a rotary latch is mounted in the lock housing;

the latching housing is provided with an interior space for accommodating the lock housing, said interior space having side walls;

when the lock is closed, the lock housing lies within the interior space of the latching housing, with the rotary latch secured against an abutment of the latching housing;

the lock housing tapers trapezoidally in a pivoting plane of the rotary latch, becoming progressively narrower in the latching direction, towards the latching housing;

within the latching housing, spring biased sliding wedges are resiliently displaceable in the latching direction on rough positioning guide elements and fine-positioning guide elements, said sliding wedges having tapered edges with a wedge angle corresponding to a slope of tapered edges of the lock housing and being assigned to each of said two tapered edges of the lock housing;

the rough-positioning guide elements comprises a bore extending in the latching direction within each latching wedge, and an associated guide rod which engages axially in the said bore and is fastened rigidly to the latching housing, with guide play between the bore and the associated guide rod;

the fine-positioning guide elements comprises planar inner guide surfaces of side walls of the latching housing, against which inner guide surfaces planar side surfaces of the latching wedges are slideably displaceable in said latching direction; and

M

when the lock is being closed, an amount of guide play between said bore and the associated guide rod in the rough-positioning guide elements allows rough lateral positional fixing of the latching wedges between the lock housing and the latching housing whereby fine lateral positional fixing can be performed by the fine-positioning guide elements.

2. (Amended) The vehicle lock according to Claim 1, wherein the latching housing comprises at least one baseplate to which said side walls are rigidly affixed.

by)

6. (Amended) The vehicle lock according to Claim 1, wherein:

7

the lock housing has an introductory slot which is open at one end and which engages the abutment of the latching housing in the pivoting plane of the rotary latch laterally with respect to the latching direction; the introductory slot has a region with a narrowest slot portion lying between its open end and an opposite end thereof; and

during atching of the lock, the abutment of the latching housing passes through the portion with the narrowest slot width.

7. (Amended) A vehicle lock comprising:

a latch housing which is fixedly mountable at a variable location on a vehicle body or on a support member thereon;

a lock housing which is mountable to a movable member that is to be locked to said vehicle body, said lock housing being insertable in a latching direction into a locked position in said latch housing, and having an approximately trapezoidal shape with tapered lateral edges which define a progressively narrow transverse dimension in the latching direction;

a rotary latch mounted in said lock housing for engaging with a latching bracket mounted in said latch housing;

a pair of wedge shaped guide elements within said latch housing, each having a planar guiding surface disposed opposite an inclined surface

thereof, said inclined surface being inclined at an angle that corresponds inversely to an inclination angle of the tapered lateral edges of the lock housing, said pair of guide elements being disposed at lateral sides of the latch housing, whereby the inclined surfaces of the guide elements engage with the tapered lateral edges of the lock housing as it is inserted into the latch housing;

a pair of bores extending in the latching direction, one within each of said guide elements; and

AD

a pair of guide rods fixedly mounted to said latch housing, which guide rods extend axially in each of said bores, respectively, and resiliently support said guide elements against movement in the latching direction;

wherein an amount of lateral play between said guide rods and said bores allows lateral movement of said guide elements relative to said guide rods and said latch housing, so that said guiding surfaces move into contact with planar lateral interior surfaces of said latch housing as said lock housing is inserted into the latch housing in the latching direction.

(Applicant's Remarks are set forth hereinbelow, starting on the following page.)