Fonctions numériques

Définition. Une fonction f est un ensemble d'associations.

Définir une fonction f signifie : associer à chaque chose x d'un ensemble D, une unique chose y située dans un ensemble E.

y est <u>l'image de x par la fonction f, y est notée f(x), et lue « f de x » pour rappeler qu'elle dépend de x y est <u>l'ensemble de définition</u> de la fonction f et f est <u>l'ensemble d'arrivée</u> de la fonction f.</u>

Pour dire que f est une fonction de D vers E, on écrit $f: \mathbf{D} \to \mathbf{E}$

On étudiera surtout les fonctions numériques, où *D* et *E* seront des ensembles de nombres.

Propriété. Une image d'un certain nombre x par une fonction f est toujours unique.

Définition. Si y est l'image de x, on a l'égalité f(x) = y et x est \underline{un} antécédent de y par f.

Propriété. Un même nombre y peut avoir 0, 1 ou plusieurs antécédents par la fonction f.

Exemple. On peut définir une fonction avec un tableau de valeurs :

x	1	2	3	4
f(x)	1,5	π	42	1,5

Cela signifie que
$$f: \{0; 1; 2; 3\} \to \mathbb{R}$$
. On a : $f(1) = 1,5$; $f(2) = \pi$; $f(3) = 42$; $f(4) = 1,5$

Définition. **Donner l'expression algébrique d'une fonction** c'est écrire f(x) en fonction de x.

Exemple. Soit $g : \mathbb{R} \to \mathbb{R}$: $x \mapsto 3x + 5$.

Alors par exemple $g(7) = 3 \times (7) + 5 = 26$; g(1) = 8; g(0) = 5; $g(-3) = 3 \times (-3) + 5 = -4$

Exemple. Soit h la fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} , telle que pour tout $x \in \mathbb{R}$, $h(x) = (6 - x)^2$

Alors par exemple
$$h(3) = (6 - (3))^2 = 3^2 = 9$$
. $h(-2) = (6 - (-2))^2 = (6 + 2)^2 = 8^2 = 64$. $h(6) = 0$.

Remarque. Il est courant de ne pas préciser l'ensemble d'arrivée car on considère qu'il est évident (R).

Exemple. Soit g la fonction définie sur \mathbb{R} par pour tout $x \in \mathbb{R}$, g(x) = x - 4.

Il faut comprendre que g est à valeurs dans \mathbb{R} , autrement dit $g: \mathbb{R} \to \mathbb{R}$

Remarque. Il est courant de ne pas préciser l'ensemble de définition de f. Dans ce cas, il faut chercher l'ensemble le plus grand possible pour lequel l'expression algébrique de f a un sens dans le contexte.

Exemple. Soit f la fonction numérique définie par $f(x) = \frac{1}{x} + 2$

Il faut comprendre que f est à valeurs dans $\mathbb R$ et que l'ensemble de définition D est une partie de $\mathbb R$. D'après l'expression on voit que f(x) est défini si $x \neq 0$ mais pas en x = 0. Donc $D = \mathbb R^*$ est l'ensemble des réels non nul. Il faut donc comprendre que $f: \mathbb R^* \to \mathbb R$

Définition. Dans un repère du plan R, la courbe représentative d'une fonction $f: D \to \mathbb{R}$ est l'ensemble des points de coordonnées (x; y) où $x \in D$ et y = f(x) est l'image de x par la fonction. C'est la courbe d'équation « y = f(x) ».

Exemple. Soit la fonction $f: [-2; 2] \to \mathbb{R}$ définie par $f(x) = (x - 1)^2 - 4$.

On a tracé la courbe C_f représentative de f sur le graphe ci-contre.

Il s'agit de la courbe d'équation « $y = (x - 1)^2 - 4$ ».

Exemple. Etant donné un $x \in D$ et ayant calculé y = f(x), on peut vérifier graphiquement que y = f(x).

Il suffit de regarder le point (x; y) et de vérifier s'il se trouve sur la courbe C_f .

En x = 1 on calcule $y = f(1) = ((1) - 1)^2 - 4 = 0^2 - 4 = -4$, donc le point A = (1, -4) doit se trouver sur C_f . C'est bien le cas.

Exemple. On peut lire graphiquement la valeur de f(x) pour un x donné.

On voit que le point B = (-2, 5) donc y = 5, ce qui signifie que f(-2) = 5.

Vérifions le.
$$f(-2) = ((-2) - 1)^2 - 4 = (-3)^2 - 4 = 9 - 4 = 5$$
.

Remarque. Une droite verticale ne peut couper une courbe de fonction qu'une seule fois au maximum.

