Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1-4. (Canceled)
- 5. (Currently Amended) An exhaust purification device for an internal combustion engine having, a NO_x storing catalyst arranged in an engine exhaust passage, the NO_x storing catalyst being comprised of a precious metal catalyst and a NO_x absorbent and, when an air-fuel ratio of inflowing exhaust gas is lean, cold storing nitrogen dioxide NO₂ contained in the exhaust gas in the NO_x absorbent when not activated and hot storing cold stored nitrogen dioxide NO₂ in the NO_x absorbent when activated,

 said exhaust purification device for an internal combustion engine making the nitrogen dioxide NO₂ contained in the exhaust gas be cold stored in the NO_x absorbent in the state where said NO_x storing catalyst is not activated and executing a NO_x storing catalyst

nitrogen dioxide NO₂ contained in the exhaust gas be cold stored in the NO_x absorbent in the state where said NO_x storing catalyst is not activated and executing a NO_x storing catalyst restoring control including at least raising the temperature of said NO_x storing catalyst to a predetermined temperature to activate it when a predetermined NO_x storing catalyst restoring condition is met so as to restore the cold storing capability of said NO_x absorbent in the state where said NO_x storing catalyst is not activated, An exhaust purification device as set forth in claim 1, wherein

wherein said NO_x storing catalyst is a NO_x storing catalyst having the function of hot storing nitrogen oxides NO_x contained in exhaust gas in the NO_x absorbent when said NO_x storing catalyst is activated and the air-fuel ratio of the exhaust gas flowing into the NO_x storing catalyst is lean,

said device has a NO_x release speed estimating means for estimating a release speed of nitrogen oxides NO_x from said NO_x absorbent when making said NO_x storing

catalyst said predetermined temperature and a NO_x storing speed estimating means for estimating a storing speed of nitrogen oxides NO_x to said NO_x absorbent when making said NO_x storing catalyst said predetermined temperature, and

said NO_x storing catalyst restoring condition is deemed to be met when the NO_x release speed estimated by said NO_x release speed estimating means becomes greater than or equal to a predetermined speed set to not more than said NO_x storing speed based on the NO_x storing speed estimated by said NO_x storing speed estimating means.

6. (Currently Amended) An exhaust purification device for an internal combustion engine having, a NO_x storing catalyst arranged in an engine exhaust passage, the NO_x storing catalyst being comprised of a precious metal catalyst and a NO_x absorbent and, when an air-fuel ratio of inflowing exhaust gas is lean, cold storing nitrogen dioxide NO₂ contained in the exhaust gas in the NO_x absorbent when not activated and hot storing cold stored nitrogen dioxide NO₂ in the NO_x absorbent when activated,

said exhaust purification device for an internal combustion engine making the nitrogen dioxide NO₂ contained in the exhaust gas be cold stored in the NO₂ absorbent in the state where said NO₂ storing catalyst is not activated and executing a NO₂ storing catalyst restoring control including at least raising the temperature of said NO₂ storing catalyst to a predetermined temperature to activate it when a predetermined NO₂ storing catalyst restoring condition is met so as to restore the cold storing capability of said NO₂ absorbent in the state where said NO₃ storing catalyst is not activated, An exhaust purification device as set forth in elaim 1, wherein

wherein said NO_x storing catalyst is a NO_x storing catalyst having the function of hot storing nitrogen oxides NO_x contained in exhaust gas in the NO_x absorbent when said

 NO_x storing catalyst is activated and the air-fuel ratio of the exhaust gas flowing into the NO_x storing catalyst is lean,

said device has a NO_x release speed estimating means for estimating a release speed of nitrogen oxides NO_x from said NO_x absorbent when making said NO_x storing catalyst said predetermined temperature, a NO_x exhaust speed estimating means for estimating an exhaust speed of nitrogen oxides NO_x from the internal combustion engine, and a NO_x storing speed estimating means for estimating a storing speed of nitrogen oxides NO_x to said NO_x absorbent when making said NO_x storing catalyst said predetermined temperature, and

said NO_x storing catalyst restoring condition is deemed to be met when a sum of the NO_x release speed estimated by said NO_x release speed estimating means and the NO_x exhaust speed estimated by said NO_x exhaust speed estimating means becomes greater than or equal to a predetermined speed set to not more than said NO_x storing speed based on the NO_x storing speed estimated by said NO_x storing speed estimating means.

- 7. (Canceled)
- 8. (Currently Amended) An exhaust purification device for an internal combustion engine having, a NO_x storing catalyst arranged in an engine exhaust passage, the NO_x storing catalyst being comprised of a precious metal catalyst and a NO_x absorbent and, when an air-fuel ratio of inflowing exhaust gas is lean, cold storing nitrogen dioxide NO₂ contained in the exhaust gas in the NO_x absorbent when not activated and hot storing cold stored nitrogen dioxide NO₂ in the NO_x absorbent when activated,

nitrogen dioxide NO₂ contained in the exhaust gas be cold stored in the NO_x absorbent in the state where said NO_x storing catalyst is not activated and executing a NO_x storing catalyst

restoring control including at least raising the temperature of said NO_x storing catalyst to a predetermined temperature to activate it when a predetermined NO_x storing catalyst restoring condition is met so as to restore the cold storing capability of said NO_x absorbent in the state where said NO_x storing catalyst is not activated. An exhaust purification device as set forth in claim 1,

wherein the exhaust purification device further having includes a NO₂ ratio increasing means for increasing a ratio of nitrogen dioxide NO₂ with respect to nitrogen monoxide NO produced at the time of combustion under a lean air-fuel ratio when said NO_x storing catalyst is not activated compared with when the NO_x storing catalyst is activated in the same engine operating state.

9. (Canceled)