שיעור 6 קמירות אסימפטוטות ודוגמאות לחקירה

תחומי קמירות ונקודות פיתול

6.1 הגדרה: (פונקציה קמורה)

פונקציה (a,b) שגזירה בקטע f(x) נקראת קמורה כלפי מטה אם בכל נקודה $x\in(a,b)$ המשיק לגרף הפונקציה נמצא מעל הגרף.

פונקציה f(x) נקראת קמורה פונקציה f(x) נקראת קמורה כלפי מעלה אם בכל נקודה $x\in(a,b)$ המשיק לגרף הפונקציה נמצא מתחת לגרף הפונקציה

:6.2 משפט

(a,b) אם כלפי מטה בקטע f'(x) אז $x\in(a,b)$ לכל לכל

.(a,b) אס בקטע כלפי קמורה קf(x) אז $x\in(a,b)$ לכל f''(x)>0אם

6.3 הגדרה: (נקודת פיתול)

. נקודה בארף (c,f(c)) נקראת נקודת פיתול של הפונקציה אם היא נמצאת בין שני תחומי קמירות שונים.

:6.4 משפט

אם (c,f(c)) אז הנקודה f''(c) מחליף סימן, אז הנקודה לא קיימת ובמעבר דרך נקודה f''(c) מחליף סימן, אז הנקודה לא קיימת ובמעבר דרך נקודה פיתול.

דוגמא.

נתונה הפונקציה

$$f(x) = x^5 - x + 5$$

מצאו את נקודות פיתול של הפונקציה.

פיתרון.

$$f(x) = x^5 - x + 5$$
, $f'(x) = 5x^4 - 1$, $f''(x) = 20x^3 = 0$

lacktriangle .(0,f(0))=(0,5) בנקודה פיתול פיתול פיתול

אסימפטוטה אנכית

6.5 הגדרה: (אסימפטוטה אנכית)

 $\lim_{x o a^+}f(x)$ קו ישר x=a נקרא אסימפטוטה אנכית של פונקציה f(x) אם לפחות אחד הגבולות החד צדדיים x=a או $\lim_{x o a^-}f(x)$ שווה ל- או $+\infty$ או

דוגמא.

מצאו את האסימפטוטות האנכיות של הפונקציה

$$f(x) = \frac{2}{x+1}$$

פיתרון.

שים לב

$$\lim_{x \to -1^+} \frac{2}{x+1} = +\infty \ , \qquad \lim_{x \to -1^-} \frac{2}{x+1} = -\infty$$

x=-1 -ולכן ישנה אסימפטוטה אנכית

אסימפטוטה אופקית

6.6 הגדרה: (אסימפטוטה אופקית)

. $\lim_{x\to -\infty}f(x)=b$ אם $\lim_{x\to \infty}f(x)=b$ אם פונקציה של פונקציה אופקית אסימפטוטה עקרא y=bישר קו ישר y=b

דוגמא.

מצאו את האסימפטוטות האופקיות של הפונקציה

$$f(x) = \frac{2}{x+1}$$

פיתרון.

$$\lim_{x \to \infty} \frac{2}{x+1} = 0 , \qquad \lim_{x \to -\infty} \frac{2}{x+1} = 0$$

 $\pm \infty$. אסימפטוטה אופקית ב- y=0

אסימפטוטה משופעת

6.7 הגדרה: (אסימפטוטה משופעת)

קו ישר המרחק בין גרף הפונקציה של פונקציה לבין $y=m\cdot x+n$ קו ישר קו ישר אסימפטוטה אסימפטוטה שופעת אסימפטוטה אסימפטוטה אסימפטוטה שואף ל $y=m\cdot x+n$ הקו אואף ל- $y=m\cdot x+n$ הקו

6.8 כלל: (נוסחה למציאת אסימפטוטה משופעת)

$$m = \lim_{x \to \infty} \frac{f(x)}{x}$$
, $n = \lim_{x \to \infty} [f(x) - mx]$

(אותו דבר עבור $\infty \to \infty$). אם m,n מספרים סופיים, אז קיימת אסימפטוטה משופעת.

דוגמאות

$$f(x) = \frac{x^2 - x - 2}{x - 2} .1$$

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 - x - 2}{x(x - 2)} = \lim_{x \to \infty} \frac{x^2 - x - 2}{x^2 - 2x} = 1$$
.

$$n = \lim_{x \to \infty} \left(f(x) - mx \right) = \lim_{x \to \infty} \left[\frac{x^2 - x - 2}{x - 2} - x \right] = \lim_{x \to \infty} \frac{x^2 - x - 2 - x^2 + 2x}{x - 2} = \lim_{x \to \infty} \frac{x - 2}{x - 2} = 1 \ .$$

 $+\infty$ -לכן הקו y=x+1 אסימפטוטה y=x+1

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^2 - x - 2}{x(x - 2)} = \lim_{x \to -\infty} \frac{x^2 - x - 2}{x^2 - 2x} = 1.$$

$$n = \lim_{x \to -\infty} \left(f(x) - mx \right) = \lim_{x \to -\infty} \left[\frac{x^2 - x - 2}{x - 2} - x \right] = \lim_{x \to -\infty} \frac{x^2 - x - 2 - x^2 + 2x}{x - 2} = \lim_{x \to -\infty} \frac{x - 2}{x - 2} = 1 \ .$$

 $-\infty$ -ב אסימפטוטה אסימפטוטה y=x+1 לכן הקו

$$f(x) = x \cdot e^x$$
 .2

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{xe^x}{x} = \lim_{x \to \infty} e^x = \infty$$
.

 $+\infty$ -בי משופעת ב- לכן אין אסימפטוטה

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{xe^x}{x} = \lim_{x \to -\infty} e^x = 0$$
.

$$n = \lim_{x \to -\infty} (f(x) - mx) = \lim_{x \to -\infty} [xe^x - 0 \cdot x] = \lim_{x \to -\infty} \frac{x}{e^{-x}} = \lim_{x \to -\infty} \frac{1}{-e^{-x}} = 0.$$

 $-\infty$ ב- אסימפטוטה משופעת (אופקית) ב- y=0

שלבים לחקירה מלאה של פונקציה

- 1. תחום הגדרה
- 2. נקודות חיתוך עם הצירים, סימני הפונקציה
- 3. התנהגות סביב נקודות אי הגדרה, אסימפטוטות אנכיות.
 - 4. התנהגות באינסוף, אסימפטוטות אופקיות.
 - 5. אסימפטוטות משופעות.
 - 6. תחומי עליה וירידה, נקודות קיצון
 - 7. תחומי קמירות, נקודות פיתול.
 - 8. גרף הפונקציה.

דוגמאות לחקירה מלאה של פונקציה

דוגמא.

חוקר באופן מלא את הפונקציה הבאה (תחום הגדרה, נקודות חיתוך, אסימפטוטות אנכיות אופקיות ומשופעות, תחומי עליה ורידה, נקודות קיצון, תחומי קמירות ונקודות פיתול), וצייר סקיצת הגרף של הפונקציה.

$$f(x) = \frac{x}{1 - x^2}$$

פיתרוו.

- $x \neq \pm 1$: תחום הגדרה
- (0,0) :2א נקודות חיתוך עם הצירים
 - 2ב סימני הפונקציה

f(x)	x
+	x < -1
_	-1 < x < 0
+	0 < x < 1
_	x > 1

3. אסימפטוטות אנכיות.

$$\lim_{x \to 1^{-}} \frac{x}{1 - x^{2}} = \infty , \qquad \lim_{x \to 1^{+}} \frac{x}{1 - x^{2}} = -\infty .$$

אסימפטוטה אנכית. x=1

$$\lim_{x \to -1^{-}} \frac{x}{1 - x^{2}} = \infty , \qquad \lim_{x \to -1^{+}} \frac{x}{1 - x^{2}} = -\infty .$$

אסימפטוטה אנכית. x=-1

4. אסימפטוטות אופקיות.

$$\lim_{x \to \infty} \frac{x}{1-x^2} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{x^2}-1} = 0 \ , \qquad \lim_{x \to -\infty} \frac{x}{1-x^2} = \lim_{x \to -\infty} \frac{\frac{1}{x}}{\frac{1}{x^2}-1} = 0 \ .$$

 $\pm\infty$ -אסימפטוטה אופקית בy=0

- 5. אסימפטוטות משופעות: אין
- 6. תחומי עליה וירידה, נקודות קיצון

$$f'(x) = \frac{1 - x^2 - x \cdot (-2x)}{(1 - x^2)^2} = \frac{x^2 + 1}{(1 - x^2)^2}$$

מתאםס של f'(x) לא שווה אפס באף נקודה בתחום הגדרה של הפונקציה (אף על פי שהמונה של f'(x) מתאםס ב- ב- f(x) ב- באותן נקודות נמצאת אסימפטוטות אנכיות בגלל שהפונקציה המקורית f(x) לא מוגדרת בהן).

x	x < -1	x = -1	-1 < x < 1	x = 1	x > 1
f'(x)	+	#	+	#	+
f(x)	7	#	7	#	7

אין נקודת קיצון.

7. תחומי קמירות, נקודות פיתול.

$$f''(x) = \frac{2x(1-x^2)^2 - 2(1-x^2)(-2x)(x^2+1)}{(1-x^2)^4}$$

$$= \frac{2x(1-x^2)\left[1-x^2+2(x^2+1)\right]}{(1-x^2)^4}$$

$$= \frac{2x(1-x^2)\left[1-x^2+2x^2+2\right)\right]}{(1-x^2)^4}$$

$$= \frac{2x(x^2+3)}{(1-x^2)^3}$$

לכן פיתול. (0,0) הנקודה .x=0כאשר $f^{\prime\prime}(x)=0$ לכן

x	x < -1	-1 < x < 0	0 < x < 1	x > 1
f''(x)	+	_	+	_

8. גרף הפונקציה.

דוגמא.

חוקר באופן מלא את הפונקציה הבאה (תחום הגדרה, נקודות חיתוך, אסימפטוטות אנכיות אופקיות ומשופעות, תחומי עליה ורידה, נקודות קיצון, תחומי קמירות ונקודות פיתול), וצייר סקיצת הגרף של הפונקציה.

$$f(x) = \frac{x^3 - 1}{x^2}$$

פיתרון.

 $x \neq 0$: תחום הגדרה.

(1,0) : נקודות חיתוך עם הצירים 2

2ב סימני הפונקציה

f(x)	x
f(x) < 0	x < 0
f(x) < 0	0 < x < 1
f(x) > 0	x > 1

3. אסימפטוטות אנכיות.

$$\lim_{x \to 0^-} \frac{x^3 - 1}{x^2} = -\infty \ , \qquad \lim_{x \to 0^+} \frac{x^3 - 1}{x^2} = +\infty \ .$$

אסימפטוטה אנכית. x=0

.4 אסימפטוטות אופקיות.

$$\lim_{x \to \infty} \frac{x^3 - 1}{x^2} = \infty , \qquad \lim_{x \to -\infty} \frac{x^3 - 1}{x^2} = \infty .$$

 $\pm\infty$ -אין אסימפטוטה אופקית בy=0

.5 אסימפטוטות משופעות.

$$m = \lim_{x \to \infty} \frac{x^3 - 1}{x^3} = 1 \ , \qquad n = \lim_{x \to \infty} \frac{x^3 - 1}{x^2} - x = \lim_{x \to \infty} \frac{-1}{x^2} = 0 \ .$$

 $+\infty$ -ב משופעת ב- אסימפטוטה אסימפעת ב-

$$m = \lim_{x \to -\infty} \frac{x^3 - 1}{x^3} = 1 \ , \qquad n = \lim_{x \to -\infty} \frac{x^3 - 1}{x^2} - x = \lim_{x \to -\infty} \frac{-1}{x^2} = 0 \ .$$

 $-\infty$ -ב אסימפטוטה שופעת בy=x לכן הקו

6. תחומי עליה וירידה, נקודות קיצון

$$f'(x) = \frac{3x^2 \cdot x^2 - 2x(x^3 - 1)}{x^4} = \frac{x^4 + 2x}{x^4} = 1 + \frac{2}{x^3}$$

 $x=(-2)^{1/3}$ -וx=0 בנקודות f'(x)=0 מכאן

x	$x < (-2)^{1/3}$	$x = (-2)^{1/3}$	$(-2)^{1/3} < x < 0$	x = 0	x > 0
f'(x)	+	0	_	0	+
f(x)	7	∄	¥	∄	7

$$f'(x) \xrightarrow{+} (-2)^{1/3} \xrightarrow{-} 0 \xrightarrow{+} x$$

שים לב הפונקציה לא מוגדרת בנקודה x=0 ולכן הנקודה לא x=0 מוגדרת לא מוגדרת לב הפונקציה לא מקסימום.

$$f''(x) = \frac{-6}{x^4} < 0$$

x	x < 0	0	x > 0
f''(x)	_	0	_

דוגמא.

חוקר באופן מלא את הפונקציה הבאה (תחום הגדרה, נקודות חיתוך, אסימפטוטות אנכיות אופקיות ומשופעות, תחומי עליה ורידה, נקודות קיצון, תחומי קמירות ונקודות פיתול), וצייר סקיצת הגרף של הפונקציה.

$$f(x) = \frac{e^{2x}}{1+x}$$

פיתרון.

 $x \neq -1$: תחום הגדרה.

(0,1) נקודות חיתוך עם הצירים: 28

2ב סימני הפונקציה

f(x)	x
_	x < -1
+	x > -1

$$f(x) \xrightarrow{-1} x$$

.3 אסימפטוטות אנכיות.

$$\lim_{x \to -1^-} \frac{e^{2x}}{1+x} = -\infty \ , \qquad \lim_{x \to -1^+} \frac{e^{2x}}{1+x} = +\infty \ .$$

אסימפטוטה אנכית. x=-1

4. אסימפטוטות אופקיות.

$$\lim_{x\to\infty}\frac{e^{2x}}{1+x}=\lim_{x\to\infty}\frac{2e^{2x}}{1}=\infty\ ,\qquad \lim_{x\to-\infty}\frac{e^{2x}}{1+x}=\lim_{x\to-\infty}\frac{2e^{2x}}{1}=0\ .$$

 $-\infty$ -אין אסימפטוטה אופקית בu=0

.5 אסימפטוטות משופעות.

$$m = \lim_{x \to \infty} \frac{e^{2x}}{x(x+1)} = \lim_{x \to \infty} \frac{e^{2x}}{x^2 + x} = \lim_{x \to \infty} \frac{2e^{2x}}{2x+1} = \lim_{x \to \infty} \frac{4e^{2x}}{2} = \infty.$$

 $+\infty$ -לכן אין אסימפטוטה משופעת ב

6. תחומי עליה וירידה, נקודות קיצון

$$f'(x)=rac{2e^{2x}(1+x)-e^{2x}\cdot 1}{(1+x)^2}=rac{e^{2x}(2x+1)}{(1+x)^2}$$
מכאן $f'(x)=0$ בנקודות בנקודות $f'(x)=0$

x	x < -1	x = -1	$-1 < x < \frac{-1}{2}$	$x = \frac{-1}{2}$	$x > \frac{-1}{2}$
f'(x)	_	∄	_	0	+
f(x)	¥	∄	>	$\frac{2}{e}$	7

$$f'(x) \xrightarrow{-} -1 \xrightarrow{-} -\frac{1}{2} \xrightarrow{+} x$$

 $(-rac{1}{2},f(-rac{1}{2}))=(-rac{1}{2},rac{2}{e})=(-rac{1}{2},0.74)$ שים לב הפונקציה לא מוגדרת בנקודה x=-1 ולכן הנקודה מינימום.

$$f''(x) = \frac{[2e^{2x}(2x+1) + 2e^{2x}](1+x)^2 - e^{2x}(2x+1) \cdot 2(1+x)}{(1+x)^4}$$

$$= \frac{2e^{2x}(1+x)\left[(2x+2)(1+x) - (2x+1)\right]}{(1+x)^4}$$

$$= \frac{2e^{2x}\left[2x^2 + 2 + 3x - 2x - 1\right]}{(1+x)^3}$$

$$= \frac{2e^{2x}\left[2x^2 + x + 1\right]}{(1+x)^3}$$

x	x < -1	-1	x > -1
f''(x)	_	∄	_

$$f''(x) \xrightarrow{-1} \xrightarrow{+} x$$

דוגמא.

חוקר באופן מלא את הפונקציה הבאה (תחום הגדרה, נקודות חיתוך, אסימפטוטות אנכיות אופקיות ומשופעות, תחומי עליה ורידה, נקודות קיצון, תחומי קמירות ונקודות פיתול), וצייר סקיצת הגרף של הפונקציה.

$$f(x) = \frac{1 + \ln x}{x}$$

פיתרון.

x>0י. תחום הגדרה. .1

 $(0, \frac{1}{e})$: נקודות חיתוך עם הצירים א2

2ב סימני הפונקציה

f(x)	x
_	$x < \frac{1}{e}$
+	$x > \frac{1}{e}$

$$f(x) \xrightarrow{-} \xrightarrow{\frac{1}{e}} x$$

3. אסימפטוטות אנכיות.

$$\lim_{x \to 0^+} \frac{1 + \ln x}{x} = -\frac{\infty}{0^+} = -\infty \ .$$

אסימפטוטה אנכית. x=0

4. אסימפטוטות אופקיות.

$$\lim_{x \to \infty} \frac{1 + \ln x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} == 0.$$

 $+\infty$ -אין אסימפטוטה אופקית בy=0

- 5. אסימפטוטות משופעות: אין
- 6. תחומי עליה וירידה, נקודות קיצון

$$f'(x) = \frac{\frac{1}{x} \cdot x - (1 + \ln x)}{x^2} = \frac{-\ln x}{x^2}$$

x=1 בנקודות f'(x)=0 מכאן

x	x < 1	x = 1	x > 1
f'(x)	+	0	_
f(x)	7	1	>

$$f'(x) \xrightarrow{+} \xrightarrow{-} x$$

f(1)=1 נקודת מקסימום מקומי. x=1

$$f''(x)=rac{-rac{1}{x}\cdot x^2+\ln x\cdot 2x}{x^4}=rac{2\ln x-1}{x^3}$$
מכאך $f''(x)=0$ בנקודות $f''(x)=0$

x	$x < -\sqrt{e}$	$x = \sqrt{e}$	$x > \sqrt{e}$
f''(x)	_	0	+

דוגמא.

חוקר באופן מלא את הפונקציה הבאה (תחום הגדרה, נקודות חיתוך, אסימפטוטות אנכיות אופקיות ומשופעות, תחומי עליה ורידה, נקודות קיצון, תחומי קמירות ונקודות פיתול), וצייר סקיצת הגרף של הפונקציה.

$$f(x) = \frac{x^2}{|x| - 1}$$

פיתרון.

 $x \geq 0$ שים לב הפונקציה את גרף הפונקציה בתחום שים לציר ה-y. נבנה את ולכן הגרף שלה סומיטרית ביחס לציר ה-

 $.x \neq 1$, $x \geq 0$: תחום הגדרה.

(0,0) :2א נקודות חיתוך עם הצירים

2ב סימני הפונקציה

f(x)	x
_	x < 1
+	x > 1

3. אסימפטוטות אנכיות.

$$\lim_{x \to 1^{-}} \frac{x^{2}}{x - 1} = -\infty , \qquad \lim_{x \to 1^{+}} \frac{x^{2}}{x - 1} = \infty .$$

אסימפטוטה אנכית. x=1

4. אסימפטוטות אופקיות. שים לב

$$f(x) = x + 1 + \frac{1}{x - 1}$$

 $+\infty$ -ב אסימפטוטה אסימפטוט y=x+1 לכן

- 5. אסימפטוטות משופעות: אין
- 6. תחומי עליה וירידה, נקודות קיצון

$$f'(x) = 1 - \frac{1}{(x-1)^2}$$

f'(x)=0 מכאן מכאן בנקודות בנקודות בנקודות בנקודות

$$(x-1)^2 = 1$$
 \Rightarrow $x-1 = \pm 1$ \Rightarrow $x = 0, 2$.

x	0 < x < 2	x = 2	x > 2
f'(x)	_	0	+
f(x)	¥	4	7

f(2)=4 נקודת מינימום מקומי. x=2

$$f''(x) = \frac{2}{(x-1)^3}$$

	\overline{x}	0 < x < 1	x = 1	x > 1
ĺ	f''(x)	_	#	+

בעיות קיצון

דוגמא.

פיתרון.

P(3,0) על גרף הפונקציה $y=\sqrt{x}$ נבחר נקודה שרירותית (x,\sqrt{x}) על גרף הפונקציה $y=\sqrt{x}$ נבחר נקודה שרירותית (x,\sqrt{x}) על גרף הפונקציה (x,\sqrt{x}):

$$d = \sqrt{(x-3)^2 + (\sqrt{x}-0)^2} = \sqrt{(x-3)^2 + x} .$$

מכאן

$$d^2 = (x-3)^2 + x .$$

יש למצוא x שעבורו d^2 יקבל ערך מינימלי:

$$(d^2)'_x = 2(x-3) + 1 = 2x - 5$$

.x=2.5 כאשר כאשר ($d^2
ight)_x^\prime=0$ מכאן

 $\blacksquare \ .(2.5,f(2.5))=(2.5,\sqrt{2.5})$ היא ביותר הקרובה הקרובה הנקודה הנקודה סופית:

דוגמא.

בין הגרפים של פונקציה $y=e^{x/2}$ -
ו בין האפשרי של את שטח מלבן. ער ה- $y=e^{-x}$ ו בין האפשרי של בין הגרפים המלבן האפשרי של האפשרי של המלבן הזה.

פיתרון.

$$e^{x_1/2} = e^{-x} \Rightarrow x_1 = -2x$$
.
 $S = (x + |x_1|)e^{-x} = 3x \cdot e^{-x}$.
 $S'_x = 3e^{-x} - 3xe^{-x} = 3e^{-x}(1 - x)$.

. שים מקומי מקסימום מקומי. אכן לכן x=1בנקודה בנקודה $S_x^\prime=0$

$$S_{\text{max}} = 3 \cdot 1 \cdot e^{-1} = \frac{3}{e} .$$

דוגמא.

K -טווית של משולש ישר אוויות בעל השטח הגדול ביותר שבו סכום אורכי היתר ואחד הניצבים שווה ל

פיתרון.

נסמן את אורכי אחד הניצבים ב-x. אז אורך היתר הוא k-x ואורך הניצב השני הוא

$$\sqrt{(k-x)^2 - x^2} = \sqrt{k^2 - 2kx}$$

X

$$S = \frac{x \cdot \sqrt{k^2 - 2kx}}{2}$$

$$S'_x = x \cdot \frac{1}{2} \cdot \frac{-2k}{2\sqrt{k^2 - 2kx}} + \frac{1}{2} \cdot \sqrt{k^2 - 2kx}$$

$$= \frac{1}{2} \left[\frac{-kx}{\sqrt{k^2 - 2kx}} + \sqrt{k^2 - 2kx} \right]$$

$$= \frac{1}{2\sqrt{k^2 - 2kx}} \left(-kx + k^2 - 2kx \right)$$

$$= \frac{1}{2\sqrt{k^2 - 2kx}} k \left(k - 3x \right)$$

 $.x=rac{k}{3}$ כאשר $S_x'=0$

. נקודת מקסימום $x=rac{k}{3}$

$$\sin \alpha = \frac{x}{k - x} = \frac{\frac{k}{3}}{k - \frac{k}{3}} = \frac{1}{2} , \qquad \Rightarrow \qquad \alpha = \frac{\pi}{6} .$$

$$\beta = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3} .$$

הזווית השניה

תרגילים לשימוש בחקרית פונקציה

דוגמא.

הוכח כי לכל $x \neq 0$ מתקיים

$$\left| \frac{1}{2x} + \arctan x \right| \ge \frac{\pi}{4} + \frac{1}{2} \ .$$

פיתרון.

$$.f(x) = \frac{1}{2x} + \arctan x$$
 נגדיר

$$f'(x) = -\frac{1}{2x^2} + \frac{1}{x^2 + 1} = \frac{x^2 - 1}{2x^2(x^2 + 1)}$$

 $.x=\pm 1$ בנקודה f'(x)=0 ולפיו

$$f(1)=rac{\pi}{4}+rac{1}{2}$$
 נקודה מינימום מקומי $x=1$ $f(-1)=-rac{\pi}{4}-rac{1}{2}$ נקודה מקסימום מקומי $x=-1$

לכן
$$f(x)<-rac{\pi}{4}-rac{1}{2}$$
 או $f(x)>rac{\pi}{4}+rac{1}{2}$ לכן

$$\left|\frac{1}{2x} + \arctan x\right| \ge \frac{\pi}{4} + \frac{1}{2} \ .$$

דוגמא.

הוכח כי למשוואת

$$6x^6 - 6x^4 + 1 = 0$$

אין פתרונות ממשיים.

פיתרוו.

$$f(x) = 6x^6 - 6x^4 + 1$$
 נגדיר

$$f'(x) = 36x^5 - 24x^3 = 12x^3(3x^2 - 2) = 12x^3(\sqrt{3} \cdot x + \sqrt{2})(\sqrt{3} \cdot x - \sqrt{2}).$$

יש לפונקציה
$$f(x)$$
 מינימום, ו- $x=\pm\sqrt{\frac{2}{3}}$ שים לב בנקודות $x=0,\sqrt{\frac{2}{3}},-\sqrt{\frac{2}{3}}.$ בנקודות בנקודות $f'(x)=0$ שים לב לכל $f(x)>0$ לכן $f\left(\sqrt{\frac{2}{3}}\right)=f\left(-\sqrt{\frac{2}{3}}\right)=\frac{1}{9}>0$