Tarea 1 - Conejeros_Gonzalez

September 26, 2022

Tarea 1: Felipe Conejeros y Mabel González

```
[7]: import numpy as np
import pandas as pd #para importar datos
import matplotlib.pyplot as plt
import statsmodels.api as sm #libreria que entrega la info en formato tablas.
import statsmodels.formula.api as smf
import sklearn
import scipy
import nbconvert
from scipy.stats import nbinom

%matplotlib inline
```

0.0.1 Pregunta 1

- [3]: # Se carga la base de datos de junaeb junaeb = pd.read_csv('../../data/junaeb.csv') #variable que contiene los datos junaeb.dropna(inplace=True) #borra los na (primera limpieza)
- [4]: junaeb.reset_index(drop=True, inplace=True) junaeb.head()
- [4]:vive_madre n_personas n_habitaciones cercania_juegos \ vive_padre 0 3.0 4.0 1 1.0 1 0 1 5.0 3.0 1.0 2 5.0 3.0 1.0 1 1 3 1 1 4.0 2.0 1.0 4 1 1 5.0 3.0 2.0

	cercania_servicios	edad_primer_parto	area	educm	educp
0	1.0	25.0	1	0	0
1	1.0	23.0	1	13	13
2	1.0	19.0	1	12	17
3	1.0	27.0	1	6	13
4	1.0	20.0	1	13	16

```
[6]: #Luego se obtienen las estadísticas descriptivas de los datos
```

	junaeb.describe()									
[6]:		vive_padre	vive_	madre	n_personas	n_habitacion	es c	ercania_	juegos	\
	count	6379.000000	6379.0	00000	6379.000000	6379.0000	00	6379.	000000	
	mean	0.685531	0.9	74761	4.393322	2.5842	61	1.	200188	
	std	0.464341	0.1	61783	1.342094	0.9004	60	0.	445767	
	min	0.000000	0.0	00000	1.000000	0.0000	00	1.	000000	
	25%	0.000000	1.0	00000	4.000000	2.0000	00	1.	000000	
	50%	1.000000	1.0	00000	4.000000	2.0000	00	1.	000000	
	75%	1.000000	1.0	00000	5.000000	3.0000	00	1.	000000	
	max	1.000000	2.0	00000	16.000000	20.0000	00	4.	000000	
		cercania_ser		edad_	primer_parto	area		educm	\	
	count		000000		6379.000000	6379.000000		.000000		
	mean		150494		22.218059	0.900455		.632074		
	std		409116		5.192737	0.299416		.915690		
	min		000000		10.000000	0.000000	0	.000000		
	25%		000000		18.000000	1.000000		.000000		
	50%	1.	000000		21.000000	1.000000	13	.000000		
	75%		000000		25.000000	1.000000		.000000		
	max	4.	000000		48.000000	1.000000	20	.000000		
		_								
		educp								
	count	6379.000000								
	mean	11.196269								
	std	5.269743								
	min	0.000000								
	25%	9.000000								
	50%	13.000000								
	75%	13.000000								
	max	20.000000								

Se observa un claro error al obtener como máximo 2 para la variable vive_madre, siendo esta una variable dicotómica que solo puede tomar el valor de 0 o 1. Por otro lado, se evidencia la posible existencia de un outlier en la variable de n_habitaciones, dado que el valor máximo alcanzado por una observación es de 20, muy alejado del promedio correspondiente a 2.584.

Para corroborar esto, se generan tablas con el resumen de cada una de estas variables.

```
[5]: respuestas_vive_madre = []
     cantidad_vive_madre = []
     for i in range(len(junaeb)):
         if junaeb["vive_madre"][i] not in respuestas_vive_madre:
             respuestas_vive_madre.append(junaeb["vive_madre"][i])
     for i in range(len(respuestas_vive_madre)):
         k = 0
```

```
[5]: vive_madre Cantidad
0 1 6208
1 0 166
2 2 5
```

De la tabla anterior, se evidencian 5 observaciones que toman el valor 2 para la variable vive_madre, por lo que se eliminarán de la base de datos.

```
[6]:
          Núm habitaciones
                              Cantidad
     0
                        4.0
                                    631
     1
                        3.0
                                   2329
     2
                        2.0
                                   2862
     3
                        5.0
                                    128
     4
                                    397
                        1.0
     5
                        6.0
                                     24
                                      2
     6
                        8.0
     7
                       20.0
                                      1
     8
                        9.0
                                      1
                        0.0
     9
                                      1
     10
                        7.0
                                      2
```

F

De esta tabla, se tiene una observación que indica un total de 20 habitaciones para un hogar. Con lo visto anteriormente, se corrobora la existencia de este outlier, por lo que se eliminará la observación de esta base de datos.

A continuación, se eliminarán las 5 observaciones correspondientes al valor 2 de vive_madre y la observación de valor 20 para el n_habitaciones.

```
[11]: junaeb_index_1 = junaeb[junaeb["vive_madre"] == 2].index
junaeb = junaeb.drop(junaeb_index_1)

junaeb_index_2 = junaeb[junaeb["n_habitaciones"] == 20].index
junaeb = junaeb.drop(junaeb_index_2)
```

0.0.2 Pregunta 2: modelo OLS

Se ejecuta un modelo de probabilidad lineal (MCO) para explicar la probabilidad de que los padres se encuentren viviendo en el hogar. Las variables de la base de datos que se consideran relevantes para el estudio son: vive_madre,n_personas,n_habitaciones,edad_primer_parto,area,educm,educp. Se dejaron fuera las variables de cercania_juegos y cercania_servicios por no resultar de interés.

OLS Regression Results

Dep. Variable:	vive_	_padre	R-squa	red:		0.169
Model:		OLS	Adj. F	l-square	d:	0.168
Method:	Least So	quares	F-stat	istic:		184.8
Date:	Thu, 15 Sep	2022	Prob (F-stati:	stic):	3.49e-250
Time:	12:	:23:59	Log-Li	kelihoo	d:	-3565.4
No. Observations:		6373	AIC:			7147.
Df Residuals:		6365	BIC:			7201.
Df Model:		7				
Covariance Type:	noni	robust				
				======		
=====						
	coef	std err		t	P> t	[0.025
0.975]						

const	0.1267	0.048	2.659	0.008	0.033
0.220					
vive_madre	0.1197	0.034	3.526	0.000	0.053
0.186					
n_personas	0.0561	0.005	12.273	0.000	0.047
0.065					
n_habitaciones	-0.0453	0.007	-6.558	0.000	-0.059
-0.032					
edad_primer_parto	0.0095	0.001	8.963	0.000	0.007
0.012					
area	-0.0775	0.018	-4.333	0.000	-0.113
-0.042					
educm	-0.0160	0.001	-11.018	0.000	-0.019
-0.013					
educp	0.0334	0.001	31.268	0.000	0.031
0.035					
		=======			
Omnibus:		762.367	Durbin-Watso	on:	1.982
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Bera	(JB):	825.295
Skew:		-0.831	Prob(JB):		6.16e-180
Kurtosis:		2.410	Cond. No.		292.
=======================================		=======			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

C:\Users\felip\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

0.0.3 Interpretación

En este caso, aplicar un OLS presenta dificultades ya que la variable dependiente no es continua, tomando el valor de 1 si se cumple que el padre vive en el hogar y 0 en otro caso. Con lo anterior, se asume que el error se distribuye normal, obteniendo errores estándar (std err) incorrectos. Por otra parte, esta estimación no permite obtener predicciones confiables, dado que los resultados no necesariamente estarán entre 0 y 1, y en estos casos no se puede realizar una interpretación de estos. Sin embargo, los resultados suelen estar cerca de los correctos, y su interpretación se presenta a continuación:

- El 16,8% de la variación en la variable dependiente es explicada por las variables control, según el R-cuadrado.
- De la prueba F se obtiene un valor-p de 3.49e-250, por lo que se concluye que todas las variables en conjunto explican estadísticamente la variación en la variable vive_padre.
- Todas las variables incluidas en el modelo resultaron ser significativas con un 99% de confianza, siendo estas: vive_madre, n_personas, n_habitaciones, edad_primer_parto, area, educm, educp.

- Si la madre vive en el hogar, aumenta en un 11,97% la probabilidad de que el padre también viva con ellos.
- Si el número de personas en el hogar aumenta en 1, la probabilidad de que el padre viva en la casa aumenta en un 5,61%.
- Las casas con un mayor número de habitaciones disminuyen la probabilidad de que el padre viva en el hogar en un 4,53%.
- Mientras mayor es la edad en que la madre tiene a su primer hijo, aumenta la probabilidad de que el padre viva con ellos en un 0.95%.
- Si la familia reside en zonas urbanas es más probable en un 7,75% que el padre no viva en el hogar.
- Cuando la escolaridad de la madre aumenta en un año, la probabilidad de que el padre viva en el hogar disminuye en un 1.6%.
- Cuando la escolaridad del padre aumenta en un año, la probabilidad de que él viva en el hogar aumenta en un 3,34%.
- El 0 no está dentro de los rangos de intervalos de confianza para el caso de las variables significativas, por lo que es muy poco probable que no haya relación entre cada variable explicativa con la de resultado.

0.0.4 Pregunta 3: modelo Probit

Se ejecuta un modelo Probit para explicar la probabilidad de que los padres se encuentren viviendo en el hogar. Se consideran las mismas variables anteriores para el estudio.

Optimization terminated successfully.

Current function value: 0.538348

Iterations 5

Probit Regression Results

			=========
Dep. Variable:	vive_padre	No. Observations:	6373
Model:	Probit	Df Residuals:	6365
Method:	MLE	Df Model:	7
Date:	Thu, 15 Sep 2022	Pseudo R-squ.:	0.1357
Time:	12:31:20	Log-Likelihood:	-3430.9
converged:	True	LL-Null:	-3969.5
Covariance Type:	nonrobust	LLR p-value:	2.504e-228
	===========		=======================================
=====			
	coef std er	er z P> z	[0.025
0.975]			

const	-1.1956	0.156	-7.661	0.000	-1.502	
-0.890						
vive_madre	0.3335	0.108	3.077	0.002	0.121	
0.546						
n_personas	0.1771	0.015	11.643	0.000	0.147	
0.207						
n_habitaciones	-0.1408	0.023	-6.227	0.000	-0.185	
-0.096						
edad_primer_parto	0.0338	0.004	9.393	0.000	0.027	
0.041						
area	-0.2375	0.060	-3.990	0.000	-0.354	
-0.121						
educm	-0.0510	0.005	-10.316	0.000	-0.061	
-0.041						
educp	0.0974	0.004	27.024	0.000	0.090	
0.104						
=======================================		=======		.=======		

=====

Probit Marginal Effects

Dep. Variable: vive_padre
Method: dydx
At: overall

	=======	=======	========	=======	=======	====
====	dy/dx	std err	Z	P> z	[0.025	
0.975]	•					
vive_madre 0.167	0.1022	0.033	3.082	0.002	0.037	
n_personas 0.063	0.0543	0.005	11.938	0.000	0.045	
n_habitaciones -0.030	-0.0431	0.007	-6.276	0.000	-0.057	
edad_primer_parto 0.012	0.0104	0.001	9.549	0.000	0.008	
area -0.037	-0.0728	0.018	-4.004	0.000	-0.108	
educm -0.013	-0.0156	0.001	-10.504	0.000	-0.019	
educp 0.032	0.0298	0.001	32.393	0.000	0.028	
=======================================					=========	

=====

0.0.5 Interpretación

La interpretación de este modelo es: * Se observan valores de efectos marginales muy similares a los coeficientes obtenidos por el modelo anterior, llegando a las mismas conclusiones finales. * El 13,57% de la variación en la variable dependiente es explicada por las variables control, según el Pseudo R-cuadrado. * Todas las variables consideradas son significativas con un 99% de confianza: vive madre, n personas, n habitaciones, edad primer parto, area, educm, educp, al igual que en el modelo anterior. * Si la madre vive en el hogar, aumenta en un 10,22% la probabilidad de que el padre también viva con ellos. * Si aumenta en 1 el número de personas en el hogar, la probabilidad de que el padre viva en la casa aumenta en un 5,43%. * Mientras más habitaciones tenga el hogar, disminuye la probabilidad de que el padre viva en el en un 4,31%. * Mientras mayor es la edad en que la madre tiene a su primer hijo, aumenta la probabilidad de que el padre viva con ellos en un 1,04%. * Si la familia reside en zonas urbanas es más probable en un 7,28% que el padre no viva en el hogar. * Cuando la escolaridad de la madre aumenta en un año, la probabilidad de que el padre viva en el hogar disminuye en un 1,56%. * Cuando la escolaridad del padre aumenta en un año, la probabilidad de que él viva en el hogar aumenta en un 2,98%. * El 0 no está dentro de los rangos de intervalos de confianza para el caso de las variables significativas, por lo que es muy poco probable que no haya relación entre cada variable de icativa con la de resultado.

0.0.6 Pregunta 4: modelo Logit

Se ejecuta un modelo Logit para explicar la probabilidad de que los padres se encuentren viviendo en el hogar. Se consideran las mismas variables anteriores para el estudio.

```
[16]: model = sm.Logit(y, X) #modelo logit
    logit_model = model.fit()
    print(logit_model.summary())

mfx = logit_model.get_margeff() #se obtienen los efectos marginales
    print(mfx.summary())
```

Optimization terminated successfully.

Current function value: 0.535701

Iterations 6

Logit Regression Results

===========	===========	=======================================	
Dep. Variable:	vive_padre	No. Observations:	6373
Model:	Logit	Df Residuals:	6365
Method:	MLE	Df Model:	7
Date:	Thu, 15 Sep 2022	Pseudo R-squ.:	0.1399
Time:	12:34:08	Log-Likelihood:	-3414.0
converged:	True	LL-Null:	-3969.5
Covariance Type:	nonrobust	LLR p-value:	1.271e-235
=====			
	coef std err	z P> z	[0.025
0.975]			

8

const -1.587	-2.1103	0.267	-7.898	0.000	-2.634	
vive_madre 0.952	0.5980	0.181	3.308	0.001	0.244	
n_personas 0.376	0.3213	0.028	11.533	0.000	0.267	
n_habitaciones	-0.2462	0.039	-6.266	0.000	-0.323	
edad_primer_parto	0.0598	0.006	9.482	0.000	0.047	
0.072 area	-0.3990	0.102	-3.901	0.000	-0.599	
-0.199 educm	-0.0949	0.009	-10.565	0.000	-0.113	
-0.077 educp	0.1673	0.006	26.187	0.000	0.155	
0.180		========	========	.======	========	:===:

Logit Marginal Effects

Dep. Variable: vive_padre Method: dydx overall At:

=======================================		=======		=======		===
=====						
	dy/dx	std err	z	P> z	[0.025	
0.975]						
vive_madre	0.1065	0.032	3.319	0.001	0.044	
0.169						
n_personas	0.0572	0.005	11.913	0.000	0.048	
0.067						
n_habitaciones	-0.0438	0.007	-6.327	0.000	-0.057	
-0.030						
edad_primer_parto	0.0106	0.001	9.675	0.000	0.008	
0.013						
area	-0.0711	0.018	-3.916	0.000	-0.107	
-0.035						
educm	-0.0169	0.002	-10.874	0.000	-0.020	
-0.014						
educp	0.0298	0.001	32.929	0.000	0.028	
0.032						
=======================================	=======	========	========	========	=========	===

=====

0.0.7 Interpretación

La interpretación de este modelo es: * Se observan valores de odds ratio practicamente iguales a los efectos marginales obtenidos por el modelo Probit. * El 13,99% de la variación en la variable dependiente es explicada por las variables control, según el Pseudo R-cuadrado. * Todas las variables consideradas son significativas con un 99% de confianza: vive_madre, n personas, n habitaciones, edad primer parto, area, educm, educp, al igual que los modelos anteriores. * Si la madre vive en el hogar, aumenta en un 10,65% la probabilidad de que el padre también viva con ellos. * Si aumenta en 1 el número de personas en el hogar, la probabilidad de que el padre viva en la casa aumenta en un 5.72%. * Mientras más habitaciones tenga el hogar, disminuve la probabilidad de que el padre viva en el en un 4,38%. * Mientras mayor es la edad en que la madre tiene a su primer hijo, aumenta la probabilidad de que el padre viva con ellos en un 1,06%. * Si la familia reside en zonas urbanas es más probable en un 7,11% que el padre no viva en el hogar. * Cuando la escolaridad de la madre aumenta en un año, la probabilidad de que el padre viva en el hogar disminuye en un 1,69%. * Cuando la escolaridad del padre aumenta en un año, la probabilidad de que él viva en el hogar aumenta en un 2,98%. * El 0 no está dentro de los rangos de intervalos de confianza para el caso de las variables significativas, por lo que es muy poco probable que no haya relación entre cada variable explicativa con la de resultado.

0.0.8 Pregunta 5: Comparación de modelos OLS, Probit y Logit

Los modelos aplicados buscan explicar la variable vive_padre, la cual es una variable dependiente limitada ya que sólo puede tomar 2 valores, el 0 y 1. En estos casos el odelo OLS presenta dificultades ya que puede entregar valores fuera de rango que no podrían interpretarse. Por el contrario, los modelos Probit y Logit utilizan una variable latente que tiene una distribución normal y logística respectivamente, y por ello permiten estimar valores de la variable vive_padre dentro del intervalo requerido.

Comparando los pseudo- R^2 , se tiene un valor de 0,1357 para el modelo de Probit y un valor de 1,399 para Logit. Lo que demuestra que sor sultados muy similares e igualmente significativos, con sutiles diferencias en los coeficientes.

0.0.9 Pregunta 6: Modelo Poisson

Se ejecuta un modelo Poisson para explicar el número de personas que hay dentro de un hogar (n_personas). En este caso se consideran todas las variables de la base de datos para realizar el modelo, ya que es de interés saber si la cercania a los servicios y a juegos son variables que puedan explicar el numero de personas.

- [17]: 0 3.0 1 5.0
 - 2 5.0

3 4.0 4 5.0

Name: n_personas, dtype: float64

Del histograma se observa que la variable tiende a una distribución normal.

[19]: poisson=sm.GLM(y,X,family=sm.families.Poisson()).fit()
print(poisson.summary())

Generalized Linear Model Regression Results

=======================================		=======================================	
Dep. Variable:	n_personas	No. Observations:	6309
Model:	GLM	Df Residuals:	6300
Model Family:	Poisson	Df Model:	8
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-11394.
Date:	Thu, 15 Sep 2022	Deviance:	1927.3
Time:	12:37:41	Pearson chi2:	2.08e+03
No. Iterations:	5		
Covariance Type:	nonrobust		
=======================================			
=====			
	coef std e	rr z P> :	z [0.025
0.975]			

vive_padre 0.147	0.1191	0.014	8.264	0.000	0.091
vive_madre	0.6097	0.036	16.745	0.000	0.538
0.681 cercania_juegos	0.0827	0.014	5.897	0.000	0.055
0.110 cercania_servicios	0.0760	0.015	5.041	0.000	0.046
0.106 n_habitaciones	0.1874	0.006	29.852	0.000	0.175
0.200					
edad_primer_parto -0.001	-0.0033	0.001	-2.877	0.004	-0.006
area 0.187	0.1467	0.021	7.048	0.000	0.106
educm 0.005	0.0022	0.002	1.302	0.193	-()1
educp 0.003	0.0005	0.001	0.411	0.681	-0.002
U.UU3 					

```
[20]: print("fitted lambda")
print(poisson.mu)
```

fitted lambda

[4.86806712 4.20885957 4.80387463 ... 3.29087039 3.85403004 4.14686457]

0.0.10 Interpretación

Luego de aplicar el modelo de Poisson para datos de conteo, se obtuvieron las siguientes variables significativas al 99% de confianza: vive_padre, vive_madre, cercania_juegos, cercania_servicios y n_habitaciones. Por lo que estas variables explican el número de personas que viven en el hogar. Además, la variable edad_primer_parto es significativa al 95% de confianza ya que su valor-p se encuentra entre 0,01 y 0,05. Por otro lado, tanto la educación del padre como la de la madre no son significativas, dado que su valor-p es mayor a 0.05, y por esto no aportan a explicar el numero de personas que viven en el hogar.

Especificamente, la interpretación de las variables significativas es: * El coeficiente de vive_padre implica que cuando los demás factores se mantiene guales, aumenta el numero esperado de personas en el hogar en un 11,91% si el padre vive en el mogar. * El coeficiente de vive_madre implica que cuando los demás factores se mantienen iguales, aumenta el numero esperado de personas en el hogar en un 60,97% si la madre vive en el hogar. * Si hay juegos cerca del hogar, el numero esperado de personas que viven en el hogar aumenta en un 8,27%. * Si hay servicios de salud cerca de la vivienda, el numero esperado de personas que viven en el hogar aumenta 7,6%. * Frente a un aumento de 1 habitación en el hogar, el logaritmo natural del numero de personas en el hogar aumenta en 0,1874 unidades. * Mientras mayor es la edad en que la madre tiene a su primer hijo (aumento de 1 año), el logaritmo natural del numero de personas en el hogar disminuye en 0,0033 unidades. * Si la familia vive en una zona urbana, el numero esperado de personas que viven en el hogar aumenta en un 14,67%.

0.0.11 Pregunta 7 y 8: Modelo Binomial Negativa

Se ejecuta un modelo Binomial Negativa para explicar el número de personas que hay dentro de un hogar (n_personas). Al igual que en el modelo Poisson se consideran todas las variables de la base de datos para realizar el modelo.

[21]: negbin=sm.GLM(y,X,family=sm.families.NegativeBinomial()).fit() print(negbin.summary())

Generalized Linear Model Regression Results					
Dep. Variable: Model: Model Family: Link Function: Method: Date: Time: No. Iterations: Covariance Type:	NegativeBi	nomial log IRLS p 2022 :41:31 8 robust	No. Observati Df Residuals: Df Model: Scale: Log-Likelihoo Deviance: Pearson chi2:	d:	6309 6300 8 1.0000 -16225. 371.09 411.
=====	coef	std err		P> z	[0.025
0.975]					
 vive_padre 0.191	0.1270	0.033		0.000	0.063
vive_madre 0.630	0.4817	0.075	6.384	0.000	0.334
cercania_juegos 0.165	0.1000	0.033	3.026	0.002	0.035
cercania_servicios 0.170	0.0996	0.036	2.785	0.005	0.030
n_habitaciones 0.234	0.2037	0.015	13.365	0.000	0.174
edad_primer_parto 0.003	-0.0022	0.003	-0.868	0.385	-0.007
area 0.251	0.1609	0.046	3.498	0.000	0.071
educm 0.010	0.0026	0.004	0.670	0.503	-0.005
educp 0.006	0.0005	0.003	0.172	0.863	-0.005

13

=====

```
[22]: print("fitted lambda") print(negbin.mu)
```

fitted lambda

[4.95782241 4.22870311 4.84216442 ... 3.31470185 3.86390517 4.19959637]

0.0.12 Test overdispersion

A simple test for overdispersion can be determined with the results of the Poisson model, using the ratio of Pearson chi2 / Df Residuals. A value larger than 1 indicates overdispersion. In the case above (6), data suggets overdispersion.

The Negative Binomial model estimated above is using a value of θ (or $\alpha = 1/\theta$) equal to 1. In order to determine the appropriate value of α , you can estimate a simple regression using the output of the Poisson model:

- 1. Construct the following variable aux= $[(y \lambda)^2 \lambda]/\lambda$
- 2. Regress the variable aux with λ as the only explanatory variable (no constant)
- 3. The estimated value is an appropriate guess for $\alpha = 1/\theta$

In the model of the previous section, just use the options on sm.families.NegativeBinomial, in order to manually enter the value of alpha. See example below.

```
[23]: aux=((y-poisson.mu)**2-poisson.mu)/poisson.mu
auxr=sm.OLS(aux,poisson.mu).fit()
print(auxr.params)
```

x1 -0.153739 dtype: float64

0.0.13 Pregunta 9: Poisson y Binomial Negativa

La obtención de un α negativo implica que la varianza es menura que la media, lo que significa que no hay sobredispersión de los datos, por lo que el modelo de Poisson genera una correcta estimación sobre estos. Si se aplicara un modelo Binomial Negativo no se obtendrían resultados correctos, ya que idealmente se necesitaría de un α mayor que 0, con una varianza mayor que la media.

Tarea 1

Instrucciones

Los resultados de los ejericicios propuestos se deben entregar como un notebook por correo el dia 14/9 hasta las 21:00. Además, es importante considerar que para que la revisión se pueda llevar a cabo, el código debe poder ejecutarse en cualquier computadora.

Las variables tienen la siguiente descripcion:

- vive padre: si el padre vive en el hogar
- vive_madre: si la madre vive en el hogar
- n personas: numero de integrantes del hogar
- n habitaciones: numero de cuartos en el hogar
- cercania_juegos: hay juegos infantiles cerca de la vivienda (1=no, 2=si, 4=no sabe)

- cercania_servicios: hay servicios de salud cerca de la vivienda (1=no, 2=si, 4=no sabe)
- edad primer parto: edad de la madre en su primer parto
- area: urbana=1, rural=0
- educm: años de escolaridad de la madre
- educp: años de escolaridad del padre

Preguntas:

- 1. Cargar la base de datos *junaeb.csv* en el ambiente. Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario.
- 2. Ejecute un modelo de probabilidad lineal (MCO) que permita explicar la probabilidad de que los padres se encuentren viviendo en el hogar (vive_padre). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- 3. Ejecute un modelo *probit* que permita explicar la probabilidad de que los padres se encuentren viviendo en el hogar (*vive_padre*). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- 4. Ejecute un modelo *logit* que permita explicar la probabilidad de que los padres se encuentren viviendo en el hogar(*vive_padre*). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- 5. Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?
- 6. Ejecute un modelo Poisson para explicar el número de personas que hay dentro de un hogar. (n_personas). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- 7. Determine sobre dispersion y posible valor optimo de alpha para un modelo Binomial Negativa.
- 8. Usando la informacion anterior, ejecute un modelo Binomial Negativa para explicar el número de personas que hay dentro de un hogar. (n_personas). Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- 9. Comente los resultados obtenidos en 6, 7 y 8. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?