Q1. QLoRA: Efficient Finetuning of Quantized LLMs 1. What is QLoRA and how does it differ from standard LoRA?

What is QLoRA?

QLoRA, or Quantized Low-Rank Adapters, is an advanced technique that enhances the efficiency of fine-tuning large language models (LLMs) by utilizing quantization methods. It builds upon the foundational principles of Low-Rank Adapters (LoRA) but incorporates additional strategies to reduce memory usage while maintaining high fidelity in model performance.

Key Features of QLoRA

Quantization Techniques:

QLoRA employs 4-bit NormalFloat (NF4) quantization and double quantization techniques. These methods allow for effective fine-tuning with significantly reduced memory requirements while preserving the necessary precision for learning.

Paged Optimizers:

This approach includes paged optimizers that help manage memory usage during training, which is particularly important for preventing out-of-memory errors that can occur when fine-tuning large models.

Performance:

QLoRA has demonstrated the ability to match the performance of traditional 16-bit LoRA fine-tuning. Specifically, it has been shown to achieve similar accuracy on benchmarks while using considerably less memory .

Differences Between QLoRA and Standard LoRA

Data Representation:

Standard LoRA typically uses 16-bit floating-point representations for parameters, while QLoRA utilizes a combination of a low-precision storage type (4-bit NF4) and a higher precision computation type (usually BFloat16). This allows QLoRA to perform matrix multiplications in 16-bit while storing weights in a more compact form .

Memory Efficiency:

QLoRA's quantization techniques significantly reduce the memory footprint required for fine-tuning compared to standard LoRA. In practical applications, this means that QLoRA can operate effectively on hardware with limited memory resources, making it more accessible for researchers and practitioners .

Performance Metrics:

Studies have shown that QLoRA can replicate the performance of both full-model fine-tuning and standard LoRA fine-tuning across various benchmarks, indicating that it does not compromise on model accuracy despite its lower memory requirements.

Conclusion

QLoRA represents a significant advancement over standard LoRA by integrating quantization techniques that enhance memory efficiency while maintaining high model performance. This

makes it a valuable tool for fine-tuning large language models in resource-constrained environments.

2.Explain the role and benefits of the NormalFloat4 (NF4) quantization format

Role and Benefits of the NormalFloat4 (NF4) Quantization Format

Role in QLoRA:

- NF4 (NormalFloat4) is a custom 4-bit quantization format used in QLoRA to compress pretrained language model weights.
- It enables memory-efficient fine-tuning by quantizing the base model weights and training only lightweight adapter layers (LoRA).
- Designed specifically for normally distributed weight values commonly seen in large language models.

Why NF4?

- Unlike INT4 or FP4, which apply uniform quantization, NF4 uses a non-uniform format that allocates more representation capacity near zero.
- This matches the distribution of neural network weights and leads to better preservation of model accuracy after quantization.

Key Benefits:

- **Higher accuracy:** Outperforms other 4-bit formats (like INT4 and FP4) on downstream tasks.
- **Memory savings:** Reduces memory footprint dramatically, making it possible to fine-tune large models (e.g., 65B) on a single 48GB GPU.
- **Efficient representation:** More accurately captures weight distributions, especially around zero.
- No accuracy trade-off: Maintains full 16-bit fine-tuning performance when paired with LoRA.

• Hardware-friendly: Can be efficiently implemented in modern GPU kernels.

In short: NF4 allows highly compressed models without compromising performance, unlocking the ability to train large LLMs on limited hardware.

3. What is "double quantization" and why is it useful?

Double quantization refers to quantizing not only the model weights (using NF4), but also the **quantization constants themselves** (typically with 8-bit precision).

Why it's useful:

- Further reduces memory usage up to 3× savings over single quantization.
- Maintains model accuracy with no noticeable degradation.
- Enables fine-tuning of large models (like 65B) within limited GPU memory.

In short: It's a memory optimization technique that allows large-scale training with minimal performance loss.

4. How do paged optimizers help in memory management during training?

Paged optimizers use **unified memory** to offload optimizer states between GPU and CPU memory as needed.

Benefits:

- Prevent out-of-memory (OOM) errors, especially during gradient checkpointing or long-sequence training.
- Enable fine-tuning of **very large models (up to 65B)** on GPUs with limited memory (e.g., 48GB).
- Maintain training stability without manual memory management.

In short: Paged optimizers dynamically manage memory, allowing efficient large-model training on constrained hardware

5. Why is QLoRA significant in enabling large model finetuning on limited hardware?

5. Why is QLoRA significant in enabling large model finetuning on limited hardware?

QLoRA enables fine-tuning of large language models (up to 65B parameters) on standard GPUs (e.g., 24–48GB) by:

- Using 4-bit quantization (NF4) to reduce memory usage drastically.
- Freezing the base model and training only low-rank adapter layers (LoRA).
- Employing paged optimizers to avoid GPU memory overflow.
- Retaining performance comparable to full 16-bit fine-tuning.

In short: QLoRA makes large-scale model fine-tuning practical and affordable for researchers without high-end infrastructure

6.Suggest one possible improvement or variation to the QLoRA method. Why might it help?

Improvement: Use **mixed-precision quantization**, apply 8-bit quantization to sensitive layers (e.g., attention heads, embeddings) while keeping others in 4-bit (NF4).

Why it might help:

- Preserves critical model performance where 4-bit may lose precision.
- Offers a balance between accuracy and memory efficiency.
- Could improve stability on complex downstream tasks or domain-specific finetuning.

In short: Mixed precision may retain more model expressiveness without sacrificing the memory savings that make QLoRA attractive

Q2.PokerGPT: Lightweight Solver for Multi-Player Poker 1.Describe the overall pipeline of PokerGPT from raw data to trained model.

1. Data Collection

- Collected real-world multi-player poker game logs (e.g., from PokerStars).
- Extracted complete game states, including player actions, hole cards, community cards, and outcomes.

2. Data Preprocessing & Prompt Engineering

- Filtered hands with complete public and private information.
- Formatted each hand into a structured natural language prompt, capturing the entire decision context (e.g., position, stack, pot size, hand, history).
- Assigned rewards using win rates and hand outcomes to score decisions.

3. Supervised Fine-tuning (SFT)

- Fine-tuned a base LLM (OPT-1.3B) on high-quality prompts using supervised learning.
- Prioritized samples from high win-rate players to bias training toward expert behavior.

4. Reward Model Training

- Trained a separate reward model to rank responses based on quality (e.g., expected win rate or rationality).
- 5. RLHF (Reinforcement Learning with Human Feedback)
 - Applied PPO to align the model's decisions with high-reward behaviors.
 - Reward model guided optimization toward strategic and effective decision-making.

Summary: PokerGPT transforms raw poker logs into structured prompts, trains an LLM using expert examples, and refines it using RLHF for high-quality multi-player poker performance.

2. What makes PokerGPT different from traditional poker solvers like CFR or DeepStack?

PokerGPT uses a language model-based approach, making it fundamentally different from traditional solvers:

Feature	Traditional Solvers (CFR, DeepStack)	PokerGPT
Core Method	Game-theoretic algorithms (e.g., CFR, search trees)	Language modeling + RLHF
Data Input	Structured game state encoding	Natural language prompts
Player Support	Typically 2-player (heads-up)	Easily handles multi-player games
Computational Cost	Very high (e.g., TBs of RAM, massive CPUs)	Runs on single GPU (e.g., 3090)
Interactivity	Not interactive or human-readable	Chat-style interface possible
Adaptability	Rigid, handcrafted models	Learns from real gameplay data

In short: PokerGPT is more scalable, flexible, and user-friendly, making it practical for real-world, multi-player poker training and play.

3. Why is RLHF used in PokerGPT and how does it affect decision-making quality?

Why RLHF is used:

- PokerGPT first learns from supervised data (e.g., past hands), but that only teaches imitation.
- RLHF (Reinforcement Learning with Human Feedback) helps align the model's decisions with high-quality strategies by optimizing for outcome-based rewards.

• A trained reward model scores actions based on effectiveness (e.g., win rate), and PPO fine-tunes the model toward high-reward choices.

Effect on decision-making quality:

- Encourages more strategically sound, risk-aware, and context-sensitive decisions.
- Helps PokerGPT go beyond memorized plays to reason through novel hands.
- Improves robustness and reduces poor or erratic moves that SFT alone may not catch.

In short: RLHF transforms PokerGPT from a pattern imitator into a reward-optimized strategic agent.

4. What are the advantages of using LLMs for multiplayer poker games?

- Scalability: Easily handles more than two players, unlike traditional solvers limited to heads-up formats.
- Lower compute requirements: Trained and run on a single GPU—no need for massive search trees or simulations.
- Natural input/output: Accepts and produces human-readable text, making it suitable for interactive and educational tools.
- Real-world adaptability: Learns directly from real game logs, adapting to a wide range of strategies and styles.
- Explainability: Can provide reasoning for decisions if prompted, helping players learn strategy.
- Faster inference: Provides decisions quickly without simulating thousands of game states.

In short: LLMs make multiplayer poker modeling more efficient, flexible, and user-friendly compared to traditional solvers.

5. What challenges might arise when scaling PokerGPT to more complex games like Omaha?

- State explosion: Omaha deals 4 hole cards per player, leading to vastly more possible hands and action sequences.
- Prompt length limits: Encoding full game context becomes harder due to increased card and action complexity, possibly exceeding LLM token limits.
- Data sparsity: Real, high-quality gameplay data for Omaha is less common and harder to structure.
- Hand evaluation difficulty: Determining hand strength and equity in Omaha is more computationally intensive, which could confuse or mislead the model.
- Strategy complexity: Bluffing, drawing hands, and multi-way pots are harder to model accurately in Omaha than in Texas Hold'em.

In short: Omaha's added complexity strains both the model's input capacity and its ability to learn reliable strategies.

6.Suggest one possible extension or improvement to PokerGPT and explain its benefit.

Extension: Integrate a lightweight hand strength evaluator or Monte Carlo simulator alongside the LLM.

Why it helps:

- Enhances the model's ability to make probability-aware decisions, especially in complex situations like multi-way pots or draws.
- Compensates for LLMs' weakness in precise numerical reasoning and probabilistic estimation.
- Enables hybrid reasoning—language model for strategic context + numeric module for hand equity.

In short: Adding an external evaluator would ground PokerGPT's decisions in math, improving both accuracy and realism.

Q3. GRPO (Group Relative PPO) - DeepSeekMath 7B

1. What is the main idea behind GRPO and how does it differ from traditional PPO?

Main idea of GRPO (Group Relative Policy Optimization):

- GRPO removes the need for a value network by using relative rewards within a group of sampled responses.
- It compares each output's reward to the mean reward of its group, calculating advantages using z-score normalization.

Key differences from traditional PPO:

Feature	PPO	GRPO
Value Estimation	Uses a trained value (critic) network	No value network—uses group-based baseline
Advantage Calculation	Based on predicted values (e.g., GAE)	Based on z-score of reward in sampled group
Optimization Target	Absolute reward + KL penalty	Relative reward + direct KL in loss
Efficiency	Requires training an extra model	Lightweight and more memory-efficient

In short: GRPO simplifies RLHF by replacing absolute value modeling with relative, in-group comparisons—improving stability and reducing compute.

2.How does GRPO eliminate the need for a separate value network?

GRPO eliminates the value network by using group-based relative rewards instead of estimating absolute values.

- For each input, it samples a group of outputs and computes their rewards.
- It then calculates the mean and standard deviation of these rewards.
- Each output's advantage is computed as a z-score:
- This z-score acts as the advantage, guiding the policy update—no critic network needed.

$$A_i = rac{r_i - \mathrm{mean}(r)}{\mathrm{std}(r)}$$

In short: GRPO sidesteps value prediction by using statistical comparisons within sampled groups to drive learning.

3. What is the significance of using z-score normalization for reward signals?

Z-score normalization standardizes rewards within each sampled group by centering them around the mean and scaling by standard deviation.

Why it matters:

- Makes rewards comparable across groups and batches.
- Focuses optimization on relative quality, not absolute values.
- Improves training stability, especially when reward distributions are skewed or noisy.
- Prevents large or small rewards from dominating updates unfairly.

In short: Z-score normalization helps GRPO learn robustly from relative differences, avoiding issues tied to raw reward scales.

4. Why might GRPO be better suited for math reasoning tasks than PPO?

- No value model needed: PPO struggles with training a stable value function in math tasks where rewards are sparse or delayed (e.g., only at final answer).
- Step-wise reward flexibility: GRPO can be applied to step-level supervision by comparing outputs within a group—even without intermediate reward signals.
- Relative comparison fits math tasks: In math, quality often lies in relative correctness (e.g., closer to correct logic), which GRPO directly optimizes.
- Simpler and more stable: GRPO avoids value model instability and simplifies training.

In short: GRPO's group-based, relative reward mechanism is better aligned with the sparse and structured nature of math reasoning tasks.

5. What are potential weaknesses of GRPO when all sampled outputs are poor?

- Relative rewards become misleading: Even a bad output may get a high z-score if others are worse, reinforcing poor behavior.
- Lack of absolute feedback: Without an external baseline or absolute threshold,
 GRPO can't detect that all outputs are suboptimal.
- Slower convergence: Training may stall or drift if poor-quality samples dominate early stages.
- Overfitting to noise: In low-reward groups, z-score variance can amplify random fluctuations, leading to unstable updates.

In short: GRPO may falsely reward weak outputs if the entire group lacks quality, harming learning efficiency.

6.Suggest a modification to GRPO to make it more robust to low-quality output groups.

Modification: Combine relative z-scores with absolute reward thresholds during advantage

$$ilde{A}_i = \lambda \cdot \operatorname{z-score}(r_i) + (1 - \lambda) \cdot \operatorname{normalized}(r_i)$$
 computation.

Example:

Where:

- z-score(r_i) captures relative performance,
- normalized(r_i) adds an anchor from absolute reward,
- $\lambda \in [0,1]$ balances the two.

Benefits:

- Penalizes uniformly poor output groups using the absolute score,
- Prevents reinforcement of bad strategies,
- Adds stability, especially during early or noisy training phases.

In short: Mixing absolute and relative signals ensures GRPO learns meaningfully—even when all outputs are weak.