

Dieses hoch robuste Linearführungssystem in den Baureihen PLK 16 – 63 wurde speziell für die Anwendung Werkzeugma-schinen und Industrierobotertechnik entwickelt.

Als Antriebsele ment kommt unser bewährter kolbenstangenloser Zylinder in den Ø-Reihen 16 – 63 mm zum Einsatz. This extremely robust linear system from the series PLK 16 - 63 has been especially developed for use in the machine tool and robototics industries.

The move force for this guide is our proven rodless cylinder \emptyset 16 – 63 mm.

Version 08/2017

VORZÜGE / BENEFITS

- Hohe Tragzahl
- Schmiernippel allseitig möglich
- Hohe statische Belastbarkeit für alle Richtungen
- Führungsschiene im Laufbahnbereich gehärtet und allseitig geschliffen
- Ruhiger, geschmeidiger Lauf
- Kugeln aus Wälzlagerstahl
- Robuste Kugelabdeckung
- Problemlose Austauschbarkeit

- high loading characteristics
- high static loading in all directions
- quiet and smooth running
- robust bearing housing
- easy access to grease nipple
- hardened and grinded guiderail
- low friction bearing
- easy interchangeability

TECHNISCHE DATEN / TECHNICAL DATA

	•		
Bauart	Kolbenstangenloser Zylinder, doppeltwirkend mit direkter Kraftübertragung	Design	Rodless cylinder, double acting, direct load transmission
Hublängen		Strokes	
ø 25-63 mm	100–5700mm, stufenlos je 1mm (längere Hübe auf Anfrage)	ø 25-63 mm	100–5700mm, in increments of 1mm (longer strokes on request)
ø 16 mm	100–3300mm, stufenlos je 1mm	ø 16 mm	100–3300mm, in increments of 1mm
Anschlussgewinde	(M ₅ , G ₁ /8", G ₁ /4", G ₃ /8")	Air connection	(M ₅ , G 1/8", G 1/4", G 3/8")
Einbaulage	beliebig	Mounting	free
Kräfte + Momente	Siehe Kräfte und Momente	Forces + moments	see Forces and moments
Stützkräfte	Siehe Stützdiagramm	Support Forces	see Deflection Diagram
Temperaturen	-10°C bis +80°C andere Temperaturbereiche auf Anfrage	Temperatures	(–10°C bis +80°C) other temperatures on request
Werkstoffe		Materials	
Profilrohr	Aluminium hochfest anodisiert	Barrel	High-strength anodized aluminum
Führung	Stahl/Edelstahl	Guide	Steel/ Stainless steel
Zylinderköpfe	Aluminium hochfest anodisiert	End caps	High-strength anodized aluminum
Kolbenachse	Aluminium hochfest anodisiert	Piston axle	High-strength anodized aluminum
Dichtungen	Ölbeständiger Kunststoff(V < $1m/s$ (NBR)(V > $= 1m/s$ (VITON)	Seals	Oilproof synthetic material $(V < 1m/s (NBR)(V > = 1m/s (VITON))$
Dichtbänder	Edelstahl	Sealing bands	Stainless steel
Kolbenkappen	abriebfester Kunststoff	Piston caps	Wear proof synthetic material
Gleitteile	abriebfester Kunststoff	Sliding parts	Wear proof synthetic material
Betriebsdruck	0,5-8,0 bar	Pressure range	0,5–8,0 bar
Medium	Gefilterte Druckluft, Max. 50 μm	Medium	compressed air, filtered max. 50µm

Version 08/2017 45

DIMENSIONEN / DIMENSIONS

UNO + TANDEMWAGEN-SYSTEM / Uno + Tandem Carriage System

Ø	А	В	С	D	E	F	G	Н	М	N	M1	N1	Р	P1	Q x Q1	S	S2	VH	VS	WH	WS	W1	Z
16	65	5	15	90	70	36	M5	1,0	M4	10	М3	7	48,9	34	24,5 X 25	63	31,5	18	18	27	27	18	4,5
25	100	4,5	23	145	125	64	1/8	2,0	M6	12	M ₅	10	73	52,3	36 x 36	80	40	27	27	40	40	20	6,5
32	125	3	27	190	164	96	1/4	2,0	M8	13	M6	14	90	69,3	48 x 52	115	57,5	40	36	56	52	30,5	8,0
40	150	25	30	190	164	96	1/4	7,0	M8	18	M6	17	105	84,3	58 x 58	115	57,5	54	54	69	72	24,5	9,0
50	175	34,5	33	215	180	110	1/4	1,0	M8	20	M6	18	130	102,3	77 x 78	130	65	70	70	80	80	28,5	5,0
63	215	57,5	50	215	180	140	3/8	2,0	M8	20	M8	18	155	128,3	102 X 102	170	85	78	78	106	106	31,5	14

Stoßdämpfer / Shock Absorber

ø	А	В	С	D	Е	F	G	М	SW1	SW2	SW ₃
16	28	43,2	22,2	29,2	13,2	9	16	M10 x 1	SW13	SW ₃	SW ₃
25	50	81,3	31,4	41,4	11,7	15,5	25,5	M14 x 1,5	SW17	SW4	SW4
32	50	95,5	46,2	59,2	19,4	20	33	M20 x 1,5	SW24	SW4	SW4
40	50	94,5	47,2	60,2	19,4	20	33	M20 x 1,5	SW24	SW4	SW4
50	70	102,5	63	79	11	31	59	M25 x 1,5	-	-	-
63	-	-	-	-	-	-	-	-	-	-	-

FORMELN /

FORMULAS

$$M_a = F * h_a$$

$$M_r = F * h_r$$

$$M_v = F * h_v$$

KRÄFTE UND MOMENTE / FORCES AND MOMENTS

UNO-SYSTEM

Kennwerte	16	25	32	40	50	63	Characteristics	16	25	32	40	50	63
Kolbenkraft (6 bar) (N)	110	250	420	640	1000	1550	effect force (6 bar) (N)	110	250	420	640	1000	1550
Dämpfung (mm)	15	21	26	32	32	40	cushioning (mm)	15	21	26	32	32	40
A (mm)	35,0	53,0	64,0	69	90	102	A (mm)	35,0	53,0	64,0	69	90	102
B (mm)	19,0	26,0	29,7	29,7	40	38,5	B (mm)	19,0	26,0	29,7	29,7	40	38,5
C/D/E/F (mm)			Maße kur	ndenseitig			C/D/E/F (mm)	Dimensions according design					
G (mm)	30,3	38,0	55,0	54,5	65	75	G (mm)	30,3	38,0	55,0	54,5	65	75
H (mm)	31,5	40,0	57,5	57,5	68,5	85	H (mm)	31,5	40,0	57,5	57,5	68,5	85
J (mm)	31,5	40,0	57,5	57,5	65	85	J (mm)	31,5	40,0	57,5	57,5	65	85
Lastkräfte max L (N)	500	1500	3000	3000	4000	4000	Load forces max L (N)	500	1500	3000	3000	4000	4000
Momentkräfte maxLa,Lr,Lv (N)	500	1500	3000	3000	4000	4000	Moment forces maxLa,Lr,Lv (N)	500	1500	3000	3000	4000	4000
Axialmonente max Ma (Nm)	8	40	58	58	200	200	Axial moments max Ma (Nm)	8	40	58	58	200	200
Radialmomente max Mr (Nm)	4	15	23	23	70	70	Radial moments max Mr (Nm)	4	15	23	23	70	70
Verdrehmomente Max Mv (Nm)	8	40	58	58	200	200	torsion moments max Mv (Nm)	8	40	58	58	200	200

- 1. Die angegebenen Momente (M.max) beziehen sich stets auf das Zentrum der Führungsschiene, wobei die Lastkraft (L) die Summe aller Einzellasten bezogen auf ihren gemeinsamen Schwerpunkt ist. Dieser kann sowohl innerhalb oder außerhalb der Schlittenfläche liegen.
- 2. Im Einzelfall kommt es in der Regel zu resultierden Belastungen des Wagen, welche in der Berechnung des Modules zu berücksichtigen sind. Bei der Größenauswahl des Modules sind daher sowohl die Antriebskraft des Kolbens (F) als auch die Rollfähigkeit des Wagens sicherzustellen; letzteres geschieht mit folgender Berechnungsformel:

$$\frac{M_{a}}{M_{a \max}} + \frac{M_{r}}{M_{r \max}} + \frac{M_{v}}{M_{v \max}} + \frac{L}{L_{\max}} \le 1$$

- 1. The above mentioned moments (Ma max, Mr max, Mv max) are related to the guide rail centre. The load force (L) is the summary of all single forces related to the common centre of the mass. The centre of the mass can be placed inside or outside the surface area of the carriage.
- 2. Normally the carriage would experience a dynamic load, which has to be considered with the calculation of needed piston force (F) and capacity of the ballguided system.
 Use the following calculation formular:

$$\frac{M_{a}}{M_{a \max}} + \frac{M_{r}}{M_{r \max}} + \frac{M_{v}}{M_{v \max}} + \frac{L}{L_{\max}} \le 1$$

FORMELN /

FORMULAS

$$M_a = F * h_a$$

$$M_r = F * h_r$$

$$M_v = F * h_v$$

KRÄFTE UND MOMENTE / FORCES AND MOMENTS

TANDEM-SYSTEM

Kennwerte	16	25	32	40	50	63	Characteristics	16	25	32	40	50	63
Kolbenkraft (6 bar) (N)	110	250	420	640	1000	1550	effect force (6 bar) (N)	110	250	420	640	1000	1550
Dämpfung (mm)	15	21	26	32	32	40	cushioning (mm)	15	21	26	32	32	40
A (mm)	35,0	53,0	64,0	69	90	102	A (mm)	35,0	53,0	64,0	69	90	102
B (mm)	19,0	26,0	29,7	29,7	40	38,5	B (mm)	19,0	26,0	29,7	29,7	40	38,5
C/D/E/F (mm)			Maße kur	ndenseitig			C/D/E/F (mm)	Dimensions according design					
G (mm)	30,3	38,0	55,0	54,5	65	75	G (mm)	30,3	38,0	55,0	54,5	65	75
H (mm)	31,5	40,0	57,5	57,5	68,5	85	H (mm)	31,5	40,0	57,5	57,5	68,5	85
J (mm)	31,5	40,0	57,5	57,5	65	85	J (mm)	31,5	40,0	57,5	57,5	65	85
Lastkräfte max L (N)	500	1500	3000	3000	4000	4000	Load forces max L (N)	500	1500	3000	3000	4000	4000
Momentkräfte maxLa,Lr,Lv (N)	500	1500	3000	3000	4000	4000	Moment forces maxLa,Lr,Lv (N)	500	1500	3000	3000	4000	4000
Axialmonente max Ma (Nm)	15	85	115	115	400	400	Axial moments max Ma (Nm)	15	85	115	115	400	400
Radialmomente max Mr (Nm)	8	35	45	45	140	140	Radial moments max Mr (Nm)	8	35	45	45	140	140
Verdrehmomente Max Mv (Nm)	15	85	115	115	400	400	torsion moments max Mv (Nm)	15	85	115	115	400	400

- 1. Die angegebenen Momente (M.max) beziehen sich stets auf das Zentrum der Führungsschiene, wobei die Lastkraft (L) die Summe aller Einzellasten bezogen auf ihren gemeinsamen Schwerpunkt ist. Dieser kann sowohl innerhalb oder außerhalb der Schlittenfläche liegen.
- 2. Im Einzelfall kommt es in der Regel zu resultierden Belastungen des Wagen, welche in der Berechnung des Modules zu berücksichtigen sind. Bei der Größenauswahl des Modules sind daher sowohl die Antriebskraft des Kolbens (F) als auch die Rollfähigkeit des Wagens sicherzustellen; letzteres geschieht mit folgender Berechnungsformel:

$$\frac{M_{a}}{M_{a \max}} + \frac{M_{r}}{M_{r \max}} + \frac{M_{v}}{M_{v \max}} + \frac{L}{L_{\max}} \le 1$$

- 1. The above mentioned moments (Ma max, Mr max, Mv max) are related to the guide rail centre. The load force (L) is the summary of all single forces related to the common centre of the mass. The centre of the mass can be placed inside or outside the surface area of the carriage.
- 2. Normally the carriage would experience a dynamic load, which has to be considered with the calculation of needed piston force (F) and capacity of the ballguided system.
 Use the following calculation formular:

$$\frac{M_{a}}{M_{a \max}} + \frac{M_{r}}{M_{r \max}} + \frac{M_{v}}{M_{v \max}} + \frac{L}{L_{\max}} \le 1$$

LINEARMODUL PLK / LINEAR UNIT PLK

- $\bullet \bullet \bullet \bullet$ Stellenangaben bei Hubfestlegung (0100-5700 mm)
- • • Ident-figures for stroke definition (0100-5700 mm)

Typen	IdentNr.	Ausführungen	Types	IdentNo.	Description
PLK16.1	71.691. • • • •	Uno Linearzylinder PLF16 Lineareinheit	PLK16.1	71.691. • • • •	Uno Rodless cylinder PLF16 Linear unit
PLK16.2	71.692. • • • •	Tandem Linearzylinder PLF16 Lineareinheit	PLK16.2	71.692. • • •	Tandem Rodless cylinder PLF16 Linear unit
PLK25.1	72.591. • • • •	Uno Linearzylinder PLF25 Lineareinheit	PLK25.1	72.591. • • • •	Uno Rodless cylinder PLF25 Linear unit
PLK25.2	72.592. • • • •	Tandem Linearzylinder PLF25 Lineareinheit	PLK25.2	72.592. • • • •	Tandem Rodless cylinder PLF25 Linear unit
PLK32.1	73.291. • • • •	Uno Linearzylinder PLF32 Lineareinheit	PLK32.1	73.291. • • • •	Uno Rodless cylinder PLF32 Linear unit
PLK32.2	73.292. • • • •	Tandem Linearzylinder PLF32 Lineareinheit	PLK32.2	73.292. • • • •	Tandem Rodless cylinder PLF32 Linear unit
PLK40.1	74.091. • • • •	Uno Linearzylinder PLF40 Lineareinheit	PLK40.1	74.091. • • • •	Uno Rodless cylinder PLF40 Linear unit
PLK40.2	74.092. • • • •	Tandem Linearzylinder PLF40 Lineareinheit	PLK40.2	74.092. • • • •	Tandem Rodless cylinder PLF40 Linear unit
PLK50.1	75.091. • • • •	Uno Linearzylinder PLF50 Lineareinheit	PLK50.1	75.091. • • • •	Uno Rodless cylinder PLF50 Linear unit
PLK50.2	75.092. • • • •	Tandem Linearzylinder PLF50 Lineareinheit	PLK50.2	75.092. • • • •	Tandem Rodless cylinder PLF50 Linear unit
PLK63.1	76.391. • • • •	Uno Linearzylinder PLF63 Lineareinheit	PLK63.1	76.391. • • • •	Uno Rodless cylinder PLF63 Linear unit
PLK63.2	76.392. • • • •	Tandem Linearzylinder PLF63 Lineareinheit	PLK63.2	76.392. • • • •	Tandem Rodless cylinder PLF63 Linear unit

Sonderausführung: VITON-Dichtungen und Edelstahl auf Anfrage Special version: Viton seals and stainless steel on request

ZUBEHÖR / ACCESSORIES

Туреп	IdentNr.	Zylø	Ausführungen	Туреѕ	IdentNo.	Zylø	Description
Stoßdämpferhalter Ø 16 Ø 25 Ø 32 - 40 Ø 50	71.631.0000 72.531.0000 73.231.0000 75.031.0000	PLK16 PLK25 PLK32-40 PLK50	Farbe: natur Material: Zink Druckguss	Shock Absorber Mounting Ø 16 Ø 25 Ø 32 - 40 Ø 50	71.631.0000 72.531.0000 73.231.0000 75.031.0000	PLK16 PLK25 PLK32-40 PLK50	Colour: natur Material: Zinc diecasting
Stoßdämpferanschlag Ø 16 Ø 25 Ø 32 - 40 Ø 50	71.631.0003 72.531.0003 73.231.0003 75.031.0003	PLK16 PLK25 PLK32-40 PLK50	Farbe: natur Material: Zink Druckguss	Shock Absorber Stop Ø 16 Ø 25 Ø 32 - 40 Ø 50	71.631.0003 72.531.0003 73.231.0003 75.031.0003	PLK16 PLK25 PLK32-40 PLK50	Colour: natur Material: Zinc diecasting

Version 08/2017 49