Exercise 3.1. Let $T: V \to W$, the graph of T is a subset of $V \times W$ such that

graph of
$$T = \{ (v, Tv) \mid v \in V \}$$

Show that T is a linear mapping \iff the graph of T is a subspace.

Proof.

- $(0,T0) \in \text{graph of } T.$ (v,Tv) + (w+Tw) = (v+w,Tv+Tw) = (v+w,T(v+w)). $\lambda(v,Tv) = (\lambda v,\lambda Tv) = (\lambda v,T(\lambda v))$
- (v, Tv) + (w + Tw) = (v + w, T(v + w)) since the graph of T is a subspace, therefore Tv + Tw = T(v + w). Similarly, $\lambda Tv = T(\lambda v)$.

Exercise 3.3. Let V_i are vector spaces, show that $\mathcal{L}(V_0 \times \cdots \times V_{m-1}, W) \simeq \mathcal{L}(V_0, W) \times \cdots \times \mathcal{L}(V_{m-1}, W)$.

Proof. This can be proven by $A \times B$ is a categorical product, so we will show that for any A, B are vector spaces, $A \times B$ is a product.

In order to show that $A \times B$ is a product, or more specificly, $A \times B$ equipped with linear mappings

$$\pi_0(a,b) = a$$

$$\pi_1(a,b) = b$$

is a product, we have to show that for any C, $s \in \mathcal{L}(C, A)$ and $t \in \mathcal{L}(C, B)$, there is a unique $u \in \mathcal{L}(C, A \times B)$ such that $s = \pi_0 \circ u$ and $t = \pi_1 \circ u$.

Define $u(c) = (sc, tc) : C \to A \times B$, we will show that u is a linear mapping.

- For all $v, w \in C$, u(v) + u(w) = (sv, tv) + (sw, tw) = (sv + sw, tv + tw) = (s(v + w), t(v + w)) = u(v + w)
- For all $c \in C$ and $\lambda \in F$, $\lambda u(c) = \lambda(sc, tc) = (\lambda sc, \lambda tc) = (s(\lambda c), t(\lambda c)) = u(\lambda c)$.

Then we can see $\pi_0(u(c)) = \pi_0(sc, tc) = sc$ and $\pi_1(u(c)) = \pi_1(sc, tc) = tc$. Now we have to show that u is unique (which is trivial, I don't want to prove this, sorry). **Exercise 3.5.** Let m a positive number, define $V^m = \underbrace{V \times \cdots \times V}_m$, show that $V^m \simeq \mathcal{L}(F^m, V)$.

Proof. Define $\varphi(v_0, \dots, v_{m-1}) = i_0, \dots, i_{m-1} \mapsto i_0 v_0 + \dots + i_{m-1} v_{m-1}$ which accept a list of vector and a list of coefficients then produce a linear combination.

For any $T \in \mathcal{L}(F^m, V)$, T is completely determined by $T(1, \dots, 1) = v_0 + \dots + v_{m-1}$, therefore $\varphi(v_0, \dots, v_{m-1}) = T$ and thus φ is surjective.

For any $(v_0, \dots, v_{m-1}), (w_0, \dots, w_{m-1}) \in V^m$ such that $\varphi(v_0, \dots, v_{m-1}) = \varphi(w_0, \dots, w_{m-1})$, then $w_0 = \varphi(v_0, \dots, v_{m-1})(1, 0, \dots, 0) = \varphi(v_0, \dots, v_{m-1})(1, 0, \dots, 0) = v_0$, same for other v_i and w_i , so $(v_0, \dots, v_{m-1}) = (w_0, \dots, w_{m-1})$, therefore φ is injective.

Exercise 3.6. Let $v, x \in V$ and $U, W \subseteq V$ are subspaces such that v + U = x + W. Show that U = W.

Proof. We know $v = x + w_0$ for some $w_0 \in W$ since v + U = x + W and $v \in v + U$, then for any $u \in U$, we have v + u = x + w for some $w \in W$, then $(x + w_0) + u = x + w$ therefore $u = x + w - x - w_0 = w - w_0 \in W$ thus $U \subseteq W$. Similarly $W \subseteq U$.

Exercise 3.7. Let $U = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + 5z = 0 \}$ and $A \subseteq \mathbb{R}^3$. Show that A is a translate of U (that is A = a + U) \iff there is c such that $A = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + 5z = c \}$.

Proof.

- (\Rightarrow) For any $(a_0, a_1, a_2) + (x, y, z) \in a + U$, we have $2(a_0 + x) + 3(a_1 + y) + 5(a_2 + z) = 2a_0 + 3a_1 + 5a_2$, therefore $c = 2a_0 + 3a_1 + 5a_2$.
- (\Leftarrow) We can see 2, 3 and 5 are coprime to each other, therefore there is $2a_0 + 3a_1 + 5a_2 = 1$ (I am not sure if this is true in generalized case, I just extends the theorem " $as+bt=1 \iff$ a coprime to b" to three elements case without checking), in this case we have 2(1) + 3(-2) + 5(1) = 1, then for any 2x + 3y + 5z = c, we have $2x + 3y + 5z = 2(ca_0) + 3(ca_1) + 5(ca_2)$, then $2(x ca_0) + 3(y ca_1) + 5(z ca_2) = 0$, therefore $A = ((-c)(a_0, a_1, a_2)) + U$.

Exercise 3.8. Let $T \in \mathcal{L}(V, W)$ and $c \in W$, show that $\{v \in V \mid Tv = c\}$ is an empty set or a translate of null T. Then explain why the solutions of a system of linear equations is either an empty set or a translate of some subspace of F^n .

Proof. Let Ta = c for some $a \in V$, if no such a, then $\{v \in V \mid Tv = c\} = \varnothing$. We claim $\{v \in V \mid Tv = c\} = a + \text{null } T$. For any $v \in V$ such that Tv = c, then v = a + v - a and T(v - a) = Tv - Ta = c - c = 0, therefore $v - a \in \text{null } T$, thus $v \in a + \text{null } T$. In another direction, for any $a + v \in a + \text{null } T$, we have T(a + v) = Ta + Tv = c + 0 = c.

Exercise 3.9. Let $A \subseteq V$ a non-empty subset. Show that A is a translate of some subspace of $V \iff \lambda v + (1 - \lambda)w \in A$ for any $v, w \in A$ and $\lambda \in F$.

Proof.

- (\Rightarrow) Suppose A = a + U for some subspace $U \subseteq V$.
- (\Leftarrow) Let $w \in A$, we will show that (-w) + A is a subspace of V.

For any $a-w, b-w \in (-w)+A$, we need to show that $a-w+b-w=(a+b-w)-w \in (-w)+A$ or equivalently $a+b-w \in A$. We found that the property $\lambda v + (1-\lambda)w \in A$ gives us the ability to construct something like v-w. Since 2v+(1-2)w=2v-w, we just let w=v+a then 2v-(v+a)=v-a. Therefore, we let $\lambda=2, v=a+b$ and w=a+b+w, and now $2(a+b)-(a+b+w)=a+b-w \in A$, so $a+b-w-w \in (-w)+A$.

For any $a - w \in (-w) + A$ and $\lambda \in F$, we need to show that $\lambda(a - w) \in (-w) + A$. $\lambda(a - w) = \lambda a - \lambda w = \lambda a - (\lambda - 1)w - w$. We let $\lambda = (-1)(\lambda - 1) = (1 - \lambda)$, v = w and w = a in $\lambda v + (1 - \lambda w) \in A$, then $(1 - \lambda)w + (1 - (1 - \lambda))a = (-1)(\lambda - 1)w + \lambda a = \lambda a - (\lambda - 1)w \in A$, therefore $\lambda a - (\lambda - 1)w - w = \lambda a - \lambda w \in (-w) + A$.

Therefore (-w) + A is a subapce of V and w + (-w) + A is a translate.

Exercise 3.10. Let A = a + U and B = b + W where $a, b \in V$, $U, W \subseteq V$ are subspaces. Show that $A \cap B$ is either a translate of some subspace of V or an empty space.

Proof. Suppose $A \cap B \neq \emptyset$, we claim that $A \cap B$ is a translate of $U \cap W$, more specificly, for any $a+u_0=b+w_0 \in A \cap B$, we claim that $A \cap B=(a+u_0)+U \cap W$.

For any $u = w \in U \cap W$, we have $(a + u_0) + u = a + (u_0 + u) \in a + U$, similarly, we have $(b + w_0) + w = b + (w_0 + w) \in b + W$, therefore $(a + u_0) + (U \cap W)$ subseteq $A \cap B$.

For any $a + u = b + w \in A \cap B$, we have $a + u - (a + u_0) = u - u_0 \in U$ and $b + w - (b + w_0) = w - w_0 \in W$, therefore $A \cap B \subseteq (a + u_0) + (U \cap W)$. \square

Exercise 3.12. Let $v_0, \dots, v_{m-1} \in V$ and

$$A = \{ \lambda_0 v_0 + \dots + \lambda_{m-1} v_{m-1} \mid \lambda_i \in F \text{ and } \lambda_0 + \dots + \lambda_i = 1 \}$$

- 1. Show that A is a translate of a subspace of V.
- 2. If B a translate of a subspace of V such that $v_0, \dots, v_{m-1} \in B$, show that $A \subseteq B$.
- 3. Base on (1), show that the dimension of such subspace is less then m.

Proof.

• If A is a translate of a subspace of V, say B, then for any $a \in A$, we have A = a + B. Therefore B = (-a) + A, we may pick $a = v_0$, we find that for any $b \in B$, it is in form $(-1)(v_0) + \lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}$ where $\lambda_0 + \cdots + \lambda_{m-1} = 1$, which implies $(-1) + \lambda_0 + \cdots + \lambda_{m-1} = 0$. Then we claim $B = \{ \lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1} \mid \lambda_0 + \cdots + \lambda_{m-1} = 0 \}$ is a subspace and $A = v_0 s + B$.

Exercise 3.16. Let $\varphi \in \mathcal{L}(V, F)$ where $\varphi \neq 0$, show that $\dim(V/(\operatorname{null} \varphi)) = 1$.

Proof. For any non-zero $v + \text{null } \varphi, w + \text{null } \varphi \in V/(\text{null } \varphi)$ (existence is guaranteed since $\varphi \neq 0$), since $\varphi(w) \in F$, then there is some λ such that $\lambda \varphi(w) = \varphi(v)$ cause $\varphi(v)$ and $\varphi(w)$ are non-zero, then $\varphi(\lambda w) = \varphi(v)$, which means $v + \text{null } T = (\lambda w) + \text{null } T$, therefore $\dim(V/\text{null } \varphi)$ cause any two (non-zero) vectors are linear dependent.

Exercise 3.17. Let $U \subseteq V$ a subspace such that $\dim(V/U) = 1$. Show that there is $\varphi \in \mathcal{L}(V, F)$ such that $\operatorname{null} \varphi = U$.

Proof. We know there is an isomorphism $i \in \mathcal{L}(V/U, F)$ since $\dim(V/U) = \dim F = 1$, then $\varphi = i \circ \pi$ where $\pi \in \mathcal{L}(V, V/U)$. Since i is injective, null $\varphi = \operatorname{null} \pi = U$.