

Algoritmos de Ordenação Mergesort

Disciplina: Estrutura de Dados II

Prof. Fermín Alfredo Tang Montané

Curso: Ciência da Computação

Algoritmo MergeSort Princípio de Dividir e Conquistar

- O algoritmo MERGESORT(V, p, r) aplica o princípio de **divisão e conquista** para realizar a ordenação do arranjo V.
- O princípio de Dividir e Conquistar é típico de algoritmos recursivos, e compreende três etapas básicas:
- **Dividir.-** O problema é dividido em um determinado número de subproblemas.
- Conquistar.- Cada subproblema é resolvido de maneira recursiva. Ou seja, dividindo ele novamente em subproblemas e assim sucessivamente até que o tamanho do problema resulte na solução de maneira direta ou trivial.
- **Combinar.-** Utilizar a solução dos subproblemas menores para produzir a solução para um problema maior.

- O procedimento MERGE(V, p, q, r), ou intercalação, é o procedimento chave do algoritmo Mergesort.
- Este é o procedimento realiza a ordenação de um subarranjo do vetor V, delimitado pelos índices p e r (extremos esquerdo e direito).
- O algoritmo utiliza o índice intermediário q, que serve para dividir o subarranjo em duas partes.
- O procedimento pressupõe que os subarranjos V[p]..V[q] e V[q+1]..V[r] já se encontram ordenados.

O Principio de Dividir e Conquistar

Dividindo o Problema

Subproblemas Triviais

Ordenação de um Subarranjo

O procedimento compreende os seguintes passos:

```
MERGE (V, p, q, r)
                                     { ordena V[p]..V[r] por intercalação de duas metades }
inicio
 { Divide o subarranjo V em duas metades V[p]...V[q] e V[q + 1]...V[r] }
  n_1 \leftarrow q - p + 1; n_2 \leftarrow r - q; { nro. de elementos em V[p] ... V[q] \in V[q + 1] ... V[r] }
  para i \leftarrow 0 até (n_1-1) faça \{ copia V[p]..V[q] em L \}
      L[i] \leftarrow V[p+i];
  fim-para
  para j \leftarrow 0 até (n_2-1) faça \{ copia V[q+1]..V[r] em R \}
      R[i] \leftarrow V[q+i+1]:
  fim-para
  L[n_1] \leftarrow \infty; R[n_2] \leftarrow \infty; { armazena \infty no último elemento de L \in R }
  { Intercala os elementos de L e R e copia de volta em V[p]..V[r] }
   CONTINUA ...
```

```
CONTINUAÇÃO:

{ Intercala os elementos de L e R e copia de volta em V[p]..V[r] }

i \leftarrow0; j \leftarrow0; { inicializa marcadores em L e R }

para k \leftarrow p até r faça { define marcador em V }

se L[i] \leq R[j] então { escolhe o menor elemento de L e R }

V[k] \leftarrow L[i]; { copia em V }

i \leftarrowi+1;

senão

V[k] \leftarrow R[j]; { copia em V }

j \leftarrowj+1;

fim-se

fim-para

fim
```


Algoritmos de Ordenação

Algoritmo MergeSort

- O algoritmo MERGE-SORT(V, p, r) aplica o princípio de **divisão** e **conquista** para realizar a ordenação do arranjo V. Para isso **divide** o arranjo $V[p] \dots V[r]$ em duas metades: $V[p] \dots V[q]$ e $V[q+1] \dots V[r]$.
- Ordena cada metade recursivamente e calcula o arranjo ordenado V, mediante o procedimento de intercalação MERGE(V, p, q, r) descrito anteriormente.

```
MERGE-SORT (V, p, r){ ordena o arranjo V[p]..V[r] por intercalação }iniciose (p < r) entãoq \leftarrow \lfloor (p+r)/2 \rfloor;{ calcula a metade do arranjo V }MERGE-SORT (V, p, q);{ ordena a primeira metade de V por intercalação }MERGE-SORT (V, q+1, r);{ ordena a segunda metade de V por intercalação }MERGE (V, p, q, r);{ intercala elementos das duas metades de V }fim-sefim-se
```

O Principio de Dividir e Conquistar

Combinando a solução dos subproblemas

Subproblemas Triviais

Análise de Complexidade

- A abordagem de dividir e conquistar consiste em:
 - Desmembrar o problema em vários subproblemas de menor tamanho (divisão) de maneira que eles possam ser resolvidos (conquista) com maior facilidade.
 - Os subproblemas devem ter a mesma estrutura do problema original.
- Para analisar a complexidade do algoritmo, devemos representar o problema mediante uma relação de recorrência.

$$T(n) = \begin{cases} c, & \text{se } n=1 \text{ (Intercalação)} \\ 2.T(n/2) + cn, & \text{se } n>1 \text{ (Divisão} + Intercalação)} \end{cases}$$

Considerando a complexidade da intercalação temos a seguinte relação:

$$T(n) = \begin{cases} 0(1), & \text{se } n=1 \text{ (Intercalação)} \\ 2.T(n/2) + O(n), & \text{se } n>1 \text{ (Divisão} + Intercalação)} \end{cases}$$

Ainda precisamos eliminar a recorrência.

Análise de Complexidade – Usando uma árvore

Utilizando a relação de recorrência:

$$T(n) = \begin{cases} c, & \text{se } n=1 \text{ (Intercalação)} \\ 2.T(n/2) + cn, & \text{se } n>1 \text{ (Divisão} + Intercalação)} \end{cases}$$

 Podemos calcular o custo computacional do algoritmo para um problema de tamanho n, considerando o número de subproblemas gerados e as operações envolvidas.

Análise de Complexidade – Usando uma árvore

- Considere que o tamanho do problema n é uma potência de 2. Por exemplo, considere que n=8 elementos.
- Interessa considerar a altura da árvore (ou número de níveis) para calcular o número operações por subproblema.

Subproblemas:

Nível 0: $2^0 = 1$ nós

Nível 1: $2^1 = 2$ nós

Nível 2: $2^2 = 4 \text{ nós}$

Nível 3: $2^3 = 8$ nós

$$H = (\log_2 n) + 1$$

$$H = \log_2 8 + 1$$
$$= 3 + 1$$

$$n = 8 \implies T(n/8) = T(1) = c$$

Análise de Complexidade – Usando uma árvore

Se calculamos o custo por nível, observamos que temos um custo computacional de cn operações. Logo, multiplicamos isso pelo número de níveis (ou altura da árvore) que é $(\log n) + 1$ para obter complexidade de $O(n\log n)$.

Onde:

$$cn \times [(\log_2 n) + 1] = cn(\log_2 n) + cn = O(n \log n)$$

Análise de Complexidade – Método de Desdobramento

- Método do Desdobramento:
- Consiste em aplicar repetidamente a função de recorrência no termo de menor ordem, fazendo substituições sucessivas até:
 - o atingir o caso base, ou
 - conseguir identificar a forma geral

$$T(n) = \begin{cases} c, & \text{se } n=1 \text{ (Intercalação)} \\ 2.T(n/2) + cn, & \text{se } n>1 \text{ (Divisão} + Intercalação)} \end{cases}$$

Para n>0:

$$T(n) = 2.T(n/2) + cn$$

Substituindo na função de recorrência T(n/2), temos:

$$T(n) = 2.(2.T(n/4)+c.n/2) + cn$$

Análise de Complexidade – Método de Desdobramento

Para n>0:

$$T(n) = 2.T(n/2) + cn$$

- Substituindo na função de recorrência T(n/2), T(n)=2.T(n/2)+cn temos: T(n)=2.(2.T(n/4)+c.n/2)+cn $T(n)=2^2.T(n/4)+2cn$
- Substituindo na função de recorrência T(n/4), $T(n) = 2^2 \cdot T(n/4) + 2cn$ temos: $T(n) = 2^2 \cdot (2 \cdot T(n/8) + c \cdot n/4) + 2cn$ $T(n) = 2^3 \cdot T(n/8) + 3cn$
- Generalizando para k<n, temos:

$$T(n) = 2^k \cdot T(n/2^k) + kcn$$

Considerando k, tal que n=2^k, temos:

$$T(n) = n.T(1) + (\log n).cn$$

$$T(n) = c.n + c.n (log n)$$

$$T(n) = O(n \log n)$$

Algoritmo MergeSort Complexidade do Algoritmo

- A complexidade de tempo de pior caso do algoritmo Mergesort é comparada aos outros algoritmos descritos previamente.
- A principal desvantagem do algoritmo Mergesort é que ela requer um vetor adicional de igual tamanho ao que está sendo ordenado.

Tamanho	Método de Inserção	Método Shellsort	Método MergeSort
n	O(n²)	Est. Pessimista O(n ^{3/2})	O(n log n)
10	100	32	33
100	10.000	1.000	664
1.000	1.000.000	31.623	9.966
10.000	100.000.000	1.000.000	132.877

Ordenação Mergesort Complexidade do Algoritmo

- A complexidade da ordenação independe dos valores contidos no vetor:
 - Melhor Caso.- A árvore fica balanceada, a complexidade depende da altura da árvore. Se o vetor estiver ordenado, o número de comparações cai pela metade, mais o numero de copias determina a complexidade. Executa em $O(nlog\ n)$.
 - Pior caso.- A árvore fica ligeiramente desbalanceada se o número de elementos não é potencia de 2. Se o vetor estiver invertido, o número de comparações poderá ser máximo, mas ainda o número de copias determinada a complexidade. Executa em tempo ligeiramente superior a O(nlog n).

Algoritmo MergeSort Complexidade do Algoritmo – Comparações

• O número de comparações depende exclusivamente do processo de intercalação. Se consideramos duas metades que totalizam n elementos. **No pior caso**, para intercalar as duas metades são necessárias (n-1) comparações. **No melhor caso**, para intercalar as duas metades são necessárias (n/2) comparações.

n	Elementos Intercalados n log n	Comp. Máx ?	Comp. Min ?
2	2	Ţ	I
4	8	5	4
8	24	17	12
16	64	49	32
32	160	129	80
64	384	321	192
128	896	769	448

O Principio de Dividir e Conquistar

Exemplo – Número de Comparações

Total: 12 comparações

O Principio de Dividir e Conquistar

Exemplo – Número de Comparações

Total: 17 comparações

Complexidade do Algoritmo – Comparações e copias

• O número de elementos copiados é $n\log n$. Os elementos de cada subproblema são copiados 2 vezes, primeiro no vetor auxiliar, depois no vetor original.

n	Elementos Intercalados n log n	Comp. Máx	Comp. Min	Copias 2(n log n)
2	2	1	- 1	4
4	8	5	4	16
8	24	17	12	48
16	64	49	32	128
32	160	129	80	320
64	384	321	192	768
128	896	769	448	1792

Referências

- Thomas **Cormen**, Charles **Leiserson**, et al. Algoritmos. Teoria e Prática. 2ª Edição. 2002.
- Robert **Lafore**. Estruturas de Dados e Algoritmos em Java. Editora Ciencia Moderna. 2ª Edição. 2004.