Redes neurais convolucionais

Jones Granatyr

Redes neurais convolucionais (CNN)

- Usado para visão computacional
- Carros autônomos, detecção de pedestres (umas das razões por deep learning funcionar bem)
- Em geral, melhor do que SVM (support vector machines)

Pixels

Laranja camisa Azul calção Azul sapato

8.97,3.45,2.35,0.0,00.00,0.00,Bart 6.75,0.94,0.52,0.00,0.00,0.00,Bart 9.69,4.10,1.56,0.00,0.00,0.00,Bart 0.00,0.00,0.00,4.68,0.66,0.01,Homer 0.00,0.00,0.00,0.12,2.50,0.03,Homer 0.00,0.00,0.00,5.80,0.50,1.28,Homer

1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0
1	2	3	4	5	6	7	8	9	0

0,1,1,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,1,1,1,0,9

Redes neurais densas x convolucionais

- Não usa todas as entradas (pixels)
- Usa uma rede neural tradicional, mas no começo transforma os dados na camada de entrada
- Quais são as características mais importantes?

Redes neurais convolucionais (CNN)

- Quais características utilizar?
- Para faces
 - Localização do nariz
 - Distância entre os olhos
 - Localização da boca
- Como diferenciar uma face humana de um animal?
- CNN descobre as características

Redes neurais convolucionais (CNN)

- Etapa 1 Operador de convolução
- Etapa 2 Pooling
- Etapa 3 Flattening
- Etapa 4 Rede neural densa

- Convolução é o processo de adicionar cada elemento da imagem para seus vizinhos, ponderado por um kernel
- A imagem é uma matriz e o kernel é outra matriz

$$(fst g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m] \ = \sum_{m=-\infty}^{\infty} f[n-m]g[m].$$

Fonte: https://en.wikipedia.org/wiki/Convolution

- Explicações sobre os kernels
 - https://en.wikipedia.org/wiki/Kernel (image processing)
- Exemplo on-line
 - http://setosa.io/ev/image-kernels/

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

$$0*1+0*0+0*0+0*1+1*0+0*1+0*0+0*1+0*1=0$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

$$0*1+0*0+0*0+1*1+0*0+0*1+0*0+0*1+0*1=1$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

$$0*1+0*0+0*0+0*1+0*0+0*1+0*0+0*1+0*1=0$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

$$0*1+0*0+0*0+0*1+0*0+1*1+0*0+0*1+0*1=1$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

	1	0	0	
Χ	1	0	1	:
	0	1	1	
				•

Detector de características (feature detector)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

- Com o mapa de características (filter map) a imagem fica menor para facilitar o processamento
- Alguma informação sobre a imagem pode ser perdida, porém o propósito é detectar as partes principais (quanto maior os números melhor)
- O mapa de características preserva as características principais da imagem (olho, boca, nariz, por exemplo)

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	1	1
0	1	0	1	1	0	0
0	1	0	1	1	0	1
0	1	0	0	0	1	1

Imagem

(feature

				•	0	1	0	1	0
	1	0	0		0	2	1	1	2
Χ	1	0	1	=	1	2	2	3	1
	0	1	1		1	3	3	3	2
Detector de características (feature detector)				1	3	1	3	5	

Camada de convolução

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0	
0	2	1	1	2	
1	2	2	3	1	
1	3	3	3	2	
1	3	1	3	5	

2 1

Mapa de características (feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0	
0	2	1	1	2	
1	2	2	3	1	
1	3	3	3	2	
1	3	1	3	5	

 2
 1
 2

 3
 3
 2

Mapa de características (feature map)

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0
0	2	1	1	2
1	2	2	3	1
1	3	3	3	2
1	3	1	3	5

0	1	0	1	0	
0	2	1	1	2	
1	2	2	3	1	
1	3	3	3	2	
1	3	1	3	5	

 2
 1
 2

 3
 3
 2

 3
 3
 5

Mapa de características (feature map)

- Seleciona as características mais relevantes (reduz overfitting e ruídos desnecessários)
- Max polling (mínimo, média): max foca nas características mais relevantes

Rede neural convolucional (polling)

(feature maps)

Etapa 3 – Flattening

Rede neural convolucional

Treinamento com a descida do gradiente

Além do ajuste dos pesos, é feito também a mudança do detector de características

Conclusão

