DNN-based Active User Detection for a NB-IoT Compatible Grant Free NOMA System

Progress Seminar

Guide: Dr.Naveen M B

Praveen Kumar N (201082001)

Department of Electrical Engineering

IIT Dharwad

January 31, 2022

Summary of previous work

 An algorithm based on 2D fast Fourier transform (FFT) was implemented for random access in narrow band Internet of things (NB-IoT).

Summary of previous work

- An algorithm based on 2D fast Fourier transform (FFT) was implemented for random access in narrow band Internet of things (NB-IoT).
- The algorithm was initially simulated and tested in Matlab.

Summary of previous work

- An algorithm based on 2D fast Fourier transform (FFT) was implemented for random access in narrow band Internet of things (NB-IoT).
- The algorithm was initially simulated and tested in Matlab.
- In the next phase, Matlab code was translated into C code.

Definition

Massive machine type communication (mMTC) refers to the connection of a large number of devices (10^6 devices per km^{2a}) to the base station (BS).

^aCellular system support for ultra-low complexity and low throughput internet of things (CloT). 3GPP TR 45.820. 2015.

Definition

Massive machine type communication (mMTC) refers to the connection of a large number of devices (10^6 devices per km^{2a}) to the base station (BS).

^a Cellular system support for ultra-low complexity and low throughput internet of things (CloT). 3GPP TR 45.820. 2015.

- In mMTC majority of the devices are
 - Low cost
 - Battery powered
 - Transmits low data sporadically.

Definition

Massive machine type communication (mMTC) refers to the connection of a large number of devices (10^6 devices per km^{2a}) to the base station (BS).

^a Cellular system support for ultra-low complexity and low throughput internet of things (CloT). 3GPP TR 45.820. 2015.

- In mMTC majority of the devices are
 - Low cost
 - Battery powered
 - Transmits low data sporadically.
- Main concern of mMTC is massive connectivity of the devices to the BS.

Existing access method: Grant based OMA

- ► **Grant based access**: Each device requests a data transmission slot via a contention-based random access process.
- Orthogonal multiple access (OMA): Available radio resources are allocated to devices in a non over lapping manner.

Existing access method: Grant based OMA

- ► **Grant based access**: Each device requests a data transmission slot via a contention-based random access process.
- ▶ Orthogonal multiple access (OMA): Available radio resources are allocated to devices in a non over lapping manner.

Why grant based access OMA is not suitable for mMTC?

Existing access method: Grant based OMA

- ► **Grant based access**: Each device requests a data transmission slot via a contention-based random access process.
- Orthogonal multiple access (OMA): Available radio resources are allocated to devices in a non over lapping manner.

Why grant based access OMA is not suitable for mMTC?

Limited number of available radio resources.

Existing access method: Grant based OMA

- ► **Grant based access**: Each device requests a data transmission slot via a contention-based random access process.
- Orthogonal multiple access (OMA): Available radio resources are allocated to devices in a non over lapping manner.

Why grant based access OMA is not suitable for mMTC?

- Limited number of available radio resources.
- Signalling overhead.

Solution: Grant free non-orthogonal multiple access

- Grant free access, allows devices to transmit data without the scheduling process.
- NOMA enables massive connectivity over limited radio resources^a.

^aMuhammad Basit Shahab et al. "Grant-Free Non-Orthogonal Multiple Access for IoT: A Survey". In: *IEEE Communications Surveys Tutorials* (2020).

Solution: Grant free non-orthogonal multiple access

- Grant free access, allows devices to transmit data without the scheduling process.
- NOMA enables massive connectivity over limited radio resources^a.

^aMuhammad Basit Shahab et al. "Grant-Free Non-Orthogonal Multiple Access for IoT: A Survey". In: *IEEE Communications Surveys Tutorials* (2020).

- In typical grant free system
 - Preamble and data are transmitted simultaneously.
 - Active user detection plays major role in successful data decoding.

Grant free NOMA system

 A typical uplink mMTC with one BS serving a total of M users is considered.

Figure: mMTC uplink scenario where only a few devices are active¹.

• Number of active users : Poisson with mean λ .

¹Wonjun Kim et al. "Deep neural network-based active user detection for grant-free NOMA systems". In: *IEEE Trans. Commun.* (2020).

► In any GF access interval, same time-frequency resource is used by all active users.

- In any GF access interval, same time-frequency resource is used by all active users.
- ▶ Users are separated from each other using preamble sequences.

- ▶ In any GF access interval, same time-frequency resource is used by all active users.
- Users are separated from each other using preamble sequences.
- Collision occurs when two or more users pick same preamble sequence.

- In any GF access interval, same time-frequency resource is used by all active users.
- Users are separated from each other using preamble sequences.
- Collision occurs when two or more users pick same preamble sequence.

Choosing number of preambles

$$N_{\mathrm{p}} = \left\lceil rac{\lambda^2}{2 log(1/\mathbb{E}[p_{\mathrm{all}}])}
ight
ceil$$

 $N_{\rm p}$: Number of preambles,

 $\mathbb{E}[p_{\text{all}}]$: Desired average success (no collision) probability^a.

^aGS Harini et al. "On Preamble-based Grant-Free Transmission in Low Power Wide Area (LPWA) IoT Networks". In: *Proc. IEEE 6th World Forum Internet Things.* IEEE. 2020, pp. 1–6.

Time-frequency resource grid

• Each TO is associated with set of *N* preambles, $\mathbb{P} = \{P_1, \dots, P_N\}$.

Time-frequency resource grid

- Each TO is associated with set of *N* preambles, $\mathbb{P} = \{P_1, \dots, P_N\}$.
- Here N and T are chosen such that $NT \ge N_p$.

Active user's pick TO and preamble uniformly randomly.

Active user's pick TO and preamble uniformly randomly.

Transmitted signal

Signal transmitted by the user choosing i^{th} preamble sequence,

$$x_i(n) = \frac{1}{N_{\text{FFT}}} \sum_{m=0}^{N_{\text{FFT}}-1} P_i(m) e^{j\frac{2\pi nm}{N_{\text{FFT}}}}$$

Active user's pick TO and preamble uniformly randomly.

Transmitted signal

Signal transmitted by the user choosing i^{th} preamble sequence,

$$x_i(n) = \frac{1}{N_{\text{FFT}}} \sum_{m=0}^{N_{\text{FFT}}-1} P_i(m) e^{j\frac{2\pi nm}{N_{\text{FFT}}}}$$

Signal at base station (BS)

Superimposed signal received at the BS in any TO with k active users,

$$y(n) = \sum_{i=1}^{k} h_i e^{j2\pi r_i n} x_i (n - d_i) + w(n)$$

 h_i : Flat-fading channel coefficient, r_i : Normalized residual carrier frequency offset and d_i : Timing offset of i^{th} user.

10 + 4 A + 4 B + 4 B + 9 9 9

Conventional receiver architecture for AUD

 Given the superimposed signal y, problem at the BS is to detect all the active users.

Conventional receiver architecture for AUD

 Given the superimposed signal y, problem at the BS is to detect all the active users.

** The "correlator" block will be replaced by DNN in DNN-based AUD.

DNN based AUD

■ The AUD at BS is modeled as a multi label classification problem.

DNN based AUD

The AUD at BS is modeled as a multi label classification problem.

Binary Classification

- Spam
- Not spam

Multiclass Classification

- Dog
- Cat
- Horse
- Fish
- Bird
 - ...

Multi-label Classification

- Dog
- Cat
- Cat
 Horse
 - Fish
- Bird
- Bird

 $Source: \verb|https://www.microsoft.com/en-us/research/uploads/prod/2017/12/40250.jpg| \\$

DNN architecture

DNN Training Parameters	
Loss function	Binary Cross Entropy
Optimizer	ADAM
Batch size	1024
Epochs	75
Learning rate	0.001

n: Number of Neurons a: Activation Function

** $\mathbf{O} = [o_1, \dots, o_N]$, where $o_i \in [0, 1]$.

Dataset

- Dataset was generated
 - Incorporating channel effects, timing and frequency offsets

Dataset

- Dataset was generated
 - Incorporating channel effects, timing and frequency offsets
 - ⋄ Considering maximum number of active users in any TO as K, where $\mathbb{P}(k \le K) \ge 0.99$.

Dataset

- Dataset was generated
 - Incorporating channel effects, timing and frequency offsets
 - ⋄ Considering maximum number of active users in any TO as K, where $\mathbb{P}(k \le K) \ge 0.99$.

Training

Trained on a large dataset at signal to noise ratio (SNR) of 6dB.

Dataset

- Dataset was generated
 - Incorporating channel effects, timing and frequency offsets
 - ⋄ Considering maximum number of active users in any TO as K, where $\mathbb{P}(k \le K) \ge 0.99$.

Training

▶ Trained on a large dataset at signal to noise ratio (SNR) of 6dB.

Finding threshold

Threshold is found using separate dataset by analyzing the mean output value.

Dataset

- Dataset was generated
 - Incorporating channel effects, timing and frequency offsets
 - ⋄ Considering maximum number of active users in any TO as K, where $\mathbb{P}(k \le K) \ge 0.99$.

Training

Trained on a large dataset at signal to noise ratio (SNR) of 6dB.

Finding threshold

Threshold is found using separate dataset by analyzing the mean output value.

Testing

Tested on dataset from different SNR values.

Dataset

- Dataset was generated
 - Incorporating channel effects, timing and frequency offsets
 - ⋄ Considering maximum number of active users in any TO as K, where $\mathbb{P}(k \le K) \ge 0.99$.

Training

Trained on a large dataset at signal to noise ratio (SNR) of 6dB.

Finding threshold

Threshold is found using separate dataset by analyzing the mean output value.

Testing

- Tested on dataset from different SNR values.
- Outputs from two antenna chain (before thresholding) is averaged to get final output.

Simulation parameters

Configuration same as that of coverage area (CVA) 1 of NB-IoT is considered.

Simulation parameters

- ► Configuration same as that of coverage area (CVA) 1 of NB-IoT is considered.
- Number of TOs is chosen to be 40.

Simulation parameters

- Configuration same as that of coverage area (CVA) 1 of NB-IoT is considered.
- Number of TOs is chosen to be 40.
- ► Each TO is of 1 OFDM symbol duration.

Simulation parameters

- Configuration same as that of coverage area (CVA) 1 of NB-IoT is considered.
- Number of TOs is chosen to be 40.
- ▶ Each TO is of 1 OFDM symbol duration.
- ▶ With this setting K = 2 i.e, $\mathbb{P}(k \le 2) \ge 0.99$.

Simulation parameters contd.

▶ Zadoff-chu (ZC) sequence of length *L* is used as preamble.

Simulation parameters contd.

- ► Zadoff-chu (ZC) sequence of length L is used as preamble.
- ▶ N = L 1 quasi-orthogonal sequences are possible with prime length (L) ZC sequence.

Simulation parameters contd.

- ► Zadoff-chu (ZC) sequence of length L is used as preamble.
- ▶ N = L 1 quasi-orthogonal sequences are possible with prime length (L) ZC sequence.

180 KHz
3.75 KHz
48
512 and 32 samples
1 Tx; 2 Rx
EPA 1 Hz
rand(0, $N_{\rm CP}$) samples
rand(-200, 200) Hz
0.9
40
47
18

Performance metrics

All-user success probability:

Probability of all active users in a TO being detected correctly.

Per-user success probability:

Probability of successful detection of an individual user.

False alarm probability:

Probability of wrongly detecting a user when only noise is present.

Performance metrics

All-user success probability:

Probability of all active users in a TO being detected correctly.

Per-user success probability:

Probability of successful detection of an individual user.

False alarm probability:

Probability of wrongly detecting a user when only noise is present.

Performance requirements of NB-IoT

- Per-user success probability ≥ 0.99
- False alarm probability ≤ 0.001

at 6 dB SNR for CVA 2 and approximately 12 dB SNR for CVA 1 in extended pedestrian A (EPA) channel^a.

^a3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception. TS 36.104. 3GPP, 2017.

Results

** It is observed that false alarm probability of both methods were below 0.001 for SNR ≥ 6dB.

▶ Number of real floating point operations required is considered.

²Steven G. Johnson et al. "A Modified Split-Radix FFT With Fewer Arithmetic Operations". In: *IEEE Trans. Signal Process.* (2007).

- Number of real floating point operations required is considered.
- Complexity of timing offset estimation is also considered for analysis.

²Steven G. Johnson et al. "A Modified Split-Radix FFT With Fewer Arithmetic Operations". In: *IEEE Trans. Signal Process.* (2007).

- Number of real floating point operations required is considered.
- Complexity of timing offset estimation is also considered for analysis.

Conventional method

²Steven G. Johnson et al. "A Modified Split-Radix FFT With Fewer Arithmetic Operations". In: *IEEE Trans. Signal Process.* (2007).

- Number of real floating point operations required is considered.
- Complexity of timing offset estimation is also considered for analysis.

Conventional method

 $ightharpoonup pprox N imes (6L + \frac{34}{9} imes N_{FFT} \log_2(N_{FFT}))^2$

Proposed method

²Steven G. Johnson et al. "A Modified Split-Radix FFT With Fewer Arithmetic Operations". In: *IEEE Trans. Signal Process.* (2007).

- Number of real floating point operations required is considered.
- Complexity of timing offset estimation is also considered for analysis.

Conventional method

 $ightharpoonup pprox N imes (6L + \frac{34}{9} imes N_{FFT} \log_2(N_{FFT}))^2$

Proposed method

** It is observed that the proposed method is ≈ 7 times computationally less complex compared to conventional method.

²Steven G. Johnson et al. "A Modified Split-Radix FFT With Fewer Arithmetic Operations". In: *IEEE Trans. Signal Process.* (2007).

Summary

A GF-NOMA scheme compatible with NB-IoT was presented.

Summary

- A GF-NOMA scheme compatible with NB-IoT was presented.
- DNN-based AUD was discussed, which has the following advantages
 - Works well in in the presence timing and frequency offsets.
 - Its performance is comparable or better than the conventional AUD scheme for flat-fading (and low mobility) channels.
 - ▶ Its complexity is much smaller than the conventional scheme.
 - ▶ It meets the performance criteria of NB-IoT in both CVA 1 and 2.

Future work

NPRACH detection algorithm

Analyzing the suitability of the implemented NPRACH detection algorithm in non terrestrial network (NTN) based communication system.

Future work

NPRACH detection algorithm

Analyzing the suitability of the implemented NPRACH detection algorithm in non terrestrial network (NTN) based communication system.

Proposed GF-NOMA scheme

- Extending the proposed solutions to CVA 3 of NB-IoT.
- Exploring adaptive threshold based multi label classification.
- Exploring different preamble lengths.
- Designing a unified DNN based architecture incorporating collision detection along with AUD.
- Analyzing the suitability of the proposed method in NTN scenario.

Thank you!