Probabilistic Models for Information Retrieval: Part I

Donald Metzler (Yahoo! Research) Victor Lavrenko (University of Edinburgh)

Copyright Don Metzler, Victor Lavrenko

Outline

- Recap of probability theory
- Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - 2-Poisson model and BM25
 - feedback methods
- Language modeling approach
 - overview and design decisions
 - estimation techniques
 - synonymy and CLIR

Recap of Probability Theory

- Random variables and event spaces
 - sample space, events, and probability axioms
 - random variables and probability distributions
- Conditional probabilities and Bayes rule
- Independence and conditional independence
- Dealing with data sparseness
 - pairwise and mutual independence
 - dimensionality reduction and its perils
 - symmetry and exchangeability

Copyright Don Metzler, Victor Lavrenko

What's a probability?

- Means many things to many people
 - inherent physical property of a system
 - ... a coin toss comes up heads
 - (asymptotic) frequency of something happening
 - · ... Red Sox win against Yankees
 - subjective belief that something will happen
 - ... the sun will rise tomorrow
- Laplace: "common sense reduced to numbers"
 - a very good substitute for scientific laws, when your scientific method can't handle the complexity

Coin-tossing example

- Toss a coin, determine how far it will land?
 - Newtonian physics: solve equations
 - Force * dt / Mass → velocity V
 - 2 * G / (V * sin(Angle)) → time T
 - T * V * cos (Angle) → distance X

- Probability / statistics: count coincidences
 - a gazillion throws, varying angle A, distance X
 - count how often we see X for a given A ,,, conditional P(X|A)
- Why would we ever do that?
 - lazy, expensive, don't really understand what's going on...
 - · can capture hidden factors that are difficult to account for
 - air resistance, effect of coin turning, wind, nearby particle accelerator...

Copyright Don Metzler, Victor Lavrenko

Outcomes and Events

- Sample and Event Spaces:
 - sample space: all possible **outcomes** of some experiment
 - event space: all possible sets of outcomes (power-set**)
- Examples:
 - toss a coin, measure how far it lands
 - outcome: e.g. coin lands at exactly 12.34567m (uncountably many)
 - event: range of numbers, coin landed between 12m and 13m
 - toss a coin twice, record heads / tails on each toss
 - sample space: {HH, HT, TH, TT} only four possible outcomes
 - event space: {{}, {HH}, {HT}..., {HH,HT}, {HH,TH}..., {HH,HT,TH}..., }
 - {HH,HT} = event that a head occurred on the first toss
 - {HH,HT,TH} = event that a head occurred on at least one of the tosses

Probabilities

- Probability = how frequently we expect an event
 - e.g. fair coin \rightarrow P(H) = P(T) = $\frac{1}{2}$
 - assigned to events, not outcomes:
 - i.e. P(H) really means P({H}), but notation {} frequently dropped

sample space

Α

A^B

- Probabilities must obey rules:
 - for any event: 0 <= P(event) <= 1
 - P(sample space) = 1 ... some outcome must occur
 - for any events A,B: $P(A \cup B) = P(A) + P(B) P(A \land B)$
 - $P(A \cup B) = P(A) + P(B)$ if events don't overlap (e.g. {HH, HT}+{TT})
 - Σ_{outcome} P({outcome}) = 1 ... additivity over sample space

Copyright Don Metzler, Victor Lavrenko

Random Variables

- RV = a function defined over sample space
 - compute some property / feature of an outcome, e.g.:
 - X: coin toss distance, truncated to nearest imperial unit

$$- X(0.023) = \text{``inch''}, \quad X(0.8) = \text{``yard''}, \quad X(1500.1) = \text{``mile''}, \dots$$

- Y: number of heads observed during two coin tosses
 - Y(HH) = 2, Y(HT) = Y(TH) = 1, Y(TT) = 0
- RVs ... capital letters, their values ... lowercase
- Central notion in probabilistic approaches:
 - very flexible and convenient to work with:
 - can map discrete outcomes to numeric, and back
 - often describe everything in terms of RVs (forget sample space)

Random Variables and Probabilities

- RVs usually deterministic (counting, rounding)
- What they operate on (outcomes) is probabilistic
 - probability RV takes a particular value is defined by the probabilities of outcomes that lead to that value:
 - P(Y=2) = P(two heads in two tosses) = P ({HH})
 - P(Y=1) = P(exactly one head) = P({HT}) + P({TH})
 - P(X="foot") = P(distance rounds to "foot") = P(0.1 < distance < 0.5)
- In general: $P(X=x) = \sum_{\text{outcome : } X(\text{outcome}) = x} P(\{\text{outcome}\})$

Copyright Don Metzler, Victor Lavrenko

Random Variables Confusion

- Full RV notation is tedious
 - frequently shortened to list just variables, or just values:
 - $P(X_1 = X_1, X_2 = X_2, Y = y) \rightarrow P(X_1, X_2, Y)$
 - P(X₁=yard, W₂=mile) → P(yard,mile)
- Fine, as long as clear what RVs mean:
 - for 2 coin-tosses P("head") can mean:
 - P(head on the first toss) = P({HH}) + P({HT})
 - $P(a \text{ head was observed}) = P(\{HH\}) + P(\{HT\}) + P(\{TH\})$
 - P(exactly one head observed) = P({HT}) + P({TH})
 - these mean different things, can't be interchanged
- In general: clearly define the domain for each RV.

Types of Random Variables

- Completely determined by domain (types of output)
- Discrete: RV values = finite or countable
 - ex: coin tossing, dice-rolling, counts, words in a language
 - additivity: $\sum_{x} P(x) = 1$
 - P(X = x) is a sensible concept
- Continuous: RV values are real numbers
 - ex: distances, times, parameter values for IR models
 - additivity: $\int_{x} p(x) dx = 1$
 - P(X = x) is always zero, p(x) is a "density" function
- Singular RVs ... never see them in IR

Copyright Don Metzler, Victor Lavrenko

Conditional Probabilities

 P(A | B) ... probability of event A happening assuming we know B happened

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

population size: 10,000,000

- number of scientists: 10,000

Nobel prize winners: 10 (1 is an engineer)

- P(scientist) = 0.001

P(scientist | Nobel prize) = 0.9

Bayes Rule

A way to "flip" conditional probabilities:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- Example:
 - P(scientist | Nobel prize) = 0.9
 - P(Nobel prize) = 10^{-6} , P(scientist) = 10^{-3}
 - P(Nobel prize | scientist) = $0.9 * 10^{-6} / 10^{-3} = 0.0009$
- Easy to derive (definition of conditional probabilities):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A \cap B)}{P(A)} \times \frac{P(A)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Copyright Don Metzler, Victor Lavrenko

Chain Rule and Independence

- Chain Rule: a way to decompose joint probabilities
 - directly from definition of conditionals
 - exact, no assumptions are involved

$$P(X_1...X_n) = P(X_1|X_2...X_n) P(X_2|X_3...X_n) ... P(X_n)$$

- Independence:
 - X and Y are independent (don't influence each other)
 - coin example: distance travelled and whether it's H or T
 - · probably doesn't hold for very short distances
 - mutual independence: multiply probabilities (cf. Chain rule):

$$P(X_1...X_n) = \prod_{i=1}^n P(X_i)$$

Conditional Independence

- Variables X and Y may be dependent
 - but all influence can be explained by another variable Z
 - go to beach X: you go to the beach Y: you get a heatstroke heatstroke hot weather Z: the weather is hot icycle melts
 - X and Y are independent if we know Z
 - if weather is hot, heatstroke irrespective of beach

$$P(X,Y|Z) = P(X|Z) P(Y|Z)$$

- if Z is unknown, X and Y are dependent

$$P(X,Y) = \sum_{z} P(X|Z=z) P(Y|Z=z) P(Z=z)$$

Don't mix conditional and mutual independence

Copyright Don Metzler, Victor Lavrenko

Curse of dimensionality

- Why do we need to assume independence?
- Probabilistic models based on counting
 - count observations (documents)
 - of different classes (relevant / non-relevant)
 - along different regions of space (words)
- As dimensionality grows, fewer dots per region

Dealing with high dimensionality

Outline

- Recap of probability theory
- · Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - 2-Poisson model and BM25
 - feedback methods
- Language modeling approach
 - overview and design decisions
 - estimation techniques
 - synonymy and feedback

Probability Ranking Principle

- Robertson (1977)
 - "If a reference retrieval system's response to each request is a ranking of the documents in the collection in order of decreasing probability of relevance to the user who submitted the request,
 - where the probabilities are estimated as accurately as possible on the basis of whatever data have been made available to the system for this purpose,
 - the overall effectiveness of the system to its user will be the best that is obtainable on the basis of those data."
- Basis for most probabilistic approaches to IR

Copyright Don Metzler, Victor Lavrenko

Let's dissect the PRP

- rank documents ... by probability of relevance
 - P (relevant | document)
- estimated as accurately as possible
 - $-P_{est}$ (relevant | document) $\rightarrow P_{true}$ (rel | doc) in some way
- based on whatever data is available to system
 - P_{est} (relevant | document, query, context, user profile, ...)
- best possible accuracy one can achieve with that data
 - recipe for a perfect IR system: just need P (relevant | ...)
 - strong stuff, can this really be true?

Probability of relevance

- What is: P_{true} (relevant | doc, qry, user, context) ?
 - isn't relevance just the user's opinion?
 - user decides relevant or not, what's the "probability" thing?
- "user" does not mean the human being
 - doc, gry, user, context ... representations
 - · parts of the real thing that are available to the system
 - typical case: P_{true} (relevant | document, query)
 - query: 2-3 keywords, user profile unknown, context not available
 - · whether document is relevant is uncertain
 - depends on the factors which are not available to our system
 - think of P_{true} (rel | doc,qry) as proportion of all unseen users/contexts/...
 for which the document would have been judged relevant

Copyright Don Metzler, Victor Lavrenko

IR as classification

- For a given query, documents fall into two classes
 - relevant (R=1) and non-relevant (R=0)
 - compute P(R=1|D) and P(R=0|D)
 - retrieve if P(R=1|D) > P(R=0|D)
- Related to Bayes error rate
 - if P(x|0) P(0) > P(x|1) P(1)then class 0 otherwise 1

- no way to do better than Bayes given input x
 - input x does not allow us to determine class any better

Optimality of PRP

- Retrieving a set of documents:
 - PRP equivalent to Bayes error criterion
 - optimal wrt. classification error
- Ranking a set of documents: optimal wrt:
 - precision / recall at a given rank
 - average precision, etc.
- Need to estimate P(relevant | document, query)
 - many different attempts to do that
 - Classical Probabilistic Model (Robertson, Sparck-Jones)
 - · also known as Binary Independence model, Okapi model
 - very influential, successful in TREC (BM25 ranking formula)

Copyright Don Metzler, Victor Lavrenko

Outline

- Recap of probability theory
- Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - 2-Poisson model and BM25
 - feedback methods
- Language modeling approach
 - overview and design decisions
 - estimation techniques
 - synonymy and feedback

Classical probabilistic model

- Assumption A0:
 - relevance of D doesn't depend on any other document
 - made by almost every retrieval model (exception: cluster-based)
- Rank documents by P(R=1|D)
 - R = {0,1} ... Bernoulli RV indicating relevance
 - D ... represents content of the document
- Rank-equivalent:

$$P(R=1|D) \stackrel{rank}{=} \frac{P(R=1|D)}{P(R=0|D)} = \frac{P(D|R=1)P(R=1)}{P(D|R=0)P(R=0)}$$

- Why Bayes? Want a generative model.
 - P (observation | class) sometimes easier with limited data
 - note: P(R=1) and P(R=0) don't affect the ranking

Copyright Don Metzler, Victor Lavrenko

Generative and Discriminative

- A complete probability distribution over documents
 - defines likelihood for any possible document d (observation)
 - P(relevant) via P(document):

$$P(R|d) \propto P(d|R)P(R)$$

- can "generate" synthetic documents
 - will share some properties of the original collection
- Not all retrieval models do this
 - possible to estimate P(R|d) directly
 - e.g. log-linear model

Probabilistic model: assumptions

- Want P(D|R=1) and P(D|R=0)
- Assumptions:
 - A1: D = $\{D_{w}\}$... one RV for every word w
 - Bernoulli: values 0,1 (word either present or absent in a document)
 - A2: D_w ... are mutually independent given R
 - blatantly false: presence of "Barack" tells you nothing about "Obama"
 - but must assume something: D represents subsets of vocabulary
 - without assumptions: 10⁶! possible events
 - allows us to write:

$$P(R=1|D) \stackrel{rank}{=} \frac{P(D|R=1)}{P(D|R=0)} = \frac{\prod_{w} P(D_{w}|R=1)}{\prod_{w} P(D_{w}|R=0)}$$

Observe: identical to the Naïve Bayes classifier

Copyright Don Metzler, Victor Lavrenko

Probabilistic model: assumptions

- Define: $p_w = P(D_w = 1|R = 1)$ and $q_w = P(D_w = 1|R = 0)$
- Assumption A3 : $P(\vec{0}|R=1)=P(\vec{0}|R=0)$
 - empty document (all words absent) is equally likely to be observed in relevant and non-relevant classes
- Result:

$$P(R=1|D) \stackrel{\textit{rank}}{=} \prod_{w \in D} \left(\frac{p_w}{q_w}\right) \prod_{w \notin D} \left(\frac{1-p_w}{1-q_w}\right) / \prod_{w} \left(\frac{1-p_w}{1-q_w}\right) = \prod_{w \in D} \frac{p_w(1-q_w)}{q_w(1-p_w)}$$

dividing by 1: no effect

$$\frac{P(\vec{0}|R=1)}{P(\vec{0}|R=0)} = 1$$

- practical reason: final product only over words present in D
 - fast: small % of total vocabulary + allows term-at-a-time execution

Estimation (with relevance)

- Suppose we have (partial) relevance judgments:
 - $-N_1 \dots relevant, N_0 \dots non-relevant documents marked$
 - word w observed in N₁(w), N₀(w) docs
 - P(w) = % of docs that contain at least one mention of w
 - includes crude smoothing: avoids zeros, reduces variance

$$p_{w} = \frac{N_{1}(w) + 0.5}{N_{1} + 1.0} \qquad q_{w} = \frac{N_{0}(w) + 0.5}{N_{0} + 1.0}$$

- What if we don't have relevance information?
 - no way to count words for relevant / non-relevant classes
 - things get messy...

Copyright Don Metzler, Victor Lavrenko

Example (with relevance)

- relevant docs: D_1 = "a b c b d", D_2 = "a b e f b"

- non-relevant:
$$D_3$$
 = "b g c d", D_4 = "b d e", D_5 = "a b e g"

- word: a b c d e f g h
$$N_1(w)$$
: 2 2 1 1 1 1 0 $0 N_1 = 2$ $N_0(w)$: 1 3 1 2 2 0 2 $0 N_0 = 3$ $N_0(w)$: $N_0(w)$:

- new document $D_6 = \text{"b g h"}$:

$$P(R=1|D_6) \stackrel{\textit{rank}}{=} \prod_{w \in D_6} \frac{p_w(1-q_w)}{q_w(1-p_w)} = \frac{\frac{2.5}{3} \cdot (1-\frac{3.5}{4}) \cdot \frac{0.5}{3} \cdot (1-\frac{2.5}{4}) \cdot \frac{0.5}{3} \cdot (1-\frac{0.5}{4})}{\frac{3.5}{4} \cdot (1-\frac{2.5}{3}) \cdot \frac{2.5}{4} \cdot (1-\frac{0.5}{3}) \cdot \frac{0.5}{4} \cdot (1-\frac{0.5}{3})} = \frac{1.64}{13.67}$$
only words
present in D₆
Copyright Don Metzler, Victor Lavrenko

Estimation (no relevance)

- Assumption A4: $p_w = q_w if w \notin Q$
 - if the word is not in the query, it is equally likely to occur in relevant and non-relevant populations
 - practical reason: restrict product to query document overlap
- Assumption A5: $p_w = 0.5 if w \in Q$
 - a query word is equally likely to be present and absent in a randomly-picked relevant document (usually $p_{_{\scriptscriptstyle W}} << 0.5$)
 - practical reason: p_w and (1-p_w) cancel out
- Assumption A6: $q_w \approx N_w/N$
 - non-relevant set approximated by collection as a whole
 - very reasonable: most documents are non-relevant

• Result:
$$P(R=1|D) \stackrel{rank}{=} \prod_{w \in D} \frac{p_w(1-q_w)}{q_w(1-p_w)} = \prod_{w \in D \cap Q} \frac{1-q_w}{q_w} = \prod_{w \in D \cap Q} \frac{N-N_w+0.5}{N_w+0.5}$$

Copyright Don Metzler, Victor Lavrenko

Example (no relevance)

- documents:
$$D_1$$
 = "a b c b d", D_2 = "b e f b", D_3 = "b g c d", D_4 = "b d e", D_5 = "a b e g", D_6 = "b g h"

- word: a b c d e f g h
$$N(w)$$
: 2 6 2 3 3 1 3 1 $N = 6$

- query: Q = "a c h"

Probabilistic model (review)

- Probability Ranking Principle: best possible ranking
- Assumptions:

$$P(R=1|D) \stackrel{\mathit{rank}}{=} \prod_{w \in D} \frac{p_w}{q_w} \prod_{w \notin D} \frac{1-p_w}{1-q_w} = \prod_{w \in D \cap Q} \frac{N-N_v}{N_v}$$

- A0: relevance for document in isolation
- A1: words absent or present (can't model frequency)
- A2: all words mutually independent (given relevance)
- A3: empty document equally likely for R=0,1
- A4: non-query words cancel out
- A5: query words: relevant class doesn't matter
- A6: non-relevant class ~ collection as a whole

efficiency

estimate p_w , q_w w/out relevance observations

How can we improve the model?

Copyright Don Metzler, Victor Lavrenko

Modeling word dependence

- Classical model assumes all words independent
 - blatantly false, made by almost all retrieval models
 - the most widely criticized assumption behind IR models
 - should be able to do better, right?
- Word dependence models
 - details in part II of the tutorial
 - preview: (van Rijsbergen, 1977)
 - · structure dependencies as maximum spanning tree
 - each word depends on its parent (and R)

```
P("he likes to wink and drink pink ink")
= P(likes) * P(to|likes) * P(wink|likes) * P(and|to)
* P(drink|likes) * P(he|drink) * P(pink|drink) * P(ink|pink)
```


Modeling word dependence

- Many other attempts since 70's
 - dozens published results, probably hundreds of attempts
 - · many different ways to model dependence
 - results consistently "promising but challenging" (i.e. negative)
- Why?
 - perhaps BIR doesn't really assume independence
 - [Cooper'95] required assumption is "linked dependence"
 - allows any degree of dependence among set of words, as long as it is the same in relevant and non-relevant populations
 - · suggests conditioning words on other words may be pointless

Copyright Don Metzler, Victor Lavrenko

Modeling word frequencies

- Want to model TF (empirically useful) $P(R=1|D) \stackrel{rank}{=} \prod_{w \in D} \frac{P(d_w|R=1)}{P(d_w|R=0)}$
 - A1': assume $D_w = d_w \dots$ # times word w occurs in document D
 - estimate P(d_w|R): e.g. "obama" occurs 5 times in a rel. doc
 - naive: separate prob.for every outcome: $p_{w,1}$, $p_{w,2}$, $p_{w,3}$, ...
 - many outcomes → many parameters (BIR had only one p_w)
 - "smoothness" in the outcomes: d_w =5 similar to d_w =6, but not d_w =1
 - parametric model: assume d_w ~ Poisson
 - single parameter m_w... expected frequency
 - problem: Poisson a poor fit to observations
 - · does not capture bursty nature of words

$$P(d_w) = \frac{e^{-\mu_w} \mu_w^{d_w}}{d_w!}$$

Two-Poisson model [Harter]

- Idea: words generated by a mixture of two Poissons
 - "elite" words for a document: occur unusually frequently
 - "non-elite" words occur as expected by chance
 - document is a mixture: $P(d_w) = P(E=1) \frac{\exp^{-\mu_{1,w}} \mu_{1,w}^{d_w}}{d_{...}!} + P(E=0) \frac{\exp^{-\mu_{0,w}} \mu_{0,w}^{d_w}}{d_{...}!}$
 - estimate $m_{0.w}$, $m_{1.w}$, P(E=1) by fitting to data (max. likelihood)
- Problem: need probabilities conditioned on relevance
 - · "eliteness" not the same as relevance
 - Robertson and Sparck Jones: condition eliteness on R=0, R=1
 - final form has too many parameters, and no data to fit them...
 - same problem that plagued BIR

BM25: an "approximation" to conditioned 2-Poisson
$$\frac{p_w(d_w)q_w(0)}{q_w(d_w)p_w(0)} \approx \exp\left(\frac{d_w \cdot (1+k)}{d_w + k \cdot ((1-b) + b \cdot n_d/n_{avg})} \times \log \frac{N}{N_w}\right)$$

Copyright Don Metzler, Victor Lavrenko

BM25: an intuitive view

Example (BM25)

- documents:
$$D_1$$
 = "a b c b d", D_2 = "b e f b", D_3 = "b g c d", D_4 = "b d e", D_5 = "a b e g", D_6 = "b g h h"

- query: Q = ``a c h'', assume k = 1, b = 0.5

word: a b c d e f g h
$$N(w)$$
: 2 6 2 3 3 1 3 1 $N=6$

$$\log \frac{p(D_1|R=1)}{p(D_1|R=0)} \approx 2 \times \left(\frac{1 \cdot (1+1)}{1 + 1 \cdot (0.5 + 0.5 \cdot 5/4)} \times \log \frac{6+1}{2 + 0.5} \right)$$

$$\log \frac{p(D_6|R=1)}{p(D_6|R=0)} \approx \left(\frac{2 \cdot (1+1)}{2 + 1 \cdot (0.5 + 0.5 \cdot 4/4)} \times \log \frac{6+1}{1 + 0.5}\right)$$

Copyright Don Metzler, Victor Lavrenko

Summary: probabilistic model

- Probability Ranking Principle
 - ranking by P(R=1|D) is optimal
- Classical probabilistic model
 - · words: binary events (relaxed in the 2-Poisson model)
 - words assumed independent (not accurate)
 - numerous attempts to model dependence, all without success
- Formal, interpretable model
 - explicit, elegant model of relevance (if observable)
 - · very problematic if relevance not observable
 - · authors resort to heuristics, develop BM25

Outline

- Recap of probability theory
- Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - 2-Poisson model and BM25
 - feedback methods
- Language modeling approach
 - overview and design decisions
 - estimation techniques
 - synonymy and feedback

Copyright Don Metzler, Victor Lavrenko

What is a Language Model?

- Probability distribution over strings of text
 - how likely is a given string (observation) in a given "language"
 - for example, consider probability for the following four strings
 - English: $p_1 > p_2 > p_3 > p_4$

 $P_1 = P(\text{``a quick brown dog''})$

 $P_{2} = P(\text{"dog quick a brown"})$

 $P_3 = P("un chien quick brown")$

 $P_{A} = P(\text{"un chien brun rapide"})$

- ... depends on what "language" we are modeling
- in most of IR we will have $p_1 == p_2$
- for some applications we will want p₃ to be highly probable

Language Modeling Notation

Make explicit what we are modeling:

M ... represents the language we're trying to model

s ... "observation" (strings of tokens / words)

P(s|M) ... probability of observing "s" in language M

- M can be thought of as a "source" or a generator
 - a mechanism that can produce strings that are legal in M
 P(s|M) ... probability of getting "s" during repeated random sampling from M

Copyright Don Metzler, Victor Lavrenko

How can we use LMs in IR?

Use LMs to model the process of query generation:

- user thinks of some relevant document
- picks some keywords to use as the query

Retrieval with Language Models

- Each document D in a collection defines a "language"
 - all possible sentences the author of D could have written
 - P(s|M_D) ... probability that author would write string "s"
 - intuition: write a billion variants of D, count how many times we get "s"
 - · language model of what the author of D was trying to say
- Retrieval: rank documents by P(q|M_D)
 - probability that the author would write "q" while creating D

Copyright Don Metzler, Victor Lavrenko

Major issues in applying LMs

- What kind of language model should we use?
 - Unigram or higher-order models?
 - Multinomial or multiple-Bernoulli?
- How can we estimate model parameters?
 - maximum likelihood and zero frequency problem
 - discounting methods: Laplace, Lindstone and Good-Turing estimates
 - interpolation methods: Jelinek-Mercer, Dirichlet prior, Witten-Bell
 - leave-one-out method
- Ranking methods
 - query likelihood / document likelihood / model comparison

Unigram Language Models

- words are "sampled" independently of each other
 - metaphor: randomly pulling out words from an urn (w. replacement)
 - joint probability decomposes into a product of marginals
 - estimation of probabilities: simple counting

Higher-order Models

- Unigram model assumes word independence
 - cannot capture surface form: P("brown dog") == P("dog brown")
- Higher-order models
 - n-gram: condition on preceding words:

cache: condition on a window (cache):

- grammar: condition on parse tree
- Are they useful?
 - no improvements from n-gram, grammar-based models
 - some research on cache-like models (proximity, passages, etc.)
 - parameter estimation is prohibitively expensive

Why unigram models?

- Higher-order LMs useful in other areas
 - n-gram models: critical in speech recognition $\stackrel{\longleftarrow}{\bullet}\stackrel{\longleftarrow}{\bullet}\stackrel{\longleftarrow}{\bullet}\stackrel{\longleftarrow}{\bullet}\stackrel{\longleftarrow}{\bullet}$

- IR experiments: no improvement over unigram
 - unigram assumes word independence, intuitively wrong
 - no conclusive reason, still subject of debate
- Possible explanation: solving a non-existent problem
 - higher-order language models focus on surface form of text
 - ASR / MT engines must produce well-formed, grammatical utterances
 - in IR all utterances (documents, queries) are already grammatical
- What about phrases?
 - bi-gram: $O(v^2)$ parameters, there are better ways

Copyright Don Metzler, Victor Lavrenko

Multinomial or multiple-Bernoulli?

- Most popular model is the multinomial:
 - fundamental event: what word is in the i'th position in the sample?
 - observation is a sequence of events, one for each token in the sample

$$P(q_1...q_k | M) = \prod_{i=1}^k P(q_i | M)$$

- Original model is multiple-Bernoulli:
 - fundamental event: does the word w occur in the sample?
 - observation is a set of binary events, one for each possible word

$$P(q_1 \dots q_k \mid M) = \prod_{w \in q_1 \dots q_k} P(w \mid M) \prod_{w \notin q_1 \dots q_k} [1 - P(w \mid M)]$$
Copyright Don Metzler, Victor Lavrenko

Multinomial or multiple-Bernoulli?

- Two models are fundamentally different
 - entirely different event spaces ("word" means different things)
 - both assume word independence (though it has different meanings)
 - have different estimation methods (though appear very similar)

Multinomial

- accounts for multiple word occurrences in the query (primitive)
- well understood: lots of research in related fields (and now in IR)
- possibility for integration with ASR/MT/NLP (same event space)
- Multiple-Bernoulli
 - arguably better suited to IR (directly checks presence of query terms)
 - provisions for explicit negation of query terms ("A but not B")
 - no issues with observation length

Copyright Don Metzler, Victor Lavrenko

Outline

- Recap of probability theory
- · Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - 2-Poisson model and BM25
 - feedback methods
- Language modeling approach
 - overview and design decisions
 - estimation techniques
 - synonymy and feedback

Estimation of Language Models

- Usually we don't know the model M
 - but have a sample of text representative of that model
 - estimate a language model from that sample
- Maximum likelihood estimator:
 - count relative frequency of each word

Copyright Don Metzler, Victor Lavrenko

The Zero-frequency Problem

- Suppose some event (word) not in our sample D
 - model will assign zero probability to that event
 - and to any set of events involving the unseen event
- Happens very frequently with language (Zipf)
- It is incorrect to infer zero probabilities
 - especially when dealing with incomplete samples

Simple Discounting Methods

- Laplace correction:
 - add 1 to every count, normalize
 - problematic for large vocabularies
- Lindstone correction:
 - add a small constant ε to every count, re-normalize
- Absolute Discounting
 - subtract a constant ε , re-distribute the probability mass

Good-Turing Estimation

- Leave-one-out discounting
 - remove some word, compute P(D|M_D)
 - repeat for every word in the document
 - iteratively adjusting ε to maximize $P(D|M_D)$
 - increase if word occurs once, decrease if more than once
- Good-Turing estimate
 - derived from leave-one-out discounting, but closed-form
 - if a word occurred *n* times, its "adjusted" frequency is:

$$n^* = (n+1) E \{\#_{n+1}\} / E \{\#_n\}$$

- probability of that word is: n*/N*
- $E \{\#_n\}$ is the "expected" number of words with n occurrences
- $E\{\#_n\}$ very unreliable for high values of n
 - · can perform regression to smooth out the counts
 - or simply use maximum-likelihood probabilities n / N

Interpolation Methods

- Problem with all discounting methods:
 - discounting treats unseen words equally (add or subtract ε)
 - some words are more frequent than others
- Idea: use background probabilities
 - "interpolate" ML estimates with General English expectations
 - reflects expected frequency of words in "average" document
 - in IR applications, plays the role of IDF
- 2-state HMM analogy

Copyright Don Metzler, Victor Lavrenko

"Jelinek-Mercer" Smoothing

- Correctly setting λ is very important
- Start simple:
 - set λ to be a constant, independent of document, query
- Tune to optimize retrieval performance
 - optimal value of λ varies with different databases, queries, etc.

"Dirichlet" Smoothing

- Problem with Jelinek-Mercer:
 - longer documents provide better estimates
 - could get by with less smoothing
- Make smoothing depend on sample size
- Formal derivation from Bayesian (Dirichlet) prior on LMs
- Currently best out-of-the-box choice for short queries
 - parameter tuned to optimize MAP, needs some relevance judgments

Copyright Don Metzler, Victor Lavrenko

"Witten-Bell" Smoothing

- A step further:
 - condition smoothing on "redundancy" of the example
 - long, redundant example requires little smoothing
 - short, sparse example requires a lot of smoothing
- Interpretation: proportion of new "events"
 - walk through a sequence of N events (words)
 - V of these were "new events"
- Elegant, but a tuned Dirichlet smoothing works better

Copyright Don Metzler, Victor Lavrenko

Leave-one-out Smoothing

- Re-visit leave-one-out idea:
 - Randomly remove some word from the example
 - Compute the likelihood for the original example, based on λ
 - Repeat for every word in the sample
 - Adjust λ to maximize the likelihood
- Performs as well as well-tuned Dirichlet smoothing
 - does not require relevance judgments for tuning the parameter

Copyright Don Metzler, Victor Lavrenko

Smoothing plays IDF-like role

$$\begin{split} &P(Q \mid D) = \prod_{q \in Q} P(q \mid D) \\ &= \prod_{q \in Q \cap D} \left(\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid} \right) \prod_{q \in Q - D} \left((1 - \lambda) \frac{cf_q}{\mid C \mid} \right) \xrightarrow{\text{document}} \\ &= \prod_{q \in Q \cap D} \left(\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid} \right) \prod_{q \in Q} \left((1 - \lambda) \frac{cf_q}{\mid C \mid} \right) / \prod_{q \in Q \cap D} \left((1 - \lambda) \frac{cf_q}{\mid C \mid} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}} \right) = \prod_{q \in Q \cap D} \left(1 + \frac{\lambda}{(1 - \lambda) \frac{cf_{qD}}{\mid D \mid}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}} \right) = \prod_{q \in Q \cap D} \left(1 + \frac{\lambda}{(1 - \lambda) \frac{cf_{qD}}{\mid D \mid}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}} \right) = \prod_{q \in Q \cap D} \left(1 + \frac{\lambda}{(1 - \lambda) \frac{cf_{qD}}{\mid D \mid}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) = \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid} + (1 - \lambda) \frac{cf_q}{\mid C \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid C \mid}}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid D \mid}} \right) \\ &\stackrel{\text{rank}}{=} \prod_{q \in Q \cap D} \left(\frac{\lambda \frac{tf_{q,D}}{\mid D \mid}}{(1 - \lambda) \frac{cf_{qD}}{\mid D \mid}} \right)$$

- compute over words both in the document and the query
- no need for a separate IDF-like component

LMs: an intuitive view

Variations of the LM Framework

- Query-likelihood: P(Q|M_D)
 - probability of observing query from the document model M_D
 - difficult to incorporate relevance feedback, expansion, operators
- Document-likelihood: P(D|M_o)
 - estimate relevance model M_q using text in the query
 - compute likelihood of observing document as a random sample
 - strong connections to classical probabilistic models: P(D|R)
 - ability to incorporate relevance, interaction, query expansion
- Model comparison: D ($M_o \parallel M_D$)
 - estimate both document and query models
 - measure "divergence" between the two models
 - best of both worlds, but loses pure probabilistic interpretation

Language Models and PRP

- Relevance not explicitly part of LM approach
- [Lafferty & Zhai, 2003]: it's implicitly there:

- PRP:
$$P(R=1|D,Q) \stackrel{rank}{=} \frac{P(R=1|D,Q)}{P(R=0|D,Q)} = \frac{P(D,Q|R=1)P(R=1)}{P(D,Q|R=0)P(R=0)}$$

- Bayes' rule, then chain rule:
- $. = \frac{P(Q|D,R=1)P(D|R=1)P(R=1)}{P(Q|D,R=0)P(D|R=0)P(R=0)}$

- Bayes' rule again:

 $=\frac{P(Q|D,R=1)}{P(Q|D,R=0)}\cdot\frac{P(R=1|D)}{P(R=0|D)}$

- Assumption:
 - R=1: Q drawn from D (LM)
 - R=0: Q independent of D
 - odds ratio assumed to be 1

$$. = \frac{P(Q|D,R=1)}{P(Q|R=0)} \cdot \frac{P(R=1|D)}{P(R=0|D)}$$

$$. \stackrel{rank}{=} P(Q|D) \cdot \frac{P(R=1|D)}{P(R=0|D)}$$

Copyright Don Metzler, Victor Lavrenko

Summary: Language Modeling

- Formal mathematical model of retrieval
 - based on simple process: sampling query from a document urn
 - assumes word independence, higher-order LMs unsuccessful
 - cleverly avoids pitfall of the classical probabilistic model
- At a cost: no notion of relevance in the model
 - relevance feedback / query expansion unnatural
 - "augment the sample" rather than "re-estimate model"
 - can't accommodate phrases, passages, Boolean operators
 - extensions to LM overcome many of these problems
 - query feedback, risk minimization framework, LM+BeliefNet, MRF
- Active area of research

Outline

- Recap of probability theory
- Probability ranking principle
- Classical probabilistic model
 - Binary Independence Model
 - 2-Poisson model and BM25
 - feedback methods
- Language modeling approach
 - overview and design decisions
 - estimation techniques
 - synonymy and feedback

Copyright Don Metzler, Victor Lavrenko

Cross-language IR

- Good domain to show slightly advanced LMs
- Cross-language Information Retrieval (CLIR)
 - accept queries / questions in one language (English)
 - find relevant information in a variety of other languages
- Why is this useful?
 - Ex1: research central banks' response to financial crisis
 - · dozens of languages, would like to formulate a single query
 - · can translate retrieved web-pages into English
 - Ex2: Topic Detection and Tracking (TDT)
 - identify new events (e.g. "5.9 earthquake in El-Salvador on Nov.15")
 - · find all stories discussing the event, regardless of language

Typical CLIR architecture

Copyright Don Metzler, Victor Lavrenko

Translating the queries

- Translating documents usually infeasible
- Automatic translation: ambiguous process
 - query as a whole: usually not a well-formed utterance
 - word-for-word: multiple candidate translations
 - environment → environnement, milieu, atmosphere, cadre, conditions
 - protection → garde, protection, preservation, defense, racket
 - agency → agence, action, organisme, bureau
- How to combine translations?
 - single bag of words: bias to multi-meaning words
 - combinations / hypotheses
 - · How many? How to assign weights?

Language modeling approach

- Translation model: set of probabilities P(e|f)
 - probability that French word "f" translates to English word "e"
 - e.g. P("environment" | "milieu") = $\frac{1}{4}$, P("agency" | "agence") = $\frac{1}{2}$, etc.
- Language model of a French document: $P(f|M_p)$
 - probability of observing "f": $P(\text{milieu}|M_D) = \frac{tf_{\text{milieu},D}}{|D|}$
- Combine into noisy-channel model:
 - author writes a French document by sampling words from M
 - channel garbles French words into English according to P(e|f)
 - probability of receiving an English word: $P(e|M_D) = \sum_{f} P(e|f)P(f|M_D)$

Translation probabilities

- How to estimate P(e|f)?
- $f \rightarrow e$ dictionary: assign equal likelihoods to all translations
 - agence → agency:1/5, bureau:1/5, branch:1/5, office:1/5, service:1/5
- $e \rightarrow f$ dictionary: use Bayes rule, collection frequency
 - agency → agence:¼, action:¼, organisme:¼, bureau:¼
 - P(agency|agence) = P(agence|agency) * P(agency) / P(agence)
- parallel corpus:

 - set of parallel sentences {E,F} such that E is a translation of F simple co-occurrence: how many times e,f co-occur: $P(e|f) = \frac{|(E,A):e \in E \land f \in F|}{|F:f \in F|}$
 - IBM translation model 1:
 - alignment: links between English, French words
 - count how many times e,f are aligned

clean your coffee cup nettoyer votre tasse de cafe

Copyright Don Metzler, Victor Lavrenko

CLIR via language modeling smoothing

- Rank documents by $P(e_1...e_k|M_D) = \prod_{i=1}^k \left[\lambda_D P(e|M_D) + (1-\lambda_D)P(e)\right]$
 - probability English query generated from French document
 - formal, effective model (75-95% of monolingual IR)
 - query expansion: multiple French words translate to "agency"
- Important issues:
 - translation probabilities ignore context
 - one solution: treat phrases as units, but there's a better way
 - vocabulary coverage extremely important
 - morphological analysis crucial for Arabic, Slavic, etc.
 - no coverage for proper names → transliterate:
 - Qadafi, Kaddafi, Qathafi, Gadafi, Qaddafy, Quadhaffi, al-Qaddafi, ...
 Copyright Don Metzler, Victor Lavrenko

Triangulated translation

- Translation models need bilingual resources
 - dictionaries / parallel corpora
 - not available for every language pair (Bulgarian → Tagalog)
- Idea: use resource-rich languages as interlingua:
 - map Tagalog → Spanish, then Spanish → Bulgarian
 - use multiple intermediate languages, assign weights
- Results slightly exceed direct bilingual resource

Summary: CLIR

- Queries in one language, documents in another
 - real task, at least for intelligence analysts
 - translate query to foreign language, retrieve, translate results
- Language models:
 - probabilistic way to deal with uncertainty in translations
 - document source → foreign words → noisy channel → English words
 - translation probabilities: P("agency"|"agence")
 - based on dictionary, collection frequencies, parallel corpus
- Triangulated translation
 - helps for resource-impoverished language pairs

Copyright Don Metzler, Victor Lavrenko