CellSDN: Taking control of cellular core networks

Laurent Vanbever

Princeton University

IBM Watson Research Center

Tue 9 April 2013

Joint work with Xin Jin, Li Erran Li, and Jennifer Rexford

Most functionalities are implemented at the PGW:

- Stateful firewall, DPI, lawfull intercept
- Application optimization
- Paging
- Monitoring and Billing

Packet Data Network Gateway

Most functionalities are implemented at the PGW:

- Stateful firewall, DPI, lawfull intercept
- Application optimization
- Paging
- Monitoring and Billing

Packet Data Network Gateway

- Hard to mix-and-match
- Slow innovation

Cellular core networks are not flexible and costly!

Key idea: separate Software from Hardware

Packet Data Network Gateway

Packet Data Network Gateway Software

Hardware

Packet Data Network Gateway Virtualized Software

Hardware

Packet Data Network Gateway Virtualized Software

Hardware

easy deployment up-/down-scale

Packet Data Network Gateway Virtualized Software

Commodity Hardware

easy deployment up-/down-scale

Packet Data Network Gateway Virtualized Software

Commodity Hardware

easy deployment up-/down-scale

cheap

Cellular policies are fine-grained, based on

- customer-attributes smartphone model, OS, billing plan, ...
- applications video, web, voice, ...
- a combination of both video from iPhone 5 gold subscribers, ...

Cellular policies are fine-grained, based on

- customer-attributes smartphone model, OS, billing plan, ...
- applications
 video, web, voice, ...
- a combination of both video from iPhone 5 gold subscribers, ...

can lead to *million* of different flows

Challenges

Data-plane Forwarding table size

Control-plane Overhead

Slow reactivity

Challenges

Solutions

Data-plane

Forwarding table size

Hierarchical tagging

Control-plane

Overhead

Slow reactivity

Challenges

Solutions

Data-plane

Forwarding table size

Hierarchical tagging

Control-plane

Overhead

Slow reactivity

Hierarchical controller

CellSDN: Taking control of cellular core networks

Architecture

software-defined network

Scaling the data-plane multi-dimensional tagging

Scaling the control-plane tasks delegation

CellSDN: Taking control of cellular core networks

1 Architecture

software-defined network

Scaling the data-plane multi-dimensional tagging

Scaling the control-plane tasks delegation

CellSDN relies on commodity, SDN-enabled switches

CellSDN relies on commodity, SDN-enabled switches

OpenFlow switches

CellSDN also relies on commodity SDN switches for specialized appliances

CellSDN also relies on commodity SDN switches for specialized appliances

CellSDN distributes network processing

CellSDN route traffic based on high-level service policies

A service policy is composed of a

predicate A boolean expression, e.g. on subscriber attributes,

applications attributes, cell properties ...

action A list of middleboxes, access-control

specifications (i.e., allow/deny) ...

priority An integer. To disambiguate overlapping policies

Example of service policy

priority	predicate	action
1.	provider is <i>B</i>	Firewall
2.	provider is not A	Drop
3.	traffic is video and plan is Silver	Firewall> Transcoder
4.	*	Firewall

CellSDN uses a centralized controller to populate forwarding tables

CellSDN: Taking control of cellular core networks

Architecture software-defined network

Scaling the data-plane multi-dimensional tagging

Scaling the control-plane tasks delegation

CellSDN relies on tagging to implement forwarding policies

CellSDN installs stable policy path in the core

CellSDN classifies and tags traffic at the user-facing edge

CellSDN caches tags at the Internetfacing edge for the return traffic

If each path gets one tag, millions of tag are needed

If each path gets one tag, millions of tag are needed

At best, switches support a few tens of thousands entries

[Stephen, Conext12]

CellSDN relies on multi-dimensional tag

CellSDN tags are composed of three parts:

- Policy
- Location
- User Equipment Identifier

switches can selectively match on any part

CellSDN tags are composed of three parts:

- Policy
- Location
- User Equipment Identifier

Video Traffic + Gold Membership = Transcoder || Firewall

Web Traffic + Feature Phone = DPI || Firewall

CellSDN tags are composed of three parts:

- Policy
- Location
- User Equipment Identifier

In CellSDN, each base station is associated with an IP prefix

Access switches

In CellSDN, each base station is associated with an IP prefix

Access switches

User Equipment receive a unique IP address

Access switches

Access switches rewrite the UE IP into a location-dependent address

CellSDN can route based on Base Station prefixes

CellSDN can route based on Base Station prefixes

CellSDN can route based on Base Station prefixes

CellSDN automatically aggregates adjacent prefixes

CellSDN can selectively match on tag and BS ID for load-balancing

CellSDN tags are composed of three parts:

- Policy
- Location
- User Equipment Identifier

CellSDN UE tag enables mobility

When an user moves, she receives a new LocIP

When an user moves, she receives a new LocIP

Old flows reach the previous base station, ensuring policy consistency

To avoid triangle routing, CellSDN can install shortcut path after the last MB

New flows automatically flow along new policy paths

CellSDN tags are composed of three parts:

- Policy
- Location
- User Equipment Identifier

CellSDN minimizes the forwarding tables size by reusing tags

Given a service policy-path,

- 1. Compute the actual path *P* used in the network
- 2. For each candidate tag *t* used on the path *P*,

 Compute the # of new rules needed if *t* is used
- Select the candidate tag minimizing the # of new rules, Create new tag if none available
- 4. Install the forwarding entries in the network

policy path S7 --> Firewall

policy path S7 --> Firewall

policy path S7 → Firewall

policy path S7 → Firewall

CellSDN dataplane can support a large number of service policies

Simulation

- FatTree topology
- 128 switches && 1280 base stations
- 8 types of middleboxes
- 5 middleboxes long service policy

Evaluation

table size in function of the # of policies

Only 5k entries are required to support 4k policy paths

In the worst case, 8k policy paths require 13.6k entries

In the worst case, 8k policy paths require 13.6k entries

Today, operators require a few hundreds policies

CellSDN: Taking control of cellular core networks

Architecture software-defined network

Scaling the data-plane multi-dimensional tagging

Scaling the control-plane tasks delegation

CellSDN controller separates traffic management from rules installation

To scale, CellSDN uses a hierarchical controller

Most of the tasks are delegated to local-agents

Local-agents act as cache, reducing the load on the main controller

Local agents handle *locally* most frequent events

- cache a list of packet classifiers
- contact central controller upon cache miss
- tag flows

The central controller deals with less frequent, but more complex events

Local agents handle *locally* most frequent events

- cache a list of packet classifiers
- contact central controller upon cache miss
- tag flows

Central controller *globally* handle less frequent events

- UE arrival, handoff
- topology changes
- dynamic policies

CellSDN control-plane can handle the load of large cellular networks

Dataset

- 1 week of traces from a large LTE network
- 1500 base stations
- 1 million users

Evaluation

- # of events per second
- # of active users per second

The number of events going to the main controller is small

The number of events going to the main controller is small

The number of events going to the main controller is small

The number of flows handled by the local-agent is small

The number of flows handled by the local-agent is small

CellSDN: Taking control of cellular core networks

Architecture software-defined network

Scaling the data-plane multi-dimensional tagging

Scaling the control-plane tasks delegation

CellSDN enables flexible and cost-effective cellular networks

CellSDN supports flexible fine-grained policies

CellSDN achieves scalability with

- Multi-dimensional aggregation
- Asymmetric edge design
- Hierarchical controller

CellSDN: Taking control of cellular core networks

Laurent Vanbever

www.vanbever.eu

IBM Watson Research Center

Tue 9 April 2013