AirBnB New User Bookings

Study to predict the destination country for a new user booking

Springboard
Capstone Project

Made By Kshitiz Khatri

Overview

Introduction

Exploratory Data Analysis (EDA)

Modeling

Ideas for further research

Introduction

- Aim To predict the destination country for a new user registered with the client
- Client AirBnB
- Data Kaggle AirBnB recruitment challenge
 - ✓ Countries
 - ✓ Age gender buckets
 - ✓ Test and Train users
 - ✓ Sessions

Data

- Countries
 - ✓ US USA
 - ✓ CA Canada
 - ✓ NDF No Destination Found
- 12 such destination countries
- Age gender buckets
 - ✓ Age bucket
 - ✓ country destination

Data

- Age gender buckets
 - ✓ Gender
 - ✓ Population in thousands
 - ✓ Year
- Sessions
 - ✓ Action lookup, show, personalize etc.
 - ✓ Action_type data, view, click etc.
 - ✓ Device Type & time_elapsed in secs

Data

- Training & Test set
 - ✓ date of account created & timestamp first active
 - ✓ signup method, signup flow
 - ✓ gender, age
 - ✓ language, affiliate channel, affiliate provider
 - ✓ first affiliate tracked, first device type
 - ✓ first browser, country destination

Exploratory Data Analysis

Gender

Browser

Language

Affiliate provider

Exploratory Data Analysis

Affiliate channel

First Device Type

First Affiliate tracked

Signup app

Exploratory Data Analysis

Signup flow

Age bkt vs Population, country wise

Signup method

Age bkt vs Population

- Modeling Techniques Used:
 - ✓ Random Forest
 - ✓ xgboost decision trees
- Feature Engineering:
 - ✓ Categorical Variables to Numeric
 - ✓ Dates to individual days, months and year
 - ✓ Predicted binary variable for each destination country

Parameter Tuning: Random Forest

Model	Independent Variable	No. of Trees	Node Size	Accuracy (as per Kaggle)
model1	Age, gender, signup language, affiliate provider, first browser	400	25	66.66 %
model2	Age, gender, affiliate provider, first browser	400	25	62.73 %
model3	Age, gender, signup language, signup flow, affiliate provider, first browser	400	25	66.29 %
model4	Age, gender, signup flow, affiliate provider, first browser	400	25	61.89 %
model5	Age, gender, signup language, affiliate channel, first browser	400	25	67.86 %
model6	Age, gender, signup language, first affiliate tracked, first browser	400	25	67.9 %

- Parameter Tuning: xgboost model
 Parameters explored for xgboost model:
 - ✓ max.depth
 - ✓ eta
 - ✓ nthread
 - ✓ booster
 - ✓ nrounds

Best accuracy achieved: 65.10 %

General Challenges while modeling

- ✓ High Class Imbalance in response variable
- ✓ Multiple minority class in response variable
- ✓ High number of independent variables demanded complex model

Practical challenge

✓ Better system requirements to efficiently process the data if working with simple models like Random forests

Best Model Comparison

Model	Accuracy	Shortcoming
Random Forest	67.9%	Highly skewed results due to high class imbalance
Xgboost classifier	65.10%	Lower accuracy, but captures the minority class as well

Ideas for further research

- Hyper parameter optimization
- Limiting the classes by eliminating the least frequent
- Further exploration of the data
- Devising new features using predictors
- Ensembling

Kaggle Submissions

Top 2 Kaggle Submissions

Model	Accuracy
Random Forest	68.39%
Random Forest	67.90%