Arquiteturas e Abstrações

Yuri Kaszubowski Lopes

UDESC

Os níveis de abstração de um computador

Null, Lobur (2014)

- "níveis de abstração" nos quais podemos trabalhar segunfo Null, Lobur (2014)
- Na disciplina de AOC, em quais níveis estamos mais focados?
- Quais níveis dependem diretamente dos que estamos trabalhando?

Anotações

Anotações

Anotações			

Arquitetura de Von Neumann

- A arquitetura de Von Neumann foi criada por ...
- John W. Mauchly e J. Presper Eckert
- Criada enquanto eles trabalhavam no ENIAC
- A arquitetura seria empregada no sucessor do ENIAC, o EDVAC
- O projeto era secreto (Segunda Guerra Mundial) e os pesquisadores não puderam publicar suas ideias
- John Von Neumann
 - Matemático Húngaro

 - Trabalhava em itens periféricos do projeto ENIAC
 Publicou e popularizou as ideias do EDVAC propostas por Mauchly e Eckert
 Foi um publicitário tão bom das ideias que creditaram a arquitetura em seu

Arquitetura de Von Neumann

- A arquitetura é famosa pelo conceito de "programa armazenado"
 Parece algo trivial hoje, mas os primeiros programas de computadores eram "hardwired"
 - ★ Se precisar mudar o programa, precisa mudar o circuito
- Os programas executam no ciclo de Von Neumann
- Ciclo de busca-decodificação-execução:
 - A CPU busca a próxima instrução da memória utilizando um contador de A instrução é decodificada para algo que uma ALU possa entender
 Os operandos necessários são carregados
 A ALU executa a operação e o resultado é armazenado na memória

YKL (UDESC)	Arquiteturas e Abstrações	4/

Arquitetura de Von Neumann

Nossa CPU MIPS segue o ciclo de Von Neumann?

- Arquitetura composta de:
 - CPU com unidade de controle, ALU, registradores e contador de Programa
 - Uma memória principal que armazena o programa e seus dados
 - Sistema de E/S
- Capaz de executar instruções sequencialmente
- Um único caminho (lógico ou físico) até a memória principal

(KL (UDESC)	Arquiteturas e Abstrações	5/

Anotações

Anotações

Anotações

Versão Moderna da Arquitetura de Von Neumann

Arquitetura de Von Neumann (Null, Lobur; 2014)

otagooo			

Versão Moderna da Arquitetura de Von Neumann

Anotações

Versão Modificada da arquitetura, com barramentos para dados, endereços e controle separados (Null, Lobur; 2014)

- Versão modificada e mais próxima de uma utilizada em uma CPU real
- Apesar das modificações no diagrama, ainda é uma arquitetura de Von Neumann

YKL (UDESC)	Arquiteturas e Abstrações	7/29

Versão Moderna da Arquitetura de Von Neumann

Nossa CPU MIPS segue o ciclo de Von Neumann?

- Não exatamente
 - Temos duas memórias separadas:
 - Uma memória de instruções Uma memória para dados
- Vamos ver que a maioria das CPUs modernas não seguem a arquitetura de Von Neumann de maneira estrita
 - São variantes dessa arquitetura
 - Muitos autores argumentam que as mudanças são tão pequenas que na verdade essas CPU's podem ser consideradas como pertencendo a arquitetura da Von Neumann

KL (UDESC)	Arquiteturas e Abstrações	8

Arquitetura de Von Neumann

- Na arquitetura de Von Neumann (estrita) temos:
 - ► Uma memória principal que armazena o programa e seus dados
 ► Qual o problema?
 - - Gera um gargalo, conhecido como Von Neumann bottleneck (Gargalo de Von Neumann)

 - No pipeline da CPU MIPS o problema fica claro
 Geraríamos um hazard estrutural, e no mínimo precisaríamos injetar algumas bolhas

Anotações		
Anotações		

Arquitetura Harvard

- Temos memórias para dados e instruções separadas
 - Como no processador MIPS estudado
- Máquinas com Arquitetura Harvard Pura:

 - Sequem estritamente esse conceito
 Comum em microcontroladores

 * Um microcontrolador é um "computador completo" em um chip ...

 * ... inclui memória, controladores de I/O, armazenamento de dados, processamento, etc.

Anotações			

Arquitetura Harvard

- Máquinas com Arquitetura Harvard Modificada

 - Relaxa a separação (fisica entre a memória de dados e instruções
 Podemos encaixar a maioria dos PCs modernos (leia-se x86-64) nessa
 - raquitetura
 Nos níveis de memória **próximos ao processador**, temos uma **Arquitetura** de Harvard
 - ★ Temos memórias cache separadas para dados e instruções Em níveis de memória distantes do processador, temos uma máquina de Von Neumann

 - Os dados são acessados por um único barramento até a memória
 Nossas máquinas são de "múltiplos canais", mas a CPU ainda requisita uma informação por vez de cada canal

Anotações			

Exemplo

• Em um computador Linux, rode o comando lscpu para informações detalhadas sobre sua CPU

[yuri@ssdarch ~]\$ lscp	u	
Architecture:	x86 64	
CPU op-mode(s):	32-bit, 64-bit	
Byte Order:	Little Endian	
Address sizes:	39 bits physical, 48 bits virtual	
CPU(s):	8	
On-line CPU(s) list:	0-7	
Thread(s) per core:	2	
Core(s) per socket:	4	
Socket(s):	1	
NUMA node(s):	1	
Vendor ID:	GenuineIntel	
CPU family:	6	
Model:	142	
Model name:	Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz	
Stepping:	12	
CPU MHz:	800.072	
CPU max MHz:	4600.0000	
CPU min MHz:	400.0000	
BogoMIPS:	4001.60	
Virtualization:	VT-x	
L1d cache:	128 KiB	
Lli cache:	128 KiB	
L2 cache:	1 MiB	
L3 cache:	8 MiB	
YKL (UDESC)	Arquiteturas e Abstrações	12/29

Anotações			
-			
-			

Arquiteturas Paralelas

- Computadores Paralelos
 - Atualmente utilizados desde seu computador pessoal até em supercomputadores

 Existem diversos níveis de paralelismo:
 - - Pipelining
 Processadores superescalares
 Processadores multicore

 - Multiprocessadores Grids (heterogêneo) Clusters (homogêneo)
 - Vamos focar em multicore

WW. WIDEON	40.1

Processadores Multicore

- Um processador multicore (com múltiplos núcleos) possui vários núcleos de processamento (processadores) em um único chip
 - Todos os processadores acessam a mesma memória principal por um mesmo barramento
 - Máquina UMA (Uniform Memory Access)
 - ► Comum em nossos computadores pessoais

Anotações

Anotações

Anotações

Processadores Multicore

- Por serem paralelos, temos efetivamente múltiplas instruções sendo executadas por diferentes CPUs, ao mesmo tempo:
 - ► Sendo assim, muitos os classificam como não sendo máquinas de Von
 - Não processam as instruções de forma sequencial
- Outros veem essas CPU's como pertencendo a arquitetura de Von Neumann
 - ► Cada "core" é uma máquina de Von Neumann, cooperando para executar as
 - Segundo Null, Lobur (2014) podemos enxergar uma CPU moderna como uma máquina de Von Neumann que apresenta alguns aspectos de "non-von Neumannness"
 - * ... alguns aspectos que não são de Von Neumann

Mix and Match (Misturando) Anotações • Podemos ver uma CPU x86-64 atual então como sendo Dependendo do nível de memória Arquitetura Harvard Arquitetura de Von Neumann ► Dependendo do seu entendimento: * Arquitetura de Von Neumann * Uma arquitetura separada, se encaixando exclusivamente em arquiteturas RISC versus CISC Anotações • Alguns se referem a RISC e CISC como Arquiteturas ▶ Na verdade são mais para "estilos de conjuntos de instrução" **CISC** Anotações • Complex Instruction Set Computer Geralmente: ➤ Contém um número (muito) grande de instruções ➤ Instruções de tamanhos variados (no nosso MIPS32 todas as intruções são

- de 32-bits) Instruções complexas, que podem executar "múltiplas coisas" em uma única operação:
 - e.g., uma mesma operação busca o dado da memória, realiza uma operação com esse dado, e armazena o resultado na memória

RISC

- Reduced Instruction Set Computer
- Geralmente:
 Possui um conjunto de instruções reduzido e simplificado

 - Instruções são menos "poderosas"
 Objetivo é simplificar o projeto e criar instruções que executam mais rapidamente

 Poucos formatos de Instruções de tamar 	instruções (e.g. tipo-R, tipo-I, tipo-J)			
-				
YKL (UDESC)	Arquiteturas e Abstrações	19/29		
TAL (UDESC)	Arquieturas e Austrações	19/29		
RISC versus CISC • O processador MIPS v ► RISC	risto em aula é RISC ou CISC?		Anotações	
YKL (UDESC)	Arquiteturas e Abstrações	20/29		_
TAL (UDESC)	Arquieturas e Austrações	20/29		
Tabela Comparativa	a		Anatogãos	

Anotações

RISC	CISC
Instruções de tamanho fixo	Instruções de tamanho variado
Muitos Registradores	Poucos Registradores
Instruções de 3 operandos	Instruções com 1 ou 2 operandos
Parâmetros passados via registrador	Parâmetros passados via pilha
Controle hardwired	Controle microprogramado
Pipeline Profundo e simplificado	Pipeline raso e mais complexo
Poucas instruções simples	Muitas instruções sofisticadas e complexas
Somente loads e stores acessam a memória	Muitas instruções podem acessar a memória

Atenção

Analise a tabela de maneira crítica. Essas não são regras, mas sim diferenças comumente encontradas em processadores RISC e CISC.

Allotações		
-		

RISC versus CISC

- Processadores RISC
 - O processador do seu celular
 - O processador MIPS
 - Microcontroladores
- Processadores CISC
 - O processador do seu computador pessoal

Anotações

Seu computador Pessoal: CISC?

- O Processador do seu computador pessoal é CISC
 - Não é bem assim
- Seu computador Pessoal

 - Construímos um pipeline simples na CPU MIPS
 Imagine construir isso em uma CPU CISC
 Instruções de tamanhos variados
 Uma infinidade de instruções diferentes
 Diversos formatos de instruções
 Muitas instruções capazes de acessar a memória
 - Adicione diversos outros conceitos que complicam o hardware:

 - Despacho múltiplo dinâmico
 Multithreading simultâneo (A Intel chama de Hyper-threading)
 Instruções com quantidade de ciclos de clock variável: e.g., unidade de ponto

 - Instruções com quantidade de ciclos de ciclos

YKI.	(UDESC)

Anotações

Um Intel core i7

Unidades Funcionais de um Intel Core i7 - 68 geração

An	notações							
_								
_								
_								
_								

Um Intel core i7

Unidades Funcionais de um Intel Core i7 - 6ª geração

(KL (UDESC)	Arquiteturas e Abstrações	25/2

Profundidade dos Pipelines

	Microprocessor	Year	Clock Rate	Pipeline Stages	Issue Width	Out-of-Order/ Speculation	Cores/ Chip	Pow	rer
	Intel 486	1989	25 MHz	5	1	No	1	5	W
	Intel Pentium	1993	66 MHz	5	2	No	1	10	W
<	Intel Pentium Pro	1997	200 MHz	10	3	Yes	1	29	W
	Intel Pentium 4 Willamette	2001	2000 MHz	22	3	Yes	1	75	W
	Intel Pentium 4 Prescott	2004	3600 MHz	31	3	Yes	1	103	W
	Intel Core	2006	2930 MHz	14	4	Yes	2	75	W
	Intel Core i5 Nehalem	2010	3300 MHz	14	4	Yes	1	87	W
	Intel Core i5 Ivy Bridge	2012	3400 MHz	14	4	Yes	8	77	W

 Traduzir as instruções CISC para micro-ops (RISC): introduzido no Pentium Pro de 1997

YKL (UDESC)	Arquiteturas e Abstrações	26/3

Resumindo

- Seu processador é uma casca CISC envolvendo um processador RISC
- Pense em quanto hardware é "jogado fora" só para criar essa casca que traduz de CISC para RISC!

Anotações		
แบเนงูบบิง		
Anotações		

Anotações

KL (UDESC) Arquiteturas e Abstrações

27/29

Referências

- D. Patterson; J. Henessy. Organização e Projeto de Computadores: Interface Hardware/Software. 5a Edição. Elsevier Brasil, 2017.
- Null L., Lobur J. The Essentials of Computer Organization and Architecture. Jones & Bartlett Publishers, 2014.
- STALLINGS, William. Arquitetura e organização de computadores. 10. ed. São Paulo: Pearson Education do Brasil, 2018.
- J. Henessy; D. Patterson. Arquitetura de computadores: Umaabordagem quantitativa. 6a Edição. Elsevier Brasil, 2014

Anotações		
Tillotações		
Anotações		

Anotações