Ultrasound Image Reconstruction by Solving an Inverse Problem with Denoising Diffusion Restoration Models

Yuxin Zhang^{1,2}

Supervisors: Clément Huneau^{1,3}, Jérôme Idier^{1,4}, Diana Mateus^{1,2}

¹LS2N, ²Centrale Nantes, ³Nantes Université, ⁴CNRS, Nantes, France, ⁵Créatis,

06 - Mar - 2023

Ultrasound Image Reconstruction by Solving an Inverse Problem with Denoising Diffusion Restoration Models

(1)

Figure – The sampling process of Denoising Diffusion Restoration Models (DDRM)[1]

$$\mathbf{y}_d = \mathbf{H}_d \mathbf{x}_d + \mathbf{n}_d$$

$$\mathbf{y}_d = \mathbf{U}_d \Sigma_d \mathbf{V}_d^t \mathbf{x}_d + \mathbf{n}_d \tag{2}$$

$$\Sigma_d^{\dagger} \mathbf{U}_d^t \mathbf{y}_d = \mathbf{V}_d^t \mathbf{x}_d + \Sigma_d^{\dagger} \mathbf{U}_d^t \mathbf{n}_d \tag{3}$$

$$\bar{\mathbf{y}}_d = \bar{\mathbf{x}}_d + \bar{\mathbf{n}}_d,\tag{4}$$

$$\overline{\mathbf{n}}_d \sim \mathcal{N} \left(0, \begin{bmatrix} \frac{\sigma_d^2}{s_1^2} & & & \\ & \ddots & & \\ & & \frac{\sigma_d^2}{s_i^2} & \\ & & & \ddots & \\ & & & \frac{\sigma_d^2}{s_2^2} \end{bmatrix} \right)$$

Ultrasound inverse problem :

$$CBy = CBHx + CBn \tag{6}$$

C : whitening operator

B: Matched filtering for data compression

Results (model trained with Imagenet dataset)

Figure – The ground truth (left top) and the reconstructe images by the traditional method (top) and our approach (bottom)

(5) • Future : train with ultrasound images

 Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising Diffusion Restoration Models (Oct 2022). https://doi.org/10.48550/arXiv.2201.11793, http://arxiv.org/abs/2201.11793, arXiv.2201.11793 [cs, eess]