

Problems on polygons and Bonnesen-type inequalities¹

A. Raouf Chouikha

Abstract

In this paper we are interested in some Bonnesen-type isoperimetric inequalities for plane n -gons in relation with the two conjectures proposed by P. Levy and X.M. Zhang.

1 Introduction

As a well known result, for a simple closed curve \mathcal{C} (in the euclidian plane) of length L enclosing a domain of area A , we have the inequality

$$L^2 - 4\pi A \geq 0. \quad (1)$$

Equality is attained if and only if this curve is a euclidean circle. This means that among the set of domains of fixed area, the euclidean circle has the smallest perimeter.

¹Mathematics Subject Classification 51M10, 51M25, 52A40

The above inequality (1) could be easily deduced from the Wirtinger inequality

$$\int_0^{2\pi} |f'(x)|^2 dx \geq \int_0^{2\pi} |f(x)|^2 dx, \quad (2)$$

where $f(x)$ is a continuous periodic function of period 2π whose derivative $f'(x)$ is also continuous and $\int_0^{2\pi} f(x) dx = 0$. Equality holds if and only if $f(x) = \alpha \cos x + \beta \sin x$ (see Osserman's paper [O1]).

For any curve \mathcal{C} of length L enclosing an area A , the quantity $L^2 - 4\pi A$ is called *the isoperimetric deficiency* of \mathcal{C} , because it decreases towards zero when \mathcal{C} tends to a circle.

As an extension, Bonnesen proves [O1] that if \mathcal{C} is convex and there exists a circular annulus containing \mathcal{C} of thickness d , then we have

$$4\pi d^2 \leq L^2 - 4\pi A.$$

In fact, Fuglede showed that convexity is not a necessary hypothesis [F].

There is a related isoperimetric inequality known as the Bonnesen :

$$L^2 - 4\pi A \geq \pi^2(R - r)^2, \quad (3)$$

where R is the circumradius and r is the inradius of the curve \mathcal{C} .

Note that if the right side of (3) equals zero, then $R = r$. This means that \mathcal{C} is a circle and $L^2 - 4\pi A = 0$.

More generally, inequalities of the form

$$L^2 - 4\pi A \geq K, \quad (4)$$

are called Bonnesen-type isoperimetric inequalities if equality is only attained for the euclidean circle. In the other words, K is positive and satisfies the condition

$$K = 0 \quad \text{implies} \quad L^2 - 4\pi A = 0.$$

(See [O2] for a general discussion and different generalisations).

For an n -gon Π_n (a polygon with n sides) of perimeter L_n and area A_n , the following inequality is known

$$L_n^2 - 4(n \tan \frac{\pi}{n}) A_n \geq 0. \quad (5)$$

Equality is attained if and only if the n -gon is regular. Thus, if we consider a smooth curve as a polygon with infinitely many sides, it appears that inequality (1) is a limiting case of (5).

Moreover, we know that an n -gon has a maximum area among all n -gons with the given set of sides if it is convex and inscribed in a circle. Let a_1, a_2, \dots, a_n denote the lengths of the sides of Π_n . For a triangle, Heron's formula gives the area

$$A_3 = \frac{1}{4} L_3^2 \sqrt{(1 - \frac{2a_1}{L_3})(1 - \frac{2a_2}{L_3})(1 - \frac{2a_3}{L_3})}.$$

For a quadrilateral, the Brahmagupta formula gives a bound for the area

$$A_4 \leq \frac{1}{4} L_4^2 \sqrt{(1 - \frac{2a_1}{L_4})(1 - \frac{2a_2}{L_4})(1 - \frac{2a_3}{L_4})(1 - \frac{2a_4}{L_4})}$$

with equality if and only if Π_4 can be inscribed in a circle.

2 Isoperimetric constants

We can ask if it is possible to get an analogous formula for other plane polygons (not necessarily inscribed in a circle). More precisely, is the area A_n of the n -gon close to the following expression ?

$$P_n = \frac{L_n^2}{4} \sqrt{(1 - \frac{2a_1}{L_n})(1 - \frac{2a_2}{L_n})(1 - \frac{2a_3}{L_n}) \dots (1 - \frac{2a_n}{L_n})} \quad (6)$$

This question has been considered by many geometers who tried to compare A_n with P_n . One of them, P. Levy [L] was interested in this problem and more precisely he expected the following

Conjecture 1 : Define the ratio $\varphi_n = \frac{A_n}{P_n}$. For any n -gon Π_n , with sides a_1, a_2, \dots, a_n enclosing an area A_n , and P_n defined as above, this ratio verifies

$$a) \quad \frac{e}{\pi} \leq \varphi_n \quad \text{and} \quad b) \quad \varphi_n \leq 1.$$

Remark : Notice that part a) is obviously only valid for cyclic n -gons, but part b) of Conjecture 1 may be true for any n -gon. In particular, for a triangle we have $\varphi_3 = 1$ and for a quadrilateral, $\varphi_4 \leq 1$ ($\varphi_4 = 1$ in the cyclic case).

Conjecture 1 was originally motivated by study of cyclic n -gons. More precisely, for regular n -gons we get $a_i = L_n/n$. The associated value of φ_n is given by

$$\varphi_n^0 = \frac{1}{n \tan \frac{\pi}{n} (1 - \frac{2}{n})^{n/2}} \quad (7)$$

and satisfies the inequalities of Conjecture 1. Moreover, we may verify that φ_n^0 is a decreasing function in n .

As we shall see below, the lower bound $\varphi_n \geq \frac{e}{\pi}$ seems to have more geometric interest than the upper one. Indeed, it allows one to estimate the defect between any n -gon Π_n and the regular one. This defect may be measured by the quotient

$$\tau_n = \frac{\varphi_n}{\varphi_n^0} \quad (8)$$

which tends to 1 whenever Π_n is close to being regular. Moreover, τ_n is related to a new Bonnesen-type inequality for plane polygons.

On the other hand, H.T. Ku, M.C. Ku and X.M. Zhang, ([K.K.Z] and [Z]) have been interested in this same problem. Their approach is quite different. They consider the so called pseudo-perimeter of second kind \hat{L}_n defined by

$$\hat{L}_n = L_n \left(\frac{n}{n-2} \right) \left[\left(1 - \frac{2a_1}{L_n} \right) \left(1 - \frac{2a_2}{L_n} \right) \left(1 - \frac{2a_3}{L_n} \right) \dots \left(1 - \frac{2a_n}{L_n} \right) \right]^{1/n}. \quad (9)$$

In fact, there is a relation between \hat{L}_n and P_n

$$\hat{L}_n = \left(\frac{n}{n-2}\right)(4P_n)^{\frac{2}{n}} L_n^{\frac{n-4}{n}}. \quad (10)$$

X.M. Zhang ([Z] p. 196) has proposed the following

Conjecture 2: *For any cyclic n -gon Π_n , we have*

$$\hat{L}_n^2 - 4(n \tan \frac{\pi}{n}) A_n \geq 0.$$

Equality holds if and only if Π_n is regular.

For any n -gon Π_n , we have the natural inequality $\hat{L}_n \leq L_n$. The equality $\hat{L}_n = L_n$ holds if and only if Π_n is regular (see Lemma (4-6) of [Ch]).

Moreover, it has been remarked by Zhang that Conjecture 2 implies Conjecture (2-6) of [K,K,Z] concerning the 3-parameter family of pseudo-perimeters denoted by $\mathcal{L}_n[x, (n-1)y, \frac{nz}{2}]$ for any n -gon inscribed in a circle. They prove that $\hat{L}_n \leq \mathcal{L}_n \leq L_n$ where $\mathcal{L}_n[1, 0, 0] = L_n$ and $\mathcal{L}_n[0, 0, 1] = \hat{L}_n$.

More generally, we also examine the following

Problem 2': *Let us consider a piecewise smooth closed curve \mathcal{C} in the euclidean plane, of length L and area A . Let $(\Pi_n)_n$ be a sequence of n -gons approaching \mathcal{C} . L_n , \hat{L}_n and A_n are respectively the perimeter, the pseudo-perimeter and the area of Π_n . Supposing that $\hat{L} = \lim_{n \rightarrow \infty} \hat{L}_n$ exists, do we have the Bonnesen-type inequality*

$$\hat{L}^2 - 4\pi A \geq 0 ?$$

Examples given below show that Problem 2' may have a solution.

In this paper, we shall discuss these conjectures and exhibit the special role played by $\tau_n = \frac{\varphi_n}{\varphi_n^0}$, where φ_n and φ_n^0 are defined as above for any cyclic n -gon, with sides a_1, a_2, \dots, a_n .

Accordingly, we also introduce the ratio

$$\nu_n = \left(\frac{L_n}{\hat{L}_n}\right)^{\frac{n}{2}-2}. \quad (11)$$

We will describe some examples. As a consequence we propose a conjecture which seems to be more appropriate than Conjecture 2. In particular, it yields bounds for τ_n . The theorem below shows that the position of τ_n compared with 1 and ν_n gives partial answers to both the above conjectures.

Theorem 1:

Let $\tau_n = \frac{\varphi_n}{\varphi_n^0}$ and $\nu_n = \left(\frac{L_n}{\hat{L}_n}\right)^{\frac{n}{2}-2}$ be the constants associated to any cyclic n -gon Π_n , with sides a_1, a_2, \dots, a_n . L_n and \hat{L}_n are respectively the perimeter and the pseudo-perimeter. We then have

- (i) The inequality $\tau_n \leq 1$ implies conjecture 1 b) and conjecture 2. Moreover, this implication is strict.
- (ii) The inequalities $1 \leq \tau_n \leq \nu_n$ imply conjecture 1 a) and conjecture 2.
- (iii) The inequality $\nu_n < \tau_n$ contradicts conjecture 2.

In these three cases, Equality $1 = \tau_n = \nu_n$ holds if and only if Π_n is regular .

Case (i) of Theorem 1 implies in particular that

$$\frac{\varphi_n}{\varphi_n^0} \leq 1 \leq \left(\frac{L_n}{\hat{L}_n}\right)^{\frac{n}{2}-2}.$$

Case (ii) will be illustrated below by several examples. We hope that the following hypothesis $\varphi_n \leq \varphi_n^0$ will be verified by an n -gon.

As a corollary, we deduce from (ii) and (iii) that $\tau_n \leq \nu_n$ is equivalent to Conjecture 2.

Consequently, we also obtain the following result.

Corollary 2

Suppose $\tau_n \leq 1$ is verified by a cyclic n -gon; we then have the following Bonnesen-type isoperimetric inequality :

$$\hat{L}_n^2 - 4(n \tan \frac{\pi}{n}) A_n \geq \hat{L}_n^2 (1 - \frac{\varphi_n}{\varphi_n^0}).$$

Equality holds if and only if Π_n is regular (i.e. $\varphi_n = \varphi_n^0$). Moreover, this inequality implies Conjecture 2 .

3 Proofs

1. Let L_n , \hat{L}_n , A_n be respectively the perimeter, pseudo-perimeter and area of any polygon Π_n as defined in the preceding section. The sides are of lengths a_1, a_2, \dots, a_n . Consider ratio $\varphi_n = \frac{A_n}{P_n}$, where

$$P_n = \frac{L_n^2}{4} \sqrt{(1 - \frac{2a_1}{L_n})(1 - \frac{2a_2}{L_n}) \dots (1 - \frac{2a_n}{L_n})} = \frac{1}{4} (\frac{n-2}{n})^{\frac{n}{2}} (\hat{L}_n)^{\frac{n}{2}} (L_n)^{\frac{4-n}{2}}. \quad (12)$$

Then we get expression

$$\varphi_n = (\frac{n-2}{n})^{-\frac{n}{2}} \frac{4A_n}{L_n^2} (\frac{L_n}{\hat{L}_n})^{\frac{n}{2}}.$$

After simplification, we have

$$\frac{\varphi_n}{\varphi_n^0} = \frac{4(n \tan \frac{\pi}{n}) A_n}{L_n^2} (\frac{L_n}{\hat{L}_n})^{\frac{n}{2}}.$$

Consequently, we obtain a relation between τ_n and ν_n :

$$\tau_n = \frac{4(n \tan \frac{\pi}{n}) A_n}{L_n^2} (\nu_n)^{\frac{n}{n-4}} \quad (13)$$

or

$$\tau_n = \frac{4(n \tan \frac{\pi}{n}) A_n}{\hat{L}_n^2} \nu_n. \quad (14)$$

This proves that Conjecture 2 is equivalent to the inequality

$$\tau_n \leq \nu_n.$$

Furthermore, since examples given below verify condition (ii) of Theorem 1, $1 \leq \tau_n \leq \nu_n$, we may deduce that the implication (i) is necessarily strict.

Moreover, $\varphi_n \leq \varphi_n^0 \leq 1$ implies that $(\frac{L_n}{\hat{L}_n})^{\frac{n}{2}} \leq \frac{L_n^2}{4(n \tan \frac{\pi}{n})A_n}$. The latter implies

$$\nu_n \leq \frac{\hat{L}_n^2}{4(n \tan \frac{\pi}{n})A_n},$$

which is equivalent to Conjecture 2, since $\nu_n \geq 1$.

We may deduce from the above some necessary conditions satisfied by τ_n . Indeed, from (13) and (14), the ratio should verify the inequalities

$$\tau_n \leq \nu_n^{\frac{n}{n-4}}, \quad \tau_n \geq \frac{4(n \tan \frac{\pi}{n})A_n}{\hat{L}_n^2} \geq \frac{4(n \tan \frac{\pi}{n})A_n}{L_n^2}.$$

All the equalities are attained only if $\nu_n = 1$, which corresponds to the regular polygon. Theorem 1 is proved.

2. We prove now Corollary 2. Since $\nu_n \geq 1$ we may deduce from (14) the following :

$$\frac{\varphi_n}{\varphi_n^0} \geq \frac{4(n \tan \frac{\pi}{n})A_n}{\hat{L}_n^2}.$$

We then get

$$1 - \frac{4(n \tan \frac{\pi}{n})A_n}{\hat{L}_n^2} \geq 1 - \frac{\varphi_n}{\varphi_n^0} \geq 0.$$

Thus,

$$0 \leq \hat{L}_n^2(1 - \tau_n) \leq \hat{L}_n^2 - 4(n \tan \frac{\pi}{n})A_n.$$

So, we have proved the first part of Corollary 2. This inequality implies obviously $\hat{L}_n^2 - 4n \tan \frac{\pi}{n} A_n \geq 0$, i.e. Conjecture 2. Moreover, it is clear that equality is attained for the regular polygon Π_n .

Conversely, suppose we have

$$\hat{L}_n^2 - 4n \tan \frac{\pi}{n} A_n = \hat{L}_n^2 \left(1 - \frac{\varphi_n}{\varphi_n^0}\right).$$

This is equivalent to

$$\tau_n = \frac{4n \tan \frac{\pi}{n} A_n}{\hat{L}_n^2}. \quad (15)$$

That means $\nu_n = 1$, i.e. Π_n is regular (see [Ch], Lemma(4.6)).

Remark

Under the hypothesis of Corollary 2, suppose in addition, that $\tau_n \nu_n \geq 1$. We then obtain a better Bonnesen-type isoperimetric inequality

$$\hat{L}_n^2 (1 - \tau_n) \leq \hat{L}_n^2 \left(1 - \frac{1}{\nu_n}\right) \leq \hat{L}_n^2 - 4n \tan \frac{\pi}{n} A_n.$$

4 Some special polygons

In this part, we shall see that Hypothesis (ii) of Theorem 1, which implies Conjecture 2, is in fact verified by many examples.

4.1 Example 1

It is true in particular for the Macnab polygon, which is a cyclic equiangular alternate-sided $2n$ -gon with n sides of length a and n sides of length b . This polygon was originally used as an example by [K,K,Z] and by [Z], to test their conjectures.

In fact, we can do better by the following result:

Proposition 1

Let $\Pi_{n,n}$ be a cyclic $2n$ -gon with n sides of length a alternatively with n sides of length b and $\varphi_{n,n}$ its associated function. Then, we have

$$1 \leq \frac{\varphi_{n,n}}{\varphi^0} \leq \left(\frac{L_{n,n}}{\hat{L}_{n,n}}\right)^{\frac{n}{2}-2}.$$

Proof

A direct calculation gives the expression

$$\varphi_{n,n} = \frac{[(a^2 + b^2) \cos \frac{\pi}{n} + 2ab]}{n \sin \frac{\pi}{n} (a+b)^2 [1 - \frac{2}{n} + \frac{4ab}{n^2(a+b)^2}]^{\frac{n}{2}}}.$$

This follows from expressions for $A_{n,n}$ and $\hat{L}_{n,n}$ calculated by [Z]. Indeed, one gets

$$A_{n,n} = \frac{n}{4 \sin \frac{\pi}{n}} [(a^2 + b^2) \cos \frac{\pi}{n} + 2ab],$$

$$\hat{L}_{n,n}^2 = \frac{n^2}{(n-1)^2} [n(n-2)(a^2 + b^2) + n^2ab + (n-2)^2ab].$$

Furthermore, it is easy to see that $\varphi_{n,n}$ may be written

$$\varphi_{n,n} = \frac{[\cos \frac{\pi}{n} + \frac{2ab}{(a+b)^2} (1 - \cos \frac{\pi}{n})]}{n \sin \frac{\pi}{n} [1 - \frac{2}{n} + \frac{4ab}{n^2(a+b)^2}]^{\frac{n}{2}}}.$$

Thus,

$$\frac{\varphi_{n,n}}{\varphi^0} = \frac{(1 - \frac{1}{n})^n [\cos \frac{\pi}{n} + \frac{2ab}{(a+b)^2} (1 - \cos \frac{\pi}{n})]}{1 - \frac{2}{n} + \frac{4ab}{n^2(a+b)^2}]^{\frac{n}{2}} (1 + \cos \frac{\pi}{n}),$$

which can be expressed as follows :

$$\frac{\varphi_{n,n}}{\varphi^0} = (1 + \frac{E-1}{n(n-1)})^{-\frac{n}{2}} [1 + (E-1) \frac{1 - \cos \frac{\pi}{n}}{1 + \cos \frac{\pi}{n}}], \text{ where } E = \frac{4ab}{(a+b)^2}.$$

We can see easily that $\frac{\varphi_{n,n}}{\varphi^0} \geq 1$, since $0 \leq E \leq 1$.

4.2 Example 2

Let Π_n^0 denote the regular n -gon whose sides a_i^0 are subtended by angles $\frac{\pi}{n}; i = 1, \dots, n$. Consider a polygon Π_n^ε obtained from Π_n^0 by variations of a_1, a_2 which are subtended respectively by $\frac{\pi}{n} - \varepsilon$ and $\frac{\pi}{n} + \varepsilon$. The other sides of length $a_i^0 (3 \leq i \leq n)$ are unchanged. We prove that hypothesis (ii) is verified by Π_n^ε .

Proposition 2

Let Π_n^ε be the n -gon defined above for $n \geq 4$, φ_n^ε being its associated function. Then, for $\varepsilon > 0$ small, we have $1 \leq \frac{\varphi_n^\varepsilon}{\varphi_n^0} \leq (\frac{L_{n,n}}{\bar{L}_{n,n}})^{\frac{n}{2}-2}$.

Thus, it seems that the function $\varphi(a_1, a_2, \dots, a_n)$ for an n -gon possesses a local minimum for the regular polygons.

Proof

Let $L_n^\varepsilon, \hat{L}_n^\varepsilon, A_n^\varepsilon$ be respectively perimeter, pseudo-perimeter and enclosing area of the polygon Π_n^ε defined above. We get $a_1 = 2R \sin(\frac{\pi}{n} - \varepsilon)$ and $a_2 = 2R \sin(\frac{\pi}{n} + \varepsilon)$. After calculation, we obtain the following expression

$$A_n^\varepsilon = A_n^0 \left(1 - \frac{4\varepsilon^2}{n}\right) \quad \text{and} \quad L_n^\varepsilon = L_n^0 \left(1 - \frac{\varepsilon^2}{n}\right).$$

On the other hand,

$$\begin{aligned} \left(1 - \frac{2a_1}{L_n^\varepsilon}\right) \left(1 - \frac{2a_2}{L_n^\varepsilon}\right) &= 1 - \frac{4}{n} \left[1 - \varepsilon^2 \left(\frac{1}{2} - \frac{1}{n}\right)\right] + \frac{4R^2 [\sin^2 \frac{\pi}{n} - \varepsilon^2]}{(L_n^0)^2 \left(1 - \frac{\varepsilon^2}{n}\right)} \\ &= \left(1 - \frac{2}{n}\right)^2 \left[1 + \frac{4\varepsilon^2}{(n-2)^2} \left(\frac{n-2}{2} + \frac{2}{n} - \frac{1}{\sin^2 \frac{\pi}{n}}\right)\right]. \end{aligned}$$

Also, we get $\left(1 - \frac{2a_i^0}{L_n^\varepsilon}\right) = \left(1 - \frac{2}{n}\right) \left(1 - \frac{2\varepsilon^2}{n(n-2)}\right)$. After simplification, we find the expression

$$\frac{\varphi_n^\varepsilon}{\varphi_n^0} = 1 - \frac{2\varepsilon^2}{(n-2)^2} \left[\frac{(n-2)^2}{2n} + \frac{n-2}{2} + \frac{2}{n} - \frac{1}{\sin^2 \frac{\pi}{n}}\right],$$

which verifies $\frac{\varphi_n^\varepsilon}{\varphi_n^0} \geq 1$.

Notice that the factor ε^2 vanishes for $n = 4$.

From the expression

$$\left(\frac{L_{n,n}}{\hat{L}_{n,n}}\right)^{\frac{n}{2}-2} = 1 - \frac{2(n-4)}{n(n-2)^2}\varepsilon^2\left[-\frac{(n-2)^2}{2n} + \frac{n-2}{2} + \frac{2}{n} - \frac{1}{\sin^2 \frac{\pi}{n}}\right],$$

we also prove that $\frac{\varphi_n^\varepsilon}{\varphi_n^0} \leq \left(\frac{L_{n,n}}{\hat{L}_{n,n}}\right)^{\frac{n}{2}-2}$.

5 Levy's polygons

In this part, we discuss the connexion between Conjecture 1 and some Bonnesen-type inequalities by using examples. Some n -gons satisfy Conjecture 1 without being regular. P. Levy has remarked on particular properties of the function φ_n which depends on the lengths of the sides

$$\varphi_n = \varphi_n(a_1, a_2, a_3, \dots, a_n).$$

Indeed, he noticed that φ_n is a bounded algebraic symmetric function. Its bounds does not depend on n and it should verify the equality

$$\varphi_n(a_1, a_2, a_3, \dots, 0) = \varphi_{n-1}(a_1, a_2, a_3, \dots, a_{n-1}).$$

Consequently, we deduce that

$$\tau_{n-1}(a_1, a_2, \dots, a_{n-1}) < \tau_n(a_1, a_2, \dots, a_{n-1}, 0).$$

5.1 Also, P. Levy tried to find these bounds and tested Conjecture 1 on a special curve polygon denoted by $\Pi(\alpha)$, inscribed in the euclidean circle of radius 1. It is bounded by a circular arc with length $2(\pi - \alpha)$, and a chord of length $l = 2 \sin \alpha$, where $0 \leq \alpha \leq \pi$.

$\Pi(\alpha)$ can be considered as limit of an $(n+1)$ -gon with n sides of length $2 \sin \frac{2\pi}{n}$ while only one has a fixed length $l = 2 \sin \alpha$. Let $\varphi_n(\alpha)$ be the corresponding ratio and $\varphi(\alpha)$ its limit value when n tends to infinity. In this case, $\varphi_\infty^0 = \frac{e}{\pi}$ is the limit value of $\varphi_n^0 = \frac{1}{n \tan \frac{\pi}{n} (1 - \frac{2}{n})^{n/2}}$.

We get the following

Proposition 3

Let $L(\alpha)$, $\hat{L}(\alpha)$, $A(\alpha)$ be respectively the perimeter, the pseudo-perimeter and the enclosing area of the “polygon” $\Pi(\alpha)$, with $0 \leq \alpha \leq \pi$. We then obtain the inequalities

$$a) 1 \leq \frac{\varphi(\alpha)}{\varphi^0} \leq \frac{\pi}{e} \sqrt{\frac{e}{3}} \text{ with } \varphi(\pi) = \frac{e}{\pi} \text{ and } \varphi(0) = \sqrt{\frac{e}{3}}.$$

$$b) \hat{L}^2(\alpha) - 4\pi A(\alpha) \geq 0.$$

Equality holds if and only if $\alpha = 0$.

Thus, we may deduce that $\Pi(\alpha)$ verifies Conjecture 1 and Problem 2’.

Proof

We may calculate the exact value of the function $\varphi(\alpha)$. We refer for that to P. Levy’s papers [L] and [Ch] for details. Here $L = 2(\alpha + \sin \alpha)$ and $A = \alpha - \sin \alpha \cos \alpha$ so that

$$\varphi(\alpha) = \frac{(\pi - \alpha - \sin \alpha \cos \alpha)}{(\pi - \alpha + \sin \alpha)^{\frac{3}{2}} \sqrt{\pi - \alpha - \sin \alpha}} e^{\frac{\pi - \alpha}{\pi - \alpha + \sin \alpha}}.$$

$$\tau = \frac{\pi(\pi - \alpha - \sin \alpha \cos \alpha) e^{\frac{\sin \alpha}{\pi - \alpha + \sin \alpha}}}{(\pi - \alpha + \sin \alpha)^{\frac{3}{2}} \sqrt{\pi - \alpha - \sin \alpha}},$$

and

$$\nu = \sqrt{\frac{(\pi - \alpha + \frac{1}{2} \sin \alpha)}{(\pi - \alpha + \sin \alpha)}} e^{\frac{\pi - 2\alpha - \sin \alpha}{\alpha + \sin \alpha}}.$$

Thus, for $0 \leq \alpha \leq \pi$ we obtain the double inequality ([Ch], Proposition(2.1))

$$\frac{e}{\pi} \leq \varphi(\alpha) \leq \sqrt{\frac{e}{3}}.$$

These inequalities may also be verified by *Mathematica*. On the other hand, we may also deduce the expression $\frac{4\pi A}{L^2}$ in terms of α :

$$\frac{4A}{\hat{L}^2} = \frac{(\pi - \alpha - \frac{1}{2}\sin 2\alpha)}{(\pi - \alpha + \sin \alpha)^2}.$$

We can prove easily that the right side of the above expression is a decreasing function of α , and for $\alpha = 0$, its value is 1. We then obtain part b) of Proposition 3.

5.2 P. Levy considered also another curvilinear polygon. Denote by $\Pi(\alpha, \theta)$ the polygon obtained from $\Pi(\alpha)$ by replacing the side with length $l = 2 \sin \alpha$ by two sides. One of them has a length $2 \sin \theta$. Then we get the expression of the perimeter and the area of the new polygon $\Pi(\alpha, \theta)$:

$$\begin{aligned} L(\alpha, \theta) &= 2[\pi - \alpha + \sin \theta + \sin(\alpha + \theta)], \\ A(\pi - \alpha, \theta) &= \pi - \alpha + \sin \alpha \cos(\alpha + 2\theta), \\ 0 &\leq \theta \leq \alpha. \end{aligned}$$

For $\theta = 0$ we get of course, $\Pi(\alpha, 0) \equiv \Pi(\alpha)$.

Proposition 4

Let $L(\alpha, \theta)$, $\hat{L}(\alpha, \theta)$, $A(\alpha, \theta)$ be respectively the perimeter, the pseudo-perimeter and the enclosing area of the “polygon” $\Pi(\alpha, \theta)$, with $0 \leq \alpha \leq \pi$, and $0 \leq \theta \leq \pi - \alpha$. We then obtain the inequalities

- a) $\varphi(\alpha, \theta_0) \leq \varphi(\alpha, \theta) \leq \varphi(\alpha, \frac{\pi-\alpha}{2}) \leq 1$ for certain $\theta_0 > 0$.
- b) $1 \leq \frac{\varphi(\alpha, \frac{\pi-\alpha}{2})}{\varphi(0, 0)} \leq \frac{\pi}{e}$ with $\varphi(\pi, 0) = 1$ and $\varphi(0, \frac{\pi}{2}) = \frac{\pi}{e}$.
- c) $\hat{L}^2(\alpha, \frac{\pi-\alpha}{2}) - 4\pi A(\alpha, \frac{\pi-\alpha}{2}) \geq 0$.

Equality holds if and only if $\alpha = \pi$.

Proof

We calculate the following expression for the function $\varphi(\alpha, \theta)$ defined above

$$\varphi(\alpha, \theta) = \frac{\alpha - \sin \alpha \cos(\alpha + 2\theta)}{[\alpha + \sin \theta + \sin(\alpha + \theta)]\sqrt{\alpha^2 - 4 \sin^2 \frac{\alpha}{2} \cos^2(\frac{\alpha}{2} + \theta)}} e^{\frac{\alpha}{[\alpha + \sin \theta + \sin(\alpha + \theta)]}}$$

The details are given in [L] and [Ch]. In particular, for $0 \leq \alpha \leq \pi$ we have seen ([Ch], proposition (3-1)) that $\varphi(\alpha, \theta)$ admits a maximum $\theta_0 = \frac{\pi-\alpha}{2}$ and

two minima θ_1, θ_2 symmetric with respect to θ_0 , such that $\varphi(\alpha, \theta_1) = \varphi(\alpha, \theta_2)$. Moreover, we may prove that $\frac{\varphi(\alpha, \frac{\pi-\alpha}{2})}{\varphi^0}$ is a decreasing function, $\varphi(\pi, 0) = 1$, and $\varphi(0, \frac{\pi}{2}) = \frac{\pi}{e}$.

Furthermore, after simplifying the expression $\frac{4\pi A(\alpha, \frac{\pi-\alpha}{2})}{\hat{L}^2(\alpha, \frac{\pi-\alpha}{2})}$ we find the following :

$$4 \frac{A(\alpha, \frac{\pi-\alpha}{2})}{\hat{L}^2(\alpha, \frac{\pi-\alpha}{2})} = \frac{\pi - \alpha + \sin \alpha}{(\pi - \alpha + 2 \cos \frac{\alpha}{2})^2}.$$

We may verify that a such function is decreasing and is less than 1. We have thus proved part c) of Proposition 4.

Remark : There are two possibilities for the “polygon” $\Pi(\alpha)$ (considered as a limit of an $(n+1)$ -gon) with only one side of length $l = 2 \sin \alpha$. The center of the circumscribed circle is inside the domain bounded by the $(n+1)$ -gons. In this case, $\sum 2\theta_i = 2\pi$, where $2\theta_i$ is the subtended angle of the side a_i . The second case is arises by transposing α with $\pi - \alpha$. So, the center of the circumscribed circle is outside the domain bounded by the $(n+1)$ -gons, and we have $\sum 2\theta_i < 2\pi$. This fact have been underlined by P.Levy. Of course, it is only in the first case, that the isoperimetric inequality is optimal.

6 Concluding remark

Thus, it is natural to expect that the hypothesis (ii) of Theorem 1 is verified for any cyclic n-gon. We then may propose the following

Conjecture 3 : *For any n-gon Π_n , we have the inequalities*

$$1 \leq \tau_n \leq \nu_n,$$

with $1 = \tau_n = \nu_n$ if and only if Π_n , is regular.

Obviously, this implies Conjecture 2 and Conjecture 1 a). Thus, conjecture 3 appears to be more significant than the previous conjectures. Notice that by Theorem 1,

$$\nu_n = 1 \Rightarrow \tau_n = 1.$$

To investigate in this direction, we can see for example expression (13). We may deduce anyway that $\frac{\nu_n^{\frac{n}{n-4}}}{\tau_n} \geq 1$, which is equivalent to

$$\frac{\varphi_n}{\varphi_n^0} \left(\frac{\hat{L}_n}{L_n} \right)^{\frac{n}{2}} \leq 1 \text{ and } \frac{1}{\nu_n^{\frac{4}{n-4}}} \leq \frac{\nu_n}{\tau_n}.$$

Equality holds if and only if the n -gon is regular. This gives an upper bound for τ_n .

Actually, by using the Bonnesen-style inequalities of X.M. Zhang [Z], we can improve it. More precisely, we have

$$\frac{\tau_n}{\nu_n^{\frac{2n}{n-4}}} \leq 1 - \left(\frac{2Rn \sin \frac{\pi}{n}}{L_n} - 1 \right)^2.$$

Also,

$$\frac{\tau_n}{\nu_n^{\frac{2n}{n-4}}} \leq 1 - \left(1 - \frac{2rn \tan \frac{\pi}{n}}{L_n} \right)^2.$$

Here R and r are the circumradius and inradius, respectively.
Moreover, we get the following lower bound :

$$\left(\frac{2rn \tan \frac{\pi}{n}}{L_n} \right)^2 \leq \frac{\tau_n}{\nu_n^{\frac{2n}{n-4}}},$$

which implies in particular, that

$$\nu_n^{\frac{n+4}{n-4}} \left(\frac{2rn \tan \frac{\pi}{n}}{L_n} \right)^2 \leq \frac{\tau_n}{\nu_n}.$$

Acknowledgment : I would like to thank Professor Coxeter for his interest in my paper and his corrections.

REFERENCES

[Ch] R. Chouikha *Probleme de P. Levy sur les polygones articules*
C. R. Math. Report, Acad of Sc. of Canada, vol 10, p. 175-180, 1988.

[F] B. Fuglede *Bonnesen inequality for the isoperimetric deficiency of closed curves in the plane* Geometriae Dedicata, vol 38, p. 283-300, 1991.

[K.K.Z] H.T. Ku, M.C. Ku, X.M. Zhang *Analytic and geometric isoperimetric inequalities* J. of Geometry, vol 53, p.100-121, 1995.

[L] P. Levy *Le probleme des isoperimetres et des polygones articules*
Bull. Sc. Math., 2eme serie, 90, p.103-112, 1966.

[O1] R. Osserman *The isoperimetric inequalities*
Bull. Amer. Math. Soc., vol 84, p.1182-1238, 1978.

[O2] R. Osserman *Bonnesen-style isoperimetric inequalities*
Amer. Math. Monthly, vol 1, p. 1-29, 1979.

[Z] X.M. Zhang *Bonnesen-style inequalities and pseudo-perimeters for polygons* J. of Geometry, vol 60, p.188-201, 1997.

University of Paris-Nord
LAGA,CNRS UMR 7539
Av. J.B.Clement
Villetaneuse F-93430
e-mail: chouikha@math.univ-paris13.fr