Текстовые диффузионные модели

План

- Недостатки авторегрессионных моделей
- Диффузионные модели: напоминание
- Текстовые диффузионные модели:
 - Дискретные
 - Непрерывные

Авторегрессионные модели

Генерируют по одному токену

Я предсказываю следующий ___

Недостатки:

- Нельзя исправлять уже сгенерированные токены
- Модель не может думать на несколько токенов вперед
- Необходимо выбирать метод семплирования

Изначально диффузионные модели были созданы для генерации изображений

Идея: Будем постепенно добавлять шум к объекту в процессе прямой диффузии Обучим модель восстанавливать исходное изображение из зашумленного

$$q(x_t | x_{t-1}) = \mathcal{N}(x_t | \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)I)$$

$$\alpha_t \in [0, 1]$$

$$q(x_t | x_{t-1}) = \mathcal{N}(x_t | \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)I)$$

$$\mathbf{q}(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t | \sqrt{\bar{\alpha}_t} \mathbf{x}_{t-1}, (1 - \bar{\alpha}_t)I)$$

$$\alpha_t \in [0, 1]$$

$$\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$$

$$q(x_t | x_{t-1}) = \mathcal{N}(x_t | \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)I)$$

$$\underline{q}(x_t | x_0) = \mathcal{N}(x_t | \sqrt{\bar{\alpha}_t} x_{t-1}, (1 - \bar{\alpha}_t)I)$$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0) = \mathcal{N}(x_{t-1} | \tilde{\mu}_t(x_t, x_0), \tilde{\beta}_t I)$$

$$\alpha_t \in [0, 1]$$

$$\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$$

$$q(x_t | x_{t-1}) = \mathcal{N}(x_t | \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)I)$$

$$\underline{q}(x_t | x_0) = \mathcal{N}(x_t | \sqrt{\bar{\alpha}_t} x_{t-1}, (1 - \bar{\alpha}_t)I)$$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0) = \mathcal{N}(x_{t-1} | \tilde{\mu}_t(x_t, x_0), \tilde{\beta}_t I)$$

$$\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$$

 $\alpha_t \in [0, 1]$

$$\tilde{\beta}_t = \frac{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \qquad \tilde{\mu}_t(x_t, x_0) = \frac{1}{\bar{\alpha}_t} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \varepsilon_t \right)$$

Обучение и генерация

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: return x_0

Можно также предсказывать $\tilde{\mu}_t$ или x_0

Однако для изображений предсказание ε_t работает лучше

Почему ДМ сложно применять для текста?

Тексты дискретны по своей природе

Не понятно, как можно добавлять к ним шум

Почему ДМ сложно применять для текста?

Тексты дискретны по своей природе

Не понятно, как можно добавлять к ним шум

Два направления:

- Дискретная диффузия уничтожение информации путем замены одних токенов другими
- Непрерывная диффузия отображение текста в непрерывное пространство и осуществление диффузии уже в нем

Дискретная диффузия

Дискретная диффузия

Идея: Введем стохастическую матрицу Q_t , которая задает вероятности изменения токенов

$$Q_t[i,j] = p(x_t = j | x_{t-1} = i)$$

В процессе зашумления будем семплировать объекты из категориального распределения

$$q(x_t | x_{t-1}) = \text{Cat}(x_t | p = x_{t-1}Q_t)$$

 X_t – one-hot вектор

Примеры Q_t

Uniform: интерполяция между вырожденным распределением и равномерным

$$Q_{t} = (1 - \beta_{t}) \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} + \frac{\beta_{t}}{|V|} \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & & \vdots \\ \vdots & & \ddots & 1 \\ 1 & \dots & 1 & 1 \end{pmatrix}$$

```
T=0 The great brown fox hopped over the lazy dog. 

T=10 The vast black fox hopping over the lazy cat. 

T=20 Their vast tripped this jumping upon walked organizations. 

T=25 Bunk scamper tripped this Sanchez walked organizations.
```

Примеры Q_t

Absorbing: Все токены превращаются в токены [MASK]

$$Q_{t}[i,j] = \begin{cases} 1, & i = j = m \\ 1 - \beta_{t}, & i = j \neq m \\ \beta_{t}, & i \neq m, j = m \end{cases}$$

```
T = 0     The great brown fox hopped over the lazy dog.
T = 10     The great [MASK] fox hopped over [MASK] lazy dog.
T = 20     The [MASK] [MASK] [MASK] ship over [MASK] lazy the.
T = 25     [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]
```

Обучение дискретной диффузии

Для получения функции ошибки, нам нужно максимизировать правдоподобие $p(x_{t-1} | x_t, x_0)$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0)$$

Обучение дискретной диффузии

Для получения функции ошибки, нам нужно максимизировать правдоподобие $p(x_{t-1} | x_t, x_0)$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0)$$

или максимизировать нижнюю вариационную оценку (VLB), что то же самое

$$\log p_{\theta}(x_0) = \log \int q(x_{1:T}|x_0) \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} dx_{1:T} \ge \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log p_{\theta}(x_{0:T}) - \log q(x_{1:T}|x_0) \right]$$

Обучение дискретной диффузии

Для получения функции ошибки, нам нужно максимизировать правдоподобие $p(x_{t-1} | x_t, x_0)$

$$p(x_{t-1} | x_t, x_0) \propto q(x_t | x_{t-1}) q(x_{t-1} | x_0)$$

или максимизировать нижнюю вариационную оценку (VLB), что то же самое

$$\log p_{\theta}(x_0) = \log \left[q(x_{1:T}|x_0) \frac{p_{\theta}(x_{0:T})}{q(x_{1:T}|x_0)} dx_{1:T} \ge \mathbb{E}_{q(x_{1:T}|x_0)} \left[\log p_{\theta}(x_{0:T}) - \log q(x_{1:T}|x_0) \right] \right]$$

Однако на практике чаще всего используют обычную кросс-энтропию

$$L_{\theta} = -\mathbb{E}_{q(x_t|x_0)} \left[\log p_{\theta} \left(x_0 \mid x_t \right) \right]$$

Пусть $\mathcal{N}(x)$ – окрестность x, $\mathcal{N}(x) = \{x_{n_1}, ..., x_{n_k}\}$

Тогда concrete score задается как

$$c_p(x; \mathcal{N}) = \left[\frac{p(x_{n_1})}{p(x)}, \dots, \frac{p(x_{n_k})}{p(x)}\right] - 1$$

Пусть $\mathcal{N}(x)$ – окрестность x, $\mathcal{N}(x) = \{x_{n_1}, \dots, x_{n_k}\}$

Тогда concrete score задается как

$$c_p(x; \mathcal{N}) = \left[\frac{p(x_{n_1})}{p(x)}, \dots, \frac{p(x_{n_k})}{p(x)}\right] - 1$$

Утверждение: Для любого $x\in\mathbb{R}^d$ и $\delta>0$ пусть $\mathcal{N}_\delta=\{x+\delta\mathbf{e}_i\}_{i=1}^d$. Тогда

$$\lim_{\delta \to 0} \frac{c_p(x; \mathcal{N}_{\delta})}{\delta} = \nabla_x \log p(x)$$

Доказательство:

$$\lim_{\delta \to 0} \left\{ \frac{p(x + \delta \mathbf{e}_i) - p(x)}{\delta \cdot p(x)} \right\}_{i=1}^d = \frac{1}{p(x)} \nabla_x p(x)$$

Оказывается, гораздо лучше научиться предсказывать concrete score

$$s_{\theta}(x,t) \approx \left[\frac{p_t(y)}{p_t(x)}\right]_{x \neq y}$$

Для обучения можно взять MSE

$$L_{\text{CSM}} = \frac{1}{2} \underset{x_t \sim p(. \mid x_0)}{\mathbb{E}} \left[\sum_{y \neq x}^{|V|} \left(s_{\theta}(x_t, t)_y - \frac{p_t(y \mid x_0)}{p_t(x \mid x_0)} \right)^2 \right]$$

Size	Model	LAMBADA	WikiText2	PTB	WikiText103	1 BW
Small	GPT-2	45.04	42.43	138.43	41.60	75.20
	SEDD Absorb	≤50.92	\leq 41.84	≤114.24	\leq 40.62	\leq 79.29
	SEDD Uniform	≤65.40	\leq 50.27	\leq 140.12	≤ 49.60	≤ 101.37
	D3PM	≤93.47	\leq 77.28	\leq 200.82	≤75.16	≤ 138.92
	PLAID	≤57.28	\leq 51.80	\leq 142.60	≤50.86	\leq 91.12
Medium	GPT-2	35.66	31.80	123.14	31.39	55.72
	SEDD Absorb	≤42.77	≤ 31.04	≤87.12	≤29.98	≤61.19
	SEDD Uniform	≤51.28	≤ 38.93	≤ 102.28	≤36.81	\leq 79.12

Перплексия (1) для безусловной генерации на наборе датасетов

- 1. Переводим токены в эмбеддинги
- 2. Выполняем диффузию в пространстве эмбеддингов
- 3. Округляем сгенерированные эмбеддинги до ближайших токенов

$$\underbrace{ \begin{array}{c} \text{Denoising} \\ \textbf{X}_T \end{array} }^{\text{Denoising}} \underbrace{ \begin{array}{c} \textbf{Rounding} \\ \textbf{P}_{\theta}(\textbf{x}_{t-1} \mid \textbf{x}_t) \\ \textbf{Q}(\textbf{x}_t \mid \textbf{x}_{t-1}) \\ \textbf{Noising} \end{array} }^{\textbf{Rounding}} \underbrace{ \begin{array}{c} \textbf{Text} \\ \textbf{P}_{\theta}(\textbf{w} \mid \textbf{x}_0) \\ \textbf{Q}_{\phi}(\textbf{x}_0 \mid \textbf{w}) \\ \textbf{W} \\ \textbf{Text} \\ \textbf{Q}_{\phi}(\textbf{x}_0 \mid \textbf{w}) \\ \textbf{Soising} \\ \textbf{Embedding}$$

$$\mathbf{x}_{0} = \text{Emb}(\mathbf{w})$$

$$\mathbf{x}_{t} = \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \varepsilon_{t}$$

$$L_{\text{simple}}(\mathbf{x}_{0}) = \sum_{t=1}^{T} \mathbb{E}_{\mathbf{x}_{t}} ||f_{\theta}(\mathbf{x}_{t}, t) - \mathbf{x}_{0}||^{2}$$

$$\mathbf{x}_0 = \mathrm{Emb}(\mathbf{w}) \qquad \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon_t$$

$$L_{\mathrm{simple}}(\mathbf{x}_0) = \sum_{t=1}^T \mathbb{E}_{\mathbf{x}_t} \|f_{\theta}(\mathbf{x}_t, t) - \mathbf{x}_0\|^2$$

$$L_{\mathrm{simple}}^{\mathrm{e2e}}(\mathbf{w}) = \mathbb{E}_{q_{\phi}(\mathbf{x}_{0:T} \mid \mathbf{w})} \left[L_{\mathrm{simple}}(\mathbf{x}_0) - \log p_{\theta}(\mathbf{w} \mid \mathbf{x}_0 + \sigma \varepsilon) \right]$$
 Предотвращает схлопывание эмбеддингов

Параметризация модели

Оказывается, текстовую диффузию лучше обучать на предсказание \mathbf{X}_0 вместо ε

Текстовой диффузии нужно больше шума

Так как эмбеддинги имеют огромную размерность, нужно добавить много шума, чтобы их стало сложно различать

Self-conditioning

Идея: позволим модели обуславливаться на свои собственные предсказания

(a) Standard reverse diffusion steps.

$$\tilde{x}_0^t = f_{\theta}(x_t, t)$$

(b) Self-Conditioning on the previous x_0 estimate.

$$\tilde{x}_0^t = f_\theta(x_t, t, \tilde{x}_0^{t+\Delta})$$

Self-conditioning

Идея: позволим модели обуславливаться на свои собственные предсказания

(a) Standard reverse diffusion steps.

$$\tilde{x}_0^t = f_{\theta}(x_t, t)$$

Модификация процесса обучения:

(b) Self-Conditioning on the previous x_0 estimate.

$$\tilde{x}_0^t = f_\theta(x_t, t, \tilde{x}_0^{t+\Delta})$$

Self-conditioning

Многие работы экспериментально подтверждают успешность self-conditioning Однако, объяснений, почему он работает почти нет

Self-conditioning повышает уверенность модели

Эксперимент:

Предскажем $\tilde{\mathbf{X}}_0^t$ несколько раз из одного \mathbf{X}_t , меняя только условие

```
pred_x_0 = 0
for i in range(K):
    pred_x_0 = model(x_t, t, pred_x_0)
```

Измерим магнитуду предсказаний

Оказывается, магнитуда растет

Self-conditioning меняет динамику генерации

- Мы хотим, чтобы траектория генерации была как можно ближе к траектории прямого процесса
- Увеличивая количество шагов, мы увеличиваем магнитуду предсказаний => Несоответствие между self-conditioning на обучении и генерации
- Из этого графика следует, что оптимально делать 50 шагов генерации

Self-conditioning меняет динамику генерации

Лучше сделать меньше шагов с selfconditioning, чем больше без него

Альтернативные пространства X₀

Текстовая диффузия работает заметно хуже картиночной, хотя отличается от нее только пространством

=> Вид пространства очень важен и его надо выбирать лучше

Альтернативные пространства X₀

Текстовая диффузия работает заметно хуже картиночной, хотя отличается от нее только пространством => Вид пространства очень важен и его надо выбирать лучше

Варианты пространств диффузии:

- Латентное пространство
- Пространство выходов языковой модели
- Симплекс

Латентное пространство

Сжимать текст в пространство малой размерности очень сложно из-за огромной мультимодальности

Пример: VAE не учится для текстов

Но хочется, потому что в пространстве малой размерности модели эффективнее работают

PLANNER, 2024

- Построим энкодер E, сжимающий текст в латент фиксированного размера
- И декодер D, декодирующий текст авторегрессионно
- Будем приближать латентное пространство к гауссовскому
- Диффузия в гауссовском пространстве отлично работает

$$\mathbf{z} = E(\mathbf{x})$$
 $\hat{\mathbf{x}} = D(\mathbf{z})$

$$L(E, D; \mathbf{x}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x})}[\log p_D(\mathbf{x} \mid \mathbf{z})] - \beta \cdot \text{KL}(q_E(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$$

LD4LG, 2023

- Будем сжимать текст с помощью Compression Network
- Декодер так же авторегрессионный
- Никакие дополнительные требования к пространству не накладываются

Figure 2: Architecture of our Compression Network.

Пространство выходов языковой модели

- Можно учить диффузию в пространстве выходов BERT
- Оно менее вырожденное, чем пространство эмбедингов и в нем считывается контекстная информация

Энкодинги:

Эмбеддинги:

Пространство выходов языковой модели

По метрикам пространство энкодингов гораздо лучше пространства эмбеддингов

Encoder	ppl ↓	mem ↓	div ↑	mauve †				
ROCStories								
BERT emb	$48.9_{.36}$.371.003	$.324_{.002}$	$\overline{.600_{.016}}$				
BERT	$29.1_{.89}$	$.453_{.003}$	$.295_{.002}$.762 _{.043}				
RoBERTa	28.3 _{.33}	$.443_{.003}$	$.302_{.002}$	$.647_{.019}$				
T5	$31.3_{.54}$	$.427_{.003}$	$.312_{.004}$	$.706_{.024}$				
BART	$34.1_{.52}$	$.441_{.006}$	$.299_{.005}$	$.705_{.030}$				
Source text	21.7	.365	.403	.876				
Wikipedia								
BERT emb	$156.1_{1.8}$	$.263_{.004}$	$.517_{.002}$	$\overline{.378_{.055}}$				
BERT	$104.4_{2.1}$	$.286_{.002}$	$.504_{.003}$.874 _{.011}				
Source text	37.3	.122	.615	.957				

Задача безусловной генерации

Обучение на симплексе

Зададим симплекс в виде

$$\mathbf{S}_0[w,i] = \begin{cases} k, & \text{if } i = w \\ -k, & \text{otherwise} \end{cases}, \quad \mathbf{S}_0 \in \mathbb{R}^{n \times |V|}$$

$$\mathbf{S}_t = \sqrt{\bar{\alpha}_t} \mathbf{S}_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon_t, \quad \varepsilon \sim \mathcal{N}(0, k^2 I)$$

Обучение на симплексе

Зададим симплекс в виде

$$\mathbf{S}_0[w,i] = \begin{cases} k, & \text{if } i = w \\ -k, & \text{otherwise} \end{cases}, \quad \mathbf{S}_0 \in \mathbb{R}^{n \times |V|}$$

$$\mathbf{S}_{t} = \sqrt{\bar{\alpha}_{t}} \mathbf{S}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \varepsilon_{t}, \quad \varepsilon \sim \mathcal{N}(0, k^{2}I)$$

Тогда

$$\mathbf{x}_t = \operatorname{softmax}(\mathbf{S}_t) \cdot \mathbf{E},$$

где Е – матрица эмбеддингов

Обучение на симплексе

Зададим симплекс в виде

$$\mathbf{S}_0[w,i] = \begin{cases} k, & \text{if } i = w \\ -k, & \text{otherwise} \end{cases}, \quad \mathbf{S}_0 \in \mathbb{R}^{n \times |V|}$$

$$\mathbf{S}_{t} = \sqrt{\bar{\alpha}_{t}} \mathbf{S}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \varepsilon_{t}, \quad \varepsilon \sim \mathcal{N}(0, k^{2}I)$$

Тогда

$$\mathbf{x}_t = \operatorname{softmax}(\mathbf{S}_t) \cdot \mathbf{E},$$

где Е – матрица эмбеддингов

$$L = \mathbb{E}_{t,q(\mathbf{S}_0),q(\mathbf{S}_t \mid \mathbf{S}_0)} \left[-\sum_{i=1}^{L} \log p_{\theta}(w_i \mid \mathbf{S}_t, t) \right]$$

Кросс-энтропия показывает себя лучше для дискретных данных

Подведем итоги

- Текстовая диффузия отличается от обычной дискретностью данных
- Два способа борьбы с этим:
 - Дискретная (категориальная) диффузия
 - Непрерывная диффузия в новом пространстве
- Дискретная диффузия вводит матрицу перехода ${\it Q}$ для "зашумления"
- Непрерывная диффузия переводит текст в непрерывное (желательно гладкое) пространство
- Self-conditioning техника, позволяющая модели обуславливаться на свои предсказания во время генерации. Она значительно повышает качество.