IERG 6154: Network Information Theory Homework 5

(Degraded broadcast channels and superposition coding)

Due: March 25, 2019

1. Let $X \to (Y, Z)$ be a broadcast channel. Show that the following two regions are identical.

Region I: The union over rate pairs (R_1, R_2) that satisfy

$$R_2 \le I(V; Z)$$

$$R_1 \le I(X; Y|V)$$

$$R_1 + R_2 \le I(X; Y)$$

for any $V \to X \to (Y, Z)$ is Markov.

Region II: The union over rate pairs (R_1, R_2) that satisfy

$$R_2 \le I(V; Z)$$

 $R_1 + R_2 \le I(V; Z) + I(X; Y|V)$
 $R_1 + R_2 \le I(X; Y)$

for any $V \to X \to (Y, Z)$ is Markov.

Hint: consider the corner points.

2. Let $X \to (Y, Z)$ be a broadcast channel. Complete the details of the following achievability scheme. Consider a triple (U, V, X) such that U and V are independent, and X = x(u, v) (a function of (U, V)). Generate 2^{nR_2} codewords $V^n(m_2)$ independently according to $\prod_i p(v_i)$. Independently generate 2^{nR_1} codewords $U^n(m_1)$ independently according to $\prod_i p(u_i)$. The codeword $X^n(m_1, m_2)$ is formed as $x_i(m_1, m_2) = f(u_i(m_1), v_i(m_2))$. Show that there is a decoding scheme to achieve the following rate pairs (Note that Y only needs to deode M_1 correctly.)

$$R_2 \le I(V; Z)$$

$$R_1 \le I(U; Y|V) = I(U; YV)$$

$$R_1 + R_2 \le I(UV; Y)$$

3. Let $X \to (Y, Z)$ be a broadcast channel. Show that the region obtained by taking the union of rate pairs satisfying

$$R_2 \le I(V; Z)$$

$$R_1 \le I(U; Y|V) = I(U; YV)$$

$$R_1 + R_2 \le I(UV; Y)$$

over all p(u)p(v)x(u,v) (as in Question 2 above) yields the superposition coding region (Region I) for a given broadcast channel.

Note that the codebook storage space is greatly simplified $\left(2^{nR_1} + 2^{nR_2} \text{ vs } 2^{n(R_1+R_2)}\right)$ when using the description in Question 2. This also generalizes the coding scheme for the two BSC's.

Hint: You can use the following functional representation lemma. Given p(v, x) we can always find a U independent of V such that X is a function of (U, V).

- 4. Let $X \to Y$ be a Z-channel with P(Y=0|X=0)=1, P(Y=1|X=1)=p and $X \to Z$ is another Z-channel with P(Z=0|X=0)=1, P(Z=1|X=1)=pq where $0 \le p \le 1, 0 \le q \le 1$.
 - (a) Show that one can consider $X \to (Y, Z)$ to be a stochastically degraded broadcast channel.

- (b) Show that when $\lambda q \leq 1$ then $I(X;Y) \lambda I(X;Z)$ is concave in p(x). Hence conclude that $\max_{(R_1,R_2)\in\mathcal{C}} \lambda R_2 + R_1 = I(X;Y)$.
- (c) Show that when $\lambda \geq \frac{1-pq}{q-pq}$ then $I(X;Y) \lambda I(X;Z)$ is convex in p(x). Hence conclude that $\max_{(R_1,R_2)\in\mathcal{C}} \lambda R_2 + R_1 = \lambda I(X;Z)$.
- (d) When $\frac{1}{q} < \lambda < \frac{1-pq}{q-pq}$ show that the function $f(x) = I(X;Y) \lambda I(X;Z)$ (where x = P(X=1)) is convex for $x \in [0,x_*]$ and concave when $x \in [x_*,1]$ for some $x_* \in [0,1]$.
- (e) Using above show that $\mathfrak{C}[f]$ has the following shape: (i) $\mathfrak{C}[f]$ is a line segment joining the point 0 at x = 0 to the point $f(x^{\sharp})$ at x^{\sharp} for some $x^{\sharp} \in [x_*, 1]$, (ii) $\mathfrak{C}[f](x) = f(x)$ in the segment $[x^{\sharp}, 1]$.
- (f) Hence conclude that to obtain $\max_{(R_1,R_2)\in\mathcal{C}}\lambda R_2 + R_1$ it suffices to consider $U\to X\sim Z(s)$ for some $s\in[0,1]$. (You can assume $\lambda\geq 1$.) Hence Z(s) is a Z channel as above with P(X=0|U=0)=1, P(X=1|U=1)=s. Note that I am not insisting that the distribution on U be uniform.
- 5. Three receiver less noisy broadcast channel

Consider a broadcast channel where the sender X has access to three independent messages (M_1, M_2, M_3) and he wishes to communicate these messages to receivers Y_1, Y_2, Y_3 respectively. Assume that Y_1 is less noisy than Y_2 and Y_2 is less noisy than Y_3 . Consider the region, \mathcal{R} , defined by the set of all rate-pairs satisfying

$$R_3 \le I(U_3; Y_3)$$

 $R_2 \le I(U_2; Y_2 | U_3)$
 $R_1 \le I(X; Y_1 | U_2, U_3).$

for some $(U_3, U_2) \to X \to (Y_1, Y_2, Y_3)$ forming a Markov chain.

Show the following:

- a) If $(R_1, R_2, R_3) \in \mathcal{R}$ then both $(R_1, R_2 + R_3, 0)$ and $(R_1 + R_2 + R_3, 0, 0)$ belong to \mathcal{R} .
- b) Show that using superposition coding the region \mathcal{R} is achievable.
- c) Show that for $\lambda_2, \lambda_3 \geq 0$ the function defined by

$$F_{\vec{1}}(X) := \lambda_3 I(X; Y_3) + \mathfrak{C}[\lambda_2 I(X; Y_2) - \lambda_3 I(X; Y_3) + \mathfrak{C}[I(X; Y_1) - \lambda_2 I(X; Y_2)]]$$

is sub-additive. Here $\mathfrak{C}[]$ denotes the upper concave envelope w.r.t. p(x).

- d) Hence deduce that \mathcal{R} is the capacity region for the 3-receiver less noisy broadcast channel.
- 6. Characterization of degraded, less noisy, and more capable broadcast channel

A binary input binary output channel can be characterized by two parameters $c, d \in [0, 1] \times [0, 1]$ where c = P(Y = 1|X = 0), d = P(Y = 0|X = 1). Further, w.l.o.g. we can assume that $c + d \le 1$ (otherwise just swap the output labels). Indeed we can assume a strict inequality (otherwise Y is independent of X, which is not interesting). Define new parameters (α, β) as follows:

$$\alpha = \frac{c}{1-d}, \quad \beta = \frac{d}{1-c}.$$

Consider two channels $W_1(y_1|x)$ and $W_2(y_2|x)$ parameterized by (α_1, β_1) and (α_2, β_2) respectively. Show that

- a) Y_2 is a degraded version of Y_1 if and only if $\alpha_1 \leq \alpha_2$, $\beta_1 \leq \beta_2$.
- b) Y_2 is a less noisy version of Y_1 if and only if

$$\frac{\alpha_1}{(1-\alpha_1)(1-\beta_1)} \le \frac{\alpha_2}{(1-\alpha_2)(1-\beta_2)}, \quad \frac{\beta_1}{(1-\alpha_1)(1-\beta_1)} \le \frac{\beta_2}{(1-\alpha_2)(1-\beta_2)}.$$

c) Reverting back to the c, d notation, show that Y_1 is more-capable than Y_2 if and only if

$$D(c_1||1-d_1) \ge D(c_2||1-d_2), \quad D(1-d_1||c_1) \ge D(1-d_2||c_2),$$

where D(x||y) is the two-point divergence defined by $D(x||y) = x \log_2(x/y) + (1-x) \log_2((1-x)/(1-y))$.