

AQUARIUS

Часть 1. Работа в основной ОС.

Тестовое окружение

Дешифратор 3в8

- Создайте директорию mkdir -p ~/practice/my_projects/decoder
- Запустите VS code и создайте файл top.sv в директории decoder
- Опишите декодер 3в8 при помощи

*обратите внимание на системную функцию \$dumpvars в файле tb.sv. Она позволяет создавать файл dump.vcd

a) assign и логический	б) always @(*)	в) always @(*)	г) always @(*)	д) assign, ~, &
сдвиг	+ if-else	+ case	+ ?:	

• Создайте файл tb.sv, производящий на входы устройства:

а) Случайные	б) Последовательный перебор при помощи цикла:		
воздействия	for (integer data_in=0; data_in<=3'b111; data_in++)		

- Скомпилируйте Verilog командой iverilog -g2012 -s tb top.sv tb.sv
- Запустите файл a.out командой vvp a.out
- Запустите программу просмотра временных диаграмм gtkwave dump.vcd
- *Реализуйте функцию проверки логики устройства с выводом результата в консоль

*Ha текущий момент Icarus не поддерживает симуляцию массивов шин

D-триггер

- 1. Создать директорию flip-flop в папке ~/practice/my_projects командой mkdir -p ~/practice/my_projects/flip-flop
- 2. Описать D-триггер в файле flip_flop.sv
- 3. Создать файл tb.sv, произвести случайное воздействие на входы.
- 4. Произвести симуляцию. iverilog -g2012 -s tb tb.sv flip_flop.sv запуск симуляции
- 5. Рассмотреть временные диаграммы.

AQUARIUS

Часть 2. Работа на виртуальной машине

Пример конечного автомата (Торговый автомат без сдачи)

Автомат продает товар по цене 15\$, но не выдает сдачу

Задача: добавьте возможность выдачи сдачи

Указания по выполнению

- 1. Перейдите в директорию ~/practise/fsm_lab.
- 2. Ознакомьтесь с кодом.
- 3. Проведите компиляцию командой vlog vending_machine.sv tb.sv
- 4. Запустите ModelSim командой vsim -voptargs="+acc" tb
- 5. Добавьте необходимые сигналы для просмотра состояний (c_state, n_state)
- 6. Чтобы добавить все сигналы используйте **add wave -recursive -depth 10** * или навигацию с помощью мыши
- 7. Запустите симуляцию командой **run –all**
- 8. Are you sure you want to finish? **No**
- 9. Повторный запуск осуществляется командой restart
- 10. Для запуска в консольном режиме из терминала используйте команду vsim -c tb

Перечень полезных ссылок

https://docstech.ru/icvgc-startwork/ - гайд по началу работы с icarus. На русском языке.
https://steveicarus.github.io/iverilog/index.html - англоязычная документация по работе с icarus.
https://steveicarus.github.io/iverilog/usage/command_line_flags.html - описание флагов icarus.