1

GATE - 21 EE (14)

EE23BTECH11051-Rajnil Malviya

Question:-

In the given circuit, the value of capacitor C that makes current I=0 in μF is

Solution:-

Symbol	Value	Description
S	$j\omega$	complex frequency variable
j	$\sqrt{-1}$	imaginary unit
С	?	capacitance
X_L	$\omega L = 5\Omega$	inductive reactance
Z	∞	impedance of cir- cuit

TABLE I

Using Laplace transform, modified figure is

For I = 0, impedance $(Z) = \infty$

$$Z = 10 + sL + \left(\frac{\left(sL + \frac{1}{sC}\right) \times sL}{sL + \frac{1}{sC} + sL}\right)$$
(1)

$$= 10 + sL + \frac{sL + \frac{1}{sC}}{1 + \frac{1}{s^2LC} + 1}$$
 (2)

For $Z = \infty$;

$$2 + \frac{1}{s^2 LC} = 0 (3)$$

$$\implies C = \frac{-1}{2s^2L} \tag{4}$$

Refering from table;

$$C = \frac{-1}{2(j\omega)^2 L} \tag{5}$$

$$=\frac{-1}{2(\omega L)\,\omega(j)^2}\tag{6}$$

$$=\frac{1}{2(\omega L)\,\omega}\tag{7}$$

$$\implies C = 20\mu F$$
 (8)