Série 7

Tous les exercices seront corriges. La correction sera postee sur le moodle apres 2 semaines.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Exercice 1. Soit $\mathcal{F}(\mathbb{N}, \mathbb{R})$ l'espace des fonctions de \mathbb{N} a valeurs reelles (ie. les suites a valeurs reelles) et $\mathcal{F}_f(\mathbb{N}, \mathbb{R})$ le sous-espace de fonctions a support fini : on rappelle que $f: \mathbb{N} \to \mathbb{R}$

$$supp(f) = \{n \in \mathbb{N}, f(n) = 0\}$$
 est fini.

Pour $m \in \mathbb{N}$ un sous-ensemble, on note $1_{\{m\}}$ la fonction indicatrice de m :

$$1_{\{m\}}(n) = \begin{cases} 1 & \text{si } n = m \\ 0 & \text{si } n \neq m. \end{cases}$$

1. Montrer que la famille

$$\{1_{\{m\}}, \ m \geqslant 0\}$$

est une base de $\mathcal{F}_f(\mathbb{N}, \mathbb{R})$.

Exercice 2. Soit K un corps, $V = K^5$ et

$$W = \{(a,b,c,d,e) \in V, \ a+b=c+d, \ a+2c=0, 2c+b+4d=0\}.$$

1. Donner une base de W (attention cela peut dependre de car(K)).

Exercice 3. Soit $d \ge 0$ un entier et

$$\mathbb{R}[x]_{\leq d} = \{a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 \cdot x + a_0, \ a_i \in \mathbb{R}\},\$$

l'espace vectoriel des fonctions polynomiales sur \mathbb{R} de degree $\leq d$.

1. Montrer que $\{1, x, \dots, x^d\}$ forme une base de $\mathbb{R}[x]_{\leq d}$ en considerant les limites de ces polynomes quand $x \to \infty$.

- 2. Soit $\{P_i(x), i = 0, \dots, d\}$ une famille de d+1 polynomes tels que deg $P_i = i$. Montrer que $\{P_i(x), i = 0, \dots, d\}$ forme une base de $\mathbb{R}[x]_{\leq d}$.
- 3. Soient $x_0, \dots, x_d \in \mathbb{R}$, d+1 nombres reels distincts et pour $i=0,\dots,d$ soit

$$Q_i(x) = \prod_{j \neq i} (x - x_j)$$

(par exemple $Q_1(x) = (x - x_2).(x - x_3).....(x - x_d)$). Montrer que $\{Q_i, d = 0, \dots, d\}$ forme une base de $\mathbb{R}[x]_{\leq d}$.

4. On prend d = 3, $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_2 = 3$. Ecrire le polynome $x^3 + x^2 + x + 1$ comme combinaison lineaire des Q_i .

Exercice 4. Soit $\lambda \in \mathbb{R}$ un parametre. On considere la famille des polynomes dans $\mathbb{R}[X]_{\leq 3}$ donnee par

$$\mathcal{F} = \{ (\lambda^2 - 1)x^3 + x^2, \lambda \cdot x^3 + x - \lambda, (1 - \lambda)x^3 + x + 1, \lambda \} \}.$$

- 1. Pour quelles valeurs de λ cette famille est elle libre?
- 2. Pour quelles valeurs de λ cette famille est elle generatrice?
- 3. Pour quelles valeurs de λ cette famille est elle une base?

Exercice 5. 1. Soit K un corps et $k \subset K$ un sous-corps. Montrer que K est un k-espace vectoriel.

2. Soit K un corps fini de caracteristique p > 0 et

$$\mathbb{F}_p = \operatorname{Can}_K(\mathbb{Z}) = \mathbb{Z}.1_K \subset K$$

le sous-corps premier. Montrer que $|K| = p^d$ pour $d \ge 1$ un entier (on montrera que d est une dimension).

3. On suppose que K est encore contenu dans un autre corps fini L. Ainsi $\mathbb{F}_p \subset K \subset L$ et on a donc (par la question precedente) $|L| = p^{d'}$ avec $d' \ge 1$. Montrer que d divide d' (le quotient d'/d est une certaine dimension).

Exercice 6. (*) Soient $X, Y \subset V$ des SEV d'un EV de dimension finie et $X + Y \subset V$ leur somme (qui est un SEV). On rappelle que X et Y sont dit en somme directe si $X \cap Y = \{0_V\}$ et on ecrit $X \oplus Y$.

- 1. Montrer que dim $X + \dim Y = \dim(X + Y) + \dim(X \cap Y)$.
- 2. On suppose dans toute la suite que dim $X + \dim Y = \dim V$. Montrer que si $X \cap Y = \{0_V\}$ alors V = X + Y et donc $V = X \oplus Y$.
- 3. Montrer que si X + Y = V alors $X \cap Y = \{0_V\}$ et donc $V = X \oplus Y$.

Pour resoudre ce probleme, on pourra appliquer le Thm Noyau-Image a l'application lineaire

$$\bullet + \bullet : \begin{matrix} X \times Y & \mapsto & V \\ (x,y) & \mapsto & x+y \end{matrix}.$$

Exercice 7. Soient V, W deux K-ev de dimensions finie, $V^* = \text{Hom}(V, K)$ et $W^* = \text{Hom}(W, K)$ leurs duals, $\mathscr{B} = \{\mathbf{e}_j, \ j \leq d\}, \ \mathscr{B}' = \{\mathbf{f}_i, \ i \leq d'\}$ des bases et $\mathscr{B}^* = \{\mathbf{e}_i^*, \ i \leq d\}, \ \mathscr{B}'^* = \{\mathbf{f}_i^*, \ i \leq d'\}$ les bases duales.

On se donne une application lineaire $\varphi: V \mapsto W$ et soit

$$\varphi^*: W^* \mapsto V^*$$

l'application duale (definie pour $\ell' \in W^*$ par $\varphi^*(\ell') = \ell' \circ \varphi \in V^*$).

Soient $\mathcal{B}_{\mathscr{B},\mathscr{B}'} \subset \operatorname{Hom}(V,W)$ et $\mathcal{B}_{\mathscr{B}'^*,\mathscr{B}^*} \subset \operatorname{Hom}(W^*,V^*)$ les bases des espaces d'application lineaires correspondants.

On suppose que les coordonnees de φ dans la base $\mathcal{B}_{\mathscr{B},\mathscr{B}'}$ sont donnees par $(m_{ij})_{i\leqslant d',j\leqslant d}$ et celles de φ^* dans la base $\mathcal{B}_{\mathscr{B}'^*,\mathscr{B}^*}$ sont donnees par $(m_{ij}^*)_{i\leqslant d,j\leqslant d'}$. On va montrer que

$$\forall i \leqslant d, j \leqslant d', \ m_{ij}^* = m_{ji}.$$

1. Soit $\ell \in V^*$ une forme lineaire et $(l_i)_{i \leq d} \in K^d$ ses coordonnees dans la base \mathscr{B}^* . Montrer que

$$l_i = \ell(\mathbf{e}_i).$$

- 2. Verifier que φ^* est lineaire.
- 3. Montrer que l'application

$$\bullet^*:\varphi\mapsto\varphi^*$$

est lineaire (de Hom(V, W) vers $Hom(W^*, V^*)$).

- 4. Montrer que $m_{ij} = \mathbf{f}_i^*(\varphi(\mathbf{e}_j)) = \varphi^*(\mathbf{f}_i^*)(\mathbf{e}_j)$.
- 5. Montrer que $m_{ij} = m_{ii}^*$.

Exercice 8. Soit V de dimension finie. Soit $V^{**} = (V^*)^*$ le bi-dual de V (le dual du dual V^* de V). On considere l'application :

$$\operatorname{eval}_{\bullet}: \begin{matrix} V & \mapsto & V^{**} = (V^*)^* \\ v & \mapsto & \operatorname{eval}_v \end{matrix}$$

ou

$$\operatorname{eval}_v : \ell \mapsto \ell(v) \in K$$

est l'application qui a une forme lineaire ℓ associe sa valeur au vecteur v.

- 1. Montrer que eval_v est bien une forme lineaire sur V^* .
- 2. Montrer que eval• est un isomorphisme.

Remarque. Cet isomorphisme entre V et V^{**} ne depend pas du choix d'une base : il est canonique.