Automates Cellulaires 2D : Exemples de comportements asynchrones

Nazim Fatès & Lucas Gerin LORIA, Université Nancy 1

Séminaire MC2 - Mercredi 11 juin 2008

Motivations

Étude de certains Automates Cellulaires 2D à 2 états.

Informaticiens

- Classification?
- Robustesse

Probabilistes

- Processus aléatoires atypiques
- Métastabilité
- Combinatoire (pavages, points fixes,...)

Plan

Automates Cellulaires 2D
Dynamique
Convergence

Convergence rapide

Convergence lente

L'environnement

Pour $L \in \mathbb{N}$, on note Λ la grille $\{1, \ldots, L\} \times \{1, \ldots, L\}$. On note $n = L^2$ le nombre de cellules.

Une **configuration** σ est un élément de $\{0,1\}^{\Lambda}$. On l'écrit $\sigma = \{\sigma_c, c \in \Lambda\}$.

Automates Cellulaires 2D totalisants

Dans cet exposé, un automate cellulaire, c'est

- ▶ Une *règle locale* Φ : $\{0,1\}^5 \to \{0,1\}$,
- Une configuration initiale σ^0 dans $\{0,1\}^{\Lambda}$.
- ▶ Une séquence de mise à jour $(U_t)_{t\geq 0}$, chaque $U_t \subset \Lambda$.

Automates Cellulaires 2D totalisants

Dans cet exposé, un automate cellulaire, c'est

- Une règle locale $\Phi: \{0,1\}^5 \rightarrow \{0,1\}$,
- Une configuration initiale σ^0 dans $\{0,1\}^{\Lambda}$.
- ▶ Une séquence de mise à jour $(U_t)_{t\geq 0}$, chaque $U_t\subset \Lambda$.

On suppose que Φ peut s'écrire

$$\Phi(q_1,q_2,q_3,q_4,q_5)=f(q_1+q_2+q_3+q_4+q_5),$$

où $f:\{0,1,\ldots,5\} o \{0,1\}.$

2²⁵ règles locales, mais seulement 2⁶ sont totalisantes.

La dynamique : (a)synchronisme

À l'instant t, les cellules U_t sont mises à jour, selon la règle Φ :

$$\sigma_c^{t+1} = \begin{cases} f(\sigma_c^t + \sigma_{c+\vec{n}}^t + \sigma_{c-\vec{n}}^t + \sigma_{c+\vec{e}}^t + \sigma_{c-\vec{e}}^t) & \text{pour } c \text{ dans } U_t \text{ ;} \\ \sigma_c^t & \text{sinon. .} \end{cases}$$

 $U_t = \Lambda$: dynamique synchrone

 $U_t = \{\text{une cellule au hasard}\}$: dynamique totalement asynchrone

Un exemple : l'Épidémie

0	1	2	3	4	5
0	1	1	1	1	1

$$t = 0$$

Un exemple : l'Épidémie

0	1	2	3	4	5
0	1	1	1	1	1

$$t = 0$$

t = 1800

$$t = 4500$$

$$t = 8100$$

Le problème

Informaticiens

- Convergence/Non-convergence?
- ▶ En combien de temps?
- Vers quoi?

Probabilistes

- Convergence/Non-convergence?
- En combien de temps?
- Vers quoi?

Pire Temps Moyen de Convergence

Soit

$$T_f(\sigma^0) = \min\{t \ge 0; \sigma^t \text{ est un point fixe }\} \in \overline{\mathbb{N}}$$

Définition

Le Pire Temps Moyen de Convergence est le réel

$$PTMC_f = \max_{\sigma^0} \mathbb{E}[T_f(\sigma^0)]$$

Les résultats

Théorème

Parmi les 64 règles, il y a au moins 4 types de comportement :

Règle	PTMC
Collectionneur de Coupons	$\approx n \log n$
Épidémie	$\approx n^{3/2}$
Majorité	$\approx n^2$
Compteur de Parité	+∞

Les résultats

Théorème

Parmi les 64 règles, il y a au moins 4 types de comportement :

Règle	PTMC
Collectionneur de Coupons	$\approx n \log n$
Épidémie	$\approx n^{3/2}$
Majorité	$\approx n^2$
Erratique	$\approx 2^n$?
Minorité	??
Compteur de Parité	$+\infty$

Plan

Automates Cellulaires 2D
Dynamique
Convergence

Convergence rapide

Convergence lente

Retour sur la règle Épidémie

Théorème

Il existe deux constantes C_- , C_+ telles que

$$\frac{C_-}{\log n} n^{3/2} \le \mathbb{E}[T_f(\sigma^0)] \le C_+ \log n \cdot n^{3/2}.$$

Épidémie : pourquoi $n^{3/2}$?

Lorsque k cellules ont déjà été coloriées, il y a $\Theta(\sqrt{k})$ cellules susceptibles d'être mises à jour.

Il faut donc attendre de l'ordre de $\frac{n}{\sqrt{k}}$ étapes avant de colorier une nouvelle case.

Et donc

$$\mathbb{E}[T_f(\sigma^0)] \approx \sum_{k \le n} \frac{n}{\sqrt{k}} \approx n^{3/2}.$$

Épidémie : une remarque

L'automate épidémie sur \mathbb{Z}^2 tout entier est un modèle connu des probabilistes.

[Richardson 60's],[Kesten 80's]

Métathéorème (Kesten 86)

La forme asymptotique n'est pas un disque. C'est sûrement un crystal de Wulff.

Convergence rapide : la Majorité

()	1	2	3	4	5
()	0	0	1	1	1

$$t = 0$$

Convergence rapide : la Majorité

0	1	2	3	4	5
0	0	0	1	1	1

t = 900

$$t = 1800$$

$$t = 12000$$

Pour une configuration σ , on pose

$$\mathcal{I}(\sigma) = \operatorname{card}\{(c,c') \in \Lambda \mid c \sim c' \text{ et } \sigma_c = \sigma_{c'}\} \in \{0,\ldots,2n\},$$
 où $c \sim c'$ signifie que les cellules c,c' sont voisines.

Pour une configuration σ , on pose

$$\mathcal{I}(\sigma) = \operatorname{card}\{(c,c') \in \Lambda \mid c \sim c' \text{ et } \sigma_c = \sigma_{c'}\} \in \{0,\ldots,2n\},$$
 où $c \sim c'$ signifie que les cellules c,c' sont voisines.

Le processus $(\mathcal{I}(\sigma^t))_t$ est croissant. Mieux :

$$\mathbb{E}[\Delta \mathcal{I}(\sigma^t) \mid \sigma^t \text{ n'est pas un point fixe }] \geq \frac{2}{n}.$$

Le processus $(\mathcal{I}(\sigma^t))_t$ est croissant. Mieux :

$$\mathbb{E}[\Delta \mathcal{I}(\sigma^t) \mid \sigma^t \text{ n'est pas un point fixe }] \geq \frac{2}{n}.$$

Finalement,

Théorème

Pour tout choix de σ^0 ,

$$\mathbb{E}[T_f(\sigma^0)] = \mathcal{O}(n^2).$$

Plan

Automates Cellulaires 2D
Dynamique
Convergence

Convergence rapide

Convergence lente

La règle erratique

()	1	2	3	4	5
()	1	0	1	0	0

$$t = 0$$

La règle erratique

0	1	2	3	4	5
0	1	0	1	0	0

 $t = 10^{3}$

$$t = 10^5$$

$$t = 10^8$$

Et pourtant...

Il existe des points fixes, par exemple

0	1	2	3	4	5
0	1	0	1	0	0

La règle erratique : métastabilité ?

Conjecture

Pour la règle erratique,

$$PTMC_f = \Theta(2^n).$$

En s'inspirant de situations semblables, on peut imaginer que

$$\frac{T_f}{2^n} \stackrel{\text{loi}}{\to} \text{Exp.}$$

(voir [Aldous-Fill 99].)

Ce qu'il reste à faire

- Classification des 64 règles
- ► Règle Minorité [Regnault-Schabanel-Thierry]
- Comportement en moyenne
- Comprendre la métastabilité
- **.**..