4 Evaluation Metrics

python script evaluation

		BASIC FEATURES		ADVANCED FEATURES	
		LogReg	CRF	LogReg	CRF
Twitter_dev.ner.	Token-wise accuracy	95.54	95.77	95.76	96.07
pred					
	Token-wise F1 f(macro)	21.58	29.56	23.51	29.29
	Token-wise F1 (micro)	95.54	95.77	95.76	96.07
	Sentence-wise accuracy	66.61	68.64	66.27	68.64
Twitter_dev_test	Token-wise accuracy	91.02	91.31	91.50	91.71
	Token-wise F1 (macro)	10.92	17.98	17.36	23.45
	Token-wise F1 (micro	91.02	91.31	91.50	91.71
	Sentence-wise accuracy	48.65	50.50	49.36	52.20

Conll script evaluation

		BASIC FEATURES		ADVANCED FEATURES	
		LogReg	CRF	LogReg	CRF
Twitter_dev.ner.pred	Accuracy	95.54	95.77	95.76	96.07
	Precision	49.61	60.61	48.9	62.50
	Recall	16.89	26.81	23.86	33.51
	FB1	25.20	37.17	32.07	43.63
Twitter_dev_test.ner.pred	Accuracy	91.02	91.31	91.50	91.71
	Precision	32.35	46.82	31.89	44.51
	Recall	8.54	15.99	14.91	23.29
	FB1	13.51	23.84	20.32	30.58

First of all, both methods are useful to do evaluation job. CONNL and python evaluation can get good results for this application.

About the differences,

The CONLL is a chunk evaluation method and its result includes NER Accuracy, Precision, Recall, FB1 for all classes and also given the same information for every class.

the python evaluation can do feature engineering and I can add any feature I interested. The result includes token wise accuracy, token wise F1 (micro), token wise F1 (macro) and sentence wise accuracy are got for all classes. What's more, the result also has every class's recall, precision and F1 (including B- and I- tags). Due to more useful and detail data given by the python evaluation script, I think that is better.