Einfürung in die Funktionentheorie Hausaufgaben Blatt Nr. 5

Jun Wei Tan* and Lucas Wollman

Julius-Maximilians-Universität Würzburg

(Dated: June 9, 2024)

Aufgabe 1. Es sei $n \in \mathbb{N}_0$. Bestimmen Sie alle ganzen Funktionen, die für alle r > 0 folgende Eigenschaft erfüllen:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})| \, \mathrm{d}t \le r^n.$$

Beweis. f ist eine ganze Funktion und daher in einer Potenzreihe entwickelbar

$$f = \sum_{n=0}^{\infty} a_n z^n.$$

Die Cauchy-Schätzung liefert

$$a_k = \frac{1}{2\pi i} \int_{\partial K_r(0)} \frac{f(z)}{z^{k+1}} \, \mathrm{d}z.$$

Daraus folgt

$$|a_k| = \left| \frac{1}{2\pi i} \int_{\partial K_r(0)} \frac{f(z)}{z^{k+1}} dz \right|$$

$$= \frac{1}{2\pi} \left| \int_0^{2\pi} \frac{f(re^{it})}{r^{k+1}e^{(k+1)it}} ire^{it} dt \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(re^{it})|}{r^k} dt$$

$$\leq r^{n-k}$$

was für alle r > 0 gilt. Falls n - k < 0, nehmen wir $r \to \infty$ und erhalten $a_k \le \epsilon \ \forall \epsilon > 0$, also $a_k = 0$. Falls n - k > 0, nehmen wir $r \to 0$ und $a_k = 0$ ähnlich. Nur a_n ist dann ungleich null, und

$$f(z) = az^n$$
, $a \in \mathbb{C}$.

Aufgabe 2. Es sei r>0 und $f\in \mathcal{H}(K_r(0))$. Ferner sei für $z\in\mathbb{C}$ die (formale) Potenzreihe

$$F(z) := \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{(k!)^2} z^k$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

gegeben. Zeigen Sie, dass $F:\mathbb{C}\to\mathbb{C}$ eine ganze Funktion definiert und dass für alle $z\in\mathbb{C}$ und alle $0\leq R< r$ folgende Ungleichung gilt

$$|F(z)| \le ||f||_{\partial K_R(0)} \exp\left(\frac{|z|}{R}\right).$$

Beweis. Wir zeigen zuerst Konvergenz. Dafür verwenden wir das Wurzelkriterium. Sei $z \in \mathbb{C}$ beliebig. Es gibt $z_0 \in K_r(0)$ und $R \in \mathbb{R}$, sodass $z = z_0 R$. Es folgt

$$\lim_{k \to \infty} \sqrt[k]{\left| \frac{f^{(k)}(0)}{k! \cdot k!} z_0^k R^k \right|}$$

$$= \lim_{k \to \infty} \left[\sqrt[k]{\left| \frac{f^{(k)}(0)}{k!} \right|} |z_0| \right] \left[\frac{R}{\sqrt[k]{k!}} \right]$$

Es ist zu beachten, dass

$$\lim_{k\to\infty} \sqrt[k]{\left|\frac{f^{(k)}(0)}{k!}\right|}|z_0|<1,$$

da z_0 innerhalb des Konvergenzkreisscheibe liegt. Es gilt auch aus der Analysis 2

$$\lim_{k \to \infty} \frac{1}{\sqrt[k]{k!}} < 1$$

(sogar gleich Null), also die Reihe konvergiert für alle $z \in \mathbb{C}$. Wir wissen, das Potenzreihen ganze Funktionen darstellen. D.h. F ist eine ganze Funktion.

Jetzt entwickeln wir *F* in einer Potenzreihe

$$F = \sum_{n=0}^{\infty} a_n z^n$$

mit

$$a_n = \frac{f^{(k)}(0)}{(k!)^2}.$$

Aber die Koeffizienten in der Potenzreihedarstellung von f b_n sind durch $b_n = a_n n!$ bestimmt. Es gilt also

$$a_n = \frac{1}{2\pi i n!} \int_{\partial K_R(0)} \frac{f(z)}{z^{n+1}} \, \mathrm{d}z.$$

Mit der Standardabschätzung gilt

$$\left| \int_{\partial K_R(0)} \frac{f(z)}{z^{n+1}} \, \mathrm{d}z \right| \le \|f(z)\|_{\partial K_R(0)} \frac{2\pi}{R^n}$$

und damit

$$|a_n| \le \frac{\|f\|_{\partial K_R(0)}}{n!R^n}$$

also

$$|F(z)| \le \left| \sum_{n=0}^{\infty} a_n z^n \right|$$

$$\le \sum_{n=0}^{\infty} |a_n z^n|$$

$$\le \sum_{n=0}^{\infty} \frac{\|f\|_{\partial K_R(0)}}{n!} \frac{|z|^n}{R^n}$$

$$= \|f\|_{\partial K_R(0)} \sum_{n=0}^{\infty} \frac{1}{n!} \frac{|z|^n}{R^n}$$

$$= \|f\|_{\partial K_R(0)} \exp\left(\frac{|z|}{R}\right).$$

Aufgabe 3. Es sei $f:\mathbb{C} \to \mathbb{C}$ eine ganze, nullstellenfreie Funktion mit der Eigenschaft

$$|f(2z)| \le 2|f(z)|, \qquad z \in \mathbb{C}.$$

Zeigen Sie, dass f konstant ist.

Beweis. Sei

$$M = \sup_{z \in \overline{K_r(0)}} |f(z)|.$$

Das ist endlich, weil |f| auf $\overline{K_r(0)}$ stetig ist.

Theorem 1. Sei $|z| < 2^n$. Dann gilt $|f(z)| \le M2^n$.

Beweis. Das beweisen wir durch Induktion. Für n=0 ist das die Definition von f. Jetzt nehmen wir an, dass die Aussage für beliebiges $n\in\mathbb{N}$ gilt. Wir betrachten $K_{2^{n+1}}(0)$. Für $z\in K_{2^{n+1}}(0)$ gilt $z/2\in K_{2^n}(0)$ und daher per Induktionsvoraussetzung $|f(z/2)|\leq M2^n$. Aus der in der Aufgabe gegebenen Voraussetzung gilt dann

$$|f(z)| \le M2^{n+1}.$$

Sei $z \in \mathbb{C}$ beliebig und $n \in \mathbb{N}_0$, sodass $2^{n+1} > |z| \ge 2^n$. Daraus folgt

$$|f(z)| < M2^{n+1}$$

$$< 2M|z|$$

also wir dürfen Satz 7.12 anwenden. f(z) ist daher ein Polynom vom Grad ≤ 1 , f(z) = az + b, $a, b \in \mathbb{C}$. Wir wissen aber, dass ein Polynom vom Grad 1 eine Nullstelle besitzt

(entweder mit dem Fundamentalsatz der Algebra oder wir können die Gleichung direkt lösen und erhalten $z_0 = -b/a$.)

Nach Aufgabenstellung ist f jedoch nullstellenfrei, also a=0 und f ist konstant.

Aufgabe 4. Seien $U \subseteq \mathbb{C}$ offen, $z_0 \in U$ und $f \in \mathcal{H}(U \setminus \{z_0\})$. Zeigen Sie, dass jede der Voraussetzungen hinreichend für die Existenz einer holomorphen Fortsetzung $\tilde{f}: U \to \mathbb{C}$ von f auf U ist.

- (a) $f(U \setminus \{z_0\}) \subseteq \mathbb{H}^+ = \{z \in \mathbb{C} | \operatorname{Re}(z) > 0\}.$
- (b) Es existieren C > 0 und $\alpha > -1$ derart, dass

$$|f(z)| \le C|z - z_0|^{\alpha}$$

für alle $z \in U \setminus \{z_0\}$ ist.