Chapter II. Convex Differentiable Optimization

Lecture 4: Minimization of Smooth Convex Functions

Yurii Nesterov EPLouvain (UCL)

Outline

- Smooth convex functions
- Lower complexity bounds
- Strongly convex functions
- Lower complexity bounds
- ► Gradient method

Smooth convex functions

Problem:
$$\min_{x \in \mathbb{R}^n} f(x), \quad f \in \mathbb{C}^1(\mathbb{R}^n).$$

The class of general smooth functions is hopeless for optimization.

What could be a good class?

Desired Properties:

- 1. If $f \in \mathcal{F}$ then $f'(\bar{x}) = 0 \Rightarrow f(x) \ge f(\bar{x}) \quad \forall x \in \mathbb{R}^n$.
- 2. If $f_1, f_2 \in \mathcal{F}$ and $\alpha, \beta \geq 0$ then $\alpha f_1 + \beta f_2 \in \mathcal{F}$.
- 3. $\alpha + \langle a, x \rangle \in \mathcal{F}$.

WHAT IT COULD BE?

Main definition

Let $f \in \mathcal{F}$. Let us fix some $x_0 \in \mathbb{R}^n$ and consider the function

$$\phi(y) = f(y) - \langle f'(x_0), y \rangle.$$

Then $\phi \in \mathcal{F}$ in view of 2) and 3).

Note that $\phi'(y)|_{y=x_0} = f'(y)|_{y=x_0} - f'(x_0) = 0.$

Therefore, in view of 1) for any $y \in \mathbb{R}^n$ we have:

$$\phi(y) \geq \phi(x_0) = f(x_0) - \langle f'(x_0), x_0 \rangle.$$

That is $f(y) \geq f(x_0) + \langle f'(x_0), y - x_0 \rangle$.

Definition. A continuously differentiable function f(x) is called *convex* on \mathbb{R}^n $(f \in \mathcal{F}^1(\mathbb{R}^n))$ if for any $x, y \in \mathbb{R}^n$ we have:

$$f(y) \ge f(x) + \langle f'(x), y - x \rangle.$$
 (1)

Notation: $f \in \mathcal{F}_L^{k,l}(Q)$. The meaning of the indices is the same as for the class $\mathbb{C}_L^{k,l}(Q)$ (see Lecture 2).

If -f(x) is convex, we call it *concave*.

Properties of convex functions

Theorem 1: If $f \in \mathcal{F}^1(\mathbb{R}^n)$ and $f'(x^*) = 0$ then $f(x) \ge f(x^*)$ $\forall x \in \mathbb{R}^n$.

Proof: In view of the definition for any $x \in \mathbb{R}^n$ we have

$$f(x) \ge f(x^*) + \langle f'(x^*), x - x^* \rangle = f(x^*).$$

Lemma 1: If $f_1, f_2 \in \mathcal{F}^1(\mathbb{R}^n)$ and $\alpha, \beta \geq 0$ then $f = \alpha f_1 + \beta f_2 \in \mathcal{F}^1(\mathbb{R}^n)$.

Proof: For any $x, y \in \mathbb{R}^n$ we have:

$$f_1(y) \geq f_1(x) + \langle f'_1(x), y - x \rangle,$$

$$f_2(y) \geq f_2(x) + \langle f_2'(x), y - x \rangle.$$

It remains to multiply these equations by α and β and add the results.

Affine substitutions

Lemma 2: If
$$f \in \mathcal{F}^1(\mathbb{R}^m)$$
, $b \in \mathbb{R}^m$ and $A : \mathbb{R}^n \to \mathbb{R}^m$ then
$$\phi(x) = f(Ax + b) \in \mathcal{F}^1(\mathbb{R}^n).$$

Proof: Indeed, let $x, y \in \mathbb{R}^n$. Denote $\bar{x} = Ax + b$, $\bar{y} = Ay + b$. Since $\phi'(x) = A^T f'(Ax + b)$, we have:

$$\phi(y) = f(\bar{y}) \ge f(\bar{x}) + \langle f'(\bar{x}), \bar{y} - \bar{x} \rangle$$

$$= \phi(x) + \langle f'(\bar{x}), A(y - x) \rangle$$

$$= \phi(x) + \langle A^T f'(\bar{x}), y - x \rangle$$

$$= \phi(x) + \langle \phi'(x), y - x \rangle.$$

6/31

Equivalent Definitions, I

Theorem 2: Function $f \in \mathcal{F}^1(\mathbb{R}^n)$ if and only if it is continuously differentiable and for any $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ we have:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{2}$$

Proof: Denote $x_{\alpha} = \alpha x + (1 - \alpha)y$. Let $f \in \mathcal{F}^1(\mathbb{R}^n)$. Then

$$f(x_{\alpha}) \leq f(y) - \langle f'(x_{\alpha}), y - x_{\alpha} \rangle = f(y) - \alpha \langle f'(x_{\alpha}), y - x \rangle,$$

$$f(x_{\alpha}) \leq f(x) - \langle f'(x_{\alpha}), x - x_{\alpha} \rangle = f(x) + (1 - \alpha) \langle f'(x_{\alpha}), y - x \rangle.$$

Multiplying the first inequality by $(1 - \alpha)$, the second one by α , and adding the results, we get (2).

Let (2) be true for all $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$. Then

$$f(y) \geq \frac{1}{1-\alpha}[f(x_{\alpha}) - \alpha f(x)] = f(x) + \frac{1}{1-\alpha}[f(x_{\alpha}) - f(x)]$$
$$= f(x) + \frac{1}{1-\alpha}[f(x + (1-\alpha)(y - x)) - f(x)].$$

Tending α to 1, we get (1).

Equivalent Definitions, II

Theorem 3: Function $f \in \mathcal{F}^1(\mathbb{R}^n)$ if and only if it is continuously differentiable and for any $x, y \in \mathbb{R}^n$ we have:

$$\langle f'(x) - f'(y), x - y \rangle \ge 0. \tag{3}$$

Proof: 1. Let f be a convex continuously differentiable function. Then

$$f(x) \ge f(y) + \langle f'(y), x - y \rangle, \quad f(y) \ge f(x) + \langle f'(x), y - x \rangle.$$

Adding these inequalities, we get (3).

2. Let (3) holds for all $x, y \in \mathbb{R}^n$. Denote $x_\tau = x + \tau(y - x)$. Then

$$f(y) = f(x) + \int_{0}^{1} \langle f'(x + \tau(y - x)), y - x \rangle d\tau$$

$$= f(x) + \langle f'(x), y - x \rangle + \int_{0}^{1} \langle f'(x_{\tau}) - f'(x), y - x \rangle d\tau$$

$$= f(x) + \langle f'(x), y - x \rangle + \int_{0}^{1} \frac{1}{\tau} \langle f'(x_{\tau}) - f'(x), x_{\tau} - x \rangle d\tau$$

$$\geq f(x) + \langle f'(x), y - x \rangle.$$

8/3

Equivalent Definitions, III

Theorem 3: Function $f \in \mathcal{F}^2(\mathbb{R}^n)$ if and only if it is twice continuously differentiable and for any $x \in \mathbb{R}^n$ we have:

$$f''(x) \succeq 0. \tag{4}$$

Proof: 1. Let $f \in \mathbb{C}^2(\mathbb{R}^n)$ be convex. Denote $x_\tau = x + \tau s$, $\tau > 0$. Then, in view of (3), we have:

$$0 \leq \frac{1}{\tau^2} \langle f'(x_\tau) - f'(x), x_\tau - x \rangle = \frac{1}{\tau} \langle f'(x_\tau) - f'(x), s \rangle$$
$$= \frac{1}{\tau} \int_0^\tau \langle f''(x + \lambda s)s, s \rangle d\lambda,$$

and we get (4) by tending $\tau \to 0$.

2. Let (4) holds for all $x \in \mathbb{R}^n$. Then

$$f(y) = f(x) + \langle f'(x), y - x \rangle + \int_{0}^{1} \int_{0}^{\tau} \langle f''(x + \lambda(y - x))(y - x), y - x \rangle d\lambda d\tau$$

> $f(x) + \langle f'(x), y - x \rangle$.

Examples $(f \in \mathcal{F}^1(\mathbb{R}^n))$

- 1. Linear function $f(x) = \alpha + \langle a, x \rangle$ is convex.
- 2. Let the matrix A be symmetric and positive semidefinite. Then the quadratic function

$$f(x) = \alpha + \langle a, x \rangle + \frac{1}{2} \langle Ax, x \rangle$$

is convex (since f''(x) = A).

3. The following functions of one variable belong to $\mathcal{F}^1(\mathbb{R})$:

$$f(x) = e^x, f(x) = |x|^p, p > 1,$$

$$f(x) = \frac{x^2}{1-|x|}, \quad f(x) = |x| - \ln(1+|x|),$$

and many others.

Geometric Programming: $f(x) = \sum_{i=1}^{m} e^{\alpha_i + \langle a_i, x \rangle}$.

$$L_p$$
-approximation: $f(x) = \sum_{i=1}^m |\langle a_i, x \rangle - b_i|^p$.

Class
$$\mathcal{F}_{l}^{1,1}(\mathbb{R}^{n})$$

Theorem 4: For inclusion $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$ all the conditions below are equivalent:

$$0 \leq f(y) - f(x) - \langle f'(x), y - x \rangle \leq \frac{L}{2} \| x - y \|^{2}.$$
 (5)

$$f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{1}{2L} \| f'(x) - f'(y) \|^2.$$
 (6)

$$\langle f'(x) - f'(y), x - y \rangle \ge \frac{1}{l} \| f'(x) - f'(y) \|^2$$
 (7)

Proof: Indeed, (5) follows from Lemma 2.3. Further, let us fix $x_0 \in \mathbb{R}^n$. Consider the function $\phi(y) = f(y) - \langle f'(x_0), y \rangle$.

Note that $\phi \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$ and $y^* = x_0$. Therefore, in view of (5), we have:

$$\phi(y^*) \le \phi(y - \frac{1}{L}\phi'(y)) \le \phi(y) - \frac{1}{2L} \| \phi'(y) \|^2.$$

And we get (6) since $\phi'(y) = f'(y) - f'(x_0)$.

We obtain (7) from (6) by adding two inequalities with x and y interchanged.

Finally, from (7) we get
$$||f'(x) - f'(y)|| \le L ||x - y||$$
.

Lower complexity bounds for $\mathcal{F}_{L}^{\infty,1}(\mathbb{R}^{n})$

Problem formulation: $\min_{x \in \mathbb{R}^n} f(x)$.

Problem class: $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$.

Oracle: First-order black box.

Approximate solution: Find $\bar{x} \in \mathbb{R}^n$ such that $f(\bar{x}) - f^* \leq \epsilon$.

Methods: Generate a sequence $\{x_k\}$:

$$x_k \in x_0 + \text{Lin}\{f'(x_0), \dots, f'(x_{k-1})\}.$$

Worst function in the world, I

Consider the family of functions

$$f_k(x) = \frac{L}{4} \left\{ \frac{1}{2} [(x^{(1)})^2 + \sum_{i=1}^{k-1} (x^{(i)} - x^{(i+1)})^2 + (x^{(k)})^2] - x^{(1)} \right\}, \ k = 1, \dots, n.$$

Denote $\mathbb{R}^{k,n}=\{x\in\mathbb{R}^n\mid x^{(i)}=0,\ k+1\leq i\leq n\}$. Then $f_{k+p}(x)=f_k(x),\ \ \forall x\in\mathbb{R}^{k,n},\ p\geq 1.$

Note that for any $h \in \mathbb{R}^n$ we have:

$$\langle f_k''(x)h,h\rangle = \frac{L}{4}\left[(h^{(1)})^2 + \sum_{i=1}^{k-1}(h^{(i)}-h^{(i+1)})^2 + (h^{(k)})^2\right] \geq 0,$$

and

$$\langle f_k''(x)h,h\rangle \le \frac{L}{4}\left[(h^{(1)})^2 + \sum_{i=1}^{k-1}2((h^{(i)})^2 + (h^{(i+1)})^2) + (h^{(k)})^2\right]$$

 $\le L\sum_{i=1}^n(h^{(i)})^2.$

Thus, $0 \leq f_k''(x) \leq L I_n$. Therefore $f_k(x) \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$.

Structure of the solution

Since
$$f_k''(x) = \frac{L}{4}A_k$$
, where

$$A_{k} = \begin{pmatrix} 2 & -1 & 0 & & & \\ -1 & 2 & -1 & 0 & & & \\ 0 & -1 & 2 & & & & \\ & & \cdots & & & \cdots & \\ & & 0 & & -1 & 2 & -1 \\ & & & 0_{n-k,k} & & & 0_{n-k,n-k} \end{pmatrix}, \text{ k lines}$$

the equation $f'_k(x) = 0$ (that is $A_k x = e_1$) has solution

$$\bar{x}_k^{(i)} = \begin{cases} 1 - \frac{i}{k+1}, & i = 1, \dots, k, \\ 0, & k+1 \le i \le n. \end{cases}$$

Therefore
$$f_k^* = \frac{L}{4} \left[\frac{1}{2} \langle A_k \bar{x}_k, \bar{x}_k \rangle - \langle e_1, \bar{x}_k \rangle \right] = -\frac{L}{8} \langle e_1, \bar{x}_k \rangle = \frac{L}{8} \left(-1 + \frac{1}{k+1} \right)$$
.

Note that

$$\|\bar{x}_k\|^2 = \sum_{i=1}^n (\bar{x}_k^{(i)})^2 = \sum_{i=1}^k \left(1 - \frac{i}{k+1}\right)^2 = k - \frac{2}{k+1} \sum_{i=1}^k i + \frac{1}{(k+1)^2} \sum_{i=1}^k i^2$$

$$= k - \frac{2}{k+1} \cdot \frac{k(k+1)}{2} + \frac{1}{(k+1)^2} \cdot \frac{k(k+1)(2k+1)}{6} = \frac{k(2k+1)}{6(k+1)} \le \frac{k+1}{3}.$$

Behavior of the minimization sequence

Let us fix some p, $1 \le p \le n$.

Lemma 3: Let $x_0 = 0$. Then for any sequence $\{x_k\}_{k=0}^p$:

$$x_k \in \mathcal{L}_k = \text{Lin}\{f_p'(x_0), \dots, f_p'(x_{k-1})\},\$$

we have $\mathcal{L}_k \subseteq \mathbb{R}^{k,n}$.

Proof: 1. Since $x_0 = 0$, we have $f_p'(x_0) = -\frac{L}{4}e_1 \in \mathbb{R}^{1,n}$. Therefore $\mathcal{L}_1 \equiv \mathbb{R}^{1,n}$.

2. Let $\mathcal{L}_k \subseteq \mathbb{R}^{k,n}$ for some k < p. Since A_p is three-diagonal, we have $f_p'(x) \in \mathbb{R}^{k+1,n}, \quad \forall x \in \mathbb{R}^{k,n}$.

Therefore $\mathcal{L}_{k+1} \subseteq \mathbb{R}^{k+1,n}$.

Corollary 1: For any sequence $\{x_k\}_{k=0}^p$ such that $x_0=0$ and $x_k\in\mathcal{L}_k$, we have $f_p(x_k)\geq f_k^*$.

Proof: Indeed, $x_k \in \mathbb{R}^{k,n}$ and therefore $f_p(x_k) = f_k(x_k) \ge f_k^*$.

Lower complexity bounds

Theorem 5: For any k, $1 \le k \le \frac{1}{2}(n-1)$, and any $x_0 \in \mathbb{R}^n$ there exists a function $f \in \mathcal{F}_L^{\infty,1}(\mathbb{R}^n)$ such that for any first order method \mathcal{M} generating a sequence

$$x_k \in x_0 + \operatorname{Lin}\{f'(x_0), \dots, f'(x_{k-1})\}$$
, we have

$$f(x_k) - f^* \ge \frac{3L\|x_0 - x^*\|^2}{32(k+1)^2}, \quad \|x_k - x^*\|^2 \ge \frac{1}{8} \|x_0 - x^*\|^2.$$

Proof: 1. Let us fix k and apply \mathcal{M} to minimizing $f(x) = f_{2k+1}(x)$.

Then
$$x^* = \bar{x}_{2k+1}$$
, $f^* = f_{2k+1}^*$, and $f(x_k) = f_{2k+1}(x_k) = f_k(x_k) \ge f_k^*$.

Therefore
$$\frac{f(x_k)-f^*}{\|x_0-x^*\|^2} \ge \frac{\frac{1}{8}\left(-1+\frac{1}{k+1}+1-\frac{1}{2k+2}\right)}{\frac{1}{8}(2k+2)} = \frac{3}{8}L \cdot \frac{1}{4(k+1)^2}$$
.

2. Since $x_k \in \mathbb{R}^{k,n}$, we have:

$$\| x_{k} - x^{*} \|^{2} \ge \sum_{i=k+1}^{2k+1} (\bar{x}_{2k+1}^{(i)})^{2} = \sum_{i=k+1}^{2k+1} \left(1 - \frac{i}{2k+2}\right)^{2}$$

$$= k + 1 - \frac{1}{k+1} \sum_{i=k+1}^{2k+1} i + \frac{1}{4(k+1)^{2}} \sum_{i=k+1}^{2k+1} i^{2}$$

$$= k + 1 - \frac{1}{k+1} \cdot \frac{(k+1)(3k+2)}{2} + \frac{14k^{2} + 19k + 6}{24(k+1)}$$

$$= \frac{2k^{2} + 7k + 6}{24(k+1)} \ge \frac{2k+2}{24} \ge \frac{1}{8} \| x_{0} - \bar{x}_{2k+1} \|^{2} .$$

Remarks

NB: Using a more sophisticated analysis, it is possible to prove that

$$||x_k - x^*||^2 \ge \beta ||x_0 - x^*||^2$$
,

where the constant β can be arbitrary close to one.

Conclusion:

- 1. The lower bound for objective function is quite optimistic: one hundred iterations can decrease the initial residual in 10^4 times.
- 2. In general, we cannot guarantee *any* rate of convergence for the minimizing sequence.

Strongly convex functions

Problem:
$$\min_{x \in \mathbb{R}^n} f(x), f \in \mathcal{F}^1(\mathbb{R}^n).$$

What could we assume to guarantee the following:

- Uniqueness of the solution.
- Fast convergence to the minimizer.

Desired property:

If $f \in \mathcal{F}$, then there exists $\mu > 0$ such that

$$f'(\bar{x}) = 0 \implies f(x) \ge f(\bar{x}) + \frac{1}{2}\mu \parallel x - \bar{x} \parallel^2 \forall x \in \mathbb{R}^n.$$

By the same arguments as in the convex case, we come to

Definition. A continuously differentiable function f(x) is called strongly convex on \mathbb{R}^n $(f \in \mathcal{S}^1_\mu(\mathbb{R}^n))$ if there exists a constant $\mu > 0$ such that for any $x, y \in \mathbb{R}^n$ we have:

$$f(y) \ge f(x) + \langle f'(x), y - x \rangle + \frac{1}{2}\mu \parallel y - x \parallel^2.$$
 (8)

Notation: $f \in \mathcal{S}_{\mu,L}^{k,l}(Q)$. The meaning of the indices k, l and L is the same as for the class $\mathbb{C}_L^{k,l}(Q)$ (see Lecture 2).

Properties of strongly convex functions

Theorem 6: If $f \in \mathcal{S}^1_\mu(\mathbb{R}^n)$ and $f'(x^*) = 0$, then

$$f(x) \ge f(x^*) + \frac{1}{2}\mu \| x - x^* \|^2 \quad \forall x \in \mathbb{R}^n.$$

Proof: Since $f'(x^*) = 0$, in view of Definition, for any $x \in \mathbb{R}^n$ we have

$$f(x) \geq f(x^*) + \langle f'(x^*), x - x^* \rangle + \frac{\mu}{2} \parallel x - x^* \parallel^2 = f(x^*) + \frac{\mu}{2} \parallel x - x^* \parallel^2.$$

Lemma 4: If $f_1 \in \mathcal{S}^1_{\mu_1}(\mathbb{R}^n)$, $f_2 \in \mathcal{S}^1_{\mu_2}(\mathbb{R}^n)$ and α , $\beta \geq 0$, then

$$f = \alpha f_1 + \beta f_2 \in \mathcal{S}^1_{\alpha \mu_1 + \beta \mu_2}(\mathbb{R}^n).$$

Proof: For any $x, y \in \mathbb{R}^n$ we have:

$$f_1(y) \geq f_1(x) + \langle f_1'(x), y - x \rangle + \frac{1}{2}\mu_1 \parallel y - x \parallel^2$$

$$f_2(y) \geq f_2(x) + \langle f_2'(x), y - x \rangle + \frac{1}{2}\mu_2 \parallel y - x \parallel^2.$$

It remains to add these inequalities multiplied by α and β .

Note: $S_0^1(\mathbb{R}^n) \equiv \mathcal{F}^1(\mathbb{R}^n)$. Therefore adding a strongly convex function to a convex function, we get a strongly convex function with the same constant μ .

Equivalent Definitions

Theorem 7: Function $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$ if and only if it is continuously differentiable and for any $x, y \in \mathbb{R}^n$ and $\alpha \in [0, 1]$ we have:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y) - \frac{\alpha(1 - \alpha)}{2}\mu \| x - y \|^2$$
 (9)

Theorem 8: Function $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$ if and only if it is continuously differentiable and for any $x, y \in \mathbb{R}^n$ we have:

$$\langle f'(x) - f'(y), x - y \rangle \ge \mu \| x - y \|^2.$$
 (10)

Theorem 9: Function $f \in \mathcal{S}^2_{\mu}(\mathbb{R}^n)$ if and only if it is twice continuously differentiable and for any $x \in \mathbb{R}^n$ we have:

$$f''(x) \succeq \mu I_n. \tag{11}$$

The proofs of these theorems are very similar to proofs of Theorems 2–4.

Examples

1.
$$f(x) = \frac{1}{2} ||x||^2 \in S_1^2(\mathbb{R}^n)$$
 since $f''(x) = I_n$.

2. Let the symmetric matrix A satisfy the condition: $\mu I_n \preceq A \preceq L I_n$. Then

$$f(x) = \alpha + \langle a, x \rangle + \frac{1}{2} \langle Ax, x \rangle \in \mathcal{S}_{\mu, L}^{\infty, 1}(\mathbb{R}^n) \subset \mathcal{S}_{\mu, L}^{1, 1}(\mathbb{R}^n)$$

(since f''(x) = A).

Other examples can be obtained by adding a convex function to a strongly convex function.

Class $\mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$

Conditions:
$$\mu \| x - y \|^2 \le \langle f'(x) - f'(y), x - y \rangle$$
, (12) $\| f'(x) - f'(y) \| \le L \| x - y \|$. (13)

The value $Q_f = L/\mu \ (\geq 1)$ is called *condition number* of function f.

Theorem 10: If $f \in \mathcal{S}^{1,1}_{u,l}(\mathbb{R}^n)$, then for any $x, y \in \mathbb{R}^n$ we have:

$$\langle f'(x) - f'(y), x - y \rangle \ge \frac{\mu L \|x - y\|^2}{\mu + 1} + \frac{1}{\mu + I} \| f'(x) - f'(y) \|^2$$
 (14)

Proof: Define $\phi(x) = f(x) - \frac{1}{2}\mu \parallel x \parallel^2$. Note that $\phi'(x) = f'(x) - \mu x$. Therefore this function is convex (Theorem 3). Moreover, in view of (5)

$$\phi(y) = f(y) - \frac{1}{2}\mu \| y \|^{2}
\leq f(x) + \langle f'(x), y - x \rangle + \frac{1}{2}L \| x - y \|^{2} - \frac{1}{2}\mu \| y \|^{2}
= \phi(x) + \langle \phi'(x), y - x \rangle + \frac{1}{2}(L - \mu) \| x - y \|^{2}.$$

Therefore $\phi \in \mathcal{F}^{1,1}_{L-\mu}(\mathbb{R}^n)$ (see Theorem 5). Thus,

$$\langle \phi'(x) - \phi'(y), y - x \rangle \ge \frac{1}{1-\mu} \| \phi'(x) - \phi'(y) \|^2$$

and that is exactly (14).

Lower complexity bounds for $\mathcal{S}^{1,1}_{u,L}(\mathbb{R}^n)$

Problem formulation: $\min_{x \in \mathbb{R}^n} f(x)$.

Problem class: $f \in \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$.

Oracle: First-order black box.

Approximate solution: Find $\bar{x} \in \mathbb{R}^n$ such that

$$f(\bar{x}) - f^* \le \epsilon$$
, $\|\bar{x} - x^*\|^2 \le \epsilon$.

Methods: Generate a sequence $\{x_k\}$:

$$x_k \in x_0 + \text{Lin}\{f'(x_0), \dots, f'(x_{k-1})\}.$$

Simplification: We consider the case $n = \infty$.

We establish the lower complexity bounds in terms of *condition number*.

Worst function in the world, II

Let $\mathbb{R}^{\infty} \equiv \ell_2$, the space of all sequences $x = \{x^{(i)}\}_{i=1}^{\infty}$ with finite norm:

$$||x||^2 = \sum_{i=1}^{\infty} (x^{(i)})^2 < \infty.$$

Let us choose some parameters $\mu > 0$, Q > 1. Consider the function

$$f(x) = \frac{1}{2}\mu \parallel x \parallel^2 + \frac{\mu(Q-1)}{4} \left\{ \frac{1}{2} \left[(x^{(1)})^2 + \sum_{i=1}^{\infty} (x^{(i)} - x^{(i+1)})^2 \right] - x^{(1)} \right\}.$$

Denote
$$A = \left(\begin{array}{cccc} 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 \\ 0 & & \dots \end{array} \right).$$

Then $f''(x) = \frac{\mu(Q-1)}{4}A + \mu I$. We have seen that $0 \le A \le 4I$.

Therefore
$$\mu I \leq f''(x) \leq (\mu(Q-1) + \mu)I = \mu QI$$
.

Thus, $f \in \mathcal{S}^{\infty,1}_{\mu,\mu Q}(\mathbb{R}^{\infty})$ and its condition number is $Q_f = \frac{\mu Q}{\mu} = Q$.

Structure of the solution

Let us find the minimum of f(x):

$$f'(x) \equiv \left(\frac{\mu(Q-1)}{4}A + \mu I\right)x - \frac{\mu(Q-1)}{4}e_1 = 0.$$

That can be written as: $\left(A + \frac{4}{Q-1}I\right)x = e_1$.

Coordinate form of this equation is as follows:

$$2\frac{Q+1}{Q-1}x^{(1)} - x^{(2)} = 1,$$

$$x^{(k+1)} - 2\frac{Q+1}{Q-1}x^{(k)} + x^{(k-1)} = 0, \quad k = 2, \dots$$

Let q be the smallest root of the equation $q^2 - 2\frac{Q+1}{Q-1}q + 1 = 0$.

That is
$$q = \frac{\sqrt{Q}-1}{\sqrt{Q}+1}$$
.

Then the sequence $(x^*)^{(k)} = q^k$, k = 1, 2, ..., satisfies our system.

Thus, we come to the following result.

Lower Complexity Bound

Theorem 11: For any $x_0 \in \mathbb{R}^{\infty}$ and any constants $\mu > 0$ and Q > 1 there exists a function $f \in \mathcal{S}_{\mu,\mu Q}^{\infty,1}(\mathbb{R}^{\infty})$ such that for any first order method \mathcal{M} generating a sequence

$$x_k \in x_0 + \text{Lin}\{f'(x_0), \dots, f'(x_{k-1})\},\$$

we have $\|x_k - x^*\|^2 \ge \left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1}\right)^{2k} \|x_0 - x^*\|^2$,

$$f(x_k) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{Q}-1}{\sqrt{Q}+1} \right)^{2k} \|x_0 - x^*\|^2.$$

Proof: Indeed, let $x_0 = 0$. Then

$$\|x_0 - x^*\|^2 = \sum_{i=1}^{\infty} [(x^*)^{(i)}]^2 = \sum_{i=1}^{\infty} q^{2i} = \frac{q^2}{1-q^2}.$$

Since f''(x) is a 3-diagonal matrix, and $f'(0) = e_1$, we have $x_k \in \mathbb{R}^{k,\infty}$. Therefore

$$\|x_k - x^*\|^2 \ge \sum_{i=k+1}^{\infty} [(x^*)^{(i)}]^2 = \sum_{i=k+1}^{\infty} q^{2i} = \frac{q^{2(k+1)}}{1-q^2} = q^{2k} \|x_0 - x^*\|^2$$
.

The second estimate follows from the first one and Definition of strongly convex functions.

Gradient Method

Problem:
$$\min_{x \in \mathbb{R}^n} f(x), \quad f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n).$$

Scheme:

- ▶ Choose $x_0 \in \mathbb{R}^n$.
- ▶ kth iteration ($k \ge 0$).
 - a). Compute $f(x_k)$ and $f'(x_k)$.
 - b). Find $x_{k+1} = x_k h_k f'(x_k)$

(see Lecture 2 for the step-size rules).

In what follows we analyze this scheme in the simplest case:

$$h_k \equiv h > 0$$
.

Convergence

Theorem 12: If $f \in \mathcal{F}_{L}^{1,1}(\mathbb{R}^n)$ and $0 < h < \frac{2}{L}$ then

$$f(x_k) - f^* \le \frac{2(f(x_0) - f^*) \|x_0 - x^*\|^2}{2\|x_0 - x^*\|^2 + (f(x_0) - f^*)h(2 - Lh)k}.$$

Proof: Denote $r_k = ||x_k - x^*||$. Then

$$r_{k+1}^{2} = \| x_{k} - x^{*} - hf'(x_{k}) \|^{2}$$

$$= r_{k}^{2} - 2h\langle f'(x_{k}), x_{k} - x^{*} \rangle + h^{2} \| f'(x_{k}) \|^{2}$$

$$\leq r_{k}^{2} - h(\frac{2}{L} - h) \| f'(x_{k}) \|^{2}$$

(we use (7) and $f'(x^*) = 0$). Therefore $r_k < r_0$. In view of (5),

$$\begin{array}{lll} f(x_{k+1}) & \leq & f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \parallel x_{k+1} - x_k \parallel^2 \\ & = & f(x_k) - \omega \parallel f'(x_k) \parallel^2 \end{array}$$

with $\omega = h(1 - \frac{L}{2}h)$. Denote $\Delta_k = f(x_k) - f^*$. Then

$$\Delta_k \leq \langle f'(x_k), x_k - x^* \rangle \leq r_0 \parallel f'(x_k) \parallel.$$

Therefore $\Delta_{k+1} \leq \Delta_k - \frac{\omega}{r_0^2} \Delta_k^2$. Thus, $\frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_k} + \frac{\omega}{r_0^2} \cdot \frac{\Delta_k}{\Delta_{k+1}} \geq \frac{1}{\Delta_k} + \frac{\omega}{r_0^2}$.

Summing up these inequalities, we get
$$\frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_0} + \frac{\omega}{r_c^2} (k+1)$$
.

Optimal step size

We need to maximize the function $\phi(h) = h(2 - Lh)$ with respect to h.

$$\phi'(h^*) = 0 \quad \Rightarrow \quad 2 - 2Lh^* = 0.$$

Thus, $h^* = \frac{1}{I}$ and we get:

$$f(x_k) - f^* \leq \frac{2L(f(x_0) - f^*) \|x_0 - x^*\|^2}{2L\|x_0 - x^*\|^2 + (f(x_0) - f^*)k}. \tag{15}$$

Further, in view of (5) we have

$$f(x_0) \leq f^* + \langle f'(x^*), x_0 - x^* \rangle + \frac{L}{2} \| x_0 - x^* \|^2$$

= $f^* + \frac{L}{2} \| x_0 - x^* \|^2$.

Since the right hand side of (15) is increasing in $f(x_0) - f^*$, we get the following

Corollary 2: If $h = \frac{1}{l}$ and $f \in \mathcal{F}_{l}^{1,1}(\mathbb{R}^{n})$. then

$$f(x_k) - f^* \le \frac{2L\|x_0 - x^*\|^2}{k + 4}.$$
 (16)

Strongly Convex Case

Theorem 13: If $f \in \mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$ and $0 < h \leq \frac{2}{\mu+L}$, then

$$||x_k - x^*||^2 \le \left(1 - \frac{2h\mu L}{\mu + L}\right)^k ||x_0 - x^*||^2.$$

If $h = \frac{2}{u+I}$, then

$$\| x_k - x^* \| \le \left(\frac{Q-1}{Q+1} \right)^k \| x_0 - x^* \|,$$

 $f(x_k) - f^* \le \frac{L}{2} \left(\frac{Q-1}{Q+1} \right)^{2k} \| x_0 - x^* \|^2,$

where $Q = L/\mu$.

Proof: Denote $r_k = ||x_k - x^*||$. Then

$$r_{k+1}^{2} = \parallel x_{k} - x^{*} - hf'(x_{k}) \parallel^{2}$$

$$= r_{k}^{2} - 2h\langle f'(x_{k}), x_{k} - x^{*} \rangle + h^{2} \parallel f'(x_{k}) \parallel^{2}$$

$$\leq \left(1 - \frac{2h\mu L}{u+L}\right) r_{k}^{2} + h\left(h - \frac{2}{u+L}\right) \parallel f'(x_{k}) \parallel^{2}$$

(we use (14) and $f'(x^*) = 0$).

The second inequality follows from the previous one and (5).

Conclusion

- 1. The gradient method is not optimal for $\mathcal{F}_{l}^{1,1}(\mathbb{R}^{n})$.
- 2. The gradient method is not optimal for $\mathcal{S}^{1,1}_{\mu,L}(\mathbb{R}^n)$.

Note:

All standard NLP methods (conjugate gradients, variable metric, etc.) have the similar *lower* efficiency estimates.