LECTURE 10 PERFECT COMPETITION IN THE SHORT RUN

The Big Picture

Where are we?

- Production function
 - How firms turn L and K into Q
- Cost-minimizing choice of L and K
 - Cost curves in the short run and long run
- Optimal choice of Q in the short run
 - At any given price, how much output should the firm produce?
- Firm's supply curve in the short run
 - Output Q as a function of market price
- Short-run equilibrium in a competitive market

Part 1

Short-Run Supply Curve

What is a perfectly competitive market?

- The industry is fragmented
 - Thus firms and consumers are *price takers*
- The product is homogeneous
 - Products produced by different firms are the same
- Perfect information about prices
 - Thus there will be a single market price
- Equal access to resources
 - Everyone has access to the same technology and inputs
 - Thus the market is characterized by *free entry*

Example: Catfish Farming Industry in US

- The industry is fragmented
 - There are over 600 catfish farms
- The product is homogeneous
- Perfect information about prices
- Equal access to resources
 - Production technology is well understood

Short Run vs. Long Run

- □ In the short run
 - At least one input is fixed
 - Firms choose output to maximize profit
- In the long run
 - All inputs are adjustable
 - Firms choose output to maximize profit
 - □ Firms decide whether to exit/enter the market

Profit and Revenue

- □ Firm chooses *Q* to maximize profit
- Profit=total revenue-total cost

$$\pi(Q) = TR(Q) - TC(Q)$$

Total revenue

$$TR(Q) = P(Q)Q$$

- □ <u>Definition 10.1</u> *Marginal revenue*
 - The rate at which total revenue changes with output

$$MR(Q) = \frac{dTR(Q)}{dQ}$$

■ The slope of the total revenue curve

How to maximize profit?

□ To maximize profit, we solve

$$\max_{Q} TR(Q) - TC(Q)$$

The first-order condition is

$$MR(Q) - MC(Q) = 0$$

Rearranging, we have

$$MR(Q) = MC(Q)$$

Profit-Maximizing Condition in Perfectly Competitive Market

- □ Firms take market price *P* as given
- Total revenue is linear in output

$$TR(Q) = PQ$$

Marginal revenue = price

$$MR(Q) = P$$

To maximize profit

$$P = MC(Q)$$

Example: Profit Maximization

Suppose the total cost curve of a firm is

$$STC(Q) = 25 + Q^2$$

Short-run marginal cost is

$$SMC(Q) = 2Q$$

To maximize profit, we need

$$P = SMC(Q) = 2Q$$

□ If P=12, the profit-maximizing Q is

$$12 = 2Q \Rightarrow Q = 6$$

Caveat: there may be more than one output level at which P=SMC

Second-Order Condition

□ To make sure we are maximizing profit, it must be that

$$\pi''(Q) \leq 0$$

This implies

$$\frac{dMR(Q)}{dQ} - \frac{dMC(Q)}{dQ} \le 0$$

□ Since MR(Q)=P

$$\frac{dMC(Q)}{dQ} \ge 0$$

Non-Sunk Cost vs. Sunk Cost

- Fixed cost may or may not be sunk
- □ <u>Definition 10.2</u> Total non-sunk cost (TNSC) is
 - Total variable cost + total non-sunk fixed cost
- □ <u>Definition 10.3</u> Total sunk cost (TSC) is
 - Total sunk fixed cost
- If all fixed cost is non-sunk
 - □ TNSC=
- If all fixed cost is sunk
 - □ TNSC=

SMC crosses ANSC at the minimum point of ANSC

Should the firm produce at all?

- If the firm does not produce
 - Its profit is *-TSC*
- If the firm produces
 - Its profit is TR(Q)-TNSC(Q)-TSC
- Firm only produces when

$$TR(Q) \ge TNSC(Q)$$

Since

$$TR(Q) = PQ$$
, $TNSC(Q) = ANSC(Q) \times Q$

■ Firm only produces when $P \ge ANSC(Q)$

When should the firm stop producing?

Profit-maximizing conditions in the short run

When *P*>=min(*ANSC*), each firm should choose a level of *Q* such that

- At that output level, P=SMC
- *SMC* is non-decreasing in *Q*

When P<min(ANSC), each firm should set Q=0

Example: Firm's Supply Curve When All Fixed Cost is Sunk

$$STC(Q) = Q^2 + 25$$

$$P=SMC=2Q$$

thus the supply curve is $Q=P/2$

Example: Firm's Supply Curve When Part of the Fixed Cost is Non-Sunk

Suppose the non-sunk fixed cost is 16

The supply curve is Q=P/2 when P>=8 and Q=0 when P<8

Individual Firm's Supply Curve

- Definition 10.4 The short-run supply curve for an individual firm is the profit-maximizing quantity for the firm as a function of the market price
- If P<min(ANSC)</pre>
 - \square Q=0
 - Supply curve is the vertical axis
- □ If P>=min(ANSC)
 - Firm chooses Q such that SMC(Q)=P
 - Supply curve is the marginal cost curve

Firm's Short-run Supply Curve in General

Short-Run Market Supply Curve

- Short-run market supply curve is the horizontal sum of all individual firm's supply curve
- Suppose there are 100 identical firms in the market
- Assuming all fixed cost is sunk, each firm has a supply curve

$$Q_f = \frac{P}{2}$$

The market supply curve is

$$S(P) = 100 \times \frac{P}{2} = 50P$$

Part 2

Short-Run Equilibrium

Short-run Equilibrium

- □ <u>Definition 10.5</u> At the *short-run equilibrium* in a competitive market
 - Total quantity demanded equals total quantity supplied
 - Each firm produces at the profit-maximizing output level given the equilibrium price
 - Each consumer buys the utility-maximizing quantity given the equilibrium price

Example: Short-run Equilibrium

Suppose the demand curve is

$$D(P) = 560 - 20P$$

Short-run equilibrium price is thus

$$S(P) = D(P) \Rightarrow 50P = 560 - 20P \Rightarrow P = 8$$

- Total quantity produced in the equilibrium is 50*8=400
- □ Each firm produces 8/2=4 units

Relationship between Profit and SAC

- Suppose the market price is P
- \square At this price, a firm's optimal output level is Q_f
- Firm's profit is

$$TR - STC = P \times Q_f - SAC(Q_f) \times Q_f = [P - SAC(Q_f)]Q_f$$

- \square $P>SAC(Q_f)$
 - \blacksquare Firm's profit is positive at the output level Q_f
- \square $P < SAC(Q_f)$
 - \blacksquare Firm's profit is negative at the output level Q_f

Profit at Short-Run Equilibrium

What is the profit for each firm?

$$TR - STC = PQ_f - STC(Q_f) = 8 \times 4 - 4 \times 4 - 25 = -9$$

The short-run average total cost is

$$SAC(Q_f) = \frac{STC(Q_f)}{Q_f} = \frac{25 + Q_f^2}{Q_f} \Rightarrow SAC(4) = \frac{25 + 16}{4} = 10.25$$

- Negative profit is possible in short-run equilibrium
 - Firms do not take sunk cost into consideration when deciding how much to produce

Short-Run Equilibrium in Graph

Typical Firm's Cost and Supply

Market Equilibrium with 100 Identical Firms

Comparative Statics: What if demand increases?

Typical Firm's Cost and Supply

Market Equilibrium with 100 Identical Firms

Part 3

Producer Surplus in the Short Run

Definition of Producer Surplus

- Definition 10.6 Producer surplus (PS) is the difference between the amount a firm actually receive by producing and selling a certain units and the amount the firm has to receive to produce a certain units
- □ PS = total revenue total non-sunk cost
- PS is the area below the price and above the supply curve

Producer Surplus in Graph

Producer Surplus in Graph Cont'

Calculating Producer Surplus from the Graph

- Total revenue
 - 20*60=1200
- □ Total non-sunk cost
 - □ *VC* is 0.5*60*20=600
 - The area under the *SMC* curve
 - Non-sunk fixed cost is 150
 - *TNSC* for the first 30 units is *ANSC*(30)*30=10*30=300
 - But *VC* for the first 30 units is 0.5*30*10=150
 - □ *TNSC*=600+150=750
- □ PS=1200-750=450
 - The area under the price and above the supply curve

Producer Surplus in Graph Cont'

