Vazamentos de Dados: Histórico, Impacto Socioeconômico e as Novas Leis de Proteção de Dados

Rodrigo Bisso^{1,3}, Diego Kreutz^{1,2,3}, Gustavo Rodrigues^{1,3}, Giulliano Paz^{1,2,3}

¹Laboratório de Estudos Avançados (LEA)
² Mestrado Profissional em Engenharia de Software (MPES)
³ Universidade Federal do Pampa (UNIPAMPA)

{bisso, qiulliano94, crod}@gmail.com, kreutz@unipampa.edu.br

Resumo. Notícias e relatórios de segurança sobre vazamentos de dados sensíveis têm surgido com uma frequência cada vez maior. Muitos desses vazamentos, cujo volume e criticidade são altos, vêm afetando empresas e governos de forma significativa. Este cenário, cuja perspectiva atual é piorar, tem chamado tanta atenção dos governos e empresas que segurança da informação virou uma das maiores prioridades de estado em muitos países. Este trabalho tem por objetivo apresentar um histórico e o impacto socioeconômico de alguns dos vazamentos de dados mais significativos dos últimos anos. Adicionalmente, identificar e discutir as recentes leis de proteção de dados, criadas com o intuito de ajudar a combater o problema de falta de formação e investimentos em segurança da informação, a principal causa desses vazamentos de dados.

1. Por que Leis Rígidas de Proteção de Dados?

Notícias e relatórios sobre vazamentos de dados sensíveis e privados têm surgido com uma frequência cada vez maior. As estatísticas mostram um volume enorme de dados vazados nos últimos anos. Além do número e da frequência dos vazamentos, outro aspecto estarrecedor é o impacto dos dados vazados, como o re-projeto de dezenas (e até centenas) de sistemas, como ocorreu recentemente nos EUA devido ao caso de vazamento da Equifax [Ng 2019].

Os incidentes de segurança têm afetado as mais diversas áreas e setores da sociedade. Recentemente, dados de mais de 60 universidades e colégios dos EUA foram comprometidos devido a um conjunto de vulnerabilidades existentes num único sistema [Muncaster 2019]. No setor alimentício, o aplicativo de pedidos EatStreet foi alvo de um vazamento que comprometeu dados de pagamento e cartões de crédito [Gatlan 2019a]. Apesar de não ter sido divulgado o número de clientes que tiveram seus dados comprometidos, o site oficial do aplicativo informa parcerias com mais de 15 mil restaurantes em 1100 cidades.

No setor bancário, em 2018, o Banco Inter vazou dados de 20 mil clientes segundo investigação do MP [Higa 2018]. Quase um ano depois, outra falha de sistema deixa dados de mais de 1,4 milhões de clientes expostos para acesso na Internet [Payao 2019]. Considerando que instituições bancárias, por via de regra, se preocupam mais e investem muito mais em segurança da informação, este é um cenário bastante crítico.

Na verdade, o cenário é tão crítico e preocupante que governos começaram a criar leis a fim de definir os direitos de privacidade dos dados dos usuários e penalidades explícitas para os casos onde as regulamentações não forem cumpridas. A exemplo disso,

a União Européia e o Brasil propuseram a *General Data Protection Regulation* 2016/679 (GDPR)¹ e a Lei Geral de Proteção de Dados Pessoais (LGPD)², respectivamente. Estas leis aplicam multas severas às empresas que fazem mal uso dos dados de seus usuários.

O principal objetivo deste trabalho é apresentar dados e desafios do cenário atual. As principais contribuições do trabalho podem ser resumidas em: (a) um levantamento histórico de alguns dos principais vazamentos de dados de 2014 a 2019; (b) uma análise do impacto sócioeconômico dos vazamentos de dados; (c) uma síntese das principais leis de proteção de dados; (d) uma discussão sobre avanços tecnológicos recentes e desafios de pesquisa e desenvolvimento; e (e) informar e conscientizar empresas e profissionais da área de tecnologia sobre a extrema importância do assunto.

2. Vazamentos de Dados

No primeiro semestre de 2019, ocorreram vários vazamentos de grandes volumes de dados sensíveis [Turner 2019b]. Um exemplo é o vazamento de dados de 2,4 milhões de usuários de uma empresa de gerenciamento de senhas, incluindo nomes de usuários, emails, dicas de senhas, endereços de IP e senhas cifradas. Outros dois vazamentos marcantes de 2019 são os 540 milhões de registros de usuários do Facebook e as 773 milhões de senhas e dados de usuários da *Collection #1* [Hern 2019, Turner 2019a].

Nos anos anteriores não foi diferente. A Tabela 1 apresenta um resumo dos 5 maiores vazamentos de dados ocorridos em cada ano, de 2014 a julho de 2019. Em 2018, o maior vazamento de dados comprometeu mais de 1 bilhão e 100 milhões de registros de dados pessoais de cidadãos da Índia [Leskin 2018]. Dadas as proporções, algo similar pode ser observado em 2017 [AO Kaspersky Lab. 2017], 2015 [LEVINGSTON 2015] e 2014 [Williams 2014]. A única excessão foi 2016 [AO Kaspersky Lab. 2016], cujo maior vazamento registrado foi de 5 milhões de registros de usuários. É interessante observar também que apenas em 2014 e 2016 houveram incidentes com menos de 1 milhão de registros entre os 5 maiores vazamentos de dados.

	2019	2018	2017	2016	2015	2014
#1	773M	1,1B	145,5M	5M	78,8M	145M
#2	200M	500M	5,5M	2,2M	25M	2,6M
#3	24M	340M	2,2M	1,5M	15M	1,3M
#4	12M	150M	1,8M	950m	11M	774m
#5	7,7M	100M	1,6M	320m	10M	550m

Tabela 1. Vazamentos de dados sensíveis (B = bilhão, M = milhão, m = mil)

Outro aspecto a ressaltar é o fato de os vazamentos de dados atingirem os mais diversos ramos e setores da sociedade. Recentemente, dois grandes vazamentos de dados, ambos envolvendo empresas de assistência médica, chamaram a atenção. No primeiro caso, a empresa Quest Diagnostics teve dados de 12 milhões de clientes vazados

¹https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX: 32016R0679

 $^{^2}$ http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/Lei/L13709.htm

[McKay 2019]. Em outro caso similar, a empresa LabCorp teve dados de 7,7 milhões de clientes vazados [Lam 2019]. Os dados vazados incluem nomes, endereços, data de nascimento, informações de pagamento e dados de seguro social. Além de empresas laboratoriais, hospitais também têm sido vítimas de *hackers* [Riley 2019]. Em um caso recente, dados do setor de pesquisa do *Massachusetts General Hospital* foram roubados, envolvendo aproximadamente 10 mil pacientes.

No ramo alimentício, um caso que chamou bastante atenção foi o da franquia Ceckers and Rally's, no qual 103 pontos de venda foram vítimas de um *malware* que roubava dados de cartões de crédito dos clientes. O detalhe estarrecedor: o *malware* estava ativo há três anos sem ter sido descoberto [Khandelwal 2019]. O número de pontos de venda, verificados e comprovadamente afetados até o momento, representa 15% do total de lojas. Como as investigações ainda estão em andamento, existe a possibilidade de mais pontos de venda terem sido afetados pelo *malware*. A empresa recomenda a verificação detalhada dos extratos e a substituição dos cartões dos clientes que passaram pela franquia (ou seja, todas as centenas de lojas) durante os últimos três anos.

Na área governamental, o caso recente da Bulgária ganhou as manchetes. Segundo relatórios, um hacker roubou dados de mais de 5 milhões de cidadãos, sendo que o país possui uma população aproximada 7 milhões de pessoas [Cimpanu 2019a]. Os dados (e.g. nomes, endereços, informações sobre renda) foram extraídos de aproximadamente 110 bases de dados governamentais, totalizando 21 GB. Este é mais um exemplo da dimensão e sofisticação dos ataques atuais.

No ramo financeiro, dois casos graves, envolvendo as empresas Mastercard e Capital One, merecem destaque. No caso da Mastercard, clientes do programa de fidelidade *Priceless Specials* da Alemanha e da Bélgica tiveram seus dados distribuidos na Internet [Gatlan 2019b]. Dois arquivos com 84 mil e 90 mil registros foram encontrados contendo informações como nome, endereço, email e número do cartão de crédito. Segundo a empresa, dados como senhas e códigos CVV não foram vazados. Já no caso da Capital One, clientes que realizaram cadastro ente 2005 e 2019, foram muito provavelmente afetados pelo vazamento [Serrels 2019]. Mais de 140 milhões de cidadãos americanos e 6 milhões de cidadãos canadenses tiveram seus dados vazados. Os dados vazados seguem o mesmo padrão no caso da Mastercard.

O interessante é observar que nem as empresas de alta tecnologia, que supostamente possuem times especializados e preparados para proteger suas infra-estruturas, escapam das manchetes de incidentes de segurança. Recentemente, foram descobertos dados (e.g. nomes, senhas, comentários e outras informações) de 540 milhões de usuários do Facebook armazenados em servidores da Amazon [Cimpanu 2019c]. Os dados, descobertos por pesquisadores especializados em vazamentos de dados, estavam em um servidor que pertencia à empresa mexicana Cultura Colectiva.

3. Impacto Socioeconômico

Em 2018, o custo envolvendo vazamentos de dados, apenas nos EUA, somaram 654 bilhões de dólares e expuseram 2,4 bilhões de dados de usuários [Security 2018]. Segundo o relatório, os tipos de dados mais vazados são data de nascimento e número de seguro social (21,6%) e nome e endereço (20%). Com relação aos tipos de ataques, os que aparecem em maiores percentuais são de acesso não autorizado (34,2%) e *malware*

(17,3%).

A Tabela 2 apresenta alguns casos onde foram aplicadas (ou estão em processo de aplicação) multas devido a vazamentos de dados. No caso dos EUA, como ainda não existe uma regulamentação federal específica, fica a cargo da *Federal Trade Commission* (FTC), responsável pelos direitos do consumidor, a definição e aplicação das multas.

Valor	Empresa	País	Ano
US\$ 5 B	Facebook	EUA	2019
£ 183,39 M	British Airways	Reino Unido	2019
US\$ 148 M	Uber	EUA	2018
US\$ 85 M	Yahoo	EUA / Israel	2018
€ 50 M	Google	França	2019
US\$ 22,5 M	Google	EUA	2012
US\$ 10 M	Blue Cross Blue Shield	EUA	2019
US\$ 3,8 M	AMCA	EUA	2019
R\$ 1.5 M	Banco Inter	Brasil	2018
€ 600 m	Uber	Holanda	2018
£ 385 m	Uber	Reino Unido	2018

Tabela 2. Penalidades aplicadas a empresas (B = bilhão, M = milhão, m = mil)

O Facebook está sendo multado em US\$5 bilhões pelo governo americano [Wong 2019]. O principal motivo é o caso envolvendo a empresa Cambridge Analytica, no qual haviam especulações sobre a relação de vendas e o uso indevido de dados na campanha eleitoral de Donald Trump, em 2016. O caso veio a público pela primeira vez em dezembro de 2015 e chegou a corte americana no início de 2018.

A companhia hoteleira Marriott está sendo multada em £100 milhões de libras pelo vazamento de dados de 339 milhões de clientes [Guardian 2019]. Entre os dados vazados estão números de cartão de crédito e dados de passaporte. A falha é decorrente de um sistema adotado pela empresa após a compra de outra rede hoteleira, a Starwood, que já havia sido notificada de problemas de segurança em seus sistemas em 2014.

A companhia aérea British Airways foi vítima de um ataque que afetou mais de 500 mil clientes em 2018 [News 2019]. Os dados roubados incluem histórico de compras de passagens, informações de pagamento e informações pessoais dos usuários como nome e endereço. A empresa está sendo multada em £183 milhões de libras.

Os vazamentos envolvendo as empresas Quest Diagnostics e LabCorp, que utilizavam a empresa AMCA para realizar os pagamentos, afetaram mais de 20 milhões de clientes. O impacto foi tamanho que AMCA pediu proteção contra falência depois de ter sido condenada a pagar mais de 3,8 milhões de dólares em multas [Osborne 2019]. De maneira similar, o grupo Disjardins, um dos maiores grupos de crédito da América do Norte, sofreu recentemente um vazamento de dados que irá afetar os seus negócios [Montpetit 2019]. Segundo os relatórios recentes, vazaram dados de 2,7 milhões de pessoas e mais de 173 mil empresas.

Até pouco tempo, pouco se dava atenção à privacidade e a segurança de dados. Entretanto, os dados e exemplos de penalidades mostram que o cenário mudou drasticamente nos últimos anos, isto é, estes assuntos tornaram-se uma prioridade de estado. Diferentes países já possuem leis estabelecidas de proteção de dados. Os que ainda não possuem, como os EUA, estão aplicando penalidades caso-a-caso e caminhando para criar as suas leis de proteção de dados. Empresas como a Google e a Uber já foram multadas em diferentes países. Esta é uma tendência que veio para ficar e vai atingir todas as empresas, de todos os portes. Entretanto, a maioria absoluta das empresas ainda não está preparada para este novo cenário. É preciso informar e conscientizar empresas e profissionais da área sobre a importância e necessidade de atenção do assunto.

4. Leis de Proteção de Dados

Com o objetivo de mudar este cenário, indiscutivelmente crítico, governos têm tomado medidas para que as empresas aumentem os investimentos e a preocupação com a segurança dos dados dos usuários. A União Europeia (EU) criou, em 2016, uma nova regulamentação para a proteção de dados pessoais, a *General Data Protection Regulation* 2016/679 (GDPR). A GDPR é um marco legal para a proteção e privacidade de dados de todos os cidadãos da EU e do Espaço Econômico Europeu (EEE), tornando a proteção de dados pessoais um direito fundamental, assim como a liberdade. Inspirada na GDPR, em 2018, foi sancionada a Lei Geral de Proteção de Dados Pessoais (LGPD), nº 13.709, a qual entrará em vigor em agosto de 2020. Tanto a GDPR quanto a LGPD visam proteger e fortalecer a privacidade, dando um maior controle aos cidadãos sobre seus dados pessoais e determinando como devem acontecer a coleta e o tratamento desses dados por terceiros.

Dados pessoais, segundo ambas as leis, são informações que possam identificar, direta ou indiretamente, uma pessoa natural, como CPF, RG e nome completo. Além disso, dados não pessoais como profissão, localização e endereço IP podem se tornar dados pessoais, se utilizados em conjunto com outros dados, para identificar uma pessoa natural. Dados pessoais sensíveis são informações que podem violar a intimidade, honra e imagem das pessoas naturais, como origem racial e étnica, convicções religiosas, políticas e filosóficas, dados genéticos e biométricos e dados referentes à saúde e vida sexual.

Ambas as leis determinam que deverão responder às regulamentações toda e qualquer empresa, pública ou privada, ou pessoa, física ou jurídica, que: armazene ou trate dados pessoais em seu território; a coleta e tratamento de dados tenha como objetivo oferecer ou fornecer serviços em seu território; e colete e manipule dados de seus cidadãos, independente da nacionalidade ou localização da empresas e dados. As multas por violação das regulamentações podem chegar a €20 milhões ou 4% do faturamento anual da pessoa jurídica envolvida, no caso da GDPR, e 2% do faturamento anual da pessoa jurídica ou R\$50 milhões, pela LGPD.

Tanto a GDPR quanto a LGPD estipulam que a coleta e o tratamento de dados pessoais, sensíveis ou não, se darão apenas mediante autorização explícita do titular dos dados, ou seja, a quem os dados referem-se. Os termos de uso deverão ser sucintos e explícitos, informando com qual finalidade, por quanto tempo e quais empresas e serviços terão acesso aos dados. A autorização de utilização de dados poderá ser cancelada facilmente e a qualquer momento, assim como a modificação e deleção dos dados pessoais. Em suma, os dados pessoais pertencem única e exclusivamente aos seus titulares, cabendo

a estes a decisão de utilização, deleção e comercialização.

5. Discussão

Ameaças internas e tecnologias promissoras

No caso do grupo Disjardins, discutido anteriormente, o vazamento ocorreu por conta de um funcionário mal intencionado. Este é, de fato, um problema bastante preocupante. Relatórios recentes apontam que mais de 90% das empresas tem medo de usuários internos maliciosos [Cybersecurity Insiders 2018]. Não é para menos, pois relatórios de segurança mostram que aproximadamente 50% dos incidentes de segurança são causados por funcionários ou ex-funcionários das empresas [Security 2019]. Entretanto, ainda há poucas alternativas tecnológicas para evitar incidentes internos.

Recentemente, foram investigados casos de venda de informações pessoais extraídas de fontes como INSS, Forças Armadas e outros serviços federais do Brasil. Os dados foram vendidos para empresas de *call center* [Dourado 2019]. Segundo as investigações, há diferentes empresas envolvidas no caso. Estas empresas oferecem serviços de dados que permitem a qualquer pessoas física ou jurídica obter informações como CPF, número de telefone e email de uma pessoa. A empresa responsável pelos dados do INSS já teve um de seus funcionários preso durante uma operação da Polícia Federal denominada de Data Leak.

Algumas das alternativas existentes, cujo principal objetivo é reduzir a possibilidade ou o impacto de vazamentos de dados, são os bancos de dados cifrados, tecnologias como Intel SGX [Costan and Devadas 2016] e sistemas de prevenção de vazamentos de dados (DLPs) [Alneyadi et al. 2016]. Bancos de dados cifrados, como o CryptDB [Popa et al. 2011], foram criados para impedir que administradores do sistema e do banco de dados tenham acesso aos dados em texto plano. Entretanto, a utilização de bancos de dados como o CryptDB [Popa et al. 2011], que utilizam criptografia homomórfica, ainda é tecnicamente inviável devido ao alto custo computacional envolvido.

Tecnologias como Intel SGX surgiram para parcialmente resolver o problema de desempenho imposto por soluções como a CryptDB. Intel SGX permite criar uma região de memória isolada, onde nem o sistema operacional tem acesso aos dados. A partir da SGX, recentemente, começaram a surgir soluções de armazenamento e processamento de dados seguro como a EnclaveDB [Priebe et al. 2018]. Estas soluções limitam a superfície de ataque de agentes maliciosos internos. Entretanto, apesar de representarem uma evolução significativa em termos de arquitetura e desempenho, mantendo a segurança, ainda há desafios pela frente até tornarem-se soluções de produção, como as limitações em termos de operações de I/O e memória interna (e.g. 80MB para dados).

Outra alternativa são Sistemas de Prevenção de Vazamentos de Dados (DLPSs) [Alneyadi et al. 2016]. Os DLPSs atuam em três principais frentes. A primeira é proteger dados pessoais armazenados, buscando identificá-los através de expressões regulares e análises estatísticas. A segunda trata de proteger dados em trânsito entre nós, sendo eles internos ou externos. Para isso, são utilizadas tecnologias como TLS, HTTPS, funções Hash e *Proxies*. A última frente é a tentativa de proteger dados sensíveis após um vazamento, utilizando notificações, audições, bloqueios, cifra e quarentena, visando amenizar os possíveis prejuízos. Como qualquer outro mecanismo de segurança, os DLPSs enfrentam diferentes desafios ao tentar proteger dados pessoais sensíveis. Por exemplo, há

vários canais por onde esses dados podem vazar, incluindo DVDs, USBs, documentos impressos, Internet e o fator humano. Além disso, após os vazamentos, torna-se muito difícil identificar dados pessoais, já que estes podem ser modificados, mascarados e cifrados.

Impacto a curto, médio e longo prazo

É interessante observar e discutir casos como o da Equifaz, que afetou 145,5 milhões de pessoas e dezenas de sistemas Governo americano. Em posse dos dados vazados (e.g. nome, número do seguro social, endereço), qualquer pessoa poderia realizar cadastros e usufruir de benefícios oferecidos por diferentes instituições públicas americanas. Assim que o vazamento veio a público, o Governo realizou uma campanha urgente de atualização dos seus sistemas. Entretanto, devido a quantidade e fragmentação dos órgãos e sistemas afetados, mesmo dois anos após o vazamento ainda existem sistemas vulneráveis aos dados vazados.

A maioria dos sistemas do Governo americano não seguem os métodos de verificação de identificação sugeridos pelo *National Institute of Standards and Technology* (NIST). Devido a isso, os vazamentos do Equifax (em 2017) e outros casos, como o da Quest Diagnostics e LabCorp (em 2019) afetam diretamente várias dezenas de sistemas do Governo americano, que não exigem nada além dos dados vazados para a realização do cadastro online e a solicitação de diferentes benefícios.

Técnicas simples podem ser utilizadas para resolver o problema, como autenticação de múltiplos fatores, na qual os usuários recebem dados de autenticação distintos em diferentes meios de comunicação (e.g. SMS e email). Estes códigos de autenticação são, então, utilizados para confirmar a identidade da pessoa. Por mais simples que isto possa parecer, a maioria dos sistemas não implementa múltiplos fatores de autenticação e verificação de identidade.

Em um estudo recente, a Microsoft constatou que 99.9% dos ataques cibernéticos automáticos a contas e serviços dos usuários podem ser mitigados com a implementação de autenticação de múltiplos fatores [Cimpanu 2019b]. Atualmente, somente senhas fortes já não garantem a segurança de acesso aos sistemas. Isto ocorre pelo fato de os ataques estarem cada vez mais sofisticados, incluindo diferentes formas de atacar o sistema ou roubar as credenciais de um usuário, sem envolver de forma direta a senha (e.g. *Manin-the-Midle*, *keystroke logging*). Vale ressaltar que uma pesquisa semelhante, conduzida pela Google, chegou a resultados similares [Cimpanu 2019b].

E se meus dados de autenticação insubstituíveis vazarem?

Alguns sistemas e empresas estão partindo para o uso de dados biométricos (e.g. digitais, iris) como sendo a solução da identificação e autenticação de pessoas. Entretanto, o que acontece se os meus dados biométricos vazarem? O que um atacante consegue fazer com dados biométricos vazados ou roubados/clonados? Dependendo da tecnologia utilizada, um atacante consegue, de forma rápida e simples, utilizar as credenciais biométricos vazadas para se passar pela pessoa que teve seus dados vazados [Mak 2019]. Em resumo, o simples fato de utilizar biometria como a única forma de autenticação trás mais insegurança do que segurança.

Eventualmente, dados biométricos podem ser utilizados como forma complementar de autenticação. Entretanto, mesmo assim, nem nesses casos é recomendado o uso de

biometrica. Mas, qual é o problema? O que acontece se meus dados biométricos vazarem? Eu consigo trocar meus dedos assim como eu troco minhas senhas? Se uma senha vazar, eu posso rapidamente trocar a senha. Entretanto, como fica o caso da biometria do meu polegar que foi vazada?

O problema com os dados biométricos é que eles não podem ser alterados depois de um vazamento. Recentemente, um grupo de pesquisadores encontrou uma enorme base de dados biométricos de dedos e faces, utiliza pela polícia, de milhões de pessoas [Pinkstone 2019]. Neste caso, além dos dados biométricos, vazaram também os metadados (informações associadas ao dados biométricos), como login e identificação. Em resumo, este é um exemplo onde todos os dados de segurança, de milhões de pessoas, mesmo utilizando dois fatores de autenticação (login/senha e biometria) foram vazados. Segundo os investigadores, a empresa responsável pelos dados não utiliza nenhum tipo de cifragem, ou seja, assim como a maioria absoluta das empresas, armazena dados sensíveis de maneira absolutamente inapropriada sob a perspectiva da segurança da informação.

6. Conclusão

Resumidamente, este trabalho reúne informações (e.g. dados e consequências) sobre alguns dos maiores casos de vazamento de dados dos últimos anos. A principal lição que pode ser extraída do trabalho: é de suma importância as instituições e empresas, publicas e privadas, agirem de forma mais consciente e responsável com relação aos dados de seus clientes. Como a sofisticação dos ataques não para de aumentar e a tecnologia está em constante evolução, investir em capacitação de pessoas, tecnologia e pesquisa é um caminho necessário, sem volta, a fim de evitar as penalidades de leis de proteção de dados como a LGPD, lei nº 13.709. Entre os trabalhos futuros, podem ser incluídos uma análise das vulnerabilidades exploradas em diferentes vazamentos de dados e uma classificando dos ataques mais comuns, que levam a vazamentos de dados.

Referências

- Alneyadi, S., Sithirasenan, E., and Muthukkumarasamy, V. (2016). A survey on data leakage prevention systems. *Journal of Network and Computer Applications*, 62:137–152.
- AO Kaspersky Lab. (2016). Top 5 data leaks. http://bit.do/e25No.
- AO Kaspersky Lab. (2017). Top 5 largest data leaks. http://bit.do/e25Nx.
- Cimpanu, C. (2019a). Hacker steals data of millions of Bulgarians, emails it to local media. http://bit.do/e25Qd.
- Cimpanu, C. (2019b). Microsoft: Using multi-factor authentication blocks 99.9% of account hacks. http://bit.do/e58Mc.
- Cimpanu, C. (2019c). Over 540 million Facebook records found on exposed AWS servers. http://bit.do/e25QX.
- Costan, V. and Devadas, S. (2016). Intel sgx explained. *IACR Cryptology ePrint Archive*, 2016(086):1–118.
- Cybersecurity Insiders (2018). Insider threat 2018 report. http://bit.do/e25Rf.
- Dourado, M. (2019). Esquema de venda de dados no Brasil mostrava informações até mesmo do presidente Jair Bolsonaro. http://bit.do/e58d5.

- Gatlan, S. (2019a). Hacker Steals Customer Payment Info in EatStreet Data Breach. http://bit.do/e25PW.
- Gatlan, S. (2019b). Mastercard reports data breach to german and belgian dpas. http://bit.do/e5Jwq.
- Guardian, T. (2019). Marriott to be fined nearly £100m over gdpr breach.
- Hern, A. (2019). Largest collection ever of breached data found. https://bit.ly/2Hf3E7V.
- Higa, P. (2018). Banco Inter vazou dados de quase 20 mil clientes, diz investigação do MP. https://bit.ly/2039mZd.
- Khandelwal, S. (2019). Hackers Stole Customers' Credit Cards from 103 Checkers and Rally's Restaurants. http://bit.do/e25P6.
- Lam, K. (2019). LabCorp says 7.7 million customers may have been affected by data breach. http://bit.do/e25Pd.
- Leskin, P. (2018). The 21 scariest data breaches of 2018. http://bit.do/e25M2.
- LEVINGSTON, C. (2015). 5 largest data breaches. http://bit.do/e25M9.
- Mak, A. (2019). What Can a Hacker Do With Your Stolen Fingerprints? http://bit.do/e5KSQ.
- McKay, T. (2019). Lab Testing Giant Quest Diagnostics Says Data Breach May Have Hit Nearly 12 Million Patients. http://bit.do/e25Ps.
- Montpetit, J. (2019). Personal data of 2.7 million people leaked from Desjardins. http://bit.do/e3az5.
- Muncaster, P. (2019). Over 60 US Colleges Compromised by ERP Exploit. https://bit.ly/2SC8zlm.
- News, B. (2019). British Airways faces record £183m fine for data breach. http://bit.do/e25Q7.
- Ng, A. (2019). Thanks to Equifax breach, 4 US agencies don't properly verify your data. http://bit.do/e25LY.
- Osborne, C. (2019). Data breach forces medical debt collector AMCA to file for bankruptcy protection. http://bit.do/e25Px.
- Payao, F. (2019). Dados de 1,4 milhão de clientes do Banco Inter estavam expostos para acesso. https://bit.ly/2LKotJR.
- Pinkstone, J. (2019). Huge data leak of system used by the police and banks has exposed the fingerprints and facial recognition scans of MILLIONS of people. https://www.dailymail.co.uk/sciencetech/article-7356507/Huge-data-leak-exposed-biometric-data-MILLIONS-people.html.
- Popa, R. A., Redfield, C., Zeldovich, N., and Balakrishnan, H. (2011). CryptDB: protecting confidentiality with encrypted query processing. In *Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles*, pages 85–100. ACM.
- Priebe, C., Vaswani, K., and Costa, M. (2018). Enclavedb: A secure database using sgx. In 2018 IEEE Symposium on Security and Privacy (SP), pages 264–278. IEEE.
- Riley, D. (2019). Massachusetts general hospital data breach latest failure to protect patient data. http://bit.do/e5KZP.
- Security, H. N. (2018). 2018 in numbers: Data breaches cost \$654 billion, expose 2.8 billion data records in the U.S. http://bit.do/e25NV.

- Security, H. N. (2019). Human error still the cause of many data breaches. http://bit.do/e25LQ.
- Serrels, M. (2019). Capital one data breach involves 100 million credit card applications. $\verb|http://bit.do/e5Jzf|.$
- Turner, S. (2019a). 2019 data breachers the worst so far. http://bit.do/e25MP.
- Turner, S. (2019b). 2019 Data Breaches The Worst So Far. http://bit.do/e25Ms.
- Williams, M. (2014). The 5 biggest data breaches. http://bit.do/e25NP.
- Wong, Q. (2019). Facebook will reportedly be fined a record \$5 billion over privacy mishaps. http://bit.do/e25Qj.