

29 Smith Street — Metuchen, NJ 08840

Education

Rutgers, The State University of New Jersey

Master of Science in Biomedical Engineering

Bachelor of Science in Biomedical Engineering, Minor: Computer Science

Cumulative GPA: 3.77 / 4.0

• Engineering Honors Program, Dean's List (All Semesters), 5 year Biomedical Engineering B.S./M.S. Program

Skills

Programming: Java, Shell, C, Python, R, C#, Html, C++, JavaScript, CSS, LaTeX, Matlab, x86 Assembly

Environments: Windows, Linux, Gimp, Git, Excel, Word, PowerPoint, Amazon Web Services, OpenCV, SolidWorks

Relevant Graduate Coursework: Biosignal Processing, Introduction to Artificial Intelligence (Fall 2016)

Work Experience

Harvard-MIT Health Sciences and Technology

Summer Research Intern

Cambridge, MA Summer 2016

Piscataway, NJ

May 2016

Expected May 2017

- Developed an optimized algorithm for processing Hi-C genomic data.
- Reduced both processing time and costs for the lab by 50%.

Merck & Co., Inc.

Intern - Future Leaders Program

Rahway, NJ Summer 2015

- Developed a scientific data platform using Python on Amazon Web Services with scalable and customizable components.
- Implemented a publication recommendation tool on the platform using machine learning and PubMed.

Human Genetics Institute of New Jersey

Computational Research and Support

Piscataway, NJ Spring 2013 – Fall 2014

- Analyzed nucleosome stabilization-destabilization on Chip-Seq data resulting in published work.
- Computed expression profile clustering on Rna-Seq data.

Research

Computational Analysis of Gene Expression in Stem Cells

Team Leader - Senior Design

Piscataway, NJ

September 2015 - May 2016

- Lead and organized a team to conduct computational analysis on gene expression.
- Designing and testing algorithms to retrieve Chip-Seq differential expression.

Finite Element Analysis of the Lower Extremity

James J. Slade Scholar Research

Piscataway, NJ September 2014 - May 2016

- Modeled ankle arthritis and implant solutions using SolidWorks.
- Analyzed stress profile shifts caused by total ankle arthroplasty using finite element analysis.

Publications

Peer-Reviewed

• Chahar et al., (2014). Chromatin Profiling Reveals Regulatory Network Shifts and a Protective Role for HNF4 α during Colitis. *Molecular and cellular biology*, 17, 3291–3304.

Awards Activities

2016	James J. Slade Scholar	Engineering Convocation	2015	HackRU Fall	Hackathon
2015	Twitter Api Award	HackRU Spring	2015	PennApps Fall	Hackathon
2014	Context.io Api Award	HackRU Spring	2013	HackNY Fall	Hackathon