Homework Report for Computer Vision

Yu Xiang, Luo October 10, 2023

You can check this github for more information

(a) Dilation


```
if kernel[x, y]:
    pixel_x, pixel_y = a + x - centerKernel[0], b + y - centerKernel[1]
    if ((0 <= pixel_x < image.size[0]) and (0 <= pixel_y < image.size[1])):
        returnImage.putpixel((pixel_x, pixel_y), 1)</pre>
```

In this code, a, b means the current coordinate, and we put the pixel to 1 if there's any point is 1 in its kernel space.

(b) Erosion


```
if kernel[x, y]:
    pixel_x, pixel_y = a + x - centerKernel[0],
    if ((0 <= pixel_x < image.size[0]) and (0 <= pixel_y < image.size[1])):
        if not image.getpixel((pixel_x, pixel_y)):
            flag = False
            break</pre>
```

In this code, flag is true only if all the pixel in kernel space are 1. If flag is True, the pixel of (a, b) would set to 1.

(c) Opening

(d) Closing


```
def opening(image, kernel):
    return dilation(erosion(image, kernel, centerKernel), kernel)

def closing(image, kernel): nent
    return erosion(dilation(image, kernel), kernel, centerKernel)
```

Opening and closing are simply the combinated usage of dilation and erosion.

(e) Hit-and-miss

Details of intersection and complement can be found at the source code.