

CD4093BMS

CMOS Quad 2-Input NAND Schmitt Triggers

FN3330 Rev 0.00 December 1992

Features

- High Voltage Types (20V Rating)
- Schmitt Trigger Action on Each Input With No External Components
- Hysteresis Voltage Typically 0.9V at VDD = 5V and 2.3V at VDD = 10V
- Noise Immunity Greater than 50%
- · No Limit on Input Rise and Fall Times
- Standardized, Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range, 100nA at 18V and +25°C
- · 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- · Wave and Pulse Shapers
- High Noise Environment Systems
- · Monostable Multivibrators
- · Astable Multivibrators
- NAND Logic

Description

CD4093BMS consists of four Schmitt trigger circuits. Each circuit functions as a two input NAND gate with Schmitt trigger action on both inputs. The gate switches at different points for positive and negative going signals. The difference between the positive voltage (VP) and the negative voltage (VN) is defined as hysteresis voltage (VH) (see Figure 1).

The CD4093BMS is supplied in these 14 lead outline packages:

Braze Seal DIP H4H
Frit Seal DIP H1B
Ceramic Flatpack H3W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range.....-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	$\theta_{\sf ia}$	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD)) at +125°C	
For TA = -55°C to +100°C (Package Type	pe D, F, K)	500mW
For TA = +100°C to +125°C (Package T	Type D, F, K)	Derate
Lineari	ity at 12mW/ ^c	C to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS			
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	2	μА
				2	+125°C	-	200	μΑ
ļ		VDD = 18V, VIN = VD	VDD = 18V, VIN = VDD or GND		-55°C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VIN = VDD or GND VDD = 20		+25°C	-100	-	nA
ļ				2	+125°C	-1000	-	nA
ļ			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
ļ				2	+125°C	-	1000	nA
ļ			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 5)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT =	0.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT =	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ.	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VDD or GND		7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	DD or GND	8A	+125°C	1		
		VDD = 3V, VIN = VDI	O or GND	8B	-55°C	1		
Positive Trigger	VP5V	VDD = 5V (Note 2)		1, 2, 3	+25°C, +125°C, -55°C	2.2	3.6	V
Threshold Voltage	VP15V	VDD = 15V (Note 3)		1, 2, 3	+25°C, +125°C, -55°C	6.8	10.8	V
Positive Trigger Threshold Voltage	VP5V	VDD = 5V (Note 4)		1, 2, 3	+25°C, +125°C, -55°C	2.6	4.0	V
Negative Trigger	VN5V	VDD = 5V (Note 2)		1, 2, 3	+25°C, +125°C, -55°C	0.9	2.8	V
Threshold Voltage	VN15V	VDD = 15V (Note 3)		1, 2, 3	+25°C, +125°C, -55°C	4.0	7.4	V
Negative Trigger Threshold Voltage	VN5V	VDD = 5V (Note 4)		1, 2, 3	+25°C, +125°C, -55°C	1.4	3.2	V
Hysteresis Voltage	VH5V	VDD = 5V (Note 2)		1, 2, 3	+25°C, +125°C, -55°C	0.3	1.6	V
	VH15V	VDD = 15V (Note 3)		1, 2, 3	+25°C, +125°C, -55°C	1.6	5.0	V
Hysteresis Voltage	VH5V	VDD = 5V (Note 4)		1, 2, 3	+25°C, +125°C, -55°C	0.3	1.6	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 4. Input on terminals 1 and 2, 5 and 6, 8 and 9, or 12 and 13 implemented.

- 2. Inputs on terminals 1, 5, 8, 12
- 3. Input on Terminal 1

- 5. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTES 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	380	ns
TPLH			10, 11	+125°C, -55°C	-	513	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
TTLH			10, 11	+125°C, -55°C	-	270	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		T
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ
				+125°C	-	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	120	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	IOL5 VDD = 5V, VOUT = 0.4V		+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	180	ns
	TPLH	VDD = 15V	1, 2, 3	+25°C	-	130	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Positive Trigger Threshold Voltage	VP10V	VDD = 10V	1, 2, 4	+25°C, +125°C, -55°C	4.6	7.1	V
	VP10V	VDD = 10V	1, 2, 5	+25°C, +125°C, -55°C	5.6	8.2	V
	VP15V	VDD = 15V	1, 2, 5	+25°C, +125°C, -55°C	6.3	12.7	V
Negative Trigger Threshold Voltage	VN10V	VDD = 10V	1, 2, 4	+25°C, +125°C, -55°C	2.5	5.2	V
	VN10V	VDD = 10V	1, 2, 5	+25°C, +125°C, -55°C	3.4	6.6	V
	VN15V	VDD = 15V	1, 2, 5	+25°C, +125°C, -55°C	4.8	9.6	V
Hysteresis Voltage	VH10V	VDD = 10V	1, 2, 4	+25°C, +125°C, -55°C	1.2	3.4	V
	VH10V	VDD = 10V	1, 2, 5	+25°C, +125°C, -55°C	1.2	3.4	V
	VH15V	VDD = 15V	1, 2, 5	+25°C, +125°C, -55°C	1.6	5.0	V
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. Input on terminals 1, 5, 8, 12
- 5. Input on terminals 1 and 2, 5 and 6, 8 and 9, or 12 and 13

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

				LIMITS			
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	$\pm~0.2\mu A$
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST		READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILI	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	3, 4, 10, 11	1, 2, 5-9, 12, 13	14			
Static Burn-In 2 Note 1	3, 4, 10, 11	7	1, 2, 5, 6, 8, 9, 12-14			
Dynamic Burn- In Note 1	-	7	14	3, 4, 10, 11	1, 2, 5, 6, 8, 9, 12, 13	-
Irradiation Note 2	3, 4, 10, 11	7	1, 2, 5, 6, 8, 9, 12-14			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

* All inputs protected by CMOS protection network

1 OF 4 SCHMITT TRIGGERS

FIGURE 1. HYSTERESIS DEFINITION, CHARACTERISTIC, AND TEST SETUP

FIGURE 2. INPUT AND OUTPUT CHARACTERISTICS

AMBIENT TEMPERATURE (T_A) = +25°C SUPPLY VOLTAGE (VDD) = 15V 15.0 1.0 VDD CURRENT **PEAK** OUTPUT VOLTAGE (VO) (V) 0.0 DRAIN CURRENT (ID) (mA) VDD 12.5 10V CURRENT ALL ۷O 7.5 (ID PFΔK OTHER ID **INPUTS** TO VDD 5.0 2.5 INPUT VOLTAGE (VI) (V)

Typical Performance Curves

FIGURE 3. TYPICAL CURRENT AND VOLTAGE TRANSFER CHARACTERISTICS

FIGURE 4. TYPICAL VOLTAGE TRANSFER CHARACTERISTICS AS A FUNCTION OF TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 5. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 9. TYPICAL PROPAGATION DELAY TIME vs. SUPPLY VOLTAGE

FIGURE 6. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 8. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 10. TYPICAL TRANSITION TIME vs. LOAD CAPACITANCE

Typical Performance Curves (Continued)

FIGURE 11. TYPICAL TRIGGER THRESHOLD VOLTAGE vs.

FIGURE 13. TYPICAL POWER DISSIPATION vs. FREQUENCY CHARACTERISTICS

FIGURE 12. TYPICAL PERCENT HYSTERESIS vs. SUPPLY VOLTAGE

FIGURE 14. TYPICAL POWER DISSIPATION vs. RISE AND FALL TIMES

Applications

FIGURE 15. WAVE SHAPER

FIGURE 16. MONOSTABLE MULTIVIBRATOR

Applications (Continued)

FIGURE 17. ASTABLE MULTIVIBRATOR

Chip Dimensions and Pad Layout

Dimension in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

