#### Mathematik 2

Kapitel 4

# Höhere Integralrechnung

Ulrich H. Becker

Frankfurt University of Applied Sciences

SS 2024



- ► Bisher bei gewöhnlicher Integration: Intervall [a,b].
  - Automatisch entlang der Koordinatenachse.
- ► In höheren Dimensionen muss das Integrationsgebiet nicht mehr durch Parallelen zu den Koordinatenachsen begrenzt sein!

► Es folgen Beispiele ...

U.H. Becker FRA-UAS: Mathematik 2 SS24 2/13



Parabolfläche wie bisher, aber auf geschwungenem Gebiet.

U.H. Becker FRA-UAS: Mathematik 2 SS24 3/13





"Hut"-Fläche wie bisher, aber auf gerundetem Gebiet.

U.H. Becker FRA-UAS: Mathematik 2 SS24 4/13

- Man kann wieder mit Ober- und Untersummen arbeiten.
- ▶ D.h. im Fall  $f: \mathbb{R}^2 \to \mathbb{R}$ : Säulen unter der Fläche.
- ▶ Volumen einer Säule: dV = f(x,y) dA = f(x,y) dx dy





U.H. Becker FRA-UAS: Mathematik 2 SS24 5/13

► Berandung der Fläche sei gegeben durch Funktionen  $y_0(x)$  und  $y_1(x)$  ("oben" und "unten").





U.H. Becker FRA-UAS: Mathematik 2 SS24 6/13

# Mehrfachintegrale: 1.Integrationsschritt

- ▶ Bei einem festen x, summiere alle Säulen in y-Richtung.
- ► Summe geht von  $y_u(x)$  bis  $y_o(x)$
- ▶ Das Volumen einer (infinitesimalen) Scheibe folgt aus dem Limes  $h_v \rightarrow 0$ ,  $n_v \rightarrow \infty$  als Integral



# Mehrfachintegrale: 2.Integrationsschritt

▶ Jetzt summiert man die Volumina der Scheiben der Breite  $h_x$  auf, von  $x_{min}$  bis  $x_{max}$ . Dann bildet den Limes  $h_x \rightarrow 0$ ,  $n_x \rightarrow \infty$  und erhält so das Integral:

$$V = \int_{x_{\min}}^{x_{\max}} dV_{\text{Scheibe}} = \int_{x_{\min}}^{x_{\max}} \left( \int_{y_u(x)}^{y_o(x)} f(x, y) dy \right) dx$$



Eine Scheibe der Breite  $h_x$  farblich hervorgehoben. Insges. gibt es  $n_x$  Scheiben, die sich aber in der Ausdehnung in y-Richtung unterscheiden können.

U.H. Becker FRA-UAS: Mathematik 2 SS24 8/13

► Zusammen:

$$V = \int_{x_{\min}}^{x_{\max}} \left( \int_{y_u(x)}^{y_o(x)} f(x, y) dy \right) dx$$

inneres Integral

äußeres Integral

► Integrieren "von innen nach außen".

$$V = \int_{x_{\min}}^{x_{\max}} \int_{y_u(x)}^{y_o(x)} f(x, y) dy dx$$

► Dementsprechend Reihenfolge von Integrationsgrenzen und Differentialen.

U.H. Becker FRA-UAS: Mathematik 2 SS24 9/13

- ▶ Die erste Schwierigkeit bei Mehrfachintegralen besteht darin, sich die Integrationsgrenzen als Funktion der anderen Variablen zu verschaffen.
- ▶ Diese müssen die gewünschte Geometrie exakt (oder eben hinreichend genau) erfassen.
  - "Funktionen basteln."
  - ▶ Und dafür gibt es keine festen Regeln ...

▶ Beispiele

U.H. Becker FRA-UAS: Mathematik 2 SS24 10/13

► kartesische Koordinaten 3D: dV = dx dy dz



▶ Beispiele

U.H. Becker FRA-UAS: Mathematik 2 SS24 11/13

#### Massenermittlung

- $\triangleright$  Gegeben eine Dichte  $\rho(x,y,z)$  oder  $\rho(r,\phi,z)$ .
- Dann ist die Masse M in einem Volumen V gegeben durch:

$$M = \int_{V} \rho \, dV$$

U.H. Becker FRA-UAS: Mathematik 2 SS24 12/13

► Polarkoordinaten 2D:  $dA = r d\phi dr$ 





- ► Zylinderkoordinaten 3D:  $dV = r d\phi dr dz$
- ▶ Beispiele

U.H. Becker FRA-UAS: Mathematik 2 SS24 13/13