컴퓨터 구조

컴퓨터 구조의 이해

수업 진행

- ❖ 교재
- 최신 컴퓨터 구조 / 임석구, 홍경호 저 / 한빛아카데미(2019)
- 부교재
 - 컴퓨터 구조 및 설계 RISC-V Edition / David A. Patterson, John L. Hennessy 저 / 박명순, 김병기, 하순회, 장훈 역 / 한티 미디어(2018)
 - 처음 만나는 디지털 논리회로 / 임석구 , 홍경호 저 / 한빛아카데미(2016)
- ❖ 성적 평가
- 중간고사 : 40% / 기말고사 : 50% / 출석 : 10%
- ¼이상 결석이면 F

Computer System(1)

Computer System(2)

Hardware

Software

Data

Bug

< ENIAC >

Hardware

< First bug >

Software

Alan Turing

- Turing Award
- 컴퓨터 과학계의 노벨상
- Association for Computing Machinery
- Alan Turing(1912~1954)
- 수학자
- 암호학자
- 논리학자
- 인공지능학자
 - Turing test
- 컴퓨터 과학자
- Enigma의 해독

< Alan Turing >

John von Neumann

- John von Neumann (1903~1957)
- 수학자
- 컴퓨터 과학자
- 맨하튼 프로젝트
- 게임이론
- 양자역학
- 폰 노이만 구조 창시

< John von Neumann >

Von Neumann Architecture

Von Neumann Architecture

Machine Code

명령어	opcode	
Add	0101	
Sub	0001	
Mul	0100	
Div	1000	

< Opcode >

Assembly Language

명령어	opcode	
Add	0101	
Sub	0001	
Mul	0100	
Div	1000	

< Opcode >

High-level Language

	의미	종류
Low-level	하드웨어 지향적 언어 (컴퓨터 구조에 따라 달라지는 언어)	Machine code, Assembly language
High-level	사람이 사용하기에 편리한 언어	C, Java, Python,

< Programming Language >

Computer Architecture

- Computer Architecture
- Instruction Set Architecture(ISA) + Memory model, registers, ...

- Instruction Set Architecture(ISA)
- Interface between hardware and software
- Ex) Alpha, RISC-V, ARM, x86, MIPS, ...

Microarchitecture

- Microarchitecture(µ-arch)
- Organization
- The way a given instruction set architecture (ISA) is implemented in a particular processor
 Patterson, D.; Hennessy, J. (2004). Computer Organization and Design: The Hardware/Software Interface.
- ❖ Classification of µ-arch
- Pipeline / Non-pipelined
- In-order / Out-of-order
- Scalar / Superscalar
- Vector Processor
- Single-core / Multi-core
- Single-thread / Multi-thread

Implementation

- Implementation
- Performance / Power / Area
- Ex) Intel i7 vs. Xeon 7560

Computer System

❖ 기본 구성

그림 1-1 컴퓨터의 기본 구성

Hardware

System Interconnect(Bus)

 시스템 버스(system bus): 중앙 처리 장치와 기억 장치 및 입출력 장치 사이에 정보를 교환하는 통로이며 주소 버스, 데이터 버스, 제어 버스가 있다.

주소 버스 (address bus)	 기억 장치나 입출력 장치를 지정하는 주소 정보를 전송하는 신호 선들의 집합이다. 단방향이다.
데이터 버스 (data bus)	 기억 장치나 입출력 장치 사이에 데이터를 전송하기 위한 신호선들의 집합이다. 데이터선의 수는 중앙 처리 장치가 한 번에 전송할 수 있는 데이터 비트의 수를 결정한다. 양방향 전송이 가능해야 한다.
제어 버스 (control bus)	 중앙 처리 장치가 시스템 내의 각종 요소의 동작을 제어하는 데 필요한 신호선들의 집합이다. 기억 장치 읽기와 쓰기 신호, 입출력 장치 읽기와 쓰기 신호등이 있다. 단방향이다.

System Interconnect(Bus)

 시스템 버스(system bus): 중앙 처리 장치와 기억 장치 및 입출력 장치 사이에 정보를 교환하는 통로이며 주소 버스, 데이터 버스, 제어 버스가 있다.

그림 1-4 중앙 처리 장치와 기억 장치 및 입출력 장치의 연결

Software

- ❖ 소프트웨어의 종류
- 시스템 소프트웨어 / 응용 소프트웨어
- 시스템 소프트웨어
 - 하드웨어를 관리하고 응용 소프트웨어를 실행하는 데 필요한 프로그램
 - 운영체제(Operating System), 컴파일러(Compiler), 장치 드라이버(Device Driver)...
- 응용 소프트웨어
 - 컴퓨터 시스템을 일반 사용자들이 특정한 용도에 활용하기 위해 만든 프로그램으로, 애플리케이션, 앱, 어플
 - 한글, 오피스, 인터넷 브라우저, 게임..

History

표 1-2 컴퓨터 세대 구분

세대 구분	1세대	2세대	3세대	4세대	5세대
주요 소자	진공관	트랜지스터	SSI, MSI	LSI, VLSI	VLSI, ULSI
주기억 장치	자기 드럼, 수은 지연 회로	자기 코어	IC(RAM, ROM)	LSI, VLSI	VLSI
보조 기억 장치	천공 카드, 종이 테이프	자기 드럼, 자기 디스크	자기 디스크, 자기 테이프	자기 디스크, 자기 테이프	자기 디스크, 광 디스크
처리 속도	ms(10 ⁻³)	μs(10 ⁻⁶)	ns(10 ⁻⁹)	ps(10 ⁻¹²)	fs(10 ⁻¹⁵)
사용 언어	기계어, 어셈블리어	고급 언어(COBOL, FORTRAN, ALGOL)	고급 언어(LISP, PASCAL, BASIC, PL/I)	고급 언어 (ADA 등), 문제 지향적 언어	객체 지향 언어 (C++, 자바)

IC

Harvard Architecture

Harvard Architecture

(a) 폰 노이만 구조

(b) 하버드 구조

Bottleneck of Von Neumann Architecture

- Bottleneck
- 시스템 버스에 병목 현상이 발생
- DSP / GPU / NPU 등 전용 가속기(Accelerator)의 등장

