Definition. Sei V eine Variablenmenge, d.h. $V \subseteq \{A_0, A_1, \dots\}$. Dann heißt eine Abbildung $B: V \to \{0, 1\}$ **Belegung**.

Sei $B: V \to \{0,1\}$ eine Belegung. Dann ist die von B induzierte **Bewertung** diejenige Abbildung $\hat{B}: F(V) \to \{0,1\}^{-1}$, die allen Formeln mit Variablen in V ihren durch die Belegung der Variablen gegebenen Wahrheitswert zuordnet. ²

Abkürzend schreiben wir oft $B(\varphi)$ statt $\hat{B}(\varphi)$.

Beispiel. Sei $B:\{A,B\}\to\{0,1\}$ die durch B(A)=1 und B(B)=0 gegebene Bewertung.

Dann ist $B(\varphi) = \hat{B}(\varphi) = 0$ für $\varphi \equiv A \to B$.

Lemma. (Koinzidenzlemma (KL)) Seien $B_1: V_1 \to \{0,1\}$, $B_2: V_2 \to \{0,1\}$ Belegungen und φ eine Formel mit $V(\varphi) \subseteq V$. Es gelte $B_1 \upharpoonright V(\varphi) = B_2 \upharpoonright V(\varphi)$, d.h. $B_1(A) = B_2(A)$ für alle $A \in V(\varphi)$.

Dann ist $B_1(\varphi) = B_2(\varphi)$.

Beispiel. Seien $B_1, B_2 : \{A, B, C\} \to \{0, 1\}$ die durch $B_1(A) = 1, B_1(B) = B_1(C) = 0$ und $B_2(A) = B_2(C) = 1, B_2(B) = 0$ gegebenen Belegungen.

Dann gilt also $B_1(A) = B_2(A)$ und $B_1(B) = B_2(B)$, d.h. $B_1 \upharpoonright \{A, B\} = B_2 \upharpoonright \{A, B\}$. Weil $V(\varphi) = \{A, B\}$ für $\varphi \equiv A \to B$ gilt deshalb nach dem Koinzidenzlemma, dass $B_1(\varphi) = B_2(\varphi)$.

Definition. Eine Formel φ heißt **allgemeingültig** $(ag[\varphi])$ oder eine **Tautologie**, wenn jede Belegung $B:V(\varphi)\to\{0,1\}$ diese wahr macht, d.h. $B(\varphi)=1$.

Eine Formel φ heißt **erfüllbar** (erfb[φ]), wenn es mindestens eine Belegung $B:V(\varphi)\to \{0,1\}$ gibt, die diese wahr macht.

Eine Formel φ heißt **kontradiktorisch** (kd[φ]), wenn jede Belegung $B: V(\varphi) \to \{0, 1\}$ diese falsch macht.

Lemma. (i) $ag[\varphi] \Rightarrow erfb[\varphi]$

- (ii) $aq[\varphi] \Leftrightarrow kd[\neg \varphi]$
- (iii) $erfb[\varphi] \Leftrightarrow nicht \ kd[\varphi]$
- (iv) $ag[\varphi] \ \mathcal{E} \ ag[\psi] \Leftrightarrow ag[\varphi \wedge \psi]$
- (v) $ag[\varphi \lor \psi] \Rightarrow ag[\varphi] \ oder \ ag[\psi]$

¹Hierbei ist $F(V) = \{\varphi \colon V(\varphi) \subseteq V\}$ die Menge der Formeln, deren Variablen in V liegen.

²Für die induktive Definition der Bewertung einer Formel siehe Kapitel 1, Folie 54.

(vi)
$$erfb[\varphi] \& erfb[\psi] \Leftrightarrow erfb[\varphi \land \psi]$$

(vii)
$$erfb[\varphi \lor \psi] \Rightarrow erfb[\varphi] oder erfb[\psi]$$

Definition. (i)
$$\varphi \text{ äq } \psi : \Leftrightarrow \text{ für jedes } B : V(\varphi) \cup V(\psi) \to \{0,1\} \text{ gilt } B(\varphi) = B(\psi)$$

(ii)
$$\varphi$$
 impl ψ : \Leftrightarrow für jedes $B:V(\varphi)\cup V(\psi)\to\{0,1\}$ mit $B(\varphi)=1$ gilt $B(\psi)=1$

Lemma. (i)
$$\varphi \ddot{a}q \psi \Leftrightarrow ag[\varphi \leftrightarrow \psi]$$

(ii)
$$\varphi$$
 impl $\psi \Leftrightarrow ag[\varphi \to \psi]$

Lemma. (Einsetzungsregel) Sei φ allgemeingültig und ψ eine beliebige Formel. Dann ist auch $\varphi[\psi/A]$ allgemeingültig. ³

Beispiel. Sei ψ eine beliebige Formel. Eine Wahrheitstabelle zeigt, dass ag $[A \vee \neg A]$ gilt. Nach der Einsetzungsregel gilt dann auch ag $[\psi \vee \neg \psi]$.

³Dabei erhalten wir $\varphi[\psi/A]$, indem wir in φ alle Vorkommen von A durch ψ ersetzen.