Nome $_$	
Cognome _	
Matricola _	

Architettura degli Elaboratori

Corso di Laurea in Informatica Appello 26 Settembre 2007

1.	(3 punti) Convertire in base 4 il numero intero 136 ₁₀ .						
2.	e. (3 punti) Convertire il numero intero -72_{10} nella notazione						
	(a) modulo e segno a 8 bit (b) complemento a 2 a 8 bit						
3.	(3 punti) Convertire in base 10 il numero binario intero 11011010_2 rappresentato nella notazione						
	(a) modulo e segno a 8 bit (b) complemento a 2 a 8 bit						
4.	(8 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella						

4. (8 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

.,	ii verita utilizzando ii metodo dene map							
	x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$			
	0	0	0	0	1			
	0	0	0	1	1			
	0	0	1	0	1			
	0	0	1	1	0			
	0	1	0	0	-			
	0	1	0	1	0			
	0	1	1	0	1			
	0	1	1	1	0			
	1	0	0	0	1			
	1	0	0	1	1			
	1	0	1	0	-			
	1	0	1	1	0			
	1	1	0	0	-			
	1	1	0	1	0			
	1	1	1	0	0			
ĺ	1	1	1	1	-			

SOP	

5. (6 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) tale che ad ogni istante $i \geq 0$, $z_i = 1$ se e solo se $x_{i-3} = x_{i-2}$, altrimenti $z_i = 0$. Si assuma che all'istante i = 0, $x_{-1} = x_{-2} = x_{-3} = 0$.

6. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1							
0	1	0							
0	1	1							
1	0	0							
1	0	1							
1	1	0							
1	1	1							

$j_1 : _$			
$k_1 : _$			
$j_2 : _$			
$k_2 : _$			
~ •			

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.