A summary of the project in English is available here:

The question posed to us requires reducing the cost of student transportation services by appropriately allocating them to schools. In the table below, the number of students in a given area is specified, along with the percentage of students in each grade. The cost of school transportation from each area to each school is also determined. Each grade can constitute 30 to 36 percent of the total population of a school. Students from a specific area and grade can be assigned to one school or another. Note that the dashed line in the table indicates that students from that area cannot be allocated to the specified school.

Transportation cost per		Area	Total	Percentage	Percentage	Percentage	
student				students'	of 7 th	of 8 th	of 9 th
Scholl	Scholl	Scholl		population	grade	grade	grade
no.1	no.2	no.3					
300	0	700	1	450	32	38	30
-	400	500	2	600	37	28	35
600	300	200	3	550	30	32	28
200	500	ı	4	350	28	40	32
0	-	400	5	500	39	34	27
500	300	0	6	450	34	28	38
900	1100	1000	Schools'				
			capacity				

Solution (By Sajjad Abed):

Model:

$$\begin{aligned} & \operatorname{Min} Z = \sum_{i=1}^{6} \sum_{k=1}^{3} \left(C_{i,k} * \sum_{j=7}^{9} S_{i,j,k} \right) \\ & s.t. \\ & \sum_{k=1}^{3} S_{i,j,k} = P_{i,j} * N_{i} \\ & \sum_{i=1}^{6} \sum_{j=7}^{9} S_{i,j,k} \leq Cap_{k} \\ & 0.3 * \sum_{i=1}^{6} \sum_{jj=7}^{9} S_{i,jj,k} \leq \sum_{i=1}^{6} S_{i,j,k} \\ & \sum_{i=1}^{6} \sum_{jj=7}^{9} S_{i,jj,k} \leq \sum_{i=1}^{6} S_{i,j,k} \\ & \sum_{i=1}^{6} S_{i,j,k} \leq 0.36 * \sum_{i=1}^{6} \sum_{jj=7}^{9} S_{i,jj,k} \\ & S_{2,j,1} = S_{4,j,3} = S_{5,j,2} = 0 \\ & 0 \leq S_{i,j,k} \\ & S_{i,j,k} & (int) \end{aligned}$$

In which:

Number of students from region i and grade j assigned to school k (Variable): $S_{i,j,k}$ Cost of assigning a student from region i to school k (Parameter): $C_{i,k}$ Percentage of students from region i studying in grade j (Parameter): $P_{i,j}$ Number of students in region i (Parameter): N_i Capacity of school k (Parameter): Cap_k Additionally, indices i, j, and k represent the region, grade, and school, respectively.

CPlex code:

			Pe	ercentage o	f students	(P)
School	Capacity		Area	School 1	School 2	School 3
1	900		1	0.32	0.38	0.3
2	1100		2	0.37	0.28	0.35
3	1000		3	0.3	0.32	0.38
			4	0.28	0.4	0.32
			5	0.39	0.34	0.27
			6	0.34	0.28	0.38
Area	Numbers (N)) Transportation Cost (C)			()	
1	450		Area	School 1	School 2	School 3
2	600		1	300	0	700
3	550		2	99	400	500
4	350		3	600	300	200
5	500		4	200	500	99
6	450		5	0	99	400
			6	500	300	0

.mod code:

```
2 * OPL 12.9.0.0 Model
3 * Author: sabed
 6 range I=1..6;
 7 range J=7..9;
 8 range K=1..3;
 9 int Cap[K]=...;
 10 float P[I][J]=...;
11 int N[I]=...;
 12 int C[I][K]=..
 13 dvar int+ S[I][J][K];
 14
 15 minimize sum(i in I,k in K) (C[i][k]*sum(j in J)S[i][j][k]);
16⊖ subject to{
       forall(i in I,j in J)
 17⊜
 18
         sum(k in K) (S[i][j][k])==P[i][j]*N[i];
 19⊜
        forall(k in K)
        sum(i in I,j in J) (S[i][j][k]) <= Cap[k];
forall(j in J,k in K)</pre>
 20
 219
       0.3*(sum(i in I,jj in J) (S[i][jj][k])) <= sum(i in I)(S[i][j][k]); forall(j in J,k in K)
 22
 23⊜
         sum(i in I)(S[i][j][k]) <=0.36*(sum(i in I,jj in J) (S[i][jj][k]));</pre>
 24
 25⊜
        forall(j in J)
 26
          S[2][j][1]==0;
 27⊜
        forall(j in J)
 28
          S[4][j][3]==0;
 29⊜
        forall(j in J)
 30
          S[5][j][2]==0;
 31
 32
 33⊖ tuple someTuple{
 34 int a;
 35 int b;
 36 int c;
 37 int value;
 38 };
39 {someTuple} someSet = {<i,j,k,S[i][j][k]> | i in I, j in J, k in K};
```

CPlex output:

Sensitive Analysis:

Shadow price:

Variable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$1\$4	XA	0	-11.25	20	11.25	1.00E+30
\$J\$4	XB	10	0	50	1.00E+30	3.33333333
\$K\$4	XC	0	-2.5	35	2.5	1E+30

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$0\$5	Milling	50	0	60	1E+30	10
\$P\$5	Rounding	65	0	100	1E+30	35
\$Q\$5	Drilling	40	12.5	40	8	40

RESULT:

Area	Grade	School	Capacity
			1 0
			2 144
			3 0
			1 0
			2 171
			3 0
			1 0
			2 135
	1	9	3 0
	2	7	1 0
	2	7	2 222
	2	7	3 0
	2	8	1 0
	2	8	2 168
			3 0
			1 0
			2 210
	2		3 0
	3		1 0
			2 0
	3		3 165
			1 0
			2 0
			3 176
			1 12
			2 20
			3 177
	4		1 98
			3 C
			2 0
			3 0
			1 112
			2 0
			3 0
	5		1 195
			2 0
			3 0
		8	1 170
	5	8	2 0
			3 0
			1 135
			2 0
			3 0
			1 0
	6	7	2 0
	6	7	3 153
			1 0
			2 0
			3 126
	6		1 0
			2 0
			3 171
	-	-	- 1/1