LAB NOTE

Subject: Hardware/Software Interfacing

Lab 3: ADC

Student: Minh Quan Tran

Table of Contents

1.	. Objectives		
2.	Pro	oblems and Solutions5	
	2.1	Problems	5
	2.2	Solutions	5
2	Caf	Y Dut	
Э.	201	tware Design 6	
		List of function	6
	3.1		

TABLE OF FIGURES

Figure 2-1: Changing Clock Prescaler	5
Figure 2-2: Changing the sampling time	
Figure 2-3: Changing PCLK2	
Figure 4-1: Lab3's result	

1. Objectives

- Using STM32F411 board and STM32CubeIDE in Windows, create code to:
 - Read a voltage from one or more ADC-configured STM32 pins
 - Show use in a simple application

Advance:

- Code created that:
 - Uses 3 ADC pins for input on different channels
 - The different channels will need sampling one at a time, as there is only one physical ADC on the F411 board.
 - Using the ADC conversion complete interrupt that signals conversion completion and triggers.
 - o Update on the terminal the raw value of the 3 ADCs.
 - o Displays the converted raw ADC values in voltage to 1 decimal place accurately.
 - o You may optionally use DMA as well.

2. Problems and Solutions

2.1 Problems

- Using interrupt with ADC somehow interrupt got execute too often lead to the main while loop can't be executed.

2.2 Solutions

- So far, there are 3 ways to change how frequent the conversion occur:
 - Changing the Clock Prescale

Figure 2-1: Changing Clock Prescaler

• Changing the sampling time

Figure 2-2: Changing the sampling time

Changing the frequency of PCLK2

Figure 2-3: Changing PCLK2

3. Software Design

3.1 List of function

This function is used to convert the adcValue (12 bits value) to voltage value.

```
float adcConvertVoltage(uint32_t adcVal)
{
    return adcVal * 3.3 / 4095;
}
```

- This function is used to get the internal temperature of the <u>Nucleo</u> board, the formula to calculate is: ((<u>Vsense</u> V25)/AVG_SLOPE) + 25 (refer <u>STM32F411 reference manual p222</u>)
- V25 and AVG_SLOPE value refers to <u>STM32F411CE datasheet p120</u>

```
flofloat getTemp(float Vsense)
{
    return ((Vsense - V25)/AVG_SLOPE) + 25;
}
```

- This function is used to get the ADC value and convert to Voltage value whenever conversion occur.

```
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
    // Get ADC value from DMA and convert the value to Voltage
    adc1Val = buffer[0];
    adc1Vol = adcConvertVoltage(adc1Val);

    adc2Val = buffer[1];
    adc2Vol = adcConvertVoltage(adc2Val);

    adc3Val = buffer[2];
    adc3Vol = adcConvertVoltage(adc3Val);

    tempVal = buffer[3];
    tempVol = adcConvertVoltage(tempVal);
}
```

3.2 While loop

4. Result

Figure 4-1: Lab3's result

REFERENCES