Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (currently amended): A compound of Formula (I) or a salt, solvate, pro-drug thereof,

$$\mathbb{R}^{1}$$
 \mathbb{R}^{1}
 \mathbb{R}^{1}

Formula (I)

wherein:

R¹-X- is selected from methyl, methoxymethyl, and

 ${\bf R}^2$ is selected from hydrogen, methyl, chloro, and fluoro; and

n 18 1 or 2

or a salt, pro drug or solvate thereof.

Claim 2 (currently amended): A compound of Formula (Ia) as claimed in elaim Claim 1 of Formula (Ia) or a salt, solvate, or pro-drug thereof,

Formula (Ia)

wherein:

n and R² are as defined above in a compound of Formula (I); or a salt, solvate or pro-drug thereof.

Claim 3 (currently amended): A compound <u>of Formula (Ib)</u> as claimed in <u>claim_Claim_1</u> of Formula (Ib) or a salt, solvate, or pro-drug thereof,

$$\begin{bmatrix} \mathsf{CH_2} \mathsf{I_n} & \mathsf{O} \\ \mathsf{R^2} & \mathsf{O} \\ \mathsf{N} & \mathsf{O} \\ \mathsf{O} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{O} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{O} \\ \mathsf{O} & \mathsf{O} \\ \mathsf{O} \\$$

Formula (Ib)

wherein:

n and R² are as defined above in a compound of Formula (I);

or a salt, solvate or pro-drug thereof.

Claim 4 (currently amended): A compound of Formula (Ic) as claimed in claim 1 of Formula (Ic) or a salt, solvate, or pro-drug thereof,

$$\mathbb{C}H_{2}]_{n}$$
 \mathbb{R}^{2}
 $\mathbb{C}H_{2}$
 \mathbb{R}^{2}
 $\mathbb{C}H_{2}$
 \mathbb{R}^{2}
 $\mathbb{C}H_{2}$
 $\mathbb{$

Formula (Ic)

wherein:

n and R^2 are as defined above in a compound of Formula (I); or a salt, solvate or pro-drug thereof.

Claim 5 (currently amended): A compound <u>of Formula (Id)</u> as claimed in <u>claimClaim</u> 1 <u>of Formula (Id)</u> or a salt, solvate, or pro-drug thereof,

Formula (Id)

wherein:

 ${\bf n}$ and ${\bf R}^2$ are as defined above in a compound of Formula (I); or a salt, solvate or pro-drug thereof.

Claim 6 (<u>currently amended original</u>): A compound <u>of Formula (Ie)</u> as claimed in claim Claim 1 of Formula (Ie), or a salt, solvate, or pro-drug thereof,

Formula (Ie)

wherein:

 n, X, R^4 and R^2 are as defined above in a compound of Formula (I); or a salt, solvate or pro-drug thereof.

Claim 7 (original): A compound selected from one or more of the following:

6-{[(3-(2,3-dihydro-1,4-benzodioxin-6-yloxy)-5-{[(1S)-1-methyl-2(methyloxy)ethyl]oxy}phenyl)carbonyl]amino}pyridine-3-carboxylic acid; and

6-{[(3-(1,3-benzodioxol-5-yloxy)-5-{[(1S)-1-methyl-2-(methyloxy)ethyl]oxy}phenyl)carbonyl]amino}pyridine-3-carboxylic acid

or a salt, solvate or pro-drug thereof.

Claim 8 (currently amended): A pharmaceutical composition comprising a compound of Formula (I) as claimed in any one of Claims 1 to 7 Claim 1, or a salt, solvate or pro-drug thereof, together with a pharmaceutically-acceptable diluent or carrier.

Claims 9 and 10 (canceled)

Claim 11 (currently amended): A method of treating GLK mediated diseases, especially diabetes, by comprising administering an effective amount of a compound of Formula (I), as claimed in any one of Claims 1 to 7 Claim 1, or a salt, solvate, or pro-drug thereof, to a mammal in need of such treatment.

Claims 12 and 13 (canceled)

Claim 14 (currently amended): A method for the combined treatment of obesity and diabetes by-comprising administering an effective amount of a compound of Formula (I), as claimed in any one of Claims 1 to 7 Claim 1, or salt, solvate, or pro-drug thereof, to a mammal in need of such treatment.

Claim 15 (currently amended): A method for the treatment of obesity by-comprising administering an effective amount of a compound of Formula (I), as claimed in any one of Claims 1 to 7 Claim 1, or salt, solvate or pro-drug thereof, to a mammal in need of such treatment.

Claim 16 (currently amended): A process for the preparation of a compound of Formula (I) as claimed in Claim 1, a salt, pro-drug or-solvate, or pro-drug thereof which comprises:

(a) reaction of reacting an acid of Formula (IIIa) or activated derivative thereof with a compound of Formula (IIIb),

Formula (IIIa)

Formula (IIIb);

wherein P^1 is hydrogen or a protecting group;

or

(b) de protection of deprotecting a compound of Formula (IIIc),

Formula (IIIc)

wherein P² is a protecting group;

or

(c) reaction of reacting a compound of Formula (IIId) with a compound of Formula (IIIe),

Formula (IIId)

Formula (IIIe)

wherein X^1 is a leaving group and X^2 is a hydroxyl group, or X^1 is a hydroxyl group and X^2 is a leaving group; and wherein P^1 is hydrogen or a protecting group;

or

(d) reaction of reacting a compound of Formula (IIIf) with a compound of Formula (IIIg)

Formula (IIIf)

Formula (IIIg)

wherein X^3 is a leaving group or an organometallic reagent and X^4 is a hydroxyl group, or X^3 is a hydroxyl group and X^4 is a leaving group or an organometallic reagent; and wherein P^1 is hydrogen or a protecting group;

or

(e) reaction of reacting a compound of Formula (IIIh) with a compound of Formula (IIIi),

$$\begin{bmatrix} CH_2 \end{bmatrix}_n - O \\ R^2 \\ O \\ NH_2 \\ N - O - P^1 \\ N - O -$$

Formula (IIIh)

Formula (IIIi);

wherein X^5 is a leaving group; and wherein P^1 is hydrogen or a protecting group; and thereafter, if necessary:

- i) converting a compound of Formula (I) into another compound of Formula (I);
- ii) removing any protecting groups; and/or
- iii) forming a salt, pro-drug or-solvate or pro-drug thereof.

Claim 17 (new): A method for the treatment of diabetes comprising administering an effective amount of a compound of Formula (I), as claimed in claim 1, or a salt, solvate, or pro-drug thereof.