Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE210

A.A. 2010-2011 - Docente: Prof. A. Verra Tutori: Simona Dimase e Annamaria Iezzi

> Tutorato 3 (21 Ottobre 2010) Prodotti scalari e ortonormalizzazione

- 1. In ciascuno dei seguenti casi determinare una base ortonormale, rispetto al prodotto scalare standard, del sottospazio vettoriale di \mathbb{R}^4 generato dai vettori assegnati:
 - (a) (1,0,0,1), (0,1,2,3), (1,-1,1,-1)
 - (b) (-1,0,1,2), (2,0,1,-4), (0,0,3,0), (-3,0,0,6)
 - (c) $\{(1, n, n^2, n^3) \mid n \in \mathbb{N}\}$
- 2. Si consideri in \mathbb{R}^4 la forma bilineare b così definita:

$$b(\overrightarrow{x}, \overrightarrow{y}) = 2x_1y_1 + x_1y_2 + x_2y_1 + 3x_2y_2 + x_2y_3 + x_3y_2 + x_3y_3 + 2x_4y_4, \forall \overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^4.$$

- (a) Verificare che b è un prodotto scalare.
- (b) Trovare una base ortogonale e una base ortonormale per b.
- (c) Trovare una base ortonormale del sottospazio $V = \{(x, y, z, w) | 2x + y z w = 0\}$ di \mathbb{R}^4 . Completare poi la base trovata a base ortonormale di \mathbb{R}^4 .
- 3. Sia V un \mathbb{R} -spazio vettoriale e sia b un prodotto scalare su V. Sia W un sottospazio vettoriale di dimensione finita di V. Dimostrare che vale:

$$V = W \oplus W^{\perp}$$

4. (a) Dimostrare che in uno spazio vettoriale euclideo (V, \langle , \rangle) sussistono le seguenti identità, $\forall v, w \in V$:

i.
$$\|v+w\|^2 + \|v-w\|^2 = 2\|v\|^2 + 2\|w\|^2$$

ii. $\|v+w\|^2 - \|v-w\|^2 = 4\langle v,w\rangle$.

ii.
$$||v + w||^2 - ||v - w||^2 = 4 \langle v, w \rangle$$

(b) Sia V uno spazio vettoriale euclideo con prodotto scalare standard e siano $v, w \in V$.

Dimostrare che se ||v|| = ||w|| allora $(v+w) \perp (v-w)$. Interpretare questo risultato geometricamente.

5. Sia $V = \mathbb{R}_3[x]$ lo spazio vettoriale dei polinomi di grado 3 a coefficienti in \mathbb{R} , dotato del prodotto scalare standard:

$$\langle a_0 + a_1 x + a_2 x^2 + a_3 x^3, b_0 + b_1 x + b_2 x^2 + b_3 x^3 \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3$$

(a) Dopo aver verificato che i seguenti polinomi costituiscono una base di V, applicare ad essi il processo di ortonormalizzazione di Gram-Schmidt:

$$t+1, t+t^2, 2-t-t^3, t^3$$

- (b) Dato il sottospazio $U=\left\langle t^3-1,t+2\right\rangle$ di V calcolare le equazioni cartesiane e parametriche di U^\perp . Scrivere poi una base ortonormale di U e di U^\perp .
- 6. Sia $\mathcal{C}[0,1]$ lo spazio vettoriale delle funzioni continue su [0,1] e sia $\mathbb{R}_n[x]$ il sottospazio di $\mathcal{C}[0,1]$ dei polinomi a coefficienti in \mathbb{R} di grado minore o uguale a n.
 - (a) Date $f, g \in \mathcal{C}[0, 1]$ mostrare che $\langle f, g \rangle = \int_0^1 f(x)g(x)dx$ è un prodotto scalare.
 - (b) Determinare una base ortogonale di $\mathbb{R}_3[x]$ rispetto al prodotto scalare definito per restrizione da \langle,\rangle .
- 7. Sia $\overrightarrow{u} = (-1,0,1)$ un vettore di \mathbb{R}^3 , dotato di prodotto scalare standard. Determinare i vettori ortogonali ad \overrightarrow{u} , aventi norma 2 e verificanti una delle due condizioni:
 - (a) sono complanari con $\overrightarrow{u_1} = (1,0,1)$ e $\overrightarrow{u_2} = (0,1,-1)$;
 - (b) formano un angolo $\vartheta = \frac{\pi}{4}$ con $\overrightarrow{u_3} = (-1, 1, 0)$.