

- 1. 平行四邊形 ABCD 中, $E \setminus F$ 爲 \overline{AB} 上的任意點, $G \setminus H$ 爲 \overline{CD} 邊上的任意點,滿足 $\overline{AE} < \overline{AF} \setminus \overline{AE}$ $\overline{DG} < \overline{DH}$ 。連接 \overline{AG} ,與 \overline{DE} 、 \overline{DF} 分別交於 P、Q 兩點; 連接 \overline{AH} ,與 \overline{DE} 、 \overline{DF} 分別交於 R、S兩點,則下列選項何者正確?
 - (A) $\triangle DPG < \triangle DQG$ (B) $\triangle DRH < \triangle DQG$ (C) $\triangle DPG = \triangle DSH$ (D) $\triangle DSH >$ $\triangle DQG$

- 2. 如附圖,三個平行四邊形分別以實線、點線與虛線標示。若實線的平行四邊形面積爲 a,點線的平行四 邊形面積為 b, 虛線的平行四邊形面積為 c, 則 a,b,c 的的大小關係為何?
 - (A) a > b > c (B) a = b = c (C) a < b < c (D) 條件不足,無法判斷。

- 3. 平行四邊形 ABCD 中, $\angle A$ 、 $\angle B$ 的角平分線交於 P 點。則下列選項何者錯誤? (A) $\angle APB=90^\circ$ (B) 四邊形 ABEF 的面積爲 $\frac{1}{2} \times \overline{AF} \times \overline{BE}$ (C) $\overline{DE}=\overline{BC}$ (D) $\overline{AB}=\overline{BF}$

4. 附圖爲菱形 ABCD 與 $\triangle ABE$ 的重疊情形。若 $\overline{AB}=13$ 、 $\overline{AC}=10$ 、 $\overline{BE}=20$,求 \overline{CE} 的長度 (A) 10 (B) 11 (C) 12 (D) 13

- 5. 菱形 ABCD 中有一正三角形 DEF,其中 $E \setminus F$ 分別在 $\overline{AB} \setminus \overline{BC}$ 上。若 $\overline{EF} = \overline{AB}$,求 $\angle ABC$ 的度數。
 - (A) 60° (B) 70° (C) 75° (D) 80°

- 6. 梯形 ABCD 中 $\angle A = \angle D = 90^{\circ}$ 。 \overline{BE} // \overline{AD} 、 \overline{FG} 爲中點連線。 $\overline{AB} = 3$ 、 $\overline{AD} = \overline{CD} = 9$ 。若將梯形以 \overline{BE} 爲摺痕,使得 D 點被摺至 \overline{BC} 上,則 \overline{AD} 將與 \overline{BC} 交於 H 點。求 \overline{CH} 的長度。 (A) $\frac{3\sqrt{13}}{2}$ (B) 3 (C) $\frac{9}{2}$ (D) $\sqrt{13}$
- 7. 承上題,若改以 \overline{FG} 爲摺痕,則 B 點將被摺至 \overline{CD} 上的 I 點,求 \overline{GI} 的長度。 (A) $\frac{3\sqrt{13}}{2}$ (B) 3 (C) $\frac{9}{2}$ (D) $\sqrt{13}$

8. 將五邊形 ABCDE 沿直線 BC 往下平移,形成新的五邊形 A'B'C'D'E'。其中 B' 與 C 點重合。若 $\angle A=120^\circ, \angle B=115^\circ, \angle D'=113^\circ, \angle E=93^\circ$ 。求 $\angle A'CD$ 的角度。 (A)16° (B) 25° (C)26° (D) 34°

- 9. 見附圖,L 與 L' 兩直線平行,正方形 ABCD 對角線 \overline{AC} 的延長線交 L 於 E 點。求 $\angle CED$ 的度 數。
 - (A) 30° (B) 45° (C) 60° (D) 75°

- 10. 將矩形 ABCD 沿 \overline{EF} 摺疊,使得 D 點落在 \overline{BC} 上的 D' 點。 $\overline{AB}=3$ 、 $\overline{CF}=3\sqrt{3}$ 。求 $\angle ED'F$ 的度數。
 - (A) 30° (B) 35° (C) 40° (D) 42.5°
- 11. 承上題,求 $\triangle EFD'$ 的面積。
 - (A) $\frac{9}{2}$ (B) $\frac{9\sqrt{3}}{2}$ (C) 9 (D) 18

- 12. 平行四邊形 ABCD 外部有一點 P, 連接 \overline{PA} , \overline{PB} , \overline{PC} , \overline{PD} , 若 $\triangle PAB = 6$, $\triangle PBC = 1.5$, $\triangle PAD = 2.5$,則平行四邊形 ABCD 面積爲何?
 - (A) 2 (B) 4 (C) 6 (D) 8
- 13. 承上題, $\triangle PCD$ 面積爲何?
 - (A) 2 (B) 4 (C) 6 (D) 8

- 14. 給定梯形 ABCD,其中 \overline{AD} // \overline{BC} , \overline{AD} < \overline{BC} 。若想在 \overline{BC} 上找一點 P,使得 \overline{AP} 平分梯形面 積,則下列哪一種作法無法作到?
 - (A) 求 \overline{CD} 中點 M,並作射線 \overline{AM} 、 \overline{BC} 交於 Q 點。則 \overline{BQ} 中點即爲所求 P 點。
 - (B) 連接 \overline{AD} 的中點 E 與 \overline{BC} 的中點 F。在 \overline{BC} 上取一點 P 使得 $\overline{FP}=\overline{AE}$,且 P、A 在 \overline{EF} 的同側,則P點即爲所求。
 - (C) 作射線 \overrightarrow{BC} , 在其上取一點 N, 使得 $\overrightarrow{CN} = \overrightarrow{AD}$ 且 C 在 $B \setminus N$ 之間。作 \overrightarrow{BN} 的中點即爲所求 的 P 點
 - (D) 以上皆可。

15. 若三角形的三高分別爲
$$\sqrt{2}$$
、 $\sqrt{5}$ 、 x ,則 x 的範圍在數線上爲長度 d 的線段。求 d 之值。 (A) $\frac{5\sqrt{2}-2\sqrt{5}}{3}$ (B) $\frac{5\sqrt{2}+2\sqrt{5}}{3}$ (C) $\frac{4\sqrt{5}}{3}$ (D) $\frac{10\sqrt{2}}{3}$

- 16. 平行四邊形 ABCD 中,E、F 分別為 \overline{AB} 、 \overline{BC} 中點。若 $\overline{AB}=4$ 、 $\overline{BC}=\overline{BD}=2\sqrt{2}$,求 \overline{AD} 之 長度。
 - (A) 4 (B) 6 (C) $2\sqrt{10}$ (D) 8
- 17. 承上題,若 \overline{DE} 、 \overline{DF} 分別交 \overline{AC} 於 P、Q 兩點,求 \overline{PQ} 之長度。

(A) 2 (B)
$$\frac{2\sqrt{10}}{3}$$
 (C) $\sqrt{10}$ (D) $2\sqrt{10}$

(C)(B)

- 18. 在平面上有兩點 A(-2,2) 及 B(4,3),若要在 x 軸上找一點 P,使得 $\overline{PA}^2 + \overline{PB}^2$ 有最小值,求
 - P 點之座標爲何? (A) (0,0) (B) $(\frac{2}{5},0)$ (C) (1,0) (D) 以上皆非
- 19. 承上題,求此最小値。 (A) 33 (B) $\frac{793}{25}$ (C) 31 (D) 以上皆非

20. 已知平行四邊形 ABCD 的周長爲 52。過頂點 D 對 \overline{AB} 、 \overline{BC} 垂線分別交其於 E、F 兩點。若 $\overline{DE}=5$ 、 $\overline{DF}=8$,求 $\overline{BE}+\overline{BF}$ 可能的最大值。 (A) $8\sqrt{3}-10$ (B) $16-5\sqrt{3}$ (C) $6+3\sqrt{3}$ (D) $26+13\sqrt{3}$

- 1. 已知 a > b > c > d > 0,且 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} x & y \\ z & u \end{bmatrix}$,則下列敍述哪些正確?
 (A) xy < 0 (B) 若 x > 0,則 z > 0 (C) 若 x > 0,則 u > 0 (D) 若 x > u,則 y > z (E) 若 x > y, $\parallel z > u$
- 2. 設二階方陣 $A = \begin{bmatrix} x & 0 \\ y & z \end{bmatrix}$,則下列選項哪些正確?
 - (A) 若 A 爲可逆,則 $x \neq 0$ (B) 若 A 爲可逆,則 $y \neq 0$ (C) 若 A 爲可逆,則 $z \neq 0$ (D) 若乘積 xyz = 0,則 A 爲不可逆 (E) 若 A 爲不可逆,則 xz = 0
- 3. 有關矩陣 $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 與矩陣 $B = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$,請問下列選項哪些是正確的? (A) AB = BA (B) $A^2B = BA^2$ (C) $A^{11}B^3 = B^6A^5$ (D) $AB^{12} = A^7$ (E) $(ABA)^{15} = AB^{15}A$
- 4. 若平面變化 A 把 $(1,0) \to [r,\theta]$,把 $(0,1) \to [k,\phi]$,其中 r,k 爲正數且 θ,ϕ 在 $0^\circ \sim 360^\circ$ 的範圍 之內,請問下列哪些角度可使 A 的行列式 det(A) 為正數? (A) $\phi - \theta = 0^{\circ}$ (B) $\phi - \theta = 120^{\circ}$ (C) $\phi - \theta = -120^{\circ}$ (D) $\phi - \theta = 240^{\circ}$ (E) $\phi - \theta = -240^{\circ}$
- 5. 已知 $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$,若 $A^{10} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,則 a+b+c+d=? (A) 20 (B) 21 (C) 22 (D) 24 (E) 28
- 6. 已知三種無陣的線性變換: $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ 。若點 P(2,1) 透過 上述線性變換組合後對應到點 Q,且 Q = ABCP,則點 P 經此線性變換組合先後順序為下列哪一 個選項?
 - (A) 點 P 先對 y 軸鏡射後,再將 x 座標伸縮爲 3 倍,再以原點 O 爲旋轉中心逆時針旋轉 60° 而 得點 Q
 - (B) 點 P 先對 x 軸鏡射後,再將 x 座標伸縮爲 3 倍,再以原點 O 爲旋轉中心逆時針旋轉 60° 而
 - (C) 點 P 先對 x 軸鏡射後,再以原點 O 為旋轉中心逆時針旋轉 60° ,再將 x 座標伸縮為 3 倍而 得點 Q
 - (D) 點 P 先以原點 O 為旋轉中心逆時針旋轉 60° ,再將 x 座標伸縮為 3 倍,再對 y 軸鏡射而得點
 - (E) 點 P 先以原點 O 為旋轉中心逆時針旋轉 60° ,再將 x 座標伸縮為 3 倍,再對 x 軸鏡射而得 點Q
- 7. 關於方程組 $\begin{cases} x y = 1 \\ 3x y + 2z = k + 2 \\ x 3y 2x = k^2 \end{cases}$ 的敍述,試問下列各選項哪些是正確的?
 - (A) k = -1 時,方程組恰有一組解
 - (B) k = -2 時,方程組無限多組解
 - (C) k=3 時,方程組無解
 - (D) k=0 時,方程組有解

8. 設 A 爲座標平面上代表繞著原點 O 旋轉某個角度的二階方陣。若 $A^6 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,則 A 可能是下列

哪些選項中的方陣?
(A)
$$\begin{bmatrix} \cos 300^{\circ} & -\sin 300^{\circ} \\ \sin 300^{\circ} & \cos 300^{\circ} \end{bmatrix}$$
 (B) $\begin{bmatrix} \cos 150^{\circ} & \sin 150^{\circ} \\ \sin 150^{\circ} & \cos 150^{\circ} \end{bmatrix}$ (C) $\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$ (D) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ (E) $\begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$

9. 已知
$$(x,y,z)=(1,0,-1)$$
 爲
$$\begin{cases} x+y+z=0\\ ax+by+cz=0\\ px+qy+rz=0 \end{cases}$$
 的一組解, $(1,-1,0)$ 則不是。 $(x,y,z)=(2,3,-4)$ 是
$$\begin{cases} x+y+z=1\\ ax+by+cz=2\\ px+qy+rz=3 \end{cases}$$
 的一組解,則下列哪些選項也是
$$\begin{cases} x+y+z=1\\ ax+by+cz=2\\ px+qy+rz=3 \end{cases}$$
 的 $(2,3,-4)$ 是 $\begin{cases} x+y+z=1\\ ax+by+cz=2\\ px+qy+rz=3 \end{cases}$

(A)
$$(3, -4, 2)$$
 (B) $(-4, 2, 3)$ (C) $(3, 3, -5)$ (D) $(1, 3, -3)$ (E) $(1, 0, 0)$