ELSEVIER

Contents lists available at ScienceDirect

### Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb





## Advanced Mott-Schottky heterojunction of semi-conductive $MoS_2$ nanoparticles/metallic $CoS_2$ nanotubes as an efficient multifunctional catalyst for urea-water electrolysis

Thi Luu Luyen Doan <sup>a</sup>, Dinh Chuong Nguyen <sup>b</sup>, Kyoungin Kang <sup>c</sup>, Anusha Ponnusamy <sup>c</sup>, Henry I. Eya <sup>d</sup>, Nelson Y. Dzade <sup>d,\*</sup>, Cheol Sang Kim <sup>a,c,e,\*\*</sup>, Chan Hee Park <sup>a,c,e,\*\*</sup>

- a Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea
- b Department of Nano Convergence Engineering, Jeonbuk National University, Jeollabuk-do Jeonju, Jeonbuk 54896, Republic of Korea
- <sup>c</sup> Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea
- <sup>d</sup> Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, United States
- e Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea

#### ARTICLE INFO

# Keywords: Mott-Schottky heterojunction MoS<sub>2</sub> nanoparticles/CoS<sub>2</sub> nanotubes Multifunctional catalyst Overall water splitting Urea electrolysis

#### ABSTRACT

Metallic  $CoS_2$  has attracted considerable interest for the catalysis of electrochemical reactions; however, its catalytic activity is still lower than that of commercial novel metal-based catalysts. Semiconductive  $2H-MoS_2$  also holds a high capability for catalysis. In this work, a rationally designed Mott-Schottky heterojunction of ultrasmall  $MoS_2$  nanoparticles/ $CoS_2$  nanotube arrays is constructed via an effective synthetic protocol. Because of the difference in the Fermi level of the metallic  $CoS_2$  and semiconducting  $MoS_2$ , strong Mott-Schottky interaction occurs at their heterointerface to gain equalization, resulting in the optimization of intermediates adsorption energies, thereby favoring the reaction kinetics of hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and urea oxidation reaction (UOR). Consequently, the proposed catalyst yields high current densities at small HER and OER overpotentials or low UOR potentials, small Tafel slopes, and desirable stability, confirming its excellent electrocatalytic activities for these key half-reactions toward significantly boosting water and urea electrolysis.

#### 1. Introduction

In recent years, the ever-increasing environmental issue and energy demand are motivating scientists to explore alternative energies with sustainability, environment-friendliness, and cost-effectiveness to replace fossil fuels [1–3]. Given its clean nature and high gravimetric energy density, hydrogen (H<sub>2</sub>) has become an ideal candidate to meet the global demand for pollution-free energy [4,5]. Several methods of H<sub>2</sub> production have been reported, and show super efficiency. Among them, electrochemical water splitting offers green methods of high-quality H<sub>2</sub> production [6,7]. Two crucial half-reactions, namely the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), take place on the cathode and anode to split water into H<sub>2</sub> and oxygen (O<sub>2</sub>), respectively. In general, overall water splitting requires

highly active and stable electrocatalysts for both HER and OER to reduce their inevitable overpotential and the free energy barriers of adsorbed H- or O-contained intermediates [8,9]. Alternatively, urea electrolysis, as an energy-saving method of  $\rm H_2$  production, has captured considerable attention [10,11]. Typically, urea electrolysis is established by two half-reactions, the cathode HER and the anodic urea oxidation reaction (UOR). Encouragingly, the UOR can theoretically occur at a very low oxidation potential of  $\sim 0.37$  V, whereas the theoretical oxidation potential of water is 1.23 V [12,13], making urea electrolysis more efficient than water splitting in energy terms. However, to meet the growing demand  $\rm H_2$  industry in the near future, high-efficiency HER and UOR electrocatalysts are necessary for urea electrolysis for further improvement of its performance toward maximizing  $\rm H_2$  production efficiency. The problem is that the benchmark commercial catalysts of HER, OER,

E-mail addresses: nxd5313@psu.edu (N.Y. Dzade), chskim@jbnu.ac.kr (C.S. Kim), biochan@jbnu.ac.kr (C.H. Park).

<sup>\*</sup> Corresponding author.

<sup>\*\*</sup> Corresponding authors at: Division of Mechanical Design Engineering, School of Engineering, Jeonbuk National University, Jeollabuk-do Jeonju 54896, Republic of Korea

and UOR are mostly based on noble metals, such as Pt,  $RuO_2$ , and  $IrO_2$  [14–16]; the high cost and scarcity of these noble metals extremely inhibit the real applications of water splitting and urea electrolysis. Therefore, there is a growing tendency to explore and design advanced multifunctional electrocatalysts for HER, OER, and UOR to replace noble metal-based catalysts.

Metallic cobalt sulfide (CoS<sub>2</sub>) (bandgap  $\approx$  0 eV) has emerged as one of the most representative TMSs-based electrocatalysts, because of its excellent electronic conductivity, great chemical stability, and low cost [17-19]. Nanotube structure can amplify the exposure of electrocatalytic active sites, effectively promote secondary species distribution, and benefit mass transfer to boost the reaction kinetics [20]. Considering the merits mentioned above, a smart strategy is to construct CoS2 in nanotube form to offer as many catalytic active centers as possible. Unfortunately, some issues have emerged for CoS2, such as its rather lower HER activity than that of the commercial Pt/C catalyst [21], and unsatisfactory performance for OER and UOR [22,23]. To overcome the drawbacks, in addition to enriching accessible catalytic active sites and accelerating charge/mass transfer, improving the intrinsic activities of CoS<sub>2</sub> toward optimization of its capability in adsorption/desorption intermediates has been essential [24,25]. Coupling the CoS<sub>2</sub> with other materials, such as semiconductive MoS<sub>2</sub>, to form a heterostructure has been evidenced as an effective strategy [26]. On the one hand, the conductive CoS2 can serve as an effective electronic transport part to increase the electrical conductivity of the entire electrocatalysts. On the other hand, inspired by the semiconductor characteristics of MoS2 and the metallic nature of CoS2, a Mott-Schottky interaction can be formed over the heterostructure surface. At the individual Mott-Schottky contact points, the electrons can spontaneously flow across the heterointerface, leading to the regulation of local charge distribution, and thereby tuning the adsorption of intermediate species [25,27]. One of the best merits of Mott-Schottky heterojunction is that even the regulation of electronic structure occurs at the interface; there is no disturbance of the crystal lattice and intrinsic structure of the catalyst, thus enhancing the catalytic activity without a negative effect on the catalyst stability [27].

Herein, we report an advanced multifunctional electrocatalyst, integrated Mott-Schottky heterojunction of MoS2 nanoparticles (NPs)/ CoS<sub>2</sub> nanotubes (NTs) grown directly on three-dimensional carbon cloth (CC) (denoted as MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs). Although many MoS<sub>2</sub>/CoS<sub>2</sub> heterojunction catalysts have been reported for water splitting [28,29], there are rare reports of Mott-Schottky heterojunction of metallic CoS<sub>2</sub> and semiconductive MoS<sub>2</sub> for all HER, OER, and UOR electrocatalysis. In our proposed material, the Mott-Schottky interaction between semiconductor MoS2 and metallic CoS2 can regular the electronic structure of both MoS2 and CoS2 at the heterointerface toward greatly improved water splitting and urea electrolysis performance. Furthermore, the as-prepared MoS2 NPs/CoS2 NTs possesses the excellent advantage of geometrical structure. In the heterostructured composite, the uniform and ultrasmall MoS<sub>2</sub> NPs disperse over the surface of CoS<sub>2</sub> NTs, and they can expose as many active sites as possible and large contact area. Also, the CoS<sub>2</sub> NTs can support MoS<sub>2</sub> active material owing to their metallic property that causes excellent electrical conductivity, and their anti-agglomeration nature, while their hollow structure will offer more advantages than that of the solid structure, such as exposing more active sites and larger surface area, lowering length of mass/charge transport, and speeding up the release of generated gases. As expected, the MoS2 NPs/CoS<sub>2</sub> NTs catalyst delivered a current density of 10 mA cm<sup>-2</sup> with overpotentials of 99.3 and 242.2 mV under HER and OER conditions, respectively. For the UOR process, the MoS2 NPs/CoS2 NTs catalyst shows excellent catalytic activity with a low potential of 1.31 V at the current density of 10 mA cm<sup>-2</sup>. Importantly, the water splitting and urea electrolysis devices assembled using MoS2 NPs/CoS2 NTs as both cathode and anode outperform most multifunctional electrocatalysts in the literature. Our complimentary first-principles density functional theory (DFT) calculations reveal that the synergistic effect between the CoS2

and  $MoS_2$  is beneficial to the intrinsic electrical conductivity and both Co and Mo active species in terms of the favorable and optimum adsorption of H- and O-containing intermediates.

#### 2. Experimental section

#### 2.1. Chemical reagents

The 2-Methylimidazole ( $C_4H_6N_2$ , 99%), hydrochloric acid (HCl, 37%), acetone ( $CH_3COCH_3$ ,  $\geq$  99.5%), cobalt(II) nitrate hexahydrate ( $Co(NO_3)_2$ -6  $H_2O$ ,  $\geq$  98%), ethanol ( $CH_3CH_2OH$ , 95%), thioacetamide (TAA,  $CH_3CSNH_2$ , 98%), sodium molybdate dihydrate ( $Na_2MoO_4\cdot 2H_2O$ ,  $\geq$  99.5%), dibenzyl disulfide ( $C_1_4H_1_4S_2$ , 98%), polyvinylpyrrolidone (PVP), Nafion (5 wt%), potassium hydroxide (KOH,  $\geq$  85%), platinum on carbon (Pt/C, 20 wt%), ruthenium(IV) oxide (RuO\_2, 99.9%), and urea ( $NH_2CONH_2$ ,  $\geq$  99.5%) were purchased from Sigma-Aldrich.

#### 2.2. Synthesis of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs material

Initially, the fabrication of the Co-MOF nanowires (NWs) was achieved via a modified solution method. The CC substrate was pre-treated by high-intensity sonication in 3.0 M HCl, acetone, and de-ionized (DI) water for 5 h each, respectively. The reactant solution was fabricated by mixing 2-methylimidazole (0.4 M),  $Co(NO_3)_2$ -6 H<sub>2</sub>O (0.025 M), and 80 mL DI water. The pre-treated CC substrate was dipped sequentially in the reactant solution for 4 h, followed by taking out and rinsing with DI water. The immersion in the same solution was then repeated for 4 h to ensure the complete growth of Co-MOF NWs over the substrate surface. It was demonstrated that the growth process of Co-MOF NWs in the reactant solutions of  $Co^{2+}$  and 2-methylimidazole could involve the two stages [30]. During the early stage, the 2-methylimidazole molecules were adsorbed on the surface of CC substrate. In the second stage, these adsorbed 2-methylimidazole linkers coordinated with  $Co^{2+}$  ion in the reactant solution to form MOF NWs.

The Co-MOF NWs precursor was converted into CoS2 NTs via a simple solvothermal reaction. Firstly, TAA (0.36 g) was dissolved in ethanol, and stirred for 0.5 h to achieve a transparent solution. The obtained solution and Co-MOF NWs were transferred simultaneously to a 100 mL Teflon-lined autoclave, and then heated to 90  $^{\circ}$ C for 3 h. The product was cleaned with DI water and ethanol, and dried at 60 °C for 12 h. During the synthesis, TAA was initially decomposed into S<sup>2-</sup> ions when the temperature reached 90 °C. Then, these released S<sup>2-</sup> ions combined with Co<sup>2+</sup> ions on the surface of Co-MOF NWs to form a thin layer of CoS2. With the increase in reaction time, the inner part of Co-MOF was gradually etched, donating more  $Co^{2+}$  ions to the reactant solution. In second stage, these released  $\mathrm{Co}^{2+}$  ions migrated to the shell layer and combined with S2- in the solution, resulting in the gradual growth of CoS<sub>2</sub> shell layer. Finally, the Co-MOF template was fully etched and simultaneously, hollow-structured CoS2 nanotubes were formed [31].

At the same time, the MoS $_2$  NPs was prepared by a hydrothermal method. Typically, Na $_2$ MoO $_4\cdot 2$  H $_2$ O (0.4 g) was dispersed in 30 mL DI water, and sonicated for 0.5 h. Then, 30 mL ethanol solution of  $C_{14}H_{14}S_2$  (0.38 g) was dropped into the above solution and sonicated for 0.5 h. The resulting solution was subsequently transferred to a 100 mL Teflonlined autoclave, and heated to 180 °C for 20 h. When the reaction was completed, the obtained suspension was separated into two parts, including the supernatant (MoS $_2$  NPs) and black solid, by centrifugation at 10,000 rpm for 1.5 h.

Finally, the  $CoS_2$  NTs was decorated with  $MoS_2$  NPs by dipping in the solution consisting of  $MoS_2$  NPs and PVP (1 wt%) at 30 °C for 10 min. The  $MoS_2$  NPs/ $CoS_2$  NTs product was then rinsed with DI water, and dried at 60 °C, prior to annealing at 400 °C (heating rate of 2 °C min<sup>-1</sup>) for 2 h under  $N_2$  atmosphere (flow rate of 100 sccm).

#### 2.3. Material characterization

The as-synthesized materials were characterized by field emission scanning electron microscopy (FE-SEM) (Carl Zeiss, AG-SUPRA 40), transmission electron microscopy (TEM) (JEM-ARM200F), X-ray diffraction (XRD) (D/Max 2500 V/PC) with Cu–K $_{\alpha}$  radiation ( $\lambda=1.54$  Å), and X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific Inc., USA). The  $N_2$  adsorption-desorption isotherm of the assynthesized materials was recorded using an ASAP 2020 Plus system (Micromeritics Instrument Corp., USA).

#### 2.4. Electrochemical characterization

All electrochemical measurements were carried out on CH Instruments CHI660D Electrochemical Workstation (USA). A typical three-electrode configuration, including the as-synthesized material as the working electrode, graphite rod as the counter electrode, and Ag/AgCl as the reference electrode, was assembled to evaluate the electrocatalytic performance for HER, OER, and UOR. Meanwhile, a two-electrode configuration, including the as-synthesized material as both the anode and cathode, was assembled to evaluate the overall water



**Fig. 1.** (a) Schematic of the synthetic protocol of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. (b)-(d) FE-SEM images of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. Inset of (b): EDX spectral spectrum of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. (e) and (f) TEM images of the individual MoS<sub>2</sub> NPs/CoS<sub>2</sub> nanotube. (g) and (h) HR-TEM images of the individual MoS<sub>2</sub> NPs/CoS<sub>2</sub> nanotube. (i) STEM image and (j)-(m) EDX mapping images of the individual MoS<sub>2</sub> NPs/CoS<sub>2</sub> nanotube.

splitting and urea electrolysis performances. The 1.0 M KOH solution was the electrolyte for the measurements of HER, OER, and water splitting, while 1.0 M KOH  $\pm$  0.5 M urea or 1.0 M KOH  $\pm$  urine was the electrolyte for the measurements of UOR and urea electrolysis. Note that urine was collected from the same person in the morning. All potentials were reported on a reversible hydrogen electrode scale. Linear sweep voltammetry (LSV) curves were measured at a scan rate of 5 mV s $^{-1}$ , and compensated for IR drop by the following equation:

$$E_{IR-corr} = E_{mea} - I \times R_s(V)$$

where,  $E_{IR-corr}$ ,  $E_{mea}$ , I, and  $R_s$  are the IR-corrected potential (V), measured potential (V), measured current (A), and series resistance ( $\Omega$ ), respectively. The long-term stability test was executed using chronoamperometric measurement at a constant applied potential. Cyclic voltammetry (CV) curves were recorded at different scan rates to determine double-layer capacitance. Electrochemical impedance spectroscopy (EIS) was measured at the corresponding potential from 100 to 1000 Hz for the HER, OER, and UOR. Faradaic efficiency (FE) for HER and OER was determined by comparing the measured amount in the experiment and the theoretical amount of  $H_2$  and  $O_2$ , respectively.

#### 3. Results and discussion

#### 3.1. Morphological and structural characterization

The MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs were synthesized through a facile and effective approach. Fig. 1a illustrates the overall protocol to achieve the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, which protocol can be separated into four main stages. Initially, vertically aligned Co-based metal-organic framework (MOF) nanowires were grown on the surface of CC substrate (labeled as Co-MOF NWs) by a modified solution method [32]. The morphologies of the pristine CC and Co-MOF NWs were confirmed by FE-SEM. Fig. S1 shows that the CC has a smooth surface, in contrast to the rough morphology of the Co-MOF NWs sample (Fig. S2), which shows that the surface of CC substrate is uniformly coated with one-dimensional MOF nanowires having an average diameter of around ~600 nm. Note that no fracture or peeling-off between Co-MOF nanowires and the CC substrate can be observed, indicating the strong adherence of the Co-MOF on the substrate. Such good contact between active material and framework is beneficial to the migration and transference of electrons, bringing high catalytic performance and good stability to the entire sample [33]. The magnified SEM image in Fig. S2c also displays that the individual MOF nanowire has a smooth surface. The corresponding energy dispersive X-ray (EDX) spectra (Figs. S1d and S2d) confirm the chemical composition of the pristine CC and Co-MOF NWs, respectively. Notably, the signal of N element observed from the EDX spectrum of Co-MOF NWs indicates that this sample is composed of N-containing organic ligands [32]. In the second stage, the Co-MOF NWs were transformed into CoS<sub>2</sub> NTs supported on the CC substrate (labeled as CoS2 NTs) by the solvothermal reaction. Fig. S3 shows the morphology of the resultant CoS<sub>2</sub> NTs sample, which reveals the retained homogeneous distribution of CoS<sub>2</sub> NTs with an average diameter of around ~600 nm over the whole surface of the CC substrate. However, the magnified SEM image (Fig. S3c) shows that the nanowires become hollow, demonstrating the successful conversion of a solid structure into a hollow structure. Clearly, as compared to the solid nanowire, the nanotube structure offers more advantages, such as the higher density of exposed active sites, larger contact area between active material and electrolyte, lower length of mass/charge transport, and more effective facilitation of the emission of gaseous species [34], which can be anticipated to endowing the catalyst with significantly improved behaviors for HER, OER, and UOR. The EDX spectrum in Fig. S3d proves the existence of C, Co, and S elements in the CoS<sub>2</sub> NTs. At the same time, the MoS<sub>2</sub> NPs were prepared by a simple hydrothermal reaction, followed by dispersal over the CoS<sub>2</sub> NTs surface to form MoS2 NPs/CoS2 NTs heterostructure through chemical

deposition combined with a thermal treatment. Fig. 1b-d show that there is no difference in morphology between the pristine  $CoS_2$  NTs and  $MoS_2$  NPs/ $CoS_2$  NTs, apart from the existence of a large number of NPs over the NTs surface. Thus, after decorating with  $MoS_2$  NPs, the feature of nanotube arrays is thoroughly retained in the  $MoS_2$  NPs/ $CoS_2$  NTs sample, resulting in inheriting all the morphological merits of the  $CoS_2$  NTs sample. The EDX spectrum in the Inset of Fig. 1b shows that in addition to the signals of C, Co, and S elements, the peak corresponding to Mo elements is detected, reconfirming the success in attaching  $MoS_2$  to the  $CoS_2$  NTs surface.

The MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs sample was further characterized by TEM. Fig. 1e and f show that the individual  $MoS_2$   $NPs/CoS_2$  nanotube is a hollow structure with a diameter of around ~600 nm, which is well consistent with the SEM observation. Interestingly, the TEM images clearly shows the uniform confinement of the MoS<sub>2</sub> NPs with an average diameter of around  $\sim$ 30 nm on the wall of the CoS<sub>2</sub> NTs. The small size of MoS2 NPs will remarkably enlarge the electrochemically active surface area and allow the exposure of more available active sites, leading to more effective utilization of the MoS2 component toward improving the catalytic performance for electrochemical reactions [35]. Further, high-resolution TEM (HR-TEM) analysis was carried out. The distinct lattice fringes are observed from the HR-TEM images in Fig. 1g and h, suggesting the high crystallinity of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs sample. The lattice fringes observed at only the nanoparticle region with an interplanar spacing of 0.274 nm are identical with the (100) lattice plane of MoS<sub>2</sub> (Fig. 1g), reconfirming that the spherical nanoparticles are MoS<sub>2</sub>. Meanwhile, the other lattice fringes with an interplanar spacing of 0.27 nm are associated with the (200) lattice plane of CoS<sub>2</sub> (Fig. 1h), providing strong evidence for the formation of CoS<sub>2</sub> phases within the MoS2 NPs/CoS2 NTs heterostructure. The HR-TEM images also show a distinct heterointerface marked with red line between the MoS2 and CoS2 phases; such interface is a specific characteristic of the heterostructure, and can be anticipated to be beneficial for the adsorption and/or desorption of intermediate species [27,36]. The elementary composition of MoS2 NPs/CoS2 NTs was confirmed once again by scanning TEM (STEM) (Fig. 1i) and EDX-assisted elemental mapping analysis (Fig. 1j-m), which exhibit the presence of three elements such as Co, Mo, and S within the whole nanotube. Therefore, the TEM measurement provides solid evidence for the successful integration of MoS<sub>2</sub> NPs and CoS2 NTs into one unique heterostructure, which allows the formation of intimate Mott-Schottky contacts of these components, leading to further improvement of the electrocatalytic performance.

We then confirmed the crystal structure of the developed materials by XRD analysis. All XRD patterns in Fig. 2a reveal the two obvious diffraction peaks located at  $2\theta = 26.2$ , and  $43.9^{\circ}$  which can be ascribed to carbon (PDF# 03-0401) [37]. The XRD pattern of Co-MOF NWs demonstrates that the Co-MOF nanowires possess layered phases with elementary composition of Co(mim)<sub>2</sub>·(Hmim)<sub>1/2</sub>·(H<sub>2</sub>O)<sub>3/2</sub> (C<sub>10</sub>H<sub>16</sub>N<sub>5</sub>O<sub>3/2</sub>Co) [32,38,39]. After sulfidation combined with thermal treatment, the CoS<sub>2</sub> NTs give a completely different XRD pattern, compared to that of the Co-MOF NWs precursor. Apart from the diffraction peaks belonging to the carbon, the other diffraction peaks of CoS<sub>2</sub> NTs can be attributed to the (200), (210), (211), (220), and (311) lattice planes of the cubic phase of CoS<sub>2</sub> (PDF# 41–1471) [40], testifying to the thorough conversion of Co-MOF into the CoS2 phase. In the XRD pattern of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, in addition to the diffraction peaks of the carbon and  $CoS_2$ , the additive diffraction peaks at  $2\theta = 14.3$ , 33.5, 34.3, and 60.3° belong to the (002), (101), (103) and (110) lattice planes of the hexagonal MoS<sub>2</sub> phase (PDF# 09-0312) [41]. Thus, the MoS<sub>2</sub> and CoS2 components are detected in the MoS2 NPs/CoS2 NTs sample via XRD characterization, as additional evidence for the successful fabrication of this unique heterostructure via our large-scale approach.

Thereafter, XPS was executed to analyze the surface composition and valance states of the CoS<sub>2</sub> NTs and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. The whole XPS spectra in Fig. 2b corroborate the presence of the elements of C, Co, and S in the CoS<sub>2</sub> NTs and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, in line with the results of



**Fig. 2.** (a) XRD patterns of the Co-MOF NWs, CoS<sub>2</sub> NTs, and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. (b) XPS survey spectra of (i) the CoS<sub>2</sub> NTs and (ii) the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. (c)-(e) High-resolution XPS spectra of the Co 2p, Mo 3d, and S 2p, respectively, for (i) the CoS<sub>2</sub> NTs and (ii) the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. (f) N<sub>2</sub> sorption isotherms of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. Inset of (f): Pore distribution diagrams of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. Contact angle measurements of (g) the pure CC, and (h) MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs.

EDX analysis. Furthermore, the Mo element in the XPS survey spectrum of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs testifies to the confinement of MoS<sub>2</sub> NPs on the CoS<sub>2</sub> NTs. Fig. 2c presents the Co 2p XPS spectrum of the CoS<sub>2</sub> NTs and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, which are deconvoluted into two pronounced pairs of peaks, accompanied by their two shake-up satellite peaks (labelled as Sat.). The first pair of peaks located at binding energies of 780.1 and 795.3 eV belong to the  $2p_{3/2}$  and  $2p_{1/2}$  spin-states of  $Co^{3+}$ , respectively, while the other pair of peaks at binding energies of 782.7 and 798.6 eV match well the  $2p_{3/2}$  and  $2p_{1/2}$  spin-states of  $Co^{2+}$ , respectively [42]. The emergence of the typical core-level peaks suggests that Co<sup>3+</sup> and  $Co^{2+}$  states can be assigned to the cubic phase of  $CoS_2$ . Importantly, the peaks of Co  $2p_{3/2}$  and Co  $2p_{1/2}$  in the Co 2p XPS spectrum of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs show a blue shift, in comparison to the pristine CoS<sub>2</sub> NTs, indicating that strong Mott-Schottky contacts take place at the heterointerface between the CoS<sub>2</sub> and MoS<sub>2</sub> [27]. To fully comprehend the property of electron transfer within this Mott-Schottky heterojunction, we calculated work function of  $CoS_2$  and  $MoS_2$  via ultraviolet photoelectron spectroscopy (UPS) analysis (see Supporting Information for calculation details). Based on UPS spectra in Fig. S4, binding energy of secondary-cutoff-edge of CoS2 and MoS2 is found to be 17.67 and 17.39 eV, respectively. According to the equation S10, work function of CoS<sub>2</sub> and MoS<sub>2</sub> are calculated to be 3.53 and 3.81. Clearly, when the Mott-Schottky heterojunction is formed between CoS2 and MoS2, electrons partially migrate from the lower work function CoS<sub>2</sub> species to MoS<sub>2</sub> species, resulting in the perturbation of the electron density on both sides of CoS2 and MoS2. Such charge redistribution of CoS2 and MoS<sub>2</sub> favors the adsorption/desorption of intermediates for remarkably boosting reaction kinetics of the HER, OER, and UOR [42,43]. Encouragingly, the Mott-Schottky contacts will be of great significance for the electrocatalytic activity of the entire MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs and thus make an important contribution to the enhanced performance of overall water splitting and urea electrolysis. Fig. 2d presents the high-resolution XPS Mo 3d spectrum of the MoS2 NPs/CoS2 NTs. Clearly, the overlapping peaks of Mo 3d and S 2s of sulfur are observed from the Mo 3d XPS

spectrum. We can deconvolute the high-resolution Mo 3d spectrum into six core-level peaks. The first pair of peaks at a binding energy of 225.6 and 226.5 eV of S 2 s component belongs to Co-S and Mo-S bonds, respectively, affirming once again the co-existence of MoS2 and CoS2 in this heterostructure [44]. The second pair of core-level peaks corresponding to the 2p<sub>5/2</sub> and 2p<sub>3/2</sub> spin-states of Mo<sup>4+</sup> species is found at binding energies of 228.4 and 231.5 eV, respectively, belonging to the semiconducting MoS<sub>2</sub>. Notably, a typical peak of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs has red shifted, in comparison to that of the pure MoS<sub>2</sub> NPs sample, as shown in Fig. S5, confirming the strong Mott-Schottky interaction between the CoS<sub>2</sub> and MoS<sub>2</sub>. The final pair of core-level peaks at binding energies of 232.6 and 235.1 eV is consistent with the  $3d_{5/2}$  and  $3d_{3/2}$ spin-states, respectively, of the Mo<sup>6+</sup> in MoO<sub>3</sub>, which suggests the surface oxidation of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs sample in air [44]. With regard to the high-resolution XPS S 2p spectrum of CoS2 NTs (Fig. 2e), the pair of S 2p<sub>3/2</sub> and S 2p<sub>1/2</sub> peaks centered at binding energies of 161.7 and 162.9 eV, respectively, should be attributed to Co-S bond in the CoS2 phase [44,45]. In addition, the appearance of peaks at binding energies of 168.7 eV corresponding to S-O bond proves that the surface of sulfide species is partially oxidized [45]. For the S 2p spectrum of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, in addition to the typical peaks belonging to the Co-S and S-O bonds, the other pair of peaks at 162.0 and 163.2 eV well indexes the S 2p<sub>3/2</sub> and S 2p<sub>1/2</sub>, respectively, from the Mo–S bond of MoS<sub>2</sub> [45], corroborating the existence of two phases of CoS2 and MoS2 in our developed material. Therefore, the results mentioned above further clarify that the MoS2 NPs/CoS2 NTs is successfully achieved by our proposed facile and effective approach. Meanwhile, the Mott-Schottky contacts are presented between the MoS2 NPs and CoS2 NTs at the heterointerfaces; such interfacial interaction can be anticipated to be advantageous for the electrocatalytic behavior of the entire MoS2 NPs/CoS<sub>2</sub> NTs catalyst.

The structure of MoS $_2$  NPs/CoS $_2$  NTs was further characterized by N $_2$  adsorption-desorption measurement (Fig. 2f). The isothermal curve shows a large adsorption volume, suggesting a desirable specific surface area. Indeed, the MoS $_2$  NPs/CoS $_2$  NTs has a large specific surface area, of up to 17.87 m $^2$  g $^{-1}$ , which is superior to that of other transition metalbased catalysts reported elsewhere, such as NiSe $_2$ /CC with 10 m $^2$  g $^{-1}$  [46], CoP $_3$ -HS with 15.1 m $^2$  g $^{-1}$  [47], and FeNi $_2$ P with 6.25 m $^2$  g $^{-1}$  [48]. The Inset of Fig. 2f illustrates the corresponding pore size distribution of MoS $_2$  NPs/CoS $_2$  NTs, proving the presence of lots of mesopores ranging from 2 to 4 nm in its fine-heterostructure. Such large specific surface area and excellent mesoporous structure of MoS $_2$  NPs/CoS $_2$  NTs will expose more catalytic active sites and provide abundant holes to facilitate the electrolyte/active content movements, which are of great significance for the catalytic processes.

One of the most important properties of a porous structure is good permeability and high contact with the reactant/electrolyte, owing to its excellent porosity [49]. To evaluate these important properties of our MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs heterostructure, we conducted contact angle experiments. For comparison, the pristine CC substrate was also estimated by the contact angle test under the same conditions. As shown in Fig. 2g, the water contact angle of CC substrate is initially ~133.5°, after diffusion for 5 s is  $\sim 132.6^{\circ}$ , and after more than 10 s is reduced to 127.1°, suggesting that the rate of water diffusion to the surface of CC substrate is rather slow. Whereas water diffusion to the surface of MoS2 NPs/CoS<sub>2</sub> NTs electrode occurs immediately when dropping water on its surface, which is supported by the water contact angle of almost 0° from the beginning (Fig. 21). Such rapid diffusion rate suggests the great wettability of the MoS2 NPs/CoS2 NTs electrode surface, which is conducive to the penetration of water-based electrolyte, ion transport, and shedding of generated gaseous species, thereby significantly speeding up the electrochemical efficiency of the catalytic electrode [48]. Consequently, it is precisely due to the vertically aligned nanotube heterostructure with huge specific surface area, excellent porosity, super hydrophilicity, and good Mott-Schottky contact between the components that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs can exhibit desirable electrocatalytic behaviors.

#### 3.2. Electrocatalytic performance

The electrocatalytic performances of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs and its derivatives, including the CoS<sub>2</sub> NTs, Co-MOF NWs, pristine CC substrate, and commercial Pt/C catalyst in HER, were estimated in a threeelectrode configuration under alkaline condition (1.0 M KOH). Fig. 3a shows the IR-corrected LSV curves of different materials recorded at a scan rate of 5 mV s<sup>-1</sup>. Obviously, the current densities of MoS<sub>2</sub> NPs/ CoS<sub>2</sub> NTs are the highest among its three counterparts, and close to that of the commercial Pt/C. For clarity, Fig. S6 compares the current densities of the materials at an overpotential of 200 mV. As seen, the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs achieves the highest current density of 80.0 mA cm<sup>-2</sup> followed by the order of the CoS<sub>2</sub> NTs > Co-MOF NWs > pure CC at  $18.7 > 4.9 > 3.8 \text{ mA cm}^{-2}$ , respectively. To further testify to the better catalytic performance of the MoS2 NPs/CoS2 NTs, we compared its overpotentials and the references at current densities of 10 and 50 mA cm<sup>-2</sup>, and Fig. S7a shows the result. The MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs yields 10 and 50 mA cm<sup>-2</sup> at overpotentials of 99.3 and 185.8 mV, respectively, much lower than those of 165.6 and 264.1 mV for the CoS<sub>2</sub> NTs, 261.9 and 367.0 mV for the Co-MOF NWs, and 290.5 and 509.0 mV for the pure CC. While the overpotentials of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs are merely higher than those of Pt/C (42.5 and 113.6 mV at current densities of 10 and 50 mA cm<sup>-2</sup>, respectively), they are lower than those of the transition metal-based electrocatalysts reported elsewhere at the same current densities (Fig. S7b, and Table S1). In addition, the MoS2 NPs/CoS2 NTs is also superior to the transition metal-based electrocatalysts reported elsewhere both in terms of Tafel slope, as seen in Table S1, indicating that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is one of the best HER electrocatalysts in the literature. To examine the reaction kinetics, the Tafel slope values of the developed materials and Pt/C catalyst were calculated from the LSV by using the Tafel equation (Fig. 3b). The Tafel slope values of these materials follow the order Pt/C < MoS<sub>2</sub> NPs/CoS<sub>2</sub>  $< CoS_2$ NTs < Co-MOF NWs < pure  $55.1 < 64.4 < 110.2 < 123.0 < 224.5 \text{ mV dec}^{-1}$ , respectively. Accordingly, the Tafel slope value of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is close to that of the commercial Pt/C, and much lower than those of its counterparts, rendering a faster HER kinetics under the action of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. More importantly, because of the Tafel slope value falling in the range (40-120) mV dec<sup>-1</sup>, the HER activity over the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs heterostructure is governed by the Volmer-Heyrovsky mechanism  $(H_2O + e^- \rightarrow H_{ads} + OH^-)$  (Volmer),  $H_{ads} + H_2O + e^- \rightarrow H_2 + OH^$ ovsky)) [50]. Apart from the remarkable catalytic activity, long-term electrocatalytic durability and stability are also essential criteria to evaluate the performance of catalytic materials. Thus, we estimated the durability of the MoS2 NPs/CoS2 NTs by chronoamperometry test, as presented in Fig. 3c. Unsurprisingly, the current density of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs shows a negligible increase during the measurement time, which is supported by the relatively high retention of current density (~90.1%), demonstrating that its electrocatalytic activity can maintain long-term durability for over 50 h. The large amount of H<sub>2</sub> bubbles that escaped from the surface of MoS2 NPs/CoS2 NTs electrode during chronoamperometric measurement testifies to its superior electrocatalytic property (Inset of Fig. 3c). Moreover, the LSV curve achieved after stability testing is compared with the initial one to further investigate the stable properties of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. Figs. S7c and d show that after 50 h testing, the overpotential positively shifts very little, as favorable evidence for the good stability of the MoS2 NPs/CoS<sub>2</sub> NTs under the HER environment. The continuous CV scanning for 2000 cycles was performed for the MoS2 NPs/CoS2 NTs to further evaluate its stability. Fig. S8a shows that the LSV curve recorded after 2000 CV cycles almost overlaps with the initial one, suggesting that the catalytic performance of the MoS2 NPs/CoS2 NTs material is almost unchanged after continuously CV scanning. The HER overpotentials at current densities of 10 and 50 mA cm<sup>-2</sup> of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs after



Fig. 3. HER activity of the as-synthesized materials in alkaline condition: (a) IR-corrected LSV curves and (b) corresponding Tafel plots of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, and Pt/C; (c) chronoamperometric curve of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs; (d) C<sub>dl</sub> of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs derived from current density versus the scan rate. OER activity of the as-synthesized materials in alkaline condition: (e) IR-corrected LSV curves and (f) corresponding Tafel plots of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, and RuO<sub>2</sub>; (g) chronoamperometric curve of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs; (h) C<sub>dl</sub> of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs derived from the current density versus scan rate; (i) Nyquist plots of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, and RuO<sub>2</sub>.

CV testing are found to be 105.2 and 183.5 mV, respectively, which are nearly close to the initial values (Fig. S8b). The findings confirm that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs material can serve as highly stable electrocatalyst for the HER. To examine the structural stability, we carried out SEM, mapping, XRD, and XPS analyses for the post-HER MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. We found that the post-HER MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs preserves its vertically aligned nanotube architecture well (Fig. S9a). The chemical composition is also well conserved after long-term test, which is confirmed by the co-existence of Co, S, and Mo within the post-HER MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs structure (Figs. S9b-d), and the emergence of all signals belonging to CoS2 and MoS2 phases from the XRD pattern of the post-HER MoS2 NPs/CoS<sub>2</sub> NTs (Fig. S9e). The XPS spectra of the post-HER MoS<sub>2</sub> NPs/CoS2 NTs also exhibit insignificant variations, in comparison with that of the virgin one (Figs. S9f-i), proving no variation of the surface composition and valance states of the MoS2 NPs/CoS2 NTs after continuous catalysis. The experimental results provide favorable evidence for the high chemical and structural durability of the MoS2 NPs/CoS2 NTs under the harsh HER conditions, leading to an excellent preservation of its catalytic activity in long-term operation. Thereafter,

we conducted CV and EIS measurements to explore the reason for the high catalytic activity of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs toward the HER. From the CV curves in the non-Faradaic region (Fig. S10), the double layer capacitance (Cdl) values are determined for the MoS2 NPs/CoS2 NTs and its derivatives. Fig. 3d shows that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs gives a big C<sub>dl</sub> value (12.5 mF cm<sup>-2</sup>), which is the highest value of the four as-synthesized materials. By comparison, the C<sub>dl</sub> values of the CoS<sub>2</sub> NTs, Co-MOF NWs, and pure CC are only 11.0, 7.8, and 2.2 mF cm<sup>-2</sup>, respectively. Such high  $C_{dl}$  value demonstrates that the  $MoS_2\ NPs/CoS_2$ NTs heterostructure possesses the largest electrochemically active surface area among the derivatives, and thus one fact is indisputable - its catalytic activity for the HER is better than those of the CoS2 NTs, Co-MOF NWs, and pure CC. In addition, the EIS measurement renders deep insight into the reaction kinetics of the MoS2 NPs/CoS2 NTs so that its great catalytic activity can be further explained. Fig. S11 shows that compared to the CoS<sub>2</sub> NTs with charge transfer resistance (R<sub>ct</sub>) value of  $0.55~\Omega,$  Co-MOF NWs with  $R_{ct}$  value of  $0.58~\Omega,$  and pure CC with  $R_{ct}$ value of 0.71  $\Omega$ , the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs heterostructure has a considerably lower  $R_{ct}$  value (0.52  $\Omega$ ), meaning its more rapid HER kinetics

than the others, which is consistent with the calculated Tafel slope value. There is a high opinion of the benefits of small  $R_{\rm ct}$  in electrocatalytic process owing to the facile migration of electrons on the surface of the proposed heterostructure. The three-dimensional vertically aligned nanotube array architecture of  $MoS_2\ NPs/CoS_2\ NTs$  is considered a major reason for such excellent conductivity, associated with the ease of electrolyte infiltration and short path of ion transfer [51]. Additionally, the strong Mott-Schottky interaction between the  $MoS_2$  and  $CoS_2$  components can accelerate the charge transfer rate, which also contributes to good capability for charge transfer of the entire heterostructure.

The electrocatalytic OER performance is then estimated. Fig. 3e shows the IR-corrected LSV curves for MoS2 NPs/CoS2 NTs, together with its derivatives and benchmark RuO2 catalyst for comparison. In particular, the MoS2 NPs/CoS2 NTs exhibits substantially improved electrocatalytic activity with lower overpotentials of 242.2 and 335.8 mV to achieve current densities of 10 and 50 mA cm<sup>-2</sup>, respectively. Meanwhile, to drive the same current densities, the CoS<sub>2</sub> NTs, Co-MOF NWs, and pure CC samples require overpotentials of (293.4 and 363.5), (284.7 and 363.5), and (337.9 and 396.6) mV, respectively (Fig. S12a). The overpotentials of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs are even considerably smaller than those of the benchmark RuO2 catalysts with 335.4 and 438.9 mV at 10 and 50 mA cm<sup>-2</sup>, respectively, and superior to those of the transition metal-based electrocatalysts for OER reported to date (Fig. S12b, and Table S2). Additionally, the Tafel slope of the MoS2 NPs/CoS2 NTs is also better than those of the transition metalbased electrocatalysts for OER reported to date (Table S2), confirming its better reaction kinetics for the OER. From the LSV results combined with the use of the Tafel equation, the Tafel slope values of all samples are determined to clarify the OER dynamics. Fig. 3f shows that a small Tafel slope of 71.1 mV dec<sup>-1</sup> is found for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. This value is much smaller than those of the CoS2 NTs, Co-MOF NWs, and pure CC of 83.3, 94.3, and 167.1 mV  $\mathrm{dec}^{-1}$ , respectively, and even that of the commercial RuO<sub>2</sub> (88.7 mV dec<sup>-1</sup>), manifesting that catalytic kinetics of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs for the OER is the most robust among its counterparts and RuO2. Such smallest overpotentials and Tafel slope values of MoS2 NPs/CoS2 NTs are solid evidence for its excellent OER activity. The chronoamperometric measurement was then conducted for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs under OER conditions to investigate its stable property, which is a significant criterion reflecting the catalyst's potential for practical applications. As displayed in Fig. 3g, the MoS<sub>2</sub> NPs/ CoS<sub>2</sub> NTs shows a negligible decay in its current density by the continuous operation for 50 h, which is supported by the maintenance of more than 91.5% of the initial current density, demonstrating its exceptionally catalytic durability. During the stability testing, the abundant escape of O2 gas is observed from the surface of MoS2 NPs/CoS2 NTs anode, confirming once again that the MoS2 NPs/CoS2 NTs can effectively catalyze the OER process (Inset of Fig. 3g). In addition, the LSV curve recorded after chronoamperometric testing almost coincides with the fresh one (Fig. S12c), while the overpotentials negligibly increase in comparison with the initial values (Fig. S12d). Likewise, after continuously CV scanning for 2000 cycles, the MoS2 NPs/CoS2 NTs shows negligible catalytic degradation, as seen in Fig. S13, further evidencing its excellent stability for the OER. The structural stability of the MoS2 NPs/CoS2 NTs under OER conditions is evaluated by SEM, mapping, XRD, and XPS analyses. The SEM image (Fig. S14a) indicates the unchanged morphology of the post-OER MoS2 NPs/CoS2 NTs compared to the fresh sample. The EDX mapping images (Figs. S14b-d) also reveal the presence of Co, S, and Mo elements. Additionally, no noticeable changes in the crystal phase are found for the post-OER MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, as seen in its XRD pattern (Fig. S14e). Insight into the chemical composition and valance states of the post-OER MoS2 NPs/CoS2 NTs is achieved via XPS analysis (Figs. S14f-i). The high-resolution XPS Co 2p spectrum in the post-OER sample (Fig. S14g) reveals an increase in the intensity of Co<sup>3+</sup> peaks, suggesting the formation of a higher oxidation state of Co species, such as CoOOH, associated with the partial oxidation of CoS2

during the OER catalysis, which agrees well with the results in the literature [52,53]. Such in situ produced CoOOH species are conducive to the OER process, in that they are real OER active sites for speeding up the OER performance more effectively. Previous studies demonstrated by theoretical calculation that the formation of in-situ CoOOH species over the surface of the host materials during catalysis process of the OER not only optimized the Gibbs free energy changes of \*OH, \*O, and \*OOH intermediate adsorption on the catalyst surface but also facilitated electron transfer, thus facilitating the OER process [54,55]. The Mo 3d spectrum (Fig. S14h) also reveals that the intensities of  $Mo^{6+}$   $3d_{5/2}$  and  $3d_{3/2}$  are slightly higher than those of the fresh one, attributing to the possible oxidation of MoS<sub>2</sub> during the oxidation process. Also, the partial conversion of the sulfide phase (S<sup>2</sup>-) into sulfate phase (SO<sub>4</sub><sup>2</sup>-) and sulfite phase ( $SO_3^2$ ) is observed from the S 2p spectrum of the post-OER MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs (Fig. S14i), supported by an increase in the intensity of the S-O peak; this further suggests the surface oxidation of the MoS<sub>2</sub> NPs/CoS2 NTs during the OER catalysis. Therefore, the MoS2 NPs/CoS2 NTs possesses both excellent catalytic behavior and good stability for the OER. The Mott-Schottky heterojunction of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs still exists even after continuous catalysis of the OER for 50 h (Fig. S15), donating the almost intact catalytic property to the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs.

In addition, the in situ surface oxidation during the OER catalysis also brings more real active sites to the heterostructure, thus further boosting its catalytic activity. To identify the origin of the promising OER catalytic performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, on the one hand, the C<sub>dl</sub> values are determined for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs and its derivatives. Through CV results recorded in the non-Faradaic region at various scan rates (Fig. S16), the C<sub>dl</sub> value of 62.5 mF cm<sup>-2</sup> is determined for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, which is among the highest values of the developed materials in this study, such as the CoS2 NTs, Co-MOF NWs, and pure CC with 50.3, 32.9, and 12.6 mF cm<sup>-2</sup>, respectively (Fig. 3h). The MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs has the highest C<sub>dl</sub> value, reflecting its exposure of abundant catalytically active sites, and remarkably enhanced surface roughness, consistent with the excellent advantages of the heterostructure. On the other hand, EIS measurement was executed to further analyze the reaction kinetics of the OER. After simulating the Nyquist plots by an equivalent circuit (Fig. 3i), the R<sub>ct</sub> values are found to be 0.37, 0.63, 0.67, and 0.79  $\Omega$  for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, CoS<sub>2</sub> NTs, Co-MOF NWs, and pure CC, respectively. The MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs owns the lowest R<sub>ct</sub> value among the as-synthesized materials and commercial RuO<sub>2</sub>, indicating the best capability of charge transfer, which can boost the OER kinetics more effectively, in comparison with the others.

Despite the excellent HER and OER catalytic activities of MoS<sub>2</sub> NPs/ CoS<sub>2</sub> NTs, which will bring superior overall water splitting efficiency, it is worth noting that high energy input of the water electrolyzer based on MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is inevitable to produce H<sub>2</sub>. Therefore, constructing an energy-saving device, such as a urea electrolyzer, is one of the most effective directions to achieve H2 economy in the near future. Because in the urea electrolysis device, the HER is still the cathodic reaction, while the energy-saving UOR is an anodic reaction, instead of the conventional OER, we performed a series of suitable measurements for the MoS<sub>2</sub> NPs/ CoS<sub>2</sub> NTs under UOR conditions to assess its UOR activity. Firstly, Fig. 4a presents the IR-corrected LSV curves of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs in the blank electrolyte (1.0 M KOH) and electrolyte with the addition of urea (1.0 M KOH + 0.5 M urea). The catalytic performance of the MoS<sub>2</sub> NPs/CoS2 NTs in urea electrolyte is remarkably improved. In the introduction of urea, the MoS2 NPs/CoS2 NTs can achieve current densities of 10 and 50 mA  ${\rm cm}^{-2}$  at potentials of 1.31 and 1.44 V, respectively, which is 0.16 and 0.13 V lower than that in the blank electrolyte, respectively, suggesting that the MoS2 NPs/CoS2 NTs owns promising UOR catalytic behavior. For comparison, its derivatives, and the benchmark RuO2 catalyst were also evaluated by LSV tests under urea conditions (Fig. 4b). As expected, the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs needs the smallest potentials to achieve the same current densities, compared to the CoS2 NTs, Co-MOF NWs, and pure CC. The catalytic performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is even superior to that of the conventional



**Fig. 4.** UOR activity of the as-synthesized materials: (a) IR-corrected LSV curves of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs under OER (1.0 M KOH electrolyte) and UOR conditions (1.0 M KOH + 0.5 M urea as electrolyte or 1.0 M KOH + urine as electrolyte). (b) IR-corrected LSV curves, (c) corresponding potentials at 10 and 50 mA cm<sup>-2</sup>, and (d) corresponding Tafel plots of (1) pure CC, (2) Co-MOF NWs, (3) CoS<sub>2</sub> NTs, (4) MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, and (5) RuO<sub>2</sub> in the electrolyte with urea (1.0 M KOH + 0.5 M urea) or urine (1.0 M KOH + urine); (e) chronoamperometric curve of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs in the electrolyte with urea. Inset of the (e): LSV curves recorded before and after chronoamperometric testing and overpotentials at 10 and 50 mA cm<sup>-2</sup> determined before and after chronoamperometric testing; (f) CV curves of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, and MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs at a scan rate of 10 mV s<sup>-1</sup> in non-Faradaic region; (g) C<sub>dl</sub> of the pure CC, Co-MOF NWs, CoS<sub>2</sub> NTs, MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, and RuO<sub>2</sub>.

RuO<sub>2</sub>, making it competitive with commercial catalysts in industry applications. Fig. 4c shows that the potentials of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs at 10 and 50 mA cm<sup>-2</sup> are considerably lower than those of the CoS<sub>2</sub> NTs, Co-MOF NWs, pure CC, and RuO<sub>2</sub> at (1.32 and 1.50), (1.40 and 1.59), (1.49 and 1.67), and (1.39 and 1.52) V, respectively. More interestingly, the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs affords advanced UOR behavior surpassing almost all other electrocatalysts based on earth-abundant transition metals reported elsewhere both in terms of potential at 10 mA cm<sup>-2</sup> and Tafel slope, as illustrated in Fig. S17 and Table S3. Then, the UOR kinetics was studied by determining their Tafel slopes (Fig. 4d). Agreeing with the UOR performance, the MoS2 NPs/CoS2 NTs owns the smallest Tafel slope of 88.4 mV dec<sup>-1</sup>, much smaller than those of the CoS<sub>2</sub> NTs, Co-MOF NWs, pure CC, and RuO2 at 128.1, 146.2, 203.0, and 101.3 mV  ${
m dec}^{-1}$ , respectively. As such, it demonstrates that the reaction kinetics of UOR under the action of MoS2 NPs/CoS2 NTs is the most favorable. In other words, it suggests that building the Mott-Schottky heterojunction of CoS2 and MoS2 significantly accelerates mass/charge transfer and facilitates the intermediate adsorption/desorption, which is greatly conducive to the UOR performance. To further evaluate the potential of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs catalyst in practical applications toward the effective treatment of urea-rich wastewater, we have conducted LSV measurements for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, its counterparts, and benchmark RuO<sub>2</sub> in electrolyte with urine (1.0 M KOH + urine), and Fig. 4ad include the obtained results. Fig. 4a and b shows that the UOR performance of the products and RuO2 in urine conditions is slightly lower than those in 0.5 M urea conditions. We also found that the UOR active trend in electrolyte with the addition of urine follows the order MoS2  $NPs/CoS_2 NTs > CoS_2 NTs > Co-MOF NWs > pure CC > RuO_2$  (Fig. 4b) and c), indicating the best catalytic activity of MoS2 NPs/CoS2 NTs in urine electrolyte. Furthermore, as shown in the Tafel plots (Figs. 4d), 93.1, 143.6, 201.1, 241.6, and 120.1 mV dec<sup>-1</sup> Tafel slope values are calculated for the MoS2 NPs/CoS2 NTs, CoS2 NTs, Co-MOF NWs, pure CC, and RuO2, respectively, in the urine electrolyte, demonstrating the best reaction kinetics of UOR under the help of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. Such achieved results highlight the best catalytic performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs for the UOR in the urine electrolyte, thus confirming its great potential for practical applications in hydrogen production via urea electrolysis of the human urine. Furthermore, we also conducted the electrochemical measurement for the products and RuO<sub>2</sub> in 0.33 M urea solution, as simulated human urine, for comparison, and the results are presented in Fig. S18. As we can see in Fig. S18a, there is a rather overlap between the LSV curve of the MoS2 NPs/CoS2 NTs sample in urine electrolyte and 0.33 M urea electrolyte, indicating that the electrochemical property of the MoS2 NPs/CoS2 NTs for the UOR in urine electrolyte is comparable to that in 0.33 M urea electrolyte. Likewise, Fig. S18b also displays that the electrocatalytic activity of the control samples, such as pure CC, Co-MOF NWs, and CoS2 NTs, and the benchmark RO2 catalyst for the UOR in urine electrolyte is nearly close to those in the simulated human urine solution. However, the comparison in Fig. S18c exhibits that the potentials at current densities of 10 and 50 mA cm<sup>-2</sup> of these materials in urine electrolyte are slightly higher than those in 0.33 M urea electrolyte, suggesting the slightly lower catalytic performance for the UOR in the real urine solution. The Tafel slope values of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs, CoS<sub>2</sub> NTs, Co-MOF NWs, pure CC, and RuO2 in urine electrolyte (Fig. S18d) are slightly higher than those in the simulated human urine as well, further suggesting that the kinetics of UOR in urine electrolyte is worse than that in 0.33 M urea electrolyte. This can be attributed to the effect of some interfering compounds, such as some organic salts and uric acid, on the UOR catalytic performance of the materials [13]. On the other hand, the findings in Fig. S18 also show that the electrocatalytic behavior of the MoS2 NPs/CoS2 NTs for the UOR is still the best among five samples even in the simulated human urine conditions, reconfirming the applicability of our proposed material in the urea electrolysis of real samples towards simultaneous treatment of urea-rich wastewater and production of green H<sub>2</sub> fuel. Concerning the effect of urea concentration on catalyst UOR performance, the LSV measurements performed for MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs in the alkaline electrolyte (1.0 M KOH) with the addition of different concentrations of urea (0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5, and 1.0 M) and corresponding LSV curves are shown in Fig. S19a. As seen, with increasing urea concentrations up to 0.05 M, an obvious increase in the catalytic activity of MoS2 NPs/CoS2 NTs is observed, suggesting the superior sensitivity of our developed material for urea oxidation. Interestingly, the catalytic activity of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs tendes to be almost unchanged when the urea concentration exceeds 0.05 M, which must be assigned to the excess occupancy of active sites on the surface of the catalyst by the urea molecules and intermediate species at high urea concentrations [56]. The comparison of potentials at current densities of 10 and 50 mA cm<sup>-2</sup> (Fig. S19b) further confirms the phenomenon mentioned above. The stability of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs under urea conditions was studied by chronoamperometric testing. Fig. 4e displays that there is no identified change of current density after long-term working with a very high current retention of 88.9%, testifying that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs offers superior long-term stability. LSV measurement was further conducted for the post-UOR MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. The negligible shift of LSV curve of the post-UOR MoS<sub>2</sub> NPs/CoS2 NTs is discerned compared to the fresh one in the Inset of Fig. 4e. Further, slight enhancement of 27.2 and 61.6 mV potentials at 50 and 100 mA cm $^{-2}$  are found in the post-UOR MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs (Inset of Fig. 4e). Thus, even after 50 h of continuous working under UOR conditions, the catalytic activity of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs seems to be stable, which is one of the most pivotal items of evidence for the great potential of our developed catalyst in industrial application. The MoS2 NPs/CoS2 NTs was also testing by continuously CV scanning for 2000 cycles. As seen in Fig. S20, there is a negligible change in the catalytic performance of MoS2 NPs/CoS2 NTs after CV testing, corroborating its extraordinary stability for the UOR. The post-UOR MoS2 NPs/CoS<sub>2</sub> NTs was investigated by SEM, EDX elemental mapping, XRD, and XPS analyses as well. Consistent with the obtained results of the virgin MoS2 NPs/CoS2 NTs, the SEM images, and SEM-EDX mapping images of the post-UOR MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs (Figs. S21a-d) prove the vertically aligned nanotube arrays architecture and the homogeneous distribution of Co, S, and Mo elements. Further, when compared with the XRD pattern of the virgin material (Fig. S21e), the XRD pattern of the

post-UOR MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs shows no significant change, manifesting that after long-term stability testing, its crystal phase is unchanged. The data of chemical composition and valence state of the post-UOR MoS2 NPs/CoS2 NTs are obtained by XPS analysis. Figs. S21f-i show the XPS spectra of the post-UOR MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs; the increase in intensities of Co<sup>3+</sup> and Mo<sup>6+</sup> peaks is observed from the high-resolution Co 2p and Mo 3d, respectively, and the partial conversion of metal-sulfur bonds to S-O bond is also discerned in the S 2p spectrum, testifying to the partial oxidation of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs surface during the UOR catalysis. This endows the catalyst with oxidation species that serve as additive electrocatalytic active sites, being considerably advantageous for the catalytic performance of the UOR process [57]. The intrinsic catalytic activity of the MoS2 NPs/CoS2 NTs for the UOR is partially clarified through calculating its C<sub>dl</sub> values by CV measurements. Fig. S22 shows the CV curves at different scan rates of the MoS2 NPs/CoS2 NTs and its derivatives, such as the CoS2 NTs, Co-MOF NWs, and pure CC. Fig. 4f displays that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs owns the highest current densities at the same scan rate of 10 mV s<sup>-1</sup>. Consistent with this observation, the C<sub>dl</sub> value of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs of 74.3 mF cm<sup>-2</sup> is the highest among the four materials, in which the Cdl values of the CoS2 NTs, Co-MOF NWs, and pure CC are 46.5, 34.5, and 5.8 mF cm<sup>-2</sup>, respectively (Fig. 4g). The unique nanotube nature of CoS<sub>2</sub> and the ultrasmall nanoparticle nature of MoS<sub>2</sub> can provide more accessible catalytic active sites, bringing the high Cdl value to the MoS2 NPs/CoS2 NTs. Such desirable C<sub>dl</sub> can render the large electrochemically active surface area within the MoS2 NPs/CoS2 NTs, which can be recognized as a contributor to the significantly improved UOR activity. The R<sub>ct</sub> values of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs and its counterparts were determined through EIS analyses as well (Fig. 4h). Remarkably, through simulating the EIS plots by an equivalent circuit (Inset of Fig. 4h), the R<sub>ct</sub> value of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is found to be 0.86  $\Omega$ , which is lower than those of the  $CoS_2$  NTs (1.01  $\Omega$ ), Co-MOF NWs (0.99  $\Omega$ ), and pure CC (1.23  $\Omega$ ), respectively, rendering the most outstanding capability of the MoS2 NPs/CoS2 NTs in charge transfer among those of the others. It must be concluded that the formation of the Mott-Schottky heterojunction can bring great improvement to the charge transfer process, and thus result in great improvement of the final UOR behavior of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs material. To further evaluate the potential of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs for industrial applications, we investigated its UOR activity under industrial-grade current densities. Initially, the catalytic performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs for OER and UOR at industrial-grade current densities was examined by LSV measurement. Corresponding IR-corrected LSV curves in Fig. S23a shows that the UOR performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs catalyst is still better than its OER performance even at high current density of 1000 mA cm<sup>-2</sup> or higher. We found that the UOR potentials of the MoS2 NPs/CoS2 NTs at current densities of 1000, 1100, and 1200 mA cm $^{-2}$  are 2.26, 2.34, and 2.41 V, respectively, much smaller than those under the OER conditions (0.209, 0.195, and 0.213 V) at the same current densities, demonstrating a great potential of our proposed material to substitute for the sluggish OER process in industrial applications. Next, we also performed LSV measurement to investigate the UOR activity of the as-synthesized catalysts under industrial-grade current densities, along with benchmark RuO2 catalyst for comparison. As seen in Figs. S23b and c, at current density of 1000 mA cm<sup>-2</sup> or higher, the UOR potentials of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs are lower than those of its counterparts and RuO2, providing the best UOR performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs at industrial-grade current densities. Concretely, when current density reached 1000, 1100, and  $1200 \text{ mA cm}^{-2}$ , the UOR potentials of the  $CoS_2$  NTs are found to be 2.49, 2.53, and 2.59 V, respectively, Co-MOF NWs are 2.81, 2.89, and 2.97 V, respectively, pure CC are 3.31, 3.47, and 3.61 V, respectively, and RuO<sub>2</sub> are 2.56, 2.64, and 2.78 V, respectively, which are much higher than those of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs. To probe the long-term durability of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs under high current density conditions, chronoamperometric measurement was performed at a very high applied voltage of 2.26 V vs. RHE. The result in Fig. S23d shows that the MoS2

NPs/CoS $_2$  NTs still maintains its excellent UOR activity even after continuously working at high potential for 40 h, supported by the relatively high current density retention of 74.6%. Therefore, it shows that the high catalytic performance of the proposed MoS $_2$  NPs/CoS $_2$  NTs for UOR under industrial-grade current densities can meet the requirements of real applications.

To exploit the benefits of the bifunctional MoS $_2$  NPs/CoS $_2$  NTs catalyst for the HER and OER processes (Fig. 5a), we applied the catalyst as both cathode and anode for overall water splitting in a lab-made water electrolyzer device (Fig. S24a). The LSV curves for overall water splitting in Fig. 5b display the high performance of the electrolyzer assembled using MoS $_2$  NPs/CoS $_2$  NTs, which performance is comparable to that of the one based on noble metals Pt/C (-) // RuO $_2$  (+). Indeed, the electrolyzer with MoS $_2$  NPs/CoS $_2$  NTs electrodes requires small cell voltages of 1.65 and 1.85 V to attain the current densities of 10 and 50 mA cm $^{-2}$ , respectively. These cell voltage values are close to those of the electrolyzer using Pt/C (-) // RuO $_2$  (+) with 1.61 and 1.86 V at the same current densities (Fig. S25a). Furthermore, Fig. S25b, and Table S4 show that our developed material, MoS $_2$  NPs/CoS $_2$  NTs, reveals electrocatalytic performance for overall water splitting that greatly surpasses that of the non-noble metal electrocatalysts in the literature.

Additionally, by comparing the amount of gas generated in the experiment, which was measured by drainage method (Fig. S24b), with the amount of gas calculated in the theory, we determined the FE for the HER and OER processes during catalysis of overall water splitting (Fig. 5c). More surprisingly, the generated gas amount in the experiment is close to the calculated gas amount in the theory, and the molar ratio between H<sub>2</sub> and O<sub>2</sub> is found to be around 2: 1. In addition, the high FE values of 98.6% and 94.6% are found for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs during the HER and OER, respectively. Such FE values close to 100% of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs suggest that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs derives high current densities for overall water splitting from the evolution processes of H<sub>2</sub> and O<sub>2</sub> gases [36]. The long-term stability of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs was evaluated under overall water splitting environments by chronoamperometric testing. The electrolyzer based on the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs shows marvelous stability with slight performance decay after long-term electrolysis for 50 h, supported by the high retention of the current density of up to 89.7% (Fig. 5d). In contrast, the electrolyzer with noble metal Pt/C (-) // RuO<sub>2</sub> (+) electrodes exhibits insufficient durability for overall water splitting, with remarkable degradation of its performance after only 30 h stability testing (Fig. 5d). Furthermore, the almost overlaps between the LSV curves recorded before and after



Fig. 5. (a) IR-corrected LSV curves of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs under HER, OER, and UOR conditions. Overall water splitting performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs in alkaline condition: (b) LSV curves of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+) and Pt/C ( $\cdot$ ) // RuO<sub>2</sub> (+); (c) amount of measured gas and calculated gas for MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+); (d) chronoamperometric curve of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+) under overall water splitting conditions. Overall urea electrolysis performance of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs: (e) LSV curves of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+) in the electrolyte with urea (1.0 M KOH + 0.5 M urea) or urine (1.0 M KOH + urine); (f) comparison of cell voltages at 10 mA cm<sup>-2</sup> of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+) under water splitting conditions and urea electrolysis conditions; (g) LSV curves of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+) and Pt/C ( $\cdot$ ) // RuO<sub>2</sub> (+) in the electrolyte with urea (1.0 M KOH + 0.5 M urea); (h) chronoamperometric curve of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs ( $\cdot$ ,+) and Pt/C ( $\cdot$ ) // RuO<sub>2</sub> (+); (i) Photograph of a urine electrolyzer using MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs as both cathode and anode.

consecutive water electrolysis based on  $MoS_2$  NPs/CoS $_2$  NTs are observed in Fig. S25c. Fig. S25d shows that after 50 h stability testing, the cell voltages at 10 and 50 mA cm $^{-2}$  of the electrolyzer using  $MoS_2$  NPs/CoS $_2$  NTs are slightly increased. The results confirm that the novel  $MoS_2$  NPs/CoS $_2$  NTs material is an ideal candidate catalyst in overall water splitting applications requiring high performance and superior stability.

Considering that the MoS $_2$  NPs/CoS $_2$  NTs has excellent UOR and HER activity (Fig. 5a), the overall urea electrolyzer that relied on the MoS $_2$  NPs/CoS $_2$  NTs as both cathode and anode is assembled in this work as well. Initially, the performance of that electrolyzer is investigated by LSV measurement in the electrolyte with urea (1.0 M KOH + 0.5 M urea) or urine (1.0 M + urine). As seen in Fig. 5e, the LSV curve in the urine electrolyte is very close to that in the urea electrolyte, reconfirming the great potential of the MoS $_2$  NPs/CoS $_2$  NTs in real applications, especially for the treatment of urea-containing wastewater. The cell voltages at current densities of 10 and 50 mA cm $^{-2}$  are (1.4 and 1.69) and (1.47 and 1.7) V for the electrolyzer in the urine and urea electrolyte, respectively.

Clearly, the cell voltages at 50 mA cm $^{-2}$  for the urea electrolyzer are considerably lower than that for the water electrolyzer, as shown in Fig. 5f, testifying that the urea electrolyzer is more effective in terms of energy. Further, the overall urea electrolysis activity of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is comparable to that of the Pt/C (-) // RuO<sub>2</sub> (+) commercial catalysts (Fig. 5g). The small cell voltage at 10 mA cm $^{-2}$  for urea electrolysis of the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs is also superior to that of the transition metal-based bifunctional catalysts for urea electrolysis in the literature (Fig. S26a, and Table S5). The long-term durability of the urea electrolyzer based on the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs electrodes was investigated under a standard potential of 1.7 V for 50 h. Fig. 5h shows that throughout the stability testing, the responding current density of MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs (-,+)-based urea electrolyzer is more stable than that of the device based on commercial catalysts Pt/C (-) // RuO<sub>2</sub> (+).

Moreover, the LSV curve recorded after testing is almost like the initial one (Fig. S26b). Additionally, the cell voltages at 10 and 50 mA cm<sup>-2</sup> determined after long-term testing are negligibly enhanced, compared with those of the virgin material (Fig. S26c). Thus, the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs-based urea electrolyzer is highly stable, even under successive operation. During electrochemical testing for the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs-based device in urine electrolyte, many gas bubbles are released from the surface of the cathode and anode, as shown in Fig. 5i, corroborating that the MoS<sub>2</sub> NPs/CoS<sub>2</sub> NTs with its advantages of geometric and electronic structure is a highly efficient and stable electrocatalysts for urea electrolysis.

#### 3.3. Density function theory calculations

It must be noted that clarifying the mechanism of electrochemical reactions taking place on the catalyst surface, as well as the surface charge distribution of catalysts, is necessary to explain the catalytic activity toward correctly predicting and constructing advanced electrocatalysts. In particular, regarding the OER, HER, and UOR electrocatalysts, their surface charge distribution needs to be paid more attention, owing to the important role of this feature in the reaction mechanism. Accordingly, we performed first-principles density functional theory (DFT) calculations to fully understand the Mott-Schottky effect, the alterations of electron density in the heterointerface, and the underlying reaction mechanisms to the MoS2/CoS2 catalytic systems. First, the projected density of states (PDOS) for isolated MoS<sub>2</sub>(002) nanoparticle, CoS<sub>2</sub>(112) surface, and MoS<sub>2</sub>/CoS<sub>2</sub> heterostructure were calculated, as shown in Fig. 6a. Generally, the d-orbitals contribution to the density of states around the Fermi level is higher than that of the porbitals, indicating their dominant role in the catalytic activity of the MoS<sub>2</sub>, CoS<sub>2</sub>, and MoS<sub>2</sub>/CoS<sub>2</sub> systems. The PDOS results also reveal the semiconductive nature of developed MoS2 nanoparticle with a



Fig. 6. (a) The DFT calculation PDOS for isolated  $MoS_2(002)$  nanoparticle,  $CoS_2(112)$  surface and  $MoS_2/CoS_2$  heterointerface. (b) The charge density difference at the heterointerface of  $MoS_2/CoS_2$ . The energy band diagrams of semiconductive  $MoS_2$  and metallic  $CoS_2$  (c) before and (d) after the formation of Mott-Schottky interaction. (e) Schematic of the  $MoS_2/CoS_2$  heterointerface depicting the electron transfer at the heterointerface. Color scheme: Mo, blue; S, pink  $(MoS_2)$ ; Co, dark blue; S, yellow  $(CoS_2)$ .

sufficiently large band gap (1.65 eV) and the metallic properties of the isolated  $\text{CoS}_2$  and  $\text{MoS}_2/\text{CoS}_2$  heterostructure. In the  $\text{MoS}_2/\text{CoS}_2$  Mott-Schottky heterojunction, the coupling of the valence band and conduction band within this structure is more favorable; this phenomenon is beneficial to the migration of electrons across the interband region, thus facilitating the reaction kinetics of the HER, OER, and UOR [58]. The decomposed PDOS of the  $\text{MoS}_2/\text{CoS}_2$  heterostructure reveals hybridization between  $\text{MoS}_2$  and  $\text{CoS}_2$ , resulting from the newly formed Co-S bonds at the interface. The adhesion energy at the  $\text{MoS}_2/\text{CoS}_2$  interface was predicted to be - 0.12 eV/Ų, which indicates that interface structure is thermodynamically stable for long-term operation.

To unravel the nature electron transfer across the  $MoS_2/CoS_2$  heterointerface, differential charge density iso-surface contours were determined as shown Fig. 6b. Analysis of Fig. 6b shows that the space around the Mo species has a higher electron density in comparison with that around the Co species, corroborating the partial migration of electrons from  $CoS_2$  to higher work function  $MoS_2$ , which causes local electrophilic and nucleophilic regions at the interface of  $MoS_2/CoS_2$  in

good agreement with the XPS results [27].

More interesting, the difference in Fermi level between the CoS2 and MoS<sub>2</sub> cause migration of electrons across the heterointerface, resulting in tuning of electron density around the Co and Mo species (Fig. 6c-e), which has implications for their adsorption capacities towards reaction and intermediate species. Free energy calculations of the H- and Ocontaining intermediate species in the HER and OER were carried out for the isolated MoS2, CoS2, and MoS2/CoS2 heterostructure to evaluate their adsorption abilities for these key intermediates. The top and side views of the crystal structures of MoS2, CoS2, and MoS2/CoS2 are shown in Fig. 7a. The corresponding H adsorption sites for these systems are illustrated in the Inset of Fig. 7b-d. Taking Mo and S species as the adsorption sites for MoS2, Co and S species as the adsorption sites for CoS<sub>2</sub>, and Mo, Co, and S species as the adsorption sites for MoS<sub>2</sub>/CoS<sub>2</sub>, the difference of Gibbs free energy for adsorbed hydrogen (ΔGH\*) was calculated for the  $MoS_2$ ,  $CoS_2$ , and  $MoS_2/CoS_2$ , as shown in Fig. 7b-d, respectively. The  $\Delta G_{H^{\ast}}$  values of the Mo and S sites for MoS  $_2$  are found to be -0.32 and 0.59 eV, respectively, which are rather far away from the



Fig. 7. (a) Optimized crystal structures of  $MoS_2(002)$  nanoparticle,  $CoS_2(112)$  and  $MoS_2/CoS_2$  heterointerface. (b)-(d) The Gibbs free energy diagram of HER at different H adsorption sites on the surface of  $MoS_2$ ,  $CoS_2$ , and  $MoS_2/CoS_2$ , respectively. Inset of (b)-(d): the considered H adsorption sites for  $MoS_2$ ,  $CoS_2$ , and  $MoS_2/CoS_2$ , respectively. Color scheme: Mo, blue; S, pink  $(MoS_2)$ ; Co, dark blue; S, yellow  $(CoS_2)$ .

criterion value of 0 eV, suggesting their moderate HER behavior (Fig. 7b). Regarding the  $CoS_2$  system, we calculated  $\Delta G_{H^*}$  for two different kinds of Co and S sites, including Co site with four adjacent S atoms (namely Co(4fld)), Co site with five adjacent S atoms (namely Co (5fld)), S site with two adjacent Co atoms (namely S(2fld)), and S site with three adjacent Co atoms (namely S(3fld)). As shown in Fig. 7c, the negative  $\Delta G_{H^*}$  values of the Co(4fld) site (-0.21 eV), S(2fld) site (-0.61 eV), and S(3fld) site (-0.14 eV) indicate that these sites deliver strong adsorption energy for H intermediate, while the positive  $\Delta G_{H^*}$  value of the Co(5fld) site (0.20 eV) suggests it's too weak binding energy toward the H intermediate, causing difficult adsorption or desorption of H intermediates on these sites and thereby bringing speed-down of the HER kinetics. This demonstrates that  $CoS_2$  alone does not offer much promise as an electrocatalyst for the HER, in line with the experimental results.

Remarkably, the optimal  $\Delta G_{H^*}$  values of the Mo (-0.27 eV) and S

(0.51 eV) sites belonging to the  $MoS_2$  component, and Co (-0.02 eV), and S (-0.09 eV) sites belonging to the  $CoS_2$  component for the  $MoS_2$ /  $CoS_2$  heterojunction (Fig. 7d) confirm that the formation of Mott-Schottky interfacial interaction between the  $MoS_2$  and  $CoS_2$  favors the adsorption of H intermediates, which can facilitate the HER kinetics and favor the performance of the HER process.

Turning our attention to water adsorption, which directly affects the kinetics of catalytic reactions, the adsorption energy of water molecules on the MoS<sub>2</sub>, CoS<sub>2</sub>, and MoS<sub>2</sub>/CoS<sub>2</sub> surface was also calculated. Fig. 8a presents theoretical models of adsorbed H<sub>2</sub>O on Mo-top and Mo-edge sites of MoS<sub>2</sub>, Co site of CoS<sub>2</sub>, and Co and Mo sites of MoS<sub>2</sub>/CoS<sub>2</sub> Mott-Schottky heterojunction. The adsorption energies are found to be -0.15, -0.95, -0.52, -0.71, and -1.02 eV for Mo-top and Mo-edge sites of MoS<sub>2</sub>, Co site of CoS<sub>2</sub>, and Co and Mo sites of MoS<sub>2</sub>/CoS<sub>2</sub>, respectively. The adsorption energies are found to be -0.15, and -0.95 eV for Mo-top and Mo-edge sites of MoS<sub>2</sub>, respectively. Also, we



Fig. 8. (a) The considered water adsorption sites for  $MoS_2$ ,  $CoS_2$ , and  $MoS_2/CoS_2$ . (b) Water adsorption energy on the  $MoS_2$ ,  $CoS_2$ , and  $MoS_2/CoS_2$  systems (Adsorption sites: 1, Mo-top ( $MoS_2$ ); 2, Mo-edge ( $MoS_2$ ); 3, Co ( $CoS_2$ ); 4, Co ( $MoS_2/CoS_2$ ); and 5, Mo ( $MoS_2/CoS_2$ )). (c) The proposed four proton-transfer mechanism of OER in alkaline conditions at Co binding site on the surface of  $CoS_2$  alone, and (d) the corresponding Gibbs free energy diagram of OER. (e) The proposed four proton-transfer mechanism of OER in alkaline conditions at Co binding site on the surface of  $MoS_2/CoS_2$ , and (f) the corresponding Gibbs free energy diagram of OER. Color scheme: Mo, blue; S, pink ( $MoS_2$ ); Co, dark blue; S, yellow ( $CoS_2$ ).

calculated that the adsorption energy of a water molecule on Co site of  $CoS_2$  is -0.52 eV. Importantly, after integrating  $MoS_2$  and  $CoS_2$  constituents to form Mott-Schottky heterojunction, the water adsorption energy on Mo site (-1.02 eV) and Co site (-0.71 eV) of MoS<sub>2</sub>/CoS<sub>2</sub> is lower than those on Mo sites of MoS2 alone and Co site of CoS2 alone, respectively, meaning that the adsorption of water molecule on the MoS<sub>2</sub>/CoS<sub>2</sub> heterojunction is more thermodynamically favorable than those on MoS<sub>2</sub> and CoS<sub>2</sub> [43,59]. Such strong binding ability of our heterostructure for the water molecules is conducive to the catalytic performance in alkaline conditions. Regarding the OER, the difference of Gibbs free energies for O-containing intermediates ( $\Delta G_{M^*}$ ; M = OH, O, and OOH) was also determined via DFT calculations. Generally, the alkaline OER process is governed by the four proton-transfer mechanism proposed by Norskow [58], and its efficiency mostly depends on the adsorption energy of \*OH, \*O, and \*OOH species on the catalyst surface. Herein, we initially calculated  $\Delta G_{M^*}$  on the Co site of the CoS<sub>2</sub> system. The proposed adsorption process of these intermediate species on the Co site of CoS<sub>2</sub> surface under alkaline OER is illustrated in Fig. 8c, while the corresponding free energy diagram is shown in Fig. 8d. The  $\Delta G_{OH^*}$  value of the Co site on  $CoS_2$  is very low, at around -0.36 eV, far away from the criterion value of 1.23 eV, suggesting that the bond between Co and \*O intermediate is very strong, and is thus unfavorable for the entire reaction kinetics of the OER. Indeed, the theoretical overpotential for OER taking place on the Co site of CoS2 is calculated to be 0.99 eV, which is a relatively high value, indicating that the catalytic activity of CoS2 for OER is not very desirable.

On the other hand, because of its highest step distance, the ratedetermining step for CoS2 is determined to be the \*OOH formation. In contrast, after combining with the semiconductive MoS2 to form the MoS<sub>2</sub>/CoS<sub>2</sub> Mott-Schottky heterojunction, the regulation of electronic structure at the heterointerface caused a positive influence on the energy barriers of intermediate adsorption to be demonstrated. Fig. 8e and f show the proposed adsorption process of O-related intermediate species on the Co site of MoS2/CoS2 surface under alkaline OER and the corresponding free energy diagram, respectively. The  $\Delta G_{OH^*}$  value of the Co site (0.56 eV) in the heterointerface of MoS2/CoS2 approaches the ideal value (1.23 eV), suggesting the optimal binding energy strength between Co and \*OH. Thus, the chemical coupling effect between MoS<sub>2</sub> and CoS2 brings about an optimal free energy for the adsorbed OER intermediates to the MoS2 NPs/CoS2 NTs, which facilitates the OER kinetics, and leads to remarkable reduction in the overpotential to 0.46 eV. The step of \*O formation is recognized as the rate-determining step of the OER process occurring over the Co site of MoS2/CoS2 interface. Similarly, we also calculated the  $\Delta G_{M^*}$  on the S site of the MoS<sub>2</sub> system (Fig. S27) and the result shows that the MoS2 is not suitable for the OER with a high theoretical overpotential of 1.55 eV. Furthermore, to clarify the role of the in-situ oxidized CoOOH species formed over the surface of MoS2 NPs/CoS2 NTs during the OER catalysis as mentioned above, we have investigated the OER on the two-dimensional (2D) CoOOH surface of the MoS<sub>2</sub>-CoOOH/CoS<sub>2</sub> heterointerface catalyst. As shown in Fig. S28, two different active sites Co-O (denoted as A) and Co-OH (denoted as B) were explored on the 2D CoOOH(001) surface. When the reaction starts at the A site (Co–O), the formation of \*OOH is the initial step, and when it starts from the B (Co-OH) site, the deprotonation of hydroxyl groups is the initial step. On both active sites, the following intermediates are considered: oxo (\*O), hydroxo (\*OH), hydroperoxo (\*OOH), and superoxo (\*O2), where \* represents either Aor B-site. Shown in Figs. S29a and b are the optimized structures of the reaction intermediates involved in the lowest overpotential OER mechanisms on the A and B active sites, respectively. The standard Gibbs free energy profiles for the OER on the A and B active sites are depicted in Figs. S30a and b, respectively. The energy barriers for the four electrochemical steps at the A site (Co-O) are 1.62, 0.89, 0.82, and 1.44 eV, respectively, with the rate-determining step predicted to be the formation of the \*OOH intermediate with an energy barrier of 1.62 eV and a theoretical overpotential (1.62-1.23 V) of 0.43 V. At the B (Co–OH) site, the energy barriers for the four electrochemical steps are 1.52, 1.61, 1.12, and 0.56 eV, respectively, with the rate-determining step predicted to be a nucleophilic attack of OH $^-$  on Co–OH species to form \*OOH intermediate. The theoretical overpotential is predicted at 0.38 V (1.61–1.23 V). The findings, accompanied by the very small theoretical overpotential of both A and B sites argue that the Co–O and Co–OH binding sites on the 2D CoOOH surface of the MoS $_2$ -CoOOH/CoS $_2$  have favorable reaction kinetics and excellent OER activity, corroborating that in-situ oxidized CoOOH species serve as the real active sites for the OER catalysis. Moreover, the desorption energy of O $_2$  from the 2D CoOOH at the A and B sites is calculated at 0.15 and 0.11 eV, respectively, indicating that the B-site is catalytically more active for OER than the A-site.

#### 4. Conclusions

In summary, we have demonstrated an advanced Mott-Schottky heterogeneous electrocatalyst consisting of MoS2 NPs/CoS2 NTs grown on a conductive CC substrate. Here, CoS2 with the morphology feature of nanotube arrays acts as a low-resistance path for charge/mass transfer, while MoS2 NPs with ultrasmall property provide more active sites, as compared to the other bulk morphologies reported elsewhere. Importantly, the Mott-Schottky interaction formed at the heterointerface between MoS<sub>2</sub> and CoS<sub>2</sub> creates optimal energy adsorption for intermediate species via adjusting the electronic structure of both MoS<sub>2</sub> and CoS2, thus accelerating the HER, OER, and UOR reaction kinetics. Encouraged by the promising catalytic behaviors for HER, OER, and UOR, the advanced MoS2 NPs/CoS2 NTs catalyst shows excellent catalytic performance for overall water and urea electrolysis. The assembled water and urea electrolyzers using MoS2 NPs/CoS2 NTs electrodes require small cell voltage of 1.65 and 1.4 V to achieve a current density of  $10~\text{mA}~\text{cm}^{-2}$ , respectively, which values are superior to those of the multifunctional electrocatalysts based on earth-abundant transition metals demonstrated by previous works. The DFT calculations shed light on the underlying reaction mechanisms and synergistic effects between MoS<sub>2</sub> and CoS<sub>2</sub> in the MoS<sub>2</sub>/CoS<sub>2</sub> Mott-Schottky heterojunction that resulted in their superior electrocatalytic performance. Our study with excellent experimental results and obvious theoretical calculations contributes to the exploration of efficient electrocatalysts for energy conversion techniques, especially for the future green H2 energy industry.

#### CRediT authorship contribution statement

Thi Luu Luyen Doan: Conceptualization, Methodology, Writing – original draft, Validation, Validation, Visualization, Project administration. Dinh Chuong Nguyen: Methodology, Writing – reviewing and Editing. Kyoungin Kang: Investigation, Formal analysis. Anusha Ponnusamy: Methodology, Investigation. Henry I. Eya: Density-functional theory calculation. Nelson Y. Dzade: Density-functional theory calculation, Writing – reviewing, and Editing. Cheol Sang Kim: Conceptualization, Data curation, Writing – reviewing and editing, Supervision. Chan Hee Park: Conceptualization, Writing – reviewing and editing, Supervision, Project administration. T.L L.D. was involved in the discovery of the catalyst. T.L L.D., D.C.N., K.G.K., A.P., C.S.K., and C.H.P. designed and synthesized the catalysts. T.L L.D., D.C.N., K. G.K., and A.P., Performed the experiments. T.L L.D., H.I.E, and N.Y.D performed theoretical calculations, and All of the authors analyzed the data and designed the experiments.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Data availability

Data will be made available on request.

#### Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Ministry of Education (2021R1I1A1A01060737) and the Regional Leading Research Center Program (2019R1A5A8080326) through the National Research Foundation funded by the Ministry of Science and ICT of Republic of Korea. N.Y.D and H.I.E acknowledge Seed Grant support from the Penn State Institute for Computational and Data Sciences and from the Institutes of Energy and the Environment. Computations for this research were performed on the Pennsylvania State University's Institute for Computational and Data Sciences' Roar supercomputer.

#### Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.123295.

#### References

- [1] Y. Liu, X. He, D. Hanlon, A. Harvey, U. Khan, Y. Li, J.N. Coleman, Electrical, mechanical, and capacity percolation leads to high-performance MoS<sub>2</sub>/nanotube composite lithium ion battery electrodes, ACS Nano 10 (2016) 5980–5990, https://doi.org/10.1021/acsnano.6b01505.
- [2] N.D. Chuong, T.D. Thanh, N.H. Kim, J.H. Lee, Hierarchical heterostructures of ultrasmall Fe<sub>2</sub>O<sub>3</sub>-encapsulated MoS<sub>2</sub>/N-graphene as an effective catalyst for oxygen reduction reaction, ACS Appl. Mater. Interfaces 10 (2018) 24523–24532, https://doi.org/10.1021/acsami.8b06485.
- [3] X. Zhu, D.C. Nguyen, S. Prabhakaran, D.H. Kim, N.H. Kim, J.H. Lee, Activating catalytic behavior of binary transition metal sulfide-shelled carbon nanotubes by iridium incorporation toward efficient overall water splitting, Mater. Today Nano. 21 (2023), 100296, https://doi.org/10.1016/j.mtnano.2022.100296.
- [4] M. Wang, L. Zhang, Y. He, H. Zhu, Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting, J. Mater. Chem. A. 9 (2021) 5320–5363, https://doi.org/10.1039/D0TA12152E.
- [5] T.L. Luyen Doan, D.T. Tran, D.C. Nguyen, H. Tuan Le, N.H. Kim, J.H. Lee, Hierarchical three-dimensional framework interface assembled from oxygen-doped cobalt phosphide layer-shelled metal nanowires for efficient electrocatalytic water splitting, Appl. Catal. B Environ. 261 (2020), 118268, https://doi.org/10.1016/j. apcatb.2019.118268.
- [6] F. Niu, D. Wang, F. Li, Y. Liu, S. Shen, T.J. Meyer, Hybrid photoelectrochemical water splitting systems: from interface design to system assembly, Adv. Energy Mater. 10 (2020), 1900399, https://doi.org/10.1002/aenm.201900399.
- [7] T.L.L. Doan, D.T. Tran, D.C. Nguyen, D.H. Kim, N.H. Kim, J.H. Lee, Rational engineering Co<sub>x</sub>O<sub>y</sub> nanosheets via phosphorous and sulfur dual-coupling for enhancing water splitting and Zn–Air battery, Adv. Funct. Mater. 31 (2021), 2007822, https://doi.org/10.1002/adfm.202007822.
- [8] D.C. Nguyen, T.L. Luyen Doan, S. Prabhakaran, D.T. Tran, D.H. Kim, J.H. Lee, N. H. Kim, Hierarchical Co and Nb dual-doped MoS<sub>2</sub> nanosheets shelled micro-TiO<sub>2</sub> hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR, Nano Energy 82 (2021), 105750, https://doi.org/10.1016/j.nanoen.2021.105750.
- [9] S. Sultan, J.N. Tiwari, A.N. Singh, S. Zhumagali, M. Ha, C.W. Myung, P. Thangavel, K.S. Kim, Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting, Adv. Energy Mater. 9 (2019), 1900624, https://doi.org/10.1002/aenm.201900624.
- [10] S.A. Patil, S. Cho, Y. Jo, N.K. Shrestha, H. Kim, H. Im, Bimetallic Ni-Co@hexacyano nano-frameworks anchored on carbon nanotubes for highly efficient overall water splitting and urea decontamination, Chem. Eng. J. 426 (2021), 130773, https:// doi.org/10.1016/j.cej.2021.130773.
- [11] D.C. Nguyen, T.L.L. Doan, S. Prabhakaran, D.H. Kim, N.H. Kim, J.H. Lee, Rh single atoms/clusters confined in metal sulfide/oxide nanotubes as advanced multifunctional catalysts for green and energy-saving hydrogen productions, Appl. Catal. B Environ. 313 (2022), 121430, https://doi.org/10.1016/j. apcatb.2022.121430.
- [12] D.C. Nguyen, T.L.L. Doan, S. Prabhakaran, D.H. Kim, N.H. Kim, J.H. Lee, Rational construction of Au@Co<sub>2</sub>N<sub>0.67</sub> nanodots-interspersed 3D interconnected N-graphene hollow sphere network for efficient water splitting and Zn-air battery, Nano Energy 89 (2021), 106420. https://doi.org/10.1016/j.nanoen.2021.106420.
- [13] H. Sun, W. Zhang, J.-G. Li, Z. Li, X. Ao, K.-H. Xue, K.K. Ostrikov, J. Tang, C. Wang, Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis, Appl. Catal. B Environ. 284 (2021), 119740, https:// doi.org/10.1016/i.apcatb.2020.119740.
- [14] S. Singh, D.C. Nguyen, N.H. Kim, J.H. Lee, Interface engineering induced electrocatalytic behavior in core-shelled CNTs@NiP<sub>2</sub>/NbP heterostructure for

- highly efficient overall water splitting, Chem. Eng. J. 442 (2022), 136120, https://doi.org/10.1016/j.cei.2022.136120.
- [15] D.C. Nguyen, D.T. Tran, T.L. Luyen Doan, N.H. Kim, J.H. Lee, Constructing MoP<sub>x</sub>@ MnP<sub>y</sub> heteronanoparticle-supported mesoporous N,P-codoped graphene for boosting oxygen reduction and oxygen evolution reaction, Chem. Mater. 31 (2019) 2892–2904, https://doi.org/10.1021/acs.chemmater.9b00071.
- [16] T.L.L. Doan, D.C. Nguyen, P.M. Bacirhonde, A.S. Yasin, A.I. Rezk, N.Y. Dzade, C. S. Kim, C.H. Park, Atomic dispersion of Rh on interconnected Mo<sub>2</sub>C nanosheet network intimately embedded in 3D Ni<sub>x</sub>MoO<sub>y</sub> nanorod arrays for pH-universal hydrogen evolution, Energy Environ. Mater. 0 (2023) 1–15, https://doi.org/10.1002/eem2.12407.
- [17] D.C. Nguyen, D.T. Tran, T.L.L. Doan, D.H. Kim, N.H. Kim, J.H. Lee, Rational design of core@shell structured CoS<sub>x</sub>@Cu<sub>2</sub>MoS<sub>4</sub> hybridized MoS<sub>2</sub>/N,S-codoped graphene as advanced electrocatalyst for water splitting and Zn-Air battery, Adv. Energy Mater. 10 (2020), 1903289, https://doi.org/10.1002/aenm.201903289.
- [18] S. Shit, S. Chhetri, S. Bolar, N.C. Murmu, W. Jang, H. Koo, T. Kuila, Hierarchical cobalt sulfide/molybdenum sulfide heterostructure as bifunctional electrocatalyst towards overall water splitting, ChemElectroChem 6 (2019) 430–438, https://doi. org/10.1002/celc.201801343.
- [19] Z. Shi, X. Qi, Z. Zhang, Y. Song, J. Zhang, C. Guo, W. Xu, K. Liu, Z. Zhu, Interface engineering of cobalt–sulfide–selenium core–shell nanostructures as bifunctional electrocatalysts toward overall water splitting, Nanoscale 13 (2021) 6890–6901, https://doi.org/10.1039/D1NR00987G.
- [20] F. Li, R. Xu, Y. Li, F. Liang, D. Zhang, W.-F. Fu, X.-J. Lv, N-doped carbon coated NiCo<sub>2</sub>S<sub>4</sub> hollow nanotube as bifunctional electrocatalyst for overall water splitting, Carbon N. Y. 145 (2019) 521–528, https://doi.org/10.1016/j.carbon.2019.01.065.
- [21] X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Ultrafine Pt nanoparticle-decorated pyrite-type CoS<sub>2</sub> nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting, Adv. Energy Mater. 8 (2018), 1800935, https://doi.org/10.1002/aenm.201800935.
- [22] Z. Xie, H. Tang, Y. Wang, MOF-derived Ni-doped CoS<sub>2</sub> grown on carbon fiber paper for efficient oxygen evolution reaction, ChemElectroChem 6 (2019) 1206–1212, https://doi.org/10.1002/celc.201801106.
- [23] Y. Jiang, S. Gao, J. Liu, G. Xu, Q. Jia, F. Chen, X. Song, Ti-Mesh supported porous CoS<sub>2</sub> nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis, Nanoscale 12 (2020) 11573–11581, https://doi.org/10.1039/D0NR02058C.
- [24] T.L.L. Doan, D.C. Nguyen, S. Prabhakaran, D.H. Kim, D.T. Tran, N.H. Kim, J.H. Lee, Single-atom Co-decorated MoS<sub>2</sub> nanosheets assembled on metal nitride nanorod arrays as an efficient bifunctional electrocatalyst for pH-universal water splitting, Adv. Funct. Mater. 31 (2021), 2100233, https://doi.org/10.1002/ adfm.202100233.
- [25] Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai, Y. Liu, J. Fang, H. Li, L. Yu, T. Zhai, Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers, Adv. Energy Mater. 11 (2021), 2102353. https://doi.org/10.1002/aenm.202102353.
- [26] T.L.L. Doan, D.C. Nguyen, R. Amaral, N.Y. Dzade, C.S. Kim, C.H. Park, Rationally designed NiS<sub>2</sub>-MnS/MoS<sub>2</sub> hybridized 3D hollow N-Gr microsphere framework-modified celgard separator for highly efficient Li-S batteries, Appl. Catal. B Environ. 319 (2022), 121934. https://doi.org/10.1016/j.apcatb.2022.121934.
- [27] C. Li, Y. Liu, Z. Zhuo, H. Ju, D. Li, Y. Guo, X. Wu, H. Li, T. Zhai, Local charge distribution engineered by schottky heterojunctions toward urea electrolysis, Adv. Energy Mater. 8 (2018), 1801775, https://doi.org/10.1002/aenm.201801775.
   [28] V. Ganesan, J. Kim, Multi-shelled CoS<sub>2</sub>-MoS<sub>2</sub> hollow spheres as efficient
- bifunctional electrocatalysts for overall water splitting, Int. J. Hydrog. Energy 45 (2020) 13290–13299, https://doi.org/10.1016/j.ijhydene.2020.03.045.
- [29] Q. Wang, Z.-Y. Tian, W.-J. Cui, N. Hu, S.-M. Zhang, Y.-Y. Ma, Z.-G. Han, Hierarchical flower-like CoS<sub>2</sub>-MoS<sub>2</sub> heterostructure spheres as efficient bifunctional electrocatalyst for overall water splitting, Int. J. Hydrog. Energy 47 (2022) 12629–12641, https://doi.org/10.1016/j.ijhydene.2022.02.024.
- [30] B. Zhang, Z. Qi, Z. Wu, Y.H. Lui, T.-H. Kim, X. Tang, L. Zhou, W. Huang, S. Hu, Defect-rich 2D material networks for advanced oxygen evolution catalysts, ACS Energy Lett. 4 (2019) 328–336, https://doi.org/10.1021/acsenergylett.8b02343.
- [31] Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang, K. Sun, MOF-directed templating synthesis of hollow nickel-cobalt sulfide with enhanced electrocatalytic activity for oxygen evolution, Int. J. Hydrog. Energy 43 (2018) 8815–8823, https://doi.org/10.1016/ j.ijhydene.2018.03.154.
- [32] C. Guan, X. Liu, A.M. Elshahawy, H. Zhang, H. Wu, S.J. Pennycook, J. Wang, Metal-organic framework derived hollow CoS<sub>2</sub> nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting, Nanoscale Horiz. 2 (2017) 342–348, https://doi.org/10.1039/C7NH00079K.
- [33] J. Qin, J. Barrio, G. Peng, J. Tzadikov, L. Abisdris, M. Volokh, M. Shalom, Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes, Nat. Commun. 11 (2020), 4701, https://doi. org/10.1038/s41467-020-18535-0.
- [34] Y.Z. Wang, M. Yang, Y. Ding, N. Li, L. Yu, Recent advances in complex hollow electrocatalysts for water splitting, Adv. Funct. Mater. 32 (2022), 2108681, https://doi.org/10.1002/adfm.202108681.
- [35] Y. Li, Y.-Q. Zhu, W. Xin, S. Hong, X. Zhao, H. Yan, S. Xu, Interlayer confinement synthesis of Ir nanodots/dual carbon as an electrocatalyst for overall water splitting, J. Mater. Chem. A. 9 (2021) 4176–4183, https://doi.org/10.1039/ D0TA09358K.
- [36] P. Wang, Y. Luo, G. Zhang, M. Wu, Z. Chen, S. Sun, Z. Shi, MnO<sub>x</sub> -decorated nickeliron phosphides nanosheets: interface modifications for Robust overall water splitting at ultra-high current densities, Small 18 (2022), 2105803, https://doi. org/10.1002/smll.202105803.

- [37] H. Hu, W. Ding, G. Sun, Z. Yao, Novel highly active and stable alumina-supported cobalt nitride catalyst for dry reforming of methane, Appl. Surf. Sci. 606 (2022), 154802, https://doi.org/10.1016/j.apsusc.2022.154802.
- [38] G. Fang, J. Zhou, C. Liang, A. Pan, C. Zhang, Y. Tang, X. Tan, J. Liu, S. Liang, MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications, Nano Energy 26 (2016) 57–65, https://doi.org/ 10.1016/j.pagesp. 2016.05.000
- [39] C. Guan, X. Liu, W. Ren, X. Li, C. Cheng, J. Wang, Rational design of metal-organic framework derived hollow NiCo<sub>2</sub>O<sub>4</sub> arrays for flexible supercapacitor and electrocatalysis, Adv. Energy Mater. 7 (2017) 1602391, https://doi.org/10.1002/ aemm.201602391.
- [40] D. Wang, Y. Liu, L. Liu, D. Shan, G. Shen, S. Peng, H. Zhang, X. Wang, Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting, Nano Res. (2023), https://doi.org/10.1007/s12274-022-5373-4.
- [41] S.R. Kadam, D.J. Late, R.P. Panmand, M.V. Kulkarni, L.K. Nikam, S.W. Gosavi, C. J. Park, B.B. Kale, Nanostructured 2D MoS<sub>2</sub> honeycomb and hierarchical 3D CdMoS<sub>4</sub> marigold nanoflowers for hydrogen production under solar light, J. Mater. Chem. A. 3 (2015) 21233–21243, https://doi.org/10.1039/C5TA04617C.
- [42] P. Liu, J. Yan, J. Mao, J. Li, D. Liang, W. Song, In-plane intergrowth CoS<sub>2</sub>/MoS<sub>2</sub> nanosheets: binary metal–organic framework evolution and efficient alkaline HER electrocatalysis, J. Mater. Chem. A. 8 (2020) 11435–11441, https://doi.org/10.1039/D0TA00897D
- [43] L. Yang, R. Liu, L. Jiao, Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting, Adv. Funct. Mater. 30 (2020), 1909618, https://doi.org/10.1002/adfm.201909618.
- [44] Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y.-M. Kang, M.S. A. Hossain, Y. Sugahara, Y. Yamauchi, Mesoporous iron-doped MoS<sub>2</sub>/CoMo<sub>2</sub>S<sub>4</sub> heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting, ACS Nano 14 (2020) 4141–4152, https://doi.org/10.1021/acsnano.9b08904.
- [45] X. Yang, H. Sun, P. Zan, L. Zhao, J. Lian, Growth of vertically aligned Co<sub>3</sub>S<sub>4</sub>/ CoMo<sub>2</sub>S<sub>4</sub> ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode, J. Mater. Chem. A. 4 (2016) 18857–18867, https://doi. org/10.1039/GGTA07898B.
- [46] X. Peng, Y. Yan, S. Xiong, Y. Miao, J. Wen, Z. Liu, B. Gao, L. Hu, P.K. Chu, Se-NiSe<sub>2</sub> hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting, J. Mater. Sci. Technol. 118 (2022) 136–143, https://doi.org/10.1016/j.imst.2021.12.022.
- [47] W. Zhang, N. Han, J. Luo, X. Han, S. Feng, W. Guo, S. Xie, Z. Zhou, P. Subramanian, K. Wan, J. Arbiol, C. Zhang, S. Liu, M. Xu, X. Zhang, J. Fransaer, Critical role of phosphorus in hollow structures cobalt-based phosphides as bifunctional catalysts for water splitting, Small 18 (2022), 2103561, https://doi.org/10.1002/ smll.202103561.
- [48] S. Lin, Y. Yu, D. Sun, F. Meng, W. Chu, L. Huang, J. Ren, Q. Su, S. Ma, B. Xu, FeNi<sub>2</sub>P three-dimensional oriented nanosheet array bifunctional catalysts with better full

- water splitting performance than the full noble metal catalysts, J. Colloid Interface Sci. 608 (2022) 2192–2202, https://doi.org/10.1016/j.jcis.2021.09.166.
- [49] X. Wang, G. Huang, Z. Pan, S. Kang, S. Ma, P.K. Shen, J. Zhu, One-pot synthesis of Mn<sub>2</sub>P-Mn<sub>2</sub>O<sub>3</sub> heterogeneous nanoparticles in a P, N -doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting, Chem. Eng. J. 428 (2022), 131190, https://doi.org/ 10.1016/j.cei.2021.131190
- [50] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, Hierarchical NiCo<sub>2</sub>O<sub>4</sub> hollow microcuboids as bifunctional electrocatalysts for overall watersplitting, Angew. Chem. Int. Ed. 55 (2016) 6290–6294, https://doi.org/10.1002/ anie 201600525
- [51] F. Meng, Y. Yu, D. Sun, L. Li, S. Lin, L. Huang, W. Chu, S. Ma, B. Xu, Three-dimensional flower-like WP<sub>2</sub> nanowire arrays grown on Ni foam for full water splitting, Appl. Surf. Sci. 546 (2021), 148926, https://doi.org/10.1016/j.apsusc.2021.148926.
- [52] R. Li, B. Hu, T. Yu, H. Chen, Y. Wang, S. Song, Insights into correlation among surface-structure-activity of cobalt-derived Pre-catalyst for oxygen evolution reaction, Adv. Sci. 7 (2020), 1902830, https://doi.org/10.1002/advs.201902830.
- [53] Z. Yin, X. Liu, S. Chen, H. Xie, L. Gao, A. Liu, T. Ma, Y. Li, Interface engineering of the MoS<sub>2</sub>/NiS<sub>2</sub>/CoS<sub>2</sub> nanotube as a highly efficient bifunctional electrocatalyst for overall water splitting, Mater. Today Nano. 17 (2022), 100156, https://doi.org/ 10.1016/j.mtnano.2021.100156.
- [54] B. Zhang, J. Shan, W. Wang, P. Tsiakaras, Y. Li, Oxygen Vacancy and Core–Shell Heterojunction Engineering of Anemone-Like CoP@CoOOH Bifunctional Electrocatalyst for Efficient Overall Water Splitting, Small 18 (2022), 2106012, https://doi.org/10.1002/smll.202106012.
- [55] H. Chu, P. Feng, B. Jin, G. Ye, S. Cui, M. Zheng, G.-X. Zhang, M. Yang, In-situ release of phosphorus combined with rapid surface reconstruction for Co–Ni bimetallic phosphides boosting efficient overall water splitting, Chem. Eng. J. 433 (2022), 133523, https://doi.org/10.1016/j.cej.2021.133523.
- [56] W. Shi, R. Ding, X. Li, Q. Xu, E. Liu, Enhanced performance and electrocatalytic kinetics of Ni-Mo/graphene nanocatalysts towards alkaline urea oxidation reaction, Electrochim. Acta 242 (2017) 247–259, https://doi.org/10.1016/j. electacta.2017.05.002.
- [57] T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A.M. Asiri, L. Chen, X. Sun, Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter, Adv. Energy Mater. 7 (2017), 1700020, https://doi.org/10.1002/aenm.201700020.
- [58] L. Wang, X. Duan, X. Liu, J. Gu, R. Si, Y. Qiu, Y. Qiu, D. Shi, F. Chen, X. Sun, J. Lin, J. Sun, Atomically dispersed Mo supported on metallic Co<sub>9</sub>S<sub>8</sub> nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions, Adv. Energy Mater. 10 (2020), 1903137, https://doi.org/10.1002/aenm.201903137.
- [59] H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlögl, H.N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting, Nano Lett. 16 (2016) 7718–7725, https://doi.org/10.1021/acs.nanolett.6b03803.