

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ

desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Estimação intervalar

Fernando de Pol Mayer

Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Este conteúdo está disponível por meio da Licença Creative Commons 4.0 (Atribuição/NãoComercial/Partilhalgual)

Sumário

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

- Introdução
- 2 Intervalos de confiança para a média: σ conhecido
 - Determinação do tamanho amostral
- 3 Intervalos de confiança para a média: σ desconhecido
 - Determinação do tamanho amostral
- 4 Intervalo de confiança para a proporção p
 - Determinação do tamanho amostral
- 6 Referências

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Introdução

- igspace Intervalos de confiança para a média: σ conhecido
 - Determinação do tamanho amostral
- \odot Intervalos de confiança para a média: σ desconhecido
 - Determinação do tamanho amostral
- 4 Intervalo de confiança para a proporção p
 - Determinação do tamanho amostral
- 6 Referências

Estimação

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Existem dois tipos de estimativas que podemos obter a partir de uma amostra aleatória:

Estimativa pontual

Fornecem como estimativa um único valor numérico para o parâmetro de interesse

Estimativa intervalar

Fornece um intervalo de valores "plausíveis" para o parâmetro de interesse

Estimação

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Por serem **variáveis aleatórias**, os estimadores pontuais possuem uma distribuição de probabilidade (distribuições amostrais)

Com isso, podemos apresentar uma estimativa mais informativa para o parâmetro de interesse, que inclua uma medida de **precisão** do valor obtido \rightarrow **estimativa intervalar** ou **intervalo de confiança**

Os intervalos de confiança são obtidos a partir da distribuição amostral de seus estimadores

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

- Introdução
- 2 Intervalos de confiança para a média: σ conhecido
 - Determinação do tamanho amostral
- 3 Intervalos de confiança para a média: σ desconhecido
 - Determinação do tamanho amostral
- 4 Intervalo de confiança para a proporção p
 - Determinação do tamanho amostral
- 6 Referências

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Suposições necessárias

- A amostra é uma amostra aleatória simples. (Todas as amostras de mesmo tamanho tem a mesma probabilidade de serem selecionadas)
- ullet O valor do desvio-padrão populacionalm σ , é conhecido
- Uma ou ambas das seguintes condições são satisfeitas:
 - A população é normalmente distribuída
 - A amostra possui n > 30

Estimação intervalar

Introducão

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Quando coletamos uma **amostra aleatória** e calculamos uma média, sabemos que o valor da média possui um desvio natural, em relação ao verdadeiro valor da média populacional (**erro amostral**), ou seja

$$e = \bar{X} - \mu \quad \Rightarrow \quad \bar{X} = \mu + e$$

Sabemos que a **distribuição amostral da média** é uma distribuição normal, com média μ e variância σ^2/n ,

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Usando a transformação

$$Z = rac{ar{X} - \mu}{\sigma / \sqrt{n}} = rac{\mathsf{e}}{\sigma / \sqrt{n}} \sim \, \mathsf{N}(0, 1)$$

podemos determinar o **erro máximo provável** que assumimos para a média amostral que estamos calculando.

O **erro máximo provável** ou **margem de erro** da média é definido por

$$e = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

onde $z_{\alpha/2}$ é chamado de **valor crítico**.

Valores críticos

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

O valor crítico $z_{\alpha/2}$ é o valor de Z que separa uma área de $\alpha/2$ da cauda da distribuição normal padrão

Como estamos interessados nos valores **mais prováveis** da média, então nosso interesse está no centro da distribuição Z, que concentra uma área $\gamma=1-\alpha$, que determina o **nível de confiança** do intervalo

Valores críticos

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Nível de confiança

Estimação intervalar

A área $\gamma=1-\alpha$ determina o **nível de confiança** associado ao intervalo de confiança que estamos construindo

O valor de α é o complemento do nível de confiança

Exemplo:

- Para um nível de confiança de 0,95 (ou 95%), $\alpha=0,05$
- ullet Para um nível de confiança de 0,99 (ou 99%), lpha=0,01

Importante!

O nível de confiança é a probabilidade $1-\alpha$, que é a proporção de vezes que o intervalo de confiança realmente contém o parâmetro populacional, supondo que a amostragem pudesse ser repetida um grande número de vezes

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Encontrando valores críticos

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Com a definição do **nível de confiança**, sabemos então o valor de α , e devemos encontrar o valor de $z_{\alpha/2}$. Usando como exemplo $\gamma = 0.95 = 1 - 0.05 \Rightarrow \alpha = 0.05$:

- Temos que $\alpha/2 = 0,025$ é a área em cada cauda
- Na tabela da distribuição normal padrão, procure a área, no corpo da tabela, que corresponde a 0,5 - 0,025 = 0,475
- O valor de $z_{\alpha/2}$ será determinado pelos valores correspondentes nas margens da tabela. Nesse caso, $z_{\alpha/2}=1,96$ é o valor crítico procurado.

Encontrando valores críticos

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Encontre os valores críticos para os níveis de confiança

•
$$\gamma = 0,90 \Rightarrow \alpha = 0,10$$

•
$$\gamma = 0,99 \Rightarrow \alpha = 0,01$$

Tabela: Níveis de confiança e valores críticos mais comuns

Nível de confiança γ	α	Valor crítico $z_{\alpha/2}$
0,90	0,10	1,645
0,95	0,05	1,96
0,99	0,01	2,575

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Com estas definições, podemos construir um **intervalo de confiança** para uma **estimativa amostral da média com** σ **conhecido** através de

$$\bar{x} - e < \mu < \bar{x} + e$$

com

$$e = z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}}\right)$$

Outras notações

$$\bar{x} \pm e$$

$$[\bar{x}-e;\bar{x}+e]$$

Estimação intervalar

Porque podemos fazer isso?

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

$$\begin{aligned} &\Pr[-z_{\alpha/2} < Z < z_{\alpha/2}] = \gamma \\ &\Pr[-z_{\alpha/2} < \frac{\bar{x} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}] = \gamma \end{aligned}$$

Isolando μ nessa inequação,

$$\Pr[\bar{x} - z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}}\right) < \mu < \bar{x} + z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}}\right)] = \gamma$$

$$\Pr[\bar{x} - e < \mu < \bar{x} + e] = \gamma$$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Procedimentos gerais para a construção de intervalos de confiança

- Verifique se as suposições necessárias estão satisfeitas
 - Temos uma AAS
 - \bullet σ é conhecido
 - A população tem distribuição normal ou n > 30
- 2 Determine o nível de confiança γ , e identifique α
- ullet Com o valor de lpha definido, encontre o valor crítico de $z_{lpha/2}$
- Calcule a margem de erro $e = z_{\alpha/2} \cdot (\sigma/\sqrt{n})$
- Coloque em um dos formatos gerais para intervalo de confiança

$$ar{x} - e < \mu < ar{x} + e$$

 $ar{x} \pm e$
 $ar{x} - e; ar{x} + e$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Interpretação de um intervalo de confiança

Suponha que obtivemos um intervalo de 95% de confiança de $52 < \mu < 58$

Interpretação 1

Temos 95% de confiança de que a verdadeira média populacional μ se encontra entre 52 e 58

Interpretação 2

Temos 95% de confiança de que o intervalo entre 52 e 58 realmente contém a verdadeira média populacional μ

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Interpretação de um intervalo de confiança

Suponha que obtivemos um intervalo de 95% de confiança de $52 < \mu < 58$

Interpretação 1 — ERRADA

Temos 95% de confiança de que a verdadeira média populacional μ se encontra entre 52 e 58

Interpretação 2 — CERTA

Temos 95% de confiança de que o intervalo entre 52 e 58 realmente contém a verdadeira média populacional μ

Estimação intervalar

Introducão

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Como o intervalo de confiança é calculado a partir de uma amostra aleatória, este intervalo também é aleatório!

Isso significa que para cada amostra aleatória que tivermos, um intervalo **diferente** será calculado.

Como o valor de μ é fixo, é o intervalo que deve conter o valor de μ , e não o contrário.

Isso significa que se pudessemos obter 100 amostras diferentes, e calcularmos um intervalo de confiança de 95% para cada uma das 100 amostras, esperariamos que 5 destes intervalos **não** contenham o verdadeiro valor da média populacional μ .

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Confidence intervals based on z distribution

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Exemplo: Uma empresa de computadores deseja estimar o tempo médio de horas semanais que as pessoas utilizam o computador. Uma amostra aleatória de 25 pessoas apresentou um tempo médio de uso de 22,4 horas. Com base em estudos anteriores, a empresa assume que $\sigma=5,2$ horas, e que os tempos são normalmente distribuídos.

- a) Verifique as suposições necessárias para o cálculo de um intervalo de confiança
- b) Para um nível de confiança de 95%, encontre o valor crítico $z_{\alpha/2}$
- c) Calcule o erro máximo provável
- d) Construa o intervalo de confiança
- e) Escreva a interpretação do resultado

Resp.: [20.362; 24.438]

Estimação intervalar

Introducão

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

A **amplitude** de um intervalo de confiança é dada pela diferença entre o limite superior e inferior, ou seja,

$$\mathsf{AMP}_{\mathit{IC}} = \left[\bar{x} + z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}} \right) \right] - \left[\bar{x} - z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}} \right) \right]$$

Note que, claramente, um intervalo de confiança depende conjuntamente de três componentes:

- nível de confiança γ , expresso pelo valor crítico $z_{\alpha/2}$
- ullet desvio-padrão populacional σ
- tamanho da amostra n

Estimação intervalar

Introducão

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

 $z_{\alpha/2}$ Cada vez que aumentamos a confiança γ , o valor de $z_{\alpha/2}$ fica maior, e consequentemente a amplitude do intervalo aumenta.

Intervalos maiores tem maior possibilidade de "captura" do verdadeiro valor de $\boldsymbol{\mu}$

 σ Um grande desvio-padrão indica a possibilidade de um considerável distanciamento dos valores amostrais em relação à média populacional

Ainda deve-se considerar que tanto \bar{x} quanto σ podem ser influenciados pela presença de valores extremos

n Quanto maior for o tamanho da amostra, maior será a quantidade de informação disponível. Com isso, valores maiores de n produzem intervalos mais informativos

Para valores fixos de γ e σ , valores maiores de n produzem intervalos menores

Estimação intervalar

Introdução

Intervalos de confianca para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confianca para a proporção p Determinação do tamanho amostral

Referências

Exemplo: Seja $X \sim N(\mu, 36)$

- a) Para uma amostra de tamanho 50, obtivemos média amostral 18,5. Construa intervalos de confiança de
- (i) 90% (ii) 95% (iii) e 99%
- b) Calcule as amplitudes dos intervalos acima e explique a diferença.
- c) Para um nível de confiança de 95%, construa intervalos de confiança (admita a mesma média amostral 18,5) supondo tamanhos de amostra
 - (i) n = 15 (ii) n = 100
- d) Calcule as amplitudes dos intervalos acima e explique a diferenca.

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral Intervalos de

confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Respostas do exercício anterior:

a)

(i) (ii) (iii) LI 17.104 16.837 16.314

LS 19.896 20.163 20.686

b)

(i) (ii) (iii)

2.792 3.326 4.372

c)

(i) (ii) IT 15.464 17.324

LS 21.536 19.676

d)

(i) (ii)

6.072 2.352

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

- Introdução
- 2 Intervalos de confiança para a média: σ conhecido
 - Determinação do tamanho amostral
- \odot Intervalos de confiança para a média: σ desconhecido
 - Determinação do tamanho amostral
- 4 Intervalo de confiança para a proporção p
 - Determinação do tamanho amostral
- 6 Referências

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Nosso objetivo é coletar dados para estimar a **média populacional** μ

A questão é:

Quantos elementos (itens, objetos, pessoas, ...) devemos amostrar?

Já vimos que, de maneira (bem) geral, n > 30 é um tamanho de amostra mínimo para a maioria dos casos.

Será que podemos ter uma estimativa melhor de quantos elementos devem ser amostrados para estimarmos a média populacional com uma precisão conhecida?

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

A partir da equação do erro máximo provável

$$e = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

podemos isolar n e chegar na seguinte equação para a determinação do tamanho amostral

$$n = \left[\frac{z_{\alpha/2} \cdot \sigma}{e}\right]^2$$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Note que, em

$$n = \left[\frac{z_{\alpha/2} \cdot \sigma}{e}\right]^2$$

- O tamanho amostral n não depende do tamanho populacional N
- O tamanho amostral depende
 - ullet do nível de confiança desejado (expresso pelo valor crítico $z_{lpha/2}$)
 - do erro máximo desejado
 - do desvio-padrão σ (embora veremos que não é estritamente necessário)
- Como o tamanho amostral precisa ser um número inteiro, arredondamos sempre o valor para o maior número inteiro mais próximo

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Exemplo: Seja $X \sim N(\mu, 36)$

- a) Calcule o tamanho da amostra, para que com 95% de probabilidade, a média amostral não difira da média populacional por mais de
 - (i) 0,5 unidades (ii) 2 unidades
- b) Qual o impacto do erro máximo assumido para o tamanho da amostra?
- c) Calcule o tamanho da amostra, para que a diferença da média amostral para a média populacional (em valor absoluto) seja menor ou igual a 2 unidades, com níveis de confiança de
 - (i) 90% (ii) 95%
- d) Compare as estimativas do item anterior e analise o impacto do nível de confiança para a determinação do tamanho amostral.

Estimação intervalar

Introdução

Intervalos de

confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Respostas do exercício anterior

a)

(i)

[1] 554

(ii)

[1] 35

c) # (i)

[1] 25

(ii)

[1] 35

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

- Introdução
- 2 Intervalos de confiança para a média: σ conhecido
 - Determinação do tamanho amostral
- \odot Intervalos de confiança para a média: σ desconhecido
 - Determinação do tamanho amostral
- Intervalo de confiança para a proporção p
 - Determinação do tamanho amostral
- 6 Referências

Estimação intervalar

Introducão

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Na maioria das situações práticas, não sabemos o verdadeiro valor do desvio-padrão populacional σ

Se não conhecemos σ , então não podemos usar a distribuição normal padrão (Z) para estimarmos a verdadeira média populacional μ

Nesse caso, usaremos a distribuição t de **Student** que permite o uso da estimativa do **desvio-padrão amostral** s no lugar do valor desconhecido de σ .

A distribuição t de Student

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Se uma população tem distribuição normal, então a distribuição da estatística

$$t=rac{ar{x}-\mu}{s/\sqrt{n}} \sim t(n-1)$$

é uma **distribuição** t **de Student** (ou simplesmente distribuição t) com n-1 **graus de liberdade**.

A distribuição t de Student

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho

amostral
Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Como não conhecemos σ , usamos o desvio-padrão amostral (não viesado):

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

mas isso introduz uma fonte de incerteza.

Para manter o nível de confiança desejado γ , compensamos essa incerteza calculando um intervalo de confiança um pouco maior: usando os valores críticos da distribuição $t_{\alpha/2;n-1}$ (ou simplesmente $t_{\alpha/2}$)

A distribuição t de Student

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Para acharmos os valores críticos de $t_{\alpha/2;n-1}$, precisamos determinar o nível de confiança $\gamma=1-\alpha$ desejado e o valor dos **graus de liberdade** que indexa a distribuição t

Graus de liberdade (gl)

É o número de valores amostrais que podem variar depois que certas restrições tiverem sido impostas.

$$gl = n - 1$$

Dada uma média, apenas n-1 valores podem ser associados **livremente**, antes que o último valor seja determinado.

Exemplo: consideremos que 10 estudantes obtiveram média 8,0 em um teste. Assim, a soma das 10 notas deve ser 80 (restrição). Portanto, neste caso, temos 10-1=9 graus de liberdade, pois as nove primeiras notas podem ser escolhidas aleatoriamente, contudo a 10^a nota deve ser igual a [80 - (soma das 9 primeiras)].

A distribuição t de Student

Estimação intervalar

Introdução Intervalos de

confiança para a média: σ conhecido Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Características da distribuição t

- É simétrica com média t = 0 (assim como z = 0)
- É diferente para tamanhos de amostra diferentes
- Possui maior área nas caudas e menor área no centro (quando comparada com a distribuição normal) → para incorporar a incerteza
- O desvio-padrão da distribuição t varia com o tamanho da amostra (ao contrário da distribuição z onde $\sigma=1$)
 - n ↓ σ ↑
 - n ↑ σ ↓
- Á medida que o *n* amostral aumenta, a distribuição *t* se aproxima cada vez mais de uma distribuição normal padrão *Z*
 - Por isso, para amostras grandes (n > 30) o resultado das duas é similar

A distribuição t de Student

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Encontrando valores críticos de t

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho

amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Com a definição do **nível de confiança** e sabendo o tamanho da amostra n, sabemos então o valor de α e dos gl, e devemos encontrar o valor de $t_{\alpha/2:n-1}$. Usando como exemplo

 $\gamma=0,95=1-0,05\Rightarrow lpha=0,05$ ou 5% e uma amostra de $\emph{n}=7$

- Temos que $n = 7 \Rightarrow gl = n 1 = 6$
- Na tabela da distribuição t de Student procure a linha correspondente aos gl, e à coluna correspondente ao valor de α
- O valor de $t_{\alpha/2;n-1}$ será determinado pelos valores correspondentes **no corpo da tabela**. Nesse caso, $t_{\alpha/2;n-1}=2,447$ é o valor crítico procurado.

Encontrando valores críticos de t

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação

do tamanho amostral Intervalos de

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Sabemos que o valor crítico de 95% de confiança para a distribuição normal padrão é $z_{\alpha/2}=1,96$. Quais são os valores críticos correspondentes para a distribuição t, se o n amostral for

- n = 10
- n = 21
- *n* = 30
- n = 61
- n = 100
- n = 1000

Verifique também os 4 primeiros valores para $\gamma=0,9$ e $\gamma=0,99$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Com estas definições, podemos construir um intervalo de confiança para uma estimativa da média amostral com σ desconhecido através de

$$\bar{x} - e < \mu < \bar{x} + e$$

com

$$e = t_{\alpha/2} \cdot \left(\frac{s}{\sqrt{n}}\right)$$

Outras notações

$$\bar{x} \pm e$$

$$[\bar{x}-e;\bar{x}+e]$$

Estimação intervalar

confiança com σ desconhecido

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho

amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p Determinação do tamanho amostral

Referências

Verifique se as suposições necessárias estão satisfeitas

Procedimentos gerais para a construção de intervalos de

- Temos uma AAS
- Temos uma estimativa de s
- A população tem distribuição normal ou n > 30 ← este requisito não é mandatório, pois a distribuição t irá se "ajustar" para acomodar a incerteza de amostras pequenas
- 2 Determine o nível de confiança γ , e identifique α
- **3** Com o valor de α definido, e o valor dos **graus de liberdade** gl = n 1, encontre o valor crítico de $t_{\alpha/2;n-1}$
- Calcule a margem de erro $e = t_{\alpha/2} \cdot (s/\sqrt{n})$
- Oloque em um dos formatos gerais para intervalo de confiança

$$ar{x} - e < \mu < ar{x} + e$$

 $ar{x} \pm e$
 $[ar{x} - e; ar{x} + e]$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido
Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Exemplo: Em um teste da eficácia do alho na dieta para a redução do colesterol, 49 pessoas foram avaliadas e seus níveis de colesterol foram medidos antes e depois do tratamento. As **mudanças** nos níveis de colesterol apresentaram média de 0,4 e desvio-padrão de 21.

- a) Verifique as suposições necessárias para o cálculo do intervalo de confiança
- b) Para um nível de confiança de 95%, encontre o valor crítico $t_{\alpha/2;n-1}$
- c) Calcule o erro máximo provável
- d) Construa o intervalo de confiança
- e) Escreva a interpretação do resultado
- f) O que o intervalo de confiança sugere sobre a eficácia do uso do alho na dieta para a redução do colesterol?

Resolva o mesmo exemplo supondo que o $\sigma = s$ é conhecido (ou seja, usando a distribuição Z). Compare os dois métodos.

Estimação intervalar

Introdução Intervalos de

confiança para a média: σ conhecido Determinação do tamanho

amostral
Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Respostas do exercício anterior:

Usando a distribuição t

```
$`valor critico`
[1] 2.0086

$`margem de erro`
[1] 5.9063

$`intervalo de confiança`
[1] -5.5063 6.3063
```

• Usando a distribuição z

```
$`valor critico`
[1] 1.96

$`margem de erro`
[1] 5.8799

$`intervalo de confiança`
[1] -5.4799 6.2799
```


Diferenças entre z e t

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido
Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Para o mesmo exemplo anterior, assuma que foram avaliadas apenas 8 pessoas. Calcule intervalos de confiança para a média, $\bar{x}=0,4$ usando

- a distribuição t (ou seja, assumindo σ desconhecido, portanto s=21)
- a distribuição Z (ou seja, assumindo σ conhecido, portanto $\sigma=21$)

Qual a sua conclusão referente à diferença observada entre os dois intervalos de confiança? Por que ocorre essa diferença?

Estimação intervalar

Introdução

Intervalos de

confiança para a média: σ conhecido Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Respostas do exercício anterior:

Usando a distribuição t

```
$`valor critico`
[1] 2.3646

$`margem de erro`
[1] 17.556

$`intervalo de confiança`
[1] -17.156 17.956
```

• Usando a distribuição z

```
$`valor critico`
[1] 1.96

$`margem de erro`
[1] 14.552

$`intervalo de confiança`
[1] -14.152 14.952
```


Escolha entre z e t

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação

do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Condições	
σ conhecido e população normalmente distribuída	
ou	
σ conhecido e $n > 30$	
σ desconhecido e população normalmente distribuída	
ou	
σ desconhecido e $n > 30$	

Escolha entre z e t

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Nos exemplos abaixo, indique se é mais apropriado usar o valor crítico de $z_{\alpha/2}$ (da distribuição normal), de $t_{\alpha/2}$ (da distribuição t), ou nenhum deles

- a) n = 9, $\bar{x} = 75$, s = 15, população com distribuição normal
- b) $n=5, \bar{x}=20, s=2$, população com distribuição muito assimétrica
- c) $n=12, \bar{x}=98, 6, \sigma=0,6$, população com distribuição normal
- d) $n=75, \bar{x}=98,6, \, \sigma=0,6,$ população com distribuição assimétrica
- e) n = 75, $\bar{x} = 98, 6$, s = 0, 6, população com distribuição assimétrica

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Introdução

- 2 Intervalos de confiança para a média: σ conhecido
 - Determinação do tamanho amostral
- \odot Intervalos de confiança para a média: σ desconhecido
 - Determinação do tamanho amostral
- 4 Intervalo de confiança para a proporção p
 - Determinação do tamanho amostral
- 6 Referências

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação

amostral
Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Se σ for desconhecido?

- ullet Estime o valor de σ com base em algum estudo feito anteriormente
- ② Faça uma amostra piloto e estime o desvio-padrão amostra s, e use-o como uma aproximação para o desvio-padrão populacional σ
- Use a regra empírica da amplitude para dados com distribuição (aproximadamente) normal

Estimação intervalar

Regra empírica para uma distribuição (aproximadamente) normal

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Regra empírica para uma distribuição (aproximadamente) normal

Define-se **valores usuais** aqueles que são típicos e não muito extremos.

Como sabemos que em uma distribuição (aproximadamente) normal, 95% dos dados encontram-se a 2 desvios-padrões acima e abaixo da média, temos que

$$4\sigma = (\max - \min)$$
$$\sigma = \frac{(\max - \min)}{4}$$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Exemplo: Um professor deseja estimar o salário médio de professores do ensino médio de uma cidade. Quantos professores devem ser selecionados para termos 90% de confiança que a média amostral esteja a menos de R\$30,00 da média populacional? Sabe-se apenas que os salários variam entre R\$800,00 e R\$1.200,00.

Use

$$n = \left[\frac{z_{\alpha/2} \cdot \sigma}{e}\right]^2$$

Estimativa de sigma pela regra empírica

[1] 100

Tamanho da amostra

[1] 31

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Introdução

2 Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

 \odot Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

4 Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação

do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho

Referências

Em muitas situações, estamos interessados em estudar uma **proporção**, ao invés da média

Por exemplo:

- a proporção de eleitores de um determinado candidato
- a proporção de peças defeituosas em um processo industrial
- a proporção de alunos reprovados na disciplina de estatística

Nestes casos, a **distribuição binomial** deve ser utilizada no processo de inferência.

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

confiança para a proporção p Determinação do tamanho

Referências

A proporção amostral

$$\hat{p} = \frac{x}{n} = \frac{\text{número de sucessos}}{\text{total de tentativas}}$$

é a "melhor estimativa" para a proporção populacional p

Exemplo: em 5 lançamentos de uma moeda considere que o evento "cara" (Ca) seja o sucesso ("sucesso" = 1; "fracasso" = 0). Um possível resultado seria o conjunto $\{Ca, Ca, Co, Co, Ca\}$. A proporção amostral seria

$$\hat{p} = \frac{\text{número de sucessos}}{\text{total de tentativas}} = \frac{3}{5} = 0.6$$

Distribuição amostral de uma proporção

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

do tamanho amostral Referências Através do estudo da distribuição amostral da proporção, chegamos aos seguintes resultados

•
$$\mathsf{E}(\hat{p}) = \mu_{\hat{p}} = p$$

•
$$Var(\hat{p}) = \sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$$

Ou seja,

$$p \sim N\left(p, \frac{p(1-p)}{n}\right)$$

Ainda podemos mostrar que a quantidade

$$Z = rac{\hat{p} - p}{\sqrt{rac{p(1-p)}{n}}} \sim \mathsf{N}(0,1)$$

Quando não conhecemos p, usamos $\hat{p} = x/n$ como estimativa

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Com estas definições, podemos construir um intervalo de confiança para uma estimativa da proporção amostral *p* através de

$$\hat{p} - e$$

com

$$e = z_{\alpha/2} \cdot \sqrt{\frac{p(1-p)}{n}}$$

Outras notações

$$\hat{p} \pm e$$
 $[\hat{p} - e; \hat{p} + e]$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação

do tamanho amostral Intervalos de confiança para a média: σ

desconhecido

Determinação
do tamanho
amostral

Intervalo de confiança para a proporção p

Determinação do tamanho

Referências

Procedimentos gerais para a construção de intervalos de confiança para a proporção p

- Verifique se as suposições necessárias estão satisfeitas
 - Temos uma AAS
 - As condições para a distribuição binomial são satisfeitas
 - as tentativas são independentes
 - há duas categorias de resultado ("sucesso", "fracasso")
 - ullet a probabilidade de sucesso p permanece constante
 - A distribuição normal pode ser usada como aproximação para a distribuição binomial, ou seja, $np \ge 5$ e $n(1-p) \ge 5$
- 2 Determine o nível de confiança γ , e identifique α
- ullet Com o valor de lpha definido, encontre o valor crítico de $z_{lpha/2}$
- Calcule a margem de erro $e = z_{\alpha/2} \cdot \sqrt{\frac{p(1-p)}{n}}$
- Oloque em um dos formatos gerais para intervalo de confiança

$$\hat{
ho}-e<\pi<\hat{
ho}+e \ \hat{
ho}\pm e \ [\hat{
ho}-e;\hat{
ho}+e]$$

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Exemplo: em uma pesquisa realizada por um instituto de pesquisa Norte-Americano, 1500 adultos foram selecionados aleatoriamente para responder à pergunta se acreditam ou não no aquecimento global. 1050 entrevistados respoderam que sim. Com isso:

- a) Verifique as suposições para o cálculo do intervalo de confiança
- b) Para um nível de confiança de 95%, encontre o valor crítico de $z_{lpha/2}$
- c) Calcule o erro máximo provável
- d) Construa o intervalo de confiança para p
- e) Escreva a interpretação do resultado
- f) Com base nesse resultado, podemos concluir que a maioria dos adultos acredita no aquecimento global?

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação

do tamanho amostral

Resposta do exercício anterior:

\$`valor critico`
[1] 1.96

\$`margem de erro`
[1] 0.023191

\$`intervalo de confiança`
[1] 0.67681 0.72319

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Introdução

2 Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

4 Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

A partir da equação do erro máximo provável

$$e = z_{\alpha/2} \cdot \sqrt{\frac{p(1-p)}{n}}$$

podemos isolar n e chegar na seguinte equação para a determinação do tamanho amostral para uma proporção populacional

$$n = \left(\frac{z_{\alpha/2}}{e}\right)^2 \cdot p(1-p)$$

Estimação intervalar

Introdução Intervalos de

confiança para a média: σ conhecido Determinação do tamanho

amostral
Intervalos de
confiança para
a média: σ

desconhecido

Determinação
do tamanho
amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Quando conhecemos a verdadeira proporção populacional p, podemos usá-la para calcular o n a partir da expressão acima.

Quando **não conhecemos** a proporção poppulacional p, usamos como estimativa p=0,5 porque

р	(1 - p)	p(1 - p)
0,1	0,9	0,09
0,3	0,7	0,21
0,5	0,5	0,25
0,6	0,4	0,24
0,8	0,2	0,16

Quando p = 0,5 teremos o maior tamanho de amostra possível.

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Exemplo: um fabricante de peças deseja estimar a verdadeira proporção de peças defeituosas no processo de fabricação, com um erro máximo de 3% e nível de confiança de 99%. Calcule o tamanho da amostra necessário para se estimar esta proporção se:

- a) O fabricante acredita que aproximadamente 10% de seus produtos são defeituosos.
- b) O fabricante não tem nenhuma informação prévia sobre a proporção de peças defeituosas.

a)

[1] 664

b)

[1] 1844

Plano de aula

Estimação intervalar

Introdução

Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

Referências

Introdução

igspace Intervalos de confiança para a média: σ conhecido

Determinação do tamanho amostral

 \odot Intervalos de confiança para a média: σ desconhecido

Determinação do tamanho amostral

4 Intervalo de confiança para a proporção p

Determinação do tamanho amostral

Referências

Estimação intervalar

Introdução Intervalos de

confiança para a média: σ conhecido Determinação

do tamanho amostral

confiança para a média: σ desconhecido

Determinação do tamanho amostral

Intervalo de confiança para a proporção p
Determinação do tamanho amostral

- Bussab, WO; Morettin, PA. Estatística básica. São Paulo: Saraiva, 2006. [Cap. 11]
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008. [Cap. 7]
- Montgomery, DC; Runger, GC. Estatística aplicada e probabilidade para engenheiros. Rio de Janeiro: LTC Editora, 2012. [Cap. 8]