Chapter 6: The Riemann-Stieltjes Integral

Author: Meng-Gen Tsai Email: plover@gmail.com

Supplement. Another definition of Riemann-Stieltjes integral. (Exercise 7.3, 7.4 of the book T. M. Apostol, Mathematical Analysis, Second Edition.) Let P be a partition of [a,b]. The norm of a partition P is the length of the largest subinterval $[x_{i-1},x_i]$ of P and is denoted by ||P||.

We say $f \in \mathcal{R}(\alpha)$ if there exists $A \in \mathbb{R}$ having the property that for any $\varepsilon > 0$, there exists $\delta > 0$ such that for any partition P of [a,b] with norm $||P|| < \delta$ and for any choice of $t_i \in [x_{i-1},x_i]$, we have $|\sum_{i=1}^n f(t_i)\Delta\alpha_i - A| < \varepsilon$.

Claim. $f \in \mathcal{R}$ in the sense of Definition 6.2 implies that $f \in \mathcal{R}$ in the sense of this another definition.

Proof of Claim. Let $A = \int f dx$, M > 0 be one upper bound of |f| on [a, b]. Given $\varepsilon > 0$, there exists a partition $P_0 = \{a = x_0, x_1, \dots, x_{N-1}, x_N = b\}$ such that $U(P_0, f) \leq A + \frac{\varepsilon}{2}$. Let $\delta = \frac{\varepsilon}{2MN} > 0$. Then for any partition P with norm $||P|| < \delta$, write

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i = S_1 + S_2,$$

where S_1 is the sum of terms arising from those subintervals of P containing no point of P_0 , S_2 is the sum of the remaining terms. Then

$$\begin{split} S_1 &\leq U(P_0,f) < A + \frac{\varepsilon}{2}, \\ S_2 &\leq NM \|P\| < NM\delta < \frac{\varepsilon}{2}. \end{split}$$

Therefore, $U(P, f) < A + \varepsilon$. Similarly, $L(P, f) > A - \varepsilon$ whenever $||P|| < \delta'$. Hence, $|\sum_{i=1}^{n} f(t_i) \Delta x_i - A| < \varepsilon$ whenever $||P|| < \min\{\delta, \delta'\}$. (Copy Apostol's hint and ensure M > 0. M in Apostol's hint might be zero if f = 0.) \square

This supplement will be used in computing $\int_0^\infty (\frac{\sin x}{x})^2 dx = \frac{\pi}{2}$ in Exercise 8.12.

Exercise 6.1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$.

Given any partition $P = \{a = p_0, p_1, \dots, p_{n-1}, p_n = b\}$, where $a = p_0 \le p_1 \le \dots \le p_{n-1} \le p_n = b$. We might compute $L(P, f, \alpha)$ and $U(P, f, \alpha)$ by using $\varepsilon - \delta$

argument since we are hinted by the condition that α is continuous. A function which is continuous at x_0 has a nice property near x_0 and this property would help us estimate $U(P, f, \alpha)$ near x_0 . On the contrary, if both f and α are discontinuous at x_0 , it might be $f \notin \mathcal{R}(\alpha)$. Besides, if f has too many points of discontinuity (f(x) = 0) if $x \in \mathbb{Q}$ and f(x) = 1 otherwise, for example), then f might not be Riemann-integrable on [0, 1].

Claim 1. $L(P, f, \alpha) = 0$.

Proof of Claim 1. $m_i = 0$ since $\inf f(x) = 0$ on any subinterval of [a, b]. So $L(P, f, \alpha) = \sum m_i \Delta \alpha_i = 0$. Here we don't need the condition that α is continuous at x_0 . \square

Claim 2. For any $\varepsilon > 0$, there exists a partition P such that $U(P, f, \alpha) < \varepsilon$.

Proof of Claim 2. Say $x_0 \in [p_{i_0-1}, p_{i_0}]$ for some i_0 . Then

$$M_i = \sup_{p_{i-1} \le x \le p_i} f(x) = \begin{cases} 0 & \text{if } i \ne i_0, \\ 1 & \text{if } i = i_0. \end{cases}$$

So

$$U(P, f, \alpha) = \sum M_i \Delta \alpha_i = \Delta \alpha_{i_0}.$$

It is not true for any arbitrary α . (For example, α has a jump on $x=x_0$.) In fact, Exercise 6.3 shows this. Luckily, α is continuous at x_0 . So for $\varepsilon > 0$, there exists $\delta > 0$ such that $|\alpha(x) - \alpha(x_0)| < \frac{\varepsilon}{2}$ whenever $|x - x_0| < \delta$ (and $x \in [a, b]$). Now we pick a nice partition

$$P = \{a, x_0 - \delta_1, x_0 + \delta_2, b\},\$$

where $\delta_1 = \min\{\delta, x_0 - a\} \ge 0$ and $\delta_2 = \min\{\delta, b - x_0\} \ge 0$. (It is a trick about resizing " δ " to avoid considering the edge cases $x_0 = a$ or $x_0 = b$ or a = b.) Then $x_0 \in [x_0 - \delta_1, x_0 + \delta_2]$ and $\Delta \alpha$ on $[x_0 - \delta_1, x_0 + \delta_2]$ is

$$\alpha(x_0 + \delta_2) - \alpha(x_0 - \delta_1) = (\alpha(x_0 + \delta_2) - \alpha(x_0)) + (\alpha(x_0) - \alpha(x_0 - \delta_1))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, $U(P, f, \alpha) < \varepsilon$. \square

Proof (Definition 6.2). By Claim 1 and 2 and notice that $U(P, f, \alpha) \geq 0$ for any

partition P,

$$\int_{a}^{b} f d\alpha = \inf U(P, f, \alpha) = 0,$$
$$\int_{a}^{b} f d\alpha = \sup L(P, f, \alpha) = 0,$$

the inf and sup again being taken over all partitions. Hence $f \in \mathcal{R}(\alpha)$ and that $\int f d\alpha = 0$ by Definition 6.2. \square

Proof (Theorem 6.5). By Claim 1 and 2,

$$0 \le U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon.$$

Hence $f \in \mathcal{R}(\alpha)$ by Theorem 6.5. Furthermore,

$$\int f d\alpha = \int_{a}^{b} f d\alpha = \sup L(P, f, \alpha) = 0.$$

Proof (Theorem 6.10). $f \in \mathcal{R}(\alpha)$ by Theorem 6.10. Thus, by Claim 1

$$\int f d\alpha = \int_a^b f d\alpha = \sup L(P, f, \alpha) = 0.$$

Exercise 6.2. Suppose $f \ge 0$, f is continuous on [a,b], and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$. (Compare with Exercise 6.1.)

For one application, see Exercise 7.20.

Proof. (Reductio ad absurdum) If there were $p \in [a,b]$ such that f(p) > 0. Since f is continuous on [a,b], given $\varepsilon = \frac{1}{64} f(p) > 0$ there exists $\delta > 0$ such that

$$|f(x) - f(p)| \le \frac{1}{64}f(p)$$
 whenever $|x - p| \le \delta, x \in [a, b]$.

Hence

$$f(x) \ge \frac{63}{64}f(p)$$

whenever $x \in E = [\max\{a, p - \delta\}, \min\{b, p + \delta\}] \subseteq [a, b]$. Note that the length of E is |E| > 0. So

$$0 = \int_{a}^{b} f(x)dx \ge \int_{E} f(x)dx \ge \int_{E} \frac{63}{64} f(p)dx = \frac{63}{64} f(p)|E| > 0,$$

which is absurd. \square

Exercise 6.3. PLACEHOLDER

Exercise 6.4. If

$$f(x) = \begin{cases} 0 & \text{for all irrational } x, \\ 1 & \text{for all rational } x, \end{cases}$$

prove that $f \notin \mathcal{R}$ on [a,b] for any a < b.

Proof. Given any partition

$$P = \{a = p_0, p_1, \dots, p_{n-1}, p_n = b\}$$

of [a,b] where $a=p_0 \leq p_1 \leq \cdots \leq p_{n-1} \leq p_n=b$. Since a < b, we might assume that $a=p_0 < p_1 < \cdots < p_{n-1} < p_n=b$ by removing duplicated points. Since $\mathbb Q$ and $\mathbb R - \mathbb Q$ are dense in $\mathbb R$, we have

$$M_{i} = \sup_{p_{i-1} \le x \le p_{i}} f(x) = 1,$$

$$m_{i} = \inf_{p_{i-1} \le x \le p_{i}} f(x) = 0,$$

$$U(P, f) = \sum_{i=1}^{n} M_{i} \Delta x_{i} = \sum_{i=1}^{n} \Delta x_{i} = b - a,$$

$$L(P, f) = \sum_{i=1}^{n} m_{i} \Delta x_{i} = \sum_{i=1}^{n} 0 = 0.$$

Since P is arbitrary,

$$\int_{a}^{b} f dx = \inf U(P, f) = b - a > 0,$$
$$\int_{a}^{b} f dx = \sup L(P, f) = 0.$$

Hence $f \notin \mathcal{R}$ on [a,b] for any a < b. \square

Note.

- (1) $f \in \mathcal{R}$ on [a, b] iff a = b.
- (2) (Problem 4.1 in H. L. Royden, Real Analysis, 3rd edition.) Construct a sequence $\{f_n\}$ of nonnegative, Riemann integrable functions such that f_n

increases monotonically to f. What does this imply about changing the order of integration and the limiting process? (Since \mathbb{Q} is countable, write

$$\mathbb{Q} = \{r_1, r_2, \ldots\}.$$

Define

$$f_n(x) = \begin{cases} 0 & \text{if } x \notin \{r_1, \dots, r_n\} ,\\ 1 & \text{if } x \in \{r_1, \dots, r_n\} . \end{cases}$$

By construction, f_n increases monotonically to f pointwise. Note that $f_n \to f$ not uniformly. Also, $\int_a^b f_n(x) dx = 0$ by using the same argument in Theorem 6.10. Therefore, $\lim_{n \to \infty} \int_a^b f_n(x) dx = 0$ but $\int_a^b \lim_{n \to \infty} f_n(x) dx = \int_a^b f(x) dx$ does not exist.)

Exercise 6.5. PLACEHOLDER

Exercise 6.6. PLACEHOLDER

Exercise 6.7. PLACEHOLDER

Exercise 6.8. PLACEHOLDER

Exercise 6.9. PLACEHOLDER

Exercise 6.10. Let p and q be positive real integers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Prove the following statements.

(a) If $u \ge 0$ and $v \ge 0$, then

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}.$$

Equality holds if and only if $u^p = v^q$.

(b)

(c)

Proof of (a)(Young's inequality). u = 0 or v = 0 is nothing to do. For u > 0 and v > 0,

$$\begin{split} uv &= \exp(\log(uv)) \\ &= \exp\left(\frac{1}{p}\log(u^p) + \frac{1}{q}\log(v^q)\right) \\ &\leq \frac{1}{p}\exp(\log(u^p)) + \frac{1}{q}\exp(\log(v^q)) \\ &= \frac{u^p}{p} + \frac{v^q}{q}. \end{split} \tag{exp is convex}$$

Or

$$\log\left(\frac{u^p}{p} + \frac{v^q}{q}\right) \ge \frac{1}{p}\log(u^p) + \frac{1}{q}\log(v^q) \qquad (\log \text{ is concave})$$

$$= \log(u) + \log(v)$$

$$= \log(uv)$$

and notice that log increases monotonically. PLACEHOLDER $\,$

Exercise 6.11. PLACEHOLDER

Exercise 6.12. PLACEHOLDER

Exercise 6.13. PLACEHOLDER

Exercise 6.14. PLACEHOLDER

Exercise 6.15. Suppose f is a real, continuously differentiable function on [a,b], f(a) = f(b) = 0, and

$$\int_{a}^{b} f(x)^{2} dx = 1.$$

Prove that

$$\int_{a}^{b} x f(x) f'(x) dx = -\frac{1}{2}$$

and that

$$\int_{a}^{b} [f'(x)]^{2} dx \int_{a}^{b} x^{2} f(x)^{2} dx > \frac{1}{4}.$$

Proof.

(1) By Theorem 6.22 (integration by parts),

$$\int_{a}^{b} x \left(\frac{f(x)^{2}}{2}\right)' dx = \left[x \cdot \frac{f(x)^{2}}{2}\right]_{x=a}^{x=b} - \int_{a}^{b} \frac{f(x)^{2}}{2} dx,$$

or

$$\int_{a}^{b} x f(x) f'(x) dx = \left[b \cdot \frac{f(b)^{2}}{2} - a \cdot \frac{f(a)^{2}}{2} \right] - \frac{1}{2} \int_{a}^{b} f(x)^{2} dx = \frac{1}{2}.$$

(2) By Exercise 6.10(c),

$$\int_{a}^{b} [f'(x)]^{2} dx \int_{a}^{b} x^{2} f(x)^{2} dx \ge \left(\int_{a}^{b} x f(x) f'(x) dx \right)^{2} = \frac{1}{4}.$$

The equality holds iff

$$f'(x) = \lambda x f(x)$$
 or $x f(x) = \mu f'(x)$

on [a, b] for some constant $\lambda, \mu \in \mathbb{R}$.

- (a) If $\lambda = 0$, then f'(x) = 0 or f(x) is a constant. Since f is continuous and f(a) = f(b) = 0, f(x) = 0 on [a, b], contrary to $\int_a^b f(x)^2 dx = 1$.
- (b) If $\mu = 0$, then xf(x) = 0, contrary to $\int_a^b x f(x) f'(x) dx = -\frac{1}{2}$.

By (a)(b), The equality holds iff

$$f'(x) = c_1 x f(x)$$

on [a, b] for some constant $c_1 \in \mathbb{R}$.

(3) Let $g(x) = f(x) \cdot \exp\left(-\frac{c_1}{2}x^2\right)$. Since

$$g'(x) = f'(x) \cdot \exp\left(-\frac{c_1}{2}x^2\right) + f(x) \cdot (-c_1 x) \exp\left(-\frac{c_1}{2}x^2\right)$$
$$= c_1 x f(x) \cdot \exp\left(-\frac{c_1}{2}x^2\right) + f(x) \cdot (-c_1 x) \exp\left(-\frac{c_1}{2}x^2\right)$$
$$= 0$$

for all $x \in (a,b)$, $g(x) = c_2$ is a constant. Hence $f(x) = c_2 \exp\left(\frac{c_1}{2}x^2\right)$ on (a,b). Since f is continuous on [a,b], $\lim_{x\to a} f(x) = f(a)$, or $c_2 \exp\left(\frac{c_1}{2}a^2\right) = 0$, or $c_2 = 0$, or f(x) = 0 on [a,b], contrary to $\int_a^b f(x)^2 dx = 1$.

(4) Therefore, the equality does not hold, or

$$\int_{a}^{b} [f'(x)]^{2} dx \int_{a}^{b} x^{2} f(x)^{2} dx > \frac{1}{4}.$$

PLACEHOLDER

Exercise 6.16. PLACEHOLDER

Exercise 6.17. PLACEHOLDER

Exercise 6.18. PLACEHOLDER

Exercise 6.19. PLACEHOLDER