Data Visualization and Pre-processing

- 1. Download the dataset: Dataset
- 2. Load the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
data=pd.read_csv('/content/chrun_modelling.csv')
```

3.Perform Below Visualizations

```
sns.kdeplot(data['CreditScore'], shade=True)
sns.kdeplot(data['Age'], shade=True)
sns.kdeplot(data['Balance'], shade=True)
sns.kdeplot(data['EstimatedSalary'], shade=True)
sns.kdeplot(data['Tenure'], shade=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fc73ba72d90>


```
from sklearn.preprocessing import StandardScaler
stand= StandardScaler()
for column in ['CreditScore','Age','Balance','EstimatedSalary','Tenure']:
    data[column] = stand.fit_transform(data[column].values.reshape(-1,1))
sns.kdeplot(data['CreditScore'], shade=True)
sns.kdeplot(data['Age'], shade=True)
sns.kdeplot(data['Balance'], shade=True)
sns.kdeplot(data['EstimatedSalary'], shade=True)
sns.kdeplot(data['Tenure'], shade=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fc73b4a6fd0>

sns.countplot(data['Exited'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

4. Perform descriptive statistics on the dataset

data.describe()

		RowNumber	CustomerId	CreditScore	Age	Tenure	Bal		
	count	10000.00000	1.000000e+04	1.000000e+04	1.000000e+04	1.000000e+04	1.000000		
	mean	5000.50000	1.569094e+07	-4.824585e-16	2.318146e-16	-1.078249e-16	-6.252776		
	std	2886.89568	7.193619e+04	1.000050e+00	1.000050e+00	1.000050e+00	1.000050		
5 .Handle the Missing values									

75% 2500 75000 1 5628536±07 _6 8835866_01 _6 6001856_01 _6 0508186_01 _1 225848 data.isnull().sum()

RowNumber 0 CustomerId 0 Surname 0 0 CreditScore 0 Geography Gender 0 Age Tenure 0 Balance 0 NumOfProducts HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited dtype: int64

6. Find the outliers and replace the outliers

```
lowerlimit=data['Age'].quantile(0.05)
lowerlimit
data[data['Age']<lowerlimit]
upperlimit=data['Age'].quantile(0.95)
upperlimit
data[data['Age']<upperlimit]
data=data[(data['Age']>lowerlimit)&(data['Age']<upperlimit)]
data</pre>
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	
2	3	15619304	Onio	502	France	Female	42	8	
3	4	15701354	Boni	699	France	Female	39	1	

7. Check for Categorical columns and perform encoding

```
x = pd.get_dummies(x)
x.head()
```

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	
0	1	15634602	-0.326221	0.293517	-1.041760	-1.225848	1	
1	2	15647311	-0.440036	0.198164	-1.387538	0.117350	1	
2	3	15619304	-1.536794	0.293517	1.032908	1.333053	3	
3	4	15701354	0.501521	0.007457	-1.387538	-1.225848	2	
4	5	15737888	2.063884	0.388871	-1.041760	0.785728	1	
5 rows × 2944 columns								

8. Split the data into dependent and independent variables

9. Scale the independent variables

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test= train_test_split(x,y,test_size=0.25,random_state=0)
sc = StandardScaler()
x_train=sc.fit_transform(x_train)
```

```
x_test = sc.fit_transform(x_test)
x_train = pd.DataFrame(x_train)
x_train.head()
```

2 3	4	5	6	7
5507 0.015266	0.008860	0.673160	2.535034	-0.016332
4427 -0.652609	0.008860	-1.207724	0.804242	-0.016332
8295 -0.461788	1.393293	-0.356937	0.804242	-0.016332
6614 -0.080145	0.008860	-0.009356	-0.926551	-0.016332
7915 1.255605	0.701077	-1.207724	0.804242	-0.016332
	5507 0.015266 4427 -0.652609 8295 -0.461788 6614 -0.080145	5507 0.015266 0.008860 4427 -0.652609 0.008860 8295 -0.461788 1.393293 6614 -0.080145 0.008860	5507 0.015266 0.008860 0.673160 4427 -0.652609 0.008860 -1.207724 8295 -0.461788 1.393293 -0.356937 6614 -0.080145 0.008860 -0.009356	5507 0.015266 0.008860 0.673160 2.535034 4427 -0.652609 0.008860 -1.207724 0.804242 8295 -0.461788 1.393293 -0.356937 0.804242 6614 -0.080145 0.008860 -0.009356 -0.926551

5 rows × 2944 columns

10. Split the data into training and testing

Colab paid products - Cancel contracts here

×