Module 4: Metric Spaces and Sequences II

- 1. Find the closure, interior, and boundary of the following sets using Euclidean distance:
 - (i) $\{(x,y) \in \mathbb{R}^2 : y < x^2\} \subseteq \mathbb{R}^2$
- (ii) $[0,1) \times [0,1) \subseteq \mathbb{R}^2$
- (iii) $\{0\} \cup \{1/n \colon n \in \mathbb{N}\} \subseteq \mathbb{R}$

2. Prove the following: Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space (X,d) that converges to a point $x\in X$. Then x is unique.

- 3. Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be sequences in \mathbb{R} such that $x_n\to x$ and and $y_n\to y$, with $\alpha,x,y,\in\mathbb{R}$.
 - (i) Show that $\alpha x_n \to \alpha x$.
 - (i) Show that $x_n + y_n \to x + y$.

4. Show that discrete metric spaces (i.e. those with the metric defined as define $d: X \times X \to \mathbb{R}$ by d(x, x) = 0 and d(x, y) = 1 for $x \neq y \in X$) are complete.

5. Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. Prove that

f is Lipschitz continuous $\,\Rightarrow f$ is uniformly continuous $\,\Rightarrow f$ is continuous.

Provide examples to show that the other directions do not hold.

6. Show that the function $f(x) = \frac{1}{2}(x + \frac{5}{x})$ has a unique fixed point on $(0, \infty)$. What is it? (Hint: you will have to restrict the interval.)