## Sprawozdanie 3 Metody gradientowe

## Zadanie 1

```
Znaleźć minimum funkcji celu: Q(x_1,x_2) = 7x_1^2 + ax_2^2
wybierając kolejno a=1, a=0.5, a= 0.3
Dla wektora startowego x_0 = [2;3]
```

Zmodyfikowany m-plik 'koszt.m':

```
function [q,x]=koszt(x,z,d)
% KOSZT wylicza wskaźnik jakości dla wektora zmiennych
% decyzyjnych x+z*d.
if nargin==2, x=x+z;
elseif nargin==3, x=x+z*d;
end
zadanie = 1;
n = 7;
if zadanie == 1
 % a=1;
   a=0.5;
   a=0.3;
   q = n*x(1)^2 + a*x(2)^2;
elseif zadanie == 2
   q = 6*x(1)^2 + 6*x(1)*x(2) + n*x(2)^2 + 4.5*(exp(x(1)) - x(1)-1) + 1.5*(exp(x(2)) - x(1)-1)
x(2) - 1);
elseif zadanie == 5
    q = 100*(x(2) - x(1)^2)^2 + n*(1 - x(1))^2;
```

Zmodyfikowany m-plik 'gradie.m':

```
function g=gradie(x)
% GRADIE Wyznacza analitycznie gradient funkcji kosztu w punkcie X.
zadanie = 1;
n = 7;
if zadanie == 1
    a=1;
    %a=0.5;
    %a=0.3;
    g = [2*n*x(1); 2*a*x(2)];
elseif zadanie == 2
    g = [12*x(1)+6*x(2)+4.5*exp(x(1))-4.5; 6*x(1) + 2*n*x(2)+1.5*exp(x(2))-1.5];
elseif zadanie == 5
    g = [-400*x(1)*(x(2)-x(1)^2) -2*n*(1-x(1)); 200*(x(2)-x(1))^2];
```

Tabela 1 przedstawia porównanie wyników (x<sub>0</sub>) na podstawie współczynnika 'a' dla różnej ilości iteracji:

| Ilość    | a=0.3                               | a=0.5                                | a=1                                  |
|----------|-------------------------------------|--------------------------------------|--------------------------------------|
| iteracji |                                     |                                      |                                      |
| 2        | x <sub>0</sub> =[0.16;0.24]         | X <sub>0</sub> =[0.23;0.35]          | $x_0 = [0.35; 0.53]$                 |
|          | q=0.199                             | q=0.462                              | q=1.166                              |
| 10       | x <sub>0</sub> =[3.39e-06;1.12e-04] | x <sub>0</sub> =[4.83e-05;7.24e-05]  | x <sub>0</sub> =[3.52e-04;5.29e-04]  |
|          | q=3.895e-09                         | q=1.896e-08                          | q=1.151e-06                          |
| 20       | x <sub>0</sub> =[3.39e-06;1.12e-04] | x <sub>0</sub> =[-3.94e-06;6.68e-05] | x <sub>0</sub> =[-1.04e-06;3.35e-05] |
|          | q=3.89e-09                          | q=2.34e-09                           | q=1.13e-09                           |

Tabela 1

Jak widać, wartość współczynnika a ma niewielki wpływ na rozwiązanie. Im więcej iteracji, tym większa dokładność rozwiązania.

## Zadanie 2

Przeprowadzić badanie porównawcze gradientowych metod optymalizacji dla funkcjonału:

$$Q(x_1,x_2) = 6x_1^2 + 6x_1x_2 + 7x_2^2 + 4.5(e^{x_1} - x_1 - 1) + 1.5(e^{x_2} - x_2 - 1)$$

Przyjmujemy normę gradientu  $e_0 = 0.001$ , maksymalna liczba iteracji = 20.

Tabela 2 prezentuje wyniki wybranych metod: po ilu iteracjach metoda zbiega do minimum w wybranym punkcie:

| n you arry in participation |                                  |                               |                              |                                                   |  |
|-----------------------------|----------------------------------|-------------------------------|------------------------------|---------------------------------------------------|--|
| Wektor<br>startowy          | Metoda<br>najszybszego<br>spadku | Metoda Fletchera -<br>Reevesa | Metoda Polaka -<br>Ribiere'a | Metoda z pełną<br>formułą na<br>współczynnik beta |  |
| $x_0 = (-3,1)$              | 8                                | 5                             | 4                            | 4                                                 |  |
| $x_0 = (-3,3)$              | 7                                | 5                             | 4                            | 4                                                 |  |

Tabela 2

Jak widać najlepiej spisały się: metoda z pełną formułą na współczynnik beta oraz metoda Polaka – Ribiere'a. Najmniej efektywną okazała się metoda najszybszego spadku.

Z obserwacji można wyciągnąć wniosek, że dla każdej metody, kolejne przybliżenie rozwiązania jest lepsze od poprzedniego – różnica aktualnego przybliżenia rozwiązania optymalnego(X<sup>apr</sup>) oraz aktualnego rozwiązania optymalnego (X\*) jest na moduł zbieżna do zera. Wielkość normy gradientu nie wpłynęła wyraźnie na szybkość zbieżności metod.

## **Zadanie 5**

"Dolina bananowa" Rossenbrocka. Wyznaczyć minimum funkcji:

$$Q(x_1,x_2) = 100(x_2 - x_1^2)^2 + 7(1 - x_1)^2$$

Na mapę poziomic doliny nanieść punkty pośrednie poszczególnych kroków oraz położenie baz.



Przyjmuję wektor początkowy  $x_0 = [0;0]$ . Punkty pośrednie oraz położenie baz dla metod: najszybszego spadku, Fletchera – Reevesa, Polaka – Ribiere'a oraz metoda z pełną formułą na współczynnik beta prezentują poniższe wykresy:







Najszybciej zbieżna okazała się metoda Fletchera – Reevesa: już po 10 iteracjach osiągnęła minimum (1,1). Po 11 iteracjach punkt ten osiągnęła metoda z pełną formułą na współczynnik beta oraz metoda Polaka – Ribiere'a. Najwolniej zbieżna okazała się metoda najszybszego spadku – dopiero po 365 iteracjach metoda zbiegła do (1,1).