目 次

1 第2の証明 2

卒業論文

1 第2の証明

ガウスの補題を使用せず、有限体でガウス和と呼ばれるものを使用する。

まず、有限体に関して以下のこと A. B を示す。

A. p と q を異なる奇素数とする。 q^{p-1} 個の要素を持つ有限体 F について考える。素体は \mathbb{Z}_q であり、 $\forall a \in F$ について qa=0 が成り立つ。

ここで

$$(a+b)^q = a^q +_q C_{q-1}a^{q-1}b^1 +_q C_{q-2}a^{q-2}b^2 + \dots + b^q$$

となるが、任意の二項係数 $\binom{q}{i}$ は 0 < i < q で q の倍数であるため qa = 0 より、

$$(a+b)^q = a^q + b^q \tag{1}$$

が成り立つ。ここで、オイラーの規準は、素体 \mathbb{Z}_q 上で

$$\frac{p}{q} = p^q - \frac{1}{2}$$

となることに注意する。

B. 乗法群 $F^* = F \setminus \{0\}$ は大きさ $q^{p-1}-1$ の巡回群である。フェルマーの小定理によると p は $q^{p-1}-1$ の約数であるため、位数 p の元 $\zeta \in F(\zeta^p=1)$ が存在し、 F^* の部分群 $\{\zeta,\zeta^2,\ldots,\zeta^p=1\}$ を生成する。 $\forall \zeta^i (i \neq p)$ もまた生成元であることに注意する。

したがって $x^p - 1 = (x - \zeta)(x - \zeta^2) \cdots (x - \zeta^p)$ と多項式分解を得る。

ここでガウス和について考える。ガウス和を以下とする。

$$G := \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta^i \in F,\tag{2}$$

ここで $(\frac{i}{p})$ はルジャンドル記号である。ここで証明のために、 G^q に関する 2 つの説明を提示しそれらが等しいことを示す。

1. 式(1)より

$$G^q = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right)^q \zeta^{iq}$$

を得る。また、q は奇数なので $(\frac{i}{p})^q = (\frac{i}{p})$ となるため

$$G^{q} = \sum_{i=1}^{p-1} (\frac{i}{p})^{q} \zeta^{iq} = \sum_{i=1}^{p-1} (\frac{i}{p}) \zeta^{iq}$$

を得る。 さらに、 $(\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p})$ より $(\frac{i}{p})=(\frac{q}{p})(\frac{iq}{p})$ が得られるため

$$G^{q} = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right)^{q} \zeta^{iq} = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta^{iq} = \left(\frac{q}{p}\right) \sum_{i=1}^{p-1} \left(\frac{iq}{p}\right) \zeta^{iq}$$

が成り立つ。ここで、iq についてpで割った余りを考えるとi になるので以下が成り立つ。

$$(\frac{q}{p})\sum_{i=1}^{p-1}(\frac{iq}{p})\zeta^{iq} = (\frac{q}{p})\sum_{i=1}^{p-1}(\frac{i}{p})\zeta^{i} = (\frac{q}{p})G$$

つまり

$$G^{q} = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right)^{q} \zeta^{iq} = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta^{iq} = \left(\frac{q}{p}\right) \sum_{i=1}^{p-1} \left(\frac{iq}{p}\right) \zeta^{iq} = \left(\frac{q}{p}\right) \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) \zeta^{i} = \left(\frac{q}{p}\right) G$$
 (3)

を得る。

2.

$$G^2 = (-1)^{\frac{p-1}{2}}p\tag{4}$$

$$G^{q} = G(G^{2})^{\frac{q-1}{2}} = G(-1)^{\frac{p-1}{2}\frac{q-1}{2}}p^{\frac{q-1}{2}} = G(\frac{p}{q})(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

$$\tag{5}$$

式(3)=式(5)より

$$\left(\frac{q}{p}\right)G = G\left(\frac{p}{q}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}} \tag{6}$$

となり、式 (4) より $G \neq 0$ なので両辺を G で割ると

$$\left(\frac{q}{p}\right) = \left(\frac{p}{q}\right)(-1)^{\frac{p-1}{2}\frac{q-1}{2}} \tag{7}$$

となる。両辺に $(\frac{p}{q})$ を掛けると

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \tag{8}$$

が得られる。