Probability and Random Variables

Concepts

- 1. Utility and Probability
- 2. Random Variables
- 3. Relationships between Random Variables

Utility and Probability

What is a Random Variable?

R.V. X

Term Definition Coinflip Example Uniform Example

Bernoulli(0.5)

Term Definition Coinflip Example Uniform Example

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Term

Definition

Definition

Term

support(*X*)

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Term

support(*X*)

Definition

All the values that *X* can take

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Term

support(*X*)

 $x \in X$

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Coinflip Example Uniform Example

All the values that *X* can take

Definition

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

Definition

All the values that *X*

can take

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Bernoulli(0.5)

Coinflip Example Uniform Example

 $\{h, t\}$ or $\{0, 1\}$

 $\mathcal{U}(0,1)$

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Bernoulli(0.5)

Coinflip Example Uniform Example

 $\{h, t\}$ or $\{0, 1\}$

 $\mathcal{U}(0,1)$

[0, 1]

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that X can take

Bernoulli(0.5)

Coinflip Example

$$\{h,t\}$$
 or $\{0,1\}$

 $\mathcal{U}(0,1)$

Uniform Example

[0, 1]

Distribution

Term

support(*X*)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Bernoulli(0.5)

 $\mathcal{U}(0,1)$ **Uniform Example Coinflip Example**

 $\{h, t\}$ or $\{0, 1\}$

[0, 1]

Distribution

Discrete: PMF

Continuous: PDF

Term

support(*X*)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Bernoulli(0.5)

Coinflip Example Unifor

 $\{h,t\}$ or $\{0,1\}$

 $\mathcal{U}(0,1)$

Uniform Example

[0, 1]

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1)=0.5$$

$$P(X=0)=0.5$$

 $\mathcal{U}(0,1)$

Uniform Example

[0, 1]

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1)=0.5$$

$$P(X=0)=0.5$$

P(X) is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

Uniform Example

[0, 1]

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$P(X=1)=0.5 \ P(X=0)=0.5 \ P(X)$$
 is a table $p(x)=egin{cases} 1 ext{ if } x\in[0,1] \ 0 ext{ o.w.} \end{cases}$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

 $\mathcal{U}(0,1)$

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X=1)=0.5$$

 $P(X=0)=0.5$
 $P(X)$ is a table

$$\{h,t\} ext{ or } \{0,1\}$$
 $[0,1]$ $P(X=1)=0.5$ $P(X=0)=0.5$ $P(X) ext{ is a table}$ $p(x)=egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$

Term

support(X)

$$x \in X$$

$$X \in [0,1]$$

Definition

All the values that *X* can take

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1) = 0.5$$

$$P(X=0)=0.5$$

P(X) is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$P(X=1)=0.5 \ P(X=0)=0.5 \ P(X) ext{ is a table} \qquad p(x)=egin{cases} 1 ext{ if } x\in[0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) =$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that *X* can take

Distribution

Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$G$$

$$(1 \text{ if } x \in [0,1])$$

$$P(X=1)=0.5 \ P(X=0)=0.5 \ P(X) ext{ is a table} \qquad p(x)=egin{cases} 1 ext{ if } x\in[0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X=1)=0$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

$$\mathcal{U}(0,1)$$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = 0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X=1)=0.5$$

 $P(X=0)=0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

Uniform Example

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = 0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Expectation

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

First moment of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X = 1) = 0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

First moment of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X=1)=0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

First moment of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

$$E[X] = \sum_{x \in X} x P(x)$$

 $\mathcal{U}(0,1)$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X=1)=0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

• Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

First moment of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h,t\} \text{ or } \{0,1\}$$

$$P(X = 1) = 0.5$$

 $P(X = 0) = 0.5$

P(X) is a table

X	P(X)
0	0.5
1	0.5

$$\mathcal{U}(0,1)$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X=1)=0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

$$E[X] = \sum_{x \in X} x P(x)$$
 $= 0.5$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

• Discrete: PMF

Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

First moment of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1)=0.5$$

$$P(X=0)=0.5$$

P(X) is a table

Х	P(X)
0	0.5
1	0.5

$$E[X] = \sum_{x \in X} x P(x)$$

= 0.5

$$\mathcal{U}(0,1)$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X=1)=0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

$$E[X] = \int_{x \in X} x p(x) dx$$

Term

support(X)

$$x \in X$$

 $X \in [0,1]$

Definition

All the values that X can take

Distribution

- Discrete: PMF
- Continuous: PDF

Maps each value in the support to a real number indicating its probability

Expectation

E[X]

First moment of the random variable, "mean"

Bernoulli(0.5)

Coinflip Example

$$\{h, t\}$$
 or $\{0, 1\}$

$$P(X=1)=0.5$$

$$P(X=0)=0.5$$

P(X) is a table

Х	P(X)
0	0.5
1	0.5

$$E[X] = \sum_{x \in X} x P(x)$$

$$=0.5$$

$$\mathcal{U}(0,1)$$

$$[0,1]$$

$$p(x) = egin{cases} 1 ext{ if } x \in [0,1] \ 0 ext{ o.w.} \end{cases}$$

$$P(X=1)=0$$

$$P(X \in [a,b]) = \int_a^b p(x) dx$$

$$E[X] = \int_{x \in X} x p(x) dx$$

$$= 0.5$$

Joint Distribution

Joint Distribution

Joint Distribution

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Joint Distribution

Conditional Distribution

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

X	<i>P</i> (<i>X</i> <i>Y</i> =1, <i>Z</i> =1)	
0	0.84	
1	0.16	

Joint Distribution

P(X,Y,Z)

X	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

X	P(X Y=1, Z=1)	
0 0.84		
1	0.16	

Joint Distribution

\overline{X}	Υ	Z	P(X,Y,Z)
0	0	0	0.08
0	0	1	0.31
0	1	0	0.09
0	1	1	0.37
1	0	0	0.01
1	0	1	0.05
1	1	0	0.02
1	1	1	0.07

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

X	<i>P</i> (<i>X</i> <i>Y</i> =1, <i>Z</i> =1)	
0	0.84	
1	0.16	

Joint Distribution

Y	Z	P(X,Y,Z)
0	0	0.08
0	1	0.31
1	0	0.09
1	1	0.37
0	0	0.01
0	1	0.05
1	0	0.02
1	1	0.07
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Conditional Distribution

$$P(X \mid Y, Z)$$

(Distribution - valued function)

Χ	<i>P</i> (<i>X</i> <i>Y</i> =1, <i>Z</i> =1)	
0	0.84	
1	0.16	

\overline{X}	P(X)	Y	P(Y)
0 1	0.85 0.15	0 1	0.45 0.55
	${Z}$	P(Z)	
	0 1	0.20 0.80	

Joint Distribution

Conditional Distribution

$$P(X \mid Y, Z)$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

Joint Distribution

Conditional Distribution

Marginal Distribution

P(X, Y, Z)

 $P(X \mid Y, Z)$

P(X) P(Y) P(Z)

3 Rules

(Burrito-level)

(Blackbelly Level: Axioms of Probability)

AXIOM 1. STRUCTURE OF UNKNOWN REAL NUMBERS AND PLAUSIBLE VALUE. We assume a set T of unknown numbers is a partially ordered commutative algebra over $\mathbb R$ with identity, 1.

We assume in addition a given sub-Boolean algebra E of E(T) with $0,1 \in E$ and denote by E_0 the set of non-zero members of E. We assume that the partial ordering in E(T) as a Boolean algebra coincides with the ordering that E(T) inherits from the algebra T. Finally, we assume a function $PV: T \times E_0 \to \mathbb{R}$, called PLAUSIBLE VALUE, whose value on the pair (x,e) is denoted PV(x|e).

not on exam

AXIOM 2. STRONG RESCALING FOR PLAUSIBLE VALUE. If a, b belong to \mathbb{R} , if x belongs to T, and if e belongs to E_0 , then

$$PV(ax + b|e) = aPV(x|e) + b.$$
 (2)

AXIOM 3. ORDER CONSISTENCY FOR PLAUSIBLE VALUE. If $x, y \in T$ and if $e \in E_0$, implies that $x \le y$, then $PV(x|e) \le PV(y|e)$.

Notice that if $e \in E(T)$, then $0 \le e \le 1$, in T, as it is true in the lattice ordering of E(T).

AXIOM 4. THE COX AXIOM FOR PLAUSIBLE VALUE: If e,c are fixed in E, with $ec \in E_0$, if x_1, x_2 are in T, if $PV(x_1|ec) = PV(x_2|ec)$, then $PV(x_1e|c) = PV(x_2e|c)$. That is, we assume that as a function of x, the plausible value PV(xe|c) depends only on PV(x|ec).

AXIOM 5. RESTRICTED ADDITIVITY OF PLAUSIBLE VALUE. For each fixed $y \in T$ and $e \in E_0$, the plausible value PV(x + y|e) as a function of $x \in T$ depends only on PV(x|e), which is to say that if $x_1, x_2 \in T$ and $PV(x_1|e) = PV(x_2|e)$, then $PV(x_1 + y|e) = PV(x_2 + y|e)$.

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

(Burrito-level)

1)

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

1) a)
$$0 \le P(X \mid Y) \le 1$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

1) a)
$$0 \le P(X \mid Y) \le 1$$

b)
$$\sum_{x \in X} P(x \mid Y) = 1$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

(Burrito-level)

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

Joint → Marginal

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

(Burrito-level)

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = rac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

(Burrito-level)

- 1) a) $0 \leq P(X \mid Y) \leq 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = rac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint + Marginal → Conditional

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

(Burrito-level)

- 1) a) $0 \le P(X \mid Y) \le 1$ b) $\sum_{x \in X} P(x \mid Y) = 1$
- 2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint + Marginal o Conditional Marginal + Conditional o Joint $P(X,Y)=P(X|Y)\,P(Y)$

Joint Distribution

Conditional Distribution

Marginal Distribution

$$P(X \mid Y, Z)$$

3 Rules

1) a)
$$0 \le P(X \mid Y) \le 1$$
 b) $\sum_{x \in X} P(x \mid Y) = 1$

2) "Law of total probability"

$$P(X) = \sum_{y \in Y} P(X,y)$$

3) Definition of Conditional Probability

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Joint → Marginal

Joint + Marginal → Conditional

 $\textbf{Marginal + Conditional} \rightarrow \textbf{Joint}$

$$P(X,Y) = P(X|Y) P(Y)$$

1) a)
$$0 \leq P(X \mid Y) \leq 1$$
 b) $\sum_{x \in X} P(x \mid Y) = 1$

2) $P(X) = \sum_{y \in Y} P(X, y)$ Break

3)
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$
 $P(X,Y) = P(X|Y) \, P(Y)$

- $P \in \{0,1\}$: Powder Day
- $C \in \{0,1\}$: Pass Clear
- 1 in 5 days is a powder day
- The pass is clear 8 in 10 days
- If it is a powder day, there is a 50% chance the pass is blocked
- Write out the joint probability distribution for P and C.
- Suppose it is a non-powder day, what is the probability that the pass is blocked?

Bayes Rule

• Know: $P(B \mid A)$, P(A), P(B)

• Want: $P(A \mid B)$

Definition: X and Y are independent iff P(X,Y) = P(X) P(Y)

Definition: X and Y are independent iff P(X,Y) = P(X) P(Y)

Definition: X and Y are independent iff P(X,Y) = P(X) P(Y)

$$P(X|Y) = P(X)$$

Definition: X and Y are independent iff P(X,Y) = P(X) P(Y)

$$P(X|Y) = P(X)$$

Definition: X and Y are conditionally independent given Z iff $P(X,Y\mid Z)=P(X\mid Z)\,P(Y\mid Z)$

Definition: X and Y are *independent* iff P(X,Y) = P(X) P(Y)

$$P(X|Y) = P(X)$$

Definition: X and Y are conditionally independent given Z iff $P(X,Y\mid Z)=P(X\mid Z)\,P(Y\mid Z)$

1)

Discrete

1) a)
$$0 \le P(X \mid Y) \le 1$$

b)
$$\sum_{x \in X} P(x \mid Y) = 1$$

2)
$$P(X) = \sum_{y \in Y} P(X,y)$$

3)
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$
 $P(X,Y) = P(X \mid Y) P(Y)$

Discrete

1) a)
$$0 \leq P(X \mid Y) \leq 1$$
 b) $\sum_{x \in X} P(x \mid Y) = 1$

2)
$$P(X) = \sum_{y \in Y} P(X, y)$$

3)
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$
 $P(X,Y) = P(X \mid Y) P(Y)$

$$1) 0 \leq p(X \mid Y)$$

Discrete

1) a)
$$0 \leq P(X \mid Y) \leq 1$$
 b) $\sum_{x \in X} P(x \mid Y) = 1$

2)
$$P(X) = \sum_{y \in Y} P(X, y)$$

3)
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$
 $P(X,Y) = P(X \mid Y) P(Y)$

1)
$$0 \leq p(X \mid Y)$$
 $\int_X p(x|Y) \, dx = 1$

Discrete

1) a)
$$0 \leq P(X \mid Y) \leq 1$$
 b) $\sum_{x \in X} P(x \mid Y) = 1$

2)
$$P(X) = \sum_{y \in Y} P(X, y)$$

3)
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$
 $P(X,Y) = P(X \mid Y) P(Y)$

1)
$$0 \leq p(X \mid Y)$$
 $\int_{X} p(x|Y) \, dx = 1$

2)
$$p(X) = \int_{Y} p(X, y) dy$$

Discrete

1) a)
$$0 \leq P(X \mid Y) \leq 1$$
 b) $\sum_{x \in X} P(x \mid Y) = 1$

2)
$$P(X) = \sum_{y \in Y} P(X, y)$$

3)
$$P(X \mid Y) = rac{P(X,Y)}{P(Y)}$$
 $P(X,Y) = P(X \mid Y) \, P(Y)$

1)
$$0 \leq p(X \mid Y)$$
 $\int_X p(x|Y) \, dx = 1$

2)
$$p(X) = \int_{Y} p(X, y) dy$$

3)
$$p(X \mid Y) = rac{p(X,Y)}{p(Y)}$$
 $p(X,Y) = p(X \mid Y) \, p(Y)$

Multivariate Gaussian Distribution

Joint Distribution

Conditional Distribution

Concepts

- 1. Utility and Probability
- 2. Random Variables
- 3. Relationships between Random Variables