Løsning øving 2

Oppgave 1

For at stuperen akkurat skal komme klar av utspringet, må den horisontale forflytningen x minst være lik utspringets bredde d i løpet av falltiden t.

Falltiden t er bestemt fra bevegelseslikningen i vertikalretningen

$$h = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{\frac{2h}{g}}.$$

Den horisontale forflytningen x = d skjer med konstant fart v_0 , som skal bestemmes. For bevegelse med konstant fart gjelder

$$x = d = v_0 t$$

$$d = v_0 \cdot \sqrt{\frac{2h}{g}}$$

$$v_0 = \frac{d}{\sqrt{\frac{2h}{g}}}$$

$$= \frac{1,75 \,\mathrm{m}}{\sqrt{\frac{2 \cdot 9,00 \,\mathrm{m}}{9,81 \,\mathrm{m/s^2}}}}$$

$$= 1,29 \,\mathrm{m/s}$$

$$\approx 1,3 \,\mathrm{m/s}$$

Oppgave 2

Figuren under viser banen for de to kulene som skytes med samme startfart v_0 , men ulike startvinkler.

Når vi neglisjerer luftmotstand, gjelder uavhengighetsprinsippet, og vertikalbevegelsen skjer uavhengig av horisontalbevegelsen.

Den kula som går høyest, bruker lengst tid på å nå bakken, og treffer derfor blinken sist (begge kulene opplever samme vertikale akselerasjon lik g; den som har lengst vertikal strekning å tilbakelegge, bruker lengst tid). Dvs. den **blå** kula treffer blink B først.

Kulene har samme startfart og -høyde, og dermed samme mekaniske energi i startøyeblikket. Ut i fra prinsippet om bevaring av mekanisk energi, vil kulene treffe blinkene med **samme** fart.

Oppgave 3

a) Vi kombinerer bevegelseslikningene for x- og y-retningene (velger positiv retning hhv. mot høyre og oppover):

$$x = v_{0x}t = v_0 \cos \alpha \cdot t \Rightarrow t = \frac{x}{v_0 \cos \alpha}$$
$$y = v_{0y}t - \frac{1}{2}gt^2 = v_0 \sin \alpha \cdot t - \frac{1}{2}gt^2$$

Setter inn for t i bevegelseslikningen for y-retningen:

$$y = v_0 \sin \alpha \cdot \frac{x}{v_0 \cos \alpha} - \frac{1}{2} g \cdot \left(\frac{x}{v_0 \cos \alpha}\right)^2$$
$$y = x \tan \alpha - \frac{1}{2} \frac{gx^2}{v_0^2 \cos^2 \alpha}$$

Vi skal nå skrive likninga på formen $f(\alpha) = 0$:

$$y + \frac{1}{2} \frac{gx^2}{v_0^2 \cos^2 \alpha} - x \tan \alpha = 0,$$

dvs. funksjonen

$$f(\alpha) = y + \frac{1}{2} \frac{gx^2}{v_0^2 \cos^2 \alpha} - x \tan \alpha$$

Her er x > 0 og y < 0 i det kula treffer blinken i denne oppgaven (på grunn av valget av positive retninger).

b) Under er Jupyter notebook-kode for å løse likningen $f(\alpha) = 0$, som bestemmer verdier for startvinkelen α som gjør at kula treffer midt i blinken:

```
#Importerer nødvendige pakker
from scipy.optimize import fsolve
import numpy as np
import matplotlib.pyplot as plt
```

 $\#Definerer\ funksjonen\ som\ angir\ venstresiden\ i\ likninga\ f(alpha)=0$ def f(alpha_grader):

```
#Input: Vinkel i grader
alpha=np.radians(alpha_grader)
x=1.5
y=-0.4
v0=4.0
g=9.81
return y+0.5*g*x**2/(v0**2*(np.cos(alpha))**2) -x*np.tan(alpha)
```

#Tegner funksjonen for å få et bilde av løsningene (fra 0 til 90 grader):

```
\begin{array}{l} {\rm alpha\_grader=}np.\, {\rm linspace}\,(0\,,\!90) \\ {\rm plt.\,axis}\,([0\,,\!90\,,\!-5\,,\!5]) \\ {\rm plt.\,grid}\,() \\ {\rm plt.\,axhline}\,(\,{\rm color='\,black}\,'\,,\,\,{\rm lw=}0.5) \\ {\rm plt.\,plot}\,(\,{\rm alpha\_grader}\,,\,f\,(\,{\rm alpha\_grader}\,)) \\ {\rm plt.\,show}\,() \end{array}
```



```
#Ser løsninger nært 10 grader og 60 grader
start = 10
sol = fsolve(f, start)
print("Løsning i nærheten 10 grader:", sol[0])

start = 60
sol = fsolve(f, start)
print("Løsning i nærheten av 60 grader:", sol[0])

Løsning i nærheten 10 grader: 12.09521032342471
```

De to løsningene tilsvarer hhv. en "flat" bane og en "høy" bane for kula.

Løsning i nærheten av 60 grader:

Oppgave 4

a) Ved sirkelbevegelse med variabel banefart, har akselerasjonen to komponenter: sentripetal-akselerasjonen a_{\perp} fordi farten endrer retning, og tangent-/baneakselerasjonen a_{\parallel} fordi farten endrer verdi.

62.973372498427345

Når banefarten øker jevnt, er baneakselerasjonen a_{\parallel} konstant, mens $a_{\perp} = \frac{v^2}{r}$ øker som en andregradsfunksjon av v, og dermed også av t fordi $v = a_{\parallel}t$.

Dette tilsvarer graf D.

b) Når farten øker jevnt fra $v_0=0$ til $v=60\,\mathrm{km/hi}$ løpet av $\Delta t=6,0\,\mathrm{s},$ er baneakselerasjonen

$$a_{\parallel} = \frac{\Delta v}{\Delta t}$$

$$= \frac{\frac{60}{3.6} \text{ m/s}}{6.0 \text{ s}}$$

$$= 2,78 \text{ m/s}^2$$

$$\approx 2,8 \text{ m/s}^2$$

På det tidspunktet har banefarten er $v = 60 \,\mathrm{km/h}$ er sentripetalakselerasjonen

$$a_{\perp} = \frac{v^2}{r}$$

$$= \frac{\left(\frac{60}{3.6} \text{ m/s}\right)^2}{60 \text{ m}}$$

$$= 4,63 \text{ m/s}^2$$

$$\approx 4,6 \text{ m/s}^2$$

Den totale akselerasjonen $a = |\vec{a}| = |\vec{a}_{\parallel} + \vec{a}_{\perp}|$ er da gitt ved

$$a = \sqrt{a_{\parallel}^2 + a_{\perp}^2}$$

$$= \sqrt{(2,78 \,\mathrm{m/s^2})^2 + (4,63 \,\mathrm{m/s^2})^2}$$

$$= 5,40 \,\mathrm{m/s^2}$$

$$\approx \underline{5,4 \,\mathrm{m/s^2}}$$

Oppgave 5

a) Figuren under viser kreftene som virker på kassa når den henger i ro: tyngden G og snordrag S fra hver snor. Hvert snordrag har komponenter S_x og S_y i hhv. horisontal- og vertikalretning.

De horisontale x-komponentene av snordragene opphever hverandre; Newtons 1. lov i y-retning gir

$$2S_y = mg$$
$$2S \sin \theta = mg$$
$$S = \frac{mg}{2 \sin \theta}$$

- b) Når $\theta \to 0$, vil $S \to \infty$. Dette er å forvente: mindre vinkel betyr strammere snor, og snora må være "uendelig" stram for å få klossen til å henge med helt vannrette snorer.
- c) Med $m=50\,\mathrm{kg}$ og $\theta=30^\circ$ blir draget i hver av snorene lik

$$S = \frac{50 \,\text{kg} \cdot 9,81 \,\text{m/s}^2}{2 \cdot \sin 30^{\circ}}$$

= 491 N
 $\approx \underline{0,49 \,\text{kN}}$