Оглавление

0.1	Бинарные отношения	1
0.2	Множество с алгебраическими операциями	4
0.3	Группы	1

Лекция 2: Бинарные отношения

15.09.2023

0.1 Бинарные отношения

Определение 1. Бинарноным отношением между множествами X и Y называют подмножество $X \times Y$

Обозначение. Пусть задано $w \subset X \times Y$. Тогда, условие $(x,y) \in w$ записывается как XwY

Обозначение. Если X = Y, то говорят, что w - отношение на X.

```
Доказательство. Пусть g_1,g_2 - отображения к R. q_1 \neq q_2 \\ \exists g:g,(g)\neq g=(g) \\ x_i=y_1(y),x_2:=g_2(y) \\ f(x_1)=f(g_1(y))=g=f(g_2(y))=f(x_2) \\ f(x_1)=f(x_2) \\ x_1\neq x_2
```

```
Пример. 1. f(x) = 2x xwy, если g = f(x) 2. xwy, если x^2 = y
```

Определение 2. Бинарное отношения w на X называется

- 1. Рефлексивным, если xwy и ywz
- 2. Симметричным, если из того что xwy и ywz следует, что xwf

Пример. 1. =, \leq - рефлексивное

<, паралленльно на множестве прямых - не рефлексивно

2. = , || - симметрично

leq, < - не симметрично

- 3. = < : транзитивно
 - ⊥ на множестве прямх не транзитивно

Определение 3. Бинарное отношение на множестве X называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Обозначение. Обычно обозначается ~.

Пример. $1. = \text{на } \mathbb{R}$

2. Множество \mathbb{Z} $a \sim b$, если $a - b \stackrel{.}{:} 5$

Обозначение. 5

- 3. Множество проямых на плоскости $l_1 \sim l_2$, если $l_2 || l_2'$, если $L_1 = l_2$
- 4. Пусть множество это множество направленных отрезков $\overline{AB}\sim \overline{CD},$ если $|\overline{AB}|=|\overline{CD}|,$ AB||CD.
- 5. f(x), g(x) функции $f \sim g$, если $\lim_{x \to \infty} \frac{f(x)}{f(y)} = 1$

Определение 4. Пусть на X задано отношение эквивалентности. Классом эквивалентности x называется множество элементов $\{y \in X | y \sim X\}$.

Обозначение. \overline{x} , [x], ((x)

Примечание. Черта над х должна быть немного загнута вниз слева. Также первый вариант обозначения является основным.

Пример.
$$R, x \sim y, x - y \in \mathbb{Z}$$
 $x = 0, 1$ $0,1; \ 1,1; -0.9 \in \overline{x}$ $\overline{x} = \{y | \{y\} = \{x\}\}$

Пример.
$$1,1 \in \overline{0,1}$$
 $0,1 \in \overline{1,1}$ $\{y\} = 0,1$

5 классов эквивалентности:

5k

5k + 1

 $5k\,+\,2$

5k + 3

5k + 4

Теорема 1. (Разбиение на классы жкивалентности) На множестве X задано отношение эквивалентности . Тогда, множество X разбивается на классы эквивалентности, т.е. X является объединением не пересекающихся подмножеств, каждое из которых является классом эквивалентности некоторого элемента.

```
Пример. 1.\overline{\frac{1}{5}}
```

$$a \sim b$$
, если $a - b$:5

- 2. = в каждом классе 1 элемент
- 3. Направленные отрезки $overline AB \sim \overline{CD},$ если $|\overline{AB}| = |\overline{CD}|,$ $AB \uparrow \uparrow CD$

Класс эквивалентности - вектор.

4. R $a \sim b$, если $\alpha - \beta = 2\pi \kappa$

Доказательство. 1. Докажем, что любой элемент X принадлежит некоторому классу эквивалентности.

$$X \in \overline{X}$$
, t.k. $\sim ???$, X x

2. Докажем, что классы не пересекаются

т.е. докажем, что если $\exists z \in \overline{x} \cap \overline{y}$, то $\overline{x} = \overline{y}$

$$z \in x => z \sim x =>$$
 (симм) $x \sim z$

$$z \in \overline{y} => \mathbf{z} - \mathbf{Y}$$

$$\mathbf{x} \quad \mathbf{z}, \, \mathbf{z} \quad \mathbf{y} => (\mathbf{T}\mathbf{p}) \, \, \mathbf{x} \quad \mathbf{y} => x \in \overline{y} => x \in \overline{y}$$

аналогично $y \in \overline{x}$

$$x = \overline{y}$$

Докажем, что $\overline{x} \subset y$

Пусть $\exists f \in \overline{x} => f \sim x$

$$f \sim x, x = y => f \sim y$$

Аналогично $\overline{y} \subset \overline{x}$

$$\overline{x} = \overline{y}$$

0.2 Множество с алгебраическими операциями

Определение 5. X - множество бинарныой алгебраической операции на X Назвается отображением $X \times X \to X$

Обозначение. 1. Буква, например $f: X \times X \to X$ пишут f(x,y) или xfy

2. Спец. символ: $+, \cdot, 0, *$ Пишут x + y, x * y часто вместо $x \cdot y, x * y$ пишут xy

Пример. 1. $X = \mathbb{Z}$

Определить $+, \cdot, -$

- 2. X множество отображений $\mathbb{Z} \to \mathbb{Z},$ операция композиция.
- 3. Х множество векторов

Обозначение. Множество X с операцией V обозначается (V, *)

Определение 6. Бинарная операция * на X Назвается

- 1. Ассоциативной, если $(x * y * z) = x * (y * z) \forall x, y, z$
- 2. Коммутативной, если $x * y = y * x \forall x, y$

Пример. 1. $+, \cdot -$ коммутативные, ассоциативные

X : y на $\mathbb{R} \setminus \{0\}$ не ассоциативно, не коммутативно

x - y на \mathbb{R}

х - векторное произведение

2. ассоциативны, не коммутативны о - композиция для отображения $\mathbb{Z} \to \mathbb{Z}$

Обозначение. Пусть * - ассоциативно

Тогда пишут а * b * c, а * b * c * d

Используют обозначение степени, например $a^4 = a * a * a * a$

Если операция обозначается +, пишут

4a = a + a + a + a

Пример. 1. $(Z, \cdot) e = 1$

2. (Z, +) e = 0

3. $(2Z, \cdot)$ нет ? элемента, множества четных чисел

Замечание. Если операция обозначается +, то неитральный элемент обозначается 0.

Свойство. (единственности единичного элемента)

На x Задана операция *. Тогда существует не более одного единичного элемента.

Доказательство. Пусть
$$e_1, e_2$$
 - единичные, т.е. $\forall_x \ e_1 + x = x, x + e_1 = x \ e_2 * x = x, x * e_2 = x$ $e_2 = ($ ед. эл. $)e_1 * e_2 = ($ ед.эл. $)e_1 = > e_1 = e_2$

Определение 7. Полугруппой называется множество с заданной на нем бинарной ассоциативной операцией.

Определение 8. Моноидом называется полугруппа, в которой есть неитральный элемент

Пример. 1. $(\mathbb{Z}, +)$ - моноид

- $2. (Z, \cdot)$ моноид
- 3. $(2\mathbb{Z}, \cdot)$ полугруппа, не моноид
- 4. $(\mathbb{Z}, -)$ вектор $\subset x$ не полугруппа

0.3 Группы

Определение 9. Множество G c бинарной операцией * называется группой, если выполнены следующие условия.

- 1. Операция * ассоциативна, т.е. (a * e) * c = a * (b * c) $\forall a, b, c$
- 2. \exists единица $e: a*e = e*a = a \forall a$
- 3. $\forall a \exists$ Обратный элемент $a' \in G$ такой, что $a*a^-1 = a^-1*a = e$

Обозначение. Если операция обозначается -1, то единичные жлементы обозначаются о, а обратный элемент а обозначается -a.

Определение 10. Пусть (G, *) - группа, если * коммутативна, то группа G называется коммутативной или абелевой.

Оглавление