CHEM 1A Winter 2021: Midterm #1

Lecturer: Prof. Fokwa January 28, 2021 **Time: 1 h**

Please note: This test has a total of 125 points (Part I) and 5 pts bonus question (Part II). The test covers chapters 1, 2 and 3.

Allowed for the test are: a blanc paper sheet, a copy of the periodic table given on the sample midterm and below, a pen and a scientific calculator (non-graphing).

Part I: Multiple Choices (5 pts each; 125 pts in total)

	rate 1. Wuntiple Choices (5 pts each, 125 pts	in total)
 1.	48.183%, the other isotope has a mass of 108.904 atomic mass of this element?	ne isotope has a mass of 106.9051 u with an abundance of 8 u with an abundance of 51.825%. What is the average . 107.950 u . 107.940 u
2.	 Identify the correct statement regarding the mole a. A mole of oxygen gas contains 6.02 x 10²³ at b. A mole of chlorine gas contains 2 x 6.02 x 10 c. A mole of carbon dioxide contains two moles d. A mole of ammonia gas (NH₃) has a mass of e. A mole consists of the number of particles in 	oms. Of oxygen molecules. 34.0 g.
3.	 3. Which one of the following statements is <i>not</i> corn a. A compound has a specific constant composition. b. The composition of a mixture can vary. c. A compound has specific constant properties. d. The properties of a mixture can vary. e. Mixtures cannot be homogeneous. 	tion.
 4.		g sample of pure NH ₃ (17.03 g/mol)? 5,930 mol 3.46 mol
 5.	5. Which statement best describes isotopes?a. They have the same atomic mass.b. They have the same number of neutrons but a c They have the same total number of protons and the same total number of protons.	*

d. They have the same number of protons but a different number of neutrons.

e. They have different chemical reactivity.

 6.	$A_{25}^{55}Mn^{2+}$ ion has	protons,	neı	itrons, and	electrons.		
	a. 23; 30; 25		d.	25; 30; 25			
	b. 25; 30; 23		e.	30; 25; 30			
	c. 30; 25; 23						
	, ,						
7.	Which statement A–D	about the reaction of	methar	ne with oxygen,	which is called combustion and is		
	represented by the reaction equation below, is <i>not</i> correct? The reaction products are carbon dioxide and						
	water.	1			1		
		$CH_4 + 2O_2 \rightarrow$	→ CO ₂ +	- 2H ₂ O			
	a. One molecule of 1	nethane combines wit	h two r	nolecules of ox	vgen.		
	a. One molecule of methane combines with two molecules of oxygen.b. Four atoms of hydrogen combine with four atoms of oxygen to produce water.						
	•	one molecule of carbo			-		
	_				element does not change.		
	e. Statements A–D a				C		
0	Which one of the fell	vina statamenta is as	4 00,000	a+9			
 8.	Which one of the folloa. Helium is an elem	•	n corre	ct?			
		nent. n chloride) is a compo	und				
	c. Water is a pure su	_	una.				
		nly in the form of indi	vidual s	atoms			
	e. Air is a solution.	my in the form of mar	viduai (atoms.			
	 1311 15 501 1011						
 9.	Which of the following	g is an element?					
	a. F_2		d.	MgO			
	b. H ₂ O		e.	HCl			
	c. NaCl						
10	Which of the following	a is most libraly to sub	ihit oo	valant handina?			
 10.	Which of the following a. NaF	g is most likely to exi		CO ₂			
	b. CaCl ₂			NaCl			
	c. Cs ₂ O		C.	Nacı			
	c. Cs ₂ O						
11.	If the following opera	tions are carried out, h	now ma	ny significant fi	igures should be reported in the answer?		
		(2.30)/(21.1	3 – 1.2	71)			
	a. 1		d.	4			
	b. 2		e.	5			
	c. 3						
12.	Which one of the follo		al reacti	ion?			
	a. dynamite exploding	ng		water turning	to steam		
	b. iron rusting		e.	eggs cooking			
	c. wood burning						

 13.	Which substance liste	d below contains the r					
	a. 1 mol of Al_2O_3			2 mol of CO ₂			
	b. 1 mol of Fe ₂ O ₃		e.	2 mol of HNO	3		
	c. 1 mol of N_2O_4						

 14.	12C, 13C, and 14C are examples of because they have different numbers of a. isotopes; protons
15.	You are a technician in an analytical laboratory and are asked to determine from its density whether an antique coin might be gold. You weigh the coin and find that its mass is 84.6419 g. When you place the coin in a graduated cylinder containing 105.53 mL of water, the water level rises to 114.64 mL. Calculate the density of the coin from your measurements and determine how many significant figures should be included in the reported result. Which one of the following numbers will you put in your report for the density of the coin?
	a. 0.73833 g/mL d. 9.29109769 g/mL b. 9.3 g/mL e. 9.2911 g/mL c. 9.29 g/mL
16.	Locate each element in the periodic table and identify which statement is <i>not</i> correct. The common ion of has electrons and a charge of a. Na; 10; +1 d. O; 10; -2 b. K; 18; +1 e. F; 10; -2
	c. Mg; 10; +2
 17.	Which of the following is an alkaline earth metal? a. K d. Cu b. Ca e. Na c. Al
 18.	How many gold atoms are there in a 1.00 kg bar of gold ($M_{\rm Au}$ = 196.97 g/mol)? a. 3.06×10^{24} d. 5.08×10^{-3} mol b. 197 mol e. 5.08×10^{18} c. 3.06×10^{21}
19.	Which element labeled A–E in the periodic table below will most likely have a charge of +3 in an ionic compound? D
 20.	When 5.0 g of sulfur is combined with 5.0 g of oxygen, 10.0 g of sulfur dioxide is formed. What mass of oxygen would be required to convert 5.0 g of sulfur into sulfur trioxide? a. 5.0 g b. 10 g c. 7.5 g

21	1. Based on the element's position in the periodic ta	ble, which statement below is <i>not</i> correct?
	a. The charge on an ion of sodium is 1+.b. The charge on an ion of magnesium is 2+.	
	c. Ca ²⁺ has more electrons than Ar.	
	d. The charge on an ion of oxygen is 2–.	
	e. The charge on an ion of chlorine is 1–.	
22		d by an Ar ⁺ laser with a wavelength of $\lambda = 488$ nm?
		$4.07 \times 10^{-19} \text{ J}$
		$\sim 2.46 \times 10^{-18} \text{ J}$
	c. $1.36 \times 10^{-36} \text{ J}$	
23	3. A radio station's operating frequency has a wavel	
	1.000 × 10 WHIZ	. 94.5 MHz
		$9.37 \times 10^{-9} \text{ MHz}$
24	c. 100.1 MHz4. What is the most probable chemical formula mad	e of elements C and A?
	В	
	C	
	a. AC ₃	. C ₂ A
		. CA
	c. A ₃ C	
25	5. Which of these regions of the electromagnetic spe	ectrum has the shortest wavelength?
	a. Visible d	. Ultraviolet
		. X-rays
	c. Gamma rays	
	Part II: Bonus Question (5 pts)	
26	6. How many C atoms are in 56.10 grams of C ₂ H ₄ ?	
20	a. 2 d	1.204×10^{24}
	b. 2.408×10^{24}	2 1022
	c. 6.022×10^{23}	

Useful equation, constants and conversions:

density =
$$\frac{\text{mass}}{\text{volume}}$$

 $c = \lambda \nu (\lambda \text{ is wavelength; } \nu \text{ is frequency; } c = 2.998 \times 10^8 \text{ m/s})$

$$E = hv$$
 $E = \frac{hc}{\lambda}$; $\lambda = \frac{hc}{E} = \frac{hc}{mc^2} = \frac{h}{mc} = \frac{h}{mu}$

$$\frac{1}{\lambda} = \left(1.097 \times 10^{-2} \text{nm}^{-1}\right) \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \pm \Delta E = -2.178 \times 10^{-18} \text{ J} \left(\frac{1}{n_{\text{final}}^2} - \frac{1}{n_{\text{initial}}^2}\right)$$

 $h = 6.626 \times 10-34 \text{ J} \cdot \text{s}$ (Planck's constant); Avogadro's number $N = 6.022 \times 10^{23} / \text{mol}$ KE_{electron} = $h\nu - \Phi$, where Φ = work function.

Mean:
$$x = \frac{\sum_{i} (x_i)}{n}$$
; Standard deviation(s): $s = \sqrt{\frac{\sum_{i} (x_i - \overline{x})^2}{n-1}}$

Percent Yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

Beer's aw: $A = \varepsilon \cdot b \cdot c$

$$M = \frac{n}{V}$$

Molarity:

Bond Order = $(\# bonding e^- - \# antibonding e^-)/2$

Mass solute:
$$m_{\text{solute}} = V \times M \times M$$

Dilution equation: $V_{\text{initial}} \times M_{\text{initial}} = V_{\text{dilute}} \times M_{\text{dilute}}$

Potential energy (PE): $PE = m \times g \times h$

(m = mass; g = acceleration due to gravity; h = vertical distance)

Kinetic energy (KE): $KE = \frac{1}{2}mu^2$ (m = mass; u = velocity)

Total energy = PE + KE

Electrostatic Potential Energy:
$$\frac{E_{el} \propto \frac{(Q_1 \times Q_2)}{d}}{I}$$
Internal energy: $\Delta E = q + w = q - P\Delta V$

Internal energy: $\Delta E = q + w = q - P\Delta V$

$$\Delta H = \Delta F + P \Delta V$$

$$\Delta H_{\text{rxn}} = \frac{q_{\text{rxn}}}{\text{mol rxn}}$$

$$\Delta H = \Delta E + P \Delta V$$
;
Heat capacity: $q = C \Delta T$

Specific heat
$$(c_s)$$
: $q = C \Delta T$

Molar heat capacity (c_p):
$$q = nc_p\Delta T$$

Phase change:
$$q = n\Delta H_{\text{fus}}$$
; $q = n\Delta H_{\text{vap}}$

Clapeyron Equation
$$\ln \left(\frac{P_2}{P_1}\right) = \frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
 Gas constant: R = 8.314 J/(mol K) = 0.08206 atm L/(mol K)
 $h = \frac{2T\cos\theta}{r\rho g}$ $g = \text{acceleration} = 9.8 \text{ m/s}^2$; ρ is the density; $T = \text{surface tension}$; $r = \text{radius of the tube}$;

 ϑ = contact angle between the liquid and the tube.

		87 Fr (223)	55 Cs 132.9	37 Rb 85.47	19 K 39.10	11 Na 22.99	3 Li 6.939	1.008
		88 Ra (226)	56 Ba 137.3	38 Sr 87.62	20 Ca 40.08	12 Mg 24.31	4 Be 9.012	
		89 Ac (227)	57 La 138.9	39 Y 88.91	21 Sc 44.96			
		104 Rf (267)	72 Hf 178.5	40 Zr 91.22	22 Ti 47.90			
90 Th 232.0	58 Ce 140.1	105 Ha (268)	73 Ta 180.9	41 Nb 92.91	23 V 50.94			
91 Pa 231	59 Pr 140.1	106 Sg (271)	74 W 183.9	42 Mo 95.94	24 Cr 52.00			
92 U 238.0	60 Nd 144.2	107 Bh (272)	75 Re 186.2	43 Tc (99)	25 Mn 54.94			
93 Np (237)	61 Pm 144.9	108 Hs (270)	76 Os 190.2	44 Ru 101.1	26 Fe 55.85			
94 Pu (244)	62 Sm 150.4	109 Mt (276)	77 lr 192.2	45 Rh 102.9	27 Co 58.93			
95 Am (243)	63 Eu 152.0	110 Ds (281)	78 Pt 195.1	46 Pd 106.4	28 Ni 58.71			
96 Cm (247)	64 Gd 157.3	111 Rg (280)	79 Au 197.0	47 Ag 107.9	29 Cu 63.54			
97 Bk (247)	65 Tb 158.9	112 Cn (285)	80 Hg 200.6	48 Cd 112.4	30 Zn 65.37			
98 Cf (251)	66 Dy 162.5	113 Uut (284)	81 Ti 204.4	49 In 114.8	31 Ga 69.72	13 AI 26.98	5 B 10.81	
99 Es (252)	67 Ho 164.9	114 FI (289)	82 Pb 207.2	50 Sn 118.7	32 Ge 72.59	14 Si 28.09	6 C 12.01	
100 Fm (257)	68 Er 167.3	115 Uup (288)	83 Bi 209.0	51 Sb 121.8	33 As 74.92	15 P 30.97	7 14.01	
101 Md (258)	69 Tm 168.9	116 Lv (293)	84 Po (209)	52 Te 127.6	34 Se 78.96	16 S 32.06	8 O 16.00	
102 No (259)	70 Yb 173.0	117 Uus (294)	85 At (210)	53 	35 Br 79.91	17 CI 35.45	9 F 19.00	1 Н 1.008
103 Lw (262)	71 Lu 175.0	118 Uuo (294)	86 Rn (222)	54 Xe 131.3	36 Kr 83.80	18 Ar 39.95	10 Ne 20.18	2 He 4.003