Лабораторная работа № 4.8А "Резонанс токов"

Кирилл Шевцов Б03-402

16.10.2025

Лабораторная установка

Рис. 1: Лабораторная установка

Задание предполагает снятие зависимости значений тока на учасках с амперметрами от индуктивности катушки. Согласно установке : амперметр A_1 показывает общий ток в цепи, A_2 - ток на участке с катушкой, A_3 - ток на конденсаторе заданной заданной емкости C=120 мк Φ .

Напряжение подается от сети постоянным $U=220~{\rm B},$ частота генератора также постоянна и равна $\nu=50~{\rm \Gamma \mu}.$

Картину резонанса можно увидеть либо по минимальному току на амперметре A_1 , либо на осциллорафе: резонансу соответсвует нулевой сдвиг фазы, то есть вырождение эллипса в наклонную прямую. Резонанс токов полагается исследовать на параллельном колебательном контуре, поскольку напряжение на участках цепи, параллельных включенному вольтметру, совпадают.

Измерения и результаты

1. Будем медленно вдвигать сердечник в катушку индуктивности. Зафиксировав расстояние, на которое вдвинут сердечник, снимем показания амперметров A_1 , A_2 , A_3 . Ток на учатках с катушкой, кондесатором и общий ток обозначим соответсвенно I_L , I_C , I.

x, cm	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5
I_L , A	0.417	0.387	0.354	0.325	0.301	0.277	0.255	0.233	0.213	0.186
I_C , A	0.401	0.395	0.392	0.393	0.386	0.398	0.395	0.395	0.398	0.391
I, A	0.05	0.045	0.056	0.078	0.100	0.125	0.144	0.164	0.186	0.207

Таблица 1: снятие токов при вдвижении сердечника

Обозначим четкий диапазон перемещения дросселя $\Delta = 1.5 \div 6.9$ см. Напряжение на ЛАТР поддерживаем постоянным и равным $U_0 = 10.0 \pm 0.1$ В. Частота лабораторного трансформатора $\omega = 50 \pm 1$ Гц. Емкость конденсатора $C = 120 \pm 10$ мк Φ .

2. Построим графики зависимостей сил тока на рассмотренных участках от положения x сердечника. (по горизонтальной оси - расстояние, на которое сердечник выдвинут из катушки)

Рис. 2: зависимость силы тока от положения сердечника в катушке

Из результатов измерений видно, что сила тока на учатке с катушкой постоянно увеличивается, общий ток в цепи уменьшается. Сила тока на участке с конденсатором остается постоянной, поскольку она зависит только от частоты и напряжения генератора.

$$I_C = U_0 \omega C = 2\pi \nu C U_0 = 0.37 \pm 0.01 \text{ A}$$
 (1)

И последние два определяются соотношением

$$I_L = I(L) = \frac{U_0}{\sqrt{(R + r_L)^2 + (\omega_0 L)^2}}$$
 (2)

$$I = I_L + I_C \tag{3}$$

3. Найдем положение резонанса с помощью осциллографа, запишем резонансные значения тока на рассматриваемых участках цепи.

I_L^{res} , A	I_C^{res} , A	I^{res} , A	ΔI_L^{res} , A	ΔI_C^{res} , A	ΔI^{res} , A	
0.428	0.419	0.049	0.001			

Таблица 2: резонансные токи на катушке, конденсаторе и в цепи

4. Рассчитаем добротность колебательного контура - через токи, и резонансное сопротивление - через полный ток и напряжение.

$$Q = \frac{I_C^{res}}{I^{res}} = \frac{0.428}{0.049} = 8.55 \pm 0.19, \quad \Delta Q = Q \left(\frac{\Delta I_C^{res}}{I_C^{res}} + \frac{\Delta I^{res}}{I^{res}} \right) = 0.19$$
 (4)

$$R_{\Sigma} = \frac{U_0}{I^{res}} = \frac{10.00}{0.049} = 204.08 \pm 4.37 \text{ Om}, \quad \Delta R_{\Sigma} = R_{\Sigma} \left(\frac{\Delta U_0}{U_0} + \frac{\Delta I^{res}}{I^{res}} \right) = 4.37 \text{ Om}$$
 (5)

5. Рассчитаем индуктивность катушки L_{res} через емкость и частоты $\nu = 50 \, \Gamma$ ц и $\nu = 50 \, \Gamma$ ц, а затем через добротность и емкость сделаем рассчет активного сопротивления катушки.(в выражение для частоты учли множитель).

$$L_{res} = \frac{1}{\omega^2 C} = 0.084 \pm 0.010 \,\,\text{ГH}, \quad \Delta L_{res} = L_{res} \left(\frac{2\Delta\omega}{\omega} + \frac{\Delta C}{C} \right) = 0.010 \,\,\text{ГH}$$
 (6)

$$r_L = \frac{\omega L_{res}}{Q} = 3.09 \pm 0.49 \text{ Om}, \quad \Delta r_L = r_L \left(\frac{\Delta L_{res}}{2L_{res}} + \frac{\Delta C}{C} - \frac{\Delta Q}{Q}\right) = 0.49 \text{ Om}$$
 (7)

Расчет для частоты $\nu = 1000 \, \Gamma$ ц.

$$L_{res} = \frac{1}{\omega^2 C} = 0.021 \pm 0.006 \ \Gamma_{\rm H}, \quad \Delta L_{res} = L_{res} \left(\frac{2\Delta\omega}{\omega} + \frac{\Delta C}{C} \right) = 0.006 \ \Gamma_{\rm H}$$
 (8)

$$r_L = \frac{\omega L_{res}}{Q} = 15.43 \pm 2.49 \text{ OM}, \quad \Delta r_L = r_L \left(\frac{\Delta L_{res}}{2L_{res}} + \frac{\Delta C}{C} - \frac{\Delta Q}{Q} \right) = 2.49 \text{ OM}$$
 (9)

6. Сравним полученные значения сопротивления и индуктивности со значениями, снятыми с моста E7-8 при частоте $\nu=50$ и $\nu=1000$ Γ ц.

Частота, Гц	Расчет	c E7-8	Расчет с графиками		
ν, Гц	L_{res} , м Γ н	r_L , Om	L_{res} , м Γ н	r_L , Om	
50	67.011 ± 0.001	1.937 ± 0.001	84.00 ± 0.10	3.09 ± 0.49	
1000	60.610 ± 0.001	31.850 ± 0.001	21.000 ± 0.006	15.43 ± 2.49	

Таблица 3: Сравнение с полученными данными

Как видно, измерения сопротивлений снятыми с моста E7-8 при частоте $\nu=50$ отличаются чуть меньше, чем в 2 раза, измерение индуктивности отличаются примерно на 20 м Γ н. Измерения сопротивления для частоты к Γ ц отличаются также в 2 раза, индуктивность отличается почти в 3 раза.

7. Построим векторные диаграммы резонансных значений тока.

Векторная диаграмма токов

Рис. 3: Векторная диаграмма для резонансных токов

	I_C нач	I_C кон	I_L нач	I_L кон	<i>I</i> нач	I кон
X, cm	0	0	0	3.7	0	0.58
Y, cm	0	3.70	0	-4.28	0	0

Таблица 4: Таблица для векторной диаграммы (масштаб: 0.1)

Из графиков видно, что вектор тока на конденсаторе направлен вертикально, ток на катушке смотрит против вертикальной оси, а их сумма почти направлена вдоль горизонтальной оси. На первой диаграмме виден "хвостик"графика для координаты x - это активное сопротивление катушки, которое присутствует в реальных условиях измерений. Если считать элементы идеальными, то токи I_L и I_C будут совпадать по величине, то есть компенсировать друг друга.

8. Построим вектор диаграмму напряжений, напряжение U_C считаем постоянным, и равным U_0 . На масштаб S делим (то есть умножаем на 10).

Векторная диаграмма напряжений

Рис. 4: Векторная диаграмма токов и напряжений

Угол между напряжением и током катушки

$$\sin\varphi = \sqrt{1-0,1145^2} \approx 0,9934, \quad \cos\varphi = \frac{I}{I_L} = \frac{0,049}{0,428} \approx 0,1145, \quad \varphi = \arccos(0,1145) \approx 83,4^\circ$$

Составляющие напряжения на катушке

$$\begin{split} U_{L_{ACT}} &= U \cdot \cos \varphi = 10 \cdot 0, 1145 \approx 1, 145 \text{ B} \\ U_{L_{REACT}} &= U \cdot \sin \varphi = 10 \cdot 0, 9934 \approx 9, 93 \text{ B} \end{split}$$

Длины составляющих напряжений на диаграмме

$$U_{L_{ACT}} = \frac{1,145}{2} \approx 0,57 \text{ cm}, \quad U_{L_{REACT}} = \frac{9,93}{2} \approx 4,97 \text{ cm}$$

Параметры катушки

$$r_L = rac{U_{L_{ACT}}}{I_L} = rac{1,145}{0,428} pprox 2,68 \; ext{Om} \quad L = rac{U_{L_{REACT}}}{\omega \cdot I_L} = rac{9,93}{314 \cdot 0,428} pprox 0,074 \; \Gamma ext{H}$$

9. Занесем в таблицу получившиеся по разным методам значения активного сопротивления катушки и ее индуктивности.

Измерения всеми тремя способами различны. Это может быть связано с неидеальностью приборов, приближений при построении диаграмм (например, для удобства было выбрано строго вертикальное направление активного напряжения).

Частота, Гц	Расчет	c E7-8	Расчет с гр	рафиками	Расчет с диаграммой		
ν, Гц	L_{res} , м Γ н	r_L , Om	L_{res} , м Γ н	r_L , Om	L_{res} , м Γ н	r_L , Om	
50 ± 1	67.011 ± 0.001	1.937 ± 0.001	84.00 ± 0.01	3.09 ± 0.01	74 ± 10	2.68 ± 0.01	
$1000 \pm 100, \Gamma$ ц	60.01 ± 10.00	31.85 ± 10.01		•			

Таблица 5: Параметры катушки, измеренные разными способами

Вывод

В работе были измерены зависимости силы тока на разных участках параллельного колебательного контура. Было показано, что при вдвижении сердечника в катушку ток на участке с конденсатором остается постоянным на протяжении всех измерений, и зависит лишь от напряжения ЛАТР и частоты генератора, на участке с катушкой все время уменьшается, поскольку при вдвижении в нее сердечника индуктивность уменьшается. Контур при резонансе токов удобно выбирать именно параллельным, поскольку необходимо удерживать постоянным только напряжение.