EZE big data pipeline

- HDFS path root: /data/onboarding/{channel} (channel = online, branch, mobile)
- Hive external table location: /warehouse/external/onboarding
- Lookups are stored in Hive as lookups.branch_region_map (branch → region, branch metadata)
- Timestamps are ISO8601 in the JSON (e.g. 2025-10-23T09:21:00Z)
- PySpark uses SparkSession with Hive support (enableHiveSupport())

1) High-level architecture (text)

- 1. JSON files arrive in HDFS folders every 30 minutes under:
 - o /data/onboarding/online/
 - o /data/onboarding/branch/
 - o /data/onboarding/mobile/
- 2. Oozie Coordinator scheduled every 30 minutes:
 - detects new files (file availability)
 - o triggers an Oozie workflow which runs a Spark job (PySpark) via spark-submit
- 3. PySpark job:
 - reads new JSON files for the run
 - validates mandatory fields (PAN, Aadhaar, address, nominee)
 - creates status flags (KYC_PENDING / KYC_COMPLETED / ADDRESS_MISMATCH / INVALID_DOC)
 - enriches records using Hive lookups (branch → region)
 - writes to partitioned Hive external table in ORC/Parquet (partitioned by channel, onboarding_date)

 writes processed-file manifest into HDFS for idempotence (or updates a metadata table)

4. Monitoring:

- During processing, compute KYC elapsed time; if > 2 hours, send email alert and log to alert table
- Oozie/CD pipeline raises alert if coordinator detects a missed file window
- o Daily summary (Hive query) emailed using Python or Oozie

2) Example JSON schema & example record

```
json
  "customer_id": "CUST123456",
  "channel": "online", // "online" | "branch" | "mobile"
  "onboarding_ts": "2025-10-23T09:21:00Z",
  "name": "Ramesh Kumar",
  "pan": "ABCDE1234F",
  "aadhaar": "123412341234",
  "address": {
   "line1": "12 MG Road",
    "city": "Bengaluru",
    "state": "Karnataka",
    "pincode": "560001"
  },
  "nominee": {
    "name": "Sita Kumar",
    "relation": "Spouse"
  },
  "documents": [
    {"type": "PAN", "valid": true},
    {"type": "Aadhaar", "valid": true}
  "branch_id": "BR001",
                               // for branch channel or to map a preferred
branch
  "kyc_completed_ts": null, // gets populated once KYC completes
  "raw_payload": { ... }
                                // optional, store raw
}
```

3) PySpark processing script (main)

Save as process onboarding.py. This does:

• read JSONs for a channel

- validate
- enrich via Hive lookup table
- assign statuses
- write to ORC (or Parquet) external Hive table partitioned by channel and onboarding_date
- log alerts via SMTP when KYC elapsed > 2 hours
- write processed manifest file to HDFS to prevent reprocessing

```
python
# process_onboarding.py
import sys
import os
from pyspark.sql import SparkSession, functions as F, types as T
from pyspark.sql.window import Window
import smtplib
from email.mime.text import MIMEText
from datetime import datetime, timezone, timedelta
import json
# ----- Config -----
HIVE_DB = "onboarding_db"
LOOKUP_TABLE = "lookups.branch_region_map" # Hive table: branch_id -> region,
branch name
OUTPUT_TABLE = "onboarding_raw"
OUTPUT_BASE_PATH = "/warehouse/external/onboarding" # external table location
root
PROCESSED_MANIFEST_DIR = "/data/onboarding/processed_manifest"
ALERT_EMAIL_SENDER = "alerts@yourdomain.com"
ALERT_EMAIL_TO = ["onboarding-team@yourdomain.com"]
SMTP_HOST = "smtp.yourdomain.com"
SMTP PORT = 25
KYC\_ALERT\_THRESHOLD\_HOURS = 2
# -----
def send email(subject, body, to addrs):
   msg = MIMEText(body)
   msg['Subject'] = subject
   msg['From'] = ALERT_EMAIL_SENDER
   msg['To'] = ", ".join(to_addrs)
    s = smtplib.SMTP(SMTP_HOST, SMTP_PORT)
   s.sendmail(ALERT_EMAIL_SENDER, to_addrs, msg.as_string())
    s.quit()
def main(input_path, channel, run_id):
```

```
spark = SparkSession.builder \
        .appName(f"process onboarding {channel} {run id}") \
        .enableHiveSupport() \
        .getOrCreate()
    # read new JSON files
    df = spark.read.json(input path)
    # Add channel if not present or override
    df = df.withColumn("channel", F.lit(channel))
    # basic flattening
    df = df.withColumn("address_line1", F.col("address.line1")) \
           .withColumn("city", F.col("address.city")) \
           .withColumn("state", F.col("address.state")) \
           .withColumn("pincode", F.col("address.pincode"))
    # Convert onboarding timestamp to timestamp type and date partition column
    df = df.withColumn("onboarding ts ts", F.to timestamp("onboarding ts")) \
           .withColumn("onboarding_date", F.date_format("onboarding_ts_ts",
"yyyy-MM-dd"))
    # Validation UDFs / expressions
    mandatory_cols = ["pan", "aadhaar", "address_line1", "nominee"]
    # is_present checks
    df = df.withColumn("missing_pan", F.when(F.col("pan").isNull() |
(F.col("pan") == ""), True).otherwise(False)) \
           .withColumn("missing_aadhaar", F.when(F.col("aadhaar").isNull() |
(F.col("aadhaar") == ""), True).otherwise(False)) \
           .withColumn("missing_address",
F.when(F.col("address_line1").isNull() | (F.col("address_line1") == ""),
True).otherwise(False)) \
           .withColumn("missing_nominee", F.when(F.col("nominee").isNull(),
True).otherwise(False))
    # Validate docs array - simple check for existence of valid PAN/Aadhaar
docs
    df = df.withColumn("has_pan_doc", F.expr("exists(documents, x ->
x.type='PAN' and x.valid = true)")) \
           .withColumn("has_aadhaar_doc", F.expr("exists(documents, x ->
x.type='Aadhaar' and x.valid = true)"))
    # Flag invalid doc if missing or doc invalid
    df = df.withColumn("invalid_doc", (F.col("missing_pan") |
F.col("missing_aadhaar") | (~F.col("has_pan_doc")) |
(~F.col("has_aadhaar_doc"))))
    # ADDRESS_MISMATCH: example rule - pincode missing or invalid length OR
city/state blank
    df = df.withColumn("address_mismatch", (F.col("pincode").isNull() |
```

```
(F.length(F.col("pincode")) != 6) | F.col("city").isNull() |
F.col("state").isNull()))
    # KYC status: if kyc_completed_ts present => KYC_COMPLETED else
KYC_PENDING
    df = df.withColumn("kyc_completed_ts_ts",
F.to timestamp("kyc completed ts")) \
           .withColumn("KYC_STATUS",
                       F.when(F.col("kyc completed ts ts").isNotNull(),
F.lit("KYC COMPLETED"))
                        .otherwise(F.lit("KYC PENDING"))
                      )
    # Enrichment: join with lookup table in Hive
    lookup_df = spark.table(LOOKUP_TABLE) # expected columns: branch_id,
branch_name, region
    df = df.join(lookup_df, on="branch_id", how="left")
    # Final status flags (array or columns). Keep columns for ease of querying
    df = df.withColumn("STATUS_FLAGS", F.array_distinct(
                    F.array remove(F.array(
                        F.when(F.col("KYC_STATUS") == "KYC_PENDING",
F.lit("KYC PENDING")).otherwise(F.lit(None)),
                        F.when(F.col("KYC_STATUS") == "KYC_COMPLETED",
F.lit("KYC_COMPLETED")).otherwise(F.lit(None)),
                        F.when(F.col("address_mismatch") == True,
F.lit("ADDRESS_MISMATCH")).otherwise(F.lit(None)),
                        F.when(F.col("invalid_doc") == True,
F.lit("INVALID_DOC")).otherwise(F.lit(None))
                    ), None)
                ))
    # Compute KYC elapsed time: If KYC_COMPLETED then diff between onboarding
and kyc_completed; else now - onboarding
    now_ts = F.current_timestamp()
    df = df.withColumn("kyc_elapsed_secs",
                       F.when(F.col("kyc_completed_ts_ts").isNotNull(),
                              F.unix_timestamp(F.col("kyc_completed_ts_ts")) -
F.unix_timestamp(F.col("onboarding_ts_ts"))
                             ).otherwise(
                              F.unix timestamp(now ts) -
F.unix_timestamp(F.col("onboarding_ts_ts"))
                      )
    # Raise alerts for > threshold
    threshold_secs = KYC_ALERT_THRESHOLD_HOURS * 3600
    alerts_df = df.filter(F.col("kyc_elapsed_secs") > threshold_secs)
    # Send alerts (small set) via SMTP - collect needed fields into driver
```

```
alerts =
alerts df.select("customer id", "branch id", "region", "onboarding ts", "kyc elaps
ed_secs","STATUS_FLAGS").limit(100).toJSON().collect()
    if alerts:
        body = "KYC processing alert: customers exceeding threshold\n\n" +
"\n".join(alerts)
        try:
            send_email(f"[ALERT] KYC delay > {KYC_ALERT_THRESHOLD_HOURS}
hours", body, ALERT_EMAIL_TO)
        except Exception as e:
            # log but don't fail the job
            print("Failed to send alert email:", e)
    # Persist to Hive external table location in partitioned layout
    # We'll write to path: /warehouse/external/onboarding/channel=
<channel>/onboarding date=<yyyy-mm-dd>/
    out base = OUTPUT BASE PATH
    write_df = df.select(
        "customer id", "channel", "onboarding ts", "onboarding ts ts",
        "onboarding_date", "name", "pan", "aadhaar", "address_line1", "city",
"state", "pincode",
        "nominee", "documents", "branch_id", "branch_name", "region",
"KYC STATUS", "STATUS FLAGS", "kyc elapsed secs", "raw payload"
    # Write as ORC/Parquet with dynamic partitioning by channel and
onboarding_date
    spark.conf.set("hive.exec.dynamic.partition","true")
    spark.conf.set("hive.exec.dynamic.partition.mode", "nonstrict")
    write_df.write.mode("append") \
        .partitionBy("channel", "onboarding_date") \
        .format("parquet") \
        .option("compression","snappy") \
        .save(out_base)
    # Record processed files manifest to HDFS so we don't reprocess (optional)
    # create a manifest file path based on run_id
    manifest = {
        "run_id": run_id,
        "input path": input path,
        "processed_at": datetime.now(timezone.utc).isoformat(),
        "records": df.count()
    }
    manifest path = os.path.join(PROCESSED MANIFEST DIR,
f"manifest_{channel}_{run_id}.json")
    # write manifest via hdfs put (use spark to write small file via
sc.hadoopFile? simpler: print to stdout and let wrapper move to HDFS)
    with open("/tmp/manifest_tmp.json","w") as f:
        f.write(json.dumps(manifest))
```

```
# Attempt to copy to HDFS (requires hadoop client on driver)
    try:
        os.system(f"hdfs dfs -mkdir -p {PROCESSED_MANIFEST_DIR}")
        os.system(f"hdfs dfs -put -f /tmp/manifest_tmp.json {manifest_path}")
    except Exception as e:
        print("Failed to push manifest to HDFS:", e)
    spark.stop()
if name == " main ":
    # args: input_path channel run_id
    if len(sys.argv) != 4:
        print("Usage: process_onboarding.py <input_path> <channel> <run_id>")
        sys.exit(1)
    input_path = sys.argv[1]
    channel = sys.argv[2]
    run_id = sys.argv[3]
    main(input_path, channel, run_id)
```

Notes:

- The script uses spark.read.json(input_path) point input_path to the directory or file pattern (e.g. hdfs:///data/onboarding/online/*.json).
- The script writes out to OUTPUT_BASE_PATH and uses dynamic partitions for channel and onboarding_date. You should create a Hive external table pointing to that base path (DDL below).
- The email send uses a basic SMTP conversation; replace with your mail relay or use a more robust mail client if needed.

4) Hive table DDL (external) — ORC/Parquet

Run in Hive/Beeline:

```
sql
CREATE DATABASE IF NOT EXISTS onboarding_db;
CREATE EXTERNAL TABLE IF NOT EXISTS onboarding_db.onboarding_raw (
  customer_id string,
  onboarding_ts string,
  onboarding_ts_ts timestamp,
  name string,
  pan string,
  aadhaar string,
  address_line1 string,
  city string,
  state string,
  pincode string,
  nominee struct<name:string,relation:string>,
  documents array<struct<type:string,valid:boolean>>,
  branch_id string,
  branch_name string,
  region string,
  KYC_STATUS string,
  STATUS_FLAGS array<string>,
  kyc_elapsed_secs bigint,
  raw_payload string
)
PARTITIONED BY (channel string, onboarding_date string)
STORED AS PARQUET
LOCATION '/warehouse/external/onboarding';
```

After creating the table, you may run MSCK REPAIR TABLE onboarding_db.onboarding_raw; to pick up existing partitions.

Optional: create a small metadata table onboarding_db.processed_manifest to track processed files, alerts, etc.

5) Lookup table DDL example

```
create DATABASE IF NOT EXISTS lookups;
CREATE EXTERNAL TABLE IF NOT EXISTS lookups.branch_region_map (
   branch_id string,
   branch_name string,
   region string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION '/warehouse/external/lookups/branch_region_map';
```

Populate this via load data or insert from CSV. Or create as managed table.

6) Oozie: coordinator + workflow sketch

Coordinator (runs every 30 minutes, expects files in each channel directory)

coordinator.xml

```
xml
<coordinator-app name="onboarding-coordinator" frequency="30" start="2025-10-</pre>
01T00:00Z" end="2026-01-01T00:00Z" timezone="UTC"
xmlns="uri:oozie:coordinator:0.4">
  <action>
    <workflow>
      <app-path>${nameNode}/user/oozie/workflows/onboarding_workflow.xml</app-</pre>
path>
      <configuration>
        property>
          <name>input dir</name>
          <value>/data/onboarding/${coord:nominalTimeFormat('yyyy-MM-dd-HH-
mm')}/</value>
        </property>
      </configuration>
    </workflow>
  </action>
  <!-- File triggers per channel -->
  <datasets>
    <dataset name="online_files" frequency="30" timezone="UTC">
      <uri-
template>hdfs://<NAMENODE_HOST>:8020/data/onboarding/online/${YEAR}-${MONTH}-$
{DAY}-${HOUR}-${MINUTE}/*.json</uri-template>
      <start>${coord:start}</start>
      <end>${coord:end}</end>
    </dataset>
    <dataset name="branch_files" frequency="30" timezone="UTC">
      <uri-
template>hdfs://<NAMENODE HOST>:8020/data/onboarding/branch/${YEAR}-${MONTH}-$
{DAY}-${HOUR}-${MINUTE}/*.json</uri-template>
      <start>${coord:start}</start>
      <end>${coord:end}</end>
    </dataset>
    <dataset name="mobile_files" frequency="30" timezone="UTC">
template>hdfs://<NAMENODE_HOST>:8020/data/onboarding/mobile/${YEAR}-${MONTH}-$
{DAY}-${HOUR}-${MINUTE}/*.json</uri-template>
      <start>${coord:start}</start>
      <end>${coord:end}</end>
    </dataset>
  </datasets>
  <controls>
    <timeout>10</timeout>
    <concurrency>1</concurrency>
```

Note: The coordinator above is a sketch. You often use Coordinator input-events with uri-template to watch for files. Some teams prefer using Oozie file system triggers or use stream processors. Replace <NAMENODE_HOST> and adjust start/end.

Workflow that the coordinator calls

onboarding workflow.xml (a Spark action calling process onboarding.py)

```
xml
<workflow-app name="onboarding-workflow" xmlns="uri:oozie:workflow:0.5">
  <start to="spark-node"/>
  <action name="spark-node">
    <spark xmlns="uri:oozie:spark-action:1.0">
      <job-tracker>${jobTracker}</job-tracker>
      <name-node>${nameNode}</name-node>
      <master>yarn</master>
      <mode>cluster</mode>
      <name>OnboardingProcessing_${coord:nominalTime}</name>
      <class>org.apache.spark.deploy.PythonRunner</class>
      <jar>file:///usr/hdp/current/spark-client/lib/spark-assembly.jar</jar>
      <arg>process_onboarding.py</arg>
      <arg>hdfs:///data/onboarding/${channel}/*.json</arg>
      <arg>${channel}</arg>
      <arg>${wf:id()}</arg>
<file>hdfs:///user/oozie/apps/process_onboarding/process_onboarding.py#process
_onboarding.py</file>
      <capture-output/>
    </spark>
    <ok to="end"/>
    <error to="fail"/>
  </action>
  <kill name="fail">
    <message>Workflow failed, error
message[${wf:errorMessage(wf:lastErrorNode())}]</message>
  </kill>
  <end name="end"/>
</workflow-app>
```

You'll parameterize \${channel} for each channel and configure dataset triggers accordingly. Many implementations create three specific coordinator jobs (one per channel) to simplify templating.

7) KPI Hive queries (examples)

1. Onboarding count by region and channel (daily)

```
sql

SELECT onboarding_date, region, channel, count(*) AS total_onboardings
FROM onboarding_db.onboarding_raw
WHERE onboarding_date = '2025-10-22'
GROUP BY onboarding_date, region, channel
ORDER BY region, channel;
```

2. Average onboarding processing time by region/branch

```
sql

SELECT region, branch_id, AVG(kyc_elapsed_secs)/3600 AS avg_kyc_hours

FROM onboarding_db.onboarding_raw

WHERE onboarding_date BETWEEN '2025-10-01' AND '2025-10-22'

GROUP BY region, branch_id

ORDER BY avg_kyc_hours DESC;
```

3. % of customers with incomplete documentation (INVALID_DOC)

```
SELECT onboarding_date, region,
SUM(CASE WHEN array_contains(STATUS_FLAGS, 'INVALID_DOC') THEN 1 ELSE 0 END)
AS invalid_docs,
COUNT(*) AS total,
(SUM(CASE WHEN array_contains(STATUS_FLAGS, 'INVALID_DOC') THEN 1 ELSE 0
END)/CAST(COUNT(*) AS DOUBLE))*100 AS pct_invalid
FROM onboarding_db.onboarding_raw
WHERE onboarding_date >= '2025-10-01'
GROUP BY onboarding_date, region
ORDER BY onboarding_date, pct_invalid DESC;
```

4. Branches with frequent invalid entries (top 20)

```
sql

SELECT branch_id, branch_name, region,

SUM(CASE WHEN array_contains(STATUS_FLAGS,'INVALID_DOC') THEN 1 ELSE 0 END)

AS invalid_count,
```

```
COUNT(*) AS total

FROM onboarding_db.onboarding_raw

GROUP BY branch_id, branch_name, region

ORDER BY invalid_count DESC

LIMIT 20;
```

5. Daily summary report SQL (for email)

```
SELECT onboarding_date,
    COUNT(*) AS total_onboardings,
    SUM(CASE WHEN array_contains(STATUS_FLAGS,'INVALID_DOC') THEN 1 ELSE 0 END)
AS invalid_doc_count,
    SUM(CASE WHEN array_contains(STATUS_FLAGS,'ADDRESS_MISMATCH') THEN 1 ELSE 0
END) AS address_mismatch_count,
    SUM(CASE WHEN KYC_STATUS='KYC_COMPLETED' THEN 1 ELSE 0 END) AS kyc_completed
FROM onboarding_db.onboarding_raw
WHERE onboarding_date = date_format(current_date - interval '1' day, 'yyyy-MM-dd')
GROUP BY onboarding_date;
```

8) Python email report script (daily)

Save as daily_onboarding_report.py — run once per day via Oozie or crontab.

```
python
# daily onboarding report.py
import smtplib
from email.mime.text import MIMEText
import subprocess
import json
import os
SMTP_HOST = "smtp.yourdomain.com"
SMTP_PORT = 25
FROM = "reports@yourdomain.com"
TO = ["onboarding-team@yourdomain.com"]
# Example: use beeline to run SQL and capture results (hive/beeline available)
SQL = """
SELECT onboarding date,
  COUNT(*) AS total_onboardings,
  SUM(CASE WHEN array_contains(STATUS_FLAGS,'INVALID_DOC') THEN 1 ELSE 0 END)
AS invalid_doc_count,
  SUM(CASE WHEN array_contains(STATUS_FLAGS, 'ADDRESS_MISMATCH') THEN 1 ELSE 0
END) AS address_mismatch_count,
  SUM(CASE WHEN KYC_STATUS='KYC_COMPLETED' THEN 1 ELSE 0 END) AS kyc_completed
FROM onboarding_db.onboarding_raw
WHERE onboarding_date = date_format(current_date - interval '1' day, 'yyyy-MM-
dd')
GROUP BY onboarding_date;
def run_beeline(sql):
    cmd = ['beeline', '-u', 'jdbc:hive2://localhost:10000/default', '-e', sql]
    p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE,
text=True)
    out,err = p.communicate()
    if p.returncode != 0:
        raise Exception("Beeline failed: " + err)
    return out
def send_email(subject, body, to_addrs):
    msg = MIMEText(body)
    msg['Subject'] = subject
    msg['From'] = FROM
    msg['To'] = ", ".join(to_addrs)
    s = smtplib.SMTP(SMTP HOST, SMTP PORT)
    s.sendmail(FROM, to_addrs, msg.as_string())
    s.quit()
if __name__ == "__main__":
    try:
        res = run beeline(SQL)
```

```
send_email("Daily Onboarding Summary", f"Daily Onboarding
KPI:\n\n{res}", TO)
  except Exception as e:
    # On failure, email operations team
    send_email("[ERROR] Daily Onboarding Report failed", str(e),
["ops@yourdomain.com"])
```

Run this script with Oozie or crontab daily at 06:00 AM.

9) Missed-file detection & alert (small watchdog)

If Oozie coordinator is used reliably, missed-file detection can be built into the coordinator by setting timeouts or writing a small script that checks manifest presence for the expected timeframe.

Example watchdog snippet watchdog_check.py:

```
python
# watchdog check.py
import subprocess, smtplib
from email.mime.text import MIMEText
from datetime import datetime, timedelta
HDFS_MANIFEST_DIR = "/data/onboarding/processed_manifest"
ALERT EMAIL TO = ["onboarding-team@yourdomain.com"]
def hdfs_ls(path):
    cmd = ["hdfs","dfs","-ls", path]
    p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE,
text=True)
    out,err = p.communicate()
    if p.returncode != 0:
        return ""
    return out
def send_email(subject, body, to_addrs):
    msg = MIMEText(body)
    msg['Subject'] = subject
    msg['From'] = "alerts@yourdomain.com"
    msg['To'] = ", ".join(to_addrs)
    s = smtplib.SMTP("smtp.yourdomain.com", 25)
    s.sendmail("alerts@yourdomain.com", to_addrs, msg.as_string())
    s.quit()
if name == " main ":
    # check last 30-minute window
    now = datetime.utcnow()
    window = now - timedelta(minutes=30)
    date_tag = window.strftime("%Y-%m-%d-%H-%M") # match your manifest naming
convention
    # Use hdfs ls to search for manifest entries
    out = hdfs_ls(HDFS_MANIFEST_DIR)
    if date_tag not in out:
        send_email("[ALERT] Missing onboarding ingest", f"No manifest found
for {date_tag}. Possible missed files.", ALERT_EMAIL_TO)
```

Schedule this watchdog every 30 minutes via crontab or Oozie frequency job.

10) Deployment & testing checklist

- 1. Create Hive DBs and lookup tables, load lookup CSV for branch→region.
- 2. **Create Hive external table** pointing to base output path. Validate partition discovery works.

- 3. **Deploy PySpark script** into a shared HDFS /user/oozie/apps directory referenced by Oozie.
- 4. **Test locally on sample JSON**: run spark-submit process_onboarding.py /local/path/sample_online.json online test1 (with local spark). Validate output files partitioned correctly.
- 5. **Test HDFS ingestion**: copy sample file into HDFS hdfs dfs -put sample_online.json /data/onboarding/online/ and run job.
- 6. **Simulate KYC delays**: create synthetic samples with onboarding_ts older than 3 hours to verify alerts.
- 7. **Deploy Oozie coordinator + workflow** in dev cluster, validate triggers and retries.
- 8. **Test email delivery** for alerts and daily summary.
- 9. **Set up logging**: store job logs in HDFS or centralized ELK/Fluentd for easier debugging.
- 10. On-call runbook: document steps to reprocess missing files and to replay manifests.

11) Operational considerations & best practices

- **Idempotence**: keep a processed manifest (or use HDFS file move semantics) so files already processed aren't reprocessed. Use a metadata Hive table if you want more robust processing-state management.
- **Small files**: since files arrive every 30 minutes, ensure batches aren't too small. If lots of small files, consider rolling them or using Spark streaming with file stream or S3-style consolidation.
- **Schema evolution**: store raw JSON (raw_payload) for reprocessing if the schema changes.
- **Backfills & replays**: provide a replay mode that reads historical JSON and reprocesses into partitions (with overwrite per partition).
- **Testing**: unit test validation logic (e.g., PAN, Aadhaar length rules) and edge cases (nulls, malformed JSON).
- **Security**: mask or encrypt PII at rest if required (Aadhaar/PAN). Use HDFS encryption zones if mandated.
- **Monitoring**: track job durations, success/failure counts, and number of records processed in Prometheus/Grafana.

• **Retries**: Oozie workflows should be configured with retry logic. If job fails, alert and write failed-run metadata.

12) Quick troubleshooting tips

- If partitions not visible in Hive: run MSCK REPAIR TABLE onboarding_db.onboarding_raw;
- If email not sent: check SMTP connectivity from nodes where driver runs.
- If alerts noisy: add hysteresis (e.g., only alert once per customer unless newly exceeding threshold).
- If too many small files in HDFS: run periodic compaction into date/partition files.

What's the Goal?

You need to **build a Big Data Pipeline** for a company called **EZE** that handles **new customer onboarding data** coming from multiple sources.

This pipeline should collect, clean, validate, enrich, and analyze the data — and also send alerts or reports when something goes wrong.

Basically, you're building an automated data system that tells the company:

"How fast and correctly are customers getting onboarded, and where are delays or issues happening?"

Where is the data coming from?

Customer data comes from three channels:

- 1. Online applications
- 2. Branch (in-person) registrations
- 3. Mobile app signups

Every 30 minutes, each channel drops **JSON files** into HDFS (a big data file system).

Example folders:

```
swift
/data/onboarding/online/
/data/onboarding/branch/
/data/onboarding/mobile/
```

What the system must do

1. Detect new files automatically

- When a new JSON file lands in HDFS, detect it within a few minutes.
- You can use **Oozie** (a scheduler) or **Spark Streaming** to do this.

2. Validate the data

- Check that required information is present:
 - PAN number
 - Aadhaar number
 - Address
 - Nominee details
- If any of these are missing → mark as invalid.

3. Enrich the data

 Add extra info like branch name and region using a lookup table stored in Hive.

4. Transform and Store

- Use **PySpark** to process and clean the data.
- Write the cleaned data to Hive external tables.
- Tables should be partitioned by:
 - channel (online, branch, mobile)
 - onboarding_date

5. **Generate Status Flags**

For each record, create flags such as:

- O KYC_PENDING
- O KYC_COMPLETED
- O ADDRESS_MISMATCH

O INVALID_DOC

6. Analyze the data

- Run Hive queries to answer questions like:
 - How long does onboarding take per branch or region?
 - What % of customers have incomplete documents?
 - Which branches have frequent data issues?

7. Send Alerts

- o If any customer's KYC takes more than 2 hours, send an email alert.
- If a file isn't processed within **30 minutes**, also send an alert.

8. Send Daily Summary Reports

• Every day, automatically email a summary report (e.g., total onboardings, issues, etc.) to the onboarding team.

🧩 Tools You'll Use

Task	Tool
Data Storage	HDFS
Data Processing	Apache Spark (PySpark)
Data Querying	Hive (with Parquet/ORC format)
Scheduling / Automation	Oozie
Dashboards	Tableau / Power BI / Superset (optional)
Alerting	Python email script or Oozie email action

How You'll Build It (step by step)

1. Data Ingestion

• Simulate three data sources producing JSON files.

• Store them in HDFS folders (one per channel).

2. Data Validation & Transformation

- Write a PySpark script that:
 - Reads JSON files from HDFS
 - Validates mandatory fields
 - Adds region/branch info
 - Assigns KYC status flags
 - Writes cleaned output to Hive tables

3. Data Storage

Create Hive external tables partitioned by channel and date.

4. Scheduling

• Use **Oozie** to run the PySpark job automatically every 30 minutes.

5. Analytics

• Write Hive queries to generate onboarding KPIs and insights.

6. Alerts

- Add a Python script to check for:
 - Customers with delayed KYC (> 2 hours)
 - Missing/unprocessed files
- Send alerts via email automatically.

7. Reporting

• Another daily script runs Hive queries and emails a summary to the team.

II What You'll End Up With

By the end, you'll have:

- Automated data ingestion and validation pipeline
- V KYC performance dashboards and reports

- **Automatic email alerts for delays or errors**
- **Daily** summary reports for the team

S In short:

You're creating a **fully automated big data system** that continuously monitors customer onboarding performance, identifies bottlenecks, and keeps the team informed in real-time.