PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-147043

(43) Date of publication of application: 21.05.2003

(51)Int.Cl.

COSG 18/67 CO8F290/06 CO8G 18/32 CO8G 18/62 G03F 7/027 H05K 3/28

(21)Application number: 2001-348344

(71)Applicant:

NIPPON KAYAKU CO LTD

(22)Date of filing:

14.11.2001

(72)Inventor:

KOYANAGI TAKAO

TANAKA RYUTARO

(54) URETHANIZED EPOXY CARBOXYLATE COMPOUND SOLUBLE IN AQUEOUS ALKALI SOLUTION, PHOTOSENSITIVE RESIN COMPOSITION USING THE SAME AND ITS CURED PRODUCT

PROBLEM TO BE SOLVED: To provide a photosensitive resin composition having excellent photoresponse, and providing a cured product having excellent flexibility, adhesion, pencil hardness, solvent resistance, acid resistance, heat resistance, resistance to gold plating or the like.

SOLUTION: This urethanized epoxy carboxylate compound (E) soluble in an aqueous alkali solution is obtained by reacting the following compound (A) with the following compounds (B), (C) and (D): compound (A): an epoxy carboxylate compound obtained by reacting (a) an epoxy compound having two epoxy groups in the molecule with (b) a monocarboxylic acid compound having an ethylenic double bond in the molecule; compound (B): a carboxylic acid compound having two hydroxy groups in the molecule; compound (C): a diisocyanate compound; and compound (D): a rubber compound having two hydroxy groups in the molesule.

LEGAL STATUS

[Date of request for examination]

04.12.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-147043 (P2003-147043A)

(43)公開日 平成15年5月21日(2003.5.21)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
C 0 8 G 18/67		C 0 8 G 18/67	2 H O 2 5
C08F 290/06		C 0 8 F 290/06	4 J O 2 7
C 0 8 G 18/32		C 0 8 G 18/32	A 4J034
18/62		18/62	5 E 3 1 4
G03F 7/027	502	G03F 7/027	502
		審査請求 未請求 請求項の数12	OL (全 12 頁) 最終頁に続く

(21)出願番号 特願2001-348344(P2001-348344)

(22)出願日 平成13年11月14日(2001.11.14)

(71)出願人 000004086

日本化薬株式会社

東京都千代田区富士見1丁目11番2号

(72)発明者 小柳 敬夫

東京都板橋区赤塚3-31-9

(72)発明者 田中 竜太朗

埼玉県さいたま市北袋町2-336

最終頁に続く

(54) 【発明の名称】 アルカリ水溶液可溶性ウレタン化エポキシカルポキシレート化合物及びそれを用いた感光性樹脂 組成物並びにその硬化物

(57)【要約】

【課題】光感度に優れ、得られた硬化物は、屈曲性、密 着性、鉛筆硬度、耐溶剤性、耐酸性、耐熱性、耐金メッ キ性等に優れた感光性樹脂組成物を提供する。

【解決手段】下記に示される化合物(A)、化合物

(B)、化合物(C)及び化合物(D)を反応させて得られることを特徴とするアルカリ水溶液可溶性ウレタン 化エポキシカルボキシレート化合物(E)

化合物(A):分子中に2個のエポキシ基を有するエポキシ化合物(a)と分子中にエチレン性不飽和二重結合を有するモノカルボン酸化合物(b)とを反応させて得られるエポキシカルボキシレート化合物

化合物 (B):分子中に2個の水酸基を有するカルボン

酸化合物

化合物(C):ジイソシアネート化合物。

化合物(D): 分子中に2個の水酸基を有するゴム化

合物

【特許請求の範囲】

【請求項1】下記に示される化合物(A)、化合物(B)、化合物(C)及び化合物(D)を反応させて得られるアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

化合物(A):分子中に2個のエポキシ基を有するエポキシ化合物(a)と分子中にエチレン性不飽和二重結合を有するモノカルボン酸化合物(b)とを反応させて得られるエポキシカルボキシレート化合物

化合物 (B):分子中に2個の水酸基を有するカルボン 10酸化合物

化合物(C):ジイソシアネート化合物

化合物(D):分子中に2個の水酸基を有するゴム化合物

【請求項2】分子中に2個のエポキシ基を有するエポキシ化合物(a)のエポキシ当量が、150~900g/ 当量である請求項1に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項3】分子中に2個のエポキシ基を有するエポキシ化合物(a)が、フェニルジグリシジルエーテル化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、ハロゲノ化ビスフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物及びビフェノール型エポキシ化合物からなる群から選択された一種又は二種以上である請求項1または請求項2のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項4】分子中にエチレン性不飽和二重結合を有するモノカルボン酸化合物(b)が、(メタ)アクリル酸、(メタ)アクリル酸、(メタ)アクリル酸とεーカプロラクトンとの反応生成物及び桂皮酸からなる群から選択された一種又は二種以上である請求項1ないし請求項3のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項5】分子中に2個の水酸基を有するカルボン酸化合物(B)が、ジメチロールプロピオン酸またはジメチロールプタン酸である請求項1ないし請求項4のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項6】ジイソシアネート化合物(C)が、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、トリデンジイソシアネート、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、アリレンスルホンエーテルジイソシアネート、アリレシランジイソシアネート、Nーアシルジイソシアネー50

ト及びリシンジイソシアネートからなる群から選択された一種又は二種以上である請求項1ないし請求項5のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項7】分子中に2個の水酸基を有するゴム化合物(D)が、末端水酸基ブタジエンアクリロニトリルゴム 又は末端水酸基シリコーンゴムである請求項1ないし請求項6のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項8】固形分酸価が、50~150mg・KOH/gである請求項1ないし請求項7のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)

【請求項9】請求項1ないし請求項8のいずれか一項に 記載のアルカリ水溶液可溶性ウレタン化エポキシカルボ キシレート化合物(E)、光重合開始剤(F)、架橋剤 (G)及び任意成分として硬化剤成分(H)を含有する ことを特徴とする感光性樹脂組成物

【請求項10】請求項9に記載の感光性樹脂組成物の硬20 化物

【請求項11】請求項10に記載の硬化物の層を有する 基材

【請求項12】請求項11に記載の基材を有する物品 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、アルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)及びそれを用いた感光性樹脂組成物ならびにその硬化物に関し、更に詳しくは、フレキシブルプリント配線板用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜等として有用で、現像性、電気絶縁性、密着性、半田耐熱性、耐薬品性、耐メッキ性等に優れた硬化物を与える樹脂組成物及びその硬化物に関する。【0002】

【従来の技術】現在、一部の民生用プリント配線板並びにほとんどの産業用プリント配線板のソルダーレジストには、高精度、高密度の観点から、露光後、現像することにより画像を形成し、熱及び光照射で仕上げ硬化する液状現像型ソルダーレジストが使用されている。また、環境問題への配慮から、現像液として希アルカリ水溶液を用いるアルカリ現像タイプの液状ソルダーレジストが主流になっている。このような希アルカリ水溶液を用いるアルカリ現像タイプのソルダーレジストとしては、例えば、特開昭61-243869号公報には、ノボラック型エポキシ樹脂と不飽和一塩基酸の反応生成物に酸無水物を付加した感光性樹脂、光重合開始剤、希釈剤、及びエポキシ樹脂からなるソルダーレジスト組成物が開示されている。

[0003]

【発明が解決しようとする課題】プリント配線板は携帯

機器の小型軽量化や通信速度の向上をめざし、高精度、高密度化が求められており、それに伴いソルダーレジストへの要求も益々高度となり、従来の要求よりも、よりフレキシブル性を保ちながら基板密着性、高絶縁性、無電解金メッキ性に耐えうる性能等が要求されており、在市販されているソルダーレジストでは、これらの要に十分に対応できていない。本発明の目的は、今日のは、今日のは、本アルカリ水をできると共に、後硬化、ポストキュア)工程で熱硬化させて得られる硬化膜が十分なフレキシブル性を有し、高絶縁性で密着性、無電解金メッキ耐性に優れたソルダーレジストインキに適する樹脂組成物及びその硬化物を提供することにある。

【課題を解決するための手段】本発明者らは前述の課題 を解決するため、アルカリ水溶液に可溶な化合物につい て鋭意研究の結果、本発明を完成するに至った。即ち、 本発明は、

[0004]

【0005】(1)下記に示される化合物(A)、化合物(B)、化合物(C)及び化合物(D)を反応させて得られるアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)、

化合物(A):分子中に2個のエポキシ基を有するエポキシ化合物(a)と分子中にエチレン性不飽和二重結合を有するモノカルボン酸化合物(b)とを反応させて得られるエポキシカルボキシレート化合物

化合物(B):分子中に2個の水酸基を有するカルボン酸化合物

化合物(C):ジイソシアネート化合物。

化合物 (D):分子中に 2 個の水酸基を有するゴム化合物

【0006】(2)分子中に2個のエポキシ基を有するエポキシ化合物(a)のエポキシ当量が、150~900g/当量である(1)に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)、

(3)分子中に2個のエポキシ基を有するエポキシ化合物(a)が、フェニルジグリシジルエーテル化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、ハロゲノ化ビスフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物及びビフェノール型エポキシルと合物からなる群から選択された一種又は二種以上カリ水溶液で含さく(4)分子中にエチレン性不飽和二重結合を有するモノカルボン酸化合物(b)が、(メタ)アクリル酸、(メタ)アクリル酸と ε -カプロラクトンとの反応生成物及び柱皮酸からなる群から選択された一種又は二

種以上である(1)ないし(3)のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)、(5)分子中に2個の水酸基を有するカルボン酸化合物(B)が、ジメチロールプロピオン酸またはジメチロールブタン酸である(1)ないし(4)のいずれか一項に記載のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)、

(6) ジイソシアネート化合物(C)が、フェニレンジ イソシアネート、トリレンジイソシアネート、キシリレ ンジイソシアネート、テトラメチルキシリレンジイソシ アネート、ジフェニルメタンジイソシアネート、ナフタ レンジイソシアネート、トリデンジイソシアネート、ヘ キサメチレンジイソシアネート、ジシクロヘキシルメタ ンジイソシアネート、イソホロンジイソシアネート、ア リレンスルホンエーテルジイソシアネート、アリルシラ ンジイソシアネート、Nーアシルジイソシアネート及び リシンジイソシアネートからなる群から選択された一種 又は二種以上である(1)ないし(5)のいずれか一項 に記載のアルカリ水溶液可溶性ウレタン化エポキシカル ボキシレート化合物 (E)、(7)分子中に2個の水酸 基を有するゴム化合物(D)が、末端水酸基ブタジエン アクリロニトリルゴム又は末端水酸基シリコーンゴムで ある(1)ないし(6)のいずれか一項に記載のアルカ リ水溶液可溶性ウレタン化エポキシカルボキシレート化 合物(E)、(8) 固形分酸価が、50~150 mg・ KOH/gである(1)ないし(7)のいずれか一項に 記載のアルカリ水溶液可溶性ウレタン化エポキシカルボ キシレート化合物(E)、(9)(1)ないし(8)の いずれか一項に記載のアルカリ水溶液可溶性ウレタン化 30 エポキシカルボキシレート化合物(E)、光重合開始剤

(F)、架橋剤(G)及び任意成分として硬化剤成分 (H)を含有することを特徴とする感光性樹脂組成物、

(10) (9) に記載の感光性樹脂組成物の硬化物、

(11) (10) に記載の硬化物の層を有する基材、

(12) (11) に記載の基材を有する物品に関する。 【0007】

【発明の実施の形態】本発明のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)は、上記の化合物(A)、化合物(B)、化合物(C)及び化合物(D)を反応させて得られることを特徴とする。

【0008】本発明のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)を製造するために用いる分子中に2個以上のエポキシ基を有するエポキシ化合物(a)は、特にエポキシ当量が、100~900g/当量のエポキシ化合物(a)であることが好ましい。エポキシ当量が100g/当量未満の場合、得られるウレタン化エポキシカルボキシレート化合物(D)の分子量が小さくなり、成膜が困難となる恐れやフレキシブル性が十分得られなくなる恐れがる。またエポキシ当 量が900g/当量を超える場合、エチレン性不飽和二

重結合を有するモノカルボン酸(b)の導入率が低くな り感光性が低下する恐れがある。

【0009】分子中に2個のエポキシ基を有するエポキ シ化合物の具体例としては、例えば、ハイドロキノンジ グリシジルエーテル、カテコールジグリシジルエーテ ル、レゾルシノールジグリシジルエーテル等のフェニル ジグリシジルエーテル、ビスフェノールーA型エポキシ 樹脂、ビスフェノールーF型エポキシ樹脂、ビスフェノ ールーS型エポキシ樹脂、2,2-ビス(4-ヒドロキ シフェニル) -1, 1, 1, 3, 3, 3-ヘキサフルオ ロプロパンのエポキシ化合物等のビスフェノール型エポ キシ化合物、水素化ビスフェノールーA型エポキシ樹 脂、水素化ビスフェノールーF型エポキシ樹脂、水素化 ビスフェノールー S型エポキシ樹脂、水素化2,2ービ 3-ヘキサフルオロプロパンのエポキシ化合物等の水素 化ビスフェノール型エポキシ化合物、臭素化ビスフェノ ールーA型エポキシ樹脂、臭素化ビスフェノールーF型 エポキシ樹脂等のハロゲノ化ビスフェノール型エポキシ 化合物、シクロヘキサンジメタノールジグリシジルエー テル化合物等の脂環式ジグリシジルエーテル化合物、 6-ヘキサンジオールジグリシジルエーテル、1. 4-ブタンジオールジグリシジルエーテル、ジエチレン グリコールジグリシジルエーテル等の脂肪族ジグリシジ ルエーテル化合物、ポリサルファイドジグリシジルエー テル等のポリサルファイド型ジグリシジルエーテル化合 物、ビフェノール型エポキシ樹脂、シリコーンエポキシ 樹脂等が挙げられる。

【0010】これらエポキシ化合物の市販品としては、 例えばエピコート828、エピコート1001、エピコ ート1002、エピコート1003、エピコート100 4 (いずれもジャパンエポキシレジン製)、エポミック R-140、エポミックR-301、エポミックR-3 04 (いずれも三井化学製)、DER-331、DER -332、DER-324 (いずれもダウ・ケミカル社 製)、エピクロン840、エピクロン850(いずれも 大日本インキ製)UVR-6410(ユニオンカーバイ ド社製)、YD-8125 (東都化成社製)等のビスフ ェノールーA型エポキシ樹脂、UVR-6490(ユニ オンカーバイド社製)、YDF-2001、YDF-2 004、YDF-8170 (いずれも東都化成社製)、 エピクロン830、エピクロン835(いずれも大日本 インキ製)等のビスフェノールーF型エポキシ樹脂、H BPA-DGE(丸善石油化学製)、リカレジンHBE -100(新日本理化製)等の水素化ビスフェノールー A型エポキシ樹脂、DER-513、DER-514、 DER-542 (いずれもダウ・ケミカル社製)等の臭 素化ビスフェノールーA型エポキシ樹脂、セロキサイド 2021 (ダイセル製)、リカレジンDME-100

脂環式エポキシ樹脂、ED-503(旭電化製)、リカ レジンW-100 (新日本理化製)、EX-212、E X-214、EX-850 (いずれもナガセ化成製)等 の脂肪族ジグリシジルエーテル化合物、FLEP-5 0、FLEP-60 (いずれも東レチオコール製)等の ポリサルファイド型ジグリシジルエーテル化合物、YX -4000 (ジャパンエポキシレジン製) 等のビフェノ ール型エポキシ化合物、KF-105、X-22-16 3A、X-22-163B、X-22-163C (いず れも信越化学工業製)、FM-5511、FM-552 1、FM-5525 (いずれもチッソ製) 等のシリコー ンエポキシ樹脂が挙げられる。

【0011】本発明のアルカリ水溶液可溶性ウレタン化 エポキシカルボキシレート化合物(E)を製造するため に用いる分子中にエチレン性不飽和二重結合を有するモ ノカルボン酸化合物(b)としては、例えばアクリル酸 類やクロトン酸、αーシアノ桂皮酸、桂皮酸、或いは飽 和または不飽和二塩基酸と不飽和基含有モノグリシジル 化合物との反応物が挙げられる。アクリル酸類として 20 は、例えば (メタ) アクリル酸、β-スチリルアクリル 酸、β-フルフリルアクリル酸、飽和または不飽和二塩 基酸無水物と1分子中に1個の水酸基を有する(メタ) アクリレート誘導体と当モル反応物である半エステル 類、飽和または不飽和二塩基酸とモノグリシジル(メ タ)アクリレート誘導体類との当モル反応物である半エ ステル類等が挙げられるが、感光性樹脂組成物としたと きの感度の点で(メタ)アクリル酸、(メタ)アクリル 酸と ε ーカプロラクトンとの反応生成物または桂皮酸が 特に好ましい。

【0012】本発明のアルカリ水溶液可溶性ウレタン化 エポキシカルボキシレート化合物(E)を製造するため に用いる分子中に2個の水酸基を有するカルボン酸化合 物(B)としては、分子中にアルコール性水酸基及び/ またはフェノール性水酸基とカルボキシル基を同時に有 する化合物であればすべて用いることができるが、アル カリ水溶液現像性等に特に優れたジメチロールプロピオ ン酸またはジメチロールブタン酸が好ましい。

【0013】本発明のアルカリ水溶液可溶性ウレタン化 エポキシカルボキシレート化合物(E)を製造するため に用いるジイソシアネート化合物(C)としては、分子 中に2個のイソシアネート基を有するものであればすべ て用いることができるが、柔軟性等に特に優れたフェニ レンジイソシアネート、トリレンジイソシアネート、キ シリレンジイソシアネート、テトラメチルキシリレンジ イソシアネート、ジフェニルメタンジイソシアネート、 ナフタレンジイソシアネート、トリデンジイソシアネー ト、ヘキサメチレンジイソシアネート、ジシクロヘキシ ルメタンジイソシアネート、イソホロンジイソシアネー ト、アリレンスルホンエーテルジイソシアネート、アリ (新日本理化製)、EX-216 (ナガセ化成製)等の 50 ルシランジイソシアネート、N-アシルジイソシアネー

ト、またはリシンジイソシアネートが好ましい。

【0014】本発明のアルカリ水溶液可溶性ウレタン化 エポキシカルボキシレート化合物 (E) を製造するため に用いる分子中に2個の水酸基を有するゴム化合物

(D) としては、分子中に2個の水酸基を有し、かつゴムの性質を有する化合物であればすべて用いることができるが、特に末端水酸基ブタジエンアクリロニトリルゴムまたは末端水酸基シリコーンゴムが好適である。

【0015】これらのゴム化合物の市販品としては、例えば、リアクティブラバー AT×013(宇部興産製)等の末端水酸基ブタジエンアクリロニトリルゴム、FM-4411、FM-4421、FM-4425(いずれもチッソ製)や、X-22-160AS、KF-6001、KF-6002、KF-6003(いずれも信越化学工業製)等の末端水酸基シリコーンゴムが挙げられる。

【0016】本発明のアルカリ水溶液可溶性ウレタン化 エポキシカルボキシレート化合物(E)は、まず前述の エポキシ化合物(a)と分子中にエチレン性不飽和二重 結合を有するモノカルボン酸化合物(b)との反応(以 20 下第一の反応という)によりアルコール性水酸基を有し たエポキシカルボキシレート化合物(A)を得、次いで これに分子中に2個の水酸基を有するカルボン酸化合物 (B)、分子中に2個の水酸基を有するゴム化合物

(D) 及びジイソシアネート化合物 (C) を反応せしめ (ウレタン化反応、以下第二の反応という)て得ること ができる

【0017】第一の反応は、無溶剤もしくはアルコール 性水酸基を有さない溶媒、具体的には例えば、アセト ン、エチルメチルケトン、シクロヘキサノン等のケトン 類、ベンゼン、トルエン、キシレン、テトラメチルベン ゼン等の芳香族炭化水素類、エチレングリコールジメチ ルエーテル、エチレングリコールジエチルエーテル、ジ プロピレングリコールジメチルエーテル、ジプロピレン グリコールジエチルエーテル、トリエチレングリコール ジメチルエーテル、トリエチレングリコールジエチルエ ーテル等のグリコールエーテル類、酢酸エチル、酢酸ブ チル、メチルセロソルプアセテート、エチルセロソルブ アセテート、ブチルセロソルブアセテート、カルビトー ルアセテート、プロピレングリコールモノメチルエーテ ルアセテート、グルタル酸ジアルキル、コハク酸ジアル キル、アジピン酸ジアルキル等のエステル類、y-ブチ ロラクトン等の環状エステル類、石油エーテル、石油ナ フサ、水添石油ナフサ、ソルベントナフサ等の石油系溶 剤、更には後述する架橋剤(C)等の単独または混合有 機溶媒中で行うことができる。

【0018】この反応における原料の仕込み割合としては、分子中に分子中にエチレン性不飽和二重結合を有するモノカルボン酸化合物(b)としては、エポキシ化合物(a)1当量に対し、80~120当量%であること 50

が好ましい。この範囲を逸脱した場合、第二の反応中に ゲル化を引き起こす恐れや、最終的に得られるアルカリ 水溶液可溶性ウレタン化エポキシカルボキシレート化合 物(E)の熱安定性が低くなる恐れがあるので好ましく ない。

【0019】反応時には、反応を促進させるために触媒を使用することが好ましく、該触媒の使用量は、反応物に対して0.1~10重量%である。その際の反応温度は60~150℃であり、また反応時間は、好ましくは5~60時間である。使用しうる触媒の具体例としては、例えばトリエチルアミン、ベンジルジメチルアミン、トリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムプロマイド、ベンジルトリメチルアンモニウムアイオダイド、トリフェニルフォスフィン、トリフェニルスチビン、メチルトリフェニルスチビン、オクタン酸クロム、オクタン酸ジルコニウム等が挙げられる。

【0020】第二の反応は、第一の反応終了後、反応液 に前述の分子中に2個の水酸基を有するカルボン酸化合 物(B)を加え分散液、または溶液とした後、さらに前 述のジイソシアネート化合物(C)を徐々に加え反応さ せるウレタン化反応である。無触媒でも反応を行うこと ができるが、反応を促進させるために触媒を使用するこ ともでき、該触媒の使用量は、反応物に対して0.01 ~10重量%である。この際の反応温度としては40~ 120℃であり、また反応時間は、好ましくは5~60 時間である。この第二の反応において使用しうる触媒の 具体例としては、例えば、ジブチルチンジ(2-エチル ヘキサノエート)、ジブチルチンジラウレート、スタン ナスオクトエート等の有機スズ化合物や、トリエチルア ミン、テトラメチルブタンジアミン、1,4-ジアザ [2, 2, 2]ビシクロオクタン、N-エチルモルホリン 等の有機アミノ化合物が挙げられる。

【0021】各成分の仕込み量において、分子中に2個 の水酸基を有するカルボン酸化合物(B)としては、本 発明のアルカリ水溶液可溶性ウレタン化エポキシカルボ キシレート化合物 (E) の固形分酸価が50~150m g・KOH/gとなるような計算値量を添加し、ジイソ シアネート化合物(C)としては、(化合物(A)のモ ル数+化合物(B)のモル数+化合物(D)のモル数) /(化合物Cのモル数)が1~5の範囲になるように仕 込むことが好ましい。この値が、1未満の場合、本発明 のアルカリ水溶液可溶性ウレタン化エポキシカルボキシ レート化合物(E)の末端にイソシアネート基が残存す ることになり、熱安定性が低く保存中にゲル化する恐れ があるので好ましくない。また、この値が5を超える場 合、アルカリ水溶液可溶性ウレタン化エポキシカルボキ シレート化合物(E)の分子量が低くなり、タック性の 問題や低感度という問題が生じる恐れがある。また、固 形分酸価が50mg・KOH/g未満の場合、アルカリ

水溶液に対する溶解性が不十分であり、パターニングを行った場合、残渣として残る恐れや最悪の場合パターニングができなくなる恐れがある。また、固形分酸価が150mg・KOH/gを超える場合、アルカリ水溶液に対する溶解性が高くなりすぎ、光硬化したパターンが剥離する等の恐れがあり好ましくない。

【0022】本発明の感光性樹脂組成物は、前述のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)、光重合開始剤(F)及び架橋剤(G)を含有し、更に任意成分として硬化剤成分(H)を含有しうる。

【0023】本発明の感光性樹脂組成物に用いられる前述のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物(E)の含有割合としては、感光性樹脂組成物の固形分を100重量%としたとき、通常15~70重量%、好ましくは、20~60重量%である。

【0024】本発明の感光性樹脂組成物に用いられる光 重合開始剤(F)の具体例としては、例えばベンゾイ ン、ベンゾインメチルエーテル、ベンゾインエチルエー テル、ベンゾインプロピルエーテル、ベンゾインイソブ 20 チルエーテル等のベンゾイン類;アセトフェノン、2, 2-ジエトキシー2-フェニルアセトフェノン、2,2 ージエトキシー2ーフェニルアセトフェノン、1、1-ジクロロアセトフェノン、2ーヒドロキシー2ーメチル ーフェニルプロパンー1ーオン、ジエトキシアセトフェ ノン、1-ヒドロキシンクロヘキシルフェニルケトン、 2-メチル-1- [4-(メチルチオ) フェニル] -2 ーモルホリノプロパンー1ーオンなどのアセトフェノン 類;2-エチルアントラキノン、2-ターシャリーブチ ルアントラキノン、2-クロロアントラキノン、2-ア ミルアントラキノンなどのアントラキノン類:2,4-ジエチルチオキサントン、2-イソプロピルチオキサン トン、2-クロロチオキサントンなどのチオキサントン 類;アセトフエノンジメチルケタール、ベンジルジメチ ルケタールなどのケタール類;ベンゾフェノン、4ーベ ンゾイルー4'ーメチルジフェニルサルファイド、4, 4'-ビスメチルアミノベンゾフェノンなどのベンゾフ ェノン類;2,4,6-トリメチルベンゾイルジフェニ ルホスフィンオキサイド、ビス(2,4,6-トリメチ ルベンゾイル) -フェニルホスフィンオキサイド等のホ スフィンオキサイド類等が挙げられる。これらの添加割 合としては、感光性樹脂組成物の固形分を100重量% としたとき、通常1~30重量%、好ましくは、2~2 5重量%である。

【0025】これらは、単独または2種以上の混合物として使用でき、さらにはトリエタノールアミン、メチルジエタノールアミンなどの第3級アミン、N、Nージメチルアミノ安息香酸エチルエステル、N、Nージメチルアミノ安息香酸イソアミルエステル等の安息香酸誘導体等の促進剤などと組み合わせて使用することができる。

これらの促進剤の添加量としては、光重合開始剤 (F) に対して、100重量%以下の添加が好ましい。

【0026】本発明の感光性樹脂組成物に用いられる架 橋剤(G)の具体例としては、例えば、2-ヒドロキシ エチル (メタ) アクリレート、2-ヒドロキシプロピル (メタ) アクリレート、1, 4-ブタンジオールモノ (メタ) アクリレート、カルビトール (メタ) アクリレ ート、アクリロイルモルホリン、水酸基含有(メタ)ア クリレート(例えば、2-ヒドロキシエチル(メタ)ア クリレート、2ーヒドロキシプロピル(メタ)アクリレ ート、1,4ーブタンジオールモノ(メタ)アクリレー ト等)と多カルボン酸化合物の酸無水物(例えば、無コ ハク酸、無水マレイン酸、無水フタル酸、テトラヒドロ 無水フタル酸、ヘキサヒドロ無水フタル酸等)の反応物 であるハーフエステル、ポリエチレングリコールジ (メ タ) アクリレート、トリプロピレングリコールジ(メ タ) アクリレート、トリメチロールプロパントリ(メ タ) アクリレート、トリメチロールプロパンポリエトキ シトリ(メタ)アクリレート、グリセンポリプロポキシ トリ(メタ)アクリレート、ヒドロキシビバリン酸ネオ ペングリコールの ε -カプロラクトン付加物のジ(メ タ)アクリレート (例えば、日本化薬(株)製、KAY ARAD HX-220、HX-620、等)、ペンタ エリスリトールテトラ (メタ) アクリレート、ジペンタ エリスリトールと ε -カプロラクトンの反応物のポリ (メタ) アクリレート、ジペンタエリスリトールポリ (メタ) アクリレート、モノ又はポリグリシジル化合物 (例えば、ブチルグリシジルエーテル、フェニルグリシ ジルエーテル、ポリエチレングリコールジグリシジルエ ーテル、ポリプロピレングリコールジグリシジルエーテ ル、1、6-ヘキサンジオールジグリシジルエーテル、 ヘキサヒドロフタル酸ジグリシジルエステル、グリセリ ンポリグリシジルエーテル、グリセリンポリエトキシグ リシジルエーテル、トリメチロールプロパンポリグリシ ジルエーテル、トリメチロールプロパンポリエトキシポ リグリシジルエーテル等と (メタ) アクリル酸の反応物 であるエポキシ(メタ)アクリレート等を挙げることが できる。これらの添加割合としては、感光性樹脂組成物 の固形分を100重量%としたとき、通常2~40重量 %、好ましくは、5~30重量%である。

【0027】本発明の感光性樹脂組成物に使用する任意成分としての硬化剤成分(H)の具体例としては、例えば、エポキシ化合物、オキサジン化合物等が挙げられる。硬化剤成分(H)は、光硬化後の樹脂塗膜に残存するカルボキシル基と加熱により反応し、さらに強固な薬品耐性を有する硬化塗膜を得ようとする場合に特に好ましく用いられる。

【0028】硬化剤成分(H)に用いうるエポキシ化合物の具体例としては例えば、フェノールノボラック型エ ポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ト

リスヒドロキシフェニルメタン型エポキシ樹脂、ジシク ロペンタジエンフェノール型エポキシ樹脂、ビスフェノ ールーA型エポキシ樹脂、ビスフェノールーF型エポキ シ樹脂、ビフェノール型エポキシ樹脂、ビスフェノール - A ノボラック型エポキシ樹脂、ナフタレン骨格含有エ ポキシ樹脂、複素環式エポキシ樹脂等が挙げられる。

【0029】上記のうち、フェノールノボラック型エポ キシ樹脂としては、例えばエピクロンN-770 (大日 本インキ化学工業(株)製)、D. E. N438(ダウ ・ケミカル社製)、エピコート154(油化シェルエポ キシ(株)製)、RE-306(日本化薬(株)製)等 が挙げられる。クレゾールノボラック型エポキシ樹脂と しては、例えばエピクロンN-695(大日本インキ化 学工業(株)製)、EOCN-102S、EOCN-1 03S、EOCN−104S(日本化薬(株)製)、U VR-6650 (ユニオンカーバイド社製)、ESCN -195(住友化学工業(株)製)等が挙げられる。

【0030】又、トリスヒドロキシフェニルメタン型エ ポキシ樹脂としては、例えばEPPN-503、EPP N-502H、EPPN-501H(日本化薬(株) 製)、TACTIX-742(ダウ・ケミカル社製)、 エピコートE1032H60(油化シェルエポキシ

(株) 製) 等が挙げられる。 ジシクロペンタジエンフェ ノール型エポキシ樹脂としては、例えばエピクロンEX A-7200 (大日本インキ化学工業(株)製)、TA CTIX-556 (ダウ・ケミカル社製) 等が挙げられ る。

【0031】さらに、ビスフェノール型エポキシ樹脂と しては、例えばエピコート828、エピコート1001 (油化シェルエポキシ製)、UVR-6410 (ユニオ ンカーバイド社製)、D. E. R-331 (ダウ・ケミ カル社製)、YD-8125(東都化成社製)等のビス フェノールーA型エポキシ樹脂、UVR-6490(ユ ニオンカーバイド社製)、YDF-8170(東都化成 社製)等のビスフェノールーF型エポキシ樹脂等が挙げ られる。

【0032】次に、ビフェノール型エポキシ樹脂として は、例えば、NC-3000P、NC-3000S(日 本化薬(株)性)等のビフェノール型エポキシ樹脂、Y X-4000 (油化シェルエポキシ(株)製)のビキシ レノール型エポキシ樹脂、YL-6121(油化シェル エポキシ(株)製)等が挙げられる。ビスフェノールA ノボラック型エポキシ樹脂としては、例えばエピクロン N-880 (大日本インキ化学工業(株)製)、エピコ ートE157S75 (油化シェルエポキシ (株) 製)等 が挙げられる。

【0033】最後に、ナフタレン骨格含有エポキシ樹脂 としては、例えばNC-7000(日本化薬社製)、E XA-4750 (大日本インキ化学工業(株)製)等が

PE-3150 (ダイセル化学工業(株)製)等が挙げ られる。複素環式エポキシ樹脂としては、例えばTEP IC, TEPIC-L, TEPIC-H, TEPIC-S(いずれも日産化学工業(株)製)等が挙げられる。 【0034】硬化剤成分(H)として用いうるオキサジ ン化合物の具体例としては例えば、B-m型ベンゾオキ サジン、P-a型ベンゾオキサジン、B-a型ベンゾオ キサジン (いずれも四国化成工業(株)製)が挙げられ

【0035】硬化剤成分(H)の添加割合としては、本 発明のアルカリ水溶液可溶性エポキシカルボキシレート 化合物の固形分酸価と使用量から計算された当量の20 0%以下の量が好ましい。この量が200%を超えると 本発明の感光性樹脂組成物の現像性が低下する恐れがあ り好ましくない。

【0036】本発明の感光性樹脂組成物には、さらに必 要に応じて各種の添加剤、例えば、タルク、硫酸バリウ ム、炭酸カルシウム、炭酸マグネシウム、チタン酸バリ ウム、水酸化アルミニウム、酸化アルミニウム、シリ 20 カ、クレーなどの充填剤、アエロジルなどのチキソトロ ピー付与剤; フタロシアニンブルー、フタロシアニング リーン、酸化チタンなどの着色剤、シリコーン、フッ素 系のレベリング剤や消泡剤;ハイドロキノン、ハイドロ キノンモノメチルエーテルなどの重合禁止剤などを組成 物の諸性能を高める目的で添加することが出来る。

【0037】なお、前述の硬化剤成分(H)は、予め前 記の樹脂組成物に混合してもよいが、プリント配線板へ の塗布前に混合して用いることもできる。すなわち、前 記、(A)成分を主体とし、これにエポキシ硬化促進剤 等を配合した主剤溶液と、前記(D)成分を主体とした 硬化剤溶液の二液型に配合し、使用に際してこれらを混 合して用いることが好ましい。

【0038】本発明の感光性樹脂組成物は、支持体とし て例えば重合体フィルム(例えば、ポリエチレンテレフ タレート、ポリプロピレン、ポリエチレン等からなるフ ィルム)上に塗布した感光性フィルムとして用いること もできる。

【0039】本発明の感光性樹脂組成物(液状又はフィ ルム状)は、電子部品の層間の絶縁材として、またプリ ント基板用のソルダーレジスト等のレジストインキとし て有用である他、印刷インキ、卦止剤、塗料、コーティ ング剤、接着剤等としても使用できる。

【0040】本発明の硬化物は、紫外線等のエネルギー 線照射により上記の本発明の樹脂組成物を硬化させたも のである。紫外線等のエネルギー線照射により硬化は常 法により行うことができる。例えば紫外線を照射する場 合、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン 灯、紫外線発光レーザー(エキシマーレーザー等)等の 紫外線発生装置を用いればよい。本発明の樹脂組成物の 挙げられる。脂環式エポキシ樹脂としては、例えば E H 50 硬化物は、例えば永久レジストやビルドアップ工法用の 層間絶縁材としてプリント基板のような電気・電子部品に利用される。この硬化物層の膜厚は $0.5\sim160\mu$ m程度で、 $1\sim60\mu$ m程度が好ましい。本発明の硬化物が設けられる基材としては、例えば、ガラス、紙エポキシプリント基板、ガラスフェノールプリント基板、ガラスエポキシプリント基板、ポリイミドプリント基板、ガラスエポキシプリント基板、ポリイミドプリント基板、ガラスエポキシプリント基板、ポリイミドプリント基板、ガラスエポキシプリント基板、ポリイミドプリント基板、ガラスエポキシプリント基板、ポリイミドプリント基板、ガラスエポキシプリント基板、ポリイミドプリント基板、ガラスエポキシアリントを使用した物品としては、テレビ、ラジオ等の家電製品、コンピューター等のIT製品等が挙げられる。

13

【0041】本発明の硬化成分を設けたプリント配線板 は、例えば次のようにして得ることができる。即ち、液 状の樹脂組成物を使用する場合、プリント配線用基板 に、スクリーン印刷法、スプレー法、ロールコート法、 静電塗装法、カーテンコート法等の方法により5~16 0μmの膜厚で本発明の組成物を塗布し、塗膜を通常6 0~110℃、好ましくは60~100℃の混度で乾燥 させることにより、塗膜が形成できる。その後、ネガフ ィルム等の露光パターンを形成したフォトマスクを塗膜 に直接に接触させ(又は接触しない状態で塗膜の上に置 く)、紫外線を通常10~2000m J/c m²程度の 強さで照射し、未露光部分を後述する現像液を用いて、 例えばスプレー、揺動浸漬、ブラッシング、スクラッビ ング等により現像する。その後、必要に応じてさらに紫 外線を照射し、次いで通常100~200℃、好ましく は140~180℃の温度で加熱処理をすることによ り、金メッキ性に優れ、耐熱性、耐溶剤性、耐酸性、密 着性、屈曲性等の諸特性を満足する永久保護膜を有する プリント配線板が得られる。

【0042】上記、現像に使用される、アルカリ水溶液としては水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リン酸ナトリウム、リン酸カリウム等の無機アルカリ水溶液やテトラメチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アルカリ水溶液が使用できる。アルカリ水溶液は、そのpHが通常8から14、好ましくは、9から13になるように調製される。

[0043]

【実施例】以下、本発明を実施例によって更に具体的に 説明するが、本発明が下記実施例に限定されるものでな い。

【0044】実施例1

攪拌装置、還流管をつけた2Lフラスコ中に、分子中に2個以上のエポキシ基を有するエポキシ化合物(a)として、ジャパンエポキシレジン製 エピコート828 (2官能ビスフェノールーA型エポキシ樹脂、エポキシ

当量:182.2g/当量)を364.4g、分子中に エチレン性不飽和二重結合を有するモノカルボン酸化合 物 (b) としてアクリル酸 (分子量:72.06) を1 44.1g、熱重合禁止剤として2-メチルハイドロキ ノンを0.24g、及び反応触媒としてトリフェニルフ オスフィンを1. 45g仕込み、98℃の温度で反応液 の酸価が0.5mg・KOH/g以下になるまで反応さ せ、エポキシカルボキシレート化合物(A)(理論分子 量:508.5)を得た。次いでこの反応液に反応用溶 媒としてカルビトールアセテートを646.1g、分子 中に2個の水酸基を有するカルボン酸化合物(B)とし て、2,2-ビス(ジメチロール)-プロピオン酸(分子 量:134.16)を261.0g、分子中に2個の水 酸基を有するゴム化合物(D)として、AT×013 (宇部興産製、末端水酸基ブタジエンアクリロニトリル ゴム、水酸基当量から計算した理論分子量: 4291. 4) を60.0g、熱重合禁止剤として2-メチルハイ ドロキノンを 0. 92g 加え、60℃に昇温させた。こ の溶液にジイソシアネート化合物(C)としてのビス (4-イソシアナトフェニル) メタン(分子量:25 0.26)370.4gを反応温度が65℃を越えない ように徐々に滴下した。滴下終了後、温度を80℃に昇 温させ、赤外吸収スペクトル測定法により、2250カ イザー付近の吸収がなくなるまで6時間反応させ、本発 明のアルカリ水溶液可溶性ウレタン化エポキシカルボキ シレート化合物 65重量%を含む樹脂溶液を得た(こ の溶液を E-1とする)。 固形分酸価を測定したとこ ろ、91mg・KOH/gであった。

【0045】実施例2

30 攪拌装置、還流管をつけた2Lフラスコ中に、分子中に 2個以上のエポキシ基を有するエポキシ化合物(a)と して、ジャパンエポキシレジン製 エピコート828 (2官能ビスフェノールーA型エポキシ樹脂、エポキシ 当量:182.2g/当量)を364.4g、分子中に エチレン性不飽和二重結合を有するモノカルボン酸化合 物 (b) としてアクリル酸 (分子量:72.06) を1 44.1g、熱重合禁止剤として2-メチルハイドロキ ノンを0.24g、及び反応触媒としてトリフェニルフ オスフィンを 1. 4 5 g 仕込み、 9 8 ℃の温度で反応液 40 の酸価が 0.5 mg・KOH/g以下になるまで反応さ せ、エポキシカルボキシレート化合物(A)(理論分子 量:508.5)を得た。次いでこの反応液に反応用溶 媒としてメチルエチルケトンを632.2g、分子中に 2個の水酸基を有するカルボン酸化合物(B)として、 2. 2-ビス(ジメチロール)-プロピオン酸(分子量: 134.16)を255.4g、分子中に2個の水酸基 を有するゴム化合物(D)として、AT×013(宇部 興産製、末端水酸基ブタジエンアクリロニトリルゴム、 水酸基当量から計算した理論分子量:4291.4)を 58.7g、熱重合禁止剤として2-メチルハイドロキ

ノンを0.90g 加え、60 ℃に昇温させた。この溶液にジイソシアネート化合物(C)としてのビス(4-4 ソシアナトフェニル)メタン(分子量:250.26) 243.4g 及びイソホロンジイソシアネート(分子量:222.29)108.1g を反応温度が65 ℃を越えないように徐々に滴下した。滴下終了後、温度を80 ℃に昇温させ、赤外吸収スペクトル測定法により、2250 カイザー付近の吸収がなくなるまで6 時間反応させ、本発明のアルカリ水溶液可溶性ウレタン化エポキシカルボキシレート化合物 65 重量%を含む樹脂溶液を力ルボキシレート化合物 65 重量%を含む樹脂溶液を得た(この溶液をE-2とする)。固形分酸価を測定したところ、91 mg・KOH/g であった。

15

【0046】実施例3

攪拌装置、還流管をつけた3Lフラスコ中に、分子中に 2個以上のエポキシ基を有するエポキシ化合物(a)と して、ジャパンエポキシレジン製 エピコート828 (2官能ビスフェノール-A型エポキシ樹脂、エポキシ 当量:182.2g/当量) を364.4g、分子中に エチレン性不飽和二重結合を有するモノカルボン酸化合 物(b) としてアクリル酸(分子量: 72.06)を1 44.1g、熱重合禁止剤として2-メチルハイドロキ ノンを0.24g、及び反応触媒としてトリフェニルフ オスフィンを1. 45g仕込み、98℃の温度で反応液 の酸価が0.5mg・KOH/g以下になるまで反応さ せ、エポキシカルボキシレート化合物(A)(理論分子 量:508.5)を得た。次いでこの反応液に反応用溶 媒としてカルビトールアセテートを709.9g、分子 中に2個の水酸基を有するカルボン酸化合物(B)とし て、2.2-ビス(ジメチロール)-プロピオン酸(分子 量:134.16)を286.8g、分子中に2個の水 30 酸基を有するゴム化合物(D)として、FM-4411 (チッソ製、末端水酸基シリコーンゴム、水酸基当量か ら計算した理論分子量:1206)を131.8g、熱 重合禁止剤として2-メチルハイドロキノンを1.01 g加え、60℃に昇温させた。この溶液にジイソシアネ ート化合物 (C) としてのビス (4 ーイソシアナトフェ ニル) メタン(分子量: 250.26) 270.9g 及びイソホロンジイソシアネート(分子量:222.2 9) 120.3gを反応温度が65℃を越えないよう に徐々に滴下した。滴下終了後、温度を80℃に昇温さ せ、赤外吸収スペクトル測定法により、2250カイザ ー付近の吸収がなくなるまで6時間反応させ、本発明の アルカリ水溶液可溶性ウレタン化エポキシカルボキシレ ート化合物 65重量%を含む樹脂溶液を得た(この溶 液をE-3とする)。固形分酸価を測定したところ、9 lmg・KOH/gであった。

【0047】比較用樹脂の合成

攪拌装置、還流管をつけた1Lフラスコ中に、日本化薬製 EOCN-104S(多官能 クレゾールノボラック型エポキシ樹脂、エポキシ当量:220g/当量)を 50

220g、アクリル酸を72.1g、反応用溶媒としてカルビトールアセテートを125.2g、熱重合禁止剤として、2-メチルハイドロキノンを0.21g及び反応触媒としてトリフェニルフォスフィン1.25gを加え、98℃の温度で24時間反応させた。次いで、この反応液に、リカシッドTH(新日本理化製 テトラヒドロ無水フタル酸)を105.7g、カルビトールアセテートを45.3g及び2-メチルハイドロキノンを0.28gを加え、95℃の温度で4時間反応させ、固形分濃度70%、固形分酸価98mg・KOH/gの比較樹脂を得た。

【0048】実施例4~6、比較例1

前記実施例 $1 \sim 3$ で得られた(E-1)、(E-2)、 (E-3)及び比較樹脂を表1に示す配合割合で混合、 必要に応じて3本ロールミルで混練し、本発明の感光性 樹脂組成物を得た。これをスクリーン印刷法により、乾 燥膜厚が15~25μmの厚さになるようにプリント基 板に塗布し塗膜を80℃の熱風乾燥器で30分乾燥させ た。次いで、紫外線露光装置((株)オーク製作所、型 20 式HMW-680GW)を用い回路パターンの描画され たマスクを通して紫外線を照射した。その後、1%炭酸 ナトリウム水溶液でスプレー現像を行い、紫外線未照射 部の樹脂を除去した。水洗乾燥した後、プリント基板を 150℃の熱風乾燥器で60分加熱硬化反応させ硬化膜 を得た。得られた硬化物について、後述のとおり、光感 度、表面光沢、基板そり、屈曲性、密着性、鉛筆硬度、 耐溶剤性、耐酸性、耐熱性、耐金メッキ性の試験を行な った。それらの結果を表2に示す。なお、試験方法及び 評価方法は次のとおりである。

【0049】(現像性)下記の評価基準を使用した。 〇・・・・現像時、完全にインキが除去され、良好な現像ができる。

×・・・・現像時、現像されない部分がある。

【0050】(解像性)乾燥後の塗膜に、 50μ mのネガパターンを密着させ積算光量200mJ/cm²の紫外線を照射露光する。次に1%の炭酸ナトリウム水溶液で60秒間、2.0kg/cm²のスプレー圧で現像し、転写パターンを顕微鏡にて観察する。下記の基準を使用した。

○・・・・パターンエッジが直線で、解像されている。×・・・・剥離もしくはパターンエッジがぎざぎざである。

【0051】 (光感度) 乾燥後の塗膜に、ステップタブレット21段 (コダック社製) を密着させ積算光量500 m J / c m^2 の紫外線を照射露光する。次に1%の炭酸ナトリウム水溶液で60秒間、2.0 k g / c m^2 のスプレー圧で現像し、現像されずに残った塗膜の段数を確認する。

【0052】 (表面光沢) 乾燥後の塗膜に、500mJ /cm² の紫外線を照射露光する。次に1%の炭酸ナト

リウム水溶液で60秒間、2.0kg/cm²のスプレ 一圧で現像し、乾燥後の硬化膜を観察する。下記の基準 を使用した。

○・・・・曇りが全く見られない

×・・・・若干の曇りが見られる

【0053】(基板そり)下記の基準を使用した。

○・・・・基板にそりが見られない

△・・・・ごくわずか基板がそっている

×・・・・基板のそりが見られる

察する。下記の基準を使用した。

○・・・・膜面に割れが見られない

×・・・・膜面が割れる

【0055】(密着性) JIS K5400に準じて、 試験片に1mmのごばん目を100個作りセロテープ (R) によりピーリング試験を行った。ごばん目の剥離 状態を観察し、次の基準で評価した。

○・・・・剥れのないもの

×・・・・剥離するもの

【0056】(鉛筆硬度) JIS K5400に準じて 20 を付着し、剥離したときの状態を観察した。 評価を行った。

【0057】(耐溶剤性)試験片をイソプロピルアルコ ールに室温で30分間浸漬する。外観に異常がないか確 認した後、セロテープ(R)によるピーリング試験を行 い、次の基準で評価した。

○・・・・塗膜外観に異常がなく、フクレや剥離のない もの

×・・・・塗膜にフクレや剥離のあるもの

【0058】(耐酸性)試験片を10%塩酸水溶液に室 温で30分浸漬する。外観に異常がないか確認した後、 セロテープ(R)によるピーリング試験を行い、次の基 準で評価した。

○・・・・塗膜外観に異常がなく、フクレや剥離のない もの

×・・・・塗膜にフクレや剥離があるもの

【0059】(耐熱性)試験片にロジン系プラックスを 塗布し260℃の半田槽に5秒間浸漬した。これを1サ イクルとし、3サイクル繰り返した。室温まで放冷した 後、セロテープ(R)によるピーリング試験を行い、次 の基準で評価した。

○・・・・塗膜外観に異常がなく、フクレや剥離のない もの

*×・・・・塗膜にフクレや剥離のあるもの

【0060】(耐金メッキ性)試験基板を、30℃の酸 性脱脂液(日本マクダーミット製、Metex L-5 Bの20容量%水溶液)に3分間浸漬した後、水洗し、 次いで、14.4重量%過硫酸アンモン水溶液に室温で 3分間浸漬した後、水洗し、更に10容量%硫酸水溶液 に室温で試験基板を1分間浸漬した後水洗した。次に、 この基板を30℃の触媒液(メルテックス製、メタルプ レートアクチベーター350の10容量%水溶液)に7 【0054】 (屈曲性) 硬化膜を180℃に折り曲げ観 10 分間浸漬し、水洗し、85℃のニッケルメッキ液 (メル テックス製、メルプレートNi-865Mの20容量% 水溶液、pH4. 6) に20分間浸漬し、ニッケルメッ キを行った後、10容量%硫酸水溶液に室温で1分間浸 潰し、水洗した。次いで、試験基板を95℃の金メッキ 液(メルテックス製、オウロレクトロレスUP15容量 %とシアン化金カリウム3容量%の水溶液、pH6)に 10分間浸漬し、無電解金メッキを行った後、水洗し、 更に60℃の温水で3分間浸漬し、水洗し、乾燥した。 得られた無電解金メッキ評価基板にセロハン粘着テープ

○:全く異常が無いもの。

×:若干剥がれが観られたもの。

【0061】(耐PCT性)試験基板を121℃、2気 圧の水中で96時間放置後、外観に異常がないか確認し た後、セロテープ(R)によるピーリング試験を行い、 次の基準で評価した。

○・・・・塗膜外観に異常がなく、フクレや剥離のない

×・・・・塗膜にフクレや剥離があるもの

【0062】(耐熱衝撃性)試験片を、-55℃/30 分、125℃/30分を1サイクルとして熱履歴を加 え、1000サイクル経過後、試験片を顕微鏡観察し、 次の基準で評価した。

○・・・・塗膜にクラックの発生のないもの

×・・・・塗膜にクラックが発生したもの

【0063】(フレキシブル性)試験基板を180度に 完全に折り曲げたあと、顕微鏡観察し、次の基準で評価

○・・・・塗膜にクラックの発生のないもの

40 ×・・・・塗膜にクラックが発生したもの

[0064]

表1

	実施例		比較例
4	5	6	1
43.14			
	43.14		
		43.14	

樹脂溶液 D-1

D-2

D-3

架橋剤(G)				
D P C A - 6 O	* 1	7.05	7.05	
DPHA	* 2	7.05		7.05
ルキ人明いがしてい				

光重合開始剤(F)イルガキュアー907 *37.057.057.057.05DETX-S *40.700.700.700.70

硬化剤成分(H)

Y X - 4 0 0 0 * 5 12.08 12.08 12.08 12.08

熱硬化触媒メラミンフィラー硫酸バリウム15.0015.0015.0015.0015.00

硫酸バリウム15.0015.0015.0015.00フタロシアニンブルー0.500.500.50添加剤

 B Y K - 3 5 4 * 6
 0.70 0.70 0.70 0.70

 K S - 6 6 * 7
 0.70 0.70 0.70 0.70

溶剤 CA (カルビトールアセテート) 12.06 12.06 12.06 12.06

【 $0\ 0\ 6\ 5$ 】(注)* 1 日本化薬製: ε -カプロラク 20**4 日本化薬製 : 2 , 4 -ジエチルチオキサントン トン変性ジペンタエリスリトールヘキサアクリレート * 5 JER製 : 2 官能ビフェニル骨格エポキシ樹

トン変性ジペンタエリスリトールへキサアクリレート *5 J *2 日本化薬製 :トリメチロールプロパントリアク 脂

リレート *3 Vantico製 : 2 — メチルー (4 — (メチルチ

19

*3 Vantico製 : 2 - メチルー (4 - (メチルチ +) ファニル - 2 - エルナリノー 1 - プロパン

オ)フェニル) -2-モルホリノ-1-プロパン *表2

*6 ビックケミー製:レベリング剤

*7 信越化学製 : 消泡剤

[0066]

【0067】表2の結果から明らかなように、本発明の感光性樹脂組成物は高感度であり、その硬化膜も半田耐熱性、耐薬品性、耐金メッキ性等に優れ、また硬化物表面にクラックが発生せず、薄膜化された基板を用いた場合でも基板にそりの無いプリント基板用感光性樹脂組成物であることが明らかである。

[0068]

【発明の効果】本発明のアルカリ水溶液可溶性ウレタン 化エポキシカルボキシレート化合物及びそれを用いた感 光性樹脂組成物並びにその硬化物は、紫外線により露光 硬化することによる塗膜の形成において、光感度に優 50 れ、得られた硬化物は、屈曲性、密着性、鉛筆硬度、耐 溶剤性、耐酸性、耐熱性、耐金メッキ性等も十分に満足 * 成物に適している。 するものであり、特に、プリント配線板用感光性樹脂組*

フロントペー	ジの続き							
(51) Int.Cl.		識別詞	己号		FΙ		デーマコー	' (参考)
G 0 3 F	7/027	5 1	3		G O 3 F	7/027	5 1 3	
		5 1	5				5 1 5	
H 0 5 K	3/28				H 0 5 K	3/28	D	
F ターム(参考	(f) 2H025	AAO7 AA10	AA13 AA14	AB15				
		ACO1 ADO1	BC32 BC42	BC66				
		BC74 CA01	CC20 FA03	FA17				
		FA29						
	4J027	ACO3 AGO7	AG23 AG24	BA08				
		BA26 BA28	CA08 CB10	CD10				
	4J034	BAO8 CAO4	CA22 DK02	DKO9				
		DMO1 GAO6	GA33 HA01	HA07				
		HA18 HB16	HC09 HC12	HC17				
		HC22 HC46	HC52 HC64	HC67				
		HC71 HC73	LA13 LA33	QB11				
		RA07						
	5E314	AA25 AA27	AA32 CCO7	DD07				
		GG08 GG11	GG14					