Introduction à l'informatique CM8

Antonio E. Porreca aeporreca.org/introinfo

Graphes

Graphes (orientés)

Matrices d'adjacence

Matrices d'adjacence

	1	2	3	4	5
1	0	1	0	0	0
2	1	0	1	0	1
3	0	0	0	0	1
4	1	0	1	1	0
5	0	0	0	0	0

Graphes non orientés

Graphes non orientés

Réseau social (symétrique)

Each person in the world (at least among the 1.59 billion people active on Facebook) is connected to every other person by an average of three and a half other people.

https://research.fb.com/three-and-a-half-degrees-of-separation/

Diamètre d'un graphe

Diamètre d'un graphe

Enigme des récipients

Graphe des configurations

Graphe des configurations

Parcours de graphes

File →

File → (2)

File → (2)

File
$$\rightarrow$$
 2 4

File \rightarrow (4)

File \rightarrow (4)

File \rightarrow 4 3

File \rightarrow (3)

File
$$\rightarrow$$
 3 5

File → (5)

File
$$\rightarrow$$
 6 7

$$F = \emptyset$$

$$F = \emptyset$$

 $\mathsf{F} \to$

enfiler(F, 1)

 $\mathsf{F} \to$

enfiler(F, 1)

 $F \rightarrow 1$

enfiler(F, 2)

 $F \rightarrow 1 2$

$$x = défiler(F)$$

 $F \rightarrow 2$

enfiler(F, 3)

 $F \rightarrow 2 3$

enfiler(F, 4)

 $F \rightarrow 2 \quad 3 \quad 4$

enfiler(F, 5)

 $F \rightarrow 2 \quad 3 \quad 4 \quad 5$

$$x = défiler(F)$$

 $F \rightarrow 3 \quad 4 \quad 5$

$$x = défiler(F)$$

 $F \rightarrow 4 5$

$$x = défiler(F)$$

 $F \rightarrow 5$

x = défiler(F)

 $F \rightarrow$

 $\mathsf{F} \to$

```
fonction parcours-en-largeur(G, s)
    n = |G| (nombre de sommets)
    pour v = 0 jusqu'à n - 1 faire
        couleur[v] ≔ blanc
    fin pour
    H = graphe(n) (graphe vide)
    F = \emptyset (file vide)
    couleur[s] ≔ rouge
    enfiler(F, s)
    tant que F ≠ Ø faire
        u ≔ défiler(F)
        pour v = 0 jusqu'à n - 1 faire
            si G[u, v] = 1 et couleur[v] = blanc alors
                couleur[v] ≔ rouge
                H[u, v] = 1
                enfiler(F, v)
            fin si
        fin pour
        couleur[u] ≔ vert
    fin tant que
    retourner H (graphe des chemins minimaux)
fin fonction
```


File \rightarrow 2

File \rightarrow 2 4

 $File \rightarrow 2 4 5$

File \rightarrow 2 4 5

File \rightarrow 4 5

 $File \rightarrow 4 5 3 6 7$

 $File \rightarrow \boxed{5} \boxed{3} \boxed{6} \boxed{7}$

 $File \rightarrow 3 6 7$

File \rightarrow 6 7

File
$$\rightarrow$$
 6 7

File \rightarrow (7)

File
$$\rightarrow$$
 7 8

Le plus court chemin

L'algorithme de parcours en largeur ne garantit pas d'obtenir un chemin minimal sur un graphe pondéré

File de → priorité

File de priorité → ©

File de → C B priorité 5

File de priorité

E
B
B
D
14

File de → B D priorité 8 13

File de priorité → □

File de priorité → priorité

File de priorité → priorité

File de priorité

File de → priorité

File de → priorité

