Színes képek elemzése és felismerése kvaternió Zernike momentumok segítségével

Nagy Gergely

Eötvös Loránd Tudományegyetem, Informatikai Kar 2020. május 28.

Témavezető: Németh Zsolt

EFOP-3.6.3-VEKOP-16-2017-00001

Tartalom

Háttér

Momentumok Színes képek

Diszkretizáció

Korábbi módszer Új módszer Diszkrét ortogonalitás

Eredmények

Invariancia Rekonstrukció Képfelismerés

Alkalmazások

Momentumok

Általában valamilyen leíró érték a pixel intenzitások alapján, például geometriai momentumok:

$$M_{ij} = \sum_{x} \sum_{y} x^{i} y^{j} I(x, y).$$

Zernike momentumok: az egységkörön definiált, ortogonális Zernike függvények alapján

$$Z_{n,m}(f) = \frac{n+1}{\pi} \int_0^1 \int_0^{2\pi} f(r,\theta) R_{n,m}(r) e^{-\mathbf{i}m\theta} dr d\theta,$$

ahol $R_{n,m}(r)$ az ortogonális, sugárirányú polinomok. **Momentumok invariánsok:** forgatás, skálázás és eltolás invariancia

Momentumok alkalmazása színes képekre

Hagyományos megoldások:

- A kép szürkeárnyalatossá alakítása.
- Külön-külön a színcsatornákra.

Utóbbi évtizedben:

 $f: \mathbb{R}^2 \to \mathbb{R}^3$ kép kvaternió értékű függvényként:

$$f(x,y) = \mathbf{i} f_R(x,y) + \mathbf{j} f_G(x,y) + \mathbf{k} f_B(x,y)$$

Különböző momentumok általánosítása kvaterniókra: QFMM (Fourier-Mellin), QG-CHFM (Csebisev-Fourier), QG-PJFM

(Jacobi-Fourier), QBFM (Bessel-Fourier)

QZM (Zernike)

Kvaternió Zernike momentumok

Zernike függvények általánosítása kvaterniókra:

$$\Phi_{n,m}(r,\theta)=R_{n,m}(r)e^{-\mu m\theta},$$

ahol μ egység hosszú, tiszta kvaternió (általában $\mu = \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$). Mivel a kvaterniók szorzása nem kommutatív, így jobb- és baloldali momentumok is definiálhatók:

$$Z_{n,m}^{R}(f) = \frac{n+1}{\pi} \int_0^1 \int_0^{2\pi} f(r,\theta) \Phi_{n,m}(r,\theta) dr d\theta,$$

$$Z_{n,m}^{L}(f) = \frac{n+1}{\pi} \int_0^1 \int_0^{2\pi} \Phi_{n,m}(r,\theta) f(r,\theta) dr d\theta.$$

Chen et al.: forgatás, skálázás és eltolás invariánsok konstruálása.

Korábbi diszkretizációs módszer

Kép transzformálása az egységkörbe:

$$r_{x,y} = \sqrt{(c_1x + c_2)^2 + (c_1y + c_2)^2}, \quad \theta_{x,y} = an^{-1}\left(rac{c_1y + c_2}{c_1x + c_2}
ight),$$
 ahol $c_1 = rac{\sqrt{2}}{N-1}$ és $c_2 = -rac{1}{\sqrt{2}}$.

Ekkor a pixelek helyét alappontoknak választva:

$$Z_{n,m}^{R}(f) \approx \frac{2(n+1)}{\pi(N-1)^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \Phi_{n,m}(r_{x,y},\theta_{x,y}).$$

Új diszkretizációs módszer

Probléma a korábbi diszkretizációval: nincs diszkrét ortogonalitás.

Schipp F. és Pap M.: diszkrét ortogonális pontrendszer konstrukciója a klasszikus (komplex értékű) Zernike függvényekhez.

Ennek az ötletnek a kvaternió értékű Zernike függvényekre való kiterjesztése megfelelő pontrendszert ad.

Legyen N pozitív egész és $\rho_{k,N}$ az N-edik Legendre polinom gyökei, ekkor a pontrendszer:

$$(r_{k,N},\theta_{j,N}) = \left(\sqrt{\frac{1+\rho_{k,N}}{2}},\frac{2\pi j}{4N}\right), \ (k=1,\ldots,N,j=1,\ldots,4N).$$

Új diszkretizációs módszer (folyt.)

Legyen

$$A_{k,N} = \int_{-1}^{1} \ell_{k,N}(x) dx, (k = 1,...,N),$$

ahol $\ell_{k,N}$ a Lagrange interpolációs alappolinomok a $\rho_{k,N}$ pontokon. Ekkor a $w(r_{k,N},\theta_{j,N})=\frac{\mathcal{A}_{k,N}}{8N}$ súlyokkal véve az integrálközelítést:

$$\frac{1}{\pi} \int_0^1 \int_0^{2\pi} f(r,\theta) \ d\theta dr \approx \int_{X_N} f = \sum_{k=1}^N \sum_{j=1}^{4N} f(r_{k,N},\theta_{j,N}) \frac{A_{k,N}}{8N}.$$

Azaz a QZM-ek közelíthetők a következő módon:

$$Z_{n,m}^{R}(f) \approx (n+1) \sum_{k=1}^{N} \sum_{i=1}^{4N} f(r_{k,N}, \theta_{j,N}) \Phi_{n,m}(r_{k,N}, \theta_{j,N}) \frac{A_{k,N}}{8N}.$$

Diszkrét ortogonalitás

Tétel (Diszkrét ortogonalitás)

Legyen $n,n'\in\mathbb{N}$ természetes számok, $m,m'\in\mathbb{Z}$ egészek, úgy, hogy teljesül

$$\frac{n+n'}{2}+\min(|m|,|m'|)<2N.$$

Ekkor

$$(n+1)\int_{X_N}\Phi_{n,m}\Phi_{n',m'}^*=\delta_{n,n'}\delta_{m,m'}.$$

Így a momentumok diszkretizációs hiba nélkül előállíthatók és a képek visszaállítási pontossága és módszer hibatűrése is javult.

Képpontok becslése

A képet lineárisan transzformáljuk az egységkörre.

A függvény értékének becslése a pontokban:

- Interpoláció (sok pont esetén)
- Integrálás (kevés pont esetén)

Gyakorlati tesztek

A következő tesztek alapján hasonlítottuk össze a régi és az új módszert:

- Invariancia teszt
- Kép visszaállítása momentumokból
- ► Transzformált, zajos képek felismerése

A tesztek során a Columbia Object Image Library és az Amsterdam Library of Object Images képeiből generált transzformált képeket használtuk.

Invariancia

Alacsony rendű momentumok modulusának, az összes transzformált képekre vett variációs koefficiense $\left(\frac{\sigma}{\mu}\right)$:

	$rac{\sigma}{\mu}$	
$ \overline{\Psi}_{1,1}^1 $	3.73%	
$ \overline{\Psi}_{2,0}^{0} $	0.028%	
$ \overline{\Psi}_{2,2}^{0} $	0.057%	
$ \overline{\Psi}_{2,2}^2 $	6.87%	
$ \overline{\Psi}_{3,1}^1 $	3.71%	
$ \overline{\Psi}_{3,3}^1 $	3.69%	
$ \overline{\Psi}_{3,3}^3 $	9.40%	

Table: Régi módszer

	$rac{\sigma}{\mu}$	
$ \overline{\Psi}_{1,1}^1 $	3.72%	
$ \overline{\Psi}_{2,0}^{0} $	0.028%	
$ \overline{\Psi}_{2,2}^0 $	0.056%	
$ \overline{\Psi}_{2,2}^2 $	6.82%	
$ \overline{\Psi}_{3,1}^1 $	3.70%	
$ \overline{\Psi}_{3,3}^1 $	3.68%	
$ \overline{\Psi}_{3,3}^3 $	9.32%	

Table: Új módszer

Képek visszaállítása

Egy kép újra előállítható véges számú momentumot használva a következő képlet szerint:

$$f(r_{x,y}, \theta_{x,y}) \approx \sum_{n=0}^{M} \sum_{m=-n}^{n} Z_{n,m}^{R}(f) \Phi_{n,m}^{*}(r_{x,y}, \theta_{x,y}).$$

Ha f az eredeti, \hat{f} a visszaállított kép, akkor a négyzetes hiba:

$$\varepsilon^{2} = \frac{\sum_{x=1}^{N} \sum_{y=1}^{N} \left| f(x, y) - \widehat{f}(x, y) \right|^{2}}{\sum_{x=1}^{N} \sum_{y=1}^{N} \left| f(x, y) \right|^{2}}.$$

Képek visszaállítása

Képfelismerés

Cél: a transzformált, zajos képet felismerni az eredeti képek közül. Különböző nagyságú és típusú zaj:

- Gauss zaj
- Só-bors zaj

Alacsony rendű invariáns momentumok (kvaterniók) komponenseiből kinyert valós értékek vektorként kezelése. Osztályozás legkisebb euklideszi távolság alapján.

Képfelismerés - Gauss zaj

σ	Régi (%)	Új – "sok"	Új – "kevés"
		pont (%)	pont (%)
Nincs zaj	99.06	99.15	98.21
1	98.98	99.49	98.81
2	98.98	99.74	98.81
3	98.55	99.83	98.04
5	95.15	99.49	94.64
7	95.15	98.72	91.67
9	76.87	98.47	89.20
40	52.89	88.52	51.87
50	48.21	84.10	45.07
60	41.58	85.80	39.12

Képfelismerés - Só-bors zaj

р	Régi (%)	Új – "sok"	Új – "kevés"
		pont (%)	pont (%)
Nincs zaj	99.06	99.15	98.21
0.2%	99.66	99.32	94.98
0.4%	99.91	99.74	99.15
0.6%	99.91	99.91	99.40
1%	98.98	99.91	99.66
2%	99.66	93.96	99.74
3%	99.40	99.40	96.34
5%	97.87	94.90	97.87
10%	99.91	93.03	98.72
15%	99.91	93.20	97.87

Alkalmazások

A momentumok sok területen alkalmazhatók, néhány példa:

- Vízjelek: a képre a momentumok szintjén helyeznek vízjelet, így ellenálló lesz különböző transzformációknak és zajnak. Ehhez fontos a rekonstrukciós pontosság.
- ▶ Neurális hálók, gépi tanulás: A képekből kinyert invariáns momentumok lehet a bemeneti vektor része. A neurális hálók ismert hiányossága a zajra való érzékenység, ezen segíthetnek a momentumok.
- Orvosi/optikai alkalmazások: lencsék leképezési hibáinak azonosítására.

További lehetőségek

- Meglévő alkalmazások továbbfejlesztése az új módszer szerint.
- Más függvényrendszeren alapuló momentumokra hasonló konstrukció megadása.
- További általánosítás 3-dimenzióra és alkalmazás például LiDAR pontfelhőkre.

Összefoglalás

- Diszkrét ortogonális pontrendszer konstruálása QZM-hez.
- Összehasonlítás a korábbi módszerrel.
 - Invariancia
 - Rekonstrukció
 - Képfelismerés
- Jelentősen jobb rekonstrukciós képesség és robusztusság különféle zajokkal szemben.

KÖSZÖNÖM A FIGYELMET!

INVESTING IN YOUR FUTURE

European Union European Social Fund

