Einführung in die Algebra

BLATT 7

Jendrik Stelzner

4. Dezember 2013

Aufgabe 7.1.

Für $x,y\in\mathbb{C}$ mit xy=1 muss |x||y|=1, also $|x|\leq 1$ oder $|y|\leq 1$. Für $x,y\in\mathbb{Z}\Big[\sqrt{-n}\Big]$ mit xy=1 ist also $x\in\{1,-1\}$ oder $y\in\{1,-1\}$ für n>1 und $x\in\{1,-1,i,-i\}$ oder $y\in\{1,-1,i,-i\}$ für n=1. Es ist daher

$$\left(\mathbb{Z}\!\left[\sqrt{-n}\right]\right)^* = \begin{cases} \{1,-1,i,-i\} & \text{ für } n=1,\\ \{1,-1\} & \text{ für } n>1, \end{cases}$$

da die entsprechenden Elemente, wenn in $\mathbb{Z}\Big[\sqrt{-n}\Big]$ enthalten, jeweils in Paaren von multiplikativ Inversen enthalten sind.

Aufgabe 7.2.

Für $x,y\in\mathbb{C}$ mit xy=21 ist |x||y|=21, also muss $|x|\leq\sqrt{21}$ oder $|y|\leq\sqrt{21}$. Es genügt daher die $a+\sqrt{5}bi=z\in\mathbb{Z}[\sqrt{-5}]$ mit $|z|\leq\sqrt{21}$, also $a^2+5b^2\leq21$ auf Teilbarkeit zu überprüfen. Da für jeden Teiler $z\in\mathbb{Z}[\sqrt{-5}]$ auch $-z,\bar{z},-\bar{z}\in\mathbb{Z}[\sqrt{-5}]$ Teiler von 21 sind, genügt es auch die $a+\sqrt{5}bi\in\mathbb{Z}[\sqrt{-n}]$ mit $a,b\geq0$ auf Teilbarkeit zu überprüfen.

Es ergeben sich mit diesen beiden Beschränkungen die möglichen Kandidaten

$$1, 2, 3, 4, 1 + \sqrt{5}i, 1 + 2\sqrt{5}i, 2 + \sqrt{5}i, 3 + \sqrt{5}i, 4 + \sqrt{5}i.$$

Einfaches Hinsehen und kurzes Nachrechnen ergibt, dass von diesen Zahlen nur

$$1, 3, 1 + 2\sqrt{5}i \text{ und } 4 + \sqrt{5}i$$

Teiler von 21 sind. Die Teiler von 21 in $\mathbb{Z}[i]$ sind also

$$1, -1, 21, -21, 3, -3, 7, -7,$$

$$1 + 2\sqrt{5}i, -1 - 2\sqrt{5}i, 1 - 2\sqrt{5}i, -1 + 2\sqrt{5}i,$$

$$4 + \sqrt{5}i, -4 - \sqrt{5}i, 4 - \sqrt{5}i, -4 - \sqrt{5}i.$$

Aufgabe 7.3.

Definition. Für einen Ring R bezeichnet

$$\operatorname{nil}(R) := \{ x \in R : x^n = 0 \text{ für ein } n \in \mathbb{N} \}$$

das Nilradikal von R.

Bemerkung 1. Sei R ein kommutativer Ring. Dann gilt

- (i) nil(R) ist ein Ideal von R.
- (ii) Für $e \in R^*$ und $a \in nil(R)$ ist $e + a \in R^*$.

Beweis. (i)

Es ist $0 \in \text{nil}(R)$, also nil(R) nicht leer. Für $a,b \in \text{nil}(R)$ gibt es $n,m \in \mathbb{N}$ mit $a^n = b^m = 0$, also ist

$$(a+b)^{n+m} = \sum_{k=1}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k = 0$$

und daher $a+b\in \mathrm{nil}(R)$. Auch ist für alle $r\in R$

$$(ar)^n = a^n r^n = 0,$$

also $ar \in R$. Insbesondere ist daher für alle $a \in \operatorname{nil}(R)$ auch $-a = (-1) \cdot a \in R$.

(ii)

Für $e \in R^*$ und $a \in nil(R)$ mit $a^n = 0$ ist $1 - ae^{-1} \in R^*$, da $\left(ae^{-1}\right)^n = 0$ und daher

$$\left(\sum_{k=0}^{n-1} \left(-ae^{-1}\right)^k\right) \left(1 + ae^{-1}\right) = 1 + (-1)^{n-1} \left(ae^{-1}\right)^n = 1.$$

Daher ist auch $e + a = e \left(1 + ae^{-1}\right) \in R^*$.

Da $\mathrm{nil}(R)\subseteq\mathrm{nil}(R[X])$ ist auch $(\mathrm{nil}(R))\subseteq\mathrm{nil}(R[X])$. Dabei ist, wie in einem früheren Übungsblatt gezeigt,

$$(\operatorname{nil}(R)) = \left\{ \sum_{i=0}^{n} a_i X^i : n \ge 0, a_i \in \operatorname{nil}(R) \text{ für alle } i \right\}.$$

Nach Bemerkung 1 ist also das Polynom $f=\sum_{i=0}^n a_i X^i$ mit $n\geq 0,$ $a_0\in R^*$ und $a_i\in \mathrm{nil}(R)$ für alle i invertierbar.

Sei andererseits $f=\sum_{i=0}^n a_i X^i \in R[X]$, mit $n\geq 0$ und $a_n\neq 0$, invertierbar, d.h. es gibt ein $g=\sum_{i=0}^m b_i X^i \in R[X]$, mit $m\geq 0$ und $b_m\neq 0$, so dass fg=1. Da damit $a_0b_0=1$ müssen a_0 und b_0 invertierbar sein. Ist n>0, so bemerken wir:

Behauptung 2. Es ist $a_n^{k+1}b_{m-k}=0$ für $k=0,\ldots,m$.

Beweis. Der Beweis verläuft per Induktion über k.

Induktionsanfang. Für k=0 gilt: Wäre $a_nb_m\neq 0$, so wäre

$$0 = \deg(1) = \deg(fg) = \deg(f) + \deg(g) = n + m \ge n > 0.$$

Induktionsschritt. Sei $1 \leq k \leq n$ und gelte die Aussage für k-1. Da fg=1 ist

$$0 = \sum_{\mu + \nu = n + m - k} a_{\mu} b_{\nu}.$$

Multiplikation der Gleichung mit a_n^k ergibt

$$0 = \sum_{\mu + \nu = n + m - k} a_n^k a_\mu b_\nu = a_n^{k+1} b_{m-k}.$$

Aus Behauptung 2 folgt insbesondere, dass $a_n^{m+1}b_0=0$. Da b_0 invertierbar ist, ist a_n daher nilpotent. Da nach Bemerkung 1 daher auch $f-a_nX^n$ invertierbar ist, ergibt sich durch Wiederholung der obigen Argumentation induktiv, dass a_i für alle $1 \le i \le n$ nilpotent ist.

Aufgabe 7.4.

Definition. Sei R ein kommutativer Ring. Für $p = \sum_{i=0}^{\infty} a_i X^i \in R[\![x]\!]$ bezeichnet

$$\mathrm{Deg}(p) := \begin{cases} \min\{i \in \mathbb{N} : a_i \neq 0\} & \textit{falls } f \neq 0, \\ \infty & \textit{sonst.} \end{cases}$$

den Grad von p.

Für einen kommutativen Ring R und $p, q \in R[x]$ ist

$$Deg(p+q) \ge min\{Deg(p), Deg(q)\}\ und\ Deg(pq) \ge Deg(p) + Deg(q).$$
 (1)

Ist R darüber hinaus nullteilerfrei, so gilt sogar

$$Deg(pq) = Deg(p) + Deg(q).$$
 (2)

Die Beweise der entsprechenden Aussage laufen analog zu den Beweisen der entsprechenden Aussagen für die Gradfunktion deg von R[X].

(i)

Ist R kein Integritätsring, so ist auch $R[X] \subsetneq R[\![x]\!]$ kein Integritätsring, also auch $R[\![x]\!]$ nicht. Ist $R[\![x]\!]$ kein Integritätsring, so gibt es $p,q \in R[\![x]\!]$ mit $p,q \neq 0$, also $\mathrm{Deg}(p),\mathrm{Deg}(q) < \infty$, aber pq = 0, also $\mathrm{Deg}(pq) = \infty$. Mit (2) folgt, dass R kein Integritätsring ist.

(ii)

Ist $p=\sum_{i=0}^\infty a_iX^i\in R[\![x]\!]$ invertierbar, so gibt es $q=\sum_{i=0}^\infty b_iX^i\in R[\![x]\!]$ mit pq=1. Insbesondere ist daher

$$1 = (pq)_1 = a_0b_0,$$

also a_0 invertierbar.

Ist $p=\sum_{i=0}^\infty a_i X^i\in R[\![x]\!]$ mit a_0 invertierbar, so definieren wir eine Folge $(b_i)_{i\in\mathbb{N}}$ auf R rekursiv durch

$$b_0 := a_0^{-1} \text{ und } b_i := -a_0^{-1} \sum_{i=1}^i a_i b_{i-j},$$

und $q:=\sum_{i=0}^\infty b_i X^i$ als die entsprechende Potenzreihe. Für e=pq ergibt sich dann für alle $i\in\mathbb{N}$

$$e_i = \sum_{j=0}^i a_j b_{i-j} = \sum_{j=1}^i a_j b_{i-j} + a_0 b_i = \sum_{j=1}^i a_j b_{i-j} - \sum_{j=1}^i a_j b_{i-j} = 0.$$

Also ist e=1 und p daher invertierbar mit $p^{-1}=q$. Inbesondere ergibt sich das folgende Lemma:

Lemma 3. Sei K ein Körper und seien $p, q \in K[x]$. Dann gilt:

- (i) p ist genau dann invertierbar, wenn Deg p = 0.
- (ii) Ist $\operatorname{Deg} p = \operatorname{Deg} q$, so sind p und q assoziiert. Ist $\operatorname{Deg} p = \operatorname{Deg} q < \infty$, so sind p und q assoziiert zu $X^{\operatorname{Deg} p}$.
- (iii) Ist $\operatorname{Deg} p \geq \operatorname{Deg} q$, so ist $q \mid p$.

Beweis. (i)

 $p=\sum_{i=0}^{\infty}a_iX^i$ ist genau dann invertierbar, wenn a_0 invertierbar ist, also genau dann wenn $a_0\neq 0$, was wiederum äquivalent zu $\mathrm{Deg}\,a_0=0$ ist.

(ii)

Ist p=q=0 so ist nichts zu zeigen. Ansonsten ist $p=\sum_{i=0}^{\infty}a_iX^i\neq 0$, also $p=X^{\mathrm{Deg}\,p}p'$ für $p'=\sum_{i=0}^{\infty}a_{i+\mathrm{Deg}\,p}X^i$ mit $a_{\mathrm{Deg}\,p}\neq 0$. Nach (i) ist p' invertierbar, also p assoziiert zu $X^{\mathrm{Deg}\,p}$. Analog ergibt sich, dass q assoziiert zu $X^{\mathrm{Deg}\,q}$ ist. Mit $\mathrm{Deg}\,p=\mathrm{Deg}\,q$ folgt damit auch die Assoziiertheit von p und q.

(iii)

Ist $\operatorname{Deg} p = \infty$, so ist p = 0 und nichts zu zeigen. Ansonsten ist $p = X^{\operatorname{Deg} p - \operatorname{Deg} q} p'$ wobei p' assozziert zu q ist, also $p = X^{\operatorname{Deg} p - \operatorname{Deg} q} cq$ für $c \in K^*$.

(iii)

f ist in $\mathbb{Z}[X]$ nicht irreduzibel, da f=(X+1)(X+2). Seien $p,q\in\mathbb{Z}[\![x]\!]$ mit $p=\sum_{i=0}^\infty a_iX^i$ und $q=\sum_{j=0}^\infty b_iX^i$ so dass pq=f. Dann ergibt sich durch Koeffizientenvergleich, dass $a_0b_0=2$. Da $a_0,b_0\in\mathbb{Z}$, und $2\in\mathbb{Z}$ irreduzibel ist, ist a_0 oder b_0 eine Einheit. Entsprechend ist p oder q eine Einheit. Also ist f irreduzibel in $\mathbb{Z}[\![x]\!]$.

Aufgabe 7.5.

Lemma 4. K[x] bildet mit der Gradabbildung Deg einen euklidischen Ring.

Beweis. Da K nullteilerfrei ist, ist $K[\![x]\!]$ ein Integritätsring. Seien $f,g\in K[\![x]\!]$ mit $g\neq 0$. Es gilt zu zeigen, dass es $q,r\in K[\![x]\!]$ gibt, so dass f=qg+r mit r=0 oder $\deg r<\deg g$. Ist $\deg f<\deg g$ so genügt es q=0 und r=f zu wählen. Ist $\deg f\geq\deg g$, so folgt aus 3, dass $g\mid f$, es kann also q mit f=qg und r=0 gewählt werden. \square

Aus Lemma 4 folgt direkt, dass $K[\![x]\!]$ ein Hautidealring ist. Für jedes Ideal $(a) \neq 0$ von $K[\![x]\!]$ folgt mit Lemma 3, dass a assoziert zu $X^{\mathrm{Deg}\,a}$ ist, und da $K[\![x]\!]$ ein Integritätsring ist, daher $(a) = \left(X^{\mathrm{Deg}\,a}\right)$. Folglich sind die Ideale in $K[\![x]\!]$ gerade 0 und (X^n) für $n \in \mathbb{N}$. Insbesondere ist (X) das eindeutige maximale Ideal in $K[\![x]\!]$, weshalb $K[\![x]\!]$ lokal ist (dies lässt sich auch direkt aus Lemma 3 folgern).