ตัวอย่างการคำนวณ W สำหรับ logistic regression (multi-class) ด้วย gradient descent

	\mathbf{x}_1	\mathbf{x}_2	У
Data =	0	1	1
	1	0	2
	-1	0	3
	0	-1	4

ซึ่งสามารถแปลงให้อยู่ในรูปแบบที่พร้อมคำนวณได้ดังนี้

	\mathbf{x}_1	\mathbf{x}_2	1	2	3	4
	0	1				
Data =	1	0				
	-1	0				
	0	-1				

กำหนดให้
$$\mathbf{w}=egin{bmatrix} w_{0,1} & w_{0,2} & w_{0,3} & w_{0,4} \\ w_{1,1} & w_{1,2} & w_{1,3} & w_{1,4} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,4} \end{bmatrix}=egin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

กำหนด epoch=3

กำหนด $\alpha=2.5$

จากข้อมูล Data เราสามารถเขียน X,Y และ X_b ได้ดังต่อไปนี้

$$X = \left[egin{array}{c} X = \left[egin{array}{c} X_b = \left[egin{array}{$$

epoch = 1

คำนวณ Z

$$Z = \left[\begin{array}{c} \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \\ \end{array} \right]$$

คำนวณ \hat{Y}

$$\hat{Y} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

คำนวณ ${\cal W}$

 $\underline{epoch = 2}$

คำนวณ ${\it Z}$

$$Z = \left[\begin{array}{c} \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \end{array} \right]$$

คำนวณ \hat{Y}

$$\hat{Y} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} = \begin{bmatrix} & & \\ & & & \\ & & & \end{bmatrix}$$

คำนวณ ${\it W}$

 $\underline{epoch = 3}$

คำนวณ Z

$$Z = \left[\begin{array}{c} \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \end{array} \right]$$

คำนวณ \hat{Y}

$$\hat{Y} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

คำนวณ W

$$W = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \begin{pmatrix} \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} - \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} - \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

ดังนั้น เราจะได้ $w_{0,1}=\dots,w_{0,2}=\dots,w_{0,3}=\dots$ และ $w_{0,4}=\dots$ $w_{1,1}=\dots,w_{1,2}=\dots,w_{1,3}=\dots$ และ $w_{1,4}=\dots$ $w_{2,1}=\dots,w_{2,2}=\dots,w_{2,3}=\dots$ และ $w_{2,4}=\dots$

ซึ่งสามารถเขียนเป็น model ของ logistic regression สำหรับข้อมูลชุดนี้ได้ดังนี้

z_1	=	••••	• • • • •	••••	• • • • • •	•••••	••••	 •••••	 •••••	•••••		•••••	• • • • • •	•••••	••••
z_2	=						••••	 	 						••••
z_3	=		•••••				••••	 	 						
z_4	=						••••	 	 						
\hat{y}_1	=	••••	• • • • •		•••••		••••	 	 •••••	•••••	• • • • • • •	•••••		•••••	••••
\hat{y}_2	=							 	 						

 $\hat{y}_3 = \dots$

 $\hat{y}_4 = \dots$