## **CLAIMS**

| 1. A coating thickness measuring instrument having a first mode of                  |
|-------------------------------------------------------------------------------------|
| operation in which the instruments operative to make measurements with a first      |
| resolution and a second mode of operation in which the instrument is operative to   |
| make measurements with a second resolution, the first resolution being greater than |
| the second resolution.                                                              |

- 2. The instrument of claim 1, wherein when the instrument is in the first mode, the instrument is operative to make measurements in a first range and when the instrument is in the second mode, the instrument is operative to make measurements in a second range.
- 3. The instrument of claim 1, wherein when the instrument is in the first mode, the instrument is operative to make measurements in a first range at a high resolution and when the instrument is in the second mode, the instrument is operative to make measurements in a second range at a lower resolution, the second range being longer than the first range.
- 4. The instrument of claim 1, wherein when the instrument is in the first mode, the instrument is operative to make measurements in a first range and when the instrument is in the second mode, the instrument is operative to make measurements in a second range, such that the first range and the second range overlap.
- 5. The instrument of claim 1, further including an inductive probe comprising a drive coil, and two pickup coils.
  - 6. The instrument of claim 1, further including an inductive probe comprising a drive coil and two pickup coils; and



1 2

|       | 1 |                    | a means to drive an alternating current of substantially constant       |
|-------|---|--------------------|-------------------------------------------------------------------------|
|       | 2 | amplitude in t     |                                                                         |
|       | _ | <b>upu.v</b> 1== 0 |                                                                         |
| 100 J | 1 | 7.                 | The instrument of claim 1, further including:                           |
|       | 2 | ,.                 | an inductive probe comprising a drive coil and two pickup coils; and    |
|       | 3 |                    | a means to drive an alternating current of substantially constant       |
|       | 4 | amplitude in t     |                                                                         |
|       | 5 | ampiitude iii t    | wherein the means to drive an alternating current comprises an          |
|       | 6 | oscillator and     | associated control loop circuit arranged to control the oscillator in   |
|       | 7 |                    | oon current flowing in the drive coil.                                  |
|       | , | dependence u       | bon current nowing in the drive con.                                    |
|       | 1 | 0                  | The instrument of claim 1, further including:                           |
|       | 1 | 8.                 |                                                                         |
|       | 2 |                    | an inductive probe comprising a drive coil and two pickup coils; and    |
|       | 3 |                    | a means to drive an alternating current of substantially constant       |
|       | 4 | amplitude in t     | he drive coil; and                                                      |
|       | 5 |                    | a means for varying the amplitude of alternating current flowing in the |
|       | 6 | drive coil;        |                                                                         |
|       | 7 |                    | wherein the means to drive an alternating current comprises an          |
|       | 8 | oscillator and     | associated control loop circuit arranged to control the oscillator in   |
|       | 9 | dependence u       | oon current flowing in the drive coil.                                  |
|       |   |                    |                                                                         |
|       | 1 | 9.                 | The instrument of claim 8, wherein the means for varying the            |
|       | 2 | amplitude con      | nprises a digitally controlled potentiometer.                           |
|       |   |                    |                                                                         |
|       | 1 | 10.                | The instrument of claim 1, further including:                           |
|       | 2 |                    | an inductive probe comprising a drive coil and two pickup coils; and    |
|       | 3 |                    | a means for sensing variation in coupling between the drive and pickup  |
|       | 1 | coils and cons     | verting the variation in counling to a thickness value                  |

| 500 | 1 |
|-----|---|
| Cru | 3 |
| Ü   | 5 |
|     | 6 |
|     |   |
|     | 1 |
|     | 2 |
| 7   | 2 |

11. The instrument of claim 1, further including:
an inductive probe comprising a drive coil and two pickup coils; and
a means for sensing variation in coupling between the drive and pickup
coils and converting this to a thickness value;

wherein said means for sensing comprises a differential amplifier, means for rectifying the output of the pickup coils and an analog to digital converter.

## 12. The instrument of claim 1, further including:

an inductive probe comprising a drive coil and two pickup coils; and a means for sensing variation in coupling between the drive and pickup coils and converting the variation in coupling to a thickness value, said means for sensing comprising a differential amplifier, means for rectifying the output of the pickup coils and an analog to digital converter;

wherein the means for rectifying comprises a synchronous detector controlled by a synchronizing signal derived from the means to drive an alternating current in the drive coil.

13. The instrument of claim 1, further including:
an inductive probe comprising a drive coil and two pickup coils; and
a means to modify the amplitude of current flowing in the drive coil
in dependence upon output from the pickup coils.

14. The instrument of claim 1, further including:

an inductive probe comprising a drive coil and two pickup coils; and a means to modify the amplitude of current flowing in the drive coil in dependence upon output from the pickup coils;

wherein the means to modify the amplitude comprises a control loop arranged to reduce the amplitude of current supplied to the drive coil as differential output of the pickup coils increases.

|                | 1                          | 15. The instrument of claim 1, further including:                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 2                          | an inductive probe comprising a drive coil and two pickup coils;                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | 3                          | a means to modify the amplitude of current flowing in the drive coil                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | 4                          | in dependence upon output from the pickup coils; and                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | 5                          | a switch to enable the control loop to be switched in and out of                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | 6                          | operation, in order to switch the instrument between the first and second modes;                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | 7                          | wherein the means to modify the amplitude comprises a control loop                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| æ              | 8                          | arranged to reduce the amplitude of current supplied to the drive coil as differential                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ا جا جا جا حاد | 9                          | output of the pickup coils increases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O<br>O         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 1                          | 16. The instrument of claim 1, comprising:                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ū.             | 2                          | a microprocessor; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ų              | _                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ₽              | 3                          | a memory, the memory being operative to store look-up tables for both                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | 3<br>4                     | long and short range modes of operation and the microprocessor being operative to                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ,<br>0<br>0    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| . O.wo         | 4                          | long and short range modes of operation and the microprocessor being operative to                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 4                          | long and short range modes of operation and the microprocessor being operative to                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | 4<br>5                     | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.                                                                                                                                                                                                                                                                                                                                                       |
|                | 4<br>5                     | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A doating thickness measuring instrument, comprising:                                                                                                                                                                                                                                                                                            |
|                | 4<br>5<br>1<br>2           | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A coating thickness measuring instrument, comprising: an inductive probe having a drive coil and a pickup coil;                                                                                                                                                                                                                                  |
|                | 1<br>2<br>3                | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A coating thickness measuring instrument, comprising: an inductive probe having a drive coil and a pickup coil; a means for driving an alternating current in the drive coil;                                                                                                                                                                    |
|                | 1<br>2<br>3<br>4           | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A coating thickness measuring instrument, comprising: an inductive probe having a drive coil and a pickup coil; a means for driving an alternating current in the drive coil; a means for detecting the output of the pickup coil; and                                                                                                           |
|                | 1<br>2<br>3<br>4<br>5      | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A coating thickness measuring instrument, comprising: an inductive probe having a drive coil and a pickup coil; a means for driving an alternating current in the drive coil; a means for detecting the output of the pickup coil; and a means for modifying the current in the drive coil in dependence upon                                    |
|                | 1<br>2<br>3<br>4<br>5      | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A coating thickness measuring instrument, comprising: an inductive probe having a drive coil and a pickup coil; a means for driving an alternating current in the drive coil; a means for detecting the output of the pickup coil; and a means for modifying the current in the drive coil in dependence upon                                    |
|                | 1<br>2<br>3<br>4<br>5<br>6 | long and short range modes of operation and the microprocessor being operative to generate a coating thickness value using one of the look-up tables.  17. A coating thickness measuring instrument, comprising:  an inductive probe having a drive coil and a pickup coil;  a means for driving an alternating current in the drive coil;  a means for detecting the output of the pickup coil; and  a means for modifying the current in the drive coil in dependence upon the output of the pickup coil. |

|               | 1   | 19. The instrument of claim 18, wherein the means for modifying the                       |  |
|---------------|-----|-------------------------------------------------------------------------------------------|--|
| and a         | 2   | current in the drive soil comprises a first control loop which is switchable in and out   |  |
|               | , 3 | of operation to provide two modes of operation for the instrument and wherein the         |  |
| The state of  | 4   | means for driving a current in the drive coil comprises a second control loop arranged    |  |
| U             | 5   | to maintain the amplitude of current in the drive coil at a substantially constant level. |  |
| <b>.</b>      |     |                                                                                           |  |
|               | 1   | 20. The instrument of claim 17, wherein the means for modifying the                       |  |
|               | 2   | current in the drive coil comprises a first control loop which is switchable in and out   |  |
|               | 3   | of operation to provide two modes of operation for the instrument and wherein the         |  |
| <u>o</u><br>o | 4   | means for driving comprises an amplitude controlled oscillator and the first control      |  |
|               | 5   | loop is implemented by a current to voltage rectifier, a low pass filter and an error     |  |
|               | 6   | amplifier.                                                                                |  |
|               |     |                                                                                           |  |
|               | 1   | 21. The instrument of claim 17, wherein the means for modifying is                        |  |
| I pu          | 2   | arranged to modify the input to the error amplifier and the amplitude of the current in   |  |
|               | 3   | the drive coil.                                                                           |  |
|               | ÷   |                                                                                           |  |
| g             | 1   | 22. The instrument of claim 17, wherein the means for detecting the output                |  |
|               | 2   | of the pickup coil comprises a synchronous detector.                                      |  |

