Estimate Sequences for Variance-Reduced Stochastic Composite Optimization

Andrei Kulunchakov and Julien Mairal - Inria Grenoble

A long overview

- Generic complexity analysis for proximal SVRG, SAGA, MISO.
- Robustness to noise of these algorithms, e.g., to solve

$$\min_{\mathbf{x}\in\mathbb{R}^p}\left\{\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x}) + \psi(\mathbf{x})\right\} \quad \text{with} \quad f_i(\mathbf{x}) = \mathbb{E}_{\rho_i}\left[\tilde{f}_i(\mathbf{x},\rho_i)\right],$$

which is a stochastic finite-sum problem,

or when assuming one has access only to the stochastic oracle

$$\tilde{\nabla} f_i(x) = \nabla f_i(x) + \xi_i$$
 with $\mathbb{E}[\xi_i] = 0$ and $\text{Var}[\xi_i] \leq \sigma^2$.

- The f_i 's are μ -strongly convex and L-smooth and ψ is convex.
- A simple strategy with averaging gives the iteration complexity

$$O\left(\left(n + \frac{L}{\mu}\right)\log\left(\frac{F(x_0) - F^*}{\varepsilon}\right)\right) + O\left(\frac{\sigma^2}{\mu\varepsilon}\right),\tag{1}$$

for the criterion $\mathbb{E}[F(x_k) - F^*] \leq \varepsilon$.

- We also obtain new algorithms with the same complexity.
- We also obtain an accelerated proximal SGD with complexity

$$O\left(\sqrt{\frac{L}{\mu}}\log\left(\frac{F(x_0)-F^*}{\varepsilon}\right)\right)+O\left(\frac{\sigma^2}{\mu\varepsilon}\right),\tag{2}$$

for n = 1 (simple stochastic composite problem).

• We also obtain an accelerated SVRG algorithm, with complexity

$$O\left(\left(n + \sqrt{\frac{nL}{\mu}}\right)\log\left(\frac{F(x_0) - F^*}{\varepsilon}\right)\right) + O\left(\frac{\sigma^2}{\mu\varepsilon}\right), \quad (3)$$
optimal for finite sums

- we also treat the convex but not strongly convex case ($\mu = 0$),
- . . . and study non-uniform sampling strategies for different L_i .

Two generic schemes

A first classical scheme:

$$x_k \leftarrow \operatorname{Prox}_{\eta_k \psi} \left[x_{k-1} - \eta_k g_k \right]$$
 with $\mathbb{E}[g_k | \mathcal{F}_{k-1}] = \nabla f(x_{k-1})$, (A and another less-classical one:

$$\bar{x}_k \leftarrow (1 - \mu \eta_k) \bar{x}_{k-1} + \mu \eta_k x_{k-1} - \eta_k g_k$$
 and $x_k = \operatorname{Prox}_{\frac{\psi}{\gamma_k}} [\bar{x}_k]$. (B)

Both approaches can be interpreted with estimate sequences:

$$d_k(x) = (1 - \delta_k)d_{k-1}(x) + \delta_k I_k(x)$$
 (always minimized by x_k), with, for (A),

$$I_k(x) = f(x_{k-1}) + g_k^{\top}(x - x_{k-1}) + \frac{\mu}{2} ||x - x_{k-1}||^2 + \psi(x_k) + \psi'(x_k)^{\top}(x - x_k).$$
 or, for (B),

$$I_k(x) = f(x_{k-1}) + g_k^{\top}(x - x_{k-1}) + \frac{\mu}{2}||x - x_{k-1}||^2 + \psi(x).$$

Gradient estimators and algorithms

- exact gradient, with $g_k = \nabla f(x_{k-1})$ (when $\sigma = 0$).
- \bullet SGD, when we assume that g_k has bounded variance.
- random-SVRG: draw randomly one index i_k and

$$g_k = \tilde{\nabla} f_{i_k}(x_{k-1}) - \tilde{\nabla} f_{i_k}(\tilde{x}_{k-1}) + \tilde{\nabla} f(\tilde{x}_{k-1}),$$
 (4)

where \tilde{x}_{k-1} is an anchor point updated with probability 1/n at iteration k (as in [4]) and $\tilde{\nabla}$ denotes noisy gradients.

• SAGA/MISO/SDCA:

$$g_k = \tilde{\nabla} f_{i_k}(x_{k-1}) - z_{k-1}^{i_k} + \bar{z}_{k-1}, \qquad (5)$$

with $\bar{z}_{k-1} = \frac{1}{n} \sum_{i=1}^{n} z_{k-1}^{i}$. Then, choose β in $[0, \mu]$ and update

$$z_k^{i_k} = \tilde{\nabla} f_{i_k}(x_{k-1}) - \beta x_k$$
 and $z_k^i = z_{k-1}^i$ for all $i \neq i_k$.

- Links with existing approaches when $\sigma = 0$: (A)+(4) \approx SVRG; (A) + (5) with $\beta = 0 \Rightarrow$ SAGA; (B) + (5) with $\beta = \mu \approx$ SDCA/MISO.
- Other combinations are new algorithms.

An accelerated proximal SGD

Consider the parameter sequence

$$\delta_k = \sqrt{\eta_k \gamma_k}$$
 and $\gamma_k = (1 - \delta_k)\gamma_{k-1} + \delta_k \mu$.

Then, perform the iteration

$$x_k = \text{Prox}_{\eta_k \psi} [y_{k-1} - \eta_k g_k] \quad \text{with} \quad \mathbb{E}[g_k | \mathcal{F}_{k-1}] = \nabla f(y_{k-1})$$
 $y_k = x_k + \beta_k (x_k - x_{k-1}) \quad \text{with} \quad \beta_k = \frac{\delta_k (1 - \delta_k) \eta_{k+1}}{\eta_k \delta_{k+1} + \eta_{k+1} \delta_k^2},$ (C)

An accelerated random-SVRG algorithm

- After appropriate initializations for $v_0, \tilde{x_0}, \gamma_0$.
- Find (δ_k, γ_k) such that $\gamma_k = (1 \delta_k)\gamma_{k-1} + \delta_k\mu$ and $\delta_k = \sqrt{\frac{5\eta_k\gamma_k}{3n}}$.
- Choose the extrapolation point

$$y_{k-1} = \theta_k v_{k-1} + (1 - \theta_k) \tilde{x}_{k-1}$$
 with $\theta_k = \frac{3n\delta_k - 5\mu\eta_k}{3 - 5\mu\eta_k}$;

Compute the noisy gradient estimator

$$g_k = \tilde{\nabla} f_{i_k}(y_{k-1}) - \tilde{\nabla} f_{i_k}(\tilde{x}_{k-1}) + \bar{z}_{k-1};$$

Obtain the new iterate

$$x_k \leftarrow \operatorname{Prox}_{\eta_k \psi} \left[y_{k-1} - \eta_k g_k \right];$$

• Find the minimizer v_k of the estimate sequence d_k :

$$V_k = \left(1 - \frac{\mu \delta_k}{\gamma_k}\right) V_{k-1} + \frac{\mu \delta_k}{\gamma_k} Y_{k-1} + \frac{\delta_k}{\gamma_k \eta_k} (x_k - y_{k-1});$$

- Update the anchor point \tilde{x}_k and gradient \bar{z}_k with prob 1/n.
- Output x_k (no averaging needed).

Advertisement for post-doc positions in Grenoble

in machine learning, optimization, computer vision, and ski.

$\mu > 0$, constant step sizes

Consider the online averaging strategy $\hat{x}_k = (1 - \delta_k)\hat{x}_{k-1} + \delta_k x_k$. Then, with a step size of order 1/L (up to a constant factor),

Method	Complexity O(.)	Bias
SGD	$(L/\mu)\log(1/\varepsilon)$	$(\sigma^2 + \sigma_n^2)/L$
acc-SGD	$\sqrt{L/\mu}\log(1/arepsilon)$	$(\sigma^2 + \sigma_n^2)/\sqrt{\mu L}$
SVRG/SAGA/MISO	$(n + L/\mu) \log(1/\varepsilon)$	σ^2/L
acc-SVRG	$(n+\sqrt{nL/\mu})\log(1/\varepsilon)$	$\sigma^2/(\sqrt{\mu nL} + \mu n)$

- Note that the step size for acc-SVRG is of order min(1/L, 1/ μn), the rest are adaptive to μ .
- $\bullet \sigma_n^2$ is due to sampling the data points.
- The bias of acc-SGD is potentially huge.

$\mu > 0$, decreasing step sizes

The complexities (1), (2), and (3) are obtained by

- first running algorithms with constant step sizes, as above,
- restart using decreasing step sizes:
- SVRG/SAGA/MISO: $\eta_k = \min\left(\frac{1}{12L}, \frac{1}{5\mu n}, \frac{2}{\mu(k+1)}\right);$
- acc-SVRG: $\eta_k = \min\left(\frac{1}{3L}, \frac{1}{15\mu n}, \frac{4}{\mu(k+1)^2}\right);$

Experiments on logistic regression ($\sigma^2 = 0$ on top)

- (left) Pascal Large Scale Learning Challenge (n = 250000);
- (right) CIFAR-10 represented by using a two-layer unsupervised convolutional neural network (n = 50000).

