

The performance parameters of MOSFETs

Dr. Sanatan Chattopadhyay

University of Calcutta

Electrical characteristics

Transfer characteristics

Linear region:

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \frac{W}{L} \cdot (V_{G} - V_{th})V_{D}$$

Saturation region:

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \cdot \frac{W}{L} \cdot \frac{(V_{G} - V_{th})^{2}}{2}$$

Characteristic parameters

• Threshold voltage: V_{th}

Off-state leakage current: loff

• On-state current: Ion

• On-state/off-state current: I_{on}/I_{off}

• Trans-conductance: 9m

• Channel conductance: 9d

Sub-threshold slope:

• Drain voltage: V_{dd}

Channel mobility:

• S/D resistance: R_s and R_d

DIBL

Threshold voltage of a MOSFET

 Minimum gate voltage required to create an inversion layer in a MOSFET.

Threshold voltage increases with:

- the increase of substrate doping concentration,
- the oxide thickness, and
- the difference between the metal and semiconductor functions.

work

lon and loff

- l_{off} is the root cause of static power dissipation.
- lon sets up the driving capability of a device if it is at the output of a circuit. It also indicates the level of dynamic power dissipation.

Trans-conductance (g_m)

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \frac{W}{L}.(V_{G} - V_{th})V_{D}$$

$$g_{m} = \frac{\partial I_{D}}{\partial V_{G}}\Big|_{V_{D} = Const.}$$

$$g_{m} = \frac{\mu \varepsilon_{ins} \varepsilon_{0}}{t_{ox}} \cdot \frac{W}{L} V_{DS}$$

Output conductance (g_D)

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \frac{W}{L}.(V_{G} - V_{th})V_{D}$$

$$g_d = \frac{\mu \varepsilon_{ins} \varepsilon_0}{t_{ox}} \cdot \frac{W}{L} \left(V_{gs} - V_{th} \right)$$

Sub-threshold swing (SS)

Sub-threshold swing (SS):

- It is the voltage required to change the drain current by one decade.
- It is the inverse of sub-threshold slope.

$$SS = \left(\frac{d(\log_{10} I_D)}{dV_{as}}\right)^{-1} = \ln\left(10\right) \frac{k_B T}{q} \left(1 + \frac{C_D}{C_{ox}}\right)$$

- k_B is Boltzmann's constant, q is the charge of one electron, C_{ox} is the areal gate oxide capacitance and C_D is the areal depletion layer capacitance.
- It approaches to a lower limit of approximately 60 mV/dec at T = 300K when $C_D = C_{ox}$ is close to zero.

Mobility measurement

- Channel capacitance
- Oxide capacitance
- Substrate capacitance
- Channel resistance
- S/D resistance
- Overlap capacitance

$$\mu_{eff} = \frac{g_d L_{eff}}{Q_p W}$$

gd: output conductance;

Leff: effective channel length;

W: channel width.

Q_n: channel charge (inversion charge).

Device parameter: capacitance

- · Channel charge is measured from channel capacitance.
- The channel capacitance is measured by split C-V technique.
- The split C-V method: gate-to-body (C_{GB}) and gate-to-channel (C_{GC}) are measured.

C_{ov}= overlap capacitance

C_{ch}= channel capacitance

How to improve its performance?

- Performance improves by increasing the device width, reducing the oxide thickness and scaling down the channel length.
- Device width cannot be increased since it adversely affects the packing density.
- Scaling down of device dimensions has been the preferred route for sustained performance improvement.

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}} \frac{W}{L}.(V_{G} - V_{th})V_{D}$$

$$I_{D} = \frac{\varepsilon_{ox}\varepsilon_{0}\mu}{t_{ox}}.\frac{W}{L}.\frac{(V_{G} - V_{th})^{2}}{2}$$
Linear region

Saturation region

Down scaling: the primary solution

$$I = \frac{W}{L} \cdot \mu_n \cdot C_{ox} \cdot \left(V_G - V_T - \frac{V_D}{2} \right) V_D$$

$$V_{th} = V_{FB} + 2\Psi_B + \frac{\sqrt{2\varepsilon_s q N_A (2\Psi_B)}}{C_{ox}}$$

$$g_{m} = \frac{\mu \varepsilon_{ins} \varepsilon_{0}}{t_{ox}} \cdot \frac{W}{L} V_{DS}$$

$$g_d = \frac{\mu \varepsilon_{ins} \varepsilon_0}{t_{ox}} \cdot \frac{W}{L} \left(V_{gs} - V_{th} \right)$$

Geometrical parameters:

- width (W),
- gate length (Lg), and
- Oxide thickness (t_{ox}).

Material parameters:

- Mobility (μ) and
- dielectric constant (ε).
- From 1970 onwards, drastic scaling down of geometric dimensions has been the preferred route.

MOSFET performance improvement

Preferred route:

The gradual down scaling of device dimensions.

Target:

- more functionality,
- higher packing density,
- higher speed,
- less power consumption.

Benefit of scaling

- $I_{DS} \uparrow$ as $L \downarrow$ (decreased effective "R")
- Gate area ↓ as L ↓ (decreased load "C")
- Therefore, RC ↓ (implies faster switch)

Maximize I to minimize Δt

Device scaling: constant field

Parameter	Scaling Factor: Constant field	Limitation
L	I/K	••••
E		••••
d	I/K	Tunneling, defects
rj	I/K	Resistance
V_{T}	I/K	off current
V_{D}	I/K	System, V _T
N_d	k	Junction Breakdown

Scaling and device dimension

