COGS 17 section A02

audition

shutterstock.com - 2349250121

section resources repo

reminders

- congrats on completing midterm I! (get excited for midterm II <3)
- homework 4 due wednesday 11:59 PM

sound waves basics

frequency

- number of cycles of sound pressure /second
- measured in Hertz (Hz)
- perceptual dimension: pitch

amplitude

- level of sound pressure
- measured in decibels (dB)
- perceptual dimension: loudness

phase

place in cycle of condensation and rarefaction of sound pressure

auditory system anatomy – outer year

pinna

- individually shaped
- sound localization

auditory canal

• air channel funnels sound to eardrum

auditory system anatomy – middle ear

tympanic membrane (eardrum)

convert air pressure from auditory canal into kinetic energy

ossicles = malleus + incus + stapes

- tiny bones form lever system
- convert large vibrations from eardrum to high-force vibration on oval window
 - o amplification to bridge **impedance mismatch** between air (outer) and fluid (inner)

auditory system anatomy – inner ear

oval window

- receives vibration by stapes
- entrance point to cochlea

cochlea

- snailed shaped
- 3 fluid-filled chambers
 - o scala vestibuli (top)
 - o scala media (middle, transduction site)
 - o scala tympani (bottom)

fluid motion pathway

organ of corti

- in the scala media
 - o **basilar membrane**: floor
 - o tectorial membrane: ceiling
 - o hair cells (auditory receptors) embedded between membranes
- chambers filled with **endolymph** (K+-rich fluid)
- as membrane vibrates...
 - basilar membrane ($\uparrow\downarrow$), tectorial membrane (\leftrightarrows) \rightarrow bends cilia on hair cells
 - toward longest
 - K+ channels open \rightarrow K+ influx (depolarization) \rightarrow Ca²⁺ enters \rightarrow release glutamate (NT)
 - toward shortest
 - K+ channels close \rightarrow K+ efflux \rightarrow Ca²⁺ exists \rightarrow repolarization
- hair cells fire **graded** potentials (not AP!!)
 - o NT release depend on magnitude and frequency of cilia bending
 - o signals relay to spiral ganglion (auditory nerve fibers) that fire AP

encoding frequency – place coding

different locations on basilar membrane respond to different frequencies

- base
 - o near oval window
 - narrow and stiff
 - high frequencies
- apex
 - o far end
 - wide and floppy
 - o low frequencies
- greater membrane displacement → greater cilia bending → more NT release → greater probability of spiral ganglion firing
- produce place of maximum activation with surrounding lesser activity → sound encoded by pattern across multiple fibers = across-fiber coding

encoding frequency – temporal (rate) coding

while different "places" of the basilar membrane resonate more than others (different amplitude), the whole membrane is also vibrating at the rate of input (same frequency)

• ie. entire membrane moves at the **same rate** though **amplitude** (**membrane displacement**) varies by place

spiral ganglion fibers fire in sync with membrane vibration → action potential reflects input frequency timing

BUT

a single neuron's firing has a limit

- maxes out at \sim 1 k/sec (1000 Hz) due to refractory period
- can't individually encode high frequencies

encoding frequency – temporal (rate) coding

SOLUTION to encoding frequencies > 1 kHz

volley principle (a type of across-fiber coding)

- groups of spiral ganglia share load take turns firing
 - spiral ganglia are phase-locked to fire AP at particular peaks
 - respond at different peaks on soundwave
 - eg. group A fires at first peak, group B fires at next peak while A is in refractory period...
 - o taken altogether creates "volley" of AP to capture entire stimulus frequency
- coordinated group activity not individual firing

Volley principle

localization

depends on disparity between left and right ear inputs

- 1. intensity (amplitude) differences
 - a. head shadow: head absorbs some sound energy
 - i. sound louder at the ear closer to the source
 - ii. most effective for high frequencies

2. phase differences

- a. brain detects differences in wave phase (peak vs trough) between ears
- b. direction of sound source
- c. effective for low frequencies

localization

- 3. timing differences (interaural time differences ITD)
 - a. detected by ITD detectors in superior olive (in medulla)
 - b. when sound arrives
 - i. onset cells in cochlear nucleus fire
 - ii. signal travels through axonal delay lines to an array in the superior olive
 - 1. only fires when inputs from both ears converge
 - 2. position in array encodes which ear hears sound first
 - c. that said...
 - i. sound comes in from right → signal meets in left
 - ii. simultaneous arrival (equidistant) → signal meets in center

auditory pathway

begins with hair cells in cochlea

- inner hair cells
 - o divergent: 1 IHC : 8 spiral ganglion
 - o encodes frequency with high redundancy → detailed
- outer hair cells
 - o convergent: 20 OHC: 1 spiral ganglion
 - amplification

spiral ganglia axons form auditory nerve fibers

- feed into cochlear nucleus (medulla)
- each auditory nerve connects to ipsilateral side
 - \circ monaural left ear \rightarrow left nucleus

each spiral ganglion synapses to multiple cell types

- primary-like: preserves firing patterns
 → tonotopic map
- build-up: create continuously increasing graded response → encodes amplitude
- onset: race to superior olive to determine which ear the sound came to first → rapid adapting for localization

auditory pathway

superior olive: first binaural site

- localize sound by integrating input from both ears
- inputs from both ipsilateral and contralateral cochlear nuclei inferior colliculus
 - in tectum
 - receive most from ipsilateral superior olive
 - integrates auditory + visual info (via superior colliculus)
 - orienting eyes to sound source

medial geniculate nucleus (MGN)

- in thalamus
- preserves tonotopic map adjacent neurons tuned to adjacent frequencies

tonotopic map

preserves distribution of activity across the basilar membrane

• at each point along the way, primary-like cells re-represent the same pattern to preserve the topological map originally started in the basilar membrane

auditory pathway

A1: primary auditory cortex

- medial temporal cortex
- preserves tonotopic and amplitude maps
 - \circ high \rightarrow low frequency: posterior \rightarrow anterior
 - \circ high \rightarrow low amplitude: medial \rightarrow lateral
- neurons respond best to single frequency (pure tones) Primary Auditory Cortex

A2: secondary auditory cortex

- complex, meaningful sounds
- neurons respond best to changing frequency (complex sounds)

higher auditory cortex

- integrating sound with cognition and perception
 - wernicke's area (left hemisphere, speech comprehension)

kahoot

 $\frac{\text{https://play.kahoot.it/v2/?quizId=1e3c489a-89f6-4a6c-bbf8-916e047595b4\&hostId=0889db3c-c5d4-454b-b692-99e48772950b}{\text{https://play.kahoot.it/v2/?quizId=1e3c489a-89f6-4a6c-bbf8-916e047595b4\&hostId=0889db3c-c5d4-454b-b692-99e48772950b}{\text{https://play.kahoot.it/v2/?quizId=1e3c489a-89f6-4a6c-bbf8-916e047595b4\&hostId=0889db3c-c5d4-454b-b692-99e48772950b}$