Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 9, 2018

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

1/29

What are Discrete-Time Markov Chains?

Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1-p)^{k-1} \cdot p$$

We have $E[X] = \frac{1}{p}$ and $Var[X] = \frac{1-p}{p^2}$ and cdf $Pr\{X \leqslant k\} = 1 - (1-p)^k$.

Geometric distributions and their cdf's

Overview

- What are Discrete-Time Markov Chains?
- 2 DTMCs and Geometric Distributions
- 3 Transient Probability Distribution
- 4 Long Run Probability Distribution

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

2/20

What are Discrete-Time Markov Chains

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

$$Pr\{X = k + m \mid X > m\} = Pr\{X = k\}$$
 for any $m \in T$, $k \geqslant 1$

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically distributed.

Proof:

Exercise.

Joost-Pieter Katoen

Andrei Andrejewitsch Markow

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Joe

Modeling and Verification of Probabilistic Systems

What are Discrete-Time Markov Chains?

Invariance to time-shifts

Time homogeneity

Markov process $\{X(t) \mid t \in T\}$ is *time-homogeneous* iff for any t' < t:

$$Pr\{X(t) = d \mid X(t') = d'\} = Pr\{X(t - t') = d \mid X(0) = d'\}.$$

A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space.

Markov property

The conditional probability distribution of future states of a Markov process only depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process $\{X(t) \mid t \in T\}$ over state space $\{d_0, d_1, ...\}$ is a *Markov process* if for any $t_0 < t_1 < ... < t_n < t_{n+1}$:

$$Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_0) = d_0, X(t_1) = d_1, \dots, X(t_n) = d_n\}$$

$$= Pr\{X(t_{n+1}) = d_{n+1} \mid X(t_n) = d_n\}$$

The distribution of $X(t_{n+1})$, given the values $X(t_0)$ through $X(t_n)$, only depends on the current state $X(t_n)$.

What are Discoute Time Made Chair

Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probabilities

The *(one-step) transition probability* from $s \in S$ to $s' \in S$ at epoch $n \in \mathbb{N}$ is given by:

$$p^{(n)}(s,s') = Pr\{X_{n+1} = s' \mid X_n = s\} = Pr\{X_1 = s' \mid X_0 = s\}$$

where the last equality is due to time-homogeneity.

Since $p^{(n)}(\cdot) = p^{(k)}(\cdot)$, the superscript (n) is omitted, and we write $p(\cdot)$.

Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter T and discrete state space S.

Transition probability matrix

Let **P** be a function with $P(s_i, s_j) = p(s_i, s_j)$. For finite state space S, function **P** is called the *transition probability matrix* of the DTMC with state space S.

Properties

- 1. **P** is a (right) *stochastic* matrix, i.e., it is a square matrix, all its elements are in [0, 1], and each row sum equals one.
- 2. **P** has an eigenvalue of one, and all its eigenvalues are at most one.
- 3. For all $n \in \mathbb{N}$, \mathbf{P}^n is a stochastic matrix.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

9/29

What are Discrete-Time Markov Chains

Example: roulette in Monte Carlo, 1913

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $(S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ with:

- ► *S* is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$
- $u_{\mathrm{init}}:S o[0,1],$ the initial distribution with $\sum\limits_{s\in S}\iota_{\mathrm{init}}(s)=1$
- ► *AP* is a set of atomic propositions.
- ▶ $L: S \to 2^{AP}$, the labeling function, assigning to state s, the set L(s) of atomic propositions that are valid in s.

Initial states

- $ightharpoonup \iota_{\mathrm{init}}(s)$ is the probability that DTMC $\mathcal D$ starts in state s
- ▶ the set $\{s \in S \mid \iota_{\text{init}}(s) > 0\}$ are the possible initial states.

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

10/29

What are Discrete-Time Markov Chair

Simulating a die by a fair coin [Knuth & Yao]

Heads = "go left"; tails = "go right". Does this DTMC adequately model a fair six-sided die?

Craps

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

13/29

What are Discrete-Time Markov Chains?

A DTMC model of Craps

- ► Come-out roll:
 - ▶ 7 or 11: win
 - ▶ 2, 3, or 12: lose
 - else: roll again
- ► Next roll(s):
 - ▶ 7: lose
 - point: win
 - else: roll again

Craps

▶ Roll two dice and bet

- outcome 7 or 11: win
- ▶ outcome 2, 3, or 12: lose ("craps")
- ▶ any other outcome: roll again (outcome is "point")
- ▶ Repeat until 7 or the "point" is thrown:
 - outcome 7: lose ("seven-out")
 - outcome the point: win
 - ▶ any other outcome: roll again

A CONTRACTOR OF THE CONTRACTOR

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

14/29

DTMCs and Geometric Distributions

Overview

Joost-Pieter Katoen

- What are Discrete-Time Markov Chains?
- 2 DTMCs and Geometric Distributions
- 3 Transient Probability Distribution
- 4 Long Run Probability Distribution

State residence time distribution

Let T_s be the number of epochs of DTMC $\mathcal D$ to stay in state s:

$$Pr\{ T_s = 1 \} = 1 - P(s, s)$$

 $Pr\{ T_s = 2 \} = P(s, s) \cdot (1 - P(s, s))$
.....
 $Pr\{ T_s = n \} = P(s, s)^{n-1} \cdot (1 - P(s, s))$

So, the state residence times in a DTMC obey a *geometric* distribution.

The expected number of time steps to stay in state s equals $E[T_s] = \frac{1}{1-P(s,s)}$. The variance of the residence time distribution is $Var[T_s] = \frac{P(s,s)}{(1-P(s,s))^2}$.

Recall: the geometric distribution is the only discrete probability distribution that is memoryless.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

17/2

Transient Probability Distribution

Evolution of an example DTMC

We want to determine $p_{s,s'}(n) = Pr\{X(n) = s' \mid X(0) = s\}$ for $n \in \mathbb{N}$.

Overview

- What are Discrete-Time Markov Chains?
- 2 DTMCs and Geometric Distributions
- Transient Probability Distribution
- 4 Long Run Probability Distribution

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

18/20

Transient Probability Distribut

Determining *n*-step transition probabilities

n-step transition probabilities

The probability to move from s to s' in $n \in \mathbb{N}$ steps is inductively defined:

$$p_{s,s'}(0) = 1$$
 if $s = s'$, and 0 otherwise,

 $p_{s,s'}(1) = \mathbf{P}(s, s')$, and for n > 1 by the Chapman-Kolmogorov equation:

$$p_{s,s'}(n) = \sum_{s''} p_{s,s''}(l) \cdot p_{s'',s'}(n-l)$$
 for some $0 < l < n$

Proof: see black board.

Joost-Pieter Katoen

For
$$l=1$$
 and $n>0$ we obtain: $p_{s,s'}(n)=\sum_{s''}p_{s,s''}(1)\cdot p_{s'',s'}(n-1)$

 $\mathbf{P}^{(n)} = \mathbf{P}^{(1)} \cdot \mathbf{P}^{(n-1)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)}$ is the *n*-step transition probability matrix

Repeating this scheme: $\mathbf{P}^{(n)} = \mathbf{P} \cdot \mathbf{P}^{(n-1)} = \dots = \mathbf{P}^{n-1} \cdot \mathbf{P}^{(1)} = \mathbf{P}^n$

Transient probability distribution

Transient distribution

 $\mathbf{P}^n(s,t)$ equals the probability of being in state t after n steps given that the computation starts in s.

The probability of DTMC \mathcal{D} being in state t after exactly n transitions is:

$$\Theta_n^{\mathcal{D}}(t) = \sum_{s \in S} \iota_{\text{init}}(s) \cdot \mathbf{P}^n(s, t)$$

 $\Theta_n^{\mathcal{D}}(t)$ is called the *transient state probability* at epoch n for state t. The function $\Theta_n^{\mathcal{D}}$ is the *transient state distribution* at epoch n of DTMC \mathcal{D} .

When considering $\Theta_n^{\mathcal{D}}$ as vector $(\Theta_n^{\mathcal{D}})_{t \in S}$ we have:

$$\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \underbrace{\mathbf{P} \cdot \mathbf{P} \cdot \dots \cdot \mathbf{P}}_{n \text{ times}} = \iota_{\text{init}} \cdot \mathbf{P}^n.$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

21/29

Long Run Probability Distribution

Overview

- What are Discrete-Time Markov Chains?
- 2 DTMCs and Geometric Distributions
- Transient Probability Distribution
- 4 Long Run Probability Distribution

Transient probability distribution: example

Joost-Pieter Katoe

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

22/

Long Run Probability Distributi

Evolution of an example DTMC

We want to determine the probability to be in a state on the long run.

On the long run

The probability mass on the long run is only left in bottom SCCs.

Joost-Pieter Katoe

Modeling and Verification of Probabilistic Systems

Joost-Piet

and Bur Bushahilita Distribution

Limiting distribution

▶ We also have:

$$\underline{v} = \lim_{n \to \infty} \underline{p}(n+1) = \lim_{n \to \infty} \underline{p}(0) \cdot \mathbf{P}^{n+1} = \left(\lim_{n \to \infty} \underline{p}(0) \cdot \mathbf{P}^{n}\right) \cdot \mathbf{P} = \underline{v} \cdot \mathbf{P}$$

► Thus, limiting probabilities can be obtained by solving the (homogeneous) system of linear equations:

$$\underline{v} = \underline{v} \cdot \mathbf{P}$$
 or $\underline{v} \cdot (\mathbf{I} - \mathbf{P}) = \underline{0}$ under $\sum_{i} \underline{v}(i) = 1$

- ightharpoonup vector \underline{v} is the left Eigenvector of ${f P}$ with Eigenvalue 1
- $ightharpoonup \underline{v}$ is called the *limiting* state-probability vector

Two interpretations of $\underline{v}(s)$:

- ▶ the long-run proportion of time that the DTMC "spends" in state s
- ▶ the probability the DTMC is in *s* when making a snapshot after a very long time

Limiting distribution

Ergodic stochastic matrix

Stochastic matrix **P** is called *ergodic* if:

$$\mathbf{P}^{\infty} = \lim_{n \to \infty} \mathbf{P}^n$$
 exists and has identical rows

Ergodicity theorem

If the transition probability matrix **P** of a DTMC is ergodic, then:

- 1. p(n) converges to a limiting distribution \underline{v} independent from p(0)
- 2. each row of \mathbf{P}^{∞} equals the limiting distribution

Proof.

$$\lim_{n\to\infty} \underline{p}(0) \cdot \mathbf{P}^n = \underline{p}(0) \cdot \lim_{\substack{n\to\infty \\ \mathbf{P}^{\infty}}} \mathbf{P}^n = \underline{p}(0) \cdot \begin{pmatrix} v_{s_0} & \dots & v_{s_n} \\ \dots & \dots & \dots \\ v_{s_0} & \dots & v_{s_n} \end{pmatrix} = \underline{v}$$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

26/20

Long Run Probability Distributi

Examples

Long Run Probability Distribution

Summary

What are Markov chains?

- ► A discrete-time Markov chain (DTMC) is a time-homogeneous Markov process with discrete parameter *T* and discrete state space *S*.
- ► State residence times are geometrically distributed.
- ▶ Alternative: a DTMC \mathcal{D} is a tuple (S, \mathbf{P} , ι_{init} , AP, L)

What are transient probabilities?

- $ightharpoonup \Theta_n^{\mathcal{D}}(s)$ is the probability to be in state s after n steps.
- ▶ These transient probabilities satisfy: $\Theta_n^{\mathcal{D}} = \iota_{\text{init}} \cdot \mathbf{P}^n$.

What are long-run probabilities?

- $ightharpoonup \underline{v}(s)$ is the probability to be in state s after infinitely many steps.
- ▶ long-run probabilities satisfy: $\underline{v} \cdot (\mathbf{I} \mathbf{P}) = \underline{0}$ under $\sum_{i} \underline{v}(i) = 1$.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

29/2

