

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران)

دانشکده مهندسی مکانیک

مستندات پروژه فاز دوم دینامیک ماشین

تحلیل ریاضی یک مکانیزم توسط EES و مقایسه نتایج با مکانیزم ساخته شده در sam

استاد:

دكتر نراقي

مهندس احتشامي

ارائه دهنده:

مهدى قاسم زاده

علی رزاقی آرانی

فهرست مطالب

صفحه	عنوان

1	مقدمه
4	معادلات حاکم بر مکانیزم
8	برنامه نویسی معادلات در EES یا متلب
9	رسم نمودار ها در SAM
12	بدست آوردن نيرو تكاننده
L4	مقايسه نتايج

مقدمه

مکانیزم انتخابی ما مکانیزمی است که در چرخ خیاطی استفاده میشود و این مکانیزم به اسم مکانیزم تغذیه چرخ خیاطی برای انتقال پارچه مکانیزم تغذیه چرخ خیاطی شناخته شده است از مکانیسم تغذیه چرخ خیاطی برای انتقال پارچه های کوک زده شده از یک موقعیت دوخت به موقعیت بعدی استفاده می شود. این بخش یکی از مهمترین قسمت های چرخ های خیاطی محسوب می شود

مکانیزمهای مورد نظر برای این فاز، همان مکانیزم های انتخابی در فاز اول بوده که توسط نرم افزار SAM مدلسازی کردیم.

در این مرحله میبایست حل تحلیلی سینماتیکی با یکی از روشهای آموخته شده بر روی مکانیزم انجام شده و در نهایت با کدنویسی نرم افزاری امکان استخراج پارامترهای سینماتیکی مربوط به سرعت و شتاب خطی و دورانی فرآهم آید.

شكل مكانيزم انتخابى:

شکل مکانیزم بهبود یافته در SAM:

معادلات حاکم بر مکانیزم

$$R_{3} \stackrel{i\theta_{3}}{=} + R_{4} \stackrel{i\theta_{4}}{=} = R_{7} \stackrel{i\theta_{7}}{=} + R_{5} \stackrel{i\theta_{5}}{=} S$$

$$[In]: R_{3} \stackrel{i\theta_{3}}{=} + R_{4} \stackrel{sin\theta_{4}}{=} = R_{7} \stackrel{i\theta_{7}}{=} + R_{5} \stackrel{sin\theta_{5}}{=} + R_{5} \stackrel{sin\theta_{5}}{=} S$$

$$[Re]: R_{3} \stackrel{i\theta_{3}}{=} + R_{4} \stackrel{sin\theta_{4}}{=} = R_{7} \stackrel{d}{=} G \stackrel{sin\theta_{7}}{=} + R_{5} \stackrel{sin\theta_{5}}{=} + R_{5} \stackrel{i}{=} G \stackrel{sin\theta_{5}}{=} S$$

$$[R_{3} \stackrel{i\theta_{3}}{=} G \stackrel{sin\theta_{3}}{=} + R_{4} \stackrel{i\theta_{4}}{=} G \stackrel{sin\theta_{7}}{=} + R_{5} \stackrel{sin\theta_{5}}{=} + R_{5} \stackrel{i}{=} G \stackrel{sin\theta_{5}}{=} S$$

$$[R_{3} \stackrel{i\theta_{3}}{=} G \stackrel{sin\theta_{3}}{=} + R_{4} \stackrel{i}{=} G \stackrel{sin\theta_{4}}{=} G \stackrel{sin\theta_{5}}{=} G \stackrel{sin\theta_{5}}{$$

	- Sin 83) -	+ Ry × 4	10				
	- DIN 83) -	Propra	1 - \in A \	- P 80	4. + 20	11. Cm A.	+ 0. N. (-
d_3	-G583)	+ R4 ×4	(-Gs84)	$=R_5G$	185 + 2R	s Ws (-Sine	95)+R505(
<i>a.</i> .		C.0 6	(). C	200			
	+ R4W4						
(-Sind))+R4W	4 (-Sin04	$I) = R_2 c$	wa (-Sina	2)		
Sr. 0.	= R2×2	(-SinA	.)				
-Sine,) = R20	2 (-05	(2)				
			ANIMA NT				
link	1	2	3	4	5	6	17.
link!	1 90°	2 111.5°	- N - N - N - N - N - N - N - N - N - N	4 350°	5 241,4°	6 353°	120°
θ		111.5°	3 ·· 175°	Day and Maria		The second secon	
	1 90° 35 _{mm}	1000000	3	350°	241,4"	353°	120°
θ		111.5°	3 ·· 175°	350°	241,4"	353°	120°
θ R • R	35 mm	40.4	3 ·· 175° 12	350°	241, 4° 25	353°	29.5
θ R	35 mm	40.4	3 ·· 175°	350°	241, 4"	353°	120°
θ R • R	35 mm	40.4	3 ·· 175° 12	350°	241, 4° 25	353°	29.5

CS Scanned with CamScanner

$$V_{G4} = \frac{1}{2} V_4 = \frac{1}{2} (\frac{\pi}{2})(15) = 3.25\pi = 10.21 \text{ mm/s}$$

$$a_{G4} = \frac{1}{2} a_4 = \frac{1}{2} (\frac{V_4^2}{15}) = 3.47 \text{ mm/s}^2$$

$$h_{G_2} = R_4 e^{i\theta_4} + R_2' e^{i\theta_2}$$

$$V_{G_2} = R_4 \omega_4 e^{i\theta_4} + R_2' \omega_2 e^{i\theta_2} \longrightarrow \begin{cases} \operatorname{Im}: R_4 \omega_4 \operatorname{Sin}\theta_4 + R_2' \omega_2 \operatorname{Sin}\theta_2 \\ \operatorname{Re}: R_4 \omega_4 \operatorname{Go}\theta_4 + R_2' \omega_2 \operatorname{Go}\theta_2 \end{cases}$$

$$V_{G_2} = \sqrt{\left[\operatorname{Im} V_{G_2}\right]^2 + \left[\operatorname{Re} V_{G_2}\right]^2}$$

$$Q_{G_2} = R_4 \omega_4' e^{i\theta_4} + R_2' \omega_2 e^{i\theta_2} \longrightarrow \begin{cases} \operatorname{Im}: R_2 \omega_2 \operatorname{Sin}\theta_2 \\ \operatorname{Re}: R_2' \omega_2 \operatorname{Go}\theta_2 \end{cases}$$

$$Re: R_2' \omega_2 \operatorname{Go}\theta_2$$

$$Re: R_2' \omega_2 \operatorname{Go}\theta_2$$

$$Re: R_2' \omega_2 \operatorname{Go}\theta_2$$

$$h_{G_3} = R_4 e^{i\theta_4} + R_3' e^{i\theta_3}$$

$$V_{G_3} = R_4 \omega_4 e^{i\theta_4} + R_3' \omega_3 e^{i\theta_3} \longrightarrow \begin{cases} Im: R_4\omega_4 \sin\theta_4 + R_3'\omega_3 \sin\theta_3 \\ Re: R_4\omega_4 \cos\theta_4 + R_3'\omega_3 \cos\theta_3 \end{cases}$$

$$V_{G_3} = \sqrt{\left[Im V_{O_3}\right]^2 + \left[Re V_{G_3}\right]^2}$$

$$a_{G_3} = R_3' \alpha_3 e^{i\theta_3} \longrightarrow \begin{cases} Im: R_3'\alpha_3 \sin\theta_3 \\ Re: R_3'\alpha_3 \cos\theta_3 \end{cases}$$

$$Re: R_3'\alpha_3 \cos\theta_3$$

$$h_{Gs} = R_{4}e^{i\theta 4} + R_{3}e^{i\theta 3} + R_{5}e^{i\theta 5}$$

$$V_{GS} = R_{4}\omega_{4}e^{i\theta 4} + R_{3}\omega_{3}e^{i\theta 3} + R_{5}e^{i\theta 5} + R_{5}\omega_{5}e^{i\theta 5}$$

$$\longrightarrow \begin{cases} I_{m} : R_{4}\omega_{4} & S_{in}\theta_{4} + R_{3}\omega_{3} & S_{in}\theta_{3} + R_{5}' & S_{in}\theta_{5} + R_{5}' & \omega_{5} & S_{in}\theta_{5} \\ R_{e} : R_{4}\omega_{4} & C_{in}\theta_{4} + R_{3}\omega_{3} & C_{in}\theta_{3} + R_{5}' & C_{in}\theta_{5} + R_{5}' & \omega_{5} & C_{in}\theta_{5} \end{cases}$$

$$V_{G2} = \sqrt{\left[I_{m}v_{G5}\right]^{2} + \left[R_{e}v_{Gs}\right]^{2}}$$

$$\alpha_{G5} = R_{3} \alpha_{3} e^{i\theta 3} + R_{5}' e^{i\theta 5} + 2R_{5}' \omega_{5} e^{i\theta 5} + R_{5}' \alpha_{5} e^{i\theta 5}$$

$$\searrow I_{m} : R_{3}\alpha_{3} S_{in}\theta_{3} + R_{5}' & S_{in}\theta_{5} + 2R_{5}'\omega_{5} S_{in}\theta_{5} + R_{5}' \alpha_{5} S_{i$$

$$h_{G_{6}} = R_{4}e^{i\theta u} + R_{3}e^{i\theta 3} + R_{5}e^{i\theta 5} + R_{6}e^{i\theta 6} \qquad V_{G_{6}} = \sqrt{2\pi v_{G_{5}}} + \sqrt{2\pi v_{G_{5$$

برنامه نویسی معادلات در EES یا متلب

```
Command Window

>> a5

a5 =

82223.627548936722669972525038491

>> v1

v1 =

-1237.1479876229752557773131819304

>> a1

a1 =

-69920.130751897073749783477182089

>> w2

w2 =

-6.2365546352280871076220649786117
```

```
>> alpha2
alpha2 =
3198.55429872534583223697495789
>> v5
v5 =
-1348.0667082561603786175582045733
>> alpha5
alpha5 =
-4967.7659612245177329928075206886
>> w5
w5 =
-18.422266037152626751505533925505
```

```
a1 = -69920 a5 = 82224 a7 = 0
                                      alpha1 = 0
                                                   alpha2 = 3199 alpha4 = 0 alpha5 = -4968 alpha7 = 0 r1 = 35
                                                                                                                   r2 = 40.4
r3 = 12
            r4 = 15
                         r5 = 25
                                      r6 = 14.85
                                                   r7 = 29.5
                                                                theta1 = 90 theta2 = 111.5 theta3 = 175 theta4 = 350 theta5 = 241.4
theta6 = 353 theta7 = 120 v1 = -1237
                                      v5 = -1348
                                                   v7 = 0
                                                                w1 = 0
                                                                             w2 = -6.237 w4 = 90
                                                                                                       w5 = -18.42
                                                                                                                   w7 = 0
```

رسم نمودار ها در SAM

بدست آوردن نيرو تكاننده

$$\theta \alpha_{G_2} = t_{an} \left[\frac{I_m(\alpha_{G_2})}{R_e(\alpha_{G_2})} \right] = -72.39^\circ$$

$$a_{G_3} = \sqrt{\left[R_3' \alpha_3 \sin \theta_3\right]^2 + \left[R_3' \alpha_3 \cos \theta_3\right]^2} = 256.79 \text{ mm/s}^2$$

$$\theta_{a_{6_3}} = t_{a_n}^{-1} \left[\frac{I_m(a_{6_3})}{Re(a_{6_3})} \right] = -8.78^{\circ}$$

$$a_{G5} = \sqrt{\left[Ima_{G5}\right]^2 + \left[Rea_{G5}\right]^2} = 712.72 \text{ mm/s}^2$$

$$\theta_{\alpha_{GS}} = tan' \left[\frac{Im(\alpha_{GS})}{Re(\alpha_{GS})} \right] = -60.5^{\circ}$$

$$\theta_{\alpha G_6} = t_{\alpha n}^{-1} \left[\frac{I_m(\alpha_{G_6})}{Re(\alpha_{G_6})} \right] = -73^\circ$$

CS Scanned with CamScanner

$$F_s = 145558e^{i(-\frac{7}{20}\pi)}$$

CS Scanned with CamScanner

مقايسه نتايج

مجهولات	EES	Matlab	SAM
ω_2	-6.23	-6.23	-20.05
α_2	3199	3199	-42.79
v_5	-1348	-1348	10.6
a_5	82224	82224	-37.83
ω_5	-18.42	-18.42	30.26
$lpha_5$	-4968	-4968	20.99

نتایج بدست آمده از دو نرم افزار EES و Matlab کاملا برابر هم هستن اما با نتایج خروجی از نرم افزار SAM بسیار متفاوت هستند که برای خودمان نیز عجیب است اما می توان این اختلاف را بدلیل درنظر گرفتن مراکز جرم در مکان غیر واقعی آنها ، جرم غیر واقعی آنها ، یا حتی در نظر گرفتن شتاب جاذبه و ... توجیه کرد.

 ω_2 خطای نسبی برای خطای

$$\frac{|-6.23 - (-20.05)|}{100} = 0.13$$