Trabajo Práctico Nro. 1: Método de Bayes

Ezequiel Agustin Perez, Gonzalo Nahuel Baliarda, Lucas Agustin Vittor

Instituto Tecnológico de Buenos Aires {eperez, gbaliarda, lvittor}@itba.edu.ar

30 de agosto de 2023

Ejercicio 1

Enunciado

Dado (scones, cerveza, whisky, avena, f 'utbol) $\in \{0,1\}^5$:

- 1. Implementar un clasificador de Naive Bayes
- 2. Clasificar $x_1 = (1, 0, 1, 1, 0)$
- 3. Clasificar $x_2 = (0, 1, 1, 0, 1)$

Training Set

Preferencias británicos:

- Gustos de comida/deporte según nacionalidad (Escocés o Inglés).
- ▶ 1 = gusta la comida/deporte.
- 0 = no gusta la comida/deporte.

scones	cerveza	wiskey	avena	futbol	Nacionalidad
0	0	1	1	1	1
1	0	1	1	0	1
1	1	0	0	1	1
1	1	0	0	0	1
0	1	0	0	1	1
0	0	0	1	0	1
1	0	0	1	1	E
1	1	0	0	1	E
1	1	1	1	0	Е
1	1	0	1	0	E
1	1	0	1	1	Е
1	0	1	1	0	E
1	0	1	0	0	Е

Testing Set

	scones	cerveza	wiskey	avena	futbol	Nacionalidad
x1	1	0	1	1	0	?????
x2	0	1	1	0	1	?????

Modelo

Clasificador Naive Bayes

$$P(a_1,\ldots,a_n|v_i)=\prod_i P(a_i|v_i)$$

$$V_{opt} = \arg \max_{v_j \in V} P(a_1, \dots, a_n | v_j) P(v_j) \longrightarrow V_{NB} = \arg \max_{v_j \in V} \prod_{i=1}^n P(a_i | v_j) * P(v_j)$$

Ejercicio 3 0 0 0 0 0 0000

Implementación

Resultados

$$P(I \mid scon, !cerveza, !whiskey, avena, !futbol) \propto$$

Análogamente,

$$P(E \mid scon, !cerveza, !whiskey, avena, !futbol) \propto 0,035$$

Por lo que clasificamos:

	scones	cerveza	wiskey	avena	futbol	Nacionalidad
x1	1	0	1	1	0	E
x2	0	1	1	0	1	?????

Resultados

Repitiendo el proceso para x2, obtenemos:

	scones	cerveza	wiskey	avena	futbol	Nacionalidad
x1	1	0	1	1	0	E
x2	0	1	1	0	1	I I

Pasando los resultados a probabilidades,

$$P(E|x_1) = 76\%$$

$$P(E|x_1) = 76\%$$

 $P(I|x_2) = 83\%$

Conclusiones

- Se obtuvieron resultados contundentes para ambos ejemplos de prueba.
- No podemos aplicar métricas de evaluación con el conjunto de test dado, ya que no conocemos las etiquetas reales para los datos de prueba.

Ejercicio 2

Enunciado

Implementar un clasificador de texto con Naive Bayes para clasificar noticias según su tipo.

- 1. Utilizar al menos 4 categorías.
- 2. Hacer matriz de confusión.
- 3. Calcular Accuracy, Precisión, tasa verdaderos positivos, tasa de falsos positivos y f1-score
- 4. Calcular la curva ROC

Dataset

Noticias argentinas

- Multiclase con clases: Salud, Entretenimiento, Economía y CyT
- Columna relevante titular
- ➤ 80-20 división de entrenamiento y testeo

Implementación

Matriz de confusión

Medidas de evaluación

Categoría	Accuracy	Precisión	Tasa FP	Recall	F1-Score
Salud	0,989	0,969	0,01	0,987	0,978
Ciencia y Tecnología	0,989	0,969	0,01	0,986	0,978
Entretenimiento	0,99	0,996	0,001	0,967	0,981
Economía	0,99	0,984	0,006	0,979	0,981

Curva ROC

- ▶ Umbral \in [0, 1]
- ► Paso del umbral 0.1

Conclusiones

- ➤ Todas las categorías muestran valores muy elevados de precisión, accuracy, recall y f1-score, y muy bajos valores de tasa de falsos positivos.
- ► Todas las curvas ROC dan muy similares a un clasificador perfecto, con diferencias mínimas entre ellas.

Ejercicio 3

Enunciado

Dadas las variables:

- ightharpoonup admit $\in \{0,1\}$
- $ightharpoonup GRF \in \mathbb{R}$
- $ightharpoonup GPA \in \mathbb{R}$
- ▶ $rank \in \{1, 2, 3, 4\}$

Discretizar GRE y GPA tal que:

- 1. $gre_d \in \{GRE > 500, GRE < 500\}$
- 2. $gpa_d \in \{GPA \ge 3, GPA < 3\}$

Luego,

- 1. Calcular probabilidad de que una persona que proviene de una escuela con rango 1 no haya sido admitida en la universidad
- 2. Calcular la probabilidad de que una persona que fue a una escuela de rango 2, tenga GRE = 450 y GPA = 3.5 sea admitida en la universidad.
- 3. ¿Cuál es el proceso de aprendizaje?

Estructura de la Red

$P(admit|rank, gre_d, gpa_d)$

rank	gre_d	gpa_d	admit_no	admit_yes	All
1	gre < 500	gpa < 3	0.714286	0.285714	1.0
1	gre < 500	$gpa \geq 3$	0.500000	0.500000	1.0
1	$gre \geq 500$	gpa < 3	0.200000	0.800000	1.0
1	$gre \geq 500$	$gpa \geq 3$	0.448980	0.551020	1.0
2	gre < 500	gpa < 3	0.545455	0.454545	1.0
2	gre < 500	$gpa \geq 3$	0.791667	0.208333	1.0
2	$gre \geq 500$	gpa < 3	0.761905	0.238095	1.0
2	$gre \geq 500$	$gpa \geq 3$	0.582524	0.417476	1.0
3	gre < 500	gpa < 3	0.928571	0.071429	1.0
3	gre < 500	$gpa \geq 3$	0.791667	0.208333	1.0
3	$gre \geq 500$	gpa < 3	0.545455	0.454545	1.0
3	$gre \geq 500$	$gpa \geq 3$	0.737500	0.262500	1.0
4	gre < 500	gpa < 3	0.900000	0.100000	1.0
4	gre < 500	$gpa \geq 3$	0.823529	0.176471	1.0
4	$gre \geq 500$	gpa < 3	0.625000	0.375000	1.0
4	$gre \geq 500$	$gpa \geq 3$	0.775000	0.225000	1.0
All			0.666971	0.333028	1.0

$P(gpa_d|rank)$

rank	gpa < 3	$gpa \geq 3$	All
1	0.131148	0.868852	1.0
2	0.185430	0.814570	1.0
3	0.173554	0.826446	1.0
4	0.208955	0.791045	1.0
All	0.177500	0.822500	1.0

$P(gre_d|rank)$

rank	gre < 500	$gre \geq 500$	ΑII
1	0.180328	0.819672	1.0
2	0.205298	0.794702	1.0
3	0.280992	0.719008	1.0
4	0.343284	0.656716	1.0
All	0.247500	0.752500	1.0

P(rank)

rank	proba
1	0.1525
2	0.3775
3	0.3025
4	0.1675
All	1.0

Inferencia

$$P(\mathsf{admit} = 0 | \mathsf{rank} = 1) = \frac{P(\mathsf{admit} = 0, \mathsf{rank} = 1)}{P(\mathsf{rank} = 1)}$$

Donde.

$$P(\mathsf{admit} = 0, \mathsf{rank} = 1) =$$

$$\textstyle\sum_{\mathsf{gre.d} \in \{\geq 500, <500\}} \left(\sum_{\mathsf{gpa.d} \in \{\geq 3, <3\}} P(\mathsf{admit} = \mathsf{0}, \mathsf{rank} = \mathsf{1}, \mathsf{gre_d}, \mathsf{gpa_d})\right)$$

Donde,

$$P(admit = 0, rank = 1, gre_d, gpa_d) =$$

$$\textit{P}(\mathsf{rank} = 1) \cdot \textit{P}(\mathsf{gre_d}|\mathsf{rank} = 1) \cdot \textit{P}(\mathsf{gpa_d}|\mathsf{rank} = 1) \cdot \textit{P}(\mathsf{admit} = 0|\mathsf{rank} = 1, \mathsf{gre_d}, \mathsf{gpa_d})$$

Inferencia

Reemplazando los valores presentes en las tablas, podemos calcular:

$$P(admit = 0|rank = 1) = 0,465816$$

Inferencia

Viendo las tablas de probabilidad condicional armadas, podemos obtener directo:

$$P(admit = 1 | rank = 2, gre < 500, gpa \ge 3) = 0.208333$$

Proceso de aprendizaje

- ► El aprendizaje es paramétrico dado que el conocimiento adquirido son las probabilidades a priori y condicionales, plasmadas en las tablas de probabilidad.
- La estructura de la red es conocida de antemano.

Conclusiones

- ► Fue necesario aplicar corrección de Laplace para evitar que ciertas probabilidades se anulen.
- ► La inferencia es costosa dado que requiere iterar las tablas de probabilidad condicional.

Muchas gracias