学生班级	01011901	学生学号	2019210195	学生姓名	江佳骏	学生得分	
提交时间	2	021年4月21日	3	指导教师	蔡红军	评阅时间	

A2021350《电子电路基础 B》实验数据记录单

(实验一 晶体管单级低频放大器的研究)

一、实验电路原理图(如图1所示)及你绘制好的电路仿真原理图(如图2所示)

图 1 晶体管单级低频放大器电路原理图

图 2 晶体管单级低频放大器电路实物图

二、仪表设备统计

序号	名称	规格型号	单位	数量	功能简述
1	1 直流稳压电源 DP832		台	1	直流输出仪器,提供实验电路所需直流工作电源
2	函数信号发生器	DG1032Z	台	1	参数测量仪器,进行元器件检测和电路指标测量
3	数字示波器	DS1104Z Plus	台	1	信号输出仪器,提供实验所需交流激励信号
4	数字万用表	DM3058	台	1	信号检测仪器,可观测信号波形,测量信号参数

三、电路指标测量与数据记录

(一) 测量静态指标

实验电路	数据记录	Vcc	$V_{ m EQ}$	$V_{ m BQ}$	$V_{\rm CQ}$	$V_{ m BEQ}$	$V_{\rm CEQ}$	$I_{\rm EQ}$	I_{BQ}	Icq
图 1	实测数据	15.001V	0.354V	0.959V	9.011V	0.604	8.658V	0.310mA	1.056uA	0.298mA

(二)测量电压增益

V 7 V412 G/20 Ham										
开关状态	数据记录		信号源设置	置	数据测量和处理					
开大仏念	数据记录	类型	f	Us	Us	$U_{\rm i}$	U_{0}	A_{us}	A_{u}	相位关系
K 打开	实测数据	正弦	5kHz	100mV	70.12mV	69.80mV	1.06V	_	15.22	-180
K 闭合	实测数据	正弦	5kHz	20mV	14.36mV	14.12mV	938.98mV	_	66.50	-180

四、思考与分析

(1) 直流稳压电源在恒压(CV)状态时,输出电流该如何设置?

解:直流稳压电源在恒压(CV)状态时,输出电流应该设置为大于电路工作时的最大电流,但要小于直流稳压电源要求的输出电流最大值。A. 不能设置为 0,否则直流稳压电源只输出电压,不输出电流,电路将不能正常工作; B. 不能超过直流稳压电源要求的输出电流最大值; C. 不能设置为小于电路正常工作时的最大电流,否则,直流稳压电源输出电压将由于输出电流过小而降压。

(2) 示波器的通道输入耦合方式该如何选择?

解:示波器的通道输入耦合方式有直流耦合(DC)、交流耦合(AC)、接地(GND)三种方式。如果要观察输入信号的全部成分(含交流和直流),或是频率极低的交流信号时,应选择直流耦合(DC)方式;如果只观察输入信号的交流成分,则可选择交流耦合(AC)方式;如果需要寻找示波器电压零电位基线时,则应选择接地(GND)方式。

(3) 函数信号发生器的幅度显示值和设置值有什么区别?

解:函数信号发生器的幅度显示值和设置值跟输出阻抗设置有关。当输出阻抗设置为"高阻输出"时,显示值和设置值是一样的,即显示值等于设置值;当输出阻抗设置为具体的欧姆电阻值时,显示值等于设置值在欧姆电阻值上的分压。例如,当设置值为 3V 时,如果输出阻抗为"高阻"时,显示值为 3V;如果输出阻抗为"50 欧姆"时,显示值为 1.5V;如果输出阻抗为"100 欧姆"时,显示值为 1V。

(4) 数字万用表作为伏特计和安培计使用时,应注意什么问题?

解:数字万用表作为伏特计时,应注意红表笔应插在"电压"孔位,且数字万用表应与被测元件相并联;当作为安培计时,应注意红表笔应插在"电流"孔位,且数字万用表应串联在被测元件支路中。同时,不论时伏特计或安培计,测量时应根据具体测量值选择合适的档位量程。

五、整理实验现场

序号	实验现场整理项目	实验现场整理结果			
1	关闭仪表设备电源	是 ☑	否 □		
2	整理仪表设备位置及连接线,摆放符合要求	是 ☑	否 □		
3	实验桌、凳摆放归位,符合要求	是 ☑	否 □		
4	实验现场卫生打扫	是 🗹	否 🗆		
说明:	学生必须填写此表,并按表中要求完成;实验现场整理结果全是	"是",该次实验正常评分;否则,有	一项是"否",则该次实验计零分。		

序号	评分项目	评分标准	项目分值	学生得分			
1	电路预搭接	根据电路搭接的正确度、美观度和可操作性等方面评分	10				
2	仪表设备统计	根据仪表设备统计的完整性、正确性和规范性等方面评分	8				
3	测量静态工作点	根据指标测量的正确性、完整性、逻辑性和规范性等方面评分	18				
4	测量电压增益	根据指标测量的正确性、完整性、逻辑性和规范性等方面评分	34				
5	思考与分析	根据题目回答的完整想、正确性、条理性和逻辑性等方面评分	20				
6	试验态度与纪律	根据学生现场表现情况评分	10				
	实验操作评分合计						