Solving Continuous Games With Oracle Algorithms

Tomáš Kasl

Domain

- Adversarial games
- two players
- zero sum
- action spaces are continuums
- we want to compute a NE

Nash Equilibrium

- a stable state
- none of the players have a reason to deviate
 - (from their adopted strategy)

Finding a NE

- solved for games with finite action spaces
- create matrix M as utilities of every pair of actions
- Linear program:

 $maximize x_0$

s.t.
$$M^T x - 1x_0 \ge 0$$

$$\sum_{j \in A} x_j = 1$$

$$\boldsymbol{x} \geq 0$$

Infinite Games

- LP no longer applicable (cannot enumerate actions)
 - \rightarrow What else, then?
- settle for $\epsilon-\text{NE}$ instead
- iterative algorithms based on oracles
- oracles:
 - bestResponse oracle: picks from the whole continuum
 - value oracle: the LP from previous slide, solves a subgame with finite action spaces

Task (experiments):

- Compare converge for algorithms:
 - **Double Oracle**: Proven in 2021 to converge to ϵ -NE (much faster than FP)
 - Expected Regret Minimization: Generalization of online learning into twoplayer setting, proposed 2023
- Validate claims provided by the authors of ERM paper
 - Convergence
 - Computational complexity

Convergence Comparison

- Rosenbrock: $u(x,y)=(1{-}x)^2{+}100(y{-}x^2)^2$

Convergence Comparison

 • Townsend: $u(x,y) = -[\cos((x-0.1)y)]^2 - x\sin(3x+y)$

Testing Complexity Claims

Assume that ERM Algorithm runs for T iterations. Then, the number of oracle calls is bounded by $O(T/\epsilon^2 \cdot log(T/\epsilon^2))$.

Problem with the magic constant C

• Tested on the the Rosenbrock function

