```
In [708]: %load_ext sql
          The sql extension is already loaded. To reload it, use:
            %reload ext sql
In [709]: %sql mysql://prod:nerd@52.2.153.189/rental nerd
Out[709]: u'Connected: prod@rental_nerd'
In [762]: result = %sql (SELECT \
          properties.id as "property id", \
          property_transaction_logs.id as "transaction_log_id", \
          properties.*, \
          property_transaction_logs.* \
          FROM \
          properties, \
          property transactions, \
          property_transaction_logs \
          WHERE \
          properties.id = property transactions.property id AND \
          property_transactions.property_transaction_log_id = property_transaction_logs.id AND \
          property_transactions.transaction_type = 'rental')
          data = result.DataFrame()
          392 rows affected.
In [763]: result.csv(filename="SQLdump.csv")
Out[763]: CSV results (./files/SQLdump.csv)
```

http://localhost:8888/nbconvert/html/SQL%20SF%20Model.ipynb?download=false

In [712]: # imports

import pandas as pd

import matplotlib.pyplot as plt

follow the usual sklearn pattern: import, instantiate, fit

from sklearn.linear_model import LinearRegression

import numpy as np

this allows plots to appear directly in the notebook

%matplotlib inline

read data into a DataFrame

data.head()

Out[712]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
C	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.clin rent/567-vallejc
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.clin rent/252-grana
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.clin rent/460-valley
3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.clin rent/333-fremo
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.clin rent/420-missio

5 rows × 26 columns

```
In [713]: import datetime

Date_final = [0.1] * len(data)

for x in range(0,len(data)):
    data
    if data["date_rented"][x] is not None :
        # print " row: "+ `x` + ": using date_rented"
        # data.ix['Date_final',x]
        Date_final[x] = data["date_rented"][x]

elif data["date_listed"][x] is not None :
        # print " row: "+ `x` + ": using date_listed"
        Date_final[x] = data["date_listed"][x]
    else:
        print " row: "+ `x` + ": we are screwed"

data['Date'] = pd.to_datetime(Date_final)

data.head()
```

Out[713]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
0	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.clin rent/567-vallejo
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.clin rent/252-grana
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.clin rent/460-valley
3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.clin rent/333-fremo
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.clin rent/420-missid

5 rows × 27 columns

In [714]: # create year dummy variables (because date isn't very intuitive variable)
data["Year"] = pd.DatetimeIndex(data["Date"]).to_period('Y')

create dummy variables using get_dummies, then exclude the first dummy column
year_dummies = pd.get_dummies(data.Year, prefix='Year').iloc[:, :-1]

print out baseline neighborhood
base_area = pd.get_dummies(data.neighborhood, prefix='neighborhood').iloc[:, 0:1].columns[0]
print('Base neighborhood: %s' % base_area)

create dummy variables using get_dummies, then exclude the first dummy column
area_dummies = pd.get_dummies(data.neighborhood, prefix='neighborhood').iloc[:, 1:]

concatenate the dummy variable columns onto the original DataFrame (axis=0 means rows, axis=1 me ans columns)
data = pd.concat([data, area_dummies, year_dummies], axis=1)

data.head()

Base neighborhood: neighborhood_East Bay (Berkeley)

Out[714]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
0	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.clin rent/567-vallejo
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.clin rent/252-grana
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.clin rent/460-valley
3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.clin rent/333-fremo
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.clin rent/420-missid

5 rows × 91 columns

```
In [716]: # FACTORING BY YEAR AND NEIGHBORHOOD
          # Thesis: Neighborhoods influence valuations as a multiplier, rather than a constant.
          # a square foot in SOMA is worth more than a square foot in Portrero by X%
          # New model will look like this:
                 Price = B_1 x (SOMA Coeff * Year Coeff * Sqft) + intercept
                 $3,900 = B_1 \times (1.20\% * 1.15\% * 2,023 \ sqft) + intercept
          \# where B_1 represents the price per square foot in base year and base neighborhood
          # I will ignore intercepts for now FIXME
          # calculate the coefficients for the following matrix and save them for later regressions
                             SOMA
                                    Mission Portrero Intercept
          #
            Price/SQFT
                             $1.23
                                      $0.59
                                                  $0.88
                                                                $_.__
          # create Price per square foot
          price_per_foot = data.price / data.sqft
          price_per_foot.name = 'price_per_foot'
          data = pd.concat([data, price_per_foot], axis=1)
          data.head()
```

Out[716]:

		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.cl rent/252-grar
:	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.c
4	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.cl rent/420-mis:
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.cl rent/1160-mi:
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.cl rent/655-26th

5 rows × 92 columns

Out[717]: <matplotlib.axes._subplots.AxesSubplot at 0x10c0a0e10>


```
In [718]:
class ListTable(list):
    """ Overridden list class which takes a 2-dimensional list of
    the form [[1,2,3],[4,5,6]], and renders an HTML Table in
    IPython Notebook. """

def _repr_html_(self):
    html = [""]
    for row in self:
        html.append("")
    for col in row:
        html.append("{0}".format(col))

    html.append("
    html.append("
    html.append("
    html.append("
    html.append("")
    return ''.join(html)
```

```
In [719]: feature_cols = area_dummies.columns
          X = data[feature cols]
          y = data.price_per_foot
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          # print raw results
          print("Base area is %s: $%.2f" % (base_area, lm.intercept_))
          zip(feature_cols,lm.coef_)
          table = ListTable()
          dtype = [('Neighborhood', 'S100'), ('$ per square', float)]
          # round to pennies
          round_coef = map(round,lm.coef_,[2]*len(lm.coef_))
          x = np.array(zip(feature_cols, round_coef),dtype=dtype)
          x.T
          x = np.sort(x,axis=0,order='$ per square')
          table.append(['Neighborhood','$ per square (+/-)'])
          for i in x:
              table.append(i)
          table
```

Out[719]:

Neighborhood	\$ per square (+/-)
neighborhood_East Bay (Castro Valley)	-0.95
neighborhood_East Bay (Downtown Oakland)	-0.9
neighborhood_San Francisco (Visitacion Valley)	-0.88
neighborhood_Peninsula (Pacifica)	-0.4
neighborhood_San Francisco (Westwood Park)	-0.4
neighborhood_San Francisco (Ingleside)	-0.35
neighborhood_East Bay (West Oakland)	-0.34
neighborhood_East Bay (Walnut Creek)	-0.21
neighborhood_San Francisco (Bernal Heights)	-0.18
neighborhood_East Bay (Oakland)	-0.1
neighborhood_San Francisco (Glen Park)	-0.09
neighborhood_San Francisco (Portola)	-0.08
neighborhood_San Francisco (Diamond Heights)	-0.01

Base area is neighborhood East Bay (Berkeley): \$2.82

Residual sum of squares: 0.57

Variance score: 0.58

neighborhood_East Bay (Emeryville)	0.0
neighborhood_Other (Woodside)	-0.0
neighborhood_San Francisco (Clarendon Heights)	-0.0
neighborhood_San Francisco (Mission Bay/SoMa)	-0.0
neighborhood_San Francisco (Mission Terrace)	0.0
neighborhood_San Francisco (Candlestick Point)	0.1
neighborhood_San Francisco (Downtown San Francisco)	0.23
neighborhood_San Francisco (Central Richmond)	0.24
neighborhood_San Francisco (Bayview)	0.4
neighborhood_San Francisco (Excelsior)	0.4
neighborhood_San Francisco (Dogpatch)	0.44
neighborhood_San Francisco (Alamo Square)	0.47
neighborhood_San Francisco (Lone Mountain)	0.61
neighborhood_San Francisco (North Beach)	0.75
neighborhood_San Francisco (Van Ness-Civic Center)	0.76
neighborhood_San Francisco (Noe Valley)	0.79
neighborhood_San Francisco (Buena Vista)	0.88
neighborhood_San Francisco (Outer Richmond)	0.93
neighborhood_San Francisco (Golden Gate Heights)	1.01
neighborhood_San Francisco (Pacific Heights)	1.09
neighborhood_San Francisco (Western Addition)	1.11
neighborhood_San Francisco (Mission Bay)	1.19
neighborhood_San Francisco (North Panhandle)	1.22
neighborhood_San Francisco (SOMA)	1.29
neighborhood_San Francisco (Eureka Valley)	1.32
neighborhood_San Francisco (Potrero Hill)	1.33
neighborhood_San Francisco (Central Waterfront)	1.36
neighborhood_San Francisco (Eureka Valley-Dolores Heights)	1.44
neighborhood_San Francisco (Marina)	1.45
neighborhood_San Francisco (Cole Valley-Parnassus Heights)	1.49
neighborhood_San Francisco (Lower Pacific Heights)	1.54
neighborhood_San Francisco (Financial District)	1.55
neighborhood_San Francisco (South Beach)	1.56
neighborhood_San Francisco (Downtown)	1.62
neighborhood_San Francisco (Rincon Hill)	1.62
neighborhood_San Francisco (Duboce Triangle)	1.68
neighborhood_San Francisco (Russian Hill)	1.7
neighborhood_San Francisco (Inner Mission)	1.88
neighborhood_San Francisco (Nob Hill)	1.92

neighborhood_San Francisco (Yerba Buena)	2.06
neighborhood_San Francisco (South Financial District)	2.18
neighborhood_San Francisco (North Waterfront)	2.42
neighborhood_San Francisco (Mission Dolores)	2.57
neighborhood_San Francisco (Telegraph Hill)	2.73
neighborhood_San Francisco (Hayes Valley)	3.89

Out[720]:

Neighborhood	\$ per sqft
neighborhood_East Bay (Castro Valley)	1.875
neighborhood_East Bay (Downtown Oakland)	1.91666666667
neighborhood_San Francisco (Visitacion Valley)	1.93820224719
neighborhood_Peninsula (Pacifica)	2.416918429
neighborhood_San Francisco (Westwood Park)	2.41970021413
neighborhood_San Francisco (Ingleside)	2.46875
neighborhood_East Bay (West Oakland)	2.47789837974
neighborhood_East Bay (Walnut Creek)	2.61275829137
neighborhood_San Francisco (Bernal Heights)	2.64196428571
neighborhood_East Bay (Oakland)	2.72604154471
neighborhood_San Francisco (Glen Park)	2.72727272727
neighborhood_San Francisco (Portola)	2.73875140607
neighborhood_San Francisco (Diamond Heights)	2.8085106383
neighborhood_Other (Woodside)	2.82142857143
neighborhood_San Francisco (Clarendon Heights)	2.82142857143
neighborhood_San Francisco (Mission Bay/SoMa)	2.82142857143
neighborhood_San Francisco (Mission Terrace)	2.82142857143
neighborhood_East Bay (Emeryville)	2.82628422973

neighborhood_San Francisco (Candlestick Point)	2.92203694355
neighborhood_San Francisco (Downtown San Francisco)	3.05239029834
neighborhood_San Francisco (Central Richmond)	3.06552706553
neighborhood_San Francisco (Excelsior)	3.222222222
neighborhood_San Francisco (Bayview)	3.22391991699
neighborhood_San Francisco (Dogpatch)	3.25768667643
neighborhood_San Francisco (Alamo Square)	3.28947368421
neighborhood_San Francisco (Lone Mountain)	3.43047619048
neighborhood_San Francisco (North Beach)	3.57638888889
neighborhood_San Francisco (Van Ness-Civic Center)	3.57814224333
neighborhood_San Francisco (Noe Valley)	3.60648920661
neighborhood_San Francisco (Buena Vista)	3.69863013699
neighborhood_San Francisco (Outer Richmond)	3.75
neighborhood_San Francisco (Golden Gate Heights)	3.83333333333
neighborhood_San Francisco (Pacific Heights)	3.91275451144
neighborhood_San Francisco (Western Addition)	3.92880386618
neighborhood_San Francisco (Mission Bay)	4.00986324215
neighborhood_San Francisco (North Panhandle)	4.04545454545
neighborhood_San Francisco (SOMA)	4.10829762675
neighborhood_San Francisco (Eureka Valley)	4.14285714286
neighborhood_San Francisco (Potrero Hill)	4.15169529928
neighborhood_San Francisco (Central Waterfront)	4.17900211482
neighborhood_San Francisco (Eureka Valley-Dolores Heights)	4.26485551486
neighborhood_San Francisco (Marina)	4.27103404056
neighborhood_San Francisco (Cole Valley-Parnassus Heights)	4.30769230769
neighborhood_San Francisco (Lower Pacific Heights)	4.36170254619
neighborhood_San Francisco (Financial District)	4.36781609195
neighborhood_San Francisco (South Beach)	4.38016977664
neighborhood_San Francisco (Downtown)	4.4444444444
neighborhood_San Francisco (Rincon Hill)	4.44537317129
neighborhood_San Francisco (Duboce Triangle)	4.5
neighborhood_San Francisco (Russian Hill)	4.52570564516
neighborhood_San Francisco (Inner Mission)	4.70259376879
neighborhood_San Francisco (Nob Hill)	4.73751043452
neighborhood_San Francisco (Yerba Buena)	4.87764732847
neighborhood_San Francisco (South Financial District)	5.0
neighborhood_San Francisco (North Waterfront)	5.24109014675
neighborhood_San Francisco (Mission Dolores)	5.38924963925
neighborhood_San Francisco (Telegraph Hill)	5.54711246201

neighborhood_San Francisco (Hayes Valley)

6.71633352328

```
In [721]:
          # calculate the multipliers for each neighborhood relative to base area
          # SOMA mult = SOMA per foot / Base per foot
          area_mults = [lm.intercept_] * len(lm.coef_)
          area_mults = full_price / area_mults - [1]*len(lm.coef_)
          dtype = [('Neighborhood', 'S100'), ('Multiplier', float)]
          # round to pennies
          round_coef = map(round, area_mults,[2]*len(area_mults))
          x = np.array(zip(feature_cols, area_mults),dtype=dtype)
          x.T
          x = np.sort(x,axis=0,order='Multiplier')
          table = ListTable()
          table.append(['Neighborhood','Multiplier'])
          table.append([base_area,0])
          for i in x:
              table.append(i)
          table
```

Out[721]:

Neighborhood	Multiplier
neighborhood_East Bay (Berkeley)	0
neighborhood_East Bay (Castro Valley)	-0.335443037975
neighborhood_East Bay (Downtown Oakland)	-0.320675105485
neighborhood_San Francisco (Visitacion Valley)	-0.313042241502
neighborhood_Peninsula (Pacifica)	-0.143370683391
neighborhood_San Francisco (Westwood Park)	-0.142384734231
neighborhood_San Francisco (Ingleside)	-0.125
neighborhood_East Bay (West Oakland)	-0.121757536295
neighborhood_East Bay (Walnut Creek)	-0.073959086603
neighborhood_San Francisco (Bernal Heights)	-0.0636075949367
neighborhood_East Bay (Oakland)	-0.0338080601037
neighborhood_San Francisco (Glen Park)	-0.0333716915995
neighborhood_San Francisco (Portola)	-0.0293032991129
neighborhood_San Francisco (Diamond Heights)	-0.00457850794506
neighborhood_Other (Woodside)	-6.32827124036e-15
neighborhood_San Francisco (Clarendon Heights)	0.0
neighborhood_San Francisco (Mission Bay/SoMa)	0.0
neighborhood_San Francisco (Mission Terrace)	2.22044604925e-16
neighborhood_East Bay (Emeryville)	0.00172099281444
neighborhood_San Francisco (Candlestick Point)	0.035658663535
neighborhood_San Francisco (Downtown San Francisco)	0.0818598525776
neighborhood_San Francisco (Central Richmond)	0.086515921959
_	1

neighborhood_San Francisco (Excelsior)	0.142053445851
neighborhood_San Francisco (Bayview)	0.142655160452
neighborhood_San Francisco (Dogpatch)	0.154623125822
neighborhood_San Francisco (Alamo Square)	0.165889407062
neighborhood_San Francisco (Lone Mountain)	0.215864978903
neighborhood_San Francisco (North Beach)	0.267580872011
neighborhood_San Francisco (Van Ness-Civic Center)	0.268202314093
neighborhood_San Francisco (Noe Valley)	0.27824933905
neighborhood_San Francisco (Buena Vista)	0.310906883995
neighborhood_San Francisco (Outer Richmond)	0.329113924051
neighborhood_San Francisco (Golden Gate Heights)	0.35864978903
neighborhood_San Francisco (Pacific Heights)	0.386799067347
neighborhood_San Francisco (Western Addition)	0.392487446241
neighborhood_San Francisco (Mission Bay)	0.421217351648
neighborhood_San Francisco (North Panhandle)	0.433831990794
neighborhood_San Francisco (SOMA)	0.456105487961
neighborhood_San Francisco (Eureka Valley)	0.46835443038
neighborhood_San Francisco (Potrero Hill)	0.471486941518
neighborhood_San Francisco (Central Waterfront)	0.481165306518
neighborhood_San Francisco (Eureka Valley-Dolores Heights)	0.511594359696
neighborhood_San Francisco (Marina)	0.513784216909
neighborhood_San Francisco (Cole Valley-Parnassus Heights)	0.526777020448
neighborhood_San Francisco (Lower Pacific Heights)	0.545919889788
neighborhood_San Francisco (Financial District)	0.548086716136
neighborhood_San Francisco (South Beach)	0.552465237289
neighborhood_San Francisco (Downtown)	0.575246132208
neighborhood_San Francisco (Rincon Hill)	0.575575301216
neighborhood_San Francisco (Duboce Triangle)	0.594936708861
neighborhood_San Francisco (Russian Hill)	0.604047570437
neighborhood_San Francisco (Inner Mission)	0.666742095268
neighborhood_San Francisco (Nob Hill)	0.679117622362
neighborhood_San Francisco (Yerba Buena)	0.728786394902
neighborhood_San Francisco (South Financial District)	0.772151898734
neighborhood_San Francisco (North Waterfront)	0.857601571
neighborhood_San Francisco (Mission Dolores)	0.91011379619
neighborhood_San Francisco (Telegraph Hill)	0.966065176407
neighborhood_San Francisco (Hayes Valley)	1.38047264116

```
In [722]: # calculate the adjusted Sqft (Sqft * Area_mult) for the dataset and add it as a new column to dat
a

# for each property, multiplier is sum of array [area_dummies] x [area_mults]

t = data[area_dummies.columns] * area_mults

t = t.T.sum()

t.name = 'area_multiplier'

t = t + 1

data = pd.concat([data, t], axis=1)

adj_sqft = data.sqft * t
adj_sqft.name = 'area_adj_sqft'
data = pd.concat([data, adj_sqft], axis=1)

data.head()
```

Out[722]:

		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
•	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.c rent/252-grar
Ī	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.c
•	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.cl rent/420-mis:
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.cl rent/1160-mi:
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.cl rent/655-26th

5 rows × 94 columns

```
In [723]: # run the regression based on area_adj_sqft rather than sqft
          # create X and y
          feature_cols = [data.area_adj_sqft.name]
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          zip(feature_cols, lm.coef_)
          # calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
```

Out[723]: []

Intercept: 1041.67

Variance score: 0.76

Residual sum of squares: 441256.17


```
In [724]: feature_cols = year_dummies.columns
          X = data[feature cols]
          y = data.price per foot
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          # print raw results
          print lm.intercept_
          zip(feature_cols,lm.coef_)
          Residual sum of squares: 1.25
          Variance score: 0.08
          4.5007879875
Out[724]: [(u'Year_1969', -1.6454580382583559),
           (u'Year_2011', -0.33022715359146831),
           (u'Year_2012', -1.074493166779801),
           (u'Year_2013', -0.75731724502172704),
           (u'Year 2014', -0.56961588108209849)]
In [725]: full_price = [lm.intercept_] * len(lm.coef_)
          full price += lm.coef
          year price per foot = dict(zip(feature cols,full price))
          year price per foot[base area] = lm.intercept
          print year_price_per_foot
          {u'Year 1969': 2.8553299492385769, u'Year 2012': 3.426294820717132, u'Year 2013': 3.74347074247520
          61, u'Year 2011': 4.1705608339054647, 'neighborhood East Bay (Berkeley)': 4.500787987496933, u'Yea
          r_2014': 3.9311721064148344}
In [726]: # calculate the multipliers for each year relative to base year
          # 2014 mult = 2014 per foot / 2015 per foot
          year_mults = [lm.intercept_] * len(lm.coef_)
          year_mults = full_price / year_mults - [1]*len(lm.coef_)
          zip(feature_cols, year_mults)
Out[726]: [(u'Year_1969', -0.3655933233979014),
           (u'Year_2011', -0.07337096404203669),
           (u'Year_2012', -0.23873445489205758),
           (u'Year_2013', -0.16826325681759147),
           (u'Year_2014', -0.1265591453462096)]
```

```
In [727]: # calculate the adjusted Sqft (Sqft * Year_mult) for the dataset and add it as a new column to dat
a

# for each property, multiplier is sum of array [year_dummies] x [year_mults]

t = data[year_dummies.columns] * year_mults

t = t.T.sum()

t.name = 'year_multiplier'

t = t + 1

data = pd.concat([data, t], axis=1)

year_adj_sqft = data.area_adj_sqft * t
year_adj_sqft.name = 'adj_sqft'
data = pd.concat([data, year_adj_sqft], axis=1)

data.head()
```

Out[727]:

:		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.c rent/252-grar
	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.c rent/460-valle
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.cl rent/420-miss
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.c rent/1160-mi
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.c rent/655-26th

 $5 \text{ rows} \times 96 \text{ columns}$

```
In [728]: # run the regression based on year_and_area_adj_sqft rather than area_adj_sqft
          # create X and y
          feature_cols = ['adj_sqft']
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print lm.intercept_
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          # calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort(inplace=True)
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          errors.tail(10)
          941.521211083
          Residual sum of squares: 419109.96
          Variance score: 0.77
          [('adj_sqft', 2.306505722057671)]
Out[728]: 34
                 1158.095914
                 1166.525374
          181
          73
                 1275.884300
          320
                 1280.805609
          326
                 1495.345136
          105
                 1696.350944
          328
                 1943.888012
          236
                 2059.761250
          60
                 2081.582673
          66
                 2142.403403
          Name: Error, dtype: float64
            3000
            2000
```



```
In [729]: # create X and y
          feature_cols = ['adj_sqft', 'bedrooms', 'bathrooms']
          X = data[feature cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          # calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          Intercept: 777.49
          Residual sum of squares: 387000.91
```

[('adj_sqft', 2.0042956638310701), ('bedrooms', 163.98155450733458), ('bathrooms', 222.82601785404

Out[729]: []

927)]

Variance score: 0.79


```
In [730]: # show errors by neighborhood to see if there are any neighborhoods with funky differences
          hooderrors = data[['neighborhood']]
          errors = predictions-y
          errors.name = 'Error'
          hooderrors = pd.concat([hooderrors,errors.abs()],axis=1)
          hood_group = hooderrors.groupby('neighborhood')
          import numpy
          def median(lst):
              return numpy.median(numpy.array(lst))
          error_avg = hood_group.median()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
          # show errors by year to see if there are any years with funky differences
          yearerrors = data[['Year']]
          yearerrors = pd.concat([yearerrors,errors.abs()],axis=1)
          year_group = yearerrors.groupby('Year')
          error_avg = year_group.mean()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
          # show errors by source to see if there are any sources have noisy data
          srcerrors = data[['source']]
          srcerrors = pd.concat([srcerrors,errors.abs()],axis=1)
          src group = srcerrors.groupby('source')
          error_avg = src_group.mean()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
```

Out[730]: <matplotlib.axes._subplots.AxesSubplot at 0x10e6df9d0>

2013

Year 2015

100

2011


```
In [731]: import csv
          table = ListTable()
          dtype = [('Effect', 'S100'), ('Coefficient', float)]
          # round to pennies
          round_coef = map(round,lm.coef_,[6]*len(lm.coef_))
          x = np.array(zip(feature cols, round coef),dtype=dtype)
          x.T
          print zip(feature_cols, lm.coef_)
          #x = np.sort(x,axis=0,order='Coefficient')
          with open('model features v1.csv', 'wb') as csvfile:
              modelwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
              header = ['Effect','Coefficient']
              table.append(header)
              modelwriter.writerow(header)
              for i in x:
                  table.append(i)
                  modelwriter.writerow(i)
              table.append(['base_rent', lm.intercept_])
              modelwriter.writerow(['base_rent',lm.intercept_])
          table
```

[('adj_sqft', 2.0042956638310701), ('bedrooms', 163.98155450733458), ('bathrooms', 222.82601785404
927)]

Out[731]:

Effect	Coefficient
adj_sqft	2.004296
bedrooms	163.981555
bathrooms	222.826018
base_rent	777.494958254

```
In [732]: table = ListTable()
          dtype = [('Effect', 'S100'), ('Coefficient', float)]
          # round to pennies
          round_coef = map(round,(area_mults + [1]*len(area_mults)),[6]*len(area_mults))
          x = np.array(zip(area_dummies.columns, round_coef),dtype=dtype)
          x = np.sort(x,axis=0,order='Coefficient')
          with open('model_hoods_v1.csv', 'wb') as csvfile:
              hoodwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE MINIMAL)
              header = ['Neighborhood','Multiplier']
              table.append(header)
              hoodwriter.writerow(header)
              for i in x:
                  table.append(i)
                  hoodwriter.writerow(i)
              lastrow = [base area, 1]
              table.append(lastrow)
              hoodwriter.writerow(lastrow)
          table
```

Out[732]:

Neighborhood	Multiplier
neighborhood_East Bay (Castro Valley)	0.664557
neighborhood_East Bay (Downtown Oakland)	0.679325
neighborhood_San Francisco (Visitacion Valley)	0.686958
neighborhood_Peninsula (Pacifica)	0.856629
neighborhood_San Francisco (Westwood Park)	0.857615
neighborhood_San Francisco (Ingleside)	0.875
neighborhood_East Bay (West Oakland)	0.878242
neighborhood_East Bay (Walnut Creek)	0.926041
neighborhood_San Francisco (Bernal Heights)	0.936392
neighborhood_East Bay (Oakland)	0.966192
neighborhood_San Francisco (Glen Park)	0.966628
neighborhood_San Francisco (Portola)	0.970697
neighborhood_San Francisco (Diamond Heights)	0.995421
neighborhood_Other (Woodside)	1.0
neighborhood_San Francisco (Clarendon Heights)	1.0
neighborhood_San Francisco (Mission Bay/SoMa)	1.0
neighborhood_San Francisco (Mission Terrace)	1.0
neighborhood_East Bay (Emeryville)	1.001721
neighborhood_San Francisco (Candlestick Point)	1.035659
neighborhood_San Francisco (Downtown San Francisco)	1.08186
neighborhood_San Francisco (Central Richmond)	1.086516

neighborhood_San Francisco (Excelsior)	1.142053
neighborhood_San Francisco (Bayview)	1.142655
neighborhood_San Francisco (Dogpatch)	1.154623
neighborhood_San Francisco (Alamo Square)	1.165889
neighborhood_San Francisco (Lone Mountain)	1.215865
neighborhood_San Francisco (North Beach)	1.267581
neighborhood_San Francisco (Van Ness-Civic Center)	1.268202
neighborhood_San Francisco (Noe Valley)	1.278249
neighborhood_San Francisco (Buena Vista)	1.310907
neighborhood_San Francisco (Outer Richmond)	1.329114
neighborhood_San Francisco (Golden Gate Heights)	1.35865
neighborhood_San Francisco (Pacific Heights)	1.386799
neighborhood_San Francisco (Western Addition)	1.392487
neighborhood_San Francisco (Mission Bay)	1.421217
neighborhood_San Francisco (North Panhandle)	1.433832
neighborhood_San Francisco (SOMA)	1.456105
neighborhood_San Francisco (Eureka Valley)	1.468354
neighborhood_San Francisco (Potrero Hill)	1.471487
neighborhood_San Francisco (Central Waterfront)	1.481165
neighborhood_San Francisco (Eureka Valley-Dolores Heights)	1.511594
neighborhood_San Francisco (Marina)	1.513784
neighborhood_San Francisco (Cole Valley-Parnassus Heights)	1.526777
neighborhood_San Francisco (Lower Pacific Heights)	1.54592
neighborhood_San Francisco (Financial District)	1.548087
neighborhood_San Francisco (South Beach)	1.552465
neighborhood_San Francisco (Downtown)	1.575246
neighborhood_San Francisco (Rincon Hill)	1.575575
neighborhood_San Francisco (Duboce Triangle)	1.594937
neighborhood_San Francisco (Russian Hill)	1.604048
neighborhood_San Francisco (Inner Mission)	1.666742
neighborhood_San Francisco (Nob Hill)	1.679118
neighborhood_San Francisco (Yerba Buena)	1.728786
neighborhood_San Francisco (South Financial District)	1.772152
neighborhood_San Francisco (North Waterfront)	1.857602
neighborhood_San Francisco (Mission Dolores)	1.910114
neighborhood_San Francisco (Telegraph Hill)	1.966065
neighborhood_San Francisco (Hayes Valley)	2.380473
neighborhood_East Bay (Berkeley)	1

Out[733]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.c
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.c rent/460-vall
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.c rent/420-mis

5 rows × 98 columns

```
In [754]: # filter out overshoot error
    overshoot = data[(data.error <= -500)]
    columns = data.columns - ['error','latitude', 'longitude', 'address', 'origin_url','price','neighb
    orhood']
    overshoot = data.drop(columns,1)
    overshoot.sort('error',ascending=True,inplace=True)
    overshoot.head(30)</pre>
```

Out[754]:

	address	neighborhood	origin_url	latitude	longitude	price	error
232	2560 Vallejo Street	San Francisco (Pacific Heights)	http://www.climbsf.com/for- rent/2560-vallejo-st/	37.7950	-122.439	7050	-2178.797974
273	301 Mission Street #29F	San Francisco (South Beach)	http://www.climbsf.com/for- rent/301-mission-st	37.7905	-122.396	7975	-2072.695315
233	338 Spear Street #39E	San Francisco (South Beach)	http://www.climbsf.com/for- rent/338-spear-st-39e/	37.7894	-122.391	7975	-1960.351923
89	88 King Street #904	San Francisco (South Beach)	http://www.climbsf.com/for- rent/88-king-st-904/	37.7807	-122.389	6250	-1823.586896
283	234 Grand View Avenue	San Francisco (Noe Valley)	http://www.climbsf.com/for- rent/234-grand-view	37.7545	-122.441	7300	-1821.018910
158	338 Spear Street #39A	San Francisco (South Beach)	http://www.climbsf.com/for- rent/338-spear-st-39a/	37.7894	-122.391	6700	-1784.448942
382	480 Mission Bay Boulevard North #PH1606	San Francisco (Mission Bay)	http://www.climbsf.com/for- rent/480-mission-ba	37.7731	-122.393	7500	-1459.591211
299	401 Harrison Street #3803	San Francisco (Rincon Hill)	http://www.climbsf.com/for- rent/401-harrison-s	37.7864	-122.392	7225	-1445.436698

381	301 Main Street #35F	San Francisco (South Beach)	http://www.climbsf.com/for- rent/301-main-st-35f/	37.7894	-122.391	7000	-1332.243966
263	163 Liberty Street	San Francisco (Noe Valley)	http://www.climbsf.com/for- rent/163-liberty-st/	37.7571	-122.425	7500	-1175.150774
364	1414 Douglass Street	San Francisco (Noe Valley)	http://www.climbsf.com/for- rent/1414-douglass-st/	37.7452	-122.438	7400	-1173.230424
113	301 Mission Street #701	San Francisco (SOMA)	http://www.climbsf.com/for-rent/301-mission-st	37.7905	-122.396	7400	-1103.332016
119	1837 Jefferson Street	San Francisco (Marina)	http://www.climbsf.com/for-rent/1837-jefferson	37.8045	-122.443	6200	-1084.530022
134	301 Main Street #25E	San Francisco (South Beach)	http://www.climbsf.com/for- rent/301-main-st-25e/	37.7894	-122.391	5800	-1041.888269
204	1839 Jefferson Street	San Francisco (Marina)	http://www.climbsf.com/for- rent/1839-jefferson	37.8048	-122.443	6400	-979.770628
293	425 1st Street #3402	San Francisco (Rincon Hill)	http://www.climbsf.com/for- rent/425-1st-st-3402/	37.7858	-122.392	6600	-915.174261
369	333 Fremont Street #802	San Francisco (South Beach)	http://www.climbsf.com/for-rent/333-fremont-st	37.7877	-122.393	4275	-913.908333
235	1880 Jackson Street	San Francisco (Pacific Heights)	http://www.climbsf.com/for-rent/1880-jackson-s	37.7938	-122.426	4800	-892.309226
285	1160 Mission Street #1212	San Francisco (SOMA)	http://www.climbsf.com/for-rent/1160-mission-s	37.7784	-122.412	3700	-853.286609
174	301 Main Street #14F	San Francisco (South Beach)	http://www.climbsf.com/for- rent/301-main-st-14f/	37.7894	-122.391	5950	-846.727924
72	235 Berry Street #107	San Francisco (Mission Bay)	http://www.climbsf.com/for- rent/235-berry-st-1	37.7749	-122.394	7500	-823.611934
270	333 1st Street #N305	San Francisco (Rincon Hill)	http://www.climbsf.com/for- rent/333-1st-st-n305/	37.7870	-122.394	3900	-780.094499
161	219 Brannan Street #7E	San Francisco (South Beach)	http://www.climbsf.com/for-rent/219-brannan-st	37.7830	-122.390	5200	-760.646739
123	480 Mission Bay Boulevard North #1608	San Francisco (Mission Bay)	http://www.climbsf.com/for-rent/480-mission-ba	37.7711	-122.389	5475	-739.637794
70	338 Spear Street #18B	San Francisco (South Beach)	http://www.climbsf.com/for- rent/338-spear-st-18b/	37.7894	-122.391	5700	-727.512249
109	229 Brannan Street #12J	San Francisco (South Beach)	http://www.climbsf.com/for-rent/229-brannan-st	37.7826	-122.390	5950	-710.945004
316	35 Dolores Street #410	San Francisco (Mission Dolores)	http://www.climbsf.com/for-rent/35-dolores-st	37.7686	-122.427	6050	-670.457098
203	461 2nd St. #557T	San Francisco (South Beach)	http://www.climbsf.com/for- rent/461-2nd-st-557t/	37.7838	-122.394	6750	-661.047512
7	1160 Mission Street #1112	San Francisco (SOMA)	http://www.climbsf.com/for-rent/1160-mission-s	37.7784	-122.412	3750	-647.836101
13	1615 Broadway #12	East Bay (Oakland)	http://www.climbsf.com/for- rent/1615-broadway-12/	37.8062	-122.270	5500	-645.162355

```
In [741]: data = data[(data.sqft <= 2500) & (data.price <= 8000) & (data.price != 0) & (data.bedrooms <= 4)
          & (data.bathrooms <= 3) & (data.sqft != 0)]
          # add squared square footage to the table
          squared = data.adj sqft ** 2
          squared.name = 'sqft_squared'
          squared beds = data.bedrooms ** 2
          squared_beds.name = 'beds_squared'
          data = pd.concat([data, squared, squared beds], axis=1)
          #data = pd.concat([data, squared_beds], axis=1)
          # create X and y
          feature_cols = ['adj_sqft', 'bedrooms', 'bathrooms', 'sqft_squared', 'beds_squared']
          X = data[feature cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          # calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get xaxis().set ticks([])
```

Intercept: 307.20

Residual sum of squares: 381591.18

Variance score: 0.79

[('adj_sqft', 2.8234172396831432), ('bedrooms', 47.831996828432828), ('bathrooms', 237.23917675426
785), ('sqft_squared', -6.3971499961937588e-05), ('beds_squared', -6.3970609468664392e-05)]

Out[741]: []

In [750]: import statsmodels.formula.api as sm

result = sm.ols(formula="price ~ adj_sqft + bedrooms + bathrooms", data=data).fit()

print result.params
print result.summary()

Intercept 777.494958 adj_sqft 2.004296 bedrooms 163.981555 bathrooms 222.826018

dtype: float64

OLS Regression Results

===========			
Dep. Variable:	price	R-squared:	0.792
Model:	OLS	Adj. R-squared:	0.789
Method:	Least Squares	F-statistic:	360.6
Date:	Sun, 02 Aug 2015	Prob (F-statistic):	1.13e-96
Time:	13:58:07	Log-Likelihood:	-2269.2
No. Observations:	289	AIC:	4546.
Df Residuals:	285	BIC:	4561.
Df Model:	3		
Covariance Type:	nonrobust		

========	========	========	========	=========	========	=======
	coef	std err	t	P> t	[95.0% Co	nf. Int.]
Intercept adj_sqft	777.4950	115.897 0.094	6.708 21.240	0.000 0.000	549.372 1.819	1005.618
bedrooms	163.9816	69.444	2.361	0.019	27.294	300.669
bathrooms	222.8260	100.200	2.224	0.027	25.601	420.051
Omnibus:		14.	851 Durbi	======== n-Watson:		1.707
Prob(Omnibu	s):	0.	001 Jarqu	e-Bera (JB):		29.213
Skew:		0.	244 Prob(JB):		4.53e-07
Kurtosis:		4.	479 Cond.	No.		5.30e+03
========			=======		=======	=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.3e+03. This might indicate that there are strong multicollinearity or other numerical problems.

In [812]: from mpl_toolkits.basemap import Basemap
import fiona

```
In [816]: plt.figure(figsize=(12,12))
          # Create the Basemap
          event_map = Basemap(projection='merc',
                              resolution='h', epsg=2227,
                              lat_0 = 37.7, lon_0=-122.4, # Map center
                              llcrnrlon=-122.55, llcrnrlat=37.7, # Lower left corner
                              urcrnrlon=-122.35, urcrnrlat=37.85) # Upper right corner
          # Draw important features
          event_map.arcgisimage(service='World_Shaded_Relief', xpixels = 1500, verbose= True)
          # add neighborhoods
          #event_map.readshapefile(
                'data/Realtor_Neighborhoods/Realtor_Neighborhoods', 'SF', color='none', zorder=2)
          # create array storing lats and longs
          listing coords = zip(data.latitude,data.longitude)
          # Draw the points on the map:
          for longitude, latitude in listing_coords:
              x, y = event_map(latitude, longitude) # Convert lat, long to y,x
              event_map.plot(x,y, 'ro', alpha=0.3)
```


In [789]:	
Out[789]:	37.4299000000004
In []:	