1. Differnece between ai and ml.

Al	ML	
Super set of ml	Subset of ai	
It try to create capable computers that can	It try to make algorithm that make predictions	
perform the human task	and improve its performance based on data	
Wider scope	Narrower scope	
It can work with unstructured data	Not work with unstructured data	
It mimics the human intelligence	Enable machine to learn from data and make	
	predictions.	
Type:narrow ai,general ai super intelligence Al	Type:supervised,unsupervised and reinforcement	
	learning	
Example:self driving car	Spam filters	

2. Give advantages and disadvantages of KNN

Answer:

Advantages:

- 1.**Simplicity**: Easy to understand and implement.
- 2. **No Training Phase** KNN is a lazy learner, meaning it doesn't require a training phase. It memorizes the data during training.
- 3. **Versatility**: Suitable for both classification and regression tasks.

Disadvantages:

- High computational cost:
- This can lead to poor performance if the dataset contains many irrelevant features.
- Sensitivity to Noise: Sensitive to outliers or noisy data, as it relies on distances.
- Choosing the Right K: The performance of KNN can be affected by the choice of the number of neighbors (K), and finding the optimal K can be challenging.

3. Describe the process of feature engineering in machine learning.

Answer:

Feature engineering is a crucial step in the machine learning process, involving the transformation of raw data into meaningful features that can be effectively utilized by machine learning algorithms. It plays a pivotal role in enhancing the performance and accuracy of predictive models

Collecting data

Handle missing data

Select best features(input)

4. Explain the concept of overfitting in machine learning.

Answer:

In machine learning, overfitting happens when a model learns not just the general patterns in the data but also the noise or specifics of the training set. As a result, it performs really well on the training data but struggles with new, unseen data because it has essentially memorized the training set rather than understanding the underlying concepts.

5. How does reinforcement learning differ from supervised and unsupervised learning?

Answer:

Rainforcement learning	Supervised learning	Un supervised leaning
Learns by the interaction with	Learn from label data	Learns from un label data
an environment		
Receives feedback as a	As a input data	No feedback
punishment or reward		
Aims to find best actions among	Aims to map input and output	Aims to uncover the patterns
all actions	data	from raw data
Algorithm: Q-learning	Decision tree	Principal component analysis
Application :robotic control	Spam detection	clustering

6. What are training and test data

Answer:

Training data and test data are two essential components of the machine learning process. They play distinct roles in developing and evaluating machine learning models.

Training Data:

Training data is a subset of the original dataset that is used to train the machine learning model. It serves as the foundation upon which the model learns to identify patterns, make predictions, or perform specific tasks. The quality and quantity of training data significantly impact the model's performance.

Test Data:

Test data, on the other hand, is a separate, unseen portion of the original dataset that is used to evaluate the trained model's performance. It helps assess how well the model generalizes to new data it hasn't encountered during training. This is crucial for ensuring the model's effectiveness in real-world scenarios.

Points:

- 1. **Purpose:** Training data is used to build the model, while test data is used to assess its performance.
- 2. **Exposure:** Training data is fed to the model during the learning process, while test data remains unseen until evaluation.

7. Write the differences between Linear and Logistic regression.