

EEL3701: Digital Logic & Computer Systems Menu

- Introduction to Logic Design
- Informal Intro to Boolean Algebra
 - >Propositions
 - >Operators
 - >Truth Tables

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

1

• Let's logically analyze a simple paragraph:

When I forget my umbrella and it rains, I get wet. I also get wet when I stick my foot in the bathtub when it has already been filled.

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

When I forget my umbrella and it rains, I get wet. I also get wet when I stick my foot in the bathtub when it has already been filled.

OUTPUT:

- The "output" of this paragraph is "getting wet"
- I get wet under either of two specified conditions
 - >It rains and I forget my umbrella
 - >The bathtub is filled and I stick my foot in it

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

3

EEL3701: Digital Logic & Computer Systems Logically Analyzing a Paragraph

When I forget my umbrella and it rains, I get wet. I also get wet when I stick my foot in the bathtub when it has already been filled.

INPUT:

- Each condition is made of of two "inputs"
 - >It rains and I forget my umbrella
 - It rains
 - Forget umbrella
 - >The bathtub is filled and I stick my foot in it
 - Bathtub filled
 - Put foot in it

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems Signal Abbreviations

When I forget my umbrella and it rains, I get wet. I also get wet when I stick my foot in the bathtub when it has already been filled.

- Let's abbreviate the inputs and outputs
 - >Output:
 - Wet
 - >Inputs:
 - Rain (it rains)
 - NoUm (forget umbrella)
 - Fill (bathtub filled)
 - FootIn (put foot in it)

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

5

EEL3701: Digital Logic & Computer Systems Writing an Equation

When I forget my umbrella and it rains, I get wet. I also get wet when I stick my foot in the bathtub when it has already been filled.

• Write an "equation" for the paragraph

Wet = (Rain **AND** NoUm) **OR** (Fill **AND** FootIn)

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems

Logical Values

- Every logical variable (e.g., Rain, NoUm, ..., Wet) has two possible values
 - > True
 - > False
- The logical abbreviations are:

> True: T or 1 > False: F or 0

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

7

EEL3701: Digital Logic & Computer Systems Logical AND Function

- The symbol for a logical AND operation is often one of the symbols used for multiplication: ×, *, • , ∧, or no symbol
 - >Z = A \times B
 - >Z = A * B
 - >Z = A \bullet B
 - >Z=A \wedge B
 - >Z=AB

	A	В	Z=AB		
	F	F	F		
	F	T	F		
	T	F	F		
•	T	T	T		

AND Truth (Logic) Table

University of Florida, EEL 3701 – File 03

Logic 19-Aug-19—4:06 PM

EEL3701: Digital Logic & Computer Systems

Logical **OR** Function

• The symbol for a logical OR operation is often the '+' sign or sometimes 'v',

EEL3701: Digital Logic & Computer Systems Logic Circuit

• Logic circuit is easily constructed from the

University of Florida, EEL 3701 – File 03

EEL3701: Digital Logic & Computer Systems Design Example: Get Wet!

• Wet = (Rain * NoUm) + (Fill * FootIn)

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

11

EEL3701: Digital Logic & Computer Systems Design Example: Get Wet!

• Wet = (Rain * NoUm) + (Fill * FootIn)

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems

Logical **Level Shift** Function

• The symbol for an **INVERTER** operation (also called a **NOT** operator) is one of the following:

University of Florida, EEL 3701 – File 03
© Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems Design Example: Stay Dry!

• We can write a whole new paragraph based on the equation **Dry** =/**Wet**

When I forget my umbrella and it rains, I get wet. I also get wet when I stick my foot in the bathtub when it has already been filled.

I stay dry if I do not get wet!

University of Florida, EEL 3701 – File 03

14

• What is the equation for the below circuit?

Hint /TwoE

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

15

• See live simulation with LogicWorks using with inputs and outputs (switches and LEDs)

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems

Intro to Logic Design Summary

- Learned to convert a problem statement into a logic equation
- Learned the basic components of a digital circuit: AND, OR, NOT
- Learned to construct a digital circuit from a logic equation

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

17

EEL3701: Digital Logic & Computer Systems Informal Intro to Boolean Algebra

- Motivation: **Boolean Algebra** is the *calculus of logic*. It is also called *Propositional Logic* or the *calculus of simple assertions*.
- Assertion 1: **Tacos are good.**

This is T or F (Not both)

- > We can express the assertion using symbols, e.g., X, Y, A, B
- > Let X represent the assertion, then

X=T or X=F

- Assertion 2: Tacos are fatty.
 - > Let Y represent assertion 2, then Y=T or Y=F
 - > We can make it more interesting by allowing combinations of assertions and negative sentences (assertions).

Ex: Let X=T and Y=F, then

- > "Tacos are **not** good" is false. (We write this as X' = F)
- > "Tacos are fatty" is false. (Y = F)
- > "Tacos are **not** fatty" is true. (Y'=F'=T)

⋄X: Tacos are good **⋄**Y: Tacos are fatty

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems

Informal Intro to Boolean Algebra

• Assertion 3: Z: Tacos are cheap. (let X=T, Y=F, Z=T) Now what does it mean to say:

X and Z (also written as X * Z)
X or Z (also written as X + Z)
X and Y (also written as X * Y)
X or Y (also written as X + Y)
T or F?
X or Y (also written as X + Y)
T or F?
T or F?
X or Y (also written as X + Y)

The combining of assertions using *AND* is called a <u>conjunction</u>, written as $XY, X^*Y, X \wedge Y$ or $X \cdot Y$, and it is T iff both assertions are T, else it is F.

The combining of assertions using OR is called a <u>disjunction</u>, written as $X \lor Y$ or X+Y, and it is F iff both assertions are F, else it is T.

The combining of assertions using <u>EOR (XOR)</u> is called an <u>exclusive disjunction</u> (<u>exclusive or</u>), written as X\PhiY or X:+:Y, and it is false iff both assertions are either both F or both T, else it is true.

The combining of assertions using <u>EQUIV</u> is called an <u>exclusive conjunction</u>, <u>(equivalence)</u>, written as X\omegaY or X:*:Y, and it is true iff both assertions are either both F or both are T, else it is false. (This is the complement of the exclusive-OR.)

University of Florida, EEL 3701 – File 03
© Drs. Schwartz & Arroyo
19

EEL3701: Digital Logic & Computer Systems Activation-Level Notation and Truth Tables

To make the notation easier we assign symbols as follows:

$$\{T,F\} = \{1,0\}$$
 (= $\{H,L\}$ for positive logic)

or

$$\{T,F\} = \{1,0\}$$
 (= $\{L,H\}$ for "n" logic)

Since X, Y or Z can only be {T,F}, we could represent all possibilities exhaustively in a table, called a **Truth Table**

Ex: Represent X*Y and X+Y and $X \oplus Y$ in a Truth Table

X	Y	X*Y	X+Y	X⊕Y	X	Y	X*Y	X+Y	X⊕Y
F	F	F	F	F	0	0	0	0	0
F	T	F	T	T	0	1	0	1	1
T	F	F	T	T	1	0	0	1	1
T	T	T	T	F	1	1	1	1	0

University of Florida, EEL 3701 – File

EEL3701: Digital Logic & Computer Systems

History of Boolean Algebra

- Boolean Algebra is so named in honor of **George Boole** who developed the notation in his Ph.D. dissertation in 1847.
 - > Claude Shannon applied it to switching networks in 1939.
- Boolean Algebra is the basic mathematics required for the study of the design of digital systems — also called switching networks.
- A switching device is (usually) a two state (binary) device.
 - > We represent the two states of these devices by the symbols {0,1} or {F,T} or {L,H}.
 - > It is convenient to use the symbols {0,1} as though they were binary numbers, but they are strictly symbols!

University of Florida, EEL 3701 – Fil

21

EEL3701: Digital Logic & Computer Systems Boolean Algebra Notation

- A Boolean variable, usually an uppercase letter, e.g., A, B, X, Y is a variable that can have one and only one state, mainly 0 or 1 (F,T). These variables represent the inputs and outputs of digital devices.
- A Boolean variable may be a function of other Boolean variables, e.g., $C = AB+D \Rightarrow C = f(A,B,D)$.

University of Florida, EEL 3701 - File 03

EEL3701: Digital Logic & Computer Systems Inverter, Not, Level Shifter

• The most basic Boolean operations (the basic operations) include: AND, OR, and NOT (complement).

Definition of **NOT**:

The complement of a Boolean variable V, written as \sim V (or \overline{V} or /V or V'), is defined as: \sim V=0 if V=1 or \sim V=1 if V=0

> The electronic device that performs the logical complement operation is called LEVEL SHIFTER (or an INVERTER)

V(•)	~V(•)
F	T
T	F

23

EEL3701: Digital Logic & Computer Systems Informal Intro to Boolean Algebra

• The second most basic Boolean operation is AND.

Definition of AND:

The AND of Boolean variables $\{A,B\}$, written as A*B, $A \bullet B$, $A \wedge B$ or AB, is defined as:

AB=1 iff A=1 and B=1 else AB=0

> The electronic device that performs the logical AND operation is called an AND gate.

 A
 B
 AB

 F
 F
 F

 F
 T
 F

 T
 F
 F

 T
 T
 T

University of Florida, EEL 3701 – File 03

EEL3701: Digital Logic & Computer Systems

Informal Intro to Boolean Algebra

• The third most basic Boolean operation is OR.

Definition of **OR**:

The OR of Boolean variables $\{A,B\}$, written as A+B or $A\lor B$, is defined as:

A+B=0 iff A=0 and B=0 else A+B=1

> The electronic device that performs the logical OR operation is called an OR gate.

 A
 B
 A+B

 F
 F
 F

 F
 T
 T

 T
 F
 T

 T
 T
 T

25

University of Florida, EEL 3701 – File 03 © Drs. Schwartz & Arroyo

EEL3701: Digital Logic & Computer Systems The Mathematics of Logic Design Boolean Algebra

- Boolean expressions are formed with the basic operations of AND, OR, and NOT being applied to one or more constants or variables.
 - >Parentheses are added as needed to specify the order in which operations are performed
 - >In the absence of parentheses we use the following hierarchy

Priority	Operation	Comments
First	NOT	Individual Variables
Second	AND	
Third	OR	
Last	NOT	On entire expressions

University of Florida, EEL 3701 – File 03

Definitions:

- **TERMS**: The objects of the universe of discourse, e.g., the constants [0,1], variables, and functions.
- <u>LITERAL</u>: A variable or its complement >Ex: Let Z = ABC + AB' + A'BC' + B'C'. Then this equation has 4 variables (A, B, C, Z) and 11 literals.
- **EQUIVALENCE**: Two Boolean expressions are equivalent iff they have the same values for every possible combination of the variables. Since a Truth Table is an exhaustive (complete) tabulation of the input variables, identical columns imply equivalent (equal) expressions.
- <u>OBSERVATION</u>: Each literal in a Boolean expression corresponds to a logic gate input/output.

University of Florida, EEL 3701 – File 03

© Drs. Schwartz & Arroyo

27

The End!

© Drs. Schwartz & Arroyo