1. Determine whether the given formula is true or false. Justify your answers.

(a) $\forall m \exists n(2 \mid m + n)$. [2 divides m+n]

Solution: True. Choose n = -m. Then m + n = 0; 0 is even.

(b) $\exists m \forall n(m-5 \mid n)$. [m-5 divides n]

Solution: True. Choose m = 6. Then m - 5 = 1; every integer is a multiple of 1.

2. Simplify the given formula. Justify your answers.

(a) $n > 4 \wedge n^2 < 30$.

Answer: n = 5.

(b)
$$n > 4 \ V \ (n^2)! = 0$$
.

Answer: n > 4.

(c)
$$x > 3 \lor x < 3$$
.

Answer: $x \neq 3$.

(d)
$$\neg$$
(x > 10).

Answer: $x \le 10$.

(e)
$$n > 4 \land n < 6$$
.

Answer: n = 5.

3.

Determine whether the given formula is true. If it is, prove it. If not, find a counterexample.

(a)
$$\forall n (1 \le n \le 4 \to 4 \cdot 2^{2-n} > 1)$$
.

Answer: false; counterexample: n = 4. Indeed, $4 \cdot 2^{2-4} = 1$.

(b)
$$\forall n (1 \le n \le 4 \to n! \le 2^{n+1}).$$

Answer: true. Proof by exhaustion:

n	n!	2^{n+1}	$n! \le 2^{n+1}$
1	1	4	T
2	2	8	Т
3	6	16	Т
4	24	32	Т

4. Translate into logical notation:

(a) There exists a positive integer that is less than 5.

Answer: $\exists n(0 < n < 5)$.

(b) The square of every negative real number is positive.

Answer: $\forall x(x < 0 \rightarrow x^2 > 0)$.

5. Determine whether the given formula is true or false. Justify your answers.

(a) $\forall n \exists x (n < x < n + 1)$.

Answer: true; take $x = n + \frac{1}{2}$

(b) $\forall n \exists x (n < x^2 < n + 1).$

Answer: false; n = -1 is a counterexample. Indeed, there is no real number x such that $-1 < x^2 < 0$, because x^2 is nonnegative.

(c) $\forall x \exists y(y^3 + 1 = x)$.

Answer: true; take $y = (x - 1)^{1/3}$.

(d) $\exists x \forall y(x + 4 < y^4)$.

Answer: true; take x = -5. Indeed, for all y, $-1 < y^4$, because y^4 is nonnnegative.

(e) $\exists xy \forall z(xz = y)$.

Answer: true; take x = y = 0. It is clear that for all z, $0 \cdot z = 0$.

6. Determine whether the given formula is true or false. If it is false then find a counterexample:

(a)
$$\forall n(2n > 1 \lor n < 0)$$
.

Answer: false; counterexample: n = 0.

(b)
$$\forall$$
 n (n² > 2^{-1/2})

Answer: false; counterexample: n = 0.

(c)
$$\forall xy(x^2 + y^2 = x^3 + y^3)$$
.

Answer: false; counterexample: x = y = 2.

(d) (b)
$$\forall$$
 n(n = 10² + 11² + 12² \leftrightarrow n = 13² + 14²).

Answer: true, because $10^2 + 11^2 + 12^2$ and $13^2 + 14^2$ both equal 365.

7. Translate into logical notation:

(a) There exists a pair of negative integers such that their product is 6. Find an example showing that this assertion is true.

Answer:
$$\exists mn(m < 0 \land n < 0 \land mn = 6)$$
; witness: $m = -2$, $n = -3$.

b) The sum of any two positive integers is greater than 1.

Answer: \forall mn(m > 0 \wedge n > 0 \rightarrow m + n > 1).

8. Determine if the following argument is valid and explain why.

Every CS major takes CMSC203. Joel is taking CMSC203, therefore he is a CS major.

Answer: Invalid: $p \rightarrow q$ and q do not support the conclusion of p

9. Use a truth table to decide whether this argument is valid.

(a)

SOLUTION: NOT valid.

(b) p
$$\vee \neg q$$
 —----premise 1
p $\wedge \neg r$ —----premise 2
 $\therefore r \rightarrow q$ conclusion

SOLUTION: Valid.

10. Let p be "It is cold" and let q be "It is raining". Give a simple verbal sentence which describes each of the following statements: (a) $\neg p$; (b) $p \land q$; (c) $p \lor q$; (d) $q \lor \neg p$.

Answers:

- (a) It is not cold. (c) It is cold or it is raining.
- (b) It is cold and raining. (d) It is raining or it is not cold.
- 11) Use the laws to show that $\neg(p \lor q) \lor (\neg p \land q) \equiv \neg p$.
- 12) Let A = {1, 2, 3, 4, 5}. Determine the truth value of each of the following statements:
- (a) $(\exists x \in A)(x + 3 = 10)$
- (b) $(\forall x \in A)(x + 3 < 10)$
- (c) $(\exists x \in A)(x + 3 < 5)$
- (d) $(\forall x \in A)(x + 3 \le 7)$

Answer:

- (a) False. For no number in A is a solution to x + 3 = 10.
- (b) True. For every number in A satisfies x + 3 < 10.
- (c) True. For if x0 = 1, then x0 + 3 < 5, i.e., 1 is a solution.
- (d) False. For if x0 = 5, then x0 + 3 is not less than or equal 7. In other words, 5 is not a solution to the given condition.
- 13. Simplify the expression (x + y)(x + z) using the laws of boolean algebra. Solution:

Let
$$Q = (x + y)(x + z)$$

Using the distributive law, we can write;

$$Q = x.x + x.z + y.x + y.z$$

By applying the idempotent law A.A = A.

$$Q = x + x.z + y.x + y.z$$

Q = x(1 + z) + y.x + y.z [Using distributive law]

Applying identity OR law (1 +A = 1), we can write

$$Q = x. 1 + y.x + y.z$$

$$Q = x + y.x + y.z$$

Again using the distributive law, we get

$$Q = x. (1 + y) + y.z$$

$$Q = x. 1 + y.z$$
 (By applying identity OR Law)

$$Q = x + y.z.$$

Therefore, the simplification of the expression (x + y)(x + z) is x + y.z.

- 14. Write the logic expression for the following statement:
 - a) "You can purchase this book if you have \$20 or \$10 and a discount coupon."

Let a, b, c, and d represent the sentences "You can purchase this book.", "You have \$20.", "You have \$10.", and "You have a discount coupon." respectively. Then the given sentence can be translated to $(b \lor (c \land d) -> a$,

which simply means that "if you either have \$20 or \$10, along with a discount coupon, then you can purchase the book."

b) "If the computer is within the local network or it is not within the local network but has a valid login id or it is under the use of administrator, then the Internet is accessible to the computer."

Let a, b, c, and d represent the sentences "The computer is within the local network.", "The computer has a valid login id.", "The computer is under the use of administrator.", and "Internet is accessible to the computer."

$$(a \lor (\neg a \land b) \lor c) \rightarrow d$$