MATH 2033 HW-11 Due Nov 29.

- 1. In this exercise, we consider isometries from \mathbb{R} to itself in the usual metric.
- i. Is $f(x) = x^3$ a bijection? A homeomorphism? An isometry?
- ii. Is $f(x) = x + \sin x$ a bijection? A homeomorphism? An isometry?
- iii. Find all isometries from $\mathbb R$ to itself.
- 2. Let $X=(0,\infty)$ with the usual metric and determine whether the following functions are uniformly continuous on X:
- i. $f(x) = \ln(x)$;
- ii. $f(x) = \sqrt{x}$;
- 3. (i) Show that a finite union of compact sets is compact.
- (ii). Give an example of a countable union of compact sets that is not compact.
- (iii). Show that a closed subset of a compact set is compact.
- (iv). Show that a compact metric space is complete.
- 4. Let (X,d),(X',d') be two metric spaces, and $f:X\to X'$ is a continuous function. Show that if $A\subseteq X$ is compact, then $f(A)\subseteq X'$ is compact.