lmię i nazwisko	Nr indeksu	Kierunek	Wydział (skrót)	Data	Wersja sprawozdania
Dawid Królak	145383	Informatyka	WIIT	12.12.2020	1.0
Nr ćwiczenia	Tytuł ćwiczenia				
102	Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego i				
	matematycznego.				

1. Wyniki pomiarowe.

a) Wyniki pomiarowe dla wahadła matematycznego

l - długość wahadła matematycznego

t - czas 10 okresów (t = 10T)

 $\Delta I = 0.1 \text{ cm}, \Delta t = 0.001 \text{ s}$

Lp.	/ [cm]	t = 10T [s]
1.	50,0	14,196
2.	50,0	14,200
3.	50,0	14,198
4.	45,0	13,456
5.	45,0	13,455
6.	45,0	13,453
7.	40,0	12,686
8.	40,0	12,685
9.	40,0	12,688

b) Wyniki pomiarowe dla wahadła rewersyjnego

 $I_r = (92.0 \pm 0.5) \text{ cm}$ - odległość między osiami obrotu (długość zredukowana wahadła)

t - czas 10 okresów (t = 10T)

 t_A - czas 10 okresów (wahnięć na osi A), t_B - czas 10 okresów (wahnięć na osi B)

x - położenie soczewki

 $\Delta x = 1$ cm, $\Delta t = 0.001$ s

Lp.	x [cm]	$t_{\rm A} = 10 \ T_{\rm A} [{\rm s}]$	$t_{\rm B} = 10 \ T_{\rm B} [{\rm s}]$
1.	90	19,489	22,182
2.	85	19,336	20,423
3.	80	19,213	19,320
4.	75	19,117	18,680
5.	70	19,017	18,320
6.	65	18,970	18,136
7.	60	18,925	18,108
8.	55	18,913	18,180
9.	50	18,916	18,327
10.	45	18,977	18,532
11.	40	19,040	18,767
12.	35	19,150	19,069
13.	30	19,288	19,390
14.	25	19,467	19,726

2. Opracowanie wyników i obliczenie błędów pomiarowych.

a) Wahadło matematyczne

Przekształcając wzór na okres drgań wahadła matematycznego (1) można wyznaczyć przyspieszenie grawitacyjne w zależności od długości wahadła I i zmierzonego okresu drgań T.

$$T = 2\pi \sqrt{\frac{l}{g}} \tag{1}$$

$$g = \frac{4\pi^2 l}{T^2} \tag{2}$$

Rachunek jednostek:

$$g = \frac{4\pi^2[m]}{[s^2]} = \left[\frac{m}{s^2}\right]$$

Z pomocą tej zależności obliczono przyspieszenie grawitacyjne dla różnych długości wahadła. Wyniki zestawiono w tabeli nr 1:

Tabela 1: Przyspieszenie ziemskie wyznaczone za pomocą różnych długości wahadła matematycznego.

Lp.	I [cm]	t = 10T [s]	T [s]	l [m]	g [m/s²]
1.	50	14,196	1,4196	0,5	9,79484932743
2.	50	14,2	1,42	0,5	9,78933187968
3.	50	14,198	1,4198	0,5	9,79209002064
4.	45	13,456	1,3456	0,45	9,81161037058
5.	45	13,455	1,3455	0,45	9,81306885813
6.	45	13,453	1,3453	0,45	9,81598680901
7.	40	12,686	1,2686	0,4	9,81228861552
8.	40	12,685	1,2685	0,4	9,81383574605
9.	40	12,688	1,2688	0,4	9,80919545182
				Średnia	9,8058063421
			Odchylenie sta	ndardowe	0,00351119561

$$\Delta g = 0,00351119561 \approx 0,0036 \frac{m}{s^2}$$

 $g = 9,8058063421 \approx 9,8058 \frac{m}{s^2}$

Ostateczny wynik dla wahadła matematycznego: $g=9,8058\pm0,0036\frac{m}{s^2}$

b) Wahadło rewersyjne

Na podstawie zebranych danych sporządzono wykres zależności okresu wahadła rewersyjnego od położenia soczewki dla punktów zawieszenia A i B:

Wykres 1: Zależność okresu drgań wahadła rewersyjnego od położenia soczewki.

Skalując wykres można odczytać punkty przecięcia się dwóch zależności:

Wykres 2: Punkt T1 przecięcia się zależności Ta i Tb.

Wykres 3: Punkt T2 przecięcia się zależności Ta i Tb.

Z powyższych wykresów odczytano odpowiednio T_1 = 1,922s oraz T_2 = 1,919s.

Średnią tych dwóch wartości podstawiono do równania (2) aby obliczyć przyspieszenie grawitacyjne. Symbolem I_r oznaczono odległość między osiami obrotu (długość zredukowaną wahadła):

$$T = \frac{T_1 + T_2}{2} = 1,9205s$$

$$g = \frac{4\pi^2 l_r}{T^2} = \frac{4\pi^2 \cdot 0,92m}{(1,9205s)^2} = 9,8473401804 \frac{m}{s^2}$$

Błąd wyznaczenia g obliczono metodą różniczki logarytmicznej.

$$\Delta l_r = 0,005m$$

 $\Delta T = 0,0015s$ - odchylenie standardowe ze średniej T_1 i T_2 .

$$\Delta g = g\left(\left|\frac{\Delta l_r}{l_r}\right| + \left|-2\frac{\Delta T}{T}\right|\right) = 9,8473401804 \cdot \left(\left|\frac{0,005}{0,92}\right| + \left|-2\frac{0,0015}{1,9205}\right|\right) = 0,06890061633\frac{m}{s^2}$$

Po zaokrągleniu:

$$\Delta g \approx 0,069 \approx 0,07 \frac{m}{s^2}$$

$$g \approx 9,85 \frac{m}{s^2}$$

Ostateczna postać wyniku dla wahadła rewersyjnego: $g = 9,85 \pm 0,07 \frac{m}{c^2}$

3. Zestawienie wyników i wnioski.

Przyspieszenie grawitacyjne wyznaczone z pomocą wahadła matematycznego:

$$g = 9,8058 \pm 0,0036 \frac{m}{s^2}$$

Przyspieszenie grawitacyjne wyznaczone z pomocą wahadła rewersyjnego: $g=9,85\pm0,07\frac{m}{s^2}$

$$g = 9,85 \pm 0,07 \frac{m}{s^2}$$

Wyznaczona eksperymentalnie wartość przyspieszenia ziemskiego jest bardzo bliska rzeczywistej średniej wartości, wyznaczonej teoretycznie za pomocą wzoru $g=\frac{GM}{R^2}$, (gdzie G to stała grawitacyjna, M to masa Ziemi, a R to średni promień Ziemi), i która wynosi 9,80665 m/s². Bardziej precyzyjne wyniki otrzymano dla pomiarów wahadła matematycznego, co mogło być spowodowane różnicą w metodologii przeprowadzonych eksperymentów, użytych przybliżeń i dokładności sprzętu pomiarowego. Oba wyniki nie odbiegają jednak znacząco od właściwej wartości, co wskazuje na fakt, że wyznaczanie przyspieszenia grawitacyjnego za pomocą wahadeł i równania okresowego daje zadowalająco dokładne rezultaty.