Mate 6551

Tarea 1

- 0.4. If X is a topological space homeomorphic to D^n , then every continuous $f: X \to X$ has a fixed point.
- 0.7. Let $f \in \text{Hom}(A, B)$ be a morphism in a category \mathscr{C} . If f has a left inverse g $(g \in \text{Hom}(B, A) \text{ and } g \circ f = 1_A)$ and a right inverse h $(h \in \text{Hom}(B, A) \text{ and } f \circ h = 1_B)$, then g = h.
- 0.14. Let G be a group and let \mathscr{C} be the one-object category it defines (Exercise 0.10 applies because every group is a monoid): obj $\mathscr{C} = \{*\}$, $\operatorname{Hom}(*, *) = G$, and composition is the group operation. If H is a normal subgroup of G, define $x \sim y$ to mean $xy^{-1} \in H$. Show that \sim is a congruence on \mathscr{C} and that [*, *] = G/H in the corresponding quotient category.
- 1.1. Let $x_0, x_1 \in X$ and let $f_i: X \to X$ for i = 0, 1 denote the constant map at x_i . Prove that $f_0 \simeq f_1$ if and only if there is a continuous $F: \mathbf{I} \to X$ with $F(0) = x_0$ and $F(1) = x_1$.
- 1.8. (i) Give an example of a continuous image of a contractible space that is not contractible.
 - (ii) Show that a retract of a contractible space is contractible.