Regression

EE698V - Machine Learning for Signal Processing

Vipul Arora

What if analytical solution not possible?

- This is true for most problems, e.g. neural networks
- Use iterative updates

Gradient Descent: scalar w

Gradient Descent: any dimension w

$$\omega^{(T+1)} = \omega^{(z)} - \eta \partial E$$

- We have already seen how to compute $\frac{\partial E}{\partial w}$
- τ is iteration index
- η is learning rate or step size

Sequential Learning

- When data arriving in a stream
 - matrix inversion based solutions are difficult
 - iterative solutions are best used

- Learning depends on η
 - Too small η : stuck in noisy bumps
 - Too large η : oscillates about the optimal value, or may even become unstable (explode)

Data Normalization

- If the input values vary too much, learning becomes unstable
- Good to scale to a small range (close to 0) them for better learning

$$\phi_{i}$$
 w_{ij} \Rightarrow ϕ_{i} w_{ij} by substituting w_{ij}
 $e[-100,100]$
 $e[-1,1]$
 $e[-1,1]$

Non-linear Regression

Recap: $y' = \Phi(x) W$ or $y = \Phi(x) W$

1 could be a non linear function of x

y was a linear function of w.

Consider now $yT = \sigma(\Phi(x)W_1)W_2$ σ is sigmoid

function (element-wise operation)

This is non linear in W,

$$\mathcal{J}_{j}^{T} = \mathcal{J}(\Phi(x)W_{i})W_{2}$$

$$\mathcal{J}_{j} = \sum_{i,j} \mathcal{J}(\Sigma_{i,j}^{(x)}(x))W_{i,i,j}$$

$$\mathcal{J}_{j}^{(x)} = \sum_{i,j} \mathcal{J}(\Sigma_{i,j}^{(x)}(x))W_{i,i,j}$$

can use draw it:

References

- http://www.deeplearningbook.org/contents/ml.html
 (highly recommended)
- Behera, L., & Kar, I. (2010). Intelligent Systems and control principles and applications. Oxford University Press, Inc.. Chapter 2
- PRML: Chapter 5