SETTLEMENT LOADS ON TIE-RODS

Calculation conform CUR 166, 4th print, 2005

Version and date: 0.2 (28-2-2011)

Projectcode: 103638

Subject: Aanvullende kracht in anker door zakkende grond

Prepared by: T. Naves

Item Variable Value Unit

Witteveen

starting points

Project:

otal till g politic			
notation of reference level		NAP	
diameter tie rods	D_0	101,6	mm
axial stiffness of the tie rods	EA	1702537	kN
spacing tie rods	а	2,8	m
angle of tie rods with the horizontal	β	40	degrees
length tie rods	L	25,4	m
tie rod force	F	134,2	kN / tie rod
surface level	Z _{surface}	5,00	m + NAP
tie rod level	Z _{tie rod}	3,00	m + NAP
groundwater level	Z _{groundwater}	4,00	m + NAP

vertical settlement load on tie rod

is the tie rod in 'non-cohesive' or 'cohesive' soil?		cohesive	soil
--	--	----------	------

2. calculation for cohesive soil

undrained shear strength soil	C _u	29	kPa
factor for shear load on tie rod due to settling soil (default value = 5)	α	9	-
vertical load on tie rod $q_z = c_u \cdot D \cdot (1 + \alpha)$	q _{z;soil}	22,6	kN/m
self-weight tie rod	q _{z;self-weight}	0,6	kN/m
vertical load on tie rod (including self-weight)	q_z	23,2	kN/m

Print date: 31-5-201810:12

increase of tie rod force due to settlement load - case 1: unlimited deformation

- iterative calculation based on the formula:
$$\alpha \cdot (1+\alpha)^2 = \left(\frac{q_0 L}{F}\right)^2 \cdot \frac{1}{4\pi^2 F\left(\frac{1}{EA} + \frac{1}{k'L}\right)}$$

vertical load on tie rod	q _z	23,2	kN/m
maximum load based on sinusoidal waveform $q_0 = q_z \cdot {}^4/_{\pi}$	q_0	29,5	kN/m
bending stiffness sheetpile	El _{sheetpile}	1,38E+05	kNm ² /m
horizontal subgrade reaction modulus	k	4500	kN/m ³
wavelength $\lambda = \sqrt[4]{4EI/c}$	λ	3,33	m
relative stiffness of sheetpile wall	k'	41933	kN/m
ratio of tie rod force increase (calculate by iteration)	α	15,03	-
increase of tie rod force $F_{s} = \Delta F = \alpha g \cdot F$	$\Delta F_{\text{tie rod}}$	2017,4	kN
maximum settlement of the tie rod $y_0 = L \cdot \left(\frac{q_0 \cdot L}{F}\right) \cdot \frac{1}{\pi^2} \cdot \frac{1}{1+\alpha}$	y ₀	0,90	m

increase of tie rod force due to settlement load - case 2: limited deformation

- iterative calculation based on the formula: $\alpha_n^2(1+\alpha_n)=\alpha^2(1+\alpha)\cdot\frac{1}{n^3}$ -3,77787E+16

limited settlement of the tie rod	y n	0,2	m
ratio of y _n and y ₀ (maximum settlement)	$n = \frac{y_0}{y_n}$	4,49	-
ratio of tie rod force increase (calculate by iteration)	α_{n}	3,11	-
part of the tie rod that is supported $\beta = 1$ -	$-\frac{\alpha}{\alpha_n \cdot n^2}$ $\beta \times L$	19,3	m
increase of tie rod force $= \Delta F$	$= \alpha_n \cdot F \qquad \Delta F_{\text{tie rod}}$	417,8	kN

Print date: 31-5-201810:12