Math 432

Exam 2

November 8, 2011

Key

- 1. Mark each of the following statements as "True" or "False". Justify any "False" answers with either a counterexample or result from the text.
 - a. Let $G = \langle a \rangle$ be a cyclic group of order n. If r divides n, then G has a subgroup of order r.

True

b. Every abelian group is cyclic.

False, the Klein 4 group is abelian but not cyclic.

c. Every cyclic group is abelian.

True

d. The relation of being isomorphic is an equivalence relation on a collection of groups.

True

e. If a is an element of order m in a group G, and $a^k = e$, then m divides k. True

- 2.
 - a. Suppose $G = \langle a \rangle$ is a cyclic group of order 30. List all the generators of

$$a, a^7, a^{11}, a^{13}, a^{17}, a^{19}, a^{23}, a^{29}$$

- b. Recall U_{11} denotes the set of all invertible elements of \mathbb{Z}_{11} . U_{11} is a cyclic group with respect to multiplication. Given that 2 is a generator of U_{11} , find all other generators of U_{11} . $2^3, 2^7, 2^9$
- c. List the distinct subgroups of \mathbb{Z}_{35} under addition.
 - $<[1]>=\mathbb{Z}_{35}$
 - $\begin{array}{l} <[5] > = [0], [5], [10], [15], [20], [25], [30] \} \\ <[7] > = [0], [7], [14], [21], [28] \} \\ <[0] > = [0] \} \end{array}$
- d. Let G=< a> be a cyclic group of order 96. Find the order of a^{24} . The order of $a^{24}=96/(24,96)=96/24=4$

- 3. Let f = (1,7,2,5,4)(1,4,2,3)(1,5,4,6,3,2).
 - a. Express f as a product of disjoint cycles. (1,4,6,7,2)
 - b. Compute f^2 and f^{-1} . $f^2 = (1, 6, 2, 4, 7)$ $f^{-1} = (2, 7, 6, 4, 1)$
 - c. Determine the order of f. f has order 5
 - d. Is f even or odd? Justify your answer. f = (1,2)(1,7)(1,6)(1,4), so f is even since it can be written as a product of an even number of transpositions.

4. Let G and G' be groups and H be a subgroup of G. Prove that if there exists an isomorphism from G to G', then $\phi(H) = \{x \in G' | x = \phi(h) \text{ for some } h \in H\}$ is a subgroup of G'.

Since H is a subgroup of G, e, the identity in G is in H. Since ϕ is an isomorphism from G to G', $\phi(e) = e'$ where e' is the identity in G', so $\phi(e) \in \phi(H)$, thus $\phi(H)$ is nonempty.

Let $x, y \in \phi(H)$, then there exist elements $h_1, h_2 \in H$, such that $\phi(h_1) = x, \phi(h_2) = y$. Now since H is a group, $h_1h_2 \in H$ and thus $\phi(h_1h_2) \in \phi(H)$. Now since ϕ is an isomorphism from G to G', $\phi(h_1h_2) = \phi(h_1)\phi(h_2) = xy$, so $xy = \phi(h_1h_2) \in \phi(H)$. Thus $\phi(H)$ is closed.

Now since $x = \phi(h_1) \in \phi(H)$, we must show $x^{-1} \in \phi(H)$. $x^{-1} = [\phi(h_1)]^{-1} = \phi(h_1^{-1}) \in \phi(H)$, since $h_1 \in H$, H a group implies $h_1^{-1} \in H$.

5. If G and H are finite groups and $\phi: G -> H$ is an isomorphism, prove that a and $\phi(a)$ have the same order, for any $a \in G$.

Let H and G be groups. Let $a \in G$ have order n, and ϕ be an isomorphism from G to H. We will prove by induction that $\phi(a^n) = \phi(a)^n$ for every natural number n. When n = 1, the statement is clearly true.

Assume that for some natural number k, $\phi(a^k) = \phi(a)^k$.

Now $\phi(a^{k+1}) = \phi(a^k a) = \phi(a^k)\phi(a) = \phi(a)^k \phi(a) = \phi(a)^{k+1}$.

We will show that $\phi(a)$ has order n. Assume to the contrary, that there exists some natural number j, j < n such that $\phi(a)^j = e'$, where e' is the identity in H, Then $\phi(a^j) = e' = \phi(e)$ which implies $a^j = e$, since ϕ is one to one. This contradicts the fact that the order of a is n.

6. Prove that U_5 is isomorphic to U_{10} but not U_{12} . (You must come up with a mapping and prove it is an isomorphism, just drawing group tables does not constitute a proof. $U_5=<2>,\,U_{10}=<3>.$ We will show $\phi:U_5->U_{10}$ defined by $\phi(2^n) = 3^n$ is an isomorphism.

Let $3^j \in U_{10}, j \in \mathbb{Z}$. The preimage of 3^j under ϕ is 2^j . Thus ϕ is onto. Suppose $\phi(2^j) = \phi(2^k)$, for some $j, k \in \mathbb{Z}$. Then $3^j = 3^k$ and $j \equiv k \mod 4$. Thus $2^j = 2^k$. Hence ϕ is one to one.

Let $2^j, 2^k \in U_5$. $\phi(2^j 2^k) = \phi(2^{j+k} = 3^{j+k} = 3^j 3^k = \phi(2^j)\phi(2^k)$. Thus ϕ is operation preserving.

Thus ϕ is an isomorphism.

 $U_{12} = \{1, 5, 7, 11\}$ is not cyclic, so it is not isomorphic to U_5 .

7. Show that the mapping ϕ from the additive group \mathbb{Z}_{12} to the additive group \mathbb{Z}_{12} defined by $\phi([x]) = [3x]$ is a homomorphism and find $\ker \phi$. Let $x, y \in \mathbb{Z}_{12}$, $\phi(x+y) = [3(x+y)] = [3x+3y] = [3x] + [3y] = \phi(x) + \phi(y)$, so ϕ

is a homomorphism.

$$ker\phi = \{0,4,8\}$$