線形写像の像と列空間

ベクトル $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ の張る空間の記号を用いると、ベクトルの張る空間と $\operatorname{Im} A$ に関する考察は次のようにまとめられる。

$$\operatorname{Im} A = \langle \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n \rangle$$

つまり、A の列ベクトルが張る空間が $\operatorname{Im} A$ である。 このことから、 $\operatorname{Im} A$ を A の列空間と呼ぶこともある。

ref: 行列と行列式の基 礎 p96~97、ref: プロ グラミングのための線形 代数 p135

☎ 証明

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n)$ とするとき、 $\boldsymbol{v} \in \mathbb{R}^n$ に対して、

$$f(\boldsymbol{v}) = A\boldsymbol{v} = v_1\boldsymbol{a}_1 + v_2\boldsymbol{a}_2 + \cdots + v_n\boldsymbol{a}_n$$

なので、

 $\boldsymbol{u}\in\operatorname{Im}f$

 $\iff \exists \boldsymbol{v} \in \mathbb{R}^n \text{ s.t. } \boldsymbol{u} = f(\boldsymbol{v})$

 $\iff \exists v_1, \ldots, v_n \in \mathbb{R} \text{ s.t. } \boldsymbol{u} = v_1 \boldsymbol{a}_1 + \cdots + v_n \boldsymbol{a}_n$

 $\iff \boldsymbol{u} \in \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n \rangle$

したがって、

$$\operatorname{Im} f = \operatorname{Im} A = \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n \rangle$$

が成り立つ。

 $\boldsymbol{u} \in \operatorname{Im} f \iff \exists \boldsymbol{v} \in \mathbb{R}^n \ s.t. \ \boldsymbol{u} = f(\boldsymbol{v})$

という変形に着目すると、この定理は次のように線型方程式の文脈で言い 換えられる。

riangle 線形写像の像空間と方程式の解の存在 $extbf{b} \in \mathbb{R}^m$ に対して

 $\boldsymbol{b} \in \operatorname{Im} A \iff$ 方程式 $A\boldsymbol{x} = \boldsymbol{b}$ が解を持つ

 $oldsymbol{b} \in \mathbb{R}^m$ が $\operatorname{Im} A$ に属するかどうかを調べるためには階数による判定条件が使える。

線形写像の像空間の基底

線形写像の像空間は表現行列の列ベクトルによって張られるが、列ベクトルの集合は一般には線型独立ではない。

ref: 行列と行列式の基 礎 p96~97

像空間の基底を得るためには、列ベクトルの部分集合を考えるのが自然で ある。

・ 主列ベクトルによる像空間の基底の構成 行列 A の主列ベクトルの集合は Im A の基底である。

「Todo 1: ref: 行列と行列式の基礎 p97 定理 3.1.10]

Zebra Notes

Туре	Number
todo	1