Übungsblatt-7 Lineare Algebra (Vektoren und Vektorräume)-Kap.7 - Lösungen

Aufgabe 1: Gegeben sind die Vektoren
$$a = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}, c = \begin{pmatrix} -5 \\ 1 \\ 4 \end{pmatrix}.$$

Berechnen Sie folgende Vektoren:

a)
$$3a - 5b + 3c$$

b)
$$-2(b+5c)+5(a-3b)$$

c)
$$4(a-2b)+10c$$

d)
$$3(a \cdot b)c - 3a(b \cdot c)$$

Lösung Aufgabe 1:

a)
$$3a - 5b + 3c = \begin{pmatrix} 4 \\ 9 \\ -20 \end{pmatrix}$$

b) $-2(b+5c) + 5(a-3b) = 5a - 17b - 10c = \begin{pmatrix} 99 \\ 0 \\ -128 \end{pmatrix}$
c) $4(a-2b) + 10c = 4a - 8b + 10c = \begin{pmatrix} -22 \\ 18 \\ -8 \end{pmatrix}$
d) $3(a \cdot b)c - 3a(b \cdot c) = 3((a \cdot b)c - a(b \cdot c)) = 3(-22c - 26a) = 3\begin{pmatrix} 110 - 78 \\ -22 - 52 \\ -88 + 104 \end{pmatrix} = \begin{pmatrix} 32 \\ -74 \\ 16 \end{pmatrix} = \begin{pmatrix} 96 \\ -222 \\ 48 \end{pmatrix}$

 $\bf Aufgabe~2:$ Begründen / Beweisen Sie folgende Gesetzmäßigkeiten zu Unterräumen von Vektorräumen

- 1. V sei ein Vektorraum, U_1, U_2 seien zwei Unterräume von V. Dann gilt : $U_1 \cap U_2$ ist wieder ein Unterraum von V.
- 2. V sei ein Vektorraum, U_1, U_2 seien zwei Unterräume von V. Dann gilt : $U_1 \cup U_2$ ist i.a. kein Unterraum von V. **Hinweis :** Finden Sie ein einfaches Gegenbeispiel z.B. $V = \mathbb{R}^2$ mit geeignet gewählten Unterräumen U_1, U_2 .
- 3. V sei ein Vektorraum, U_1, U_2 seien zwei Unterräume von V. Dann gilt : $U_1 + U_2 := \{u_1 + u_2 | u_1 \in U_1, u_2 \in U_2\}$ ist wieder ein Unterraum von V.

Lösung Aufgabe 2:

1. Sei $x, y \in U_1 \cap U_2$. Da U_1, U_2 Unterräume von V sind gilt damit sowohl $x + y \in U_1$ als auch $x + y \in U_2$, was impliziert, dass x + y auch im Schnitt der beiden Unterräume liegt.

Ganz analog gilt für $x \in U_1 \cap U_2$ und $\lambda \in K$ wegen der Unterraumeigenschaft von U_1 und U_2 , dass $\lambda \cdot x \in U_1$ als auch $\lambda \cdot x \in U_2$, was impliziert, dass $\lambda \cdot x$ auch im Schnitt der beiden Unterräume liegt.

Damit ist nach dem Unterraumkriterium aus Kapitel 7, Seite 11 nachgewiesen, dass $U_1 \cap U_2$ einen Unterraum darstellt.

2. Betrachte die beiden Unterräume des \mathbb{R}^2

$$U_1 = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} : x \in \mathbb{R} \right\} \text{ sowie } U_2 = \left\{ \begin{pmatrix} 0 \\ y \end{pmatrix} : y \in \mathbb{R} \right\}.$$

Dann liegen die beiden Vektoren $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ in $U_1 \cup U_2$, aber deren Summe $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ sicherlich nicht, was impliziert, dass $U_1 \cup U_2$ keinen Unterraum von \mathbb{R}^2 darstellt.

3. Sei $x,y \in U_1 + U_2$, d.h. $x = u_1 + u_2, y = v_1 + v_2$. Dann folgt $x + y = (u_1 + v_1) + (u_2 + v_2)$, was wiederum Element von $U_1 + U_2$ ist, weil U_1 und U_2 Unterräume darstellen.

Sei $x = u_1 + u_2 \in U_1 + U_2, \lambda \in K$. Dann folgt $\lambda \cdot x = (\lambda \cdot u_1) + (\lambda \cdot u_2)$, was wiederum Element von $U_1 + U_2$ ist, weil U_1 und U_2 Unterräume darstellen.

Damit ist nach dem Unterraumkriterium aus Kapitel 7, Seite 11 nachgewiesen, dass $U_1 + U_2$ einen Unterraum darstellt.

Aufgabe 3: Sei V die Menge aller Abbildungen von \mathbb{R} nach \mathbb{R} .

1. Zeigen Sie: Wenn man eine Addition und eine skalare Multiplikation auf V folgendermaßen definiert

$$(f+g)(x)=f(x)+g(x), (a\cdot f)(x)=a\cdot f(x) \text{ für alle x } \in \mathbb{R}, (f,g\in V, a\in \mathbb{R}),$$

so wird V zu einem \mathbb{R} -Vektorraum.

2. Zeigen Sie, dass

$$W = \{ f \in V : f(1) = f(-1) = 0 \}$$

einen Unterraum von V darstellt.

3. Begründen Sie, warum

$$U = \{ f \in V : f(1) = f(-1) = 1 \}$$

keinen Unterraum von V darstellt.

Lösung Aufgabe 3:

- 1. Zeige hierzu (s. Skriptum Kapitel 7, Seite 3):
 - a) (V, +) ist eine kommutative Gruppe : Da V aus reellwertigen Abbildungen besteht, gilt bezgl. der Operation + auf V das Kommutativ- und das Assoziativgesetz.

Das **neutrale Element** in (V, +) ist die 0-Abbildung, die jeder reellen Zahl die Zahl 0 zuordnet.

Das zu einer Abbildung f inverse Element ist die Abbildung -f.

- b) Für alle $\lambda, \mu \in \mathbb{R}, f \in V$ gilt trivialerweise $\lambda \cdot (\mu \cdot f) = (\lambda \cdot \mu) \cdot f$
- c) Trivialerweise gilt $1 \cdot f = f$ für alle $f \in V$.
- d) Ebenfalls ist klar, dass für alle $\lambda \in \mathbb{R}, f, g \in V$ gilt : $\lambda \cdot (f+g) = \lambda \cdot f + \lambda \cdot g$.
- e) Ebenfalls ist klar, dass für alle $\lambda, \mu \in \mathbb{R}, f \in V$ gilt : $(\lambda + \mu) \cdot f = \lambda \cdot f + \mu \cdot f$.
- 2. Zu verifizieren sind die folgenden Aussagen (s. Skriptum Kapitel 7, Seite 11)
 - a) $f, g \in W \Rightarrow f + g \in W$, was wahr ist weil gilt

$$(f+g)(1) = f(1) + g(1) = 0 = f(-1) + g(-1) = (f+g)(-1).$$

b) $\lambda \in \mathbb{R}, f \in W \Rightarrow \lambda \cdot f \in W$, was wahr ist, weil

$$\lambda \cdot f(1) = 0 = \lambda \cdot f(-1).$$

3. Wenn $f, g \in U$ so gilt $(f+g)(1) = f(1) + g(1) = 1 + 1 = 2 \neq 1$, was impliziert, dass $f+g \notin U$.

Aufgabe 4 : Wir betrachten den Vektorraum \mathbb{R}^n . Die Menge aller zu einem Vektor $v \in \mathbb{R}^n$ orthogonalen Vektoren bezeichnet man mi v^{\perp} . Allgemein ist für eine beliebige Teilmenge $X \subseteq \mathbb{R}^n$

$$X^{\perp} = \{ v \in \mathbb{R}^n : v \cdot x = 0 \text{ für alle } x \in X \}$$

definiert. Man zeige

- 1. X^{\perp} ist ein Unterraum des \mathbb{R}^n
- 2. $X \subseteq Y \Rightarrow Y^{\perp} \subseteq X^{\perp}$ (Für beliebige $X, Y \subseteq \mathbb{R}^n$)

Lösung Aufgabe 4:

1. Zeige gemäß Skriptum, Kapitel 7, Seite 11 wiederum

DHBW Karlsruhe - Rolf Felder - Lineare Algebra - TINF22B4

a)
$$v_1, v_2 \in X^{\perp} \Rightarrow \forall x \in X$$
:

$$(v_1 \cdot x = 0 \land v_2 \cdot x = 0) \Rightarrow v_1 \cdot x + v_2 \cdot x = (v_1 + v_2) \cdot x = 0,$$

was $v_1 + v_2 \in X^{\perp}$ impliziert.

b)
$$\lambda \in \mathbb{R}, v \in X^{\perp} \Rightarrow \forall x \in X$$
:

$$v \cdot x = 0 \Rightarrow \lambda \cdot (v \cdot x) = (\lambda \cdot v) \cdot x = 0,$$

was $\lambda \cdot v \in X^{\perp}$ impliziert.

- a)b) implizieren, dass X^{\perp} einen Unterraum des \mathbb{R}^n darstellt.
- 2. Sei $v \in Y^{\perp}$ beliebig. Dann folgt

$$\forall y \in Y : v \cdot y = 0 \Rightarrow (\operatorname{da} X \subseteq Y) \Rightarrow \forall x \in X : v \cdot x = 0 \Rightarrow v \in X^{\perp},$$

was impliziert $Y^{\perp} \subseteq X^{\perp}$, was zu zeigen war.