AMERICAN

COURSE CE 3 305 SHEET | OF 3

8.4 DETERMINE WHICH OF FOLLOWING ARE DIMENSIONALLY HOMOGENEOUS. DIMENSIONLESS a) Q== = CLV29 H3/2 DIMENSIONAL HOMOGENEOUS MEANS [#] = [#] $\begin{bmatrix} \frac{2}{7} \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} \frac{1}{7} \end{bmatrix} \begin{bmatrix} \frac{1}{7$ Homobeneous 6) V = 1.49 AR 2435 1/2 [=] = [4] " [4] = [4] " = [4] " = [4] " = [4] NOT-HOMOGENEOUS c) hf = $f = \frac{L}{D} \frac{V^2}{Z_q}$ CONSTANT $\begin{bmatrix} L \end{bmatrix} = \underbrace{\begin{bmatrix} L \end{bmatrix}}_{L} \begin{bmatrix} \frac{1}{2} \end{bmatrix}^2 = \underbrace{\begin{bmatrix} L \end{bmatrix}^2}_{L} \begin{bmatrix} \frac{1}{2} \end{bmatrix}^2 = \underbrace{\begin{bmatrix} L \end{bmatrix}}_{L} \begin{bmatrix} \frac{1}{2} \end{bmatrix}^2 = \underbrace{\begin{bmatrix}$ Homo GENEOUS $\begin{bmatrix} ML \\ T^2 \end{bmatrix} = \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} L \end{bmatrix} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}^* = \underbrace{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}}_{\begin{bmatrix} L^3 \end{bmatrix}} \begin{bmatrix} L \end{bmatrix}^2 = \underbrace{\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}}_{\begin{bmatrix} T^2 \end{bmatrix}}$ HOMOGENERUS

i) ID SIGNIFICANT VARIABLES

Ah, d, D, y, g, t, h,

-h-h (SO REALLY SUPPOSATE

Ah = h, -h2 (SO REALLY SURROGATE)
FOR h2

EXPRESS AS FUNCTIONAL RELATION

2) II- GROUPS:

7 VARIABLES

3 FUNDAMENTAL DIMENSIONS L, M, T

Druge By I Sert I I I I

COMBINE VARI

combine variable(b) To Euminate Dimension

> d, d, d EARY 3-TT GROUPS.

t T t T

69d2/2 MT2 = 1

GET FOURTH COMPOUND

p,t,g

4) EXPRESS RESULT AS CORRELATION FUNCTION

$$\frac{q}{7} = f\left(\frac{q}{D}, \frac{q}{3t_5}, \frac{q}{h'}\right)$$

- 8.12) CENTRIFUGAL PUMP AP 13 KNOWN TO BE FUNCTION OF IMPELLER DIAMETER D, ANGULAR SPEED N, DISCHARGE Q, AND DENSITY G. FIND 11- GROUPS REATING THESE VARIABLES.
 - 1) IDENTIFY ALL GIGNIFICANT VARIABLES EXPRESS
 AS FUNCTIONAL RELATION $\Delta p = \int (D, n, Q, \phi)$
 - 2) IT-GROUPS

 5 VARIABLES

 3 DIMENSIONS

 5-3 = 2 IT-GROUPS

3) SET-UP TABLE						
4	MLTZ	Dda	M T2	APP PD3	<u>1</u> T2	AbD T2
D	L	D 1	= 1	PU		φ D ⁸ n ² T ²
n	+					
Q	上十	3 D3	1	nq	T-1	COMBINE VARIABLES TO EUMWATE
p			T	D3	T=1	DIMENSION
	M 13	6D3	M			

4) EXPRESS RESULT AS CORRELATION

$$\frac{\Phi D_3 N_5}{\Phi D_0} = \frac{1}{2} \left(\frac{D_3}{u \delta} \right)$$
 Simplified to
$$\frac{\Phi D_5 U_5}{\Phi D_0} = \frac{1}{2} \left(\frac{D_3}{u \delta} \right)$$