Projekt 1

Mikołaj Piórczyński, grupa $3\,$

10 grudnia 2021

Spis treści

\mathbf{Sp}	is treści	1
1	Temat i treść zadania	2
2	Opis metody2.1 Ogólna metoda	2 2 3
3	Opis programu obliczeniowego 3.1 tmquad2d(f, xmin, xmax, ymin, ymax, nx, ny)	4 4
4	Przykłady obliczeniowe	5
	4.1 Przykład nr. 1	5 6
	4.3 Przykład nr. 3	6
	4.4 Przykład nr. 4	7
	4.5 Przykład nr. 5	7
	4.6 Przykład nr. 6	7 8
	4.8 Przykład nr. 8	8
	4.9 Przykład nr. 9	9
	4.10 Przykład nr. 10	9
5	Analiza wyników obliczeniowych	10

1 Temat i treść zadania

Obliczanie całek $\iint_D f(x,y) dx dy$, gdzie $D = [a,b] \times [c,d]$ złożoną kwadraturą trapezów ze względu na zmienną x oraz złożoną kwadraturą prostokątów (z punktem środkowym) ze względu na zmienną y.

2 Opis metody

Niech $f:[a,b]\times[c,d]\to\mathbb{R}$ będzie pewną funkcją całkowalną. Chcemy obliczyć numerycznie wartość całki

$$\iint_{D} f(x, y) dx dy, \quad \text{gdzie} \quad D = [a, b] \times [c, d], \tag{1}$$

dla pewnych $a, b, c, d \in \mathbb{R}$.

Zaimplementowany w programie sposób przybliżonego obliczenia całki 1 wykorzystuje dane dwie kwadratury dla funkcji jednej zmiennej i polega na zastosowaniu jednej z nich względem zmiennej x, a drugiej względem zmiennej y. Zastosowana metoda najpierw w przypadku ogólnym, a następnie w szczególnym została omówiona poniżej.

2.1 Ogólna metoda

Załóżmy, że dysponujemy dwiema kwadraturami S_1 i S_2 względem jednej zmiennej:

$$S_1(g_1) = \sum_{i=0}^n A_i g_1(x_i) \approx \int_a^b g_1(x) dx$$

$$S_2(g_2) = \sum_{j=0}^m B_j g_2(y_j) \approx \int_c^d g_2(y) \, dy$$

Stosując kwadraturę S_1 do f ze względu na zmienną x otrzymamy

$$S_1(f)(y) = \sum_{i=0}^{n} A_i f(x_i, y)$$

Jest to funkcja zależna od zmiennej y. Stosując teraz kwadraturę S_2 do $S_1(f)$ otrzymamy:

$$S_2(S_1(f)) = \sum_{j=0}^m B_j S_1(f)(y_j) = \sum_{j=0}^m B_j \left(\sum_{i=0}^n A_i f(x_i, y_j) \right) = \sum_{i=0}^n \sum_{j=0}^m A_i B_j f(x_i, y_j)$$

Oznaczmy otrzymaną kwadraturę przez S(f). Ma ona postać:

$$S(f) = \sum_{i=0}^{n} \sum_{j=0}^{m} C_{ij} f(x_i, y_j),$$

gdzie $C_{ij} = A_i B_j$, dla i = 0, 1, ..., n, j = 0, 1, ..., m. Widzimy, zatem, że mając współczynniki kwadratur dla funkcji jednej zmiennej w łatwy sposób otrzymujemy współczynniki kwadratury dla funkcji dwóch zmiennych.

2.2 Zastosowana metoda

W naszym przypadku kwadratura S_1 jest złożoną kwadraturą trapezów, natomiast kwadratura S_2 złożoną kwadraturą prostokątów (z punktem środkowym). Zatem:

$$S_1(g_1) = \frac{H_1}{2} \left(g_1(a) + g_1(b) + 2 \sum_{i=1}^{n-1} g_1(a+iH_1) \right),$$

gdzie $H_1 = \frac{b-a}{n}$, a $g_1 : [a, b] \to \mathbb{R}$ oraz

$$S_2(g_2) = H_2 \sum_{j=0}^{m-1} g_2 \left(c + jH_2 + \frac{H_2}{2} \right),$$

gdzie $H_2 = \frac{d-c}{m}$, a $g_2 : [c,d] \to \mathbb{R}$.

Oznaczmy przez A oraz B, odpowiednio wektor wszystkich współczynników kwadratury S_1 oraz wektor wszystkich współczynników kwadratury S_2 , tj.

$$A = \frac{H_1}{2} \begin{pmatrix} 1\\2\\\vdots\\2\\1 \end{pmatrix}, \quad B = H_2 \begin{pmatrix} 1\\1\\\vdots\\1\\1 \end{pmatrix}$$

Zauważmy, że $A \in \mathbb{R}^{n+1}$ oraz $B \in \mathbb{R}^m$. Współczynniki C_{ij} kwadratury będącej złożeniem kwadratur S_1 i S_2 są iloczynami współczynników kwadratur składowych, zatem można je zapisać w macierz $C \in \mathbb{R}^{(n+1)\times m}$, postaci:

$$C = AB^{T} = \frac{H_{1}H_{2}}{2} \begin{pmatrix} 1 & 1 & \dots & 1 & 1 \\ 2 & 2 & \dots & 2 & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & \dots & 2 & 2 \\ 1 & 1 & \dots & 1 & 1 \end{pmatrix}$$

Na mocy powyższego zaimplementowany w programie algorytm przedstawia się następująco:

- 1) Tworzymy macierz C współczynników kwadratury.
- 2) Obliczamy wartość funkcji podcałkowej f w węzłach (x_i, y_j) , gdzie $x_i = a+iH_1, y_j = c+jH_2+\frac{H_2}{2}$ dla i=0,1,...,n, j=0,1,...,m-1. Wartości te umieszczamy w macierzy $W \in \mathbb{R}^{(n+1)\times m}$, tak że wartość funkcji w każdym z węzłów oraz odpowiadający jej współczynnik kwadratury znajdują się w miejscach o tych samych indeksach odpowiednio macierzy W oraz C.
- 3) Obliczamy wartość kwadratury $S(f) = \sum_{i=0}^{n} \sum_{j=0}^{m-1} C_{ij} f(x_i, y_j)$, mnożąc ze sobą w zwektoryzowany sposób macierze C i W, a następnie sumując wszystkie wyrazy tak otrzymanej macierzy.

3 Opis programu obliczeniowego

Na program obliczeniowy składa się z następująca funkcja:

3.1 tmquad2d(f, xmin, xmax, ymin, ymax, nx, ny)

Funkcja numerycznie oblicza całkę podwójną z funkcji z = f(x, y) na prostokątnym obszarze $xmin \le x \le xmax$, $ymin \le y \le ymax$ złożoną kwadraturą trapezów ze względu na zmienną x oraz złożoną kwadraturą prostokątów (z punktem środkowym) ze względu na zmienną y.

Funkcja przyjmuje:

• f - funkcja do scałkowania

- \bullet xmin, xmax granice całkowania po zmiennej x
- ymin, ymax granice całkowania po zmiennej y
- nx liczba podprzedziałów na osi X, domyślna wartość to 100
- ny liczba podprzedziałów na osi Y, domyślna wartość to 100

Funkcja zwraca:

• q - obliczona wartość całki

Przykład:

Złożoność obliczeniowa (na którą składa się w głównej mierze złożoność pamięciowa) funkcji, przy założeniu $n = nx \approx ny$ jest rzędu $O(n^2)$.

4 Przykłady obliczeniowe

W poniższym rozdziałe przedstawione zostały wyniki działania algorytmu dla 10 różnych przykładów obliczeniowych, przy różnym doborze liczby węzłów interpolacyjnych kwadratury. Wszystkie wartości dokładne przedstawione w raporcie zostały obliczone z wykorzystaniem programu WolframAlpha¹.

4.1 Przykład nr. 1

$$f(x,y)=1 \quad \mathrm{dla} \quad D=[-1,1]\times[-1,1]$$

¹https://www.wolframalpha.com/

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	4	0
nx, ny = 10	4.0000000000000003	2.664535259100376e-15
nx, ny = 100	3.999999999999821	1.794120407794253e-13
nx, ny = 1000	4.0000000000000046	$4.618527782440651\mathrm{e}\text{-}14$
Wartość dokładna	4	

Tablica 1: Wyniki metody dla przykładu nr. 1

4.2 Przykład nr. 2

$$f(x,y) = x + y$$
 dla $D = [-1,1] \times [-1,1]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	0	0
nx, ny = 10	-5.551115123125783e-17	5.551115123125783e-17
nx, ny = 100	3.469446951953614e-18	3.469446951953614e-18
nx, ny = 1000	$-4.440892098500626 \mathrm{e}\text{-}16$	$4.440892098500626 \mathrm{e}\text{-}16$
Wartość dokładna	0	

Tablica 2: Wyniki metody dla przykładu nr. 2

4.3 Przykład nr. 3

$$f(x,y) = xy \quad \text{dla} \quad D = [-1,1] \times [-1,1]$$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	0	0
nx, ny = 10	1.734723475976807e-18	1.734723475976807e-18
nx, ny = 100	5.881796785733862e-18	5.881796785733862e-18
nx, ny = 1000	1.831708748437424e-19	1.831708748437424e-19
Wartość dokładna	0	

Tablica 3: Wyniki metody dla przykładu nr. 3

4.4 Przykład nr. 4

$$f(x,y) = x^2 + y^2$$
 dla $D = [-1,1] \times [-1,1]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	4	1.333333333333333
nx, ny = 2	3	0.3333333333333333
nx, ny = 5	2.72000000000000002	0.053333333333333
nx, ny = 10	2.6800000000000001	0.013333333333333
nx, ny = 100	2.66679999999999999999999999999999999999	1.333333333328746e-04
nx, ny = 1000	2.6666680000000000	$1.3333333333519704 \mathrm{e}\text{-}06$
Wartość dokładna	$\frac{8}{3}$	

Tablica 4: Wyniki metody dla przykładu nr. 4

4.5 Przykład nr. 5

$$f(x,y) = x^4 y^5$$
 dla $D = [-1,1] \times [-1,1]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	0	0
nx, ny = 10	0	0
nx, ny = 100	5.204170427930421e-18	5.204170427930421e-18
nx, ny = 1000	9.564168112898914 e-20	$9.564168112898914 \mathrm{e}\text{-}20$
Wartość dokładna	0	

Tablica 5: Wyniki metody dla przykładu nr. 5

4.6 Przykład nr. 6

$$f(x,y) = \frac{1}{x^2 + y^2}$$
 dla $D = [-1,1] \times [-1,1]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	4	_
nx, ny = 10	19.912865799580210	_
nx, ny = 100	34.388929609089189	_
nx, ny = 1000	48.856583271341734	_
Wartość dokładna	∞	

Tablica 6: Wyniki metody dla przykładu nr. 6

4.7 Przykład nr. 7

$$f(x,y) = \cos x \cos y$$
 dla $D = [-\pi, \pi] \times [-\pi, \pi]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	-39.478417604357432	39.478417604357432
nx, ny = 2	0	0
nx, ny = 10	7.117994740824203e-17	7.117994740824203e-17
nx, ny = 100	-2.970713952610282e-17	2.970713952610282e-17
nx, ny = 1000	$1.517883041479706\mathrm{e}\text{-}17$	1.517883041479706e-17
Wartość dokładna	0	

Tablica 7: Wyniki metody dla przykładu nr. 7

4.8 Przykład nr. 8

$$f(x,y) = \cos x^7 \sin y^9$$
 dla $D = [-\pi, \pi] \times [-\pi, \pi]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	0	0
nx, ny = 10	-2.775557561562891e-17	2.775557561562891e-17
nx, ny = 100	$4.298762511277634 \mathrm{e}\text{-}18$	$4.298762511277634 \mathrm{e}\text{-}18$
nx, ny = 1000	$1.474514954580286\mathrm{e}\text{-}17$	$1.474514954580286\mathrm{e}\text{-}17$
Wartość dokładna	0	

Tablica 8: Wyniki metody dla przykładu nr. 8

4.9 Przykład nr. 9

$$f(x,y) = \ln(x+y) \quad \text{dla} \quad D = [0,1] \times [0,1]$$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	-0.143841036225890	0.030135397345781
nx, ny = 10	-0.114915168575824	0.001209529695715
nx, ny = 100	-0.113727321983697	2.168310358727221 e-05
nx, ny = 1000	-0.113705951651559	3.127714496842238e-07
Wartość dokładna	$\ln 4 - \frac{3}{2}$	

Tablica 9: Wyniki metody dla przykładu nr. 9

4.10 Przykład nr. 10

$$f(x,y) = e^{x+y}$$
 dla $D = [-1,1] \times [-1,1]$

Liczba podprzedziałów	Obliczona wartość	Błąd bezwzględny
nx, ny = 1	6.172322539260976	0.647931157093711
nx, ny = 10	5.533566532072369	0.009175149905104
nx, ny = 100	5.524483452134464	9.206996719957061e-05
nx, ny = 1000	5.524392302898836	$9.207315718740006\mathrm{e}\text{-}07$
Wartość dokładna	$-2 + \frac{1}{e^2} + e^2$	

Tablica 10: Wyniki metody dla przykładu nr. 10

5 Analiza wyników obliczeniowych

Widzimy, że w większości przypadków metoda sprawdza się "dobrze"już dla niewielkiej liczby węzłów interpolacyjnych tj. wyniki w znacznej części nie odbiegają względem dokładnej wartości całki o wartość epislona maszynowego, wynoszącego w programie MATLAB:

$$eps = 2.220446049250313e - 16.$$

Warto jednak zwrócić uwagę na przykłady, dla których przybliżenia otrzymane dla małej liczby węzłów interpolacyjnych nie są "wystarczająco dobre", tj. przykłady nr. 4, 9 oraz 10. Błąd bezwzględny otrzymanych wyników znacznie przewyższa tolerancję rzędu 1e–12, jednak wraz ze wzrostem liczby węzłów interpolacyjnych otrzymywany błąd bezwzględny przybliżenia zbiega do zera.

Ciekawym wynikiem jest ten uzyskany w przykładzie nr. 6, w którym pomimo, że obliczana całka nie zbiega, program zwraca skończoną wartość, co może wynikać z faktu, że w punkcie osobliwym algorytm nie interpoluje funkcji podcałkowej.

Warto również zwrócić uwagę na wynik uzyskany w przykładzie nr. 7 dla jednego podprzedziału, który znacząco odbiega od dokładnej wartości całki. Natomiast dla dwóch i większej liczby podprzedziałów otrzymany wynik jest dokładny lub w granicach precyzji arytmetyki zmiennopozycyjnej.

Kolejnym interesującym zjawiskiem ujawniającym się w działaniu algorytmu są oscylacje błędu bezwzględnego wyniku algorytmu w zależności od liczby podprzedziałów wykorzystywanych w kwadraturze rzędu wartości epsilona maszynowego, wynikające zapewne z błędów reprezentacji liczb zmiennopozycyjnych w w pamięci komputera. Na rys. 1 oraz 2 przedstawiono to zjawisko dla wybranych przykładów obliczeniowych. W każdym z nich przyjmowano taką samą liczbę węzłów interpolacyjnych względem zmiennej x co zmiennej y.

Rysunek 1: Wykres błędu bezwzględnego wyniku działania algorytmu od wykorzystywanej liczby podprzedziałów kwadratury dla przykładu obliczeniowego nr. 1

Rysunek 2: Wykres błędu bezwzględnego wyniku działania algorytmu od wykorzystywanej liczby podprzedziałów kwadratury dla przykładu obliczeniowego nr. 8