COMP396 Meeting 6:

Utilizing deep infomax to learn unsupervised representations of molecular graphs

Summary

- 1. Recall
- 2. Objective function
- 3. Implementation
- 4. Experiments
- 5. Questions

Recall

Last time we discussed about:

- the implementation (Preferably Unsupervised instead of Semi-Supervised)
- the derivation of the JSD (f-divergence generalization)

Objective function (Motivation)

Mutual information I, is a measure of mutual dependence of two random variables X and Y. It is equivalent to the Kullback Leibler divergence between the joint probability P(X,Y) and the product of marginals P(X)P(Y).

$$I(X;Y) = \sum P(x,y) \log \frac{P(x,y)}{p(x)P(y)} \tag{1}$$

The Kullback Leibler Divergence (Dkl) quantifies how much one probability distribution differs from another probability distribution. For two probability distributions P and Q, it can be simply defined as follows.

$$D_{KL}(q||p) = \int q(x)log\frac{q(x)}{p(x)}dx = \sum q(x)log\frac{q(x)}{p(x)}$$

$$1.D_{KL}(q||p) \neq D_{KL}(p||q)$$

$$2.D_{KL}(q||q) = 0$$

$$3.D_{KL}(q||p) \geq 0$$
(2)

This measure of distance is asymmetric and always non negative. The Jensen Shannon Divergence is a symmetrization of the KL divergence and it has the following properties.

$$D_{JS}(q||p) = \frac{1}{2}D_{KL}(P||\frac{1}{2}(P+Q)) + 1/2D_{KL}(q||\frac{1}{2}(P+Q))$$

$$1.D_{JS}(q||p) = D_{JS}(p||q)$$

$$2.D_{JS}(q||q) = 0$$

$$3.D_{JS}(q||p) \ge 0$$
(3)

In this project we use the f-divergence generalization of the Jensen Shannon divergence measure taken from Infograph/ DIM https://arxiv.org/abs/1808.06670. The definition is a combination of the convex, lower-semicontinuous function and its Fenchel conjugate.

$$\begin{split} I_{\phi,\psi}(h^i_\phi(G);H_\phi(G)) := \\ \mathbb{E}_{\mathbb{P}}[-\mathrm{sp}(-T_{\phi,\psi}(\vec{h}^i_\phi(x),H_\phi(x)))] - \mathbb{E}_{\mathbb{P}\times\tilde{\mathbb{P}}}[\mathrm{sp}(T_{\phi,\psi}(\vec{h}^i_\phi(x'),H_\phi(x)))] \end{split}$$

Implementation

Dataset: QM9 (11000 samples)

GNN: MPNN (enn-s2s)

SMILES encoder: LSTM

Regression parameters: Laplacian kernel, GridSearch (alpha {0.01,0.1,1.0 ,10,100}), cv=5, Adam optimizer

The fake samples are generated by shuffling the feature map at each location across a batch.

Global-Global Infomax

Objective function:

Let I denote the mutual information between the global representation after applying READOUT of the LTSM encoder Y1 and Graph encoder Y2 of the molecular Graph.

$$\max_{\phi\omega_1} I_{\phi\omega_1}(Y_{1\phi}(G); Y_{2\phi}(G)) \tag{4}$$

Colab code sample:

https://colab.research.google.com/drive/1YrWSag8LJ3Fx8YNggYROwm_t6eS0mwwo

Local-Global Infomax

Objective function:

Let I denote the mutual information between the summarized patch representation centered at a node of G and the global representation after applying READOUT Y.

$$max_{\phi\omega}\sum_{G\epsilon G} rac{1}{|G|} I_{\phi\omega}(h_{\phi}(G); Y_{\phi}(G))$$

Colab code sample:

https://colab.research.google.com/drive/1yRAf_acWT_AWv8Q9YYo1yiENaMocwfqh

Deep (Molecular) Graph Infomax

The objective for the whole DMGI is defined below. where α , and β are hyperparameters for the global and local objectives, respectively.

$$\alpha \max_{\phi\omega_1} I_{\phi\omega_1}(Y_{1\phi}(G); Y_{2\phi}(G)) + \beta \max_{\phi\omega_2} \sum_{G\in G} \frac{1}{|G|} I_{\phi\omega_2}(h_{\phi}(G); Y_{\phi}(G))$$
(6)

Colab code sample:

https://colab.research.google.com/drive/1TNcCRgA-_ayQf-Scy-osrDHRXpbt_I3I

Experiments

NB:Still in completion

Target	Global-global MAE	<u>Local-global</u> MAE	<u>DIM</u> MAE	Supervised MAE(10epochs only)
Mu	0.73064	0.7236	0.7947	0.4091
Alpha	1.6321	1.8344	-	0.8198
Homo	0.0091	0.0079	-	0.0095
Lumo	0.01133	0.0110	-	0.0092
Gap	0.0118	0.0137	-	0.0104
R2	23.9726	35.3079		
ZVPE	0.0030	0.0037		
U0	7.1710			
U				
Н				
G				
CV				

Comparisons

Past SMILES LSTM MAE:

Target	Mu	Alpha	НОМО	LUMO	gap	R2	ZPVE	U0	U	Н	G	CV
LSTM	0.65684	1.202	0.0100	0.01031	0.0131	78.8518	0.0008	0.70606	0.6116	0.82404	0.6499	0.6373

Previous Baseline results:

Target	BOB	CM	GG-NN	MPNN
mu	0.6724	0.8078	0.7639	0.1523
alpha	0.7782	1.4809	0.9228	0.3847
номо	0.0074	0.017	0.0081	0.0034
LUMO	0.0106	0.0171	0.0111	0.0037
gap	0.0122	0.0196	0.0118	0.0065
R2	22.2674	37.7441	76.7278	2.5781
ZPVE	0.0007	0.0010	0.0007	0.0004
UO	0.7360	3.4899	0.3955	0.5545
U	0.7360	3.4895	0.2621	0.5218
H	0.7360	3.4898	0.3899	0.3991
G	0.7360	3.4901	0.4603	0.4632
CV	0.4156	0.6600	0.5121	0.1516

Questions

Should I change the encoder?

Differences in number of epochs during training between unsupervised and supervised learning models?

What is expected for the report?

Next Steps?