

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

A

Applicant: HAFTEK
Docket: SEA9874 / 30874.84USU1
Title: WRITER DESIGN ELIMINATING TRANSITION CURVATURE FOR VERY NARROW
WRITER WIDTHS

JCS 44 U.S. PTO
11/18/99

jc511 U.S. PTO
09/442671

11/18/99

CERTIFICATE UNDER 37 CFR 1.10

'Express Mail' mailing label number: EL455017823US

Date of Deposit: November 18, 1999

I hereby certify that this paper or fee is being deposited with the United States Postal Service 'Express Mail Post Office To Addressee' service under 37 CFR 1.10 and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231

By Linda McCormick
Name: Linda McCormick

BOX PATENT APPLICATION
Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

We are transmitting herewith the attached:

- Transmittal sheet, in duplicate, containing Certificate under 37 CFR 1.10.
- Utility Patent Application: Spec. 7 pgs; 21 claims; Abstract 1 pg.:
- Six (6) sheets of informal drawings
- An unsigned Combined Declaration and Power of Attorney
- Return postcard
- PAYMENT OF THE FILING FEE IS BEING DEFERRED.**

MERCHANT & GOULD P.C.
3100 Norwest Center, Minneapolis, MN 55402
(612) 332-5300

By: Natalie D. Kadievitch
Name: Natalie D. Kadievitch
Reg. No.: 34,196
Initials: NDK:PSTbkh

**WRITER DESIGN ELIMINATING TRANSITION CURVATURE FOR VERY
NARROW WRITER WIDTHS**

5

Field of the Invention

The present invention is directed to magnetic thin film head (TFH) devices for recording magnetic transitions on a moving magnetic medium and, more 10 particularly, to a magnetic head that reduces transition curvature for very narrow writer widths.

Background of the Invention

In the operation of a typical inductive TFH device, a moving magnetic storage medium is placed near the exposed pole-tips of the TFH device. TFH is 15 composed of the magnetic poles and coils wrapping around the poles. During a write operation, a current flowing through the coils induces magnetic flux in the magnetic poles and generates the magnetic field across the gap between pole tips, so called writer gap. This field extends (i.e. is fringing) into the nearby moving storage medium, inducing or writing a magnetic domain in the medium. The part of fringe field 20 extending not through the writer gap but from the side of the top pole to the bottom pole can erase edges of the neighboring written tracks and therefore negatively affect the quality of written tracks. Alternating current causes writing magnetic domains of alternating polarity in the storage medium.

With ever increasing area densities there is a need for a head producing a 25 very narrow track width and a very small bit cells down the track direction. The top pole width defines the width of the track and the writer gap length determines the bit cell length. As tracks get narrower, a curved part of the written track becomes a larger portion of the written track and is determined largely by the shape of the pole tip, magnetic properties of the material used at the writer gap length and write current. A 30 fringe field extends into the nearby moving magnetic storage medium, inducing (or writing) a magnetic domain (in the medium) in the same direction. Impressing current

pulses of alternative polarity across the coil causes the writing of magnetic domains of alternating polarity in the storage medium.

Prior-art magnetic recording inductive TFH devices include top and bottom magnetic core pole layers, usually of the alloy Ni-Fe (permalloy), connected through a via in the back-portion area, and separated by a thin gap layer between the pole-tips in the front of the device. The bottom pole-tip is usually designed to be wider than the top pole-tip in order to prevent "wraparound" due to misregistration or misalignment, as taught by R. E. Jones in U.S. Pat. No. 4,219,855. Alternatively, one or both pole-tips are trimmed by ion-milling or by reactive ion etching (RIE) to ensure similar width and proper alignment. Such a technique is disclosed, for example, by Cohen et al. in U.S. Pat. No. 5,141,623. As the track width decreases in order to increase the recording density, the write head pole-tips must be very narrow. P. K. Wang et al. describe elaborate schemes to obtain pole-tips for writing very narrow track width, in IEEE Transactions on Magnetics, Vol. 27, No. 6, p. 4710-4712. November 15 1991.

One of the problems associated with the prior-art pole-tip designs is that during write operations, substantial noise is introduced along the track-edges (on the magnetic storage medium), which adds to the noise generated by the medium during read operations. During the write operations, significant portions of the intense magnetic flux lines, emanating from the corners and side-edges of the pole-tips, deviate from a direction parallel to the track's length. The non-parallel magnetic field magnetizes the medium in the wrong directions, giving rise to noise along the track-edges. This noise is usually characterized as "track-edge fringing noise" and is a major obstacle to increasing the track density. According to a paper by J. L. Su and K. Ju in IEEE Transactions on Magnetics, Vol. 25, No. 5, pp. 3384-3386, September 1989, the track-edge noise in this particular case extends about 2.5 μ m on each side of the written track. The high track-edge noise and wide writer width produced by the conventional design, limits its usefulness to relatively low track densities. As track density increases, the track width decreases, but the percentage of the curved transition relative to the track width increases.

U.S. Patent No. 5,673,163 (Cohen) discloses a pinched-gap magnetic recording thin film head where substantial contact is established between the bottom pole-tip 14 and top pole-tip 18 thereby pinching or confining a gap segment 16. In a preferred embodiment the bottom pole-tip 14 and top pole-tip 18 are in actual physical contact. In other embodiments a small gap may separate the bottom and top pole-tips. The small gap or separation should be small enough to prevent the magnetic flux lines from emanating significantly from the pole-tips in those regions. The separation of the pole-tips in those regions should not exceed about 25% of G, the vertical distance between pole-tips in the gap area. Preferably, the separation should not exceed 5% of
10 G.

Summary of the Invention

According to a first aspect of the invention, there is provided a magnetic transducer device having a bottom magnetic pole, a nonmagnetic gap layer deposited on the bottom pole and a top pole deposited on the gap layer. The top magnetic pole has an upper portion and a lower portion. The lower portion faces a surface of the bottom pole and has a middle section that is separated from the bottom pole by the gap layer by a first distance. The lower portion has end portions located at each end of the middle portion that are separated from the bottom pole by the gap layer by a second distance where the second distance is greater than 25% of the first distance.
15

According to another aspect of the invention, the second distance ranges from about greater than 25% to about 60% of the first distance.
20

According to still another aspect of the invention, the device has a width measured between a left and a right side of the top pole ranging from about 0.3 microns to about 1.5 microns.

Brief Description of the Drawings

FIG. 1 shows an air-bearing surface (ABS) view of a magnetic thin film head according to a preferred embodiment of the present invention.

FIG. 2 shows an ABS view of a head according to a second preferred embodiment of the present invention.

FIG. 3 shows an ABS view of a head according to a third preferred embodiment of the present invention.

FIG. 4 shows an ABS view of a head according to a fourth preferred embodiment of the present invention.

5 FIG. 5 shows an ABS view of a head according to a fifth preferred embodiment of the present invention.

FIGs. 6-10 illustrate a method for fabricating a head according to a preferred embodiment of the present invention.

10

Detailed Description of the Presently Preferred Embodiments

FIG. 1 shows an air-bearing surface (ABS) view of a magnetic thin film head 10 for recording transitions on a moving magnetic medium (not shown) according to a preferred embodiment of the present invention. The head 10 includes a bottom pole 12, a top pole 14 and a gap 16. In a preferred embodiment the bottom pole 12 consists of layer 18 and a top layer 20 called a mesa. A non-magnetic regions 24 abuts each end of the magnetic region 22. The magnetic region 22 preferably has a width substantially equal to the width of the layer 26 or top pole 14. The top pole 14 preferably has a seed layer 26 on its end that faces the bottom pole 12. The seed layer 26 is shaped so that a gap GL1 exists between the top pole 14 and bottom pole 12. In addition, a smaller gap GL2 exists at each end portion 30 of the top pole 14. In a preferred embodiment, GL2 ranges from about 25% to about 60% of GL1. More preferably GL2 is about 60% of GL1. Preferably $GL_2/GL_1 < 1.0$.

In the preferred embodiment shown in FIG. 1, the end portions of the top pole 14 are rectangular in shape. The fabrication of a head according to the present invention will be described in greater detail hereinafter. The gap 16 is preferably filled by a nonmagnetic material such as silicon oxide, silicon nitride, nickel palladium, Al_2O_3 , T_1 , titanium.

The head shown in FIG. 1 has a width TPWG that can range from about 0.3 microns to about 1.5 microns. In a preferred embodiment TPWG is about 0.5 microns. The gap length GL1 is about one-third of TPWG. Thus, GL1 can range from

about 0.1 microns to about 0.3 microns and in a preferred embodiment is about 0.15 microns.

The top pole 14 is preferably made of magnetic material preferably Fe based alloys like NiFeCo, NiFe, FeTaN, FeAlN or any other iron nitrate with Hf, Zr, Pa additives. The seed layer 26 can be formed of the materials like those used in the top pole by sputtering, or electroplating. The shared pole of the bottom pole 12 is preferably made of Fe based alloy. The magnetic material 22 deposited on the shared pole is preferably formed of high moment Fe-based alloy. The nonmagnetic regions 24 are preferably formed of alumina, SiO_2 , SiN, Ti. Alternatively, the magnetic and 10 nonmagnetic regions 22, 24 can be eliminated so that the bottom pole 12 is flat and does not have mesa.

FIG. 2 shows an ABS view of a head 100 according to a second preferred embodiment of the present invention. The head 100 according to this preferred embodiment is identical to that shown in FIG. 1 except for end portions 30 of the top 15 pole 14. In this preferred embodiment the end portions 30 are shaped as wedges. Thus, GL2 ranges from about 60% of GL1 at its outer most point to GL1 at its inner most point.

FIG. 3 shows an ABS view of a head 200 according to a third preferred embodiment of the present invention. The head 200 according to this preferred 20 embodiment is identical to that shown in FIG. 1 except for end portions 202. In this preferred embodiment, the surface of the end portions 202 that face the bottom pole 12 are angled so that its outermost point has a gap length $GL2_a$ and at its innermost point it has a gap length $GL2_b$. In a more preferred embodiment, $GL2_a < GL2_b < GL1$. In a more preferred embodiment, $GL2_a$ is about 60% of GL1 and $GL2_b$ is about 80% of GL1. The 25 segment 204 connected $GL2_a$ to $GL2_b$ is linear although it can also be curvilinear as shown in FIGs. 4 and 5. In FIG. 4 the segment is concave and in FIG. 5 the segment is convex. Overall what is important is that $GL2$ is less than $GL1$ and $GL2$ may have a range with the end portions of the top pole. In addition, the surfaces of the end portions that face the bottom pole may be parallel with the bottom pole or non-parallel with 30 respect to the bottom pole.

The method of fabricating a head according to a preferred embodiment of this invention will now be described with reference to FIGs. 6-10. A shared pole material is first deposited on a reader gap. Deposition can be done by electroplating or any vacuum technique such as sputtering. The deposited material can be as thick as 2 um to 5 um of the gap material which can be composed of alternating layers of magnetic and non-magnetic material, is then deposited on the pole material via electroplating (i.e., NiPd) or sputtering Al₂O₃, SiN, SiO₂. The gap material is patterned with a photoresist layer and has a width less than the design width of the top pole. An ion mill is used to remove the gap material on either side of photoresist. The variety of writer gap slope angles can be reached through a careful selection of the mill angle and mill energy. A lift off operation removes the photoresist layer used in the definition of the writer gap shape. A seed layer, 20 and 30 and top pole, 14, defined in FIGs. 1 to 5, are deposited through a thick photoresist mask carefully aligned with writer gap feature (not shown in a drawing). The seed layer should have a magnetic moment B_{sat} higher than 1 Tesla, preferably higher than the magnetic material used in the top pole. The seed layer thickness can be from 500 Angstroms to 300 Angstroms. This defines the structure of the first top pole. In the next step, a wet etch chemical removes the thick photoresist and is followed by an ion mill process to remove the seed layer.

After that another resist (not shown) is deposited to protect all the surfaces except the pole tip area. This step is necessary to implement a second mill process which removes the bottom pole material and defines the mesa under the writer gap. In the mill process, the thickness of top pole is reduced, therefore the plating has to be thick enough to get a final top pole thickness required by design.

After the mesa is defined, a nonmagnetic material is deposited adjacent to bottom pole and the top pole 14.

This path can be used for writers with a single top pole or writers with two piece top poles. In the last case the top pole layer is chemically mechanically polished to create a flat top surface as shown in FIG. 10.

Current writers implementing high moment materials ($B_{sat} > 1.0$ Tesla) suffer from creating transitions that are curved. The situation worsens with the smaller

writer gaps, narrower TPWG and high write currents, as the curved part of transition becomes a significant part of the written track. The edge effects become dominant as the width of the top pole decreases and the curved part of the transition becomes a significant portion of the written track. The curved transistion increases the transition parameter. The deterioration of the transition parameter adversely impacts the width of the pulse at half amplitude, termed also as PW50. The situation worsens even further at the higher bit per inch densities. Both transition parameter and PW50 are described on p. 213 and p. 133 in the "Theory of magnetic recording" by H.N. Bertram ed. by Cambridge University Press 1994.

10 Buildup of the charges at the edges of the writer's top pole causes curving of the transitions. The present invention shifts the charge build up in a controlled fashion, down from the trailing edge at the edges of the gap and effectively straightens previously curved part of the written transition. High moment seed material assures higher field gradients compared to a structure with a flat top pole. The method
15 described above assures good control of the track curvature even for an extremely narrow writer widths, i.e., $TPWG=0.5\text{-}1.0 \mu\text{m}$.

 The best results are observed with the seed layer material exceeding the saturation moment of the top pole material.

10 The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

WE CLAIM:

1 1. A magnetic transducer device comprising:
2 a bottom magnetic pole;
3 a nonmagnetic gap layer deposited over said bottom magnetic pole;
4 a top magnetic pole deposited over the nonmagnetic gap layer, the top
5 magnetic pole having an upper portion and a lower portion wherein the lower
6 portion of the top magnetic pole faces a surface of the bottom magnetic pole and
7 wherein the lower portion has a middle section that is separated from the bottom
8 pole by the nonmagnetic gap layer by a first distance and the lower portion has
9 end portions located at each end of the middle portion that are separated from
10 the bottom pole by the nonmagnetic gap layer by a second distance wherein the
11 second distance is greater than 25% of the first distance.

1 2. The device of claim 1 wherein the second distance is at least 40% of the
2 first distance.

1 3. The device of claim 1 wherein the second distance is at least 50% of the
2 first distance.

1 4. The device of claim 1 wherein the second distance is at least 60% of the
2 first distance.

1 5. The device of claim 1 wherein the second distance ranges from about
2 greater than 25% to about 60% of the first distance.

1 6. The device of claim 1 wherein the device has a width (TPWG) measured
2 between a left and a right side of the top magnetic pole wherein the width ranges from
3 about 0.3 microns to about 1.5 microns.

1 7. The device of claim 6 wherein the width ranges from about 0.3 microns
2 to about 0.5 microns.

1 8. The device of claim 6 wherein the first distance is about 30% of the
2 width of the device.

1 9. The device of claim 1 wherein the first distance ranges from about 0.1
2 microns to about 0.3 microns.

1 10. The device of claim 1 wherein the first distance ranges from about 0.1
2 microns to about 0.15 microns.

1 11. The device of claim 1 wherein the end portions each have a surface that
2 is substantially parallel with the surface of the bottom magnetic pole.

1 12. The device of claim 1 wherein the end portions are square in shape.

1 13. The device of claim 1 wherein the end portions are wedged in shape.

1 14. The device of claim 1 wherein the end portions have a surface that faces
2 the surface of the bottom magnetic pole wherein the surface of the end portions are
3 angled so that at one end of the end portion the distance between the end portion and the
4 bottom magnetic pole is greater than at an opposite end of the end portion.

1 15. The device of claim 14 wherein the distance is greatest between the end
2 portions and the bottom magnetic pole at the end portion closest to the middle portion of
3 the top magnetic pole.

1 16. The device of claim 1 wherein each end portion of the top magnetic pole
2 is defined by a segment connecting two points.

1 17. The device of claim 16 wherein the segment is linear.

1 18. The device of claim 16 wherein the segment is curvilinear.

1 19. The device of claim 18 wherein the segment is convex with respect to the
2 bottom magnetic pole.

1 20. The device of claim 18 wherein the segment is concave with respect to
2 the bottom magnetic pole.

1 21. The device of claim 6 wherein the bottom magnetic layer comprises a
2 shared pole, a magnetic layer deposited on the shared pole wherein the magnetic layer
3 has a width equal to the width of the device, and a nonmagnetic region deposited on the
4 shared pole at each end of the magnetic region.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000

Abstract

A magnetic transducer having a top pole and a bottom pole where the top pole is separated from the bottom pole by a gap layer. The top pole has a lower portion that faces the bottom pole. A middle section of the lower portion is separated from the bottom pole by a first distance and end sections of the lower portion are separated from the bottom pole by a second distance not equal to the first distance. The second distance is greater than 25% of the first distance.

CERTIFICATE UNDER 37 CFR 1.10:

"Express Mail" mailing label number: EL455017823US

Date of Deposit: November 18, 1999

I hereby certify that this paper or fee is being deposited with the U.S. Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to BOX PATENT APPLICATION, Assistant Commissioner for Patents, Washington, D.C. 20231

By: Linda McCormick

Name: Linda McCormick

Fig. 2

Fig. 1

FIG. 3

F/G 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

MERCHANT & GOULD P.C.
United States Patent Application
DECLARATION

As a below named inventor I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe I am the original, first and a joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled **WRITER DESIGN ELIMINATING TRANSITION CURVATURE FOR VERY NARROW WRITER WIDTHS** the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, § 1.56 (attached hereto).

I hereby claim foreign priority benefits under Title 35, United States Code, § 119/365 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on the basis of which priority is claimed:

- a. no such applications have been filed.
- b. such applications have been filed as follows:

FOREIGN APPLICATION(S), IF ANY, CLAIMING PRIORITY UNDER 35 USC § 119			
COUNTRY	APPLICATION NUMBER	DATE OF FILING (day, month, year)	DATE OF ISSUE (day, month, year)
ALL FOREIGN APPLICATION(S), IF ANY, FILED BEFORE THE PRIORITY APPLICATION(S)			
COUNTRY	APPLICATION NUMBER	DATE OF FILING (day, month, year)	DATE OF ISSUE (day, month, year)

I hereby claim the benefit under Title 35, United States Code, § 120/365 of any United States and PCT international application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application.

U.S. APPLICATION NUMBER	DATE OF FILING (day, month, year)	STATUS (patented, pending, abandoned)

I hereby claim the benefit under Title 35, United States Code § 119(e) of any United States provisional application(s) listed below:

U.S. PROVISIONAL APPLICATION NUMBER	DATE OF FILING (Day, Month, Year)
60/109,107	18-NOVEMBER-1998

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

2	Full Name Of Inventor	Family Name HAFTEK	First Given Name ELZBIETA	Second Given Name JANINA
0	Residence & Citizenship	City EDEN PRAIRIE	State or Foreign Country MINNESOTA	Country of Citizenship POLAND
1	Post Office Address	Post Office Address 1300 DAHLIA CIRCLE	City EDEN PRAIRIE	State & Zip Code/Country MINNESOTA 55344/USA
Signature of Inventor 201:			Date:	
2	Full Name Of Inventor	Family Name	First Given Name	Second Given Name
0	Residence & Citizenship	City	State or Foreign Country	Country of Citizenship
2	Post Office Address	Post Office Address	City	State & Zip Code/Country
Signature of Inventor 202:			Date:	
2	Full Name Of Inventor	Family Name	First Given Name	Second Given Name
0	Residence & Citizenship	City	State or Foreign Country	Country of Citizenship
3	Post Office Address	Post Office Address	City	State & Zip Code/Country
Signature of Inventor 203:			Date:	
2	Full Name Of Inventor	Family Name	First Given Name	Second Given Name
0	Residence & Citizenship	City	State or Foreign Country	Country of Citizenship
4	Post Office Address	Post Office Address	City	State & Zip Code/Country
Signature of Inventor 204:			Date:	

§ 1.56 Duty to disclose information material to patentability.

(a) A patent by its very nature is affected with a public interest. The public interest is best served, and the most effective patent examination occurs when, at the time an application is being examined, the Office is aware of and evaluates the teachings of all information material to patentability. Each individual associated with the filing and prosecution of a patent application has a duty of candor and good faith in dealing with the Office, which includes a duty to disclose to the Office all information known to that individual to be material to patentability as defined in this section. The duty to disclose information exists with respect to each pending claim until the claim is canceled or withdrawn from consideration, or the application becomes abandoned. Information material to the patentability of a claim that is canceled or withdrawn from consideration need not be submitted if the information is not material to the patentability of any claim remaining under consideration in the application. There is no duty to submit information which is not material to the patentability of any existing claim. The duty to disclose all information known to be material to patentability is deemed to be satisfied if all information known to be material to patentability of any claim issued in a patent was cited by the Office or submitted to the Office in the manner prescribed by §§ 1.97(b)–(d) and 1.98. However, no patent will be granted on an application in connection with which fraud on the Office was practiced or attempted or the duty of disclosure was violated through bad faith or intentional misconduct. The Office encourages applicants to carefully examine:

(1) prior art cited in search reports of a foreign patent office in a counterpart application, and

(2) the closest information over which individuals associated with the filing or prosecution of a patent application believe any pending claim patentably defines, to make sure that any material information contained therein is disclosed to the Office.

(b) Under this section, information is material to patentability when it is not cumulative to information already of record or being made of record in the application, and

or

(1) It establishes, by itself or in combination with other information, a prima facie case of unpatentability of a claim;

(2) It refutes, or is inconsistent with, a position the applicant takes in:

(i) Opposing an argument of unpatentability relied on by the Office, or

(ii) Asserting an argument of patentability.

A prima facie case of unpatentability is established when the information compels a conclusion that a claim is unpatentable under the preponderance of evidence, burden-of-proof standard, giving each term in the claim its broadest reasonable construction consistent with the specification, and before any consideration is given to evidence which may be submitted in an attempt to establish a contrary conclusion of patentability.

(c) Individuals associated with the filing or prosecution of a patent application within the meaning of this section are:

(1) Each inventor named in the application;

(2) Each attorney or agent who prepares or prosecutes the application; and

(3) Every other person who is substantively involved in the preparation or prosecution of the application and who is associated with the inventor, with the assignee or with anyone to whom there is an obligation to assign the application.

(d) Individuals other than the attorney, agent or inventor may comply with this section by disclosing information to the attorney, agent, or inventor.