1. Что такое поток управления OS?

Объект ядра операционной системы, которому ОС выделяет процессорное время, наименьшая единица работы ядра ОС.

Последовательность инструкций, выполняемых процессором в выделенные ОС интервалы времени. При создании процесса в нём есть как минимум один основной поток.

2. С помощью каких системных вызовов создаются потоки в Windows и Linux?

CreateThread (Windows) pthread create (Linux)

3. Что такое системные и пользовательские потоки?

Системные потоки (потоки ядра OC) – выполняют различные сервисы ОС и запускаются ядром OC, используются для реализации пользовательских потоков.

Пользовательские потоки – потоки, служащие для решения задач пользователя, и запускаемые приложением.

4. Что такое многопоточность?

Это способность ЦП, позволяющая выполнять 2 или более процесса/потока с инструкциями независимо друг от друга, используя ресурсы одного процессора и разделяя между ними процессорное время.

5. Чем отличаются приоритетная многопоточность от кооперативной многопоточности?

Приоритетная многопоточность: В приоритетной многопоточности планировщик операционной системы принимает решение о переключении между потоками на основе их приоритета. Каждому потоку присваивается определенный приоритет, и планировщик определяет, какой поток будет выполняться следующим, исходя из их относительных приоритетов.

Кооперативная многопоточность: В кооперативной многопоточности контроль переключения между потоками полностью лежит на самих потоках. Каждый поток должен явно передать управление другому потоку, чтобы он мог выполниться. Потоки сотрудничают (кооперируют) друг с другом, чтобы

определить моменты, когда они готовы передать управление другому потоку. Если поток неявно или явно не передает управление другому потоку, выполнение программы может блокироваться или зависать.

6. Что такое диспетчеризация потоков управления OS?

// для диспетчеризации одинаково применимо как слово процесс, так и слово поток В общем, при работе нескольких потоков или процессов нужно определить, какой из них будет работать и какое количество времени. Именно этим и занимается диспетчеризация. Она позволяет эффективно загрузить процессор. Диспетчеризация — это процесс переключения процессора с одного потока на другой соответственно плану. Работает по принципу FIFO, причем каждый процесс получает ограниченное процессорное время.

Есть 2 основных типа:

- 1. **С вытеснением** квантовый генератор генерирует сигнал, что время процесса вышло. Система сама вносит правки в то, какой процесс сейчас будет работать
- 2. Без вытеснения программа завершится, если:
 - 1) она закончилась
 - 2) она перешла в ожидающий режим
 - 3) она сама решила отдать процесс другой программе

7. Что такое контекст потока и для чего он нужен?

Контекст потока – данные, необходимые для возобновления работы потока при его приостановке, а именно:

Программный код, набор регистров, стек памяти, оперативная память, стек ядра и маркер доступа.

8. Перечислите состояния в которых может быть поток и поясните их назначение.

- [5] New поток создан
- [5] Ready готов к исполнению
- [5] Running исполняется
- [12] Sleeping заснул на некоторое время
- [12] Sleeping suspended спит и приостановлен до события
- [7] Suspended ready готов и приостановлен до события
- [5] Blocked заблокирован извне
- [7] Suspended blocked заблокирован извне и приостановлен до события
- [5] Finish поток завершил исполнение

Модель 5 состояний:

Модель 7 состояний:

Модель 12 состояний:

9. Что такое LWP?

LWP (light-weight process) – процесс, поддерживающий работу потока пользовательского пространства. Средство достижения многозадачности.

Несколько пользовательских потоков могут быть размещены в одном или нескольких легковесных процессах, что даёт многозадачность на уровне пользователя, которая может иметь некоторые преимущества в производительности.

10. Что такое потокобезопасность программного кода?

Свойство программного кода (программы) корректно работать в нескольких потоках одновременно. Гарантирует, что при исполнении нескольких потоков код будет правильно себя вести.

Имеет два основных принципа (из лекции Смелова):

- 1. Код не должен сам себя менять
- 2. Не должно быть статической области памяти (общей для двух потоков)

11. Что такое реентерабельность кода?

Компьютерная программа в целом или её отдельная процедура называется **реентерабельной**, если она разработана таким образом, что одна и та же копия инструкций программы в памяти может быть совместно использована несколькими пользователями или процессами. При этом второй пользователь может вызвать реентерабельный код до того, как с ним завершит работу первый пользователь и это не должно привести к ошибке или потере данных. **Реентерабельность** — свойство одной копии программного кода работать в нескольких потоках одновременно. Реентерабельный код всегда потокобезопасен. Реентерабельный код не использует статическую память и не изменяет сам себя, все данные сохраняются в динамической памяти.

12. Что такое Fiber?

Fiber (волокно) — механизм для ручного планирования выполнения кода в рамках потока. Находится внутри потоков (процессы —> потоки —> волокна) и является особенно легковесным потоком.

13. Дайте развернутое определение потока OS.

Основные свойства потоков:

- поток это наименьшая единица работы ядра ОС, последовательность команд процессора
- каждый процесс имеет как минимум один поток (основной, main)
- каждый поток имеет свой идентификатор
- создание потока осуществляется с помощью системного вызова
- процесс контейнер для потоков
- у потоков есть контекст данные, необходимые для возобновления работы потока при его приостановке
- поток может создавать дочерние потоки и их завершать
- завершение родительского потока приводит к завершению всех его дочерних (требуется ожидание дочернего завершение потока)
- потоки в рамках одного процесса не изолированы, все ресурсы кроме процессорного времени общие
- существует парадигма многопоточности (возможность выполнять два и более потоков одновременно)
- желательно программы должны быть потокобезопасными то есть корректно работать в нескольких потоках одновременно

- реентерабельность программы свойство одной копии программного кода работать в нескольких потоках одновременно;
- волокно механизм для ручного планирования выполнения кода в рамках потока.