t_1 = \frac{\ln(0.9)}{a}$$

$$T_r = t_2 - t_1 = \frac{2.31}{a} - \frac{0.11}{a} = \frac{2.2}{a}$$
 olarak bulunur.

Yerleşme Zamanı, T_s:

Yerleşme zamanı cevabın %98'ine ulaşıncaya kadar geçen süre olarak tanımlanır.

$$c(t) = 1 - e^{-at}$$

Denkleminde c(t)=0.98 olarak alınırsa

$$0.98 = 1 - e^{-at} \implies -t = \frac{\ln(0.02)}{a}$$

$$T_s = \frac{4}{a}$$
 olarak bulunur.

İkinci Derece Sistem Cevabı ve Özellikleri

Birinci derece sistemlerde parametrenin değişimi sadece sistemin cevap hızını etkiler ama ikinci derece sistemlerde parametre değişimi cevabın şeklini de değiştirebilir.

Sistemini ele alalım: Bu sistemin iki sonlu kutbu var ve sıfırı yok. Paydadaki **b** sayısı sadece girişi çarpan bir faktör. **a** ve **b** ye değişik sayılar atayarak ikinci derece sistemi inceleyeceğiz.

Aşırı Sönümlü: İki kök reel eksen üzerindeyken oluşan cevabdır.

$$R(s)=1/s$$
 ve $C(s)=R(s)G(s)$ iken

$$C(s) = \frac{9}{s(s^2 + 9s + 9)}$$
 Olarak seçelim

$$C(s) = \frac{9}{s(s+7.854)(s+1.146)}$$
 Olarak yazılabilir.

Burada hatırlanacağı üzere giriş fonksiyonu sabit zorlu çözümü

Reel eksen üzerindeki iki kutup da doğal çözümü oluşturur ki bunların frekansları kutupların yerlerine bağlıdır.

$$c(t) = K_1 + K_2 e^{-7.854 t} + K_3 e^{-1.146 t}$$

Sönümlü: Kompleks eşlenik kökler varken olan cevabdır.

$$C(s) = \frac{9}{s(s^2 + 2s + 9)}$$
 Olarak seçelim

Eşlenik kutuplar: $s_{1.2} = -1 \pm j2.82$

Kutbun reel kısmı sinioidalin genliğinin üstel düşüm frekansına denk gelirken, imajiner kısmı ise sinüsoidalin osilasyon frekansına karşılık gelir.

 $S_{1.2} = -1 \pm j2.82$

Bu tür cevaplara sönümlü cevaplar adı verilir ve kararlı hale sönümlü osilasyon ile ulaşır.

Sinüsoidal'ın frekansına sönümlü osilasyon frekansı denir, ω_d

$$R(s) = \frac{1}{s}$$

$$\frac{200}{s^2 + 10s + 200}$$
C(s)

Sisteminin birim basamak cevabını yazınız.

Eşlenik kutuplar: $s_{1,2} = -5 \pm j \cdot 13.23$

<u>Örnek:</u>

$$c(t) = K_1 + e^{-5t} (K_2 Cos (13.23t) + K_3 Sin (13.23t))$$

$$c(t) = K_1 + K_4 e^{-5t} (Cos (13.23t) - \phi)$$

$$\phi = \tan^{-1}(\frac{K_3}{K_2})$$
 $K_4 = \sqrt{K_2^2 + K_3^2}$

Osilasyonlu Cevap: İki kök imajiner eksen üzerindeyken oluşan cevabdır.

$$C(s) = \frac{9}{s(s^2 + 9)}$$
 Olarak seçelim

Orjindeki giriş sabit zorlanmış cevabı oluştururken imajiner eksen üzerinde **±3j** deki kutuplar sinüsodial doğal cevap oluşturur.

Kritik Sönümlü Cevap: İki katlı kök reel eksen(negatif bölge) üzerindeyken oluşan cevabdır.

$$C(s) = \frac{9}{s(s^2 + 6s + 9)} = \frac{9}{s(s+3)^2}$$
 Olarak seçelim

Orjindeki giriş sabit zorlanmış cevabı oluştururken reel eksen üzerinde **-3** deki kutuplar üstel ve üstel ile zamanın çarpımı doğal cevabı oluştururlar.

Özet

Aşırı Sönümlü:

Kökler: $-\sigma_1$, $-\sigma_2$

$$c(t) = K_1 e^{-\sigma_1 t} + K_2 e^{-\sigma_2 t}$$

Sönümlü:

Kökler: $-\sigma_d \pm j\omega_d$

$$c(t) = Ae^{-\sigma_d t}Cos(\omega_d t - \phi)$$

Osilasyonlu Cevap:

Kökler: ±j ω₁

$$c(t) = ACos (\omega_1 t - \phi)$$

Kritik Sönümlü Cevap:

Kökler: $-\sigma_1$, $-\sigma_1$

$$c(t) = K_1 e^{-\sigma_1 t} + K_2 t e^{-\sigma_1 t}$$
Otomatik Kontrol

Prof.Dr.Galip Cansever

Doğal Frekans, ω_n : İkinci derece bir sistemin doğal frekansı sistemin sönümsüz osilasyon frekansıdır.

Sönüm oranı, ζ: Üstel düşüm frekansının doğal frekansa oranıdır.

ζ= Üstel düşüm frekansı/Doğal frekans(rad/s)

 $\zeta = (1/2\pi)$ (Doğal periyot/Üstel zaman sabiti)

$$G(s) = \frac{b}{(s^2 + as + b)}$$
 Örneğini ele alalım,

Sönümsüz sistemin kutupları imajiner eksen üzerinde olacaktır ve sistem cevabı sönümsüz sinüsoidaldir. Sistemin sönümsüz olması için $\mathbf{a} = \mathbf{0}$ olmalıdır.

Böylece tanım gereği sistemin osilasyon frekansı sistemin doğal frekansıdır. Sistem kutupları imajiner eksende **±**√**b** de olduğu için

$$\omega n = \sqrt{b}$$
 ve $b = \omega_n^2 dir$.

Sistemimiz sönümlü olduğunda **a≠0** ve kompleks eşlenik köklerin gerçek kısımları **–a/2** dir. Bu değer daha önce belirtildiği gibi üstel düşüm frekansını tanımlar,

$$\zeta = \frac{\frac{a}{2}}{\omega_n} \quad \text{dolayısıyla} \quad a = 2\zeta\omega_n \quad \text{dir.}$$

Genel olarak ikinci derece sistem:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$G(s) = \frac{36}{s^2 + 4.2 s + 36}$$
 ise $2\zeta\omega_n = 4.2$ ve $\omega_n^2 = 36$ $\omega_n = 6$ $\zeta = \frac{4.2}{2 \times 6} = 0.35$

 $\omega_n = 0$ Genel olarak:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

İkinci derece sistemin kökleri:

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

$$\zeta = 0$$

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

$$\zeta > 1$$

$$\frac{R(s)}{s^2 + 8s + 12} \qquad C(s)$$

Sisteminin ne tür cevabı olacağını bulunuz.

<u>Örnek:</u>

$$a=2\zeta\omega_n \quad \text{ve} \quad \omega_n=\sqrt{b} \implies \zeta=\frac{a}{2\sqrt{b}}=\frac{8}{2\sqrt{12}}$$

$$\zeta=1.155 \qquad \zeta>1 \quad \text{Olduğu için aşırı sönümlüdür}$$

$$\begin{array}{c|c} \hline \text{Ornek:} \\ \hline R(s) \\ \hline \hline s^2 + 8s + 16 \\ \hline \end{array} \qquad \begin{array}{c|c} C(s) \\ \hline \end{array}$$

Sisteminin ne tür cevabı olacağını bulunuz.

$$\zeta = \frac{8}{2\sqrt{16}} \Rightarrow \zeta = 1$$

$$\zeta=1$$
 Olduğu için kritik sönümlüdür

Sönümlü İkinci Derece Sistemler

Bir çok fiziksel problem için sönümlü ikinci derece sistem iyi bir modeldir.

İkinci derece sistemin birim basamak cevabını inceleyelim:

$$C(s) = \frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

$$= \frac{K_1}{s} + \frac{K_2 s + K_3}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$\zeta < 1$$

$$C(s) = \frac{1}{s} - \frac{(s + \zeta \omega_n) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \omega_n \sqrt{1 - \zeta^2}}{(s + \zeta \omega_n)^2 + \omega_n^2 (1 - \zeta^2)}$$

$$C(s) = \frac{1}{s} - \frac{\sqrt{1 - \zeta^{2}}}{(s + \zeta \omega_{n})^{2} + \omega_{n}^{2} (1 - \zeta^{2})}$$

$$c(t) = 1 - e^{-\zeta \omega_{n} t} \left[Cos(\omega_{n} \sqrt{1 - \zeta^{2}} t) + \frac{\zeta}{\sqrt{1 - \zeta^{2}}} Sin(\omega_{n} \sqrt{1 - \zeta^{2}} t) \right]$$

$$c(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \left[Cos(\omega_n \sqrt{1 - \zeta^2} t) - \phi \right]$$
$$\phi = \tan^{-1} \frac{\zeta}{\sqrt{1 - \zeta^2}}$$

37

1. Tepe Süresi, T_p:

Sistem cevabının tepe veya maksimum noktaya ulaştığında geçen süre.

2. Aşım, %OS:

Sistem cevabının tepe veya maksimum noktası ile kararlı haldeki değeri arasındaki farkın kararlı haldeki değere oranıdır. % olarak ifade edilir.

3. Yükselme Zamanı, T_r:

Sistem cevabının %10'nun dan %90'nına ulaşıncaya kadar geçen süre olarak tanımlanır.

4. Yerleşme Zamanı, T_s:

Sistem cevabının %98'ine ulaşıncaya kadar geçen süre olarak tanımlanır.

Bu tip bilgiler tasarımcının cevabın hızının veya doğasının sistem performansını azaltıp azaltmadığına karar vermesi açısından önemlidir.

Örneğin bir CD okuyucusunun kafasının bilgiyi okumak için kararlı hale gelmesi tüm bilgisayar performansını etkiler.

1. Tepe Süresi, T_p, nin İncelenmesi

 T_p , c(t)'nin türevi alınıp t=0 dan sonra ilk sıfırı bularak hesaplanır.

Başlangıç şartları sıfır kabul edilip,

$$L(\frac{df}{dt}) = sf(s) - f(0_{-})$$
 Türev teoremi kullanılacak olursa

$$L\begin{bmatrix} \dot{c}(t) \end{bmatrix} = sC(s) = \frac{\omega_n^2}{(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$
Otomatik Kontrol

Prof.Dr.Galip Cansever

4

Paydayı düzenleyecek olursak,

$$L\left[\dot{c}(t)\right] = \frac{\omega_{n}^{2}}{(s + \zeta\omega_{n})^{2} + \omega_{n}^{2}(1 - \zeta^{2})} = \frac{\frac{\omega_{n}}{\sqrt{1 - \zeta^{2}}}\omega_{n}\sqrt{1 - \zeta^{2}}}{(s + \zeta\omega_{n})^{2} + \omega_{n}^{2}(1 - \zeta^{2})}$$

$$\dot{c}(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}} e^{-\zeta\omega_n t} Sin(\omega_n \sqrt{1-\zeta^2} t)$$
 Türevi O'a eşitlediğimizde: $\omega_n \sqrt{1-\zeta^2} t = n\pi$ ve $t = \frac{n\pi}{\omega_n \sqrt{1-\zeta^2}}$

 $\omega_n \sqrt{1-\zeta}$ **n** nin her bir değeri yerel maksimum veya minumumu gösterir. **n=0**, **t=0** anına karşılık gelir ve eğim sıfırdır.

n nin değeri 1 olması birinci tepe zamanına karşılık gelir. Böylece:

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

2. Aşım, %OS, nin İncelenmesi

$$\%OS = \frac{c_{\text{max}} - c_{\text{final}}}{c_{\text{final}}} \times 100$$

 c_{max} , T_p anında c(t)'nin değeridir.

$$c(t) = 1 - e^{-\zeta \omega_n t} \left[Cos(\omega_n \sqrt{1 - \zeta^2} t) + \frac{\zeta}{\sqrt{1 - \zeta^2}} Sin(\omega_n \sqrt{1 - \zeta^2} t) \right]$$

$$c_{\text{max}} = c(T_p) = 1 - e^{-\left(\frac{\zeta\pi}{\sqrt{1-\zeta^2}}\right)} \left[Cos(\pi) + \frac{\zeta}{\sqrt{1-\zeta^2}} Sin(\pi) \right]$$

$$c_{\max} = 1 + e^{-(\frac{\zeta n}{\sqrt{1-\zeta^2}})} \qquad \text{Birim basamak için} \qquad c_{\mathit{final}} = 1$$

$$\%OS = e^{-\left(\frac{\zeta\pi}{\sqrt{1-\zeta^2}}\right)} \times 100$$

$$%OS = e^{-(\frac{\zeta\pi}{\sqrt{1-\zeta^2}})} \times 100$$
 ve $\zeta = \frac{-\ln(\%OS/100)}{\sqrt{\pi^2 + \ln^2(\%OS/100)}}$

3. Yerleşme Süresi, T_s, nin İncelenmesi

Yerleşme süresini bulabilmek için c(t) nin kararlı hal c_{final} değerinin %98 sine ulaştığı zamanı hesaplamamız gerekir. Tanımdan hatırlanacağı üzere yerleşme süresi azalan sinüsoidalın genliğinin 0.02' ye ulaşma süresidir. Dolayısıyla:

$$c(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \left[Cos(\omega_n \sqrt{1 - \zeta^2} t) - \phi \right] = 1$$

$$0.02 = e^{-\zeta \omega_n t} \frac{1}{\sqrt{1-\zeta^2}} \quad \text{buradan } T_s = \frac{-\ln(0.02\sqrt{1-\zeta^2})}{\zeta \omega_n}$$

 ζ 'ye bağlı olarak T_s 'nin pay'ı 3.91 ile 4.74 arasında değişir. Bir yaklaşım yaparak,

$$T_{s} = \frac{4}{\zeta \omega_{n}}$$

yazabiliriz.

4. Yükselme Süresi, T_r, nin İncelenmesi

Yükselme zamanı ve sönüm arasındaki ilişki aşağıdaki şekil ile

bulunabilir.

Prof.Dr.Galip Cansever

46

 $G(s) = \frac{100}{s^2 + 15s + 100}$ Sistemi için, T_p, %OS veT_s'yi bulunuz

$$s^{2} + 15s + 100$$

$$a = 2\zeta\omega_{n} \quad \omega_{n} = \sqrt{b} = \sqrt{100} = 10 \implies 15$$

$$a = 2\zeta\omega_n \qquad \omega_n = \sqrt{b} = \sqrt{100} = \frac{10}{a} \Rightarrow \frac{15}{2\sqrt{100}} = 0.75$$

$$T_{p} = \frac{\pi}{\omega_{n} \sqrt{1 - \zeta^{2}}} = \frac{\pi}{10\sqrt{1 - 0.75^{2}}} = 0.475$$

$$\%OS = e^{-(\frac{\zeta\pi}{\sqrt{1-\zeta^2}})} \times 100 = e^{-(\frac{0.75\pi}{\sqrt{1-0.75^2}})} \times 100 = 2.838$$

$$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{0.75 \times 10} = 0.533$$
 Şekilden $T_r = \frac{2.3}{10} = 0.23$

Sönümlü İkinci Derece Sistemlerin Kutup Çizimi

Tepe süresi, T_p , kutbun imajiner kısmı ile ters orantılıdır. s düzleminde yatay çizgiler sabit tepe sürelerini gösterir.

Yerleşme süresi, T_s, kutbun reel kısmı ile ters orantılıdır. s düzleminde dikey çizgiler sabit yerleşme sürelerini gösterir.

$$\zeta = Cos(\theta)$$
 Olduğu için eğimli çizgiler sabit sönüm oranı çizgileridir. Ayrıca %OS sadece sönüm oranının fonksiyonu olduğu için bu çizgilere sabit %OS çizgileri de diyebiliriz

Kutup şekli verilen Sistem için,
$$\zeta$$
, ω_n , T_p , %OS ve T_s 'yi bulunuz

$$j\omega$$
 $j7 = j\omega_d$
 s -plane

$$\sigma$$

$$-j7 = -j\omega_d$$

<u>Örnek:</u>

$$\zeta = Cos(\theta)$$
= $Cos(\arctan(7/3)) = 0.394$

$$\omega_n = \sqrt{7^2 + 3^2} = 7.616 \, rad \, / \, s$$

$$T_{p} = \frac{\pi}{\omega_{d}} = \frac{\pi}{7} = 0.449s$$

$$\% OS = e^{-(\frac{\zeta\pi}{\sqrt{1-\zeta^{2}}})} \times 100$$

$$= e^{-\left(\frac{0.394\pi}{\sqrt{1-0.394^2}}\right)} \times 100 = \%26.018$$

$$T_s = \frac{4}{\sigma} = \frac{4}{3} = 1.33 s$$

$$G(s) = \frac{1/J}{s^2 + \frac{D}{I}s + \frac{K}{I}}$$

 $G(s) = \frac{1/J}{s^2 + \frac{D}{I}s + \frac{K}{I}}$ Sisteminin birim basamak Tork girişine cevabında %20 lik bir aşım ve 2 sn yerleşme zamanı olması için J ve D ne olmalıdır.

$$\omega_n = \frac{K}{J} \quad ve \quad 2\zeta\omega_n = \frac{D}{J}; \quad T_s = 2 = \frac{4}{\zeta\omega_n} \Rightarrow \zeta\omega_n = 2$$

$$2\zeta\omega_n = 4 = \frac{D}{J}$$
 ve $\zeta = \frac{4}{2\omega_n} \Rightarrow \zeta = 2\sqrt{\frac{J}{K}}$

OS %20 ise
$$\zeta$$
=0.456(şekilden) ise $\frac{J}{K}$ = 0.052

K=5 olduğundan, J=0.26kg-m² ve D=1.04 N-ms/rad

<u>İlave Kutup Olması Durumunda İkinci Derece</u> <u>Sönümlü Sistemin Davranışı</u>

Şimdiye kadar yaptığımız analizler ve denklemler sıfırı olmayan eşlenik kompleks kutuplu ikinci derece sistemler içindi. İki den fazla kutbu veya sıfırları olan sistemler için bu denklemleri kullanamayız.

Ancak, bazı şartlar altında, ikiden fazla kutbu ve sıfırları olan sistemler dominant iki eşlenik kompleks kutbu olan sistem gibi ele alınabilir. Bu bölümde 1 kutbun ilave edilmesi halini inceleyeceğiz.

Var sayalım ki 3 derece bir sistemin eşlenik kökleri:

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$
 ve üçüncü kök :

$$-\alpha_{r}$$
 reel eksen üzerinde olsun.

Birim basamak cevabı kısmi kesirlere ayırma yöntemi ile belirlenebilir:

$$C(s) = \frac{A}{s} + \frac{B(s + \zeta \omega_n) + C \omega_d}{(s + \zeta \omega_n)^2 + \omega_d^2} + \frac{D}{(s + \alpha_r)}$$

Zaman tanım aralığında:

$$c(t) = Au(t) + e^{-\zeta\omega_n t} \left[BCos(\omega_d t) + CSin(\omega_d t) \right] + De^{-\alpha_r t}$$

Üçüncü kutbun etkisinin ihmal edilebilir olması için dominant kutuplardan ne kadar uzak olması gerekir?

Bu tamamen istenilen hassasiyete bağlıdır ama genel olarak üstel düşüm 5 zaman sabiti sonunda ihmal edilebilir kabul edilir.

Böylece eğer üçüncü kök baskın köklerin 5 kat solunda ise sitemi ikinci derece kabul edebiliriz.

Bu üstel düşümün genliği ne kadar? Tepe süresine etkisi ihmal edilebilir mi?

$$C(s) = \frac{bc}{s(s^2 + as + b)(s + c)} = \frac{A}{s} + \frac{Bs + C}{s^2 + as + b} + \frac{D}{(s + c)}$$

Baskın olmayan üçüncü kök **–c** olsun ve kararlı hal çözümü birim cevaba ulaşsın.

Paydaki katsayıları sırası ile hesapladığımızda,

A = 1;

$$B = \frac{ca - c^{2}}{c^{2} + b - ca}$$

$$C = \frac{ca^{2} - c^{2}a - bc}{c^{2} + b - ca};$$

$$D = \frac{-b}{c^{2} + b - ca}$$

$$C \longrightarrow \infty$$
 A=1; B=-1; C=-a; D=0

Görüldüğü gibi baskın kök sonsuza doğru hareket ettiğinde bu kutbun genliği ve cevabı 0 olmaktadır.

$$T_1(s) = \frac{24.542}{s^2 + 4s + 24.542}; \quad T_2(s) = \frac{245.42}{(s+10)(s^2 + 4s + 24.542)};$$

$$T_3(s) = \frac{73.626}{(s+3)(s^2 + 4s + 24.542)}$$

Sistemlerinin birim basamak cevaplarını bulup karşılaştırınız.

$$c_1(t) = 1 - 1.09e^{-2t}Cos(4.532t - 23.8^{\circ})$$

$$c_2(t) = 1 - 0.29e^{-10t} - 1.189e^{-2t}Cos(4.532t - 53.34^{\circ})$$

$$c_2(t) = 1 - 1.14e^{-3t} - 0.707e^{-2t}Cos(4.532t - 78.63^{\circ})$$

<u>İlave Sıfır Olması Durumunda İkinci Derece</u> <u>Sönümlü Sistemin Davranışı</u>

İki kutuplu sisteme bir reel sıfır ekleyelim

Sistem kutupları (-1±j2.828) olsun ve sırasıyla -3, -5, ve -10 da sıfırlar ekleyelim.

Görüleceği üzere sıfır baskın kutuplara ne kadar yakın ise geçici rejimdeki etkisi daha fazla olur.

Sıfır baskın kutuplardan uzaklaştıkça sistem cevabı ikinci derece sistem cevabına benzemektedir.

Kısmi kesirler açılımı ile inceleyelim:

$$T(s) = \frac{(s+a)}{(s+b)(s+c)} = \frac{A}{(s+b)} + \frac{B}{(s+c)}$$

$$= \frac{(-b+a)/(-b+c)}{(s+b)} + \frac{(-c+a)/(-c+b)}{(s+c)}$$

Eğer a, b ve c'ye göre çok büyük ise

$$T(s) = a \left[\frac{1/(-b+c)}{(s+b)} + \frac{1/(-c+b)}{(s+c)} \right] = \frac{a}{(s+b)(s+c)}$$

Sıfır basitçe kazanç katsayısı gibi davranır.

Eğer ikinci derce sisteme sağ yarı düzlemde bir sıfır eklenirse

Son değer positif olmasına karşın başlangıçta bir süre negatif çıkış üretir. Bu tür sistemlere non-minumum faz sistemler denir.

Bir motosiklet veya uçak non-minumum faz ise siz direksiyonu sağa çevirdiğinizde motosiklet veya uçak sola doğru hareket etmesi anlamına gelir. Otomatik Kontrol 66 Prof.Dr.Galip Cansever

Sıfır-Kutup Elimine Edilmesi

$$T(s) = \frac{K(s+z)}{(s+p_3)(s^2 + as + b)}$$

Eğer sıfır ile p3 kutbu birbirini götürürse, veya birbirlerine çok yakınsa üçüncü derece sistem yine ikinci derece sistem gibi davranır.

Laplas Dönüşüm Tablosu

f(t)	F(s)
$\delta(t)$	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s^2}$
$t^n u(t)$	$\frac{n!}{s^{n+1}}$
$e^{-at}u(t)$	$\frac{1}{s+a}$
$\sin \omega t u(t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t u(t)$	$\frac{s}{s^2 + \omega^2}$
	$\delta(t)$ $u(t)$ $tu(t)$ $t^{n}u(t)$ $e^{-at}u(t)$ $\sin \omega t u(t)$

Otomatik Kontrol Prof.Dr.Galip Cansever 68

Laplas Dönüşüm Tablosu

Item no.	Theorem		Name
1.	$\mathcal{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathcal{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)]$	$= F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	= F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$= e^{-sT}F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathcal{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathcal{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - \dot{f}(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^nf}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t} f(\tau) d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$= \lim_{s \to \infty} sF(s)$	Initial value theorem ²

¹ For this theorem to yield correct finite results, all roots of the denominator of F(s) must have negative real parts and no more than one can be at the origin.

² For this theorem to be valid, f(t) must be continuous or have a step discontinuity at t = 0 (i.e., no impulses or their derivatives at t = 0).