КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

НАВЧАЛЬНІ ЗАВДАННЯ ДО ПРАКТИЧНИХ ЗАНЯТЬ З МАТЕМАТИЧНОГО АНАЛІЗУ

для студентів спеціальностей "комп'ютерна математика"та "комп'ютерна механіка" механіко-математичного факультету

(І семестр другого курсу)

Навчальні завдання до практичних занять з математичного аналізу для студентів спеціальностіей "комп'ютерна механіка" та "комп'ютерна математика" механіко—математичного факультету (1 семестр другого курсу) / Упорядн. А. В. Чайковський. — Електронне видання. — 2018. — 76 с.

3MICT

3MICT	3
ПЕРЕДМОВА	4
ЗАНЯТТЯ 1. МЕТРИЧНІ ПРОСТОРИ	5
ЗАНЯТТЯ 2. ГРАНИЦЯ ФУНКЦІЇ В ТОЧЦІ. НЕПЕРЕРВНІ ФУНКЦІЇ	10
ЗАНЯТТЯ 3. ЧАСТИННІ ПОХІДНІ. ПОХІДНІ ЗА НАПРЯМКОМ. ДИФЕРЕНЦІЙОВНІ ФУНКЦІЇ. ДИФЕРЕНЦІАЛ	16
ЗАНЯТТЯ 4. ФОРМУЛА ТЕЙЛОРА. ЗНАХОДЖЕННЯ ТОЧОК ЛОКАЛЬНОГО ЕКСТРЕМУМА	21
ЗАНЯТТЯ 5. УМОВНИЙ (ВІДНОСНИЙ) ЕКСТРЕМУМ	25
ЗАНЯТТЯ 6. ОБЧИСЛЕННЯ НЕВЛАСНИХ ІНТЕГРАЛІВ З ПАРАМЕТРОМ. ІНТЕГРАЛ ТА ПЕРЕТВОРЕННЯ ФУР'Є	30
ЗАНЯТТЯ 7. ЕЙЛЕРОВІ ІНТЕГРАЛИ	34
ЗАНЯТТЯ 8. РЯДИ ФУР'Є	39
ЗАНЯТТЯ 9. ПОДВІЙНІ ІНТЕГРАЛИ	43
ЗАНЯТТЯ 10. ОБЧИСЛЕННЯ ІНТЕГРАЛА ПО ЦИЛІНДРИЧНІЙ МНОЖИНІ В ${f R}^3$	49
ЗАНЯТТЯ 11. ФОРМУЛА ЗАМІНИ ЗМІННИХ У ПОТРІЙНОМУ ІНТЕГРАЛІ. НЕВЛАСНІ КРАТНІ ІНТЕГРАЛИ	54
ЗАНЯТТЯ 12. КРИВОЛІНІЙНІ ІНТЕГРАЛИ	60
ЗАНЯТТЯ 13. ПОВЕРХНЕВІ ІНТЕГРАЛИ	68
2AHATTA 1A OCHORHI HOHATTA TEODIÏ HOHA	71

ПЕРЕДМОВА

У цьому методичному посібнику наведені теми практичних занять з математичного аналізу, умови задач, рекомендованих для розв'язання в аудиторії, а також задачі для домашньої роботи

Головна мета практичних занять — активне засвоєння студентами основних понять і положень курсу, набуття навичок їх застосування до розв'язання стандартних задач, опанування деяких спеціальних методів. Умовам задач в кожному занятті передують кілька контрольних запитань, відповіді на які студенти мають підготувати вдома.

У кожному занятті група задач А — задачі для аудиторної роботи, група Б — для домашнього завдання. Кількість і якість задач, що розв'язуються в аудиторії і задаються додому, залежить від рівня підготовки студентів. Ці задачі підбираються викладачем з набору задач, наведених в методичці.

Пропонуються також завдання підвищеної складності для студентів з високим рівнем підготовки за умови успішного виконання обов'язкової частини. Задачі підвищеної складності позначені літерою Д.

У першому семестрі, як правило, проводяться дві контрольні роботи, зразки умов та розв'язання яких наведено в тексті.

При підборі задач використано такі збірники задач:

Дороговцев А.Я. Математический анализ. Сборник задач. -- Киев, 1987. Демидович Б.П. Сборник задач и упражнений по математическому анализу. – М., 1969.

Частина задач складена упорядниками. При підготовці цього учбового посібника автори суттєво використали методичні розробки:

Навчальні завдання до практичних занять з математичного аналізу для студентів механіко—математичного факультету (2 семестр першого курсу) // Упорядн. М. О. Денисьєвський, О. О. Курченко, В. Н. Нагорний, А. В. Чайковський, О.Н. Нестеренко. – К.: ВПЦ "Київський університет", 2004.

Навчальні завдання до практичних занять з математичного аналізу для студентів механіко-математичного факультету, спеціальність механіка (1 семестр другого курсу) / Упорядн. Т. О. Петрова, Г. С. Смірнов, М. О. Денисьєвський. – К.: ВПЦ "Київський університет", 2002.

Навчальні завдання до практичних занять з математичного аналізу для студентів механіко-математичного факультету, спеціальність механіка (2 семестр другого курсу) / Упорядн. Т. О. Петрова, Г. С. Смірнов, М. О. Денисьєвський. – К.: ВПЦ "Київський університет", 2002.

3AHЯТТЯ 1 МЕТРИЧНІ ПРОСТОРИ

Контрольні запитання

- 1. Означення метрики та метричного простору.
- 2. Простір \mathbf{R}^m з евклідовою метрикою.
- 3. Простір C([a,b]) з рівномірною метрикою.
- 4. Означення збіжності послідовності в метричному просторі.
- 5. Характеризація збіжності в просторах (\mathbf{R}^m, ρ) і $(C([a, b]), \rho)$.
- 6. Означення внутрішньої, граничної та ізольованої точок множини.
- 7. Означення відкритої та замкненої множин.
- 8. Означення сепарабельного метричного простору.
- 9. Означення повного метричного простору.

A1

- **1.** 1) Довести, що функція $d_1((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + 2|y_1 y_2|$ визначає метрику на ${f R}^2$. Зобразити на координатній площині множини з простору (\mathbf{R}^2, d_1) : $\overline{B}((0,0), 2), B((2,3), 2), S((0,0), 1)$.
- 2) Довести, що функція $d_2((x_1,y_1),(x_2,y_2))=\max\{|x_1-x_2|,|y_1-y_2|\}$ визначає метрику на ${f R}^2$. Зобразити на координатній площині множини з простору $(\mathbf{R}^2,d_2):$ $\overline{B}((0,0),2),B((2,3),2),S((0,0),1).$ 3) Довести, що функція $d_3((x_1,y_1),(x_2,y_2))=(x_1-x_2)^2+|y_1-y_2|$ не
- визначає метрику на ${f R}^2$.
- **2.** Які з наведених функцій визначають метрику на C([0,1])?

1)
$$d(f,g) = \max_{t \in [0,1/2]} |f(t) - g(t)|;$$

2)
$$d(f,g) = \int_{0}^{1} |f(t) - g(t)|dt;$$

3)
$$d(f,g) = \max_{t \in [0,1]} (e^{-t}|f(t) - g(t)|).$$

3. Чи збігаються у відповідних просторах наведені послідовності? Для збіжних послідовностей знайти їх границі.

1)
$$\left\{ \left(\frac{1}{n}, \frac{2n+1}{n}\right) : n \ge 1 \right\}$$
 b (\mathbf{R}^2, ρ) ;

2)
$$\left\{ \left(\frac{\cos n\pi}{2}, \frac{n+1}{n^2} \right) : n \ge 1 \right\}$$
 B (\mathbf{R}^2, ρ) ;

3)
$$\left\{ \left(\frac{\sin n}{n}, (-1)^n, \frac{1}{n^2} \right) : n \ge 1 \right\}$$
 B (\mathbf{R}^3, ρ) ;

4)
$$\left\{\left(\cos\frac{1}{n}, \frac{2n-1}{n}, \frac{2}{n}\right) : n \ge 1\right\}$$
 B $(\mathbf{R}^3, \rho);$
5) $\left\{t^{n+3} - t^n, t \in [0,1] : n \ge 1\right\}$ B $(C([0,1]), \rho);$

5)
$$\left\{t^{n+3}-t^n, t\in [0,1]:\ n\geq 1\right\}$$
 b $\left(C([0,1]),
ho
ight)$

6)
$$\left\{t^2 + \frac{t}{n}, t \in [1,2] : n \ge 1\right\}$$
 b $(C([1,2]), \rho).$

- **4.** Нехай $X=(0,1),\;
 ho(x_1,x_2)=|x_1-x_2|.$ Показати, що послідовність $\left\{rac{n}{2n+1} \ : \ n \geq 1
 ight\}$ збігається в (X,
 ho), а послідовність $\left\{1-rac{1}{n} \ : \ n \geq 1
 ight\}$ не має границі в (X, ρ) .
- **5.** Визначити в просторі (\mathbf{R}, ρ) множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.
 - 1) A = [0, 1];

- 2) A = [0, 1);
- 3) A = (0, 1); 5) $A = \mathbf{N};$ 4) $A = \left\{\frac{1}{n} : n \ge 1\right\};$ 6) $A = \mathbf{Q}.$
- **6.** Визначити в просторі $({f R}^2,
 ho)$ множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.
 - 1) $A = \{(x,y) \mid x^2 + y^2 \le 4\};$ 5) $A = \{(x,y) \mid x = y\};$ 2) $A = \{(x,y) \mid x^2 + y^2 \ge 2\};$ 6) $A = \{(\frac{1}{n}, \frac{1}{n^2}) \mid n \ge 1\};$ 3) $A = \{(x,y) \mid 1 < x^2 + y^2 \le 9\};$ 7) $A = \{((-1)^n, e^{-n}) \mid n \ge 1\}.$

- **7.** Визначити в просторі $({f R}^3,
 ho)$ множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.
 - 1) $A = \{(x, y, z) \mid x^2 + y^2 + z^2 < 4\};$
 - 2) $A = \{(x,y) \mid x+y=2, 1 < z \le 2\}$.
- 8. Які з наведених множин скрізь щільні в (\mathbf{R}^2, ρ) ? 1) $\mathbf{Z} \times \mathbf{Q}$; 2) $\mathbf{Q} \times \mathbf{Q}$; 3) $\mathbf{Q} \times (\mathbf{R} \backslash \mathbf{Q})$.

- **9.** Встановити сепарабельність та повноту простору \mathbf{R}^2 з метрикою $d((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|.$
- **10.** Які з цих просторів з метрикою $\rho(x,y) = |x-y|$ є повними?
 - 1) X = (0,1);
- 3) $X = (0, +\infty);$

2) X = [0, 1];

- 4) $X = (-\infty, 1].$
- **Д1.** Довести, що така функція визначає метрику на C([0,1]) :

$$d(f,g) = \left(\int_{0}^{1} (f(t) - g(t))^{2}\right)^{1/2}.$$

Д2. В просторі ${f R}$ з дискретною метрикою $d(x,y)= \begin{cases} 1, & x \neq y, \\ 0, & x=y, \end{cases}$ опи-

сати всі збіжні та всі фундаментальні послідовності. Чи є цей простір повним? сепарабельним?

- **Д3.** Визначити в просторі $(C([0,1]), \rho)$ множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.

- 1) $A = \{f \mid 1 < f(0) < 2\};$ 4) $A = \{f \mid f(0)f(1) < 0\};$ 2) $A = \{f \mid f(0) = 1\};$ 3) $A = \{f \mid f(0) \ge 1\};$ 5) $A = \{f \mid f(0) = 1, f(1) = 1\};$ 5) $A = \{f \mid f(0) = 1, f(1) = 0\}$.
- **Д4.** Визначити в просторі (\mathbf{R}, ρ) множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.
 - 1) $A = \left\{ \frac{m}{|m|+n} \mid m \in \mathbf{Z}, n \in \mathbf{N} \right\};$ 3) $A = \bigcup_{n=1}^{\infty} [2n, 2n+1].$ 2) $A = \bigcap_{n=1}^{\infty} (1 \frac{1}{n}, 1 + \frac{1}{n});$

Б1

- Чи визначає функція $d(x_1,x_2) \ = \ |\sin(x_1 x_2)|$ метрику на множині \mathbf{R} ?
- **2.** Довести, що функція $d((x_1,y_1),(x_2,y_2))=|x_1-x_2|+2|y_1-y_2|$ визначає метрику на ${f R}^2$. Зобразити на координатній площині множини з простору (\mathbf{R}^2, d): $\overline{B}((0,0),1), S((1,1),2)$.
- 3. Перевірити, що наведені функції визначають метрики на ${f R}^3$:

 - 1) $d((x_1,y_1,z_1),(x_2,y_2,z_2)) = |x_1-x_2|+|y_1-y_2|+|z_1-z_2|;$ 2) $d((x_1,y_1,z_1),(x_2,y_2,z_2)) = |x_1-x_2|+2|y_1-y_2|+3|z_1-z_2|;$
 - 3) $d((x_1, y_1, z_1), (x_2, y_2, z_2)) =$ $\max\{|x_1-x_2|,|y_1-y_2|,|z_1-z_2|\};$
 - 4) $d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \max\{|x_1 x_2|, 2|y_1 y_2|, 3|z_1 z_2|\};$

- 5) $d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \sqrt{|x_1 x_2|} + |y_1 y_2| + |z_1 z_2|$;
- 6) $d((x_1, y_1, z_1), (x_2, y_2, z_2)) =$

$$\max\{|x_1-x_2|,|y_1-y_2|\}+|z_1-z_2|;$$

7)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \sqrt{(x_1 - x_2)^2 + 4(y_1 - y_2)^2 + 9(z_1 - z_2)^2};$$

8)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = |x_1 - x_2| + \sqrt{(y_1 - y_2)^2 + (z_1 - z_2)^2}$$
.

- **4.** Чи визначають наведені функції метрики на ${f R}^2$?
 - 1) $d((x_1, y_1), (x_2, y_2)) = |x_1 x_2| |y_1 y_2|;$
 - 2) $d((x_1, y_1), (x_2, y_2)) = 3|x_1 x_2|;$
 - 3) $d((x_1, y_1), (x_2, y_2)) = |x_1 y_1| |x_2 y_2|;$
 - 4) $d((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2| + \sqrt{|y_1 y_2|};$
 - 5) $d((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2| + |y_1 y_2|$

5. Чи збігаються в просторі
$$(\mathbf{R}^3, \rho)$$
 такі послідовності:
$$1) \ \left\{ \left(\frac{1}{n}, \frac{2n+n^2}{3n^2-1}, \frac{\ln(2n)-n}{n+1} \right) : \ n \geq 1 \right\};$$

$$2) \ \left\{ (n, n+1, n+2) : \ n \geq 1 \right\};$$

$$3) \ \left\{ \left(\frac{\ln(1+n)}{n}, (-1)^{2n}, \frac{1}{2^n} \right) : \ n \geq 1 \right\};$$

3)
$$\left\{ \left(\frac{\ln(1+n)}{n}, (-1)^{2n}, \frac{1}{2^n} \right) : n \ge 1 \right\};$$

4)
$$\left\{ \left(\sin \frac{\pi n}{2}, \frac{3n+1}{n}, \frac{4}{n} \right) : n \ge 1 \right\}$$
?

- **6.** Чи збігаються в просторі $(C([0,1]), \rho)$ такі послідовності:
 - 1) $\{t^n(1-t), t \in [0,1] : n \ge 1\}$;

 - 2) $\{(1-t)^n, t \in [0,1] : n \ge 1\};$ 3) $\{t^n(1-t^n), t \in [0,1] : n \ge 1\};$
 - 4) $\{\cos^{2n} \pi t, t \in [0,1] : n \geq 1\};$

5)
$$\left\{ n \sin \frac{t}{n}, t \in [0, 1] : n \ge 1 \right\};$$

6)
$$\left\{ n \ln \left(1 + \frac{t}{n} \right), t \in [0, 1] : n \ge 1 \right\};$$

- 7) $\{e^{-nt}, t \in [0, 1] : n > 1\}$
- **7.** Визначити в просторі (\mathbf{R}, ρ) множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.

1)
$$A = [0, +\infty);$$

4)
$$A = \left\{ \frac{n}{n+1} : n \ge 1 \right\} \cup \{1\};$$

2)
$$A = [-1, 1);$$

5)
$$A = \hat{Z}$$
;

3)
$$A = [-3, -2];$$

6)
$$A = \mathbf{R} \backslash \mathbf{Q}$$
.

8. Визначити в просторі $({f R}^2,
ho)$ множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.

1)
$$A = \{(x, y) \mid x > 0\};$$

5)
$$A = \{(x, y) \mid 1 \le x + y < 2\};$$

2)
$$A = \{(x, y) \mid |x| + |y| \le 1\};$$

6)
$$A = \left\{ \left(\frac{2}{n}, \frac{3}{2n} \right) | n \ge 1 \right\};$$

3)
$$A = \{(x,y) \mid y \le 2^x\};$$

4) $A = \{(x,y) \mid |x| - y = 3\};$

7)
$$A = \{((-1)^n, \cos \frac{1}{n}) \mid n \ge 1\}$$

9. Визначити в просторі $({f R}^3,
ho)$ множини внутрішніх, граничних та ізольованих точок. Перевірити, чи є задані множини відкритими чи замкненими.

1)
$$A = \{(x, y, z) \mid y^2 + z^2 < 1\};$$

2)
$$A = \{(x,y) \mid x = 3, y + z \le 4\}$$

10. Які з наведених множин скрізь щільні в $({\bf R}^2, \rho)$?

1)
$$\mathbf{Z} \times \mathbf{N}$$
;

4)
$$\left\{ \left(\frac{m}{n}, \frac{n}{m}\right) \mid m, n \in \mathbf{Z} \setminus \{0\} \right\};$$

2)
$$(\mathbf{R}\backslash\mathbf{Q})\times(\mathbf{R}\backslash\mathbf{Q});$$

5)
$$\{(r_1+r_2,r_1-r_2) \mid r_1,r_2 \in \mathbf{Q}\};$$

3)
$$\mathbf{N} \times (\mathbf{R} \backslash \mathbf{Q})$$
;

6)
$$\{(r_1\sqrt{2}, r_2\sqrt{3}) \mid r_1, r_2 \in \mathbf{Q}\}$$
.

11. Послідовність елементів метричного простору (X, ρ) задовольняє умову $\forall n \geq 1 \; : \; \rho(x_n, x_{n+1}) \leq \frac{1}{n \sqrt{n}}.$ Довести, що $\{x_n : n \geq 1\}$ – фундаментальна в (X, ρ) .

12. Які з цих просторів з метрикою $\rho(x,y) = |x-y|$ є повними?

1)
$$X = \mathbf{Z}$$
;

3)
$$X = \mathbf{R} \setminus \mathbf{Z}$$
:

3)
$$X = \mathbf{R} \setminus \mathbf{Z};$$
 5) $X = (-\infty, 2] \cap [3, 4];$
4) $X = \mathbf{R} \setminus [0, 1];$ 6) $X = (-\infty, 1] \cap \{2\}.$

2)
$$X = \mathbf{Q}$$
;

$$X = \mathbf{R} \setminus [0,1];$$

6)
$$X = (-\infty, 1] \cap \{2\}$$

13. Довести повноту простору (${\bf R}^3, d$) :

1)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = |x_1 - x_2| + 2|y_1 - y_2| + 3|z_1 - z_2|$$
;

2)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \max\{|x_1 - x_2|, 2|y_1 - y_2|, 3|z_1 - z_2|\};$$

3)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \sqrt{|x_1 - x_2|} + |y_1 - y_2| + |z_1 - z_2|;$$

4)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\} + |z_1 - z_2|;$$

5)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) =$$

$$\sqrt{(x_1-x_2)^2+4(y_1-y_2)^2+9(z_1-z_2)^2};$$

6)
$$d((x_1, y_1, z_1), (x_2, y_2, z_2)) = |x_1 - x_2| + \sqrt{(y_1 - y_2)^2 + (z_1 - z_2)^2}$$
.

ЗАНЯТТЯ 2 ГРАНИЦЯ ФУНКЦІЇ В ТОЧЦІ. НЕПЕРЕРВНІ ФУНКЦІЇ

Контрольні запитання

- 1. Означення границі в точці числової функції, визначеної на метричному просторі.
- 2. Означення повторних границь.
- 3. Означення та властивості неперервних функції багатьох змін-
- 4. Теорема про характеризацію неперервності.
- 5. Означення компактної множини.
- 6. Критерії компактності в $({\bf R}^m, \rho)$ і в $(C([a, b]), \rho)$.
- 7. Властивості неперервних функцій на компакті.

1. Знайти повторні та подвійні границі, якщо вони існують:

1)
$$f(x,y) = \frac{x^4 + y^4}{x^2 + y^2}, \ x \to 0, \ y \to 0;$$

2)
$$f(x,y) = \frac{x+e^y}{e^x+y}, \ x \to 0, \ y \to 0$$

2)
$$f(x,y) = \frac{x+y}{e^x+y}, x \to 0, y \to 0;$$

3) $f(x,y) = \frac{x+y}{x^4+y^4}, x \to +\infty, y \to +\infty;$

4)
$$f(x,y) = \left(\frac{xy}{x^2 + y^2}\right)^{x^2}, \ x \to +\infty, \ y \to +\infty;$$

5)
$$f(x,y) = \frac{\sin(xy)}{x}, \ x \to 0, \ y \to 1$$

5)
$$f(x,y) = \frac{\sin(xy)}{x}, \ x \to 0, \ y \to 1;$$

6) $f(x,y) = \frac{x+y}{x-y}, \ x \to 0, \ y \to 0, x \neq y;$

7)
$$f(x,y) = x \sin \frac{1}{y}, \ x \to 0, \ y \to 0, y \neq 0.$$

2. Знайти точки розриву наведених функцій:

1)
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}, (x,y) \in \mathbf{R}^2 \setminus \{(0,0)\};$$

2)
$$f(x,y) = \begin{cases} 1, & y > x, \\ 0, & y \le x; \end{cases}$$

3)
$$f(x,y) = \frac{x^2 + y^2}{x^4 + y^4 + 1}$$
;

3. Довизначити функцію $f(x,y)=rac{x^2y^2}{x^2+y^2},\;(x,y)\in\mathbf{R}^2ackslash\{(0,0)\},\;\mathbf{B}$

точці (0,0) таким чином, щоб вона стала неперервною в цій точці.

- **4.** Чи є наведені множини замкнені в $({\bf R}^2, \rho)$ відкритими? замкненими?
- компактними?
 1) $\left\{(x,y) \mid x^2+y^2=1\right\};$ 5) $\left\{(x,y) \mid x^2+y^2 \leq 1\right\};$ 2) $\left\{(x,y,z) \mid x^2+y^2+z^2 < 1\right\};$ 6) $\left\{(x,y) \mid xy \leq 1\right\};$

 - 3) $\{(x,y,z) \mid 1 < x + y < 4\};$ 7) $\{(x,y) \mid 1 < x^2 + y^2 \le 4\};$ 4) $\{(x,y) \mid 10 \le e^x + e^y \le 100\};$ 8) $\{(x,y) \mid |x| + |y| \le 4, xy \le 1\}.$
- **5.** Довести, що такі дійсні функції рівномірно неперервні в $({f R}^3,
 ho)$:
 - 1) f(x, y, z) = 2 + 3x + 4y + 5z;
 - 2) $f(x, y, z) = \sin(x + y + z)$;
 - 3) $f(x, y, z) = \operatorname{arctg} x + \operatorname{arctg} y + \operatorname{arctg} z$.
- **6.** Довести, що функція $f(x,y,z)=x^2+y^2+z^2$ неперервна, але не є рівномірно неперервною на ${f R}^3.$
- **7.** Які з наведених множин компактні в $({\bf R}^2, \rho)$?

 - 1) $\{(x,y) \mid x^2 + y^2 \le 1\};$ 3) $\{(x,y) \mid 1 < x^2 + y^2 \le 4\};$
 - 2) $\{(x,y) \mid xy < 1\}$;
- 4) $\{(x,y) \mid |x| + |y| < 4, xy < 1\}$.
- 8. Довести, що наведені функції на відповідних множинах досягають свого найбільшого та найменшого значення та є рівномірно неперервними:
 - 1) $f(x, y, z) = |x + y| \arctan(y + z)$,

 - $A = \{(x, y, z) \mid 1 \le x \le 2, 2 \le y \le 3, 3 \le z \le 4\};$ 2) $f(x, y, z) = e^{x-y} + e^{y-z} + e^{z-x},$ $A = \{(x, y, z) \mid 1 \le |x| + |y| + |z| \le 2, xyz \ge 0\}.$
- Д1. Знайти повторні та потрійні границі, якщо вони існують:

 - 1) $f(x,y,z) = \frac{x+y+z}{|x|+|y|+|z|}, \ x \to 0, \ y \to 0, \ z \to 0;$ 2) $f(x,y,z) = \frac{x^3+y^3+z^3}{x^2+y^2+z^2}, \ x \to 0, \ y \to 0, \ z \to 0.$
- **Д2.** Довести, що наведені дійсні функції неперервні на $(C([0,4]), \rho)$:

1)
$$f(x) = x(0);$$

2) $f(x) = \int_{0}^{4} \sin x(t) dt;$
3) $f(x) = \int_{0}^{2} x(t^{2}) \sin t dt.$

ДЗ. Нехай $x_0 \in C([0,1])$. Знайти границі дійсних функцій, визначених на метричному просторі $(C([0,1]),\rho)$:

1)
$$f(x) = \int_{0}^{1} |x(t)| dt$$
, $x \to x_0$; 2) $f(x) = \int_{0}^{1} tx^2(t) dt$, $x \to x_0$.

Б2

1. Дати означення таких границь:

1)
$$\lim_{\substack{x \to 2 \\ y \to 3}} f(x,y);$$
 3) $\lim_{\substack{x \to +\infty \\ y \to +\infty}} f(x,y);$ 5) $\lim_{\substack{x \to 1 \\ y \to -\infty}} f(x,y);$ 2) $\lim_{\substack{x \to +\infty \\ y \to -\infty}} f(x,y);$ 4) $\lim_{\substack{x \to -\infty \\ y \to -\infty}} f(x,y);$ 6) $\lim_{\substack{x \to +\infty \\ y \to 0}} f(x,y).$

2. Знайти повторні та подвійні границі, якщо вони існують:

1)
$$f(x,y) = \frac{x+y}{x^2 - xy + y^2}, \ x \to +\infty, \ y \to +\infty;$$

2) $f(x,y) = \left(1 + \frac{1}{x}\right)^{\frac{x^2}{x+y}}, \ x \to +\infty, \ y \to 1;$

3)
$$f(x,y) = \frac{\sin(x^4y^2)}{(x^2+y^2)^2}, \ x \to 0, \ y \to 0;$$

4)
$$f(x,y) = \frac{\exp\left(-\frac{1}{x^4 + y^4}\right)}{x^4 + y^4}, \ x \to 0, \ y \to 0;$$

5)
$$f(x,y) = \frac{1}{xy} \operatorname{tg} \frac{xy}{1+xy}, \ x \to 0, \ y \to +\infty;$$

6)
$$f(x,y) = \log_x(x+y), \ x \to 1, \ y \to 0, \ x > 0, \ x \neq 1, \ y > -x$$
:

7)
$$f(x,y) = \frac{(x+y)^2}{(x^2+y^4)^2}, \ x \to +\infty, \ y \to +\infty;$$

8)
$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, \ x \to +\infty, \ y \to +\infty;$$

9)
$$f(x,y) = \frac{x^2y^2(x^2+y^2)}{1-\cos(x^2+y^2)}, \ x \to 0, \ y \to 0;$$

10)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, \ x \to -\infty, \ y \to -\infty;$$

11) $f(x,y) = \frac{xy}{x^2 + y^2}, \ x \to -\infty, \ y \to -\infty;$
12) $f(x,y) = \frac{x^3 + y^3}{x^4 + y^4}, \ x \to 0, \ y \to 0.$

11)
$$f(x,y) = \frac{xy}{x^2 + y^2}, \ x \to -\infty, \ y \to -\infty;$$

12)
$$f(x,y) = \frac{x^3 + y^3}{x^4 + y^4}, \ x \to 0, \ y \to 0.$$

3. З'ясувати, чи існують границі:

$$\lim_{\substack{x \to 0 \\ y \to -\infty}} xy$$

4)
$$\lim_{\substack{x \to 1 \\ y \to +\infty}} x^y;$$

7)
$$\lim_{\substack{x \to +\infty \\ y \to -\infty}} \frac{x}{y};$$
8)
$$\lim_{\substack{x \to 0+\\ y \to 0}} \frac{x}{y};$$

1)
$$\lim_{\substack{x \to 0 \\ y \to -\infty}} xy;$$
 4) $\lim_{\substack{x \to 1 \\ y \to +\infty}} x^y;$
2) $\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x+y);$ 5) $\lim_{\substack{x \to +\infty \\ y \to -\infty}} x^y;$

5)
$$\lim_{\substack{x \to +\infty \\ y \to -\infty}} x^y$$

8)
$$\lim_{\substack{x \to 0+\\ y \to 0}} \frac{x}{y}$$

$$\lim_{\substack{x \to 0+\\ y \to 0}} x^y;$$

6)
$$\lim_{\substack{x \to +\infty \\ y \to 0}} x^y;$$

9)
$$\lim_{\substack{x \to 0+ \\ y \to -\infty}} \frac{x}{y}.$$

4. Знайти точки розриву наведених функцій:

1)
$$f(x,y) = \begin{cases} 16 - x^2 - y^2, & x^2 + y^2 \le 16, \\ 0, & x^2 + y^2 > 16; \end{cases}$$

2)
$$f(x,y) = \begin{cases} \frac{x-y}{x+y}, & x+y \neq 0, \\ 1, & x+y = 0; \end{cases}$$

3. Знайти точки розриву наведених функцій:
1)
$$f(x,y) = \begin{cases} 16-x^2-y^2, & x^2+y^2 \leq 16, \\ 0, & x^2+y^2 > 16; \end{cases}$$
2) $f(x,y) = \begin{cases} \frac{x-y}{x+y}, & x+y \neq 0, \\ 1, & x+y=0; \end{cases}$
3) $f(x,y) = \begin{cases} \frac{2x-3}{x^2+y^2-4}, & x^2+y^2 \neq 4, \\ 0, & x^2+y^2 = 4; \end{cases}$
4) $f(x,y) = \begin{cases} \frac{x-y^2}{x+y^2}, & x+y^2 \neq 0, \\ 0, & x+y^2 = 0; \end{cases}$
5) $f(x,y) = \begin{cases} \frac{x-y}{x^3-y^3}, & x \neq y, \\ 3, & x=y; \end{cases}$
6) $f(x,y) = \begin{cases} \ln(10-x^2-y^2), & x^2+y^2 < 9, \\ 0, & x^2+y^2 \geq 9; \end{cases}$
7) $f(x,y) = \begin{cases} \frac{3}{x^2+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0); \end{cases}$

4)
$$f(x,y) = \begin{cases} \frac{x-y^2}{x+y^2}, & x+y^2 \neq 0, \\ 0, & x+y^2 = 0; \end{cases}$$

5)
$$f(x,y) = \begin{cases} \frac{x-y}{x^3 - y^3}, & x \neq y, \\ 3, & x = y; \end{cases}$$

6)
$$f(x,y) = \begin{cases} \ln(10 - x^2 - y^2), & x^2 + y^2 < 9, \\ 0, & x^2 + y^2 \ge 9; \end{cases}$$

7)
$$f(x,y) = \begin{cases} \frac{3}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0); \end{cases}$$

8)
$$f(x,y) = \begin{cases} \frac{x^2 + y^2}{x^2 - y^2}, & |x| \neq |y|, \\ 1, & |x| = |y|; \end{cases}$$
9) $f(x,y) = \begin{cases} \sin\frac{1}{x+y}, & x+y \neq 0, \\ 0, & x+y = 0; \end{cases}$

9)
$$f(x,y) = \begin{cases} \sin\frac{1}{x+y}, & x+y \neq 0, \\ 0, & x+y=0; \end{cases}$$

10)
$$f(x,y) = \begin{cases} \frac{1}{xy}, & xy \neq 0, \\ 1, & xy = 0. \end{cases}$$

5. Довести неперервність наведених функцій в $({\bf R}^3, \rho)$:

1)
$$f(x, y, z) = \sin(x + y + z);$$

2)
$$f(x, y, z) = \ln(1 + x^2 + y^2 + z^2);$$

3)
$$f(x,y,z) = \sqrt{x^2 + y^4 + z^6}$$
;
4) $f(x,y,z) = e^{x+2y+3z}$.

4)
$$f(x, y, z) = e^{x+2y+3z}$$

6. Довизначити функцію f за неперервністю на ${f R}^2$:

1)
$$f(x,y) = \frac{(x-1)^2 + 2(x-2)^2 + (x-1)^2(x-2)^2}{(x-1)^2 + 2(x-2)^2}$$
,

$$(x,y) \neq (1,2);$$

2)
$$f(x,y) = \frac{(x^2 + y^2 - 1)^4}{(x-1)^2 + y^2}, (x,y) \neq (1,0);$$

3)
$$f(x,y) = \frac{(x-2)(y-3)^2}{\sqrt{(x-2)^2 + (y-3)^2}}, (x,y) \neq (2,3);$$

4)
$$f(x,y) = \frac{\sqrt{1+x^2y^2}-1}{x^2+y^2}$$
, $(x,y) \neq (0,0)$;

5)
$$f(x,y) = \frac{\ln(1+|xy|)}{\sqrt{x^2+y^2}}, (x,y) \neq (0,0);$$

6)
$$f(x,y) = \frac{\sin(x^4y^2)}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$;

7)
$$f(x,y) = \frac{x^2 + y^2}{e^{x^2 + y^2} - 1 - \frac{x^2 + y^2}{2}}, (x,y) \neq (0,0);$$

8)
$$f(x,y) = \frac{1 - \cos(x^4 + y^4)}{(x^2 + y^2)^2}$$
, $(x,y) \neq (0,0)$;

9)
$$f(x,y) = \frac{x^2y^2}{\sqrt{1+x^2+y^2}-1}$$
, $(x,y) \neq (0,0)$;

10)
$$f(x,y) = \frac{1}{x^6 + y^6} \exp\left(-\frac{1}{x^6 + y^6}\right), (x,y) \neq (0,0).$$

7. З'ясувати, які з наведених множин замкнені, відкриті, компактні в (\mathbf{R}^3, ρ) :

1)
$$\{(x, y, z) \mid x^2 + 4y^2 + 9z^2 = 1\};$$

2)
$$\{(x,y,z) | \sqrt{|x|} + \sqrt{|y|} + \sqrt{|z|} \le 1 \};$$

3)
$$\{(x, y, z) \mid x^3 + y^3 + z^3 > 100\};$$

4)
$$\{(x, y, z) \mid x + 2y + 3z < 10\};$$

5)
$$\{(x, y, z) \mid 1 \le xyz \le 3\}$$
;

6)
$$\{(x,y,z) \mid xy^2z^3 > 5\};$$

7)
$$\{(x,y,z) \mid x^2 + y^2 + z^2 \le 25, x + y + z \le 20, x = 3\};$$

8)
$$\{(x,y,z) \mid e^{x+y} + e^{x+z} + e^{y+z} > 1\};$$

9)
$$\{(x,y,z) \mid x^3 + y^3 + z^3 = 2, x + y \ge 1\};$$

10)
$$\{(x, y, z) \mid 1 < x + y + z < 4, z > 0\}$$
.

8. Довести, що наведені функції рівномірно неперервні на відповідних множинах в просторі (\mathbf{R}^2, ρ) :

1)
$$f(x,y) = \sin(x-|y|), A = \{(x,y) \mid x^4 + y^4 \le 100\};$$

2)
$$f(x,y) = \cos xy$$
, $A = \{(x,y) \mid 16 \le x^2 + y^2 \le 25\}$;

3)
$$f(x,y) = \ln(1+|x|+y^2), A = [1,2] \times [2,3];$$

4)
$$f(x,y) = \int_{x}^{y} e^{t^2} dt$$
, $A = \{(x,y) \mid 0 \le x \le y \le 1 \mid \}$;

5)
$$f(x,y) = \operatorname{arctg}^2(xy), A = \{(x,y) \mid \max\{|x|,|y|\} \le 3\}$$

5)
$$f(x,y) = \operatorname{arctg}^{2}(xy), A = \{(x,y) \mid \max\{|x|,|y|\} \le 3\};$$

6) $f(x,y) = \operatorname{arcsin}(\frac{xy}{1+|xy|}), A = \{(x,y) \mid |x|+|y| \le 1\};$

7)
$$f(x,y) = e^{x^2 + y^2}$$
, $A = \{(x,y) \mid (x-y)^2 + (x+y)^2 \le 1\}$;

8)
$$f(x,y) = xe^y + ye^x$$
, $A = \{(x,y) \mid x^2 + y^2 \le 1, x^4 - y \le 1\}$;

9)
$$f(x,y) = x^2 + y \arctan x$$
, $A = \{(x,y) | \sqrt{|x|} + y^2 \le 2\}$;

10)
$$f(x,y) = \frac{x^2 + y^2}{1 + x^2 + y^2}$$
, $A = \{(x,y) \mid x = y, 0 \le x \le 1\}$.

ЗАНЯТТЯ 3

ЧАСТИННІ ПОХІДНІ. ПОХІДНІ ЗА НАПРЯМКОМ. ДИФЕРЕНЦІЙОВНІ ФУНКЦІЇ. ДИФЕРЕНЦІАЛ

Контрольні запитання

- 1. Частинні похідні та їх властивості.
- 2. Похідна за напрямком та її властивості.
- 3. Градієнт функції в точці.
- 4. Означення диференційовної в точці функції багатьох змінних.
- 5. Означення диференціала першого порядку.
- 6. Формула для обчислення частинних похідних складної функції.

1. Знайти частинні похідні першого порядку таких функцій:

1)
$$f(x,y) = x^4 + 2y^4 - 4x^2y^2 + \ln(x+y^2) + x\sin(x+y), \ x > -y^2;$$

1)
$$f(x,y) = x^4 + 2y^4 - 4x^2y^2 + \ln(x+y^2) + x\sin(x+y), \ x > -y^2;$$

2) $f(x,y) = xy + \frac{x}{y} + \arctan \frac{y}{x} + \left(\frac{x}{y}\right)^y, xy > 0;$

3)
$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}} + x^y + \arcsin \frac{1}{1 + x^2 y^2}, \ x > 0.$$

2. Знайти вказані частинні похідні таких функцій:

1)
$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial y \partial z}$, $f(x, y, z) = x^3 \sin(yz) + (x^2 + y^2)e^{x+z}$;

2)
$$\frac{\partial^3 f}{\partial x^2 \partial y}$$
, $\frac{\partial^6 f}{\partial x \partial y^2 \partial z^3}$, $f(x, y, z) = x \ln(yz) + xyze^{x+y+z}$, $x, y, z > 0$.

- 3. Знайти похідну функції $f(x,y) \,=\, x^2 y^5$ в точці $\vec{x}^\circ \,=\, (1,1)$ за напрямком $\vec{a}=(2,3)$. Знайти вектор-градієнт в цій точці.
- 4. Дослідити диференційовність у відповідних точках таких функцій:

1)
$$f(x,y) = \sqrt[3]{x^3 + y^3}$$
, $(x,y) \in \mathbf{R}^2$, $\vec{x}^\circ = (0,0)$;

2)
$$f(x,y) = \begin{cases} \exp\left(-\frac{1}{x^2 + y^2}\right), & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$

3) $f(x,y) = |x-1| + |y-2|, & (x,y) \in \mathbf{R}^2, & \vec{x}^\circ = (1,2);$
4) $f(x,y) = \operatorname{tg} \frac{x^2}{y}, & y \neq 0, & \left|\frac{x^2}{y}\right| < \frac{\pi}{2}, & \vec{x}^\circ = \left(\frac{\pi}{4}, \frac{\pi}{4}\right).$

3)
$$f(x,y) = |x-1| + |y-2|, (x,y) \in \mathbb{R}^2, \vec{x}^{\circ} = (1,2);$$

4)
$$f(x,y) = \operatorname{tg} \frac{x^2}{y}, \ y \neq 0, \left| \frac{x^2}{y} \right| < \frac{\pi}{2}, \ \vec{x}^{\circ} = \left(\frac{\pi}{4}, \frac{\pi}{4} \right).$$

5. Нехай функція $g: \mathbf{R}^2 \to \mathbf{R}$ диференційовна на \mathbf{R}^2 . Довести, що наведені функції задовольняють відповідним рівнянням:

аведені функції задовольняють відповідним рівнянням:
$$1) \ f(x,y,z) = \frac{x^4}{12} - \frac{x^3(y+z)}{6} + \frac{x^2yz}{2} + g(y-x,z-x),$$

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = xyz;$$

2)
$$f(x, y, z) = \frac{xy}{z} \ln x + xg\left(\frac{y}{x}, \frac{z}{x}\right), \ x > 0, \ z \neq 0,$$

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = f + \frac{xy}{z}.$$

6. Нехай функції $g: \mathbf{R}^2 \to \mathbf{R}, h: \mathbf{R}^3 \to \mathbf{R}$ двічі диференційовні на області визначення. Знайти частинні похідні першого та другого порядку функцій:

1)
$$f(x,y,z) = g\left(xy,\frac{y}{z}\right), z \neq 0;$$

2)
$$f(x,y,z) = h(x^2 + y^2, x^2 - y^2, 2xz)$$
.

7. Нехай функція $z: \mathbf{R}^2 \to \mathbf{R}$ при фіксованому $a \in \mathbf{R}$ задовольняє рівняння $z^3 - 3xyz = a^3, \ (x,y) \in \mathbf{R}^2.$ Знайти частинні похідні першого порядку функції z в тих точках, де вони існують.

Б3

1. Знайти частинні похідні першого порядку таких функцій:

1)
$$f(x,y,z) = x^{y/z}, x > 0, z \neq 0;$$

2)
$$f(x,y,z) = x^{\arcsin(y/z)}, \ x > 0, z \neq 0, \ \left| \frac{y}{z} \right| < 1;$$

3)
$$f(x, y, z) = \left(\arctan \frac{x}{y}\right)^z, xy > 0;$$

4)
$$f(x, y, z) = \left(\sin \frac{x}{y}\right)^z, \ y \neq 0, 0 < \frac{x}{y} < \pi;$$

5)
$$f(x,y,z) = (\operatorname{tg} x)^{y/z}, \ 0 < x < \frac{\pi}{2}, z \neq 0;$$

6)
$$f(x,y,z) = e^{x(x^2+y^2+z^2)}$$
;

7)
$$f(x, y, z) = \ln(x + \ln y + \ln \ln z), \ x > 0, y > 1, z > e;$$

8)
$$f(x,y,z) = \ln \frac{1 - \sqrt{x^2 + y^2 + z^2}}{1 + \sqrt{x^2 + y^2 + z^2}}, x^2 + y^2 + z^2 < 1;$$

9)
$$f(x, y, z) = \sqrt{\cos^x + \sin^y + \operatorname{ctg}^2 z}, \ 0 < z < \frac{\pi}{2}$$

10)
$$f(x, y, z) = \frac{xy - z}{1 + e^x + \sin y}$$

2. Знайти в точці \vec{x}° градієнт та похідну за напрямком \vec{a} функції $f: \mathbf{R}^3 \to \mathbf{R}:$

1)
$$f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$$
, $\vec{x}^{\circ} = (1,1,1)$, $\vec{a} = (1,2,3)$;
2) $f(x,y,z) = e^{x^2 + y^2 + z^2}$, $\vec{x}^{\circ} = (1,0,0)$, $\vec{a} = (0,1,1)$;

2)
$$f(x,y,z) = e^{x^2+y^2+z^2}$$
, $\vec{x}^{\circ} = (1,0,0)$, $\vec{a} = (0,1,1)$;

3)
$$f(x,y,z) = \ln(1+\sqrt{x^2+y^2+z^2}), \ \vec{x}^{\circ} = (1,-1,1), \ \vec{a} = (1,1,1);$$

4)
$$f(x,y,z) = \text{arctg}\sqrt{x^2 + y^2 + z^2}$$
, $\vec{x}^{\circ} = (1,2,0)$, $\vec{a} = (1,2,3)$;

5)
$$f(x,y,z) = \sin\sqrt{x^2 + y^2 + z^2}$$
, $\vec{x}^{\circ} = (1,0,1)$, $\vec{a} = (3,2,1)$:

6)
$$f(x, y, z) = \cos^2 x + \cos^2 y^2 + \cos^2 z^3$$
, $\vec{x}^{\circ} = (0, 0, 0)$, $\vec{a} = (1, 2, 3)$;

5)
$$f(x,y,z) = \sin\sqrt{x^2 + y^2 + z^2}$$
, $\vec{x} = (1,2,0)$, $\vec{a} = (3,2,1)$;
6) $f(x,y,z) = \cos^2 x + \cos^2 y^2 + \cos^2 z^3$, $\vec{x} = (0,0,0)$, $\vec{a} = (1,2,3)$;
7) $f(x,y,z) = \arcsin\frac{x^2 + y^2 + z^2}{1 + x^2 + y^2 + z^2}$, $\vec{x} = (1,1,0)$, $\vec{a} = (0,1,2)$.

3. Довести, що наведені функції задовольняють відповідним диференціальним рівнянням:

1)
$$f(x,y) = \arctan \frac{x+y}{x-y}, \ x \neq y, \quad \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = \frac{x-y}{x^2 + y^2};$$

2)
$$f(x,y) = x^3 \exp\left(\frac{y}{x^2}\right), \ x \neq 0, \quad x\frac{\partial f}{\partial x} + 2y\frac{\partial f}{\partial y} = 3f;$$

3)
$$f(x,y) = y \ln(1 + (x^2 - y^2)^2), \quad y^2 \frac{\partial f}{\partial x} + xy \frac{\partial f}{\partial y} = xf;$$

4)
$$f(x,y) = \frac{x+y}{x-y}, \ x \neq y, \ x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 0;$$

5)
$$f(x,y) = \cos(x + \sin y)$$
, $\frac{\partial f}{\partial x} \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial y} \frac{\partial^2 f}{\partial x^2}$

6)
$$f(x,y) = \frac{y^2}{3x} + x^4y^4$$
, $x \neq 0$, $x^2 \frac{\partial f}{\partial x} - xy \frac{\partial f}{\partial y} + y^2 = 0$;

7)
$$f(x,y) = xe^{x+y} - y\ln(1+(x+y)^2), \quad \frac{\partial^2 f}{\partial x^2} - 2\frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = 0;$$

8)
$$f(x,y,z) = x^5 \sin \frac{y^2 + z^2}{x^2}$$
, $x \neq 0$, $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} = 5f$.

4. 1) Довести, що при довільних $a, b \in \mathbf{R}$ функція

$$f(x,y) = \ln\sqrt{(x-a)^2 + (y-b)^2}, (x,y) \neq (a,b),$$

задовольняє рівняння Лапласа

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0, \ (x, y) \neq (a, b).$$

2) Довести, що при довільних $a \in {f R}, \ \sigma > 0$ функція

$$f(t,x) = \frac{1}{2\sigma\sqrt{\pi t}} \exp\left(-\frac{(x-a)^2}{4\sigma^2 t}\right), \ t > 0, \ x \in \mathbf{R},$$

задовольняє рівняння теплопровідності

$$\frac{\partial f}{\partial t} = \sigma^2 \frac{\partial^2 f}{\partial x^2}, \ t > 0, \ x \in \mathbf{R}.$$

5. Дослідити диференційовність у відповідних точках таких функцій:

1)
$$f(x,y) = \sqrt[3]{xy}, (x,y) \in \mathbf{R}^2, \vec{x}^\circ = (0,0);$$

2)
$$f(x,y) = \sqrt[3]{x^3 - y^3}, \ x > y, \ \vec{x}^{\circ} = (2,1);$$

2)
$$f(x,y) = \begin{cases} x & y, & x > y, & x = (2,1), \\ \frac{1}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$

4)
$$f(x,y) = \ln(x+y^2), \ x > -y^2, \ \vec{x}^{\circ} = (e,0);$$

5)
$$f(x,y) = (3^y - 1)\sqrt[5]{x}, (x,y) \in \mathbf{R}^2, \vec{x}^\circ = (0,0);$$

6)
$$f(x,y) = \begin{cases} x+y, & x > -y, \\ 0, & x \le -y, \end{cases} \vec{x}^{\circ} = (0,0);$$

7)
$$f(x,y) = y^{\cos x}, \ y > 0, \ \vec{x}^{\circ} = \left(2, \frac{\pi}{3}\right);$$

8)
$$f(x,y) = \begin{cases} \frac{1}{\ln(x^2 + y^2)}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases} \vec{x}^{\circ} = (0,0).$$

6. Нехай функції $\varphi: \mathbf{R} \to \mathbf{R}, g: \mathbf{R}^2 \to \mathbf{R}, h: \mathbf{R}^3 \to \mathbf{R}$ двічі диференційовні на області визначення. Знайти частинні похідні першого та другого порядку функцій:

- 1) $f(x,y) = \varphi(\sqrt{x^2 + 2y^2}), (x,y) \neq (0,0);$
- 2) $f(x, y, z) = \varphi(xyz)$;
- 2) $f(x, y, z) = \varphi(xyz)$, 3) $f(x, y, z) = \varphi(x^2 y^2 + z)$; 4) f(x, y) = g(x + y, x y);
- 5) $f(x,y) = g\left(x^2y, \frac{x}{y^2}\right), \ y \neq 0;$
- 6) f(x,y,z) = g(x-y,z);7) $f(x) = h(x,x^2,x^3);$
- 8) $f(x,y) = h\left(\frac{x}{y}, x y, x + y\right);$
- 9) f(x, y, z) = h(2x, 3y, 5z);
- 10) $f(x,y) = h(xy, \sin y, x + z)$.
- **7.** Знайти частинні похідні першого та другого порядків функції y = y(x), визначеної рівнянням:
 - 1) $x^2 + 2xy y^2 = a^2 (a \in \mathbf{R});$

 - 1) $x^{2} + 2xy y^{2} = a^{2}(a \in \mathbf{R});$ 2) $y \varepsilon \sin y = x(\varepsilon \in (0, 1));$ 3) $x^{3}y y^{3}x = a^{4}(a \in \mathbf{R});$ 4) $x^{2}y^{2} x^{4} y^{4} = a^{4}(a \in \mathbf{R});$ 5) $(x^{2} + y^{2})^{2} a^{2}(x^{2} y^{2}) = 0(a \neq 0);$ 6) $\sin(xy) e^{xy} x^{2}y = 0;$ 7) $\ln\sqrt{x^{2} + y^{2}} = \arctan \frac{y}{x}, x \neq 0;$

 - 8) $x^y = y^{2x}, x > 0, y > 0;$ 9) $xe^y + ye^x e^{xy} = 0;$
 - 10) $y = 2x \arctan \frac{y}{x}, \frac{y}{x} > 0.$

ЗАНЯТТЯ 4 ФОРМУЛА ТЕЙЛОРА. ЗНАХОДЖЕННЯ ТОЧОК ЛОКАЛЬНОГО ЕКСТРЕМУМА

Контрольні запитання

- 1. Загальний вигляд формули Тейлора для функції кількох змінних.
- 2. Означення критичної точки і точок локального екстремума функції від кількох змінних.
- 3. Необхідна умова локального екстремума.
- 4. Достатня умова локального екстремума.
- 5. Критерій Сільвестра додатної і від'ємної визначеності матриці.

Α4

1. 1) Розкласти функцію

$$f(x_1,x_2,x_3)=x_1^3+x_2^3+x_3^3-3x_1x_2x_3,\quad (x_1,x_2,x_3)\in {\bf R}^3$$
 по формулі Тейлора в околі точки $A(1,1,1).$

2) В розкладі функції

$$f(x_1, x_2) = x_1^{x_2}, x_1 > 0$$

в околі точки виписати члени до другого порядку включно і написати наближену формулу для значення $x_1^{x_2}$ при x_1,x_2 , близьких до 1.

- 4. Дослідити на локальний екстремум наступні функції:
 - 1) $f(x_1, x_2) = x_1^2 x_1 x_2 + x_2^2 2x_1 + x_2, \quad (x_1, x_2) \in \mathbf{R}^2;$ 2) $f(x_1, x_2) = x_1^2 + (x_2 1)^2, \quad (x_1, x_2) \in \mathbf{R}^2;$

 - 3) $f(x_1, x_2) = (x_1 x_2 + 1)^2, (x_1, x_2) \in \mathbf{R}^2;$
 - 4) $f(x_1, x_2) = e^{x_1 + x_2}(x_1^2 + x_2^2), (x_1, x_2) \in \mathbf{R}^2$
 - 5) $f(x_1, x_2) = x_1^3 + x_2^3 3x_1x_2, (x_1, x_2) \in \mathbf{R}^2.$
- 5. Дослідити на локальний екстремум наступні функції: 1) $f(x_1,x_2)=\frac{x_2}{4x_1}+\frac{x_1}{x_2};$

 - 2) $f(x_1, x_2) = x_1 x_2 \ln(x_1^2 + x_2^2), \quad (x_1, x_2) \neq (0, 0);$
 - 3) $f(x_1, x_2, x_3) = x_1 + \frac{x_2^2}{4x_1} + \frac{x_3^2}{x_2} + \frac{2}{x_3}, \quad x_i > 0, \ 1 \le i \le 3;$ 4) $f(x_1, x_2, x_3) = x_1^2 \ln(x_2^2 + x_3^2 + \frac{1}{2}).$
- **8.** Нехай функція $z = z(x_1, x_2)$ задана рівнянням

$$x_1^2 + 4x_2^2 + 9z^2 = 1.$$

Дослідити її на локальний екстремум і дати геометричну інтерпретацію.

Д1. Довести, що функція

$$f(x_1, x_2) = x_2^5 - (x_1 - x_2)^2, \quad (x_1, x_2) \in \mathbf{R}^2$$

не має локального мінімума в точці (0,1), хоча при довільних дійсних a і $b, (a, b) \neq (0, 0)$ функція

$$g(x) = f(ax, bx), \quad x \in \mathbf{R}$$

має строгий локальний мінімум в точці x = 0.

Д2. Дослідити на локальний екстремум функцію

$$f(x_1, x_2) = x_1 + x_2 + 4\sin x_1 \cdot \sin x_2, \quad (x_1, x_2) \in \mathbf{R}^2.$$

ДЗ. Довести, що функція

$$f(x_1, x_2) = (x_1 - x_2)^2 + x_1^4 + x_2^4, \quad (x_1, x_2) \in \mathbf{R}^2$$

має строгий локальний мінімум в точці (0,0), хоча $d^2f(0,0)$ є вироджена квадратична форма. Чи має екстремум в цій точці функція

$$g(x_1, x_2) = f(x_1, x_2) + \frac{x_1 x_2^2}{10^7}, \quad (x_1, x_2) \in \mathbf{R}^2$$
?

Д4. Довести, що функція

$$f(x_1, x_2) = \begin{cases} \exp\left(-\frac{1}{x_1^2 + x_2^2}\right), & (x_1, x_2) \neq (0, 0) \\ 0, & (x_1, x_2) = (0, 0) \end{cases}$$

має строгий локальний мінімум в точці (0,0) незважаючи на те, що $\forall n \in \mathbf{N} :$ $d^n f(0,0) = 0.$

2) Довести, що функція

$$f(x_1,x_2)=\begin{cases} x_1^3\sin x_1^{-1}+x_2^2, & x_1\neq 0,\\ x_2^2, & x_1=0 \end{cases}$$
 має строгий локальний мінімум в точці $(0,1)$, хоча похідна $f_{11}''(0,0)$ не

Д5. Нехай функція $z = z(x_1, x_2)$ задана рівнянням

$$(x_1^2 + x_2^2 + z^2)^2 = a^2(x_1^2 + x_2^2 - z^2), \quad a > 0.$$

Дослідити її на локальний екстремум і дати геометричну інтерпретацію.

1. Написати розклад наступних функцій за формулою Тейлора в околі точки $M(x_1^{\circ}, x_2^{\circ})$ до другого порядку включно:

1)
$$f(x_1, x_2) = \frac{x_1}{1 + x_2^2}, \quad x_1^0 = x_2^0 = 0;$$

2)
$$f(x_1, x_2) = \frac{x_1}{x_2}, \ x_2 \neq 0; \ x_1^0 = x_2^0 = 1;$$

3)
$$f(x_1, x_2) = \sin x_1 \cdot \sin x_2$$
, $(x_1^{\circ}, x_2^{\circ}) = \left(\frac{\pi}{2}, \frac{\pi}{3}\right)$;

4)
$$f(x_1, x_2) = \frac{1}{x_1 - x_2}, \ x - 1 \neq x_2; \ (x_1^{\circ}, x_2^{\circ}) = (1, 2);$$

5)
$$f(x_1, x_2) = \sqrt{x_1 + x_2}, \ x_1 > -x_2; \ (x_1^{\circ}, x_2^{\circ}) = (2, -1);$$

6) $f(x_1, x_2) = \ln(x_1 - 2x_2), \ x_1 > 2x_2; \ (x_1^{\circ}, x_2^{\circ}) = (3e, e);$

6)
$$f(x_1, x_2) = \ln(x_1 - 2x_2), \ x_1 > 2x_2; \ (x_1^{\circ}, x_2^{\circ}) = (3e, e);$$

7)
$$f(x_1, x_2) = \arccos\left(\frac{x_1}{x_2}\right), x_2 \neq 0, |x_1| < |x_2|; (x_1^\circ, x_2^\circ) = (1, 2);$$

8)
$$f(x_1, x_2) = \operatorname{tg}(x_1 + x_2^2), |x_1 + x_2^2| < \frac{\pi}{2}; (x_1^{\circ}, x_2^{\circ}) = (\frac{\pi}{4}, 0);$$

9)
$$f(x_1,x_2)=x_1\cos(x_1-x_2), \quad (x_1^\circ,x_2^\circ)=(\pi,2\pi).$$
 2. Дослідити на локальний екстремум наступні функції:

1)
$$f(x_1, x_2) = x_1^2 + x_2^2 - x_1 - 2x_2;$$

2)
$$f(x_1, x_2) = -2x_1^2 + x_2^2 + 3x_1 - 2x_2;$$

3)
$$f(x_1, x_2) = -2x_1^2 - 3x_2^2 - 2x_1 - 3x_2;$$

4)
$$f(x_1, x_2) = x_1^2 + x_2^2 - 14x_1x_2 + 1;$$

5)
$$f(x_1, x_2) = -x_1^2 - 5x_2^2 + 15x_1x_2 - x_1 + 4$$

визначені при всіх $(x_1, x_2) \in \mathbf{R}^2$.

3. Дослідити на локальний екстремум наступні функції:

1)
$$f(x_1, x_2) = x_1^4 + x_2^4 - x_1^2 - 2x_1x_2 - x_2^2;$$

2)
$$f(x_1, x_2) = x_1^2 x_2^3 (6 - x_1 - x_2);$$

3)
$$f(x_1, x_2) = 2x_1^4 + x_2^4 - x_1^2 - 2x_2^2$$
;

4)
$$f(x_1, x_2) = x_1x_2(1 - x_1 - x_2);$$

5)
$$f(x_1, x_2) = x_1^3 + x_2^3 - 9x_1x_2 + 27;$$

6)
$$f(x_1, x_2) = x_1^3 + x_1 x_2^2 + 3ax_1 x_2, \quad a \in \mathbf{R};$$

7)
$$f(x_1, x_2) = x_1^4 + x_2^4 + 2x_1^2x_2^2 - 8x_1 + 8x_2,$$

визначені при всіх $(x_1, x_2) \in \mathbf{R}^2$.

- 4. Дослідити на локальний екстремум наступні функції:
 - $f(x_1, x_2) = x_1 x_2 + \frac{50}{x_1} + \frac{20}{x_2}, \quad x_i > 0, \ i = 1, 2;$
 - $f(x_1, x_2) = x_1 x_2 \sqrt{1 \frac{x_1^2}{4} \frac{x_2^2}{9}}, \quad \frac{x_1^2}{4} + \frac{x_2^2}{9} \le 1;$
 - 3) $f(x_1, x_2) = 1 \sqrt{x_1^2 + x_2^2}, \quad (x_1, x_2) \in \mathbf{R}^2;$
 - 4) $f(x_1, x_2) = (x_1^2 + x_2^2)e^{-(x_1^2 + x_2^2)}, \quad (x_1, x_2) \in \mathbf{R}^2;$
 - $f(x_1, x_2) = \sin x_1 + \cos x_2 + \cos(x_1 x_2),$ $0 \le x_i \le \pi/2, \ i = 1.2$:
 - $f(x_1, x_2) = \sin x_1 \cdot \sin x_2 \cdot \sin(x_1 + x_2),$
 - $0 \le x_i \le \pi, \ i = 1, 2;$ 7) $f(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2 4 \ln x_1 10 \ln x_2,$
 - $x_i > 0, \ i = 1, 2;$ $f(x_1, x_2) = e^{-2x_1 + 3x_2} (8x_1^2 + 6x_1x_2 + 3x_2^2), \quad (x_1, x_2) \in \mathbf{R}^2;$
 - $f(x_1, x_2) = x_2\sqrt{1+x_1} + x_1\sqrt{1+x_2}, \quad x_i \ge -1, i = 1, 2;$
 - 10) $f(x_1, x_2) = e^{2x_1}(x_1 + x_2^2 + 2x_2), \quad (x_1, x_2) \in \mathbf{R}^2.$
- **5.** 1) Нехай $x_i \geq 0, 1 \leq i \leq 3$. Довести, що добуток $x_1x_2x_3$ при умові $x_1+x_2+x_3=a, \ a\geq 0$ буде найбільшим тоді і лише тоді, коли $x_1=$
- 2) Нехай $x_i>0, 1\leq i\leq 3$. Довести, що сума $x_1+x_2+x_3$ при умові $x_1x_2x_3=a,\ a>0$ буде найменшою тоді і лише тоді, коли $x_1=x_2=x_3.$
- 3) При яких розмірах прямокутної відкритої скрині з заданим об'ємом $V = 32a^3$ її поверхня буде найменшою?
- 4) В кулю радіуса r>0 вписати прямокутний паралелепіпед найбільшого об'єма.
- 5) Визначити зовнішні розміри казана циліндричної форми з заданою товщиною стінок d>0 і ємністю V>0 так, щоб на його виготовлення пішло якнайменше матеріалу.
- 6) На площині $3x_1-2x_3=0$ знайти точку, сума квадратів відстаней до якої від точок A(1,1,1) і B(2,3,4) найменша.
- 7) Знайти найбільший об'єм паралелепіпеда при заданій сумі його ребер $12a, \ a > 0.$
- 8) Через точку A(1,2,3) провести площину, що утворює з площинами координат тетраедр найменшого об'єму.

ЗАНЯТТЯ 5 УМОВНИЙ (ВІДНОСНИЙ) ЕКСТРЕМУМ

Контрольні запитання

- 1. Означення точок локального мінімума і максимума.
- 2. Необхідна і достатня умови локального умовного мінімума і максимума.

A5

- **1.** Дослідити задані функції на умовний екстремум при наступних рівняннях зв'язку:
 - 1) $f(x_1, x_2) = x_1 x_2, (x_1, x_2) \in \mathbf{R}^2, x_1^2 + x_2^2 = 1;$

2)
$$f(x_1, x_2, x_3) = x_1 + x_2 + x_3, \ x_i > 0, \ 1 \le i \le 3,$$

 $x_1^2 + 4x_2^2 = 1, \ x_1^2 + x_2^2 + x_3^2 = 4.$

2. Нехай a>0 – фіксована стала. Знайти найбільше значення функції

$$f(x_1,x_2,\ldots,x_m)=\prod_{i=1}^m x_i,\quad x_i\geq 0,\ 1\leq i\leq m$$

за умови $x_1+x_2+\cdots+x_m=a,$. Використовуючи отриманий результат, довести нерівність

$$\sqrt[m]{x_1 x_2 \dots x_m} \le \frac{x_1 + x_2 + \dots + x_m}{m}, \quad x_i \ge 0, \ 1 \le i \le m.$$

За якої умови можливий знак рівності?

- 3. Визначити найбільше і найменше значення наступних функцій:
 - 1) $f(x_1, x_2) = x_1^2 + x_2^2 12x_1 + 16x_2$,

$$(x_1, x_2) \in \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 25\};$$

2)
$$f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2$$
,

$$(x_1, x_2) \in \{(x_1, x_2) \mid |x_1| + |x_2| \le 1\};$$

3)
$$f(x_1, x_2) = x_1 - 2x_2 - 3,$$

$$(x_1, x_2) \in \{(x_1, x_2) \mid 0 \le x_i \le 1, \ i = 1, 2; \ x_1 + x_2 \le 1\};$$

4)
$$f(x_1, x_2, x_3) = x_1 + x_2 + x_3$$
,

$$(x_1, x_2, x_3) \in \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 \le x_3 \le 1\}.$$

- **4.** При яких розмірах прямокутна ванна заданого об'єму V має найменшу площу поверхні?
- **5.** При яких розмірах відкрита циліндрична ванна з півкруглим поперечним перерізом, площа поверхні якої рівна S, має найбільший об'єм?

Д1. Знайти найменше значення функції

$$f(x_1,x_2,\dots,x_m)=x_1^p+x_2^p+\dots+x_m^p,\ p>1,\ x_i\geq 0, 1\leq i\leq m$$
 за умови $x_1+x_2+\dots+x_m=a.$ Використовуючи отриманий результат, довести при $p>1,\ x_i\geq 0,\ 1\leq i\leq m$ нерівність

$$\frac{x_1^p + x_2^p + \dots + x_m^p}{m} \ge \left(\frac{x_1 + x_2 + \dots + x_m}{m}\right)^p.$$

Д2. Знайти найменше значення функції

$$f(x_1, x_2, \dots, x_m) = \left(\sum_{i=1}^m x_i^k\right)^{1/k}, \ k > 1, \ x_i \ge 0, \ 1 \le i \le m$$

за умови $\sum_{i=1}^m a_i x_i = A, \ a_i \geq 0, \ 1 \leq i \leq m, A \geq 0.$ Використовуючи отриманий результат, довести нерівність

$$\sum_{i=1}^{m} a_i x_i \le \left(\sum_{i=1}^{m} x_i^p\right)^{1/p} \cdot \left(\sum_{i=1}^{m} a_i^q\right)^{1/q},$$

$$p > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \ a_i \ge 0, \ x_i \ge 0, \ 1 \le i \le m.$$

В яких випадках в останній нерівності справджується рівність?

- 1. Нехай $a>0,\;bc\neq0$ фіксовані сталі.Дослідити задані функції на умовний екстремум при наступних рівняннях зв'язку:
 - $f(x_1, x_2) = e^{x_1 x_2}, (x_1, x_2) \in \mathbf{R}^2, x_1 + x_2 = 1;$
 - $f(x_1, x_2) = x_1^{-1} + x_2^{-1}, \ x_1 x_2 \neq 0; \ x_1 + x_2 = 2a;$
 - $f(x_1, x_2) = x_1 x_2, x_i \in [0, \pi/2), i = 1, 2; \quad \operatorname{tg} x_1 = 3 \operatorname{tg} x_2;$

 - 4) $f(x_1, x_2) = \cos^2 x_1 + \cos^2 x_2, \ (x_1, x_2) \in \mathbf{R}^2, \ x_1 x_2 = \pi/4;$ 5) $f(x_1, x_2) = \frac{x_1}{b} + \frac{x_2}{c}, \ (x_1, x_2) \in \mathbf{R}^2; \ x_1^2 + x_2^2 = 1;$
 - 6) $f(x_1, x_2) = 2\cos^2 x_1 + 3\cos^2 x_2, (x_1, x_2) \in \mathbf{R}^2; x_1 x_2 = \pi/4.$
- **2.** Нехай $a \in \mathbf{R}$ фіксована стала. Знайти найменше значення функції $f(x_1, x_2, \dots, x_m) = x_1^2 + x_2^2 + \dots + x_m^2, (x_1, x_2, \dots, x_m) \in \mathbf{R}^m$

за умови $x_1 + x_2 + \cdots + x_m = a$. Використовуючи отриманий результат, довести нерівність

 $(x_1 + x_2 + \dots + x_m)^2 \le m(x_1^2 + x_2^2 + \dots + x_m^2), \quad x_i \in \mathbf{R}, \ 1 \le i \le m.$

3. Нехай a>b>0 – фіксовані сталі. Знайти найбільше і найменше значення наступних функцій:

1)
$$f(x_1, x_2) = x_1^2 + 3x_2^2 - x_1 + 18x_2 - 4,$$

 $(x_1, x_2) \in [0, 1] \times [0, 1];$

1)
$$f(x_1, x_2) = x_1 + 3x_2 - x_1 + 18x_2 - 4,$$

 $(x_1, x_2) \in [0, 1] \times [0, 1];$
2) $f(x_1, x_2) = x_1^2 + 3x_2^2 - x_1 + 18x_2 - 4,$
 $(x_1, x_2) \in \{(x_1, x_2) \mid 0 \le x_1 \le x_2 \le 4\};$

3)
$$f(x_1, x_2) = x_1^2 + x_2^2$$
,

$$(x_1, x_2) \in \left\{ (x_1, x_2) \mid \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1 \right\};$$

4)
$$f(x_1, x_2) = e^{-x_1^2 - x_2^2} (2x_1^2 + 3x_2^2),$$

 $(x_1, x_2) \in \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\};$

5)
$$f(x_1, x_2) = \frac{x_1 x_2}{2} - \frac{x_1^2 x_2}{6} - \frac{x_1 x_2^2}{8},$$
$$(x_1, x_2) \in \left\{ (x_1, x_2) \mid x_i \ge 0, \ i = 1, 2; \ \frac{x_1}{3} + \frac{x_2}{4} \le 1 \right\};$$

6)
$$f(x_1, x_2) = (x_1 - x_2^2)(x_1 - 1)^{2/3},$$

 $(x_1, x_2) \in \{(x_1, x_2) \mid x_2^2 \le x_1 \le 2\};$

7)
$$f(x_1, x_2) = \sqrt{1 - x_1^2 - x_2^2},$$

 $(x_1, x_2) \in \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\};$

8)
$$f(x_1, x_2) = x_1^2 - x_2^2$$
, $(x_1, x_2) \in \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\}$;

9)
$$f(x_1, x_2) = x_1^2 + 2x_1x_2 - 4x_1 + 8x_2,$$

 $(x_1, x_2) \in [0, 1] \times [0, 2];$

10)
$$f(x_1, x_2)x_1^2x_2(4 - x_1 - x_2),$$
 $(x_1, x_2) \in \{(x_1, x_2) \mid x_i \ge 0, i = 1, 2; x_1 + x_2 \le 6\}.$

- 4. 1) В заданий прямий круговий конус вписати прямокутний паралелепіпед найбільшого об'єму.
- 2) З усіх трикутників з однаковою основою і одним і тим же кутом при вершині знайти найбільший за площею.
- 3) При заданій повній поверхні шатра визначити його виміри так, щоб об'єм був найбільшим. Шатер має форму циліндра, завершеного зверху прямим круговим конусом.
- 4) При заданому об'ємі шатра визначити його виміри так, щоб його повна поверхня була найменшою. (Про форму шатра див. пункт 3.)
- 5) Треба збудувати конічний шатер найбільшого об'єму з заданої кількості матеріалу загальною площею S. Які повинні бути його розміри?

- б) На площині, заданій рівнянням $3x_1-2x_3=0$ знайти точку, сума квадратів відстаней якої до точок A(1,-1,1) і B(2,-3,4) найменша.
- 7) З усіх еліпсів, у яких сума осей постійна і рівна 2L знайти найбільший за площею.
- 8) Знайти найкоротшу відстань від точки A(-1,0) до еліпса, заданого рівнянням $4x_1^2+9x_2^2=36.$
- 9) Площа трикутної ділянки землі зменшена загородками при вершинах; кожна загородка є круговою і має центр у відповідній вершині. Знайти, як можна зберегти найбільшу площу ділянки при заданій загальній довжині трьох загородок.
- 10) На еліпсі, що має рівняння $x_1^2 + 4x_2^2 = 4$, дано дві точки $A(-\sqrt{3}, \frac{1}{2})$

і $B(1,\frac{\sqrt{3}}{2})$. Знайти на цьому ж еліпсі третю точку $C(x_1^\circ,x_2^\circ)$ таку, щоб площа трикутника $\triangle ABC$, яку можна обчислити за формулою

$$S = \pm \begin{vmatrix} 1 & -\sqrt{3} & \frac{1}{2} \\ 1 & 1 & \frac{\sqrt{3}}{2} \\ 1 & x_1^0 & x_2^0 \end{vmatrix}$$

була найбільшою. Знак перед визначником обирається так, щоб площа була невід'ємна.

- **5.** 1) Знайти довжини півосей еліпса, що описується рівнянням $36x_1^2+24x_1x_2+29x_2^2=180$ і має центр в точці (0,0), досліджуючи екстремуми відстані довільної точки еліпса до його центра.
- 2) Серед всіх трикутників, вписаних в круг радіуса R, знайти трикутник з найбільшою площею.
- 3) Серед усіх трикутників з заданим периметром 2p знайти трикутник з найбільшою площею.
- 4) Серед усіх пірамід, основою яких є заданий трикутник зі сторонами a,b,c, а висота рівна h, знайти піраміду з найменшою площею бічної поверхні.
- 5) Знайти точку площини, сума квадратів відстаней від якої до трьох заданих точок $A_i(x_1(i),x_2(i)), 1 \leq i \leq 3$ є найменшою.
- 6) Серед усіх чотирикутників, вписаних в задане коло, знайти чотирикутник з найбільшою площею.
- 7) Знайти найбільшу відстань від точок поверхні, заданої рівнянням $2x_1^2 +$

- $3x_2^2+2x_3^2+2x_1x_3=6$, до площини з рівнянням $x_3=0$. 8) На параболі $2x_1^2-4x_1x_2+2x_2^2-x_1-x_2=0$, рівняння якої є знайти точку, найближчу до прямої з рівнянням $9x_1-7x_2+16=0$.
- 9) На еліпсі, заданому рівнянням $\frac{x_1^2}{4}+\frac{x_2^2}{9}=1$, знайти точки, найбільше і найменше віддалені від прямої з рівянням $3x_1+x_2-9=0$.
- 10) На еліпсоїді обертання, рівняння якого є $\frac{x_1^2}{96} + x_2^2 + x_3^2 = 1$ знайти точки, найбільше і найменше віддалені від площини з рівнянням $3x_1 + x_2^2 + x_3^2 = 1$ $4x_2 + 12x_3 = 288.$

ЗАНЯТТЯ 6

ОБЧИСЛЕННЯ НЕВЛАСНИХ ІНТЕГРАЛІВ З ПАРАМЕТРОМ. ІНТЕГРАЛ ТА ПЕРЕТВОРЕННЯ ФУР'Є

Контрольні запитання

- 1. Інтеграл Фруллані.
- 2. Значення інтегралів Діріхле та Ейлера Пуассона.
- 3. Інтеграл та перетворення Фур'є.

A6

1. Нехай a > 0, b > 0. Використовуючи рівність

$$\frac{e^{-ax}-e^{-bx}}{x} = \int_a^b e^{-\alpha x} d\alpha, \ x > 0,$$

обчислити інтеграл

$$\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} \, dx \quad a > 0, \ b > 0.$$

2. Для $\{a,b\}\subset (0,+\infty)$ обчислити інтеграл

$$\int_0^{+\infty} \frac{\cos ax - \cos bx}{x} \, dx.$$

- 3. Обчислити інтеграл $\int_0^{+\infty} \frac{\sin^2 \alpha x}{x^2} \, dx, \; \alpha \in \mathbf{R},$ двома способами: а) диференціюванням по параметру; б) частинами.
- 4. Обчислити інтеграли:

1)
$$\int_0^{+\infty} \frac{1 - \cos \alpha x}{x^2} dx, \ \alpha \in \mathbf{R}$$

3)
$$\int_{-\infty}^{+\infty} \exp(-2x^2 + 10x + 3) dx$$
;

2)
$$\int_0^{+\infty} \frac{1 - e^{-\alpha x^2}}{x^2} dx$$
, $\alpha > 0$;

1)
$$\int_0^{+\infty} \frac{1 - \cos \alpha x}{x^2} dx$$
, $\alpha \in \mathbf{R}$; 3) $\int_{-\infty}^{+\infty} \exp(-2x^2 + 10x + 3) dx$;
2) $\int_0^{+\infty} \frac{1 - e^{-\alpha x^2}}{x^2} dx$, $\alpha > 0$; 4) $\int_0^{+\infty} \frac{e^{-\alpha x^2} - e^{-\beta x^2}}{x^2} dx$, $\alpha > 0$, $\beta > 0$.

5. Зобразити інтегралом Фур'є функцію f. При яких значеннях t інтеграл Фур'є збігається до відповідного значення функції f?

1)
$$f(t) = \begin{cases} \sin t, & |t| \le 1, \\ 0, & |t| > 1; \end{cases}$$
 2) $f(t) = \begin{cases} \sin t, & |t| \le \pi, \\ 0, & |t| > \pi. \end{cases}$

2)
$$f(t) = \begin{cases} \sin t, & |t| \le \pi, \\ 0, & |t| > \pi. \end{cases}$$

6. Знайти перетворення Фур'є функцій:

1)
$$f(t) = \exp\left(-\frac{(t-a)^2}{2\sigma^2}\right)$$
, $t \in \mathbf{R}$; 2) $f(t) = \begin{cases} 1, & |t| \le a, \\ 0, & |t| > a; \end{cases}$ $a \ge 0$.

Д1. Використовуючи співвідношення

$$\frac{1}{1+x^2} = \int_0^{+\infty} e^{-y(1+x^2)} \, dy, \ x \in \mathbf{R},$$

обчислити інтеграл Лапласа

$$L(\alpha) = \int_0^{+\infty} \frac{\cos \alpha x}{1 + x^2} dx, \ \alpha \in \mathbf{R}.$$

Д2. Використовуючи співвідношення

$$\frac{1}{\sqrt{x}} = \frac{2}{\sqrt{\pi}} \int_0^{+\infty} e^{-xy^2} \, dy, \ x > 0,$$

обчислити інтеграли Френеля

$$I_1 = \int_0^{+\infty} \sin x^2 dx = \frac{1}{2} \int_0^{+\infty} \frac{\sin x}{\sqrt{x}} dx,$$

$$I_2 = \int_0^{+\infty} \cos x^2 dx = \frac{1}{2} \int_0^{+\infty} \frac{\cos x}{\sqrt{x}} dx.$$

Д3. Обчислити інтеграли:

1)
$$\int_0^{+\infty} \frac{x - \sin x}{x^3} \, dx;$$

2)
$$\int_0^{+\infty} \frac{dx}{e^{x^2} \left(x^2 + \frac{1}{2}\right)^2}$$
.

Б6

1. Для довільних чисел $a>0,\,b>0$ обчислити інтеграли:

- 1) $\int_{0}^{+\infty} \frac{\exp(-ax^{2}) \exp(-bx^{2})}{x} dx;$ 2) $\int_{0}^{+\infty} \frac{\arctan \frac{ax \arctan bx}{x} dx;}{\frac{ax \cot \frac{ax^{2} \arctan bx^{2}}{x} dx;}{x}}$ 3) $\int_{0}^{+\infty} \frac{\arctan \frac{ax^{2} \arctan bx^{2}}{x} dx;}{\frac{\sin \frac{ax^{2} \sin bx^{2}}{x} dx;}{x}}$ 4) $\int_{0}^{+\infty} \frac{\arctan \frac{ax^{2} \sin bx^{2}}{x} dx;}{\frac{ax \cot \frac{ax \arctan bx}{x} dx;}{x}}$ 5) $\int_{0}^{+\infty} \frac{\arctan \frac{ax \arctan bx}{x} dx;}{x}$

6)
$$\int_0^{+\infty} \frac{\sin a\sqrt{x} - \sin b\sqrt{x}}{x} dx;$$
7)
$$\int_0^{+\infty} \frac{\cos a\sqrt{x} - \cos b\sqrt{x}}{x} dx;$$

7)
$$\int_0^{+\infty} \frac{\cos a\sqrt{x} - \cos b\sqrt{x}}{x} \, dx$$

8)
$$\int_0^{+\infty} \frac{(ax+1)^{-3/2} - (bx+1)^{-3/2}}{x} dx$$

8)
$$\int_0^{+\infty} \frac{(ax+1)^{-3/2} - (bx+1)^{-3/2}}{x} dx;$$
9)
$$\int_0^{+\infty} \left(\frac{1}{\sqrt{ax+1}} - \frac{1}{\sqrt{bx+1}}\right) \cdot \frac{dx}{x};$$

10)
$$\int_0^{+\infty} \frac{(\arctan ax)^2 - (\arctan bx)^2}{x} dx.$$

2. Довести, що інтеграл

$$I(\alpha) = \int_0^{+\infty} e^{-x^2} \cos \alpha x \, dx, \quad \alpha \in \mathbf{R},$$

задовольняє диференціальне рівняння

$$I'(\alpha) = -\frac{1}{2}\alpha I(\alpha), \quad \alpha \in \mathbf{R},$$

і обчислити його.

3. Обчислити інтеграли:

1)
$$\int_{0}^{+\infty} \frac{\cos \alpha x - \cos \beta x}{x^{2}} dx, \ \alpha > \beta > 0;$$
2)
$$\int_{0}^{+\infty} \frac{1 - e^{-\alpha x}}{x} \cdot e^{-x} dx, \ \alpha > 0;$$
3)
$$\int_{0}^{+\infty} x^{n} e^{-\alpha x} dx, \ n \in \mathbf{N}, \ \alpha > 0;$$

2)
$$\int_0^{+\infty} \frac{1 - e^{-\alpha x}}{x} \cdot e^{-x} dx$$
, $\alpha > 0$

3)
$$\int_0^{+\infty} x^n e^{-\alpha x} dx$$
, $n \in \mathbb{N}$, $\alpha > 0$;

4)
$$\int_{-\infty}^{+\infty} x^{2n} e^{-\alpha x^2} dx, \ n \in \mathbf{N}, \ \alpha > 0$$

5)
$$\int_0^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} \cos x \, dx, \ \alpha > \beta > 0$$

6)
$$\int_0^{+\infty} x^{\alpha} \ln^n x \, dx$$
, $n \in \mathbb{N}$, $\alpha > -1$;

3)
$$\int_{0}^{+\infty} x^{n} e^{-\alpha x} dx, \quad n \in \mathbf{N}, \quad \alpha > 0;$$
4)
$$\int_{-\infty}^{+\infty} x^{2n} e^{-\alpha x^{2}} dx, \quad n \in \mathbf{N}, \quad \alpha > 0;$$
5)
$$\int_{0}^{+\infty} \frac{e^{-\alpha x} - e^{-\beta x}}{x} \cos x dx, \quad \alpha > \beta > 0;$$
6)
$$\int_{0}^{+\infty} x^{\alpha} \ln^{n} x dx, \quad n \in \mathbf{N}, \quad \alpha > -1;$$
7)
$$\int_{0}^{+\infty} \frac{e^{-\alpha x^{2}} - \cos \beta x}{x^{2}} dx, \quad \alpha > 0, \quad \beta > 0;$$
8)
$$\int_{0}^{+\infty} \left(\frac{\sin \alpha x}{x}\right)^{3} dx, \quad \alpha > 0.$$

8)
$$\int_0^{+\infty} \left(\frac{\sin \alpha x}{x}\right)^3 dx, \ \alpha > 0.$$

4. Обчислити інтеграли:

1)
$$\int_0^{+\infty} \frac{\sin \alpha x \sin \beta x}{x} dx, \ \alpha > \beta > 0;$$
2)
$$\int_0^{+\infty} \frac{\sin \alpha x \cos \beta x}{x} dx, \ \alpha > \beta > 0;$$
3)
$$\int_0^{+\infty} \frac{\sin^3 \alpha x}{x} dx, \ \alpha > 0;$$

2)
$$\int_0^{+\infty} \frac{\sin \alpha x \cos \beta x}{x} dx, \ \alpha > \beta > 0$$

3)
$$\int_0^{+\infty} \frac{\sin^3 \alpha x}{x} dx, \ \alpha > 0$$

4)
$$\int_0^{+\infty} \frac{\sin^4 \alpha x - \sin^4 \beta x}{x} dx$$
, $\alpha > \beta > 0$;
5) $\int_{-\infty}^{+\infty} x^2 e^{-(x^2 + x)} dx$;
6) $\int_{-\infty}^{+\infty} x e^{-(x^2 - x)} dx$.

5)
$$\int_{-\infty}^{+\infty} x^2 e^{-(x^2+x)} dx$$

6)
$$\int_{-\infty}^{+\infty} x e^{-(x^2-x)} dx$$

5. Зобразити інтегралом Фур'є функцію f. При яких значеннях t інтеграл Фур'є збігається до відповідного значення функції f?

1)
$$f(t) = \begin{cases} e^{-t}, & t > 0, \\ 0, & t \le 0; \end{cases}$$
2) $f(t) = \begin{cases} e^{-t}, & t > 0, \\ 0, & t \le 1, \\ t^{-2}, & |t| \ge 1; \end{cases}$

6. Знайти перетворення Фур'є функцій:

1)
$$f(t) = \begin{cases} e^{-t}, & t \ge 0, \\ 0, & t < 0; \end{cases}$$
 2) $f(t) = (1 + t^2)^{-1}, t \in \mathbf{R};$ 3) $f(t) = e^{-a|t|}, t \in \mathbf{R}; a > 0.$

2)
$$f(t) = (1+t^2)^{-1}, t \in \mathbf{R};$$

3)
$$f(t) = e^{-a|t|}, t \in \mathbf{R}; a > 0$$

ЗАНЯТТЯ 7 ЕЙЛЕРОВІ ІНТЕГРАЛИ

Контрольні запитання

- 1. Означення Г- і В-функцій Ейлера.
- 2. Елементарні властивості ейлерових інтегралів: значення $\Gamma\left(\frac{1}{2}\right)$, $\Gamma(n), n \in \mathbf{N}$; функціональні рівняння для Γ -функції; зв'язок між Γ - і B-функціями.
- 3. Диференційовність Γ і B-функцій Ейлера, формули для похі-
- 4. Формула Вейєрштрасса для Γ -функції.
- 5. Розклад синуса у нескінченний добуток.

A7

1. Обчислити інтеграл

$$\int_0^{+\infty} x^{2n} e^{-x^2} \, dx, \quad n \in \mathbf{N}.$$

2. Нехай

$$I(\alpha) = \int_0^{+\infty} \exp(-x^{\alpha}) dx, \quad \alpha > 0.$$

- 2) Знайти $\lim_{\alpha \to +\infty} I(\alpha)$. 1) Виразити функцію I через Γ -функцію Ейлера;
- **3.** Звести інтеграли до Γ -функції та обчислити їх:

1)
$$\int_0^{\pi/2} \sin^6 x \cos^4 x \, dx;$$

2) $\int_0^1 \sqrt{x - x^2} \, dx;$

3)
$$\int_0^1 \frac{dx}{\sqrt[\alpha]{1-x^{\alpha}}}, \ \alpha > 1.$$

- 4. При фіксованому $\beta>0$ знайти значення α , при яких збігаються інтеграли. Виразити інтеграли через ейлерові та обчислити їх.

1)
$$\int_0^{+\infty} \frac{x^{\alpha-1}}{1+x^{\beta}} dx;$$

2)
$$\int_0^{+\infty} \frac{x^{\alpha-1}}{(1+x)^{\beta}} dx$$
.

5. Виразити інтеграли через Γ -функцію та її похідні, обчислити їх:

1)
$$\int_0^{+\infty} \frac{x^{\alpha - 1} \ln x}{1 + x} dx, \\ 0 < \alpha < 1;$$

2)
$$\int_0^{+\infty} x^{\alpha} e^{-ax} \ln x \, dx,$$
$$a > 0, \ \alpha > -1.$$

6. Довести рівність

$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^{4}}} \cdot \int_{0}^{1} \frac{x^{2} dx}{\sqrt{1-x^{4}}} = \frac{\pi}{4}.$$

7. Знайти інтеграл

$$\int_{0}^{+\infty} \frac{\cos \alpha x}{x^{\beta}} dx, \quad \alpha > 0, \ 0 < \beta < 1,$$

використовуючи рівність

$$\frac{1}{x^{\beta}} = \frac{1}{\Gamma(\beta)} \int_{0}^{+\infty} t^{\beta - 1} e^{-xt} dx, \quad x > 0, \ \beta > 0.$$

Д1. Обчислити інтеграли $\int\limits_0^1 \ln \Gamma(x)\,dx, \quad \int\limits_0^1 \ln \Gamma(x) \cdot \sin \pi x\,dx.$ **Д2.** Для a>0 і $n\in {\bf N}$ знайти довжину дуги кривої

$$r^n = a^n \cos n\varphi, \quad |\varphi| \le \frac{\pi}{2n}.$$

ДЗ. Знайти площу, обмежену кривою

$$|x|^n + |y|^n = a^n$$
, $n > 0$, $a > 0$.

Д4. Використовуючи формулу Вейєрштрасса для Γ -функції, обчислити нескінченні добутки $\prod_{n=1}^{\infty} \frac{(n+\alpha_1)(n+\alpha_2)}{(n+\beta_1)(n+\beta_2)}$ при таких значеннях параме-

1)
$$\alpha_1 = \alpha_2 = 1, \beta_1 = \frac{1}{2}, \beta_2 = \frac{3}{2};$$

2)
$$\alpha_1 = \alpha_2 = \frac{1}{2}, \beta_1 = \frac{3}{4}, \beta_2 = \frac{1}{4};$$

3)
$$\alpha_1 = -\alpha_2 = -\frac{1}{2}$$
, $\beta_1 = -\beta_2 = -\frac{3}{4}$;

4)
$$\alpha_1 = 3$$
, $\alpha_2 = 5$, $\beta_1 = \frac{5}{2}$, $\beta_2 = \frac{11}{2}$;

5)
$$\alpha_1 = \frac{1}{2}, \ \alpha_2 = \frac{3}{2}, \ \beta_1 = \beta_2 = 1.$$

Д5. Обчислити нескінченні добутки $\prod_{n=1}^{\infty} \left(1 - \frac{\alpha^2}{n^2}\right) \left(1 - \frac{\beta^2}{n^2}\right)$, якщо:

1)
$$\alpha = \frac{1}{3}, \beta = \frac{1}{6};$$

2) $\alpha = \frac{1}{4}, \beta = \frac{1}{3};$

3)
$$\alpha = \frac{5}{4}, \beta = \frac{5}{6}$$
.

Б7

1. Визначити множину тих lpha, при яких збігаються інтеграли. Виразити геграли через Γ -функцію.

1) $\int_0^{+\infty} x^{\alpha} \exp(-x^{\beta}) \, dx$, $\beta > 0$;

2) $\int_0^1 \left(\ln \frac{1}{x} \right)^{\alpha} \, dx$;

3) $\int_0^{+\infty} \exp\left(-\frac{1}{x} \right) \cdot \frac{dx}{x^{\alpha}}$; $\int_0^{+\infty} \exp\left(-\frac{1}{x} \right) \cdot \frac{dx}{x^{\alpha}}$; $\int_0^{+\infty} \exp\left(-\frac{1}{x} \right) \cdot \frac{dx}{x^{\alpha}}$; $\int_0^{+\infty} e^{-x} x^{\alpha} \, dx$;

9) $\int_0^{+\infty} x^{\alpha} e^{-\sqrt{x}} \, dx$. інтеграли через Γ -функцію:

1)
$$\int_0^{+\infty} x^{\alpha} \exp(-x^{\beta}) dx,$$
$$\beta > 0;$$

5)
$$\int_{1}^{+\infty} 3^{-x} (x-1)^{\alpha} dx$$
;

2)
$$\int_0^1 \left(\ln\frac{1}{x}\right)^{\alpha} dx$$

6)
$$\int_{-\infty}^{+\infty} |x|^{\alpha} \exp(-x^4) \, dx;$$

2)
$$\int_0^\infty \left(\ln \overline{x} \right) dx$$
,

7)
$$\int_1^{+\infty} x(x^2-1)^{\alpha} \exp(-x^2) dx$$

3)
$$\int_0^{+\infty} \exp\left(-\frac{1}{x}\right) \cdot \frac{dx}{x^0}$$

8)
$$\int_1^{+\infty} (\ln x)^{\alpha} \cdot \frac{dx}{x^2}$$
;

4)
$$\int_0^{+\infty} 2^{-x} x^{\alpha} dx$$
;

9)
$$\int_0^{+\infty} x^{\alpha} e^{-\sqrt{x}} dx$$

2. Довести рівність

$$\int_{0}^{+\infty} e^{-x^4} dx \cdot \int_{0}^{+\infty} x^2 e^{-x^4} dx = \frac{\pi}{8\sqrt{2}}.$$

3. Визначити множину тих α , при яких збігаються інтеграли. Виразити інтеграли через Γ -функцію:

1)
$$\int_0^{+\infty} \frac{x^{\alpha} dx}{(1+x^2)^2}$$

6)
$$\int_0^1 (1-x^{\alpha})^{\beta} dx$$
, $\beta > -1$

$$2) \int_0^{+\infty} \frac{x \, dx}{2 + 3x^{\alpha}}$$

1)
$$\int_{0}^{+\infty} \frac{x^{\alpha} dx}{(1+x^{2})^{2}};$$
 6) $\int_{0}^{1} (1-x^{\alpha})^{\beta} dx$, $\beta > -1$;
2) $\int_{0}^{+\infty} \frac{x dx}{2+3x^{\alpha}};$ 7) $\int_{0}^{1} x^{2} (1-x^{\alpha})^{\beta} dx$, $\beta > -1$;
3) $\int_{0}^{1} \frac{x^{\alpha}(1-x)}{(x+1)^{\alpha+3}} dx;$ 8) $\int_{0}^{1} x^{\alpha} (1-x^{3}) dx;$ 9) $\int_{0}^{+\infty} \frac{dx}{(x(1+x))^{3/4}};$ 5) $\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} dx$, $a > 0$; 10) $\int_{-1}^{1} \frac{((1+x)^{2}(1-x)^{2})^{\alpha}}{(1+x^{2})^{2\alpha+1}} dx.$

3)
$$\int_0^1 \frac{x^{\alpha}(1-x)}{(x+1)^{\alpha+3}} dx$$

8)
$$\int_0^1 x^{\alpha} (1-x^3) \, dx$$

4)
$$\int_1^2 \frac{(x-1)^{\alpha}(2-x)^2}{(x+2)^{\alpha+4}} dx$$

9)
$$\int_0^{+\infty} \frac{dx}{(x(1+x))^{3/4}}$$

5)
$$\int_0^a x^2 \sqrt{a^2 - x^2} dx$$
, $a > 0$

10)
$$\int_{-1}^{1} \frac{((1+x)^2(1-x)^2)^{\alpha}}{(1+x^2)^{2\alpha+1}} dx$$

4. Знайти площу фігури, обмеженої кривою

$$r^4 = \sin^3 \varphi \cos \varphi, \quad \varphi \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right].$$

5. Визначити множину тих lpha, при яких збігаються інтеграли. Обчислити інтеграли через Γ -функцію:

1)
$$\int_0^{\pi/2} tg^{\alpha} x \, dx$$
;

2)
$$\int_0^{\pi} \sin^{\alpha} x \, dx;$$

3)
$$\int_0^{\pi} \frac{dx}{\sqrt{3 - \cos x}} \, dx$$
 (заміна $\cos x = 1 - 2\sqrt{t}$);

4)
$$\int_{-\infty}^{+\infty} x^4 e^{-x^2} dx;$$

5) $\int_{0}^{+\infty} x e^{-x^3} dx;$
6) $\int_{0}^{+\infty} x^{-1/3} e^{-\sqrt[3]{x}} dx;$

7)
$$\int_{0}^{+\infty} x^{2n+1} e^{-x^2} dx$$
, $n \in$

5)
$$\int_0^{+\infty} x e^{-x^3} dx$$

8)
$$\int_0^{+\infty} \sqrt{x} e^{-(\sqrt{x})^3} dx$$
.

6. Виразити інтеграли через ейлерові та їх похідні:

1)
$$\int_0^{+\infty} e^{-x^2} \ln x \, dx$$
;

7)
$$\int_0^{+\infty} x^{\alpha} e^{-\beta x} \ln^2 x \, dx$$

2)
$$\int_0^{+\infty} \frac{x^{\alpha - 1} \ln 2x}{1 + x} dx$$
$$0 < \alpha < 1$$
:

8)
$$\int_{1}^{+\infty} (\ln x)^{\alpha} \frac{\ln \ln x}{x^{\alpha}} dx$$

3)
$$\int_0^1 \ln(-\ln x) \, dx$$

$$\frac{x^{\alpha-1}\ln^2 x}{1+x} dx, \quad \alpha >$$

5. Виразити інтеграли через ейлерові та їх похідні:
1)
$$\int_0^{+\infty} e^{-x^2} \ln x \, dx;$$
 7) $\int_0^{+\infty} x^{\alpha} e^{-\beta x} \ln^2 x \, dx,$ 2) $\int_0^{+\infty} \frac{x^{\alpha-1} \ln 2x}{1+x} \, dx,$ $\alpha > -1, \ \beta > 0;$ 8) $\int_1^{+\infty} (\ln x)^{\alpha} \frac{\ln \ln x}{x^{\alpha}} \, dx,$ 3) $\int_0^1 \ln(-\ln x) \, dx;$ $\alpha > -1;$ 9) $\int_0^{+\infty} \frac{x^{\alpha-1} \ln^2 x}{1+x} \, dx,$ $\alpha > 0;$ 9) $\int_0^{+\infty} \frac{x^{\alpha-1} - x^{\beta-1}}{(1+x) \ln x} \, dx$ 0 $< \alpha < 1, \ 0 < \beta < 1;$ 10) $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln^3 x \, dx,$

5)
$$\int_0^{+\infty} \frac{x \ln x}{1 + x^3} dx$$

$$0 < \alpha < 1, \ 0 < \beta < 1;$$

0;
5)
$$\int_0^{+\infty} \frac{x \ln x}{1 + x^3} dx$$
;
6) $\int_0^{+\infty} \frac{\ln^2 x}{1 + x^4} dx$;

7. Знайти інтеграл
$$\int\limits_0^{+\infty} \frac{\sin\alpha x}{x^\beta}\,dx,\quad \alpha\in\mathbf{R},\ 0<\beta<2,$$
 використовуючи рівність

$$\frac{1}{x^{\beta}} = \frac{1}{\Gamma(\beta)} \int_{0}^{+\infty} t^{\beta - 1} e^{-xt} \, dx, \quad x > 0, \ \beta > 0.$$

8. Виразити інтеграли через ейлерові та їх похідні:

1)
$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \ln x \, dx$$
, $\alpha > 0$, $\beta > 0$;

1)
$$\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \ln x \, dx$$
, $\alpha > 0$, $\beta > 0$;
2) $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \ln(1-x) \, dx$, $\alpha > 0$, $\beta > 0$;
3) $\int_0^{\pi} \sin^{\alpha} x \ln(\sin x) \, dx$, $\alpha > -1$;

3)
$$\int_0^{\pi} \sin^{\alpha} x \ln(\sin x) dx, \ \alpha > -1$$

4)
$$\int_0^{\pi/2} \sin^{\alpha} x \cos^{2\alpha} x (\ln(\sin x) + +2\ln(\cos x)) dx$$
, $\alpha > -\frac{1}{2}$;

5)
$$\int_0^{\pi/2} \cos^{\alpha} x \ln(\cos x) \, dx$$
, $\alpha > -1$;

6)
$$\int_0^{+\infty} \frac{x^{\alpha-1} \ln x}{(1+x)^{\beta}} dx$$
, $\beta > \alpha > 0$;

6)
$$\int_0^{+\infty} \frac{x^{\alpha - 1} \ln x}{(1 + x)^{\beta}} dx$$
, $\beta > \alpha > 0$;
7) $\int_0^{+\infty} \frac{x^{\alpha - 1} \ln x}{(a^2 + x^2)^{\beta}} dx$, $2\beta > \alpha > 0$, $a > 0$;

- 8) $\int_0^{+\infty} \frac{x^{\alpha-1} \ln^2 x}{(1+x^3)^{\beta}} dx, \ 3\beta > \alpha > 0;$ 9) $\int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \ln x \times \ln(1-x) dx, \ \alpha > 0, \ \beta > 0.$
- 9. Використовуючи розклад синуса у нескінченний добуток, розкласти у нескінченний добуток функції:
 - 1) $\cos \pi \alpha$, $\alpha \in \mathbf{R}$;
- 2) $\operatorname{tg} \pi \alpha$, $\alpha \neq n \frac{1}{2}$, $n \in \mathbf{Z}$.

ЗАНЯТТЯ 8 РЯДИ ФУР'Є

Контрольні запитання

- 1. Коефіцієнти і ряд Фур'є за тригонометричною послідовністю.
- 2. Рівність Парсеваля.
- 3. Ознаки збіжності в точці ряду Фур'є.
- 4. Коефіцієнти і ряд Фур'є для функції з довільним періодом. Рівність Парсеваля.
- 5. Теорема про почленне інтегрування ряду Фур'є.
- 6. Теорема про почленне диференціювання ряду Фур'є.

A8

1. Функцію f, періодичну з періодом 2π , розкласти в ряд Фур'є і визначити точки, в яких ряд збігається до відповідного значення функції f. Записати рівність Парсеваля.

1)
$$f(t) = \sin^2 t, t \in [0, 2\pi];$$

2) $f(t) = \begin{cases} \sin t, & t \in (-\pi, \pi), \\ 0, & t = \pi; \end{cases}$
3) $f(t) = t, t \in (-\pi, \pi];$
5) $f(t) = \pi^2 - t^2, t \in [-\pi, \pi].$

2. Розкласти функцію $f(t)=t^2$ в ряд вигляду:

1)
$$\sum\limits_{\substack{n=0 \\ \alpha_0 \\ 2}}^{\infty} \alpha_n \cos nt$$
 на $[0,\pi];$ 2) $\sum\limits_{\substack{n=1 \\ n=1}}^{\infty} \beta_n \sin nt$ на $[0,\pi];$ 3) $\sum\limits_{\substack{n=1 \\ \alpha_0 \\ 2}}^{\infty} + \sum\limits_{n=1}^{\infty} (\alpha_n \cos nt + \beta_n \sin nt)$ на $[0,2\pi).$

В яких точках ці ряди збігаються до відповідних значень функції f? Записати для них рівність Парсеваля.

3. Функцію f, періодичну з періодом 2l, розкласти в ряд Фур'є і визначити точки, в яких ряд збігається до відповідного значення функції f. Записати рівність Парсеваля.

1)
$$f(t)=egin{cases} 1,&t\in[0,l),\ 0,&t\in[l,2l); \end{cases}$$
2) $l=rac{1}{2},~f(t)=\{t\},~t\in\mathbf{R}$ (дробова частина числа t).

4. Використовуючи розклад $t=2\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{\sin nt}{n},\;t\in(-\pi,\pi),$ почленним інтегруванням отримати розклад в ряд Фур'є функцій:

1)
$$f(t) = t^2$$
, $t \in (-\pi, \pi)$; 2) $f(t) = t^3$, $t \in (-\pi, \pi)$.

- 5. Нехай $\alpha \in [0,\pi)$. Записати рівність Парсеваля для функції f, періодичної з періодом 2π і такої, що $f(t)=\begin{cases} 1,&|t|<\alpha,\\ 0,&\alpha\leq|t|\leq\pi. \end{cases}$ Використовуючи рівність Парсеваля, знайти суми рядів $\sum\limits_{n=1}^{\infty}\frac{\sin^2 n\alpha}{n^2},\sum\limits_{n=1}^{\infty}\frac{\cos^2 n\alpha}{n^2}.$
- **6.** Нехай $f(t)=\sum\limits_{n=1}^{\infty}\frac{n^3}{n^4+1}\sin nt,\ t\in {\bf R}.$ Довести, що $f\in C^{(\infty)}((0,2\pi)).$ 7. Нехай $f(t)=\sum\limits_{n=1}^{\infty}\frac{n^3}{n^4+1}\sin nt\cos \frac{\pi n}{2},\ t\in {\bf R}.$ Покращити збіжність цьо-
- го ряду.

Б8

1. Функцію f, періодичну з періодом 2π , розкласти в ряд Фур'є і визначити точки, в яких він збігається до відповідного значення функції f:

1)
$$f(t) = |t|, t \in [-\pi, \pi];$$
 9) $f(t) = \arcsin(\sin t), t \in [0, 2\pi];$

2)
$$f(t) = sign(\cos t), t \in [0, 2\pi];$$
 10) $f(t) = arccos(\cos t), t \in [0, 2\pi];$

3)
$$f(t) = \operatorname{sign}(\sin t), t \in [0, 2\pi];$$

4) $f(t) = |\sin t|, t \in [0, 2\pi];$
11) $f(t) = \begin{cases} 0, & t \in [-\pi, 0) \\ 0, & t \in [-\pi, 0) \end{cases}$

4)
$$f(t) = |\sin t|, t \in [0, 2\pi];$$
 11) $f(t) = \begin{cases} t, & t \in [0, \pi]; \end{cases}$

6)
$$f(t) = \cos(t\sqrt{2}), t \in [0, 2\pi);$$
 12) $f(t) = \begin{cases} t, & t \in (-\pi, 0), \\ t \in (-\pi, 0), \\ t \in (-\pi, 0), \end{cases}$

7)
$$f(t) = \sin(t\sqrt{2}), t \in [0, 2\pi);$$

$$\begin{cases} 12 & f(t) = \\ 0, & t \in [0, \pi]; \end{cases}$$

2)
$$f(t) = \operatorname{sign}(\cos t), t \in [0, 2\pi];$$
 10) $f(t) = \operatorname{arccos}(\cos t), t \in [0, 2\pi];$
3) $f(t) = \operatorname{sign}(\sin t), t \in [0, 2\pi];$ 11) $f(t) = \begin{cases} 0, & t \in [-\pi, 0), \\ t, & t \in [0, \pi); \end{cases}$
5) $f(t) = |\cos t|, t \in [0, 2\pi];$ 12) $f(t) = \begin{cases} 0, & t \in [-\pi, 0), \\ t, & t \in [0, \pi); \end{cases}$
7) $f(t) = \sin(t\sqrt{2}), t \in [0, 2\pi);$ 12) $f(t) = \begin{cases} t, & t \in (-\pi, 0), \\ 0, & t \in [0, \pi]; \end{cases}$
8) $f(t) = \begin{cases} 1, & t \in (-\pi, 0), \\ 3, & t \in [0, \pi); \end{cases}$ 13) $f(t) = \begin{cases} 1, & t \in [-\pi, 0), \\ t, & t \in [0, \pi). \end{cases}$

2. Розкласти функцію f в ряд вигляду $\sum\limits_{n=0}^{\infty} \alpha_n \cos nt, t \in [0,\pi], \alpha_n \in \mathbf{R}, n \geq$ 0, і визначити точки, в яких цей ряд збігається до відповідного значення функції f:

1)
$$f(t) = \sin t, t \in [0, \pi];$$

2) $f(t) = \begin{cases} t, & t \in [0, \frac{\pi}{2}], \\ \pi - t, & t \in [\frac{\pi}{2}, \pi]; \end{cases}$
3) $f(t) = \begin{cases} 0, & t \in [0, \frac{\pi}{2}], \\ t - \frac{\pi}{2}, & t \in (\frac{\pi}{2}, \pi]. \end{cases}$

3. Розкласти функцію f в ряд вигляду $\sum\limits_{n=1}^{\infty}eta_n\sin nt, t\in[0,\pi], eta_n\in\mathbf{R}, n\geq$

 $1,\,\mathrm{i}\,$ визначити точки, в яких цей ряд збігається до відповідного значення функції f :

1)
$$f(t) = \cos t, t \in [0, \pi];$$

2) $f(t) = \begin{cases} t, & t \in [0, \frac{\pi}{2}], \\ \pi - t, & t \in [\frac{\pi}{2}, \pi]; \end{cases}$
3) $f(t) = \begin{cases} 0, & t \in [0, \frac{\pi}{2}], \\ t - \frac{\pi}{2}, & t \in (\frac{\pi}{2}, \pi]. \end{cases}$

4. Не виписуючи ряду Фур'є функції f, періодичної з періодом 2π такої, що $f(t) = \begin{cases} t/\pi, & t \in [0,\pi], \\ -1, & t \in (\pi,2\pi), \end{cases}$ знайти значення суми цього ряду в точках $t_k = k\pi, 0 < k < 3.$

 $t_k=k\pi, 0 \le k \le 3.$ 5. Знайти суми наведених тригонометричних рядів при $t \in \mathbf{R}$:

1)
$$\sum_{n=1}^{\infty} \frac{\sin nt}{2^{n}};$$
2)
$$\sum_{n=1}^{\infty} \frac{\cos nt}{2^{n}};$$
3)
$$\sum_{n=1}^{\infty} \frac{\sin n\alpha \sin nt}{3^{n}}, \alpha \in \mathbf{R};$$
4)
$$\sum_{n=1}^{\infty} \frac{\sin^{2} nt}{2^{n}};$$
7)
$$\sum_{n=1}^{\infty} \frac{\sin nt}{n!}.$$
8 Province Proposition Proposition and the proposition of t

Bказівка. Розглянути тригонометричні ряди як дійсну частину і коефіцієнт уявної частини відповідно суми степеневого ряду в комплексній площині $\sum\limits_{n=0}^{\infty}a_{n}z^{n},$ де $z=e^{it}.$

6. Функцію f, періодичну з періодом 2l, розкласти в ряд Фур'є. Визначити точки, в яких ряд збігається до відповідного значення функції f, і записати рівність Парсеваля.

$$1) \ l=1, \ f(t)=\begin{cases} 1, & -1\leq t<0,\\ t, & 0\leq t\leq 1.\end{cases}$$

$$2) \ l=2, \ f(t)=\begin{cases} 0, & -2\leq t<0,\\ 2, & 0\leq t<2.\end{cases}$$

$$3) \ f(t)=\begin{cases} t, & 0\leq t< l/2,\\ l-t, & l/2\leq t\leq l,\end{cases}$$
 f – непарна функція;
$$4) \ f(t)=\begin{cases} 0, & 0\leq t\leq l/2,\\ t-l/2, & l/2\leq t\leq l,\end{cases}$$
 f – парна функція;

- 5) $f(t) = egin{cases} l/2-t, & 0 \leq t \leq l/2, \\ 0, & l/2 < t \leq l, \end{cases}$ f парна функція;
- 6) $l=2, \ f(t)=\frac{t}{2}, \ 0 \le t \le 2, f$ парна функція.
- 7. Нехай $f(t)=\sum\limits_{n=1}^{\infty}rac{\sin nt}{n^3},t\in\mathbf{R}$. Довести, що існує $f'\in C(\mathbf{R})$, значення якої можуть бути отримані почленним диференціюванням ряду. Довести, що для довільного $t \in \mathbf{R} \setminus \{2\pi n \mid n \in \mathbf{Z}\}$: $f''(t) = -\sum_{n=1}^{\infty} \frac{\sin nt}{n}$. За допомогою формули для суми цього ряду визначити функцію $_{_{1}}^{n=1}f.$
- **8.** Нехай $\alpha \in (-1,1)$. Користуючись формулами Ейлера $\cos t = \frac{1}{2}(z+\overline{z}),$ $\sin t=rac{1}{2i}(z-\overline{z}),\;t\in\mathbf{R}$, де $z=e^{it},\;\overline{z}=e^{-it}$, отримати розклад у ряд Фур'є функції $f(t)=\dfrac{1-\alpha^2}{1-2\alpha\cos t+\alpha^2},\;|\alpha|<1.$ 9. Нехай $f(t)=\sum_{n=1}^{\infty}\dfrac{n^2}{n^3+2}\cos nt\sin\dfrac{\pi n}{2},\;t\in\mathbf{R}.$ Покращити збіжність
- цього ряду.

ЗАНЯТТЯ 9 ПОДВІЙНІ ІНТЕГРАЛИ

Контрольні запитання

- 1. Формула обчислення кратного інтеграла по циліндричній мно-
- 2. Формула переходу до полярних координат.
- 3. Формула переходу до узагальнених полярних координат.
- 4. Загальна формула заміни змінних у подвійному інтегралі.

Α9

- 1. Обчислити інтеграли
 - 1) $\int_{[-1,1]\times[0,2]} (x_1^2x_2 + \sqrt{x_2}) dx_1 dx_2;$
 - 2) $\int_{[0,1]^3} \sin(x_1 + x_2 + x_3) dx_1 dx_2 dx_3$;
 - 3) $\int_{[-1,1]\times[0,1]} \left(|x_1| \cos \frac{\pi x_2}{2} \right) dx_1 dx_2;$
 - 4) $\int_{[0,1]\times[1,2]\times[1,3]} (x_1x_3^2 + e^{x_2}) dx_1 dx_2 dx_3$.
- 2. Нехай A вимірна за Жорданом множина в ${f R}^2,\, f$ неперервна обмежена функція на A. Звести інтеграл $\int_A f(x_1, x_2) \, dx_1 dx_2$ до повторного всіма можливими способами.

 - 1) $A=\{(x_1,x_2)|\ x_1^2+x_2^2\leq 1\};$ 2) $A=\{(x_1,x_2)|\ 1\leq x_1^2+x_2^2\leq 4\};$ 3) A трикутник з вершинами у точках $(0,0),\ (1,0),\ (1,1);$ 4) $A=\{(x_1,x_2)|\ x_1^2\leq x_2\leq 1,\ x_1\in [0,1]\}.$
- 3. Для функції $f \in C(\mathbf{R}^2)$ змінити порядок інтегрування у інтегралах
 - 1) $\int_0^1 \left(\int_{x_1^3}^{x_1^2} f(x_1, x_2) dx_2 \right) dx_1;$ 2) $\int_0^2 \left(\int_{\sqrt{2x_1 x_1^2}}^{\sqrt{2x_1}} f(x_1, x_2) dx_2 \right) dx_1.$
- 4. Знайти площі фігур, обмежених лініями
 - 1) $x_1x_2=a^2$, $x_1+x_2=\frac{5a}{2}$, $x_1+x_2=\frac{5a}{2}$
 - 2) $x_2^2 = 2x_1 + 1$, $x_2^2 = -4x_1 + 4$.

- **5.** Нехай $A\subset {\bf R}^2,\,f\in C(A)$. В інтегралі $\int_A f(x_1,x_2)\,dx_1dx_2$ перейти до полярних координат, поклавши $x_1=r\cos\varphi,\,x_2=r\sin\varphi$. Звести одержаний інтеграл до повторного всіма можливими способами:
 - 1) $A = \{(x_1, x_2) \mid 1 \le x_1^2 + x_2^2 \le 4\};$ 2) $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 2x_1\}.$
- **6.** Нехай $f \in C([0,+\infty))$. Перейти до полярних координат, поклавши $x_1 = r\cos\varphi, \ x_2 = r\sin\varphi.$ Звести одержаний інтеграл до повторного всіма можливими способами:

1)
$$\int_{0}^{2} \left(\int_{x_{1}}^{\sqrt{3}x_{1}} f\left(\sqrt{x_{1}^{2} + x_{2}^{2}}\right) dx_{2} \right) dx_{1};$$

2)
$$\int_{\{(x_1,x_2) \mid x_1^2 + x_2^2 \le 1\}} f\left(\sqrt{x_1^2 + x_2^2}\right) dx_1 dx_2.$$

7. Обчислити інтеграл, перейшовши до полярних координат:

$$\int_A \sin\left(\sqrt{x_1^2+x_2^2}\right) \, dx_1 dx_2, \text{ де } A = \{(x_1,x_2) \, | \, \pi^2 \leq x_1^2+x_2^2 \leq 4\pi^2\}.$$

8. Перейшовши до полярних координат, обчислити площу фігури

$$A = \{(x_1, x_2) \mid (x_1^2 + x_2^2)^2 \le 2(x_1^2 - x_2^2), \ x_1^2 + x_2^2 \ge 1\}.$$

9. Запровадити узагальнені полярні координати та обчислити якобіан переходу до цих координат. Обчислити площу фігур, обмежених лініями:

1)
$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = \frac{x_1}{c} + \frac{x_2}{d}$$
, $\{a, b, c, d\} \subset (0, +\infty)$;

2)
$$\sqrt[4]{\frac{x_1}{a}} + \sqrt[4]{\frac{x_2}{b}} = 1$$
, $x_1 = 0$, $x_2 = 0$; $\{a, b\} \subset (0, +\infty)$.

- **10.** Обчислити площі фігур, що лежать у вказаній частині площини ${f R}^2$ і обмежені лініями:
 - 1) $x_1x_2 = 1$, $x_1x_2 = 2$, $x_2 = x_1$, $x_2 = 2x_1$, $x_1 > 0$, $x_2 > 0$; 2) $x_2^2 = 2x_1$, $x_2^2 = 4x_1$, $x_1^2 = 6x_2$, $x_1^2 = 8x_2$.
- **Д1.** Нехай $A = \{(x_1, x_2) | 0 \le x_1 \le x_2 \le 1\}, f \in C([0, 1]), n \in \mathbb{N}.$ Звести до інтеграла Рімана подвійний інтеграл

$$\int_A f(x_1)(x_2-x_1)^n dx_1 dx_2.$$

Д2. Нехай $f \in C(\mathbf{R}^2), a \in (0, 2\pi)$. Змінити порядок інтегрування, вважаючи r та φ полярними координатами:

$$\int_{0}^{a} \left(\int_{0}^{\varphi} f(r,\varphi) \, dr \right) d\varphi.$$

- 1. Обчислити інтеграли
 - 1) $\int_{[0,1]\times[1,2]} (x_1+x_2^3) dx_1 dx_2;$
 - 2) $\int_{[0,1]\times[2,3]} x_1 \sin(\pi x_2) dx_1 dx_2;$
 - 3) $\int_{[0.2\pi]\times[0.2]} x_2^2 \sin^2 x_1 dx_1 dx_2;$
 - 4) $\int_{[1,2]\times[3,4]} (x_1+x_2)^{-2} dx_1 dx_2;$
 - 5) $\int_{[0,1]^2} (x_1 \sinh x_2 + \cosh x_1) dx_1 dx_2;$
 - 6) $\int_{[-1,1]\times[-2,2]} \frac{\partial^2 f}{\partial x_1\partial x_2}\,dx_1dx_2$, де $f\in C^{(2)}(\mathbf{R}^2);$ 7) $\int_{[0,1]^3} x_1x_2^2x_3^3\,dx_1dx_2dx_3;$

 - 8) $\int_{[0,1]\times[0,2]\times[0,3]} (x_1+x_2+x_3) dx_1 dx_2 dx_3;$

 - 9) $\int_{[0,1]\times[1,2]\times[2,3]} (x_1\sqrt{x_3}\cos x_2 + x_1x_2) dx_1 dx_2 dx_3;$ 10) $\int_{[0,1]^n} (x_1 + x_2^3 + x_3^7 + \ldots + x_n^{2^n-1}) dx_1 dx_2 \ldots dx_n.$
- 2. Нехай A вимірна за Жорданом множина в ${f R}^2,\, f$ неперервна обмежена функція на A. Звести інтеграл $\int_A f(x_1,x_2)\,dx_1dx_2$ до повторного всіма можливими способами.
 - 1) A трикутник з вершинами у точках (0,0), (1,2), (1,-2);
 - 2) A трапеція з вершинами у точках (0,0), (1,0), (1,2), (0,1);

 - 3) $A=\{(x_1,x_2)|\ x_1^2+x_2^2\leq x_1\};$ 4) A обмежена кубічними параболами $x_2=x_1^3,\ x_1=x_2^3;$ 5) A паралелограм зі сторонами $x_2=x_1,\ x_2=x_1+3,\ x_2=x_1+3$ 10) $A = \{(x_1, x_2) | x_2 = x_1, x_2 = x_1, x_2 = x_1, x_2 = x_1, x_2 = x_1 + x_2 = 4; x_1 + x_2 = 4; x_2 = x_1, x_2 = x_1, x_2 = 4; x_2 = x_1, x_2 = x_1, x_2 = x_1, x_2 = 4; x_2 = x_1, x_2 = x_1$

 - 10) $A = \{(x_1, x_2) | x_1 + x_2 \le 1, x_1 x_2 \le 1, x_1 \ge 0\}.$

- 3. Для функції $f \in C(\mathbf{R}^2)$ змінити порядок інтегрування в інтегралах
 - 1) $\int_0^4 \left(\int_{x_1}^{2x_1} f(x_1, x_2) \, dx_2 \right) dx_1;$ 5) $\int_1^2 \left(\int_{2-x_1}^{\sqrt{2x_1 x_1^2}} f(x_1, x_2) \, dx_2 \right) dx_1;$ 2) $\int_{-6}^2 \left(\int_{\frac{x_1}{4} 1}^{2-x_1} f(x_1, x_2) \, dx_2 \right) dx_1;$ 6) $\int_0^{2\pi} \left(\int_0^{\sin x_1} f(x_1, x_2) \, dx_2 \right) dx_1;$

 - 3) $\int_{1}^{e} \left(\int_{0}^{\ln x_{1}} f(x_{1}, x_{2}) dx_{2} \right) dx_{1};$ 7) $\int_{-2}^{2} \left(\int_{-\sqrt{2-x_{1}^{2}/2}}^{\sqrt{2-x_{1}^{2}/2}} f(x_{1}, x_{2}) dx_{2} \right) dx_{1};$
- 4) $\int_{-1}^{1} \left(\int_{-\sqrt{1-x_1^2}}^{1-x_1^2} f(x_1, x_2) \, dx_2 \right) dx_3 \right) \int_{0}^{1} \left(\int_{x_2}^{\sqrt{x_2}} \frac{f(x_1, x_2) \, dx_1}{f(x_1, x_2) \, dx_2} \right) dx_2;$ 9) $\int_{0}^{1} \left(\int_{0}^{x_1^{2/3}} f(x_1, x_2) \, dx_2 \right) dx_1 + \int_{1}^{2} \left(\int_{0}^{1-\sqrt{4x_1-x_1^2-3}} f(x_1, x_2) \, dx_2 \right) dx_1;$ 10) $\int_{-\pi/2}^{3\pi/2} \left(\int_{-1}^{\sin x_1} f(x_1, x_2) \, dx_2 \right) dx_1 + \int_{\pi/2}^{5\pi/2} \left(\int_{\sin x_1}^{1} f(x_1, x_2) \, dx_2 \right) dx_1.$
- 4. Знайти площі фігур, обмежених лініями

 - 1) $(x_1 x_2)^2 + x_1^2 = 1;$ 2) $x_1 = x_2, x_1 = 2x_2, x_1 + x_2 = 4, x_1 + 3x_2 = 4;$ 3) $x_1x_2 = 1, x_1x_2 = 4, x_2 = 3, x_2 = 5;$

 - 4) $x_1 = x_2, x_2 = 5x_1, x_1 = 1;$ 5) $\sqrt{x_1} + \sqrt{x_2} = 1, x_1 + x_2 = 1;$
 - 6) $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$, $\{a, b\} \subset (0, +\infty)$; 7) $x_2^2 = 10x_1 + 25$, $x_2^2 = -6x_1 + 9$; 8) $x_1^2x_2 = 4$, $x_1^2x_2 = 9$, $x_2 = 1$, $x_2 = 2$; 9) $\cos x_1 x_2 + 1 = 0$, $x_1 = 0$, $x_1 = \pi$, $x_2 = 0$.
- **5.** Нехай $A\subset {f R}^2,\, f\in C(A)$. В інтегралі $\int_A f(x_1,x_2)\, dx_1 dx_2$ перейти до полярних координат, поклавши $x_1 = r \cos \varphi, x_2 = r \sin \varphi$. Звести одержаний інтеграл до повторного всіма можливими способами.
- одержаний інтеграл до повторного всіма можливими с 1) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq \pi^2\};$ 2) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq 4, \ x_1 \leq x_2\};$ 3) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq 1, \ x_1x_2 \geq 0\};$ 4) $A = \{(x_1,x_2) \mid 4 \leq x_1^2 + x_2^2 \leq 9, \ x_1x_2 \leq 0\};$ 5) $A = \{(x_1,x_2) \mid x_1 \leq x_1^2 + x_2^2 \leq 2x_1\};$ 6) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq 9, \ x_1 \leq 2x_2\};$ 7) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq 1, \ |x_1| \leq x_2\};$ 8) $A = \{(x_1,x_2) \mid 1 \leq x_1^2 + x_2^2 \leq 4, \ |x_1| \leq |x_2|\};$ 9) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq 4x_2\};$ 10) $A = \{(x_1,x_2) \mid x_1^2 + x_2^2 \leq 9, \ x_1 + x_2 \geq 0\}.$
- **6.** Нехай $f \in C(\mathbf{R}^2)$. Змінити порядок інтегрування, вважаючи r та φ полярними координатами:

- 1) $\int_{-\pi/2}^{\pi/2} \left(\int_0^{2\cos\varphi} f(r,\varphi) \, dr \right) d\varphi$; 6) $\int_{\pi/2}^{\pi} \left(\int_{\sin\varphi-\cos\varphi}^2 f(r,\varphi) \, dr \right) d\varphi$;
- 2) $\int_{0}^{\pi/2} \left(\int_{0}^{\sqrt{\sin 2\varphi}} f(r,\varphi) \, dr \right) d\varphi;$ 7) $\int_{0}^{\pi/2} \left(\int_{0}^{\sin \varphi + \cos \varphi} f(r,\varphi) \, dr \right) d\varphi;$ 3) $\int_{\pi/4}^{3\pi/4} \left(\int_{\frac{1}{\sin \varphi}}^{\sqrt{2}} f(r,\varphi) \, dr \right) d\varphi;$ 8) $\int_{0}^{\pi/2} \left(\int_{0}^{1} \frac{1}{\sin \varphi + \cos \varphi} f(r,\varphi) \, dr \right) d\varphi;$ 8)
- 4) $\int_{\pi/4}^{\pi/2} \left(\int_0^{\frac{1}{\sin \varphi}} f(r,\varphi) \, dr \right) d\varphi; \qquad \text{9) } \int_{\pi/4}^{\pi/2} \left(\int_{\frac{1}{\sqrt{2}\sin \varphi}}^{1} f(r,\varphi) \, dr \right) d\varphi;$
- 5) $\int_{\pi/2}^{\pi} \left(\int_{0}^{\frac{1}{\sin \varphi \cos \varphi}} f(r, \varphi) dr \right) d\varphi$ 0) $\int_{0}^{\pi/3} \left(\int_{0}^{\frac{\sqrt{3}}{\sin(\pi/3 + \varphi)}} f(r, \varphi) dr \right) d\varphi$.

7. Нехай $f \in C(\mathbf{R})$. Перейти до полярних координат і замінити інтеграли однократними:

- 1) $\int_A f(\sqrt{x_1^2 + x_2^2}) dx_1 dx_2$, $A = \{(x_1, x_2) \mid |x_2| \le |x_1| \le 1\}$;
- 2) $\int_A f(x_2/x_1) dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le x_1 \frac{5}{36}\};$
- 3) $\int_A f(\sqrt{x_1^2 + x_2^2}) dx_1 dx_2$, $A = \{(x_1, x_2) | 1 \le x_1^2 + x_2^2 \le 4\};$ 4) $\int_A f(\sqrt[3]{x_1^2 + x_2^2}) dx_1 dx_2$, $A = \{(x_1, x_2) | x_1^2 + x_2^2 \le 4, x_1 \le 4\};$
- 5) $\int_A f(\sqrt[4]{x_1^2 + x_2^2}) dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le x_2\}$.

8. Обчислити інтеграли:

- 1) $\int_A \ln(1+x_1^2+x_2^2) dx_1 dx_2$, $A = \{(x_1,x_2) \mid x_1^2+x_2^2 \le x_1^2 \}$
- 1, $x_1 \ge 0$, $x_2 \ge 0$ }; 2) $\int_A \cos(x_1^2 + x_2^2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1, x_1 \ge 0\}$ $0, x_2 \leq 0$;
- 3) $\int_A (1 2x_1 3x_2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\}$; 4) $\int_A \sqrt{4 x_1^2 x_2^2} dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 2x_1\}$;
- 5) $\int_A \arctan \frac{x_2}{x_1} dx_1 dx_2$,

$$A = \{(x_1, x_2) \mid 1 \le x_1^2 + x_2^2 \le 9, \ \frac{x_1}{\sqrt{3}} \le x_2 \le \sqrt{3}x_1\};$$

- 6) $\int_A \left(\operatorname{arctg} \frac{x_2}{x_1} \right)^2 dx_1 dx_2$, $A = \{ (x_1, x_2) \mid x_1^2 + x_2^2 \le 1, x_1 \ge 1 \}$
- 0, $x_2 \ge 0$; 7) $\int_A \exp(x_1^2 + x_2^2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid 1 \le x_1^2 + x_2^2 \le 4\}$; 8) $\int_A \sin(x_1^2 + x_2^2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4, \mid x_1 \mid \le 4\}$
- 9) $\int_{A}^{2} \sqrt[3]{x_1^2 + x_2^2} dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1, x_1 + x_2^2 \le 1, x_2^2 \le$
- $\begin{array}{l} x_2 \geq 0 \}; \\ 10) \ \int_A \sinh(x_1^2 + x_2^2) \ dx_1 dx_2, \quad A = \{(x_1, x_2) \ | \ 4 \leq x_1^2 + x_2^2 \leq 9 \}. \end{array}$

- 9. Обчислити площу фігур, обмежених лініями:

- 1) $(x_1^2 + x_2^2)^2 = x_1^2 x_2;$ 7) $x_1^2 + x_2^2 = 1, x_1^2 + x_2^2 = 4,$ 2) $(x_1^2 + x_2^2)^3 = x_1 x_2^4;$ $x_2 \ge -1;$ 3) $x_1^2 + x_2^2 = 1, x_1^2 + x_2^2 = 2x_1;$ 8) $x_1^2 + x_2^2 = 1, x_1 + x_2 \ge 1;$ 4) $(x_1^2 + x_2^2)^2 = x_1^3 3x_1 x_2^2;$ 9) $x_1^2 + x_2^2 = 2\sqrt{2}x_1 1,$ 5) $x_1^2 + x_2^2 = 4, \frac{x_2}{2} \le x_1 \le 2x_2;$ $x_1 = x_2, x_1 = -x_2;$ 6) $x_1^2 + x_2^2 = 1, x_1^2 + x_2^2 = 4,$ 10) $x_1^2 + x_2^2 = 4x_1 3, x_1 = 0,$ $x_2 = -1, x_2 = 1.$
- 10. Обчислити площі фігур, обмежених лініями:
 - 1) $x_1 + x_2 = 1$, $x_1 + x_2 = 2$, $x_2 = 2x_1$, $x_2 = 3x_1$;
 - 2) $x_1^{\bar{2}} = x_2$, $x_1^2 = 2x_2$, $x_1^3 = x_2^2$, $x_1^3 = 2x_2^2$;
 - 3) $x_2 = x_1^5$, $x_2 = 2x_1^5$, $x_2 = x_1^6$, $x_2 = 2x_1^6$;
 - 4) $\sqrt{x_1} + \sqrt{x_2} = 1$, $\sqrt{x_1} + \sqrt{x_2} = 2$, $x_1 = x_2$, $4x_1 = x_2$;
 - 5) $\sqrt[3]{x_1^2} + \sqrt[3]{x_2^2} = 1$, $\sqrt[3]{x_1^2} + \sqrt[3]{x_2^2} = 4$, $x_1 = x_2$, $8x_1 = x_2$; 6) $x_2 = \sqrt{x_1}$, $x_2 = 2\sqrt{x_1}$, $x_1 + x_2 = 1$, $x_1 + x_2 = 2$;

 - 7) $x_2 = x_1^3$, $x_2 = 5x_1^3$, $x_2 = x_1^2$, $x_2 = 2x_1^2$;
 - 8) $x_2 = x_1\sqrt{x_1}$, $x_2 = 2x_1\sqrt{x_1}$, $x_2 = 2x_1$, $x_2 = \frac{1}{2}x_1$;
 - 9) $x_2 = 7x_1^7$, $x_2 = 9x_1^7$, $x_2 = 7x_1^9$, $x_2 = 9x_1^9$;
 - 10) $x_1x_2 = 4$, $x_1x_2 = 8$, $x_1 = 2x_2$, $x_1 = \frac{1}{2}x_2$.
- 11. Обчислити площі фігур, обмежених лініями, через подвійний інтеграл по брусу у відповідній системі координат:
 - 1) $x_1 + x_2 = 2$, $x_1 + x_2 = 3$, $x_1 2x_2 = 0$, $x_1 2x_2 = 1$;
 - 2) $x_1 x_2 = 3$, $x_1 x_2 = 4$, $x_1 + 2x_2 = 1$, $x_1 + 2x_2 = 2$;
 - 3) $6x_1+7x_2=3$, $6x_1+8x_2=2$, $5x_1+7x_2=4$, $6x_1+8x_2=1$;
 - 4) $x_1 3x_2 = 5$, $x_2 3x_1 = 6$, $x_1 3x_2 = 6$, $x_2 3x_1 = 5$;
 - 5) $x_1 + \pi x_2 = 3$, $\pi x_1 + x_2 = 4$, $x_1 + \pi x_2 = 5$, $\pi x_1 + x_2 = 6$;
 - 6) $6x_1+7x_2=4$, $7x_1+8x_2=5$, $6x_1+7x_2=6$, $7x_1+8x_2=6$;
 - 7) $2x_1 + 3x_2 = 1$, $2x_1 + 3x_2 = 2$, $x_1 = 2x_2$, $x_2 = 2x_1$;
 - 8) $x_1 + 2x_2 = 1$, $x_1 + 2x_2 = 3$, $x_1 = 3x_2$, $x_2 = 3x_1$;
 - 9) $x_1 + x_2 = 1$, $x_1 + x_2 = -1$, $x_1 = 2x_2$, $x_2 = 2x_1$;
- 10) $5x_1 + x_2 = 2$, $5x_1 + x_2 = 3$, $x_1 + 5x_2 = 1$, $x_1 + 5x_2 = 2$.

ЗАНЯТТЯ 10 ОБЧИСЛЕННЯ ІНТЕГРАЛА ПО ЦИЛІНДРИЧНІЙ МНОЖИНІ В ${f R}^3$

Контрольне запитання

1. Зведення інтеграла по циліндричній множині в ${f R}^3$ до повторного інтеграла.

A10

1. Зобразити одне з можливих тіл, об'єм якого дорівнює наведеному інтегралу. Виразити цей об'єм через потрійний інтеграл.

1)
$$\int_0^1 \left(\int_0^{1-x_1} (x_1^2 + x_2^2) dx_2 \right) dx_1;$$

$$2)\ \int_A \sqrt{1-\frac{x_1^2}{4}-\frac{x_2^2}{9}}\ dx_1 dx_2, \ \text{де}\ A = \left\{(x_1,x_2) \left|\ \frac{x_1^2}{4}+\frac{x_2^2}{9} \le 1\right.\right\}.$$

2. Знайти об'єм тіла, обмеженого поверхнями

$$x_3 = x_1^2 + x_2^2$$
, $x_2 = x_1^2$, $x_2 = 1$, $x_3 = 0$.

3. Обчислити інтеграли:

Оочислити інтеграли:
$$1) \int_C \frac{dx_1dx_2dx_3}{(2+x_1+x_2+x_3)^3}, \text{ де тіло } C \text{ обмежене поверхнями}$$

$$x_1+x_2+x_3=2, x_i=0, \ i=1,2,3;$$

$$2) \int_C x_1x_2^2x_3^3 dx_1dx_2dx_3, \text{ де тіло } C \text{ обмежене поверхнями}$$

$$x_3=x_1x_2, \ x_2=x_1, \ x_1=1, x_3=0, x_1\geq x_2, x_i\geq 0, \ i=1,2,3;$$

 $\begin{array}{l} 1,2,3,\\ 3) \int_C x_1x_2x_3\,dx_1dx_2dx_3, \text{ де тіло } C \text{ обмежене поверхнями}\\ x_1^2+x_2^2+x_3^2=1,\,x_i=0,\,\,i=1,2,3,\,x_i\geq 0,\,\,i=1,2,3;\\ 4) \int_C x_1\,dx_1dx_2dx_3, \text{ де тіло } C \text{ обмежене поверхнями}\\ x_2=1,\,x_1+x_3=2,\,x_i=0,\,i=1,2,3;\\ 5) \int_C (1+3x_1x_2x_3+x_1^2x_2^2x_3^2)e^{x_1x_2x_3}\,dx_1dx_2dx_3,\,\text{де}\\ C=[0,1]\times[0,1]\times[0,1]. \end{array}$

4. Нехай $f \in C(\mathbf{R}^3)$. Різними можливими способами розставити межі інтегрування в інтегралах:

1)
$$\int_{-1}^{1} \left(\int_{-\sqrt{1-x_1^2}}^{\sqrt{1-x_1^2}} \left(\int_{\sqrt{x_1^2+x_2^2}}^{1} f(x_1, x_2, x_3) \, dx_3 \right) dx_2 \right) dx_1;$$
2)
$$\int_{0}^{1} \left(\int_{0}^{1-x_1} \left(\int_{0}^{x_1+x_2} f(x_1, x_2, x_3) \, dx_3 \right) dx_2 \right) dx_1.$$

5. Нехай $f \in C([0,1])$. Замінити інтеграл однократним

$$\int_{0}^{1} \left(\int_{0}^{x_{1}} \left(\int_{0}^{x_{2}} f(x_{3}) dx_{3} \right) dx_{2} \right) dx_{1}.$$

6. Знайти об'єм тіла, обмеженого поверхнями: 1)
$$x_3=x_1^2+x_2^2,\,x_3=2(x_1^2+x_2^2),\,x_1=x_2,\,x_2=x_1^2;$$
 2) $6x_3=x_1^2+x_2^2,\,x_3=\sqrt{x_1^2+x_2^2}.$

- **Д1.** Обчислити m-кратні інтеграли: 1) $\int_{[0,1]^m} (x_1+x_2+\ldots+x_m)^2 dx_1 dx_2\ldots dx_m;$
 - 2) $\int_A dx_1 dx_2 \dots dx_m$, де A-m-вимірний симплекс, $A=\{(x_1,x_2,\dots,x_m)\mid x_1+x_2+\dots+x_m\leq a,\ x_k\geq 0,\ k=1,2,\dots,m\};$ 3) $\int_A \sqrt{x_1+x_2+\dots+x_m}\, dx_1 dx_2\dots dx_m$, де A-m-вимірний
 - симплекс, $A=\{(x_1,x_2,\ldots,x_m)\,|\,\,x_1+x_2+\ldots+x_m\leq a,\,x_k\geq 0,\,\,k=1,2,\ldots,m\};$

- **Д2.** Обчислити m-кратні інтеграли: 1) $\int_{[0,1]^m} (x_1^2 + x_2^2 + \ldots + x_m^2) dx_1 dx_2 \ldots dx_m;$
 - 2) $\int_{[0,1]\times[0,1]\times[0,2]^{m-2}}^{[0,1]\times[0,1]\times[0,2]^{m-2}} (x_1^3 + x_2^3 + \ldots + x_m^3) dx_1 dx_2 \ldots dx_m;$ 3) $\int_{[0,\pi]^m} \sin(x_1 + x_2 + \ldots + x_m) dx_1 dx_2 \ldots dx_m;$

 - 4) $\int_{[-\pi,\pi]^m} \cos^2(x_1 + x_2 + \dots + x_m) dx_1 dx_2 \dots dx_m;$ 5) $\int_{[0,1]\times[0,2]^{m-1}} (x_1 + x_2^2 + x_3^3 + \dots + x_m^m) dx_1 dx_2 \dots dx_m;$ 6) $\int_{[0,1]\times[0,2]\times[0,1]^{m-2}} (x_1 x_2 + x_3 \dots + (-1)^{m+1}x_m) dx_1 dx_2 \dots dx_m;$ 7) $\int_{[0,1]^m} (e^{x_1-x_2} + e^{x_2-x_3} + \dots + e^{x_{m-1}-x_m} + e^{x_m-x_1}) dx_1 dx_2 \dots dx_m;$
 - 8) $\int_{[0,\pi]^m} (\sin x_1 + \sin 2x_2 + \dots + \sin mx_m) dx_1 dx_2 \dots dx_m;$

 - 9) $\int_{[-\pi,\pi]^m}^{[-\pi,\pi]^m} \left(\cos x_1 + \cos \frac{x_2}{2} + \ldots + \cos \frac{x_m}{m}\right) dx_1 dx_2 \ldots dx_m;$ 10) $\int_A x_1 x_2 \ldots x_m dx_1 dx_2 \ldots dx_m, \text{ ge } A = \{(x_1,x_2,\ldots,x_m) \mid x_1 + x_2 + \ldots + x_m \leq 1, x_k \geq 0, \ k = 1,2,\ldots,m\}.$
- **Д3.** Для функції $f \in C([0, +\infty))$ довести рівність

$$\int_{0}^{t} \left(\int_{0}^{x_{1}} \left(\int_{0}^{x_{2}} \left(\dots \left(\int_{0}^{x_{m-1}} f(x_{1}) f(x_{2}) \dots f(x_{m}) dx_{m} \right) \dots \right) dx_{3} \right) dx_{2} \right) dx_{1} = \frac{1}{m!} \left(\int_{0}^{t} f(x) dx \right)^{m}, \quad t \geq 0.$$

Вказівка. Показати, що обидві частини рівності є розв'язком тієї самої задачі Коші.

- 1. Зобразити одне з можливих тіл, об'єм якого дорівнює наведеному інтегралу. Виразити цей об'єм через потрійний інтеграл.
 - 1) $\int_A (x_1 + x_2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid 0 \le x_1 + x_2 \le 2, \ x_1 \ge 0, \ x_2 \ge 0\};$
 - 2) $\int_A \sqrt{x_1^2 + x_2^2} dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le x_2\}$;
 - 3) $\int_A (x_1^2 + x_2^2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid |x_1| + |x_2| \le 2\}$;
 - 4) $\int_A \sqrt{x_1^2 + x_2^2} dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\}$;
 - 5) $\int_A 2 dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1, x_1 \ge 0, x_2 \ge 0\}$;
 - 6) $\int_{A} (1 x_1^2 x_2^2) dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\}$;
 - 7) $\int_{A} (1 \sqrt{x_1^2 + x_2^2}) dx_1 dx_2$,
 - $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1, \ x_1 \ge 0, \ x_2 \le 0\};$ 8) $\int_A (1 x_1 x_3) \, dx_1 dx_3,$ $A = \{(x_1, x_3) \mid 0 \le x_1 + x_3 \le 1, \ x_1 \ge 0, \ x_3 \ge 0\};$
 - 9) $\int_{A} \sqrt{x_1^2 + x_2^2} dx_1 dx_2$,
 - $\begin{array}{c} \widetilde{A} = \{(x_1, x_2) \mid x_1^2 + x_2^2 \leq 1, \ 0 \leq x_1 \leq x_2\}; \\ \text{10)} \ \int_{A} \sin\left(\pi \sqrt{x_1^2 + x_2^2}\right) dx_1 dx_2, \end{array}$
 - $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\}.$
- 2. Знайти об'єм тіла, обмеженого поверхнями:

 - 1) $x_3=1+x_1+x_2, \ x_3=0, \ x_1+x_2=1, \ x_1=0, \ x_2=0;$ 2) $x_1+x_2+x_3=2, \ x_1^2+x_2^2=1, \ x_i=0, \ i=1,2,3;$ 3) $x_3=\cos x_1\cos x_2, \ x_3=0, \ |x_1+x_2|\leq \frac{\pi}{2}, \ |x_1-x_2|\leq \frac{\pi}{2};$

 - 4) $x_3 = x_1x_2$, $x_1 + x_2 + x_3 = 1$, $x_3 = 0$; 5) $x_3 = x_1^2 + x_2^2 + 1$, $x_1 = 4$, $x_2 = 4$, $x_i = 0$, i = 1, 2, 3; 6) $3x_1 + x_2 = 6$, $3x_1 + 2x_2 = 12$, $x_1 + x_2 + x_3 = 6$, $x_2 = 0, \ x_3 = 0;$
 - 7) $x_3 = x_1^2 + x_2^2$, $x_1 + x_2 = 1$, $x_i = 0$, i = 1, 2, 3;
 - 8) $x_3 = x_1^2 + x_2^2$, $x_3 = 0$, $x_2 = 1$, $x_2 = 2x_1$, $x_2 = 6 x_1$;
 - 9) $x_2 = \sqrt{x_1}$, $x_2 = 2\sqrt{x_1}$, $x_1 + x_3 = 6$, $x_3 = 0$;
 - 10) $x_3 = 9 x_2^2$, $3x_1 + 4x_2 = 12$, $x_i = 0$, i = 1, 2, 3.
- 3. Обчислити інтеграли:
 - 1) $\int_C x_1x_2x_3\,dx_1dx_2dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2=1,\,x_3=0,\,x_3=1;$

- 2) $\int_C x_3 dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $|x_1| + |x_2| = 1$, $x_3 = 0$, $x_3 = \sqrt{x_1^2 + x_2^2}$;
- 3) $\int_C x_1 x_2 dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $|x_1| + |x_2| = 1, x_3 = 0, x_3 = x_1^2 + x_2^2;$
- 4) $\int_C (x_1+x_2)\,dx_1dx_2dx_3$, де тіло C обмежене поверхнями $x_1+x_3=1,\,x_1+x_3=2,\,x_1+x_2+x_3=1,\,x_i=0,\,i=1,2,3;$
- 5) $\int_C x_1 x_3 \, dx_1 dx_2 dx_3$, де $C = \{(x_1, x_2, x_3) \, | \, x_1^2 + x_2^2 \leq 1, \, 0 \leq n \}$ $x_1 \le x_2, \ 0 \le x_3 \le \sqrt{x_1^2 + x_2^2}$ };
- 6) $\int_C (1+x_1)^{-1} dx_1 dx_2 dx_3$, де $C = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 \le 1,$
- $x_1 \geq 0, \ x_2 \geq 0, \ 0 \leq x_3 \leq x_1 x_2, \};$ 7) $\int_C (x_2 + x_3) \ dx_1 dx_2 dx_3,$ де тіло C обмежене поверхнями $x_1^2 + x_2^2 = 1$, $x_1 = x_2$, $x_3 = \sqrt{x_1^2 + x_2^2}$, $x_1 = 0$, $x_3 = 0$;
- 8) $\int_C (x_1x_3)^3 dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_3 = \sqrt[4]{x_1 x_2}, x_1 = x_2, x_1 = 1, x_i = 0, i = 1, 2, 3;$
- 9) $\int_C (x_1 x_3) \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_3 = 2\sqrt{x_1x_2}, x_1 = x_2, x_1 = 1, x_i = 0, i = 1, 2, 3;$
- 10) $\int_C (1+x_1+x_2+x_3)^{-2} dx_1 dx_2 dx_3$, де тіло C обмежене по $x_1 + x_2 + x_3 = 1$, $x_i = 0$, i = 1, 2, 3.
- 4. Нехай $f \in C(\mathbf{R}^3)$. Різними можливими способами розставити межі інтегрування в інтегралах:
 - 1) $\int_0^1 \left(\int_0^1 \left(\int_0^{x_1^2 + x_2^2} f(x_1, x_2, x_3) \, dx_3 \right) dx_2 \right) dx_1;$ 2) $\int_0^1 \left(\int_0^{1 x_1} \left(\int_0^{x_2} f(x_1, x_2, x_3) \, dx_3 \right) dx_2 \right) dx_1;$

 - 3) $\int_0^1 \left(\int_0^{x_1} \left(\int_0^{\sqrt{x_1^2 + x_2^2}} f(x_1, x_2, x_3) dx_3 \right) dx_2 \right) dx_1;$
 - 4) $\int_{-2}^{2} \left(\int_{0}^{\sqrt{4-x_{1}^{2}}} \left(\int_{1}^{2} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1};$
 - 5) $\int_0^1 \left(\int_{-\sqrt{1-x_1^2}}^0 \left(\int_0^{1-\sqrt{x_1^2+x_2^2}} f(x_1, x_2, x_3) dx_3 \right) dx_2 \right) dx_1;$
 - 6) $\int_{-1}^{1} \left(\int_{0}^{\sqrt{1-x_{1}^{2}}} \left(\int_{\sqrt{x_{1}^{2}+x_{2}^{2}}}^{2\sqrt{x_{1}^{2}+x_{2}^{2}}} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1};$ 7) $\int_{0}^{1} \left(\int_{0}^{1} \left(\int_{0}^{x_{1}+x_{2}+1} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1};$ 8) $\int_{-1}^{1} \left(\int_{-1}^{1} \left(\int_{0}^{x_{1}+x_{2}+2} f(x_{1}, x_{2}, x_{3}) dx_{3} \right) dx_{2} \right) dx_{1};$

 - 9) $\int_0^1 \left(\int_0^{x_1} \left(\int_0^{x_1^2 + x_2^2} f(x_1, x_2, x_3) dx_3 \right) dx_2 \right) dx_1;$ 10) $\int_0^1 \left(\int_{x_1}^1 \left(\int_0^{x_1 + x_2} f(x_1, x_2, x_3) dx_3 \right) dx_2 \right) dx_1.$

5. Знайти об'єм тіла, обмеженого поверхнями:

1)
$$x_3 = x_1 + x_2$$
, $x_3 = x_1x_2$, $x_1 + x_2 = 1$, $x_1 = 0$, $x_2 = 0$

2)
$$x_1^2 + x_2^2 = 1$$
, $x_1 + x_2 = \pm 1$, $x_1 - x_2 = \pm 1$:

3)
$$x_3 = 1 - x_1^2 - x_2^2$$
, $x_3 = 1 - x_1 - x_2$, $x_i = 0$, $i = 1, 2, 3$;

4)
$$x_3 = 6 - x_1^2 - x_2^2$$
, $x_3 = \sqrt{x_1^2 + x_2^2}$;

5)
$$x_3 = 4 - x_2^2$$
, $x_3 = x_2^2 + 2$, $x_1 = -1$, $x_1 = 2$

6)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = x_1^2 + 2x_2^2$, $x_2 = x_1$, $x_2 = 2x_1$, $x_1 = 1$

7)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = 2(x_1^2 + x_2^2)$, $x_2 = x_1^2$, $x_2 = x_1^3$;

1)
$$x_3 = x_1 + x_2$$
, $x_3 = x_1x_2$, $x_1 + x_2 = 1$, $x_1 = 0$, $x_2 = 0$;
2) $x_1^2 + x_3^2 = 1$, $x_1 + x_2 = \pm 1$, $x_1 - x_2 = \pm 1$;
3) $x_3 = 1 - x_1^2 - x_2^2$, $x_3 = 1 - x_1 - x_2$, $x_i = 0$, $i = 1, 2, 3$;
4) $x_3 = 6 - x_1^2 - x_2^2$, $x_3 = \sqrt{x_1^2 + x_2^2}$;
5) $x_3 = 4 - x_2^2$, $x_3 = x_2^2 + 2$, $x_1 = -1$, $x_1 = 2$;
6) $x_3 = x_1^2 + x_2^2$, $x_3 = x_1^2 + 2x_2^2$, $x_2 = x_1$, $x_2 = 2x_1$, $x_1 = 1$;
7) $x_3 = x_1^2 + x_2^2$, $x_3 = 2(x_1^2 + x_2^2)$, $x_2 = x_1^2$, $x_2 = x_1^3$;
8) $x_3 = \ln(x_1 + 2)$, $x_3 = \ln(6 - x_1)$, $x_1 = 0$, $x_1 + x_2 = 2$, $x_1 - x_2 = 2$;

9)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = \sqrt{x_1^2 + x_2^2}$;

9)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = \sqrt{x_1^2 + x_2^2}$;
10) $x_3 = x_1^2 + x_2^2$, $x_3 = 2 - \sqrt{x_1^2 + x_2^2}$.

3AHSTTS 11

ФОРМУЛА ЗАМІНИ ЗМІННИХ У ПОТРІЙНОМУ ІНТЕГРАЛІ. НЕВЛАСНІ КРАТНІ ІНТЕГРАЛИ

Контрольні запитання

- 1. Формули переходу до циліндричних та сферичних координат.
- 2. Загальна формула заміни змінних у потрійному інтегралі.

A11

- 1. Обчислити інтеграли, перейшовши до сферичних координат:
 - 1) $\int_C \sqrt{x_1^2+x_2^2+x_3^2}\,dx_1dx_2dx_3$, де тіло C обмежене поверхнею $x_1^2+x_2^2+x_3^2=x_3;$ 2) $\int_0^1 \Bigl(\int_0^{\sqrt{1-x_1^2}} \Bigl(\int_{\sqrt{x_1^2+x_2^2}}^{\sqrt{2-x_1^2-x_2^2}} x_3^2\,dx_3\Bigr)dx_2\Bigr)dx_1.$

2)
$$\int_0^1 \left(\int_0^{\sqrt{1-x_1^2}} \left(\int_{\sqrt{x_1^2+x_2^2}}^{\sqrt{2-x_1^2-x_2^2}} x_3^2 dx_3 \right) dx_2 \right) dx_1.$$

2. Обчислити інтеграл

$$\int_C (x_1^2 + x_2^2) \, dx_1 dx_2 dx_3$$

 $\int_C (x_1^2+x_2^2)\,dx_1dx_2dx_3,$ де тіло C обмежене поверхнями $x_1^2+x_2^2=2x_3$ та $x_3=2,$ перейшовши до циліндричних координат

- **3.** Перейшовши до циліндричних координат, обчислити об'єм тіла, що лежить у області $\{(x_1,x_2,x_3) \mid x_1^2+x_2^2 \leq x_3^2\}$ і обмежене поверхнею
- $x_1^2+x_2^2+x_3^2=2x_3.$ 4. Зробивши відповідну заміну змінних, обчислити об'єм тіла, що обмежене поверхнями $x_3=x_1^2+x_2^2, \, x_3=2(x_1^2+x_2^2), \, x_1x_2=1, \, x_1x_2=2, \, x_1=2x_2, \, 2x_1=x_2; \quad x_1\geq 0, \, x_2\geq 0.$ 5. Обчислити об'єми тіл, обмежених поверхнями:
- - 1) $x_3 = x_1^2 + x_2^2$, $x_1^2 + x_2^2 = x_1$, $x_1^2 + x_2^2 = 2x_1$, $x_3 = 0$; 2) $x_3^2 = x_1x_2$, $x_1^2 + x_2^2 = 4$; 3) $x_3 = x_1^2 + x_2^2$, $x_1x_2 = 1$, $x_1x_2 = 2$, $x_2 = \frac{x_1}{2}$, $x_2 = 2x_1$, $x_3 = 0$.
- 6. Знайти координати центра ваги однорідного тіла, обмеженого поверх-
- нями $4x_1^2+4x_2^2=x_3^2,\,x_3=2.$ 7. Дослідити, при яких $\{\alpha,\beta\}\subset {f R}$ збігається невласний інтеграл

$$\int_{A} \frac{dx_1 dx_2}{x_1^{\alpha} x_2^{\beta}}, \quad A = \{(x_1, x_2) \mid x_1 x_2 \ge 1, \ x_1 \ge 1\},\$$

і обчислити його. **8.** Обчислити інтеграл

$$\int_{\mathbf{R}^2} \exp(-x_1^2 - x_2^2) \cos(x_1^2 + x_2^2) \, dx_1 dx_2.$$

9. Обчислити інтеграл

$$\int_{A} \frac{dx_1 dx_2}{(x_1^2 + x_2^2)^{1/3}}, \quad A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1, \ x_1 \ge x_2\}.$$

Д1. Дослідити, при яких $\{lpha,eta\}\subset \mathbf{R}$ збігається невласний інтеграл

$$\int_{\mathbf{R}^2} \frac{dx_1 dx_2}{(1+|x_1|^{\alpha})(1+|x_2|^{\beta})}.$$

Д2. Нехай $A=\{(x_1,x_2)\,|\,\,x_1^2+x_2^2\leq 1\},\,f\in C(A)$ і $f(x_1,x_2)\neq 0,\,(x_1,x_2)\in A.$ При яких $\alpha\in\mathbf{R}$ збігається невласний інтеграл

$$\int_{A} \frac{f(x_1, x_2)}{(x_1^2 + x_1 x_2 + x_2^2)^{\alpha}} \, dx_1 dx_2 ?$$

- 1. Обчислити інтеграли, перейшовши до сферичних координат:
 - 1) $\int_C (x_1^2 + x_2^2 + x_3^2)^{3/2} dx_1 dx_2 dx_3$, де тіло C обмежене поверхнею
 - $x_1^2+x_2^2+x_3^2+x_3=0;$ 2) $\int_C \sqrt{x_1^2+x_2^2+x_3^2}\,dx_1dx_2dx_3$, де тіло C обмежене поверхня-

 - ми $x_1^2 + x_2^2 + x_3^2 = 1, x_1 = 2x_2, x_2 = 2x_1;$ 3) $\int_C \sqrt{x_1^2 + x_2^2 + x_3^2} \, dx_1 dx_2 dx_3$, де $C = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \leq 4, \ x_i \geq 0, \ i = 1, 2, 3\};$ 4) $\int_C \exp((x_1^2 + x_2^2 + x_3^2)^{3/2}) \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2 + x_2^2 + x_3^2 = 1, \ x_1^2 + x_2^2 + x_3^2 = 4;$ 5) $\int_{-1}^1 \left(\int_0^{\sqrt{1-x_1^2}} \left(\int_{\sqrt{1-x_1^2-x_2^2}}^{\sqrt{4-x_1^2-x_2^2}} x_1 x_3 \, dx_3\right) dx_2\right) dx_1;$ 6) $\int_1^{1/\sqrt{2}} \left(\int_{x_1}^{\sqrt{1-x_1^2}} \left(\int_{\sqrt{x_1^2+x_2^2}}^{\sqrt{4-x_1^2-x_2^2}} x_3^3 \, dx_3\right) dx_2\right) dx_1;$

7)
$$\int_{-1}^{0} \left(\int_{-\sqrt{1-x_1^2}}^{0} \left(\int_{\sqrt{x_1^2+x_2^2}}^{3\sqrt{x_1^2+x_2^2}} x_1 x_2 x_3 \, dx_3 \right) dx_2 \right) dx_1;$$

- 8) $\int_C \sqrt{x_1^2 + x_2^2 + x_3^2} \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_3 = x_1^2 + x_2^2$, $x_1 = x_2$, $x_2 = 1$, $x_1 = 0$, $x_3 = 0$;
- 9) $\int_C \sqrt{x_1^2+x_2^2+x_3^2}\,dx_1dx_2dx_3$, де тіло C обмежене поверхнями $x_3=x_1^2+x_2^2,\,x_3=2(x_1^2+x_2^2),\,x_1=\pm x_2,\,x_1^2+x_2^2=1;$
- 10) $\int_C \sin(x_1^2+x_2^2+x_3^2)^{3/2}\,dx_1dx_2dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2+x_3^2=1,\,x_1^2+x_2^2+x_3^2=4;\quad x_i\geq 0,\,i=1,2,3.$

2. Обчислити інтеграли, перейшовши до циліндричних координат:

- 1) $\int_C (x_1^2+x_2^2)^2 \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2=x_3, \, x_1^2+x_2^2=2x_3, \, x_1^2+x_2^2=1;$ 2) $\int_C \sqrt{x_1^2+x_2^2} \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2=x_3, \, x_3=3, \, |x_1|\leq |x_2|;$ 3) $\int_C \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2+x_3^2=4, \, (x_1^2+x_2^2)^2=4(x_1^2-x_2^2);$ 4) $\int_C \, dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2=x_3, \, x_1+x_2=2.$

- $x_1 + x_3 = 2;$
- 5) $\int_C dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2 + x_2^2 + x_3^2 =$ 1, $x_1^2 + x_2^2 + (x_3 - \frac{1}{2})^2 = 1$;
- 6) $\int_C dx_1 dx_2 dx_3$, де тіло C обмежене поверхнями $x_1^2 + x_2^2 + x_3^2 =$ $2x_3, x_1^2 + x_2^2 = x_3;$
- 7) $\int_0^2 \left(\int_0^{\sqrt{2x_1 x_1^2}} \left(\int_0^3 x_3 \sqrt{x_1^2 + x_2^2} \, dx_3 \right) dx_2 \right) dx_1;$
- 8) $\int_C \sqrt{x_1^2+x_2^2}\,dx_1dx_2dx_3$, де тіло C обмежене поверхнями $x_1^2+x_2^2=2x_1,\,x_3=x_1^2+x_2^2,\,x_3=0;$
- 9) $\int_C x_3 dx_1 dx_2 dx_3$, де тіло C є перетин куль $\overline{B}((0,0,0),1)$ і $\overline{B}((0,0,1),1)$ у евклідовій метриці;
- 10) $\int_C \sqrt{x_1^2+x_2^2}\, dx_1 dx_2 dx_3$, де тіло C є перетин куль $\overline{B}((0,0,0),2)$ і $\overline{B}((0,0,-2),2)$ у евклідовій метриці.

3. Обчислити об'єми тіл, обмежених поверхнями:

1)
$$x_3 = x_1 + x_2$$
, $x_1^2 + x_2^2 = 1$, $x_3 = 0$; $x_1 \ge 0$, $x_2 \ge 0$;

2)
$$x_1^2 + x_2^2 + x_3^2 = 1$$
, $x_1^2 + x_2^2 \ge |x_1|$

3)
$$x_1^{\frac{5}{2}} + x_2^{\frac{5}{2}} - x_3 = 0$$
, $x_1^{\frac{5}{2}} + x_2^{\frac{5}{2}} = 1$, $x_3 = 0$;

2)
$$x_1^2 + x_2^2 + x_3^2 = 1$$
, $x_1^2 + x_2^2 \ge |x_1|$;
3) $x_1^2 + x_2^2 - x_3 = 0$, $x_1^2 + x_2^2 = 1$, $x_3 = 0$;
4) $x_3 = \exp(-x_1^2 - x_2^2)$, $x_3 = 0$, $x_1^2 + x_2^2 = 4$;

5)
$$x_3 = \cos \frac{\pi \sqrt{x_1^2 + x_2^2}}{2}$$
, $x_3 = 0$, $x_2 = \frac{x_1}{\sqrt{3}}$, $x_2 = \sqrt{3}x_1$;

6)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = x_1 + x_2$;

6)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = x_1 + x_2$;
7) $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2} = -1$, $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$; $\{a, b, c\} \subset (0, +\infty)$;

8)
$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = x_3$$
, $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = \frac{x_1}{a} + \frac{x_2}{b}$; $\{a, b\} \subset (0, +\infty)$;
9) $(x_1^2 + x_2^2)^2 + x_3 = 1$, $x_3 = 0$;
10) $x_3 = x_1 x_2$, $x_1^2 = x_2$, $x_1^2 = 2x_2$, $x_2^2 = x_1$, $x_2^2 = 2x_1$, $x_3 = 0$.

9)
$$(x_1^2 + x_2^2)^2 + x_3 = 1$$
, $x_3 = 0$

10)
$$x_3 = x_1 x_2$$
, $x_1^2 = x_2$, $x_1^2 = 2x_2$, $x_2^2 = x_1$, $x_2^2 = 2x_1$, $x_3 = 0$.

4. Знайти координати центрів ваги тіл, обмежених поверхнями:

1)
$$x_3^2 = x_1^2 + x_2^2$$
, $x_3 = 0$, $x_1^2 + x_2^2 = 1$

2)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = 1$; $x_1 \ge 0$, $x_2 \ge 0$;

3)
$$x_3 = x_1^2 + 9x_2^2$$
, $x_3 = 4$; $x_1 \ge 0$;

4)
$$x_3^2 = 1 - x_1^2 - x_2^2$$
, $x_3 = 0$;

5)
$$x_3 = x_1^2 + x_2^2$$
, $x_3 = 1$; $x_1 \le x_2 \le 2x_1$;

6)
$$x_1^2 + x_2^2 = 1$$
, $x_3 = \pm 1$; $x_1 \ge 0$, $x_2 \ge 0$

7)
$$x_1^2 + x_2^2 = 1$$
, $x_3 = \pm 1$; $0 < x_1 < x_2$;

3. Знайти координати центрів ваги тіл, обмежених поверх 1)
$$x_3^2 = x_1^2 + x_2^2$$
, $x_3 = 0$, $x_1^2 + x_2^2 = 1$; 2) $x_3 = x_1^2 + x_2^2$, $x_3 = 1$; $x_1 \ge 0$, $x_2 \ge 0$; 3) $x_3 = x_1^2 + 9x_2^2$, $x_3 = 4$; $x_1 \ge 0$; 4) $x_3^2 = 1 - x_1^2 - x_2^2$, $x_3 = 0$; 5) $x_3 = x_1^2 + x_2^2$, $x_3 = 1$; $x_1 \le x_2 \le 2x_1$; 6) $x_1^2 + x_2^2 = 1$, $x_3 = \pm 1$; $x_1 \ge 0$, $x_2 \ge 0$; 7) $x_1^2 + x_2^2 = 1$, $x_3 = \pm 1$; $0 \le x_1 \le x_2$; 8) $x_1^2 + x_2^2 = 1$, $x_3 = 0$, $x_3 = 2$; $x_1/2 \le x_2 \le 2x_1$; 9) $x_3^2 = x_1^2 + x_2^2$, $x_3^2 = 2(x_1^2 + x_2^2)$, $x_1^2 + x_2^2 = 1$; 10) $x_1^2 + x_2^2 + x_3^2 = 1$; $x_3 \ge 0$.

9)
$$x_3^2 = x_1^2 + x_2^2$$
, $x_3^2 = 2(x_1^2 + x_2^2)$, $x_1^2 + x_2^2 = 1$

10)
$$x_1^2 + x_2^2 + x_3^2 = 1$$
; $x_3 \ge 0$.

5. Дослідити, при яких значеннях параметрів збігаються інтеграли:

1)
$$\int_A \frac{dx_1dx_2}{(1+x_1^2+x_2^2)^{lpha}}, \quad A=\{(x_1,x_2) \mid 0 \leq x_2 \leq 1\}, \ \alpha \in \mathbf{R};$$
2) $\int_A \frac{dx_1dx_2}{|x_1|^{lpha}+|x_2|^{eta}},$
 $A=\{(x_1,x_2) \mid |x_1|+|x_2| \geq 1\}, \ \alpha > 0, \ \beta > 0;$
3) $\int_A \frac{\sin x_1 \sin x_2}{(x_1+x_2)^{lpha}} \, dx_1 dx_2,$
 $A=\{(x_1,x_2) \mid |x_1+x_2 \geq 1\}, \ \alpha \in \mathbf{R};$
4) $\int_A \frac{\sin(x_1^2+x_2^2)}{(x_1^2+x_2^2)^{lpha}} \, dx_1 dx_2,$

2)
$$\int_{A} \frac{dx_1 dx_2}{|x_1|^{\alpha} + |x_2|^{\beta}}$$
,

$$A = \{(x_1, x_2) \mid |x_1| + |x_2| \ge 1\}, \ \alpha > 0, \ \beta > 0;$$

3)
$$\int_{A} \frac{\sin x_1 \sin x_2}{(x_1 + x_2)^{\alpha}} dx_1 dx_2,$$

$$A = \{(x_1, x_2) \mid x_1 + x_2 \ge 1\}, \ \alpha \in \mathbf{R};$$

4)
$$\int_{A} \frac{\sin(x_1^2 + x_2^2)}{(x_1^2 + x_2^2)^{\alpha}} dx_1 dx_2,$$

$$A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \ge 4\}, \ \alpha \in \mathbf{R};$$

5)
$$\int_{A} \frac{\cos(x_{1}^{2} + x_{2}^{2})}{(x_{1}^{2} + x_{2}^{2})^{\alpha}} dx_{1} dx_{2},$$

$$A = \{(x_{1}, x_{2}) \mid x_{1}^{2} + x_{2}^{2} \geq 1, \ x_{1} \leq x_{2}\}, \ \alpha \in \mathbf{R};$$
6)
$$\int_{\mathbf{R}^{2}} \exp(-(x_{1}^{4} + x_{2}^{4})^{\alpha}) dx_{1} dx_{2}, \ \alpha \in \mathbf{R};$$

6)
$$\int_{\mathbf{R}^2} \exp(-(x_1^4 + x_2^4)^{\alpha}) dx_1 dx_2, \ \alpha \in \mathbf{R};$$

7)
$$\int_{A} \exp(-(x_{1} + x_{2})^{\alpha}) dx_{1} dx_{2},$$

$$A = \{(x_{1}, x_{2}) \mid 0 \leq x_{1} \leq x_{2}\}, \ \alpha \in \mathbf{R};$$
8)
$$\int_{A} (x_{1}^{2} + x_{2}^{2} - 1)^{\alpha} dx_{1} dx_{2},$$

8)
$$\int_A (x_1^2 + x_2^2 - 1)^{\alpha} dx_1 dx_2$$
,
 $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 > 4\}, \ \alpha \in \mathbf{R}$

9)
$$\int_{\mathbf{R}^2} \sin((x_1^2 + x_2^2)^{\alpha}) dx_1 dx_2, \ \alpha \in \mathbf{R}$$

9)
$$\int_{\mathbf{R}^{2}} \int_{\mathbf{R}^{2}} \int_{\mathbf{R}^{2}}$$

6. Обчислити інтеграли чи виразити їх через значення Γ -функції:

1)
$$\int_A \frac{dx_1 dx_2}{(x_1 + x_2)^2}$$
, $A = \{(x_1, x_2) \mid x_1 + x_2 \ge 1, \ 0 \le x_1 \le 1\}$;

2)
$$\int_{A} \frac{dx_1 dx_2}{\sqrt{1 - x_1^2 - x_2^2}}, \quad A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\};$$
3)
$$\int_{A} \frac{dx_1 dx_2}{(x_1^2 + x_2^2)^2}, \quad A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \ge 1\};$$

3)
$$\int_A \frac{dx_1 dx_2}{(x_1^2 + x_2^2)^2}$$
, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \ge 1\}$;

4)
$$\int_A \frac{dx_1 dx_2}{x_1^2 + x_2^2}$$
, $A = \{(x_1, x_2) \mid x_2 \ge x_1^2 + 1\}$;

5)
$$\int_A \exp(-(x_1 + x_2)) dx_1 dx_2$$
, $A = \{(x_1, x_2) \mid 0 \le x_1 \le x_2\}$;

6)
$$\int_A e^{-x_1} x_2^{\alpha} dx_1 dx_2$$
, $A = \{(x_1, x_2) \mid 0 \le x_2 \le x_1\}, \ \alpha > 0$;

7)
$$\int_{\mathbf{R}^2} \exp(-(x_1^2 + x_2^2)^{\alpha}) dx_1 dx_2, \ \alpha > 0;$$

8)
$$\int_{A} (1-x_1)^{\alpha} x_2^{\beta} dx_1 dx_2, A = \{(x_1, x_2) \mid 0 \le x_2 \le x_1 \le 1\}, \ \alpha > -1, \ \beta > -1;$$

$$A = \{(x_1, x_2) \mid 0 \le x_2 \le x_1 \le 1\}, \ \alpha > -1, \ \beta > -1;$$

$$9) \int_A x_1^{\alpha} x_2^{\beta} dx_1 dx_2, \quad A = \{(x_1, x_2) \mid 0 \le x_2 \le 1 - x_1, \ x_1 \ge 0\},$$

$$\begin{array}{l} \alpha > -1, \ \beta > -1; \\ 10) \ \int_A (x_1^2 + x_2^2)^\alpha (1 - x_1^2 - x_2^2)^\beta \, dx_1 dx_2, \quad A = \{(x_1, x_2) \, | \, x_1^2 + x_2^2 \leq 1, \ x_1 \geq 0, \ x_2 \geq 0\}, \ \alpha > -1, \ \beta > -1. \end{array}$$

7. Обчислити інтеграли:

1)
$$\int_A \exp(-x_1^2 - x_2^2) dx_1 dx_2$$
, $A = \{(x_1, x_2) \mid x_1 \ge 0, x_2 \ge 0\}$;
2) $\int_{\mathbf{R}^2} x_1 x_2 \exp(-x_1^2 - x_2^2) dx_1 dx_2$;

2)
$$\int_{\mathbf{R}^2} x_1 x_2 \exp(-x_1^2 - x_2^2) dx_1 dx_2$$

- 3) $\int_{\mathbf{R}^2} \exp(-(x_1^2 + x_1 + x_2^2 x_2)) dx_1 dx_2;$
- 4) $\int_{\mathbf{R}^2} x_1 \exp(-x_1^2 + x_1 x_2^2) dx_1 dx_2$;
- 5) $\int_{\mathbf{R}^2}^{2} x_1^3 x_2^3 \exp(-x_1^4 x_2^4) dx_1 dx_2;$
- 6) $\int_{\mathbf{R}^2} (x_1 + x_2) \exp(-(x_1^2 + 2x_2^2 + x_1 + x_2)) dx_1 dx_2;$
- 7) $\int_{\mathbf{R}^2} (1 + x_1 x_2) \exp(-(x_1^2 x_1 + x_2^2)) dx_1 dx_2;$
- 8) $\int_{\mathbf{R}^2} (x_1^2 + x_2^2) \exp(-x_1^2 x_2^2) dx_1 dx_2$;
- 9) $\int_{\mathbf{R}^2} \sqrt{x_1^2 + x_2^2} \exp(-x_1^2 x_2^2) dx_1 dx_2;$
- 10) $\int_{\mathbf{R}^2} \exp(-(2x_1^2 + 3x_1 + 5x_2^2 + 4x_2 + 1)) dx_1 dx_2$.
- 8. Дослідити, при яких значеннях параметрів збігаються інтеграли:

1)
$$\int_{A} \frac{dx_1 dx_2}{|x_1|^{\alpha} + |x_2|^{\beta}}, \ A = \{(x_1, x_2) \mid |x_1| + |x_2| \le 1\},\ \alpha > 0, \ \beta > 0;$$

- 2) $\int_A |\ln(x_1^2 + x_2^2)|^{\alpha} dx_1 dx_2$, $A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 1\}, \ \alpha > 0;$
- 3) $\int_{\mathbf{A}} (x_1^2 + x_2^2)^{\alpha} \frac{dx_1}{dx_2} dx_2, \ A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le x_1\}, \ \alpha \in \mathbf{R};$ 4) $\int_{[0,1]^3} \frac{dx_1}{x_1^{\alpha} x_2^{\beta} x_3^{\gamma}}, \ \{\alpha, \beta, \gamma\} \in \mathbf{R};$
- 5) $\int_A \exp(-(x_1^2 + x_2^2 + x_3^2)^{\alpha}) dx_1 dx_2 dx_3$, $A = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \le 1\}, \ \alpha \in \mathbf{R};$
- 6) $\int_A (x_1^2 + x_2^2 + x_3^2)^{\alpha} dx_1 dx_2 dx_3$, $A = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \le 2x_1\}, \ \alpha \in \mathbf{R};$
- 7) $\int_A (x_1^2 + x_2^2 + x_3^2)^{\alpha} dx_1 dx_2 dx_3$, $A = \{(x_1,x_2,x_3) \mid x_1^2 + x_2^2 + x_3^2 \le x_2\}, \ \alpha \in \mathbf{R};$ 8) $\int_A (|x_1| + |x_2| + |x_3|)^\alpha \, dx_1 dx_2 dx_3,$
- $A = \{(x_1, x_2, x_3) \mid |x_1| + |x_2| + |x_3| \le 1\}, \ \alpha \in \mathbf{R};$
- 9) $\int_A (x_1^4 + x_2^4 + x_3^4)^{\alpha} dx_1 dx_2 dx_3$, $A = \{(x_1, x_2, x_3) \mid x_1^4 + x_2^4 + x_3^4 \le 1\}, \ \alpha \in \mathbf{R};$
- 10) $\int_A (|x_1|^{\alpha} + |x_2|^{\alpha} + |x_3|^{\alpha})^{\alpha 6} dx_1 dx_2 dx_3,$ $A = \{(x_1, x_2, x_3) \mid |x_1|^{\alpha} + |x_2|^{\alpha} + |x_3|^{\alpha} \le 1\}, \ \alpha > 0.$

ЗАНЯТТЯ 12 КРИВОЛІНІЙНІ ІНТЕГРАЛИ

Контрольні запитання

- 1. Формула для обчислення довжини дуги.
- 2. Формула для обчислення криволінійного інтеграла І роду.
- 3. Формули для обчислення маси та центру ваги дуги кривої.

- 1. Обчислити криволінійний інтеграл $\int f dl$.
 - 1) $\Gamma=\{(a\cos t,a\sin t,bt)\,|\,\,0\le t\le 2\pi\}\,,a>0,b>0;$ $f(x_1,x_2,x_3)=x_1^2+x_2^2+x_3^2,(x_1,x_2,x_3)\in\mathbf{R}^3;$ 2) Γ дуга кривої $x_1^2+x_2^2=x_3^2,x_2^2=x_1$ від точки (0,0,0) до
 - точки $(1,1,\sqrt{2});\; f(x_1,x_2,x_3)=x_3, (x_1,x_2,x_3)\in \mathbf{R}^3.$
- **2.** Обчислити довжину кривої Γ .
 - 1) Γ дуга кривої $\{(3t, 3t^2, 2t^3) \,|\, t \in {f R}\}$ від точки (0,0,0) до точки (3, 3, 2);
 - 2) $\Gamma = \{(t \cos t, t \sin t, t) \mid 0 \le t \le \pi\}$.
- Обчислити криволінійний інтеграл $\int\limits_{\Gamma} (x_1\,dx_2\,-\,x_2\,dx_1)$ вздовж 3. кривої Γ з початком у точці (0,0) і кінцем у точці (1,2), якщо:
 - 1) Γ відрізок прямої;
 - 2) Γ парабола, вісь якої вісь ординат Ox_2 ;
 - 3) Γ ламана, що складається з відрізка OB осі Ox_1 і відрізка BA, паралельного осі Ox_2 .
- 4. Обчислити криволінійні інтеграли:
 - 1) $\int\limits_{\Gamma} \left[(x_1^2 2x_1x_2)\,dx_1 + (x_2^2 2x_1x_2)\,dx_2
 ight]$, де Γ відрізок па-
 - раболи $x_2=x_1^2,\;x_1\in[-1,1],\;$ що пробігається відповідно зростанню $x_1;$ 2) $\int_{\Gamma} \frac{(x_1+x_2)\;dx_1-(x_1-x_2)\;dx_2}{x_1^2+x_2^2},\;$ де Γ коло $x_1^2+x_2^2=1,\;$ що пробігається проти руху годинникової стрілки;

- 3) $\int_{\Gamma} (x_2 \ dx_1 + x_3 \ dx_2 + x_1 \ dx_3)$, де Γ виток гвинтової лінії $x_1 = \cos t, \; x_2 = \sin t, \; x_3 = 2t, \; 0 \leq t \leq 2\pi$, рух по Γ відповідає зростанню t.
- **5.** Сила $\vec{F}(x_1,x_2)=(-x_1,-x_2)$. Знайти роботу сили, яка витрачається на переміщення матеріальної точки по дузі параболи $x_2^2=8x_1$ від точки (2,4) до точки $(4,4\sqrt{2}).$
- **6.** Обчислити криволінійний інтеграл $\int \omega$:
 - 1) Γ контур трикутника ABC з вершинами A(1,1), B(0,0), C(0,2),що пробігається в додатному напрямку; $\omega = (x_1 + x_2)^2 dx_1 - dx_2$ $(x_1^2 + x_2^2) dx_2;$
 - 2) Γ еліпс $\frac{x_1^2}{a^2}+\frac{x_2^2}{b^2}=1, a>0, b>0,$ що пробігається в додатному напрямку; $\omega=(x_1+x_2)\,dx_1-(x_1-x_2)\,dx_2.$
- 7. Обчислити площі фігур, обмежених заданими кривими:
 - 1) еліпсом $\{(a\cos t, b\sin t) \mid 0 \le t \le 2\pi\}, a > 0, b > 0;$

 - 2) параболою $(x_1+x_2)^2=x_1$ і віссю $Ox_1;$ 3) кривою $(\frac{x_1}{a})^n+(\frac{x_2}{b})^n=1;\{a,b,n\}\subset(0,+\infty),$ і осями координат. *Вказівка*. Покласти $x_1 = a(\cos\varphi)^{\frac{2}{n}}, x_2 = a(\sin\varphi)^{\frac{2}{n}}$.

- 1. Обчислити довжину кривої Γ .
 - 1) $\Gamma = \left\{ (e^{-t}\cos t, e^{-t}\sin t, e^{-t}) \mid 0 \le t \le 1 \right\}.$ 2) Γ дуга кривої $\left\{ (x_1, \arcsin x_1, \frac{1}{4}\ln\frac{1-x_1}{1+x_1}) \mid -1 < x_1 < 1 \right\}$ від точки (0,0,0) до точки $(x_1^0,x_2^0,x_3^0);$
 - 3) $\Gamma = \left\{ (t, \frac{2\sqrt{2}}{3}t^{3/2}, \frac{t^2}{2}) \mid 0 \le t \le 1 \right\}.$
 - 4) $\Gamma = \left\{ (\frac{\sqrt{2}}{2}t^2, \frac{t^3}{3}, t) \mid 0 \le t \le 4 \right\}.$
 - 5) $\Gamma = \left\{ \left(\frac{t^2}{2}, \frac{2\sqrt{2}}{5}t^{5/2}, \frac{t^3}{3} \right) \mid 4 \le t \le 9 \right\}.$
 - 6) $\Gamma = \left\{ (t, \frac{4\sqrt{2}}{5}t^{5/4}, \frac{2}{3}t^{3/2}) \mid 0 \le t \le 1 \right\}.$
 - 7) $\Gamma = \left\{ \left(\frac{t^4}{4}, t, \frac{2\sqrt{2}}{5} t^{5/2} \right) \mid 1 \le t \le 2 \right\}.$
 - 8) $\Gamma = \left\{ (\frac{t^2}{2}, \sqrt{2}t, \ln t) \mid e^{-1} \le t \le e \right\}.$

- 9) $\Gamma = \left\{ \left(\frac{2}{3}t^{3/2}, t\sqrt{2}, 2t^{1/2} \right) \mid 1 \le t \le 4 \right\}.$
- 10) $\Gamma = \{(t, 2\sqrt{2}e^{t/2}, e^t) \mid \ln 2 \le t \le \ln 3\}.$
- 2. Обчислити криволінійний інтеграл $\int\limits_{\Gamma} f dl.$
 - 1) Γ межа фігури, обмеженої кривими $x_1^2+x_2^2=1, x_1=x_2, x_1\geq x_2; f(x_1,x_2)=x_1^2+x_2, (x_1,x_2)\in {\bf R}^2;$
 - 2) $\Gamma = \{(x_1, x_2) \mid |x_1| + |x_2| = 1\}; f(x_1, x_2) = x_1^2 x_2, (x_1, x_2) \in \mathbf{R}^2;$
 - 3) Γ межа трикутника з вершинами $(0,0),(2,1),(1,2);f(x_1,x_2)=x_1+x_2^2,(x_1,x_2)\in {\bf R}^2;$
 - 4) Γ межа сектора круга $x_1^2+x_2^2\leq 1, x_1\geq |x_2|; f(x_1,x_2)=x_1^2+x_2, (x_1,x_2)\in {\bf R}^2;$
 - 5) Γ межа трикутника з вершинами (0,0),(1,0),(0,1); $f(x_1,x_2)=x_1x_2,(x_1,x_2)\in {\bf R}^2;$
 - 6) $\Gamma = \{(t \sin t, 1 \cos t) \mid 0 \le t \le 2\pi\}; f(x_1, x_2) = x_1^2, (x_1, x_2) \in \mathbf{R}^2;$
 - 7) $\Gamma = \{(\cos t + t \sin t, \sin t t \cos t) \mid 0 \le t \le 2\pi\};$ $f(x_1, x_2) = x_1^2 + x_2^2, (x_1, x_2) \in \mathbf{R}^2;$
 - 8) $\Gamma = \{(\operatorname{ch} t, \operatorname{sh} t) \mid 0 \le t \le t_0\}, t_0 > 0; f(x_1, x_2) = x_1 x_2, (x_1, x_2) \in \mathbf{R}^2;$
 - 9) $\Gamma = \left\{ (x_1, x_2) \mid x_1^{2/3} + x_2^{2/3} = 1 \right\}; f(x_1, x_2) = x_1^{4/3} + x_2^{4/3}, (x_1, x_2) \in \mathbf{R}^2;$
 - 10) Γ границя сектора $\left\{(x_1,x_2)\mid x_1^2+x_2^2\leq 1, 0\leq x_2\leq x_1\right\}; f(x_1,x_2)=\exp(\sqrt{x_1^2+x_2^2}), (x_1,x_2)\in\mathbf{R}^2;$
- 11) Γ границя трикутника з вершинами (1,0,0),(0,1,0),(0,0,1); $f(x_1,x_2,x_3)=x_1+x_2^2+x_3^3,(x_1,x_2,x_3)\in\mathbf{R}^3;$
- 12) Γ границя прямокутника з вершинами (1,0,0),(1,1,0),(0,1,1),(0,0,1); $f(x_1,x_2,x_3)=x_1x_2^2x_3^3,(x_1,x_2,x_3)\in\mathbf{R}^3;$
- 13) Γ ламана, що з'єднує послідовно точки (1,0,0),(0,1,0),(1,0,1); $f(x_1,x_2,x_3)=x_1+2x_2+3x_3,(x_1,x_2,x_3)\in \mathbf{R}^3;$
- 14) Γ границя трикутника з вершинами (0,1,1),(1,0,1),(1,1,0); $f(x_1,x_2,x_3)=x_2,(x_1,x_2,x_3)\in\mathbf{R}^3;$
- 15) Γ ламана, що з'єднує послідовно точки (0,0,0),(1,1,1),(3,2,1); $f(x_1,x_2,x_3)=x_1-x_2,(x_1,x_2,x_3)\in {f R}^3;$
- 16) Γ коло $x_1^2+x_2^2+x_3^2=1, x_1+x_2+x_3=0;$ $f(x_1,x_2,x_3)=x_1^2, (x_1,x_2,x_3)\in \mathbf{R}^3;$
- 17) $\Gamma = \{(t\cos t, t\sin t, t) \mid 0 \le t \le t_0\}, t_0 > 0;$ $f(x_1, x_2, x_3) = x_3, (x_1, x_2, x_3) \in \mathbf{R}^3;$

- 18) Γ чверть кола $x_1^2+x_2^2+x_3^2\,=\,1, x_1\,=\,x_2,$ що лежить в першому октанті; $f(x_1, x_2, x_3) = x_1 + x_2, (x_1, x_2, x_3) \in \mathbf{R}^3$;
- 19) Γ чверть кола $x_1^2+x_2^2+x_3^2=4, x_1^2+x_2^2=1, x_3\geq 0,$ що ле-
- жить в першому октанті; $f(x_1,x_2,x_3)=x_1x_2x_3, (x_1,x_2,x_3)\in \mathbf{R}^3;$ 20) Γ коло $x_1^2+x_2^2+x_3^2=1, x_2=x_3; f(x_1,x_2,x_3)=x_2-x_3, (x_1,x_2,x_3)\in \mathbf{R}^3.$
- **3.** Знайти масу кривої Γ з лінійною щільністю ρ :
 - 1) $\Gamma = \{(x_1, \ln x_1) \mid 1 \le x_1 \le e\}, \rho(x_1, x_2) = x_1^2, (x_1, x_2) \in \Gamma.$
 - 2) $\Gamma = \{(a\cos t, b\sin t) \mid 0 \le t \le \frac{\pi}{2}\}, a > 0, b > 0; \rho(x_1, x_2) = 0\}$
 - 3) $\Gamma = \left\{ (t, \frac{t^2}{2}, \frac{t^3}{3}) \mid 0 \le t \le 1 \right\}, \rho(x_1, x_2, x_3) = \sqrt{2x_2}, (x_1, x_2, x_3) \in \mathbb{R}$
 - 4) $\Gamma = \left\{ (x_1, \frac{x_1^2}{2}) \mid 1 \le x_1 \le 2 \right\}, \rho(x_1, x_2) = \frac{x_2}{x_1}, (x_1, x_2) \in \Gamma.$
 - 5) $\Gamma = \{ (\ln(1+t^2), 2 \operatorname{arctg} t t) \mid 0 \le t \le 1 \}, \rho(x_1, x_2) = x_2 e^{-x_1},$ $(x_1,x_2)\in\Gamma.$
- **4.** Визначити центр ваги однорідної кривої Γ :
 - 1) $\Gamma = \{(x_1, x_2) \mid \sqrt{x_1} + \sqrt{x_2} = 1\};$
 - 2) $\Gamma = \{(x_1, x_2) \mid x_2^2 = x_1^3 x_1^4\};$
 - 3) $\Gamma = \{(x_1, \operatorname{ch} x_1) \mid -1 \le x_1 \le 1\};$
 - 4) Γ дуга кола радіуса a при центральному куті $2 arphi, 0 < arphi < \pi.$
 - 5) $\Gamma = \left\{ (x_1, x_2) \mid x_1^{2/3} + x_2^{2/3} = 1, x_2 \ge 0 \right\}.$
- **5.** Обчислити криволінійний інтеграл другого роду $\int\limits_{\mathbb{R}}\omega$:
 - 1) Γ границя трикутника з вершинами (0,0),(2,1),(1,2), що пробігається у напрямку $(0,0) \to (2,1) \to (1,2) \to (0,0)$; $\omega = x_1^2 x_2 \, dx_1 + x_1 x_2^2 \, dx_2;$
 - 2) $\Gamma = \{(x_1,x_2) \, | \, |x_1| + |x_2| = 1\}$ пробігається за рухом годинникової стрілки; $\omega = x_1 dx_1 - x_1 x_2 dx_2$;
 - 3) Γ замкнений контур, що складається з відрізків ліній $x_2=$ $x_1^2, x_2 = x_1 + 2$ і пробігається проти руху годинникової стрілки; $\omega = x_1 x_2 dx_1 + x_2^2 dx_2;$

- 4) Γ крива, що складається з відрізка прямої від точки (-1,0) до точки (0,1) і розташованої у першому квадранті дуги кола з центром у точці (0,0), що пробігається від точки (0,1) до точки (1,0); $\omega=x_1\,dx_1+x_1x_2\,dx_2$;
- 5) Γ межа квадрата з вершинами (1,1),(-1,1),(-1,-1),(1,-1) що пробігається проти годинникової стрілки; $\omega=-x_2(x_1^2+x_2^2)^{-1}\,dx_1+x_1(x_1^2+x_2^2)^{-1}\,dx_2;$
- $x_2^2)^{-1}\,dx_1+x_1(x_1^2+x_2^2)^{-1}\,dx_2;$ 6) Γ крива $x_2=1-|1-x_1|,\ 0\leq x_1\leq 2,$ що пробігається у напрямку зростання $x_1;\ \omega=(x_1^2+x_2^2)\,dx_1+(x_1^2-x_2^2)\,dx_2;$
- 7) Γ еліпс $\frac{x_1^2}{4}+\frac{x_2^2}{9}=1$, що пробігається проти годинникової стрілки; $\omega=(x_1+x_2)\,dx_1+(x_1-x_2)\,dx_2$;
- 8) Γ арка циклоїди $x_1=t-\sin t,\; x_2=1-\cos t,\; 0\leq t\leq 2\pi,$ що пробігається у напрямку зростання $t;\; \omega=(2-x_2)\,dx_1+x_1\,dx_2;$
- 9) Γ відрізок прямої від точки $(0,\pi)$ до точки $(\pi,0);\ \omega = \sin x_2\,dx_1 + \sin x_1\,dx_2;$
- 10) Γ межа фігури, обмеженої кривими $x_2=x_1^2, x_2=x_1,$ що пробігається проти годинникової стрілки; $\omega=x_1^2x_2\,dx_1+2x_1x_2^2\,dx_2.$
- **6.** Обчислити криволінійний інтеграл другого роду $\int\limits_{\Gamma}\omega$:
 - 1) Γ ламана, що з'єднує послідовно точки (1,0,0),(1,0,2),(0,1,0); $\omega=-x_1\,dx_1+x_2\,dx_2-x_3\,dx_3;$
 - 2) Γ відрізок прямої від точки (0,0,0) до точки $(1,2,3);\omega=-x_1\,dx_1+x_2x_3\,dx_2-x_1x_2\,dx_3;$
 - 3) Γ межа трикутника з вершинами (1,0,0),(0,1,0),(0,0,1), що пробігається у напрямку $(1,0,0) \to (0,1,0) \to (0,0,1) \to (1,0,0); \ \omega = x_1x_3\ dx_1 + x_1x_2\ dx_2 + x_1x_3\ dx_3;$
 - 4) Γ межа прямокутника, що пробігається у напрямку $(1,0,0) \to (1,1,0) \to (0,1,1) \to (0,0,1) \to (1,0,0); \omega = x_1x_2\,dx_1 x_2\,dx_2 + x_1x_3\,dx_3;$
 - 5) $\Gamma=\left\{(x_1,x_2,x_3)\,|\,\,|x_2|=4-x_1^2,x_3=0\right\}$, що пробігається у напрямку від точки (2,0,0) до точки (0,4,0) проти годинникової стрілки, якщо дивитися з точки $(0,0,1);\,\,\omega=x_1x_2\,dx_1+x_2^2\,dx_2+x_1x_2\,dx_3;$
 - 6) Γ відрізок прямої від точки (1,1,1) до точки $(2,3,4);\;\omega=x_1\,dx_1+x_2\,dx_2+(x_1+x_2-1)\,dx_3;$

- 7) Γ дуга гвинтової лінії $x_1=2\cos t, x_2=2\sin t, x_3=\frac{t}{2\pi}, t\in \mathbf{R},$ від точки перетину з площиною $x_3=0$ до точки перетину з площиною $x_3=1;\;\omega=x_2x_3\,dx_1+x_3x_1\,dx_2+x_1x_2\,dx_3;$
- 8) Γ відрізок прямої від точки (1,1,1) до точки (4,4,4); $\omega=\frac{x_1\,dx_1+x_2\,dx_2+x_3\,dx_3}{\sqrt{x_1^2+x_2^2+x_3^2-x_1-x_2+2x_3}};$
- 9) Γ межа прямокутника, що пробігається у напрямку $(1,0,0) \to (1,1,0) \to (0,1,1) \to (0,0,1) \to (1,0,0); \ \omega = x_1x_2\ dx_1 dx_2;$
- 10) Γ ламана, що з'єднує послідовно точки (1,0,0),(0,1,0),(1,0,1); $\omega=\sin x_1\,dx_1+\sin x_2\,dx_2+\sin x_3\,dx_3.$
- **7.** Нехай $\vec{F}(x_1,x_2), (x_1,x_2) \in \mathbf{R}^2$ силове поле. Знайти роботу поля, що витрачається на пересування матеріальної точки з точки A в точку B вздовж орієнтованої кривої Γ , для наведених \vec{F}, A, B і Γ .
 - 1) Сила \vec{F} має постійну величину F і направлена вздовж додатної півосі $Ox_1; A=(1,0), \ B=(0,1); \Gamma$ чверть кола $x_1^2+x_2^2=1,$ що лежить у першому квадранті.
 - 2) Сила \vec{F} направлена в початок координат і по модулю дорівнює відстані від точки докладання до початку координат; A=(0,0), B=(1,1); Γ відрізок прямої.
 - 3) Задача 2) для частини параболи $x_2=x_1^2,\, 0\leq x_1\leq 1.$
 - 4) Напрямок сили \vec{F} повернутий на кут $\frac{\pi}{2}$ за годинниковою стрілкою відносно радіус-вектора \vec{r} точки її докладання, $|\vec{F}|=\frac{1}{|\vec{r}|};$ $A=(2,0),\;B=(0,2);\;\Gamma$ чверть кола $x_1^2+x_2^2=4,\;$ що лежить у першому квадранті.
 - 5) $\vec{F}(x_1,x_2)=\left(x_1x_2+rac{x_2^2\sin x_1}{2},rac{x_1^2-2x_2\cos x_1}{2}
 ight),(x_1,x_2)\in\mathbf{R}^2;$ $A=B=(1,0);\ \Gamma$ коло $x_1^2+x_2^2=1,$ що пробігається за годинниковою стрілкою.
 - 6) $\vec{F}(x_1,x_2)=(x_1x_2,x_1+x_2),\,(x_1,x_2)\in\mathbf{R}^2;\,A=(0,0),\,B=(1,1),\,\Gamma$ відрізок прямої.
 - 7) Задача 6), де Γ дуга параболи $x_2 = x_1^2$.
 - 8) $\vec{F}(x_1,x_2)=(x_1+x_2,x_1),\ (x_1,x_2)\in\mathbf{R}^2;\ A=B=(0,1);$ Γ коло $x_1^2+x_2^2=1,$ що пробігається проти годинникової стрілки.

- 9) $\vec{F}(x_1, x_2) = (2x_1x_2, x_1^2), (x_1, x_2) \in \mathbf{R}^2; A = (1, 0), B =$ $(0,3); \Gamma$ – відрізок прямої.
- 10) Сила \vec{F} направлена в початок координат і по модулю дорівнює відстані від точки докладання до початку координат; A= $(1,0),\; B=(0,2);\; \Gamma$ – чверть еліпса $x_1^2+rac{x_2^2}{4}=1,\;$ що лежить у першому квадранті.
- **8.** Використовуючи формулу Гріна, обчислити криволінійний інтеграл $\int\limits_{\Gamma}\omega,$ де Γ – границя заданої множини F, що пробігається в додатному напрямку:
 - 1) $F = \{(x_1, x_2) \mid (x_1 1)^2 + (x_2 1)^2 \le 1\};$
 - $\omega = \sqrt{x_1^2 + x_2^2} \, dx_1 + x_2 [x_1 x_2 + \ln(x_1 + \sqrt{x_1^2 + x_2^2})] \, dx_2;$ 2) $F = \{(x_1, x_2) \mid 0 \le x_1 \le 2, 0 \le x_2 \le 1 + x_1\}; \ \omega = (x_1 + x_2)$ $2x_2)\,dx_1 + x_1x_2\,dx_2;$
 - 3) $F = \{(x_1, x_2) \mid |x_1| + |x_2| \le 1\}; \ \omega = x_1 x_2^2 dx_1 + x_1^3 dx_2;$
 - 4) F множина точок квадрата $[0,1]^2$, що лежать поза кругом $(x_1-\frac{1}{2})^2+(x_2-\frac{1}{2})^2\leq \frac{1}{4};\;\omega=x_1^2\,dx_1+x_1x_2\,dx_2;$ 5) $F=\left\{(x_1,x_2)\mid x_1\geq x_2^2-2,x_1\leq 2\right\};\;\omega=(x_1+2x_2)\,dx_1+$

 - $(x_1+3x_2) dx_2;$
 - 7) $F = \{(x_1, x_2) \mid (x_1 1)^2 + x_2^2 \le 1\}; \ \omega = x_2 dx_1 + x_1 dx_2.$
- **9.** Обчислити криволінійний інтеграл $\int\limits_{\Gamma}\omega,$ доповнивши криву Γ до замкненої кривої і скориставшись формулою Гріна:
 - 1) Γ дуга еліпса $x_1^2+\frac{x_2^2}{4}=1, x_2\geq 0,$ що пробігається від точки A(1,0) до точки B(-1,0); $\omega=(x_1x_2+x_1+x_2)\,dx_1+$ $(x_1x_2 + x_1 - x_2) \, dx_2;$
 - 2) Γ нижне півколо $x_1^2+x_2^2=2x_1,x_2\leq 0,$ що пробігається від точки O(0,0) до точки $A(2,0);\;\omega=(x_1x_2+x_1+x_2)\,dx_1+$
 - $(x_1x_2+x_1-x_2)\,dx_2;$ 3) Γ чверть кола $x_1^2+x_2^2=1, x_1\geq 0, x_2\geq 0,$ що пробігається від точки A(1,0) до точки $B(0,1);\;\omega=(x_2-x_1^2)\,dx_1+(x_1+x_2)$
 - 4) Γ дуга кола $x_1^2+x_2^2=1, x_1\leq x_2,$ що пробігається від точки $A(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ до точки $B(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}});\;\omega=x_1x_2^2\,dx_1-x_1^3\,dx_2;$

- 5) Γ дуга косинусоїди $x_2=\cos x_1, -\frac{\pi}{2} \le x_1 \le \frac{\pi}{2},$ що пробігається в напрямку зростання $x_1;\;\omega=(2x_1+3x_2)\,dx_1+5x_2\,dx_2.$
- 10. Використовуючи формулу Гріна, обчислити площі фігур, обмежених заданими кривими:
 - 1) астроїдою $\{(\cos^3 t, \sin^3 t) \mid 0 \le t \le 2\pi\};$

 - 1) астроїдою $\{(\cos^*t,\sin^*t)\mid 0\leq t\leq 2\pi\}$; 2) кривою $x_1^3+x_2^3=x_1^2+x_2^2$ і осями координат; 3) кривою $(x_1+x_2)^3=x_1x_2;$ 4) кривою $x_1^4+x_2^4=x_1^3=x_2^3$ і осями координат; 5) кардіоїдою $\{(2\cos t-\cos 2t, 2\sin t-\sin 2t)\mid 0\leq t\leq 2\pi\}$; 6) параболою $(x_1-x_2)^2=x_1$ і віссю $Ox_1;$ 7) гіпоциклоїдою $\{(2\cos t+\cos 2t, 2\sin t-\sin 2t)\mid 0\leq t\leq 2\pi\}$; 8) петлею декартового листа $x_1^3+x_2^3=3x_1x_2;$ Вказівка: покласти x_2-x_1t $x_2 = x_1 t.$
 - 9) лемніскатою $(x_1^2 + x_2^2)^2 = x_1^2 x_2^2$;
 - 10) дугою гіперболи $x_1=\ch t, x_2=2\sh t$ від точки $M(x_1^0,x_2^0)$ до точки перетину з віссю Ox_1 , відрізком цієї осі та відрізком прямої OM.

ЗАНЯТТЯ 13 ПОВЕРХНЕВІ ІНТЕГРАЛИ

Контрольні запитання

- 1. Формула для обчислення площі поверхні.
- 2. Формула для обчислення поверхневого інтеграла І роду.
- 3. Формула для обчислення поверхневого інтеграла ІІ роду.

A13

- 1. Обчислити площу поверхні (випадок явного задання поверхні).
 - 1) $x_3 = x_1x_2, x_1^2 + x_2^2 \le 1$;
 - 2) $x_1^2 + x_2^2 + x_3^2 = a^2, \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} \le 1; 0 < b < a.$
- 2. Обчислити площу поверхні (випадок параметричного задання поверхні).
 - 1) $x_1=(b+a\cos\psi)\cos\varphi, x_2=(b+a\cos\psi)\sin\varphi, x_3=a\sin\psi;$ $\varphi_1\leq\varphi\leq\varphi_2, \psi_1\leq\psi\leq\psi_2; 0< a\leq b, 0\leq\varphi_1<\varphi_2\leq2\pi, 0\leq\psi_2<\psi_2\leq2\pi.$ Чому дорівнює поверхня всього тора $(\varphi_1=0,\varphi_2=2\pi,\psi_1=0,\psi_2=2\pi)?$
 - 2) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = \varphi; 0 \le r \le 1, 0 \le \varphi \le 2\pi.$
- 3. Обчислити поверхневий інтеграл I роду $\int\limits_S f d\sigma$:
 - 1) S поверхня $x_1^2+x_2^2+x_3^2=a^2, x_3\geq 0, a>0; f(x_1,x_2,x_3)=x_1+x_2+x_3, (x_1,x_2,x_3)\in \mathbf{R}^3;$
 - 2) S поверхня тетраедра $x_1+x_2+x_3\leq 1, x_i\geq 0, 1\leq i\leq 3;$ $f(x_1,x_2,x_3)=(1+x_1+x_2)^{-2}, (x_1,x_2,x_3)\in S;$
 - 3) S частина поверхні конуса $x_1 = r\cos\varphi\sin\alpha, x_2 = r\sin\varphi\sin\alpha, x_3 = r\cos\alpha; 0 \le r \le a, 0 \le \varphi \le 2\pi; a, \alpha$ сталі, $a > 0, 0 < \alpha < \frac{\pi}{2}; \ f(x_1, x_2, x_3) = x_3^2, (x_1, x_2, x_3) \in \mathbf{R}^3.$
- 4. Знайти масу параболічної оболонки

$$S=\left\{(x_1,x_2,x_3)\,|\,\,x_3=(x_1^2+x_2^2)/2,0\leq x_3\leq 1
ight\}$$
 з щільністю $ho(x_1,x_2,x_3)=x_3,(x_1,x_2,x_3)\in S.$

- 5. Обчислити поверхневий інтеграл $\int\limits_{S}\omega$:
 - 1) S зовнішня сторона сфери $x_1^2+x_2^2+x_3^2=1;\;\omega=x_1\,dx_2\wedge dx_3+x_2\,dx_3\wedge\,dx_1+x_3\,dx_1\wedge\,dx_2;$

- 2) S зовнішня сторона поверхні симплекса $\{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 \le 1, x_i \ge 0, 1 \le i \le 3\};$ $\omega = x_1 x_2 dx_1 \wedge dx_2 + x_3 dx_1 \wedge dx_3;$
- 3) S зовнішня сторона конічної поверхні $x_1^2+x_2^2=x_3^2,\ 0\le$ $x_3 \le 1$; $\omega = (x_2 - x_3) dx_2 \wedge dx_3 + (x_3 - x_1) dx_3 \wedge dx_1 + dx_3 + dx_3 + dx_4 + dx_3 + dx_4 + dx_4 + dx_5 + dx_$ $(x_1-x_2)\,dx_1\wedge\,dx_2;$
- 4) S зовнішня сторона поверхні циліндра $x_1^2+x_3^2=1, \; |x_2|\leq 2;\; \omega=x_1\,dx_2\wedge\,dx_3+x_1x_2\,dx_3\wedge\,dx_1+x_1x_2x_3\,dx_1\wedge\,dx_2;$ 5) S верхня сторона поверхні $x_1^2+x_2^2=x_3^2,\; 1\leq x_3\leq 2;\; \omega=x_1^2\,dx_2\wedge\,dx_3+x_2^2\,dx_3\wedge\,dx_1+x_3^2\,dx_1\wedge\,dx_2.$
- **6.** Обчислити поверхневий інтеграл $\int\limits_{S} \omega,$ де S гладка поверхня, що обмежує тіло скінченного об'єму V, симетричне відносно координатних площин:
 - 1) $\omega = x_2x_3 dx_2 \wedge dx_3 + x_3x_1 dx_3 \wedge dx_1 + x_1x_2 dx_1 \wedge dx_2$;
 - 2) $\omega = (\frac{\partial R}{\partial x_2} \frac{\partial Q}{\partial x_3}) dx_2 \wedge dx_3 + (\frac{\partial P}{\partial x_3} \frac{\partial R}{\partial x_1}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_2 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_2 \wedge dx_2 \wedge dx_3 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_1}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_2 \wedge dx_3 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_1 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_2 \wedge dx_2 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_2 \wedge dx_3 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_2 \wedge dx_3 + (\frac{\partial Q}{\partial x_1} \frac{\partial Q}{\partial x_2}) dx_3 \wedge dx_$ $\frac{\partial P}{\partial x_2}$) $dx_1 \wedge dx_2$;

 - 3) $\omega=x_1^4\,dx_2\wedge\,dx_3+x_2^4\,dx_3\wedge\,dx_1+x_3^4\,dx_1\wedge\,dx_2;$ 4) $\omega=x_1^3\,dx_2\wedge\,dx_3+x_2^3\,dx_3\wedge\,dx_1+x_3^3\,dx_1\wedge\,dx_2,$ де S зовнішній бік сфери $x_1^2+x_2^2+x_3^2=4;$
- 7. Обчислити об'єм тіла, обмеженого тором $x_1 = (b + a\cos\psi)\cos\varphi, x_2 =$ $(b + a\cos\psi)\sin\varphi, x_3 = a\sin\psi; \{\varphi, \psi\} \subset [0, 2\pi]; 0 < a \le b.$

- 1. Обчислити площу поверхні (випадок явного задання поверхні).
 - 1) $x_1^2 + x_2^2 = 1, x_1^2 + x_3^2 = 1;$
 - 2) $\frac{1}{2}x_3^2 = x_1x_2, \frac{1}{2} \le x_1 + x_2 \le 1, x_1 \ge 0, x_2 \ge 0;$

 - 3) $x_3 = \sqrt{x_1^2 + x_2^2} + x_1^2 + x_2^2 \le 2x_2;$ 4) $x_3 = x_1 x_2, |x_1 x_2| \le 1, |x_1 + x_2| \le 1;$ 5) $x_1^2 + x_2^2 = 1, -x_1 \le x_3 \le x_1, x_1 \ge 0, x_2 \ge 0;$ 6) $(x_1^2 + x_2^2)^{3/2} + x_3 = 8, x_3 \ge 0;$

 - 7) $(x_1 + 2x_2)^2 + x_3 = 1, 0 \le x_2 \le \frac{1}{2}, x_3 \ge 0$;
 - 8) $x_3 = x_1^2 2x_2^2, x_1^2 + 4x_2^2 \le 1, x_3 \ge 0;$
 - 9) $x_3 = \sqrt{x_1^2 + x_2^2}, x_1^2 + x_2^2 \le 1, x_2^2 \le x_1^2$;

10) $(x_1^2 + x_2^2)x_3 = x_1 + x_2, 1 \le x_1^2 + x_2^2 \le 4, x_1 \ge 0, x_2 \ge 0.$

2. Обчислити площу поверхні (випадок параметричного задання поверхні).

- 1) $x_1 = R\cos\varphi\sin\psi, x_2 = R\sin\varphi\sin\psi, x_3 = R\cos\psi; 0 \le$ $\varphi \leq 2\pi, 0 \leq \psi \leq \pi; R > 0.$
- 2) $x_1 = R\cos\varphi\cos\psi, x_2 = R\sin\varphi\cos\psi, x_3 = R\sin\psi; \varphi_1 \le$ $\varphi \leq \varphi_2, \psi_1 \leq \psi \leq \psi_2; R > 0, 0 \leq \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 \leq 2\pi, 0 \leq \psi_2 < \varphi_1 < \varphi_2 < \varphi_2 < \varphi_1 < \varphi_2 < \varphi_2$
- 3) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = r \sqrt{\cos 2\varphi}; -\frac{\pi}{4} \leq \varphi \leq$ $\frac{\pi}{4}$, $0 \le r \le \sqrt{\cos 2\varphi}$.
- 4) $x_1 = \cos \varphi \cos \psi, x_2 = \sin \varphi \cos \psi, x_3 = \sin \psi; 0 \le \varphi \le$ $2\pi, -\frac{\pi}{2} \le \psi \le \frac{\pi}{2}, |\cos \psi| \ge |\cos \varphi|.$
- 5) $x_1 = \cos \varphi \sin \psi, x_2 = \sin \varphi \sin \psi, x_3 = \cos \psi; 0 \le \varphi \le \varphi$ $2\pi, 0 \le \psi \le \pi, |\sin \psi| \le |\sin \varphi|.$
- 6) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = \frac{r^2}{2}; r \ge 0, 0 \le \varphi \le \frac{\pi}{2}, r^2 \le 0$
- 7) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = r^2 \cos 2\varphi/2; 0 \le r \le 1, 0 \le r \le 1$ $\varphi \leq 2\pi$.
- 8) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = \frac{r^2}{2}; 0 \le r \le 1, 0 \le \varphi \le 2\pi.$ 9) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = r; 0 \le r \le 2 \sin \varphi, 0 \le \varphi \le 2\pi.$
- 10) $x_1 = 2r\cos\varphi, x_2 = 3r\sin\varphi, x_3 = r^2(\cos^2\varphi \frac{3\sin^2\varphi}{2}); 0 \le$ $r \le 1, 0 \le \varphi \le 2\pi, |\cos 2\varphi| \ge \frac{\sqrt{3}|\sin \varphi|}{2}.$

3. Обчислити поверхневий інтеграл $\int\limits_{-\pi}^{\pi}fd\sigma$:

- 1) $S = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 = 4, 0 \le x_3 \le x_2 + 3\};$ $f(x_1, x_2, x_3) = x_3^2, (x_1, x_2, x_3) \in \mathbf{R}^3;$
- 2) $S = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 1, x_i \ge 0, 1 \le i \le 3\};$ $f(x_1, x_2, x_3) = x_1, (x_1, x_2, x_3) \in \mathbf{R}^3;$
- 3) $S = \{(x_1, x_2, x_3) \mid x_3^2 = x_1^2 + x_2^2, 1 \le x_3 \le 2\}; f(x_1, x_2, x_3) = x_3^2 \le x_$ $(x_1, x_2, x_3) \in \mathbf{R}^3;$
- 4) S частина циліндра $x_1^2+x_2^2=1,$ що вирізана площинами $x_3 = 0, x_3 = x_1 + 2; f(x_1, x_2, x_3) = x_1 x_3, (x_1, x_2, x_3) \in \mathbf{R}^3;$
- 5) $S = \{(x_1, x_2, x_3) \mid 2x_3 = x_1^2, x_2 \ge 0, x_1 \le 2, x_1 \ge x_2\};$ $f(x_1, x_2, x_3) = x_1^2, (x_1, x_2, x_3) \in \mathbf{R}^3;$

6)
$$S = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 = 1\};$$

 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 - 2x_2^2, (x_1, x_2, x_3) \in \mathbf{R}^3;$

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 - 2x_3^2, (x_1, x_2, x_3) \in \mathbf{R}^3;$$
7) $S = \{(x_1, x_2, x_3) \mid |x_1| + |x_2| = 1, 0 \le x_3 \le 1\}; f(x_1, x_2, x_3) = x_1 + 2x_2 + 3x_3, (x_1, x_2, x_3) \in \mathbf{R}^3;$

8)
$$S$$
 – поверхня призми з вершинами $(0,0,0),(0,0,1),(0,1,1),(0,1,0),$ $(1,1,0),(1,1,1);f(x_1,x_2,x_3)=x_1+2x_2+3x_3,(x_1,x_2,x_3)\in\mathbf{R}^3;$

9)
$$S$$
 – поверхня куба $[0,1]^3$; $f(x_1,x_2,x_3)=x_1x_2x_3, (x_1,x_2,x_3)\in {\bf R}^3.$

4. Нехай
$$f\in C(\mathbf{R}), a,b,c$$
 $\in \mathbf{R}$. Довести формулу Пуассона $\int\limits_S f(ax_1+$

$$bx_2+cx_3)d\sigma=2\pi\int\limits_{-1}^1f(x\sqrt{a^2+b^2+c^2})dx$$
, де S – поверхня сфери $x_1^2+x_2^2+x_3^2-1$

$$x_2^2 + x_3^2 = 1.$$
 5. Знайти масу:

1) півсфери
$$S=\left\{(x_1,x_2,x_3)\mid x_1^2+x_2^2+x_3^2=1,x_3\geq 0\right\}$$
 зі щільністю

$$\rho(x_1, x_2, x_3) = x_3, (x_1, x_2, x_3) \in S_3$$

$$\begin{array}{l} \rho(x_1,x_2,x_3)=x_3, (x_1,x_2,x_3)\in S;\\ \text{2) сфери } S=\left\{(x_1,x_2,x_3)\mid x_1^2+x_2^2+x_3^2=1\right\} \text{ зі щільністю}\\ \rho(x_1,x_2,x_3)=x_3^2, (x_1,x_2,x_3)\in S. \end{array}$$

6. Знайти центр ваги однорідної поверхні:

1)
$$x_1^2 + x_2^2 + x_3^2 = 1, x_i \ge 0, 1 \le i \le 3$$

2)
$$x_1^2 + x_2^2 + x_3^2 = 1, a \le x_3 \le 1, a \in [-1, 1)$$

1)
$$x_1^2 + x_2^2 + x_3^2 = 1, x_i \ge 0, 1 \le i \le 3;$$

2) $x_1^2 + x_2^2 + x_3^2 = 1, a \le x_3 \le 1, a \in [-1, 1);$
3) $x_1 = r \cos \varphi, x_2 = r \sin \varphi, x_3 = \varphi; 0 \le r \le 1, 0 \le \varphi \le \pi;$

4)
$$3x_3 = 2(x_1\sqrt{x_1} + x_2\sqrt{x_2}), x_1 + x_2 \le 1$$

5)
$$x_1^2 = 2 - 2x_3, 0 \le x_2 \le x_1, x_3 \ge 0$$

4)
$$3x_3 = 2(x_1\sqrt{x_1} + x_2\sqrt{x_2}), x_1 + x_2 \le 1;$$

5) $x_1^2 = 2 - 2x_3, 0 \le x_2 \le x_1, x_3 \ge 0;$
6) $x_1^2 + x_2^2 + x_3^2 = 1, x_1^2 + x_2^2 \le x_1, x_3 \ge 0;$

7)
$$x_3 = \sqrt{x_1^2 + x_2^2}, x_1^2 + x_2^2 \le x_1$$

7)
$$x_3 = \sqrt{x_1^2 + x_2^2}, x_1^2 + x_2^2 \le x_1;$$

8) $x_3 = \sqrt{1 - x_1^2 - x_2^2}, x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 1.$

- 7. Використовуючи формулу Остроградського-Гаусса, обчислити поверхневий інтеграл $\int\limits_{S}\omega,$ де S – задана орієнтована поверхня, ω – задана диференціальна форма:
 - 1) S зовнішній бік поверхні тіла $\left\{(x_1,x_2,x_3)\,|\; x_1^2+x_2^2\leq 1,|x_3|\leq 1\right\}$, $\omega = (x_1 + 2x_2) dx_2 \wedge dx_3;$
 - 2) S внутрішній бік поверхні тіла $[0,1]^3,\ \omega = x_1x_3\ dx_2\wedge\ dx_3+$ $(x_1^2 + x_3^2) dx_1 \wedge dx_2;$

- 3) S зовнішній бік поверхні тіла $\{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \le 1\}$, $\omega = x_1 dx_2 \wedge dx_3 + 2x_2 dx_3 \wedge dx_1;$
- 4) S внутрішній бік поверхні тіла $\{(x_1,x_2,x_3) \mid x_2^2 \le 2 - x_1, 0 \le x_3 \le x_1\}, \ \omega = x_1^2 dx_2 \wedge dx_3 + x_1 + x_2 \wedge dx_3 + x_2 \wedge dx_3 + x_1 \wedge dx_3 + x_2 \wedge dx_3 + x_1 \wedge dx_3 + x_2 \wedge dx_3 + x_2 \wedge dx_3 + x_3 \wedge dx_3 + x_1 \wedge dx_3 + x_2 \wedge dx_3 + x_3 \wedge dx_3 +$ $x_3^2 dx_1 \wedge dx_2;$
- 5) S зовнішній бік поверхні тіла $\left\{ (x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \leq 1 \right\}$, $\omega = x_1^3 dx_2 \wedge dx_3 + x_2^3 dx_3 \wedge dx_1 + x_3^3 dx_1 \wedge dx_2;$
- 6) S зовнішній бік поверхні $|x_1-x_2+x_3|+|x_2-x_3+x_1|+$ $|x_3 - x_1 + x_2| = 1$, $\omega = (x_1 - x_2 + x_3) dx_2 \wedge dx_3 + (x_2 - x_3) dx_3 + (x_3 -$
- $x_3+x_1)\,dx_3\wedge\,dx_1+(x_3-x_1+x_2)\,dx_1\wedge\,dx_2;$ 7) S зовнішній бік конічної поверхні $x_1^2+x_2^2=x_3^2,0\leq x_3\leq x_3$ $1;\;\omega=x_1^2\,dx_2\wedge\,dx_3+x_2^2\,dx_3\wedge\,dx_1+x_3^2\,dx_1^2\wedge\,dx_2;$ Вказівка. Приєднати частину площини $x_3 = 1, x_1^2 + x_2^2 \le 1.$
- 8) S зовнішній бік поверхні призми $\{(x_1,x_2,x_3)\,|\; x_1+x_2\leq 1, x_3\leq 1, x_i\geq 0, 1\leq i\leq 3\}$ без нижньої основи, $\omega = x_1 x_3 dx_1 \wedge dx_2 + x_3 dx_2 \wedge dx_3 + x_1 x_2 x_3 dx_3 \wedge dx_3 + x_1 x_3 dx_3 + x_1 x_2 x_3 dx_3 + x_1 x_3 dx_$ dx_1 ;
- 9) S зовнішній бік поверхні призми $\{(x_1,x_2,x_3) \mid |x_1|+|x_2|\leq 1, 0\leq x_3\leq 1\}$ без верхньої осно- $\omega = x_1^2 x_2 \, dx_2 \wedge \, dx_3 + \, dx_1 \wedge \, dx_2;$
- 10) S зовнішній бік поверхні тіла $\left\{(x_1,x_2,x_3)\mid x_1^2+x_2^2\leq 1,x_3\leq x_1^2+x_2^2,x_i\geq 0,1\leq i\leq 3\right\}$ $\left\{ (x_1,x_2,x_3) \mid x_1^2+x_2^2 \leq 1, x_3 = 0, x_i \geq 0, 1 \leq i \leq 2 \right\}, \\ \left\{ (x_1,x_2,x_3) \mid x_1^2+x_2^2 \leq 1, x_3 = 0, x_i \geq 0, 1 \leq i \leq 2 \right\}, \\ \omega = x_2^2x_3\,dx_1 \wedge dx_2 + x_1^2x_3\,dx_2 \wedge dx_3.$
- 8. Використовуючи формулу Остроградського Гаусса, обчислити об'єм тіла, обмеженого поверхнями:
 - 1) $x_1^2 + x_2^2 + x_3^2 = r^2, r > 0;$ 2) $x_1^2 + x_2^2 + x_3^2 = 2x_2;$

 - 3) поверхнею $x_1=\cos(\varphi-\psi), x_2=\sin(\varphi-\psi), x_3=\sin\psi, \{\varphi,\psi\}\subset \mathbb{R}$ $[0, 2\pi]$, і площинами $x_3 = \pm 1$.
 - 4) поверхнею $x_1=t_1\cos t_2, x_2=t_1\sin t_2, x_3=-t_1+\cos t_2; t_1\geq$ $0,t_{2}\in [0,2\pi],$ і площиною $x_{3}=0.$

 - 5) поверхнею $x_1^2+x_2^2=x_3^2$, і площиною $x_3=h,h>0$. 6) поверхнею $x_1^2+x_2^2=r^2$, і площинами $x_3=0,x_3=h,h>$ 0, r > 0.

- 7) поверхнею $x_3=x_1^2+x_2^2$, і площиною $x_3=h,h>0$. 8) поверхнею $x_1^2+x_2^2+x_3^2=r^2$, і площиною $x_3=h,r>h>0,x_3\geq h$. 9) $\frac{x_1^2}{a^2}+\frac{x_2^2}{b^2}+\frac{x_3^3}{c^2}=1,a,b,c>0$; 10) поверхнями $x_1^2+x_2^2+x_3^2=1$ і $(x_1-1)^2+(x_2-1)^2+x_3^2=1$.

ЗАНЯТТЯ 14 ОСНОВНІ ПОНЯТТЯ ТЕОРІЇ ПОЛЯ

Контрольні запитання

- 1. Визначення градієнта скалярного поля.
- 2. Визначення дивергенції, ротора, циркуляції і потоку векторного поля.
- 3. Векторне формулювання формул Гаусса-Остроградського і Стокса.

A14

- 1. Знайти градієнт поля $u(x_1,x_2,x_3)=x_1^2+2x_2^2+3x_3^2+x_1x_2+3x_1-2x_2-6x_3, (x_1,x_2,x_3)\in {\bf R}^3$, в точці (2,0,1). В якій точці градієнт поля є нульовим вектором?
- 2. Нехай $\vec{a} \in C(\mathbf{R}^3, \mathbf{R}^3)$ векторне поле в $\mathbf{R}^3, M \in \mathbf{R}^3, S$ гладка замкнена поверхня, що оточує точку M і обмежує тіло об'єму $V,\ \vec{n}(\vec{x}), \vec{x} \in$ S – зовнішня нормаль до поверхні $S,d(S)=\max\left\{||\vec{x}-\vec{y}||\ |\ \vec{x},\vec{y}\in S
 ight\}<+\infty$ – діаметр поверхні S. Довести, що $\mathrm{d}iv\vec{a}(M)=\lim_{d(S)\to 0}\frac{1}{V}\int\limits_{S}(\vec{a},\vec{n})d\sigma.$
- **3.** Знайти величину і напрямок ${\bf r}ot\vec{a}$ в точці (1,2,-2) для векторного поля $\vec{a}(x_1,x_2,x_3)=\frac{x_2}{x_3}\vec{i}+\frac{x_3}{x_1}\vec{j}+\frac{x_1}{x_2}\vec{k},x_1x_2x_3\neq 0.$ 4. Знайти потік радіус-вектора \vec{r} :
- - 1) через зовнішній бік бічної поверхні конуса $x_1^2 + x_2^2 \le x_3^2, 0 \le$
 - 2) через зовнішній бік основи цього конуса.
- **5.** Знайти роботу радіус-вектора \vec{r} вздовж відрізка гвинтової лінії $\{(a\cos t, a\sin t, bt) \mid 0 \le t \le 2\pi\}; a > 0, b > 0$ – фіксовані сталі; крива пробігається в напрямку зростання параметра.
- **6.** Знайти роботу поля $\vec{a}(x_1,x_2,x_3)=e^{x_2-x_3}\vec{i}+e^{x_3-x_1}\vec{j}+e^{x_1-x_2}\vec{k},$ $(x_1,x_2,x_3)\in {f R}^3$, вздовж прямолінійного відрізка від точки (0,0,0) до точки (1, 3, 5).
- $(2x_2+x_3)\vec{j}+x_1x_2(x_1+x_2+2x_3)\vec{k}, (x_1,x_2,x_3)\in {f R}^3,$ є потенціальним, і знайти потенціал цього поля.
- **8.** Знайти потенціал гравітаційного поля $\vec{a} = -\frac{m}{(x_1^2 + x_2^2 + x_3^2)^{3/2}} (x_1 \vec{i} + x_2 \vec{j} + x_3 \vec{j}$ $(x_3\vec{k}), (x_1, x_2, x_3) \in \mathbf{R}^3 \setminus \{(0, 0, 0)\},$ що створюється масою m, розташованою в початку координат.

- 9. Знайти потік векторного поля з попередньої задачі через зовнішній бік гладкої замкненої поверхні, що оточує початок координат.
- **10.** Нехай $\{e_i, 1 \leq i \leq n\} \subset \mathbf{R}, \{\vec{r_i}, 1 \leq i \leq n\} \subset \mathbf{R}^3, \ \rho$ евклідова метрика в ${f R}^3$. Знайти потік вектора $ec{a}(ec{r}) = \sum_{i=1}^n {
 m grad}\left(-rac{e_i}{4\pi
 ho(ec{r},ec{r_i})}
 ight),$

 $ec{r} \in \mathbf{R}^3 \backslash \{ec{r_i}, 1 \leq i \leq n\}$, через зовнішній бік замкненої поверхні S, що оточує точки $\vec{r_i}, 1 \leq i \leq n$.

- 1. Знайти градієнт скалярного поля u в точці \vec{r}_0 :

 - 1) $u(x_1, x_2, x_3) = x_1 x_3 x_2^2, (x_1, x_2, x_3) \in \mathbf{R}^3, \ \vec{r}_0 = (1, -3, 4);$ 2) $u(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3 + 3x_1 x_2 x_3, (x_1, x_2, x_3) \in \mathbf{R}^3,$ $\vec{r}_0 = (1, -1, 1);$
 - 3) $u(x_1, x_2, x_3) = \sqrt{x_1^2 + x_2^2 + (x_3 1)^2}, (x_1, x_2, x_3) \in \mathbf{R}^3,$ $\vec{r}_0 = (2, 1, 3);$
 - 4) $u(x_1, x_2, x_3) = \frac{x_2}{x_1^2 + x_2^2 + x_3^2}, (x_1, x_2, x_3) \in \mathbf{R}^3 \setminus \{(0, 0, 0)\},$
 - $\vec{r_0} = (2, 1, 1);$ 5) $u(x_1, x_2, x_3) = \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, (x_1, x_2, x_3) \in \mathbf{R}^3 \setminus \{(0, 0, 0)\},$ $\vec{r}_0 = (1, 2, 2);$

 - 6) $u(x_1, x_2, x_3) = e^{x_2 x_3} \sin x_1, (x_1, x_2, x_3) \in \mathbf{R}^3, \ \vec{r_0} = (\pi, 2, -1);$ 7) $u(x_1, x_2, x_3) = \arcsin \frac{x_1}{x_1 + x_2 + x_3}, x_i > 0, 1 \le i \le 3;$ $\vec{r}_0 = (1, 1, 2);$

 - 8) $u(x_1, x_2, x_3) = x_1^{x_2 x_3}, x_1 > 0; \ \vec{r_0} = (2, 3, 4);$ 9) $u(x_1, x_2, x_3) = x_1 \arctan(x_1 x_2 x_3), (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r_0} = (1, 3, \frac{1}{\sqrt{3}});$
 - 10) $u(x_1, x_2, x_3) = \cos(x_1 x_2) \cdot \sin(x_1 x_3), (x_1, x_2, x_3) \in \mathbf{R}^3,$ $\vec{r}_0 = (\frac{\sqrt{\pi}}{2}, \frac{\sqrt{\pi}}{2}, \sqrt{\pi}).$
- 2. Знайти дивергенцію векторного поля $ec{a}$ в точці $ec{r}_0$:
 - 1) $\vec{a}(\vec{r}) = \vec{r}, \ \vec{r} \in \mathbf{R}^3, \ \vec{r}_0 = (2, 2, 1);$
 - 2) $\vec{a}(\vec{r}) = \frac{\vec{r}}{\|\vec{r}\|}, \vec{r} \in \mathbf{R}^3 \setminus \{\vec{0}\}, \ \vec{r}_0 = (3, 1, 1);$
 - 3) $\vec{a}(x_1, x_2, x_3) = \frac{x_1 \vec{i} x_2 \vec{j} + x_3 \vec{k}}{\sqrt{x_1^2 + x_2^2}}, (x_1, x_2) \neq (0, 0), \ \vec{r}_0 = (3, 4, 5);$
 - 4) $\vec{a}(x_1, x_2, x_3) = x_1 x_2 \vec{i} + x_2 x_3 \vec{j} + x_3 x_1 \vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3$ $\vec{r}_0 = (1, -3, \pi);$

- 5) $\vec{a}(x_1, x_2, x_3) = e^{x_1 + x_2 + x_3} (\vec{i} + \vec{j}) + \ln(1 + x_1^2) \vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (1, -1, 1);$
- 6) $\vec{a}(x_1, x_2, x_3) = x_1^{x_2} \vec{i} + x_2^{x_3} \vec{j} + x_3^{x_1} \vec{k}, x_i > 0, 1 \le i \le 3; \ \vec{r_0} = (2, 3, 1);$
- 7) $\vec{a}(x_1, x_2, x_3) = \sqrt{x_1^2 + x_2^2} \vec{i} + \sqrt{x_2^2 x_3^2} \vec{j} + \sqrt{x_1^2 x_3^2} \vec{k}, |x_1| \ge |x_2| \ge |x_3|, \ \vec{r}_0 = (4, 3, 2);$
- 8) $\vec{a}(x_1, x_2, x_3) = \sin(x_1 + x_2)\vec{i} + \cos(x_2 x_3)\vec{j} + \operatorname{tg}(x_1 x_3)\vec{k}, |x_1 x_3| < \frac{\pi}{2}, \ \vec{r}_0 = (\pi, \frac{\pi}{2}, \frac{5\pi}{6});$
- 9) $\vec{a}(x_1, x_2, x_3) = \frac{x_1}{(1+x_1+x_2+x_3)^2} (\vec{i} + \vec{j} + \vec{k}), x_1 + x_2 + x_3 \neq -1, \ \vec{r}_0 = (1, 2, -2);$
- 10) $\vec{a}(x_1, x_2, x_3) = \frac{x_1 x_2}{1 + x_3^2} (\vec{i} + \vec{j}) + e^{x_1 x_2} \vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \ \vec{r}_0 = (1, 2, -3).$
- **3.** Знайти ротор векторного поля \vec{a} в точці $\vec{r_0}$:
 - 1) $\vec{a}(\vec{r}) = \vec{r}, \vec{r} \in \mathbf{R}^3, \vec{r}_0 = (2, 1, 2);$
 - 2) $\vec{a}(\vec{r}) = \exp(||\vec{r}||^2)\vec{r}, \vec{r} \in \mathbf{R}^3, \vec{r}_0 = (1, -2, -2);$
 - 3) $\vec{a}(x_1, x_2, x_3) = \frac{x_2}{x_1} \vec{i} + \frac{x_3}{x_2} \vec{j} + \frac{x_1}{x_3} \vec{k}, x_1 x_2 x_3 \neq 0, \vec{r_0} = (1, 1, -1).$
 - 4) $\vec{a}(x_1, x_2, x_3) = \sqrt{x_1^2 + x_2^2 + x_3^2} (\vec{i} + 2\vec{j} + 3\vec{k}), (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (5, 2, 3).$
 - 5) $\vec{a}(x_1, x_2, x_3) = (x_1x_2 x_3)\vec{i} + (x_2 + x_3)\vec{j} x_2\vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (1, 2, -1).$
 - 6) $\vec{a}(x_1, x_2, x_3) = (x_1^2 + x_2^2)\vec{i} x_2 x_3 \vec{j} + x_1 x_2 x_3 \vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r_0} = (3, 2, 1).$
 - 7) $\vec{a}(x_1, x_2, x_3) = (x_1^3 + x_1)\vec{i} x_1\vec{j} + x_3\vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (1, 1, 1).$
 - 8) $\vec{a}(x_1, x_2, x_3) = (x_1 + 2x_2)\vec{i} + 2x_2^3\vec{j} + \vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (2, -1, 2).$
 - 9) $\vec{a}(x_1, x_2, x_3) = (x_1^2 + x_3^2)\vec{i} + |x_2|\vec{j} + |x_3|\vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (1, -1, 2).$
- 10) $\vec{a}(x_1, x_2, x_3) = |x_1 x_2|\vec{i} + |x_2 x_3|\vec{j} + |x_3 x_1|\vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, \vec{r}_0 = (1, 2, 3).$
- **4.** Знайти потік векторного поля \vec{a} через зовнішній бік поверхні S :
 - 1) $\vec{a}(x_1,x_2,x_3)=x_2x_3\vec{i}+x_3x_1\vec{j}+x_1x_2\vec{k},(x_1,x_2,x_3)\in\mathbf{R}^3,S$ 6ічна поверхня циліндра $x_1^2+x_2^2\leq 1,0\leq x_3\leq 1;$

- 2) \vec{a} з п.1),S повна поверхня циліндра $x_1^2 + x_2^2 \le 4, 0 \le x_3 \le 2;$
- 3) $\vec{a}(\vec{r}) = \vec{r}, \vec{r} \in \mathbf{R}^3, S = \left\{ (x_1, x_2, x_3) \mid x_3 = 1 \sqrt{x_1^2 + x_2^2}, x_3 \ge 0 \right\}.$
- 4) $\vec{a}(x_1,x_2,x_3)=x_2\vec{i}+x_3\vec{j}+x_1\vec{k},(x_1,x_2,x_3)\in\mathbf{R}^3,S$ піраміда, обмежена площинами $x_1+x_2+x_3=1,x_i=0,1\leq i\leq 3;$
- 5) $\vec{a}(x_1,x_2,x_3)=x_1^2\vec{i}+x_2^2\vec{j}+x_3^2\vec{k},(x_1,x_2,x_3)\in\mathbf{R}^3,S$ бічна поверхня конуса $x_1^2+x_2^2\leq 4x_3^2,0\leq x_3\leq 1;$
- 6) \vec{a} з п.5),S повна поверхня конуса $x_1^2 + x_2^2 \le x_3^2, 0 \le x_3 \le 1$;
- 7) $\vec{a}(x_1,x_2,x_3)=x_1^3\vec{i}+x_2^3\vec{j}+x_3^3\vec{k},(x_1,x_2,x_3)\in\mathbf{R}^3,S$ повна поверхня циліндра $x_1^2+x_2^2\leq 1,-1\leq x_3\leq 1;$
- 8) $\vec{a}(x_1,x_2,x_3)=(x_1+x_2+x_3)(\vec{i}+\vec{j}+\vec{k}), (x_1,x_2,x_3)\in {\bf R}^3, S$ поверхня куба $[0,1]^3;$
- 9) $\vec{a}(x_1,x_2,x_3)=(x_1-x_2)\vec{i}+(x_2-x_3)\vec{j}+(x_3-x_1)\vec{k}, (x_1,x_2,x_3)\in \mathbf{R}^3,$ S поверхня піраміди, обмеженої площинами $x_1+x_2+x_3=2, x_i=0, 1\leq i\leq 3;$
- 10) $\vec{a}(x_1, x_2, x_3) = x_1 \vec{i} + x_2 \vec{j} + x_3 \vec{k}, (x_1, x_2, x_3) \in \mathbf{R}^3, S = \{(x_1, x_2, x_3) \mid |x_1| + |x_2| + |x_3| = 1\}.$
- **5.** Знайти циркуляцію векторного поля \vec{a} вздовж гладкої замкненої кривої Γ :
 - 1) $\vec{a}(x_1,x_2,x_3)=-x_2\vec{i}+x_1\vec{j}+2\vec{k},(x_1,x_2,x_3)\in\mathbf{R}^3,$ $\Gamma=\left\{(x_1,x_2,x_3)\,|\,x_1^2+x_2^2=1,x_3=0\right\},$ напрямок обходу проти годинникової стрілки, якщо дивитися з додатного напрямку осі Ox_3 ;
 - 2) \vec{a} з п.1), $\Gamma = \left\{ (x_1, x_2, x_3) \mid (x_1 2)^2 + x_2^2 = 1, x_3 = 0 \right\}$, напрямок обходу проти годинникової стрілки, якщо дивитися з додатного напрямку осі Ox_3 ;
 - 3) $\vec{a}(x_1, x_2, x_3) = (-x_2\vec{i} + x_1\vec{j})(x_1^2 + x_2^2)^{-1}, (x_1, x_2) \neq (0, 0), \Gamma \subset \{(x_1, x_2, x_3) \mid x_1 > 0\};$
 - 4) \vec{a} з п.3); $\Gamma = \{(\sin t, \cos t, t(2\pi t)) \mid 0 \le t \le 2\pi\}$, крива пробігається в напрямку зростання t;
 - 5) $\vec{a}(x_1,x_2,x_3)=\frac{1}{x_2}\vec{i}+\frac{1}{x_3}\vec{j}+\frac{1}{x_1}\vec{k},x_1x_2x_3\neq 0,\Gamma$ прямолінійний відрізок від точки (1,1,1) до точки (2,4,8);
 - 6) $\vec{a}(x_1,x_2,x_3)=(x_2+x_3)\vec{i}+(2+x_1)\vec{j}+(x_1+x_2)\vec{k}, (x_1,x_2,x_3)\in\mathbf{R}^3,$ Γ менша дуга великого кола сфери $x_1^2+x_2^2+x_3^2=25,$ від точки A(3,4,0) до точки B(0,0,5);

- 7) $\vec{a}(\vec{r})=\sin||\vec{r}||\cdot\vec{r},\vec{r}\in\mathbf{R}^3,\Gamma$ крива з початком у точці (0,0,0) і з кінцем у точці $(\frac{\pi}{2},\frac{\pi}{3},\pi);$
- 8) $\vec{a}(\vec{r}) = -\frac{m}{||\vec{r}||^3} \vec{r}, \vec{r} \in \mathbf{R}^3 \backslash \{\vec{0}\}, m>0; \Gamma$ крива з початком в точці (1,2,2) і кінцем в точці (0,0,1), що не проходить через точку (0,0,0);
- 9) $\vec{a}(x_1,x_2,x_3)=x_2x_3(2x_1+x_2+x_3)\vec{i}+x_1x_3(x_1+2x_2+x_3)\vec{j}+x_1x_2(x_1+x_2+2x_3)\vec{k},(x_1,x_2,x_3)\in\mathbf{R}^3,\Gamma$ крива з початком в точці (3,5,-4) і кінцем в точці (0,1,2).
- **6.** Переконатися в потенціальності поля $\vec{a}(x_1,x_2,x_3)=\frac{2}{(x_2+x_3)^{1/2}}\vec{i}-\frac{x_1}{(x_2+x_3)^{3/2}}\vec{j}-\frac{x_1}{(x_2+x_3)^{3/2}}\vec{k},x_i>0, 1\leq i\leq 3,$ і знайти роботу поля вздовж шляху, що лежить в першому октанті і веде від точки A(1,1,3) до точки B(2,4,5).