Decision Trees and Random Forests Report

This report summarizes the implementation of tree-based models including Decision Trees and Random Forests for classification tasks. The work follows the provided Task 5 objectives and includes extra enhancements for better analysis.

Comparison Table

Step	Mini Guide	Implemented Code	Extra Feature
	Description		(If Any)
1	Train a	Used	Added class
	Decision Tree	DecisionTreeClassifier	names, feature
	Classifier and	from sklearn and	names, and
	visualize the	plotted with plot_tree	color-coded
	tree		nodes
2	Analyze	Trained models with	Visualized
	overfitting and	different max_depth	accuracy vs
	control tree	values	depth to detect
	depth		overfitting
3	Train a Random	Used	Visualized test
	Forest and	RandomForestClassifier	accuracy
	compare	and compared test	comparison in
	accuracy	accuracy	bar chart
4	Interpret feature	Plotted feature	Sorted and
	importances	importances from	labeled bar plot
		Random Forest model	of features
5	Evaluate using	Used cross_val_score	Displayed
	cross-validation	on both models	mean and std of
			cross-validation
			scores

Summary

The decision tree and random forest implementation successfully demonstrates key tree-based classification techniques. Visual outputs and performance metrics help in comparing models and identifying best practices such as limiting tree depth to reduce overfitting. Feature importance visualizations provide insights into which variables drive predictions.