	In Mass Questions 91.2 Page No. Date: / /201
	the we proof by contractiction. Shope the
7,	and $ab=n$.
	de $> \sqrt{n} > \sqrt{n} \sqrt{n} = n$ Hence, $ab > n$
	This is a contradiction. I Therefore either or b must be $\leq \sqrt{n}$.
	2
	The proof is some on for $\sqrt{3}$ will live modifications replace 2 by 3 and is even by divisible by 3.
Hore	Some generalizations: For any m, K>0 in m' is develle la a hrime number, then m must be divisible
Semond	for any possible enleger n k \square n mest
Jemma Jemma	sofficients are altron integral or irrational. (broken 1.15) solution below
(a)	If me is not an min hower of an invalind, lecause it
	inleger la son son son de mar le irrational :

	Date: / /201
(b)	We we pool by contradiction. A Suppose, a non-integral rational root exist. Them it can be written as of where mand of
	have no common divisors except 1 and -1, d=0,1
	$a_0 + a_1(\frac{\eta}{d}) + a_2(\frac{\eta}{d})^2 + \dots + a_{m-1}(\frac{\eta}{d})^{m-1} + (\frac{\eta}{d})^m = 0$ Mulliphying by d^m on both sides
	Qu'de durde d'en la mo la cours
	hence contradection (a > ± 0) lase 2: m ≠ 0: Since d ≠ 0, i some prime p divides it. Some plane, it divide all payers
	Then e directes of all and mily of all integer
	Since p divides as of and many amount of a lower of a factor of some hower of
	an integer, then it is a factor of the integer. This is a combinedation to the fact that
	tence any road root is other integral
Patricular II	

Page No.

	Page No. Date: / /201
	3
	The proof is by rase analysis. There are 2
	Cue 1: $\sqrt{2}$ is rational Consider $a = \sqrt{2}$, $b = \sqrt{2}$.
	Then a is rational while a and b are loth wrodonal. I Hence, we have found the required numbers to prove the hypothese
	Cose 2 = $\sqrt{2}$ is positional consider $a = \sqrt{2}$, $b = \sqrt{2}$ Then $a^b = (\sqrt{2})^{\sqrt{2}} = \sqrt{2}^2 = 2$ is radional. Hence, the hypothesis is proved an this
	score los.
	So in any case there exist a b \(\epsi R \ \Q \).
	4
	The use proof by combractiction Suppose. 2/09, 3 is reasoned. Them 2/09, 3 = 7 where n, d G Z/d = 0
	and in is lowest lerms
	Them $ 0\rangle_2 = 2 \Rightarrow 3 = 2^{\frac{2}{2}} \Rightarrow 3^{\frac{2}{2}} = 2^{\frac{1}{2}}$
	This is impossible as LHS is deverall by 3.
	The is a contradiction. Therefore, 2/0423 is
	voialiona
11	