Contents

Rationale and Research Questions	4
Dataset Information	5
Exploratory Analysis	6
Analysis	16
Question 1: $H0 = There$ is no observable effect of energy consumption, renewable energy consumption, and total ghg emissions on mortality rates $(H0 = 0)$	17
Question 2: Ha = There is observable effect of energy consumption, renewable energy consumption, and total ghg emissions on mortality rates (H0 $!=0$)	17
Summary and Conclusions	18
References	19

List of Tables

1	WorldBank Dataset Information		5
2	WorldBank Dataset Information	- Fields	5

List of Figures

1	Mortality Distribution Analysis	7
2	GHG Distribution Analysis	8
3	Total Energy Use Distribution Analysis	9
4	Renewable Distribution Analysis	9
5	Mortality Logged Distribution Analysis	10
6	GHG Logged Distribution Analysis	11
7	Total Energy Distribution Analysis	12
8	Renewable Energy Distribution Analysis	12
9	Renewable Energy Scatterplot	13
10	Total Energy Use Scatterplot	14
11	GHG Scatterplot	15
12	Mortality Scatterplot	15

Rationale and Research Questions

This data project utilizes data from the World Bank spanning child mortality rates, energy consumption, and

Dataset Information

Table 1: WorldBank Dataset Information

Item	Value		
	World Bank API 1990 - 2020		
	World_Bank_EnergyUse_Mortality.csv		

Table 2: WorldBank Dataset Information - Fields

Item	Value
iso2c	2 character country acronym
iso2c	2 character country acronym
country	Country name
date	Year row data was collected
Renewable_Consump	Estimated usage of renewable energies as a
	percentage of total final energy consumption
$Energy_Use$	Energy use per country in terms of kg of oil
	equivalent per capita
Total_GHG_Emissions	Total greenhouse gas emissions as kilotons of CO2
	equivalent
Mortality_Rate	Child mortality rates under the age of 5 per 1,000
	live births

Exploratory Analysis

```
#Review first few values of dataframe
glimpse(energyUse_mort)
## Rows: 186
## Columns: 8
## $ iso2c
                        ## $ iso3c
                        <chr> "ARE", "ARE", "ARE", "ARE", "ARE", "ARE", "ARE", "~
                        <chr> "United Arab Emirates", "United Arab Emirates", "U~
## $ country
                        <dbl> 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 19~
## $ date
## $ Renewable_Consump
                        <dbl> 0.00, 0.00, 0.19, 0.15, 0.12, 0.11, 0.08, 0.08, 0.~
## $ Energy_Use
                        <dbl> 10748.655, 11694.922, 10564.510, 10576.052, 11186.~
## $ Total_GHG_Emissions <dbl> 78601.84, 87044.85, 85014.50, 89207.17, 97918.57, ~
## $ Mortality_Rate
                        <dbl> 16.5, 15.7, 14.9, 14.2, 13.6, 13.1, 12.6, 12.2, 11~
#Fetch dimensions of df
dim(energyUse_mort)
## [1] 186
#Fetch summary statistics of df across fields
summary(energyUse mort)
##
      iso2c
                         iso3c
                                           country
                                                                date
  Length: 186
                      Length: 186
                                         Length: 186
                                                           Min.
                                                                  :1990
  Class : character
                      Class : character
                                         Class : character
                                                           1st Qu.:1997
## Mode :character
                      Mode :character
                                         Mode :character
                                                           Median:2005
##
                                                           Mean
                                                                  :2005
##
                                                           3rd Qu.:2013
##
                                                           Max.
                                                                  :2020
##
## Renewable_Consump
                       Energy_Use
                                     Total_GHG_Emissions Mortality_Rate
         : 0.000
                     Min. : 1411
                                           : 78602
                                                        Min.
                                                              : 2.400
  1st Qu.: 1.400
                     1st Qu.: 2830
                                     1st Qu.: 328642
                                                        1st Qu.: 4.725
## Median : 4.825
                     Median: 3711
                                     Median : 520126
                                                        Median : 7.150
         : 5.677
                          : 4869
## Mean
                     Mean
                                    Mean
                                           :1525375
                                                        Mean
                                                              : 8.549
## 3rd Qu.: 8.805
                     3rd Qu.: 7662
                                     3rd Qu.:1262850
                                                        3rd Qu.:10.025
## Max.
         :18.690
                            :11695
                                                               :28.800
                     Max.
                                     Max.
                                            :6810656
                                                        Max.
##
                     NA's
                            :32
#Create distrubtion plots of independent and dependent variables and review for heteroskedasticity.
mortality_dist <- ggplot(energyUse_mort, aes(x = Mortality_Rate)) +</pre>
 geom_histogram() +
 labs(title = "Energy Consumption Distribution",
      caption = "Per Country",
      color = "Country") +
 xlab("Mortality Rate") +
 ylab("Frequency")
mortality_dist
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Energy Consumption Distribution

Figure 1: Mortality Distribution Analysis

```
ghg_dist <- ggplot(energyUse_mort, aes(x = Total_GHG_Emissions)) +</pre>
  geom_histogram() +
 labs(title = "GHG Distribution",
       caption = "Per Country",
       color = "Country") +
 xlab("Mortality Rate") +
 ylab("Frequency")
ghg_dist
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

```
EnergyUse_dist <- ggplot(energyUse_mort, aes(x = Energy_Use)) +</pre>
  geom_histogram() +
  labs(title = "Total Energy Use",
       caption = "Per Country",
       color = "Country") +
  xlab("Mortality Rate") +
 ylab("Frequency")
EnergyUse_dist
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

GHG Distribution

Figure 2: GHG Distribution Analysis

Per Country

Warning: Removed 32 rows containing non-finite outside the scale range
('stat_bin()').

```
Renewable_Consump_dist <- ggplot(energyUse_mort, aes(x = Renewable_Consump)) +
    geom_histogram() +
    labs(title = "Renewable Energy Use Distribution",
        caption = "Per Country",
        color = "Country") +
    xlab("Mortality Rate") +
    ylab("Frequency")</pre>
Renewable_Consump_dist
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

```
#Create logged versions of histograms and review for normalized graphs
mortality_dist <- ggplot(energyUse_mort, aes(x = log(Mortality_Rate))) +
    geom_histogram() +
    labs(title = "Logged Mortality Rate Distribution",
        caption = "Per Country",
        color = "Country") +
    xlab("Mortality Rate") +
    ylab("Frequency")</pre>
mortality_dist
```


Figure 3: Total Energy Use Distribution Analysis

Figure 4: Renewable Distribution Analysis

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Logged Mortality Rate Distribution

Per Country

3.5

3.0

Figure 5: Mortality Logged Distribution Analysis

2.0

Mortality Rate

2.5

```
ghg_dist <- ggplot(energyUse_mort, aes(x = log(Total_GHG_Emissions))) +
    geom_histogram() +
    labs(title = "Logged GHG Distribution",
        caption = "Per Country",
        color = "Country") +
    xlab("Mortality Rate") +
    ylab("Frequency")</pre>
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

1.5

1.0

```
EnergyUse_dist <- ggplot(energyUse_mort, aes(x = log(Energy_Use))) +
  geom_histogram() +
  labs(title = "Total Energy Used Logged Distribution",
        caption = "Per Country",
        color = "Country") +
   xlab("Mortality Rate") +
  ylab("Frequency")</pre>
EnergyUse_dist
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Logged GHG Distribution

Figure 6: GHG Logged Distribution Analysis

Warning: Removed 32 rows containing non-finite outside the scale range
('stat_bin()').

```
Renewable_Consump_dist <- ggplot(energyUse_mort, aes(x = log(Renewable_Consump))) +
    geom_histogram() +
    labs(title = "Renewable Energy Logged Distribution",
        caption = "Per Country",
        color = "Country") +
    xlab("Mortality Rate") +
    ylab("Frequency")</pre>
Renewable_Consump_dist
```

```
## 'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.
## Warning: Removed 2 rows containing non-finite outside the scale range
## ('stat_bin()').
```

```
#Create scatterplots to review changes in independent variables over time.

renewable_consump_time <- ggplot(energyUse_mort, aes(x = date, y = Renewable_Consump, color = country))
    geom_point() +
    labs(title = "Renewable Energy Consumption Over Time",
        caption = "Per Country",
        color = "Country") +</pre>
```


Figure 7: Total Energy Distribution Analysis

Figure 8: Renewable Energy Distribution Analysis

```
xlab("Year") +
ylab("Renewable Energy Used (% of Total Use")
renewable_consump_time
```


Figure 9: Renewable Energy Scatterplot

```
energy_consump_time <- ggplot(energyUse_mort, aes(x = date, y = Energy_Use, color = country)) +
    geom_point() +
    labs(title = "Energy Consumption as kg of Oil Equivalent per Capita",
        caption = "Per Country",
        color = "Country") +
    xlab("Year") +
    ylab("Energy Consumption")
energy_consump_time</pre>
```

Warning: Removed 32 rows containing missing values or values outside the scale range
('geom_point()').

```
ghg_emissions_time <- ggplot(energyUse_mort, aes(x = date, y = Total_GHG_Emissions, color = country)) +
    geom_point() +
    labs(title = "Total GhG Emissions Over Time (kt of CO2 Equivalent)",
        caption = "Per Country",
        color = "Country") +
    xlab("Year") +
    ylab("GhG Emissions")</pre>
```

Energy Consumption as kg of Oil Equivalent per Capita

Figure 10: Total Energy Use Scatterplot

```
ghg_emissions_time
```

```
mortality_time <- ggplot(energyUse_mort, aes(x = date, y = Mortality_Rate, color = country)) +
    geom_point() +
    labs(title = "Mortality Rate (Under 5 per 1,000 Births) per Country Over Time",
        caption = "Per Country",
        color = "Country") +
    xlab("Year") +
    ylab("Mortality Rate")</pre>
mortality_time
```


Figure 11: GHG Scatterplot

Figure 12: Mortality Scatterplot

Analysis

```
#Use AIC function to review which independent variables can be used for multiple regression.
AIC <- lm(data = energyUse_mort, log(Mortality_Rate) ~ Renewable_Consump + Energy_Use + Total_GHG_Emiss
AIC
##
## Call:
## lm(formula = log(Mortality_Rate) ~ Renewable_Consump + Energy_Use +
       Total_GHG_Emissions, data = energyUse_mort)
##
## Coefficients:
##
           (Intercept)
                          Renewable_Consump
                                                       Energy_Use
                                  3.391e-02
                                                        6.009e-05
             1.670e+00
## Total GHG Emissions
            -4.932e-08
##
step(AIC)
## Start: AIC=-186.93
## log(Mortality_Rate) ~ Renewable_Consump + Energy_Use + Total_GHG_Emissions
##
                         Df Sum of Sq
                                         RSS
                                                  AIC
## <none>
                                      43.432 -186.93
## - Total_GHG_Emissions 1
                               1.3188 44.751 -184.32
                               1.4736 44.906 -183.79
## - Renewable_Consump
                          1
## - Energy_Use
                          1
                               2.3502 45.783 -180.81
##
## Call:
## lm(formula = log(Mortality_Rate) ~ Renewable_Consump + Energy_Use +
##
       Total_GHG_Emissions, data = energyUse_mort)
##
## Coefficients:
           (Intercept)
                          Renewable_Consump
                                                      Energy_Use
                                  3.391e-02
                                                       6.009e-05
             1.670e+00
##
## Total GHG Emissions
            -4.932e-08
##
# Run multiple regressions
AICmodel <- lm(data = energyUse_mort, log(Mortality_Rate) ~ Renewable_Consump + Energy_Use + Total_GHG
summary(AICmodel)
##
## Call:
## lm(formula = log(Mortality_Rate) ~ Renewable_Consump + Energy_Use +
       Total_GHG_Emissions, data = energyUse_mort)
##
##
## Residuals:
       \mathtt{Min}
                  1Q Median
                                    3Q
```

-1.10766 -0.32088 0.01821 0.26459 1.32740

```
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       1.670e+00 1.528e-01 10.931
                                                      <2e-16 ***
## Renewable_Consump
                       3.391e-02 1.503e-02
                                              2.256
                                                      0.0255 *
## Energy Use
                       6.009e-05 2.109e-05
                                              2.849
                                                      0.0050 **
## Total_GHG_Emissions -4.932e-08 2.311e-08 -2.134
                                                      0.0345 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5381 on 150 degrees of freedom
    (32 observations deleted due to missingness)
## Multiple R-squared: 0.05606,
                                   Adjusted R-squared:
## F-statistic: 2.969 on 3 and 150 DF, p-value: 0.03383
```

AICmodel

```
##
## Call:
## lm(formula = log(Mortality_Rate) ~ Renewable_Consump + Energy_Use +
       Total_GHG_Emissions, data = energyUse_mort)
## Coefficients:
##
           (Intercept)
                          Renewable_Consump
                                                       Energy_Use
                                  3.391e-02
                                                        6.009e-05
             1.670e+00
##
## Total_GHG_Emissions
            -4.932e-08
##
```

Question 1: H0 = There is no observable effect of energy consumption, renewable energy consumption, and total ghg emissions on mortality rates (H0 = 0).

Question 2: Ha = There is observable effect of energy consumption, renewable energy consumption, and total ghg emissions on mortality rates (H0 != 0).

Summary and Conclusions

Although there is enough evidence to reject the null hypothesis, the regression coefficients seem to oddly indicate that increases in both renewable energy consumption and total energy use seems to correlate to increased mortality rates, while a decrease in total greenhouse gas emissions seem to correlate with a decrease in mortality rates for every increase in total greenhouse gas emissions.

All of these regression coefficients are statistically significant, with renewable consumption and total ghg emissions significant at the 5 percent level, and energy use significant at the 1 percent level.

However, there are a few things to point out. Quantitatively, the R-Squared is only 0.056, which means that only about 5.6% of variance in the model is explaned by this model, indicating drastic underfit of data. Additional data will be needed to raise this R-Squared to an acceptable level without overfitting the data.

Qualitatively, there are quite a few exogenous factors missing from the model that may help explain or even drastically change these results. Perhaps increases in energy consumption and energy use may correlate to higher mortality rates simply because of larger populations. Perhaps there are other factors within individual countries' economies that may explain higher mortality rates such as crime rates, poverty rates, etc. Negative correlation between mortality rates and ghg emissions may potentially be explained better by combination of factors including total population, total gdp, etc. Countries with higher greenhouse gas emissions may emit so much more than less developed countries that the data may be skewed. Industrial countries that pollute much more than smaller, less-developed countries tend to have more advanced infrastructure to support advanced medical facilities, etc. Thus, mortality rates cannot be explained soley by these three factors alone.

References

World Bank Data Mortality Rate: $https://data.worldbank.org/indicator/SH.DYN.MORT Renewable Energy Consumption: <math display="block">https://data.worldbank.org/indicator/EG.FEC.RNEW.ZS?view=chart Energy Use: \\ https://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE?view=chart Total Greenhouse Gas Emissions: <math display="block">https://data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE?view=chart$