

Sheet 2 Chapter One

<u>Tautology:</u> A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it.

Example: $p \lor \neg p$

<u>Contradiction</u>: A compound proposition that is always false is called a *contradiction*.

Example: $p \land \neg p$

A compound proposition that is neither a tautology nor a contradiction is called a *contingency*.

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.		
р	\boldsymbol{q}	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.		
p	\boldsymbol{q}	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

<u>The converse</u> of $p \rightarrow q$ is the proposition $q \rightarrow p$

The contrapositive of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$

<u>The inverse</u> of $p \rightarrow q$ is the proposition $\neg p \rightarrow \neg q$

A conditional statement and its contrapositive are equivalent. The converse and the inverse of a conditional statement are also equivalent, but neither is equivalent to the original conditional statement

<u>BICONDITIONALS:</u> $p \leftrightarrow q$ has exactly the same truth value as $(p \to q) \land (q \to p)$

TABLE 6The Truth Table for theBiconditional $p \leftrightarrow q$.		
p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Precedence of Logical Operators:

TABLE 8 Precedence of Logical Operators.		
Operator	Precedence	
_	1	
^ ~	2 3	
\rightarrow \leftrightarrow	4 5	

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically equivalent.

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology.

Propositional Satisfiability

A compound proposition is **satisfiable** if there is an assignment of truth values to its variables that makes it true.

What is the difference between satisfiability and contingency?

Logical Equivalence Laws:

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} = \mathbf{T}$ $p \land \mathbf{F} = \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \rightarrow q \equiv \neg p \lor q$$

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \lor q \equiv \neg p \rightarrow q$$

$$p \land q \equiv \neg (p \rightarrow \neg q)$$

$$\neg (p \rightarrow q) \equiv p \land \neg q$$

$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

State the converse, contrapositive, and inverse of each of these conditional statements.

S2

- a) If it snows today, I will ski tomorrow.
- b) I come to class whenever there is going to be a quiz.
- c) A positive integer is a prime only if it has no divisors other than 1 and itself.

Show that $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.

Determine whether each of these compound propositions is satisfiable.

a)
$$(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$$

b)
$$(p \rightarrow q) \land (p \rightarrow \neg q) \land (\neg p \rightarrow q) \land (\neg p \rightarrow \neg q)$$

c)
$$(p \leftrightarrow q) \land (\neg p \leftrightarrow q)$$

Prove that $(p \land \neg q) \lor q \equiv p \lor q$

Prove that $\neg (p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are equivalent.

An island has two kinds of inhabitants, knights, who always tell the truth, and knaves, who always lie.

A says "B is a knight."

B says "The two of us are of opposite types."

What are the types of A and B?

Logic Puzzles

Five friends have access to a chat room:

- Either Kevin or Heather, or both, are chatting
- Either Randy or Vijay, but not both, are chatting
- If Abby is chatting, then so is Randy
- Vijay and Kevin are either both chatting or neither is
- If Heather is chatting, then so are Abby and Kevin

who is chatting right now?

Best of luck!

