华东理工大学 2017-2018 学年第二学期

《高等数学(下)》(11 学分) 课程期末考试试卷 (A) 2018.7

开课学院:理学院, 专业:大面积, 考试形式:闭卷, 所需时间 120 分钟

考生姓名: ______ 学号: _____ 班级: _____ 任课教师: _____

题序	_	=	=	四	五	六	七	八	总分
满分	12	18	18	18	16	6	6	6	100
得分									
阅卷人									

注意: 试卷共三页八大题

- 一、解下列各题(每小题6分,共12分):
- 1. 已知曲线 L 的方程为 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$, $0 \le t \le 1$, 计算积分 $\int_t ds$.

2. 计算积分 $\iint_{\Sigma} \frac{1}{\sqrt{1+x^2+y^2}} dS$, 其中 Σ 为曲面 $z = \frac{x^2+y^2}{2}$ 在平面 z = 2 下方的部分.

- 二、解下列各题(每小题6分,共18分):
- 1. 求微分方程 y''' 5y'' + 6y' = 0 的通解.

2. 求经过点 (-1, 0, 2) 且与两条直线 x = y = z 及 $\frac{x+1}{0} = \frac{y-2}{1} = \frac{z}{-1}$ 都垂直的直线方程.

3. 求微分方程 $y'' + \frac{y'}{x} = 0$ 满足初始条件 y(1) = y'(1) = 1 的特解.

- 三、解下列各题(每小题6分,共18分):
- 1. 求由方程 $\frac{x}{z} = \arctan \frac{z}{y}$ 所确定的函数 z = z(x, y) 的全微分 dz , 以及偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.

2. 求曲线 L: xy + yz + zx = 11, xyz = 6 在点 M(3, 2, 1) 处的切线方程和法平面方程.

3. 用拉格朗日乘数法求表面积为S,体积最大的圆柱体的体积.

四、解下列各题(每小题6分,共18分):

1. 计算二次积分 $\int_0^{\pi} dy \int_y^{\pi} \frac{\sin x}{x} dx$.

2. 计算二重积分 $\iint_D (x^2 + y^2 - 1) dx dy$, 其中 D 为圆 $x^2 + y^2 = 4$ 所围成的区域.

3. 判别二重极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x^2y}{x^4+y^2}$ 是否存在? 若存在, 请计算其值; 若不存在, 请说明理由.

五、选择题(在每小题中选出唯一正确的选项,每小题 4 分,共 16 分)

1. 设
$$u = \ln \sqrt{x^2 + y^2 + z^2}$$
,则 div(grad u) =

(A)
$$\frac{2}{x^2 + y^2 + z^2}$$

(B)
$$\frac{1}{x^2 + y^2 + z^2}$$

(C)
$$\vec{0}$$

(D)
$$\frac{-2\{yz, zx, xy\}}{(x^2 + y^2 + z^2)^2}$$

2. 设函数 f(x,y) 可微, 且对任意的 x,y 都有 $\frac{\partial f(x,y)}{\partial x} > 0$ 和 $\frac{\partial f(x,y)}{\partial y} < 0$, 则使不等式

$$f(x_1, y_1) > f(x_2, y_2)$$
成立的一个充分条件是 ()

(A) $x_1 < x_2, y_1 < y_2$

(B) $x_1 > x_2, y_1 > y_2$

(C) $x_1 > x_2, y_1 < y_2$

(D) $x_1 < x_2, y_1 > y_2$

3. 设 \sum 是正方体 $|x| \le 1$, $|y| \le 1$, $|z| \le 1$ 的外表面,则 $\bigoplus_{\Sigma} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy$ 的值

- (A) 3
- (B) 6
- (C) 9
- (D) 24

4. 设 L 为上半椭圆 $x^2 + xy + y^2 = 1$ ($y \ge 0$) 上从点 (-1,0) 到点 (1,0) 的弧段,则

$$I = \int_{L} [1 + (xy + y^{2})\sin x] dx + (x^{2} + xy)\sin y dy =$$
 ()

- (A) 0
- (B) 1
- (C) 2
- (D) -1

六、(本题 6 分) 计算 $I = \oint_L \frac{x \mathrm{d} y - y \mathrm{d} x}{x^2 + y^2}$, 其中 L 为圆周 $x^2 + y^2 = 4$, 方向为逆时针方向.

七、(本题 6 分) 计算 $\iint_{\Omega}z\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$,其中 Ω 是由锥面 $z=\sqrt{x^2+y^2}$ 和平面 z=2 所围成的闭区域.

八、(本题 6 分) 求定义在 $[0, +\infty)$ 上的连续函数 f(t) 使得

$$f(t) = 2 \iint_{x^2 + y^2 \le t^2} (x^2 + y^2) f(\sqrt{x^2 + y^2}) dx dy + t^4.$$