Método de la Trasformada Inversa

Curso: Temas Selectos I: O25 LAT4032 1

Profesor: Rubén Blancas Rivera

Equipo: Ana Ximena Bravo, Heriberto Espino, Celeste Núñez

Universidad de las Américas Puebla

Índice

ejercicio 1	2
a) Distribución de referencia q(k)	3
b) Cota con constante c	4
c) Algoritmo de aceptación–rechazo	5
d) Programa de simulación y estimación de c	6
Ejercicio 2	7
Simulación Beta $(1,2,3)$ por aceptación—rechazo	8
Ejercicio 3	9
a) Método de la transformada inversa	10
b) Método de aceptación–rechazo	11
c) Implementación computacional	12
d) Eficiencia comparada	13
Ejercicio 4	14
a) Densidad de Z para Z~N(0,1)	15
b) Simetrización con S· $ Z $	16
c) Evento de aceptación con X \sim Exp(1) y U \sim Unif(0,1)	17
d) Probabilidad con V1,V2~Exp(1)	18
Ejercicio 5	19
a) Gamma(1,5,3)	20
b) Gamma (0.5.6)	21

Queremos simular una variable aleatoria X con distribución discreta:

$$P(X=k) = p_k, \quad k \in \{1,2,3,4\}.$$

donde

$$p_1 = \frac{1}{2}, \quad p_2 = \frac{1}{4}, \quad p_3 = \frac{1}{8}, \quad p_4 = \frac{1}{8}.$$

a) Distribución de referencia q(k)

Proponga una distribución de referencia q(k) sobre $\{1,2,3,4\}$ que sea fácil de simular.

EJERCICIO 1 b) Cota con constante c

b) Cota con constante c

Determine la constante c tal que

$$p_k \leqslant c\, q(k), \; \forall k.$$

c) Algoritmo de aceptación--rechazo

Describa el algoritmo de aceptación–rechazo para generar una realización de X.

d) Programa de simulación y estimación de c

Elabore un programa de cómputo que simule la distribución anterior y compare el valor teórico de c con un valor aproximado obtenido de las simulaciones.

Simulación $\operatorname{Beta}(1,2,3)$ por aceptación--rechazo

Utilice el método de aceptación y rechazo para simular una variable aleatoria con distribución Beta(1,2,3). Elabore un programa de cómputo que genere simulaciones de esta variable y compare resultados con la densidad teórica.

Considere la siguiente función de distribución acumulada

$$F(x) = x^n, \quad 0 \leqslant x \leqslant 1.$$

a) Método de la transformada inversa

Aplique el método de la transformada inversa para dar un algoritmo que simule una variable aleatoria con la función de distribución anterior.

b) Método de aceptación--rechazo

Aplique el método de aceptación y rechazo para el mismo caso.

c) Implementación computacional

Elabore un programa de cómputo para implementar ambos algoritmos.

d) Eficiencia comparada

Compare la eficiencia de ambos métodos y justifique cuál es más recomendable.

En el contexto del método de aceptación y rechazo para generar valores de la distribución $\mathcal{N}(\mu, \sigma^2)$, demuestre directamente los siguientes resultados:

a) Densidad de |Z| para $Z{\sim}N(0,1)$

Si $Z \sim \mathcal{N}(0,1)$, entonces |Z| tiene función de densidad

$$f_{|Z|}(x) = \sqrt{\tfrac{2}{\pi}} \, e^{-x^2/2}, \qquad x > 0.$$

b) Simetrización con $S \cdot |Z|$

Si $S \sim \mathrm{Unif}\{+1,-1\}$ es independiente de |Z| (con Z como en (a)), entonces S $|Z| \sim \mathcal{N}(0,1)$.

c) Evento de aceptación con $X\sim Exp(1)$ y $U\sim Unif(0,1)$

Sea $X \sim \operatorname{Exp}(\lambda)$ con $\lambda = 1$ y $U \sim \operatorname{Unif}(0,1)$ independientes. Considere el evento

$$\big\{U\leqslant \exp\big(-\tfrac{(X-1)^2}{2}\big)\big\}.$$

Entonces, la distribución de X condicionada a este evento tiene densidad

$$f(x) = \sqrt{\frac{2}{\pi}} e^{-x^2/2}, \qquad x > 0,$$

la cual corresponde a la densidad del valor absoluto de una normal estándar $Z \sim \mathcal{N}(0,1)$.

d) Probabilidad con V1,V2 \sim Exp(1)

Sean V_1 y V_2 variables aleatorias independientes e idénticamente distribuidas como $\operatorname{Exp}(\lambda)$ con $\lambda=1$. Entonces se cumple que

$$\mathbb{P}\Big(V_1\geqslant \tfrac{(V_2-1)^2}{2}\Big)=\sqrt{\tfrac{\pi}{2e}}\,.$$

Implemente un algoritmo de simulación para la distribución Gamma con los siguientes parámetros:

EJERCICIO 5 a) Gamma(1,5,3) 20

a) $\operatorname{Gamma}(1.5,3)$

 $\mathsf{Gamma}(1.5,3)$

$\mathbf{b)} \ \mathbf{Gamma} (0.5, 6)$

$\mathsf{Gamma}(0.5,6)$

Elabore un programa de cómputo que genere simulaciones de ambas distribuciones y compare los resultados empíricos con las densidades teóricas correspondientes.