ECON 6170 Problem Set 3 Solutions

Patrick Ferguson

Problem 1. In class, we proved the Bolzano-Weierstrass theorem (i.e., that every bounded sequence has a convergent subsequence; see Module 1) for sequences in \mathbb{R} . Use this result to extend the statement to sequences in \mathbb{R}^k .

Proof. We use proof by induction. The base case k = 1 is taken care of by Bolzano-Weierstrass in \mathbb{R}^1 , which we've shown in class. For the induction step, suppose the claim holds for k = n. Consider a bounded sequence $(x_r)_{r=1}^{\infty}$ in \mathbb{R}^{n+1} .

The remainder of our proof entails finding a subsequence (x_{r_s}) whose first n terms converge and a subsubsequence $(x_{r_{s_s}})$ whose final term also converges.

 (x_r) induces a bounded sequence in \mathbb{R}^n , call it (x_r^*) , whose terms consist of the first n entries of the corresponding terms in the original sequence. By the induction hypothesis, this induced sequence has a convergent subsequence, $(x_s^*) := (x_{r_s}^*)$. Let (x_s) be the corresponding subsequence of (x_r) . The final entries of the terms in (x_s) form a bounded sequence in \mathbb{R} , which, by the base case, has a convergent subsequence. Let $(x_t) := (x_{s_t})$ be the corresponding subsequence of (x_s) . Then this subsequence converges to a point in \mathbb{R}^{n+1} .

Theorem (Bolzano-Weierstrass). A set $A \subseteq \mathbb{R}^d$ is sequentially compact if and only if it is closed and bounded.

Proof. Suppose A is sequentially compact. Let (x_n) be a sequence converging to some $x \in \mathbb{R}^d$. We want to show $x \in A$. Sequential compactness implies some subsequence (x_{n_k}) converges to a point in A, call it y. But subsequences of a convergent sequence converge to the same limit, so $x = y \in A$. Therefore, A is closed. Suppose A is unbounded. Then, for all $M \in \mathbb{R}$, there exists $x \in A$ satisfying ||x|| > M. Define a sequence in A as follows: Take $||x_n|| > n$ for all $n \in \mathbb{N}$. Clearly $||x_n|| \to \infty$, so $||x_{n_k}|| \to \infty$ for any subsequence $(x_{n_k})_k$. It follows that $||x_{n_k} - x|| \ge ||x_{n_k}|| - ||x|| \ge 1$, for sufficiently large k. Therefore this arbitrary subsequence doesn't converge to x. Since x is also arbitrary, the subsequence doesn't converge to any limit in \mathbb{R}^d . Thus, A is not sequentially compact, a contradiction. Therefore, A must be bounded, and because it is closed, A must be compact.

Conversely, suppose A is closed and bounded. Because A is bounded, every sequence in A is also bounded, so by the original Bolzano-Weierstrass theorem, every sequence has a subsequence that converges. By closedness of A, that subsequence converges to a point in A. Therefore, A is sequentially compact.