### Inteligência Artificial

Aprendizado por reforço

Profa Debora Medeiros

## Motivação

- Como um agente aprende a escolher ações apenas interagindo com o ambiente?
  - Muitas vezes, é <u>impraticável</u> o uso de <u>aprendizagem</u> <u>supervisionada ou busca</u>
    - Como obter exemplos do <u>comportamento correto</u> e representativo para qualquer situação?
    - E se o agente for atuar em um <u>ambiente desconhecido</u>?
  - Exemplos:
    - Criança adquirindo coordenação motora
    - Robô interagindo com um ambiente para atingir objetivo(s)

#### Exemplo de aprendizado por reforço





A primeira ação leva para S2 ...

Próximo estado é escolhido aleatoriamente de um dos possíveis estados, ponderado pela força da associação

Associação = largura da linha











E então S5 é escolhido aleatoriamen





Quando a meta é atingida, reforce a conexão entre ele e o estado que levou a ele

Na próxima vez que S5 for alcançado, parte da força de associação será passada para S4...





Suponha que após alguns movimentos, cheguemos novamente



S5 tem grande chance de atingir a meta pela rota com mais força

Em aprendizado por reforço, a "força" é passada de volta para o estado anterior

Esse processo leva a criar um caminho entre o início e a meta



# O que é aprendizagem por reforço (tradicional)?

- Problema de aprendizagem (não é uma técnica)
  - Um agente, em um ambiente
  - A cada instante de tempo t:
    - o agente está em um estado s
    - executa uma ação a
    - vai para um estado s'
    - recebe uma recompensa r
  - Problema da aprendizagem por reforço:
    - Como escolher uma política de ações que maximize o total de recompensas recebidas pelo agente

# O problema da aprendizagem por reforço



## Algumas aplicações

- Tesauro, 1995] Modelagem do jogo de gamão como um problema de aprendizagem por reforço:
  - Vitória: +100
  - Derrota: 100
  - Zero para os demais estados do jogo (delayed reward)
  - Após 1 milhão de partidas contra ele mesmo, joga tão bem quanto o melhor jogador humano

## Algumas aplicações

- Time Brainstormers da Robocup (entre os 3 melhores em 3 anos seguidos)
  - Objetivo: Time cujo conhecimento é obtido 100% por técnicas de aprendizagem por reforço
- Inúmeras aplicações em problemas de otimização, de controle, jogos e outros...

## Patrulha multi-agente

- Dado um mapa, um grupo de agentes deve visitar continuamente locais específicos deste mapa de maneira a minimizar o tempo que os nós ficam sem serem visitados
- Recompensa: <u>ociosidade</u> dos nós visitados
- Coordenação emergente (mesmo sem comunicação explícita)



50 n, 69 a

### Conceitos Básicos

- Processo de decisão de Markov (MDP)
  - Conjunto de estados S
  - Conjunto de ações A
  - Uma função de recompensa r(s,a)
  - Uma função de transição de estados (pode ser estocástica)  $\delta(s,a)$
- $\bullet$  Política de ações  $\pi(s)$ :

\* 
$$\pi$$
:  $\mathbf{S} \to \mathbf{A}$ 

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{r_1} s_2 \xrightarrow{a_2} \dots$$

### Estados e Ações

- Estado: conjunto de características indicando como está o ambiente
  - Formado pelas <u>percepções</u> do agente + <u>modelo</u> do mundo
  - Deve prover informação para o agente de quais ações podem ser executadas
- A representação deste estado deve ser suficiente para que o agente tome suas decisões (satisfaz a propriedade de Markov)
  - A decisão de que ação tomar não pode depender da sequência de estados anteriores
  - Ex: Um tabuleiro de dama satisfaz esta propriedade, mas de xadrez não

## A função de recompensa

- Feedback do ambiente sobre o comportamento do agente
- ♦ Indicada por r:( $S \times A$ )  $\rightarrow R$ 
  - r(s,a) indica a recompensa recebida quando se está no estado s e se executa a ação a
  - Pode ser determinística ou estocástica

## Função de transição de estados

- $\bullet \delta$ : (S × A)  $\rightarrow$  S
- $\bullet$   $\delta$ (s,a) indica em qual estado o agente está, dado que:
  - Estava no estado s
  - executou a ação a
- Ambientes não-determinísticos:
  - escrita como δ(s,a,s')
  - indica a probabilidade de ir para um estado
     s' dado que estava em s e executou a

## Exemplos de MDPs

| Problema                   | Estados                                                                                  | Ações                                                                            | Recompensas                                                             |
|----------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Agente jogador<br>de damas | Configurações<br>do tabuleiro                                                            | Mover uma<br>determinada<br>peça                                                 | #capturas -<br>#perdas                                                  |
| Agente em<br>jogo de luta  | Posições/energ<br>ia dos<br>lutadores,<br>tempo, se está<br>sendo atacado<br>ou não, etc | Mover-se em<br>uma<br>determinada<br>direção, lançar<br>magia, dar<br>golpe, etc | (Sangue tirado<br>- sangue<br>perdido)                                  |
| Agente patrulhador         | Posição no<br>mapa (atual e<br>passadas),<br>ociosidade da<br>vizinhança,<br>etc         | Ir para algum<br>lugar vizinho<br>do mapa                                        | Ociosidade<br>(tempo sem<br>visitas) do lugar<br>visitado<br>atualmente |

## Política de ações $(\pi)$

- Função que modela o comportamento do agente
  - Mapeia estados em ações
- Pode ser vista como um conjunto de regras do tipo  $s_n \rightarrow a_m$ 
  - Exemplo:
    - Se estado s = (inimigo próximo, estou perdendo e tempo acabando) então ação a = (usar magia);
       Se estado s = (outro estado) então

## Função valor dos **estados** $V\pi(s)$ (S $\rightarrow$ R)

- Como saber se um determinado estado é bom ou ruim?
  - A função valor expressa esta noção, em termos das <u>recompensas e da política</u> de ações
  - Representa a <u>recompensa</u> a receber em um <u>estado s</u>, mais as <u>recompensas futuras</u> se seguir uma política de ações  $\pi$ 
    - ex. tornar-se diretor, vale pelo que o cargo permite e permitirá nas próximas promoções (não interessa de onde veio chefe de seção)
  - $V\pi(s_0) = r_0 + r_1 + r_2 + r_3 + \dots$ 
    - Problema: se o tempo for infinito, a função valoga do estado tende a infinito

### Função Valor dos estados

 Para garantir convergência e diferenciar recompensas distantes do estado atual, usase um <u>fator de desconto</u>

$$0 \le \gamma \le 1$$

- $V\pi(s_t) = r_t + \gamma V\pi(s')$ , onde:
  - $r_t = r(s_t, \pi(s_t))$
  - $s' = \delta(s_t, \pi(s_t))$
- Ex. Se  $\gamma = 90\%$ , então:
  - $V\pi(s_t) = r_t + 0.9 r_{t+1} + 0.81 r_{t+2} + 0.729 r_{t+3} \dots$

## Função valor das **ações** $Q\pi(s,a):(S\times A)\to R$

- Analogamente, ela diz a soma das recompensas a obter dado que:
  - o agente está no estado s
  - executou uma ação a
  - a partir daí, seguiu uma política de ações π
- $\mathbf{Q}\pi(s,a) = r(s,a) + \gamma V\pi(s')$ , onde:
  - $\bullet$  s' =  $\delta$ (s,a)
    - ◆o valor da ação é a recompensa da ação mais o valor do estado para onde o agente vai devido à ação

## Aprendizagem por reforço

- Tarefa de aprendizagem por reforço:
  - Aprender uma política de ações π\* ótima, que maximiza a função Vπ (V\*) ou a função Qπ (Q\*)
    - $\pi^* = \operatorname{argmax}_{\pi}[V\pi(s)]$
- Em outras palavras, de que maneira o agente deve agir para maximizar as suas recompensas futuras

## Exemplo: Labirinto

 $(c/\gamma=0.9)$ 

Função recompensa



Função V\*



Função Q\*



Uma política de ações ótima



## Aprendendo uma política ótima

- \* Se o ambiente é determinístico  $(\delta(s,a) = s'$  é conhecida) e r(s,a) é conhecida, a programação dinâmica computa uma política ótima :
  - $V^*(s) = \max_a [r(s,a) + \gamma V^*(\delta(s,a))]$
  - $\pi^*(s) = \operatorname{argmax}_a[r(s,a) + \gamma V^*(\delta(s,a))]$
  - Tempo polinomial
  - Problema: se não temos conhecimento prévio das recompensas e transição de estados
- lacktriangle Se o ambiente é não-determinístico mas a função de probabilidade de transição de estados for conhecida, também é possível computar  $\pi^*$ 
  - problema: É difícil estimar estas probabilidades

## Q Learning

- ♦É possível determinar π\* se eu conheço Q\*
  - não precisando conhecer δ (função de transição de estados) nem r
  - $\pi^*(s) = \operatorname{argmax}_a[Q(s,a)]$ 
    - não é função de δ nem de r
- Então, vamos aprender a função Q ótima (valor das ações) sem considerar V
  - $Q(s_t, a_t) = r(s_t, a_t) + \gamma V^*(\delta(s_t, a_t))$ =  $r(s_t, a_t) + \gamma \max_{a'} [Q(s_{t+1}, a')]$ 
    - o valor do próximo estado é o melhor Q nele
    - Como atualizar Q ?

### Q-Learning

Atualiza-se Q(s<sub>t</sub>) após observar o estado s<sub>t+1</sub> e recompensa recebida



$$ightharpoonup Q(s_1, a_{right}) = r + \gamma max_a, Q(s_2, a')$$
  
= 0 + 0.9 max{63,81,100}  
= 90

## Algoritmo Q-Learning para mundos determinísticos

- Para todo estado s e ação a, inicialize a tabela Q[s][a] = 0;
  Usufruir de
- Para sempre, faça:
  - Observe o estado atual s;
  - Escolha uma ação a e execute/
  - Observe o próximo estado s' e recompensa
  - Atualize a tabela Q:
    - $Q[s][a] = r + \gamma \max_{a'} (Q[s'][a'])$

valores

conhecidos ou

explorar valores

não computados?

- 6 estados, máximo 6 ações possíveis por estado (ação descrita pelo novo estado)
- R inicial:



- 6 estados, máximo 6 ações possíveis por estado (ação descrita pelo novo estado)
- Q inicial:

Selecionando aleatoriamente estado 1 como inicial e a ação que leva ao estado 5

$$Q(1, 5) = R(1, 5) + 0.8 * Max[Q(5, 1), Q(5, 4)]$$
  
= 100 + 0.8 \* 0  
= 100

O próximo estado seria o 5, porém ele é final, então, o processo deve continuar a partir de um novo estado inicial

Selecionando aleatoriamente 3 como estado inicial e a ação que leva ao estado 2

$$Q(3, 1) = R(3, 1) + 0.8 * Max[Q(1, 3), Q(1, 5)]$$
  
= 0 + 0.8 \* Max(0, 100)  
= 80

# Dilema de explorar ou usufruir (exploration x exploitation)

#### Usufruir

 Escolher a ação que atualmente está com maior valor Q(s,a)

#### Explorar

 Escolher uma ação randômica, para que seu valor Q(s,a) seja atualizado

#### Dilema

- Dado que eu aprendi que Q(s,a) vale 100, vale a pena tentar executar a ação a' se Q(s,a') por enquanto vale 20 ?
  - Depende do ambiente, da quantidade de ações já tomadas e da quantidade de ações restantes

# Métodos para balancear exploration e exploration

- E-Greedy
  - A cada iteração, escolhe uma ação exploratória(randômica) com probabilidade E

### Semi-MDP

- Como o agente pode levar em conta o tempo de suas ações?
  - Ex. no jogo de luta: É melhor dar vários socos fracos ou um soco forte?
    - Soco forte provavelmente traria maior recompensa
    - Demoraria mais tempo para ser executado
  - No problema da patrulha: como levar em conta o a distância entre os nós?

### Semi-MDP

- O formalismo SMDP engloba este conceito
- Prova-se que a atualização de Q passa a ser dada por:
  - $Q[s][a] = r + \gamma^t \max_{a'} (Q[s'][a'])$
  - Onde t pode ser:
    - número de unidades de tempo que o agente executou a ação (caso discreto)
    - alguma função contínua do tempo
  - Desta maneira, as recompensas futuras passam a valer menos se o agente passar muito tempo executando uma ação

# Aprendizagem por reforço multi-agente - Cooperação

- Abordagens usando RL tradicional:
  - White box agent
    - Representação de estado global
    - Encontra a ação conjunta (a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>) que maximiza uma função de reforço global (única)
    - Problemas
      - Complexidade exponencial no número de agentes
      - Como aprender as ações de maneira distribuída ?
  - Black box agent
    - O reforço é individual, mas é alguma função do bem estar global
    - O agente n\u00e3o toma conhecimento dos outros agentes
      - Outros agentes passam a ser ruído no ambiente 53

### Referências

- Slides de Hugo Pimentel de Santana (CIN/UFPE)
- Lecture slides do livro Machine Learning, do Tom Mitchell
  - http://www-2.cs.cmu.edu/~tom/mlbook-chapt er-slides.html
- Livro "Reinforcement Learning: An introduction", de Sutton & Barto disponível online
  - http://envy.cs.umass.edu/~rich/book/the-book.html