2021 年度 解析学特論 (Lebesgue 積分編) (担当:松澤 寛) 自己チェックシート No.6

	学科	(コース)・	プログラム・	領域	学籍番号	氏名
--	----	--------	--------	----	------	----

- 1. (X, \mathcal{F}, μ) を測度空間, $A \in \mathcal{F}$ とする. $f : A \to \mathbb{R}$ が可測であることの定義を述べよ.
- 2. M を1次元 Lebesgue 可測集合全体からなる σ -加法族, m を1次元 Lebesgue 測度とする. $\mathbb{R} \to \mathbb{R}$ が可測であるとき,任意の開集合 $O \subset \mathbb{R}$ に対して $\{x \in \mathbb{R} : f(x) \in O\}$ は Lebesgue 可測であることを証明せよ.また,逆に任意の開集合 $O \subset \mathcal{R}$ に対して $\{x \in \mathbb{R} : f(x) \in O\}$ が Lebesgue 可測であるならば f は可測関数であることを証明せよ.
- 3. (X, \mathcal{F}, μ) を測度空間, $A \in \mathcal{F}$ とする。A で定義された関数 f, g が A 上ほとんどいたるところ 等しいことの定義を述べよ。
- 4. (X, \mathcal{F}, μ) を完備な測度空間, $A \in \mathcal{F}$ とする。A で定義された関数 f, g がほとんどいたるところ等しいとする。f が可測なら g も可測であることを証明せよ。
- **5**. Egoroff の定理を述べよ.