Chapter 1

Mathematical Programming

We will state main general problem classes to be associated with in these notes. These are Linear Programming (LP), Mixed-Integer Linear Programming (MILP), Non-Linear Programming (NLP), and Mixed-Integer Non-Linear Programming (MINLP).

Along with each problem class, we will associate a complexity class for the general version of the problem. See **??** for a discussion of complexity classes. Although we will often state that input data for a problem comes from \mathbb{R} , when we discuss complexity of such a problem, we actually mean that the data is rational, i.e., from \mathbb{Q} , and is given in binary encoding.

1.1 Linear Programming (LP)

Some linear programming background, theory, and examples will be provided in ??.

¹Diagram by Diego Moran

Figure 1.1: Linear programming constraints and objective.

Linear Programming (LP):

Polynomial time (P)

Given a matrix $A \in \mathbb{R}^{m \times n}$, vector $b \in \mathbb{R}^m$ and vector $c \in \mathbb{R}^n$, the *linear programming* problem is

$$\begin{array}{ll}
\max & c^{\top} x \\
\text{s.t.} & Ax \le b \\
& x \ge 0
\end{array} \tag{1.1.1}$$

Linear programming can come in several forms, whether we are maximizing or minimizing, or if the constraints are \leq , = or \geq . One form commonly used is *Standard Form* given as

Linear Programming (LP) Standard Form:

Polynomial time (P)

Given a matrix $A \in \mathbb{R}^{m \times n}$, vector $b \in \mathbb{R}^m$ and vector $c \in \mathbb{R}^n$, the linear programming problem in *standard form* is

$$\begin{array}{ll}
\text{max} & c^{\top} x \\
\text{s.t.} & Ax = b \\
& x \ge 0
\end{array} \tag{1.1.2}$$

Exercise 1. Start with a problem in form given as $(\ref{eq:convert})$ and convert it to standard form $(\ref{eq:convert})$ by adding at most m many new variables and by enlarging the constraint matrix A by at most m new columns.

²https://en.wikipedia.org/wiki/Linear_programming

Figure 1.2: Comparing the LP relaxation to the IP solutions.

1.2 Mixed-Integer Linear Programming (MILP)

Mixed-integer linear programming will be the focus of Sections $\ref{eq:constraint}$, $\ref{eq:constraint}$, and $\ref{eq:co$

Binary Integer programming (BIP):

NP-Complete

Given a matrix $A \in \mathbb{R}^{m \times n}$, vector $b \in \mathbb{R}^m$ and vector $c \in \mathbb{R}^n$, the binary integer programming problem is

$$\begin{array}{ll} \max & c^\top x \\ \text{s.t.} & Ax \leq b \\ & x \in \{0,1\}^n \end{array}$$

A slightly more general class is the class of *Integer Linear Programs* (ILP). Often this is referred to as *Integer Program* (IP), although this term could leave open the possibility of non-linear parts.

³Figure from https://en.wikipedia.org/wiki/Integer_programming.

Integer Linear Programming (ILP):

NP-Complete

Given a matrix $A \in \mathbb{R}^{m \times n}$, vector $b \in \mathbb{R}^m$ and vector $c \in \mathbb{R}^n$, the integer linear programming problem is

$$\max \quad c^{\top} x$$
s.t. $Ax \le b$ (1.2.2)
$$x \in \mathbb{Z}^n$$

An even more general class is *Mixed-Integer Linear Programming (MILP)*. This is where we have n integer variables $x_1, \ldots, x_n \in \mathbb{Z}$ and d continuous variables $x_{n+1}, \ldots, x_{n+d} \in \mathbb{R}$. Succinctly, we can write this as $x \in \mathbb{Z}^n \times \mathbb{R}^d$, where \times stands for the *cross-product* between two spaces.

Below, the matrix A now has n+d columns, that is, $A \in \mathbb{R}^{m \times n+d}$. Also note that we have not explicitly enforced non-negativity on the variables. If there are non-negativity restrictions, this can be assumed to be a part of the inequality description $Ax \leq b$.

Mixed-Integer Linear Programming (MILP):

NP-Complete

Given a matrix $A \in \mathbb{R}^{m \times (n+d)}$, vector $b \in \mathbb{R}^m$ and vector $c \in \mathbb{R}^{n+d}$, the mixed-integer linear programming problem is

$$\max \quad c^{\top} x$$
s.t. $Ax \le b$ (1.2.3)
$$x \in \mathbb{Z}^n \times \mathbb{R}^d$$

1.3 Non-Linear Programming (NLP)

NLP:

NP-Hard

Given a function $f(x): \mathbb{R}^d \to \mathbb{R}$ and other functions $f_i(x): \mathbb{R}^d \to \mathbb{R}$ for i = 1, ..., m, the *nonlinear programming* problem is

min
$$f(x)$$

s.t. $f_i(x) \le 0$ for $i = 1, ..., m$ (1.3.1)
 $x \in \mathbb{R}^d$

Nonlinear programming can be separated into convex programming and non-convex programming. These two are very different beasts and it is important to distinguish between the two.

1.3.1 Convex Programming

Here the functions are all **convex!**

Convex Programming:

Polynomial time (P) (typically)

Given a convex function $f(x): \mathbb{R}^d \to \mathbb{R}$ and convex functions $f_i(x): \mathbb{R}^d \to \mathbb{R}$ for i = 1, ..., m, the *convex programming* problem is

min
$$f(x)$$

s.t. $f_i(x) \le 0$ for $i = 1, ..., m$ (1.3.2)
 $x \in \mathbb{R}^d$

Example 1: Convex programming is a generalization of linear programming. This can be seen by letting $f(x) = c^{\top}x$ and $f_i(x) = A_ix - b_i$.

1.3.2 Non-Convex Non-linear Programming

When the function f or functions f_i are non-convex, this becomes a non-convex nonlinear programming problem. There are a few complexity issues with this.

IP as NLP As seen above, quadratic constraints can be used to create a feasible region with discrete solutions. For example

$$x(1-x)=0$$

has exactly two solutions: x = 0, x = 1. Thus, quadratic constraints can be used to model binary constraints.

Binary Integer programming (BIP) as a NLP:

NP-Hard

Given a matrix $A \in \mathbb{R}^{m \times n}$, vector $b \in \mathbb{R}^m$ and vector $c \in \mathbb{R}^n$, the binary integer programming problem is

max
$$c^{\top}x$$

s.t. $Ax \le b$
 $x \in \{0,1\}^n$
 $x_i(1-x_i) = 0$ for $i = 1,...,n$ (1.3.3)

- 1.4 Mixed-Integer Non-Linear Programming (MINLP)
- 1.4.1 Convex Mixed-Integer Non-Linear Programming
- 1.4.2 Non-Convex Mixed-Integer Non-Linear Programming