EXPERT ANSWERS IN A FLASH

Improving domain-specific Question-Answering

Overview

1. Our pipeline takes a question and a set of paragraphs, and **ranks** the paragraphs based on relevance with respect to the question.

Overview

- 1. Our pipeline takes a question and a set of paragraphs, and **ranks** the paragraphs based on relevance with respect to the question.
- 2. A Neural network decides,
 - a. If the question can be answered by the top ranked paragraphs,
 - b. Otherwise we discard the paragraph.

Overview

- 1. Our pipeline takes a question and a set of paragraphs, and **ranks** the paragraphs based on relevance with respect to the question.
- 2. A Neural network decides,
 - a. If the question can be answered by the top ranked paragraphs,
 - b. Otherwise we discard the paragraph.
- 3. A second neural network **extracts** the location of the answer in the paragraph.

Ranking

Word2Vec + KNN

- Word2Vec embeddings of Question and Paragraphs.
- Finding nearest neighbours among paragraphs w.r.t questions' embedding.

Ranking

Word2Vec + KNN

- Word2Vec embeddings of Question and Paragraphs.
- Finding nearest neighbours among paragraphs w.r.t questions' embedding.
- O Why it did not work?

Ranking

Word2Vec + KNN

- Word2Vec embeddings of Question and Paragraphs.
- Finding nearest neighbours among paragraphs w.r.t questions' embedding.
- Why it did not work?
 - Paragraphs belonging to the same theme end up with similar embeddings.

Ranking

Word2Vec + KNN

- Word2Vec embeddings of Question and Paragraphs.
- Finding nearest neighbours among paragraphs w.r.t questions' embedding.
- Why it did not work?
 - Paragraphs belonging to the same theme end up with similar embeddings.

Okapi BM25

 BM25 (a bag-of-words based algorithm) performed better.

Synthetic data generation

- We took the Answer_start, removed the sentence corresponding to that index and updated the Answer_possible parameter to False.
 - Catered to the True/False imbalance in the dataset.
 - Total dataset increased from 75,056 to 1,02,166

Synthetic data generation

- We took the Answer_start, removed the sentence corresponding to that index and updated the Answer_possible parameter to False.
 - Catered to the True/False imbalance in the dataset.
 - Total dataset increased from 75,056 to 1,02,166
- To expand the train set size for task 2
 - Jumbled the sentences, preserving the answer indices to create new data points.
 - Considered paraphrasing, but rejected it due to time constraints (~1.5min per paragraph)

Classification

We used **Pre-trained Language + 1 Layer classification MLP head** to classify whether the question can be answered from the paragraph.

Model	Training_Accurac y	Validation_Accurac y	Test_Accuracy	Parameters
BERT	93.201	83.34	83.35	110M
ALBERT	96.332	87.34	87.34	12M
ROBERTA	95.689	89.8	89.8	125M
DISTILBERT	82.015	79.38	79.38	65M
MiniLM	93.116	89.76	89.77	33M

Extraction

1. We use **Pre-trained Language + 1 Layer MLP layer** to extract the answer start and end indices from the paragraph.

Fine-tuning D-Day

1. Randomly paired questions and paragraphs to **create** false cases for Task 1.

Fine-tuning D-Day

- 1. Randomly paired questions and paragraphs to **create** false cases for Task 1.
- 2. Did a simple substring matching to locate the answer in the paragraph.
 - Removed those instances which have more than one matching instances.

1 General Vs 30 Specific Model

1. Why **not** 30 theme specific models?

 Specialized models in our problem add very little value as they do not bring any new domain-specific knowledge for a theme.

1 General Vs 30 Specific Model

1. Why **not** 30 theme specific models?

- Specialized models in our problem add very little value as they do **not** bring any new **domain-specific knowledge** for a theme.
- Theme specific models lack
 generalizability due to limited
 examples for some themes

1 General Vs 30 Specific Model

1. Why not 30 theme specific models?

 HDBSCAN algorithm on embeddings of Concatenated paragraphs on the same themes resulted in **only two clusters**.

1 General Vs 30 Specific Model

1. Why **not** 30 theme specific models?

 HDBSCAN algorithm on embeddings of Concatenated paragraphs on the same themes resulted in **only two clusters**.

 t-SNE visualization of theme-wise embeddings showed 30 separate points. Theme-wise embeddings visualised using t-SNE

Top-3 classes with highest average prediction time per question

Class	Average Prediction Time per Question (sec)
Materialism	4.12
Federal_Bureau_of_Investigation	3.41
Human_Development_Index	3.40

Top-3 classes with lowest average prediction time per question

Class	Average Prediction Time per Question (sec)	
The_Times	1.23	
Nanjing	1.30	
DevRev	1.32	

Runtime Analysis

Pipeline Sections	Training time (min)
Synthetic Data Generation	15
Task1_MiniLM	360
Synthetic Data Generation	45
Task2_MiniLM	75
Fine tuning data generation	15
Inference	150

Thank you