

Description

The μ PD7810 and μ PD7811 single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external components. The device's internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the μ PD7810/11 appropriate in data processing as well as control applications. The devices integrate a 16-bit ALU, 4K-ROM, 256-byte RAM with an 8-channel A/D converter, a multifunction 16-bit timer/event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high end processing applications. This involves analog signal interface and processing.

The μ PD7811 is the mask-ROM high volume production device embedded with custom customer program. The μ PD7810 is a ROM-less version for prototyping and small volume production. The μ PD78PG11E is a piggy-back EPROM version for design development.

Features

- ☐ NMOS silicon gate technology requiring +5 V power supply
- ☐ Complete single-chip microcomputer
 - 16-bit ALU
 - 4K x 8 ROM
 - 256-byte RAM
- ☐ 44 I/O lines
- ☐ Two zero-cross detect inputs
- □ Two 8-bit timers
- ☐ Expansion capabilities
 - 8085A bus-compatible
- 60K-byte external memory address range
- □ 8-channel, 8-bit A/D converter
 - Autoscan mode
 - Channel select mode
- ☐ Full duplex USART
 - Synchronous and asynchronous
- □ 153 instructions
 - 16-bit arithmetic, multiply and divide
- \Box 1 μ s instruction cycle time (12 MHz operation)
- ☐ Prioritized interrupt structure
 - 3 external
 - 8 internal
- □ Standby function
- ☐ On-chip clock generator
- ☐ 64-pin plastic QUIP or shrink DIP

Pin Configuration

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD7810G-36 μPD7811G-36	64-pin plastic QUIP	12 MHz
μPD7810CW μPD7811CW	64-pin plastic shrink DIP	12 MHz

Pin Identification

No.	Symbol	Function					
1-8	PA ₀ -PA ₇	Port A I/O					
9-16	PB ₀ -PB ₇	Port B I/O					
17	PC ₀ /TxD	Port C I/O line O/Transmit data output					
18	PC ₁ /RxD	Port C I/O line 1/Receive data input					
19	PC ₂ /SCK	Port C I/O line 2/Serial clock I/O					
20	PC ₃ /TI/ INT2	Port C I/O line 3/Timer input/Interrupt request 2 input					
21	PC ₄ /TO	Port C I/O line 4/Timer output					
22	PC ₅ /Cl	Port C I/O line 5/Counter input					
23, 24	PC ₆ , PC ₇ / CO ₀ , CO ₁	Port C I/O lines 6, 7/Counter outputs 0, 1					
25	NMI	Nonmaskable interrupt input					
26	INT1	Interrupt request 1 input					
27	MODE1/M1	Mode 1 input/Memory cycle 1 output					
28	RESET	Reset input					
29	MODEO/ IO/M	Mode 0 input/I/O/Memory output					
30, 31	X2, X1	Crystal connections 1, 2					
32	V _{SS}	Ground					
33	AVSS	Port T threshold voltage input					
34-41	AN ₀ -AN ₇	A/D converter analog inputs 0-7					
42	V _{AREF}	A/D converter reference voltage					
43	AV _{CC}	A/D converter power supply					
44	RD	Read strobe output					
45	WR	Write strobe output					
46	ALE	Address latch enable output					
47-54	PF ₀ -PF ₇	Port F I/O/Expansiom memory address bus (bits 8-15)					
55-62	PD ₀ -PD ₇	Port D I/O/Expansion memory address/ data bus					
63	V _{DD}	RAM backup power supply					
64	V _{CC}	5 V power supply					

Pin Functions

PA₀-PA₇ [Port A]

Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs.

PB₀-PB₇ [Port B]

Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs.

PC₀-PC₇ [Port C]

Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input.

TxD [Transmit Data]. Serial data output terminal.

RxD [Receive Data]. Serial data input terminal.

SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used.

TI [Timer Input]. Timer input terminal.

INT2 [Interrupt Request 2]. Falling-edge-triggered, maskable interrupt input terminal and AC-input, zero-cross detection terminal.

TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer/counter.

CI [Counter Input]. External pulse input to timer/event counter.

CO₀, CO₁ [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter.

PD₀-PD₇ [Port D]

Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus.

PF₀-PF₇ [Port F]

Port F is an 8-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits.

ANo-AN7

These are the eight analog inputs to the A/D converter. AN_4 - AN_7 can also be used as a digital input for falling edge detection.

AV_{SS} [A/D Converter Power Ground]

 ${\sf AV}_{\sf SS}$ is the ground potential for the A/D converter power supply.

NMI [Nonmaskable Interrupt]

Falling-edge-triggered nonmaskable interrupt input.

INT1 [Interrupt Request 1]

INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal.

RESET [Reset]

When the $\overline{\text{RESET}}$ input is brought low, it initializes the $\mu\text{PD7810/11}$.

MODE1, MODE0 [Mode 1, 0]

The MODE1 and MODE0 inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODE0 outputs the TO/M signal.

V_{AREF} [A/D Converter Reference]

V_{AREF} set the upper limit for the A/D converter's conversion range.

AV_{CC} [A/D Converter Power]

This is the power supply voltage for the A/D converter.

RD [Read Strobe]

The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset.

WR [Write Strobe]

The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset.

ALE [Address Latch Enable]

The ALE output latches the address signal to the output of PD₀-PD₇.

X1, X2 [Crystal Connections 1, 2]

X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock.

V_{SS} [Ground]

Ground potential.

V_{DD} [Backup Power]

Backup power for on-chip RAM.

V_{CC} [Power Supply]

+5 V power supply.

Block Diagram

Functional Description

Memory Map

The μ PD7811 can directly address up to 64K bytes of memory. Except for the on-chip ROM (0-4095) and RAM (65280-65535), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K byte memory space for the μ PD7811.

Input/Output

The μ PD7810/11 has 8 analog input lines (AN₀-AN₇), 44 digital I/O lines, five 8-bit ports (port A, port B, port C, port D, port F), and 4 input lines (AN₄-AN₇).

Analog Input Lines. AN₀-AN₇ are configured as analog input lines for on-chip A/D converter.

Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs.

Port D. Port D can be programmed as a byte input or a byte output.

 AN_4 - AN_7 . The high order analog input lines, AN_4 - AN_7 , can be used as digital input lines for falling edge detection.

Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter.

Memory Expansion. In addition to the single-chip operation mode, the μ PD7811 has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion		Port Configuration
None	Port D Port F	I/O port I/O port
256 Bytes	Port D Port F	Multiplexed address/data bus I/O port
4K Bytes	Port D Port F ₀ -F ₃ Port F ₄ -F ₇	Multiplexed address/data bus Address bus I/O port
16K Bytes	Port D Port F ₀ -F ₅ Port F ₆ -F ₇	Multiplexed address/data bus Address bus I/O port
60K Bytes	Port D Port F	Multiplexed address/data bus Address bus

Timers

There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as an 8-bit timer with 8-bit prescaler. The timer can be software set to increment at intervals of four machine cycles (1 μ s at 12 MHz operation) or 128 machine cycles (32 μ s at 12 MHz), or to increment on receipt of a pulse at TI. Figure 2 shows the block diagram for the timer.

Timer/Event Counter

The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations:

- Interval timer
- · External event counter
- · Frequency measurement
- Pulse width measurement
- Programmable square-wave output

Figure 1. Memory Map

Figure 2. Timer Block Diagram

8-Bit A/D Converter

- 8 input channels
- 4 conversion result registers
- 2 powerful operation modes
 - Autoscan mode
 - Channel select mode
- Successive approximation technique
- Absolute accuracy: ±1.5 LSB (±0.6%)
- Conversion range: 0 to 5 V
- Conversion time: 48 μs
- Interrupt generation

Analog/Digital Converter

The μ PD7810/11 features an 8-bit, high speed, high accuracy A/D converter. The A/D converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CR₀-CR₃). The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CR₀-CR₃. In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the A/D converter.

Interrupt Structure

There are 11 interrupt sources. Three are external interrupts and eight are internal. The following, table 2, shows 11 interrupt sources divided into six priority levels. See figure 5.

Standby Function

The standby function saves the top 32 bytes of RAM with backup power (V_{CD}) if the main power (V_{CC}) fails. On power-up, you can check the standby flag (SB) to determine whether recovery was made from standby mode or from a cold start.

Table 2. Interrupt Sources

Interrupt Request	Interrupt Address	Type of Interrupt	internal/ External
IRQ0	4	NMI (Nonmaskable interrupt)	Ext
IRQ1	8	INTTO (Coincidence signal from timer 0)	int
		INTT1 (Coincidence signal from timer 1)	•
IRQ2	16	INT1 (Maskable interrupt)	Ext
		INT2 (Maskable interrupt)	•
IRQ3	24	INTEO (Coincidence signal from timer/event counter)	Int
		INTE1 (Coincidence signal from timer/event counter)	•
IRQ4	32	INTEIN (Falling signal of CI and TO counter)	Int/Ext
		INTAD (A/D converter interrupt)	•
IRQ5	40	INTSR (Serial receive interrupt)	Int
		INST (Serial send interrupt)	

Figure 4. A/D Converter Block Diagram

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram.

Figure 5. Interrupt Structure Block Diagram

Figure 6. Universal Signal Interface Block Diagram

Zero-Crossing Detector

The INT1 and INT2 terminals (used common to TI and PC₃) can detect the zero-crossing point of low-frequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry.

The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase-sensitive devices.

To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and $\overline{\text{INT2}}$ pins.

For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated.

For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated.

Figure 7. Zero-Crossing Detection Circuit

Absolute Maximum Ratings

Power supply voltag	es, V _{CC}	-0.5 V to +7.0 V
	V _{DD}	-0.5 V to +7.0 V
	AV _{CC}	−0.5 V to +7.0 V
	AVSS	−0.5 V to +0.5 V
Input voltage, V _I		−0.5 V to +7.0 V
Output voltage, V ₀		−0.5 V to +7.0 V
Reference input voltage, VAREF		-0.5 V to V _{CC}
Operating temperature, T _{OPR} 10 MHz ≤ f _{XTAL} ≤ 12 MHz		−10°C to +70°C
f _{XTAL} ≤ 10 MHz		-40°C to -85°C
Storage temperature, T _{STG}		-65°C to +150°C

Comment: Exposing the device to stresses above those listed in absolute maximum ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Conditions

Oscillating Frequency	TA	V _{CC} , AV _{CC}
$f_{XTAL} \le 10 \text{ MHz}$	-40°C to +85°C	+5.0 V ±10%
10 MHz ≤ f _{XTAL} ≤ 12 MHz	-10°C to +70°C	+5.0 V ±5%

Capacitance

 $T_A = 25 \,^{\circ}C; V_{CC} = V_{DD} = V_{SS} = 0 \,^{\circ}V$

Parameter			Limits			Test Conditions
	Symbol	Min	Тур	Max	Unit	
Capacitance	Cı			10	pF	$Af_{C} = 1 MHz.$
Output capacitance	Co			20	pF	Unmeasured pins returned to 0 V.
I/O capacitance	C _{IO}			20	pF	

Recommended XTAL Oscillation Circuit

DC Characteristics

 $T_A = -10\,^{\circ}\text{C}$ to +70 $^{\circ}\text{C}$; $V_{CC} = +5.0$ V $\pm 5\%$; $V_{SS} = 0$ V; $V_{DD} = V_{CC}$ -0.8 V to V_{CC}

		L	imits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	V _{IL}	0		8.0	٧	
Input high voltage	V _{IH1}	2.0		V _{CC}	٧	All except SCK, RESET, X1 and X2
	V _{1H2}	0.8 V _{CC}		V _{CC}	٧	SCK, X1, X2
	V _{IH3}	0.8 V _{DD}		V _{CC}	٧	RESET
Output low voltage	V _{OL}			0.45	٧	$I_{OL} = 2.0 \text{ mA}$
Output high voltage	V _{OH}	2.4			٧	$I_{OH} = -200 \mu\text{A}$
Data retention voltage	V _{DDDR}	3.2			٧	V _{CC} = 0 V; RESET = V _{IL}
Input current	l _l			±200	μΑ	$\begin{array}{l} \text{INT1, TI(PC_3);} + \\ 0.45 \text{ V} \leq \text{V}_{\text{I}} < \\ \text{V}_{\text{CC}} \end{array}$
Input leakage current	lu			±10	μΑ	All except INT, TI(PC ₃) $0 \text{ V} \leq \text{V}_{\text{CC}}$
Output leakage current	l _{L0}			±10	μΑ	$\begin{array}{l} +0.45 \text{ V} \leq \text{V}_0 \\ \leq \text{V}_{CC} \end{array}$
AV _{CC} supply current	Alcc		6	12	mΑ	
V _{DD} supply current	l _{DD}		1.5	3.5	mΑ	T _A = -40 to +85°C
				3.2	mΑ	$V_{CC} = V_{DD} = 5 \text{ V T}_{A} = -10 \text{ to} +70 \text{ °C}$
V _{CC} supply current	lcc		150	220	mA	T _A = -40 to +85°C; V _{CC} = V _{DD} = 5 V

Serial Operation

		Lin	nits		Test	
Parameter	Symbol	Min Max		Unit	Conditions	
SCK cycle time	t _{CYK}	1		μS	SCK input (1)	
		500		ns	(2)	
		2	-	μS	SCK output	
SCK width low	t _{KKL}	750		ns	SCK input(1)	
		200		ns	SCK input (2)	
		900		ns	SCK output	
SCK width high	t _{KKH}	750		ns	SCK input (1)	
		200		ns	SCK input (2)	
		900		ns	SCK output	
RxD set-up time to SCK 1	t _{RXK}	80		ns	(1)	
RxD hold time after	t _{KRX}		80	ns	(1)	
SCK ↓ TxD delay time	t _{KTX}		210	ns	(1)	

Note:

- (1) 1x baud rate in asynchronous, synchronous, or I/O interface
- (2) 16x baud rate or 64x baud rate in asynchronous mode.

Zero-Cross Characteristics

		Liı	nits		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
Zero-cross detection input	V _{ZX}	1	3	V ac, p-p	Ac coupled	
Zero-cross accuracy	A _{ZX}		±135	mV	60-Hz sine wave	
Zero-cross detection input frequency	f _{ZX}	0.05	1	kHz		

AC Characteristics Read/Write Operation $V_{SS} = 0 \text{ V, } V_{CC} - 0.8 \text{ V} \leq V_{DD} \leq V_{CC}$

			Lin	its			
Parameter	•	f _{XTAL} =	10 MHz	f _{XTAL} =	12 MHz		Test
	Symbol	Min	Max	Min	Max	Unit	Conditions (1)
RESET pulse width	t _{RP}	6.0		5.0		μS	
Interrupt pulse width	t _{IP}	3.6		3.0		μS	
Counter input pulse width	t _{Cl}	600		500		ns	Event counter mode
	t _{Cl}	4.8		4.0		μS	Pulse width measurement mode
Timer input pulse width	tTI	600		500	***************************************	ns	
X1 Input cycle time	tcyc	100	250	83	250	ns	1000
Address set-up to ALE ↓	t _{AL}	100		65	-,,	ns	
Address hold after ALE ↓	tLA	70		50		ns	
Address to RD ↓ delay time	t _{AR}	200		150		ns	
RD ↓ to address floating	t _{AFR}		20		20	ns	
Address to data input	t _{AD}		480		360	ns	
ALE ↓ to data input	t _{LDR}		300		215	ns	
RD ↓ to data input	t _{RD}		250		180	ns	
ALE ↓ to RD ↓ delay time	t _{LR}	50		35		ns	
Data hold time to RD ↑	t _{RDH}	0		0		ns	
RD 1 to ALE 1 delay time	t _{RL}	150		115		ns	
RD width low	t _{RR}	350		280		ns	Data read
		650		530		ns	Opcode fetch
ALE width high	t _{LL}	160		125		ns	
M1 setup time to ALE ↓	t _{ML}	100		65		ns	
M1 hold time after ALE ↓	t _{LM}	70		50		ns	
10/M setup time to ALE 1	tιL	100		65		ns	
IO/M hold time after ALE ↓	t _{Ll}	70		50		ns	
Address to WR ↓ delay	t _{AW}	200		150		ns	
ALE ↓ to data output	t _{LDW}		210		195	ns	
WR ↓ to data output	t _{WD}		100		100	ns	1
ALE ↓ to WR ↓ delay	t _{LW}	50		35		ns	
Data set-up time to WR 1	t _{DW}	300		230		ns	
Data hold time to WR 1	t _{WDH}	130		95		ns	
WR 1 to ALE 1 delay time	twL	150		115		ns	
WR width low	t _{WW}	350		280		ns	

Note:

(1) Load capacitance: $C_L = 150 \ pF$.

A/D Converter Characteristics

 $T_A = -10$ °C to +70 °C; $V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 5\%$; $V_{SS} = AV_{SS} = 0 \text{ V}$; VAREF = AVCC - 0.5 V to AVCC.

AITE!	-	•	,0			
			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Resolution		8			Bits	
Absolute accuracy				0.4% ± 1/2	LSB	$T_A = -10$ °C to $+50$ °C
				0.6% ±1/2	LSB	$T_A = -10$ °C to $+70$ °C (Note 1)
Conversion time	tconv	576			t _{CYC}	$83 \text{ ns} \le t_{CYC} \le 110 \text{ ns}$
		432			t _{CYC}	110 ns ≤ t _{CYC} ≤ 170 ns
Sampling time	^t sa m p	96			t _{CYC}	$83 \text{ ns} \leq t_{CYC} \leq 110 \text{ ns}$
		72			t _{CYC}	110 ns ≤ t _{CYC} ≤ 170 ns
Analog input voltage	VIA	0		VAREF	٧	
Analog resistance	R _{AN}		1000		MΩ	
Analog reference current	AREF	0.2	0.5	1.5	mA	

Note:

(1) In case of $f_{XTAL} \le 10$ MHz, $T_A = -40$ °C to +85 °C.

Bus Timing Depending on toyo

Symbol	Calculating Expression	Min/Max
t _{RP}	60T	Min
t _{T1}	6T	Min
t _{CI} (2)	6T	Min
t _{CI} (3)	48 T	Min
t _{IP}	36T	Min
t _{AL}	2T — 100	Min
lLA	T - 30	Min
t _{AR}	3T — 100	Min
t _{AD}	7T — 220	Max
tldr	5T — 200	Max
t _{RD}	4T — 150	Max
t _{LR}	T — 50	Min
t _{RL}	2T 50	Min
t _{RR}	4T — 50 (Data Read)	Min
	7T – 50 (Opcode Fetch)	
t _{LL}	2T - 40	Min
t _{AW}	3T -100	Min
t _{LDW}	T + 110	Max
t _{LW}	T — 50	Min
t _{DW}	4T — 100	Min
twoH	2T — 70	Min
t _{WL}	2T — 50	Min
t _{ww}	4T — 50	Min
tcyk	20T (SCK input)(1)	Min
	24T (SCK output)	
tKKL	10T — 80 (SCK input)(1)	Min
	12T — 100 (SCK output)	•
t _{KKH}	10T — 80 (SCK input)(1)	Min
	12T — 100 (SCK output)	

Note:

- (1) 1x Baud rate in asynchronous, synchronous, or I/O interface mode.

 $T = I_{CYC} = 1/f_{XTAL}$. The items not included in this list are independent of oscillator frequency (f_{XTAL}).

- (2) Event counter mode.
- (3) Pulse width measurement mode.

Timing Waveforms

Read Operation

Write Operation

Timing Waveforms (cont)

Opcode Fetch Operation

Serial Operation Transmit/Receive Timing

Operand Format/Description

Format	Description
r r1 r2	V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, H, L A, B, C
sr	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TM ₀ , TM ₁
sr1	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB CRO, CR1, CR2, CR3
sr2	PA, PB, PC, PD, PF, MKH, ANM, MKL, SMH, EOM, TMM
sr3	ETM ₀ , ETM ₁
sr4	ECNT, ECPT
rp	SP, B, D, H
rp1	V, B, D, H, £A
rp2	SP, B, D, H, EA
rp3	B, D, H
rpa	B, D, H, D+ , H + , D -, H
rpa1	B, D, H
rpa2	B, D, H, D +, H + , D, H, D + byte, H + A, H + B, H + EA, H + byte
rpa3	D, H, D + +, H + +, D + byte, H + A, H + B, H + EA, H + byte
wa	8-Bit immediate data
word	16-Bit immediate data
byte	8-Bit immediate data
bit	3-Bit immediate data
f	CY, HC, Z
irf	FNMI, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN ₄ , AN ₅ , AN ₆ , AN ₇ , SB

Instruction Set Symbol Definitions

Symbol	Description
-	Transfer direction, result
٨	Logical product (logical AND)
V	Logical sum (logical OR)
+	Exclusive OR
	Complement
•	Concatenation

Remarks

1. sr-sr4 (special register)	
	ECNT = Timer/Event
PA = Port A	Counter Upcounter
PB = Port B	ECPT = Timer/Event
PC = Port C PD = Port D	Counter Capture
PF = Port F	Counter Capture
MA = Mode A	ETMM = Timer/Event
MB = Mode B	Counter Mode
MC = Mode C	EOM = Timer/Event
MCC = Mode Control C	Counter Output Mode
MF = Mode F	
	TxB = TX Buffer
MM = Memory Mapping	RxB = RX Buffer
TM ₀ = Timer Register 0	SMH = Serial Mode High
TM ₁ = Timer Register 1	SML = Serial Mode Low
TMM = Timer Mode	MKH = Mask High
ETM ₀ = Timer/Event	MKL = Mask Low
Counter Register 0	ANM = A/D Channel Mode
ETM ₁ = Timer/Event Counter	$CR_0 = A/D$ Conversion Result 0-3
Register 1	to CR ₃
2. rp-rp3 (register pair)	
SP = Stack Pointer	H = HL
B = BC	V = VA
D = DE	EA = Extended Accumulator
3. rpa-rpa3 (rp addressing)	
B = (BC)	D + + = (DE) + +
D = (DE)	H + + = (HL) + +
H = (HL)	D + byte = (DE) + byte
D + = (DE) +	H + A = (HL) + (A)
H -= (HL) +	H + B = (HL) + (B)
D -= (DE) -	H + EA = (HL) + (EA)
H -= (HL) -	H + byte = (HL) + byte
4. f (flag)	
CY = Carry HC = H	lalf Carry Z = Zero
5. irf (interrupt flag)	
NMI = NMi* Input	FEIN = INTFEIN
	FAD = INTFAD
FTO = INTFTO	FSR = INTFSR
FT1 = INTFT1	FST = INTFST
F1 = INTF1	ER = Error
F2 = INTF2	OV = Overflow AN ₄ to AN ₇ = Analog Input 4-7
FEO = INTFEO FE1 = INTFE1	SB = Standby
FEI INIFEI	JU — Standby

Instruction Set

			ne iado				
				ļ '			
Mnemonic	Mnemonic Operand	Operation	B3 7 6 5 4 3 2 1 0	B4 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
8-Bit Data Transfer	ınsfer						
MOV	r1,A	(r1) ← (A)	0 0 0 1 1 T ₂ T ₁ T ₀		4	-	
	A, r1	(A) ← (r1)	0 0 0 0 1 72 71 70		4	-	
	*sr,A	(Sr) ← (A)	0 1 0 0 1 1 0 1	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	9	2	
	*A,sr1	(A) ← (sr1)	0 1 0 0 1 1 0 0	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	₽	2	
	r,word	$(r) \leftarrow (word)$	0 1 1 1 0 0 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	17	4	
			Low addr	High addr		:	
	word,r	$(word) \leftarrow (r)$	0 1 1 1 0 0 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	17	4	
			Low addr	High addr			
MVI	*r,byte	$(r) \leftarrow byt$	0 1 1 0 1 R ₂ R ₁ R ₀	Data	7	2	, page 7
		set L1 if r = A					L1 == 1 and r == A 10 == 1 and r == 1
	sr2,byte	sr2,byte (sr2) — byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 0 S ₂ S ₁ S ₀	4	က	
		•	Data	-			
MVIW	*wa, byte	*wa, byte ((V)*(wa)) *** byte	0 1 1 1 0 0 0 1	Offset	ರ	က	
			Data				
MVIX	*rpa1,byte	*rpa1,byte (rpa1) - byte	0 1 0 0 1 0 A ₁ A ₀	Data	10	2	
STAW	*wa	$((V) \bullet (wa)) \leftarrow A$	0 1 1 0 0 0 1 1	Offset	10	2	•
LDAW	*wa	(A) ← ((V)•(wa))	0 0 0 0 0 0 1	Offset	10	2	
STAX	*rpa2	(rpa2) ← (A)	A ₃ 0 1 1 1 A ₂ A ₁ A ₀	Data (2)	7/13(3)	2	
LDAX	*rpa2	(A) ← ((rpa2))	A ₃ 0 1 0 1 A ₂ A ₁ A ₀	Data (2)	7/13(3)	2	
EXX		$(B) \leftarrow (B'), (C) \leftarrow (C'), (D) \leftarrow (D')$ $(E) \leftarrow (E'), (H) \leftarrow (H'), (L) \leftarrow (L')$	0 0 0 1 0 0 0 1		4	-	
EXA		$(V) \leftarrow (V'), (A) \leftarrow (A'), (EA) \leftarrow (EA')$	0 0 0 1 0 0 0		4	-	
EXH		(H) ← (H)'(L) ← (L')	0 1 0 1 0 0 0 0		4	-	
16-Bit Data Transfer	ransfer						
BLOCK	Q	$((DE)) \leftarrow ((HL)), (DE) \leftarrow (DE + 1),$ $(HL) \leftarrow (HL) + 1, (G) \leftarrow (G) - 1$ End if borrow	0 0 1 1 0 0 0 1		13 x (C + 1)	-	
DMOV	rp3, EA	(rp3_) ← (EAL),(rp3 _H) ← (EAH)	1 0 1 1 0 1 P ₁ P ₀		4	-	
	EA ro3	(EAL) ← (rn3.) (EAH) ← (rn3)	1 0 1 0 0 1 P. P.		A	-	

			Operation Code	on Code			
			I	B2			
Mannic	Operand	Operation	B3 7 6 5 4 3 2 1 0	B4 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
16-Bit Data Transfer (cont)	ansfer (cont)						
DMOV	sr3, EA	(sr3) ← (EA)	0 1 0 0 1 0 0 0	1 1 0 1 0 0 1 00	14	2	
	EA,sr4	(EA) ← (sr4)	0 1 0 0 1 0 0 0	1 1 0 0 0 0 V ₁ V ₀	14	2	
SBCD	word	(word) ← (C), (word + 1) ← (B)	0 1 1 1 0 0 0 0 0 Low addr	0 0 0 1 1 1 1 0 High addr	20	4	
SDED	word	$(word) \leftarrow (E), (word + 1) \leftarrow (D)$	0 1 1 1 0 0 0 0 0 Low addr	0 0 1 0 1 1 1 0 High addr	20	4	
SHLD	word	$(word) \leftarrow (L), (word + 1) \leftarrow (H)$	0 1 1 1 0 0 0 0 0 Low addr	0 0 1 1 1 1 0 High addr	20	4	
SSPD	word	$(word) \leftarrow (SP_L), (word + 1) \leftarrow (SP_H)$	0 1 1 1 0 0 0 0 0 1 lowaddr	0 0 0 0 1 1 1 0 High addr	20	4	
STEAX	rpa3	((rpa3)) ← (EAL),((rpa3) + 1 ← (EAH)	0 1 0 0 1 0 0 0 Data(4)	1 0 0 1 C ₃ C ₂ C ₁ C ₀	14/20(3)	က	
LBCD	word	(C) \leftarrow (word),(B) \leftarrow (word + 1)	0 1 1 1 0 0 0 0 C	0 0 0 1 1 1 1 1 High addr	20	4	
LOED	word	(E) \leftarrow (word),(D) \leftarrow (word + 1)	0 1 1 1 0 0 0 0 0 Low addr	0 0 1 0 1 1 1 1 High addr	50	4	
LHLD	word	(L) ← (word).(H) ← (word + 1)	0 1 1 1 0 0 0 0 0 Low addr	0 0 1 1 1 1 1 1 1 1 1 High addr	20	4	
LSPD	word	$(SP_L) \leftarrow (word), (SP_H) \leftarrow ((word) + 1)$	0 1 1 1 0 0 0 0 0 Low addr	0 0 0 0 1 1 1 1 High addr	50	4	
LDEAX	rpa3	(EAL) ← ((rpa3)),(EAH) ← ((rpa3) + 1)	0 1 0 0 1 0 0 0 Data(4)	1 0 0 0 C ₃ C ₂ C ₁ C ₀	14/20(3)	3	
PUSH	rp1	$((SP) - 1) \leftarrow (rp1_H) ((SP) - 2) \leftarrow (rp1_L)$ $(SP) \leftarrow (SP) - 2$	1 0 1 1 0 02 01 00		55	-	
POP	rg.	$(rp1_L) \leftarrow ((SP)), (rp1_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	1 0 1 0 0 02 01 00		유	-	1
IX.	*rp2,word (rp2)	J (rp2) ← (word) set L0 if rp2 = H	0 P ₂ P ₁ P ₀ 0 1 0 0 High byte	Low byte	10	က	L0 = 1 and rp2 = H
TABLE	5	(C) \leftarrow ((PC)+3+(A)),B \leftarrow ((PC)+3+(A)+1)	1) 0 1 0 0 1 0 0 0	1 0 1 0 1 0 0 0	11	2	
6-Bit Artinmetic ineglister	etic įnegister A r	ر] (Δ) ← (Δ) + (r)	0 1 1 0 0 0 0 0	1 1 0 0 0 R ₂ R ₁ R ₀	80	2	
2	r'A	$(r) \leftarrow (r) + (A)$	1	0 0 R ₂ R ₁	8	2	
ADC	A,r	$(A) \leftarrow (A) + (r) + (CY)$	0 1 1 0 0 0 0 0 0	1 0 R ₂ R ₁	8	2	
	۷,	$(x) \leftarrow (x) + (y) + (y)$	0 0 0 0 0	0 1 0 13 13 13	œ	^	

Instruction Set (cont)

				•				
			5	!				
Mnemonic	Operand	Operation	83 7 6 5 4 3	2 1 0	B4 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
8-Bit Arithmetic [Register] (cont	ic (Registe	r] (cont)						
ADDNC	A,r	$(A) \leftarrow (A) + (r)$	0 1 1 0 0	0 0 0	1 0 1 0 0 R ₂ R ₁ R ₀	∞	2	No carry
•	r,A	(r) ← (r) + (A)	0 1 1 0 0	0 0 0	0 0 1 0 0 R ₂ R ₁ R ₀	80	2	No carry
SUB	A,r	$(A) \leftarrow (A) - (r)$	0 1 1 0 0	0 0 0	Æ	œ	2	
•	r,A	$(r) \leftarrow (r) - (A)$	0 1 1 0 0	0 0 0	Æ	8	2	
SBB	A,r	$(A) \leftarrow (A) - (r) - (CY)$	0 1 1 0 0	0 0 0	Æ	80	2	
•	r,A	$(r) \leftarrow (r) - (A) - (CY)$	0 1 1 0 0	0 0 0	Æ	8	2	
SUBNB	A,r	$(A) \leftarrow (A) - (r)$	0 1 1 0 0	0 0 0	Æ	80	2	No borrow
	Y.	$(r) \leftarrow (r) - (A)$	0 1 1 0 0	0 0 0	Æ	8	2	No borrow
ANA	A,r	$(A) \leftarrow (A) \land (r)$	0 1 1 0 0	0 0 0	Æ	œ	2	
	r,A	(r) ← (r) ∧ (A)	0 1 1 0 0	0 0 0	0 0 0 0 1 R ₂ R ₁ R ₀	80	2	
ORA	A,r	$(A) \leftarrow (A) \lor (r)$	0 1 1 0 0	0 0 0	Æ	80	2	
•	r,A	(r) ← (r) V (A)	0 1 1 0 0	0 0 0	Æ	8	2	
XRA	A,r	(A) ← (A) ♦ (r)	0 1 1 0 0	0 0 0	Æ	80	2	
•	r,A	(r) ← (r) ♥ (A)	0 1 1 0 0	0 0 0	Æ	œ	2	
GTA	A,r	(A) - (r) - 1	0 1 1 0 0	0 0 0	Æ	80	2	No borrow
•	r,A	(r) - (A) - 1	0 1 1 0 0	0 0 0	0 0 1 0 1 R ₂ R ₁ R ₀	80	2	No borrow
LTA	A,r	(A)-(r)	0 1 1 0 0	0 0 0	1 0 1 1 1 R ₂ R ₁ R ₀	80	2	Borrow
	r,A	(r) - (A)	0 1 1 0 0	0 0 0	0 0 1 1 1 R ₂ R ₁ R ₀	8	2	Borrow
NEA	A,r	(A)-(r)	0 1 1 0 0	0 0 0	1 1 1 0 1 R ₂ R ₁ R ₀	8	2	No zero
	r,A	(r) - (A)	0 1 1 0 0	0 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	80	2	No zero
EOA	A,r	(A)-(r)	0 1 1 0 0	0 0 0	æ	æ	2	Zero
	r,A	(r) - (A)	0 1 1 0 0	0 0 0	-H	8	2	Zero
ONA	A,r	(A) \(\circ\)	0 1 1 0 0	0 0 0		80	2	No zero
0FFA	A,r	(A) ∧ (r)	0 1 1 0 0	0 0 0	1 1 0 1 1 R2 R1 R0	8	2	Zero
8-Bit Arithmetic (Memory)	ic (Memor)	Į.						
ADDX	rpa	(A) ← (A) + ((rpa))	0 1 1 1 0	0 0 0	1 1 0 0 0 A2 A1 A0	Ħ	2	
ADCX	rpa	$(A) \leftarrow (A) + ((rpa)) + (CY)$	0 1 1 1 0	0 0 0	1 1 0 1 0 A ₂ A ₁ A ₀	Ħ	2	
ADDNCX	rpa	$(A) \leftarrow (A) + ((rpa))$	0 1 1 1 0	0 0 0	1 0 1 0 0 A ₂ A ₁ A ₀	11	2	No carry
SUBX	гра	$(A) \leftarrow (A) - ((rpa))$	0 1 1 1 0	0 0 0	1 1 1 0 0 A2 A1 A0	F	2	
SBBX	rpa	$(A) \leftarrow (A) - ((rpa)) - (CY)$	0 1 1 1 0	0 0 0	1 1 1 1 0 A2 A1 A0	=	2	
SUBNBX	rpa	(A) ← (A) – ((rpa))	0 1 1 1 0	0 0 0	1 0 1 1 0 A ₂ A ₁ A ₀	=	2	No borrow
ANAX	rpa	$(A) \leftarrow (A) \land ((rpa))$	0 1 1 1 0	0 0 0	1 0 0 0 1 A2 A1 A0	1	2	
VAGO		***************************************						

£
Ö
et (
Ň
<u>5</u>
ī
Ĭ
2

Mnemonic Operand Operation 8-Bit Arithmetic [Memory] [cant] XRAX	81 83 2 1 0 0 1 1 1 0 0 0 0	82 84 7 6 5 4 3 2 1 0 1 0 0 1 0 A ₂ A ₁ A ₀ 1 0 1 0 1 A ₂ A ₁ A ₀ 1 1 1 0 1 A ₂ A ₁ A ₀ 1 1 1 0 1 A ₂ A ₁ A ₀ 1 1 1 1 1 A ₂ A ₁ A ₀ 1 1 1 0 1 A ₂ A ₁ A ₀ 1 1 1 0 1 A ₂ A ₁ A ₀ 1 1 0 0 1 A ₂ A ₁ A ₀ 0 1 0 0 0 R ₂ R ₁ R ₀	State[1]	Bytes	Skip Condition
titmetic themory cont trpa (A) ← (A (rpa (A) − (rpa	6 5 4 3 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 5 4 3 2 1 0 0 1 0 A ₂ A ₁ 0 1 1 1 A ₂ A ₁ 1 1 0 1 A ₂ A ₁ 1 1 0 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁	11 11 11 11	Bytes	Condition
tipmetic (Memory) (cant)	1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0	0 0 1 0 A ₂ A ₁ 0 1 0 1 A ₂ A ₁ 1 1 1 1 A ₂ A ₁ 1 1 0 1 A ₂ A ₁ 1 0 0 0 A ₂ A ₁ 1 0 0 0 R ₂ A ₁	= = =		
rpa (A) ← (A rpa (A) − ((rr rpa (A) − (rr rpa	1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0	0 0 1 0 A ₂ A ₁ 0 1 0 1 A ₂ A ₁ 1 1 1 1 A ₂ A ₁ 1 1 1 0 1 A ₂ A ₁ 1 1 1 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 0 0 0 R ₂ A ₁ 1 0 0 0 R ₂ A ₁	= = =		
110	1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0	0 1 0 1 A ₂ A ₁ 0 1 1 1 A ₂ A ₁ 1 1 0 1 A ₂ A ₁ 1 1 1 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 0 0 R ₂ A ₁ 1 0 0 0 R ₂	두	2	
1	1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0	0 1 1 1 A ₂ A ₁ 1 1 0 1 A ₂ A ₁ 1 1 1 1 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 1 1 A ₂ A ₁ 1 0 0 0 R ₂ A ₁ 1 0 0 0 R ₂	=	2	No porrow
rpa (A) – ((rr rpa (A) – ((rr rpa (A) ∧ ((rr rpa (A) ∧ ((rr rbyte (A) ← (A) r,byte (A) ← (A)	1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0	1 1 0 1 A ₂ A ₁ 1 1 1 1 A ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 1 1 A ₂ A ₁ 1 0 0 0 R ₂ R ₁		2	Borrow
rpa (A) − ((rr rpa (A) ∧ ((rr rpa (A) ∧ ((rr rbate (A) ← (A) r,byte (A) ← (A)	1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0	1 1 1 1 4 ₂ A ₁ 1 0 0 1 A ₂ A ₁ 1 0 1 1 A ₂ A ₁ Data 1 0 0 0 R ₂ R ₁	Ŧ	2	No zero
rpa (A) ∧ ((rr rpa (A) ∧ ((rr rbate (A) ← (A) r,byte (A) ← (r) r,byte (A) ← (r)	1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0	1 0 0 1 A ₂ A ₁ 1 0 1 1 A ₂ A ₁ Data 1 0 0 0 R ₂ R ₁	11	2	Zero
rpa (A) ∧ ((rr) *A.byte (A) ← (A) r.byte (sr2) ← r.byte (sr2) ← r.byte (A) ← (A)	1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1	1 0 1 1 A ₂ A ₁ Data 1 0 0 0 R ₂ R ₁	11	2	No zero
-A,byte (A) ← (β r,byte (r) ← (r) sr2, byte (sr2) ← r,byte (r) ← (r) sr2,byte (sr2) ← sr2,byte (sr2) ← sr2,byte (r) ← (r) r,byte (r) ← (r) r,byte (r) ← (r) r,byte (sr2) ← -A,byte (sr2) ← r,byte (r) ← (r) r,byte (r) ← (r)	1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1	Data 1 0 0 0 R ₂ R ₁	1	2	Zero
-A,byte (A) ← (β r,byte (r) ← (r) sr2, byte (sr2) ← r,byte (r) ← (r) sr2,byte (sr2) ← sr2,byte (sr2) ← -A,byte (r) ← (r) r,byte (r) ← (r)	1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1	Data 1 0 0 0 R ₂ R ₁			
sr2, byte (sr2) \leftarrow sr2, byte (sr2) \leftarrow r, byte (t) \leftarrow (t) sr2, byte (sr2) \leftarrow sr2, byte (sr2) \leftarrow r, byte (t) \leftarrow (t) sr2, byte (sr2) \leftarrow sr2, byte (sr2) \leftarrow sr2, byte (sr2) \leftarrow sr2, byte (sr2) \leftarrow sr2, byte (b) \leftarrow (t) r, byte (t) \leftarrow (t)	1 1 1 0 1 0 0 Data 1 1 0 0 1 0 0	1 0 0 0 R ₂ R ₁	7	2	
sr2, byte (sr2) \leftarrow "A,byte (h) \leftarrow (h r,byte (sr2) \leftarrow "A,byte (sr2) \leftarrow r,byte (sr2) \leftarrow sr2,byte (sr2) \leftarrow sr2,byte (sr2) \leftarrow "A,byte (h) \leftarrow (t) "A,byte (h) \leftarrow (t) "A,byte (h) \leftarrow (t)	Data 1 1 0 0 1 0 0		=	က	
sr2, byte (sr2) \leftarrow "A,byte (A) \leftarrow (f) "A,byte (sr2) \leftarrow "A,byte (sr2) \leftarrow "A,byte (sr2) \leftarrow sr2,byte (sr2) \leftarrow sr2,byte (sr2) \leftarrow "A,byte (A) \leftarrow (f) "A,byte (A) \leftarrow (f)	1 1 0 0 1 0 0				
A,byte $(A) \leftarrow (A)$ r ,byte $(r) \leftarrow (r)$ r ,byte $(sr2) \leftarrow$ r ,byte $(sr2) \leftarrow$ r ,byte $(sr2) \leftarrow$ $sr2$,byte $(sr2) \leftarrow$ r ,byte $(A) \leftarrow (f)$ r ,byte $(A) \leftarrow (f)$	11-0	S ₃ 1 0 0 0 S ₂ S ₁ S ₀	20	က	
- 'A,byte (A) ← (A) r,byte (r) ← (r) sr2,byte (sr2) ← - 'A,byte (r) ← (r) sr2,byte (sr2) ← - 'A,byte (A) ← (r) - 'A,byte (A) ← (r) - 'A,byte (A) ← (r)	Uata		ı	c	
r.byte (r) ← (r) sr2.byte (sr2) ← A.byte (A) ← (f) r.byte (sr2) ← sr2.byte (sr2) ← A.byte (A) ← (f) r.byte (f) ← (f)	0 1 0 1 0 1 0		,	7	
Sr2.byte (sr2) \leftarrow *A.byte (A) \leftarrow (f) r,byte (sr2) \leftarrow Sr2.byte (sr2) \leftarrow *A.byte (A) \leftarrow (7) r,byte (T) \leftarrow (7)	0 1 1 1 0 1 0 0	0 1 0 1 0 R ₂ R ₁ R ₀	F	ო	
sr2.byte (sr2) ← (x,byte (t) ← (t) (x,byte (sr2) ← (sr2,byte (sr2) ← (x,byte (sr2) ← (x,byte (t) ← (t)	Data				
*A.byte (A) ← (β r.byte (r) ← (r) sr2.byte (sr2) ← *A.byte (A) ← (β r.byte (r) ← (r)	0 1 1 0 0 1 0 0	S ₃ 1 0 1 0 S ₂ S ₁ S ₀	23	က	
(1) ← (1) ← (1) (1, byte (1) ← (1) (1, byte (1) ← (1) (2, byte (A) ← (4) (3, byte (1) ← (1)	Data				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 1 0 0 1 1 0	Data	7	2	No carry
sr2.byte (sr2) \leftarrow 'A,byte (A) \leftarrow (I \rightarrow 't)	0 1 1 1 0 1 0 0	0 0 1 0 0 R2 R1 R0	F	3	No carry
sr2.byte (sr2) \leftarrow (A) \leftarrow (f) \leftarrow (7) \leftarrow (7)	Data				
*A,byte (A) ← (r,byte (r) ← (r,byte (r) ← (r)	0 1 1 0 0 1 0 0	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	70	က	No carry
*A,byte (A) ← (r,byte (r) ← (Data				Ì
r,byte $(r) \leftarrow (r) - byte$	0 1 1 0 0 1 1 0		7	2	
	0 1 1 1 0 1 0 0	0 1 1 0 0 R ₂ R ₁ R ₀	=	က	
	Data				
sr2,byte (sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	20	က	
	0 1 1 0 1 1 0	Data	7	2	
SBI "A, byte (A) " (A) = 0 yte = (C1)			Ŧ	6	
$r, byte$ $(r) \leftarrow (r) - byte - (CY)$	0 1 1 1 0 1 0 0	0 1 1 1 0 K2 K1 K0	=	,	
$sr2.byte (sr2) \leftarrow (sr2) - byte - (CY)$	0 1 1 0	S ₃ 1 1 1 0 S ₂ S ₁ S ₀	20	8	
	Data				

Instruction Set (cont)

				82			
			: <u>88</u>	1 80			Skip
nemonic	Mnemonic Operand	Operation	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Condition
nediate D	Immediate Data (cont)						
SUINB	*A,byte	*A.byte (A) \leftarrow (A) \rightarrow byte	0 0 1 1 0 1 1 0	Data	7	2	No borrow
	r,byte	$(r) \leftarrow (r) - byte$	0 1 1 1 0 1 0 0	0 0 1 1 0 R ₂ R ₁ R ₀	=	က	No borrow
	orth Cro	(0,0) → (0,0)	Dala Dala		6		Mo House
	sic, nyië	siz,byte (siz) (siz) byte	Data	33 0 1 0 02 31 30	NZ	ກ	NO DOLLOW
ANI	*A.byte	*A,byte (A) ← (A) ∧ byte	0 0 0 0 0 1 1 1	Data	7	2	
	r,byte	r,byte (r) \leftarrow (r) \land byte	0 1 1 1 0 1 0 0	0 0 0 0 1 R ₂ R ₁ R ₀	F	က	
			Data				
	sr2,byte	sr2,byte (sr2) (sr2) A byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	20	ဗ	
700	*A but	(A) + (A) 1/ harbo	Data	2400	,	c	
_	A,Uyte	<u>(</u>		Data	<u>, </u> ;	7	
	r, byte	(r) *** (r) v byte	0 1 1 1 0 0 Data	0 0 0 1 1 H2 H1 H0	E	n	
	sr2,byte	sr2.byte (sr2) (sr2) V byte	0 1 1 0 0 1 0 0	S ₂ 0 0 1 1 S ₂ S ₁ S ₀	20	3	
			Data	- \ 3			
XBI	*A,byte	*A,byte (A) ← (A) ♦ byte	0 0 0 1 0 1 1 0	Data	7	2	
	r,byte	$(r) \leftarrow (r) + byte$	0 1 1 1 0 1 0 0	0 0 0 1 0 R ₂ R ₁ R ₀	=	က	
			Data				
	sr2,byte	(sr2) ← (sr2) V byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 0 S ₂ S ₁ S ₀	20	m	
:			Data				
GTI	*A,byte	*A,byte (A) – byte – 1	0 0 1 0 0 1 1 1	Data	7	2	No borrow
	r,byte	(r) - byte - 1	0 1 1 1 0 1 0 0	0 0 1 0 1 R ₂ R ₁ R ₀	#	9	No borrow
			Data				
	sr2,byte	(sr2) - byte - 1	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 0 1 S ₂ S ₁ S ₀	14	က	No borrow
II.	*A,byte	(A) - byte	0 0 1 1 0 1 1 1	Data	7	2	Borrow
	r,byte	(r) – byte	0 1 1 1 0 1 0 0	0 0 1 1 1 R ₂ R ₁ R ₀	=	8	Borrow
			Data				
	sr2,byte	sr2,byte (sr2) - byte	0 1 1 0 0 1 0 0	S ₃ 0 1 1 1 S ₂ S ₁ S ₀	14	3	Borrow
			Data				
NEi	*A,byte	*A,byte (A) - byte	0 1 1 0 0 1 1 1	Data	7	2	No zero
	r,byte	(r) – byte	0 1 1 1 0 1 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	Ε	က	No zero
			D. 1.				

			Operation Code	n Code			
			181	B 2			į
Mnemonic	Operand	Operation	B3 7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
mmediate Da	ta (cont)						
NEI sr2,byt	مه ا	(sr2) — byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 0 1 S ₂ S ₁ S ₀	<u>‡</u>	က	No zero
<u> </u>	*A hyte	(A) — hyte	0 1 1 1 0 1 1 1	Data	7	2	Zero
7	r,byte	(r) – byt	1 1 1 Da	0 1 1 1 1 R ₂ R ₁ R ₀	#	3	Zero
	sr2,byte	sr2,byte (sr2) – byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 1 1 S ₂ S ₁ S ₀	41	က	Zero
NO.	*A hyte	(A) A hyte	0 1 0 0 0 1 1 1	Data	7	2	No zero
Ę				0 1 0 0 1 R ₂ R ₁ R ₀	=	က	No zero
	sr2,byte	sr2,byte (sr2) A byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 0 0 1 S ₂ S ₁ S ₀	14	က	No zero
DEE	*A hyte	*A hyte (A) A hyte	0 1 0 1 0 1 1 1	Data	1	2	Zero
- - 5	r,byte	(r) A byte	0 1 1 1 0 1 0 0 Data	0 1 0 1 1 R ₂ R ₁ R ₀	11	က	Zero
	sr2,byte	sr2,byte (sr2) A byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 0 1 1 S ₂ S ₁ S ₀	14	က	Zero
Working Register	lister						
ADDW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa))$	0 1 1 1 0 1 0 0 Offset	1 1 0 0 0 0 0 0 0	4	က	
ADCW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa)) + (CY)$	0 1 1 1 0 1 0 0 Offset	1 1 0 1 0 0 0 0	4	က	
ADDNCW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa))$	0 1 1 1 0 1 0 0 Offset	1 0 1 0 0 0 0 0	4	က	No carry
SUBW	wa	$(A) \leftarrow (A) - ((V) \bullet (wa))$	0 1 1 1 0 1 0 0 Offset	1 1 1 0 0 0 0 0 0	4	က	
SBBW	wa	$(A) \leftarrow (A) - ((V) \bullet (Wa)) - (CY)$	0 1 1 1 0 1 0 0 Offset	1 1 1 1 0 0 0 0	4	ო	
SUBNBW	wa	$(A) \leftarrow (A) - ((V) \bullet (wa))$	0 1 1 1 0 1 0 0 Offset	1 0 1 1 0 0 0 0	14	က	No borrow
ANAW	wa	$(A) \leftarrow (A) \land ((V) \bullet (wa))$	0 1 1 1 0 1 0 0	1 0 0 0 1 0 0 0	<u>+</u>	ო	

			Operation Code	n Gode			
				B2			
Anemonic	Mnemonic Operand	Operation	83 7 6 5 4 3 2 1 0	84 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
forking Reg	Working Register (cont)						
ORAW	wa	(A) ← (A) V ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 0 0 1 0 0 0 0	14	8	
XRAW	wa	$(A) \leftarrow (A) + ((V) \bullet (Wa))$	0 1 1 1 0 1 0 0 Offset	1 0 0 1 0 0 0 0	14	3	
GTAW	wa	$(A) - ((V) \bullet (Wa)) - 1$	0 1 1 1 0 1 0 0 Offset	1 0 1 0 1 0 0 0	41	က	No borrow
LTAW	wa	(A) – ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 0 1 1 1 0 0 0	14	က	Borrow
NEAW	wa	(A) – ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 1 0 1 0 0 0	14	က	No zero
EQAW	wa	(A) − ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 1 1 1 0 0 0	4	က	Zero
ONAW	wa	(A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 0 1 0 0 0	14	ო	No zero
OFFAW	wa	(A) ∧ ((V)•(wa))	0 1 1 1 0 1 0 0 Offset	1 1 0 1 0 0 0 0	4	က	Zero
ANIW	*wa,byte	*wa,byte ((V)•(wa)) ← ((V)•(wa)) ∧ byte	0 0 0 0 0 1 0 1 Data	Offset	19	က	
ORIW	*wa,byte	*wa,byte ((V)•(wa)) *- ((V)•(wa)) V byte	0 0 0 1 0 1 0 1 Data	Offset	19	က	
@TIW	*wa,byte	*wa,byte ((V)•(wa)) - byte - 1	0 0 1 0 0 1 0 1 Data	Offset	13	8	No borrow
LTIW	*wa,byte	*wa,byte ((V)•(wa)) – byte	0 0 1 1 0 1 0 1 Data	Offset	13	က	Borrow
NEIW	*wa,byte	*wa,byte ((V)•(wa)) - byte	0 1 1 0 0 1 0 1 Data	Offset	13	က	No zero
EQIW	*wa,byte	*wa,byte ((V)•(wa)) – byte	0 1 1 1 0 1 0 1 Data	Offset	13	က	Zero
MINO	*wa,byte	*wa,byte ((V)•(wa)) A byte	0 1 0 0 0 1 0 1 Data	Offset	13	က	No zero
0FFIW	*wa,byte	*wa,byte ((V)•(wa)) ∧ byte	0 1 0 1 0 1 0 1	Offset	13	က	Zero

Maemonic Operand 16-81t Arithmetic					
Arithmetic					
Arithmetic		81			;
Arithmetic	Operation	83 84 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
EA.rp3 (EA) EA.rp3 (EA) NC EA.rp3 (EA) NC EA.rp3 (EA)					
EA.rp3 (EA) EA.rp3 (EA)	\leftarrow (EA) + (r2)		17	2	
EA.rp3 (EA)	(EA) ← (EA) + (rp3)	0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 P ₁ P ₀	=	2	
EA, rp3 (EA)	← (EA) + (rp3) + (CY)	0 1 1 1 0 1 0 0 1 1 0 1 0 1 P ₁ P ₀	#	2	
EA.rp3 (EA)	(EA) + (rp3)	0 1 1 1 0 1 0 0 1 0 1 0 0 1 P ₁ P ₀	=	2	No carry
EA.rp3 (EA)	← (EA) – (r2)	0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 R ₁ R ₀	=	2	
EA.rp3 (EA)	- (EA)	0 1 1 1 0 1 0 0 1 1 1 0 0 1 P ₁ P ₀	F	2	
EA.rp3 (EA) CA.rp3	← (EA)	- 1	=	2	
EA.rp3 (EA) CA.rp3	← (EA) – (rp3)	0 1 1 1 0 1 0 0 1 0 1 1 0 1 P ₁ P ₀	=	2	No borrow
EA.rp3 (EA)	← (EA) ∧ (rp3)	0 1 1 1 0 1 0 0 1 0 0 0 1 1 P ₁ P ₀	=	2	
EA.rp3	(EA) ← (EA) V (rp3)	0 1 1 1 0 1 0 0 1 0 0 1 1 1 P ₁ P ₀	=	2	
EA.rp3 (EA) EA.rp3 (EA) EA.rp3 (EA) EA.rp3 (EA) EA.rp3 (EA) F EA.rp3 (EA) rply/Divide r2 (EA) r2 (EA)	← (EA) V (rp3)	- 1	=	2	
EA,rp3 (EA)	-(rp3)-1		F	2	No borrow
EA.rp3 (EA)	- (rp3)	0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1	+	2	Borrow
EA.rp3 EA.rp3 EA.rp3 ply/Divide r2 r2 r2 ment/Decrement	(EA) - (rp3)		=	2	No zero
EA.rp3 EA.rp3 ply/Divide r2 r2 r2 rament/Decrement	(EA) — (rp3)		=	2	Zero
ply/Divide r2 r2 r2 r2 r2 r2 r2 rament/Decrement	(EA) A (rp3)	0 1 1 P ₁	=	2	No zero
1.2 r.2 mment	A (rp3)	0 1 1 1 0 1 0 0 1 1 0 1 1 1 P ₁ P ₀	+	2	7ero
r2 r2					
r2 ment/Decrement	← (A) × (r2)		32	2	
ocrement/Decrement	← (EA) + (r2), (r2) ← Remainder	0 1 0 0 1 0 0 0 0 0 1 1 1 1 R ₁ R ₀	29	2	
					ļ
INR r2 (r2)	$(r2) \leftarrow (r2) + 1$	0 1 0 0 0 R ₁ R ₀	4	-	Carry
INRW *wa ((V)	$((V) \bullet (wa)) \leftarrow ((V) \bullet (wa)) + 1$	0 0 1 0 0 0 0 0 Offset	16	2	Carry
INX rp (rp)	(rp) ← (rp) + 1	0 0 P ₁ P ₀ 0 0 1 0	7	- -	
EA (EA)	\leftarrow (EA) + 1	1 0 1 0 1 0 0 0	7	-	
	(r2) ← (r2) − 1	0 1 0 1 0 0 R ₁ R ₀	4	-	Borrow
w. wa	$\bullet(wa)) \leftarrow ((V) \bullet (wa)) - 1$	0 0 1 1 0 0 0 0 0 Offset	16	2	Borrow
ď	(rp) ← (rp) − 1	0 0 P ₁ P ₀ 0 0 1 1	7	-	
EA (EA)	← (EA) – 1	101010101	7	-	
Others					
DAA Deci	Decimal Adjust Accumulator	0 0 0 1	4	_ ,	
STC (CY)	↓	0 0 0 0 1 0 1 0 1	ω .	2	
	$(CY) \leftarrow 0$	0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0	80	7	

					5	Operation Code	Code							
				=	İ				22					
Mnemonic Operand	d Operation	7 6	ت 4	22 °°	2		7 6	ت 44	. 8 4	8	-	State(1)	Bytes	Skip Condition
Others (cont)														
NEGA	$(A) \leftarrow (\overline{A}) + 1$	0	0	-	0 0	0	0 0	-	-	0	1 0	80	2	
Rotate and Shift														
RLD	Rotate left digit	1-0	0 0	-	0 0	0	0	-	-	-	0 0	11	2	
RRD	Rotate right digit	0	0 0	-	0 0	0	0 0	-	-	0	0 1	11	2	
RLL r2	$(r2_{m}+1) \leftarrow (r2_{m}), (r2_{0}) \leftarrow (CY),$ $(CY) \leftarrow (r2_{7})$	0	0 0	-	0	0	0	-	0	-	R ₁ R ₀	80	2	
RLR 12	$(r_{2m-1}) \leftarrow (r_{2m}), (r_{27}) \leftarrow (CY),$ $(CY) \leftarrow (r_{20})$	0	0 0	-	0 0	0	0 0	-	0	0	R ₁ R ₀	8	2	
SLL r2	$(r2_{m+1}) \leftarrow (r2_{m}), (r2_{0}) \leftarrow 0, (CY) \leftarrow (r2_{7})$	0	0 0	-	0 0	0	0 0	1 0	0	-	R ₁ R ₀	80	2	
SLR r2	$(r2_{m-1}) \leftarrow (r2_{m}), (r2_{7}) \leftarrow 0, (CY) \leftarrow (r2_{0})$	0	0 0	-	0 0	0	0 0	1 0	0	0	R ₁ R ₀	80	2	
SLLC r2	$(r2_{m+1}) \leftarrow (r2_m), (r2_0) \leftarrow 0, (CY) \leftarrow (r2_7)$	0 1	0	-	0 0	0	0 0	0	0	-	R ₁ R ₀	80	2	Carry
	$(r2_{m-1}) \leftarrow (r2_{m}), (r2_{7}) \leftarrow 0, (CY) \leftarrow (r2_{0})$	0	0	-	0 0	0	0 0	0	0	0	R ₁ R ₀	∞	2	Carry
DRLL EA	$(EA_{n+1}) \leftarrow (EA_{n}), (EA_{0}) \leftarrow (CY),$ $(CY) \leftarrow (EA_{15})$	0	0	-	0	0	0	-	0	-	0 0	80	2	
DRLR EA	$(EA_{n-1}) \leftarrow (EA_{n}), (EA_{15}) \leftarrow (CY),$ $(CY) \leftarrow (EA_{0})$	-	0 0		0 0	0	0	-	0	0	0 0	80	2	
DSLL EA	$(EA_n + 1) \leftarrow (EA_n), (EA_0) \leftarrow 0,$ $(CY) \leftarrow (EA_{15})$	-	0 0	-	0 0	0	0	1 0	0	-	0 0	8	2	
DSLR EA	$(EA_{n-1}) \leftarrow (EA_{n}), (EA_{15}) \leftarrow 0,$ $(CY) \leftarrow (EA_{0})$	-	0	-	0	0	1 0	- 0	0	0	0 0	&	2	
Jump														
MP *word	(PC) ← ward	0	0 <u> </u>	1 0 High addr	0	0		[P]	Low addr			6	က	
89	$(PC_H) \leftarrow (B), (PC_I) \leftarrow (C)$	0 0	-	0	0 0	_						4	-	
JR word		-	ļ	١	10	1						\$	-	
JRE *word	$(PC) \leftarrow (PC) + 2 + jdisp$	0 1	0	1	-			Ē	dsip		1	2	2	
JEA	(PC) ← (EA)	0 1	0 0	-	0 0	0	0 0	-	-	0	0 0	œ	2	
Call														
CALL *word	$((SP) - 1) \leftarrow ((PC) + 3)H$, $((SP) - 2) \leftarrow ((PC) + 3)H$, $(PC) \leftarrow word$, $(SP) \leftarrow (SP) - 2$	0 1	0 0 Hig	0 0 High addr	0 _	0		[Pi	Low addr			19	က	
CALB	$((SP) - 1) \leftarrow ((PC) + 2)H$ $((SP) - 2) \leftarrow ((PC) + 2)L$ $(PC_H) \leftarrow (B), (PC_L) \leftarrow (C)$ $(SP) \leftarrow (SP) - 2$	0	0 0	-	0	0	0	-	-	0	- 1	17	2	
CALF *word	$ \begin{array}{l} ((SP)-1) \leftarrow ((PC)+2)H, \\ ((SP)-2) \leftarrow ((PC)+2)L, \\ ((PC)+1) \rightarrow (PC)+1, \\ (PC)+1) \rightarrow (PC)+1, \\ (PC)+1, \rightarrow$	-	-	-	1				ē.		t	55	2	

Marie Operand Operation 7	Instruction Set (co	tion S	et (cont)					
Moderation Operation 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 State(1) Moderation 7 6 5 4 3 2 1 0 State(1)				Operation	on Code			
World (SP) - 1) - ((PC) + 1)H. 1 0 0				189	B 2			į
World (SP) - 1) - ((PC) + 1) - (PC) +		Pac you		B3 6 5 4 3 2 1	B4 6 5 4 3 2 1	State(1)	Bytes	Sendition
word $(SP) - 1) \leftarrow (PC) + 1)H$. $(SP) - 2 \rightarrow (PC) + 1)H$. $(PC) \rightarrow (SP) - 2 \rightarrow (PC) + 1)H$. $(SP) \rightarrow (SP) - 2 \rightarrow (PC) + 1)H$. $(SP) \rightarrow (SP) - 2 \rightarrow (PC) + 1)H$. $(PC) \rightarrow (SP) + (SP) - 2 \rightarrow (PC) + 1)H$. $(PC) \rightarrow (SP) + (SP) - 3 \rightarrow (PC) + 1)H$. $(PC) \rightarrow (SP) + (SP) - 3 \rightarrow (PC) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1)H$. $(PC) \rightarrow (SP) + (SP) + (SP) + 1 \rightarrow (SP) + 1 \rightarrow (SP) + 1 \rightarrow (SP) \rightarrow (SP) + 1 \rightarrow (SP) \rightarrow (SP) + 1 \rightarrow (SP) \rightarrow (SP) \rightarrow (SP) + 2 \rightarrow (SP) \rightarrow ($	Call feant	Operand.		1				
(SP) - (SP) + 1) - (SP) + 1) - (SP) + 1) - (SP) + 1) - (SP) + 2 (SP) + 1) - (SP) + 2 (SP) + 1) - (SP) + 2 (SP) + 2 (SP) + 2 (SP) + 3 - (SP) + 2 (SP) + 2 (SP) + 3 - (SP)	CALT	word	((SP) - 1) - ((PC) + 1)H, ((SP) - 2) - ((PC) + 1)L, (PC ₁) - (128 + 23R)(PC ₁) - (420 + 23R)(PC ₁) - (420 + 42R) + (420 + 4	0 ← ta		5	-	2.6
$ (PC_L) \leftarrow (SP), (PC_H) \leftarrow ((SP) + 1) \qquad 1 0 1 1 0 0 0 \\ (SP) \leftarrow (SP) + 2 \\ (SP) + 3 \\ (SP) + 4 \\ (SP) + 1) \qquad 0 1 1 0 0 1 0 \\ (SP) \leftarrow (SP) + 2 \\ (SP) + 3 \\ (SP) + 2 \\ (SP) + 3 \\ (SP) + 3 \\ (SP) + 3 \\ (SP) + 3 \\ (SP) + 4 \\$	S0FTI		$\begin{array}{c} ((SP) - (SP) - (SP) - (SP) - (SP) - (SP) - (SP) + ($	1 1 1 0 0 1		91	-	
$ (PC_1) \leftarrow (SP)_1, (PC_4) \leftarrow ((SP) + 1) \\ (SP) \leftarrow (SP)_1 + 2 \\ (SP) + 2 \\ (SP) \leftarrow (SP)_1, (PC_4) \leftarrow ((SP) + 1) \\ (SP) \leftarrow ((SP)_1, (PC_4) \leftarrow ((SP) + 1) \\ (PC_1) \leftarrow ((SP)_1, (PC_4) \leftarrow ((SP) + 1) \\ (PC_1) \leftarrow ((SP)_1, (PC_4) \leftarrow ((SP) + 1) \\ (PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3 \\ (PC_1) \leftarrow ((SP)_1, (PC_4) \leftarrow ((SP) + 1) \\ (PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3 \\ (PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (PC) \leftarrow (P$	Return							
$(PC_L) \leftarrow ((SP) + (PC_H) \leftarrow ((SP) + 1) \qquad 1 0 1 1 0 0 1 0 \qquad 1 1 \qquad 0 1 0 0 1 0 \qquad 1 1 \qquad 1$	RET		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	1 1 1 0 0		10	-	
$ (\text{PC}_L) \leftarrow ((\text{SP}) + 2), (\text{SP}) + 1) \\ (\text{PSW}) \leftarrow ((\text{SP}) + 2), (\text{SP}) + 3 \\ \text{Loutrol} $ bit, wa $ \text{bit, wa} $ bit, wa $ \text{control} $ bit, watch is the interval bit, wa $ \text{control} $ bit, wa $ $	RETS		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2, (PC) \leftarrow (PC) + n$	1 1 1 0		10	-	Unconditional Skip
bit, wa 0 1 0 1 1 B2 B1 B0 Offset 10 2 ontrol f Skip if f = 1 0 1 0 0 1 0 0 0 0 0 1 F2 F1 F0 8 8 if Skip if f = 0 0 1 0 0 1 0 0 0 0 0 1 1 F2 F1 F0 8 8 if Skip if f = 0 0 1 0 0 1 0 0 0 0 1 1 F2 F1 F0 8 8 rif Skip if f = 0 0 1 0 0 1 0 0 0 0 1 1 F2 F1 F0 8 8 rif Skip if f = 1 0 1 0 0 1 0 0 0 0 1 1 F2 F1 F0 8 8 Respectively in fine find find find find find find find find	RETI		$(PC_{L}) \leftarrow ((SP), (PC_{H}) \leftarrow ((SP) + 1)$ $(PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3$	1 1 0 0 0 1		5	-	
bit, wa bit, wa 0 1 0 1 1 B2 B1 B0 Offset 10 2 ontrol f Skip if f = 1 0 1 0 0 1 0 0 0 0 0 1 F2 F1 F0 8 8 8 8 if Skip if f = 0 0 1 0 0 1 0 0 0 0 0 1 F2 F1 F0 8 8 8 8 8 r Skip if f = 0 0 1 0 0 1 0 0 0 0 1 I F2 F1 F0 8 8 8 8 8 r Skip if if = 1, then reset irf 0 1 0 0 1 0 0 0 0 1 I I 4 I3 I2 I1 I0 8 8 8 8 r Skip if if = 1 Reset irf if	Skip							
ontrol Skip if f = 1 0 1 0 0 1 0 0 0 0 0 1 F ₂ F ₁ F ₀ 8 f Skip if f = 0 0 1 0 0 1 0 0 0 0 1 1 F ₂ F ₁ F ₀ 8 irf Skip if irf = 0, then reset irf 0 1 0 0 1 0 0 0 0 1 1 I ₄ I ₂ F ₁ I ₀ 8 r irf Skip if irf = 0, Reset irf if irf = 1 0 1 0 0 1 0 0 0 0 1 I ₄ I ₂ I ₂ I ₁ I ₀ 8 r irf Skip if irf = 0, Reset irf if irf = 1 0 0 0 0 0 0 0 0 I ₁ I ₂ I ₃ I ₂ I ₄ I ₁ 8 Reset irf if irf = 1 0 0 0 0 0 0 0 0 I ₁ I ₂ I ₃ I ₃ I ₄ I ₄ I ₄ I ₄ I ₄ I ₅ I ₅ I ₄ I ₅	Bit	<u> </u>	bit, wa	1 0 1 1 B ₂ B ₁	Offset	9	2	Bit Test
f Skip if f = 1 0 0 0 0 0 0 0 1 F ₁ 8 f Skip if f = 0 0 1 0 0 0 0 1 1 F ₂ F ₁ 6 8 r sirf Skip if irf = 0 0 0 0 0 0 0 0 1 1 0 8 Reset irf if irf = 1 Reset irf if irf = 1 0 0 0 0 0 0 0 1 1 0 1 0 <	CPU Control							
1 Skip if f = 0 0 1 0 0 1 0 1 <	SK	-	Skip if 1 = 1	1 0 0 1 0 0	0 0 0 1 F ₂ F ₁	œ	2	= 1
irf Skip if irf = 1, then reset irf 0 1 0 0 1 0 0 0 0 1 1 4 3 2 1 1 0 8 8 Fright irr = 0 Reset irf if irf = 1 0 1 0 0 1 0 0 0 0 1 1 4 13 12 1 1 0 8 8 No operation Rable interrupt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SKN	-	Skip if $f = 0$	1 0 0 1 0 0	0 0 1 1 F ₂ F ₁	80 0	7	0=1
Track Trac	SKIT	E	Skip if irf = 1, then reset irf	1 0 0 1 0 0	1 0 14 13 12 11	∞	7	- -
No operation 0 0 0 0 0 0 0 4 Enable interrupt 1 0 1 0 1 0 1 4 Disable interrupt 1 0 1 1 0 1 0 4 Haft 0 1 0 1 0 0 1 1 1 1	SKNIT	Ŧ	Skip if irf = 0 Reset irf if irf = 1	1 0 0 1 0 0	1 1 14 13 12 11	æ	7	0 = []
Enable interrupt 1 0 1 0 1 0 1 0 4 Disable interrupt 1 0 1 1 1 0 1 0 4 Hatt 0 1 0 0 1 0 0 0 1 1 1 0 1 1 11	NOP		No operation	0 0 0 0 0 0		4	- -	
Disable interrupt 1 0 1 0 1 0 0 4 Hatt 0 0 0 0 0 0 1 0 1	Ш		Enable interrupt	1 0 1 0 1		4	-	
Half 0 1 1 0 0 0 0 0 1 1 1 0 1 1 11	5		Disable interrupt	1 1 1 0 1		4	- -	
1001	긒		Halt	0 1 0 0	0 1 1 1	=	2	
		3	TOTAL CALL CALL CALL CALL CALL CALL CALL C	(6)	(2) B2 (Data): roa2 = D + byte. H + byte.	te.		

(1) In the case of skip condition, the idle states are as follows:
1-byte instruction: 4 states
2-byte instruction: 8 states
3-byte instruction: 11 states
4-byte instruction: 11 states

2-byte instruction (with *): 7 states 3-byte instruction (with *): 10 states 4-byte instruction: 14 states

 (2) B2 (Data): rpa2 = D + byte, H + byte.
 (3) Right side of slash (/) in states indicates case rpa2, rpa3 = D + byte, H + A, H + B, H + EA, H + byte.

(4) B3 (Data): rpa3 = D + byte, H + byte