

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

Plan lekcji -Chemia

Temat: Doświadczenia z miareczkowaniem za pomocą czujnika pH opartego na Arduino

Grupa docelowa: 10 Klasa

Cele:

Cel 1. Opisanie najważniejszych etapów miareczkowania kwasowo-zasadowego

Cel 2. Opisanie i zrozumienie zasad działania czujnika pH opartego na Arduino

Cel 3. Identyfikacja odpowiednich wskaźników poprzez określenie punktów równoważności

w wykreślonych lub zestawionych w tabeli danych dotyczących pH

Zastosowane podejście/metodologia: Połączenie Arduino z czujnikami pH i temperatury oraz siłownikami. Miareczkowanie potencjometryczne przeprowadza się ręcznie, dostarczając krzywą miareczkowania bezpośrednio do arkusza kalkulacyjnego Microsoft Excel. Titrant dodaje się, mieszając, w stałym tempie 100 μL (1,0 mL) co 6 sekund.

Środki/narzędzia/technologia edukacyjna

Komputery stacjonarne z zainstalowanym programem Excel lub podobnym.
Podręcznik do chemii
Czujnik pH oparty na arduino
Arduino UNO
Płyta robocza
Kable
Biureta 50 ml
Zlewka 250 ml

Plan pracy

Roztwory HCl i NaOH

Czas	Działania	Metody/środki
10 min.	Zademonstruj działanie biurety. Wyjaśnij uczniom, jak odczytywać wskazania biurety, korzystając z oznaczeń na jej ściankach. Rozdaj każdej grupie biuretę i kolbę. Poproś uczniów, aby ustawili biurety i napełnili je wodą. Niech każdy z uczniów odmierzy niewielką ilość wody (2-5 ml) do kolby.	Biureta, kolba

ROBOSTEM Project

Agreement no: 2019-1-RO01-KA202-063965

5 min.	Zademonstruj działanie czujnika pH opartego na Arduino.	Czujnik pH
	Pokaż uczniom, jak używać miernika bez ryzyka	oparty na
	uszkodzenia elektrody.	arduino
10 min.	Poproś grupę uczniów, aby przepłukała swoje biurety	Roztwór NaOH,
	roztworem NaOH i pozbyła się zużytego podłoża	roztwór HCl,
	w odpowiedni sposób. Następnie niech napełnią swoje	wskaźnik
	biurety do 50 ml roztworem NaOH. Dodaj 1 kroplę	fenoloftaleinowy
	wskaźnika fenoloftaleinowego do 30 ml roztworu kwasu	
	chlorowodorowego.	
10 min.	Poproś uczniów o dodanie 5 ml roztworu na raz. Zapisz pH	Komputer,
	po każdym dodaniu. Jeśli pH zmieni się gwałtownie, niech	roztwór NaOH
	zmienią procedurę i dodadzą 1-2 ml NaOH naraz. Jeden	
	uczeń może sterować korkiem, jeden może odczytać	
	objętość, a jeden może zapisać pH w arkuszu	
	kalkulacyjnym lub na papierze.	
10 min.	Poproś uczniów, aby pozbyli się pozostałych substancji	
	chemicznych w odpowiedni sposób.	

Ocena/informacja zwrotna: Uczniowie oddają pracę grupową, która zawiera ich wykres miareczkowania, obliczenia oraz krótki raport z pracy każdego z członków zespołu. Raporty będą oceniane na podstawie tego, jak dobrze uczniowie wyjaśniają różnice między szacunkowymi, obliczonymi i zaobserwowanymi wartościami miareczkowania. Raporty będą także oceniane na podstawie tego, jak dobrze uczniowie potrafią opisać przebieg reakcji własnymi słowami.

Praca ta może przyczynić się do lepszej integracji osób niedowidzących w środowisku ogólnodostępnym w obszarze, który wcześniej nie był objęty badaniami. Wykorzystanie i interpretacja papierka pH do pomiaru pH, czego wcześniej nie mogły próbować osoby niedowidzące, jest teraz możliwe przy użyciu czujnika pH opartego na Arduino.

Bibliografia:

Kenkel, J., 2013. Analytical Chemistry for Technicians. 3rd ed. Hoboken: CRC Press, pp.99-101.

https://www.xylemanalytics.com/File%20Library/Downloads/SIA_Titration-handbook_English.pdf