UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

DECENTRALIZOVANÁ A DISTRIBUOVANÁ KOMUNIKAČNÁ PLATFORMA

BAKALÁRSKA PRÁCA

Autor: Adam Horváth

Školiteľ: RNDr. Jozef Šiška

Bratislava, 2014

Obsah

1	Úvod		
	1.1	Motivacia	1
	1.2	Ciel' práce	1
	1.3	Štruktúra práce	1
	Prel		3
	2.1	Inteligentný agent	3
		2.1.1 Simple reflex agent	4

Úvod

Napriek tomu, že v súčasnosti existujú multiagentové systémy viac-menej v pozadí verejného záujmu, v praktickom využití nachádzajú svoje miesto. Spomenúť môžeme napríklad tému na vzostupe - "inteligentné domy", kde navzájom prepojené agenty starajúci sa o rôzne súčasti domu sú schopní konať na základe stavu podmienok vo svojom prostredí. Ďalším objektom záujmu tejto práce bude decentralizovanosť týchto systémov. Od platformy LCP sa očakáva, že bude multiagentová a taktiež má existovať bez centrálnej autority, v tomto prípade servera. Pre našu komunikačnú platformu, to znamená, že má byť schopná nakonfigurovať sa sama od seba.

1.1 Motivacia

1.2 Cieľ práce

Cieľom tejto práce je rozšírenie Jednoduchej Komunikačnej Platformy (ďalej LCP, podľa "Lightweight Communication Platform") o možnosť komunikácie agentov v jednej lokálnej sieti s agentami v inej lokálnej sieti. Východiskovým riešením tohto problému je takzvaný "Gateway Agent", ktorý je schopný posielať správy aj za iných agentov v jeho lokálnej sieti a prakticky sa správa ako virtuálny router.

1.3 Štruktúra práce

Táto práca bude ďalej rozčlenená do siedmich častí. Prvá kapitola začne základnou definíciou pojmu agent a jeho členenie. Za definíciou budú nasledovať teoretické (kapitola 1) a technické (kapitola 2) základy a komunikácia agentov v multiagentových systémoch. V ďalšej časti sa budeme venovať podobným, už existujúcim riešeniam problematiky a príkladom multiagentových alebo decentralizovaných systémov (kapitola 3). Následne popíšeme technológie, ktoré budú použité v riešení ako aj technológie, ktoré budú slúžiť ako inšpirácia

pri vytváraní riešení možných problémov (kapitola 4). Tým sa dostaneme k jadru tejto práce a to podrobný popis cieľa, ktorý má byť výsledkom tejto práce (kapitola 5). Táto kapitola bude nasledovaná popisom riešenia hlavného problému a implementáciou tohto riešenia (kapitola 6). V závere v krátkosti zhrnieme výsledok, ku ktorému sme sa dopracovali v tejto práci (kapitola 7).

Prehl'ad

Kvôli tomu, aby sme dokázali plne pochopiť, čo sa budeme snažiť v tejto práci dosiahnuť a pre celkové porozumenie problematiky sa budeme v tejto časti práce venovať prehľadu poznatkov z oblasti agentov a multiagentových systémov. Práve preto musíme najskôr definovať pojem agent a vysvetliť teoretické základy multiagentových systémov a ich potenciál, ktorý sa budeme snažiť načrtnúť na príkladoch ich praktického využitia vo svete.

2.1 Inteligentný agent

Klasickú definíciu agenta nám ponúkajú Russel a Norvig: "Agent je všetko, na čo sa dá pozerať ako na niečo, čo vníma svoje okolie senzormi a reaguje na toto okolie pomocou aktuátorov." Agent je podľa nich zložený z architektúry a agentového programu, ktorého vytvorenie je úlohou práve umelej inteligencie. Fyzická architektúra nás v tejto práci nebude zaujímať, preto ďalej v tejto kapitole budeme rozumieť pod pojmom agent práve agentový program. Existujú agenty, ktoré sú veľmi jednoduché, ale aj také, ktoré sú zložité. Podľa ich vnemovej inteligencie a schopnosti ich opäť Russel a Norvig rozdelili do týchto piatich kategórií, ktoré vzápätí rozoberieme podrobnejšie:

- Jednoduchý reflexný agent
- Modelovo-založený reflexný agent
- Cieľovo-založený agent
- Úžitkovo-založený agent
- Učenlivý agent

2.1.1 Simple reflex agent

Tento druh agenta je úplne najjednoduchší. Reaguje totiž len na aktuálny stav jeho prostredia a pritom si neuchováva žiadnu históriu stavov daného prostredia. Tento agent je plne úspešný

iba v úplne pozorovateľnom prostredí. Keď sa jedná o čiastočne pozorovateľné prostredie, vo väčšine je tento agent v nekonečnom cykle a jeho správanie je väčšinou podmienené. Ak je splnená podmienka, tak na ňu programovo reaguje (viď Obr. 2.1).

Obr. 2.1: Diagram cyklu jednoduchého reflexného agenta v čiastočne pozorovateľnom prostredí