

Histogram Processing

Introduction

Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhancement

Histogram Processing 直方图处理

TangNing

CVBIOUC

http://vision.ouc.edu.cn/~zhenghaiyong

November 30, 2015

Contents

Histogram Processing

Introductio

Equalization

Histogran Matching

Local Histogran Equalization

Using Histogram Statistics for Image Enhancement 1 Introduction

2 Histogram Equalization

3 Histogram Matching

4 Local Histogram Equalization

5 Using Histogram Statistics for Image Enhancement

Histogram

Histogram Processing

Introduction

Histogran Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhancement 1 The definition of histogram:

$$h(r_k) = n_k$$
 $k = 0, 1, ..., L - 1$

where r_k is the kth intensity value and n_k is the number of pixels in the image with intensity r_k .

2 Normalize a hitstogram:

$$p(r_k) = \frac{n_k}{MN}$$
 $k = 0, 1, ..., L - 1$

 $p(r_k)$ is the probability of occurrence of intensity level r_k in an image. The sum of all components of a normalized histogram is equal to 1.

Four basic image types and their correponding histograms

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhance-

dark image

light image

Four basic image types and their correponding histograms

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhance-

low contrast image

high contrast image

Transformations

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhancement Transformations(intensity mappings) of the form:

$$s = T(r) \quad 0 \le r \le L - 1 \tag{1}$$

- (a) T(r) is a monotonically increasing function in the interval $0 \le r \le L 1$.
- (b) $0 \le T(r) \le L 1$ for $0 \le r \le L 1$.

Histogram Equalization

Histogram Processing

Introductio:

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhancement

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$$

$$= \frac{(L-1)}{MN} \sum_{j=0}^k n_j \quad k = 0, 1, 2..., L-1$$
(2)

a processed image is obtained by mapping rach pixel in the input image with intensity r_k into a corresponding pixel with level s_k in the output image, using (2). The transformation $T(r_k)$ in this equation is called a histogram equalization.

Result

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhance-

(a) Origin image.
(b) Histogram of (a).

(c)Histogram-equalized image.(d)Histogram of (c).

Histogram Matching

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhancement (a) Obtain the values of s by using the histogram equalization transformation:

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j)$$

$$= \frac{(L-1)}{MN} \sum_{j=0}^k n_j \quad k = 0, 1, 2..., L-1$$
(3)

(b) Compute all values of the transformation function G using the specified PDF:

$$G(z_q) = (L-1) \sum_{i=0}^{q} p_z(z_i)$$
 (4)

Histogram Matching

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogram Equalization

Using Histogram Statistics for Image Enhancement (c) Find the corresponding value of z_q so that $G(z_q)$ is closest to s_k :

$$G(z_q) = s_k (5)$$

(d)Get the desired value z_q by obtaining the inverse transformation:

$$z_q = G^{-1}(s_k) \tag{6}$$

Result

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Local Histogran Equalization

Using Histogram Statistics for Image Enhancement

(a) Origin image.
(b) Histogram of (a).

(c) Histogram-specified image.(d) Histogram of (c).

Local Histogram Equalization

Histogram Processing

Introduction

Histogran Equalization

Matching

Local Histogram Equalization

Using
Histogram
Statistics
for Image
Enhancement

Use local histogram equalization with a neighborhood of size 3×3 :

(a)Origin image.(b)Result of local histogram equalization applied to (a).

Using Histogram Statistics for Image Enhancement

Histogram Processing

Introduction

Histogram Equalization

Histogram Matching

Histogram Equalization

Using Histogram Statistics for Image Enhancement Use local histogram statistics with a neighborhood of size 3×3 :

(a) Origin image. (b) Image enhanced using local histogram statistics.