METODE COPRAS

(Complex Proportional Assessment)

Saifur Rohman Cholil, S.Kom., M.Kom.

- Metode COPRAS merupakan salah satu metode dalam pengambilan keputusan yang mangasumsikan ketergantungan langsung dan proporsional dari tingkat signifikansi kegunaan alternatif.
- Metode copras dapat menentukan solusi terbaik untuk rasio solusi ideal yang terburuk (Valipour, 2017)

- ☐ Metode COPRAS memiliki tingkat selektifitas yang baik karena dapat menentukan tujuan dari kriteria yang bertentangan.
- ☐ Dimana kriteria dapat bernilai menguntungkan (benefit) atau yang tidak menguntungkan (cost).

☐ Tahapan metode COPRAS :

- 1. Menyiapkan atribut yang akan diidentifikasi
- 2. Normalisasi matriks
- 3. Normalisasi matriks terbobot
- 4. Hitung nilai maksimal dan minimal indeks
- 5. Hitung bobot relatif
- 6. Hitung utilitas kuantitatif setiap alternatif

1. Menyiapkan atribut yang akan diidentifikasi. Pada tahap ini mendefinisikan alternatif, kriteria, menentukan nilai kriteria dari masing-masing alternatif dan menentukan bobot pada masing-masing kriteria.

Tujuan dilakukan normalisasi untuk menyatukan setiap element matriks sehingga element pada matriks memiliki nilai yang seragam.

$$X_{ij} = \frac{X_{ij}}{\sum_{i=1}^{m} X_{ij}}$$

3. Normalisasi matriks terbobot.

selanjutnya mengoptimasi nilai atribut dengan cara nilai normalisasi matriks x bobot.

$$D' = d_{ij} = X_{ij} * w_j$$

Hitung nilai maksimal dan minimal indeks Menghitung maksimal dan minimal indeks untuk masing-masing alternatif menggunakan persamaan:

$$S_{+i} = \sum_{j=1}^{n} y + ij$$
$$S_{-i} = \sum_{j=1}^{n} y - ij$$

i merupakan alternatif ke-i, j merupakan kriteria ke-j, n merupakan jumlah kriteria yang termasuk dalam kriteria yang menguntungkan untuk S_{+i} dan kriteria yang merugikan untuk S_{-i}, y merupakan suatu nilai kriteria dari tabel atau matrix yang telah di normalisasi dan dikalikan dengan bobot.

Hasil dari tahap keempat ini akan menghasilkan nilai S_{+i} dan S_{-i} pada masing masing kriteria. Kedua nilai ini akan dimasukkan pada tabel baru setelah dilakukan perhitungan selanjutnya.

5. Hitung bobot relatif

$$Q_{i} = S_{+i} + \frac{S_{-i}\min\sum_{i=1}^{m} S_{-i}}{S_{-i}\min\sum_{i=1}^{m} (S_{-min}/S_{-i})}$$

$$Q_{i} = S_{+i} + \frac{\sum_{i=1}^{m} S_{-i}}{S_{-i}\sum_{i=1}^{m} (1/S_{-i})} (i = 1, 2, ...m)$$

Dimana : S_{-min} adalah nilai minimum S_{-i} . Semakin besar nilai Q_i , semakin tinggi prioritas alternatif. Nilai signifikansi relatif suatu alternatif menunjukkan tingkat kepuasan yang dicapai oleh alternatif itu. Alternatif dengan nilai signifikansi relatif tertinggi (Q_{max}) adalah pilihan terbaik di antara alternatif kandidat.

6. Hitung utilitas kuantitatif (Ui) untuk setiap alternatif.

$$U_i = \frac{Q_i}{Q_{max}} \times 100\%$$

Dimana:

U_i = utilitas kuantitatif

Q_i = nilai rasio relatif pada alternatif ke-i

Q_{max} = nilai signifasi maksimum

Nilai utilitas ini berkisar antara 0% sampai 100%.

Alternatif dengan nilai utilitas tertinggi (U_max) adalah pilihan terbaik di antara alternatif kandidat.

Contoh:

- ☐ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- □ Posisi yang dibutuhkan hanya 2 orang.
- □ Kriteria :
 - ✓ Pengalaman kerja (disimbolkan C1)
 - ✓ Pendidikan (C2)
 - ✓ Usia (C3)
 - ✓ Status perkawinan (C4)
 - ✓ Alamat (C5)

Jawab:

1. Menentukan kriteria, alternatif dan bobot

Kriteria Benefit:

- Pengalaman kerja (disimbolkan C1)
- > Pendidikan (C2)
- ➤ Usia (C3)

kriteria Cost:

- Status perkawinan (C4)
- > Alamat (C5)

- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
 - ✓ Doni Prakosa (disimbolkan A1)
 - ✓ Dion Pratama (A2)
 - ✓ Dina Ayu Palupi(A3)
 - ✓ Dini Ambarwati (A4)
 - ✓ Danu Nugraha (A5)

☐ Penilaian alternatif untuk setiap kriteria

Alternatif	kriteria					
	C1	C2	C3	C4	C5	
A1	0,5	1	0,7	0,7	0,8	
A2	0,8	0,7	1	0,5	1	
A3	1	0,3	0,4	0,7	1	
A4	0,2	1	0,5	0,9	0,7	
A5	1	0,7	0,4	0,7	1	

☐ Pembobotan (w)

Kriteria	Bobot
C1	0,3
C2	0,2
C3	0,2
C4	0,15
C5	0,15
Total	1

Kriteria C1:

$$\sum_{i=1}^{m} X_{ij} = 0.5 + 0.8 + 1 + 0.2 + 1 = 3.5$$

$$X_{ij} = \frac{X_{ij}}{\sum_{i=1}^{m} X_{ij}}$$

	3,3		
A ₂₄ =	0,8	=	0,229

 $A_{11} = \frac{0.5}{2.5} = 0.143$

$$A_{24} = \frac{1}{1} = 0.286$$

$$A_{31} = \frac{1}{3,5} = 0.286$$

$$A_{41} = \frac{0.2}{3.5} = 0.057$$

$$A_{51} = \frac{1}{3.5} = 0.286$$

Alternatif		kriteria					
	C1	C2	C3	C4	C5		
A1	0,5	1	0,7	0,7	0,8		
A2	0,8	0,7	1	0,5	1		
A3	1	0,3	0,4	0,7	1		
A4	0,2	1	0,5	0,9	0,7		
A5	1	0,7	0,4	0,7	1		

Kriteria C2:

$$\sum_{i=1}^{m} X_{ij} = 1 + 0.7 + 0.3 + 1 + 0.7 = 3.7$$

$$X_{ij} = \frac{X_{ij}}{\sum_{i=1}^{m} X_{ij}}$$

	,	
۸ —	0,7	 0,189
A_{22}	27	0,109

 $A_{12} = \frac{1}{3.7} = 0.270$

$$A_{32} = \frac{0.3}{3.7} = 0.081$$

$$A_{42} = \frac{1}{3,7} = 0,270$$

$$A_{52} = \frac{0.7}{3.7} = 0.189$$

Alternatif	kriteria				
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
А3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

Kriteria C3:

$$\sum_{i=1}^{m} X_{ij} = 0.7 + 1 + 0.4 + 0.5 + 0.4 = 3$$

$$X_{ij} = \frac{X_{ij}}{\sum_{i=1}^{m} X_{ij}}$$

A ₁₃ =	$\frac{0.7}{3} = 0.233$)
A ₂₃ =	$\frac{1}{2} = 0.333$	

$$A_{33} = \frac{0.4}{3} = 0.133$$

$$A_{43} = \frac{0.5}{3} = 0.167$$

$$A_{53} = \frac{0.4}{3} = 0.133$$

Alternatif			kriteria		
	C1	C2	C3	C4	C5
A1	0,5	1	0,7	0,7	0,8
A2	0,8	0,7	1	0,5	1
А3	1	0,3	0,4	0,7	1
A4	0,2	1	0,5	0,9	0,7
A5	1	0,7	0,4	0,7	1

Kriteria C4:

$$\sum_{i=1}^{m} X_{ij} = 0.7 + 0.5 + 0.7 + 0.9 + 0.7 = 3.5$$

$$X_{ij} = \frac{X_{ij}}{\sum_{i=1}^{m} X_{ij}}$$

	0,5		
$A_{24}=$	0,5	=	0,143

 $A_{14} = \frac{0.7}{3.5} = 0.200$

$$A_{34} = \frac{0.7}{3.5} = 0.200$$

$$A_{44} = \frac{0.9}{3.5} = 0.257$$

$$A_{54} = \frac{0.7}{3.5} = 0.200$$

	kriteria				
C1	C2	C3	C4	C5	
0,5	1	0,7	0,7	0,8	
0,8	0,7	1	0,5	1	
1	0,3	0,4	0,7	1	
0,2	1	0,5	0,9	0,7	
1	0,7	0,4	0,7	1	
	0,5 0,8 1 0,2	0,5 1 0,8 0,7 1 0,3 0,2 1	C1 C2 C3 0,5 1 0,7 0,8 0,7 1 1 0,3 0,4 0,2 1 0,5	C1 C2 C3 C4 0,5 1 0,7 0,7 0,8 0,7 1 0,5 1 0,3 0,4 0,7 0,2 1 0,5 0,9	

Kriteria C5:

$$\sum_{i=1}^{m} X_{ij} = 0.8 + 1 + 1 + 0.7 + 1 = 4.5$$

$$A_{15} = \frac{0.8}{4.5} = 0.178$$

$$A_{25} = \frac{1}{4.5} = 0.222$$

$$A_{35} = \frac{1}{4.5} = 0.222$$

$$A_{45} = \frac{0.7}{4.5} = 0.156$$

$$A_{55} = \frac{1}{4.5} = 0.222$$

Alternatif	kriteria						
	C1	C2	С3	C4	C5		
A1	0,5	1	0,7	0,7	0,8		
A2	0,8	0,7	1	0,5	1		
А3	1	0,3	0,4	0,7	1		
A4	0,2	1	0,5	0,9	0,7		
A5	1	0,7	0,4	0,7	1		

Hasil normalisasi:

	0,143	0,270	0,233	0,200	0,178
	0,229	0,189	0,333	0,143	0,222
$X_{ij} =$	0,286	0,081	0,133	0,200	0,222
J	0,057	0,270	0,167	0,257	0,156
	0,286	0,189	0,133	0,200	0,178 0,222 0,222 0,156 0,222

3. Normalisasi matriks terbobot

$$D' = d_{ij} = X_{ij} * w_j$$

$$X_{ij} = \begin{bmatrix} 0.143 & 0.270 & 0.233 & 0.200 & 0.178 \\ 0.229 & 0.189 & 0.333 & 0.143 & 0.222 \\ 0.286 & 0.081 & 0.133 & 0.200 & 0.222 \\ 0.057 & 0.270 & 0.167 & 0.257 & 0.156 \\ 0.286 & 0.189 & 0.133 & 0.200 & 0.222 \end{bmatrix} * W_j = 0,3 (0.000)$$

*
$$W_j = 0.3$$
 0.2 0.2 0.15 0.15

4. Hitung nilai maksimal dan minimal indeks $S_{+i} = (C1 + C2 + C3)$

$$S_{-i} = \sum_{j=1}^{j=1} y - ij$$

$$0,043 \quad 0,054 \quad 0,047 \quad 0,030 \quad 0,027$$

$$A_1 = 0.043 + 0.054 + 0.047 = 0.144$$

$$A_2 = 0.069 + 0.038 + 0.067 = 0.173$$

$$A_3 = 0.086 + 0.016 + 0.027 = 0.129$$

 $A_4 = 0.017 + 0.054 + 0.033 = 0.105$

 $A_5 = 0.086 + 0.038 + 0.027 = 0.150$

0,038 0,067 0,021

 $d_{ii} = \begin{vmatrix} 0.086 & 0.016 & 0.027 & 0.030 \end{vmatrix}$

4. Hitung nilai maksimal dan minimal indeks $S_{-i} = (C4 + C5)$

$$S_{-i} = \sum_{j=1}^{j=1}^{n} y - ij$$

$$0,054 \quad 0,047 \quad 0,030 \quad 0,027$$

$$A_1 = 0.030 + 0.027 = 0.057$$

$$A_2 = 0.021 + 0.033 = 0.055$$

$$A_3 = 0.030 + 0.033 = 0.063$$

$$A_4 = 0.039 + 0.023 = 0.062$$

$$A_4 = 0.033 + 0.023 = 0.002$$

 $A_5 = 0.030 + 0.033 = 0.063$

$$d_{ij} = \begin{bmatrix} 0,069 & 0,038 & 0,067 & 0,021 & 0,033 \\ 0,086 & 0,016 & 0,027 & 0,030 & 0,033 \\ 0,017 & 0,054 & 0,033 & 0,039 & 0,023 \\ 0,086 & 0,038 & 0,027 & 0,030 & 0,033 \end{bmatrix}$$

4. Hitung nilai maksimal dan minimal indeks

ALTERNATIF	S_{+i}	S_{-i}
A1	0,144	0,057
A2	0,173	0,055
A3	0,129	0,063
A4	0,105	0,062
A5	0,150	0,063
$\sum_{i=1}^{m} S_{-i}$		0,300

5. Hitung bobot relatif $(1/S_{-i})$

$$A_1 = 1/0,057 = 17,647$$

$$A_2 = 1/0,055 = 18,261$$

$$A_3 = 1/0,063 = 15,789$$

$$A_4 = 1/0,062 = 16,154$$

$$A_5 = 1/0,063 = 15,789 +$$

$$\sum_{i=1}^{m} (1/S_{-i})$$
 83,641

$$Q_{i} = S_{+i} + \frac{S_{-i}\min\sum_{i=1}^{m} S_{-i}}{S_{-i}\min\sum_{i=1}^{m} (S_{-min}/S_{-i})}$$

$$Q_{i} = S_{+i} + \frac{\sum_{i=1}^{m} S_{-i}}{S_{-i}\sum_{i=1}^{m} (1/S_{-i})} (i = 1,2,...m)$$
ALTERNATIF
$$S_{+i} = S_{-i}$$

0,144

0,173

0,129

0,105

0,150

0,057

0,055

0,063

0,062

0,063

0,300

ALTERNATIF
A1
A2
А3
A4
A5
$\sum_{i=1}^{m}$

5. Hitung bobot relatif
$$S_{-i} \sum_{i=1}^{m} (1/S_{-i})$$

$$S_{-i} \sum_{i=1}^{m} (1/S_{-i})$$

$$A_1 = 0.057 * 83.641 = 4.740$$

$$Q_{i} = S_{+i} + \frac{S_{-i}\min\sum_{i=1}^{m} S_{-i}}{S_{-i}\min\sum_{i=1}^{m} (S_{-min}/S_{-i})}$$

$$Q_{i} = S_{+i} + \frac{\sum_{i=1}^{m} S_{-i}}{S_{-i}\sum_{i=1}^{m} (1/S_{-i})} (i = 1,2,...m)$$
ALTERNATIF S_{+i} S_{-i}

A1
A2
A3
A4
A5
$$\sum_{i=1}^{m} S$$

0,144

0,173

0,129

0,105

0,150

0,057

0,055

0,063

0,062

0,063

0,300

5. Hitung bobot relatif

$$\frac{\sum_{i=1}^{m} S_{-i}}{S_{-i} \sum_{i=1}^{m} (1/S_{-i})}$$

$$A_1 = 0.300 / 4.740 = 0.063$$

$$A_2 = 0.300 / 4.580 = 0.065$$

 $A_3 = 0.300 / 5.297 = 0.057$

$$A_4 = 0.300 / 5.178 = 0.058$$

 $A_5 = 0.300 / 5.297 = 0.057$

$$Q_{i} = S_{+i} + \frac{S_{-i}\min\sum_{i=1}^{m} S_{-i}}{S_{-i}\min\sum_{i=1}^{m} (S_{-min}/S_{-i})}$$

$$Q_{i} = S_{+i} + \frac{\sum_{i=1}^{m} S_{-i}}{S_{-i}\sum_{i=1}^{m} (1/S_{-i})} (i = 1, 2, ... m)$$

1-1-11			
ALTERNATIF	S_{+i}	S_{-i}	$S_{-i}\sum_{i=1}^m (1/S_{-i})$
A1	0,144	0,057	4,740
A2	0,173	0,055	4,580
A3	0,129	0,063	5,29
A4	0,105	0,062	5,178
	0.450	0.000	

5. Hitung bobot relatif

$$S_{+i} + \frac{\sum_{i=1}^{m} S_{-i}}{S_{-i} \sum_{i=1}^{m} (1/S_{-i})}$$

$$A_1 = 0.144 + 0.063 = 0.207$$

$$A_2 = 0.173 + 0.065 = 0.239$$

$$A_3 = 0.129 + 0.057 = 0.185$$

$$A_4 = 0.105 + 0.058 = 0.162$$

$$A_5 = 0.150 + 0.057 = 0.207$$

0,239

$$Q_{i} = S_{+i} + \frac{S_{-i}\min\sum_{i=1}^{m} S_{-i}}{S_{-i}\min\sum_{i=1}^{m} (S_{-min}/S_{-i})}$$

$$Q_{i} = S_{+i} + \frac{\sum_{i=1}^{m} S_{-i}}{S_{-i}\sum_{i=1}^{m} (1/S_{-i})} (i = 1, 2, ...m)$$

				7
ALTERNATIF	S_{+i}	S_{-i}	$\frac{\sum_{i=1}^{m} S_{-i}}{S_{-i} \sum_{i=1}^{m} (1/S_{-i})}$	
A1	0,144	0,057	0,063	THE STATE OF
A2	0,173	0,055	0,065	
A3	0,129	0,063	0,057	2000
A4	0,105	0,062	0,058	183
A5	0,150	0,063	0,057	=
$\sum_{i=1}^{m}$	S_{-i}	0,300	b /	٤

6. Hitung utilitas kuantitatif (Ui) untuk setiap alternatif.

$$A_2 = (0,239/0,239) * 100% = 100$$

$$A_3 = (0,185/0,239) * 100% = 77,64$$

 $A_4 = (0,162/0,239) * 100% = 68,10$

$$A_4 = (0.162/0.239) * 100% = 68.10$$

 $A_5 = (0.207/0.239) * 100% = 86.70$

$$A_4 = (0,162/0,239) * 100% = 68,10$$

 $A_5 = (0,207/0,239) * 100% = 86,70$

0,239

6. Hitung utilitas kuantitatif (Ui) untuk setiap alternatif.

i	$=\frac{Q_i}{Q_{max}}$	x 100%

ALTERNATIF	Ui	RANKING
A1	86,71	2
A2	100,00	1
A3	77,64	4
A4	68,10	5
A 5	86,70	3

- □ Nilai terbesar ada pada $A_2 = 100$ dan $A_1 = 86,71$ sehingga Dion Pratama dan Doni Prakosa adalah alternatif yang terpilih sebagai alternatif terbaik.
- □ Dengan kata lain, Dion Pratama dan Doni Prakosa terpilih untuk posisi operator mesin.