Avaliações de Conhecimento Prévio

v. 0.0.0-alfa0

9 de agosto de 2011

1 Aritmética Elementar

1.1 Adição e Subtração

Efetuar as operações a seguir.

a.
$$10,83+793,6$$

b.
$$0,5109 - 7766,1$$

c.
$$-83 - (44 + 55)$$

d.
$$-10 - (10 - 25)$$

e.
$$(100 - 43) + (37 - 98 - 10)$$

f.
$$100 - (43 + 37 - 98) - 10$$

g.
$$-[1004,774 + (99,01356 - 88,01356)]$$

h.
$$15, 1 - \{20, 2 + 16, 7 - [5, 55 + (11 - 7, 3)]\}$$

i.
$$-15, 1 + \{20, 2 - [16, 7 - 5, 55 + (11 - 7, 3)]\} + 3$$

j.
$$-(9+11,005) + \{15,1-0,01-[21,08+9+(7-0)]-5,1\} + 20$$

1.2 Multiplicação e Divisão

Efetuar as operações abaixo. Se o resultado possuir parte fracionária, expresse-o com 3 casas decimais. O resultado dos itens s e t deverão ser expressos na forma racional.

a.
$$15 \cdot 100$$

b. $0,99756 \cdot 1000$

c.
$$\frac{876,43}{100}$$

$$d. \ \frac{23,007}{10000}$$

e.
$$9,0005 \cdot 0,001$$

f.
$$\frac{0,555}{0,01}$$

g.
$$425, 9 \cdot 7, 7$$

h.
$$\frac{102,03}{63,9}$$

i.
$$8 \cdot (4+3)/(4-3)$$

j.
$$8 \cdot 4 + 3/4 - 3$$

k.
$$8 \cdot (4 + 3/4 - 3)$$

l.
$$11 - \{3[7/3, 5 - 5(10 - 4)] + 10\}/3 + 20$$

$$m. \ \frac{3(5-3)}{\frac{(5+3)}{3}}$$

n.
$$\frac{3,0084756(25,443-0,040-0,403)}{(35,443-0,443-25)}$$

o.
$$1,01 \div 0,101 + 1$$

p.
$$\{4-3\}\{6-7\}[8-(9+9)]/0,1$$

q.
$$10/(4-1) \cdot (5-2)$$

r.
$$(17, 3-9, 7)/(5, 5-2, 5) \cdot (5, 5+2, 5)$$

s.
$$\frac{11}{4} \div \frac{4}{11} \div \frac{10}{3} \times \frac{3}{10}$$

t.
$$\frac{11}{4} + \frac{4}{11} - \frac{10}{3} + \frac{3}{10} - \frac{\frac{2}{3}}{2}$$

1.3 Potenciação e Radiciação

2 De Vestibulares

Questão 1. Se $a=1+j2,\,b=2-j$ e $\frac{a}{b}+\frac{b}{c}=0$, então qual o valor do número complexo c?

Questão 2. Uma chapa metálica de formato triangular (triângulo retângulo) tem inicialmente as medidas indicadas na Figura 2.1 e deverá sofrer um corte reto (paralelo ao lado que corresponde à hipotenusa do triângulo), representado pela linha fina, de modo que sua área seja reduzida à metade. Quais serão as novas medidas $x \in y$?

Figura 2.1: Da Questão 2.

Questão 3. Um líquido que ocupa uma altura de 10 cm num determinado recipiente cilíndrico será transferido para outro recipiente, também cilíndrico, com diâmetro 2 vezes maior que o primeiro. Qual será a altura ocupada pelo líquido nesse segundo recipiente?

Questão 4. Em cada face de um tetraedro regular desenhou-se um trevo de 3 folhas estilizado, conforme indicado na Figura 2.2. Se a medida da aresta do tetraedro é t, qual a soma das áreas de todas as folhas de todos os trevos desenhados? Nota: as três folhas do trevo têm dimensões iguais.

Figura 2.2: Da Questão 4.

Figura 2.3: Da Questão 10.

Questão 5. Se $f(x) = (Ax + B) \cos(2x)$, f(0) = 1 e $f(\pi/2) = 1$, então quais são os valores de A e B?

Questão 6. A matriz X possui 3 linhas e 300 colunas. Na primeira linha, os componentes das colunas descritas por $c=1+12k,\ k\in\mathbb{N}$, são iguais a um e os outros são iguais a zero. Na segunda linha, os componentes das colunas descritas por $c=1+8k,\ k\in\mathbb{N}$, são iguais a um e os outros são iguais a zero. Na terceira linha, os componentes das colunas $c=1+18k,\ k\in\mathbb{N}$, são iguais a um e os outros são iguais a zero. Quantas das 300 colunas possuem os 3 componentes iguais a um?

Questão 7. Sobre a função $f(x) = |\sin x|$, é válido afirmar-se que:

a. f(x) = f(2x)

b. f(-x) = -f(x)

c. $f(x) = f(x + \pi)$

d. $f(x) = f(x + \pi/2)$

e. $f(x) = f(x - \pi/2)$

Ainda, justifique graficamente a resposta.

Questão 8. Qual deve ser o raio da cirunferência com centro no ponto O(0,0) para que a reta x - 2y - 10 = 0 seja tangente a essa circunferência?

Questão 9. No momento em que a incidência dos raios solares ocorre segundo um ângulo de 30° , a partir da linha do horizonte, a sombra projetada no solo (horizontal) por um poste tem comprimento x. No momento em que a incidência ocorre segundo um ângulo de 60° , o comprimento da sombra é y. Se x-y=2 m, então quanto mede a altura do poste?

Questão 10. Três circunferências de raio r estão dispostas no interior de outra circunferência de raio R, conforme a Figura 2.3. Qual o valor da razão $K = \frac{R}{r}$?

Questão 11. Na Figura 2.4, o triângulo ABC é retângulo em C e seus catetos medem a e b. Determine $x = \overline{\text{CM}}$ de modo que o retângulo CMNP, inscrito nesse triângulo, tenha área máxima.

Questão 12. Com centro no diâmetro de uma circunferência de raio 8 cm, constroem-se outras duas circunferências tangentes a ela e tangentes externamente entre si. Calcule os

Figura 2.4: Da Questão 11.

Figura 2.5: Da Questão 16.

raios dessas duas circunferências para que a área limitada pelas três circunferências seja máxima.

Questão 13. Com folhas de cartolina quadradas de lado 6 cm, pretende-se fabricar caixas sem tampa. Para isso, deve-se recortar, dos quatro cantos da folha, quadrados de lado x. Calcule x para que o volume da caixa assim obtida seja máximo.

Questão 14. Em uma bicicleta com roda de 1 m de diâmetro, um ciclista necessita dar uma pedalada para que a roda gire duas voltas. Quantas pedaladas por minuto deve dar o ciclista para manter a bicicleta com uma velocidade constante de 6π kmh?

Questão 15. Para um móvel que descreve trajetória circular com velocidade constante, pode-se afirmar que:

- a. O valor da aceleração é nulo;
- b. o valor da aceleração é constante;
- c. o valor da velocidade varia em função do tempo;
- d. o deslocamento é nulo para qualquer intervalo de tempo;
- e. o valor da aceleração varia em função do tempo.

Questão 16. Sobre o carrinho de massa 10 kg atua uma força F horizontal que varia com o tempo de acordo com o gráfico da Figura 2.5. Sabe-se que, inicialmente, o móvel está em repouso. Qual é a velocidade do carrinho para $t=10\,\mathrm{s}$? Traçar o gráfico da velocidade em função do tempo.

Figura 2.6: Da Questão 18.

Figura 2.7: Da Questão 19.

Questão 17. Um tambor de massa 50 kg está cheio com 200 l de água. O tambor é içado por uma força \vec{F} a 20 m de altura. A água escoa uniformemente através de um orifício, de modo que o tambor chega à parte superior completamente vazio. Sabendo-se que a velocidade de subida é constante, determinar o trabalho da força \vec{F} do solo até a altura de 20 m. Fazer uso de análise gráfica.

Questão 18. Conforme esquematizado na Figura 2.6, um corpo de massa m, dotado de velocidade v em um ponto A, percorre a canaleta lisa ABC, comprimindo a mola em C. Sabendo-se que $h_A > h_C$, podemos afirmar que:

- a. O corpo retornará a uma altura $h > h_A$;
- b. o corpo retornará a uma altura $h < h_A$;
- c. o corpo retornará somente até o ponto B;
- d. só podemos afirmar alguma coisa se conhecermos a massa m;
- e. nada se pode afirmar.

Questão 19. No circuito da Figura 2.7, determine R_L para que haja a *Máxima Trans*ferência de Potência da fonte para R_L .

Questão 20. As cargas $Q_1 = 9 \,\mu\text{C}$ e $Q_3 = 25 \,\mu\text{C}$ estão fixas nos pontos A e B, distantes de 8 cm entre si. Sabe-se que a carga $Q_2 = 2 \,\mu\text{C}$ está em equilíbrio sob a ação de forças elétricas somente numa posição colinear em relação às outras duas cargas. Pede-se traçar o esboço do sistema em equilíbrio e calcular a distância entre Q_1 e o ponto A nesta situação.

Questão 21. A intensidade do campo magnético produzido no interior de um solenoide muito comprido, percorrido por corrente, depende basicamente:

- a. só do número de espiras do solenoide
- b. só da intensidade da corrente
- c. do diâmetro interno do solenoide
- d. do número de espiras por unidade de comprimento e da intensidade da corrente
- e. do comprimento do solenoide