A Load Balancing Problem

- ightharpoonup We are given n items to be placed in m bins
 - ▶ Item *i* has positive integer weight w_i , $1 \le i \le n$
 - ► We wish to assign each item to a bin in a way that minimizes the maximum bin load
 - Remark: The "load" of a bin is the total weight of the items assigned to it
- We will prove that the decision version of this problem, call it BALANCE, is NP-complete
 - ▶ Given a threshold *B*, is there a way to assign the items to the bins so that every bin has load at most *B*?
 - It is easy to argue that BALANCE belongs to NP

The Subset Sum Problem

- ▶ In the SUBSET SUM problem, we are given n integers x_1, \ldots, x_n and an integer target T, and we wish to determine whether there is a subset I of $\{1, \ldots, n\}$ such that $\sum_{i \in I} x_i = T$
- ▶ It is easy to argue that SUBSET SUM belongs to NP
- The text uses a reduction from 3-SAT to prove that SUBSET SUM is NP-complete

The Partition Problem

▶ In the PARTITION problem, we are given n positive integers x_1, \ldots, x_n , and we wish to determine whether there is a subset I of $\{1, \ldots, n\}$ such that

$$\sum_{i \in I} x_i = \sum_{i \in \{1, \dots, n\} \setminus I} x_i = \frac{1}{2} \sum_{1 \le i \le n} x_i$$

- It is easy to see that PARTITION belongs to NP
- ► We will use a reduction from SUBSET SUM to prove that PARTITION is NP-complete

A Reduction from SUBSET SUM to PARTITION

- Let X be an instance of SUBSET SUM with positive integers x_1, \ldots, x_n and target T
 - ▶ Let *S* denote $\sum_{1 \le i \le n} x_i$
 - ▶ Since target T is effectively the same as target S-T, we can assume without loss of generality that $T \ge S/2$
 - ▶ If T = S/2 then X corresponds directly to an instance of PARTITION (simply drop the target T), so we can assume that T > S/2
- ▶ Let *Y* denote the PARTITION instance with n+1 positive integers x_1, \ldots, x_{n+1} where $x_{n+1} = 2T S$
- ▶ We claim that X is a positive instance of SUBSET SUM if and only if Y is a positive instance of PARTITION

"Only If" Direction

- Assume that X is a positive instance of SUBSET SUM
- ▶ Hence there is a subset A of $\{1, ..., n\}$ such that $\sum_{i \in A} x_i = T$
- ▶ Let B denote $\{1, \ldots, n+1\} \setminus A$
- ► Thus $\sum_{i \in B} x_i = (S T) + (2T S) = T$
- ► Thus Y is a positive instance of PARTITION

"If" Direction

- Assume that Y is a positive instance of PARTITION
- ▶ Thus we can partition $\{1, ..., n+1\}$ into two sets A and B such that $\sum_{i \in A} x_i = \sum_{i \in B} x_i = [S + (2T S)]/2 = T$
- ▶ Assume without loss of generality that n+1 belongs to B
- ▶ Thus A is a subset of $\{1, ..., n\}$ such that $\sum_{i \in A} x_i = T$
- ▶ Thus X is a positive instance of SUBSET SUM

A Reduction from PARTITION to BALANCE

- Let X be an instance of PARTITION with positive integers x_1, \ldots, x_n
 - ▶ Let *S* denote $\sum_{1 \le i \le n} x_i$
 - ightharpoonup We can assume without loss of generality that S is even
- Let Y be the instance of BALANCE with item weights x_1, \ldots, x_n , m = 2 bins, and threshold B equal to S/2
- Observe that X is a positive instance of PARTITION if and only if Y is a positive instance of BALANCE
- ► Thus BALANCE is NP-complete, even in the special case m = 2

The Class of NP-Hard Problems

- We say that a problem X is NP-hard if existence of a polynomial-time algorithm for X implies that P = NP
 - ▶ Importantly, the problem X need not be a decision problem
 - For example, the problem of determining a maximum independent set of a graph is NP-hard
- ▶ It is easy to see that the load balancing problem is NP-hard
- ▶ It is natural to seek approximation algorithms for such NP-hard optimization problems

Approximation Algorithms for Optimization Problems

- We typically seek approximation algorithms achieving a good approximation ratio
 - For a minimization problem, we say that an algorithm achieves an approximation ratio of α if it is guaranteed to produce a solution with objective function value at most α times optimal
 - For a maximization problem, we say that an algorithm achieves an approximation ratio of α if it is guaranteed to produce a solution with objective function value at least $1/\alpha$ times optimal
 - ► Thus the approximation ratio is at least 1, and an optimal algorithm achieves an approximation ratio of 1

Approximability of NP-Hard Optimization Problems

- Given an NP-hard optimization problem, we seek to design an approximation algorithm with an approximation ratio as close to 1 as possible
- As we have seen, many NP-complete decision problems have an associated NP-hard optimization version
 - It turns out that these optimization problems vary widely in terms of polynomial-time approximability
 - ▶ For example, in some cases we can give a polynomial-time algorithm that achieves an approximation ratio of $1+\varepsilon$ for any constant $\varepsilon>0$
 - In other cases we can show that for any $\varepsilon>0$, no polynomial-time algorithm achieves an approximation ratio of $n^{1-\varepsilon}$ unless $\mathsf{P}=\mathsf{NP}$

Greedy Approximation Algorithms

- For many NP-hard optimization problems, we can use a simple greedy algorithm to achieve a good approximation ratio
- Today we will analyze two greedy algorithms for the load balancing problem
- ► The first of these two algorithms, which we denote A, processes each successive item (from 1 to n) by placing it in a least-loaded bin
 - We will prove that algorithm A achieves an approximation ratio of 2
- ► The second algorithm, denoted B, is the same as A except that it processes the items in nonincreasing order of weight
 - ▶ We will prove that algorithm ${\cal B}$ achieves an approximation ratio of 4/3

Algorithm A: An Upper Bound of 2

- ► Fix an instance of the load balancing problem, and let L* denote the minimax bin load
- ▶ Suppose that at some step of algorithm A, we add an item i with weight w to a bin j with load L
 - After this step, bin j has load L + w
 - Since L is the minimum load before the step, the total weight of the items is at least mL and hence $L \leq L^*$
 - ▶ Since item *i* needs to be placed in some bin, we have $w \le L^*$
 - ▶ Hence $L + w \le 2L^*$
 - lacktriangle Thus algorithm ${\cal A}$ achieves an approximation ratio of 2

Algorithm A: A Lower Bound of $2 - \varepsilon$

- Consider an instance with n = k(k+1) + 1 items and m = k+1 bins where $w_i = 1$ for $1 \le i \le k(k+1)$ and $w_n = k+1$
- ▶ After algorithm A has processed the first k(k+1) items, each bin has a load of k
 - ▶ Thus, after the last step, the max bin load is 2k + 1
- ▶ It is possible to achieve a max bin load of k + 1
 - Use one bin to hold the item of weight k+1
 - Use each of the remaining k bins to hold k+1 unit-weight items
- ▶ For any constant $\varepsilon > 0$, we can ensure that the approximation ratio exceeds 2ε by choosing k sufficiently large

Algorithm \mathcal{B} : An Upper Bound of $\frac{3}{2}$

- ▶ Fix an instance of the load balancing problem, and let L^* denote the minimax bin load
- ▶ Suppose that at some step of algorithm \mathcal{B} , we add an item i with weight w to a bin j with load L
 - After this step, bin j has load L + w
 - ▶ If L = 0, then $L + w = w \le L^*$
 - Now assume L > 0
 - ▶ There are at least m+1 jobs with weight at least w
 - ▶ Hence $2w \le L^*$, so $w \le L^*/2$
 - ▶ Since $L \le L^*$, we conclude that $L + w \le (3/2)L^*$

- Fix an instance of the load balancing problem, and let L* denote the minimax bin load
- ▶ Assume without loss of generality that $w_1 \ge ... \ge w_n$
- ▶ We say that item *i* is heavy if $w_i > L^*/3$, and is light otherwise
- ▶ Let *h* denote the number of heavy items
- Claim 1: No optimal solution puts more than two heavy items into the same bin
 - ▶ The load of a bin with three heavy items exceeds *L**
- ▶ Claim 2: h < 2m</p>
 - ▶ Immediate from Claim 1

- Partition the execution of algorithm \mathcal{B} into a "heavy phase", in which we place the heavy items w_1, \ldots, w_h , and a "light phase", in which we place the remaining items
- ▶ Suppose that at some step of algorithm \mathcal{B} during the light phase, we add an item i with weight w to a bin j with load L
 - ▶ Since $L \le L^*$ and $w \le L^*/3$, we have $L + w \le (4/3)L^*$
- It remains to consider the heavy phase
 - ► Let *L*** denote the minimax load for the subinstance with *m* bins and only the *h* heavy items
 - ▶ Thus $L^{**} \leq L^*$

- ▶ In what follows, we complete the proof by establishing the following result
- ► Lemma 1: At the end of the heavy phase, the max bin load is L**
- ▶ By Claim 2, $h \le 2m$
- ▶ If $h \le m$, it is easy to see that the claim of Lemma 1 holds
- ▶ For the remainder of the proof, assume that h = m + s where $1 \le s \le m$
- ▶ We partition the *h* heavy items into three sets
 - ▶ The set A of items 1 through m s
 - ▶ The set B of items m s + 1 through m
 - ▶ The set C of items m+1 through m+s

- Let \mathcal{X}^* denote the set of all ways to assign the heavy items to the bins such that the max bin load is L^{**}
 - ► These are the optimal solutions to the *m*-bin subinstance corresponding to the heavy items w_1, \ldots, w_h
 - We know that no such assignment places more than two items in the same bin
- Let \mathcal{X} denote the set of all ways to assign the heavy items to the bins such that there are at most two items in each bin
- ightharpoonup Our plan is to use a series of exchange arguments to prove that the assignment produced by the heavy phase of algorithm $\mathcal B$ belongs to $\mathcal X^*$

- ▶ We say that an assignment in X is A-nice if for any item i in A, no other item is assigned to the same bin as item i
- ▶ Claim 3: There is an A-nice assignment in X*
 - Let σ be an assignment in \mathcal{X}^*
 - ▶ If σ is not A-nice, then some item i in A shares a bin with another item i', while some item i'' in $B \cup C$ has its own bin
 - ▶ The max load does not increase if we modify σ by moving item i' to the bin with item i''
 - ► This modification reduces by 1 the number of items in *A* that share a bin with another item
 - ightharpoonup We can repeat this argument until we reach an A-nice assignment in \mathcal{X}^*

- We say that an assignment in \mathcal{X} is B-nice if no two items in B are assigned to the same bin
- ▶ Claim 4: There is an assignment in \mathcal{X}^* that is A-nice and B-nice
 - ▶ By Claim 3, there is an A-nice assignment σ in \mathcal{X}^*
 - ▶ If σ is not B-nice, then there are items i_0 and i_1 in B that share a bin, and items i_2 and i_3 in C that share a bin
 - ▶ The max load does not increase if we modify σ by exchanging items i_1 and i_3 ; moreover, the modified assignment is A-nice
 - ightharpoonup We can repeat this argument until we reach an assignment in \mathcal{X}^* that is A-nice and B-nice

- Observe that if an assignment in X is A-nice and B-nice, then each of the s items in B shares a bin with one of the s items in C
- ▶ We say that an assignment in \mathcal{X} is nice if it is A-nice, B-nice, and for every pair of items i and i' in B such that $w_i > w_{i'}$, we have $w_j \leq w_{j'}$ where item j (resp., j') in C shares a bin with item i (resp., i')
- Claim 4: Any two nice assignments in X have the same distribution of bin loads
 - Each item in A has its own bin
 - ► Each of the remaining bins contains one item from *B*
 - ▶ The *i*th heaviest item in *B* is paired with the *i*th lightest item in *C* (under some tie breaking) for $1 \le i \le s$

- ▶ Claim 5: There is a nice assignment in X*
 - ▶ By Claim 3, there is an assignment σ in \mathcal{X}^* that is A-nice and B-nice
 - ▶ If σ is not nice, there are items i and i' in B such that $w_i > w_{i'}$ and $w_j > w_{j'}$ where item j (resp., j') in C shares a bin with item i (resp., i')
 - ▶ The max load does not increase if we modify σ by exchanging items j and j'; moreover, the modified assignment is A-nice and B-nice
 - \blacktriangleright We can repeat this argument until we reach a nice assignment in \mathcal{X}^*

- It is easy to see that algorithm \mathcal{B} produces a nice assignment in \mathcal{X} at the end of the heavy phase
- ▶ By Claims 4 and 5, we conclude that $\mathcal B$ produces an assignment in $\mathcal X^*$ at the end of the heavy phase
- This completes the proof of Lemma 1

Algorithm \mathcal{B} : A Lower Bound of $\frac{4}{3} - \varepsilon$

Exercise: As in the $2-\varepsilon$ lower bound argument for algorithm \mathcal{A} , identify a suitable family of "bad" instances for algorithm \mathcal{B}