- Home

Savitribai Phule Pune University, Pune Second Year Artificial Intelligence & Machine Learning (2020 Course)

218541: Discrete Mathematics

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory (TH): 03 hrs/week	03	Mid_Semester : 30 Marks End_Semester : 70 Marks

Prerequisite Courses, if any: Basic Mathematics

Companion Course, if any:

Course Objectives:

- 1. To gain sound knowledge to formulate and solve problems with sets and propositions.
- 2. To understand and solve counting problems by applying elementary counting techniques to solve problems of discrete probability.
- 3. To understand Graph and Tree terminologies and models to be applied in real life problems.
- 4. To recognize types of relation, formulate and solve problems with relations and functions.
- 5. To understand basics of number theory and its applications.
- 6. To understand the various types' algebraic structures and its applications.

Course Outcomes:

On completion of the course, students will be able to-

CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.

CO2: Analyze and evaluate the combinatorial problems by using probability theory.

CO3: Apply the concepts of graph theory to devise mathematical models.

CO4: Analyze types of relations and functions to provide solution to computational problems.

CO5: Identify techniques of number theory and its application.

CO6: Identify fundamental algebraic structures.

COURSE CONTENTS			
Unit I	Sets And Propositions	(06 hrs)	

Sets: Sets, Combinations of Sets, Venn Diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.

Propositions: Propositions, Logical Connectives, Conditional and Bi-conditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions.

Mapping of Course	CO1	
Outcomes for Unit I		
Unit II	Combinatorics And Discrete Probability	(06 hrs)

Combinatorics: Rules of Sum and Product, Permutations, Combinations.

Discrete Probability: Discrete Probability, Conditional Probability, Bayes Theorem, Information and Mutual Information, Applications of Combinatorics and Discrete Probability.

Curriculum for Second Year of Artificial Intelligence & Machine Learning (2020 Course), Savitribai Phule Pune University

University		
Mapping of Course	CO2	
Outcomes for Unit II		
Unit III	Graph Theory	(06 hrs)
Complete Graphs, Regular Graph and Eulerian graphs, Travelling Sa Trees: Tree Terminologies, Roote	Multi-Graphs, Weighted Graphs, Sub Graps, Bipartite Graphs, Operations on Graphs, Patalesman Problem, Factors of Graphs, Planar Gred Trees, Path Length in Rooted Trees, Prefixes, Max flow—Min Cut Theorem (Transport New	ths, Circuits, Hamiltoniar raphs, Graph Colouring. Codes, Spanning Trees,
Mapping of Course Outcomes	CO3	
for Unit III	COS	
Unit IV	Relations And Functions	(06 hrs)
	Relations, Closure of Relations, Warshall's	
Functions: Functions, Composition Numeric Functions.	ring Relations, Lattices, Chains and Anti Chain on of Functions, Invertible Functions, Pigeor ce Relation, Linear Recurrence Relations with elations and Functions.	nhole Principle, Discrete
Outcomes for Unit IV		
Unit V	Introduction To Number Theory	(06 hrs)
	s of Divisibility, Division Algorithm, Greatest C	-
its Properties, Euclidean Algorit Congruence Relation, Modular Ar	thm, Extended Euclidean Algorithm, Prime ithmetic, Euler Phi Function, Euler's Theorem, ses, Chinese Remainder Theorem.	Factorization Theorem,
Mapping of Course	CO5	
Outcomes for Unit V		
Unit VI	Algebraic Structures	(06 hrs)
	on Semigroup, Monoid, Group, Abelian Grou and Group Codes, Ring, Integral Domain, Field	
Mapping of Course Outcomes	CO6	
for Unit VI		
	Text Books:	

1. C. L. Liu and D. P. Mohapatra, "Elements of Discrete Mathematics", 4th Edition, McGraw-Hill

2. Kenneth H. Rosen, "Discrete Mathematics and its Applications", & 7th edition, McGraw-Hill

Curriculum for Second Year of Artificial Intelligence & Machine Learning (2020 Course), Savitribai Phule Pune University

Reference Books:

- 1. Bernard Kolman, Robert C. Busby, Sharon Cutler Ross, "Discrete mathematical structures", 6th edition, Prentice Hall of India
- 2. Edgar G. Goodaire, Michael M. Parmenter, "Discrete Mathematics with Graph Theory", 3rd Edition, Pearson Education
- 3. Tremblay J. S., "Discrete mathematical structures with application", 3rdEdition, Tata McGraw Hill
- 4. Lipschutz Seymour, "Discrete mathematics", 4th Edition, Tata McGraw-Hill
- 5. Johnsonbaugh Richard, "Discrete Mathematics", 7th edition, Pearson
- 6. Biggs Norman L, "Discrete mathematics", 6th edition, Oxford
- 7. David M. Burton, "Elementary Number Theory", &7th Edition, McGraw-Hill