3) Plummer Model
Consider a spherical system where the density is roughly constant near the center, and falls to zero at large radii. A simple would we trese properties is the Plummer would
$ \phi = -GM $ $ \sqrt{r^2 + b^2} $ Were M is the system's total mass i b is the Plumer scale length
$ \nabla^2 \overline{\phi} = \frac{1}{\Gamma^2} \frac{d}{dr} \left(\Gamma^2 \frac{d\overline{\phi}}{dr} \right) = \frac{1}{\Gamma^2} \frac{d}{dr} \left(\Gamma^2 \left(\frac{1}{2} G n \mathcal{Z} \Gamma \right) \frac{1}{2} \left(\Gamma^2 + G^2 \right)^{\frac{3}{2}} \right) $
$= \frac{1}{r} \int \left(\frac{GMr^3}{(r^2+b^2)^{3/2}} \right) = \frac{1}{r^2} \left(\frac{3GMr^2(r^2+b^2)^{-3/2} - \frac{3}{2}(r^2+b^2)^{-5/2}}{(r^2+b^2)^{-3/2}} \left(\frac{r^2+b^2}{(r^2+b^2)^{-3/2}} \right) - (r^2+b^2)^{-5/2} r^2 \right)$ $= \frac{3GMr^2}{r^2} \left(\frac{(r^2+b^2)^{-3/2}}{(r^2+b^2)^{-3/2}} \left(\frac{(r^2+b^2)^{-5/2}}{(r^2+b^2)^{-5/2}} \right) - (r^2+b^2)^{-5/2} r^2 \right)$
$= 3GM \left(\frac{r^2 + b^2 - r^2}{(r^2 + b^2)^{5/2}} \right) = \frac{3GMb^2}{(r^2 + b^2)^{5/2}}$
$(70)^{2}$ $(8)^{2}$ $(9)^{2}$ $(10)^{2}$
$=\frac{3M}{4\pi b^3}\left(1+\frac{r^2}{b^2}\right)^{-57_2}$
Confirm that the PE of a Plumer Model 13

326

The position of a star orbiting in a Plumer potential cannot be given by ordinary functions.

The Tides

Trobal forces arise b/c there is a difference in the grav. attraction of the Moon b/w the close ; for side of the Earth. r.a. Let à be the position of the Moon relative to Earth's coder (Mas) and consider a point i on the Earth's surface, The potential at this point due to the Moonis $\Phi(\vec{r}) = -GM$ where m is the moss of the Moon Since reca, expand fins in powers of (a) From above diagram $|\vec{r} - \vec{a}|^2 = r^2 - 2ar\cos\theta + a^2$ $|\vec{r} - \vec{a}|^2 = (r^2 - 2ar\cos\theta + a^2)^{1/2} = a\left(1 - \frac{2r\cos\theta + r^2}{a}\right)^{1/2}$ $|\vec{r} - \vec{a}| = (r^2 - 2ar\cos\theta + a^2)^{1/2} = a\left(1 - \frac{2r\cos\theta + r^2}{a}\right)^{1/2}$ $50 \frac{1}{|\vec{r}-\vec{a}|} = \frac{1}{a} \left(\frac{1-2r\cos(0+r^2)^{-1/2}}{a^2} \right)$ $= \frac{1}{a} \left(1 - \frac{1}{2} \left(-\frac{2r}{a} \cos \theta + \frac{r^2}{a^2} \right) + \frac{5}{8} \left(-\frac{2r}{a} \cos \theta + \frac{r^2}{a^2} \right)^2 - \cdots \right)$ $= \frac{1}{a} + \frac{r_2 \cos 0 + \frac{r^2}{3} \left(\frac{3}{2} \cos^2 0 - \frac{1}{2}\right) + --}{a^3 \left(\frac{3}{2} \cos^2 0 - \frac{1}{2}\right) + --}$ $\int_{0}^{\infty} \left[\hat{r} \right] = -Gm \left[\frac{1}{a} + \frac{r}{a^{2}} \cos \theta + \frac{r^{2}}{a^{3}} \left(\frac{3}{2} \cos^{2} \theta - \frac{1}{2} \right) + \dots \right]$ To find the grav. acc'n due to the Moon, we would need Vq The 1st term of D(r) is const i won't yield any force. The 2rd term just points from fre Earth's center to the Moon. Can't be responsible for fides tocus on the quadratic term which gives the grave treld 9r=-00 = 26mr /3 cos20-11 = Gmr/3cos20-11

 $g_0 = -1 \frac{\partial \overline{\partial}}{\partial \theta} = -\frac{Gur}{a^3} \left(\frac{3}{2}, 2\cos\theta \sin\theta\right) = -\frac{3Gur}{a^3} \cos\theta \sin\theta$

The field is directed outwards along the line of centers, towards i away from the Moon, and immords in the xy plane.

Note that this is a very weak field, smaller than the change in g due to the oblateness of the Earth.

Consider $9E = \frac{GM}{\Gamma^2} = \frac{M}{\Gamma^2} \cdot \frac{a^3}{mr} = \frac{M}{M} \cdot \frac{a^3}{\Gamma^3}$

For the Moon $(\frac{M}{m}) = 81.3$; $\frac{a}{r} = 60.3$, so $\frac{3e}{9t} = 1.79 \times 10^{7}$

Can do the same for tides raised by the Sun, GE & 3.89×107

So, Sun's tidal field is ~ of the Moon's. Need to include both when predictory tides.

If the Sun of Moon are in a live (New or Fall Moon) then the tidal forces add is get Spring tides.

At 1st; 3rd quarters, they portually cancel , get Neap tides.

As the Earth rotates, O changes, but b/c of the cos²O term, there are 2 peaks to the fides per day.