Backpropagation through Time

A Mathematical Overview

A Neural Network

Activation Functions

Sigmoid

Tanh

Leaky Relu

Notation

- Three Hidden Layer Neural Network
- x -> Input and y -> Output
- w-> Weight and b -> Bias

Notation

For a single data point

- Vectors -> x, a^1 , a^2 , a^3 , y
- Vectors -> b^1 , b^2 , b^3 , b^4
- Matrices -> w^1 , w^2 , w^3 , w^4

- $a_{1}^{1} = f(w_{11}^{1}a_{1}^{0} + w_{12}^{1}a_{2}^{0} + w_{13}^{1}a_{3}^{0})$ f: Non Linear Activation Function

• $a_2^1 = f(w_{21}^1 a_1^0 + w_{22}^1 a_2^0 + w_{23}^1 a_3^0)$

Collecting the two

- $a_{1}^{1} = f(w_{11}^{1}a_{1}^{0} + w_{12}^{1}a_{2}^{0} + w_{13}^{1}a_{3}^{0})$ $a_{2}^{1} = f(w_{21}^{1}a_{1}^{0} + w_{22}^{1}a_{2}^{0} + w_{23}^{1}a_{3}^{0})$

Collecting the two

- $a_{1}^{1} = f(w_{11}^{1}a_{1}^{0} + w_{12}^{1}a_{2}^{0} + w_{13}^{1}a_{3}^{0})$ $a_{2}^{1} = f(w_{21}^{1}a_{1}^{0} + w_{22}^{1}a_{2}^{0} + w_{23}^{1}a_{3}^{0})$

is the same as

- $z_{1}^{1} = w_{11}^{1} a_{1}^{0} + w_{12}^{1} a_{2}^{0} + w_{13}^{1} a_{3}^{0}$
- $a_{1}^{1} = f(z_{1}^{1})$ $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$
- $a_{2}^{1} = f(z_{2}^{1})$

- $z_{1}^{1} = w_{11}^{1} a_{1}^{0} + w_{12}^{1} a_{2}^{0} + w_{13}^{1} a_{3}^{0}$ $a_{1}^{1} = f(z_{1}^{1})$ $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$ $a_{2}^{1} = f(z_{2}^{1})$

- $z_{1}^{1} = w_{11}^{1} a_{1}^{0} + w_{12}^{1} a_{2}^{0} + w_{13}^{1} a_{3}^{0}$ $a_{1}^{1} = f(z_{1}^{1})$ $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$

- $a_2^{1} = f(z_2^{1})$

is the same as

 a_1^0

 w^4 , b^4

 w^3 , b^3

 a^3

 a_1^1

- $z_{1}^{1} = w_{11}^{1} a_{1}^{0} + w_{12}^{1} a_{2}^{0} + w_{13}^{1} a_{3}^{0}$ $a_{1}^{1} = f(z_{1}^{1})$ $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0}$ $a_{2}^{1} = f(z_{2}^{1})$

is the same as

- $z^1 = w^1 * a^0$
- $a^1 = f(z^1)$

Adding in the bias term as well

- $z_{11}^1 = w_{11}^1 a_{11}^0 + w_{12}^1 a_{2}^0 + w_{13}^1 a_{3}^0 + b_{11}^1$
- $a_{1}^{1} = f(z_{1}^{1})$ $z_{2}^{1} = w_{21}^{1} a_{1}^{0} + w_{22}^{1} a_{2}^{0} + w_{23}^{1} a_{3}^{0} + b_{2}^{1}$
- $a_{2}^{1} = f(z_{2}^{1})$

is the same as

- $z^1 = w^1 * a^0 + b^1$
- $a^1 = f(z^1)$

The complete forward pass

- $a^0 = x$
- $z^1 = w^1 * a^0 + b^1$
- $a^1 = f(z^1)$
- $z^2 = w^2 * a^1 + b^2$
- $a^2 = f(z^2)$
- $z^3 = w^3 * a^2 + b^3$
- $a^3 = f(z^3)$
- $z^4 = w^4 * a^3 + b^4$
- $a^4 = f(z^4)$
- $y = a^4$

The Input

 $\bullet \quad a^0 = x$

For I = 1, ... , L layers

- $z^{l} = w^{l} * a^{l-1} + b^{l}$
- $a^I = f(z^I)$

Finally

• $y = a^L$

Notation

- t -> Ground Truth Output
- C -> Cost Function
- δ -> Gradient

The Cost Function

For a scalar output

- Mean Squared Error: $C = \frac{1}{2} * (y t)^2$
- Cross Entropy: C = t * ln(y) + (1-t) * ln(1-y)

