Module 1: The Gaussian beam

Course 2 of Optical Engineering: Optical efficiency and resolution

with Dr. Robert R. McLeod and Dr. Amy C. Sullivan

The Gaussian beam (in pictures)

https://en.wikipedia.org/wiki/Gaussian_beam

Any one quantity determines all the others:

$$w_0 = \sqrt{\frac{\lambda}{\pi} z_0} = \frac{\lambda}{\pi} \frac{1}{\theta_0}$$

$$\theta_0 = \frac{\lambda}{\pi} \frac{1}{w_0} = \sqrt{\frac{\lambda}{\pi} \frac{1}{z_0}}$$

$$z_0 = \frac{\lambda}{\pi} \theta_0^{-2} = \frac{\pi}{\lambda} w_0^2 = \frac{w_0}{\theta_0}$$

$$\lambda \equiv \frac{\lambda_0}{n}$$

Saleh & Teich chapter 3

The Gaussian beam (in math)

Solution of scalar paraxial wave equation (Helmholtz equation)

(Helmholtz equation)
$$E(\vec{r}) = A_0 \frac{w_0}{w(z)} e^{-\frac{\rho^2}{w^2(z)} - jkz - jk\frac{\rho^2}{2R(z)} + j\zeta(z)}$$

Beam radius

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2}$$

$$R(z) = z \left[1 + \left(\frac{z_0}{z} \right)^2 \right]$$

$$\zeta(z) = \tan^{-1} \left(\frac{z}{z_0}\right)$$

Note that R(z) does not obey ray tracing sign convention. Unfortunately there's no particularly good way to fix this.

Gaussian beam intensity

The intensity of the Gaussian beam is found via $|E|^2$ to be

$$I(\vec{r}) = \frac{1}{\pi/2} \frac{1}{w^2(z)} e^{-2\frac{\rho^2}{w^2(z)}}$$

