ÜBUNGEN ZU "PARTIELLE DIFFERENTIALGLEICHUNGEN" WS 2020 BLATT 3 (15. 10. 2020), SKRIPTUM BIS ABSCHNITT 3.2

EDUARD NIGSCH, CLAUDIA RAITHEL

1. Zeigen Sie:

(i) Ist $f \in C^{\infty}(\mathbb{R}^n)$ und $y \in \mathbb{R}^n$, dann gibt es Funktionen $f_i \in C^{\infty}(\mathbb{R}^n)$ sodass

$$f(x) = f(y) + \sum_{i=1}^{n} (x_i - y_i) f_i(x).$$

- (ii) Gilt xT=0 für eine Distribution $T\in\mathcal{D}'(\mathbb{R})$, so ist $T=c\delta$ für eine Konstante c(Hinweis: verwenden Sie (i) und $\langle u, \varphi \rangle = \langle u, \chi \varphi \rangle$ mit $\chi \in \mathcal{D}(\mathbb{R}), \chi = 1$ auf supp φ).
- (iii) $u \in \mathcal{D}'(\mathbb{R})$ mit u' = 0 impliziert u = const.
- (iv) Für jedes $f \in C^{\infty}(\mathbb{R})$ existieren Konstanten c_0, c_1 sodass

$$f\delta' = c_0\delta + c_1\delta'.$$

2. Bestimmen Sie folgende Grenzwerte in $\mathcal{D}'(\mathbb{R})$:

- (i) $\lim_{\lambda \to \infty} \sin \lambda x$,
- (ii) $\lim_{\lambda \to \infty} \frac{\sin \lambda x}{x}$, und zeigen Sie, dass
- (iii) $\lim_{a\to 0+} \frac{a}{x^2+a^2} = \pi \delta$.

(i) Zeigen Sie, dass die Funktion

$$f(x) = \begin{cases} \ln|x| & x \neq 0 \\ 0 & x = 0 \end{cases}$$

eine reguläre Distribution definiert, die punktweise Ableitung

$$f'(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ \text{undefiniert} & x = 0 \end{cases}$$

jedoch nicht.

(ii) Es bezeichne pv $(\frac{1}{x})$ die Distribution

$$\langle \operatorname{pv}\left(\frac{1}{x}\right), \varphi \rangle = \lim_{\varepsilon \to 0+} \left(\int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} \, \mathrm{d}x \right) = \lim_{\varepsilon \to 0+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x.$$

Zeigen Sie, dass $\langle \operatorname{pv}(\frac{1}{x}), \varphi \rangle = \int_0^\infty \frac{\varphi(x) - \varphi(-x)}{x} \, \mathrm{d}x$. (iii) Überprüfen Sie, dass $(\ln |x|)' = \operatorname{pv}(\frac{1}{x})$ in $\mathcal{D}'(\mathbb{R})$ gilt.

4. Zeigen Sie, dass

$$\lim_{\varepsilon \to 0+} \frac{1}{x - i\varepsilon} = \operatorname{pv}\left(\frac{1}{x}\right) + \pi i\delta.$$

5. Eine Distribution $u \in \mathcal{D}'(\Omega)$ heißt von endlicher Ordnung wenn es ein $m \in \mathbb{N}_0$ gibt sodass man für alle kompakten Mengen $K \subset \Omega$ eine Konstante C > 0 finden kann, sodass für alle $\varphi \in \mathcal{D}(K)$ gilt:

$$|\langle u, \varphi \rangle| \le C \|\varphi\|_{C^m(K)}.$$

In diesem Fall heißt m die Ordnung von u. Gibt es kein solches m, sagt man, dass uunendliche Ordnung hat.

Bestimmen Sie die Ordnung folgender Distributionen ($\Omega \subseteq \mathbb{R}^n$ offen):

- (i) $\delta \in \mathcal{D}'(\mathbb{R})$,

- (ii) $f \in L^1_{loc}(\Omega)$, (iii) $\varphi \mapsto \partial^{\alpha} \varphi(x_0)$ für $\alpha \in \mathbb{N}_0^n$, $x_0 \in \Omega$, (iv) $\varphi \mapsto \sum_{j \in \mathbb{N}} \partial^{\alpha_j} \varphi(x_j)$ für eine Folge $(x_j)_j$ in Ω ohne Häufungspunkt und $\alpha_j \in \mathbb{N}_0^n$.
- **6.** Eine Distribution heißt positiv wenn $\langle u, \varphi \rangle \geq 0$ für alle $\varphi \geq 0$ gilt.
 - (i) Zeigen Sie, dass jede positive Distribution Ordnung 0 hat.
 - (ii) Zeigen Sie, dass folgende Distribution $T \in \mathcal{D}'(\mathbb{R})$ nicht positiv ist:

$$\langle T, \varphi \rangle = \int_{-\infty}^{-1} \frac{\varphi(x)}{|x|} dx + \int_{1}^{\infty} \frac{\varphi(x)}{|x|} dx + \int_{-1}^{1} \frac{\varphi(x) - \varphi(0)}{|x|} dx.$$

7. Der Träger eine Distribution $T \in \mathcal{D}'(\Omega)$ ist das Komplement der größten offenen Menge, auf der T verschwindet:

$$\operatorname{supp} T = \Omega \setminus \bigcup \{U \subseteq \Omega \text{ offen } | T \text{ verschwindet auf } U\}.$$

Zeigen Sie:

- (i) Für $f \in C(\Omega)$ ist der distributionelle Träger gleich dem üblichen Träger der Funktion
- (ii) Ist $T \in \mathcal{D}'(\mathbb{R}^n)$ eine Distribution von endlicher Ordnung m und $\psi \in \mathcal{D}(\mathbb{R}^n)$ eine Testfunktion deren Ableitungen $\partial^{\alpha} \psi$ für $|\alpha| \leq m$ verschwinden, dann ist $\langle T, \psi \rangle = 0$.
- (iii) Gilt supp $T \cap \text{supp } \varphi = 0$, dann folgt $\langle T, \varphi \rangle = 0$.
- (iv) Gilt fT = 0 für $T \in \mathcal{D}'(\Omega)$ und $f \in C^{\infty}(\Omega)$, dann folgt supp $T \subseteq \{x : f(x) = 0\}$.
- 8. Zeigen Sie, dass die Faltung

$$(f * g)(x) = \int f(x - y)g(y) \,dy$$

für $f,g\in L^1_{\mathrm{loc}}(\mathbb{R})$ wohldefiniert ist, wenn supp f und supp g beide nach unten (oder beide nach oben) beschränkt sind. Berechnen Sie dann $f * f * \dots * f$ $(n \in \mathbb{N} \text{ Faktoren})$ für f(t) = H(t).