Devoir maison 9 - Recherche d'un minimum global

On se place dans \mathbb{R}^3 muni de sa structure euclidienne.

PARTIE I

On considère la matrice

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

- 1. Pourquoi peut-on trouver une base orthonormée de vecteurs propres de A?
- 2. Déterminer le spectre de A ainsi qu'une base orthonormée $\mathcal B$ de vecteurs propres.
- 3. Soit $u \in \mathbb{R}^3$ de coordonnées (x, y, z) dans la base canonique. Exprimer ses coordonnées (x', y', z') dans la base \mathcal{B} .
- **4.** Calculer (Au|u) en fonction de (x, y, z), puis en fonction de (x', y', z').
- 5. Soit λ la plus petite valeur propre de A. Déduire de ce qui précède que :

$$\forall u \in \mathbb{R}^3, (Au|u) \ge \lambda ||u||^2.$$

PARTIE II

On considère un vecteur $b \in \mathbb{R}^3$; pour tout vecteur $u \in \mathbb{R}^3$, on pose :

$$J_b(u) = \frac{1}{2}(Au|u) - (u|b).$$

- 1. Quels sont les ensembles de départ et d'arrivée de J_b ? Que vaut $J_b(0)$?
- **2.** Calculer le gradient de J_b .
- 3. Montrer que

$$J_b(u) \ge \frac{1}{2}\lambda ||u||^2 - ||b|| ||u||$$

où λ est la plus petite valeur propre de A.

- 4. En déduire que la fonction J_b est minorée et non majorée.
- **5.** Montrer que

$$\inf_{u \in \mathbb{R}^3} J_b(u) \le 0.$$

- **6.** Montrer que si $||u|| > \frac{2||b||}{\lambda}$, alors $J_b(u) \ge 0$.
- 7. En déduire que

$$\inf_{u \in \mathbb{R}^3} J_b(u) = \inf_{u \in \overline{B}(O,r)} J_b(u)$$

où $\overline{B}(O,r)$ désigne la boule fermée de centre l'origine et de rayon $r=\frac{2\|b\|}{\lambda}$.

8. Montrer que la fonction J_b admet un minimum global sur \mathbb{R}^3 et qu'il est atteint au point $u = A^{-1}b$.