04 July 2023

$$N_{k} = \frac{(N-k)!}{N_{k}}$$

$$N_{k} = \frac{(N-k)!}{N_{k}} \times \frac{(N-k)!}{N_{k$$

g: n objects. How many me con choose, l'object

Aus'. N Aui- Hochard | bobject we have n

to choose 15 object me have n'extions To choose the 2nd object me have N-1 options

Total number of options: $\sum (N-1) = N(N-1) = N_2$ $\{1,2\}$) reported $\{2,1\}$ Total number of ways = $\frac{N(N-1)}{2} = N_2 = \binom{N}{2}$

Q:-How many ways to have enouthy 3 objects

$$0 = 100$$
 many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$
 $0 = 100$ many ways to how enorthy $3 \circ 6 = 100$ m. $(N-1)(N-2) = N(N-1)(N-2)$
 $0 = 100$ m object $0 = 100$ m. $(N-1)(N-2) = N(N-1)(N-2)$
 $0 = 100$ m object $0 = 100$ m. $(N-1)(N-2) = N(N-1)(N-2)$

{1,1,3},⇒3!

 N_{1} of way to chaose = $\frac{N(N-1)(N-2)}{6} = \frac{N!}{(N-3)!3!} = \frac{N!}{3!}$

 $\frac{N(n-1)(n-2)(n-3)!}{(n-3)!} = \frac{n!}{(n-3)!}$

Without order choosing Kobjects from n we have K ways
With order 11

5 objects are difiret

1 2 3 4 5 6 7

7x6x5x4x3 = - + P5

1st object aptions = 7

 $\frac{1}{1} = \frac{2}{3} = \frac{5}{4} = \frac{4}{5} = \frac{3}{4}$ $\frac{2}{1} = \frac{2}{3} = \frac{5}{4} = \frac{4}{5} = \frac{3}{4} = \frac{3}{5} = \frac{3}{4} = \frac{3}$ Total options = $7 \times 6 \times 5 \times 4 \times 3 = \frac{7!}{2!}$ 2nd || || = 6 For each case 5! arrangements one 5! || = 3 Total combinations = 71. =7(5 4th deject hard Labject to hard

Total options = $5\times4\times3 = 5$ Total arrayents = $5\times4\times3 = 5$

Combinatorics Page 2