

SC454 Silicon Photonics Circuits and Systems Design

OFC SHORT COURSE MARCH -20^{TH} , 2017

INTERCONNECT GUI

INTERCONNECT workflow

- Add circuit elements
- Add connections
- Add analyzer elements
- Set properties
- Run simulation
- Visualize results

Install a compact model library

- Left mouse click on 'Design Kit' at the bottom of the element library
- Browse for the latest GSiP *.cml file (in the folder SiEPIC_Ebeam_PDK/Lumerical_Ebeam_CML)
- Choose a destination folder
- Repeat with the latest EBeam compact model library

Compact model libraries

GSiP CML (active)

EBeam CML (passive)

Tutorial 1 – Getting Started

- Start application
- Create basic circuit
- Set properties
- Run simulation
- Visualize results
- Script

Create a simple circuit by drag and dropping components from the GSiP and the primitive element library.

- From the primitive element library
 - ONA optical network analyzer
- From the GSiP
 - Ring Modulator DB
 - Edge_coupler_1550
 - dcsource

Optical Network Analyzer

Use the following settings for the ONA (make sure the ONA is selected – dashed outline)

ONA 1

Parameter	value
Input parameter	Center and range
Center frequency	1550 [nm]
Frequency range	40 [nm]
Number of points	5000
Plot kind	wavelength
Number of input ports	2

Optical Network Analyzer

- Run a frequency analysis by clicking the green triangle After a successful run the triangle should point the other direction
 - Select the ONA (dashed outline) and find the result view

window

Right click on gain and select visualize

Optical network analyzer

Multiple results can be send to the same visualizer

Add the gain spectrum of the drop port to the same visualizer

Scripting: Mathematics

Simple Mathematics: plot some simple functions

```
> x = linspace(-10,10,500);
> y=sin(x);
> plot(x,y);
> y2=exp(-x^2/9)*sin(10*x);
> plot(x,y,y2,"x","y","functions");
> legend("sin(x)","exp(-x^2/9)*sin(10*x)");
>?size(x);
result:
500 1
```


Free spectral range

```
> ?c/3.918/(2*pi*20e-6);
result:
6.08901e+011
>
```

```
\Delta v = \frac{c}{n_g l}
```

Peak analysis

• Run the simulation twice with the DC source amplitude equals 0 and 4, respectively (applied to the anode of the modulator). Plot the gain curves in one figure.

DC_1 Property	Value	DC_1 Property	Value
Amplitude	0	Amplitude	-4

Sweep framework

- DC 1 amplitude: from 0 to 4V
- Transmission at center (1547.4 nm)
- Change the center wavelength of the ONA to 1547.4 nm and the range to 1nm
- Run the sweep
- Right click on sweep to visualize

Advanced analysis with scripting

Run the script 'ring_mod_characterization.lsf' to further analyze the ring modulator performance

_ D X

Ring modulator + drop filter (gap = 300nm and monitor gap = 310nm)

Tutorial 2 – Transient Analysis

Layout driven simulation

Export netlist and launch INTERCONNECT

Time domain test bench

 Run the script 'Time_domain_testbench_single_modulator.lsf' to convert the frequency domain testbench into a time domain testbench

Time domain results

Time domain – result analysis

Contact Us

Questions? support@lumerical.com

Sales Inquiries: sales@lumerical.com

Contact your local <u>Lumerical representative</u>

Start your free 30 day trial today www.lumerical.com

www.lumerical.com

Connect with Lumerical

