SEARCH REQUEST FORM

Requestor's	FOR OFFICIAL USE ON Serial	1), a
Name: Ellis	Number:_	ı	
Date: $\frac{9/13/93}{1}$	Phone: 308 - 3990	_ Art Unit:	1813
Search Topic: Please write a detailed statement of search topic. D that may have a special meaning. Give examples or a copy of the sequence. You may include a copy	r relevant citations, authors keyword of the broadest and/or most relevan	is, etc., ii known. For sequent claim(s).	erices, piease attach
Please search	•		Caseo
	4 r 2 B -		04:
E-prosed to	encode M	There The	gene, line
but I do	on t know '	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
P			,
1. PIR 2. Surss F			
3. Suiss 1			
4. Gen 13	Sout	r	
The effecti CRF NO Ser ID.	ive filing dark	is 11/7/80	so Nec
is no and the		ρ	NA'S'N 1 &S St. 1, Adalest Sans
		d	A 300
	STAFF USE ONLY		09-114
Date completed: 09-14-93 Searcher: Bever 1y e 4994 Terminal time: -75 Elapsed time: -75 Total time: 85 Number of Searches: Number of Databases: 1			IG Suite IG Suite STN Dialog APS Geninfo SDC DARC/Questel Other

```
> 0 <
0| |0 IntelliGenetics
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file ellis-012-fig2ab-ags.res made by shears on Tue 14 Sep 93 14:54:10-PDT.
Query sequence being compared:ELLIS-012-FIG2AB.PEP (1-256)
Number of sequences searched:
                                            30847
Number of scores above cutoff:
                                             4007
      Results of the initial comparison of ELLIS-012-FIG2AB.PEP (1-256) with:
   Data bank : A-GeneSeq 11, all entries
100000-
U50000-
B
E . -
F10000-
E 5000-
U
Ε
N
С
Ε
S 1000-
```

<u>.</u>	*			Best .	Availa	ble (Сору		•	•		
_							*					
-												
100-												
									ř			
-												
50-												
-												
-												
-												
-												
-												
-												
10-										*		
-												
_												
5-											#	
-												
-												
-												
-												
_												
0												
1		11	11	11		1	1 1					
SCORE O	1 -1	2 0	13	1 4	6		 7 4	8	! 5	9	10	

PARAMETERS

Similarity matrix	Unitary	K-tuple	2
Mismatch penalty	5	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.26		
Cutoff score	0		
Randomization group	. 0		
Initial scores to save	40	Alignments to save	15
Optimized scores to sav	re 0	Display context	50

SEARCH STATISTICS

Scores:	Mean	Median	Standard	Deviation
	3	4	1.25	

Times: CPU Total Elapsed 80.20:10:00 00:02:09.00

Number of residues: 4048030 Number of sequences searched: 30847 Number of scores above cutoff: 4007

Cut-off raised to 2. Cut-off raised to 3. Cut-off raised to 4. Cut-off raised to 5. Cut-off raised to 6.

The scores below are sorted by initial score. Significance is calculated based on initial score.

•			Init.	Not.		
Sequence Name	Description	Length !		•	Sig. F	rame
	**** 5 standard deviations		an ###	*		
1. R04747 °	Amino acid sequence of modifi	231	10	23	5.60	0
2. R04751	Amino acid sequence of maize	235	10	22	5.60	0
3. R04749	Amino acid sequence of maize	235	10	22	5.60	0
4. R04748	Amino acid sequence of maize	235	10	23	5.60	0
	**** 4 standard deviations			¥		
5. R28289	HI-30 N-terminal sequence.	20	9	9	4.80	0
6. P91700	Protein increasing pulmonary	23	9	9	4.80	0
7. P91701	Protein increasing pulmonary	35	9	9	4.80	0
8. R30953	Rabbit whey acidic protein.	127	9	16	4.80	0
9. P81110	Sequence of new fusion protei		9	34	4.80	0
10. R31046	Rat D1B dopamine receptor.	475	9	18	4.80	0
11. R21082	Dopamine D1 receptor encoded	477	9	19	4.80	0
12. R22546	Truncated Dopamine D1 recepto		9	20	4.80	0
	**** 3 standard deviations		an ###	¥		
13. R31224	Transmembrane region of HIV-1	28	8	9	4.00	0
14. R27470	HIV-1 (IIIB) env transmembran	28	8	9	4.00	0
15. R15248	Carbohydrate binding domain #	32	8	9	4.00	0
16. R22089	Human MK protein.	143	8	15	4.00	0
17. P80745	Sequence of AAs 600-750 of HI	150	8	13	4.00	0
18. R24301	Glycopeptide resistance prote	161	8	15	4.00	0
19. P20007	Hybrid human leukocyte interf	187	8	15	4.00	0
20. P20103	Sequence encoded by leukocyte	188	8	15	4.00	0
21. R20564	O-glycosylated IFN-alpha2c.	188	8	15	4.00	0
22. R20549	Human IFNalpha 2C from pAD19B	138	8	15	4.00	0
23. R11802	Sporamin A encoded by the cDN	219	8	17	4.00	0
24. R11356	Alkaline phosphatase-IFN alph	219	8	17	4.00	0
25. P95375	Sequence of lipase of Bacillu	247	8	30	4.00	0
26. P70831	Sequence of lipase of Bacillu	247	8	31	4.00	0
27. RO6495	Beta 3 adrenergic receptor.	402	8	36	4.00	0
28. R12395	Transcription activator.	406	8	16	4.00	0
29. R05539	Rat D2 dopamine receptor.	415	8	14	4.00	0
30. R30886	ETb receptor.	442	8	29	4.00	0
31. R10544	D2 dopamine receptor long iso	444	8	15	4.00	0
32. R22499	[GARSY@]-[Plasminogen 347-541	467	8	35	4.00	0
33. R22032	Truncated human urinary throm		8	35	4.00	0
34. R22503	[GARSY0]-[Plasminogen 347-541	476	8	35	4.00	0
35. R22013	Truncated human thrombomoduli	480	8	35	4.00	0
36. R13877	Thrombin-binding substances (486	8	35	4.00	Ō
37. R24400	Recombinant thrombin-binding	494	8	35	4.00	Ō
38. R10617	Soluble thrombomodulin deriv.	515	8	35	4.00	Ö
39. R22018	Human thrombomodulin (1-516)	516	8	35	4.00	Ö
40. R22017	Human thrombomodulin (1-516)	516	8	35	4.00	Ö
			-			•

1. ELLIS-012-FIG2AB.PEP (1-256)

RO4747 Amino acid sequence of modified 19 kD maize zein e

ID R04747 standard; protein; 231 AA.

AC R04747;

DT 05-AUG-1990 (first entry)

DE Amino acid sequence of modified 19 kD maize zein encoded by clone cZ19A2

KW Maize zein; lysine substitution.

OS Maize.

PN US4885357-A.

PD 05-DEC-1989.

PF 21-APR-1988; 184348.

PR 21-APR-1988; US-184348.

PA (IURR) Lubrical Core (PURD)

```
Larkins B, Cuellar RE, Wallace JC;
 DR
     WPI; 90-050879/07.
 DR
     N-PSDB; 003295.
     New modified zein contq. lysine residues -
     with better nutritional balance, prepd. by expressing mutated
 PT
     zein gene
 PS
     Disclosure; Fig 4; 18pp; English.
     The patent concerns a modified 19 or 22 kD zein which includes Lys in the
 CC
 CC
     internal repeated region of the zein. This is the amino acid sequence of
 CC
     a modified 19 kD zein. It has better nutritional balance than unmodified
     zein (which lacks Lys), but retains the other properties zein - ability
 CC
     to form protein bodies within the rough endoplasmic reticulum of the
 CC
     host cell, and solubility in alcohol.
 SO
     Sequence 231 AA;
 SQ
     32 A; 2 R; 9 N; 2 D; 0 B; 3 C; 40 Q; 1 E; 0 Z; 6 G; 3 H;
 SQ
     10 I; 45 L; 0 K; 1 M; 15 F; 24 P; 15 S; 8 T; 0 W; 8 Y; 7 V;
Initial Score
                     10 Optimized Score =
                                               23 Significance = 5.60
                    21% Matches
                                               33 Mismatches = 102
Residue Identity =
                                    =
                     16 Conservative Substitutions
        70
                  80
                           90
                                    100
                                             110 X 120
   CRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRP
                                                     1 11
                                                   IFCFLMLLG-LSASAATATIFP
                                                           10
                                                                     20
      140
                                    170
               150
                          160
                                             180
                                                       190
                                                                    200
   WTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSAL----LLA-
                     - 1
    --OCSOTPIASLLPPYLSPAVSSVCENP---ILOPYRIOGAIAAGILPLSPLFLOOPSALLOOLPLVHLLAO
            30
                                  50
                      40
                                            60
                                                     70
                                                              80
           210
                     220
                              230
                                        240
                                                 250
   LIFITLL-FSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
        NIRAGGLOGLVLGNLAAYSGHQGFLPF--NGLAALNSAAYLGGGGGLPFSGLAAAYPGGFLPFNGLAALNSA
                 110
                                 120
                                          130
                                                    140 X
   AYLQQQQPLPFSQLADVSPATFLTQPQLLPFYLHA
   160
            170
                      180
                           190
2. ELLIS-012-FIG2AB.PEP (1-256)
  R04751
               Amino acid sequence of maize zein encoded by clone
     R04751 standard; protein; 235 AA.
 AC
     R04751;
 DT
     05-AUG-1990 (first entry)
     Amino acid sequence of maize zein encoded by clone cZ19C1
 K₩
     Maize zein; lysine substitution; clone cZ19C1.
 08
     Maize.
 PN
     US4885357-A.
 PD
     05-DEC-1989.
 PF
    21-APR-1988; 184348.
 PR
    21-APR-1988; US-184348.
     (LUBR) Lubrizol Corp (PURD).
 PΙ
    Larkins B, Cuellar RE, Wallace JC;
    WPI; 90-050879/07.
 DR
     N-PSDB; 004373.
 PT
     New modified zein contg. lysine residues -
 PT
     with better nutritional balance, prepd. by expressing mutated
 PT
     zein gene
 PS
     Disclosure; Fig 4; 18pp; English.
     The patent concerns a modified 19 or 22 kD zein which includes Lus in the
```

internal reseated region of the zein. This is the aging acid seguence of

CC

```
a modified 19 kD zein. It has better nutritional balance than unmodified
 CC
     zein (which lacks Lys), but retains the other properties zein - ability
     to form protein bodies within the rough endoplasmic reticulum of the
     host cell, and solubility in alcohol.
 50
     Sequence 235 AA;
 SQ
     37 A; 3 R; 9 N; 1 D; 0 B; 3 C; 39 Q; 1 E; 0 Z; 5 G; 3 H;
 SQ
     11 I; 48 L; 1 K; 3 N; 14 F; 21 P; 17 S; 5 T; 0 W; 8 Y; 6 V;
                    10 Optimized Score =
Initial Score
                                              22 Significance = 5.60
Residue Identity =
                    21% Matches
                                        =
                                              32 Mismatches =
                    19 Conservative Substitutions
                     80
                              90
                                      100
                                                110
                                                         150
                                                                  130
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGPOCTRCEKDCRPGOELTKOGCKTCSLGTFNDONGTG
                                                   1 1 11
                                                 MAAKIFCLIMLLG-LSASAATA
                                                         10
         140
                    150
                             160
                                      170
                                                180
                                                                  200
                                                         190
    VCRPWTNCSLDGRSVL--KTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLAL
              SIFP--0CS0APIASLLPPYLSPAMSSVCENP--ILLPYRI00AIAAG----ILPLSPLFL00SSALL00L
            30
                  40 50
                                   60
                                                       70
         210
                  220
                           530
                                     240
                                              250
    IFITLLFSVLKW1RKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
       PLVHLL---AGNIR----AGGLGGLVLANLAAYSGGGGFLPFNGLAALNSAAYLGGGGLLPFSGLAAAYPRG
                     100
                              110 120 130 X
   FLPFNOLAALNSHAYVQQQQLLPFSQLAAVSPA
  150
           160
                    170
                             180
3. ELLIS-012-FIG2AB.PEP (1-256)
  R04749
              Amino acid sequence of maize zein encoded by clone
     R04749 standard; protein; 235 AA.
 AC
     R04749;
     05-AUG-1990 (first entry)
 DE
     Amino acid sequence of maize zein encoded by clone cZ19AB1
 K₩
     Maize zein; lysine substitution.
 05
     Maize.
 PN
     US4885357-A.
 PD
     05-DEC-1989.
 PF
     21-APR-1988; 184348.
 PR
    21-APR-1988; US-184348.
 PA
     (LUBR) Lubrizol Corp (PURD).
PΙ
     Larkins B, Cuellar RE, Wallace JC;
 DR
     WPI; 90-050879/07.
     New modified zein contg. lysine residues -
 PT
     with better nutritional balance, prepd. by expressing mutated
PT
     zein gene
PS
     Disclosure; Fig 4; 18pp; English.
 CC
     The patent concerns a modified 19 or 22 kD zein which includes Lys in the
 CC
     internal repeated region of the zein. This is the amino acid sequence of
 CC
     a modified 19 kD zein. It has better nutritional balance than unmodified
     zein (which lacks Lys), but retains the other properties zein - ability
 CC
     to form protein bodies within the rough endoplasmic reticulum of the
 CC
     host cell, and solubility in alcohol.
 50
     Sequence 235 AA;
     37 A; 3 R; 9 N; 1 D; 0 B; 3 C; 39 Q; 1 E; 0 Z; 5 G; 3 H;
     11 I; 48 L; 1 K; 3 M; 14 F; 21 P; 17 S; 5 T; 0 W; 8 Y; 6 V;
```

Initial Score

Racidua Idantitu =

=

10 Optimized Score =

217 Matchee

22 Significance = 5.60

72 Mismatches

```
90
  60
            70
                     80
                                       100
                                                110
                                                          120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                    1 1 11
                                                  MAAKIFCLIMLLG-LSASAATA
                                                          10
         140
                    150
                              160
                                       170
                                                180
                                                          190
    VCRPHTNCSLDGRSVL--KTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
                      1 111
    SIFP--OCSOAPIASLLPPYLSPAMSSVCENP--ILLPYRIOOAIAAG----ILPLSPLFLOOSSALLOOL
            30
                     40
                               50
                                          60
                                                        70
         210
                  220
                            230
                                     240
                                               250
    IFITLLFSVLKWIRKKFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
          11
                   PLVHLL---AGNIR----AGGLOGLVLANLAAYSGGGGFLPFNGLAALNSAAYLGGGGLLPFSGLAAAYPRG
                     100
                               110
                                    120
                                             130 X
   FLPFNQLAALNSHAYVQQQQLLPFSQLAAVSPA
  150
          160
               170
4. ELLIS-012-FIG2AB.PEP (1-256)
  R04748
              Amino acid sequence of maize zein encoded by clone
 ID
     R04748 standard; protein; 235 AA.
 AC
     R04748;
 DT
     05-AUG-1990 (first entry)
 DΕ
     Amino acid sequence of maize zein encoded by clone c219B1
 КW
     Maize zein; lysine substitution.
 05
     US4885357-A.
 PN
 PD
     05-DEC-1989.
 PF
     21-APR-1988; 184348.
 PR 21-APR-1988; US-184348.
 PA
    (LUBR) Lubrizol Corp (PURD).
 PI
    Larkins B, Cuellar RE, Wallace JC;
    WPI; 90-050879/07.
     N-PSDB; Q03296.
 DR
 PT
     New modified zein contg. lysine residues -
     with better nutritional balance, prepd. by expressing mutated
 PT
 PT
     zein gene
 PS
     Disclosure; Fig 4; 18pp; English.
     The patent concerns a modified 19 or 22 kD zein which includes Lys in the
 CC
     internal repeated region of the zein. This is the amino acid sequence of
     a modified 19 kD zein. It has better nutritional balance than unmodified
 CC
     zein (which lacks Lys), but retains the other properties zein - ability
 CC
     to form protein bodies within the rough endoplasmic reticulum of the
 CC
     host cell, and solubility in alcohol.
     Sequence 235 AA;
 SQ
     27 A; 2 R; 10 N; 0 D; 0 B; 3 C; 42 Q; 1 E; 0 Z; 8 G; 2 H;
 50
     10 I; 45 L; 1 K; 2 M; 15 F; 23 P; 19 S; 9 T; 0 W; 8 Y; 8 V;
Initial Score =
                   10 Optimized Score =
                                              23 Significance = 5.60
Residue Identitu =
                    22% Matches =
                                               33 Mismatches =
                    19 Conservative Substitutions
Gaps
                                                                    0
            70
                     80
                               90
                                       100
                                                110
                                                          120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                     MAAKIFCFLMLLG-LSASAATA
                                                          10
```

19 Conservative Substitutions

0

Gaps

1 40

110

170

100

100

```
VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTT1SVTPEGGPGGHSLQVLTLFLALTSALLLAL
                         - 1
                                                      1
    TIFP--QCSQTPITSLLPPYLSSAVSSVCENP--ILQPYRIQQAIAAG----ILPLSPLFLQQSSALLQQL
            30
                      40
                               50
                                           60
                                                         70
         210
                   550
                             230
                                      240
                                                250
    IFITLLFSVLKWIRKKFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
        PLVHLL---A0NIR----A00L00LVLGNLAAYS00Q0FLPFN0LGSLNSSAYL00Q00LPFS0LPAAYP00
       90
                      100
                           110 120
                                               130 X
    FLPFNQLAALNSPAYLQQQQLLPFSQLAGVSPA
  150
                     170
           160
                              180
5. ELLIS-012-FIG2AB.PEP (1-256)
  R28289 HI-JO N-terminal sequence.
 ΙĐ
     R28289 standard; peptide; 20 AA.
 AC
     R28287;
 DT
     19-MAR-1993 (first entry)
 DE
     HI-30 N-terminal sequence.
     White blood cell adhesion; wbc; endothelial cells; treatment;
 KW
     sepsis; inflammation; arthritis.
 DS.
     Homo sapiens.
 FH
     Key
                     Location/Qualifiers
 FT
     Region
                     12
 FT
     /note= "uncertain residue"
 FT
     Region
                     17
 FT
     /note= "uncertain residue"
 FT
     Region
                    18
     /note= "uncertain residue"
 FT
 FT
                   19
 FT
     /note= "uncertain residue"
 PN
     W09218160-A.
 PD
     29-0CT-1992.
     16-APR-1992; U03132.
 PR
     17-APR-1991; US-637300.
 PR
     14-MAY-1991; US-700526.
PA
     (CETU ) CETUS CORP.
 PA
     (CETU ) CETUS ONCOLOGY CORP.
 PΙ
     Houston LL, Kaymakcalan Z, Liu DY.
 DR
     WPI; 92-381785/46.
 PT
     Use of alpha 1 micro-globulin, HI-30 or inter-alpha-trypsin inhibitor
 PT
     light chain - to inhibit adhesion of white blood cells to endothelial
 PT
     cells, for treating sepsis, inflammation and arthritis
PS
     Disclosure; Page 18; 41pp; English.
 CC
     The sequence is that of the N-terminal sequence of human HI-30
 CC
     which can be used therapeutically or prophylatically to reduce,
 CC
     prevent or alter the adhesion of white blood cells to endothelial
 CC
     cells, pref. to reduce adhesion between leukocytes to endothelial
 CC
     cells that line blood cell walls. It can be used to treat disease
 CC
     states, e.g. sepsis, inflammation, arthritis, atherosclerosis,
 CC
     autoimmune disease, rheumatoid arthritis, acute and chronic
 CC
     inflammation, acute respiratory distress syndrome, ischemia/reperfusion
 CC
     injury, inflammatory bowel disease, haemolytic transfusion reaction,
 CC
     certain cancers, transplantation or trauma (e.g burns).
 CC
     See also R28288-R28292.
 50
     Sequence 20 AA;
     1 A; 0 R; 0 N; 1 D; 0 B; 0 C; 2 Q; 4 E; 0 Z; 4 G; 0 H;
 SQ
 SQ
     0 I; 2 L; 2 K; 0 M; 0 F; 1 P; 0 S; 1 T; 0 W; 0 Y; 2 V;
Initial Score
                     9 Optimized Score =
                =
                                                 9 Significance = 4.80
Residue Identity =
                     56% Matches
                                          =
                                                 9 Mismatches =
                                                                      7
Gaps
                =
                       O Conservative Substitutions
```

```
LALTSALLLALIFITLLFSVLKWIRKKFPHIFKOPFKKTTGAAOEEDACSCRCPGEEEGGGGGYEL
                                                     AVLPQEEEGGGGQLVTKKED
                                                             10
                                                                    X 20
6. ELLIS-012-FIG2AB.PEP (1-256)
   P91700
               Protein increasing pulmonary surfactant activity.
 ID
      P91700 standard; protein; 23 AA.
 AC
      P91700;
 DT
      13-JUN-1990 (first entry)
 DE
      Protein increasing pulmonary surfactant activity.
      Pulmonary surfactant; respiratory disorders;
 05
      Homo sapiens.
FH
      Keu
                     Location/Qualifiers
FT
      Misc-difference 14
 FT
      /label=ile, gly or val pref. ile
 FT
      Misc-difference 16
 FT
     /label=ile, gly or val, pref. gly
 PN
      WD8900167-A.
     12-JAN-1989.
 PD
 PF
      29-JUN-1988; 00361.
 PR
     01-JUL-1987; SE-027249.
 PR
     22-SEP-1987; SE-036612.
 PA
     (KABI) Kabigen Ab.
 PΙ
      Curstedt T. Robertsson B. Jornvall H;
 DR
     WPI; 89-039631/05.
 PT
      Proteins with pulmonary surfactant activity -
 PT
      obtd. from pig lung and human broncho-alveolar lavage or
 PT
      amniotic fluid, for treating respiratory disorders.
 PS
      Claim 1; Page 16; 24pp; English.
 CC
      Proteins, derived from bronchoalveolar lavage and amniotic fluid, can be
 CC
      extracted and shown to have pulmonary surfactant activity. Useful in
 CC
      treating respiratory disorders, reducing surface tension at air-liquid
 CC
     interface.
     Sequence 23 AA;
 SQ
     1 A; 0 R; 0 N; 0 D; 0 B; 0 C; 0 Q; 0 E; 0 Z; 2 G; 0 H;
 50
 50
     1 I; 7 L; 0 K; 1 M; 0 F; 0 P; 0 S; 0 T; 0 W; 0 Y; 9 V;
      2 Others;
 SQ
                       9 Optimized Score =
Initial Score
                                                  9 Significance = 4.80
Residue Identity =
                     39% Matches
                                                  9 Mismatches =
                                                                       14
Gaps
                       O Conservative Substitutions
                                                                        0
                     20
                               30
                                         40
                                                   50
                                                             60
    MGNNCYNVVVIVLLLVGCEKVGAVONSCDNCOPGTFCRKYNPVCKSCPPSTFSSIGGOPNCNICRVCAGYFR
           111 | 111
        LLVVVVVLLVVVXIXGALLMGL
         X
                10
                          20 X
```

FKKFCS

7. ELLIS-012-FIG2AB.PEP (1-256)

500

210

220

230

240

250

P91701 Protein increasing pulmonary surfactant activity.

```
ID     P91701 standard; protein; 35 AA.
AC     P91701;
DT     13-JUN-1990 (first entry)
```

DE Protein increasing pulmonary surfactant activity.

KW Pulmonary surfactant; respiratory disorders;

OS Sus scrofa.

FK Key Loration/Qualifience

```
FT
     Misc-difference 1
FT
      /label=leu or phe
FT
     Misc-difference 9
FT
     /label=asn or his
FT
     Misc-difference 26
FT
     /label=ile, gly or val, pref. gly
FT
     Misc-difference 28
FT
     /label=ile, gly or val, pref. gly
PN
     WD8900167-A.
PD
     12-JAN-1989.
PF
     29-JUN-1988; 00361.
PR
     01-JUL-1987; SE-027249.
PR
     22-SEP-1987; SE-036612.
PA
     (KABI) Kabigen Ab.
PΙ
     Curstedt T. Robertsson B. Jornvall H;
 DR
     WPI; 89-039631/05.
PT
     Proteins with pulmonary surfactant activity -
PT
      obtd. from pig lung and human broncho-alveolar lavage or
 PT
      amniotic fluid, for treating respiratory disorders.
 PS
      Claim 2; Page 16; 24pp; English.
 CC
      Proteins, derived from pig lung, can be extracted and shown to have
 CC
      pulmonary surfactant activity. Useful in treating respiratory disorders,
 CC
     reducing surface tension at the air-liquid interface.
 50
     Sequence 35 AA;
 50
     1 A; 2 R; 0 N; 0 D; 0 B; 2 C; 0 Q; 0 E; 0 Z; 2 G; 0 H;
 50
      2 I; 8 L; 1 K; 1 M; 0 F; 2 P; 0 S; 0 T; 0 N; 0 Y; 10 V;
 SQ
      4 Others;
Initial Score
                       9 Optimized Score =
                                                  9 Significance = 4.80
                     32% Matches
                                                  9 Mismatches =
Residue Identity =
                                           =
                       O Conservative Substitutions
Gaps
                                                                        0
                            20
                                      30
                                                 40
                                                          50
                                                                     60
           MGNNCYNVVVIVLLLVGCEKVGAVONSCDNCOPGTFCRKYNPVCKSCPPSTFSSIGGOPNCNICR
                  111 1 111
    XRIPCCPVXLKRLLVVVVVVLLVVVXIXGALLMGL
            10
                                30
                     20
       70
    VCAGYFRFKKFCS
8. ELLIS-012-FIG2AB.PEP (1-256)
  R30953
                Rabbit whey acidic protein.
 ID
      R30953 standard; Protein; 127 AA.
 AC
      R30953;
      07-MAY-1993 (first entry)
 DT
 DE
      Rabbit whey acidic protein.
 ΚW
     WAP; promoter; heterologous protein production.
 05
      Oryctolagus cuniculus.
 PN
     W09222644-A.
 PD
     23-DEC-1992.
 PF
     12-JUN-1992; F00533.
     12-JUN-1991; FR-007179.
 PA
     (INRG ) INRA INST NAT RECH AGRONOMIQUE.
 PΙ
      Devinoy E, Houdebine L, Thepot D;
     WPI; 93-018131/02.
 DR
 DR
      N-PSDB; 034591.
 PT
      Heterologous protein prodn. in milk of transgenic mammal - contg.
 PT
      structural gene under control of promoter of rabbit acidic whey
 PT
      protein, e.g. for human growth hormone
 PS
      Disclosure; Fig 5; 38pp; French.
 CC
      The expression control elements from at least a 3kb fragment from
      the 3'-end of the complete rabbit WAP gene are fused to a sequence
 CC
 CC.
      encading a heterologous protein, such as busan growth hormone.
```

```
CC
      erythropoietin, granulocyte colony stimulating factor,
 CC
      alpha-antitrypsin, hirudin, urokinase and Factor VIII. The rabbit
 CC
      WAP promoter is far more efficient at expressing such proteins in
 CC
      primary mammalian epithelial cells (induced by prolactin and
 CC
      glucocorticoids) than rat or mouse WAP promoters. The preferred
 CC
      regulatory region is a 6.3kb HindIII-BamHI fragment or a 17kb
 CC
      HindIII-EcoRI fragment from the region immediately upstream of the
 CC
      rabbit WAP gene (The sequence of only the first 1821 bases upstream
 CC
      of the first exon is given in the specification).
 SO
      Sequence 127 AA;
 SQ
      13 A; 6 R; 2 N; 5 D; 0 B; 14 C; 4 Q; 9 E; 0 Z; 6 G; 0 H;
 SQ
      6 I; 16 L; 4 K; 4 M; 2 F; 12 P; 12 S; 5 T; 1 W; 1 Y; 5 V;
Initial Score
                        9 Optimized Score =
                                                  16 Significance = 4.80
Residue Identity =
                      22% Matches
                                            Ξ
                                                  18 Mismatches
Gaps
                        3 Conservative Substitutions
                                                                         0
           140
                     150
                               160
                                         170
                                                   180
                                                              190
                                                                        500
    GVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTL-FLALTSALLLAL
                                                         1 1 1 111 11 11
                                                      MRCLISLALGLLALEAALALAP
                                                              10
                                                                        20
            210
                      220
                                230
                                          240
                                                    250
    IFI--TLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
                                            KFIAPV@VMCPEPSSSEETLCLSDNDCLGSTVCCPSAAGGSCRTPIIVPTPKAGRCPWV@APMLS@LCEELS
          30
                    40
                              50
                                        60
                                                  70
    DCANDIECRGDKKCCFSRCAMRYLEPILESTPQ
       100
                110
                           120
9. ELLIS-012-FIG2AB.PEP (1-256)
   P81110
                Sequence of new fusion protein contg. alpha-1-micr
 ID
      P81110 standard; protein; 352 AA.
 AC
      P81110;
 DT
      06-DEC-1990 (first entry)
      Sequence of new fusion protein contg. alpha-1-microglobulin (AMG)
 DΕ
      and the HI-30 region of inter-alpha-trypsin inhibitor (III) light chain
 KW
      Serine protease; enzyme; pancreatitis; atherosclerosis;
 KW
      chronic inflammation; therapu; elastase.
 05
      Homo sapiens.
 FH
                      Location/Qualifiers
      Keu
 FT
      Protein
                      20..202
 FT
      /label=AMG
FT
      Protein
                      206..350
 FT
      /label=HI-30
 FT
      Domain
                      226..282
 FT
      /label=I
 FT
      Domain
                      283..352
FT
      /label=II
 FT
      Misc-difference 291..292
 FT
      /note="Differs from the protein sequence of HI-30
 FT
      purified from urine"
 FT
      Misc-difference 343
 FT
      /note="Differs from the protein sequence of HI-30
 FT
      purified from urine"
 PN
      EP-255011-A.
 PD
     03-FEB-1988.
      20-JUL-1987; 110461.
 PR
      29-JUL-1986; US-891469.
 PA
      (MILE) Miles Laboratories Inc.
PI
      Kauneyer JF, Kotick MP, Polazzi JO;
 ne.
      MPI: 88-070349/05
```

```
N-PSDB; n81432.
 DR
 PT
      New DNA sequence coding for fusion protein contq. alpha-microglobulin -
      and inter-alpha-trypsin inhibitor, useful for treating excessive
 PT
      elastase prodn.
PS
     Disclosure; p; English.
 CC
      A fusion protein of the ITI light chain comprising AMG and HI-30 is
      claimed. ITI is serine protease, potentially used for treating excessive
CC
 CC
     release of hydrolytic enzymes, esp. elastase, in conditions such as
CC
     pancreatitis, athersclerosis and chronic inflammation.
SQ
     Sequence 352 AA;
50
      21 A; 18 R; 13 N; 12 D; O B; 16 C; 13 Q; 28 E; O Z; 36 G; 4 H;
 50
     15 I; 27 L; 18 K; 10 M; 14 F; 19 P; 20 S; 26 T; 5 W; 15 Y; 22 V;
Initial Score
                       9 Optimized Score =
                                                 34 Significance = 4.80
Residue Identity =
                     19% Matches
                                           =
                                                 46 Mismatches = 168
Gaps
                      23 Conservative Substitutions
            10
                     20
                             X 30
                                         40
                                                   50
                                                             60
    MGNNCYNVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@PNCNICR--VCAGY
                                                  - 1
                                                         1 1 1 11 1
                             MRSLGALLLLSACLAVSAGPVPTPPDNIOV@ENFNISRIYGKWYN
                                     10
                                               20
                                                         30
            80
                     90
                              100
                                        110
                                                  120
                                                            130
                                                                      140
    FRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLD
                          11 11
                                             1 1 1 1
    LAIGSTCPWLKKIMDRMTVSTLVLGEGATEAE-ISMTSTRWRKGVCEETS-GAYEKTDTDG-----KFLY
      50
               60
                         70
                                    80
                                              90
                   160
                            170
                                      180
                                                190
                                                          200
    GRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLALIFITLLFSVLKWI
    HKS-KUNITMESYVVHTTYDEYAIFLTKKFSRHHGPTITAKLYGRAPQLRET--LL--QDFRVVAQGV--GI
  110
            120
                      130
                                140
                                          150
                                                    160
                                                                  170
       220
                 230
                          240
                                         250
    RKKFPHIFK@PFKKTTGAA@EEDACSCR----CP@EEEGGGGGYEL
                      - !
                            1
                                     111111 111
    PEDSIFTMADRGECVPGE@EPEPILIPRVPRAVLP@EEEGSGG@LVTEVTKKEDSC@LGYSAGPCMGMTSR
       180
                190
                          200
                                              220
                                    210
                                                        230
    YFYNGTSMACETF@YGGCMGNGNNF
    250
              590
                        270
10. ELLIS-012-FIG2AB.PEP (1-256)
    R31046
                Rat DIB dopamine receptor.
     R31046 standard; Protein; 475 AA.
 ID
 AC
     R31046;
     26-MAY-1993 (first entry)
 DE
      Rat DIB dopamine receptor.
 KW
     PCR; amplify; degenerate; primer; TM; transmembrane region; human; D1;
      dopamine; receptor; probe; rat; pBLUESCRIPT II SK+; testis; DR5; D1B;
KW
      genomic library; lambdaDASH II; Kozak; consensus sequence; V-15.
KW
 08
     Rattus rattus.
     W09218533-A.
PN
PD
     29-OCT-1992.
PF
     16-APR-1992; U03187.
PR
     16-APR-1991; US-686591.
PA
     (UYDU-) UNIV DUKE.
PΙ
     Caron MG. Jarvie KR. Tiberi M;
 DR
     WPI; 93-036060/04.
 DR
     N-PSDB; Q35148.
      Cloned gene encoding rat D1b dopamine receptor - used to screen
      ends for popular activity on in popular hinding account
```

```
PS
     Disclosure; Page 25-28; 39pp; English.
      This sequence represents rat D1B dopamine receptor. The DNA
 CC
      sequence encoding this polypeptide was isolated using the primer
      sequences given in 035146-47. These oligomers are degenerate primers
 CC
 CC
      corresponding to the 5th and 6th transmembrane (TM) regions of the
 CC
     human D1 dopamine receptor. These primers were used to amplifu
 CC
      sheared human DNA and the amplification products were subcloned into
 CC
      the sequencing vector pBLUESCRIPT II SK+. A 230bp fragment (V-15) was
 CC
      found to correspond to the 5th TM region, the 3rd intracellular loop
 CC
      and the 6th TM region. V-15 was used as a template for the synthesis
 CC
      of a 32P-labeled probe. This probe was used to screen a rat testis
 CC
      genomic library in lambdaDASH II. One isolated clone (DR5) had an
 CC
      open reading frame of 1425 bp (475 amino acids) which contained the
 CC
      full coding sequence for rat D1B-dopamine receptor. The predicted
 CC
      encoded protein has a molecular weight of 52834. The putative
 CC
      initiator methionine was selected on the basis of the best Kozak
 CC
      consensus sequence found in frame with the remainer of the coding
 CC
     block and preceded by a stop codon.
 SO
      Sequence 475 AA;
 SQ
      41 A; 26 R; 17 N; 18 D; O B; 15 C; 16 Q; 27 E; O Z; 27 G; 7 H;
 50
      34 I; 42 L; 13 K; 12 M; 25 F; 26 P; 40 S; 28 T; 13 W; 11 Y; 37 V;
Initial Score
                       9 Optimized Score =
                                                 18 Significance = 4.80
Residue Identity =
                     23% Matches
                                                 28 Mismatches =
Gaps
                      17 Conservative Substitutions
                                                                        0
      100
                110
                         120
                                   130
                                             140
                                                     X 150
    P@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGRSVLKTG--TTEKDVVCG-PPVVS
                                                      1 1
                                                            1
                                                     MLPPGRNRTA@PARLGL@R@LA
                                                             10
                                                                       20
                          190
                                    200
                                              210
                                                          220
                                                                     230
   FSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLALIFITLLFSVL--KWIRKKFPHIFK-QPFKKTTGAA
                      QVDAPAGSATPLG-----PAQVVTAGL-LT--LL---IVWTLLGNVLVCAAIVRSRHLRAKMTNIFIVSLAV
          30
                         40
                                        50
                                                  60
                                                            70
                                                                      80
        240
                 250
    QEEDACSCRCPQEEEGGGGGYEL
                      SDLFVALLVMPWKAVAEVAGYWPFGTFCDIWVAFDIMCSTASILNLCIISVDRYWAISRPFRYERKMTQRVA
                      X 110
                                     120
                                               130
   L
11. ELLIS-012-FIG2AB.PEP (1-256)
    R21082
                 Dopamine D1 receptor encoded by clone GL-30.
 ID
     R21082 standard; Protein; 477 AA.
 AC
     R21082;
 DT
     20-MAY-1992 (first entry)
 DE
     Dopamine D1 receptor encoded by clone GL-30.
 KW
     G-protein-coupled receptor: Parkinson's Disease; schizophrenia;
 KW
     tardive dyskinesia; dopamine D1-beta receptor subtype.
 08
     Homo sapiens.
 FH
     Key
                     Location/Qualifiers
 FT
     Domain
                     42..66
 FT
     /label= transmembrane
 FT
     /note= "I"
 FT
                     78..101
 FT
      /label= transmembrane
 FT
      /note= "II"
```

Donain

```
FT
      /label= transmembrane
 FT
      /note= "III"
 FT
      Domain
                      156..172
 FT
      /label= transmembrane
 FT
      /note= "1V"
 FT
      Domain
                      224..246
 FT
      /label= transmembrane
 FT
      /note= "V"
 FT
      Domain
                      294..315
 FT
      /label= transmembrane
 FT
      /note= "VI"
 FT
      Domain
                      337..361
 FT
      /label= transmembrane
 FT
      /note= "VII"
 FT
      Modified_site 7..9
 FT
      /label= glycosylation
 PN
      W09200986-A.
 PD
      23-JAN-1992.
 PF
      10-JUL-1991; U04858.
 PR
      10-JUL-1990; US-551448.
 PA
      (NEUR-) NEUROGENETIC CORP.
 PΙ
      Weinshank RL, Hartig PR;
 DR
      WPI; 92-056815/07.
 DR
      N-PSDB; 021014.
 PT
      Nucleic acid sequences encoding human dopamine D1 receptor - and
 PT
      anti-sense oligo-nucleotide(s), useful in treating and diagnosing
 PT
      abnormal D1 receptor expression e.g. dementia, etc.
 PS
      Claim 5; Fig 1; 90pp; English.
 CC
      Clone GL-30 was isolated from a human spleen library by screening
 CC
      with a 1.6kb XbaI-BamHI fragment from the human serotonin receptor
 CC
      gene. The clone was sequenced and found to have an open reading
 CC
      frame encoding a 477 amino acid protein of mol. wt. 53kD. A
 CC
      comparison of the protein sequence to sequences of known
 CC
      neurotransmitter receptors indicated that clone GL-30 is a new
 CC
      member of the G protein-coupled receptor family of molecules which
 CC
      span the lipid bilayer seven times. The extracellular loop of GL-30
 CC
      (between transmembrane regions IV and V) is the longest
 CC
      extracellular loop 2 of all the known G protein-coupled receptors.
 CC
      GL-30 has greatest homology with the dopamine D1 receptor, i.e.
 CC
      overall homology of 62 per cent and homology within the
 CC
      transmembrane domains of 83 per cent.
 SO
      Sequence 477 AA;
 SQ
      46 A; 20 R; 24 N; 20 D; 0 B; 16 C; 16 Q; 21 E; 0 Z; 25 G; 8 H;
 50
      32 I; 40 L; 10 K; 13 M; 27 F; 29 P; 38 S; 23 T; 15 W; 13 Y; 41 V;
Initial Score
                        9 Optimized Score =
                                                  19 Significance = 4.80
Residue Identity =
                      23% Matches
                                                  27 Mismatches
                                                                       76
Gaps
                      13 Conservative Substitutions
                                                                         0
      100
                110
                          120
                                    130
                                              140
                                                      X 150
                                                                  160
    POCTRCEKDCRPGOELTKOGCKTCSLGTFNDONGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSP
                                                       1 1
                                                      MLPPG-SNGTAYPG0FALY00L
                                                               10
                                                                         20
                          190
                                    500
                                              210
                                                           220
    STTISVTPEGG--PGGHSLOVLTLFLALTSALLLALIFITLLFSVL---KWIRKKFPHIFKOPFKKTTGAAO
              - 1
    AQGNAVGGSAGAPPLGPS-QVVTACL-LT--LL---IIWTLLGNVLVCAAIVRSRHLRANMTNVFIVSLAVS
           30
                      40
                                   50
                                               60
                                                          70
                                                                    80
       240
                 250
    EEDACSCRCP@EEEGGGGGYEL
    DLFVALLVMPWKAVAEVAGYWAFGAFCDVWVAFDIMCSTASILNLCVISVDRYWAISRPFRYKRKMTGRMAL
```

90 100 110 120 170 140

```
12. ELLIS-012-FIG2AB.PEP (1-256)
    R22546
                Truncated Dopamine D1 receptor encoded by pseudoge
 ID
     R22546 standard; Protein; 479 AA.
 AC
     R22546;
 DT
     20-MAY-1992 (first entry)
 DE
     Truncated Dopamine D1 receptor encoded by pseudogene clone GL-39.
     G-protein-coupled receptor; Parkinson's Disease; schizophrenia;
 KH
     tardive dyskinesia; dopamine D1-beta receptor subtype.
 08
     Homo sapiens.
 FH
     Key
                     Location/Qualifiers
 FT
     Modified_site 7..9
 FT
     /label= glycosylation
 FT
                   42..66
     Domain
 FT
     /label= transmembrane
     /note= "I"
 FT
 FT
     Domain
 FT
     /label= transmembrane
 FT
     /note= "II"
 FT
     Domain
                     117...138
 FT
     /label= transmembrane
 FT
     /note= "III"
 FT
    Domain
                     158..174
 FT
    /label= transmembrane
 FT
     /note= "IV"
 FT
     Misc_difference 190
 FT
     /note= "corresponds to nonsense codon -
 FT
     i.e. protein is truncated"
 FT
                     226..248
 FT
     /label= transmembrane
 FT
     /note= "V"
 FT
     Domain
                     296..317
 FT
     /label= transmembrane
 FT
     /note= "VI"
 FT
     Domain
                     339..362
 FT
     /label= transmembrane
 FT
     /note= "VII"
 FT
     Misc_difference 457
 FT
     /note= "corresponds to nonsense codon"
 PN
     WD9200986-A.
 PD
     23-JAN-1992.
 PF
     10-JUL-1991; U04858.
 PR
    10-JUL-1990; US-551448.
 PA
    (NEUR-) NEUROGENETIC CORP.
 PI Weinshank RL, Hartig PR;
     WPI; 92-056815/07.
 DR
 PT
     Nucleic acid sequences encoding human dopamine D1 receptor - and
 PT
     anti-sense oligo-nucleotide(s), useful in treating and diagnosing
 PT
     abnormal D1 receptor expression e.g. dementia, etc.
 PS
     Disclosure; Fig 2; 90pp; English.
 CC
     Clone GL-39 encodes a truncated (and therefore inactive) dopamine
     D1 receptor having strong homology to the full-length receptor
 CC
     encoded by GL-30 (see 021082).
 SQ
     Sequence 479 AA;
 50
     41 A; 21 R; 22 N; 19 D; 0 B; 17 C; 16 Q; 23 E; 0 Z; 23 G; 8 H;
      30 I; 40 L; 11 K; 16 M; 24 F; 33 P; 41 S; 23 T; 14 W; 12 Y; 43 V;
 50
     2 Others;
 SO
Initial Score =
                     9 Optimized Score =
                                                20 Significance = 4.80
Residue Identity =
                     25% Matches =
                                                 31 Mismatches =
                                                                      72
Gaps
                     19 Conservative Substitutions
           100
                     110
                               120
                                         130
                                                  140
                                                            150
                                                                      160
```

CENCI CPACTRCERDORDEGEL TRACCRICOL CTEMBANCTOUCROUTMOS DOROS RICTTERBUSCORD

```
MLPPRS---NGT----AYPGQL
         170
                     180
                               190
                                        500
                                                  210
                                                              220
    VVSFSPSTTISVTPEGG--PGGHSLQVLTLFLALTSALLLALIFITLLFSVL--KWIRKKFPHIFK-QPFKK
              ALYQQLAQGNAVGGSAGAPPLGPS-QVVTACL-LT--LL---IIWTLLGNVLNSAAIVRTRHLRAKMTNVFI
                30
                           40
                                       50
                                                    60
                                                             70
   230
            240
                      250
    TTGAAGEEDACSCRCPGEEEGGGGGYEL
               - 1
                           \Pi
    VSLAVSDLFVALLVMPWKAVAEVAGYWPFEAFCDVWVAFDIMCSTASILNLCVSVISVGRYWAISRPFRYER
                    100
                         110
                                       120
    KMTORM
13. ELLIS-012-FIG2AB.PEP (1-256)
    R31224
                Transmembrane region of HIV-1 (IIIB) env.
 ID
     R31224 standard; peptide; 28 AA.
 AC
     R31224;
     18-MAY-1993 (first entry)
 DT
 DE
     Transmembrane region of HIV-1 (IIIB) env.
 KW
     Human immunodeficiency virus; fusion protein; transmembrane anchor;
 KW
     env; T1; T2; TH4.1; epitope.
 08
     Synthetic.
 PN
     W09222641-A.
 PD
     23-DEC-1992.
 PF
     12-JUN-1992; U05107.
 PR
     14-JUN-1991; US-715921.
 PR
     11-JUN-1992; US-897382.
 PA
     (VIRO-) VIROGENETICS CORP.
 PΙ
     Cox WI, Paoletti E, Tartaglia J;
 DR
     WPI; 93-018128/02.
 PT
     Modified recombinant virus with inactivated non-essential genetic
 PT
     functions - comprises e.g. vaccinia or avipox virus, used as HIV
PT
     vaccine
 PS.
     Example 32; Page 102; 159pp; English.
 CC
     Fusion peptides expressed by recombinant poxviruses include the 51
 CC
     amino acid N-terminal portion of HIV-1 (IIIB) env, residues 1-50
 CC
     (plus an initiating Met). The signal sequence is followed by the
 CC
     T1, T2 and TH4.1 epitopes separated from the signal, each other, and
     the anchor sequence where present, by a cleavable linker region up to
     5 amino acids in length. The anchor domain is a 28 amino acid trans-
 CC
 CC
     membrane region of HIV-1 (IIIB) env (sequence shown).
CC
     See also R31218-26.
SQ
     Sequence 28 AA;
SQ
     1 A; 3 R; 1 N; 0 D; 0 B; 0 C; 1 Q; 0 E; 0 Z; 4 G; 0 H;
SQ
     3 I; 4 L; 0 K; 1 M; 2 F; 0 P; 1 S; 0 T; 0 W; 0 Y; 7 V;
Initial Score
                       8 Optimized Score =
                                                 9 Significance = 4.00
Residue Identity =
                     32% Matches
                                          =
                                                 9 Mismatches =
                                                                     19
Gaps
                       O Conservative Substitutions
         X 10
                     20
                               30 X
                                        40
                                                  50
    MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCØPGTFCRKYNPVCKSCPPSTFSSIGG®PNCNICRVCAGYFR
             LFIMIVGGLVGLRIVFAVLSVVNRVRQG
         X
                 10
                          20
```

1 11

11

ERREVEGINAL

80

```
14. ELLIS-012-FIG2AB.PEP (1-256)
    R27470
                HIV-1 (IIIB) env transmembrane region.
 ID
     R27470 standard; Protein; 28 AA.
 AC
     R27470;
     24-FEB-1993 (first entry)
 DT
 DE
     HIV-1 (IIIB) env transmembrane region.
     T1; T2; TH4.1; epitope; HIV-1; env; transmembrane anchor domain;
     vP1060; vP1061; vCP154; vCP148; fusion peptide; signal sequence;
 K₩
 K₩
     cleavable linker; H6 promoter; polymerase chain reaction; PCR;
 KW
     vaccinia virus.
     Sunthetic.
 05
 FΗ
     Key
                     Location/Qualifiers
 FT
     Binding site
                     65
 FT
      /note= "Transmembrane anchor region binding site"
 PN
     ₩09215672-A.
 PD
     17-SEP-1992.
 PF
     09-MAR-1992; U01906.
 PR
     07-MAR-1991; US-666056.
 PR
     11-JUN-1991; US-713967.
     06-MAR-1992; US-847951.
 PA
     (VIRO-) VIROGENETICS CORP.
 PΙ
     Cox WI, De Taisne C, Francis J, Gettig RR, Johnson GP;
 PI
     Limbach KJ, Norton EK, Paoletti E, Perkus ME, Pincus SE;
 PI
     Riviere M. Tartaglia J. Taylor J.
 DR
     WPI; 92-331718/40.
 PT
     Vaccine comprises recombinant, attenuated pox-virus - use for
     vaccinating against viral infections such as rabies, hepatitis B,
 PT
     HIV, HSV, EBV, CMV, mumps etc.
 PT
PS
     Disclosure; Page 327; 456pp; English.
     The sequences given in 035846-51 and R27468-70 were used for the
 CC
     expression of two fusion peptides containing the T1, T2 and TH4.1
 CC
 CC
     epitopes of HIV-1 env with and without a transmembrane anchor domain
 CC
     from HIV-1 env. Plasmids vP1060, vP1061, vCP154 and vCP148 were
 CC
     generated to express a fusion peptide consisting of the signal
 CC
      sequences from HIV-1 env coupled to sequences corresponding to the T1.
 CC
     T2 and TH4.1 epitopes of HIV-1 env by cleavable linker. vP1060 and
 CC
     vCP154 differ from vP1061 and vCP148 in that the former recombinant
 CC
     viruses express the fusion protein along with sequences coresponding
 CC
     to the transmembrane region of HIV-1 env. The HIV-1 (IIIB) env signal
 CC
     region and vaccinia virus H6 promoter are derived by polymerase chain
 CC
     reaction (PCR). The remainder of the coding regions for construction
 CC
     without the transmembrane region were also produced by PCR. For the
 CC
     version containing the transmembrane region the 3' end of the
 CC
      amplification product was alter to accomodate the transmembrane region.
 CC
     See also @35501-864.
 SQ
     Sequence
                28 AA;
 50
     1 A; 3 R; 1 N; 0 D; 0 B; 0 C; 1 Q; 0 E; 0 Z; 4 G; 0 H;
 SQ
     3 I; 4 L; 0 K; 1 M; 2 F; 0 P; 1 S; 0 T; 0 W; 0 Y; 7 V;
Initial Score
                       8. Optimized Score =
                                                    Significance = 4.00
Residue Identity =
                     32% Matches
                                           =
                                                  9 Mismatches =
                                                                       19
                       O Conservative Substitutions
Gaps
                                                                        0
          X 10
                     20
                               30 X
                                         40
                                                   50
                                                             60
                                                                       70
    MGNNCYNVVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@PNCNICRVCAGYFR
             11 111 111
          LFIMIVGGLVGLRIVFAVLSVVNRVRQG
          X
                 10
                           20
```

80

```
R15248
                Carbohydrate binding domain #5.
ID
     R15248 standard; Protein; 32 AA.
AC
     R15248;
     12-FEB-1992 (first entry)
DT
DE
     Carbohydrate binding domain #5.
     cellulose; CBD; hemicellulosic substrate;
KW
     Trichoderma reesei; cellulase; terminal A region.
PN
     W09117244-A.
PD
     14-NOV-1991.
PF
     08-MAY-1991; DK0124.
PR
     09-MAY-1990; DK-001158.
PA
     (NOVO ) NOVO NORDISK A/S.
PI
     Woldike HF, Hagen F, Hjort CM, Hastrup S.
DR
     WPI; 91-353766/48.
     New fungal (hemi)cellulose degrading enzymes - for prodn. of liq.
PT
PT
     fuel gas and feed protein, have specified carbohydrate binding domain
PS
     Claim 20; Page 45; 73pp; English.
     This CBD is homologous to a terminal A region of Trichoderma reesei
CC
CC
     cellulases and effects binding of a protein to an insoluble
 CC
     cellulosic or hemicellulosic substrate. It is one of ten specific
CC
     CBD's (see R15244-R15253) which correspond to the generic CBD
CC
     formulae in R15242 and R15243. The CBD is incorporated into a fusion
CC
     protein comprising a catalutic domain from a cellulase, e.g. a
CC
     Bacillus endoglucanase, and optionally comprising a linking B domain
CC
     from e.g. a fungal endoglucanase.
SQ
     Sequence 32 AA;
50
     1 A; 1 R; 2 N; 0 D; 0 B; 5 C; 7 Q; 0 E; 0 Z; 6 G; 0 H;
     O I; 1 L; 0 K; 0 M; 0 F; 1 P; 2 S; 2 T; 3 N; 1 Y; 0 V;
SQ
Initial Score
                       8 Optimized Score =
                =
                                                  9 Significance = 4.00
Residue Identity =
                     29% Matches
                                                 10 Mismatches =
Gaps
                       2 Conservative Substitutions
                                                                        0
                             80
                                       90
                                                100 X
                                                          110
                                                                    120
   SSIGG@PNCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTF
                                                          11
                                                     WGGCGGG--GWGGPTCCSGGTC
                                                               10
                                                                        20
       130
              X 140
                          150
                                    160
                                              170
                                                        180
   NDONGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQV
     RAQNOWYSQCLN
```

30 X

15. ELLIS-012-FIG2AB.PEP (1-256)

```
> 0 <
0| | 0 IntelliGenetics
> 0 <
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file ellis-012-fig2ab-ngs.res made by shears on Tue 14 Sep 93 15:38:42-PDT.
Query sequence being compared: ELLIS-012-FIG2AB.SEQ (1-2350)
Number of sequences searched:
                                             30843
Number of scores above cutoff:
                                              4307
      Results of the initial comparison of ELLIS-012-FIG2AB.SEG (1-2350) with:
   Data bank : N-GeneSeq 11, all entries
 10000-
U 5000-
М
Ε
F 1000- *
Ε
   500-
0
U
Ε
C
E
  100-
    50-
    10-
```

•

0										
1	П	1	1	F	ı		1	1	ı	
SCORE 0	16	32	49	65	81	97	114	130	146	
STDEV	0	1	2	3	4	5	6	7		

PARAMETERS

Similarity matrix	Unitary	K-tuple	4
Mismatch penalty	1	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.33		
Cutoff score	10		
Randomization group	0		
Initial scores to save	40	Alignments to save	15
Optimized scores to sav	e 0	Display context	50

SEARCH STATISTICS

Scores:	Mean	Median	Standard Deviation
	55	16	16.13
Times:	CPU		Total Elapsed
	00:13:08.00		00:26:40.00

Number of residues: 16009476 Number of sequences searched: 30843 Number of scores above cutoff: 4307

Cut-off raised to 15. Cut-off raised to 26. Cut-off raised to 32. Cut-off raised to 38. Cut-off raised to 42.

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

			Init.	Opt.		
Sequence Name	Description	Length	Score	Score	Sig. 1	Frame
	**** 7 standard deviations	above m	ean 🗱	**		
1. 021695	Plasma membrane proton ATPase	2933	146	764	7.69	0
2. 023313	DNA encoding masking protein	5136	141	942	7.38	0
3. 011579	Encodes granulocyte colony st	2546	138	967	7.19	0
4. 011580	Clone 25-1 encodes human G-CS	2931	138	967	7.19	0
5. @13856	Human GCSF receptor gene in p	2942	138	971	7.19	0
6. N61379	Sequence encoding porcine bet	728	137	321	7.13	0
7. N60741	Sequence of porcine beta-foll	728	137	322	7.13	0
8. 003847	Porcine beta FSH subunit.	780	137	339	7.13	0
9. 028758	Partial sequence of tumour su	4328	135	953	7.01	0
	**** 6 standard deviations	above m	ean ##	# #		
10. @25975	MH mutant porcine ryanodine r	15377	134	994	6.94	0
11. 014755	FVS2 gene.	2492	129	939	6.63	0
12. N70128	Novel DNA encoding a polypept	1363	127	587	6.51	0
13. NB1162	Encodes Western subtype of ea	2418	126	790	6.45	0
14. 035297	ZYMV genome.	9593	124	977	6.32	0
15. 029860	Odorant receptor clone 17.	983	123	393	6.26	0
16. N71002	Sequence encoding a human gra	911	122	386	6.20	0
17 074790	Human equation and DNC and at	7007	122	05.0	7 30	Λ

18.	010263	pZ130 contg. Calgene lambda 1	4383	119	941	6.01	0
19.	011415	Ryanodine receptor gene.	15464	119	989	6.01	0
		**** 5 standard deviations ab	ove mear	, \$\$\$\$			
20.	N91839	Pasteurella multocida toxin g	4380	116	494	5.83	0
21.	021645	3' coding sequence of P.falci	1297	115	531	5.77	0
22.	N71064	Gene encoding Plasmodium viva	1908	115	707	5.77	0
23.	N40166	Sequence of A.awamori glucoam	3408	115	976	5.77	0
24.	010883	30kD TNF inhibitor precursor	2088	114	728	5.70	0
25.	010955	Encodes human 55kD TNF-bindin	2111	114	730	5.70	0
26.	006285	Human Tumour Necrosis Factor-	2141	114	730	5.70	0
27.	012215	Type I TNF receptor.	2176	114	725	5.70	0
28.	034941	Calgene Lambda 140 genomic cl	4383	113	941	5.64	0
29.	035143	Calgene lambda 140/pZ130 DNA	4383	113	944	5.64	0
30.	@10319	Calgene lambda 140 genomic cl	4383	113	941	5.64	0
31.	920532	Sequence of clone lambdaAPCP1	2256	112	919	5.58	0
32.	010014	Clone lambda APCP168i4 of bet	2256	112	919	5.58	0
33.	N80604	Lambda APCP168i4, amino acids	2256	112	917	5.58	0
34.	005086	Sequence encodes NAP-2 gene a	2949	112	939	5.58	0
35.	N91050	Sequence encoding novel amylo	2949	112	937	5.58	0
36.	024442	Encodes truncated TNF-alpha 5	474	110	204	5.46	0
37.	024441	Encodes truncated TNF-alpha 5	608	110	203	5.46	0
38.	N90907	Glutamine synthesis gene.	1200	110	503	5.46	0
39.	009585	Plasmid Tumour Necrosis Facto	1334	110	427	5.46	0
40.	0035 99	Human liver cytochrome P-450	1818	110	453	5.46	0

1. ELLIS-012-FIG2AB.SEQ (1-2350)

021695 Plasma membrane proton ATPase.

```
ID
     Q21695 standard; DNA; 2933 BP.
AC
     021695;
DT
     02-JUN-1992 (first entry)
DE
     Plasma membrane proton ATPase.
ΚW
     Antifungal agents; H+ ATPase; ss.
05
     Candida albicans.
FH
     Key
                     Location/Qualifiers
FT
     CDS
                     151..2842
FT
     /∦tag= a
FT
     /product= H+ ATPase
PN
     EP-472286-A.
PD
     26-FEB-1992.
PF
     18-JUL-1991; 306542.
PR
     18-JUL-1990; US-555123.
PA
     (MERI ) MERCK & CO INC.
PΙ
     Kurtz MB, Marrinan JA;
DR
     WPI; 92-066496/09.
DR
     P-PSDB; R21580.
```

PS Claim 2; Page 8; 25pp; English.

New gene for evaluating antifungal agents - encodes Candida

albicans plasma membrane H-adenosine:tri:phosphatase

PT

PT

CC A large, single colony of Candida albicans ATCC 10261 was cultured CC and chromosomal DNA extracted. The DNA was digested with restriction CC enzymes and fragments probed with a fragment isolated from plasmid CC B1138 contg. the Saccharomyces cerevisiae plasma membrane ATPase (PMA1) gene in the pUC18 vector. Multiple restriction enzyme digests CC CC showed the C. albicans DNA to be homologous to the S. cerevisiae CC fragment. A library of C. albicans genomic DNA was constructed, CC (rich in the DNA encoding the plasma membrane proton ATPase) using CC strain WO-1 and inserted into pEMBLY-23. A positive clone of 12-CC 15 kb was ligated into the YEp24 vector, and transformed in E. coli

CC K-12 strain DH5 alpha. Recombinant plaques were isolated and

CC sequenced, showing a gene of 2.7 kb. The gene can be used to

CC transform non-pathogenic yeast which can be used to evaluate agents CC capable of perturbing C. albicans plasma membrane H+ ATPase activity.

CC The gene also provides a means for producing large amounts of the

CC ma mombeans anothers

```
Initial Score
                146 Optimized Score =
                                    764 Significance = 7.69
Residue Identity =
                47% Matches
                                =
                                    940 Mismatches
Gaps
                267 Conservative Substitutions
                                                  =
                                                      0
             470
      460
                     480
                            490
                                   500
                                        X 510
                                                  520
   GGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCA
                                             1 11111 1 1
                                         Ш
                                        TCT----ATCATTTGTTAA---
                                                 10
    530
            540
                   550
                           560
                                  570
                                          580
                                                 590
   GAACGGTACTGGCGTCTGTCGACCCTGGACGAACTGCTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGAC
           30
                               40
                                      50
   600
          610
                  620
                           630
                                   640
                                          650
                                                  660
   CACGGAGAAGGACGTGGTGTGTGGACC---CCCTGTGGTGAGCTTCTCTCCCAGTACCA-CCATTTCTGTGA
     1 11 11 1 1 1 1 1 1
                           70
          80
                 90
                        100
                                110
                                        120
                                               130
    670
                       690
                               700
               680
                                       710
   CTCCAGA----GGGAGGACCA-GGAGGGCAC-TCCTTGCAGG-TCCTTACCTTGT-TCC--TGGCGCTGACA
          ATATATAAACCATGAGTGCTACTGAACCAACCAACGAAAAGGTTGATAAAATCGTCTCCGATGATGAAGACG
 140
                160
                       170
                               180
                                     190
                                              200
   730
           740
                    750
                           760
                                    770
                                            780
                                                   790
   TCGGCTTTG-CTGCT--GGCCCTGATCTTCATTACT--CTCCTGTTCTCTGTGCTCAAATGGATCAGGA-AA
    AAGACATTGACCAATTAGTCGCTGATTTACAAT-CTAACCCAGGTGCT-GGTGATGAAGAAGAAGAAGAGGAGGA
       220
               230
                      240
                              250
                                      590
                                              270
                                                     280
      800
             810
                    820
                             830
                                     840
                                             850
                                                     860
   AAATTCCCCCACATATTCAAGCAACCATTTAAGAAG-ACCACTGG-AGCAG-CTCAAGAGGAAGATGCTTGT
   AAATGACTCTTC--CTTCAA--AGCCGTCCCAGAAGAATTATTGGAAACTGACCCAAG----AGTTGGTT-T
       290
                  300
                         310
                                320
                                        330
                                                  340
      870
               880
                       890
                              900
                                      910
                                             920
   AGCTGCCGATG--TCCACAGGAAGAAGAAGAAGGAGGAGGAGGAGGCTATGAGCTGTGATGTACTATCCTAGGAG
             GACTGATGATGAAGTCACCAAAAGAAGAAGA-GATACGGTTTGAATCAAATG-GCTGAAGAA--CAAGAAA
            350
                    370
                                                    410
                            380
                                   390
                                            400
      940
               950
                      960
                             970
                                     980
                                            990
                                                   1000
   ATGTGTGGGCCGAAA-CCGAGAAGCACTAGGACCCCACCATCCTGTGGAACAGCACAAGCAACCCCACCACC
   11111111
   420
               430
                      440
                                 450
                                        460
                                                 470
     1010
            1020
                    1030
                            1040
                                   1050
                                            1060
                                                   1070
   CTGTTCTTACACATCATCCTAGATGA-TGTGTGGGGGGGCGCACCTCATCCAAG-TCTCTTCTAACGCTAACAT
   -TGTTTTGGCTGCTGGT-TTAGAAGATTGGGTCGATTTCGGTGTTATCTGTGCTTTATTGTTATTGAATGCT
           490
                    500
    480
                           510
                                  520
                                          530
                                                 540
      1080
               1090
                       1100
                               1110
                                      1120
                                              1130
   AT--TTGTCTTTA-CCTTTTTTA--AATCTTTTTTTAAATTTAAATTTATGTGTGTGAGTGTTTTGCCTGC
     111 1111 11
                  TTTGTTGGTTTTATCCAAGAATACCAAGCTGGTTCT-ATTGTCGAT-GAAT-TGAAAAAGACTTTGGCCAAC
   550
           560
                  570
                          580
                                  590
                                           600
                                                  610
```

SQ

Sequence

2933 BP;

758 A;

518 C;

633 G;

1024 T;

1150 1160 1170 1180 1190 1200 CTGTATGCACACGTGTGTGTGTGTGTGTGTG-TGACACTCCTGATGCCTGAGGGGGGGGGAGGAAA
1210 1220 1230 1240 1250 1260 GGGTTGGTTCCATAAGAACTGGAGTTATGGATGGCTGTGAGCCGGNNNGATAGGTCGGG
1270 1280 1290 1300 1310 1320 1330 ACGGAGACCTGTCTTCTTATTTTAACGTGACTGTATAAAAAAAAAA
1340 1350 1360 1370 1380 1390 1400 GAGATTGTCCTGACACCCTTCTAGTTAATGATCTAAGAGGAATTGTTGATACGTAGTATACTGTATAT
1410 1420 1430 1440 1450 1460 GTGTATGTATA——TG—T—ATATGTATATATAAG——ACTCTTTTACTGTCAAAGTCAACCTAGAGTGTCTG—
1470 1480 1490 1500 1510 1520 1530GTTACCAGGTCAATTTTATTGGACATTTTACGTCACACACA
1540 1550 1560 1570 1580 1590 1600 TAC-GTACTGTTATCGGTATTCTACGTCATATAATGGGATAGGGTAAAAGGAAACCAAAGAGTGAGT
1610 1620 1630 1640 1650 1660 1670 -ATTATTGTG-GAGGTGACAGACTACCCCTTC-TGGGTACGTAGGGACAGACCTCCTTCGGACTGTCTAAA
1680 1690 1700 1710 1720 1730ACTCCCCTTAGA-AGTCTCGTCAAGTTCCCGGACGAAGAGGACACAGAGGAGACACAGTCCGAAAAGTT
1740 1750 1760 1770 1780 1790 1800 ATTITICCGGCAAATCCTTTCCCTGTTTCGTGACACTCCACCCCTTGTGGACACTTGAGTGTC
1810 1820 1830 1840 1850 1860 ATCCTTGCGCCGGAAGGTCAGGTGGTACCCGTCTGTAGGGGCGGGGA-GACAGAGCCGCGGGG

```
1870
              1880
                       1890
                                 1900
                                            1910
                                                     1920
                                                              1930
   GAGCTACGAGAATCGACTCACAGGGCGCCCCGGGCTTCGC--AAATGAAACTTTTTTAATCTCACAAGTTTC
    AATCTTTGATCAACTACCCA-AGAGCTAAAGCTGCTTTGCCAAAATACAAGGTTATTGAATTCCAACCTTTC
      1370
               1380
                         1390
                                  1400
                                            1410
                                                     1420
                                                              1430
      1940
               1950
                        1960
                                  1970
                                           1980
                                                    1990
                                                             2000
   G-TCCGGGCTCGGCGGACCTATGGCGTCGATCCTTATTACCTTATCCTGGCGCCAAGATAAAACAACCAAAA
               11 11
                                       1 1 11 1
                                                     111 | 111 | 11
   GATCCTGTCTCCAAGAAAGT-TACTG-CTA---TTGTTGAATCA-CCAG----AAGGTGAAAGAATTATTT
     1440
              1450
                         1460
                                     1470
                                                    1480
    2010
             2020
                        2030
                                 2040
                                          2050
                                                   2060
                                                            2070
   GCCTTGACTCCGGTAC-TAATTCTCCCTGCCGGCCCCCGTAAGCATAACGCGGCGATCTCCACTTTAAGAAC
             11
                                      1 111 11 11
                                                    1 111 111
   GTGTTAAGGGTGCCCCATTATTCGTCTTAAAGACTGTTG-AAG-ATGACCACCCAATC-CCA---GAAGA--
    1500
             1510
                       1520
                                1530
                                           1540
                                                    1550
   2080
              2090
                       2100
                                 2110
                                          2120
                                                   2130
                                                             2140
   CTGGCCGCG--TTCTGCCTGGTCTCGCTTTCGTAAACGGTTCTTACAAAAGTAATTAGTTC-TTGCTTTCAG
                       1 1 11 1 11
                                       1 !!! !! ! !! ! !! !! !! !! !!
   -TGTCCACGAAAACTACCAAAACACCGTTGCCGAA--TTTGCTTCCAGAGGT-TTCAGATCTTTGGGTGTTG
  1560
           1570
                    1580
                             1590
                                        1600
                                                  1610
                                                           1620
    2150
              2160
                       2170
                                 2180
                                           2190
                                                    2200
                                                             2210
   CCTCCAAG-CTTCTGCTAGTCTATGGCAGCATCAAGGCTGGTATT-TGCTACGGCTGACCGCTACGCCGCCG
               CCAGAAAGAGAGGTGAAGGTCACTGGGA-AATTTTG---GGTATTATGCCATGTATG---GATCCAC----
   1630
            1640
                     1650
                               1660
                                           1670
                                                    1680
    5550
              2230
                         2240
                                         2250
                                                  2260
                                                             2270
   CAATA-AGGGTACTGGGCGGC--CCGTC---GAAG---GCCC-TTTGGTTTCAGAAACCCAAGG--CCCCCC
   1111
                                     - 1
                                           11 11111 111
   CAAGAGATGATACT--GCTGCCACAGTCAATGAAGCTAGAAGATTAGGTTTAAGAGTTAAGATGTTAACTGG
  1690
           1700
                       1710
                                1720
                                         1730
                                                  1740
                                                           1750
    2280
              2290
                       2300
                                 2310
                                          2320
                                                   2330
                                                                2340
   11 1111 11 1 1 1
                                            TGATGCCGTTGGTATTGCTAAAGAAACTTGTCGTCAATTAGGTTTGGGTAC--TAACATTTACGATGCCGAC
           1770
   1760
                     1780
                              1790
                                       1800
                                                  1810
           X
   AG-TTAGAC
   11 1111
   AGATTAGGTTTGTCCGGTGGTGGTGACATGGCTGGTTCTGAAATTGCTGATTTCGTTGA
   1830
            1840
                     1850
                              1860
                                       1870
                                                1880
2. ELLIS-012-FIG2AB.SEQ (1-2350)
  023313
              DNA encoding masking protein high polymer unit pre
 ID
     023313 standard; DNA; 5136 BP.
 AC
     023313;
 DT
     19-AUG-1992 (first entry)
 DE
     DNA encoding masking protein high polymer unit precursor MPU-P.
KW
     Transforming growth factor beta; TGF-beta; mammalian cancer; ss.
 08
     Rattus rattus.
 FH
                    Location/Qualifiers
     Keu
 FT
     CDS
                    1..5136
 FT
     /*tag= a
 FT
                    2209..4722
     misc_feature
 FT
     /*tag= b
FT
     /note= "N2514, encodes P838"
 FT
                    61..5136
```

FT misc_feature

```
FT
     /note= "N5076, encodes P1692"
PN
     J04066597-A.
PD
     02-MAR-1992.
     29-JUN-1990; 173679.
PF
PR
     29-JUN-1990; JP-173679.
PA
     (NAKA/) NAKAMURA T.
DR
     WPI; 92-120902/15.
 DR
     P-PSDB; R22461.
PT
     Masking protein high polymer unit - combines with transforming
PT
     growth factor beta produced by mammalian cancer cells to inhibit
PT
PS
     Claim 13; Page 9; 25pp; Japanese.
CC
     The sequence codes for the precursor (MPU-P) of a masking protein
 CC
     high polymer unit (MPU). The high polymer subunit MPU binds to
CC
     transforming growth factor (TGF) beta produced by mammalian cancer
CC
     cells. It may be used to inactivate the cancer cells and thus is
CC
     useful in the treatment of human cancers.
CC
     See also 023314 and 023315.
 50
     Sequence
                5136 BP;
                           1267 A;
                                      1348 C;
                                                 1423 G;
                                                            1098 T;
Initial Score
                     141 Optimized Score =
                                               942 Significance = 7.38
Residue Identity =
                     48% Matches
                                              1139 Mismatches
                                                                    938
Gaps
                     282 Conservative Substitutions
                                                                      0
                                                            10
                                                                       20
                                                    ATGTCCATGAACTGCTGA--GT
                                                    CCCGATGTGTGTAGGGACGGCCGCTGCATCAACACTCCTGGGGCCTTCCGATGCGAAT--ACTG-TGACAGT
    2870
              2880
                        2890
                                 2900
                                           2910
                                                     2920
                                                                 2930
                                     50
                 30
                           40
                                                60
                                                          70
                                                                    80
   GGATA-----AACAGCACGGGATATCTCTGTCTA-AAGGAATATT-ACT-ACACCAGGAAAAGGACACATT
                11 11111
                            11 11
                                   GGGTACCGGATGTCACGACGGGCCACTGTGAGGATATCGATGAGTGTCTGACCCCAAGTACCTGTCCCGAG
     2940
               2950
                         2960
                                  2970
                                            2980
                                                      2990
                                                               3000
                  100
                           110
                                     120
                                               130
                                                         140
   CGACAA-CAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGCCATG---GGA
                     \Pi
                                 11 11 11
   GAACAATGCGTGAATTCCCCAGGTTC---TTACCAGTGTGTGCCCTGCACAGAAGGGTT--CCGTGGCTGGA
   3010
             3020
                       3030
                                   3040
                                             3050
                                                       3060
                                                                  3070
            160
                      170
                               180
                                         190
                                                   200
                                                             210
   A---ACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGAA-GGTGGGAGC----C
                 \parallel \parallel \parallel \parallel \parallel \parallel
   ATGGACAA-TGCCTCGATGTGGACG--AGTG-CCTGCAGCCAAAGGTCTGTACCAATGGTTCCTGCACCAAC
      3080
                 3090
                            3100
                                       3110
                                                 3120
                                                          3130
                                                                    3140
      220
                    230
                              240
                                        250
                                                  260
                                                            270
                                                                      280
   GTGCAGAACTCC----TGTGATAACTGTCAGCCTGG-TACTTTCTGCAGAAAATACAATCCAGTCTG-CAAG
                   1111 1 111 11
                                    11 111
                                            CTGGAAGGCTCCTACATGTG-TTCCTGCCACAAGGGCTAC-AGCCCCACACCAGACCATAGACACTGTCAAG
        3150
                  3160
                            3170
                                      3180
                                                 3190
                                                          3200
                                                                    3210
              290
                        300
                                   310
                                             320
                                                       330
                                                                340
   A----GCTGCCCTCCAAGTACCTTCTCC--AGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGT
                   11
                                 1111
                                         11
                                                        ATATTGATG-AATGTCAGCAAGGGAACCTGTGCATGAACGGGCAGTGCAA---AAACA-CTGACGGCTCCTT
        3220
                   3230
                            3240
                                      3250
                                                3590
                                                             3270
    350
              360
                        370
                                 380
                                           390
                                                     400
                                                              410
   GCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGTGTGAGTGCATTGAAGGATTC
    1 111 11 1
                                            11 1
                                                   CCGGTGTACCTGTGG-GCAGGGCTATCAGCT-GTCAGCGGCTAAAGACCAATGTGAAGATATTGACGAATGC
 3280
           3290
                      3300
                                          3320
                                3310
                                                    3330
                                                             3340
```

420	430	440	450	460	470	480
CATTGCT			GATGTG-AAAAG			CTAACGAAGCA
CACCAC	1		111111			1
3350	3360		GCAGTGCAGGAA 3380	3390 3		IIGIGCAACCA
490			520			
			ACATTTAATGAC			
			II IIII ACCACTG-C			
•				3460	3470	3480
5 40	F70					
560 AACTECT			590 C-ttaagaC	006		026
	GTCTGCCAG	GAGGTGACTG	CATCAATACAGO	AGGGTCCTAT	A-CTGCACGTG	CCCGGATGGAC
	3490	3500	3510 35	353	30 354	0 3550
630) 64	10 454	D 660	£70	680	690
			ACCACCATTTCT			
11 1	1 111 1	1 11	1111 1		11 11111	11 1111
			CAAGACATTAAT			
3	5560	3570	3580 35	i90 360	00 3610	3620
700	710	720	730	740	750	760
T-TGCAG	GTCCTTACCT	таттсствес	GCTGACATCGGC	TTTG-CTGCTC	GCCCTGATO	TTCATTACTCT
T000004						1 111 1111
			TCATTCCAC 3650	3660 - 3660	3670 3670	3680
_		0010	5550	0000	5670	
	770	780		800	810	820
			GATCAG-GAAAA			
	l II II OTTOCTACTTO		 Gatgagtgtgtt			 ACGGCTTCTG-
3690	3700		3720	3730	3740	3750
	•	028 	860 Atgcttgta	870 		wiv
111 11						
			CCTCTGTTATCA	GGGCTTTCAAG	CCCCACAGGAT	GGGCAAGG-GT
3760	3770	3780	3790	3800	3810	3820
900	910	920	930	940	950	960
			TATCCTAGGAG-			
1 111			11 11 1			
GTGTGGA 3830	TGTGAACGAA 3840	TGTGAACTGC- 3850	TCAGTGGTGT 3860	ATGTGGGGAG0 3870		
2020	3040	2030	3000	3870	3880	3890
970	980	990	1000	1010	1020	1030
			AACCCCACCACC			
	111111		 AGAACCAGGA			
3900	3910		3930	3940	3950	
1040	-	1050	1060	1070	1080	1090
			CTCTTCTAAC 			IIIIIIIAAAIC II II IIII
			GGATCGTC-AGC			
3960	3970	3980	3990 4	000 40	10 402	0 4030
1100	1110	1120	1130	1140	1150	1160
			TISU TGAGTGTTTTGO			
1 1	11 1	1 1 1111	1 11 11	1 11 11	11 11 1	111 11 11
TCAAT			ATAACGTGCTGG			
	4040	4050	4060	4070	4080	4090

1170		1200		1220	1230
	ACTCCTGATGCCTGA				
	GCGCCGGCTGG	GGA-GACAATTG	TGAGATCTTCCC	TTGCCCAGTCCAGG	GGACTGCTGAG
4100	4110	4120	4130	4140 4150	4160
124	40 1250	1260	1270	1280	1290
	TGGCTGTGAGCCGGN				
	170 4180				
1700	1310 13	20 17	70 17	8A 47EA	17/0
	TAAAAAAAAATGA-				
	TACAAAGATGCTGAC 4240 4250				GGTTACT 4290
	1380 Aggaattgttgatac				
		11 11111		11 11 11	1 11 1 1
	ACTCAGCCTGGGTAT 4310 4				
4300	4310 4	320 4330	U 4340	4030	4300
				1480 14	
	CTGTCAAAGTCAACC 				
GTGTTTTG/	ATATGGATGAATGCC	AAGACCCTAACA	GTTGTATCGATG	GCCAGTGTGTTAAT	ACAGAGGGC-T
4370	4380 4	390 4400	0 4410	4420	4430
1500 15				1550 1560	
CACACACAC I III	CACACACACACACAC			TATCGGTATTCTAC 	
CTTACAACI	TGCTTTTGCACCCAC	CCAATGGTCCTG	GATGCCT-CTGA	GAAGAGATGTGTGC	AGCCAACTGAA
4440	4450 44	60 4470	4480	4490	4500
1570 15	580 1590	1600	1610	1620 163	0 1640
	GTAAAAGGAAACCA				
	I III III AACAAATAGAAGAAA				GAGTGAGGAGT
4510	4520 45			4560	4570
16	50 1.660	1670	1680	1690 170	0 1710
	ACAGACCTCCT-TCG	GACTGTCTAAAA	CTCCCCTTAGA-	AGTCTCGTCAAGTT	
	 GTAGCCGTCCTCTTG				
4580		4600		4620 4630	
172	20 1730	1740	1750	1760	1770
	GGAGACACAGTCCGA				
	GGGCATGCAGTGTGC 1650 4660	4670	SAAGGACTCAGA 4680	IGACIA IGCCCAGC 4690 470	
1700	1700 400	Λ	n 4555		4845
1780 CCACCCCTT	1790 180 FGTGGACACTTGAGT		D 1820 CGCCGGAAGGTC		1840 TCTGTAGG
11 111		1 1 11 11	1 111 1	11111 11 11	1 1111
ACATCCC-1 4710	FGT-GACAGGACGGC 4720		GACGGGATGCGT 40 4750		TGAACAGTA-T 4770
					,,,,
1850 GGCGGGGA) 1860 Gacagagoogoggg			190 190 20-202222222	
111 11	11111 11	1 1 1 11 1	111 1 11	11 11 11	
GGCCCAGAA 4780	AACAGACCCTTACTT 4790	CATTC-AGGAT			
4/00	7/70	VUOF	TOLV 4	820 4830	4840

```
1910
           1920
                     1930
                              1940
                                          1950
                                                   1960
                                                             1970
    GAAACTTTTTTAATCTCACAAGTTTCGTCCGGG--CTCGGCGGACCTATGGCGTCGATCCTTATTACCTTAT
               111 1 111
                           1 11
    GAA---TGTGGCATC-CTCAA----CGGCTGTGAAAATGGCCG--CTGTGTAAGGGTTCAGGA--AGGTTAT
          4850
                                  4870
                        4860
                                              4880
                                                       4890
                                                                   4900
  1980
               1990
                           2000
                                       2010
                                                 2020
                                                           2030
                                                                     2040
    CCTGGC----GCCAAGAT--AAAACAAC--CAAAAG-CCTTGA-CTCCGGTACTAATTCTCCCTGCCGGCCC
                  ACTTGCGATTGCTTTGATGGATATCATCTGGATATGGCCAAGATGACCTGTGTTGA-TGTAAATGAATGCAG
       4910
                 4920
                           4930
                                    4940
                                              4950
                                                        4960
         2050
                   2060
                            2070
                                       2080
                                                 2090
                                                          2100
                                                                    2110
    CCGTAAGCATAACGCGGCGATCTCCACTTTAAGAAC-CTGGCCGCGTTCTGCCTGGTCTCGCTTTCGTAAAC
         1 1111 111 . 111 1 11 11111 1
                                            11 11
                                                     11
                                                            11111
    CGAGCTGAATAA-TCGGATGTCT-CTCTGCAAGAACGCCAAGTGCATTAACACAGAAGGCTCCTACAAATGC
      4980
                 4990
                           5000
                                     5010
                                               5020
                                                        5030
         2120
                   2130
                            2140
                                      2150
                                               2160
                                                         2170
                                                                   2180
    G-GTTCTTACAAAAGTAATTAGTTCTTGCTTTTCAGCCTCCAAGCTTCTGCTAGTCTATGGCAGCATCAAGGC
                 GTGTGTCTACCAGGCTACGTA--CCAT-CTGACAAGC-CCAA-CTACTG-TACACCACTG-AACACC--GCT
      5050
                5060
                            5070
                                       5080
                                                  5090
                                                             5100
       2190
                 5500
                           2210
                                  X 2220
                                              2230
                                                       2240
                                                                 2250
    TGGTATTTGCTACGGCTGACCGCTACGCCGCCGCAATAAGGGTACTGGGCGGCCCGTCGAAGGCCCTTTGGT
              Ш
                    TTGAATTT-AGAC-AAAGACAGTGAC-CTGGAG
    5110
               5120
                        5130
     2240
    TTCAGAAACCC
3. ELLIS-012-FIG2AB.SEQ (1-2350)
               Encodes granulocyte colony stimulating factor rece
 ID
     Q11579 standard; cDNA; 2546 BP.
 AC
     011579;
     04-JUL-1991 (first entry)
 DT
 DE
     Encodes granulocyte colony stimulating factor receptor.
 К₩
     G-CSF; receptor; clone D-7; ss.
 OS
     Homo sapiens.
 FH
     Key
                     Location/Qualifiers
 FT
     sig_peptide -
                     165..236
 FT
     /*tag= a
 FT
     mat_peptide
                     237..2513
 FT
     /*tag= b
 FT
     /product= G-CSFR
 PN
     W09105046-A.
 PD
     18-APR-1991.
 PF
     24-SEP-1990; 005434.
 PR
     26-SEP-1989; US-412816.
 PR
     03-0CT-1989; US-416306.
 PR
     03-APR-1990; US-522952.
 PA
      (INNU-) IMMUNEX CORP.
 PΙ
     Smith CA, Larsen AD, Curtis BM;
 DR
     WPI; 91-132853/18.
 DR
     P-PSDB; R11741.
 PT
      Granulocyte-colony-stimulating factor (G-CSF) receptor DNA and
'PT
      protein - useful as diagnostics and for regulating immune and
 PT
      inflammatory responses
 PS
      Claim 1; Fig 2,3,4,5; 34pp; English.
```

CC RNA. Purified cDNA fragments were cloned into psfCAV vector for

A cDNA library was constructed from cytoplasmic placental poly(A)+

CC

CC were harv CC transfect CC active ce CC to bind 1 CC and plasm CC positive CC of bacter		n pool used Cells. Tra CSFR were id GF. Bacteria COS-7 cells Itified and With this on deposited	to prepare pl nsformants ex entified by s from a posit were transfe designated D- G-CSFR cDNA c	asmid DNA f spressing bi- screening fo- ive pool we ected and a -7. A glycer lone in exp 102.	or ologically r ability re plated single ol stock ression
Initial Score Residue Identit Gaps	y = 47% Ma	itches	re = 967 = 1196 Substitutions	Mismatches	
10 Atgtccatgaa	20 Ctgctgagtggat <i>a</i>	1 11 1	ATATCTCTGTCTA		CTACACCAGGAA
11 11	90 CGACAACAGGAAAG GGAGGCCAAGCAGG 0 60	GAGCCTGTCAC	11 1111	1 111	111 1
111 1 11 1	AAACAACTGTTACA		I IIII II ACAAAGCTGGTGA	1 111	 GTGCTATGGCAA
11 11111 1	220 GTGCAGAACTCC -TGCAG-CCTGACT 190	11 1	G-TCAGCCTGGTA GATCATCCTGCTG	ACT-TTCTGCAG	 TCTGGAGGAGTG
	AGCTGCCC1	CCAAGTACCTT	II III CTGGGGGATCCCA	 TCACAGCC-TC	111 1111
IIIII I GCAGAACT	350 360 GCAGGCTATTTCAG 	 GACCCGGAGCC	TTTGCTCCTCTAC		11 1 11
TTGAAGGATTC CGGGGGCAGGC	20 430 CATTGCTTGGGGCC	1 1 111	1 111	CTGCAGGCCTG	11 1 1
ACGAAGCAG	490 500 GGTTGCAAAACCTG 	11 1 111		IIIIII	111 111
550 ACCCTGGACGA	560 4стастстстаа	570 ACGG	580 AACCTCT-CTC-C	590 33333434	008 2424222242


```
11 11111 1
   G--TACAGTCC----TCACCCTGATG---ACCTTGACCCCAGAGGGGTCGGAGCTACAC---ATCAT
                         2010
                                      5050
                                                2030
                                                         2040
    2080
              2090
                        2100
                                   2110
                                             2120
                                                       2130
                                                                2140
    CCTGGCCGCGTTCTGCCTGGTCTCGCT-TTCGTAAACGGTTCTTACAAAAGTAATTAGTTCTTGCTTTCAGC
                      1
                                                   \parallel \parallel \parallel
    CCTGGGCCTGTTCGGCC---TCCTGCTGTTGCTCACCTGCCTCTGTGGAACTGCCTGGCTCT--GTTGCAGC
         5090
                      2070
                                2080
                                          2090
                                                   2100
                                                               2110
   2150
              2160
                        2170
                                    2180
                                              2190
                                                         2200
   CTCCAAGCTTCTG-CTAGTCTATGGC--AGCATCAAGGCTGGTATTTGCT-ACGGCTGAC--CGCTAC--GC
               1 | 11 | 11 | 11 | 11
                                        111 11 11 1
   C-CCAACAGGAAGAATCCCCTCTGGCCAAGTGTC----CCAGACCCAGCTCACAGCAGCCTGGGCTCCTGGG
   2120
             2130
                       2140
                                 2150
                                               2160
                                                        2170
                                                                  2180
          2220
                    2230
                              2240
                                        2250
                                                   2260
                                                            2270
                                                                      2280
   CGC-CGCAATAAGGGTACTGGGCGGCCCGTCGAAGGCCCTTTGGTTTCA-GAAACCCAAGGCCCCCTCATA
     11 | 1111 | 11 | 11 | 11
                                1 11 1 11111
    TGCCCACAATCATGG-AGGAGGATGCCTTCCAGCTGCCCGGCCTTGGCACGCCACCCATCACCAAGCTCA--
     2190
                5500
                          2210
                                    2220
                                              2230
                                                       2240
                                                                 2250
            2290
                      2300
                                2310
                                          2320
                                                    2330
                                                             2340
   CCAACGTT--TCGACTITG-ATTCTTGCCGGTACGTGGTGGTGGGTGCCTTAGCTCTTTCTCGATAGTTAGA
               111 | 11 | 11 | 1
    -CAGTGCTGGAGGAGGATGAAAAGAAGCCGGT--GCCCTGG-GAGTCCCATAACAGCTCAGAGACCTGTGGC
       2260
                 2270
                           2280
                                       2290
                                                  2300
                                                           2310
                                                                     2320
 2350
   C
   CTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCAGTT
        2330
                  2340
                            2350
                                      2360
                                                2370
4. ELLIS-012-FIG2AB.SEQ (1-2350)
   011580
               Clone 25-1 encodes human G-CSF receptor.
ID
     Q11580 standard; DNA; 2931 BP.
 AC
     011580;
DT
     04-JUL-1991 (first entry)
DE
     Clone 25-1 encodes human G-CSF receptor.
     granulocyte colony stimulating factor; receptor; clone 25-1; ss.
08
     Homo sapiens.
FH
     Key
                     Location/Qualifiers
FT
     sig_peptide
                     165..236
FT
     /*tag= a
FT
     mat_peptide
                     237..2564
FT
     /*tag= b
PN
     W09105046-A.
PD
     18-APR-1991.
PF
     24-SEP-1990; 005434.
PR
     26-SEP-1989; US-412816.
PR
     03-0CT-1989; US-416306.
PR
     03-APR-1990; US-522952.
PA
     (IMMU-) IMMUNEX CORP.
PI
     Smith CA, Larsen AD, Curtis BM;
DR
     WPI; 91-132853/18.
DR
     P-PSDB; R11742.
PT
     Granulocyte-colony-stimulating factor (G-CSF) receptor DNA and
PT
     protein - useful as diagnostics and for regulating immune and
PT
     inflammatory responses
PS
     Claim 1; Fig 2,3,4,5,6; 34pp; English.
CC
     A cDNA library was constructed from cytoplasmic placental poly(A)+
 CC
     RNA. Purified cDNA fragments were cloned into psfCAV vector for
```

transformation into E cali DUE strain aloba. Incheformante

CC

CC plated to provide approximately 800 colonies per plate. The colonies CC were harvested and each pool used to prepare plasmid DNA for CC transfection into COS-7 cells. Transformants expressing biologically CC active cell surface G-CSFR were identified by screening for ability CC to bind 125-Iodine-G-CSF. Bacteria from a positive pool were plated CC and plasmids prepared. COS-7 cells were transfected and a single CC positive clone was identified and designated D-7. Clone D-7 was CC used as a probe to screen the placental cDNA library; clone 25-1 CC was isolated. It is identical to D-7 except that it contains an CC intron insertion after nucleotide 2411, resulting in a change of CC reading frame (and of amino acid sequence). CC See also 011579. S9 Sequence 2931 BP; 607 A; 991 C; 792 G; 541 T;	
Initial Score = 138 Optimized Score = 967 Significance = 7.19	
Initial Score = 138 Optimized Score = 967 Significance = 7.19 Residue Identity = 47% Matches = 1196 Mismatches = 955 Gaps = 342 Conservative Substitutions = 0	
10 20 30 40 50 60 70 ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAA	
80 90 100 110 120 130 140 AAGGACACATTCGACAGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATT	
150 160 170 180 190 200 TCGCCATGG-GAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGAA	
210 220 230 240 250 260 GG-TGGGAGCCGTGCAGAACTCCTGTGAT-AACTG-TCAGCCTGGTACT-TTCTGCAGAAAATA-CAATC	
270 280 290 300 310 320 330 CAGTCTGCAAGAG——CT—GCCCTCCAAGTACCTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATC—T	
340 350 360 370 380 390 400 GCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGTGTGAGTGCA	
410	
480 490 500 510 520 530 540 ACGAAGCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCG	

550 560 570 580 590 600	
ACCCTGGACGAACTGCTCTCTAGACGGAAGGTCT-GTG-CTTAAGACCGGGACCACGGAGAAG	
A-GCTGCGCGCAGGCTACCCTCCAGCCATACCCCACAACCTCTCCTGCCTCATGAACCTCACAAC-CAGCAG	
520 530 540 550 560 570 580	
610 620 630 640 650 660 670	
-GACGT-GGTGTGGGACCCCCTGTGGTGAGCTTCTCTCCCA-GTACCACCATTTCTGTGACTCCAG	
590 600 610 620 630 640 650	
100	
680 690 700 710 720 730 AG-GGAGGACCAGGAGGGCACTCCTTGCAGGTCCTTACCTTGTTCCTGGCGCTGACATCGGCT	
AGCCGCGGCAACTGTCAGACCCAAGGGGACTCCATCCTGGACTGC-GTGCCCAAGG-ACGGGCAGAGCCA 660 670 680 690 700 710	
000 070 000 070 700 710	
740 750 760 770 780 790	
TTGCTGCTGGCCCTGATCTTCATTACTCTCCTGTTCTCTGTGCTCAAATGGAT-CAGGAAAAAATT	
CTGCTGCATCCCACGCAAACAC-CTGCTGTTGTACCAGAATATGGGCATCTGGGTGCAGGCAG	
720 730 740 750 760 770 780	
800 810 820 830 840 850 860	
CCCCCACATATTCAAGCAACCATTTAAGAAGACCACTG-GAGCAGCTCAAGAGGAAGATGCTTGTAGC	
[
790 800 810 820 830 840	
870 880 890 900 910 920 930	
TGCCGATGTCCACAGGAAGAAGAAGGAG-GAGGAGGAGG-CTATGAGCTGTGATGTACTATCCTAGGAGA	
CCCCCATG-CTGC-GGACCATGGACCCCAGCCCTGAAGCGGCCCCTCCCCAGGCAGG	
940 950 960 970 980 990 1000 TGTG-TGGGCCGAAACCGAGAAGCA-CTAGGACCCCACCATCCTGTGGAACAGCACAAGCAACCCCACCACC	
TGTGCTGGGAGCCATGGCAGCCAGGCCTGCA-CATAAATCAGAAGTGTGAGCTGCGCCACAAGC 920 930 940 950 960 970	
920 930 940 950 960 970	
1010 1020 1030 1040 1050 1060 1070	
CTGTTCTTACACATCATCCTAGATGATGTGTGGGCGCGCACCTCATCCAAGTCTCTTCTAACGCTAACA	
CGCAGCGTGGAGAAGCC-AGCTGGGCCACTGGTGGGCCCCCTCC-CCTTGGAGGCCCCTTCAGTATGAGC	
980 990 1000 1010 1020 1030 1040	
1080 1090 1100 1110 1120 1130 1140	
TATTIGTCTTTACCTTTTTTAAATCTTTTTTTAAATTTAAATTTTATGTGTGTG	
1050 1060 1070 1080 1090 1100 1110	
1150 1160 1170 1180 1190 1200	
CTGTATGCACACGTGTGTGTGTGTGTGTGTGACACTCCTGATGCCTGAGGAGGTCAGAAGAGAAAG	
CTGGAGCGACTGGAGCCCCAGCCTGGAGCTGAGA-ACTACCGAACGGGCCCCCACTGTCAGACTGGACACAT 1120 1130 1140 1150 1160 1170 1180	
1210 1220 1230 1240 1250 1260 1270 GGTTGGTTCCATAAG-AACTGGAGTTATGGATGGCTGTG-AGCCGGNNNGATAGGTCGGGACGGA	
GG-TGGCGGCAGAGGCAGCTGGACCCCAGGACAGTGCAGCTGTTCTGGAAGCCAGTGCCCCTGGAGGAA	
1190 1200 1210 1220 1230 1240 1250	

1280 1290 1300 1310 1320 1330
GACCTGTCTTCTTATTTTAACGTGACTGTATAATAAAAAAAAAA
GACAGCGGACGGATCCAAGGTT-ATGTGGTTTCTTGGAGACCCT-CAGGCCAGGC
1200 1270 1280 1270 1300 1310
1340 1350 1360 1370 1380 1390 1400 1410 TGTCCTGACACCCTTCTA-GTTAATGATCTAAGAGGAATTGTTGATACGTAGTATACTGTATATGTGTATGT
CATCCTGCCCCTCTGCAACACCACAGAGCTCAGCTGCACCTTCCACCT-GCCTTCAGAAGCCCAGGAGGT 1320 1330 1340 1350 1360 1370 1380
1320 1330 1340 1350 1360 1370 1380
1420 1430 1440 1450 1460 1470 ATATGTATATGTATATAAGACTCTTTTACTGTCAAAGTCAACCTAGAGTGTCTGGTTACCAGGT
GGCCCTTGTGGCCTATAACTCAGCCGGGACCTCTC-GCCCCACCCCGGTG-GTCTTCTCAGAAAGCAGAGGC 1390 1400 1410 1420 1430 1440 1450
1480 1490 1500 1510 1520 1530 1540 CAATTTTATTGGACATTTTACGTCACACACACACACACAC
CCAGCTCTGACCAGACTCCATGCCATGGCCCGAGACCCTCACAGCCTC-TGGGTAGGCTGGGAGCCCCCC 1460 1470 1480 1490 1500 1510 1520
1460 1470 1460 1470 1300 1310 1320
1550
AATCCATGGCCTCAGGGCTATGTGAT-TGAGTGGGGCCTGGGCCCCCCAGCGCGAGCAATAGCAACAAGAC 1530 1540 1550 1560 1570 1580 1590
1330 1340 1330 1360 1370 1380 - 1370
1620 1630 1640 1650 1660 1670 GTGGAGG-TGACAGACTACCCCTTCTGGGTACGTAGGGACAGACCTCCTTCGG-ACTGTCTAAAACT
CTGGAGGATGGAACAGAATGGGAGAGCCACGGGGTTTCTGCTGAAGGAGAACATCAGGCCCTTTCAGCT 1600 1610 1620 1630 1640 1650 1660
1600 1610 1620 1630 1640 1650 1660
1680 1690 1700 1710 1720 1730 1740 CCCCTTAGAAGTC-TCGTCAAGTTCCCGGACGAAGAGGACA-GAGGAGACACAGTCCGA-AAAGT-TAT-
-CTATGAGATCATCGTGACTCCCTTGTACCAGGACACCATGGGACCCTCCCAGCATGTCTATG 1670 1680 1690 1700 1710 1720
1750 1760 1770 1780 1790 1800TTTTC-CGGCAAATCCTTTCCCTGTTTCGTGACACTCCACCCCTTGTGGACACTTGAGTGTCATCC
CCTACTCTCAAGAAATGGCTCCCTCCCATG-CCCCAGA-GCTGCATCTAAAGCACA-TTGGCAAGAC 1730 1740 1750 1760 1770 1780
1810 1820 1830 1840 1850 1860 1870 TTGCGC-CGGAAGGTCAGGTGGTACCCG-TCTGTAGGGGCGGGGGAGACAGAGCCGCGGGGGGAGCTACGAGA-
CTGGGCACAGCTGGAGTGGGTGCCTGAGCCCCCTGAGCTGGG-GA-AGAGCCCCCTTACCCACTACAC 1790 1800 1810 1820 1830 1840 1850
1880 1890 1900 1910 1920 1930 -ATCGACT-CAC-AGGGCGCCCCGGGCTTCGCAAATGAAACTTTTTTAAT-CTCAC-AAGTTTCGTCC
CATCTTCTGGACCAACGCTCAGAACCAGTCCTTCTC-CGCCATCCTGAATGCCTCCCGTGGCTTTGTCC 1860 1870 1880 1890 1900 1910 1920
1940 1950 1960 1970 1980 1990 2000
1940 1950 1960 1970 1980 1990 2000 GGGCTCGGC-GGACCTATGGCGTC-GATCCTTAT-TACCTTAT-CCTGGC-GCCAAGATAAAACAACCAAAA
TCCATGGCCTGGAGCCCGCCAGTCTGTATCACATCCACCTCATGGCTGCCAGCCA
1930 1940 1950 1960 1970 1980 1990

•

```
2010
              2020
                       2030
                                2040
                                          2050
                                                     2090
                                                              2070
    GCCTTGACTCCGGTACTAATTCTCCCTGCCGGCCCCCGTAAGCATA-ACGCGGCG-ATCTCCACTTTAAGAA
    G--TACAGTCC-----TCACCCTGATG---ACCTTGACCCCAGAGGGGTCGGAGCTACAC---ATCAT
      2000
                        2010
                                    2020
                                             2030
                                                      2040
                                                                  2050
    2080
              2090
                       2100
                                 2110
                                          2120
                                                    2130
                                                             2140
    CCTGGCCGCGTTCTGCCTGGTCTCGCT+TTCGTAAACGGTTCTTACAAAAGTAATTAGTTCTTGCTTTCAGC
                    - 1
                                                11111
    CCTGGGCCTGTTCGGCC---TCCTGCTGTTGCTCACCTGCCTCTGTGGAACTGCCTGGCTCT--GTTGCAGC
         2060
                     2070
                              2080
                                       2090
                                                 2100
                                                            2110
    2150
              2160
                       2170
                                  2180
                                           2190
                                                      2200
                                                                   2210
    CTCCAAGCTTCTG-CTAGTCTATGGC--AGCATCAAGGCTGGTATTTGCT-ACGGCTGAC--CGCTAC--GC
                    C-CCAACAGGAAGAATCCCCTCTGGCCAAGTGTC----CCAGACCCAGCTCACAGCAGCCTGGGCTCCTGGG
            2130
                      2140
                               2150
                                            2160
                                                     2170
          2220
                   2230
                            2240
                                      2250
                                                2260
                                                         2270
                                                                   2280
    CGC-CGCAATAAGGGTACTGGGCGGCCCGTCGAAGGCCCTTTGGTTTCA-GAAACCCAAGGCCCCCCCCATA
    13 1 1311 1 11 1 11 11 1
                                    1 11 1 11111
    TGCCCACAATCATGG-AGGAGGATGCCTTCCAGCTGCCCGGCCTTGGCACGCCACCCATCACCAAGCTCA--
     2190
               2200
                         2210
                                  2220
                                           2230
                                                     2240
                                                              2250
           2290
                     2300
                              2310
                                        2320
                                                 2330
                                                          2340
   CCAACGTT--TCGACTTTG-ATTCTTGCCGGTACGTGGTGGTGGGTGCCTTAGCTCTTTCTCGATAGTTAGA
            -CAGTGCTGGAGGAGGATGAAAAGAGCCGGT--GCCCTGG-GAGTCCCATAACAGCTCAGAGACCTGTGGC
       2260
                2270
                          2280
                                     2290
                                               2300
                                                        2310
                                                                 2320
 2350
   C
    CTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCAGTT
        2330
                 2340
                          2350
                                    2360
                                             2370
5. ELLIS-012-FIG2AB.SEQ (1-2350)
  013856
              Human GCSF receptor gene in pHQ3/pHG12.
 ID
     Q13856 standard; DNA; 2942 BP.
 AC
     013856;
 DT
     08-JAN-1992 (first entru)
 DE
     Human GCSF receptor gene in pHQ3/pHG12.
 KW
     Granulocyte colony stimulating factor; ss.
 05
     Homo Sapiens.
 FH
                    Location/Qualifiers
     Key
 FT
     sig_peptide
                    169..237
 FT
     /#tag= a
 FT
     mat_peptide
                    238..2676
 FT
     /*tag= b
 PN
     W09114776-A.
 PD
     03-0CT-1991.
 PF
     22-MAR-1991; J00375.
 PR
     23-MAR-1990; JP-074539.
 PR
     03-JUL-1990; JP-176629.
 PA
     (OSAB-) OSAKA BIOSCIENCE IN.
 ΡI
     Nagata S. Fukunaga R:
 DR
     WPI; 91-310576/42.
 DR
     P-PSDB; R14255.
 PT
     DNA encoding granulocyte colony stimulating factor receptor - for
 PT
     recombinant prodn. of GCSF receptor useful in therapy and
 PΤ
     research.
     Claim 1; Fig 8; 99pp; Japanese.
 PS
     The sequence was obtd. from a cDNA library prepd. from human
```

historytic lumphome 11977 colle using DNA from the connectanti

CC murine gene (see 013855). The genes can be used to produce
CC recombinant receptors for use in research and for diagnostic assays.
CC See also 013857 and 013858. S0 Sequence 2942 BP; 611 A; 993 C; 796 G; 542 T;
Initial Score = 138 Optimized Score = 971 Significance = 7.19 Residue Identity = 48% Matches = 1203 Mismatches = 951 Gaps = 345 Conservative Substitutions = 0
10 20 X 30 40 50 60 70 ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAA
80 90 100 110 120 130 AAGGACACATTCGACAACAGGAAAGGAGCCTGTCACAGA-AAACCACAGTGTCCTGTGCATGTGACAT
140 150 160 170 180 190 200 TTCGCCATGG-GAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGA
210 220 230 240 250 260 AGG-TGGGAGCCGTGCAGAACTCCTGTGAT-AACTG-TCAGCCTGGTACT-TTCTGCAGAAAATA-CAAT
270 280 290 300 310 320 330 CCAGTCTGCAAGAGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATC-
340 350 360 370 380 390 400 TGCAGAGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGTGTGAGTGC
410 420 430 440 450 460 470 ATTGAAGGATTCCATTGCTTGGGGCCACAGTGCACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCT-
480 490 500 510 520 530 540 AACGAAGCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTC
550 560 570 580 590 600 GACCCTGGACGAACTGCTCTCTAGACGGAAGGTCT-GTG-CTTAAGACCGGGACCACGGAGAA [
610 620 630 640 650 660 670 G-GACGT-GGTGTGGACCCCCTGTGGTGAGCTTCTCCCA-GTACCACCATTTCTGTGACTCCA

CCATCCTGCC	CCTCTGCAA	CACCACAGAG	CTCAGCTGCA-		T-GCCTTCAGA	AGCCCAGGAGG
1320	1330	1340	1350	1360	1370	1380
1410 142	20 14;	30 1A	40 14:	50 146	Λ	1470
					o Gtgtctgi	
				11 11 1		
1GGCCCTTG1	GGCCTATAA(1400		ACCTCTC-GC(1420	CCACCCCGGT 1430	G-GTCTTCTCA 1440	GAAAGCAGAGG 1450
1370	1700	1410	1460	1430	1440	1430
1480	1490	1500	1510	1520	1530	1540
					CACGTTTATAC	
					I I II I C-TGGGTAGGC	
1460	1470	1480	1490	1500	1510	1520
1550	1560	1570	1580	1590	1600	1610
					AGAGTGAGTGA	
					11 111	
	ICCTCAGGGC 1540	1550 IAIGIGAI	GAGTGGGGCCT 1560	TGGGCCCCCCC 1570	AGCGCGAGCAA 1580	TAGCAACAAGA 1590
1000	1040	1000	1000	1570	1350	1370
162		1630	1640	1650	1660	1670
					CTCCTTCGG-A	
					AACATCAGGCC	
1600	1610	1620	1630	1640	1650	1660
1680	1690	1700	1710	1720	1730	1740
					GACACAGTCCG	
1-CTATGAGA 1670	1680 1681		TGTACCA(690	GGACACCATGG 1700	GACCCTCCC 1710	AGCATGTCTAT 1720
2072	100.	, .	0.0	1100	1710	1720
_	750	1760	1770	1780	1790	1800
					TTGTGGACACT 	
GCCTACTCT	:AAGAAATGG(TCCCTCCCA	TG-CCCCAGA-	-GCTGCATC	TAAAGCACA-T	TGGCAAGA
1730	1740	1750	1760	1770	1780	
1810	1820	1830	1840	1850	1860	1870
	GAAGGTCAGG	GTGGTACCCG	-TCTGTAGGG	GCGGGGAGACA	GAGCCGCGGGG	
1790 180				:C1GGG-GA-AI [830	GAGCCCCCT 1840	1850
1880	1890			1910 1	720 TTAAT-CTCAC	1930
CCATCTTCTE	GACCAACGC1	CAGAACCAG	TCCTTCTC-CC	CCATCCTGAA	TGCCTCCTCCC	STEECTTTETC
1860	1870	1880	1890	1900	1910	1920
1940	1950	1960	1970	1980	1990	2000
					C-GCCAAGATA	
1 1 1 00000TA	IIII DODDOAGOOT	 ATRICIDAD:)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		I IIII I I Cagccaggetgi	
1930						790
20+0	ላርላር	2070	20.00	2050	0016	0070
2010 AGCCTTGACT	2020 CCGGTACTAA	2030 ATTCTCCCTG		2050 AAGCATA-ACI	2060 CGGCG-ATCT	2070 CCACTTTAAGA
	11	11 11111				111 1 1
AGTACAGT 2000		TCACCCTG 2010			GGGTCGGAGCT	
EUVU	•	:010	2020	2030	2040	2050
2080	2090	2100	2110		2130	2140
				TTCTTACAAA	AGTAATTAGTT	- · · - - · · · · · · ·

```
TCCTGGGCCTGTTCGGCC---TCCTGCTGTTGCTCACCTGCCTCTGTGGAACTGCCTGGCTCT--GTTGCAG
       5090
                 2070
                              2080
                                        2090
                                                  2100
                2160
     2150
                          2170
                                      2180
                                                2190
                                                           2200
    CCTCCAAGCTTCTG-CTAGTCTATGGC--AGCATCAAGGCTGGTATTTGCT-ACGGCTGAC--CGCTAC--G
                 1 1 11 1111 11 11
                                           1 1
                                                    CC-CCAACAGGAAGAATCCCCTCTGGCCAAGTGTC----CCAGACCCAGCTCACAGCAGCCTGGGCTCCTGG
           2130
                     2140
                               2150
                                             2160
                                                       2170
                                                                 2180
2210
                      2230
            2220
                                2240
                                          2250
                                                      2260
                                                                2270
    CCGC-CGCAATAAGGGTACTGGGCGGCCCGTCGAAGGCCCTTTGGTTTCA-GAAACCCAAGGCCCCCCCCAT
      - 11 111
                                        1 11 1 11111
    GTGCCCACAATCATGG-AGGAGGATGCCTTCCAGCTGCCCGGCCTTGGCACGCCACCCATCACCAAGCTCA-
   2190
             2200
                        2210
                                  5550
                                            2230
                                                      2240
2280
             2290
                        2300
                                  2310
                                            2320
                                                                 2340
                                                      2330
    ACCAACGTT--TCGACTTTG-ATTCTTGCCGGTACGTGGTGGTGGGTGCCTTAGCTCTTTCTCGATAGTTAG
                     \parallel \parallel \parallel \parallel
                               111111 1
                                           111 1 11 11 11 1
    --CAGTGCTGGAGGAGGATGAAAAGAAGCCGGT--GCCCTGG-GAGTCCCATAACAGCTCAGAGACCTGTGG
     2260
               2270
                         2280
                                     2290
                                                2300
                                                           2310
                                                                     2320
     X
    AC
    CCTCCCCACTCTGGTCCAGACCTATGTGCTCCAGGGGGACCCAAGAGCAGTT
      2330
                2340
                          2350
                                    2360
                                              2370
6. ELLIS-012-FIG2AB.SEQ (1-2350)
                Sequence encoding porcine beta-follicle stimulatin
 ID
     N61379 standard; cDNA; 728 BP.
AC
     N61379;
      03-AUG-1992 (first entry)
DT
DE
      Sequence encoding porcine beta-follicle stimulating hormone (FSH).
KW
      Superovulation therapy; hypophyseal disorder; gonadal regression;
KW
      inferitility; ss.
08
     Pig.
FH
                      Location/Qualifiers
     Key
FT
     CDS
                      1..54
FT
      /∦tag= a
FT
     transit_peptide 55..108
FT
      /*tag= b
FT
     mat_peptide
                      109..444
FT
      /*tag= c
FT
     CDS
                      445..726
FT
      /*taq= d
PN
     FR2565599-A.
 PD
      13-DEC-1985.
PF
      07-JUN-1985; 508647.
PR
      08-JUN-1984; US-618466.
PA
      (INTE-) INTEGRATED GENETICS.
PΙ
      Beck AK;
     WPI; 86-030537/05.
 DR
 DR
     P-PSDB; P61785.
PT
      New DNA coding for porcine beta-follicle stimulating hormone -
PT
      useful for raising antibodies, inducing ovulation etc., and new
PT
      expression vectors
PS
      Disclosure; Page 3; 14pp; French.
 CC
      Total RNA is extracted from pig hypophyseal glands and used to
 CC
      construct a library of cDNA. The library was screened using two
 CC
      oligonucleotide probes designated PF55 and PF434. These were
 CC
      ligated to give the complete sequence including the untranslated
 CC
      flanking regions. This sequence has been inserted into pBR322 and
 CC
      deposited as NRRL B-15793. The final vector is ppFSH.
```

Semiance 729 DR: 197 A: 197 C: 147 C: 100

ca.

700 710 726 730 740 750

```
1 11 111 1111 1 111 1 111 1 111
   630
                   640
                                650
                                                   670
                                          660
                                                             680
       770
                 780
                          790
                                    800
                                             810
                                                      820
                                                                830
   G--TTCTCTGTGCTCAAATGGATCAGGAAAAAATTCCCCCCACATATTCAAGCAACCATTTAAGAAGACCACT
      GAATTTTAT-TACATTTATAATTGTAGCAAGGAT--CATCACAA
              700
                       710
                                 720
     840
               850
   GGAGCAGCTCAAGAGGAAGATG
7. ELLIS-012-FIG2AB.SE0 (1-2350)
  N60741
               Sequence of porcine beta-follicle stimulating horm
     N60741 standard; cDNA; 728 BP.
     N60741;
     28-FEB-1992 (first entry)
 DE
     Sequence of porcine beta-follicle stimulating hormone (FSH) cDNA.
     Hypophyseal; disorder; tumour; superovulation; infertility; therapy;
K₩
     diagnosis; gonadal regression; ss.
 KW
     Sus scrofa.
     Key
                    Location/Qualifiers
     mRNA
                    1..54
     /≱tag= a
FT
     transit_peptide 55..114
     /*tag= b
FT
     mat_peptide
                    115..444
     /*tag= c
     mRNA
                    445..726
     /*tag= d
     FR2565599-A.
     13-DEC-1985.
     07-JUN-1985; 508647.
PR
     08-JUN-1984; US-618466.
PR
     20-DCT-1986; US-921867.
PA
     (INTE-) INTEGRATED GENETICS.
PΙ
     Beck AK;
     WPI; 86-030537/05.
 DR
 DR
     P-PSDB; P60821.
 PT
     New DNA coding for porcine beta-follicle stimulating hormone -
 PT
     useful for raising antibodies, inducing ovulation etc., and new
 PT
     expression vectors
     Disclosure; Page 3; 14pp; French.
PS
 CC
     Total RNA extracted from pig hypophyseal gland was used to construct
 CC
     a library of cDNA. The library was screened using two
 CC
     oligonucleotide probes (N60742, N60743). Two sequences, designated
 CC
     PF55 and PF434 were isolated. These were ligated to give the
 CC
     complete sequence for beta-FSH including the untranslated flanking
 CC
     regions. This sequence has been inserted into pBR322 and deposited
      as NRRL B-15793.
 50
     Sequence 728 BP;
                          186 A;
                                             168 G:
                                   184 C;
                                                      190 T;
Initial Score
                    137 Optimized Score =
                                              322 Significance = 7.13
Residue Identity =
                    49% Matches
                                              390 Mismatches
                                         =
                                                                   302
Gaps
                     94 Conservative Substitutions
                                                                    0
    10
              20
                       30
                                 40
                                          50
                                                    60
                                                              70
    TGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTAC-TACACCAGGAAAAGGAC
                                                    111 1 111 11
                                                   GTACTTTCAC--GGTCTCGTAC
```

20

TD

AC DT

05

FH

FT

FT

FT

FT

FT

FT

PN

PD

PF

CC

TGCAGGTCCTTACCTTGTTCCTGGCGCTGACATCGGCTTTGCTGCTGGCCCTGATCTT--CATTACTCTCCT


```
8. ELLIS-012-FIG2AB.SEQ (1-2350)
   Q03847
               Porcine beta FSH subunit.
      903847 standard; cDNA; 780 BP.
 ID
 AC
      003847;
 DT
     24-AUG-1990 (first entry)
 DE
     Porcine beta FSH subunit.
 K₩
     Luteinizing hormone; follicle stimulating hormone;
 KW
     recombinant cDNA; alpha subunit; beta subunit; ungulate; ss.
 05
     Bos taurus.
 FH
     Key
                     Location/Qualifiers
 FT
     CDS
                     107..496
 FT
      /*tag= a
 FT
     /product=Porcine beta FSH
 PN
     W09002757-A.
 PD
     22-MAR-1990.
 PF
     02-SEP-1988; 030949.
 PR
     02-SEP-1988; WD-U03049.
 PA
      (INTE-) Integrated genetics.
 PΙ
      Beck A, Bernstine E, Hsiung N, Kelton C, Lerner T, Reddy VB; Chappel SC.
 DR
     WPI; 90-115954/15.
 PT
     Biologically active ungulate LH and FSH- produced by recombinant methods.
 PS
      Disclosure; Fig 10; 66pp; English.
 CC
     LH and FSH comprises an alpha and a beta subunit, both subunits can be
 CC
      synthesised in a single cell contg. an expression vector comprising
 CC
     heterologous DNA encoding one subunit.
 CC
     See also 003843-003851.
 S0
      Sequence
               780 BP; 201 A;
                                  195 C;
                                          184 G;
                                                    200 T;
Initial Score
                     137 Optimized Score =
                =
                                               339 Significance = 7.13
Residue Identity =
                     48% Matches
                                          =
                                               405 Mismatches
                                                                    337
Gaps
                      93 Conservative Substitutions
                                                                      0
           10
                     20
                              30
                                        40
                                                       50
                                                                60
    ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCT----CTGTCTAAAGGAATATTAC-TACAC
                      1 11 11
                                        111
                                                 11
                                                      GAGTGGCTACCTGGATACGTA-TACAGGGAGTCTGCATGGTGAGCACAGCCA-AGTACTTTCAC
                   10
                            20
                                       30
                                                 40
                                                          50
                                                                     60
               80
                           90
                                   100
                                             110
                                                        120
    CAGGAAAAGGACAC--ATTCGACAACAGGAAAGGAGCCTGTCACAGA--AAACCACAG-TGTCCTG-TGCAT
                        - 11 1
                                 --GGTCTCGTACACCAGCTCCTTAATTGTTTGGTTTCCACCCCAAGATGAAGTCGCTGCAGTTTTGCTTCCT
           70
                              90
                     80
                                       100
                                                 110
                                                          120
                                                                    130
        140
                  150
                             160
                                      170
                                                 180
                                                          190
    GTGACATTTCGCCATGGGAA-ACAACTGTTACAACGTGGTGGTCA-TTGTGCTGCTGCTAGTGGGCTGT-GA
                 111 11 11 111 1 111 1 1 1 1 1 1 1 1 1
    ATTCTGTTGC----TGGAAAGCCATCTGCTGCAA--TAGCTGTGAGCTGACCAACATCACCATCACAGTGGA
        140
                      150
                               160
                                           170
                                                    180
                                                              190
         210
                   550
                             230
                                      240
                                                  250
                                                            260
    GAAGGTGGGAGCCGTGCAGAACTCCTGTGATAACTGTCA--GCCTGGTACT-TTCTGCAGAAAATACAATCC
                      GAAAG-AGGAG---TG--TAACTTCTG-CATAAGCATCAACACCACGTGGTGTGCTG--GCTATTGC--TAC
                210
   200
                            550
                                      230
                                                240
                                                           250
          280
                    290
                             300
                                       310
                                                 320
    AGTCTGCAAGAGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACAGCC-GAA---CTGTAACATC-TGC
                    1 1111 11
                                  11111
                                               111 11 111
                                                            1111 1 11 1
```

ACCCGG---GACCTGGTATACAAGGAC-----CCAGCCAGGCCCAACATCCAGAAAACATGTACCTTCAAGG

200 700

340 350 360 370 380 390 400 AGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGTGTGAGTGCATT
410 420 430 440 450 460 470 GAAGGATTCCATTG-CTTGGGGCCACAGTGCACCAGATGTGA-AAAGGACTGCAGGCCTGGCCAGGAGCTAA
480 490 500 510 520 530 540 CGAAGCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTAC-TGGCGT-CTGTCGACC
550 560 570 580 590 600 610 CTGGAC-GAACTGCTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGACCACGGAGAAGGACGTGGTG
620 630 640 650 660 670 680 TGTGGACCCCCTGTGGTGAGCTTCTCCCCAGTACCACCATTTCTGTGACTCCAGAGGGAGGACCAGGAG
690 700 710 720 730 740 750 GGCA-CTCCTTGCAGGTCCTTACCTTGTTCCTGGCGCTGACATCGGCTTTGCT-GCTGGCCCTGATCTTCAT
760 770 780 790 800 X 810 820 TACTCTCCTGTTCTCTGTGCTCAAATGGATCAGGAAAAAATTCCCCCACATATTCAAGCAACCATTTAAG
830 840 850 AAGACCACTGGAGCAGCTCAAGAGGAAGA
9. ELLIS-012-FIG2AB.SEQ (1-2350) 028758 Partial sequence of tumour suppressor gene U10.
ID Q28758 standard; DNA; 4328 BP. AC Q28758; DT 25-FEB-1993 (first entry) DE Partial sequence of tumour suppressor gene U10. KW CaN19; tumour suppressor gene; cancer; therapy; ss. OS Homo sapiens. PN W09215602-A.
PD 17-SEP-1992. PF 28-FEB-1992; U01624. PR 28-FEB-1991; US-662216. PA (DAND) DANA FABER CANCER INST INC. PI Sager R

Claim 70: Page 79-Al: Sann: Emplish

Sager R WP1; 92-331663/40. DR

Diagnosos and treatment of cancer - using candidate tumor suppressor PT

genes or the corresp. antibodies.

```
An adaptation of the subtractive hybridization technique was used
 CC
      which utilizes a biotinylation-based subtraction procedure instead
 CC
      of hydroxyapatite as previously used. In this procedure, a single
 CC
      strand phagemid cDNA library from normal cell polyA+ mRNA is
 CC
      hybridized with excess biotinylated tumor polyA+ mRNA, and the
 CC
     resulting double stranded sequences are removed by binding to
 CC
      streptavidin. The remaining single-stranded phagemid cDNAs are
      converted to double-stranded form and used to transform bacterial
 CC
 CC
     host cells. The resulting subtracted cDNA library is differentially
 CC
      screened with total cDNA from normal and tumor cells. This method
 CC
     produced some 20 additional cloned cDNAs. Also found by this
 CC
     method were several genes which, on the basis of the partial DNA
 CC
      sequences appear to be novel sequences not previously entered
 CC
      into GENBANK. The portion of the cDNAs so sequenced represents
 CC
     part of the coding region and/or part of the 3' untranslated region
 CC
      of each cDNA (see Q28749-58).
 SQ
      Sequence 4328 BP;
                           1236 A;
                                      970 C;
                                               912 G;
                                                         1210 T;
Initial Score
                    135 Optimized Score =
                                              953 Significance = 7.01
                     46% Matches
Residue Identity =
                                             1140 Mismatches
                                                                  1017
Gaps
                    279 Conservative Substitutions
                                                                     0
                                                           10
                                                                    20
                                                   ATGTCCATGAACTGCTGAGTGG
                                                   CAGTTATGTTCCTGTTTCGTTATTGGTACCAAAACTCTTGCCAGATAACCAGTTTCATGAACTGTT---TGT
    1990
             2000
                      2010
                                2020
                                         2030
                                                   2040
                                                            2050
         30
                            50
                                      60
                                               70
                                                                    90
                                                         80
    ATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAAAAGGACACATTCGAC--AACAG
        1 11 11 1 1 1 111 11 11 11 11 11
                          111
    AT-GGCAGCCCATGTTCTCTAATGCCACTGCTCTGTT-TTA-AAAACTCAGAGG-CAATTTTTACATATCAG
                        2080
     2040
               2070
                                  2090
                                             2100
                                                       2110
                                                                 2120
        100
                  110
                           120
                                       130
                                                140
                                                         150
    GAAAGGAGCCTGTCACAGAAAACCACAG-TGTCCTG-TGCATGTGACATTTCGCCATGGGAAACAACTG---
                        1111
                                                       11 | 11 | 1111
    TAATTG---TTTTTATA-ATTTGCATGGTTTTCATGAAACAT-TGCTATGCATTTATTAGGAAAAACTGAAT
         2130
                   2140
                             2150
                                       2160
                                                 2170
                                                          2180
  160
                       180
                                  190
                                           200
                                                     210
                                                              250
   TTACAACGTGGTGGTC---ATTGTGCTGCT-GCTAGTGGGCTGTGAGAAGGTGGGAGCCGTGCAGAACTCCT
           TTCCCAACAGGTGAACTGAAAAGTTATTTTAACTATTATAC-ATAATCA-GAAAGATCC-TGC--CTCTACG
         2200
                  2210
                            2220
                                     2230
                                                 2240
                                                           2250
   230
             240
                      250
                                260
                                         270
                                                   280
                                                            290
    GTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCCTCCAAGTACC-
       1 1 1 1111 11
                                       111 | 111 |
                                                       1111 111 1 11
   GAATTAGC--TAAACCTAAAAATGTTTGCATTAA--TGAATAAATTCTTC----CTGCATTCCTTGGCCCA
  2260
              2270
                       2580
                                   2290
                                            2300
                                                                    2320
                                                          2310
   300
             310
                      320
                                330
                                         340
                                                   350
                                                            360
    -TTCTCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAA
    11 1 1 11 1 11
                                             - 1 | 111
                                                        GTTCTGGAG--TTGGTGACCTTTATCACAATTATAT-TTTAG---GCGGCCAGTGAACTGCTGCTTC-AGAA
           2330
                    2340
                              2350
                                           2360
                                                     2370
                                                              2380
  370
                         390
               380
                                      400
                                                 410
                                                           420
   GT--TTTGCTC--CTCT-ACCCACAACGCGGAGTG---TGAGTGCA--TTGAAGGATTC-CATTGCTTGGGG
        1 11 1 1111 1 1
                            1 11
                                      GTCCATAGCCCAGCTCTGAACTTTCTCGATAAATGCCATCAGTTCACCTTTAAAGACACACATTCCTTTG--
    2390
              2400
                       2410
                                 2420
                                          2430
                                                    2440
                                                             2450
          440
                   450
                             460
                                       470
                                                480
                                                            490
```

CC

500 510 520 530 540 550 560 TGTAGCTTGGGAACATTTAATGACCAGAACGGTACTG-GCGTCTGTCGACCCTG-GACGAAC-TGCTCTCTA	
570 580 590 600 610 620 630 GACGGAAGGTCTG-TG-CTTAAGACCGGGACCACGGAGAAGGAC-GTGGTGTGGACCCCCTGTGGTGAGC	
640 650 660 670 680 690 700 TTCTCTCCCAGTACCACCATTTCTGTGACTCCAGAGGGAGGACCAGGAGGGCACTCCTTGCAGGTCCTTA	
710 720 730 740 750 760 770 CCTTGTTCCTGGCGCTGACATCGGCTTTGCTGCTGGCCCTGA-TC-TTCATTACTCTCCTGTTCTCTGT-	
780 790 800 810 820 830 840 -GCTCAAATGGATCAGGAAAAAATTCCCCCACATATTCAAGCAACCATTTAAGAAGACCACTG-GAGC	c I
850 860 870 880 890 900 AGCTCAAGAGGAAGATGCTTGTAGCTGCCGA-TGTCCACAGGAAGA-AGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG	
910 920 930 940 950 960 970 TA-TGA-GCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAA-GCACTAGGACCCCA-CC	C
TA-TGA-GCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAA-GCACTAGGACCCCA-CC	c G G
TA-TGA-GCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAA-GCACTAGGACCCCA-CC	G G G T I
TA-TGA-GCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAA-GCACTAGGACCCCA-CC	C G G T I T

[] CATATAGGTTTC	GATAGGTCGGGAC 	11 1111	CTTCTTATTTI 		1310 ATAATAAAAAAAAAAT
GATATTTCGGGA	1 11 1 111	TGTCCTGACA	11 1 11	FAATGATC TGGCATTGTAC	370 1380 TAAGAGGAATTGTTGA TTTTTGTTTTTGTT-A 400 3410
	TGTATATGTGTA	II I IIII TGTTTTATGA	ATATGTATATA 	1 11 111	TACTGTCAAAG-TCAA ACCTTTCAAAGTTCCG
 GGTAAAAATGT-	TGGTTACCAGGT 		GGACATTTTAC	CGTCACACACACACACACACACACACACACACACACACAC	10 1520 ACACACACACACACAC
	CTACGTACTGTTA	11 11 11	ACGTCATAT ACCCTTCATT	III I II FAATTTTCTCAT	1580 1590 AGGGTAAAAGGAAACC A-GATTTAAGTAAA-C 3600
11 11 11	IIII II TGCACACGCTC	TGGAGGTGAC:	-AGACTACC ATTTTAACA	-CCTTCTGGGTA	1650 CGTA-GGGACAGACCT
CCTTCGGACTG1	CTAAAACTCCCC	11 111	GTCAAGTTC	CGGACGAAGA-I	1720 GGACAGAGGAGACACA CAACATTAGAACTCCA 3740
1111 111 1		I II I II ACTGGTACATA	1 11	ctgtttc-	1770 1780 GT-GACACTCCACC CAGTCTACATTTGGTG 3810
1 1111 1 1			11 1 1	GT-GGTACCCGT	1840 1850 CTGTAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
1 11		AATCGACTCA(11 1	CGGGCTTCGCAA	1910 1920 ATGAAACTTTTTTAAT ATATCTATTTAT 3950
1930	1940	1950	1960	1970	1980

```
ATTTAAAGTTTATGAAACATGAACTGCAG-CTGCAGGATTCTGGCATTTTGCATGCCATTCTCCATCAGATC
           3970
                    3980
                             3990
                                     4000
                                              4010
 1990
          2000
                  2010
                          2020
                                   2030
                                           2040
                                                   2050
                                                            2060
   AGATAAAACAACCAAAAGCCTTGACTCCGGTACTAATTCTCCCTGCCGGCCCCGTAAGCATAACGCGGCGA
    1 11
   TGGGATGATGGCTCAGAACATGTACACAG--ACTAAGAGTAACTG-TGTGATCTGT-----TAAGGGGTGGA
  4030
           4040
                   4050
                             4060
                                     4070
                                              4080
                                                           4090
        2070
                  2080
                           2090
                                    2100
                                            2110
   TCTCCACTTTAAGAACCT--GGCCGC-GTTCTGCCTGGTCTCGCTTTCGTAAACGGTTCTTACAAAAGTAAT
      1 1 1111 1 1 1 1 11
   T-AACATAATATGCAGCTTAGGATGCTATTTTGAGATGTAT-GAT----ATCAGTTCATTC--ACCTGAT
        4100
                4110
                        4120
                                 4130
                                               4140
 2130
         2140
                 2150
                         2160
                                  2170
                                           2180
                                                     2190
   TAGTTCTTGCTTTCAGCCTCCAAGCTTCTGCTAGTCTATGGCAG-CATCAAGGCTGGT-ATT-TGCTACGGC
   TACT--TTGGTTGCAGC--ACAA-CTGTATATATTGTATAACCGAAATTGATTATTTTCATTGTCCTTATGC
       4160
                 4170
                          4180
                                   4190
                                           4200
                                                   4210
   2200
               2210
                        5550
                                2230
                                         2240
                                                 2250
   --TGACCGCTA----CGCCGCCGCAATAAGGGTACTGGGCGGCCCGTCGAAGGCCCTTTGGTTTCAGAAAC
                        AGTGATTTATAATTAGAGCATGTTTAATAAGTTTACTATTCTTGTTAACTA--GTCATTTGACTGGAAAAAA
        4230
                4240
                         4250
                                 4260
                                         4270
                                                   4280
      2270
              2280
                      2290
                              2300
                                       2310
                                               2320
                                                        2330
   1 11
                 - 11
                          4300
                4310
                         4320
    2340
            2350
   TCTCGATAGTTAGAC
10. ELLIS-012-FIG2AB.SEQ (1-2350)
              MH mutant porcine ryanodine receptor cDNA.
 ID
     Q25975 standard; DNA; 15377 BP.
 AC
     025975;
 DT
     08-JAN-1993 (first entry)
     MH mutant porcine ryanodine receptor cDNA.
     MH; RYR1; calcium release channel; sarcoplasmic reticulum;
KW
KW
     transverse tubule; Pietrain; Yorkshire; polymorphism; beta strand; ss.
08
     Sunthetic.
FH
     Key
                  Location/Qualifiers
FT
     CDS
                  130..15237
FT
    /*tag= a
FT
     variation
                  207
FT
     /*tag= b
FT
    /label= Polymorphic_site
FT
     variation
                  405
FT
     /*taq= c
FT
    /label= Polymorphic_site
FT
    variation
FT
    /*tag= d
FT
    /label= Polymorphic_site
FT
    variation
                  876
FT
    /*tag= e
FT
     /label= Polymorphic_site
FT
     variation
                1329
FT
     /#tag= f
```

FT /lahelm Polumonohin cita

```
FΤ
                     1972
    variation
FT
     /≱tag= q
FT
    /label= MH_mutation
FT
    variation
                     2007
FT
    /*tag= h
FT
    /label= Polymorphic_site
FT
     variation
FT
    /≱tag= i
FT
    /label= Polymorphic_site
FT
    variation
FT
    /*tag= j
FT
    /label= Polymorphic_site
FT
    variation
                     4462
FT
     /*tag= k
FT
    /label= Polymorphic_site
FT
    variation
                     4494
FT
    /#tag= 1
FT
    /label= Polymorphic_site
FT
    variation
FT
    /*tag= m
FT
     /label= Polymorphic_site
FT
    variation
                     7692
FT
    /*tag= n
FT
    /label= Polymorphic_site
FT
    variation
                     8940
FT
    /*tag= o
    /label= Polymorphic_site
FT
FT
    variation
                     9192
FT
    /*tag= p
FT
    /label= Polymorphic_site
FT
    variation
FT
    /*tag= q
FT
    /label= Polymorphic_site
FT
    variation
                     9600
FT
     /*tag= r
FT
    /label= Polymorphic_site
FT
    variation
                     9951
FT
    /#tag= s
FT
    /label= Polymorphic_site
FT
    variation
FT
    /*tag= t
FT
     /label= Polymorphic_site
FT
    variation
                     11250
FT
    /≱tag= u
FT
    /label= Polymorphic_site
FT
    variation
                     12300
FT
    /*tag= v
FT
    /label= Polymorphic_site
FT
    variation
FT
    /*tag= ⊌
FT
    /label= Polymorphic_site
FT
     polyA_signal
                    15355..15360
FT
    /*tag= x
PN
    W09211387-A.
PD
    09-JUL-1992.
PF
     20-DEC-1991; CA0457.
PR
    21-DEC-1990; GB-027859.
PR
    20-NAY-1991; GB-010865.
PR
    09-SEP-1991; GB-019250.
PA
    (UYGU-) UNIV GUELPH.
PA
    (UTOR ) UNIV TORONTO INNOVATIONS FOUND.
PI
     MacLennan DH, O'Brien PJ;
DR
     WPI; 92-250106/30.
DR
     P-PSDB; R25450.
     Purified DNA mol. for diagnosis of porcine malignant hyperthermia
DT
     - comparison DNA companies exceeding manual on mut-out
```

```
PS
     Disclosure; Fig 2; 96pp; English.
CC
     The sequence given is the mutant pig ryanodine receptor (RYR1) gene
CC
     from swine cDNA. The polymorphic sites were observed in comparisons
CC
     of Pietrain and Yorkshire breeds. There are 17 polymorphisms between
CC
     the two breeds. The polymorphism at position 1972 causes a mutation
CC
     from Arg to Cys and this is thought to be the molecular basis of
CC
     porcine malignant hyperthermia (MH). This mutation lies within the
CC
     region of RYRI that is concerned with the binding of regulators of Ca2+
CC
     release channel gating. Analysis of surrounding sequences suggests
CC
     that this mutation lies within a beta strand domain comprising roughly
CC
     of amino acids 520 to 830. RYR1 is the calcium release channel of the
CC
     sarcoplasmic reticulum and is a large protein which spans the gap
CC
     between the transverse tubule and the sarcoplasmic reticulum. The
CC
     cannel is activated by ATP, calcium, caffine, and micro-molar
CC
     ryanodine. It is inhibited by ruthenium red, tetracaine, calmodulin,
CC
     high Mg2+ and ryanodine.
SQ
     Sequence
               15377 BP;
                             3197 A;
                                        4630 C;
                                                   4755 G;
                                                              2774 T;
SO
     21 Others;
Initial Score
                     134
                          Optimized Score =
                                                994
                                                                    6.94
                                                     Significance =
Residue Identity =
                     47%
                          Matches
                                               1215
                                                     Mismatches
                                                                      988
Gaps
                     320
                          Conservative Substitutions
                                                                       0
                                                               10
                                                                         20
                                                     ATGTCCATG--AACTGCTGAGT
                                                      11 | 11
                                                                 11 11 111
   TTCGAGTAGGGGATGACCTCATCCTCGTCAGTGTCTCCTCTGAGCGTTACCTGCACCTGTCGACAGC-CAGT
    620
              630
                        640
                                  650
                                            660
                                                      670
                                                                680
           30
                      40
                                50
                                           60
                                                     70
                                                               80
                                                                         90
   GGATAAACAGCACG-GGATATCTCTGTCTAAAGGA-ATATTACTACACCAGGAAAAGGACACATTCGACAAC
        1 1 11 1 11
                        GG-GGAGCTCCAGGTTGACGCCTCCTTC--ATGCAGACACT-GTGGAACATG--AACCCCATCTGCTCTGGC
    690
              700
                        710
                                    720
                                               730
                                                           740
                                                                     750
          100
                      110
                                120
                                          130
                                                    140
   AGGAAAGGAGCC--TGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGCCATGG--GA-AAC--A
     1 111 11 1 111 11 1
                              111
                                    11111 11 1 1 1
                                                           TGTGAAGAAGGCTATGTGACTGGGGGTCAC---GTCCTCCGCCTCTTTCACGGACACATGGATGAGTGCCTG
       760
                 770
                           780
                                        790
                                                  800
                                                            810
                                                                      820
     160
                 170
                           180
                                     190
                                               200
                                                         210
                                                                   220
   ACTGT-TACAACG-TGGTGGTCATTGTGCTGCTGCTGGTGGGCTGTGAGAAGGTGGGAGCCGTGCAGAACTC
                                       11111
   11 1 1 1 11 11
                     11 | 11 | 11
                                                 ACCATCTCCCCCGCTGACAGTGA-TGACCAGCGCAGACTTGTCTACTACGAGGGKGGATCTGTG-TGCACCC
        830
                  840
                             850
                                       860
                                                 870
                                                           880
                                                                      890
       530
                  240
                            250
                                      590
                                                270
                                                          280
                                                                       290
   CTG--TGATAACTGT-CAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCCT---CC
         1 1 1 1 1 11 11 11 1
                                 1 11 11 111
                                                1 111 1
                                                             1 1111 11
   ACGCCCGCTCCCTCTGGAGACTGGAA--
                               --CCGCTGAGAATCAGCTGGAGTGGGAGCCACCTGCGCTGGGGC
        900
                  910
                                          930
                                920
                                                    940
                                                              950
                                                                        960
         300
                      310
                                320
                                          330
                                                    340
                                                               350
   AAGTACCTTC---TCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTG-TGTGCAGG--CTATTT
                111 1111 11 11 111
                                         111 1
                                                  11 1 1 1 1111 11 1
   CAGCCGCTTCGCATCCGGCAT--GT-CACCACCGGGAGGTACCTGGCGCTCATCGAGGACCAGGGCCTGGTG
          970
                    980
                                 990
                                          1000
                                                    1010
                                                              1020
   360
              370
                        380
                                     390
                                               400
                                                           410
   CAGGTTCAAG-AAGTTTTGCTCCTCTACCCA---CAACGCGGAGTGTGAGTGCATT--GAAGGATTCCATTG
      11 1 1
                                               111
                                                      11111
   GTGGTTGATGCCAGCAAGGC-CCAC-ACCAAGGCCACCTCCTTCTGTTTCCGCATTTCCAAGGAGAAGCTGG
1030
          1040
                     1050
                                1060
                                          1070
                                                    1080
                                                              1090
```

receptor with specified endonuclease restriction map

PT

430 440 450 460 470 480 CTTGGGGCCAC-AGTG-CACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGC
490 500 510 520 530 540 550 AGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGACCCTG-GACG
560 570 580 590 600 610 620 AACTGCTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGACCACGGA-GAAGGACGTGGTGTGTGGACCC
630 640 650 660 670 680 690 CCTGTGGTGAGCTTCTCCCA-GTACCAC-CAT-TTCTGTGACTCCAGAGGGAGGACCAGGAGGGACCAT III II III III III III III III GCTGTCAGCAGGAGGAGCCCGCAGGCCCGCATGATCTATAGCACTGCTG-GCCTCTACAACCACT 1310 1320 1330 1340 1350 1360
700 710 720 730 740 750 760 CCTTGCAGGTCCTTACCTTGTTCCTGGCGCTGACATCGGCTTTGCTGCTGGCCCTGATCTTCATTACTCT
770 780 790 800 810 820 830 CCTGTTCTCTGTGCTCAAATGGATCAGGAAAAAATTCCCCCCACATATTCAAGCAACCAT-TTAAGAAGACCA
840 850 860 870 880 890 900 -CTGGAGCAGCTCAAGAGGAAGAAGATGCTTGTAG-CTGC-CGATGTCCACAGGAAGAAGAAGGAGGAGGAGGAG
910 920 930 940 950 960 970 GCTATGAGCTGTGATCTATCCTAGGAGATGTTGTGGCCGAAACCGAGA-AGCACTAGGACCCCACCATC
980 990 1000 1010 1020 1030 CTGTG-GAACAGCACAAGCAACCCCACCACCACCTGTTCTTACACATCATCCTAGATGATGTGTGGGC
1040 1050 1060 1070 1080 1090 1100 GCGCACCTCATCCAAGTCTC-TTCTAACGCTAACATATTTGTCTTTACCTTTTTTAAATCTTTTTTTAAA
1110 1120 1130 1140 1150 1160 1170 TTTAAATTTTAT-GTGTGTGAGTGTTTTGCCTGCCTGTATGC-ACACGTG-TGT-GTGTGTGTGTGTGTGAC

1180 1190 1200 1210 1220 1230 1240 ACTCCTGATG-CCTGAGGAGGTCAGAAGAGAA-AGGGTTGGTTCCATAAGAACTGGAGTTATGGA-TGGC
1250 1260 1270 1280 1290 1300 -TGTGAGCCGGNNNGATAGGT-CGGGACGGAGACCTGTCTTCTTATTTTAACGTGACTGTATAATA
1310 1320 1330 1340 1350 1360 1370 AAAAAAAAATGATATTTC-GGGAA-TTGTAGAGATTGTCCTGACACCCTTCTAGTTAATGATCTAAG
1380 1390 1400 1410 1420 1430 1440 AGGAATTGTTGATACGTATATCTGTATATGTATATGTATATATA
1450 1460 1470 1480 1490 1500 1510 TCAAAGTCAACCTAGAGTGTC-TGGT-TACCAGGTCAATTTTATTGGACATTTTACGTCACACACACAC
1520 1530 1540 1550 1560 1570 CACACACACACACACACGTTTATACTACGTACTGTTATCGGTATTCTACGTCATATAATGGGA
1580 1590 1600 1610 1620 1630 1640 TAGGGTAAAAGGAAACCAAAGAGTGA-GTGATATTATTGTGGAGGTGACAGACTACCCCTTCTGGGT
1650 1660 1670 1680 1690 1700 ACGTAGGGACAGACCTCCTTCGGACTGCTCAAAACTCCCCTTAGAAGT-CTCGTCAAGTTCCCGGA-C
1710 1720 1730 1740 1750 1760 1770 GAAGAGGACAGAGGACACAGTCCG-AAAAGTTATTTTTCCG-GCAAATCCTTTCCCTGTTTCGTGACACT
1780 1790 1800 1810 1820 1830 1840 CCACCCCTTGTGGACACTTGAGTGTCATCCT-TGCGCCGGAAGGTC-AGGTGGTACCCGTCTGTAGG
1850 1860 1870 1880 1890 GGCGGGGAGACAGAGCCGCGGGGGAGCTACGAGAATCGACTCACAGGGCGCCCCGGG

```
1900
          1910
                   1920
                             1930
                                      1940
                                               1950
                                                        1960
   CTTCGCAAATGAAACTTTTTTAATCTCA-CAAGTTTCGTCCGGGCTCGGCGGACCTATGGCGTCGATCCTTA
   CCACGAGAGCGACTCCGTCTGGAACCCATCAAG--GAGTATCGGCGAGAAGGGCCCCGGGGACCCCACCTGG
   2580
           2590
                    2600
                             2610
                                       2620
                                                2630
 1970
          1980
                    1990
                             2000
                                      2010
                                                  2020
                                                               2030
   T-TACCTTATCCTGGCGCC-AAGATAAAACAACCAAAAGCCTTGACTCCGGT----ACT----AATTCTCC
       1 1 1 1 11
                                     111 11
                                           TGGGCCCCAGCC-GCTGCCTCTCACACACCGACTTTGTGCCCTG--CCCGGTGGACACTGTCCAGATTGT-C
   2650
            2660
                     2670
                              2680
                                       2690
                                                 2700
                                                          2710
         2040
                  2050
                            5090
                                      2070
                                               2080
                                                        2090
   CTGCCGGCCC-CCGTAAGCATAACGCGGCG-ATCT-CCACTTTAAGAACCTGGCCGCGTTCTGCCTGGTCTC
   11111
                                                    1 1111
   CTGCCTCCCCATCTGGAGCGTATCCGGGAGAGCTGGCA----GAGAACATCCATGAACTCTGGGCGCTGAC
    2720
             2730 -
                     2740
                               2750
                                           2760
                                                    2770
2100
          2110
                   2120
                              2130
                                       2140
                                                 2150
                                                            2160
   GC-TTTCGTAAACGGTTCTTACAAAAG--TAATTAGTTCTTGCTTTCAGC--CTCCA--AGCTTCTGCTAGT
            1 11 1
                    GCGCATCGAGCAGGGCTGGACCTATGGCCCGGTTCGGGATGACAATAAGCGGCTGCACCCGTGTCTCGTGGA
      2790
              2800
                       2810
                                2820
                                         2830
                                                  2840
                                                           2850
     2170
                2180
                         2190
                                  2200
                                           2210
                                                    2550
   CTATGGCAGCATC---AAGGCTGGTATTTGCTACGGCTGACCGCTACGCCGCCGCAATAAGGGT----ACTG
                 CTTCCACAGCCTCCCGGAGCCCGAGAGGAATTACAACCTGCAG--ATGTCGGGGGA--GACGCTCAAGACTC
    2860
             2870
                      2880
                               2890
                                         2900
                                                    2910
2230
         2240
                  2250
                                    2270
                           2260
                                             2280
                                                      2290
                                                               2300
   GGCGGCCCGTCGAAGGCCCTTTGGTTTCAGAAACCCAAGGCCCCCCTCATACCAACGTTTCGACTTTGATTC
                                           1 |
    - 11
                                TGCTGGCGCTGGGCTGCCACGTGG--GCA-TGGCGGACGAGAGGCAGAGGACAACCTGAGGAAGACGAAAC
      2930
              2940
                         2950
                                   2960
                                            2970
                                                     2980
       2310
                 2320
                          2330
                                      2340
                                               2350
   TTGCCGGTACGT-GGTGGTGGGTGCCTTAGCT-CTTTC--TCGATAGTTAGAC
                TCCCCAAGACGTACATGAT--GAGCAATGGGTACAAGCCAGCGCCA-CTGGACCTGAGCCATGTGAGACTGA
       3000
                3010
                          3020
                                   3030
                                             3040 X
                                                      3050
                                                              3060
   CGCCTGCGCAGACCACGCTGGTGGACCGGCT
        3070
                3080
                         3090
11. ELLIS-012-FIG2AB.SEQ (1-2350)
   014755
              FUS2 gene.
ID
     014755 standard; DNA; 2492 BP.
AC
     @14755;
DT
     03-FEB-1992 (first entry)
DE
     FUS2 gene.
K₩
     Pheromone inducible yeast promoter; bilateral karyogamy defect;
K₩
     FUS1; BIK1; ds.
05
     Saccharomyces cerevisiae.
FH
     Key
                   Location/Qualifiers
FT
     CDS
                   403..2256
FT
     /*tag= a
FT
     Misc_feature
                   1..402
FT
     /*tag= b
FT
     /label= claim 6
FT
     Misc_feature
                   1..2253
FT
     /*tag= c
FT
     /label= claim 8
```

HEEDARIER-A

```
05-NOV-1991.
     24-JUN-1988; 212270.
 PF
 PR
      24-JUN-1987; US-066078.
 PR
      24-JUN-1988; US-212270.
 PA
      (WHIT-) WHITEHEAD INST BIOM.
 PΙ
      Fink GR, Trueheart J, Elion EA;
 DR
     ₩PI; 91-346534/47.
 DR
     P-PSDE; R14910.
 PT
     DNA fragment contg. pheromone-inducible yeast promoter - useful
 PT
     for transforming yeast cells to produce foreign proteins, which
 PT
      may be toxic to yeast cells.
 PS
     Disclosure; Fig 5; 23pp; English.
 CC
      Transcription of the FUS2 gene is greatly enhanced by the presence
 CC
      of the appropriate mating pheromone. The promoter region can
 CC
      therefore be used for the pheromone inducible expression of proteins
 CC
      of interest.
 CC
      See also 014754.
 SQ
      Sequence
                2492 BP;
                            911 A;
                                      408 C;
                                                441 G;
                                                          732 T;
Initial Score
                     129
                          Optimized Score =
                                                939 Significance = 6.63
Residue Identity =
                      46% Matches
                                           =
                                               1136 Mismatches
                                                                    1038
Gaps
                      282
                          Conservative Substitutions
                                                                10
                                                     ATGT---CCATGAACTGCTGAG
                                                             111 1 11 1
    CTATTGTGCCCGCCGCGTCACAAATGCGCCCCGAACTTGTCGCGAAGTTAATCTGAAACAT-ATATGTTACC
   130
            140
                      150
                                160
                                          170
                                                    180
                                                               190
   20
            30
                      40
                                50
                                                          70
                                               60
    TGGATAAACAGCACGGGATATCTCTGTCTAAAG-GAA----TATTACTACA-CCAGGAAAAGGACACATTCG
                            1 1 11 1 111
                                            1111
                                                         1 11 1 111 1 11
    TACTGAAACAGCGCATGTTGGAAAAGACAAAGGTGAAGACGAAGTTGTATATTTAAGATA--GACCCTTTAT
  200
            210
                     220
                               530
                                         240
                                                   250
                                                               260
       90
                   100
                            110
                                       120
                                                 130
                                                                     150
    ACAAC---AGGAAAGGAGCCTGTCACAGAAAACC-ACAGTGTCCTGTGCATGTGACATTTCGCCATGGGAAA
                              1 1111 1 1
                                               11
                                                    1 11 1 111 1 11 1111
    ACATCCTTTTGAAAAAATTATTAATGTGGCAACCGTCTTTTATTTGACAAAGTATCTTTTTTCTTTGTGAAA
  270
            280
                     290
                               300
                                         310
                                                   320
                                                             330
                                                                       340
        160
                 170
                           180
                                       190
                                                 200
                                                           210
                                                                     220
    CAACTGTTACAACGTGGTGGTCATTGT--GCTGCTGCTAGTGGGCTGTGAGAAGGTGGGAGCCGTGCAGAAC
                 1 1 1 1 1 1 1 1 1 1
                                             \Pi
                                                               11 11
    CCAATTTTA-GGTTTTCTTGTTATAGTAAGTTCTTAAGAAAAAGACAAGA-AAACCCCTTGCGATGTTTAAG
          350
                    360
                              370
                                        380
                                                  390
                                                             400
                                                                       410
        230
                  240
                            250
                                      260
                                                 270
                                                           280
                                                                      290
    TCCTGTGATAAC-TGTCAGCCTGGTACTTTCTGCAGAA-AATACAATCCAGTCTGCAAGAG-CTGCCCTCCA
           11111 11
    ACTTCATATAACTTGTACGATTTGAACTATCCGAAAAATGATTCATTAACGCCAATAAGAGACT--ACAAAA
          420
                   430
                             440
                                       450
                                                 460
                                                           470
          300
                    310
                             320
                                       330
                                                 340
                                                             350
                                                                       360
    AGTAC-CTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGA--GTGTGTGCAGGCTATTTCAGG
                   1 1 1 1111
                                  1111
                                              1 1 1
                                                      ATGACTATTTTCATAAAAATGATGACAAATTACCAGAAATTGTTAGAAAACCTACGAGAAAGTTAT---CGA
          490
                   500
                             510
                                       520
                                                 530
                                                           540
                                                                        550
                             390
                    380
                                        400
                                                  410
                                                            420
    TTCAAGAAGTTTTGCTCCTCTACCCACAACGC-GGAGTGTGAGTGCATTGAAGGATTCCATTGCTTGGGGCC
                            1 11 1 11 1
                  111 1 1
                                            AACATGAAAACAAACTCAACGATAAAAAATTCACGAATAAACGACCA-GCAAGTCTGGACTTGCAT~--TCT
           560
                    570
                              580
                                        590
                                                   600
                                                             610
```

PD

AAA

ASA

ALD

ADA

ADA

ACAGTGCACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTGCAAAACCTG	
510 520 530 540 550 560 570 TAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGACCCTGGACG-AACTGCTCTCTAGA	
580 590 600 610 620 630 CGGA-AGGTCTGTGCT-TAAGACCGGGACCACGGAGAAGGACGTGGTGTGTGGACCCCCTGTGGTGAG	
640 650 660 670 680 690 CTTC-TCTCCCAGTACCACCATTTCTGTGA-CTCCAGAGGGAGGACCAG-GA-GGGC-ACTCCTTG	
700 710 720 730 740 750 760 CAGGICCITACCITGITCCIGGCGCIGACATCGGCITTGCIGG-CCCIGATCITCATTACTCICCTGIT	
770 780 790 800 810 820 830 840 CTCTGTGCTCAAATGGATCAGGAAAAATTCCCCCCACATATTCAAGCAACCATTTAAGAAGACCACTGGAGC	
850 860 870 880 890 900 910 AGCTCAAGAGGAAGAAGATGCTTGTAGCTGCCGATGTCCACAGGAAGAAGAAGGAGGAGGAGGAGGAGGAGGAGCTATGAGCT	
920 930 940 950 960 970 980 GTGATGTA-CTATCCTAGGAGTGTGTGGGCCGAAACCGAGAAGCACTAGGACCCCACCATCCTGTGGA	
990 1000 1010 1020 1030 1040 ACAGCACAAGCAACCCCACCAC-CCTGTTCTTACACATCATCCTAGA-TG-ATGTGTGGGCGCGCA	
1050 1060 1070 1080 1090 1100 1110 CCTCAT-CCAAGTCTCTTCTAACG-CTAACATATTTGTCTTTACCTTTTTTTAAATCTTTTTTAAAT-TTA-	
1120 1130 1140 1150 1160 1170 -AATTITATGTGT-GTGAGTGTTTTGCCTGCCTGTATGCACACG-TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	

TCCTGATGCCTGAGGAGGTCAGAAGAGAAAGGGTTGGTTCCAT-AAGAACTGGAGTTAT	
CAGAGATTATACAAAGTTATGATGAAGATCAGTTTACACACCTTTTAAAAACCCCCAGACAAA	1111 1111
1320 1330 1340 1350 1360 1370 TGATATITCGGGAAT-TGTAGAGA-TTGTCCTGACACCCTTCTAGTTAATGATCTAA	AGAGGAATTGT ITCTGGATCAT
1390 1400 1410 1420 1430 1440 TGATACGTAGTATACTGTATATGTGTATATGTATATGTATATGTATATGTATATGTATATGTATATGTATATGTATATGTATATGTATATATAAGACT-CTITT	TACTGTCAAAG
1450 1460 1470 1480 1490 1500 TCAACCT-AGAGTGTCTG-GTTACCAGGTCAATTTTATTGGACATT-TTACGTCACA-CA-C	1 1 11
1520 1530 1540 1550 1560 1570 15 ACACACACACACGTTTATACTACGTACTGTTATCGGTATTCTACGTCATATAATGGGATAGG	1 11
1590 1600 1610 1620 1630 16 ACCAAAGAGTGAGTATTATTGTGGAGGTGACAGACTACCCCTTCT-GG	11 11
GACAGACCTCCTTCGGACTGTCTA-AAACTCCCCTTAGAAGTCTCGTCAAGTTCCCGGACGA	11 11 1
1720 1730 1740 1750 1760 1770 GGAGACACAGTCCGAAAAGTTATTTTTC-CGGCAAATCCTTTCCCTGTTTCGTGACA	CTCCACCCT CATAGCCCAT
1790 1800 1810 1820 1830 1840 TGT-GGACACTTGAGTGTCATCCTTGCGCCGGAAGGTCAGGTGGTACCCGTCTGTAGGG	GCGGGGAGAC
1860 1870 1880 1890 1900 1910 AGAGC-CGCGGGGGAGCTACGAGAATCGACTCACAGGGCGCCCCGGGCTTCGCAAATGAAAC	TTTTTTAATC

V

```
TCACAAGTTTCGTCCGGGGCTCGGCGGAC-CTATGGCGTCGATCCTTATTACCTTATC-CTGGCGCCAAGATA
                 -
    -AACCAGATGAAAAGGGAATTACCGGTCTTTATTACTTTGATCC-CACGATACTATCGAATGTATCTTGTTG
        2120
                 2130
                          2140
                                   2150
                                              2160
                                                       2170
                                                                2180
      2000
               2010
                         5050
                                     2030
                                               2040
                                                        2050
                                                                 2060
    AAACAACCAAAAGCCTTGACTCCGGTACTAATT----CTCCCTGCCGGCCCCCGTAAGCATAACGCGGCGAT
            1111 111 11
                           1 11 11
                                      11 111 11
                                                    1 11 1 11 1 11 1
    AACTATATCAAAGTCTT--CT--TAAAATATTTGGAAATCATTGCTGG---TGGAAAAAAAAATAC-CTGCAAA
       2190
                  5500
                             2210
                                      2220
                                                  2230
                                                            2240
        2070
                 2080
                          2090
                                    2100
                                               2110
                                                        2120
                                                                 2130
   CTCCACTTTAAGAACCTGGCCGCGTTCTGCCTGGTCTCGCTTTCG--TAAACGGTTCTTACAAAAGTAATTA
        - 111
                                                    - 11
    AAGATCTTGAA-AATAT-GTCTCTTAATGACT-CTATAGCTACCGGCCAAA---TT----AAAAATCTTGA
    2250
              2260
                        2270
                                  2280
                                           2290
                                                            2300
          2140 -
                      2150
                                   2160
                                             2170
                                                      2180
                                                               2190
    GTTCTTGC--TTTCAGCCT---CCAAGCT---TCTG-CTAGTC-TATGGCAGCATCAAGGCTGGTATTTGCT
     1 1111 | 1 | 1 | 11
                        TATTTTGCAGTGTTATTCTAAATCACGATATATATGACAAAACGCATGGTAAGA-AAAGATTGGCCTTTCC-
   2310
            2320
                     2330
                              2340
                                       2350
                                                 2360
                                                           2370
      2200
                 2210
                            2220
                                      2230
                                                 2240
                                                          2250
   ACGGCTGACCGCTA--CGCCGCC--GCAATAAGGGTACTGGGCGGCCCGT--CGAAGGCCCTTTGGTTTCAG
                  1 111 1 1 11
                                    111
                                          -CTGGAGACC-CTAGTGGAAGCCGTGTTGTCAGAAAACTTTTCGAACTTTAACAAAAG-AGTATATTT--AG
    2380
              2390
                       2400
                                2410
                                         2420
                                                  2430
                                                             2440
 2260
          2270
                   2280
                            2290
                                      2300
                                                2310
                                                         2320
                                                                  2330
    AAACCCAAGGCCCCCCCCATACCAACGTTTCGACTT-TGATTCTTGCCGGTACGTGGTGGTGGGTGCCTTAG
                  1 11 11 1111 1 11 1
    2450
                       2460
                                2470
                                         2480
                                                   2490 X
         2340
                  2350
    CTCTTTCTCGATAGTTAGAC
12. ELLIS-012-FIG2AB.SEQ (1-2350)
   N70128
               Novel DNA encoding a polypeptide having mouse gran
 ID
     N70128 standard; DNA; 1363 BP.
 AC
     N70128;
     22-0CT-1990 (first entry)
 DT
     Novel DNA encoding a polypeptide having mouse granulocyte
 DE
 DE
     colony-stimulating factor (b-CSF) activity is new
 Κ₩
     Mouse granulocyte colony stimulating factor; lymphokine; interleukin.
 05
     Mouse.
FH
     Key
                    Location/Qualifiers
FT
     CDS
                    68..157
FT
     /*tag≈ a
FT
     /product=Leader peptide
FT
     mat peptide
                    158..694
FT
     /#tag= b
PN
     J62269693-A.
 PD
     24-NOV-1987.
 PF
     19-MAY-1986; 112506.
     19-MAY-1986; JP-112506.
PR
PA
     (CHUS) Chugai Pharmaceutical Kk.
 DR
     WPI; 88-004545/01.
 DR
     P-PSDB; P70114.
 PT
     New deoxyribonucleic acid -
```

PT polypeptide(s) with mouse granulocyte colony stimulating factor

is prepd. by forming mRNA from mammal cells producing

PT

```
PS
     Disclosure; Fig 1(A) Page 491; 12pp; Japanese.
CC
     The CDS for the mature peptide (see FT) is claimed (claims 5 and 6). It
CC
     was prepd. as follows. mRNA is prepd. from mammal cells capable of
CC
     producing polypeptides having G-CSF activity and double stranded cDNA is
CC
     produced from the mRNA by conventional methods. Polypeptides having mouse
CC
     G-CSF activity are obtd. as 14-758 fractions by the sucrose
CC
     density-gradient centrifugation method.
SQ
              1363 BP; 279 A;
                                         368 G;
                                                  313 T;
Initial Score
                    127 Optimized Score =
                                            587 Significance = 6.51
Residue Identity =
                    48% Matches
                                            709
                                                Mismatches
Gaps
                    180 Conservative Substitutions
                                                                  0
         310
                  320
                           330
                                    340
                                             350 X
                                                      360
                                                               370
   TCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGCAGGCTATTTCAGGTTCAAGAAGTTT
                                                  111
                                                           1 1 11 1
                                                 GTATAAAGGCCCCCTGGAGCTG
                                                        10
                                                                 20
       380
                390
                         400
                                   410
                                              420
                                                       430
   TGCTCCTCTACCCACACGCGGAGTGTGAGTGCA-TTGA--AGGATTCCATTGCTTGGGGCCAC--AGTGCA
              GGC-CCT---GGCAGAGCCCAGAGCTGCAGCCCAGATCACCCAGAATCCATGGCT----CAACTTTCTGC-
            30
                     40
                              50
                                        60
                                                 70
          450
                     460
                              470
                                       480
                                                490
                                                         500
                                                                  510
   CCAGATGTGAA--AAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTGCAAAACCTGTAGCTTGGG
   11111 1 1 1 111 11
                        CCAGAGGCGCATGAAG--CTAATGGCCCTG-CAGCTGCTGCTGTGGCAAAG-TGCACTATGGTCAGGACGAG
       90
               100
                          110
                                    120
                                             130
                                                       140
                                                                150
          520
                   530
                             540
                                      550
                                               560
                                                        570
   AACATTTAATGACCAGAACGGTACTGGCG-TCTGTCGACCCTGGACGAACTGCTCTCTAGACGGAAGGTCTG
                           111 1111 1 111 1
         1111 1111
   AGGCCGT--TCCCCTGGTCACTGTCAGCGCTCTG-CCACCAT-----CCCTGC-CTCTGCCCCGAAGCTTCC
          160
                   170
                            180
                                      190
                                                    200
                                                             210
          590
                   600
                              610
                                       620
                                                 630
                                                             640
   TGCTTAAG-ACCGGGACCACG-GA-GAAGGACGTGGTGTGGGACCCCCTG-TGGT-GAGC--TTCTCTCCC
   TGCTTAAGTCCCTGGAGCAAGTGAGGAAGATCCAGGCCAGCGG-CTCGGTGCTGCTGGAGCAGTTGTGTGCC
     220
              230
                       240
                                250
                                          590
                                                   270
                                                            280
    650
             660
                       670
                                680
                                          690
                                                   700
   AGTACCACCATTTCTGTGACTCC-AGAGGGAGGACCAGGAGGG-CACTCCTTGCAGGTC-----CTTACC
       1 11 1 1 111 11 11 11 1
                                   A--CCTACAAGCTGTGTCACCCCGAGGAGCTGGTGTTGCTGGGCCACTCTCTGGGGATCCCGAAGGCTTCCC
      290
               300
                        310
                                 320
                                          330
                                                   340
 710
           720
                     730
                               740
                                        750
                                                 760
                                                          770
   T-TGTTCCTGGCGCT-GACATCGGCTTTGCTGCTGGCCCTGATCTTCATTACTCTCCTGTTCTCTGTGCTCA
     TGAGTGGCT-GCTCTAGCCA--GGCCCTGCAGCAGACACAG---TGCCTAAGCCAGCTCCACAGTGGGCTC-
    360
              370
                         380
                                  390
                                              400
                                                       410
                                                                420
 780
                    800
                             810
                                      820
                                               830
                                                        840
   AATGGATCAGGAAAAAATTCCCCCCACATATTCAAGCAACCATTTAAGAAGACCACTGGAGCAGCTCAAGAGG
                             1 11 11 11 11
                                        1111
                                               1 1111
   --TGCCTC--TACCAAGGTCTCCTGCAGGCTCTATCGGGTATTTCCCCTG--CCCTGG---CCCCCACCTTG
            430
                     440
                              450
                                        460
                                                  470
                                                              480
         860
                  870
                               880
                                         890
                                                  900
                                                            910
   AAGATGCTTGTAGCTGCCGATGT--CC-ACA--GGAAGAAGAAGGAGG-AGGAGGAGGCTATGAGCT-GTGA
      - 11 11 11 11 1 1 1 1 1 1 1
   GACTTGCTT-CAGCTG--GATGTTGCCAACTTTGCCACCACCATCTGGCAGCAGATGG--AAAACCTAGGGG
```

500 510 520 570


```
1670
                  1680
                               1690
                                        1700
                                                  1710
                                                           1720
    --CTGTCTAAAACTCC-CCTTAGAAGTC----TCGTCAAGTTCCCGGACGAAGAGGACAGAGAGAGAGACACAGT
         TCCACCCTCACCCTCCACCCCACCTGTCACTATAGCCAAGCTTGCGGA-TAATA-AAGTGTGGTGTTCC
    1300
             1310
                      1320
                                1330
                                         1340
                                                    1350
                                                              1360 X
 1730
          1740
                   1750
                             1760
                                      1770
   CCGAAAAGTTATTTTTCCGGCAAATCCTTTCCCTGTTTCGTGACACT
13. ELLIS-012-FIG2AB.SEQ (1-2350)
    N81162
                Encodes Western subtype of early summer meningoenc
 ID
     N81162 standard; DNA; 2418 BP.
 AC
     N81162;
     26-0CT-1990 (first entry)
 DT
     Encodes Western subtype of early summer meningoencephalitis (ESME).
 DE
 KW
     early summer meningoencephalitis virus; live vaccines; ds.
 05
     Early summer meningoencephalitis virus.
 FH
                    Location/Qualifiers
     Keu
 FT
     CDS
                    113..460
 FT
     /*tag= a
 FT
     /product=protein C
 FT
     CDS
                    461..727
 FT
     /*tag= b
 FT
     /product=protein prM
 FT
     CDS
                    728..952
 FT
     /*tag= c
 FT
     /product=protein C
 FT
                    953..2418
FT
     /*tag= d
 FT
     /product=protein E
PN
     EP-284791-A.
 PD
     05-DEC-1988.
 PF
     29-FEB-1988; 103003.
PR
     20-MAR-1987; EP-104114.
 PA
     (IMMU-) Immuno Chem Med AG.
PΙ
     Heinz FX, Kunz C, Mandl C, Dorner F, Bodemer W;
     WPI; 88-294138/42.
 DR
     P-PSDB; P80573, P82324, P82325 & P82326.
PT
     New DNA and RNA mols encoding proteins of meningoencephalitis virus -
PT
     useful in vaccines, diagnostic agents and detection probes
PS
     Disclosure; p; German.
     Encodes all the structural proteins of ESME virus. The invention
 CC
 CC
     covers fragments of this sequence and analogous RNA molecules.
 CC
     Corresponding mRNA sequence given in specification.
SQ
     Sequence 2418 BP; 635 A; 507 C; 743 G; 533 T;
Initial Score
                    126 Optimized Score =
               =
                                              790 Significance = 6.45
Residue Identity =
                    48% Matches
                                              982 Mismatches = 787
Gaps
                    269 Conservative Substitutions
                                                             10
                                                   ATG-TCCA--TGAACTGCTGAG
                                                   311 11 1 11 11 1
   GGTGAGGAAAGAAAGGATGGCTCAACTGTGATCAGAGCTGAAGGAAAGGATGCAGCAACTCAGGTGC-GTG
     470
               480
                        490
                                 500
                                                              530
                                           510
                                                  X 520
  20
                                 50
                       40
                                          60
                                                   70
   TGGATAAACAGCAC--GGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAAAAG-GACACATTCGACA
    TGGA-GAATGGCACCTGTGTGATC-CTGGCTACTG--ACATGGGGTCATGGTGTGATGATTCACTGTC-CTA
    540
               550
                         560
                                    570
                                              580
                                                       590
```

116

100

ACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCG-CCATGGGAA
160 170 180 190 200 210 220 ACAACTGTTACAACGTGGTGGTGGTGGTGCTGCTGCTGCTGCTGGTGGTGGTG
230 240 250 260 270 280 290TCCTGTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCCTCCAA
300 310 320 330 340 350 GTACCTT-CTCCAGCATAGGTG-GACAG-CCGAAC-TGTAACATCTGCAGAGTGTGGCAGGCTATTT
360 370 380 390 400 410 420 CAGGTTCAAGAAG-TTTTGCTCCTCTACCCACAACGCGGAGTGTG-AGTGCATTGAAGGATTCCATTGC
430 440 450 460 470 480 TTGGGGCCACAGTGCAC-CAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGC
490 500 510 520 530 540 550 AGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGA-CCCTG
560 570 580 590 600 610 620 GACGAACTGCTCTCAGACGGAAGGTCTGTGCTTAAGAC-CGGGACCACGGAGAAGGACGTGGTGTGTGG
630 640 650 660 670 680 ACCCCCTGTGGTGAGCTTCTCTCCCAGTACCA-CCATTTCTGTGACTCCAGAGGGAGGACCAGGAG
690 700 710 720 730 740 750 GGCACTCCTTGCAGGTCCTTACCTTGTTCCTGGCGCTGACATCGGCTTTGCTGCTGGCCCTGATCTTC
760 770 780 790 800 810 ATTACTCTCCTGTTCTCTGTGC-TCAAATGGATCAGGAAAAAATTCCCCCACATATTCAAGCAACC

ATTTA-AGAAGACCACTGGAGCAGCTCAAGAGGAAGATGCT-TGTAGCTGCCGATGTCCACAGGA-AGA	
890 900 910 920 930 940 950 AGAAGGAGGAGGAGGCTATGAGCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAAGCA	
960 970 980 990 1000 1010 1020 CTAGGACCCCACCATCCTGTGGAACAGCACAGCACCCCCGCCTGTTCTTACACATCATCCTAGATGA	
1030 1040 1050 1060 1070 1080 1090 TGTGTGGGCGCGCCCTCA-TCCAAGTCTCTTCTAAC-GCT-AACATATTTGTCTTTACCTTTTTTAAAT	
1100 1110 1120 1130 1140 1150 1160 CT-TTTTTTAAATTTAAATTTTA-TGTGTGTGTGTGTTTTGCCTGCCTGTATGCACACGTGTGTGT	
1170 1180 1190 1200 1210 1220 1230 GTGTGTGACACTCCTGATGCCTG-AGGAGGTCAGAAGAGAAG	
1240 1250 1260 1270 1280 1290 1300 TTATGGATGGCTGTGAGCCGGNNNGATAGGTCGGGACGGAGACCTGTCTTCTTA-TTTTAACGTGA-CTGTA	
1310 1320 1330 1340 1350 1360 TAATAAAAAAAAATG-ATATTTCGGGAATTGTAGAGATTGTCCTGACACCCTTCTAGTTAATGAT	
1370 1380 1390 1400 1410 1420 1430 CTAAGAGGAATTGTTGATAC-GTAGTATACTGTATATGTATATGT-ATATGTATATGTATATAAGA	
1440 1450 1460 1470 1480 1490 CTCTTTTACTGTCAAAGTCAACCTAGAGTGTC-TGG-TTACCAGGTCAATTTTATTGGACATTTTA	·
1500 1510 1520 1530 1540 1550 1560 CGTCACACACACACACACACACACACACACACCACCACACACCACCACCACA	

1570 1550 1500 1400 1410 1420

```
GTCA--TATAATGGG--ATAGGGTAA--AAGGAAACCAAAGAGTGAGTGATATTATTGTGGAGG---TGACA
    ATCATCTATGTTGGGGAACTGAGTCATCAATGGTTCCAAAAAGGGAG---CAGCATCG-GAAGGGTTTTCCA
    2100
             2110
                      2120
                               2130
                                         2140
                                                    2150
                                                              2160
      1630
               1640
                        1650
                                 1660
                                                    1680
                                           1670
   GACTACCCCTTCTGGGTACGTAGGGACAGACCTCCTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCA
                  1 11 11 111 11
                                       AAAGACCAAGAAAGG---CATA--GAAAGA-CTGACAGTGATAG--GAGAGCACGCCTGGGA---CT--TC-
      2170
                  2180
                             2190
                                       2200
                                                  2210
                                                               2220
    1700
             1710
                       1720
                               1730
                                         1740
                                                  1750
                                                             1760
   AGTTCCCGGACGAAGAGGACAGAGGAGACACAGTCCGAAAAGTTATTTTTCCGGCAAATCCTT--TCCCTGT
                     1 111
                               GGTT-CTGCTGGAGGCTTTCTGAG----TTCAATTGGGAAGGCGGTACATACGG----TCCTTGGTGGCGCT
         2230
                  2240
                               2250
                                        2240
                                                 2270
                                                              2280
    1770
             1780
                       1790
                               1800
                                            1810
                                                     1820
   TTCGTGACACTCCACCCCTTGTGGACACTTGAGTGT--CA--TCCTTGCGCCGGAAGGTCAGGTGGTACCCG
              \parallel
                      1 111
                              111 | 11 | 11 | 1
   TTC--AACA--GCATCTTCGGGGGGGTGGGGTTTCTACCAAAACTTTTATTAGGAGTGGCA-TTGG--CTTG
       2290
                  2300
                           2310
                                    2320
                                             2330
                                                      2340
      1840
                1850
                         1860
                                  1870
                                           1880
                                                     1890
                                                              1900
   TCTGTAGGGGCGGGGA-GACAGAGCCGCGGGGGAGCTACGAGAATCGACTCACAGGGCGCCCCGGGCTTCGC
            1 1 11 1 1 11
                                2350
           2360
                     2370
                              2380
                                        2390
                                                 2400
                                                          2410
     1910
              1920
                       1930
                                1940
                                          1950
   AAATGAAACTTTTTTAATCTCACAAGTTTCGTCCGGGGCTCGGCGGACCTA
14. ELLIS-012-FIG2AB.SEQ (1-2350)
   035297
               ZYMV genome.
     035297 standard; DNA; 9593 BP.
 ID
AC
     Q35297;
DT
     28-MAY-1993 (first entry)
DE
KW
     Zuchini yellow mosiac virus; ZYMV; potyvirus; polyprotein; protease;
KW
     proteolytic activity; 49 kD protease; trypsin-like cysteine protease;
K₩
     animal picornavirus; sissile bond; NIb; protein; coat; ss.
05
     Zuchini yellow mosaic virus.
FH
                   Location/Qualifiers
FT
     5'UTR
                    1..139
FT
     /*tag= a
FT
     CDS
                    140..9382
FT
     /*tag= b
FT
     misc_feature
                   2437..2438
FT
     /*tag= c
FT
     /note= "Cleavage site between aphid transmission
FT
     helper component (HC) and the 46 kD protein"
FT
     misc feature
                   3631..3632
FT
     /#tag= d
     /note= "Cleavage site between 46 kD protein and the
FT
FT
     cytoplasmic inclusion protein (CI)"
FT
                   5533..5534
     misc feature
FT
     /*taq= e
FT
     /note= "Cleavage site between CI and VPg/protease (VPg
FT
     and protease are probably not separated in
FT
     ZYMV)"
 FT
     misc_feature
                    6991..6992
FT
     /#tag= f
FT
     /note= "Cleavage site between VPg/protease and RNA
```

FT

replicace (REP)"

```
FT
     misc_feature
                    8542..8543
FT
     /*tag= g
FT
     /note= "Cleavage site between REP and the coat
FT
     protein (CP)"
FT
     misc feature
                     9382
FT
     /≱tag= h
FT
     /note= "Polyprotein termination point"
FT
     3'UTR
                    9383..9593
FT
     /*tag= i
PN
     W09301305-A.
PD
     21-JAN-1993.
PF
     09-JUL-1992; U05745.
PR
     09-JUL-1991; US-727837.
PA
     (BALI/) BALINT R.
PΙ
     Balint R;
DR
     WPI; 93-045506/05.
DR
     P-PSDB; R35081.
PT
     Method for identifying protease inhibitors - useful for drugs
PT
     screening for treating e.g. chronic inflammation, metastatic
PT
     cancers and viral infections
PS.
     Disclosure; Fig 4; 62pp; English.
CC
     This sequence represents the nucleotide sequence of the zuchini yellow
CC
     mosiac virus (ZYMV) genome. ZYMV is a potyvirus and expresses its
CC
     genome as a single 350 kD polyprotein which is cleaved into at least
CC
     seven mature gene products by three distinct proteolytic activities.
CC
     Two of the proteases are virus encoded, including the potyviral 49 kD
CC
     protease. This protease is responsible for at least five of the seven
CC
     cleavages. This enzyme is a trypsin-like cysteine protease which is
 CC
     structurally and mechanistically representative of the largest class
CC
     of viral proteases, including those of the animal picornaviruses.
 CC
     This enzyme is highly specific and appears to recognise a region
 CC
     comprised of about seven amino acids surrounding the sissile bond. Of
 CC
     the five sites cleaved by this enzyme, the two flanking the protease
 CC
      appear to be cleaved intramolecularly, while the remaining three
 CC
      appear to be cleaved intermolcularly. Of the latter three, the site
 CC
     between the NIb protein and the coat protein appears to be the most
 CC
      active. The polyprotein sequence encoded by this genome is not
 CC
      given in the specification but is deduced in R35081.
 SQ
      Sequence 9593 BP;
                           2995 A;
                                      1844 C;
                                                2258 G;
                                                           2496 T;
Initial Score
                =
                     124
                         Optimized Score =
                                              977 Significance = 6.32
Residue Identity =
                     47% Matches
                                          =
                                             1213 Mismatches
                     353 Conservative Substitutions
                                                             10
                                                   AT--GTCCATGAACTGCTGAGT
                                                   11 111 1 [11 111] 1
    GTCAAGGATTTATTCACTTCTGGTGTTGAAACACAGAGCAAGCGAGAAAGATGGGTCTACGAA-AGCTGTGA
    6960
              6970
                                 6990
                                           7000
                        6980
                                                    7010
                                                               7020
                     40
                                 50
                                              60
    GGATAAACAGCACGGGATAT---CTCTGTCTAA--AGGAATA-TTACTACACCAG--GAAAAGGACACAT-T
               111
                                 11 11
                                          AGGGAACC--TTCGGGCTGTTGGAACTGCACAATCAGCGTTAGTCACCAAACATGTTGTGAAAGGCAAGTGT
    7030
               7040
                         7050
                                  7060
                                            7070
                                                     7080
                                                               7090
        90
                 100
                           110
                                    120
                                              130
                                                       140
    CGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGC-CATGGGAAAC
            CCTTTCTTCGAA--GAATAT-TTACAAACACACGCAGAAGCGAGCGCCTATTTCAGACCCCTAATGGGAGAG
    7100
                         7120
                                   7130
               7110
                                             7140
                                                      7150
                                                                7160
                                    190
                170
                           180
                                                  200
                                                           210
    AACTGTTACAACGTGGTGGTCATTG-TGCTGCTGCTAGTGGG----CTGTGAGAAGGTGGGAGCCGTGCAGA
```

7170	7180	7190	7200	7210	7220	7230
 CTGT	GATAACT!	GTCAGCCTGGT- 	 AATTTTTGGG	 AGCAGTGGATG(GGTTATACGT	1 11 11
296 GCTGCCCT 	D 3 CCAAGTACC CCAACGAAT		10 3: TAGGTGGACA(CAGATCCC	20 3 GCCGAACTGT GAGGAAATTTAC	330 -AAC-ATCTGC CAACTCTTTGA	340 AGAGTGTGTGC
1 11 111	11 11	AGAAGTTTTGCT GTATAG	CCTCTACCCA		STGAGTGCATT	GAAGGATTCCA G-ATGATT
TTGCTTG-		440 AGTGCACCAG 	111111111111111111111111111111111111111	11111	II III CT-ACAAAGGT	11 111 1
1 11	GCAAAAC	-CTG-TAGCTTG 	GGAACATTTA/		I I II I	
 CCAATTGA	 TACATTGCT	570 CTCTAGACGGAA I II II TGGAGCTAA 7590	 AGTTTGTGTG		CACGGAGAAG 	 TTC-TACAGGA
111 1	CTGTGGTGA AAGTGTCCA	640 GCTTCTCTC-CC TGGACGGTCGGC 50 7660	AGTACCACCA	TTTCT-GTGACT TTATGGTGGTT		GACCAGGAG
II I I ATCATTAC	TTGCAGG-T	710 CCTTACCTTGTT GGTTGTATTG-T 7720	CCTGGCGCTG/ CATGCTGATG-	ACATCGGCTTTO -GATC-ACAGTT	CTGCTGGCCC	TGATCTTCATT
ACTCTCCT(I I I II Gaacgcagt	780 GCTCA-AATG GCTCATAATCAG 7790	 GTCATTTTAT	III I ATGGAGGATTGO	COCOTTAA II II COCOTTOGOTE	-ACATATTCAA
GCAACCAT	TTAAGAAGA TTATGCCGA	840 CCACTG-GAGCA -GATTGTGTACA 7860	GCTCAAGAGG	AAGATGCTTGTA TTGCTCCTGATO	AGCTGCCGATG	TCCACAGGAA-
GAAGAAGG 	AGGAGGAGG I I II	91 AGGCTATGA 	GCTGTGATGTA	ACTATCCTAGGA	AGATGTGTGGG	1.1

7910	7920	7930	7940	7950	7960	
960	97	Λ 4	780	990 100	۸	1010
				990 100 Caagcaaccccac		1010 TC-TTACACAT
[]]]]						11 11 11 11
				GGAGATTGAGAAT		
7970 798	30 79	90 80	000 80	010 8020	8030	8040
1020 1	.030	1040	1050	1060	1070	1080
CATCCTAGAT				GTCTCTTCTAA		
	GATCTG-A1: 8050	ACTTGCA-G 8060	CAAAGATGA(8070	GGATAGCGGCTTA 8080	CTTGATAACA 8090	
	1030	0000	0070	0000	0070	8100
1090	1100	1110		1120	1130	1140
				-ATGTGTG		
	 CAACTTCCA			 AACGTACGCATAA		CTTTCCTTCAT
8110	8120	8130	8140	8150	8160	8170
1150	11.			180 1190		
GIAIGCACAC				FCCTGATGCCTGA 		AGAGAAAGGGT
				TCC-AAAACTCGA		
8180	8190	8200	8210	8220	82	
1220	12	70 11	247	1050	10/0	1078
			240 ATGGCTG1	1250 Fgagccggnnnga	1260 TAGGT-C	1270
				rgcaccgaacaga		
8240	8250	8260	8270	8280	8290	8300
1280	1290	1300	1310	1320	1330	1340
				AAAATGATATTT		AGAGATTGTCC
TCACCCATCC						11 1 1
		646C1C1166 8330	JAAGAAATCAL 8340	GAAAGTTTTACCT 8350 83		16AAAAAGA 370
			55.0	0000		370
1350				1390		
TGACACCCTT				ATACGTAGTAT		
	I I GAATTGGCA	I II II GCCCTCGGA-	II II AAAGCTCCA	IIII III I ATACATAGCTGAG	II I I I ACAGCA-CTI	 CGTAAGTTATA
	8390			8420	8430	8440
4.00						
1420 TCTATAT			140 14 (TACTETCAA/	150 1460 Agtcaacctagag	1470	
						1
CACTGACAAG	GGAGCAGAT			CGCTACCTACAA		
8450	8460	8470	848	30 8490	8500	
1490	150	0 15:	10 152	20 1530	1540	1550
TTATTGGA-C	ATTTTACGT			ACACACACACGTT		
11 11 11 1				11 111 1		1 1 1
8510 852			AIGCIC-CAAI 8540	CAGGCACTCAGC	CA-ACTGTGG 8560	CAGATGCTGGA 8570
0310 032	.0	0330	0370	9330	0300	07/0
1560	1570) 1600	1610	1620
				CAAAGA-GTGAG		
				 Acaaggacgtta-		
8580		8600		8620	8630	8640
(/35	1140	4100	, .			1/00
1630 CAGACTACCO	1640 CTTCTGGGT			1660 CTTCGGACTGTC	1670 TAAAAC	1680 TCCCCTTAGAA
4 4 4 4 6 4	ALAAT					

8650	8660	8670	8680	8690	8700	8710
1 111 11	1700 13 AGTTCCCGGACGA AGATCAC-AAAGA 8730		GAGACACAGT	CCGAAAAGTT	ATTTTTC	11 1 1
 TCATTT-GC	1770 IGTTTCGTGACAG 	I I III CGGATCAAATTO	 AGTTATATAA	CACTTGAGTG	TCATCCTTG	CGCCGGAAGG
1 1111	ACC-CGTCTI CAACCAGGTTA	111 1	I II II Gattigaacga	II I I GCAACAGATG		1 1 1 1
11 1 1	1900 CCCCGGGCTTCG 	IIII II AGAATGGCAC B940	11 1 1	111 11	II III AGTGTGGGT 8970	1 1 1111
11	1970 CGATCCTTATTAC II I I I IGAGCAAGTTI 70 900	IIIII II GAGTATCCCTTC	IIII I GAAACCAATAG	 STTGAAAATGC	111111 AAAGCCAAC	II III I
CTAATTC-TO	CCCTGCCG-G	I II I III GCAGCGGAGGCA	NTAACGCGGCG	ATCTCCACTT	TAAGAACCT GCAGA	GGCACCATAC
1111 111	2100 2: FCTCGCTTTCGTA 	AAACGGTTCTTA	CAAAAGTAAT	 -AGGA	TTTCAGC-C	1 1111
TGCTAGTCTA	ATGGCAGCATO ATGAAGTCAATTO		ATTTGCTACGG 1 1 BAAAGAGCCCG	CTGA-CCGCT 	III I I	II II I
11 11	2240 GGCCCGTCGAA ATGTTTCTTC-AA 9260	1111	TTTCAGAA CTTGATGGAA	1 111	CCCCTCATA	CCAACGTTTC CTAGCGAA
GACTTTGATT GACACTGAAG 9310	0 2310 FCTTGC-CGGTAF 	CGTGGTGG1 CGTGATGTTAA1 30	AGAAACATGO AGAAACATGO AGAAACATGO	AGCTCTTTCT I III II CACACCTTACT 9360	CGATAGTTA	II TACAATGCAG
TAAAGGGTAG	GGCGGCCTACCT 70 9400			;		

```
15. ELLIS-012-FIG2AB.SEQ (1-2350)
    029860
                Odorant receptor clone I7.
 ID
      029860 standard; DNA; 983 BP.
 AC
      029860;
 DT
      15-MAR-1993 (first entry)
 DE
      Odorant receptor clone I7.
 KW
      Odorant receptor; insect; vertebrate; fish; mammal; neurotransmitter;
 KW
      hormone; G-protein; surface receptor; olfactory epithelium; PCR;
 KW
      Sprague-Dawley rat; amplify; primer; polymerase chain reaction;
 ΚW
      multigene family; ligand binding domain; ss.
 OS
      Ratus ratus.
 PN
      WD9217585-A.
 PD
      15-0CT-1992.
 PF
      06-APR-1992; U02741.
 PR
      05-APR-1991; US-681880.
 PA
      (UYCO ) UNIV COLUMBIA NEW YORK.
 PΙ
      Axel R. Buck LB;
 DR
      WPI; 92-366257/44.
 DR
      P-PSDB; R27872.
 PT
      Nucleic acid encoding an odorant receptor - can be used to
 PT
      control insect populations or for detecting odours e.g. alcohol,
 PT
      explosives, natural gas etc.
 PS
      Claim 9; Fig 14; 195pp; English.
 CC
      The sequences given in 029855-77 are odorant receptor clones derived
 CC
      from an insect, a vertebrate, a fish or a mammal. These clones form
 CC
      a family of neurotransmitters and hormone receptors which transduce
 CC
      intracellular signals by activation of specific G-proteins. Each
 CC
      of these receptors is a member of a superfamily of surface receptors
 CC
      which traverse the membrane seven times. These clones are only
 CC
      expressed in the olfactory epithelium. These clones were isolated
 CC
      using probes derived from RNA prepared from the olfactory epithelia
      of Sprague-Dawley rats. Isolated cDNA's were amplified using primers
 CC
 CC
      which correspond to transmembrane domain 2 and 7. PCR products of the
 CC
      appropriate size were isolated and sequenced. The deduced protein
 CC
      sequences of these cDNA's defined a new multigene family which shared
 CC
      sequence and structural properties with the superfamily of
 CC
      neurotransmitter and hormone receptors which traverse the membrane
 CC
      seven times. This novel family, however exhibits features different
      from any other member of the superfamily identified so far. There is a
 CC
 CC
      striking divergence within the third, fourth and fifth transmembrane
 CC
      domains between the olfactory proteins. This divergence in the
 CC
      potential ligand binding domain is consistent with the idea that
 CC
      the family of molecules cloned is capable of asssociating with a large
CC
      number of odorant of diverse molecular structure.
 SQ
      Sequence
                983 BP;
                           206 A;
                                     270 C;
                                               214 G;
                                                         293 T;
Initial Score
                     123 Optimized Score =
                                                393 Significance = 6.26
Residue Identity =
                      49% Matches
                                                487 Mismatches
                                                                      361
Gaps
                     137 Conservative Substitutions
                                                                        0
                                                             10
                                                                       20
                                                     ATGTCCATGAACTGCTGAGTGG
                                                        CAGTGGGAGAGTGAGTTGTTGTTGTTGCTGGGTTTCCCAGCTCCTGCCCCACTGCGAGTACTACTATTTT
    50
              30
                        40
                                  50
                                            60
                                                      70
                                                                80
                    40
                                50
                                           60
                                                     70
                                                               80
    ATAAACAGCACGGGATATCTCT--GT-CTAAAGGAATA-TTACTACACCAGGAAAAGGACACATTCGACAAC
              1 11 1
    CCTTTCTCTTCTGGCTATGTTGGTGTTGACTGAAAACATGCT-CATCA-TTATAGCA---ATTAGGAACC
   90
           100
                     110
                               120
                                         130
                                                     140
                                                                  150
                    110
                                120
                                           130
                                                       140
    AGGAAAGGAGCCTGTCACAGAAAACCA--CAGT-GTCCTGTGC--ATGTGACATTTC--GCCAT--GGGAAA
```

160	T-CCACAAACC	CATGTATTTT 180	TCTTGGCTAA	TATGTCATT 200		TTGGTATG 220
111111111111111111111111111111111111111	170 CGTGGTGGT 		1 11	1 11111	111 1	1 1 11
11111 11	240 ATAACTGTCAGC CATGCATGACACACACACACACACACACACACACACACAC	111111		1 11	1 1	11 1
11 111	TCTCCAGCATAGG	111 1 1	111	1 11 1		11 11 11
1111 1 1	370 CAAGAAGTTTTGC SATGGCAG-CTGGA 450	1111	 AGGTTTTGGT	11 11	11 111	1111
11 11 1	440 CC-CACAGTGCACC CTTACTGTGGCCC 520		11 11	11 11		
1111 111111	510 TAGCTTGGGAACA 	111111	111 11 1	111 1 1	TCTGTCGAC	11111
TTGCAAAACCTG IIII IIIIIII TTGCTCAACCTG 570 560 5 AACTGCTCTCTA	STAGCTTGGGAACA 	TTTA-ATGAC-	-CAGAACGG- III II I ACAGCACAGO 600 600 CCGGGACCACO	-TACTGGCG TTACAGAC- 610 610 GAGAAGGAC	TCTGTCGAC TTTGT GTGGT	CCTGGACG CCTGG-CC 620 620 G-TGTGGA GCTGTGAT
TTGCAAAACCTG IIII IIIIIII TTGCTCAACCTG 570 560 5 AACTGCTCTCTA I I III ATTTTTATTCTG 630 CCCCCTGTGGTG	TAGCTTGGGAACA	TTTA-ATGAC- CTGACATGTCC 590 S70 GTGCTTAAGAC CTG-TCAC 50 650 AGTACCACCAT CATAAAGCCTT	-CAGAACGG- III II I CACAGCACAGG 600 CCGGGACCACG III I I CTGGGGCATCG 660 CTTCTG1 II IIII TTCAACCTG1	-TACTGGCG TTACAGAC- 610 GAGAAGGAC TACATGGCC 670 GACTCCAGA	TCTGTCGAC TTTGT GTGGT ATCACAGGT	CCTGGACG CCTGG-CC 620 620 620 G-TGTGGA GCTGTGAT 690 AGGAGG
TTGCAAAACCTG	TAGCTTGGGAACA	TTTA-ATGAC- CTGACATGTCC 590 590 GTGCTTAAGAC CTG-TCAC 50 650 AGTACCACCAT CATAAAGCCTT 720 710 CCT-TGTTCCT CATCTATGCCA	-CAGAACGG- III II I CACAGCACAGG 600 CCGGGACCACG III I I CTGGGGCACCACG 660 TTTCTGT II IIII TTCAACCTGT 730 720 CGGCGCTGACA	-TACTGGCG TTACAGAC- 610 610 GAGAAAGGAC TACATGGCC 670 670 GACTCCAGA GCCTCCCAC 740 730 TTCGGCTTTG GCACTCTCAG	TCTGTCGAC I III TTTGT GTGGT I III ATCACAGGT	CCTGGACG CCTGG-CC 620 620 620 G-TGTGGA GCTGTGAT 690 AGGAGG TGTTGTGA
TTGCAAAACCTG	TAGCTTGGGAACA	TTTA-ATGAC- CTGACATGTCC 590 590 GTGCTTAAGAC CTG-TCAC 50 650 AGTACCACCAT CATAAAGCCTT 720 710 CCT-TGTTCCT CATCTATGCCA 790 780 780 780 780 780 780 780	-CAGAACGG- ACAGCACAGG 600 CGGGGACCACG TGGGGCATCG 660 TTCTG1 TTCAACCTG1 730 720 GGCGCTGACA GGC-CTAAGG 800 PO 8 GGAAAAAATT TTGTTCAATG	TACTGGCG III I TTACAGAC— 610 640 6AGAGAAGGAC I I I TACATGGCC 670 670 6ACTCCAGA I IIII GCCTCCCAC 740 730 TCGGCTTTG II I CACTCTCAG 810 CCCCCCACAT II I CCCATCATCT	TCTGTCGAC TTTGT GTGGT ATCACAGGT	CCTGGACG CCTGG-CC 620 620 620 G-TGTGGA GCTGTGAT 690 AGGAGG TGTTGTGA 750 CTGATCTT CCAACAAG 830 820 -CAACCAT

--AAGATG-TCAAAAGAGC-GCT-ACGTCG--CACGC-TGCACCTGGCCCAGGAC--CAGGAGGCCAATACC GAGGAGGAGGAGGCTATGAGCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAAGCACTAGG 1 1 111 11 1 11 1 AACAA--AGGCAGC-AAAATTGGTTAG 980 X

ACCCC

```
> 0 <
0| | 0 IntelliGenetics
> 0 <
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file ellis-012-fig2ab-pir.res made by shears on Tue 14 Sep 93 15:01:23-PDT.
Query sequence being compared:ELLIS-012-FIG2AB.PEP (1-256)
Number of sequences searched:
                                             52257
Number of scores above cutoff:
                                              4100
      Results of the initial comparison of ELLIS-012-FIG2AB.PEP (1-256) with:
   Data bank : PIR 36, all entries
100000-
U50000-
В
Ε
R
0
F10000-
E 5000-
U
Ε
N
С
Ε
S 1000-
   500-
   100-
    50-
```

10-								
-								
5-						•		
-								
-								
-								
-								
-								
_								*
0	 							
SCORE O STDEV 8	1 57	l 85	i 114	142	171	 199	228 1	1 256

PARAMETERS

Similarity matrix	Unitary	K-tuple	2
Mismatch penalty	5	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.26		
Cutoff score	0		
Randomization group	0		
Initial scores to save	40	Alignments to save	15
Optimized scores to say	/e 0	Display context	50

SEARCH STATISTICS

Scores:	Mean	Median	Standard Deviation
	4	5	1.51

Times: CPU Total Elapsed 00:03:05.07 00:06:20.00

Number of residues: 15485766
Number of sequences searched: 52257
Number of scores above cutoff: 4100

Cut-off raised to 4. Cut-off raised to 5. Cut-off raised to 6. Cut-off raised to 7.

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was found:

Sequence Name	Description	Length	Init. Score	 Sig. F	rame
1. B32393	4-1BB protein precursor - Mou	256		 166.38	0

The list of other best scores is:

Sequence Name	Description	Length	Init. D Score S	•	Sig. Fr	rame
	**** 4 standard deviations	bove me	an ***			
2. \$15785	Heat-stable antigen HSA-C - M	141	11	26	4.62	0
3. A39046	Tissue factor precursor - Mou	294	11	42	4.62	0
4. A32318	Tissue factor precursor - Mou	294	11	42	4.62	0
	**** 3 standard deviations a	above me	an ****			
5, 515787	Hast-stable antinon progrupson	45	10	15	7 04	Λ

```
6. S01877
                    NADH dehydrogenase (ubiquinon
                                                        59
                                                              10
                                                                     14
                                                                          3.96
                                                                                  0
   7. S15784
                                                                     19
                    Heat-stable antigen - Mouse
                                                        76
                                                              10
                                                                          3.96
                                                                                  0
   8. A43537
                    Heat stable antigen M1/69-J11
                                                        76
                                                              10
                                                                     19
                                                                          3.96
                                                                                  0
   9. 521969
                    19K zein precursor (clone ZG3
                                                       214
                                                              10
                                                                     19
                                                                          3.96
                                                                                  0
  10. ZIZMA2
                    19K zein precursor (clone cZ1
                                                       230
                                                              10
                                                                     23
                                                                          3.96
                                                                                  0
  11. 503417
                    19K zein precursor (clone q21
                                                       234
                                                              10
                                                                     23
                                                                          3.96
                                                                                  0
  12. S21970
                    19K zein precursor (clone A30
                                                       234
                                                              10
                                                                     23
                                                                          3.96
                                                                                  0
  13. ZIZMB1
                    19K zein precursor (clone cZ1
                                                       234
                                                              10
                                                                     23
                                                                          3.96
                                                                                  0
  14. ZIZM3
                    19K zein precursor (clone A30
                                                       234
                                                              10
                                                                     23
                                                                          3.96
                                                                                  0
  15. $15655
                    Zein, 19K - Maize
                                                       235
                                                              10
                                                                     23
                                                                          3.96
                                                                                  0
  16. ZIZM99
                    19K zein precursor (clone ZG9
                                                       235
                                                              10
                                                                     22
                                                                          3.96
  17. S07172
                    19K zein precursor (clone Z4)
                                                       267
                                                              10
                                                                     21
                                                                          3.96
                                                                                  0
  18. BWNSV4
                    Mov-34 protein - Mouse
                                                       321
                                                              10
                                                                     38
                                                                          3.96
                                                                                  0
  19. 527672
                                                       359
                                                              10
                    O-antigen polymerase - Salmon
                                                                     21
                                                                          3.96
                                                                                  0
  20. A32118
                    H+-transporting ATP synthase
                                                       465
                                                              10
                                                                          3.96
                                                                                  0
  21. 501292
                    Tenascin - Chicken (fragment)
                                                       697
                                                              10
                                                                     36
                                                                          3.96
                                                                                  0
  22. C33379
                    Protenascin 190K precursor -
                                                      1535
                                                              10
                                                                     36
                                                                          3.96
                                                                                  0
  23. B32230
                    Cytotactin precursor 2 - Chic
                                                      1537
                                                              10
                                                                     36
                                                                          3.96
  24. B33379
                    Protenascin 200K precursor -
                                                      1626
                                                              10
                                                                          3.96
                                                                     36
                                                                                  0
                    Protenascin precursor - Chick
  25. A30903
                                                      1808
                                                              10
                                                                          3.96
                                                                     36
                                                                                  0
  26. A33379
                    Protenascin 230K precursor -
                                                      1808
                                                              10
                                                                     36
                                                                          3.96
                                                                                  0
  27. A32230
                    Cytotactin precursor - Chicke
                                                      1810
                                                              10
                                                                     36
                                                                          3.96
                                                                                  0
  28. B39079
                                                               9
                    Pre-alpha-inhibitor HC3 chain
                                                        18
                                                                          3.30
                                                                                  0
  29. C34245
                    Inter-alpha-trypsin inhibitor
                                                        20
                                                               9
                                                                          3.30
                                                                                  Õ
  30. B25604
                    Endothelial cell growth facto
                                                        49
                                                                9
                                                                          3.30
                                                                                  0
  31. D31201
                                                               9
                    GLI-related finger protein HK
                                                       106
                                                                     23
                                                                          3.30
                                                                                  0
  32. S12586
                    Whey acidic protein - Rabbit
                                                       127
                                                               9
                                                                     16
                                                                          3.30
                                                                                  0
  33. 501286
                    Whey acidic protein precursor
                                                       127
                                                               9
                                                                     16
                                                                          3.30
                                                                                  0
  34. S03552
                    Inter-alpha-trypsin inhibitor
                                                       147
                                                                9
                                                                          3.30
                                                                                  0
  35. B30020
                                                                9
                    Hypothetical protein 6 - Frui
                                                       174
                                                                     15
                                                                          3.30
                                                                                  0
  36. S01189
                                                               9
                    NADH dehydrogenase (ubiquinon
                                                       174
                                                                          3.30
                                                                                 0
                                                                     16
  37. S19934
                                                               9
                    Hypothetical protein - Escher
                                                       196
                                                                     28
                                                                          3.30
  38. A42337
                    submandibular gland protein A
                                                       206
                                                               9
                                                                     30
                                                                          3.30
                                                                                  0
  39. A25303
                    Alpha-1-microglobulin precurs
                                                       220
                                                               9
                                                                     34
                                                                          3.30
                                                                                  0
  40. TVNST2
                                                               9
                                                       245
                    Transforming protein (int-2)
                                                                     34
                                                                          3.30
                                                                                  0
1. ELLIS-012-FIG2AB.PEP (1-256)
   B32393
                 4-1BB protein precursor - Mouse
ENTRY
                  B32393
                              #Tupe Protein
                  4-1BB protein precursor - Mouse
                  17-Jul-1992 #Sequence 17-Jul-1992 #Text 23-Mar-1993
PLACEMENT
                     0.0
                            0.0
                                    0.0
                                           0.0
                                                   0.0
                  Mus musculus #Common-name house mouse
```

```
TITLE
DATE
```

SOURCE

ACCESSION B32393

REFERENCE

Kwon B.S., Weissman S.M. #Authors

#Journal Proc. Natl. Acad. Sci. U.S.A. (1989) 86:1963-1967 #Title cDNA sequence of two inducible T-cell genes.

#Reference-number A32393; MUID:89184547

#Accession B32393 #Molecule-type mRNA #Residues 1-256 (KWO) #Cross-reference GB:J04492

FEATURE

1-23 #Domain signal sequence (predicted)

<SIG>\

24-256 #Protein 4-1BB protein <MAT>

SUMMARY #Molecular-weight 27598 #Length 256 #Checksum 4884

SEQUENCE

Initial Score 256 Optimized Score 256 Significance = 166.38 100% Matches Residue Identity = 256 Mismatches 0 Gaps Conservative Substitutions 0

```
X
           10
                    20
                             30
                                      40
                                               50
                                                        60
                                                                 70
   MGNNCYNVVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@PNCNICRVCAGYFR
   MGNNCYNVVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@PNCNICRVCAGYFR
                                               50
         80
                  90
                          100
                                   110
                                            120
                                                     130
                                                              140
   FKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGR
   FKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGR
                  90
         80
                          100
                                   110
                                            120
                                                     130
                                                              140
      150
               160
                        170
                                 180
                                          190
                                                   200
                                                            210
   SVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLØVLTLFLALTSALLLALIFITLLFSVLKWIRK
   SVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLALIFITLLFSVLKWIRK
      150
                        170
                                 180
               160
                                          190
                                                   500
    220
             230
                      240
                               250
                                       X
   KFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
   KFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
    550
             230
                      240
                               250
2. ELLIS-012-FIG2AB.PEP (1-256)
  S15785
              Heat-stable antigen HSA-C - Mouse
ENTRY
               S15785
                         #Type Protein
 TITLE
               Heat-stable antigen HSA-C - Mouse
               07-Apr-1992 #Sequence 07-Apr-1992 #Text 07-Apr-1992
 DATE
PLACEMENT
                        0.0
                              0.0
                                    0.0
                                           0.0
 SOURCE
               Mus musculus #Common-name house mouse
 ACCESSION
               S15785
REFERENCE
   #Authors
               Wenger R.H., Ayane M., Bose R., Koehler G., Nielsen
                 P.J.
   #Journal
               Eur. J. Immunol. (1991) 21:1039-1046
   #Title
               The genes for a mouse hematopoietic differentiation
                 marker called the heat-stable antigen.
   #Reference-number S15783; MVID:91209380
   #Accession
               515785
   #Status
               preliminaru
   #Residues
               1-141 (WEN)
   #Cross-reference EMBL: X56486
SUMMARY
             #Molecular-weight 15515 #Length 141 #Checksum 6244
SEQUENCE
Initial Score
                    11 Optimized Score =
                                             26 Significance =
                                                               4.62
Residue Identity =
                    22% Matches
                                             30 Mismatches
                                                                 93
Gaps
                     9 Conservative Substitutions
                                                                 0
          90
                  100
                           110
                                    120
                                             130 X
                                                      140
   NAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWINCSLDGRSVLKTGTTE
                                                          1 1
                                                MGRAMVARLGLGLLLLALLLPT
                                                        10
       160
                170
                             180
                                      190
                                                 200
                                                          210
   KDVVCGPPVVSFSPSTTISVTP-----EGGPGGHSL@VLTLFLAL--TSALLLALIFITLLFSVLKWIRKKF
                   11 1
                               \Pi
                                         111 11 11
   @IYCN@TSVAPFSGN@NISASPNPSNATTRGGGSSL@STAGLLALSSTSLLLET@ARKRLYFPIFYTYPKW@
                           50
         30
                  40
                                    60
                                             70
  220
                                    X
```

SSO SSO S40 S20 X

```
3. ELLIS-012-FIG2AB.PEP (1-256)
  A39046
              Tissue factor precursor - Mouse
ENTRY
                A39046
                          #Type Protein
TITLE
                Tissue factor precursor - Mouse
                31-Jul-1991 #Sequence 31-Jul-1991 #Text 23-Mar-1993
DATE
PLACEMENT
                         0.0
                              0.0
                                    0.0 0.0
SOURCE
               Mus musculus #Common-name house mouse
 ACCESSION
                A39046
 REFERENCE
   #Authors
               Ranganathan G., Blatti S.P., Subramaniam M., Fass
                 D.N., Maihle N.J., Getz M.J.
   #Journal
                J. Biol. Chem. (1991) 266:496-501
   #Title
                Cloning of murine tissue factor and regulation of
                  gene expression by transforming growth factor type
   #Reference-number A39046; MUID:91093171
   #Accession A39046
   #Status
               preliminary
   #Molecule-tupe mRNA
   #Residues
              1-294 (RAN)
    #Cross-reference GB:J05713
 SUMMARY
              #Molecular-weight 32935 #Length 294 #Checksum 8911
 SEQUENCE
Initial Score
                    11 Optimized Score =
                                               42 Significance = 4.62
Residue Identity =
                    23% Matches
                                         Ξ
                                               58 Mismatches = 165
Gaps
                     28 Conservative Substitutions
                                                                    0
                                                          10
                                                                    20
                                                   MGNNCYNVVVIVLLLVGCEK-V
                                                    1 1 1
   VRPRLLAALAPTFLGCLLLQVIAGAGIPEKAFNLTWISTDFKTILEWQPKPTNYTYTVQISDRSRNWKNKCF
                20
                          30
       10
                                   40
                                             50
                                                  X 60
                              50
                                       60
                                                 70
                                                           80
   GAVONSCDNCOPGTFCRKYNPVCK-SCPPSTFSSIGGOPNCNICRVCAGYFRFKKF-CSSTHNAECECIEGF
                        - 1
                                                     -11
   STTDTECDLTDEIVKDVTWAYEAKVLSVPRRNSVHGDGDQLVIHGEEPPFTNAPKFLPYRDTNLGQPVIQQF
               90
     80
                       100
                                110
                                          120
                                                   130
                                                 140
                  110
                            120
                                       130
    HCLGPOCTRCEKDCRPGQELTKQGCKTCSLGTFNDQNG--TGVCRPWTNCSLDGRSVLKTGTTE--KDVVCG
             E0DGRKLNVVVKD----SLT-LVRKNGTFLTLR0VFGKDLGYIITYRKGSSTGKKTNITNTNEFSIDVEEG
  150
           160
                           170
                                    180
                                              190
                                                       200
                                                                210
           170
                     180
                                  190
                                                 200
   PPVVSFSPSTTIS-VTPEGGPGGHSLQVLT----LFLALT-----SALLLALIFITLLFSVLKWIRKKFPHI
        1 1 1 1 1 1 1 1 1
                                                111 111 11 1 11
   VSYCFFV@AMIFSRKTN@NSPG--SSTVCTE@WKSFLGETLIIVGAVVLLATIFIILLSISLCKRRK---NR
               230
                           240
                                    250
                                              260
                                                      270
         230 X 240
                            250
   FKOPFKKTTGAAQEEDACSCRCPGEEEGGGGGYEL
     ] | |
    AGGKGKNTPSRLA
         290 X
```

A FLITE AKO ETCOAD DED 14 OE/1

11

110

P--0V0CD0EETGPPRIVCYHTSTENTENSKFDGIKGRVKGLREERCRY

120

130

1

```
81ESEA
                Tissue factor precursor - Mouse
 ENTRY
                 81E2EA
                           #Type Protein
 TITLE
                 Tissue factor precursor - Mouse
 DATE
                 29-Jan-1990 #Sequence 29-Jan-1990 #Text 23-Mar-1993
 PLACEMENT
                                 0.0
                          0.0
                                        0.0
                                               0.0
                 Mus nusculus #Common-name house mouse
 SOURCE
 ACCESSION
                 A32318
 REFERENCE
    #Authors
                 Hartzell S., Ryder K., Lanahan A., Lau L.F., Nathans
                  D.
    #Journal
                 Mol. Cell. Biol. (1989) 9:2567-2573
    #Title
                 A growth factor-responsive gene of murine BALB/c 3T3
                   cells encodes a protein homologous to human tissue
                   factor.
    #Reference-number A32318; MUID:89343974
    #Accession A32318
    #Status
                preliminary
    #Molecule-type mRNA
    #Residues
                1-294 (HAR)
    #Conment
                 This sequence has not been compared to the
                   nucleotide translation.
 SUMMARY
               #Molecular-weight 32923 #Length 294 #Checksum 9197
 SEQUENCE
                      11 Optimized Score =
Initial Score
                                                 42 Significance = 4.62
                     23% Matches
Residue Identity =
                                                 58 Mismatches =
                                                                      165
                      28 Conservative Substitutions
Gaps
                                                                        0
                                                             10
                                                                       20
                                                     MGNNCYNVVVIVLLLVGCEK-V
    VRPRLLAALAPTFLGCLLLQVTAGAGIPEKAFNLTWISTDFKTILEWQPKPTNYTYTVQISDRSRNWKNKCF
                 20
        10
                           30
                                     40
                                               50
                                                     X
                                                       60
                     40
                               50
                                         60
                                                   70
                                                              80
                                                                        90
    GAVONSCDNCOPGTFCRKYNPVCK-SCPPSTFSSIGGOPNCNICRVCAGYFRFKKF-CSSTHNAECECIEGF
                              STIDIECDLIDEIVKDVIWAYEAKVLSVPRRNSVHGDGDQLVIHGEEPPFINAPKFLPYRDINLGQPVIQQF
     80
               90
                        100
                                  110
                                            120
                                                      130
                                                                140
                   110
                             120
                                         130
                                                   140
                                                             150
    HCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NG--TGVCRPWTNCSLDGRSVLKTGTTE--KDVVCG
                                       - 1
                                                              111
   EODGRKLNVVVKD----SLT-LVRKNGTFLTLRØVFGKDLGYIITYRKGSSTGKKTNITNTNEFSIDVEEG
   150
            160
                            170
                                      180
                                                190
                                                          200
                                                                    210
  160
            170
                      180
                                    190
                                                   200
                                                             210
    PPVVSFSPSTTIS-VTPEGGPGGHSL@VLT----LFLALT-----SALLLALIFITLLFSVLKWIRKKFPHI
                       \Pi
                                                   111 111 11
    VSYCFFV@AMIFSRKTN@NSPG--SSTVCTE@WKSFLGETLIIVGAVVLLATIFIILLSISLCKRRK---NR
       550
                230
                            240
                                      250
                                                260
                                                          270
                                                                       280
          230
              X 240
    FKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
      1 1 1
    AG@KGKNTPSRLA
         290 X
5. ELLIS-012-FIG2AB.PEP (1-256)
  S15783
               Heat-stable antigen precursor - Mouse
```

ENTRY 515783 #Type Protein TITLE

Heat-stable antigen precursor - Mouse DATE 28-Aug-1992 #Sequence 28-Aug-1992 #Tay+ 28-Aug-1992

```
0.0
 PLACEMENT
                           0.0
                                  0.0
                                         0.0
                                                0.0
 SOURCE
                 Mus musculus #Common-name house mouse
 ACCESSION
 REFERENCE
    #Authors
                 Wenger R.H., Ayane M., Bose R., Koehler G., Nielsen
                   P.J.
    #Journal
                 Eur. J. Immunol. (1991) 21:1039-1046
    #Title
                 The genes for a mouse hematopoietic differentiation
                   marker called the heat-stable antigen.
    #Reference-number S15783; MUID:91209380
    RAccession S15783
    #Status
                 preliminary
    #Residues
                 1-45 (WEN)
    #Cross-reference EMBL:X53825
 SUMMARY
                 #Nolecular-weight 4485 #Length 45 #Checksum 9465
 SEQUENCE
Initial Score
                 =
                       10 Optimized Score =
                                                  15 Significance = 3.96
Residue Identity =
                      36% Matches
                                                  17 Mismatches
Gaps
                        2 Conservative Substitutions
                                                                         0
     110
               120
                         130
                                   140
                                             150
                                                       160
                                                                 170
    PGGELTKGGCKTCSLGTFNDGNGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGG
                                                               APFPGNONISASPNPSNATTRG
                                                      χ
                                                              10
                                                                        20
   180
             190
                       500 X
                                 210
                                           220
                                                     230
                                                               240
    PGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFK@PFKKTTGAAQEEDACSCRCPQEEEGG
     11 111
                111 1 11 1
    -GGSSLOSTAGLLAL-SLSLLHLYC
           30
                      40
    GGG
6. ELLIS-012-FIG2AB.PEP (1-256)
   501877
                NADH dehydrogenase (ubiquinone) chain 5 - Brine
ENTRY
                 S01877
                            #Type Protein (fragment)
 TITLE
                 NADH dehydrogenase (ubiquinone) chain 5 - Brine
                   shrimp mitochondrion (SGC4) (fragment) #EC-number
                   1.6.5.3
 DATE
                 31-Mar-1990 #Sequence 31-Mar-1990 #Text 23-Mar-1993
PLACEMENT
                           0.0
                                  0.0
                                         0.0
                                                0.0
SOURCE
                 mitochondrion Artenia sp. #Common-name brine shrimp
 ACCESSION
                 S01877
REFERENCE
                 Batuecas B., Garesse R., Calleja M., Valverde J.R.,
    #Authors
                   Marco R.
    #Journal
                 Nucleic Acids Res. (1988) 16:6515-6529
    #Title
                 Genome organization of Artemia mitochondrial DNA.
    #Reference-number S01207; MUID:88289417
    #Accession S01877
    #Molecule-type DNA
    #Residues
                 1-59 (BAT)
    #Cross-reference EMBL:X07663
KEYWORDS
                 mitochondrion\ oxidoreductase
 GENETIC
    #Special-code
SUMMARY
                                         #Length 59 #Checksum 9192
 SEQUENCE
                       10 Optimized Score =
Initial Score
                                                  14 Significance = 3.96
```

Paridua Idamtitu -

257 Matehor

```
110
            120
                     130
                               140
                                         150
                                                   160
                                                             170
   ELTKOGCKTCSLGTFNDONGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGG
                                                     MGELLYHEGDCGWVEEAGPSLI
                                                             10
                                                                       20
            190
                     200
                               210
                                       X 550
                                                   230
                                                             240
                                                                       250
    H--SL@VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFK@PFKKTTGAAGEEDACSCRCP@EEEGGG
            11 111
                      - 11 111
    HHNSLRGSSLFSFLTSSPYKVLILSSLLFTLFNYSMA
          30
                   40
                             50
    GGYEL
7. ELLIS-012-FIG2AB.PEP (1-256)
   515784
               Heat-stable antigen - Mouse
 ENTRY
                 S15784
                           #Type Protein
 TITLE
                 Heat-stable antigen - Mouse
 DATE
                 07-Apr-1992 #Sequence 07-Apr-1992 #Text 07-Apr-1992
 PLACEMENT
                                 0.0
                          0.0
                                        0.0
                                               0.0
 SOURCE
                 Mus musculus #Common-name house mouse
 ACCESSION
                 S15784
 REFERENCE
    #Authors
                 Wenger R.H., Ayane M., Bose R., Koehler G., Nielsen
                  P.J.
                 Eur. J. Immunol. (1991) 21:1039-1046
    #Journal
                 The genes for a mouse hematopoietic differentiation
    #Title
                   marker called the heat-stable antigen.
    #Reference-number S15783; MUID:91209380
    #Accession S15784
    #Status
                preliminary
    #Residues
                1-76 (WEN)
    #Cross-reference EMBL:X56469
 SUMMARY
                 #Nolecular-weight 7797 #Length 76 #Checksum 2479
 SEQUENCE
Initial Score
                =
                     10 Optimized Score =
                                                 19 Significance = 3.96
                     28% Matches
Residue Identity =
                                           =
                                                 22 Mismatches
                                                                       52
Gaps
                       4 Conservative Substitutions
                                                                        0
     80
               90
                       100
                                 110
                                           120
                                                     130
                                                               140
    SSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGRSVLKT
                                                     MGRAMVARLGLGLLLLALLLPT
                                                             10
                                                                       20
    150
             160
                       170
                                 180
                                           190
                                                     200 X
    --GTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLALIFITLLFSVLKWIRKKFP
                    11 1
                                 1 11 111
                                             @IYCN@TSVAPFPGN@NISASPNPSNATTRG-GGSSL@STAGLLAL-SLSLLHLYC
          30
                             50
                                        60
                                                   70 X
  220
            230
                     240
                               250
    HIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGG
8. ELLIS-012-FIG2AB.PEP (1-256)
   A43537
               Heat stable antigen M1/69-J11d precursor - Mouse
 ENTRY
                 A43537
                           #Type Protein
 TITLE
                 Host stable antigon M1/40-111d progressor - Mouse
```

2 Conservative Substitutions

0

Gaps

```
DATE
                 06-Nov-1992 #Sequence 06-Nov-1992 #Text 23-Mar-1993
 PLACEMENT
                           0.0
                                0.0
                                         0.0
                                               0.0
 SOURCE
                 Mus musculus #Common-name house mouse
 ACCESSION
                 A43537
 REFERENCE
    #Authors
                Kay R., Takei F., Humphries R.K.
    #Journal
                J. Immunol. (1990) 145:1952-1959
    #Title
                 Expression cloning of a cDNA encoding M1/69-J11d
                  heat-stable antigens.
    #Reference-number A43537; MUID:90361906
    #Accession A43537
                preliminary
    #Status
    #Molecule-tupe mRNA
    #Residues
                1-76 (KAY)
    #Cross-reference GB:M58661
    #Comment
                This sequence has not been compared to the
                   nucleotide translation.
 SUMMARY
                 #Molecular-weight 7797 #Length 76 #Checksum 2479
 SEQUENCE
Initial Score
                      10 Optimized Score =
                                                 19 Significance = 3.96
                      28% Matches
Residue Identity =
                                           =
                                                  22 Mismatches =
                        4 Conservative Substitutions
Gaps
                                                                         0
     80
               90
                        100
                                  110
                                            120
                                                      130
                                                                140
    SSTHNAECECIEGFHCLGPOCTRCEKDCRPGOELTKOGCKTCSLGTFNDONGTGVCRPWTNCSLDGRSVLKT
                                                                         MGRAMVARLGLGLLLLALLLPT
                                                              10
                                                                        20
    150
              160
                        170
                                  180
                                            190
                                                      200 X
                                                                210
    --GTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFP
                      1 11 111
                                               111 1 11 1
    @IYCN@TSVAPFPGN@NISASPNPSNATTRG-GGSSL@STAGLLAL-SLSLLHLYC
          30
                    40
                              50
                                         60
                                                    70
  220
            230
                      240
                                250
    HIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGG
9. ELLIS-012-FIG2AB.PEP (1-256)
   521969
               19K zein precursor (clone ZG31A) - Maize (fragment
ENTRY
                 521969
                            #Type Protein (fragment)
 TITLE
                 19K zein precursor (clone ZG31A) - Maize (fragment)
 DATE
                 04-Dec-1992 #Sequence 04-Dec-1992 #Text 23-Mar-1993
 PLACEMENT
                           0.0
                                 0.0
                                       0.0
 SOURCE
                 Zea mays #Common-name maize
 ACCESSION
                 S21969
 REFERENCE
    #Authors
                Hu N.T., Peifer M.A., Heidecker G., Messing J.,
                   Rubenstein I.
    #Journal
                EMBO J. (1982) 1:1337-1342
    #Title
                 Primary structure of a genomic zein sequence of
                   maize.
    #Reference-number S07172; MUID:84207882
    #Accession S21969
    #Molecule-type mRNA
    #Residues
                1-214 (HUN)
    #Cross-reference EMBL:V01473
    #Comment
                The translation of the nucleotide sequence is not
                   given in this paper.
 SUPERFAMILY
                 ∜Name zein
                 seed\ storage protein
 KEYWORDS
 SUMMARY
                                        #Length 214 #Checksum 4377
```

CEAHENCE

```
Initial Score
                     10 Optimized Score =
                                               19 Significance = 3.96
                    21% Matches =
                                               27 Mismatches =
Residue Identity =
Gaps
                     16 Conservative Substitutions
         90
                  100
                                     120
                           110
                                              130 X
                                                        140
    AECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGRSVLKTGTTEK
                                                        11
                                                               - 1
                                                   ATIFP@CS@APIASLLPPYLSP
                                                        10
                                                                    20
        160
                  170
                           180
                                     190
                                              200
                                                        210
                                                                 220
    DV--VCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFK@
                             1 111 1111 1 11
    AVSSVCENP--IL@PYRI@GAITAG----ILPLSPLFL@GSSALLH@LPLVHLL---A@NIR----A@GL@
         30
                     40
                                   50
                                            60
                                                      70
      230
                240
                         250
    PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
    QLVLANLAAYSQQQQFLPFNQLAALNSASYLQQQQLPFSQLPAAYPQQFLPFNQLAALNSPAYLQQQQLLPF
                   100
                          110 X
                                    120 130 140
    SQLAGVSPAT
        160
10. ELLIS-012-FIG2AB.PEP (1-256)
    ZIZMAZ
                19K zein precursor (clone cZ19A2) - Maize (fragmen
 ENTRY
                ZIZMA2
                          #Tupe Protein (fragment)
 TITLE
                19K zein precursor (clone cZ19A2) - Maize (fragment)
 DATE
                30-Jun-1988 #Sequence 30-Jun-1988 #Text 31-Mar-1993
 PLACEMENT
                1340.0
                       1.0
                              4.0
                                     3.0 1.0
 SOURCE
                Zea mays #Common-name maize
                D24557
 ACCESSION
 REFERENCE
                (Inbred line W64A)
    #Authors
                Marks M.D., Lindell J.S., Larkins B.A.
    #Journal
                J. Biol. Chem. (1985) 260:16451-16459
    #Title
                Nucleotide sequence analysis of zein mRNAs from
                  maize endosperm.
    #Reference-number A92510; MVID:86059563
    #Accession D24557
    #Molecule-tupe mRNA
    #Residues 1-230 ⟨MAR⟩
    #Comment
                The authors translated the codon GAC for residue 209
                  as Asn.
 SUPERFAMILY
                #Name zein
 KEYWORDS
                seed\ storage protein
 FEATURE
   1-18
                           #Domain signal sequence (fragment) <SIG>\
   19-230
                           #Protein 19K zein <MAT>
 SUMMARY
                                      #Length 230 #Checksum 8546
 SEQUENCE
                     10 Optimized Score =
Initial Score
                                               23 Significance = 3.96
                =
Residue Identity =
                     22% Matches
                                         =
                                               33 Mismatches =
                    19 Conservative Substitutions
Gaps
                                                                     0
                            90
         70
                   80
                                     100
                                              110 X
                                                        120
    ICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGPOCTRCEKDCRPGOELTKOGCKTCSLGTFNDONGTGVCR
                                                   KIFCFLMLLG-LSASAATATIF
                                                           10
```

140 150

160

170

190

180

200

(_

```
PWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLALIFI
                   1 11 1
                                    1
                                             1 111
   P--QCSQAPITSLLPPYLSPAVSSVCENP--ILQPYRIQQAIAAG----ILPLSPLFLQQPSALLQQLPLV
           30
              40
                              50
                                   60
                                                   70
              550
                       230
                                240
                                        250
   TLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
    HLL---AGNIR----AGGLOGLVLGNLAAYSGGHGFLPFNGLAALNSAAYLGGGLPFSGLAAAYPGGFLPFN
               100 110 120 130
   QLAALNSAAYLQQQQLPPFSQLADVSPAAF
 150
       160
              170
11. ELLIS-012-FIG2AB.PEP (1-256)
              19K zein precursor (clone gZ19AB11) - Maize
ENTRY
                        #Type Protein
              503417
 TITLE
              19K zein precursor (clone gZ19AB11) - Maize
 ALTERNATE-NAME zein alpha
          07-Sep-1990 #Sequence 07-Sep-1990 #Text 23-Mar-1993
 PLACEMENT
               0.0 0.0 0.0 0.0
 SDURCE
              Zea mays #Common-name maize
 ACCESSION
              S03417
 REFERENCE
   #Authors
              Kriz A.L., Boston R.S., Larkins B.A.
   #Journal
              Mol. Gen. Genet. (1987) 207:90-98
   #Title
              Structural and transcriptional analysis of DNA
                sequences flanking genes that encode 19 kilodalton
                zeins.
   #Reference-number S03417; MUID:87257300
   #Accession S03417
   #Molecule-type DNA
   #Residues
              1-234 (KRI)
   #Cross-reference EMBL:X05911
   #Comment
              The translation of the nucleotide sequence is not
               given in this paper.
SUPERFAMILY
              #Name zein
KEYWORDS
              seed\ storage protein
FEATURE
   1-21
                        #Domain signal sequence <SIG>\
   22-234
                        #Protein 19K zein <MAT>
             #Molecular-weight 25439 #Length 234 #Checksum 3229
 SUMMARY
 SEQUENCE
Initial Score
              = 10 Optimized Score =
                                           23 Significance = 3.96
                  21% Matches =
                                           32 Mismatches = 98
Residue Identity =
                   19 Conservative Substitutions
Gaps
                   80
                            90
                                    100
                                             110
                                                     120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                 1 1 11
                                              MAAKIFCLLMLLG---LSASAA
                                              X
                                                     10
        140
                 150
                           160
                                    170
                                             180
                                                     190
   VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLAL
            TATIFTQCSQAPIASLLPPYLSSAVSSVCENP--ILQPYRIQQAIAAG-----ILPLSPLFLQQSSALLQQL
  20
           30
                40
                            50
                                       60
                                                   70
                 550
                          230
                                  240
   IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
```

PLUHII ---AGNIR----AGNI GALULANI AAVGAGGEL PENGLICEL NGACVI GAGGI PEGGI BAAVBADE

```
150
           160
                     170
                               180
12. ELLIS-012-FIG2AB.PEP (1-256)
                19K zein precursor (clone A30) - Maize
ENTRY
                S21970
                           #Type Protein
TITLE
                19K zein precursor (clone A30) - Maize
DATE
                04-Dec-1992 #Sequence 04-Dec-1992 #Text 23-Mar-1993
PLACEMENT
                   0.0
                          0.0
                                 0.0
                                        0.0
                                              0.0
SOURCE
                Zea mays #Common-name maize
                S21970
 ACCESSION
REFERENCE
   #Authors
                Hu N.T., Peifer M.A., Heidecker G., Messing J.,
                  Rubenstein I.
    #Journal
                EMBO J. (1982) 1:1337-1342
   #Title
                Primary structure of a genomic zein sequence of
   #Reference-number S07172; MUID:84207882
   #Accession S21970
   #Molecule-type mRNA
    #Residues
                1-234 (HUN)
    #Cross-reference EMBL:V01481
    #Comment
                The translation of the nucleotide sequence is not
                  given in this paper.
SUPERFAMILY
                #Name zein
KEYWORDS
                seed\ storage protein
FEATURE
   1-21
                           #Domain signal sequence <SIG>\
   22-234
                           #Protein 19K zein <MAT>
              #Molecular-weight 25403 #Length 234 #Checksum 977
SUMMARY
 SEQUENCE
Initial Score
                      10 Optimized Score =
                                                 23 Significance = 3.96
Residue Identity =
                     22% Matches
                                                 33 Mismatches =
                                           Ξ
                      19 Conservative Substitutions
Gaps
                                                                       0
   60
            70
                      80
                                90
                                         100
                                                   110
                                                            120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                        1 1 11
                                                     MAAKIFCLLMLLG-LSASAATA
                                                            10
                                                                       20
          140
                   150
                               160
                                         170
                                                   180
                                                             190
                                                                       200
    VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
                                                     1 111 1111 1
                         1
    TIFP--OCSOAPIASLLPFYLSPAVSSVCENP--ILOPYRIOGAIAAG----ILPLSPLFLGGSSALLGGL
            30
                      40
                                50
                                            60
                                                           70
                   220
                             230
                                       240
    IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
                                - 11
    PLVHLL---A0NIR----A00L00LVLANLAAYS0000FLPFNQLAALNSASYL0000LPFSQLPAAYPQ0F
       90
                       100
                                           120
                                                     130 X
   LPFNQLAALNSPAYLQQQQLLPFSQLAGVSPAT
  150
           160
                     170
                               180
13. ELLIS-012-FIG2AB.PEP (1-256)
    ZIZMBI
                19K zein precursor (clone cZ19B1) - Maize
```

90

FNTRY

717MR1

#Tune Protein

100

LPFNQLAALNSPAYLQQQQLLPFSQLAGVSPAT

110

120

130 X

140

```
TITLE
                 19K zein precursor (clone cZ19B1) - Maize
DATE
                 30-Jun-1988 #Sequence 30-Jun-1988 #Text 31-Mar-1993
PLACEMENT
                 1340.0
                          1.0
                                 4.0
                                         2.0
                                              2.0
 SOURCE
                 Zea mays #Connon-name maize
 ACCESSION
                 E24557
 REFERENCE
                 (Inbred line W64A)
                 Marks M.D., Lindell J.S., Larkins B.A.
    #Authors
    #Journal
                 J. Biol. Chem. (1985) 260:16451-16459
    #Title
                 Nucleotide sequence analysis of zein mRNAs from
                   maize endosperm.
    #Reference-number A92510; MVID:86059563
    #Accession E24557
    #Molecule-type mRNA
    #Residues
                1-234 (MAR)
 SUPERFAMILY
                 #Name zein
                 seed\ storage protein
 KEYWORDS
 FEATURE
    1-21
                            #Domain signal sequence (SIG>\
    22-234
                            #Protein 19K zein <MAT>
 SUMMARY
               #Molecular-weight 25435 #Length 234 #Checksum 3129
 SEQUENCE
Initial Score
                      10 Optimized Score = .
                                                  23 Significance = 3.96
                      22% Matches
Residue Identity =
                                                  33 Mismatches =
Gaps
                      19 Conservative Substitutions
   60
                       80
                                 90
                                          100
                                                    110
                                                              120
    NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                      MAAKIFCLLMLLG-LSASAATA
                                                              10
                    150
                                160
                                          170
                                                    180
                                                              190
                                                                        200
    VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
                           1 11 1
                                      1
                                                   - 1
    TIFP--QCSQAPIASLLPPYLSSAVSSVCENP--ILQPYRIQQAIAAG----ILPLSPLFLQQSSALLQQL
             30
                       40
                                 50
                                             60
                                                            70
                                                                      80
          210
                    220
                              230
                                        240
                                                  250
    IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
                      |
                                 - 11
                                                     - 1
    PLVHLL---AONIR----AOOLOOLVLANLAAYSOOOGFLPFNOLGSLNSASYLOOGGLPFSQLPAAYPQOF
                        100
                                  110
                                           120
                                                      130 X
    LPFNQLAALNSPAYLQQQQLLPFSQLAGVSPAT
  150
            160
                      170
                                180
14. ELLIS-012-FIG2AB.PEP (1-256)
    ZIZM3
                 19K zein precursor (clone A30) - Maize
 ENTRY
                 ZIZM3
                            #Type Protein
 TITLE
                 19K zein precursor (clone A30) - Maize
                 18-Dec-1981 #Sequence 30-Jun-1988 #Text 31-Mar-1993
 DATE
                 1340.0
                                  4.0
 PLACEMENT
                          1.0
                                         2.0
                                                1.0
 SOURCE
                 Zea mays #Common-name maize
                 C22762\ A03349
 ACCESSION
 REFERENCE
                 (Clone A30, sequence translated from the mRNA
                 Geraghty D., Peifer M.A., Rubenstein I., Messing J.
    #Authors
    #Journal
                 Nucleic Acids Res. (1981) 9:5163-5174
    #Title
                 The primary structure of a plant protein; zein.
    #Reference-number A93741; MUID:82081837
 REFERENCE
                 (Revision to amino end)
    #Authors
                 Geraghty D.E., Messing J., Rubenstein I.
```

ENRO J. (1982) 1:1329-1335

#Journal

```
zein multigene family.
    #Reference-number A90967; NUID:84207881
 SUPERFAMILY
                #Name zein
 KEYWORDS
                seed\ storage protein
 FEATURE
    1-21
                           #Domain signal sequence (SIG>\
    22-234
                           #Protein 19K zein <MAT>
 SUMMARY
              #Molecular-weight 25403 #Length 234 #Checksum 977
 SEQUENCE
Initial Score
                     10 Optimized Score =
                                                23 Significance = 3.96
Residue Identity =
                     22% Matches
                                          =
                                                33 Mismatches =
                                                                      97
Gaps
                      19 Conservative Substitutions
   60
                      80
                                90
                                         100
                                                  110
                                                            120
                                                                      130
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                    MAAKIFCLLMLLG-LSASAATA
                                                                       20
                                                            10
         140
                   150
                               160
                                         170
                                                  180
                                                            190
                                                                      200
    VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
                     1 11 1
                                    - 1
                                                - 1
                                                    1 111
    TIFP--0CS0APIASLLPPYLSPAVSSVCENP--ILOPYRIOQAIAAG-----ILPLSPLFL00SSALLQ0L
            30
                      40
                                50
                                            60
                                                          70
         210
                   220
                             230
                                       240
                                                250
                                                        X
    IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
                       1
                                - 11
    PLVHLL---AGNIR----AGGLOGLVLANLAAYSGGGGFLPFNGLAALNSASYLGGGGLPFSGLPAAYPGGF
       90
                       100
                                110
                                          120
                                                    130 X
                                                              140
   LPFN@LAALNSPAYL@@@@LLPFS@LAGVSPAT
  150
           160
                     170
                               180
15. ELLIS-012-FIG2AB.PEP (1-256)
   S15655
                Zein, 19K - Maize
ENTRY
                S15655
                           #Type Protein
 TITLE
                Zein, 19K - Maize
                04-Apr-1992 #Sequence 04-Apr-1992 #Text 04-Apr-1992
 DATE
PLACEMENT
                   0.0
                        0.0
                               0.0
                                       0.0 0.0
 SOURCE
                Zea maus #Common-name maize
 ACCESSION
                $15655
 REFERENCE
                Quayle T.J.A., Brown J.W.S., Feix G.
    #Authors
    #Journal
                Gene (1989) 80:249-257
    #Title
                Analysis of distal flanking regions of maize 19-kDa
                  zein genes.
    #Reference-number S15655; MUID:90060774
   #Accession S15655
    #Status
                preliminary
    #Residues 1-235 (QUA)
    #Cross-reference EMBL:X53582
 SUMMARY
              #Molecular-weight 25505 #Length 235 #Checksum 1651
SEQUENCE
Initial Score
                     10 Optimized Score =
                                                23 Significance = 3.96
Residue Identity =
                     22% Matches
                                          Ξ
                                                33 Mismatches =
                                                                      97
Gaps
                     19 Conservative Substitutions
                                                                       0
   60
                                90
            70
                      80
                                         100
                                                  110
                                                            120
                                                                      130
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
```

Sequence analysis and comparison of cDNAs of the

#Title

10 140 150 160 170 180 190 200 VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLAL 30 40 50 60 70 220 230 240 250 X 210 IFITLLFSVLKWIRKKFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL PLVHLL---AGNIR----AGGLOGLVLANVAAYSGGGGFLPFNGLAALNSAAYLGGGGLLPFSGLTAAYPGG 90 100 110 120 130 X 140 FLPFNQLAALNSAAYLQQQQLLPFSQLAVVSPA 150 160 170 180

MAAKIFCLLMLLG-LSASAATA

```
> 0 <
O| |O IntelliGenetics
> 0 <
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file ellis-012-fig2ab-spt.res made by shears on Tue 14 Sep 93 15:06:00-PDT.
Query sequence being compared: ELLIS-012-FIG2AB.PEP (1-256)
Number of sequences searched:
                                             29955
                                             3792
Number of scores above cutoff:
      Results of the initial comparison of ELLIS-012-FIG2AB.PEP (1-256) with:
   Data bank : Swiss-Prot 25, all entries
100000-
U50000-
В
Ε
0
F10000-
S
E 5000-
Q
U
Ε
N
C
Ε
5 1000-
   500-
   100-
    50-
```

10-									
-									
5-									
-									
-									
-									
-									
-									
_								¥	
0									
	 57	 85	 114	142	 171	 199	228 	1 256	

PARAMETERS

Similarity matrix	Unitary	K-tuple	2
Mismatch penalty	5	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.26		
Cutoff score	0		
Randomization group	0		
Initial scores to save	40	Alignments to save	15
Optimized scores to say	ve 0	Display context	50

SEARCH STATISTICS

Scores:	Mean	Median	Standard Deviat	ion
	4	5	1.75	

Times: CPU Total Elapsed 00:01:57.02 00:03:57.00

Number of residues: 10214020 Number of sequences searched: 29955 Number of scores above cutoff: 3792

Cut-off raised to 4. Cut-off raised to 5. Cut-off raised to 6. Cut-off raised to 7.

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was found:

Sequence Name	•	Init. Opt. Length Score Score Sig. Frame
1. 41BB MOUSE	T CELL ANTIGEN 4-1BB PRECURSO	

The list of other best scores is:

Sequence Name	Description	In: Length Sco		Opt. Score	Sig.	Frane
	**** 3 standard deviations	above mean	 ###	 ! &		
2. TF_MOUSE	TISSUE FACTOR PRECURSOR (TF)	294	11	42	4.00	0
3. NUSM_ARTSX	NADH-UBIQUINONE OXIDOREDUCTAS	59	10	14	3.43	0
4. M169 MOUSE	M1/69-J11D HEAT STABLE ANTIGE	76	10	19	3.43	0
5. ZEAB_MAIZE	ZEIN-ALPHA PRECURSOR (19 KD)	186	10	21	3.43	0
A. 7FA3 MA17F	7FIN-ALPHA PRECURSOR (19 KD)	270	10	27	7 47	Λ

7	ZEA5_MAIZE	ZEIN-ALPHA PRECURSOR (19 KD)	234	10	23	3.43	0
8	. ZEA4_MAIZE	ZEIN-ALPHA PRECURSOR (19 KD)	234	10	23	3.43	0
9	. ZEA1_MAIZE	ZEIN-ALPHA PRECURSOR (19 KD)	234	10	23	3.43	0
10	. ZEAC_MAIZE	ZEIN-ALPHA PRECURSOR (19 KD)	235	10	23	3.43	0
11	. ZEA2_MAIZE	ZEIN-ALPHA PRECURSOR (19 KD)	235	10	22	3.43	0
12	. ZEAL_MAIZE	ZEIN-ALPHA PRECURSOR (CLONE Z	253	10	21	3.43	0
13	. MD34_MOUSE	MOV34 PROTEIN.	321	10	38	3.43	0
14	. ATPB_SULAC	MEMBRANE-ASSOCIATED ATPASE BE	465	10	39	3.43	0
15	. TENA_CHICK	TENASCIN PRECURSOR (TN) (HEXA	1808	10	36	3.43	0
		**** 2 standard deviations a	bove mear	***			
16	. KR2_HUMAN	HKR2 PROTEIN (FRAGMENT).	106	9	23	2.86	0
17	. WAP_RABIT	WHEY ACIDIC PROTEIN PRECURSOR	127	9	16	2.86	0
18	. NU6M_DROYA	NADH-UBIQUINONE OXIDOREDUCTAS	174	9	15	2.86	0
19	. NU6M_DRONE	NADH-UBIQUINONE OXIDOREDUCTAS	174	9	16	8.5	0
20	YEIB_ECOLI	HYPOTHETICAL PROTEIN IN GALS	196	9	28	2.86	0
21	. HBG3_MOUSE	INT-2 PROTO-ONCOGENE PROTEIN	245	9	34	2.86	0
22	NIFC_CLOPA	NIFC PROTEIN.	286	9	16	2.86	0
23	YCE9_YEAST	HYPOTHETICAL 35.6 KD PROTEIN	312	9	16	2.86	0
24	. ASG2_ECOLI	L-ASPARAGINASE II PRECURSOR (348	9	39	2.86	0
25	. HC_HUMAN	ALPHA-1-MICROGLOBULIN / INTER	352	9	34	2.86	0
26	. DBDR_RAT	D(1B) DOPAMINE RECEPTOR.	475	9	18	2.86	0
27	. D5DR_HUMAN	D(5) DOPAMINE RECEPTOR.	477	9	19	2.86	0
28	. LMP2_EBV	GENE TERMINAL PROTEIN (MEMBRA	497	9	37	2.86	0
	. MPP1_NEUCR	MITOCHONDRIAL PROCESSING PEPT	577	9	21	2.86	0
30	. HS75_YEAST	HEAT SHOCK PROTEIN SSB1.	613	9	35	2.86	0
31	. EF3_PNECA	ELONGATION FACTOR 3 (EF-3).	1042	9	40	2.86	0
35	. NRG_DROME	NEUROGLIAN PRECURSOR.	1239	9	37	2.86	0
33	. IP3R_DROME	INOSITOL 1,4,5-TRISPHOSPHATE-	2833	9	35	2.86	0
34	. DEF1_RABIT	CORTICOSTATIN I PRECURSOR (CS	93	8	18	2.29	0
	. CYB_GEOSD	CYTOCHROME B (EC 1.10.2.2) (F	96	8	10	2.29	0
	. APC2_CAVPO	APOLIPOPROTEIN C-II PRECURSOR	100	8	15	2.29	0
	. VPX_HIV2D	VPX PROTEIN (X ORF PROTEIN).	111	8	19	2.29	0
	. VPX_SIVS4	VPX PROTEIN (X ORF PROTEIN).	112	8	19	2.29	0
	. CDL_CANFA	COLIPASE PRECURSOR.	112	8	19	2.29	0
40	YSCB_YEREN	HYPOTHETICAL YSC OPERON PROTE	137	8	21	2.29	0

1. ELLIS-012-FIG2AB.PEP (1-256)

41BB_MOUSE T CELL ANTIGEN 4-1BB PRECURSOR.

```
ID 41BB_MOUSE STANDARD; PRT; 256 AA.
```

AC P20334;

- DT 01-FEB-1991 (REL. 17, CREATED)
- DT 01-FEB-1991 (REL. 17, LAST SEQUENCE UPDATE)
- DT 01-APR-1993 (REL. 25, LAST ANNOTATION UPDATE)
- DE T CELL ANTIGEN 4-188 PRECURSOR.
- OS MUS MUSCULUS (MOUSE).
- OC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
- OC EUTHERIA; RODENTIA.
- RN [1]
- RP SEQUENCE FROM N.A.
- RM 89184547
- RA KWON B.S., WEISSMAN S.M.;
- RL PROC. NATL. ACAD. SCI. U.S.A. 86:1963-1967(1989).
- RN [2]
- RP CHARACTERIZATION, AND SEQUENCE OF 25-29.
- RA POLLOK K.E., KIM Y.-J., ZHOU Z., HURTADO J., KIN K.K., PICKARD R.T.,
- RA KWON B.S.;
- RL J. IMMUNOL. 150:771-781(1993).
- CC -!- FUNCTION: PUTATIVE RECEPTOR FOR A CYTOKINE. POSSIBLY ACTIVE CC DURING T CELL ACTIVATION.
- CC -!- SUBUNIT: PRINCIPALLY AN HOMODIMER, BUT ALSO FOUND AS A MONOMER.
- CC -!- INDUCTION: OPTIMAL BY PMA AND IDNOMYCIN.
- CC -!- TISSUE SPECIFICITY: EXPRESSED ON THE SURFACE OF ACTIVATED T CELLS.
- CC -!- SIMILARITY: CONTAINS A LA-NGFR/TNFR-TYPE CYSTEINE-RICH REGION.
- DR FMRI: JO4492: MMTC41RR.

```
DR
     PROSITE; PS00652; TNFR NGFR.
KW
     RECEPTOR; GLYCOPROTEIN; SIGNAL.
FT
     SIGNAL
                  1
                       24
FT
     CHAIN
                 25
                       256
                                T CELL ANTIGEN 4-1BB.
 FT
     DOMAIN
                 17
                       159
                                NGFR/TNFR REPEATS.
FT
     REPEAT
                 17
                        45
                                NGFR/TNFR REPEAT 1.
 FT
     REPEAT
                 46
                       85
                                NGFR/TNFR REPEAT 2.
FT
     REPEAT
                 86
                       117
                                NGFR/TNFR REPEAT 3.
 FT
     REPEAT
                118
                       159
                                NGFR/TNFR REPEAT 4.
FT
     CARBOHYD
                128
                       128
                                POTENTIAL.
FT
     CARBOHYD
                138
                       138
                                POTENTIAL.
 SQ
     SEQUENCE
               256 AA; 27598 MW; 347415 CN;
Initial Score
                    256 Optimized Score =
                                             256 Significance = 143.96
Residue Identity =
                   100% Matches
                                             256 Mismatches
                                        =
                                                                   0
Gaps
                      0
                        Conservative Substitutions
                                                                   0
           10
                    20
                             30
                                      40
                                               50
                                                         60
                                                                  70
   MGNNCYNVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@PNCNICRVCAGYFR
   MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@PNCNICRVCAGYFR
   X
           10
                    50
                             30
                                      40
                                               50
                                                         60
                                                                  70
         80
                  90
                          100
                                    110
                                             120
                                                      130
                                                               140
   FKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGR
   FKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGR
         80
                  90
                          100
                                    110
                                             120
      150
               160
                        170
                                  180
                                           190
                                                    200
                                                             210
   SVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRK
   SVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLALIFITLLFSVLKWIRK
      150
                        170
               160
                                  180
                                           190
                                                    200
                                                             210
    220
             230
                       240
                                250
                                       X
   KFPHIFKOPFKKTTGAAQEEDACSCRCPQEEEGGGGGYEL
   KFPHIFKOPFKKTTGAAOEEDACSCRCPOEEEGGGGGYEL
    220
             230
                       240
                                250
2. ELLIS-012-FIG2AB.PEP (1-256)
              TISSUE FACTOR PRECURSOR (TF) (COAGULATION FACTOR I
  TF MOUSE
ID
     TF MOUSE
                   STANDARD;
                                 PRT;
                                       294 AA.
AC
     P20352;
DT
     01-FEB-1991 (REL. 17, CREATED)
 DT
     01-AUG-1991 (REL. 19, LAST SEQUENCE UPDATE)
DT
     01-MAY-1992 (REL. 22, LAST ANNOTATION UPDATE)
     TISSUE FACTOR PRECURSOR (TF) (COAGULATION FACTOR III).
 DE
GN
     CF-3.
09
     MUS MUSCULUS (MOUSE).
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC.
00
     EUTHERIA; RODENTIA.
RN
     [1]
RP
     SEQUENCE FROM N.A.
RM
     91093171
RA
     RANGANATHAN G., BLATTI S.P., SUBRAMANIAM M., FASS D.N., MAIHLE N.J.,
RA
     GETZ M.J.;
RL
     J. BIOL. CHEM. 266:496-501(1991).
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=BALB/C;
RM
     89343974
```

DR

PIR; B32393; B32393.

```
MOL. CELL. BIOL. 9:2567-2573(1989).
 CC
     -!- FUNCTION: INITIATES BLOOD COAGULATION BY FORMING A COMPLEX WITH
 CC
         CIRCULATING FACTOR VII OR VIIA. THE [TF:VIIA] COMPLEX ACTIVATES
 CC
         FACTORS IX OR X BY SPECIFIC LIMITED PROTOLYSIS. TF PLAYS A ROLE IN
 CC
         NORMAL HEMOSTASIS BY INITIATING THE CELL-SURFACE ASSEMBLY AND
 CC
         PROPAGATION OF THE COAGULATION PROTEASE CASCADE.
 DR
     EMBL; M57896; MMTFA.
 DR
     EMBL; M26071; MMTF.
 DR
     PIR; A32318; A32318.
 DR
     PIR; A39046; A39046.
     PROSITE; PS00621; TISSUE_FACTOR.
 DR
 KW
     GLYCOPROTEIN; BLOOD COAGULATION; TRANSMEMBRANE; SIGNAL; LIPOPROTEIN.
 FT
     SIGNAL
                  1
                        28
 FT
     CHAIN
                  29
                       294
                                 TISSUE FACTOR.
 FT
     DOMAIN
                 29
                       251
                                 EXTRACELLULAR (POTENTIAL).
 FT
     TRANSMEM
                 252
                       274
                                 POTENTIAL.
 FT
     DOMAIN
                275
                       294
                                 CYTOPLASMIC (POTENTIAL).
 FT
     SITE
                 245
                       247
                                 WKS MOTIF.
 FT
                 37
     CARBOHYD
                        37
                                 POTENTIAL.
 FT
     CARBOHYD
                 57
                                 POTENTIAL.
                        57
 FT
     CARBOHYD
                 169
                       169
                              · POTENTIAL.
FT
     CARBOHYD
                 200
                       500
                                 POTENTIAL.
 FT
     DISULFID
                 75
                        83
                                 BY SIMILARITY.
FT
     DISULFID
                218
                       241
                                 BY SIMILARITY.
FT
                275
                       275
     LIPID
                                 PALMITATE (BY SIMILARITY).
 FT
               26
     CONFLICT
                        26
                                 I -> T (IN REF. 2).
 SQ
     SEQUENCE
                294 AA; 32935 MW; 468130 CN;
Initial Score
                =
                     11 Optimized Score =
                                               42 Significance = 4.00
Residue Identity =
                    23% Matches
                                               58 Mismatches =
                                                                   165
                     28 Conservative Substitutions
Gaps
                                                          10
                                                   MGNNCYNVVVIVLLLVGCEK-V
                                                     1 1 1
   VRPRLLAALAPTFLGCLLLGVIAGAGIPEKAFNLTWISTDFKTILEWOPKPTNYTYTVOISDRSRNWKNKCF
       10
                20
                          30
                                    40
                                             50
                                                   X 60
                              50
                                       60
                                                 70
                                                           80
   GAVONSCDNCOPGTFCRKYNPVCK-SCPPSTFSSIGGOPNCNICRVCAGYFRFKKF-CSSTHNAECECIEGF
                         STTDTECDLTDEIVKDVTWAYEAKVLSVPRRNSVHGDGDQLVIHGEEPPFTNAPKFLPYRDTNLGQPVIQQF
     80
              90
                       100
                                 110
                                          120
                                                   130
                                                             140
         100
                  110
                            120
                                       130
                                                 140
                                                          150
   HCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NG--TGVCRPWTNCSLDGRSVLKTGTTE--KDVVCG
                E@DGRKLNVVVKD-----SLT-LVRKNGTFLTLR@VFGKDLGYIITYRKGSSTGKKTNITNTNEFSIDVEEG
  150
            160
                           170
                                    180
                                              190
  160
           170
                                  190
                     180
                                                 200
                                                          210
                                                                    220
   PPVVSFSPSTTIS-VTPEGGPGGHSL@VLT----LFLALT-----SALLLALIFITLLFSVLKWIRKKFPHI
                    VSYCFFV@AMIFSRKTN@NSPG--SSTVCTE@WKSFLGETLIIVGAVVLLATIFIILLSISLCKRRK---NR
      220
               230
                           240
                                    250
                                              260
                                                       270
         230
              X
                  240
   FKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
     1 1 1
   AGGKGKNTPSRLA
         290 X
```

HARTZELL S., RYDER K., LANAHAN A., LAU L.F., NATHANS D.;

NUEM ARTEY NATH-HRIGHTMOME DYIDDREDUCTAGE CHAIN 5 (EC. 1 4 5 7

RA

```
NU5M_ARTSX STANDARD;
                                PRT;
                                        59 AA.
AC
     P19047;
DT
    01-NDV-1990 (REL. 16, CREATED)
    01-NOV-1990 (REL. 16, LAST SEQUENCE UPDATE)
     01-NOV-1990 (REL. 16, LAST ANNOTATION UPDATE)
 DT
 DE
     NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC 1.6.5.3) (FRAGMENT).
 GN
 05
     ARTEMIA SP. (BRINE SHRIMP).
 OG
    MITOCHONDRION.
 OC.
    EUKARYOTA; METAZOA; ARTHROPODA; CRUSTACEA; BRANCHIOPODA.
 RN
RP
     SEQUENCE FROM N.A.
 RM
    88289417
    BATUECAS B., GARESSE R., CALLEJA M., VALVERDE J.R., MARCO R.;
RL
     NUCLEIC ACIDS RES. 16:6515-6529(1988).
 CC
    -!- CATALYTIC ACTIVITY: NADH + UBIQUINDNE = NAD(+) + UBIQUINDL.
 DR EMBL; X07663; MIASO7.
DR
    PIR; S01877; S01877.
   OXIDOREDUCTASE; NAD; UBIQUINONE; MITOCHONDRION.
K₩
FT
    NON TER
             1
                       1
     SEQUENCE 59 AA; 6585 MW; 22406 CN;
SQ
Initial Score = 10 Optimized Score = 14 Significance = 3.43
Residue Identity = 25% Matches = 15 Mismatches = 42
Gaps
             = 2 Conservative Substitutions
 110
          120
                    130
                             140
                                      150
                                               160
                                                        170
   ELTKOGCKTCSLGTFNDONGTGVCRP#TNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGG
                                                             1
                                                 MGELLYHEGDCGWVEEAGPSLI
                                                    10
                    200
                             210
                                    X 220
           190
                                               230
                                                        240
   H--SLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQPFKKTTGAAQEEDACSCRCPQEEEGGG
   1 11 11 111 11 111
   HHNSLRGSSLFSFLTSSPYKVLILSSLLFTLFMYSMA
         30 40 50 X
   GGYEL
4. ELLIS-012-FIG2AB.PEP (1-256)
  M169_MDUSE M1/69-J11D HEAT STABLE ANTIGEN PRECURSOR.
    M169 MDUSE STANDARD;
                               PRT; 76 AA.
     P24807;
 AC
DT
     01-MAR-1992 (REL. 21, CREATED)
DT
    01-MAR-1992 (REL. 21, LAST SEQUENCE UPDATE)
    01-AUG-1992 (REL. 23, LAST ANNOTATION UPDATE)
DT
 DE M1/69-J11D HEAT STABLE ANTIGEN PRECURSOR.
 GN
    HSA-A.
    MUS MUSCULUS (MOUSE).
 0S
 OC.
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
 OC.
     EUTHERIA; RODENTIA.
RN
    [1]
RP
    SEQUENCE FROM N.A.
 RM 90361906
 RA KAY R., TAKEI F., HUMPHRIES R.K.;
 RL
    J. IMMUNOL. 145:1952-1959(1990).
 RN
    [2]
 RP
    SEQUENCE FROM N.A.
 RC
     STRAIN=CBA X C57BL/6; TISSUE=SPLEEN;
     91209380
```

MENCED D. W. AVANE M. POCE D. MOEULED C. MITELEEN D. I.

```
RL
      EUR. J. IMMUNOL. 21:1039-1046(1991).
 CC
      -!- FUNCTION: MAY HAVE A SPECIFIC ROLE TO PLAY IN EARLY THYMOCYTE
 CC
          DEVELOPMENT.
 CC
      -!- SUBCELLULAR LOCATION: ATTACHED TO THE MEMBRANE BY A GPI-ANCHOR.
 CC
      -!- TISSUE SPECIFICITY: IN LYMPHOID, MYELOID, AND ERYTHROID CELLS.
 CC
      -!- SIMILARITY: TO HUMAN SIGNAL TRANSDUCER CD24.
      EMBL; M58661; NMM169J1.
 DR
 DR
      EMBL; X56469; MMHSAAG.
 DR
      PIR; S15784; S15784.
 DR
      PIR; A43537; A43537.
 KW
      ANTIGEN; SIGNAL; GPI-ANCHOR; GLYCOPROTEIN; MULTIGENE FAMILY; MEMBRANE.
 FT
      SIGNAL
                  1
                         26
                                   POTENTIAL.
 FT
      CHAIN
                   27
                          56
                                   M1/69-J11D ANTIGEN.
 FT
      PROPEP
                   57
                         76
                                   REMOVED IN MATURE FORM (POTENTIAL).
 FT
     LIPID
                   56
                                   GPI-ANCHOR (POTENTIAL).
 FT
      CARBOHYD
                  27
                          27
                                   POTENTIAL.
 FT
                   39
      CARBOHYD
                          39
                                   POTENTIAL.
 FT
                  48
      CARBOHYD
                          48
                                   POTENTIAL.
      SEQUENCE 76 AA; 7797 MW; 30445 CN;
Initial Score
                =
                      10 Optimized Score =
                                                  19 Significance = 3.43
Residue Identity =
                      28% Matches
                                           =
                                                  22 Mismatches
Gaps
                        4 Conservative Substitutions
                                                                         0
     80
               90
                        100
                                  110
                                            120
                                                      130
                                                                140
    SSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGRSVLKT
                                                                   1
                                                      MGRAMVARLGLGLLLLALLLPT
                                                              10
    150
             160
                        170
                                  180
                                           190
                                                      200 X
                                                                210
    --GTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFP
                     111
                                  1 11 111
                                              @IYCN@TSVAPFPGN@NISASPNPSNATTRG-GGSSL@STAGLLAL-SLSLLHLYC
          30
                    40
                              50
                                        60
                                                    70
  550
            230
                      240
                                250
    HIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGG
5. ELLIS-012-FIG2AB.PEP (1-256)
   ZEAB_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (CLONE PZ19.1) (FRAGM
 ID
      ZEAB_MAIZE
                     STANDARD:
                                    PRT;
                                           186 AA.
 AC
      P04705;
 DT
      13-AUG-1987 (REL. 05, CREATED)
      13-AUG-1987 (REL. 05, LAST SEQUENCE UPDATE)
 DT
      01-AUG-1988 (REL. 08, LAST ANNOTATION UPDATE)
      ZEIN-ALPHA PRECURSOR (19 KD) (CLONE PZ19.1) (FRAGMENT).
 DE
 08
      ZEA MAYS (MAIZE).
      EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
 00
      CYPERALES; GRAMINEAE.
 RN
     [1]
 RP
      SEQUENCE FROM N.A.
 RM
      83103094
 RA
      PEDERSEN K., DEVEREUX J., WILSON D.R., SHELDON E., LARKINS B.A.;
 RL
      CELL 29:1015-1026(1982).
 CC
      -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
 CC
      -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
 CC
          ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
 DR
      EMBL; V01471; ZMZE02.
 KW
      SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
FT
      SIGNAL
                   1
                         21
      CHAIN
 FT
                  55
                       >186
                                   ZEIN-ALPHA.
 FT
      NON TER
                 186
                      186
                IRA AA: 20010 MH: 150000 CM:
```

```
Initial Score =
                 10 Optimized Score = 21 Significance = 3.43
                19% Matches = 29 Mismatches = 105
Residue Identity =
                 15 Conservative Substitutions
  60
           70
                  80
                            90
                                    100
                                            110
                                                     120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGPQCTRCEKDCRPGGELTKQGCKTCSLGTFNDQNGTG
                                                MAAKIFCLIMLLG-LSASAATA
                                                  10
                  150
                         160
                                 170
                                          180
                                                     190
                                                              200
   VCRPWTNCSLDGRSVL--KTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
      SIFP--0CS0APIASLLPPYLSPAMSSVCENP--ILLPYRI00AIAAG----ILPLSPLFLQ0SSALLQ0L
                               60
           30 40 50
                                               70
        210
                 220
                         230
                                  240
                                           250
   IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
       11 11
   PLVHLL---AGNIRAGGLOGLVLANLAAYSGGGGLPLVHLLAGNIRAGGLOGLVLANLAAYSGGGGFLPFNG
          100 110 120 130 X 140
       90
   QLAAAYPROFLPFNQLAALNSHAYVQQQQLLPF
       160 170 180
6. ELLIS-012-FIG2AB.PEP (1-256)
  ZEA3_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (CLONE 19A2) (FRAGMEN
     ZEA3 MAIZE
                 STANDARD;
 ID
                              PRT; 230 AA.
     P06674;
 AC
     01-JAN-1988 (REL. 06, CREATED)
DT
     01-JAN-1988 (REL. 06, LAST SEQUENCE UPDATE)
DT
     01-NOV-1988 (REL. 09, LAST ANNOTATION UPDATE)
 DE
     ZEIN-ALPHA PRECURSOR (19 KD) (CLONE 19A2) (FRAGMENT).
0S
     ZEA MAYS (MAIZE).
DC
     EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
00
    CYPERALES; GRAMINEAE.
RN
RP
     SEQUENCE FROM N.A.
RM
     86059563
RA
     MARKS M.D., LINDELL J.S., LARKINS B.A.;
     J. BIOL. CHEM. 260:16451-16459(1985).
CC
    -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
 CC
    -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
CC
        ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
CC
     -!- STRUCTURALLY, 22K AND 19K ZEINS ARE COMPOSED OF NINE ADJACENT,
CC
        TOPOLOGICALLY ANTIPARALLEL HELICES CLUSTERED WITHIN A DISTORTED
CC
        CYLINDER.
DR
     EMBL: M12142; ZMZE19A2.
 DR
    PIR; D24557; ZIZMA2.
KW
    SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
FT
     NON TER 1
                     1
FT
     SIGNAL
               ₹1
                     18
             19
FT
     CHAIN
                     230
                              ZEIN-ALPHA.
 SQ
     SEQUENCE 230 AA; 25032 MW; 249816 CN;
Initial Score = 10 Optimized Score =
                                          23 Significance = 3.43
Residue Identity =
                  22% Matches =
                                          33 Mismatches = 94
Gaps
                 19 Conservative Substitutions
                         90
                 80
                                 100
                                          110 X
                                                120
   ICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCR
```

1 1 11

```
X
        10
                   50
```

```
140
             150
                      160
                              170
                                       180
                                               190
   PWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLALIFI
    P--0CS0APITSLLPPYLSPAVSSVCENP--IL0PYRI00AIAAG----ILPLSPLFL00PSALL00LPLV
          30 40 50 60
     210
             220
                     230
                            240
                                     250
   TLLFSVLKWIRKKFPHIFKOPFKKTTGAAQEEDACSCRCPGEEEGGGGGYEL
   HLL---AONIR----AOOLOOLVLGNLAAYSOOHOFLPFNOLAALNSAAYLOOOLPFSOLAAAYPOOFLPFN
        90
             100 110 120 130
   QLAALNSAAYLQQQQLPPFSQLADVSPAAF
 150 160 170
7. ELLIS-012-FIG2AB.PEP (1-256)
  ZEA5_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (CLONE GZ19AB11).
ID
   ZEA5_MAIZE
              STANDARD;
                           PRT; 234 AA.
    P08416;
    01-AUG-1988 (REL. 08, CREATED)
DT
    01-AUG-1983 (REL. 08, LAST SEQUENCE UPDATE)
DT
    01-AUG-1988 (REL. 08, LAST ANNOTATION UPDATE)
    ZEIN-ALPHA PRECURSOR (19 KD) (CLONE GZ19AB11).
    ZEA MAYS (MAIZE).
    EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERNAE; MONDCOTYLEDONEAE;
DC
    CYPERALES; GRAMINEAE.
RN
    [1]
RP
    SEQUENCE FROM N.A.
RC
   STRAIN=W64A;
RM
   87257300
RA
   KRIZ A.L., BOSTON R.S., LARKINS B.A.;
    MOL. GEN. GENET. 207:90-98(1987).
CC
    -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
CC
    -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
CC
        ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
DR
    EMBL; X05911; ZMZEI19.
DR
    PIR; S03417; S03417.
ĸW
    SEED STORAGE PROTEIN; TANDEM REPEAT; SIGNAL.
            1 21
FT
    CHAIN
              22 234
                            ZEIN-ALPHA.
    SEQUENCE 234 AA; 25439 MW; 271676 CN;
Initial Score = 10 Optimized Score = 23 Significance = 3.43
Residue Identity = 21% Matches = 32 Mismatches = 98
             = 19 Conservative Substitutions
Gaps
          70
                 80
                          90
                                 100
                                         110
                                                 120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                            MAAKIFCLLMLLG---LSASAA
                                             10
        140
                150
                         160
                                 170
                                         180
                                                 190
   VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLAL
       TATIFT@CS@APIASLLPPYLSSAVSSVCENP--IL@PYRI@@AIAAG-----ILPLSPLFL@@SSALL@@L
  20
       30 40 50
                             60
                                            70
                220
                        230
                              240
   IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
```

PLUHI I ---AMIR----AMM GALUL ANI AAVEGGGGE PENGLICEI MEARVI GGGGI PEGGI PAAVEGGE

AC

DE

08

```
LPFN0LAALNSPAYL0000LLPFSQLAGVSPAT
 150 160 170 180
8. ELLIS-012-FIG2AB.PEP (1-256)
  ZEA4_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (CLONE 19B1).
    ZEA4 MAIZE STANDARD; PRT; 234 AA.
    P06675;
AC
    01-JAN-1988 (REL. 06, CREATED)
    01-JAN-1988 (REL. 06, LAST SEQUENCE UPDATE)
DT
    01-NOV-1988 (REL. 09, LAST ANNOTATION UPDATE)
    ZEIN-ALPHA PRECURSOR (19 KD) (CLONE 1981).
08
   ZEA MAYS (MAIZE).
    EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
BC.
    CYPERALES; GRAMINEAE.
RN
    [1]
RP
    SEQUENCE FROM N.A.
    86059563
RM
   MARKS M.D., LINDELL J.S., LARKINS B.A.;
    J. BIOL. CHEM. 260:16451-16459(1985).
    -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
CC -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
        ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
CC
 CC
    -!- STRUCTURALLY, 22K AND 19K ZEINS ARE COMPOSED OF NINE ADJACENT,
 CC
        TOPOLOGICALLY ANTIPARALLEL HELICES CLUSTERED WITHIN A DISTORTED
 CC
        CYLINDER.
 DR
    EMBL; M12143; ZMZE19B1.
   PIR; E24557; ZIZMB1.
   SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
KW
FT
   SIGNAL
             1
                    21
    CHAIN
            22 234 ZEIN-ALPHA.
FT
    SEQUENCE 234 AA; 25435 MW; 271626 CN;
Initial Score = 10 Optimized Score = 23 Significance = 3.43
Residue Identity = 22% Matches = 33 Mismatches = 97
Gaps
             = 19 Conservative Substitutions
  60
                       90 100
          70 80
                                       110
                                                  120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                             MAAKIFCLLMLLG-LSASAATA
                                              10
        140 150
                        160
                                170
                                        180
                                                 190
   VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLAL
     TIFP--QCSQAPIASLLPPYLSSAVSSVCENP--ILQPYRIQQAIAAG-----ILPLSPLFLQQSSALLQQL
          30 40 50
                              60
                                            70
                220
                       230
                                240
                                         250
   IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
      PLVHLL---A0NIR----A00L00LVLANLAAYSQQQQFLPFNQLGSLNSASYLQQQQLPFSQLPAAYPQQF
           100 110 120 130 X 140
   LPFNQLAALNSPAYLQQQQLLPFSQLAGVSPAT
 150 160 170 180
9. ELLIS-012-FIG2AB.PEP (1-256)
  ZEA1_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (CLONE A30).
```

90

100

110

120

130 X

140

IN TEAL MAITE CTANDADD: DDT: 274 A

```
DT
     21-JUL-1986 (REL. 01, CREATED)
     13-AUG-1987 (REL. 05, LAST SEQUENCE UPDATE)
 DT
     01-AUG-1988 (REL. 08, LAST ANNOTATION UPDATE)
 DT
     ZEIN-ALPHA PRECURSOR (19 KD) (CLONE A30).
 05
     ZEA MAYS (MAIZE).
 ac
     EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
 00
     CYPERALES; GRAMINEAE.
 RN
     [1]
 RP
     SEQUENCE FROM N.A.
 RM
     82081837
 RA
     GERACHTY D., PEIFER M.A., RUBENSTEIN I., MESSING J.;
     NUCLEIC ACIDS RES. 9:5163-5174(1981).
 RL
 RN
     [2]
 RP
     SEQUENCE FROM N.A.
 RM
     84207882
    HU N.T., PEIFER M.A., HEIDECKER G., MESSING J., RUBENSTEIN I.;
 RA
 RL
     EMBO J. 1:1337-1342(1982).
 CC
    -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
 CC
     -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
 CC
         ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
 CC
     -!- STRUCTURALLY, 22K AND 19K ZEINS ARE COMPOSED OF NINE ADJACENT,
 CC
         TOPOLOGICALLY ANTIPARALLEL HELICES CLUSTERED WITHIN A DISTORTED
 CC
         CYLINDER.
 DR
     EMBL; VO1481; ZMZEIN.
 DR
     PIR; C22762; ZIZM3.
 DR
     PIR; S21970; S21970.
 ΚW
     SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
 FT
     SIGNAL
                 1
                       21
 FT
     CHAIN
                 22
                       234
                                ZEIN-ALPHA.
 50
     SEQUENCE 234 AA; 25403 MW; 260041 CN;
Initial Score = 10 Optimized Score =
                                              23 Significance = 3.43
Residue Identity =
                    22% Matches
                                               33 Mismatches =
                                         =
Gaps
                  19 Conservative Substitutions
            70
                     80
                               90
                                       100
                                                110
                                                          120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGPOCTRCEKDCRPGOELTKOGCKTCSLGTFNDONGTG
                                                     1 1 11
                                                  MAAKIFCLLMLLG-LSASAATA
                                                          10
         140
                  150
                             160
                                       170
                                                180
                                                          190
   VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLAL
      1 11 1 1 11 1
                                           1 1 111 1111 1
   TIFP--QCSQAPIASLLPPYLSPAVSSVCENP--ILQPYRIQQAIAAG-----ILPLSPLFLQQSSALLQQL
            30
                     40
                              50
                                          60
                                                        70
                  550
                            230
                                     240
                                               250
    IFITLLFSVLKWIRKKFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
       PLVHLL---A0NIR----A00L0QLVLANLAAYSQQQQFLPFNQLAALNSASYLQQQQLPFSQLPAAYPQQF
       90
                      100
                               110
                                       120
                                                130 X
   LPFN0LAALNSPAYL0000LLPFS0LAGVSPAT
  150
          160
                    170
10. ELLIS-012-FIG2AB.PEP (1-256)
   ZEAC_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (PMS1).
 ID
    ZEAC_MAIZE
                   STANDARD;
                                PRT; 235 AA.
 AC
     P24449;
     01-MAR-1992 (REL. 21, CREATED)
 DT
     01-MAR-1992 (REL. 21, LAST SEQUENCE UPDATE)
```

DI-MAR-1999 (REL DI LACT AMMOTATION HERATE)

AC

P02859;

```
DE
     ZEIN-ALPHA PRECURSOR (19 KD) (PMS1).
05
     ZEA MAYS (MAIZE).
     EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
 OC.
     CYPERALES; GRAMINEAE.
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=CV. A619;
RM
    90060774
RA
    QUAYLE T.J.A., BROWN J.W.S., FEIX G.;
RL
     GENE 80:249-257(1989).
    -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
 CC
     -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
 CC
         ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
 CC
     -!- STRUCTURALLY, 22K AND 19K ZEINS ARE COMPOSED OF NINE ADJACENT,
 CC
         TOPOLOGICALLY ANTIPARALLEL HELICES CLUSTERED WITHIN A DISTORTED
CC
         CYLINDER.
 DR
     EMBL; X53582; ZMPMS1G.
     PIR; $15655; $15655.
     SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
ĸw
FT
     SIGNAL
                1
                      21
                                BY SIMILARITY.
FT
     CHAIN
                22
                      235
                                ZEIN-ALPHA.
50
     SEQUENCE 235 AA; 25505 MW; 262683 CN;
Initial Score = 10 Optimized Score =
                                             23 Significance = 3.43
Residue Identity = 22% Matches =
                                             33 Mismatches = 97
              = 19 Conservative Substitutions
Gaps
  60
                     80
                              90
                                      100
                                               110
                                                        120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                   1 1 11
                                                 MAAKIFCLLMLLG-LSASAATA
                                                        10
                  150
                             160
                                      170
                                               180
                                                        190
   VCRPWTNCSLDGRSVLKTGTTEKDV--VCGPPVVSFSP5TTISVTPEGGPGGHSLQVLTLFLALTSALLLAL
      TIFP--QCSQAPIASLLPPYLSPAVSSVCENP--ILQPYRIQQAIAAG----ILPLSPLFLQQSSALLQQL
           30 40
                                        60
                            50
                                                    70
                  220
                           230
                                    240
                                             250
   IFITLLFSVLKWIRKKFPHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
       PLVHLL---AGNIR----AGGL@GLVLANVAAYSG@GGFLPFNGLAALNSAAYL@GGGLLPFSGLTAAYPGG
       90
                    100
                          110 120 130 X
   FLPFNQLAALNSAAYLQQQQLLPFSQLAVVSPA
 150
          160
                   170
                          180
11. ELLIS-012-FIG2AB.PEP (1-256)
   ZEA2_MAIZE ZEIN-ALPHA PRECURSOR (19 KD) (CLONE ZG99).
ID
    ZEA2 MAIZE
                   STANDARD;
                                PRT: 235 AA.
AC
    P04704;
DT
     13-AUG-1987 (REL. 05, CREATED)
DT
     13-AUG-1987 (REL. 05, LAST SEQUENCE UPDATE)
     01-NDV-1988 (REL. 09, LAST ANNOTATION UPDATE)
DΕ
     ZEIN-ALPHA PRECURSOR (19 KD) (CLONE ZG99).
     ZEA MAYS (MAIZE).
00
     EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
OC.
     CYPERALES; GRAMINEAE.
RN
RP
     SEQUENCE FROM N.A.
     82265740
```

MARKS M D . LARKING R A .

```
RL
     J. BIOL. CHEM. 257:9976-9983(1982).
RP
     SEQUENCE FROM N.A.
RM
    83103094
    PEDERSEN K., DEVEREUX J., WILSON D.R., SHELDON E., LARKINS B.A.;
 RL
     CELL 29:1015-1026(1982).
     -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
 CC
 CC
    -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
 CC
         ZEIN FRACTION. THEY ARE ENCODED BY A LARGE MULTIGENE FAMILY.
 CC
     -!- STRUCTURALLY, 22K AND 19K ZEINS ARE COMPOSED OF NINE ADJACENT,
 CC
        TOPOLOGICALLY ANTIPARALLEL HELICES CLUSTERED WITHIN A DISTORTED
 CC
         CYLINDER.
 DR
     EMBL; V01470; ZMZE01.
 DR
     EMBL; V01479; ZMZE10.
 DR
     PIR; A29288; ZIZM99.
KW
     SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
FT
               1
                      21
FT
     CHAIN
                 55
                      235
                               ZEIN-ALPHA.
     SEQUENCE 235 AA; 25575 MW; 261593 CN;
Initial Score = 10 Optimized Score =
                                             22 Significance = 3.43
Residue Identity = 21% Matches =
                                             32 Mismatches =
Gaps
             = 19 Conservative Substitutions
  60
           70
                    80
                             90
                                      100
                                               110
                                                        120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                   MAAKIFCLIMLLG-LSASAATA
                                                      10
         140
                   150
                            160
                                     170
                                              180
                                                        190
   VCRPWTNCSLDGRSVL--KTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
      1 1 111 1111 1
   SIFP--QCSQAPIASLLPPYLSPAMSSVCENP--ILLPYRIQQAIAAG-----ILPLSPLFLQQSSALLQQL
                 40
                             50
                                    60
                                                   70
                                             250
         210
                 220
                           230
                                    240
   IFITLLFSVLKWIRKKFPHIFKQPFKKTTGAAQEEDACSCRCPQEEEGGGGGYEL
       PLVHLL---AGNIR----AGGLQQLVLANLAAYSQQQGFLPFNQLAALNSAAYLQQQQLLPFSQLAAAYPRQ
       90
                     100
                            110
                                   120 130 X
   FLPFN0LAALNSHAYV0000LLPFS0LAAVSPA
 150 160 170 180
12. ELLIS-012-FIG2AB.PEP (1-256)
   ZEAL_MAIZE ZEIN-ALPHA PRECURSOR (CLONE Z4).
ID
    ZEAL_MAIZE
                   STANDARD;
                                PRT; 253 AA.
     P04701;
AC
 DT
     13-AUG-1987 (REL. 05, CREATED)
DT
     13-AUG-1987 (REL. 05, LAST SEQUENCE UPDATE)
    01-AUG-1988 (REL. 08, LAST ANNOTATION UPDATE)
DE
     ZEIN-ALPHA PRECURSOR (CLONE Z4).
05
     ZEA MAYS (MAIZE).
OC.
     EUKARYOTA; PLANTA; EMBRYOPHYTA; ANGIOSPERMAE; MONOCOTYLEDONEAE;
DC
     CYPERALES; GRAMINEAE.
RN
     [1]
R۶
     SEQUENCE FROM N.A.
RM
     84207882
RA
     HU N.T., PEIFER M.A., HEIDECKER G., MESSING J., RUBENSTEIN I.;
RL
     EMBO J. 1:1337-1342(1982).
 CC
     -!- FUNCTION: ZEINS ARE MAJOR SEED STORAGE PROTEINS.
     -!- THE ALPHA ZEINS OF 19 KD AND 22 KD ACCOUNT FOR 70% OF THE TOTAL
```

7FIN EDACTION THEY ARE ENCORED BY A LARCE MULTICENE EAMILY

CC

```
DR
     EMBL; VO1472; ZMZEO3.
     SEED STORAGE PROTEIN; TANDEM REPEAT; MULTIGENE FAMILY; SIGNAL.
 FT
              1 21
     CHAIN
FT
               55
                     253
                              ZEIN-ALPHA.
     SEQUENCE 253 AA; 27700 MW; 300631 CN;
Initial Score = 10 Optimized Score = 21 Significance = 3.43
Residue Identity = 19% Matches = 29 Mismatches = 105
Gaps
          = 15 Conservative Substitutions
  60
           70
                   80
                            90
                                    100
                                           110
                                                    120
   NCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTG
                                                MAAKIFCLIMLLG-LSASAATA
                                                   10
        140
                  150
                           160
                                  170
                                            180
                                                     190
   VCRPHTNCSLDGRSVL--KTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL@VLTLFLALTSALLLAL
      SIFP--QCSQAPIASLLPPYLSPAMSSVCENP--ILLPYRIQQAIAAG-----ILPLSPLFLQQSSALLQQL
           30 40 50 60 70 80
                220
        210
                         230
                                  240
                                          250
   IFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
       PLVHLL---AGNIRAGGLGGLVLANLAAYSGGGGLPLVHLLAGNIRAGGLGGLVLANLAAYSGGGGFLPFNG
          100 110 120 130 X 140
       90
   LAALNSAAYLOOOOLLPFSQLAAAYPRQFLPFN
      160 170 180
13. ELLIS-012-FIG2AB.PEP (1-256)
   MO34_MOUSE MOV34 PROTEIN.
 ID
     MO34_MOUSE
                 STANDARD;
                             PRT; 321 AA.
AC
     P26516;
     01-AUG-1992 (REL. 23, CREATED)
DT
    01-APR-1993 (REL. 25, LAST SEQUENCE UPDATE)
DT
    01-APR-1993 (REL. 25, LAST ANNOTATION UPDATE)
DE
    MOV34 PROTEIN.
GN
    HOV-34.
08
     MUS MUSCULUS (MOUSE).
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
DC.
     EUTHERIA; RODENTIA.
RN
    [1]
RP
    SEQUENCE FROM N.A.
RM
     91005870
     GRIDLEY T., GRAY D.A., ORR-WEAVER T., SORIAND P., BARTON D.E.,
RA
     FRANCKE U., JAENISCH R.;
RL
     DEVELOPMENT 109:235-242(1990).
RN
    [2]
R۶
    SEQUENCE FROM N.A.
RM
    92128931
RA
    GRIDLEY T., JAENISCH R., GENDRON-MAGUIRE M.;
RL
     GENOMICS 11:501-507(1991).
CC
     -!- FUNCTION: MAY PLAY AN IMPORTANT ROLE IN EARLY DEVELOPMENT.
CC
    -!- DISEASE: DISRUPTION OF THE MOV-34 LOCUS IS A RECESSIVE EMBRYONIC
CC
        LETHAL MUTATION.
CC
    -!- SIMILARITY: 62% IDENTITY TO DROSOPHILA MOV34 PROTEIN.
DR
    EMBL; M64641; MMMOV34.
    EMBL; M64634; MMMOV341.
DR
     EMBL; M64635; MMMOV342.
DR
    EMBL; N64636; MMMDV343.
     EMBL; M64637; MMMOV344.
```

EMRI: MAAARQ: MMMDURAA

```
PIR; A40556; BWMSV4.
FT
     DOMAIN 283 321
                              HYDROPHILIC.
SØ
     SEQUENCE 321 AA; 36540 MW; 520650 CN;
Initial Score = 10 Optimized Score = 38 Significance = 3.43
Residue Identity = 17% Natches = 46 Mismatches = 202
Gaps
        = 12 Conservative Substitutions
                                   10
                                            20
                                                     30
                                                              40
                            MGNNCYNVVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVC
                                           11 111
   MPELAVQKVVVHPLVLLSVVDHFNRIGKVGN--QKRVVGVLLGSWQKKVLDVSNS--FAVPFDEDDKDDSVW
                            30
                                       40
                                           50
       50
                         70
               60
                                   80
                                            90
                                                    100
   KSCPPSTFSSIGG@PNCN-ICRVCAGYFRFKK-FCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@
             FLDHDYLENMYGMFKKVNARERIVGWYHTGPKLHKNDIAINELMKRYCPNSVLVIIDVKPKDLGLPTEAYIS
   70
           80
                    90
                         100
                                  110
                                           120
                                                       130
      120
               130
                        140
                                 150
                                          160
                                                   170
   GCKTCSLGTFNDQNGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGHSL-Q
                     VEEVHDDGTPTSKTFEHVTSEIGAEEAEEVGVEHLLRDIKD----TTVGTLS@RITN@VHGLKGLNSKLLDI
              160 170 180
                                                190
     190
              200
                       210
                                220
                                          230
                                                   240
                                                            250
   VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIF-KQPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
          RSYLEKVASGKLPINH@IIY@L@DVFNLLPDASL@EFVKAFYLKTND@MVVVYLASLIRSVVALHNLINNKI
  210
          220 230
                         240 250 260 270
   ANRDAEKKEGGEKEESKKERKDDKEKEKSDAAKKEEKKEKK
         290 300 310
14. ELLIS-012-FIG2AB.PEP (1-256)
   ATPB_SULAC MEMBRANE-ASSOCIATED ATPASE BETA CHAIN (EC 3.6.1.34
     ATPB_SULAC
ID
                  STANDARD; PRT; 465 AA.
AC
     P13052;
DT
     01-JAN-1990 (REL. 13, CREATED)
     01-JAN-1990 (REL. 13, LAST SEQUENCE UPDATE)
DT
     01-MAY-1992 (REL. 22, LAST ANNOTATION UPDATE)
DE
     MEMBRANE-ASSOCIATED ATPASE BETA CHAIN (EC 3.6.1.34) (SUL-ATPASE BETA).
GN
08
     SULFOLOBUS ACIDOCALDARIUS.
OC
     PROKARYOTA; MENDOSICUTES; ARCHAEBACTERIA; SULFOLOBALES.
RN
RP
     SEQUENCE FROM N.A.
RM
     89034240
    DENDA K., KONISHI J., OSHIMA T., DATE T., YOSHIDA M.;
RL
     J. BIOL. CHEM. 263:17251-17254(1988).
CC
     -!- THIS IS A REGULATORY SUBUNIT.
     -!- SUBUNIT: SUL-ATPASE IS COMPOSED OF SIX (OR FIVE ?) SUBUNITS:
CC
CC
        ALPHA, BETA, DELTA, GAMMA, C (PROTEOLIPID), AND POSSIBLY EPSILON.
CC
     -!- SIMILARITY: STRONG TO OTHER ARCHEBACTERIA BETA SUBUNITS, ALSO
CC
        RELATED TO THE ALPHA SUBUNITS OF FO-F1 ATPASES.
DR
    EMBL; M22402; SAATPB.
DR
    PIR; A32118; A32118.
    PROSITE; PS00152; ATPASE_ALPHA_BETA.
ΚW
     HYDROLASE; HYDROGEN ION TRANSPORT.
     SEQUENCE 465 AA; 51247 MW; 1080510 CN;
```

DR

EMBL; M64640; MMMOV347.

Initial Score = 10 Onlimited Score = 39 Significance = 343

```
49 Mismatches
       = 21 Conservative Substitutions
                                                                0
                                            10
                                                     20
                                      MGNNCYNVVVIVLLLVGCEKV--GAVONSCDNC
                                      MSLLNVREYSNISMIKGPLIAV@GVSDAAYNELVEIEMPDGSKRRGLVVDS@MGVTFV@VFEGTTGISPTGS
              20
                            30
                                    40
         40
                  50
                           60
                                    70
                                             80
                                                             100
   OPGTFCRKYNPVCKSCPPSTFSSIGGOPNCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGPOCTRCEK
                        KVRFLGRGLEVKISEEMLGRIFNPLGEPLDNGPPVIGGEKR-NINGDPINPATREYPEEFIGTGISAIDGLN
                        100
                                  110
                                           120
                                                    130
       110
               120
                         130
                                  140
                                           150
                                                    160
   DCRPG@ELTK@GCKTCSLGTFND@--NGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISV
       SLLRGSKITDLSGSGLPANTLAAQIAKQATVRGEESNFAVVFAAIGVRYDEALFFRKFFEETGAINRVAMFV
       150
               160
                    170
                             180
                                      190
                                                  200
       180
               190
                        200
                                            210
                                                     220
                                                               230
   TPEGGPGGHSLQVLTLFLALTSALLLA-----LIFIT---LLFSVLKWIRKKFPHIFKQP-FKKTTG
      TLANDP--PSLKILTPKTALTLAEYLAFEKDMHVLAILIDMTNYCEALRELSASREEVPGRGGYPGYMYTDL
                        240 250 260 270
        240
                 250
                        X
   AA0EEDACSCRCPQEEEGGGGGYEL
   ATIYERAGKVIGKKGSIT@MPILTMPNDDMTHPIPDLTGYITEG@IYLDRSLFNKGIYPPINVLMSLSRLMK
             300
                      310
                               320
                                        330
                                                 340
   DGI
   360
15. ELLIS-012-FIG2AB.PEP (1-256)
   TENA_CHICK TENASCIN PRECURSOR (TN) (HEXABRACHION) (CYTOTACTIN
    TENA_CHICK
ID
                  STANDARD; PRT; 1808 AA.
AC
     P10039; P13132;
DT
     01-MAR-1989 (REL. 10, CREATED)
     01-MAR-1992 (REL. 21, LAST SEQUENCE UPDATE)
     01-AUG-1992 (REL. 23, LAST ANNOTATION UPDATE)
    TENASCIN PRECURSOR (TN) (HEXABRACHION) (CYTOTACTIN) (NEURONECTIN)
DE
     (GMEM) (JI) (MIOTENDINOUS ANTIGEN) (GLIOMA-ASSOCIATED-EXTRACELLULAR
DE
     MATRIX ANTIGEN) (GP 150-225).
OS
     GALLUS GALLUS (CHICKEN).
DC.
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; AVES; NEOGNATHAE;
00
     GALLIFORMES.
RN
    [1]
RP
     SEQUENCE FROM N.A.
    TISSUE=EMBRYO;
RC
RM
     90030407
     SPRING J., BECK K., CHIQUET-EHRISMANN R.;
RA
RL
     CELL 59:325-334(1989).
RN
RP
     SEQUENCE OF 27-722 FROM N.A., AND SEQUENCE OF 79-96.
RC
     TISSUE=FIBROBLAST;
RM
     89030589
RA
     PEARSON C.A., PEARSON D., SHIBAHARA S., HOFSTEENGE J.,
RA
     CHIQUET-EHRISMANN R.;
RL
     EMBO J. 7:2977-2982(1988).
```

SECHENCE OF ALALIATO AND TATOLILL FORM N A

Residue Identity =

17% Matches

204

```
RM
     88176910
RA
     JONES F.S., BURGOON M.P., HOFFMAN S., CROSSIN K.L., CUNNINGHAM B.A.,
RA
     EDELMAN G.M.;
RL
     PROC. NATL. ACAD. SCI. U.S.A. 85:2186-2190(1988).
CC
     -!- FUNCTION: SAM (SUBSTRATE-ADHESION MOLECULE) THAT APPEARS TO
CC
         INHIBIT CELL MIGRATION. MAY PLAY A ROLE IN SUPPORTING THE GROWTH
CC
         OF EPITHELIAL TUNORS.
CC
     -!- SUBUNIT: HEXAMERIC. AN HOMOTRIMER MAY BE FORMED IN THE TRIPLE
CC
         COILED-COIL REGION AND MAY BE STABILIZED BY DISULFIDE RINGS AT
CC
         BOTH ENDS. TWO OF SUCH HALF-HEXABRACHIONS MAY BE DISULFIDE LINKED
CC
         WITHIN THE CENTRAL GLOBULE.
CC
     -!- INDUCTION: BY TGF-BETA.
CC
     -!- SUBCELLULAR LOCATION: EXTRACELLULAR MATRIX.
CC
     -!- ALTERNATIVE SPLICING: THREE VARIANTS OF 230 KD, 200 KD, AND 190 KD
CC
         ARE PRODUCED FROM A SINGLE GENE IN A TISSUE- AND TIME-SPECIFIC
CC
         MANNER DURING DEVELOPMENT.
CC
     -!- SIMILARITY: INCLUDES 13.5 EGF-LIKE REPEATS AND 11 FIBRONECTIN
CC
         TYPE III-LIKE DOMAINS.
DR
     EMBL; M23121; GGTEN.
DR
     EMBL; X08031; GGTENAS1.
DR
     EMBL; X08030; GGTENAS8.
DR
     EMBL; J03641; GGCYTT1.
DR
     EMBL; M20816; GGCYTT2.
DR
     PIR; A30903; A30903.
DR
     PIR; A31930; A31930.
DR
     PIR; A33379; A33379.
DR
     PIR; B33379; B33379.
DR
     PIR; C33379; C33379.
DR
     PIR; S01292; S01292.
DR
     PROSITE; PS00022; EGF.
KW
     GLYCOPROTEIN; CELL ADHESION; TANDEM REPEAT; EGF-LIKE DOMAIN;
KW
     EXTRACELLULAR MATRIX; SIGNAL; ALTERNATIVE SPLICING.
FT
     SIGNAL
                          25
                   1
FT
     PROPEP
                   23
                          33
FT
     CHAIN
                   34
                        1808
                                   TENASCIN.
FT
     DOMAIN
                  119
                         147
                                    4 HEPTAD REPEATS (PROBABLE COILED COIL).
FT
     DOMAIN
                         590
                  176
                                   13.5 EGF-TYPE REPEATS.
FT
     REPEAT
                  176
                         187
                                   EGF-LIKE 0 (PARTIAL).
FT
     REPEAT
                  187
                         218
                                   EGF-LIKE 1.
FT
     REPEAT
                  219
                         249
                                   EGF-LIKE 2.
FT
     REPEAT
                  250
                         280
                                   EGF-LIKE 3.
FT
                  281
     REPEAT
                         311
                                   EGF-LIKE 4.
FT
     REPEAT
                  312
                         342
                                   EGF-LIKE 5.
FT
     REPEAT
                  343
                         373
                                   EGF-LIKE 6.
FT
     REPEAT
                  374
                         404
                                   EGF-LIKE 7.
FT
     REPEAT
                  405
                         435
                                   EGF-LIKE 8.
FT
     REPEAT
                  436
                         466
                                   EGF-LIKE 9.
FT
     REPEAT
                  467
                         497
                                   EGF-LIKE 10.
FT
     REPEAT
                  498
                         528
                                   EGF-LIKE 11.
FT
     REPEAT
                  529
                         559
                                   EGF-LIKE 12.
FT
                  560
                         590
     REPEAT
                                   EGF-LIKE 13.
FT
                  591
     DOMAIN
                         680
                                   FIBRONECTIN TYPE-III 1.
FT
     DOMAIN
                  681
                         771
                                   FIBRONECTIN TYPE-III 2.
FT
     DOMAIN
                  772
                         862
                                   FIBRONECTIN TYPE-III 3.
FT
     DOMAIN
                  863
                         954
                                   FIBRONECTIN TYPE-III 4.
FT
     DOMAIN
                  955
                        1042
                                   FIBRONECTIN TYPE-III 5.
FT
     DOMAIN
                 1043
                        1133
                                   FIBRONECTIN TYPE-III 6.
FT
     DOMAIN
                 1134
                        1224
                                   FIBRONECTIN TYPE-III 7.
FT
                 1225
     DOMAIN
                        1315
                                   FIBRONECTIN TYPE-III 8.
FT
     DOMAIN
                 1316
                        1404
                                   FIBRONECTIN TYPE-III 9.
FT
     DOMAIN
                 1405
                        1492
                                   FIBRONECTIN TYPE-III 10.
FT
     DOMAIN
                 1493
                        1580
                                   FIBRONECTIN TYPE-III 11.
FT
     SIMILAR
                 1589
                        1808
                                   TO THE GLOBULAR DOMAIN OF THE BETA- AND
FT
                                   GAMMA-CHAINS OF FIBRINOGEN.
FT
     VARSPLIC
                 1043
                        1224
                                   MISSING (IN 200 KD FORM).
```

CT

UADEDLIC

1047

1715

MICCINC /IN 100 KD EDDMI

```
FT
     DISULFID
                64
                      64
                              INTERCHAIN (POTENTIAL).
FT
     CARBOHYD
                38
                      38
                              POTENTIAL.
 FT
     CARBOHYD
               168
                     168
                              POTENTIAL.
FT
     CARBOHYD
               186
                      186
                              POTENTIAL.
FT
     CARBOHYD
               328
                     328
                              POTENTIAL.
FT
     CARBOHYD
               603
                     603
                              POTENTIAL.
FT
     CARBOHYD
               643
                     643
                              POTENTIAL.
 FT
     CARBOHYD
                     751
               751
                              POTENTIAL.
 FT
              759
     CARBOHYD
                     759
                              POTENTIAL.
FT
     CARBOHYD 1050
                    1050
                              POTENTIAL.
FT
     CARBOHYD
              1090
                    1090
                              POTENTIAL.
FT
     CARBOHYD
              1101
                    1101
                              POTENTIAL.
FT
     CARBOHYD
              1112
                   1112
                              POTENTIAL.
FT
                    1153
     CARBOHYD
              1153
                              POTENTIAL.
FT
     CARBOHYD
              1183
                    1183
                              POTENTIAL.
 FT
     CARBOHYD 1416
                   1416
                              POTENTIAL.
FT
     CARBOHYD 1736
                   1736
                              POTENTIAL.
FT
     CARBOHYD 1769
                   1769
                              POTENTIAL.
FT
     CONFLICT
              563
                    571
                              SCPNDCNNV -> PAPMTATTW (IN REF. 3).
 FT
     CONFLICT
               598
                     598
                              E -> G (IN REF. 3).
FT
     CONFLICT 840
                     840
                              Y -> YEY (IN REF. 3).
SQ
     SEQUENCE 1808 AA; 198858 MW; 1.656738E+07 CN;
Initial Score =
                   10 Optimized Score = 36 Significance = 3.43
Residue Identity =
                   17% Matches =
                                           48 Mismatches = 202
Gaps
                   24 Conservative Substitutions
                                                               0
                                                      10
                                                               20
                                               MGNNCYNVVVIVLLLVGCEKVG
                                               1 1
   DCFDRGRCINGTCFCEEGYTGEDCGELTCPNNCNGNGRCENGLCVCHEGFVGDDCSQKRCPKDCNNRGHCV-
  320
           330
                    340
                            350
                                     360
                                              370
                                                       380
                          50
                 40
                                  60
                                              70
   AVONSCONCOPGTFCRKYNPVCKSCPPSTFSSIGGOPNC---NICRVCAGYFRFKKFC---SSTHNAECECI
       DGRCVCHEGYLGEDC--GELRCPNDCHNRGRCING@CVCDEGFIGEDC-GELRCPNDCHNRGRCVNG@CECH
 390
          400
                     410
                             420
                                      430
                                               440
   90
           100
                    110
                            120
                                     130
                                               140
   EGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTN--CSLDGRSVLKTGTTEKDVVC
             1 11 1
   EGFIGEDCGELRCPNDCNSHGRCVNG@CVCDEGYTGEDCGELRCPNDCHNRGRCVEGRCVCDNGFMGED--C
  460
           470
                   480
                        490
                                                       520
                                     500
                                              510
                170
                        180
                                     190
                                              200
                                                               220
                                                       210
   G-----PPVVSFSPSTTISVTPEGGPG----GHSL@VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPH
                     GELSCPNDCHOHGRCVDGRCVCHEGFTGEDCRERSCPNDCNNVGRCVEGRCVCEEGYMGIDCSDVSPPTELT
                            560
  530
           540
                    550
                                     570
                                          580
                                                      590
         230
                  240
                          250
   IFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL
                          - 11 1
   VTNVTDKTVNLEHKHENLVNEYLVTYVPTSSGGLDL@FTVPGN@TSATIHELEPGVEYFIRVFAILKNKKSI
         610
                 620 630 X 640 650
                                                     660
```

PVSARVATYLPAPE

680

```
> 0 <
0| | 0 IntelliGenetics
> 0 <
FastDB - Fast Pairwise Comparison of Sequences
Release 5.4
Results file ellis-012-fig2ab.res made by shears on Tue 14 Sep 93 18:08:07-PDT.
Query sequence being compared: ELLIS-012-FIG2AB.SEQ (1-2350)
Number of sequences searched:
                                            144007
Number of scores above cutoff:
                                              3862
      Results of the initial comparison of ELLIS-012-FIG2AB.SEQ (1-2350) with:
   Data bank : EMBL-NEW 7, all entries
   Data bank : GenBank 77, all entries
   Data bank : GenBank-NEW 6, all entries
   Data bank : UEMBL 35_77, all entries
100000*
U50000-
Ε
0
F10000-
E 5000-
U
Ε
С
Ε
S 1000-
   500-
   100-
    50-
```


PARAMETERS

Similarity matrix	Unitary	K-tuple	4
Mismatch penalty	1	Joining penalty	30
Gap penalty	1.00	Window size	32
Gap size penalty	0.33		
Cutoff score	10		
Randomization group	0		
Initial scores to save	40	Alignments to save	15
Optimized scores to say	re 0	Display context	50

SEARCH STATISTICS

Scores:	Nean	Median	Standard Deviation		
	36	36	14.60		
Times:	CPU 02:07:00.01	Total Elapsed 03:17:05.00			

Number of residues: 169341811 Number of sequences searched: 144007 Number of scores above cutoff: 3862

Cut-off raised to 30.
Cut-off raised to 35.
Cut-off raised to 39.
Cut-off raised to 43.
Cut-off raised to 47.
Cut-off raised to 50.
Cut-off raised to 53.
Cut-off raised to 56.
Cut-off raised to 59.
Cut-off raised to 62.
Cut-off raised to 65.
Cut-off raised to 68.

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

		**** 158 standard deviations a	bove n	ean **	# #				
1.	MUSTC41BB	Mouse T-cell receptor 4-1BB p				158.43	0		
		**** 25 standard deviations ab		an ***	*				
2.	HUMILAX	Human activation dependent T	1419	412	806	25.75	0		
		**** 8 standard deviations above mean ****							
3.	CBRR5A	Caenorhabditis briggsae DNA f	944	163	406	8.70	0		
4.	CLS88DO	Hamster EcoRI donor DNA fragm	3906	162	1019	8.63	0		
5.	XELAEIP	X.laevis amidating enzyme (AE	2733	157	960	8.29	0		
		**** 7 standard deviations above mean ****							
6.	HUMUT5094	Human chromosome 4 STS UT5094	468	152	210	7.95	0		
	S53907	XRAR alpha 2=retinoic acid re	3240	151	961	7.88	0		
	PFASXC	Plasmodium falciparum sexual	2306	150	808	7.81	0		
	ACLRGNAL	A.laidlawii 16S ribosomal RNA	1508	146	568	7.53	0		
	HUMBIND	Human binding protein mRNA, p	3523	145	772	7.47	0		
	HSBIND	Human binding protein mRNA, p	3523	145	772	7.47	0		
	HSHB15RNA	Homo sapiens mRNA for HB15	1761	143	697	7.33	0		
	\$53354	B-cell activation protein=B-G	2574	143	897	7.33	0		
	HSIL05	Human interleukin-2 (IL-2) ge	6684	142	737	7.26	0		
15.	RATTGFB	Rat transforming growth facto	6244	141	993	7.19	0		
	B. B. L. L. B.	*** 6 standard deviations ab							
	PFAHRKPM	P.cynomolgi DNA homologous to	1563	136	636	6.85	0		
	HUMPALF1	Human mutant prealbumin gene	1913	136	798	6.85	0		
	HUMANYLOID	Homo sapiens amyloid protein	3725	136	757	6.85	0		
	HUMPALD	Human prealbumin gene, comple	7616	136	944	6.85	0		
	AMVCP	Arabis mosaic virus RNA-2, 3'	2406	135	918	6.78	0		
	HUMPALC	Human serum prealbumin gene.	7619	135	945	6.78	0		
	SCCHRIII	S.cerevisiae chromosome III c 3		133	975	6.64	0		
	DROFATER	Fruitfly fat facets mRNA.	8473	131	996	6.51	0		
	DROFATEB	Fruitfly fat facets mRNA.	8891	131	996	6.51	0		
	PIGFSHB	Pig follicle stimulating horm	929	130	398	6.44	0		
	ATGRPG	A.thaliana genes encoding gly	9619	130	962	6.44	0		
	MMUPA	M.musculus upstream region of	4431	129	879	6.37	0		
	MMGCSF	Mouse granulocyte colony-stim	1363	127	587	6.23	0		
	OCPMA1	O.cuniculus PMCA1 gene for pl	4479	126	800	6.16	0		
	S56304S1	AADC=aromatic L-amino acid de	1314	125	550	6.10	0		
	STAPT48CG	Plasmid pT48 (from S.aureus)	2475	125	713	6.10	0		
	RATOLFPROL	Rat olfactory protein mRNA, c	984	124	394		0		
	MMUPAACT	Mouse gene for urokinase plas	986	124	426	6.03	0		
	HUMHTF4	Human helix-loop-helix protei	2942	124	897	6.03	0		
35.	MUSFABPI	Mouse Fabpi gene, exons 1-4.	5039	124	843	6.03	0		
٠,	0511501011	**** 5 standard deviations ab					_		
	CEHERIGNA	C.elegans her-1 gene	6932	123	972	5.96	0		
	YSCMTAT92	yeast (s.cerevisiae) mitochon	365	121	179	5.82	0		
	M75767	CEL02A3S2 Caenorhabditis eleg	388	121	164	5.82	0		
	SCSPP91A	S.cerevisiae SPP91 gene	1665	121	698	5.82	0		
40.	YSCPRP21A	Saccharonyces cerevisiae nucl	2180	121	709	5.82	0		

1. ELLIS-012-FIG2AB.SEQ (1-2350)

MUSTC41BB Mouse T-cell receptor 4-1BB protein mRNA, complete

LOCUS MUSTC41BB 2350 bp ss-mRNA ROD 15-SEP-1989 DEFINITION Mouse T-cell receptor 4-1BB protein mRNA, complete cds. ACCESSION J04492 KEYWORDS T-cell receptor. SOURCE Mouse (strain C57BL/6) T-lymphocyte cell lines L2 and L3, cDNA to mRNA. ORGANISM Mus musculus Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria; Eutheria; Rodentia; Myomorpha; Muridae; Murinae.

REFERENCE 1 (bases 1 to 2350)

AUTHORS Kwon, B.S. and Weissman, S.M.

TITLE cDNA sequences of two inducible T-cell genes
JOURNAL Proc. Natl. Acad. Sci. U.S.A. 86, 1963-1967 (1989)

STANDARD full automatic

```
B.S.Kwon, 17-MAR-1989.
FEATURES
                  Location/Qualifiers
                  146..214
     sig_peptide
                  /codon_start=1
                  /note="4-1BB protein signal peptide"
                  215..913
     mat_peptide
                  /codon_start=1
                  /note="4-1BB protein"
     CDS
                  146..916
                  /note="4-1BB protein precursor"
                  /codon start=1
                  /translation="MGNNCYNVVVIVLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVC
                  KSCPPSTFSSIGG@PNCNICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCE
                  KDCRPG@ELTK@GCKTCSLGTFND@NGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGP
                  PVVSFSPSTTISVTPEGGPGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKF
                  PHIFKOPFKKTTGAAGEEDACSCRCPGEEEGGGGGYEL"
 BASE COUNT
              590 a
                                    607 t
                     561 c
                             589 a
                                              3 others
 ORIGIN
           Unreported.
Initial Score
                 2349
                      Optimized Score =
                                        2349 Significance = 158.43
Residue Identity =
                  99%
                      Matches
                                        2349 Mismatches
                                                             1
Gaps
                    0
                      Conservative Substitutions
                                                             0
          10
                  20
                          30
                                   40
                                           50
                                                            70
                                                   40
   ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAA
   ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAA
          10
                  20
                          30
                                   40
                                           50
                                                   60
                                                            70
        80
                90
                        100
                                110
                                         120
                                                 130
                                                         140
   AAGGACACATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGC
   AAGGACACATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGC
        80
                90
                        100
                                110
                                         120
                                                 130
                                                         140
      150
              160
                      170
                                       190
                               180
                                               200
                                                        210
   CATGGGAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGAAGGTGGGAGCCGT
   CATGGGAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGAAGGTGGGAGCCGT
      150
              160
                      170
                                       190
                               180
                                               200
                                                        210
    220
            230
                     240
                             250
                                              270
                                     260
                                                      280
   GCAGAACTCCTGTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCC
   GCAGAACTCCTGTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCC
    220
            230
                     240
                             250
                                     260
                                              270
                                                      280
  290
           300
                   310
                           320
                                    330
                                            340
                                                    350
                                                             360
   TCCAAGTACCTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAG
   TCCAAGTACCTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAG
  290
           300
                   310
                           320
                                    330
                                            340
                                                    350
                                                             360
         370
                 380
                          390
                                  400
                                          410
                                                   420
                                                           430
   GTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGTGTGAGTGCATTGAAGGATTCCATTGCTTGGGGCC
   GTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGTGTGAGTGCATTGAAGGATTCCATTGCTTGGGGCC
         370
                          390
                 380
                                  400
                                          410
                                                   420
                                                           430
       440
                450
                        460
                                470
                                         480
                                                 490
                                                         500
   ACAGTGCACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTGCAAAACCTGTAG
   ACAGTGCACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTGCAAAACCTGTAG
```

Draft entry and clean copy of sequence for [1] kindly provided by

COMMENT

510 52			560 570
		:G1C1G1CGACCC1GGACGA 	ACTGCTCTCTAGACGGAAG
CTTGGGAACATTTAA	TGACCAGAACGGTACTGG	CGTCTGTCGACCCTGGACGA	
510 52	0 530 5	540 550	560 570
580 590	600 610) 620 63	0 640
		CGTGGTGTGTGGACCCCCTG	TGGTGAGCTTCTCTCCCAG
			TITITION TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO T
580 590	600 61		
150 (10	.70		
650 660 TACCACCATTTCTGT	680 680 20 680 680 680 680 680 680 680 680 680 68	690- 700 Aggagggcactccttgcagg	710 720
TACCACCATTTCTGT 650 660	GACTCCAGAGGGAGGACCA 670 680	ODACOTTCCTTCCACO	
000 000	670 660	690 700	710 720
730	740 750	760 770	780 790
		CATTACTCTCCTGTTCTCTG	
GCTGACATCGGCTTT	GCTGCTGGCCCTGATCTT(CATTACTCTCCTGTTCTCTG	TGCTCAAATGGATCAGGAA
730	740 750	760 770	780 790
800	810 820	830 840	850 860
		GAAGACCACTGGAGCAGCTC	
AAAATTCCCCCACAT			AAGAGGAAGATCTTGTAG
	810 820	830 840	850 860
870 88	0 890 9	700 910	920 930
		AGGAGGCTATGAGCTGTGAT	
870 88		NGGAGGCTATGAGCTGTGAT 200 910	GTACTATCCTAGGAGATGT 920 930
		724	, , , , , , , , , , , , , , , , , , ,
940 950	960 970) 980 99 Catcctgtggaacagcacaa	
		.a.c.igiggaacagcacaa 	
GTGGGCCGAAACCGA	GAAGCACTAGGACCCCAC	CATCCTGTGGAACAGCACAA	GCAACCCCACCACCCTGTT
940 950	960 970	980 99	0 1000
1010 1020	1030 1040	1050 1060	1070 1080
		CACCTCATCCAAGTCTCTTC	
1010 1020	1030 1040	1050 1060	1070 1080
1090	1100 1110	1120 1130	1140 1150
		TTTATGTGTGTGAGTGTTT	
1090	1100 1110	TTTATGTGTGTGAGTGTTT 1120 1130	1140 1150
4448 4	470 4400	4500	
	170 1180 TGTGTGACACTCCTGATGO	1190 1200 CCTGAGGAGGTCAGAAGAGA	1210 1220 AAGGGTTGGTTCCATAAGA
111111111111111			111111111111111111111111111111111111111
	TGTGTGACACTCCTGATG0 170 1180	CTGAGGAGGTCAGAAGAGA 1190 1200	AAGGGTTGGTTCCATAAGA 1210 1220
1100 1	1100	1170 1200	ILIU IEEU
1230 124			280 1290
		AGGTCGGGACGGAGACCTG	
ACTGGAGTTATGGAT	GGCTGTGAGCCGGNNNGAT	AGGTCGGGACGGAGACCTG	TCTTCTTATTTTAACGTGA
1230 124	0 1250 12	260 1270 1	280 1290

1300		1310		1320		1330	ı	1340)	1350	1	360	
												GTTAAT	
												 GTTAAT	
1300		1310		1320		1330		1340		1350		360	
1370	13	80	13	90	14	400	1	410	1	420	143	0	1440
AAGAG	GAATT	GTTGA			ACTG	TATAT	GTGTA	TGTAT	FATGTA	TATGTA	TATATA	AGACTC	TTTTA
												IIIIII AGACTC	
1370		80		90		400		410		420	143		1440
	1450	,	1460		1476	n	1 /1 0	۸	1 4 0	٠.	1500	41	E 1 A
CTGTC						-	148 GTCAA		149 Attgga		1500 ACGTCA	LACACA!	510 Cacac
11111	11111	11111	11111	Ш	Ш	11111	$\Pi\Pi\Pi$	11111	111111	111111	111111	111111	11111
CTGTC	AAAGT 1450		TAGAG 1460		rggtti 1470		GTCAA 148		ATTGGA 149		ACGTCA 1500	CACACA	CACAC 510
	.,00		1.00		4171	•	. 70	v	17,	v	1000	4.	210
	520 CACAC	-	530		540	አ ሮፕሮፕ	1550	·CTAT1	1560		570	158 ATAGGG	
												MIAGGG	
ACACA	CACAC	ACACA	CGTTT	ATACT	ACGT		TATCG		CTAC	TCATAT	AATGGG	ATAGGG	TAAAA
1;	520	1	530]	540		1550		1560	1	570	158	0
1590	-	160	-	161			20		530	164		1650	
												GGGACA!	
												GGGACA	
159	0	160	00	161	0	16	20	16	530	164	0	1650	
1660		1670		1680		1690		1700)	1710	1	720	
												AGGAGA	
												 AGGAGA	
1660		1670		1680		1690		1700		1710		720	VII. VII. U
1730	17	40	17	50	1.	740	1	770	f	780	179	n	1800
												ACACTT!	
												ACACTT	
1730	17			50		760		770		780	179		1800
			4000		407		400	•					
TCATC	1810 CTTGC		1820 AAGGT		1830 GGTA		184 CTGTA		185 Aggga		1860 GCCGCG	11 GGGGAG	B70 Ctacg
11111	11111	11111	11111	11111	1111	11111	11111	11111		111111	111111	111111	
TCATC	CTTGC 1810		AAGGT 1820		GGTAC 1830		CTGTA 184		GGGGA 185		222222 1860	GGGGAG	CTACG 870
			1020		1001	•	104	V	100	i V	1000	1,	u / V
	880 CCACT	_	.890 .ccccc		900	ጉሮሌልል	1910	ACTTI	1920	-	930	1940 CGTCCG	_
AGAAT	CGACT	CACAG	GGCGC	CCCGG	GCTT	CGCAA	ATGAA		TTTTAA	TCTCAC	AAGTTT	CGTCCG	GGCTC
13	880	1	890	1	900		1910		1920	1	930	194	0
195		196	_	197	_		80	-	790	200		2010	
												GCCTTG/ 	
												GCCTTG	
1950	0	196	0	197	70	19	80	19	790	200	0	2010	
2020		2030		2040		2050		2060)	2070	2	080	
GGTAC'	TAATT	стссс	TGCCG	GCCCC		AGCAT	AACGC	GGCGA	ATCTCC	ACTTTA	AGAACC	TGGCCG	
												IIIIII TGGCCG	
2020		2030		2040	, vu i ni	2050		2060		2070		080	

```
2090
           2100
                    2110
                             2120
                                      2130
                                               2140
                                                        2150
                                                                  2160
   TGCCTGGTCTCGCTTTCGTAAACGGTTCTTACAAAAGTAATTAGTTCTTGCTTTCAGCCTCCAAGCTTCTGC
   TGCCTGGTCTCGCTTTCGTAAACGGTTCTTACAAAAGTAATTAGTTCTTGCTTTCAGCCTCCAAGCTTCTGC
 2090
           2100
                    2110
                             2120
                                      2130
                                               2140
                                                        2150
                                                                  2160
                                    2200
         2170
                  2180
                           2190
                                             2210
                                                       2220
                                                                2230
   TAGTCTATGGCAGCATCAAGGCTGGTATTTGCTACGGCTGACCGCTACGCCGCCGCAATAAGGGTACTGGGC
   TAGTCTATGGCAGCATCAAGGCTGGTATTTGCTACGGCTGACCGCTACGCCGCCGCAATAAGGGTACTGGGC
         2170
                  2180
                           2190
                                    2200
                                             2210
                                                       2220
                                                                2230
       2240
                2250
                         2260
                                   2270
                                            2280
                                                     2290
                                                              2300
   GGCCCGTCGAAGGCCCTTTGGTTTCAGAAACCCAAGGCCCCCCTCATACCAACGTTTCGACTTTGATTCTTG
   GGCCCGTCGAAGGCCCTTTGGTTTCAGAAACCCAAGGCCCCCTCATACCAACGTTTCGACTTTGATTCTTG
       2240
                2250
                         2260
                                  2270
                                            2280
                                                     2290
                                                              2300
     2310
              2320
                       2330
                                 2340
                                            X
   CCGGTACGTGGTGGTGGCTTAGCTCTTTCTCGATAGTTAGAC
   CCGGTACGTGGTGGGTGCCTTAGCTCTTTCTCGATAGTTAGAC
     2310
              2320
                       2330
                                 2340
                                          2350
2. ELLIS-012-FIG2AB.SEQ (1-2350)
  HUMILAX
              Human activation dependent T cell mRNA, complete c
LOCUS
           HUMILAX
                        1419 bp ss-mRNA
                                                PRI
                                                         30-APR-1993
DEFINITION
           Human activation dependent T cell mRNA, complete cds.
 ACCESSION
           L12964
KEYWORDS
           cell surface receptor; nerve growth factor receptor;
           tumor necrosis factor receptor.
 SOURCE
           Homo sapiens cDNA to mRNA.
  ORGANISM
           Homo sapiens
           Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria;
           Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
REFERENCE
           1 (bases 1 to 1419)
  AUTHORS
           Schwarz, H., Tuckwell, J.E. and Lotz, M.
  TITLE
           Nucleotide sequence of ILA, a cDNA encoding a new member of the
           human nerve growth factor/tumor necrosis factor receptor family
  JOURNAL
           Unpublished (1993)
  STANDARD
           full automatic
FEATURES
                    Location/Qualifiers
     5'UTR
                    1..139
     3'UTR
                    908..1419
                    1369..1374
     polyA_signal
                    1419
     polyA_site
     source
                    1..1419
                    /organism="Homo sapiens"
                    /cell_type="transformed T lymphocyte /cell_line SLB-1"
                    /sequenced mol="cDNA to mRNA"
     CDS
                    140..907
                    /gene="ILA"
                    /note="ILA= induced by lymphocyte activation"
                    /codon_start=1
                    /translation="MGNSCYNIVATLLLVLNFERTRSL@DPCSNCPAGTFCDNNRN@I
                    CSPCPPNSFSSAGG@RTCDICR@CKGVFRTRKECSSTSNAECDCTPGFHCLGAGCSMC
                    EODCROGOELTKKGCKDCCFGTFNDOKRGICRPWTNCSLDGKSVLVNGTKERDVVCGP
                    SPADLSPGASSVTPPAPAREPGHSP01ISFFLALTSTALLFLLFFLTLRFSVVKRGRK
                    KLLYIFK@PFMRPV@TT@EEDGCSCRFPEEEEGGCEL"
BASE COUNT
               373 a
                       340 c
                                342 g
                                        364 t
ORIGIN
```

Initial Score = 412 Optimized Score = 806 Significance = 25.75
Residue Identitu = 407 Matches = 904 Mismatches = 433

700	710	720	730	740	750	760
770 CCTGTTCTCTGTC CCGTTTCTCTGTT 770	1 111 11	111 11 111	111	1111111111111111	111111111111111111111111111111111111111	111111
840 T-GGAGCAGCTCA I I IIII TACAAACTACTCA 840	111111111111111111111111111111111111111		11111 111	 AGAAGAAGAAG	111111111111111111111111111111111111111	
910 9 ATGAGCTGTGATO GTGAAATG-GAAO 910	1 1 1 111	GAGATGTGTG	GGCCGAAAC 	CGAGAAGCA-C 	 :AAGGAAATAT	
980 CTGTGGAACAG I I IIII CGCTATCACAGCT 970 980	11 111111	11111 1	11	1111 11 11	11 111	11
1050 GCACCTCATCCAA CCAACACACC	111 1111 1	1 11 11	11 111	! !!	1 1111	1 1111111
1110 TAAATTTAA GGACAGGGTCTCA 1100	ATTTT	I III II AGGCTGGAGT	I III I GCAGTGGCA	II II II CCACCATGGCT	 CTCTGCAGC	TTGACCTC
1160 1170 TGTGTGTGTGTGT TGGGAGCTCAAGT 1170 11	GACACTCCT II IIIII GATCCTCCTGC	GCTCAGTCTC	1111 11 1	CAGAAGAGAAA -GGAACTACAA	GGGTTGGTTC	11 1 1
1230 1 CTGGAGTTA-TGG CT-GACTAACTTT 1240	I I I I I DITTITIZITE	CCGGNNNGAT TTGGTAA	AGGTCGGGA	CGGAGACCTGT 	1 11	1111
CGTGACT-GTATA	 STTCACTTTGGC	ATGATATT	TCGGGAATT	GTAGAGATTGT 	CCTGACAC 	CCCTTCTAG
-AAATAATGO	AGGAATTGTTG	ATACGTAGTA	TACTGTATA	TGTGTATGTAT 	ATGTATATGT	1430 TATATATAA
1440	1450					

GACTCTTTTACTGTCAAAGTCAACCTAGAGTGTCTGGTTA

```
CBRR5A
             Caenorhabditis briggsae DNA for 55 ribosomal RNA (
LOCUS
           CBRR5A
                       944 bp
                                DNA
                                              INV
                                                      18-MAR-1991
DEFINITION
          Caenorhabditis briggsae DNA for 5S ribosomal RNA (1kb)
ACCESSION
           X16225
KEYWORDS
           5S ribosomal RNA; leader RNA; ribosomal RNA.
SOURCE
           negatiode
  ORGANISM Caenorhabditis briggsae
           Eukaryota; Animalia; Eumetazoa; Nematoda; Secernentea; Rhabditia;
           Rhabditida; Rhabditina; Rhabditoidea; Rhabditidae.
REFERENCE
           1 (bases 1 to 944)
  AUTHORS
           Honda, B.N.
  TITLE
           Direct Submission
  JOURNAL
           Submitted (23-AUG-1989) Honda B.M., Simon Fraser University,
           Biology Department, Burnaby B.C., Canada V5A 1S6.
  STANDARD full automatic
           2 (bases i to 944)
REFERENCE
           Nelson, D.W. and Honda, B.M.
  AUTHORS
  TITLE
           Two highly conserved transcribed in the 5S DNA repeats of the
           Nematodes Caenorhabditis elegans and Caenorhabditis briggs.
           Nucleic Acids Res. 17, 8657-8667 (1989)
  JOURNAL
  STANDARD full automatic
FEATURES
                   Location/Qualifiers
     misc_feature
                   complement (513..607)
                   /note="spliced leader RNA sequence"
     rRNA
                   825..943
                   /note="5S ribosomal RNA sequence"
BASE COUNT
              269 a
                      172 c
                              183 q
                                      320 t
ORIGIN
Initial Score
                   163 Optimized Score =
                                          406 Significance = 8.70
Residue Identity =
                   48% Matches
                                          486 Mismatches
                   117 Conservative Substitutions
Gaps
                                                               0
 1180
                   1200
          1190
                           1210
                                    1220
                                             1230
                                                      1240
   AAGCTTTTGCTTTTTTTGTATT
                                                     10
                                                              20
1250
         1260
                  1270
                           1280
                                   1290
                                            1300
                                                     1310
                                                             1320
   111 1 1 1
                    111111 1
                                             111 1 1111111
   CAATTTCATAAATATGAATTCAAA---GATTTCAATTTTTAAGATTCATGT-TCTTAAAAAATTGCAGAATT
        30
                 40
                            50
                                     60
                                              70
                                                       80
                                                                90
                1340
       1330
                         1350
                                    1360
                                               1370
                                                       1380
   TTCGGGAATTGTAGAGATTGTCCTGACACCCTTC---TAGTTAATGATCT--AAGAGGAATTGTTGATACGT
                1111 11 11
                              111
                                   100
                  110
                          120
                                   130
                                            140
                                                     150
                                                             160
 1390
           1400
                    1410
                            1420
                                     1430
                                               1440
   AGTATACT-GTATATGTGTATGTATATGTATATGTATATATAA--GACTCTTTTACTGTCAAAGTCAACCTA
           --TTTCCTCACAAATGAG-AAGTGT-TGTCGAAAAATATAAAATTGTGTCAAATTCAATCAATTTCAATATG
         170
                   180
                            190
                                     200
                                              210
                                                      550
                                                               230
  1460
           1470
                     1480
                             1490
                                      1500
                                                  1510
   GAGTGTCTGGTTACCAGGTCAA-TTTTATTGGACATTTTACGTCACACACACACA----CACACACACACACAC
                 1 1111 1 111 1 1 1111 1 11 111
   AAAAATTTGAAT----GTTCAAGATGCATTCG-CGTTTT-CTTCCCAC-CACATTGCCTGAGTTTCTGAAAT
         240
                     250
                               260
                                        270
                                                  280
```

3. ELLIS-012-FIG2AB.SEQ (1-2350)

1570

1540

1550

1540

1570

	1 11	II GCATGA	11 111		11	II III GT-ATAA		111111	GAAACCAAAG -ATTTCAGAA 360
	 TCTAAG-(GATATTA	ATTGT-GG 	AGGTGAC-	AGACTACO	CCTTCTG- AATGATGA		-TAGGGA	O CAGACCTCCT CAACCCTTTT 430
	TCGGACT(STCTAA/	AACTCCCC 	TTAGAAGT	CTCGTCAA	GTTCCCG -CTCCGG	GACGAAGAG	111 11	1730 GACACAGTCC TTTTCAATTT 500
	 TTAAAGT	TATTTT-	11 1	AAAT	CCTTTCCC ACGTTCCA	TGTTTCGT	TGACACT	111	1790 TGTGGACACT TTTGGG
	1 111 11	CATCCT:	TGCGCCGG -TACCTC	AAGGTCAG AAACTTGG	GTGGTA	CCCGTCT	GTAGGGGCG -CATCGGC	III I GGGCTTCGC	1860 AGCCGCGGG ACACTAGTGG 30
,	1 11	GAG-AA 	TCGACTCA CGACACC	CAGGGCGC	13222333 1-232333	TCGCAAA	TGAAACTTT CGCATT	1 1	1930 ACAAGTTTCG AGCG
	TCCGGGC1	rcggcg(GACCTATO	GCGTCGAT	CCTTATTA	CCTTATC	CTGGCG	I II II CTGGGAGAA	AACAACCAAA TTCGCTCTTC
	II II TGCGTTTC	11-1	1 111	 GATCC	CT-GCCG-	·GCCCCCG [*]	TAAGCATAA GGGGAATGT		TCTCCACTTT
1	AAGAACCI	1	CGTTCTGC	CTGGTCTC	GCTTTCGT	'AAACGGT'		AAGTAAT	TAGTT-CTTG
	I III CAGTTAG:	CTCCA	AGCTTCTG	CTA-GTCT	IIII TGGGAATO	CATCAAGG(CTGGTATTT	Т	D GACCGCTACG
221		2220 AATAAG	2230 GTACTGG	22 00000000	40 TCG				

4. ELLIS-012-FIG2AB.SEQ (1-2350)
CLS88DO Hamster EcoRI donor DNA fragment for S88 aprt inse

```
LOCUS
            CLS88D0
                        3906 bp
                                  DNA
                                                 ROD
                                                          20-MAY-1992
 DEFINITION Hamster EcoRI donor DNA fragment for S88 aprt insertion
 ACCESSION
            X14996 X13999 X14000
 KEYWORDS
            Alu repetitive sequence; insertion sequence; repetitive sequence.
 SOURCE
            chinese hamster
   ORGANISM Cricetulus longicaudatus
            Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
            Theria; Eutheria; Rodentia; Myomorpha; Cricetidae; Cricetinae;
            Cricetini.
 REFERENCE
            1 (bases 361 to 690; 1481 to 2640)
  AUTHORS
            Nalbantoglu, J., Miles, C. and Meuth, M.
  TITLE
            Insertion of Unique and Repetitive DNA Fragments into the aprt
            Locus of Hamster Cells
   JOURNAL
            J. Mol. Biol. 200, 449-459 (1988)
   STANDARD full automatic
 REFERENCE
           2 (bases 1 to 3906)
  AUTHORS
           Meuth, M.
  TITLE
            Direct Submission
   JOURNAL
            Submitted (13-FEB-1989) to the EMBL Data Library.
   STANDARD full automatic
 COMMENT
            *source: clone_library=lambda NM1149.;
            See x07513 for S88 mutant seq.
 FEATURES
                    Location/Qualifiers
     misc_feature
                    572..624
                    /note="CHO Alu repeat"
     conflict
                    1625
                    /citation=[1]
                    /note="c is g in [1]"
     misc_feature
                    1734..2018
                    /note="S88 donor DNA"
              1048 a
 BASE COUNT
                        945 c
                                905 g 1008 t
 ORIGIN
Initial Score
               =
                    162 Optimized Score = 1019 Significance = 8.63
Residue Identity =
                    49% Matches
                                        = 1238 Mismatches
                                                                  954
                    325 Conservative Substitutions
Gaps
                                                                   0
                                                         10
                                                  ATGTCCATGA----ACTGC--T
                                                   1 11111 1
                                                               11 1 1
    TCAGGGTTCCACCATATCCTGAAGAGCAGATGAGACCACCAGGCTTTTTACCTTTCCATCAGGAGACAACCAT
         940
                  950
                            960
                                     970
                                              980 X
                                                       990
     20
                30
                         40
                                  50
                                            60
                                                      70
    GAGTGGA-TAAACAGCACGGGATATCTCTGTCTAAAGGAAT-ATTACTACACCAGGAAAAGGACA-CATTCG
    11 1111 11 111 11 1
                             1111
                                     1
                                        GATTGGACTAGCCAG-ACCGCA---GCCTGTGAGCCGTTCTAATCAATCCCCTACAAATAGAACATTTTTCT
      1010
                1020
                            1030
                                      1040
                                               1050
                                                        1060
                                                                  1070
                100
                             110
                                       120
                                                130
                                                         140
    AC-AACAGGAAAGGAGC-CTGT----CACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGCCATGGGA
                           1 11
                                                  11111 11 11
    TCCATCAGTTCTGTTCCGTTGGAGAACCCAGACTAATACAATCTCC----CATGTTCCAGTT--TCATGTGT
        1080
                 1090
                           1100
                                    1110
                                                 1120
                                                            1130
           160
                    170
                               180
                                         190
                                                  200
                                                            210
    AACAAC--TGTTACAACGTGGT--GGTCATTGTGCTGCTGCTAGTGGGCTGTGAG-AAGGTGGGAGCCGTGC
    CACTACCATGTGACAGGCCAGTAGGGTGAGTGGGCT-CAGC---TGGGCTCTGCGCCAGGTCGCGATCAAAC
   1140
            1150
                     1160
                              1170
                                           1180
                                                     1190
                                                              1200
   220
                230
                          240
                                   250
                                            590
    AGA--ACTC--CTGTGATAA-CTGTCAGCCTGGTACTTTCTGCAGAA---AATACAATCC-AGTCTGCA-AG
```

AGAGGAGTCTGTTGGGGAAAGCTCTCATCCTGAGGTTGTGTG_AGAACCCACCTC

1210	1220	1230	1240	1250	1260	1270
29						
	CCAAGTACCT					GTGTGTGCAGGC
						 GGGTCA-CC
1280	1290	1300	1310	1320	133	0
360	370	380	390	400	410	
			ACCCACAACG			GGA
T-TAGCAAC	TGACAGACTT	CTCATTCCTTC	ATCTTCAAGG	CAGCAAGA	TCACCTCAAA	TCCTCCTCCTGA
1340	1350	1360	13/0	1380	1390	1400
420 TTCCATT	430	440 - ACTCCA	45 2724-274			O 480 CAGGAGCTAACG
11 1	1 111 1	11 1111	1111 111	1 11 11	11 11 1	1111 11
GTCAAACCT 1410	CCCTGGCTTC 1420	CTCTTCTGCAC 1430		-ACAGCTCT- 1450	CTGCTCT-GA 1460	CAGGTTCAGACC 1470
490 AAGCAGGGT		DO 51 CTGTAGCTTGG				40 550 GTCTGTCGACCC
1480			1510	1520	1530	1540
56	0 570	58	30 59	0 60	0 61	0 620
TGGACGAAC	TGCTCTCTAG	ACGGA-AGGTC	TGTGCTTAAG	ACCGGGACCA	CGGAGAAGGA	CGTGGTGTGTGG
1550	1560	1570	1580	1590		00 1610
630		650	660	670	680	690
	GGTGAGCTTC'		CACCATTTCT 			AGGAGGGCACTC
ACCAAGTCA	GGACACTTTG	AGGAGATGGCT	GTTCAGAACT	GAG-CCCCAA	ATTGCGCC	TGTGAAGAACTG
162	0 1630	1640	1650	166	0 1	670
700	710) 7			50 760 ATCTTCATTACT
11 111 1	1 111 1	111 11 1	11 1	1 11 1 1		11 1 1 1
			AAGCAGGAAA .710 1		GCTAAG 1730	ATGTAAAGCA 1740
				•		2.7.12
			80 -AAAAAATTC			20 830 Catttaagaaga
		11 11				III II I CATGTATTGG
	750	1760	1770		1790	1800
84	0 8!	50 86	0 87	0 88	0 89	0 900
CCACTGGAG	CAGCT-CAAG	AGGAAGATGCT	TGTAGCTGCC	GATGTCCACA	GGAAGAAGAA	GGAGGAGGA
1111 TCACTCCCA			 			
1810	1820		1840	1850		
	920		10 94			60
			GAGATGTGTG			TAGGACCCCA
AACCATAA-	-TGTGCT-TT	CTATTCCTAGA	GATATATTTT	GGGCTTTC	TAGAAGTTTC	TACAAACTCAGA
1880	184	90 190	0 191	0 1	920 1	930
	980 GTGGAACAGC			00 10		20 ATCCTAGATGA-
11 1 1	11111 1 1		11 1111	11111	1 11 1	11 1 1
CACACTCTT	CTCCATTAAC	ΔΔΩΤΟΟΤΟΤΩ	ΤΤΔΔΔΩΡΡΡΑ	<u>ACCCCCTCCC</u>	ΔΤΛΤΛΔΩΔ	ACCTAAC

1940	1950	1960	1970	1980	1990	2000
111	 TTTG-GAGTA-	CCTCATC-CAA 	11 1	 GAAGTTGTTA	CATATTTGTCTTT	1090 FACCTITITTAAATCT
ATTT	IIII ATATTTACCTT 2080 2	FAAATTTTATO 	TGTGTGAGTO	GT-TTTGCCT 	 GTGTGTGTG 2120	1160 ACGTGTGTGTGTGT -TGTGTGTGTGTGTGT 2130 2140
fill GTGC	GTG-ACACTCO CTGCATACATO 2150	CTGATGC- GTGTGTGTGCT 2160	IIII ATGTGCATAC 2170	IIII I CCCACAGAGG 2180	III IIII I CCAGAGAGGGCAT 2190 2	1220 TTGGTTCCATAAGAAC TCAGACCCTGAAGC 2210
IIII TGGA	GTTATGGATG(GCTAGAGATG(2220	IIIIIII I I GCTGTGAACTG 2230	I I CCATGTGGG 2240	 TCTGGGAAC 2250	GAGACCTGTCTTC 	1290 CTTATTTTAACGTG
111 ACTG 2280	GTAT-AATAAA GTGTTCTTAA 2290	AAAAAAAATGA 1 	TATTTCGGGA ATCCTTC-AGG 2310	III CCCCCTAGA- 2320	ATTGTCCTGACA- CCTGTTTTTATAT 2330	1360 CCCTTCTAGTTAATG GGCCTCAGGGTATAG 2340
1 1 ACCA 2350	AAGAGGAATTO 	GTTGATAC GTTTTGCATAC 2370	GTAGTATAC ATATACAAA 2380	 GTTCCTTGC 2390	I I I I II CCTCAAGGAATTA 2400	ATGCTTCCTTAAAAAT 2410 2420
AAGA 	CTCTTTTACTO	GTCAAAGTCA- ATCAAATACAC	ACCTAGA(AGACATACA(TGTCTGGTT	1111 11	1490 TTATTGGACATTTTAC
GTCA 	CACACACACA CTGTATGATG	CACACACACAC	ACACACGTT	FATACTACGT GAACTT		TATTCTACGTCATATA NAGCCCCAGCCATGGA
ATGG GGGA	GATAGGGTAA/ AAGAGGGAGG(AAGGAAACCAA	AGAGTGAGT(GGAGGGAGG(GATATTATTG GA-GGGAGGG	II II III AGGGGGGATGAAG	GACTACCCCTTCTGG
GTAC AA	GTAGGGACAGA	ACCTCCTTCG0 	ACTGTCTAA/	AACTCCCCTT GACCAATCTG	1111 11 1 1	CAAGTTCCCGGAC
1	AGAGGAC <i>i</i> I I I	AGAGGAGACAC	AGTCCGAAA/	AGTTATTTT- 	111 1 1	1760 CCTTTCCCTGTTT

2700	2710	2720	2730	2740	2750
	780 1790 CACCCCTTGTGGA		1810 TCCTTGCGCCG	1820 GAAGGTCAGGT	1830 GGTACCCGT-C
 C-AAACAATA 2760 27	CAAAAACTTAAAA	 AAAAAGAGT-TAA 2790		I TATGCTAAGAT 2810	 ACTCAAATCAGTAT 2820
IIII I I TGTATGCGTA	GGGAGACAGAGC- 	l I Aaaaacaaaacc	ACGAGAATCGA	CTCACAGGGCG	1900 CCCCGGGCTTCGCA CCTC-AGCT-GGTA 2890
 AAGGTGTGTG	AAACTTTTTAAT	II IIII I -TCGTGAGTTCCA	1 1111 1	11 1	1960 TGGCGTCGATCCTT AGGAGAGGATGG 2960
1 1 111	CCTGGCGCCAAGA TCTGTCCCCTA-C	1 111 11 1			ATAC-ACATAAATG
	-GCATAACGCGGC 	111111	AAGAACCTGGC AACAACCCAGC	 GAGTTTCTGTA	2100 TGGTC-TCGCTTTC TAGTCATAGCCT 3100
III I GTAGCCATCA	CTTACAAAAGT 	1 11 11	TTTCAGCCTCC TCACA-CAAGA	AAGCTTCTGCT 	2170 AGTCTATGGCAGCA I IIIIII ATGCCATCGCATCA 0 3170
 CCCCGACCCT	GTATTTGCTACGG 	111 111 1 1	CGCCGCAATAA 	GGGTACTGGGC	2240 GGCCCGTCGAAGGC CCTTCTACAGA 3220
CCTTTGGTTT	CAGAAACCCAAGG 	 TCAACCTCC	AACGTTT-CGA 	CTTTGATTCTT CTGGCGTATTT	2310 GCCGGTACGTGGT- III II II CCCTGAGCGCAGTA 0 3290
III II GGTCAGAGCA	CCTTAG		GTTAGAC		AGACAGACAAACCA 3360
	GTCCTGCAGAAGC 3380 33				
5. ELLIS-012-F	IG2AB.SEQ (1-	2350)			

5. ELLIS-012-FIG2AB.SEQ (1-2350)
XELAEIP X.laevis amidating enzyme (AE-I) mRNA, complete cd

LOCUS XELAEIP 2733 bp ss-mRNA VRT 15DEFINITION X.laevis amidating enzyme (AE-I) mRNA, complete cds. 15-MAR-1989

```
KEYWORDS
            amidating enzyme.
 SOURCE
            X.laevis skin, cDNA to mRNA, clone pXAE457.
   ORGANISM Xenopus laevis
            Eukaryota; Animalia; Chordata; Vertebrata; Amphibia; Lissamphibia;
            Anura; Archeobatrachia; Pipoidea; Pipidae; Xenopodinae.
 REFERENCE
            1 (bases 1 to 2733)
            Mizuno.K., Ohsuye,K., Wada,Y., Fuchimura,K., Tanaka,S. and
   AUTHORS
            Matsuo, H.
   TITLE
            Cloning and sequence of cDNA encoding a peptide C-terminal
            alpha-amidating enzyme from Xenopus laevis
   JOURNAL
            Biochem. Biophys. Res. Commun. 148, 546-552 (1987)
   STANDARD
            full automatic
 COMMENT
            Amidating enzyme protein precursor is cleaved at two sites to
            obtain the active enzume.
 FEATURES
                     Location/Qualifiers
                     <1..2733
     MRNA
                     /note="AE-I mRNA"
                     266..376
      sig_peptide
                     /codon_start=1
                     /note="amidating enzyme signal peptide"
      mat_peptide
                     377..1408
                     /codon start=1
                     /note="amidating enzyme"
     CDS
                     266..1468
                     /note="amidating enzyme precursor"
                     /codon_start=1
                     translation="MASLSSSFLVLFLLFQNSCYCFRSPLSVFKRYEESTRSLSNDCL/
                     GTTRPVMSPGSSDYTLDIRMPGVTPTESDTYLCKSYRLPVDDEAYVVDFRPHANMDTA
                     HHMLLFGCNIPSSTDDYWDCSAGTCMDKSSIMYAWAKNAPPTKLPEGVGFRVGGKSGS
                     RYFVLQVHYGNVKAFQDKHKDCTGVTVRVTPEKQPQIAGIYLSMSVDTVIPPGEEAVN
                     SDIACLYNRPTIHPFAYRVHTHOLGOVVSGFRVRHGKWSLIGROSPOLPOAFYPVEHP
                     VEISPGDIIATRCLFTGKGRTSATYIGGTSNDEMCNLYIMYYMDAAHATSYMTCV@TG
                     EPKLF@NIPEIANVPIPVSPDMMMMGHGHHHTEAEPEKNTGL@@PKREEEEVLD@GL
                     ITLGDSAV"
 BASE COUNT
                823 a
                         555 c
                                  547 g
                                          808 t
ORIGIN
Initial Score
                     157 Optimized Score =
                                               960 Significance = 8.29
                     46% Matches
Residue Identity =
                                          =
                                              1185 Mismatches
                                                                     996
Gaps
                     341 Conservative Substitutions
                                                                       0
                                                            10
                                                                      20
                                                    ATGTCCATGAACTGCTGAGTGG
                                                     1 1111
                                                              111111
    TCAGGAGTCCCCTCTCTCTTTAAGAGGTATGAGGAATCTACCAGATCACTTTCCAATGACTGCTTGGGAA
  330
           340
                     350
                               360
                                        370
                                                  380
                                                            390
                                                                      400
         30
                   40
                              50
                                        60
                                                     70
    ATAAACAGCACGGGATATCT-CTGTCTAAAGGAATATTACT----ACACCAGGA--AAAGGACACATTCGAC
                                   11 1111
      1 1 1 1
                                                            1111
    CCACGCGGCCCGTTATGTCTCCAGGCTCATCAGATTATACTCTAGATATCCGCATGCCAGGAGTAACTC--C
         410
                   420
                             430
                                      440
                                                450
                                                          460
                                                                    470
    90
              100
                        110
                                   120
                                              130
                                                             140
    AACAGGAAAGGA-GCCTGTCACAGAAAACC--ACAGTGT-CCTGTGCATG-TGA----CATTTCG-CCATGG
            111 1 1 1
                         GACAGAGTCGGACACATATTTGTGCAAGTCTTACCGGCTGCCAGTGGATGATGAAGCCTATGTAGTTGACTT
         480
                   490
                             500
                                      510
                                                520
                                                          530
                                                                    540
  150
           160
                     170
                                  180
                                           190
                                                     200
                                                               210
    GAAACAACTGTTACAACGTGG-TGGT-CA-TTGTGCTGCTGCTAGTGGGCTGTGAGAAGGTGGGAGCCGTGC
     CAGACCAC-ATGCCAATATGGATACTGCACATCACATGCTTCTATTTGGATGCAATATACCTTCTTCCACTG
       550
                  560
                            570
                                     580
                                               590
                                                         600
```

220

270

240

250

240

270

AGAACTCCTGTGATAACTGTCAGCCTGGTACTTTC-TGCAGAAAATACAATCCAGTCTGCAAGAGCTGCC	
290 300 310 320 330 340 350 CTCCAAGTA-CCTTCTC-CAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTT	
360 370 380 390 400 410 420 CAGGTTCAAGAAGTTTTGCTCCTCTA-CCCACAACGCGGAGTGTGAGTGCATTGAAGGAT-TCCAT	
430 440 450 460 470 480 TGC-TTGGGGCCACAGTGCACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGG	
490 500 510 520 530 540 550 GTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGACCCTG-GACGAAC	
560 570 580 590 600 610 620 TGCTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGACCACGGAGAAGGACGTGGTGTGTGGACCCCCTG	
630 640 650 660 670 680 690 TGGTGAGCTTCTCCCCAGTACCACCATTTC-TGT-GACTCCAGAGGGAGGACCAGGAGGGCACTCCTTG	
700 710 720 730 740 750 760 CAGG-TCCTTACCTTGTTCCTGGCGCTGACA-TCG-GCTTTGCTGCTGGCCCTGATCTTCATTACTCT	
770 780 790 800 810 820 CCTGTTCTCTGTGCTCAAATGGATCAGGAAAAAAT-TCCCCCACATATTCAAGCAACCATTTAAGAAG	
830 840 850 860 870 880 890 ACCACTGGAGCAGCTCAAGAGGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	
900 910 920 930 940 950 960 AGGAGGCTATGAGCTGTGATGTACTATCCTAGGAGGTGTGTGGGCCGAAACCGAGAAGCACTAGGACC	

000 1000 1010 1010

CCACCATCCTG-TGGAACAGCACAAGCA-ACCCCACCACCCTGTTCTTACACATCATC
1030 1040 1050 1060 1070 1080 1090 CTAGATGATGTGTGGGCG-CGCACCTCATCCAAGTCTCTTCTAACGCTAACATATTTGTCTTTACCTTTTTT
1100 1110 1120 1130 1140 1150 1160 A-AATCTTTTTTTAAATTTAAATTTTATGTGTGTGAGTGTTTTGCCTGCC
1170 1180 1190 1200 1210 1220 1230 TGTGTGTGTGA-CAC-TCCTGATGCCTGAGGAGGTCAGAAGAGAGAGAGAGGGTTGGTT
1240 1250 1260 1270 1280 1290 1300 TATGGATGGCTGTGAGCCGGNNNGATAGGTCGGGA-CGGAGACCTGTCTTC-TTATTTTAACGTGACTGTAT
1310 1320 1330 1340 1350 1360 1370 AATAAAAAAAAATGATAT-TTCGGGAATTGTAGAGATTGTCCTGACACCCTTCTAGT-TAATGATCTAAGA
1380 1390 1400 1410 1420 1430 GGAATTGTTGATA-CGTAGTATA-CTGTAT-ATGTGTATGTATATGTA-TATATAAGACTCTT
1440 1450 1460 1470 1480 1490 1500 TTACTGTCAAAGTCAACCTAGAGTGTCTGGTTACCAGGTCAATTTTATTGGACATTTTAC-GTCACACACAC
1510 1520 1530 1540 1550 1560 1570 ACACACACACACACACACACACGTTTATACTACGTACTGTTATCGGTATTCTACGTCATATAATGGGATAGG
1580 1590 1600 1610 1620 1630 GTAAAAGGAAACCAAAGAGTGAGTGAT-ATTATTGTGGAGGTGACAGACTACCCC
1640 1650 1660 1670 1680 1690 1700 TTCTGGGTACGTAGGGACAGACCTCCTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCAAGTTCC-
1710 1720 1770 1740 1750 1770 1770

	GAGGACAGAG(TCCTTTCCCTGTTTCGT
GCTTTCAAA	TGGGGGTCA(AAAAAAACAA		ACTACAAATTTATT
2090	2100	2110	2120	2130	2140 2150
1786 GACACTCCA			1810 -TCCTTGCGC-	1820 CGGAAGGTCA	1830 GGTGGTACCCGTC
 GITACICCI			1		AGCCTTTTATTCCAATC
2160		2180	2190	2200	2210 2220
1840	1850	1860	1870		1890 1900
TGTAGGG-		AGAGCCGCGGC I I I			AGGGCGCCCGG-GCTT
					ACTGCAAACTGGAGAAC 2280
1916 CGC-AAATG	AAACTTTTT	TAATCTCA	CAAGTTTCGT	CCGGGCTCGGCG	50 1960 GACCTATGGCGTCGATC
 TGCTGAATA		II II ACAAAAAAAAA	III I I Caaataat	 Aaaaaatgta	
	300 2310		233		
1970					020 2030
111		111 11 1 11	11 11111	11 1 1 1	
GTCAGAATA 2360	TCACCCTGTA(2370	CAATCTACATCA 2380	CACTAAAAG- 2390	-TTAATTTAAAG 2400	GTGAACAACCCCATA 2410 2420
2040	2050	2060 2	070	2080	2090
ceecccce.	TAAGCATAACGC	GCGATCTCCAC	TTTA	AGAACCTGGCCG	CGTTCTGCCTGGTCT-C
AGGAAGACA	TACAATTTGT(TACAGACACT	I IIIII I I ACAACCTAGATG	-GCTCATTAAGGAATAT
2430	2440	2450	2460	2470	2480
2100 21:				40 2150	2160 AAGCTTCTGCT-AGTCT
1 111	11 111 1	11 111	11 11 11	111 1 1	1 11 11 1 1 111
	00 2510				-TGATTATGTTGATTCT 2550
2170		90 220			
	CAAGGCTGGTA1				GGGTACTGGGCGGCCCG
	TTGTTA1		AACTGATCAT	AGGGTGGAAT	GTATACTTTTC-TCCTG
					2610 2620
	2250 -GCCCTTTGGT			2280 22ST TCATACCAACGT	290 TTCGACT-TTGAT
					IIII III II II TTCGAAAAACTCTTAAT
	2640			2670	2680 2690
	10 2320				
11 1	TACGTGGTGGTGC	111 1 1 1	111 11	1 11 1	
TATGT/	AACTTCTTGGA 2700		CTTAATAT 2720	TGCATTGGG 2730 X	

6. ELLIS-012-FIG2AB.SEQ (1-2350)
HUMUT5094 Human chromosome 4 STS UT5094.

LOCUS HUMUT5094 468 bp ds-DNA
DEFINITION Human chromosome 4 STS UT5094.

PRI 28-MAY-1993

```
repeat polymorphism; sequence tagged site; tetranucleotide repeat.
 SOURCE
             Homo sapiens DNA.
   ORGANISM
            Homo sapiens
             Eukaryota: Animalia: Chordata: Vertebrata: Mammalia: Theria:
             Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
 REFERENCE
             1 (bases 1 to 468)
            Gerken.S.C., Matsunami.N., Laurence.E., Carlson.M., Moore.M.,
   AUTHORS
             Ballard, L., Melis, R., Robertson, M., Bradley, P., Elsner, T.,
             Tingey, A., Rodriguez, P., Albertsen, H., Lalouel, J.-M. and White, R.
   TITLE
             Genetic and physical mapping of simple sequence repeat containing
             sequence tagged sites from the human genome
   JOURNAL
             Unpublished (1993) See COMMENT for author address.
   STANDARD
             full automatic
 COMMENT
             Submitted by: Utah Center for Human Genome Research
             University of Utah, Dept. of Human Genetics
             2160 Eccles Institute of Human Genetics
             Salt Lake City, UT 84112
             e-mail: sts@corona.med.utah.edu
             Primer A: CTGCACTCGAGCCTGAGCA
             Primer B: CCTTGGAAATGAGGCTGCTC
             32P-label: B Primer
             PCR Profile:
             Initial Denaturation: 94C 300sec
             PCR Cycles: 5
             Denaturation: 94C 10sec
             Annealing: 62C 10sec
             Extension: 72C 20sec
             Mq++: 3mM
             Gel: Acrylamide 7%, Formamide 32%, Urea 34%
             Alleles: 6.
 FEATURES
                     Location/Qualifiers
      misc_feature
                      47..291
                      /note="This feature applies to a gene which lacks a coding
                     region feature. "
                      /map="4"
      primer_bind
                      47..65
      STS
                      47..291
                      /standard_name="STS UT5094"
                     /map="4"
                      /evidence="EXPERIMENTAL"
                     complement(272..291)
      primer_bind
      source
                     1..468
                      /organism="Homo sapiens"
                      /sequenced_mol="DNA"
BASE COUNT
                 186 a
                          75 c
                                  105 q
                                            97 t
                                                      5 others
ORIGIN
Initial Score
                =
                     152 Optimized Score =
                                                210 Significance = 7.95
Residue Identity =
                     51% Matches
                                                262 Mismatches
                                                                      173
Gaps
                      75 Conservative Substitutions
             670
                       680
                                  690
                                           700
                                                     710
    TTCTGTGACTCCAGAGGGAGGACCAGGAGGGCACTCCTTGCAGGTCCTTACCTTGTTCCTGGCGCTGACATC
                                                       ACTTGAGCCTGG----GA-GTC
                                                     X
                                                             10
  730
            740
                       750
                                760
                                          770
                                                     780
   GG-CTTTGCTGCTGGCCCTGATCTTCATTACTCTCCTGTTCTCTGTGCTCAAATGGATCAGGAAAAAATTCC
                     1111 1 1111
                                   GGAGGTTGCAG-TG-AGCTGA-CATCAT---GCCACTGCACTC-GAGC-CTGA-GCAACAG--AGCAAGACC
    20
                           40
                                        50
                                                    60
                                                                 70
```

0.00

070

QAD

050

PCR primer; STS; microsatellite DNA; microsatellite marker;

KEYWORDS

```
CCCACATATTCAAGCAACCATTTAAG-AAGACCACTGGAGCAGCTCAAG-AGGA-AGA-TGCTTG-TAGCTG
             111 1111 111 1 1 11
   80
                              110
                                       120
                                                130
   870
            880
                     890
                                  900
                                          910
                                                    920
                                                             930
   CCGATGTCCACAGGAAG-AAGAAGG--AGGAGG-AGGAGGCTATGAGCTG-TGATGTACTATCCTAGGAGA
           160
                    170
                            180
                                     190
                                              500
                                                      210
       940
                950
                         960
                                  970
                                           980
                                                    990
                                                            1000
   TGTGTGGG-CCGAAACCGAGAAGCACTAGGAC-CCCACCATCCTGTGGAACAGCACAAGCAACCCCACCACC
                    | | | | | | | |
   -GTGAGGGAGAAAAATTCAAACATGAAGTCTCCCTAGAGC---TTGANCAGGGTGAGCAGCCTCATTTCC
  220
           230
                    240
                            250
                                     260
                                                270
                                                         280
      1010
              1020
                       1030
                                1040
                                            1050
                                                          1060
   CTGTTCTTACACATCATCCTAGATGATGTGTGGGCGCGCACC----TCATCC-----AAGTCTCTTCTAAC
               111 11 11 1111 1 1 1 1 1 1 1
                                           111111
                                                      \Pi
   AAGGNCTTGC----CATTCT-CATCATGTCT-GCCCCTCAACATGTTCATCCGACAAAAAATCATATTTGAT
   290
               300
                         310
                                  320
                                           330
                                                    340
        1070
                  1080
                           1090
                                   1100
                                             1110
                                                      1120
   GCT----AACAT-ATT-TGTCTTTACCTTTTTTAAATCTTTT-TTTAAATTTAAATTTTATGTG--TGTGAG
          1111 111 11
                     11111 11
                                              1 11111111 1111 111 11
   GCTTTGCTACATGATTGTGATGTTACATGAGCTGTTCCTTTTGCTTTGCTATAAATTTTTTGTGTTTGTAAG
       360
               370
                        380
                                 390
                                         400
                                                  410
                                                           420
 1130
          1140
                   1150
                           1160
                                    1170
                                                  X 1190
                                                              1200
                                             1180
   11 [111]11 [
                             11
                                        1 1 1111
   CATCTAG---AAATG-ATGCACAAG-CACCGT----TAATTCA-ACTCAATAT
     430
                 440
                           450
                                          460
        1210
                 1220
                          1230
   AGAGAAAGGGTTGGTTCCATAAGAACTGGAGTTA
7. ELLIS-012-FIG2AB.SEQ (1-2350)
  S53907
              XRAR alpha 2=retinoic acid receptor isoform alpha
LOCUS
           S53907
                      3240 bp
                                nRNA
                                              VRT
                                                       23-MAR-1993
 DEFINITION XRAR alpha 2=retinoic acid receptor isoform alpha 2.1 [Xenopus,
           embryos, mRNA, 3240 nt]
           553907
 ACCESSION
KEYWORDS
 SOURCE
           Xenopus embruos
  DRGANISM Xenopus
           Unclassified.
           1 (bases 1 to 3240)
REFERENCE
  AUTHORS
           Sharpe, C.R.
  TITLE
           Two isoforms of retinoic acid receptor alpha expressed during
           Xenopus development respond to retinoic acid.
           Mech. Dev. 39, 81-93 (1992)
  JOURNAL
  STANDARD
           full automatic
 COMMENT
           This entry [NCBI gibbsq 123865] was created by the journal scanning
           component of NCBI/GenBank at the National Library of Medicine.
           This sequence comes from Fig. 1A.
FEATURES
                   Location/Qualifiers
     CDS
                   516..1910
                   /note="isoform XRAR alpha 2.1; For the protein sequence
                   (NCBI gibbsq 123867): Method: conceptual translation
```

supplied by author. This sequence comes from Fig. 1A."

/nanduct-sectionic acid nocentar icoform alpha 2 18

/gene="XRAR<alpha>2"

EAD

SEA

/codon_start=1

/translation="MVSLDFSRMYENVDVPALASSPTRFHMMDFYSHNRQCLLQEKGI GTIHPYGTPLRTQHWSSSNHSIET@STSSEEIVPSPPSPPPLPRIYKPCFVC@DKSSG

CTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTEGCGTCTGTCGACC-CTG-GACGAA I II	Ш
570 580 590 600 610 620 630 CTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGACCACGGAGAAGGACGTGGTGTGGACCCCCTGT	GGT
640 650 660 670 680 690 GAGCTTC-TCTCCCAGTACCACCATTTCTGTGACTCCAG-AGGGAGGACCAGGAGGGCACTCCTT	GCA
700 710 720 730 740 750 760 GGTCCTTACCTTGTTCCTGGCGCTGACATCGGCTTTGCTGCTGGCCCTGATCTTCATTACTC	 TGC
770 780 790 800 810 820 TGTTCTCTGTGCTCAAATGGATCA-GGAAAAAATTCCCCCAC-ATATTCAAGCAACCATTTAAG	1
830 840 850 860 870 880 890 ACCAC-TGGAG-CAGCTCAAGAGGAAGATGCTTGTAGCTGCCGATGTCCACAG-GAAGAAGAAGGAG	1
900 910 920 930 940 950 960 GAGGAGGC-TATGAGCTGTGATGTACTATCCTAGGAG-ATGTGTGGGCCGAAACCGAGAAGCACTAG	Ш
970 980 990 1000 1010 1020 1030 CCCACCATCCTGTGGAACAGCAAGCAACCCCACCACCATCTTACACATCATCCTAGATGATGTG I I I I I I I I I I I I I I I I I I	ĺ
1040 1050 1060 1070 1080 1090 1100 GGGCGCGCACCTCATCCAAGTCTCTTCTAACGCT-AACATATTTGTCTTTACCTTTTTTAAATCTTTTT	1
1110 1120 1130 1140 1150 1160 1170 AATTTAAATTTATGTGTGGGGGTGTTTTGCCTGCCTGTATGCACACGTGTGTGT	GTG
1180 1190 1200 1210 1220 1230 ACACTCCTGATGCCTGAGGAGGTCAGAAGAGAGAAAGGGTTGGTTCCA-TAAGAACTGGAGTT	ł

1250 1260 1270 1290 1200

GA-TGGCTGTGAGCCGGNNNGATAGGTCGGGACGGAGACCTGTCTTCTTATTTTAACGTC	1 11
1300 1310 1320 1330 1340 1350 1360 TATAATAAAAAAAAATGATATTTCGGGAATTGTAGAGATTGTCCTGACACCCTTCTAGTTAAT	1 11
1370 1380 1390 1400 1410 1420 1430 AAGAGGAATTGT-TGATACGTAGTATACTGTATATGTATATGTATATGTATATATA	111111
1440 1450 1460 1470 1480 1490 1500 TACTGTCAAAGTCAACCTAGAGTGTCTGGTTA-CCAGGTCAATTTTATTGGACATTTTACGTCACAC	
1510 1520 1530 1540 1550 1560 ACACACACACACACACACACACACACACACACACACAC	1 1
GGATAGGGTAAAAGGAAACCAAAGAGTGAGTGATATTATTGTGGAGGTGACAGACTACCCCTTCTGC	1 11
1650 1660 1670 1680 1690 1700 TAGGGACAGACCTC-CTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCAAGTTCCCGGA	
1720 1730 1740 1750 1760 1770 1 AGGACAGAGGAGACACAGTCCGAAAAGTTATTTTTCCGGCAAATCCTTTCCCTGTTTCGTGACACTC	l
1790 1800 1810 1820 1830 1840 18 CTTGTGGACACTTG-AGTGTCATCCTTGCGCCGGAAGGTCAGGTGGTACCCGTCTGTAGGGGCGGGG	
1860 1870 1880 1890 1900 GAGCCGCGGGGGAGCTACGAGAATCGACTCACAGGG-CGCCCCGGGCTTC-GCAA	
1920 1930 1940 1950 1960 1970 ACTITITA-ATCTCACAAGTTTCGTCCGGGCTCGGCGGACCTAT-GGCGTCGATCCTTATTAC	11 11
AFAC ACAC AHAC AAAC ABBI AABI	2040

·

```
----CCTGGCGCCAAGATAAAACAACCAAAAGCCTTGACTC-CG--GTACT--AATTCTCCCTGCCGGCCCC
                                 - 111
                       111 1
   GCTGCCTGTCACCTGTATATTTCAAGC--TGGCCAT-ACACACGAAGCAATACAATTGTACC-AAATACACG
 2650
          2660
                    2670
                               2680
                                          2690
                                                   2700
                                                             2710
        2050
                  2060
                           2070
                                     2080
                                              2090
                                                        2100
    CGTAAGCATAACGCGGCGATCTCCACTTTAAGAACCTGGCCGCGTTCTGCCTGGTCTCGCTTTCGTAAACGG
               1 11 1 1
                          1 111
                                     TGTGTGCTGGGGGGGGGGTTGTGA---TAACGTTGTGCCATGGATATATC-AGTTGGGTACTGGAAACCAG
   2720
            2730
                     2740
                                  2750
                                           2760
                                                      2770
      2120
                 2130
                          2140
                                     2150
                                                2160
                                                          2170
                                                                   2180
   TTCTTACAAAAGTA-ATTAGTTCTTGCTTTCAG-CCTCCAA--GCTTCTGCTAGTCTATGGCAGCATCAAGG
      1 1111 1111 11
    CATTTGCTCATGTATATCTGTTAGTG--TACAGTGCACTGACTACATCTGTTAGTGTA---CACTTACTATA
    2790
              2800
                       2810
                                   2820
                                            2830
                                                      2840
                                                                  2850
                                       2220
        2190
                  2200
                             2210
                                                      2230
    CTGGTATTTGCTACGGCTGACCG-CTAC-GCCGCCGCAATAAGG-GTACTG-----GGCGG-CCCGTCGAAG
                     11 | 1111 | 1 |
                                         1 11 1 1111
                                                          1 11
    TCGGT-TAGAGTACGGTGCACTGACTACATCTGTTAGTGTTCGGTGCACTGACACAAGAGGATACAATGGCG
        2860
                  2870
                           2880
                                     2890
                                              2900
                                                        2910
      2250
               2260
                        2270
                                  2280
                                            2290
                                                      2300
                                                               2310
    GCCCTTTGGTTTCAGAAACCCAAGGCCCCCCTCATAC-CAACGTTTCGACTTTGATTCTTGCCGGTACGTGG
                   GCTATACTGTGT-ATGGTCACTAGTACAGTATCATCCTGAAAGT---GA--TAGCTTATTGGCTGGA--TAC
      2930
                 2940
                          2950
                                    2960
                                                  2970
                                                           2980
    2320
              2330
                       2340
                                    2350
    TGGTGGGTGCCTTAGCTCTTTCTCGATAGTT---AGAC
                 TGAGCAATACC-AGGCAGTGTATGGCCACCTTGGGGACCCCCAGGCCTGCTTTTGCACTGCCCACCCTAATA
   2990
             3000
                      3010
                                3020 X 3030
                                                   3040
                                                             3050
   TAGTTGTTTTAACAGT
  3060
           3070
8. ELLIS-012-FIG2AB.SEQ (1-2350)
  PFASXC
               Plasmodium falciparum sexual stage mRNA sequence.
LOCUS
            PFASXC
                        2306 bp ss-mRNA
                                                  INV
                                                           06-APR-1993
 DEFINITION Plasmodium falciparum sexual stage mRNA sequence.
 ACCESSION
            M64106
 KEYWORDS
 SOURCE
            Plasmodium falciparum (strain 3D7) sexual stage-gametocyte and
            gamete cDNA to mRNA.
  ORGANISM Plasmodium falciparum
            Eukaryota; Animalia; Protozoa; Apicomplexa; Sporozoa; Coccidia;
            Eucoccidiida; Haemosporina; Plasmodiidae.
REFERENCE
            1 (bases 1 to 2306)
  AUTHORS
            Alano, P. and Elliott, J.F.
  JOURNAL
            Unpublished (1993)
  STANDARD full automatic
                    Location/Qualifiers
 FEATURES
     5'UTR
                     1..43
                     /note="putative"
                    2306
     polyA_site
                     /note="immature polyA_site; probable polyA_tail derived
                     from oligo-dT priming; sequence differs from the germline
                     sequence in this region; putative"
      source
                     1..2321
                     /organism="Plasmodium falciparum"
```

/strain="3D7"

/dov stage="sevual stage=amotosute and amoto"

AGATGTGTGGGCCGAAACCGAGAAGCACTAGGA---CCCCACCATCCTGTGGAA-CAGCAC---AAGCAACC

/sequenced mol="cDNA to mRNA"

/germline

AGTA	AGCAAATTT 570	CGAGAAG-AA1 580	ATGAATTACC 590	TAACGTTGT 600	GGAATTAACT 610	CCTGAAG-AGAA 620
1000 CCACCACCC				1040 GGGC-GCGCAC		1060 TCTCTTCTAACG
AGAAAGAA 630						AGATTATAAATT 690
111 1 1	11 1	 AGTTTAATGA	I III I TAGTTTATCT	 AGTTCCTT	TATGTGTGTG	A-TACTCCTAAT
GCCTGTATG	11 1 1	11 11 11	I III I TATAATGTGG			1200 GTCAGAAGAG-A TTATTAAGAGCG 820
 TTACATATA	II III TTATGTAAA	 GAC-GAAGAT		1 1		1270 GACGGAGACCTG
TCTTCTTAT	1111 1 1	1 1111	II III II ATATATATAAT	 TCTTTAAAAA	 ATATATTTA	1330 GGAATTGTAG TTAAATGGCTAT 60 970
 A-ATTTTGA	11 1	1 11 11		IIII II AATT-TTACTI	 TAGATCAAAT	1400 TGTATATGTGTA TTTTAAAGATTA 1030
11111	11 1 1	I III III I TGATACTAATO	1 11	11111	-CAACCTAGAG	TGTCTGGT-TAC
11 1 11	TTTATTG-G	 AAATTAAATG1	CACACACACA	CACACACACA(CACACACACGT	TTATA
1 1111	11 1	 -ATTTTAAAT-	111 1	III I ATATATTTTC	 CGAAATC	1600 GAGTGAGTGATA -AGTTA-TTAAA 1230
[]]]	 AGATGATTT	11111	- 111 11	1 1	CCTTCGGACT	1670 GTCTAAAACTCC AGATATATCTCC 1300
CCTTAGAAG	TCTCGTCAA	GTTCCCGGAC	AAGAGGACAG	AGGAGACACA	730 17 GTCCGAAAAGT	TATTT-TTCCGG

AAGGGTAATATCTGCCTTATTTA-TGTATTTCTTAAATA-AGGTAAATATTTCT	
1310 1320 1330 1340 1350 136	50
1750 1760 1770 1780 1790 1800 181 CA-AATCCTTTCCCTG-TTTCGTGACACTCCACCCCTTGTGGA-CAC-TTGAGTGTCATCCTTC	
	11
CACAATATGTAACAAGAAATAGAAATGACTTTACATTATTATTGGAGCACAATGA~TTTATTATAA 1370 1380 1390 1400 1410 1420 1430	
1820 1830 1840 1850 1860 1870	
GAAGGTC-AGGTGGTACCCGTCTGTAGGGGCGGGGGAGACAGAGCCGCGGGGGAGCTAC	
1440 1450 1460 1470 1480 1490 1	500
1880 1890 1900 1910 1920 1930 194 TCGACTCACAGGGCCCCCGGGCTTCGCAAATGAAACTTTTTTAATCTCACAAGTTTCGTCCG-	
	1
AAAACAATCATGATAATGCATACCAATTAGTTCCGTGGTCTCAAGTATTGTTTTCTGA 1510 1520 1530 1540 1550 1560	
1950 1960 1970 1980 1990 2000	
GGCGGACCTATGGCGTCG-ATCCTTATTACCTTATCCTGGCGCCAAGATAAAACAACC	AA
	TGTAG
1570 1580 1590 1600 1610 1620 1630	
2010 2020 2030 2040 2050 2060 207	
A-AGCCTTGACTCCGGTACTAATTCTCCCTGCCGGCCCCCGTAAGCATAACGCGGCGATCTCCACTT	111
ATTATTTTGAAGGAGATGATAAAT-TAAATCAAGTATTGAATGATAATAAAGAGAATAAGACCA1 1640 1650 1660 1670 1680 1690 1700	TGATA
2080 2090 2100 2110 2120 2130	
ACCTGGCCGCGTTCTGCCTGGTCTCGCTTTCGTAAA-CGGTTCTTACAAAA-GTAATTAGTT	
	ATCGA
1818 1888 1888	770
2140 2150 2160 2170 2180 2190 2200	
TTTCAGCCTCCAAGCTTCTGCTAGT-CTATGGCAGCATCAAGGCTGGTATTTGCTACGGCTGACCGC	11
CATTGGAAGAATATTTTGTAAGTACTGTAAAACAAGTTGGACGAGTACTTTCAGATGATCAT	GACAT
	2200
CGCCGCAATAAGGGTACTGGGCGGCCCGTCGAAGGCCCTTTGGTTTCAGAAACCCAAG-GCCCCCC	
	TAAAA
1840 1850 1860 1870 1880 1890	1900
2290 2300 2310 2320 2330 2340	
2290 2300 2310 2320 2330 2340 CAACGTTTCGACTTTGATTCTTGCCGGTACGTGGTGGTGGTGCCTTA-GCTCTTTCTCGATAGT	
CAACGTTTCGACTTTGATTCTTGCCGGTACGTGGTGGTGGGTG	11
CAACGTTTCGACTTTGATTCTTGCCGGTACGTGGTGGTGGGTG	11
CAACGITTCGACTTTGATTCTTGCCGGTACGTGGTGGTGGTGGTGCCTTA-GCTCTTTCTCGATAGT	11
CAACGITTCGACTTTGATTCTTGCCGGTACGTGGTGGTGGTGGTGCCTTA-GCTCTTTCTCGATAGT	11
CAACGTTTCGACTTTGATTCTTGCCGGTACGTGGTGGTGGGTG	11

```
LOCUS
           ACLRGNAL
                       1508 bp ds-DNA
                                               BCT
                                                       15-MAR-1990
 DEFINITION A.laidlawii 16S ribosomal RNA small subunit gene.
 ACCESSION
           M23932
           165 ribosomal RNA; ribosomal RNA small subunit.
 KEYWORDS
 SOURCE
           A.laidlawii (strain JA1) DNA.
   ORGANISM
           Acholeplasma laidlawii
           Prokaryotae; Tenericutes; Mollicutes; Mycoplasmats; Mycoplasmatales;
           Acholeplasmataceae.
 REFERENCE
           1 (bases 1 to 1508)
  AUTHORS
           Weisburg, W.G., Tully, J.G., Rose, D.L., Petzel, J.P., Oyaizu, H.,
           Yang, D., Mandelco, L., Sechrest, J., Lawrence, T.G., van Etten, J.L.,
           Maniloff, J. and Woese, C.R.
  TITLE
           A phylogenetic analysis of the mycoplasmas: Basis for their
           classification
   JOURNAL
           J. Bacteriol. 171, 6455-6467 (1989)
  STANDARD full automatic
           Draft entry and computer-readable sequence [1] kindly submitted by
 COMMENT
           C.R. Woese, 19-JAN-1989.
 FEATURES
                   Location/Qualifiers
     rRNA
                   1..1480
                   /note="16S ribosomal RNA small subunit (3' end approx.)"
 BASE COUNT
               433 a
                       303 с
                               433 a
                                      339 t
 ORIGIN
Initial Score
                   146 Optimized Score =
                                           568 Significance = 7.53
                   46% Matches
Residue Identity =
                                       =
                                           679 Mismatches
                                                              633
Gaps
                   161 Conservative Substitutions
                                                                0
                               940
    910
             920
                      930
                                        950
                                                960
                                                         970
   TGAGCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGAGAAGCACTAGGACCCCACCATCCT-GT
                                                 11
                                                         1 1 1 1
                                               TTTATATGGAGAGTTTGATCCT
                                                      10
                                                               20
   980
            990
                    1000
                             1010
                                       1020
                                               1030
                                                        1040
   GGAACAGCACAAGCAACCCCACCACCCTGTTCTTACACAT-CATCCTAGATGATGTGTGGGCGCGCACCTCA
            1 111 1
                    1 11 1 1
   GGCTCAG---GATGAACGCTGGCGGCGTG-CCTAATACATGCAAGTCGAACGAAGCATCTTCGGATGCTTAG
           30
                    40
                              50
                                       60
                                               70
                                                        80
                                                                 90
   1050
            1060
                     1070
                               1080
                                        1090
                                                1100
                                                         1110
   T--CCAAGTCTCTTCTAACGCTAACAT-ATTTGTCTTTACCTTTTTTAAATCTTTTTTAAATTTAAATTTT
                 1 1 11
   TGGCGAACGGGTGAGTAACACGTAGATAACCTACCTTTAACTCGAGGATAACTCCGGGAAACTGGAGCTAAT
         100
                  110
                           120
                                    130
                                             140
                                                      150
                                                              160
  1120
           1130
                    1140
                              1150
                                       1160
                                                1170
                                                            1180
   ATGTGTGTGAGTGTTTTGCCTGCCTG-TATGCACACGTGTGTGTGTGTGTGTGTGTGTGACA---CTC-CTGAT
     A-CTG-GATAG-GATGTG--TGCATGAAAAAAACACATTTAAAGATTTATCGGTTTAAGAGGGGTCTGCGGC
         170
                     180
                             190
                                      200
                                               210
                                                        220
     1190
              1200
                       1210
                               1220
                                        1230
                                                 1240
   1 11 1111
                                          11 1 1 1 11 111 11 1
   GCATTAGTTAGTTGGTGGGGTAAGAG--CCTACC--AAGACGATGAATCGTAGCCGGACTGAGAGGTCTACC
 230
          240
                   250
                              260
                                        270
                                                 280
                                                          290
              1270
                       1280
                               1290
                                        1300
                                                 1310
   1 1 111
   GGCCACATTGGGACTGAGAACGGCC--CAAACTCCTACGGGA-GGCA---GCAGTAGGGAAT----TTTCGG
   300
            310
                     320
                               330
                                         340
```

1746

1750

1740

1770

GAATTGTAGAGATTGTCCTGACACCCTTCTAGTTAATGATCTAAGAGGAATTGTTGATACGTAGTATA
360 370 380 390 400 410 420
1400 1410 1420 1430 1440 1450 1460 C-TGTATATGTATATGTATATGTATATATAAGACTCTTTTACT-GTCAAAGTCAACCTAGAGTGTC
1470 1480 1490 1500 1510 1520 1530 TGGTTACCAGGTCAATTTTATTGGACATTTTACGTCACACACA
1540 1550 1560 1570 1580 1590 1600 TTATACTACGTACTGTTATCGGTATTCTACGTCATATAATG-GGATAGGGTAAAAGGAAACCA-AAGAGTGA
1610 1620 1630 1640 1650 1660 GTGATATTATTGTGGAGGTGACAGACTACCCCTTCTGGGTACGTAGGGACAGACCTCCTTCGGACTGT
1670 1680 1690 1700 1710 1720 1730 CTAAAAC-TCCCCTTAGAAGTCTCGTCAAGTTCCCGGACGAGAGGACAGAGGAG-ACACAGTCCGAAAAGT
1740 1750 1760 1770 1780 1790 1800 1810 TATTITICCGGCAAATCCTTTCCCTGTTTCGTGACACTCCACCCCTTGTGGACACTTGAGTGTCATCCTTGC
1820 1830 1840 1850 1860 1870 GCCGGAAG-GTCAGGTGGTACCCGTCTGTAGGGGCGGGGAGACAGAGCCGCGGGGGAGCT-ACGAGAATC
1880 1890 1900 1910 1920 1930 1940 GACTCACAGGGCGCCCCGGGCTTCGCAAAT-GAAACTTTTTTAATCTCA-CAAGTTTCGTCCGG
1950 1960 1970 1980 1970 2000 2010 GCTCGGCGGACCTATGGCGTC-GATCCTTA-TTACCTTATCCTGGCGCCAAGATAAAACAACCAAAAGCCTT
2020 2030 2040 2050 2060 2070 GACTCCGGTACTAATTCTCCCTGCCGGCCCCCGTAAGCATAACGCGGCGATC-TCCACTTTAAGAA

```
CCTGGCCGCGTTCTGCCTGGTCTCGCTT-TCGTAA-ACGGTTCTTAC-AAAAGTAATTA-GTTCTTGCTTTC
                               11
                                          1 11
   TCTAG-CGAG-ACTGCCAGTGATAAATTGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGAC
 1110
            1120
                     1130
                              1140
                                       1150
                                                 1160
                                                          1170
        2150
                 2160
                          2170
                                    2180
                                             2190
                                                      2200
                                                                 2210
   --AGCCTCCAAGCTTCTGCTAGTCTATGGCAGCATCAAGGCTGGTATTTGCTACGGCTGACC-GCTACGCCG
                 CTGGGCTACAAAC--GTGATA--CAATGGCTGGAACAAAG--AGAA-GCGATA-GGGTGACCTGGAGCGAAA
 1180
          1190
                       1200
                                1210
                                            1220
                                                      1230
        2220
                  2530
                           2240
                                     2250
                                              2260
                                                       2270
                                                                2280
   C-CGCAATAAGGGT-ACTGGGCGGCCCGTCGAAGGCCCTTTGGTTTCAGAAACCCAAGGCCCCCCCATACC
   1 1 111 11 11 1 1 1 111
                            11
                                       1 1 1 11 11 1 11
   CTCACAAAAACAGTCTCAGTTCGGATTGGAGTCTGCAACTCGACTCCATGAAGTC--GGAATCGCTAGTA--
      1250
               1260
                         1270
                                  1280
                                           1290
                                                      1300
                                                                1310
       2290
                2300
                            2310
                                         2320
                                                   2330
   AACGTTTCGACTTTGATTCTTGCCG---GTACG---TGGTGGTGGGTGC-CTTAGCTCTT----TCTCGATA
         \Pi\Pi
                                    ATCG---CAAATCAGCATGTTGCGGTGAATACGTTCTCGGGGTTTGTACACACCGCCCGTCAAACCACGAAA
           1320
                    1330
                             1340
                                       1350
                                                1360
                                                         1370
                                                                  1380
             X
   GT----TAGAC
   1390
                  1400
                           1410
                                     1420
                                              1430
10. ELLIS-012-F1G2AB.SEQ (1-2350)
   HUMBIND
               Human binding protein mRNA, partial cds.
LOCUS
            HUMBIND
                        3523 bp ss-mRNA
                                                 PRI
                                                          16-JUN-1993
 DEFINITION Human binding protein mRNA, partial cds.
 ACCESSION
           L19597
 KEYWORDS
            binding protein.
            Homo sapiens adult brain cDNA to mRNA.
 SOURCE
  ORGANISM Homo sapiens
            Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria;
            Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
 REFERENCE
            1 (bases 1 to 3523)
            Vostrov.A.A., Guitschke.W.W., Schwarzman.A.L., Blangy.A., Cuzin.F.,
  AUTHORS
            Wesley, U.V., Hagag, N.G. and Goldgaber, D.
  TITLE
            Cloning of a protein that binds to a recognition sequence in the
            APP promoter
  JOURNAL
            Unpublished (1993)
  STANDARD full automatic
 FEATURES
                    Location/Qualifiers
     source
                    1..3523
                    /organism="Homo sapiens"
                    /dev stage="adult"
                    /sequenced_mol="cDNA to mRNA"
                    /tissue_tupe="brain"
     CDS
                    (69..)2154
                    /note="putative"
                    /product="binding protein"
                    /codon_start=1
                    /translation="TRRGMAATGTAAAAATGRLLLLLLVGLTAPALALAGYIEALAAN
                    AGTGFAVAEP@IAMFCGKLNMHVNI@TGKWEPDPTGTKSCFETKEEVL@YC@EMYPEL
                    @ITNVMEAN@RVSIDN#CRRDKK@CKSRFVTPFKCLVGEFVSDVLLVPEKC@FFHKER
                    MEVCENHOHWHTVVKEACLT@GMTLYSYGMLLPCGVD@FHGTEYVCCP@TKIIGSVSK
                    EEEEEDEEEEEDEEDYDVYKSEFPTEADLEDFTEAAVDEDDEDEEEGEEVVEDRD
                    YYYDTFKGDDYNEENPTEPGSDGTMSDKEITHDVKVPPTPLPTNDVDVYFETSADDNE
```

HARFOKAKEOLEIRHRNRMDRVKKEWEEAELOAKNLPKAEROTLIOHFOAMVKALEKE

DRLHTIRHYOHVLAVDPEKAAOMKSOVMTHLHVIEERRNOSLSLLYKVPYVAGEIGEE IDELLOEORADMDOFTASISETPVDVRVSSEESEEIPPFHPFHPFPALPENEGSGVGE ODGGLIGAEEKVINSKNKVDENMVIDETLDVKEMIFNAERVGGLEEERESVGPLREDF SLSSSALIGLLVIAVAIATVIVISLVMLRKROYGTISHGIVEVDPMLTPEERHLNKMO

				BALIGLLV ENPTYKYL		TVIVISL	.VMLRKR	@YGTISH(GIVEVDPM	LTPEERHLN
BASE CO	TAUC	941				865	it			
	Score Identity			Optimiz Matches Conserv		=	959	Mismato	icance = :hes = =	721
GCA	490 GGGTTGCAA	500 AACCT	GTAGCI	510 FTGGGAAC	52 ATTTAA		530 Gaacggt	1	CTGTCGA	550 CCCTGGAC CGGTGTGC 20
GAA(TGCTCTCT	II I AGTCC	GAAGG1	 GTGAGCT		111 1	l I i	AGA-AGGA	11 11	11 1 11
CCC1	530 FGTGGTGAGG GGGACCGG	l I	1 11	 GCCAC	1	TGTGACT AGGCT	Π	 TCTGCTG	CAGGAGGG	[1]
- 11	O 7: GGTCCTTACC 		1111	GCGCTG	ACATC-	1111	III II TGCAGC	TGGC		 GGATT
	770 CTGTTCTCTC 	AGCC	IIIIII TCAAAT	 CGCAATG	1	AAAAAAT III GGGAAGT	 T	1 1111	CAAGCAAC	1111
1) ACCACTGG GGAAATGGG/ 290	11	1 1 11	NAGAGGAA 	GATGCT	1 1111	GCCGAT	GTCCACA(GAAGAAG 111111 AAAGAAG	11 1
GGA(00 GGA-GGCTA1 	111	111 11	rGTAC	 TACAGA	TAGGAGA	TGTG-T	IIIII	AAACCGAG	1 11
I TTG#	970 ACCCCACCAT II I ACAACTGGT0 120	Π	11 11	AGCACAA	IIII GCAATG	CCACCAC	CCTGTT	111111	111	AGATGATG
	1040 GGCGCGCA		TCCAAC		TAACGC		TTTGTC	TTTACCT		

CGTGGGTGAATTTGTAAGTGATGTC-CTGCTAGTTC-CAGAAAAGTGCC---AGTTTTTCCACA--

1 1111 1 1

1110 1120 1130 1140 1150 1160
TAAATTTAAATTTTATGTGTGTGAGTGTTTTGC-CTGCCTGTATGCACACGTGTGTGTGTGTGTGT
AAGAGCGGATGGAGGTGTGTGAGAATCACCAGCACTGGCACACGGTAGTCAAAGAGGCATGTCTGACTCAGG 550 560 570 580 590 600 610
300 300 370 300 370 300 310
1170 1180 1190 1200 1210 1220 1230
GTGTGACACTCCTGATGCCTGAGG-AGGTCAGAAGAGAAAGGGTTGGTTCCATAAGAACTGGAG
620 630 640 650 660 670
1240 1250 1260 1270 1280 1290
TTATGGATGGCTGTGAG-CCGGNNNGATAGG-TCGGGACGGAGACCTGTCTTCTTATTTTAA
-TATGTGTGCTGCCCTCAGACAAGATTATTGGATCTGTGTCAAAAGAGAGGGAAGAGGAAGATGAAGAGAG
680 690 700 710 720 730 740
1700 1710 1700 1770
1300 1310 1320 1330 1340 1350 CGTGACTGTATAAAAAAAAAAAAATGATATTTCGGGAATTGTAGAGATTGTCCTGACACCCTTCTA
AGAGGAAGAGGAAGATGAAGAGGAAGACTATGATGTTTATAAAAGTGAATTTCCTACTGAAGCAGATCTG
750 760 770 780 790 800 810
1360 1370 1380 1390 1400 1410 1420
GTTAATGATCTAAG-AGGAATTGTTGATACGTAGTATACTGTATATGTGTATATGTATATGT-ATA
GAA-GACTTCACAGAAGCAGCTGTGGATGAGGATGATGAGGATGAGGAAGAAGGGGAAGTGGTG
820 830 840 850 860 870 880
1430 1440 1450 1460 1470 1480 1490
TATAAGACTCTTTTACTGTCAAAGTCAACCTAGAGTGTCTGGTTACCAGGTCAATTTTATTGGACATT
GAGGACCGAGATTACTATGACACCTTCAAAGGAGA-TGACT-ACAATGAGGAGAATCCTACTGAACCCG 890 900 910 920 930 940 950
1500 1510 1520 1530 1540 1550 1560
TTA-CGTC-ACACACACACACACACACACACACGCTTTATACTACGTACTGTTATCGGTATTCT-ACG
960 970 980 990 1000 1010 1020
4570
1570 1580 1590 1600 1610 1620 TCATATAATG-GGATAGGGTAAAAGGAAACCAAAGAGTGAGTGAT-ATTATTGTG-GAGGTGACAGACT
ACCAATGATGTTGAT-GTGTATTTCGAGACCTCTG-CAGA-TGATAATGAGCATGCTCGCTTCCAGAAGGCT
1030 1040 1050 1060 1070 1080 1090
1630 1640 1650 1660 1670 1680 1690
ACCCCTTCTGGGTACGTAGGGACAGACCTCCTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCA
AAGGAGCAGCTGGAGA-TTCGGCACCGCAACCGAATGGACAGGGTAAAGAAGGAATGGGAAGAGGCA 1100 1110 1120 1130 1140 1150
1100 1110 1120 1130 1140 1130
1700 1710 1720 1730 1740 1750 1760
-AGTTCCCGGACGAAGAGGACAGAGGAGACACAGTCCGAAAAGTTATTTTCCGGCAAATCCTTTCCC
1160 1170 1180 1170 1200 1210 1220
1770 1780 1790 1800 1810 1820
TGTTTCGTGACACTCCA-CCCCTTGTGGACACTTGAGTGTCATCCTTGCGCCGGAAGGTCAG-GT
TGGTTAAAG-CTTTAGAGAAGGAAGCAGCCA-GTGAGAAGCAGCAGCTGGTGGAGACCCACCTGGCCCGAGT
1230 1240 1250 1260 1270 1280 1290

```
1830
              1840
                       1850
                                1860
                                         1870
                                                  1880
   GGTACCCGT-CTGTAGGGGCGGGGGGAGACAGA-GCCGCGGGGGGGCTACGAGAATCGACTCACAGGGCGCCCC
   GGAAGCTATGCTGAATGACC--GCCGTCGGATGGCTCTGGAGAACTACCTGGCT-GCCTTGCAGTCTGACCC
        1300
                           1320
                                    1330
                                             1340
                                                      1350
                                                               1360
    1900
               1910
                       1920
                                 1930
                                          1940
                                                   1950
                                                            1960
   GGGCTTCG--CAAATGAAACTTTTTTAATCTCAC-AAGTTTCGTCCGGGGCTCGGCGGACCTATGGCGTCGAT
     11 11 1 11 111
                             --GCCACGGCCTCATCGCATTCTCCAGGCCTTACGGCGTTATGTCCGTGCT--GAGAACAAA-----GAT
          1370
                   1380
                            1390
                                     1400
                                                              1420
                                               1410
       1970
                1980
                        1990
                                 2000
                                           2010
                                                    2020
   C-CTTA-TTACCTTATCCTGGCGCCAAGATAAAACAACCAAAAGC-CTTGACTCCGGTACTAATTC-TCCCT
   1 1111 1111 111
                     CGCTTACATACC--ATC----CGTCATTA-CCAGCATGTGTTGGCTGTTGAC-CCAGAA--AAGGCGGCCCA
       1430
                      1440
                               1450
                                        1460
                                                  1470
       2040
                2050
                        2060
                                     2070
                                             2080
                                                      2090
   GCCGGCCCCGTAAGCATAACGCGGCGATCTCCAC---TTTAAGAACCTGGCCGCGTTCTGCCTGGTCTC-
                 11 11111
                                               1 1
   GATGAAATCCCAGGTGATGACAC----ATCTCCACGTGATTGAAGAAAGGAGGAAC-CAAAGCCT-CTCTCT
      1490
              1500
                           1510
                                   1520
                                            1530
                                                      1540
 2100
           2110
                     2120
                              2130
                                           2140
                                                    2150
   GCTTTCGTAA--ACGGT-TCTTACAAAAGTAATT--AG---TTCTTGCTTTCAGCCTCCA--AGCTTC-TGC
   111 1
                                                   111 11 111 1111
   GCTCTACAAAGTACCTTATGTAGCCCAAGAAATTCAAGAGGAAATTGATGAGCTCCTTCAGGAGCAGCGTGC
1550
         1560
                                   1590
                  1570
                           1580
                                            1600
                                                     1610
                                                              1620
        2170
                   2180
                            2190
                                      5500
                                                2210
                                                         2220
   TAGTCTATGG--CAGCATCAAGGCTGGTATTT--GCTACGGCTGACCGC-TACGCCGCCGCAATAAGGGTAC
    11 11111 111 111 11
                            1 1 11
   -AG-ATATGGACCAG-TTCACTGCCTCAATCTCAGAGACCCCTGTGGACGTCCGGGTGAGCTCTGAGGAGAG
         1630
                   1640
                            1650
                                     1660
                                             1670
                                                      1680
                                                               1690
   2230
            2240
                     2250
                              2260
                                       2270
                                                 2280
                                                           2290
   TG-GGCGGCCGTCGAAGGCCCTTTGGTTTCA-GAAACCCAAGGCCCCCCTCA-TACCAACGTT-TCGACTT
                 1 11
                           11 11
                                     TGAGGAGATCC--CACCGTTCCACCCCTTCCCACCCCTACCTGAGAACGAAGGATCTGGAGTG
        1700
                   1710
                            1720
                                     1730
                                             1740
                                                      1750
                                                               1760
    2300
             2310
                       2320
                                  2330
                                           2340
   TGATTCTTGCCGGTACGTGG--TGGTGGGTGCC--TTAGCTCTTTCTCGATAGTTAGAC
          11 11
                GGA---GAGCAGGATGGGGGACTGATCGGTGCCGAAGAGAAAGTGATTAACAGTAAGAATAAAGTGGATGAA
           1770
                    1780
                             1790
                                     1800
                                              1810
                                                       1820
   AACATGGTCATTGACGAGACTCTGGATGTTAAGGAAA
1830
         1840
                  1850
                           1860
11. ELLIS-012-FIG2AB.SEQ (1-2350)
   HSBIND
              Human binding protein mRNA, partial cds.
ΙD
     HSBIND
               standard; RNA; PRI; 3523 BP.
XX
ΑC
     L19597;
XΧ
DT
     18-JUN-1993 (Rel. 36, Created)
DT
     18-JUN-1993 (Rel. 36, Last updated, Version 1)
XX
DE
     Human binding protein mRNA, partial cds.
XX
ΚW
     binding protein.
```

```
08
     Hoлo sapiens (human)
 OC.
     Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
 00
      Theria; Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
 XX
 RN
     [1]
 RP
     1-3523
 RA
     Vostrov A.A., Quitschke W.W., Schwarzman A.L., Blangy A.,
 RA
      Cuzin F., Wesley U.V., Hagag N.G., Goldgaber D.;
 RT
      "Cloning of a protein that binds to a recognition sequence in the
 RT
      APP promoter";
 RL
     Unpublished.
 XX
 FH
     Key
                     Location/Qualifiers
 FH
 FT
     CDS
                     (69..)2154
 FT
                     /product="binding protein"
 FT
                     /note="putative"
 FT
                     /codon start=1
 FT
                     1..3523
      source
 FT
                     /organism="Homo sapiens"
 FT
                     /dev_stage="adult"
 FT
                     /sequenced_mol="cDNA to mRNA"
 FT
                     /tissue_type="brain"
 XX
 SQ
      Sequence 3523 BP; 941 A; 804 C; 913 G; 865 T; O other;
Initial Score
                     145
                          Optimized Score =
                                               772
                                                   Significance = 7.47
Residue Identity =
                     49%
                                               959 Mismatches
                         Matches
                                                                    721
Gaps
                     273
                          Conservative Substitutions
                                                                      0
        490
                 500
                           510
                                    520
                                              530
                                                   X
                                                       540
                                                                 550
    GCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGACCCTGGAC
                                                         1 11
                                                                 1 11
                                                   CCAAACTACGT--GCGGTGTGC
                                                           10
                                                                       50
      560
               570
                         580
                                  590
                                              600
                                                        610
                                                                  620
    GAACTGCTCTCTAGACGGAAGGTCTGTGCTTAAGA-CCG-GGACCACGGAGA-AGGACGTGGTGTGTGGACC
               1 11 11 11 1 11
    TAA--GC-GAGGAGTCCGAGTGTGTGAGCTTGAGAGCCGCGCGCTAGAGCGACCCGGCGAGGGATGGCGGCC
              30
                        40
                                 50
                                           60
                                                    70
                                                              80
       630
                640
                          650
                                   660
                                             670
                                                      680
                                                                690
    \Pi
                      1 111 1111
                                     1 11 111 111
    ACC--GGGACCGCGGCCGCAG--CCAC--GGGCAG--GCTCCTGCTTCTGCTGCTGGTGGG-GCTCACG
   90
             100
                       110
                                    120
                                                130
                                                         140
                                                                    150
    700
              710
                        720
                                     730
                                                740
                                                            750
                                                                      760
    GCAGGTCCTTACCTTGTTCCTGGC--GCTGACATC--GGCT-TTGCTGC---TGGCCCTGATCTTCATTACT
    11 | 1 | 11111
                      11111 111 11111 1111 1111 11
                                                     11 11 11 1
    GC--GCC--TGCCTTGGCGCTGGCCGGCT-ACATCGAGGCTCTTGCAGCCAATG--CCGGAACAGGATT---
            160
                      170
                                180
                                          190
                                                   200
                                                               210
          770
                     780
                                   790
                                             800
                                                      810
                                                                820
    CTCCTGTTCTCTGTG-CTCAAATGG--AT---CAGGAAAAATTCCCCCCACATATTCAAGCAACCATTTAAG
    1 11111 111 1 1111111 1 11
                                    ١
                                         11 11
                                                   1 1111 11 1 1 1111 1
    -TGCTGTT-GCTGAGCCTCAAATCGCAATGTTTTGTGGGAAGTT----AAATATGCATGTGAACATTCAGA
       220
                  230
                            240
                                     250
                                                   260
                                                             270
    830
                840
                           850
                                    860
                                              870
                                                       880
                                                                 890
    AAGACCACTGG--AGCAGCT-CAAGAGGAAGATGCTTGTAGCTGCCGATGTCCACAGGAAGAAGAAGGAGGA
         1 111 1 1 1 1 11 11 11 1
                                    CTGGGAAATGGGAACCTGATCCAACAGGCA---CCAAG-AGCTG-CTTTG-AAACA-AAAGAAGAA-GTTCT
  280
           290
                     300
                                 310
                                             320
                                                        330
                                                                   340
```

900 910 920 930 940 950 960 GGAGGA-GGCTATGAGCTGTGATGTACTA-TCCTAGGAGATGTG-TGG-GCCGAAACCGAGAAGCACTA
970 980 990 1000 1010 1020 1030 -GGACCCCACCATCCTGTGGAACAGCACAGCAACCCCACCACCCTGTTCTTACACATCATCCTAGATGATG
1040 1050 1060 1070 1080 1090 1100 TGTGGGCGCCACCTCATCCAAGTCTCTTCTAACGCTAACATATTTGTCTTTACCTTTTTTTAAATCTTTTTT
1110 1120 1130 1140 1150 1160 TAAATTTAAATTTTATGTGTGGGGTGTTTTGC-CTGCCTGTATGCACACGTGTGTGTGTGTGTGT
1170 1180 1190 1200 1210 1220 1230 GTGTGACACTCCTGATGCCTGAGG-AGGTCAGAAGAGAGAGAGGTTGGTTCCATAAGAACTGGAG
1240 1250 1260 1270 1280 1290 TTATGGATGGCTGTGAG-CCGGNNNGATAGG-TCGGGACGGAGACCTGTCTTCTTATTTTAA
1300 1310 1320 1330 1340 1350 CGTGACTGTATAATAAAAAAAAAATGATATTTCGGGAATTGTAGAGATTGTCCTGACACCCTTCTA
1360 1370 1380 1390 1400 1410 1420 GTTAATGATCTAAG-AGGAATTGTTGATACGTAGTATACTGTATATGTGTATATGTATATGT-ATA
1430 1440 1450 1460 1470 1480 1490 TATAAGACTCTTTTACTGTCAAAGTCAACCTAGAGTGTCTGGTTACCAGGTCAATTTTATTGGACATT
1500 1510 1520 1530 1540 1550 1560 TTA-CGTC-ACACACACACACACACACACACACACGTTTATACTACGTACTGTTATCGGTATTCT-ACG
1570 1580 1590 1600 1610 1620 TCATATAATG-GGATAGGTAAAAGGAAACCAAAGAGTGAGTGAT-ATTATTGTG-GAGGTGACAGACT

1630 1640 1650 1660 1670 1680 1690	
ACCCCTTCTGGGTACGTAGGGACAGACCTCCTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCA	
AAGGAGCAGCTGGAGA-TTCGGCACCGCAACCGAATGGACAGGGTAAAGAAGGAATGGGAAGAGGCA	
1100 1110 1120 1130 1140 1150	
1700 1710 1720 1730 1740 1750 1760	
-AGTTCCCGGACGAAGAGGACAGAGGAGACACAGTCCGAAAAGTTATTTTTCCGGCAAATCCTTTCCC	
1160 1170 1180 1190 1200 1210 1220	
1770 1780 1790 1800 1810 1820	
TGTTTCGTGACACTCCA-CCCCTTGTGGACACTTGAGTGTCATCCTTGCGCCGGAAGGTCAG-GT	
TGGTTAAAG-CTTTAGAGAAGGAAGCAGCCA-GTGAGAAGCAGCAGCTGGTGGAGACCCACCTGGCCCGAGT 1230 1240 1250 1260 1270 1280 1290	
1830 1840 1850 1860 1870 1880 1890 GGTACCCGT-CTGTAGGGGGGGGGAGACAGA-GCCGCGGGGGGAGCTACGAGATCGACTCACAGGGCGCCCCC	
GGAAGCTATGCTGAATGACCGCCGTCGGATGGCTCTGGAGAACTACCTGGCT-GCCTTGCAGTCTGACCC	
1300 1310 1320 1330 1340 1350 1360	
1900 1910 1920 1930 1940 1950 1960	
GGGCTTCGCAAATGAAACTTTTTTAATCTCAC-AAGTTTCGTCCGGGCTCGGCGGACCTATGGCGTCGAT	
1370 1380 1390 1400 1410 1420	
1970 1980 1990 2000 2010 2020 2030	
C-CTTA-TTACCTTATCCTGGCGCCAAGATAAAACAACCAAAAGC-CTTGACTCCGGTACTAATTC-TCCCT	
CGCTTACATACCATCCGTCATTA-CCAGCATGTGTTGGCTGTTGAC-CCAGAAAAGGCGGCCCA 1430 1440 1450 1460 1470 1480	
2040 2050 2060 2070 2080 2090 GCCGGCCCCCGTAAGCATAACGCGGCGATCTCCACTTTAAGAACCTGGCCGCGTTCTGCCTGGTCTC-	
GATGAAATCCCAGGTGATGACACATCTCCACGTGATTGAAGAAAGGAGGAAC-CAAAGCCT-CTCTCT 1490 1500 1510 1520 1530 1540	
1490 1500 1510 1520 1530 1540	
2100 2110 2120 2130 2140 2150 2160	
GCTTTCGTAAACGGT-TCTTACAAAAGTAATTAGTTCTTGCTTTCAGCCTCCAAGCTTC-TGC	
GCTCTACAAAGTACCTTATGTAGCCCAAGAAATTCAAGAGGAAATTGATGAGCTCCTTCAGGAGCAGCGTGC	
1550 1560 1570 1580 1590 1600 1610 1620	
2170 2180 2190 2200 2210 2220	
TAGTCTATGGCAGCATCAAGGCTGGTATTTGCTACGGCTGACCGC-TACGCCGCCGCAATAAGGGTAC	
1630 1640 1650 1660 1670 1680 1690	
2230 2240 2250 2260 2270 2280 2290	
TG-GGCGGCCCGTCGAAGGCCCTTTGGTTTCA-GAAACCCAAGGCCCCCTCA-TACCAACGTT-TCGACTT	
TGAGGAGATCCCACCGTTCCACCCCTTCCACCCCTTCCCAGCCCTACCTGAGAACGAAGGATCTGGAGTG 1700 1710 1720 1730 1740 1750 1760	
2300 2310 2320 2330 2340 X TGATTCTTGCCGGTACGTGGTGGTGGGTGCCTTAGCTCTTTCTCGATAGTTAGAC	
GGAGAGCAGGATGGGGGACTGATCGGTGCCGAAGAGAAAGTGATTAACAGTAAGAATAAAGTGGATGAA	
1770 1780 1790 1800 1810 1820	

```
AACATGGTCATTGACGAGACTCTGGATGTTAAGGAAA
 1830
           1840
                     1850
                               1860
12. ELLIS-012-FIG2AB.SEQ (1-2350)
    HSHB15RNA
                 Homo sapiens mRNA for HB15
LOCUS
             HSHB15RNA
                          1761 bp
                                                     PRI
                                                               31-JUL-1992
                                     RNA
 DEFINITION Homo sapiens mRNA for HB15
 ACCESSION
             711697
 KEYWORDS
             HB15 gene; immunoglobulin superfamily.
 SOURCE
             human
   ORGANISM Homo sapiens
             Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
             Theria; Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
 REFERENCE
             1 (bases 1 to 1761)
             Zhou.L., Schwarting.R., Smith, H.M. and Tedder, T.F.
   AUTHORS
   TITLE
             A novel cell-surface molecule expressed by human interdigitating
             reticulum cells, Langerhans cells and activated lymphocytes that is
             a new member of the immunoglobulin superfamily
   JOURNAL
             J. Immunol. 149, 735-742 (1992)
   STANDARD full automatic
 REFERENCE 2 (bases 1 to 1761)
   AUTHORS
            Tedder, T.F.
   TITLE
             Direct Submission
   JOURNAL
             Submitted (11-FEB-1992) T.F. Tedder, Division of Tumor Immunology,
             Dana-Farber Cancer Institute/Harvard Medical School, 44 Binney St.,
             Boston, MA, 02115-6084, USA
   STANDARD full automatic
 COMMENT
             *source: tissue=human tonsil;
             *source: cell type=lymphocyte;
             *source: clone_library=cDNA library in lambda gt-11; *source:
             clone=pHB15;
             *source: is_macronuclear=N;
             *source: is_proviral=N;
             *source: is_germline=N.
 FEATURES
                      Location/Qualifiers
      sig_peptide
                      11..67
      mat_peptide
                      68..625
                      /product="HB15"
                      /note="proposed amino-terminus of mature protein product"
      polyA_signal
                      1248..1253
      CDS
                      11..628
                      /evidence=EXPERIMENTAL
                      /note="a cell-surface molecule expressed by
                      interdigitating reticulum cells, Langerhans cells and
                      activated lymphocytes.A member of the immunoglobulin
                      superfamily"
                      /product="HB15"
                      /codon_start=1
                      /translation="MSRGLQLLLLSCAYSLAPATPEVKVACSEDVDLPCTAPHDPQVP
                      YTVSWVKLLEGGEERMETP@EDHLRG@HYH@KG@NGSFDAPNERPYSLKIRNTTSCNS
                      GTYRCTLODPDGGRNLSGKVILRVTGCPAGRKEETFKKYRAEIVLLLALVIFYLTLII
                      FTCKFARLOSIFPDFSKAGMERAFLPVTSPNKHLGLVTPHKTELV"
 BASE COUNT
                          399 c
                 453 a
                                   442 q
                                            467 t
 ORIGIN
Initial Score
                 =
                      143 Optimized Score =
                                                 697 Significance = 7.33
```

X 10 20
ATGTCC-ATGAACTGCTGAGTG

| | | | | | |
TGAGCTGCGCCTACAGCCTGGCTCCCGCGACGCCGGAGGTGAAGGTGGCTTGCTCCGAAGATGTGGACTTGC
40 50 60 70 80 90 100 110

207 Conservative Substitutions

=

=

719

0

843 Mismatches

47% Matches

Residue Identity =

Gaps


```
1520
         1510
                              1530
                                        1540
                                                  1550
                                                            1560
   C-ACACACACAC-ACACACACACACACACACGTTTATACTACGTACTGTTATCGGTATTCTACG--TCATATAA
    11 11 1
                                                      311 11 1 1 1 1 1
   CTATACAGATTCGAAACTC-CATTGAGTC-ATTATCCTTGCTA-TGATGATGGTGTTTTTGGGGATGAGAGGG
  1610
           1620
                      1630
                                 1640
                                            1650
                                                      1660
                                                                1670
 1570
            1580
                      1590
                                1600
                                          1610
                                                    1620
                                                              1630
   TGGGAT--AGGGTAAAAGGAAACCAAAGAGTGAGTGATATTATTGTGGAGGTGACAGACTACCCCTTCTGGG
                  1 1
                               1 11 111 1
                        - 11
                                                 TGCTATCCATTTCTCATGTTTTCC---ATTGTTTGAAACAA---AGAAGGTTACCAAGAAGCCTTTCCTGT
                                    1710
   1680
            1690
                      1700
                                                 1720
                                                           1730
                                                                    1740
 1640
           1650
                     X
                              1670
                                                  1690
                                        1680
                                                            1700
    TACGTAGGGACAGACCTCCTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCAAGTTCCCGGACGA
      1 1
           1 11 111
    AGCCTTCTGTAGGAATTCC
       1750
                 1760
13. ELLIS-012-FIG2AB.SEQ (1-2350)
    S53354
                B-cell activation protein=B-G antigen IgV domain h
LOCUS
            S53354
                                                    PRI
                         2574 bp
                                                              05-APR-1993
 DEFINITION
            B-cell activation protein=B-G antigen IgV domain homolog [human,
            SAC-activated B lymphocytes, Genomic/mRNA, 2574 ntl
 ACCESSION
            S53354
 KEYWORDS
 SOURCE
            human SAC-activated B lymphocytes
   ORGANISM Unclassified.
            Unclassified.
 REFERENCE
            1 (bases 1 to 2574)
   AUTHORS
            Kozlow, E.J., Wilson, G.L., Fox, C.H. and Kehrl, J.H.
   TITLE
            Subtractive cDNA cloning of a novel member of the Ig gene
            superfamily expressed at high levels in activated B lumphocytes.
   JOURNAL
            Blood 81, 454-461 (1993)
            full automatic
  STANDARD
 COMMENT
            This entry [NCBI gibbsq 123744] was created by the journal scanning
            component of NCBI/GenBank at the National Library of Medicine.
            This sequence comes from Fig. 7 and 1.
 FEATURES
                     Location/Qualifiers
     mRNA
                     271..2574
      CDS
                     312..929
                     /note="B-G antigen lgV domain homolog; For the protein
                      sequence (NCBI gibbsq 123745): Method: conceptual
                     translation supplied by author. This sequence comes from
                     Fig. 1.º
                      /product="B-cell activation protein"
                      /codon start=1
                      translation="MSRGL@LLLLSCAYSLAPATPEVKVACSEDVDLPCTAPWDP@VP
                     YTVSWVKLLEGGEERMETP@EDHLRG@HYH@KG@NGSFDAPNERPYSLKIRNTTSCNS
                     GTYRCTLODPDGORNLSGKVILRVTGCPAORKEETFKKYRAEIVLLLALVIFYLTLII
                     FTCKFARL@SIFPDFSKAGMERAFLPVTSPNKHLGLVTPHKTELV"
 BASE COUNT
                649 a
                         595 c
                                  689 g
                                           641 t
 ORIGIN
Initial Score
                =
                     143 Optimized Score =
                                                897 Significance = 7.33
Residue Identity =
                     46% Matches
                                           =
                                               1088 Mismatches
                                                                      951
Gaps
                     279 Conservative Substitutions
                                                                       0
                                                             10
                                                                       20
                                                     ATGTCC-ATGAACTGCTGAGTG
```

TGAGCTGCGCCTACAGCCTGGCTCCCGCGACGCCGGAGGTGAAGGTGGCTTGCTCCGAAGATGTGGACTTGC 340 350 360 370 380 390 400 410

30 40 50 60 70 80 GATAAACAGCACGGGATATCTCTGTCTA-AAGGAATATTACTACACCAGGAAAAGGACACATTCGA
90 100 110 120 130 140 150 CAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGCCATGGGAAACA
AGAGAGG-ATGGAGACACCCCAGGAAGACCACCTCAGGGGGACAGCA-CTATCATCAGAAGGGGCAA-A 490 500 510 520 530 540 160 170 180 190 200 210 220
ACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTG-TGAGAAGGTGGGAGCCGTGCAGA
230 240 250 260 270 280 ACTC-CTGTGATAACTGT-CAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGC
290 300 310 320 330 340 350 CCTCCA-AGT-ACCTTCTCCAGCATAG-GTGGACAGCCGAACTGTAACATCTGCAGAGTGTGTGCAGG
360 370 380 390 400 410 420 CTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAACGCGGAGT-GTGAGTGCATTGAAGGATTCCA
430 440 450 460 470 480 TTGCTTGGGGCCACAGTGCACAGATGTGAAAAGGACTGCAGGCCTGGCCAG-GAGCTAACGAAGC
490 500 510 520 530 540 550AGGG-TTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGACCCTG
560 570 580 590 600 610 620 GACGAACTGCTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGACCACGGAGAAGGA-CGTGGTG-TGTG
630 640 650 660 670 680 690 GACCCCCTGTGGTGAGCTTCTCCCCAGTACCACCATTTCTGTGACTCCAGAGGGAGGACCAGGAGGGCA
700 710 720 730 740 750 CTCCTTGCAGGTCCTTACCT-TGTTCCTGGCGCTGACATCGGCT-TTGCTGC-TGGCCCTGATCTTCA

760		780		008	810	820 GCAACCATTTAAGA
1 1 1	11 111	11 1111			11111 11	11 1 11
AT-GTAT 1170	GCAGCTAT		-CCTCCTGG/			GCTATGGTGAGA 20 1230
830	840	850	860	870	880	890
						AAGAAGGAGGAGGA
TG-CAGC	TGGAAAAGGG	TCTTGGGAAA	TATGAATG-	-CCCCCAGCT	GGCCCGTGACAG	ACTCCTGAGGA-CA
	1240	1250	1260	1270	1280	1290
900 ccaccc-) 		950 AAACCGAGAAGCAC
1 1 1	1 11 1		11111	1 111	11 11 1	1 11 111 1
GCTGTCC 1300	TCTTCTGCAT	CT-TGGGGAC 1320		AATTTTCTGT 1340	GTTTTGCTGTAC 1350	CAGCCCAGATGTTT 1360
960	970	980	990	1000	1010	1020
TAGGACC	CCACCATCCT	GTGGAACAGC	ACAAGCAAC	CCCACCACCC	TGTTCTTA-	CACATCATCCTAGA
					 GGAAATATTTAG	II
1370	1380	1390	1400	1410	1420	1430
					70 1080	1090 -TTTACCTTTTTA
11 1111	11 1 11		111 111	1 11	11 1 111	1 1 11 11
		TATTACTAAG 1460	GAGTAATCTI 1470		AAATAACAAGTO	GATGAACTATTCCC 1500
	1100	1110	1120			1150
AATC	-TTTTTTTAA	ATTTAAATTT	TATGTGT-G	TGA-GTGTTI	TGCCTGCCTGTA	TGCACACGTGTGTG
				 AGAAGCAATA	 AAGAAGAGTG	
1510			1540	1550	1560	1570
		1180	1190	1200		1220
1616161			GCCTGAGGAI		· - · · · · · · · ·	TTCCATA-AGAACT
TATATCT 1580	ATATGTACTT	GTCAAAGAAG 1600	GTTTGTGTT 1610	TTTCTGCTTT 1620	TGAAATCTGT	ATCTGTAGTGAGAT
1230		1250			1280	
GGAGTTA	TGGA-TGGCT	GTGAGCCGGN	NNGATAGGT	CGGGACGGAG	ACCTGTCTTCTT	ATTTTAACGTGACT
					 AAGAAGTCAG	 AGAGGGTGACA
1650	1660	1670		1680	1690	1700
1300		1320				
GIAIA-A						TCTAGTTAATGA
AGATAGA 1710	GAGCTATTTA		GGAAATGCT			GCTCGCCCACTTGT
1770	1380	1390	1.404	n 1		0 1430
	GAGGAATTGT	TGATACGTAG	TATACTGTA	TAT-GTGTAT	G-TATATGTATA	TGTATA-TATAAGA
CCCACTA						IIII
1780	1790	1800	1810	1820	1830	1840 1850
		D 146				490 1500 -ACATTTTACGTCA
11 11	1 1 1 11		11			1111 1 1 1 11
	ATGGGCTAA-1 860	TGAAGA 1870	TCA	TA-TACGTGA 1880	AAATTATTTGAA 1890	AACATATAAAG-CA 1900

1510			1530				
						STATTCTACG	
CTATACAGAT	TCGAAAC	TC-CATTGA				TGTTTTGGGGA	
1910 192	20	1930	1940	1950	196	0 1970	1
1570 1	580	1590	1600	1610	1620	1630	
						ACAGACTACCO	
						II I III ACCAAGAAGCO	
			201		5050		2040
1640 165	i0	1660	1670	•	1680	1690	1700
						GTCTCG-TCAA	
ACCCTTCTCT			1 11 1			IIIII TTCTTGAAGCA	
	2060		'0 20				110
17	10	1720	1730	17/	10 17	JEA 17/	۸
_						'50 176 GCAAATCCTTI	
1 1 1	111 1		11 1 1	1 111		11 1 11	1111
ACACACTCCA 2120	AGATATG 2130		GAGCCGCTG 2150			CGAAGTGTT	GCATGGAT 2180
							2.00
	.780 :cacccct	1790 TGTGGACAC) 1830 CAGGTGGTACC	'CCTCT
11 1	1 11 1		1 111			1111 1	1 11
-GTTT	TAGCCAT					-TCTTGGTTTC	
	2170	2200	2210	5550) 22	230 224	.0
1840	1850			1880			
						10202000000000000000000000000000000000	
TTTATTGCT	AGTTATA	TGTTCACTO	TCCCCCTAA	TATTAGGGA	AGTAAAACGG	ATACCAAGT	TGATT
2250 2	2260	2270	2280	2290	2300	231	0
			1940				
						TCGATCCTTAT:	
TAGTGTTTTT	ACCTCTG	τάττάσετί	TCAT-GTTA	TTAAACGTA	TGCAT-GTG	I I I I I I I I I I I I I I I I I I I	TTT-T
2320	5330	2340	23	50 2	2360	2370	2380
1980 19	90	2000	2010	2020	2030	2040	
						TGCCGGCCCCC	
						 - TAATGGTTAC	
	390	2400			2420		2440
2050 a	2060	207	0 20	30 2	2090	2100	2110
-ATAACGCGG	CGATCTC	CACTT	TAAGAACCT	GGCCGCGTT	гствсстввт	CTCGCTTTCGT	AAAC-
						 TTACCTAT-GT	
2450			2470			2500	2510
212	20	2130	2140	2150	2160	2170 X	2180
						AGTCTATGGCA	
						l I I I AAAAAAAA	
2520			2540		2560	2570 X	
2190) o	200	2210	2220			
GCTGGTATTT							

```
LOCUS
             HSIL05
                          6684 bp
                                     DNA
                                                     PRI
                                                               03-JAN-1991
 DEFINITION Human interleukin-2 (IL-2) gene and 5'-flanking region
             X00695 X00200 X00201 X00202
 ACCESSION
 KEYWORDS
             growth factor; interleukin; I-cell growth factor.
 SOURCE
             hunan
   ORGANISM Homo sapiens
             Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
             Theria; Eutheria; Primates; Haplorhini; Catarrhini; Hominidae.
 REFERENCE
             1 (bases 1 to 6684)
   AUTHORS
             Holbrook, N.J., Lieber, M. and Crabtree, G.R.
             DNA sequence of the 5' flanking region of the human interleukin 2
   TITLE
             gene: homologies with adult T-cell leukemia virus
   JOURNAL
             Nucleic Acids Res. 12, 5005-5013 (1984)
   STANDARD full automatic
             2 (bases 1 to 6684)
 REFERENCE
   AUTHORS
             Degrave, W., Tavernier, J., Duerinck, F., Plaetinck, G., Devos, R. and
             Fiers, W.
   TITLE
             Cloning and structure of the human interleukin 2 chromosomal gene
   JOURNAL
             EMBO J. 2, 2349-2353 (1983)
   STANDARD full automatic
 REFERENCE
             3 (bases 1 to 6684)
   AUTHORS
             Tamiguchi, T., Matsui, H., Fujita, T., Takaoka, C., Kashima, N.,
             Yoshimoto, R. and Hamuro, J.
             Structure and expression of a cloned cDNA for human interleukin-2
   TITLE
   JOURNAL
             Nature 302, 305-310 (1983)
   STANDARD full automatic
 FEATURES
                      Location/Qualifiers
                      1339...1344
      promoter
                      /note="TATA-box"
      precursor_RNA
                      1363..6403
                      /note="primary transcript"
      intron
                      1563..1652
                      /note="intron I"
      intron
                      1713..4004
                      /note="intron II"
                      4149..6009
      intron
                      /note="intron III"
      misc_feature
                      6382..6387
                      /note="polyadenylation signal"
      CDS
                      join(1416..1562,1653..1712,4005..4148,6010..6117)
                      /product="interleukin"
                      /codon_start=1
                      /translation="MYRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLLLDLQMI
                      LNGINNYKNPKLTRMLTFKFYMPKKATELKHL@CLEEELKPLEEVLNLA@SKNFHLRP
                      RDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFC@SIISTLT"
 BASE COUNT
                2342 a 1113 c 1064 g 2165 t
 ORIGIN
Initial Score
                      142 Optimized Score =
                 =
                                                 737 Significance = 7.26
Residue Identity =
                      47% Matches
                                            =
                                                 905 Mismatches = 732
Gaps
                      257 Conservative Substitutions
                                                                10
                                                      ATGTCCATG--AACTGCTGAGT
                                                      1 11 111 1 11
    ATGAATCACTTATTAGTGGACTGTTTCAGTTGAATTAAAAAAATACATTGAGATCAATGTCATCTAGACATT
         4880
                   4890
                             4900
                                       4910
                                                 4920 X
                                                           4930
                                                                     4940
                       40
                                 50
                                                   60
                                                              70
    G-GATAAACAGCACGGGATATCTCTGTCTAAAG------GAATATTACT-ACACCAGGAAAAGGACACAT
                      11 11 1 111 111 11
    GACAGATTCAGTTC--CTTATCTATGGCAAGAGTTTTACTCTAAAATAATTAACATCAGAAA----ACTCAT
       4950
                   4960
                             4970
                                       4980
                                                 4990
                                                           5000
```

0 100 110 120 170 140 15

TC-GACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCA-TGTGACATTTCGCCATGGG
160 170 180 190 200 210 AAACAACTGTTACAACGTGGTGGTCAT-TGTGCTGCTGCTAGTGGGCTGTGAGAAGGT-GGGA
220 230 240 250 260 270 280 GCCGTGCAGAACTCCTGTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGC
290 300 310 320 330 340 350 TGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGCAGGCTAT
360 370 380 390 400 410 420 TTCAGGTTCAAGAAGTTTTGCTCCTCTAC-CCACAACGCGGAGTGTGAG-TGCATTGAAG-GATTCCA
430 440 450 460 470 480 TTGCT-TGGGGCCACAGTGCACCAGATGTGAAAAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCA
490 500 510 520 530 540 550 GGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGGTACTGGCGTCTGTCGACCCTGGACGAA
560 570 580 590 600 610 620 CTGCTCTCTAGACGGAAGGTCTGTGCTTAAGACCGGGACCACGGAGAAGGACG—TGGTGTGTGGACCCCCT
630 640 650 660 670 680 690 GTGGTGAGCTTCTCCCAGTACCACCATTTCTGTGACTCCAGAGGGAG-GACCAGGAGGGCACTCCT
700 710 720 730 740 750 TGCAGGTCCTTACCTTGTTCCTGGCGCTGACATCGGCTTTGCTGCTGGCCCTGATCTTCAT
760 770 780 790 800 810 TACTC-TCCTGTTCTCTGTGCTCAAATGGATCAGGAAAAAATTCCCCCACATATTCAAGCA
020 070 070 050 070 070

0 4 0

ACCATTTAAGAAGACCACTGGAGCAGCTCAAGAGGAAGATGCTTGTAGCTGCCGATGTCCA-CA	
890 900 910 920 930 940 950 AGAAGAAGGAGGAGGAGGCTATGAGCTGTGATGTACTATCCTAGGAGATGTGTGGGCCGAAACCGA	111
960 970 980 990 1000 1010 1020 GCACTAGGACCCCACCATCCTGTGGAACAGCACAAGCAACCCCACCACCCTGTTCTTACACATCAT	ССТ
1030 1040 1050 1060 1070 1080 109 AGATGATGTGTGGGCGCACCTCATCCAAGTCTCTTCTAACGCTAACATATTTGTCTT-TACCTTT	TTT I
1100 1110 1120 1130 1140 1150 11 AAATCTTTTTTTAAATTTAAATTTTATG-TGTGTGAGTGTTTTGCCTGCCTGTATGCACACGTGTGT	
1170 1180 1190 1200 1210 1220 TGTGTGTGTGTGACACTCCTGATGCCTGAGGAGGTCA-GAAGAGAAAGGGTTGGTTC-CATAAGAAC	1
1230 1240 1250 1260 1270 1280 1290 GAGTTATGGATGGCTGTGAGCCGGNNNGATAGGTCGGGACGGAGACCTGTCTTCTTATTTTAAC-GTGA	1
1300 1310 1320 1330 1340 1350 1360 1 TATAATAAAAAAAATGATATTTCGGGAATTGTAGAGATT-GTCCTGACACCCTTCTAGTTAATGATC	TAA
1380 1390 1400 1410 1420 1430 GAGGAATTGTTGAT-ACGTAGTATACTGTA-TATG-TGTATGTATATGTATATGTATATATATATA	GAC GAT
1440 1450 1460 1470 1480 1490 1500 TCTTTTACTGTCAAAGTCAACCTAGAGTGTCTGGTTACCAGGTCAATTTTATTGGACATTTTACGTC	ACA I
1510 1520 1530 1540 1550 1560 15 CACA-CACACACACACACACACACACGTTTATACTACGTACTGTTATCGGTATTCTACGTCATATA III IIII	11
1580 1590 1610 1620 1530	

```
GGATAGGGTAAAAGGAAACCAAAGAGTG-AGTGATAT-TATTGTGGAGGTGACAGACT-----ACCCCTT
            +11111 + 1
                             111 11 11111
                                                                    1 11111
   GCTTA---CAAAAGTCACTCTTTCTCTGAAGAAATATGTAGAACAGAGATG-TAGACTTCTCAAAAGCCCTT
         6500
                   6510
                             6520
                                       6530
                                                 6540
                                                            6550
                                                                      6560
       1640
                       1650
                                 1660
                                           1670
                                                     1680
                                                               1690
   -CTGGGTACGT---AGGG----ACAGACCTCCTTCGGACTGTCTAAAACTCCCCTTAGAAGTCTCGTCAAGT
                 1111
                          | | | | |
                                                        GCTTTGTCCTTTCAAGGGCTGATCAGAC--CCTTAGTTCTGGC---ATCT---CTTAGCAGATT--ATATTT
        6570
                  6580
                              6590
                                        6600
                                                        6610
                                                                    6620
  1700
             1710
                       1720
                                 1730
                                           1740
                                                     1750
                                                               1760
   TCC--CGGACGAAGAGGACAGAGGAGACACAGTCCGAAAAGTTATTTTTCCGGCAAATCCTTTCCCTGTTTC
               - 11
                                              1 1 111
                                                           11
    TCCTTCTTCTTAAAATGCCA-AACACAAACACTCTTGAA----ACTCTTC-----ATAGATTTGGTGTGGC
                6640
       6630
                           6650
                                     6660
                                                         6670
                                                                   0866
  1770
            1780
                     1790
                               1800
                                         1810
   GTGACACTCCACCCTTGTGGACACTTGAGTGTCATCCTTGCGCCGGAAG
15. ELLIS-012-FIG2AB.SEG (1-2350)
   RATTGFB
                Rat transforming growth factor-beta (TGF-beta) mas
LOCUS
             RATTGFB
                         6244 bp ss-mRNA
                                                    ROD
                                                              09-DCT-1990
 DEFINITION Rat transforming growth factor-beta (TGF-beta) masking protein
             large subunit, complete cds.
 ACCESSION
            M55431
KEYWORDS
             transforming growth factor-beta 1 binding protein;
             transforming growth factor-beta masking protein.
 SOURCE
             Rat (strain Wistar) kidney, cDNA to mRNA.
  ORGANISM Rattus norvegicus
             Eukaryota; Animalia; Chordata; Vertebrata; Mammalia; Theria;
             Eutheria; Rodentia; Myomorpha; Muridae; Murinae.
 REFERENCE
            1 (bases 1 to 6244)
  AUTHORS
            Tsuji, T., Okada, F., Yamaquchi, K. and Nakamura, T.
  TITLE
             Molecular cloning of the large subunit of transforming growth
             factor type beta masking protein and expression of the mRNA in
             various rat tissues
   JOURNAL
             Proc. Natl. Acad. Sci. U.S.A. 87, 8835-8839 (1990)
   STANDARD full automatic
 FEATURES
                     Location/Qualifiers
     mRNA
                     <1..6244
                     /gene="TGF-beta masking protein large subunit"
     CDS
                     /gene="TGF-beta masking protein large subunit"
                     /note="putative"
                     /product="TGF-beta masking protein large subunit"
                     /codon_start=1
                     /translation="MAGAWLRWGLLLWAGLLAWSAHGRVRRITYVVRPGPGLPAGTLP
                     LAGPPRTFNVALDARYSRSSTATSSRSLAGPPAERTRRTS@PGGAALPGLRSPLPPEP
                     ARPGAPSROLHSKAGAOTAVTRFAKHGROVVRSKVOODTOSSGGSRLOVOOKQOLOGI
                     NVCGG@CCHGUSKAPGS@RCTKPSCVPPC@NGGMCLRP@FCVCKPGTKGKACEITAA@
                     DTMSPVFGG@NPGSSWVPPEPAAKRTSTKKADTLPRVSPVA@MTLTLKPKPSMGLS@@
                     IHSQVAPLSSQNVMIRHGQTQEYVLKPKYFPAPKVVSGEQSTEGSFSLRYGQEQGTAP
                     FOVSNHTGRIKVVFTPSICKVTCTKGNCHNSCOKGNTTTLISENGHAADTLTATNFRV
                     VICHLPCMNGG@CSSRDKC@CPPNFTGKLC@IPVLGASMPKLY@HA@@PGKALGSHVI
                     HSTHTLPLTMTN00GVKVKFPPNIVNIHVKHPPEASV0IHQVSRIDGPVGQRVKEVQP
                     G@S@VSY@GLPV@KT@TVHSTYSH@@VIPHVYPVAAKT@LGRCF@ETIGS@CGKALPG
                     LSKOEDCCGTVGTSWGFNKCOKCPKKOSYHGYTOMMECLOGYKRVNNTFCODINECOL
```

OGVCPNGECLNTMGSYRCSCKMGFGPDPTFSSCVPDPPMISEEKGPCYRLVSPGROCM
HPLSVHLTK0ICCCSVGKAWGPOCEKCPLPGTAAFKEICPGGMGYTVSGIHRRRPIHO
HIGKEAVFVKPKNTOPVAKSTHPPPLPAKEEPVEALTSSREHGPGVAEPEVVTAPPEK
EIPSLDOEKTRLEPGOPOLSPGVSTIHLHPOFPVVVEKTSPPVPVEVAPEGSTSSASO
VIAPTOVTEINECTVNPDICGAGHCINLPVRYTCICYEGYKFSEOORKCIDIDECAQA

CEYCDSGYRMSRRGHCEDIDECLTPSTCPEEGCVNSPGSYGCVPCTEGFRGWNGQCLD VDECL@PKVCTNGSCTNLEGSYMCSCHKGYSPTPDHRHC@DIDEC@@GNLCMNG@CKN TDGSFRCTCG@GY@LSAAKD@CEDIDECEHRHLCSHG@CRNTEGSF@CLCN@GYRASV LGDHCEDINECLEDSSVC@GGDCINTAGSYDCTCPDGL@LNDNKGC@DINECA@PGLC APHGECLNT@GSFHCVCE@GFSISADGRTCEDIDECVNNTVCDSHGFCDNTAGSFRCL CY@GF@AP@DG@GCVDVNECELLSGVCGEAFCENVEGSFLCVCADEN@EYSPMTG@CR SRATEDSGVDR@PKEEKKECYYNLNDASLCDNVLAPNVTK@ECCCTSGAGWGDNCEIF PCPV@GTAEFSEHCPRGKGFVPAGESSYETGGENYKDADECLLFGEEICKNGYCLNT@ PGYECYCKEGTYYDPVKL@CFDMDEC@DPNSCIDG@CVNTEGSYNCFCTHPMVLDASE KRCV@PTESNE@IEETDVY@DLCWEHLSEEYVCSRPLVGK@TTYTECCCLYGEAWGM@ CALCPMKDSDDYA@LCNIPVTGRRRPYGRDALVDFSE@YGPETDPYFI@DRFLNSFEE L@AEECGILNGCENGRCVRV@EGYTCDCFDGYHLDMAKMTCVDVNECSELNNRMSLCK

CATTGCTTGGGGCCACAG--TGCACCAGATGTG-AAAAGGACTGCAGGC-CTGGCCAGGAGCTAACGAAGCA

CACCAC-CCTCACCTCTCCTCTCACCCCCACTCCACCAA

3690	3700	3710	3720	3730	3740	3750
490 GGGTTGCAAAA IIIII II I GGGTTACAGAGCA	CCTGTAGCTT	GGGAACATTTA	ATGACCAGAA	CGGTACTGGC	11 11	CTGGACG
3760	3770	3780	3790			810
560 57 AACTGCTCTCTAG 	ACGGAAGGTC	TGTGC-TTAAC	1 1111	11 11		11111
-AGTAGTGTCTGC 3820	CAGGGAGGTG 3830			CCTATGA-CT 3860		GATGGAC 3880
630 CCCCTGTG-GTGA TCCAGCTGAATGA	I -CAATAAGGG	 CTGTCAAGAC	III II ATTAATGAATG	 TGCACAGCCA	GGACCAGGAGG GGACTCTGTGC	 AC-CTCA
3890 700	3900 710	3910 720	3920 730	3930 740	3940 750	3950 760
T-TGCAGGTCCTT	ACCTTGTTCC	TGGCGCTGACA	ATCGGCTTTG-	CTGCTGGCC-	-CTGATCTTCA 	TTACTCT
770 CCTGTTCT 	CT-GTGCTCA	AATGGATCAG-		CCCCACATAT	TCAAGCAACCA	
GCAGATGGTCGTA 4020 4030			GTGTTAACAA 4060	CACTGTGTGT 4070	GACAGTCACGG 4080	CTTCTG-
830 840 AGACCACTGGAGC TGACAACACAGCC 4090 4100	AGCTCAAGAG GGCTCTTTCC	GAAGATGCTT(II III TTATCAGGGCT	II II	ACAGGAAGAAG ACAGGATGGGC	IIII I AAGG-GT
AGGAGGAGGCTAT GTGTGGATGTGAA		GTACTATCCTA 	AGGAG-ATGTG 	 GGGAGGCTTT	CCGAGAAGCAC	111
970 CCACCATCCTGTG GGTCCTTCCTGTG 4230 4240	-GAACAGCAC 	AAGCAACCCC 	ACCACCCTGTT	CTTACACATC	ATCCTAGATGA	TGTGTGG
1040 GCGCGCACCT CTCCCGGGCTACT 4300	CATCCAA GAAGATTCAG	GTCTCT GTGTGGATCG	CTAACGCTAA	-CATATTTGT GAAGAAAAGA	11 1	TTAAATC TATAATC
1100 1110 TTTTTTTAAATTT 	TAAATTTTATG CCAGTCTC	TGTGTGAGTG TGTGATAACG	TTTTGCCTGCC	TGTATGCA: AACGTCACCA	CACGTGTGTGT AACAAGAGTG-	GTGTGTG
1170 1180 TGTGTGACACTCO						
	1 111	111 1 11	1111 1	11 111	1 11 11	11 111

4430	4440	4450	4460	4470	4480	4490
	1240 125	0 1260		1270	1280	1290
		CGGNNNGATAGGT		GACGGAGACC		
TTCTCG	GAAATGTGCCC	TAGAGGAAAAGGT	TTTGTCCCT	GCTGGAGA	-ATCCTCTTA	CGAAACCGGTG
4500	4510	4520	4530	4540	4550	4560
1300 CTCTATA	01 51 Δαααααααταα	1320 TGA-TATTTCG	1330 CCAATTCTA	1340 \cacattct	1350	1360
11	1 11 111 1	111 1 1	111 1		1 1 11	1111
	ACTACAAAGATGC 570 4580	TGACGAATGCCTG 4590	CTGTTTGGA 4600	AGAGGAAATCT 4610	GCAAAAAC 4620	GGTTACT
137	0 1380	1390	1400	1410	1420	1430
GATCTA	AGAGGAATTGTTG	ATACGTAGTATAC	TGTATATG-	TGTATGTA-	TATGTATATG	TATATATAAGA
		III I III GTATGAATGCTAC				
4630	4640	4650 466	0 4	1670 4	680	4690
14		1460	1470			90
		AACCTAGAGTG				
	TGATATGGATGAA	TGCCAAGACCCTA 4720 473	ACAGTTGTA	ATCGATGGCCA	GTGTGTTAAT	
1500 CACACA		20 1530 ACACACACACGTT	1540 TATACTAC			
		III II II				
4770		790 4800				30
1570	1580 15	90 1600	1610) 162	90 163	0 1640
		ACCAAAGAGTGAG				CCCTTCTGGGT
TCAAAT	-GAACAAATAGAA	GAAACCGA-TGTC	TATCAAGAT	CTGTGCTGG-	GAGCATCT	GAGTGAGGAGT
4840	4830 4	860 487	0 48	380	4890	4900
		60 1670 -TCGGACTGTCTA				0 1710 CCCGGACGAAG
1111		111111	111		1 1 111	1 111 1
4910		CTTGTAGGCAA 4930		A I ACACAGAG 4950	11GC1GC1G11 4960	TGTACGGGG 4970
	1720 173	.0 17	40 1	1750	1760	1770
AGGACA	GAGGAGACACAGT	CCGAAAAGT	TATTTTTC	CGGCAAAT-CC	T-TTCCCTGT	TTCGTGACACT
AGG-CA		стестстессс	CATGAAGGA			
4	980 4990	5000	5010	5020	5030	
	1790	1800 GAGTGTCATCC				1840
11 11	1 111 1111		11 11	11 111	11 11 11	1 1 111
ACATCC		CGGCGGCGACCAT 5060 50				TGAACAGTA-T 5100
1	850 1860	1870	1880	1890) 190	n
GGCGGG	GAGACAGAGCCGC	GGGGGAGCTACGA	GAATCGACT	rcacaggg	GCCCCGG-GC	TTCGCAAAT
		I I I ACTTCATTC-A				II II I TACAGGCTGAG
5110	5120	5130	5140	5150	5160	5170
		930 1940				970
	TITITAATCTCAC 	AAGTTTCGTCCGG		CGGACCTATGE 		TATTACCTTAT
CAA	<u> </u>	<u> </u>	ጉልአልልቸርው/	<u> የ</u> ሰተብቸላ ተ	**************************************	TATT93AA9

Ē	500-				~					
6					×					•
U	_					14				
E				•						
N						×				
C										
F			•							
SESCES	100-									
_										
	_		•			×				
	50-						×			
							~			
	_									
							•			
	_									
	_									
	_									
	10*						×			
								×		
	_									
	5-									
	_									
									×	

	_									
	_								*	
	0		1 1 t t							
201	DRE 0:	:: 2:	:	; ; ; ;	::	;	177	1:	17	
STI	DEV -2	-1	0 1	2	¦9 3	11 4	13 5	15¦ 6	17	
— 11		•	U	~	.	**	ی	0		

PARAMETERS

Similarity matrix U	nitary	K-tuple		2	
Mismatch penalty	1	Joining per	alty	20	
Gap penalty	1.00	Window size		32	
Gap size penalty	0.05				. 10
Cutoff score	5				036
Randomization group	0				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Initial scores to save	20	Alignments	to save 10)	U' \
Optimized scores to save	20	Display con	itext 10)	7
					` /
	SEARC	H STATISTICS	i		
•					
Scores:	Mean	Median	Standard Deviat	ion	

SEARCH STATISTICS

Scores:	Mean 5	Median 7	Standard I 1.84	Deviation

Times: CPU Total Elapsed 00:02:34.02 00:07:35.00

Number of residues: 4627393 Number of sequences searched: 16524 Number of scores above cutoff: 4313

Cut-off raised to 6. Cut-off raised to 7. Cut-off raised to 8.

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

			Ini	. t.	Opt.		
Seque	nce Name	Description	Length Sco	ore	Score	Sig. F	rame
		**** 6 standard deviations	above mean	***	*		
1.	A27381	Complement subcomponent C1s pr	688	17	43	6.51	0
		**** 5 standard deviations	above mean	***	*		
2.	S01292	Tenascin - Chicken (fragment)	697	16	41	5. 97	0
3.	S01845	DNA (cytosine-5-)-methyltransf	1573	16	26	5. 97	0
4.	VVVPBD	Coat protein VP1 - Budgerigar	343	15	30	5. 43	0
5.	PS0047	Extracellular serine protease	448	15	44	5. 43	0
6.	A27733	nifA protein – Azotobacter vin	129	15	25	5. 43	0
7.	S01927	Regulatory protein nifA - Azot	522	15	38	5. 43	0
8.	WEWLHS	Probable E6 protein - Papillom	158	15	28	5. 43	0
9.	504029	Sodium channel protein - Fruit	1321	15	35	5. 43	0
10.	D31090	Hydrogen ion-transporting ATP	163	15	22	5. 43	0
		**** 4 standard deviations	above mean	***	×		
11.	MNXRW4	Nonstructural protein Pns4 - W	732	14	44	4. 89	0
12.	ZLVN	L protein - Vesicular stomatit	2109	14	43	4.89	0
13.	B28392	Penicillin amidase I precursor	558	14	41	4.89	0
14.	DEECDA	Aspartate-semialdehyde dehydro	367	14	25	4.89	0
15.	WMBEH6	UL36 protein – Herpes simplex	3164	14	36	4. 89	0
16.	S01165	Achaete-scute locus protein T3	257	14	37	4.89	0
17.	KXBOZ	Protein Z – Bovine	396	14	34	4.89	0
18.	VCLJB	env polyprotein – Bovine leuke	515	14	44	4.89	0
19.	506053	Transforming protein (ski) - H		14	40	4. 89	0
20.	00BE6L	Hypothetical BXLF2 protein - E	706	13	47	4. 34	0

The scores below are sorted by optimized score. Significance is calculated based on optimized score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

			1	nit. O	pt.		
Seque	nce Name	Description	Length S	Score S	core	Sig. F	Frame
		**** 5 standard deviations	above mea	an ****			
1.	VGVUPT	Glycoprotein precursor - Punta	1313	9	51	5. 18	0
2.	EGMSMG	Epidermal growth factor precur		9	51	5. 18	0
		**** 4 standard deviations	above mea	3n ****			
3.	TVRTNU	Kinase-related transforming pr	1260	9	50	4. 71	0
4.	A30359	Granule membrane protein 140 p	830	7	50	4.71	0
5.	AHRB	Ig alpha chain C region - Rabb	299	9	50	4.71	0
6.	KQHUP	Plasma kallikrein precursor -	638	8	50	4. 71	0
7.	GOHUN	Nerve growth factor receptor p	427	8	49	4. 24	0
8.	@RHULD	LDL receptor precursor - Human	860	7	49	4. 24	0
9.	W2WLB2	Probable E2 protein - Bovine p	422	7	49	4. 24	0
10.	JL0104	Lymphocyte-associated cell sur	385	9	49	4. 24	0
11.	A26850	Hydrogen ion-transporting ATP	489	10	49	4. 24	0
12.	VHWVB	Structural polyprotein — Sindb	1245	13	49	4. 24	0
13.	506028	Gene supressor-of-white-aprico		7	49	4. 24	0
		**** 3 standard deviations	above mea	#***			
14.	A28455	Cell surface antigen 4F2 heavy	529	8	48	3. 77	0
15.	A32375	Lymphocyte surface MEL-14 anti	372	8	48	3. 77	0
16.	GNVUUK	Glycoprotein precursor – Uukun	1008	1 1	48	3. 77	0
17.	SYECCP	Carbamoyl-phosphate synthase (1072	8	48	3. 77	0
18.	MHMS	Ig mu chain C region — Mouse	455	8	48	3. 77	0
19.	UIBO	Thyroglobulin precursor – Bovi	2769	8	48	3. 77	0
20.	A24976	Ig mu chain C region, b allele	455	8	48	3. 77	0

```
Glycoprotein precursor - Punta Toro virus
ENTRY
                VGVUPT
                           #Type Protein
TITLE
                Glycoprotein precursor - Punta Toro virus
 INCLUDES
                glycoprotein NS-M\ glycoprotein G1\ glycoprotein G2
DATE
                27-Nov-1985 #Sequence 27-Nov-1985 #Text 31-Dec-1989
PLACEMENT
                1707. 0
                          1.0
                                1.0
                                      1.0
SOURCE
                Punta Toro virus
ACCESSION
                A04109
HOST
                #Common-name mosquito\
                Homo sapiens #Common-name man
REFERENCE
                (Sequence translated from the RNA sequence)
                Ihara T., Smith J., Dalrymple J.M., Bishop D.H.L.
   #Authors
   #Journal
                Virology (1985) 144:246-259
                This virus is a member of the family Bunyaviridae.
COMMENT
SUPERFAMILY
                #Name phlebovirus glycoprotein
KEYWORDS
                glycoprotein\ transmembrane protein
FEATURE
   1-270
                           #Protein glycoprotein SN-M (SNM)\
   271-809
                           #Protein glycoprotein G1 (GG1)\
   810-1313
                           #Protein glycoprotein G2 (GG2)\
   76,1021,1243
                           #Binding-site carbohydrate (possible)
SUMMARY
            #Molecular-weight 146374 #Length 1313 #Checksum 4967
SEQUENCE
Initial Score
                       9
                         Optimized Score =
                                                51
                                                    Significance =
                                                                   5.18
Residue Identity =
                     23%
                         Matches
                                                68
                                                    Mismatches
                                                                     172
Gaps
                      53
                         Conservative Substitutions
                                                                      0
                     10
                               20
                                        30
                                                    40
                                                                     50
             MGNNCYNVVVIVLLLVGCEKVGAV@NSCDNC@PG--TFCRKY----NPVCKSCPPSTFS
                        : :
                                   1 11
                                             1 11 11
   TNVSFVCYEHVGQDEQEVEHRALKRVSVNDCKIVDNSKQKICTGDHVFCEKYDCSTSYPDVTCIHAPGSGPL
      500
             X 510
                          520
                                   530
                                             540
                                                       550
                                                                 560
        60
                  70
                                80
                                                90
                                                         100
   SIGG@PNCNICRVCAGY----FRFKKFCSSTHNAEC----EC-IEGFHCLGP@CTRCEKDCRPG@ELT-K
                1: :: :
   YI-NLMGSWIKP@CVGYERVLVDREVK@PLLAPE@NCDTCVSECLDEGVH--
                                                       ----IKSTGFEITSA
     570
               580
                         590
                                  600
                                            610
                                                                 620
       120
                 130
                             140
                                      150
                                                160
                                                            170
   QGCKTCSLGTFNDQNGT--GVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSP--STTISVTPEGGPGG
                  1 1
                                                 ;; ; ;
   VACSHGSCISAHQEPSTSVIVPYPGLLASVGGRIGIHLSHT-SDSASVHMVVVCPPRDSCAAHNCLLCYHGI
    630
              640
                        650
                                 660
                                            670
                                                      680
                                                                690
          190
                    200
                              210
                                       220
                                                 230
                                                                      240
   HSLQ-VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQPFKKTTG-
                                                        ----AAQEEDACSC
              :::::::
                       LNYQCHSTLSAILTSFLL--ILFIYTVFSVTTNILYVLRLIPKQ-LKSPVGWLKLFINWLLTALRIKTRNVM
             710
   700
                         720
                                  730
                                             740
         250
                 Х
   RCP@EEEGGGGGYEL
   RRINGRIGWVDHHDVERPRHREPMR
    770
              780
                        790
```

Epidermal growth factor precursor - Mouse

#Type Protein

1. ELLIS-267-3A VGVUPT

ELLIS-267-3A

EGMSMG

EGMSMG

ENTRY

```
30-Noy-1980 #$equence 11-Aug-1983 #Text 31-Dec-1989 575.0 1.0 1.0 1.0
 DATE
 PLACEMENT
 SOURCE
                 Mus musculus #Common-name house mouse
 ACCESSION
                 A01387
                 (Sequence translated from the mRNA sequence)
 REFERENCE
    #Authors
                 Scott J., Urdea M., Quiroga M., Sanchez-Pescador R.,
                   Fong N., Selby M., Rutter W.J., Bell G.I.
    #Journal
                 Science (1983) 221:236-240
    #Comment
                 The cleavage site for the signal sequence is not
    #Comment
                 The precursor sequence contains seven regions that
                   are similar to the epidermal growth factor
                   sequence: residues 357-399, 400-440, 441-480,
                   745-784, 832-885, 886-925, and 926-976.
                 (Sequence of residues 1-1168 translated from the
 REFERENCE
                   mRNA sequence)
    #Authors
                 Gray A. , Dull T. , Ullrich A.
    #Journal
                 Nature (1983) 303:722-725
    #Comment
                 This sequence differs from residues 1-1133 of that
                   shown in having 790-Tyr and 1048-Ser. It differs
                   greatly from residues 1134-1168 of that shown due
                   to an insertion of one base in the nucleotide
                   sequence with respect to the nucleotide sequence
                   of Scott, et al., which causes a shift in the
                   reading frame.
                 There are sequence homologies between residues
    #Comment
                   321-360, 361-401, 402-442, 443-482, 746-786,
                   837-875, 876-917, 918-958, and 978-1018.
REFERENCE
                 (Active protein, complete sequence of residues
                   977-1029 with experimental details)
    #Authors
                 Savage Jr C.R., Inagami T., Cohen S.
    #Journal
                 J. Biol. Chem. (1972) 247:7612-7621
                 Residues 1024-1029 are not required for full
    #Comment
                   biological activity in vivo.
REFERENCE
                 (Disulfide bonds)
    #Authors
                 Savage Jr C. R., Hash J. H., Cohen S.
    #Journal
                 J. Biol. Chem. (1973) 248:7669-7672
    #Comment
                 Disulfide bonds link residues 982-996, 990-1007, and
                   1009-1018.
COMMENT
                 The active growth factor from this submaxillary
                   gland protein stimulates the growth of various
                   epidermal and epithelial tissues in vivo and in
                   vitro and of some fibroblasts in cell culture.
                 #Name epidermal growth factor
SUPERFAMILY
SUMMARY
             #Molecular-weight 133143 #Length 1217 #Checksum 9280
SEQUENCE
Initial Score
                        9
                          Optimized Score =
                                                  51
                                                       Significance =
                                                                       5.18
Residue Identity =
                      23%
                           Matches
                                                  69
                                                      Mismatches
                                                                        162
Gaps
                       60
                           Conservative Substitutions
                                                                          0
                      10
                                20
                                          30
                                                     40
                                                               50
                                                                         60
              MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCQPGTFCRKYNPVCKSCPPSTFSSIGGQPNCN
                                   ; ;
                              - :
                                             11 1
    SCFDIDECGRGAHNCAENAACTNTEGGYNCTCAGRPS----SPGRSC-----PDSTAPSLLGEDGHHLDRN
      920
              X 930
                         940
                                   950
                                                         960
                                                                   970
              70
                           80
                                     90
                                              100
                                                                 110
    ICRVC----AGYFRFKKFC---SSTHNAECECIEGFHCLGP@CTRCEKDCR-----PG@ELTK@GCKTC
                  ! !
                                                                 : :
    SYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQ-TR---DLRWWELRHAGYGQKHDIMVVAVC
    980
              990
                       1000
                                 1010
                                            1020
                                                          1030
                                                                    1040
                                  140
      120
                130
                                            150
                                                       160
                                                                 170
    ----SLGTFND@NGTGVCR-----PWTN-CSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGP
```

cpide mai growth factor precursor - Mouse

1 1 1 1 1 1 1

```
MVALVLLLLGMWGTYYYRTRKOLSNPPKNPCDEPSGSVSSSG---PDSSSGAAVASCP@PWFVVLEKH@DP 1050 1060 Best Available Copy 080 1090 1100 1110
  180
                      200
                                210
                                            220
                                                      230
                                                                240
    GGHSLQVLTLFLALTSALLLALIFITLLFSV-LKWIRKKFPHIFKQPFKKTTGAAQEEDACSCRCPQEEEG-
                             KNGSLPADGTNGAVVDA---GLSPSLQLGSVHLTSWRQK-PHI----DGMGTGQSCWIPPSSDRGPQEIEGN
      1120
                1130
                             1140 1150
                                                      1160
        250
                X
      ----GGGGYEL
    SHLPSYRPVGPEKLHSLQSANGS
            1190
                      1200
3. ELLIS-267-3A
   TVRTNU
               Kinase-related transforming protein precursor (neu
ENTRY
                 TVRTNU
                            #Type Protein
                 Kinase-related transforming protein precursor (neu)
 TITLE
                   - Rat #EC-number 2.7.1.-
 DATE
                 31-Dec-1988 #Sequence 31-Dec-1988 #Text 31-Dec-1988
PLACEMENT
                                  2.0
                                          1.0
 SOURCE
                 Rattus norvegicus #Common-name Norway rat
 ACCESSION
REFERENCE
                 (Sequence translated from the mRNA sequence)
    #Authors
                 Bargmann C. I., Hung M. C., Weinberg R. A.
                 Nature (1986) 319:226-230
    #Journal
    #Title
                 The new oncogene encodes an epidermal growth factor
                   receptor-related protein.
 GENETIC
    #Name
 SUPERFAMILY
                 #Name kinase-related transforming protein
KEYWORDS
                 transforming protein\ tyrosine-specific protein
 FEATURE
    1 - 19
                            #Domain signal sequence (SIG)\
    20-1260
                            #Protein kinase-related transforming
                               protein neu (KTP)\
    658-680
                            #Domain transmembrane (TMN)\
    731-986
                            #Domain tyrosine-specific protein kinase
    71,191,263,535,576,
    634,763,1146,1231
                            #Binding-site carbohydrate (Asn)
                               (possible)\
    691,882,1227,1253
                            #Modified-site phosphorylation
 SUMMARY
             #Molecular-weight 139219 #Length 1260 #Checksum 5917
 SEQUENCE
Initial Score
                        9
                           Optimized Score =
                                                   50
                                                       Significance =
Residue Identity =
                      23%
                                                   69 Mismatches
                           Matches
                                                                         158
Gaps
                       67
                           Conservative Substitutions
                                                                           0
                      10
              X
                                                    20
                                                              30
              MGNNCYNVVVIV---
                                -----LLLVG-----CEKVGAV@NSCDNC@PGTFCRKYNPV
                                      1 1 1
                                                      ; ; ; ;
    RELGSGLALIHRNAHLCFVHTVPWDQLFRNPHQALLHSGNRPEEDLCVSSGLVCNS--LCAHGHCWGPGPTQ
         470
             X
                   480
                             490
                                       500
                                                  510
                                                              520
                                                                         530
         50
                   60
                             70
                                           80
                                                     90
    CKSCPPSTFSSIGG@PNCNICRVCAGYFR---FKKFCSSTHNAECECIEGFHCLG---P@CTRC--EKDCRP
                                    : :
                        111
    CVNC--SHF--LRG@ECVEECRVWKGLPREYVSDKRCLPCHPEC@P@NSSETCFGSEAD@CAACAHYKDSSS
             540
                       550
                                            570
                                                      580
```

. .

```
110
                120
                                     140
                                                150
                                                          160
                                                                     170
    GOELTKOGCK-TCSLGTENSTANGIGNERPPNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEG
                                                       ;
                                                            ;
                              1 1 1
    CVARCPSGVKPDLSYMPIWKYPDEEGIC@PCPINCTHSCVDL-----
                                                       -DERGCPAE@RASPVTFIIATVEG
           610
                      620
                                630
                                          640
                                                            650
                                                                       660
    180
              190
                         200
                                   210
                                                            230
                                              220
                                                                       240
    GPGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQ----PFKKTTGAAQEEDACSCRCPQ
                           1 1
                                          111
                                                             ;
            ·VL-LFLIL-VVVVGILI----KRRRQKIRKYTMRRLLQETELVEPLTPSGAMPNQA-QMRILK
               670
                           680
                                          690
                                                     700
                                                                710
           250
                   X
    EEE----GGGGGYEL
              1 1
    : :
    ETELRKVKVLGSGAFGTVYKGIWIPD
          730
                    740
  ELLIS-267-3A
   A30359
               Granule membrane protein 140 precursor - Human
ENTRY
                 A30359
                             #Type Protein
 TITLE
                 Granule membrane protein 140 precursor - Human
 SOURCE
                 Homo sapiens #Common-name man
 ACCESSION
REFERENCE
                 (Sequence translated from the mRNA sequence)
                  Johnston G. I., Cook R. G., McEver R. P.
    #Authors
    #Journal
                 Cell (1989) 56:1033-1044
    #Title
                 Cloning of GMP-140, a granule membrane protein of
                   platelets and endothelium: sequence similarity to
                   proteins involved in cell adhesion and
                    inflammation.
FEATURE
    1 - 41
                             #Domain signal sequence (SIG)\
    42-830
                             #Protein granule membrane protein 140
                               <MAT>\
    42-159
                             #Domain lectin (LEC)\
    160-199
                             #Domain EGF (EGF)\
    772-795
                             #Domain transmembrane (TMN)\
    54,98,180,212,219,411,
    460,518,665,716,723,
    741
                             #Binding-site carbohydrate (Asn)\
    200-770
                             #Domain complement H/C4b-binding (COM)
COMMENT
                 THIS SEQUENCE HAS NOT BEEN COMPARED TO THE
                   NUCLEOTIDE TRANSLATION.
SUMMARY
               #Molecular-weight 90766 #Length 830 #Checksum 2552
SEQUENCE
Initial Score
                         7
                            Optimized Score
                                                    50
                                                        Significance =
                                                                         4.71
Residue Identity =
                       22%
                            Matches
                                              =
                                                    66
                                                        Mismatches
                                                                          174
Gaps
                        47
                            Conservative Substitutions
                                                                            0
                       10
                                 20
                                            30
                                                      40
                                                                50
                                                                           60
              MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCQPGTFCRKYNPVCKSCPPSTFSSIGGQPNCN
                               ;
                                   1:::
                                                         : :
                                             - ;
    NEARVNCSHPFGAFRY@SVCSFTCNEGLLLVGA---SVL@CLATGNWNSVPPEC@AIPCTPLLS--P@NGTM
       460
              X 470
                            480
                                         490
                                                    500
                                                              510
                                                                           520
          70
                    80
                               90
                                            100
                                                        110
                                                                           120
    ICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP---@CTR--CEKDCRPG@ELTK--
                                                                     --@GCKTCS-
                                     ::
                                            111
                             1 11
                      ----@FICDEGYSLSGPERLDCTRSGRWTDSPPMCEAIKCPELFAPE@GSLDCSD
    TCV@PLGSSSYKSIC-
          530
                           540
                                     550
                                                560
                                                          570
                                                                     580
```

```
130
                    140 150 160 170
   -LGTFN----DONG BOYCARATINITING SUPPRESVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGH
                TRGEFNVGSTCHFSCNNGFKLEGPNNVECTTSGR-WSATPPTCKGIASLPTPGLQCPALT---TPGQGTMYC
           600
                    610
                            620 630
       190
               200
                        210
                                220
                                            230
   SL@VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFK@P----FKKTTGAA@EEDA--CSCRCP@EEE
       RHHPGT-FGFNTTCYFGCNAGFTLIGDSTLSCRPSGQWTAVTPACRAVKCSELHVNKPIAMNCSNLWGNFSY
              670 680 690 700 710
   250
         Х
   G-GGGGYEL
   GSICSGHCLEG@LLNGSA@
    730
       X 740
5. ELLIS-267-3A
  AHRB
            Ig alpha chain C region - Rabbit (fragment)
ENTRY
                       #Type Protein (fragment)
TITLE
              Ig alpha chain C region - Rabbit (fragment)
DATE
              28-Aug-1985 #Sequence 28-Aug-1985 #Text 30-Jun-1989
PLACEMENT
                    13.0 3.0 1.0 1.0
SOURCE
              Oryctolagus cuniculus #Common-name domestic rabbit
ACCESSION
              A02174
REFERENCE
              (Sequence translated from the mRNA sequence)
   #Authors
              Knight K.L., Martens C.L., Stoklosa C.M.,
                Schneiderman R.D.
   #Journal
              Nucleic Acids Res. (1984) 12:1657-1670
COMMENT
              This immunoglobulin belongs to the IgA-g subclass.
                It was isolated from a rabbit homozygous for a2,
                n80, de12,15, f71, g75 heavy chain haplotype.
SUPERFAMILY
              #Name immunoglobulin C region
KEYWORDS
              immunoglobulin\ plasma protein
SUMMARY
                                 #Length 299 #Checksum 2361
SEQUENCE
Initial Score
                   9 Optimized Score =
                                         50 Significance =
                                                          4. 71
Residue Identity =
                  23% Matches
                                         69 Mismatches
                                                           153
Gaps
                   70 Conservative Substitutions
                                                             0
                   20
          10
                           30
                                   40
                                            50
                                                    60
    MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCØPGTFCRKYNPVCKSCPPSTFSSIGGØPNC---NICRVCA
            QSGTSGPYTACSELILPVTQCLG--QKS-AAC----HVEYNSVINESLPVPF-----PDCCPANSCCTC-
    X
                  20
                                 30
                                         40
   70
           80
                    90
                           100
                                   110
                                              120
   GYFRFKKFCSSTHNAECECIEGFHCLGPØCTRCEKDCRPGØELTKØGCK--TCSLGTFNDØNGTGVCRPWTN
          11 1 1
                        :
                                      ---PSSSSRNLISGC@PSLSL@RPDLGDLLLGRDASLTCTLSGLKNPEDAVFTWEPTNGNEPV@@RA@
                                 90
                  70
                          80
                                          100
                                                  110
  140
                    150
                            160
                                    170
                                               180
   CSLDG----RSVL-----KTGTTEKDVVCGPPVVSFSPSTTIS---VTPEGGPGGHSLQVLTLFLALTSA
     RDLSGCYSVSSVLPSSAETWKARTEFTCTVTHPEIDSGSLTATISRGVVTP---PQVHLLPPPSEELALNEQ
       130
                    150
                                160
                                        170
    200
                 210
                               220
                                           230
                                                   240
   LLLALIFITLL---FS---VLKWIR-----KKFPHIFK@P---FKKTTGAA@EEDACSCRCP@EEEGGG
    ----TCLVRGFSPKDVLVSWRHQGQEVPEDSFLVWKSMPESSQDKATYA----ITSLLRVPAEDWNQG
```

```
X
    GGYEL
    DTYSCMVGHEGLAEH
       260
6. ELLIS-267-3A
  KOHUP
               Plasma kallikrein precursor - Human #EC-number
ENTRY
                            #Type Protein
                 KOHUP
 TITLE
                 Plasma kallikrein precursor - Human #EC-number
                   3. 4. 21. 34
ALTERNATE-NAME
                 plasma prekallikrein\ kininogenin
DATE
                 13-Aug-1986 #Sequence 13-Aug-1986 #Text 13-Aug-1986
PLACEMENT
                           4.0
                                  2.0
                                          1.0
                                                 1.0
 SOURCE
                 Homo sapiens #Common-name man
                 A00921
 ACCESSION
 REFERENCE
                 (Sequence translated from the mRNA sequence)
                 Chung D. W., Fujikawa K., McMullen B.A., Davie E.W.
    #Authors
    #Journal
                 Biochemistry (1986) 25:2410-2417
 COMMENT
                 This protein, synthesized in the liver, circulates
                   as a noncovalent complex with high molecular
                   weight (HMW) kininogen.
 COMMENT
                 The zymogen is activated by factor XIIa, which
                   cleaves the molecule into a light chain, which
                   contains the active site, and a heavy chain, which
                   associates with HMW kininogen. These chains are
                   linked by one or more disulfide bonds.
 COMMENT
                 The enzyme cleaves Lys-Arg and Arg-Ser bonds. It
                   activates, in a reciprocal reaction, factor XII
                   after its binding to a negatively charged surface.
                   It also releases bradykinin from HMW kininogen and
                   may also play a role in the renin-angiotensin
                   system by converting prorenin into renin.
 SUPERFAMILY
                 389-621 #Name trypsin
                 hydrolase\ serine proteinase\ glycoprotein\ plasma\
KEYWORDS
                   blood coagulation\ fibrinolysis\ inflammation\
                   liver\ duplication
FEATURE
    1-19
                            #Domain signal sequence (SIG)\
    20-390,391-638
                            #Protein plasma kallikrein, heavy and
                               light chains (MPT)\
    389-621
                            #Domain (or 383-625) serine proteinase
                              (TRY)\
    20-104,110-194,
    200-284,291-375
                            #Duplication\
                            #Active-site His\
    434
    483
                            #Active-site Asp\
    578
                            #Active-site Ser\
    127,308,396,453,494
                            #Binding-site carbohydrate (Asn)
 SUMMARY
               #Molecular-weight 71369 #Length 638 #Checksum
                                                                  585
 SEQUENCE
Initial Score
                           Optimized Score =
                                                   50
                        8
                                                       Significance =
                                                                        4.71
Residue Identity =
                      23%
                           Matches
                                                   70
                                                       Mismatches
                                                                         164
                           Conservative Substitutions
Gaps
                       69
                                                                           0
              X
                            10
                                            20
                                                      30
                                                                40
                                                                           50
              MGNNC----YNVVVI----VLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPST
                                     1 11
                                           : :
    DAFVCRTICTYHPNCLFFTFYTNVWKIES@RNVCLLKTSE-SGTPSSS--TP@ENTISGYSLLTCKRTLPEP
```

230

×

240

250

260

270

290

```
CHSKIYPGVDFGGEELNV----TFVKGVNVCQETCTKMIRCQFFTYSLLPEDCKEEK-CKCFLRLSMDGSP
         300
                        310
                                 320
                                           330
                                                               350
          120
                    130
                                140
                                          150
                                                   160
                                                             170
          -CSLGTFND@NGTG---VCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGP
                     1 1
                         ; ;;
   TRIAYGTQGSSGYSLRLCNTGDNSVCTTKT----STRIV---GGTNSSWGEWPWQVSLQVKLTAQRHLCGGS
   360
             370
                      380
                                    390
                                                400
                                                          410
 180
                  190
                                200
                                          210
                                                   220
                                                             230
   GGHSLQVLT----LFL----ALTSALL-LALIFITLLFSVLKWIRKKFPHIFKQPFKKTTG----AAQE
                  : :
                            LIGH@WVLTAAHCFDGLPL@DVWRIYSGILNLSDITKDTPFS@IKEI-----IIH@NYKVSEGNHDIALIK
        430
                  440
                           450
                                     460
                                                    470
         240
                   250
   EDA----CSCRCPGEEEGGGGGYEL
   L@APLNYTEF@KPICLPSKGDTSTIYTNCWVTGWG
  490
            500
                   510 X
7. ELLIS-267-3A
  G@HUN
              Nerve growth factor receptor precursor - Human
ENTRY
                          #Type Protein
TITLE
                Nerve growth factor receptor precursor - Human
ALTERNATE-NAME
                NGF receptor
DATE
                31-Mar-1988 #Sequence 31-Mar-1988 #Text 31-Mar-1988
PLACEMENT
                                1.0
                         1.0
                                       1. Q
SOURCE
                Homo sapiens #Common-name man
ACCESSION
                A25218
REFERENCE
                (Sequence translated from the mRNA sequence)
                Johnson D., Lanahan A., Buck C.R., Sehgal A., Morgan
   #Authors
                  C., Mercer E., Bothwell M., Chao M.
                Cell (1986) 47:545-554
   #Journal
   #Title
                Expression and structure of the human NGF receptor.
COMMENT
                This receptor is found on sensory and sympathetic
                  neurons, on neuroblastoma cells, and on a variety
                  of nonneuronal derivatives of the neural crest.
COMMENT
                The duplicated cysteine-rich region of the
                  extracellular domain may form part or all of the
                  NGF-binding site. The active form of NGF is a
                  noncovalent dimer of identical chains.
COMMENT
                Although structurally similar, this receptor differs
                  from other growth factor receptors in that its
                  cytoplasmic domain is not homologous to known
                  tyrosine or serine/threonine protein kinases.
                  Although apparently lacking intrinsic kinase
                  activity, it is phosphorylated on serine.
COMMENT
                This recepter undergoes both N- and O-linked
                  glycosylation.
GENETIC
   #Map-position
                   17q21-q22
   #Name
SUPERFAMILY
                #Name nerve growth factor receptor
KEYWORDS
                receptor\ integral membrane protein\ glycoprotein\
                  duplication
FEATURE
   1-28
                           #Domain signal sequence (SIG)\
   29-427
                           #Protein nerve growth factor receptor
   29-250
                           #Domain extracellular (EXT)\
```

*~~

110

```
29-190
                     #Region cysteine-rich\
Best Available Copy
#Region serine/threonine-rich\
    197-248
    251-272
                          #Domain transmembrane (MEM)\
   273-427
                          #Domain cytoplasmic (CYT)\
   60
                          #Binding-site carbohydrate (Asn)
                            (putative)
 SUMMARY
              #Molecular-weight 45183 #Length 427 #Checksum 7426
 SEQUENCE
Initial Score
                      8
                         Optimized Score =
                                               49 Significance =
                                                                  4.24
Residue Identity =
                    22%
                         Matches
                                               66 Mismatches
                                                                   173
                         Conservative Substitutions
Gaps
                     54
                                                                    0
                    10
                              20
                                              30
                                                            40
                                                                     50
             MGNNCYNVVVIVLLLVGCEKVGAVQ-----NSCDNCQPG----TFCRKYNPVCKSCPPS
             PCTECVGL@SMSAPC----VEADDAVCRCAYGYY@DETTGRCEACRVCEAGSGLVFSC@DK@NTVCEECPDG
       90
                    100
                             110
                                      120
                                                130
                     70
                                        90
                               80
                                                         100
                                                                   110
    TFS-SIGGOPNCNICRVCAGYFRFKKFCSSTHNAECECIEG-----FHCLGPQCT---RCEKDCRPGQEL-
            TYSDEANHVDPCLPCTVCEDTER@LRECTRWADAECEEIPGRWITRSTPPEGSDSTAPST@EPEAPPE@DLI
        160
                  170
                           180
                                    190
                                              200
                                                       210
                     130
                               140
                                        150
                                                  160
                                                           170
    --TK@GCKTCSLGTFND@NGTGVCRPWT-NCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPG
                  : : : :
                                 ! ! ! !
               - :
    ASTVAGVVT----TVMGSS@PVVTRGTTDNLIPVYCSIL-----AAVVVG-LVAYIAFKRWNS-CK@NK@G
      230
                    240
                             250
                                            260
                                                      270
          190
                    200
                             210
                                      220
                                                230
                                                                    240
    GHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQPFKKTTG-----AAQEE----DACSC
                   : ::
    ANSRPV-NØTPPPEGEKLHSDSGISVDSØSLHDØØPHTØTASGØALKGDGGLYSSLPPAKREEVEKLLNGSA
      290
                 300
                     310 320 330
                                                      340
         250
                 X
   RCPGEEEGGGGGYEL
           1 11
   GDTWRHLAGELGY@PEHIDSFTHEA
     360
               370
                        380
8. ELLIS-267-3A
   @RHULD
              LDL receptor precursor - Human
 ENTRY
                ORHULD
                          #Type Protein
 TITLE
                LDL receptor precursor - Human
 DATE
                17-May-1985 #Sequence 17-May-1985 #Text 28-May-1986
 PLACEMENT
                        1.0 1.0
                                     1.0
 SOURCE
                Homo sapiens #Common-name man
 ACCESSION
                A01383
 REFERENCE
                (Sequence translated from the mRNA sequence)
                Yamamoto T., Davis C.G., Brown M.S., Schneider W.J.,
   #Authors
                  Casey M. L., Goldstein J. L., Russell D. W.
                Cell (1984) 39:27-38
   #Journal
 COMMENT
                This transmembrane glycoprotein binds LDL, the major
                  cholesterol-carrying lipoprotein of human plasma.
                  and transports it into cells by endocytosis. In
                  order to be internalized, the receptor-ligand
                  complexes must first cluster into clathrin-coated
                  pits.
 COMMENT
                The amino end of the extracellular domain contains
                  seven or eight 40-residue repeats. Each repeat has
```

#DODITCOLION/

au iverive iev

```
repeastAvailable Copyon of about 350 residues that is
                   homologous with part of the epidermal growth
                   factor (EGF) precursor.
                 The last half of the extracellular domain contains
 COMMENT
                   structural evidence of repetitive sequence in the
                   similarity of residues 441-445, 488-492, 531-535,
                   575-579, and 617-621.
                 An intrastrand recombination event between two Alu
 COMMENT
                   sequences in the 3' untranslated region of mRNA
                   from a familial hypercholesterolemia patient
                   results in the deletion of the transmembrane and
                   cytoplasmic domains. Most of the receptors
                   produced are secreted, but those that adhere to
                   the cell surface cannot cluster in coated pits;
                   therefore, even though they bind LDL, these
                   receptor-ligand complexes are not internalized.
SUPERFAMILY
                 #Name LDL receptor
KEYWORDS
                 glycoprotein\ LDL\ cholesterol\ lipid transport\
                   endocytosis\ coated pits\ transmembrane protein\
                   receptor
FEATURE
   22-860
                            #Protein LDL receptor (MAT)\
    1 - 21
                            #Domain signal sequence (SIG)\
    22-788
                            #Domain extracellular (EX1)\
    22-61,62-102,103-141,
    142-180,191-229,
    230-268,269-309
                            #Duplication\
    311-661
                            #Region EGF precursor homology\
    721-768
                            #Region clustered O-linked
                              oligosaccharides\
    789-810
                            #Domain transmembrane (TMM)\
    811-860
                            #Domain cytoplasmic (CYT)
 SUMMARY
               #Molecular-weight 95375 #Length 860 #Checksum 3641
 SEQUENCE
Initial Score
                        7
                           Optimized Score
                                                  49
                                                      Significance =
Residue Identity =
                      23%
                           Matches
                                                      Mismatches
                                                  67
                                                                        162
Gaps
                       56
                           Conservative Substitutions
                                                                          0
            10
                      20
                                    30
                                              40
                                                        50
                                                                   60
    MGNNCYNVVVIVLLLVGCEKVGAVØNSC----DNCØPGTFCRKYNPVCKSCPPSTFSSIGGØPNCNICRVCA
               1 11
                          ::
                                    - ;
                                                             •
    MGPWGWKLRWTVALL-LAAAGTAVGDRCERNEF@C@DG-KCISYKWVCDGSAEC@DGSDES@ETCLSVTCKS
    X
            10
                       20
                                 30
                                            40
                                                      50
                                                                 60
    70
                                 100
              80
                        90
                                             110
                                                          120
    GYFRFKKFCSSTHNAECECIEGFHCLGPQCTRC--EKDCRPGQELTKQGC--KTCSLGTFNDQNGTGVCRPW
               ;
                     1 1
                               1 1
                                  1 1
                                         1 1
                                             :
                                                   111
                                                        1111
    GDF----SCGGRVN---RCI-----P@FWRCDG@VDCDNG--SDE@GCPPKTCS@DEFRCHDGKCISR@F
                80
                                    90
                                               100
                                                          110
                                                                    120
     140
                        150
                                  160
                                            170
                                                               180
                                                                          190
    TNCS----LDG-----RSVLKTGTTEKDVVCGPPVVSFSPSTTI----SVTPEGGPGGHSL@VLTL-F
                                  111
                                            11 1
    VCDSDRDCLDGSDEASCPVL-
                               ---TCGPASF@CNSSTCIPQLWACDNDPDCEDGSDEWP@RCRGLYV
     130
               140
                                  150
                                            160
                                                      170
                                                                 180
           200
                       210
                                  220
                                            230
                                                      240
                                                                 250
    LALTSALLLALIFITL--LFSVLKWIRKKFP-HIFK@PFKKTTGAA@EEDACSCRCP@EEGGGGGYEL
                          ;
                                      1
                                                : :
    FQGDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAVATCRPDEFQCSDGNCIHGSRQCDREYDC
  190
            200
                      210
                                220
                                          230
                                                    240
                                                               250
                                                                         260
```

involved in disulfide bonds. Following these

KDMSDEV

```
9. ELLIS-267-3A
   W2WLB2
               Probable E2 protein - Bovine papillomavirus (type
ENTRY
                 W2WLB2
                            #Type Protein
 TITLE
                 Probable E2 protein - Bovine papillomavirus (type 2)
 DATE
                 31-Mar-1989 #Sequence 31-Mar-1989 #Text 31-Mar-1989
PLACEMENT
                          7.0
                                  1.0
                                         2.0
 SOURCE
                 bovine papillomavirus
 ACCESSION
                 D31169
 REFERENCE
                 (Sequence translated from the DNA sequence)
    #Authors
                 Groff D. E., Mitra R., Lancaster W. D.
    #Citation
                 submitted to GenBank, May 1988
                 The DNA sequence was obtained from GenBank, release
 COMMENT
                   57. 0.
 COMMENT
                 This virus is a member of the family Papovaviridae.
 SUPERFAMILY
                 #Name papillomavirus E2 protein
KEYWORDS
                 early protein
               #Molecular-weight 46877 #Length 422 #Checksum 6025
 SUMMARY
 SEQUENCE
Initial Score
                       7
                           Optimized Score
                                                  49
                                                      Significance =
                                                                      4.24
Residue Identity =
                      23%
                          Matches
                                                  66
                                                      Mismatches
                                                                       169
Gaps
                       50
                           Conservative Substitutions
                                                                         O
              Х
                        10
                                        20
                                                  30
                                                            40
                                                                      50
              MGN--NCYNVVVIVLLLVGCE-----KVGAVQNSCDNCQPGTFCRKYNPVCKSCPPSTFSS
                        : :
                                 1
                                        ; ;;
                                                           1 1
   KGARVVEVEFDGNASNTNWYTVYSKLYMRTEDGW@LAKAGADGTGLYYCTMAGAGRIY-YSRFGEEAARFST
         130 X
                   140
                             150
                                       160
                                                 170
                                                           180
                  70
                           80
                                      90
                                                100
                                                              110
                                                                        120
    IGG@PNCNICRVCAGYFRFKKFCSSTHNAECECIEG-FHCLGP@CTRCEKDCRPG@----ELTK@GCKTCSL
              11 11
                          111
                                      1
                                            1:
    TGHYSVRDQDRVYAG--
                        --VSSTSSDFRDRPDGVSASEGPEGDPAGKEAEPAGPVSSLLGSPACVPIRA
       200
                         210
                                  220
                                             230
                                                       240
                                                                 250
          130
                    140
                              150
                                        160
                                                              170
   GTFND@NGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGP-PV-----VSFSP-ST-TISVT----PEG
                     11 11
   GLGWVRDG-PRPHPYHFPAGSGGSLLRSAST---PVQGPVPVDLAPRQEEEENQSPDSTEEEPVTVPRHTSD
  260
             270
                       280
                                     290
                                               300
                                                         310
                                                                   320
    180
              190
                       200
                                 210
                                            220
                                                      230
                                                                240
   GPGGHSLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQPFKKTTGAAQEEDACSCRCPQEEEG
                                 1 1 1 1
                 11 1
                                                       ADGFHLLKAG@SCFALIS--GSAN@VKCYRFRVKKNHRHRYENCTTTSF---TVA----DNGAER@G@A@IL
    330
              340
                          350
                                    360
                                               370
 250
         Х
   GGGGYEL
      - :
   ITFGSPGQRQDFLKHVP
 390
         X 400
10. ELLIS-267-3A
   JL0104
               Lymphocyte-associated cell surface molecule - Huma
ENTRY
                           #Type Protein
TITLE
                Lymphocyte-associated cell surface molecule - Human
SOURCE
                Homo sapiens #Common-name man
```

ACCESSION

REFERENCE

JL0104

```
Adler D. A. Disteche C. M.
J. Exp. Med. 1989 170:123-133
    #Journal
    #Title
                 Isolation and chromosomal localization of cDNAs
                   encoding a novel human lymphocyte cell surface
                   molecule, LAM-1. Homology with the mouse
                    lymphocyte homing receptor and other human
                   adhesion proteins.
    #Molecule-type mRNA
    #Residues
                 1-385 (TED)
    #Comment
                 The sequence shown here is composed of multi
                   homologous domains. One domain is homologous with
                   animal lectins, one is homologous with epidermal
                   growth factor, and two short consensus repeat
                   units similar to those found in C3/C4 binding
 GENETIC
    #Map-position
                     1q22-25
 KEYWORDS
                 membrane protein\ glycoprotein\ adhesion protein
 FEATURE
    1-51
                             #Domain signal sequence (predicted)
                               (SIG)\
    52-385
                             #Protein lymphocyte-associated cell
                               surface molecule (predicted) (MAT)\
    52-345
                             #Domain extracellular (probable) (EXT)\
    346-368
                             #Domain transmembrane (probable) < TMM)\
    369-385
                             #Domain cytoplasmic tail (CYT)\
    73,117,190,245,259,
    284,324
                             #Binding-site carbohydrate (Asn)
                               (potential)\
    377,380
                             #Modified-site phosphorylation (Ser)
                               (probable)
 SUMMARY
               #Molecular-weight 43743 #Length 385 #Checksum 4445
 SEQUENCE
Initial Score
                        9
                           Optimized Score
                                                   49
                                                       Significance =
                                                                        4. 24
Residue Identity =
                      22%
                           Matches
                                                   66
                                                       Mismatches
                                                                         174
Gaps
                       50
                            Conservative Substitutions
                                                                           0
                       10
                                 20
                                              30
                                                         40
                                                                   50
              MGNNCYNVVVIVLLLVGCEKVG---AV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@P
                                   1:
    AEIEYLEKTLPFSRSYYWIGIRKIGGIWTWVGTNKSLTEEAENWGDGEPNNKKNKEDCVEIYIKRNKDAGKW
         90
              X
                  100
                             110
                                       120
                                                 130
                                                            140
   60
                70
                          80
                                      90
                                                         100
                                                                   110
    N---CNICRVCAGYFRFKKFCSSTHNAEC-ECIEGFHC----LGP@C---TRCEKDCRPG@ELTK@GCKT
                         1
                                11 1 1
                                         - 1
                                                   1111
    NDDACHKLKAALCYTASC@PWSCSGHGECVEIINNYTCNCDVGYYGP@C@FVI@CEPLEAP--ELGTMDC-T
      160
                170
                           180
                                     190
                                               200
                                                          210
                                                                      220
   120
              130
                         140
                                   150
                                             160
                                                        170
                                                                         180
    CSLGTFN-DQNGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISV--
                                     1 1
                      11 1 1
                                           : :
                                                     1: : :
    HPLGNFNFNSQCAFSCSEGTN--LTG----IEETT----CEPFGNWSSPEPTCQVIQCEPLSAPDLGIMNC
       230
                 240
                                  250
                                                 260
                                                            270
                                                                      280
                             210
         190
                   200
                                             220
                                                        230
                                                                  240
    SLQVLTLFLALTSALLLALIFITLLFSVLKWI-----RKKFPHIFKQPFKKTTGAAQEEDACSCRCP-----
                          : : : :
              111
                                             ;
                                                   1 1
    S-HPLASF-SFTSACTFICSEGTELIGKKKTICESSGIWSNPSPIC@KLDKSFSMIKEGDYNPLFIPVAVMV
       290
                  300
                            310
                                       320
                                                 330
                                                            340
       250
               X
    GEEEGGGGGYEL
```

isades e. M., cilist i. J., Delletti G. D.,

1

!

```
360 370
```

Results file ellis-267-3a-sptires made by wendyc on Mon 27 Aug 90 16:08:31-PDT.

```
Query sequence being compared: ELLIS-267-3A

Number of sequences searched: 15409

Number of scores above cutoff: 4274
```

Results of the initial comparison of ELLIS-267-3A with: Data bank: Swiss-Prot 14, all entries

E S	_															
S	100-															
	-															
	-										×					
	50-										×					
	_															
	_															
	_															
	_															
	_															
	_											×				
	10-															
	*															
	_											×				
	5-															
	_												*		•	
	_													×	*	
	0		 													
	::	;	:	;	;	;	:	;	1	1	; ;	::	; ;	:	1	
SC	DRE 0:	2	4	ŀ	6	;	8		11	1	13 :	15	117		19	
STI	DEV -2	-1	0	1		2		; 3		4	5	6	7			
													,			

PARAMETERS

Similarity matrix Mismatch penalty	Unitary 1	K-tuple Joining penalty	2 20
Gap penalty	1.00	Window size	32
Gap size penalty	0.05		
Cutoff score	5		
Randomization group	0		
Initial scores to save	20	Alignments to save	10
Optimized scores to say	/e 20	Display context	10

SEARCH STATISTICS

Scores:	Mean 5	Median 7	Standard Deviation 1.78
Times:	CPU :02:39.98		Total Elapsed 00:08:07.00
Number of residues: Number of sequences sear Number of scores above of		4914263 15409 4274	
Cut-off raised to 6. Cut-off raised to 7. Cut-off raised to 8.			

The scores below are sorted by initial score. Significance is calculated based on initial score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

Init. Opt.
Sequence Name Description Length Score Score Sig. Frame

		**** 7 standard deviations ab	oove mean	***			
1.	HMO2\$HUMAN	OCTAN <mark>ERST AYNIBING CORN</mark> ANSCRIPTION	478	19	31	7.86	0
		**** 6 standard deviations ab	ove mean	***			
2.	C1S\$HUMAN	COMPLEMENT COMPONENT C1S PRECU	688	17	43	6. 73	0
3.	ECHM\$RAT	ENOYL-COA HYDRATASE, MITOCHOND	290	16	39	6.17	0
4.	MTDM\$MOUSE	DNA (CYTOSINE-5)-METHYLTRANSFE	1573	16	26	6.17	0
5.	TENA\$CHICK	TENASCIN (FRAGMENT).	697	16	41	6.17	0
		**** 5 standard deviations ab	ove mean	***			
6.	COA1\$BFDV	COAT PROTEIN VP1.	343	15	30	5.61	0
7.	CADP\$MOUSE	PLACENTAL-CADHERIN PRECURSOR (822	15	42	5. 61	0
8.	KC2A\$DROME	CASEIN KINASE II, ALPHA CHAIN	335	15	26	5.61	0
9.	NIFA\$AZOVI	NIF-SPECIFIC REGULATORY PROTEI	522	15	38	5. 61	0
10.	ATPX\$ANASP	ATP SYNTHASE B' CHAIN (EC 3.6.	163	15	22	5.61	0
11.	VE6\$HPV16	E6 PROTEIN.	158	15	28	5.61	0
12.	DHAS\$ECOLI	ASPARTATE-SEMIALDEHYDE DEHYDRO	367	14	25	5. 05	0
13.	COX1\$SCHPO	CYTOCHROME C OXIDASE POLYPEPTI	537	14	43	5.05	0
14.	ENV\$BLV	ENV POLYPROTEIN (CONTAINS: COA	515	14	44	5.05	0
15.	LYAG\$HUMAN	LYSOSOMAL ALPHA-GLUCOSIDASE PR	951	14	41	5.05	0
16.	AST3\$DROME	ACHAETE-SCUTE COMPLEX PROTEIN	257	14	37	5.05	0
17.	SK I \$HUMAN	SKI ONCOGENE (GENE NAME: SKI).	728	14	40	5.05	0
18.	PRTZ\$BOVIN	PROTEIN Z.	396	14	34	5.05	0
19.	RRPL\$VSVSJ	RNA POLYMERASE BETA SUBUNIT (E	2109	14	43	5.05	0
20.	MYSG\$CHICK	MYOSIN HEAVY CHAIN, GIZZARD SM	1978	14	35	5.05	0

The scores below are sorted by optimized score. Significance is calculated based on optimized score.

A 100% identical sequence to the query sequence was not found.

The list of best scores is:

Seque	nce Name	Description		nit. Op Score Sc		Sig. F	rame
				·			
		**** 5 standard deviations		M ****			
1.	EGF\$MOUSE	EPIDERMAL GROWTH FACTOR PRECUR	1217	9	51	5.04	0
2.	VGLM\$PTPV	M POLYPROTEIN PRECURSOR (CONTA	1313	9	51	5.04	0
		**** 4 standard deviations	above mea	۱۳ ***			
3.	GMP1\$HUMAN	GRANULE MEMBRANE PROTEIN 140 P	830	7	50	4. 58	0
4.	ALC\$RABIT	IG ALPHA CHAIN C REGION (FRAGM	299	9	50	4. 58	0
5.	KAL\$HUMAN	PLASMA KALLIKREIN PRECURSOR (E	638	8	50	4. 58	0
6.	OX40\$RAT	0X40 ANTIGEN PRECURSOR.	271	12	50	4. 58	0
7.	CA36\$CHICK	COLLAGEN ALPHA 3(VI) (GENE NAM	2914	7	49	4. 12	0
8.	LDLR\$HUMAN	LOW-DENSITY LIPOPROTEIN (LDL)	860	7	49	4. 12	0
9.	RINI\$PIG	RIBONUCLEASE INHIBITOR.	456	9	49	4. 12	0
10.	LAM1\$HUMAN	LEUKOCYTE ADHESION MOLECULE-1	372	9	49	4. 12	0
11.	NGFR\$HUMAN	NERVE GROWTH FACTOR RECEPTOR P	427	8	49	4. 12	0
12.	ATPB\$IPOBA	ATP SYNTHASE BETA CHAIN (EC 3.	489	10	49	4. 12	0
13.	SUWA#DROME	SUPPRESSOR-OF-WHITE-APRICOT PR	964	7	49	4. 12	0
14.	ACDS\$HUMAN	ACYL-COA DEHYDROGENASE PRECURS	412	13	49	4. 12	0
15.	CAML#MOUSE	NEURAL CELL ADHESION MOLECULE	1260	7	49	4. 12	0
16.	POLS#SINDV	STRUCTURAL POLYPROTEIN (CONTAI	1245	13	49	4. 12	0
17.	LNHR\$HUMAN	LYMPH NODE HOMING RECEPTOR PRE	372	7	49	4, 12	0
18.	NEU\$RAT	NEU ONCOGENE PRECURSOR (EC 2,7	1260	9	49	4, 12	0
19.	CHIT\$PHAVU	ENDOCHITINASE PRECURSOR (EC 3.	328	7	49	4, 12	Ö
		**** 3 standard deviations	above mea		_		. -
20.	HEMA\$SENDH	HEMAGGLUTININ-NEURAMINIDASE (E		7	48	3.66	0

1. ELLIS-267-3A

EGF\$MOUSE EPIDERMAL GROWTH FACTOR PRECURSOR (EGF).

EGF\$MOUSE PRT; 1217 AA. ID STANDARD;

AC P01132;

```
JOE 1000
                         \vee _{1}
                              DT
      21-JUL-1986
                   (REL. 01, LAST SEQUENCE UPDATE)
(REL. 13, LAST ANNOTATION UPDATE)
 DT
 DE
      EPIDERMAL GROWTH FACTOR PRECURSOR (EGF).
 05
      MOUSE (MUS MUSCULUS).
 OC
      EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
 OC
      EUTHERIA; RODENTIA.
 RN
      [1] (SEQUENCE FROM N. A.)
      SCOTT J., URDEA M., QUIROGA M., SANCHEZ-PESCADOR R., FONG N.M.,
RA
 RA
      SELBY M. , RUTTER W. J. , BELL G. I. ;
 RL
      SCIENCE 221:236-240(1983).
RN
      [2] (SEQUENCE FROM N. A.)
RA
      GRAY A. , DULL T. J. , ULLRICH A. ;
RL
      NATURE 303:722-725(1983).
 RN
      [3] (SEQUENCE OF 977-1029)
RA
      SAVAGE C.R. JR., INAGAMI T., COHEN S.;
      J. BIOL. CHEM. 247:7612-7621(1972).
RL
RN
      [4] (DISULFIDE BONDS)
      SAVAGE C.R. JR., HASH J.H., COHEN S.;
RA
RL
      J. BIOL. CHEM. 248:7669-7672(1973).
      -!- FUNCTION: THE GROWTH FACTOR STIMULATES THE GROWTH OF VARIOUS
CC
CC
          EPIDERMAL AND EPITHELIAL TISSUES IN VIVO AND IN VITRO AND OF SOME
 CC
          FIBROBLASTS IN CELL CULTURE.
      -!- THE CLEAVAGE SITE FOR THE SIGNAL SEQUENCE IS NOT KNOWN.
CC
CC
      -!- THE PRECURSOR SEQUENCE CONTAINS SEVEN REGIONS THAT ARE SIMILAR
          TO THE EPIDERMAL GROWTH FACTOR SEQUENCE: RESIDUES 357—399,
CC
CC
          400-440, 441-480, 745-784, 832-885, 886-925, AND 926-976.
      -!- CAUTION: REF. 2 SEQUENCE DIFFERS GREATLY FROM RESIDUES 1134-1168
CC
CC
          OF THAT SHOWN DUE TO AN INSERTION OF 1 BASE IN THE N. A. SEQUENCE
CC
          WITH RESPECT TO THAT OF SCOTT, ET AL., WHICH CAUSES A SHIFT IN THE
CC
          READING FRAME.
DR
      PIR; A01387; EGMSMG.
DR
      EMBL; VOO741; MMEGF1.
DR
      PROSITE; PS00022; EGF.
KW
      EGF-LIKE DOMAIN; GROWTH FACTOR; TRANSMEMBRANE; SIGNAL.
FT
      SIGNAL
                    1
                            ?
FT
      CHAIN
                    ?
                         1217
                                    EPIDERMAL GROWTH FACTOR.
FT
      REPEAT
                  321
                          360
FT
      REPEAT
                  361
                          401
FT
                  402
      REPEAT
                          442
FT
      REPEAT
                  443
                          482
FT
      REPEAT
                  746
                          786
FT
      REPEAT
                  837
                          875
FT
      REPEAT
                  876
                          917
FT
      REPEAT
                  918
                          958
FT
      REPEAT
                  978
                         1018
FT
      PEPTIDE
                  977
                         1029
                                    EPIDERMAL GROWTH FACTOR.
FT
      DISULFID
                  982
                         996
FT
      DISULFID
                  990
                         1007
FT
      DISULFID
                  1009
                         1018
FT
      DOMAIN
                 1024
                         1029
                                    NOT REQUIRED FOR FULL BIOLOGICAL ACTIVITY
FT
                                     IN VIVO.
FT
                  790
      CONFLICT
                          790
                                    D \rightarrow Y (IN REF. 2).
FT
      CONFLICT
                  1048
                         1048
                                    A \rightarrow S (IN REF. 2).
SØ
      SEQUENCE
                 1217 AA; 133143 MW; 7471189 CN;
Initial Score
                         9
                            Optimized Score =
                                                    51
                                                         Significance =
                                                                         5.04
Residue Identity =
                       23%
                            Matches
                                                    69 Mismatches
                                                                           162
Gaps
                        60
                            Conservative Substitutions
                                                                             0
              X
                       10
                                 20
                                            30
                                                      40
                                                                 50
                                                                            60
              MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCØPGTFCRKYNPVCKSCPPSTFSSIGGØPNCN
                                     ; ; ;;
                                                           1 11
    SCFDIDECQRGAHNCAENAACTNTEGGYNCTCAGRPS----SPGRSC----PDSTAPSLLGEDGHHLDRN
      920
              X 930
                           940
                                     950
                                                           960
                                                                     970
```

\ | \L____

```
ICRVC----AGYFRFKKFC---SSTHNAECECIEGFHCLGPQCTRCEKDCR-----PGQELTKQGCKTC
                   Best Available Copy
            : :
   SYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQ-TR---DLRWWELRHAGYGQKHDIMVVAVC
   980
          990
                   1000 1010
                                      1020
                                                  1030
                                       150
     120
              130
                             140
                                               160
                                                        170
     --SLGTFND@NGTGVCR----PWTN-CSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGP
       MVALVLLLLGMWGTYYYRTRK@LSNPPKNPCDEPSGSVSSSG---PDSSSGAAVASCP@PWFVVLEKH@DP
    1050
             1060
                     1070 1080
                                          1090 1100
                            210
  180
          190
                   200
                                      220
                                               230
                                                       240
   GGHSLQVLTLFLALTSALLLALIFITLLFSV-LKWIRKKFPHIFKQPFKKTTGAAQEEDACSCRCPGEEEG-
            KNGSLPADGTNGAVVDA---GLSPSLQLGSVHLTSWRQK-PHI----DGMGTGQSCWIPPSSDRGPQEIEGN
     1120 1130
                        1140 1150
                                             1160 1170
       250
     ----GGGGYEL
           1 1
   SHLPSYRPVGPEKLHSLQSANGS
  1180
         1190 1200
2. ELLIS-267-3A
  VGLM$PTPV M POLYPROTEIN PRECURSOR (CONTAINS: NONSTRUCTURAL P
 ID
     VGLM$PTPV
                  STANDARD; PRT; 1313 AA.
 AC
     P03517;
DT
     21-JUL-1986 (REL. 01, CREATED)
DT
     21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE)
     01-OCT-1989 (REL. 12, LAST ANNOTATION UPDATE)
DT
DE
     M POLYPROTEIN PRECURSOR (CONTAINS: NONSTRUCTURAL PROTEIN NS-M;
     GLYCOPROTEINS G1 AND G2).
DE
05
     PUNTA TORO PHLEBOVIRUS.
OC
     VIRIDAE; SS-RNA ENVELOPED VIRUSES; BUNYAVIRIDAE.
RN
     [1] (SEQUENCE FROM N. A.)
RA
     IHARA T., SMITH J., DALRYMPLE J.M., BISHOP D.H.L.;
RL
     VIROLOGY 144:246-259(1985).
CC
     -!- SPECIFIC ENZYMATIC CLEAVAGES IN VIVO YIELD MATURE PROTEINS
CC
        INCLUDING NONSTRUCTURAL PROTEIN NS-M, GLYCOPROTEIN G1, AND
CC
        GLYCOPROTEIN G2.
DR
     EMBL; M11156; PTPMRNA.
DR
     PIR; A04109; VGVUPT.
     POLYPROTEIN; GLYCOPROTEIN; TRANSMEMBRANE; NONSTRUCTURAL PROTEIN.
KW
FT
     CHAIN
                1
                      270
                              NONSTRUCTURAL PROTEIN NS-M.
FT
     CHAIN
               271
                     809
                              GLYCOPROTEIN G1.
FT
     CHAIN
               810 1313
                              GLYCOPROTEIN G2.
                76 76
FT
     CARBOHYD
                              POTENTIAL.
              102 102
496 496
FT
     CARBOHYD
                              POTENTIAL.
FT
     CARBOHYD
                              POTENTIAL.
FT
     CARBOHYD
               1154
                     1154
                              POTENTIAL.
FT
             1243
     CARBOHYD
                   1243
                              POTENTIAL.
     SEQUENCE 1313 AA; 146374 MW; 9199811 CN;
SØ
Initial Score
                    9 Optimized Score =
                                            51
                                               Significance = 5.04
Residue Identity =
                                            68 Mismatches
                   23% Matches
                                      172
Gaps
                    53 Conservative Substitutions
                                                                0
            Х
                   10
                          - 20
                                     30
                                               40
                                                              50
            MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCØPG--TFCRKY----NPVCKSCPPSTFS
                  1 :
   TNVSFVCYEHVG@DE@EVEHRALKRVSVNDCKIVDNSK@KICTGDHVFCEKYDCSTSYPDVTCIHAPGSGPL
      500
            X 510
                  520 530
                                         540
                                                  550
                                                           560
```

```
30
      YI-NLMGSWIKPQCVGYERVLVDREVKQPLLAPEQNCDTCVSECLDEGVH-----IKSTGFEITSA
                                       590
                                                     600
                                                               610
                                            140
                                                            150
            120
                          130
                                                                            160
                                                                                               170
      QGCKTCSLGTFNDQNGT--GVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSP--STTISVTPEGGPGG
         VACSHGSCISAHQEPSTSVIVPYPGLLASVGGRIGIHLSHT-SDSASVHMVVVCPPRDSCAAHNCLLCYHGI
                     640
                                650 660
                                                            670 680
                 190 200 210 220
                                                                              230
                                                                                                              240
      HSLQ-VLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQPFKKTTG-----AAQEEDACSC
           LNYQCHSTLSAILTSFLL--ILFIYTVFSVTTNILYVLRLIPKQ-LKSPVGWLKLFINWLLTALRIKTRNVM
                                                730
                                      720
                                                                       740
                                                                                       750
               250
                           Х
      RCPGEEEGGGGGYEL
      RRINGRIGWVDHHDVERPRHREPMR
                     780
3. ELLIS-267-3A
    GMP1$HUMAN GRANULE MEMBRANE PROTEIN 140 PRECURSOR.
 ID
         GMP1$HUMAN
                             STANDARD;
                                                     PRT; 830 AA.
 AC
         P16109;
 TQ
         01-APR-1990 (REL. 14, CREATED)
         01-APR-1990 (REL. 14, LAST SEQUENCE UPDATE)
01-APR-1990 (REL. 14, LAST ANNOTATION UPDATE)
 DT
 DT
 DE
         GRANULE MEMBRANE PROTEIN 140 PRECURSOR.
 08
         HUMAN (HOMO SAPIENS).
 OC
         EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
 OC
         EUTHERIA; PRIMATES.
 RN
         [1] (SEQUENCE FROM N. A.)
 RA
         JOHNSTON G. I., COOK R. G., MCEVER R. P.;
 RL
         CELL 56:1033-1044(1989).
 DR
         PIR; A30359; A30359.
 DR
         EMBL; M25322; M25322.
 DR
         PROSITE; PS00022; EGF.

      LECTIN;
      GLYCOPROTEIN;
      TRANSMEMBRANE;
      SIGNAL.

      SIGNAL
      1
      41

      CHAIN
      42
      830
      GRANULE MEMBRANE PROTEIN

      DOMAIN
      42
      159
      LECTIN.

      DOMAIN
      160
      199
      EGF-LIKE.

      DOMAIN
      200
      770
      COMPLEMENT H/C4B-BINDING.

      TRANSMEM
      772
      795
      PUTATIVE.

      CARBOHYD
      54
      54
      PUTATIVE.

      CARBOHYD
      98
      98
      PUTATIVE.

      CARBOHYD
      180
      180
      PUTATIVE.

      CARBOHYD
      212
      212
      PUTATIVE.

      CARBOHYD
      411
      411
      PUTATIVE.

      CARBOHYD
      518
      518
      PUTATIVE.

      CARBOHYD
      716
      716
      PUTATIVE.

      CARBOHYD
      723
      723
      PUTATIVE.

      CARBOHYD
      741
      741
      PUTATIVE.

      CARBOHYD
      741
      741
      PUTATIVE.

      CARBOHYD
      741
      741
      PUTATIVE.

      CARBOHYD
      741
      741
      PUTATIVE.

      <td
         LECTIN; GLYCOPROTEIN; TRANSMEMBRANE; SIGNAL.
 KW
 FT
 FT
                                                     GRANULE MEMBRANE PROTEIN 140.
 FT
         SEQUENCE 830 AA; 90766 MW; 3510536 CN;
 SØ
Initial Score = Residue Identity =
                                  7 Optimized Score =
                                                                            50 Significance = 4.58
                                                                  = 66 Mismatches =
                                 22% Matches
```

 \sim

```
Gaps.
                 47 Conservative Substitutions
                 Best Available Copy
                                 30 40
                         20
                                                 50
           MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCØPGTFCRKYNPVCKSCPPSTFSSIGGØPNCN
           NEARVNCSHPFGAFRY@SVCSFTCNEGLLLVGA---SVL@CLATGNWNSVPPEC@AIPCTPLLS--P@NGTM
     460
          X 470
                               490 500
                 480
               80
        70
                       90
                                100
                                          110
                                                        120
   ICRVCAGYFRFKKFCSSTHNAECECIEGFHCLGP---@CTR--CEKDCRPG@ELTK-----@GCKTCS-
    TCV@PLGSSSYKSIC-----@FICDEGYSLSGPERLDCTRSGRWTDSPPMCEAIKCPELFAPE@GSLDCSD
                   540 550 560 570 580
               130 140 150 160 170
   -LGTFN-----DQNGTGVCRP-WTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGPGGH
    TRGEFNVGSTCHFSCNNGFKLEGPNNVECTTSGR-WSATPPTCKGIASLPTPGLQCPALT---TPGQGTMYC
        600 610
                      620 630 640
              200 210 220
       190
                                     230
   SLQVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKQP----FKKTTGAAQEEDA--CSCRCPQEEE
      RHHPGT-FGFNTTCYFGCNAGFTLIGDSTLSCRPSGQWTAVTPACRAVKCSELHVNKPIAMNCSNLWGNFSY
           670 680 690 700 710 720
   250
   G-GGGGYEL
   : : :
   GSICSGHCLEG@LLNGSA@
    730 X 740
4. ELLIS-267-3A
  ALC$RABIT IG ALPHA CHAIN C REGION (FRAGMENT).
    ALC$RABIT STANDARD; PRT; 299 AA.
ID
AC
    P01879;
DT
    21-JUL-1986 (REL. 01, CREATED)
DT
    21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE)
    01-NOV-1988 (REL. 09, LAST ANNOTATION UPDATE)
DT
    IG ALPHA CHAIN C REGION (FRAGMENT).
DE
    RABBIT (ORYCTOLAGUS CUNICULUS).
05
    EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC
OC
    EUTHERIA; LAGOMORPHA.
RN
    [1] (SEQUENCE FROM N. A. )
RA
    KNIGHT K.L., MARTENS C.L., STOKLOSA C.M., SCHNEIDERMAN R.D.;
RL
    NUCLEIC ACIDS RES. 12:1657-1670(1984).
    -!- THIS IMMUNOGLOBULIN BELONGS TO THE IGA-G SUBCLASS. IT WAS ISOLATED
CC
CC
       FROM A RABBIT HOMOZYGOUS FOR A2, N80, DE12,15, F71, G75 HEAVY
CC
       CHAIN HAPLOTYPE.
DR
    PIR; A02174; AHRB.
DR
    EMBL; X00353; OCIGO2.
DR
    PROSITE; PS00290; IG MHC.
KW
    IMMUNOGLOBULIN C REGION.
FT
    NON TER 1
    SEQUENCE 299 AA; 32256 MW; 500462 CN;
SØ
                9 Optimized Score = 50 Significance = 4.58
23% Matches = 69 Mismatches = 153
Initial Score =
Residue Identity =
Gaps
                 70 Conservative Substitutions
                                                         0
                 20
                         30
                             40
                                      50 60
   MGNNCYNVVVIVLLLVGCEKVGAVØNSCDNCØPGTFCRKYNPVCKSCPPSTFSSIGGØPNC---NICRVCA
    QSGTSGPYTACSELILPVTQCLG--QKS-AAC----HVEYNSVINESLPVPF-----PDCCPANSCCTC-
```

```
Best Available Copy 110 120 130
   GYFRFKKFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCK--TCSLGTFND@NGTGVCRPWTN
           -PSSSSRNLISGC0PSLSL0RPDLGDLLLGRDASLTCTLSGLKNPEDAVFTWEPTNGNEPV00RA0
                      80
                               90 100
                                                     110
  140
                     150
                             160 170
                                                 180
   CSLDG----RSVL----KTGTTEKDVVCGPPVVSFSPSTTIS---VTPEGGPGGHSL@VLTLFLALTSA
     RDLSGCYSVSSVLPSSAETWKARTEFTCTVTHPEIDSGSLTATISRGVVTP---PQVHLLPPPSEELALNEQ
       130 140 150 160 170
                 210
    200
                                  220
                                              230
                                                       240
   LLLALIFITLL---FS---VLKWIR-----KKFPHIFK@P---FKKTTGAA@EEDACSCRCP@EEEGGG
    VTL----TCLVRGFSPKDVLVSWRHQGQEVPEDSFLVWKSMPESSQDKATYA----ITSLLRVPAEDWNQG
             200
                  210 220 230
       Х
   GGYEL
   DTYSCMVGHEGLAEH
      260
5. ELLIS-267-3A
  KAL$HUMAN PLASMA KALLIKREIN PRECURSOR (EC 3.4.21.34) (PLASMA
ID
     KAL$HUMAN
                  STANDARD; PRT; 638 AA.
AC
     P03952;
     23-OCT-1986 (REL. 02, CREATED)
DT
     23-OCT-1986 (REL. 02, LAST SEQUENCE UPDATE)
DT
     01-APR-1990 (REL. 14, LAST ANNOTATION UPDATE)
DT
     PLASMA KALLIKREIN PRECURSOR (EC 3.4.21.34) (PLASMA PREKALLIKREIN)
DE
DE
     (KININOGENIN).
os 
     HUMAN (HOMO SAPIENS).
OC
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC
     EUTHERIA; PRIMATES.
RN
     [1] (SEQUENCE FROM N. A. )
     CHUNG D. W. , FUJIKAWA K. , MCMULLEN B. A. , DAVIE E. W. ;
RA
RL
     BIOCHEMISTRY 25:2410-2417(1986).
CC
     -!- FUNCTION: THE ENZYME CLEAVES LYS-ARG AND ARG-SER BONDS. IT
CC
        ACTIVATES, IN A RECIPROCAL REACTION, FACTOR XII AFTER ITS BINDING
CC
        TO A NEGATIVELY CHARGED SURFACE. IT ALSO RELEASES BRADYKININ FROM
CC
        HMW KININOGEN AND MAY ALSO PLAY A ROLE IN THE RENIN-ANGIOTENSIN
CC
        SYSTEM BY CONVERTING PRORENIN INTO RENIN.
CC
     -!- SUBUNIT: THE ZYMOGEN IS ACTIVATED BY FACTOR XIIA, WHICH CLEAVES
CC
        THE MOLECULE INTO A LIGHT CHAIN, WHICH CONTAINS THE ACTIVE SITE,
CC
        AND A HEAVY CHAIN, WHICH ASSOCIATES WITH HMW KININOGEN. THESE
CC
        CHAINS ARE LINKED BY ONE OR MORE DISULFIDE BONDS.
DR
     EMBL; M13143; HSPPKKA.
DR
     PIR; A00921; KOHUP.
     PROSITE; PS00134; TRYPSIN HIS.
DR
DR
     PROSITE; PS00135; TRYPSIN_SER.
     HYDROLASE; SERINE PROTEASE; GLYCOPROTEIN; PLASMA; ZYMOGEN; SIGNAL;
KW
KW
     FIBRINOLYSIS; BLOOD COAGULATION; INFLAMMATION; LIVER; DUPLICATION;
KW
     BRADYKININ.
FT
              20 390
391 638
389 621
20 104
     SIGNAL
                 1
                      19
FT
     CHAIN
CHAIN
                      390
                               PLASMA KALLIKREIN, HEAVY CHAIN.
FT
                               PLASMA KALLIKREIN, LIGHT CHAIN.
FT
     DOMAIN
                               SERINE PROTEASE.
 FT
     REPEAT
FT
     REPEAT
               110
                     194
 FT
     REPEAT
                200
                      284
```

```
127
308 Best Wailable Copy
FT
     CARBOHYD
FT
     CARBOHYD
    CARBOHYD 396 396
CARBOHYD 453 453
CARBOHYD 494 494
ACT_SITE 434 434
ACT_SITE 483 483
ACT_SITE 578 578
FT
FT
FT
                           CHARGE RELAY SYSTEM.
CHARGE RELAY SYSTEM.
FT
FT
FT
                            CHARGE RELAY SYSTEM.
     SEQUENCE
SØ
              638 AA; 71369 MW; 2175970 CN;
                8 Optimized Score = 50 Significance = 4.58
23% Matches = 70 Mismatches = 164
Initial Score =
Residue Identity =
                                          70 Mismatches = 164
Gaps
                  69 Conservative Substitutions
                                                               0
                       10
                                     20
                                             30
                                                     40
            MGNNC-----YNVVVI-----VLLLVGCEKVGAV@NSCDNC@PGTFCRKYNPVCKSCPPST
             DAFVCRTICTYHPNCLFFTFYTNVWKIES@RNVCLLKTSE-SGTPSSS--TP@ENTISGYSLLTCKRTLPEP
       230 X 240 250 260 270 280
                              80
                    70
            60
                                       90
                                               100
                                                        110
   FSS---IGG@PNCNICRVCAGYFRFKK---FCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCK
    CHSKIYPGVDFGGEELNV----TFVKGVNVCQETCTKMIRCQFFTYSLLPEDCKEEK-CKCFLRLSMDGSP
                     310
                         320 330 340
         120
                            140 150
                                              160
                  130
                                                      170
    -----CSLGTFNDQNGTG---VCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEGGP
       TRIAYGTQGSSGYSLRLCNTGDNSVCTTKT----STRIV---GGTNSSWGEWPWQVSLQVKLTAQRHLCGGS
   360 370 380
                                390
                                       400 410
                             200 210
                                              220
 180
               190
                                                       230
   GGHSLQVLT----LFL----ALTSALL-LALIFITLLFSVLKWIRKKFPHIFKQPFKKTTG----AAQE
       LIGH@WVLTAAHCFDGLPL@DVWRIYSGILNLSDITKDTPFSQIKEI-----IIH@NYKVSEGNHDIALIK
       430 440 450 460
                                              470 480
        240 250 X
   EDA----CSCRCP@EEEGGGGGYEL
    1 1
   L@APLNYTEF@KPICLPSKGDTSTIYTNCWVTGWG
  490 500 510 X 520
6. ELLIS-267-3A
  OX40$RAT OX40 ANTIGEN PRECURSOR.
ID
     DX40$RAT
               PRELIMINARY; PRT; 271 AA.
AC
     P15725;
DT
     01-APR-1990 (REL. 14, CREATED)
     01-APR-1990 (REL. 14, LAST SEQUENCE UPDATE)
01-APR-1990 (REL. 14, LAST ANNOTATION UPDATE)
DT
DT
DE
     0X40 ANTIGEN PRECURSOR.
OS
     RAT (RATTUS NORVEGICUS).
OC
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC
     EUTHERIA; RODENTIA.
RN
     [1] (T-CELL, SEQUENCE FROM N. A.)
RA
     MALLETT S. , FOSSUM S. , BARCLAY A. N. ;
RL
     SUBMITTED (OCT-1989) TO EMBL/GENBANK DATA BANKS.
CC
     -!- SIMILARITY: TO NERVE GROWTH FACTOR RECEPTOR.
     EMBL; X17037; RS0X40.
DR
KW
     T-CELL; ANTIGEN; GLYCOPROTEIN; SIGNAL.
FT
     SIGNAL
              1 19
FT
     CHAIN
                20
                     271
                              OX-40 ANTIGEN.
```

```
25 Best Available Copy STEINE-RICH REPEAT I.
               25
     REPEAT
FT
     REPEAT
               123 164
FT
     REPEAT
                              CYSTEINE-RICH REPEAT III.
     SEQUENCE
SØ
              271 AA; 29895 MW; 400796 CN;
                   12 Optimized Score = 50 Significance = 4.58
25% Matches = 72 Mismatches = 145
Initial Score =
Residue Identity =
                   63 Conservative Substitutions
Gaps
                                                                0
                   10
                             20
                                             30
                                                      40
                                                                50
            MGNNCYNVVVIVLLLVGCE-KVGAVQNS-CD-----NCQPGTFCRKYN-PVCKSCPPST
                      LLLGLSLGVTVKLNCVKDTYPSGHKCCREC@PGHGMVSRCDHTRDTVCHPCEPGFYNEAVNYDTCK@C----
         20 X
                                        60
                  30
                           40
                              50
                  70
                           80
                                   90
                                                  100
   -TQCN---HRS---GSELKQNCTPTEDTVCQCRPGTQPRQDSSHKLGVDCVPCPPGHFSPG---SNQA
                     90
                         100
                                 110 120
     120
                      140
             130
                                        150
                                                    160
   CKTCSLGTFND@NGTGVCRPWTNCSLD----GRSVLKT----GTT--EKDV--VCGPPVVSFSPSTTISV
   CK---PWTNCTLSGK@IRHPASN-SLDTVCEDRSLLATLLWET@RTTFRPTTVPSTTVWPRTS@LPSTPTLV
            150
                   160 170
                                      180
                                                 190
       180
               190
                       200
                                210
                                         220
                                                  230
   TPEGGPGGHSLØVLTLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFKØPFKKTTGAA@EEDACSCRCP@
    APE-GPAFAVILGLGLGLLAPLTVLLAL---YLL--RKAWRSPNTPKPCWGNSFRT--PIQEEQTDTHFTLA
      210
              220
                      230
                                    240
                                             250
    X
   EEEGGGGGYEL
   ΚI
 270
7. ELLIS-267-3A
  CA36#CHICK COLLAGEN ALPHA 3(VI) (GENE NAME: COL6A3) (FRAGMENT
ID
     CA36$CHICK
                  STANDARD; PRT; 2914 AA.
AC
     P15989;
DT
     01-APR-1990 (REL. 14, CREATED)
DT
     01-APR-1990 (REL. 14, LAST SEQUENCE UPDATE)
DT
     01-APR-1990 (REL. 14, LAST ANNOTATION UPDATE)
     COLLAGEN ALPHA 3(VI) (GENE NAME: COL6A3) (FRAGMENT).
DE
05
     CHICKEN (GALLUS GALLUS).
OC
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; AVES.
RN
     [1] (SEQUENCE FROM N. A.)
RA
     BONALDO P., RUSSO V., BUCCIOTTI F., DOLIANA R., COLOMBATTI A.;
RL
     SUBMITTED (SEP-1989) TO EMBL/GENBANK DATA BANKS.
RN
     [2] (SEQUENCE OF 2648-2914 FROM N. A.)
RA
     BONALDO P., COLOMBATTI A.;
RL
     J. BIOL. CHEM. 264:20235-20239(1989).
     -!- FUNCTION: COLLAGEN VI ACTS AS A CELL-BINDING PROTEIN.
CC
CC
     -!- SUBUNIT: TRIMERS COMPOSED OF THREE DIFFERENT CHAINS: ALPHA 1(VI),
CC
        ALPHA 2(VI), AND ALPHA 3(VI).
     -!- PROLINES IN THE THIRD POSITION OF THE TRIPEPTIDE REPEATING UNIT
CC
CC
        (G-X-Y) ARE HYDROXYLATED IN SOME OR ALL OF THE CHAINS.
DR
     EMBL; M24282; GGCOLAVI.
     EXTRACELLULAR MATRIX; CONNECTIVE TISSUE; TANDEM REPEAT; HYDROXYLATION;
KW
     GLYCOPROTEIN; CELL ADHESION.
ΚW
```

1--

FT

```
2914 AA; 315788 MW;
Best Available Copy
Initial Score
                                            49 Significance = 4.12
                        Optimized Score =
Residue Identity =
                    23% Matches
                                             65 Mismatches
                                                                168
                    42 Conservative Substitutions
Gaps
                                                                  0
                                  20
                       10
                                             30
            MGN-NCYNV---VV-IV-LLLVGCEK--VGAV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSS
             I IFLLDGSLNVGNANFPFVRDFVVTLVNYLDVGTDK I RVGLVQFS---DTPKTEFSLYSYQTK----SDI I Q
       430
                440
                         450
                                  460
                                              470
                                                       480
       60
                70
                         80
                                     90
                                             100
                                                         110
                                                                  120
   IGG@PNCNICRVCAGYFRFKKFCSSTHNAE---CECIEGFHCLGP@CTRCEKDCRPG@---ELTK@GCKTCS
     RLGQLRPKGGSV-LNTGSALNFVLSNHFTEAGGSRINEQVPQVLVLVTAGRSAVPFLQVSNDLARAGVLTFA
  490
           500
                     510
                              520
                                       530
                                                540
                              150
                                                170
            130
                     140
                                       160
   LGTFN---DQNGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTI-SVTPEGGP-GGHSLQVL
                 1 1 1
                                         1 111 1
   VGVRNADKAELE@IAFNPKMVYFMDDFSDLTT-----LP@ELKKPITTIVSGGVEEVPLAPTESKKD
 560
       570
                   580
                           590
                                               600
                                                        610
                                                                 620
                     210
   190
            200
                              220
                                       230
                                                 240
                                                          250
                                                                 X
   TLFLALTSALLLALIFITLLFSVLKWIRKKFPHIFK@PFKKTTGAA@EEDACSCRCP@EEGGGGGYEL
    ILFLIDGSANLL----GSFPAVRDFIHKVISDLNVGPDATRVAVAQFSDNIQIEFDFAELPSKQDMLLKVK
                      640 650 660 670 680 X
         630
   RMRLKTG
  690
8. ELLIS-267-3A
  LDLR$HUMAN LOW-DENSITY LIPOPROTEIN (LDL) RECEPTOR PRECURSOR.
ID
     LDLR$HUMAN
                  STANDARD;
                                PRT;
                                      860 AA.
AC
     P01130;
DT
     21-JUL-1986 (REL. 01, CREATED)
DT
     21-JUL-1986 (REL. 01, LAST SEQUENCE UPDATE)
     13-AUG-1987 (REL. 05, LAST ANNOTATION UPDATE)
DT
DE
     LOW-DENSITY LIPOPROTEIN (LDL) RECEPTOR PRECURSOR.
05
     HUMAN (HOMO SAPIENS).
OC
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC
     EUTHERIA; PRIMATES.
RN
     [1] (SEQUENCE FROM N. A.)
RA
     YAMAMOTO T., DAVIS C.G., BROWN M.S., SCHNEIDER W.J., CASEY M.L.,
     GOLDSTEIN J. L. , RUSSELL D. W. ;
RA
RL
     CELL 39:27-38(1984).
CC
     -!- THIS TRANSMEMBRANE GLYCOPROTEIN BINDS LDL, THE MAJOR CHOLESTEROL-
CC
         CARRYING LIPOPROTEIN OF HUMAN PLASMA, & TRANSPORTS IT INTO CELLS
CC
         BY ENDOCYTOSIS. IN ORDER TO BE INTERNALIZED, THE RECEPTOR-LIGAND
CC
         COMPLEXES MUST FIRST CLUSTER INTO CLATHRIN-COATED PITS.
     -!- THE AMIND END OF THE EXTRACELLULAR DOMAIN CONTAINS 7 OR 8 40-
CC
        RESIDUE REPEATS. EACH REPEAT HAS ABOUT 6 CYS RESIDUES, ALL OF
CC
CC
        WHICH ARE INVOLVED IN DISULFIDE BONDS. FOLLOWING THESE REPEATS IS
CC
         A REGION OF ABOUT 350 RESIDUES THAT IS HOMOLOGOUS WITH PART OF THE
CC
        EPIDERMAL GROWTH FACTOR (EGF) PRECURSOR.
     -!- THE LAST HALF OF THE EXTRACELLULAR DOMAIN CONTAINS STRUCTURAL
CC
CC
        EVIDENCE OF REPETITIVE SEQUENCE.
CC
     -!- AN INTRASTRAND RECOMBINATION EVENT BETWEEN TWO ALU SEQUENCES IN
```

THE 3' UNTRANSLATED REGION OF MRNA FROM A FAMILIAL HYPERCHOLEST-

CYTOPLASMIC DOMAINS. MOST OF THE RECEPTORS PRODUCED ARE SECRETED,

EROLEMIA PATIENT RESULTS IN THE DELETION OF THE TRANSMEMBRANE &

315788 MW;

2. 213953E+07 CN;

SØ

CC

CC

CC

SEQUENCE

```
DOI LUDGE LUHI HOHEKE ID THE CELL ZOKHACE CANNOT CLOZIEK IN COMTED
        PITS; THEREFORE, A EVEN THOUGH THEY BIND LDL, THESE RECEPTOR-LIGAND COMPLEXES ARE NOT INTERNALIZED.
 CC
 CC
 DR
     PIR; A01383; @RHULD.
 DR
     EMBL; KO2573; HSLDLR.
 KW
     GLYCOPROTEIN; LDL; CHOLESTEROL METABOLISM; LIPID TRANSPORT;
 KW
     ENDOCYTOSIS; COATED PITS; TRANSMEMBRANE; RECEPTOR; SIGNAL.
 FT
     SIGNAL
                 1
                       21
 FT
     CHAIN
                 22
                      860
                               LDL RECEPTOR.
                22 788
789 810
811 860
 FT
     DOMAIN
                               EXTRACELLULAR.
 FT
     TRANSMEM
 FT
     DOMAIN
               811
                               CYTOPLASMIC.
              811 860

22 61

62 102

103 141

142 180

191 229

230 268

269 309

311 661

441 445

488 492

531 535

575 579
 FT
     REPEAT
                               CYSTEIN RICH.
 FT
     REPEAT
                               CYSTEIN RICH.
 FT
     REPEAT
                               CYSTEIN RICH.
 FT
     REPEAT
                              CYSTEIN RICH.
                             CYSTEIN RICH.
CYSTEIN RICH.
CYSTEIN RICH.
 FT
     REPEAT
     REPEAT
 FT
     REPEAT
 FT
 FT
     SIMILAR
                               WITH EGF PRECURSOR.
 FT
     REPEAT
 FT
     REPEAT
 FT
     REPEAT
                    579
 FT
     REPEAT
               575
                    621
768
 FT
     REPEAT
               617
 FT
     SITE
               721
                               CLUSTERED O-LINKED OLIGOSACCHARIDES.
 SØ
     SEQUENCE
               860 AA; 95375 MW; 3807460 CN;
Initial Score =
                    7 Optimized Score =
                                            49 Significance = 4.12
Residue Identity =
                   23% Matches
                                            67 Mismatches
                                                               162
Gaps
                    56 Conservative Substitutions
                                                                 0
          10
                   20
                               30
                                         40
                                                  50
   MGNNCYNVVVIVLLLVGCEKVGAVØNSC----DNCØPGTFCRKYNPVCKSCPPSTFSSIGGØPNCNICRVCA
   MGPWGWKLRWTVALL-LAAAGTAVGDRCERNEF@C@DG-KCISYKWVCDGSAEC@DGSDES@ETCLSVTCKS
   X 10
               20
                             30
                                       40 50
   70
      80
                     90 100
                                                  120
                                        110
                                                            130
   GYFRFKKFCSSTHNAECECIEGFHCLGP@CTRC--EKDCRPG@ELTK@GC--KTCSLGTFND@NGTGVCRPW
   GDF----SCGGRVN---RCI----P@FWRCDG@VDCDNG--SDE@GCPPKTCS@DEFRCHDGKCISR@F
              80
                                90
                                         100 110
                           160 170
                     150
                                                       180
   TNCS----LDG-----RSVLKTGTTEKDVVCGPPVVSFSPSTTI------SVTPEGGPGGHSLQVLTL-F
   VCDSDRDCLDGSDEASCPVL----TCGPASFQCNSSTCIPQLWACDNDPDCEDGSDEWPQRCRGLYV
         140
                              150
                                    160
                                               170
         200
               210 220 230 240 250
   LALTSALLLALIFITL--LFSVLKWIRKKFP-HIFK@PFKKTTGAA@EEDACSCRCP@EEEGGGGGYEL
      F@GDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAVATCRPDEF@CSDGNCIHGSR@CDREYDC
  190
       200 210 220 230 240 250
   KDMSDEV
9. ELLIS-267-3A
  RINI$PIG RIBONUCLEASE INHIBITOR.
```

ID RINI\$PIG STANDARD; PRT; 456 AA. AC P10775;

DT 01-JUL-1989 (REL. 11, CREATED)

 \sim

```
01-JAN-1990 (REBest Available Copy NOTATION UPDATE)
  DT
      RIBONUCLEASE INHIBITOR.
  DE
  05
      PIG (SUS SCROFA).
      EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
  OC
  OC
      EUTHERIA; ARTIODACTYLA.
  RN
      [1] (LIVER, SEQUENCE)
      HOFSTEENGE J. , KIEFFER B. , MATTHIES R. , HEMMINGS B. A. , STONE S. R. ;
  RA
  RL
      BIOCHEMISTRY 27:8537-8544(1988).
  CC
      -!- FUNCTION: THIS PROTEIN IS AN INHIBITOR OF PANCREATIC RNASE AND
  CC
          ANGIOGENIN.
  CC
      -!- THERE ARE 15 LEUCINE-RICH REPEATS.
  CC
      -!- SIMILARITY: THE REPEATED LEUCINE-RICH SEGMENT IS FOUND IN MANY
  CC
          PROTEINS.
  KW
      ACETYLATION; TANDEM REPEAT; LEUCINE-REPEAT.
               1 1 ACE
15 43 A1.
44 71 B1.
72 100 A2.
101 128 B2.
129 157 A3.
158 185 B3.
186 214 A4.
215 242 B4.
243 271 A5.
272 299 B5.
300 328 A6.
329 356 B6.
357 385 A7.
386 413 B7.
414 442 A8.
456 AA; 49022 MW; 9
  FT
      MOD RES
                1 1
                                ACETYLATION.
      REPEAT
REPEAT
  FT
  FT
  FT
      REPEAT
  FT
      REPEAT
      REPEAT
  FT
      REPEAT
  FT
  FT
      REPEAT
      REPEAT
REPEAT
REPEAT
  FT
  FT
  FT
  FT
      REPEAT
      REPEAT
  FT
      REPEAT
  FT
  FT
      REPEAT
      REPEAT
  FT
      SEQUENCE 456 AA; 49022 MW; 991302 CN;
                    9 Optimized Score = 49 Significance = 4.12
23% Matches = 68 Mismatches = 152
 Initial Score =
Residue Identity =
 Gaps
                     71 Conservative Substitutions
                                                                 0
                       20
                                      30 40
                 10
                                                         50
             MGNNCYNVVVIVLLLVGCEKVGAVQNSCDNCQPGTFCRKYNPVCKSCP--PSTFS--SIGGQ
               ADSAC@LETLRLENCGLTPANCKDLCG---IVAS@ASLRELDLGSNGLGDAGIAELCPGLLSPASRLKTLWL
   190
         200
                 210
                               220 230 240
                           80 90 100 110
                 70
    60
     PNCNI----CRVCAGYFRFK---KFCSSTHNAECECIEGFHCLGP@CTRCEKDCRPG@ELTK@GCKTCSLGT
     WECDITASGCRDLCRVL@AKETLKELSLAGN--KLGDEGARLL----CESLL@PGC@LESLWVKSCSLTA
    260 270 280 290
                                              300 310
        130 140
                       150
                                    160
                                             170
     FND@NGTGVCRPWT-NCSL--DGRSVLKTGTTEKDVVCGPPVVSFSPSTTISVTPEG----GPGGHSL@VL
      ACCQ---HVSLMLT@NKHLLEL@LSSNKLGDSGI@ELC---@ALS@PGTTLRVLCLGDCEVTNSGCSSL--A
                340
                        350
                                        360 370
                            210 220 230 240
            200
    390 400 410
                                          420
                                                      430 440
        250 X
     ----EGGGGGYEL
    L@ALEGSKPGLRVIS
         450 X
```

OI-JUL-1383 (REL. II, LAS) SEWUENCE UPDATE)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS

□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

□ FADED TEXT OR DRAWING

□ BLURRED OR ILLEGIBLE TEXT OR DRAWING

□ SKEWED/SLANTED IMAGES

□ COLOR OR BLACK AND WHITE PHOTOGRAPHS

□ GRAY SCALE DOCUMENTS

□ LINES OR MARKS ON ORIGINAL DOCUMENT

□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

```
LAM1$HUMAN LEUKOCYTE ADHESION MOLECULE-1 PRECURSOR (LAM-1).
ID
     LAM1$HUMAN PRELIMINARY; PRT; 372 AA.
AC
     P15023;
DT
     01-APR-1990 (REL. 14, CREATED)
     01-APR-1990 (REL. 14, LAST SEQUENCE UPDATE)
DT
DT
     01-APR-1990 (REL. 14, LAST ANNOTATION UPDATE)
     LEUKOCYTE ADHESION MOLECULE-1 PRECURSOR (LAM-1).
DE
OS
     HUMAN (HOMO SAPIENS).
OC
     EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;
OC
     EUTHERIA; PRIMATES.
RN
     [1] (TONSIL, SEQUENCE FROM N. A.)
     TEDDER T.F., ISAACS C.M., ERNST T.J., DEMETRI G.D., ADLER D.A.,
RA
RA
     DISTECHE C. M. ;
RL
     J. EXP. MED. 170:123-133(1989).
DR
     EMBL; X16150; HSLYAM1.
DR
     PROSITE; PS00022; EGF.
KW
     CELL ADHESION; GLYCOPROTEIN; SIGNAL.
                1
FT
     SIGNAL
                      28
FT
     PROPEP
                29
                      38
    CHAIN 39 372
CARBOHYD 104 104
CARBOHYD 177 177
CARBOHYD 232 232
FT
                             LEUKOCYTE ADHESION MOLECULE-1.
FT
                             POTENTIAL.
FT
                             POTENTIAL.
FT
                             POTENTIAL.
              246 246
271 271
FT
    CARBOHYD
                             POTENTIAL.
FT
     CARBOHYD
                             POTENTIAL.
SØ
     SEQUENCE
              372 AA; 42313 MW; 724484 CN;
Initial Score =
                   9 Optimized Score =
                                         49 Significance = 4.12
Residue Identity =
                  22% Matches
                                          66 Mismatches
                                                            174
Gaps
                  50 Conservative Substitutions
                                                              0
                  10
                           20
                                      30
                                              40
           MGNNCYNVVVIVLLLVGCEKVG---AV@NSCDNC@PGTFCRKYNPVCKSCPPSTFSSIGG@P
               AEIEYLEKTLPFSRSYYWIGIRKIGGIWTWVGTNKSLTEEAENWGDGEPNNKKNKEDCVEIYIKRNKDAGKW
          80
                 90
                                 110 120
                     100
                                                    130
  60
             70
                      80
                                              100
                               90
                                                       -110
   N---CNICRVCAGYFRFKKFCSSTHNAEC-ECIEGFHC----LGP@C---TRCEKDCRPG@ELTK@GCKT
   NDDACHKLKAALCYTASC@PWSCSGHGECVEIINNYTCNCDVGYYGP@C@FVI@CEPLEAP--ELGTMDC-T
       150
               160 170
                                 180
                                         190
                                                  200
                    140
  120
                            150
                                     160
            130
                                             170
   CSLGTFN-D@NGTGVCRPWTNCSLDGRSVLKTGTTEKDVVCGPPVVSFSPSTTISV-----TPEGGPGGH
    HPLGNFNFNSQCAFSCSEGTN--LTG----IEETT----CEPFGNWSSPEPTCQVIQCEPLSAPDLGIMNC
        220
                              240
                                           250
                                                260
                200 210
                                     220
                                             230
                                                      240
   SLQVLTLFLALTSALLLALIFITLLFSVLKWI-----RKKFPHIFKQPFKKTTGAAQEEDACSCRCP----
      S-HPLASF-SFTSACTFICSEGTELIGKKKTICESSGIWSNPSPICQKLDKSFSMIKEGDYNPLFIPVAVMV
         280
                290 300 310 320 330
      250
            X
   GEEEGGGGGYEL
   TAFSGLAF I IWLARRLKKGKKS
```

10. ELLIS-267-3A

350

Х

Query sequence being compared: ELLIS-267-3A Number of sequences searched: 39513 Number of scores above cutoff: 2415 Results of the initial comparison of ELLIS-267-3A with: Data bank : GenBank 64.0, all entries Data bank : UEMBL 23_64.0, all entries 100000-U50000-В E 0 F10000-E 5000-6 U E

CE

S 1000-

Results file ellis-267-3a.res made by wendyc on Mon 27 Aug 90 14:56:51-PDT.

200-									
		Best Availa	hle Conv						
	*	Dest Availa	ible copy						
_									
100-	×								
_									
50-									
_									
_									
_	*								
_									
_									
10-									
-	×								
_									
5-									
_									
_									
_	* *							×	
0									
::	111111111111	t t	t t	;	;	;	1	;	
SCORE 0:	:103::::206	308	411	514	617	719	822	925	
STDEV -1	9								
		F	PARAMETE	RS					
	3								

Similarity matrix Mismatch penalty Gap penalty Gap size penalty Cutoff score Randomization group	Unitary 1 1.00 0.33 55 0	K-tuple Joining penalty Window size	4 30 32
Initial scores to save Optimized scores to sav	20 [.]	Alignments to save	10
	e 20	Display context	10

SEARCH STATISTICS

39513

2415

Scores:	Mean 33	Median 33	Standard Deviation 13.33
Times:	CPU 00:41:02.99		Total Elapsed 00:56:42.00
Number of residues:	4	9483801	

The scores below are sorted by initial score. Significance is calculated based on initial score.

Number of sequences searched:

Number of scores above cutoff:

A 100% similar sequence to the query sequence was found:

Init. Opt.
Sequence Name Description Length Score Score Sig. Frame

Mouse T-cell recep Best Available Copy 1. MUSTC41BB cell receptor 4-188 pr 2350 925 925 66.92 0

The list of other best scores is:

Seque	ence Name	Description	Length	Init. Score	•	Sig. F	rame
		**** 8 standard deviations a	above me	ean ***	. X		
2.	HUMCS3	Human chorionic somatomammotro	2740	147	401	8. 55	0
		**** 7 standard deviations a			X		
3.	NEULCC	N. crassa laccase gene, 3'end.	726	135	310	7. 65	0
		**** 6 standard deviations a			* *		
4.		Spider monkey (A.geoffroyi) de	1959	123	372	6. 75	0
5.	TOGTBESP	Tick-borne-encephalitis virus	2450	120	398	6. 53	0
6.	SEHCRYAA1	Mole rat alpha-A-crystallin ge	5491	119	329	6.45	0
7.	HUMGHCSA	Human growth hormone (GH-1 and	66495	118	401	6. 38	0
8.	HUMNRASR	Human N-ras mRNA and flanking	2436	117	395	6.30	0
9.	RSNEU	Rat mRNA for neuraxin	3418	116	405	6. 23	0
10.	RATFAS	Rat mRNA for fatty acid syntha	8936	116	415	6. 23	0
11.	RATFAST	Rat fatty acid synthetase mRNA		115	414	6.15	0
12.	DRETUBB2	D. melanogaster beta-2 tubulin	1403	113	396	6.00	0
		**** 5 standard deviations a	above me	an ***	* *		
13.	MUSAB321	Mouse MHC A-beta-3/A-beta-2 me	2689	112	396	5. 93	0
14.	PIGUFMR	Pig uteroferrin mRNA, complete	1424	110	403	5. 78	0
15.	M22618	Figure 3. Nucleotide sequence	7253	108	396	5. 63	0
16.	HSHGMCSF	Human mRNA for granulocyte-mac	1807	108	398	5. 63	0
17.	HUMCYPMP	Human liver cytochrome P-450 S		108	353	5. 63	0
18.	M27685	Figure 2. The nucleotide seque		108	404	5. 63	Ö
ິ 19.	MZEZE19B1	Maize 19 kDa zein mRNA, clone		108	288	5. 63	ō
20.	HUMCYPMPA	Human cytochrome P-450 S-mephe		108	353	5. 63	ō

The scores below are sorted by optimized score. Significance is calculated based on optimized score.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

RNTPO

FLAP1M

ECOORI

ECASNA

HUMHBA4

MUSADAM

HUMINSR

CHKERBBF

HAMAPRTG

HUMNCAM

ECOORIASN

RATBAND33E

A 100% similar sequence to the query sequence was found:

Seque	nce Name	Description	Length	Init. Score	•	Sig. Fr	ame
1.	MUSTC41BB	Mouse T-cell receptor 4-188 pr	2350	925	925	91.05	0
The 1	ist of other	best scores is:				·	
Seque	nce Name	Description	Length	Init.	•	C4 - F-	-0220
		2000, 1001011	Length	acore	SCOI E	Sig. Fr	ame
		**** 5 standard deviations				51g. FT	
2.	MZEPOD	**** 5 standard deviations Maize pyruvate, orthophosphate	 abo∨e me 3171	 ean ** 59	** 424	5. 14	0
2.	MZEPOD	**** 5 standard deviations Maize pyruvate, orthophosphate **** 4 standard deviations	 above me 3171 above me	 ean ** 59	** 424		
2. 3.		**** 5 standard deviations Maize pyruvate, orthophosphate	 above me 3171 above me	 ean ** 59	** 424 **		

Rat mRNA for thyroid peroxidas

Influenza A/nt/60/68 (h3n2), p

E. coli replication origin (ori

E. coli replication origin (ori

Rat band 3 C1-/HC03- exchanger

E. coli asn-A gene for asparag

Human alpha globin psi-alpha-1

Mouse adenosine deaminase mRNA

Human insulin receptor mRNA, c

Chicken c-erbB oncogene mRNA a

Hamster aprt gene for adenine

Human neural cell adhesion mol

0

0

0

0

0

0

0

0

0

0

4.46

4.29

4.12

4.12

4.12

4.12

4. 12

4.12

3.94

3.94

3.94

3.94

420

419

418

418

418

418

418

418

417

417

417

417

62

57

67

67

55

67

63

64

72

99

57

72

3237

2341

2675

4012

4057

2170

1379

4723

6563

3960

1423

12847

3 standard deviations above mean ****

```
Human platelet derived growth
Influenza A/Mailard/New York/6
  18. HUMPDGFRA
                                               5570
                                                           416
                                                       60
                                                                 3.77
                                                                       0
  19. FLAPBIAC
                                               2341
                                                       56
                                                           416
                                                                 3. 77
                                                                       0
  20. HUMALDC
                 Human aldolase C gene.
                                               4252
                                                       63
                                                           416
                                                                 3.77
                                                                       0
1. ELLIS-267-3A
   MUSTC41BB
             Mouse T-cell receptor 4-1BB protein mRNA, complete
 LOCUS
            MUSTC41BB
                        2350 bp ss-mRNA
                                                 ROD
                                                           15-SEP-1989
            Mouse T-cell receptor 4-1BB protein mRNA, complete cds.
 DEFINITION
            J04492
 ACCESSION
 KEYWORDS
            T-cell receptor.
 SOURCE
            Mouse (strain C57BL/6) T-lymphocyte cell lines L2 and L3, cDNA to
            mRNA.
   ORGANISM
            Mus musculus
            Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
            Theria; Eutheria; Rodentia; Myomorpha; Muridae; Murinae; Mus;
            musculus.
 REFERENCE
            1 (bases 1 to 2350)
   AUTHORS
            Kwon, B. S. and Weissman, S. M.
   TITLE
            cDNA sequences of two inducible T-cell genes
   JOURNAL
            Proc. Natl. Acad. Sci. U.S.A. 86, 1963-1967 (1989)
   STANDARD
            full staff_review
 COMMENT
            Draft entry and clean copy of sequence for [1] kindly provided by
            B. S. Kwon, 17-MAR-1989.
 FEATURES
                    Location/Qualifiers
     CDS
                     146..916
                     /note="4-1BB protein precursor"
      sig_peptide
                     /note="4-1BB protein signal peptide"
      mat peptide
                    215..913
                     /note="4-1BB protein"
 BASE COUNT
                590 a
                        561 c
                                589 g
                                         607 t
                                                   3 others
 ORIGIN
            Unreported.
Initial Score
                    925
                         Optimized Score
                                             925
                                                  Significance = 91.05
Residue Identity =
                   100%
                         Matches
                                             925
                                                  Mismatches
Gaps
                         Conservative Substitutions
                                                                    O
                    20
                              30
                                       40
                                                50
                                                          60
                                                                   70
    ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAA
    ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTGTCTAAAGGAATATTACTACACCAGGAA
    X
           10
                    20
                              30
                                       40
                                                50
                                                          60
                                                                   70
         80
                   90
                           100
                                    110
                                              120
                                                       130
    AAGGACACATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGC
    AAGGACACATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTGCATGTGACATTTCGC
         80
                   90
                           100
                                    110
                                              120
                                                       130
                                                                140
       150
                160
                         170
                                  180
                                            190
                                                     200
                                                              210
    CATGGGAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGAAGGTGGGAGCCGT
    CATGGGAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCTAGTGGGCTGTGAGAAGGTGGGAGCCGT
       150
                160
                         170
                                  180
                                            190
                                                     200
                                                              210
     220
              230
                       240
                                250
                                          260
                                                   270
    GCAGAACTCCTGTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCC
    GCAGAACTCCTGTGATAACTGTCAGCCTGGTACTTTCTGCAGAAAATACAATCCAGTCTGCAAGAGCTGCCC
     220
              230
                       240
                                250
                                          260
                                                   270
                                                            280
   290
            300
                     310
                               320
                                        330
                                                 340
                                                          350
```

TCCAAGTACCTTCTCCAGCATAGGTGGACAGCCGAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAG

numen insuith receptor mener c

21/3

417

J. 34

T. LIGHTHANKE


```
Tanaka, Y.
           Primary structure of maize pyruvate, orthophosphate dikinase as
  TITLE
           deduced from cDNA sequence
           J. Biol. Chem. 263, 11080-11083 (1988)
  JOURNAL
  STANDARD
           full staff_entry
 COMMENT
           Draft entry and printed copy of sequence for [1] kindly provided by
           M. Matsucka, 18-MAY-1988.
FEATURES
                   Location/Qualifiers
     CDS
                   114..2957
                   /note="pyruvate, orthophosphate dikinase (EC 2.7.9.1)"
     mRNA
                   (1..3171
                   /note="PODK mRNA"
 BASE COUNT
                      852 c 971 g
              691 a
                                      657 t
ORIGIN
           1 bp upstream of EcoRI site.
Initial Score
                    59 Optimized Score =
                                          424
                                               Significance =
                                                             5.14
Residue Identity =
                   51% Matches
                                          521
                                               Mismatches
                                                              349
Gaps
                   132 Conservative Substitutions
                                                               0
            X
                   10
                              20
                                         30
                                                 40
                                                          50
            ATGTCCATGA-ACTGC-TGA-GTGGAT--AAACAGCACGGGATATCTCTGTCTAAAGGAATA
            AGGGAGAGCCATTCCCCTCAGACCCCAAGAAGCAGCTGGAGCTAGCA-GTGCTGGCTGTGT-TCAACTCGTG
 910
          920
                   930
                            940
                                    950
                                              960
    60
             70
                         80
                                   90
                                          100
                                                   110
   TTACTACACCAGG---AA-AAGGACACATTCGACAA-CAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTC
                 GGAGAGCCCCAGGGCCAAGAAGTACAGGAGCATCAACCAGATCACTGGCC--TCA-GGGGCACCGCCGTGAA
          990
 980
                  1000
                           1010
                                   1020
                                              1030
      130
                  140
                             150
                                      160
                                               170
                                                        180
   CTGTGCATGTGACAT----TTCG---CCATGGGAAACAACTGTTACAACGTGGTGGTCATTGTGCTGCTGCT
   1 11111 111 111
                   1111
                          C-GTGCA-GTG-CATGGTGTTCGGCAACATGGGGAACACTTCTGGCACCGGCGTGCTC-TTCACCAGGAACC
  1050
             1060
                     1070
                              1080
                                       1090
                                                1100
  190
          200
                   210
                             220
                                      230
                                               240
                                                         250
   AGTGGGCTGTGAGAAGGTGGGAGCCG--TGCAGAACTCCTGTGATAACTGTCAGCCTG-GTA-CTTTCTGCA
         CCAACACCG-GAGA--GAAGAAGCTGTATGGCGAGTTCCTG-GTGAACGCTCAGGGTGAGGATGTGGTTGCC
   1120
               1130
                       1140
                                1150
                                         1160
                                                  1170
   260
            270
                    280
                             290
                                         300
                                                     310
                                                               320
   GAAAATACAATCCAGTCTGCAAGAGCTGCCCTCC---AAGTACCTTCT-CCA---GCATAGGTGGA--CAGC
               11 11 1 11
   GGAATAAGAACCC---CAG-AGGACCTTGACGCCATGAAGAACCTCATGCCACAGGCCTACGACGAGCTTGT
     1190
                1200
                          1210
                                  1220
                                           1230
                                                    1240
           330
                    340
                             350
                                      360
                                               370
   CG--AACTGTAACAT-CTGCAGAGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACA
       TGAGAACTGCAACATCCTGGAGAGCCACTACAAGGAAATGCAGGAT-ATCGAGT-TCACT-GTCCAGGAAAA
       1260
               1270
                        1280
                                 1290
                                          1300
                                                    1310
                                                              1320
  390
           400
                    410
                             420
                                      430
                                               440
                                                       450
   -ACGCGGAGTGTGAGTGCATTGAAGGA-TTCCATTGCTTGGGGCCACAGTGCACCAGATGTGAAAAGGACTG
               CAGGCTGTGGATG-TTGCAGTGCAGGACAGGGAAACGTACGGGCAAAAGTGC-----CGTGAA---GATCG
        1330
                 1340
                          1350
                                  1360
                                           1370
 460
          470
                   480
                            490
                                     500
                                               510
                                                       520
   CAGGCCTGGCCAGGAGCTAACGA-AGCAGGGTTGCAAAACCTGT-AGCTTGGGAACATTTAATGACCAG---
      11 11
```

C---CGTGGACATG-GTTAACGAGGGCCTTGTTG-AGCCCCGCTCAGC-GATCAAGATGGTAGAGCCAGGCC

ozokiji, i jamamotoji, i liijanoji, i kano-ndiakamiji.

```
Best Available Copy
             540
                                   560
                                              570
                                                         580
                                                                  590
   AACGGTACTGGCGTCTGTCGACC-CTG---GACGAACTGCTC--TCTAGACGGA--AGGTCTGTGCTTAAGA
   1.1
                                            11 1 111
                                                     1 111 111
   ACCTGGACCAGCTTCT-TCATCCTCAGTTTGA-GAACCCGTCGGCGTACAAGGATCAAGTCATTGCCACTGG
 1450
          1460
                    1470
                            1480
                                       1490
                                                1500
                                                         1510
           600
                    610
                             620
                                       630
                                                 640
                                                          650
   CCGGGACCA--CGGAGAAGGACGTGTGTGGACCCCCTGTGGTGA--GCTTCTCCCAGTACCA--CCA
                   ::
                       TCTG--CCAGCCTCACCTGGGGCTGCTGTG-GGCCAGGTTGTGTCACTGCTGAAGATGCTGAAGCATGGCA
 1520
            1530
                    1540
                              1550
                                       1560
                                                1570
                                                          1580
    660
                   670
                             680
                                       690
                                                700
                                                         710
   TTTC--TGTGA---CT-CCAG--AGGGAGGACCAGGAGGGCACTCCTTGCAGGTCCTTACCTTGTTCCTG-G
               11 1 1
                        111 1 11
                                                           11 11
   TTCCCAAGGGAAAGCTGCTATTCTGGTAAGGGC-GGAGACCAGCCCT--GAGGACGTT--GGTG-GCATGCA
  1590
           1600
                    1610
                             1620
                                       1630
                                                 1640
 720
          730
                    740
                             750
                                      760
                                               770
                                                         780
   CGCTGACATCGGCTTTGCTGCCCTGATCTTCATTACTCTCCTGTTCT-CTGTGCTCAAA---TGGATC
               11
                   1 1 1
                            1 1
                                 CGCTGCTGTGGGGATTCTTACAGAGAGGGGT-GGCATGACT-TCCCACGCTGCTGTGGTCGCACGTTGGTGG
     1660
              1670
                       1680
                                 1690
                                           1700
                                                    1710
                                                             1720
   790
              800
                       810
                                820
                                         830
                                                  840
                                                           850
   AGGAAAAAATTC--CCCCACATATTCAAGCAACCATTTAAGAAGACCACTGGAGCAGCTCAAGAGGA--AGA
                     1111 1111
   GGGAAATGCTGCGTCTCGGGATGCTCAGGCATTCGCGTAA-ACGA--TGCGGAGAAGCTCGTGACGATCGGA
     1730
              1740
                       1750
                                1760
                                            1770
                                                     1780
      860
                870
                         880
                                  890
                                           900
                                                        910
                                                                 920
   TG-CTTGTAGCTGC-CGATGTCCACAGGAAGAAGAAGAAGAAGGAGGAGGAGGA--GGCTA--TGAGCTGTGATGTAC
    1800
                1810
                         1820
                                  1830
                                            1840
                                                     1850
      X
   TATC
   CAGCCGCTTTCCCC
       1870
3. ELLIS-267-3A
  MUSB3RP
             Mouse band 3-related protein mRNA, complete cds.
LOCUS
           MUSB3RP
                       4088 bp ss-mRNA
                                                ROD
                                                         15-MAR-1989
DEFINITION
           Mouse band 3-related protein mRNA, complete cds.
ACCESSION
KEYWORDS
           band 3-related protein.
           Mouse (strain CD-1; adult) kidney and 70Z/3/3 pre-B cell line, cDNA
SOURCE
           to mRNA, clone p70ZN8.
  ORGANISM
           Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
           Theria; Eutheria; Rodentia; Myomorpha; Muridae; Murinae; Mus;
           musculus.
REFERENCE
           1 (bases 1 to 4088)
  AUTHORS
           Alper, S. L., Kopito, R. R., Libresco, S. M. and Lodish, H. F.
  TITLE
           Cloning and characterization of a murine band 3-related cDNA from
           kidney and from a lymphoid cell line
            J. Biol. Chem. 263, 17092-17099 (1988)
  JOURNAL
  STANDARD
           full staff_entry
COMMENT
           Draft entry and computer-readable sequence for [1] kindly provided
           by S. Alper, 16-SEPT-1988.
```

```
CDS
                  183..3896
                 Bast Available Copyrelated protein"
    repeat_region
                 /note="degenerate tandem repeat copy A"
    repeat region
                 3939. . 4001
                 /note="degenerate tandem repeat copy B"
BASE COUNT
             842 a
                    1186 c 1211 g
                                   849 t
ORIGIN
          106 bp upstream of XbaI site.
Initial Score
                  59
                     Optimized Score =
                                       422 Significance =
                                                        4.80
Residue Identity =
                 50% Matches
                                       504 Mismatches
                                                         368
                 124
                     Conservative Substitutions
                                                           0
                 10
                         20
                                 30
                                          40
                                                   50
           ATGTCCATGAACTGCTGAGTGGATAAACAGCACGGGATATCTCTG--TCTAAAGGA-ATATT
           CACCTCGGGCACGGCCCC----GCATAAGCCCCATGAGGTGTTTGTGGAGCTGAATGAGCTGCT
    1100
            1110
                    1120
                                1130
                                       1140
  60
          70
                    80
                            90
                                   100
                                           110
                                                   120
   ACTACACCAGGAAAAGGA--CACATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGTCCTGTG
     GTTGGACAAAAACCAGGAGCCTCAGTGG-----CGGGAGA-CAGCCCGCTGGATAAAATTCGAGGAGGATGTG
              1180
                      1190
                                  1200
                                          1210
 130
          140
                  150
                          160
                                  170
                                          180
   CATG-TGACATTTCGCCATGGGAAACAACTGTTACAACGTGGTGGTCATTGTGCTG-CTGCTAGTGGGCTGT
    GAAGAGGAGACTGAGCGCTGGGGGAAGCCTCATGTGGCCTCACTGTCCTTCCGTAGCCTCCTGGAGCTCCGC
 1230
        1240
                 1250
                         1260
                                1270
                                         1280
 200
         210
                 220
                         230
                                   240
                                           250
   GAGAAGGTGGGAGCCGTGCAGAACTCCTGTGATAACT--GTCAGCCTGGTACTTTCTGCAGAAAATACAATC
             AGGACTCTGG--CCCATGGAGCTGTGCTCTTAGACCTCGATCAG-CAGACCCTGCCTG--GGGTGGCCCATC
                1320
                         1330
                                 1340
                                          1350
 270
         280
                  290
                          300
                                   310
                                           320
                                                   330
   CAGTCTGCAAG-AGCTGCCCTCCAAGTACCTTCTCCA-GCATAGGTGGACAGCCGAACTGTAAC---ATCTG
         AGGTGGTCGAGCAGATGGTCATCTCTGACCAGATCAAGGCAGAGG-ATAGAGCCAATGTGCTACGGGCCCTC
 1370
         1380
                 1390
                         1400
                                 1410
                                          1420
                    360
                            370
                                    380
                                            390
                                                         400
   CAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAAC----GCGGAGTGT-G
   CTGCTAAAGCACA-GCCACCCAAGTGACGAGAAAGAGTTCTCCTTCCCCCGAAACATCTCAGCGGGCTCTCT
 1440
        1450
                 1460
                         1470
                                 1480
                                         1490
                                                  1500
           410
                    420
                            430
                                      440
                                              450
   AG---TGCATTGAAGGAT-TCCATTGCTTGGGG--CCACAGTGCACCAGATGTGAAAAGGACT-GCAGGCC
       AGGCTCTCTACTGGGGCATCACCATGCCCAGGGGACCGAGAGTGATCCTCATGTCACTGAGCCTCTCATTGG
        1520
               1530
                        1540
                                1550
                                        1560
                                                1570
                                                        1580
                480
                         490
                                 500
                                          510
                                                  520
                                                          530
   TGG----CCAG-GAGCTAAC-GAAGCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGACCAGAACGG
       TGGTGTTCCTGAGACCCGACTGGAGGTGGATAG-AGAGCGTG-AGCTACCACCCCCAGCACCACCTGCA-GG
              1600
                      1610
                               1620
                                        1630
                 550
        540
                         560
                                  570
                                          580
                                                  590
   TACTGGCGTCT-GTCGACCCTGGACGAACTG-CTCT-CTAGACGGAAGGTCTGTGCTTAAGACCGGGACCAC
```

TATTACCCGCTCCAAGTCCAAGCATGAGCTGAAGCTGCTGGA--GAAGATCCCTG-AGAATGCGGAGGCTAC

```
Best Available Copy
                                      640
                                                650
                                                             660
   GGAGAAGGACGTGGTGTGGACCCCCTGTGGTGAGCTTCTCTCCCAGTACCACCAT----TTCTGTGACTC
         AG---TGGTCCTCGTGGG----CTGTGTGGAGTTCCTCTCCC-GCCCTACCATGGCCTTC-GTG-CGG
            1730
                             1740
                                      1750
                                                 1760
                                                          1770
   670
            680
                      690
                                700
                                         710
                                                   720
                                                             730
   CAGAGGAGGACCAGGAG-GGCACTCCTTGCAGGTCCTTACCTTGTTCCTG-GCGCTGACATCGGCTTTGCT
                TTGCGGGAGGCTGTGGAGCTGGATGCCGTGCTAG-AGGTGCCT-GTGCCTGTGCGCT-TCCTCTTC-TTGCT
  1780
                    1800
                              1810
                                        1820
                                                   1830
                                                            . 1840
   740
              750
                       760
                                 770
                                           780
                                                    790
                                                              800
   GCTGG--CCCTGATCTTCATTACTCTCCTGTTCT-CTGTGCTCAAATGGATCAGGAAAAAATTCC-CCCACA
                   11 1 11
                                           1 11 1 1 1
                                                          GCTGGGACCCAG----CAGTGCTAACATGGACTACCATG---AGATCGGCC--GCTCCATTTCCACCCTCA
    1850
                  1860
                           1870
                                    1880
                                                 1890
       810
                  820
                            830
                                      840
                                                 850
                                                          860
                                                                   870
   TAT---TCAAGCAA--CCATTTAAGAAGACCA-CTGGAGCA-GCTCAAGAGGAAGATGCTTGTAGCTGCCGA
          111111
                  1 1 1 1
   TGTCTGACAAGCAATTTCA-TGAGGCAGCCTACCTGGCGGATGAACGAGACG-ACTTGCTGACTGCTATCAA
  1910
           1920
                     1930
                               1940
                                        1950
                                                   1960
                                                            1970
          880
                             890
                                          900
                                                    910
                                                              920
   TGTC-CACAGGA-AGAAG-----AAGG----AGGAGGAGGA-GGCTATGAGCTGTGATGTACTATC
         1 111 1 11
                             1 1
                                     TGCCTTCCTGGACTGCAGTGTTGTGCTACCGCCTTCTGAAGTGCAGGGCGAGGAGCTGCTGCGTTCTGTTGC
  1980
           1990
                    2000
                              2010
                                       2020
                                                 2030
                                                          2040
                                                                   2050
   CCATTTCC
4. ELLIS-267-3A
  RATTPOFR
              Rat thyroid peroxidase (TPOP) mRNA, 3' end.
LOCUS
            RATTPOFR
                        2777 bp ss-mRNA
                                                          15-JUN-1990
DEFINITION
            Rat thyroid peroxidase (TPOP) mRNA, 3' end.
ACCESSION
            M31655
KEYWORDS
            thyroid peroxidase.
SOURCE
            Rat thyroid cell line FRTL-5, cDNA to mRNA.
  ORGANISM
            Rattus norvegicus
            Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
            Theria; Eutheria; Rodentia; Myomorpha; Muridae; Murinae; Rattus;
            norvegicus.
REFERENCE
            1 (bases 1 to 2777)
  AUTHORS
            Isozaki, O., Kohn, L.D., Kozak, C.A. and Kimura, S.
  TITLE
            Thyroid peroxidase: Rat cDNA sequence, chromosomal localization in
            mouse, and regulation of gene expression by comparison to
            thyroglobulin in rat FRTL-5 cells
            Mol. Endocrinol. 3, 1681-1692 (1989)
   JOURNAL
  STANDARD
            simple staff entry
FEATURES
                    Location/Qualifiers
     CDS
                    (1..2313
                    /note="thyroid peroxidase"
BASE COUNT
               690 a
                        752 c
                                722 g
                                         613 t
ORIGIN
Initial Score
               ==
                     62
                         Optimized Score
                                              420
                                                  Significance =
                                                                 4.46
Residue Identity =
                    51%
                         Matches
                                              515
                                                  Mismatches
                                                                  347
Gaps
                    137
                         Conservative Substitutions
                                                                    0
             X
                    10
                              20
                                        30
                                                 40
                                                           50
```

1 / 250

		! !!	_ Bost Availa			1 1111 11	1 1 1 11	; ;
ACA 157		CAGAGGCAI 1580			ACTACCTCGG			CCTCAC
13	70	1360	1550	1600	1610	1620	1630	
60		70	. 80		90	100	110	
TAC	CTACACCA	AGGAAAAG			CAACAGGA-	AAGGAGCCT		ACCACA
	HII				1 11111		!!!!!!!!!	
1640		6 664 61 650	1660		CCCCCAGGAC 1680	1690	STGA-GGAAA 1700	TCCCTA
104(. 650	1000	1670	1000	1630	1700	
120	13	30	140	150	160	170	180	
GTO	STCCTGTG				ACTGTTACAA		ATTGTG-CTG	CT
:					11 1 1 1		! !!!! !!	•
	CAIGGE 710	1720			CTTCCCA 1740		1760	CCCAGA
- '		1,20	•	150	1740	1750	1760	
	30	200	210	220	230	240	250	
GCT	TAGTGGGC				ACTCCTGTGA			TCTGCA
; G04	;;;;; AGGTGGAC	CATECCA			: :: :: :: AA-TC-TGGGA			;; T CCTCT
1770					1810		-Ciddidiai 1830	
					1010	1020	1000	
					300			
GAA					AGT-ACCT-TC			
TTC					:: :: : : GTCACATGTA			
	40	1850			'O 188			
								_
		30 NACATOTO		350				
	11 11 11 11 11 11 11 11 11 11 11 11 11				ATTTCAGGTTC			
CC1					TCTGACAC			
					1940			00001111
19	310	1920	1930		1340	1350	1960	
19								
	400) (410	420	430	440	450	
	400 CGGAGTGT) GAGTGCA	410 TTGAAGGA-	420 TTCCATTG	430 GCTTGGGGCCA	440 CAGTGCACCA(450 GATGTGAA	
CGC	400 CGGAGTGT	GAGTGCA	410 TTGAAGGA- : :::	420 TTCCATTE	430 GCTTGGGGCCA !! ! !!	440 CAGTGCACCA(!!! !!!	450 GATGTGAA :::: ;	::::
CG(400 CGGAGTGT !!!! AGTGC) FGAGTGCA !! !! CAAGAACA	410 TTGAAGGA- : :::	420 TTCCATTE ::::: :: GCTTCCAGTE	430 GCTTGGGGCCA	440 CAGTGCACCA(::: : : CAGACCCCTA(450 GATGTGAA ::: ; CATGCTAGGT	:::: GAGGAT
CG(400 CGGAGTGT !!!! AGTG0 1970	O GAGTGCA ;; ;; CAAGAACA(1980	410 TTGAAGGA- ; ;;; CCAAGGGAA 1990	420 TTCCATTE !!!!!!!! GCTTCCAGTE 2000	430 GCTTGGGGCCA G—TGTGTGCA) 20	440 CAGTGCACCA(!!! !!! CAGACCCCTA(10 20)	450 GATGTGAA ::: ; CATGCTAGGT 20 20	:::: GAGGAT
CG0 1	400 CGGAGTGT !!!! AGTG0 1970	O TGAGTGCA :: :: CAAGAACA 1980 470	410 TTGAAGGA- ; ;;; CCAAGGGAA 1990 480	420 TTCCATTE !!!!!!!! GCTTCCAGTE 2000 490	430 GCTTGGGGCCA !! !! GTGTGTGCA 20 500	440 CAGTGCACCA(!!! !!! CAGACCCCTA(10 20)	450 GATGTGAA ::: : CATGCTAGGT 20 20	:::: GAGGAT 30
CG0 1 46 CT0	400 CGGAGTGT !!!! AGTGC 1970 SO GCAGGCCT	CAAGAACA 1: 1: CAAGAACA 1980 470 GGCCAGG	410 TTGAAGGA- ; ;;; CCAAGGGAA 1990 480 AGCTAACGA	420 TTCCATTE ::::: :: GCTTCCAGTE 2000 490 AGCAGGGTTE	430 GCTTGGGGCCA :::::::: G-TGTGTGCA 500 GCAAAACCTGT	440 CAGTGCACCA(::::::::: CAGACCCCTA(10 202 510 AGCTTGGGAA(450 GATGTGAA :::: CATGCTAGGT 20 20 520 CATTTAATG-	:::: GAGGAT 30 ACCA
CGC 	400 CGGAGTGT :::: AGTGC 1970 SO GCAGGCCT	CAAGAACA 1980 470 GGCCAGG	410 TTGAAGGA- ; ;;; CCAAGGGAA 1990 480 AGCTAACGA	420 TTCCATTE 	430 GCTTGGGGCCA !! !! GTGTGTGCA 20 500	440 CAGTGCACCA(::::::::: CAGACCCCTA(10 20; 510 AGCTTGGGAA(450 GATGTGAA :::: CATGCTAGGT 20 520 CATTTAATG-	:::: GAGGAT 30 ACCA
CG0 	400 CGGAGTGT :::: AGTGC 1970 SO GCAGGCCT	CACAGAGA	410 TTGAAGGA- ; ;;; CCAAGGGAA 1990 480 AGCTAACGA	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 CTTGGGGCCA :; ; ;; G—TGTGTGCA 20 500 GCAAAACCTGT; ; ;;;	440 CAGTGCACCAC ::::::::: CAGACCCCTAC 10 202 510 AGCTTGGGAAC :::	450 GATG—TGAA ::: : CATGCTAGGT 20 20 520 CATTTAATG— :::: ::	:::: GAGGAT 30 ACCA ::::
CG0	400 CGGAGTGT AGTGC 1970 SO GCAGGCCT GAAGACCT	GAGTGCA CAAGAACA 1980 470 GGCCAGG CGCCAGG CGCATAGA	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA ;; ; ; TTCTGGC—A	420 TTCCATTG ::::: :: GCTTCCAGTG 2000 490 AGCAGGGTTG :: :: GGCTACCTCG	430 CTTGGGGCCA ::::::: G-TGTGTGCA 500 GCAAAACCTGT ::::: GGGCATCCTGG	440 CAGTGCACCAC ::::::::: CAGACCCCTAC 10 202 510 AGCTTGGGAAC ::: GTCTCCATTGC	450 GATGTGAA ::: ; CATGCTAGGT 20 20 520 CATTTAATG- :::: ;; CATTGGGTGC	:::: GAGGAT 30 ACCA :::: ACTTCT O
CG0	400 CGGAGTGT AGTGO 1970 SO GCAGGCCT GAAGACCT 2040	GAGTGCA CAAGAACA 1980 470 GGCCAGG CGCCAGG CGCATAGA 2050	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA ;; ; ; TTCTGGC—A	420TTCCATTG :::::::::::::::::::::::::::::::::::	430 CTTGGGGCCA ::::::: G—TGTGTGCA 500 CCAAAACCTGT ::::: GGGCATCCTGG	440 CAGTGCACCA(:::::::::::::::::::::::::::::::::	450 GATG-TGAA ::: : CATGCTAGGT 20 520 CATTTAATG- :::: :: CATTGGGTGC D 210	:::: GAGGAT 30 ACCA :::: ACTTCT O
CGC 	400 CGGAGTGTAGTGC 1970 SO GCAGGCCT	GAGTGCA CAAGAACA 1980 470 GGCCAGG : :: GCATAGA 2050 540 GGCGTCT	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA ;; ; ; TTCTGGC—A 206	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 CTTGGGGCCA ::::::: G-TGTGTGCA 500 GCAAAACCTGT ::::: GGGCATCCTGG	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATGTGAA ::: ; CATGCTAGGT 20 20 CATTTAATG- :::: :: CATTGGGTGC D 210 D 59 TGTGCTTAAG	:::: GAGGAT 30 ACCA :::: ACTTCT O
CGC 46 CTC GAC 3 GAA :: CAT	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT :::::: GAAGACCT 2040 S30 ACGGTACT ::::::	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA;;;;;; TTCTGGC—A:206; 550 GTCGACCCT;;;;;;;;	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;;	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATG-TGAA ::: ; CATGCTAGGT 20	GAGGAT GAC-CA CACTTCT O ACC ACC
CGC 46 CTC GAC 3 GAA :: CAT	400 CGGAGTGTAGTGC 1970 SO GCAGGCCT	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA;;;;;; TTCTGGC—A:206; 550 GTCGACCCT;;;;;;;;	420TTCCATTE	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;;	440 CAGTGCACCAC :::::::::: CAGACCCCTAC 10 202 510 AGCTTGGGAAC ::: GTCTCCATTGC 0 2090 580 GGA-AGGT-C ::::::::::::::::::::::::::::::::::::	450 GATG—TGAA :::: ; CATGCTAGGT 20 20 CATTTAATG— :::: ; CATTGGGTGC 0 210 D 59 TGTGCTTAAGAAG	GAGGAT GACTCT O ACC ACCTCT TCCACA
CGC 46 CTC GAC 3 GAA :: CAT	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT :::::: GAAGACCT 2040 530 ACGGTACT :::::: TTGGTGGT	GAGTGCA GAGGAACA 1980 470 GGCCAGG HH GCATAGA 2050 540 GGCGTCT HT TTGGCCA	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA;;;;;; TTCTGGC—A; 206 550 GTCGACCCT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	420TTCCATTE ::::::::: GCTTCCAGTE 2000 490 AGCAGGGTTE :::::::::::::::::::::::::::::::::	430 GCTTGGGGCA ::::::: G-TGTGTGCA 500 GCAAAACCTGT :::::: GGCATCCTGG 70 208 570 GCTCTCTAGAC ::::: AATTTGCAGGT	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATGTGAA ::: : CATGCTAGGT 20	GAGGAT GAGGAT GACTTCT O ACCTTCT TCCACA O
CGC 	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT :::::: GAAGACCT 2040 530 ACGGTACT :::::: TTGGTGGT	GAGTGCA GAGGAACA 1980 470 GGCCAGGA HILL GCATAGA 2050 540 GGCGTCTA HILL TTTGGCCAA	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA ;; ;; TTCTGGC—A 206 550 GTCGACCCT ;;; ;; GTCTCAGCT	420TTCCATTG :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT;;;;; GGCATCCTGG 70 208 GCTCTCTAGAC;;;;; AATTTGCAGGT	440 CAGTGCACCAC :::::::::: CAGACCCCTAC 10 202 510 AGCTTGGGAAC ::: GTCTCCATTGC 0 2090 580 GGA-AGGT-C ::::::::::::::::::::::::::::::::::::	450 GATG—TGAA ::: ; CATGCTAGGT 20 20 520 CATTTAATG— ::: ; CATTGGGTGC 0 210 0 59 TGTGCTTAAG :: ;; TGATAAGAAG 0 217	SITINGAGGAT GAGGAT GACTTCT O ACC ITCCACA O
GA6 GA6 CT6 GA6 2 CA1	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT ::::: SAAGACCT 2040 S30 ACGGTACT ::::: TTGGTGGT 110 GC -GGGACCA	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— : :::: CCAAGGGAA 1990 480 AGCTAACGA :::::: TTCTGGC—A: 206: 550 GTCGACCCTI :::::::::: GTCTCAGCTI 2130 610 AG—GA—CGT	420TTCCATTE	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGTG ;;;; GGGCATCCTGG 570 GCTCTCTAGAC ;;;; AATTTGCAGGT 630 ACCCCCTGTG—	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATG-TGAA :::::::::::::::::::::::::::::::::::	GAGGAT GAGGAT GACTTCT O ACCTTCT TCCACA O ACCACT
CGC	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT :::::: GAAGACCT 2040 530 ACGGTACT :::: TTGGTGGT 110 60 -GGGACCA :::::	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— ;;;; CCAAGGGAA 1990 480 AGCTAACGA;;;;;; TTCTGGC—A: 206: 550 GTCGACCCT;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;; AATTTGCAGGT 10 215 630 ACCCCCTGTG—	440 CAGTGCACCAC ::::::::::CAGACCCCTAC 10 202 510 AGCTTGGGAAC ::: GTCTCCATTGC 0 2090 580 GGA-AGGT-C ::::::::::::::::::::::::::::::::::::	450 GATG—TGAA :::: ; CATGCTAGGT 20 20 S20 CATTTAATG— :::: ;; CATTGGGTGC 0 210 0 59 TGTGCTTAAG ::: ;; TGATAAGAAG 0 217 65 CTCCCAGT— : ;; GTGGGATTTC	GAGGAT GAGGAT GACTCT O ACC II TCCACA O ACCAC- IIII ACCACA
CGC	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT ::::: SAAGACCT 2040 S30 ACGGTACT ::::: TTGGTGGT 110 GC -GGGACCA	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— : :::: CCAAGGGAA 1990 480 AGCTAACGA :::::: TTCTGGC—A: 206: 550 GTCGACCCTI :::::::::: GTCTCAGCTI 2130 610 AG—GA—CGT	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;; AATTTGCAGGT 10 215 630 ACCCCCTGTG—	440 CAGTGCACCAC ::::::::::CAGACCCCTAC 10 202 510 AGCTTGGGAAC ::: GTCTCCATTGC 0 2090 580 GGA-AGGT-C ::::::::::::::::::::::::::::::::::::	450 GATG—TGAA :::: ; CATGCTAGGT 20 20 S20 CATTTAATG— :::: ;; CATTGGGTGC 0 210 0 59 TGTGCTTAAG ::: ;; TGATAAGAAG 0 217 65 CTCCCAGT— : ;; GTGGGATTTC	GAGGAT GAGGAT GACTCT O ACC II TCCACA O ACCAC- IIII ACCACA
CGC	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT ::::: GAAGACCT 2040 530 ACGGTACT ::::: TTGGTGGT 110 GC-GGGACCA GCTGATCA	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— : ::: CCAAGGGAA 1990 480 AGCTAACGA: :::: TTCTGGC—A: 206: 550 GTCGACCCT: ::::::::: GTCTCAGCTGACCCT: 2130 610 AG—GA—CGTGACCATGACAT	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;; AATTTGCAGGT 10 215 ACCCCCCTGTG— 11 11 ACCCCCCTGTG— 12220	440 CAGTGCACCAC :::::::::: CAGACCCCTAC 10 202 510 AGCTTGGGAAC ::: GTCTCCATTGC 0 2090 580 GGA-AGGT-C ::::::::::::::::::::::::::::::::::::	450 GATG—TGAA :::: ; CATGCTAGGT 20 20 S20 CATTTAATG— :::: ; CATTGGGTGC 0 210 0 59 TGTGCTTAAG :: ;; TGATAAGAAG 0 217 65 CTCCCAGT— :: ; GTGGGATTTC 2240	GAGGAT GAGGAT GACTCT O ACC TCCACA O ACCAC- ACCACA
CGC	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT ::::: GAAGACCT 2040 530 ACGGTACT :::: TTGGTGGT 110 GC -GGGACCA ::::: GCTGATCA	GAGTGCA CAAGAACA 1980 470 GGCCAGGI CACATAGA 2050 540 GGCGTCTI CTTGGCCAI 2120 CCGAGAGA ACGGAGAGA CCGAGAGAGA CCGAGAGAGA	410 TTGAAGGA— ; ;;; CCAAGGGAA 1990 480 AGCTAACGA ;; ;; TTCTGGC—A 206 550 GTCGACCCT ;;; ;; GTCTCAGCT 2130 610 AG—GA—CGT ;;;;;;	420TTCCATTG :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;; AATTTGCAGGT 10 215 630 ACCCCCTGTG—	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATG—TGAA :::::::::::::::::::::::::::::::::::	:::: GAGGAT 30 ACCA ::::: ACTTCT O ACC ::: TCCACA O ACCACA ACCACA
CGC	400 CGGAGTGT ::::AGTGC 1970 50 GCAGGCCT ::::: GAAGACCT 2040 530 ACGGTACT :::: TTGGTGGT 110 60 -GGGACCA ::::: GCTGATCA 180 660 TTTCTGTG	GAGTGCA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	410 TTGAAGGA— : :::: CCAAGGGAA 1990 480 AGCTAACGA: :::::::::: TTCTGGC—A: 206: 550 GTCGACCCTI::::::::::::::::::::::::::::::::::	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCA ::::::::::::::::::::::::::::::::	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATG—TGAA :::::::::::::::::::::::::::::::::::	GAGGAT GAGGAT GACTCT O O ACC TCCACA O O ACCAC- SISSISSISSISSISSISSISSISSISSISSISSISSIS
CGC 46 CTC GAC 3 GAC 3 CAT CAT AAA	400 CGGAGTGT ::::AGTGC 1970 SO GCAGGCCT :::::: GAAGACCT 2040 530 ACGGTACT :::::: TTGGTGGT 110 60 -GGGACCA ::::: GCTGATCA 180 660 TTTCTGTG 1::: AGGCCGAG	GAGTGCA ISAAGAACA 1980 470 GGCCAGG IGCATAGA 2050 540 GGCGTCT ITTGGCCA 2120 ACGGAGA- ACGGAGAG 2190 GACTCCAG GGTTCAAG IIII	410 TTGAAGGA— : ::: CCAAGGGAA 1990 480 AGCTAACGA: ::::: TTCTGGC—A: 206: 550 GTCGACCCTI 2130 610 AG—GA—CGTI 2200 680 AGGGAGGAC : ::: A—TGCTGAA	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 20 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;; AATTTGCAGGT ACCCCCTGTG— ; TTCAGAAAGA 2220 690 GC—ACTCCTTG ;; GCTTATGGATC	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATG—TGAA :::::::::::::::::::::::::::::::::::	GAGGAT GAGGAT GACTCT O ACCTCT O ACCACA O ACCACA TCCACA O CTGGCG HATAGAA
CGC 46 CTC GAC 3 GAC 3 CAT CAT AAA	400 CGGAGTGT ::::AGTGC 1970 50 GCAGGCCT ::::: GAAGACCT 2040 530 ACGGTACT :::: TTGGTGGT 110 60 -GGGACCA ::::: GCTGATCA 180 660 TTTCTGTG	GAGTGCA ISAAGAACA 1980 470 GGCCAGG IGCATAGA 2050 540 GGCGTCT ITTGGCCA 2120 ACGGAGA- ACGGAGAG 2190 GACTCCAG GGTTCAAG IIII	410 TTGAAGGA— : ::: CCAAGGGAA 1990 480 AGCTAACGA: ::::: TTCTGGC—A: 206: 550 GTCGACCCTI 2130 610 AG—GA—CGTI 2200 680 AGGGAGGAC : ::: A—TGCTGAA	420TTCCATTE :::::::::::::::::::::::::::::::::::	430 GCTTGGGGCCA ;;;;; G—TGTGTGCA 20 500 GCAAAACCTGT ;;;; GGGCATCCTGG 70 208 570 GCTCTCTAGAC ;;; AATTTGCAGGT ACCCCCTGTG— ; TTCAGAAAGA 2220 690 GC—ACTCCTTG ;; GCTTATGGATC	440 CAGTGCACCAC ::::::::::::::::::::::::::::::::	450 GATG—TGAA :::::::::::::::::::::::::::::::::::	GAGGAT GAGGAT GACTCT O ACCTCT O ACCACA O ACCACA TCCACA O CTGGCG HATAGAA

```
2330
                       2340
                                 2350
                                          2360
                                                    2370
         800
                  810
                            820
                                                840
                                                         850
                                     830
                                                                   860
   AAAAATTCCCCCACATATTCAAG-CAACCATTTAAGAAGACCA-CTGGAGCAGCTCAAGAGGAAGATGCT-T
              1 1 1 1 1 1 1
   CATGAT----ACATGTTGAAGTCAGAGGCTTGAGGACACCAGATGGTTAATCTTATCAGTCCAAGGCTGC
              2390
                        2400
                                 2410
                                          2420
                                                    2430
          870
                      880
                               890
                                        900
                                                   910
                                                                920
   GTAGCTGCCGATGTCCA---CAGGAAGAAGAAGAAGGAGGAGGAGGAGGAGGAGCTATGAGCTGTG---ATGTACTAT
    111 11 1
   ATAGCT---GAGTTCCATCTCATGTTTTTCCA-CAGGAGCCAGGCCA-GA-CTGTGCTAATG-CCTCT
   2450
               2460
                                   2480
                        2470
                                            2490
                                                       2500
                                                                  2510
   X
   С
   CCTACACAAGT
        2520
   X
5. ELLIS-267-3A
  RNTPO
             Rat mRNA for thyroid peroxidase
 ID
     RNTPO
               standard; RNA; ROD; 3237 BP.
XX
AC
     X17396; M27275;
XX
DT
     05-JAN-1990 (annotation)
XX
DE
     Rat mRNA for thyroid peroxidase
XX
KW
     thyroid peroxidase.
XX
08
     Rattus norvegicus (rat)
OC
     Eukaryota; Metazoa; Chordata; Vertebrata; Tetrapoda; Mammalia;
OC
     Eutheria; Rodentia.
XX
RN
     [1] (bases 1-3237)
RA
     Rapoport B.;
RT
RL
     Submitted (22-AUG-1989) on tape to the EMBL Data Library.
XX
RN
     [2] (bases 1-3237)
RA
     Derwahl M., Seto P., Rapoport B.;
RT
     "Complete nucleotide sequence of the cDNA for thyroid peroxidase
RT
     in FRTL5 rat thyroid cells";
RL
     Nucleic Acids Res. 17:8330-8330(1989).
XX
CC
     *source: cell line=FRTL5.
XX
FH
     Key
               From
                        To
                                Description
FH
FT
     CDS
                 42
                      2783
                                thyroid peroxidase (AA 1-914)
XX
SØ
              3237 BP; 816 A; 874 C; 831 G; 716 T; 0 other;
Initial Score
                     62
                        Optimized Score =
                                             420
                                                  Significance = 4.46
Residue Identity =
                    51%
                        Matches
                                             515 Mismatches
                                                                  347
Gaps
                    137
                         Conservative Substitutions
                                                                   0
                    10
                             20
                                        30
                                                 40
                                                          50
             ATGTCCATGAACTGCTGAGTGGATAAAC-AGCACGGGATATCTCTGTCTAAA--GGAAT-AT
```

110110H11~~H0101001G110101G1G010HHH1GGH10HGGH


```
GTCCTCACTGCTTTGGAGCCAGACATTGGC-TAATTCAAGTCTCAAGCTGCCTGGG--CAAA--GA--AAGA
                      Best-Available Copy
                                          2830
                                                    2840
          800
                   810
                              820
                                         830
                                                    840
                                                              850
                                                                         860
    AAAAATTCCCCCACATATTCAAG-CAACCATTTAAGAAGACCA-CTGGAGCAGCTCAAGAGGAAGATGCT-T
                1111 11 11 11
                                  1 11 1
   CATGAT----ACATGTTGAAGTCAGAGGCTTGAGGACACCAGATGGTTAATCTTATCAGTCCAAGGCTGC
             2860
                      2870
                                2880
                                          2890
                                                    2900
                                                               2910
          870
                       880
                                 890
                                           900
                                                        910
                                                                    920
    GTAGCTGCCGATGTCCA---CAGGAAGAAGAAGAAGGAGGAGGAGGAGG--AGGCTATGAGCTGTG---ATGTACTAT
                        !!!
            ATAGCT---GAGTTCCATCTCATGTTTTTCCA-CAGGAGCCAGGCCA-GA-CTGTGCTAATG-CCTCT
 2920
             2930
                       2940
                                  2950
                                             2960
                                                        2970
   Х
   C
   CCTACACAGTA
   X 2990
6. ELLIS-267-3A
  FLAP1M
               Influenza A/nt/60/68 (h3n2), polymerase 1 (seq 2),
LOCUS
                          2341 bp ss-RNA
DEFINITION
            Influenza A/nt/60/68 (h3n2), polymerase 1 (seg 2), cdna.
ACCESSION
             J02138
            RNA polymerase; polymerase.
KEYWORDS
SOURCE
             influenza from human.
             Influenza virus type A
   ORGANISM
             Viridae; ss-RNA enveloped viruses; Negative strand RNA viruses;
            Orthomyxoviridae; Influenzavirus; Influenza A viruses; Influenza
            virus type A.
REFERENCE
             1 (bases 1 to 2341)
  AUTHORS
            Bishop, D. H. L., Huddleston, J. A. and Brownlee, G. G.
   TITLE
             the complete sequence of rna segment 2 of influenza a/nt/60/68 and
             its encoded p1 protein
   JOURNAL
            Nucleic Acids Res. 10, 1335-1343 (1982)
   STANDARD
             full staff_review
 COMMENT
            Sequence derived from cloned cDNA (a/nt/60/2/68/1962); bases
             518-1693 also obtained independently with separate cloned cdna
             (371). First 12 and last 13 bases questionable. Assignment of
            coding region by consideration of open reading frames.
FEATURES
                     Location/Qualifiers
     CDS
                     25.. 2298
                     /note="polymerase 1"
     unsure
                      1644
                      /note="g in clone 371; a in clone a/nt/60/2/68/1962"
BASE COUNT
                827 a
                          460 c
                                  530 g
                                           524 t
ORIGIN
            3' end of vrna.
Initial Score
                          Optimized Score =
                      57
                                                419 Significance =
                                                                     4. 29
Residue Identity =
                     51%
                          Matches
                                                516 Mismatches
                                                                      349
Gaps
                     135
                          Conservative Substitutions
                                                                         0
                      10
                               20
                                         30
                                                          40
             ATGTCCATGAACTGCTGAGTGGATAAACAGCACG-----GGATATCTCTGTC-TAAAGGAA
                     ;;
                          - -
                               1 1 1
                                                           1 1
   GAACACATCAATATTCAGAAAAAGGGAAGTGGACAACAACACGGAAACTGGAGCGCCCCAACTTAACCCAA
    160
              170
                        180
                                 190
                                           200
                                                     210
                                                               220
                      70
                                 80
                                            90
                                                      100
                                                                110
   T--AT-TACTAC-ACC--AGGAAAAGGA-CACATTCGACA-ACAGGAAAGGAGCCTGTCACAGAAAACCACA
```



```
970
                      Best Available Copy 1000
                                           1010
                                                          1020
  860
                                                900
                          880
                                                             910
                                                                       920
    TG--TAGCTGCC--GATGTCCACAGGAAGAAGAAGAAGGAG-GAGGAGG---AGGCTATGAGCTGTGATGTACTA
                   111 11
    AGCATCGCACCCATAATGTTCTCA--AACAAAATGGCGAGACTAGGGAAAGGATACATGTTCGAAAGTAAGA
     1040
               1050
                           1060
                                     1070
                                               1080
                                                          1090
                                                                    1100
    X
    TC
     !
    GCATGAAGCTCC
     1110
7. ELLIS-267-3A
   ECOOR I
               E. coli replication origin (oriC) and asnA gene cod
LOCUS
                          2675 bp ds-DNA
                                                      BCT
                                                                15-SEP-1989
 DEFINITION
             E. coli replication origin (oriC) and asnA gene coding for
             asparagine synthetase A.
 ACCESSION
             J01657 X02820
 KEYWORDS
             asnA gene; asparagine synthetase; oriC gene; origin of replication;
             synthetase; unidentified reading frame.
 SOURCE
             Escherichia coli K12 DNA.
   ORGANISM
             Escherichia coli
             Prokaryota; Bacteria; Gracilicutes; Scotobacteria; Facultatively
             anaerobic rods; Enterobacteriaceae; Escherichia; coli.
REFERENCE
             1 (bases 1 to 1105)
   AUTHORS
             Sugimoto,K., Oka,A., Sugisaki,H., Takanami,M., Nishimura,A.,
             Yasuda, Y. and Hirota, Y.
   TITLE
             Nucleotide sequence of Escherichia coli K-12 replication origin
   JOURNAL
             Proc. Natl. Acad. Sci. U.S.A. 76, 575-579 (1979)
             full staff_review
   STANDARD
REFERENCE
             2 (bases 57 to 575)
   AUTHORS
             Meijer, M., Beck, E., Hansen, F.G., Bergmans, H.E.N., Messer, W., Von
             Meyenburg, K. and Schaller, H.
             Nucleotide sequence of the origin of replication of the Escherichia
   TITLE
             coli K-12 chromosome
   JOURNAL
             Proc. Natl. Acad. Sci. U.S.A. 76, 580-584 (1979)
   STANDARD
             full staff_review
REFERENCE
             3 (bases 506 to 2675)
  AUTHORS
             Nakamura, M., Yamada, M., Hirota, Y., Sugimoto, K., Oka, A. and
             Takanami, M.
   TITLE
             Nucleotide sequence of the asnA gene coding for asparagine
             synthetase of E. coli K-12
   JOURNAL
             Nucleic Acids Res. 9, 4669-4676 (1981)
             full staff review
   STANDARD
REFERENCE
             4 (bases 6 to 527; 834 to 906)
   AUTHORS
             Lother, H. and Messer, W.
   TITLE
             Promoters in the E. coli replication origin
   JOURNAL
             Nature 294, 376-378 (1981)
             full staff_review
   STANDARD
 REFERENCE
             5 (bases 126 to 395)
   AUTHORS
             Oka, A., Sugimoto, K., Sasaki, H. and Takanami, M.
             An in vitro method generating base substitutions in preselected
   TITLE
             regions of plasmid DNA: Application to structural analysis of the
             replication origin of the Escherichia coli K-12 chromosome
   JOURNAL
             Gene 19, 59-69 (1982)
   STANDARD
             full staff_review
 REFERENCE
             Matsui, M., Oka, A., Takanami, M., Yasuda, S. and Hirota, Y.
   AUTHORS
             Sites of dnaA protein-binding in the replication origin of the
   TITLE
             Escherichia coli K-12 chromosome
```

J. Mol. Biol. 184, 529-533 (1985)

JOURNAL

```
[6] sites; dnaA binding sites. Directly contributed by authors through Dr. Ooi of Kyoto Univ. The
 COMMENT
             422 bp region 106-527 contains ori (origin of replication), whose
             probable left end is between 128 and 140, and whose probable right
             end is 371 or 372. [5] reports many mutants that provided evidence
             that ori contains special regions, spacer sequences, which separate
             neighboring recognition sites.
 FEATURES
                     Location/Qualifiers
      CDS
                      complement((1..17)
                      /note="putative 21k protein"
      CDS
                     complement(396..839)
                      /note="putative 16k protein"
      CDS
                      1539. . 2531
                      /note="asparagine synthetase A (asnA)"
                      /gene="asnA"
      misc RNA
                      complement((1..271)
                      /note="p oriL RNA transcription"
      misc_RNA
                      418
                      /note="p oriR RNA transcription (alt.)"
      misc_RNA
                      428
                      /note="p oriR RNA transcription (alt.)"
      misc_binding
                      /note="dnaA major binding site A [J. Mol. Biol. 184,
                      529-533 (1985)]"
      misc_binding
                      237...252
                      /note="dnaA minor binding site X1 [J. Mol. Biol. 184,
                      529-533 (1985)]"
                      288..303
      misc_binding
                      /note="dnaA major binding site B [J. Mol. Biol. 184,
                      529-533 (1985)]"
      misc_binding
                      323..338
                      /note="dnaA minor binding site X2 [J. Mol. Biol. 184,
                      529-533 (1985)]"
      misc_binding
                      362..377
                      /note="dnaA major binding site C [J. Mol. Biol. 184,
                      529-533 (1985)]"
      conflict
                      replace(105..105, "a")
                      /citation=[2]
      conflict
                      replace(105..105, "a")
                      /citation=[4]
      conflict
                      replace(543..545, "ac")
                      /citation=[2]
 BASE COUNT
                 635 a
                          626 c
                                  725 g
                                           689 t
 ORIGIN
             1 bp upstream of BamHI site.
Initial Score
                       67
                           Optimized Score =
                                                418
                                                     Significance =
                                                                     4. 12
Residue Identity =
                      51%
                          Matches
                                                508 Mismatches
                                                                      358
Gaps
                      130
                          Conservative Substitutions
                                                                        0
                      10
                                20
                                            30
                                                      40
                                                                 50
              ATGTCCATGAACTGCTGAGT--GGATAAACA-GCACGGGATATCTC-TGTCTAAAGG--AAT
                    ;;;;
                                           1
                                               ; ;
                                                     TTCTTTTTTAATG--AATCAAAAG-TGAGTTAGGCTTTTTATTGAATGATTATTGCATGTGTGTCGGTTTTT
 1430
           1440
                       1450
                                  1460
                                           1470
                                                     1480
                                                               1490
                   70
                             80
      60
                                         90
                                                  100
                                                            110
    ATTACT---ACACCAGGAAAAGGACAC---ATTCGACAACAGGAAGGAGCCTGTCACAGAAAACCACAGTG

    GTTGCTTAATCATAAGCAACAGGACGCAGGAGTATAAAAAATGAAAACCG—CTTACATTGCCAAACAACGTC

  1500
            1510
                      1520
                                1530
                                         1540
                                                    1550
                                                              1560
         130
                    140
                              150
                                       160
                                                   170
                                                             180
                                                                       190
    TCCTGTGCAT-GTGACATTTCGCCATGGGAAACAACTGTTACAACG--TGGTGGTCATTGTGCTGCTAG
```

AAATTAGCTTCGTGAAATCTCACTTTTCTCGTCAACTGGAAGAACGTCTGGGGGCTGATCGAAGTCCAG-GCG

~ I I II II II II I

3 cd 1 _1 C 0 1 C W

200 2 2 2 2 2 2 2 2
TGGGCTGTGAGAAG-GTGGGAGCCGTGCAGAACTCCTGTGATAAC-TGTCAGCCTG-GTACTTTC-TGCAG
CCGATTCTTAGCCGTGTGGGGGATG-GCACGCAGGATAACTTGTCGGGCTGTGAAAAAGCGGTGCAG 1650 1660 1670 1680 1690 1700 260 270 280 290 300 310 320AAAATACAATCCAGTCTGCAAAGAGGCTGCCTCCAAGTACCTTCTCCAGCATAGGTGGACA-GCC :::::::::::::::::::::::::::::::::::
CCGATTCTTAGCCGTGTGGGGGATG-GCACGCAGGATAACTTGTCGGGCTGTGAAAAAGCGGTGCAG 1650 1660 1670 1680 1690 1700 260 270 280 290 300 310 320AAAATACAATCCAGTCTGCAAGAGGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACA-GCC :::::::::::::::::::::::::::::::::::
250 270 280 290 300 310 320AAAATACAATCCAGTCTGCAAGAGGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACA-GCC
260 270 280 290 300 310 320AAAATACAATCCAGTCTGCAAGAGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACA-GCC
AAAATACAATCCAGTCTGCAAGAGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACA-GCC
AAAATACAATCCAGTCTGCAAGAGCTGCCCTCCAAGTACCTTCTCCAGCATAGGTGGACA-GCC
GTAAAAGTGAAAGC—TCTGCCTGA—TGCCCAGTTCGAAGTGGTTCATTCACTGGC—GAAGTGGAAACGTC 1710 1720 1730 1740 1750 1760 1770 330 340 350 360 370 380 -GAACT——GTAACA—TCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC
GTAAAAGTGAAAGC—TCTGCCTGA—TGCCCAGTTCGAAGTGGTTCATTCACTGGC—GAAGTGGAAACGTC 1710 1720 1730 1740 1750 1760 1770 330 340 350 360 370 380 -GAACT——GTAACA—TCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC ::::::::::::::::::::::::::::
1710 1720 1730 1740 1750 1760 1770 330 340 350 360 370 380 -GAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC !!!!!!!!!!!!!!!!!!!!!!!!!!!!
330 340 350 360 370 380 -GAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC
-GAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC
-GAACTGTAACATCTGCAGAGTGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC
AGACCTTAGGGCAACACGACTTCAGCGCGGGCGAAGGGCTGTACACGCACATGAAAGC-CCT-TCGCC 1780 1790 1800 1810 1820 1830 390 400 410 420 430 440 450 ACAACGCGGA-GTGTAGAGTGCACCAG-ATGTGAA 11111111111111111111111111111111
AGACCTTAGGGCAACACGACTTCAGCGCGGGCGAAGGGCTGTACACGCACATGAAAGC-CCT-TCGCC 1780 1790 1800 1810 1820 1830 390 400 410 420 430 440 450 ACAACGCGGAGTGTAGAGTGCATTGAAGGATTCCATTGCTTGGGGCCACAGTGCACCAGATGTGAA
1780 1790 1800 1810 1820 1830 390 400 410 420 430 440 450 ACAACGCGGAGTGTGAGTGCATTGAAGGATTCCATTGCTTGGGGCCACAGTGCACCAGATGTGAA
390 400 410 420 430 440 450 ACAACGCGGAGTGTGAGTGCATTGAAGGATTCCATTGCTTGGGGCCACAGTGCACCAGATGTGAA
ACAACGCGGA—GTGTGAGTGCATTGAA——GGATTCCATTGCTTGGGGCCACAGTGCACCAG—ATGTGAA
ACAACGCGGA—GTGTGAGTGCATTGAA——GGATTCCATTGCTTGGGGCCACAGTGCACCAG—ATGTGAA
CCGATGAAGACCGTCTTTCTCCGTTGCACTCGGTCTATGTTGACCAGTGGGACTGGGAACGCGTAATGGGCG 1840 1850 1860 1870 1880 1890 1900 1910 460 470 480 490 500 510 520 AAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTG—CAAAACCTGTAGCTTGGGAACATTTAATGA
CCGATGAAGACCGTCTTTCTCCGTTGCACTCGGTCTATGTTGACCAGTGGGACTGGGAACGCGTAATGGGCG 1840 1850 1860 1870 1880 1890 1900 1910 460 470 480 490 500 510 520 AAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTG—CAAAACCTGTAGCTTGGGAACATTTAATGA
1840 1850 1860 1870 1880 1890 1900 1910 460 470 480 490 500 510 520 AAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTG—CAAAACCTGTAGCTTGGGAACATTTAATGA
460 470 480 490 500 510 520 AAGGACTGCAGGCCCAGGAGCTAACGAAGCAGGGTTG—CAAAACCTGTAGCTTGGGAACATTTAATGA
AAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTG—CAAAACCTGTAGCTTGGGAACATTTAATGA
AAGGACTGCAGGCCTGGCCAGGAGCTAACGAAGCAGGGTTG—CAAAACCTGTAGCTTGGGAACATTTAATGA
; ;; ;; ; ; ;; ;; ;; ;; ;; ;; ;; ;; ;;
ACGGTGAGC-GTCAATTCTCGACTCTGA-AAAGCACGGTAGAGGCGATCTG-GGCGGGAATTAAAGCA
1920 1930 1940 1950 1960 1970
530 540 550 560 570 580 590
CCAGAACGGTACTGGCGTCTGTCGACCCTGGACGAACTGCTCTCTAGACGGAAGGTCTGTGCTTAAGACC
ACCGAA-GCTGC-GGTTAGCGAAGAGTTTGGCCTGGCACCGTTC-CT-GCCGGATCAGATCCACT
1980 1990 2000 2010 2020 2030
600 610 620 630 640 650 660
GGGACCACGGAGAAGGACGTGGTGTGGACCCCCTGTGGTGAGCTTCTCTCCCAGTACCACCATTTCTGTG
TCGTACACAG-CCAGGAGTTACTGTCTCGTTATCCGGATCTT-GATGCCAAAGGGCGTGAGCG-G
2040 2050 2060 2070 2080 2090
670 680 690 700 710 720 730
ACTCCAGAGGGAGGACCAGGAG-GGCACTCCTTGCAGGTCCTTACCTTGTTCCTG-GCGCT-GACATCGGCT
GCGATAGCGAAAGATCTTGGCGCGGTATTCCTTGTCGG-GATTGGCGGCAAGCTGAGCGATGGTCATCGCCA
2100 2110 2120 2130 2140 2150 2160 2170
2100 2110 2120 2140 2150 2160 2170
740 750 760 770 780 790 800
TTGC-TGCTGGC-CCTGATCTTCATTACTCTCTGTTCTCTGTGCTCAAATGGATCAGGAAAAAATTCCCCC
CGACGTGCGCGCACCGGATTATGATGACTGGAGCACCCCGT-CAGAGCTGGGCCATGCGGGTCTGAACGG
2180 2190 2200 2210 2220 2230
2100 2100 2200 2210 2220 2230
810 820 830 840 850 860
ACATATTCAAGCAACCATTTAAGAAGA-CCACTGGAGCAGCTCAAGAGGAAGATGCTTGTAGCT

2310 2320 2330 2340 2350 2360 2370 X

Best Available Copy

GCGCTGCT 2380

8. ELLIS-267-3A

ECOORIASN E. coli replication origin (oriC) and asnA gene cod

LOCUS ECOORIASN 4012 bp ds-DNA BCT 15-SEP-1989

DEFINITION E. coli replication origin (oriC) and asnA gene coding for

asparagine synthetase A.

ACCESSION K00826

KEYWORDS asnA gene; asparagine synthetase; minichromosome; oriC gene;

origin of replication; synthetase.

SOURCE Escherichia coli, clone (minichromosome) pCM959, DNA.

ORGANISM Escherichia coli

Prokaryota; Bacteria; Gracilicutes; Scotobacteria; Facultatively

anaerobic rods; Enterobacteriaceae; Escherichia; coli.

REFERENCE 1 (bases 1 to 4012)

AUTHORS Buhk, H. - J. and Messer, W.

TITLE The replication origin region of Escherichia coli: nucleotide

sequence and functional units

JOURNAL Gene 24, 265-279 (1983)

STANDARD simple staff_review

COMMENT Plasmid pCM959 was obtained in vivo; it is a small circular

minichromosome containing only E. coli chromosomal DNA. The circularisation point is at 1; this sequence represents the

complete pCM959 sequence.

FEATURES Location/Qualifiers

CDS complement((1..589) /note="21K protein"

CDS complement(968..1411)

/note="16K protein"

CDS complement(1501..1959)

/note="17K protein"

CDS 2111..3103

/note="asparagine synthetase A"

/gene="asnA"

BASE COUNT 947 a 1025 c 1052 g 988 t

ORIGIN 207 bp upstream of BglII site.

Initial Score = 67 Optimized Score = 418 Significance = 4.12

Residue Identity = 51% Matches = 508 Mismatches =

Gaps = 130 Conservative Substitutions = 0

X 10 20 30 40 50

358

ATGTCCATGAACTGCTGAGT--GGATAAACA-GCACGGGATATCTC-TGTCTAAAGG--AAT

2010 X 2020 2030 2040 2050 2060 2070

60 70 80 90 100 110 120 ATTACT---ACACCAGGAAAAGGACAC---ATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTG

ETTECTTAATCATAAECAACAEGACECAEGAETATAAAAAATEAAAACGE...CTTACATTECCAAACGACGTC

GTTGCTTAATCATAAGCAACAGGACGCAGGAGTATAAAAAATGAAAACCG—CTTACATTGCCAAACAACGTC 2080 2090 2100 2110 2120 2130 2140

130 140 150 160 170 180 190 TCCTGTGCAT-GTGACATTCGCCATGGGAAACAACTGTTACAACG--TGGTGGTCATTGTGCTGCTGCTAG

2150 2160 2170 2180 2190 2200 2210

200 210 220 230 240 250 TGGGCTGTGAGAAG-GTGGGAGCCGTGCAGAACTCCTGTGATAAC-TGTCAGCCTG-GTACTTTC--TGCAG

Best Available Copy

```
9. ELLIS-267-3A
  RATBAND33E Rat band 3 C1-/HCO3- exchanger (B3RP2) mRNA, compl
                       4057 bp ss-mRNA
           RATBAND33E
                                                ROD
                                                         15-JUN-1990
           Rat band 3 C1-/HCO3- exchanger (B3RP2) mRNA, complete cds.
DEFINITION
ACCESSION
            J05166
KEYWORDS
           3 C1-/HCO3- exchanger.
SOURCE
           Rat stomach, cDNA to mRNA, clones RSAE[2-1,3-1].
  ORGANISM
           Rattus norvegicus
           Eukaryota; Animalia; Metazoa; Chordata; Vertebrata; Mammalia;
           Theria; Eutheria; Rodentia; Myomorpha; Muridae; Murinae; Rattus;
            1 (bases 1 to 4057)
REFERENCE
           Kudrycki, K. E., Newman, P. R. and Shull, G. E.
  AUTHORS
           cDNA cloning and tissue distribution of mRNAs for two proteins that
  TITLE
            are related to the band 3 Cl-/HCO3- exchanger
            J. Biol. Chem. 265, 462-471 (1990)
  JOURNAL
  STANDARD
           simple staff_entry
FEATURES
                    Location/Qualifiers
     CDS
                    201..3905
                    /note="C1-/HCO3- exchanger (B3RP2)"
     mRNA
                    (1..4057
                    /note="B3RP2 mRNA"
               830 a
BASE COUNT
                      1179 c
                               1205 g
                                        843 t
ORIGIN
Initial Score
                    55
                       Optimized Score =
                                            418 Significance =
                                                                4.12
Residue Identity =
                    50%
                        Matches
                                            508 Mismatches
                                                                362
Gaps
                        Conservative Substitutions
                    137
                                                                  0
            X
                       10
                                 20
                                          30
                                                   40
                                                                50
            ATGTC---CATGAAC-TGCTGAGTGGATAAACAGCACGGGATATCTCTGT----CTAAAGGA
                   11 11 1
                                    CTGGCCCCACACCTCGGGCACCACGGGCCCCCCATAAGCCTCATGAGGTGT-TC-GTAGAGCTGAATGA
  1110
            1120
                     1130
                              1140
                                       1150
                                                1160
                 70
                            80
                                     90
                                             100
                                                      110
   ATATTA-CTACACCAGGAAAAGGA--CACATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTGT
        ATTGCAGTTGGACAAAAACCAGGAGCCTCAGTGG----CGGGAGA-CAGCCCGGTGGATAAAATTTGAGGAG
   1180
           1190
                     1200
                              1210
                                           1220
                                                     1230
                                                              1240
       130
                 140
                          150
                                   160
                                              170
                                                       180
   CCTGTGCATG-TGACATTTCGCCATGGGAAACAACTGTTAC--AACGTGGTGGTCATTGTGCTG-CTGCTAG
      111 111
                                          ! !
                                                  GACGTGGAAGAGGACTGAGCGCTGGG--GCAAGCCTCACGTGGCATCACTGTCCTTCCGCAGCCTCCTGG
     1250
              1260
                       1270
                                  1280
                                           1290
                                                     1300
                                                              1310
         200
                  210
                           220
                                      230
                                               240
                                                        250
   TGGGCTGTGAGAAGGTGGGAGCCGTGCAGAACTCCTGT--GATAACTGTCAGCCTGGTACTTTCTGCAGAAA
                :::
                     AGCTCCGCAGGACACTGG--CCCATGGAGCTGTGCTCTTGGACCTCGATCAG-CAGACCCTGCCTG--GGGT
     1320
              1330
                         1340
                                  1350
                                           1360
                                                      1370
                                                                 1380
                  280
                            290
                                     300
                                               310
                                                        320
   ATACAATCCAGTCTGCAAG-AGCTGCCCTCCAAGTACCTTCTC-CAGCATAGGTGGACAGCCGAACTG-TA-
                GGCCCATCAGGTGGTCGAGCAGATGGTTATCTCTGACCAGATCAAAGCAGAGG-ACAGAGCCAATGTGCTAC
        1390
                 1400
                          1410
                                   1420
                                             1430
                                                       1440
   330
              340
                       350
                                 360
                                          370
                                                   380
                                                            390
    -A---CATCTGCAGAGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCCACAAC---GCG
       1 11111 11
                      111 1
```

```
Best Available Copy
410 420 430 440
  GAGTGTGAGTGC----ATTGAAGGAT-TCCATTGCTTGGGGCC--ACAGTGCACCAGATGTGAAAAGGACT
   GGCTCTCTGGGGCTCTCCCTGGGGCATCACCACGCCCAGGGGACTGAGAGTGATCCTCACGTCACTGAGCCT
                 1550
            1540
                         1560
                                1570
                                           1580
  460
             470
                     480
                              490
                                     500
                                             510
  -GCAGGCCTGG----CCAG-GAGCTAAC-GAAGCAGGGTTGCAAAACCTGTAGCTTGGGAACATTTAATGAC
        CTCATCGGTGGTGTTCCTGAGACCCGGCTGGAGGTGGATAG-AGAGCGTG-AGCTGCCGCCCCAGCCCCAC
           1610
                  1620
                         1630
                                  1640
                                          1650
             540
                     550
                             560
                                      570
                                              580
  CAGAACGGTACTGGCGTCT-GTCGACCCTGGACGAACTG-CTCT-CTAGACGGAAGGTCTGTGCTTAAGACC
   CTGCA-GGTATTACCCGCTCCAAGTCCAAGCATGAGCTGAAGCTGCTGGA--GAAGATCCCTG-AGAATGCA
           1680
                   1690
                       1700
                                 1710
                                           1720
      600
              610
                     620
                             630
                                     640
                                            650
  GGGACCACGGAGAAGGACGTGGTGTGGACCCCCTGTGGTGAGCTTCTCCCCAGTACCACCA----TTT
   GAGGCCACAG---TGGTCCTCGTGGG-----CTGTGTGGAGTTCCTCCC-GCCCCACCATGGCCTTT
     1740
               1750
                            1760
                                    1770
                                            1780
                         690
         670
                  680
                                 700
                                         710
  CTGTGACT-CCAGAGG-GAGGACCAGGAGGGCACTCCTTGCAGGTCCTTACCTTGTTCCTG-GCGCTGACA
   GTGCGCCTGCGGGAGGCTGTGGAACTGGA-TGCAGTAC-TGGAGGT-----GCCTGTGCCTGTGCGCT-TCC
     1800
            1810
                1820
                           1830
                                         1840
  730
          740
                   750
                           760
                                  770
                                           780
                                                   790
  TCGGCTTTGCTGCT--GGCCCTGATCTTCATTACTCTCCTGTTCT-CTGTGCTCAAATGGATCAGGAAAAAA
  TCTTC-CTGCTGCTGGGGCCCAG----CAGCGCCCAACATGGACTACCATG---AGATTGGCC--GATCCAT
  1860
          1870
                     1880 1890
                                     1900
                                               1910
                       820
   800
              810
                               830
                                      840
                                              850
  TTCC-CCCACATAT---TCAAGCAA--CCATTTAAGAAGACCACTGGAGCAGCTCAAGAGGAAGA--TGCTT
   CTCCACCCTCATGTCTGACAAGCAATTCCA-CGAGGCAGCCTACCTG-GCAGATGAACGGGATGACTTGCTG
 1920
        1930
                1940
                        1950
                               1960
                                        1970
        870
                880
                               890
                                          900
  GTAGCTGCCGATGTC-CACAGGA-AGAAG-----AAGG----AGGAGGAGGA-GGCTATGAGCTGTGA
  ACTGCTATCAATGCCTTCCTGGACTGCAGTGTTGTGCTACCGCCTTCTGAAGTGCAGGGCGAGGAGCTGCTG
 1990
        2000
                2010
                    2020
                            2030
                                       2040
                                               2050
   920
        X
  TGTACTATC
   11 11 1
  CGTTCTGTTGCCCATTTCC
       2070
10. ELLIS-267-3A
  ECASNA
           E. coli asn-A gene for asparagine-synthetase.
ID
    ECASNA
           standard; DNA; PRO; 2170 BP.
XX
AC
    V00263;
XX
DT
    07-APR-1983 (minor modifications)
```

DT

09-JAN-1982 (first entry)

```
DE
    E. coli asn-A gene for asparagine-synthetase.
XX
KW
     synthetase.
XX
OS
     Escherichia coli
OC
     Prokaryota; Bacteria; Gram-negative facultatively anaerobic rods;
OC
     Enterobacteriaceae.
XX
RN
     [1] (bases 1-2170)
RA
     Nakamura M., Yamada M., Hirota Y., Sugimoto K., Oka A.,
RA
     Takanami M.;
     "Nucleotide sequence of the asnA gene coding for asparagine
RT
RT
     synthetase of E. coli K-12";
     Nucleic Acids Res. 9:4669-4676(1981).
RL
XX
FH
     Key
              From
                      To
                             Description
FΗ
FT
     CDS
              1034
                    2023
                             reading frame asn-A
XX
SØ
     Sequence 2170 BP; 497 A; 524 C; 606 G; 543 T; 0 other;
Initial Score
                   67
                      Optimized Score =
                                         418
                                              Significance =
                                                           4. 12
Residue Identity =
                  51%
                      Matches
                                         508 Mismatches
                                                            358
Gaps
                  130
                      Conservative Substitutions
                                                              0
                                      30
                  10
                           20
                                              40
           ATGTCCATGAACTGCTGAGT--GGATAAACA-GCACGGGATATCTC-TGTCTAAAGG---AAT
                1 1 1 1 1
   TTCTTTTTTAATG--AATCAAAAG-TGAGTTAGGCTTTTTATTGAATGATTATTGCATGTGTCGGTTTTT
     930
                940
                         950
                                  960
                                          970
                                                   980
                                                           990
     60
                70
                        80
                                   90
                                           100
                                                    110
   ATTACT---ACACCAGGAAAAGGACAC---ATTCGACAACAGGAAAGGAGCCTGTCACAGAAAACCACAGTG
           GTTGCTTAATCATAAGCAACAGGACGCAGGAGTATAAAAAATGAAAACCG-CTTACATTGCCAAACAACGTC
      1000
              1010
                       1020
                               1030
                                        1040
                                                 1050
                                                          1060
       130
                 140
                         150
                                  160
                                            170
                                                     180
   TCCTGTGCAT-GTGACATTTCGCCATGGGAAACAACTGTTACAACG--TGGTGGTCATTGTGCTGCTAG
      AAATTAGCTTCGTGAAATCTCACTTTTCTCGTCAACTGGAAGAACGTCTGGGGCTGATCGAAGTCCAG~GCG
     1070
             1080
                      1090
                              1100
                                                        1130
                                       1110
                                               1120
        200
                 210
                          220
                                  230
                                            240
                                                     250
   TGGGCTGTGAGAAG-GTGGGAGCCGTGCAGAACTCCTGTGATAAC-TGTCAGCCTG-GTACTTTC--TGCAG
      CCGATTCTTAGCCGTGTGGGGGATG-GC---ACGC--AGGATAACTTGTCGGGCTGTGAAAAAGCGGTGCAG
    1140
            1150
                     1160
                                   1170
                                           1180
                                                    1190
    260
            270
                     280
                                290
                                           300
                                                    310
   ---AAAATACAATCCAGTCTGCAAGAGCTGCCC---TCCAA---GTACCTTCTCCAGCATAGGTGGACA-GCC
          GTAAAAGTGAAAGC--TCTGCCTGA--TGCCCAGTTCGAAGTGGTTCATTCACTGGC-GAAGTGGAAACGTC
       1210
                 1220
                            1230
                                    1240
                                             1250
                                                      1260
            330
                       340
                               350
                                        360
                                                370
                                                         380
   -GAACT----GTAACA--TCTGCAGAGTGTGCAGGCTATTTCAGGTTCAAGAAGTTTTGCTCCTCTACCC
         : ::::
                  AGACCTTAGGGCAACACGACTTCAGCGCGGGGCGAAGGGCTGTACACGCACATGAA----AGC-CCT-TCGCC
 1270
          1280
                  1290
                           1300
                                    1310
                                            1320
    390
              400
                       410
                                  420
                                          430
                                                   440
                                                             450
   ACAACGCGGA--GTGTGAGTGCATTGAA---GGATTCCATTGCTTGGGGCCACAGTGCACCAG--ATGTGAA
```

CCGATGAAGACCGTCTTTCTCCGTTGCACTCGGTCTATGTTGACCAGTGGGACTGGGAACGCGTAATGGGCG

 $\wedge \wedge$

Best Available Copy

10310 INFLAMMATORY 42521 PROTEIN?

.2 2 MACROPHAGE INFLAMMATORY PROTEIN? (MACROPHAGE(W)INFLAMMATORY(W)PROTEIN?)

> d 12 1 2 ti

S PAT NO: 5,154,921 [IMAGE AVAILABLE] L2: 1 of 2

ITLE: Promotion of maturation of hematopoietic progenitor cells

S PAT NO: 5,145,676 [IMAGE AVAILABLE] L2: 2 of 2

ITLE: Method and agents for promoting wound healing

> d 12 1 2 bib ab ccls

S PAT NO: 5,154,921 [IMAGE AVAILABLE] L2: 1 of 2

ATE ISSUED: Oct. 13, 1992

ITLE: Promotion of maturation of hematopoietic progenitor cells

NVENTOR: Ruth Sager, Brookline, MA

Douglas Trask, Miami, FL Phong Le, Durham, NC

SSIGNEE: Dana-Farber Cancer Institute, Inc., Boston, MA (U.S.

corp.)

PPL-NO: 07/552,746 ATE FILED: Jul. 13, 1990

RT-UNIT: 186

RIM-EXMR: John J. Doll
SST-EXMR: George C. Elliott
EGAL-REP: Janis K. Fraser

3 PAT NO: 5,154,921 [IMAGE AVAILABLE] L2: 1 of 2

3STRACT:

method for promoting maturation of a hematopoietic precursor cell of an simal, which method includes the step of contacting the cell with a sturation-promoting amount of GRO, a polypeptide growth factor. 3-CL-CURRENT: 424/93U, 93AA, 93V, 93W; 435/240.2, 240.21; 530/350, 351

FAT NO: 5,145,676 [IMAGE AVAILABLE] L2: 2 of 2

TE ISSUED: Sep. 8, 1992

TLE: Method and agents for promoting wound healing

IVENTOR: Thomas J. Fahey, III, New York, NY Barbara A. Sherry, New York, NY Anthony Cerami, Shelter Island, NY

SIGNEE: The Rockefeller University, New York, NY (U.S. corp.)

PL-NO: 07/652,198 TE FILED: Feb. 7, 1991

T-UNIT: 181

IM-EXMR: Merrell C. Cashion, Jr.

ST-EXMR: Choon P. Koh GAL-REP: Klauber & Jackson

PAT NO: 5,145,676 [IMAGE AVAILABLE] L2: 2 of 2

STRACT:

e present invention relates to the treatment of wound healing sfunction by the administration of one or more would healing dulators. The wound healing modulator may be selected from appropriate und healing agents and binding partners, and particularly agents that hance wound healing. The agent may comprise a cytokine, or mixture of tokines that are also capable of binding to heparin, and inducing calized inflammation characterized by polymorphonuclear cell filtration when administered subcutaneously. Particular agents comprise e inflammatory cytokines MIP-1, MIP-1.alpha., MIP-1.beta. and MIP-2. admostic and therapeutic utilities are proceed.