MA2C03: ASSIGNMENT 1SOLUTIONS

1) For any sets A and B, define $A \Delta B$, the **symmetric difference** of A and B to be the set $(A - B) \cup (B - A)$. Prove that intersection \cap distributes over $\Delta : A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$ for all sets A, B, and C using the proof methods employed in lecture. Venn diagrams, truth tables, or diagrams for simplifying statements in Boolean algebra such as Veitch diagrams are **NOT** acceptable and will not be awarded any credit.

Solution: Before we begin, let us recall several useful statements from set theory:

- (1) For any D, E sets, $D \setminus E = D \cap E^c$, where E^c is the complement of E.
- (2) For any D, E, and F sets, \cap distributes over \cup , namely $D \cap (E \cup F) = (D \cap E) \cup (D \cap F)$.
- (3) For any set $D, D \cap D^c = \emptyset$.
- (4) For any D, E sets, $(D \cap E)^c = D^c \cup E^c$ (one of the de Morgan laws in set theory).

We will reduce the left-hand side to a certain expression, then prove that the right-hand side equals the same expression.

$$A \cap (B \Delta C) = A \cap [(B \setminus C) \cup (C \setminus B)] = A \cap [(B \cap C^c) \cup (C \cap B^c)]$$
$$= (A \cap B \cap C^c) \cup (A \cap C \cap B^c).$$

We have used the definition of Δ for the first equality, statement (1) for the second, and statement (2) plus the associativity of \cap proven in lecture for the third equality.

$$(A \cap B) \Delta (A \cap C) = [(A \cap B) \setminus (A \cap C)] \cup [(A \cap C) \setminus (A \cap B)]$$

$$= [(A \cap B) \cap (A \cap C)^{c}] \cup [(A \cap C) \cap (A \cap B)^{c}]$$

$$= [(A \cap B) \cap (A^{c} \cup C^{c})] \cup [(A \cap C) \cap (A^{c} \cup B^{c})]$$

$$= [(A \cap B \cap A^{c}) \cup (A \cap B \cap C^{c})] \cup [(A \cap C \cap A^{c}) \cup (A \cap C \cap B^{c})]$$

$$= (A \cap B \cap C^{c}) \cup (A \cap C \cap B^{c}).$$

We have used the definition of Δ for the first equality, statement (1) for the second, statement (4) for the third and statement (2) plus the

associativity of \cap proven in lecture for the fourth equality, and finally statement (3) to conclude $A \cap C \cap A^c = \emptyset$ and $A \cap C \cap A^c = \emptyset$ in the fifth equality. By the way, recall that we proved in lecture that \emptyset is the identity element for the binary operation \cup .

We have thus shown that

$$A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C) = (A \cap B \cap C^c) \cup (A \cap C \cap B^c).$$

Grading rubric: 10 points total, 5 points for each of the directions if the statement is proven by inclusion in both directions. If the statement is proven as above by bringing the left-hand side and the right-hand side to the same expression, then 5 points for bringing each of the two sides to the same expression.

- 2) Let \mathbb{R} be the set of real numbers. For $x, y \in \mathbb{R}$, $x \sim y$ iff $x y \in \mathbb{Q}$, i.e., if the difference x y is a rational number. Determine:
 - (i) Whether or not the relation \sim is reflexive;
 - (ii) Whether or not the relation \sim is *symmetric*;
- (iii) Whether or not the relation \sim is anti-symmetric;
- (iv) Whether or not the relation \sim is *transitive*;
- (v) Whether or not the relation \sim is an equivalence relation;
- (vi) Whether or not the relation \sim is a partial order.

Justify your answers.

Solution: Here it helps to remember that $(\mathbb{Q}, +, 0)$ is a group.

- (i) \sim is reflexive because for all $x \in \mathbb{R}$, $x x = 0 \in \mathbb{Q}$.
- (ii) \sim is symmetric because if $x \sim y$, then $x y = q \in \mathbb{Q}$, so $y x = -q \in \mathbb{Q}$, which means $y \sim x$.
- (iii) \sim is not anti-symmetric. **Counterexample:** Let x=1 and y=0. Then $x-y=1-0=1\in\mathbb{Q}$, so $x\sim y$, while $y-x=-1\in\mathbb{Q}$, so $y\sim x$ also holds. Clearly, $x\neq y$.
- (iv) \sim is transitive because for any $x, y, z \in \mathbb{R}$, if $x \sim y$ and $y \sim z$, then $x y = p \in \mathbb{Q}$ and $y z = q \in \mathbb{Q}$, which implies $x z = (x y) (y z) = p q \in \mathbb{Q}$.
- (v) \sim is an equivalence relation because it is reflexive, symmetric, and transitive.
- (vi) \sim is not a partial order because it fails to be anti-symmetric as we saw above.

Grading rubric: 10 points total, (i)-(iv) are 2 points each with 1 point for the answer and 1 point for the justification, while (v) and (vi) are 1 point each.

3) Let A be a set, and let $\mathcal{A} = \{A_{\alpha} \mid \alpha \in I\}$, where I is an indexing set, be any partition of the set A. Define a relation R on A as follows: $x, y \in A$ satisfy xRy iff $x, y \in A_{\alpha}$ for some $\alpha \in I$. In other words, xRy iff x and y belong to the same set of the partition. Prove that R is an equivalence relation and that the partition R defines on A is precisely the given partition A. (Hint: Recall we discussed in lecture the one-to-one correspondence between partitions and equivalence relations, and this is the proof direction I sketched in lecture without providing the details.)

Solution: First, let us prove R is an equivalence relation:

Reflexivity: For any $x \in A$, since $A = \{A_{\alpha} \mid \alpha \in I\}$ is a partition of A, there exists $\alpha \in I$ such that $x \in A_{\alpha}$. The element x is in the same set A_{α} as itself, so xRx.

Symmetry: If xRy, then by definition $x, y \in A_{\alpha}$ for some $\alpha \in I$, i.e., x and y belong to the same set of the partition. Therefore, yRx holds as well.

Transitivity: If xRy, then by definition $x, y \in A_{\alpha}$ for some $\alpha \in I$. If yRz, then z belongs to the same set of the partition as y, namely $z \in A_{\alpha}$ for the same α . Thus, $x, y, z \in A_{\alpha}$, which means xRz holds as well.

The partition determined by R is exactly A: If $x \in A_{\alpha}$, then the equivalence class of x given by $[x]_R = A_{\alpha}$ by the very definition of R. Since A is a partition of A and it consists of the set of equivalence classes determined by the relation R, we conclude R determines the partition A as needed.

Grading rubric: 10 points total, 6 points for proving R is an equivalence relations (2 points each for reflexivity, symmetry, and transitivity) and 4 points for showing it defines the partition on A that we started with.

4) Where is the fallacy in the following argument by induction? Justify your answer.

Statement: For every non-negative integer k, $2 \times k = 0$.

"Proof:" We give a proof using strong induction on k. Denote by P(k) the statement "if k is non-negative integer, then $2 \times k = 0$."

Base case: Show P(0). Obviously, $2 \times 0 = 0$.

Inductive step: Assume P(n) is true for every n such that $0 \le n \le k$ (the strong induction hypothesis). We have to show that P(k+1) also

holds. We write k + 1 = i + j, where i and j are non-negative integers. By the inductive hypothesis,

$$2(k+1) = 2(i+j) = 2i + 2j = 0 + 0 = 0.$$

Therefore, by induction, P(k) is true for all $k \in \mathbb{N}$, so $2 \times 1 = 0$.

Solution: The argument fails at the level of the inductive step because for k + 1 = i + i it is not necessarily the case that both i < k AND j < k, so the inductive hypothesis might not apply. For example, passing from k = 0 to k + 1 = 1, we see that i = 0 and j = 1 = k + 1, so the inductive hypothesis does not apply to j.

Grading rubric: 10 points total, 5 points for realizing that the failure is at the level of k = 1 and 5 points for the explanation.

5) Use mathematical induction to prove that

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2.$$

(Hint: Recall we proved in lecture that $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.)

Solution: We first prove the base case and then the inductive case.

Base case: For n = 1, $1^3 = 1^2 = 1$.

Inductive step: Assume $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$ and seek to prove that $1^3 + 2^3 + \dots + n^3 + (n+1)^3 = (1 + 2 + \dots + n + n + 1)^2$.

By the inductive hypothesis and the hint,

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = (1+2+\dots+n)^{2} + (n+1)^{3} = \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$$

$$= \frac{n^{2}(n+1)^{2}}{2^{2}} + (n+1)^{3} = (n+1)^{2} \left(\frac{n^{2}}{4} + (n+1)\right)$$

$$= (n+1)^{2} \left(\frac{n^{2}}{4} + \frac{4(n+1)}{4}\right) = (n+1)^{2} \left(\frac{n^{2}+4n+4}{4}\right)$$

$$= (n+1)^{2} \frac{(n+2)^{2}}{2^{2}} = \left(\frac{(n+1)(n+2)}{2}\right)^{2}$$

$$= (1+2+\dots+n+n+1)^{2}$$

as needed.

Grading rubric: 10 points total, 2 for the base case and 8 for the inductive step.

6) Let $f: [-2,0] \to [0,1]$ be the function defined by $f(x) = \frac{1}{x^2 + 6x + 9}$ for all $x \in [-2,0]$. Determine whether or not this function is injective

and whether or not it is surjective. Justify your answers. Recall that [-2,0] is the set of all real numbers between -2 and 0 with the endpoints of -2 and 0 included in the set.

Solution: $f(x) = \frac{1}{x^2 + 6x + 9} = \frac{1}{(x+3)^2}$. Since the function is a square, its graph is symmetric about the line x = -3, where it has a vertical asymptote. The entire interval [-2,0], the domain of the function, lies on one side of the asymptote x = -3, and the function is decreasing as x increases (since $(x+3)^2$ is in the denominator, and the numerator is the constant 1). As a result, the function f must be injective as $x_1 < x_2$ implies $f(x_1) > f(x_2)$.

As we remarked above, the function f is decreasing. To see what values it assumes on its domain [-2,0], it thus suffices to check what values it assumes at its endpoints as it is clear the function is continuous (the asymptote x=-3 is not in the domain). We compute that $f(-2)=\frac{1}{(-2+3)^2}=\frac{1}{1}=1$ and $f(0)=\frac{1}{(0+3)^2}=\frac{1}{3^2}=\frac{1}{9}$. We conclude the

function cannot assume any values in $\left[0,\frac{1}{9}\right)$, which means it is not surjective.

Grading rubric: 10 points total, 5 points for proving injectivity with 2 for the answer and 3 for the justification and 5 points for disproving surjectivity with 2 for the answer and 3 for the justification.

- 7) Let $A = \{(x, y) \in \mathbb{R}^2 \mid 2x 3y = 0\}$ with the operation of addition given by $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$.
 - (a) Is (A, +) a semigroup? Justify your answer.
 - (b) Is (A, +) a monoid? Justify your answer.
 - (c) Is (A, +) a group? Justify your answer.

Solution: $A = \{(x, y) \in \mathbb{R}^2 \mid 2x - 3y = 0\}$ consists of a line through the origin in \mathbb{R}^2 determined by the vector (3, 2), so

$$A = \{(3,2) \in \mathbb{R}^2 \mid 2x - 3y = 0\} = \{t(x,y) = (tx,ty) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}.$$

The given operation is the addition of vectors in \mathbb{R}^2 (similar to an example given in class in \mathbb{R}^3).

(a) Yes, (A, +) is a semigroup. Vector addition $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ is a binary operation on A because if $2x_1 - 3y_1 = 0$ and $2x_2 - 3y_2 = 0$, then adding the two equations and rearranging terms we get $2(x_1 + x_2) - 3(y_1 + y_2) = 0$. Therefore, $(x_1, y_1) + (x_2, y_2) \in A$. Likewise, vector addition is associative because addition is associative

on \mathbb{R} , so it holds at the level of each of the two components of the vector.

- (b) Yes, (A, +) is a monoid. We immediately see that $2 \times 0 3 \times 0 = 0 0 = 0$, so $(0, 0) \in A$. Clearly, (0, 0) is the identity element as (x, y) + (0, 0) = (0, 0) + (x, y) = (x, y).
- (c) Yes, (A, +) is a group. For any $(x, y) \in A$, 2x 3y = 0. Multiply this equation by -1 and rearrange terms to obtain 2(-x) + 3(-y) = 0, so $(-x, -y) \in A$. Clearly, (x, y) + (-x, -y) = (x x, y y) = (0, 0), so every element of A is invertible as needed.

Grading rubric: 10 points total: part (a) 4 points, 1 point for the answer, 1 point for proving the operation is a binary operation (hence closed), and 2 points for proving the binary operation is associative; part (b) 1 point for the answer and 2 points for showing (0,0) is the identity element of (A, +); part (c) 1 point for the answer and 2 points for showing (-x, -y) is the inverse of $(x, y) \in A$.