Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

ОТЧЕТ Лабораторной работе №2.10 «Изучение явления электромагнитной индукции»

Выполнил ст. гр 980161: Алейчик И.Д.

Принял: Тараканов А.Н.

Лабораторная работа №2.10

Цель: Научиться измерять явления электромагнитной индукции.

Краткие теоретические сведения

Электромагнитная индукция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении во времени магнитного поля или при движении материальной среды в магнитном поле. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 год. Он обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Расчетные формулы

$$L_{12} = \frac{\varepsilon_{0_1}}{\omega I_{0_2}} = \frac{\varepsilon_{0_1}}{2\pi \nu I_{0_2}}. \qquad L_{21} = \frac{\varepsilon_{0_2}}{\omega I_{0_1}} = \frac{\varepsilon_{0_2}}{2\pi \nu I_{0_1}},$$

Практическое задание

1. Изучить зависимость ЭДС индукции от числа витков во вторичной цепи.

Установить частоту генератора $4000~\Gamma$ ц, а ток проходящий через соленоид I0 (ручка Рег. выхода генератора), поддерживать постоянным (20~мA). На макете переключатели $\Pi 1~\text{в}$ положение «ПРЯМО» и $\Pi 2~\text{положение}$ «ГЕНЕРАТОР». Увеличивая число секций вторичной катушки, поочередно переключая кнопки I1-I5, измерить величину ЭДС индукции вольтметром. Результаты занести в таблицу:

К, число секций	ε_1 , B
1	0,98
2	2,05
3	2,82
4	3,86
5	4,84

Построить график зависимости

2. Изучить зависимость ЭДС индукции от частоты переменного тока.

Установить П2 в положение «ГЕНЕРАТОР». Измеряя частоту генератора (От 2000 Гц до 20000 Гц с шагом 2000 Гц), определить ЭДС индукции на одной из секций вторичной катушки. Силу тока поддерживать постоянной (10 мА). Результат измерений занести в таблицу:

No॒	<i>f</i> , Гц	$\varepsilon_1 B$
1	2000	0.96
2	4000	1.91
3	6000	2.85
4	8000	3.9
5	10000	5.16
6	12000	6.6
7	14000	8.12
8	16000	10.36
9	18000	13.1
10	20000	17.58

Построить график зависимости:

3. Проверить независимость коэффициента взаимной индукции от частоты генератора

Подать сигнал с генератора на соленоид I0 (II2 в положении «ГЕНЕРАТОР»), нажать кнопку I3 вторичной катушки и определить амплитуду ЭДС индукции с помощью вольтметра. Миллиамперметром контролировать ток (I0 мА) через соленоид I0. Использовать формулу определить L_{21} для трех частот (8000гц 10000гц 12000гц). Затем переключатель II2 перевести в положение «ОСЦИЛЛОГРАФ» и снять такие же показания ЖДС индукции на соленоиде I0, необходимые для вычисления I_{12} по формуле. Миллиамперметром контролировать ток через катушку I3 (20мА). Результаты измерений занести в таблицу:

№		$I_1 = 10$ mA		$I_2 = 20 \text{ mA}$		I ₂₁ /
710	<i>f</i> Гц	$arepsilon_1$ B	I ₂₁ Ги	ε_1 B	I ₁₂ Ги	I_{12}
1	8000	3.9	6,21 * 10-2	6.39	5,09 * 10 ⁻⁷	1,22
2	10000	5.16	8,21 * 10 ⁻²	9.58	$7,62*10^{-7}$	1,08
3	12000	6.6	1,05 * 10-1	10.08	8,02 * 10 ⁻⁷	1,31

4. Проверить независимость коэффициента взаимной индукции от силы тока, создающего магнитное поле.

Подать частоту (8000 Γ ц) с генератора на соленоид I0 (П2 в пол. «ГЕНЕРАТОР»). По вольтметру определить ЭДС индукции в катушке I3 для тока 10mA. По формуле определить I21. пересни П2 в пол. «ОСЦИЛЛОГРАФ» и снять показания тока на катушке I3 ЭДС индукции на соленоиде I0 необходимые для вычисления I21. Повторить для токов соленоида 20mA и 30mA. Результаты занести в таблицу:

	f=8000Гц						
№	I ₁ , mA	ε_2 , B	L ₂₁ Ги	I ₂ , mA	ε_1 , B	L ₁₂ Ги	L_{21}/L_{12}
1	10	3.9	6.21*10-2	22	7.62	5.51*10-2	1.13
2	20	4.24	3.37*10-2	40	7.4	2.94*10-	1.15
3	30	4.97	2.64*10-2	60	8.42	2.23*10-	1.17

Вывод: изучил зависимость ЭДС индукции в зависимости от количества витков на вторичной катушке, от частоты генератора и соленоида. Научился измерять ЭДС индукции.