CSC 226 SPRING 2017 ALGORITHMS AND DATA STRUCTURES II ASSIGNMENT 4 UNIVERSITY OF VICTORIA

- 1. Draw the KMP DFA for the following pattern string: AACAAAB.
- 2. Construct an example where the Boyer-Moore algorithm performs poorly.
- 3. True or false. If true, provide a short proof. If false, give a counterexample.
 - (a) If all edge capacities are distinct, the max flow is unique.
 - (b) There exists a max flow for which there is no directed cycle on which every edge carries positive flow.
 - (c) If all edge capacities are increased by an additive constant, the min cut remains unchanged.
- 4. Consider a variant of the Maximum-Flow problem with node capacities as follows. Let G = (V, E) be a directed graph with source $s \in V$, sink $t \in V$, and nonnegative node capacities c_v for each node $v \in V$. Given a flow f in this graph, the flow into a node is denoted by $f^i(v)$. We say that a flow is feasible if it satisfies the usual flow-conservation constraints and the node-capacity constraints: $f^i(v) \leq c_v$ for all nodes.
 - Show how Ford-Fulkerson algorithm can be used to find a maximum flow in a node-capacitated network.
- 5. Two paths in a graph are *edge-disjoint* if they have no edge in common.
 - **Disjoints Path Problem**: Given a digraph G = (V, E) and two nodes s and t, find the maximum number of edge-disjoint s-t paths.
 - Sow how this problem can be reduced to the max flow problem.