PRÁCTICO 3

NÚMEROS ALEATORIOS Y MÉTODO DE MONTE CARLO.

Ejercicio 1. Para el estudio mediante simulación es necesario generar muchos números aleatorios en la computadora. Estos corresponden a variables aleatorias uniformemente distribuidas en el intervalo (0,1). Existen en la literatura varias rutinas portables, optimizadas para generar enormes cantidades de números pseudo-aleatorios con velocidad razonable.

- a) Calcular los diez primeros números de la secuencia de von Neumann a partir de la semilla:
 - i) 3792
- ii) 1004
- iii) 2100
- iv) 1234
- b) Calcular los diez primeros elementos de la secuencia generada por el generador congruencial

$$y_{i+1} = 5y_i + 4 \mod(2^5),$$

para $y_0 = 4$ y para $y_0 = 50$. ¿Cuál es el período de la secuencia en cada caso?

c) Indicar en cuáles de los siguientes casos el generador

$$y_{i+1} = ay_i + c \mod(M)$$

genera una secuencia de período máximo. Puede utilizar resultados teóricos o implementarlo en Python y calcular el período de la secuencia.

- $a = 125, c = 3, M = 2^9$
- $a = 123, c = 3, M = 2^9$
- a = 5, c = 0, M = 71
- a = 7, c = 0, M = 71
- d) aprender a utilizar Mersenne Twister, version de la biblioteca standard de python (random.random).

Ejercicio 2. Se propone el siguiente juego en el cual todas las variables aleatorias que se generan son **independientes** e idénticamente distribuidas U(0,1): Se simula la variable aleatoria U. Si $U < \frac{1}{2}$, se suman dos nuevos números aleatorios $W_1 + W_2$. Pero si $U \ge \frac{1}{2}$, se suman tres números aleatorios. El resultado de la suma, en cualquiera de los casos, es una variable aleatoria X. Se gana en el juego si $X \ge 1$.

- a) ¿Cuál es la probabilidad de ganar?.
- b) Implementar un algoritmo en computadora que estime la probabilidad de ganar, esto es, la fracción de veces que se gana en *n* realizaciones del juego. Completar la siguiente tabla:

n	100	1000	10000	100000	1000000
P[X > 1]					

Ejercicio 3. Las maquinas tragamonedas usualmente generan un premio cuando hay un acierto. Supongamos que se genera el acierto con el siguiente esquema: se genera un número aleatorio, y

- i) si es menor a un tercio, se suman dos nuevos números aleatorios
- ii) si es mayor o igual a un tercio, se suman tres números aleatorios.

Si el resultado de la suma es menor o igual a 2, se genera un acierto.

- a) ¿Cuál es la probabilidad de acertar?.
- b) Implementar un algoritmo en computadora que estime la probabilidad de acertar, esto es, la fracción de veces que se acierta en *n* realizaciones del juego. Completar la siguiente tabla:

n	100	1000	10000	100000	1000000
$P[X \leq 2]$					

Ejercicio 4. Un supermercado posee 3 cajas, de los cuales, por una cuestión de ubicación, el 40 % de los clientes eligen la caja 1 para pagar, el 32 % la caja 2, y el 28 % la caja 3. El tiempo que espera una persona para ser atendido en cada caja distribuye exponencial con medias 3, 4 y 5 minutos respectivamente.

- a) ¿Cuál es la probabilidad de que un cliente espere menos de 4 minutos para ser atendido?
- b) Si el cliente tuvo que esperar más de 4 minutos. ¿Cuál es la probabilidad de que el cliente haya elegido cada una de las cajas?
- c) Simule el problema y estime las probabilidades anteriores con 1000 iteraciones.

Ejercicio 5. Calcule exactamente el valor de las siguientes integrales. Mediante una simulación de Monte Carlo con *n* iteraciones, calcule a su vez un valor aproximado y compare con el valor exacto.

a)
$$\int_0^1 (1-x^2)^{3/2} dx$$

b)
$$\int_{2}^{3} \frac{x}{x^2 - 1} dx$$

c)
$$\int_0^\infty x (1+x^2)^{-2} dx$$

$$d) \int_{-\infty}^{\infty} e^{-x^2} dx$$

e)
$$\int_0^1 \left[\int_0^1 e^{(x+y)^2} dx \right] dy$$

f)
$$\int_0^\infty \left[\int_0^x e^{-(x+y)} dy \right] dx$$

Ayuda: Sea: $I_y(x) = \begin{cases} 1 & \text{si } y < x \\ 0 & \text{si } y \ge x \end{cases}$. Utilice esta función para igualar la integral del item **f**) a otra cuyos términos vayan de 0 a ∞ .

Completar la siguiente tabla:

n	(a)	(b)	(c)	(d)	(e)	(f)	\leftarrow integral
100							_
1000							
10000							
100000							
1000000							

Ejercicio 6. Es posible aproximar el valor de π calculando el área de un círculo de radio 1 centrado en 0. Para eso, se necesitan generar N puntos aleatorios en la caja $[-1,1] \times [-1,1]$ y contar la cantidad de veces que los mismos caen dentro del círculo. El cociente entre este número y N, multiplicado por 4 (el área del cuadrado donde está contenido el círculo) es una aproximación de π .

Completar la siguiente tabla con los valores obtenidos para distintos N y compararlos con numpy.pi o math.pi:

Ejercicio 7. Para U_1, U_2, \ldots variables aleatorias uniformemente distribuídas en el intervalo (0,1), se define:

$$N = \text{M\'inimo}\left\{n : \sum_{i=1}^{n} U_i > 1\right\}$$

Es decir, N es igual a la cantidad de números aleatorios que deben sumarse para exceder a 1.

a) Estimar E[N] generando n valores de N y completar la siguiente tabla:

n	100	1000	10000	100000	1000000
E[N]					

b) Calcular el valor exacto de E[N].

Ejercicio 8. Para U_1, U_2, \ldots números aleatorios, se define:

$$N = \text{Máximo}\left\{n : \prod_{i=1}^{n} U_i \ge e^{-3}\right\}$$

donde: $\prod_{i=1}^{0} U_i = 1$. Mediante *n* simulaciones determinar:

a)

n	100	1000	10000	100000	1000000
E[N]					

b) P(N = i) para i = 0, 1, 2, 3, 4, 5, 6, usando n = 1000000.

Ejercicio 9. Un juego consiste en dos pasos. En el primer paso se tira un dado convencional. Si sale 1 o 6 tira un nuevo dado y se le otorga al jugador como puntaje el doble del resultado obtenido en esta nueva tirada; pero si sale 2, 3, 4 o 5 en la primer tirada, el jugador debería tirar dos nuevos dados, y recibiría como puntaje la suma de los dados. Si el puntaje del jugador excede los 6 puntos entonces gana.

- a) Realizar un cálculo teórico de la probabilidad de que un jugador gane.
- b) Estime la probabilidad de que un jugador gane mediante una simulación.