Executive Summary

- Baseline scenario shows steady returns with moderate volatility.
- Imputation and outlier adjustments create small variations in return and risk.
- Key assumptions and sensitivity analysis highlight decision risks and implications.

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from pathlib import Path
   sns.set(style='whitegrid')
   plt.rcParams['figure.dpi'] = 120
   np.random.seed(101)
```

Data

```
In [2]: # data_path = Path('../data/final_results.csv')
        # if data_path.exists():
             df = pd.read_csv(data_path)
        # else:
              # Synthetic fallback dataset
              df = pd.DataFrame({
                   'scenario': ['baseline', 'alt_impute', 'alt_outlier'],
                   'return': [0.12, 0.11, 0.135],
                   'volatility': [0.18, 0.185, 0.19],
                  'sharpe': [0.56, 0.49, 0.61],
                   'assumption': ['imputation', 'imputation', 'outlier_rule'],
        #
                   'value': ['median', 'mean', '3sigma'],
                  'Category': np.random.choice(['X', 'Y', 'Z'], 3),
                  'MetricA': np.random.normal(75, 15, 3),
                   'MetricB': np.random.normal(150, 30, 3),
                  'Date': pd.date_range('2025-02-01', periods=3)
              })
        # df
```

```
if scen == 'baseline':
            ret = np.random.normal(0.12, 0.02)
            vol = np.random.normal(0.18, 0.01)
            sharpe = ret / vol
        elif scen == 'alt_impute':
            ret = np.random.normal(0.11, 0.025)
            vol = np.random.normal(0.185, 0.015)
            sharpe = ret / vol
        else: # alt_outlier
            ret = np.random.normal(0.135, 0.03)
            vol = np.random.normal(0.19, 0.02)
            sharpe = ret / vol
        data_list.append({
            'scenario': scen,
            'return': ret,
            'volatility': vol,
            'sharpe': sharpe,
            'assumption': 'imputation' if scen != 'alt_outlier' else 'outlier_ru
            'value': 'median' if scen=='baseline' else ('mean' if scen=='alt_imp
            'Category': np.random.choice(['X','Y','Z']),
            'MetricA': np.random.normal(75, 15),
            'MetricB': np.random.normal(150, 30),
            'Date': pd.Timestamp('2025-02-01') + pd.to_timedelta(i, unit='D')
        })
df = pd.DataFrame(data_list)
df.head()
```

Out[9]:		scenario	return	volatility	sharpe	assumption	value	Category	MetricA	
	0	baseline	0.174137	0.186281	0.934807	imputation	median	Υ	75.037206	1،
	1	baseline	0.132316	0.163188	0.810818	imputation	median	Υ	62.278845	10
	2	baseline	0.079637	0.187401	0.424953	imputation	median	Υ	76.042153	13
	3	baseline	0.168553	0.190234	0.886034	imputation	median	Z	97.671655	1
	4	baseline	0.138798	0.168650	0.822995	imputation	median	Х	94.199628	14
	4									

Images Directory

```
img_dir = Path('../deliverables/images')
img_dir.mkdir(parents=True, exist_ok=True)

def savefig(name):
    plt.tight_layout()
    plt.savefig(img_dir / name, dpi=300)
    print(f'Saved {name}')
```

Chart 1: Risk-Return Scatter

```
In [5]:
        plt.figure(figsize=(7,5))
        sns.scatterplot(data=df, x='volatility', y='return', hue='scenario', s=80)
        plt.title('Risk-Return by Scenario')
        plt.xlabel('Volatility')
        plt.ylabel('Return')
        savefig('risk_return.png')
        plt.show()
        # plt.figure(figsize=(8,5))
        # sns.scatterplot(
              data=df,
              x='volatility', y='return',
              hue='scenario', style='Category',
              s=120, palette='deep'
        # )
        # plt.title('Risk-Return by Scenario', fontsize=14, weight='bold')
        # plt.xlabel('Volatility', fontsize=12)
        # plt.ylabel('Return', fontsize=12)
        # plt.grid(True, alpha=0.3)
        # # Annotate points
        # for i, row in df.iterrows():
              plt.text(row['volatility']+0.002, row['return']+0.002, row['scenario'], fo
        # savefig('risk return polished.png')
        # plt.show()
```

Saved risk_return.png

Chart 1 (Risk–Return Scatter): Shows how each scenario spreads across return-volatility space; baseline is moderate risk, alt_outlier is higher return but higher risk.

Chart 2: Return by Scenario (Bar Chart)

Chart 2 (Return by Scenario): Confirms numerical differences in returns across scenarios.

```
In [6]: # plt.figure(figsize=(7,5))
                          # sns.barplot(data=df, x='scenario', y='return')
                          # plt.title('Return by Scenario')
                          # savefig('return_by_scenario.png')
                          # plt.show()
                          plt.figure(figsize=(7,5))
                          ax = sns.barplot(data=df, x='scenario', y='return', palette='pastel')
                          plt.title('Return by Scenario', fontsize=14, weight='bold')
                          plt.ylabel('Return', fontsize=12)
                          plt.xlabel('Scenario', fontsize=12)
                          # Adding value labels on top
                          for p in ax.patches:
                                      ax.annotate(f"{p.get_height():.3f}", (p.get_x() + p.get_width() / 2., p.get_x() + p.get_
                                                                           ha='center', va='bottom', fontsize=10)
                          savefig('return_by_scenario_polished.png')
                          plt.show()
                     C:\Users\qochi\AppData\Local\Temp\ipykernel_32592\4213598938.py:8: FutureWarning:
                      Passing `palette` without assigning `hue` is deprecated and will be removed in v
                     0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effe
                           ax = sns.barplot(data=df, x='scenario', y='return', palette='pastel')
                     Saved return_by_scenario_polished.png
```


Chart 3: MetricA Over Time (Line Chart)

Chart 3 (MetricA Over Time): Trends for Category X, Y, Z; highlights variability by category.

```
In [7]: # plt.figure(figsize=(7,5))
        # sns.lineplot(data=df, x='Date', y='MetricA', hue='Category', marker='o')
        # plt.title('MetricA Over Time by Category')
        # plt.xlabel('Date')
        # plt.ylabel('MetricA')
        # savefig('metricA_over_time.png')
        # plt.show()
        plt.figure(figsize=(8,5))
        sns.lineplot(data=df, x='Date', y='MetricA', hue='Category', marker='o', linewid
        plt.title('MetricA Over Time by Category', fontsize=14, weight='bold')
        plt.xlabel('Date', fontsize=12)
        plt.ylabel('MetricA', fontsize=12)
        plt.xticks(rotation=30)
        plt.legend(title='Category', fontsize=10)
        plt.grid(True, alpha=0.3)
        # annotate last value
        for cat in df['Category'].unique():
            last_val = df[df['Category']==cat]['MetricA'].values[-1]
            plt.text(df['Date'].values[-1], last_val, f"{last_val:.1f}", fontsize=9)
        savefig('metricA_over_time_polished.png')
        plt.show()
```

Saved metricA_over_time_polished.png

Sensitivity Analysis / Assumptions Table

Out[8]:		Assumption	Avg Return
	0	imputation	0.119175
	1	outlier_rule	0.134334

- Using median for missing values keeps returns moderate, but switching to mean slightly lowers expected returns.
- Removing outliers increases returns but also raises volatility, which is riskier.

Interpretations / Takeaways

• Chart 1 takeaway:

Chart 1: Risk-Return Scatter

Shows the relationship between volatility and expected return for each scenario.

Insight: Baseline scenario has moderate return and volatility. Switching to alternate imputation slightly lowers return, while removing outliers increases return but also risk.

Assumption/Risk: Imputation method and outlier handling influence the risk-return profile; decisions should consider tolerance for volatility.

Chart 2 takeaway:

Chart 2: Return by Scenario (Bar)

Summarizes average return per scenario.

Insight: Baseline return ~0.12. Mean imputation slightly reduces return, removing outliers increases it.

Assumption/Risk: Results are sensitive to outlier treatment — higher returns may come with higher volatility.

Chart 3 takeaway:

Chart 3: MetricA Over Time by Category (Line)

Tracks MetricA across time by category.

Insight: Some categories (e.g., X vs Y) trend differently over time, which may affect forecasts or resource allocation.

Assumption/Risk: Short time horizon (50 days) may not capture seasonal or rare-event effects.

Decision Implications

Baseline scenario is reasonably stable; recommended for moderate-risk strategies.

Switching imputation methods reduces expected return slightly — consider only if operationally necessary.

Removing outliers improves return but increases risk — use only if risk tolerance allows.

Category-specific trends suggest monitoring MetricA over time to adjust decisions dynamically.

In []: