André Biedenkapp

Personal Information

Date of birth: 13.07.1992 Nationality: German

Work experience

Position held.....

Machine Learning Lab Scientific Researcher

•

Albert-Ludwigs-University Freiburg

Since 10.2017

Past positions.

Machine Learning Lab
Student Assistant
Assisting in the implementation of research projects

Albert-Ludwigs-University Freiburg 10.2015 - 09.2017

Chair of Computer Architecture

Student Assistant

Maintenance of the mobile robots for the Hardware-Labcourse

Albert-Ludwigs-University Freiburg 04.2014 – 09.2014

Research Interests

- o Dynamic Algorithm Configuration
- Learning to Learn
- Deep Reinforcement Learning
- o Automated Machine Learning and Reinforcement Learning

Education

PhD. Candidate (Computer Science)

Albert-Ludwigs-University Freiburg

Machine Learning Lab

Since 02.2018

Thesis Working Title: Dynamic Algorithm Configuration by Reinforcement Learning

Summer School

Reinforcement Learning Summer SCOOL (RLSS'19)

In: Lille, France

July 2019

Topics: Reinforcement Learning and Bandits

Master of Science (M.Sc.), Final Grade: 1.2

Computer Science

Albert-Ludwigs-University Freiburg

2014 – 2017

Thesis: Per Instance Algorithm Configuration (Grade 1.0)

Supervisor: Prof. Dr. Frank Hutter

Computer Science

Albert-Ludwigs-University Freiburg

Bachelor of Science (B.Sc.) 2011 – 2014

Thesis: Data Analysis for the Selection of Recording Channels on Multielectrode-Arrays (Grade 1.7)

Supervisor: Prof. Dr. Wolfram Burgard

Teaching Experience

Dynamic Algorithm Configuration and Optimization

Seminar

10.2022 - 02.2023

Responsible for setting up the seminar. Jointly held with Prof. Frank Hutter and Dr. Noor Awad

Automated Machine Learning

Lab course

10.2022 - 02.2023

Responsible for setting up the lab course.	Jointly held with Prof. Frank Hutter and Rhea Sukthanker

Teaching Assistant. **Automated Machine Learning** (Flipped Classroom) Graduate course 04.2022 - 09.2022Creation and grading of exercises & final project. **Automated Machine Learning** Massive Open Online Course (MOOC) Graduate course Published 04.2021 Creation of coding exercises. Involved in setting up the MOOC **Automated Machine Learning** (Flipped Classroom) Graduate course, Virtual 04.2021 - 09.2021 Creation and grading of exercises & final project. Setting up online teaching through Zoom and GitHub classroom. **Automated Machine Learning** (Flipped Classroom) Graduate course, Virtual 04.2020 - 09.2020Creation and grading of exercises & final project. Setting up online teaching through Zoom and GitHub classroom. **Automated Machine Learning** Graduate course 04.2019 - 09.2019Creation and grading of exercises & final project Machine Learning for Automated Algorithm Design 10.2018 - 03.2019 Graduate course Creation and grading of exercises & final project Machine Learning for Automated Algorithm Design Graduate course 10.2017 - 03.2018 Creation and grading of exercises & final project Hardware-Labcourse Undergraduate course 04.2014 - 09.2014Assisting students with practical exercises Student Supervision **MSc Thesis** Baohe Zhang, Joint supervision with R. Rajan, Published at AISTATS'21 04.2020 - 10.2020On the Importance of Hyperparameter Optimization in Model-based Reinforcement Learning **MSc Project & Thesis** Gresa Shala, Published at PPSN'20 04.2019 - 05.2020Learning to Optimize CMA-ES **MSc Thesis** Furkan Bozkurt 03.2019 - 11.2019RL-DCBO: Reinforcement Learning Guided Dynamic Control for Bayesian Optimization Theresa Eimer, Follow up work published at ICML'21 12.2018 - 09.2019Improved Meta-Learning for Algorithm Control through Self-Paced Learning **MSc Thesis** Kevin Hättig 12.2018 - 09.2019 Model-Based Population Based Training MSc Thesis Oliver Brunner, Joint supervision with D. Speck at GKI-Freiburg 11.2018 - 04.2019

Learning Domain-Independent Heuristics with Deep Neural Networks

MSc Project

Theresa Eimer & Kevin Hättig

Algorithm State Description for Algorithm Control

04.2018 - 12.2018

- [1] A. Biedenkapp. "Dynamic Algorithm Configuration by Reinforcement Learning". Grade: Summa Cum Laude (best possible grade). PhD thesis. Freiburg, Germany: University of Freiburg, Department of Computer Science, Machine Learning Chair, Oct. 2022.
- [2] A. Biedenkapp. "Per Instance Algorithm Configuration". Grade: 1.0 (best possible grade). Master's Thesis. Freiburg, Germany: University of Freiburg, Department of Computer Science, Machine Learning Chair, 2017.
- A. Biedenkapp. "Data Analysis for the Selection of Recording Channels on Multielectrode-Arrays". Bachelor's Thesis. Freiburg, Germany: University of Freiburg, Department of Computer Science, Autonomous Intelligent Systems, Mar. 2014.

Journal & Conference Publications.....

- [4] A. Biedenkapp*, N. Dang*, M. S. Krejca*, F. Hutter, and C. Doerr. "Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration". In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'22). Joint first authorship, Conference Rating: A, Won the Best Paper Award (GECH track). ACM, July 2022.
- J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen, R. Calandra, A. Faust, F. Hutter, and M. Lindauer. "Automated Reinforcement Learning (AutoRL): A Survey and Open Problems". In: Journal of Artificial Intelligence Research (JAIR) 74 (2022). Journal Rating: A, pp. 517-568.
- M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, R. Sass, and F. Hutter. "SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization". In: Journal of Machine Learning Research (JMLR) - MLOSS 23.54 (2022). Journal Rating: A*, pp. 1-9.
- A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer. "TempoRL: Learning When to Act". In: Proceedings of the Thirty-eighth International Conference on Machine Learning. Acceptance rate: 21.5%, Conference Rating: A*. July 2021, pp. 914–924.
- T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer. "Self-Paced Context Evaluation for Contextual Reinforcement Learning". In: Proceedings of the Thirty-eighth International Conference on Machine Learning. Acceptance rate: 21.5%, Conference Rating: A*. July 2021, pp. 2948–2958.
- T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer. "DACBench: A Benchmark Library for Dynamic Algorithm Configuration". In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI'21). Acceptance rate: 19.3%, Conference Rating: A*. ijcai.org, Aug. 2021, pp. 1668-1674.
- [10] D. Speck*, A. Biedenkapp*, F. Hutter, R. Mattmüller, and M. Lindauer. "Learning Heuristic Selection with Dynamic Algorithm Configuration". In: Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS'21). Joint first authorship, Acceptance rate: ~30%, Conference Rating: A*. Aug. 2021, pp. 597–605.
- [11] B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, F. Hutter, and R. Calandra. "On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning". In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS'21). Acceptance rate: 29.8%, Conference Rating: A. Apr. 2021.
- [12] J. KH Franke, G. Köhler, A. Biedenkapp, and F. Hutter. "Sample-Efficient Automated Deep Reinforcement Learning". In: Proceedings of the International Conference on Learning Representations (ICLR'21). Published online: iclr.cc, Acceptance rate: 28.7%, Conference Rating: A*. May 2021.
- [13] G. Shala*, A. Biedenkapp*, N. Awad, S. Adriaensen, F. Hutter, and M. Lindauer. "Learning Step-Size Adaptation in CMA-ES". In: Proceedings of the Sixteenth International Conference on Parallel Problem Solving from Nature (PPSN'20). Joint first authorship, Conference Rating: A. Sept. 2020, pp. 691-706.

- [14] **A. Biedenkapp**, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. "Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework". In: *Proceedings of the European Conference on Artificial Intelligence (ECAI)*. Acceptance rate: 26.8%, Conference Rating: A. June 2020, pp. 427–434.
- [15] **A. Biedenkapp**, J. Marben, M. Lindauer, and F. Hutter. "CAVE: Configuration Assessment, Visualization and Evaluation". In: *Proceedings of the International Conference on Learning and Intelligent Optimization (LION'18)*. June 2018.
- [16] **A. Biedenkapp**, M. Lindauer, K. Eggensperger, C. Fawcett, H. Hoos, and F. Hutter. "Efficient Parameter Importance Analysis via Ablation with Surrogates". In: *Proceedings of the AAAI conference. Acceptance rate: 24.6%, Conference Rating: A**. Feb. 2017, pp. 773–779.

Workshop Publications & Preprints.

- [17] G. Shala, **A. Biedenkapp**, F. Hutter, and J. Grabocka. "Gray-Box Gaussian Processes for Automated Reinforcement Learning". In: *Workshop on Meta-Learning (MetaLearn@NeurIPS'22)*. 2022.
- [18] G. Shala, S. Pineda Arango, **A. Biedenkapp**, F. Hutter, and J. Grabocka. "AutoRL-Bench 1.0". In: Workshop on Meta-Learning (MetaLearn@NeurIPS'22). 2022.
- [19] R. Sass, E: Bergman, **A. Biedenkapp**, F. Hutter, and M. Lindauer. "DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning". In: *Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML@ICML'22)*. 2022.
- [20] **A. Biedenkapp**, D. Speck, S. Sievers, F. Hutter, M. Lindauer, and J. Seipp. "Learning Domain-Independent Policies for Open List Selection". In: *Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL@ICAPS'22)*. 2022.
- [21] C. Benjamins, T. Eimer, F. Schubert, **A. Biedenkapp**, B. Rosenhan, F. Hutter, and M. Lindauer. "CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning". In: *Workshop on Ecological Theory of Reinforcement Learning (EcoRL@NeurlPS'21)*. Sept. 2021.
- [22] S. Izquierdo, J. Guerrero-Viu, S. Hauns, G. Miotto, S. Schrodi, A. Biedenkapp, T. Elsken, D. Deng, M. Lindauer, and F. Hutter. "Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization". In: Workshop on Automated Machine Learning (AutoML@ICML'21). May 2021.
- [23] S. Müller, **A. Biedenkapp**, and F. Hutter. "In-Loop Meta-Learning with Gradient-Alignment Reward". In: *AAAI workshop on Meta-Learning Challenges (MetaLearning@AAAI'21)*. Feb. 2021.
- [24] N. Awad, G. Shala, D. Deng, N. Mallik, M. Feurer, K. Eggensperger, **A. Biedenkapp**, D. Vermetten, H. Wang, C. Doerr, M. Lindauer, and F. Hutter. "Squirrel: A Switching Hyperparameter Optimizer Description of the entry by AutoML.org & IOHprofiler to the NeurIPS 2020 BBO challenge". In: *arXiv*:2012.08180 (Dec. 2020). **Winning entry of the BBO Competition@NeurIPS'20 on a meta-learnable search space**.
- [25] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "Towards TempoRL: Learning When to Act". In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20). July 2020.
- [26] T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer. "Towards Self-Paced Context Evaluation for Contextual Reinforcement Learning". In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20). July 2020.
- [27] A. Biedenkapp, H. F. Bozkurt, F. Hutter, and M. Lindauer. "Towards White-Box Benchmarks for Algorithm Control". In: IJCAI 2019 DSO Workshop. Aug. 2019.
- [28] M. Lindauer, M. Feurer, K. Eggensperger, **A. Biedenkapp**, and F. Hutter. "Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters". In: *IJCAI 2019 DSO Workshop*. Aug. 2019.
- [29] S. Adriaensen, **A. Biedenkapp**, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter. "Automated Dynamic Algorithm Configuration". In: *arXiv*:2205.13881 [cs.AI] (2022). Under Review.

- [30] C. Benjamins, T. Eimer, F. Schubert, A. Mohan, **A. Biedenkapp**, B. Rosenhan, F. Hutter, and M. Lindauer. "Contextualize Me The Case for Context in Reinforcement Learning". In: *arXiv*:2202.04500 [cs.LG] (2022).
- [31] R. Rajan, J. L. B. Diaz, S. Guttikonda, F. Ferreira, **A. Biedenkapp**, and Frank Hutter. "MDP Playground: Controlling Dimensions of Hardness in Reinforcement Learning". In: *arXiv*:1909.07750v3 (Oct. 2020).
- [32] M. Lindauer, K. Eggensperger, M. Feurer, **A. Biedenkapp**, J. Marben, P. Müller, and F. Hutter. "BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters". In: *arXiv*:1908.06756 (Aug. 2019).

Blog Posts.

- [33] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "TempoRL Learning When to Act". In: *Personal Blog* (May 2022). URL: https://andrebiedenkapp.github.io/blog/2022/temporl/.
- [34] A. Biedenkapp, N. Dang, M. S. Krejca, F. Hutter, and C. Doerr. "Theory-Inspired Parameter Control Benchmarks for DAC". In: *Personal Blog* (May 2022). URL: https://andrebiedenkapp.github.io/blog/2022/gecco/.
- [35] N. Lambert, B. Zhang, R. Rajan, and **A. Biedenkapp**. "The Importance of Hyperparameter Optimization for Model-based Reinforcement Learning". In: https://bair.berkeley.edu/blog/2021/04/19/mbrl/. URL: https://bair.berkeley.edu/blog/2021/04/19/mbrl/.
- [36] R. Rajan, **A. Biedenkapp**, T. F. Runge, and J. Franke. "AutoRL: AutoML in the Realm of Deep Reinforcement Learning". In: https://www.automl.org/automl-blog (Apr. 2021). URL: https://www.automl.org/blog-autorl.
- [37] A. Biedenkapp. "Learning Step-Size Adaptation in CMA-ES". In: https://www.automl.org/automl-blog (Aug. 2020). URL: https://www.automl.org/learning-step-size-adaptation-in-cmaes.
- [38] **A. Biedenkapp**. "Dynamic Algorithm Configuration". In: https://www.automl.org/automl-blog (Feb. 2020). URL: https://www.automl.org/dynamic-algorithm-configuration.
- [39] **A. Biedenkapp** and F. Hutter. "BOHB". In: https://www.automl.org/automl-blog (Aug. 2018). URL: https://www.automl.org/blog_bohb.
- [40] **A. Biedenkapp**, K. Eggensperger, M. Feurer, and F. Hutter. "2nd AutoML Challenge". In: https://www.automl.org/automl-blog (Aug. 2018). URL: https://www.automl.org/blog-2nd-automl-challenge.

Patents

- [41] Biedenkapp, A., G. Shala, S. Adriaensen, N. Awad, M. Lindauer, and F. Hutter. "Method and Device for Learning a Strategy and for Implementing the Strategy". U.S. pat. req. 17/305,586. Robert Bosch GmbH. July 9, 2021. Filed.
- [42] S. Müller, **Biedenkapp**, **A.**, and F. Hutter. "Verbesserte Vorrichtung zum Anlernen von maschinellen Lernsysteme für Bildverarbeitung". German pat. DE202021100225. Robert Bosch GmbH. Feb. 12, 2021. URL: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE202021100225U1.
- [43] D. Speck, **Biedenkapp, A.**, R. Matmüller, F. Hutter, and M. Lindauer. "Device and Method for Planning and Operation of a Technical System". U.S. pat. req. 17/242,790. Robert Bosch GmbH. Apr. 28, 2021. Filed.
- [44] D. Speck, **Biedenkapp, A.**, R. Matmüller, F. Hutter, and M. Lindauer. "Device and Method for Planning and Operation of a Technical System". European pat. req. EP20178576.3 1203. Robert Bosch GmbH. *Also filed requests for US patent and CN patent*. June 1, 2020. URL: http://v3.espacenet.com/textdoc?IDX=EP3920103. Filed.

[45] **Biedenkapp, A.**, H. F. Bozkurt, F. Hutter, and M. Lindauer. "Method, Device and Computer Program for Adjusting a Hyperparameter". European pat. req. EP3748551. Robert Bosch GmbH. June 11, 2020. URL: http://v3.espacenet.com/textdoc?IDX=EP3748551. Filed.

Presentations

Invited Talks & Competitively-Selected Tutorials	
Learning to Dynamically Optimise Algorithms Seminar on Advances in Probabilistic Machine Learning, Aalto University Helsin	ki, Finland (online) 11.2022
Dynamic Algorithm Configuration	00.0000
ELLIS Meetup Freiburg, Freiburg, Germany	03.2022
Advances of Dynamic Algorithm Configuration Bosch Center for Artificial Intelligence, Renningen, Germany	06.2021
	00.2021
Algorithm Configuration: Challenges, Methods and Perspectives IJCAI 2020 Tutorial Jointly with Prof. Marius Lindauer	01.2021
Algorithm Configuration: Challenges, Methods and Perspectives	
PPSN 2020 Tutorial Jointly with Prof. Marius Lindauer	09.2020
Challenges of Dynamic Algorithm Configuration	
Bosch Center for Artificial Intelligence, Renningen, Germany	03.2020
Dynamic Algorithm Configuration	
Institut für Informationsverarbeitung (TNT), University of Hannover	01.2020
Conference Presentations.	
The Genetic and Evolutionary Computation Conference	Online
GECCO (Oral, Joint video presentation with all authors)	07.2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration International Conference on Machine Learning	Online
ICML (Poster)	07.2021
TempoRL: Learning When to Act	
International Conference on Parallel Problem Solving from Nature	Leiden
PPSN (Poster), Netherlands Learning Step-SizeAdaptation in CMA-ES	08.2020
European Conference on Artificial Intelligence	Santiago de Compostela
ECAI (Oral), Spain	08.2020
Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework	
Learning and Intelligent OptimizatioN Conference	Kalamata 06.2018
LION (Oral), Greece CAVE: Configuration Assessment, Visualization and Evaluation	00.2016
AAAI Conference on Artificial Intelligence	San Francisco
AAAI (Poster), California, USA	02.2017
Efficient Parameter Importance Analysis via Ablation with Surrogates	
Workshop Presentations.	
Bridging the Gap Between Al Planning and Reinforcement Learning PRL@ICAPS'22	Online
Learning Domain-Independent Policies for Open List Selection	06.2022
Inductive Biases, Invariances and Generalization in Reinforcement Learning	ng Online
BIG@ICML'20	
Towards TempoRL: Learning When to Act	07.2020

DSO@IJCAI'19, Macau (SAR), China 08.2019 Towards White-box Benchmarks for Algorithm Control Scholarships, Honors and Awards **Best Paper Award** GECCO'22, Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration 2022 **GECH Track** Best Reviewers (Top 10%) 2021 ICML'21 Black-Box Optimization Competition@NeurIPS'20 1st place Part of the AutoML & IOHprofiler Team, 1st place on a meta-learning friendly search space 2020 Leaderboard: https://bbochallenge.com/altleaderboard Black-Box Optimization Competiton@NeurIPS'20 3rd place* Part of the AutoML & IOH profiler Team, Leaderboard: https://bbochallenge.com/leaderboard 2020 *Due to a bug the initial evaluation failed. After re-evaluation our team would have gotten the third place. **Professional Service** Journal Reviewing. Journal of Artificial Intelligence Research **JAIR TEVC IEEE Transactions on Evolutionary Computation** 2022 CI **Computational Intelligence** 2022 **Journal of the Association for Computing Machinery** Journal of the ACM 2022, 2021 Program Committee Membership at Conferences **AAAI Conference on Artificial Intelligence** AAAI 2018 **AutoML Conference** AutoML-Conf **European Conference on Artificial Intelligence ECAI EWRL European Workshop on Reinforcement Learning** 2022 **ICML International Conference on Machine Learning** 2021, 2019 **NeurIPS Neural Information Processing Systems** 2022, 2021 **NeurIPS DBT NeurIPS Datasets and Benchmarks** 2021 (Track 1 & Track 2) Program Committee Membership at Workshops.... ICLR Workshop on Agent Learning in Open-Endedness ALOE

Data Science Meets Optimisation

2022

Macau

ICML Workshop on Automated Machine Learning

2021, 2020, 2019, 2018

NeurIPS Workshop on Meta-Learning

MetaLearn@NeurIPS

AutoML@ICML

2019

Organizer.....

COSEAL Chair

since August 2022, Jointly with Alexander Tornede and Lennart Schäpermeier

2nd AutoML Fall School

2022, Co-Organiser

ELLIS Unit Meetups Freiburg

since July 2022, Co-Organiser with Simon Ging

Programming Skills

Excellent: Python, Bash, LATEX

Good: C, C#, C++ **Basic**: Matlab, Java

Selected Open-Source Projects

GitHub Page: https://github.com/AndreBiedenkapp

https://github.com/automl/DAC

DAC

Role: Developer

DAC is the first dynamic algorithm configurator which enables configuration not only to specific problem instances but also at each time-step. To gain insights into the strengths and weaknesses of this reinforcement learning based configurator DAC comes with example white-box benchmarks.

https://github.com/automl/DACBench

DACBench

Role: Contributor

DACBench is a benchmark library for Dynamic Algorithm Configuration. Its focus is on reproducibility and comparability of different DAC methods as well as easy analysis of the optimization process.

https://github.com/automl/ParameterImportance

PyImp

Role: Developer

PyImp is an easy to use tool that helps developers to identify the most important parameters of their algorithms. Given the data of a configuration run with SMAC3, PyImp allows for usage of various parameter importance methods to determine which parameters have the most influence on the algorithms behaviour.

https://github.com/automl/SMAC3

SMAC3

Former Role: Contributor

Python implementation of SMAC (sequential model-based algorithm configuration). SMAC is a tool for automated algorithm configuration.

Languages

Native: German Fluent: English Basic: French