PROBLEM SOLVING AND PYTHON PROGRAMMING

Rajasekaran AP/IT

Introduction to Problem

Rajasekaran AP/IT

Problem Solving

The process of finding solutions to difficult or complex issues.

Solution to the problem

P

Steps involved when solving the problem

Understanding

Planning the Sequence of Actions

Execution of Plan

Testing the Result

Fine Tune the Solution

Recipe to the Solution

Cook a Crunchy Bread Toast for You

Procedure to Make Bread Toast

Step 1 : Grab a loaf of bread.

Step 2 : Get a pan and place it on the stove let it heat.

Step 3: Pour some oil on the pan and wait for oil to be heated.

Step 4: Put a slice on the pan and roast until it become brown in shade.

Step 5: Turn the slice and roast until it become brown in shade.

Step 5 : Get the toasted bread from the pan and serve it.

Step 6: Turn off the heat source.

If a problem comes from mathematics then what we need to do?

Mathematically the Procedures is

Algorithm

Algorithm

A finite set of unambiguous instructions performed in a prescribed sequence to achieve a goal, especially a mathematical rule or procedure used to compute a desired result.

*

×

 $\dot{\mathbf{x}}$

Algorithms are the basis for most computer programming.

Simple Mathematical Problem

Simple Mathematical Problem

Addition Algorithm Human Version

Step 1: Get 2 inputs.

Step 2 :Perform addition.

Step 3: Get the Result.

Addition Algorithm Computer Version

Step 1: Get 1st Input and store.

Step 2: Get 2nd Input and store.

Step 3: Grab the stored value and perform the addition logic.

Step 4: Compute the result.

Step 5 : Store the result.

Step 6: Display the result and exit

Need of Algorithm

- 1. Efficiency
- 2. Abstraction
- 3. Reusability

Basic Building Blocks of Algorithm

- Instructions/Statements
- State
- **Control Flow**
- **Functions**

Instruction/Statement

In computer programming, a statement is the **smallest standalone element** of an imperative programming language that expresses some action to be carried out. It is an instruction written in a high-level language that commands the computer to perform a specified action.

- 1. Simple Statement [assertion, Assignment, Call]
- 2. Compound Statement [block, loops, conditions, jumps]

State

In information technology and computer science, a program is described as stateful if it is designed to remember preceding events or user interactions; the remembered information is called the state of the system.

