Métodos Numéricos para Engenharia

MÓDULO 1 – EMENTA PROFESSOR LUCIANO NEVES DA FONSECA

PLANO DE ENSINO

CURSO: ENGENHARIAS (Eletrônica, Aeroespacial, Energia, Automotiva, Software)

DISCIPLINA: Métodos Numéricos para Engenharias 01/2023

PROFESSOR: Dr. Luciano Emídio da Fonseca, PhD

HORÁRIO DE AULAS

Turma 1A Aulas teóricas e práticas ministradas na sala S10 Segundas e Quartas das 12h00 às 13h50

PRÉ-REQUISITOS

- i. Cálculo 1 e 2;
- ii. Álgebra linear
- iii. Programação em Scilab, noções de Excel.

Métodos Numéricos

- > A solução de problemas complexos de engenharia exige:
 - 1. Conhecimento matemático
 - 2. Conhecimento de métodos computacionais.

Métodos Numéricos é então a ferramenta que precisamos, por oferecer a combinação perfeita destas duas disciplinas.

Métodos Numéricos compreendem técnicas para solução e formulação de problemas matemáticos a partir de operações aritméticas. Envolvem o desenvolvimento de um conjunto de procedimentos para transformar uma problema matemático em um problema numérico que pode ser resolvido através de algoritmos em um computador.

METODOLOGIA

O curso será ministrado através de presenciais, e de laboratórios práticos, com o auxílio do software científico para computação numérica Scilab, e também de planilhas Excel. Nas aulas teóricas, serão apresentadas as formulações e métodos para resolução dos problemas apresentados. Já nas aulas práticas no final de cada módulo, serão propostos algoritmos práticos para aplicação dos métodos numéricos estudados. Para acompanhar as aulas práticas, o aluno deverá ter noções de planilha Excel e Scilab.

EMENTA

Prova 1	 Raízes de Equações - Bisseção. Raízes de Equações - Critérios de Parada - Falsa Posição Raízes de Equações - Métodos Abertos Raízes de Polinômios.
Prova 2	 Fontes de Erros – Representação Binária. Soma Float - Épsilon e Condicionamento de Algoritmos. Álgebra linear – Cofatores - Cramer- Gauss Álgebra linear – Gauss Jordan – LU – Tridiagonal Álgebra Linear – Gauss Jacobi – Gauss Seidel
Prova 3	10. Interpolação por Polinômios11. Mínimos quadrados.12. Splines13. Integração Numérica.
Prova 4	14. Derivação Numérica15. Equações diferenciais ordinárias16. Elementos Finitos.17. Otimização

CRITÉRIOS DE AVALIAÇÃO

A avaliação do conteúdo teórico será realizada por meio de quatro provas (P1, P2, P3 e P4) e de uma prova final (PF), que é optativa. A P1 abordará os tópicos 1 a 4. A P2 os tópicos 5 a 9. A P3 abordará os tópicos 10 a 13. A P4 os tópicos 14 a 17. A PF optativa será aplicada no final do semestre abrangendo toda a matéria.

O aluno que perder uma prova teórica por motivo justificado e comprovado poderá substitui-la com a PF no fim do semestre. A prova final serve para substituir uma das quatro avaliações perdidas. O aluno será aprovado na disciplina se obtiver uma Média_Final $\geq 5,0$ e um percentual de faltas $\leq 25\%$.

A Média Final (MF) será a média aritmética das quatro avaliações:

$$MF = \frac{P1+P2+P3+P4}{4}$$

BIBLOGRAFIA

- 1. Steven C. Chapra, Métodos numéricos para Engenharia, , 7ª edição, 2016, McGraw-Hill Education/Bookman; (2016)
- 2. Steven C Chapra, Applied Numerical Methods with Matlab, MacGraw Hill, 2015

BIBLOGRAFIA COMPLEMENTAR

- 1) REAMAT Cálculo Numérico, Um Livro Colaborativo Versão Scilab https://www.ufrgs.br/reamat UFRJS agosto de 2020
- 2) John H. Mathews e Kurtis D Fink, Numerical Methods Using Matlab, Quarta Edição, Pearson Prentice Hall
- 3) Cálculo Numérico: Aspectos Teóricos e Computacionais. Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes, 2a edição, Makron Books, 1996