Roport SAM-TH-80-20

ORGANIC COMPOUNDS IN THE PARAUST OF A 185-5 TURBINE ENGINE

James P. Conkle, Ph.D. William W. Lackey, B.S. Charles L. Martin, B.S. Andrew Richardson III. R.S.

September 1980

Interim Report for Period January 1978 - September 1978

Approved for public release; distribution unlimited.

USAF SCHOOL OF AEROSPACE MEDICINE Aerospace Medical Division (AFSC) Brooks Air Force Rase, Texas 78235

NOTICES

This interim report was submitted by personnel of the Crew Environments Branch, Draw Technology Division, USAF School of Aerospace Medicine, Aerospace Medical Division, AFSC, Brooks Air Force Base, Texas, under job order 7930-11-35.

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Sovernment thereby incurs no responsibility nor any obligation whatspever; and the fact that the Sovernment may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

JAMES P. CONKLE, Ph.D.

Project Scientist

RICHARD L. MILLER, Ph.D.

The state of the s

Supervisor

Il De Hart ROY L. DEHART Colonel, USAF, MC

Commander

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION N	1
SAM-TR-80-29 / HU-HO9	17/2
. TITLE (and Subsisse)	THE OF REPORTS PERIOD COVER
DDCANIC COMPONING THE THE	Interim Kepert
ORGANIC COMPOUNDS IN THE EXHAUST	Jan 1998 - Sep 1978
OF A J85-5 TURBINE ENGINE	6. PERFORMING ORG. REPORT NUMBE
7. AUTHOR(a)	S CONTRACT OR GRANT NUMBER(#)
A NOTHON(s)	4. CONTRACT ON GRANT NUMBER(S)
James P./Conkle_Phase, William W. Lackey B.S.:	}
Charles 1 Martin - See Androw Dichardson TIII D	. }
Charles L. Martin B.S. Andrew Richardson, III B. S	10. PROGRAM ELEMENT, PROJECT, TA
USAF School of Aerospace Medicine (VNL)	AREA & WORK UNIT NUMBERS
Aerospace Medical Division (AFSC)	62202F
Brooks Air Force Base, Texas 78235	7930+11-35
11. CONTROLLING OFFICE NAME AND ADDRESS	12 05000 0000
USAF School of Aerospace Medicine (VNL)	September 1980
Aerospace Medical Division (AFSC)	13 NUMBER OF PAGES
Brooks Air Force Base, Texas 78235	31
14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
(12) =	}
L (142.35 ⁻¹	Unclassified
	150. DECLASSIFICATION DOWNGRADIN SCHEDULE
	3025022
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited	
Sister with the second	1.000.00
18. SUPPLEMENTARY NOTES	
1	
1	
19 KEY WORDS (Continue on teverse aide if necessary and identify by block number	")
Pasian automat	
	spectrometer-data system
U85-5 turbine engine	
PP-4 fuel	
Organic compounds	
	")
20 ABSTRACT (Continue on reverse side if necessary and identify by block number	
Information related to exhaust hydrocarbons associa	ted with a J85-5 turbine en
Information related to exhaust hydrocarbons associa is presented. A comparison of two sampling techniq	ues (cryogenic transing and
Information related to exhaust hydrocarbons associa is presented. A comparison of two sampling techniq sorption tube) is discussed. The collected samples	ues (cryogenic trapping and were analyzed by coupled m
Information related to exhaust hydrocarbons associa is presented. A comparison of two sampling techniq sorption tube) is discussed. The collected samples chrcmatograph-mass spectrometer-data system. The n	ues (cryogenic trapping and were analyzed by coupled g umber of compounds identifi
Information related to exhaust hydrocarbons associa is presented. A comparison of two sampling techniq sorption tube) is discussed. The collected samples chrcmatograph-mass spectrometer-data system. The n in the samples was 231, with equivalent results fro	ues (cryogenic trapping and were analyzed by coupled g umber of compounds identifi m the two sampling technique
Information related to exhaust hydrocarbons associa is presented. A comparison of two sampling techniq sorption tube) is discussed. The collected samples chrcmatograph-mass spectrometer-data system. The n	ues (cryogenic trapping and were analyzed by coupled g umber of compounds identifi m the two sampling technique
Information related to exhaust hydrocarbons associa is presented. A comparison of two sampling techniq sorption tuhe) is discussed. The collected samples chrcmatograph-mass spectrometer-data system. The n in the samples was 231, with equivalent results fro	ues (cryogenic trapping and were analyzed by coupled g umber of compounds identifi m the two sampling technique

SECURITY CLASSIFICATION

URITY CLASSIFICA	TION OF THIS PAGE	When Data Entered)		_	
				-	
		•			

ORGANIC COMPOUNDS IN THE EXHAUST OF A J85-5 TURBINE ENGINE

INTRODUCTION

Detailed information of exhaust hydrocarbons related to fuel type, engine type, and engine operating conditions are required to assess the health and environmental impact of aircraft. The U.S. Air Force School of Aerospace Medicine (USAFSAM), the Air Force Aero-Propulsion Laboratory, Wright-Patterson AFB. Ohio, and Monsanto Research Corporation, Dayton Laboratory, Dayton, Ohio, conducted a cooperative study to investigate various techniques for the evaluation of the hydrocarbon constituents associated with J85-5 turbine engine exhaust. Reports of previous studies have been made (1, 2, 3) as well as the Monsanto Research Corporation, Dayton Laboratory, technique of subtractive chromatography This study reports the analysis results of on-line exhaust sampling with the improved version of the USAFSAM cryogenic trapping system (5) and the USAFSAM sorption tube atmospheric sample system (AF Invention No. 12,052; U.S. Patent No. 4,170,901). The collected samples were analyzed with a coupled gas chromatograph-mass spectrometer-data system (6). This report describes a test conducted in January 1978 to identify and quantitate hydrocarbon emissions from a J85-5 turbine engine as a function of fuel type, engine operating conditions, sample acquisition system, and the analytical procedures employed. The J85-5 turbine engine is used on Air Force aircraft such as the I-38 trainer and the F-5.

SAMPLING

The engine exhaust was continously sampled from a single spatial point measurement in the exhaust. The emission profile of the J85-5 is not flat; therefore, a carbon balance between the fuel and the exhaust emission was not The probe was located on the exhaust center line, 3.75 ft from accomplished. the afterburner nozzle exit. Conditioned exhaust was provided to the three sampling techniques as shown in Figure 1. Cryogenic sampling was initiated with the engine operation stable. Sample time was 15 min for the idle (46% rpm), resulting in a collection of 4.5 liters, and 45 min for the cruise (75% rpm). resulting in a collection of 13.5 liters. The sample conditions are reported in Table 1. The cryogenic trapping system is shown schematically in Figure 2. The sample gas was passed through the first trapping cylinder (maintained at 0°C with ice water), through a heated inlet into the second trapping cylinder (maintained at -78°C with pulverized dry ice), and through the final trap (maintained at -175°C with liquid nitrogen), a needle valve for flow control, and a flow meter. The nominal flow was 300 cc/min at 21.1°C and 760 mm Hg. The flow was maintained by the pressure of the exhaust from the combustor. The compounds that will not be trapped and concentrated are those with sufficient vapor pressure at -175°C to remain in the gas being processed by the system (Fig. 3). In addition to the cryogenic trapping system samples, an alternate sample collection was used. Samples were obtained with the USAFSAM sorption tube atmospheric sample system (6). The conditions of sampling are presented in Table 2. sorption sample tube is stainless steel, 1.27 cm x 15.24 cm, and contains

Tenax-GC (a porous polymer of 2,4-diphenyl-p-phenylene oxide) between double stainless-steel screens at each end of the tube. The sample was obtained at 1 liter/min (Fig. 4).

EXPERIMENTAL TEST PARAMETERS

A J85-5 turbine engine with afterburner was installed in an engine test cell. The engine was provided appropriate support equipment to simulate operation at various conditions. The J85-5 engine was operated at two different power conditions which were idle (46% rpm) and cruise (75% rpm). The 46% and 75% rpm refer to the rpm of the compressor. The cruise condition is a higher power condition than the idle, but the engine operates at a lower fuel to air ratio (F/A). This condition exists because the efficiency of the compressor increases at higher rpm. The air flow increases more than the fuel flow which results in a lower F/A. JP-4 fuel and a blend of JP-4 fuel with sufficient Xylene added to produce a fuel with 25.1% aromatic content was used (Table 3). The higher aromatic content of the fuel would simulate one of the properties that is expected to increase with shale- and coal-derived jet fuels.

ANALYSIS

Hydrocarbons in the cryogenic trapping samples and on the sorption tube sample were analyzed with a coupled gas chromatograph (Varian Model 1400)-mass spectrometer (Dupont Model 21-491)-data system (Dupont Model 21-094) (6). The chromatographic separation was accomplished with Porapak Q (a polyalkylstyrene) of 100-120 mesh in a 3-m x 3-mm 0D microbore (0.7 mm ID) stainless-steel column. The column was temperature programmed at 10°C/min from -100°C to 250°C. The effluent from the column was split 25% to a chromatographic flame ionizator detector (FID) and 75% to the mass spectrometer. Compound quantitation was with a Hewlett-Packard 3352B system for integration of the chromatographic FID peak area. Identification was from the data system using a Dupont library search program. The library is based on spectra of 23,879 compounds (7).

A STATE OF THE PERSON AND PERSON

RESULTS AND DISCUSSION

The analyses of the 14 cryogenic trapping samples and the 13 sorption tube samples indicated the presence of 231 compounds. The compounds are listed in increasing molecular weight by chemical class in Table 4 for those samples obtained with the cryogenic sampling system and in Table 5 for those samples obtained with the atmospheric sorption tube samples. Table 6 compares the mean values for the samples presented in Tables 4 and 5. Comparison was made between the sets of data on the basis of orders of magnitude difference. If a compound had values in two sets that were zero or within the same order of magnitude the concentration was considered equal. If zero and trace values were evidenced between two sets of data, the concentration was considered as one order of magnitude difference. Using this system, the most comparable sets of data obtained by the cryogenic samples and the sorption tube method was that at the cruise engine power condition. At cruise, 53% of the compounds were zero or equal, 24% were within one order of magnitude, and only 1% had more than two orders difference of magnitude. The idle engine power

condition, using the JP-4 fuel with added Xylene, has 4% of the compounds with values separated by more than two orders of magnitude. The zero or equal order of magnitude popular comprised 52% which was similar to the cruise condition. Eight percent of the compounds were separated by more than two orders of magnitude in the idle power setting with neat JP-4 fuel. The compounds zero or equal order of magnitude were reduced to 45%. Idle and cruise engine power conditions with the neat fuel gave 65% and 47% respectively for the cryogenic sampler and tube sampler with compounds equal to order of magnitude or zero. Similar values were obtained in a comparison of idle fueled with JP-4 neat (60%) and idle fueled with JP-4 to which Xylene had been added (45%). The paraffins appeared in 34% of the polymer samples and 36% of the cryogenic samples. A similar pattern appears in the other classes: in the olefins 16% in the cryogenic and 20% in the polymer samples; 8% cryogenic and 67% polymer in the diolefins. For the remaining classes the percent for the cryogenic only is given first and then the polymer: Naphthenes (10,47), aromatic (0,33), acid (0,50), aldehydes (27,40), alcohols (4,48), ketones (29,43), ethers (29,14), esters (25,75), nitrogen containing (20,20), halogen containing (50,17), sulfur containing (100,0), lactone (100,0), and metal containing (0,100).

Table 7 lists the various compounds by chemical class present in a particular sample. The total carbon calculated from the analyses sum is different from that obtained by on-stream analysis at Wright-Patterson AFB, Ohio. This difference is directly related to the manner that summation of area under the curve is derived and will exist until perfect separation of compounds can be accomplished or a more elaborate method of electronic curve resolution is employed.

CONCLUSIONS

Cryogenic sampling and polymer sorption sampling were used to obtain exhaust samples from a J85-5 turbine engine at conditions of idle and cruise. Two fuels were used which differed from each other only by addition of Xylene.

- 1. Both cryogenic sampling and polymer sampling proved to be effective and reproducible techniques for sampling gaseous hydrocarbons.
- 2. The hydrocarbon content of the engine exhaust was directly related to the F/A mixture.
- 3. The number of compounds identified were 231; of these less than half were aromatic and oxygenated species.
- 4. There is an equivalence between the cryogenic and polymer samples; however, it appears that the lighter molecular weight materials are trapped more efficiently by the cryogenic system.
- 5. Since equivalent results were obtained by the polymer samples and its logistics support is considerably less, it is more efficient to use the polymer samplers.
- 6. No appreciable difference was observed in the neat versus the Xylene additive fuel with the exception of concentrations of Xylene and substitute

With the second

REFERENCES

- 1. Conkle, James P., et al. Cryogenic sampling of turbine engine exhaust. SAM-TR-74-54, Nov 1974.
- 2. Conkle, J. P., et al. Hydrocarbon constituents of T-56 combustor exhaust. SAM-TR-75-8, Apr 1975.
- 3. Conkle, J. P., et al. Organic compounds in turbine combustor exhaust. International Conference on Environmental Sensing and Assessment. IEEE 2:27-2 (1976).
- 4. Brooks, J. J., et al. Jet engine exhaust analyses by subtractive chromatography. SAM-TR-78-37, Dec 1978.
- 5. Conkle, J. P., et al. Multi-stage cryogenic trapping system. Aerosp Med 36:869-874 (1965).
- 6. Martin C. L., et al. Analysis of trace volatiles by gas chromatograph/mass spectrometer data system. SAM-TR-77-28, Dec 1977.
- 7. Stenhagen, E., et al. Registry of mass spectral data. New York: J. Wiley & Son, 1974.

THE STREET

J85-5 ENGINE EXHAUST GAS COLLECTION SYSTEM

Figure 1. J85-5 exhaust gas collection system.

Figure 2. The USAFSAM cryosampler gas flow path.

The second s

Figure 3. USAFSAM cryosampler.

Figure 4. Sampling manifold with USAFSAM sorption tube atmospheric sample system.

TABLE 1. CONDITIONS WHILE SAMPLING WITH USAFSAM CRYOGENIC SAMPLING SYSTEM

Date/time	Sample size (liters)	Fuel	Engine condition	Sample set no.
18 Jan 1978: 1400-1415 1440-1455 1520-1535 0945-1000 1041-1054	4.5 4.5 4.5 4.6	JP-4 JP-4 JP-4 JP-4 JP-4	Idle Idle Idle Idle Idle	112 30 106 102 104
19 Jan 1978: 1242-1326 1344-1429 1446-1530	13.5 13.5 13.5	JP-4 JP-4 JP-4	Cruise Cruise Cruise	19 110 25
20 Jan 1978: 1054-1109 1136-1151 1215-1230 1303-1318 1334-1349 1403-1418	4.5 4.5 4.5 4.5 4.5	JP-4 + Xylen JP-4 + Xylen JP-4 + Xylen JP-4 + Xylen JP-4 + Xylen JP-4 + Xylen	ne Idle ne Idle ne Idle ne Idle	9 109 27 28 11 101

TABLE 2. CONDITIONS WHILE SAMPLING WITH USAFSAM ATMOSPHERIC SAMPLING SYSTEM

Date/time	Sample size (liters)	<u>Fuel</u>	Engine condition	Sample <u>A</u>	tube <u>B</u>
18 Jan 1978: 1401-1416 1520-1535 1041-1046	15 15 15	JP-4 JP-4 JP-4	Idle Idle Idle	14 67 2	70 3 9 5
19 Jan 1978: 1242-1252 1344-1359 1414-1419 1446-1451	21 15 5 5	JP-4 JP-4 JP-4 JP-4	Cruise Cruise Cruise Cruise	47 17 18 32	56 19 46 61
20 Jan 1978: 1054-1059 1136-1144 1215-1220 1303-1308 1334-1339 1403-1408	5 5 5 5 5 5	JP-4 + Xylene	Idle Idle Idle Idle	55 33 64 35 10 68	57 37 62 43 58 20

TABLE 3. FUEL PROPERTIES

Property	JP-4	Alternate fuel blend
Vapor pressure @ 38°C	2.7	
Initial boiling point (°F)	140.0	140.000
End point	475.0	475.000
Aromatic content (% vol)	10.0	25.100
Olefinic content (% vol)	1.2	
Saturates content (% vol)	8.8	
Net heat of combustion (Btu)	18,730.0	18,512.000
Specific gravity @ 16°C	0.762	0.773

-

TARLE 4. ANALYSIS OF SAHPLES OBTAINED FROM THE EXHAUST OF A JBS-5 ENGINE BY CRYOGENIC SAMPLING REPORTED IN MICROGRAMS PER CUBIC METER AS HEXANE BY CHEMICAL CLASS

The state of the s

	SA	MPL ING	REPORTE	2 IN 110	SAMPLING REPORTED IN MICROGRAMS PER CUBIC METER	1907		אין	,		•	3		
		d go	Jp-4 fuel at Jow idle Sample	at mple	,	J-qu bim	JP-4 fuel at mid idle sample	at nple	~	4- ال 4- ال	JP-4 tuel with Aylene mid idle sample 3 4	tn Ayler Sample 4	a Pere	9
Compound		2	: ,	4	~		7	~		ł	,		}	
Puraffins										٩.				
Ethane	-								o	₹,	^			7
Propane 2-Methylpropane	.,	.2	9.	r	-:		Ξ.		o.	7.	:	- '		- -
n-Butane			;-;	?	۳.			•	•	۰, ٥	1 7	, «	1.6	1.2
2-Methylbutane	φ.	1.5	1.9	7	3.2	٠.		4 -	• -				-	
2.2-Dimethylbutane				.2	?	-:	-	:		•	ć		u	o
2,3-Dimethylbutane	6.6	1.2	2.5	2.3	1.1		۳,		1.8	1.0	ν.	1.4	•	
2-methylpendane 3-Methylpentane		đ	۰: -	9,1	٠,	4.	.2	80.	2.9	2.0		٦.		Τ:
n-Hexane	ĸ.	r, ci	:	1.2			-		7.			-		
2,2,3-irlmetny:outane 2,2,3-irlmethylpentane	3.7	•	1.4		۳,	r.				∞.		:	6.4	•
2,3-Dimethylpentane		ď					.1		(9.	₹.	4		2.4
2,4-Dimethylpentane 2 Mathylberane	21.3	·	10.6	40.7	12.1	დ ი ი	1.2	1.8 6.1	7.7	2.8	. 8 . 8	· ~:	4.2	1.6
n-Heptane	11.1	4.7	0.9	5.1	0.7	7•7	?	2	!					
2, 3, 3-Trimethylpentane							,	,		4				۲,
2_Methyl=3-Ethylpentane	5.6	1.5	2.8	10.0	3.0	₽.	e.	2.2	0 -	o.		2.9		,
2,4-bimetrylnexane 3,3-bimethylbexane	8.7.		12.4	c					2					
3,4-Dimethylhexane				ກູ					Ċ	-		0		1.7
3-Ethylhexane 2-mathylheatane					13.8				6.3	7.1		:		
3-Methylheptane						3.0		1.0					ď	
4-Methylheptane		6.	9.	6.		2.4	۳							
n.Octane 2,2,3,4-Terramethylpentane	•		0	1 3		ώ rė		2.2			.,			
2,3,4-Trimethylhexane	10.2	2.0	0.0	7.,		:		۴.			, 5	•		
2,5,5-Irimethy!hexane 2-Methyl-4-Ethylhexane		8.0			3.2	٠	-				;			
2.4-Dimethylheptane	7.1	7.6			c.	-	:					r		
2,5-Dimethylheptane 3,4-Dimethylheptane	8.5	4.6					φ.					?		
4-Ethylheptane												•		
2-Methyloctane 3-Methyloctane												u,		
4-Methyloctane														

T*trace, less than 0.05 µg/m³.

TABLE 4 (Continued)

1 d

5.0 4.7 6.8 7.6 2.4 .2 .8 3.6 4.1 3.6 4.5 3.5 1.1 4.0 1.9 2.4 1.9 1.9 1.9 6.2 8.5 8.2 1.0 1.9 6.2 8.5 8.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Compound Paraffins (Continued)		5	o are o	, ,		Địc	idle se	mole				OILES 4	a	
ptiane 2.7 5.0 4.7 6.8 7.6 2.4 .2 .8 3.6 4.1 3.6 4.5 3.5 ptiane 1.3 1.8 2.4 19 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.	Paraffins (Continued)	₽ij	2	۳,	77	2	~	2		_	2	3	4	- 1	9
Figure 1.3 1.8 1.8 1.2 1.4 1.0 1.2 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5															
1.3 1.8 2.4 7.9 11.5 4.2 2.4 2.9 10.9 6.2 8.5 8.2 10.9 10.9 6.2 8.5 8.2 10.9 10.9 6.2 8.5 8.2 10.9 10.9 6.2 8.5 8.2 10.9 10.9 6.2 8.5 8.2 10.9 10.9 6.2 8.5 8.2 10.9 10.9 10.9 6.2 8.5 8.2 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	n-Nonane 2-Methyl-5-Ethylhentane	2.7	5.0	4.7	6.8	7.6	2.4	.2	φ.	3.6	4.1	3.6	4.5	3.5	1.3
1.3 1.8 2.4 1.9 1.9 1.5 4.2 2.4 2.9 1.9 1.9 1.0 2.9 1.0 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	3,3,5-Trimethylheptane														
## 1.3 1.8	2,3-Dimethyloctane														
## 1.3 1.8	3-Methylnonane				?					•					
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.3 1.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.6 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	n-Decane	1.3	1.8		2.4		σ			1.3	•		•	•	
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.3 1.3 1.3 1.3 1.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.6 1.3 1.3 1.3 1.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.0 1.6 1.3 1.3 1.4 1.7 1.9 1.7 1.8 1.0 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4,5-Dimethylnoname		:		;		.				7.4		ş.	6.3	
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 3.0 1.7 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2-Methyldecane		7	4.0											
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 3.0 5.1 6.8 6.1 9.4 7 1.0 T 7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	n-Undecane														
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.6 1.6 1.0 1.	2-Methylundecane														
4.0 43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.6 1.6 1.6 1.6 1.7 1.8 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 2.2 2.3 3.4 3.5 3.6 3.7 3.8 3.9 3.1 3.2 3.4 3.5 3.6 3.7 3.8 3.9 3.9 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	4-Methylundecane														
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 3.3 T 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	5-Methylundecane			4.0											
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 16.6 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2-Methyldodecane														
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.6 1.3 1.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 11.6 1.6 1.3 1.4 1.7 1.9 T 1.9 T 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0lefine														
43.0 13.4 17.2 19.4 26.4 3.9 T 1.5 9.9 10.9 6.2 8.5 8.2 1.6 1.6 1.6 1.0 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0															
43.0 13.4 17.2 19.4 26.4 3.9 T 11.5 9.9 10.9 6.2 8.5 8.2 11.6 3.0 17.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Ethene										•				
1.6	Propene	43.0	13.4	17.2	10.4	26 A	9	۰		ć		•		4	
3.0 5.1 6.8 6.1 9.4 3 1.1 7 6 9.8 3.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Procyne	-	•	,		* •	٠ د		٠.	ה ה	5.0	7.0	8.2	8.5	7.1
3.0 5.1 6.8 6.1 9.4 3 1.0 7 3.5 1.9 2.8 3.4 1.6 2.8 1.3 1.4 7.7 1.0 3.2 1.3 1.4 2.8 3.4 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	2-Methylpropene		۳.	~	, rc		• -	: -	۶.	•	, c	•		1.0	
16.2 .8 1.3 1.4 .7 .1 1.0 .7 3.2 .9 2.8 3.4 2.8 3.4 2.8 4.4 2.8 2.3 3.1 2.3 3.2 3.5 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.5 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	1-Butene	3.0		9	· ·	. 0			٢	,	ç.,	(•		
T .3 .2 .2 .1 .1 .2 .6 .9 .1 .3 .5 .4 .7 .1 .1 .1 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .6 .6 .6 .6 .7 .7 .1 .1 .1 .3 .4 .5 .8 .2 .5 .5 .5 .5 .5 .5 .5 .5 .6 .6 .6 .6 .7 .7 .7 .1 .1 .1 .1 .1 .1 .2 .6 .7 .7 .1 .1 .1 .2 .3 .4 .5 .8 .2 .8 .2 .4 .1 .1 .2 .3 .4 .5 .8 .2 .8 .2 .4 .1 .1 .2 .3 .4 .5 .8 .2 .8 .2 .4 .5 .8 .2 .8 .2 .4 .5 .8 .2 .	2-Butene	16.2	, α	· -			•	•	•	• •	د	8.7		m •	1.3
For the state $\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-Butyne		?	:	:	:		?		3.5	•	7	8.2	7.	
ene	2-Butyne		_	۳.	.2	۲.			-	c	7.	۲	٠	٠	•
lo.1 .5 2.7 1.1 2.6 .9 .1 .4 1.7 .1 .16 ene .7395521671418241824234582 tene tene34582345834582345823458534585	3-Methyl-1-Butene				!	!			:	, ,		س -	-	- 6	₹.
ene .7 .3 .5 .5 .2 .2 1.2 .6 .6 .6 .6 .1 .2 .3 .4 .5 .8 .2 tene tene 3.4 .5 .3.4 .5 .8 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	I-Pentene	10.1	٦.	2.7	1:1	5.6	0	-) =	1 7	•	-	•	-
ene 2.3 3.1 2.3 4.1 1.5 1.8 5.8 tene 3.2 3.5 5.8 2.6 tene 3.4 5.5 5.8 2.6 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	2-Pentene		₹.			۳.	•	: -:	5.	,		1.5	. ·	ų	:
ene .7 .1 2.3 .4 .1 1.5 1.8 tene 2.3 .2 .4 .2 .2 .3 .4 .5 .8 tene 3.4 3.5 3.4 2.6 2.8 2.6 2.8 2.8	1-Pentyne								•	!	:	:	•	•	
2.3 3.1 .1 2.3 .4 .1 1.5 1.8 tene 3.2 3.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.8 2.9 2.0 2.	2,2-Dimethyl-I-Butene				.,										
2.3 3.1 2.3 .4 1.5 1.8 tene 2.3 3.4 5.8 tene 3.4 3.5 xene	Z-Ethyl-I-Butene														
2.3 .6 .7 .6 .2 .3 .4 .5 .8 tene 3.4 3.5 3.4 3.4 xene	2-Methyl-1-Pentene		3.1		-:	2.3		₹.		1.5	. 8				
3.2 3.5 tene 2.6 tene 3.4 zene	4-Methyi-I-Pentene	5. 3		9.	.7	9.	•5		-5		7	ų	α	•	
3.2 3.5 thyl-l-Pentene thyl-2-Pentene 1-Hexene 3.4 e -4-Ethylhexene	4-Methyl-2-Pentene					-			ı	?	•	:	•	•	
thyl-l-Pentene thyl-2-Pentene 1-Hexene 3.4 -4-Ethylhexene	I -Hexene				3.2	3.5									
hyj-2-Pentene -1-Hexene a -4-Ethylhexene	3,4-Dimethyl-1-Pentene										2.6				
3.4 e -4-Ethylhexene	4,4-Dimethyl-2-Pentene				,						8.8				
J.Methyl-4-Ethylhexene - Merhyl-4-Ethylhexene - Nervae	t-mechyl-t-mexere - Hootsab				4,4										
oriental de la company de la c															
- Darwar	- Nonene - Nonene														
	100.00														

T=trace, less than 9.05 µg/m^3 .

TABLE 4 (Continued)

		÷ <u>₹</u>	JF-4 fuel at Ow idle samo	at Mole		L biE	JP-4 fuel at mid idle sample	at mple		JP-4	JP-4 fuel with Xylene at mid idle sample	ith Xyle sample	ene at e	
Compound	_	2	2 3 4	4	5	_	2	m	_	2	8	4	2	9
Diolefine														,
Propadiene	1.3	.7	1.4	1 6	2.2	.5	m,	٠:	ů.		ĸ.	٠.	₹.	σ.
1,2-Butadiene 1,3-Butadiene	3.7	3.4	3.6	4.1	5.5	1.1	۲.	rč.	5.6	5.6	5.0	9.	8.2	1.7
1-Buten-3-yne														
1,3-Butadiyne 2-Methyl-1,3-Butadiene														
3-Methyl-3-Buten-1-yne														
1,3-Pentadiene														
i,4-Pentadiene					'n.		-							
2,3-Pentadiene 3-Penten-1-yne														
Rophthenes														
Cyclopropane			1.2	6.				•						
Cyclobutane					-			۲.				,		
1,1-Dimethylcyclopropane	2.2	2.4	۲:		1.5				.5	-		.2	,	Ξ.
1,2-Dimethylcyclopropane									•	•			?	
Etnylcyclopropane Methylcyclobutane														
Cyclopentane				s.	7	-			-5	-	~;	ĸ.	٠;	
Cyclopertene											.2			
1,3-Cyclopentadiene														
Dimethylcyclobutane								~		-5	.,		2.0	
Ethylcyclobulane Mothylcyclopentane		œ	1.6	۳,	5.	'n		1	-:	1.4			ب	.2
Methylcyclopentadiene		!							•					¥
Cyclohexane	3.0								ĸ.					•
1,3-tyc!onexadlene 1,2-Dimethylcyclopentane														
1,2-Dimethylcyclopentadiene			,	,	(•	,	,	•	•	,	ć	-	•
Methylcyclohexane	5.0	1.9	2. 5	5.4	2.8	o.	?	۲.	7.6	•;	9.7	3.5	7. «	p. 1
1-Methyl-1-Ethylcyclopentane			•						:			:		
I-Methyl-Z-Ethylcyclopentane							-				.2			
1.2-Dimethylcyclohexane									.2					,
1,4-Dimethylcyclohexane									-	-		-		
Ethylcyclohexane 1 2-Trimethylcyclobexane									:	 		-		:
1,1,3-Trimethylcyclohexane														

I=trace, less than 0.05 μg/m³.

TABLE 4 (Continued)						5	,	4		90	10-4 fuel with Xvlene at	* X X Y	ţ.	
Compound	_	g ⊊ ²	JP-4 fuel at low idle sample 2 3 4	at mole	٦.	mid i	JP-4 fuel at mid idle sample 1 2 3	ac aple	1	5 ~	mid idle sample	Samp]	2	9
Maphthonsa (Continued)														
1,2,3-Trimethylcyclohexane 1,2,4-Trimethylcyclohexane n-propylcyclohexane Butylcyclohexane										۶.				
Aromatico Benzene Methylbenzene Dimethylbenzene Fthylbenzene	11.8 6.5 7.8	8 8 5°	5.8 3.8 7.1	5.3 6.3	6.3 4.0 7.6	2.1 1.4 5.4	ಹೆಕ್ಟ	1.1 .9 1.7	4.8 5.0 10.7	5.4 6.7 17.1	4.5 14.9	8.1 8.1	4.8 10.5 15.6	7.64 0.04
1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1-Methyl-2-Ethylbenzene n-Propylbenzene Isopropylbenzene	4 rů	1.7	3.7	e.	1.0	1:1		8. 2.	6.3 11.1 5.5	7.3		4.9	4.6.6	5.0
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Dimethylnaphthalene														
Acetic Propanoic					2.1									
Aldehydes Methanal Ethanal Propanal	2.4	1.8	4.	1:1	£.5.	2.1	-	7:	2.5	1.4	2.5	2.1	2.6	₹.
Propenal 2-Methylpropanal n-Butanal 2-Butenal	œ.							6.	1.4		1,1		'n.	4.
J-Sutanola! 2,2-Dimethy propana 2,4-Methy butana 2-Ethy butana 2-Methy pentana			2.6		4.1							.4	r:	1.2
	~													

Charles and Continued

<u> </u>	p.d.	or 2	JP-4 fuel at low idle sample 2 3 4 4	at inple	\$	g pici	JP-4 fuel at nid rdle sample 1 2 3	at rple	-	JP-4U	JP-4 fuel with Xylene at mid idle sample 2 3 4 5	ith Xy] sample	ene at 5	9
(1) <u>febrato</u> s (1901 inue ti Lenzas tehyde o-Hepsana o-Pecana														
To control	-	ب	7.	7.	-	-	-	•	6.	٦.	-	e.	-	7.
[thanol Loropon		; e	4. ~.	<u>.</u>	i.u.	7 -	- -	. · ·	т. •	4.	· - ·	· ·		
Pentanol	3.1	1.6	; :	5.3	ć ć	۶.	-		2.43	٧.	1.2	F :	~.	
Cyclobeyynethanol 2-methylheptanol 5-methylheptanol 1-lonanol 2-propylheptanol 2-propylheptanol 2,7-bloethyloctanol 8utyloctanol		2.7					~ :	<i>د.</i>	æ	4.2	4.0	~:	5.6 1.5	2.8
Zoromin 2-broparone 2-Hytanone Syctobutanone 3-Butene-2-one 3-Pentanone 3-Pentanone 3,3-Bis(Gydroxymethyl,-2-Cutanone Tetrace, less than 0.05 ug/m².	1.5 Lanone 1.3	٠. ^٠ .	2.1	0 2	 	0.1 0.1	2.7.	w. e.	5.5	. 33.1	۳.	.	0.00	1.0

9		٥.		.1		m;			
ne at 5				2.8.					
JP-4 fuel with Xylene at mid idle cample 8 3 4 5				6.		-:			
fuel wi nid idle 3				2.2		7:		•	7.7
9-4C		٠.		.2					
-		3.0						~ .	
e mi		e		_					
JP-4 fuel at mid idle sample 1 2 3		2.0							
JP-4 fu									
ੱ ਵ ਦੀ				ა					
S				.2					
ارد 6 ه	•			<i></i>					
JP-4 fuel at low idle sample 2				₹.				3.0	
JP-4 10w 1				~ E. S.				~	
				1.1				1.7	
	ued)	anone anone		ה פר		9.2 P.O.O		Armonia Sitylothane Siazoethane 2-litroethy/propionate	ല
	(Contin	-2.Pent ne anone -3-Hept none anone enzyl X		ther Solane Olane drofura nyl Cth		rnate etate 1 Propi etate Acetate rylate		hane ane thylpro	e Tille
Compound	Resource (Continued)	3-fethyl-2-Pentanone 3-Hexanone Cyclohoxanone 2-fethyl-3-Heptanone Acetaphenone Cyclononanone Propyl Eenzyl Ketone	C. 37.23	Tethyl Cther 2,3-Eposybutane 1,3-Bioxolane Furan 2,5-Bihydrofuran Ethyl Thnyl Cther Benzyl Cther		Ethyl Formate Allyl Acetate Allyl Formate Isopropyl Propionate Allyl Acetate Isoamyl Acetate Octyl Acetate		Armonia Sisternethane Siazoethane 2-litroethyl	eopenty, attrace
()	:	80000CUC	ir:I	1- 0 - L 0 11 2	-01	шшқнқног	. !	< ∷ € ∞ .	•

Tathace, less than $0.05\ \mu g/m^3$,

- washing

Compound	-	ي تح د	JP-4 fuel at low idle sample 2 3 4	at ample 4	ď	-AU. bi≋i-	JP-4 fuel at mid idle sample i 2 3	at mple 3	-	JP-4	fuel waid idl	JP-4 fuel with Xylene at mid idle sample 2 3 4 5	ene at e S	ع
Ralogen centaining		, 				,	 	·	.	į	:			'! !
Chlorowethane Dichlorodifluoromethane (R-12)										-:				
Trifluorotrichloroethane(R-113) 1-Chloro-3-Methylbutane 2 Chloro - 2 Mothylbutane	5.5	7		·.	1.1	.2	£.	<			-	٦.	.2	- :
z-unioro-s-methylbutane 2-Iodo-2-Methylbutane I-Chioropentane								:		2	:		9.	
2-Chloropentane Isoamyl Chloride												۲.		-:
3-Chloro-3-Hethylpentane									-				6.	ı
i-fluoronexane 1-Fluoroheptane														
Sulfun containing														
Octyl Mercaptan									4.7					ξη: •
<u>Lactoner</u>														
f.8-Dimethylpropiolactone			1											
Petal containing														
Nickel Carbonyl														
(mbran)	46.0 28.2 29.6 48.5 66.6 7.5 4.6 5.3	2.32	29.6	48.5	9-99	7.5	4.6	5.3	28.0	32.3	18.3	26.3	28.0 32.3 18.3 26.3 22.2 29.7	2.3.7

T=trace, less than 0.05 ug/m^3 .

TABLE 5. ANALYSIS OF SAMPLES OBTAINED FROM THE EXHAUST OF A J85-5 ENGINE BY POLYMER TRAPPING REPORTED IN MICROGRAMS PER CUBIC METER AS HEXANE BY CHEMICAL CLASS

() Projektiski kan or

Par in Case of	-	JP-4 Jow id	JP-4 fuel at low idle sample	رد	-	JP-4 fuel at mid idle sample ZA	el at sample 2	m	-	JP-4	JP-4 fuel with Xylene at mid idle sample 2 3 4 5	ch Xyler sample 4	ne at 5	٥
Paraffins		,		·}	.]			1		1			ĺ	1
Ethane						j				-				
Propane							. .	-						
2-Methylpropane				,					•				4	
n-Butane				-					ر د د		-			
2-Methylbutane					,	•	•		·,	,	٠,	·		•
n-Pentane	-:				_ '	٥.	4.	,		?	۲.3	,•		ď.
2,2-Dimethylbutane					?	í		_						
2,3-Dim∈thylbutane		•	,			Ņ	,				•	•	,	u
2-Methylpentane		7	1.2			`.	e.			o.	۷.۵	₹.	۲•۶	c.
3-Methylpentane	6		ć		0.5	ć		•			,		0	
n-Hexane	5.3		œ.		Ξ.	7.7	·:	۲.		7.	0.7		0.7	
2,2,3-Trimethylbutane							ć				-			-
2,2-Dimethylpentane					٠	٠.	۶.			,	٦.		•	•
2,3-Dimethylpentane	2.8				1.4					٩	₹.		7.	Ç.
2,4-Dimethylpentane			ĸ.									નં. ર		
3,3-Dimethylpentane												7.		
2-Methylhexane			1.4	,	•	,	,	,			,	,		•
3-Methylhexane	3,9	mi i	٠ <u>٠</u>	5.6	∞ •	4.1	5.7	٠,٠	•	,	بر د د	۶.′		3.0
n-Heptane	1.5	Ś	-5	5,5	.3		φ.	7.4	3. E	۲.	6.2			
2,3,3-Irimethy)pentane							Σ,		,			-	•	·
2-Methyl-3-Ethylpentane				•		•	٠	,	η.			7.	?•	·,
2,4-Dimethylhexane	1.5	4	4. b	<u> </u>	ζ.	٤.4	`	٥			•			
3,3-Dimethylhexane				—	-J.		1.9				5.8			9.2
3,4-Dimethylhexane														
3-Ethylhexane	,					,		,			•	•		
2-Methylheptane	φ.	(,	۲.	1.9	٥		3.6		7.5	4. 0	.	ر. ت	
3-Methy Theptane		'n	3.2	. .5										
4-Methylheptane	,	ı		•	,	,		ć		ć	-			·
n-Uctane	، م	'n	5.4	4.	7:7	7.	6.1	۲۰۶	1.6	2.0	Ţ.		7.0	?
2,2,3,4-Tetramethylpentane	~;					,	•	`.				•		
2,3,4-Trimethylhexane	۳.			1.3	n.	1.,	0 .					-:		
2,3,5-Trimethylhexane		•												
Z-Methyl-4-Ethylhexane	•		_ '											
Z,4-Ulmethylheptane	Ď	0.1	۴.				-							
2,5-Ulmethyineptane	٥			٠,		٣	:							
3,4-UnmethyIneptane	•	ď	4	. · ·		?								
2-Mothyloctane		>	:		٣,									
3-Methyloctane					•									

I≈trace, less than 0.05 μg/m³.

-

TABLE 5 (Continued)

purious		JP-4 fuel at low idle sample 2 3 4	νn		JP-4 1 mid 1dl 2A	JP-4 fuel at mid idle sample 2A 2	ر س		26. € 2	JP-4 fuel with Xylene at mid idle sample 2 3 4 5	th Xyle sample 4	ne at 5	9
Paraffins (Continued)	ļ												
4-Methyloctane n-Nonane 2-Methyl-5-Ethylheptane 3,3,5-Trimethylheptane	6.7	6.3 6.7 2.5	0, E 0, 0, 4	1.7	ક	4	7 2.6 1.3		3.7	± 8 6.8		15.4	
2,3-Jimethyloctane 2-Methylnonane 3-Methylnonane n-Decane	m,	9. 1.4	, 4	1.1	3.0		1.9		i7.0 6.6	5.8	5.0		
4,5-5 inecuty indicate 2-Methyldecane n-Undecane 2-Methylundecane	1.	2.3	3.9	2.7	હ.		٣,		3.2	1.1		æ.	4.2
4-Methylundecane 5-Methylundecane n-Dodecane 2,6-Dimethylidecane	-	4.1	2.6	8.5			4.		1.0			3.3	2.9
z-neunyloooccane n-Trimethyldecane n-Tridecane	8 9	7.		1.0									
<i>Olefine</i> Ethene Propene	٠.	} ►	.1	Π̈́.	۲.	2.	-	-	F	٠.	٦.		.1.
2-Methylpropene 1-Butene 2-Butene 1-Butene	1 2	9•1	1.0	⊢ 4.	7.1	8.5	ę. r.		1.5	1.8	1.5	1.9	1.7
2-Butyne 3-Butyne 3-Methyn - 1-Butene 1-Pentene 2-Pentene 1-Pentyne	1.1	2.9 1.0 .2	1.8	1.4	1.4	3.4	1.3		⊢ 3•	<u>-</u>	1.0	 	2.3
2,2-Dimethyl-1-Butene 2-Ethyl-1-Butene 2-Methyl-1-Pentene 4-Methyl-1-Pentene 4-Methyl-2-Pentene	-				1.2	7.			2.1	1.8	1.9		
9-19-5-1-1													

T=trace, less than 0.05 µg/m³.

TABLE 5 (Continued)

		JP-4	JP-4 fuel at			JP-4 fuel at	JP-4 fuel at			4 d	JP-4 fuel with Xylene at	th Xyle	ne at	
Compound	_	2	2 3 4	15	_	Z	2	~	_	2		4	25	9
Olefine (Continued)														
3,4-Dimethy]-I-Pentene 4,4-Dimethyl-2-Pentene 4-Methyl-1-Hexene 2-Heptyne 3-Methyl-4-Ethylhexene I-Nonene I-Decyne			9. 11	9•	w w	7			3.9					
<u> Violefins</u>														
Propadiene	-			-	-		-		7.	-			- -	-
1,2-Butadiene 1,3-Butadiene 1-Buten-3-vne	₹		.,	ο,	4	1.6	1.9	6.	1.9	1.8	2.2	1.9	1.4	2.1
1,3-Butadiyne 2-Methyl-1,3-Butadiene	:		φ.	ω,	:		-			ō,	σ,	2.80		
5-Methyl-3-Buten-1-yne 1,2-Pentadiene			:			· - ;	.2			:	:	}		
1,3-rentadiene 1,4-Pentadiene 2,3-Pentadiene 3-Penten-1-yne			-	-			.2						4.	ω,
Naphthenes														
Cyclopropane Cyclobutane	-		1.0	2.0		1.5					2.7			
<pre>1,1-Dimethylcyclopropane 1,2-Dimethylcyclopropane</pre>				1.3			-:				1.8	2.4		
Ethylcyclopropane Methylcyclobutane									٠:	1.9				
Cyclopentane						1.1	٦.			-	-	-		-
lyclopentene 1,3-Cyclopentadiene	-1		٤.	.1	∹,	-		٠.						
Ethylcyclobutane Methylcyclobentane			2.8	ŝ.	- 1				?	.2	7	7	2.8	1.4
Methylcyclopentadiene Cyclohexane 1,3-Cyclohexadiene	-		.2	7.	⊢ [®]				∞.	2.	-:	.2	5.4	.2
T≅trace, less than 0.05 μg/m	¹ 3.													

TABLE 5 (Continued)

I=trace, less than 0.05 μg/m³.

		JP-4 fuel at			+ 4-90	JP-4 fuel at			4	JP-4 fuel with Xylene at	th Xyle	ne at	
Compound		2 3 4	5	-1	m1d 1d	mid idle sample 2A 2	m	ᅵ	2	mid idle sample 3 4	5.8mp 8	2	9
Aldehydea													
Methanal									-				
Ethanal	٠:	.2	٩.	.2	0.1	—	۴,	٠,٠	.	ထ္	۲.	ထ္	٠,
Propanal	-	7 1	-	-	•			5.4	c	-			,
Propendi	:	0.1		- ►	7.	u			۶.	•			c · 2
2-metnylpropanal				- [OI C	•			9				
2-8:100al				• 5	· ·			2.0	.,				
3-Butanolal													
2,2-Dimethylpropanal													
2-Methylbutanal													,
2-Ethylbutanal 2-Mothylpoptanal													۲.۵
Benzal debyde				-			٤,	-	_	-		-	13.3
D-Hentana]			-2	. ~			:					1	
n-Decanal			5.4	!									
Alcohole													
Methanol	_	_	-		Ξ.		-	_	-	-	-	Ξ.	-
Ethanol	-	7.	٦.		٦:		-	•5	۶٠	۶.	7	٦.	.2
1-Propen-3-ol													
2-Propen-1-ol		۳,	1.2	₹.	1.0		-:		ထ္			2.2	٠,
2-Buten-1-01			_										
3-Butyn-2-ol			,	-									
3-Buten-1,2-dio1			۳.	•							,		
3-Methyl-1-Butanol				.2			١				သ္		
1-Pentano 1-Desember 2-4							-	-					
1-rentent-3-01 4-Ponton-1-01		Þ	α	ı,		-		:					
2-Fthv1-1-8utano1	~	•	•	•		:							
2-Methyl-1-Pentanoi						_							
3-Methyl-1-Pentanol													
2,2-Dimethyl-I-Pentanol			,										
Methylcyclohexanol	•	۲.	e,										
Cyclohexylmethanol	-:							•					
z-Methylheptanol 6-Methylheptanol								0.0	11.5			6.6	
1-Nonanol			2.3			,							
n-Propylheptanol		•	4	~	~		ر. د			a.	y	,	
		:	:	:	:		;) •	:	,	

Intrace, less than 0.05 $\mu g/m^3$.

TABLE 5 (Continued)		JP-4 fuel at		E	JP-4 fuel at mid adle sample	l at			JP-4 fu nid	JP-4 fuel With Xylenc at nid idle sample	Jencat e	
punoduo;		2 3 4	5	- !	24.	.~	~		2	3 4	ς.	9
Alochole (Continued)			3									
2,7-Dinethyloctanol Butyloctanol 2-Butyl-1-Octanol	۲.	3.7	4									
Ketones									<	c		
2-Propanone	2	<i>د</i> .	S,	1.5	జు.	-:	٠,		o <u>`</u>	æ.		
2-Butanone	۰,	3.3	⊢									
Cyclobitemore 3-Butene-2-one 2-Pentanone											2.1	
3-Pentanone	o o				4.						i	
3,3-B1S(ByGroxynethy1)-c-buttations 3-Methy1-2-Pentlanone 3-Hoxanone	310	۷,	.7		2.5		2.5	-		3.0	3.2	α; :-i
Carlobasanone								٥.			:	
Cyclotradayae Cyclotradayae Acetophenone Cyclotradayae Propyl Benzyl Metone	⊢			1.					>. -:			1
Ethene												
Methyl Ether 2,3-Eroxybitane 1,3-Dioxolane		۳.	۲.			r:					•	
Furan 2,5-Dihydrofuran Ethyl Vinyl Ether Benzyl Ether	0.1		2.1	۲;	·:						w.	
Estene					ı							
Ethyl Formate Ethyl Acetate Allyl Formate Isonopyl Problemate		1.4	, .		·- ^:		<u>:</u>			1.4		
Allyl Acetate Isoamyl Acetate Octyl Acrylate Decyl Acetate	۲.					C:						

Tatrace, less than 0.05 kg/m³.

The Control of the Co	-	JP-4 fuel at low idle sample 2 3 4	L.	-	JP-4 fuel at mid idle sample 26 2	t ple 3	1	4-40 2	JP-4 fuel With Xylene at mid idle sample 2 3 4 5	ith Xyle sample	ene at e	ع
And the Contraction of the Contr			·	 .								
Armonia Nitromethane Diazoethane Z-Nitroethyleropionate Neobentyl Nitrate	3.4	-	-		ro.	1.7		4.		٠, در	2.5	m.
Halogen Centalecting												
Chloromethane Bichlorodifluoromethane (R-12) Inifluorofichloroethane (R-113)	۰.				⊢	۰					þ	-
1-Chloro-3-Methylbutane 2-Chloro-3-Methylbutane 2-Iodo-2-Methylbutane	- -				-		1.8	2.2				2.3
1-Chloropentane 2-Chloropentane 1scand Chloria 3-Chloroma Matholian												
1-Fluorohexane 1-Fluorohexane		3.0										
Sultan ในช่วนก												
Octyl Mercaptan												
יוֹ מכּרְטִינִים בּ												
6.6-Dimethylpropiolactone												
Metal Centaining												
Nickel Carbonyl					-						-	
ीम्प्रेय ् य	21.0	25.4	40.3 12.7		6. 7.7	5.3	54.0	21.5	33.5	58.0	15.3	41.9

T=trace, less than 0.05 Mg/m³.

TABLE 6. A COMPARISON OF THE MEAN CONCENTRATION IN MICROGRAMS PER CUBIC METER BETWEEN POLYMER-TRAPPED AND CRYOGENIC-TRAPPED J85-5 ENGINE EXMAUST

		Cryotran			Polymer	
	JP-4	JP-4	JP-4	JP-4	JP-4	JP-4
Compound	low idle	mid idle	mid idle	low idle	mid idle	mid idle
Faraffins	68.0	11.2	18.7	46.3	20.9	31.7
Sthane			.1		-	1
Propane	-		٦.		-	
2-Methylpropane	m,	-	9.			-; '
n-Birtane	-:		- •	-		٠,
2-Methylbutane	• • •	•	∵ ?	•	c	v.
n-Pentane	1.5	d .	1.2		7.	ŗ.
2,2-Dimethylbutane	-:	-:	.2		∹.	
2,3-Dimethylbutane	•		•	•	-; ·	•
2-Methylpentane	2.3	-:	1:1	₹.	ภูน	1.1
3-Methylpentane		,	*	•	? .	•
n-Hexane	2.4	iĝ.	တ္၊	→	c:	5.
2,2,3-Trimethylbutane	۳,	-	⊢ I		•	•
2,2-Dimethylpentane	:	~.	- - (•	·	(
2,3-Dimethylpentane		,	D.I.	ο, ι	٠.	י ר
2,4-Dimethylpentane	-:	;	.2	2.		_ •
3,3-Dimethylpentane						`.
2-Methylhexane		(٠.		•
3-Methylhexane	18.6	2.3	2.4	۲.,	8.7	7.7
n-Heptane	6. 8	1.5	5.0	4.1	d• (7.1
2,3,3-Trimethylpentane					7:	•
2-Metnyl-3-Ethylpentane		,		•	•	-
2,4-Dimethylhexane	4.6	1.1	æ.	5.4	9.7	ų,
3,3-Dimethylhexane	4.2		9.	_	•	٠,
3,4-Dimethylhexane	.2					
3-Ethylhexane	.2				•	•
2-Methylheptane	2.8		1.1	.,	1.5	2.8
3-Methylheptane				5.6		
4-Methylheptane		1.3	•	•		•
n-Octane	٠.	œ.	σ•	3.5	 	3.3
2,2,3,4-Tetramethylpentane		۴.		-	7.	•
2, 3, 4-Trimethylhexane	6.3	σ,	τ.	-:	æ.	-
2,3,5-Trimethylhexane	,		•	٠		
2-Methyl-4-Ethylhexane	?.		đ,	_		

T=trace, less than 0.05 μg/m³.

TABLE 6 (Continued)

		Cryotrap			Polymer	
	JP-4	₽ - d()	JP-4 with Xvlene	4− .	JP-4C	JP-4 with Xvlene
Compound	low idle	mid idle	mid idle	low idle	mid idle	mid idle
Paraffire (Continued)						
2,4-Dimethy ineptane	4.6	-		6.	•-	
2,3-U methy inputane 3,4-Dimethy inputane 4-Ethy i heptane	2.6	-5	~;	3.0	· -; -	
Z-Methyloctane 3-Methyloctane 4-Methyloctane			.1	er.	: -	-
n-Nonane	5.4	1.1	3.4	5,5	1.2	2.1
2-Methyl-5-Ethylheptane 3,3,5-Trimethylheptane			_	c 8	•	D*1
2,3-Dimethyloctane	-			.: <i>~</i>		2.6
3-Methylnonane			.2	:	∞.	2.8
n-Decane	1.1	٠, ١	1.2	.,	ب (5.9
4,5-Dimethylnonane	c	-		•	φ.	
2-Methyl decane n-lindecane	æ.			2.1	6.	2.2
2-Methylundecane				۳,		
4-Methylundecane 5-Methylundecane						9•
n-Dodecane				ڻ ۽	2.2	
2,6-Dimethylundecane 2-Methyldodecane	ω •			e. 		1.0
n-Trimethyldecane n-Tridecane				2.9	.5	
<u>olefine</u>	42.3	4.2	15.9	3.6	6.1	4.6
Ethene			.2			
Propene	23.9	1.8	8.5 6.5	<u>-</u> -	2,⊦	-; r
2-Methyloropene	: ~	ှ မှ	š rč	- }-	- - -	-
1-Butene	6.1	्च, १	1.6	π'n	2.9	φ,
2-Butene 1-Butyne	4	m,	1.2	7.	₹.	ę.
•						

I=trace, less than 0.05 μg/m³.

_	
Ď	
ن	
nue	
٠, ـ	
(Cont	
,0	
Ξ	
9	
G	,
9	,
G	

ABLE D (CONCINGED)		,			Polymer	
	1p-4	Cryotrap JP-4	JP-4	1-q0	JP-4	JP-4 with Xylene
		:	with Xylene	low idle	mid idle	mid idle
Compound	low idle	and idle	2			
Olefins (Continued)			,		-	4.
	7	-	- . ~		. - -	.1
2-DUCTINE 2 Mathwill Rutese		(2.0	1.9	4.
3-Dontono	3.4		•	. ~		9.
2-Pentene	٠.	۲.	•	٠.		
1-Pentyne	•					
2.2-Dimethyl-1-Rutene	- :	j			ć	-
2_Fthv]-1-Butene	•		9.		~; •	0.*1
2-Methyl-1-Pentene	1:1	: -	₹.		2.	
4-Methyl-1-Pentene	χįι	•			·.	
4-Methyl-2-Pentene				←	•	
1-Hexene	7:7		Φ.		-:	
3,4-Dimethyl-l-Pentene			٠.		•	ų
4.4-Dimethyl-2-Pentene	r				寸 :	•
4-Methyl-1-Hexene	•			4.	١	
2-Heptyne					_	
3-Methyl-4-Ethylhexene				- -		
1-Nonene				-		
1-Decyne						2.7
	L 3	1.0	2.4	7.1	:	
Diolefine	•			٠	1-	
	1.4	.2	ਰ.	-	•	
Propaglene			•	7	1.2	1.9
1,2-Butadiene	4.1	ထ္	5. 0	•	, -	
1,3-Butadiene	•			_	-	
1-8uten-J-yne				ې	-	
2 Mothers 3 - Butadiene					Γ.	ਚ.
2-Methy1-1,3-00000:000 2-Methy1-3-8uten-1-vne					-	
1.2-Pentadiene				-		·
1 3-Pentadiene	•	٠				7.
1 4-Pentadiene	•5	-			-:	
2.3-Pentadiene				_		
3-Penten-1-yne					•	c
	u u	6.	4.5	8.3	1.2	0
Sank Server	•					
	₹.			-	4.	₹.
Cyclopropane Coolobutano		-		2:1	•	
Cycloudeane						

Tatrace, less than 0.05 ${\rm kg/m^3}.$

TABLE 6 (Continued)

		Cryotrap			Polymer	
	JP-4	JP-4	JP-4 with Xvlene	9 -40	4-4C	ura with Xylene
Compound	low idle	mid idle	mid idle	low idle	mid idle	mid idle
Nachthense (Continued)						,
1,1-Dimethylcyclopropane 1,2-Dimethylcyclopropane Ethylcyclopropane	1.4		w. 4.	4	⊢	~·
Methylcyclobutane Cyclopentane	7.	⊢	. ż		e.	
Cyclopentene 1,3-Cyclopentadiene			-	.2	۲۰	
Dimethylcyclobutane Ethylcyclobutane	•		ν, ∠	٥, ٥	-	۲. ۵.
Methylcyclopentane	ę.	7.		:	-	' '
metnyicyciopentadiene Cyclohexane	9.		.2		.2	1:1
1,3-Cyclohexadiene 1,2-Dimethylcyclopentane				−်ထ ထ		
1,2-Dimethylcyclopentadiene	2.3	9.	2.0	. r.	.2	1.8
netaylogone wane 1-Methyl-1-Ethylcyclopentane	; -:		.2			}_
1-Methyl-2-Ethylcyclopentane		-	J	4,		•
<pre>1_Methyi-3-Ethylcyclopentane 1.2-Dimethylcyclohexane</pre>		-	•		-	ŗ,
1,4-Dimethylcyclohexane				1	۴-	:⊢
Ethylovolohexane			7.	•	•	-
I.I.Z-Irimethylcyclonexane						1.0
1.2.3-Trimethylcyclohexane				2.5		•
1,2,4-Trimethylcyclohexane				9.		2.4
n-Propylcyclobexane Butylcyclobexane			⊢			
Amoratics	18.6	5.6	35.7	13.6	8.1	28.6
Benzene	9.9	1.3	4.0 3.1	4.0 E.0	2.9	5.1
Methylbenzene	4.1	ي ر	/	9.0		1.0
Dimethylbenzene	4.4	2.5	11.	0.4	3	1
Ethylbenzene	4.	٠.		٠,		
1,2.3-Trimethylbenzene	7.	φ.	1.0)		1.4
1,2,4-irimetnylbenzene 1,3,5-Trimetnylbenzene	· "	1		u,	.1	
r-						

T=trace, less than $0.05~\mathrm{ug/m}^3$.

TABLE 6 (Continued)

	JP-4	Cryotrap JP-A	4- qC	JP-4	Polymer JP-4	JP-4
Compound	low idle	mid idle	with Xylene mid idle	low idle	mid idle	with Xylene mid idle
Aromatice (Continued)						
1-Methyl-2-Ethylbenzene n-Propylbenzene	ω .	.2	4.0	1.2	6	
lsopropyloene Distrylbenzene Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Dimethylnaphthalene	e.		,	1.0	5.5.L.L.	4. 8. 4. 8.
Acids	4.			1.5	.2	1.3
Acetic Propanoic	4.			1.5	5.	oʻ4.
Alderydes	3.2	1.4	3.7	∞.	1.8	5.0
Methanal Ethanal Occasal	1.6	r. e	1.9	.2	4	⊢ ^. °
Propenal	.	7.	າ ເ	9.	~; <i>·</i>	4. rč
z-metnylpropanal n-Butsa] 2-Butena]	.2	۶.	v m		1.2	ທຸຕຸ
3-Butanolal 2,2-Dimethy!propanal 2-Methylbutanal	1.3		1. 4.			
2-Ethylbutanal 2-Methylbentanal			4.			4.
Benzaldehyde n-Heptanal n-Decanal				.1		2.2
Alconols	3.6	ლ.	4.8	7.4	1.6	8.1
Methanol Ethanol -Decompanies	2.5		e. 5.	٠٠٠	ьь	7.
2-Propen 3-01 2-Propen 1-01 2-Buten-1-01	·.		-	. v.̇̀⊢	۰.	9.

I=trace, less than 0.05 μg/m³.

TABLE 6 (Continued)

		Cryotrap			Polymer	
	JP-4	₽- d C	JP-4	JP-4	4−4Ú	JP-4
Compound	low idle	mid idle	mid idle	low idle	mid idle	mid idle
Alcohols (Continued)						
3-Butyn-2-ol 3-Buten-1,2-diol 3-Methyl-1-Butanol 1-Pentanol			}-	.1	⊢ -;⊢	
-Penten-3-o 4-Penten-1-o 2-Ethyl-1-Butano 2-Methyl-1-Pentano	1.2		.1	4∙⊢	.2	5.
3-Methyl-1-Pentanol 2,2-Dimethyl-1-Pentanol Methylcyclohexanol Cyclohexanol	1.3	-	-: -	٠i+		
2-Methylheptanol 6-Methylheptanol 1-Nonanol				- ლ		1.0 3.6
n-Propylheptanol 2-Propylheptanol 2,7-Dimethyloctanol Butyloctanol 2-Butyl-l-Octanol	٠.		o.5 6.54.	2.2 1.6 1.6		2.4
Ketonea	φ.	2.1	2.2	1.9	2.1	2.8
2-Propanone 2-Butanone Cyclobutanone	. i.	လိုက် ၊	1.1	.3 1.2 T	œ̈́	۳,
3-Butene-Z-one 3-Pentanone 3-Pentanone 3,3-81s(Hydroxymethyl)-2-Butanone	.2	- e.	⊢		-:	4.
3-Methyl-2-Pentarcne 3-Hexanone Cyclobexanone		r	9.	4.	9.9.	1.5
z-metnyl-s-meptanome Acetophenome Cyclonomanome Propyl Benzyl Ketone		:		⊢ ⊢	!	⊢m

T=trace, less than $0.05~\mu g/m^3$.

TABLE 6 (Continued)

		V 01	Cryotrap	g	V	Polymer	ş
		*	1	with Xylene	4-10	4-40	Jr-4 with Xylene
	Compound	low idle	mid idle	mid idle	low idle	mid idle	mid idle
	Ethers	1.0	φ.	4.	1.2	.1	.1
	Methyl Ether 2,3-Epoxybutane 1,3-Dioxolane	⊢ 4 .c	úú-	μc	5.	-	
	2,5-Dihydrofuran Ethyl Yinyl Ether Benzyl Ether	; - ~;	:-:	;?.L	.3	۲.	
	Esters			.1	6.	ω.	.2
2.5	Ethyl Formate Ethyl Acetate Allyl Formate Isopropyl Propionate Allyl Acetatc Isoaryl Acetate Octyl Acriate			r :	čú⊦ 4	r é .	?
	Nitrogen Containing	1.0	-	.2	1.1	9.	1.0
	Ammonia Nitromethane Diazoethane 2-Nitroethylpropionate Neopentyl Nitrate	1:0	· ►	- 2.	F 11	٦ċ	1.0
	Halogen Containing	2.1	۴.	4.	1.0	-	1.0
	Chloromethane Dichlorodifluoromethane (R-12) Trifluorotrichloroethane 1-Chloro-3-Methylbutane 2-Chloro-2-Methylbutane 2-Chloropentane 2-Chloropentane Isoamyl Chloride Istrace, less than 3.05 µg/m³.	6 1.5	.2	پرسپ سپه سرس	⊢ ⊢ ⊢	H H H	1.0

TABLE 6 (Continued)

	j	Lryotrap			Polymer	
	JF-4	₽-4	JP-4	JP-4	JP-4	4-4L
			with Xylene			with Xylene
Compound	low idle	mid idle	mid idle	low idle	mid idle	mid idle
Halogen Containing (Continued)						
3-Chloro-3-Methy!pentane 1-Fluorohexane 1-Fluoroheptane			 :	1.0		
Sulfur Containing			6.			
Octyl Mercaptan			6.			
Lactones	}					
8,8-Dimethylpropiolactone	1-					
Metal Containing					-	
Nickel Carbonyl					-	
Unknown	43.8	5.8	26.2	28.9	6.7	37.4

Tatrace, less than 0.05 $\mu g/m^3.$