Blockchain-based Open Data: An Approach for Resolving Data Integrity and Transparency

Dinh-Duc Truong

Ho Chi Minh University of Technology - HCMUT

November 21, 2019

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- 6 Testing
- Conclusion

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- Testing
- Conclusion

Motivation

- Building a smart city or electronic government trend.
- The security aspects of *open data* CIA triangle.

Centralize system disadvantage

=> Invallo data sets led people to make bad decisions.

Motivation

- Building a smart city or electronic government trend.
- The security aspects of *open data* CIA triangle.

Centralize system disadvantage

Motivation

- Building a smart city or electronic government trend.
- The security aspects of *open data* CIA triangle.

Centralize system disadvantage
 Invalid data sets led people to make bad decisions.

Motivation

- Building a smart city or electronic government trend.
- The security aspects of *open data* CIA triangle.

- Centralize system disadvantage
 - => Invalid data sets led people to make bad decisions.

Motivation

- Building a smart city or electronic government trend.
- The security aspects of open data CIA triangle.

- Centralize system disadvantage
 Invalid data sets led people to make bad decisions.

Motivation

Here are a few famous attacks since 2008¹:

- 2008 Hackers infiltrate the Brazilian governments systems and inflate the logging quotas to disrupt logging industry.
- 2010 Hackers use the Stuxnet Worm to make minor changes in Iran's nuclear power program in an attempt to destroy it.
- 2015 Anonymous begin releasing financial reports exposing firms in the US and China trying to cheat the stock market.
- 2015 JP Morgan Chase was breached with subsequent attempts at market manipulation.
- 2016 Both the World Anti-Doping Agency and Democratic National Committee are breached with hackers manipulating their data to embarrass the organisations.

¹https://www.itsecurityguru.org/2016/11/29/2017-year-data-integrity-breach/

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- 6 Testing
- Conclusion

Definition

Open data

"Open data is data that can be freely used, re-used and redistributed by anyone - subject only, at most, to the requirement to attribute and share alike".

Definition

Open data

"Open data is data that can be freely used, re-used and redistributed by anyone - subject only, at most, to the requirement to attribute and share alike".

Properties

+ Technically open:

- Accessing to data sets: unrestricted, easy.
- Data formats: computer-readable.
- + Legally open:
 - No restrictions on use and/or redistributions.

- + Technically open:
 - Accessing to data sets: unrestricted, easy.
 - Data formats: computer-readable.
- Legally open.

Properties

- + Technically open:
 - Accessing to data sets: unrestricted, easy.
 - Data formats: computer-readable.

+ Legally open:

- + Technically open:
 - Accessing to data sets: unrestricted, easy.
 - Data formats: computer-readable.
- + Legally open:
 - No restrictions on use and/or redistribution.

- + Technically open:
 - Accessing to data sets: unrestricted, easy.
 - Data formats: computer-readable.
- + Legally open:
 - No restrictions on use and/or redistribution.

- + Technically open:
 - Accessing to data sets: unrestricted, easy.
 - Data formats: computer-readable.
- + Legally open:
 - No restrictions on use and/or redistribution.

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

- Monitoring the government operation.
- Accessing to larger data resources.

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

- Monitoring the governments operation.
- Accessing to larger data
 resources

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

- Monitoring the government operation.
- Accessing to larger data resources.

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

- Monitoring the government operation.
- Accessing to larger data resources.

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

- Monitoring the government operation.
- Accessing to larger data resources.

Benefits

+The government:

- Improving transparency and publicity.
- Reducing the government operation cost.

- Monitoring the government operation.
- Accessing to larger data resources.

Security issues

• In terms of the law:

- no legal violation;
- no disclosure of economic secrets;
- no leak of personal information;
- no publication of information on infrastructure.
- In terms of the technical:
 - ensuring the availability and integrity of data.

- In terms of the law:
 - no legal violation;
 - no disclosure of economic secrets;
 - no leak of personal information
 - no publication of information on infrastructure.
- In terms of the technical:
 - ensuring the availability and integrity of data.

- In terms of the law:
 - no legal violation;
 - no disclosure of economic secrets;
 - no leak of personal information;
 - no publication of information on infrastructure.
- In terms of the technical:

- In terms of the law:
 - no legal violation;
 - no disclosure of economic secrets;
 - no leak of personal information;
 - no publication of information on infrastructure.
- In terms of the technical:

Security issues

- In terms of the law:
 - no legal violation;
 - no disclosure of economic secrets;
 - no leak of personal information;
 - no publication of information on infrastructure.

401491451451 5 000

- In terms of the law:
 - no legal violation;
 - no disclosure of economic secrets;
 - no leak of personal information;
 - no publication of information on infrastructure.
- In terms of the technical:
 - ensuring the availability and integrity of data.

- In terms of the law:
 - no legal violation;
 - no disclosure of economic secrets;
 - no leak of personal information;
 - no publication of information on infrastructure.
- In terms of the technical:
 - ensuring the availability and integrity of data.

Definition

Blockchain

A **blockchain** is a growing list of records, called blocks, that are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Definition

Blockchain

A **blockchain** is a growing list of records, called blocks, that are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Definition

Blockchain

A **blockchain** is a growing list of records, called blocks, that are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Types of blockchain:

Definition

Blockchain

A **blockchain** is a growing list of records, called blocks, that are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Types of blockchain:

Public blockchain.

Blockchain

Definition

Blockchain

A **blockchain** is a growing list of records, called blocks, that are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Types of blockchain:

- Public blockchain.
- Private blockchain.

Blockchain

Definition

Blockchain

A **blockchain** is a growing list of records, called blocks, that are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data.

Types of blockchain:

- Public blockchain.
- Private blockchain.
- Consortium blockchain.

Definition

- Private blockchain.
- Flexible consensus protocol.

Definition

- Private blockchain.
- Flexible consensus protocol.

Definition

- Private blockchain.
- Flexible consensus protocol.

Definition

- Private blockchain.
- Flexible consensus protocol.

InterPlanetary File System

Definition

IPFS

InterPlanetary File System, IPFS for short, is a peer-to-peer distributed file system for storing and sharing hypermedia files over a network.

InterPlanetary File System

Definition

IPFS

InterPlanetary File System, IPFS for short, is a peer-to-peer distributed file system for storing and sharing hypermedia files over a network.

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- Testing
- Conclusion

Non blockchain-based

1. US open data portal

- since 2009;
- provides a number of 229,371 data sets in various formats and related to many fields.
- 2. Ho Chi Minh open data portal
 - since 2017;
 - still thin in the content due to lacking data sets.

Non blockchain-based

1. US open data portal

- since 2009;
- provides a number of 229,371 data sets in various formats and related to many fields.
- 2. Ho Chi Minh open data portal
 - since 2017
 - still thin in the content due to lacking data sets.

- 1. US open data portal
 - since 2009;
 - provides a number of 229,371 data sets in various formats and related to many fields.
- 2. Ho Chi Minh open data portal

- 1. US open data portal
 - since 2009;
 - provides a number of 229,371 data sets in various formats and related to many fields.
- 2. Ho Chi Minh open data portal
 - since 2017;
 - still thin in the content due to lacking data sets.

- 1. US open data portal
 - since 2009;
 - provides a number of 229,371 data sets in various formats and related to many fields.
- 2. Ho Chi Minh open data portal
 - since 2017;
 - still thin in the content due to lacking data sets.

- 1. US open data portal
 - since 2009;
 - provides a number of 229,371 data sets in various formats and related to many fields.
- 2. Ho Chi Minh open data portal
 - since 2017;
 - still thin in the content due to lacking data sets.

Blockchain-based

3. Vienna open data portal

- called "Data Notarization Blockchain" in 2018;
- uses public blockchain.

Blockchain-based

- 3. Vienna open data portal
 - called "Data Notarization Blockchain" in 2018;
 - uses public blockchain.

Blockchain-based

- 3. Vienna open data portal
 - called "Data Notarization Blockchain" in 2018;
 - uses public blockchain.

Blockchain-based

- 3. Vienna open data portal
 - called "Data Notarization Blockchain" in 2018;
 - uses public blockchain.

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- 6 Testing
- Conclusion

Architecture

Our system includes:

Architecture

Our system includes: a Portal,

Architecture

Our system includes: a Portal, a distributed file storage system IPFS

Architecture

Our system includes: a **Portal**, a distributed file storage system **IPFS** and a private blockchain network **Hyperledger Fabric**.

Architecture

Our system includes: a **Portal**, a distributed file storage system **IPFS** and a private blockchain network **Hyperledger Fabric**.

Explaining

- We want to decentralize our system as much as we can.
- Hyperledger Fabric: authenticates data contributor, traces data log, checks data integrity, enhances the system transparency.
- IPFS: ensures the data integrity and availability.

Explaining

- We want to decentralize our system as much as we can.
- Hyperledger Fabric: authenticates data contributor, traces data log, checks data integrity, enhances the system transparency.
- IPFS: ensures the data integrity and availability.

Explaining

- We want to decentralize our system as much as we can.
- Hyperledger Fabric: authenticates data contributor, traces data log, checks data integrity, enhances the system transparency.
- IPFS: ensures the data integrity and availability.

Explaining

- We want to decentralize our system as much as we can.
- Hyperledger Fabric: authenticates data contributor, traces data log, checks data integrity, enhances the system transparency.
- IPFS: ensures the data integrity and availability.

System features

Our system has two main features:

- Publishing the data sets.
- Downloading-Verifying the data sets.

System features

Publishing the data sets

System features

Downloading-verifying the data sets

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- Testing
- Conclusion

Implementation

Our implementation included:

- Hyperledger Fabric network
- The open data portal

Hyperledger Fabric network

Hyperledger Composer

Hyperledger Composer is an extensive, open development toolset and framework to make developing blockchain applications easier.

Hyperledger Fabric network

Hyperledger Composer

Hyperledger Composer is an extensive, open development toolset and framework to make developing blockchain applications easier.

Chaincode

We use Hyperledger Composer to define our customize chaincode.

- 1. Participants, Assets
 - The data contributors represented as **DataPublisher** object.

```
participant DataPublisher identified by DataPublisherID
   o String DataPublisherID
   o info PublisherInfo
}
```

The metadata of the data sets represented as Data object.

```
asset Data identified by DataID {
    o String DataID
    o metaData meta
    o String checksum
    o String cid
    --> DataPublisher publisher
}
```

Chaincode

We use Hyperledger Composer to define our customize chaincode.

- 1. Participants, Assets
 - The data contributors represented as DataPublisher object.

```
o String DataPublisherID
o info PublisherInfo
}
The metadata of the data sets represented as Data object.

asset Data identified by DataID {
o String DataID
o metaData meta
o String checksum
o String cid
```

Chaincode

We use Hyperledger Composer to define our customize chaincode.

- 1. Participants, Assets
 - The data contributors represented as **DataPublisher** object.

```
participant DataPublisher identified by DataPublisherID {
   o String DataPublisherID
   o info PublisherInfo
}
```

• The metadata of the data sets represented as **Data** object.

```
asset Data identified by DataID
o String DataID
o metaData meta
o String checksum
o String cid
--> DataPublisher publisher
}
```

Chaincode

We use Hyperledger Composer to define our customize chaincode.

- 1. Participants, Assets
 - The data contributors represented as **DataPublisher** object.

```
participant DataPublisher identified by DataPublisherID {
   o String DataPublisherID
   o info PublisherInfo
}
```

The metadata of the data sets represented as Data object.

```
asset Data identified by DataID
o String DataID
o metaData meta
o String checksum
o String cid
--> DataPublisher publisher
```

Chaincode

We use Hyperledger Composer to define our customize chaincode.

- 1. Participants, Assets
 - The data contributors represented as DataPublisher object.

```
participant DataPublisher identified by DataPublisherID {
  o String DataPublisherID
  o info PublisherInfo
}
```

The metadata of the data sets represented as Data object.

```
asset Data identified by DataID {
    o String DataID
    o metaData meta
    o String checksum
    o String cid
    --> DataPublisher publisher
}
```

Chaincode

2. Transactions

Publish the data sets process: AddAsset(), PublishData()

```
transaction PublishData {
   --> DataPublisher publisher
   --> Data data
}
```

```
transaction ModifyData {
    --> Data data
    --> DataPublisher modified
    o metaData modifiedMeta
    o String newCid
}
transaction VerifyData {
    --> Data data
    o String checksum
}
```

Chaincode

2. Transactions

Publish the data sets process: AddAsset(), PublishData()

Chaincode

2. Transactions

Publish the data sets process: AddAsset(), PublishData()

```
transaction PublishData {
  --> DataPublisher publisher
  --> Data data
}
```

```
transaction ModifyData {
    --> Data data
    --> DataPublisher modifier
    o metaData modifiedMeta
    o String newCid
}
transaction VerifyData {
    --> Data data
    o String checksum
}
```

Chaincode

2. Transactions

• Publish the data sets process: AddAsset(), PublishData()

```
transaction PublishData {
   --> DataPublisher publisher
   --> Data data
}
```

```
transaction ModifyData {
    --> Data data
    --> DataPublisher modifier
    o metaData modifiedMeta
    o String newCid
}
transaction VerifyData {
    --> Data data
    o String checksum
}
```

Chaincode

2. Transactions

• Publish the data sets process: AddAsset(), PublishData()

```
transaction PublishData {
   --> DataPublisher publisher
   --> Data data
}
```

```
transaction ModifyData {
   --> Data data
   --> DataPublisher modifier
   o metaData modifiedMeta
   o String newCid
}
transaction VerifyData {
   --> Data data
   o String checksum
}
```

Chaincode

- The data contributor permission.
- The citizens permission.

```
rule PublishTransaction{
  description: "Only publisher have all permission on his/
    her data"
  participant(p): "org.com.opendata.DataPublisher"
  operation: ALL
  resource(r): "org.com.opendata.PublishData"
  condition: (p.getIdentifier()===r.publisher.
    getIdentifier()&&r.publisher.getIdentifier()===r.
    data.publisher.getIdentifier())
action: ALLOW
```

Chaincode

- The data contributor permission.
- The citizens permission.

```
description: "Only publisher have all permission on his
   her data"

participant(p): "org.com.opendata.DataPublisher"
  operation: ALL
resource(r): "org.com.opendata.PublishData"
  condition: (p.getIdentifier()===r.publisher.
        getIdentifier()&&r.publisher.getIdentifier()===r.
        data.publisher.getIdentifier())
action: ALLOW
```

Chaincode

- The data contributor permission.
- The citizens permission.

```
rule PublishTransaction{
  description: "Only publisher have all permission on his
    her data"
  participant(p): "org.com.opendata.DataPublisher"
  operation: ALL
  resource(r): "org.com.opendata.PublishData"
  condition: (p.getIdentifier()===r.publisher.
    getIdentifier()&&r.publisher.getIdentifier()===r.
    data.publisher.getIdentifier())
action: ALLOW
```

Chaincode

- The data contributor permission.
- The citizens permission.

```
rule PublishTransaction{
  description: "Only publisher have all permission on his/
    her data"
  participant(p): "org.com.opendata.DataPublisher"
  operation: ALL
  resource(r): "org.com.opendata.PublishData"
  condition: (p.getIdentifier()===r.publisher.
    getIdentifier()&&r.publisher.getIdentifier()===r.
    data.publisher.getIdentifier())
  action: ALLOW
}
```

Endorsement Policy

4. Endorsement Policy

Server-side implementation:

- Written by NodeJS.
- Using Hyperledger Composer to interact with Hyperledger Fabric blockchain network.
- Connecting to IPFS network.

Client-side implementation

Written by VueJS.

Server-side implementation:

- Written by NodeJS.
- Using Hyperledger Composer to interact with Hyperledger Fabric blockchain network.
- Connecting to IPFS network.

Client-side implementation

Written by VueJS.

Server-side implementation:

- Written by NodeJS.
- Using Hyperledger Composer to interact with Hyperledger Fabric blockchain network.
- Connecting to IPFS network.

Client-side implementation

Server-side implementation:

- Written by NodeJS.
- Using Hyperledger Composer to interact with Hyperledger Fabric blockchain network.
- Connecting to IPFS network.

Client-side implementation:

Server-side implementation:

- Written by NodeJS.
- Using Hyperledger Composer to interact with Hyperledger Fabric blockchain network.
- Connecting to IPFS network.

Client-side implementation:

Written by VueJS.

Server-side implementation:

- Written by NodeJS.
- Using Hyperledger Composer to interact with Hyperledger Fabric blockchain network.
- Connecting to IPFS network.

Client-side implementation:

Written by VueJS.

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- **6** Testing
- Conclusion

Testing

Hyperledger Caliper² is a blockchain performance benchmark framework.

²https://github.com/hyperledger.caliper

Testing

Hyperledger Caliper² is a blockchain performance benchmark framework.

Table: Evaluated result of blockchain network performance Number of transactions: 100, transactions rate: 100 tps

Transaction type	Send rate (tps)	Latency (s)			Throughput
		Min	Max	Avg	(tps)
PublishData	96.4	6.45	16.08	11.73	6.1
${\sf ModifyData}$	101.0	6.60	15.67	11.27	6.3
${\sf DownloadData}$	100.6	6.66	16.09	11.06	6.1

²https://github.com/hyperledger.caliper

Contents

- Introduction
- 2 Background
- Related works
- Proposed Architecture
- Implementation
- Testing
- Conclusion

- + The combination of the Hyperledger Fabric and the IPFS technology enhances the transparency, availability and integrity of the open data.
 - + The limitation

+ Future works

- + The combination of the Hyperledger Fabric and the IPFS technology enhances the transparency, availability and integrity of the open data.
- + The limitation:
 - storing the private key of the publisher.
- + Future works:

- + The combination of the Hyperledger Fabric and the IPFS technology enhances the transparency, availability and integrity of the open data.
- + The limitation:
 - storing the private key of the publisher.
- + Future works:

- + The combination of the Hyperledger Fabric and the IPFS technology enhances the transparency, availability and integrity of the open data.
- + The limitation:
 - storing the private key of the publisher.
- + Future works:
 - integrating hardware security modules;
 - evaluatating the performance of the IPFS network.

- + The combination of the Hyperledger Fabric and the IPFS technology enhances the transparency, availability and integrity of the open data.
- + The limitation:
 - storing the private key of the publisher.
- + Future works:
 - integrating hardware security modules;
 - evaluatating the performance of the IPFS network.

- + The combination of the Hyperledger Fabric and the IPFS technology enhances the transparency, availability and integrity of the open data.
- + The limitation:
 - storing the private key of the publisher.
- + Future works:
 - integrating hardware security modules;
 - evaluatating the performance of the IPFS network.

