

Introduction to sensors: Schedule

8:45 – 9:35 Whirlwind tour from sensors to server (Robin van Emden, JADS)

9:35 – 10:00 Coffee break

Enter student e-mails into https://zensie.30mhz.com/

You can delete your account when you are done.

Opt-out if you want.

Introduction to sensors: Schedule

8:45 – 9:35 Whirlwind tour from sensors to server (Robin van Emden, JADS)

9:35 – 10:00 Coffee break

Enter student e-mails into https://zensie.30mhz.com/

You can delete your account when you are done.

Opt-out if you want.

10:00 – 10:35 Steven Madern of 30Mhz talks about sensors in horticulture

10:30 – 10:45 Coffee break

10:45 – 12:30 Put theory into practice

Introduction to Sensors: Data and code repository

https://github.com/robinvanemden/sensors

Introduction to Sensors: Exercises in DropBox

https://www.dropbox.com/request/ Hpfx5C86LnM3XOawEzWl

About Me

Robin van Emden Research at JADS

Academic background

- Cognitive neuroscience
- Computer science

Research at JADS at prof M. Kaptein's **Computational Personalization Lab**

About Me

Robin van Emden 30+ years R&D

For example...

Tear Detection

With: Tilburg and Rijeka Uni

Problem: Tears nearly invisible

Sensor: Thermal sensor array

Robin van Emden 30+ years R&D

For example...

Tear Detection

With: Tilburg and Rijeka Uni

Problem: Tears nearly invisible

Sensor: Thermal sensor array

Robin van Emden 30+ years R&D

For example...

Bird Solar Backpack

With: Max Planck Institute

Problem: Tracking migrating birds

Sensor: Bluetooth transceiver

Usual data science perspective...

As a neuroscientist: we're not a brain in a vat...

Brain in a vat

Nervous system

Embodied cognition as inspiration for new generation robots

Ever since robots took a more embodied approach...

Honda Asimo

Boston Dynamics

So.. let's invert the perspective for today!

Sensor related projects involve the following area's:

Sensors

Generally, the most electronics focused part. A lot of uncharted area's here!

Microprocessors

The signal from the sensor needs to be converted into digital, most often by an MCU.

Communication protocols

The data needs to be transported from the MCU(s) to a data store.

Data storage

The data needs to be aggregated or stored.

Data analysis, Data visualization

The data has to be shown to others.

From sensor to data

• We will be using a simple plant measurement device to go over some basic sensor principles and to show how to get your data from an electronic sensor on an MCU to a database.

Sensor data analysis

 We will be doing data analysis on live data from a greenhouse at 30Mhz, a Dutch company that builds a data platform for horticulture.

From sensor to data: What is a sensor?

• American National Standards Institute (ANSI) Definition:

"A device which provides a usable output in response to a specified measurand"

General definition:

A sensor acquires a physical parameter and converts it into a signal suitable for processing (e.g. optical, electrical, mechanical)

From sensor to data: Measurement systems

A sensor is generally part of a measurement system.

From sensor to data: ...can be a bad thing.

From sensor to data: Measurement systems

A sensor is generally part of a measurement system.

From sensor to data: DSP1 - Analog to Digital Converter

From sensor to data: DSP2 - Signal filtering

From sensor to data: DSP3 - sensor fusion (Kalman Filter)

From sensor to data: Digital Signal Processing (DSP)

From sensor to data: Digital Signal Processing (DSP)

https://www.amazon. com/Scientist-Engineers-Digital-Signal-Processing/dp/09660 17633/ref=sr_1_2?dc hild=1&keywords=dig ital+signal+processing +book&qid=1600529 672&sr=8-2

https://scipycookbook.readthedocs.i o/items/idx_signal_proc essing.html

From sensor to data: Measurement systems

A sensor is generally part of a measurement system.

From sensor to data: Measurement systems

From hardwired to microprocessor-based measurement systems

From sensor to data: What is a microcontroller

From sensor to data: Microcontroller vs Microprocessor

- CPU, RAM, ROM, I/O and Timer all on a single chip
- Fixed amount of on-chip RAM, ROM, IO ports
- For applications in which cost, power, and space are critical
- Single purpose
- Relatively slow, fewer resources

- CPU is standalone RAM, ROM, I/O and timer are separate
- Designer can decide on amount of RAM, ROM, IO ports
- Versatile
- General purpose
- More expensive
- Faster, more resources

CLOCK SPEED 0.00 MHz

PERIPHERALS:

☐ I2C LCD □ LED

https://micropython.org/unicorn/

SERVO

ADC

From Sensor to data

 We will be using a simple plant measurement device to go over some basic sensor principles and to show how to get your data from an electronic sensor on an MCU to a database.

Sensor data analysis

 We will be doing data analysis on live data from a greenhouse at 30Mhz, a Dutch company that builds a data platform for horticulture.

From data to analysis: From measurement system to analysis

From sensor to data: Wireless protocols

From data to analysis: Network protocol

From data to analysis: MQTT Publish/Subscribe

https://www.ev3dev.org/docs/tutorials/sending-and-receiving-messages-with-mqtt/https://pypi.org/project/paho-mqtt/

From data to analysis: Network protocol

From data to analysis: Timeseries databases

From data to analysis: Timeseries analysis

JAPETONIMUS Academy of Data Science

41

From Sensor to data

LilyGo TTGO T-Higrow

TinyTronics.nl

Sensors:

Photometric

Temperature

Air humidity

Soil humidity

Electrolyte sensor

Microprocessor:

• ESP32

From data to analysis: Cayenne Dashboard

https://cayenne.mydevices.com/shared/5f5d15c82130755bb2a55562/project/e9af04f1-b554-4317-b4fb-5e5d4d831b7d

Or build your own...

Start with:

Make: Sensors: A Hands-On Primer for Monitoring the Real World with Arduino and Raspberry Pi by Karvinen & Valtokari

...don't optimize early (left Bob Pease famous LM131 design)

From Sensor to data

 We will be using a simple plant measurement device to go over some basic sensor principles and to show how to get your data from an electronic sensor on an MCU to a database.

Edge Computing ...

From data to analysis: Edge Computing

From data to analysis: Edge Computing with Scailable

