1. Consider the universal relation $R = \{a, b, c, d, E\}$ and the set of functional dependencies

$$FD = \{\{a\} \rightarrow \{b, c\}, \{b\} \rightarrow \{d\}\} \text{ and MVD} = \{\{b\} \rightarrow \{c, d\}\}$$

1. (1) Write all the candidate keys for R.

a E

 \bigcirc

munual sat

$$a \rightarrow b$$
, c , d
 $b \rightarrow d$
 $b \rightarrow c$

2. (6) What schema(s) would be produced by the 4NF decomposition algorithm?

- A. R1(a,d), R2(b,c), R3(a,b), R4(a,E)
- B. R1(b,d), R2(b,c), R3(a,b), R4(a,E)
- C. both options are correct
- D. both options are wrong

start with
$$b \rightarrow d$$

RI $\{b,d\}$

R2 $\{a,b,c,E\}$

R3 $\{b,c\}$

R4 $\{a,b\}$

R6 $\{a,E\}$

R4 (b, d) R5(a,b)

- 3. Consider the universal relation $R = \{a, b, c, d, E\}$ and the set of functional dependencies $FD = \{\{a\} \rightarrow \{b\}, \{b\} \rightarrow \{ce\}\}\)$ and the set of MVDs = $\{\{b\} \rightarrow \{d\}.$
- (5) 1. (1) Write all the candidate keys for R.
 - . (1) Write all the candidate k

ad

2. (3) Decompose the relation R into 4NF relations.

RI (b, c, e) R2 (b, d) R3 (a, b)

00

 $Ri(\underline{b}, c, e)$ $R2(\underline{a}, \underline{d})$ $R3(\underline{a}, \underline{b})$

Even if you start with $A \rightarrow BCE$ $R(a,b,c,e) \times \rightarrow R3(b,c,e) R4(a,b)$ $R(a,b,c,e) \times \rightarrow R3(b,c,e)$ R(a,b)

A	В	C	D
a1	b1	c1	d1
a1	b2	c1	d1
a1	b2	c2	d2
a1	b1	c2	d2
a2	b3	c1	d2

1. (4) Does the above table have a non-trivial MVD that is not a FD? If so, identify the MVD. You just have to identify one MVD.

A →> B

2. (2) Identify one candidate key.

- 1. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b1,c2,d1) and (a1,b1,c1,d2) in the table:
 - $A. A \rightarrow B$
 - $B. \ A \twoheadrightarrow D$
 - C. B A okayanswer
 - $D. B \rightarrow D$

- E. none of the above
- 2. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b2,c2,d2) and (a1,b3,c1,d1) in the table:
 - $A. A \rightarrow B$
 - B. $A \rightarrow D$
 - C. $B \rightarrow D$
 - D. $D \rightarrow A$
 - E. none of the above
- 3. (3) What functional dependencies would be satisfied by inserting the tuples (a1,b1,c1,d2), (a1,b2,c1,d2), (a1,b1,c2,d1) and (a1,b3,c2,d1) in the table:
 - $A. A \rightarrow B$
 - B. A → D
 - $C. D \rightarrow B$
 - D. $B \rightarrow A$
 - E. none of the above
 - 4. (3) What functional dependencies would be satisfied by inserting the tuple (a2,b1,c1,d1) in the table: $A. B \rightarrow A$

 - B. $A \rightarrow D$
 - C. $D \rightarrow B$
 - D. $D \rightarrow A$
 - E. none of the above

5. Consider the relation R = {a, b, $\not \in$, d, E} and the set of functional dependencies $FD = \{\{b\} \rightarrow \{c\}\}\}$ and the set of MVDs = $\{\{a\} \rightarrow \{b\}\}\{c\} \rightarrow \{d\}\}$.

2. (3) Decompose the relation R into 4NF relations.

RI
$$(b, c)$$

R2 $(a, b) d \in X$

R3 (a, b)

R4 (a, d, E)

R4 (a, d, E)

6. (6) Consider a relation R(A,B,C,D) that satisfies A --> B and A --> C. Prove that A --> BC OR present a counter example showing the relationship as false.

Now $A \implies CD$ and $A \implies BD$ $\Rightarrow A \implies D \quad (by Rule 5)$ $\Rightarrow A \implies BC \quad (by Rule 4)$

Proof 2
you can also prove by contradiction.
This is a longer proof.

Proof 2: by contradiction. Suppose A >>>B and A >>> C, but A +>> BC case! I tuples (abad), (abiadi) but & tuples (a b c d1) and (a b1 cd). Since A >>> B, (a,b,c,d) (abicdi) Thus statement (a b) c, d1) and (ab) c d1) Cose = I tuples (abcd), (abc,di) but # tuples (ab cdi) and (abcid) - @ Suce A >> C, (abcd), (abc,d) => (a b c,d) and (a b c d)

Statement (2) is false Case 3: 3 (ab cd) (ab (Cd) but \$\labcd1\rangle abcidi) and (abicid) \(\frac{3}{2}\)
Since A \(\rightarrow\) \(\frac{1}{2}\) \(\frac{1}{2}\) and (abicid) Since A >>> C => (ab Cdi) and (ab Cid), Statement 3 is false. Thu, A>>B, A>>C => A >>BC