1. (9 points) Find a regular expression that represents the complement of the language represented by the following regular expression: $(1(0|1)^*)^*$

DFA construction:

Complement

2. (8 points) Find a PDA that accepts the language of all the strings taking the form aⁿ b^k a^m with n>0, k>0, m>0, and n+m=k.

3. (9 points) Build the SLR parsing table for the following grammar whose set of terminal symbols is $\{x, *, <, >\}$ and whose start symbol is $\{x, *, <, >\}$

$$S \rightarrow A \mid A * S \mid \varepsilon$$
 (1,2,3)
 $A \rightarrow \langle B \rangle$ (4)
 $B \rightarrow x \mid x * B$ (5,6)

Tell if this grammar is SLR or not. Motivate your answer.

Add new non-remissels' and rule 5'->5 (0) Computation of nullable, FIRST, FOLLOW

	nullable	FIRST	FOLLOW
5	T	<	≉
\triangle	F	\ <	* ,\$
B	1 F	\ ×	>

SLR Parsing Table;

	$\sqsubseteq \times$	*	<	>	\$	S	A	B
Ø			55		r3 840 84	1	2	
2 3		53 55	5 5		ν1 v3	4	2	
45	58			_	r2			6
5		<i>t</i> 4		57	r4			
Ø123456789		59		r5				
9	58			Y 6				10
-				. •	1			

The frammar is SLR because the SLR harsing table has no conflict.

4. (6 points) What is the difference, in terms of computational complexity, between the membership problem for context-free languages and the membership problem for deterministic context-free languages?

The time complexity of the membership problem for context-free languages is cubic in the length of the input string, while for deterministic context-free languages it is linear in the length of the input string.