#### **82 ELETROMAGNETISMO**

- **24.** Vimos na Seção 26-11 que o potencial no interior de um condutor é o mesmo que o de sua superfície. (a) E no caso de um condutor de formato irregular, com uma cavidade irregular no seu interior? (b) E no caso da cavidade ter uma pequena "brecha" ligando-a com o exterior? (c) E no caso de a cavidade estar fechada, mas possuir uma carga puntiforme suspensa no seu interior? Para cada situação, discuta o potencial dentro do material condutor e em diferentes pontos dentro da cavidade.
- 25. Uma casca esférica condutora isolada tem uma carga negativa. O que acontecerá se um objeto metálico, com carga positiva, for colocado em contato com o interior da casca? Discuta os três casos em que o módulo da carga positiva, comparado ao da negativa, é (a) menor, (b) igual e (c) maior?

# **EXERCÍCIOS E PROBLEMAS**

# Seção 26-2 O Potencial Elétrico

- 1E. A diferença de potencial elétrico entre a terra e uma nuvem numa determinada tempestade é  $1.2\times10^9$  V. Qual é o módulo da variação da energia potencial elétrica (em múltiplos de elétron-volt) de um elétron que se move entre esses pontos?
- **2E.** Uma bateria de carro de 12 V pode enviar uma carga total de 84 A·h (ampère-horas) através de um circuito, de um terminal ao outro. (a) Quantos coulombs de carga isso representa? (b) Se toda essa carga for submetida a uma diferença de potencial de 12 V, que energia estará envolvida?
- **3P.** Em um relâmpago típico, a diferença de potencial entre uma nuvem e a terra é de  $1.0 \times 10^9$  V e a quantidade de carga transferida é de 30 C. (a) Qual é a variação de energia da carga transferida? (b) Se toda a energia liberada pudesse ser usada para acelerar um carro de  $1.000 \, \mathrm{kg}$  a partir do repouso, qual seria sua velocidade escalar final? (c) Que quantidade de gelo, a  $0^\circ\mathrm{C}$ , derreteria se toda a energia liberada pudesse ser usada para tal fim? O calor de fusão do gelo é  $3.3 \times 10^5 \, \mathrm{J/kg}$ .

## Seção 26-4 Cálculo do Potencial a Partir do Campo

- **4E.** Duas linhas infinitas de carga estão paralelas ao eixo z. Uma, de carga por unidade de comprimento  $\pm \lambda$ , está a uma distância a à direita desse eixo. A outra, de carga por unidade de comprimento  $\pm \lambda$ , está a uma distância a à esquerda do eixo (as linhas e o eixo z estão no mesmo plano). Esboce algumas das superfícies equipotenciais decorrentes do arranjo.
- **5E.** Quando um elétron se move de A até B ao longo da linha de campo elétrico mostrada na Fig. 26-24, o campo elétrico realiza um trabalho de  $3.94 \times 10^{-19} \, \mathrm{J}$  sobre ele. Quais são as diferenças de potencial elétrico (a)  $V_B = V_A$ . (b)  $V_C = V_A \, \mathrm{e}$  (c)  $V_C = V_B \, \mathrm{e}$ ?



Fig. 26-24 Exercício 5.

**6E.** A Fig. 26-25 mostra, uma chapa não-condutora, infinita, com densidade superficial de carga positiva  $\sigma$  sobre um lado. (a) Qual é o trabalho realizado pelo campo elétrico da chapa, quando uma pequena carga teste positiva  $q_0$  é deslocada de uma posição inicial sobre a chapa até uma posição final localizada a distância perpendicular z da chapa? (b)

Use a Eq. 26-11 e o resultado de (a) para mostrar que o potencial elétrico de uma chapa infinita de carga pode ser escrita como

$$V = V_0 - (\sigma/2\epsilon_0)z,$$

onde  $V_0$  é o potencial na superfície da chapa.



Fig. 26-25 Exercício 6.

- **7E.** Na experiência da gota de ólco, de Millikan, (ver a Seção 24-8) mantém-se um campo elétrico uniforme de  $1.92 \times 10^5$  N/C na região entre duas placas separadas de 1.5 cm. Determine a diferença de potencial entre as placas.
- **8E.** Duas grandes placas condutoras, paralelas entre si e afastadas por uma distância de 12 cm, têm cargas iguais e de sinais opostos nas faces que se defrontam. Um elétron colocado em qualquer lugar entre as placas experimenta uma força eletrostática de 3.9  $\times$  10<sup>-15</sup> N. (a) Determine o campo elétrico na posição do elétron. (b) Qual é a diferença de potencial entre as placas?
- **9E.** Uma chapa não-condutora infinita tem uma densidade superficial de carga  $\sigma \approx 0.10~\mu\text{C/m}^2$  sobre um lado. Qual é a distância entre as superfícies equipotenciais cujos potenciais diferem de 50 V?
- 10P. Na Fig. 26-26, três longas linhas paralelas de carga, com as densidades lineares indicadas, estendem-se perpendicularmente ao plano da



Fig. 26-26 Problema 10.

página. Esboce algumas linhas de campo elétrico e as seções transversais no plano da página de algumas superfícies equipotenciais.

0

ido

• 0

(b)

11P. O campo elétrico dentro de uma esfera não-condutora de raio R. com carga espalhada com uniformidade por todo o seu volume, está radialmente direcionado e tem módulo dado por

$$E(r) = \frac{qr}{4\pi\epsilon_0 R^3}.$$

Nesta expressão, q (positiva ou negativa) é a carga total da esfera e r é a distância ao centro da esfera. (a) Tomando V = 0 no centro da esfera. determine o potencial V(r) dentro da esfera. (b). Qual é a diferença de potencial elétrico entre um ponto da superfície e o centro da esfera? (c) Sendo q positivo, qual desses dois pontos tem maior potencial?

12P. Um contador Geiger possui um cilindro metálico com 2.00 cm de diâmetro e ao longo do eixo está estendido um fio de  $1.3 \times 10^{-4} \, \mathrm{cm}$ de diâmetro. Se a diferença de potencial entre eles for de 850 V, qual será o campo elétrico na superfícic (a) do fio e (b) do cilindro? (Sugestão: Use o resultado do Problema 26, Cap. 25.)

13P\*, Uma carga q está uniformemente distribuída através de um volume esférico de raio R. (a) Fazendo V = 0 no infinito, mostre que o potencial a uma distância r do centro, onde  $r \le R$ , é dado por

$$V = \frac{q(3R^2 - r^2)}{8\pi\epsilon_0 R^3}.$$

(Sugestão: Ver o Exemplo 25-7) (b) Por que este resultado difere daquele do item (a) do Problema 11? (c) Qual é a diferença de potencial entre um ponto da superfície e o centro da esfera? (d) Por que esse resultado não difere daquele do item (b) do Problema 11?

14P\*. Uma casca esférica espessa de carga Q e densidade volumétrica de carga uniforme  $\rho$ , está limitada pelos raios  $r_1$  e  $r_2$ , onde  $r_2 \ge r_1$ . Com V = 0 no infinito, determine o potencial elétrico V em função da distância r ao centro da distribuição, considerando as regiões (a)  $r \ge r_2$ , (b)  $r_2$  $> r > r_1$  e (c)  $r < r_1$  (d) Estas soluções concordam em  $r = r_2$  e  $r = r_1$ ? (Sugestão: Ver o Exemplo 25-7.)

# Seção 26-5 Potencial Criado por uma Carga Puntiforme

15E. Considere uma carga puntiforme  $q = \pm 1.0 \mu C$  e dois pontos A e B que distam, respectivamente, 2,0 m e 1,0 m da carga. (a) Tomando tais pontos diametralmente opostos, como mostra a Fig. 26-27a, qual é a diferença de potencial  $V_A = V_8$ ? (b) Repita o item (a) considerando os pontos A e B localizados como mostra a Fig. 26-27b.



Fig. 26-27 Exercício 15.

**16E.** Considere uma carga puntiforme  $q = 1.5 \times 10^{-8}$ C, e tome V = 0no infinito. (a) Quais são a forma e as dimensões de uma superfície equipotencial que tem um potencial de 30 V graças somente a q? (b) Estão igualmente espaçadas as superfícies cujos potenciais diferem de uma quantidade constante, digamos, L0 V?

17E. A que potencial uma carga de 1,5 imes 10  $^8$ C elevaria uma esfera condutora isolada, de raio igual a 16,0 cm?

18E. Enquanto uma nave espacial se move através do gás ionizado e diluído da ionosfera da Terra, seu potencial sofre uma variação típica de -1,0 V, durante uma rotação. Supondo que a nave seja uma esfera de raio igual a 10 m, estime a quantidade de carga que ela coleta.

19E. Uma grande quantidade do material que compõe os anéis de Saturno (veja a Fig. 26-28) está na forma de minúsculos grãos de poeira, cujos rajos são da ordem de 10% m. Tais grãos estão localizados numa régião contendo um gás ionizado e diluído, e adquirem elétrons em excesso. Como uma aproximação, suponha que um grão seja esférico, com um raio  $R = 1.0 \times 10^{-6}$  m. Quantos elétrons em excesso ele teria de adquirir para que o potencial em sua supefície atingisse =400 V (tomando V = 0 no infinito)?



Fig. 26-28 Exercício 19.

20E. Para a situação da Fig. 26-29, esboce qualitativamente (a) as linhas do campo elétrico e (b) as seções transversais das superfícies equipotenciais no plano da figura.



Fig. 26-29 Exercício 20 e Problema 31.

Repita o Exercício 20 para a situação da Fig. 26-30.



Fig. 26-30 Exercícios 21 e 28.

#### 84 ELETROMAGNETISMO

**22E.** (a) Sabendo-se que uma esfera condutora isolada de 10 cm de raio tem uma carga de 4,0  $\mu$ C e, considerando-se V=0 no infinito, qual é o potencial sobre a superfície da esfera? (b) Tal situação, pode realmente ocorrer, dado que o ar em torno da esfera sofre ruptura elétrica quando o campo excede a 3,0 MV/m?

**23P.** Quais são (a) a carga e (b) a densidade de carga sobre a superfície de uma esfera condutora de raio 0.15 m, cujo potencial é de 200 V (com V = 0 no infinito)?

24P. Freqüentemente podemos observar um campo elétrico de aproximadamente 100 V/m, próximo à superfície da Terra. Se este fosse o valor do campo sobre toda a superfície, qual seria o potencial elétrico de um ponto sobre a superfície? (Faça V=0 no infinito.)

**25P.** Suponha que a carga negativa de uma moeda, de um centavo, de cobre, fosse levada para uma distância muito grande da Terra — talvez uma galáxia distante — e que a carga positiva fosse uniformemente distribuída sobre a superfície da Terra. De quanto variaria o potencial elétrico na superfície da Terra? (Veja o Exemplo 23-3.)

**26P.** Uma gota esférica de água transportando uma carga de 30 pC tem um potencial de 500 V em sua superfície (com V=0 no infinito). (a) Qual é o raio da gota? (b) Se duas gotas iguais a esta, com a mesma carga e o mesmo raio, se juntarem para constituir uma única gota esférica, qual será o potencial na superfície da nova gota?

**27P.** Uma esfera de cobre, de raio igual a 1,0 cm, possui um revestimento muito fino de níquel em sua superfície. Alguns átomos de níquel são radioativos, cada átomo emitindo um elétron quando ele decai. A metade destes elétrons entra na esfera de cobre, cada um deles depositando 100 keV de energia na esfera. A outra metade dos elétrons escapa, cada um levando para longe uma carga -e. O revestimento de níquel tem uma atividade de 10 mCi (= 10 milicuries =  $3.70 \times 10^8$  decaimentos radioativos por segundo). A esfera está suspensa por um longo fio não-condutor e isolada de sua vizinhança. (a) Quanto tempo levará para que o potencial da esfera aumente de 1.000 V? (b) Quanto tempo levará para que a temperatura da esfera aumente de  $5.0^{\circ}$ C? A capacidade calorífica da esfera é de  $14.3 \text{ J}^{\circ}$ C.

## Seção 26-7 Potencial Criado por um Dipolo Elétrico

**28E.** Na Fig. 26-30, considerando V = 0 no infinito, localize (em termos de d) um ponto sobre o eixo x (que não esteja no infinito) onde o potencial devido às duas cargas seja nulo.

**29E.** Duas cargas isoladas de módulos  $Q_1$  e  $Q_2$  estão separadas por uma distância d. Num ponto intermediário d/4 de  $Q_1$ , o campo elétrico resultante é zero. Fazendo V=0 no infinito, localize um ponto (que não seja no infinito) onde o potencial em virtude delas seja zero.

**30E.** A molécula de amônia NH<sub>3</sub> tem um momento de dipolo elétrico permanente igual a 1,47D, onde D = unidade debye =  $3.34 \times 10^{-30}$  C·m. Calcular o potencial elétrico devido à molécula de amônia, num ponto distante 52.0 nm ao longo do eixo do dipolo. (Faça V = 0 no infinito.)

**31P.** Na Fig. 26-29, considerando V = 0 no infinito, localize os pontos (outros que não estejam no infinito), (a) onde V = 0 e (b) onde E = 0. Considere somente pontos sobre o eixo x, e seja d = 1.0 m.

**32P.** Uma carga puntiforme  $q_1 = +6.0e$  está fixa na origem de um sistema de coordenadas retangulares, e uma segunda carga puntiforme  $q_2 = -10e$  está fixa em x = 8.6 nm, y = 0. O lugar geométrico de todos os pontos, no plano xy com V = 0, é um círculo centrado sobre o eixo x, como mostra a Fig. 26-31. Determine (a) a posição  $x_e$  do centro do círculo e (b) o raio R do círculo. (c) A seção transversal no plano xy da superfície equipotencial de 5 V também é um círculo?



Fig. 26-31 Problema 32.

**33P.** Para a configuração de carga da Fig. 26-32, mostre que V(r) para pontos sobre o eixo vertical, supondo  $r \ge d$ , é dado por

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} \left( 1 + \frac{2d}{r} \right).$$

(Sugestão: A configuração de carga pode ser vista como a soma de uma carga isolada e um dipolo.)



Fig. 26-32 Problema 33.

**34P.** Na Fig. 26-33, qual é o potencial resultante no ponto P devido às quatro cargas puntiformes, tomando-se V = 0 no infinito?



Fig. 26-33 Problema 34.

**35P.** Na Fig. 26-34, o ponto P está no centro do retângulo. Com V = 0 no infinito, qual é o potencial resultante em P por causa das seis cargas puntiformes?



Fig. 26-34 Problema 35.

# Seção 26-8 Potencial Criado por uma Distribuição Contínua de

36E. (a) A Fig. 26-35a, mostra uma barra fina de plástico com carga positiva, de comprimento L e densidade linear de carga uniforme  $\lambda$ . Fazendo V=0 no infinito e considerando a Fig. 26-13 e a Eq. 26-28, determine o potencial elétrico no ponto P sem fazer cálculo. (b) A Fig. 26-35b mostra uma barra idêntica, exceto que ela está dividida ao meio e a metade direita está com carga negativa; as metades direita e esquerda têm o mesmo módulo à para a densidade linear de carga uniforme. Qual é o potencial elétrico no ponto P na Fig. 26-35b?



Fig. 26-35 Exercício 36.

37E. (a) Na Fig. 26-36, uma barra fina de plástico tendo uma carga -Quniformemente distribuída, foi curvada num arco de círculo de raio R e angulo central de 120°. Com V = 0 no infinito, qual é o potencial elétrico em P, o centro de curvatura da barra?



Fig. 26-36 Exercício 37.

**38P.** (a) Na Fig. 26-37a, qual é o potencial no ponto P devido à carga Qa uma distância R de P? Faça V = 0 no infinito. (b) Na Fig. 26-37b, a mesma carga Q foi espalhada sobre um arco de círculo de raio R e ângulo central 40°. Qual é o potencial no ponto P, o centro de curvatura do arco? (c) Na Fig. 26-37c, a mesma carga Q foi espalhada sobre um círculo de raio R. Qual é o potencial no ponto P, o centro do círculo? (d)

Ordene as três situações de acordo com o módulo do campo elétrico que é criado em P, do maior para o menor.



Fig. 26-37 Problema 38,

39P. Uma barra fina de plástico, circular, de raio R, tem uma carga positiva +Q uniformemente distribuída ao longo de um quarto de sua circunferência e uma carga negativa de -6Q uniformemente distribuída ao longo do remanescente da circunferência (Fig. 26-38). Com V=0no infinito, qual é o potencial elétrico (a) no centro C do círculo e (b) no ponto P, que está sobre o eixo do círculo a uma distância z de seu centro?



Fig. 26-38 Problema 39.

40P. Um disco de plástico é carregado sobre um lado com uma densidade superficial de carga  $\sigma$ e, a seguir, três quadrantes do disco são retirados. O quadrante que resta, é mostrado na Fig. 26-39. Com V = 0 no



Fig. 26-39 Problema 40.

infinito, qual é o potencial criado por esse quadrante no ponto P, que está sobre o eixo central do disco original a uma distância z do centro original?

**41P.** Qual é o potencial no ponto P na Fig. 26-40, a uma distância d da extremidade direita de uma barra fina de plástico de comprimento L e carga total -Q? A carga está distribuída uniformemente e V=0 no infinito.



Fig. 26-40 Problema 41.

### Seção 26-9 Cálculo do Campo a Partir do Potencial

**42E.** Duas grandes placas metálicas, paralelas entre si e separadas por uma distância de 1.5 cm, possuem cargas iguais e de sinais opostos sobre as faces que se defrontam. Tome o potencial da placa negativa como zero. Se o potencial a meia distância entre as placas for igual  $\alpha + 5.0 \text{ V}$ , qual será o campo elétrico na região entre as placas?

**43E.** Numa certa situação, o potencial elétrico varia ao longo do eixo x conforme se mostra no gráfico da Fig. 26-41. Para cada um dos intervalos ab, bc, cd, de, ef, fg, e gh, determine o componente x do campo elétrico e, a seguir, faça o gráfico de  $E_x$  versus x. (Ignore o comportamento nas extremidades dos intervalos.)



Fig. 26-41 Exercício 43.

**44E.** Partindo da Eq. 26-23, determine o campo elétrico devido a um dipolo num ponto *P* sobre o eixo do dipolo.

45E. Mostramos, na Seção 26-8, que o potencial num ponto sobre o eixo central de um disco carregado é dado por

$$V=\frac{\sigma}{2\epsilon_0}\left(\sqrt{z^2+R^2}-z\right).$$

Use a Eq. 26-34 e a simetria para mostrar que E para tal ponto é dado por

$$E = \frac{\sigma}{2\epsilon_0} \left( 1 - \frac{z}{\sqrt{R^2 + z^2}} \right).$$

**46E.** O potencial elétrico V no espaço entre as placas de um particular, e agora obsoleto, tubo de vácuo é dado por  $V=1.500~x^2$ , unde V está em volts quando x, a distância a partir de uma das placas, está em metros. Calcule o módulo, a direção e o sentido do campo elétrico em x=1.3 cm.

**47E.** O Exercício 45 do Cap. 25 trata do cálculo de Rutherford do campo elétrico la uma distância *r* do centro de um átomo e no seu interior. Rutherford também deu o potencial elétrico como

$$V = \frac{Ze}{4\pi\epsilon_0} \left( \frac{1}{r} - \frac{3}{2R} + \frac{r^2}{2R^3} \right).$$

(a) Mostre como a expressão para o campo elétrico dada no Exercício 45 do Cap. 25 pode ser obtida da expressão acima para V. (b) Por que essa expressão para V não tende para zero quando  $r \to \infty$ ?

**48P.** (a) Mostre que o potencial elétrico num ponto sobre o eixo de um anel de carga de raio R, calculado diretamente da Eq. 26-25, é

$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{\sqrt{z^2 + R^2}}.$$

(b) A partir desse resultado, deduza uma expressão para E em pontos axiais; compare seu resultado com o cálculo de E feito na Seção 24-6.

**49P.** A barra fina com carga positiva da Fig. 26-42 tem uma densidado linear de carga uniforme  $\lambda$  e se encontra ao longo de um eixo x como é mostrado. (a) Com V=0 no infinito, determine o potencial devido à barra no ponto P sobre o eixo x. (b) Use o resultado do item (a) para calcular o componente do campo elétrico em P ao longo do eixo x. (c) Use a simetria para determinar o componente do campo elétrico em P numa direção perpendicular ao eixo x.



Fig. 26-42 Problema 49.

**50P.** Na Fig. 26-43, uma barra fina com carga positiva, de comprimento L, que está ao longo do eixo x com uma extremidade na origem (x=0), tem uma densidade linear de carga dada por  $\lambda=kx$ , onde k é uma constante. (a) Fazendo V=0 no infinito, determine V no ponto P sobre o eixo y. (b) Determine o componente vertical  $E_v$  da intensidade do campo elétrico em P a partir do resultado da parte (a) e também por integração dos campos diferenciais em razão dos elementos de carga diferenciais. (c) Por que o componente horizontal  $E_v$ , do campo elétrico em P, não pode ser obtido, usando-se o resultado da parte (a)?



Fig. 26-43 Problema 50.

#### Seção 26-10 Energia Potencial Elétrica de um Sistema de Cargas Puntiformes

**51E.** (a) Deduza uma expressão para  $V_A = V_B$ , a diferença de potencial entre os pontos A e B na Fig. 26-44. (b) O resultado obtido se reduz aos valores esperados quando d = 0? Quando a = 0? Quando q = 0?

Fig. 26-44 Exercício 51.

**52E.** Duas cargas  $q = +2.0 \mu C$  estão fixas no espaço e separadas pela distância d = 2.0 cm, como mostra a Fig. 26-45. (a) Com V = 0 no infinito, qual é o potencial elétrico em C? (b) Uma terceira carga  $q = +2.0 \mu C$  é trazida do infinito até o ponto C. Quanto trabalho foi realizado? (c) Qual é a energia potencial U da configuração das três cargas quando a terceira delas está no lugar?



Fig. 26-45 Exercício 52.

53E. As cargas e as coordenadas de duas cargas puntiformes localizadas no piano xy são:  $q_1=+3.0\times 10^{-6}$ C, x=3.5 cm, y=+0.50 cm; e  $q_2=-4.0\times 10^{-6}$ C, x=-2.0 cm, y=+1.5 cm. Que trabalho deve ser realizado para colocar essas cargas nas posições dadas, começando de uma separação infinita?

**54E.** Uma década antes de Einstein ter publicado sua teoria da relatividade, J.J. Thomson sugeriu que o elétron podia ser constituído de partes pequenas e que sua massa decorria da interação elétrica entre as partes. Sugeriu também que a energia era igual a  $mc^2$ . Faça uma estimativa grosseira da massa do elétron, do seguinte modo: suponha que o elétron é composto de três partes idênticas que são trazidas do infinito e colocadas nos vértices de um triângulo equilátero, cujos lados são iguais ao *raio clássico* do elétron,  $2.82 \times 10^{-15}$  m. (a) Determine a energia potencial elétrica desse arranjo. (b) Divida por  $c^2$  e compare o seu resultado com a massa adotada para o elétron  $(9.11 \times 10^{-31} \text{ kg})$ . (O resultado melhora se mais partes forem consideradas.)

**55E.** No modelo quark das partículas fundamentais, um próton é composto de três quarks: dois quarks "up", cada um deles tendo carga de  $\pm 2e/3$ , e um quark "down", tendo carga  $\pm e/3$ . Suponha que os três quarks estejam equidistantes um do outro. Considere que a distância seja  $1,32 \times 10^{-15}$  m e calcule (a) a energia potencial do subsistema formado pelos dois quarks "up" e (b) a energia potencial elétrica total do sistema formado pelas três partículas.

**56E.** Deduza uma expressão para o trabalho necessário para formarmos a configuração das quatro cargas da Fig. 26-46, supondo que as cargas estão, de início, infinitamente afastadas.



Fig. 26-46 Exercício 56

**57E.** Qual é a energia potencial elétrica da configuração de carga da Fig. 26-9a? Use os valores numéricos do Exemplo 26-4.

**58P.** Três cargas, cada uma de + 0.12 C, são colocadas nos vértices de um triângulo equifátero de 1.7 m de lado. Fornecendo-se energia a uma taxa de 0.83 kW, quantos dias seriam necessários para se deslocar uma das cargas até o ponto médio do segmento de reta que une as outras duas cargas?

**59P.** No retângulo da Fig. 26-47, os lados têm comprimentos de 5,0 cm e 15 cm,  $q_1 = -5.0 \,\mu C$  e  $q_2 = +2.0 \,\mu C$ . Com V = 0 no infinito, quais são os potenciais elétricos (a) no vértice A e (b) no vértice B? (c) Que trabalho é necessário para mover uma terceira carga  $q_3 = +3.0 \,\mu C$  do ponto B até o ponto A ao longo da diagonal do retângulo? (d) Este trabalho aumenta ou diminui a energia elétrica do sistema das três cargas? Ele é maior, menor ou igual ao trabalho necessário para movermos  $q_3$  ao longo de uma trajetória que está (e) dentro do retângulo mas não sobre uma diagonal e (f) fora do retângulo?



Fig. 26-47 Problema 59.

**60P.** Na Fig. 26-48, que trabalho é necessário para trazer a carga de  $\pm 5q$  a partir do infinito, ao longo da linha tracejada e colocá-la, como é mostrado, próxima das duas cargas fixas  $\pm 4q$  e  $\pm 2q$ ? Considere d = 1,40 cm e  $q = 1,6 \times 10^{-19}$  C.



Fig. 26-48 Problema 60.

**61P.** Uma partícula de carga positiva Q está fixa no ponto P. Uma segunda partícula de massa m e carga negativa -q se move con velocidade escalar constante num círculo de raio  $r_1$ , centrado em P. Obtenha uma expressão para o trabalho W que deve ser realizado por um agente externo sobre a segunda partícula para aumentar o raio do círculo do movimento para  $r_2$ .

**62P.** Calcule: (a) o potencial elétrico criado pelo núcleo de um átomo de hidrogênio na distância média de circulação do elétron  $(r=5,29\times10^{-11}\,\mathrm{m})$ , (b) a energia potencial elétrica do átomo, quando o elétron está nesse raio e (c) a energia cinética do elétron, supondo que ele se mova numa órbita circular com esse raio e centrada no núcleo. (d) Quanta energia é necessária para ionizar o átomo de hidrogênio (isso é, afastar o elétron do núcleo de modo que a separação seja efetivamente infinita)? Expresse todas as energias em elétron-volts.

**63P.** Uma carga de -9.0 nC está uniformemente distribuída ao redor de um anel de raio 1.5 m que está no plano ye com seu centro na origem. Uma carga puntiforme de -6.0 pC está localizada sobre o eixo x em x