How to choose the regularization parameter in the total variation (TV) functional?

Heuristics: Rullgård 2008

Balancing ℓ^1 and TV: Clason, Jin & Kunisch 2010

Local variance: Dong, Hintermüller & Rincon-Camacho 2011

Discrepancy principle: Wen & Chan 2012

S-curve method: Kolehmainen, Lassas, Niinimäki & S 2012

Dantzig estimation: Frick, Marnitz & Munk 2012

Quasi-optimality principle and Hanke-Raus rules: Kindermann, Mutimbu & Resmerita 2013

KKT system: Chen, Loli Piccolomini & Zama 2014

Discrepancy principle: Toma, Sixou & Peyrin 2015

Cross validation, Stein's unbiased risk estimates, L-curve method, ...

No single choice rule works perfectly for all applications. Therefore, it is good to have a collection of rules.

The continuous tomographic model needs to be approximated using a discrete model

Continuous model:

Discrete model:

In this schematic setup we have 5 projection directions and a 10-pixel detector. Therefore, the number of data points is **50**.

The resolution of the discrete model can be freely chosen according to computational resources

Continuous model:

In this schematic setup we have 5 projection directions and a 10-pixel detector. Therefore, the number of data points is **50**.

The number of degrees of freedom in the three discrete models below are **16**, **64** and **256**, respectively.

Discrete models:

We define the total variation (TV) norm consistently for continuous and discrete cases

Continuous anisotropic TV norm for attenuation coefficient $f: \Omega \to \mathbb{R}$:

$$\int_{\Omega} \left(\left| \frac{\partial f}{\partial x_1} \right| + \left| \frac{\partial f}{\partial x_2} \right| \right) dx.$$

Discrete anisotropic TV norm for an image matrix of size $n \times n$:

$$\frac{1}{n}\sum\left|f_{\kappa}-f_{\kappa'}\right|,$$

where the sum is over horizontally and vertically neighboring pixel values f_{κ} and $f_{\kappa'}$.

The above is based on this approximate two-dimensional computation:

$$\int_{\Omega} \left| \frac{f(x_1 + \frac{1}{n}, x_2) - f(x_1, x_2)}{1/n} \right| dx \approx (1/n)^2 \sum \left| \frac{f_{\kappa} - f_{\kappa'}}{1/n} \right|,$$

where the sum is over horizontally neighboring pixel values f_{κ} and $f_{\kappa'}$.

Low-noise TV reconstructions of a walnut using several regularization parameters

Computations by Kati Niinimäki using a primal-dual interior point method.

Low-noise TV reconstructions of a walnut using several regularization parameters

What happens when we compare reconstructions at different resolutions?

Low-noise TV reconstructions of a walnut at many resolutions using $\alpha = 0.001$

Low-noise TV reconstructions of a walnut at many resolutions using $\alpha=1$

Low-noise TV reconstructions of a walnut at many resolutions using $\alpha = 1000$

TV norms of low-noise reconstructions with various resolutions and parameters α

	Resolution						
α	128×128	192×192	256×256	6			
10^{-4}	1.51	2.29	3.64				
10^{-3}	1.51	2.29	3.46				
10^{-2}	1.50	2.23	2.97				
10^{-1}	1.43	1.85	1.93				
10^{0}	1.08	1.11	1.11				
10^{1}	0.78	0.78	0.77				
10^{2}	0.48	0.48	0.48				
10^{3}	0.12	0.12	0.12				
10^{4}	0.04	0.04	0.04				
10^{5}	0	0	0				
10^{6}	0	0	0				

TV norms of low-noise reconstructions with various resolutions and parameters α

	Resolution						
α	128×128	192×192	256×256				
10^{-4}	1.51	2.29	3.64				
10^{-3}	1.51	2.29	3.46				
10^{-2}	1.50	2.23	2.97				
10^{-1}	1.43	1.85	1.93				
10^{0}	1.08	1.11	1.11				
10^{1}	0.78	0.78	0.77				
10^{2}	0.48	0.48	0.48				
10^{3}	0.12	0.12	0.12				
10^{4}	0.04	0.04	0.04				
10^{5}	0	0	0				
10^{6}	0	0	0				

What happens when we add noise to the data?

5% noise TV reconstructions of a walnut at many resolutions using $\alpha = 0.001$

5% noise TV reconstructions of a walnut at many resolutions using $\alpha=10\,$

5% noise TV reconstructions of a walnut at many resolutions using $\alpha = 10000$

TV norms of reconstructions using various noise levels, resolutions and parameters $\boldsymbol{\alpha}$

	Low noise			5% noise			
α	128 ²	192^{2}	256^{2}	128 ²	192^{2}	256 ²	
10^{-4}	1.51	2.29	3.64	2.42	5.05	8.71	
10^{-3}	1.51	2.29	3.46	2.43	5.05	8.59	
10^{-2}	1.50	2.23	2.97	2.42	5.01	8.59	
10^{-1}	1.43	1.85	1.93	2.37	4.83	8.16	
10^{0}	1.08	1.11	1.11	1.99	3.50	5.12	
10^{1}	0.78	0.78	0.77	0.86	0.86	0.88	
10^{2}	0.48	0.48	0.48	0.48	0.48	0.48	
10^{3}	0.12	0.12	0.12	0.12	0.12	0.12	
10^{4}	0.04	0.04	0.04	0.04	0.04	0.04	
10^{5}	0	0	0	0	0	0	
10^{6}	0	0	0	0	0	0	

[Niinimäki, Lassas, Hämäläinen, Kallonen, Kolehmainen, Niemi & S, SIAM Journal on Imaging Sciences 2016]

There are some related results in the literature

1992 Vainikko: On the discretization and regularization of ill-posed problems with noncompact operators

We use geometric arguments similar to those here:

1995 Chambolle: Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations.

These works consider TV functionals and Γ-convergence when discretization is refined, but without a measurement operator: 2009 Chambolle, Giacomini & Lussardi

2012 Gennip & Bertozzi
2013 Bellettini. Chambolle & Goldman

2013 Trillos & Slepčev

This paper achieves a result analogous with ours, using wavelet frames in the finite-dimensional functionals: 2012 Cai, Dong, Osher & Shen

Assumptions on the linear forward map ${\cal A}$

Assume either (A) or (B) about the linear operator A:

- (A) $\mathcal{A}: L^2(D) \to L^2(\Omega)$ is compact and $\mathcal{A}: L^1(D) \to \mathcal{D}'(\Omega)$ is continuous with some open and bounded set $\Omega \subset \mathbb{R}^2$. This covers the case of classical Radon transform with image domain D and sinogram domain Ω . We denote the set of distributions by $D'(\Omega)$.
- (B) $\mathcal{A}: L^1(D) \to \mathbb{R}^M$ is bounded. This covers the practically important discrete pencil beam model of tomographic measurements.

Definition of discrete and continuous regularization functionals

Let D be the square $[0,1]^2 \subset \mathbb{R}^2$. Use anisotropic BV(D) norm

$$||u||_{BV} = ||u||_{L^1} + V(u) = ||u||_{L^1} + \int_D \left(\left| \frac{\partial u(x)}{\partial x_1} \right| + \left| \frac{\partial u(x)}{\partial x_2} \right| \right) dx.$$

Define $S_{\infty}:BV(D)
ightarrow \mathbb{R}$ and $S_j:BV(D)
ightarrow \mathbb{R} \cup \{\infty\}$ by

$$S_{\infty}(u) = \|Au - m\|_{L^{2}(\Omega)}^{2} + \alpha_{1}\|u\|_{L^{1}(D)} + \alpha V(u)$$

with positive regularization parameters $\alpha_1 > 0$ and $\alpha > 0$, and

$$S_j(u) = \begin{cases} S_{\infty}(u), & \text{for } u \in \text{Range}(T_j), \\ \infty, & \text{for } u \notin \text{Range}(T_j). \end{cases}$$

Linear operator T_j projects to functions that are piecewise constant on a regular $2^j \times 2^j$ square pixel grid.

Our main theorem ensures the convergence of regularized solutions as resolution grows

- ▶ There exists a minimizer $\widetilde{u}_j \in \arg\min(S_j)$ for all j = 1, 2, 3, ...
- ▶ There exists a minimizer $\widetilde{u}_{\infty} \in \arg\min(S_{\infty})$.
- Any sequence $\widetilde{u}_j \in \arg\min(S_j)$ of minimizers has a subsequence $\widetilde{u}_{j(\ell)}$ that converges weakly in BV(D) to some limit $w \in BV(D)$. Furthermore, $\lim_{\ell \to \infty} V(\widetilde{u}_{j(\ell)}) = V(w)$.
- ▶ The limit w is a minimizer: $w \in \arg\min(S_{\infty})$.

[Niinimäki, Lassas, Hämäläinen, Kallonen, Kolehmainen, Niemi & S, SIAM Journal on Imaging Sciences 2016]

What can we say about the proposed method?

Benefits of our multiresolution TV parameter choice method:

- simple definition,
- easy implementation, and
- ▶ no need of *a priori* information about the noise amplitude.

Also, it seems to perform well for real tomographic data.

Downside: several reconstructions need to be computed. Also, it is still unclear why the method works so nicely: if there is convergence for any α in theory, what is the instability we are observing?

The method can be tried out with 3D tomography (it works!) and with other inverse problems and regularizers.

The S-curve method determines a regularization parameter value giving the right sparsity level

