Chapter 9 Input Modeling

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- Input models provide the driving force for a simulation model.
- The quality of the output is no better than the quality of inputs.
- In this chapter, we will discuss the 4 steps of input model development:
 - □ Collect data from the real system
 - Identify a probability distribution to represent the input process
 - Choose parameters for the distribution
 - Evaluate the chosen distribution and parameters for goodness of fit.

Data Collection

- One of the biggest tasks in solving a real problem. GIGO garbage-in-garbage-out
- Suggestions that may enhance and facilitate data collection:
 - □ Plan ahead: begin by a practice or pre-observing session, watch for unusual circumstances
 - □ Analyze the data as it is being collected: check adequacy
 - Combine homogeneous data sets, e.g. successive time periods, during the same time period on successive days
 - Be aware of data censoring: the quantity is not observed in its entirety, danger of leaving out long process times
 - Check for relationship between variables, e.g. build scatter diagram
 - Check for autocorrelation
 - Collect input data, not performance data

Identifying the Distribution when data is available

- Histograms
- Selecting families of distribution
- Parameter estimation
- Goodness-of-fit tests
- Fitting a non-stationary process

- A frequency distribution or histogram is useful in determining the shape of a distribution
- The number of class intervals depends on:
 - □ The number of observations
 - The dispersion of the data
 - Suggested: the number intervals ≈ the square root of the sample size works well in practice
- If the interval is too wide, the histogram will be coarse or blocky and it's shape and other details will not show well
- If the intervals are too narrow, the histograms will be ragged and will not smooth the data

Histograms

- Corresponds to the probability density function of a theoretical distribution
- □ A line drawn through the center of each class interval frequency should results in a shape like that of pdf
- For discrete data:
 - Corresponds to the probability mass function
- If few data points are available: combine adjacent cells to eliminate the ragged appearance of the histogram

Histograms

[Identifying the distribution]

Vehicle Arrival Example: # of vehicles arriving at an intersection between 7 am and 7:05 am was monitored for 100 random workdays.

Arrivals per Period	Frequency
0	12
1	10
2	19
3	17
4	10
5	8
6	7
7	5
8	5
9	3
10	3
11	1

 There are ample data, so the histogram may have a cell for each possible value in the data range

Selecting the Family of Distributions

- A family of distributions is selected based on:
 - □ The context of the input variable
 - Shape of the histogram
 - The purpose of preparing a histogram is to infer a known pdf or pmf
- Frequently encountered distributions:
 - □ Easier to analyze: exponential, normal and Poisson
 - Harder to analyze: beta, gamma and Weibull

Selecting the Family of Distributions

- Use the physical basis of the distribution as a guide, for example:
 - ☐ Binomial: # of successes in n trials
 - Poisson: # of independent events that occur in a fixed amount of time or space
 - Normal: dist'n of a process that is the sum of a number of component processes
 - Exponential: time between independent events, or a process time that is memoryless
 - □ Weibull: time to failure for components
 - Discrete or continuous uniform: models complete uncertainty. All outcomes are equally likely.
 - Triangular: a process for which only the minimum, most likely, and maximum values are known. Improvement over uniform.
 - Empirical: resamples from the actual data collected

Selecting the Family of Distributions

- Do not ignore the physical characteristics of the process
 - □ Is the process naturally discrete or continuous valued?
 - □ Is it bounded or is there no natural bound?
- No "true" distribution for any stochastic input process
- Goal: to obtain a good approximation that yields useful results from the simulation experiment.

[Identifying the distribution]

If X is a random variable with cdf F, then the q-quantile of X is the γ such that

$$F(\gamma) = P(X \le \gamma) = q \text{ for } 0 < q < 1$$

□ When *F* has an inverse, $\gamma = F^{-1}(q)$

By a quantile, we mean the fraction (or percent) of points below the given value

Let $\{x_i, i = 1, 2, ..., n\}$ be a sample of data from X and $\{y_j, j = 1, 2, ..., n\}$ be the observations in ascending order. The Q-Q plot is based on the fact that y_i is an estimate of the (j-0.5)/n quantile of X.

$$y_j$$
 is approximately $F^{-1}\left(\frac{j-0.5}{n}\right)$

where *j* is the ranking or order number

percentile: 100-quantiles

deciles: 10-quantiles

quintiles: 5-quantiles

quartiles: 4-quantiles

- The plot of y_i versus $F^{-1}((j-0.5)/n)$ is
 - Approximately a straight line if F is a member of an appropriate family of distributions
 - □ The line has slope 1 if F is a member of an appropriate family of distributions with appropriate parameter values
 - If the assumed distribution is inappropriate, the points will deviate from a straight line
 - □ The decision about whether to reject some hypothesized model is subjective!!

[Identifying the distribution]

- Example: Check whether the door installation times given below follows a normal distribution.
 - The observations are now ordered from smallest to largest:

j	Value	j	Value	j	Value	j	Value
1	99.55	6	99.82	11	99.98	16	100.26
2	99.56	7	99.83	12	100.02	17	100.27
3	99.62	8	99.85	13	100.06	18	100.33
4	99.65	9	99.9	14	100.17	19	100.41
5	99.79	10	99.96	15	100.23	20	100.47

□ y_j are plotted versus $F^{-1}((j-0.5)/n)$ where F has a normal distribution with the sample mean (99.99 sec) and sample variance (0.2832^2 sec^2)

[Identifying the distribution]

Example (continued): Check whether the door installation times follow a normal distribution.

- Consider the following while evaluating the linearity of a Q-Q plot:
 - The observed values never fall exactly on a straight line
 - The ordered values are ranked and hence not independent, unlikely for the points to be scattered about the line
 - □ Variance of the extremes is higher than the middle. Linearity of the points in the middle of the plot is more important.
- Q-Q plot can also be used to check homogeneity
 - Check whether a single distribution can represent two sample sets
 - Plotting the order values of the two data samples against each other. A straight line shows both sample sets are represented by the same distribution

Parameter Estimation

[Identifying the distribution]

If observations in a sample of size n are $X_1, X_2, ..., X_n$ (discrete or continuous), the sample mean and variance are defined as:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 $S^2 = \frac{\sum_{i=1}^{n} X_i^2 - n\overline{X}^2}{n-1}$

If the data are discrete and have been grouped in a frequency distribution:

$$\overline{X} = \frac{\sum_{j=1}^{n} f_j X_j}{n}$$

$$S^2 = \frac{\sum_{j=1}^{n} f_j X_j^2 - n \overline{X}^2}{n-1}$$

where f_j is the observed frequency of value X_j

Parameter Estimation

[Identifying the distribution]

$$\overline{X} = \frac{\sum_{j=1}^{c} f_{j} m_{j}}{n} \qquad S^{2} = \frac{\sum_{j=1}^{n} f_{j} m_{j}^{2} - n \overline{X}^{2}}{n-1}$$

where f_j is the observed frequency of in the j^{th} class interval; m_j is the midpoint of the j^{th} interval, and c is the number of class intervals

A parameter is an unknown constant, but an estimator is a statistic.

Suggested Estimators

Distribution	Parameters	Suggested Estimator
Poisson	α	$\hat{lpha}=\overline{X}$
Exponential	λ	$\hat{\lambda} = \frac{1}{X}$
Normal	μ , σ^2	$\hat{\mu} = \overline{X}$ $\hat{\sigma}^2 = S^2 \text{ (Unbiased)}$

Parameter Estimation

[Identifying the distribution]

$$n = 100, f_1 = 12, X_1 = 0, f_2 = 10, X_2 = 1,...,$$

and $\sum_{j=1}^{k} f_j X_j = 364$, and $\sum_{j=1}^{k} f_j X_j^2 = 2080$

The sample mean and variance are

$$\overline{X} = \frac{364}{100} = 3.64$$

$$S^2 = \frac{2080 - 100 * (3.64)^2}{99}$$

$$= 7.63$$

- □ The histogram suggests X to have a Poisson distribution
 - However, note that sample mean is not equal to sample variance.
 - Reason: each estimator is a random variable, is not perfect.

Goodness-of-Fit Tests

- Conduct hypothesis testing on input data distribution using:
 - ☐ Kolmogorov-Smirnov test
 - Chi-square test
- Goodness-of-fit tests provide helpful guidance for evaluating the suitability of a potential input model
- No single correct distribution in a real application exists.
 - If very little data are available, it is unlikely to reject any candidate distributions
 - ☐ If a lot of data are available, it is likely to reject all candidate distributions

Chi-Square test

[Goodness-of-Fit Tests]

- Intuition: comparing the histogram of the data to the shape of the candidate density or mass function
- Valid for large sample sizes when parameters are estimated by maximum likelihood
- By arranging the n observations into a set of k class intervals or cells, the test statistics is:

which **approximately** follows the chi-square distribution with k-s-1 degrees of freedom, where s = # of parameters of the hypothesized distribution estimated by the sample statistics.

 H_0 : The random variable, X, conforms to the distributional assumption with the parameter(s) given by the estimate(s).

 H_1 : The random variable X does not conform.

- If the distribution tested is discrete and combining adjacent cell is not required (so that E_i > minimum requirement):
 - □ Each value of the random variable should be a class interval, unless combining is necessary, and

$$p_i = p(x_i) = P(X = x_i)$$

$$p_i = \int_{a_{i-1}}^{a_i} f(x) dx = F(a_i) - F(a_{i-1})$$

where a_{i-1} and a_i are the endpoints of the i^{th} class interval and f(x) is the assumed pdf, F(x) is the assumed cdf.

□ Recommended number of class intervals (*k*):

Sample Size, n	Number of Class Intervals, k
20	Do not use the chi-square test
50	5 to 10
100	10 to 20
> 100	n ^{1/2} to n/5

□ Caution: Different grouping of data (i.e., k) can affect the hypothesis testing result.

Chi-Square test

[Goodness-of-Fit Tests]

- Vehicle Arrival Example (continued) (See Slides 7 and 19):
- The histogram on slide 7 appears to be Poisson
- From Slide 19, we find the estimated mean to be 3.64
- Using Poisson pmf:

$$p(x) = \begin{cases} \frac{e^{-\alpha} \alpha^x}{x!}, & x = 0,1,2,...\\ 0, & \text{otherwise} \end{cases}$$

For α =3.64, the probabilities are:

$$p(0)=0.026$$
 $p(6)=0.085$
 $p(1)=0.096$ $p(7)=0.044$
 $p(2)=0.174$ $p(8)=0.020$
 $p(3)=0.211$ $p(9)=0.008$
 $p(4)=0.192$ $p(10)=0.003$
 $p(5)=0.140$ $p(\ge 11)=0.001$

Chi-Square test

[Goodness-of-Fit Tests]

- Vehicle Arrival Example (continued):
 - H_0 : the random variable is Poisson distributed.
 - H_1 : the random variable is not Poisson distributed.

\mathbf{x}_{i}	Observed Frequency, O _i	Expected Frequency, E_i $(O_i - E_i)^2/E_i$	$E_i = np(x)$
0	ر 12	2.6	$ e^{-\alpha}\alpha^{x}$
1	10 }	9.6	$-e^{\alpha}$
2	19	17.4 0.15	$=n{}$
3	17	21.1 0.8	x!
4	19	19.2 4.41	
5	6	14.0 2.57	
6	7	8.5 Q.26	
7	5)	4.4	
8	5	2.0	
9	3 >	0.8	Combined because
10	3	0.3	
> 11	1 1	0.1	of min E_i
	100	100.0 27.68	

□ Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the 0.05 level of significance.

$$\chi_0^2 = 27.68 > \chi_{0.05.5}^2 = 11.1$$

- Chi-square test can accommodate estimation of parameters
- Chi-square test requires data be placed in intervals
- Changing the number of classes and the interval width affects the value of the calculated and tabulated chi-sqaure
- A hypothesis could be accepted if the data grouped one way and rejected another way
- Distribution of the chi-square test static is known only approximately. So we need other tests

Kolmogorov-Smirnov Test

[Goodness-of-Fit Tests]

- Intuition: formalize the idea behind examining a q-q plot
- Recall from Chapter 7.4.1:
 - The test compares the **continuous** cdf, F(x), of the hypothesized distribution with the empirical cdf, $S_N(x)$, of the N sample observations.
 - □ Based on the maximum difference statistics (Tabulated in A.8):

$$D = \max |F(x) - S_N(x)|$$

- A more powerful test, particularly useful when:
 - □ Sample sizes are small,
 - □ No parameters have been estimated from the data.
- When parameter estimates have been made:
 - Critical values in Table A.8 are biased, too large.
 - More conservative.

p-Values and "Best Fits"

[Goodness-of-Fit Tests]

- p-value for the test statistics
 - \Box The significance level at which one would just reject H_0 for the given test statistic value.
 - □ A measure of fit, the larger the better
 - ☐ Large *p-value*: good fit
 - ☐ Small *p-value*: poor fit
- Vehicle Arrival Example (cont.):
 - \Box H_0 : data is Possion
 - □ Test statistics: $\chi_0^2 = 27.68$, with 5 degrees of freedom
 - p-value = 0.00004, meaning we would reject H_0 with 0.00004 significance level, hence Poisson is a poor fit.

p-Values and "Best Fits"

[Goodness-of-Fit Tests]

- Many software tools use p-value as the ranking measure to automatically determine the "best fit".
 - Software could fit every distribution at our disposal, compute the test statistic for each fit and choose the distribution that yields largest p-value.
- Things to be cautious about:
 - □ Software may not know about the physical basis of the data, distribution families it suggests may be inappropriate.
 - Close conformance to the data does not always lead to the most appropriate input model.
 - □ p-value does not say much about where the lack of fit occurs
- Recommended: always inspect the automatic selection using graphical methods.

Fitting a Non-stationary Poisson Process

- □ Fit a very flexible model with lots of parameters or
- □ Approximate constant arrival rate over some basic interval of time, but vary it from time interval to time interval. Our focus
- Suppose we need to model arrivals over time [0,T], our approach is the most appropriate when we can:
 - Observe the time period repeatedly and
 - Count arrivals / record arrival times.

Fitting a Non-stationary Poisson Process

$$\hat{\lambda}(t) = \frac{1}{n\Delta t} \sum_{j=1}^{n} C_{ij}$$

- where n = # of observation periods, $\Delta t = time interval length$ $C_{ij} = \# of arrivals during the i^{th} time interval on the j^{th} observation period$
- Example: Divide a 10-hour business day [8am,6pm] into equal intervals k = 20 whose length $\Delta t = \frac{1}{2}$, and observe over n = 3 days

May be we can combine periods 8:30-9:00 and 9:00 to 9:30 as arrival rates are

		Num	ber of Arr	ivals	Estimated Arrival
Time P	eriod	Day 1	Day 2	Day 3	Rate (arrivals/hr)
8:00 -	8:30	12	14	10	24
8:30 -	9:00	23	26	32	54
9:00 -	9:30	27	18	32	52
9:30 -	10:00	20	13	12	30

For instance, 1/3(0.5)*(23+26+32) = 54 arrivals/hour

Selecting Model without Data

- If data is not available, some possible sources to obtain information about the process are:
 - □ <u>Engineering data:</u> often product or process has performance ratings provided by the manufacturer or company rules specify time or production standards.
 - □ Expert option: people who are experienced with the process or similar processes, often, they can provide optimistic, pessimistic and most-likely times, and they may know the variability as well.
 - Physical or conventional limitations: physical limits on performance, limits or bounds that narrow the range of the input process.
 - ☐ The nature of the process.
- The uniform, triangular, and beta distributions are often used as input models.

Selecting Model without Data

- Example: Production planning simulation.
 - Input of sales volume of various products is required, salesperson of product XYZ says that:
 - No fewer than 1,000 units and no more than 5,000 units will be sold.
 - Given her experience, she believes there is a 90% chance of selling more than 2,000 units, a 25% chance of selling more than 3,500 units, and only a 1% chance of selling more than 4,500 units.
 - Translating these information into a cumulative probability of being less than or equal to those goals for simulation input:

i	Interval (Sales)	Cumulative Frequency, c _i
1	$1000 \leq x \leq 2000$	0.10
2	$2000 < x \le 3500$	0.75
3	$3500 < x \le 4500$	0.99
4	$4500 < x \le 5000$	1.00

Multivariate and Time-Series Input Models

Multivariate:

For example, lead time and annual demand for an inventory model, increase in demand results in lead time increase, hence variables are dependent.

Time-series:

□ For example, time between arrivals of orders to buy and sell stocks, buy and sell orders tend to arrive in bursts, hence, times between arrivals are dependent.

Co-variance and Correlation are measures of the linear dependence of random variables

Covariance and Correlation

[Multivariate/Time Series]

$$(X_1 - \mu_1) = \beta(X_2 - \mu_2) + \mathcal{E}$$
 ε is a random variable

- ε is a random variable with mean *0* and is independent of *X*₂
- \square $\beta = 0$, X_1 and X_2 are statistically independent
- \square $\beta > 0$, X_1 and X_2 tend to be above or below their means together
- \square β < 0, X_1 and X_2 tend to be on opposite sides of their means

Covariance between X_1 and X_2 :

$$cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1 X_2) - \mu_1 \mu_2$$

where $cov(X_1, X_2)$ $\begin{cases} = 0, \\ < 0, \\ > 0, \end{cases}$ then β $\begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$

Co-variance can take any value between $-\infty$ to ∞

Covariance and Correlation

[Multivariate/Time Series]

- Correlation normalizes the co-variance to -1 and 1.
- Correlation between X_1 and X_2 (values between -1 and 1):

$$\rho = \operatorname{corr}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

- where $corr(X_1, X_2)$ $\begin{cases} = 0, \\ < 0, \\ > 0, \end{cases}$ then β $\begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$
- □ The closer ρ is to -1 or 1, the stronger the linear relationship is between X_1 and X_2 .

Auto Covariance and Correlation

- A "time series" is a sequence of random variables X₁, X₂, X₃, ..., are identically distributed (same mean and variance) but dependent.
 - \square Consider the random variables X_t , X_{t+h}
 - \square cov(X_t , X_{t+h}) is called the *lag-h* autocovariance
 - \square corr(X_t , X_{t+h}) is called the *lag-h autocorrelation*
 - □ If the autocovariance value depends only on *h* and not on *t*, the time series is covariance stationary

Multivariate Input Models

- If X_1 and X_2 are normally distributed, dependence between them can be modeled by the **bi-variate normal distribution** with μ_1 , μ_2 , σ_1^2 , σ_2^2 and correlation ρ
 - □ To Estimate μ_1 , μ_2 , σ_1^2 , σ_2^2 , see "Parameter Estimation" (slide 16-18, Section 9.3.2 in book)
 - □ To Estimate ρ , suppose we have n independent and identically distributed pairs $(X_{11}, X_{21}), (X_{12}, X_{22}), ... (X_{1n}, X_{2n})$, then:

$$\hat{cov}(X_1, X_2) = \frac{1}{n-1} \sum_{j=1}^{n} (X_{1j} - \hat{X}_1)(X_{2j} - \hat{X}_2)$$

$$= \frac{1}{n-1} \left(\sum_{j=1}^{n} X_{1j} X_{2j} - n \hat{X}_1 \hat{X}_2 \right)$$

$$\hat{\rho} = \frac{\hat{\text{cov}}(X_1, X_2)}{\hat{\sigma}_1 \hat{\sigma}_2}$$
Sample deviation

Multivariate Input Models

- Algorithm to generate bi-variate normal random variables
- 1. Generate Z_1 and Z_2 , two independent standard normal random variables (see Slides 38 and 39 of Chapter 8)
- 2. Set $X_1 = \mu_1 + \sigma_1 Z_1$
- 3. Set $X_2 = \mu_2 + \sigma_2(\rho Z_1 + Z_2\sqrt{1-\rho^2})$
- Bi-variate is not appropriate for all multivariate-input modeling problems
- It can be generalized to the k-variate normal distribution to model the dependence among more than two random variables

Example (Lead time vs Demand)

- X1 is the average lead time to deliver in months and X2 is the annual demand for industrial robots.
- Data for this in the last 10 years is shown:

X1: Lead time	X2: Demand
6.5	103
4.3	83
6.9	116
6.0	97
6.9	112
6.9	104
5.8	106
7.3	109
4.5	92
6.3	96

Example (Lead time vs Demand) contd ...

$$\overline{X}_1 = 6.14$$
, $\hat{\sigma}_1 = 1.02$; $\overline{X}_2 = 101.8$, $\hat{\sigma}_2 = 9.93$

Correlation is estimated as:

$$\sum_{j=1}^{10} X_{1j} X_{2j} = 6328.5$$

$$cov = [6328.5 - (10)(6.14)(101.80)]/(10-1) = 8.66$$

$$\hat{\rho} = \frac{8.66}{(1.02)(9.93)} = 0.86$$

Time-Series Input Models

[Multivariate/Time Series]

- If X₁, X₂, X₃,... is a sequence of identically distributed, but dependent and covariance-stationary random variables, then we can represent the process as follows:
 - □ Autoregressive order-1 model, AR(1)
 - □ Exponential autoregressive order-1 model, EAR(1)
 - Both have the characteristics that:

$$\rho_h = corr(X_t, X_{t+h}) = \rho^h$$
, for $h = 1, 2, ...$

 Lag-h autocorrelation decreases geometrically as the lag increases, hence, observations far apart in time are nearly independent

AR(1) Time-Series Input Models

[Multivariate/Time Series]

$$X_{t} = \mu + \phi(X_{t-1} - \mu) + \varepsilon_{t}$$
, for $t = 2,3,...$

where $\varepsilon_2, \varepsilon_3, \ldots$ are i.i.d. normally distributed with $\mu_{\varepsilon} = 0$ and variance σ_{ε}^2

- If X₁ is chosen appropriately, then
 - $\square X_1, X_2, \dots$ are normally distributed with $mean = \mu$, and $variance = \sigma_{\varepsilon}^2/(1-\phi^2)$
 - \square Autocorrelation $\rho_h = \phi^h$
- To estimate ϕ , μ , σ_{ϵ}^2 :

$$\hat{\mu} = \overline{X}, \qquad \hat{\sigma}_{\varepsilon}^2 = \hat{\sigma}^2 (1 - \hat{\phi}^2), \qquad \hat{\phi} = \frac{\hat{\text{cov}}(X_t, X_{t+1})}{\hat{\sigma}^2}$$

where $\hat{cov}(X_t, X_{t+1})$ is the *lag-1* autocovariance

AR(1) Time-Series Input Models

- Algorithm to generate AR(1) time series:
- 1. Generate X_1 from Normal distribution with $mean = \mu$, and $variance = \sigma_{\epsilon}^2/(1-\phi^2)$. Set t=2
- 2. Generate ε_t from Normal distribution with mean 0 and variance σ_{ε}^2
- 3. Set $X_t = \mu + \phi(X_{t-1} \mu) + \varepsilon_t$
- 4. Set t=t+1 and go to step 2

EAR(1) Time-Series Input Models

[Multivariate/Time Series]

$$X_{t} = \begin{cases} \phi X_{t-1}, & \text{with probability } \phi \\ \phi X_{t-1} + \varepsilon_{t}, & \text{with probability } 1-\phi \end{cases}$$
 for $t = 2,3,...$

where $\varepsilon_2, \varepsilon_3, \ldots$ are i.i.d. exponentially distributed with $\mu_{\varepsilon} = 1/\lambda$, and $0 \le \phi < 1$

- If X₁ is chosen appropriately, then
 - $\square X_1, X_2, \dots$ are exponentially distributed with $mean = 1/\lambda$
 - \square Autocorrelation $\rho_h = \phi^h$, and only positive correlation is allowed.
- To estimate ϕ , λ :

$$\hat{\lambda} = 1/\overline{X}$$
, $\hat{\phi} = \hat{\rho} = \frac{\hat{\text{cov}}(X_t, X_{t+1})}{\hat{\sigma}^2}$

where $\hat{cov}(X_t, X_{t+1})$ is the *lag-1* autocovariance

EAR(1) Time-Series Input Models

[Multivariate/Time Series]

- Algorithm to generate EAR(1) time series:
- 1. Generate X_1 from exponential distribution with $mean = 1/\lambda$. Set t=2
- 2. Generate *U* from Uniform distribution [0,1].

If $U \le \phi$, then set $X_t = \phi X_{t-1}$.

Otherwise generate ε_t from the exponential distribution with mean $1/\lambda$ and set $X_t = \mu + \phi(X_{t-1} - \mu) + \varepsilon_t$

3. Set t=t+1 and go to step 2

EAR(1) Time-Series Input Models

- Example: The stock broker would typically have a large sample of data, but suppose that the following twenty time gaps between customer buy and sell orders had been recorded (in seconds): 1.95, 1.75, 1.58, 1.42, 1.28, 1.15, 1.04, 0.93, 0.84, 0.75, 0.68, 0.61, 11.98, 10.79, 9.71, 14.02, 12.62, 11.36, 10.22, 9.20. Standard calculations give $\overline{X} = 5.2 \text{ and } \hat{\sigma}^2 = 26.7$
- To estimate the lag-1autocorrelation we need $\sum_{j=1}^{19} X_t X_{t+1} = 924.1$
- Thus, cov=[924.1-(20-1)(5,2)²]/(20-1)=21.6 and $\hat{\rho} = 21.6/26.7 = 0.8$
- Inter-arrivals are modeled as EAR(1) process with mean = 1/5.2=0.192 and φ=0.8 provided that exponential distribution is a good model for the individual gaps

Normal-to-Anything Transformation (NORTA)

- **Z** is a Normal random variable with cdf $\phi(z)$
- We know $R=\phi(z)$ is uniform U(0,1)
- To generate any random variable X that has CDF F(x), we use the variate method:
- $X=F^{-1}(R)=F^{-1}(\phi(z))$
- To generate bi-variate non-normal:
- Generate bi-variate normal RVs (Z1,Z2)
- Use the above transformation
- Numerical approximations are needed to inverse

Summary

- In this chapter, we described the 4 steps in developing input data models:
 - Collecting the raw data
 - Identifying the underlying statistical distribution
 - Estimating the parameters
 - □ Testing for goodness of fit