2022-2023 学年度第一学期九年级联考

数学

本试卷共 4 页, 20 小题, 满分 120 分. 考试用时 90 分钟.

- **注意事项:** 1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在"考场号"和"座位号"栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡"条形码粘贴处".
 - 2. 作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.
 - 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
 - 4. 考生必须保持答题卡的整洁. 考试结束后,将试卷和答题卡一并交回.
- 一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.	根据世界卫生组织公布的最新数据,	全球累计新冠肺炎确诊病例已经超过63000000例,	则
	630000000用科学计数法应表示为		

A. 6.3×10^7 B. 6.3×10^8 C. 6.3×10^9 D. 6.3×10^{10}

	A. 2	2	B. 3	C.	8	D.	9
3.	关于:	x的方程 2x – 4 =	= x - 5的根为				
	A. 2	x = -1	B. $x = 3$	C.	x = -1或 $x = 3$	D.	无实数根

4. 己知a, b, c为直角三角形的三边,则下列结论中一定正确的个数有

B. 6

A. 0

① $a^2 + b^2 = c^2$ ② $S_{\triangle ABC} = \frac{1}{2}ab$ ③ a + b > c ④ a = bA. 1 B. 2 C. 3 D. 4
5. 已知 $y = (a+1)x^2 + (2a+2)x - 3a + 3$. 若a > 0, 当 $-2 \le x \le 2$ 时, y的最小值为

6. 己知 x_1 、 x_2 是关于x的方程 $x^2 + 2\sqrt{a+2}x + a = 0$ 的两根,则 $|x_1 - x_2|$ 的值为

A. $\sqrt{2}$ B. $2\sqrt{2}$ C. $2\sqrt{3}$ D. $3\sqrt{3}$

C. 3

- - A. 1
- B. 2
- C. 3
- D. -3
- 8. 有四箱货物要用船运到对岸,一艘船一次最多运两箱货物. 已知船速(v,单位: m/s)和最重货物质量(m),单位: kg)满足关系式 $v=\frac{10}{m}$,若两岸间隔100m,四箱货物分别重1kg,2kg,5kg,10kg. 不计装货时间,把四箱货物用一艘船全部运到对岸需要的最短时间(单位: s)为
 - A. 60
- B. 115
- C. 170
- D. 220
- 9. 如题 9 图,一座拱桥为抛物线 $y=-\frac{1}{7}x^2+bx+c$ 的一部分,点C为拱桥拱顶, $\angle CAB=30^\circ$,则桥长AB为

B. $14\sqrt{3}$

C. $21\sqrt{3}$

- D. $28\sqrt{3}$
- 10. 对于平面内不共线的三点 C_1 、 C_2 、 C_3 ,必定存在另外三点 C_4 、 C_5 、 C_6 ,使得以 C_1 、 C_2 、 C_3 、 C_4 , C_1 、 C_2 、 C_3 、 C_5 , C_1 、 C_2 、 C_3 、 C_6 作为顶点的四边形为平行四边形;同理,对于 C_4 、 C_5 、 C_6 ,必定存在另外三点 C_7 、 C_8 、 C_9 ,使得以 C_4 、 C_5 、 C_6 、 C_7 , C_4 、 C_5 、 C_6 、 C_8 , C_4 、 C_5 、 C_6 、 C_9 为 顶点的四边形为平行四边形…. 设 $C_1C_2=x$, $C_2C_3=y$, $C_1C_3=z$,则从 C_1 顺次连接至 C_{2022} 的总长度为
 - A. $(2^{2021} 1)(x + y + z)$
- B. $(2^{2022} 1)(x + y + z)$

C. $(2^{673} - 1)(x + y + z)$

- D. $(2^{674} 1)(x + y + z)$
- 二、填空题: 本大题共5小题,每小题4分,共20分.
- 11. 化简 $\sqrt{8+4\sqrt{3}}$ _____
- 12. 因式分解 $x^3 6x^2 + 11x 6$ _____.
- 13. $\sqrt{(x-2)^2+4}+\sqrt{(x-5)^2+1}$ 的最小值为_____.
- 14. 已知抛物线 $y = ax^2 + 2(a+6)x + 6a$ 从左到右分别交x轴于点 $(x_1, 0)$ 、 $(x_2, 0)$. 若a为整数, $x_1 < 1 < x_2$,则抛物线的解析式为_____.
- 15. 如题 15 图,在等边三角形ABC中,AB = 5,点D为AC中点,点E、F分别为AB、AC上的动点,以EF为边向下作等边三角形EFG,点O为 \triangle EFG的中心,连接OD、OC,则OD + OC的最小值为_____.

三、解答题(一): 本大题共3小题,每小题10分,共30分.

16. 如题 16 图,将一个长为10m长方体从A点向右上方发射, 使其做直线运动,运动轨迹与地面AB的夹角为30°.在 长方体左右两端分别装一个信号接收器,在A点右侧50m 的B点处装一个信号发射器. 接受信号总强度与两个信号 接收器与信号发射器的距离之和成正比. 若长方体的移动

速度为10m/s,则发射多少秒后其接收信号总强度最大?

17. 如题 17-1 图,在正方形ABCD中,BC边上有一点E,连接AE,以AE为边向下构造正方形AEFG.

- (1) 当 $\angle BAE = 30^\circ$ 时,记正方形ABCD的面积为 S_1 ,正方形AEFG的面积为 S_2 ,求 $\frac{S_1}{S_2}$.
- (2) 如题 17-2 图,对角线AF、GE交于点H,在BC下方延长线上有一点P,连接CH、PH、PG,

$$\frac{BC}{BP} = \sqrt{3}$$
, 当 $CH + PH$ 取得最小值时, 求 $\frac{HE}{PG}$.

18. 如题 18-1 图,在□ABCD中,AD = AC,点E为CD下方一点,连接AE、DE、BE, AC = EC, $AE \perp DE$.

- 题 18-1 图
- (1) 求证: $\angle AEB = \frac{1}{2} \angle ACB$.
- (2) 如题 18-2 图,作 $AF \perp AE \stackrel{.}{\nabla} BE = f$,连接FC,延长 $DE \sim FC$ 交手点G,连接AG.
 - ① 求证: AG平分 ∠EGF.
 - ② 求证: 四边形AEGF是正方形.

数学试题 第3页(共4页)

四、解答题 (二): 本大题共 2 小题, 每小题 20 分, 共 40 分.

- 19. 如题 19-1 图,在菱形ABCD中,AB = 12,对角线AC、BD交于点O, $OE \bot AD$ 于E, AE = 3.
 - (1) 求∠*ABC*的度数.
 - (2) 如题 19-2 图, P为OD上一动点, 连接EP, 求2EP + DP的最小值.
 - (3) 如题 19-3 图,F为CD中点,连接FP、CP,当 $\angle CPF$ 最大时,求DP的长度.

- 20. 已知抛物线 $y_1=x^2+ax$ 、抛物线 $y_2=x^2-4x+3$ 与直线 $y_3=t_1$ 均只有一个交点;抛物线 $y_4=x^2+bx$ 、抛物线 $y_5=x^2+\frac{9}{2}x+\frac{45}{16}$ 与直线 $y_6=t_2$ 均只有一个交点.
 - (1) 求a、b的值.
 - (2) 记 x_1 、 x_2 为关于x的方程 $x^2 + ax + b = 0$ 的两根, x_3 、 x_4 为抛物线 $y = 5x_1x^2 + kx + 2x_2$ 与x轴的两个交点的横坐标,若要使 x_3 、 x_4 均为有理数,求所有满足条件的整数k.
 - (3) 记m、n为抛物线 $y = px^2 + qx + r$ 与x轴的两个交点的横坐标(p, q, r均为有理数),求证: 当-4pr为质数时,有且仅有一个整数q,使得m、n均为有理数.