

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 25

Markus Stein
11 November 2019

TRV considerações finais

Distribuições amostrais derivadas da distribuição Normal

- Exemplo 1: Seja $X = (X_1, ..., X_n)$ uma a. a. de $X \sim Normal(\mu_X, \sigma_X^2)$ e $Y = (Y_1, ..., Y_m)$ uma a.a. de $Y \sim Normal(\mu_Y, \sigma_Y^2)$, tal que X e Y são independentes. Encontre o TRV para testar:
- a. $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que $\sigma_X^2 = \sigma_Y^2 = \sigma^2;$
- b. (Behrens-Fisher problem) $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que $\sigma_X^2 \neq \sigma_Y^2$;
- c. $H_0: \sigma_X^2 = \sigma_Y^2$ contra $H_1: \sigma_X^2 \neq \sigma_Y^2$.
- Exemplo 2: (Teste t pareado) Seja $(X_1, Y_1), \ldots (X_n, Y_n)$ uma a.a. de $(X, Y) \sim Normal2(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$ e $\mathbf{Y} = (Y_1, \ldots, Y_m)$ uma a.a. de $Y \sim Normal(\mu_Y, \sigma_Y^2)$. Use o TRV para testar $H_0 : \mu_X = \mu_Y$. Dica: mostre que $W_i = X_i Y_i \sim Normal(\mu_W, \sigma_W^2)$.

Modelos discretos

- Exemplo aula passada: Seja $X = (X_1, ..., X_n)$ uma a.a. de $X \sim Bernoulli(\pi_1)$ e $Y = (Y_1, ..., Y_m)$ uma a.a. de $Y \sim Bernoulli(\pi_2)$, tal que X e Y são independentes. Encontre o TRV para testar $H_0: \pi_1 = \pi_2$ contra $H_0: \pi_1 \neq \pi_2$.
- Exemplo 3: (Equilibrio de Hardy-Weinberg) Seja $X = (X_1, ..., X_n)$ uma a.a. de $X \sim Multinomial(N, \pi_1, \pi_2, \pi_3)$. Use o TRV para testar $H_0 : \pi_1 = \pi_2 = \pi_3$.
- Exemplo 4: Tabelas $r \times c \dots$

Teste Exato de Fisher

Leitura:	Ler s	seções	8.2.2	e 8.3.5	do	livro	Casella	\mathbf{e}	Berger
Tarefa:	Fazer	lista 5	5 para	entreg	ar.				