COURSE PLAN

Department : Computer Science and Engineering

Course Name & code : Advanced Data Structures and Algorithms & CSE 5113

Semester & branch : i & M.TECH CSE & CSIS

Name of the faculty : MR. GURURAJ

No of contact hours/week:

L	T	Р	C
3	1	0	4

Course Outcomes (COs)

	At the end of this course, the student should be able to:	No. of Contact Hours	Marks
CO1:	Make use of sequence of different types of data structure operations and their cost finding techniques	6	13
CO2:	Demonstrate various advanced data structures such as B-tree, Binomial heaps, Fibonacci heaps	22	46
CO3:	Utilize disjoint sets and van Emde Roas Tree	12	25
CO4:	Discover shortest paths for all pairs of vertices and from single source to all other vertices.	4	8
CO5:	Understand the concept of maximum flow networks and to design and analyze Multi-Threading algorithms	4	8
	Total	48	100

(Page 1 of 5) MIT/GEN/F-01/R2

Assessment Plan

Components	Assignments	Sessional Tests	End Semester/ Make-up Examination	
Duration	20 to 30 minutes	60 minutes	180 minutes	
Weightage	20 % (4 X 5 marks)	30 % (2 X 15 Marks)	50 % (1 X 50 Marks)	
Typology of Questions	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation	Knowledge/ Recall; Understanding/ Comprehension; Application	Understanding/ Comprehension; Application; Analysis; Synthesis; Evaluation	
Pattern	Answer one randomly selected question from the problem sheet (Students can refer their class notes)	MCQ: 10 questions (0.5 marks) Short Answers: 5 questions (2 marks)	Answer all 5 full questions of 10 marks each. Each question may have 2 to 3 parts of 3/4/5/6/7 marks	
Schedule	4, 7, 10, and 13 th week of academic calendar	Calendared activity	Calendared activity	
Topics Covered	Quiz 1 (L 1-9 & T 1-2) (CO1) Quiz 2 (L 10-17 & T 3-5) (CO2 & 3) Quiz 3 (L 18-27 & T 6-9) (CO3&4) Quiz 4 (L 28-35 & T 10-11) (CO5)	Test 1 (L 1-20 & T 1-6) (CO1&2) Test 2 (L 21-33 & T 7-10) (CO3&4)	Comprehensive examination covering full syllabus. Students are expected to answer all questions (CO1-5)	

Lesson Plan

L. No.	Topics	Course Outcome Addressed
LO	Introduction	CO1
L1	Amortized Analysis , Aggregate analysis	CO1
L2	Problems on Aggregate analysis	CO1
L3	The accounting method	CO1
T1	Tutorial on Amortized Analyss	CO1
L4	The potential method, Problems on potential method,	CO1
L5	Dynamic Tables, Definition of B-Trees, The Height of B-tree	CO1
L6	Basic operations on B-Trees: Searching a B-tree, Analysis, Creating an empty B-tree	CO2
T2	Tutorial on B-tree Construction	CO2
L7	Splitting a node in a B-tree	CO2
L8	Inserting a key into a B-tree and its Analysis.	CO2

(Page 2 of 5) MIT/GEN/F-01/R2

L10 Properties of Binomial trees, L11 Representation of Binomial heaps, Operations on Binomial Trees: Finding the minimum Key, Uniting the Binomial heaps L12 Inserting a node into Binomial heap, Extracting the node with minimum key, Decrease a key, Deleting a key in Binomial heap. T4 Tutorial on Binomial Trees L13 Structure of Fibonacci heaps, potential function L14 Merge able heap operations: Inserting a node, Finding the minimum node L15 Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved T5 Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path	CO2
L11 Representation of Binomial heaps, Operations on Binomial Trees: Finding the minimum Key, Uniting the Binomial heaps L12 Inserting a node into Binomial heap, Extracting the node with minimum key, Decrease a key, Deleting a key in Binomial heap. Tutorial on Binomial Trees L13 Structure of Fibonacci heaps, potential function L14 Merge able heap operations: Inserting a node, Finding the minimum node Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
Inserting a node into Binomial heaps L12 Inserting a node into Binomial heap, Extracting the node with minimum key, Decrease a key, Deleting a key in Binomial heap. T4 Tutorial on Binomial Trees L13 Structure of Fibonacci heaps, potential function L14 Merge able heap operations: Inserting a node, Finding the minimum node L15 Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved T5 Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L12 Inserting a node into Binomial heap, Extracting the node with minimum key, Decrease a key, Deleting a key in Binomial heap. T4 Tutorial on Binomial Trees L13 Structure of Fibonacci heaps, potential function L14 Merge able heap operations: Inserting a node, Finding the minimum node L15 Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved T5 Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
T4 Tutorial on Binomial Trees L13 Structure of Fibonacci heaps, potential function L14 Merge able heap operations: Inserting a node, Finding the minimum node L15 Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved T5 Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L14 Merge able heap operations: Inserting a node, Finding the minimum node L15 Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved T5 Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L15 Extracting the minimum node and its Analysis, Decreasing a key in Fibonacci Heap and its cost involved Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
and its cost involved T5 Tutorial on Fibonaccii heap construction, extraction of a node and decrease key L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L16 Deleting a node in Fibonacci Heap and its cost involved L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L17 The van Emde Roas Tree L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L18 Preliminary approaches, Recursive structure T6 Tutorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
Totorial on van Emde Roas Tree L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. Totorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L19 Disjoint-set operations L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L20 Linked-list representation of disjoint sets L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L21 Disjoint set forests. T7 Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
Tutorial on Disjoint set forests. L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L22 Optimal substructure of shortest path, Negative weight edges, Relaxation method L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L23 The Bellman-Ford algorithm, Analysis and Problems on Bellman-Ford algorithm L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO2
L24 Topological sorting, Algorithm on directed acyclic graphs and its analysis T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO3
T8 Tutorial on directed acyclic graphs L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO3
L25 Difference constraints L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO3
L26 The structure of a shortest path L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO3
L27 A recursive solution to the all-pairs shortest-paths problem, Computing the shortest-	CO3
	CO3
· · · · · · · · · · · · · · · · · · ·	CO3
T9 Tutorial on shortrst path	CO3
L28 Matrix multiplication	CO3
L29 Algorithm Faster-All-Pairs-Shortest-Paths	CO3
L30 Problems on Slow and Faster-All-Pairs-Shortest-Paths and its analysis.	CO3

(*Page 3 of 5*)

T10	Tutorial o all pairs shortest path	CO3
L31	Johnson's algorithm for sparse graphs , The Floyd-Warshall algorithm , Problems on Floyd-Warshall algorithm	CO3
L32	Flow Networks	CO4
L33	The Ford-Fulkerson method	CO4
T11	Tutorial on Flow of networks	CO4
L34	Maximum bipartite matching ,Problems on Maximum Bipartite Matching	CO4
L35	The basics of dynamic multithreading	CO5
L36	Multithreaded matrix multiplication, Multithreaded merge sort	CO5
T12	Tutorial on Multithreaded matrix multiplication	CO5
L/T	Click or tap here to enter text.	

References:

- 1. Cormen Thomas H., Leiserson Charles E, Rivest Ronald L. and Stein Clifford, "Introduction to Algorithms" (3e), MIT Press, 2009
- 2. Cormen Thomas H., Leiserson Charles E, Rivest Ronald L. and Stein Clifford, "Introduction to Algorithms" (2e), Prentice-Hall India, 2001
- 3. Lawrence C. Washington, "Elliptic curves: number theory and cryptography", Chapman & Hall/ CRC Second Edition, 2008
- 4. Baase Sara and Gelder A.V., "Computer Algorithms -Introduction to Design and Analysis", (3e), Pearson Education, 2000
- 5. Anany Levitin, "Introduction to the Design and Analysis of Algorithms", (3e), Pearson Education, 2011.
- 6. Aaron M. Tenenbaum, Yedidyah Langsam, Moshe J. Augeustein, "Data Structures using C", Pearson Education, 1998
- 7. Click or tap here to enter text.

Submitted by: MR. GURURAJ

(Signature of the faculty)

Date: 07-09-2023

(*Page 4 of 5*)

MIT/GEN/F-01/R2

Appro	ved by:	DR. KRISHNAMOO	ORTHI MAKKITHAYA	
(Signati	ure of H(OD)		
Date:	07-08-2	2023		

FACULTY MEMBERS TEACHING THE COURSE (IF MULTIPLE SECTIONS EXIST):

FACULTY	SECTION	FACULTY	SECTION
Mr Gururaj	MTech-		
	CSE		
Mr. Prakash K Aithal	M.Tech-		
	CSIS		
