Contents

Contents 1

CONTENTS 2

Definition 1 $(\tau(\iota))$, deprecated version). For an inference ι with $\sigma = \text{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\text{dom}(\tau(\iota)) = \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

$$x\tau(\iota) = \begin{cases} x & x \text{ is a non-lifting variable} \\ z_t & x \text{ is a lifting variable } z_s \text{ and } s\sigma = t \end{cases}$$

Definition 2 $(\tau(\iota), \text{ current version})$. For an inference ι with $\sigma = \text{mgu}(\iota)$, we define the infinite substitution $\tau(\iota)$ with $\text{dom}(\tau(\iota)) = \text{dom}(\sigma) \cup \{z_s \mid s\sigma \neq s\}$ as follows for a variable x:

Δ

Δ

$$x\tau(\iota) = \begin{cases} x\sigma & x \text{ is a non-lifting variable} \\ z_t & x \text{ is a lifting variable } z_s \text{ and } s\sigma = t \end{cases}$$

Definition 3 (Incremental lifting). Let π be a resolution refutation of $\Gamma \cup \Delta$. For a clause C in π , we define $\operatorname{PI}_{\operatorname{inc}}(C)$ and $\ell i[C]$ as follows:

Base case. If $C \in \Gamma$, $\operatorname{PI}_{\operatorname{inc}}(C) \stackrel{\operatorname{def}}{=} \bot$. If otherwise $C \in \Delta$, $\operatorname{PI}_{\operatorname{inc}}(C) \stackrel{\operatorname{def}}{=} \top$. In any case, $\ell i[C] \stackrel{\operatorname{def}}{=} \ell[C]$.

Resolution. If the clause C is the result of a resolution step ι of $C_1: D \vee l$ and $C_2: E \vee \neg l'$ using a unifier σ such that $l\sigma = l'\sigma$, then let $\tau = \tau(\iota)$ and define $\operatorname{PI}_{\operatorname{inc}}(C)$ and $\ell i[C]$ as follows:

$$\ell i[C] \stackrel{\mathrm{def}}{=} \ell \big[(\ell i[C_1] \backslash \{l_{\mathrm{AIcl}}\}) \tau \big] \ \lor \ \ell \big[(\ell i[C_2] \backslash \{l_{\mathrm{AIcl}}'\}) \tau \big]$$

say something about l_{AIcl} and/or rewrite that (also below)

- 1. If l is Γ -colored: $\operatorname{PI}_{\operatorname{inc}}(C) \stackrel{\text{def}}{=} \ell[\operatorname{PI}_{\operatorname{inc}}(C_1)\tau] \vee \ell[\operatorname{PI}_{\operatorname{inc}}(C_2)\tau]$
- 2. If l is Δ -colored: $\operatorname{PI}_{\operatorname{inc}}(C) \stackrel{\text{def}}{=} \ell[\operatorname{PI}_{\operatorname{inc}}(C_1)\tau] \wedge \ell[\operatorname{PI}_{\operatorname{inc}}(C_2)\tau]$
- 3. If l is grey: $\operatorname{PI}_{\operatorname{inc}}(C) \stackrel{\operatorname{def}}{=} (\neg \ell[l'_{\operatorname{AIcl}}\tau] \wedge \ell[\operatorname{PI}_{\operatorname{inc}}(C_1)\tau]) \vee (\ell[l_{\operatorname{AIcl}}\tau] \wedge \ell[\operatorname{PI}_{\operatorname{inc}}(C_2)\tau])$

Factorisation. If the clause C is the result of a factorisation step ι of $C_1: l \vee l' \vee D$ using a unifier σ such that $l\sigma = l'\sigma$, then $\operatorname{PI}_{\operatorname{inc}}(C) \stackrel{\text{def}}{=} \ell[\operatorname{PI}_{\operatorname{inc}}(C_1)\tau(\iota)]$ and $\ell i[C] \stackrel{\text{def}}{=} \ell[\ell(\ell i[C_1] \setminus \{l'_{\operatorname{AIcl}}\})\tau(\iota)].$

?\langle def:arrow_quantifier_block\rangle? Definition 4 (Quantifier block). Let C be a clause in a resolution refutation π of $\Gamma \cup \Delta$ and \bar{x} be the Δ -lifting variables and \bar{y} the Γ -lifting variables occurring in $\operatorname{PI}_{\operatorname{inc}}(C)$ and $\ell i[(]C)$. Q(C) denotes an arrangement of the elements of $\{\forall x_t \mid x_t \in \bar{x}\} \cup \{\exists y_t \mid y_t \in \bar{y}\}\$ such that for two lifting variable z_s and z_r , if s is a subterm of r, then z_s is listed before z_r . We denote $Q(\Box)$ by $Q(\pi)$. \triangle

Conjectured Lemma 5. For a clause C of a resolution refutation of $\Gamma \cup \Delta$, $\Gamma \models Q(C)(\operatorname{PI}_{\operatorname{inc}}(C) \vee \ell i[C]).$