A. Identitas Diri

1.	Nama Lengkap	Dr. Hepi Ludiyati, S.T., M.T.
2.	Jenis Kelamin	Perempuan
3.	Program Studi	Teknik Telekomunikasi
4.	NIP/NIDN	19720426 200112 2001 / 0026047201
5.	Tempat dan Tanggal Lahir	Jatiwangi, 26 April 1972
6.	Alamat Email	hepi.ludiyati@polban.ac.id
7.	Nomor Telepon/Hp	082120004027

B. Riwayat Pendidikan

Gelar	D-3	S-1	S-2	S-3
Akademik				
Nama Institusi	Politeknik Institut Teknologi Bandung	Institut Teknologi Bandung	Institut Teknologi Bandung	Institut Teknologi Bandung
Jurusan/Prodi	Teknik Elektro- Telekomunikasi	Teknik Elektro- Telekomunikasi	Teknik Elektro- Sistem Telekomunikasi dan Informasi	Sekolah Tinggi Teknik Elektro dan Informatika
Tahun Masuk-Lulus	1991-1994	1996-1999	2001-2004	2012- 2018

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/ Pengajaran

No.	Nama Mata Kuliah	Wajib/ Pilihan	SKS
1.	Teknik Transmisi	Wajib	3 SKS
2.	Antena dan Propagasi	Wajib	3 SKS
3.	Medan Elektromagnetik	Wajib	2 SKS
4	Elektromagnetika	Wajib	3 SKS
	Telekomunikasi		

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1.	Rancang Bangun Purwarupa	Kemenristek-Dikti	2017
	Material Dielektrik Artifisial dan	Penelitian Disertasi	
	Aplikasinya untuk Perangkat	Doktor	
	Gelombang Mikro		

2	Rancang Bangun Antena Plannar	Penelitian Mandiri	2018
	Pada Frekuensi UHF Menggunakan	DIPA Polban	
	Substrat Dielektrik Artifisial		
	dengan Memanfaatkan Limbah		
	Styrofoam		

C.3. Pengabdian Kepada Masyarakat

No	Judul Kegiatan	Tahun
•		
1	Pendampingan untuk Penataan Ulang dan Pelatihan Perencanaan, Instalasi, Pengoperasian dan Perawatan Sound System di Mesjid Al-Mujahidin Desa Tanimulya, Kabupaten Bandung Barat	2018

C.4 Daftar Publikasi

No	Judul	Urutan Penulis	Jenis Paper/ Tanggal	Tahun Publikasi	Nama Prosiding/Jumal
1	Artificial Circular Dielectric Resonator	Penulis ke-2	Prosiding Internasional	2012	7th International Conference on Telecommunication
	with Resonant Mode Selectability		30-31 Oktober 2012		Systems, Services, and Applications (TSSA)
2	Basic Theory of Artificial Circular Resonator	Penulis ke-1	Prosiding Internasional	2013	${\it 3rd International Conference on Instrumentation, Communications,}$
	Encapsulated in a Circular Waveguide and Its		07-Nov-13		Information Technology, and Biomedical Engineering (ICICI-BME)
	Theoretical Analysis				
3	TM Wave Mode Analysis of Circular Dielectric	Penulis ke-1	Prosiding Internasional	2014	Progress in Electromagnetic Research Symposium (PIERS)
	Resonator with Anisotropic Permittivity		25-28 Agustus 2014		Proceedings, Guangzhou, China
4	Effect of Material Thicknes on Resonant Characteristics	Penulis ke-1	Prosiding Internasional	2015	10th International Conference on Telecommunication
	of Anisotropic Artificial Circular Dielectric Resonator		30-31 Nov 2015		Systems, Services, and Applications (TSSA)
5	FDTD Method for Property Analysis of Waveguide	Penulis ke-1	Prosiding Internasional	2016	Progress In Electromagnetic Research Symposium (PIERS),
	Loaded Artificial Circular Dielectric Resonator with		8–11 August 2016		Shanghai, China
	Anisotropic Permittivity				
6	Theoretical Analysis of Resonant Frequency	Penulis ke-1	Jurnal Internasional	2017	International Journal on Electrical Engineering and Informatics
	for Anisotropic Artificial Circular Dielectric Resonator				Volume 9, Number 2, June 2017
	Encapsulated in Waveguide				
	Performance Analysis of Microstrip Circular Patch				
7	Antenna Composed of Artificial Dielectric Material	Penulis ke-1	Prosiding Internasional	2018	13th International Conference on Telecommunication
			4-5 Oktober 2018		Systems, Services, and Applications (TSSA)
8	Miniaturisasi Dimensi Antena Mikrostrip Lingkaran	Penulis ke-1	Prosiding Nasional	2018	Seminar Nasional Teknik Elektro 2018 (Senter 2018)
	Menggunakan Material Dielektrik Artifisial		1 Desember 2018		UIN Sunan Gunung Jati Bandung
	Berbahan Styrofoam Termodifikasi				
9	Analisa Karakteristik Antena Mikrostrip	Penulis ke-1	Prosiding Nasional	2018	Seminar Nasional Teknik Elektro 2018 (Senter 2018)
	Lingkaran Berbahan Substrat Material Dielektrik		1 Desember 2018		UIN Sunan Gunung Jati Bandung
	Artifisial pada Frekuensi 1800 MHz				
10	Experimental Approach of	Penulis ke-1	Prosiding Internasional	2018	IEEE International RF and Microwave Conference
	Resonant Frequency Lowering Using ADM for		17-19 Desember 2018		Penang, Malaysia
	Microstrip Circular Patch Antenna				
11	Compact X-Band SIW Antenna with Reduced Size	Penulis ke-3	Prosiding Internasional	2018	IEEE International RF and Microwave Conference
	Using CSRR Incorporation		17-19 Desember 2018		Penang, Malaysia

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Bandung, 01 April 2019

(Dr. Hepi Ludiyati, S.T., M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan

Material	Volume	Harga Satuan (Rp)	Nilai (Rp)
Toolset Mekanik Krisbow Advance	2 set	500.000	1000.000
Gunting tembaga	1 buah	60.000	60.000

Mata bor SUB TOTAL (450.000 2.200.000		
Paralon 1.5 inchi	5 meter	20.000	100.000
Glue Gun Sanfix	2 Set	70.000	140.000
Jangka Sorong Digital	1 buah	200.000	200.000
Bor tangan	1 buah	250.000	250.000

1. Bahan Habis Pakai

Material	Volume	Harga Satuan (Rp)	Nilai (Rp)
Material Floral foam	10 buah	60.000	600.000
Konektor SMA	25 buah	60.000	1.500.000
Plat Tembaga	9	160.000	1.440.000
	lembar		
ATK (Solatipe, Double tipe, Lem Aibon, Super Glue)	1 Set	50.000	50.000
Casing akrilik	10 buah	150.000	1.500.000
Kabel koaksial	5 buah	100.000	500.000
Kawat tembaga	5 meter	70.000	350.000
SUB TOTAL (5.940.000		

3. Perjalanan

Material	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Transportasi Pembelian alat	8 kali perjalanan	40.000	320.000

Transportasi Pengukuran	3 kali	40.000	120.000
dan pengujian Alat	perjalanan		
Transportasi Survei	2 kali	25.000	50.000
komponen	perjalanan		
Ongkos kirim barang	5 kali	30.000	150.000
Transportasi National	3 Lot	100.000	300.000
Conference (dalam kota)			
SUB TOTAL	940.000		

4. Lain-lain

Material	Volume	Harga Satuan (Rp)	Nilai (Rp)		
Kertas A4 80gr	1 Rim	60.000	60.000		
Tinta	1 Set	200.000	200.000		
Materai 6000	4 buah	7.000	28.000		
DVD RW	10 Buah	15.000	150.000		
Pencetakan PCB	6 buah	40.000	240.000		
Pemotongan dan pelubangan tembaga	2 kali	200.000	400.000		
Pengukuran / pengujian alat	3 kali	150.000	450.000		
Publikasi	1 kali	1.000.000	1.000.000		
SUB TOTA	2.528.000				
TOTAL	11.608.000				
(Sebelas juta enam ratus delapan ribu rupiah)					

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

				Alokasi		
No Nama/ NIM	Program	Bidang	Waktu			
NO	No Nama/NiM	Studi	Ilmu	(jam/mi	Uraian Tugas	
				nggu)		
1.	Indah Fitri Nurikhsani (171331047)	D3- Teknik Telekom unikasi	Teknik Telekom unikasi	10 jam	Administrasi dan Pembuatan Miniaturisasi Perangkat Antena dengan Material Elektromagnetik Berbahan Dasar <i>Floral</i> <i>foam</i> alami	
2.	Nurfiana (161331024)	D3- Teknik Telekom unikasi	Teknik Telekom unikasi	10 jam	Pembuatan Miniaturisasi Perangkat Antena dengan Material Elektromagnetik Berbahan Dasar <i>Floral</i> <i>foam</i> alami dan Material Elektromagnetik Inovatif Berbahan Dasar <i>Floral</i> <i>foam</i> termodifikasi mode TM ₂₁	
3.	Muchamad Ilham Fakhri (181331049)	D3- Teknik Telekom unikasi	Teknik Telekom unikasi	10 jam	Pembuatan Miniaturisasi Perangkat Antena dengan Material Elektromagnetik Inovatif Berbahan Dasar Floral foam termodifikasi mode TM ₂₁	

Lampiran 4. Surat Pernyataan Ketua Pelaksana

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI BANDUNG

Jalan Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889 Homepage: www.polhan.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN KETUA PELAKSANA

Yang berranda tangan di bawah ini:

Nama

: Indah Fitri Nurikhsani

MIM

: 171331047

Program Studi

: D-3 Teknik Telekomunikasi

Jurusan

: Teknik Elektro

Dengan ini menyatakan bahwa proposal Pekan Kreativitas Mahasiswa Penelitian saya dengan judul "Rekayasa Elektromagnetik untuk Meningkatkan Permitivitas Floral Foam dalam Miniaturisasi Antena Altimeter Pesawat" yang diusulkan untuk tahun anggaran 2019 adalah bersifat orisinal dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Mengetahui.

TENHOLOGI, DAN

Ketua Jurusan Teknik Elektro,

NIP.19770714 2006041001

Bandung, 4 Januari 2019

Yang menyatakan,

TERAL TRIPLES OF THE PROPERTY OF THE PROPERTY

(Indah Fitri Nurikhsani) NIM.171331047

Lampiran 5 Gambaran Teknologi yang diterapkembangkan

Lampiran 5.1 Blok diagram Gambaran Rekayasa Elektromagnetik pada Antena Mikrostrip persegi untuk altimeter pesawat

Pada perelisasian proyek ini, pengusul memfokuskan untuk merealisasikan antena *receiver* (penerima). Pada gambar blok diagram diatas menjelaskan bahwa input antena berupa Spektrum Gelombang Elektromagnetik yang bersumber dari Signal Generator. Input ini akan masuk melalui *feeder*, yaitu titik pencatuan. *Feeder* atau pencatuan tersambung dari input penerima, teknik pencatuan yang digunakan pada antena yang dibuat adalah teknik pencatuan *proximity coupling* karena jenis pencatuan ini adalah pencatuan yang paling cocok untuk antena mikrostrip *patch* persegi. Sinyal yang berasal dari saluran input akan disesuaikan dengan impedansi antena melalui bagian *matching network* pada antena. Sinyal masuk ke *matching network* untuk meningkatkan *bandwidth* dari antena, dan kemudian gelombang elektromagnetik diradiasikan oleh radiator antena yang berbentuk *patch* persegi.

Lampiran 5.2 Spesifikasi Teknis Antena Receiver (Penerima) yang diinginkan

Adapun spesifikasi Antena receiver yang diinginkan sebagai berikut:

- 1. Frekuensi kerja 4200MHz untuk pengaplikasian pada altimeter pesawat.
- 2. Impedansi system yang digunakan sebesar 50Ω
- 3. Return Loss ≥10 dB
- 4. $VSWR \le 1.5$

Lampiran 5.3 Model purwarupa material

a) Model purwarupa material TM₁₁

Gambar 1 (a) Rancangan purwarupa material $TM_{11}(b)$ medan elektromagnetik pada TM_{11}

Pada gambar diatas merupakan contoh rekayasa elektromagnetik model purwarupa material TM_{11} . Dari gambar terlihat posisi kawat konduktor tipis diletakkan pada posisi substrat yang memiliki medan elektromagnetik terbesar. Pada pola TM_{11} terletak ditengah tengah, sehingga didapatkan nilai permitivitas relatif maksimum pula.

b) Model purwarupa material TM₂₁

Gambar 2 (a) Rancangan purwarupa material TM₂₁ (b) medan elektromagnetik pada TM₂₁ (c) posisi kawat konduktor tipis yangditembuskan tegak lurus pada substrat Pada gambar diatas merupakan contoh rekayasa elektromagnetik model purwarupa material TM₂₁. Dari gambar terlihat posisi kawat konduktor tipis diletakkan pada posisi substrat yang memiliki medan elektromagnetik terbesar. Pada pola TM₂₁ terletak ditengah tengah ujung kanan dan kiri, sehingga didapatkan nilai permitivitas relatif maksimum pula

c) Model purwarupa material TM₃₁

Gambar 3 (a) Rancangan purwarupa material TM_{31} (b) medan elektromagnetik pada TM_{31}

Pada gambar diatas merupakan contoh rekayasa elektromagnetik model purwarupa material TM₃₁. Dari gambar terlihat posisi kawat konduktor tipis diletakkan pada posisi substrat yang memiliki medan elektromagnetik terbesar.

Lampiran 5.4 Gambaran miniaturisasi Rekayasa Elektromagnetik pada Antena Mikrostrip persegi untuk altimeter pesawat

a. Perancangan Antena Mikrostrip dengan Material Elektromagnetik *Floral Foam* Murni

Gambar 4 Antena Mikrostrip Persegi dengan Material Elektromagnetik *Floral Foam* Murni

Pada gambar diatas merupakan rancangan antena mikrostrip persegi dengan menggunakan substrat dielektrik *Floral foam* murni yaitu substrat dielektriknya tidak ditusukan kawat tembaga sehingga memiliki nilai permitivitas asli *Floral foam*. Antena ini digunakan sebagai pembanding dengan antena mikrostrip yang termodifikasi.

b. Perancangan Antena Mikrostrip Persegi dengan Material Elektromagnetik *Floral foam* termodifikasi TM ₂₁

Gambar 5 Antena Mikrostrip Persegi dengan Material Elektromagnetik *Floral Foam* termodifikasi TM ₂₁

Pada gambar diatas merupakan Rancangan antena mikrostrip persegi dengan menggunakan substrat dielektrik *Floral foam* termodifikasi menggunakan mode TM₂₁. Teknis yang dilakukan adalah dengan memasangkan sejumlah tertentu

kawat-kawat konduktor tipis tegak lurus menembus *host material* berupa *Floral foam* di arah propagasi gelombang elektromagnetik. Kawat-kawat ini diletakan di posisi medan listrik maksimum dari mode TM_{21} yang akan diaktifkan pada perangkat telekomunikasi. Posisi medan listrik maksimum pada TM_{21} menyerupai bentuk lingkaran yang terletak pada sisi bagian atas dan bawah substrat dielektrik persegi.

Lampiran 5.4 Ilustrasi Sistem Keseluruhan Antena Mikrostrip persegi untuk altimeter pesawat

Gambar 6. Kinerja sistem Antena mikrostrip persegi yang dipasang pada radar altimeter pesawat (sumber: https://id.wikipedia.org/wiki/Radar_altimeter)

Pada gambar diatas merupakan penerapan antena mikrostrip persegi pada radar altimeter pesawat. Altimeter digunakan untuk mengukur ketinggian pesawat terhadap ground level. Prinsip kerjanya, gelombang dipancarkan oleh antena pengirim dan gelombang pantulan dari ground level dideteksi oleh antena penerima, bukan langsung dari antena pengirim. Gelombang radio yang digunakan berbentuk frequency modulated continous wave (FM- CW). Pada radar altimeter terdapat beberapa bagian yaitu transceiver, transmitter dan receiver yang mana digunakan antena terpisah yang ada pada bagian bawah pesawat. Cara kerja radar Altimeter hampir sama seperti sonar di kapal selam, hanya pada radar Altimeter terdapat gelombang radio yang dipancarkan tegak lurus kebawah untuk mengukur jarak pesawat dengan daratan. Radar Altimeter memancarkan sinyal pulsa-pulsa radio, saat pulsa-pulsa tersebut mengenai sebuah permukaan logam pada badan pesawat, maka pulsa-pulsa radio akan dipantulkan kembali ke radar. Pada kasus ini, lamanya waktu pantulan digunakan untuk menghitung ketinggian pesawat.

Antena merupakan komponen penting pada radar altimeter. Antena berfungsi untuk mengirim dan menerima gelombang radio pada rentang frekuensi sistem komunikasi pada radar altimeter. Antena yang disyaratkan pada sistem komunikasi radar altimeter memiliki massa ringan, dimensi kecil, dan memiliki sifat konformal yaitu sifat antena yang mudah dipasangkan dipermukaan dalam bentuk apapun contohnya antena mikrostrip. Adanya Penambahan kawat kawat

pada substrat dielektrik antena mikrostrip, meningkatkan nilai permitivitas sehingga *bandwidth* antena semakin lebar, gain semakin tinggi dan nilai vswr semakin kecil, sehingga meningkatkan kinerja radar altimeter dan pengukuran ketinggian pesawat menjadi leih akurat.