- Lecture -12 - (11/10/2019) (16/10/2019)	C
compreter organisation and	
Architecture.	
Summary:	
- Digital components	
- ALU - Memory - Registers	
- Instruction sel- Architecture	
- formal-	
- Encoling Addroningmode.	
- Machine & Amensbly language programing	
Campbuter organisation:	
- Computer organisation:	
Bustion: - How to organise all the signal components such that a program candbe executed ?	
The ponkriple: - stored program approach	
The odea :- O Store the program on amomony	uau
The sidea: - O Store the program on amounty Sunambigo (Set of well letino) Sunambigo instruction (one by one)	
instruction (the organis)	2
3) Decide uni instruction to identity control signals	
and operand.	
a Fetch wir operand	Ls
1) Execute the instruction using control signer and operand	
D Store back the result	
O store back the resulte (thoughy the current- state of the machine)	

Vor. Neumann Architecture | Tuning Machine -

Tunny Machine:

Van- Neuman Architecture :-

→ The exact data 2 control path with nutricient Heaving legge & Interconnect will be drawn enter on.

The Microoperations: -

- Whe mino steps required to execute an instruction time of the bive major steps.

Micro operation for over processor: 1 Storney pragram at the bern place - This is a work of resumme manager Coperating Insta MAR & Address of in stored program Memory address bus & [MAR] Memory Data his & sale In Araction en a byte orund All these microoperations be repeated to low a prigram from Hard dom to mannemerny

(in the modern computer this is being Some by DMA- Birect memory 2) In the HACK processor the program is Burgleded Access)

[2) In Aruction Fetch: Tot simulatory through the means - Adam of that INSTruction required - place to keep the sontruction brice totales - Any post procening. - Regumement: Addres of the instruction to be betoned. place to keep the between instruction. post processing (reporting pc content) [Address 520] Content of [PC] REPORT R/W < 0 [Instruction bus] + Memory [Add bus] it in struction [2/10] +0 pc < [A] PC < PC+1

Instruction Derode: -(1D)

Decoling is essential to understand the control signals and operands.

Micro operations:
Contro logic

[Invariations]

Control signals

Control logic

Partial control path Herign:-

- To perborm assumetic and work operation
- The recenany watron signals are appropriately we connected to steer the operand to ALU and execute the in Aruction according to op-tode.

micro operation: -

Data Palli Design:

Deuta po	auti bor	Jun	mp:	-			1-1	10.	111	JA)	
	1	10	110	JAI	112	Jd3	Jan.	305	-0716	0	_	rull
11	12	7.3	-	0	U	0	0	0	0	0	_	out 70
0	0	U	0	1	0	-, <i>U</i>	U	0	0	0	-	oul-=0
U	0	1	0	0	1	D	U	n	o	0		out-7/0
0	1	1	0	U	O	1	0	n	0	v		out-20
0	,	D	0	U	U	0			a	7	_	nd- 70

0 1 0

it out=0 else 27=0 22=1 it nd- <0 else ng=0 mg = 1 -> 2r=1 -> mg=1 ml- <0 => m- +0 8 m- 40 2720 & ng 20 > oul-=0 OR total oul-70 out 7/0 (2721) OR (2720 8 Ng=0) -> 2×=0 > ou-=0 or ou-10 (27=1) or (ng=1) pc increment by 2 Jump - either Jump shortrucken Logic non Jump sustruction PC

Home work: - complete the design of Junt logic using the work conditional control signals.

Ine-

(8) . Writing bren the result (WB):-

- Writing back the result computed by ALU to respective destination.

Note: - Address/ memory instruction dennot require write back

ALV & Jump Instruction:

