Variables aléatoires réelles

1^{re} Spécialité mathématiques Probabilités et Statistiques - Cours

I. Variable aléatoire et loi de probabilité

1. Définition d'une variable aléatoire discrète

Définition :

Soit $\Omega = \{\omega_1; \omega_2; \dots; \omega_k\}$ l'univers associé à une expérience aléatoire.

Une variable aléatoire X sur l'univers Ω est une fonction définie sur Ω et à valeurs dans \mathbb{R} .

Définir une variable aléatoire consiste à associer, à chaque issue ω_i de l'expérience aléatoire, un réel x_i .

On note alors $(X = x_i)$ l'évènement formé des issues qui ont pour image x_i par X.

Exemple:

On lance un dé équilibré à 6 faces.

On gagne $2 \in \text{si}$ le « 2 » sort, $1 \in \text{si}$ le « 1 » sort et on perd $1 \in \text{dans}$ tous les autres cas.

On appelle X la variable aléatoire qui à chaque issue associe le gain obtenu.

On a $\Omega = \{1, 2, 3, 4, 5, 6\}$ et $\Omega(X) = \{2, 1, -1\}$.

On précise les évènements de X :

- $(X = 2) = \{2\}$
- $(X = 1) = \{1\}$
- $(X = -1) = \{3; 4; 5; 6\}$

Loi de probabilité d'une variable aléatoire discrète

Définition :

Soit X une variable aléatoire qui prend les valeurs $\{x_1; x_2; \dots; x_k\}$.

Donner la loi de probabilité de X, c'est donner la valeur $p(X=x_i)$, pour tout i avec $1 \leq i \leq k$.

Les résultats sont généralement présentés sous forme d'un tableau :

Valeurs x_i de X	x_1	x_2	 x_k
Probabilité $p(X = x_i)$	$p(X=x_1)$	$p(X=x_2)$	 $p(X=x_k)$

Remarque: La somme des probabilités $p(X = x_i)$, pour i allant de 1 à k, est égal à 1.

Exemple (suite):

On donne la loi de probabilité de X:

Valeurs x_i de X	2	1	-1
Probabilité $p(X=x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{4}{6} = \frac{2}{3}$

II. Espérance, variance et écart-type d'une variable aléatoire

Soit X une variable aléatoire qui prend en valeurs $x_1; x_2; \ldots; x_k$ et dont la loi de probabilité est donnée par le tableau suivant :

Valeurs x_i de X	x_1	x_2	 x_k
Probabilité $p(X = x_i)$	p_1	p_2	 p_k

Définition de l'espérance :

L'espérance de la variable aléatoire X est le réel noté E(X) définie par : $E(X) = \sum_{i=1}^{\kappa} x_i p_i$

Remarques: L'espérance d'une variable aléatoire représente la valeur moyenne prise par X.

Lorsque les valeurs prises par X représentent les gains ou les pertes à un jeu, alors E(X) représente le gain moyen par partie :

- Si E(X) > 0 alors le jeu est favorable au joueur.
- Si E(X) < 0 alors le jeu est défavorable au joueur.
- Si E(X) = 0 alors le jeu est équitable.

Définition de la variance :

La variance de la variable aléatoire X est le réel noté V(X) définie par : $V(X) = \sum_{i=1}^{\kappa} \left[x_i - E(X)\right]^2 \times p_i$

Remarque: La variance d'une variable aléatoire X se calcule aussi avec la formule $V(X) = \sum_{i=1}^{\kappa} p_i x_i^2 - E(X)^2$

Définition de l'écart-type :

L'écart-type $\sigma(X)$ est défini comme la racine carrée de la variance : $\sigma(X) = \sqrt{V(X)}$.

Remarque: Par analogie avec les statistiques, de la même façon que E(X) représente une moyenne, V(X)et $\sigma(X)$ sont des indicateurs de dispersion des valeurs de X autour de E(X).

Plus la variance et l'écart-type sont grands, plus les valeurs sont dispersés autour de la moyenne (espérance).

Exemple (suite):

On calcule l'espérance de $X:E(X)=2 imes \frac{1}{6}+1 imes \frac{1}{6}-1 imes \frac{2}{3}=-\frac{1}{6}\simeq -0,17.$ Sur un grand nombre de parties, le gain moyen par partie pour le joueur est -0,17.

Donc le jeu n'est pas favorable au joueur.

On calcule la variance et l'écart-type :

•
$$V(X) = \left[2 - \left(-\frac{1}{6}\right)\right]^2 \times \frac{1}{6} + \left[1 - \left(-\frac{1}{6}\right)\right]^2 \times \frac{1}{6} + \left[-1 - \left(-\frac{1}{6}\right)\right]^2 \times \frac{2}{3} = \frac{53}{36} \approx 1,47$$

•
$$\sigma(X) = \sqrt{\frac{53}{36}} \simeq 1,21$$