Fundamento Teórico

Interconexión con Buses

Los buses son canales de comunicación esenciales en la arquitectura de computadoras, ya que estos permiten la transferencia de datos, direcciones y señales de control entre los diferentes componentes. Según Phan y Nguyen (2023), un bus conecta todos los nodos del sistema a través de un protocolo que gestiona las solicitudes y concesiones de información, siendo esta una de las formas de interconexión más sencillos y ampliamente utilizados, tanto en sistemas de un solo núcleo como en los multinúcleos [1].

Por otra parte, Rogowski, los describe como una "autopista electrónica" que ofrece una vía compartida para la transmisión de datos, lo que los hace esenciales para el diseño lógico y la organización física de los sistemas computacionales [2].

Elementos del diseño del bus

El diseño de buses en sistemas modernos se caracteriza por elementos clave que definen su rendimiento y eficiencia. El ancho del bus determina la cantidad de datos que se pueden transferir de manera simultánea, aumentando el ancho de banda a costa de más líneas físicas en el chip. La velocidad del bus, medida en MHz o GHz, define cuántas transferencias pueden realizarse por segundo. Los protocolos de comunicación como AMBA AXI, establecen reglas para la gestión de acceso compartido, sincronización y modos de transferencia [3].

Según Trevor (2024), estos principios se aplican especialmente en SoCs modernos, donde estos elementos se adaptan a arquitecturas multicore y reconfigurables, donde buses avanzados y redes-on-chip (NoC) permiten conectar CPUs, aceleradores y memorias de forma escalable y eficiente [3].

Tipos de buses

Bus de datos

El bus de datos es un canal de comunicación que transfiere información entre la CPU, la memoria y los periféricos, manejando comúnmente 32 o 64 bits por ciclo, lo cual determina su ancho de banda. En los inicios de la PC, existían buses de datos en paralelo que conectaban directamente la memoria y los dispositivos, lo que obligaba a todos a operar a la misma velocidad y limitaba el rendimiento. Para dar solución a ese problema, se añadió un controlador que separa la CPU y la memoria de los periféricos, lo que mejoró la velocidad y comunicación

entre los componentes. Hoy en día existen dos tipos principales de buses de datos: seriales y paralelos, como ejemplo de los seriales tenemos el USB, y ATA y SCSI para los paralelos [4].

Bus de direcciones

Wang (2021), describe el bus de direcciones como un canal unidireccional que la CPU y otros dispositivos utilizan para indicar una ubicación específica en la memoria o en algún dispositivo. El ancho del bus de direcciones determina la cantidad máxima que se puede direccionar, por ejemplo, un bus de 32 bits puede direccionar hasta 4 Gb de memoria. Algunos sistemas optimizan esto enviando la dirección en dos partes a través de la mitad de las líneas [4].

Bus de control

El bus de control es un conjunto de señales que viajan en ambas direcciones, las cuales la CPU utiliza para enviar comandos y recibir respuestas de otros componentes. También maneja interrupciones y se encarga de coordinar y sincronizar todas las operaciones entre la CPU, la memoria y los periféricos, asegurando que la información se transfiera en el momento y la forma correctos [4].

Rol de los buses en la transferencia de datos entre componentes

Los buses actúan como canales dedicados que interconectan los componentes de un sistema computacional, coordinando y optimizando el flujo de datos, con el objetivo de garantizar una comunicación eficiente. En arquitecturas especializadas como aceleradores DNN, estos soportan patrones críticos: uno a muchos para distribución de pesos, y de muchos a uno para recolección de resultados. Su diseño determina el rendimiento global, equilibrando ancho de banda, sincronización y escalabilidad, sobre todo en sistemas paralelos donde la transferencia de datos es esencial para el procesamiento acelerado [5].

Procedimientos

PROCEDIMIENTOS		ios de cache	Car color de poranée
Estudio de Memoria;	A FEE SE SHISE		Construction is a second
TO STAND OF COLOR	21 3 3 10	1-	substitution of
· Realizar ejercicios prácticos s diferentes piveles de memoria,	para calcular	crempos de a	cceso y capación en
		3/04/2 2 27	
Tiempo de acceso			
Tiempo de acceso efectivo (El	AT) con una	caché L1	99 84.9 40 go 72 V
Una caché LL tiene tiempo de	acterto thi	t = 1 ns y tos	ia de acrestas
Una caché LI tiene tiempo de hit iate = 35%. La memoria penalidad por fallo es igual al	transpal tard	a tmem = 50	ns. Supor que la
		1. c//O1/g V 1//	
miss_rate = 1-0,95 = 0	0,05		
EAT = hit-rate x t	hit + miss_	rate x tmiss	
EAT = 0,95 × 1ns	+ 0,05 × 5	0 hs	3/10/10/10/10/10/10
	子 ヤ とと ー しく ー		27/6/2 5/4/1/2
EAT = 0,95 ms + 2,5	ns		
EAT = 3,45 ns			phones to be seen as
R.11 El tiempo de acceso ef	ectivo (EAT) es de 3,4	5 ons prod polo qui
(7 5 V)		200	
AMAT en jerarquis de dos n'	iveles		09.8
Dorante una proeba de rendin	niento, un pr	ocesador utiliz	ra una jerorquiá de
memoria compresta por lache l	L con unti	empo de acce	so de Lns, tasave
accentos del 91%, una Caché l tasa de accerto del 97%, y	una memoria	principal de	acceso de 70 ns.
Determonar el Average Memo			
	1827 95 65		
AMAT = hete + (1 - he) (hete +			98
AMAT = 0,91 × 1 + (1-0,91)(0,97x8+(1-	0,97)70)	<u> </u>
AMAT = 0,91+(0,09)(7	76+(0,0	3)70)	
AMAT = 0,91 + (0,03)(7,			804 209644
AMAT = 0,91 + (0,09)(9,	86)		ESTERO, A M.
AMAT = 0,91+0,8874	1610 400		
AMAT = 1,7974 ns			3-1-1-1
	Ans		. ESTILO
R. 11 El AMAT es de 1,797	1 b 3	*	

Nomero de líneas de la cada! Nomero de lits de offset Nomero de lits de offset Nomero de lits de riqueta	Ca'Icolos de par	ametros	de c	ache	,'			T					20	Th	43	Ţ	MI	0	3	280
Acolor: Nomero de lineas de la caché Nomero de lits de offset Nomero de bits de efiset Nomero de bits de efigueta	Se esta configurar	ndo ona	men	0110	co	che	de	64 t	B	cor	61	09	UP	2	9	9	12	8	67	te
Nomero de líneas de la cada! Nomero de lits de offset Nomero de lits de offset Nomero de lits de riqueta	en una argortecia	140 208)	onicect	ones	06	72	02	5.	t 7	noj	, ,	£*	5 (211		0,		1-1		R
Número de hits de indirec Número de bits de indirec Número de l'ineas 655366 = 512 l'ineas 655366 = 512 l'ineas 128 k Bits de indirec laga (512) = 9 bits 22 - (9+7) = 32 - 16 = 16 bits. apacidad de merroria (apacidad de merroria (apacidad de merroria (apacidad de merroria (ineas) Niveles con tamaño: Li = 16 kb , La 64 kb , La = 128 kb , memoria puncipal = 868 , suma (b capacidad tetal y expréso (c. en. Mib. y ed. 1 Mib = 1024 kb Li = 16 kb = 16	Calcular:			1							1		-		-34	110				9
Número de bits de indice Número de bits de diqueta. Número de l'ineas Bits de offset 655366 = 512 l'ineas Log2(128) = 761ts 178 k Bits de indice Bits de etiqueta 32-(9+7) = 32-16 = 16 bits. apacidad de memoria apacidad total somando niveles Niveles con tamaño: Li = 16 kb, 12 64 kb, 13 = 128 kb, memoria puncipal = 8 68. Soma la capacidad total y exprésa lo. en. MiB. y edi GiB (usando potencias de 2; l kiB = 1024 bytes). I MiB = 1024 kB Li = 16 kB = 16	· Nomero de line	as de of	o cach	14													0.71	1		017
84.kb x 1024 = 65536 bytes Número de Vineas 655368 = 512 lineas Log_2(128) = 76145 128 k Bits de Indice Bits de etiqueta lag_2(512) = 9 bits 32-(9+7) = 32-16 = 16 bits. Sapacidad de memoria Sapacidad de memoria	· Numero de bits	de india	e																	1313
Numero de líneas 63ts de offset 655368 = 512 líneas Log_(128) = 761ts 128 k Bits de sindice Bits 32-(9+7) = 32-16 = 16 bits. apacidad de memoria sapacidad de memoria sapa	· Número de bits	de eti	queta.	da w	0	10 n	60	(TA	13)	-0	r Ha	7		2	رد	.	96	-9	414	19.1
655365 = 512 1/n cas log_2(128) = 761ts 128 k Bits de indice Bits de etiqueta log_2(512) = 9 bits 32-(9+7) = 32-16 = 16 bits. apacidad de memoria apacidad de memoria apacidad total somando niveles Niveles con tamaño: Li= 16 kb, 12 64 kb, 13 = 128 kb, memoria a capacidad tetalry exprésale, en MiB, y and GiB (Usando potencias de 2; 1 kiB = 1024 bytes). 1 MiB = 1024 kB Li= 16 kB = 16 1024 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192 203125 = 8,000138364 GiB 1024	64 K6 × 1024 =	65 536	by te.	5			19		24		1					16	- \	1	5	a ti
Bits de sindice log_2 (512) = 9 bits 32 - (9 + 7) = 32 - 16 = 16 bits. apacidad de memoria apacidad de memoria	Número de l'in	eas		3	В	its	de	09	fse	+		2					5			7
Bits de sindice log_2 (512) = 9 bits 32 - (9 + 7) = 32 - 16 = 16 bits. apacidad de memoria apacidad de memoria	655368- 5	12 1/ne	05		1	oa.	(1	28) =	7	6 +	c	H					-		
log_(512) = 9 bits 32-(9+7) = 32-16 = 16 bits. apaddad de memoria apaddad total somando niveles Niveles con tamono: Li = 16 kb , 12 64 kb , 13 = 128 kb , memoria principal = 868. Soma (a capacidad total y expréso (a en. MiB y en. GiB (vsando patencias de 2; LkiB = 1024 bytes). LM:B = 1024 kB Li = 16 kB = 16	128 %					0.						>			22					
log_(512) = 9 bits 32-(9+7) = 32-16 = 16 bits. apaddad de memoria apaddad total somando niveles Niveles con tamono: Li = 16 kb , 12 64 kb , 13 = 128 kb , memoria principal = 868. Soma (a capacidad total y expréso (a en. MiB y en. GiB (vsando patencias de 2; LkiB = 1024 bytes). LM:B = 1024 kB Li = 16 kB = 16	Rote de inde	0	4 5	77	-	RH	C	de	e la	00	10									
[apacidad de memoria] [apacidad total soman)o niveles [apacidad total soman oniveles [apac						×				7					7					
Expanded total sumando niveles Niveles con tamaño: Li = 16 kb , 12 64 kb , 13 = 128 kb , memaña a principal = 868 . Suma la capacidad tetal y exprésale en MiB y Est. Li = 1024 kB Li = 16 kB = 164 = 0,015625 MiB L2 = 64 kB = 64 = 0,0625 MiB 1024 MiB Memoria = 86B = 8 × 1024 MiB = 8182 MiB 8192,203125 = 8,000198364 GiB 1024	log2 (512) = 96	ts				32 -	(9	+7) =	3	2-	1	6 =		16	Ь	it	S.		
Expanded total sumando niveles Niveles con tamaño: Li = 16 kb , 12 64 kb , 13 = 128 kb , memaña a principal = 868 . Suma la capacidad tetal y exprésale en MiB y Est. Li = 1024 kB Li = 16 kB = 164 = 0,015625 MiB L2 = 64 kB = 64 = 0,0625 MiB 1024 MiB Memoria = 86B = 8 × 1024 MiB = 8182 MiB 8192,203125 = 8,000198364 GiB 1024								4	6	-										
GIB: (Usando potencias de 2: 1 kiB = 1024 bytes). 1 MiB = 1024 kB L1 = 16 kB = 16 = 0,015625 MiB L2 = 64 kB = 64 = 0,0625 MiB L3 = 128 kB = 128 = 0,125 MiB Memoria = 8GB = 18 × 1024 MiB = 8192 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192,203125 = 8,000198364 GiB	THE THE PROPERTY OF THE PROPERTY OF																			
GIB: (Usando potencias de 2: 1 kiB = 1024 bytes). 1 MiB = 1024 kB L1 = 16 kB = 16 = 0,015625 MiB L2 = 64 kB = 64 = 0,0625 MiB L3 = 128 kB = 128 = 0,125 MiB Memoria = 8GB = 18 × 1024 MiB = 8192 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192,203125 = 8,000198364 GiB			nive	les		(1)		113						4						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Capacidad total s	umando			6		2 (541	C 6		- 3		12	8 }	76		10	em	01) q
L ₁ = $16 + 8$ = 16 = $0.015625 M:B$ L ₂ = $64 + 8$ = 64 = $0.0625 M:B$ 1024 M:B = $0.125 M:B1024 M:B$ = $0.125 M:BMemoria = 86B = 8 \times 1024 M:B = 8182 M:B8192 + 0.125 + 0.0625 + 0.015625 = 8192.203125 M:B8192.203125 = 8.000198364 G:B$	Capacdad total s Niveles con tam principal = 868	umando	1 = a la	16 h	16	5 J	,2 (te	54 1	cb Y 6	Z X P	3	= a (g	12	8 } er	76	Mi	m B	em	101) q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Capacdad total s Niveles con tam principal = 868	umando	1 = a la	16 h	16 1000 1000	s L tiB	,2 (te	54 1 etale 02.	 	exp	3	= a (c	12	8) er	76	Mi	m B	em	Te) a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Capardad total s Niveles con tam principal = 868 GiB. (Usando p	omando año: Som otencia:	1 = a la	16 h	26 L	s L Vad	2 1 to	54 1 o 2	(b) y 6;	exp	3 Yes	= a (c	12	8 7 en	76	Mi	m B	em > y	701) a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024	omando año: Som otencia:	LL= id la s de	16 h	L	T:B:	1	02	7 6	x p	3 Yes	= a (c	12	8) en	76	Milm	B	em)	101) a
L3 = 128 KB = 128 = $0,125 \text{ MiB}$ 1024 MiB Memoria = 868 = $8 \times 1024 \text{ MiB}$ = 8192 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192,203125 = 8,000198364 GiB 1024	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024	omando año: Som otencia:	LL= id la s de	16 h	L	T:B:	1	02	7 6	exp	3 Yes S	= 0 (4	12	8) en	76	MilM	m B	em y	101) a
L3 = 128 KB = 128 = $0,125 \text{ MiB}$ 1024 MiB Memoria = 868 = $8 \times 1024 \text{ MiB}$ = 8192 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192,203125 = 8,000198364 GiB 1024	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024 LL = 16 HB =	omando año: Som otencia: RB 10291	LL= a la s de	16 h	. 01	5 6 C	2.5	02. M:	7 6	yte	3 7785	= 0 ((12	8) en	76	i M	B	em y	101) a
Memoria = $8GB$ = 18×1024 MiB = 8192 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192,203125 = 8,000198364 GiB	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024 LL = 16 HB =	omando año: Som otencia: RB 10291	LL= a la s de	16 h	. 01	5 6 C	2.5	02. M:	7 6	32xppytr	3.7725	= 0 (0	1 2	8) en	76	, M	B	em Y	1001) a
Memoria = $8GB$ = 18×1024 MiB = 8192 MiB 8192 + 0,125 + 0,0625 + 0,015625 = 8192,203125 MiB 8192,203125 = 8,000198364 GiB	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024 LL = 16 HB =	omando año: Som otencia: KB 10291	1 b	16 k capc 2 i	01	5 6 7 2.5	2.5 Ms (02. M:	7 6	y tre	3 7255	= 0 (4	1 2	8 7 en	76	Mi	B	em Y	101 Te) a n
8192 + 0,125 + 0,0625 + 0,015625 - 8192,203125 MiB 8192,203125 - 8,000198364 GiB	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024 LL = 16 HB =	omando año: Som otencia: KB 10291	1 b	16 k capc 2 i	01	5 6 7 2.5	2.5 Ms (02. M:	7 6	yhe	3	a la	1 2	8 7	76	n Mi	B	em y	101) a
8192, 203125 = 8,000198364 GiB	Capardad total s Niveles con tam principal = 86B GiB. (Usando p LMiB = 1024 LL = 16 HB =	omando año: Som otencia: KB 10291	1 b	16 k capc 2 i	01	5 6 7 2.5	2.5 Ms (02. M:	7 6	y he	3	= 0 (4	2 2	8) en	76	MI	B	em y	101 101	
8192, 203125 = 8,000198364 GiB	Capardad total s Niveles con tam principal = 868 Gib. (Usando p LMib = 1024 Lt = 16 HB = L2 = 64 HB =	omando año : Som otencia: KB 10291 64 10291 128	11B	16 k capc 2;	, 01 06	5 6 G	Msf	M:	# 6; B	ytie	S	= 0 ((1 2	8) en	76	Mi M	B	em y	1 (a)) a mil
8192, 203125 = 8,000198364 GiB	Capardad total s Niveles con tam principal = 868 Gib. (Usando p LMib = 1024 Lt = 16 HB = L2 = 64 HB =	omando año : Som otencia: KB 10291 64 10291 128	11B	16 k capc 2;	, 01 06	5 6 G	Msf	M:	# b;	ytie	S	= 0 (4	1 2	8) en	76	Mi	B	em y	101) a minimum management of the control of the contro
1024	Capacdad total s Niveles con tam principal = 868 GiB. (Usando p LMiB = 1024 LL = 16 HB = L2 = 64 HB = Memoria = 86 Memoria = 86	10291 64 10291 128 10291	11B	16 k capc 2;	, 01 06	5 6 9 2 5	2.5 M: (1)	M:	# 6; B	Mi	B						180		101) a
	Capacdad total s Niveles con tam principal = 868 GiB. (Usando p LM:B = 1024 LL = 16 HB = L2 = 64 HB = Memorra = 86 8192 + 0,12	10291 64 10291 128 10291 B =	11B 11B	16 k capc 2 s 0, 0, 10 7	01	5 6 9 2 5 2 5	25 M; ()	M: 3 81	# 6; B	Mi	B						180		101) a in 1
	Capacdad total s Niveles con tam Principal = 868 GiB. (Usando p LM:B = 1024 LL = 16 HB = L2 = 64 HB = Memoria = 86 8192 + 0,12 8192,203125	10291 64 10291 128 10291 B =	11B 11B	16 k capc 2 s 0, 0, 10 7	01	5 6 9 2 5 2 5	25 M; ()	M: 3 81	# 6; B	Mi	B						180		101) a in M
	Capacdad total s Niveles con tam Principal = 868 GiB. (Usando p LM:B = 1024 LL = 16 HB = L2 = 64 HB = Memoria = 86 8192 + 0,12 8192,203125	10291 64 10291 128 10291 B =	11B 11B	16 k capc 2 s 0, 0, 10 7	01	5 6 9 2 5 2 5	25 M; ()	M: 3 81	# 6; B	Mi	B						180		101	

			T																												
· Aná											de	1	a	me	m	01	a	C	ad	7 +		me	010	int	e	e	e	mp	10	2	
teore	05	Y	si	m	vic	ic)	י מכ	2 9	-	H				H		-															
Ejemple	o te	TOS	c	>							H			H		-															
Un pro	ore	sai	20	7	(ea	17-	za	a	CCE	50	(2	me	em	011	a	Di) n	Cia	oa)	p	210	,	eje	ci	ta	r		
mstruca cache	lon	es	y	m	ar	1) P	01	ov	Ö	at	05		la	0	210	Pui	te	et	0 10)n	cl	by 1	0 1	on	1	21	rel	(de	
cache	LL	C	Ón	-0	n_	ti	en	pp	-	de	0	ac	CE	50	(5	L	ns	2	m	rie	nt	ras		20	e	a	m	er	noi	'a
										1						18							22.4								
la tos	a 6)e	a	cì	er	05		(hi	t	ral	e)	(de	la	-0	act	10	*	es	JE	-	92)/,				H				
E1 8%.	. (est	Or	nte	,	de	10	S	56	fe	rer	ci	as		se	16	SU	eli	ve	e	n	la	m	en	20	110		pr	nc	100	1
(miss													L														H			I	
• (0)(0)	nv	P		15,	200	n.c		de	0	cci	0 (7		m	pd	10		A	M	AT												
· Calcul	zar	t	-1	1	mi	000	to	. 6	n	el	Y	en	011	mi	en	to	5	1	4	hit	r(ate		ar	m	en	ta	C		967	
					2			2		10		H	H			-											H				
AMAT																															
(0 -	,		Δ	N M	17		-		1.	1	. /				1				22318												
(on 92	/ -	1	η	11	1 1	=	1	ca	en	f.	+ 1	m	15.5	-1	at	2		m	er	ion	la	1									
			A	MA	T	-		LY	15	,	1 (0	50	8	7	4 !	50	n	5)												
			Δ 1	M/	17	_		100	c	1	4	~	-						H								H	H			
											_)										-								
		1	11) [T	=	-	r	15			H	H																		
	R.	11 7	h		DTO	on	ne c	10	,	(0.0	da		* C	(e)	50	a	m	en	101	10		ta	y d	C ₁	5	ns				
																											H				
(on e)	Q.A	7	d	f	O W	- 1.0	1	hos					H	H				78									F				
0., 6	0.0									,							1														
		A	M	47	Ξ		In	5	+	10	30) 4	X	5	0	n S	1									H	H	H			
		A	M	A-	=		Lr	5	1	2	h	5	ľ																		
					_								-		-												H				
		AT											H																		
Con la r	nej	0)	Ca.	9	el	h	1	. 1	at e		9	9	6 7		el	t	en	po	5	ja .	re	do	ce	-	a	1	3 7	5.			
													- 14	-		-															
																1															
																-							-								
																									-10				111		
																-															
																\vdash						,,,							Ť		
							1						1			1		10									Т	П	11	E211	

Simulación en C# de comportamiento de una memoria caché

Código

Ejecución

```
Acceso a dirección 0 (bloque 0)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 12 (bloque 3)... MISS - bloque cargado en caché
Acceso a dirección 12 (bloque 3)... MISS - bloque cargado en caché
Acceso a dirección 0 (bloque 0)... HIT!
Acceso a dirección 16 (bloque 1)... HIT!
Acceso a dirección 16 (bloque 4)... MISS - bloque cargado en caché
Acceso a dirección 20 (bloque 5)... MISS - bloque cargado en caché
Acceso a dirección 20 (bloque 9)... MISS - bloque cargado en caché
Acceso a dirección 0 (bloque 0)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 20 (bloque 2)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 4 (bloque 1)... MISS - bloque cargado en caché
Acceso a dirección 5 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - bloque cargado en caché
Acceso a dirección 9 (bloque 6)... MISS - blo
```

Explicación

Este programa simula cómo una CPU accede a datos desde la memoria RAM usando una caché pequeña.

- Se crea una caché de 4 bloques (como una "cajita" rápida donde la CPU guarda datos usados recientemente).
- La CPU intenta leer 10 direcciones de memoria (como 0, 4, 8, 12, 0, 4, 16, 20, 0, 4).
- En cada acceso:
 - Si el dato está en caché (HIT): La CPU lo lee al instante.
 - Si no está (MISS): La CPU lo trae de la RAM (más lento) y lo guarda en caché para después.

1. Inicialización:

La caché empieza vacía (todos los bloques valen -1).

2. Acceso a memoria:

La CPU quiere leer la dirección 0:

- MISS (la caché está vacía).
- Guarda el dato en la caché.

Luego lee 4:

- MISS (nuevo dato).
- Lo guarda.

Cuando repite 0:

- HIT (ya estaba en caché).

3. Resultados:

Muestra cuántos accesos fueron rápidos (HIT) y cuántos lentos (MISS).

· Identificar y describir los diferentes tipos de buses y su impacto en la velocidad de transferencia. - Bus de datos Es un canal de comunicación bidireccional que transporta la información real (datos) entre la CPU, la memoria y los periféricos. Su ancho (320 64 bits) determina evántos bits se transfieren por ciclo. Impacto en la velocidad de transferencia, Un bus de datos mois ancho permite mover mois informacios por ciclo, aumentando el ancho de banda. En los buses paralelos antiguos todos los dispositivos funcionaban a la misma velocidad, lo que podía ser un cuello de botella. La introducción de controladores y la transición aboses seriales de alta velocidad mejoró considerablemente el rendimiento, - Bus de direcciones Es un canal unidireccional utilitado para indicar la posición específica de la memoria o dispositivo al que se accederá. El nomero de lineas (bits) que lo componen determina el espacio máximo direccionable. Impacto en la velocidad de transferencia. Un bus de direcciones más amplio permite acceder directamente a una mayor cantidad de memoria sin necesidad de tecnicas de paginación o multiplexado, reduciendo la latencia en accesos. Sin embargo, no influye directamente en la tasa de transferencia, sino en la capacidad y rapidez de acceso a datos espectficos. - Bus de control Un bus de control es un conjento de señales bidireccionales que coordinan las operaciones entre CPU, memoria y periféricos, gestiona comandos respuestas e interrupciones. Impacto en la velocidad de transferencia. Su eficiencia influye en la sincionización del sistema . Una coordinación mas preusa reduce tiempos de espera y colisiones en el acceso aptimizando el rendimiento global incluso si el bus de datos y de direcciones son rapidoso ESTILO

Bibliografía

- [1] C. V. Phan and T. D. Nguyen, *Context-Aware Systems and Applications*, vol. 475. Cham: Springer Nature Switzerland, 2023. doi: 10.1007/978-3-031-28816-6.
- [2] S. J. Rogowski, "Bus," in *Encyclopedia of Computer Science*, GBR: John Wiley and Sons Ltd., 2003, pp. 165–167. doi: 10.5555/1074100.1074184.
- [3] T. E. Carlson, "Bus and Memory Architectures," in *Handbook of Computer Architecture*, Singapore: Springer Nature Singapore, 2024, pp. 201–212. doi: 10.1007/978-981-97-9314-3 68.
- [4] S. P. Wang, *Computer Architecture and Organization*, 1st ed. Singapore: Springer Singapore, 2021. doi: 10.1007/978-981-16-5662-0.
- [5] B. Tiwari, M. Yang, X. Wang, and Y. Jiang, "Data Streaming and Traffic Gathering in Mesh-based NoC for Deep Neural Network Acceleration," *CoRR*, vol. abs/2108.02569, 2021, doi: 10.48550/arXiv.2108.02569.