

Eletrônica Digital I

Capítulo V

Multiplex e Demultiplex

Aula O – Circuitos Multiplexadores e Demultiplexadores

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

 O circuito multiplex é utilizado para enviarmos as informações contidas em vários canais (entradas), a uma única saída. Sendo esse circuito utilizado nos sistemas celulares, transmissão PDH, SDH, e outros.

Diagrama

• Diagrama:

• MUX 2 x 1

Tabela da verdade do MUX 4x1

Variáveis de Seleção		Saída	
Α	В	S	
0	0	I _o	
0	1	l ₁	
1	0	l ₂	
1	1	l ₃	

Tabela Verdade

Circuitos Multiplex - 4x1

Circuito Lógico do Mux 4 x 1

Em VHDL:

```
library IEEE;
use IEEE.STD LOGIC 1164.all;
entity mux_4to1 is
port (
     A,B,C,D : in STD LOGIC;
     S0,S1: in STD LOGIC;
     Z: out STD LOGIC
  );
end mux 4to1;
architecture bhv of mux 4to1 is
begin
process (A,B,C,D,S0,S1) is
begin
 if (S0 ='0'and S1='0') then
 Z \le A;
 elsif (S0 ='1'and S1='0') then
 Z<= B;
 elsif (S0 ='0'and S1='1') then
 Z<= C;
 elsif (S0 ='1'and S1='1') then
 Z<= D;
 end if;
 end process;
 end bhv;
```


Circuitos Multiplex

- Exercício:
 - Monte um circuito multiplex 8x1.

 Entende -se por demultiplex como sendo o bloco que efetua a função inversa ao multiplex, ou seja, a de enviar informações contidas em um canal a vários canais de saída.

Diagrama do Demux

• Circuito Demux 1/2

Variável de Seleção	Canais de Informação (Out)		
Α	O º	O 1	
0	E	0	
1	0	E	

Circuito Lógico

Bloco Lógico

Circuito MUX e DEMUX

Circuito do Demux 1/4

Variáveis de Seleção		Canais de Saída (Out)			
Α	В	00	O ₁	O ²	O 3
0	0	E	0	0	0
0	1	0	Ε	0	0
1	0	0	0	E	0
1	1	0	0	0	E

Tabela Verdade

Circuito Lógico

Variáveis de Seleção

Bloco Lógico

Em VHDL:

```
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity demux_1to4 is
 port (
 F : in STD LOGIC;
 S0,S1: in STD LOGIC;
 A,B,C,D: out STD LOGIC
 );
end demux 1to4;
architecture bhv of demux_1to4 is
begin
process (F,S0,S1) is
begin
if (S0 = '0' and S1='0') then
A<= F;
elsif (S0 ='1'and S1='0') then
B<= F;
elsif (S0 ='0'and S1='1') then
C<= F;
elsif (S0 ='1'and S1='1') then
D<= F;
end if;
end process;
end bhv;
```


Exercício:

- Monte um circuito demultiplex 1/8.
- Monte um circuito completo MUX 4x1 e DEMUX 4/1. Teste alterando as chaves de entrada

Bons Estudos

Prof. MSc. Bruno de Oliveira Monteiro Engenheiro de Telecomunicações

