Rank-65915 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431726745

General information

Number of lines	3
Number of points	21
Number of singular points	1
Number of Eckardt points	0
Number of double points	3
Number of single points	9
Number of points off lines	9
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$2^3, 1^9, 0^9$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & \omega^2 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{247} = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{247} = \mathbf{Pl}(0, 3, 2, 0, 0, 1)_{121}$$

$$\ell_1 = \begin{bmatrix} 1 & \omega & 0 & \omega^2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{310} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{310} = \mathbf{Pl}(0, 2, 3, 0, 0, 1)_{127}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \mathbf{Pl}(1, 1, 1, 1, 1, 0)_{74}$$

Rank of lines: (247, 310, 89)

Rank of points on Klein quadric: (121, 127, 74)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

$$P_{64} = (3,2,2,1) = \ell_0 \cap \ell_2$$

$$P_{83} = (2, 3, 3, 1) = \ell_1 \cap \ell_2$$

Single Points

The surface has 9 single points:

The single points on the surface are:

$$0: P_{12} = (1, 1, 1, 0)$$
 lies on line ℓ_2

1: $P_{23} = (1,0,0,1)$ lies on line ℓ_2

2: $P_{33} = (3, 2, 0, 1)$ lies on line ℓ_0

 $3: P_{36} = (2,3,0,1)$ lies on line ℓ_1

4: $P_{42} = (0, 1, 1, 1)$ lies on line ℓ_2

The single points on the surface are:

$5: P_{48} = (3, 2, 1, 1)$ lies on line ℓ_0

6:
$$P_{51} = (2, 3, 1, 1)$$
 lies on line ℓ_1

7:
$$P_{67} = (2, 3, 2, 1)$$
 lies on line ℓ_1

8:
$$P_{80} = (3, 2, 3, 1)$$
 lies on line ℓ_0

Points on surface but on no line

The surface has 9 points not on any line:

The points on the surface but not on lines are:

$$0: P_0 = (1, 0, 0, 0)$$

$$1: P_1 = (0, 1, 0, 0)$$

$$2: P_4 = (1, 1, 1, 1)$$

$$3: P_{47} = (2, 2, 1, 1)$$

$$4: P_{52} = (3, 3, 1, 1)$$

$$5: P_{56} = (3, 0, 2, 1)$$

$$6: P_{61} = (0, 2, 2, 1)$$

7:
$$P_{71} = (2, 0, 3, 1)$$

$$8: P_{81} = (0, 3, 3, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_{64}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_2	P_{83}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{64}	P_{83}

The surface has 21 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$8: P_{42} = (0, 1, 1, 1)$	16: $P_{67} = (2, 3, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	$9: P_{47} = (2, 2, 1, 1)$	$17: P_{71} = (2,0,3,1)$
$2: P_2 = (0, 0, 1, 0)$	$10: P_{48} = (3, 2, 1, 1)$	18: $P_{80} = (3, 2, 3, 1)$
$3: P_4 = (1, 1, 1, 1)$	$11: P_{51} = (2,3,1,1)$	19: $P_{81} = (0, 3, 3, 1)$
$4: P_{12} = (1, 1, 1, 0)$	$12: P_{52} = (3,3,1,1)$	$20: P_{83} = (2, 3, 3, 1)$
$5: P_{23} = (1, 0, 0, 1)$	13: $P_{56} = (3,0,2,1)$	
$6: P_{33} = (3, 2, 0, 1)$	$14: P_{61} = (0, 2, 2, 1)$	
$7: P_{36} = (2, 3, 0, 1)$	15: $P_{64} = (3, 2, 2, 1)$	