Introduction to R and econometrics - Part II

Ryan Hawthorne Acacia Economics CCRED (UJ)

17 March, 2021

Hypothesis tests: Null hypothesis

- A hypothesis test consists of a **null hypothesis** H_0 and a corresponding **alternative hypothesis** H_1 about some features of a data generating process. Examples for hypotheses for a linear regression model:
 - H_0 : $\beta_1 = 0$, H_1 : $\beta_1 \neq 0$
 - H_0 : The explanatory variable x_k is exogenous, H_1 : x_k is endogenous
 - H_0 : The disturbance ε is not auto-correlated, H_1 : ε is auto-correlated

Example: t-test for a regression coefficient

• Consider a linear regression model $y=\beta_0+\beta_1x_1+...+\beta_Kx_K+\varepsilon$ that satisfies a multiple regression equivalent to assumptions (A1)-(A4) and the null hypothesis:

$$H_0: \beta_k = 0$$

 Every hypothesis test is based on a test statistic that can be computed from the data. In our example, it has t-value:

$$t_k = \frac{\hat{\beta}_k}{\hat{sd}(\hat{\beta}_k)}$$

- We can also view a test statistic as a random variable. Here t_k is a transformation of the random variable ε and the explanatory variables.
- Key of every hypothesis test is that one knows the distribution

P-values and significance levels

- The p-value measures the probability to find the realized or more extreme test statistic if H0 is true (see plot above).
- One often considers critical levels of the p-value like 5% or 1%, which are called significance levels.
- We say we can reject the H0 at significance level α if the p-value is smaller than α ,
 - e.g. if we have p-value=0.043 we can reject H0 at a significance level of 5%.
- Significance levels are often marked with one or several stars **
 in regression outputs.