Modeling the Lightbulb Problem as a Vector Space Challenge Report 1

Math 115A

Arteen Abrishami

Problem Statement

There are n lightbulbs, arranged in a circle. All are off, but there is a switch at the base of each. Flipping a particular lightbulb's switch toggles the on/off state of itself and those adjacent to it. In other words, flipping a switch at the base of a lightbulb (l_i) toggles the on/off states of the lightbulbs $\{l_{i-1}, l_i, l_{i+1}\}$. For the purposes of this problem, we assume n is non-trivial, in that $n \in \mathbb{Z}_{>0}$.

It is important to note that addition in \mathbb{F}_2 is defined as:

$$+_{\mathbb{F}_2}: \mathbb{F}_2 \times \mathbb{F}_2 \to \mathbb{F}_2$$

$$a +_{\mathbb{F}_2} b := (a+b) \bmod 2$$

for $a, b \in \mathbb{F}_2$.

Part 1

(a)

The set of on/off states of the lightbulbs forms a vector space V over the finite field \mathbb{F}_2 . We can define the vector space as:

$$V = (\mathbb{F}_2)^n = \{(a_1, ..., a_n) \mid a_i \in \mathbb{F}_2\}$$

We define the zero vector as

$$\mathbf{0} = (0, ..., 0)$$

where $0 = 0_{\mathbb{F}_2}$. This can be used to represent all n lightbulbs being off. We define vector addition component-wise, in the usual way:

$$+_V: V \times V \to V$$

$$(a_1,...,a_n) +_V (b_1,...,b_n) := (a_1 +_{\mathbb{F}_2} b_1,...,a_n +_{\mathbb{F}_2} b_n)$$

We define scalar multiplication, also component-wise:

$$\cdot_V: \mathbb{F}_2 \times V \to V$$

$$\lambda \cdot_V (a_1, ..., a_n) := (\lambda \cdot_{\mathbb{F}_2} a_1, ..., \lambda \cdot_{\mathbb{F}_2} a_n)$$

(b)

By definition, there are n components in any $v \in V$, with each having two possible states: $\mathbb{F}_2 = \{0, 1\}$. By the multiplication principle, this means that there are 2^n distinct vectors in V. Therefore, we can say that the size of V is 2^n .

(c)

We define a distinguished vector $\mathbf{t}_i \in V$, which we shall call the *toggle* vector about a subscript $i \in \{1, 2, ..., n\}$ for $n \geq 3$. This is defined:

$$\mathbf{t}_i = (0, ..., 0, t_{i-1}, t_i, t_{i+1}, 0, ..., 0)$$

where $t_{i-1}, t_i, t_{i+1} = 1_{\mathbb{F}_2}$. The semantics of subscript addition are as follows:

$$i+j := (i+j) \bmod n$$

s.t. the subscript 0 := n so that $0 \mod n = 0 = n$ and $n + 1 = (n + 1) \mod n = 1$ and $1 - 1 = (1 - 1) \mod n = n$. In other words, subscript addition is defined to wrap around

(exhibit modulo behavior). For $0 < n \le 2$, we have a case where it may be that any of $\{i-1,i,i+1\}$ are equal. Thus, the vector \mathbf{t}_i with subscript behavior is only defined for $n \ge 3$.

For n = 1, we define the toggle vector **t** as:

$$t = (1)$$

For n=2, we define the toggle vector **t** as

$$t = (1, 1)$$

In general, we do not contain the cases where $0 < n \le 2$, since the vector $\mathbf{t} = \mathbf{1}$. The vector $\mathbf{1}$ is defined in **Part 2**.

Part 2

In order to model this system, we must define a distinguished vector $\mathbf{1} \in V$, which we shall call the *one* vector, as

$$\mathbf{1} = (1, ..., 1)$$

where $1 = 1_{\mathbb{F}_2}$. The vector **1** corresponds to all the lights being on, just as **0** corresponds to all the lights being off.

Part 3

Suppose $n \equiv 0 \pmod{3}$, with the minimum possible value of n being 3. Given that we begin with all n lightbulbs off, we would like to turn all n lightbulbs on while toggling the minimum number of switches. We can model this using our definition of addition and the toggle vector \mathbf{t}_i . Through a series of additions, arbitrarily beginning with $\mathbf{0}$ (all lightbulbs off), we can derive a summation that is generally equal to the vector $\mathbf{1}$ (all lightbulbs on):

$$0 + \mathbf{t}_2 + \mathbf{t}_5 + \mathbf{t}_8 + \dots + \mathbf{t}_{n-1} = \mathbf{t}_2 + \mathbf{t}_5 + \mathbf{t}_8 + \dots + \mathbf{t}_{n-1}$$

By definition, n = 3k for $k \in \mathbb{Z}_{>0}$:

$$\mathbf{t}_2 + \mathbf{t}_5 + \mathbf{t}_8 + ... + \mathbf{t}_{n-1} = \sum_{i=0}^{k-1} \mathbf{t}_{2+3i}$$
 $\sum_{i=0}^{k-1} \mathbf{t}_{2+3i} = \mathbf{1}$

We can verify that this series is optimal by noting that k is equal to the number of \mathbf{t}_i required, with each corresponding to a toggle action, as described in the problem statement. Since you can at most toggle 3 lightbulbs at a time, then k = n/3 must be optimal. In other words, suppose that an algorithm exists with j < k toggle actions. Since j < n/3, then all n lightbulbs were not turned on.

Part 4

(a)

Suppose $n \equiv 1 \pmod{3}$, with the minimum possible value of n being 1. As an intermediary step in accomplishing the same task as **Part 3** (where we go from all n lightbulbs off to all n lightbulbs on, with the minimum number of toggles), we must first reach a state where there is exactly one lightbulb on. This intermediary state can be modeled by $\mathbf{a} \in V$ s.t $\mathbf{a} = (1, 0, 0, ..., 0)$, a vector where the first component is $1_{\mathbb{F}_2}$, with the rest being $0_{\mathbb{F}_2}$. As in **Part 3**, we can derive a summation that is generally equal to the vector \mathbf{a} :

$$0 + t_1 + t_2 + t_4 + t_5 + t_7 + t_8 + \dots + t_n = t_1 + t_2 + t_4 + t_5 + t_7 + t_8 + \dots + t_n$$

By definition, n = 3k + 1 for $k \in \mathbb{Z}_{>0}$ s.t $k = \frac{n-1}{3}$. We note that there is no subscript that is an integral multiple of 3. Doing so, we can put it into the following notation:

$$\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_4 + \mathbf{t}_5 + \mathbf{t}_7 + \mathbf{t}_8 + \dots + \mathbf{t}_n = (\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \dots \mathbf{t}_n) - (\mathbf{t}_3 + \mathbf{t}_6 \dots + \mathbf{t}_{n-1})$$

$$(\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_3 + \dots \mathbf{t}_n) - (\mathbf{t}_3 + \mathbf{t}_6 \dots + \mathbf{t}_{n-1}) = \sum_{i=1}^n \mathbf{t}_i - \sum_{i=1}^k \mathbf{t}_{3i}$$

$$\sum_{i=1}^{n} \mathbf{t}_{i} - \sum_{i=1}^{k} \mathbf{t}_{3i} = \mathbf{a} = (1, 0, 0,, 0)$$

In words, we can consider the algorithm displayed above to be as such: begin with \mathbf{t}_1 . For the vector \mathbf{t}_i at arbitrary position i, if $i \equiv 1 \mod 2$, we +1 to the subscript i to get the next subscript i+1, and if $i \equiv 0 \mod 2$, we +2 to the subscript i to get the next subscript as i+2. In other words, we alternate adding 1 or 2 to each subscript to get the next, beginning at 1 and ending in n. This will always require 2k+1 vectors \mathbf{t}_i .

As an example, consider when n = 7:

$$\mathbf{t}_1 + \mathbf{t}_2 + \mathbf{t}_4 + \mathbf{t}_5 + \mathbf{t}_7 = \mathbf{a} = (1, 0, 0, 0, 0, 0, 0)$$

As a corollary, you may also obtain the vector $\mathbf{b} \in V$, $\mathbf{b} = (0, 0, ..., 0, 1)$, simply by first adding 2 to the subscript of \mathbf{t}_1 rather than 1, and alternating in the same way.

(b)

Now we consider how to turn all n lights from a state where the first light is on, represented by the vector \mathbf{a} we derived in part (a). Consider:

$$\mathbf{a} + \mathbf{t}_3 + \mathbf{t}_6 + \mathbf{t}_9 + ... + \mathbf{t}_{n-1} = \mathbf{a} + \sum_{i=0}^{k-1} \mathbf{t}_{3+3i} = \mathbf{1}$$

This summation should look familiar from **Part 3**. We have effectively performed the same method for toggling, but have begun at \mathbf{t}_i about subscript 3 as opposed to subscript 2. We know that, the series:

$$\mathbf{t}_3 + \mathbf{t}_6 + \mathbf{t}_9 + ... + \mathbf{t}_{n-1} = \sum_{i=0}^{k-1} \mathbf{t}_{3+3i} = (0, 1, 1, ..., 1)$$

consists of k vectors \mathbf{t}_i . Since the previous step to obtain \mathbf{a} took 2k+1 vectors \mathbf{t}_i , we see that $(2k+1)+k=3k+1\leq n$, meaning that there were at most n vectors \mathbf{t}_i involved in obtaining the vector $\mathbf{1}$. In other words, it took at most n toggles in order to turn all n lightbulbs on, where $n \equiv 1 \pmod{3}$.

Part 5

(a)

To wrap up our discussion, suppose $n \equiv 2 \pmod{3}$, with the minimum possible value of n being 2. We must perform a similar intermediary step as our task in **Part 4** in order to complete the equivalent task of **Part 3**; however, in this case, our intermediary vector will represent that which has 2 lightbulbs on. Let $\mathbf{c} \in V$, $\mathbf{c} = (1, 1, 0, 0, ..., 0)$.

Note that n = 3k + 2, $k \in \mathbb{Z}_{>0}$ s.t $k = \frac{n-2}{3}$. Recall the vector $\mathbf{b} = (0, 0, ..., 0, 1)$ from the corollary in **Part 4**, which can be obtained in the following way:

$$\mathbf{t}_2 + \mathbf{t}_3 + \mathbf{t}_5 + \mathbf{t}_6 + \mathbf{t}_8 ... + \mathbf{t}_n = \sum_{i=1}^n \mathbf{t}_i \ - \ \sum_{i=0}^k \mathbf{t}_{1+3i} = \mathbf{b}$$

Note that 2k + 1 toggle vectors \mathbf{t}_i were required in the following series to obtain the vector \mathbf{b} , equal to the number that were required to obtain the vector \mathbf{a} in **Part 4**. From here, we obtain the vector \mathbf{c} as follows:

$$\mathbf{b} + \mathbf{t}_1 = \mathbf{c} = (1, 1, 0, 0, ..., 0)$$

requiring in total 2k + 2 vectors \mathbf{t}_i .

(b)

Finally, we perform the trivial task of turning the remaining lights on, resulting in the vector **1**. This can be done as follows:

$$\mathbf{c} + \mathbf{t}_4 + \mathbf{t}_7 + ... + \mathbf{t}_{n-1} = \mathbf{c} + \sum_{i=0}^{k-1} \mathbf{t}_{4+3i} = \mathbf{1}$$

where k additional vectors \mathbf{t}_i were required. We can see that a total of (2k+2)+k=3k+2 vectors were required, where $3k+2 \leq n$, meaning that at most n vectors \mathbf{t}_i were required

to obtain the vector 1 in the case that $n \equiv 2 \pmod{3}$. This is equivalent to saying that the
number of switches to go from all lights off to all lights on took at most n flips.
With that, we conclude our discussion of the lightbulb problem. \Box