Devoir # 1 Sécurité informatique - IFT 3275/ IFT 6271

 Jonathan Caspar (20059041) - Johnny Pho (20046014) 28 Février 2019

Partie Théorique

Soit un masque jetable utilisant une clef $k=0^l$ (composée seulement de zéros). Nous remarquons que $k\oplus m=m$ et que notre message chiffré est en fait notre message clair! De ce fait, est-il nécessaire d'utiliser des générateurs de bits qui produisent seulement des clefs $k\neq 0^l$ pour utiliser un masque jetable?

Non, cela n'est pas nécessaire. Si on retire la clé 0^l , on viole deux principes du masque jetable :

- 1. La clé 0^l est retiré de l'espace clé K, alors la répartition des clés n'est plus équiprobable.
- 2. Cela représente une information supplémentaire que l'on peut extraire du masque jetable, or un masque jetable ne doit donner aucune autre information autre que la longueur du message.
- 2 Soit un réseau de Feistel composé de deux "rounds" utilisant les fonctions de "rounds" f_1 et f_2 . Démontrez que : Feistel $f_1, f_2(L_0, R_0) = (L_2, R_2) \Rightarrow$ Feistel $f_2, f_1(R_2, L_2) = (R_0, L_0)$

Pour prouver cette implication (A \Rightarrow B), on suppose que le réseau A Feistel $f_1, f_2(L_0, R_0) = (L_2, R_2)$ est vrai et à partir des expressions qu'on arrive à dériver du réseau A : on se sert de ces expressions pour montrer que le réseau B Feistel est de la forme $f_2, f_1(R_2, L_2) = (R_4, L_4)$ et que $L_4 = L_0$ et $R_4 = R_0$.

Hypothèses :

$$L_2 = R_1 = (L_0 \oplus F(k_1, R_0))$$

$$R_2 = (L_1 \oplus F(k_2, R_1)) = (R_0 \oplus F(k_2, R_1))$$
 car $L_1 = R_0$

On exprime de la même manière les valeurs de \mathbb{R}_4 et \mathbb{L}_4 du réseau B :

$$R_4 = L_3 = (R_2 \oplus F(k_2, L_2))$$

$$L_4=(R_3\oplus F(k_1,L_3))= \fbox{(L_2\oplus F(k_1,L_3))}$$
 car $R_3=L_2$

En se servant des hypothèses, on fait une substitution de valeurs dans ${\cal R}_4$ et ${\cal L}_4$ et on simplifie :

$$\begin{split} R_4 &= (R_2 \oplus F(k_2, L_2)) = (R_2 \oplus F(k_2, R_1)) \, \mathbf{\, car \,} \, L_2 = R_1 \\ &= [(R_0 \oplus F(k_2, R_1)] \oplus F(k_2, R_1)) \, \mathbf{\, car \,} \, R_2 = (R_0 \oplus F(k_2, R_1) \, \mathbf{\, par \, \, hypoth\`ese} \\ &= (R_0 \oplus [F(k_2, R_1) \oplus F(k_2, R_1))] \, \mathbf{\, par \, \, associativit\'e \, \, du \, \, XOR} \\ &= R_0 \oplus 0 \, \mathbf{\, car \,} \, X \oplus X = 0 \, \mathbf{\, et \, \, donc \,} \, \boxed{R_4 = R_0} \, \mathbf{\, car \,} \, X \oplus 0 = X \end{split}$$

$$\begin{split} L_4 &= L_2 \oplus F(k_1, L_3) = (L_2 \oplus F(k_1, R_0)) \text{ car } L_3 = L_4 = R_0 \text{ (prouvé précédemment)} \\ &= [(L_0 \oplus F(k_1, R_0)] \oplus F(k_1, R_0)) \text{ car } L_2 = (L_0 \oplus F(k_1, R_0)) \text{ par hypothèse} \\ &= (L_0 \oplus [F(k_1, R_0) \oplus F(k_1, R_0))] \text{ par associativité du XOR} \\ &= L_0 \oplus 0 \text{ car } X \oplus X = 0 \\ \hline L_4 &= L_0 \text{ car } X \oplus 0 = X \end{split}$$

3 Démontrez la propriété de complémentarité de DES, c'est- à-dire que :

$$DES_k(m) = \overline{DES_{\overline{k}}(\overline{m})}$$

pour toute clef k et message m (où \overline{x} représente la négation logique bit à bit de x).

La notation L_x, R_x correspond à la concaténation des deux séquences.

Supposons qu'on applique deux DES (le premier avec la clé K_0 , le deuxième avec la clé k_0) à deux messages $m_1 = L_0, R_0$ et $m_2 = l_0, r_0$, la version chiffrée de ces messages est de la forme $c_1 = L_n, R_n$ et $c_2 = l_n, r_n$ avec n le nombre de rounds des DES.

On va montrer que sous l'hypothèse où
$$login{trightarrow} login{trightarrow} login{trigh$$

Cas de base (n = 1):

$$L_1 = R_0$$

$$R_1 = L_0 \oplus F(R_0, K_0)$$

$$\begin{split} l_1 &= r_0 = \overline{R_0} \text{ par hypothèse} = \boxed{\overline{L_1}} \text{ car } R_0 = L_1 \\ r_1 &= l_0 \oplus F(r_0, k_0) = \overline{L_0} \oplus F(\overline{R_0}, \overline{K_0}) \text{ par hypothèse} \\ &= \overline{L_0 \oplus F(\overline{R_0}, \overline{K_0})} \text{ car } \overline{A \oplus B} = \overline{A} \oplus B \\ &= \overline{L_0 \oplus F(R_0, K_0)} \text{ car la fonction F se base sur XOR et } \overline{A} \oplus \overline{B} = A \oplus B \\ &= \boxed{\overline{R_1}} \text{ car } L_0 \oplus F(R_0, K_0) = R_1 \end{split}$$

Par induction sur n, si vrai pour n alors vrai pour n+1:

$$L_{n+1} = R_n$$

$$R_{n+1} = L_n \oplus F(R_n, K_n)$$

$$l_{n+1} = r_n = \overline{R_n} \text{ par hypothèse} = \boxed{\overline{L_{n+1}}} \text{ car } R_n = L_{n+1}$$

$$r_{n+1} = l_n \oplus F(r_n, k_n) = \overline{L_n} \oplus F(\overline{R_n}, \overline{K_n}) \text{ par hypothèse}$$

$$= \overline{L_n \oplus F(\overline{R_n}, \overline{K_n})} \text{ car } \overline{A \oplus B} = \overline{A} \oplus B$$

$$= \overline{L_n \oplus F(R_n, K_n)} \text{ car la fonction F se base sur XOR et } \overline{A} \oplus \overline{B} = A \oplus B$$

$$= \boxed{\overline{R_{n+1}}} \text{ car } L_n \oplus F(R_n, K_n) = R_{n+1}$$

On obtient donc
$$c_2 = l_n, r_n = \overline{L_n}, \overline{R_n} = \overline{c_1}$$

4 Fréquences des différentielles de sortie ΔY (colonnes) pour chaque différentielle d'entrée ΔX (lignes):

	ΔY																
		0	1	2	3	4	5	6	7	8	9	A	В	\mathbf{C}	D	\mathbf{E}	F
ΔX	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0	2	6	4	0	0	0	2	2
	2	0	0	0	0	0	0	0	0	2	2	2	6	4	0	0	0
	3	0	2	6	4	0	2	2	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	6	6	2	2	0	0	0	0	0	0	0	0
	5	0	0	0	0	0	0	0	0	0	0	2	2	6	2	4	0
	6	0	0	0	0	0	0	0	0	4	0	0	0	2	2	6	2
	7	0	2	2	0	2	0	4	6	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	0	0	4	0	0	2	2	2	6
	9	0	2	0	2	2	0	6	4	0	0	0	0	0	0	0	0
	A	0	0	2	2	6	6	0	0	0	0	0	0	0	0	0	0
	В	0	0	0	0	0	0	0	0	0	0	2	2	2	6	0	4
	\mathbf{C}	0	0	0	0	0	0	0	0	2	2	6	2	0	4	0	0
	D	0	2	4	6	0	2	0	2	0	0	0	0	0	0	0	0
	\mathbf{E}	0	8	2	2	0	0	2	2	0	0	0	0	0	0	0	0
	\mathbf{F}	0	0	0	0	0	0	0	0	6	2	0	4	0	0	2	2

Schéma du SPN démontrant une différentielle caractéristique avec : $\Delta P = 0000 \ 1110 \ 0000 \ 0000$

On se sert de ces différentielles dans les S-Boxes :

$$S_{1,2}: \Delta X = E \Rightarrow \Delta Y = 1$$
 avec probabilité $\frac{8}{16}$
$$S_{2,4}: \Delta X = 4 \Rightarrow \Delta Y = 4$$
 avec probabilité $\frac{6}{16}$
$$S_{3,2}: \Delta X = 1 \Rightarrow \Delta Y = 9$$
 avec probabilité $\frac{6}{16}$

Après une dernière permutation, on obtient la différentielle intermédiaire suivante $\Delta I = 0000~1001~0000~0000$ avec probabilité $\frac{8}{16}*\frac{6}{16}*\frac{6}{16}=\frac{288}{4096}\approx 7\%$