

Information Technology Institute

Operating System Fundamentals

Table of Content

1. Overview

- 1. Introduction
- 2. Computer System Structure
- 3. Operating System Structure

2. Process Management

- 1. Processes
- 2. CPU Scheduling
- 3. Deadlocks

3. Storage Management

- 1. Memory Management
- 2. Virtual Memory
- 3. File Management

nformation Technology Institute - 2016

Self Study Topics

- Virtual Memory
 - Background.
 - Demand Paging.
 - Page Replacement.
 - Allocation of frames.
- File-System Interface
 - File Concept.
 - Access Methods.
 - Directory Structure.
 - Protection.

Self Study Topics (cont'd)

- File-System Implementation
 - File System Structure.
 - Allocation Methods.
 - Free-Space Management.
 - Directory Implementation.
 - Recovery.

Reference

- Computer Operating System Concepts
 - Author: Silberschatz
 - Publisher: Wiley
 - ISBN: 0471250600
- Handbook of Cloud Computing
 - Author: Borko Furht, Armando Escalante
 - Publisher: Springer
 - ISBN: 978-1-4419-6523-3

Chapter One

Introduction

Table of Content

- Operating System
- Mainframe Systems
- Desktop Systems
- Multiprocessor Systems
- Distributed Systems
- Clustered System
- Real -Time Systems
- Handheld Systems
- Computing Environments

OPERATING SYSTEM

Operating System

- What is an Operating System?
 - It acts as an intermediary between a user and his hardware
- Operating system objective
 - Executes users programs
 - Solves its problems
 - Uses HW in an efficient manner
 - Makes user life easier;)

Computer System Components

1. Computer Hardware

2. Operating System

- It controls and coordinates the use of the HW among the various application programs for the various users
 - It manages and allocates resources
 - It controls the execution of user programs and operations of I/O devices
- Kernel the one program running at all times

3. Application Programs

- Compilers
- Web browsers
- Spread sheets
- Word processors

•

4. Users

- People
- Machines
- Other Computers

MAINFRAME SYSTEMS

Mainframe Systems

- Reduce setup time by batching similar jobs
- Automatic job sequencing
 - Automatically transfers control from one job to another.
 - First rudimentary operating system

Mainframe Systems cont'd

Memory Layout for a Simple Batch System

operating system user program area

Mainframe Systems cont'd

Multi-programmed Batch Systems

• Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them

Mainframe Systems cont'd

- Time-Sharing Systems (Interactive Computing)
 - The CPU is multiplexed among several jobs that are kept in memory and on disk
 - The CPU is allocated to a job only if the job is in memory
 - A job swapped in and out of memory to the disk
 - On-line communication between the user and the system is provided
 - When the operating system finishes the execution of one command, it seeks the next "control statement" from the user's keyboard
 - On-line system must be available for users to access data and code

DESKTOP SYSTEMS

Desktop Systems

Personal computers

- Computer system dedicated to a single user
- I/O devices
 - Keyboards
 - Mice
 - Display screens
 - Small printers
- User convenience and responsiveness
- Can adopt technology developed for larger operating system
 - Often individuals have sole use of computer and do not need advanced CPU utilization of protection features
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux) © Copyright Information Technology Institute - 2016

MULTIPROCESSOR SYSTEMS

Parallel Systems

- Systems with more than one CPU in close communication
 - Also known as *multiprocessor systems*
- Tightly coupled system
 - processors share memory and a clock; communication usually takes place through the shared memory
- Advantages of parallel system:
 - Increased *throughput*
 - Economical
 - Increased reliability
 - graceful degradation
 - fail-soft systems

DISTRIBUTED SYSTEMS

Distributed Systems

- Distribute the computation among several physical processors
- Loosely coupled system
 - Each processor has its own local memory
 - processors communicate with one another through various communications lines, such as high-speed buses or telephone lines
- Advantages of distributed systems
 - Resources Sharing
 - Computation speed up
 - load sharing
 - Reliability

Distributed Systems cont'd

- Requires networking infrastructure
- Local area networks (*LAN*) or Wide area networks (*WAN*)
- May be either *client-server* or *peer-to-peer*

systems

CLUSTERED SYSTEMS

Clustered Systems

- Clustering allows two or more systems to share storage
- Provides high reliability
- Asymmetric clustering: one server runs the application or applications while other servers standby
- Symmetric clustering: all N hosts are running the application or applications

REAL-TIME SYSTEMS

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems
- Well-defined fixed-time constraints
- Real-Time systems may be either hard or soft real-time

Real-Time Systems Cont'd

• Hard real-time:

- Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)
- Conflicts with time-sharing systems, not supported by general-purpose operating systems

Soft real-time

- Limited utility in industrial control of robotics
- Integrate-able with time-share systems
- Useful in applications (multimedia, virtual reality) requiring tight response times

HANDHELD SYSTEMS

Handheld Systems

- Personal Digital Assistants (PDAs)
- Cellular Phone & Smart Phone
- Issues:
 - Limited memory
 - Slow processors
 - Small display screens

Computing Environments

Traditional computing

- PCs, Servers, limited remote access
- Web-Based Computing
 - Client-server and web services, convenient remote access, location-less servers
- Embedded Computing
 - Very limited operating system features
 - Little or no user interface, remote access

