Math 426.2SY Calculus II

University of New Hampshire

July 5, 2017

Outline

Section 9.2, Infinite Series

(UNH) Lecture 14 July 5, 2017 2 / 27

Introduction

Example

Compute
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

(UNH) Lecture 14 July 5, 2017 3 / 27

An infinite series is a sum of the form

$$a_1 + a_2 + a_3 + \dots$$

Shorthand notation:

$$\sum_{k=1}^{\infty} a_k$$

In this course, a_k s are real numbers.

We'd like to presicely define what $\sum_{k=1}^{\infty} a_k$ means.

Keep in mind that $\sum_{k=1}^{n} a_k$ is a convenient way of writing $a_1 + a_2 + a_3 + \dots$

• First for every integrer n define S_n , the n^{th} Partial Sum:

Terminology

If $\lim_{n\to\infty} S_n = L$ exists, then we say the infinit series $\sum_{k=1}^n a_k$ converges to L.

If $\lim_{n\to\infty} S_n$ does not exist, we say the infinit series $\sum_{k=1}^{\infty} a_k$ diverges.

◆ロ → ◆母 → ◆ 達 → ◆ 達 ・ か へ ②

Definition

Geometric series are series of the form

$$a + ar + ar^2 + ar^3 + \dots$$

In sigma notation:

$$\sum_{n=0}^{\infty} ar^n$$

a and r are fixed real numbers and $a \neq 0$.

Example

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

Convergence or Divergence of the geometric series

Convergence or Divergence of the geometric series

Convergence or Divergence of the geometric series

• If |r| < 1 then the geometric series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$, that is

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

• If $|r| \ge 1$, then $\sum_{n=0}^{\infty} ar^n$ diverges.

Example

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

Example

$$1 + 2 + 4 + 8 + 16 + \dots$$

Not all series are geometric series!

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Convergence Tests

• The method of looking at the limit of the partial sums $\lim_{n\to\infty} S_n$ to determine the convergence or divergence of series is not usually convenient.

• We need to develop methods to test series for convergence or divergence.

Convergence/Divergence Tests

The n^{th} term Divergence test

If
$$\sum_{n=0}^{\infty} a_n$$
 converges, then $a_n \to 0$.

In other words, if $a_n \not\to 0$ or $\lim_{n\to\infty} a_n$ fails to exist, then $\sum_{n=0} a_n$ diverges.

Convergence/Divergence Tests

Example

$$\sum_{n=1}^{\infty} \frac{n^2}{2n^2 + 1}$$

(UNH) Lecture 14 July 5, 2017 16 / 27

Convergence/Divergence Tests

Warning!

If $a_n \to 0$, the n^{th} term test does NOT imply that $\sum_{n=1}^{\infty} a_n$ converges. The test is inconclusive in this case.

Example. We'll prove later that:

So if $a_n \to 0$ the n^{th} term test is inconclusive; the series may converge or it may diverge.

Combining Series

Assume $\sum_{n=1}^{\infty} a_n = A$ and $\sum_{n=1}^{\infty} b_n = B$ are convergent series. Then:

$$\bullet \sum_{n=1}^{\infty} a_n + b_n =$$

$$\bullet \sum_{n=1}^{\infty} a_n - b_n =$$

•
$$\sum_{n=1}^{\infty} ka_n =$$

Combining Series

Assume $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are divergent series. Then:

- If $k \neq 0$ then $\sum_{n=1}^{\infty} ka_n$ is also divergent.
- $\sum_{n=1}^{\infty} a_n + b_n$ and $\sum_{n=1}^{\infty} a_n b_n$ may be convergent or divergent.

Example

Determine if the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{4n^2 - n^3}{10 + 2n^3}$$

Example

Determine if the series converges or diverges. $\sum_{n=1}^{\infty} (-1)^n$

$$\sum_{n=1}^{\infty} (-1)^n$$

Example

Determine if the series converges or diverges. $\sum_{n=0}^{\infty} \cos(n\pi)$

$$\sum_{n=0}^{\infty} \cos(n\pi)$$

Example

Determine if the series converges or diverges. $\sum_{n=2}^{\infty}e^{-2n}$

$$\sum_{n=2}^{\infty} e^{-2n}$$

Example

Determine if the series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{4^n}$$

Example

Determine if the series converges or diverges.

$$\sum_{n=1}^{\infty} n$$

Example

Determine if the series converges or diverges. $\sum_{n=1}^{\infty} (-1)^n n$

$$\sum_{n=1}^{\infty} (-1)^n n$$

Example

Determine if the series converges or diverges. $\sum_{n=1}^{\infty} \ln(\frac{1}{3^n})$

$$\sum_{n=1}^{\infty} \ln(\frac{1}{3^n})$$