Problem statement

Adult Salary Prediction

Solved by:- Iriventi Bharath Vasishta(CSC/20/36), Mohtassim Rahman(CSC/20/29), Nikhil Choudhary(CSC/20/42).

Our task is to analyze the dataset and predict whether the income of an adult will exceed 50k per year or not.

We have been given 14 features.

Adult dataset link: http://archive.ics.uci.edu/ml/datasets/Adult (http://archive.ics.uci.edu/ml/datasets/Adult)

In [110]:

```
import numpy as np # For mathematical calculations
import pandas as pd # For data preprocessing
import matplotlib.pyplot as plt # For data visualization
import seaborn as sns # For data visualization
from sklearn.preprocessing import StandardScaler # For feature scaling
from statsmodels.stats.outliers_influence import variance_inflation_factor # For detect
from sklearn.model_selection import train_test_split # For splitting data into training
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, pre
from sklearn.tree import DecisionTreeClassifier # For decision tree classification
from sklearn.ensemble import RandomForestClassifier # For random forest classification
from sklearn.svm import SVC # For support vector machine classification
from imblearn.over_sampling import SMOTE # For oversampling the minority class
import warnings
warnings.filterwarnings("ignore") # To ignore warnings for cleaner output
```

In [111]:

```
df = pd.read_csv("adult_data.csv")
df.head()
```

Out[111]:

	age	workclass	education	occupation	race	sex	capital- gain	capital- loss	hours- per- week	native- country
0	39	State-gov	Bachelors	Adm- clerical	White	Male	2174	0	40	United- States
1	50	Self-emp- not-inc	Bachelors	Exec- managerial	White	Male	0	0	13	United- States
2	38	Private	HS-grad	Handlers- cleaners	White	Male	0	0	40	United- States
3	53	Private	11th	Handlers- cleaners	Black	Male	0	0	40	United- States
4	28	Private	Bachelors	Prof- specialty	Black	Female	0	0	40	Cuba
4										•

In [112]:

```
df.columns
```

Out[112]:

```
ry',
  ' salary'],
 dtype='object')
```

In [113]:

```
len(df.columns)
```

Out[113]:

11

In [114]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	education	32561 non-null	object
3	occupation	32561 non-null	object
4	race	32561 non-null	object
5	sex	32561 non-null	object
6	capital-gain	32561 non-null	int64
7	capital-loss	32561 non-null	int64
8	hours-per-week	32561 non-null	int64
9	native-country	32561 non-null	object
10	salary	32561 non-null	object

dtypes: int64(4), object(7) memory usage: 2.7+ MB

In [115]:

```
df.shape
```

Out[115]:

(32561, 11)

In [116]:

df.describe()

Out[116]:

	age	capital-gain	capital-loss	hours-per-week
count	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1077.648844	87.303830	40.437456
std	13.640433	7385.292085	402.960219	12.347429
min	17.000000	0.000000	0.000000	1.000000
25%	28.000000	0.000000	0.000000	40.000000
50%	37.000000	0.000000	0.000000	40.000000
75%	48.000000	0.000000	0.000000	45.000000
max	90.000000	99999.000000	4356.000000	99.000000

```
In [117]:
```

```
sns.countplot(x=' salary',data=df )
Out[117]:
<AxesSubplot:xlabel=' salary', ylabel='count'>
   25000
   20000
    15000
    10000
In [118]:
df[" salary"].value_counts()
Out[118]:
 <=50K
          24720
 >50K
           7841
Name: salary, dtype: int64
In [119]:
print(f'' \le 50k : \{round(24720 / 32561 * 100 , 2)\}'')
print(f"> 50k : {round(7841 /32561 * 100 , 2)}")
```

```
<= 50k : 75.92
> 50k : 24.08
```

Exploratory data analysis and Feature Engineering

```
In [120]:
## Here we will check the missing values in our dataset
df.isnull().sum()
Out[120]:
                   0
age
workclass
                   0
 education
                   0
occupation
                   0
 race
                   0
 sex
                   0
 capital-gain
                   0
 capital-loss
 hours-per-week
                   0
 native-country
                   0
 salary
dtype: int64
In [121]:
numerical = [i for i in df.columns if df[i].dtypes != "0"]
In [122]:
numerical
Out[122]:
['age', 'capital-gain', 'capital-loss', 'hours-per-week']
In [123]:
for i in numerical:
    print(f" {i} : {len(df[i].unique())}")
 age : 73
  capital-gain : 119
  capital-loss : 92
  hours-per-week: 94
```

```
In [124]:
```

```
for feature in numerical:
    bar = sns.distplot(df[feature] , kde_kws = {'bw' : 1})
    bar.legend(["Skewness: {:0.2f}".format(df[feature].skew())])
    plt.xlabel(feature)
    plt.ylabel("Probability density")
    plt.title(feature)
    plt.show()
 Probability density
    0.0003
    0.0002
    0.0001
   0.0000
            -20000
                             20000
                                     40000
                                             60000
                                                     80000 100000 120000
                                       capital-gain
```

In [125]:

```
df["age"] = np.log(df["age"])
```

In [126]:

```
df.columns
```

Out[126]:

```
Index(['age', 'workclass', 'education', 'occupation', 'race', 'sex',
       'capital-gain', 'capital-loss', 'hours-per-week', 'native-count
ry',
       ' salary'],
     dtype='object')
```

Handling categorical data

```
In [127]:
```

```
categorical = [i for i in df.columns if df[i].dtypes == "0"]
```

```
In [128]:
```

```
for feature in categorical:
   print(f" {feature} : {len(df[feature].unique())}")
 workclass : 9
  education : 16
 occupation: 15
  race : 5
  sex : 2
  native-country : 42
 salary : 2
In [129]:
for feature in categorical:
   print(df[feature].value_counts())
   print("\n \n ")
 Сашиоита
Trinadad&Tobago
                                  19
 Laos
                                  18
Thailand
                                  18
Yugoslavia
                                 16
                                 14
Outlying-US(Guam-USVI-etc)
Honduras
                                  13
Hungary
                                  13
Scotland
                                  12
Holand-Netherlands
Name: native-country, dtype: int64
          24720
 <=50K
 >50K
          7841
Name: salary, dtype: int64
```

Handling missing values in categorical features

```
In [130]:
print(f"workclass : {round(2093 / 32561 , 4) *100}%")
print(f"occupation : {round(1843 / 32561 , 4) *100}%")
print(f"native-country : {round(583 / 32561 , 4) *100}%")
workclass: 6.43%
occupation : 5.66%
native-country : 1.79%
In [131]:
df[" occupation"].mode()[0]
Out[131]:
' Prof-specialty'
```

here we have less than 6 percent missing values so we can fill it with mode value

```
In [132]:
```

```
df[" workclass"] = df[' workclass'].str.replace('?', 'Private')
df[' occupation'] = df[' occupation'].str.replace('?', 'Prof-specialty' )
df[' native-country'] = df[' native-country'].str.replace('?', 'United-States' )
```

In [133]:

```
# education Category
df[" education"].replace(['Preschool', '1st-4th', '5th-6th', '7th-8th', '9th','10th', '1
                         inplace = True , regex = True)
df[" education"].replace(['Assoc-voc', 'Assoc-acdm', 'Prof-school', 'Some-college'], 'hi
```

In [134]:

```
# income
df[" salary"] = df[" salary"].replace({'<=50K' : 0 , ">50K" : 1 } , regex = True)
```

In [135]:

```
df.head()
```

Out[135]:

	age	workclass	education	occupation	race	sex	capital- gain	capital- loss	hours- per- week	nat coui
0	3.663562	State-gov	Bachelors	Adm- clerical	White	Male	2174	0	40	Uni Sta
1	3.912023	Self-emp- not-inc	Bachelors	Exec- managerial	White	Male	0	0	13	Uni Sta
2	3.637586	Private	HS-grad	Handlers- cleaners	White	Male	0	0	40	Uni Sta
3	3.970292	Private	school	Handlers- cleaners	Black	Male	0	0	40	Uni Sta
4	3.332205	Private	Bachelors	Prof- specialty	Black	Female	0	0	40	С
4										•

In [136]:

```
for feature in categorical:
   print(f" {feature} : {len(df[feature].unique())}")
```

```
workclass : 8
education : 6
occupation : 14
race: 5
sex : 2
native-country : 41
salary : 2
```

In [137]:

```
df[" education"].unique()
```

Out[137]:

```
array([' Bachelors', ' HS-grad', ' school', ' Masters', ' higher',
       ' Doctorate'], dtype=object)
```

In [138]:

```
plt.figure(figsize = (16 , 7))
sns.heatmap(df.corr(), annot=True);
```


In [139]:

from sklearn.preprocessing import LabelEncoder

In [140]:

```
df = df.apply(LabelEncoder().fit_transform)
df .head()
```

Out[140]:

	age	workclass	education	occupation	race	sex	capital- gain	capital- loss	hours- per- week	native- country	sala
0	22	6	0	0	4	1	25	0	39	38	
1	33	5	0	3	4	1	0	0	12	38	
2	21	3	2	5	4	1	0	0	39	38	
3	36	3	5	5	2	1	0	0	39	38	
4	11	3	0	9	2	0	0	0	39	4	
4											•

Pre Processing

In [141]:

```
# Preprocess the data for machine learning
target_name = ' salary'
y = df[target_name]
x_train = df.drop(target_name, axis=1)
```

In [142]:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_res = sc.fit_transform(x_train)
```

In [143]:

from sklearn.metrics import confusion_matrix, classification_report, accuracy_score

In [144]:

```
# Calculate variance inflation factor (VIF) for each feature
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(x_res, i) for i in range(x_res.shape[1])]
vif["features"] = x_train.columns
```

In [145]:

```
# Display VIF for each feature
print("Variance Inflation Factor (VIF):")
pd.DataFrame(vif)
```

Variance Inflation Factor (VIF):

Out[145]:

	VIF Factor	features
0	1.031483	age
1	1.008832	workclass
2	1.024136	education
3	1.003528	occupation
4	1.024756	race
5	1.079126	sex
6	1.036486	capital-gain
7	1.015167	capital-loss
8	1.084125	hours-per-week
9	1.016311	native-country

```
In [146]:
x_res.shape
Out[146]:
(32561, 10)
```

MODEL EVALUATION

1) Decision Tree Classifier

```
In [147]:
```

```
X_train, X_test, y_train, y_test = train_test_split(x_res, y, test_size=0.2, random_stat
# Print the shapes of training and testing sets
print("X_train.shape:", X_train.shape)
print("y_train.shape:", y_train.shape)
print("X_test.shape:", X_test.shape)
print("y_test.shape:", y_test.shape)
X_train.shape: (26048, 10)
y_train.shape: (26048,)
X_test.shape: (6513, 10)
y_test.shape: (6513,)
In [148]:
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
# Predict on training and testing sets using Decision Tree Classifier
dt_train_pred = dt.predict(X_train)
dt_test_pred = dt.predict(X_test)
```

In [149]:

```
# Print accuracy scores and confusion matrix for Decision Tree Classifier
print('Train Accuracy:', accuracy_score(y_train, dt_train_pred) * 100)
print('Accuracy Score:', accuracy_score(y_test, dt_test_pred) * 100)
```

Train Accuracy: 95.98817567567568 Accuracy Score: 79.57930293259633

Confusion Matrix

```
In [150]:
```

```
print(confusion_matrix(y_test, dt_test_pred))
[[4330 621]
 [ 709 853]]
```

In [151]:

```
#Classfication report
```

In [152]:

```
print(classification_report(y_test, dt_test_pred, digits=4))
```

	precision	recall	f1-score	support
0	0.8593	0.8746	0.8669	4951
1	0.5787	0.5461	0.5619	1562
accuracy			0.7958	6513
macro avg	0.7190	0.7103	0.7144	6513
weighted avg	0.7920	0.7958	0.7937	6513

Precision Score

In [153]:

```
print('Precision score of macro is: ' , round(precision_score(y_test , dt_test_pred , av
print('Precision score of micro is: ' , round(precision_score(y_test , dt_test_pred , av
print('Precision score of weighted is: ' , round(precision_score(y_test , dt_test_pred ,
```

Precision score of macro is: 71.9 Precision score of micro is: 79.58 Precision score of weighted is: 79.2

Recall Score

In [154]:

```
print('recall_score score of macro is: ' , round(recall_score(y_test , dt_test_pred , av
print('recall_score score of micro is: ' , round(recall_score(y_test , dt_test_pred , av
print('recall_score score of weighted is: ' , round(recall_score(y_test , dt_test_pred ,
```

```
recall score score of macro is: 71.03
recall score score of micro is: 79.58
recall_score score of weighted is: 79.58
```

F1 Score

In [155]:

```
print('f1_score score of macro is: ' , round(f1_score(y_test , dt_test_pred , average =
print('f1_score score of micro is: ' , round(f1_score(y_test , dt_test_pred , average =
print('f1_score score of weighted is: ' , round(f1_score(y_test , dt_test_pred , average
```

```
f1 score score of macro is: 71.44
f1_score score of micro is: 79.58
f1 score score of weighted is: 79.37
```

2)Random Forest

In [156]:

```
from sklearn.ensemble import RandomForestClassifier
rf_classifier = RandomForestClassifier(n_estimators = 20, criterion = 'entropy' ,random_
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)
accuracy_score(y_test, y_pred)*100
```

Out[156]:

82.84968524489483

In [157]:

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.87	0.92	0.89	4951
1	0.68	0.55	0.60	1562
accuracy			0.83	6513
macro avg	0.77	0.73	0.75	6513
weighted avg	0.82	0.83	0.82	6513

Confusion Matrix

In [158]:

```
cm = confusion_matrix(y_test, y_pred )
plt.title('Heatmap of Confusion Matrix', fontsize = 12)
sns.heatmap(cm, annot = True , fmt = "d")
plt.show()
```


3) Support Vector Machine (SVM)

In [159]:

```
# Train Support Vector Classifier (SVC)
svc model = SVC()
svc_model.fit(X_train, y_train)
# Predict on training and testing sets using SVC
svc_train_pred = svc_model.predict(X_train)
svc test pred = svc model.predict(X test)
```

In [160]:

```
# Print accuracy scores and confusion matrix for SVC
print('Train Accuracy:', accuracy_score(y_train, svc_train_pred) * 100)
print('Accuracy Score:', accuracy_score(y_test, svc_test_pred) * 100)
```

Train Accuracy: 82.8585687960688 Accuracy Score: 82.081989866421

Confusion Matrix

```
In [161]:
```

```
print(confusion_matrix(y_test, svc_test_pred))
[[4777 174]
```

[993 569]]

Classification Report

0

In [66]:

```
print(classification_report(y_test, svc_test_pred, digits=4))
              precision
                           recall f1-score
                                              support
```

4951

0.8911

0.7658 0.3643 0.4937 1562 0.8208 accuracy 6513 0.7969 macro avg 0.6646 0.6924 6513 weighted avg 0.8130 0.8208 0.7958 6513

0.9649

Handling Imbalanced data

0.8279

```
In [162]:
```

```
# Check value counts of y
print(y.value_counts())
     24720
0
      7841
Name: salary, dtype: int64
```

In [163]:

```
# Apply SMOTE for handling imbalanced dataset
oversample = SMOTE(k_neighbors=4)
X_res1, y_res1 = oversample.fit_resample(x_res, y)
```

In [164]:

```
# Print shapes of resampled dataset
print("X_res1.shape:", X_res1.shape)
print("y_res1.shape:", y_res1.shape)
```

```
X_res1.shape: (49440, 10)
y res1.shape: (49440,)
```

In [165]:

```
# Check value counts of original and resampled y
print("Original y value counts:")
print(y.value_counts())
print("Resampled y value counts:")
print(pd.Series(y_res1).value_counts())
Original y value counts:
```

24720 7841 1

Name: salary, dtype: int64 Resampled y value counts:

24720 24720

Name: salary, dtype: int64

In [166]:

```
# Plot bar chart of resampled y value counts
pd.Series(y_res1).value_counts().plot.bar()
plt.grid()
```


Retraining and Re-evaluation

1) Decision Tree Classifier

```
In [167]:
```

```
X_train, X_test, y_train, y_test = train_test_split(X_res1, y_res1, test_size=0.2, rando
print("X_train.shape:", X_train.shape)
print("y_train.shape:", y_train.shape)
print("X_test.shape:", X_test.shape)
print("y_test.shape:", y_test.shape)
```

X_train.shape: (39552, 10) y_train.shape: (39552,) X_test.shape: (9888, 10) y_test.shape: (9888,)

In [168]:

```
# Decision Tree Classifier
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
dt_train_pred = dt.predict(X_train)
dt_test_pred = dt.predict(X_test)
```

In [169]:

```
print('Decision Tree Classifier (after SMOTE) Train Accuracy: ', accuracy_score(y_train,
print('Decision Tree Classifier (after SMOTE) Accuracy Score: ', accuracy_score(y_test,
```

Decision Tree Classifier (after SMOTE) Train Accuracy: 96.93315129449837 Decision Tree Classifier (after SMOTE) Accuracy Score: 83.59627831715211

Confusion Matrix

```
In [170]:
```

[899 4042]]

```
print(confusion_matrix(y_test, dt_test_pred))
[[4224 723]
```

Classfication Report

In [171]:

```
print(classification_report(y_test, dt_test_pred, digits=4))
```

support	f1-score	recall	precision	
4947	0.8389	0.8539	0.8245	0
4941	0.8329	0.8181	0.8483	1
9888	0.8360			accuracy
9888	0.8359	0.8360	0.8364	macro avg
9888	0.8359	0.8360	0.8364	weighted avg

2) Random Forest

In [172]:

```
# Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
rf_classifier = RandomForestClassifier(n_estimators = 20, criterion = 'entropy' ,random_
rf_classifier.fit(X_train, y_train)
y_pred = rf_classifier.predict(X_test)
accuracy_score(y_test, y_pred)*100
```

Out[172]:

86.5796925566343

Classification Report

In [173]:

print(classif	print(classification_report(y_test, y_pred))				
	precision	recall	f1-score	support	
0	0.86	0.87	0.87	4947	
1	0.87	0.86	0.86	4941	
accuracy			0.87	9888	
macro avg	0.87	0.87	0.87	9888	
weighted avg	0.87	0.87	0.87	9888	

Confusion Report

In [174]:

```
cm = confusion_matrix(y_test, y_pred )
plt.title('Heatmap of Confusion Matrix', fontsize = 12)
sns.heatmap(cm, annot = True , fmt = "d")
plt.show()
```


3)SVM

In [175]:

```
# Train Support Vector Classifier (SVC)
svc model = SVC()
svc_model.fit(X_train, y_train)
# Predict on training and testing sets using SVC
svc_train_pred = svc_model.predict(X_train)
svc test pred = svc model.predict(X test)
```

In [176]:

```
# Print accuracy scores and confusion matrix for SVC
print('Train Accuracy:', accuracy_score(y_train, svc_train_pred) * 100)
print('Accuracy Score:', accuracy_score(y_test, svc_test_pred) * 100)
```

Train Accuracy: 78.85821197411003 Accuracy Score: 78.47896440129449

Confusion Report

In [177]:

```
print(confusion_matrix(y_test, svc_test_pred))
```

[[3752 1195] [933 4008]]

Classification Report

In [178]:

print(classification_report(y_test, svc_test_pred, digits=4))

support	f1-score	recall	precision	
4947	0.7791	0.7584	0.8009	0
4941	0.7902	0.8112	0.7703	1
9888	0.7848			accuracy
9888	0.7846	0.7848	0.7856	macro avg
9888	0.7846	0.7848	0.7856	weighted avg

In []: