大数据分析 Scalable Machine Learning least square regression 刘盛华

Warnings about the Class

1

"There is nothing more practical than a good theory"

Lewin (1952)

What is machine learning Study of algorithms that improve their performance at some task with experience Data Understanding Learning algorithm (experience) (performance) (task) Barnabás Póczos, CMU

2

Linear Regression

Sketching

1

Massive data sets

Examples

- □ 网络流量日志
- □ 金融数据
- □ 社交网络

Algorithms

- □ 需要线性时间复杂度或者更优
- □ 经常需要以随机近似为代价

5

Regression analysis

■ 线性回归

在噪声存在的情况下,运用统计的方法发现变量之间的线性关系。

Example

□ 欧姆定律 V = R·I

Regression analysis

■ 回归分析

在噪声存在的情况下,运用统计的方法发现变量之间的关系。

6

Regression analysis

■ 线性回归

在噪声存在的情况下,运用统计的方法发现变量之间的线性关系。

Example

- □ 欧姆定律 V = R·I
- 寻找最能拟合数据的 线性函数

Regression analysis

■ Linear Regression

在噪声存在的情况下,运用统计的方法发现变量之间的线性关系。

Standard Setting

- One measured variable b
- A set of predictor variables a₁,..., a_d
- Assumption:

$$b = x_0 + a_1 x_1 + ... + a_d x_d + \varepsilon$$

- = ϵ is assumed to be noise and the x_i are model parameters we want to learn
- Can assume $x_0 = 0$
- Now consider n observations of b

9

Regression analysis

■最小二乘方法

- Find x* that minimizes $|Ax-b|_2^2 = \sum (b_i \langle A_{i*}, x \rangle)^2$
- A_{i*} is i-th row of A
- Certain desirable statistical properties

Regression analysis

■ 矩阵形式

Input: n×d-matrix A and a vector b=(b₁,..., b_n) n is the number of observations; d is the number of predictor variables

Output: x* so that Ax* and b are close

- Consider the over-constrained case, when n ≫ d
- Can assume that A has full column rank

10

Regression analysis

■ 回归的几何形式

- We want to find an x that minimizes |Ax-b|₂
- The product Ax can be written as

$$A_{*1}x_1 + A_{*2}x_2 + ... + A_{*d}x_d$$

where A_{*i} is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in I₂-norm

11

Time Complexity

- 通过正规方程求解最小二乘回归
 - □ 需要计算 x = A-b
 - Moore-Penrose Pseudoinverse (伪逆) $A^{-} = V \Sigma^{-1} U^{T}$
 - □ 一般方法需要 nd² 时间复杂度
 - □ 通过快速矩阵乘法能达到nd¹.376
- □ 但我们想要更快!

13

How to choose the right sketching matrix S?

- Recall: output the solution x' to minx' |(SA)x-(Sb)|2
- Lots of matrices work
- S is d/ε² x n matrix of i.i.d. Normal random variables
- S is a subspace embedding for colomn space of A

For all x, $|SAx|_2 = (1\pm\epsilon)|Ax|_2$

* poof skipped

ref: David P. Woodruff, Sketching as a Tool for Numerical Linear Algebra, Foundations and Trends in Theoretical Computer Science, vol 10, issue 1-2, pp. 1-157 (ref to 10-40)

Sketching to solve least squares regression

- How to find an approximate solution x to min, |Ax-b|₂?
- Goal: output x' for which |Ax'-b|₂ ≤ (1+ε) min_x |Ax-b|₂ with high probability
- Draw S from a k x n random family of matrices, for a value k << n
- Compute S*A and S*b
- Output the solution x' to min_{x'} |(SA)x-(Sb)|₂
 - x' = (SA)-Sb

14

Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \le (1+\epsilon) \min_{y} |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \varepsilon) |Ax-b|_2$ for all x
- Solve argmin_v |(SA)y (Sb)|₂
- Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes O(nd²) time

Faster Subspace Embeddings S

- CountSketch 矩阵S
- **= 定义 k x n 矩阵 S, for** k = O(d²/ε²)
- S 非常稀疏: 每列随机选择非零元素的位置

00100100 10000000 000-110-10 0-1000001

nnz(A) 是A矩阵中非零元素的数量

O(nnZ(A)):每个A中的非零元素最多与S中的一个非零元素相乘

High Probability and Complexity

- Theorem 2.5. ([27]) For **S** a sparse embedding matrix with $r = \frac{O(d^2/\varepsilon^2 \text{poly}(\log(d/\varepsilon))) \text{ rows}}{\log d}$, for any fixed $n \times d$ matrix **A**, with probability .99, **S** is a $(1 \pm \varepsilon)$ ℓ_2 -subspace embedding for **A**. Further, **S** · **A** can be computed in $O(\text{nnz}(\mathbf{A}))$ time.
- Theorem 2.14. The ℓ_2 -Regression Problem can be solved with probability .99 in $O(\operatorname{nnz}(A)) + \operatorname{poly}(d/\varepsilon)$ time.

17