

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ENGENHARIA RURAL

1) Dado o algoritmo abaixo, faça o teste de mesa para n = 0, 1 e 3.

2) Teste o algoritmo abaixo. Faça um Teste de Mesa, usando a tabela ao lado do algoritmo. Lembre-se de testar os "casos críticos" (casos extremos e casos de exceções)!

X	Υ	N	X > 0
		I.	

3) Qual o valor final das variáveis A, B e C mostradas nos algoritmos abaixo:

<u>var</u>	<u>var</u>	<u>var</u>
A: inteiro;	B: inteiro;	C: inteiro;
<u>início</u>	<u>início</u>	<u>início</u>
A ← 1;	B ← 1;	C ← 1;
<u>enquanto</u> A < 100 <u>faça</u>	enquanto B > 100 <u>faça</u>	<u>repita</u>
A ← A;	B ← B;	C ← C;
fim-enquanto;	<u>fim-enquanto</u> ;	<u>até</u> C < 100;
escreva (A);	escreva (B);	escreva (C);
fim.	fim.	fim.

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ENGENHARIA RURAL

4) Reescreva o algoritmo **A1** utilizando o comando enquanto ou repita (sem utilizar o para).

```
algoritmo
var
  i, j, x, n: inteiro
início
  x ← 0
  leia(n)
  para i ← 2 até n+1 faça
    se (x < 3) ou ((não (x = 5)) e
       para j 🗲 i até n faça
          x \leftarrow x + i * j
       fim-para
    senão
       x <del>(</del> x + i +
    fim-se
  fim-para
  escreva(x)
fim-algoritmo.
```

- 5) Tem-se uma estrada ligando várias cidades, onde cada cidade tem seu marco quilométrico. Faça um algoritmo que:
- Leia vários pares de dados, contendo cada par os valores dos marcos quilométricos, em ordem crescente, de duas cidades. O último par contém estes dois valores iguais;
- Calcule os tempos decorridos para percorrer a distância entre estas duas cidades, com as seguintes velocidades: 20, 30, 40, 50, 60, 70, 80 km/hora, sabendo-se que

$$t = \frac{e}{v}$$
, onde t = tempo, e = espaço; v = velocidade.

- Escreva os marcos quilométricos, a velocidade e o tempo decorrido entre as duas cidades, apenas quando este tempo for superior a 2 horas.
- Faça o teste de mesa para 5 pares de dados (de 2 cidades)

PETEO