Solutions to Homework 6

Math 55B

1. Let $K_n(x) := c_n(1-x^4)^n$ for |x| < 1 and 0 otherwise, where c_n is chosen to make $\int_{\mathbb{R}} K_n = 1$. Prove that $\langle K_n \rangle$ is an approximate identity.

We need to show that $\int_{-r}^{r} K_n(x) dx \to_{n \to \infty} 1$ for each r > 0; for this we need to estimate c_n from above. Most of you gave the (rough) estimate $c_n < n^{-1/4}$, obtained upon noting the majorization $(1-x^4)^n \ge 1-nx^4$ on [0,1]: to justify this inequality, it suffices to note that the function $f(x) := (1-x^4)^n - (1-nx^4)$ has f(0) = 0 and derivative $f'(x) = 4nx^3(1-(1-x^4)^{n-1})$, which is nonnegative on [0,1]. This majorization yielding $\int_{-1}^{1} K_n = 2 \int_{0}^{1} (1-x^4)^n dx > 2 \int_{0}^{n^{-1/4}} (1-nx^4) dx = 8n^{-1/4} > n^{-1/4}$, hence the claimed estimate $c_n < n^{-1/4}$. The estimate implies

$$K_n \le n^{-1/4} (1 - r^4)^n$$
 in the region $r \le |x| \le 1$,

which approaches 0 with $n \to \infty$, for each fixed r > 0. Integrating this inequality gives the required $\int_{-r}^{r} K_n(x) dx \to 0$.

- 2. Determine which of the following sequences of functions are equicontinuous, and give a uniform modulus of continuity h(r) for the ones that are.
 - (a) $f_n(x) := \exp(nx), x \in (-\infty, 1].$

This sequence is not equicontinuous, by the unboundedness of $f_n(1) - f_n(0) = e^n - 1$.

- (b) $f_n(x) := \sin(\sin(\cdots(\sin(x))))$ (n times), $x \in [0, 2\pi]$; and
- (c) $f_n(x) := n + x^n$, $x \in [0, 1/2]$.

Both these sequences are equicontinuous, with uniform modulus of continuity h(r) = r. This is an instance of the following general principle, useful to be aware of, which is an immediate consequence of the mean value theorem: if F is the family of differentiable functions on [a,b] such that $\sup_{f \in F} ||f'|| \leq M < \infty$, then F is equicontinuous with uniform modulus h(r) = Mr.

(d)
$$f_n(x) := (1 + x/n)^n, \quad x \in [0, \infty)$$

Since $f_2(x) = x^2/4 + x + 1$ is not even uniformly continuous on $[0, \infty)$, this family is a fortiori not equicontinuous.

Remark. The sequence in (d) is equicontinuous on any bounded interval, since $f'_n = f_{n-1}$ is uniformly bounded by $2e^t$ on [0, t].

3. Let X, Y be compact metric spaces. Show that the continuous functions of the form f(x)g(y) span a dense subset of $C(X \times Y)$.

This is, of course, an application of the Stone-Weierstrass approximation theorem. Note (and N.B.!) that the span of continuous functions of the form fg is $A := \{f_1g_1 + \cdots + f_ng_n \mid f_i \in C(X), g_i \in C(Y)\}$, and these clearly form and algebra. The product of compact metric spaces $(X, d_X), (Y, d_Y)$, defined to be the metric space $(X \times Y, \sup(d_X, d_Y))$, is compact (its topology being the topology of pointwise convergence, or the **product topology**), and to apply the Stone-Weierstrass approximation theorem, we need to show that the algebra A separates points of $X \times Y$. For $(x_1, y_1), (x_2, y_2) \in C(X \times Y)$ arbitrary distinct points, the function $(x, y) \mapsto \frac{d_X(x, x_1) + d_Y(y, y_1)}{d_X(x_1, y_1) + d_Y(x_2, y_2)}$, which is manifestly in A, evaluates to 0 at (x_1, y_1) , and 1 at (x_2, y_2) .

4. Compute the Fourier series of the function f(x) = |x| on $[-\pi, \pi]$ (extended periodically to the whole real line). Does the series converge absolutely?

The Fourier coefficients are given by $c_n = \langle f(x), e^{inx} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| e^{-inx} dx = \frac{1}{\pi} \int_{0}^{\pi} x \cos(nx) dx = \frac{1}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_{0}^{\pi} = \frac{(-1)^n - 1}{\pi n^2}, \text{ for } n \geq 1; \text{ and } c_0 = \pi/2.$ The Fourier series thus converges absolutely.

5. Let $S \subset C[a,b]$ be a finite-dimension subspace. Prove that if $f_n \in S$ and $g:[a,b] \to \mathbb{R}$, then $f_n \to g$ pointwise iff $g \in S$ and $f_n \to g$ uniformly.

The nontrivial implication is to show that the pointwise convergence $f_n \to g$ yields $g \in S$ and $f_n \to g$ uniformly. Fix a basis g_1, \ldots, g_m of S. The key is to note that the linear independence of g_1, \ldots, g_m yields the existence of m points $x_1, \ldots, x_m \in [a, b]$ and linear forms $L_1, \ldots, L_m \in \mathbb{R}[X_1, \ldots, X_m]_{(1)}$ such that every $f \in S$ has the expansion $f(x) = \sum_{i=1}^m L_i(f(x_1), \ldots, f(x_m))g_i(x)$ in the basis g_1, \ldots, g_m ; the conclusion is then immediate. To prove the claim, simply reformulate the linear independence of g_1, \ldots, g_m as the injectivity of the linear transformation $\mathbb{R}^m \to \mathbb{R}^{[a,b]}$, $(y_1, \ldots, y_m) \mapsto$

 $\left(\sum_{i=1}^m g_i(x)y_i\right)_{x\in[a,b]}$; by linear algebra, the latter is equivalent to the existence of an invertible $m\times m$ -minor $\left(g_i(x_j)\right)_{i,j=1}^m$, and it remains to note that invertibility of this minor is equivalent to the linear independence of the m linear forms $T_i := \sum_{i=1}^m g_i(x_j)X_i$, which in turn amounts to the existence of the linear forms L_1,\ldots,L_m with $X_i=L_i(T_1,\ldots,T_m)$ —as claimed.

Second solution (Alex). Enumerate the rationals in [a, b] as (r_k) , and let $A_i := \{r_1, \ldots, r_i\}$. Let $S_i \subset S$ be the subspace $\{f \in S \mid f|_{A_i} = 0\}$, and note that $S \supset S_1 \supset S_2 \supset \cdots$ is a descending nested sequence of vector spaces. Since dim $S < \infty$, this sequence stabilizes to $\bigcap_i S_i$; but the latter space is $\{0\}$, since the rational are dense: f(x) = 0 for $x \in [a, b] \cap \mathbb{Q}$ implies f = 0. Thus there exists some k with $S_k = \{0\}$, and this means that the evaluation map $S \to \mathbb{R}^{A_k}$ of normed vector spaces is injective and hence a homeomorphism onto its image; where S is given the sup-norm (inducing the topology of uniform convergence), and \mathbb{R}^{A_k} the Euclidean norm (inducing, by definition, the topology of coordinatewise convergence); note, indeed, that any injective linear transformation from a finite-dimensional normed vector space to a normed vector space is a homeomorphism onto its image. This means, for $f_n \in S$, that the uniform limit $\lim_n f_n$ exists (in S) iff each limit $\lim_n f_n(r_i)$ exists in \mathbb{R} , for $1 \le i \le k$. The conclusion follows.

Comment. Apparently, this question caused some headache: most of you did not solve it. This I found surprising, especially since nobody asked for a discussion on this question during section: you should have — you would have received the hint! I hope you had looked at this question before the Monday section. Please look at every individual question as soon as it becomes available!

- 6. Let f(x,y) be a real-valued function on \mathbb{R}^2 , and suppose df/dx and df/dy exist for every (x,y). Prove or disprove each of the following assertions: (a) f is continuous; (b) if, additionally, $|df/dx|, |df/dy| \leq M$, then f is continuous; (c) if, additionally, $|df/dx|, |df/dy| \leq M$, then f is differentiable.
 - (a) This is false, f need not be continuous. Consider the example $f(x,y) := xy/(x^2 + y^2)$, for $(x,y) \neq (0,0)$, and 0, for (x,y) = (0,0). This function is discontinuous at (0,0); yet, as f vanishes along either coordinate axis, both partial derivatives of f at (0,0) exist and equal 0.

- (b) This is true: if the partial derivatives exist and are bounded, then f is continuous; this is a consequence of the mean value theorem, or equivalently, the main theorem of calculus for Riemann integration. Indeed, $|(x-x',y-y')|<\varepsilon$ implies $|f(x,y)-f(x',y')|\leq |f(x,y)-f(x,y')|+|f(x,y')-f(x',y')|\leq M|y-y'|+M|x-x'|<2M\varepsilon$, hence the continuity.
- (c) This is false, f need not be differentiable even if its partial derivatives exist and are bounded. Consider the example $f(x,y) := x^3/(x^2 + y^2)$, whose partial derivatives $\partial f/\partial x = \frac{x^4 + 3x^2y^2}{(x^2 + y^2)^2}$ and $\partial f/\partial y = -\frac{2x^3y}{(x^2 + y^2)^2}$ are bounded, but whose differential does not exist: if it did, $f(\varepsilon,\varepsilon) = \varepsilon/2$ and $\partial_x f(0,0) = 1, \partial_y f(0,0) = 0$ would contradict the identity $Df(z) = f(z) + \partial_x f(z) + \partial_y f(z) + o(|z|)$, z := (x,y).
- 7. Give an example of a differentiable map $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that Df is invertible at every point, but f is not one-to-one.

Of the many examples, the simplest is to identify \mathbb{R}^2 with the complex numbers \mathbb{C} and take $f(z) := e^z$, whose derivative is invertible and which is has period $2\pi\sqrt{-1}$ and is hence not one-to-one. In real coordinates $x + \sqrt{-1}y = z$, $f: \mathbb{R}^2 \to \mathbb{R}^2$ is given by $(x,y) \mapsto (e^x \cos y, e^x \sin y)$.