

Санду завършил гимназия и решил да последва своята страст като продавач на бонбони.

Бълци, град в Молдова, има N пазара, които са свързани помежду си с улици. Пазарът има интересна структура. Всеки пазар може да бъде достъпен от всеки друг пазар, като се пътува през определен брой улици и има точно N-1 улици. Също така, Санду в момента се намира на пазар 1. Тоест, пазарите формират структура на дърво с корен, където пазар 1 е коренът.

Освен това, всеки пазар i има ниво на трудност t_i и ниво на обучение l_i . Първоначално нивото на обучение на всеки пазар е 0, а Санду има ниво на умения за продажби равно на 0.

Когато Санду посещава пазар i, нивото на уменията му за продажби се увеличава с l_i . Санду има успех на пазар i, ако нивото на уменията му е поне t_i (нивото на трудност на пазара). Имайте предвид, че нивото на уменията на Санду се увеличава веднага, когато влезе в съответния пазар, независимо дали успява или не. Освен това, нивото на уменията му се увеличава **преди** да започне да продава на съответния пазар.

Също така, тъй като Бълци е много натоварен град, всеки от следващите Q дни ще се случи събитие. На ден j ще се случи събитие j. Едно събитие се описва с две положителни цели числа - u_j и x_j , което означава, че на ден j ще има реклама за пазара u_j и нивото на обучение за съответния пазар ще се увеличи с x_j (промяната остава и за следващите дни). С други думи, събитие j означава, че на ден j нивото на обучение се увеличава с x_j ($l_{u_i}:=l_{u_i}+x_j$).

Санду има план да посети някои пазари и да продава бонбони там. Той ще избере пазар k и ще посети всички пазари по пътя от първия пазар до пазар k в този ред. Санду иска да бъде успешен на възможно най-много пазари. Той ще продължи своето пътуване към пазар k независимо дали е успешен или не. Освен това, всеки ден Санду започва от пазар 1 и нивото на уменията му се нулира, започвайки всеки ден с ниво на умения 0.

За всеки ден j, помогнете на Санду да намери най-големия брой пазари, в които може да бъде успешен, ако избере финалния пазар за този ден оптимално.

Вход

Първият ред на входа съдържа две цели числа N и Q ($1 \leq N, Q \leq 5 \cdot 10^5$).

Вторият ред съдържа N-1 цели числа, които представляват структурата на дървото на пазарите: $p_2,...,p_N$, което означава, че съществува ребро между p_i и i, и p_i е родителят на i.

Освен това за всяко i, условието $1 \leq p_i < i$ винаги е изпълнено.

Третият ред съдържа N цели числа: t_1 , t_2 , ..., t_N ($0 \le t_i \le 10^9$) — нивото на трудност на дадените пазари.

След това следват Q реда, представляващи събитията, които се случват на ден j=1,2,...,Q.

Ред j съдържа две цели числа — u_j и x_j , описващи събитието за j-ия ден ($1 \le u_j \le N$, $1 \le x_j \le 10^9$).

Изход

Изведете Q реда - на j-ия ред трябва да изведете отговора за j-ия ден.

Примери

Вход	Изход	
125 1133167191011 126354652345 11 11 32 63 96	1 2 2 3 5	
5 4 1 2 3 4 1 2 5 6 7 1 1 1 2 1 1 1 2	1 2 2 4	
55 1111 12345 44 22 55 11	1 1 1 2 2	

Първоначалното дърво за първия пример изглежда така. На изображението числата вдясно от пазар представляват нивото на обучение на този пазар, а числата вляво от пазар представляват нивото на трудност на съответния пазар.

След първата промяна, дървото се променя по следния начин и едно от възможните оптимални места, до които Санду може да стигне, е 6, като получава максимален резултат от 1, тъй като нивото на обучение на пазар 1, през който минава, е поне равно на нивото на трудност, което също е 1.

След втората промяна, отговорът се променя на 2, тъй като Санду може да избере да отиде до пазар 2, като получава умения от 2 от пазар 1, което е по-голямо или равно на нивата на трудност на пазари 1 и 2.

След третата промяна, отговорът не се променя, но дървото се променя по следния начин:

След четвъртата промяна, отговорът се променя на 3, тъй като ако Санду започне от пазар 1, той увеличава уменията си на 2, което означава, че е успешен на пазар 1. След това той се премества към пазар 6, където уменията му се увеличават до 5, което означава, че е успешен и на пазар 6. След това се премества към пазар 7, където няма успех, и след това към пазар 8, където отново е успешен, тъй като $5 \geq 5$.

За последната промяна, дървото се променя по следния начин и оптималният отговор е 5, тъй като Санду може да отиде до пазар 12 и ще бъде успешен на пазарите 1, 9, 10, 11, 12.

Ограничения и оценяване

- $1 \le N, Q \le 5 \cdot 10^5$.
- $1 \leq p_i < i$.
- ullet $0 \leq t_i \leq 10^9$ за всяко i ($1 \leq i \leq N$).
- $1 \leq u_j \leq N$ за всяко j ($1 \leq j \leq Q$).
- ullet $1 \leq x_j \leq 10^9$ за всяко j ($1 \leq j \leq Q$).

Вашето решение ще бъде тествано върху набор от тестови групи, всяка с определен брой точки. Всяка тестова група съдържа набор от тестове. За да получите точки за тестова група, трябва да решите всички тестови случаи в групата.

Група	Точки	Ограничения
1	7	$p_i = 1$ за $1 < i \le N$, и $N,Q \le 2000.$
2	8	$N,Q \leq 2000$, структурата на дървото е $p_i = i-1$ за всички i
3	17	Структурата на дървото е $p_i = i-1$ за $1 < i \leq N$
4	12	$N,Q \leq 2000$
5	21	$u_j=1$ за всички събития
6	24	$N,Q \leq 10^5$
7	11	Няма допълнителни ограничения