```
In [33]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
In [5]: pop=pd.read_csv("world_population.csv")
pop.head(10)
```

Out[5]:

	Rank	CCA3	Country/Territory	Capital	Continent	2022 Population	2020 Population	2015 Population	P
0	36	AFG	Afghanistan	Kabul	Asia	41128771	38972230	33753499	
1	138	ALB	Albania	Tirana	Europe	2842321	2866849	2882481	
2	34	DZA	Algeria	Algiers	Africa	44903225	43451666	39543154	3
3	213	ASM	American Samoa	Pago Pago	Oceania	44273	46189	51368	
4 5	203	AND	Andorra	Andorra la Vella	Europe	79824	77700	71746	
	42	AGO	Angola	Luanda	Africa	35588987	33428485	28127721	
6	224	AIA	Anguilla	The Valley	North America	15857	15585	14525	
7	201	ATG	Antigua and Barbuda	Saint John's	North America	93763	92664	89941	
8	33	ARG	Argentina	Buenos Aires	South America	45510318	45036032	43257065	
9	140	ARM	Armenia	Yerevan	Asia	2780469	2805608	2878595	

DATA EXPLORATION

```
In [6]: pop.shape
Out[6]: (234, 17)
In [7]: pop.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 234 entries, 0 to 233
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype				
0	Rank	234 non-null	int64				
1	CCA3	234 non-null	object				
2	Country/Territory	234 non-null	object				
3	Capital	234 non-null	object				
4	Continent	234 non-null	object				
5	2022 Population	234 non-null	int64				
6	2020 Population	234 non-null	int64				
7	2015 Population	234 non-null	int64				
8	2010 Population	234 non-null	int64				
9	2000 Population	234 non-null	int64				
10	1990 Population	234 non-null	int64				
11	1980 Population	234 non-null	int64				
12	1970 Population	234 non-null	int64				
13	Area (km²)	234 non-null	int64				
14	Density (per km²)	234 non-null	float64				
15	Growth Rate	234 non-null	float64				
16	World Population Percentage	234 non-null	float64				
dt-mag. floot(4/2) int(4/10) obiost(4)							

dtypes: float64(3), int64(10), object(4)

memory usage: 31.2+ KB

In [8]: pop.describe()

Out[8]:

	Rank	2022 Population	2020 Population	2015 Population	2010 Population	200 Populatic
count	234.000000	2.340000e+02	2.340000e+02	2.340000e+02	2.340000e+02	2.340000e+C
mean	117.500000	3.407441e+07	3.350107e+07	3.172996e+07	2.984524e+07	2.626947e+(
std	67.694165	1.367664e+08	1.355899e+08	1.304050e+08	1.242185e+08	1.116982e+C
min	1.000000	5.100000e+02	5.200000e+02	5.640000e+02	5.960000e+02	6.510000e+0
25%	59.250000	4.197385e+05	4.152845e+05	4.046760e+05	3.931490e+05	3.272420e+C
50%	117.500000	5.559944e+06	5.493074e+06	5.307400e+06	4.942770e+06	4.292907e+0
75%	175.750000	2.247650e+07	2.144798e+07	1.973085e+07	1.915957e+07	1.576230e+(
max	234.000000	1.425887e+09	1.424930e+09	1.393715e+09	1.348191e+09	1.264099e+C

In [9]: pop.describe(include=object)

Out[9]:

		CCA3	Country/Territory	Capital	Continent
	count	234	234	234	234
	unique	234	234	234	6
	top	AFG	Afghanistan	Kabul	Africa
	freq	1	1	1	57

```
In [10]: pop.isna().sum()
```

Top 5 populated countries in the world in 2022

```
In [12]: #population of top 5 countries 2022

sorted_2022=pop.sort_values(by='2022 Population',ascending=False)
sorted_2022=sorted_2022.head(5)
plt.figure(figsize=(10,5))
plt.bar(sorted_2022['Country/Territory'],sorted_2022['2022 Population'],colc plt.xlabel('country')
plt.ylabel('population')
plt.title("Population of top 5 countries 2022")
plt.show()
```


We see that china and India are the most populated countries in 2022

5 Least populated countries in 2022

```
In [13]: #population of least 5 countries 2022
    sorted_2022=pop.sort_values(by='2022 Population')
    sorted_2022=sorted_2022.head(5)
    plt.figure(figsize=(10,5))
    plt.bar(sorted_2022['Country/Territory'],sorted_2022['2022 Population'],colo
    plt.xlabel('country')
    plt.ylabel('population')
    plt.title("Population of lowest 5 countries 2022")
    plt.show()
```


Vatican city has the lowest population in 2022

Continent wise population 2022

```
In [11]: #continent wise population

# Group the data by continent and calculate the total population for each continent_pop =pop.groupby('Continent')['2022 Population'].sum()
    continent_pop=continent_pop.sort_values(ascending=False)

plt.figure(figsize=(10,7))
    continent_pop.plot(kind='bar',color=pastel_colors)
    plt.show()
```


In [12]: #pie chart
plt.figure(figsize=(10,7))
plt.pie(continent_pop,labels=continent_pop.index,colors=pastel_colors)
plt.show()

We can see that Asia is the most populated continent and second most populated continent is Africa.

Population in countries of Asia

Asian Countries Population in 2022


```
In [14]: plt.figure(figsize=(12, 6))
    plt.bar(asia_2022['Country/Territory'].head(5), asia_2022['2022 Population']
    plt.show()
```


Population in countries of Africa 2022

In [21]:

African Countries Population in 2022

europe 2022=europe 2022.sort values(by='2022 Population', ascending=False)

europe_2022=pop[pop['Continent']=='Europe']

#population in Europe 2022

Europe Countries Population in 2022


```
In [22]: plt.figure(figsize=(12, 6))
    plt.bar(europe_2022['Country/Territory'].head(5), europe_2022['2022 Populati
    plt.show()
```


Population in countries of North America 2022

North America Countries Population in 2022

Population in countries of South America 2022

```
In [27]: #population in South America 2022
sa_2022=pop[pop['Continent']=='South America']
```

South America Countries Population in 2022


```
In [28]: plt.figure(figsize=(12, 6))
    plt.bar(sa_2022['Country/Territory'].head(5), sa_2022['2022 Population'].hea
    plt.show()
```


Population growth in continents over the years (1970-2022)

```
In [30]: #continent population growth over the years

# Filter data for the desired columns
continent_population = pop.groupby('Continent')[['2022 Population', '2020 Pc
continent_population=continent_population.sort_values(by='2022 Population')

plt.figure(figsize=(20,20))

continent_population.plot(marker='o')
plt.show()
```

<Figure size 1440x1440 with 0 Axes>


```
In [31]: # Set up the figure and axes
plt.figure(figsize=(12, 6))

# Create the stacked area plot
continent_population.plot(kind='area', stacked=True, colormap='tab20')

# Add labels and title
plt.xlabel('Year')
plt.ylabel('Population')
plt.title('Stacked Area Chart of Continent-wise Population Growth')
```

```
# Show the plot
plt.grid(True)
plt.show()
```

<Figure size 864x432 with 0 Axes>

We can see population growth in each continent year-wise ,and also that Asia's population is more rapid compared to other continents.

Population Density Distribution

```
In [34]: #population density

plt.figure(figsize=(10, 6))

# Create the histogram plot
sns.histplot(data=pop, x='Density (per km²)', bins=70,kde=True, color='blue'

# Add labels and title
plt.xlabel('Population Density (per km²)')
plt.ylabel('Frequency')
plt.title('Histogram of Population Density for All Countries')

# Show the plot
plt.grid(True)
plt.tight_layout()
plt.show()
```


population density for almost all the countries is between 0 and 2000 approximately.

```
In [55]:
        pop_sorted = pop.sort_values(by='Density (per km2)', ascending=False)
         # Select the top 5 most densely populated countries
         top_5_densely_populated = pop_sorted.head(5)
         # Select the bottom 5 least densely populated countries
         bottom_5_densely_populated = pop_sorted.tail(5)
         plt.figure(figsize=(12, 6))
         plt.subplot(2, 1, 1)
         # Create the bar plot for top 5 most densely populated countries
         plt.bar(top_5_densely_populated['Country/Territory'], top_5_densely_populate
         plt.xlabel('')
         plt.ylabel('Population Density (per km²)')
         plt.title('Top 5 Most Densely Populated Countries')
         plt.xticks(rotation=45, ha='right')
         # Set up the figure and axes for the bottom plot
         plt.subplot(2, 1, 2)
         # Create the bar plot for bottom 5 least densely populated countries
         plt.bar(bottom_5_densely_populated['Country/Territory'], bottom_5_densely_pd
         plt.xlabel('')
         plt.ylabel('Population Density (per km²)')
         plt.title('Bottom 5 Least Densely Populated Countries')
         plt.xticks(rotation=45, ha='right')
         # Adjust layout
         plt.tight_layout()
         # Show the plots
         plt.show()
```


Countries with highest population growth rate

```
In [35]: #Top 10 countries in population growth rate
growth_rate=pop.sort_values(by='Growth Rate')

top_growth_rate=growth_rate.tail(10)
top_growth_rate=top_growth_rate.sort_values(by='Growth Rate',ascending=False
plt.figure(figsize=(15,10))
plt.bar(top_growth_rate['Country/Territory'],top_growth_rate['Growth Rate'],
plt.title("Countries with highest population growth rate")
plt.show()
```


Countries with least population growth rate

```
In [64]: #least 10 countriest in population growth rate
```

```
growth_rate=pop.sort_values(by='Growth Rate')
low_growth_rate=growth_rate.head(10)
plt.figure(figsize=(15,10))
plt.bar(low_growth_rate['Country/Territory'],low_growth_rate['Growth Rate'],
plt.show()
```


World Population Growth Rate (2022-2010) by Country

Correlation between features

- 1. There is a strong positive correlation between a country's population and its world population percentage. Similarly, there's a high positive correlation between a country's name and its CCA3 code, which is expected.
- 2. A moderate positive correlation exists between a country's area and its population, as well as between its area and its world population percentage.
- 3. There is a moderate negative correlation between a country's growth rate and its continent. Additionally, moderate negative correlations are observed between a country's rank and both its world population percentage, its area, and its population.

In []: