РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук

Кафедра информационных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

Дисциплина: Интеллектуальный анализ данных

Студент: Бармина Ольга Константиновна

Группа: НФИбд-01-19

Москва 2022

Вариант №6

задание:

- 1. Используя функционал библиотеки Pandas, считайте заданный набор данных из репозитария UCI. Набор данных задан ссылкой на страницу набора данных и названием файла с данными, который доступен из папки с данными (data folder).
- 2. Проведите исследование набора данных, выявляя числовые признаки. Если какие-то из числовых признаков были неправильно классифицированы, то преобразуйте их в числовые. Если в наборе для числовых признаков присутствуют пропущенные значения ('?'), то заполните их медианными значениями признаков.
- 3. Определите столбец, содержащий метку класса (отклик). Если столбец, содержащий метку класса (отклик), принимает более 10 различных значений, то выполните дискретизацию этого столбца, перейдя к 4-5 диапазонам значений.
- 4. При помощи класса SelectKBest библиотеки scikit-learn найдите в наборе два признака, имеющих наиболее выраженную взаимосвязь с (дискретизированным) столбцом с меткой класса (откликом). Используйте для параметра score_func значения chi2 или f_classif.
- 5. Для найденных признаков и (дискретизированного) столбца с меткой класса (откликом) вычислите матрицу корреляций и визуализируйте ее в виде тепловой карты (heat map).
- 6. Визуализируйте набор данных в виде диаграммы рассеяния на плоскости с координатами, соответствующими найденным признакам, отображая точки различных классов разными цветами. Подпишите оси и рисунок, создайте легенду набора данных.
- 7. Оставляя в наборе данных только числовые признаки, найдите и выведите на экран размерность метода главных компонент (параметр n_components), для которой доля объясняемой дисперсии будет не менее 97.5%.
- 8. Пользуясь методом главных компонент (PCA), снизьте размерность набора данных до двух признаков и изобразите полученный набор данных в виде диаграммы рассеяния на плоскости, образованной двумя полученными признаками, отображая точки различных классов разными

цветами. Подпишите оси и рисунок, создайте легенду набора данных.

Индивидуальный вариант: Wine dataset

Ввод [101]:

```
import pandas as pd
import numpy as np
```

Ввод [102]:

```
# считываем датасет из репозитория
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-r

df = pd.read_csv(url, sep=';')
df
```

Out[102]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	al
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
				•••							
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	

1599 rows × 12 columns

Ввод [103]:

сводка данных для числовых столбцов df.describe()

Out[103]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000
4							•

Ввод [104]:

проверим тип данных для каждой колонки df.dtypes

все числовые признаки правильно классифицированы

Out[104]:

fixed acidity	float64
volatile acidity	float64
citric acid	float64
residual sugar	float64
chlorides	float64
free sulfur dioxide	float64
total sulfur dioxide	float64
density	float64
рН	float64
sulphates	float64
alcohol	float64
quality	int64
dtype: object	

Ввод [105]:

```
df.isnull().sum(axis=0)
# пустые значения отсутствуют
```

Out[105]:

fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density рΗ 0 sulphates alcohol 0 quality 0 dtype: int64

Ввод [111]:

```
df.groupby('quality').count()
# метка класса содержится в столбце quality, который содержит оценку 3-8
```

Out[111]:

		ixed idity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	í
quali	ty											
	3	10	10	10	10	10	10	10	10	10	10	_
	4	53	53	53	53	53	53	53	53	53	53	
	5	681	681	681	681	681	681	681	681	681	681	
	6	638	638	638	638	638	638	638	638	638	638	
	7	199	199	199	199	199	199	199	199	199	199	
	8	18	18	18	18	18	18	18	18	18	18	
4												

Ввод [115]:

```
from sklearn.feature_selection import SelectKBest, chi2

# найдем 2 признака, имеющих наиболее выраженную взаимосвязь с меткой класса array = df.values

X = array[:,0:11] # входные переменные

Y = array[:,11] # выходная переменная

# отбор признаков
test = SelectKBest(score_func=chi2, k=2)
fit = test.fit(X, Y)

print("\nOценки признаков:\n",fit.scores_)

cols = test.get_support(indices=True)
df_new = df.iloc[:,cols]
print("\nОтобранные признаки:\n",df_new.head())
```

Оценки признаков:

```
[1.12606524e+01 1.55802891e+01 1.30256651e+01 4.12329474e+00 7.52425579e-01 1.61936036e+02 2.75555798e+03 2.30432045e-04 1.54654736e-01 4.55848775e+00 4.64298922e+01]
```

Отобранные признаки:

	free	sulfur	dioxide	total	sulfur	dioxide
0			11.0			34.0
1			25.0			67.0
2			15.0			54.0
3			17.0			60.0
4			11.0			34.0

Ввод [119]:

```
# вычислим матрицу корреляций corr_matrix = df[['free sulfur dioxide','total sulfur dioxide','quality']].corr() corr_matrix
```

Out[119]:

	free sulfur dioxide	total sulfur dioxide	quality
free sulfur dioxide	1.000000	0.667666	-0.050656
total sulfur dioxide	0.667666	1.000000	-0.185100
quality	-0.050656	-0.185100	1.000000

Ввод [121]:

```
# выведем эту матрицу в виде тепловой карты import matplotlib.pyplot as plt

plt.figure(figsize=(7, 7))
plt.imshow(corr_matrix, cmap='Greens')
plt.colorbar() # добавим шкалу интенсивности цвета

plt.xticks(range(len(corr_matrix.columns)), corr_matrix.columns)
plt.yticks(range(len(corr_matrix)), corr_matrix.index);
```


Ввод [140]:

```
# визуализируем данные диаграммой рассеяния
fig, ax = plt.subplots()
scatter = ax.scatter(X[:,0], X[:,1], c = Y, cmap = plt.cm.RdYlBu);
ax.set_xlabel("free sulfur dioxide")
ax.set_ylabel("total sulfur dioxide")
ax.set_title("Визуализация набора данных")
legend1 = ax.legend(*scatter.legend_elements(), title="Classes")
ax.add_artist(legend1)
```

Out[140]:

<matplotlib.legend.Legend at 0x25adeb03100>

Ввод [159]:

```
from sklearn.decomposition import PCA

# найдем размерность метода главных компонент

pca = PCA(n_components=2)

fit = pca.fit(X)

pcad = fit.transform(X)

print("Объясняемая дисперсия:", sum(fit.explained_variance_ratio_)*100)

# параметр n_components может быть целым числом в диапазоне 2-11, при задании значения 1 до
```

Объясняемая дисперсия: 99.4945280970281

Ввод [174]:

```
# визуализируем набор данных с двумя признаками, используя диаграмму рассеяния plt.figure( figsize=(6, 4), dpi=200)

plt.plot(pcad[Y==3,0], pcad[Y==3,1],"b.", label='class 3')
plt.plot(pcad[Y==4,0], pcad[Y==4,1],"r.", label='class 4')
plt.plot(pcad[Y==5,0], pcad[Y==5,1],"g.", label='class 5')
plt.plot(pcad[Y==6,0], pcad[Y==6,1],"y.", label='class 6');
plt.plot(pcad[Y==7,0], pcad[Y==7,1],"c.", label='class 7');
plt.plot(pcad[Y==8,0], pcad[Y==8,1],"m.", label='class 8');

plt.xlabel("free sulfur dioxide")
plt.ylabel("total sulfur dioxide")
plt.title("Визуализация набора данных с двумя признаками")
plt.legend()
```

Out[174]:

<matplotlib.legend.Legend at 0x25ae6898430>

Ввод []: