

HCT CO., LTD.

CERTIFICATE OF COMPLIANCE

FCC Certification

Applicant Name:

PLK Technologies Co., Ltd.

Address:

12th Floor, INNOPLEX Bldg., 13 Yangpyeong-Dong

3-Ga, Yeongdeungpo-Gu Seoul, 150-103, Korea

Date of Issue:

March 27, 2013

Test Site/Location:

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si,

Gyeonggi-do, Korea

Report No.: HCTR1302FR19-2

HCT FRN: 0005866421

FCC ID

: X9R-ROADSCOPELX

APPLICANT

: PLK Technologies Co., Ltd.

FCC Model(s):

Roadscope LX

EUT Type:

Advanced Driver Assistance System

Max. RF Output Power:

DC 12.0 V: 2.47 dBm (1.77 mW)

DC 24.0 V: 2.19 dBm (1.66 mW)

Frequency Range:

2402 MHz - 2480 MHz (Bluetooth)

Modulation type

GFSK(Normal), π/4DQPSK and 8DPSK(EDR)

FCC Classification:

FCC Part 15 Spread Spectrum Transmitter

FCC Rule Part(s):

Part 15 subpart C 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Jong Seok Lee

Test Engineer of RF Team

Approved by

: Yong Hyun Lee

Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCTR1302FR19	March 05, 2013	- First Approval Report
HCTR1302FR19-1	March 08, 2013	- Change of the FCC ID
HCTR1302FR19-2	March 27, 2013	- Change test location address

Table of Contents

1.	GENER	AL INFORMATION	4
2.	EUT DE	SCRIPTION	4
3.	TEST N	IETHODOLOGY	5
	3.1	EUT CONFIGURATION	5
	3.2	EUT EXERCISE	5
	3.3	GENERAL TEST PROCEDURES	5
	3.4	DESCRIPTION OF TEST MODES	5
4.	INSTRU	IMENT CALIBRATION	6
5.	FACILIT	TIES AND ACCREDITATIONS	6
	5.1	FACILITIES	6
	5.2	EQUIPMENT	6
6.	ANTEN	NA REQUIREMENTS	6
7.	SUMMA	ARY OF TEST RESULTS	7
8.	FCC PA	RT 15.247 REQUIREMENTS	8
	8.1	PEAK POWER	8
	8.2	BAND EDGES	20
	8.3	FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	34
	8.4	NUMBER OF HOPPING FREQUENCY	50
	8.5	TIME OF OCCUPANCY (DWELL TIME)	57
	8.6	SPURIOUS EMISSIONS	70
	8.6.	1 CONDUCTED SPURIOUS EMISSIONS	70
	8.6.	2 RADIATED SPURIOUS EMISSIONS	91
	8.6.	3 RADIATED RESTRICTED BAND EDGES	102
	8.7	POWERLINE CONDUCTED EMISSIONS	105
9.	LIST OF	TEST EQUIPMENT	106

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Page 3 of 106

1. GENERAL INFORMATION

Applicant: PLK Technologies Co., Ltd.

Address: 12th Floor, INNOPLEX Bldg., 13 Yangpyeong-Dong 3-Ga

Yeongdeungpo-Gu, Seoul 150-103, Korea

FCC ID: X9R-ROADSCOPELX

EUT Type: Advanced Driver Assistance System

Model name(s): Roadscope LX

Date(s) of Tests: January 20, 2013 ~ March 03, 2013

Place of Tests: HCT Co., Ltd.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

(IC Recognition No.: 5944A-3)

2. EUT DESCRIPTION

EUT Type	Advanced Driver Assistance System	
FCC Model Name	Roadscope LX	
Power Supply	DC 12.0 V / DC 24.0	
Frequency Range	2402 MHz - 2480 MHz (Bluetooth)	
Transmit Power	DC 12.0 V: 2.47 dBm (1.77 mW)	
	DC 24.0 V: 2.19 dBm (1.66 mW)	
BT Operating Mode	Normal, EDR, AFH	
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)	
Modulation Technique	FHSS	
Number of Channels	79Channels, Minimum 20 Channels(AFH)	
Antenna Specification	Manufacturer: Micro RF Co., Ltd.	
	Antenna type: Internal Antenna	
	Peak Gain : 1.447 dBi	

*** 15.247 Requirements for Bluetooth transmitter**

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:
- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
- 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.
- 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard for Testing Unlicensed Wireless Devices(ANSI C63.10-2009) and FCC Public Notice DA 00-705 dated March 30, 2000 entitled "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems" were used in the measurement of the **PLK Technologies Co., Ltd.**

Advanced Driver Assistance System FCC ID: X9R-ROADSCOPELX

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2009) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.3 of ANSI C63.10. (Version: 2009)

3.4 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel low, mid and high with highest data rate (worst case) is chosen for full testing.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea. The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2003) and CISPR Publication 22. Detailed description of test facility was submitted to the Commission and accepted dated March 02, 2011 (Registration Number: 90661)

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT			
Test Report No.	Date of Issue:	EUT Type:	FCC ID:		
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX		

^{*} The antennas of this E.U.T are permanently attached.

^{*}The E.U.T Complies with the requirement of §15.203

7. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)(ii) or (iii)	NA		PASS
Occupied Bandwidth	NA	NA		NA
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 1 Watts		PASS
Carrier Frequency Separation	§15.247(a)(1)	>25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii)	>15	CONDUCTED	PASS
Time of Occupancy	§15.247(a)(1)(iii)	<400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	< 20 dB for all out-of band emissions		PASS
Band Edge(Out of Band Emissions)	§15.247(d)	< 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.7		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 8.6.2	DADIATED	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.6.3	RADIATED	PASS

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

8. FCC PART 15.247 REQUIREMENTS

8.1 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

- 1. Span = 2 MHz (GFSK) / 5 MHz (π /4DQPSK and 8DPSK)
- 2. RBW = 1 MHz (GFSK) / 3 MHz (π /4DQPSK and 8DPSK)
- 3. VBW = 1 MHz (GFSK) / 3 MHz (π /4DQPSK and 8DPSK)
- 4. Sweep = auto
- 5. Packet type= DH5 (GFSK) / 2-DH5 (π/4DQPSK) / 3-DH5 (8DPSK)

SAMPLE CALCULATION

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea) = 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

Note:

- 1. Spectrum reading values are not plot data. The power results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.18 dB at 2402 MHz and is 7.23 dB at 2480 MHz.So, 7.2 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

TEST RESULTS

No non-compliance noted

Test Data

DC 12.0 V

Channel	Frequency	Output Power (GFSK)		Output Power (8DPSK)		Output Power (π/4DQPSK)		Limit Re	Result
	(MHz)	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(W)	
Low	2402	2.47	1.77	1.71	1.48	1.60	1.45		PASS
Mid	2440	1.57	1.44	0.44	1.11	0.36	1.09	1	PASS
High	2480	0.10	1.02	-1.26	0.75	-1.37	0.73		PASS

DC 24.0 V

Channel Frequency (MHz)		Output Power (GFSK)		Output Power (8DPSK)		Output Power (π/4DQPSK)		Limit	Result
	(dBm)	(mW)	(dBm)	(mW)	(dBm)	(mW)	(W)		
Low	2402	2.19	1.66	1.47	1.40	1.28	1.34		PASS
Mid	2440	1.27	1.34	0.15	1.04	-0.02	1.00	1	PASS
High	2480	-0.29	0.94	-1.60	0.69	-1.79	0.66		PASS

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

DC 12.0 V

Test Plots (GFSK)

Peak Power (Low-CH)

Test Plots (GFSK)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 10 of 106

Test Plots (GFSK)
Peak Power (High-CH)

Test Plots (8DPSK) Peak Power (Low-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 11 of 106

Test Plots (8DPSK)
Peak Power (Mid-CH)

Test Plots (8DPSK)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 12 of 106

Test Plots ($\pi/4DQPSK$) Peak Power (Low-CH)

Test Plots ($\pi/4DQPSK$) Peak Power (Mid-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 13 of 106

Test Plots ($\pi/4DQPSK$) Peak Power (High-CH)

Page 14 of 106

DC 24.0 V

Test Plots (GFSK)

Peak Power (Low-CH)

Test Plots (GFSK)

Peak Power (Mid-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 15 of 106

Test Plots (GFSK) Peak Power (High-CH)

Test Plots (8DPSK) Peak Power (Low-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 16 of 106

Test Plots (8DPSK)
Peak Power (Mid-CH)

Test Plots (8DPSK)
Peak Power (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 17 of 106

Test Plots ($\pi/4DQPSK$) Peak Power (Low-CH)

Test Plots (π/4DQPSK) Peak Power (Mid-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 18 of 106

Test Plots ($\pi/4DQPSK$) Peak Power (High-CH)

8.2 BAND EDGES

LIMIT

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off and hopping on.

The spectrum analyzer is set to:

- 1. Span = 8 MHz / 10 MHz (with hopping)
- 2. RBW = 100 kHz
- 3. VBW = 300 kHz
- 4. Sweep = auto
- 5. Detector Mode = Peak

TEST RESULTS

See attached.

Note:

- 1. The results in plot is already including the actual values of loss for the splitter and cable combination.
- 2. Spectrum offset = Power Splitter loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.18 dB at 2402 MHz and is 7.23 dB at 2480 MHz. So, 7.2 dB is offset. And the offset gap in the 2.4 GHz range do not affect the band edge measurement final result.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Test Data

DC 12.0 V - Without hopping

	Eroguenov	GFSK	8DPSK π/4DQPSK		Limit		Margin		
Channel	Frequency (MHz)	(dD)	(dD)	(dD)	(dBc)	GFSK	8DPSK	π/4DQPSK	Result
	(IVITIZ)	(dB)	(dB)	(dB)	(ubc)	(dBc)	(dBc)	(dBc)	
Low	2402	51.57	46.52	45.49	20	31.57	26.52	25.49	PASS
High	2480	60.02	51.74	50.01	20	40.02	31.74	30.01	PASS

DC 12.0 V - With hopping

	Eroguanav	GFSK	8DPSK	π/4DQPSK	Limit	Margin			
Channel	Frequency (MHz)	(dB)	(dB)	(dB)	(dBc)	GFSK	8DPSK	π/4DQPSK	Result
	(1411 12)	(ub)	(ub)	(ub)	(ubc)	(dBc)	(dBc) (dBc) (dBc)		
Low	2402	52.72	45.80	45.80	20	32.72	25.80	25.80	PASS
High	2480	61.77	54.15	53.07	20	41.77	34.15	33.07	PASS

DC 24.0 V - Without hopping

Eroguonov		GFSK	8DPSK	π/4DQPSK	Limit	Margin			
Channel	Frequency (MHz)	(dD)	(dD)	(dD)		GFSK	8DPSK	π/4DQPSK	Result
	(WIF1Z)	(dB)	(dB)	(dB)	(dBc)	(dBc)	3c) (dBc) (dBc)		
Low	2402	51.38	45.13	45.78	20	31.38	25.13	25.78	PASS
High	2480	59.01	53.02	52.14	20	39.01	33.02	32.14	PASS

DC 24.0 V - With hopping

Fraguancy		GFSK	8DPSK	π/4DQPSK	Limit	Margin			
Channel	Frequency (MHz)	(dD)	(dD)	(dD)		GFSK	8DPSK	π/4DQPSK	Result
	(IVITIZ)	(dB)	(dB)	(dB)	(dBc)	(dBc)	(dBc) (dBc)		
Low	2402	55.61	46.42	44.02	20	35.61	26.42	24.02	PASS
High	2480	60.36	50.94	53.16	20	40.36	30.94	33.16	PASS

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Page 21 of 106

DC 12.0 V

Test Plots without hopping (GFSK) Band Edges (Low-CH)

Test Plots without hopping (GFSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 22 of 106

Test Plots without hopping (8DPSK) Band Edges (Low-CH)

Test Plots without hopping (8DPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 23 of 106

Test Plots without hopping (π /4DQPSK) Band Edges (Low-CH)

Test Plots without hopping (π /4DQPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Page 24 of 106

Test Plots with hopping (GFSK) Band Edges (Low-CH)

Test Plots with hopping (GFSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Page 25 of 106

Test Plots with hopping (8DPSK) Band Edges (Low-CH)

Test Plots with hopping (8DPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 26 of 106

Test Plots with hopping (π /4DQPSK) Band Edges (Low-CH)

Test Plots with hopping (π /4DQPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 27 of 106

DC 24.0 V

Test Plots without hopping (GFSK) Band Edges (Low-CH)

Test Plots without hopping (GFSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 28 of 106

Test Plots without hopping (8DPSK) Band Edges (Low-CH)

Test Plots without hopping (8DPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 29 of 106

Test Plots without hopping (π /4DQPSK) Band Edges (Low-CH)

Test Plots without hopping (π /4DQPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 30 of 106

Test Plots with hopping (GFSK) Band Edges (Low-CH)

Test Plots with hopping (GFSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 31 of 106

Test Plots with hopping (8DPSK) Band Edges (Low-CH)

Test Plots with hopping (8DPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 32 of 106

Test Plots with hopping (π /4DQPSK) Band Edges (Low-CH)

Test Plots with hopping (π /4DQPSK) Band Edges (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 33 of 106

8.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

LIMIT

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

TEST PROCEDURE

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The spectrum analyzer is set to:

- 1. Span = 3 MHz
- 2. RBW = 30 kHz
- 3. VBW = 100 kHz
- 4. Sweep = auto

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

TEST RESULTS

No non-compliance noted

Test Data

DC 12.0 V

Cha	Channel Separation (kHz)			20dB Bandwidth (kHz)			Limit	Result
GFSK	8DPSK	π/4DQPSK	Channel	GFSK	8DPSK	4DQPSK	(kHz)	
			Low CH	945.5	1256.0	1243.0	>25 or	
830	1005	995	Middle CH	946.6	1256.0	1244.0	>2/3 of the	Pass
			High CH	948.1	1255.0	1239.0	20dB BW	

Occupied Bandwidth (99% BW)

99% BW (kHz)							
Channel GFSK 8DPSK 4DQPSK							
Low CH	880.8	1161.0	1164.9				
Middle CH	881.8	1161.1	1160.6				
High CH	884.0	1157.7	1161.0				

DC 24.0 V

Channel Separation (kHz)			20dB Bandwidth (kHz)			Limit	Result	
GFSK	8DPSK	π/4DQPSK	Channel	GFSK	8DPSK	4DQPSK	(kHz)	
			Low CH	944.4	1258.0	1237.0	>25 or	
985	1005	1000	Middle CH	949.0	1254.0	1236.0	>2/3 of the	Pass
			High CH	948.5	1255.0	1231.0	20dB BW	

Occupied Bandwidth (99% BW)

99% BW (kHz)						
Channel	GFSK	8DPSK	4DQPSK			
Low CH	883.2	1163.3	1160.2			
Middle CH	885.7	1158.9	1158.8			
High CH	883.9	1159.1	1158.7			

Note: We can not know what use channel in AFH mode. So, we can not test in AFH mode. Also, if the test performs some channel in AFH mode, the test result is not different with normal mode.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT			
Test Report No.	Date of Issue:	EUT Type:	FCC ID:		
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX		

DC 12.0 V

Test Plots (GFSK)

Channel Separation

Test Plots (8DPSK) Channel Separation

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 36 of 106

Test Plots ($\pi/4DQPSK$) Channel Separation

DC 12.0 V

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 38 of 106

20 dB Bandwidth & Occupied Bandwidth (High-CH)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 39 of 106

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)

FCC PT.15.247 TEST REPORT		www.hct.co.kr	
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 40 of 106

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

FCC PT.15.247 TEST REPORT		www.hct.co.kr	
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 41 of 106

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)

Page 42 of 106

DC 24.0 V

Channel Separation

Test Plots (8DPSK) Channel Separation

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 43 of 106

Test Plots ($\pi/4DQPSK$) Channel Separation

DC 24.0 V

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

FCC PT.15.247 TEST REPORT		www.hct.co.kr	
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 45 of 106

20 dB Bandwidth & Occupied Bandwidth (High-CH)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 46 of 106

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 47 of 106

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Low-CH)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No. HCTR1302FR19-2	Date of Issue: EUT Type: March 27, 2013 Advanced Driver Assistance System		FCC ID: X9R-ROADSCOPELX

Page 48 of 106

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (High-CH)

FCC PT.15.247 TEST REPORT		www.hct.co.kr	
Test Report No.	Date of Issue: EUT Type:		FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 49 of 106

8.4 NUMBER OF HOPPING FREQUENCY

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

Test Configuration

TEST PROCEDURE

The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer was set to :

- 1. Span = the frequency band of operation (Start = 2400 MHz, Stop = 2483.5 MHz)
- 2. RBW = 300 kHz
- 3. VBW = 300 kHz
- 4. Sweep = auto

The trace was allowed to stabilize.

TEST RESULTS

No non-compliance noted

Test Data

DC 12.0 V

	Result (No. of CH)	1 : :4	Dogwit.	
GFSK	8DPSK	π/4DQPSK	Limit	Result
79	79	79	>15	Pass

DC 24.0 V

	Result (No. of CH)	1 : :4	D. malf	
GFSK	8DPSK	π/4DQPSK	Limit	Result
79	79	79	>15	Pass

Note: In case of AFH mode, minimum number of hopping channels is 20.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

DC 12.0 V

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 52 of 106

Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 53 of 106

DC 24.0 V

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 54 of 106

Test Plots (8DPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 55 of 106

Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 56 of 106

8.5 TIME OF OCCUPANCY (DWELL TIME)

LIMIT

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

TEST PROCEDURE

This test is performed with hopping off.

EUT was set to transmit the longest packet type (DH5)

1. Span = zero span

2. RBW = 1 MHz

3. VBW = 1 MHz

4. Sweep = as necessary to capture the entire dwell time per channel

The marker-delta function was used to determine the dwell time.

DC 12.0 V: Normal Mode / EDR Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.900 * (1600/6)/79 * 31.6 = 309.33 (ms)

2-DH 5(The longest packet type for $\pi/4DQPSK$)

CH Mid: 2.917 * (1600/6)/79 * 31.6 = 311.15 (ms)

3-DH 5(The longest packet type for 8DPSK)

CH Mid: 2.917 * (1600/6)/79 * 31.6 = 311.15 (ms)

DC 12.0 V: AFH Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.900 * (800/6)/20 * 8.0 = 154.67 (ms)

2-DH 5(The longest packet type for $\pi/4DQPSK$)

CH Mid: 2.917 * (800/6)/20 * 8.0 = 155.57 (ms)

3-DH 5(The longest packet type for 8DPSK)

CH Mid: 2.917 * (800/6)/20 * 8.0 = 155.57 (ms)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT y		
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:	
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX	

Page 57 of 106

DC 24.0 V: Normal Mode / EDR Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.900 * (1600/6)/79 * 31.6 = 309.33 (ms)

2-DH 5(The longest packet type for $\pi/4DQPSK$)

CH Mid: 2.908 * (1600/6)/79 * 31.6 = 310.19 (ms)

3-DH 5(The longest packet type for 8DPSK)

CH Mid: 2.908 * (1600/6)/79 * 31.6 = 310.19 (ms)

DC 24.0 V: AFH Mode

DH 5(The longest packet type for GFSK)

CH Mid: 2.900 * (800/6)/20 * 8.0 = 154.67 (ms)

2-DH 5(The longest packet type for $\pi/4DQPSK$)

CH Mid: 2.908 * (800/6)/20 * 8.0 = 155.09 (ms)

3-DH 5(The longest packet type for 8DPSK)

CH Mid: 2.908 * (800/6)/20 * 8.0 = 155.09 (ms)

Note:

A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance of DH5 is 2.883 ms.

Dwell time = Tx-time * 106.7

TEST RESULTS

See the table.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 58 of 106

DC 12.0 V

Channal	Pulse Time (ms)		Total of Dwell (ms)		Period Time	Limit	Dogult
Channel	GFSK	8DPSK	GFSK	8DPSK	(s)	(ms)	Result
Low	2.900	2.908	309.33	310.19	31.6		PASS
Mid	2.900	2.917	309.33	311.15	31.6	400	PASS
High	2.908	2.917	310.19	311.15	31.6		PASS

Channel	Pulse Total of Time (ms) Dwell (ms) π/4DQPSK		Period Time (s)	Limit (ms)	Result
Low	2.908	155.09	31.6		PASS
Mid	2.917	155.57	31.6	400	PASS
High	2.908	155.09	31.6		PASS

DC 24.0 V

Channel	Pulse Ti	Pulse Time (ms)		Total of Dwell (ms)		Limit	Result
Chamilei	GFSK	8DPSK	GFSK	8DPSK	(s)	(ms)	Resuit
Low	2.900	2.917	309.33	311.15	31.6		PASS
Mid	2.900	2.908	309.33	310.19	31.6	400	PASS
High	2.900	2.917	309.33	311.15	31.6		PASS

Channel	Pulse Time (ms) π/4De	Total of Dwell (ms) QPSK	Period Time (s)	Limit (ms)	Result
Low	2.917	311.15	31.6		PASS
Mid	2.908	310.19	31.6	400	PASS
High	2.917	311.15	31.6		PASS

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 59 of 106

DC 12.0 V

Dwell Time (Low-CH)

Test Plots (GFSK)

Dwell Time (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 60 of 106

Test Plots (GFSK)
Dwell Time (High-CH)

Test Plots (8DPSK)
Dwell Time (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 61 of 106

Test Plots (8DPSK)
Dwell Time (Mid-CH)

Test Plots (8DPSK)
Dwell Time (High-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 62 of 106

Test Plots (π/4DQPSK) Dwell Time (Low-CH)

Test Plots (π/4DQPSK) Dwell Time (Mid-CH)

Center 2.441 000 GHz

File Operation Status, C:\HCT.GIF file saved

Res BW 1 MHz

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Span 0 Hz

Sweep 5 ms (601 pts)

1 of 2

Page 63 of 106

#VBW 1 MHz

Test Plots ($\pi/4DQPSK$) Dwell Time (High-CH)

DC 24.0 V

Dwell Time (Low-CH)

Test Plots (GFSK)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 65 of 106

Test Plots (GFSK)
Dwell Time (High-CH)

Test Plots (8DPSK)
Dwell Time (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 66 of 106

Test Plots (8DPSK)
Dwell Time (Mid-CH)

Test Plots (8DPSK)
Dwell Time (High-CH)

Test Plots (π/4DQPSK)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 67 of 106

Dwell Time (Low-CH)

Test Plots (π/4DQPSK) Dwell Time (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 68 of 106

Test Plots ($\pi/4DQPSK$) Dwell Time (High-CH)

8.6 SPURIOUS EMISSIONS

8.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Requirements and limit, §15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Limit : 20 dBc
Test Configuration

TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

Detector Mode is set to a peak detector Mode.

Measurements are made over the 30 MHz to 26 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

TEST RESULTS

No non-compliance noted.

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

FACTORS FOR FREQUENCY

Freq(MHz)	Factor(dB)
30	10.01
100	10.02
200	10.10
300	10.09
400	10.13
500	10.21
600	10.13
700	10.31
800	10.18
900	10.30
1000	10.17
2000	8.53
2400*	7.18
2500*	7.21
3000	8.59
4000	10.02
5000	9.88
6000	5.70
7000	10.21
8000	6.13
9000	8.79
10000	12.46
11000	8.11
12000	9.52
13000	8.98
14000	8.13
15000	11.82
16000	6.92
17000	13.23
18000	10.25
19000	10.28
20000	9.10
21000	10.94
22000	11.54
23000	8.81
24000	11.71
25000	9.37
26000	9.34

Note: 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Splitter loss

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr			
Test Report No.	Date of Issue:	EUT Type:	FCC ID:			
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX			
Danie 74 of 400						

Page 71 of 106

DC 12.0 V

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 72 of 106

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 73 of 106

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 74 of 106

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 75 of 106

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

Page 76 of 106

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 77 of 106

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 78 of 106

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 79 of 106

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 80 of 106

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

Page 81 of 106

DC 24.0 V

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 82 of 106

Test Plots (GFSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 83 of 106

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

Test Plots (8DPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 84 of 106

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Low-CH)

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 85 of 106

Test Plots (π /4DQPSK) - 30 MHz - 1 GHz (RBW:100 kHz, VBW: 300 kHz) Spurious Emission (High-CH)

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 86 of 106

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

Test Plots (GFSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Page 87 of 106

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 88 of 106

Test Plots (8DPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Low-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 89 of 106

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (Mid-CH)

Test Plots (π /4DQPSK) - 1 GHz - 26 GHz (RBW:1 MHz, VBW: 1 MHz) Spurious Emission (High-CH)

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

Page 90 of 106

8.6.2 RADIATED SPURIOUS EMISSIONS

LIMIT: §15.247(d), §15.205, §15.209

1. 20dBc in any 100kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Page 91 of 106

Test Configuration

Below 30 MHz

30 MHz - 1 GHz

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

9 kHz - 30MHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	$dB\mu\!\!\! V$	dB /m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB	
No Critical peaks found								

- 1. Measuring frequencies from 9 kHz to the 30MHz.
- 2. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB)
- 4. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 5. This test is performed with hopping off.
- 6. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

TEST RESULTS

Below 1 GHz

Operation Mode: Normal Mode

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	$dB\mu\!\!\! V$	dB /m	dB	(H/V)	dB <i>μ</i> V/m	dB <i>μ</i> V/m	dB	
No Critical peaks found								

- 1. Measuring frequencies from 30 MHz to the 1 GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 3. This test is performed with hopping off.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

Above 1 GHz

DC 12.0 V

Operation Mode: CH Low(GFSK)

Frequency	Reading	*A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4804	51.98	-0.84	V	51.14	74	22.86	PK
4804	42.23	-0.84	V	41.39	54	12.61	AV
7206	49.13	9.15	V	58.28	74	15.72	PK
7206	37.10	9.15	V	46.25	54	7.75	AV
4804	53.15	-0.84	Н	52.31	74	21.69	PK
4804	43.36	-0.84	Н	42.52	54	11.48	AV
7206	49.48	9.15	Н	58.63	74	15.37	PK
7206	36.98	9.15	Н	46.13	54	7.87	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT		
Test Report No.	Date of Issue:	EUT Type:	FCC ID:	
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX	

Operation Mode: CH Mid(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4882	51.96	-0.37	V	51.59	74	22.41	PK
4882	41.55	-0.37	V	41.18	54	12.82	AV
7323	49.04	8.72	V	57.76	74	16.25	PK
7323	36.60	8.72	V	45.32	54	8.69	AV
4882	52.60	-0.37	Н	52.23	74	21.77	PK
4882	43.68	-0.37	Н	43.31	54	10.69	AV
7323	49.22	8.72	Н	57.94	74	16.07	PK
7323	36.65	8.72	Н	45.37	54	8.64	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 97 of 106

Operation Mode: CH High(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4960	50.91	0.50	V	51.41	74	22.59	PK
4960	40.76	0.50	V	41.26	54	12.74	AV
7440	51.12	8.95	V	60.07	74	13.93	PK
7440	37.30	8.95	V	46.25	54	7.75	AV
4960	53.00	0.50	Н	53.50	74	20.50	PK
4960	43.92	0.50	Н	44.42	54	9.58	AV
7440	49.26	8.95	Н	58.21	74	15.79	PK
7440	37.53	8.95	Н	46.48	54	7.52	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

Notes:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Page 98 of 106

DC 24.0 V

Operation Mode: CH Low(GFSK)

Frequency	Reading	*A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4804	52.39	-0.84	V	51.55	74	22.45	PK
4804	41.18	-0.84	V	40.34	54	13.66	AV
7206	49.85	9.15	V	59.00	74	15.00	PK
7206	36.68	9.15	V	45.83	54	8.17	AV
4804	53.50	-0.84	Н	52.66	74	21.34	PK
4804	43.54	-0.84	Н	42.70	54	11.30	AV
7206	50.28	9.15	Н	59.43	74	14.57	PK
7206	36.69	9.15	Н	45.84	54	8.16	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Operation Mode: CH Mid(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4882	51.87	-0.37	V	51.50	74	22.50	PK
4882	42.27	-0.37	V	41.90	54	12.10	AV
7323	49.59	8.72	V	58.31	74	15.70	PK
7323	36.41	8.72	V	45.13	54	8.88	AV
4882	53.35	-0.37	Н	52.98	74	21.02	PK
4882	44.12	-0.37	Н	43.75	54	10.25	AV
7323	49.57	8.72	Н	58.29	74	15.72	PK
7323	36.36	8.72	Н	45.08	54	8.93	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

Operation Mode: CH High(GFSK)

Frequency	Reading	※ A.F+CL-AMP GAIN	ANT. POL	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Detect
4960	51.28	0.50	V	51.78	74	22.22	PK
4960	41.25	0.50	V	41.75	54	12.25	AV
7440	49.61	8.95	V	58.56	74	15.44	PK
7440	37.29	8.95	V	46.24	54	7.76	AV
4960	52.53	0.50	Н	53.03	74	20.97	PK
4960	44.27	0.50	Н	44.77	54	9.23	AV
7440	49.60	8.95	Н	58.55	74	15.45	PK
7440	37.23	8.95	Н	46.18	54	7.82	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000 MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain
- 5. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/T Hz, where T = pulse width in seconds.
- 6. We have done Normal Mode and EDR Mode test. Worst case of EUT is Normal Mode.
- 7. This test is performed with hopping off.
- 8. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

8.6.3 RADIATED RESTRICTED BAND EDGES

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in section 15.209(a) (See section 15.205(c).

DC 12.0 V

Operation Mode Normal(GFSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

Frequency [MHz]	Reading dBuV	※ A.F.+CL [dB]	Ant. Pol. [H/V]	Duty Cycle Correction [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Detect
2390.0	24.47	33.90	Н	0	58.37	74	15.63	PK
2390.0	12.56	33.90	Н	-24.71	21.75	54	32.25	AV
2390.0	24.88	33.90	V	0	58.78	74	15.22	PK
2390.0	12.50	33.90	V	-24.71	21.69	54	32.31	AV
2483.5	25.67	33.99	Н	0	59.66	74	14.34	PK
2483.5	16.09	33.99	Н	-24.71	25.37	54	28.63	AV
2483.5	26.30	33.99	V	0	60.29	74	13.71	PK
2483.5	18.99	33.99	V	-24.71	28.27	54	25.73	AV

***** A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Total = Reading Value + Antenna Factor + Cable Loss Delta Value + Duty Cycle Correction Factor
- 2. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/ τ Hz, where τ = pulse width in seconds.
- 3. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.732 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow \text{Round up to next highest integer}$, H = 1
 - c. Worst Case Dwell Time = τ [ms] x H '= 2.908 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.728 dB
 - e. We applied DCCF in the test result which hopping channel number is 79.

FCC PT.15.247 TEST REPORT		FCC CERTIFICATION REPORT	www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

- 4. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels = Δ t = τ [ms] x 20 channels = 58.16 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H' = 2
 - c. Worst Case Dwell Time = τ [ms] x H '= 5.816 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7075 dB
- 5. We have done Normal Mode, EDR Mode. Worst case of EUT is Normla Mode.
- 6. This test is performed with hopping off.
- 7. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

DC 24.0 V

Operation Mode Normal(GFSK)

Operating Frequency 2402 MHz, 2480 MHz

Channel No CH 0, CH 78

Frequency	Reading	፠ A.F.+CL	Ant. Pol.	Duty Cycle Correction	Total	Limit	Margin	Detect
[MHz]	dBuV	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Detect
2390.0	24.07	33.90	Н	0	57.97	74	16.03	PK
2390.0	12.11	33.90	Н	-24.71	21.30	54	32.70	AV
2390.0	24.12	33.90	V	0	58.02	74	15.98	PK
2390.0	12.10	33.90	V	-24.71	21.29	54	32.71	AV
2483.5	25.14	33.99	Н	0	59.13	74	14.87	PK
2483.5	15.60	33.99	Н	-24.71	24.88	54	29.12	AV
2483.5	25.27	33.99	V	0	59.26	74	14.74	PK
2483.5	18.73	33.99	V	-24.71	28.01	54	25.99	AV

* A·F: ANTENNA FACTOR

C·L: CABLE LOSS

AMP GAIN: AMPLIFIER GAIN

- 1. Total = Reading Value + Antenna Factor + Cable Loss Amp Gain + Duty Cycle Correction Factor
- 2. Spectrum setting:
 - a. Peak Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 MHz.
 - b. AV Setting 1 GHz 26 GHz, RBW = 1 MHz, VBW = 1 kHz \geq 1/ τ Hz, where τ = pulse width in seconds.
- 3. FYI: Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.732 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H'=1
 - c. Worst Case Dwell Time = τ [ms] x H '= 2.908 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.728 dB
 - e. We applied DCCF in the test result which hopping channel number is 79.
- 4. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.16 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H' = 2
 - c. Worst Case Dwell Time = τ [ms] x H '= 5.816 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7075 dB
- 5. We have done Normal Mode, EDR Mode. Worst case of EUT is Normal Mode.
- 6. This test is performed with hopping off.
- 7. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX

8.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolt (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Francisco Panero (MILE)	Limits (dBμV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- 5. This test is performed with hopping on.

Note: We don't perform powerline conducted emission test. Because this EUT is used DC voltage.

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type:	FCC ID:
HCTR1302FR19-2	March 27, 2013	Advanced Driver Assistance System	X9R-ROADSCOPELX

9. LIST OF TEST EQUIPMENT

Manufacturer	Model / Equipment	Calibration Interval	Calibration Due	Serial No.
Rohde & Schwarz	ENV216/ LISN	Annual	02/06/2014	100073
Schwarzbeck	VULB 9168/ TRILOG Antenna	Biennial	06/17/2013	255
Rohde & Schwarz	ESI 40 / EMI TEST RECEIVER	Annual	05/03/2013	831564103
Agilent	E4440A/ Spectrum Analyzer	Annual	05/02/2013	US45303008
Agilent	N9020A/ SIGNAL ANALYZER	Annual	07/31/2013	MY51110020
HD	MA240/ Antenna Position Tower	N/A	N/A	556
EMCO	1050/ Turn Table	N/A	N/A	114
HD GmbH	HD 100/ Controller	N/A	N/A	13
HD GmbH	KMS 560/ SlideBar	N/A	N/A	12
Rohde & Schwarz	SCU-18/ Signal Conditioning Unit	Annual	09/11/2013	10094
MITEQ	AMF-6B-180265-35-10P / POWER AMP	Annual	04/16/2013	667624
CERNEX	CBL26405040 / POWER AMP	Annual	04/16/2013	19660
Schwarzbeck	BBHA 9120D/ Horn Antenna	Biennial	10/17/2013	937
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	Biennial	10/30/2014	BBHA9170124
Rohde & Schwarz	FSP / Spectrum Analyzer	Annual	02/08/2014	839117/011
Agilent	E4416A /Power Meter	Annual	11/07/2013	GB41291412
Agilent	E9327A /POWER SENSOR	Annual	05/02/2013	MY4442009
Wainwright Instrument	WHF3.3/18G-10EF / High Pass Filter	Annual	05/02/2013	1
Wainwright Instrument	WRCJ2400/2483.5-2370/2520-60/14SS / Band Reject Filter	Annual	05/02/2013	1
Hewlett Packard	11636B/Power Divider	Annual	11/07/2013	11377
Agilent	87300B/Directional Coupler	Annual	12/24/2013	3116A03621
Hewlett Packard	11667B / Power Splitter	Annual	06/05/2013	05001
DIGITAL	EP-3010 /DC POWER SUPPLY	Annual	11/07/2013	3110117
ITECH	IT6720 / DC POWER SUPPLY	Annual	11/07/2013	010002156287001199
TESCOM	TC-3000C / BLUETOOTH TESTER	Annual	11/07/2013	3000C000276
Rohde & Schwarz	CBT / BLUETOOTH TESTER	Annual	05/02/2013	100422
EMCO	6502.LOOP ANTENNA	Biennial	01/11/2014	9009-2536
CERNEX	CBLU1183540 / POWER AMP	Annual	07/27/2013	21691

FCC PT.15.247 TEST REPORT	FCC CERTIFICATION REPORT		www.hct.co.kr
Test Report No.	Date of Issue:	EUT Type: Advanced Driver Assistance System	FCC ID:
HCTR1302FR19-2	March 27, 2013		X9R-ROADSCOPELX