Pernyataan Konsekuensi Logis/Logika Informatika

Kalau kamu masih bingung seperti apa itu contoh pernyataan, berikut adalah salah satu contohnya:

- Indonesia Raya adalah lagu kebangsaan Indonesia. (pernyataan **benar**)
- Bika ambon berasal dari Ambon. (pernyataan **salah**)

Di sisi lain, contoh dari kalimat terbuka adalah sebagai berikut:

- 12x + 6 = 91 (pernyataan ini dinamakan kalimat terbuka karena **masih harus dibuktikan kebenarannya**. Apakah benar 12x jika dijumlahkan dengan 6 akan menghasilkan 91?)
- Maaf ya, aku semalem ketiduran. Hehehe. (Pernyataan ini dinamakan kalimat terbuka karena **masih harus dibuktikan kebenarannya**. Apakah benar dia semalem nggak bales *chat* karena ketiduran? Atau emang males aja *chat* sama kamu?)

Nah, setelah mengetahui apa itu pernyataan dan kalimat terbuka, sekarang kita lanjut pembahasan mengenai ingkaran atau disebut juga dengan negasi atau penyangkalan.

Ingkaran atau Negasi atau Penyangkalan (~)

Dari sebuah pernyataan, kita dapat membuat pernyataan baru berupa ingkaran atau negasi, yakni penyangkalan atas pernyataan tadi. Untuk lebih memahami hal ini, perhatikan **tabel kebenaran ingkaran** berikut:

р	~p
B	S
S	B

Keterangan:

B = pernyataan bernilai benar

S = pernyataan bernilai salah

Artinya, jika suatu pertanyaan (p) benar, maka ingkaran (q) akan bernilai salah. Begitu pula sebaliknya. Nah, negasi ini dilambangkan dengan lambang garis seperti ini: ~

Contoh negasi dalam matematika yaitu seperti berikut:

• p: Besi memuai jika dipanaskan (pernyataan bernilai **benar**)

• ~p: Besi **tidak** memuai jika dipanaskan (pernyataan bernilai **salah**).

Contoh lain:

- p: **Semua** unggas **adalah** burung.
- ~p: **Ada** unggas yang **bukan** burung.

Dalam kehidupan sehari-hari, kita seringkali menemui orang menggunakan pernyataan negasi atas pernyataan orang lain. Dalam ilmu matematika, terdapat **4 macam** pernyataan majemuk, yaitu **konjungsi**, **disjungsi**, **implikasi**, dan **biimplikasi**. Yuk, kita bahas satu per satu!

Konjungsi (∧)

Konjungsi adalah pernyataan majemuk dengan kata hubung "dan". Sehingga, notasi "p ∧ q" dibaca "p dan q". Berikut adalah tabel nilai kebenaran konjungsi.

bel Kebenaran Konjungsi (
р	q	p∧q	
В	В	В	
В	S	S	
S	В	S	
S	S	S	

Dari tabel di atas, kita dapat melihat bahwa konjungsi hanya akan benar jika kedua pernyataan (p dan q) benar.

Contoh:

- p: 3 adalah bilangan prima (pernyataan bernilai benar)
- q: 3 adalah bilangan ganjil (pernyataan bernilai benar)
- p \(\text{q: 3 adalah bilangan prima dan ganjil (pernyataan bernilai benar)} \)

Disjungsi (V)

Disjungsi adalah pernyataan majemuk dengan kata hubung "atau". Sehingga notasi "p V q" dibaca "p atau q". Berikut adalah tabel nilai kebenaran disjungsi.

abel Kebenaran Disjungsi (V			
р	q	p∨q	
В	В	В	
В	S	В	
S	В	В	
S	S	S	

Jika kita lihat pada tabel kebenaran, disjungsi hanya salah jika kedua pernyataan (p dan q) salah.

Contoh:

- p: Paus adalah mamalia (pernyataan bernilai benar)
- q: Paus adalah herbivora (pernyataan bernilai salah)
- p V q: Paus adalah mamalia **atau** herbivora (pernyataan bernilai benar)

Implikasi (⇒)

Implikasi adalah pernyataan majemuk dengan kata hubung "jika... maka..." Sehingga notasi dari "p ⇒ q" dibaca "Jika p, maka q". Adapun tabel nilai kebenaran dari implikasi yaitu sebagai berikut.

bel Kebenaran Implikasi (🗎		
р	q	p⇒q
В	В	В
В	S	S
S	В	В
S	S	В
3	3	

Dari tabel terlihat bahwa implikasi hanya bernilai salah jika anteseden (p) benar, dan konsekuen (q) salah.

Contoh:

- p: Andi belajar dengan aplikasi ruangguru. (pernyataan bernilai benar)
- q: Andi dapat belajar di mana saja. (pernyataan bernilai benar)
- p ⇒ q: **Jika** Andi belajar dengan aplikasi ruangguru, **maka** Andi dapat belajar dari mana saja (pernyataan bernilai benar)

Biimplikasi (⇔)

Biimplikasi adalah pernyataan majemuk dengan kata hubung "... jika dan hanya jika". Sehingga, notasi dari " $p \Leftrightarrow q$ " akan dibaca "p jika dan hanya jika q". Adapun tabel nilai kebenaran dari biimplikasi yaitu sebagai berikut.

	naran Bin	
р	q	p⇔q
В	В	В
В	S	S
S	В	S
S	S	В

Dari tabel kebenaran tersebut, dapat kita amati bahwa biimplikasi akan bernilai benar jika sebab dan akibatnya (pernyataan p dan q) bernilai sama. Baik itu sama-sama benar, atau sama-sama salah.

Contoh:

- p: $30 \times 2 = 60$ (pernyataan bernilai benar)
- q: 60 adalah bilangan ganjil (pernyataan bernilai salah)
- $p \Leftrightarrow q: 30 \times 2 = 60$ jika dan hanya jika 60 adalah bilangan ganjil (pernyataan bernilai salah).