ENGINEERING MATHS EXAM SOLUTIONS 2015-2016

Q No.	PAPER NAME Bio-inspired Artificial Intelligence Q.SETTER INITIALS SH	Marks
1a 1b	output1: 1, output2: -0.5717 There are multiple correct answers:	$\begin{bmatrix} 2\\3 \end{bmatrix}$
	• 4 inputs (3 numbers and 1 bias), linear output function, one output.	
	• 3 inputs (2 bits and 1 bias), two (or three if bias included) hidden neurons, step or sigmoid function, one output.	
	• many possible architectures - most important is that the time sequence is either represented in the input (sliding window input), or that internal memory is enabled through recursion.	
2a 2b 2c 3a	[0 0 0 1 0 1 0 0 0], [0 0 1 0 1 0 1 0 0], [0 1 0 1 0 1 0 1 0], [1 0 1 0 1 0 1 0 1 0 1] Periodic final state. Anything a Turing machine can compute - universal machine. There are multiple correct answers:	2 1 1 5
	• genotype: $[w_1, w_2]$, where w_i is a float between 0 and 1.	
	• phenotype: motorspeed1 = $default_speed+w_1*sensor_1$, motorspeed1 = $default_speed+w_2*sensor_2$	
	• fitness: Area covered by the robot.	
	• initial population: 100 random genomes.	
	• selection operator: tournament selection.	
	$ullet$ crossover and mutation probabilities: single point crossover, w_i mutation - probability = 0.1	
3b 4a	Improve the fitness function, increase the population size, increase diversity in the population, increase mutation and crossover probabilities. There are multiple correct answers:	2
	• Inspiration from eyes for optic flow sensing.	
	• Inspiration from flapping wings for lift generation at small scales.	
	• Inspiration from reactive behaviour and robustness/compliance to control flight using minimal processing.	
	• Coordination in populations of insects using minimal local interactions.	
4b	Reproducing certain aspects of fly behaviour or "hardware" could provide hypotheses to biologists regarding flight mechanisms, control, and coordination.	1
	obstacle sensors — avoid obstacle	
	null move straight s motor speeds	
4c		2

Continued on next page...

ENGINEERING MATHS EXAM SOLUTIONS 2015-2016

Q No.	PAPER NAME Bio-inspired Artificial Intelligence Q.SETTER INITIALS SH	Marks
	obstacle sensors — avoid obstacle	
	map navigate S motor speeds	
4d 5a	Robot Hand - pros: precise, controllability, similar to human hands; cons: many controllable degrees of freedom, requires planning and computation, expensive. Soft Robot - pros: cheap, conforms to shape of object, embodied control, robust; cons: limited precision and capabilities, difficult to model.	1 2
5b 6a	Localisation (spiders can localise prey depending on where they land).	1 6
	• $N+X_1->Y,Y+X_1->N$	
	• $N+X_1->Y,Y+X_2->N$	
	$\bullet \ X_1 - > 2Y$	
	$\bullet \ X_1 + X_1 - > Y$	
	• $X_1 - > Y, X_2 - > Y$	
	$\bullet \ X_1 + X_2 - > Y$	
	reynolds flocking	
7a 7b	For every agent: v1=compute attraction vector to neighboring agents; v2=compute repulsion vector	1 2
7c	from neighboring agents; v3=compute average velocity vector of neighboring agents; move in direction of the resulting vector combining v1, v2, and v3. Hand-coded (trial and error), bio-inspired, automatically designed (using artificial evolution for ex-	2
7d	ample). Group-level selection, homogeneous swarms.	2