Word2vec Enhanced BLEU

John Morgan

University of Maryland

MT Evaluation

What is the Problem?

perfect translations get low BLEU scores

ha vueilto el miedo fear has returned fear is back

Table: Example of a source sentence in Spanish, one reference, and a perfect translation that receives a low BLEU score.

What is the Cause?

- paucity of references
- sentences can have billions of translations
- only 1 reference

BLEU Solutions

- designed assuming four references
- incorporates features to capture variations of references
- does not require an exact match for entire sentence
- allocates credit to sub-sentence segments
- \blacksquare matches of overlapping n-grams for $1 \le n \le 4$

Other Solutions

- METEOR
- adds stem, synonym, and paraphrase matches TERP
- - uses minimum edit distance to score translations
 - compares paraphrases
 - grounded in human judgements
- HyTER
- employs human annotators
- write alternative translations
- phrases compiled into Recursive Transition Networks
- Encodes exponential number of references
- disadvantage: requires prohibitively large amount of human labor

NGram Similarity

What We Did

- build three enhanced BLEU metrics
- one metric yields boost in scores relative to BLEU
- provide scores for *n*grams that do not have exact matches in reference

How did we do it?

- use similarity measure defined in semantic vector space
- vector space generated by word2vec
- word2vec embeds words into vector space
- similarities given by word2vec
- extend similarity function from words to phrases
- average vectors
- compute similarities between phrases
- used pre-trained vectors available on word2vec webpage
- **300** dimensional vectors
- CBOW embedding

3 similarity methods

Scalar BLEU:

operates on word pairs

Vector BLEU:

operates on pairs of n-grams for $1 \le n \le 4$

Cross BLEU:

operates on pairs of j and k-grams for $1 \le j, k \le 4$

V BLEU	X BLEU			
$\text{sys} \rightarrow \text{ref}$	$sys \to ref$			
$1 \rightarrow 1$	$1 \rightarrow 1234$			
$2 \rightarrow 2$	$2 \rightarrow 1\ 2\ 3\ 4$			
$3 \rightarrow 3$	$3 \rightarrow 1234$			
$4 \rightarrow 4$	$4 \rightarrow 1234$			

Table: Comparisons of *n*-grams in V and S BLEU.

General

Goals

■ improve BLEU

- attack paucity of references problem
- generate references equivalent to given reference

Desired features in improved BLEU metric

- assign credit to approximate matches
- assign credit to output similar in meaning to input
- adapt easily to new language pair
- require little or no human labor for annotation
- require few NLP resources
- assign reasonable scores to partial output
- measure interactive incremental translation quality
- measure quality of partial inputs

Thresholding

Why Threshold?

- many non-exact matches get non-zero similarity
- large portion of matches are spurious

metric	0	70	80	90	95
S BLEU	19.41	19.40	19.40	19.40	19.40
V BLEU	19.57	19.51	19.47	19.41	19.40
X BLEU	41.11	31.96	25.27	20.74	19.54
BI FII	19.40	19.40	19.40	19.40	19.40

Table: Scores by metrics at different thresholds.

BLEU Enhancements

BLEU and New Metrics

- loop over ngrams in system output and reference
- match count accumulated for four precision computations
- add 1 to count if match

BLEU

add **0** for non-match

New Metrics

- compute similarities
- between non-matches and remaining reference *n*grams
- add maximum similarity instead of **0**