Università degli studi di Bergamo

Anno Accademico 2023/2024

MODELLI E ALGORITMI DI OTTIMIZZAZIONE

Modelli con Variabili

Binarie – Esercizi 4 e 5 (E2)

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - 1. Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - 3. Gestire il soddisfacimento di vincoli alternativi
 - Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - 1. Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - 3. Gestire il soddisfacimento di vincoli alternativi
 - Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

Minimo Tecnico

 Un minimo tecnico è una minima quantità da garantire solo in caso di attivazione della produzione.

$$\xi \in \left\{0 \cup \left[\underline{\xi}; \overline{\xi}\right]\right\} \qquad 0 \qquad \qquad \underline{\xi} \qquad \underline{\xi} \qquad \delta$$

$$y \in \{0; 1\}$$

Insiemi

 $\checkmark J$: insieme dei prodotti

$$J = \{1,2,3,4\}$$

Dati - Vettori

• q_j Minima quantità di j da produrre (solo se la produzione è attivata)

• P_i Prezzo di vendita del prodotto j

• c_j Costo marginale del prodotto j

• tl_j Tempo di lavorazione del prodotto j

• Dati - Scalari

H Disponibilità di ore lavorative
 6000

Variabili Decisionali

• x_i Quantità prodotta di j

• y_j Binaria: 1 se la produzione di j è attivata – 0 altrimenti

Variabile obiettivo: profitti totali

Funzione Obiettivo

Costi di produzione

Ricavi di vendita

Vincoli

✓ Capacità

Il tempo complessivo di lavorazione non può eccedere la capacità

Vincoli

✓ Capacità

$$\sum_{j} t l_{j} \cdot x_{j} \leq H$$

Vincoli

✓ Capacità

$$\sum_{j} t l_{j} \cdot x_{j} \leq H$$

Minimo tecnico

Per **ogni** prodotto, se la rispettiva produzione è attivata, è necessario produrre un quantitativo minimo

Vincoli

✓ Capacità

$$\sum_{j} t l_{j} \cdot x_{j} \leq H$$

✓ Minimo tecnico

$$qy_j \le x_j \le My_j$$

Vincoli sulle variabili decisionali

•
$$x_j \ge 0 \quad \forall j$$

→ MIP

•
$$y_j \in \{0; 1\} \quad \forall j$$

Controllo del gap di ottimalità

Le variabili binarie

- Le variabili binarie vengono utilizzate per
 - 1. Rappresentare scelte dicotomiche
 - 2. Trattare funzioni discontinue (costi fissi)
 - 3. Gestire il soddisfacimento di vincoli alternativi
 - 4. Imporre l'appartenenza di variabili ad intervalli discontinui (minimi tecnici)
 - 5. Esprimere condizioni logiche

- Siano α , β e γ tre condizioni logiche che possono assumere valore vero o falso
 - Rappresentate tramite variabili binarie y_{α} , y_{β} e y_{γ} (1: vero, 0 : falso)
- Introdurremo dei vincoli per modellare alcuni esempi di condizioni logiche
 - Intersezione
 - $ightharpoonup \gamma$ è vera se entrambe le condizioni α e β sono vere, altrimenti è falsa
 - Numero di condizioni logiche vere
 - Al massimo k
 - Almeno k
 - **❖** E<u>sattamente</u> *k*

Intersezione

y_{lpha}	$\mathcal{Y}_{oldsymbol{eta}}$	\mathcal{Y}_{γ}
0	0	0
1	0	0
0	1	0
1	1	0
0	0	1
1	0	1
0	1	1
1	1	1

Intersezione

 \checkmark γ è vera se entrambe le condizioni α e β sono vere, altrimenti è falsa

	$\mathcal{Y}_{oldsymbol{\gamma}}$	$\mathcal{Y}_{oldsymbol{eta}}$	y_{α}
Α	0	0	0
Α	0	0	1
A	0	1	0
NA	0	1	1
NA	1	0	0
NA	1	0	1
NA	1	1	0
Α	1	1	1

Dobbiamo ora identificare un set di vincoli che permetta di escludere tutte e sole le combinazioni non ammissibili

Intersezione

	$\mathcal{Y}_{oldsymbol{\gamma}}$	$\mathcal{Y}_{oldsymbol{eta}}$	y_{lpha}
A	0	0	0
A	0	0	1
A	0	1	0
NA	0	1	1
— NA	1	0	-0
NA	1	0	1
— NA	1	1	-0
A	1	1	1
A A NA NA NA NA		0 0 0 0 1 1	0 0 0 1 1 1 1

Intersezione

	$\mathcal{Y}_{oldsymbol{\gamma}}$	$\mathcal{Y}_{oldsymbol{eta}}$	\mathcal{Y}_{lpha}
A	0	0	0
A	0	0	1
$\mathbf{A} \qquad \qquad \mathcal{Y}_{\gamma} \leq 1$	0	1	0
NA	0	1	1
$\gamma_{\gamma} \leq 1$	1	0	-0
NA	1	0	-1
NA	1	1	-0
A	1	1	1

Intersezione

y_{α}	$\mathcal{Y}_{oldsymbol{eta}}$	$\mathcal{Y}_{oldsymbol{\gamma}}$		
0	0	0	A	
1	0	0	A	
0	1	0	A	$y_{\gamma} \leq y_{\alpha}$
-1	1	0	- NA	11 < 11 ₀
-0	0	1	- NA	$y_{\gamma} \leq y_{\beta}$
-1	0	1	- NA	$y_{\gamma} \ge y_{\alpha} + y_{\beta} - 1$
-0	1	1	- NA	considero la somma ya + yb = 2
1	1	1	A	

- Numero condizioni logiche
 - \checkmark Al massimo k tra le condizioni α , β e γ sono vere

$$y_{\alpha} + y_{\beta} + y_{\gamma} \leq k$$

✓ Almeno k tra le condizioni α , β e γ sono vere

$$y_{\alpha} + y_{\beta} + y_{\gamma} \ge k$$

 \checkmark Esattamente k tra le condizioni α , β e γ sono vere

$$y_{\alpha} + y_{\beta} + y_{\gamma} = k$$

Insiemi

✓ *I* : insieme dei sili

$$I = \{1,2,3,...,6\}$$

 $\checkmark J$: insieme delle fattorie

$$J = \{1,2,3,...,7\}$$

- Dati Vettori
 - D_j Domanda giornaliera [quintali] di foraggio della fattoria j
 - Q_i Massima quantità giornaliera [quintali] di foraggio per il silo i
 - CF_i Costi fissi quadriennali [\in] del silo i

 cs_i Costo unitario giornaliero di stoccaggio [€/quintale] del silo i

Dati - Matrici

• $dist_{ij}$ Distanza [km] del silo i dalla fattoria j

Dati - Scalari

c Costo unitario di trasporto 0.06 [€/km·quintale]

- Calcolo dei parametri di costo
 - f_i Costi fissi giornalieri [\in] del silo i

$$f_i = \frac{CF_i}{4 \cdot 365 + 1}$$

ct_{ij} Costo di trasporto [€/quintale] dal silo i
alla fattoria j

$$ct_{i,j} = 2dist_{i,j} \cdot c$$

Variabili Decisionali

- x_{ij} Quantità trasportata [quintali] dal silo i alla fattoria j ($x_{i,j} \ge 0$)
- s_i Quantità stoccata [quintali] dal silo i $(s_i \ge 0)$
- y_i Binaria: 1 se il silo i è attivato 0 altrimenti
- z Variabile obiettivo : costi totali [€]

Funzione obiettivo

Vincoli

✓ Domanda

La domanda di ogni fattoria deve essere soddisfatta

Vincoli

✓ Domanda

$$\sum_{i} x_{ij} = D_j \quad \forall j$$

Vincoli

✓ Domanda

$$\sum_{i} x_{ij} = D_j \quad \forall j$$

✓ Quantità stoccata

Per ogni silo, la quantità complessivamente in uscita è pari alla quantità stoccata

Vincoli

✓ Domanda

$$\sum_{i} x_{ij} = D_j \quad \forall j$$

✓ Quantità stoccata

$$s_i = \sum_j x_{ij} \quad \forall i$$

Vincoli

✓ Capacità di stoccaggio

Per **ogni** silo, la quantità complessivamente stoccata non deve eccedere la capacità massima

Vincoli

✓ Capacità di stoccaggio

$$s_i \leq Q_i y_i \ \forall i$$

Vincoli

✓ Capacità di stoccaggio

$$s_i \le Q_i y_i \quad \forall i$$

$$y_i = 0$$

$$s_i = 0$$

Vincoli

✓ Capacità di stoccaggio

$$s_i \le Q_i y_i \quad \forall i$$

$$y_i = 0$$

$$s_i = 0$$

Un silo non attivo non può essere utilizzato per lo stoccaggio

Vincoli

✓ Capacità di stoccaggio

Un silo non attivo non può essere utilizzato per lo stoccaggio

Vincoli

✓ Capacità di stoccaggio

$$S_{i} \leq Q_{i}y_{i} \quad \forall i$$

$$y_{i} = 0 \qquad y_{i} = 1$$

$$S_{i} \leq Q_{i}$$

Un silo non attivo non può essere utilizzato per lo stoccaggio

Un silo attivo può essere utilizzato per lo stoccaggio nel rispetto della capacità

Modifiche al punto B)

✓ Numero di sili attivati
 È necessario attivare almeno 4 sili

Modifiche al punto B)

✓ Numero di sili attivati

$$\sum_{i} y_i \ge 4$$

Modifiche al punto C)

✓ Fornitura minima
 Ogni silo, se attivato, deve stoccare una quantità minima

Modifiche al punto C)

✓ Fornitura minima

$$0.5Q_iy_i \le s_i \le Q_iy_i \quad \forall i$$

Modifiche al punto D)

✓ 3 può essere attivato solo se almeno uno tra 1 e 2 è attivato

y_1	y_2	y_3
0	0	0
1	0	0
0	1	0
1	1	0
0	0	1
1	0	1
0	1	1
1	1	1

- Modifiche al punto D)
 - ✓ 3 può essere attivato solo se almeno uno tra 1 e 2 è attivato

	y_3	y_2	y_1
A	0	0	0
	0	0	1
	0	1	0
	0	1	1
NA	1	0	0
	1	0	1
	1	1	0
	1	1	1

- Modifiche al punto D)
 - ✓ 3 può essere attivato solo se almeno uno tra 1 e 2 è attivato

	y_3	y_2	y_1
A	0	0	0
A	0	0	1
	0	1	0
	0	1	1
NA	1	0	0
A	1	0	1
	1	1	0
	1	1	1

- Modifiche al punto D)
 - ✓ 3 può essere attivato solo se almeno uno tra 1 e 2 è attivato

	y_3	y_2	y_1
A	0	0	0
A	0	0	1
A	0	1	0
	0	1	1
NA	1	0	0
A	1	0	1
A	1	1	0
	1	1	1

- Modifiche al punto D)
 - ✓ 3 può essere attivato solo se almeno uno tra 1 e 2 è attivato

	y_3	${\mathcal Y}_2$	y_1
A	0	0	0
Α	0	0	1
Α	0	1	0
A	0	1	1
NA	1	0	0
A	1	0	1
A	1	1	0
A	1	1	1

- Modifiche al punto D)
 - ✓ 3 può essere attivato solo se almeno uno tra 1 e 2 è attivato

		y_3	y_2	y_1
	A	0	0	0
	A	0	0	1
	A	0	1	0
	Α	0	1	1
$y_3 \le y_1 + y_2$	– NA	1	0	-0
	A	1	0	1
	Α	1	1	0
	A	1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

y_4	${\cal Y}_5$	y_6
0	0	0
1	0	0
0	1	0
1	1	0
0	0	1
1	0	1
0	1	1
1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

	y_6	${\cal Y}_5$	y_4
A	0	0	0
	0	0	1
	0	1	0
	0	1	1
NA	1	0	0
	1	0	1
	1	1	0
	1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

	y_6	${\cal Y}_5$	y_4
Α	0	0	0
A	0	0	1
	0	1	0
	0	1	1
NA	1	0	0
NA	1	0	1
	1	1	0
	1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

	y_6	${\cal Y}_5$	y_4
A	0	0	0
A	0	0	1
A	0	1	0
	0	1	1
NA	1	0	0
NA	1	0	1
NA	1	1	0
	1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

	y_6	${\cal Y}_5$	y_4
A	0	0	0
A	0	0	1
A	0	1	0
A	0	1	1
NA	1	0	0
NA	1	0	1
NA	1	1	0
A	1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

		y_6	${\cal Y}_5$	y_4
	A	0	0	0
	Α	0	0	1
21 / 21	A	0	1	0
$y_6 \le y_4$	A	0	1	1
	– NA	1	0	-0
	NA	1	0	1
	– NA	1	1	-0
	Α	1	1	1

- Modifiche al punto D)
 - ✓ 6 può essere attivato solo attivando entrambi 4 e 5

		y_6	${\mathcal Y}_5$	y_4
	A	0	0	0
	Α	0	0	1
$y_6 \le y_4$	A	0	1	0
	Α	0	1	1
$y_6 \le y_5$	NA	1	0	-0
	NA	1	0	_1
	NA	1	1	
	A	1	1	1

Takeaway

1. Utilizzo delle variabili binarie

2. Regole di modellazione

Takeaway

- Utilizzo delle variabili binarie per determinate finalità (lista completa)
 - Modellare decisioni dicotomiche
 - Risolvere le discontinuità legate alla presenza di costi fissi
 - Imporre vincoli alternativi
 - Modellare minimi tecnici
 - Esprimere condizioni logiche

Takeaway

2. Regole di modellazione

In presenza di minimi tecnici, il vincolo di coerenza è duplice:

$$\triangleright m_j y_j \le x_j \le M_j y_j$$

- Lo strumento da utilizzare per esprimere condizioni logiche è la tabella di verità
 - Costruzione tabella
 - Classificazione delle combinazioni in ammissibili (A) e nonammissibili (NA)
 - Imposizione di vincoli lineari che escludano solamente le combinazioni NA, mantenendo le combinazioni A all'interno della regione ammissibile.

