[강의계획서]Machine_Learning.xlsx

분류	주요 내용	학습방법
1. 머신러닝 패키지	scikit-learn 구조 설명	강의, 실습
	scikt-learn 샘플데이터 불러오기, 만들기	
	- sklearn.datasets.xxx()	
	- make_classification(), make_blobs(), make_circle(), make_moon()	
	Iris 품종 분류	
	데이터 적재 및 정보확인	
	데이터 분할: train_test_split()	
	DecisionTree 알고리즘	
	cross-fold(데이터 분할), cross_val_score()	
	Hyperparameter 튜닝: GridSearch()	
2. 데이터 전처리	X값: 범주형-Encoding	강의, 실습
	- Label Encoding	
	- Ordinal Encoding	
	- One-hot Encoding	
	- Mean Encoding	
	X값: 수치형-Scaling	
	- Standard Scaling	
	- Robust Scaling	
	- MinMax Scaling	
	- Normalization Scaling	
	- Log Scaling	
	- Exponential Scaling	
	Feature Engineering	
	- 구간 분할, 이산화	
	- 상호작용과 다항식 특성	
	- 특성 자동 선택	
	Missing value, Outlier 처리	
	언더 샘플링 / 오버 샘플링(SMOTE)	

[강의계획서]Machine_Learning.xlsx

분류	주요 내용	학습방법
3. 지도학습 평가	회귀 평가 - RMSE, MSE, 분류 평가 - Accuracy, Precision, Recall, F1-score, ROC,	강의, 실습
4. 선형 회귀	선형 회귀 알고리즘 설명 및 실행 경사하강법 Over fitting 규제: Ridge, Lasso, ElasticNet LogisticRegression (분류) - 알고리즘 설명 및 실행 - Sigmoid, Softmax SVM(Support Vector Machine) - 회귀와 분류의 차이점 인공 신경망 - 멀티레이어 퍼셉트론	강의, 실습
5. 결정 트리	Gini Index, Entroy Index Information Gain Feature Importance - Information Gain의 평균 - Permutation Feature Importance - 모든 모델에 적용 가능	강의, 실습
6. 앙상블	Voting, Bagging, Boosting, Stacking RandomForest - 회귀, 분류의 예측값 계산 방법(hard voting, soft voting) AdaBoost, GBM, XGBoost, LightGBM, CatBoost - 회귀: 잔차를 예측 - 분류: logloss 예측	강의, 실습

[강의계획서]Machine_Learning.xlsx

분류	주요 내용	학습방법
7. 차원 축소	PCA(Principal Component Analysis) - 주성분 분석	
	LDA(Linear Discriminant Analysis) - 선형 판별 분석	
	SVD(Singular Value Decomposition) - 특이값 분해	강의, 실습
	NMF(Non-Negative Matrix Factorization) - 비음수 행렬 분해	
	t-SNE(t-Distributed Stochastic Neighbor Embedding)	
8. 군집 분석	KMeans	
	병합군집(Agglomerative Clustering)	
	GMM(Gaussian Mixture Model)	강의, 실습
	DBSCAN	
	군집 평가: ARI, NM, Silhouette Coefficient	
9. 텍스트 분석	BOW(n-gram)	
	불용어 처리	
	TF-IDF	강의, 실습
	감성분석: IDMB 영화평(지도학습)	
	토픽모델링(LDA)	