Review of Lecture 17

Occam's Razor

The simplest model that fits the data is also the most plausible.

complexity of $h \longleftrightarrow complexity$ of \mathcal{H}

unlikely event ←→ significant if it happens

Sampling bias

Data snooping

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 18: Epilogue

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

It's a jungle out there

semi–supervised learning Gaussian pr	overfitting ocesses determin	stochastic	_	2 A 1A1	[Qlearning
Histribution_from		C dimension	aata	snooping	learning curves
collaborative filtering decision trees	nonlinear transform	mation	sampling	bias neural netw	mixture of expe orks no free
active learning		aining versus bias-	testing variance tra	noisy targets adeoff wea	
ordinal regression	cross validation	logistic reg	gression	data contamination	
ensemble learning		types of lea		perceptrons	hidden Markov mo
ploration versus exploitati	error measures on	kernel	methods	-	nical models
	is learning feasible			order constraint	
clustering	regularizati	on weight	decay	Occam's razor	Boltzmann macł

3/23 © M Creator: Yaser Abu-Mostafa - LFD Lecture 18

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Probabilistic approach

Extend probabilistic role to all components

$$P(\mathcal{D} \mid h = f)$$
 decides which h (likelihood)

How about $P(h = f \mid \mathcal{D})$?

© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

The prior

 $P(h = f \mid \mathcal{D})$ requires an additional probability distribution:

$$P(\mathbf{h} = f \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \mathbf{h} = f) P(\mathbf{h} = f)}{P(\mathcal{D})} \propto P(\mathcal{D} \mid \mathbf{h} = f) P(\mathbf{h} = f)$$

$$P(h = f)$$
 is the **prior**

$$P(h = f \mid \mathcal{D})$$
 is the **posterior**

Given the prior, we have the full distribution

Example of a prior

Consider a perceptron: h is determined by $\mathbf{w}=w_0,w_1,\cdots,w_d$

A possible prior on \mathbf{w} : Each w_i is independent, uniform over [-1,1]

This determines the prior over h - P(h=f)

Given \mathcal{D} , we can compute $P(\mathcal{D} \mid h = f)$

Putting them together, we get $P(h = f \mid \mathcal{D})$

$$\propto P(h = f)P(\mathcal{D} \mid h = f)$$

A prior is an assumption

Even the most "neutral" prior:

The true equivalent would be:

If we knew the prior

 \dots we could compute $P(h=f\mid \mathcal{D})$ for every $h\in \mathcal{H}$

 \implies we can find the most probable h given the data

we can derive $\mathbb{E}(h(\mathbf{x}))$ for every \mathbf{x}

we can derive the error bar for every x

we can derive everything in a principled way

When is Bayesian learning justified?

- 1. The prior is **valid**trumps all other methods
- 2. The prior is **irrelevant**just a computational catalyst

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

What is aggregation?

Combining different solutions h_1, h_2, \cdots, h_T that were trained on \mathcal{D} :

Regression: take an average

Classification: take a vote

a.k.a. ensemble learning and boosting

Different from 2-layer learning

In a 2-layer model, all units learn **jointly**:

In aggregation, they learn independently then get combined:

© M Creator: Yaser Abu-Mostafa - LFD Lecture 18

Two types of aggregation

1. After the fact: combines existing solutions

Example. Netflix teams merging "blending"

2. Before the fact: creates solutions to be combined

Example. Bagging - resampling \mathcal{D}

© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

Decorrelation - boosting

Create h_1, \cdots, h_t, \cdots sequentially: Make h_t decorrelated with previous h's:

 \bigcirc

Emphasize points in ${\mathcal D}$ that were misclassified

Choose weight of h_t based on $E_{
m in}(h_t)$

Blending - after the fact

For regression,
$$h_1,h_2,\cdots,h_T$$
 \longrightarrow $g(\mathbf{x})=\sum_{t=1}^I \pmb{lpha}_t \; h_t(\mathbf{x})$

Principled choice of α_t 's: minimize the error on an "aggregation data set" pseudo-inverse

Most valuable h_t in the blend?

Outline

• The map of machine learning

Bayesian learning

Aggregation methods

Acknowledgments

Course content

Professor Malik Magdon-Ismail, RPI

Professor Hsuan-Tien Lin, NTU

Course staff

Carlos Gonzalez (Head TA)

Ron Appel

Costis Sideris

Doris Xin

Filming, production, and infrastructure

Leslie Maxfield and the AMT staff

Rich Fagen and the IMSS staff

© A Creator: Yaser Abu-Mostafa - LFD Lecture 18

Caltech support

IST - Mathieu Desbrun

E&AS Division - Ares Rosakis and Mani Chandy

Provost's Office - Ed Stolper and Melany Hunt

© M Creator: Yaser Abu-Mostafa - LFD Lecture 18

Many others

Caltech TA's and staff members

Caltech alumni and Alumni Association

Colleagues all over the world

To the fond memory of

Faiza A. Ibrahim