Problem 10 (Ch. 1.8)

Let G be a finite group, A and B non-vacuous subsets of G. Show that G = AB if |A| + |B| > |G|.

Solution. We prove the contrapostive. That is, assume that there exists some $g \in G$ such that $g \neq ab$ for any $a \in A, b \in B$. $A \neq gB$

If |A| + |B| > |G|, we must have $A \cap B \neq \emptyset$, since A and B are nonempty subgroups of G (and so their respective sets are subsets of G's). Thus, there exists some $g \in A$ and $g \in B$. Also, we must have some $g' \notin A$ and $g' \notin B$.

Note that A must have finite index, since G is a finite group and A has positive order, so let [G:A]=r. Lagrange's theorem gives specifically |G|/|A|=r. We have $G=A\sqcup Ag_1\sqcup Ag_2\sqcup\cdots\sqcup Ag_r$. Similarly, let l=|G|/|B| be the index of B in G. We have $2|A|+2|B|>|A|r+|B|l\implies (2-r)|A|+(2-l)|B|>0$.

Prove that |AB| = |G|?

Problem 11 (Ch. 1.8)

Let G be a group of order 2k where k is odd. Show that G contains a subgroup of index 2. (Hint: Consider the permutation group G_L of left translations and use exercise 13, p.36.

Solution. Since G is of even order, by exercise 13, there exists some $a \in G$ such that $a \neq 1$ and $a^2 = 1$. If

Problem 2 (Ch. 1.9)

ff

Solution. ff

Problem 4 (Ch. 1.9)

ff

Solution. ff

Problem 5 (Ch. 1.9)

ff

Solution. ff

Problem 8 (Ch. 1.9)

ff

Solution. ff