Tangent Lines & Derivatives

The **tangent line** to the graph of f(x) at the point (a, f(a)) is the line through this point having the <u>slope</u>

$$\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

provided this limit exists. If the limit does not exist, then there is no tangent line at the point.

$\frac{f(x+h) - f(x)}{h}$	AROC	Slope of secant line
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	IROC	Slop of tangent line

The Limit Definition of the Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Step 1:
$$f(x + h)$$

Step 2:
$$f(x+h) - (f(x))$$

Step 3:
$$\frac{f(x+h)-f(x)}{h}$$
 (factor/cancel the h)

Step 4:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative does not exist at "corners" or "sharp points" on a graph.

1) Let $f(x) = x^2 + 2$. Find the equation of the tangent line to the graph at the point where x = 1.

2) Let a be any real number. Find the equation of the tangent line to the graph of f(x) = 7x + 3 at the point where x = a.

- 3) The graph of a function g is shown below. Determine whether the given numbers are positive, negative, or zero.
 - a) g'(0)
 - b) g'(-1)
 - c) g'(3)

4) A student brings a cold soft drink to a 50-minute math class but is too busy during class to drink it. If C(t) represents the temperature of the soft drink (in degrees Fahrenheit) t minutes after the start of class, interpret the meaning of the following statements, including units.

a)
$$C(50) = 68$$

b)
$$C(50) - C(25) = 7.6$$

c)
$$\frac{C(50)-C(25)}{50-25} = 0.3$$

d)
$$C'(50) = 0.2$$

5) Let
$$f(x) = -5x^2 + 4$$
. Find $f'(x)$ and $f'(3)$.

6) Let
$$f(x) = -\frac{5}{x}$$
. Find $f'(x)$ and $f'(-1)$.

7) Let
$$g(x) = \sqrt{x}$$
. Find $g'(x)$.

8) Find all points where the function whose graph is shown does not have a derivative.

