NISER: Normalized Item and Session Representation to Handle Popularity Bias_

논문 링크: https://arxiv.org/pdf/1909.04276.pdf

ABSTRACT

- session-based recommendation (SR) 모델
 - 유저가 다음에 클릭할 아이템을 추천하기 위해 과거 행동(아이템/상품 클릭)
 으로부터의 정보를 활용하는 것이 목표

GNN

- 복잡한 아이템 변화를 설명하기 위해 세션에서의 아이템 상호작용의 시퀀스
 는 그래프화된 데이터로 모델링 될 수 있음.
- 세션 그래프를 효과적으로 학습할 수 있고, RNN과 같은 시퀀셜 모델로 개선을 보임.
- popularity bias (모델이 인기있는 아이템을 추천하는 쪽으로 편향되는 것) → 롱테일 아이템(인기가 덜하거나 덜 빈도를 갖는 아이템)에 대해서 추천하는 것에 실패
 - 온라인 세팅(매일 새로운 아이템이 도착하는)에서는 이런 모델들이 좋지 않은 성능

위 문제가 학습된 아이템과 세션 그래프의 표현(임베딩 벡터)의 크기(norm)에 관련있음을 설명

표현을 정규화함으로써 이러한 문제를 완화시키는 학습 절차를 제안

정규화된 아이템/세션 그래프 표현을 사용하는 것이 모델이 더 좋은 성능을 보인다.

- 1. 오프라인 세팅의 덜 인기있는 롱테일 아이템
- 2. 온라인 세팅의 덜 인기있는 새로 도입된 아이템

INTRODUCTION

SR 모델의 목표

• 전에 클릭했던 아이템의 시퀀스를 기반으로 top-K 아이템을 유저에게 추천하는 것

딥러닝 모델에서는 아이템이나 세션에 대한 표현을 학습하는 능력이 중요

- RNN(시퀀셜 모델)
 - 입력: 과거 세션에서 클릭했던 아이템
 - 타겟: 아이템 목록안에서 사용가능한 아이템
- STAMP
 - 세션을 한 아이템 세트로 고려
 - ㅇ 어텐션 모델 사용
- NARM, CSRM 접근 법은 시퀀셜과 어텐션 모델의 조합을 사용
- SR-GNN
 - 세션을 그래프 구조로 제안
 - 아이템 간의 복잡한 to-and-from을 설명
 - 아이템 노드, 순서 엣지로 설정
 - 각 노드는 이웃의 표현을 사용하여 업데이트(gnn 아이디어, 문맥을 인지하는 표현을 얻을 수 있음)
 - 이웃의 정보를 캡쳐하는 방법은 SKNN, STAN에서도 의미있다고 확인

(온라인 플랫폼)

인기있는 아이템 \rightarrow 더 잦은 노출 \rightarrow 더 많은 상호작용 \rightarrow 상호작용 쏠림 분포 \rightarrow popularity bias

위와 같은 문제를 완화하기 위해 한 세션 그래프의 표현이 다음 클릭할 아이템의 표현 과 비슷해지는 것을 목표로 학습 메커니즘 구성

아이템과 세션 그래프 표현을 단위 초구(?)위에 놓도록 제한하는 이점을 취한다.

NISER: Normailized Item and Session Representations model for SR

- popularity bias를 다루는데 강화된 능력을 보임
- 시퀀셜 특성을 포함하기위해 포지션 임베딩 적용
- 시퀀스(RNN)와 그래프(GNN)를 모두 인지하는 이점을 가진다.

PROBLEM DEFINITION

세션이 주어졌을 때, 그 다음 아이템을 구하는 것.

가장 높은 스코어를 갖는 K개 아이템으로 top-K 추천 리스트를 구성

LEARNING ITEM AND SESSION REPRESENTATIONS

세션 내 각 아이템 임베딩 → (타겟 아이템의 임베딩과 가까운) 세션 임베딩 학습 → 전체 아이템 중 가장 값이 큰 인덱스를 선택

DNN 기반의 모델 f에서 다음 아이템이 될 i_k 의 확률은 미분가능한 소프트맥스 함수로 근사된다.

$$p_k(\mathbf{s}) = \hat{\mathbf{y}}_k = \frac{\exp(\mathbf{i}_k^T \mathbf{s})}{\sum_{j=1}^m \exp(\mathbf{i}_j^T \mathbf{s})}.$$
 (1)

Radial Property of Softmax Loss

소프트맥스 로스를 최적화 하는 것은 피쳐의 방사형 분포를 타겟 클래스로 이끈다고 알려져 있다.

소프트 맥스 로스는 쉽게 구분할 수 있도록 놈을 크게하는 것을 선호한다

큰 값의 $y_k(hat)$ 는 벡터 i_k 에 스칼라 값 시그마를 곱하거나 아이템 임베딩 벡터의 놈을 크게 함으로써 얻을 수 있다.

Normalizing the Representation

쉽게 예측되는 아이템은 높은 I2놈을 가지고 있을 수 있다.

인기있는 아이템이 더 클릭 될 가능성이 있고, 따라서 파라미서는 더 자주 추천하는 것에 확신을 갖는 값으로 학습된다.

인기도가 높은 아이템이 더 큰 놈을 갖고, 인기도가 하락하는 만큼 줄어들었다.

Figure 3: Recall@20 and L₂ norm of learned item embeddings decreases with decreasing popularity in GNN [14].

NISER

마지막 분류와 추천 의사결정 에서 임베딩 놈의 영향을 최소화하는 것을 고려 아이템과 세션 임베딩 사이의 유사도를 측정하는 것 코사인 유사도 최적화 하는 것을 제안

아이템 임베딩이 $i_k/||i_k||^2$ 가 되고, 이것은 세션 임베딩 또한 정규화 된 값으로 얻게된다.

$$\hat{\mathbf{y}}_k = \frac{\exp(\sigma \tilde{\mathbf{i}}_k^T \tilde{\mathbf{s}})}{\sum_{j=1}^m \exp(\sigma \tilde{\mathbf{i}}_j^T \tilde{\mathbf{s}})}.$$
 (3)

코사인 유사도는 -1과 1 사이 값으로 강제된다. 더나은 로스에 수렴하기 위해 스케일링 팩터 시그마를 사용

LEVERAGEING NISER WITH GNN

아이템과 세션의 임베딩이 학습에 GNN을 고려할 수 있다. 메세지 전파 절차는 다음과 같다.

$$\mathbf{a}_{s,j}^{t} = [\mathbf{A}_{s,j}^{in} \tilde{\mathbf{I}}_{s}^{t-1} \mathbf{H}_{1}, \mathbf{A}_{s,j}^{out} \tilde{\mathbf{I}}_{s}^{t-1} \mathbf{H}_{2}]^{T} + \mathbf{b}, \tag{4}$$

$$\mathbf{z}_{s,j}^{t} = \sigma(\mathbf{W}_{z}\mathbf{a}_{s,j}^{t} + \mathbf{U}_{z}\tilde{\mathbf{i}}_{s,j}^{t-1}), \tag{5}$$

$$\mathbf{r}_{s,j}^{t} = \sigma(\mathbf{W}_{r} \mathbf{a}_{s,j}^{t} + \mathbf{U}_{r} \tilde{\mathbf{i}}_{s,j}^{t-1}), \tag{6}$$

$$\hat{\mathbf{i}}_{s,j}^t = \tanh(\mathbf{W}_o \mathbf{a}_{s,j}^t + \mathbf{U}_o(\mathbf{r}_{s,j}^t \odot \tilde{\mathbf{i}}_{s,j}^{t-1})), \tag{7}$$

$$\tilde{\mathbf{i}}_{s,j}^t = (1 - \mathbf{z}_{s,j}^t) \odot \tilde{\mathbf{i}}_{s,j}^{t-1} + \mathbf{z}_{s,j}^t \odot \hat{\mathbf{i}}_{s,j}^t, \tag{8}$$

(그래프 연산 생략)

아이템 상호작용의 시퀀셜 정보를 만들기 위해, 선택적으로 포지션 임베딩을 학습하고 그것을 아이템 임베딩에 더함으로써 포지션을 고려한 아이템 임베딩(결국 세션 임베딩)을 얻을 수 있다.

소프트 어텐션 웨이트를 사용해 각 아이템에 대한 임베딩을 구하고, 그것을 통해 세션 임베딩을 구한다.

그리고 가장 최근 아이템과 결합하는 형식으로 최종 임베딩을 구한다.

최종 추천 스코어는 식 3과 같이 계산된다. 세션 그래프 임베딩은 세션그래프, 시퀀스를 인지한 아이템 임베딩을 통해 얻지만, 추천 점수를 계산할 때는 특정 세션과는 독립적인 정규화된 아이템 임베딩을 사용한다.

EXPERIMENTAL EVALUATION

Dataset Details

- Yoochoose(YC)
- Diginetica(DN)
- RetailRocket(RR)

Offline and Online setting

- Offline setting
 - 학습/ 추론 데이터 고정
- Online setting
 - 매 2주 마다 재학습

NISER and its variants

- Normalized Item Representation (NIR)
 - only item embeddings are normalized and scale factor sigma is not used
- Normalized Item and Session Representation (NISER)
 - both item and session embeddings are normalized
- NISER +
 - NISER with position embeddings and dropout applied to input item embeddings

Hyperparameter Setup

Evaluation Metrics

- Recall@K
- MRR@K
- Average Recommendation Popularity(ARP)

Result and Observations

(1) NISER+ reduces popularity bias in GNN+ in

Table 2: Offline setting evaluation: NISER+ versus GNN+ in terms of Average Recommendation Popularity (ARP). Lower values of ARP indicate lower popularity bias.

Method	DN	RR	YC-1/64	YC-1/4
GNN+	495.25±2.52	453.39±8.97	4128.54±27.80	17898.10±126.93
NISER+	487.31±0.30	398.53±3.09	3972.40±41.04	$16683.52 \!\pm\! 120.74$

ARP: NISER+ < GNN+

popluarity bias를 줄여 덜 인기있는 아이템도 더 자주 추천할 수 있다.

Figure 4: Offline setting evaluation: Recall@20 and MRR@20 with varying ϕ^* indicating larger gains by using NISER+ over GNN+ for less popular items.

파이가 작은 덜 인기있는 아이템에 대해서 더 좋은 성능을 보였다. 파이가 큰 값에서도 적어도 GNN+보다 좋은 성능을 보였다.

(2) NISER+ improves upon GNN+ in online setting

(새로 도입된 아이템에 대해서)

Figure 5: Online setting evaluation: Recall@20 and MRR@20 for sessions where target item is one of the less popular newly introduced items from the previous day. f denotes the fraction of such sessions in the training set for $\phi^*=0.01$. Standard deviations over five models are shown in lighter-shaded region around the solid lines.

새로 도입된 덜 인기있는 아이템이 바로 다음날 타겟 아이템이 되는 세션에 대해서 NISER+가 더 좋은 성능을 보인다.

NISER+의 새로운 아이템에 대해서 바로 다음날 추천할 수 있는 능력을 보여주고, popularity bias를 줄였기 때문

학습데이터가 적은 상황(초기 일자들)에 GNN+는 성능이 좋지 않았고, NISER+는 비교적 일관된 성능을 보였다. 이는 NISER+의 잠재적 정규화 효과를 나타냄

날이 지나면서 학습 데이터가 많아지면서 GNN+의 성능도 올라가지만 NISER+보다 낮았다.

(3) NISER and NISER+ outperform GNN and GNN+ in offline setting

Table 3: NISER+ versus other benchmark methods in offline setting. Numbers after \pm are standard deviation values over five models.

Method	DN	RR	YC-1/64	YC-1/4			
Recall@20							
SKNN [5]	48.06	56.42	63.77	62.13			
STAN [3]	50.97	59.80	69.45	70.07			
GRU4REC [4]	29.45	-	60.64	59.53			
NARM [6]	49.70	-	68.32	69.73			
STAMP [8]	45.64	53.94	68.74	70.44			
GNN [14]	51.39±0.38	57.63±0.15	70.54±0.14	70.95±0.04			
GNN+	51.81±0.11	58.59±0.10	70.85±0.08	71.10±0.07			
NIR	52.40±0.06	60.67±0.08	71.12±0.05	71.32±0.11			
NISER	52.63±0.09	60.85±0.06	70.86±0.15	71.69±0.03			
NISER+	53.39±0.06	61.41±0.09	71.27±0.05	71.80±0.09			
MRR@20							
SKNN [5]	16.95	33.16	25.22	24.82			
STAN [3]	18.48	35.32	28.74	28.89			
GRU4REC [4]	8.33	-	22.89	22.60			
NARM [6]	16.17	-	28.63	29.23			
STAMP [8]	14.32	28.49	29.67	30.00			
GNN [14]	17.79±0.16	32.74±0.09	30.80±0.09	31.37±0.13			
GNN+	18.03±0.05	33.29±0.03	30.84±0.10	31.51±0.05			
NIR	18.52±0.06	35.57±0.05	30.99±0.10	31.73±0.11			
NISER	18.27±0.10	36.09±0.03	31.50±0.11	31.80±0.12			
NISER+	18.72±0.06	36.50±0.05	31.61±0.02	31.77±0.10			

Recall, MRR 관점에서 NISER+가 가장 좋은 성능을 보인다. abalation study

Table 4: Ablation results for NISER+ indicating that normalization of embeddings (L_2 norm) contributes the most to performance improvement. Here PE: Position Embeddings.

Method	DN	RR	YC-1/64	YC-1/4				
Recall@20								
NISER+	53.39±0.06	61.41±0.09	71.27±0.05	71.80±0.09				
-L ₂ norm	52.23±0.10	59.16±0.10	71.10±0.09	71.46±0.19				
-Dropout	52.81±0.12	60.99±0.09	71.07±0.13	71.90±0.03				
-PE	53.11±0.12	61.22±0.03	71.13±0.04	71.70±0.11				
MRR@20								
NISER+	18.72±0.06	36.50±0.05	31.61±0.02	31.77±0.10				
-L ₂ norm	18.11±0.05	33.78±0.04	30.90±0.07	31.49±0.07				
-Dropout	18.43±0.11	35.99±0.02	31.56±0.06	31.93±0.17				
-PE	18.60±0.09	36.32±0.03	31.68±0.05	31.71±0.06				

I2 norm이 가장 중요했다.

DISCUSSION

부분적으로 소프트맥스 로스의 방사형 특성에 관련된 것으로 인기도에 따라 놈의 크기가 정해질 수 있는 것을 의미한다.

내적 대신 코사인 유사도를 사용해 아이템과 세션그래프를 최적화 함으로써 이러한 확장 이슈를 막는 표현을 학습할 수 있다. 이것이 popularity bias를 줄이고, 새로운 아이템이 도입되는 온라인 세팅에서 유용하다.

아이템과 세션그래프 표현에 대해서 정규화함으로써 성능 향상을 관측했다.

STAMP와 같은 알고리즘을 개선하기 위해 NISER를 탐색해보는 것도 의미 있을 것 같다.