Decoder

The combinational circuit that change the binary information into 2^N output lines is known as **Decoders**. The binary information is passed in the form of N input lines. The output lines define the 2^N-bit code for the binary information. In simple words, the **Decoder** performs the reverse operation of the **Encoder**. At a time, only one input line is activated for simplicity. The produced 2^N-bit output code is equivalent to the binary information.

There are various types of decoders which are as follows:

2 to 4 line decoder:

In the 2 to 4 line decoder, there is a total of three inputs, i.e., A_0 , and A_1 and E and four outputs, i.e., Y_0 , Y_1 , Y_2 , and Y_3 . For each combination of inputs, when the enable 'E' is set to 1, one of these four outputs will be 1. The block diagram and the truth table of the 2 to 4 line decoder are given below. Block Diagram:

Truth Table:

Enable	INP	UTS	OUTPUTS								
E	A ₁	A ₀	Υ ₃	Y ₂	Υ ₁	Yo					
0	Х	Х	0	0	0	0					
1	0	0	0	0	0	1					
1	0	1	0	0	1	0					
1	1	0	0	1	0	0					
1	1	1	1	0	0	0					

The logical expression of the term Y0, Y0, Y2, and Y3 is as follows:

 $Y_3 = E.A_1.A_0$

 $Y_2 = E.A_1.A_0'$

 $Y_1 = E.A_1'.A_0$

 $YO = E.A_1'.A_0'$

Logical circuit of the above expressions is given below:

3 to 8 line decoder:

The 3 to 8 line decoder is also known as **Binary to Octal Decoder**. In a 3 to 8 line decoder, there is a total of eight outputs, i.e., Y_0 , Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , and Y_7 and three outputs, i.e., A_0 , A_1 , and A_2 . This circuit has an enable input 'E'. Just like 2 to 4 line decoder, when enable 'E' is set to 1, one of these four outputs will be 1. The block diagram and the truth table of the 3 to 8 line encoder are given below.

Block Diagram:

Truth Table:

Enable	ı	NPUTS	Outputs										
E	A ₂	A ₁	A ₀	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀		
0	х	х	х	0	0	0	0	0	0	0	0		
1	0	0	0	0	0	0	0	0	0	0	1		
1	0	0	1	0	0	0	0	0	0	1	0		
1	0	1	0	0	0	0	0	0	1	0	0		
1	0	1	1	0	0	0	0	1	0	0	0		
1	1	0	0	0	0	0	1	0	0	0	0		
1	1	0	1	0	0	1	0	0	0	0	0		
1	1	1	0	0	1	0	0	0	0	0	0		
1	1	1	1	1	0	0	0	0	0	0	0		

The logical expression of the term Y_0 , Y_1 , Y_2 , Y_3 , Y_4 , Y_5 , Y_6 , and Y_7 is as follows:

 $Y_0 = A_0' . A_1' . A_2'$

 $Y_1 = A_0.A_1'.A_2'$

 $Y_2 = A_0'.A_1.A_2'$

 $Y_3 = A_0.A_1.A_2'$

 $Y_4 = A_0' . A_1' . A_2$

 $Y_5 = A_0.A_1'.A_2$

 $Y_6 = A_0' \cdot A_1 \cdot A_2$

 $Y_7 = A_0.A_1.A_2$

Logical circuit of the above expressions is given below:

4 to 16 line Decoder

In the 4 to 16 line decoder, there is a total of 16 outputs, i.e., Y_0 , Y_1 , Y_2 ,....., Y_{16} and four inputs, i.e., A_0 , A_1 , A_2 , and A_3 . The 3 to 16 line decoder can be constructed using either 2 to 4 decoder or 3 to 8 decoder. There is the following formula used to find the required number of lower-order decoders.

Required number of lower order decoders=m₂/m₁

$$m_1 = 8$$

 $m_2 = 16$
Required number of 3 to 8 decoders= $\frac{16}{8}$
= 2
Block Diagram:

Truth Table:

INPUTS		OUTPUTS																	
A ₃	A ₂	A ₁	Ao	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y 9	Yg	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Yı	Yo
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The logical expression of the term A0, A1, A2,..., A15 are as follows:

 $Y_0 = A_0' . A_1' . A_2' . A_3'$

 $Y_1 = A_0' . A_1' . A_2' . A_3$

 $Y_2 = A_0' . A_1' . A_2 . A_3'$

 $Y_3 = A_0'.A_1'.A_2.A_3$

 $Y_4 = A_0' \cdot A_1 \cdot A_2' \cdot A_3'$

 $Y_5 = A_0' . A_1 . A_2' . A_3$

 $Y_6 = A_0'.A_1.A_2.A_3'$

 $Y_7 = A_0'.A_1.A_2.A_3$

 $Y_8 = A_0.A_1'.A_2'.A_3'$

 $Y_9 = A_0.A_1'.A_2'.A_3$

 $Y_{10} = A_0.A_1'.A_2.A_3'$

 $Y_{11} = A_0.A_1'.A_2.A_3$

 $Y_{12} = A_0.A_1.A_2'.A_3'$

 $Y_{13} = A_0.A_1.A_2'.A_3$

 $Y_{14} = A_0.A_1.A_2.A_3'$

 $Y_{15} = A_0.A_1.A_2'.A_3$

Logical circuit of the above expressions is given below:

