Let P be some problem...

+ ALGORITHM COMPLEXITY - given a specific algorithm A that solves P, what is the cost of running A?

* PROBLEM COMPLEXITY - what is the cost of solving P? s "using the best possible algorithm"

Ex + P = sorting n integers.

- HEARSBRT, MERGESORT solve P in O(nlogn) key comparisons
- Solves P takes SZ(nloyn) key companson-based algorithm that
 - Then the above algorithms are optimal.

- Today we will prove that & is true.

· Use decision-trees to model behaviour of algorithms

Insertion sort, 3 elements. | Recall: insertion sort algo.

Notation: (1:2) means compare as with as.

it's means as is less than or equal to as

· any comparison-based algorithm can be modeled with a decision tree e Max # comparisons = worst case no time = height of thee 6 leafs = 3(3 = 3') in permutations of input - n ways to unscramble -> any compansion based algo on input of size a requires n! leafs I to have n! leafs, tree must have height lags n!

in worst-case # of comparisons any comp-based algo = logan!

Theorem:	Every comparison-based algorithm A to sort n integers
	takes Iln leg n) key comparisons in the worst case.
Preof:	Let I be any comparison-based algorithm to sext n integers.
	Let To be the decision thee that models A.
	p for each input permutation of integers 1,2, -, n, To must have at least one distinct leas that sorts this permutation
):. A /Leanes (TA)/3 n!
	1 Let h be the height of TA. Since TA is a binary tree, ne
	42 B heaves (TA) < 2h
	* Together: $n! \leq \text{Leanes CTa} \leq 2^h \Rightarrow n! \leq 2^h \equiv 2^h \geq n!$
	=. log_(2h) > log_(n!) =: h > log_2(n!)
	· Note: log, (h!) & O(nlogh); see Eq 3.19 Pg. 58 CLRS
	Then we know the lower bound on the norst case of
	any compans on -bused also (height of thee) is at
	least & Olnlogh).
()	From this we know heapsof, werge sort are optimal
•	
,	