Algorithm: $[A,B] := GAUSSJORDAN_MRHS_PART1(A,B)$

Partition
$$A \rightarrow \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right)$$
 , $B \rightarrow \left(\begin{array}{c|c} B_T \\ \hline B_B \end{array}\right)$

where A_{TL} is 0×0 , B_T has 0 rows

while $m(A_{TL}) < m(A)$ do

Repartition

$$\left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \rightarrow \left(\begin{array}{c|c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right)$$

$$a_{01} := a_{01}/\alpha_{11}$$
 $(= u_{01})$

$$a_{21} := a_{21}/\alpha_{11}$$
 $(= l_{21})$

$$A_{02} := A_{02} - a_{01}a_{12}^T \qquad (= A_{02} - u_{01}a_{12}^T)$$

$$A_{22} := A_{22} - a_{21}a_{12}^T \qquad (= A_{22} - l_{21}a_{12}^T)$$

$$B_0 := B_0 - a_{01}b_1^T \qquad (= B_0 - u_{01}b_1^T)$$

$$B_2 := B_2 - a_{21}b_1^T \qquad (= B_2 - l_{21}b_1^T)$$

 $a_{01} := 0$ (zero vector)

 $a_{21} := 0$ (zero vector)

Continue with

$$\left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c|c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right)$$

endwhile

Algorithm: $[A, B] := \text{GAUSSJORDAN_MRHS_PART2}(A, B)$

Partition
$$A o \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right)$$
 , $B o \left(\begin{array}{c|c} B_T \\ \hline B_B \end{array} \right)$

where A_{TL} is 0×0 , B_T has 0 rows

while $m(A_{TL}) < m(A)$ do

Repartition

$$\left(\begin{array}{c|c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c|c}
A_{00} & a_{01} & A_{02} \\
\hline
a_{10}^T & \alpha_{11} & a_{12}^T \\
\hline
A_{20} & a_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c|c|c}
B_T \\
\hline
B_B
\end{array}\right) \to \left(\begin{array}{c|c}
B_0 \\
\hline
b_1^T \\
\hline
B_2
\end{array}\right)$$

$$b_1^T := (1/\alpha_{11})b_1^T$$

$$\alpha_{11} := 1$$

Continue with

$$\left(\begin{array}{c|c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c|c|c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right)$$

endwhile