Coxeter Systems:

A Study of the Intersection of Linear Algebra, Group Theory, and Graph Theory

Ankit Agarwal

December 6, 2017

The University of California Berkeley

Table of contents

- 1. Finite Reflection Groups
- 2. Structure of Finite Reflection Groups
- 3. Coxeter Systems
- 4. Classification of Positive Definite Coxeter Systems

Finite Reflection Groups

Definition

A **reflection** is a linear operator s_{α} on a vector space V specifying a vector α such that $s_{\alpha}(\lambda) = \lambda - \frac{2 < \lambda, \alpha >}{< \alpha, \alpha >}$ for some vector λ and some inner product.

2

Definition

A **reflection** is a linear operator s_{α} on a vector space V specifying a vector α such that $s_{\alpha}(\lambda) = \lambda - \frac{2 < \lambda, \alpha >}{< \alpha, \alpha >}$ for some vector λ and some inner product.

Essentially, α is a normal vector to some plane. All that \mathbf{s}_{α} does is take λ project it onto α and subtract twice that projection from λ .

2

Definition

A **reflection** is a linear operator s_{α} on a vector space V specifying a vector α such that $s_{\alpha}(\lambda) = \lambda - \frac{2 < \lambda, \alpha >}{< \alpha, \alpha >}$ for some vector λ and some inner product.

Essentially, α is a normal vector to some plane. All that s_{α} does is take λ project it onto α and subtract twice that projection from λ .

A *Finite Reflection Group* is simply a finite group generated by such reflections.

Examples of Finite Reflection Groups

Examples of Finite Reflection Groups

Example

 $\mathbf{D_{2n}}$ Generated by two reflections on the 2*D*-plane with angle $\frac{\pi}{n}$.

Examples of Finite Reflection Groups

Example

 $\mathbf{D_{2n}}$ Generated by two reflections on the 2*D*-plane with angle $\frac{\pi}{n}$.

 $\mathbf{S}_{\mathbf{n}}$ Generated by reflections representing the transposition of two components of n-dimensional vectors

Structure of Finite Reflection

Groups

Definition

A **Root System** ϕ is a finite set of vectors satisfying...

Definition

A **Root System** ϕ is a finite set of vectors satisfying...

$$\phi \cup \mathbb{R}\alpha = \{\alpha, -\alpha\}, \ \forall \alpha \in \phi$$

Definition

A **Root System** ϕ is a finite set of vectors satisfying...

$$\phi \cup \mathbb{R}\alpha = \{\alpha, -\alpha\}, \ \forall \alpha \in \phi$$

$$s_{\alpha}(\phi) = \phi, \ \forall \alpha \in \phi$$

Definition

A **Root System** ϕ is a finite set of vectors satisfying...

$$\phi \cup \mathbb{R}\alpha = \{\alpha, -\alpha\}, \ \forall \alpha \in \phi$$
$$s_{\alpha}(\phi) = \phi, \ \forall \alpha \in \phi$$

Definition

A **Positive System** Π is a subset of ϕ such that for all $\alpha \in \Pi$, $\alpha > 0$ with respect to some lexicographic ordering of V.

Definition

A **Simple System** Δ is a linearly independent subset of ϕ such that each $\alpha \in \phi$, α is either an entirely positive linear combination of the vectors in Delta, or entire negative.

4

Theorem

Simple systems exist. Additionally, they define a unique positive system and vice versa.

Theorem

Simple systems exist. Additionally, they define a unique positive system and vice versa.

Definition

The **length function** $I(\omega)$ of $\omega \in W$, a Finite Reflection Group and corresponding simple system Δ is defined as the minimal r such that $s_1...s_r = \omega$ where $s_i = s_{a_i}$ for some $a_i \in Delta$.

Theorem

Simple systems exist. Additionally, they define a unique positive system and vice versa.

Definition

The **length function** $I(\omega)$ of $\omega \in W$, a Finite Reflection Group and corresponding simple system Δ is defined as the minimal r such that $s_1...s_r = \omega$ where $s_i = s_{a_i}$ for some $a_i \in Delta$.

Definition

Define $n(\omega)$ to be the number of positive roots sent to negative roots for a given $\omega \in W$.

Theorem

Simple systems exist. Additionally, they define a unique positive system and vice versa.

Definition

The **length function** $I(\omega)$ of $\omega \in W$, a Finite Reflection Group and corresponding simple system Δ is defined as the minimal r such that $s_1...s_r = \omega$ where $s_i = s_{a_i}$ for some $a_i \in Delta$.

Definition

Define $n(\omega)$ to be the number of positive roots sent to negative roots for a given $\omega \in W$.

Theorem

$$I(\omega) = n(\omega)$$

Coxeter Systems

Theorem

Fix a simple system Δ in some positive system Π , then the finite reflection group generated by Δ is generated with respect to the relations $(s_{\alpha}s_{\beta})^n=1$ for $n=\operatorname{ord}(s_{\alpha}s_{\beta})$ and α,β in W.

Theorem

Fix a simple system Δ in some positive system Π , then the finite reflection group generated by Δ is generated with respect to the relations $(s_{\alpha}s_{\beta})^n=1$ for $n=\operatorname{ord}(s_{\alpha}s_{\beta})$ and α,β in W.

Using this theorem, we can redefine finite reflection groups, and consequently, Coxeter Groups as follows:

Definition

A Coxeter System is a pair (W, S) where S is a set of elements and W is a Coxeter Group with the following relations:

Theorem

Fix a simple system Δ in some positive system Π , then the finite reflection group generated by Δ is generated with respect to the relations $(s_{\alpha}s_{\beta})^n=1$ for $n=\operatorname{ord}(s_{\alpha}s_{\beta})$ and α,β in W.

Using this theorem, we can redefine finite reflection groups, and consequently, Coxeter Groups as follows:

Definition

A **Coxeter System** is a pair (W, S) where S is a set of elements and W is a **Coxeter Group** with the following relations:

$$a^2 = 1$$
 for all $a \in S$

Theorem

Fix a simple system Δ in some positive system Π , then the finite reflection group generated by Δ is generated with respect to the relations $(s_{\alpha}s_{\beta})^n=1$ for $n=\operatorname{ord}(s_{\alpha}s_{\beta})$ and α,β in W.

Using this theorem, we can redefine finite reflection groups, and consequently, Coxeter Groups as follows:

Definition

A **Coxeter System** is a pair (W, S) where S is a set of elements and W is a **Coxeter Group** with the following relations:

$$a^2=1$$
 for all $a\in S$ $ord(ab)=n$ for some $n\geq 2,\ \forall a,b\in S$ and $a\neq b$. (The choice of n can be different for distinct pairs a,b)

Graph and Matrix Representations of Coxeter Groups

Definition

Let C be a Coxeter System (W, S). Then define the **Coxeter Graph** G of C as follows.

Let S be the vertex set of the graph G. Then, for any two elements $s_1, s_2 \in S$, if $ord(s_1s_2) = 2$, do not connect vertices s_1 and s_2 . If $ord(s_1s_2) = 3$, connect the two vertices. If $ord(s_1s_2) > 3$, connect the two vertices with a labeled edge.

Graph and Matrix Representations of Coxeter Groups

Definition

Let C be a Coxeter System (W, S). Then define the **Coxeter Graph** G of C as follows.

Let S be the vertex set of the graph G. Then, for any two elements $s_1, s_2 \in S$, if $ord(s_1s_2) = 2$, do not connect vertices s_1 and s_2 . If $ord(s_1s_2) = 3$, connect the two vertices. If $ord(s_1s_2) > 3$, connect the two vertices with a labeled edge.

Definition

Let C be a Coxter System. Then, define the **Coxeter Matrix** A as follows:

$$A(s_i, s_j) = \cos \frac{\pi}{ord(s_i s_j)}$$

7

Classification of Positive Definite

Coxeter Systems

Positive Definite Coxeter Systems

Definition

A Coxeter System is **Positive Definite** if its coxeter matrix is positive definite. Likewise, it is Positive Semidefinite if its coxeter matrix is positive semidefinite

Positive Definite Coxeter Systems

Definition

A Coxeter System is **Positive Definite** if its coxeter matrix is positive definite. Likewise, it is Positive Semidefinite if its coxeter matrix is positive semidefinite

Definition

A Coxeter System is irreducible if its Coxeter Graph is connected

Positive Definite Coxeter Systems

Theorem

All the Positive Definite Irreducible Coxeter Graphs:

Positive Semi-Definite Coxeter Systems

Theorem

All of the Positive Semi-Definite Irreducible Coxeter Graphs:

Why Special Right Triangles are Truly Special

Theorem

This is a really obscure theorem, but it will come to light in just a few minutes.

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1 \implies Special Right Triangle$$