

CHEMISTRY RETROALIMENTACIÓN

TOMO II

- Con relación a la tabla periódica moderna, escriba verdadero (V) o falso (F) según corresponda.
- a. Los elementos químicos con propiedades químicas semejantes se encuentran ordenados en un mismo grupo. ()
- b. Todos los elementos Br Si Ge As Sb Te Po At, son los denominados metaloides, siendo el bromo un elemento líquido. ()
- c. Todos los gases nobles tienen una configuración electrónica muy estable: $ns^2...np^6$. ()

- **a. Verdadero:** Los elementos químicos de la TPM con propiedades químicas semejantes se encuentran ordenados en un mismo grupo o familia.
- **b. Falso:** Todos ellos son metaloides excepto el bromo (Br) que es un no metal líquido.
- **c. Falso:** Todos los gases nobles son estables con la configuración ns²...np^{6,} excepto el He que es estable con un dueto electrónico (2e- en su capa de valencia) .

2. Si un elemento se ubica en el 3er. periodo y grupo VA. Determine el número atómico de dicho elemento.

Resolución:

Realizando la C.E.:

Para un átomo neutro se tiene Z:

Sumando los electrones : Kernell + e⁻ de valencia

$$10 + 5 \rightarrow Z = 15$$

Rpta: 15

3. Un elemento de número de masa 51 posee 28 nucleones neutros. Determine el grupo y periodo al cual pertenece dicho elemento.

Resolución:

Debemos recordar que:

$$A = Z + n^{\circ}$$

Donde:

A → # de masa; Z → # atómico n° → # de neutrones Para determinar el grupo y periodo de un elemento debemos conocer el #e-=Z en un átomo neutro; reemplazando:

$$51 = Z + 28$$

Realizando la C.E.:

Periodo: 4

Grupo: VB

4. Determine a qué propiedad periódica está referido al siguiente proceso:

$$X_{(g)}^{0} + 1e^{-} \rightarrow X_{(g)}^{1-} + Energía$$

- (A) Energía de ionización
 - B) Afinidad electrónica
 - C) Electronegatividad
 - D) Radio aniónico
 - E) Carácter no metálico

Resolución:

La energía liberada al momento de ganar un electrón en la última capa de un átomo en estado gaseoso es la **Afinidad electrónica.**

Rpta: B

- **5**. Al comparar las propiedades periódicas de los elementos $_3$ Li, $_7$ N, $_8$ O y $_9$ F;se puede afirmar que
- A) el flúor es el de menor energía de ionización.
- B) el litio es el de mayor afinidad electrónica.
- C) el flúor es el más electronegativo.
- D) el oxígeno es el de mayor volumen atómico.
- E) el nitrógeno es el que tiene mayor radio atómico.

 Resolución:

Al ser elementos del periodo 2 tenemos:

IA	IIA	IIIIA	IVA	VA	VIA	VIIA
Li				N	0	F

- CARACTER NO METALICO
- ELECTRONEGATIVIDAD
- ENERGÍA DE IONIZACIÓN
- AFINIDAD ELECTRÓNICA

Rpta: C

- 6. Determine las proposición(es) correcta(s).
- I. En un grupo, el radio atómico aumenta al disminuir el**inoárres to** atómico.
- II. En un periodo, de electronegatividad aumenta de izquierda a derecha.
- III. En un grupo, la energía de ionización disminuye de arriba hacia abajo.
- IV. En un periodo, el volumen atómico disminuye según aumenta el número atómico.
- A) I y II B) Solo III C) II, III y IV D) Solo IV E) I, II y III

Aumenta la electronegatividad

Rpta: C

- 7. Escriba verdadero (V) o falso (F) según corresponda.
- a. El H forma dueto, el B y Al, forman sexteto. (\lor)
- b. El enlace químico provee de estabilidad al formar un compuestos. (V)
- c. La formación del enlace es endotérmico. (F)

- a. Verdadero: Los elementos químicos H, B y Al son excepciones a la regla del octeto formando dueto y sexteto.
- b. Verdadero: El enlace químico dará estabilidad a los átomos formando compuestos donde se libera energía.
- c. Falso: La formación de un enlace químico es un proceso exotérmico por lo que se libera energía.

RPTA: VVF

- 8. Determine la clase de material que esperaríamos que conduzca la corriente eléctrica:
- A) Un listón de madera de 10 cm dex largo
- B) Un cristal de cloruro de sodio
- C)½ litro de agua pura
- D) 0,25 litros de soluciónXacuosa de KCl
- E) Un bloque de hielo seco

Las sustancias conductoras de la corriente eléctrica son los metales, los compuestos iónicos fundidos o en solución acuosa y excepcionalmente el grafito.

RPTA: D

- 9. Indique la representación de Lewis para el compuesto iónico formado por el
- A) $Al^{3+}[\dot{S}\dot{S}^{2-}]^{2-}$

B) Al2+[xS:]2-

C) $Al^{3+}[\overset{.}{.}\overset{.}{.}\overset{.}{.}]^{-}$

D) $2A1^{3+}3[\overset{\circ}{.}\overset{\circ}{.}\overset{\circ}{.}]^{2-}$

E) $3A1^{2+}2[\overset{\circ}{.}\overset{\circ}{.}\overset{\circ}{.}]^{2-}$

Resolución:

Para realizar la notación de Lewis, debemos conocer a que grupo pertenece cada uno de los elementos involucrados en el enlace:

Grupo: IIIA

Grupo: VIA

- 10. La tabla periódica de los elementos es una herramienta basada en la disposición de los elementos químicos ordenados en función a su número atómico, por su configuración electrónica y sus propiedades químicas. Las filas de la tabla se denominan periodos y las columnas, grupos. Si se sabe que los elementos 11 Na, ₁₂Mg, ₁₃Al, ₁₄Si, ₁₅P, ₁₆S, ₁₇Cl se encuentran ubicados en una misma fila de la tabla periódica, en ellos se cumple que A) Todos tienen el mismo número de electrones de valencia
- B) El cloro es el elemento con mayor afinidad electrónica y mayor volumen atómico
- C) El sodio es el elemento menos electropositivo
- D) El silicio (E. N. = 1,9) y el cloro (E. N. = 3,16) formarán enlace iónico, mientras que el fósforo (E. N. = 2,19) y el cloro formarán enlace covalente.
- E) La notación de Lewis del compuesto formado por magnesio y a $\mathbf{Mg}^{2+}[\mathbf{\hat{S}}^*]^{2-}$

Ninguno de ellos tiene el mismo número de electrones de valencia, pues no pertenecen al mismo grupo, solo al mismo periodo.

IA	IIA	IIIIA	IVA	VA	VIA	VIIA
Na	Mg	Al	Si	Р	S	CI

Con esta información podremos realizar la notación de Lewis de cada átomo en cuestión:

RPTA: D

- A) Todos tienen el mismo número de electrones de valencia
- B) El cloro es el elemento con mayor afinidad electrónica y mayor volumen atómico X
- C) El sodio es el elemento menos electropositivo X
- D) El silicio (E. N. = 1,9) y el cloro (E. N. = 3,16) formarán enlace iónico, mientras que el fósforo (E.
- N. = 2,19) y el cloro formarán enlace covalente. X
- E)La notación de Lewis del compuesto formado por magnesio y azufre es $Mg^{2+}[\tilde{S}\tilde{S}]^{2-}$

- > El cloro es el elemento con mayor afinidad electrónica pero el de menor volumen atómico.
- El sodio será el elemento más electropositivo.
- \triangleright Tanto el Si y el Cl (\triangle E. N. = 1.26) y el P y el CI (Δ E. N. = 0,97) formarán enlace covalente.

IA	IIA	IIIIA	IVA	VA	VIA	VIIA
Na	Mg	Al	Si	Р	S	CI

Aumenta el volumen atómico = $f(r_a)$ Aumenta la electronegatividad

Rpta: E