09 ~13545

BUNDESREPUBLIK DEUTSCHLAND

EP00/1214

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D **0 7 JUL 2000**

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

199 06 352.4

Anmeldetag:

17. Februar 1999

Anmelder/Inhaber:

Dr. Kilian Hennes, Konstanz/DE

Bezeichnung:

Nachweis- und Zählgerät für suspendierte

biologische Partikel

IPC:

G 01 N 27/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Anmeldung.

München, den 8. Juni 2000 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

feiler

Seiler

Zusammenfassung

Bezeichnung

Nachweis- und Zählgerät für suspendierte biologische Partikel

Kurzfassung

Technische Aufgabe und Zielsetzung

Mit der offenbarten Technik werden Partikel wie Bakterien, Zellen oder Zellbestandteile in wässrigen Lösungen nachgewiesen und gezählt. Die neue Technik ermöglicht eine Miniaturisierung des automatischen Partikelzählverfahrens.

Lösung

Die Partikel werden vor der Messung durch die Reaktion mit monovalenten antikörper- bzw. virenbeschichteten ferromagnetischen Partikeln markiert. Die induktive Messung beruht auf dem Passieren der mit den biologischen Partikeln aggregierten ferromagnetischen Partikel durch die Mikrospule eines elektronischen Schwingkreises. Die beim Passieren auftretenden sonanzereignisse werden gezählt.

nwendungsgebiet

Das Gerät kann in der Medizin, Mikrobiologie und Hygiene eingesetzt werden. Es können zum Beispiel Blutzellen ausgezählt werden. Es können ökologisch relevante Mikroorganismen ausgezählt oder krankheitserregende Keime nachgewiesen werden.

Zeichnung

Beschreibung

Zählgerät für biologische Mikropartikel

Die Zählung von Bakterien, Blutzellen oder Zellbestandteilen in wäßrigen Lösungen erfolgt bisher mittels Durchflußzytometer oder Coultercounter. Hier werden die entsprechenden Partikel gefärbt und anhand von optischen Signalen identifiziert oder durch kapazitive Messungen gezählt.

Um den apparativen Aufwand bei der optischen Messung zu umgehen und eine höhere Spezifität gegenüber der kapazitiven Messung zu erreichen, wird für den Nachweis des einzelnen Partikels ein anderes Meßprinzip eingesetzt: Die Messung der Induktivitätsänderung einer Mikrospule aus Metall. Da biologische Partikel aber eine Permeabilitätskonstante μ von annähernd 1 haben, müssen diese zum Nachweis und zur Zählung mittels Spule zuvor mit induktivitätsändernden Substanzen markiert werden. Diese Markierung geschieht durch die immunologische, phagologische oder molekularbiologische Ankopplung von ferromagnetischen Partikeln, welche monovalent entweder mit Antikörpern, mit Virus-Andockmolekülen oder mit Gensonden an Spacermolekülen verbunden sind.

Die Kopplung der ferromagnetischen Marker erfolgt in einer Vorrichtung, welche gleichzeitig eine Anreicherung der zu zählenden Partikel ermöglicht: Die Marker werden in einer Teflonkapillare mittels men Elektromagnet als Sorptions-Schicht festgehalten, bis die gesamte Probe in die Kapillare impt wurde und gleichzeitig die überschüssige Probe aus der Kapillare herausgelaufen ist, auf wird der Magnet ausgeschaltet, damit die Marker frei diffundieren und die Oberfläche der biologischen Partikel sättigen können. Darauf wird der Kapillaren-Inhalt mit einer piezoelektrischen Pumpe durch eine Metallspule gepumpt, die als Spirale auf eine Leiterplatte geätzt wurde und mit Kondensator und Widerstand als Schwingkreis geschaltet ist. Der Schwingkreis wird mit einer Frequenz angeregt, die derjenigen Eigenschwingfrequenz entspricht, welche entsteht, wenn sich ein durchschnittlich markierter biologischer Mikropartikel in der Spule befindet. Dadurch entsteht im Schwingkreis immer dann eine Resonanzschwingung, wenn ein entsprechender Mikropartikel durch die Spule tritt.

Ein Beispiel für die Anwendung dieses Verfahrens ist der Nachweis von Kolibakterien in Wasserproben (Siehe schematische Zeichnung, Vermerk 1). Hierzu werden monovalente primäre E.-coli-spezifische Antikörper mit an magnetische Beads gekoppelten sekundären Antikörpern konjugiert. Die Suspension dieser Konjugate (2) wird in die Teflon-Kapillare (3) gepumpt und mittels Elektromagnet (4) dort fixiert. Beim Durchströmen der Kapillare mit der zu untersuchenden Wasserprobe werden Kolibakterien über die primären Antikörper an den Konjugaten festgehalten. Nach dem Abschalten des Magnetes kann die Suspension von magnetisch markierten Kolibakterien durch die Meßspule (5) gepumpt werden. Die Anzahl der Resonanz-Ereignisse im angeschlossenen Schwingkreises entspricht der Anzahl der Kolibakterien in der ursprünglichen Wasserprobe. Durch den Einsatz dieses Gerätes und der entsprechenden Konjugate ist es möglich, ohne den aufwendigen tz der Durchflußzytometrie Bakterien automatisch zu zählen. Des weiteren ist es möglich, mit Meßmethode eine Miniaturisierung des Nachweisgerätes zu erreichen.

Patentansprüche

1. Nachweis- und Zählgerät für suspendierte biologische Mikropartikel in flüssigen Proben dadurch gekennzeichnet,

daß die biologischen Partikel immunologisch, phagologisch oder molekularbiologisch mit Partikeln verbunden werden, welche beim anschließenden Durchströmen einer Metallspule meßbare und zählbare Induktivitätsänderungen bewirken.

2. Zählgerät nach Patentanspruch 1

dadurch gekennzeichnet,

daß induktivitätsändernde, ferromagnetische Partikel vor dem Durchströmen der Metallspule mittels Elektromagnet in einer Kunststoffkapillare festgehalten werden und dort mit den in die Kapillare einströmenden biologischen Mikropartikeln verbunden werden, während die Probe, in welcher diese enthalten waren, aus der Kapillare herausfließt.

Zählgerät nach Patentanspruch 1

dadurch gekennzeichnet,

daß die Metallspule als Teil eines elektronischen Schwingkreises beim Durchströmen der indiktivitätsändernden Partikel, Änderungen der Eigenschwingfrequenz bewirkt, die gezählt werden.

4. Verfahren für die Herstellung von biologisch aktivierten ferromagnetischen Partikeln

dadurch gekennzeichnet,

daß monovalente primäre Antikörper mit ferromagnetischen Partikeln im mehrfachen Überschuß gemischt werden, welche mit sekundären Antikörpern beschichtet sind, und anschließend mittels partieller Sedimentation in einer Zentrifuge aggregierte Partikel aus einem monovalenten primären Antikörper und antikörper-beschichteten ferromagnetischen Teilpartikeln abgetrennt werden.

5. Verfahren nach Patentanspruch 4

dadurch gekennzeichnet,

daß anstelle primärer Antikörper Viren verwendet werden, gegen deren Hüllproteine die ekundären Antikörper gerichtet sind.

scnematische Zeichnung

gezählte Partikel

Paralleler Schwingkrels mit Spule, Widerstand und Kondensator

