

Task History

Initiating Search

February 23, 2025, 8:39 PM

Substances:

Filtered By:

Structure Match: As Drawn

Search Tasks

Task	Search Type	View
Returned Substance Results + Filters (1,728)	Substances	View Results
Exported: Retrieved Related Reaction Results + Filters (451)	■ Reactions	View Results
Filtered By:		
Substance Reagent, Solvent Role:		

Catalyst:

Aluminum nickel alloy, Benzenesulfonic acid, 4-methyl-, nickel(2+) salt (2:1), Bis(1,5-cyclooctadiene)nickel, Bis(acetylacetonato)nickel, (Bis(diphenylphosphino)ethane)dichloronickel, Bis(triphenylphosphine) nickel dibromide, Bis(triphenylphosphine)nickel dichloride, Bromo(2methylphenyl)bis(triphenylphosphine)nickel, Dibromo(1,10phenanthroline-κ N¹,κ N¹⁰)nickel, Dibromo[1,1'-(oxyκO)bis[2-(methoxy-κO)ethane]]nickel, Dibromo[1,2di(methoxy-ĸO)ethane]nickel, Dibromobis(tributylphosphine)nickel, Dichloro[1,1'-(1,3propanediyl)bis[1,1-diphenylphosphine-κP]]nickel, Dichloro[1,2-di(methoxy-κO)ethane]nickel, Dichlorobis(triethylphosphine)nickel, Lithium, [μ₃-[(1,2-η)-1,5-cyclooctadiene-κ C^1 :κ C^2]][μ_3 -[(1,2,5,6-η)-1,5cyclooctadiene-κ C^1 :κ C^6]](nickel)tetrakis(tetrahydrofuran)di-, (2Li-Ni), Methanesulfonic acid, 1,1,1-trifluoro-, nickel(2+) salt (2:1), Nickel, Nickel(1+), bromo[(2,6-pyridinediylκ//)bis(3-methyl-1/-imidazol-1-yl-2(3/-)-ylidene-κ/)]-, bromide (1:1), (SP-4-2)-, Nickel, (2,2'-bipyridine- κN^1 , κN^1) dibromo-, (SP-4-2)-, Nickel, (2,2'-bipyridine- $\kappa N^{1}, \kappa N^{1'}$)dichloro-, (SP-4-2)-, Nickel, [4,4'-bis(1,1dimethylethyl)-2,2'-bipyridine- κN^1 , $\kappa N^{1'}$]dibromo-, (7-4)-, Nickel acetate, Nickel acetate tetrahydrate, Nickel alloys, copper-, Nickel bromide, Nickel chloride hexahydrate, Nickel, diaquadichloro(4,4'-dimethoxy-2,2'-bipyridine- $\kappa N^{1}, \kappa N^{1'}$)-, (*OC*-6-32)-, Nickel, dibromo[1,2ethanediylbis[diphenylphosphine-kP]]-, (SP-4-2)-, Nickel, dibromo(4,4'-dimethyl-2,2'-bipyridine- κN^1 , κN^1 ')-, Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 , κN^1 ')-, (7-4)-, Nickel dichloride, Nickel hydroxide oxide (Ni(OH)O), Nickel(II) perchlorate, Nickel iodide (Nil2), Nickel monoxide, Nickel phosphide (Ni₂P), Ruthenium(1+), (nickel)[(1,2,3,4,5η)-1,2,3,4,5-pentamethyl-2,4-cyclopentadien-1-yl]peroxy[μ-[[2,2'-[1,3-propanediylbis(methyliminoκ//)]bis[ethanethiolato-κ/S:κ/S]](2-)]]-, stereoisomer, nitrate (1:1), (SP-4-2)-Bromo(2-methylphenyl)[1,1'-(1,3propanediyl)bis[1,1-diphenylphosphine-κP]]nickel, Stereoisomer of bis(dihydroboron)tetrakis[µ-(1-methyl-1Himidazol-2-yl- κC^2 , κN^3)]nickel, Stereoisomer of tris[1,1'-[η^2 -(1E)-1,2-ethenediyl]bis[4-(1,1dimethylethyl)benzene]]nickel, (7-4)-Dibromo(2,9-dimethyl-1,10-phenanthroline- κN^1 , κN^{10})nickel, (7-4)-Dibromo[N,N-(1,2-dimethyl-1,2-ethanediylidene)bis[2,6dimethylbenzenamine-κ N]]nickel, (7-4)-Dichloro(1,10phenanthroline-κ N^1 ,κ N^{10})nickel, (T-4)-Dichlorobis(tricyclohexylphosphine)nickel, (T-4)-Dichlorobis(triphenylphosphine)nickel, Tungstate(16-), dotetraconta-µ-oxooctadecaoxobis[µ₁₂-[phosphato(3-)κ*Ο*:κ*O*:κ*O*:κ*O*:κ*O*':κ*O*'':κ*O*'':κ*O*''':κ*O*''':κ*O*''':κ*O*''''| [tetraaquadi-µ₃-hydroxybis[µ₄-[[*P,P*-[4-imino-1-(hydroxyκ*O*)butylidene]bis[phosphonato-κ*O*:κ*O*:κ*O*:κ*O*']](5-)]]heptanickelate]octadeca-, potassium sodium hydrogen, hydrate (1:7:7:2:34), stereoisomer, Tungstate(16-), [octaaquabis[μ₅-[*N*-[(carboxy-κ*O*)methyl]-*N*-[4-(hydroxyκ*O*)-4,4-di(phosphono-κ*O*:κ*O*:κ*O*)butyl]glycinato(7-)κΝ,κO]]di-μ3-hydroxynonanickelate]dotetraconta-μoxooctadecaoxobis[µ₁₂-[phosphato(3-)-, potassium sodium, hydrate (1:15:1:45), stereoisomer

Document

Type:

Language: English

Journal

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (80)

View in CAS SciFinder

Scheme 1 (1 Reaction)

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

📜 Suppliers (4)

31-614-CAS-35766420

Steps: 1 Yield: 99%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 Reagents: Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 2 (1 Reaction)

Suppliers (2)

31-614-CAS-35766369

Steps: 1 Yield: 99%

Reagents: Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 , κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 3 (1 Reaction)

Steps: 1 Yield: 99%

Suppliers (11)

31-614-CAS-35766388 Steps: 1 Yield: 99% Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy By: Song, Heng; et al ACS Catalysis (2023), 13(6), 3644-3654. Experimental Protocols

Suppliers (2)		
31-614-CAS-35766410	Steps: 1 Yield: 99%	
1.1 Reagents: Water- d_2 , Pinacolbora Catalysts: Nickel, dibromo(6,6'-di κN^1 ')-, (T -4)- Solvents: Tetrahydrofuran; 8 h, 2	methyl-2,2'-bipyridine-κ N^1 ,	by: Song, Heng; et al ACS Catalysis (2023), 13(6), 3644-3654.
Experimental Protocols		

31-614-CAS-35766360Steps: 1 Yield: 99%Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy1.1Reagents: Water- d_2 , Pinacolborane Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 , κN^1 ')-, (τ -4)-Solvents: Tetrahydrofuran; 8 h, 20 °CBy: Song, Heng; et alExperimental ProtocolsACS Catalysis (2023), 13(6), 3644-3654.

Scheme 7 (1 Reaction)

31-614-CAS-35766421	Steps: 1 Yield: 99%		
1.1 Reagents: Water- d_2 , Pinacolbor	ane	vated Alkenes via Chain-Walking Strategy	
Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,		By: Song, Heng; et al	
κ/\ ¹ ')-, (<i>T</i> -4)-		ACS Catalyris (2022) 12(6) 2644 2654	
Solvents: Tetrahydrofuran; 8 h, 20 °C		ACS Catalysis (2023), 13(6), 3644-3654.	

31-614-CAS-35766357 Steps: 1 Yield: 99% 1.1 Reagents: Water- d₂, Pinacolborane Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine-κ/ν¹, κ/ν¹')-, (*T*-4)Solvents: Tetrahydrofuran; 8 h, 20 °C Experimental Protocols Remote Site-Selective C(sp³)-H Monodeuteration of Unactivated Alkenes via Chain-Walking Strategy By: Song, Heng; et al ACS Catalysis (2023), 13(6), 3644-3654. Steps: 1 Yield: 99%

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine-κ N^1 ,
κ N^1 ')-, (T-4)-
Solvents: Tetrahydrofuran; 8 h, 20 °CBy: Song, Heng; et al
ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 12 (1 Reaction)

Steps: 1 Yield: 99%

$$\xrightarrow{\text{Br}}$$

Scheme 11 (1 Reaction)

Experimental Protocols

31-614-CAS-35766435 Steps: 1 Yield: 99% Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy By: Song, Heng; et al κ/Λ¹¹)-, (*T*-4)Solvents: Tetrahydrofuran; 8 h, 20 °C Experimental Protocols

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Scheme 13 (1 Reaction)

Suppliers (2)

31-614-CAS-35766361

Steps: 1 Yield: 99%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 14 (1 Reaction)

> Supplier (1)

31-614-CAS-35766390

Steps: 1 Yield: 99%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^{1} ,

κ*N*¹')-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

ACS Catalysis (2023), 13(6), 3644-3654.

By: Song, Heng; et al

Experimental Protocols

Scheme 15 (1 Reaction)

📜 Suppliers (5)

31-614-CAS-35766374

Steps: 1 Yield: 99%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 99%

Steps: 1 Yield: 99%

Scheme 16 (1 Reaction)

Suppliers (10)

31-614-CAS-35766332

Steps: 1 Yield: 99%

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 17 (1 Reaction)

Suppliers (10)

31-614-CAS-35766339

Steps: **1** Yield: **99%**

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^{1} ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 18 (1 Reaction)

➤ Suppliers (5)

31-614-CAS-35766372

Steps: 1 Yield: 99%

Remote Site-Selective C(sp³)-H Monodeuteration of Unactivated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

Scheme 19 (1 Reaction)

📜 Supplier (1)

31-614-CAS-35766422

Steps: 1 Yield: 99%

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 20 (1 Reaction)

Suppliers (4)

31-614-CAS-35766397

Steps: 1 Yield: 96%

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 21 (1 Reaction)

📜 Suppliers (5)

31-614-CAS-35766335

Steps: 1 Yield: 96%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 96%

Steps: 1 Yield: 96%

Scheme 22 (1 Reaction)

31-614-CAS-35766348

Steps: 1 Yield: 96%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water-*d*₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ*N*¹')-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 23 (1 Reaction)

➤ Suppliers (2)

31-614-CAS-35766440

Steps: 1 Yield: 96%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 24 (1 Reaction)

31-116-CAS-21352735

Steps: 1 Yield: 96%

Ni-Catalyzed 1,2-Acyl Migration Reactions Triggered by C-C Bond Activation of Ketones

1.1 Reagents: Water-d₂

Catalysts: Cesium carbonate, Bis(1,5-cyclooctadiene)nickel, 1*H*-Imidazolium, 1,3-bis[2,6-bis(1-methylethyl)phenyl]-4,5-

dihydro-, chloride (1:1)

Solvents: 1,4-Dioxane; 24 h, 150 °C

Experimental Protocols

By: Jiang, Cheng; et al

ACS Catalysis (2020), 10(3), 1947-1953.

Steps: 1 Yield: 95%

Steps: 1 Yield: 93%

Scheme 25 (1 Reaction)

📜 Supplier (1)

31-614-CAS-35766423

Steps: 1 Yield: 95%

Reagents: Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 26 (1 Reaction)

31-614-CAS-33726701

Steps: 1 Yield: 95%

Reagents: Water-d2

Catalysts: Triphenylphosphine, Bis(acetylacetonato)nickel,

Sodium iodide

Solvents: Acetonitrile; 24 h, 160 °C

Switching the Reactivity of the Nickel-Catalyzed Reaction of 2-Pyridones with Alkynes: Easy Access to Polyaryl/Polyalkyl Quinolinones

By: Prusty, Namrata; et al

Organic Letters (2022), 24(33), 6122-6127.

Scheme 27 (1 Reaction)

📜 Suppliers (3)

31-614-CAS-35766355

Steps: 1 Yield: 93%

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^{1} ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

Steps: 1 Yield: 91%

Steps: 1 Yield: 90%

Scheme 28 (1 Reaction)

Suppliers (2)

31-116-CAS-22795044

Steps: 1 Yield: 93%

Reagents: Carbon dioxide, Potassium tert-butoxide, Manganese, Lithium chloride, Water-d2

Catalysts: 4,7-Diphenyl-1,10-phenanthroline, Nickel dichloride

Solvents: Dimethylformamide; 12 h, 100 °C

Ni-Catalyzed Direct Carboxylation of an Unactivated C-H Bond with CO₂

By: Pei, Chunzhe; et al

Organic Letters (2020), 22(17), 6897-6902.

Scheme 29 (1 Reaction)

31-614-CAS-32982078

Steps: 1 Yield: 91%

Reagents: Sodium tert-butoxide, Water-d2

Catalysts: Bis(1,5-cyclooctadiene)nickel, 1 H-Imidazolium, 1,3-

bis[2,6-bis(1-methylethyl)phenyl]-, chloride (1:1)

Solvents: Mesitylene; 14 h, 80 °C

📜 Suppliers (2)

Experimental Protocols

Nickel-Catalyzed Cascade Reaction of 2-Vinylanilines with gem-Dichloroalkenes

By: Lin, Jin; et al

Organic Letters (2022), 24(27), 4855-4859.

Scheme 30 (1 Reaction)

31-614-CAS-35766389

Steps: 1 Yield: 90%

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

Steps: 1 Yield: 88%

Steps: 1 Yield: 88%

Steps: 1 Yield: 87%

Scheme 31 (1 Reaction)

Suppliers (3)

31-614-CAS-35766405

Steps: 1 Yield: 88%

1.1 **Reagents:** Water- d_2 , Pinacolborane

 $\textbf{Catalysts:} \ \ \text{Nickel, dibromo} (6,6'-\text{dimethyl-2,2'-bipyridine-} \\ \kappa \textit{N}^1,$

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 32 (1 Reaction)

31-116-CAS-13005977

Steps: **1** Yield: **88%**

1.1 Reagents: Sodium hydroxide-*d*Catalysts: Aluminum nickel alloy
Solvents: Water-*d*₂; 18 h, reflux

1.2 Reagents: Sulfuric acid; acidified

Experimental Protocols

Magnetic Anisotropy in the [Cu^{II}LTb^{III}(hfac)₂]₂ Single Molecule Magnet: Experimental Study and Theoretical Modeling

By: Klokishner, Sophia I.; et al

Journal of Physical Chemistry C (2009), 113(20), 8573-8582.

Scheme 33 (1 Reaction)

31-614-CAS-35766370

Steps: 1 Yield: 87%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 85%

Steps: 1 Yield: 78%

Steps: 1

Steps: 1 Yield: 78-85%

Scheme 34 (3 Reactions)

31-116-CAS-16148497

Reagents: Silver carbonate, Water-d₂, Propanoic acid-d, 2,2dimethyl-

Catalysts: Nickel acetate, Triphenylphosphine Solvents: o-Xylene; 3 min, rt; 2 h, 120 °C; 120 °C → rt

Experimental Protocols

Nickel Catalysis Enables Oxidative C(sp²)-H/C(sp²)-H Cross-Coupling Reactions between Two Hetero arenes

By: Cheng, Yangyang; et al

Angewandte Chemie, International Edition (2016), 55(40), 12275-12279.

31-116-CAS-16148498

Reagents: Silver carbonate, Water-d2, N-8-Quinolinyl benzamide, Propanoic acid-d, 2,2-dimethyl-Catalysts: Nickel acetate, Triphenylphosphine

Solvents: o-Xylene; 3 min, rt; 2 h, 120 °C; 120 °C → rt

Experimental Protocols

Nickel Catalysis Enables Oxidative C(sp²)-H/C(sp²)-H Cross-Coupling Reactions between Two Hetero arenes

By: Cheng, Yangyang; et al

Angewandte Chemie, International Edition (2016), 55(40), 12275-12279.

31-614-CAS-31947024

Reagents: 1-Adamantanecarboxylic acid, Water- d_2 , Silver oxide (Ag₂O)

Catalysts: Tri-o-tolylphosphine, Nickel dichloride

Solvents: 1,4-Dioxane; 1 h, 110 °C

Experimental Protocols

Expedient Ni-catalyzed C-H/C-H cross-dehydrogenative coupling of aryl amides with azoles

By: Sarkar, Tanumay; et al

Chemical Communications (Cambridge, United Kingdom) (2022), 58(40), 5980-5983.

Scheme 35 (1 Reaction)

31-614-CAS-35766337

Steps: 1 Yield: 85%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 Reagents: Water-d₂, Pinacolborane

Suppliers (5)

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 36 (1 Reaction)

Steps: 1 Yield: 84%

Steps: 1 Yield: 85%

Steps: 1 Yield: 83%

Steps: 1 Yield: 83%

31-614-CAS-35766429

Steps: 1 Yield: 84%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 37 (1 Reaction)

Suppliers (10)

Suppliers (3)

Suppliers (4)

31-614-CAS-35766472

Steps: 1 Yield: 83%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 38 (1 Reaction)

Rotation (+) Suppliers (91) Absolute stereochemistry shown

31-116-CAS-15028080

Steps: 1 Yield: 83%

A new [²H]-labeled α-trichloroimidate glucuronic ester for the synthesis of deuterated drug conjugates

1.1 Catalysts: Nickel

Solvents: Water-d₂; 144 h, reflux

By: Heinkele, Georg; et al

Journal of Labelled Compounds and Radiopharmaceuticals (2014), 57(12), 699-703.

Steps: 1 Yield: 82%

Steps: 1 Yield: 81%

Steps: 1 Yield: 80%

Scheme 39 (1 Reaction)

31-614-CAS-35766454

Steps: 1 Yield: 82%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ*N*¹')-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Experimental Protocols

Scheme 40 (1 Reaction) Suppliers (9)

31-614-CAS-35766417

Steps: 1 Yield: 81%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 41 (1 Reaction)

31-614-CAS-35766446

Steps: 1 Yield: 80%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 78%

Steps: 1 Yield: 77%

Steps: 1 Yield: 76%

Scheme 42 (1 Reaction)

` Supplier (1)

31-614-CAS-35766385

Steps: 1 Yield: 78%

1.1 **Reagents:** Water-*d*₂, Pinacolborane

 $\textbf{Catalysts:} \ \ \text{Nickel, dibromo} (6,6'-dimethyl-2,2'-bipyridine-\kappa\textit{N}^1,$

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 43 (1 Reaction)

□ Supplier (1)

31-614-CAS-35766415

Steps: **1** Yield: **77%**

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^{1} ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 44 (1 Reaction)

□ Suppliers (3)

31-614-CAS-35766346

Steps: 1 Yield: 76%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 74%

Steps: 1 Yield: 72%

Steps: 1 Yield: 71%

Scheme 45 (1 Reaction)

31-614-CAS-25535877

Steps: 1 Yield: 74%

Ni-Catalyzed 1,2-Acyl Migration Reactions Triggered by C-C **Bond Activation of Ketones**

Reagents: Water-d₂

Catalysts: Cesium carbonate, Bis(1,5-cyclooctadiene)nickel, 1 H-Imidazolium, 1,3-bis[2,6-bis(1-methylethyl)phenyl]-4,5-

dihydro-, chloride (1:1)

📜 Suppliers (5)

Solvents: 1,4-Dioxane; 24 h, 150 °C

Experimental Protocols

By: Jiang, Cheng; et al

ACS Catalysis (2020), 10(3), 1947-1953.

Scheme 46 (1 Reaction)

31-614-CAS-35766444

Steps: 1 Yield: 72%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Experimental Protocols

Solvents: Tetrahydrofuran; 8 h, 20 °C

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 47 (1 Reaction)

📜 Supplier (1)

31-614-CAS-35766430

Steps: 1 Yield: 71%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

Reagents: Water-d₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

Steps: 1 Yield: 70%

Steps: 1 Yield: 65%

Steps: 1 Yield: 61%

Scheme 48 (1 Reaction)

Suppliers (4)

31-614-CAS-35766367

Steps: 1 Yield: 70%

1.1 **Reagents:** Water- d_2 , Pinacolborane

 $\textbf{Catalysts:} \ \ \text{Nickel, dibromo} (6,6'-dimethyl-2,2'-bipyridine-\kappa\textit{N}^1,$

κ $N^{1'}$)-, (T-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 49 (1 Reaction)

$$\xrightarrow{\mathsf{F}} \xrightarrow{\mathsf{F}}$$

□ Suppliers (3)

31-614-CAS-35766452

Steps: 1 Yield: 65%

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 50 (1 Reaction)

➤ Suppliers (25)

31-116-CAS-22684351

Steps: 1 Yield: 61%

Nickel-catalyzed dual C(sp²)-H activation of arenes: a new route to diaryl ethers

.1 Reagents: Oxygen, Silver phosphate, Water- d_2 , Tricyclo [3.3.1.1^{3,7}]decane-1-carboxylic acid, potassium salt (1:1)

Catalysts: Nickel acetate

Solvents: Dimethylacetamide; 4 h, 140 °C

Experimental Protocols

By: Lv, Ningning; et al

Organic Chemistry Frontiers (2020), 7(16), 2224-2229.

Rotation (-)

Steps: 1 Yield: 60%

Steps: 1 Yield: 56%

Scheme 51 (1 Reaction)

Absolute stereochemistry shown, Rotation (-)

Suppliers (77)

Regioselective synthesis of 1¹,1¹¹,5¹,5¹¹,6¹,6¹,6¹,6¹¹,6¹¹,2¹H₈-cellobiose

1.1 Solvents: Water- d_2 ; rt \rightarrow 85 °C By: Zhang, Fuyi; et al

Steps: 1 Yield: 60%

1.2 Reagents: Water- d_2 Carbohydrate Research (2007), 342(17), 2546-2556.

Catalysts: Nickel

Solvents: Water- d_2 ; reflux

Experimental Protocols

31-116-CAS-3162105

Scheme 52 (1 Reaction) Steps: 1 Yield: 60%

$$\xrightarrow{\mathsf{F}}$$

31-614-CAS-35766450 Steps: 1 Yield: 60%

1.1 **Reagents:** Water-*d*₂, Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ $N^{1'}$)-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unactivated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 53 (1 Reaction)

📜 Suppliers (8)

31-614-CAS-35766383 Steps: 1 Yield: 56%

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ*N*¹')-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

By: Song, Heng; et al

Steps: 1 Yield: 56%

Steps: 1 Yield: 53%

Steps: 1 Yield: 36%

Scheme 54 (1 Reaction)

31-614-CAS-35766431

Steps: 1 Yield: 56%

Remote Site-Selective C(sp³)-H Monodeuteration of Unacti vated Alkenes via Chain-Walking Strategy

1.1 **Reagents:** Water- d_2 , Pinacolborane

Catalysts: Nickel, dibromo(6,6'-dimethyl-2,2'-bipyridine- κN^1 ,

κ*N*¹')-, (*T*-4)-

Solvents: Tetrahydrofuran; 8 h, 20 °C

Experimental Protocols

By: Song, Heng; et al

ACS Catalysis (2023), 13(6), 3644-3654.

Scheme 55 (1 Reaction)

Double bond geometry shown

31-614-CAS-40030524

Steps: 1 Yield: 53%

Electroreduction of unactivated alkenes using water as hydrogen source

1.1 **Reagents:** 1,1',1"-(Chlorosilylidyne)tris[benzene], Tetrabuty lammonium tetrafluoroborate, Water- d₂

Catalysts: Nickel, [4,4'-bis(1,1-dimethylethyl)-2,2'-bipyridine-

 $\kappa N^1, \kappa N^1$ dibromo-, (*T*-4)-

Solvents: Dimethylformamide; 10 h, rt

Experimental Protocols

By: Wang, Yanwei; et al

Nature Communications (2024), 15(1), 2780.

Scheme 56 (1 Reaction)

31-116-CAS-16884858

Steps: 1 Yield: 36%

An efficient and scalable process to produce morpholine-d₈

1.1 **Reagents:** Water- d_2

Catalysts: Nickel; rt \rightarrow 180 °C; 4 h, 180 °C; 180 °C \rightarrow 90 °C; 4 h,

90 °C \rightarrow 180 °C; 180 °C \rightarrow rt

1.2 Reagents: Hydrochloric acid

Solvents: Water; rt

Experimental Protocols

By: Ye, Naidong; et al

by. Te, Naidolig, et al

Synthetic Communications (2017), 47(5), 481-485.

Steps: 1 Yield: 25%

Steps: 1 Yield: 14%

Steps: 1

Scheme 57 (1 Reaction)

📜 Suppliers (115)

` Suppliers (25)

Steps: 1 Yield: 25%

31-116-CAS-8991594

1.2

Reagents: Sodium

Solvents: Water-*d*₂; 0 °C; 0 °C; 50 °C Catalysts: Nickel; < 55 °C; 1 h, 50 °C

Solvents: Water- d_2 ; 40 h, 100 °C; 100 °C \rightarrow rt

Experimental Protocols

Dynamic Characterization of Crystalline Supramolecular Rotors Assembled through Halogen Bonding

By: Catalano, Luca; et al

Journal of the American Chemical Society (2015), 137(49), 15386-15389.

Scheme 58 (1 Reaction)

Suppliers (25)

31-614-CAS-28602446

Steps: 1 Yield: 14%

Reagents: Silver carbonate, Water-d2, Propanoic acid-d, 2,2dimethyl-

Catalysts: Nickel acetate, Triphenylphosphine Solvents: o-Xylene; 3 min, rt; 2 h, 120 °C; 120 °C → rt

Experimental Protocols

Nickel Catalysis Enables Oxidative C(sp²)-H/C(sp²)-H Cross-Coupling Reactions between Two Hetero arenes

By: Cheng, Yangyang; et al

Angewandte Chemie, International Edition (2016), 55(40), 12275-12279.

Scheme 59 (1 Reaction)

Suppliers (75)

Suppliers (13)

Steps: 1

31-116-CAS-12414844

Reagents: Water-d2 1.1 Catalysts: Nickel

Solvents: Water-d₂; 2 h, 250 °C

Experimental Protocols

C-H bond activation by water on a palladium or platinum metal surface

By: Matsubara, Seijiro; et al

Synthesis (2007), (13), 2055-2059.

Scheme 60 (1 Reaction)

Steps: 1

Suppliers (4)

31-116-CAS-21569312

Steps: 1

Nickel-Catalyzed ortho-Acyloxylation of Benzamides and Acrylamides with Carboxylic Acids

Catalysts: Nickel acetate

Solvents: 1,2-Dichlorobenzene; 24 h, 140 °C

Reagents: Sodium carbonate, Water- d2, Silver sulfate

Experimental Protocols

By: Lin, Jingyi; et al

ChemistrySelect (2020), 5(6), 1925-1928.

Scheme 61 (1 Reaction)

Steps: 1

➤ Supplier (1)

31-116-CAS-6951343

Steps: 1

Nickel-Catalyzed Addition-Type Alkenylation of Unactivated, Aliphatic C-H Bonds with Alkynes: A Concise Route to Polysubstituted y-Butyrolactones

1.1 **Reagents:** Water-*d*₂

Catalysts: Nickel acetate, Triphenylphosphine

Solvents: Toluene; 3 h, 170 °C

By: Li, Mingliang; et al

Organic Letters (2015), 17(10), 2546-2549.

Scheme 62 (1 Reaction)

Steps: 1

Absolute stereochemistry shown

Absolute stereochemistry shown

> Suppliers (86)

31-116-CAS-9054879

Steps: 1

Microwave-assisted C-H bond activation using a commercial microwave oven for rapid deuterium exchange labeling (C-H → C-D) in carbohydrates

1.1 **Reagents:** Water-*d*₂ **Catalysts:** Nickel

Solvents: Tetrahydrofuran; 6 min

By: Cioffi, Eugene A.; et al

Tetrahedron: Asymmetry (2005), 16(2), 471-475.

Steps: 1

Steps: 1

Steps: 1

Scheme 63 (1 Reaction)

Suppliers (115)

31-614-CAS-40350569

.1 Reagents: Sodium, Water-d₂

Catalysts: Nickel; rt; < 55 °C; 1 h, 55 °C → 60 °C

1.2 **Reagents:** Water-*d*₂; 48 h, 100 °C

Experimental Protocols

Steps: 1 Indolocarbazole as a Platform for Concatenated Crystalline Rotors

By: Hernandez-Morales, Ernesto A.; et al

Crystal Growth & Design (2023), 23(9), 6785-6794.

Scheme 64 (1 Reaction)

□ Suppliers (25)

31-116-CAS-20302475

.1 Reagents: Water-d₂

Catalysts: Dichlorobis(triethylphosphine)nickel **Solvents:** Dimethylformamide; heated

Steps: 1

Synthesis of Seven-Membered Benzolactones by Nickel-Catalyzed C-H Coupling of Benzamides with Oxetanes

By: Xu, Shibo; et al

Chemistry - A European Journal (2019), 25(40), 9400-9404.

Scheme 65 (1 Reaction)

➤ Suppliers (61)

31-116-CAS-21718432

.1 **Reagents:** Water-*d*₂ **Catalysts:** Nickel

Solvents: Isopropanol; 1 h, 60 °C

Experimental Protocols

Steps: 1

Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel

By: Zhou, Yuting; et al

Journal of the American Chemical Society (2020), 142(8), 4037-4050.

Scheme 66 (1 Reaction)

Steps: 1

➤ Suppliers (59)

📜 Supplier (1)

31-116-CAS-21718433

Steps: 1

I.1 Reagents: Water-d₂
Catalysts: Nickel

Solvents: Isopropanol; 9 h, 60 °C

Experimental Protocols

Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel

By: Zhou, Yuting; et al

Journal of the American Chemical Society (2020), 142(8), 4037-4050.

Scheme 67 (1 Reaction)

Steps: 1

31-116-CAS-20418746

Steps: 1

Ni(II)-catalyzed mono-selective ortho-arylation of unactivated aryl C-H bonds utilizing amino acids as a directing group

1.1 Reagents: Sodium carbonate, 4-Iodotoluene, Tetrabuty lammonium bromide, Water- d_2

Catalysts: 2,4,6-Trimethylbenzoic acid, Methanesulfonic acid,

1,1,1-trifluoro-, nickel(2+) salt (2:1) Solvents: Dimethyl sulfoxide; 16 h, 140 °C By: Cong, Zhanqing; et al

RSC Advances (2019), 9(19), 10820-10824.

Scheme 68 (1 Reaction)

Steps: 1

. .

Suppliers (255)

31-116-CAS-11188837

Steps: 1

1.1 **Reagents:** Water-*d*₂ **Catalysts:** Nickel

Solvents: Tetrahydrofuran; 6 min

Microwave-assisted C-H bond activation using a commercial microwave oven for rapid deuterium exchange labeling (C-H → C-D) in carbohydrates

By: Cioffi, Eugene A.; et al

Tetrahedron: Asymmetry (2005), 16(2), 471-475.

Scheme 69 (1 Reaction)

Absolute stereochemistry shown

☐ Suppliers (114)

Absolute stereochemistry shown

31-116-CAS-3598813

Steps: 1

1.1 **Reagents:** Water-*d*₂ **Catalysts:** Nickel

Synthesis of model oligosaccharides of biological significance. 8. A synthesis of a specifically deuterated 2-propyl 3,6-di-o-[α -D-mannopyranosyl]- β -D-mannopyranoside

By: Dime, David S.; et al

Journal of Labelled Compounds and Radiopharmaceuticals (1987), 24(6), 725-39.

Scheme 70 (2 Reactions)

HO (S) NH₂

Absolute stereochemistry shown

➤ Suppliers (180)

📜 Suppliers (92)

31-508-CAS-14855229

Steps: 1

Properties of a Tunable Multin uclear Nickel Polyoxotungstate Platform

1.1 Reagents: Hydrogen peroxide

Solvents: Water, Water- d₂; rt; 27 h, 85 °C

Experimental Protocols

By: El Moll, Hani; et al

Chemistry - A European Journal (2013), 19(21), 6753-6765.

31-508-CAS-8191575

Steps: 1

Reagents: Hydrogen peroxide Catalysts: Tungstate(16-), dotetraconta-µ-oxooctadecaoxobis

 $\begin{array}{l} [\mu_{12}\text{-}[\text{phosphato}(3\text{-})\text{-}\kappa\mathcal{O}:\kappa\mathcal{O}:\kappa\mathcal{O}:\kappa\mathcal{O}:\kappa\mathcal{O}':\kappa\mathcal{O}':\kappa\mathcal{O}':\kappa\mathcal$

hydrate (1:7:7:2:34), stereoisomer Solvents: Water, Water- d_2 ; rt; 27 h, 85 °C

Experimental Protocols

Properties of a Tunable Multin uclear Nickel Polyoxotungstate Platform

By: El Moll, Hani; et al

Chemistry - A European Journal (2013), 19(21), 6753-6765.

Scheme 71 (1 Reaction)

Steps: 1

➤ Suppliers (67)

31-116-CAS-21718434

Steps: 1

Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel

Reagents: Water-d₂ Catalysts: Nickel

Solvents: Isopropanol; 10 min, 60 °C

Experimental Protocols

By: Zhou, Yuting; et al

Journal of the American Chemical Society (2020), 142(8), 4037-

Scheme 72 (1 Reaction)

Steps: 1 Yield: 99%

31-116-CAS-21782552

Steps: 1

Reagents: Manganese, Lithium chloride, Water-d2

Catalysts: Dichloro[1,2-di(methoxy-к*O*)ethane]nickel, Terpyr

idine

Solvents: Mesitylene; 24 h, 170 °C

1.2 Reagents: Ammonium chloride

Solvents: Water

Experimental Protocols

Nickel-Catalyzed Claisen Condensation Reaction between Two **Different Amides**

By: Chen, Jiajia; et al

Organic Letters (2020), 22(6), 2287-2292.

Scheme 73 (1 Reaction)

Absolute stereochemistry shown,

Rotation (-)

Absolute stereochemistry shown

Absolute stereochemistry shown

➤ Suppliers (158)

31-614-CAS-39077233

Steps: 1 Yield: 99%

1.1 Reagents: Deuterium

Catalysts: Nickel (complexes with N-heterocyclic carbenes), Palladium (complexes with N-heterocyclic carbenes), 2135813-04-4 (Palladium nanoparticle, Nickle nanoparticle,

and bimetallic Palladium/...)

Solvents: Water-*d*₂; 48 h, p H 8 - 9, 2 bar, 55 °C

Experimental Protocols

Water-soluble NHC Pd/Ni bimetallic nanoparticles for H/D exchange in aromatic amino-acids

By: Suarez-Riano, Oscar; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(8), 1062-1065.

Scheme 74 (1 Reaction)

Absolute stereochemistry shown, Rotation (-)

Suppliers (205)

HO D NH2

Absolute stereochemistry shown

➤ Suppliers (34)

Steps: 1 Yield: 97%

Absolute stereochemistry shown

> Supplier (1)

31-614-CAS-39077232

1.1 Reagents: Deuterium

Catalysts: Nickel (complexes with N-heterocyclic carbenes), Palladium (complexes with N-heterocyclic carbenes), 2135813-04-4 (Palladium nanoparticle, Nickle nanoparticle, and bimetallic Palladium/...)

Solvents: Water-*d*₂; 48 h, p H 8 - 9, 2 atm, 55 °C

Experimental Protocols

Water-soluble NHC Pd/Ni bimetallic nanoparticles for H/D exchange in aromatic amino-acids

By: Suarez-Riano, Oscar; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(8), 1062-1065.

Scheme 75 (1 Reaction)

Suppliers (177)

Absolute stereochemistry shown

➤ Suppliers (32)

Steps: 1 Yield: 21%

HO (S) NH₂

Steps: 1 Yield: 21%

Absolute stereochemistry shown

` Supplier (1)

31-614-CAS-39077236

.1 Reagents: Deuterium

Catalysts: Nickel (complexes with N-heterocyclic carbenes), Palladium (complexes with N-heterocyclic carbenes), 2135813-04-4 (Palladium nanoparticle, Nickle nanoparticle, and bimetallic Palladium/...)

Solvents: Water-*d*₂; 48 h, p H 11 - 12, 2 bar, 55 °C

Experimental Protocols

Water-soluble NHC Pd/Ni bimetallic nanoparticles for H/D exchange in aromatic amino-acids

By: Suarez-Riano, Oscar; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(8), 1062-1065.

Steps: 1 Yield: 45%

Scheme 76 (1 Reaction)

Suppliers (48)

31-614-CAS-32146465

1.1 Reagents: Manganese, Water- d₂
 Catalysts: Dibromo[1,2-di(methoxy-κ*O*)ethane]nickel, *N,N*-(2, 6-Pyridinediyldiethylidyne)bis[2,6-bis(1-methylethyl)benzen amine

Solvents: Dimethyl sulfoxide; 48 h, 80 °C

1.2 Reagents: Ammonium chloride

Solvents: Water

Experimental Protocols

Switchable 1,2-Rearrangement Enables Expedient Synthesis of Structurally Diverse Fluorine-Containing Scaffolds

By: Ping, Yuanyuan; et al

Journal of the American Chemical Society (2022), 144(26), 11626-11637.

Scheme 77 (1 Reaction)

Absolute stereochemistry shown, Rotation (-) HO NH₂

Steps: 1 Yield: 45%

Absolute stereochemistry shown

Steps: 1 Yield: 5%

Absolute stereochemistry shown

> Suppliers (32)

➤ Suppliers (177)

➤ Supplier (1)

HO NH₂

Absolute stereochemistry shown

□ Suppliers (38)

Steps: 1 Yield: 5%

31-614-CAS-39077230

I.1 Reagents: Deuterium

Catalysts: Nickel (complexes with N-heterocyclic carbenes), Palladium (complexes with N-heterocyclic carbenes), 2135813-04-4 (Palladium nanoparticle, Nickle nanoparticle, and bimetallic Palladium/...)

Solvents: Water-*d*₂; 48 h, p H 11 - 12, 2 bar, 120 °C

Experimental Protocols

Water-soluble NHC Pd/Ni bimetallic nanoparticles for H/D exchange in aromatic amino-acids

By: Suarez-Riano, Oscar; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(8), 1062-1065.

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.