

Online Retail II

Sales Forecasting

Yunpeng Wang

Agenda

- I. Introduction
- II. Phase I
- III. Phase II
- IV. Phase III
- V. Summary

Introduction

online retail transaction data from UCI Machine Learning Repository

Time span of data set

Online Retail II data set contains all the transactions occurring for a UK-based and registered, non-store online retail between 01/12/2009 and 09/12/2011.

Objective

Perform a time series analysis and Predict the future sales data

Phase I models: Linear Regression; SARIMAX

Phase II models:
K-means clustering
Facebook Prophet
Random Forest Regression

Phase III models:
GPT
Google Bard
XGBoost

Phase I

plain linear regression/ SARIMAX model

Data Processing

Target Variable & Predictive Variable

• Total_amount in sterling (£) per InvoiceDate is the target variable.

Direct Variable List:

1. InvoiceDate: Features of time are critical in the modeling because they capture seasonality

Derived Variable List:

- 1. const: constant dummies
- 2. lags: serial dependence
- 3. trend, trend_squared, trend_cubed: time trends
- 4. s(2,7), s(3,7) ...: weekly seasonality
- 5. sin(23,freq=A-DEC), cos(23,freq=A-DEC) ...: annual seasonality
- 6. Holiday: US national holidays. The holiday has an effect on people's purchasing patterns.

Pre-modeling

DeterministicProcess,

CalendarFourier from

statsmodels.tsa.deterministic

One-Hot encoding holiday features

Augmented Dickey-Fuller test

Data stationarity

Data seasonality and trend analysis

Derived variable creation

Autocorrelation
Power Spectral Density
Seasonality decomposition

Moving average

Modeling – Linear Regression

Modeling – Linear Regression

Modeling -SARIMAX

10 least MAPE models are selected and cross-validated. Ultimately, the results are shown in the table on the right

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

	order	seasonal_order	MAPE	RMSE	AIC	BIC	CV_MAPE
27	[3, 1, 11]	[1, 0, 1, 12]	0.320333	12441.782714	10488.146288	10559.171338	0.467359
39	[4, 1, 11]	[1, 0, 1, 12]	0.324307	12429.154241	10488.777737	10563.980732	0.467421
51	[5, 1, 11]	[1, 0, 1, 12]	0.321384	12393.423622	10488.214513	10567.595451	0.467532
3	[1, 1, 11]	[1, 0, 1, 12]	0.332236	12529.346998	10494.592737	10557.261898	0.467829
15	[2, 1, 11]	[1, 0, 1, 12]	0.324782	12435.003676	10486.050890	10552.897996	0.467894
45	[4, 2, 11]	[1, 0, 1, 12]	0.330947	12938.261704	10493.453193	10568.618804	0.485126
21	[2, 2, 11]	[1, 0, 1, 12]	0.331903	12972.270522	10492.614876	10559.428752	0.486291
57	[5, 2, 11]	[1, 0, 1, 12]	0.325621	12947.118476	10491.254192	10570.595670	0.486499
33	[3, 2, 11]	[1, 0, 1, 12]	0.321820	12919.351729	10490.880052	10561.869795	0.489677
9	[1, 2, 11]	[1, 0, 1, 12]	0.332025	13024.591594	10526.599467	10589.237476	0.492427

Phase II

KMeans_cluster + Facebook Prophet/ Random Forest Regression

Data Processing

Target Variable & Predictive Variable

• Total_amount in sterling (£) per InvoiceDate/ transaction week is the target variable.

Direct Variable List:

1. InvoiceDate: Features of time are critical in the modeling because they capture seasonality

Derived Variable List:

- 1. const: constant dummies
- 2. trend, trend squared, trend cubed: time trends
- 3. s(2,7), s(3,7) ...: weekly seasonality
- 4. sin(23,freq=A-DEC), cos(23,freq=A-DEC) ...: annual seasonality
- 5. Holiday: US national holidays. The holiday has an effect on people's purchasing patterns.
- 6. clusters

Pre-modeling (Facebook Prophet)

	holiday	ds	lower_window	upper_window
0	Christmas	2009-12-14	0	1
1	Christmas	2009-12-15	0	1
2	Christmas	2009-12-16	0	1
3	Christmas	2009-12-17	0	1
4	Christmas	2009-12-18	0	1
5	Christmas	2009-12-19	0	1
6	Christmas	2009-12-20	0	1
7	Christmas	2009-12-21	0	1
8	Christmas	2009-12-22	0	1
9	Christmas	2009-12-23	0	1
10	Christmas	2010-12-14	0	1
11	Christmas	2010-12-15	0	1
12	Christmas	2010-12-16	0	1
13	Christmas	2010-12-17	0	1
14	Christmas	2010-12-18	0	1

15	Christmas	2010-12-19	0	1
16	Christmas	2010-12-20	0	-1
17	Christmas	2010-12-21	0	1
18	Christmas	2010-12-22	0	1
19	Christmas	2010-12-23	0	1
0	New_Year	2010-01-07	0	1
1	New_Year	2010-01-08	0	1
2	New_Year	2010-01-09	0	1
3	New_Year	2010-01-10	0	1
4	New_Year	2010-01-11	0	1
5	New_Year	2011-01-07	0	1
6	New_Year	2011-01-08	0	1
7	New_Year	2011-01-09	0	1

Pre-modeling (Random Forest Regression)

DeterministicProcess, CalendarFourier

from statsmodels.tsa.deterministic

One-Hot encoding holiday features

Prophet.predict() from prophet

Data seasonality and trend analysis

Derived variable creation

Autocorrelation
Power Spectral Density
Seasonality decomposition

Modeling – Facebook Prophet


```
total = sum(MAPE)/len(MAPE)
total
1.4589423709169071
```

Modeling – Random Forest Regression

		yhat	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7	description_Post New Year	description_Pre- Christmas	***	sin(14,freq=A- DEC)	
year	week													
2009	49	232.597931	192.07	142.73	107.80	71.51	32.54	0.00	0.00	0.0	0.0		-3.040648	
	50	187.522727	368.66	418.00	321.23	282.23	254.88	255.82	192.07	0.0	0.0	***	4.170672	
	51	412.430584	322.80	252.32	350.27	346.54	409.11	334.91	368.66	0.0	6.0		2.841609	
	52	203.410501	22.50	96.73	119.23	183.25	116.52	188.57	139.55	0.0	3.0		-1.965578	
2010	1	394.159345	107.64	58.89	38.89	36.39	103.12	131.87	205.75	3.0	0.0		5.228782	
		(#35)		1577	2115	***	1999	227	823	225	8875	***	(***)	
2011	34	479.803592	385.69	320.65	450.88	452.47	465.69	707.13	725.22	0.0	0.0		1.272724	
	35	361.81 <mark>3</mark> 856	563.86	544.60	317.57	397.04	374.39	363.16	281.05	0.0	0.0	111	4.050694	
	36	410.585285	268.17	377.34	576.52	561.74	599.67	568.86	668.50	0.0	0.0		-2.434811	
	37	445.055587	454.76	401.39	394.29	429.27	345.95	333.44	268.17	0.0	0.0	***	-4.447266	
	38	526.487222	658.94	575.06	593.28	515.71	328.24	406.99	454.76	0.0	0.0		3.465995	
93 rows	s × 56 c	olumns												

Screenshot of features

M_A_P_E

0.08707794143455443

Phase III

GPT-cluster+ Google Bard + XGBoost

Data Processing

Target Variable & Predictive Variable

• Total_amount in sterling (£) per transaction week is the target variable.

Direct Variable List:

1. InvoiceDate: Features of time are critical in the modeling because they capture seasonality

Derived Variable List:

- 1. const: constant dummies
- 2. lags: serial dependence
- 3. trend, trend_squared, trend_cubed: time trends
- 4. s(2,7), s(3,7) ...: weekly seasonality
- 5. sin(23,freq=A-DEC), cos(23,freq=A-DEC) ...: annual seasonality
- 6. Holiday: US national holidays. The holiday has an effect on people's purchasing patterns.
- 7. clusters

Pre-modeling – GPT-cluster

Pre-modeling– Google Bard further cluster

	Category	cluster
0	Christmas decorations	1.0
1	Easter decorations	1.0
2	Assorted decorations	1.0
3	Assorted Decorations	1.0
4	Lights	1.0
5	Trinket boxes and pots	1.0

cat	tegorie2	
	Category	cluster
0	Home décor	2.0
1	Home decor and accessories	2.0
2	Home decor	2.0
3	Home Decor	2.0
4	Stationery and Gifting	2.0
5	Kitchen and dining	2.0
6	Stationery and office	2.0
7	Toys and crafts	2.0
8	Kitchenware	2.0
9	Stationery and accessories	2.0

at	tegorie3	
	Category	cluster
0	Fashion accessories	3.0
1	Fashion and accessories	3.0
2	Fashion and personal care	3.0
3	Bags and purses	3.0
4	Jewelry and accessories	3.0

cat	tegorie4	
	Category	cluster
0	Pet products	4.0
1	Bath and hot water bottles	4.0
2	Toys and novelty	4.0

cat	tegorie5	
	Category	cluster
0	Stationery	5.0
1	Miscellaneous	5.0
2	Kids Accessories	5.0
3	Gifts and stationery	5.0
4	Beauty and fragrance	5.0
5	Vintage Items	5.0
6	Storage	5.0
7	Party Supplies	5.0
8	Party and seasonal items	5.0

Pre-modeling –Semi-supervised classification

```
from sklearn.linear_model import LogisticRegression

clf = LogisticRegression(C=10, solver='lbfgs', max_iter=2000, multi_class='multinomial')

clf.fit(a, clusters0['cluster'])

predictions = clf.predict(b)
```

```
c.cluster.value_counts()

2.0 740047
5.0 115189
3.0 37524
1.0 29145
4.0 20429
Name: cluster, dtype: int64
```

Pre-modeling

DeterministicProcess, CalendarFourier

from statsmodels.tsa.deterministic

One-Hot encoding holiday features

plot_pacf from statsmodels.graphics.tsaplots

Data seasonality and trend analysis

Derived variable creation

Autocorrelation
Power Spectral Density
Seasonality decomposition

modeling

```
def TimeSplit ModBuild(model, paramGrid, splits, X, y):
    #Loop over each time split and for each
    for train_index, val_index in splits.split(X):
        _X_train_ = X.iloc[train_index]
        _y_train_ = y.iloc[train_index]
       _X_val_ = X.iloc[val_index]
       _y_val_ = y.iloc[val_index]
        train scores = []
        val_scores = []
        # Loop through the parameter grid, set the hyperparameters, and save the scores
        for g in paramGrid:
            model.set params(**g)
            model.fit( X train , y train )
            p_train = model.predict(_X_train_)
            p val = model.predict( X val )
            score_train = mean_absolute_percentage_error(_y_train_, p_train)
            score_val = mean_absolute_percentage_error(_y_val_, p_val)
            train_scores.append(score_train)
            val_scores.append(score_val)
            #models.append(model)
            best_idx = np.argmin(val_scores)
        print("Best-Fold HyperParams:: ", paramGrid[best idx])
        print("Best-Fold Train MAPE: ", train_scores[best_idx])
        print("Best-Fold Val MAPE: ",val_scores[best_idx])
        print("\n")
    #Return most recent model
    return train scores, val scores, best idx
```

```
M_A_P_E = sum(test_score) / len(test_score)
M_A_P_E
0.07617333266357508
```


Next Step

- Pipeline automation would be a research direction worthy of digging deeper into.
- Another potential research direction is the trade-off between clusters' explainability and the speed of getting reliable forecasting models

One man gang

Yunpeng Wang