CS 754 2022 Midsen
Q1 Only instructions
Q2 Its is computed by enumerating
only 2000 subsets as enumerating
Only 2000 subsets as enumerating all of them is not possible.
The nin computed over these
2000 subset will be > Main
Value computed over the complete
value computed over the complete set of subsets.
The Timax Value computed out
These 2000 supply will be a the 11 mas
- I computed over the complete set
The Amax value computed over these 2000 subself will be & the Amas value computed over the complete set of subsets.
De 1/ - mad max (1 - 1) 7 - 1)
Month - Mark (- min) max
it must be less than or exual to
As $K_5 = \max_{\mathcal{B}} \max(1 - \mathcal{I}_{min}, \mathcal{I}_{max} - 1)$ it must be less than or equal to the true RIC, ie Ss.
The correct answer is option \$1:
K _S 5 8 _S

Q3 The global rotation/ repl.

ambiglity means that the projection angled in this problem for the Corresponding rotation/reflection matrices) can be computed only upto a global unknown rotation/reflection matrix.

That is, if the true rotation matrices are R, R2, ..., RN, then any algorithm will give us only QRI, QR2,..., QRN Where Q is Some arbitrary rotation/reflection matrix. The ambiguity arises because there is no way to decide, which of the N macronolecules particles are in "canonical" position. The tomographic projection of a 3D structure in angle 191 = tomographic projection of the same structure rotated by 91 but taken in angle 9+ p. See Islide 72 of the Islides on tomography.

Q4 The projection 9(p,0) will also be Islandli mitted due to the Fourier slice theorem because Its Fourier transform = a central slice through the Fourier transform of f. The FT values of found anyl frequency with I will be 0 in value. This will cause the F.T. of g to also be zero beyond some I greguency index.

Q5 For CASSI, we have the foll. forward model for single frame $M(x,y) = \sum_{j=1}^{N_T} X_j(x-l_j,y) C(x-l_j,y)$ Where $M = N_x \times (N_y + N_y - 1)$ 512l coded snapshot image X = N, X Ny X Ny Sized hyperspectral C = coded aperture of Size Nx X Ny (due to cardboard) piece) lj = Shift in the image of the jth wardength (due to the prism) (x,y) = spatial location in coded snapshot. In multi-frame CASSI, $M_{t}(x,y) = \sum_{x} \chi(x-l_{j},y) C_{t}(x-l_{j},y)$ where $C_t = coded$ aperture in t^{th} position t^{th} due to shifting by piezoelectric mechanism.

J (A:j, k.L) = max || A: - A (ATA NL) ANL ||2 J. h + J. しもリーとキん Cither of these expressions is fine. In both cases, you need some additional constraints on A, otherwise all elements of A could become as in value. These constraints could be any of the following: - Unit norm constraint on the

- Unit norm Constraint on the column Or row rectors of A - Vij Aij & [0,1] (binary) - Vij, Aij & [0,1] Of I n Unif (-a, a),
then we have $\|\eta\|_2 \leq a\sqrt{m}$.
This is a good value for epsilon. $3/\eta_i$ 1/0,62, then we know that $|\eta_i| \leq 36$ with a probability or 99%. A good thumboule is to choose rigorous technique is to Consider that $\|\eta\|_2^2$ is a Chi-square r.v. with M-degrees of freedom and unose E boused on its tailbounds. But I am not expecting that answer.

