Part 2

차이를 설명하는 통계 개념

[2개 연속형 변수의 관계 탐색]

산점도(Scatter plot)

변수와 차원

- $-n \times p$ 데이터는 p차원 공간에 n개 점이 찍힌 공간으로 설명 가능
- 두 연속형 변수가 있는 데이터는 2차원 공간으로 설명가능
- 산점도: 관측치의 위치를 점으로 표현한 그림
- 예제) Pearson의 키 데이터
 - 아빠 키와 아들 키를 각각 x축, y축 좌표로 활용한 산점도

가족 번호	아빠 키(cm)	0 들 키(cm)
1	162.2	151.8
2	160.7	160.6
1,077	179.7	176.0
1,078	178.6	170.2

산점도의 사분면과 상관관계

사분면의 구성

- x축, y축의 평균을 기준으로 가로, 세로로 공간을 분할
- 오른쪽 위부터 반시계 방향으로 1, 2, 3, 4 사분면 생성

사분면과 상관관계

- 제 1, 3 사분면의 점은 "두 변수가 양의 상관관계를 가짐"에 영향 • 아빠 키가 크면 아들 키도 크고, 아빠 키가 작으면 아들 키도 작음
- 제 2, 4 사분면의 점은 "두 변수가 음의 상관관계를 가짐"에 영향
- 아빠 키, 아들 키 데이터의 경우 제 1, 3사분면에 관측치가 더 많아 아빠 키와 아들 키는 양의 상관관계를 가진다고 볼 수 있음

공분산(Covariance)

공분산의 계산

$$q_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

- 산점도에서 두 변수의 상관관계를 숫자 하나로 계산한 값
- 계산과정
 - 각 점의 x변수가 평균으로 부터 떨어진 거리 $(x_i \bar{x})$ 를 계산
 - 각 점의 y변수가 평균으로 부터 떨어진 거리 $(y_i \bar{y})$ 를 계산
 - 두 거리를 곱해 직사각형의 면적을 계산
 - 제 1, 3 사분면의 점은 양(+)의 면적, 제 2, 4 사분면의 점은 음(-)의 면적이 계산됨
 - n개 각 관측치의 직사각형 면적을 모두 더해 (n-1)로 나눔

공분산의 활용과 한계

공분산의 활용

- 계산된 공분산으로 두 변수의 상관관계를 유추가능
 - 0에 가까울 수록 서로 관련이 없음
 - 큰 양수가 나오면 강한 양의 상관관계, 큰 음수가 나오면 강한 음의 상관관계가 있음

공분산의 한계

- 공분산의 단위(Unit)는 두 변수 x, y단위의 곱
 - 예제) x가 키(cm)이고 y가 몸무게(kg)일 때 공분산의 단위는 $cm \cdot kg$
 - 의미 파악과 활용이 어려움
- 공분산은 단위(Scale)에 영향을 받음
 - 예제) cm 단위인 x = m 단위로 바꾸면, 동일한 데이터로 계산된 공분산이 100배 차이 남

상관계수(Correlation)

번호	아빠키(cm)	아들 키(cm)	표 준 화된 아빠 키 (cm)	표 준 화된 아들 키 (cm)
1	162.2	151.8	-1	-3.2
2	160.7	160.6	-1.6	-1.9
•••	•••	•••	•••	•••
1,077	179.7	176.0	1.1	0.2
1,078	178.6	170.2	1.0	-0.6

상관계수(Correlation)

상관계수(Correlation)

상관계수의 계산

$$r_{xy} = \frac{q_{xy}}{s_x s_y} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \bar{x})}{s_x} \frac{(y_i - \bar{y})}{s_y}, \quad -1 \le r_{xy} \le 1$$

- 표준화된 두 변수의 공분산을 계산
- -x와 y가 완전히 똑같을 때(x = y) 최대값 1, 완전히 반대로 갈 때(x = -y) 최소값 1을 가짐
- 어떠한 두 연속형 변수에 대해서도 -1부터 1 사이의 값을 가짐
- 예제) 키 데이터의 상관계수
 - 아빠 키와 아들 키의 상관계수는 약 0.5

[2개 범주형 변수의 관계 탐색]

교차표와 백분율

교차표(Contingency table)

- 두 범주형 변수의 수준 조합별 관측치 개수를 세어 표현한 표
- 연속형 변수와 달리 지정된 수준을 가지는 범주형 변수의 특성이 반영됨
- 연속형 변수의 산점도와 마찬가지로 두 변수의 관계를 확인 가능
- 예제) 최근 4회 하계 올림픽에서의 메달 성적 교차표

	금메달	은메달	동메달	행 합계	
28회 아테네	9	12	9	30	
29회 베이징	13	10 9		32	
30회 런던	13	8	7	28	
31회 리우	9	3	9	21	
열 합계	열 합계 44		34	111	

교차표와 백분율

- 교차표로 표현된 두 변수의 관계를 확인하기 위해서는 백분율 계산이 필수적

행 백분율과 열 백분율

행 백분율

- 각 행의 합계를 1로 고정했을 때 각 열의 비중
- 전체 열 합계에 대한 행 백분율이 기준 값이 됨
- 예제)
 - 전체 열 합계에서 금메달의 비중은 40%
 - 29회 베이징은 전체와 비슷하지만,
 - 28회 아테네는 금메달의 비중이 30%로 상대적으로 낮고
 - 30회 런던은 금메달의 비중이 46%로 상대적으로 높음

열 백분율

- 각 열의 합계를 1로 고정했을 때 각 행의 비중

	금메달	은메달	동메달	행 합계
28회 아테네	0.30	0.40	0.30	1.00
29회 베이징	0.41	0.41 0.31 0.28		1.00
30회 런던	0.46	0.29	0.25	1.00
31회 라우	0.43	0.14	0.43	1.00
열 합계	0,40	0.40 0.30		1,00

	금메달	은메달	은메달 통메달	
28회 이테네	0.20	0.36	0.26	0,27
29회 베이징	0.30	0.30	0.26	0,29
30회 런던	0.30	0.24	0.21	0,25
31회 리우	0.20	0.09	0.26	0,19
열 합계	1.00	1.00	1.00	1,00

열지도(Heatmap)

열지도

- 교차표의 시각화 방법
- 수준 간의 차이를 숫자가 아닌 색깔로 확인
- 일반적으로 값이 크면 색을 진하게, 값이 작으면 색을 연하게 표현
- 예제) 올림픽 메달 데이터의 열지도와 행 백분율의 열지도

열지도 예제

2015년 인구 총 조사 기준 지역/연령대별 인구분포표

- 숫자로 채운 교차표보다 색깔로 표현한 열지도가 훨씬 더 효율적

열 백분율 기준 지역별 연령대 분포의 열지도

[일반적인 두 변수의 관계 탐색]

독립(Independence)

독립

- 두 변수가 서로 관련이 없는 상태
- 연속형 변수의 독립
 - 상관계수가 0에 가까울 때
- 범주형 변수의 독립
 - 교차표에서 계산한 행/열 백분율과 전체 합계 행/열 백분율에 차이가 없을 때
- 예제) 독립을 가정한 올림픽 메달 교차표

	금메달	은메달	동메달	행 합계	
28회 아테네	12	9	9	30	
29회 베이징	13	10	10	32	
30회 런던	11	8	9	28	
31회 리우	8	6	6	21	
열 합계	44	33	34	111	

조건부 확률과 조건부 평균

조건(Condition)

- 데이터에 있는 변수에 기준 값을 지정한 것
- 전체 관측치가 아닌 부분 관측치를 선택할 때 활용
- 예제) 아빠 키가 180*cm*이상인 가족

조건부 확률

- 전체 관측치에 대한 확률이 아닌 조건으로 선택된 부분 관측치에 대한 확률
- 예제)
 - 전체 가족에서 아들 키가 180cm 이상일 확률 = 22%
 - 아빠 키가 180cm이상인 가족에서 아들 키가 180cm 이상일 확률 = 35%

조건부 평균

- 전체 관측치에 대한 확률이 아닌 조건으로 선택된 부분 관측치에 대한 평균
- 예제) 아빠 키가 180cm이상인 가족에서 아들 키의 평균

조건부 확률과 조건부 평균

심슨의 역설(Simpson's paradox)

심슨의 역설

- 관측치의 구성에 따라 전체 확률과 조건부 확률이 모순처럼 보이는 경우
- 예제)
 - 성별 전체 합격률에서 남자의 합격율이 높은 것처럼 보이지만, 성/학과별 합격률을 계산해 보면 오히려 여자의 합격률이 높음

학과	성별	지원자	합격자	합격률
A학과	남자	80	64	80%
Wahd	여자	20	18	90%
B학과	남자	20	4	20%
	여자	80	24	30%

심슨의 역설(Simpson's paradox)

	A학과	B학과	합계
남자	80	20	100
여자	20	80	100
합계	100	100	200

[더 복잡한 변수 간의 관계 탐색]

3차원 이상의 교차표

- 두 개의 변수로 계산한 (2차원) 교차표보다 훨씬 복잡한 정보를 포함
- 모자이크 그림 등으로 시각화 가능
- 예제) 타이타닉 호의 생존/사망 데이터

- "생존율에 가장 큰 영향을 미친 요인은 무엇일까?"에 대한 답을 주지는 못함

상	돈 여부	사망					생존			
	합계	1,490			711					
6	명 구분	아	0	성	인	0101		성인		
	합계	52		1,4	38	5	7	65	654	
	성별	남자 여자		남자	여자	남자	여자	남자	여자	
	합계	35 17		1,329	109	29	28	338	316	
	1등석	0	0	118	4	5	1	57	140	
좌 석	2 등 석	0	0	154	13	11	13	14	80	
등급	3 등 석	35	17	387	89	13	14	75	76	
	선원	0	0	670	3	0	0	192	20	

의사결정나무(Decision Tree) 모형

통계 모형(Statistical Model)

- 표현 방법은 다르나 "확률 모형", "기계 학습" 등과 본질적으로 동일한 의미
- 관심있는 사건의 평균이나 확률을 설명하기 위해 다른 변수들을 활용
- 다른 변수를 조건으로 활용해서 조건부 확률, 조건부 평균을 계산

의사결정나무 모형

- 나무가지가 "Y" 형태로 갈라지듯 조건을 활용하여 관측치들을 두 개의 하위그룹으로 분할
- 나뉜 두 하위 그룹의 확률 혹은 평균의 차이가 가장 큰 조건을 선택
- 재귀분할(Recursive partitioning)로 모형 세분화
 - 하위 그룹을 계속해서 두 개의 더 작은 하위 그룹으로 분할
- 가지치기(Pruning)로 모형 단순화
 - 적정한 가지수를 포착하고 하위그룹을 단순화

의사결정나무(Decision Tree) 모형

의사결정나무 모형의 예제

의사결정나무 모형을 활용한 타이타닉 생존 확률 확인

- 전체 생존율: 전체 탑승객(100%)의 생존율은 32%

- 첫번째 분할: 남자 탑승객(전체 중 79%)의 생존율은 21%지만, 여자 탑승객(전체 중 21%)의 생존율은 73%
 - 다른 조건들보다 성별로 관측치를 나눴을 때 두 그룹의 생존율이 가장 큰 차이를 보임

의사결정나무 모형의 예제

의사결정나무 모형을 활용한 타이타닉 생존 확률 확인

- 두번째 분할: 여자 탑승객 중 3등석 탑승객(전체 중 9%)의 생존율은 46%지만, 여자 탑승객 중 1, 2등석 및 선원(전체 중 12%)의 생존율은 93%

의사결정나무 모형의 예제

의사결정나무 모형을 활용한 타이타닉 생존 확률 확인

- 끊임없이 분할 가능

분산분석

- 하나의 연속형 변수와 범주형 변수 간의 관계에 대한 분석
- 영어 앞 글자를 따서 "ANOVA"로도 표현
- 최근 마케팅에서 "AB테스트" 등에 활용

분산분석 예제

- "6개 살충제의 살충효과에 차이가 있을까?"
- 실제 살충제별 평균 죽은 벌레 수를 계산하거나 그룹별 상자그림을 통해 그룹간 차이를 확인 가능
- 이후 제곱합을 계산해서 통계적 유의성을 확인

$$\sum_{i=1}^{72} (y_i - \bar{y})^2 = \sum_{i=1}^{72} (y_i - 9.5)^2 = 3,684$$

$$\sum_{i=1}^{72} (yg_i - \overline{y})^2 = 12 \times (14.5 - 9.5)^2 + 12 \times (15.3 - 9.5)^2 + 12 \times (2.1 - 9.5)^2 + 12 \times (4.9 - 9.5)^2 + 12 \times (3.5 - 9.5)^2 + 12 \times (16.7 - 9.5)^2 = 2,669$$

$$\sum_{i=1}^{72} (y_i - yg_i)^2 = 1,015$$

$$\sum_{i=1}^{72} (y_i - \bar{y})^2 = \sum_{i=1}^{72} (yg_i - \bar{y})^2 + \sum_{i=1}^{72} (y_i - yg_i)^2$$