Lecture

- Section 2: Digital Logic: Combinational and Sequential Circuits
 - 2 weeks followed by Quiz #2
 - 1. Boolean Algebra ⇔ Digital Circuits
 - 2. Combinational Circuits: half adder, full adder, decoders, multiplexers, BCD-7 segment
 - 3. Sequential Circuits: Latches, Registers, and Memory
 - 4. Pipeline Architecture: MIPS

Models of Computation

Turning Machines	Recursively Enumerable	$TM(Q,\Sigma,\Gamma,q0,\boldsymbol{\delta})$
Linear Bounded Automata	Context Sensitive Languages	LBA(Q, Σ , Γ , q0, δ)
Pushdown Automata	Context Free Languages	PDA(Q, Σ, Γ, δ, q0, z0, F)
Finite State Automata	Regular Expressions	FA(Q, Σ, δ, q0, F)
Sequential Circuits		
Combinational Logic	Boolean Algebra	

Combinational Logic

- Based upon Boolean Algebra
 - o all inputs and outputs restricted to True (1) and False (0)
- Operations are restricted to: AND (*), OR (+), NOT (')
- Equivalent to Digital Logic, with gates:

- Can be used as a building blocks: ⇒
 - \circ XOR: A \oplus B is equivalent to (A + B) * (A' + B')
- Example: Half-Adder

Boolean Algebra ⇔ Digital Circuits

- Circuit: a digital realization of a function: y = f(), y = f(x), y = f(a,b), ...
- Values:
 - True (T), 1, +5v
 - False (F), 0, <u>↓</u>
- Functions:
 - o zero inputs: clear (0), set (1)
 - one input: clear, invert, id, set

Input A		Possib	ole Outputs	0 0
				0 1
0	0	1		
1	0	0	1 1	1 0
				1 1

#Inputs	Inp Combin			tput nations
0	2^0 1		2^2^0	2
1	2^1	2	2^2^1	4
2	2^2	4	2^2^2	16

Two Input Functions

1111

fold line

- 16 different functions can be created: 2[^] 2²
- List of functions:
- Definitions: <u>Truth Table</u>:

										Y							
Α	В	0	nor	↔	Α'	→	B'	'equ iv	nand	and	equi v	В	\rightarrow	A	←	or	1
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

clear	set
nor	or
↔	←
A'	А
<i>→</i>	\rightarrow
В'	В
neq	equiv
nand	and

Boolean Algebra to Circuits

- Clear: 0 -
- Set: 1 –
- A: A -
- A':A →
- A + B: A B
- A * B:
- A ⊕ B:

• A ⊕ B: (A + B) * (A' + B')

Α	В	xor	and	or
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	0	1	1

Truth Table Reduced to a Circuit

- Generate a circuit as a sum of products
- Values: 0, 1
- Functions: Not ('), And (*), Or (+)
- Example: Implication: A ← B

 — If A is true then B must also be true!
- Consider the Truth Table
- Evaluate each row:
- Combine all rows that are true
 - $\circ \quad \text{Output} = \frac{A'B' + A'B + AB}{A'B'}$
 - Output = A'B' + AB' + AB

Α	В	Output	
0	0	1	A'B'
0	1	0	A'B
1	0	1	AB'
1	1	1	AB

output: A'B'C' + A'BC' + AB'C + ABC' + ABC

More Complex Reduction

Α	В	С	Output
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

Circuit to Boolean Algebra

- One Formula for each output
- Work Backwards, Divide and Conquer!

Output =
$$(x + y) * (j + k)$$

Output = $(A + B) * ('G + 'H)$
Output = $(A + B) * ('A + 'B)$

$$3*(5+6) == 3*5+3*6$$

Simplification ⇔ Minimization

- The above method can yield large circuits
 - Unnecessary large circuits, like programs, are bad:
 - require larger chips
 - require more time to evaluate
- Two approaches:
 - Use algebraic properties to rewrite the formulas
 - Use Karnaugh maps to visualize patterns of simplification
- Algebraic Properties:
 - associative, commutative, distributive
 - \circ complement (A*A' \Leftrightarrow 0), De Morgan's law : A' * B' \Leftrightarrow (A + B)'
 - O A' + A ⇔ 1
- Example

$$\circ$$
 R = A'*B + A*B

$$R = A'*B + A*B$$

$$R = B*A' + B*A$$

$$R = B^*(A' + A)$$

$$R = B * 1$$

$$R = B$$

Karnaugh Map

• Truth Table: R = A'*B + A*B

Α	В	Output
0	0	0
0	1	1
1	0	0
1	1	1

'(A'B')	
A'B	
'(AB')	
AB	

• Karnaugh Map: for two variables

		В				
		0	1			
Λ	0	0	1			
A	1	0	1			

- Find groups that contain only 1s
- Group size must be in power of two (1, 2, 4, 8)
- R = B'

00)
0	1
10)
11	1

Α	В	С	Output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

		ВС					
		00	01	11	10		
_	0	0	1	0	1		
Α	1	0	0	1	1		

output = A'B'C + AB + A'BC'

Rules for K-maps

- Groups only contains 1s
- Group size must be a power of two
- Groups must be rectangular, no diagonals
- Groups can overlap
- Groups can wrap
- For Minimization:
 - Use the largest group
 - Use the fewest number of groups
 - But all 1s must be contained in at least one group.

		ВС					
		00	01 11			10	
A	0	0	1		1	1	
	1	1	1		0	0	

output = A'C + AB' + A'BC'

).		ВС				ВС			
		00	01	11	10	00	01	11	10
Α	0	1			1	1			1
	1	1			1	1			1