静态随机访问存储器: SRAM

高速缓存 Caches

- ■静态随机访问存储器(SRAM)
 - 静态: 内容持续保持 (直至 断电)
 - 昂贵,访问速度快
 - 功耗高

静态随机访问存储器 SRAM

SRAM 一般使用六个晶体管表示一个存储位.

晶体管(晶体三极管)实现非门

当输入为高电平+5 V时,

- 基极(b)与发射极(e)间U_{be}>
 0.7V,三极管Q1导通,
- 输出点电压为Q1的集电极 (c) 和发射极(e) 之间的压降,即 0.3V,输出为数字量0;

当输入为低时,

- Q1集电极 (c) 和发射极(e)之间未导通,
- 输出电压为上拉的电压, +5V, 即数字量1

六管SRAM存储器(SRAM Cell)

SRAMs 一般使用六个晶体管表示一个存储位.

- 两个非门输入输出端耦合
- T₁ T₂ 工作管, 耦合连接
- T₃ T₄ 负载管
- T₅ T₆ X向门控管
- T₇ T₈ Y向门控管

六管SRAM存储器读操作

── 低电位 【 → 导通状态 ── 高电位

六管SRAM存储器写操作

位存储体封装

- X为行(字)选择线
- Y为列(位)选择线
- D为数据输输入出口

存储矩阵

64x64 存储矩阵

4k*4位存储体

4k*1位 的存储矩阵, 有4个

4k*4位存储体

双译码方式

n位地址,

寻址2ⁿ个存储单元

需要 2*2^{n/2}根译码线[□]

例如:

12位地址,

寻址4096=212个存储单元

只需要: 2*64根译码线

X方向: 64根

Y方向: 64根

单译码方式

例如:

12位地址,

寻址 4096=212个存储单元

需要: 4096根译码线

n位地址,寻址2ⁿ个存储单元,2ⁿ根译码线

静态随机访问存储器芯片结构

小结

- SRAM: 六个晶体管构成一个存储位
- •密度低、功耗大、成本高
- 存储阵列
- •双译码
- ■静态RAM芯片结构