Capstone Project Report

Name: Pooja Ramdas Kadam

Course: Al & ML (Batch - 4)

Problem Statement

Perform Hierarchical Clustering from scratch and also using sklearn to perform wholesale customer segmentation based on their annual spending on products. You can use this dataset. Use the threshold to

- 1. Divide the dataset into two clusters.
- 2. To divide the dataset into k clusters, such that the distance between the two clusters is greater than a given threshold (this threshold can be anything passed to the function).

Prerequisites

Along with Python below packages needed to be installed

Matplotlib

Sklearn

Scipy

Pandas

Dataset Used

https://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale%20customers%20 data.csv

Implementation

Import required libraries and load data

```
In [1]:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
import scipy.cluster.hierarchy as shc
from sklearn.cluster import AgglomerativeClustering
```

Load data

```
In [2]: df = pd.read_csv('Wholesale customers data.csv')
df.head(10)
Out[2]:
          Channel Region Fresh Milk Grocery Frozen Detergents_Paper Delicassen
                                            2674
       0 2 3 12669 9656
                                7561 214
                   3 7057 9810
                                 9568
                                       1762
                                                   3293
        2 2 3 6353 8808
                                                3516
                                 7684 2405
                                                       7844
                                                 507
                                                           1788
                   3 13265 1196
                                 4221
                                      6404
           2
                                               1777
                   3 22615 5410
                                 7198
                                       3915
                                                          5185
                    3 9413 8259
                                 5126
                                               3140
                                                         545
                                       480
           2
                   3 12126 3199
                                 6975
              2
                   3 7579 4956
                                 9426
                                       1669
                                                   3321
                                                          2566
                                6192 425
                                                        750
                               18881 1159
                                                  7425
                                                           2098
                   3 6006 11093
```

Normalize data

```
In [3]: scaler = StandardScaler()
         scaler = scaler.fit_transform(df)
df = pd.DataFrame(scaler, columns=df.columns)
df.head(10)
Out[3]:
                                             Milk Grocery Frozen Detergents_Paper Delicassen
              Channel Region
                                 Fresh
          0 1.448652 0.590668 0.052933 0.523568 -0.041115 -0.589367
                                                                            -0.043569 -0.066339
          1 1.448652 0.590668 -0.391302 0.544458 0.170318 -0.270136
          2 1.448652 0.590668 -0.447029 0.408538 -0.028157 -0.137536
                                                                         0.133232 2.243293
                                                                           -0.498588 0.093411
          3 -0.690297 0.590668 0.100111 -0.624020 -0.392977 0.687144
                                                                         -0.231918 1.299347
          4 1.448652 0.590668 0.840239 -0.052396 -0.079356 0.173859
          5 1.448652 0.590668 -0.204806 0.334067 -0.297637 -0.496155
                                                                            -0.228138 -0.026224
                                                                         0.054280 -0.347854
          6 1.448652 0.590668 0.009950 -0.352316 -0.102849 -0.534512
                                                                            0.092286 0.369601
          7 1.448652 0.590668 -0.349981 -0.113981 0.155359 -0.289315
          8 -0.690297 0.590668 -0.477901 -0.291409 -0.185336 -0.545854
                                                                            -0.244726 -0.275079
           9 1.448652 0.590668 -0.474497 0.718495 1.151423 -0.394488
```

Visualize dendograms

Apply AgglomerativeClustering

```
In [5]: clusters = AgglomerativeClustering(n_clusters=2, affinity='euclidean', linkage='ward')
   clusters.fit_predict(df)
1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1,
     1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
      1,
           0,
            1,
              1,
               1,
                   1, 0,
      In [6]: plt.scatter(df['Milk'], df['Grocery'], c=clusters.labels_)
```