Op.155. No.9 聚乙二醇的相变热分析

孙肇远 PB22030708, Nov. 2024 University of Science and Technology of China, Hefei, Anhui, China

1. 引言

本实验通过差示扫描量热法 (Differential Scanning Calorimetry, 简称 DSC) 测量聚乙二醇 (PEG) 的热力学数据与结晶动力学数据.

2. 实验

2.1. 实验过程

称取 35-40 mg 的 PEG(M = 10000), 以刚玉为参比, 放入热分析仪; 利用设定好的程序启动仪器, 得到实验数据.

3. 结果与讨论

3.1. 数据分析与结果讨论

$$rac{1}{T_{
m m}}\simrac{1}{M}$$
 的关系

由附件可知, 仅部分数据具有较好的线性关系, 说服力较小.

 $\Delta H_{
m m} \sim M$ 的关系

根据附件数据,可绘制

Fig. 1. $\Delta H_{\rm m} \sim M$ 散点图

并未发现较好的关系, 我们大概能看出熔融峰值热焓值随着分子量上升先下降后上升.

结晶动力学

我们仅研究 M = 10000 的 PEG.

根据附件, 可得到 $n = 3.81202, k = \exp[-22.486] = 1.716e - 10.$

3.2. 误差分析讨论

本实验可能误差如下:

- 1° 该实验由多个同学操作多台仪器共同完成,每个同学的操作可能存在差异;同时仪器 之间也会存在一定的差异,这些不可控的变量可能会带来一定的误差;
- 2° PEG 分子量为平均值, 对于个体存在差异, 无法避免;
- 3° 理论热焓 213 J/g 可能并不准确;
- 4°实际过程并非等温结晶, 其可能不满足 Avrami 方程.

3.3. 实验体会与认识

本实验中我们使用 Setline 热分析仪测量了不同聚合度 PEG 的热力学数据与结晶动力学数据,根据其理论方程式得到了结晶速率常数,并分析了聚合度对以上数据的影响趋势. 处理数据时发现,我们的拟合直线偏差可能较大,某些数据点并不准确,需要酌情取舍. 4. 附件 3

4. 附件

4.1. 原始数据处理

分子量	熔程/°C	外推起点/℃	峰值/℃	熔融热/(J/g)
2000	25.24-95.23	51.631	60.431	255.646
4000	30.40-100.91	58.399	67.515	197.425
6000	42.06-100.59	61.787	69.101	177.587
8000	54.79-96.77	64.032	73.091	166.751
10000	27.59-105.49	62.592	72.770	233.589

Table 2. DSC 曲线中熔融峰数据读取

可得到

Fig. 4. $\frac{1}{T_{\rm m}} \sim \frac{1}{M}$ 部分拟合曲线

方程为

$$\frac{1}{T_{\rm m}} = 0.26549 \frac{1}{M} + 0.00287.$$

Fig. 5. $\ln[-\ln[1-X[t]]] \sim \ln t$ 拟合曲线

可得到

$$\ln[-\ln[1 - X[t]]] = 3.81202 \ln t - 22.486,$$

4. 附件 5

原始数据 4.2.

Fig. 6. 原始数据 1

Fig. 7. 原始数据 2