(i) Consider two events A and B of an outcome space. Suppose that P(A)=0.5 and P(B)=0.6.

(a) Determine a real number $b_1 > 0$ such that $P(A \cap B) \ge b_1$ and give one sufficient condition under which $P(A \cap B) = b_1$.

Show your steps of how you got your answer.

(b) Determine a real number $b_2 < 1$ such that $P(A \cap B) \le b_2$ and give one sufficient condition under which $P(A \cap B) = b_2$.

Show your steps of how you got your answer.

(ii) Let A and B be two events. Let E be the event that exactly one of the events A or B occurs. Use the Axioms of Probability to show that $P(E) = P(A) + P(B) - 2P(A \cap B)$.

(iii) Let X be a set consisting of 24 people, say $X = \{x_1, x_2, x_3, \dots, x_{24}\}$. Let $A = \{x_1, x_2\}$ and $B = \{x_3, x_4\}$. Suppose that 6 people from X have been promoted, and these promotions have occurred randomly among all members of X.

(a) Let E_1 be the event that all members of A have been promoted, i.e. E_1 is the event that x_1 and x_2 have been promoted. Find $P(E_1)$.

Show your steps of how you got your answer.

(b) Let E_2 be the event that all members of A and B have been promoted, i.e. E_2 is the event that x_1, x_2, x_3 , and x_4 have been promoted. Find $P(E_2)$.

Show your steps of how you got your answer.