Financial Frictions, Liquidity Constraint, and the Business Cycle

PS3: ...

Rasmus Kehlet Berg

Department of Economics University of Copenhagen

Overview

1 Fire sales and multiple equilibria

- 2 Impatient households and risky investments
- 3 Appendix
 A note on the Ennis and Keister (2009) assumption

Model consists of:

- Two-period economy, $t \in \{0, 1\}$.
- Single consumption good (c),
- continuum of entrepreneurs (E) and financiers (E),
- fixed total supply of capital k.
- F uses capital in concave production technology,
- E has constant return α.

Thus optimal allocation of k is such that

$$f'(k_E) = 1 - k_E = \alpha = f'(k_F).$$

Thus optimally $k_E^* = 1 - a$ and $k_F^* = \bar{k} + a - 1$. Due to financial frictions this need not be the case!

The story goes:

- Temporary negative shock to cash flow for $E \Rightarrow$ no income from k_0 .
- To repay initial debt b_0 E loads off capital k_0 at price q_0 .
- To finance purchase of new capital E borrows b₁.

But!

• due to moral hazard, limited liability and so on, borrowing is constrained to what financiers know they can recoup at time 1. Thus $b_1 \leq q_1 k_1$.

New element today: Possible fire sales where a low q_0 can drive $k_1 = 0$!

The story goes:

- Temporary negative shock to cash flow for $E \Rightarrow$ no income from k_0 .
- To repay initial debt b₀ E loads off capital k₀ at price q₀.
- To finance purchase of new capital E borrows b₁.

But!

• due to moral hazard, limited liability and so on, borrowing is constrained to what financiers know they can recoup at time 1. Thus $b_1 \leq q_1 k_1.$

New element today: Possible fire sales where a low q_0 can drive $k_1 = 0$!

The story goes:

- Temporary negative shock to cash flow for $E \Rightarrow$ no income from k_0 .
- To repay initial debt b_0 E loads off capital k_0 at price q_0 .
- To finance purchase of new capital E borrows b₁.

But!

• due to moral hazard, limited liability and so on, borrowing is constrained to what financiers know they can recoup at time 1. Thus $b_1 \leq q_1 k_1$.

New element today: Possible fire sales where a low q_0 can drive $k_1 = 0!$

Entrepreneurial (E) problem

$$\max_{c_0, c_1, k_1, b_1} c_0 + c_1 \tag{1}$$

s.t.
$$c_0 + q_0 k_1 \le \max\{0, q_0 k_0 - b_0\} + b_1$$
 (2)

$$c_1 + b_1 \leq (\theta + a)k_1 \tag{3}$$

$$b_1 \le \theta k_1 \tag{4}$$

- Maximizes consumption (risk-neutral),
- At time 0: Consumption and capital purchases corresponds to wealth endowment after repayment of debt and newly issued debt.

Max statement: If E cannot repay initial debt, then contract is re-negotiated to 0.

- At time 1: Consumption and repayment of debt corresponds to return on capital (a) and resell value of capital (θ).
- Borrowing constraint by collateralized assets.

1 State E's maximization problem. Characterize demand for capital.

Entrepreneurial solution I: Capital demand

- If $q_0 < \theta$: E would accumulate infinite capital (arbitrage from investment),
- If $q_0 \ge \theta + \alpha$: E would never accumulate capital.
- If $q_0 < b_0/k_0$: E would default on initial debt and not be able to purchase k_1 .
- Thus we will assume that

$$\max(\theta,\ b_0/k_0) < q_0 < \theta + \alpha. \tag{A1}$$

This ensures 1) No default on debt, 2) Finite capital demand due to liquidity constraint.

2 Derive capital demand for entrepreneurs.

Entrepreneurial solution II

Under (A1) all constraints bind and $c_0=0$ is optimal. Using this and borrowing constraint we have:

$$k_1 = \frac{q_0 k_0 - b_0 + \overbrace{b_1}^{=\theta k_1}}{q_0}$$
 \Rightarrow $k_1 = \frac{q_0 k_0 - b_0}{q_0 - \theta}$. (5)

3 Discuss capital demand in different scenarios.

Entrepreneurial solution III

• Capital demand rewritten slightly

$$k_1 = k_0 + \frac{k_0 \theta - b_0}{q_0 - \theta}.$$
 (6)

• Effects from q₀ on demand:

Price effect: $q_0 \uparrow$ price on $k_1 \uparrow$ and demand for $k_1 \downarrow$.

Wealth effect: $q_0 \uparrow$ value of endowment $q_0 k_0 \uparrow$ and demand for $k_1 \uparrow$.

Size of k₀ determines wealth effect, size of k₁ determines price effect.

The problem of financiers and the market clearing condition for capital.

14/68

Financiers (F) problem

$$\max_{\tilde{c}_0,\tilde{c}_1,\tilde{k}_1} \tilde{c}_0 + \tilde{c}_1 \tag{7}$$

s.t.
$$\tilde{c}_0 + q_0 \tilde{k}_1 \le \underbrace{\tilde{k}_0 - \frac{1}{2} \tilde{k}_0^2}_{\text{prod. tech}} + q_0 \tilde{k}_0 + e_0$$
 (8)

$$\tilde{c}_1 \leq \tilde{k}_1 - \frac{1}{2}\tilde{k}_1^2 + \theta \tilde{k}_1 + e_1.$$
 (9)

Similar to E, except:

- Production technology from capital: Ensures finite capital demand.
- Note the language having large endowments (e_0,e_1) : If e_0,e_1 were small, it still might be optimal to choose $\tilde{c}_0<0$ or $\tilde{c}_1<0$. We assume away this for simplicity.

Finaciers solution

Assuming interior consumption solution. Capital demand then follows from:

$$\max_{\tilde{k}_1\geq 0}\ \tilde{k}_1\left(1+\theta-q_0\right)-\frac{1}{2}\tilde{k}_1^2,$$

yielding solution

$$\tilde{k}_1 = \max \left\{ 0, \ 1 + \theta - q_0 \right\}. \tag{10}$$

With fixed supply of \bar{k} this yields market clearing condition:

$$\bar{\mathbf{k}} = \mathbf{k}_1 + \tilde{\mathbf{k}}_1. \tag{11}$$

For convenience we will rewrite this as an *residual supply* function for entrepreneurs:

$$k_1 = \min \left\{ \bar{k}, \ \bar{k} - (1 + \theta - q_0) \right\}.$$
 (12)

Q5

§ Show and depict graphically that when $b_0 < \theta k_0$ there is a unique equilibrium.

Equilibrium on capital markets I

When $b_0 < \theta k_0$ note:

• Supply curve:

Enters through $\min(\bar{k},\ \bar{k}-1-\theta)$ and increases linearly towards \bar{k} . Thus either constant function around \bar{k} or a linearly increasing one in q_0 .

• Demand curve:

When $k_0\theta - b_0 > 0$ demand is decreasing towards the level $k_0 \le \bar{k}$ \Rightarrow Always unique equilibrium (k_1, q_0) .

Q6

6 Show that when $b_0 > \theta k_0$ there can be multiple equilibria; a 'bad' and a 'good' one. Explain why.

Equilibrium on capital markets II

Assumptions:

$$a+\theta>q_0>\frac{b_0}{k_0}>\theta.$$

2 Demand bound by:

$$k^{\text{max}} = k_0 - \frac{b_0 - k_0 \theta}{\alpha},$$

$$k^{\text{min}} = 0.$$

3 Supply is linearly increasing.

Equilibrium on capital markets II

Regularity assumptions:

$$a+\theta>q_0>\frac{b_0}{k_0}>\theta.$$

2 Demand bound by:

$$k^{\text{max}} = k_0 - \frac{b_0 - k_0 \theta}{\alpha},$$

$$k^{\text{min}} = 0.$$

3 Supply is linearly increasing.

Equilibrium on capital markets II

Regularity assumptions:

$$a+\theta>q_0>\frac{b_0}{k_0}>\theta.$$

2 Demand bound by:

$$k^{\text{max}} = k_0 - \frac{b_0 - k_0 \theta}{\alpha},$$

$$k^{\text{min}} = 0.$$

3 Supply is linearly increasing.

Equilibrium on capital markets III

- But, if price q_0 drops below b_0/k_0 demand for k_1 drops to zero. This allows for two (stable) equilibria:
- The 'bad' equilibrium with k₁ = 0 and q₀ = 0.6:
 E defaults on his debt ⇒ zero net worth.
- The 'good' equilibrium:

A high q_0 implies wealthy E, which implies a large capital demand k_1 , when $k_0>k_1$.

 $\ensuremath{\mathbf{0}}$ How can an appropriate reduction in b_0 eliminate the bad equilibrium?

Reduction of debt to remove bad equilibrium

- Reduction in b₀ increases E demand for capital,
- as it increases wealth and thus relaxes borrowing constraint.
- This removes the bad (and the unstable intermediate equilibrium).

3 Suppose there were multiple equilibria and the government stands ready to buy assets at the good equilibrium price. How many assets would it have to buy to implement this policy?

Buy-out policy

Within our model: The government would not have to buy any assets.

- The 'good price equilibrium' is self-sustainable:
 If the announcement of the price is credible, then the market will clear itself.
- This is due to our simple model. Caveats?

27/68

Buy-out policy

Within our model: The government would not have to buy any assets.

- The 'good price equilibrium' is self-sustainable:
 If the announcement of the price is credible, then the market will clear itself.
- This is due to our simple model. Caveats?

① Compare costs of Q7 and Q8 as policies working in the financial crisis: Q7 interpreted as injecting capital into the banking system and Q8 as a plan to buy toxic securities with government money. Discuss (briefly).

Financial crisis policies

Within model evaluation:

Asset purchase (Q8) is free, capital injection (Q7) can be costly.

• Why is it free in Q8?

In our model assets are not really toxic, it is only a matter of signaling the right price.

Adjustment of to new market equilibrium is costless (no price or information frictions).

Adverse selection:

Government may end up buying the most toxic assets.

Moral Hazard:

Both strategies may induce unhealthy future risk-taking.

More?

Overview

1 Fire sales and multiple equilibria

- 2 Impatient households and risky investments
- 3 Appendix
 A note on the Ennis and Keister (2009) assumption

The setup

DD-type of economy, now:

- Three periods t = 0, 1, 2.
- Two storage technologies:

One-period investment with return 1,

Two-period investment with return R>1. Can be prematurely liquidated at return L<1.

- Continuum of agents with unit endowment, where
- A fraction π will be impatient and a fraction $(1-\pi)$ patient. Thus expected utility is presented by

$$u = \pi \sqrt{c_1} + (1 - \pi)\rho \sqrt{c_2}$$
. (13)

where 1, 2 refers to time periods.

1 Characterize optimal and market allocation.

Market allocation

Without uncertainty the market allocation is straightforward:

$$c_1^M = 1,$$
 $c_2^M = R.$ (14)

This is obtained through issuing bonds at price p. In particular budgets become

$$c_1 = 1 - I + pRI$$

$$c_2 = \frac{1 - I}{p} + RI,$$

where an equilibrium price of p = 1/R yields (14).

The utility (from a utilitarian welfare function) is then

$$U^{M} = \pi + (1 - \pi)\rho\sqrt{R}.$$

(15)

Social Planner allocation

A planner allocates I of the initial endowment in long-run investment and 1-I in short run. This yields:

$$\pi c_1 = 1 - I$$
 $(1 - \pi)c_2 = RI$,

or the combined budget

$$\pi c_1 + (1 - \pi) \frac{c_2}{R} = 1. \tag{16}$$

In other words we solve

$$\max_{c_1,c_2} \ \pi \sqrt{c_1} + (1-\pi)\rho \sqrt{c_2} + \lambda \left[1 - \pi c_1 + (1-\pi)\frac{c_2}{R}\right]. \tag{17}$$

This yields optimality condition:

$$(\rho R)^2 c_1^* = c_2^*. \tag{18}$$

Intuitive result: If $(\rho R>1)$ long run investing is worth it. Productivity more than offsets discounting $\rho.$

Social Planner allocation

A planner allocates I of the initial endowment in long-run investment and 1-I in short run. This yields:

$$\pi c_1 = 1 - I$$
 $(1 - \pi)c_2 = RI$,

or the combined budget

$$\pi c_1 + (1 - \pi) \frac{c_2}{R} = 1. \tag{16}$$

In other words we solve

$$\max_{c_1,c_2} \ \pi \sqrt{c_1} + (1-\pi)\rho \sqrt{c_2} + \lambda \left[1 - \pi c_1 + (1-\pi)\frac{c_2}{R}\right]. \tag{17}$$

This yields optimality condition:

$$(\rho R)^2 c_1^* = c_2^*. \tag{18}$$

Intuitive result: If $(\rho R > 1)$ long run investing is worth it. Productivity more than offsets discounting ρ .

Comparison of allocations

• Same relative size:

Note $c_2 > c_1$ both in market and planner allocation.

• Generally not the same:

Planner allocation can deviate in general. Note particularly that:

If
$$c_1^* = 1$$
, then M allocation is optimal when $c_2^* = (\rho R)^2 = R$,

i.e. only optimal exactly when $R = 1/\rho^2$.

• If either R or ρ increases from this case, then $c_2^* > c_2^M$ and $c_1^* < c_1^M$:

$$c_1^* = \frac{1}{\pi + (1 - \pi)\rho^2 R}, \qquad c_2^* = \frac{(\rho R)^2}{\pi + (1 - \pi)\rho^2 R}.$$
 (19)

Comparison of allocations

• Same relative size:

Note $c_2 > c_1$ both in market and planner allocation.

• Generally not the same:

Planner allocation can deviate in general. Note particularly that:

If
$$c_1^* = 1$$
, then M allocation is optimal when $c_2^* = (\rho R)^2 = R$,

i.e. only optimal exactly when $R = 1/\rho^2$.

• If either R or ho increases from this case, then $c_2^*>c_2^M$ and $c_1^*< c_1^M$:

$$c_1^* = \frac{1}{\pi + (1 - \pi)\rho^2 R}, \qquad c_2^* = \frac{(\rho R)^2}{\pi + (1 - \pi)\rho^2 R}.$$
 (19)

2 Part 1: Is it possible to introduce financial intermediary (can he implement optimal allocation?). Part 2: Is it possible to have bank runs, and why are they inefficient?

First best by financial intermediary

• First best contract:

Offer c_1^* if withdraw and t = 1 and c_2^* if withdraw and t = 2.

Incentive compatible:

Two types have no incentive to lie and declare to be the other type.

If patient household does so, then he can withdraw c_1^* early, use short-run technology and consume c_1^* instead of c_2^* .

However, $c_2^* > c_1^*$ thus no incentive to lie.

Bank runs

- Assume a patient household expects all to withdraw early.
 If he benefits from withdrawing early (before other patient households even), we can have a bank 'run'.
- In our model:

If I expect all to withdraw early, the bank can liquidate all assets and get return:

$$\pi c_1^* + (1 - \pi c_1^*) L.$$
 (20)

Recall: Bank invests πc_1^* in short technology and residual in 'long'.

• Bank run requirement is thus that $(20) < c_1^*$

Bank runs

- Assume a patient household expects all to withdraw early.
 If he benefits from withdrawing early (before other patient households even), we can have a bank 'run'.
- In our model:

If I expect all to withdraw early, the bank can liquidate all assets and get return:

$$\pi c_1^* + (1 - \pi c_1^*) L.$$
 (20)

Recall: Bank invests πc_1^* in short technology and residual in 'long'.

• Bank run requirement is thus that $(20) < c_1^*$.

Bank runs

• Solving for c_1^* the bank run requirement becomes:

$$L\rho^2 R < 1. (21)$$

- **Inefficient run** as liquidation of long-run investment earns less (L) than otherwise equivalent short-run technology (1).
- Run equilibrium is pareto dominated (more on this later)

Q3

3 Assume from here on that $\rho R < 1$. Characterize optimal allocation and compare to market outcome.

$$c_1^* = \frac{1}{\pi + (1-\pi)\rho^2 R}, \qquad \qquad c_2^* = \frac{(\rho R)^2}{\pi + (1-\pi)\rho^2 R}.$$

- Now $c_1^* > c_1^M = 1$ and $c_2^* < c_2^m = R$.
- Long-run investment is not worth it: Discount-factor ρ more than offsets productivity R.
 - \Rightarrow Push consumption to t = 1.
- Why is cut-off not at $\rho R = 1$?
- Recall that utility is concave (\sqrt{c}) and $c_1^M=1$ while $c_2^M=R$. I.e. optimal allocation redistributes to c_1 when $\rho R=1$ to equalize marginal utility of patient and impatient households.

$$c_1^* = \frac{1}{\pi + (1 - \pi)\rho^2 R}, \qquad c_2^* = \frac{(\rho R)^2}{\pi + (1 - \pi)\rho^2 R}.$$

- Now $c_1^* > c_1^M = 1$ and $c_2^* < c_2^m = R$.
- Long-run investment is not worth it: Discount-factor ρ more than offsets productivity R.
 - \Rightarrow Push consumption to t = 1.
- Why is cut-off not at $\rho R = 1$?
- Recall that utility is concave (\sqrt{c}) and $c_1^M=1$ while $c_2^M=R$. I.e. optimal allocation redistributes to c_1 when $\rho R=1$ to equalize marginal utility of patient and impatient households.

$$c_1^* = \frac{1}{\pi + (1 - \pi)\rho^2 R}, \qquad c_2^* = \frac{(\rho R)^2}{\pi + (1 - \pi)\rho^2 R}.$$

- Now $c_1^* > c_1^M = 1$ and $c_2^* < c_2^m = R$.
- Long-run investment is not worth it: Discount-factor ρ more than offsets productivity R.
 - \Rightarrow Push consumption to t = 1.
- Why is cut-off not at $\rho R = 1$?
- Recall that utility is concave (\sqrt{c}) and $c_1^M=1$ while $c_2^M=R$. I.e. optimal allocation redistributes to c_1 when $\rho R=1$ to equalize marginal utility of patient and impatient households.

$$c_1^* = \frac{1}{\pi + (1 - \pi)\rho^2 R},$$
 $c_2^* = \frac{(\rho R)^2}{\pi + (1 - \pi)\rho^2 R}.$

- Now $c_1^* > c_1^M = 1$ and $c_2^* < c_2^m = R$.
- Long-run investment is not worth it: Discount-factor ρ more than offsets productivity R.
 - \Rightarrow Push consumption to t = 1.
- Why is cut-off not at $\rho R = 1$?
- Recall that utility is concave (\sqrt{c}) and $c_1^M=1$ while $c_2^M=R$. I.e. optimal allocation redistributes to c_1 when $\rho R=1$ to equalize marginal utility of patient and impatient households.

Part 1: Can intermediary implement optimal allocation? Part 2: Can we have bank runs now?

Constrained optimal bank contract

Optimal contract problem:

Maximize utility subject to (1) budget and (2) IC constraint:

$$\begin{split} \max_{c_1,c_2} \ \pi \sqrt{c_1} + (1-\pi)\rho \sqrt{c_2} + \lambda \left[1 - \pi c_1 + (1-\pi)\frac{c_2}{R} \right] \\ + \mu \left[c_2 - c_1 \right], \end{split} \tag{22}$$

with the complementary slackness condition $\mu(c_2-c_1)=0$ and $\mu > 0$ measuring shadow-value of IC constraint.

Constrained solution:

When $\rho R < 1$ the unconstrained solution in (18) is not incentive compatible, $c_2^* < c_1^*$.

$$\pi c_1 + (1 - \pi) \frac{c}{R} = 1$$
 \Rightarrow $c = \frac{R}{R\pi + (1 - \pi)} \ge 1.$ (23)

Constrained optimal bank contract

Optimal contract problem:

Maximize utility subject to (1) budget and (2) IC constraint:

$$\begin{split} \max_{c_1,c_2} \ \pi \sqrt{c_1} + (1-\pi)\rho \sqrt{c_2} + \lambda \left[1 - \pi c_1 + (1-\pi)\frac{c_2}{R} \right] \\ + \mu \left[c_2 - c_1 \right], \end{split} \tag{22}$$

with the complementary slackness condition $\mu(c_2-c_1)=0$ and $\mu > 0$ measuring shadow-value of IC constraint.

Constrained solution:

When $\rho R < 1$ the unconstrained solution in (18) is not incentive compatible, $c_2^* < c_1^*$.

 \Rightarrow constrained solution is given by imposing $c_1 = c_2 = c$ in budget:

$$\pi c_1 + (1 - \pi) \frac{c}{R} = 1$$
 \Rightarrow $c = \frac{R}{R\pi + (1 - \pi)} \ge 1.$ (23)

Bank runs?

Yes, it is always possible to have bank runs: Sufficient condition is still $L\rho^2R<1.$

Recall: Technical requirement is

$$\pi c_1 + (1 - \pi c_1)L < c_1$$

which can be rewritten as R > L when $\rho R < 1$.

Bank runs?

Yes, it is always possible to have bank runs: Sufficient condition is still $L\rho^2R<1.$

Recall: Technical requirement is

$$\pi c_1 + (1 - \pi c_1)L < c_1$$

which can be rewritten as R > L when $\rho R < 1$.

Q5

13 Why can commitment to 'pre-announced suspension of convertibility' eliminate bank run equilibrium?

Eliminating bank run equilibria

• Strategic equilibrium:

Note that equilibria are *strategic*: Only optimal for patient household to withdraw early **if** all other patient households does so.

• Pareto-dominated equilibrium:

All households are better off in non-withdraw equilibrium.

Thus to avoid bank run equilibrium:
 Send credible signal that bank run cannot occur ⇒ no patient household withdraws early.

Limiting paying total deposits to πc_1^* send such a signal: Each individual household can still withdraw early, but patient households will choose not to.

Eliminating bank run equilibria

• Strategic equilibrium:

Note that equilibria are *strategic*: Only optimal for patient household to withdraw early **if** all other patient households does so.

Pareto-dominated equilibrium:

All households are better off in non-withdraw equilibrium.

• Thus to avoid bank run equilibrium:

Send credible signal that bank run cannot occur \Rightarrow no patient household withdraws early.

Limiting paying total deposits to πc_1^* send such a signal: Each individual household can still withdraw early, but patient households will choose not to.

() In absence of commitment, assume the CB can choose a threshold $\pi^{\rm B} \geq \pi$ of deposits that get paid. What is optimal ex post policy (threshold)? Does it prevent bank runs?

Optimal ex post policy

The setup of the policy is:

- Assume CB observes πc in withdrawals, but demand for early withdrawals is still present:
 - \Rightarrow (at least partial) bank run has occurred.
- If CB can choose a new $\pi^S \ge \pi$ what is then optimal?

The setup

- Now 4 types of agents: Impatient/patient and already withdrawn / not withdrawn.
- **Define** impatient share of the π already withdrawn households as $\phi_1(\pi^S)$.
- **Define** impatient share of the withdrawals when increasing π^s as $\Phi_2(\pi^S)$.
- **Define** impatient share of households not withdrawing $\phi_3(\pi^S)$.
- Implicit assumption: If $\pi^S = 1$ all agents withdraw (everyone expect bank run to occur).
- **Consistency requirement:**

$$\begin{split} \pi\varphi_1 + (\pi^S - \pi)\varphi_2 + (1 - \pi^S)\varphi_3 = & \pi\\ \pi(1 - \varphi_1) + (\pi^S - \pi)(1 - \varphi_2) + (1 - \pi^S)(1 - \varphi_3) = & 1 - \pi. \end{split}$$

The objective function

Objective function:

$$\begin{split} \max \ \pi \Big[\varphi_1 \sqrt{c} + (1 - \varphi_1) \rho \sqrt{c} \Big] + (\pi^S - \pi) \Big[\varphi_2 \sqrt{c} + (1 - \varphi_2) \rho \sqrt{c} \Big] \\ + (1 - \pi^S) \Big[\varphi_3 \sqrt{0} + (1 - \varphi_3) \rho \sqrt{c_2^S} \Big]. \end{split} \tag{24}$$

This states that:

- The share π already withdrew c. Of these ϕ_1 were impatient consuming c and $1-\phi_1$ save using short run technology (w. return 1) and consume c when t=2.
- The share $\pi^S \pi$ withdraws (where π^S is chosen). ϕ_2 are impatient households withdrawing, the rest patient households.
- The share $1-\pi^S$ cannot withdraw: ϕ_3 are impatient households, $1-\phi_3$ of patient households consume 'residual' (c_2^S) of bank's deposits.

The objective function

- To arrive at setup similar to Ennis and Keister (2009), assume for now that $\phi_1 = \phi_2 = \phi_3 = \pi$ and that $\rho = 1$.
- In this case maximizing (25) is equivalent to:

$$\max \ \pi^{S} \sqrt{c} + (1 - \pi^{S})(1 - \pi) \sqrt{c_{2}^{S}}, \tag{25}$$

where c_2^S still needs to be specified.

The residual payout

So, what can the bank afford to pay out $(c_2^S(\pi^S))$?

Bank expenditures:

When
$$t = 1$$
: $I_1 = \pi c + (\pi^S - \pi)c$
When $t = 2$: $I_2 = (1 - \pi^S)(1 - \pi)c_2^S(\pi^S)$.

Implicitly assumed: If impatient households cannot withdraw when t=1 then they are paid 0 when t=2. (recall they get 0 utility from consumption when t=2)

Bank income:

When
$$t = 1$$
: $E_1 = \pi c + \theta (1 - \pi c) L$
When $t = 2$: $E_2 = (1 - \theta)(1 - \pi c) R$.

To finance unexpected early withdrawals $(\pi^S - \pi)c$, the bank has to liquidate share θ of long run investments.

The residual payout

• From $I_1 = E_1$ we get

$$\theta = \frac{\pi^{S} - \pi}{1 - \pi c} \frac{c}{I}.$$
 (26)

• Using this and $I_2 = E_2$ we have

$$c_2^{S}(\pi^{S}) = \frac{(1 - \pi c)R - (\pi^{S} - \pi)c\frac{R}{L}}{(1 - \pi^{S})(1 - \pi)}.$$
 (27)

Thus optimal ex post policy is defined by

$$\max_{\pi^{S}} \pi^{S} \sqrt{c} + (1 - \pi^{S})(1 - \pi)\rho \sqrt{\frac{(1 - \pi c)R - (\pi^{S} - \pi)c\frac{R}{L}}{(1 - \pi^{S})(1 - \pi)}}.$$
 (28)

The optimal policy I: Technical observations

• When $\pi^S = \pi$ (and using (23)):

$$c_2^S(\pi) = R \frac{1 - \pi c}{(1 - \pi)^2}$$

= $\frac{c}{1 - \pi} > c.$ (29)

• $c_2^S(\pi^S)$ is decreasing in π^S :

$$\frac{\partial c_2^S}{\partial \pi^S} = R \frac{1 - \pi c - \frac{c}{L}(1 - \pi)}{(1 - \pi^s)^2 (1 - \pi)} < 0$$
 (30)

and clearly $\partial^2 c_2^S/\partial \pi^{S2} > 0$.

The optimal policy II

• Optimal policy is time inconsistent:

- ① When $\pi^S > \pi$ ex ante and ex post optimality does not coincide.
- 2 \Rightarrow can be rational not to 'trust' ex ante promised CB policy.
- **3** If CB is credible always promise $\pi^S = \pi$ in which case bank run is never rational.

• Optimal policy might still eliminate bank runs:

If optimal π^S still ensures $c_2^S(\pi^S)>c$, then bank run equilibrium is eliminated

Start of t=1 patient households recognize that CB even in case of a bank run, ensures a payoff $c_2^S > c$ by not withdrawing early.

Thus they are protected from bank runs.

Overview

1 Fire sales and multiple equilibria

- 2 Impatient households and risky investments
- 3 Appendix
 A note on the Ennis and Keister (2009) assumption

Identifying assumptions

Earlier we assumed $\phi_1 = 1 = \phi_2 = \phi_3$ and $\phi_1 = 1$ for simplicity and to arrive at a problem similar to that of Ennis and Keister (2009).

But what can we actually say about the ϕ_i parameters?

- π is a fundamental parameter and assumed constant.
- Φ₁ is impatient share of already withdrawn households and must considered pre-determined, i.e. constant as well.
- Recognizing that consistency holds when changing π^{S} implicit differentiation yields

$$\phi_2 - \phi_3 + (\pi^S - \pi) \frac{\partial \phi_2}{\partial \pi^S} + (1 - \pi^S) \frac{\partial \phi_3}{\partial \pi^S} = 0.$$
(31)

• If we wish to consider ϕ_i constants this obviously entails $\phi_2 = \phi_3$. Thus generally we would have a problem of the type:

$$\pi^S\left[\varphi\sqrt{c}+(1-\varphi)\rho\sqrt{c}\right]+(1-\pi^S)(1-\varphi)\rho\sqrt{c_2^S},\quad \varphi\equiv\frac{\pi(1-\varphi_1)}{1-\pi}.$$

Identifying assumptions

Note that consistency requirement can be written in the form:

$$\begin{pmatrix} \pi & \pi^{S} - \pi & 1 - \pi^{S} \\ -\pi & -(\pi^{S} - \pi) & -(1 - \pi^{S}) \end{pmatrix} \begin{pmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \end{pmatrix} = \begin{pmatrix} \pi \\ -\pi \end{pmatrix}.$$

Thus the two linear restrictions are linearly dependent and only constitutes one identifying restriction.

