Complexidade de Algoritmos

Análise e notação assintótica

Prof. Marcelo de Souza

45RPE – Resolução de Problemas com Estruturas de Dados Universidade do Estado de Santa Catarina

Um **problema** é caracterizado pela descrição da sua **entrada** e **saída**.

Um **problema** é caracterizado pela descrição da sua **entrada** e **saída**.

Exemplo:

Problema da ordenação (não decrescente)

Entrada: uma sequência $\langle a_1, a_2, \dots, a_n \rangle$ de n números.

Saída: uma permutação dos números $\langle a_1', a_2', \ldots, a_n' \rangle$ tal que $a_1' \leq a_2' \leq \ldots \leq a_n'$.

Um **problema** é caracterizado pela descrição da sua **entrada** e **saída**.

Exemplo:

Problema da ordenação (não decrescente)

Entrada: uma sequência $\langle a_1, a_2, \dots, a_n \rangle$ de n números.

Saída: uma permutação dos números $\langle a_1', a_2', \ldots, a_n' \rangle$ tal que $a_1' \leq a_2' \leq \ldots \leq a_n'$.

Exemplo concreto do problema da ordenação

Entrada: 7 8 1 4 6 3 9 → **instância**

Saída: 1 3 4 6 7 8 9 \rightarrow solução/resultado

Dado um problema:

- ► Como saber se um algoritmo é bom para resolvê-lo?
- ► Como saber qual é o melhor algoritmo entre duas opções?

Dado um problema:

- Como saber se um algoritmo é bom para resolvê-lo?
- Como saber qual é o melhor algoritmo entre duas opções?

Qual medida usar para definir bom ou melhor?

- Correção;
- Simplicidade;
- Facilidade em codificar;
- Facilidade em manter;
- ► Tempo de processamento;
- Consumo de memória.

Dado um problema:

- Como saber se um algoritmo é bom para resolvê-lo?
- Como saber qual é o melhor algoritmo entre duas opções?

Qual medida usar para definir bom ou melhor?

- Correção;
- Simplicidade;
- Facilidade em codificar;
- Facilidade em manter;
- Tempo de processamento;
- Consumo de memória.

Análise de algoritmos (complexidade)

Como medir a complexidade de um algoritmo?

Como medir a complexidade?

Podemos executar o(s) algoritmo(s) e medir/plotar os resultados. Problemas:

- ▶ Sensível às entradas escolhidas, ao *software* e ao *hardware* usados;
- Comparação prejudicada;
- Necessário implementar e executar todos os algoritmos.

Como medir a complexidade?

Podemos executar o(s) algoritmo(s) e medir/plotar os resultados. Problemas:

- ▶ Sensível às entradas escolhidas, ao *software* e ao *hardware* usados;
- Comparação prejudicada;
- ► Necessário implementar e executar todos os algoritmos.

Solução: métodos analíticos.

ightharpoonup Definem a complexidade como uma função f(n) do tamanho n da entrada.

Como medir a complexidade?

Podemos executar o(s) algoritmo(s) e medir/plotar os resultados. Problemas:

- ► Sensível às entradas escolhidas, ao *software* e ao *hardware* usados;
- Comparação prejudicada;
- ► Necessário implementar e executar todos os algoritmos.

Solução: métodos analíticos.

Definem a complexidade como uma função f(n) do tamanho n da entrada.

Ideia geral (complexidade de tempo):

- Contar o número de operações primitivas executadas pelo algoritmo;
- Cada operação primitiva executa em um tempo constante;
- Quanto menor o número de operações, mais eficiente é o algoritmo.

Operações primitivas

Operações primitivas são passos básicos do algoritmo

- Atribuição de valores;
- Operações aritméticas ou lógicas;
- Comparação de valores;
- Acesso a um elemento de um vetor:
- Recuperar a referência de um objeto;
- Chamada de um método;
- Retorno de um método.

Exemplos

```
int a = 10;
int b = a - 7
    if (b < 5)
int c = v[3];
Object x = this;
this.compute();
return result;
```


Exemplo

Algoritmo arrayMax(A, n):

```
# Entrada: um vetor A com n ≥ 1 elementos inteiros.

# Saída: o maior elemento de A.

currentMax ← A[0]

for i ← 1 to n - 1 do

if currentMax ← A[i] then

currentMax ← A[i]

return currentMax
```

Exemplo

```
Algoritmo arrayMax(A, n):
```

```
# Entrada: um vetor A com n ≥ 1 elementos inteiros.
# Saída: o maior elemento de A.

currentMax ← A[0]
for i ← 1 to n - 1 do
   if currentMax ← A[i] then
        currentMax ← A[i]

return currentMax
```

Linha	Operações	
4	1 acesso ao vetor + 1 atribuição	2
5	1 inicialização $+$ $\mathfrak n$ comparações $+$ $2(\mathfrak n-1)$ incrementos	3n - 1
6	1 acesso ao vetor $+$ 1 comparação, repetidos $\mathfrak{n}-1$ vezes $ o$ $2(\mathfrak{n}-1)$	2n - 2
7	0 [cond. nunca satisfeito] a $2(n-1)$ [cond. sempre satisfeito]	[0, 2n - 2]
9	1 retorno	1

Exemplo

Complexidade de tempo no **melhor caso** (A[0] é o maior elemento):

T(n) = 2 + 3n - 1 + 2n - 2 + 1 = 5n.

Complexidade de tempo no **pior caso** (A[n - 1] é o maior elemento):

T(n) = 2 + 3n - 1 + 2n - 2 + 2n - 2 + 1 = 7n - 2.

Complexidade de tempo no caso médio:

Depende da distribuição das entradas e do uso de teoria de probabilidades.

Exemplo

Complexidade de tempo no **melhor caso** (A[0] é o maior elemento):

T(n) = 2 + 3n - 1 + 2n - 2 + 1 = 5n.

Complexidade de tempo no **pior caso** (A[n - 1] é o maior elemento):

T(n) = 2 + 3n - 1 + 2n - 2 + 2n - 2 + 1 = 7n - 2.

Complexidade de tempo no caso médio:

Depende da distribuição das entradas e do uso de teoria de probabilidades.

Normalmente se considera a complexidade no **pior caso**, pois fornece um limite superior do tempo de execução. Logo:

- ightharpoonup O algoritmo arrayMax executará no máximo 7n-2 operações para cumprir sua tarefa;
- Seja α o tempo gasto na operação primitiva mais complexa sob determinados *hardware* e *software*, o tempo de execução do algoritmo arrayMax será de, no máximo, $\alpha(7n-2)$.

Taxa de crescimento

Note que T(n) = 7n - 2 é uma função linear.

- ▶ O tempo de processamento cresce na mesma proporção do tamanho da entrada (n);
- A complexidade tempo desse algoritmo é linear.

Taxa de crescimento

Note que T(n) = 7n - 2 é uma função linear.

- ightharpoonup O tempo de processamento cresce na mesma proporção do tamanho da entrada (n);
- A complexidade tempo desse algoritmo é linear.

A complexidade T(n) pode ser definida por funções com diferentes taxas de crescimento:

- Constante ≈ 1
- ▶ logarítmica ≈ log n
- ► linear $\approx n$
- ▶ $n-\log n$ ≈ $n \log n$
- ▶ quadrática $\approx n^2$
- ► cúbica $\approx n^3$
- \triangleright polinomial $\approx n^k$
- \triangleright exponencial $\approx a^n \quad (a > 1)$

Taxa de crescimento das funções de complexidade

Taxa de crescimento das funções de complexidade

Número de operações

					radificio e	ic operações
n log n		n	n log n	n^2	n^3	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4 096	65 536
32	5	32	160	1024	32768	$4,3 \times 10^{9}$
64	6	64	384	4 0 9 6	262 144	1.8×10^{19}
128	7	128	896	16384	$2,1 \times 10^{6}$	$3,4 \times 10^{38}$
256	8	256	2 048	65 536	$1,7 \times 10^{7}$	$1,2 \times 10^{77}$
512	9	512	4 608	262 144	$1,3 \times 10^{8}$	$1,3 \times 10^{154}$

Taxa de crescimento das funções de complexidade

					Numero d	ie operações
n log n		n	n log n	n^2	n^3	2 ⁿ
8	3	8	24	64	512	256
16	4	16	64	256	4 096	65 536
32	5	32	160	1024	32768	$4,3 \times 10^{9}$
64	6	64	384	4 0 9 6	262 144	1.8×10^{19}
128	7	128	896	16384	$2,1 \times 10^{6}$	$3,4 \times 10^{38}$
256	8	256	2 048	65 536	1.7×10^{7}	$1,2 \times 10^{77}$
512	9	512	4 608	262 144	$1,3 \times 10^{8}$	$1,3 \times 10^{154}$

Tempo de processamento

						2 ⁿ
100	< 1s	< 1s	< 1s	< 1s	< 1s	10 ¹³ anos 10 ²⁸⁴ anos 10 ²⁹⁹³ anos –
1000	< 1s	< 1s	< 1s	< 1s	1s	10 ²⁸⁴ anos
10000	< 1s	< 1s	< 1s	< 1s	16 min	10 ²⁹⁹³ anos
100000	< 1s	< 1s	< 1s	10 s	12 dias	_
1000000	< 1s	< 1s	< 1s	16 min	32 anos	_

Taxa de crescimento das funções de complexidade

Exemplo: em um jogo existem 70 itens para compra (e.g., materiais, poderes e armas). Cada item tem um custo e fornece algum benefício. Itens combinados fornecem benefícios diferenciados. A fim de tomar a melhor decisão possível, queremos avaliar toda combinação possível de compra de itens, verificando o custo total e os benefícios esperados.

- Podemos representar uma compra usando um vetor binário $V \in \{0, 1\}^{70}$, onde o valor de uma posição $i \in [0, 70]$ indica se o item i será comprado ou não.
- Devemos avaliar toda combinação possível de valores a V.

Taxa de crescimento das funções de complexidade

Exemplo: em um jogo existem 70 itens para compra (e.g., materiais, poderes e armas). Cada item tem um custo e fornece algum benefício. Itens combinados fornecem benefícios diferenciados. A fim de tomar a melhor decisão possível, queremos avaliar toda combinação possível de compra de itens, verificando o custo total e os benefícios esperados.

- ▶ Podemos representar uma compra usando um vetor binário $V \in \{0, 1\}^{70}$, onde o valor de uma posição $i \in [0, 70]$ indica se o item i será comprado ou não.
- Devemos avaliar toda combinação possível de valores a V.

Resultado: o algoritmo de avaliação terá complexidade de tempo exponencial $\rightarrow 2^n$.

Taxa de crescimento das funções de complexidade

Um algoritmo com complexidade 2^n , para n = 70, executando em um computador capaz de processar 10^9 operações por segundo, demoraria $37\,436$ anos para terminar sua execução!

Taxa de crescimento das funções de complexidade

Um algoritmo com complexidade 2^n , para n = 70, executando em um computador capaz de processar 10^9 operações por segundo, demoraria $37\,436$ anos para terminar sua execução!

E se usarmos um computador mais rápido?

▶ 100× mais rápido

→ 374 anos;

▶ 1000× mais rápido

→ 37 anos;
→ 136 dias:

▶ 1000000× mais rápido

→ 1 dia.

▶ 100 000 000× mais rápido

Para n = 80, demoraria 140 dias;

Para n = 100, demoraria 401 969 anos.

Taxa de crescimento das funções de complexidade

Um algoritmo com complexidade 2^n , para n = 70, executando em um computador capaz de processar 10^9 operações por segundo, demoraria $37\,436$ anos para terminar sua execução!

E se usarmos um computador mais rápido?

► 100× mais rápido \rightarrow 374 anos;

► 1000× mais rápido \rightarrow 37 anos:

► $1\,000\,000\times$ mais rápido \rightarrow 136 dias;

► $100\,000\,000\times$ mais rápido $\rightarrow 1$ dia.

Para n = 80, demoraria 140 dias;

Para n = 100, demoraria 401 969 anos.

Moral da história

Um algoritmo melhor executando em um computador mais lento **ganhará sempre** de um algoritmo pior em um computador mais rápido, para instâncias suficientemente grandes.

A análise completa (contagem de operações) é muito detalhada e onerosa.

A análise completa (contagem de operações) é muito detalhada e onerosa.

Além disso, o que importa na prática é a taxa de crescimento da função de complexidade!

A análise completa (contagem de operações) é muito detalhada e onerosa.

Além disso, o que importa na prática é a taxa de crescimento da função de complexidade!

A análise assintótica foca em descrever a taxa de crescimento da complexidade de um algoritmo em função do tamanho n da entrada.

A análise completa (contagem de operações) é muito detalhada e onerosa.

Além disso, o que importa na prática é a taxa de crescimento da função de complexidade!

A análise assintótica foca em descrever a taxa de crescimento da complexidade de um algoritmo em função do tamanho n da entrada.

Para isso, usaremos a notação \mathcal{O} (big-oh).

ightharpoonup Bem como as notações Θ e Ω .

Exemplo concreto

Qual a complexidade assintótica do algoritmo arrayMax?

```
# Entrada: um vetor A com n ≥ 1 elementos inteiros.
# Saída: o maior elemento de A.

currentMax ← A[0]
for i ← 1 to n - 1 do
   if currentMax < A[i] then
        currentMax ← A[i]

return currentMax</pre>
```


Exemplo concreto

Qual a complexidade assintótica do algoritmo arrayMax?

```
# Entrada: um vetor A com n ≥ 1 elementos inteiros.

# Saída: o maior elemento de A.

currentMax ← A[0]

for i ← 1 to n - 1 do
    if currentMax ← A[i] then
        currentMax ← A[i]

return currentMax
```

Sabemos que, no pior caso, são executadas 7n-2 operações. Logo, esse algoritmo tem complexidade $\mathcal{O}(n)$. Isto é, complexidade linear.

Não precisamos contar todas as operações. Basta identificarmos o termo de maior complexidade (neste caso, n), pois é quem define a taxa de crescimento da função!

Notação $\mathcal O$

Usamos a **notação** \mathcal{O} para descrever a **taxa de crescimento** da função de complexidade.

Notação ${\cal O}$

Usamos a **notação** \mathcal{O} para descrever a **taxa de crescimento** da função de complexidade.

Em particular, a complexidade \mathcal{O} é um majorante para a função de complexidade do algoritmo, i.e.

- Fornece um **limite superior** para a complexidade.
- ➤ A complexidade do algoritmo é menor ou igual à complexidade O.
- ightharpoonup O desempenho do algoritmo nunca será pior que sua complexidade \mathcal{O} .

Regras básicas

Função polinomial: sempre considerar o maior grau.

$$\triangleright$$
 5n⁴ + 3n³ + 2n² + 4n + 1 é $\mathcal{O}(n^4)$

$$n^3 + 600n \in \mathcal{O}(n^3)$$
.

Função mista: sempre considerar o termo de maior complexidade.

$$\triangleright$$
 5n² + 3n log n + 2n + 5 é $\mathcal{O}(n^2)$

$$2n + 100 \log n \in \mathcal{O}(n)$$
.

Constantes e multiplicadores são eliminados.

$$\triangleright 2^{n+2} + 4 \in \mathcal{O}(2^n)$$

$$4n^3 \notin \mathcal{O}(n^3)$$
.

Sempre considerar a representação mais simples.

▶
$$4n^2 + 2 \log n$$
 é $O(n^2)$, o que é melhor que $O(n^2 + \log n)$.

Exemplo I

Algoritmo sum_numbers(n1, n2):

```
# Soma dois números inteiros.
def sum_numbers(n1, n2):
    result = n1 + n2
    return result
}
```


Exemplo I

Algoritmo sum_numbers(n1, n2):

```
# Soma dois números inteiros.
def sum_numbers(n1, n2):
    result = n1 + n2
    return result
}
```

Análise:

- Linhas 3 e 4 executam operações de tempo constante;
- ightharpoonup Complexidade constante: $\mathcal{O}(1)$;
- Algoritmo de tempo constante.

Exemplo II

Algoritmo disjoint1(vA, vB, vC):

```
# Retorna true se não existe nenhum elemento comum nos três grupos.
# Cada vetor possui elementos distintos dentro de si.
def disjoint1(vA, vB, vC):
for a in vA:
for b in vB:
for c in vC:
    if a == b and b == c:
    return False
    return True
}
```


Exemplo II

Algoritmo disjoint1(vA, vB, vC):

```
# Retorna true se não existe nenhum elemento comum nos três grupos.

# Cada vetor possui elementos distintos dentro de si.

def disjoint1(vA, vB, vC):

for a in vA:

for b in vB:

for c in vC:

if a == b and b == c:

return False

return True

}
```

Análise:

- A operação constante da linha 7 é repetida $n \times n \times n = n^3$ vezes;
- ► Complexidade **cúbica**: $\mathcal{O}(n^3)$;
- ► Algoritmo de tempo cúbico.

Exemplo III

Algoritmo disjoint2(vA, vB, vC):

```
# Retorna true se não existe nenhum elemento comum nos três grupos.

# Cada vetor possui elementos distintos dentro de si.

def disjoint2(vA, vB, vC) {

for a in vA:

for b in vB:

if a == b:

for c in vC:

if a == c:

return False

return True

}
```


Exemplo III

Algoritmo disjoint2(vA, vB, vC):

```
# Retorna true se não existe nenhum elemento comum nos três grupos.

# Cada vetor possui elementos distintos dentro de si.

def disjoint2(vA, vB, vC) {

for a in vA:

for b in vB:

if a == b:

for c in vC:

if a == c:

return False

return True

}
```

Análise:

- ▶ Os laços das linhas 4 e 5 sempre são executados $\mathcal{O}(n^2)$;
- No máximo n pares são iguais (lin. 6), então o laço da linha 7 executa no máximo n vezes;

Complexidade quadrática: $\mathcal{O}(\mathfrak{n}^2)$.

Exemplo IV

Algoritmo repeat(c, n):

```
# Compõe uma string com o caractere c repetido n vezes.
def repeat(c, n):
    answer = ''
for i in range(n):
    answer += c
    return answer
}
```


Exemplo IV

Algoritmo repeat(c, n):

```
# Compõe uma string com o caractere c repetido n vezes.

def repeat(c, n):
    answer = ''
    for i in range(n):
        answer += c
    return answer
}
```

Análise:

- ▶ Strings são imutáveis em Python: o comando answer += c implica em criar uma nova string, copiar cada caractere da string antiga para ela, e acrescentar o caractere c;
- A linha 5 executa operações conforme o tamanho de answer: $1 + 2 + \cdots + n 1$;
- Logo, sua complexidade é $\sum_{i=0}^{n-1} i = n(n+1)/2$;
- ► Complexidade quadrática: $\mathcal{O}(n^2)$.

Exemplo V

Algoritmo unique1(data):

```
# Retorna true se não existe elemento duplicado no vetor.

def unique1(data):
    n = len(data)

for i in range(n - 1):
    for j in range(i + 1, n):
        if data[i] == data[j]:
        return False
return True
```


Exemplo V

Algoritmo unique1(data):

```
# Retorna true se não existe elemento duplicado no vetor.

def unique1(data):
    n = len(data)

for i in range(n - 1):
    for j in range(i + 1, n):
        if data[i] == data[j]:
        return False
return True
```

Análise:

- ▶ O laço interno é executado $(n-1) + (n-2) + \cdots + 2 + 1$ vezes;
- ► Complexidade quadrática: $\mathcal{O}(\mathfrak{n}^2)$.

Exemplo VI

Algoritmo unique2(int[] data):

```
# Retorna true se não existe elemento duplicado no vetor.
# 0 vetor é ordenado para verificar apenas elementos subsequentes.
def unique2(data):
    n = len(data)
    data.sort() # Operação em O(n log n)
    for i in range(n - 1):
        if data[i] == data[i + 1]:
            return False
        return True
```


Exemplo VI

Algoritmo unique2(int[] data):

```
# Retorna true se não existe elemento duplicado no vetor.
# O vetor é ordenado para verificar apenas elementos subsequentes.

def unique2(data):
    n = len(data)

data.sort() # Operação em O(n log n)

for i in range(n - 1):
    if data[i] == data[i + 1]:
        return False
    return True
```

Análise:

- ► A ordenação custa n log n e percorrer o vetor custa n;
- ► Complexidade $n \log n$: $n \log n + n \iff \mathcal{O}(n \log n)$.

Apêndice I

Definição formal da notação $\mathcal O$

Sejam f(n) e g(n) funções que mapeiam o tamanho da entrada no tempo de processamento, dizemos que f(n) é $\mathcal{O}(g(n))$ se existe uma constante real c>0 e uma constante inteira $n_0\geq 1$ tais que $f(n)\leq cg(n)$ para todo inteiro $n\geq n_0$.

Apêndice I

Definição formal da notação $\mathcal O$

Sejam f(n) e g(n) funções que mapeiam o tamanho da entrada no tempo de processamento, dizemos que f(n) é $\mathcal{O}(g(n))$ se existe uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tais que $f(n) \le cg(n)$ para todo inteiro $n \ge n_0$.

Na prática:

- Se f(n) é $\mathcal{O}(g(n))$, então f(n) é "menor ou igual" a g(n) a medida que n cresce.
- Com isso, g(n) é um limite superior para f(n).
- ightharpoonup Ou seja, f(n) é tão boa quando g(n).

Apêndice I

Definição formal da notação $\mathcal O$

Sejam f(n) e g(n) funções que mapeiam o tamanho da entrada no tempo de processamento, dizemos que f(n) é $\mathcal{O}(g(n))$ se existe uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tais que $f(n) \le cg(n)$ para todo inteiro $n \ge n_0$.

Na prática:

- Se f(n) é $\mathcal{O}(g(n))$, então f(n) é "menor ou igual" a g(n) a medida que n cresce.
- Com isso, g(n) é um limite superior para f(n).
- ightharpoonup Ou seja, f(n) é tão boa quando g(n).

Exemplo: a função $T(n) = 7n - 2 \in \mathcal{O}(n)$.

Para c = 7 e $n_0 = 1$, temos que $7n - 2 \le cn$, para todo $n \ge n_0$. Logo T(n) é $\mathcal{O}(n)$.

Apêndice II

Notações \mathcal{O} , Θ e Ω

Notação O (majorante)

Se f(n) é $\mathcal{O}(g(n))$, então cg(n) é um limite superior para f(n). Ou seja, f(n) não é pior que cg(n).

Apêndice II

Notações \mathcal{O} , Θ e Ω

Notação O (majorante)

Se f(n) é $\mathcal{O}(g(n))$, então cg(n) é um limite superior para f(n). Ou seja, f(n) não é pior que cg(n).

Notação Ω (minorante)

Se f(n) é $\Omega(g(n))$, então cg(n) é um limite inferior para f(n). Ou seja, f(n) não é melhor que cg(n).

Apêndice II Notações \mathcal{O} , Θ e Ω

Notação \mathcal{O} (majorante)

Se f(n) é $\mathcal{O}(g(n))$, então cg(n) é um limite superior para f(n). Ou seja, f(n) não é pior que cg(n).

Notação Ω (minorante)

Se f(n) é $\Omega(g(n))$, então cg(n) é um limite inferior para f(n). Ou seja, f(n) não é melhor que cg(n).

Notação ⊖ (limite "apertado" – majorante e minorante)

Se f(n) é $\Theta(g(n))$, então $c_1g(n)$ é um limite inferior para f(n) e $c_2g(n)$ é um limite superior para f(n). Ou seja, f(n) é igual a cg(n).

Apêndice III

Notações e suas relações

Detalhes:

- ▶ $f(n) \notin \Theta(g(n)) \iff f(n) \notin \mathcal{O}(g(n)) \in f(n) \notin \Omega(g(n)).$
- ▶ $f(n) \notin \Theta(g(n)) \iff g(n) \notin \Theta(f(n))$.
- ▶ $f(n) \notin \mathcal{O}(g(n)) \iff g(n) \notin \Omega(f(n))$.

