

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

WORKSHOP:

Applications of SQUID Magnetometrie

INSA de Lyon 16 et 17 juin 1999 Lyon - France

19991105 103

Professor Pierre-Louis VUILLERMOZ wishes to thank the following for their contribution to the success of this conference:

European Office of Aerospace Research and Development, Air Force office of Scientific Research, United States Air Force Research Laboratory.

AQF00-02-0423

REPORT DOC	UMENTATION PA	GE		ved OMB No. 0704-0188
Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions to Davis Highway, Suite 1204, Arlington, VA 22202	mation is estimated to average 1 hour completing and reviewing the collection for reducing this burden to Westignton	per response, including n of information. Send of	comments regarding this bu	rden estimate or any other aspect of this
AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPOR	T TYPE AND DATES C	OVERED
	12 October 1999	·	Conference	Proceedings
4. TITLE AND SUBTITLE		<u>-</u>	5. FUND	NG NUMBERS
Applications of SQUID Magneto	metry			F61775-99-WF058
6. AUTHOR(S)				
Conference Committee				
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFO	DRMING ORGANIZATION
Laboratoire de Physique de la M 20, avenue Albert Einstein Villeurbanne Cedex 69621 France	latiere, Batiment 502, INSA de Lyc	on	REPO	RT NUMBER N/A
9. SPONSORING/MONITORING AGENCY	/ NAME(S) AND ADDRESS(ES)		10 SPON	SORING/MONITORING
EOARD	(2)			ICY REPORT NUMBER
PSC 802 BOX 14 FPO 09499-0200				CSP 99-5058
11. SUPPLEMENTARY NOTES			I	
12a. DISTRIBUTION/AVAILABILITY STATE	- Name			
			12b. DISTI	RIBUTION CODE
Approved for public release; distr	ibution is unlimited.			^
13. ABSTRACT (Maximum 200 words)				
The Final Proceedings for Applica	ations of SQUID Magnetometry, 16 erence. Topics include non-desi			ar dynamics; and biomedical
4. SUBJECT TERMS				15. NUMBER OF PAGES
EOARD, Superconductivity, Aging	Aircraft		-	220 16. PRICE CODE
7. SECURITY CLASSIFICATION 18.	SECURITY CLASSIFICATION	19, SECURITY CL	SOIEICATION	N/A
OF REPORT	OF THIS PAGE	OF ABSTRACT		20. LIMITATION OF ABSTRACT
UNCLASSIFIED ISN 7540-01-280-5500	UNCLASSIFIED	UNCLA	SSIFIED	UL

(plus some examples of the author's research) Introduction to SQUID Magnetometry and Its Applications

US Air Force Office of Scientific Research Arlington, VA 22203-1977 USA Harold Weinstock

Workshop on Applications of SQUID Magnetometry June 16-17, 1999 Lyon, FRANCE INSA de Lyon

DIIC QUALITY INSPECTMENT

APPLICATIONS OF SOUID MAGNETOMETRY

(TOPICS TO BE COVERED)

Commercialization of SQUIDs

NDE of engineering structures and wires

RF amplifiers and dynamics of magnetic bacteria

Geophysical exploration

Magnetoencephalography (MEG)

Magnetocardiography (MCG)

Liver susceptometry and intestinal ischemia

SQUID

Superconducting Quantum Interference Device $\Phi_0 = 2.07 \times 10^{-15} \text{ Wb} = \frac{h}{2e}$

Typical sensitivity $\approx 10^{-4} \Phi_0$ or $\approx 1-10 \text{ fT/Hz}^{1/2}$ (commercial instruments)

ALTERNATIVE MAGNETOMETERS

• Variometer

Rotation of a suspended magnet $10^{-10} \text{ THz}^{-1/2}$ at zero frequency

- \bullet Fluxgate 10^{-10} THz^{-1/2} DC to kHz
- Induction Coil

10 cm long, 10 cm diameter $10^{-13} \ \mathrm{THz^{-1/2}}$ at 10 Hz at room temperature $10^{-13} \ \mathrm{THz^{-1/2}}$ at 4 K

- Magnetic resonance magnetometers
- Hall effect
- Optical fiber
- \bullet SQUID 10^{-14} THz $^{-1/2}$ DC to 10's of kHz

"Magnetic quantities, units, materials and measurements," J.E. Zimmerman, in *Biomagnetism: an Interdisciplinary Approach*, S.J. Willia G.L. Romani, L. Kaufman, and I. Modena, Eds., (Plenum, New York, 1982) pp. 17-42.

Never Use a SQUID When A Simpler,

-ess Expensive Technology is Adequate

Do Use a SQUID When

- Extra Sensitivity is Required
- Nothing Else Will Meet Your Requirements

(distant noise, high fields, spatial resolution, linearity)

Magnetic Fields

SQUIDs

"Principles and applications of SQUIDS," J. Clarke, *Proc. IEEE* 77: 1208-1223.

MAGNETOMETERS

- Single loop
- Multiple turns
- Field sensitivity proportional to coil area
- Sensitive to noise
- Sensitive to tilt in Earth's field

"Principles and applications of SQUIDS," J. Clarke, *Proc. IEEE* 77: 1208-1223.

ENVIRONMENTAL NOISE

G.L. Romani, S.J. Williamson, and L. Kaufman, Review of Sci. Instru., 53: 1815 (1982)

GRADIOMETERS

- \bullet Can be balanced to 1 part in 10^7
- Insensitive to distant noise sources
- Insensitive to tilt in uniform fields
- Energy wasted in balance coils

"Optimization of SQUID Differential Magnetometers," J.P. Wikswo, Jr., AIP Conf. Proc., 44: 145-149 (1978).

NOTES.

1. ALL DIMENSIONS ARE IN MA.

Figure 1-3. Model 601 Biomagnetometer Coll Form and Pick-Up Coil

A2001-327, Rev. C

SQUID DEWAR DESIGN

"Cryogenics," J.E. Zimmerman, in *Biomagnetism: an Interdisciplinary Approach*, S.J. Williamson, G.L. Romani, L. Kaufman, and I. Modena, Eds., (Plenum, New York, 1982) pp. 44-67.

MCG Using HTS And LTS Magnetometer SQUIDS Inside A Shielded Room (Courtesy PTB Berlin)

LN₂ Makes A Smaller Source-SQUID Distance Possible!

-i	sapphire window	4. thermal shields	7. coupling turnbuckle
ω	. SQUID array	5. refrigerator cold pad	8. bellows
m	cryobattery	6. vacuum jackėt	9. microcooler

SAMPLE CONFIGURATION

Figure 3. (a) The top and side views of a model aluminum wing lap joint assembly. (b) A schematic of the lower aluminum sheet with a crack parallel to the lap joint and (c) the lower aluminum sheet with a crack at 45° to the lap joint.

---- : manga af a lan inint comple containing a 45° crack.

Perform basic research to contribute to the integrity and maintainability of aging aircraft and future aerospace systems TECHFIICAL MISSION

EDUCATIONAL MISSION

Produce qualified graduate and post-graduate students in fields relevant to AF needs

Air Force Aging Aircraft

Net magnetic flux per scan v.s. Time

INSPECTION TECHNIQUES

VISUAL (80%)

NEUTRON RADIOGRAPHY

PENETRANT

MAGNETIC PARTICLE METHODS

HIGH FREQUENCY EDDY CURRENT

LASER-BASED OPTICAL METHODS

LOW FREQUENCY EDDY CURRENT

X-RAY DIFFRACTION

SONIC

THERMAL WAVE IMAGING

ULTRASONIC

ACOUSTIC EMISSION

X-RAY RADIOGRAPHY

POTENTIAL DROP METHODS

Magnetopneumography

- Body is normally diamagnetic or paramagnetic no naturally occurring ferro- or ferrimagnetic constituents
- Ferrimagnetic materials associated with particulate contaminates dust in lungs of coal miners, welders, asbestos workers magnetite dust tracer for lung clearance studies
- Allows lung clearance studies
 M = m_S (1- e^{-3 H/Q})
 70 mT (5 sec) ⇒ 90% saturation of ferrimagnetic particles
 M_{H = constant} = m_S (1- e^{-t/T}H)
- Example of Research, not Clinical Application

terrimagnetism as short as minutes

Magnetopneumography Measurement Techniques

- Magnetize lung
 H ~ 100 mT 9 cm below magnet
- Move subject beneath magnetometer
- Scan magnetometer for remnant magnetism 500 picogram/cc sensitivity ≈ 1 µgram total particulates Δt ≥ 10 seconds

Mesenteric Ischemia

- Mesenteric arteries carry blood to the stomach, small and large intestine
- Blockage of the blood flow (ischemia) can lead to intestinal necrosis
- Symptoms are primarily abdominal pain, usually 30-90 minutes after eating often ignored
- Diagnosis of mesenteric artery narrowing or blockage is by arteriogram limit on size of vessels that can be seen by X-ray requires catheter and X-ray dye
- if intestinal tissue is necrotic, segment(s) must be removed or bypassed if diagnosis delayed, mortality rate can exceed 50% Treatment requires surgical intervention

Basic Electric Rhythm

· Gastrointestinal (GI) tract exhibits two types of electrical activity

high frequency spiking associated with muscle contraction

Low frequency oscillations known as electric activity or basic electric rhythm (BER)

Human gastric BER

 $\approx 3.2 \pm 0.1 \, \text{Hz}$

Small intestine BER

 $\approx 11.3 \pm 0.1 \, \text{Hz}$

duodenum BER

≈ 12 Hz

terminal ileum BER

≈ 8 Hz

Tristan Technologies

Ischemic Episodes Show Marked Reduction in BER

BER frequency before and after occlusion of mesenteric artery

Statistically significant frequency shift may permit diagnosis

Instrumentation for Ischemia

Subcutaneous electrodes ~ mV

Highly invasive

not a clinical procedure

SQUID Magnetometer ~ pT

Not invasive

Status

First 3-channel system at Vanderbilt

Building 19 channel system for preclinical studies has vector (B_x, B_y, B_z) channels

Example of a Pre-Clinical Application

Tristan Technologies

Biomagnetic Liver Susceptometry

. . . .

- Medical Motivation
- · Iron in the Human Body
- The Differential Measurement
- Calculation of Iron Concentration (χ)
- · Magnetic Detection First Shown in Animals
- The SQUID Magnetometer
- The Instrument
- Measurement Protocol
- Clinical Validation of Magnetic Measurement
- Conclusions

Medical Motivation

Genetic diseases, which directly or indirectly cause iron overload

Sickle-Cell Anemia Thalassemia Hæmochromatosis Disease:

anemia, tiredness myocardial infarction, none in early stages; diabetes, arthritis, Symptoms:

whole blood transfusion anemia, hypoxemia excess absorption transfusion, some stages, anemia, tiredness abnormal absorption cirrhosis, etc. in later from diet excess iron: Source of

chelation chelation phlebotomy Iron Removal: Therapy for

equal exchange transfusions spleenectomy, bone Other Therapy:

marrow transplantation

0.3% blacks affected, 7% African or Hispanic have trait decent Mediterranean decent 0.25% - 0.5 % affected Northern European ~10% have trait decent Incidence*: population (U.S. figures) Main Sub

Consequences: Long-term exposure to high levels of iron in the body cause diabetes, growth disturbances, arthritis, and irreversible damage to endocrine glands, heart and liver.

affected

Iron in the Human Body

- ~ 4 Grams of Iron in Healthy Adult
- ~ 3 grams involved in biochemistry, primarily oxygen transport
- ~ 1 gram of iron is stored in specialized protein molecules (e.g., ferritin, hemosiderin).

The major storage location is the Liver

Secondary storage locations are the Spleen and, when overloaded, the Heart

When greatly overloaded, as much as 50 gram of Iron stored in 1.5 kg liver

The iron stored in the ferritin molecule is paramagnetic

The concentration of iron can be determined by a magnetic susceptibility measurement $\chi = B/H$

The Differential Measurement

- The Liver is surrounded by tissue
- χ_{tissue} is non-zero
- $\chi_{tissue} \approx \chi_{water}$
- Use of Water Bag simulates uniform medium
- · Measurement is made by lowering the subject (I)
- Water effectively replaces the torso by water (II)

Calculation of Iron Concentration (χ)

First Order

$$V(z) = C \Delta \chi_{liver} \Phi + \Delta V_{system}(z) + V_{o}(z)$$

$$\Phi(z) = \int H_{magnet} \cdot B_{coils} dr^3$$

Second Order

$$\chi_{liver} \le \chi_{tissue}/10$$

$$V(z) = C \left\{ \Delta \chi_{tissue} \Phi_{tissue} + \Delta \chi_{liver} \Phi_{liver}(z + z_{liver}) \right\} + \Delta V_{system}(z) + V_0(z) + O_3$$

By fitting output voltage as a function of depth, χ can be determined

Magnetic Detection First Shown in Animals

John H. Bauman and John W. Harris, The Journal of Laboratory and Clinical Medicine, 70, 246 - 257 (1967) "Estimation of Hepatic Iron Stores by In-Vivo Measurement of Magnetic Susceptibility"

The SQUID Magnetometer

- Amplifier is Superconducting QUantum Interference Device (SQUID)
- · Operates at cryogenic temperatures
- Measures Magnetic Fields better than anything else
- Sensitivity as low as femtoTesla
- Highly Stable and Repeatable in large magnetic fields
- better than parts per million/hour in Tesla fields
- Very Reliable
- Fundamental technology commercially available since 1970
- 12 year operational history as measurement of iron stores
- Sites in Hamburg, Germany and New York
- · Systems under construction for Torino, Italy and California

Tristan Technologies

Clinical Biomagnetism

- Advantages of Biomagnetism
- Magnetopneumography
- Biomagnetic Liver Susceptometry
- Intestinal Ischemia
- Issues in Clinical Applications

Robert L Fagaly Tristan Technologies, San Diego, USA

Introduction

- Useful in identifying electrophysiological activity
- · Biomagnetism has significant advantages over electrical recordings Non-Invasive

e.g., Intestinal Ischemia

Measures a vector quantity—magnetic field, rather than a scalar quantity—voltage

Many magnetic analogs to electrical activity

MCG (Baule & McFee)

MEG (Cohen)

There are also biomagnetic signals that have no electrical analogs. Biomagnetic Liver Susceptometry

Magnetopneumography

The Instrument

Measurement Protocol

- Ultrasound Measurements
- Patient Positioned Beneath Detection Coils
- Patient Raised to Bottom of Dewar Tail Water Bag Filled
- Patient Lowered Water Bag Filling
- SQUID Electronics Yield Voltage Change
- Calculation of Hepatic Iron Concentration (x)
- Patient Report

Junical Valldation of Maynetic Measurement

G. M. Brittenham et al, "Magnetic-Susceptibility of Human Iron Stores", New England Journal of Medicine 307 1671 (1982)

mglg, dry weight

Comparison of hepatic iron concentration as determined by magnetic susceptometry and by chemical analysis of liver tissue obtained by clinically indicated biopsy. Magnetic and biochemical measurements were made within 1 month; patients with cirrhosis or with biopsy specimens less than 5 mg, wet weight, were excluded.

Conclusions

- The magnetic biopsy gives accurate assessment of iron stores
- Direct measurement of iron
- Repeatability better than 5%
- Non-invasive!
- Allows serial measurements
- Allows pediatric measurements
- Rapid Results
- Measurement time (including ultrasound) < 30 minutes
- Proven Technique
- >2,100 Patients measured
- Commercially available

Issues That Must Be Solved For Any Biomagnetic Measurement System to Gain Market Acceptance

- · Must be a Clinically Accepted Method (efficacy)
- Must offer significant improvement over conventional methods or,
- Must offer new information not achievable by conventional methods
- Must be cost effective
 either address a large patient population
 Cost not the sole decision driver
 or, if addressing an orphan disease
 Cost becomes significant
- Must be "easy" to use staffing requirements can significantly effect acceptability need to minimize visibility of cryogens
- Third Party Reimbursement important see above

Commercialization of SQUIDs

- The Basic Instrument
- Applications
- Product Costs
- Market Sizes
- History
- Commercial Companies
- Obstacles
- · Conclusions

Robert L Fagaly Tristan Technologies, San Diego, USA

Why SQUIDs?

- · It is the most sensitive amplifier known
- True dc response
- GHz bandwidth
- · Zero phase distortion
- Noise levels below 10⁻³¹ J/Hz
- High dynamic range: >180 dB
 - Excellent linearity:1:10⁷
- Physically compact

The Basic Instrument

HTS DC-SQUID flip-chip magnetometers

An example of a real-time MCG-measurement with the flip-chip magnetometer.

Dr.M.I.Faley IMF-IFF

Sensor head for a DC-SQUID microscope

ac Resistance/Inductance Bridge

Applications

Laboratory

Ammeter:

10-12 ampere/√Hz

Voltmeter:

10-14 volt

Ohmmeter:

10-12 Ω

Mutual/Self Inductance:

10⁻¹² henry

Magnetic Susceptibility: 10-10 emu & single electron spins

Magnetic Fields:

10-15 tesla/√Hz

Nuclear Magnetic Resonance

Geophysical

Oil Exploration

Airborne Exploration Systems

Oceanographic Measurements

Biomedical

Studies of the Brain—Neuromagnetism

Studies of the Heart—MagnetoCardiography

Liver, Lung, Intestines, other biological activity

NDE

Defect Detection in Ferrous and Non-Ferrous Metals

Insulating Material Analysis

Infrastructure (Bridges, Runways, Buildings)

Aerospace

Magnetic Microscopy

Military

Mine Detection and Unexploded Ordinance (UXO)

Submarine Communication and Detection

non-SQUID Electronics (but interesting)

Digital switching

Cellular filters

NMR and MRI receiver coils

Tristan Technologies

Impact of High Temperature Superconductivity

- · 1986: Discovery of High Temperature Superconductivity
- Higher Operating Temperatures and Reduced Cooling Requirements
- Primarily Thin-Film Fabrication (not really HTS, but parallel development)

Positives

 Simplified cryogenics ratio of latent heats/unit volume (LN₂/LHe) ≈ 50 single-stage closed cycle cooling possible

· Reduced size and operating costs

· Negatives

 Noise power power proportional to temperature but at acceptable levels: 10⁻³⁰ J/vHz

· Planar devices suitable only for:

Magnetometers: B_x

<u>नेष्ठ.</u> planar gradiometers: ने<u>x</u> • Need $< 10^{-12} \, \Omega$ joint resistances for dc response

Problem of interconnects for 3D structures $\frac{\partial B_z}{\partial z}$

Dr.M.I.Faley IMF-IFF

HTS DC-SQUID flip-chip magnetometers

Multilayer flux transformer on 10 mm x 10 mm SrTiO₃ substrate and encapsulated dc-SQUID magnetometers. The magnetometers are fixed on standard dc-SQUID packages (axial and 90°) designed for operation together with iMAG electronics.

HTS DC-SQUID flip-chip magnetometers

An example of a noise measurement with the flip-chip magnetometer, having a 8 mm x 8 mm pick-up loop of the flux transformer, measured inside a four layers μ -metal shield.

Product Costs

Laboratory

Basic measurement system
 SQUID susceptometer

\$10,000 \$150,000

Geophysical

· 3-axis HTS magnetometer

\$40,000 \$150,000

Rock magnetometer

Biomedical

150 channel neuromagnetometer

\$2,000,000 \$50,000

Single channel biomagnetometer

\$750,000

Custom biomagnetometer

Liver-Iron biosusceptometer

\$100,000 - 300,000

· NDE

Basic measurement system

\$380,000

\$20,000

Custom NDE system

Magnetic microscope

\$50,000 - 500,000

Market Sizes

- SQUID susceptometer market saturated
- 1999 Biomagnetism market increasing 60+ whole head systems installed as many as 10 more in 1999
- SQUID NDE (primarily Microscopy)
 could be 10 M\$ in 2000

TimeLine

Josephson Junction	1st SQUID	1st Commercial rf SQUID	Toroidal rf SQUID (ruggedized)
1962	1964	1970	1974

1st Commercial dc SQUID	Biomagnetism emerges	High Temperature Superconductivity	
1982	1984	1986	

Mr. SQUID (1st Commercial HTS device)

1993

1994

1st Commercial HTS SQUID

Commercial SQUID Companies

Corporate Types

- \$100,000,000>500 employeesDiversified Technologies
- multiple manufacturing sites
 - Profitable
- · IGC, Oxford

- Type II

 Moderate size

 ~ \$10,000,000

 < 100 employees
- Single underlying technology products
 - single manufacturing site
 Profitable
- · Quantum Design, Neuromag
- Type III
- Products centered around single technology Venture Capital/IPO Funded
- Funding based upon market prospects > \$100,000,000
- Rapid growth after funding
 > 100 employees
 \$5,000,000 10,000,000 annual expenditures
 - Retrenchment Phase
- Market Non-Acceptance of Product
 - < 50 employees
- more realistic market approach (hopefully)
 - BTi, Conductus, Hypres

Obstacles

· Perceived

Need for cryogens

Environmental noise

Need for shielding or sophisticated noise rejection

Motion induced noise

SQUIDs are vector devices

Cost

Applications

Science establishes capability

Users establish need

Market Resistance

Too often Technology Push, rather than Market Pull

Must Establish Need!

Biomagnetism: Compelling Clinical Requirement

Industrial: Capability that saves user many M\$

Conclusions

need to state influence of outside capital what does it take to become a type 1? Product saturation vs. expanding markets

- SQUIDS offer Significant Technical Advantages
- There are Product Applications
- Only a "killer" Application gets you to Type I
- If the Market is Small, a Type II Company is appropriate

SOUIDs for Geomagnetic Exploration

A.I. Braginski

Forschungszentrum Jülich GmbH (FZJ), D-52425 Jülich Institut für Schicht- und Ionentechnik (ISI) (Retired)

Partial support: BMBF Project No. 13 N 6527

Acknowledgements

Leading Project Collaborators:

M. Bick, K.-D. Husemann, R. Otto, G. Panaitov, N.

Wolters, Y. Zhang and E. Zimmermann

Project Partners:

GERMANY: IPHT-Jena, Metronix GmbH, Tech.

Univ. Berlin; CHINA: IGGE, Univ. of Peking

Unpublished Data:

Courtesy of C. Foley et al. CSIRO, Australia

Outline

- Introduction
- Electromagnetic Methods of Geophysical Exploration
- Areas of Possible SQUID Applications in Geomagnetism
- Performance Requirements for SQUID Magnetometers
- History of LTS SQUID Uses in Geophysics
- •Status of HTS SQUID Developments, rf and dc Magnetometers
- •HTS SQUID Field Data
- Conclusions & Outlook

Principle of EM Methods in Geophysics

target parameter: electrical ground conductivity

distinguish geological structures by differences in conductivity

skin depth
$$z \sim \sqrt{\frac{1}{\sigma \cdot f}}$$

 σ = conductivity; f = frequency

1000 km 1000 m 10 m RMT **7** Electromagnetic Methods in Geophysics RMT active **수** LEM - improved resolution for great depths TEM Frequency [Hz] 100 claim: - one sensor for all methods **CSAMT** 0.01 M 0.1m AMT passive 10 m 1000 m 1000 km Depth of investigation

-otschungszentrum Julich

1

Application of Electromagnetic Methods for Geological Investigations

T. Radic, TU Berlin

Electromagnetic Methods of Geophysical Sounding

Time Domain:

- * Transient Electromagnetic Method (TEM)
- * Long-Offset TEM (LOTEM)

Frequency Domain:

- * Magnetotelluric (MT, AMT)
- * Controlled-Source MT, AMT (CSMT, CSAMT)
- * Very Low Radio Frequency Resistivity (VLF-R)
- * Radiomagnetic Sounding (RMS)

Magnetotellurics

- •Natural or controlled source EM excitation, from 10^{-3} to $> 10^{3}$ Hz
- Determine at earth surface:

$$\mathbf{Z}_{xy}(\omega) = \mu_0 \mu \mathbf{E}_x(\omega) / \mathbf{B}_y(\omega)$$

$$(\mu \approx 1)$$

• For a homogeneous earth:

$$\rho_{xy} = 1/\mu_0 \mu \omega | \mathbf{Z} \mathbf{x} \mathbf{y}(\omega) |^2$$

•For inhomogeneous subsoil one can use the apparent resistivity $\rho_a(\omega)$:

$$\rho_a \approx 0.2t \left[E_x / H_y \right]^2$$

where: ρ_a [Ω], t [sec], E_x [mV/km], H_y [nT]

Depth of penetration:

$$p\approx 1/2\pi(10\rho_a t)^{1/2}$$

Principle of Transient Electromagnetics (TEM)

improvement of SN-ratio by using bipolar transmitter signal

Principle of Transient Electromagnetics (TEM) Measurements in Geophysics

for homogeneous halfspace expected:

Setup of TEM Field Trial

Forschungszentrum Julich

Principle and Setup of LOTEM

- Investigation depths: several km
- Targets: oil and ore deposits

The Bible:

Geophysics - Applications, Parts A, B Electromagnetic methods in Applied

Editor:

M.N. Nabighian

First Published in 1991 (last edition 1996) by:

P.O.Box 702740, Tulsa Oklahoma 74170-2740 Society of Exploration Physicists

Possible Applications of SQUID in Geomagnetism

- Paleomagnetism (Rock Sample Magnetometry)
- Prospecting/Surveying for Ore, Coal, etc. Deposits
- Prospecting for Oil Deposits
- Exploration for Geothermal Energy
- •Small-Area Prospecting for Water, Buried Waste, Archeological Objects
- Volcanic Eruption and Earthquake Prediction
- Fluid Interface Detection

Source:

SQUID Applications to Geophysics

Editors:

H. Weinstock & A.C. Overton

Published in 1981 by:

P.O.Box 702740, Tulsa Oklahoma 74170-2740 Society of Exploration Physicists

Advantages of HTS SQUIDs

triple of induction coils

(e.g. product of Metronix)

HTS SQUIDS triple of

compact, low weight:

easy handling

- borehole potential

(dc - 20 kHz / 10MHz) broadband sensor

at low frequencies high sensitivity

B-field sensor

Requirements:

field proven

dyn. range > 120db

slew rate > 1mT/sec

TEM Method: Principle Advantage of SQUID

■ Disadvantage of coil: ∂B/∂t receiver

depth of investigation
$$z \propto \left(\frac{I \cdot A}{\sigma \cdot \eta_v}\right)^{1/5}$$

Advantage of SQUID: B-field sensor

depth of investigation
$$z \propto \left(\frac{I \cdot A}{\eta_B}\right)^{3}$$

[Spies, 1989]

N

Magnetic field noise for HTS rf SQUID and induction coil

Geomagnetic Exploration

Objective:

Improve portability, versatility, also attain mobility, beyond limitations of conventional induction coil equipment, but without sacrificing and possibly improving sensitivity of detection

EM Methods Investigated:

- Transient EM (time domain)
- Controlled-source audio magnetotellurics (frequency domain)
- Radiometric detection of water & environmental waste

ш99 m Geometry

Project Supported by German Government (BMBF)

SQUID Magnetometers for Geophysical Applications

Objectives:

Development of a compact, broadband vector magnetometer

Demonstration of geophysical exploration

Sensor Set-up of HTS rf SQUID Vector Magnetometer

• **sensor:** rf washer SQUID and coplanar resonator in flip-chip configuration

SQUID:

- YBCO washer:

 \emptyset = 3,5mm

- loop:

 $100 \times 100 \ \mu \text{m}^2$, $10 \times 500 \ \mu \text{m}^2$

- junction type:

step edge junction

- junction width:

4 μm

resonator:

- coplanar:

 \emptyset = 8mm on 1cm² substrate

- frequency:

650 MHz - 1 GHz

 $-\partial B/\partial \Phi =$

 $3.9 \text{ nT}/\Phi_0$, $2.7 \text{ nT}/\Phi_0$

Sensor Module of HTS rf SQUID Vector Magnetometer [YBCO]

rf SQUID, coplanar resonator and planar coupling coil integration of heater to eliminate trapped magnetic flux

triaxial sensor head

3-axis HTS rf SQUID Vector Magnetometer

Field Trial at Erbendorf, Oberpfalz

System includes heater and automatic adjustment of SQUID parameters; well shielded against rf noise

TEM Survey with SQUID System

Cloncurry, Australia, October 1998

Forschungszentrum Julich

Presented at the Industrial Geophysical Exhibition SEG '98 Improved HTS SQUID Vector Magnetometer

Booth # 2660 of Metronix GmbH

Characteristics of HTS rf SQUID Vector Magnetometer

sensor set up:

orthogonal, capsulated

bandwidth:

dc - 20 kHz

dynamic range:

> 130 dB

slew rate:

~ 2mT/s [~ $5x10^5 \Phi_0/s$]

cross talk:

< 0.5 %

hold time of dewar: > 30 h

implemented heater

• field resolution:

white noise

40 fT/√Hz [typical]

1/f – onset

@ 100 Hz [best channel]

- ⇒ Requirements for TEM fulfilled
- ⇒ Stable operation of all 3 channels in urban environment proved

Noise Spectra of Vector Magnetometer (Z-channel) in and Outside Magnetic Shielding

Flux noise [μφ₀/√Hz]

Noise Spectra of Vector Magnetometer Inside 3-layer μ-metal Shielding

Noise Spectra Before and After Heating (X-channel) During Field Trial Performance of Heater:

Geophysical Transient Electromagnetics (TEM) Measurements:

Advantage HTS rf SQUID over Coil for Late Times

__rorschungszentrum Julich

TEM Measurements:

Advantage HTS rf SQUID Over Coil for Late Times

Geophysical Transient Electromagnetics, Measured at Martinsbüttel, Germany

Correlation SQUID - Coil for Late Times **SQUID Provides Better SNR Than Coil**

____orschungszentrum Julich

Reproducibility of Geophysical SQUID TEM Measurements

SQUID-LOTEM Profile above

Geological Structure in Northern China

Radiomagnetic Sounding

- •Above 100 kHz, E_x difficult to measure (sensor dimensions comp. to δ)
- Measure B gradient instead:

Curl
$$B(\omega) = \mu_o \mu (1/\rho_a - j\omega \epsilon) E(\omega)$$

• When ρ < 100 Ω cm, f < 1 – 2 MHz, j ω ϵ is negligible, and we have:

$$\mathbf{Z}_{xy}(\omega) \cong -\rho^*/\Delta \mathbf{z} (\Delta \mathbf{B}_{y}(\omega)/\mathbf{B}_{y}(\omega))$$

(with ΔB_y , ρ^* just below surface, $\Delta z << \delta$)

• For homogeneous earth ($\rho = \rho^*$):

$$|\Delta \mathbf{B}_{\mathbf{y}}(\omega)/\mathbf{B}_{\mathbf{y}}(\omega)| \cong 2^{1/2} \Delta \mathbf{z}/\delta$$

$$\Rightarrow |\Delta B_y| = 8 - 800 \text{ fT}$$
for
$$|B_y| = 1 - 100 \text{ pT}$$

Schematic of LTS RMS (RMT) System

Drung, Radic et al., IEEE Trans. Appl. Supercond. 7, 3283 (1997)

Main Noise Sources in TEM Determining SNR

1. Intrinsic noise of sensor

2. External disturbances:

- high frequency [>20kHz GHz]
 - radio / TV transmitter, mobile phones
- ⇒ directly affect SQUID's operation
- low frequency [dc 20kHz]
 - wind noise (vibrations)
 - LF drifts of earth's magnetic field (~0,3nT/min)
 - cultural noise (16²/₃Hz, 50Hz)
 - sferics

2. Intrinsic noise of sensor determining SNR

Increased LF excess noise outside magnetic shielding.

Reasons:

 Penetration of flux into junction: suppression and fluctuation of critical current

possible solution: narrow junction

 Thermally activated hopping of flux vortices in YBCO film

possible solutions:

- high quality YBCO film
- narrow line width of SQUID's structure (w< $\pi\Phi_0$ /4B_{earth})
- pinning centres (antidots)

Conclusions

- The usefulness of SQUID in geophysics was convincingly demonstrated with LTS SQUID, but LHe cooling was prohibitive; LN₂ is not
- •Recent field tests using HTS SQUID demonstrators have been confirming their potential in TEM and RMS
- Further reduction of HTS SQUID lowfrequency noise is required, especially for use in magnetotellurics
- •Also required is ruggerizing & automating of SQUID systems, long cryogen hold time, cryocoolers, borehole-compatible systems
- There is potential in HTS SQUID use for prediction of earthquakes and volcano eruptions (and other)

Outlook

- •Existing interest of industry and users should lead to commercial availability of HTS SQUID systems for TEM in a few years (2000–2005)
- •New developments in SQUID sensors (Berkeley), may also permit CSAMT systems at a comparable time scale
- •The RMS using HTS SQUID might find the relatively largest market, after additional development efforts
- •Novel (electrokinetic) methods, possible only with SQUID, might have a large economic potential in a more distant future

Typical Magnetic Field Noise of Vector Magnetometer During Field Trial Outside Magnetic Shielding

Forschungszentrum Julich

SQUIDs, Axions, Bugs and Hearts

- SQUIDs a short review
- The axion detector: a new mode for SQUIDs
- The SQUID microscope: magnetotactic bacteria
- Unshielded magnetocardiography with a high-T_c second-derivative gradiometer

Lyon 16 June 1999

Low-Noise rf Amplifiers Based on dc SQUIDs (Low-で)

Michael Mück and Marc-Olivier André

Department of Physics

University of California, Berkeley

In collaboration with:

Jost Gail and Christoph Heiden
Institut für Angewandte Physik
Justus-Liebig Universität Gießen, Germany

(VAN DEZER/MICROLAB)

LC - Resonator Input

WITH 248 COUPLING LOSS, PEAK HEIGHT ≈ 6.74 E

HENCE 10 LOSS, [TN(SYD) ≈ 6.7 TN(SYD) $\approx 1.1K$

[MEASURED: TN (SYE) = 1.4 ± 0.18K]

LC - Resonator Input

NOISE TEMPERATURE

$$S_v^o(f) = A^2 4k_8 (T+T_N)R$$

WHERE
$$T_N = T_N(R)$$

Axions

- The axion is a candidate particle for dark matter
- Energy constrained to $10^{-6} 10^{-3} \, \text{eV} \, (0.24 240 \, \text{GHz})$
- In a magnetic field B_o an axion can convert into a photon
- o In a resonant cavity of volume V and quality factor Q, conversion rate ∝ B₀² VQ

LLNL/MIT Axion Detector

- Cavity 1 m long, 0.5 m diameter: $T_c \approx 1.3$ K
- Frequency range 0.7 0.8 GHz
- Output from cavity detected by HEMT amplifier : $T_A \approx 1.7 \text{ K}$
- System noise temperature $T_s = T_c + T_A \approx 3 \text{ K}$
- Since integration time $\propto T_s$, there is great incentive to run the detector at a lower temperature (say, 0.3 K) provided one has a much quieter amplifier

Conventional SQUID design

At high frequencies, most of the current flows through he parasitic capacitance rather than the inductance.

This reduces the gain substantially.

MICROSTRIPLINE

s/c	[x 1
SULATOR /////E	////// h
s/c	ſ
BSTRATE /////	
SIDE	

E VIEW

h ≈0.4µm

E ≈ 9

A ≈ 0.15µm

NEGLECT FRINGING FIELDS
ASSUME A < FILM THICKNESS

$$C/Im = \frac{EE_0W}{h}$$

$$\approx \frac{InF/m}{h}$$

$$= \frac{\mu_0h}{\mu_0h} \left(1 + \frac{2\lambda}{h}\right)$$

$$\approx \frac{InF/m}{h}$$

$$= \frac{175 \text{ nH/m}}{\mu_0h} = \frac{175 \text{ nH/m}}{\mu_0h} = \frac{100 \text{ ne}}{\mu_0h}$$

VELOCITY
$$\overline{C} = \frac{C}{\sqrt{E\sqrt{1+2\lambda/h}}} \approx \frac{0.25c}{1}$$

IMPEDANCE
$$2_0 = \sqrt{\frac{2}{c}} = \frac{h}{w} \sqrt{\frac{\mu_0}{\epsilon \epsilon_0} (1 + \frac{2\Lambda}{h})} \approx 13\Omega$$

MICROSTRIPLINE RESONANCE

$$\frac{\lambda}{2} = \ell = \frac{\bar{c}}{2f}$$

QUALITY FACTOR:
$$Q = \frac{TT Z_{in}}{2 Z_{o}}$$

Feedback

Feedback from the output of the SQUID to the input via the capacitance of the microstrip.

Positive feedback for V_{Φ}^{+}

Negative feedback for $V\bar{\Phi}$

Gain Measurements

Gain vs. Coil Length

Fitted line in inset:
$$v_{\text{res}} = \frac{c}{2\sqrt{\epsilon_r \kappa \chi}(l+16)}$$
 (l in mm)

- c = 3x108 m/s
- ε_r (Si) ≈ 9
- $\kappa \approx 1.75$ arises from inductive loading.
- $\chi \approx 9$ accounts for the SQUID inductance coupled into the microstrip.

RESONANT FREQUENCY

31-TURN COIL : l= 71mm

FUNDAMENTAL RESONANCE $\frac{\overline{c}}{2\ell} \approx 530 \text{MHz}$ FOR $\overline{c} \approx 0.25 \text{C}$

MEASURED RESONANT FREQUENCY = 200MHz

SCALE MODEL 195:1

31-TURN COPPER COIL ON ONE SIDE OF PC BOARD.

HOLE & SLIT ON THE REVERSE SIDE.

MEASURE RESONANT FREQUENCY OF COIL.

- · HOLE & SLIT COVERED WITH CU SHEET:

 RESONANCE AT EXPECTED FREQUENCY
- . HOLE & SLIT UNCOVERED :

RESONANT FREQUENCY DROPS BY FACTOR 43

• HENCE IT ADDEADS THAT INDUCTANCE CONDLED INTO THE COIL SLOWS THE WAVE VELOCITY.

Noise Temperature Measurements

IF WE NEGLECT THE NOISE OF THE POST AMPLIFIER

Pour = 4kg (Ti + Tsa) Gsa Ga

loise temperature of the 295 K post-amplifier: $\sim 100 \text{ K}$. QUID Gain $\approx 200 \iff 0.5 \text{ K}$ at SQUID input.

sing a cold HEMT post-amp (GA = 17 dB, TN,A ≈ 8 K)

PERFORMANCE OF MICROSTRIP SQUID ANPLIFIEDS

WITH COOLED HENT POSTAMPLIFIER

27	0.86±0.12 0.06±0.02	1.02±0.19 0.12±0.10
LA GVO	0.90±0.12 0.10±0.02	1.40±0.18
346	24.5	30
H	4.0	4.2
FREQUENCY (MHZ)	0 6	438

NOTE: AT 438 MHZ, THE = ht/holm 2 2 0.03K

RESONANT FREQUENCY

31-TURN COIL : l= 71mm

FUNDAMENTAL RESONANCE $\frac{\overline{c}}{2\ell} \approx 530 \text{MHz}$ FOR $\overline{c} \approx 0.25 \text{C}$

MEASURED RESONANT FREQUENCY = 200MHz

SCALE MODEL 195:1

31-TURN COPPER COIL ON ONE SIDE OF PC BOARD.

HOLE & SLIT ON THE REVERSE SIDE.

MEASURE RESONANT FREQUENCY OF COIL.

- HOLE & SLIT COVERED WITH CU SHEET:

 RESONANCE AT EXPECTED FREQUENCY
- . HOLE & SLIT UNCOVERED :

RESONANT FREQUENCY DROPS BY FACTOR 43

HENCE IT ADDEADS THAT INDUSTANCE CONDLED INTO THE COIL SLOWS THE WAVE VELOCITY.

Noise Temperature Measurements

IF WE NEGLECT THE NORE OF THE POST AMPLIFIER

POUT = 4kg (Ti + Tsa) Gsa Ga

oise temperature of the 295 K post-amplifier: $\sim 100 \text{ K}$. QUID Gain $\approx 200 \iff 0.5 \text{ K}$ at SQUID input.

sing a cold HEMT post-amp (GA = 17 dB, TN, A = 8 K)

PERFORMANCE OF MICROSTRIP SQUID AMPLIFIEDS

WITH COOLED HENT POSTAMPLIFIER

456	0.86±0.12 0.06±0.02	1.02±0.19
7 670	0.90±0.12	1.40±0.18
SAG	24.5	30
H	4.0	4.2
FREQUENCY (MHZ)	0 6	438

NOTE: AT 438MHz, TOM = ht/holm2 2003K

LC - Resonator Input

Relative noise power (dB)

INFER $T_N^{(SYS)} \approx 0.5 \text{ K}$ [MEASURED $T_N^{(SYS)} = 0.50 \pm 0.07 \text{K}$]

TERMINATION OF MICROSTRIA

ractor tuning of microstrip SQUID

SQUID Postamplifier

Microstrip SQUID Amplifier: Summary

- o Gain ≥ 20 dB for frequencies ≤ 1 GHz
- \circ With cooled postamplifier and T = 0.4 0.5 K: $T_N^{(SQ)} \sim 0.1 \ K$
- o Tunable over factor of 2 with varactor diode
- Second SQUID used as postamplifier
- o Cooled to 0.1 K, SQUID should be Quantum Limited ($f \ge 1/2$ GHz)

Magnetotactic Bacteria

Yann Chemla
 Helene Grossman
 Tom Lee

Bob Buchanan -- Microbiology
 Mike Adamkiewicz

MICROSCOPE SCHEMATIC

Magnetotactic Bacteria

Bacteria MS-1 (Magnetospirillum magnetotacticum):

 $m \sim 10^{-16} \text{ Am}^2$

Magnetotaxis:

- $\mathbf{m} \cdot \mathbf{B} \sim 10 \ k_B T$

 $-3-D \Rightarrow 1-D$

A. S. Bahaj, et. al. http://www.soton.ac.uk)

R. P. Blakemore (1982) Ann. Rev. Microbiol. 36, 217-38)

Experimental Setup

- Observe bacteria in solution
- Parameters:
 - shielded environment (B<2x10-5 B_e)
 - cell concentrations: 107-108 cells/ml
 - SQUID ~30μm away

bacteria solution

• Measurement:

motion of bacteria in solution

magnetic flux fluctuations

measure flux noise spectral density: $S_{\Phi}(f)$

Dead Bacteria

Rotational Brownian motion of magnetic dipoles:

$$\Rightarrow S_{\Phi}(f) \sim \frac{2\tau_o}{1 + (2\pi\tau_o f)^2} \frac{\tau_o = \alpha_r/2k_BT,}{\alpha_r = \text{rotational drag coeff.}}$$

Model bacteria as cylinders:

$$\tau_{o} \approx \frac{\pi \eta L^{3}}{6k_{B}T} \left(\ln \frac{L}{d} - 0.662 + 0.92 \frac{d}{L} \right)^{-1}$$

For $d \sim 0.7 \mu m \Rightarrow L \approx 3.5 \mu m, \Delta L \approx 0.7 \mu m$

In a field, noise is reduced and $\tau_o \Rightarrow \tau_B = \alpha_r/2 \text{mB}$ $\Rightarrow m = 3.0 \times 10^{-16} \text{Am}^2$

(M. M. Tirado, et al (1980) J. Chem. Phys. 73(4), 1986-93)

Relaxation in a Field

Turn off a field & measure randomization time:

$$\Rightarrow \Phi(t) \sim e^{-t/\tau_o}$$

$$\tau_o = \alpha_r/2k_BT$$

$$\Rightarrow \overline{\tau}_{o} = 4.8s$$

Alignment in a Field

• Turn on a field & measure alignment time:

$$\Rightarrow \Phi(t) \sim e^{-t/\tau_B}$$

$$\tau_B = \alpha_r/2mB$$

Live Bacteria

niversal features:

- high frequency peaks: (1) ~65Hz, (2) ~25Hz
- shift in low freq. knee: (3) ~0.1Hz
- deviation from Lorentzian

Modeling

- Vibration or "gyration"
 - imbalance in drag forces
 - vibration at flagellar frequency ~ 100Hz

- Precession or "wobble"
 - body rolls counter to flagellum
 - body & flagellar axes not collinear
 - precession at lower frequency

 Model vibration & precession as rotations of dipole about two axes:

• In lab frame, measure peaks at fp and fv-fp.

High Frequency Behavior

Model vibration & precession as rotations of dipole about two axes:

Fit spectrum to Gaussian distribution of frequencies:

- ϕ_v , ϕ_p determined by scaling to $S_{\Phi}(f=0)$

$$f_v=89Hz$$
, $\Delta f_v=30Hz$, $\phi_v=5.5^{\circ}$

$$f_p=26Hz, \Delta f_p=10Hz, \phi_p=7.0^{\circ}$$

Time scan of single bacterium

Interpretation: orbits near surfaces

Amplitude and period consistent Sensitivity: $<10^{-17}$ Am² in 1Hz \Leftrightarrow one 35nm particle $\sim15\text{-}30\mu\text{m}$ away

P. D. Frymier, et al (1995) Proc. Natl. Acad. Sci USA 92, 6195-99)

MAGNETIC MOMENT RESOLUTION

- . MAGNETIC MOMENT OF ONE BACTERIUM ≈ 3×10-16 Am2
- S/N RATIO OF SWIMMING BACTERIUM
 ≈ 20:1 IN 25H2 BANDWIDTH
- THUS, MICROSCOPE RESOLUTION ≈ 3×10⁻¹⁸ Am² /H²^{1/2}
 ≈ 3×10⁵ MB /H²^{1/2}
- NOTE: EACH BACTERIUM CONTAINS ~ 30 MAGNETOSOMES

 WITH A MAGNETIC MOMENT ~ 10⁻¹⁷ Am?

 THUS, ONE COULD DETECT 1 MAGNETOSOME

 WITH A S/N RATIO ~ 3 (H2-1/2)

<u>Immunoassay</u>

Physikalisch Technische Bundesanstalt, Berlin Institut für Diagnostikforschung GmbH, Berlin Schering Ag, Berlin

Magnetically tag antibody

Attach antigen to substrate

Allow interaction to take place

Apply magnetic field for a few seconds

Brownian rotation of antibody yields zero average magnetic field

Remanent magnetization of magnetic tag produces nonzero field

MAGNETIC FIELD GRADENTS

MAGNETIC DIPOLE MOMENT M

 $B \sim \underline{m}_{\tau^3}$

dB ~ M

d2B ~ m

FLUX TRANSFORMERS

(a)

XBL 766-7138A

JULICH GRADIOMETER (TAVRIN ETAL.)

ALSO: 2 DERIVATIVE

THREE - SQUID GRADIOMBTER (KOCH ET AL

- REFERENCE SQUID PROVIDES QUIET ENVIRONMENT FOR UPPER AND LOWER SQUIDS
- · NOISE OF REFERENCE SQUID IS SUBTRACTED OUT

PLANAR GRADIOMETER

FALEY ET AL. (JULICH)

BALANCE: I PART IN 1800

5 pT m - 1 H2 1/2 AT 1 kH2

Collaborators

UCB/LBNL

Sherry Cho
Gene Dantsker
Oliver Froelich
Achim Kittel
Konstantin Kouznetsov
Robert McDermott
Byungdu Oh
Saburo Tanaka
JÖRG BORGMANN

Conductus, Inc.

Kookrin Char Z. Lu Vlad Matijasevic C. Soble

IBM

Roger Koch

FLIP- CHIP GRADIOMETER: PRINCIPLE

ZIMMERMAN 1977

CONDITION FOR BALANCE : ZERO RESPONSE TO UNIFORM BY

TRANSFORMER: $B_2(Ap+A_i) - (Lp+L_i)J_2 - M_iJ_m = 0$

MAGNETOMETER: BZ Am - Lm Jm - Mi Jt = 0

REGARD α AS THE VARIABLE PARAMETER, CHOOSING. TT SO THAT $I_m = 0$:

$$\propto = \frac{A_m}{A_{P} + A_i} \cdot \frac{L_{P} + L_i}{(L_i L_m)^{Y_2}}$$

THIS IS THE CONDITION TO BALANCE THE GRADIOMETER

FLIP- CHIP GRADIOMETER: PRINCIPLE

ZIMMERMAN 1977

GRADIENT RESPONSE: APPLY SB2 TO MAGNETOMETER AND INDUT LOOP ONLY

TRANSFORMER: SB2 A; - (LP+Li) SJt - MiSJm = 0

MAGNETOMETER: SB2 Am - Lm SJm - M: SJt = 0

SOLVING FOR SJ_m: $SJ_{m} = \eta \left[SB_{2} \frac{A_{m}}{L_{m}} \right]$ WHERE $\eta = \frac{LP/Li + 1 - \chi(Ai/A_{m})(L_{m}/Li)^{1/2}}{LP/Li + 1 - \chi^{2}}$

FACTOR M REPRESENTS THE REDUCTION IN THE SENSITIVITY OF THE MAGNETONETER DUE TO THE TRANSFORME

FABRICATION OF GRADIOMETER

ESTIMATED PARAMETERS:

TRANSFORMER: Li = 10 nH, Ai = 36 mm2, Lp = 50nH, Ap = 411mm2

SQUID: L = 50 pH, R = 1.2 s, Io = 200 uA

MAGNETONETER: Lm = 4nH, Am = 20mm2

THUS: &= 0.43

m = 0.95 - ONLY 5% REDUCTION IN SENSITIVITY

BASELINE : 48mm

First-order asymmetric gradiometer

TYPICAL BALANCE 1:300

Probe with two gradiometers and three magnetometers

Balance of First-Order Gradiometer

BALANCE : 20 ppm

Noise Spectra of Magnetometer and Gradiometer

Magnetocardiogram in an Unshielded Environment

Magnetocardiogram in an Unshielded Environment (averaged 119 times)

Frequency range of the dc SQUID

Magnetotactic bacteria:

 $\sim 10^{-3} \, \mathrm{Hz}$

Axion detector:

~ 1 GHz

the dc SQUID is the most sensitive detector available. Over 12 decades of frequency, appropriately used

Engineering Structures Non-Destructive SQUIDs in the Evaluation of The Use of

Department of Physics & Applied Physics University of Strathclyde Gordon B Donaldson Glasgow Scotland

Harold Weinstock DHC, INSA Lyon 1999

North Sea Oil and Gas Pipes- Welds

A Brief History of SQUID NDE

'North Sea' Oil Pipelines 'Buried' Gas Pipes 1985

AC injection and eddy current techniques 1987

Corrosion currents 8861 1990

Aircraft 'bodies' 1991..

Concrete bridges

Ageing in reactor steels

Fish

Inclusions in fine copper wire

Stressed steels

Microscope

Aircraft wheels

Turbine blades

..1998

Strathclyde

Vanderbilt

MIT

SQM

Hitachi

Sumitomo

ETL

Maryland

Julich

Magnetic Detection

Advantages

Non-contacting- significant lift off possible Skin depth dependence allows probing

Disadvantages

Can need large excitations

No Time-of-flight or Phased array methods possiblespatial location comparable only to stand-off

Harold Weinstock DHC, INSA Lyon 1999

SQUIDS

Vector device Gradiometer Measures Φ, not dΦ/dt so useable to DC

Can use tiny pick-up coils to improve spatial resolution In fact, measures ΔΦ in large Φbackground, equivalent to 10^{-7} T in 4 x 10^{-2} T (SQUID microscope)

Harold Weinstock DHC, INSA Lyon 1999

MAGNETIC SENSORS FOR NDE

Table 2: Magnetic sensors for eddy current NDE

Sensor	Sensor Package Size (Sensing Volume)	Spatial Resolution	Frequency Dependence	Signal Sensitivity	Cost
Induction coils	Small (1.5mm+ x 4mm)	Good	Signal ≠ 1/f		Low (£'s)
Hall Sensors	Small (1mm³)	Good	Good	Poor	Low (£'s)
Magnetoresistors	Medium (10mm ³)	Good	Good	Medium	High (£1k)
Fluxgates	Medium (1mm o x 15mm)	Medium	Good	Medium	High (£1k)
SQUID₅	High ² (1mm ² thin film)	Good	Good	Good	High (£1k)3

¹Magnetoresistors are not widely available commercially. ²While the sensing area of a HTS SQUID is small, the size of the cryostat has to be taken into account. ³The initial outlay for a HTS SQUID is comparable to that of a fluxgate. Liquid nitrogen cryogen is inexpensive.

Why use SQUIDs?

- flaws in airframes at depths ~10-20mm require low noise at f<200Hz which only SQUIDs posses.
- low noise can also mean a much larger standoff compared to other sensors.
- often the cost of operating the SQUID is buried.

But

A £40K SQUID system is not state of the art technology. A fluxgate magnetometer detection system costing £40K is.

[General Reference — Jenks et al, "SQUIDs for Nondestructive Evaluation", Journal of Physics D: Applied Physics, vol. 30, pp. 293-323, 1997].

NDE Techniques

Static field mapping

Directly injected current mapping

Eddy current measurement

gradiometer. A scan across the line of the pipe, given in Fig. 12, shows that when the pipe lies directly along the gradiometer axis there is a sharp zero in the detected signal, which is then purely transverse. The horizontal resolution here is rather better than the stand-off limit discussed earlier. Friangulation to determine the pipe position depends on a second scan with the gradiometer axis at 5.2.1. Pipelines. In early work, Weinstock and Nisenoff [43] showed that when a 1 A, 4.6 Hz, current was passed along a metal pipe, the pipe could be accurately located using an axial SQUID about 30 to the vertical

1

Figure 12. SQUID pipeline detection results [43].

Distances up to 1.6 m were studied, but much greater values should be possible and the method should be applicable to buried pipelines.

Holes and welds in the pipe could also be seen. They divert the flow of current, producing anomalies in the field measured by the SOUID as it is tracked along the line of the pipe.

SQUID Gradiometer

Harold Weinstock DHC, INSA Lyon 1999

110 SQUID(超電導量子干渉素子)センサによる 要記 2相ステンレス鋼の時効変化の検出

(日立機械研) 正 長谷川 邦 夫 (日立機械研) (日立機械研) 正 高 久 和 夫 (日立日立)

S. Evanson (Univ. of Strathclyde)

G.B. Donaldson (Univ. of Strathclyde)

ルに置き、試験片がSQUIDセンサの下部を通

Table 1. Chamical composition and ferrite content of cast stainless steels

Material	С	Si	Ma	P	s	Cr	Ni	Мо	Co	N	Ferrite content (%)
٨	0.016	1.36	0.16	0.014	0.005	19,4	1005	2.21	0.03	-	12.5
В	10,0	1.25	0.63	0.010	0.006	20.30	9,54	2,14	0.03	0.04	21.3
С	0.02	1.39	0.59	310.0	30Q.0	20.74	9.67	2.30	0.04	0.03	26.1

ル方向が反転するためである。また、SQUIDセ

Fig. 1 Schematic of experimental apparatus

Fig.2 Intensity of SQUID sensor

Fig. 3 Intensity of SQUID sensor as a function of aging time

Fig. 4 Intensity of SQUID sensor as a function of aging time (Material C)

ig.5 Magnetization characteristics of virgin and aged cast stainless steel (Material C)

Magnetic

Remote Magnetometry

permeability different ($\Delta\mu$) from host (including void μ =0) Measure spontaneous fields of magnetised inclusions Measure effective difference dipoles of inclusions of Measure induced fields of magnetisable inclusions

Measure diverted fields

Measure flux leakage

Remote Galvanometry

Measure difference fields caused by distorted flow of injected or induced (eddy) currents, close to flaw Measure fields due to noise currents

Harold Weinstock DHC, INSA Lyon 1999

Non-Destructive Evaluation (NDE)

STATIC FIELD MAPPING AND MATERIAL CHARACTERISATION

A MILD STEEL PLATE WAS ARTIFICIALLY CRACKED BY CYCLIC THREE-POINT LOADING AND WAS SCANNED BENEATH A LOW TEMPERATURE SQUID SENSOR. NO CONTACT WITH THE STEEL PLATE WAS MADE. THE CRACK WAS DETECTED BY MEASURING APPLIED FIELD DISTORTIONS CAUSED BY ASSOCIATED MAGNETIC PERMEABILITY VARIATIONS.

THIS TECHNIQUE HAS BEEN HIGHLY SUCCESSFUL FOR PREDICTING POSSIBLE CRACK SITES.

EVEN THROUGH A THICK LAYER OF NON-MAGNETIC MATERIAL.

Experimental Apparatus

'Room temperature application

Planar gradiometers

Heavy deprise of computer data
acquisition and processing

Non-Destructive Evaluation (NDE)

Corrosion and embrittlement in

- Chemical and nuclear reactors
- Pipelines (especially coated, sub-sea, etc.)
- Ageing aircraft

are major, and expensive problems.

- Extension of KC135 (Boeing 707), now 35 years old to 70 year life
- Japanese reactor accident

Harold Weinstock DHC, INSA Lyon 1999

CURRENT FLOW <-> MAGNETIC FIELD TRANSFORMATIONS

STARTING WITH THE BIOT-SAYART LAW:

$$\underline{B}(\underline{r}) = \frac{\mu_0}{4\pi} \int \frac{\underline{J}(\underline{r}') \times (\underline{r} - \underline{r}')}{|\underline{r} - \underline{r}'|^3} d^3\underline{r}'$$

EXTRACTING THE VERTICAL COMPONENT AND EXPRESSING IN TERMS OF GREEN'S FUNC-TIONS GIVES:

$$B_{z}(\underline{r}) = J_{x}(x, y) \otimes G_{y}(x, y, z) + J_{y}(x, y) \otimes G_{x}(x, y, z)$$

THE TWO GREEN'S FUNCTIONS ARE:

$$G_x(x, y, z) = \frac{\mu_0 dz}{4\pi} \left[\frac{x}{(x^2 + y^2 + z^2)^{3/2}} \right]$$

QMA

$$G_{y}(x, y, z) = \frac{\mu_{0}dz}{4\pi} \left[\frac{y}{(x^{2} + y^{2} + z^{2})^{3/2}} \right]$$

Transforming into frequency space and applying the law of continuity, gives a simple transform between current density and magnetic field:

$$b_z(k_x,k_y,z) = i \frac{\mu_0 d}{2} \frac{k}{k_y} e^{-kz} j_x(k_x,k_y)$$

BY REARRANGEMENT THE INVERSE IS GIVEN BY:

$$j_x(k_x,k_y) = -i\frac{2}{\mu_0 d} \frac{k_y}{k} e^{kz} b_z (k_x,k_y,z)$$

AN EXAMPLE OF MAGNETIC FIELD TO CURRENT FLOW TRANSFORMATIONS

A PRINTED CIRCUIT BOARD IN THE SHAPE OF AN SU WITH A SMALL CURRENT FLOWING IN IT. WAS SCANNED BENEATH A LOW TEMPERATURE SQUID SENSOR. PRODUCING A MAG-NETIC FIELD MAP AS SHOWN BELOW:

BY USING THE ALGORITHM DESCRIBED ABOVE THE CURRENT DENSITY WAS CALCULATED FROM THE Z COMPONENT OF THE MAGNETIC FIELD:

YARIATIONS IN PCB TRACK WIDTH AND THE SOLDER TAGS CAN EASILY BE RESOLVED.

Depth profiling by Frequency scanning

$$\delta = \sqrt{\frac{\rho}{\mu\mu_0\pi f}} = \sqrt{\frac{1}{\mu\mu_0\sigma\pi f}} = \frac{10^6}{2\pi}\sqrt{\frac{10}{\mu\sigma f}} \ mm$$

Material parameter	Cu	Al	NiCr	Stainless steel	Mild steel	Si steel	Graphite				
ρ (x 10 ⁻⁸) Ωm	1.8	2.7	103	43	10	43	1000				
μ	1	1	1	1	800	50,000	1				
Frequency	Skin depth (mm)										
1 Hz	67	83	510	330	5.6	1.4	1591				
(100 Hz)	6.7	8.3	51	33	0.56	0.14	159				
I0 kHz	0.67	0.83	5.1	3.3	0.056	0.014	15.9				
1 MHz	0.067	0.083	0.51	0.33	0:.0056		1.59				

For crack depth to S>>E

Depth averaged current

Experimental procedure

Many AC techniques generate single frequency 1D or 2D scans of a specimen. In contrast, we make measurements over a range of frequencies:

- s(f) at a signal position, near the slot.
- r(f) at a reference position, above a plain piece of plate, far from the slot.

Then we normalise, calculating s(f)/r(f), which contains depth information via the skin effect.

Figure 3: a typical experimental result, for a subsurface slot 6.5 mm deep.

NDE WITH LTS SQUID GRADIOMETERS

Uses same scanning system and electronics, but the requirement of a LHe cryostat imposes an additional standoff between the sensor and the sample. (Varying the coil to sample liftoff is much more critical).

- LTS Gradiometers are overly sensitive for NDE purposes.
- rf or magnetic shielding is often required for operation in a magnetically hostile environment.
- The design and application of higher order asymmetric gradiometers *may* have some future in very specialised areas.

Figure 22. Section of fibreglass-clad aluminium pressure vessel with a fatigue through crack in its metal wall (supplied by British Gas).

Section 2.1.1.B). The concentration and charge gradients force Na⁺ into the cell and if the

Figure 2.7 Post-synaptic synapse. Neurotransmitters are released into the synaptic cleft and recombine with the post-synaptic membrane. The recombination of excitatory neurotransmitters, force a change in the permeability of the membrane to Na⁺ ions which initiates depolarisation. (Gaudin and Jones, 1989).

threshold potential is reached an action potential is initiated in the post-synaptic neurone. The action potential can now propagate along this new neurone. The current distribution of a post-synaptic potential is like that of a single current dipole. The measured biomagnetic signal is not of one axon synapsing with another but is the sum of the magnetic field from many synapses in the nerve bundle.

The post-synaptic potential always occurs at the synapse at the same time for a given nerve and stimulus site. The recordings taken from the spinal cord and cortex in Chapter 6 and 7 are of the magnetic fields induced by post-synaptic potential currents of several hundred neurones. Stimulation of the median nerve at the wrist, causes propagation of an action potential along the nerve bundle to the post-synaptic neurones in the dorsal horn in the spinal cord, 14ms after the stimulation. The signal

MULTILAYER SPECIMENS

Realistic aircraft lap-joint structures may have flaws beside fasteners in the first, second or even third layers, ie flaws hidden below 6mm of aluminium. The lack of any sealant between the layers makes ultrasonic testing unsuitable.

Eddy currents induced in the sample using a spiral coil located on the cryostat tail. I_{coil} ~0.5A, f_{coil} =620Hz. The HTS SQUID magnetometer is scanned across the sample at v~3mms⁻¹ and takes 60mins to collect the data.

The flaw signal is superimposed onto the rivet signal and identical unflawed rivets do not have identical signatures due to the nature of the contact between the rivet and the plate.

Deeper flaws → lower excitation frequency Reducing the frequency to 170Hz increases the flaw signal at rivet 2. Use digital signal subtraction to remove the rivet signal from the image.

170Hz

FLUXGATES vs SQUIDS

Both sensors were used to map the features of the lap-joint sample, starting with the top layer.

Two-dimensional cross-correlation of the final image with an "ideal, unflawed fastener" can be used to isolate the flaw signal. For the SQUID image:

(both unflawed)

pk-pk 90

pk-pk 67

pk-pk 25

In the above example, a moderately low noise HTS SQUID performs better than a fluxgate in terms of spatial and signal resolution.

Removal of the rivet signal can also be performed using orthogonal induction of the eddy currents.

Second generation gradiometers

Aimed at ultra low-noise applications:

- → Fabricate gradiometer on large substrate 30 x 10mm² --> baseline is 14mm.
- → Improve inductance matching between gradiometer loop and SQUID
- → Use novel coupling scheme where two SQUIDs are connected to gradiometer loops to compensate for parasitic effective area.

70
First Tests: Gradient resolution is 222fT/cm√Hz --> suitable for biomagnetism Gradiometer operates well unshielded

4) Mobile Cryostat with SQUID and Scanmaster moving unit

Mobile Cryostat for SQUID cooling (ILK Dresden)

INDCIYA.DIF, ONCE '98

Flawless Airbus wheel

rf-Gradiometer, f = 215 Hz, I = 200 mA trace with 65 % crack and 25 % crack

Orthogonal Excitation with Planar Gradiometer and Sheet Inducer

Sheet inducer.with planar rf gradiometer Excitation current: 5 mA @ 500 Hz

Fig. 6: MULTI-D COIL AND SHEET INDUCER WITH SQUID SETUP

Rotation of excitation current

Software Evaluation of Orthogonal Measurements with Planar Gradiometer and Sheet Inducer

Excitation: 5 mA @ 500 Hz

aluminum plate (250×250×4mm³) with 12.5mm slot and 12.5 mm hole

Orthogonal Excitation with Planar Gradiometer and Multi-D Coil

Multi-D coil with planar gradiometer (250×250×4mm³) Excitation current: 1 mA @ 500 Hz

aluminum plate with 12.5mm slot and 12.5 mm hole

SQUID measurement of DASA Calibration Sample

Conventional measurement: (Eddyscan)

Harold Weinstock (AFOSR) -1997

meetings. At these meetings we will learn what the real and improve quality control. The results of such forays applications would do well to spend more time at NDE learn how a SQUID might be used to speed production into the world of NDE will have a major impact on the the existing and emerging competition. Furthermore, we must visit manufacturing and processing plants to "Those of us who are seeking potential SQUID NDE problems are, and how far we must go to outperform future of SQUID technology."

