DTC P0500 VEHICLE SPEED SENSOR "A"

CIRCUIT DESCRIPTION

The Vehicle Speed Sensor (VSS) outputs a 4-pulse signal for every revolution of the rotor shaft, which is rotated by the transmission output shaft via the driven gear. The ECM determines the vehicle speed based on this signal.

DTC No.	DTC Detection Condition	Trouble Area
P0500	ECM does not detects any vehicle speed signal when vehicle is being driven (1 trip detection logic)	Open or short in VSS circuit VSS ECM

MONITOR DESCRIPTION

The ECM assumes that the vehicle is being driven when the engine RPM is more than 2,000 rpm and the Park/Neutral Position (PNP) switch was turned OFF (for 30 seconds). If there is no signal from the VSS when the vehicle is being driven, the ECM interprets this as a malfunction in the VSS. The ECM illuminates the MIL and sets a DTC.

WIRING DIAGRAM

INSPECTION PROCEDURE

HINT:

Read[freeze[frame[data[using[the[Intelligent]]]]] reeze[frame[data[lecords[the]]]] reeze[frame[data[lecords[the]]]]] reeze[frame[data[lecords[the]]]] reeze[frame[data[l

1 | READ[VALUE[OF[INTELLIGENT[TESTER[II[(VEHICLE[SPEED)

- (b) Enter[the[following[menus:[Enter/[Diagnosis/[DBD·MOBD/[Power[train/[Engine]and[ECT/[Data[List/All[Data/[Vehicle[Speed.
- (c) Drive the vehicle at 2,500 pm or more.

Result:

Vehicle[ş peed	Proceed[i]o
Vehicle[\$peed[]emains[Φ[]km/h[]0[]mph)	A
Vehicle[\$peed[]s[]ower[]han[actual[\$peed	В
Vehicle speed is same as actual speed	С

B Go to step 3

C `

CHECK FOR INTERMITTENT PROBLEM (See page 05-11)

2 | CHECK WIRE HARNESS (VSS – ECM)

- (a) Disconnect the S3 VSS connector.
- (b) Disconnect the E7 ECM connector.
- (c) Measure the resistance of the wire harness side connectors.

Standard:

Tester Connection	Specified Condition
S3-1 - E7-23 (SP2+)	Below 1 Ω
S3-2 - E7-22 (SP2-)	Below 1 Ω
S3-1 or E7-23 (SP2+) - Body ground	10 k Ω or higher
S3-2 or E7-22 (SP2-) - Body ground	10 k Ω or higher

- (d) Reconnect the ECM connector.
- (e) Reconnect the VSS connector.

NG REPAIR OR REPLACE HARNESS AND CONNECTOR

3 INSPECT SPEED SENSOR (VSS WAVEFORM)

Check the waveform of the ECM connector when the vehicle speed is approximately 60 km/h (37 mph).

Tester Connection	Specified condition
E7-23 (SP2+) - E7-22 (SP2-)	Correct waveform is as shown

OK: The correct waveforms are as shown.

NG > REPLACE SPEED SENSOR

ОК

4 INSPECT SPEED SENSOR (INSTALLATION)

Check that the VSS is installed securely.

OK: The VSS is installed securely.

NG > TIGHTEN SPEED SENSOR

OK

5 INSPECT SPEED SENSOR (RESISTANCE)

 Measure the resistance between the terminals of the VSS.

Standard: 560 to 680 Ω

NG REPLACE SPEED SENSOR

OK

6 CHECK DTC

- $(a) \verb|| Connect[] he \verb|| Intelligent[] rester[] l[] o \verb|| Intelligent[] rester[] o \verb|| Intelligent[] rester[] o \verb|| Intelligent[] rester[] o \verb|| Intelligent[] o \verb|| Int$
- $(b) \hbox{$\square$ Drive \ref{the}$ vehicle \ref{the}$ at \ref{the}$,000 \ref{the} pr \ref{the} nore. }$
- (c) ☐ Read DTCs.

Result:

Display[[DTC[]output)	Proceed[ijo
No[DTC	Α
P0500	В

B
| REPLACE[ECM[See page 10-21)

Α

END