PAC5223

Power Application Controller®

Multi-Mode Power Manager™
Configurable Analog Front End™
Application Specific Power Drivers™
ARM® Cortex®-M0 Controller Core

TABLE OF CONTENTS

1.	Styles and Formatting Conventions	
	1.1. Overview	25
	1.2. Number Representation	
	1.3. Formatting Styles	25
2.	Memory and Register Map	26
	2.1. Memory Map	26
	2.2. Register Map	27
3.	Information Block	40
	3.1. Register	40
	3.1.1. Register Map	40
	3.1.2. ROSC11	
	3.1.3. ADCGAIN	40
	3.1.4. ADCOFF	40
	3.1.5. FTTEMP	41
	3.1.6. TEMPS	41
	3.1.7. CLKREF	
	3.1.8. PACIDR	
	3.2. Details of Operation.	
	3.2.1. Overview	
4.	System Clock Control	
	4.1. Register	
	4.1.1. Register Map	
	4.1.2. CCSCTL	
	4.1.3. PLLCTL	
	4.1.4. OSCCTL	
	4.1.5. XTALCTL	
	4.2. Details of Operation.	
	4.2.1. Block Diagram	
	4.2.2. Configuration	
	4.2.3. ROSČ	
	4.2.4. CLKREF	
	4.2.5. XTAL	
	4.2.6. EXTCLK	
	4.2.7. PLL	
	4.2.8. FRCLK	
	4.2.9. FCLK	
	4.2.10. HCLK	
	4.2.11. ACLK	
	4.2.12. Clock Gating	
5	Watchdog Timer	
٠.	5.1. Register	
	5.1.1. Register Map	
	5.1.2. WDTCTL	
	5.1.3. WDTCDV	
	5.1.4. WDTCTR	
	5.2. Details of Operation.	
	5.2.1. Block Diagram	
	5.2.2. Configuration	
	5.2.3. Watchdog Timer	
	5.2.4. Access WDT Registers	
	5.2.5. WDT Clock Setting	49

	5.2.6. General Purpose Timer Mode	
	5.2.7. Watchdog Timer Mode	50
6.	. GPIO Port A	
	6.1. Register	51
	6.1.1. Register Map	
	6.1.2. GPIOAO	
	6.1.3. GPIOAOUTEN	
	6.1.4. GPIOADS	
	6.1.5. GPIOADS	
	6.1.6. GPIOAPD	
	6.1.7. GPIOAIN	
	6.1.8. GPIOAPSEL	
	6.1.9. GPIOAINTP	
	6.1.10. GPIOAINTE	
	6.1.11. GPIOAINTF	
	6.1.12. GPIOAINTM	
	6.2. Details of Operation	59
	6.2.1. Block Diagram	59
	6.2.2. Configuration	
	6.2.3. GPIO A Block	
	6.2.4. Input	
	6.2.5. Output and Output Enable	
	6.2.6. Output Drive Strength	
	6.2.7. Weak Pull Up and Pull Down	60
	6.2.8. Peripheral Select	
	6.2.9. Interrupt	
7	GPIO Port B.	
١.	7.1. Register	
	7.1.1. Register Map	
	7.1.2. GPIOBOUT	
	7.1.3. GPIOBOUTEN	
	7.1.4. GPIOBDS	
	7.1.5. GPIOBPU	
	7.1.6. GPIOBPD	
	7.1.7. GPIOBIN	
	7.1.8. GPIOBPSEL	
	7.1.9. GPIOBINTP	
	7.1.10. GPIOBINTE	65
	7.1.11. GPIOBINTF	65
	7.1.12. GPIOBINTM	66
	7.2. Details of Operation	
	7.2.1. Block Diagram	
	7.2.2. Configuration	
	7.2.3. GPIO B Block	
	7.2.4. Input	
	7.2.5. Output and Output Enable	
	7.2.6. Output Drive Strength	
	7.2.6. Output Drive Strength	
	·	
	7.2.8. Peripheral Select	
0	7.2.9. Interrupt	
ŏ.	. GPIO Port C	
	8.1. Register	
	8.1.1. Register Map	
	8.1.2. GPIOCOUT	69

		GPIOCOUTEN	_
		GPIOCIN	
	8.1.5.	GPIOCINE	71
	8.1.6.	GPIOCINTP	72
	8.1.7.	GPIOCINTE	72
		GPIOCINTF	
		GPIOCINTM	
		ails of Operation	
		Block Diagram	
		Configuration	
		GPIO C Block	
		Analog Input	
		Output and Output Enable	
		Interrupt	
0		rt D	
9.			
		ister	
		Register Map	
		GPIODO	
		GPIODOUTEN	
		GPIODDS	
		GPIODPU	
		GPIODPD	
		GPIODIN	
		GPIODPSEL	
		GPIODINTP	
). GPIODINTE	
		. GPIODINTF	
		P. GPIODINTM	
		ails of Operation	
		Block Diagram	
		Configuration	
	9.2.3.	GPIO D Block	85
		Input	
	9.2.5.	Output and Output Enable	85
	9.2.6.	Output Drive Strength	86
		Weak Pull Up and Pull Down	
	9.2.8.	Peripheral Select	86
		Interrupt	
10		ort E	
		gistergister	
		Register Map	
		2. GPIOEOUT	
		B. GPIOEOUTEN	
		GPIOEDS.	
		5. GPIOEPU	
		S. GPIOEPD	
		'. GPIOEIN	
		3. GPIOEPSEL	
		O GPIOEINTP	
		0. GPIOEINTE	
		1. GPIOEINTE	
		2. GPIOEINTM	
		tails of Operation	
		Block Diagram	
	1∪.∠. I	. בייסיום בייסיום וויסיום וויסיום בייסיום וויסיום וויסיום וויסיום וויסיום וויסיום וויסיום וויסיום וויסיום וויסיום	

	ion	
	ock	
10.2.5. Output and	d Output Enable	95
	ve Strength	
	Up and Pull Down	
	Select	
	ner	
	ap	
	ар	
	ation	
	ram	
	on	
	urpose Timer	
	T Registers	
11.2.5. GPT Clock		99
11.2.6. General Pւ	urpose Timer Mode	99
12. Timer A		100
12.1. Register		100
12.1.1. Register M	lap	100
12.1.2. TACTL		101
	L0	
	0	
	L1	
	1	
	L2	
	TR2	
	RL3	
	R3	
	RL4	
	R4	
	RL5	
	R5	
	RL6	
	R7	
	RL7	
	R7	
	<u>TL</u>	
	ED	
	ED	
	TL	
	ED	
	ED	
	TL	
12.1.28. DTGA2LE	≣ D	109
	ED	
12.1.30. DTGA3C	TL	109
12.1.31. DTGA3LE	ED	110

12.1.32. DIGA3IED	
12.2. Details of Operation	111
12.2.1. Block Diagram	
12.2.2. Configuration	
12.2.3. Timer A Block	
12.2.4. Timer	
12.2.5. Register update	
12.2.6. Timer Modes	
12.2.7. Single Shot Mode	
12.2.8. Input Clock And Pre-Scaler	
12.2.9. Timer Synchronization	112
12.2.10. PWM/Compare Units	113
12.2.11. Timer and PWM/Capture Interrupt	114
12.2.12. Dead-Time Generator	
12.2.13. PWM Output and Capture Input Pin Selection	
13. Timer B	
13.1. Register	
13.1.1. Register Map	
13.1.2. TBCTL	
13.1.3. TBPRD	
13.1.4. TBCTR	
13.1.5. TBCC0CTRL	
13.1.6. TBCC0CTR	120
13.1.7. TBCC1CTRL	120
13.1.8. TBCC1CTR	120
13.1.9. TBCC2CTRL	
13.1.10. TBCC2CTR	
13.1.11. TBCC3CTRL	
13.1.12. TBCC3CTR	
13.1.13. DTGB0CTL	
13.1.14. DTGB0LED	
13.1.15. DTGB0TED	
13.2. Details of Operation	
13.2.1. Block Diagram	
13.2.2. Configuration	124
13.2.3. Timer B Block	124
13.2.4. Timer	124
13.2.5. Register update	
13.2.6. Timer Modes	
13.2.7. Single Shot Mode	
13.2.8. Input Clock And Pre-Scaler.	
13.2.9. Timer Synchronization	
•	
13.2.10. PWM/Compare Units	
13.2.11. Timer and PWM/Capture Interrupt	
13.2.12. Dead-Time Generator	
13.2.13. PWM Output and Capture Input Pin Selection	
14. Timer C	
14.1. Register	131
14.1.1. Register Map	131
14.1.2. TCČTL	
14.1.3. TCPRD	
14.1.4. TCCTR	
14.1.5. TCCC0CTRL	
14.1.6. TCCC0CTR	
14. T.U. TOCOUCTN	। ১১

- 6 -

14.1.7. TCCC1CTRL	
14.1.8. TCCC1CTR	133
14.1.9. DTGC0CTL	134
14.1.10. DTGC0LED	134
14.1.11. DTGC0TED	134
14.2. Details of Operation	
14.2.1. Block Diagram	135
14.2.2. Configuration	
14.2.3. Timer C Block	
14.2.4. Timer	
14.2.5. Register update	
14.2.6. Timer Modes	
14.2.7. Single Shot Mode	
14.2.8. Input clock and Pre-scaler.	
14.2.9. Timer synchronization	
14.2.10. PWM/Compare Units	
14.2.11. Timer and PWM/Capture Interrupt	
14.2.12. Dead-Time Generator	
14.2.13. PWM Output and Capture Input Pin Selection	
15. Timer D	
15.1. Register	
15.1.1. Register Map	
15.1.2. TDCTL	
15.1.3. TDPRD	
15.1.4. TDCTR	
15.1.5. TDCC0CTL	
15.1.6. TDCC0CTR	
15.1.7. TDCC1CTRL	
15.1.8. TDCC1CTR	
15.1.9. DTGD0CTL	
15.1.10. DTGD0LED	
15.1.11. DTGD0TED	
15.2. Details of Operation	146
15.2.1. Block Diagram	146
15.2.2. Configuration	146
15.2.3. Timer D Block	146
15.2.4. Timer	146
15.2.5. Register Update	
15.2.6. Timer Modes	
15.2.7. Single Shot Mode	
15.2.8. Input Clock And Pre-Scaler	
15.2.9. Timer Synchronization	
15.2.10. PWM/Compare Units	
15.2.11. Timer and PWM/Capture Interrupt	
15.2.12. Dead-Time Generator	
15.2.13. PWM Output and Capture Input Pin Selection	
16. FLASH Memory Controller	
16.1. Register	
16.1.1 Register Map	
16.1.2. FLASHLOCK	
16.1.3. FLASHCTL	
16.1.4. FLASHPAGE	
16.1.5. FLASHPERASE	
16.1.6. SWDACCESS	

•	16.1.7. FLASHWSTATE	155
	16.1.8. FLASHBWRITE	155
	16.1.9. FLASHBWDATA	156
	2. Details of Operation	
	16.2.1. Block Diagram	
	16.2.2. Configuration	
	16.2.3. FLASH Memory	
	10.2.3. FLASH IVICITION	107
_	16.2.4. Writing to FLASH Controller Registers	157
,	16.2.5. FLASH Wait State	157
	16.2.6. FLASH Page Erase	
•	16.2.7. Write to FLASH	158
	16.2.8. Buffered Write to FLASH	
•	16.2.9. SWD Debug Access Disable	159
17. AC	C and AUTO SEQUENCER	160
	1. Register	
	17.1.1. Register Map	
	17.1.2. EMUXCTL	
	17.1.3. EMUXDATA	
	17.1.4. ADCCTL	
	17.1.5. ADCCR	
	17.1.6. ADCINT	
	17.1.7. AS0CTL	
	17.1.8. AS0S0	
	17.1.9. AS0R0	
•	17.1.10. AS0S1	166
•	17.1.11. AS0R1	167
•	17.1.12. AS0S2	167
	17.1.13. AS0R2	
	17.1.14. AS0S3	
	17.1.15. AS0R3	
	17.1.16. AS0S4	
	17.1.17. AS0R4	
	17.1.18. ASOS5	
	17.1.19. AS0R5	
	17.1.20. AS0S6	
	17.1.21. AS0R6	
	17.1.22. AS0S7	
	17.1.23. AS0R7	171
•	17.1.24. AS1CTL	171
	17.1.25. AS1S0	172
	17.1.26. AS1R0	
	17.1.27. AS1S1	
	17.1.28. AS1R1	
	17.1.29. AS1S2	
	17.1.30. AS1R2	
	17.1.31. AS1S3	
	17.1.32. AS1R3	
	17.1.33. AS1S4	
•	17.1.34. AS1R4	175
	17.1.35. AS1S5	175
	17.1.36. AS1R5	176
	17.1.37. AS1S6	176
	17.1.38. AS1R6	
	17.1.39. AS1S7	

- 8 -

17.1.40. AS1R7		77
	1	
17.2.1. Block Diagram	1	77
	1	
	1	
17.3.2. ADC. Autosequence	r and EMUX1	78
	1	
	C0, ASC1	
	18	
	18	
	18	
	18	
18.2. Details of Operation	18	89
18.2.1. Block Diagram	18	89
18.2.2. Configuration	18	89
	18	
18.2.4. I2C Clock setting	18	89
	nsactions19	
	19	
	19	
	19	
	19	
	20	
19.1.15. UARTDL_H2	20	00
19.1.16. UARTFD_F	20	00
19.1.17. UARTSTAT	20	00
19.2. Details of Operation	20	01
	20	
	20	
	etting	
10.2.7. Orati Olook Hate Of	/tillig	J 1

19.2.5.	Data settings	203
19.2.6.	FIFO Settings	203
19.2.7.	Error Checking on Received Data	203
	bridgebridge	
	ister	
	Register Map	
	SOCBCTL	
20.1.3.	SOCBCFG	204
	SOCBCLKDIV	
	SOCBSTAT	
	SOCBCSSTR	
	SOCBD.	
	SOCBINT EN	
	ails of Operation	
	Block Diagram	
	Configuration	
	SOC Bridge	
	SOC Bridge Clock Rate Setting	
	Enable and Setup of SOC Bridge	
	SOC Interrupt	
	SOC Bridge Protocol	
	Reading from SOC Bridge	
	Writing to SOC Bridge	
	Writing to SOC Bridge	
	ister	
	Register Map	
	SPICTL	
	SPICFG	
	SPICLKDIV	
	SPISTAT	
	SPICSSTR	
	SPID	
	SPIINT_EN	
	ails of Operation	
	Block Diagram	
	Configuration	
	SPI	
	SPI Clock Rate Setting	
	Master Slave Mode	
	Clock Phase, Polarity	
	SPI Early Data Transmit	
	Data Format	
	Chip Select Settings	
21.2.10	. Auto Retransmit Data Word	219
21.2.11	. Loop Back Mode	219
21.2.12	SPI Interrupt	220
21.2.13	SPI Enable	220
	de Power Manager	
22.1. Reg	ister	221
	Register Map	
	SYŠTAT	
	DEVID	
	VERID	
	PWRCTL	

22.1.6. PWRSTAT	223
22.1.7. PSTATSET	223
22.1.8. IMOD	224
22.1.9. SCFG	224
22.1.10. SCFG2	
23. Configurable Analog FRONT END	
23.1. Register	
23.1.1. Register Map	
23.1.2. SOC.CFGAIO0.	
23.1.3. SOC.CFGAIO1	
23.1.4. SOC.CFGAIO2	
23.1.5. SOC.CFGAIO3	
23.1.6. SOC.CFGAIO4	
23.1.7. SOC.CFGAIO5	
23.1.8. SOC.CFGAIO6	
23.1.9. SOC.CFGAIO7	
23.1.10. SOC.CFGAIO8	
23.1.11. SOC.CFGAIO9	
23.1.12. SOC.SIGSET	
23.1.13. SOC.HPDAC	
23.1.14. SOC.LPDAC0	
23.1.15. SOC.LPDAC1	
23.1.16. SOC.ADCSCAN	
23.1.17. SOC.ADCIN1	
23.1.18. SOC.PROTINTM	
23.1.19. SOC.PROTSTAT	
23.1.20. SOC.DOUTSIG0	
23.1.21. SOC.DOUTSIG1	
23.1.22. SOC.DINSIG0	240
23.1.23. SOC.DINSIG1	241
23.1.24. SOC.SIGINTM	241
23.1.25. SOC.SIGINTF	242
23.1.26. SOC.ENSIG	
23.2. Details of Operation	243
23.2.1. Block Diagram	
23.2.2. Configuration	
23.2.3. Configurable Analog Front End	
23.3. AIO1, AIO0	
23.3.1. Block Diagram	
23.3.2. AIO1, AIO0	
23.3.3. AIO1, AIO0 digital I/O Mode	
23.3.4. AIO1, AIO0 differential Amplifier Mode	
23.3.5. AIO1, AIO0 Protection	
23.4. AIO3, AIO2	
23.4.1. Block Diagram	
23.4.2. AIO3, AIO2 digital I/O Mada	
23.4.4. AIO3, AIO3 differential Amplifier Mode DAO33	247
23.4.4. AlO3, AlO3 Desta stier	
23.4.5. AlO3, AlO2 Protection	
23.5. AIO5, AIO4	
23.5.1. Block Diagram	
23.5.2. AIO5, AIO4	
23.5.3. AIO5, AIO4 digital I/O Mode	
23.5.4. AIO5, AIO4 differential Amplifier Mode DAO54	251

	23.5.5. AIU5, AIU4 Protection	251
23	3.6. AIO6	253
	23.6.1. Block Diagram	253
	23.6.2. AIO6	253
	23.6.3. AIO6 digital I/O Mode	254
	23.6.4. AIO6 Single Ended Amplifier Mode	
	23.6.5. AIO6 Comparator Mode	
	23.6.6. AIO6 Special Mode	
	23.6.7. AIO6 Push Button Mode	
23	3.7. AIO7	
	23.7.1. Block Diagram	
	23.7.2. AIO7	
	23.7.3. AIO7 Digital I/O Mode	
	23.7.4. AIO7 Gain Amplifier Mode	
	23.7.5. AIO7 Comparator Mode	
	23.7.6. AIO7 Special Mode	
23	3.8. AIO8	
20	23.8.1. Block Diagram	
	23.8.2. AIO8	
	23.8.3. AIO8 digital I/O Mode	
	23.8.4. AIO8 Single Ended Amplifier Mode	
	23.8.5. AIO8 Comparator Mode	
00	23.8.6. AIO8 Special Mode	
23	3.9. AIO9	
	23.9.1. Block Diagram	
	23.9.2. AIO9	
	23.9.3. AlO9 digital I/O Mode	
	23.9.4. AIO9 Single Ended Amplifier Mode	
	23.9.5. AIO9 Comparator Mode	265
	23.9.6. AIO9 Special Mode	
	EMUX	
	Application Specific Power Driver	
25	5.1. Register	
	25.1.1. Register Map	
	25.1.2. SOC.CFGDRV0	
	25.1.3. SOC.CFGDRV1	
	25.1.4. SOC.CFGDRQ6	
	25.1.5. SOC.CFGDRQ7	271
	25.1.6. SOC.DOUTDRV	272
	25.1.7. SOC.DINDRV	272
	25.1.8. SOC.ENDRV	273
	25.1.9. SOC.ENBBM	273
	25.1.10. SOC.PROTCTL	273
25	5.2. Details of Operation	
_•	25.2.1. Block Diagram	
	25.2.2. Configuration	
	25.2.3. Application Specific Power Driver	
25	5.3. ENHS1, ENLS1 Protection	
_0	25.3.1. Block Diagram	
	25.3.2. ENHS1, ENLS1 Protection	
25	5.4. DRL0 Low Side Driver	
20	25.4.1. Block Diagram	
	25.4.2. DRL0	
25		
20	5.5. DRL1 Low Side Driver	21 Ö

25.5.1.	Block Diagram	278
	DRL1	
25.6. DRL2	2 Low Side Driver	279
25.6.1.	Block Diagram	279
	DRL2	
25.7. DRH	3 High Side Driver	280
25.7.1.	Block Diagram	280
	DRH3	
	4 High Side Driver	
25.8.1.	Block Diagram	281
	DRH4	
	5 High Side Driver	
25.9.1.	Block Diagram	282
	DRH5	
	x-M0 Reference	
	duction	
	Overview	
	About the Cortex-M0 processor and core peripherals	
	Cortex-M0 Processor	
	Programmers Model	
	Memory model	
	Exception model	
	Fault handling	
	Power management	
26.3. The 0	Cortex-M0 Instruction Set	306
	Instruction set summary	
	Intrinsic Functions	
	About the Instruction Descriptions	
	Memory access instructions	
	General data processing instructions	
	Branch and control instructions	
26.3.7.	Miscellaneous instructions	335
26.4. Corte	x-M0 Peripherals	345
	About the Cortex-M0 peripherals	
26.4.2.	Nested Vectored Interrupt Controller	345
	System Control Block	
26.4.4.	System timer, SysTick	358
27. Legal Infor	rmation	362

LIST OF TABLES

Table 2-1. Embedded FLASH Register Map	
Table 2-2. ROM Register Map	28
Table 2-3. System Clock Control Register Map	29
Table 2-4. FLASH Memory Controller Register Map	30
Table 2-5. Watchdog Timer Register Map	30
Table 2-6. General Purpose Timer Register Map	
Table 2-7. GPIO Port A Register Map	
Table 2-8. GPIO Port B Register Map	
Table 2-9. GPIO Port AB Register Map	
Table 2-10. GPIO Port C Register Map	
Table 2-11. GPIO Port D Register Map	
Table 2-12. GPIO Port CD Register Map	
Table 2-13. GPIO Port E Register Map	
Table 2-14. Timer A Register Map	
Table 2-15. Timer B Register Map	
Table 2-16. Timer C Register Map	
Table 2-17. Timer D Register Map	
Table 2-18. EMUX Register Map	
Table 2-19. ADC Register Map	
Table 2-19. ADC Auto-Sampling Sequencer 0 Register Map	
Table 2-21. ADC Auto-Sampling Sequencer 1 Register Map	
Table 2-22. I ² C Register Map	
Table 2-23. UART Register Map	
Table 2-24. SOC Bus Bridge Register Map	
Table 2-25. SPI Register Map	
Table 3-1. Information Block Register Map	
Table 4-1. System Clock Control Register Map	
Table 5-1. Watchdog Timer Register Map	
Table 6-1. GPIO Port A Register Map	
Table 7-1. GPIO Port & Register Map.	
Table 8-1. GPIO Port C Register Map	
Table 9-1. GPIO Port F. Register Map.	
Table 10-1. GPIO Port E Register Map	
Table 11-1. General Purpose Timer Register Map	
Table 12-1. Timer A Register Map	
Table 12-2. Timer A Signal to Pin Mapping	
Table 13-1. Timer B Register Map	
Table 13-2. Timer B Signal to Pin Mapping	
Table 14-1. Timer C Register Map	
Table 14-2. Timer C Signal to Pin Mapping	
Table 15-1. Timer D Register Map	
Table 15-2. Timer D Signal to Pin Mapping	
Table 16-1. FLASH Memory Controller Register Map	
Table 17-1. Register Map – EMUX	160
Table 17-2. Register Map – ADC	160
Table 17-3. Register Map – ADC Auto Sequencer 0	
Table 17-4. Register Map – ADC Auto Sequencer 1	
Table 18-1. I ² C Register Map	
Table 19-1. UART Register Map	
Table 20-1. SOC Bus Bridge Register Map	
Table 21-1, SPI Register Map	210

Table 22-1. Multi-Mode Power Manager Register Map	
Table 23-1. Configurable Analog Front End Register Map	
Table 23-2. AIO7 Special Mode Comparator Input Selections	259
Table 24-1. EMUX Packet Structure	268
Table 25-1. Application Specific Power Driver Register Map	270
Table 26-1. Summary of processor mode and stack use options	
Table 26-2. Core register set summary	
Table 26-3. Core register set summary	
Table 26-4. APSR bit assignments	
Table 26-5. IPSR bit assignments	
Table 26-6. EPSR bit assignments	289
Table 26-7. PRIMASK register bit assignments	290
Table 26-8. CONTROL register bit assignments	
Table 26-9. Memory Access Behavior	
Table 26-10. Properties of the different exception types	
Table 26-11. Execution return behavior	
Table 26-12. Cortex-M0 instructions.	
Table 26-13. CMSIS intrinsic functions to generate some Cortex-M0 instructions	308
Table 26-14. CMSIS intrinsic functions to access special registers	
Table 26-15. Condition code suffixes	
Table 26-16. Memory access instructions	
Table 26-17. Data processing instructions	
Table 26-18. ADC, ADD, RSB, SBC, and SUB operand restrictions	
Table 26-19. Branch and Control instructions	
Table 26-20. Branch ranges	
Table 26-21. Miscellaneous instructions.	
Table 26-22. Core peripheral register regions	
Table 26-23. NVIC register summary	
Table 26-24. CMSIS access NVIC functions	
Table 26-25. ISER bit assignments	346
Table 26-26. ICER bit assignments	
Table 26-27. ISPR bit assignments	
Table 26-28. ICPR bit assignments	
Table 26-29. IPR bit assignments	349
Table 26-30. CMSIS access NVIC functions	351
Table 26-31. Summary of the SCB register	351
Table 26-32. CPUID register bit assignments	352
Table 26-33. ICSR register bit assignments	353
Table 26-34. AIRCR register bit assignments	354
Table 26-35. SCR register bit assignments	
Table 26-36. CCR register bit assignments	356
Table 26-37. System fault handler priority fields	357
Table 26-38. SHPR2 register bit assignments	357
Table 26-39. SHPR3 register bit assignments	
Table 26-40. System timer register summary	
Table 26-41. SYST_CSR register bit assignments	359
Table 26-42. SYST_RVR register bit assignments	
Table 26-43. SYST_CVR register bit assignments	
Table 26-44. SYST_CALIB register bit assignments	360

LIST OF REGISTERS

Register 3-1. ROSC11 (ROSC11 Frequency Value, 0x0010 0010)	
Register 3-2. ADCGAIN (ADC Gain Value, 0x0010 0020)	
Register 3-3. ADCOFF (ADC Offset, 0x0010 0024)	
Register 3-4. FTTEMP (FT Temp value, 0x0010 0028)	41
Register 3-5. TEMPS (Temperature Sensor reading, 0x0010 002A)	
Register 3-6. CLKREF (CLKREF Frequency Value, 0x0010 002C)	
Register 3-7. PACIDR (PAC part number and revision, 0x0010 0044)	
Register 4-1. CCSCTL (System Clock Control, 0x4000 0000)	
Register 4-2. PLLCTL (PLL Control, 0x4000 0004)	43
Register 4-3. OSCCTL (Ring Oscillator Control, 0x4000 0008)	43
Register 4-4. XTALCTL (Crystal Driver Control, 0x4000 000C)	
Table 4-5. PLL output frequency settings using 4MHz ROSC as input	
Register 5-1. WDTCTL (Watchdog Timer Control, 0x4003 0000)	
Register 5-2. WDTCDV (Watchdog Timer Count-Down Value, 0x4003 0004)	
Register 5-3. WDTCTR (Watchdog Timer Counter, 0x4003 0008)	
Register 6-1. GPIOAOUT (GPIO Port A Output, 0x4007 0000)	
Register 6-2. GPIOAOUTEN (GPIO Port A Output Enable, 0x4007 0004)	
Register 6-3. GPIOADS (GPIO Port A Output Drive Strength, 0x4007 0008)	
Register 6-4. GPIOAPU (GPIO Port A Weak Pull Up, 0x4007 000C)	
Register 6-5. GPIOAPD (GPIO Port A Weak Pull Down, 0x4007 0010)	
Register 6-6. GPIOAIN (GPIO Port A Input, 0x4007 0014)	
Register 6-7. GPIOAPSEL (GPIO Port A Peripheral Select, 0x4007 001C)	
Register 6-8. GPIOAINTP (GPIO Port A Interrupt Polarity, 0x4007 0020)	
Register 6-9. GPIOAINTE (GPIO Port A Interrupt Enable, 0x4007 0024)	
Register 6-10. GPIOAINTF (GPIO Port A Interrupt Flag, 0x4007 0028)	
Register 6-11. GPIOAINTM (GPIO Port A Interrupt Mask, 0x4007 002C)	
Register 7-1. GPIOBOUT (GPIO Port B Output, 0x4007 0040)	
Register 7-2. GIOBOUTEN (GPIO Port B Output Enable, 0x4007 0044)	
Register 7-3. GPIOBDS (GPIO Port B Output Drive Strength, 0x4007 0048)	
Register 7-4. GPIOBPU (GPIO Port B Weak Pull Up, 0x4007 004C)	
Register 7-5. GPIOBPD (GPIO Port B Weak Pull Down, 0x4007 0050)	
Register 7-6. GPIOBIN (GPIO Port B Input, 0x4007 0054)	
Register 7-7. GPIOBPSEL (GPIO Port B Peripheral Select, 0x4007 005C)	
Register 7-8. GPGPIOIOBINTP (GPIO Port B Interrupt Polarity, 0x4007 0060)	
Register 7-9. GPIOBINTE (GPIO Port B Interrupt Enable, 0x4007 0064)	
Register 7-10. GPIOBINTF (GPIO Port B Interrupt Flag, 0x4007 0068)	
Register 7-11. GPIOBINTM (GPIO Port B Interrupt Mask, 0x4007 006C)	
Register 8-1. GPIOCOUT (GPIO Port C Output, 0x4008 0000)	
Register 8-2. GPIOCOUTEN (GPIO Port C Output Enable, 0x4008 0004)	
Register 8-3. GPIOCIN (GPIO Port C Input, 0x4008 0018)	70
Register 8-4. GPIOCINE (GPIO Port C Input Enable, 0x4008 0014)	
Register 8-5. GPIOCINTP (GPIO Port C Interrupt Polarity, 0x4008 0020)	
Register 8-6. GPIOCINTE (GPIO Port C Interrupt Enable, 0x4008 0024)	
Register 8-7. GPIOCINTF (GPIO Port C Interrupt, 0x4008 0028)	
Register 8-8. GPIOCINTM (GPIO Port C Interrupt Mask, 0x4008 002C)	
Register 9-1. GPIODO (GPIO Port D Output, 0x4008 0040)	77
Register 9-2. GPIODOUTEN (GPIO Port D Output Enable, 0x4008 0044)	
Register 9-3. GPIODDS (GPIO Port D Output Drive Strength, 0x4008 0048)	
Register 9-4. GPIODPU (GPIO Port D Weak Pull Up, 0x4008 004C)	
Register 9-5. GPIODPD (GPIO Port D Weak Pull Down, 0x4008 0050)	
Register 9-6. GPIODIN (GPIO Port D Input. 0x4008 0054)	80

Register 9-7. GPIODPSEL (GPIO Port D Peripheral Select, 0x4008 005C)	
Register 9-8. GPIODINTP (GPIO Port D Interrupt Polarity, 0x4008 0060)	82
Register 9-9. GPIODINTE (GPIO Port D Interrupt Enable, 0x4008 0064)	82
Register 9-10. GPIODINTF (GPIO Port D Interrupt, 0x4008 0068)	83
Register 9-11. GPIODINTM (GPIO Port D Interrupt Mask, 0x4008 006C)	83
Register 10-1. GPIOEOUT (GPIO Port E Output, 0x4009 0000)	87
Register 10-2. GPIOEOUTÈN (GPIO Port E Output Enable, 0x4009 0004)	88
Register 10-3. GPIOEDS (GPIO Port E Output Drive Strength, 0x4009 0008)	
Register 10-4. GPIOEPU (GPIO Port E Weak Pull Up, 0x4009 000C)	
Register 10-5. GPIOEPD (GPIO Port E Weak Pull Down, 0x4009 0010)	90
Register 10-6. GPIOEIN (GPIO Port E Input, 0x4009 0014)	
Register 10-7. GPIOEPSEL (GPIO Port E Peripheral Select, 0x4009 001C)	91
Register 10-8. GPIOEINTP (GPIO Port E Interrupt Polarity, 0x4009 0020)	
Register 10-9. GPIOEINTE (GPIO Port E Interrupt Enable, 0x4009 0024)	
Register 10-10. GPIOEINTF (GPIO Port E Interrupt Flag, 0x4009 0028)	
Register 10-10. GFIOEINTM (GPIO Port E Interrupt Mask, 0x4009 0020)	
Register 11-1. RTCCTL (Real Time Clock Control, 0x4004 0000)Register 11-2. RTCCDV (Real Time Clock Count-Down Value, 0x4004 0004)	
Register 11-3. RTCCTR (Real Time Clock Counter, 0x4004 0008)	
Register 12-1. TACTL (Timer A Control, 0x400D 0000)	
Register 12-2. TAPRD (Timer A Period, 0x400D 0004)	
Register 12-3. TACTR (Timer A Counter, 0x400D 0008)	
Register 12-4. TACCCTRL0 (Timer A PWMA0 Capture and Compare Control, 0x400D 0040)	
Register 12-5. TACCCTR0 (Timer A PWMA0 Capture and Compare Counter, 0x400D 0044)	
Register 12-6. TACC1CTRL1 (Timer A PWMA1 Capture and Compare Control, 0x400D 0048)	
Register 12-7. TACCCTR1 (Timer A PWMA1 Capture and Compare Counter, 0x400D 004C)	
Register 12-8. TACCCTRL2 (Timer A PWMA2 Capture and Compare Control, 0x400D 0050)	
Register 12-9. TACCCTR2 (Timer A PWMA2 Capture and Compare Counter, 0x400D 0054)	
Register 12-10. TACCCTRL3 (Timer A PWMA3 Capture and Compare Control, 0x400D 0058)	
Register 12-11. TACCCTR3 (Timer A PWMA3 Capture and Compare Counter, 0x400D 005C)	
Register 12-12. TACCCTRL4 (Timer A PWMA4 Capture and Compare Control, 0x400D 0060)	.104
Register 12-13. TACCCTR4 (Timer A PWMA4 Capture and Compare Counter, 0x400D 0064)	.105
Register 12-14. TACCCTRL5 (Timer A PWMA5 Capture and Compare Control, 0x400D 0068)	.105
Register 12-15. TACCCTR5 (Timer A PWMA5 Capture and Compare Counter, 0x400D 006C)	.105
Register 12-16. TACCCTRL6 (Timer A PWMA6 Capture and Compare Control, 0x400D 0070)	.106
Register 12-17. TACCCTR7 (Timer A PWMA6 Capture and Compare Counter, 0x400D 0074)	.106
Register 12-18. TACCCTRL7 (Timer A PWMA7 Capture and Compare Control, 0x400D 0078)	
Register 12-19. TACCCTR7 (Timer A PWMA7 Capture and Compare Counter, 0x400D 007C)	
Register 12-20. DTGA0CTL (Timer A Dead Time Generator 0 Control, 0x400D 00A0)	
Register 12-21. DTGA0LED (Timer A Dead Time Generator 0 Leading Edge Delay, 0x400D 00A4)	
Register 12-22. DTGA0TED (Timer A Dead Time Generator 0 Trailing Edge Delay, 0x400D 00A8)	
Register 12-23. DTGA1CTL (Timer A Dead Time Generator 1 Control, 0x400D 00B0)	
Register 12-24. DTGA1LED (Timer A Dead Time Generator 1 Leading Edge Delay, 0x400D 00B4)	
Register 12-25. DTGA1TED (Timer A Dead Time Generator 1 Trailing Edge Delay, 0x400D 00B8)	
Register 12-26. DTGATTED (Timer A Dead Time Generator 2 Control, 0x400D 00C0)	
Register 12-27. DTGA2LED (Timer A Dead Time Generator 2 Leading Edge Delay, 0x400D 00C4)	
Register 12-28. DTGA2TED (Timer A Dead Time Generator 2 Trailing Edge Delay, 0x400D 00C8)	
Register 12-29. DTGA3CTL (Timer A Dead Time Generator 3 Control, 0x400D 00D0)	
Register 12-30. DTGA3LED (Timer A Dead Time Generator 3 Leading Edge Delay, 0x400D 00D4)	
Register 12-31. DTGA3TED (Timer A Dead Time Generator 3 Trailing Edge Delay, 0x400D 00D8)	
Register 13-1. TBCTL (Timer B Control, 0x400E 0000)	
Register 13-2. TBPRD (Timer B Period, 0x400E 0004)	
Register 13-3. TBCTR (Timer B Counter, 0x400E 0008)	. 119
Register 13-4. TBCC0CTRL (Timer B PWMB0 Capture and Compare Control, 0x400E 0040)	.119

- 17 -

Register 13-5. TBCC0CTR (Timer B PWMB0 Capture and Compare Counter, 0x400E 0044)	120
Register 13-6. TBCC1CTRL (Timer B PWMB1 Capture and Compare Control, 0x400E 0048)	120
Register 13-7. TBCC1CTR (Timer B PWMB1 Capture and Compare Counter, 0x400E 004C)	120
Register 13-8. TBCC2CTRL (Timer B PWMB2 Capture and Compare Control, 0x400E 0050)	
Register 13-9. TBCC2CTR (Timer B PWMB2 Capture and Compare Counter, 0x400E 0054)	
Register 13-10. TBCC3CTRL (Timer B PWMB3 Capture and Compare Control, 0x400E 0058)	
Register 13-11. TBCC3CTR (Timer B PWMB3 Capture and Compare Counter, 0x400E 005C)	
Register 13-12. DTGB0CTL (Timer B Dead Time Generator 0 Control, 0x400E 00A0)	
Register 13-13. DTGB0LED (Timer B Dead Time Generator 0 Leading Edge Delay, 0x400E 00A4)	122
Register 13-14. DTGB0TED (Timer B Dead Time Generator 0 Trailing Edge Delay, 0x400E 00A8)	123
Register 14-1. TCCTL (Timer C Control, 0x400F 0000)	
Register 14-2. TCPRD (Timer C Period, 0x400F 0004)	
Register 14-3. TCCTR (Timer C Counter, 0x400F 0008)	
Register 14-4. TCCC0CTL (Timer C PWMC0 Capture and Compare Control, 0x400F 0040)	
Register 14-5. TCCC0CTR (Timer C PWMC0 Capture and Compare Counter, 0x400F 0044)	
Register 14-6. TCCC1CTL (Timer C PWMC1 Capture and Compare Control, 0x400F 0048)	
Register 14-7. TCCC1CTR (Timer C PWMC1 Capture and Compare Counter, 0x400F 004C)	
Register 14-8. DTGC0CTL (Timer C Dead Time Generator 0 Control, 0x400F 00A0)	
Register 14-9. DTGC0LED (Timer C Dead Time Generator 0 Leading Edge Delay, 0x400F 00A4)	
Register 14-10. DTGC0TED (Timer C Dead Time Generator 0 Trailing Edge Delay, 0x400F 00A8)	
Register 15-1. TDCTL (Timer D Control, 0x4010 0000)	142
Register 15-2. TDPRD (Timer D Period, 0x4010 0004)	
Register 15-3. TDCTR (Timer D Counter, 0x4010 0008)	
Register 15-4. TDCC0CTRL (Timer D PWMD0 Capture and Compare Control, 0x4010 0040)	
Register 15-5. TDCC0CTR (Timer D PWMD0 Capture and Compare Counter, 0x4010 0044)	
Register 15-6. TDCC1CTL (Timer D PWMD1 Capture and Compare Control, 0x4010 0048)	144
Register 15-7. TDCC1CTR (Timer D PWMD1 Capture and Compare Counter, 0x4010 004C)	144
Register 15-8. DTGD0CTL (Timer D Dead Time Generator 0 Control, 0x4010 00A0)	145
Register 15-9. DTGD0LED (Timer D Dead Time Generator 0 Leading Edge Delay, 0x4010 00A4)	145
Register 15-10. DTGD0TED (Timer D Dead Time Generator 0 Trailing Edge Delay, 0x4010 00A8)	145
Register 16-1. FLASHLOCK (FLASH Lock, 0x4002 0000)	153
Register 16-2. FLASHCTL (FLASH Control and Status, 0x4002 0004)	
Register 16-3. FLASHPAGE (FLASH Page Selector, 0x4002 0008)	
Register 16-4. FLASHPERASE (FLASH Page Erase, 0x4002 0014)	
Register 16-5. SWDACCESS (SDW Access Status, 0x4002 0024)	
Register 16-6. FLASHWSTATE (FLASH Access Wait State, 0x4002 0028)	155
Register 16-7. FLASHBWRITE (Buffered FLASH Write, 0x4002 002C)	
Register 16-8. FLASHBWDATA (Buffered FLASH Write Data, 0x4002 0030)	
Register 17-1. EMUXCTL (ADC external MUX control register 0x4015 0000)	
Register 17-2. EMUXDATA (EMUX data register 0x4015 0004)	
Register 17-3. ADCCTL (ADC control register 0x4015 0008)	
Register 17-4. ADCCR (ADC conversion result register 0x4015 000C)	
Register 17-5. ADCINT (ADC Interrupt register 0x4015 0010)	
Register 17-6. ASOCTL (Auto Sequencer 0 control register 0x4015 0040)	165
Register 17-7. ASOSO (Auto sequencer 0-sample 0 control 0x4015 0044)	
Register 17-8. ASOR0 (Auto sequencer 0-sample 0 result register 0x4015 0048)	
Register 17-9. ASOS1 (Auto sequencer 0-sample 1 control 0x4015 004C)	100
Register 17-10. ASOR1 (Auto sequencer 0-sample 1 result register 0x4015 0050)	16/
Register 17-11. ASOS2 (Auto sequencer 0-sample 2 control 0x4015 0054)	
Register 17-12. ASOR2 (Auto sequencer 0-sample 2 result register 0x4015 0058)	
Register 17-13. ASOS3 (Auto sequencer 0-sample 3 control 0x4015 005C)	
Register 17-14. ASOR3 (Auto sequencer 0-sample 3 result register 0x4015 0060)	
Register 17-15. AS0S4 (Auto sequencer 0-sample 4 control 0x4015 0064)	
Register 17-16. AS0R4 (Auto sequencer 0-sample 4 result register 0x4015 0068)	169

Register 17-17. AS0S5 (Auto sequencer 0-sample 5 control 0x4015 006C)	169
Register 17-18. AS0R5 (Auto sequencer 0-sample 5 result register 0x4015 0070)	169
Register 17-19. AS0S6 (Auto sequencer 0-sample 6 control 0x4015 0074)	
Register 17-20. AS0R6 (Auto sequencer 0-sample 6 result register 0x4015 0078)	170
Register 17-21. AS0S7 (Auto sequencer 0-sample 7 control 0x4015 007C)	170
Register 17-22. AS0R7 (Auto sequencer 0-sample 7 result register 0x4015 0080)	
Register 17-23. AS1CTL (Auto Sequencer 1 control register 0x4015 0100)	
Register 17-24. AS1S0 (Auto sequencer 1-sample 0 control 0x4015 0104)	
Register 17-25. AS1R0 (Auto sequencer 1-sample 0 result register 0x4015 0108)	
Register 17-26. AS1S1 (Auto sequencer 1-sample 1 control 0x4015 010C)	
Register 17-27. AS1R1 (Auto sequencer 1-sample 1 result register 0x4015 0110)	
Register 17-28. AS1S2 (Auto sequencer 1-sample 2 control 0x4015 0114)	
Register 17-29. AS1R2 (Auto sequencer 1-sample 2 result register 0x4015 0118)	
Register 17-30. AS1S3 (Auto sequencer 1-sample 3 control 0x4015 011C)	
Register 17-31. AS1R3 (Auto sequencer 1-sample 3 result register 0x4015 0120)	174
Register 17-32. AS1S4 (Auto sequencer 1-sample 4 control 0x4015 0124)	175
Register 17-33. AS1R4 (Auto sequencer 1-sample 4 result register 0x4015 0128)	
Register 17-34. AS1S5 (Auto sequencer 1-sample 5 control 0x4015 012C)	
Register 17-35. AS1R5 (Auto sequencer 1-sample 5 result register 0x4015 0130)	176
Register 17-36. AS1S6 (Auto sequencer 1-sample 6 control 0x4015 0134)	176
Register 17-37. AS1R6 (Auto sequencer 1-sample 6 result register 0x4015 0138)	
Register 17-38. AS1S7 (Auto sequencer 1-sample 7 control 0x4015 013C)	
Register 17-39. AS1R7 (Auto sequencer 1-sample 7 result register 0x4015 0140)	
Register 18-1. I2CCFG (I ² C Configuration, 0x401B 0000)	
Register 18-2. I2CSTATUS (I ² C Interrupt Status, 0x401B 0004)	
Register 18-3. I2CIE (I ² C Interrupt Enable, 0x401B 0008)	
Register 18-4. I2CMCTRL (I ² C Master Access Control, 0x401B 0030)	
Register 18-5. I2CMRXDATA (I ² C Master Receive Data, 0x401B 0034)	
Register 18-6. I2CMTXDATA (I ² C Master Transmit Data, 0x401B 0038)	
Register 18-7. I2CBAUD (I2C Baud Rate, 0x401B 0040)	
Register 18-8. I2CSLRXDATA (I ² C Slave Receive Data, 0x401B 0070)	187
Register 18-9. I2CSLTXDATA (I ² C Slave Transmit Data, 0x401B 0074)	188
Register 18-10. I2CADDR (I ² C Slave Address, 0x401B 0074)	188
Table 18-11. I2CBAUD settings for different HCLK	189
Register 19-1. UARTRXTX (UART Receive/Transmit FIFO, 0x401D 0000)	194
Register 19-2. UARTDL_L (UART Divisor Latch (low byte), 0x401D 0000)	194
Register 19-3. UARTIER (UART Interrupt Enable, 0x401D 0004)	195
Register 19-4. UARTDL_H (UART Divisor Latch (high byte), 0x401D 0004)	195
Register 19-5. UARTIIR (UART Interrupt Identification, 0x401D 0008)	
Register 19-6. UARTFCTL (UART FIFO Control, 0x401D 0008)	196
Register 19-7. UARTLCR (UART Line Control, 0x401D 000C)	197
Register 19-8. UARTMCR (UART Modem Control, 0x401D 0010)	197
Register 19-9. UARTLSR (UART Line Status, 0x401D 0014)	198
Register 19-10. UARTSP (UART Scratch Pad, 0x401D 001C)	198
Register 19-11. UARTFCTL2 (FIFO Control, 0x401D 0020)	
Register 19-12. UARTIER2 (UART Interrupt Enable, 0x401D 0024)	199
Register 19-13. UARTDL_L2 (UART Divisor Latch Low Byte, 0x401D 0028)	200
Register 19-14. UARTDL_H2 (UART Divisor Latch High Byte, 0x401D 002C)	
Register 19-15. UARTFD_F (UART Fractional Divisor Value, 0x401D 0038)	
Register 19-16. UARTSTAT (UART FIFO Status, 0x401D 0040)	
Register 19-17. UART Divisor Settings for 50 MHz HCLK	
Register 20-1. SOCBCTL (SOC Bus Bridge Control, 0x4020 0000)	
Register 20-2. SOCBCFG (SOC Bus Bridge Configuration, 0x4020 0004)	
Register 20-3. SOCBCLK (SOC Bus Bridge Clock Divider, 0x4020 0008)	205

Register 20-4. SOCBSTAT (SOC Bus Bridge Status, 0x4020 0014)	
Register 20-5. SOCBCSSTR (SOC Bus Bridge Chip Select Steering, 0x4020 0018)	
Register 20-6. SOCBD (SOC Bus Bridge Data, 0x4020 001C)	207
Register 20-7. SOCBINT_EN (SOC Bus Bridge Interrupt Enable, 0x4020 0020)	207
Register 21-1. SPICTL (SPI Control, 0x4021 0000)	210
Register 21-2. SPICFG (SPI Configuration, 0x4021 0004)	211
Register 21-3. SPICLKDIV (SPI Clock Divider, 0x4021 0008)	212
Register 21-4. SPISTAT (SPI Status, 0x4021 0014)	
Register 21-5. SPICSSTR (SPI Chip Select Steering, 0x4021 0018)	214
Register 21-6. SPID (SPI Data, 0x4021 001C)	
Register 21-7. SPIINT_EN (SPI Interrupt Enable, 0x4021 0020)	215
Register 22-1. SYSSTAT (System Status, 0x00)	
Register 22-2. DEVID (Device Identification, 0x08)	
Register 22-3. VERID (Version Identification, 0x09)	
Register 22-4. PWRCTL (Power Manager Control, 0x10)	
Register 22-5. PWRSTAT (Power Manager Status, 0x11h, Persistent In Hibernate Mode)	
Register 22-6. PSTATSET (Power Manager Setting, 0x12)	
Register 22-7. IMOD (Current Modulation, 0x13)	
Register 22-8. SCFG (Switching Supply Configuration, 0x14)	
Register 22-9. SCFG2 (Switching Supply Configuration 2, 0x15)	
Register 23-1. SOC.SOC.CFGAIO0 (AIO0 Configuration, SOC 0x20)	
Register 23-2. SOC.CFGAIO1 (AIO1 Configuration, SOC 0x21)	
Register 23-3. SOC.SOC.CFGAIO2 (AIO2 Configuration, SOC 0x22)	
Register 23-4. SOC.CFGAIO3 (AIO3 Configuration, SOC 0x23)	
Register 23-5. SOC.SOC.CFGAIO4 (AIO4 Configuration, SOC 0x24)	
Register 23-6. SOC.CFGAIO5 (AIO5 Configuration, SOC 0x25)	
Register 23-7. SOC.CFGAIO6 (AIO6 Configuration, SOC 0x26)	
Register 23-8. SOC.CFGAIO7 (AIO7 Configuration, SOC 0x27)	
Register 23-9. SOC.CFGAIO8 (AIO8 Configuration, SOC 0x28)	
Register 23-10. SOC.CFGAIO9 (AIO9 Configuration, SOC 0x29)	
Register 23-11. SOC.SIGSET (Signal Manager Configuration, SOC 0x2A)	
Register 23-12. SOC.HPDAC (HPDAC Setting, SOC 0x2B)	
Register 23-13. SOC.LPDAC0 (LPDAC Setting [9:2], SOC 0x2C)	
Register 23-14. SOC.LPDAC1 (LPDAC Setting [1:0], SOC 0x2D)	
Register 23-15. SOC.ADCSCAN (ADCSCAN Configuration, SOC 0x2E)	
Register 23-16. SOC.ADCIN1 (AD Mux Selector, SOC 0x2F)	
Register 23-17. SOC.PROTINTM (Protection Interrupt Enable, SOC 0x30)	238
Register 23-18. SOC.PROTSTAT (Protection Interrupt, SOC 0x31)	239
Register 23-19. SOC.DOUTSIG0 (AIO Digital Output, SOC 0x32)	
Register 23-20. SOC.DOUTSIG1 (AIO Digital Output, SOC 0x33)	240
Register 23-21. SOC.DINSIG0 (AIO Digital Input, SOC 0x34)	240
Register 23-22. SOC.DINSIG1 (AIO Digital Input 1, SOC 0x35)	
Register 23-23. SOC.SIGINTM (AIO6,7,8,9 Interrupt Enable, SOC 0x36)	241
Register 23-24. SOC.SIGINTF (AIO6,7,8,9 Interrupt, SOC 0x37)	
Register 23-25. SOC.ENSIG (Signal Manager Control SOC 0x38)	
Register 25-1. SOC.CFGDRV0 (Driver Configuration 0, SOC 0x60)	
Register 25-2. SOC.CFGDRV1 (Driver Configuration 1, SOC 0x61)	
Register 25-3. SOC.CFGDRQ6 (OHI6 Configuration, SOC 0x62)	
Register 25-4. SOC.CFGDRQ7 (OHI6 Configuration, SOC 0x63)	
Register 25-5. SOC.DOUTDRV (OHI6/7, OM0/2/4 Output, SOC 0x64)	
Register 25-6. SOC.DINDRV (OHI6, OHI7 Input, SOC 0x65)	
Register 25-7. SOC.ENDRV (Application Specific Power Driver Control, SOC 0x66)	
Register 25-8. SOC.ENBBM (Driver Break Before Make Control, SOC 0x67)	
Register 25-9. SOC.PROTCTL (Driver Protection Control, SOC 0x68)	
1.0910101 20 0. 000.1 1.01012 (Dilvoi i lotection Control, 000 0x00)	

Power Application Controller

LIST OF FIGURES

Figure 2-1. Memory Map	26
Figure 4-1. System Clock Control	
Figure 5-1. WDT	49
Figure 6-1. GPIO Port A	59
Figure 7-1. GPIO Port B	67
Figure 8-1. GPIO Port C	75
Figure 9-1. GPIO Port D	85
Figure 10-1. GPIO Port E	95
Figure 11-1. GPT	99
Figure 12-1. Timer A	111
Figure 12-2. PWMA[x] and PWMA[x+4] Example Using Timer A Up Mode and Up/Down Mode	114
Figure 12-3. CA[x] and CA[x+4] Capture Example	114
Figure 12-4. DTGAx Bypass Example	
Figure 12-5. DTGAx Bypass and Inverting LS Example	116
Figure 12-6. DTGAx LED and TED Example	
Figure 12-7. DTGAx LED and TED with On Time Preservation Example	
Figure 13-1. Timer B	
Figure 13-2. PWMB0 and PWMB1 Example Using Timer B Up Mode and Up/Down Mode	
Figure 13-3. CB0 and CB1 Capture Example	
Figure 13-4. DTGB0 Bypass Example	
Figure 13-5. DTGB0 Bypass and Inverting LS Example	
Figure 13-6. DTGB0 LED and TED Example	
Figure 13-7. DTGB0 LED and TED with On Time Preservation Example	130
Figure 14-1. Timer C	
Figure 14-2. PWMC0 and PWMC1 Example Using Timer C Up Mode and Up/Down Mode	
Figure 14-3. CC0 and CC1 Capture Example	
Figure 14-4. DTGC0 Bypass Example	
Figure 14-5. DTGC0 Bypass and Inverting LS Example	
Figure 14-6. DTGC0 LED and TED Example	
Figure 14-7. DTGC0 LED and TED with On Time Preservation Example	
Figure 15-1. Timer D.	
Figure 15-2. PWMD0 and PWMD1 Example Using Timer D Up Mode and Up/Down Mode	
Figure 15-3. CD0 and CD1 Capture Example	
Figure 15-4. DTGD0 Bypass Example	
Figure 15-5. DTGD0 Bypass and Inverting LS Example	150
Figure 15-6. DTGD0 LED and TED Example	
Figure 15-7. DTGD0 LED and TED with On Time Preservation Example	
Figure 16-1. FLASH Memory Controller	
Figure 17-1. ADC, EMUX, ASC0, ASC1	
Figure 17-2. ADC Conversion (Single Shot)	
Figure 17-3. ADC Conversion (Repeat Mode)	
Figure 17-4. ASCx, ADCCTL.ADCMODE = 001b, 010b, 100b, 101b	
Figure 17-5. ASCx, ADCCTL.ADCMODE = 011b, 110b	
Figure 17-6. ASCx, ADCCTL.ADCMODE = 111b	
Figure 17-7. ASxSy Sample with ASxSy.EMUXS = 00b and ASxSy.DELAY = 11b	
Figure 17-8. ASxSy Sample with ASxSy.EMUXS = 01b and ASxSy.DELAY = 11b	
Figure 17-9. ASxSy Sample with ASxSy.EMUXS = 10b and ASxSy.DELAY = 11b	182
Figure 17-10. ASCx, 8 samples, No Collision	
Figure 17-11. ASCx 8 samples, Collision	
Figure 17-12. ASC0 8 samples, ASC1 4 samples, Collision	183
Figure 18-1. I2C	
1.19MIY.1V.1.1EV	100

Figure 18-2. I2C Master Read Transaction	
Figure 18-3. I2C Master Read Waveforms	191
Figure 19-1. UART	201
Figure 20-1. SOC Bridge	208
Figure 20-2. Single Read from SOC Bridge	209
Figure 20-3. Single Write to SOC Bridge	209
Figure 21-1. SPI	
Figure 21-2. SPI clock polarity and phase	
Figure 21-3. SPIMOSI early transmit in master mode	
Figure 21-4. SPIMISO early transmit in slave mode	
Figure 21-5. SPICSx	
Figure 23-1. Configurable Analog Front End	243
Figure 23-2. AIO1, AIO0	244
Figure 23-3. AIO3, AIO2	
Figure 23-4. AIO5, AIO4	
Figure 23-5. AIO6	
Figure 23-6. AIO7	
Figure 23-7. AIO7	
Figure 23-8. AIO8	
Figure 24-1. EMUX Timing Diagram	
Figure 25-1. Application Specific Power Driver	
Figure 25-2. ENHS1, ENLS1 Protection	
Figure 25-3. DRL0	
Figure 25-4. DRL1	
Figure 25-5. DRL2	
Figure 25-6. DRH3	
Figure 25-7. DRH4	
Figure 25-8. DRH5	
Figure 26-1. Cortex-M0 implementation	283
Figure 26-2. Core Registers	
Figure 26-3. PSR	
Figure 26-4. PRIMASK	290
Figure 26-5. CONTROL	290
Figure 1-5. CONTROL	290
Figure 26-6. Memory Map	293
Figure 26-7. Memory Ordering Restrictions	294
Figure 26-8. Little Endian Format	297
Figure 26-9. Vector Table	
Figure 26-10. Exception Entry Stack Contents	
Figure 26-11. ASR #3	
Figure 26-12. LSR #3	
Figure 26-13. LSL #3.	
Figure 26-14. ROR #3	
Figure 26-15. ISER	
Figure 26-16. ICER	
Figure 26-17. ISPR	
Figure 26-18. ICPR	
Figure 26-19. IPR	
Figure 26-20. CPUID	
Figure 26-21. ICSR	
Figure 26-22. AIRCR	
Figure 26-23. SCR	
Figure 26-24. CCR	
Figure 26-25. SHPR2	357

Power Application Controller

Figure 26-26. SH	IPR3	57
	/ST CSR35	
	/ST_RVR	
	/ST_CVR36	
•	ST CALIB 36	

1. STYLES AND FORMATTING CONVENTIONS

1.1. Overview

This chapter describes formatting and styles used through the document.

1.2. Number Representation

Numbers in a base other than decimal have a prefix or postfix as indicator. All numbers use little endian formatting, most significant bit/digit is to the left. Digits for binary and hexadecimal representation are grouped with a single space every four digits to improve readability. Binary numbers use "b" as postfix, hexadecimal numbers use "0x" as prefix.

For example 1011b binary = 0xB hexadecimal = 11 decimal.

1.3. Formatting Styles

TYPE	EXAMPLE	DESCRIPTION
Register Name	RTCCTL	Register names use capital letter and bold formatting.
Register Bit(s)	RTCCTL.RTCCLKDIV	Register bits are always represented with the register name separated with a period
Function selected by Register bit(s)	[RTCCTL.RTCCLKDIV]	Within text blocks, functions selected with a register bit setting are set in brackets. For example [RTCCTL.RTCCLKDIV] means divider settings /2 to / 65536.
Pin Function	XIN	Pin functions use capital letters
Formulas	CLK = FCLK / DIV	Formulas use Teletype font.
Links	Number Representation	Clickable Links are underlined and blue
CPU Mnemonic	MRS	CPU Mnemonic use Teletype font.
Operands	{Rd,} Rn, Rm	Operands use Italic
Code examples	B loopA	Code examples use Teletype font.

2. MEMORY AND REGISTER MAP

2.1. Memory Map

Figure 2-1. Memory Map

2.2. Register Map

Table 2-1. Embedded FLASH Register Map

NAME	DESCRIPTION
EFLASHP0	EFLASH page 0
EFLASHP1	EFLASH page 1
EFLASHP2	EFLASH page 2
EFLASHP3	EFLASH page 3
EFLASHP4	EFLASH page 4
EFLASHP5	EFLASH page 5
EFLASHP6	EFLASH page 6
EFLASHP7	EFLASH page 7
EFLASHP8	EFLASH page 8
EFLASHP9	EFLASH page 9
EFLASHP10	EFLASH page 10
EFLASHP11	EFLASH page 11
EFLASHP12	EFLASH page 12
EFLASHP13	EFLASH page 13
EFLASHP14	EFLASH page 14
EFLASHP15	EFLASH page 15
EFLASHP16	EFLASH page 16
EFLASHP17	EFLASH page 17
EFLASHP18	EFLASH page 18
EFLASHP19	EFLASH page 19
EFLASHP20	EFLASH page 20
EFLASHP21	EFLASH page 21
EFLASHP22	EFLASH page 22
EFLASHP23	EFLASH page 23
EFLASHP24	EFLASH page 24
EFLASHP25	EFLASH page 25
EFLASHP26	EFLASH page 26
EFLASHP27	EFLASH page 27
EFLASHP28	EFLASH page 28
EFLASHP29	EFLASH page 29
EFLASHP30	EFLASH page 30
EFLASHP31	EFLASH page 31
	EFLASHP0 EFLASHP1 EFLASHP2 EFLASHP3 EFLASHP4 EFLASHP5 EFLASHP6 EFLASHP7 EFLASHP8 EFLASHP9 EFLASHP10 EFLASHP11 EFLASHP12 EFLASHP13 EFLASHP14 EFLASHP15 EFLASHP16 EFLASHP17 EFLASHP18 EFLASHP19 EFLASHP20 EFLASHP20 EFLASHP20 EFLASHP20 EFLASHP21 EFLASHP22 EFLASHP22 EFLASHP23 EFLASHP23 EFLASHP24 EFLASHP25 EFLASHP25 EFLASHP26 EFLASHP27 EFLASHP28 EFLASHP29

Table 2-2. ROM Register Map

ADDRESS	NAME	DESCRIPTION	
INFO ROM	NFO ROM		
0x0010 0000 – 0x0010 000F	Reserved	Reserved	
0x0010 0010	ROSC11	ROSC frequency in Hz at 11b setting (8 MHz)	
0x0010 0014	Reserved	Reserved	
0x0010 0018	Reserved	Reserved	
0x0010 001C	Reserved	Reserved	
0x0010 0020	ADCGAIN	ADC gain * 65536 in ADC counts/V.	
0x0010 0024	ADCOFF	ADC offset (Two's complement) * 65536 in ADC counts.	
0x0010 0028	FTTEMP	Test temperature for internal temp sensor in °C	
0x0010 002A	TEMPS	Internal temp sensor reading at FTTEMP temperature in ADC counts	
0x0010 002C	CLKREF	4MHz CLKREF frequency in Hz	
0x0010 0030	Reserved	Reserved	
0x0010 0034	Reserved	Reserved	
0x0010 0038	Reserved	Reserved	
0x0010 003C	Reserved	Reserved	
0x0010 0040	Reserved	Reserved	
0x0010 0044	PACIDR	Device part number and revision	
0x0010 0048 – 0x0010 00FF	Reserved	Reserved	
DATA ROM	DATA ROM		
0x0020 0400 – 0x0020 7FFF	ROM	ROM Area	

Table 2-3. System Clock Control Register Map

ADDRESS	NAME	DESCRIPTION
System Clock Cor	ntrol	
0x4000 0000	SCCTL	System clock control
0x4000 0004	PLLCTL	PLL control
0x4000 0008	ROSCCTL	Ring oscillator control
0x4000 000C	XTALCTL	Crystal driver control

Table 2-4. FLASH Memory Controller Register Map

ADDRESS	NAME	DESCRIPTION
FLASH Memory Co	ontroller	
0x4002 0000	FLASHLOCK	FLASH lock
0x4002 0004	FLASHCTL	FLASH Control
0x4002 0008	FLASHPAGE	FLASH page selection
0x4002 000C	Reserved	Reserved
0x4002 0010	Reserved	Reserved
0x4002 0014	FLASHPERASE	FLASH page erase
0x4002 0018	Reserved	Reserved
0x4002 001C	Reserved	Reserved
0x4002 0020	Reserved	Reserved
0x4002 0024	SWDACCESS	SWD access control
0x4002 0028	FLASHWSTATE	FLASH wait state control
0x4002 002C	FLASHBWRITE	FLASH buffered write enable
0x4002 0030	FLASHBWDATA	FLASH buffered write data and address

Table 2-5. Watchdog Timer Register Map

ADDRESS	NAME	DESCRIPTION
Watchdog Timer		
0x4003 0000	WDTCTL	Watchdog timer control
0x4003 0004	WDTCDV	Watchdog timer count-down value
0x4003 0008	WDTCTR	Watchdog timer counter

Table 2-6. General Purpose Timer Register Map

ADDRESS	NAME	DESCRIPTION
Real Time Clock		
0x4004 0000	RTCCTL	General purpose timer control
0x4004 0004	RTCCDV	General purpose timer count-down value
0x4004 0008	RTCCTR	General purpose timer counter

Table 2-7. GPIO Port A Register Map

ADDRESS	NAME	DESCRIPTION
GPIO Port A		
0x4007 0000	GPIOAOUT	GPIO Port A output
0x4007 0004	GPIOAOUTEN	GPIO Port A output enable
0x4007 0008	GPIOADS	GPIO Port A output drive strength
0x4007 000C	GPIOAPU	GPIO Port A output weak pull up
0x4007 0010	GPIOAPD	GPIO Port A output weak pull down
0x4007 0014	GPIOAIN	GPIO Port A input
0x4007 0018	Reserved	Reserved
0x4007 001C	GPIOAPSEL	GPIO Port A peripheral select
0x4007 0020	GPIOAINTP	GPIO Port A interrupt polarity select
0x4007 0024	GPIOAINTE	GPIO Port A interrupt enable select
0x4007 0028	GPIOAINTF	GPIO Port A interrupt flag
0x4007 002C	GPIOAINTM	GPIO Port A interrupt mask

Table 2-8. GPIO Port B Register Map

ADDRESS	NAME	DESCRIPTION
GPIO Port B		
0x4007 0040	GPIOBOUT	GPIO Port B output
0x4007 0044	GPIOBOUTEN	GPIO Port B output enable
0x4007 0048	GPIOBODS	GPIO Port B output drive strength
0x4007 004C	GPIOBPU	GPIO Port B output weak pull up
0x4007 0050	GPIOBPD	GPIO Port B output weak pull down
0x4007 0054	GPIOBIN	GPIO Port B input
0x4007 0058	Reserved	Reserved
0x4007 005C	GPIOBPSEL	GPIO Port B peripheral select
0x4007 0060	GPIOBINTP	GPIO Port B interrupt polarity select
0x4007 0064	GPIOBINTE	GPIO Port B interrupt enable select
0x4007 0068	GPIOBINTF	GPIO Port B interrupt flag
0x4007 006C	GPIOBINTM	GPIO Port B interrupt mask

Table 2-9. GPIO Port AB Register Map

ADDRESS	NAME	DESCRIPTION
GPIO Port AB		
0x4007 0080	GPIOABOUT	GPIO Port AB output
0x4007 0084	GPIOABOUTEN	GPIO Port AB output enable
0x4007 0088	GPIOABODS	GPIO Port AB output drive strength
0x4007 008C	GPIOABPU	GPIO Port AB output weak pull up
0x4007 0090	GPIOABPD	GPIO Port AB output weak pull down
0x4007 0094	GPIOABIN	GPIO Port AB input
0x4007 0098	Reserved	Reserved
0x4007 009C	GPIOABPSEL	GPIO Port AB peripheral select
0x4007 00A0	GPIOABINTP	GPIO Port AB interrupt polarity select
0x4007 00A4	GPIOABINTE	GPIO Port AB interrupt enable select
0x4007 00A8	GPIOABINTF	GPIO Port AB interrupt flag
0x4007 00AC	GPIOABINTM	GPIO Port AB interrupt mask

Table 2-10. GPIO Port C Register Map

ADDRESS	NAME	DESCRIPTION
GPIO Port C		
0x4008 0000	GPIOCOUT	GPIO Port C output
0x4008 0004	GPIOCOUTEN	GPIO Port C output enable
0x4008 0008	Reserved	Reserved
0x4008 000C	Reserved	Reserved
0x4008 0010	Reserved	Reserved
0x4008 0014	GPIOCIN	GPIO Port C input
0x4008 0018	GPIOCINE	GPIO Port C input enable
0x4008 001C	Reserved	Reserved
0x4008 0020	GPIOCINTP	GPIO Port C interrupt polarity select
0x4008 0024	GPIOCINTE	GPIO Port C interrupt enable select
0x4008 0028	GPIOCINTF	GPIO Port C interrupt flag
0x4008 002C	GPIOCINTM	GPIO Port C interrupt mask

Table 2-11. GPIO Port D Register Map

ADDRESS	NAME	DESCRIPTION
GPIO Port D		
0x4008 0040	GPIODOUT	GPIO Port D output
0x4008 0044	GPIODOUTEN	GPIO Port D output enable
0x4008 0048	GPIODODS	GPIO Port D output drive strength
0x4008 004C	GPIODPU	GPIO Port D output weak pull up

ADDRESS	NAME	DESCRIPTION
0x4008 0050	GPIODPD	GPIO Port D output weak pull down
0x4008 0054	GPIODIN	GPIO Port D input
0x4008 0058	Reserved	Reserved
0x4008 005C	GPIODPSEL	GPIO Port D peripheral select
0x4008 0060	GPIODINTP	GPIO Port D interrupt polarity select
0x4008 0064	GPIODINTE	GPIO Port D interrupt enable select
0x4008 0068	GPIODINTF	GPIO Port D interrupt flag
0x4008 006C	GPIODINTM	GPIO Port D interrupt mask

Table 2-12. GPIO Port CD Register Map

ADDRESS	NAME	DESCRIPTION
GPIO Port CD		
0x4008 0080	GPIOCDOUT	GPIO Port CD output
0x4008 0084	GPIOCDOUTEN	GPIO Port CD output enable
0x4008 0088	Reserved	Reserved
0x4008 008C	Reserved	Reserved
0x4008 0090	Reserved	Reserved
0x4008 0094	GPIOCDIN	GPIO Port CD input
0x4008 0098	Reserved	Reserved
0x4008 009C	GPIOCDPSEL	GPIO Port CD peripheral select
0x4008 00A0	GPIOCDINTP	GPIO Port CD interrupt polarity select
0x4008 00A4	GPIOCDINTE	GPIO Port CD interrupt enable select
0x4008 00A8	GPIOCDINTF	GPIO Port CD interrupt flag
0x4008 00AC	GPIOCDINTM	GPIO Port CD interrupt mask

Table 2-13. GPIO Port E Register Map

ADDRESS	NAME	DESCRIPTION		
GPIO Port E	GPIO Port E			
0x4009 0000	GPIOEOUT	GPIO Port E output		
0x4009 0004	GPIOEOUTEN	GPIO Port E output enable		
0x4009 0008	GPIOEODS	GPIO Port E output drive strength		
0x4009 000C	GPIOEPU	GPIO Port E output weak pull up		
0x4009 0010	GPIOEPD	GPIO Port E output weak pull down		
0x4009 0014	GPIOEIN	GPIO Port E input		
0x4009 0018	Reserved	Reserved		
0x4009 001C	GPIOEPSEL	GPIO Port E peripheral select		
0x4009 0020	GPIOEINTP	GPIO Port E interrupt polarity select		
0x4009 0024	GPIOEINTE	GPIO Port E interrupt enable select		
0x4009 0028	GPIOEINTF	GPIO Port E interrupt flag		

ADDRESS	NAME	DESCRIPTION
0x4009 002C	GPIOEINTM	GPIO Port E interrupt mask

Table 2-14. Timer A Register Map

ADDRESS	NAME	DESCRIPTION	
Timer A			
0x400D 0000	TACTL	Timer A control	
0x400D 0004	TAPRD	Timer A period	
0x400D 0008	TACTR	Timer A counter	
Timer A PWMA Cap	Timer A PWMA Capture and Compare		
0x400D 0040	TACCTRL0	Timer A capture and compare 0 control	
0x400D 0044	TACTR0	Timer A counter 0	
0x400D 0048	TACCTRL1	Timer A capture and compare 1 control	
0x400D 004C	TACTR1	Timer A counter 1	
0x400D 0050	TACCTRL2	Timer A capture and compare 2 control	
0x400D 0054	TACTR2	Timer A counter 2	
0x400D 0058	TACCTRL3	Timer A capture and compare 3 control	
0x400D 005C	TACTR3	Timer A counter 3	
0x400D 0060	TACCTRL4	Timer A capture and compare 4 control	
0x400D 0064	TACTR4	Timer A counter 4	
0x400D 0068	TACCTRL5	Timer A capture and compare 5 control	
0x400D 006C	TACTR5	Timer A counter 5	
0x400D 0070	TACCTRL6	Timer A capture and compare 6 control	
0x400D 0074	TACTR6	Timer A counter 6	
0x400D 0078	TACCTRL7	Timer A capture and compare 7 control	
0x400D 007C	TACTR7	Timer A counter 7	
Timer A Dead Time	Generator		
0x400D 00A0	DTGA0CTL	Timer A dead time generator 0 control	
0x400D 00A4	DTGA0LED	Timer A dead time generator 0 leading edge delay	
0x400D 00A8	DTGA0TED	Timer A dead time generator 0 trailing edge delay	
0x400D 00B0	DTGA1CTL	Timer A dead time generator 1 control	
0x400D 00B4	DTGA1LED	Timer A dead time generator 1 leading edge delay	
0x400D 00B8	DTGA1TED	Timer A dead time generator 1 trailing edge delay	
0x400D 00C0	DTGA2CTL	Timer A dead time generator 2 control	
0x400D 00C4	DTGA2LED	Timer A dead time generator 2 leading edge delay	
0x400D 00C8	DTGA2TED	Timer A dead time generator 2 trailing edge delay	
0x400D 00D0	DTGA3CTL	Timer A dead time generator 3 control	
0x400D 00D4	DTGA3LED	Timer A dead time generator 3 leading edge delay	

Table 2-15. Timer B Register Map

ADDRESS	NAME	DESCRIPTION		
Timer B	Timer B			
0x400E 0000	TBCTL	Timer B control		
0x400E 0004	TBPRD	Timer B period		
0x400E 0008	TBCTR	Timer B counter		
Timer B PWMB Ca	Timer B PWMB Capture and Compare			
0x400E 0040	TBCCTRL0	Timer B capture and compare 0 control		
0x400E 0044	TBCTR0	Timer B counter 0		
0x400E 0048	TBCCTRL1	Timer B capture and compare 1 control		
0x400E 004C	TBCTR1	Timer B counter 1		
0x400E 0050	TBCCTRL2	Timer B capture and compare 2 control		
0x400E 0054	TBCTR2	Timer B counter 2		
0x400E 0058	TBCCTRL3	Timer B capture and compare 3 control		
0x400E 005C	TBCTR3	Timer B counter 3		
Timer B Dead Time Generator				
0x400E 00A0	DTGB0CTL	Timer B dead time generator 0 control		
0x400E 00A4	DTGB0LED	Timer B dead time generator 0 leading edge delay		
0x400E 00A8	DTGB0TED	Timer B dead time generator 0 trailing edge delay		

Table 2-16. Timer C Register Map

ADDRESS	NAME	DESCRIPTION		
Timer C	Timer C			
0x400F 0000	TCCTL	Timer C control		
0x400F 0004	TCPRD	Timer C period		
0x400F 0008	TCCTR	Timer C counter		
Timer C PWMC Capture and Compare				
0x400F 0040	TCCCTRL0	Timer C capture and compare 0 control		
0x400F 0044	TCCTR0	Timer C counter 0		
0x400F 0048	TCCCTRL1	Timer C capture and compare 1 control		
0x400F 004C	TCCTR1	Timer C counter 1		
Timer C Dead Time Generator				
0x400F 00A0	DTGC0CTL	Timer C dead time generator 0 control		
0x400F 00A4	DTGC0LED	Timer C dead time generator 0 leading edge delay		
0x400F 00A8	DTGC0TED	Timer C dead time generator 0 trailing edge delay		

Table 2-17. Timer D Register Map

ADDRESS	NAME	DESCRIPTION
Timer D		
0x4010 0000	TDCTL	Timer D control
0x4010 0004	TDPRD	Timer D period
0x4010 0008	TDCTR	Timer D counter
Timer D PWMD Capture and Compare		
0x4010 0040	TDCCTL0	Timer D capture and compare 0 control
0x4010 0044	TDCTR0	Timer D counter 0
0x4010 0048	TDCCTRL1	Timer D capture and compare 1 control
0x4010 004C	TDCTR1	Timer D counter 1
Timer D Dead Time Generator		
0x4010 00A0	DTGD0CTL	Timer D dead time generator 0 control
0x4010 00A4	DTGD0LED	Timer D dead time generator 0 leading edge delay
0x4010 00A8	DTGD0TED	Timer D dead time generator 0 trailing edge delay

Table 2-18. EMUX Register Map

ADDRESS	NAME	DESCRIPTION
EMUX		
0x4015 0000	EMUXCTL	ADC external MUX control
0x4015 0004	EMUXDATA	ADC external MUX data

Table 2-19. ADC Register Map

ADDRESS	NAME	DESCRIPTION
ADC		
0x4015 0008	ADCCTL	ADC control
0x4015 000C	ADCR	ADC conversion result
0x4015 0010	ADCINT	ADC interrupt

Table 2-20. ADC Auto-Sampling Sequencer 0 Register Map

ADDRESS	NAME	DESCRIPTION	
ADC Auto-Samplin	ADC Auto-Sampling Sequencer 0		
0x4015 0040	ASCTL0	Auto-sampling sequencer 0 control	
0x4015 0044	AS0S0	Auto-sampling sequencer 0 sample 0 control	
0x4015 0048	AS0R0	Auto-sampling sequencer 0 sample 0 result	
0x4015 004C	AS0S1	Auto-sampling sequencer 0 sample 1 control	
0x4015 0050	AS0R1	Auto-sampling sequencer 0 sample 1 result	
0x4015 0054	AS0S2	Auto-sampling sequencer 0 sample 2 control	
0x4015 0058	AS0R2	Auto-sampling sequencer 0 sample 2 result	

ADDRESS	NAME	DESCRIPTION	
0x4015 005C	AS0S3	Auto-sampling sequencer 0 sample 3 control	
0x4015 0060	AS0R3	Auto-sampling sequencer 0 sample 3 result	
0x4015 0064	AS0S4	Auto-sampling sequencer 0 sample 4 control	
0x4015 0068	AS0R4	Auto-sampling sequencer 0 sample 4 result	
0x4015 006C	AS0S5	Auto-sampling sequencer 0 sample 5 control	
0x4015 0070	AS0R5	Auto-sampling sequencer 0 sample 5 result	
0x4015 0074	AS0S6	Auto-sampling sequencer 0 sample 6 control	
0x4015 0078	AS0R6	Auto-sampling sequencer 0 sample 6 result	
0x4015 007C	AS0S7	Auto-sampling sequencer 0 sample 7 control	
0x4015 0080	AS0R7	Auto-sampling sequencer 0 sample 7 result	

Table 2-21. ADC Auto-Sampling Sequencer 1 Register Map

ADDRESS	NAME	DESCRIPTION	
ADC Auto-Samplin	ng Sequencer 1		
0x4015 0100	ASCTL1	Auto-sampling sequencer 1 control	
0x4015 0104	AS1S0	Auto-sampling sequencer 1 sample 0 control	
0x4015 0108	AS1R0	Auto-sampling sequencer 1 sample 0 result	
0x4015 010C	AS1S1	Auto-sampling sequencer 1 sample 1 control	
0x4015 0110	AS1R1	Auto-sampling sequencer 1 sample 1 result	
0x4015 0114	AS1S2	Auto-sampling sequencer 1 sample 2 control	
0x4015 0118	AS1R2	Auto-sampling sequencer 1 sample 2 result	
0x4015 011C	AS1S3	Auto-sampling sequencer 1 sample 3 control	
0x4015 0120	AS1R3	Auto-sampling sequencer 1 sample 3 result	
0x4015 0124	AS1S4	Auto-sampling sequencer 1 sample 4 control	
0x4015 0128	AS1R4	Auto-sampling sequencer 1 sample 4 result	
0x4015 012C	AS1S5	Auto-sampling sequencer 1 sample 5 control	
0x4015 0130	AS1R5	Auto-sampling sequencer 1 sample 5 result	
0x4015 0134	AS1S6	Auto-sampling sequencer 1 sample 6 control	
0x4015 0138	AS1R6	Auto-sampling sequencer 1 sample 6 result	
0x4015 013C	AS1S7	Auto-sampling sequencer 1 sample 7 control	
0x4015 0140	AS1R7	Auto-sampling sequencer 1 sample 7 result	

Table 2-22. I²C Register Map

ADDRESS	NAME	DESCRIPTION	
I ² C			
0x40B0 0000	I2CCFG	I ² C configuration	
0x40B0 0004	12CSTATUS	I ² C interrupt and status	
0x40B0 0008	I2CIE	I ² C interrupt enable	
0x40B0 0030	I2CMCTRL	I ² C master access control	

ADDRESS	NAME	DESCRIPTION	
0x40B0 0034	I2CMRXDATA	I ² C master receive data	
0x40B0 0038	I2CMTXDATA	² C master transmit data	
0x40B0 0040	I2CBAUD	I ² C master baud rate	
0x40B0 0070	I2CSRXDATA	I ² C slave receive data	
0x40B0 0074	I2CSTXDATA	I ² C slave transmit data	
0x40B0 0078	I2CSADDR	I ² C slave address	

Table 2-23. UART Register Map

ADDRESS	NAME	DESCRIPTION	
UART			
0x401D 0000	UARTRXTX	UART receive/transmit FIFO (available only if UARTLCR.DLAB = 0b)	
0.000	UARTDL_L	UART divisor latch low (available only if UARTLCR.DLAB = 1b)	
0x401D 0004	UARTIER	UART interrupt enable (available only if UARTLCR.DLAB = 0b)	
0x401D 0004	UARTDL_H	UART divisor latch high (available only if UARTLCB.DLAB = 1b)	
0x401D 0008	UARTIIR	UART interrupt identification (only for register read)	
0x401D 0006	UARTFCTL	UART FIFO control (only for register write)	
0x401D 000C	01D 000C UARTLCR UART line control		
0x401D 0010	UARTMCR	UART modem control	
0x401D 0014	UARTLSR	UART line status	
0x401D 0018	UARTMSR	UART modem status	
0x401D 001C	UARTSP	UART Scratch Pad	
0x401D 0020	UARTFCTL2	UART FIFO control	
0x401D 0024	UARTIER2	UART interrupt enable	
0x401D 0028	UARTDL_L2	UART divisor latch low byte	
0x401D 002C	UARTDL_H2	UART divisor latch high byte	
0x401D 0038	UARTFD_F	UART fractional divisor value	
0x401D 003C	Reserved	Reserved	
0x401D 0040	UARTSTAT	UART FIFO status	

Table 2-24. SOC Bus Bridge Register Map

ADDRESS	NAME	DESCRIPTION	
SOC Bus Bridge			
0x4020 0000	SOCBCTL	SOC Bus Bridge control	
0x4020 0004	SOCBCFG	SOC Bus Bridge configuration	
0x4020 0008	SOCBCLKDIV	SOC Bus Bridge clock divider	
0x4000 000C	Reserved	Reserved	
0x4000 0010	Reserved	Reserved	
0x4020 0014	SOCBSTAT	SOC Bus Bridge status	
0x4020 0018	SOCBSSTR	SOC Bus Bridge Chip Select steering	

ADDRESS	NAME	DESCRIPTION	
0x4020 001C	SOCBD	SOC Bus Bridge data	
0x4020 0020	SOCBINT_EN	SOC Bus Bridge interrupt enable	

Table 2-25. SPI Register Map

ADDRESS	NAME	DESCRIPTION	
SPI			
0x4021 0000	SPICTL	SPI control	
0x4021 0004	SPICFG	SPI configuration	
0x4021 0008	SPICLKDIV	SPI clock divider	
0x4021 000C	Reserved	Reserved	
0x4021 0010	Reserved	Reserved	
0x4021 0014	SPISTAT	SPI status	
0x4021 0018	SPICSSTR	SPI chip select steering	
0x4021 001C	SPID	SPI data	
0x4021 0020	SPIINT_EN	SPI interrupt enable	

3. INFORMATION BLOCK

3.1. Register

3.1.1. Register Map

Table 3-1. Information Block Register Map

ADDRESS	BYTE OFFSET					
ADDRESS	0	4		3	12	
0x0010 0000		Reserved			•	
0x0010 0010	ROSC11	ROSC11 Reserved				
0x0010 0020	ADCGAIN	ADCOFF	FTTEMP	TEMPS	CLKREF	
0x0010 0030		Reserved				
0x0010 0040	Reserved	Reserved PACIDR Reserved				
0x0010 0050 - 0x0010 00FF	Reserved					

3.1.2. ROSC11

Register 3-1. ROSC11 (ROSC11 Frequency Value, 0x0010 0010)

BIT	NAME	ACCESS	DESCRIPTION
31:0	ROSC11	R	ROSC frequency in Hz at setting 11b (8MHz).

3.1.3. ADCGAIN

Register 3-2. ADCGAIN (ADC Gain Value, 0x0010 0020)

BIT	NAME	ACCESS	DESCRIPTION
31:0	ADCGAIN	R	ADC gain (in ADC counts/volt) * 65536.

3.1.4. ADCOFF

Register 3-3. ADCOFF (ADC Offset, 0x0010 0024)

BIT	NAME	ACCESS	DESCRIPTION
31:0	ADCOFF	R	Two's complement of the ADC offset * 65536. The value of this field is in ADC counts.

3.1.5. FTTEMP

Register 3-4. FTTEMP (FT Temp value, 0x0010 0028)

BIT	NAME	ACCESS	DESCRIPTION
15:0	FTTEMP	R	Test temperature for internal temp sensor in °C1

3.1.6. **TEMPS**

Register 3-5. TEMPS (Temperature Sensor reading, 0x0010 002A)

BIT	NAME	ACCESS	DESCRIPTION
15:0	TEMPS	R	Internal temp sensor ADC reading at FTTEMP ²

3.1.7. CLKREF

Register 3-6. CLKREF (CLKREF Frequency Value, 0x0010 002C)

BIT	NAME	ACCESS	DESCRIPTION
31:0	CLKREF	R	4MHz CLKREF frequency in Hz.

3.1.8. PACIDR

Register 3-7. PACIDR (PAC part number and revision, 0x0010 0044)

BIT	NAME	ACCESS	DESCRIPTION
31:0	PACIDR	R	Device part number and revision.

3.2. Details of Operation

3.2.1. Overview

The Information block has calibration data for the clocks ROSC and CLKREF, Voltage reference VREF, ADC gain and offset and internal temp sensor, that can be used by firmware for more accurate time and ADC readings.

Also stored are device part number and revision for firmware to verify before running application code.

¹ Note that this field may be set to 0xFFFF on some devices. If this is the case, use a value of 25.

² Note that this field may be set to 0xFFFF on some devices. If this is the case, use a value of 614.

4. SYSTEM CLOCK CONTROL

4.1. Register

4.1.1. Register Map

Table 4-1. System Clock Control Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
System Clock Cor	ntrol		
0x4000 0000	CCSCTL	System clock control	0x0000 0000
0x4000 0004	PLLCTL	PLL control 0x0000 0	
0x4000 0008	OSCCTL	Ring oscillator control 0x0000	
0x4000 000C	XTALCTL	Crystal driver control 0x0000	

4.1.2. CCSCTL

Register 4-1. CCSCTL (System Clock Control, 0x4000 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7	FCLK	RW	0x0	FCLK input clock select 1b: PLLOUT clock 0b: FRCLK
6:5	HCLKDIV	RW	0x0	HCLK divider 11b = FCLK / 8 10b = FCLK / 4 01b = FCLK / 2 00b = FCLK / 1
4:2	ACLKDIV	RW	0x0	ACLK divider 111b = FCLK / 128 110b = FCLK / 44 101b = FCLK / 32 100b = FCLK / 16 011b = FCLK / 8 010b = FCLK / 4 001b = FCLK / 2 000b = FCLK / 1
1:0	CLKIN	R/W	0x0	FRCLK input clock select 11b = XTAL driver XIN/XOUT 10b = EXTCLK input 01b = CLKREF input (4MHz trimmed RC oscillator) 00b = internal ring oscillator ROSC

4.1.3. PLLCTL

Register 4-2. PLLCTL (PLL Control, 0x4000 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	Reserved	R	0x0	Reserved
23:20	Reserved	RW	0x0	Reserved, must be set to 0x0
19:16	PLLOUTDIV	RW	0x0	PLL output divider 1111b: / 15 0001b: / 1 0000b: reserved
15:7	PLLFBDIV	RW	0x0	PLL feedback divider 1 1111 1111b: / 513 0 0000 0001b: / 3 0 0000 0000b: / 2
6:2	PLLINDIV	RW	0x0	PLL input divider 1 1111b: / 33 0 0001b: / 3 0 0000b: / 2
1	Reserved	RW	0x0	Reserved, must be set to 0x0
0	PLLEN	RW	0x0	PLL oscillator 1b: enable PLL 0b: disable PLL

4.1.4. OSCCTL

Register 4-3. OSCCTL (Ring Oscillator Control, 0x4000 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:3	Reserved	R	0x0	Reserved
2:1	ROSCP	RW	0x3	Ring oscillator frequency setting 11b = 8.3MHz 10b = 10.7MHz 01b = 15.3MHz 00b = 28.7MHz
0	ROSCEN	RW	0x1	Enable Ring oscillator 1b: enable ROSC 0b: disable ROSC

4.1.5. XTALCTL

Register 4-4. XTALCTL (Crystal Driver Control, 0x4000 000C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:1	Reserved	R	0x0	Reserved
0	XTALEN	RW	0x0	Enable XTAL driver 1b: enable crystal driver 0b: disable crystal driver

4.2. Details of Operation

4.2.1. Block Diagram

Figure 4-1. System Clock Control

4.2.2. Configuration

Following blocks need to be configured for correct use of the system clock control:

- GPIOD.PD1
- RTC
- WDT
- WIC
- ADC/ASC
- SYSTICK
- SRAM
- FLASH
- ADC EMUX
- SOC BUS
- I2C

- SPI
- UART
- · Timer A, B, C, D

4.2.3. ROSC

The internal ring oscillator has four frequency settings controllable with **OSCCTL.ROSCP** from 8.3MHz to 28.7MHz in four steps. The ROSC can also be disabled using **OSCCTL.ROSCEN**.

4.2.4. CLKREF

The CLKREF provides a 2% trimmed 4MHz clock.

4.2.5. XTAL

The crystal driver supports a range of crystal frequencies from 2MHz to 10MHz. The crystal driver can also be used to input an external clock using XIN.

The crystal driver can be enabled with XTALCTL.XTALEN.

4.2.6. EXTCLK

PD1 can be configured as clock input, EXTCLK.

4.2.7. PLL

The clock input to the PLL is FRCLK.

The PLL can be enabled with PLLCTL.PLLEN.

The PLL output clock PLLOUT is following following equation:

$$PLLOUT = \frac{PLLIN * PLLFBDIV}{PLLINDIV * PLLOUTDIV * 2} \tag{1}$$

Where:

PLLOUT: PLL output frequency in MHz

PLLIN: PLL input frequency in MHz (FRCLK)

PLLINDIV: PLL input divider (2 to 33) PLLCTL.PLLINDIV

PLLFBDIV: PLL feedback divider (2 to 513) PLLCTL.PLLFBDIV

PLLOUTDIV: PLL output divider (1 to 16) PLLCTL.PLLOUTDIV

The input clock frequency and input clock divider selection must follow formula below for correct operation of PLL:

$$1MHz \le \frac{PLLIN}{PLLINDIV} \le 25MHz \tag{2}$$

The output clock frequency and output clock divider selection must following formula below for correct operation of the PLL

$$100 \text{MHz} \le PLLOUT * PLLOUTDIV \le 250 \text{MHz}$$

$$PLLOUTDIV \ge 1$$
(3)

The table below shows pre-calculated PLL output frequency settings using the 4MHz ROSC as input.

Table 4-5. PLL output frequency settings using 4MHz ROSC as input

PLL output	PLLOUTDIV	PLLFBDIV	PLLINDIV
10MHz	0x01 (/[1*2])	0x008 (*10)	0x0 (/2)
16.8MHz	0x05 (/[5*2])	0x052 (*84)	0x0 (/2)
20MHz	0x01 (/[1*2])	0x012 (*20)	0x0 (/2)
25MHz	0x01 (/[1*2])	0x019 (*25)	0x0 (/2)
30MHz	0x01 (/[1*2])	0x01C (*30)	0x0 (/2)
33.333MHz	0x01 (/[1*2])	0x030 (*50)	0x1 (/3)
40MHz	0x01 (/[1*2])	0x026 (*40)	0x0 (/2)
50MHz	0x01 (/[1*2])	0x030 (*50)	0x0 (/2)
60MHz	0x01 (/[1*2])	0x03A (*60)	0x0 (/2)
70MHz	0x01 (/[1*2])	0x044 (*70)	0x0 (/2)
80MHz	0x01 (/[1*2])	0x04E (*80)	0x0 (/2)
90MHz	0x01 (/[1*2])	0x058 (*90)	0x0 (/2)
100MHz	0x01 (/[1*2])	0x062 (*100)	0x0 (/2)

4.2.8. FRCLK

The free running clock FRCLK clock source can be selected with **CCSCTL.CLKIN**. From XTAL, EXTCLK, CLKREF, or ROSC.

4.2.9. FCLK

The fast clock FCLK clock source can be selected with CCSCTL.FCLK to be either PLLOUT of FRCLK.

4.2.10. HCLK

The high speed clock HCLK clock source input is FCLK. The HCLK can be divided down from FCLK using **CCSCTL.HCLKDIV** from /1 to /8 in 4 steps.

4.2.11. ACLK

The auxiliary clock ACLK clock source input is FCLK. The ACLK can be divided down from FCLK from ./1 to /128 in 8 steps.

4.2.12. Clock Gating

When the CPU enters deep sleep mode, the HCLK, ACLK and FCLK to the ADC are clock gated and stopped to save power. Only FRCLK and FCLK continue to run to supply WIC, RTC, and WDT.

5. WATCHDOG TIMER

5.1. Register

5.1.1. Register Map

Table 5-1. Watchdog Timer Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE	
Watchdog Timer				
0x4003 0000	WDTCTL	Watchdog timer control	0x6300 0000	
0x4003 0004	WDTCDV	Watchdog timer count-down value 0x63F		
0x4003 0008	WDTCTR	Watchdog timer counter 0x00F		

5.1.2. WDTCTL

Register 5-1. WDTCTL (Watchdog Timer Control, 0x4003 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION	
31:24	KEY	RW	0x63	Key for writing WDTCTL register 0x4A: allow writes to WDTCTL register 0x63: read value of WDTCTL.KEY	
23:12	Reserved	R	0x0		
11	WRBUSY	RW	0x0	WDTCTL write busy 1b = write to WDTCTL still being processed. Any register writes received while this bit is set to a 1b will be dropped and not written to the given register. Any reads will return indeterminate data. 0b = WDT registers not busy	
10	WDTCLKSEL	RW	0x0	WDT input clock select 1b: FCLK 0b: FRCLK	
9:6	WDTCLKDIV	RW	0x0	WDT clock input divider 1111b: /65536 1110b: /32768 1101b: /16384 1100b: /8192 1011b: /4096 1010b: /2048 1001b: /1024 1000b: /512 0111b: /256 0110b: /128 0101b: /64 0100b: /32 0011b: /16 0010b: /8 0001b: /4 0000b: /2	
5	WDTRESETEN	RW	0x0	Watchdog device RESET enable 1b = WDT trigger device RESET when WDTCTR register counts to 0x0 0b = WDT trigger device RESET disabled	
4	WDTINT	RW	0x0	Watchdog interrupt 1b = WDT interrupt 0b = no WDT interrupt	

BIT	NAME	ACCESS	RESET	DESCRIPTION
3	WDTINTEN	RW	0x0	Watchdog interrupt enable 1b = enable WDT interrupt 0b = disable WDT interrupt
2:0	WDTCTRRST	RW	0x0	WDTCTR counter reset 101b = write of 101b reset WDTCTR to WDTCDV value

5.1.3. WDTCDV

Register 5-2. WDTCDV (Watchdog Timer Count-Down Value, 0x4003 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	KEY	RW	0x63	Key for writing WDTCDV register 0x4A: allow writes to WDTCDV register 0x63: read value of WDTCDV.KEY
23:0	RSTVALUE	RW	0xFF FFFF	24-bit WDT count-down value

5.1.4. WDTCTR

Register 5-3. WDTCTR (Watchdog Timer Counter, 0x4003 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	Reserved	R	0x0	Reserved
23:0	CTR	RW	0xFF FFFF	Current value of WDT

5.2. Details of Operation

5.2.1. Block Diagram

Figure 5-1. WDT

5.2.2. Configuration

Following blocks need to be configured for correct use of the WDT:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)

5.2.3. Watchdog Timer

The Watchdog timer consist of a 24-bit timer and reset logic. The WDT can be used as general purpose 16bit timer or as watchdog timer that need to be serviced periodically to avoid device reset.

5.2.4. Access WDT Registers

The WDTCTL and WDTCDV registers can only be written to if WDTCTL.KEY or WDTCDV.KEY are set to 0x4A.

The read back value of **WDTCTL.KEY** or **WDTCDV.KEY** is always 0x63. The watchdog timer has 2 clock domains, HCLK and WDT clock domain set by **WDTCTL.CLKSEL** and **WDTCTL.WDTCLKDIV**. Writing to any WDT registers may take up to 1 clock cycle on the WDT clock domain to finish. Any ongoing writes to WDT registers are shown with **WDTCTL.WRBUSY**. As long as **WDTCTL.WRBUSY** is 1b, any subsequent writes to WDT registers are ignored and reads only provide undetermined data.

5.2.5. WDT Clock Setting

The WDT can use 2 clocks FCLK or FRCLK, selectable with **WDTCTL.CLKSEL**. For applications where the WDT need to run in CPU sleep mode, FRCLK should be used. The clock input can be further divided down from /2 to /65536 using **WDTCTL.WDTCLKDIV**.

5.2.6. General Purpose Timer Mode

Set WDTCTL.WDTRESETEN to 0b to use the WDT as general purpose 24-bit timer. Set the desired count value in WDT clocks in WDTCDV.RSTVALUE, set WDTCTL.WDTCTRRST to 101b to load WDTCTR.CTR with WDTCDV.RSTVALUE. To start the GPT timer set GPTCTL.INTEN. When WDTCTR.CTR reaches 0x0, the timer

PAC5223 User Guide

automatic reloads **WDTCTR.CTR** with **WDTCDV.RSTVALUE** and continues countdown. The WDT is stopped when **WDTCTL.INTEN** is cleared.

5.2.7. Watchdog Timer Mode

Set WDTCTL.WDTRESETEN to 1b to use the WDT as 24-bit watchdog timer with device reset capability. Set WDTCTL.WDTINTEN to 1b to enable interrupt when WDT counts to 0x0. Set the desired count value in WDT clocks in WDTCDV.RSTVALUE. To start the WDT count down, set WDTCTL.WDTCTRRST to 101b. The WDT will copy the WDTCTL.RSTVALUE to WDTCTR.CTR and start counting down. When WDTCTR.CTR reaches 0x0, the WDT will automatic copy WDTCTL.RSTVALUE to WDTCTR.CTR, restart the counter and set the interrupt flag if enabled is set. During the second count down, set WDTCTL.WDTCTRRST to 101b to restart the 1st WDT countdown and avoid device reset. If the WDTCTR.CTR reaches 0x0 during the second count down without being reloaded, the WDT will toggle device reset.

6. GPIO PORT A

6.1. Register

6.1.1. Register Map

Table 6-1. GPIO Port A Register Map

ADDRESS	NAME	DESCRIPTION RESET VALUE					
GPIO Port A							
0x4007 0000	GPIOAOUT	GPIO Port A output	0x0000 0000				
0x4007 0004	GPIOAOUTEN	GPIO Port A output enable	0x0000 0000				
0x4007 0008	GPIOADS	GPIO Port A output drive strength	0x0000 0000				
0x4007 000C	GPIOAPU	GPIO Port A output weak pull up	0x0000 0000				
0x4007 0010	GPIOAPD	GPIO Port A output weak pull down	0x0000 0000				
0x4007 0014	GPIOAIN	GPIO Port A input	0x0000 0000				
0x4007 0018	Reserved	Reserved	0x0000 0000				
0x4007 001C	GPIOAPSEL	GPIO Port A peripheral select	0x0000 0000				
0x4007 0020	GPIOAINTP	GPIO Port A interrupt polarity select	0x0000 0000				
0x4007 0024	GPIOAINTE	GPIO Port A interrupt enable select	0x0000 0000				
0x4007 0028	GPIOAINTF	GPIO Port A interrupt flag 0x0000					
0x4007 002C	GPIOAINTM	GPIO Port A interrupt mask	0x0000 0000				

6.1.2. **GPIOAO**

Register 6-1. GPIOAOUT (GPIO Port A Output, 0x4007 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A output 7 1b: set output high if GPIOAOUTEN.P7 = 1b 0b: set output low if GPIOAOUTEN.P7 = 1b
6	P6	RW	0x0	Port A output 6 1b: set output high if GPIOAOUTEN.P6 = 1b 0b: set output low if GPIOAOUTEN.P6 = 1b
5	P5	RW	0x0	Port A output 5 1b: set output high if GPIOAOUTEN.P5 = 1b 0b: set output low if GPIOAOUTEN.P5 = 1b
4	P4	RW	0x0	Port A output 4 1b: set output high if GPIOAOUTEN.P4 = 1b 0b: set output low if GPIOAOUTEN.P4 = 1b
3	Р3	RW	0x0	Port A output 3 1b: set output high if GPIOAOUTEN.P3 = 1b 0b: set output low if GPIOAOUTEN.P3 = 1b
2	P2	RW	0x0	Port A output 2 1b: set output high if GPIOAOUTEN.P2 = 1b 0b: set output low if GPIOAOUTEN.P2 = 1b

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port A output 1 1b: set output high if GPIOAOE.P1 = 1b 0b: set output low if GPIOAOE.P1 = 1b
0	P0	RW	0x0	Port A output 0 1b: set output high if GPIOAOE.P0 = 1b 0b: set output low if GPIOAOE.P0 = 1b

6.1.3. GPIOAOUTEN

Register 6-2. GPIOAOUTEN (GPIO Port A Output Enable, 0x4007 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A output 7 enable 1b: output state set by GPIOAOUT.P7 0b: output disabled, high-impedance state
6	P6	RW	0x0	Port A output 6 enable 1b: output state set by GPIOAOUT.P6 0b: output disabled, high-impedance state
5	P5	RW	0x0	Port A output 5 enable 1b: output state set by GPIOAOUT.P5 0b: output disabled, high-impedance state
4	P4	RW	0x0	Port A output 4 enable 1b: output state set by GPIOAOUT.P4 0b: output disabled, high-impedance state
3	Р3	RW	0x0	Port A output 3 enable 1b: output state set by GPIOAOUT.P3 0b: output disabled, high-impedance state
2	P2	RW	0x0	Port A output 2 enable 1b: output state set by GPIOAOUT.P2 0b: output disabled, high-impedance state
1	P1	RW	0x0	Port A output 1 enable 1b: output state set by GPIOAOUT.P1 0b: output disabled, high-impedance state
0	P0	RW	0x0	Port A output 0 enable 1b: output state set by GPIOAOUT.P0 0b: output disabled, high-impedance state

6.1.4. GPIOADS

Register 6-3. GPIOADS (GPIO Port A Output Drive Strength, 0x4007 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A output 7 drive strength select 1b: high 0b: low
6	P6	RW	0x0	Port A output 6 drive strength select 1b: high 0b: low

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port A output 5 drive strength select 1b: high 0b: low
4	P4	RW	0x0	Port A output 4 drive strength select 1b: high 0b: low
3	Р3	RW	0x0	Port A output 3 drive strength select 1b: high 0b: low
2	P2	RW	0x0	Port A output 2 drive strength select 1b: high 0b: low
1	P1	RW	0x0	Port A output 1 drive strength select 1b: high 0b: low
0	P0	RW	0x0	Port A output 0 drive strength select 1b: high 0b: low

6.1.5. GPIOAPU

Register 6-4. GPIOAPU (GPIO Port A Weak Pull Up, 0x4007 000C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A 7 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
6	P6	RW	0x0	Port A 6 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
5	P5	RW	0x0	Port A 5 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
4	P4	RW	0x0	Port A 4 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
3	Р3	RW	0x0	Port A 3 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
2	P2	RW	0x0	Port A 2 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
1	P1	RW	0x0	Port A 1 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
0	P0	RW	0x0	Port A 0 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO

6.1.6. GPIOAPD

Register 6-5. GPIOAPD (GPIO Port A Weak Pull Down, 0x4007 0010)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A 7 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
6	P6	RW	0x0	Port A 6 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
5	P5	RW	0x0	Port A 5 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
4	P4	RW	0x0	Port A 4 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
3	Р3	RW	0x0	Port A 3 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
2	P2	RW	0x0	Port A 2 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
1	P1	RW	0x0	Port A 1 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
0	P0	RW	0x0	Port A 0 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS

6.1.7. GPIOAIN

Register 6-6. GPIOAIN (GPIO Port A Input, 0x4007 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RW	0x0	Reserved
7	P 7	RW	0x0	Port A 7 input state 1b: input high 0b: input low
6	P6	RW	0x0	Port A 6 input state 1b: input high 0b: input low
5	P5	RW	0x0	Port A 5 input state 1b: input high 0b: input low
4	P4	RW	0x0	Port A 4 input state 1b: input high 0b: input low
3	Р3	RW	0x0	Port A 3 input state 1b: input high 0b: input low

BIT	NAME	ACCESS	RESET	DESCRIPTION
2	P2	RW	0x0	Port A 2 input state 1b: input high 0b: input low
1	P1	RW	0x0	Port A 1 input state 1b: input high 0b: input low
0	P0	RW	0x0	Port A 0 input state 1b: input high 0b: input low

6.1.8. GPIOAPSEL

Register 6-7. GPIOAPSEL (GPIO Port A Peripheral Select, 0x4007 001C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RW	0x0	Reserved
15:14	P7	RW	0x0	Port A 7 peripheral select 11b: PWMC1 / DTGC0HS output or CC1 capture and compare input 10b: PWMA7 / DTGA3HS output or CA7 capture and compare input 01b: PWMA5 / DTGA1HS output or CA5 capture and compare input 00b: I/O mode PA7
13:12	P6	RW	0x0	Port A 6 peripheral select 11b: reserved 10b: PWMB0 / DTGB0LS output or CB0 capture and compare input 01b: PWMA4 / DTGA0HS output or CA4 capture and compare input 00b: I/O mode PA6
11:10	P5	RW	0x0	Port A 5 peripheral select 11b: reserved 10b: PWMD0 / DTGD0LS output or CD0 capture and compare input / IBCTL5 01b: PWMA6 / DTGA2HS output or CA6 capture and compare input / IBCTL5 00b: I/O mode PA5
9:8	P4	RW	0x0	Port A 4 peripheral select 11b: reserved 10b: PWMC0 / DTGC0LS output or CC0 capture and compare input / IBCTL4 01b: PWMA5 / DTGA1HS output or CA5 capture and compare input IBCTL4 00b: I/O mode PA4
7:6	P3	RW	0x0	Port A 3 peripheral select 11b: PWMB0 / DTGB0LS output or CB0 capture and compare input / IBCTL3 10b: PWMA4 / DTGA0HS output or CA4 capture and compare input / IBCTL3kl 01b: PWMA3 / DTGA3LS output or CA3 capture and compare input / IBCTL3 00b: I/O mode PA3
5:4	P2	RW	0x0	Port A 2 peripheral select 11b: reserved 10b: reserved 01b: PWMA2 / DTGA2LS output or CA2 capture and compare input / IBCTL2 00b: I/O mode PA2

BIT	NAME	ACCESS	RESET	DESCRIPTION
3:2	P1	RW	0x0	Port A 1 peripheral select 11b: reserved 10b: reserved 01b: PWMA1 / DTGA1LS output or CA1 capture and compare input / IBCTL1 00b: I/O mode PA1
1:0	P0	RW	0x0	Port A 0 peripheral select 11b: reserved 10b: reserved 01b: PWMA0 / DTGA0LS output or CA0 capture and compare input / IBCTL0 00b: I/O mode PA0

6.1.9. GPIOAINTP

Register 6-8. GPIOAINTP (GPIO Port A Interrupt Polarity, 0x4007 0020)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A 7 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
6	P6	RW	0x0	Port A 6 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
5	P5	RW	0x0	Port A 5 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
4	P4	RW	0x0	Port A 4 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
3	Р3	RW	0x0	Port A 3 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
2	P2	RW	0x0	Port A 2 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
1	P1	RW	0x0	Port A 1 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
0	P0	RW	0x0	Port A 0 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition

6.1.10. GPIOAINTE

Register 6-9. GPIOAINTE (GPIO Port A Interrupt Enable, 0x4007 0024)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A 7 interrupt enable 1b: enabled interrupt 0b: disable interrupt

BIT	NAME	ACCESS	RESET	DESCRIPTION
6	P6	RW	0x0	Port A 6 interrupt enable 1b: enabled interrupt 0b: disable interrupt
5	P5	RW	0x0	Port A 5 interrupt enable 1b: enabled interrupt 0b: disable interrupt
4	P4	RW	0x0	Port A 4 interrupt enable 1b: enabled interrupt 0b: disable interrupt
3	Р3	RW	0x0	Port A 3 interrupt enable 1b: enabled interrupt 0b: disable interrupt
2	P2	RW	0x0	Port A 2 interrupt enable 1b: enabled interrupt 0b: disable interrupt
1	P1	RW	0x0	Port A 1 interrupt enable 1b: enabled interrupt 0b: disable interrupt
0	P0	RW	0x0	Port A 0 interrupt enable 1b: enabled interrupt 0b: disable interrupt

6.1.11. GPIOAINTF

Register 6-10. GPIOAINTF (GPIO Port A Interrupt Flag, 0x4007 0028)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A 7 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
6	P6	RW	0x0	Port A 6 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
5	P5	RW	0x0	Port A 5 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
4	P4	RW	0x0	Port A 4 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
3	Р3	RW	0x0	Port A 3 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
2	P2	RW	0x0	Port A 2 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
1	P1	RW	0x0	Port A 1 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
0	P0	RW	0x0	Port A 0 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending

6.1.12. GPIOAINTM

Register 6-11. GPIOAINTM (GPIO Port A Interrupt Mask, 0x4007 002C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port A 7 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
6	P6	RW	0x0	Port A 6 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
5	P5	RW	0x0	Port A 5 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
4	P4	RW	0x0	Port A 4 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
3	Р3	RW	0x0	Port A 3 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
2	P2	RW	0x0	Port A 2 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
1	P1	RW	0x0	Port A 1 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
0	P0	RW	0x0	Port A 0 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

6.2. Details of Operation

6.2.1. Block Diagram

Figure 6-1. GPIO Port A

6.2.2. Configuration

Following blocks need to be configured for correct use of the GPIO A:

- Nested Vectored Interrupt Controller (NVIC)
- Gate Driver
- Timer A, PWMA, DTGA
- Timer B, PWMB, DTGB
- Timer C, PWMC, DTGC
- Timer D, PWMD, DTGD
- · General Purpose Gate Drivers

6.2.3. GPIO A Block

The GPIO A block consists of up to 8 general purpose input output (GPIO). Each GPIO has interrupt capabilities, weak pull-up or pull-down, programmable output drive strength, High-Z output operation. Some of the GPIO can be configured as PWM output, or capture and compare input.

6.2.4. Input

The input state of GPIOA can be monitored with **GPIOAIN.Px**. The input state can be monitored regardless of the peripheral select setting **GPIOAPSEL**.

6.2.5. Output and Output Enable

When **GPIOAOUTEN.Px** is enabled, the output state is controlled by **GPIOAOUT.Px**.

When **GPIOAOUTEN.Px** is disabled, the output is in High-Z state.

PAC5223 User Guide

6.2.6. Output Drive Strength

The output drive strength can be adjusted using **GPIOADS** to meet application needs. Set **GPIOADS.Px** to enable high current drive strength, reset to enable low current drive strength.

6.2.7. Weak Pull Up and Pull Down

Independent from the output settings, weak pull up can be enabled with **GPIOAPU** and weak pull down can be enabled with **GPIOAPU**.

NOTE:

GPIOAPU.Pxor **GPIOAPD.Px** should never be enabled at the same time for a single GPIO. If switching from weak pull-up to weak pull-down is required, disable weak pull-up first before enable weak pull-down and vice versa.

6.2.8. Peripheral Select

Each GPIO is connected to up to 4 digital peripherals, selectable with **GPIOAPSEL**. When a different function than IO is selected the input state can still be read with **GPIOAIN** and the pull-up and pull-down is still controllable.

6.2.9. Interrupt

The interrupt for each GPIO can be enabled with **GPIOAINTE**. The interrupt can be configured to be rising signal edge or falling signal edge using **GPIOAINTP**. The state of the interrupt can be read from **GPIOAINTF**. The individual interrupt bits can be cleared by writing to 1.

When the GPIO interrupts are enabled for the first time after device start-up, it may be in an uncertain state and generate an interrupt. To avoid this the **GPIOAINTM** mask bit need to be set before enabled interrupt bits.

To allow interrupt to be recognized by the CPU the GPIO interrupt need also be enabled in the NVIC.

7. GPIO PORT B

7.1. Register

7.1.1. Register Map

Table 7-1. GPIO Port B Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
GPIO Port B			
0x4007 0040	GPIOBOUT	GPIO Port B output	0x0000 0000
0x4007 0044	GPIOBOUTEN	GPIO Port B output enable	0x0000 0000
0x4007 0048	GPIOBODS	GPIO Port B output drive strength	0x0000 0000
0x4007 004C	GPIOBPU	GPIO Port B output weak pull up	0x0000 0000
0x4007 0050	GPIOBPD	GPIO Port B output weak pull down	0x0000 0000
0x4007 0054	GPIOBIN	GPIO Port B input	0x0000 0000
0x4007 0058	Reserved	Reserved	0x0000 0000
0x4007 005C	GPIOBPSEL	GPIO Port B peripheral select	0x0000 0000
0x4007 0060	GPIOBINTP	GPIO Port B interrupt polarity select	0x0000 0000
0x4007 0064	GPIOBINTE	GPIO Port B interrupt enable select	0x0000 0000
0x4007 0068	GPIOBINTF	GPIO Port B interrupt flag	0x0000 0000
0x4007 006C	GPIOBINTM	GPIO Port B interrupt mask	0x0000 0000

7.1.2. GPIOBOUT

Register 7-1. GPIOBOUT (GPIO Port B Output, 0x4007 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Reserved, must be written to 0b
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Reserved, must be written to 0b

7.1.3. GPIOBOUTEN

Register 7-2. GIOBOUTEN (GPIO Port B Output Enable, 0x4007 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	P7	RW	0x0	Reserved, must be written to 0b
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Reserved, must be written to 0b

7.1.4. GPIOBDS

Register 7-3. GPIOBDS (GPIO Port B Output Drive Strength, 0x4007 0048)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Reserved, must be written to 0b
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Reserved, must be written to 0b

7.1.5. GPIOBPU

Register 7-4. GPIOBPU (GPIO Port B Weak Pull Up, 0x4007 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Reserved, must be written to 0b
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Reserved, must be written to 0b

7.1.6. GPIOBPD

Register 7-5. GPIOBPD (GPIO Port B Weak Pull Down, 0x4007 0050)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Reserved, must be written to 0b
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Reserved, must be written to 0b

7.1.7. GPIOBIN

Register 7-6. GPIOBIN (GPIO Port B Input, 0x4007 0054)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RW	0x0	Reserved
7	P7	R	0x0	Port B 7 input state 1b: input high 0b: input low
6	P6	R	0x0	Reserved
5	P5	R	0x0	Reserved
4	P4	R	0x0	Reserved
3	Р3	R	0x0	Reserved
2	P2	R	0x0	Reserved
1	P1	R	0x0	Reserved
0	P0	R	0x0	Port B 0 input state 1b: input high 0b: input low

7.1.8. GPIOBPSEL

Register 7-7. GPIOBPSEL (GPIO Port B Peripheral Select, 0x4007 005C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RW	0x0	Reserved
15:14	P7	RW	0x0	Port B 7 peripheral select 11b: reserved 10b: reserved 01b: reserved 00b: IRQ2 / POS

BIT	NAME	ACCESS	RESET	DESCRIPTION
13:12	P6	RW	0x0	Port B 6 peripheral select 11b: reserved 10b: reserved 01b: EMUXDATA 00b: reserved
11:10	P5	RW	0x0	Port B 5 peripheral select 11b: reserved 10b: reserved 01b: EMUXCLK 00b: reserved
9:8	P4	RW	0x0	Port B 4 peripheral select 11b: reserved 10b: reserved 01b: SOC Bus SCLK 00b: reserved
7:6	Р3	RW	0x0	Port B 3 peripheral select 11b: reserved 10b: reserved 01b: SOC Bus MOSI 00b: reserved
5:4	P2	RW	0x0	Port B 2 peripheral select 11b: reserved 10b: reserved 01b: SOC Bus MISO 00b: reserved
3:2	P1	RW	0x0	Port B 1 peripheral select 11b: reserved 10b: reserved 01b: SOC Bus CS 00b: reserved
1:0	P0	RW	0x0	Port B 0 peripheral select 11b: reserved 10b: reserved 01b: reserved 00b: IRQ1

7.1.9. GPIOBINTP

Register 7-8. GPGPIOIOBINTP (GPIO Port B Interrupt Polarity, 0x4007 0060)

		,			
BIT	NAME	ACCESS	RESET	DESCRIPTION	
31:8	Reserved	RW	0x0	Reserved	
7	P7	RW	0x0	Port B 7 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition	
6	P6	RW	0x0	Reserved, must be written to 0b	
5	P5	RW	0x0	Reserved, must be written to 0b	
4	P4	RW	0x0	Reserved, must be written to 0b	
3	Р3	RW	0x0	Reserved, must be written to 0b	
2	P2	RW	0x0	Reserved, must be written to 0b	
1	P1	RW	0x0	Reserved, must be written to 0b	

BIT	NAME	ACCESS	RESET	DESCRIPTION
0	P0	RW	0x0	Port B 0 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition

7.1.10. GPIOBINTE

Register 7-9. GPIOBINTE (GPIO Port B Interrupt Enable, 0x4007 0064)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RW	0x0	Reserved
7	P7	RW	0x0	Port B 7 interrupt enable 1b: enabled interrupt 0b: disable interrupt
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Port B 0 interrupt enable 1b: enabled interrupt 0b: disable interrupt

7.1.11. GPIOBINTF

Register 7-10. GPIOBINTF (GPIO Port B Interrupt Flag, 0x4007 0068)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RW	0x0	Reserved
7	P7	RW	0x0	Port B 7 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Port B 0 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending

7.1.12. GPIOBINTM

Register 7-11. GPIOBINTM (GPIO Port B Interrupt Mask, 0x4007 006C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port B 7 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
6	P6	RW	0x0	Reserved, must be written to 0b
5	P5	RW	0x0	Reserved, must be written to 0b
4	P4	RW	0x0	Reserved, must be written to 0b
3	Р3	RW	0x0	Reserved, must be written to 0b
2	P2	RW	0x0	Reserved, must be written to 0b
1	P1	RW	0x0	Reserved, must be written to 0b
0	P0	RW	0x0	Port B 0 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

7.2. Details of Operation

7.2.1. Block Diagram

Figure 7-1. GPIO Port B

7.2.2. Configuration

Following blocks need to be configured for correct use of the GPIO B:

- Nested Vectored Interrupt Controller (NVIC)
- SOC Bus

7.2.3. GPIO B Block

The GPIO B block consists of up to 8 general purpose input output (GPIO). Each GPIO has interrupt capabilities, weak pull-up or pull-down, programmable output drive strength, High-Z output operation. Some of the GPIO can be configured as PWM output, or capture and compare input.

7.2.4. Input

The input state of GPIOB can be monitored with **GPIOBIN.Px**. The input state can be monitored regardless of the peripheral select setting **GPIOBPSEL**.

7.2.5. Output and Output Enable

When **GPIOBOUTEN.Px** is enabled, the output state is controlled by **GPIOBOUT.Px**.

When **GPIOBOUTEN.Px** is disabled, the output is in High-Z state.

7.2.6. Output Drive Strength

The output drive strength can be adjusted using **GPIOBDS** to meet application needs. Set **GPIOBDS.Px** to enable high current drive strength, reset to enable low current drive strength.

PAC5223 User Guide

7.2.7. Weak Pull Up and Pull Down

Independent from the output settings, weak pull up can be enabled with **GPIOBPU** and weak pull down can be enabled with **GPIOBPD**.

NOTE:

GPIOBPU.Pxor **GPIOBPD.Px** should never be enabled at the same time for a single GPIO. If switching from weak pull-up to weak pull-down is required, disable weak pull-up first before enable weak pull-down and vice versa

7.2.8. Peripheral Select

Each GPIO is connected to up to 4 digital peripherals, selectable with **GPIOBPSEL**. When a different function than IO is selected the input state can still be read with **GPIOBIN** and the pull-up and pull-down is still controllable.

7.2.9. Interrupt

The interrupt for each GPIO can be enabled with **GPIOBINTE**. The interrupt can be configured to be rising signal edge or falling signal edge using **GPIOBINTP**. The state of the interrupt can be read from **GPIOBINTF**. The individual interrupt bits can be cleared by writing to 1.

When the GPIO interrupts are enabled for the first time after device start-up, it may be in an uncertain state and generate an interrupt. To avoid this the **GPIOBINTM** mask bit need to be set before enabled interrupt bits.

To allow interrupt to be recognized by the CPU the GPIO interrupt need also be enabled in the NVIC.

8. GPIO PORT C

8.1. Register

8.1.1. Register Map

Table 8-1. GPIO Port C Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
GPIO Port C			
0x4008 0000	GPIOCOUT	GPIO Port C output	0x0000 0000
0x4008 0004	GPIOCOUTEN	GPIO Port C output enable	0x0000 0000
0x4008 0008	Reserved	Reserved	0x0000 0000
0x4008 000C	Reserved	Reserved	0x0000 0000
0x4008 0010	Reserved	Reserved	0x0000 0000
0x4008 0014	GPIOCIN	GPIO Port C input	0x0000 0000
0x4008 0018	GPIOCINE	GPIO Port C input enable	0x0000 0000
0x4008 001C	Reserved	Reserved	0x0000 0000
0x4008 0020	GPIOCINTP	GPIO Port C interrupt polarity select	0x0000 0000
0x4008 0024	GPIOCINTE	GPIO Port C interrupt enable select	0x0000 0000
0x4008 0028	GPIOCINTF	GPIO Port C interrupt flag	0x0000 0000
0x4008 002C	GPIOCINTM	GPIO Port C interrupt mask	0x0000 0000

8.1.2. GPIOCOUT

Register 8-1. GPIOCOUT (GPIO Port C Output, 0x4008 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port C output 7 1b: set output high if GPIOCOUTEN.Px = 1b 0b: set output low if GPIOCOUTEN. Px = 1b
6	P6	RW	0x0	Port C output 6 1b: set output high if GPIOCOUTEN. Px = 1b 0b: set output low if GPIOCOUTEN. Px = 1b
5	P5	RW	0x0	Port C output 5 1b: set output high if GPIOCOUTEN. Px = 1b 0b: set output low if GPIOCOUTEN. Px = 1b
4	P4	RW	0x0	Port C output 4 1b: set output high if GPIOCOUTEN. Px = 1b 0b: set output low if GPIOCOUTEN. Px = 1b
3	Р3	RW	0x0	Port C output 3 1b: set output high if GPIOCOUTEN. Px = 1b 0b: set output low if GPIOCOUTEN. Px = 1b
2	P2	RW	0x0	Port C output 2 1b: set output high if GPIOCOUTEN. Px = 1b 0b: set output low if GPIOCOUTEN. Px = 1b

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port C output 1 1b: set output high if GPIOCOUTEN . Px = 1b 0b: set output low if GPIOCOUTEN . Px = 1b
0	P0	RW	0x0	Port C output 0 1b: set output high if GPIOCOUTEN . Px = 1b 0b: set output low if GPIOCOUTEN . Px = 1b

8.1.3. GPIOCOUTEN

Register 8-2. GPIOCOUTEN (GPIO Port C Output Enable, 0x4008 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0	Reserved
7	P7	RW	0x0	Port C output 7 enable 1b: output state set by GPIOCO.PCO7 0b: output disabled, high-impedance state
6	P6	RW	0x0	Port C output 6 enable 1b: output state set by GPIOCO.PCO6 0b: output disabled, high-impedance state
5	P5	RW	0x0	Port C output 5 enable 1b: output state set by GPIOCO.PCO5 0b: output disabled, high-impedance state
4	P4	RW	0x0	Port C output 4 enable 1b: output state set by GPIOCO.PCO4 0b: output disabled, high-impedance state
3	Р3	RW	0x0	Port C output 3 enable 1b: output state set by GPIOCO.PCO3 0b: output disabled, high-impedance state
2	P2	RW	0x0	Port C output 2 enable 1b: output state set by GPIOCO.PCO2 0b: output disabled, high-impedance state
1	P1	RW	0x0	Port C output 1 enable 1b: output state set by GPIOCO.PCO1 0b: output disabled, high-impedance state
0	P0	RW	0x0	Port C output 0 enable 1b: output state set by GPIOCO.PCO0 0b: output disabled, high-impedance state

8.1.4. **GPIOCIN**

Register 8-3. GPIOCIN (GPIO Port C Input, 0x4008 0018)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port C 7 input state 1b: input high 0b: input low
6	P6	RW	0x0	Port C 6 input state 1b: input high 0b: input low

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port C 5 input state 1b: input high 0b: input low
4	P4	RW	0x0	Port C 4 input state 1b: input high 0b: input low
3	Р3	RW	0x0	Port C 3 input state 1b: input high 0b: input low
2	P2	RW	0x0	Port C 2 input state 1b: input high 0b: input low
1	P1	RW	0x0	Port C 1 input state 1b: input high 0b: input low
0	P0	RW	0x0	Port C 0 input state 1b: input high 0b: input low

8.1.5. GPIOCINE

Register 8-4. GPIOCINE (GPIO Port C Input Enable, 0x4008 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port C 7 input enable 1b: input enabled, for I/O operation 0b: input disabled
6	P6	RW	0x0	Port C 6 input enable 1b: input enabled, for I/O operation 0b: input disabled
5	P5	RW	0x0	Port C 5 input enable 1b: input enabled, for I/O operation 0b: input disabled, for AD5 ADC input operation
4	P4	RW	0x0	Port C 4 input enable 1b: input enabled, for I/O operation 0b: input disabled, for AD4 ADC input operation
3	Р3	RW	0x0	Port C 3 input enable 1b: input enabled, for I/O operation 0b: input disabled, for AD3 ADC input operation
2	P2	RW	0x0	Port C 2 input enable 1b: input enabled, for I/O operation 0b: input disabled, for AD2 ADC input operation
1	P1	RW	0x0	Port C 1 input enable 1b: input enabled, for I/O operation 0b: input disabled, for AD1 ADC input operation
0	P0	RW	0x0	Port C 0 input enable 1b: input enabled, for I/O operation 0b: input disabled, for AD0 ADC input operation

8.1.6. GPIOCINTP

Register 8-5. GPIOCINTP (GPIO Port C Interrupt Polarity, 0x4008 0020)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port C 7 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
6	P6	RW	0x0	Port C 6 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
5	P5	RW	0x0	Port C 5 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
4	P4	RW	0x0	Port C 4 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
3	Р3	RW	0x0	Port C 3 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
2	P2	RW	0x0	Port C 2 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
1	P1	RW	0x0	Port C 1 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
0	P0	RW	0x0	Port C 0 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition

8.1.7. GPIOCINTE

Register 8-6. GPIOCINTE (GPIO Port C Interrupt Enable, 0x4008 0024)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port C 7 interrupt enable 1b: enabled interrupt 0b: disable interrupt
6	P6	RW	0x0	Port C 6 interrupt enable 1b: enabled interrupt 0b: disable interrupt
5	P5	RW	0x0	Port C 5 interrupt enable 1b: enabled interrupt 0b: disable interrupt
4	P4	RW	0x0	Port C 4 interrupt enable 1b: enabled interrupt 0b: disable interrupt
3	Р3	RW	0x0	Port C 3 interrupt enable 1b: enabled interrupt 0b: disable interrupt
2	P2	RW	0x0	Port C 2 interrupt enable 1b: enabled interrupt 0b: disable interrupt

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port C 1 interrupt enable 1b: enabled interrupt 0b: disable interrupt
0	P0	RW	0x0	Port C 0 interrupt enable 1b: enabled interrupt 0b: disable interrupt

8.1.8. GPIOCINTF

Register 8-7. GPIOCINTF (GPIO Port C Interrupt, 0x4008 0028)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port C 7 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
6	P6	RW	0x0	Port C 6 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
5	P5	RW	0x0	Port C 5 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
4	P4	RW	0x0	Port C 4 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
3	P3	RW	0x0	Port C 3 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
2	P2	RW	0x0	Port C 2 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
1	P1	RW	0x0	Port C 1 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
0	P0	RW	0x0	Port C 0 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending

8.1.9. GPIOCINTM

Register 8-8. GPIOCINTM (GPIO Port C Interrupt Mask, 0x4008 002C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P 7	RW	0x0	Port C 7 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
6	P6	RW	0x0	Port C 6 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port C 5 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
4	P4	RW	0x0	Port C 4 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
3	Р3	RW	0x0	Port C 3 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
2	P2	RW	0x0	Port C 2 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
1	P1	RW	0x0	Port C 1 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
0	P0	RW	0x0	Port C 0 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

8.2. Details of Operation

8.2.1. Block Diagram

Figure 8-1. GPIO Port C

8.2.2. Configuration

Following blocks need to be configured for correct use of the GPIO C:

- Nested Vectored Interrupt Controller (NVIC)
- ADC

8.2.3. GPIO C Block

The GPIOC block consists of up to 8 general purpose input output (GPIO). Each GPIO has interrupt capabilities, High-Z output operation, analog ADx input to the ADC Mux. The GPIOC block IO voltage is different from the other GPIO blocks, it is supplied from VCC33.

8.2.4. Analog Input

The digital input state of GPIOC can be monitored with GPIOCIN.Px if GPIOCINE.Px is set.

Clear **GPIOCINE.Px** and **GPIOCOUTEN.Px** to disable digital input and output to allow use of analog input ADx to the ADC.

8.2.5. Output and Output Enable

When GPIOCOUTEN.Px is enabled, the output state is controlled by GPIOCOUT.Px.

When **GPIOCOUTEN**. **Px** is disabled, the output is in High-Z state.

8.2.6. Interrupt

The interrupt for each GPIO can be enabled with **GPIOCINTE**. The interrupt can be configured to be rising signal edge or falling signal edge using **GPIOCINTP**. The state of the interrupt can be read from **GPIOCINTF**. The individual interrupt bits can be cleared by writing to 1.

When the GPIO interrupts are enabled for the first time after device start-up, it may be in an uncertain state and generate an interrupt. To avoid this the **GPIOCINTM** mask bit need to be set before enabled interrupt bits.

To allow interrupt to be recognized by the CPU the GPIO interrupt need also be enabled in the NVIC.

9. GPIO PORT D

9.1. Register

9.1.1. Register Map

Table 9-1. GPIO Port D Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
GPIO Port D			
0x4008 0040	GPIODOUT	GPIO Port D output	0x0000 0000
0x4008 0044	GPIODOUTEN	GPIO Port D output enable	0x0000 0000
0x4008 0048	GPIODODS	GPIO Port D output drive strength	0x0000 0000
0x4008 004C	GPIODPU	GPIO Port D output weak pull up	0x0000 0000
0x4008 0050	GPIODPD	GPIO Port D output weak pull down	0x0000 0000
0x4008 0054	GPIODIN	GPIO Port D input	0x0000 0000
0x4008 0058	Reserved	Reserved	0x0000 0000
0x4008 005C	GPIODPSEL	GPIO Port D peripheral select	0x0000 0005
0x4008 0060	GPIODINTP	GPIO Port D interrupt polarity select	0x0000 0000
0x4008 0064	GPIODINTE	GPIO Port D interrupt enable select	0x0000 0000
0x4008 0068	GPIODINTF	GPIO Port D interrupt flag	0x0000 0000
0x4008 006C	GPIODINTM	GPIO Port D interrupt mask	0x0000 0000

9.1.2. **GPIODO**

Register 9-1. GPIODO (GPIO Port D Output, 0x4008 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D output 7 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b
6	P6	RW	0x0	Port D output 6 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b
5	P5	RW	0x0	Port D output 5 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b
4	P4	RW	0x0	Port D output 4 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b
3	Р3	RW	0x0	Port D output 3 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b
2	P2	RW	0x0	Port D output 2 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port D output 1 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b
0	P0	RW	0x0	Port D output 0 1b: set output high if GPIODOUTEN.Px = 1b 0b: set output low if GPIODOUTEN.Px = 1b

9.1.3. GPIODOUTEN

Register 9-2. GPIODOUTEN (GPIO Port D Output Enable, 0x4008 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P 7	RW	0x0	Port D output 7 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
6	P6	RW	0x0	Port D output 6 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
5	P5	RW	0x0	Port D output 5 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
4	P4	RW	0x0	Port D output 4 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
3	Р3	RW	0x0	Port D output 3 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
2	P2	RW	0x0	Port D output 2 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
1	P1	RW	0x0	Port D output 1 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state
0	P0	RW	0x0	Port D output 0 enable 1b: output state set by GPIODOUT.Px 0b: output disabled, high-impedance state

9.1.4. **GPIODDS**

Register 9-3. GPIODDS (GPIO Port D Output Drive Strength, 0x4008 0048)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D output 7 drive strength select 1b: high 0b: low
6	P6	RW	0x0	Port D output 6 drive strength select 1b: high 0b: low

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port D output 5 drive strength select 1b: high 0b: low
4	P4	RW	0x0	Port D output 4 drive strength select 1b: high 0b: low
3	Р3	RW	0x0	Port D output 3 drive strength select 1b: high 0b: low
2	P2	RW	0x0	Port D output 2 drive strength select 1b: high 0b: low
1	P1	RW	0x0	Port D output 1 drive strength select 1b: high 0b: low
0	P0	RW	0x0	Port D output 0 drive strength select 1b: high 0b: low

9.1.5. **GPIODPU**

Register 9-4. GPIODPU (GPIO Port D Weak Pull Up, 0x4008 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D 7 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
6	P6	RW	0x0	Port D 6 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
5	P5	RW	0x0	Port D 5 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
4	P4	RW	0x0	Port D 4 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
3	Р3	RW	0x0	Port D 3 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
2	P2	RW	0x0	Port D 2 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
1	P1	RW	0x0	Port D 1 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
0	P0	RW	0x0	Port D 0 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO

9.1.6. **GPIODPD**

Register 9-5. GPIODPD (GPIO Port D Weak Pull Down, 0x4008 0050)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D 7 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
6	P6	RW	0x0	Port D 6 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
5	P5	RW	0x0	Port D 5 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
4	P4	RW	0x0	Port D 4 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
3	Р3	RW	0x0	Port D 3 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
2	P2	RW	0x0	Port D 2 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
1	P1	RW	0x0	Port D 1 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
0	P0	RW	0x0	Port D 0 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS

9.1.7. **GPIODIN**

Register 9-6. GPIODIN (GPIO Port D Input, 0x4008 0054)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RW	0x0	Reserved
7	P 7	RW	0x0	Port D 7 input state 1b: input high 0b: input low
6	P6	RW	0x0	Port D 6 input state 1b: input high 0b: input low
5	P5	RW	0x0	Port D 5 input state 1b: input high 0b: input low
4	P4	RW	0x0	Port D 4 input state 1b: input high 0b: input low
3	Р3	RW	0x0	Port D 3 input state 1b: input high 0b: input low
2	P2	RW	0x0	Port D 2 input state 1b: input high 0b: input low

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port D 1 input state 1b: input high 0b: input low
0	P0	RW	0x0	Port D 0 input state 1b: input high 0b: input low

9.1.8. GPIODPSEL

Register 9-7. GPIODPSEL (GPIO Port D Peripheral Select, 0x4008 005C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:14	P7	RW	0x0	Port D 7 peripheral select 11b: reserved 10b: PWMD0 / DTGD0LS output or CD0 capture and compare input 01b: PWMA6 / DTGA2HS output or CA6 capture and compare input 00b: I/O mode PD7
13:12	P6	RW	0x0	Port D 6 peripheral select 11b: reserved 10b: PWMB1 / DTGB0HS output or CB1 capture and compare input 01b: PWMA7 / DTGA3HS output or CA7 capture and compare input 00b: I/O mode PD6
11:10	P5	RW	0x0	Port D 5 peripheral select 11b: reserved 10b: PWMC1 / DTGC0HS output or CC1 capture and compare input 01b: PWMA5 / DTGA1HS output or CA5 capture and compare input 00b: I/O mode PD5
9:8	P4	RW	0x0	Port D 4 peripheral select 11b: reserved 10b: reserved 01b: PWMD1 / DTGD0HS output or CD1 capture and compare input 00b: I/O mode PD4
7:6	Р3	RW	0x0	Port D 3 peripheral select 11b: PWMB1 / DTGB0HS output or CB1 capture and compare input 10b: PWMA7 / DTGA3HS output or CA7 capture and compare input 01b: PWMA5 / DTGA1HS output or CA5 capture and compare input 00b: I/O mode PD3
5:4	P2	RW	0x0	Port D 2 peripheral select 11b: PWMB0 / DTGB0LS output or CB0 capture and compare input 10b: PWMA4 / DTGA0HS output or CA4 capture and compare input 01b: PWMA3 / DTGA3LS output or CA3 capture and compare input 00b: I/O mode PD2
3:2	P1	RW	0x1	Port D 1 peripheral select 11b: reserved 10b: EXTCLK input 01b: Serial wire debug SWDCLK 00b: I/O mode PD1
1:0	P0	RW	0x1	Port D 0 peripheral select 11b: reserved 10b: reserved 01b: Serial wire debug SWDDATA 00b: I/O mode PD0

9.1.9. GPIODINTP

Register 9-8. GPIODINTP (GPIO Port D Interrupt Polarity, 0x4008 0060)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D 7 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
6	P6	RW	0x0	Port D 6 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
5	P5	RW	0x0	Port D 5 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
4	P4	RW	0x0	Port D 4 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
3	Р3	RW	0x0	Port D 3 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
2	P2	RW	0x0	Port D 2 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
1	P1	RW	0x0	Port D 1 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
0	P0	RW	0x0	Port D 0 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition

9.1.10. GPIODINTE

Register 9-9. GPIODINTE (GPIO Port D Interrupt Enable, 0x4008 0064)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D 7 interrupt enable 1b: enabled interrupt 0b: disable interrupt
6	P6	RW	0x0	Port D 6 interrupt enable 1b: enabled interrupt 0b: disable interrupt
5	P5	RW	0x0	Port D 5 interrupt enable 1b: enabled interrupt 0b: disable interrupt
4	P4	RW	0x0	Port D 4 interrupt enable 1b: enabled interrupt 0b: disable interrupt
3	Р3	RW	0x0	Port D 3 interrupt enable 1b: enabled interrupt 0b: disable interrupt
2	P2	RW	0x0	Port D 2 interrupt enable 1b: enabled interrupt 0b: disable interrupt

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port D 1 interrupt enable 1b: enabled interrupt 0b: disable interrupt
0	P0	RW	0x0	Port D 0 interrupt enable 1b: enabled interrupt 0b: disable interrupt

9.1.11. GPIODINTF

Register 9-10. GPIODINTF (GPIO Port D Interrupt, 0x4008 0068)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D 7 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
6	P6	RW	0x0	Port D 6 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
5	P5	RW	0x0	Port D 5 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
4	P4	RW	0x0	Port D 4 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
3	Р3	RW	0x0	Port D 3 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
2	P2	RW	0x0	Port D 2 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
1	P1	RW	0x0	Port D 1 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
0	P0	RW	0x0	Port D 0 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending

9.1.12. **GPIODINTM**

Register 9-11. GPIODINTM (GPIO Port D Interrupt Mask, 0x4008 006C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port D 7 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
6	P6	RW	0x0	Port D 6 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port D 5 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
4	P4	RW	0x0	Port D 4 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
3	Р3	RW	0x0	Port D 3 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
2	P2	RW	0x0	Port D 2 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
1	P1	RW	0x0	Port D 1 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
0	P0	RW	0x0	Port D 0 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

9.2. Details of Operation

9.2.1. Block Diagram

Figure 9-1. GPIO Port D

9.2.2. Configuration

Following blocks need to be configured for correct use of the GPIO D:

- Nested Vectored Interrupt Controller (NVIC)
- Gate Driver
- Timer A, PWMA, DTGA
- Timer B, PWMB, DTGB
- Timer C, PWMC, DTGC
- Timer D, PWMD, DTGD
- CCS
- SWD Debugger

9.2.3. GPIO D Block

The GPIO D block consists of up to 8 general purpose input output (GPIO). Each GPIO has interrupt capabilities, weak pull-up or pull-down, programmable output drive strength, High-Z output operation. Some of the GPIO can be configured as PWM output, or capture and compare input.

9.2.4. Input

The input state of GPIOD can be monitored with **GPIODIN.Px**. The input state can be monitored regardless of the peripheral select setting **GPIODPSEL**.

9.2.5. Output and Output Enable

When **GPIODOUTEN.Px** is enabled, the output state is controlled by **GPIODOUT.Px**.

When **GPIODOE.PDxOE** is disabled, the output is in High-Z state.

9.2.6. Output Drive Strength

The output drive strength can be adjusted using **GPIODDS** to meet application needs. Set **GPIODDS.Px** to enable high current drive strength, reset to enable low current drive strength.

9.2.7. Weak Pull Up and Pull Down

Independent from the output settings, weak pull up can be enabled with **GPIODPU** and weak pull down can be enabled with **GPIODPD**.

NOTE:

GPIODPU.Px or **GPIODPD.Px** should never be enabled at the same time for a single GPIO. If switching from weak pull-up to weak pull-down is required, disable weak pull-up first before enable weak pull-down and vice versa.

9.2.8. Peripheral Select

Each GPIO is connected to up to 4 digital peripherals, selectable with **GPIODPSEL**. When a different function than IO is selected the input state can still be read with **GPIODIN** and the pull-up and pull-down is still controllable.

9.2.9. Interrupt

The interrupt for each GPIO can be enabled with **GPIODINTE**. The interrupt can be configured to be rising signal edge or falling signal edge using **GPIODINTP**. The state of the interrupt can be read from **GPIODINTF**. The individual interrupt bits can be cleared by writing to 1.

When the GPIO interrupts are enabled for the first time after device start-up, it may be in an uncertain state and generate an interrupt. To avoid this the **GPIODINTM** mask bit need to be set before enabled interrupt bits.

To allow interrupt to be recognized by the CPU the GPIO interrupt need also be enabled in the NVIC.

10. GPIO PORT E

10.1. Register

10.1.1. Register Map

Table 10-1. GPIO Port E Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE					
GPIO Port E								
0x4009 0000	GPIOEOUT	GPIO Port E output	0x0000 0000					
0x4009 0004	GPIOEOUTEN	GPIO Port E output enable	0x0000 0000					
0x4009 0008	GPIOEODS	GPIO Port E output drive strength	0x0000 0000					
0x4009 000C	GPIOEPU	GPIO Port E output weak pull up	0x0000 0000					
0x4009 0010	GPIOEPD	GPIO Port E output weak pull down	0x0000 0000					
0x4009 0014	GPIOEIN	GPIO Port E input	0x0000 0000					
0x4009 0018	Reserved	Reserved	0x0000 0000					
0x4009 001C	GPIOEPSEL	GPIO Port E peripheral select	0x0000 0000					
0x4009 0020	GPIOEINTP	GPIO Port E interrupt polarity select	0x0000 0000					
0x4009 0024	GPIOEINTE	GPIO Port E interrupt enable select	0x0000 0000					
0x4009 0028	GPIOEINTF	GPIO Port E interrupt flag	0x0000 0000					
0x4009 002C	GPIOEINTM	GPIO Port E interrupt mask	0x0000 0000					

10.1.2. GPIOEOUT

Register 10-1. GPIOEOUT (GPIO Port E Output, 0x4009 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E output 7 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b
6	P6	RW	0x0	Port E output 6 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b
5	P5	RW	0x0	Port E output 5 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b
4	P4	RW	0x0	Port E output 4 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b
3	Р3	RW	0x0	Port E output 3 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b
2	P2	RW	0x0	Port E output 2 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port E output 1 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b
0	P0	RW	0x0	Port E output 0 1b: set output high if GPIOEOUTEN.Px = 1b 0b: set output low if GPIOEOUTEN.Px = 1b

10.1.3. GPIOEOUTEN

Register 10-2. GPIOEOUTEN (GPIO Port E Output Enable, 0x4009 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0	Reserved
7	P7	RW	0x0	Port E output 7 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
6	P6	RW	0x0	Port E output 6 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
5	P5	RW	0x0	Port E output 5 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
4	P4	RW	0x0	Port E output 4 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
3	Р3	RW	0x0	Port E output 3 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
2	P2	RW	0x0	Port E output 2 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
1	P1	RW	0x0	Port E output 1 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state
0	P0	RW	0x0	Port E output 0 enable 1b: output state set by GPIOEOUT.Px 0b: output disabled, high-impedance state

10.1.4. GPIOEDS

Register 10-3. GPIOEDS (GPIO Port E Output Drive Strength, 0x4009 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E output 7 drive strength select 1b: high 0b: low
6	P6	RW	0x0	Port E output 6 drive strength select 1b: high 0b: low

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port E output 5 drive strength select 1b: high 0b: low
4	P4	RW	0x0	Port E output 4 drive strength select 1b: high 0b: low
3	Р3	RW	0x0	Port E output 3 drive strength select 1b: high 0b: low
2	P2	RW	0x0	Port E output 2 drive strength select 1b: high 0b: low
1	P1	RW	0x0	Port E output 1 drive strength select 1b: high 0b: low
0	P0	RW	0x0	Port E output 0 drive strength select 1b: high 0b: low

10.1.5. GPIOEPU

Register 10-4. GPIOEPU (GPIO Port E Weak Pull Up, 0x4009 000C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
6	P6	RW	0x0	Port E 6 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
5	P5	RW	0x0	Port E 5 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
4	P4	RW	0x0	Port E 4 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
3	Р3	RW	0x0	Port E 3 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
2	P2	RW	0x0	Port E 2 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
1	P1	RW	0x0	Port E 1 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO
0	P0	RW	0x0	Port E 0 weak pull up select 1b: enable weak pull-up to VCCIO 0b: disable weak pull-up to VCCIO

10.1.6. GPIOEPD

Register 10-5. GPIOEPD (GPIO Port E Weak Pull Down, 0x4009 0010)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
6	P6	RW	0x0	Port E 6 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
5	P5	RW	0x0	Port E 5 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
4	P4	RW	0x0	Port E 4 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
3	Р3	RW	0x0	Port E 3 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
2	P2	RW	0x0	Port E 2 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
1	P1	RW	0x0	Port E 1 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS
0	P0	RW	0x0	Port E 0 weak pull down select 1b: enable weak pull-down to VSS 0b: disable weak pull-down to VSS

10.1.7. **GPIOEIN**

Register 10-6. GPIOEIN (GPIO Port E Input, 0x4009 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 input state 1b: input high 0b: input low
6	P6	RW	0x0	Port E 6 input state 1b: input high 0b: input low
5	P5	RW	0x0	Port E 5 input state 1b: input high 0b: input low
4	P4	RW	0x0	Port E 4 input state 1b: input high 0b: input low
3	Р3	RW	0x0	Port E 3 input state 1b: input high 0b: input low
2	P2	RW	0x0	Port E 2 input state 1b: input high 0b: input low

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port E 1 input state 1b: input high 0b: input low
0	P0	RW	0x0	Port E 0 input state 1b: input high 0b: input low

10.1.8. GPIOEPSEL

Register 10-7. GPIOEPSEL (GPIO Port E Peripheral Select, 0x4009 001C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:14	P7	RW	0x0	Port E 7 peripheral select 11b: reserved 10b: reserved 01b: reserved 00b: I/O mode PE7
13:12	Р6	RW	0x0	Port E 6 peripheral select 11b: reserved 10b: reserved 01b: reserved 00b: I/O mode PE6
11:10	P5	RW	0x0	Port E 5 peripheral select 11b: reserved 10b: I2C clock I2CSDA 01b: SPI chip select 2 SPICS2 00b: I/O mode PE5
9:8	P4	RW	0x0	Port E 4 peripheral select 11b: reserved 10b: I2C clock I2CSCL 01b: SPI chip select 1 SPICS1 00b: I/O mode PE4
7:6	Р3	RW	0x0	Port E 3 peripheral select 11b: reserved 10b: Device Reset input nRESET1 01b: SPI chip select 0 SPICS0 00b: I/O mode PE3
5:4	P2	RW	0x0	Port E 2 peripheral select 11b: reserved 10b: UART Receive UARTRX 01b: SPI Master in Slave out SPIMISO 00b: I/O mode PE2
3:2	P1	RW	0x0	Port E 1 peripheral select 11b: reserved 10b: UART Transmit UARTTX 01b: SPI Master out Slave in SPIMOSI 00b: I/O mode PE1
1:0	P0	RW	0x0	Port E 0 peripheral select 11b: reserved 10b: reserved 01b: SPI Clock SPICLK 00b: I/O mode PE0

10.1.9. GPIOEINTP

Register 10-8. GPIOEINTP (GPIO Port E Interrupt Polarity, 0x4009 0020)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
6	P6	RW	0x0	Port E 6 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
5	P5	RW	0x0	Port E 5 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
4	P4	RW	0x0	Port E 4 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
3	Р3	RW	0x0	Port E 3 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
2	P2	RW	0x0	Port E 2 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
1	P1	RW	0x0	Port E 1 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition
0	P0	RW	0x0	Port E 0 interrupt polarity select 1b: Rising edge, low to high transition 0b: Falling edge, high to low transition

10.1.10. GPIOEINTE

Register 10-9. GPIOEINTE (GPIO Port E Interrupt Enable, 0x4009 0024)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 interrupt enable 1b: enabled interrupt 0b: disable interrupt
6	P6	RW	0x0	Port E 6 interrupt enable 1b: enabled interrupt 0b: disable interrupt
5	P5	RW	0x0	Port E 5 interrupt enable 1b: enabled interrupt 0b: disable interrupt
4	P4	RW	0x0	Port E 4 interrupt enable 1b: enabled interrupt 0b: disable interrupt
3	Р3	RW	0x0	Port E 3 interrupt enable 1b: enabled interrupt 0b: disable interrupt
2	P2	RW	0x0	Port E 2 interrupt enable 1b: enabled interrupt 0b: disable interrupt

BIT	NAME	ACCESS	RESET	DESCRIPTION
1	P1	RW	0x0	Port E 1 interrupt enable 1b: enabled interrupt 0b: disable interrupt
0	P0	RW	0x0	Port E 0 interrupt enable 1b: enabled interrupt 0b: disable interrupt

10.1.11. GPIOEINTF

Register 10-10. GPIOEINTF (GPIO Port E Interrupt Flag, 0x4009 0028)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
6	P6	RW	0x0	Port E 6 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
5	P5	RW	0x0	Port E 5 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
4	P4	RW	0x0	Port E 4 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
3	Р3	RW	0x0	Port E 3 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
2	P2	RW	0x0	Port E 2 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
1	P1	RW	0x0	Port E 1 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending
0	P0	RW	0x0	Port E 0 interrupt 1b: interrupt pending, clear with write to 1b 0b: no interrupt pending

10.1.12. **GPIOEINTM**

Register 10-11. GPIOEINTM (GPIO Port E Interrupt Mask, 0x4009 002C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	P7	RW	0x0	Port E 7 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
6	P6	RW	0x0	Port E 6 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	P5	RW	0x0	Port E 5 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
4	P4	RW	0x0	Port E 4 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
3	Р3	RW	0x0	Port E 3 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
2	P2	RW	0x0	Port E 2 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
1	P1	RW	0x0	Port E 1 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask
0	P0	RW	0x0	Port E 0 interrupt mask 1b: enable interrupt mask 0b: disable interrupt mask

10.2. Details of Operation

10.2.1. Block Diagram

Figure 10-1. GPIO Port E

10.2.2. Configuration

Following blocks need to be configured for correct use of the GPIO E:

- Nested Vectored Interrupt Controller (NVIC)
- SPI
- I2C
- UART

10.2.3. GPIO E Block

The GPIO E block consists of up to 8 general purpose input output (GPIO). Each GPIO has interrupt capabilities, weak pull-up or pull-down, programmable output drive strength, High-Z output operation.

10.2.4. Input

The input state of GPIOE can be monitored with **GPIOEIN.Px**. The input state can be monitored regardless of the peripheral select setting **GPIOEPSEL**.

10.2.5. Output and Output Enable

When GPIOEOUTEN.Pxis enabled, the output state is controlled by GPIOEOUT.Px.

When **GPIOEOUTEN.Px** is disabled, the output is in High-Z state.

10.2.6. Output Drive Strength

The output drive strength can be adjusted using **GPIOEDS** to meet application needs. Set **GPIOEDS.Px** to enable high current drive strength, reset to enable low current drive strength.

PAC5223 User Guide

10.2.7. Weak Pull Up and Pull Down

Independent from the output settings, weak pull up can be enabled with **GPIOEPU** and weak pull down can be enabled with **GPIOPD**.

NOTE:

GPIOEPU.Pxor **GPIOEPD.Px** should never be enabled at the same time for a single GPIO. If switching from weak pull-up to weak pull-down is required, disable weak pull-up first before enable weak pull-down and vice versa.

10.2.8. Peripheral Select

Each GPIO is connected to up to 4 digital peripherals, selectable with **GPIOEPSEL**. When a different function than IO is selected the input state can still be read with **GPIOEIN** and the pull-up and pull-down is still controllable.

10.2.9. Interrupt

The interrupt for each GPIO can be enabled with **GPIOEINTE**. The interrupt can be configured to be rising signal edge or falling signal edge using **GPIOEINTP**. The state of the interrupt can be read from **GPIOEINTF**. The individual interrupt bits can be cleared by writing to 1.

When the GPIO interrupts are enabled for the first time after device start-up, it may be in an uncertain state and generate an interrupt. To avoid this the **GPIOEINTM** mask bit need to be set before enabled interrupt bits.

To allow interrupt to be recognized by the CPU the GPIO interrupt need also be enabled in the NVIC.

11. GENERAL PURPOSE TIMER

11.1. Register

11.1.1. Register Map

Table 11-1. General Purpose Timer Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
Real Time Clock			
0x4004 0000	RTCCTL	Real-time clock timer control	0x6300 0000
0x4004 0004	RTCCDV	Real-time clock timer count-down value	0x63FF FFFF
0x4004 0008	RTCCTR	Real-time clock timer counter	0x00FF FFFF

11.1.2. RTCCTL

Register 11-1. RTCCTL (Real Time Clock Control, 0x4004 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	KEY	RW	0x63	Key for writing GPTCTL register 0x4A: allow writes to GPTCTL register 0x63: read value of GPTCTL.KEY
23:12	Reserved	R	0x0	Reserved
11	WRBUSY	RW	0x0	GPTCTL write busy 1b = write to GPTCTL still being processed. Any register writes received while this bit is set to a 1b will be dropped and not written to the given register. Any reads will return indeterminate data. 0b = GPT registers not busy
10	Reserved	RW	0x0	Reserved, write as 0
9:6	GPTCLKDIV	RW	0x0	GPT clock input divider 1111b: /65536 1110b: /32768 1101b: /16384 1100b: /8192 1011b: /4096 1010b: /2048 1001b: /1024 1000b: /512 0111b: /256 0110b: /128 0101b: /64 0100b: /32 0011b: /16 0010b: /8 0001b: /4
5	Reserved	R	0x0	Reserved
4	GPTINT	RW	0x0	Real time clock interrupt 1b = GPT interrupt 0b = no GPT interrupt
3	GPTINTEN	RW	0x0	Real time clock interrupt enable 1b = enable GPT interrupt 0b = disable GPT interrupt

BIT	NAME	ACCESS	RESET	DESCRIPTION
2:0	GPTCTRRST	RW	0x0	GPTCTR counter reset 101b = write of 101b reset GPTCTR to GPTCDV value

11.1.3. RTCCDV

Register 11-2. RTCCDV (Real Time Clock Count-Down Value, 0x4004 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	KEY	RW	0x63	Key for writing GPTCTL register 0x4A: allow writes to GPTCTL register 0x63: read value of GPTCTL.KEY
23:0	RSTVALUE	RW	0xFF FFFF	24bit GPT count-down value

11.1.4. RTCCTR

Register 11-3. RTCCTR (Real Time Clock Counter, 0x4004 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	Reserved	R	0x0	Reserved
23:0	CTR	RW	0xFF FFFF	Current value of GPT

11.2. Details of Operation

11.2.1. Block Diagram

Figure 11-1. GPT

11.2.2. Configuration

Following blocks need to be configured for correct use of the GPT:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)

11.2.3. General Purpose Timer

The General purpose timer consist of a 24-bit timer, can can also run in device sleep mode if FRLCK is used.

11.2.4. Access GPT Registers

The RTCCTL and RTCCDV registers can only be written to if RTCCTL.KEY or RTCCDV.KEY are set to 0x4A.

The read back value of RTCCTL.KEY or RTCCDV.KEY is always 0x63. The general purpose timer is supplied by the FRCLK. The GPT may divide this input clock by using the RTCCTL.GPTCLKDIV. Writing to any GPT registers may take up to 1 clock cycle on the GPT clock domain to finish. Any ongoing writes to GPT registers are shown with RTCCTL.WRBUSY. As long as RTCCTL.WRBUSY is 1b, any subsequent writes to GPT registers are ignored and reads only provide undetermined data.

11.2.5. GPT Clock

The GPT uses FRCLK as its input clock. For applications where the GPT need to run in CPU sleep mode, FRCLK should be used. The clock input can be further divided down from /2 to /65536 using **RTCCTL.GPTCLKDIV**.

11.2.6. General Purpose Timer Mode

Set RTCCTL.GPTRESETEN to 0b to use the GPT as general purpose 24-bit timer. Set the desired count value in GPT clocks in RTCCDV.RSTVALUE, set RTCCTL.GPTCTRRST to 101b to load RTCCTR.CTR with RTCCDV.RSTVALUE. To start the GPT timer set RTCCTL.INTEN. When RTCCTR.CTR reaches 0x0, the timer automatic reloads RTCCTR.CTR with RTCCDV.RSTVALUE and continues countdown. The GPT is stopped when RTCCTL.INTEN is cleared.

12. TIMER A

12.1. Register

12.1.1. Register Map

Table 12-1. Timer A Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
Timer A			
0x400D 0000	TACTL	Timer A control	0x0000 0000
0x400D 0004	TAPRD	Timer A period	0x0000 0000
0x400D 0008	TACTR	Timer A counter	0x0000 0000
Timer A PWMA Ca	pture and Compare		-
0x400D 0040	TACCTRL0	Timer A capture and compare 0 control	0x0000 0000
0x400D 0044	TACTR0	Timer A counter 0	0x0000 0000
0x400D 0048	TACCTRL1	Timer A capture and compare 1 control	0x0000 0000
0x400D 004C	TACTR1	Timer A counter 1	0x0000 0000
0x400D 0050	TACCTRL2	Timer A capture and compare 2 control	0x0000 0000
0x400D 0054	TACTR2	Timer A counter 2	0x0000 0000
0x400D 0058	TACCTRL3	Timer A capture and compare 3 control	0x0000 0000
0x400D 005C	TACTR3	Timer A counter 3	0x0000 0000
0x400D 0060	TACCTRL4	Timer A capture and compare 4 control	0x0000 0000
0x400D 0064	TACTR4	Timer A counter 4	0x0000 0000
0x400D 0068	TACCTRL5	Timer A capture and compare 5 control	0x0000 0000
0x400D 006C	TACTR5	Timer A counter 5	0x0000 0000
0x400D 0070	TACCTRL6	Timer A capture and compare 6 control	0x0000 0000
0x400D 0074	TACTR6	Timer A counter 6	0x0000 0000
0x400D 0078	TACCTRL7	Timer A capture and compare 7 control	0x0000 0000
0x400D 007C	TACTR7	Timer A counter 7	0x0000 0000
Timer A Dead Time	Generator		
0x400D 00A0	DTGA0CTL	Timer A dead time generator 0 control	0x0000 0080
0x400D 00A4	DTGA0LED	Timer A dead time generator 0 leading edge delay	0x0000 0000
0x400D 00A8	DTGA0TED	Timer A dead time generator 0 trailing edge delay	0x0000 0000
0x400D 00B0	DTGA1CTL	Timer A dead time generator 1 control	0x0000 0080
0x400D 00B4	DTGA1LED	Timer A dead time generator 1 leading edge delay	0x0000 0000
0x400D 00B8	DTGA1TED	Timer A dead time generator 1 trailing edge delay	0x0000 0000
0x400D 00C0	DTGA2CTL	Timer A dead time generator 2 control	0x0000 0080
0x400D 00C4	DTGA2LED	Timer A dead time generator 2 leading edge delay	0x0000 0000
0x400D 00C8	DTGA2TED	Timer A dead time generator 2 trailing edge delay	0x0000 0000
0x400D 00D0	DTGA3CTL	Timer A dead time generator 3 control	0x0000 0080
0x400D 00D4	DTGA3LED	Timer A dead time generator 3 leading edge delay	0x0000 0000

ADDRESS	NAME	DESCRIPTION	RESET VALUE
0x400D 00D8	DTGA3TED	Timer A dead time generator 3 trailing edge delay	0x0000 0000

12.1.2. TACTL

Register 12-1. TACTL (Timer A Control, 0x400D 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:14	Reserved	RO	0x0	Reserved
13	DTGCLK	RW	0x0	DTGAx clock select 1b: DTGAx use clock after TACTL.CLKDIV 0b: DTGAx use clock selected by TACTL.CLK
12	SYNC	RW	0x0	Timer B synchronization 1b: Synchronize Timer A, enable SYNC_IN 0b: Do not synchronize Timer A, disabled SYNC_IN
11:10	MODE	RW	0x0	Timer A Mode 11b: reserved 10b: up / down 01b: up 00b: disabled
9	CLK	RW	0x0	Timer A clock input source 1b: ACLK 0b: HCLK
8:6	CLKDIV	RW	0x0	Timer A input clock divider 111b: / 128 110b: / 64 101b: /32 100b: /16 011b: /8 010b: /4 001b: /2 000b: /1
5	INTEN	RW	0x0	Timer A interrupt enable 1b: enable Timer A interrupt 0b: disable Timer A interrupt
4	INT	RW	0x0	Timer A interrupt 1b: interrupt, clear by write 1b 0b: no interrupt
3	SS	RW	0x0	Timer A single shot 1b: single shot mode 0b: continuous timer mode
2	CLR	RW	0x0	Timer A clear 1b: Clear Timer A, hold Timer A in reset and set SYNC_OUT 0b: Do not clear timer and clear SYNC_OUT
1	Reserved	RO	0x0	Reserved
0	PRDL	RW	0x0	Timer A TAPRD update 1b: Latch new TAPRD value when timer A counting down, TACTR value = 0x1 and TACTL.MODE = 10b 0b: Latch new TAPRD value when timer A counting up and TACTR value = TAPRD – 0x1.

12.1.3. TAPRD

Register 12-2. TAPRD (Timer A Period, 0x400D 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0	Reserved
15:0	PERIOD	RW	0x0	Timer A period value

12.1.4. TACTR

Register 12-3. TACTR (Timer A Counter, 0x400D 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CTR	RO	0x0	Current Timer A counter value

12.1.5. TACCCTRL0

Register 12-4. TACCCTRL0 (Timer A PWMA0 Capture and Compare Control, 0x400D 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA0 input 0b: Compare mode PWMA0 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA0 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.6. TACCCTR0

Register 12-5. TACCCTR0 (Timer A PWMA0 Capture and Compare Counter, 0x400D 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA0 compare mode or counter value for PWMA0 capture mode

12.1.7. TACCCTRL1

Register 12-6. TACC1CTRL1 (Timer A PWMA1 Capture and Compare Control, 0x400D 0048)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA1 input 0b: Compare mode PWMA1 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA1 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.8. TACCCTR1

Register 12-7. TACCCTR1 (Timer A PWMA1 Capture and Compare Counter, 0x400D 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA1 compare mode or counter value for PWMA1 capture mode

12.1.9. TACCCTRL2

Register 12-8. TACCCTRL2 (Timer A PWMA2 Capture and Compare Control, 0x400D 0050)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA2 input 0b: Compare mode PWMA2 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA2 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.10. TACC2CTR2

Register 12-9. TACCCTR2 (Timer A PWMA2 Capture and Compare Counter, 0x400D 0054)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA2 compare mode or counter value for PWMA2 capture mode

12.1.11. TACCCTRL3

Register 12-10. TACCCTRL3 (Timer A PWMA3 Capture and Compare Control, 0x400D 0058)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA3 input 0b: Compare mode PWMA3 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA3 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.12. TACCCTR3

Register 12-11. TACCCTR3 (Timer A PWMA3 Capture and Compare Counter, 0x400D 005C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA3 compare mode or counter value for PWMA3 capture mode

12.1.13. TACCCTRL4

Register 12-12. TACCCTRL4 (Timer A PWMA4 Capture and Compare Control, 0x400D 0060)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA4 input 0b: Compare mode PWMA4 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt

BIT	NAME	ACCESS	RESET	DESCRIPTION
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA4 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.14. TACCCTR4

Register 12-13. TACCCTR4 (Timer A PWMA4 Capture and Compare Counter, 0x400D 0064)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA4 compare mode or counter value for PWMA4 capture mode

12.1.15. TACCCTRL5

Register 12-14. TACCCTRL5 (Timer A PWMA5 Capture and Compare Control, 0x400D 0068)

				, , , , , , , , , , , , , , , , , , , ,
BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA5 input 0b: Compare mode PWMA5 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA5 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.16. TACCCTR5

Register 12-15. TACCCTR5 (Timer A PWMA5 Capture and Compare Counter, 0x400D 006C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA5 compare mode or counter value for PWMA5 capture mode

12.1.17. TACCCTRL6

Register 12-16. TACCCTRL6 (Timer A PWMA6 Capture and Compare Control, 0x400D 0070)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA6 input 0b: Compare mode PWMA6 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA6 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.18. TACCCTR7

Register 12-17. TACCCTR7 (Timer A PWMA6 Capture and Compare Counter, 0x400D 0074)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA6 compare mode or counter value for PWMA6 capture mode

12.1.19. TACCCTRL7

Register 12-18. TACCCTRL7 (Timer A PWMA7 Capture and Compare Control, 0x400D 0078)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMA7 input 0b: Compare mode PWMA7 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMA7 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

12.1.20. TACCCTR7

Register 12-19. TACCCTR7 (Timer A PWMA7 Capture and Compare Counter, 0x400D 007C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMA7 compare mode or counter value for PWMA7 capture mode

12.1.21. DTGA0CTL

Register 12-20. DTGA0CTL (Timer A Dead Time Generator 0 Control, 0x400D 00A0)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGA0 bypass active, DTGA0LS = PWMA0, DTGA0HS = PWMA4 0b: DTGA0 bypass inactive, dead time inserted to DTGA0LS and DTGA0HS, DTGA0LS = PWMA4, DTGA0HS = PWMA4
6	ОТР	RW	0x0	One Time Preservation 1b: DTGA0HS high time is same as PWMA4 hightime and is shifted by DTGA0LED 0b: DTGA0HS high time is reduced by DTGA0LED
5	INVHS	RW	0x0	Invert DTGA0HS output signal 1b: invert DTGA0HS 0b: do not invert DTGA0HS
4	INVLS	RW	0x0	Invert DTGA0LS output signal 1b: invert DTGA0LS 0b: do not invert DTGA0LS
3:0	Reserved	RO	0x0	Reserved

12.1.22. DTGA0LED

Register 12-21. DTGA0LED (Timer A Dead Time Generator 0 Leading Edge Delay, 0x400D 00A4)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGA0 leading edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.23. DTGA0TED

Register 12-22. DTGA0TED (Timer A Dead Time Generator 0 Trailing Edge Delay, 0x400D 00A8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGA0 trailing edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.24. DTGA1CTL

Register 12-23. DTGA1CTL (Timer A Dead Time Generator 1 Control, 0x400D 00B0)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGA1 bypass active, DTGA1LS = PWMA1, DTGA1HS = PWMA5 0b: DTGA1 bypass inactive, dead time inserted to DTGA1LS and DTGA1HS, DTGA1LS = PWMA5, DTGA1HS = PWMA5
6	ОТР	RW	0x0	One Time Preservation 1b: DTGA1HS high time is same as PWMA5 hightime and is shifted by DTGA1LED 0b: DTGA1HS high time is reduced by DTGA1LED
5	INVHS	RW	0x0	Invert DTGA1HS output signal 1b: invert DTGA1HS 0b: do not invert DTGA1HS
4	INVLS	RW	0x0	Invert DTGA1LS output signal 1b: invert DTGA1LS 0b: do not invert DTGA1LS
3:0	Reserved	RO	0x0	Reserved

12.1.25. DTGA1LED

Register 12-24. DTGA1LED (Timer A Dead Time Generator 1 Leading Edge Delay, 0x400D 00B4)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGA1 leading edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.26. DTGA1TED

Register 12-25. DTGA1TED (Timer A Dead Time Generator 1 Trailing Edge Delay, 0x400D 00B8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGA1 trailing edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.27. DTGA2CTL

Register 12-26. DTGA2CTL (Timer A Dead Time Generator 2 Control, 0x400D 00C0)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGA2 bypass active, DTGA2LS = PWMA2, DTGA2HS = PWMA6 0b: DTGA2 bypass inactive, dead time inserted to DTGA2LS and DTGA2HS, DTGA2LS = PWMA6, DTGA2HS = PWMA6

BIT	NAME	ACCESS	RESET	DESCRIPTION
6	ОТР	RW	0x0	One Time Preservation 1b: DTGA2HS high time is same as PWMA6 hightime and is shifted by DTGA2LED 0b: DTGA2HS high time is reduced by DTGA2LED
5	INVHS	RW	0x0	Invert DTGA2HS output signal 1b: invert DTGA2HS 0b: do not invert DTGA2HS
4	INVLS	RW	0x0	Invert DTGA2LS output signal 1b: invert DTGA2LS 0b: do not invert DTGA2LS
3:0	Reserved	RO	0x0	Reserved

12.1.28. DTGA2LED

Register 12-27. DTGA2LED (Timer A Dead Time Generator 2 Leading Edge Delay, 0x400D 00C4)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGA2 leading edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.29. DTGA2TED

Register 12-28. DTGA2TED (Timer A Dead Time Generator 2 Trailing Edge Delay, 0x400D 00C8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGA2 trailing edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.30. DTGA3CTL

Register 12-29. DTGA3CTL (Timer A Dead Time Generator 3 Control, 0x400D 00D0)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGA3 bypass active, DTGA3LS = PWMA3, DTGA3HS = PWMA7 0b: DTGA3 bypass inactive, dead time inserted to DTGA3LS and DTGA3HS, DTGA3LS = PWMA7, DTGA1HS = PWMA7
6	ОТР	RW	0x0	One Time Preservation 1b: DTGA3HS high time is same as PWMA7 high time and is shifted by DTGA3LED 0b: DTGA3HS high time is reduced by DTGA3LED
5	INVHS	RW	0x0	Invert DTGA3HS output signal 1b: invert DTGA3HS 0b: do not invert DTGA3HS
4	INVLS	RW	0x0	Invert DTGA3LS output signal 1b: invert DTGA3LS 0b: do not invert DTGA3LS

BIT	NAME	ACCESS	RESET	DESCRIPTION
3:0	Reserved	RO	0x0	Reserved

12.1.31. DTGA3LED

Register 12-30. DTGA3LED (Timer A Dead Time Generator 3 Leading Edge Delay, 0x400D 00D4)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGA3 leading edge dead time in clock cycles defined by TACTL.DTGCLK

12.1.32. DTGA3TED

Register 12-31. DTGA3TED (Timer A Dead Time Generator 3 Trailing Edge Delay, 0x400D 00D8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGA3 trailing edge dead time in clock cycles defined by TACTL.DTGCLK

12.2. Details of Operation

12.2.1. Block Diagram

Figure 12-1. Timer A

12.2.2. Configuration

Following blocks need to be configured for correct use of the Timer A:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- I/O Controller
- Gate Driver
- Auto sequencing controller (ASC)
- Timer B
- Timer C
- Timer D

12.2.3. Timer A Block

The timer A block consist of a 16-bit timer with up mode or up/down mode with 8 PWM/capture units and 4 dead-time generator units.

12.2.4. Timer

Once enabled the timer counts up to the Timer A period value TAPRD. The TAPRD register can be written to

while the timer is running, the new **TAPRD** value will be latched when the counter reaches old **TAPRD** value in up mode. In up/down mode there is the option to latch the new **TAPRD** value when counter counts back to zero. **TACTL.PRDL** configures when the timer will be updated with the new **TAPRD** value in up/down mode.

The current timer value is accessible with the timer A counter value register TACTR.

12.2.5. Register update

The TAPRD, TACCxCTR register can be written to while the timer is running, the new TAPRD, TACCxCTR value will be latched when the counter reaches old TAPRD value in up mode. In up/down mode there is the option to latch the new TAPRD, TACCxCTR values when counter counts back to zero. TACTL.PRDL configures when the timer will be updated with the new TAPRD, TACCxCTR value in up/down mode.

12.2.6. Timer Modes

The timer supports 3 modes of operation: disabled, up and up/down using TACTL.MODE.

By default, the timer mode is disabled. When the timer is disabled, the timer counter does not increment or decrement. If the timer is disabled when previously in up or up/down mode, then the timer counter stops where it is. If the timer is re-enabled by putting it back into up or up/down modes, then the counter continues from the point at which it was disabled. To reset the current counter value **TACTR** to zero use **TACTL.CLR**.

In up mode, the timer starts counting from 0 up to the value of **TAPRD**. When the timer counter reaches the value of **TAPRD**, then the timer counter is reset to a value of 0. This mode is typically used for timed events or edge-aligned PWM output.

In up/down mode, the timer starts counting from 0 up to the value of **TAPRD**, and then back down to a value of 0. This timer mode is typically used for center-aligned PWM output. It can also be used for timed events, and will allow a longer timer range due to the fact it counts up and down

12.2.7. Single Shot Mode

The timer can be configured to run either once or continuously.

When the timer is configured in single shot mode using **TACTL.SS** the timer will only count to **TAPRD** value and stops in up mode. In up/down mode the timer will count to **TAPRD** and back to zero only once.

To start the timer in single-shot mode, **TACTL.SS** must be set. The timer will start when **TACTL.CLR** is set. To re-start a single-shot timer, **TACTL.CLR** must be reset, and then set again.

12.2.8. Input Clock And Pre-Scaler

The timer can be configured to use HCLK or ACLK using **TACTL.CLK**. The input clock for the can be divided further down from /1 to /128 using the **TACTL.CLKDIV**.

12.2.9. Timer Synchronization

The Timer A, B, C, D in the system have the ability to have synchronization between them. Each timer has a synchronization in signal (SYNC_IN) and the synchronization out signal (SYNC_OUT).

Timer A can be synchronized with Timer B, C, and D with timer A as master.

The timer asserts the SYNC_OUT pulse when the **TACTL.CLR** bit is set and de-asserts the SYNC_OUT pulse when the **TACTL.CLR** bit is cleared.

Each timer B, C, or D that need to be synchronized as slave with master timer A need to set the **TxCTL.SYNC** bit. If this is bit is not set, then the sync in signal is ignored and the timer operates independently.

When the TxCTL.SYNC bit is set and the SYNC_IN signal is asserted, the timer clears the timer counter. The

PAC5223 User Guide

timer counter is also cleared anytime the **TxCTL.CLR** bit is set to a 1. When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is de-asserted and the timer mode is either up or up/down, then the timer will start counting. The timer will not start counting when the mode is set to up or up/down unless the SYNC_IN signal is de-asserted when **TxCTL.SYNC** is set.

NOTE:

In order for this feature to work correctly, all timers that are synchronized must be set to the same mode (up or up/down), with the same timer pre-scaler, timer clock input and timer period.

To enable synchronized timers, the following steps should be followed:

- 1. All slave timers B, C, or D are configured with the selected timer input clock, timer pre-scaler, timer period and set the **TxCTL.SYNC** bit. The timer should still be set to disabled at this point.
- 2. The master timer A is configured with the same timer input clock, timer pre-scaler, timer period and sets the **TxCTL.CLR** bit. This should clear all timer counters of the master and slave timers.
- 3. The slave timers set the timer mode to the desired state (either up or up/down).
- 4. The master timer sets the timer mode to either up or up/down and clears the **TACTL.CLR** bit. This should start the master and all slave timers simultaneously based on the selected timer clock input.
- Once configured as above, all timers can be disabled by the master setting TACTL.CLR signal, to assert the SYNC_OUT signal. The timers can be re-enabled by clearing the TACTL.CLR bit, which deasserts the SYNC_OUT signal.

12.2.10. PWM/Compare Units

Timer A supports up to 8 PWM/Capture units PWMA0 to PWMA7. Each PWM/Compare unit can be configured independently in PWM mode or capture mode using **TACCxCTL.CCMODE**.

12.2.10.1. PWM Mode

The PWM mode is enabled with setting TACCxCTRL.CCMODE to 0.

The timer configuration allows either edge-aligned (timer in up mode) or center-aligned (timer in up/down mode) modes of PWM operation.

In both edge-aligned and center-aligned modes of operation, the timer block outputs a PWM waveform that starts out high at a **TACTR** value of 0 and then transitions to low when **TACTR** counts up to **TACCxCTR** compare value.

To configure a duty cycle of 0%, the **TACCxCTR** should be set to 0; to configure a duty cycle of 100%, the **TACCxCTR** value should be set to a value greater than or equal to **TAPRD**.

The polarity of the timer PWM outputs are not configurable. Adjustments to the polarity of the PWM outputs may be adjusted in the Dead-Time Generator (DTG) unit connected to the timer peripheral for each output independently.

Figure 12-2. PWMA[x] and PWMA[x+4] Example Using Timer A Up Mode and Up/Down Mode

12.2.10.2. Capture Mode

The Capture mode is enabled with setting **TACCxCTRL.CCMODE** to 1. The trip condition for capture mode can be configured using **TACCxCTRL.CCEDGE**, high-to-low signal edge transition, low-to-high signal edge transition or both.

When trip condition is detected the actual **TACTR** value is copied into **TACCxCTR**.

Figure 12-3. CA[x] and CA[x+4] Capture Example

12.2.11. Timer and PWM/Capture Interrupt

The timer may generate interrupt based on the base timer wrap, or when a capture and compare event occurs.

In the base timer both up and up/down timer modes allow an interrupt to be generated when the count reaches 0. Each time the count reaches zero, the **TACTL.INT** interrupt flag is set. If the interrupt is enabled using the **TACTL.INTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TACTL.INT** interrupt flag bit.

In the capture and compare PWM units, each time a compare threshold is reached or each time a capture event is detected the **TACCxCTL.CCINT** bit will be set for that particular timer unit. If the interrupt is enabled via the **TACCxCTRL.CCINTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TACCxCTRL.CCINT** interrupt flag bit.

The timer IRQ signal will be asserted if any of the timer interrupt flags **TACTL.INT** or **TACCxCTRL.CCINT** are set. The Timer IRQ signal will be de-asserted when all of the timer interrupt flags are cleared.

12.2.12. Dead-Time Generator

The dead-time generator can be configured to introduce dead-time for a complementary PWM output. The Timer A block supports up to 4 dead time generators.

12.2.12.1. Dead Time Input Clock Selection

The clock source for the DTGAx can be selected using TACTL.DTGCLK.

Clear **TACTL.DTGCLK** to 0 to use clock source selected by **TACTL.CLK** directly to use higher resolution for dead time insertion.

Set TACTL.DTGCLK to 1 to use divided clock source selected by TACTL.CLK and TACTL.CLKDIV divider to use the same dead time resolution as Timer A.

12.2.12.2. Dead Time Range

The resolution for leading edge and trailing edge dead time is 12bits. Leading and trailing edge can be set independently for each DTG using **DTGAxLED** and **DTGAxTED**.

12.2.12.3. Bypass Mode

Set DTGAxCTL.BYPASS to 0 to enable dead time insertion.

Set **DTGAxCTL.BYPASS** to 1 to enable bypass mode, no deadtime is inserted, PWMA[x+4] is routed to DTGAxHS and PWMAx is routed to DTGAxLS.

The DTGAxHS and DTGAxLS signals can be inverted in bypass mode.

Figure 12-4. DTGAx Bypass Example

12.2.12.4. Inverting PWM Signal

The DTG output signals DTGAxHS and DTGAxLS can be inverted independently.

Set DTGAxCTL.INVHS to invert DTGAxHS signal.

Set DTGAxCTL.INVLS to invert DTGAxLS signal.

Figure 12-5. DTGAx Bypass and Inverting LS Example

12.2.12.5. Dead Time Insertion

Set **DTGAxCTL.BYPASS** to 0 to enable dead time insertion. In dead time insertion mode only PWM[x+4] signal is used to generate DTGAxHS and DTGAxLS. PWMA[x] signal is ignored and can be used for other purposes.

Set **DTGAxLED** for desired leading-edge and **DTGAxTED** for desired trailing edge in clock-cycles defined by **TACTL.DTGCLK** clock source

NOTE:

In dead time insertion mode the DTGAxLS signal is automatically inverted compared to PWMA[x+4] signal. Set **DTGAxCTL.INVLS** to 0, if this is desired behavior.

Figure 12-6. DTGAx LED and TED Example

12.2.12.6. Dead Time Insertion with On Time Preservation

Set **DTGAxCTL.OTP** to 1 to enable on time preservation. In this mode the DTGAxHS is same as PWM[x+4] on time.

NOTE:

In dead time insertion mode the DTGAxLS signal is automatically inverted compared to PWMA[x+4] signal. Set **DTGAxCTL.INVLS** to 0, if this is desired behavior.

Figure 12-7. DTGAx LED and TED with On Time Preservation Example

12.2.13. PWM Output and Capture Input Pin Selection

Each of the DTGAxHS, DTGAxLS outputs, and CAx inputs can be routed to different I/Os, allowing great flexibility in pin assignments.

In capture mode only one I/O should be enabled as input to the capture. If more than one pin input is enabled, the capture might not work properly.

Note:

Not all pins are available pending package option, consult data sheet for available pins and signals.

Table 12-2. Timer A Signal to Pin Mapping

13. TIMER B

13.1. Register

13.1.1. Register Map

Table 13-1. Timer B Register Map

ADDRESS	NAME	DESCRIPTION RESE			
Timer B					
0x400E 0000	TBCTL	Timer B control	0x0000 0000		
0x400E 0004	TBPRD	Timer B period	0x0000 0000		
0x400E 0008	TBCTR	Timer B counter	0x0000 0000		
Timer B PWMB Ca	pture and Compare				
0x400E 0040	TBCCTRL0	Timer B capture and compare 0 control	0x0000 0000		
0x400E 0044	TBCTR0	Timer B counter 0	0x0000 0000		
0x400E 0048	TBCCTRL1	Timer B capture and compare 1 control	0x0000 0000		
0x400E 004C	TBCTR1	Timer B counter 1	0x0000 0000		
0x400E 0050	TBCCTRL2	Timer B capture and compare 2 control	0x0000 0000		
0x400E 0054	TBCTR2	Timer B counter 2	0x0000 0000		
0x400E 0058	TBCCTRL3	Timer B capture and compare 3 control	0x0000 0000		
0x400E 005C	TBCTR3	Timer B counter 3	0x0000 0000		
Timer B Dead Time Generator					
0x400E 00A0	DTGB0CTL	Timer B dead time generator 0 control 0x0000			
0x400E 00A4	DTGB0LED	Timer B dead time generator 0 leading edge delay 0x0000 000			
0x400E 00A8	DTGB0TED	Timer B dead time generator 0 trailing edge delay 0x0000 0000			

13.1.2. TBCTL

Register 13-1. TBCTL (Timer B Control, 0x400E 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:14	Reserved	RO	0x0	Reserved
13	DTGCLK	RW	0x0	DTGBx clock select 1b: DTGBx use clock after TBCTL.CLKDIV 0b: DTGBx use clock selected by TBCTL.CLK
12	SYNC	RW	0x0	Timer B synchronization 1b: Synchronize Timer B, enable SYNC_IN 0b: Do not synchronize Timer B, disabled SYNC_IN
11:10	MODE	RW	0x0	Timer B Mode 11b: reserved 10b: up / down 01b: up 00b: disabled
9	CLK	RW	0x0	Timer B clock input source 1b: ACLK 0b: HCLK

BIT	NAME	ACCESS	RESET	DESCRIPTION
8:6	CLKDIV	RW	0x0	Timer B input clock divider 111b: / 128 110b: / 64 101b: /32 100b: /16 011b: /8 010b: /4 001b: /2 000b: /1
5	INTEN	RW	0x0	Timer B interrupt enable 1b: enable Timer B interrupt 0b: disable Timer B interrupt
4	INT	RW1C	0x0	Timer B interrupt 1b: interrupt, clear by write 1b 0b: no interrupt
3	SS	RW	0x0	Timer B single shot 1b: single shot mode 0b: continuous timer mode
2	CLR	RW	0x0	Timer B clear 1b: Clear Timer B, hold Timer B in reset and set SYNC_OUT 0b: Do not clear Timer and clear SYNC_OUT
1	Reserved	RO	0x0	Reserved
0	PRDL	RW	0x0	Timer B TBPRD update 1b: Latch new TBPRD value when Timer B counting down, TBCTR value = 0x1 and TBCTL.MODE = 10b 0b: Latch new TBPRD value when Timer B counting up and TBCTR value = TBPRD – 0x1.

13.1.3. TBPRD

Register 13-2. TBPRD (Timer B Period, 0x400E 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0	Reserved
15:0	PERIOD	RW	0x0	Timer B period value

13.1.4. TBCTR

Register 13-3. TBCTR (Timer B Counter, 0x400E 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CTR	RO	0x0	Current Timer B counter value

13.1.5. TBCC0CTRL

Register 13-4. TBCC0CTRL (Timer B PWMB0 Capture and Compare Control, 0x400E 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMB0 input 0b: Compare mode PWMB0 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMB0 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

13.1.6. TBCC0CTR

Register 13-5. TBCC0CTR (Timer B PWMB0 Capture and Compare Counter, 0x400E 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMB0 compare mode or counter value for PWMB0 capture mode

13.1.7. TBCC1CTRL

Register 13-6. TBCC1CTRL (Timer B PWMB1 Capture and Compare Control, 0x400E 0048)

		•		
BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMB1 input 0b: Compare mode PWMB1 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMB1 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

13.1.8. TBCC1CTR

Register 13-7. TBCC1CTR (Timer B PWMB1 Capture and Compare Counter, 0x400E 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
15:0	CCCTR	RW	0x0	Counter value for PWMB1 compare mode or counter value for PWMB1 capture mode

13.1.9. TBCC2CTRL

Register 13-8. TBCC2CTRL (Timer B PWMB2 Capture and Compare Control, 0x400E 0050)

regions is a respective (rimer or rimer or replace or rimer, extract or respective respe						
BIT	NAME	ACCESS	RESET	DESCRIPTION		
31:5	Reserved	RO	0x0	Reserved		
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMB2 input 0b: Compare mode PWMB2 output		
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt		
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected		
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMB2 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only		

13.1.10. TBCC2CTR

Register 13-9. TBCC2CTR (Timer B PWMB2 Capture and Compare Counter, 0x400E 0054)

_		•		
BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMB2 compare mode or counter value for PWMB2 capture mode

13.1.11. TBCC3CTRL

Register 13-10. TBCC3CTRL (Timer B PWMB3 Capture and Compare Control, 0x400E 0058)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMB3 input 0b: Compare mode PWMB3 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected

BIT	NAME	ACCESS	RESET	DESCRIPTION
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMB3 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

13.1.12. TBCC3CTR

Register 13-11. TBCC3CTR (Timer B PWMB3 Capture and Compare Counter, 0x400E 005C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMB3 compare mode or counter value for PWMB3 capture mode

13.1.13. DTGB0CTL

Register 13-12. DTGB0CTL (Timer B Dead Time Generator 0 Control, 0x400E 00A0)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGB0 bypass active, DTGB0LS = PWMB0, DTGB0HS = PWMB1 0b: DTGB0 bypass inactive, dead time inserted to DTGB0LS and DTGB0HS, DTGB0LS = PWMB1, DTGB0HS = PWMB1
6	ОТР	RW	0x0	One Time Preservation 1b: DTGB0HS high time is same as PWMB1 high time and is shifted by DTGB0LED 0b: DTGB0HS high time is reduced by DTGB0LED
5	INVHS	RW	0x0	Invert DTGB0HS output signal 1b: invert DTGB0HS 0b: do not invert DTGB0HS
4	INVLS	RW	0x0	Invert DTGB0LS output signal 1b: invert DTGB0LS 0b: do not invert DTGB0LS
3:0	Reserved	RO	0x0	Reserved

13.1.14. DTGB0LED

Register 13-13. DTGB0LED (Timer B Dead Time Generator 0 Leading Edge Delay, 0x400E 00A4)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGB0 leading edge dead time in clock cycles defined by TBCTL.DTGCLK

13.1.15. DTGB0TED

Register 13-14. DTGB0TED (Timer B Dead Time Generator 0 Trailing Edge Delay, 0x400E 00A8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGB0 trailing edge dead time in clock cycles defined by TBCTL.DTGCLK

13.2. Details of Operation

13.2.1. Block Diagram

Figure 13-1. Timer B

13.2.2. Configuration

Following blocks need to be configured for correct use of the Timer B:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller
- Gate Driver
- Auto sequencing controller (ASC)
- Timer A
- Timer C
- Timer D

•

13.2.3. Timer B Block

The timer B block consist of a 16-bit timer with up mode or up/down mode with 4 PWM/capture units and 1 dead-time generator unit.

13.2.4. Timer

Once enabled the timer counts up to the Timer B period value **TBPRD**. The **TBPRD** register can be written to while the timer is running, the new **TBPRD** value will be latched when the counter reaches old **TBPRD** value in up mode. In up/down mode there is the option to latch the new **TBPRD** value when counter counts back to zero.

TBCTL.PRDL configures when the timer will be updated with the new TBPRD value in up/down mode.

The current timer value is accessible with the timer B counter value register TBCTR.

13.2.5. Register update

The TBPRD, TBCCxCTR register can be written to while the timer is running, the new TBPRD, TBCCxCTR value will be latched when the counter reaches old TBPRD value in up mode. In up/down mode there is the option to latch the new TBPRD, TBCCxCTR values when counter counts back to zero. TBCTL.PRDL configures when the timer will be updated with the new TBPRD, TBCCxCTR value in up/down mode.

13.2.6. Timer Modes

The timer supports 3 modes of operation: disabled, up and up/down using TBCTL.MODE.

By default, the timer mode is disabled. When the timer is disabled, the timer counter does not increment or decrement. If the timer is disabled when previously in up or up/down mode, then the timer counter stops where it is. If the timer is re-enabled by putting it back into up or up/down modes, then the counter continues from the point at which it was disabled. To reset the current counter value **TBCTR** to zero use **TBCTL.CLR**.

In up mode, the timer starts counting from 0 up to the value of **TBPRD**. When the timer counter reaches the value of **TBPRD**, then the timer counter is reset to a value of 0.This mode is typically used for timed events or edge-aligned PWM output.

In up/down mode, the timer starts counting from 0 up to the value of **TBPRD**, and then back down to a value of 0. This timer mode is typically used for center-aligned PWM output. It can also be used for timed events, and will allow a longer timer range due to the fact it counts up and down.

13.2.7. Single Shot Mode

The timer can be configured to run either once or continuously.

When the timer is configured in single shot mode using **TBCTL.SS** the timer will only count to **TBPRD** value and stops in up mode. In up/down mode the timer will count to **TBPRD** and back to zero only once.

To start the timer in single-shot mode, **TBCTL.SS** must be set. The timer will start when **TBCTL.CLR** is set. To re-start a single-shot timer, **TBCTL.CLR** must be reset, and then set again.

13.2.8. Input Clock And Pre-Scaler

The timer can be configured to use HCLK or ACLK using **TBCTL.CLK**. The input clock for the can be divided further down from /1 to /128 using the **TBCTL.CLKDIV**.

13.2.9. Timer Synchronization

The Timer A, B, C, D in the system have the ability to have synchronization between them. Each timer has a synchronization in signal (SYNC_IN) and the synchronization out signal (SYNC_OUT).

Timer B can be synchronized with Timer C, and D with timer B as master. Timer B can be synchronized with Timer A as slave.

The timer asserts the SYNC_OUT pulse when the **TBCTL.CLR** bit is set and de-asserts the SYNC_OUT pulse when the **TBCTL.CLR** bit is cleared.

PAC5223 User Guide

Each timer C, or D that need to be synchronized as slave with master timer B need to set the **TxCTL.SYNC** bit. If this is bit is not set, then the sync_in signal is ignored and the timer operates independently.

When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is asserted, the timer clears the timer counter. The timer counter is also cleared anytime the **TxCTL.CLR** bit is set to a 1. When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is de-asserted and the timer mode is either up or up/down, then the timer will start counting. The timer will not start counting when the mode is set to up or up/down unless the SYNC_IN signal is de-asserted when **TxCTL.SYNC** is set.

NOTE:

In order for this feature to work correctly, all timers that are synchronized must be set to the same mode (up or up/down), with the same timer pre-scaler, timer clock input and timer period.

To enable synchronized timers, the following steps should be followed:

- 1. All slave timers B, C, or D are configured with the selected timer input clock, timer pre-scaler, timer period and set the **TxCTL.SYNC** bit. The timer should still be set to disabled at this point.
- 2. The master timer A, or B is configured with the same timer input clock, timer pre-scaler, timer period and sets the **TxCTL.CLR** bit. This should clear all timer counters of the master and slave timers.
- 3. The slave timers set the timer mode to the desired state (either up or up/down).
- 4. The master timer sets the timer mode to either up or up/down and clears the **TxCTL.CLR** bit. This should start the master and all slave timers simultaneously based on the selected timer clock input.
- Once configured as above, all timers can be disabled by the master setting TxCTL.CLR signal, to assert the SYNC_OUT signal. The timers can be re-enabled by clearing the TxCTL.CLR bit, which de-asserts the SYNC_OUT signal.

6.

13.2.10. PWM/Compare Units

Timer B supports up to 4 PWM/Capture units PWMB0 to PWMB3. Each PWM/Compare unit can be configured independently in PWM mode or capture mode using **TBCCxCTRL.CCMODE**.

13.2.10.1. PWM Mode

The PWM mode is enabled with setting TBCCxCTRL.CCMODE to 0.

The timer configuration allows either edge-aligned (timer in up mode) or center-aligned (timer in up/down mode) modes of PWM operation.

In both edge-aligned and center-aligned modes of operation, the timer block outputs a PWM waveform that starts out high at a **TBCTR** value of 0 and then transitions to low when **TBCTR** counts up to **TBCCxCTR** compare value.

To configure a duty cycle of 0%, the **TBCCxCTR** should be set to 0; to configure a duty cycle of 100%, the **TBCCxCTR** value should be set to a value greater than or equal to **TBPRD**.

The polarity of the timer PWM outputs are not configurable. Adjustments to the polarity of the PWM outputs may be adjusted in the Dead-Time Generator (DTG) unit connected to the timer peripheral for each output independently.

TBCTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

TBCC1CTR

Figure 13-2. PWMB0 and PWMB1 Example Using Timer B Up Mode and Up/Down Mode

13.2.10.2. Capture Mode

PWMB0

PWMB1

The Capture mode is enabled with setting **TBCCxCTRL.CCMODE** to 1. The trip condition for capture mode can be configured using **TBCCxCTRL.CCEDGE**, high-to-low signal edge transition, low-to-high signal edge transition or both.

TBCC0CTR

TBCC1CTR

TBCC0CTR

When trip condition is detected the actual TBCTR value is copied into TBCCxCTR.

Figure 13-3. CB0 and CB1 Capture Example

TBCC0CTR

TBCC1CTR

13.2.11. Timer and PWM/Capture Interrupt

The timer may generate interrupt based on the base timer wrap, or when a capture and compare event occurs.

In the base timer both up and up/down timer modes allow an interrupt to be generated when the count reaches 0. Each time the count reaches zero, the **TBCTL.INT** interrupt flag is set. If the interrupt is enabled using the **TBCTL.INTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TBCTL.INT** interrupt flag bit.

In the capture and compare PWM units, each time a compare threshold is reached or each time a capture event is detected the **TBCCxCTRL.CCINT** bit will be set for that particular timer unit. If the interrupt is enabled via the **TBCCxCTRL.CCINTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TBCCxCTRL.CCINT** interrupt flag bit.

The timer IRQ signal will be asserted if any of the timer interrupt flags **TBCTL.INT** or **TBCCxCTRL.CCINT** are set. The Timer IRQ signal will be de-asserted when all of the timer interrupt flags are cleared.

13.2.12. Dead-Time Generator

The dead-time generator can be configured to introduce dead-time for a complementary PWM output. The Timer B block supports up to 1 dead time generator.

13.2.12.1. Dead Time Input Clock Selection

The clock source for the DTGB0 can be selected using TBCTL.DTGCLK.

Clear **TBCTL.DTGCLK** to 0 to use clock source selected by **TBCTL.CLK** directly to use higher resolution for dead time insertion.

Set TBCTL.DTGCLK to 1 to use divided clock source selected by TBCTL.CLK and TBCTL.CLKDIV divider to use the same dead time resolution as Timer B.

13.2.12.2. Dead Time Range

The resolution for leading edge and trailing edge dead time is 12bits. Leading and trailing edge can be set independently using **DTGB0LED** and **DTGB0TED**.

13.2.12.3. Bypass Mode

Set **DTGB0CTL.BYPASS** to 0 to enable dead time insertion.

Set **DTGB0CTL.BYPASS** to 1 to enable bypass mode, no dead time is inserted, PWMB1 is routed to DTGB0HS and PWMB0 is routed to DTGB0LS.

The DTGB0HS and DTGB0LS signals can be inverted in bypass mode.

Figure 13-4. DTGB0 Bypass Example

13.2.12.4. Inverting PWM Signal

The DTG output signals DTGB0HS and DTGB0LS can be inverted independently.

Set DTGB0CTL.INVHS to invert DTGB0HS signal.

Set DTGB0CTL.INVLS to invert DTGB0LS signal.

Figure 13-5. DTGB0 Bypass and Inverting LS Example

13.2.12.5. Dead Time Insertion

Set **DTGB0CTL.BYPASS** to 0 to enable dead time insertion. In dead time insertion mode only PWMB1 signal is used to generate DTGB0HS and DTGB0LS. PWMB0 signal is ignored and can be used for other purposes.

Set **DTGB0LED** for desired leading-edge and **DTGB0TED** for desired trailing edge in clock-cycles defined by **TBCTL.DTGCLK** clock source

NOTE:

In dead time insertion mode the DTGB0LS signal is automatically inverted compared to PWMB1 signal. Set **DTGB0CTL.INVLS** to 0, if this is desired behavior.

Figure 13-6. DTGB0 LED and TED Example

13.2.12.6. Dead Time Insertion with On Time Preservation

Set **DTGB0CTL.OTP** to 1 to enable on time preservation. In this mode the DTGB0HS is same as PWMB1 on time.

NOTE:

In dead time insertion mode the DTGB0LS signal is automatically inverted compared to PWMB1 signal. Set **DTGB0CTL.INVLS** to 0, if this is desired behavior.

Figure 13-7. DTGB0 LED and TED with On Time Preservation Example

13.2.13. PWM Output and Capture Input Pin Selection

Each of the DTGB0HS, DTGB0LS outputs, and CBx inputs can be routed to different I/Os, allowing great flexibility in pin assignments.

In capture mode only one I/O should be enabled as input to the capture. If more than one pin input is enabled, the capture might not work properly.

Note:

Not all pins are available pending package option, consult data sheet for available pins and signals.

Table 13-2. Timer B Signal to Pin Mapping

PWM	CAPTURE	DEADTIME	PINS
PWMB0	CB0	DTGB0LS	PA3, PA6, PD2

14. TIMER C

14.1. Register

14.1.1. Register Map

Table 14-1. Timer C Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE				
Timer C							
0x400F 0000	TCCTL	Timer C control	0x0000 0000				
0x400F 0004	TCPRD	Timer C period	0x0000 0000				
0x400F 0008	TCCTR	Timer C counter	0x0000 0000				
Timer C PWMC Capture and Compare							
0x400F 0040	TCCCTRL0	Timer C capture and compare 0 control	0x0000 0000				
0x400F 0044	TCCTR0	Timer C counter 0	0x0000 0000				
0x400F 0048	TCCCTRL1	Timer C capture and compare 1 control	0x0000 0000				
0x400F 004C	TCCTR1	Timer C counter 1	0x0000 0000				
Timer C Dead Time Generator							
0x400F 00A0	DTGC0CTL	Timer C dead time generator 0 control	0x0000 0080				
0x400F 00A4	DTGC0LED	Timer C dead time generator 0 leading edge delay 0x0					
0x400F 00A8	DTGC0TED	Timer C dead time generator 0 trailing edge delay	0x0000 0000				

14.1.2. TCCTL

Register 14-1. TCCTL (Timer C Control, 0x400F 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:14	Reserved	RO	0x0	Reserved
13	DTGCLK	RW	0x0	DTGCx clock select 1b: DTGCx use clock after TCCTL.CLKDIV 0b: DTGCx use clock selected by TCCTL.CLK
12	SYNC	RW	0x0	Timer C synchronization 1b: Synchronize Timer C, enable SYNC_IN 0b: Do not synchronize Timer C, disabled SYNC_IN
11:10	MODE	RW	0x0	Timer C Mode 11b: reserved 10b: up / down 01b: up 00b: disabled
9	CLK	RW	0x0	Timer C clock input source 1b: ACLK 0b: HCLK

BIT	NAME	ACCESS	RESET	DESCRIPTION
8:6	CLKDIV	RW	0x0	Timer C input clock divider 111b: /128 110b: /64 101b: /32 100b: /16 011b: /8 010b: /4 001b: /2 000b: /1
5	INTEN	RW	0x0	Timer C interrupt enable 1b: enable Timer C interrupt 0b: disable Timer C interrupt
4	INT	RW1C	0x0	Timer C interrupt 1b: interrupt, clear by write 1b 0b: no interrupt
3	SS	RW	0x0	Timer C single shot 1b: single shot mode 0b: continuous timer mode
2	CLR	RW	0x0	Timer C clear 1b: Clear Timer C, hold Timer C in reset and set SYNC_OUT 0b: Do not clear Timer and clear SYNC_OUT
1	Reserved	RO	0x0	Reserved
0	PRDL	RW	0x0	Timer C TCPRD update 1b: Latch new TCPRD value when Timer C counting down, TCCTR value = 0x1 and TCCTL.MODE = 10b 0b: Latch new TCPRD value when Timer C counting up and TCCTR value = TCPRD – 0x1.

14.1.3. TCPRD

Register 14-2. TCPRD (Timer C Period, 0x400F 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0	Reserved
15:0	PERIOD	RW	0x0	Timer C period value

14.1.4. TCCTR

Register 14-3. TCCTR (Timer C Counter, 0x400F 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CTR	RW	0x0	Current Timer C counter value

14.1.5. TCCC0CTRL

Register 14-4. TCCC0CTL (Timer C PWMC0 Capture and Compare Control, 0x400F 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMC0 input 0b: Compare mode PWMC0 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMC0 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

14.1.6. TCCC0CTR

Register 14-5. TCCC0CTR (Timer C PWMC0 Capture and Compare Counter, 0x400F 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMC0 compare mode or counter value for PWMC0 capture mode

14.1.7. TCCC1CTRL

Register 14-6. TCCC1CTL (Timer C PWMC1 Capture and Compare Control, 0x400F 0048)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMC1 input 0b: Compare mode PWMC1 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMC1 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

14.1.8. TCCC1CTR

Register 14-7. TCCC1CTR (Timer C PWMC1 Capture and Compare Counter, 0x400F 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
15:0	CCCTR	RW	0x0	Counter value for PWMC1 compare mode or counter value for PWMC1 capture mode

14.1.9. DTGC0CTL

Register 14-8. DTGC0CTL (Timer C Dead Time Generator 0 Control, 0x400F 00A0)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RO	0x0	Reserved
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGC0 bypass active, DTGC0LS = PWMC0, DTGC0HS = PWMC1 0b: DTGC0 bypass inactive, dead time inserted to DTGC0LS and DTGC0HS, DTGC0LS = PWMC1, DTGC0HS = PWMC1
6	ОТР	RW	0x0	One Time Preservation 1b: DTGC0HS high time is same as PWMC1 high time is shifted by DTGC0LED 0b: DTGC0HS high time is reduced by DTGC0LED
5	INVHS	RW	0x0	Invert DTGC0HS output signal 1b: invert DTGC0HS 0b: do not invert DTGC0HS
4	INVLS	RW	0x0	Invert DTGC0LS output signal 1b: invert DTGC0LS 0b: do not invert DTGC0LS
3:0	Reserved	RO	0x0	Reserved

14.1.10. DTGC0LED

Register 14-9. DTGC0LED (Timer C Dead Time Generator 0 Leading Edge Delay, 0x400F 00A4)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGC0 leading edge dead time in clock cycles defined by TCCTL.DTGCLK

14.1.11. DTGC0TED

Register 14-10. DTGC0TED (Timer C Dead Time Generator 0 Trailing Edge Delay, 0x400F 00A8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGC0 trailing edge dead time in clock cycles defined by TCCTL.DTGCLK

14.2. Details of Operation

14.2.1. Block Diagram

Figure 14-1. Timer C

14.2.2. Configuration

Following blocks need to be configured for correct use of the Timer C:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller
- Gate Driver
- Auto sequencing controller (ASC)
- Timer A
- Timer B
- Timer D

•

14.2.3. Timer C Block

The timer C block consist of a 16-bit timer with up mode or up/down mode with 2 PWM/capture units and 1 dead-time generator unit.

14.2.4. Timer

Once enabled the timer counts up to the Timer C period value **TCPRD**. The **TCPRD** register can be written to while the timer is running, the new **TCPRD** value will be latched when the counter reaches old **TCPRD** value in up mode. In up/down mode there is the option to latch the new **TCPRD** value when counter counts back to zero.

TCCTL.PRDL configures when the timer will be updated with the new TCPRD value in up/down mode.

The current timer value is accessible with the timer C counter value register TCCTR.

14.2.5. Register update

The TCPRD, TCCCxCTR register can be written to while the timer is running, the new TCPRD, TCCCxCTR value will be latched when the counter reaches old TCPRD value in up mode. In up/down mode there is the option to latch the new TCPRD, TCCCxCTR values when counter counts back to zero. TCCTL.PRDL configures when the timer will be updated with the new TCPRD, TCCCxCTR value in up/down mode.

14.2.6. Timer Modes

The timer supports 3 modes of operation: disabled, up and up/down using TCCTL.MODE.

By default, the timer mode is disabled. When the timer is disabled, the timer counter does not increment or decrement. If the timer is disabled when previously in up or up/down mode, then the timer counter stops where it is. If the timer is re-enabled by putting it back into up or up/down modes, then the counter continues from the point at which it was disabled. To reset the current counter value **TCCTR** to zero use **TCCTL.CLR**.

In up mode, the timer starts counting from 0 up to the value of **TCPRD**. When the timer counter reaches the value of **TCPRD**, then the timer counter is reset to a value of 0. This mode is typically used for timed events or edge-aligned PWM output.

In up/down mode, the timer starts counting from 0 up to the value of **TCPRD**, and then back down to a value of 0. This timer mode is typically used for center-aligned PWM output. It can also be used for timed events, and will allow a longer timer range due to the fact it counts up and down

14.2.7. Single Shot Mode

The timer can be configured to run either once or continuously.

When the timer is configured in single shot mode using **TCCTL.SS** the timer will only count to **TCPRD** value and stops in up mode. In up/down mode the timer will count to **TCPRD** and back to zero only once.

To start the timer in single-shot mode, **TCCTL.SS** must be set. The timer will start when **TCCTL.CLR** is set. To re-start a single-shot timer, **TCCTL.CLR** must be reset, and then set again.

14.2.8. Input clock and Pre-scaler

The timer can be configured to use HCLK or ACLK using **TCCTL.CLK**. The input clock for the can be divided further down from /1 to /128 using the **TCCTL.CLKDIV**.

14.2.9. Timer synchronization

The Timer A, B, C, D in the system have the ability to have synchronization between them. Each timer has a synchronization in signal (SYNC_IN) and the synchronization out signal (SYNC_OUT).

Timer C can be synchronized with Timer D as master. Timer B can be synchronized with Timer A, and B as slave.

The timer asserts the SYNC_OUT pulse when the **TCCTL.CLR** bit is set and de-asserts the SYNC_OUT pulse when the **TCCTL.CLR** bit is cleared.

PAC5223 User Guide

If timer D that need to be synchronized as slave with master timer C need to set the **TxCTL.SYNC** bit. If this is bit is not set, then the sync_in signal is ignored and the timer operates independently.

When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is asserted, the timer clears the timer counter. The timer counter is also cleared anytime the **TxCTL.CLR** bit is set to a 1. When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is de-asserted and the timer mode is either up or up/down, then the timer will start counting. The timer will not start counting when the mode is set to up or up/down unless the SYNC_IN signal is de-asserted when **TxCTL.SYNC** is set.

NOTE:

In order for this feature to work correctly, all timers that are synchronized must be set to the same mode (up or up/down), with the same timer pre-scaler, timer clock input and timer period.

To enable synchronized timers, the following steps should be followed:

- 1. The slave timer C, D is configured with the selected timer input clock, timer pre-scaler, timer period and set the **TxCTL.SYNC** bit. The timer should still be set to disabled at this point.
- 2. The master timer A, or B is configured with the same timer input clock, timer pre-scaler, timer period and sets the **TxCTL.CLR** bit. This should clear all timer counters of the master and slave timers.
- 3. The slave timers set the timer mode to the desired state (either up or up/down).
- 4. The master timer sets the timer mode to either up or up/down and clears the **TxCTL.CLR** bit. This should start the master and all slave timers simultaneously based on the selected timer clock input.
- 5. Once configured as above, all timers can be disabled by the master setting **TxCTL.CLR** signal, to assert the SYNC_OUT signal. The timers can be re-enabled by clearing the **TxCTL.CLR** bit, which de-asserts the SYNC_OUT signal.

14.2.10. PWM/Compare Units

Timer C supports up to 2 PWM/Capture units PWMC0 to PWMC1. Each PWM/Compare unit can be configured independently in PWM mode or capture mode using **TCCCxCTL.CCMODE**.

14.2.10.1. PWM Mode

The PWM mode is enabled with setting TCCCxCTRL.CCMODE to 0.

The timer configuration allows either edge-aligned (timer in up mode) or center-aligned (timer in up/down mode) modes of PWM operation.

In both edge-aligned and center-aligned modes of operation, the timer block outputs a PWM waveform that starts out high at a **TCCTR** value of 0 and then transitions to low when **TCCTR** counts up to **TCCCxCTR** compare value.

To configure a duty cycle of 0%, the **TCCCxCTR** should be set to 0; to configure a duty cycle of 100%, the **TCCCxCTR** value should be set to a value greater than or equal to **TCPRD**.

The polarity of the timer PWM outputs are not configurable. Adjustments to the polarity of the PWM outputs may be adjusted in the Dead-Time Generator (DTG) unit connected to the timer peripheral for each output independently.

Figure 14-2. PWMC0 and PWMC1 Example Using Timer C Up Mode and Up/Down Mode

14.2.10.2. Capture Mode

The Capture mode is enabled with setting **TCCCxCTRL.CCMODE** to 1. The trip condition for capture mode can be configured using **TCCCxCTRL.CCEDGE**, high-to-low signal edge transition, low-to-high signal edge transition or both.

When trip condition is detected the actual TCCTR value is copied into TCCCxCTR.

Figure 14-3. CC0 and CC1 Capture Example

14.2.11. Timer and PWM/Capture Interrupt

The timer may generate interrupt based on the base timer wrap, or when a capture and compare event occurs.

In the base timer both up and up/down timer modes allow an interrupt to be generated when the count reaches 0. Each time the count reaches zero, the **TCCTL.INT** interrupt flag is set. If the interrupt is enabled using the **TCCTL.INTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TCCTL.INT** interrupt flag bit.

In the capture and compare PWM units, each time a compare threshold is reached or each time a capture event is detected the **TCCCxCTRL.CCINT** bit will be set for that particular timer unit. If the interrupt is enabled via the **TCCCxCTRL.CCINTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TCCCxCTRL.CCINT** interrupt flag bit.

The timer IRQ signal will be asserted if any of the timer interrupt flags **TCCTL.INT** or **TCCCxCTRL.CCINT** are set. The Timer IRQ signal will be de-asserted when all of the timer interrupt flags are cleared.

14.2.12. Dead-Time Generator

The dead-time generator can be configured to introduce dead-time for a complementary PWM output. The Timer C block supports up to 1 dead time generator.

14.2.12.1. Dead Time Input Clock Selection

The clock source for the DTGC0 can be selected using TCCTL.DTGCLK.

Clear TCCTL.DTGCLK to 0 to use clock source selected by TCCTL.CLK directly to use higher resolution for dead time insertion.

Set **TCCTL.DTGCLK** to 1 to use divided clock source selected by **TCCTL.CLK and TCCTL.CLKDIV** divider to use the same dead time resolution as Timer C.

14.2.12.2. Dead Time Range

The resolution for leading edge and trailing edge dead time is 12bits. Leading and trailing edge can be set independently using **DTGC0LED** and **DTGC0TED**.

14.2.12.3. Bypass Mode

Set **DTGC0CTL.BYPASS** to 0 to enable dead time insertion.

Set **DTGC0CTL.BYPASS** to 1 to enable bypass mode, no dead time is inserted, PWMC1 is routed to DTGC0HS and PWMC0 is routed to DTGC0LS.

The DTGC0HS and DTGC0LS signals can be inverted in bypass mode.

Figure 14-4. DTGC0 Bypass Example

14.2.12.4. Inverting PWM Signal

The DTG output signals DTGC0HS and DTGC0LS can be inverted independently.

Set DTGC0CTL.INVHS to invert DTGC0HS signal.

Set DTGC0CTL.INVLS to invert DTGC0LS signal.

Figure 14-5. DTGC0 Bypass and Inverting LS Example

14.2.12.5. Dead Time Insertion

Set **DTGC0CTL.BYPASS** to 0 to enable dead time insertion. In dead time insertion mode only PWMC1 signal is used to generate DTGC0HS and DTGC0LS. PWMC0 signal is ignored and can be used for other purposes.

Set **DTGC0LED** for desired leading-edge and **DTGC0TED** for desired trailing edge in clock-cycles defined by **TCCTL.DTGCLK** clock source

NOTE:

In dead time insertion mode the DTGC0LS signal is automatically inverted compared to PWMC1 signal. Set **DTGC0CTL.INVLS** to 0, if this is desired behavior.

Figure 14-6. DTGC0 LED and TED Example

14.2.12.6. Dead Time Insertion With On Time Preservation

Set **DTGC0CTL.OTP** to 1 to enable on time preservation. In this mode the DTGC0HS is same as PWMC1 on time.

NOTE:

In dead time insertion mode the DTGC0LS signal is automatically inverted compared to PWMC1 signal. Set **DTGC0CTL.INVLS** to 0, if this is desired behavior.

Figure 14-7. DTGC0 LED and TED with On Time Preservation Example

14.2.13. PWM Output and Capture Input Pin Selection

Each of the DTGC0HS, DTGC0LS outputs, and CCx inputs can be routed to different I/Os, allowing great flexibility in pin assignments.

In capture mode only one I/O should be enabled as input to the capture. If more than one pin input is enabled, the capture might not work properly.

Note:

Not all pins are available pending package option, consult data sheet for available pins and signals.

Table 14-2. Timer C Signal to Pin Mapping

PWM	CAPTURE	DEADTIME	PINS
PWMC0	CC0	DTGC0LS	PA4
PWMC1	CC1	DTGC1LS	PA7, PD5

15. TIMER D

15.1. Register

15.1.1. Register Map

Table 15-1. Timer D Register Map

ADDRESS	NAME	DESCRIPTION RESET VALUE					
Timer D							
0x4010 0000	TDCTL	Timer D control 0x0000 0000					
0x4010 0004	TDPRD	Timer D period 0x0000 000					
0x4010 0008	TDCTR	Timer D counter 0x0000 0000					
Timer D PWMD Capture and Compare							
0x4010 0040	TDCCTRL0	Timer D capture and compare 0 control 0x0000 0					
0x4010 0044	TDCTR0	Timer D counter 0 0					
0x4010 0048	TDCCTRL1	Timer D capture and compare 1 control 0x0					
0x4010 004C	TDCTR1	Timer D counter 1 0x0000 0000					
Timer D Dead Time Generator							
0x4010 00A0	DTGD0CTL	Timer D dead time generator 0 control 0x0000 0					
0x4010 00A4	DTGD0LED	Timer D dead time generator 0 leading edge delay 0x0000 000					
0x4010 00A8	DTGD0TED	Timer D dead time generator 0 trailing edge delay	0x0000 0000				

15.1.2. TDCTL

Register 15-1. TDCTL (Timer D Control, 0x4010 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:14	Reserved	RO	0x0	Reserved
13	DTGCLK	RW	0x0	DTGDx clock select 1b: DTGDx use clock after TDCTL.CLKDIV 0b: DTGDx use clock selected by TDCTL.CLK
12	SYNC	RW	0x0	Timer D synchronization 1b: Synchronize Timer D, enable SYNC_IN 0b: Do not synchronize Timer D, disabled SYNC_IN
11:10	MODE	RW	0x0	Timer D Mode 11b: reserved 10b: up / down 01b: up 00b: disabled
9	CLK	RW	0x0	Timer D clock input source 1b: ACLK 0b: HCLK

BIT	NAME	ACCESS	RESET	DESCRIPTION
8:6	CLKDIV	RW	0x0	Timer D input clock divider 111b: / 128 110b: / 64 101b: /32 100b: /16 011b: /8 010b: /4 001b: /2 000b: /1
5	INTEN	RW	0x0	Timer D interrupt enable 1b: enable Timer D interrupt 0b: disable Timer D interrupt
4	INT	RW1C	0x0	Timer D interrupt 1b: interrupt, clear by write 1b 0b: no interrupt
3	SS	RW	0x0	Timer D single shot 1b: single shot mode 0b: continuous timer mode
2	CLR	RW	0x0	Timer D clear 1b: Clear Timer D, hold Timer D in reset and set SYNC_OUT 0b: Do not clear Timer and clear SYNC_OUT
1	Reserved	RO	0x0	Reserved
0	PRDL	RW	0x0	Timer D TDPRD update 1b: Latch new TDPRD value when Timer D counting down, TDCTR value = 0x1 and TDCTL.MODE = 10b 0b: Latch new TDPRD value when Timer D counting up and TDCTR value = TDPRD – 0x1.

15.1.3. TDPRD

Register 15-2. TDPRD (Timer D Period, 0x4010 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0	Reserved
15:0	PERIOD	RW	0x0	Timer D period value

15.1.4. TDCTR

Register 15-3. TDCTR (Timer D Counter, 0x4010 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CTR	RW	0x0	Current Timer D counter value

15.1.5. TDCC0CTL

Register 15-4. TDCC0CTRL (Timer D PWMD0 Capture and Compare Control, 0x4010 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMD0 input 0b: Compare mode PWMD0 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMD0 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

15.1.6. TDCC0CTR

Register 15-5. TDCC0CTR (Timer D PWMD0 Capture and Compare Counter, 0x4010 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved
15:0	CCCTR	RW	0x0	Counter value for PWMD0 compare mode or counter value for PWMD0 capture mode

15.1.7. TDCC1CTRL

Register 15-6. TDCC1CTL (Timer D PWMD1 Capture and Compare Control, 0x4010 0048)

		•		, , ,
BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	RO	0x0	Reserved
4	CCMODE	RW	0x0	Capture and compare mode 1b: Capture mode PWMD1 input 0b: Compare mode PWMD1 output
3	CCINTEN	RW	0x0	Capture and compare interrupt enable 1b: enable interrupt 0b: disable interrupt
2	CCINT	RW1C	0x0	Capture and compare interrupt 1b: interrupt, clear by write 1b 0b: no interrupt detected
1:0	CCEDG	RW	0x0	Capture mode edge detect PWMD1 11b: reserved 10b: high to low transition and low to high transition 01b: low to high transition only 00b: high to low transition only

15.1.8. TDCC1CTR

Register 15-7. TDCC1CTR (Timer D PWMD1 Capture and Compare Counter, 0x4010 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	RO	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
15:0	CCCTR	RW	0x0	Counter value for PWMD1 compare mode or counter value for PWMD1 capture mode

15.1.9. DTGD0CTL

Register 15-8. DTGD0CTL (Timer D Dead Time Generator 0 Control, 0x4010 00A0)

	tegister to a Diabout (Timer Dibbut Time Contrator of Contrator)					
BIT	NAME	ACCESS	RESET	DESCRIPTION		
31:8	Reserved	RO	0x0	Reserved		
7	BYPASS	RW	0x1	Bypass dead time generator 1b: DTGD0 bypass active, DTGD0LS = PWMD0, DTGD0HS = PWMD1 0b: DTGD0 bypass inactive, dead time inserted to DTGD0LS and DTGD0HS, DTGD0LS = PWMD1, DTGD0HS = PWMD1		
6	ОТР	RW	0x0	One Time Preservation 1b: DTGD0HS high time is same as PWMD1 high time and is shifted by DTGD0LED 0b: DTGD0HS high time is reduced by DTGD0LED		
5	INVHS	RW	0x0	Invert DTGD0HS output signal 1b: invert DTGD0HS 0b: do not invert DTGD0HS		
4	INVLS	RW	0x0	Invert DTGD0LS output signal 1b: invert DTGD0LS 0b: do not invert DTGD0LS		
3:0	Reserved	RO	0x0	Reserved		

15.1.10. DTGD0LED

Register 15-9. DTGD0LED (Timer D Dead Time Generator 0 Leading Edge Delay, 0x4010 00A4)

_				
BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	LED	RW	0x0	Counter value DTGD0 leading edge dead time in clock cycles defined by TDCTL.DTGCLK

15.1.11. DTGD0TED

Register 15-10. DTGD0TED (Timer D Dead Time Generator 0 Trailing Edge Delay, 0x4010 00A8)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:12	Reserved	RO	0x0	Reserved
11:0	TED	RW	0x0	Counter value DTGD0 trailing edge dead time in clock cycles defined by TDCTL.DTGCLK

15.2. Details of Operation

15.2.1. Block Diagram

Figure 15-1. Timer D

15.2.2. Configuration

Following blocks need to be configured for correct use of the Timer D:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller
- Gate Driver
- Auto sequencing controller (ASC)
- Timer A
- Timer B
- Timer C

15.2.3. Timer D Block

The timer D block consist of a 16-bit timer with up mode or up/down mode with 2 PWM/capture units and 1 dead-time generator unit.

15.2.4. Timer

Once enabled the timer counts up to the Timer D period value **TDPRD**. The **TDPRD** register can be written to while the timer is running, the new **TDPRD** value will be latched when the counter reaches old **TDPRD** value in up mode. In up/down mode there is the option to latch the new **TDPRD** value when counter counts back to zero. **TDCTL.PRDL** configures when the timer will be updated with the new **TDPRD** value in up/down mode.

The current timer value is accessible with the timer D counter value register TDCTR.

15.2.5. Register Update

The TDPRD, TDCCxCTR register can be written to while the timer is running, the new TDPRD, TDCCxCTR value will be latched when the counter reaches old TDPRD value in up mode. In up/down mode there is the option to latch the new TDPRD, TDCCxCTR values when counter counts back to zero. TDCTL.PRDL configures when the timer will be updated with the new TDPRD, TDCCxCTR value in up/down mode.

15.2.6. Timer Modes

The timer supports 3 modes of operation: disabled, up and up/down using TDCTL.MODE.

By default, the timer mode is disabled. When the timer is disabled, the timer counter does not increment or decrement. If the timer is disabled when previously in up or up/down mode, then the timer counter stops where it is. If the timer is re-enabled by putting it back into up or up/down modes, then the counter continues from the point at which it was disabled. To reset the current counter value **TDCTR** to zero use **TDCTL.CLR**.

In up mode, the timer starts counting from 0 up to the value of **TDPRD**. When the timer counter reaches the value of **TDPRD**, then the timer counter is reset to a value of 0. This mode is typically used for timed events or edge-aligned PWM output.

In up/down mode, the timer starts counting from 0 up to the value of **TDPRD**, and then back down to a value of 0. This timer mode is typically used for center-aligned PWM output. It can also be used for timed events, and will allow a longer timer range due to the fact it counts up and down

15.2.7. Single Shot Mode

The timer can be configured to run either once or continuously.

When the timer is configured in single shot mode using **TDCTL.SS** the timer will only count to **TDPRD** value and stops in up mode. In up/down mode the timer will count to **TDPRD** and back to zero only once.

To start the timer in single-shot mode, **TDCTL.SS** must be set. The timer will start when **TDCTL.CLR** is set. To re-start a single-shot timer, **TDCTL.CLR** must be reset, and then set again.

15.2.8. Input Clock And Pre-Scaler

The timer can be configured to use HCLK or ACLK using **TDCTL.CLK**. The input clock for the can be divided further down from /1 to /128 using the **TDCTL.CLKDIV**.

15.2.9. Timer Synchronization

The Timer A, B, C, D in the system have the ability to have synchronization between them. Each timer has a synchronization in signal (SYNC_IN) and the synchronization out signal (SYNC_OUT).

Timer D can be synchronized with Timer A, B, or C as slave.

The timer asserts the SYNC_OUT pulse when the **TDCTL.CLR** bit is set and de-asserts the SYNC_OUT pulse when the **TDCTL.CLR** bit is cleared.

If timer D that need to be synchronized as slave with master timer C need to set the **TxCTL.SYNC** bit. If this is bit is not set, then the sync in signal is ignored and the timer operates independently.

When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is asserted, the timer clears the timer counter. The timer counter is also cleared anytime the **TxCTL.CLR** bit is set to a 1. When the **TxCTL.SYNC** bit is set and the SYNC_IN signal is de-asserted and the timer mode is either up or up/down, then the timer will start counting. The timer will not start counting when the mode is set to up or up/down unless the SYNC_IN signal is de-asserted when **TxCTL.SYNC** is set.

NOTE:

In order for this feature to work correctly, all timers that are synchronized must be set to the same mode (up or up/down), with the same timer pre-scaler, timer clock input and timer period.

To enable synchronized timers, the following steps should be followed:

- 1. The slave timer B, C, D is configured with the selected timer input clock, timer pre-scaler, timer period and set the **TxCTL.SYNC** bit. The timer should still be set to disabled at this point.
- 2. The master timer A, B or C is configured with the same timer input clock, timer pre-scaler, timer period and sets the **TxCTL.CLR** bit. This should clear all timer counters of the master and slave timers.
- 3. The slave timers set the timer mode to the desired state (either up or up/down).
- 4. The master timer sets the timer mode to either up or up/down and clears the **TxCTL.CLR** bit. This should start the master and all slave timers simultaneously based on the selected timer clock input.
- 5. Once configured as above, all timers can be disabled by the master setting **TxCTL.CLR** signal, to assert the SYNC_OUT signal. The timers can be re-enabled by clearing the **TxCTL.CLR** bit, which de-asserts the SYNC_OUT signal.

15.2.10. PWM/Compare Units

Timer D supports up to 2 PWM/Capture units PWMD0 to PWMD1. Each PWM/Compare unit can be configured independently in PWM mode or capture mode using **TDCCxCTL.CCMODE**.

15.2.10.1. PWM Mode

The PWM mode is enabled with setting TDCCxCTRL.CCMODE to 0.

The timer configuration allows either edge-aligned (timer in up mode) or center-aligned (timer in up/down mode) modes of PWM operation.

In both edge-aligned and center-aligned modes of operation, the timer block outputs a PWM waveform that starts out high at a **TDCTR** value of 0 and then transitions to low when **TDCTR** counts up to **TDCCxCTR** compare value.

To configure a duty cycle of 0%, the **TDCCxCTR** should be set to 0; to configure a duty cycle of 100%, the **TDCCxCTR** value should be set to a value greater than or equal to **TDPRD**.

The polarity of the timer PWM outputs are not configurable. Adjustments to the polarity of the PWM outputs may be adjusted in the Dead-Time Generator (DTG) unit connected to the timer peripheral for each output independently.

Figure 15-2. PWMD0 and PWMD1 Example Using Timer D Up Mode and Up/Down Mode

15.2.10.2. Capture Mode

The Capture mode is enabled with setting **TDCCxCTRL.CCMODE** to 1. The trip condition for capture mode can be configured using **TDCCxCTRL.CCEDGE**, high-to-low signal edge transition, low-to-high signal edge transition or both.

When trip condition is detected the actual **TDCTR** value is copied into **TDCCxCTR**.

Figure 15-3. CD0 and CD1 Capture Example

15.2.11. Timer and PWM/Capture Interrupt

The timer may generate interrupt based on the base timer wrap, or when a capture and compare event occurs.

In the base timer both up and up/down timer modes allow an interrupt to be generated when the count reaches 0. Each time the count reaches zero, the **TDCTL.INT** interrupt flag is set. If the interrupt is enabled using the **TDCTL.INTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TDCTL.INT** interrupt flag bit.

In the capture and compare PWM units, each time a compare threshold is reached or each time a capture event is detected the **TDCCxCTRL.CCINT** bit will be set for that particular timer unit. If the interrupt is enabled via the **TDCCxCTRL.CCINTEN**, then the Timer IRQ signal will be asserted to the CPU. The interrupt flag may be cleared by writing a 1 to the **TDCCxCTRL.CCINT** interrupt flag bit.

The timer IRQ signal will be asserted if any of the timer interrupt flags **TDCTL.INT** or **TDCCxCTRL.CCINT** are set. The Timer IRQ signal will be de-asserted when all of the timer interrupt flags are cleared.

15.2.12. Dead-Time Generator

The dead-time generator can be configured to introduce dead-time for a complementary PWM output. The Timer D block supports up to 1 dead time generator.

15.2.12.1. Dead Time Input Clock Selection

The clock source for the DTGD0 can be selected using TDCTL.DTGCLK.

Clear **TDCTL.DTGCLK** to 0 to use clock source selected by **TDCTL.CLK** directly to use higher resolution for dead time insertion.

Set **TDCTL.DTGCLK** to 1 to use divided clock source selected by **TDCTL.CLK and TDCTL.CLKDIV** divider to use the same dead time resolution as Timer D.

15.2.12.2. Dead Time Range

The resolution for leading edge and trailing edge dead time is 12bits. Leading and trailing edge can be set independently using **DTGD0LED** and **DTGD0TED**.

15.2.12.3. Bypass Mode

Set **DTGD0CTL.BYPASS** to 0 to enable dead time insertion.

Set **DTGD0CTL.BYPASS** to 1 to enable bypass mode, no dead time is inserted, PWMD1 is routed to DTGD0HS and PWMD0 is routed to DTGD0LS.

The DTGD0HS and DTGD0LS signals can be inverted in bypass mode.

Figure 15-4. DTGD0 Bypass Example

15.2.12.4. Inverting PWM Signal

The DTG output signals DTGD0HS and DTGD0LS can be inverted independently.

Set DTGD0CTL.INVHS to invert DTGD0HS signal.

Set DTGD0CTL.INVLS to invert DTGD0LS signal.

Figure 15-5. DTGD0 Bypass and Inverting LS Example

15.2.12.5. Dead Time Insertion

Set **DTGD0CTL.BYPASS** to 0 to enable dead time insertion. In dead time insertion mode only PWMD1 signal is used to generate DTGD0HS and DTGD0LS. PWMD0 signal is ignored and can be used for other purposes.

Set **DTGD0LED** for desired leading-edge and **DTGD0TED** for desired trailing edge in clock-cycles defined by **TDCTL.DTGCLK** clock source

NOTE:

In dead time insertion mode the DTGD0LS signal is automatically inverted compared to PWMD1 signal. Set **DTGD0CTL.INVLS** to 0, if this is desired behavior.

Figure 15-6. DTGD0 LED and TED Example

15.2.12.6. Dead Time Insertion with On Time Preservation

Set **DTGD0CTL.OTP** to 1 to enable on time preservation. In this mode the DTGD0HS is same as PWMD1 on time.

NOTE:

In dead time insertion mode the DTGD0LS signal is automatically inverted compared to PWMD1 signal. Set **DTGD0CTL.INVLS** to 0, if this is desired behavior.

Figure 15-7. DTGD0 LED and TED with On Time Preservation Example

15.2.13. PWM Output and Capture Input Pin Selection

Each of the DTGD0HS, DTGD0LS outputs, and CDx inputs can be routed to different I/Os, allowing great flexibility in pin assignments.

In capture mode only one I/O should be enabled as input to the capture. If more than one pin input is enabled, the capture might not work properly.

Note:

Not all pins are available pending package option, consult data sheet for available pins and signals.

Table 15-2. Timer D Signal to Pin Mapping

PWM	CAPTURE	DEADTIME	PINS
PWMD0	CD0	DTGD0LS	PA5, PD7
PWMD1	CD1	DTGD1LS	PD4

16. FLASH MEMORY CONTROLLER

16.1. Register

16.1.1. Register Map

Table 16-1. FLASH Memory Controller Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE				
FLASH Memory Controller							
0x4002 0000	FLASHLOCK	FLASH lock	0x0000 0000				
0x4002 0004	FLASHCTL	FLASH control and status	0x0000 0000				
0x4002 0008	FLASHPAGE	FLASH page selection	0x0000 0000				
0x4002 000C	Reserved	Reserved	0x0000 0000				
0x4002 0010	Reserved	Reserved	0x0000 0000				
0x4002 0014	FLASHPERASE	FLASH page erase	0x0000 0000				
0x4002 0018	Reserved	Reserved	0x0000 0000				
0x4002 001C	Reserved	Reserved	0x0000 0000				
0x4002 0020	Reserved	Reserved	0x0000 0000				
0x4002 0024	SWDACCESS	SWD access control	0x0000 0000				
0x4002 0028	FLASHWSTATE	FLASH wait state control	0x0000 0003				
0x4002 002C	FLASHBWRITE	FLASH buffered write enable	0x0000 0000				
0x4002 0030	FLASHBWDATA	FLASH buffered write data and address	0x0000 0000				

16.1.2. FLASHLOCK

Register 16-1. FLASHLOCK (FLASH Lock, 0x4002 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:0	LOCK	RW	0x0	Unlock access to FLASH registers and FLASH memory 0xAAAA AAAA: allow write and erase to FLASH pages 0x1234 5678: allow write of FLASHWSTATE register 0xF983 62AB: allow write access to address 0x0010 0008 to disable SWD

16.1.3. FLASHCTL

Register 16-2. FLASHCTL (FLASH Control and Status, 0x4002 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	R	0x0	Reserved
4	Reserved	R	0x0	Reserved
3	Reserved	R	0x0	Reserved
2	Reserved	R	0x0	Reserved
1	PERASE	R	0x0	Page erase active 1b: page erase in progress 0b: page erase finished or no page erase in progress
0	WRITE	R	0x0	Buffered write active, only used in conjunction with FLASHBWRITE 1b: buffered write in progress 0b: buffered write finished or no buffered write in progress

16.1.4. FLASHPAGE

Register 16-3. FLASHPAGE (FLASH Page Selector, 0x4002 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	R	0x0	Reserved
4:0	PAGE	RW	0x0	FLASH page selector for page erase 0x1F: page 31, 0x0000 7C00 to 0x0000 7FFF 0x1E: page 30, 0x0000 7800 to 0x0000 7BFF 0x1D: page 29, 0x0000 7400 to 0x0000 73FF 0x1C: page 28, 0x0000 7000 to 0x0000 73FF 0x1B: page 27, 0x0000 6C00 to 0x0000 6FFF 0x1A: page 26, 0x0000 6800 to 0x0000 6FFF 0x18: page 25, 0x0000 6400 to 0x0000 6FFF 0x18: page 24, 0x0000 6000 to 0x0000 6FFF 0x18: page 24, 0x0000 5000 to 0x0000 5FFF 0x16: page 22, 0x0000 5500 to 0x0000 5FFF 0x16: page 21, 0x0000 5400 to 0x0000 5FFF 0x16: page 21, 0x0000 5400 to 0x0000 5FFF 0x13: page 21, 0x0000 5400 to 0x0000 5FFF 0x13: page 21, 0x0000 5400 to 0x0000 4FFF 0x12: page 18, 0x0000 4C00 to 0x0000 4FFF 0x11: page 19, 0x0000 4C00 to 0x0000 4FFF 0x11: page 17, 0x0000 4400 to 0x0000 4FFF 0x11: page 16, 0x0000 4400 to 0x0000 4FFF 0x01: page 16, 0x0000 3C00 to 0x0000 3FFF 0x0E: page 14, 0x0000 3S00 to 0x0000 3FFF 0x0E: page 14, 0x0000 3800 to 0x0000 3FFF 0x0D: page 13, 0x0000 3400 to 0x0000 3FFF 0x0D: page 11, 0x0000 2C00 to 0x0000 3FFF 0x0B: page 11, 0x0000 2C00 to 0x0000 2FFF 0x0B: page 10, 0x0000 2400 to 0x0000 2FFF 0x0B: page 10, 0x0000 2400 to 0x0000 2FFF 0x0B: page 5, 0x0000 1800 to 0x0000 2FFF 0x0B: page 6, 0x0000 1800 to 0x0000 1FFF 0x0B: page 5, 0x0000 1800 to 0x0000 1FFF 0x0B: page 5, 0x0000 1800 to 0x0000 1FFF 0x0B: page 5, 0x0000 1800 to 0x0000 1FFF 0x0B: page 3, 0x0000 1000 to 0x0000 0FFF 0x0B: page 3, 0x0000 1000 to 0x0000 0FFF 0x0B: page 3, 0x0000 1000 to 0x0000 0FFF 0x0B: page 3, 0x00000 0x0000 0x

16.1.5. FLASHPERASE

Register 16-4. FLASHPERASE (FLASH Page Erase, 0x4002 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:0	PERASE	R	0x0	Write of correct key value to this register starts FLASH page erase selected in FLASHPAGE.PAGE 0xA5A5 5A5A: start FLASH page erase selected by FLASHPAGE.PAGE

16.1.6. SWDACCESS

Register 16-5. SWDACCESS (SDW Access Status, 0x4002 0024)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:0	DEBUG	R	0x0	Status of SWD debug 0xFFFFFFF: SWD access is enabled 0x69696969: SWD access is disabled

16.1.7. FLASHWSTATE

Register 16-6. FLASHWSTATE (FLASH Access Wait State, 0x4002 0028)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:2	Reserved	RW	0x0	Reserved, must be set to 0x0
1:0	WSTATE	RW	0x3	FLASH access wait state 11b: 3 wait states for 75MHz < HCLK < 100MHz 10b: 2 wait states for 50MHz < HCLK < 75MHz 01b: 1 wait state for 25MHz < HCLK < 50MHz 00b: 0 wait state for HCLK < 25MHz

16.1.8. FLASHBWRITE

Register 16-7. FLASHBWRITE (Buffered FLASH Write, 0x4002 002C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:0	BWRITE	RW	0x0	Write of correct key value to this register starts buffered write operation 0xCA72 6B18: start buffered write of FLASHBWDATA

16.1.9. FLASHBWDATA

Register 16-8. FLASHBWDATA (Buffered FLASH Write Data, 0x4002 0030)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31	Reserved	RW	0x0	Reserved, must be set to 0x0
30	Reserved	RW	0x0	Reserved, must be set to 0x0
29:25	PAGE	RW	0x0	FLASH page selector to write to 0x1E: page 31, 0x0000 7C00 to 0x0000 7FFF 0x1E: page 30, 0x0000 7800 to 0x0000 7BFF 0x1D: page 29, 0x0000 7400 to 0x0000 73FF 0x1C: page 28, 0x0000 7000 to 0x0000 73FF 0x1B: page 27, 0x0000 6C00 to 0x0000 6FFF 0x1A: page 26, 0x0000 6800 to 0x0000 6FFF 0x1A: page 25, 0x0000 6400 to 0x0000 6FFF 0x18: page 24, 0x0000 6000 to 0x0000 63FF 0x17: page 23, 0x0000 5C00 to 0x0000 5FFF 0x16: page 22, 0x0000 5800 to 0x0000 5FFF 0x15: page 21, 0x0000 5400 to 0x0000 57FF 0x14: page 21, 0x0000 5400 to 0x0000 57FF 0x13: page 19, 0x0000 5000 to 0x0000 57FF 0x14: page 20, 0x0000 5000 to 0x0000 4FFF 0x12: page 18, 0x0000 4C00 to 0x0000 4FFF 0x11: page 17, 0x0000 4400 to 0x0000 4FFF 0x10: page 16, 0x0000 4000 to 0x0000 4FF 0x0F: page 15, 0x0000 3C00 to 0x0000 3FFF 0x0F: page 14, 0x0000 3800 to 0x0000 3FFF 0x0C: page 13, 0x0000 3800 to 0x0000 3FFF 0x0C: page 14, 0x0000 3800 to 0x0000 3FFF 0x0C: page 11, 0x0000 2C00 to 0x0000 2FFF 0x0A: page 10, 0x0000 2C00 to 0x0000 2FFF 0x0A: page 9, 0x0000 2C00 to 0x0000 2FFF 0x0B: page 9, 0x0000 2C00 to 0x0000 2FFF 0x0B: page 7, 0x0000 1C00 to 0x0000 1FFF 0x0C: page 7, 0x0000 1C00 to 0x0000 1FFF 0x0F: page 7, 0x0000 1C00 to 0x0000 1FFF 0x0B: page 3, 0x0000 1C00 to 0x0000 1FFF 0x0B: page 3, 0x0000 1C00 to 0x0000 1FFF 0x0B: page 3, 0x0000 1C00 to 0x0000 0FFF 0x0B: page 3, 0x0000 1C00 to 0x0000 0FFF 0x0B: page 3, 0x0000 0x000 0x0000 0FFF 0x0B: page 1, 0x00000 0x0000 0x0000 0x0FF 0x0B: page 1, 0x00000 0x0000 0x0000 0x0FF 0x0B: page 1, 0x00000 0x0000 0x
24:16	ADDRESS	RW	0x0	Relative half word address within selected FLASHBWDATA.PAGE
15:0	DATA	RW	0x0	Data to write

16.2. Details of Operation

16.2.1. Block Diagram

Figure 16-1. FLASH Memory Controller

16.2.2. Configuration

Following blocks need to be configured for correct use of the FLASH:

Clock Control System (CCS)

16.2.3. FLASH Memory

The Flash memory controller allows configuration of the FLASH memory. FLASH wait states, FLASH erase, buffered FLASH write, and SWD debug access can be configured. The FLASH memory has up to 32 pages of 1kByte each.

16.2.4. Writing to FLASH Controller Registers

The FLASH Controller registers are write protected to reduce chances of accidental erase or modification of FLASH memory. Each write to a FLASH controller register is a 2 step process. The first step is to write the correct key into **FLASHLOCK** followed by a FLASH controller register write.

Without correct key any writes to FLASH controller register will be ignored. Flash controller reads are always possible.

16.2.5. FLASH Wait State

After device reset, the **FLASHWSTATE** is set to 0x3. To allow optimal FLASH access time without delay, the FLASH wait state need to be set according to HCLK frequency used. See register table for correct setting.

To write to FLASHWSTATE register, FLASHLOCK need to be set to 0x1234 5678.

16.2.6. FLASH Page Erase

To erase a page of FLASH memory, set **FLASHLOCK** to 0xAAAA AAAA first, then set **FLASHBWDATA.PAGE** to the page to be erased and then set **FLASHPERASE** to 0xA5A5 5A5A. The FLASH page operation will start, **FLASHCTL.PERASE** is set to 1b and any access to FLASH memory address space is stalled until erase operation is finished. **FLASHCTL.PERASE** is set to 0b when erase operation is finished.

It is not recommended to erase FLASH pages while executing from FLASH as any access to FLASH is stalled until the erase operation is finished. Either execute from SRAM or use SWD debug interface.

16.2.7. Write to FLASH

Only half-word address aligned half-word writes are supported. To write a half word to FLASH memory, make sure the memory location is erased by doing a read, it should return 0xFFFF. Set **FLASHLOCK** to 0xAAAA AAAA first, then write a half-word to the memory address directly.

It is not recommended to write to FLASH while executing from FLASH as any access to FLASH is stalled until the erase operation is finished. Either execute from SRAM or use SWD debug interface.

16.2.8. Buffered Write to FLASH

Only half-word address aligned half-word writes are supported. The FLASH memory controller also allows buffered write to FLASH, to allow CPU still react to interrupts or perform other tasks while waiting for FLASH write to finish when executing from SRAM.

To write a half word to FLASH memory, make sure the memory location is erased by doing a read, it should return 0xFFFF. Set **FLASHLOCK** to 0xAAAA AAAA first, then write to **FLASHBWDATA**, with **FLASHBWDATA.DATA** the half-word you want to write, and **FLASHBWDATA.PAGE** the page where the memory location resides and **FLASHBWDATA.ADDRESS** the relative address of the memory location.

The FLASH page operation will start, **FLASHCTL.WRITE** is set to 1b, AHB bus control will be given back to CPU to allow execution of other commands. Any access to FLASH memory while buffered write operation is active will stall. **FLASHCTL.WRITE** is set to 0b when buffered write operation is finished.

To calculate FLASHBWDATA.PAGE use:

$$PAGE = \frac{Memoryaddress}{pagesize} \tag{4}$$

Where:

PAGE: integer value for FLASHBWDATA.PAGE

Memoryaddress: Word memory address pagesize: FLASH page size: 0x400

Then to calculate **FLASHBWDATA.ADDRESS** use:

$$ADDRESS = \frac{(Memoryaddress - PAGE * pagesize)}{2}$$
 (5)

Where:

ADDRESS: integer value for FLASHBWDATA.ADRESS

PAGE: integer value for FLASHBWDATA.PAGE

PAC5223 User Guide

Memoryaddress: Word memory address

pagesize: FLASH page size: 0x400

Example:

memoryaddress: 0x0000 0438

PAGE = 0x0000 0438 / 0x400 = 0x01

ADDRESS = (0x0000 0438 - 0x01*0x400)/0x2 = 0x38/0x2 = 0x1C

It is not recommended to write to FLASH while executing from FLASH as any access to FLASH is stalled until the erase operation is finished. Either execute from SRAM or use SWD debug interface.

16.2.9. SWD Debug Access Disable

The SWD debug access is enabled by default and can be disabled by a FUSE to prevent access of device memory.

Caution need to be taken. This action is not reversible.

To disable SWD set **FLASHLOCK** to 0xF983 62AB first, then write 0x6969 6969 to address 0x0010 0008 will disable the SWD debug access.

17. ADC AND AUTO SEQUENCER

17.1. Register

17.1.1. Register Map

Table 17-1. Register Map – EMUX

ADRESS	NAME	DESCRIPTON	RESET VALUE
EMUX			
0x4015 0000	EMUXCTL	ADC external MUX control register	0x0000 0000
0x4015 0004	EMUXDATA	ADC external MUX data register	0x0000 0000

Table 17-2. Register Map – ADC

ADRESS	NAME	DESCRIPTON	RESET VALUE		
ADC					
0x4015 0008	ADCCTL	ADC control register	0x0000 0000		
0x4015 000C	ADCR	ADC conversion result register 0x0000			
0x4015 0010	ADCINT	ADC Interrupt register 0x0000 0000			

Table 17-3. Register Map – ADC Auto Sequencer 0

ADRESS	NAME	DESCRIPTON	RESET VALUE
ADC Auto Sequ	iencer -0		
0x4015 0040	AS0CTL	Automated ADC sampling 0 control register	0x0000 0000
0x4015 0044	AS0S0	Automated Sampling 0 Sequence 0 register	0x0000 0000
0x4015 0048	AS0R0	Automated Sampling 0 Sample result 0 register	0x0000 0000
0x4015 004C	AS0S1	Automated Sampling 0 Sequence 1 register	0x0000 0000
0x4015 0050	AS0R1	Automated Sampling 0 Sample result 1 register	0x0000 0000
0x4015 0054	AS0S2	Automated Sampling 0 Sequence 2 register	0x0000 0000
0x4015 0058	AS0R2	Automated Sampling 0 Sample result 2 register	0x0000 0000
0x4015 005C	AS0S3	Automated Sampling 0 Sequence 3 register	0x0000 0000
0x4015 0060	AS0R3	Automated Sampling 0 Sample result 3 register	0x0000 0000
0x4015 0064	AS0S4	Automated Sampling 0 Sequence 4 register	0x0000 0000
0x4015 0068	AS0R4	Automated Sampling 0 Sample result 4 register	0x0000 0000
0x4015 006C	AS0S5	Automated Sampling 0 Sequence 5 register	0x0000 0000
0x4015 0070	AS0R5	Automated Sampling 0 Sample result 5 register	0x0000 0000
0x4015 0074	AS0S6	Automated Sampling 0 Sequence 6 register	0x0000 0000
0x4015 0078	AS0R6	Automated Sampling 0 Sample result 6 register	0x0000 0000
0x4015 007C	AS0S7	Automated Sampling 0 Sequence 7 register	0x0000 0000
0x4015 0080	AS0R7	Automated Sampling 0 Sample result 7 register	0x0000 0000

Table 17-4. Register Map – ADC Auto Sequencer 1

ADRESS	NAME	DESCRIPTON	RESET VALUE				
ADC Auto Sequencer -1							
0x4015 0100	AS1CTL	Automated ADC sampling 1 control register	0x0000 0000				
0x4015 0104	AS1S0	Automated Sampling 1 Sequence 0 register	0x0000 0000				
0x4015 0108	AS1R0	Automated Sampling 1 Sample result 0 register	0x0000 0000				
0x4015 010C	AS1S1	Automated Sampling 1 Sequence 1 register	0x0000 0000				
0x4015 0110	AS1R1	Automated Sampling 1 Sample result 1 register	0x0000 0000				
0x4015 0114	AS1S2	Automated Sampling 1 Sequence 2 register	0x0000 0000				
0x4015 0118	AS1R2	Automated Sampling 1 Sample result 2 register	0x0000 0000				
0x4015 011C	AS1S3	Automated Sampling 1 Sequence 3 register	0x0000 0000				
0x4015 0120	AS1R3	Automated Sampling 1 Sample result 3 register	0x0000 0000				
0x4015 0124	AS1S4	Automated Sampling 1 Sequence 4 register	0x0000 0000				
0x4015 0128	AS1R4	Automated Sampling 1 Sample result 4 register	0x0000 0000				
0x4015 012C	AS1S5	Automated Sampling 1 Sequence 5 register	0x0000 0000				
0x4015 0130	AS1R5	Automated Sampling 1 Sample result 5 register	0x0000 0000				
0x4015 0134	AS1S6	Automated Sampling 1 Sequence 6 register	0x0000 0000				
0x4015 0138	AS1R6	Automated Sampling 1 Sample result 6 register	0x0000 0000				
0x4015 013C	AS1S7	Automated Sampling 1 Sequence 7 register	0x0000 0000				
0x4015 0140	AS1R7	Automated Sampling 1 Sample result 7 register	0x0000 0000				

17.1.2. EMUXCTL

Register 17-1. EMUXCTL (ADC external MUX control register 0x4015 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:6	Reserved	R	0x0	Reserved
5	EMUXC	RW	0x0	ADC external MUX control 1b: EMUX is controlled by auto-sequencer unit 0b: EMUX manual control
4	EMUXBUSY	RW	0x0	ADC external MUX status 1b: ADC external MUX sending data 0b: ADC external MUX not busy or not used
3	EMUXDONE	RW	0x0	ADC external MUX data send done, auto-clear with read or when new data is sent over EMUX 1b: ADC external MUX data sent 0b: ADC external MUX busy
2:0	EMUXCDIV	RW	0x0	ADC external mux clock to FCLK divider 111b: FCLK/8 110b: FCLK/7 101b: FCLK/6 100b: FCLK/5 011b: FCLK/4 010b: FCLK/3 001b: FCLK/2 000b: FCLK/1

Power Application Controller

17.1.3. EMUXDATA

Register 17-2. EMUXDATA (EMUX data register 0x4015 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	DATA	RW	0x0	EMUX data, writing this register will start transmission over EMUX

17.1.4. ADCCTL

Register 17-3. ADCCTL (ADC control register 0x4015 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	R	0x0	Reserved
15	ADCEN	RW	0x0	ADC module enable 1b: enable ADC module 0b: turn off ADC module
14	ADCSTART	R/W	0x0	Start ADC conversion. A write of 1b will start ADC conversion if ADCCTL.ADCBUSY = 0b and ADCCTL.ADCMODE = 00b. 1b: start ADC conversion 0b: stop ADC conversion, also stop repeated ADC conversions ADCCTL.ADCREPEAT = 1b.
13	ADCREPEAT	R/W	0x0	ADC repeat mode 1b: repeated conversion, also auto rearms auto sequencer 0b: single shot conversion
12:10	ADCMODE	R/W	0x0	ADC conversion mode 111b: automated sequencer 0 and 1 independently triggered 110b: automated sequencer 0 and 1 daisy chained trigger on AS0 101b: automated sequencer 1 only trigger condition 100b: automated sequencer 0 only trigger condition 011b: automated sequencer 0 and 1 daisy chained 010b: automated sequencer 1 only 001b: automated sequencer 0 only 000b: single channel
9:8	Reserved	R	0x0	Reserved
7	ADCBUSY	R	0x0	ADC busy 1b: ADC conversion or auto sequencer active 0b: ADC no operation
6:4	ADCMUX	R/W	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: AD1 000b: AD0
3	DONE	R	0x0	ADC Conversion Complete 0b: not complete 1b: complete
2:0	ADCCDIV	R/W	0x0	ADC input clock FCLK divider 111b: FCLK/8 110b: FCLK/7 101b: FCLK/6 100b: FCLK/5 011b: FCLK/4 010b: FCLK/3 001b: FCLK/2 000b: FCLK/1

17.1.5. ADCCR

Register 17-4. ADCCR (ADC conversion result register 0x4015 000C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.6. ADCINT

Register 17-5. ADCINT (ADC Interrupt register 0x4015 0010)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:13	Reserved	R	0x0	Reserved
19:18	ASCINTSEQ	RW	0x0	Last Auto sequencer to trigger ADCINT.ASCINT 11b: Auto sequencer 1 and 0 triggered interrupt 10b: Auto sequencer 1 triggered interrupt 01b: Auto sequencer 0 triggered interrupt 00b: no trigger
17:16	ASCINTTR	RW	0x0	Last Auto sequencer to run 11b: reserved 10b: auto sequencer 1 to run 01b: auto sequencer 0 to run 00b: no sequencer to r
15:13	Reserved	R	0x0	Reserved
12	ASCINT_EN	RW	0x0	Enable auto sequencer collision interrupt 1b: enable ASCINT 0b: disable ASCINT
11	AS1INT_EN	RW	0x0	Enable auto sequencer 1 conversions finished interrupt 1b: enable AS1INT 0b: disable AS1INT
10	AS0INT_EN	RW	0x0	Enable auto sequencer 0 conversions finished interrupt 1b: enable AS0INT 0b: disable AS0INT
9	EMUXINT_EN	RW	0x0	Enable EMUX transfer finished interrupt 1b: enable EMUXINT 0b: disable EMUXINT
8	ADCINT_EN	RW	0x0	Enable ADC conversion finished interrupt 1b: enable ADCINT 0b: disable ADCINT
7:5	Reserved	RW	0x0	Reserved, must be set to 0
4	ASCINT	RW	0x0	Auto sequencer collision interrupt 1b: interrupt, clear by writing 1b to it 0b: no interrupt
				NOTE: This bit is cleared by writing a 1b to it.
3	AS1INT	RW	0x0	Auto sequencer 1 conversions finished interrupt 1b: interrupt, clear by writing 1b to it 0b: no interrupt
				NOTE: This bit is cleared by writing a 1b to it.
2	ASOINT	RW	0x0	Auto sequencer 0 conversions finished interrupt 1b: interrupt, clear by writing 1b to it 0b: no interrupt
				NOTE: This bit is cleared by writing a 1b to it.
1	EMUXINT	RW	0x0	EMUX data transfer finished interrupt 1b: interrupt, clear by writing 1b to it 0b: no interrupt
				NOTE: This bit is cleared by writing a 1b to it.

BIT	NAME	ACCESS	RESET	DESCRIPTION
0	ADCINT	RW	0x0	ADC conversion finished interrupt 1b: interrupt, clear by writing 1b to it 0b: no interrupt
				NOTE: This bit is cleared by writing a 1b to it.

17.1.7. AS0CTL

Register 17-6. AS0CTL (Auto Sequencer 0 control register 0x4015 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:13	Reserved	R	0x0	Reserved
12	AS0BUSY	RW	0x0	Auto sequencer 0 busy 1b: auto sequencer 0 sampling active 0b: auto sequencer 0 not active
11	AS0EN	RW	0x0	Auto sequencer 0 enable 1b: auto sequencer 0 enabled 0b: auto sequencer 0 not enabled
10:8	ASOD	RW	0x0	Auto sequencer 0 sampling depth 111b: 8 samples 110b: 7 samples 101b: 6 samples 100b: 5 samples 011b: 4 samples 010b: 3 samples 001b: 2 samples 000b: 1 sample
7	AS0TR	RW	0x0	Auto sequencer 0 trigger source 1b: Timer, as defined by AS0CTL.AS0TRTMR 0b: PWM, as defined by AS0CTL.AS0TRPWM
6	AS0TRE	RW	0x0	Auto sequencer 0 trigger source AS0CTL.AS0TR edge 1b: high to low edge 0b: low to high edge
5:4	AS0TRTMR	RW	0x0	Auto sequencer 0 timer trigger source 11b: Timer D 10b: Timer C 01b: Timer B 00b: Timer A
3:0	AS0TRPWM	RW	0x0	Auto sequencer 0 PWM trigger source 1111b: reserved 1110b: reserved 1101b: PWMD1 1100b: PWMD0 1011b: PWMC1 1010b: PWMC0 1001b: PWMB1 1000b: PWMB0 0111b: PWMA7 0110b: PWMA6 0101b: PWMA5 0100b: PWMA4 0011b: PWMA3 0010b: PWMA2 0001b: PWMA1 0000b: PWMA1

17.1.8. AS0S0

Register 17-7. AS0S0 (Auto sequencer 0-sample 0 control 0x4015 0044)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S0.EMUXD data after S/H of ADC 01b: send AS0S0.EMUXD data at beginning of this sample sequence 00b: do not send AS0S0.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.9. AS0R0

Register 17-8. AS0R0 (Auto sequencer 0-sample 0 result register 0x4015 0048)

	BIT	NAME	ACCESS	RESET	DESCRIPTION
	31:10	Reserved	R	0x0	Reserved
ſ	9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.10. AS0S1

Register 17-9. ASOS1 (Auto sequencer 0-sample 1 control 0x4015 004C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock

BIT	NAME	ACCESS	RESET	DESCRIPTION
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S1.EMUXD data after S/H of ADC 01b: send AS0S1.EMUXD data at beginning of this sample sequence 00b: do not send AS0S1.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.11. AS0R1

Register 17-10. ASOR1 (Auto sequencer 0-sample 1 result register 0x4015 0050)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.12. AS0S2

Register 17-11. AS0S2 (Auto sequencer 0-sample 2 control 0x4015 0054)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S2.EMUXD data after S/H of ADC 01b: send AS0S2.EMUXD data at beginning of this sample sequence 00b: do not send AS0S2.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.13. AS0R2

Register 17-12. AS0R2 (Auto sequencer 0-sample 2 result register 0x4015 0058)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.14. AS0S3

Register 17-13. AS0S3 (Auto sequencer 0-sample 3 control 0x4015 005C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S3.EMUXD data after S/H of ADC 01b: send AS0S3.EMUXD data at beginning of this sample sequence 00b: do not send AS0S3.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.15. AS0R3

Register 17-14. AS0R3 (Auto sequencer 0-sample 3 result register 0x4015 0060)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.16. AS0S4

Register 17-15. AS0S4 (Auto sequencer 0-sample 4 control 0x4015 0064)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock

BIT	NAME	ACCESS	RESET	DESCRIPTION
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S4.EMUXD data after S/H of ADC 01b: send AS0S4.EMUXD data at beginning of this sample sequence 00b: do not send AS0S4.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.17. AS0R4

Register 17-16. AS0R4 (Auto sequencer 0-sample 4 result register 0x4015 0068)

	BIT	NAME	ACCESS	RESET	DESCRIPTION
	31:10	Reserved	R	0x0	Reserved
Ī	9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.18. AS0S5

Register 17-17. AS0S5 (Auto sequencer 0-sample 5 control 0x4015 006C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S5.EMUXD data after S/H of ADC 01b: send AS0S5.EMUXD data at beginning of this sample sequence 00b: do not send AS0S5.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.19. AS0R5

Register 17-18. AS0R5 (Auto sequencer 0-sample 5 result register 0x4015 0070)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.20. AS0S6

Register 17-19. AS0S6 (Auto sequencer 0-sample 6 control 0x4015 0074)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S6.EMUXD data after S/H of ADC 01b: send AS0S6.EMUXD data at beginning of this sample sequence 00b: do not send AS0S6.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.21. AS0R6

Register 17-20. AS0R6 (Auto sequencer 0-sample 6 result register 0x4015 0078)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.22. AS0S7

Register 17-21. AS0S7 (Auto sequencer 0-sample 7 control 0x4015 007C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock

BIT	NAME	ACCESS	RESET	DESCRIPTION
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS0S7.EMUXD data after S/H of ADC 01b: send AS0S7.EMUXD data at beginning of this sample sequence 00b: do not send AS0S7.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.23. AS0R7

Register 17-22. AS0R7 (Auto sequencer 0-sample 7 result register 0x4015 0080)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.24. AS1CTL

Register 17-23. AS1CTL (Auto Sequencer 1 control register 0x4015 0100)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:13	Reserved	R	0x0	Reserved
12	AS1BUSY	RW	0x0	Auto sequencer 1 busy 1b: auto sequencer 1 sampling active 0b: auto sequencer 1 not active
11	AS1EN	RW	0x0	Auto sequencer 1 enable 1b: auto sequencer 1 enabled 0b: auto sequencer 1 not enabled
10:8	AS1D	RW	0x0	Auto sequencer 1 sampling depth 111b: 8 samples 110b: 7 samples 101b: 6 samples 100b: 5 samples 011b: 4 samples 010b: 3 samples 010b: 2 samples 000b: 1 sample
7	AS1TR	RW	0x0	Auto sequencer 1 trigger source 1b: Timer, as defined by AS1CTL.AS1TRTMR 0b: PWM, as defined by AS1CTL.AS1TRPWM
6	AS1TRE	RW	0x0	Auto sequencer 1 trigger source AS1CTL.AS1TR edge 1b: high to low edge 0b: low to high edge
5:4	AS1TRTMR	RW	0x0	Auto sequencer 1 timer trigger source 11b: Timer D 10b: Timer C 01b: Timer B 00b: Timer A

BIT	NAME	ACCESS	RESET	DESCRIPTION
3:0	AS1TRPWM	RW	0x0	Auto sequencer 1 PWM trigger source 1111b: reserved 1110b: reserved 1101b: PWMD1 1100b: PWMD0 1011b: PWMC1 1010b: PWMB1 1000b: PWMB0 0111b: PWMA7 0110b: PWMA6 0101b: PWMA5 0100b: PWMA4 0011b: PWMA3 0010b: PWMA2 0001b: PWMA1 0000b: PWMA1

17.1.25. AS1S0

Register 17-24. AS1S0 (Auto sequencer 1-sample 0 control 0x4015 0104)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S0.EMUXD data after S/H of ADC 01b: send AS1S0.EMUXD data at beginning of this sample sequence 00b: do not send AS1S0.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.26. AS1R0

Register 17-25. AS1R0 (Auto sequencer 1-sample 0 result register 0x4015 0108)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.27. AS1S1

Register 17-26. AS1S1 (Auto sequencer 1-sample 1 control 0x4015 010C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S1.EMUXD data after S/H of ADC 01b: send AS1S1.EMUXD data at beginning of this sample sequence 00b: do not send AS1S1.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.28. AS1R1

Register 17-27. AS1R1 (Auto sequencer 1-sample 1 result register 0x4015 0110)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.29. AS1S2

Register 17-28. AS1S2 (Auto sequencer 1-sample 2 control 0x4015 0114)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock

BIT	NAME	ACCESS	RESET	DESCRIPTION
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S2.EMUXD data after S/H of ADC 01b: send AS1S2.EMUXD data at beginning of this sample sequence 00b: do not send AS1S2.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.30. AS1R2

Register 17-29. AS1R2 (Auto sequencer 1-sample 2 result register 0x4015 0118)

	BIT	NAME	ACCESS	RESET	DESCRIPTION
	31:10	Reserved	R	0x0	Reserved
Ī	9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.31. AS1S3

Register 17-30. AS1S3 (Auto sequencer 1-sample 3 control 0x4015 011C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S3.EMUXD data after S/H of ADC 01b: send AS1S3.EMUXD data at beginning of this sample sequence 00b: do not send AS1S3.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.32. AS1R3

Register 17-31. AS1R3 (Auto sequencer 1-sample 3 result register 0x4015 0120)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.33. AS1S4

Register 17-32. AS1S4 (Auto sequencer 1-sample 4 control 0x4015 0124)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S4.EMUXD data after S/H of ADC 01b: send AS1S4.EMUXD data at beginning of this sample sequence 00b: do not send AS1S4.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.34. AS1R4

Register 17-33. AS1R4 (Auto sequencer 1-sample 4 result register 0x4015 0128)

	BIT	NAME	ACCESS	RESET	DESCRIPTION
	31:10	Reserved	R	0x0	Reserved
ſ	9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.35. AS1S5

Register 17-34. AS1S5 (Auto sequencer 1-sample 5 control 0x4015 012C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock

BIT	NAME	ACCESS	RESET	DESCRIPTION
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S5.EMUXD data after S/H of ADC 01b: send AS1S5.EMUXD data at beginning of this sample sequence 00b: do not send AS1S5.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.36. AS1R5

Register 17-35. AS1R5 (Auto sequencer 1-sample 5 result register 0x4015 0130)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.37. AS1S6

Register 17-36. AS1S6 (Auto sequencer 1-sample 6 control 0x4015 0134)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S6.EMUXD data after S/H of ADC 01b: send AS1S6.EMUXD data at beginning of this sample sequence 00b: do not send AS1S6.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.38. AS1R6

Register 17-37. AS1R6 (Auto sequencer 1-sample 6 result register 0x4015 0138)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.1.39. AS1S7

Register 17-38. AS1S7 (Auto sequencer 1-sample 7 control 0x4015 013C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	ADCMUX	RW	0x0	ADC MUX input select 111b: VSSA 110b: reserved 101b: AD5 100b: AD4 011b: AD3 010b: AD2 001b: reserved 000b: EMUX
11:10	DELAY	RW	0x0	Delay between start of sample sequence and start of ADC conversion in ADC input clocks FLCK/ADCCTL.ADCCDIV 11b: 16 ADC input clock cycles 10b: 8 ADC input clock cycles 01b: 4 ADC input clock cycles 00b: 0 ADC input clock
9:8	EMUXS	RW	0x0	EMUX transmission start 11b: reserved 10b: send AS1S7.EMUXD data after S/H of ADC 01b: send AS1S7.EMUXD data at beginning of this sample sequence 00b: do not send AS1S7.EMUXD data
7:0	EMUXD	RW	0x0	EMUX data to transmit

17.1.40. AS1R7

Register 17-39. AS1R7 (Auto sequencer 1-sample 7 result register 0x4015 0140)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	R	0x0	Reserved
9:0	ADCRESULT	R	0x0	ADC conversion result

17.2. Details of Operation

17.2.1. Block Diagram

17.3. Details of Operation

17.3.1. Basic Configuration

Following blocks need to be configured for correct operation of the ADC

- CCS
- Timer A, B, C or D
- GPIOB
- GPIOC

Figure 17-1. ADC, EMUX, ASC0, ASC1

NVIC

17.3.2. ADC, Autosequencer and EMUX

The ADC is a 10-bit SAR ADC. It can be used standalone or together with up to 2 independent low latency auto sequencer state machines to take series of up to 8 samples each into dedicated sample result registers, triggered by either PWM or timer signals. Each sample setup can be programmed with dedicated ADC-MUX setting and settling time delay. A dedicated, programmable high speed low latency communication interface is available to set analog both MUX, sample and hold circuits in the analog peripherals.

17.3.3. Clock Setting

The ADC clock is derived from FCLK and can be set with **ADCCTL.ADCCDIV**. The ADC clock should not exceed 16MHz for correct operation.

The EMUX clock is derived from HCLK and can be set with EMUXCTL.EMUXCDIV.

17.3.4. ADC

The ADC, ASC0, ASC1 and EMXUX block is enabled with **ADCCTL.ADCEN**. In manual conversion mode set **ADCCTL.ADCMODE** to 0b. Set the ADx channel with **ADCCTL.ADCMUX**. For single conversion, set **ADCCTL.REPEAT** to 0b, for repeated conversion set **ADCCTL.REPEAT** to 1b. To start a conversion set **ADCCTL.ADCSTART** to 1b. The ADC will start sampling the analog input channel for 3 clock cycles and holds the analog value in it's internal S/H for conversion. It is safe to switch ADC input channel 4 clocks after ADC start without affecting the ADC result.

One complete ADC conversion will take 16 ADC clock cycles and the ADC conversion result will be available in **ADCCR**. In repeated mode **ADCCR** will be overwritten every 16 ADC clock cycles.. The **ADCCTL.ADCBUSY** flag will 1b as long as conversions are active. **ADCCTL.ADCSTART** will auto clear in single conversion mode. To stop a conversion manually clear **ADCCTL.ADCSTART**.

Figure 17-2. ADC Conversion (Single Shot)

Figure 17-3. ADC Conversion (Repeat Mode)

17.3.5. EMUX

The EMUX is a low latency high speed serial interface with 8-bit data message to control the external ADC MUX and S/H in the analog front end. The EMUX interface is independent from the SOC BUS bridge.

The clock frequency of the EMUX can be adjusted with EMUXCTL.EMUXCDIV from HCLK/1 to HCLK/8.

To allow use of EMUX with auto sequencer ASC0 and ASC1, EMUXCTL.EMUXC must be set to 1b.

In manual mode with **EMUXCTL.EMUXC** = 0b, the EMUX will start sending the message MSB first as soon as a 8-bit message is written to **EMUXDATA**. While the message is transferred, **EMUXCTL.EMUXDONE** is cleared and is set to 1b when the message transfer is complete.

17.3.6. Auto Sequencer ASC0, ASC1

The ADC and EMUX can be controlled with 2 independent auto sequencer state machines ASC0 and ASC01 to

offload the CPU from high speed, low latency sampling. Each sequencer can be programmed to take up to 8 consecutive ADC samples from different analog inputs.

17.3.6.1. Auto Sequencer Modes

The AC0, ASC1 support 8 different modes, configurable with **ADCCTL.ADCMODE**.

With ADCCTL.ADCMODE = 000b ASC0 and ASC1 are disabled and the ADC is used in manual mode.

With **ADCCTL.ADCMODE** = 001b only ASC0 is active and manually triggered with **AS0CTL.AS0EN**.

With ADCCTL.ADCMODE = 010b only ASC1 is enabled and manually triggered with AS1CTL.AS1EN.

With **ADCCTL.ADCMODE** = 011b ASC0 and ASC1 are enabled and daisy chained. When manually triggered with **AS0CTL.AS0EN**. ASC0 with convert all programmed samples, when finished ASC0 will automatically trigger ASC1.

With **ADCCTL.ADCMODE** = 100b only ASC0 is active and triggered with trigger source configured in **ASOCTL.ASOTR**.

With **ADCCTL.ADCMODE** = 101b only ASC1 is active and triggered with trigger source configured in **AS1CTL.AS1TR**.

With **ADCCTL.ADCMODE** = 110b ASC0 and ASC1 are enabled and daisy chained. When triggered with source defined in **ASOCTL.ASOTR**, ASC0 with convert all programmed samples, when finished ASC0 will automatically trigger ASC1.

With **ADCCTL.ADCMODE** = 111b ASC0 and ASC1 are enabled and run independently. ASC0 is triggered with **AS0CTL.AS0TR**, ASC1 is triggered with **AS1CTL.AS1TR**.

Figure 17-4. ASCx, ADCCTL.ADCMODE = 001b, 010b, 100b, 101b

Figure 17-5. ASCx, ADCCTL.ADCMODE = 011b, 110b

Figure 17-6. ASCx, ADCCTL.ADCMODE = 111b

17.3.6.2. Sequencer trigger

Each sequencer ASC0 and ASC1 can use 2 different trigger modes, manual mode or automated mode.

In automated mode use **ASxCTL.ASxTR** to set the trigger source either to timer A, B, C, or D or PWMAx, PWMBx, PWMCx or PWMDx. Use **AS0xCTL.ASxTRE** to set rising or falling edge trigger. Use **AS0xCTL.ASxTMR** to select timer source or **AS0xCTL.AsxTRPWM** to PWM source.

17.3.6.3. ASC Samples

Each sequencer can be programmed to take 1 to 8 samples up on triggering using **ASxCTL.AsxD**. For each sample, the ADC channel can be programmed with **ASxSy.ADCMUX**, a delay between MUX change and ADC start using **ASxSy.DELAY**, a EMUX message to be send with **ASxSy.EMUXD**, and a configuration with **ASxSy.EMUXS** to not send EMUXD, send right after ADCMUX change or send right after start of delay.

NOTE:

Make sure that the EMUX transmission is finished within delay time or ADC conversion time by choosing the correct EMUX clock divider setting.

Figure 17-7. ASxSy Sample with ASxSy.EMUXS = 00b and ASxSy.DELAY = 11b

Figure 17-8. ASxSy Sample with ASxSy.EMUXS = 01b and ASxSy.DELAY = 11b

Figure 17-9. ASxSy Sample with ASxSy.EMUXS = 10b and ASxSy.DELAY = 11b

17.3.6.4. ASC0, ASC1 Priority and Collision

In **ADCCTL.ADCMODE** = 100b, 101b, 110b the ASC are triggered with external trigger timer or PWM. Care has to be taken to space the trigger wide enough to allow sequencer ASCx to finish all samples. In case the sequencer trigger event happens before ASC sequencer finishes all samples, the **ADCINT.ASCINT** collision interrupt will be set and the trigger will be ignored. When **ADCINT.ASCINT** is set, **ADCINT.ASCINTSEQ** shows the ASC0 or ASC1 trigger causing the collision interrupt and **ADCINT.ASCINTR** the actual running sequencer.

Figure 17-10. ASCx, 8 samples, No Collision

Figure 17-11. ASCx 8 samples, Collision

In **ADCCTL.ADCMODE** = 111b, the ASC0 and ASC1 sequencer are triggered independently but are accessing the same ADC.

In case of both ASC0 and ASC1 are triggered at the same time, ASC0 has always higher priority and will be executed while ASC1 is skipped and ignored. **ADCINT.ASCINT** will be set, **ADCINT.ASCINTSEQ** shows the ASC0 or ASC1 trigger causing the collision interrupt and **ADCINT.ASCINTR** the actual running sequencer.

In case of ASC0 or ASC1 sequencer running while the other is triggered, the second sequencer trigger is skipped and ignored, **ADCINT.ASCINT** will be set, **ADCINT.ASCINTSEQ** shows the ASC0 or ASC1 trigger causing the collision interrupt and **ADCINT.ASCINTR** the actual running sequencer.

Figure 17-12. ASC0 8 samples, ASC1 4 samples, Collision

18. I²C

18.1. Register

18.1.1. Register Map

Table 18-1. I²C Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE		
I ² C					
0x401B 0000	I2CCFG	I ² C configuration	0x0000 0000		
0x401B 0004	I2CSTATUS	I ² C interrupt and status	0x0000 0000		
0x401B 0008	I2CIE	I ² C interrupt enable	0x0000 0000		
0x401B 0030	I2CMCTRL	I ² C master access control	0x0000 0000		
0x401B 0034	I2CMRXDATA	I ² C master receive data	0x0000 0000		
0x401B 0038	I2CMTXDATA	I ² C master transmit data 0x0			
0x401B 0040	I2CBAUD	I ² C master baud rate	0x01EC 01EC		
0x401B 0070	I2CSRXDATA	I ² C slave receive data	0x0000 0000		
0x401B 0074	I2CSTXDATA	I ² C slave transmit data 0x0000 0			
0x401B 0078	I2CADDR	l ² C slave address 0x0000 00			

18.1.2. I2CCFG

Register 18-1. I2CCFG (I²C Configuration, 0x401B 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:6	Reserved	R	0x0	Reserved
5	DISPULSEFILT	RW	0x1	Disable pulse filter 1b: Do not disabled 0b: Enable pulse filter
4	ADDRMODE	RW	0x0	Address Mode 1b: 10-bit addressing 0b: 7-bit addressing
3	Reserved	RW	0x0	Reserved, must be set to 0b
2	MAEN	RW	0x0	Master 1b: I2C Master enable 0b: I2C Master enable
1	Reserved	RW	0x0	Reserved, must be set to 0b
0	SLEN	RW	0x0	Slave Enable 1b: I2C Slave enable 0b: I2C Slave disable

18.1.3. I2CSTATUS

Register 18-2. I2CSTATUS (I²C Interrupt Status, 0x401B 0004)

			_	
BIT	NAME	ACCESS	RESET	DESCRIPTION
31:25	Reserved	R	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
24	SLXFERDONEIN T	R	0x0	Slave Transfer 1b = Slave transfer complete, clears on read 0b = Slave transfer not done
23:19	Reserved	R	0x0	Reserved
18	SLRXFINT	R	0x0	Slave receive data register SLRXDATA full 1b: SLRXDATA received data from I2C bus, clears on read 0b: SLRXDATA did not receive data since last read of I2CINT
17	SLTXEINT	R	0x0	Slave transmit data register SLTXDATA empty 1b: SLTXDATA transmitted to I2C bus, clears on read 0b: SLTXDATA not transmitted since last read of I2CINT
16	SLADDRMINT	R	0x0	Slave Address match 1b: Slave address match detected, clears on read 0b: no match
15:12	Reserved	R	0x0	Reserved
11	MADACKINT	R	0x0	Master data acknowledge 1b: Master data NACK'd, clears on read 0b: Master data ACK'd
10	MAARBLINT	R	0x0	Master lost arbitration 1b: Master lost arbitration, clear on read 0b: no error
9	MAADDRACKINT	R	0x0	Master address acknowledge 1b: Master address NACK'd, clears on read 0b: Master address ACK'd
8	MAXFERDONEIN T	RW	0x0	Master transfer complete 1b: Master transfer complete, clears on read 0b: not done
7:3	Reserved	R	0x0	Reserved
2	MARXF	R	0x0	Master receive data register MARXDATA full 1b: MARXDATA received data from I2C bus, clears on read 0b: MARXDATA did not receive data since last read of I2CINT
1	MACTLE	RW	0x0	MACCTL access register accessed 1b: I2CMACTL processed by I2C engine, clears on read 0b: I2CMACTL not accessed by I2C engine since last read of I2CINT
0	MATXE	R	0x0	Master transmit data register MATXDATA empty 1b: MATXDATA transmitted to I2C bus, clears on read 0b: MATXDATA not transmitted since last read of I2CINT

18.1.4. I2CIE

Register 18-3. I2CIE (I²C Interrupt Enable, 0x401B 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:25	Reserved	R	0x0	Reserved
24	SLXFERDONEIN TEN	RW	0x0	SLXFERDONE Interrupt enable 1b: interrupt enable 0b: interrupt disabled
23:19	Reserved	R	0x0	Reserved
18	SLRXF	R	0x0	SLRXF Interrupt enable 1b: interrupt enable 0b: interrupt disabled
17	SLTXE	R	0x0	SLTXE Interrupt enable 1b: interrupt enable 0b: interrupt disabled
16	SLADDRM	R	0x0	SLADDRM Interrupt enable 1b: interrupt enable 0b: interrupt disabled
15:9	Reserved	R	0x0	Reserved
8	MAXFERDONE	R	0x0	MAXFERDONE Interrupt enable 1b: interrupt enable 0b: interrupt disabled
7:3	Reserved	R	0x0	Reserved
2	MARXF	R	0x0	MARXF Interrupt enable 1b: interrupt enable 0b: interrupt disabled
1	MACTLE	R	0x0	MACTLE Interrupt enable 1b: interrupt enable 0b: interrupt disabled
0	MATXE	R	0x0	MATXE Interrupt enable 1b: interrupt enable 0b: interrupt disabled

18.1.5. I2CMCTRL

Register 18-4. I2CMCTRL (I²C Master Access Control, 0x401B 0030)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:14	Reserved	R	0x0	Reserved
13	I2CMACTLF	R	0x0	I2CMACTL full 1b: I2CMACTL full, write not allowed, read to clear 0b: I2CMACTL processed, write allowed
12	Reserved	R	0x0	Reserved
11	XFERTYPE	RW	0x0	Master transfer type 1b: I ² C Master Read 0b: I ² C Master Write
10	RSTART	RW	0x0	Repeated start 1b: No STOP at end of transfer Repeated START 0b: STOP at end of transfer
9:7	I2CADDRU	RW	0x0	Upper I ² C address bit 9:7
6:0	I2CADDRL	RW	0x0	Lower I ² C address bit 6:0

18.1.6. I2CMRXDATA

Register 18-5. I2CMRXDATA (I²C Master Receive Data, 0x401B 0034)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	RW	0x0	Reserved
8	I2CMARXDATAF	R	0x0	I2CMARXDATA full 1b: I2CMARXDATA register full, clear by read 0b: I2CMARXDATA register empty
7:0	MARXDATA	RW	0x0	Master Data Byte received

18.1.7. I2CMTXDATA

Register 18-6. I2CMTXDATA (I²C Master Transmit Data, 0x401B 0038)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	RW	0x0	Reserved
9	LBYTE	RW	0x0	Last Byte of Transfer 1b: Last byte of READ or WRITE indicator, initiate STOP after data transfer
8	I2CMATXDATAF	R	0x0	I2CMATXDATA full 1b: I2CMATXDATA register full, data not transmitted 0b: I2CMATXDATA register empty
7:0	MATXDATA	RW	0x0	Master Data Byte to transmit

18.1.8. I2CBAUD

Register 18-7. I2CBAUD (I²C Baud Rate, 0x401B 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:27	Reserved	R	0x0	Reserved
26:16	SCLH	RW	0x1EC	Number of HCLK cycles for I2CCL high time
15:11	Reserved	R	0x0	Reserved
10:0	SCLL	RW	0x1EC	Number of HCLK cycles for I2CCL low time

18.1.9. I2CSLRXDATA

Register 18-8. I2CSLRXDATA (I²C Slave Receive Data, 0x401B 0070)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	RW	0x0	Reserved
8	I2CSLRXDATAF	R	0x0	I2CSLRXDATA full 1b: I2CSLRXDATA register full, data not transmitted 0b: I2CSLRXDATA register empty
7:0	SLRXDATA	RW	0x0	Slave Data Byte received

18.1.10. I2CSLTXDATA

Register 18-9. I2CSLTXDATA (I²C Slave Transmit Data, 0x401B 0074)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	RW	0x0	Reserved
9	I2CSLTXDATAF	R	0x0	I2CSLTXDATA full 1b: I2CSLTXDATA register full, data not transmitted 0b: I2CSLTXDATA register empty
8	NACK	RW	0x0	Slave ACK or NACK 1b:Issue NACK on I ² C Write 0b: Issue ACK on I ² C Write
7:0	SLTXDATA	RW	0x0	Slave Data Byte to transmit

18.1.11. I2CADDR

Register 18-10. I2CADDR (I²C Slave Address, 0x401B 0074)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:10	Reserved	RW	0x0	Reserved
9:7	SLADDRH	R	0x0	Higher Slave address bit 9:7
6:0	SLADDRL	RW	0x0	Lower Slave address bit 6:0

18.2. Details of Operation

18.2.1. Block Diagram

Figure 18-1. I2C

18.2.2. Configuration

Following blocks need to be configured for correct use of the I2C:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller

18.2.3. I2C

The I2C Controller has one master and one slave connected to the same I/O that can be configured to be master only, slave only or concurrent master/slave. The I2C controller supports Normal mode (100kHz), Fast mode (400kHz), and Fast Mode+ (1MHz) operation as well as either 7-bit or 10-bit addressing.

The master supports both single master and multi-master, multi-master sync and multi-master arbitration. The slave supports clock stretching as well.

18.2.4. I2C Clock setting

The I2C SCLK frequency is derived from HCLK, **I2CBAUD.SCLH** sets the SCLK high pulse and **I2CBAUD.SCLL** sets the SCLK low pulse in HCLK cycles and need to be set correctly for different I2C mode.

The minimum HCLK for correct function of the I2C block is: 2.8MHz for normal mode, 3.2MHz for fast mode and 6.14MHz for fast+ mode.

The table below shows pre-calculated **I2CBAUD** settings for normal, fast and fast+ mode with 50MHz HCLK.

Table 18-11. I2CBAUD settings for different HCLK

I2C Mode	SCLK Frequency	HLCK	I2CBAUD.SCLH	I2CBAUD.SCLL
Normal	100kHz	50MHz	0xFA	0xFA
Normal	100kHz	4MHz	0x14	0x14
Normal	100kHz	2.8MHz	0x0E	0x0E
Fast	400kHz	50MHz	0x3E	0x3E
Fast	400kHz	4MHz	0x3E	0x3E
Fast	400kHz	3.2MHz	0x04	0x04
Fast+	1000kHz	50MHz	0x18	0x18
Fast+	1000kHz	6.14MHz	0x03	0x03

18.2.5. I2C Addressing

The I2C address is for I2C master is set in I2CMCTRL.I2CADDRL and I2CMCTRL.I2CADDRH. The slave address is set I2CADDR.SLADDRL and I2CADDR.SLADDRH.

18.2.6. I2C Master Read Transactions

The diagram below shows an example of an I2C master read, including which interrupts occur for firmware processing of this transaction.

Figure 18-2. I2C Master Read Transaction

A Master Read is initiated when you write to the **I2CMTXDATA** and **I2CMCTRL** register. They need to be written in this order: **I2CMTXDATA** first, then **I2CMCTRL**.

- On the last byte of the transaction, write **MTXDATA** bit 0 to a zero. This tells the system to wait for an ACK from the slave.
- Write I2CMCTRL and set XFERTYPE to 1 (I2C Master Read), RSTART to the desired value (0: No STOP, 1: STOP) and the slave address in I2CADDRU and I2CADDRL.

• Once I2CMCTRL is written, the I2C transfer will begin.

The Master will send the first byte with the slave address and the Read command. The slave will ACK. Immediately after this first ACK, the master will request the first data byte.

When the first data byte is transferred into the Master, the Master will ACK and generate two interrupts: one for Master Transmit Data Register Empty and then one for Master Receive Data Register Full.

- Upon I2CSTATUS.MTXE interrupt (master transmit empty), the firmware must write a 1 to the I2CMTXDATA.LBYTE flag if there are more than one data byte pending to be received, or a 0 to the I2CMTXDATA.LBYTE if the next byte to be received is the last.
- Upon the I2CSTATUS.MRXF interrupt (master receive full), the firmware must read the I2CMRXDATA
 register.

Next, repeat until the N-1 data byte is received. On this byte, the firmware must write a 1 to t **I2CMTXDATA.LBYTE.** On the last byte received, the **I2CMTXDATA** must not be written. The **I2CMRXDATA** register still needs to be read.

The waveforms will be similar to the figure below.

Figure 18-3. I2C Master Read Waveforms

PAC5223 User Guide

- 1. First Data Byte I2CSTATUS.MATXE interrupt, I2CMTXDATA.LBYTE = 0
- 2. First Data Byte I2CSTATUS.MRXF interrupt, read the I2CMTXDATA register
- 3. Second Data Byte I2CSTATUS.MATXE interrupt, I2CMTXDATA.LBYTE = 1 (as byte #3 will be NACK'd)
- 4. Second Data Byte I2CSTATUS.MRXF interrupt, read the I2CMTXDATA register
- 5. Third Data Byte I2CSTATUS.MATXE interrupt, do not write to the I2CMTXDATA register
- 6. Third Data Byte I2CSTATUS.MRXF interrupt, read the I2CMTXDATA register
- 7. **I2CMCTRL** Access Register Accessed can be used for multi-packet communication management.
- 8. Master Transfer Complete A STOP has been issued

19. UART

19.1. Register

19.1.1. Register Map

Table 19-1. UART Register Map

ADDRESS	NAME	NAME DESCRIPTION I						
UART								
UARTRXTX		UART receive/transmit FIFO (available only if UARTLCR.DLAB = 0b)	0.0000.0000					
0x401D 0000	UARTDL_L	UART divisor latch low (available only if UARTLCR.DLAB = 1b)	0x0000 0000					
0x401D 0004	UARTIER	UART interrupt enable (available only if UARTLCR.DLAB = 0b)	0,,0000,0000					
0X401D 0004	UARTDL_H	UART divisor latch high (available only if UARTLCB.DLAB = 1b)	0x0000 0000					
0x401D 0008	UARTIIR	UART interrupt identification (only for register read)	0,0000,0001					
0x401D 0008	UARTFCTL	UART FIFO control (only for register write)	0x0000 0001					
0x401D 000C	UARTLCR	UART line control	0x0000 0000					
0x401D 0010	UARTMCR	UART modem control	0x0000 0000					
0x401D 0014	UARTLSR	UART line status	0x0000 0060					
0x401D 0018	UARTMSR	UART modem status	0x0000 0000					
0x401D 001C	UARTSP	UART Scratch Pad	0x0000 0000					
0x401D 0020	UARTFCTL2	UART FIFO control	0x0000 0000					
0x401D 0024	UARTIER2	UART interrupt enable	0x0000 0000					
0x401D 0028	UARTDL_L2	UART divisor latch low byte	0x0000 0000					
0x401D 002C	UARTDL_H2	UART divisor latch high byte	0x0000 0000					
0x401D 0038	UARTFD_F	UART fractional divisor value	0x0000 0000					
0x401D 003C	Reserved	Reserved	0x0000 0000					
0x401D 0040	UARTSTAT	UART FIFO status	0x0000 0005					

19.1.2. **UARTRXTX**

Register 19-1. UARTRXTX (UART Receive/Transmit FIFO, 0x401D 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	Receive and Transmit FIFO buffer on READ: RX FIFO on WRITE: TX FIFO

The **UARTRXTX** register is available when **UARTLCR.DLAB** = 0b.

During a read of **UARTRXTX.VAL**, the head of the FIFO is read. During a write of **UARTRXTX.VAL**, the tail of the FIFO is written with the new data.

19.1.3. UARTDL_L

Register 19-2. UARTDL_L (UART Divisor Latch (low byte), 0x401D 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	Divisor value, low byte.

The **UARTDL_L** register is available when **UARTLCR.DLAB** = 1b.

This register allows the user to read or write the low byte of the divisor latch.

19.1.4. **UARTIER**

Register 19-3. UARTIER (UART Interrupt Enable, 0x401D 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:4	Reserved	R	0x0	Reserved
3	MSI	RW	0x0	Modem Status interrupt enable 1b: enable interrupt 0b: disable interrupt
2	RLSI	RW	0x0	Receive interrupt enable 1b: enable interrupt 0b: disable interrupt
1	THREI	RW	0x0	TX register empty interrupt enable 1b: enable interrupt 0b: disable interrupt
0	RDAI	RW	0x0	RX register data available interrupt enable 1b: enable interrupt 0b: disable interrupt

The **UARTIER** register is available when **UARTLCR.DLAB** = 0b.

This register allows the user to set the interrupt enable status of the different status conditions of the UART (modem status, receive status, TX register empty and RX register empty).

19.1.5. UARTDL_H

Register 19-4. UARTDL_H (UART Divisor Latch (high byte), 0x401D 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	Divisor value, high byte.

The **UARTDL_H** register is available when **UARTLCR.DLAB** = 1b. This register allows the user to read or write the high byte of the divisor latch.

19.1.6. **UARTIIR**

Register 19-5. UARTIIR (UART Interrupt Identification, 0x401D 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7	RXFEN	R	0x0	RX FIFO enable flag 1b: enabled 0b: disabled
6	TXFEN	R	0x0	TX FIFO enable flag 1b: enabled 0b: disabled
5:4	Reserved	R	0x0	Reserved
3:1	IID	R	0x0	UART Interrupt type 111b: reserved 110b: Timeout 101b: reserved 100b: reserved 011b: RX Line Status 010b: RX Data Available 001b: TX Hold register empty 000b: Modem Status
0	PI	R	0x1	UART Interrupt 1b: UART interrupt 0b: no UART interrupt

The **UARTIIR** register is available only when the user performs a register read. All fields in this register are readonly.

19.1.7. UARTFCTL

Register 19-6. UARTFCTL (UART FIFO Control, 0x401D 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:6	RT	W	0x1	RX FIFO Threshold 11b: 14 Bytes in FIFO 10b: 8 Bytes in FIFO 01b: 4 Bytes in FIFO 00b: 1 Byte in FIFO
5:3	Reserved	R	0x0	Reserved
2	TR	W	0x0	TX FIFO reset 1b: clear TX FIFO, bit auto clears 0b: no action
1	RR	W	0x0	RX FIFO reset 1b: clear RX FIFO, bit auto clears 0b: no action
0	EN	W	0x0	FIFO enable 1b: enable RX, TX FIFO 0b: disable RX, TX FIFO

The **UARTFCTL** register is available only when the user performs a register write. All fields in this register are write-only.

19.1.8. UARTLCR

Register 19-7. UARTLCR (UART Line Control, 0x401D 000C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7	DLAB	RW	0x0	Divisor Latch Access 1b: Allow access to the divistor latch 0b: Allow access to the FIFOs and IER
6	SB	RW	0x0	Break Control 1b: force TX to 0b 0b: normal operation
5	SP	RW	0x0	Stick Parity 1b: enable 0b: disable
4	EPS	RW	0x0	Parity type 1b: generate EVEN parity 0b: generate ODD parity
3	PEN	RW	0x0	Parity Bit 1b: enable Parity 0b: disable Parity
2	STB	RW	0x0	Stop Bits 1b: 2 STOP bits (1.5 STOP bits for BPC=00) 0b: 1 STOP bit
1:0	BPC	RW	0x0	Bits per Character 11b: 8 bits 10b: 7 bits 01b: 6 bits 00b: 5 bits

19.1.9. **UARTMCR**

Register 19-8. UARTMCR (UART Modem Control, 0x401D 0010)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:5	Reserved	R	0x0	Reserved
4	LP	RW	0x0	Loopback 1b: loopback enabled 0b: loopback not enabled
2:0	Reserved	RW	0x0	Reserved

19.1.10. UARTLSR

Register 19-9. UARTLSR (UART Line Status, 0x401D 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7	RFE	R	0x0	RX FIFO Error 1b: at least 1 parity, framing or break error active in FIFO 0b: no error in RX FIFO
6	TE	R	0x1	TX Empty 1b: TX shift register and TX FIFO are empty 0b: not empty
5	THR	R	0x1	TX FIFO Empty 1b:TX FIFO are empty 0b: not empty
4	ВІ	R	0x0	RX Break 1b: entry on top of RX FIFO has break error, bit clears on read 0b: error cleared
3	FE	R	0x0	RX Framing Error 1b: entry on top of RX FIFO has framing error, bit clears on read 0b: error cleared
2	PE	R	0x0	RX Parity Error 1b: entry on top of RX FIFO has parity error, bit clears on read 0b: error cleared
1	OE	R	0x0	RX Overrun error 1b: RX FIFO full and last entry overwritten, bit clears on read 0b: error cleared
0	DR	R	0x0	RX Data ready 1b: at least 1 entry in RX FIFO 0b: RX FIFO empty

19.1.11. UARTSP

Register 19-10. UARTSP (UART Scratch Pad, 0x401D 001C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	8b scratch pad

19.1.12. UARTFCTL2

Register 19-11. UARTFCTL2 (FIFO Control, 0x401D 0020)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:6	RT	RW	0x1	RX FIFO Threshold 11b: 14 Bytes in FIFO 10b: 8 Bytes in FIFO 01b: 4 Bytes in FIFO 00b: 1 Byte in FIFO
5:3	Reserved	R	0x0	Reserved
2	TR	RW	0x0	TX FIFO reset 1b: clear TX FIFO, bit auto clears 0b: no action
1	RR	RW	0x0	RX FIFO reset 1b: clear RX FIFO, bit auto clears 0b: no action
0	EN	RW	0x0	FIFO enable 1b: enable RX, TX FIFO 0b: disable RX, TX FIFO

19.1.13. UARTIER2

Register 19-12. UARTIER2 (UART Interrupt Enable, 0x401D 0024)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:4	Reserved	R	0x0	Reserved
3	MSI	RW	0x0	Modem Status interrupt enable 1b: enable interrupt 0b: disable interrupt
2	RLSI	RW	0x0	Receive interrupt enable 1b: enable interrupt 0b: disable interrupt
1	THREI	RW	0x0	TX register empty interrupt enable 1b: enable interrupt 0b: disable interrupt
0	RDAI	RW	0x0	RX register data available interrupt enable 1b: enable interrupt 0b: disable interrupt

19.1.14. UARTDL_L2

Register 19-13. UARTDL_L2 (UART Divisor Latch Low Byte, 0x401D 0028)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	Divisor value, low byte (does not need DLAP = 0 in order to work).

19.1.15. UARTDL_H2

Register 19-14. UARTDL_H2 (UART Divisor Latch High Byte, 0x401D 002C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	Divisor value, high byte (does not need DLAP = 0 in order to work).

19.1.16. UARTFD_F

Register 19-15. UARTFD_F (UART Fractional Divisor Value, 0x401D 0038)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	R	0x0	Reserved
7:0	VAL	RW	0x0	Fractional divisor value

19.1.17. UARTSTAT

Register 19-16. UARTSTAT (UART FIFO Status, 0x401D 0040)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:4	Reserved	R	0x0	Reserved
3	RXFULL	R	0x0	RX FIFO full 1b: RX FIFO full 0b: RX FIFO not full
2	RXEMPTY	R	0x1	RX FIFO empty 1b: RX FIFO empty 0b: RX FIFO not empty
1	TXFULL	R	0x0	TX FIFO full 1b: TX FIFO full 0b: TX FIFO not full
0	TXEMPTY	R	0x1	TX FIFO empty 1b: TX FIFO empty 0b: TX FIFO not empty

19.2. Details of Operation

19.2.1. Block Diagram

Figure 19-1. UART

19.2.2. Configuration

Following blocks need to be configured for correct use of the UART:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- I/O Controller

19.2.3. UART

The UART supports up to 3.125 Mbps communication speed, has programmable clock selection with fractional divider, loop back mode for testing, 16 Byte transmit and 16 Byte receive FIFO with programmable receive interrupt threshold.

19.2.4. UART Clock Rate Setting

The UART block has a fractional divider to set up the baud rate. The UART clock is fed by the HCLK. The UART clock must be set to 16x the desired RX TX baud rate setting for correct functioning.

To calculate settings for **UARTDL_H, UARTDL_L, UARTFD_F**, first calculate the desired divider setting using following formula:

$$UARTDivisor = \frac{HCLK}{BAUDRATE * 16}$$
 (6)

Where:

UARTDivisor: calculated divisor

HCLK: HCLK frequency in Hz
BAUDRATE: desired Baud rate

The integer portion of UART divisor is used to set UARTDL_H, UARTDL_L.

To calculate the value of **UARTFD_F**, use formula below and round to the nearest integer.

$$UARTFD = UARTDivisor_{frac} * 256$$
(7)

Where:

UARTFD: calculated UARTFD value

UARTDIVISOR_FRAC: UARTDivisor fractional value

To calculate Baud rate error use following:

$$BAUDRATEERROR = BAUDRATE - (HCLK / (UARTDivisor + UARTDivisor_{frac} / 256) / 16$$
 (8)

Where:

BAUDRATEERROR: absolute baud rate error

BAUDRATE: Baudrate

HCLK: HCLK frequency in Hz

UARTDivisor: UART divisor integer value

UARTDivisor_frac: UART divisor fractional value

To calculate relative Baud rate error use following:

$$Relative\ BAUDRATEERROR = BAUDRATEERROR/BAUDRATE*100$$
 (9)

Where:

Relative BAUDRATE ERROR: relative BAUD rate error in %.

BAUDRATEERROR: absolute Baudrateerror

BAUDRATE: desired baudrate setting

The table below shows pre-calculated divisor settings for common Baud rates with 50MHz HCLK.

Register 19-17. UART Divisor Settings for 50 MHz HCLK

Baud Rate	Desired Divisor	Int	frac	UARTDL_H	UARTDL_L	UARTFD_F	Absolute BAUD rate error	BAUD rate error %
300	10416.667	10416	171	0x28	0xB0	0xAB	0.000010	0.0000%
600	5208.333	5208	85	0x14	0x58	0x55	-0.000038	0.0000%
900	3472.222	3472	57	0x0D	0x90	0x39	-0.000058	0.0000%
1200	2604.167	2604	43	0x0A	0x2C	0x2B	0.000154	0.0000%
2400	1302.083	1302	21	0x05	0x16	0x15	-0.000614	0.0000%
4800	651.042	651	11	0x02	0x8B	0x0B	0.002458	0.0001%
9600	325.521	325	133	0x01	0x45	0x85	0.004915	0.0001%
19200	162.760	162	195	0x00	0xA2	0xC3	-0.049152	-0.0003%
38400	81.380	81	97	0x00	0x51	0x61	-0.1	-0.0003%
57600	54.253	54	65	0x00	0x41	0x41	-0.501355	-0.0009%
115200	27.127	27	33	0x00	0x1B	0x21	1.120655	0.0010%

19.2.5. Data settings

The **UARTLCR** register defines the character settings like number of data bits, parity and number of stop bits

19.2.6. FIFO Settings

The FIFO can be configured with the **UARTFCTL** register. FIFO enable, depth and TX/RX FIFO reset can configured. The FIFO status can be monitored in the **UARTLSR** register. A write to **UARTRXTX** writes to the TX FIFO, while a read from **UARTRXTX** reads from RX FIFO.

19.2.7. Error Checking on Received Data

The character specific error does not show up in **UARTLSR** until the character is at the top of the RX FIFO.

Each captured character is checked for following errors

- Break Error UARTLSR.RXBE there was a logic '0' detected on the RX input for more than one character transmission period (BAUD RATE *(1 startbit + UARTLCR.BPC data bits + 1 parity bit + UARTLCR.STB stopbits)
- Framing Error UARTLSR.RXFE there was a logic '0' detected where there should be a STOP bit
- Parity Error UARTLSR.PE received parity and calculated parity do not match.

20. SOC BUS BRIDGE

20.1. Register

20.1.1. Register Map

Table 20-1. SOC Bus Bridge Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE
SOC Bus Bridge			
0x4020 0000	SOCBCTL	SOC Bus Bridge control	0x0000 0000
0x4020 0004	SOCBCFG	SOC Bus Bridge configuration	0x0000 0200
0x4020 0008	SOCBCLKDIV	SOC Bus Bridge clock divider	0x0000 0008
0x4000 000C	Reserved	Reserved	0x0000 0000
0x4000 0010	Reserved	Reserved	0x0000 0000
0x4020 0014	SOCBSTAT	SOC Bus Bridge status	0x0000 0000
0x4020 0018	SOCBCSSTR	SOC Bus Bridge Chip Select Steering Register	0x0000 0000
0x4020 001C	SOCBD	SOC Bus Bridge data	0x0000 0000
0x4020 0020	SOCBINT_EN	SOC Bus Bridge interrupt enable	0x0000 0034

20.1.2. SOCBCTL

Register 20-1. SOCBCTL (SOC Bus Bridge Control, 0x4020 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	R	0x0	Reserved
8	Reserved	RW	0x0	Reserved, set to 0x0
7	Reserved	RW	0x0	Reserved, set to 0x1
6	Reserved	RW	0x0	Reserved, set to 0x1
5	MTRARM	W	0x0	MTRANS re-arm Writing a 1b to this bit re-arms the SOCBCTL.MTRANS operation by deasserting the CSx chip select and returning the master mode state machine to IDLE.
4:2	Reserved	RW	0x0	Reserved, set to 0x0
1	SIE	RW	0x0	SOC Bus Bridge interrupt enable. 1b = Enable the interrupt 0b = Disable the interrupt
0	SSEN	RW	0x0	SOC Bus Bridge enable: 1b = Enable this module. 0b = Disable this module.

20.1.3. SOCBCFG

Register 20-2. SOCBCFG (SOC Bus Bridge Configuration, 0x4020 0004)

	BIT	NAME	ACCESS	RESET	DESCRIPTION
	31:14	Reserved	R	0x0	Reserved
ĺ	13	Reserved	RW	0x0	Reserved, set to 0x0

BIT	NAME	ACCESS	RESET	DESCRIPTION
12	Reserved	RW	0x0	Reserved, be set to 0x0
11	Reserved	RW	0x0	Reserved, be set to 0x1
10	Reserved	RW	0x0	Reserved, be set to 0x1
9:6	Reserved	RW	0x0	Reserved, be set to 0x0
5	Reserved	RW	0x0	Reserved, be set to 0x0
4	Reserved	RW	0x0	Reserved, be set to 0x0
3	Reserved	RW	0x0	Reserved, mbe set to 0x0
2	MRST	RW	0x0	Module reset. 1b: Force soft reset of module. The internal state machines are reset; Status register is cleared; However, the soft reset doesn't affect control register values. 0b: do not hold the module in reset.
1:0	WL	RW	0x0	Word Length select. 11b: Word length: 32-bits 10b: Word length: 24-bits 01b: Word length: 16-bits 00b: Word length: 8-bits

20.1.4. SOCBCLKDIV

Register 20-3. SOCBCLK (SOC Bus Bridge Clock Divider, 0x4020 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	R	0x0	Reserved
15:0	CLKDIV	RW	0x8	Clock divisor for SCLK: SCLK = HCLK / [(CLKDIV+1)*2] the minimum divider is /2

20.1.5. SOCBSTAT

Register 20-4. SOCBSTAT (SOC Bus Bridge Status, 0x4020 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	CURSTATE	RW	0x0	Raw status of the SOC bus bridge master state machine's "current_state" register. 111b: CSBEGIN 110b: MTRANS 101b: CKWAIT 100b: CSWAIT 011b: CSHOLD 010b: TRANSFER 001b: CSSETUP 000b: IDLE
11	Reserved	R	0x0	Reserved
10	RXFULL	R	0x0	Raw indicator that the Rx incoming holding register contains a valid data word. 1b: Rx incoming holding register contains a valid data word. 0b: Rx incoming holding register contains no valid data word.
9	TXFULL	R	0x0	Raw indicator that the Tx outgoing holding register is still in use, and not ready to accept another data word. 1b: Tx outgoing holding register is still in use not ready to accept another data word. 0b: Tx outgoing register is ready to accept another data word

BIT	NAME	ACCESS	RESET	DESCRIPTION
8	WRUFL	RW	0x0	Write Buffer Underflow: set on the start of a second outgoing transfer if data hasn't been written to the SOCBD after the previous transfer 1b: Write Underflow detected, clear by writing 1b to it 0b: No Write Underflow since this bit was cleared Note: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SOCBINT_EN.WRUFL_EN.
7:6	Reserved	RW	0x0	Reserved, must be set to 0x0
5	CYC_DONE	RW	0x0	Cycle Done: this bit will set when the current transfer of 8 bits is complete. It indicates that 8 bits were sent on the transmit port and 8 bits were sampled on the receive port. 1b: Cycle done detected, clear by writing 1b to it 0b: No Cycle Done detected since this bit was cleared Note: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SOCBINT_EN.CYC_DONE_EN.
4:3	Reserved	RW	0x0	Reserved, must be set to 0x0
2	RDOFL	RW	0x0	Read Buffer Overflow: set on the completion of a second incoming transfer if data hasn't been read from the SOCBD from the previous transfer 1b: Read Overflow detected, clear by writing 1b to it 0b: No Read Overflow since this bit was cleared Note: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SOCBINT_EN.RDOFL_EN.
1	Reserved	R	0x0	Reserved
0	SOCB_INT	R	0x0	SOC bus bridge Interrupt Logical OR of each raw status bit WRUFL, RDOFL, and CYC_DONE, qualified with its corresponding SOCBINT_EN enable. 1b: interrupt 0b: no interrupt Note that if the corresponding SOCBINT_EN of those status bits is reset to '0', those status bits themselves will still assert upon meeting the condition, but will not contribute to the assertion of SOCB_INT. The status bits are true "raw" status bits, and the corresponding SOCBINT_EN simply allows them to cause an interrupt.

20.1.6. SOCBCSSTR

Register 20-5. SOCBCSSTR (SOC Bus Bridge Chip Select Steering, 0x4020 0018)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	Reserved	RW	0x0	Reserved, must be set to 0x0
23:20	CSSETUP	RW	0x0	Chip Select Setup
19:16	CSHOLD	RW	0x0	Chip Select Hold
15:12	CSWAIT	RW	0x0	Chip Select Wait
11:8	CKWAIT	RW	0x0	SOC Bus Bridge Clock Wait
7:0	Reserved	RW	0x0	Reserved, must be set to 0x0

20.1.7. SOCBD

Register 20-6. SOCBD (SOC Bus Bridge Data, 0x4020 001C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:8	Reserved	RW	0x0	Reserved, must be set to 0x0
7:0	DATA	RW	0x0	SOC bus bridge data On READ: retrieve received data word from the incoming holding buffer. On WRITE: write a address or data word to the outgoing holding buffer.

20.1.8. **SOCBINT_EN**

Register 20-7. SOCBINT_EN (SOC Bus Bridge Interrupt Enable, 0x4020 0020)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	RW	0x0	Reserved
8	WRUFL_EN	RW	0x0	Write buffer underflow WRUFL interrupt enable 1b: enable SOCBSTAT.WRUFL interrupt 0b: disable SOCBSTAT.WRUFL interrupt
7:6	Reserved	RW	0x0	Reserved, set to 0x0
5	CYC_DONE	RW	0x1	Cycle done interrupt enable 1b: enable SOCBSTAT.CYC_DONE interrupt 0b: disable SOCBSTAT.CYC_DONE interrupt
4:3	Reserved	RW	0x1	Reserved, set to 0x0
2	RDOFL_EN	RW	0x1	Read buffer overflow RDOFL interrupt enable 1b: enable SOCBSTAT.RDOFL interrupt 0b: disable SOCBSTAT.RDOFL interrupt
1:0	Reserved	RW	0x0	Reserved

20.2. Details of Operation

20.2.1. Block Diagram

Figure 20-1. SOC Bridge

20.2.2. Configuration

Following blocks need to be configured for correct use of the SPI:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller

20.2.3. SOC Bridge

The SOC bridge is used to set and read registers in the analog section of the device.

20.2.4. SOC Bridge Clock Rate Setting

The SOC bridge Module SOCCLK is derived from HCLK to drive the SPI logic, generate setup, hold and wait timings for CSx signals, and SOCCLK.

The SPICLK clock is derived from HCLK using a clock divider configurable with **SOCBCLKDIV**. The lowest clock allowable divider in SPI slave mode is HCLK/8. In SPI Master mode the lowest allowable clock divider is HCLK/2.

To calculate SOCCLK use

$$SOCCLK = \frac{HLCK}{(SOCCLKDIV + 1) * 2}$$
 (10)

Where:

SOCCLK: SOCCLK in Hz

HCLK: HLCK in Hz

SOCCLKDIV: SOCBCLKDIV setting

20.2.5. Enable and Setup of SOC Bridge

20.2.6. SOC Interrupt

The SOC bridge engine interrupt is enabled with **SOCBCTL.SIE**. Then any sub interrupts are enabled in **SINT_EN**.

20.2.7. SOC Bridge Protocol

The SOC bridge protocol is a 2 byte protocol, the first byte is the address packet including a 7-bit address [7:1] and a write bit [0], the second packet is an 8bit data packet.

20.2.8. Reading from SOC Bridge

To read to the SOC bridge, start with writing the address packet to **SOCBD** first. Wait for **SOCBSTAT.CYC_DONE** = 1b. Clear **SOCBSTAT.CYC_DONE** by set to 1b. Then write a second dummy address packet to **SOCBD** to clock out the data packet. Wait for **SOCBSTAT.CYC_DONE** = 1b. Clear **SOCBSTAT.CYC_DONE** by set to 1b. Set **SOCBCTL.MTRARM** to 1b to deassert SOCBCS0. Then read from **SOCBD** to get the data packet content

Figure 20-2. Single Read from SOC Bridge

20.2.9. Writing to SOC Bridge

To write to the SOC bridge, start with writing the address packet to **SOCBD** first. Wait for **SOCBSTAT.CYC_DONE** = 1b. Clear **SOCBSTAT.CYC_DONE** by set to 1b. Then write the data packet to **SOCBD**. Wait for **SOCBSTAT.CYC_DONE** = 1b. Clear **SOCBSTAT.CYC_DONE** by set to 1b. Set **SOCBCTL.MTRARM** to 1b to deassert SOCBCSO. Optional you read from **SOCBD** to get the data packet content with old data content of the register address.

Figure 20-3. Single Write to SOC Bridge

21. SPI

21.1. Register

21.1.1. Register Map

Table 21-1. SPI Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE			
SPI						
0x4021 0000	SPICTL	SPI control	0x0000 0000			
0x4021 0004	SPICFG	SPI configuration	0x0000 0200			
0x4021 0008	SPICLKDIV	SPI clock divider	0x0000 0008			
0x4021 000C	Reserved	Reserved	0x0000 0000			
0x4021 0010	Reserved	Reserved	0x0000 0000			
0x4021 0014	SPISTAT	SPI status	0x0000 0000			
0x4021 0018	SPICSSTR	SPI chip select steering	0x0000 0000			
0x4021 001C	SPID	SPI data 0x00				
0x4021 0020	SPIINT_EN	SPI interrupt enable 0x0				

21.1.2. SPICTL

Register 21-1. SPICTL (SPI Control, 0x4021 0000)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	R	0x0	Reserved
8	RTRANS	RW	0x0	Auto-retransmit on UCLK error. 1b: On a UCLK error, the transmit holding register does NOT get reset, so the word that was transmitting when the UCLK error occurred remains queued. 0b: On a UCLK error, the transmit holding register is reset, and the word that was transmitting when the UCLK error occurred is lost.
7	MMST_N	RW	0x0	Multi-master mode (MASTER ONLY) 1b: Single-Master mode, always drive a value onto CSx, SPICLK and MOSI. 0b: Multi-master mode, always tri-state the CSx, SPICLK and MOSI lines when a transfer is complete.
6	MTRANS	RW	0x0	Multiple Transfer Mode (MASTER ONLY) 1b: Generate multiple transfers of [SPICFG.WL] bits within a single CSx assertion. 0b: Generate single transfers (assert CSx, transfer data word of [SPICFG.WL] bits, de-assert CSx).
5	MTRARM	W	0x0	MTRANS re-arm (MASTER ONLY): Writing a 1b to this bit re-arms the SPICTL.MTRANS operation by deasserting the CSx chip select and returning the master mode state machine to IDLE.
4	Reserved	RW	0x0	Reserved, must be set to 0x0
3	SE	RW	0x0	Slave Enable 1b: SPI is a SLAVE. 0b: SPI is a MASTER.

BIT	NAME	ACCESS	RESET	DESCRIPTION
2	LPBK	RW	0x0	Internal loop back Mode 1b: Tie the serial out source to the serial in line (internal signaling, does not traverse the chip IO bi-di buffers). 0b = Normal operation.
1	SIE	RW	0x0	SPI Interrupt enable. 1b = Enable the interrupt 0b = Disable the interrupt
0	SSEN	RW	0x0	SPI enable: 1b = Enable this module. 0b = Disable this module.

21.1.3. SPICFG

Register 21-2. SPICFG (SPI Configuration, 0x4021 0004)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:14	Reserved	R	0x0	Reserved
13	Reserved	RW	0x0	Reserved, must be set to 0x0
12	Reserved	RW	0x0	Reserved, must be set to 0x0
11	MTURBO	RW	0x0	Master "turbo" operation mode: 1b: Enable master turbo mode, using HCLK-based bit count, allowing operation down to max 2:1 HCLK:SPICLK ratio 0b: Disable master turbo mode, legacy operation down to max 8:1 HCLK:SPICLK ratio.
10	TXDBUF	RW	0x0	Transmit Double-Buffer mode: 1b: enable double-buffer "ping-pong" on shift register transmit output path (keep up with back-to-back words at faster HCLK:SPICLK ratios) 0b: disable double-buffer, legacy operation with a single shift register buffer and single queuing buffer
9	TXDATPH	RW	0x0	Early Transmit Data Phase. 1b: Enable: MISO (slave mode) or MOSI(master mode) transitions occur ½ an SPICLK period sooner than the normal protocol (i.e. transition on capture edge instead of launch edge) 0b: Disable: normal transmit data phase, transitions are on the launch edge of SPICLK
8	Reserved	RW	0x0	Reserved, must be set to 0x0
7	RCVCPH	RW	0x0	SLAVE MODE Clock Phase 1b: Second clock transition of a new transfer is used to sample data 0b: First clock transition of a new transfer is used to sample data
6	RCVCP	RW	0x0	SLAVE MODE Clock Polarity 1b: SPICLK is HI in its inactive state 0b: SPICLK is LO in its inactive state
5	СРН	RW	0x0	MASTER MODE Clock Phase 1b: Second clock transition of a new transfer is used to sample data 0b: First clock transition of a new transfer is used to sample data
4	СР	RW	0x0	MASTER MODE Clock Polarity 1b: SPICLK is HI in its inactive state 0b: SPICLK is LO in its inactive state
3	LB1ST	RW	0x0	Least Bit First 1b: LSB is the first serial bit of a transfer 0b: MSB is the first serial bit of a transfer

BIT	NAME	ACCESS	RESET	DESCRIPTION
2	MRST	RW	0x0	Module reset. 1b: Force soft reset of module. The internal state machines are reset; Status register is cleared; However, the soft reset doesn't affect control register values. 0b: do not hold the module in reset.
1:0	WL	RW	0x0	Word Length select 11b: Word Length = 32-bits 10b: Word Length = 24-bits 01b: Word Length = 16-bits 00b: Word Length = 8-bits

21.1.4. SPICLKDIV

Register 21-3. SPICLKDIV (SPI Clock Divider, 0x4021 0008)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:16	Reserved	R	0x0	Reserved
15:0	CLKDIV	RW	0x8	Clock divisor for SCLK: SCLK = HCLK / [(CLKDIV+1)*2] In Master/Slave mode with SPICFG.MTURBO = 0b, minimum divider is /8. In Master mode with SPICFG.MTURBO = 1b, minimum divider is /2

21.1.5. SPISTAT

Register 21-4. SPISTAT (SPI Status, 0x4021 0014)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:15	Reserved	R	0x0	Reserved
14:12	CURSTATE	RW	0x0	Raw status of the SOC bus bridge master state machine's "current_state" register. 111b: CSBEGIN 110b: MTRANS 101b: CKWAIT 100b: CSWAIT 011b: CSHOLD 010b: TRANSFER 001b: CSSETUP 000b: IDLE
11	Reserved	R	0x0	Reserved
10	RXFULL	R	0x0	Raw indicator that the Rx incoming holding register contains a valid data word. 1b: Rx incoming holding register contains a valid data word. 0b: Rx incoming holding register contains no valid data word.
9	TXFULL	R	0x0	Raw indicator that the Tx outgoing holding register is still in use, and not ready to accept another data word. 1b: Tx outgoing holding register is still in use not ready to accept another data word. 0b: Tx outgoing register is ready to accept another data word

BIT	NAME	ACCESS	RESET	DESCRIPTION
8	WRUFL	RW	0x0	Write Buffer Underflow Set on the start of a second outgoing transfer if data hasn't been written to the SD register after the previous transfer 1b: Write Underflow detected, clear by writing 1b to it 0b: No Write Underflow since this bit was cleared Note: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SPIINT_EN.WRUFL_EN.
7	Reserved	RW	0x0	Reserved, must be set to 0x0
6	TE	RW	0x0	Chip Select Trailing Edge Detect 1b: a chip select de-assertion was detected, clear by writing 1b to it 0b: no chip select de-assertion detected since this bit was cleared NOTE: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SPIINT_EN.TE_EN.
5	CYC_DONE	RW	0x0	Cycle Done: this bit will set when the current transfer of 8 bits is complete. It indicates that 8 bits were sent on the transmit port and 8 bits were sampled on the receive port. 1b: Cycle done detected, clear by writing 1b to it 0b: No Cycle Done detected since this bit was cleared NOTE: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SPIINT_EN.CYC_DONE_EN.
4	UCLK	RW	0x0	Underclock Condition Set if the current transfer received less than word-length "WL" clocks on the SPICLK line prior to CSx de-assertion. 1b: Underclock condition detected, clear by writing 1b to it 0b: No underclock condition detected since this bit was cleared. NOTE: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SPIINT_EN.UCLK_EN.
3	LE	RW	0x0	Chip Select Leading Edge Detect: 1b: a chip select assertion was detected, clear by writing 1 to it 0b: no chip select assertion detected since this bit was cleared NOTE: This bit is cleared by writing a 1b to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SPIINT_EN.LE_EN.
2	RDOFL	RW	0x0	Read Buffer Overflow: set on the completion of a second incoming transfer if data hasn't been read from the SD register from the previous transfer 1b: Read Overflow detected, clear by writing 1b to it 0b: No Read Overflow since this bit was cleared NOTE: This bit is cleared by writing a '1' to it. This bit is a sticky status bit, and will set upon meeting the condition regardless of the state of its corresponding interrupt enable SPIINT_EN.RDOFL_EN.
1	Reserved	R	0x0	Reserved

BIT	NAME	ACCESS	RESET	DESCRIPTION
0	SPI_INT	R	0x0	SPI Interrupt Logical OR of each raw status bit WRUFL, RDOFL, and CYC_DONE, qualified with its corresponding INT_EN enable. 1b: interrupt 0b: no interrupt NOTE: that if the corresponding INT_EN of those status bits is reset to '0', those status bits themselves will still assert upon meeting the condition, but will not contribute to the assertion of SPI_INT. The status bits are true "raw" status bits, and the corresponding SPIINT_EN simply allows them to cause an interrupt.

21.1.6. SPICSSTR

Register 21-5. SPICSSTR (SPI Chip Select Steering, 0x4021 0018)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:24	Reserved	RW	0x0	Reserved
23:20	CKWAIT	RW	0x0	SPI Clock Wait (MASTER mode only): Only applies if SPICTL.MTRANS=1b (multiple transfers with one chip select assertion). This value determines the minimum number of SPICLK periods to wait between back-to-back transfers. During this wait time, SPICLK does not toggle but CSx remains active.
19:16	CSWAIT	RW	0x0	Chip Select Wait (MASTER mode only): This value determines the minimum number of SPICLK periods to wait between the de-assertion of CSx and the re-assertion of Csx.
15:12	CSHOLD	RW	0x0	Chip Select Hold (MASTER mode only): This value is the minimum number of SPICLK periods to wait from the last SPICLK transition to de-assertion of Csx.
11:8	CSSETUP	RW	0x0	Chip Select Setup (MASTER mode only): This value is the minimum number of SPICLK periods to wait from the assertion of CSx to the first SPICLK transition.
7:3	Reserved	R	0x0	Reserved
2	CSL	RW	0x0	Chip Select active level select (MASTER or SLAVE mode): 1b: active HI outgoing (master) or incoming (slave) chip select 0b: active LO outgoing (master) or incoming (slave) chip select
1:0	CSNUM	RW	0x0	Chip Select Number: Outgoing (MASTER mode) - select which one of the possible four chip selects are asserted (the other three are driven de-asserted). Incoming (SLAVE mode) – select which one of the possible four chip selects are actively used. 11b: reserved 10b: SPICS2 01b: SPICS1 00b: SPICS0

21.1.7. SPID

Register 21-6. SPID (SPI Data, 0x4021 001C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:0	DATA	RW	0x0	SOC bus bridge data On READ: retrieve received data word from the incoming holding buffer. On WRITE: write a data word to the outgoing holding buffer.

21.1.8. SPIINT_EN

Register 21-7. SPIINT_EN (SPI Interrupt Enable, 0x4021 0020)

BIT	NAME	ACCESS	RESET	DESCRIPTION
31:9	Reserved	RW	0x0	Reserved
8	WRUFL_EN	RW	0x0	Write buffer underflow WRUFL interrupt enable 1b: enable SPISTAT.WRUFL interrupt 0b: disable SPISTAT.WRUFL interrupt
7	Reserved	RW	0x0	Reserved
6	TE_EN	RW	0x0	Trailing Edge detect TE interrupt enable 1b: enable SPISTAT.TE interrupt 0b: disable SPISTAT.TE interrupt
5	CYC_DONE_EN	RW	0x0	Cycle done CYC_DONE interrupt enable 1b: enable SPISTAT.CYC_DONE interrupt 0b: disable SPISTAT.CYC_DONE interrupt
4	UCLK_EN	RW	0x1	Underclock condition detect UCLK interrupt enable 1b: enable SPISTAT.UCLK interrupt 0b: disable SPISTAT.UCLK interrupt
3	LE_EN	RW	0x0	Leading Edge detect LE interrupt enable 1b: enable SPISTAT.LE interrupt 0b: disable SPISTAT.LE interrupt
2	RDOFL_EN	RW	0x1	Read buffer overflow RDOFL interrupt enable 1b: enable SPISTAT.RDOFL interrupt 0b: disable SPISTAT.RDOFL interrupt
1:0	Reserved	RW	0x0	Reserved

21.2. Details of Operation

21.2.1. Block Diagram

Figure 21-1. SPI

21.2.2. Configuration

Following blocks need to be configured for correct use of the SPI:

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller

21.2.3. SPI

The SPI engine has selectable data byte ordering LSB or MSB first, 4 different data / clock modes, can send / receive packets 8, 16, 32, 64 boundaries, selectable CS polarity, soft reset, and auto-retransmit.

In master mode it supports up to 3 different slaves using chip select. The master mode also allows sending multiple packets per CS.

21.2.4. SPI Clock Rate Setting

The SPI Module SPICLK is derived from HCLK to drive the SPI logic, generate setup, hold and wait timings for CSx signals, and SPICLK.

The SPICLK clock is derived from HCLK using a clock divider configurable with **SPICLKDIV**. The lowest clock allowable divider in SPI slave mode is HCLK/8. In SPI Master mode the lowest allowable clock divider is HCLK/2 if **SPICFG.MTURBO** is 1b, HCLK/8 if **SPICFG.MTURBO** is 0b. **SPICFG.MTURBO** works only in Master mode.

To calculate SCLK use

$$SCLK = \frac{HLCK}{(SPICLKDIV+1)*2}$$
 (11)

Where:

SCLK: SCLK in Hz HCLK: HLCK in Hz

SPICLKDIV: SPICLKDIV setting

21.2.5. Master Slave Mode

The master mode is selected with SPICTL.SE= 0b. In master mode a write to SPID will initiate SPI data transfer.

When **SPICFG.TXDBUF** is set to 1b, the **SPID** is double buffering is enabled, allowing queuing of the next data word while the current one is transferred.

21.2.6. Clock Phase, Polarity

The clock and phase can be programmed independently for master and slave.

The master mode clock polarity is configured with SPICFG.CP and the phase is configured with SPCFG.CPH.

The slave mode clock polarity is configured with **SPICFG.RCVCP** and the phase is configured with **SPICFG.RCVCPH**.

Figure 21-2. SPI clock polarity and phase

21.2.7. SPI Early Data Transmit

For cases when the SPI is running at high speed the transmitted data can be transmitted 1/2 a SPICLK early to compensate for delays on the receiver side. When **SPICFG.TXDATPH** is 1b, SPIMOSI is transmitted 1/2 SPICLK early in master mode. In slave mode SPIMISO is transmitted 1/2 SPICLK early.

Figure 21-3. SPIMOSI early transmit in master mode

Figure 21-4. SPIMISO early transmit in slave mode

21.2.8. Data Format

The **SPICFG.WL** sets the word length from 8bit to 32bit in 8bit steps.

The SPICFG.LB1ST configures the data format to transmit, LSB ior MSB first.

21.2.9. Chip Select Settings

The SPI engine supports up to 3 chip select signals SPICS0, SPICS1 and SPICS2, selectable with **SPICSSTR.CSNUM**.

The CS polarity can be set with SPICSSTR.CSL, 0b for active low, 1b for active high.

In SPI engine can automatically assert and deassert SPICSx with each data transaction with **SPICTL.MTRANS** = 0b. To allow multiple data words within a SPICSx assertion set **SPICTL.MTRANS** to 1b. The first data word will assert SPICSx. SPICSx will remain low until it is deasserted with writing **SPICTL.MTARM** to 1b.

Timings for CS behavior can be programmed with granularity of SPICLK. The period between assertion of SPICSx and SPICLK transition can be set with **SPICSSTR.CSSETUP**. The period between last SPICLK transition and deassertion of SPICSxcan be set with **SPICSSTR.CSHOLD**. The period between deassertion and assertion of SPICSx can be set with **SPICSSTR.CSWAIT**. The period between SPICLK transitions between multi word packages can be set with **SPICSSTR.CKWAIT**.

Figure 21-5. SPICSx

21.2.10. Auto Retransmit Data Word

Upon detection of an undercount **SPISTAT.UCLK** error, the default behavior of the SPI module is to reset the SERDES bit counters and the transmit side holding buffers, assuming that software must re-load the word that did not complete transmission because of the UCLK error.

Note that the receive side holding buffers are *not* reset, and contain the data word received from the last *good* transfer.

An optional mode is provided by setting the RTRANS bit in the **SPICTL.RTRANS**. When set, the reset of the transmit side holding buffers because of UCLK error is disabled, and the word that did not complete transmission remains gueued for transmit.

21.2.11. Loop Back Mode

The SPI engine has a loop back mode for test purposes, enabled with **SPICTL.LPBK**. The loop back mode is only available in master mode. In loop back mode, SPIMOSI and SPIMISO are connected together internally

and SPICLK, SPIMOSI, SPCSx can be still observed on pins.

21.2.12. SPI Interrupt

The SPI engine interrupt is enabled with **SPICTL.SIE**. Then any sub interrupts are enabled in **SPIINT_EN**.

21.2.13. SPI Enable

The SPI engine is enabled with **SPICTL.SSEN**. To soft reset the state machine and clear all status bits use **SPICFG.MRST**.

22. MULTI-MODE POWER MANAGER

22.1. Register

22.1.1. Register Map

Table 22-1. Multi-Mode Power Manager Register Map

ADDRESS	NAME	DESCRIPTION	RESET VALUE			
Multi-Mode Power Manager						
0x00	SYSSTAT	System status	0x00			
0x08	DEVID	Device identification	-			
0x09	VERID	Version identification	-			
0x10	PWRCTL	Power manager control	0x00			
0x11	PWRSTAT	Power manager status	-			
0x12	PSTATSET	Power manager setting	0x00			
0x13	IMOD	Current modulation	0xFF			
0x14	SCFG	Switching supply configuration	0x00			
0x15	SCFG2	Switching supply configuration 2	0x00			

22.1.2. SYSTAT

Register 22-1. SYSSTAT (System Status, 0x00)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	PBSTAT	R/W	0x0	Push button status. When not masked, bit set on interrupt and cleared when written to 1b. When masked, bit is transparent.
6			0x0	Temperature warning to indicate the temperature is over 140°c. When TMPWARN is not masked, this bit is latch when temperature is out of valid range and cleared when bit is read. When masked, bit is transparent.
5:4			0x0	Programmable threshold voltage. Used for AMP6 through AMP9 in comparator mode. 00b: 0.1V 01b: 0.2V 10b: 0.5V 11b: 1.25V
3	REFBP	R/W	0x0	Set external reference bypass via AB5.
2	Reserved	R/W	0x0	
1	FLTM	R/W	0x0	Fault mask (active high). Set to 1b to mask temperature fault. 0b:not masked 1b: masked
0	nINTM	R/W	0x0	Interrupt mask (active low) 0b: masked 1b: not masked

22.1.3. DEVID

Register 22-2. DEVID (Device Identification, 0x08)

BIT	NAME	ACCESS	RESET	DESCRIPTION	
7:0	DEVID	R	-	Device identification	

22.1.4. VERID

Register 22-3. VERID (Version Identification, 0x09)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:0	VERID	R	1	Version identification

22.1.5. PWRCTL

Register 22-4. PWRCTL (Power Manager Control, 0x10)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	НІВ	R/W	0x0	Hibernate mode. This bit is cleared and power up sequence is initiated after the wake up timer delay or external event. 0b: normal 1b: shutdown mode
6	MCUALIVE	R/W	0x0	Micro-controller alive flag. Bit that MCU can set in the Power Manager to indicate that it has already initialized itself. Can be used by MCU to detect that it has been reset by the AFE. The convention is for the MCU to write this bit to 1b on initialization of the AFE, and test that it is not 1 during start-up.
5:3	PWRMON	R/W	0x0	Power monitor select. Selects the voltage signal for power monitoring at A/D converter input selector. 000b: V _{CC18} 001b: V _{CC33} scaled by 4/10 010b: V _{CCIO} scaled by 4/10 011b: V _{SYS} scaled by 4/10 100b: V _{REGO} scaled by 1/10 101b: V _P scaled by 1/10 110b: V _{HM} scaled by 1/30 111b: V _{COMP} internal error amplifier output
2:0	WUTIMER	R/W	0x0	Wake-up timer delay 000b: infinite 001b: 125ms 010b: 250ms 011b: 500ms 100b: 1s 101b: 2s 110b: 4s 111b: 8s

22.1.6. PWRSTAT

Register 22-5. PWRSTAT (Power Manager Status, 0x11h, Persistent In Hibernate Mode)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	7 HWRSTAT		-	Hardware reset status. When not masked, bit is set on Hardware Reset and cleared when written to 1b.
6	6 WDTRSTAT R		-	Watchdog timer reset status. When enabled, it is set on Watchdog Timer Reset and cleared when written to 1b.
5	5 MMSSFLT		-	Multi-mode switching supply fault status. Bit set on fault and cleared when written to 1b.
4	4 TMPFLT		-	Temperature fault status. Bit set on fault and cleared when written to 1b.
3	3 VSYSFLT		-	V _{SYS} fault status. Bit set on fault and cleared when written to 1b.
2	2 VCCIOFLT R		-	V _{CCIO} fault status. Bit set on fault and cleared when written to 1b.
1	1 VCC33FLT R		-	V _{CC33} fault status. Bit set on fault and cleared when written to 1b.
0	0 VCC18FLT R		-	V _{CC18} fault status. Bit set on fault and cleared when written to 1b.

22.1.7. PSTATSET

Register 22-6. PSTATSET (Power Manager Setting, 0x12)

BIT	NAME	ACCESS	RESET	DESCRIPTION	
7	UNLOCK	R/W	Ox0 Software unlock. Write to 1b to enable writing to SCFG. 0b: SCFG locked 1b: SCFG unlocked		
6	SU	R/W	0x0	Start-up. This bit is set to 0b when the device is powered up and may be written by the MCU to 1b at any time. This bit will retain its value as long as power to VHM is applied. After reset, the MCU can read this bit to tell if the MCU has been forcibly reset (if the value is still a 1b) or if it is a power-up reset (the value will be reset to 0b).	
5	VPLOW	R/W1C	0x0	V_{p} low status. When not masked, bit set on IRQ1 (MCU pin PB0) interrupt and cleared when written to 1b.	
4	nPBINTM R/W		0x0	Push button interrupt mask (active low) 0b: masked 1b: not masked	
3	3 nVPINTM R/W		0x0	V _p low IRQ1 (MCU pin PB0) interrupt mask (active low) 0b: mask 1b: not masked	
2	TWD	R/W	0x0	Watchdog timer delay 0b: 8s 1b: 4s	
1 WDTEN		R/W	0x0	Watchdog timer enable 0b: disabled 1b: enabled	
0 PBEN R/W		0x0	Push button enable 0b: disabled 1b: enabled		

22.1.8. IMOD

Register 22-7. IMOD (Current Modulation, 0x13)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:0	IMOD	R/W		Current modulation. 0xFF (default) = 100%. Inductor current is clamped to ILMAX • (IMOD<7:0> - 0x20) / FFh. Power factor control can be achieved by modulating (IMOD<7:0> - 0x20 - VSLOPE_ERROR) to be proportional to the input voltage, multiplied by the feedback error factor derived in servo loop with the low-pass-filtered output voltage.

22.1.9. SCFG

Register 22-8. SCFG (Switching Supply Configuration, 0x14)

BIT	NAME	ACCESS ⁽¹⁾	RESET	DESCRIPTION		
7	SRST	R/W	0x0	Soft reset. Write to 1b to assert nRST and generate system soft reset. 0b: normal 1b: reset		
6	DIGCTL	R/W	0x0	Digital control enable 0b: disabled 1b: enabled		
5	VCLAMPDIS	R/W	0x0	V _{HM} voltage clamp disable 0b: enabled 1b: disabled		
4	FMODE	R/W	0x0	Frequency mode 0b: low frequency range (45kHz to 125kHz) 1b: high frequency range (181kHz to 500kHz)		
3:1	FSWM	R/W	0x0	Switching frequency FMODE = 0b 000b: 45kHz 001b: 50kHz 001b: 50kHz 010b: 220kHz 011b: 62.5kHz 011b: 250kHz 100b: 72.25kHz 101b: 82.5kHz 110b: 100kHz 111b: 125kHz 111b: 500kHz		
0	DMAX	R/W	0x0	Maximum duty 0b: 500ns minimum off time 1b: 75% maximum duty		

⁽¹⁾ This byte is unlocked for writing when **UNLOCK** = 1b.

22.1.10. SCFG2

Register 22-9. SCFG2 (Switching Supply Configuration 2, 0x15)

BIT	NAME	ACCESS ⁽¹⁾	RESET	DESCRIPTION
7:6	7:6 VP R/W Varies³		Varies ³	VP voltage setting when DC/DC is enabled 00b: 13.8V ⁴ 01b: 9V 10b: 12V 11b: 15V
5	SMPSOFF	R/W	0x0	DC/DC enable configuration 0b: DC/DC enabled 1b: DC/DC disabled
4	4 Reserved		0x0	Reserved, write as 0
3	TRST	R/W	0x0	Reset time after POR for MCU 0b: 1ms 1b: 32ms
4:0 Reserved R/W 0x0 Reserved, write as 0		Reserved, write as 0		

³ Reset value for VP voltage setting varies. Consult the data sheet for the device for the reset value.

⁴ For some devices, a VP value of 00b represents 13.8V. Consult the data sheet for the correct value.

23. CONFIGURABLE ANALOG FRONT END

23.1. Register

23.1.1. Register Map

Table 23-1. Configurable Analog Front End Register Map

SOC ADDRESS	NAME	DESCRIPTION	RESET VALUE
Configurable Anal	og Front End		
0x20	SOC.CFGAIO0	AIO0 Configuration	0x00
0x21	SOC.CFGAIO1	AIO1 Configuration	0x00
0x22	SOC.CFGAIO2	AIO2 Configuration	0x00
0x23	SOC.CFGAIO3	AIO3 Configuration	0x00
0x24	SOC.CFGAIO4	AIO4 Configuration	0x00
0x25	SOC.CFGAIO5	AIO5 Configuration	0x00
0x26	SOC.CFGAIO6	AIO6 Configuration	0x00
0x27	SOC.CFGAIO7	AIO7 Configuration	0x00
0x28	SOC.CFGAIO8	AIO8 Configuration	0x00
0x29	SOC.CFGAIO9	AIO9 Configuration	0x00
0x2A	SOC.SIGSET	Signal manager Configuration	0x00
0x2B	SOC.HPDAC	High Protection Threshold	0x00
0x2C	SOC.LPDAC0	Low Protection Threshold	0x00
0x2D	SOC.LPDAC1	Low Protection Threshold	0x00
0x2E	SOC.ADCSCAN	ADC Scan Control	0x00
0x2F	SOC.ADCIN1	ADC MUX Select	0x00
0x30	SOC.PROTINTM	Protection Interrupt Enable	0x00
0x31	SOC.PROTSTAT	Protection Status	0x00
0x32	SOC.DOUTSIG0	AIO0, AIO1, AIO2, AIO3, AIO4, AIO5 digital output control	0x00
0x33	SOC.DOUTSIG1	AIO6, AIO7, AIO8, AIO9 digital output control	0x00
0x34	SOC.DINSIG0	AIO0, AIO1, AIO2, AIO3, AIO4, AIO5 digital input status	0x00
0x35	SOC.DINSIG1	AIO6, AIO7, AIO8, AIO9 digital input status	0x00
0x36	SOC.SIGINTM	AIO6, AIO7, AIO8, AIO9 Interrupt enable	0x00
0x37	SOC.SIGINTF	AIO6, AIO7, AIO8, AIO9 Interrupt flag	0x00
0x38	SOC.ENSIG	Signal Manager Control	0x00
0x39 – 0x5F	Reserved	Reserved	N/A

23.1.2. SOC.CFGAIO0

Register 23-1. SOC.SOC.CFGAIO0 (AIO0 Configuration, SOC 0x20)

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
7:6	MODE	RW	0x0	00b	01b
5	OPT0	RW	0x0	AIO0 Option: 11b: Reserved 10b: Open-drain output	Differential amplifier gain setting: 111b: 48x 110b: 32x
4		RW	0x0	01b: Reserved 00b: Input, input state available at SOC.DINSIG0.AIO0DIN	101b: 16x 100b: 8x 011b: 4x 010b: 2x
3	POL0	RW	0x0	If CFGAIO0.OPT0 = 00b, AIO0 Input polarity setting. If CFGAIO0.OPT0 = 10b, AIO0 Output polarity setting: 1b: active-low 0b: active-high	010b: 2x 001b: 1x 000b: 1x
	MUXO	RW	0x0	AIO0 Digital MUX setting: 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3	Reserved
2:0		RW	0x0		LP10 comparator setting: 11b: LP10 comparator enabled with 4µs blanking time
		RW	0x0	010b: DB2 001b: DB1 000b: AIO0	10b: LP10 comparator enabled with 2µs blanking time 01b: LP10 comparator enabled with 1µs blanking time 00b: LP10 comparator disabled

23.1.3. SOC.CFGAIO1

Register 23-2. SOC.CFGAIO1 (AIO1 Configuration, SOC 0x21)

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
7	RW 0x0 Reserved		Reserved	HPROT10 PR1 Protection enable: 1b: HP10 output to PR1 enabled 0b: HP10 output to PR1 disabled	
6	MODE1	RW	0x0	Reserved	HPROT10 PR2 Protection enable: 1b: HP10 output to PR2 enabled 0b: HP10 output to PR2 disabled
5	OPT4	RW	0x0	AlO1 IO Option: 11b: Reserved	LPROT10 PR1 Protection enable: 1b: LP10 output to PR1 enabled 0b: LP10 output to PR1disabled
4	OPT1	RW	0x0	10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINSIG0.AIO1DIN	LPROT10 PR2 Protection enable: 1b: LP10 output to PR2 enabled 0b: LP10 output to PR2 disabled

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
3	POL1	RW	0x0	If CFGAIO1.OPT1 = 00b, AIO1 Input polarity setting. If CFGAIO1.OPT1 = 10b, AIO1 Output polarity setting: 1b: active-low 0b: active-high	Differential Amplifier Offset: 1b: Offset enabled, input signal shifted by VREF/2 0b: Offset disabled
	RW	0x0	If CFGAIO1.OPT1 = 00b, Reserved If CFGAIO1.OPT1 = 10b, Output polarity, set AIO1 state according to	Differential Amplifier Offset Calibration: 1b: enabled 0b: disabled	
		RW	0x0	111b: DB7 110b: DB6 101b: DB5 100b: DB4	HP10 comparator setting:
2:0	MUX1	RW	0x0		11b: HP10 comparator enabled with 4µs blanking time 10b: HP10 comparator enabled with 2µs blanking time 01b: HP10 comparator enabled with 1µs blanking time 00b: HP10 comparator disabled

23.1.4. SOC.CFGAIO2

Register 23-3. SOC.SOC.CFGAIO2 (AIO2 Configuration, SOC 0x22)

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
7:6	MODE2	RW	0x0	00b	01b
5	OPT2	RW	0x0	AIO2 IO Option: 11b: Reserved	Differential amplifier gain setting: 111b: 48x
4	OPT2	RW	0x0	10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINSIG0.AIO2DIN	110b: 32x 101b: 16x 100b: 8x 011b: 4x
3	POL2	RW	0x0	If CFGAIO2.OPT2 = 00b, AIO2 Input polarity setting. If CFGAIO2.OPT2 = 10b, AIO2 Output polarity setting: 1b: active-low 0b: active-high	010b: 2x 001b: 1x 000b: 1x
2		RW	0x0	AIO2 Digital MUX setting:	Reserved
1		RW	0x0	111b: DB7	1.000
0	MUX2	RW	0x0	110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO2	LP32 comparator setting: 11b: LP32 comparator enabled with 4µs blanking time 10b: LP32 comparator enabled with 2µs blanking time 01b: LP32 comparator enabled with 1µs blanking time 00b: LP32 comparator disabled

23.1.5. SOC.CFGAIO3

Register 23-4. SOC.CFGAIO3 (AIO3 Configuration, SOC 0x23)

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
7	MODE3	RW	0x0	Reserved	HPROT32 PR1 Protection enable: 1b: HP32 output to PR1 enabled 0b: HP32 output to PR1 disabled
6	MODE3	RW	0x0	Reserved	HPROT32 PR2 Protection enable: 1b: HP32 output to PR2 enabled 0b: HP32 output to PR2 disabled
5	ОРТ3	RW	0x0	AIO3 IO Option: 11b: Reserved	LPROT32 PR1 Protection enable: 1b: LP32 output to PR1 enabled 0b: LP32 output to PR1disabled
4	OPIS	RW	0x0	10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINSIG0.AIO3DIN	LPROT32 PR2 Protection enable: 1b: LP32 output to PR2 enabled 0b: LP32 output to PR2 disabled
3	POL3	RW	0x0	If CFGAIO3.OPT3 = 00b, AIO3 Input polarity setting. If CFGAIO3.OPT3 = 10b, AIO3 Output polarity setting: 1b: active-low 0b: active-high	Differential Amplifier Offset: 1b: Offset enabled, input signal shifted by VREF/2 0b: Offset disabled

Power Application Controller

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
2		RW	0x0	If CFGAIO3.OPT3 = 00b, Reserved If CFGAIO3.OPT3 = 10b, Output polarity, set AIO3 state according to	Differential Amplifier Offset Calibration: 1b: enabled 0b: disabled
1		RW	0x0	MUX3:	HP32 comparator setting:
0	михз	RW	0x0	111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AlO3	11b: HP32 comparator enabled with 4µs blanking time 10b: HP32 comparator enabled with 2µs blanking time 01b: HP32 comparator enabled with 1µs blanking time 00b: HP32 comparator disabled

23.1.6. SOC.CFGAIO4

Register 23-5. SOC.SOC.CFGAIO4 (AIO4 Configuration, SOC 0x24)

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE	
7:6	MODE4	RW	0x0	00b	01b	
5	OPT4	RW	0x0	AIO4 IO Option:	Differential amplifier gain setting:	
4	OPT4	RW	0x0	11b: Reserved 10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINDRV0.AIO4DIN	111b: 48x 110b: 32x 101b: 16x 100b: 8x 011b: 4x	
3	POL4	RW	0x0	If CFGAIO4.OPT4 = 00b, AIO4 Input polarity setting. If CFGAIO4.OPT4 = 10b, AIO4 Output polarity setting: 1b: active-low 0b: active-high	010b: 2x 001b: 1x 000b: 1x	
2		RW	0x0	If CFGAIO4.OPT4 = 00b, Reserved	Reserved	
1		RW	0x0	If CFGAIO4.OPT4 = 10b, Output		
0	MUX4	RW	0x0	polarity, set AlO4 state according to MUX4 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AlO4	LP54 comparator setting: 11b: LP54 comparator enabled with 4µs blanking time 10b: LP54 comparator enabled with 2µs blanking time 01b: LP54 comparator enabled with 1µs blanking time 00b: LP54 comparator disabled	

23.1.7. SOC.CFGAIO5

Register 23-6. SOC.CFGAIO5 (AIO5 Configuration, SOC 0x25)

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
7	MODE5	RW	0x0	Reserved	HPROT54 PR1 Protection enable: 1b: HP54 output to PR1 enabled 0b: HP54 output to PR1 disabled
6	MODE5	RW	0x0	Reserved	HPROT54 PR2 Protection enable: 1b: HP54 output to PR2 enabled 0b: HP54 output to PR2 disabled
5	OPTE	RW	0x0	AIO5 IO Option: 11b: Reserved	LPROT54 PR1 Protection enable: 1b: LP54 output to PR1 enabled 0b: LP54 output to PR1disabled
4	OPT5	RW	0x0	10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINDRV0.AIO5DIN	LPROT54 PR2 Protection enable: 1b: LP54 output to PR2 enabled 0b: LP54 output to PR2 disabled

BIT	NAME	ACCESS	RESET	IO MODE	DIFFAMP MODE
3	POL5	RW	0x0	If CFGAIO5.OPT5 = 00b, AIO5 Input polarity setting. If CFGAIO5.OPT5 = 10b, AIO5 Output polarity setting: 1b: active-low 0b: active-high	Differential Amplifier Offset: 1b: Offset enabled, input signal shifted by VREF/2 0b: Offset disabled
2		RW	0x0	If CFGAIO5.OPT5 = 00b, Reserved If CFGAIO5.OPT5 = 10b, Output polarity, set AIO5 state according to	Differential Amplifier Offset Calibration: 1b: enabled 0b: disabled
1	RW		0x0	MUX5 111b: DB7	HP54 comparator setting:
0	MUX5	RW	0x0	110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO5	11b: HP54 comparator enabled with 4µs blanking time 10b: HP54 comparator enabled with 2µs blanking time 01b: HP54 comparator enabled with 1µs blanking time 00b: HP54 comparator disabled

23.1.8. SOC.CFGAIO6

Register 23-7. SOC.CFGAIO6 (AIO6 Configuration, SOC 0x26)

MODE6	GAIN MODE MODE6	COMPARATOR MODE MODE6	SPECIAL MODE
	MODE6	MODES	
00b		WODE	MODE6
***	01b	10b	11b
OPT6	GAIN6	OPT6	ADMUX
AIO6 IO Option setting:	Amplifier gain setting:	AIO6 Comparator Reference select:	ADMUX ADC output MUX:
10b: Open-drain output	111b: 48x 110b: 32x	10b: AB2	1b: MUX ADMUX output to AB7 0b: Do not MUX ADMUX output to AB7
00b: Input, input state available at SOC.DINSIG1.AIO6DIN	101b: 16x 100b: 8x 011b: 4x	00b: VTHREF	SWAP
	010b: 2x 001b: 1x		Buffer Swap:
	000b: Gain Amplifier Bypass, Direct mode		1b: Swap buffer offset 0b: Do not swap buffer offset
POL6		POL6	Reserved, write to 0b
If CFGAIO6.OPT6 = 00b, AIO6 Input Polarity Setting.		AIO6 Comparator output polarity setting:	
If CFGAIO6.OPT6 = 10b, AIO6 Output Polarity Setting.		1b: active-low 0b: active-high	
1b: active-low 0b: active-high			
MUX6	MUX6	MUX6	MUX6
If CFGAIO6.OPT6 = 00b, Reserved.	Analog MUX Setting:	Digital MUX:	Analog MUX Setting:
If CFGAI06.0PT6 = 10b, Digital MUX, set AI06 state according to MUX6: 111b: DB7 110b: DB6	111b: AB7 110b: AB6 101b: AB5 100b: AB4 011b: AB3	111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3	111b: AB7 110b: AB6 101b: AB5 100b: AB4 011b: AB3
101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1	010b: AB2 001b: AB1 000b: AB6	010b: DB2 001b: DB1 000b: DB6	010b: AB2 001b: AB1 000b: AB6
S If P	IO6 IO Option setting: 11b: Reserved 10b: Open-drain output 01b: Reserved 10b: Open-drain output 01b: Reserved 00b: Input, input state available at OC.DINSIG1.AIO6DIN POL6 CFGAIO6.OPT6 = 00b, AIO6 Input olarity Setting. CFGAIO6.OPT6 = 10b, AIO6 Output olarity Setting. 1b: active-low 0b: active-high MUX6 CFGAIO6.OPT6 = 00b, Reserved. CFGAIO6.OPT6 = 10b, Digital MUX, set IO6 state according to MUX6: 111b: DB7 110b: DB8 100b: DB8 101b: DB8 101b: DB8 101b: DB3 101b: DB3 101b: DB3	Amplifier gain setting:	Amplifier gain setting: AlO6 Comparator Reference select: 11b: Reserved 11b: ABX 11b: ABX 11b: ABX 11b: ABX 10b: 32x 10b: AB2 10b: ABZ 10b: ABX 10b: BX 10b: BX 10b: BX 10b: BX 10b: BX 10b: BX 10b: ABX 10b

23.1.9. SOC.CFGAIO7

Register 23-8. SOC.CFGAIO7 (AIO7 Configuration, SOC 0x27)

BIT	IO MODE	GAIN MODE	COMPARATOR MODE	SPECIAL MODE
7:6	MODE7	MODE7	MODE7	MODE7
5	OPT7 AIO7 IO Setting:	GAIN7 Amplifier gain setting:	OPT7 AIO7 Comparator Reference select:	OPT7 Select reference for AIO7, AIO8, AIO9:
4	11b: Reserved 10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINDRV1.AIO7DIN	111b: 48x 110b: 32x 101b: 16x 100b: 8x 011b: 4x	11b: AB3 10b: AB2 01b: AB1 00b: VTHREF	11b: AB3 10b: AB2 01b: AB1 00b: Reserved
3	POL7 If CFGAIO7.OPT7 = 00b, AIO7 Input Polarity Setting. If CFGAIO7.OPT7 = 10b, AIO7 Output Polarity Setting. 1b: active-low 0b: active-high	010b: 2x 001b: 1x 000b: Gain Amplifier Bypass, Direct mode	POL7 AIO7 Comparator output polarity setting: 1b: active-low 0b: active-high	POL7 AlO7 Comparator output polarity setting: 1b: active-low 0b: active-high
2:0	MUX7 Digital MUX: 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO7	MUX7 Analog MUX Setting: 111b: AB7 110b: AB6 101b: AB5 100b: AB4 011b: AB3 010b: AB2 001b: AB1 000b: AB7	MUX7 Digital MUX: 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO7	Reserved

23.1.10. SOC.CFGAIO8

Register 23-9. SOC.CFGAIO8 (AIO8 Configuration, SOC 0x28)

BIT	IO MODE	GAIN MODE	COMPARATOR MODE	SPECIAL MODE
7:6	MODE8	MODE8	MODE8	MODE8
7.0	00b	01b	10b	11b
	ОРТ8	GAIN8	ОРТ8	OPT8[1]
5	AIO8 IO Setting:	Amplifier gain setting:	AIO8 Comparator Reference select:	S/H Bypass for POS:
	11b: Reserved 10b: Open-drain output	111b: 48x 110b: 32x	11b: AB3 10b: AB2	1b: Do not bypass S/H for POS signal 0b: Bypass S/H for POS signal
	01b: Reserved 00b: Input, input state available at	101b: 16x 100b: 8x	01b: AB1 00b: VTHREF	OPT8[0]
4	SOC.DINDRV1.AIO8DIN	011b: 4x 010b: 2x 001b: 1x		NIRQ2/POS output:
		000b: Gain Amplifier Bypass, Direct mode		1b: POS (BEMF detection) 0b: nIRQ2 (AIO6/7/8/9 Interrupt)
	POL8		POL8	POL8
	If CFGAIO8.OPT8 = 00b, AIO8 Input Polarity Setting.		AIO8 Comparator output polarity setting:	AIO8 Comparator output polarity setting:
3	If CFGAIO8.OPT8 = 10b, AIO8 Output Polarity Setting.		1b: active-low 0b: active-high	1b: active-low 0b: active-high
	1b: active-low 0b: active-high			
	MUX8	MUX8	MUX8	Reserved
	Digital MUX:	Analog MUX Setting:	Digital MUX:	
2:0	111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO8	111b: AB7 110b: AB6 101b: AB5 100b: AB4 011b: AB3 010b: AB2 001b: AB1 000b: AB8	111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO8	

23.1.11. SOC.CFGAIO9

Register 23-10. SOC.CFGAIO9 (AIO9 Configuration, SOC 0x29)

BIT	IO MODE	GAIN MODE	COMPARATOR MODE	SPECIAL MODE
7:6	MODE9	MODE9	MODE9	MODE9
7.0	00b	01b	10b	11b
5	ОРТ9	GAIN9	OPT9	OPT9
	AIO9 IO Setting:	Amplifier gain setting:	AIO9 Comparator Reference select:	AIO789 comparator output to POS:
4	11b: Reserved 10b: Open-drain output 01b: Reserved 00b: Input, input state available at SOC.DINDRV1.AIO8DIN	111b: 48x 110b: 32x 101b: 16x 100b: 8x 011b: 4x	11b: AB3 10b: AB2 01b: AB1 00b: VTHREF	11b: MUX AIO9 comparator output to POS 10b: MUX AIO8 comparator output to POS 01b: MUX AIO7 comparator output to POS 00b: not connected
3	POL9 If CFGAIO9.OPT9 = 00b, AIO9 Input Polarity Setting. If CFGAIO9.OPT9 = 10b, AIO9 Output Polarity Setting. 1b: active-low 0b: active-high	001b: 1x 000b: Gain Amplifier Bypass, Direct mode	POL9 AlO9 Comparator output polarity setting: 1b: active-low 0b: active-high	POL9 If SOC.CFGAIO7.MODE = 11b AIO9 Comparator output polarity setting: 1b: active-low 0b: active-high
	MUX9	MUX9	MUX9	Reserved
2:0	Digital MUX: 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO9	Analog MUX Setting: 111b: AB7 110b: AB6 101b: AB5 100b: AB4 011b: AB3 010b: AB2 001b: AB1 000b: AB1	Digital MUX: 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: AIO9	

23.1.12. SOC.SIGSET

Register 23-11. SOC.SIGSET (Signal Manager Configuration, SOC 0x2A)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	AIO9HYS	R/W	0x0	AIO9 Comparator Hysteresis 1b: Comparator Hysteresis enabled 0b: Comparator Hysteresis disabled
6	AIO8HYS	R/W	0x0	AIO8 Comparator Hysteresis 1b: Comparator Hysteresis enabled 0b: Comparator Hysteresis disabled
5	AIO7HYS	R/W	0x0	AIO7 Comparator Hysteresis 1b: Comparator Hysteresis enabled 0b: Comparator Hysteresis disabled
4	AIO6HYS	R/W	0x0	AIO6 Comparator Hysteresis 1b: Comparator Hysteresis enabled 0b: Comparator Hysteresis disabled
3	HPROTHYS	R/W	0x0	HPx Hysteresis 1b: Comparator Hysteresis enabled 0b: Comparator Hysteresis disabled
2	LPROTHYS	R/W	0x0	LPx Hysteresis 1b: Comparator Hysteresis enabled 0b: Comparator Hysteresis disabled
1	LPDACAB3	R/W	0x0	Connect LPDAC output to AB3 1b: LPDAC output connected to AB3 0b: LPDAC output not connected to AB3
0	HPDACAB2	R/W	0x0	Connect HPDAC output to AB2 1b: HPDAC output connected to AB2 0b: HPDAC output not connected to AB2

23.1.13. SOC.HPDAC

Register 23-12. SOC.HPDAC (HPDAC Setting, SOC 0x2B)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:0	HPDAC	R/W	0x0	HPDAC Setting 0xFF: 255/256*VREF
				0x00: 0/256*VREF

23.1.14. SOC.LPDAC0

Register 23-13. SOC.LPDAC0 (LPDAC Setting [9:2], SOC 0x2C)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:0	LPDAC[9:2]	R/W	0x0	LPDAC Setting bit 9 to bit 2

23.1.15. SOC.LPDAC1

Register 23-14. SOC.LPDAC1 (LPDAC Setting [1:0], SOC 0x2D)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:2	Reserved	R/W	0x0	Reserved, write to 0x0

BIT	NAME	ACCESS	RESET	DESCRIPTION
1:0	LPDAC[1:0]	R/W	0x0	LPDAC Setting bit 1 to bit 0

23.1.16. SOC.ADCSCAN

Register 23-15. SOC.ADCSCAN (ADCSCAN Configuration, SOC 0x2E)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:5	Reserved	R/W	0x0	Reserved, write to 0x0
4	SCANEN	R/W	0x0	ADC Scan Control Enable 1b: enabled 0b: disabled
3	ADCBUFEN	R/W	0x0	ADC Buffer Enable 1b: enabled 0b: disabled
2	DAO10SH	R/W	0x0	DAO10 Sample and Hold buffer enable 1b: enable S/H 0b: disable and bypass S/H
1	DAO32SH	R/W	0x0	DAO32 Sample and Hold buffer enable 1b: enable S/H 0b: disable and bypass S/H
0	DAO54SH	R/W	0x0	DAO54 Sample and Hold buffer enable 1b: enable S/H 0b: disable and bypass S/H

23.1.17. SOC.ADCIN1

Register 23-16. SOC.ADCIN1 (AD Mux Selector, SOC 0x2F)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:4	Reserved	R/W	0x0	Reserved, write to 0x0
3:0	MUXA	R/W	0x0	AD Mux Channel Selector 1111b: VREF / 2 1110b: AB12 1101b: AB11 1100b: AB10 1011b: AB9 1010b: AB8 1001b: AB7 1000b: AB6 0111b: AB5 0110b: AB4 0101b: AB3 0100b: AB3 0100b: AB2 0011b: AB1 0010b: DAO54 0001b: DAO32 0000b: DAO10

23.1.18. SOC.PROTINTM

Register 23-17. SOC.PROTINTM (Protection Interrupt Enable, SOC 0x30)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	Reserved	R/W	0x0	Reserved, write to 0x0
6	HP54INTEN	R/W	0x0	HPROT54 Interrupt enable 1b: enable 0b: disabled
5	HP32INTEN	R/W	0x0	HPROT32 Interrupt enable 1b: enable 0b: disabled
4	HP10INTEN	R/W	0x0	HPROT10 Interrupt enable 1b: enable 0b: disabled
3	Reserved	R/W	0x0	Reserved, write to 0x0
2	LP54INTEN	R/W	0x0	LPROT54 Interrupt enable 1b: enable 0b: disabled
1	LP32INTEN	R/W	0x0	LPROT32 Interrupt enable 1b: enable 0b: disabled
0	LP10INTEN	R/W	0x0	LPROT10 Interrupt enable 1b: enable 0b: disabled

23.1.19. SOC.PROTSTAT

Register 23-18. SOC.PROTSTAT (Protection Interrupt, SOC 0x31)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	Reserved	R/W	0x0	Reserved, write to 0x0
6	HP54INT	R/W	0x0	HPROT54 Interrupt 1b: Interrupt, write 1 to clear 0b: No interrupt
5	HP32INT	R/W	0x0	HPROT32 Interrupt 1b: Interrupt, write 1 to clear 0b: No interrupt
4	HP10INT	R/W	0x0	HPROT10 Interrupt 1b: Interrupt, write 1 to clear 0b: No interrupt
3	Reserved	R/W	0x0	Reserved, write to 0x0
2	LP54INT	R/W	0x0	LPROT54 Interrupt 1b: Interrupt, write 1 to clear 0b: No interrupt
1	LP32INT	R/W	0x0	LPROT32 Interrupt 1b: Interrupt, write 1 to clear 0b: No interrupt
0	LP10INT	R/W	0x0	LPROT10 Interrupt 1b: Interrupt, write 1 to clear 0b: No interrupt

23.1.20. SOC.DOUTSIG0

Register 23-19. SOC.DOUTSIG0 (AIO Digital Output, SOC 0x32)

BIT	NAME	ACCESS	RESET	DESCRIPTION
-----	------	--------	-------	-------------

BIT	NAME	ACCESS	RESET	DESCRIPTION
5	AIO5DOUT	R/W	0x0	AIO5 digital out 1b: Output High Z 0b: Output VSSA
4	AIO4DOUT	R/W	0x0	AIO4 digital out 1b: Output High Z 0b: Output VSSA
3	AIO3DOUT	R/W	0x0	AIO3 digital out 1b: Output High Z 0b: Output VSSA
2	AIO2DOUT	R/W	0x0	AIO2 digital out 1b: Output High Z 0b: Output VSSA
1	AIO1DOUT	R/W	0x0	AlO1 digital out 1b: Output High Z 0b: Output VSSA
0	AIO0DOUT	R/W	0x0	AlO0 digital out 1b: Output High Z 0b: Output VSSA

23.1.21. SOC.DOUTSIG1

Register 23-20. SOC.DOUTSIG1 (AIO Digital Output, SOC 0x33)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:4	Reserved	R/W	0x0	Reserved, write to 0x0
3	AIO9DOUT	R/W	0x0	AIO9 digital out 1b: Output High Z 0b: Output VSSA
2	AIO8DOUT	R/W	0x0	AIO8 digital out 1b: Output High Z 0b: Output VSSA
1	AIO7DOUT	R/W	0x0	AlO7 digital out 1b: Output High Z 0b: Output VSSA
0	AIO6DOUT	R/W	0x0	AlO6 digital out 1b: Output High Z 0b: Output VSSA

23.1.22. SOC.DINSIG0

Register 23-21. SOC.DINSIG0 (AIO Digital Input, SOC 0x34)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:6	Reserved	R/W	0x0	Reserved, write to 0x0
5	AIO5DIN	R	0x0	AIO5 digital input 1b: Input high 0b: Input low
4	AIO4DIN	R	0x0	AIO4 digital input 1b: Input high 0b: Input low

BIT	NAME	ACCESS	RESET	DESCRIPTION
3	AIO3DIN	R	0x0	AIO3 digital input 1b: Input high 0b: Input low
2	AIO2DIN	R	0x0	AIO2 digital input 1b: Input high 0b: Input low
1	AIO1DIN	R	0x0	AIO1 digital input 1b: Input high 0b: Input low
0	AIO0DIN	R	0x0	AIO0 digital input 1b: Input high 0b: Input low

23.1.23. SOC.DINSIG1

Register 23-22. SOC.DINSIG1 (AIO Digital Input 1, SOC 0x35)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:4	Reserved	R/W	0x0	Reserved, write to 0x0
3	AIO9DIN	R	0x0	AIO9 digital input 1b: Input high 0b: Input low
2	AIO8DIN	R	0x0	AIO9 digital input 1b: Input high 0b: Input low
1	AIO7DIN	R	0x0	AIO0 digital input 1b: Input high 0b: Input low
0	AIO6DIN	R	0x0	AIO0 digital input 1b: Input high 0b: Input low

23.1.24. SOC.SIGINTM

Register 23-23. SOC.SIGINTM (AIO6,7,8,9 Interrupt Enable, SOC 0x36)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	AIO9REINTEN	R/W	0x0	AIO9 digital input rising edge interrupt enable 1b: enabled 0b: disabled
6	AIO8REINTEN	R/W	0x0	AIO8 digital input rising edge interrupt enable 1b: enabled 0b: disabled
5	AIO7REINTEN	R/W	0x0	AIO7 digital input rising edge interrupt enable 1b: enabled 0b: disabled
4	AIO6REINTEN	R/W	0x0	AIO6 digital input rising edge interrupt enable 1b: enabled 0b: disabled
3	AIO9FEINTEN	R/W	0x0	AIO9 digital input falling edge interrupt enable 1b: enabled 0b: disabled

BIT	NAME	ACCESS	RESET	DESCRIPTION
2	AIO8FEINTEN	R/W	0x0	AIO8 digital input falling edge interrupt enable 1b: enabled 0b: disabled
1	AIO7FEINTEN	R/W	0x0	AIO7 digital input falling edge interrupt enable 1b: enabled 0b: disabled
0	AIO6FEINTEN	R/W	0x0	AIO6 digital input falling edge interrupt enable 1b: enabled 0b: disabled

23.1.25. SOC.SIGINTF

Register 23-24. SOC.SIGINTF (AIO6,7,8,9 Interrupt, SOC 0x37)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:4	Reserved	R/W	0x0	Reserved, write to 0x0
3	AIO9INT	R/W	0x0	AIO9 Interrupt 1b: Interrupt, clear by writing 1b 0b: No Interrupt
2	AIO8INT	R/W	0x0	AIO8 Interrupt 1b: Interrupt, clear by writing 1b 0b: No Interrupt
1	AIO7INT	R/W	0x0	AIO7 Interrupt 1b: Interrupt, clear by writing 1b 0b: No Interrupt
0	AIO6INT	R/W	0x0	AIO6 Interrupt 1b: Interrupt, clear by writing 1b 0b: No Interrupt

23.1.26. SOC.ENSIG

Register 23-25. SOC.ENSIG (Signal Manager Control SOC 0x38)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:1	Reserved	R/W	0x0	Reserved, write to 0x0
0	SMEN	R/W	0x0	Signal Manager Enable 1b: Enabled 0b: Disabled

23.2. Details of Operation

23.2.1. Block Diagram

Figure 23-1. Configurable Analog Front End

23.2.2. Configuration

Following blocks need to be configured for correct use of the Configurable analog frontend.

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller
- SOC Bridge

23.2.3. Configurable Analog Front End

The configurable analog front end registers are accessible through the SOC Bridge. AlOx can be configured as digital open drain I/Os or analog inputs.

Programmable comparators and protection circuits can be connected to the analog signals.

The analog signals can be conditioned with programmable gain single ended amplifiers or programmable gain differential amplifiers before muxed to the ADC.

23.2.3.1. Configurable Analog Front End Enable

Use SOC.SMCTL.ENSIG to enable the configurable analog front end.

23.2.3.2. Integrated Temperature Sensor

The CAFE contains and integrated temperature sensor that can be sampled on the AB10 analog bus. To read the temperature, sample this ADC channel and convert the ADC counts to °C by the following formula:

°C = ((ADC counts - TTEMPS) >> 1) + FTTEMP

23.3. AIO1, AIO0

23.3.1. Block Diagram

Figure 23-2. AIO1, AIO0

^{*} common DAC forAIO0, AIO1, AIO2, AIO3, AIO4, AIO5

23.3.2. AIO1, AIO0

AIO1 and AIO0 can be configured as digital inputs or as differential amplifier pair with additional protection.

23.3.3. AIO1, AIO0 digital I/O Mode

Set **SOC.CFGAIO0.MODE10** = 00b to use AIO1 and AIO0 as digital inputs.

23.3.3.1. AIO0 IO

Set SOC.CFGAIO0.OPT0 = 00b to use AIO0 as input. The input state can be read at SOC.DINSIG0.AIO0DIN.

Set **SOC.CFGAIO0.OPT0** = 10b to use AIO0 as open drain output. Set **SOC.CFGAIO0.MUX0** = 00b to mux the output state from **SOC.DOUTSIG0.AIO0DOUT**. Use **SOC.CFGAIO0.MUX0** to mux the output signal from the internal digital bus DBUS DB1 to DB7.

23.3.3.2. AIO1 IO

Set SOC.CFGAIO1.OPT1 = 00b to use AIO1 as input. The input state can be read at SOC.DINSIG0.AIO1DIN.

Set **SOC.CFGAIO1.OPT1** = 10b to use AIO1 as open drain output. Set **SOC.CFGAIO1.MUX1** = 00b to MUX the output state from **SOC.DOUTSIG0.AIO1DOUT**. Use **SOC.CFGAIO1.MUX1** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.3.3.3. AIO0 Polarity

Use SOC.CFGAIO0.POL0 to set logic polarity of the signal between AIO0 input/output and MUX0.

23.3.3.4. AIO1 Polarity

Use SOC.CFGAIO0.POL1 to set logic polarity of the signal between AIO1 input/output and MUX1.

23.3.4. AIO1, AIO0 differential Amplifier Mode

Set **SOC.CFGAIO0.MODE10** = 01b to use AIO1 and AIO0 as input to a differential amplifier.

23.3.4.1. AIO1, AIO0 Differential Amplifier Gain

Use **SOC.CFGAIO0.GAIN10** to set to gain between 1x to 48x.

23.3.4.2. AIO1, AIO0 Differential Amplifier Reference

Use SOC.CFGAIO1.OS10EN to set the amplifier reference either VSSA or VREF/2.

23.3.4.3. AIO1, AIO0 Differential Amplifier Calibration

Use SOC.1.CAL10EN to short the input of the differential amplifier to allow reading of the amplifier offset.

23.3.5. AIO1, AIO0 Protection

In **SOC.CFGAIO0.MODE10** = 01b differential amplifier mode, a high side comparator protector HP10 and a low side comparator protector LP10 are also active that can be configured to disabled high-side or low-side drivers

in the application specific power driver section.

23.3.5.1. HP10 Comparator

The HP10 comparator takes the AIO1 voltage referenced to VSSA and compares it against the HP-DAC voltage. The 8-bit HP-DAC is programmable with **SOC.HPDAC**.

Use **SOC.CFGAIO1.HP10EN** to enable HP10 comparator with different blanking times.

Use SOC.SIGSET.HPROTHYS to enable HP10 comparator hysteresis.

The output of HP10 comparator can be configured to trigger protection signal PR1 using SOC.CFGAIO1.HP10PR1EN or protection signal PR2 using SOC.AIO1CFG.HP10PR2EN.

The output of HP10 can also trigger the nIRQ1 interrupt using **SOC.PROTINTM.HP10INTEN**. The interrupt status can be observed with **SOC.PROTSTAT.HP10INT**.

23.3.5.2. LP10 Comparator

The LP10 comparator takes the output of the differential amplifier and compares it against the LP-DAC voltage. The 10-bit LP-DAC is programmable with **SOC.LPDAC0** and **SOC.LPDAC1**.

Use **SOC.CFGAIO0.LP10EN** to enable LP10 comparator with different blanking times.

Use **SOC.SIGSET.LPPROTHYS** to enable LP10 comparator hysteresis.

The output of LP10 comparator can be configured to trigger protection signal PR1 using SOC.CFGAIO1.LP10PR1EN or protection signal PR2 using SOC.CFGAIO1.LP10PR2EN.

The output of LP10 can also trigger the nIRQ1 interrupt using **SOC.PROTINTM.LP10INTEN**. The interrupt status can be observed with **SOC.PROTSTAT.LP10INT**.

23.4. AIO3, AIO2

23.4.1. Block Diagram

Figure 23-3. AIO3, AIO2

^{*} common DAC forAlO0, AlO1, AlO2, AlO3, AlO4, AlO5

23.4.2. AIO3, AIO2

AIO3 and AIO2 can be configured as digital inputs or as differential amplifier pair with additional protection.

23.4.3. AIO3, AIO2 digital I/O Mode

Set **SOC.CFGAIO2.MODE32** = 00b to use AIO3 and AIO2 as digital inputs.

23.4.3.1. AIO2 IO

Set SOC.CFGAIO2.OPT2 = 00b to use AIO2 as input. The input state can be read at SOC.DINSIG0.AIO2DIN.

Set **SOC.CFGAIO2.OPT2** = 10b to use AIO2 as open drain output. Set **SOC.CFGAIO2.MUX2** = 00b to MUX the output state from **SOC.DOUTSIG0.AIO2DOUT**. Use **SOC.CFGAIO2.MUX2** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.4.3.2. AIO3 IO

Set SOC.CFGAIO3.OPT3 = 00b to use AIO3 as input. The input state can be read at SOC.DINSIG0.AIO3DIN.

Set **SOC.CFGAIO3.OPT3** = 10b to use AIO3 as open drain output. Set **SOC.CFGAIO3.MUX3** = 00b to MUX the output state from **SOC.DOUTSIG0.AIO3DOUT**. Use **SOC.CFGAIO3.MUX3** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.4.3.3. AIO2 Polarity

Use SOC.CFGAIO2.POL2 to set logic polarity of the signal between AIO2 input/output and MUX2.

23.4.3.4. AIO3 Polarity

Use SOC.CFGAIO3.POL3 to set logic polarity of the signal between AIO3 input/output and MUX3.

23.4.4. AlO3, AlO2 differential Amplifier Mode DAO32

Set SOC.CFGAIO2.MODE32 = 01b to use AIO3 and AIO2 as input to a differential amplifier DAO32.

23.4.4.1. DAO32 Differential Amplifier Gain

Use **SOC.CFGAIO2.GAIN32** to set to gain between 1x to 48x.

23.4.4.2. DAO32 Differential Amplifier Reference

Use SOC.CFGAIO3.OS32EN to set the amplifier reference either VSSA or VREF/2.

23.4.4.3. DAO32 Differential Amplifier Calibration

Use SOC.CFGAIO3.CAL32EN to short the input of the differential amplifier to allow reading of the amplifier offset.

23.4.5. AIO3, AIO2 Protection

In SOC.CFGAIO2.MODE32 = 01b differential amplifier mode, a high side comparator protector HP10 and a low

side comparator protector LP10 are also active that can be configured to disabled high-side or low-side drivers in the application specific power driver section.

23.4.5.1. HP32 Comparator

The HP32 comparator takes the AlO3 voltage referenced to VSSA and compares it against the HP-DAC voltage. The 8-bit HP-DAC is programmable with **SOC.HPDAC**.

Use SOC.CFGAIO3.HP32EN to enable HP32 comparator with different blanking times.

Use **SOC.SIGSET.HPPROTHYS** to enable HP32 comparator hysteresis.

The output of HP32 comparator can be configured to trigger protection signal PR1 using SOC.CFGAIO3.HP32PR1EN or protection signal PR2 using SOC.CFGAIO3.HP32PR2EN.

The output of HP32 can also trigger the nIRQ1 interrupt using **SOC.PROTINTM.HP32INTEN**. The interrupt status can be observed with **SOC.PROTSTAT.HP32INT**.

23.4.5.2. LP32 Comparator

The LP32 comparator takes the output of the differential amplifier and compares it against the LP-DAC voltage. The 10-bit LP-DAC is programmable with **SOC.LPDAC0** and **SOC.LPDAC1**.

Use **SOC.CFGAIO2.LP32EN** to enable LP32 comparator with different blanking times.

Use **SOC.SIGSET.LPPROTHYS** to enable LP32 comparator hysteresis.

The output of LP32 comparator can be configured to trigger protection signal PR1 using SOC.CFGAIO3.LP32PR1EN or protection signal PR2 using SOC.CFGAIO3.LP32PR2EN.

The output of LP32 can also trigger the nIRQ1 interrupt using **SOC.PROTINTM.LP32INTEN**. The interrupt status can be observed with **SOC.PROTSTAT.LP32INT**.

23.5. AIO5, AIO4

23.5.1. Block Diagram

Figure 23-4. AIO5, AIO4

 $^{^{\}star}$ common DAC for AlO0, AlO1, AlO2, AlO3, AlO4, AlO5

23.5.2. AIO5, AIO4

AIO5 and AIO4 can be configured as digital inputs or as differential amplifier pair with additional protection.

23.5.3. AIO5, AIO4 digital I/O Mode

Set **SOC.CFGAIO4.MODE54** = 00b to use AIO5 and AIO4 as digital inputs.

23.5.3.1. AIO4 IO

Set SOC.CFGAIO4.OPT4 = 00b to use AIO4 as input. The input state can be read at SOC.DINSIG0.AIO4DIN.

Set **SOC.CFGAIO4.OPT4** = 10b to use AIO4 as open drain output. Set **SOC.CFGAIO4.MUX4** = 00b to MUX the output state from **SOC.DOUTSIG0.AIO4DOUT**. Use **SOC.CFGAIO4.MUX4** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.5.3.2. AIO5 IO

Set SOC.CFGAIO5.OPT5 = 00b to use AIO5 as input. The input state can be read at SOC.DINSIG0.AIO5DIN.

Set **SOC.CFGAIO5.OPT5** = 10b to use AIO5 as open drain output. Set **SOC.CFGAIO5.MUX5** = 00b to MUX the output state from **SOC.DOUTSIG0.AIO5DOUT**. Use **SOC.CFGAIO5.MUX5** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.5.3.3. AIO4 Polarity

Use SOC.CFGAIO4.POL4 to set logic polarity of the signal between AIO4 input/output and MUX4.

23.5.3.4. AIO5 Polarity

Use SOC.CFGAIO5.POL5 to set logic polarity of the signal between AIO5 input/output and MUX5.

23.5.4. AIO5, AIO4 differential Amplifier Mode DAO54

Set SOC.CFGAIO4.MODE54 = 01b to use AIO5 and AIO4 as input to a differential amplifier DAO54.

23.5.4.1. DAO54 Differential Amplifier Gain

Use **SOC.CFGAIO4.GAIN54** to set to gain between 1x to 48x.

23.5.4.2. DAO54 Differential Amplifier Reference

Use SOC.CFGAIO5.OS54EN to set the amplifier reference either VSSA or VREF/2.

23.5.4.3. DAO54 Differential Amplifier Calibration

Use SOC.CFGAIO5.CAL54EN to short the input of the differential amplifier to allow reading of the amplifier offset.

23.5.5. AIO5, AIO4 Protection

In SOC.CFGAIO4.MODE54 = 01b differential amplifier mode, a high side comparator protector HP54 and a low

side comparator protector LP54 are also active that can be configured to disabled high-side or low-side drivers in the application specific power driver section.

23.5.5.1. HP54 Comparator

The HP54 comparator takes the AlO5 voltage referenced to VSSA and compares it against the HP-DAC voltage. The 8-bit HP-DAC is programmable with **SOC.HPDAC**.

Use SOC.CFGAIO5.HP54EN to enable HP54 comparator with different blanking times.

Use **SOC.SIGSET.HPPROTHYS** to enable HP54 comparator hysteresis.

The output of HP54 comparator can be configured to trigger protection signal PR1 using SOC.CFGAIO5.HP54PR1EN or protection signal PR2 using SOC.CFGAIO5.HP54PR2EN.

The output of HP54 can also trigger the nIRQ1 interrupt using **SOC.PROTINTM.HP54INTEN**. The interrupt status can be observed with **SOC.PROTSTAT.HP54INT**.

23.5.5.2. LP54 Comparator

The LP54 comparator takes the output of the differential amplifier and compares it against the LP-DAC voltage. The 10-bit LP-DAC is programmable with **SOC.LPDAC0** and **SOC.LPDAC1**.

Use **SOC.CFGAIO4.LP54EN** to enable LP54 comparator with different blanking times.

Use **SOC.SIGSET.LPPROTHYS** to enable LP54 comparator hysteresis.

The output of LP54 comparator can be configured to trigger protection signal PR1 using SOC.CFGAIO5.LP54PR1EN or protection signal PR2 using SOC.CFGAIO5.LP54PR2EN.

The output of LP54 can also trigger the nIRQ1 interrupt using **SOC.PROTINTM.LP54INTEN**. The interrupt status can be observed with **SOC.PROTSTAT.LP54INT**.

23.6. AIO6

23.6.1. Block Diagram

Figure 23-5. AIO6

23.6.2. AIO6

AIO6 can be configured as digital input, as singled ended programmable gain amplifier, as comparator, as output from the analog ABUS or as push button input to wake up the device from low power hibernate mode.

23.6.3. AIO6 digital I/O Mode

Set SOC.PWRSTAT.PBEN = 0b and SOC.CFGAIO6.MODE6 = 00b to use AIO6 as digital IO.

23.6.3.1. AIO6 IO

Set SOC.CFGAIO6.OPT6 = 00b to use AIO6 as input. The input state can be read at SOC.DINSIG1.AIO6DIN.

Set **SOC.CFGAIO6.OPT6** = 10b to use AIO6 as open drain output. Set **SOC.CFGAIO6.MUX6** = 00b to MUX the output state from **SOC.DOUTSIG1.AIO6DOUT**. Use **SOC.CFGAIO6.MUX6** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.6.3.2. AIO6 IO Interrupt

Set SOC.SIGINTM.AIO6REINTEN to allow nIRQ2 interrupt on AIO6 low high transition.

Set SOC.SIGINTM.AIO6FEINTEN to allow nIRQ2 interrupt on AIO6 high low transition.

The interrupt status can be monitored with **SOC.SIGINTF.AIO6INT** and cleared by writing **SOC.SIGINTF.AIO6INT** to 1b.

23.6.3.3. AIO6 Polarity

Use SOC.CFGAIO6.POL6 to set logic polarity of the signal between AIO6 input/output and MUX6.

23.6.4. AIO6 Single Ended Amplifier Mode

Set **SOC.PWRSTAT.PBEN** = 0b and **SOC.CFGAIO6.MODE6** = 01b to use AIO6 as input to a programmable gain amplifier.

23.6.4.1. AIO6 Amplifier Gain

Use SOC.CFGAIO6.GAIN6 to set to gain between 1x to 48x or bidirectional amplifier bypassmode.

23.6.4.2. AIO6 Analog MUX

Use **SOC.CFGAIO6.MUX6** to switch the output of the amplifier to analog channel AB1 to AB7 on the analog bus ABUS.

23.6.5. AIO6 Comparator Mode

Set SOC.PWRSTAT.PBEN = 0b and SOC.CFGAIO6.MODE6 = 10b to use AIO6 in comparator mode.

23.6.5.1. AIO6 Comparator Hysteresis

Use **SOC.SIGSET.AIO6HYS** to enable AIO6 comparator hysteresis.

23.6.5.2. AIO6 Comparator setting

Use **SOC.CFGAIO6.OPT6** to set the compare value of the comparator to AB1, AB2, AB3 or VTHREF, setable with **SOC.SYSSTAT.VTHREF**.

23.6.5.3. AIO6 Comparator Polarity

Use **SOC.CFGAIO6.POL6** to set the output polarity of the comparator.

23.6.5.4. AIO6 Comparator Output MUX

Use **SOC.AIO6CFG.MUX6** to set the output of the comparator to the digital bus DB1 to DB7 or **SOC.AIOIN1.AIO6DIN**.

23.6.6. AIO6 Special Mode

Set **SOC.PWRSTAT.PBEN** = 0b and **SOC.CFGAIO6.MODE6** = 11b to use AlO6 in special mode. In special mode the AlO6 can output a buffered signal from the internal ABUS, AB1 to AB7.

23.6.6.1. AIO6 Special Mode MUX

Use **SOC.CFGAIO6.MUX6** to set the ABx channel output to AIO6.

23.6.6.2. AIO6 Special Mode ADMUX

Use **SOC.CFGAIO6.ADMUX** set the MUX the ADMUX output to AB7.

23.6.6.3. AIO6 Special Mode OFFSET SWAP

Use SOC.CFGAIO6.SWAP to swap the random offset of the buffer for calibration reasons.

23.6.7. AIO6 Push Button Mode

Set **SOC.PSTATSET.PBEN** = 1b to enable AlO6 Hibernate push button mode, where AlO6 has an internal weak pull up also active in hibernate mode. Set **SOC.PSTATSET.nPBINTM** = 1b to enable nIRQ1 interrupt. Use **SOC.SYSSTAT.PBSTAT** to monitor interrupt status and write 1b to clear interrupt.

PAC5223 User Guide

23.6.7.1. AIO6 Push Button Wake Up

In Hibernate Wake Mode and enabled push button mode, if AlO6 is pulled low for the de-bouncing time period, the **SOC.PWRCTL.HIB** is cleared and the device powers up.

23.6.7.2. AIO6 Push Button Power Down

In normal mode the **SOC.SYSSTAT.PBSTAT** is set when AlO6 is pulled low for the de-bouncing time period. The system then can be put into hibernate mode by setting **SOC.PWRCTL.HIB** = 1b.

23.6.7.3. AIO6 Push Button Hard Reset

In normal operation if the AIO6 is pulled low for more than 8s, the nRST signal will be asserted and the MCU is reset. **SOC.PWRSTAT.HWRESET** is set to indicate this condition.

23.7. AIO7

23.7.1. Block Diagram

Figure 23-6. AIO7

23.7.2. AIO7

AIO7 can be configured as digital input, as singled ended programmable gain amplifier, as comparator, as output from the analog ABUS or as push button input to wake up the device from low power hibernate mode.

23.7.3. AIO7 Digital I/O Mode

Set SOC.CFGAIO7.MODE7 = 00b to use AIO7 as digital IO. To use AIO7 as a digital input, set

SOC.CFGAIO7.OPT7 to 00b. The input state can be read at SOC.DINSIG1.DIN7.

Set **SOC.CFGAIO7.OPT7** = 10b to use AIO7 as open drain output. Set **SOC.CFGAIO7.MUX7** = 00b to MUX the output state from **SOC.DOUTSIG1.DOUT7**. Use **SOC.CFGAIO7.MUX7** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

Set SOC.SIGINTM.AIO7FEINTEN to allow nIRQ2 interrupt on AIO7 high to low transition.

Set SOC.SIGINTM.AIO7REINTEN to allow nIRQ2 interrupt on AIO7 low to low transition.

The interrupt status can be monitored with **SOC.SIGINTF.AIO7INT** and cleared by writing **SOC.SIGINTF.AIO7INT** to 1b.

Use SOC.CFGAIO7.POL7 to set logic polarity of the signal between AIO7 input/output and MUX7.

23.7.4. AIO7 Gain Amplifier Mode

To configure AIO7 for gain amplifier mode, set SOC.CFGAIO7.MODE7 to 01b.

In this mode, the gain of the amplifier can be set between 1X and 48X. To set the gain, set **SOC.CFGAIO7.GAIN7** to the desired value. To switch the output of the amplifier to analog channel AB1 to AB7 on ABUS, set **SOC.CFGAIO7.MUX7** to the desired channel.

23.7.5. AIO7 Comparator Mode

To configure AIO7 for comparator mode, set **SOC.CFGAIO7.MODE7** = 10b.

To set the AIO7 comparator reference, set **SOC.CFGAIO7.OPT7** to AB1, AB2, AB3 or VTHREF. The VTHREF value can bet set using **SOC.SYSSTAT.VTHREF**.

The output polarity of the AlO7 comparator may be set by using **SOC.CFGAIO7.POL7** to the desired value.

The output of the comparator may be configured by setting **SOC.CFGAIO7.MUX7** to the desired value. The output can be set to AB1 to AB7 or to **SOC.AIOIN1.DIN7**.

23.7.6. AIO7 Special Mode

In special mode, the AlO7 comparator is enabled. To configure AlO7 for special mode, set SOC.CFGAIO7.MODE7 to 11b.

In special mode, AIO7 allows the user to configure bi-directional asymmetric comparator hysteresis. See the section below for more information.

The user may set the AIO7 comparator input to AB1, AB2, AB3 or VTHREF. the user may also use the comparator for phase to phase comparisons by setting the comparator input to AIO8 or AIO9. The user may configure the comparator input by setting **SOC.CFGAIO7.OPT7** to the desired value.

In special mode, AIO7 allows the user to configure the comparator star point.

Set **CFGAIO9.MODE9[0]** to 1b to connect AIO7, AIO8 and AIO9 to AB1 with a 100kOhm resistor to create a star point reference for the comparator.

Set CFGAIO9.MODE9[0] to 0b to set the AB1 reference to come from AIO6 in amplifier mode. To set AIO6 to amplifier mode, set CFGAIO6.MODE6 to 01b and CFGAIO6.GAIN6 to 000b for direct mode, and CFGAIO6.MUX6 to 1b.

To read the voltage on AlO7, set **CFGAIO9.MODE9[1]** to 1b. This setting will MUX AlO7 to AB7 with 40% attenuation so the ADC can read the AlO7 voltage.

To read the comparator output for AlO7, AlO8 or AlO9 for position (POS), set **CFGAlO9.OPT9** to the desired value.

The AIO7 Sample and Hold (S/H) bypass may be configured as well. To bypass the POS S/H, set **CFGAIO8.OPT8[1]** to 0b. To use POS S/H for use with the EMUX, set **CFGAIO8.OPT8[0]** to the 1b.

To select the POS or nIRQ2 output, set the CFGAIO8.OPT8[0] to the desired value.

When configured in special mode, the user may select the comparator input using a MUX by writing the **CFGAIO7.MUX7** field. The table below shows the comparator input selections that may be used.

Table 23-2. AIO7 Special Mode Comparator Input Selections

CFGAIO7.MODE	AIO Mode	CFGAIO7.MUX	Comparator Input MUX Selection	Function
		000b	VTHREF	Fixed threshold
		001b	AB1	Virtual center-tap for BEMF zero-cross
		010b	AB2	
11b		011b	AB3	
IID	Special Mode	100b	AIO8	Phase to phase
		101b	AIO9	Phase to phase
		110b	RFU	
		111b	RFU	

The user may configure the comparator hysteresis separately for rising and falling hysteresis as shown in **SOC.SPECCFG1**.

23.8. AIO8

23.8.1. Block Diagram

Figure 23-7. AIO8

23.8.2. AIO8

AlO8 can be configured as digital input, as singled ended programmable gain amplifier, as comparator, as output from the analog ABUS or as push button input to wake up the device from low power hibernate mode.

23.8.3. AIO8 digital I/O Mode

Set **SOC.CFGAIO8.MODE8** = 00b to use AIO8 as digital IO.

23.8.3.1. AIO8 IO

Set SOC.CFGAIO8.OPT8 = 00b to use AIO8 as input. The input state can be read at SOC.DINSIGO.AIO8DIN.

Set **SOC.CFGAIO8.OPT8** = 10b to use AIO8 as open drain output. Set **SOC.CFGAIO8.MUX8** = 00b to MUX the output state from **SOC.DCOUTSIG0.AIO8DOUT**. Use **SOC.CFGAIO8.MUX8** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.8.3.2. AIO8 IO Interrupt

Set SOC.SIGINTM.AIO8REINTEN to allow nIRQ2 interrupt on AIO8 low high transition.

Set SOC.SIGINTM.AIO8FEINTEN to allow nIRQ2 interrupt on AIO8 high low transition.

The interrupt status can be monitored with **SOC.SIGINTF.AIO8INT** and cleared by writing **SOC.SIGINTF.AIO8INT** to 1b.

23.8.3.3. AIO8 Polarity

Use SOC.CFGAIO8.POL8 to set logic polarity of the signal between AIO8 input/output and MUX8.

23.8.4. AIO8 Single Ended Amplifier Mode

Set SOC.CFGAIO8.MODE8 = 01b to use AIO8 as input to a programmable gain amplifier.

23.8.4.1. AIO8 Amplifier Gain

Use **SOC.CFGAIO8.GAIN8** to set to gain between 1x to 48x or bidirectional amplifier bypass mode.

23.8.4.2. AIO8 Analog MUX

Use **SOC.CFGAIO8.MUX8** to switch the output of the amplifier to analog channel AB1 to AB7 on the analog bus ABUS.

23.8.5. AIO8 Comparator Mode

Set **SOC.CFGAIO8.MODE8** = 10b to use AIO8 in comparator mode.

23.8.5.1. AIO8 Comparator Hysteresis

Use **SOC.SIGSET.AIO8HYS** to enable AIO8 comparator hysteresis.

23.8.5.2. AIO8 Comparator Reference

Use **SOC.CFGAIO8.OPT8** to set the compare value of the comparator to AB1, AB2, AB3 or VTHREF, setable with **SOC.SYSSTAT.VTHREF**.

23.8.5.3. AIO8 Comparator Polarity

Use SOC.CFGAIO8.POL8 to set the output polarity of the comparator.

23.8.5.4. AIO8 Comparator Output

The comparator output can be observed with SOC.DINSIG1.AIO8DIN.

23.8.6. AIO8 Special Mode

Set **SOC.CFGAIO7.MODE7** = 11b to use AIO8 in special mode. In special mode the AIO8 comparator is enabled.

23.8.6.1. AIO8 Comparator Hysteresis

Use **SOC.SIGSET.AIO8HYS** to enable AIO8 comparator hysteresis.

23.8.6.2. AIO8 Comparator Reference

Use SOC.CFGAIO7.OPT7 to set the compare value of the comparator to AB1, AB2 or AB3.

23.8.6.3. AIO8 Comparator Reference Star Point

Use **SOC.CFGAIO9.MODE9[0]** =1b to connect AIO7, AIO8 and AIO9 to AB1 with a 100kOhm resistor to create a star point reference for the comparator.

With SOC.CFGAIO9.MODE9[0] =0b, the AB1 reference could for example come from AIO6 in amplifier mode SOC.CFGAIO6.MODE6 = 01b and SOC.CFGAIO6.GAIN6 = 000b direct mode and SOC.CFGAIO6.MUX6 = 1b.

23.8.6.4. AIO8 Voltage Reading

Use **SOC.CFGAIO9.MODE9[1]** =1b to MUX AIO8 to AB8 with 40% attenuation, so ADC can read out AIO8 voltage.

23.8.6.5. AIO8 Comparator Output

Use **SOC.CFGAIO9.OPT9** to select AIO7, AIO8 or AIO9 comparator output signal for POS.

23.8.6.6. AIO8 POS S/H Bypass

Set **SOC.CFGAIO8.OPT8[1]** =0b bypass the POS S/H.

Set **SOC.CFGAIO8.OPT8[1]** =1b use POS S/H for use with EMUX.

23.8.6.7. AIO8 nIRQ2/POS Selector

Use SOC.CFGAIO8.OPT8[0] to select POS or nIRQ2 output.

23.9. AIO9

23.9.1. Block Diagram

Figure 23-8. AIO9

23.9.2. AIO9

AlO9 can be configured as digital input, as singled ended programmable gain amplifier, as comparator, as output from the analog ABUS or as push button input to wake up the device from low power hibernate mode.

23.9.3. AIO9 digital I/O Mode

Set **SOC.CFGAIO9.MODE9** = 00b to use AIO9 as digital IO.

23.9.3.1. AIO9 IO

Set SOC.CFGAIO9.OPT9 = 00b to use AIO9 as input. The input state can be read at SOC.DINSIG1.AIO9DIN.

Set **SOC.CFGAIO9.OPT9** = 10b to use AIO9 as open drain output. Set **SOC.CFGAIO9.MUX9** = 00b to MUX the output state from **SOC.DOUTSIG1.AIO9DOUT**. Use **SOC.CFGAIO9.MUX9** to MUX the output signal from the internal digital bus DBUS DB1 to DB7.

23.9.3.2. AIO9 IO Interrupt

Set SOC.SIGINTM.AIO9REINTEN to allow nIRQ2 interrupt on AIO8 low high transition.

Set SOC.SIGINTM.AIO9FEINTEN to allow nIRQ2 interrupt on AIO8 high low transition.

The interrupt status can be monitored with **SOC.SIGINTF.AIO9INT** and cleared by writing **SOC.SIGINTF.AIO9INT** to 1b.

23.9.3.3. AIO9 Polarity

Use SOC.CFGAIO9.POL9 to set logic polarity of the signal between AIO9 input/output and MUX9.

23.9.4. AlO9 Single Ended Amplifier Mode

Set SOC.CFGAIO9.MODE9 = 01b to use AIO9 as input to a programmable gain amplifier.

23.9.4.1. AIO9 Amplifier Gain

Use SOC.CFGAIO9.GAIN9 to set to gain between 1x to 48x or bidirectional amplifier bypass mode.

23.9.4.2. AIO9 Analog MUX

Use **SOC.CFGAIO9.MUX9** to switch the output of the amplifier to analog channel AB1 to AB7 on the analog bus ABUS.

23.9.5. AIO9 Comparator Mode

Set **SOC.CFGAIO9.MODE9** = 10b to use AIO9 in comparator mode.

23.9.5.1. AIO9 Comparator Hysteresis

Use **SOC.SIGSET.AIO9HYS** to enable AIO9 comparator hysteresis.

23.9.5.2. AIO9 Comparator Reference

Use **SOC.CFGAIO9.OPT9** to set the compare value of the comparator to AB1, AB2, AB3 or VTHREF, setable with **SOC.SYSSTAT.VTHREF**.

23.9.5.3. AIO9 Comparator Polarity

Use **SOC.CFGAIO9.POL9** to set the output polarity of the comparator.

23.9.5.4. AIO9 Comparator Output

The comparator output can be observed with SOC.DINSIG1.AIO9DIN.

23.9.6. AIO9 Special Mode

Set **SOC.CFGAIO7.MODE7** = 11b to use AIO9 in special mode. In special mode the AIO9 comparator is enabled.

23.9.6.1. AIO9 Comparator Hysteresis

Use **SOC.SIGSET.AIO9HYS** to enable AIO9 comparator hysteresis.

23.9.6.2. AIO9 Comparator Reference

Use SOC.CFGAIO7.OPT7 to set the compare value of the comparator to AB1, AB2 or AB3.

23.9.6.3. AIO9 Comparator Reference Star Point

Use **SOC.CFGAIO9.MODE9[0]** =1b to connect AIO7, AIO8 and AIO9 to AB1 with a 100kOhm resistor to create a star point reference for the comparator.

With SOC.CFGAIO9.MODE9[0] =0b, the AB1 reference could for example come from AIO6 in amplifier mode SOC.CFGAIO6.MODE6 = 01b and SOC.CFGAIO6.GAIN6 = 000b direct mode and SOC.CFGAIO6.MUX6 = 1b.

23.9.6.4. AIO9 Voltage Reading

Use **SOC.CFGAIO9.MODE9[1]** =1b to MUX AIO9 to AB9 with 40% attenuation, so ADC can read out AIO9 voltage.

23.9.6.5. AIO9 Comparator Output

Use **SOC.CFGAIO9.OPT9** to select AIO7, AIO8 or AIO9 comparator output signal for POS.

23.9.6.6. AIO9 POS S/H Bypass

Set **SOC.CFGAIO8.OPT8[1]** =0b bypass the POS S/H.

Set **SOC.CFGAIO8.OPT8[1]** =1b use POS S/H for use with EMUX.

23.9.6.7. AIO9 nIRQ2/POS Selector

Use **SOC.CFGAIO8.OPT8[0]** to select POS or nIRQ2 output.

24. EMUX

The EMUX is a dedicated high-speed, low-latency serial interface to control the ADMUX, AIO7, AIO8, AIO9 POS sample and hold and the DAOxy sample and hold using the ADC sequencing engine.

To enable the EMUX, set the **SOC.ADCSCAN.SCANEN** = 1b. This will enable the ADC sequencer to command the control of the AFE MUX using the EMUX data sent by the sequencer.

The EMUX allows high-speed control over the following:

- AFE MUX channel select
- DAO10, DAO32 and DAO54 sample and hold engines
- POS/BEMF sample and hold engine

The format of the EMUX command used to control the AFE MUX is the same as shown in **SOC.ADCIN1**. The EMUX data is transmitted MSB first.

Table 24-1. EMUX Packet Structure

BIT	NAME	DESCRIPTION			
7:6	С	EMUX start of message token.			
5	SH1	Sample and hold activation for phase comparators 0b: Sample 1b: Hold			
4	SH2	Sample and hold activation for Differential Amplifiers: DAO10, DAO32 and DAO54 0b: Sample 1b: Hold			
3:0	MUXA	AFE MUX Channel Selector: 0000b: DAO10 0001b: DAO32 0010b: DAO54 0011b: AB1 0100b: AB2 0101b: AB3 0110b: AB4 0111b: AB5 1000b: AB6 1001b: AB7 1010b: AB8 1011b: AB9 1100b: AB10 1101b: AB11 1110b: AB12 1111b: VREF * 5/10			

The BEMF POS sample and hold circuits are toggled based on the SH1 bit in the EMUX packet with the falling edge of the 3rd clock cycle.

The AIO54, AIO32 and AIO10 sample and hold circuits are toggled based on the SH2 bit in the EMUX packet with the falling edge of the 4th clock cycle.

The AFE MUX select is switched with the falling edge of the 8th clock based on the data bits 3:0 of the EMUX data.

Figure 24-1. EMUX Timing Diagram

25. APPLICATION SPECIFIC POWER DRIVER

25.1. Register

25.1.1. Register Map

Table 25-1. Application Specific Power Driver Register Map

SOC ADDRESS	NAME	DESCRIPTION	RESET VALUE				
Application Specific Power Driver							
0x60	SOC.CFGDRV0	Driver Configuration 0	0x00				
0x61	SOC.CFGDRV1	Driver configuration 1 0x00					
0x62	SOC.CFGDRQ6	OHI6 Configuration					
0x63	SOC.CFGDRQ7	OHI7 Configuration	0x00				
0x64	SOC.DOUTDRV	OHx6/7, OM0/2/4 output control	0x00				
0x65	SOC.DINDRV	OHI6, OHI7 Input state					
0x66	SOC.ENDRV	Gate Driver Control	0x00				
0x67	SOC.ENBBM	High side – low side break before make control					
0x68	SOC.PROTCTL	Driver hardware protection control 0x00					
0x69 – 0x7F	Reserved	Reserved N/A					

25.1.2. SOC.CFGDRV0

Register 25-1. SOC.CFGDRV0 (Driver Configuration 0, SOC 0x60)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:6	PROP3	R/W	0x0	Propagation delay for DRL3, DRH3 or OP3 11b: 200ns 10b: 100ns 01b: 50ns 00b: 0ns
5:4	PROP2	R/W	0x0	Propagation delay for DRL2 11b: 200ns 10b: 100ns 01b: 50ns 00b: 0ns
3:2	PROP1	R/W	0x0	Propagation delay for DRL1 11b: 200ns 10b: 100ns 01b: 50ns 00b: 0ns
1:0	PROP0	R/W	0x0	Propagation delay for DRL0 11b: 200ns 10b: 100ns 01b: 50ns 00b: 0ns

25.1.3. SOC.CFGDRV1

Register 25-2. SOC.CFGDRV1 (Driver Configuration 1, SOC 0x61)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	HSPR1EN	R/W	0x0	High side PR1 protection enable 1b: PR1 enabled 0b: PR1 disabled
6	HSPR2EN	R/W	0x0	High side PR2 protection enable 1b: PR2 enabled 0b: PR2 disabled
5	LSPR1EN	R/W	0x0	Low side PR1 protection enable 1b: PR1 enabled 0b: PR1 disabled
4	LSPR2EN	R/W	0x0	Low side PR2 protection enable 1b: PR2 enabled 0b: PR2 disabled
3:2	PROP5	R/W	0x0	Propagation delay for DRL5, DRH5 or OP5 11b: 200ns 10b: 100ns 01b: 50ns 00b: 0ns
1:0	PROP4	R/W	0x0	Propagation delay for DRL4, DRH4 or OP4 11b: 200ns 10b: 100ns 01b: 50ns 00b: 0ns

25.1.4. SOC.CFGDRQ6

Register 25-3. SOC.CFGDRQ6 (OHI6 Configuration, SOC 0x62)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:6	Reserved	R/W	0x0	Reserved, write to 0x0
5:4	ОРТ6	R/W	0x0	OHI6 IO Setting 11b: Reserved 10b: Open-drain output 01b: Open-drain strong driver 00b: Input
3	POL6	R/W	0x0	If CFGAIO0.OPT6 = 00b, AIO6 Input polarity setting. If CFGAIO0.OPT6 = 01b or 10b AIO6 Output polarity setting. 1b: active-low 0b: active-high
2:0	MUX6	R/W	0x0	If CFGAIO0.OPT6 = 00b, send AIO6 input state to internal digital bus If CFGAIO0.OPT0 = 01b or 10b, set AIO6 state according to MUX6 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: SOC.OMOUT.OHI6DOUT / SOC.OHIIN.OHI6DIN

25.1.5. SOC.CFGDRQ7

Register 25-4. SOC.CFGDRQ7 (OHI6 Configuration, SOC 0x63)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:6	Reserved	R/W	0x0	Reserved, write to 0x0
5:4	ОРТ7	R/W	0x0	OHI7 IO Setting 11b: Reserved 10b: Open-drain output 01b: Open-drain strong driver 00b: Input
3	POL7	R/W	0x0	If CFGAIO0.OPT7 = 00b, AIO7 Input polarity setting. If CFGAIO0.OPT7 = 01b or 10b , AIO7 Output polarity setting. 1b: active-low 0b: active-high
2:0	MUX7	R/W	0x0	If CFGAIO0.OPT7 = 00b, send AIO7 input state to internal digital bus If CFGAIO0.OPT0 = 01b or 10b, set AIO7 state according to MUX7 111b: DB7 110b: DB6 101b: DB5 100b: DB4 011b: DB3 010b: DB2 001b: DB1 000b: SOC.OMOUT.OHI7DOUT / SOC.OHIIN.OHI7DIN

25.1.6. SOC.DOUTDRV

Register 25-5. SOC.DOUTDRV (OHI6/7, OM0/2/4 Output, SOC 0x64)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	OHI7DOUT	R/W	0x0	OHI7 output in open drain mode 1b: High-Z 0b: VSS
6	OHI6DOUT	R/W	0x0	OHI6 output in open drain mode 1b: High-Z 0b: VSS
5	PROTDB7EN	R/W	0x0	DB7 signal enable for PROT 1b: enable DB7 0b: disable DB7
4	OM4DOUT	R/W	0x0	OM4 output in open drain mode 1b: High-Z 0b: VSS
3	PROTDB6EN	R/W	0x0	DB6 signal enable for PROT 1b: enable DB6 0b: disable DB6
2	OM2DOUT	R/W	0x0	OM2 output in open drain mode 1b: High-Z 0b: VSS
1	PROTDB5EN	R/W	0x0	DB5 signal enable for PROT 1b: enable DB5 0b: disable DB5
0	OMODOUT	R/W	0x0	OM0 output in open drain mode 1b: High-Z 0b: VSS

25.1.7. SOC.DINDRV

Register 25-6. SOC.DINDRV (OHI6, OHI7 Input, SOC 0x65)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7	OHI7DIN	R/W	0x0	OHI7 input 1b: High 0b: Low
6	OHI6DIN	R/W	0x0	OHI6 input 1b: High 0b: Low
5:0	Reserved	R/W	0x0	Reserved, write to 0x0

25.1.8. SOC.ENDRV

Register 25-7. SOC.ENDRV (Application Specific Power Driver Control, SOC 0x66)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:1	Reserved	R/W	0x0	Reserved, write to 0x0
0	DRVEN	R/W	0x0	Application Specific Power Driver Enable 1b: enabled 0b: disabled

25.1.9. SOC.ENBBM

Register 25-8. SOC.ENBBM (Driver Break Before Make Control, SOC 0x67)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:1	Reserved	R/W	0x0	Reserved, write to 0x0
0	ENBBM	R/W	0x0	Break before make control for DRL0-DRH3, DRL1-DRH4, DRL2-DRH5 1b: enabled 0b: disabled

25.1.10. SOC.PROTCTL

Register 25-9. SOC.PROTCTL (Driver Protection Control, SOC 0x68)

BIT	NAME	ACCESS	RESET	DESCRIPTION
7:1	Reserved	R/W	0x0	Reserved, write to 0x0
0	PROTSEL	R/W	0x0	Select input signal for PROT 1b: nIRQ2, DB5, DB6 or DB7 0b: PR1

25.2. Details of Operation

25.2.1. Block Diagram

Figure 25-1. Application Specific Power Driver

25.2.2. Configuration

Following blocks need to be configured for correct use of the Application specific power driver

- Clock Control System (CCS)
- Nested Vectored Interrupt Controller (NVIC)
- IO Controller
- SOC Bridge

25.2.3. Application Specific Power Driver

The application specific power driver registers are accessible through the SOC Bridge. The Ultra high side drivers OXHx, high side drivers DRHx, low side drivers DRLx and general purpose open drain drivers OPx can be controlled by timer PWMs. The OMx and OHIx open drain drivers are controlled by SOC registers.

25.2.3.1. Application Specific Power Driver Enable

Use SOC.DRVCTL.ENDRV to enable the application specific power driver.

25.2.3.2. Break Before Make Enable

This device contains a break before make function, which enforces that the low-side and high-side gate drivers for the same half-bridge are not enabled at the same time.

To enable this function, set **SOC.ENBBM.ENBBM** to 1b to enforce this behavior for the high-side and low-side driver pairs: DRL0-DRH3, DRL1-DRH4 and DRL2-DRH5.

25.3. ENHS1, ENLS1 Protection

25.3.1. Block Diagram

Figure 25-2. ENHS1, ENLS1 Protection

25.3.2. ENHS1, ENLS1 Protection

The PR1, PR2 signals from the AIOx inputs in the configurable analog front-end can be used to disable the gate drivers in the application specific power drivers, separated in 2 groups.

The ENHS1 signal protects DRH3, DRH4, DRH5.

The ENLS1 signal protects DRS3, DRS4, DRS5.

25.3.2.1. ENLS1 Protection Enable

Use SOC.DRV1CFG.LSPR1EN to enable protection signal ENLS1 using PR1 as input.

Use SOC.DRV1CFG.LSPR2EN to enable protection signal ENLS1 using PR2 as input.

25.3.2.2. ENHS1 Protection Enable

Use SOC.DRV1CFG.LSPR1EN to enable protection signal ENHS1 using PR1 as input.

Use SOC.DRV1CFG.LSPR2EN to enable protection signal ENHS1 using PR2 as input.

25.3.2.3. Input Signal Selection

Use **SOC.PROTCTL.PROTSEL** to select between PR1 or PROT signal as the input to ENHS1, ENLS1 protection signals.

Use SOC.OHIOMOUT.PROTDB5EN, SOC.OHIOMOUT.PROTDB6EN, and SOC.OHIOMOUT.PROTDB7EN to

select the input signal for this protection function.

25.4. DRL0 Low Side Driver

25.4.1. Block Diagram

Figure 25-3. DRL0

25.4.2. DRL0

DRL0 is a push-pull low side gate driver, controlled by PA0 I/O. The gate driver has configurable propagation delay, global driver enable, configurable make before break with DRH3 and configurable protection disable with ENLS1 protection

25.4.2.1. DRL0 Propagation Delay

Use **SOC.DRVCFG0** to set the propagation delay between PA0 input and DRL0 output between 0ns to 200ns.

25.4.2.2. DRL0 Enable

The DRL0 driver can be enabled with **SOC.ENDRV.ENDRV**. The protection signal ENLS1 will disabled the driver if configured.

25.4.2.3. Break Before Make Control

25.5. DRL1 Low Side Driver

25.5.1. Block Diagram

Figure 25-4. DRL1

25.5.2. DRL1

DRL1 is a push-pull low side gate driver, controlled by PA1 I/O. The gate driver has configurable propagation delay, global driver enable, configurable make before break with DRH4 and configurable protection disable with ENLS1 protection

25.5.2.1. DRL1 Propagation Delay

Use **SOC.DRVCFG0.PROP1** to set the propagation delay between PA1 I/O and DRL1 output between 0ns to 200ns.

25.5.2.2. DRL1 Enable

The DRL1 driver can be enabled with **SOC.ENDRV.ENDRV**. The protection signal ENLS1 will disabled the driver if configured.

25.5.2.3. Break Before Make Control

25.6. DRL2 Low Side Driver

25.6.1. Block Diagram

Figure 25-5. DRL2

25.6.2. DRL2

DRL2 is a push-pull low side gate driver, controlled by PA2 I/O. The gate driver has configurable propagation delay, global driver enable, configurable make before break with DRH5 and configurable protection disable with ENLS1 protection

25.6.2.1. DRL2 Propagation Delay

Use **SOC.DRVCFG0.PROP2** to set the propagation delay between PA2 I/O and DRL2 output between 0ns to 200ns.

25.6.2.2. DRL2 Enable

The DRL2 driver can be enabled with **SOC.ENDRV.ENDRV**. The protection signal ENLS1 will disabled the driver if configured.

25.6.2.3. Break Before Make Control

25.7. DRH3 High Side Driver

25.7.1. Block Diagram

Figure 25-6. DRH3

25.7.2. DRH3

DRH3 is a push-pull high side gate driver, controlled by PA3 I/O. The gate driver has configurable propagation delay, global driver enable, configurable make before break with DRL0 and configurable protection disable with ENHS1 signal from the configurable analog front end.

The DRH3 driver can be enabled with **SOC.ENDRV.ENDRV**. The protection signal ENHS1 will disabled the driver if configured.

Use **SOC.DRVCFG.PROP3** to set the propagation delay between PA3 I/O and DRH3 output between 0ns to 200ns.

25.8. DRH4 High Side Driver

25.8.1. Block Diagram

Figure 25-7. DRH4

25.8.2. DRH4

DRH4 is a push-pull high side gate driver, controlled by PA4 I/O. The gate driver has configurable propagation delay, global driver enable, configurable make before break with DRL2 and configurable protection disable with ENHS1 signal from the configurable analog front end.

25.8.2.1. DRH4 Propagation Delay

Use **SOC.DRVCFG1.PROP4** to set the propagation delay between PA4 I/O and DRH4 output between 0ns to 200ns.

25.8.2.2. DRH4 Enable

The DRH4 driver can be enabled with **SOC.ENDRV.ENDRV**. The protection signal ENHS1 will disabled the driver if configured.

25.8.2.3. Break Before Make Control

25.9. DRH5 High Side Driver

25.9.1. Block Diagram

Figure 25-8. DRH5

25.9.2. DRH5

DRH5 is a push-pull high side gate driver, controlled by PA5 I/O. The gate driver has configurable propagation delay, global driver enable, configurable make before break with DRL3 and configurable protection disable with ENHS1 signal from the configurable analog front end.

25.9.2.1. DRH5 Propagation Delay

Use **SOC.DRVCFG1.PROP5** to set the propagation delay between PA5 I/O and DRH5 output between 0ns to 200ns.

25.9.2.2. DRH5 Enable

The DRH5 driver can be enabled with **SOC.ENDRV.ENDRV**. The protection signal ENHS1 will disabled the driver if configured

25.9.2.3. Break Before Make Control

26. ARM CORTEX-M0 REFERENCE

26.1. Introduction

26.1.1. Overview

This chapter is taken from the ARM Cortex-M0 User Guide with minimal modifications made to account for the specific Cortex-M0 implementation.

26.1.2. About the Cortex-M0 processor and core peripherals

The Cortex™-M0 processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- · a simple architecture that is easy to learn and program
- · ultra-low power, energy efficient operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with Cortex-M processor family.

The Cortex-M0 processor is built on a highly area and power optimized 32-bit processor core, with a 3-stage pipeline von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0 processor implements the ARMv6-M architecture, which is based on the 16-bit Thumb® instruction set and includes Thumb-2 technology. This provides the exceptional performance expected of a modern 32-bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

The Cortex-M0 processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- includes a non-maskable interrupt (NMI)
- provides zero jitter interrupt option
- · provides four interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to be rapidly powered down.

26.1.2.1. System-level interface

The Cortex-M0 processor provides a single system-level interface using AMBA® technology to provide high speed, low latency memory accesses.

26.1.2.2. Integrated configurable debug

The Cortex-M0 processor implements a complete hardware debug solution, with extensive hardware breakpoint and watchpoint options. This provides high system visibility of the processor, memory and peripherals through a Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices. The device supports 4 hardware breakpoints.

26.1.2.3. Cortex-M0 processor features summary

- high code density with 32-bit performance
- tools and binary upwards compatible with Cortex-M processor family
- integrated ultra low-power sleep modes
- efficient code execution permits slower processor clock or increases sleep mode time
- · single-cycle 32-bit hardware multiplier
- · zero jitter interrupt handling
- extensive debug capabilities.

26.1.2.4. Cortex-M0 core peripherals

These are:

26.1.2.4.1. NVIC

The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

26.1.2.4.2. System Control Block

The System Control Block (SCB) is the programmers model interface to the processor. It provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

26.1.2.4.3. System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick timer or as a simple counter.

26.2. The Cortex-M0 Processor

26.2.1. Programmers Model

This section describes the Cortex-M0 programmers model. In addition to the individual core register descriptions, it contains information about the processor modes and stacks.

26.2.1.1. Processor modes

The processor modes are:

Thread mode

Used to execute application software. The processor enters Thread mode when it comes out of reset.

Handler mode

Used to handle exceptions. The processor returns to Thread mode when it has finished all exception processing.

26.2.1.2. Stacks

The processor uses a full descending stack. This means the stack pointer indicates the last stacked item on the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item to the new memory location. The processor implements two stacks, the main stack and the process stack, with independent copies of the stack pointer, see Stack Pointer in chapter 26.2.1.3.2 on page 287.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack, see CONTROL register in chapter 26.2.1.3.12 on page 290. In Handler mode, the processor always uses the main stack. The options for processor operations are:

Table 26-1. Summary of processor mode and stack use options

PROCESSOR MODE	USED TO EXECUTE	STACK USED
Thread	Applications	Main stack or process stack*
Handler	Exception handlers	Main stack

^{*} See CONTROL Register in chapter 26.2.1.3.12 on page 290

26.2.1.3. Core Registers

Figure 26-2. Core Registers

Table 26-2. Core register set summary

NAME	TYPE*	RESET VALUE	DESCRIPTION
R0 – R12	RW	Unknown	General Purpose Register,see chapter 26.2.1.3.1 on page 286
MSP	RW	See description	Stack pointer, see chapter 26.2.1.3.2 on page 287
PSP	RW	Unknown	Stack pointer, see chapter 26.2.1.3.2 on page 287
LR	RW	Unknown	Link Register, see chapter 26.2.1.3.3 on page 287
PC	RW	See description	Program Counter, see chapter 28826.2.1.3.4 on page 287
PSR	RW	Unknown **	Program Status Register, see chapter 26.2.1.3.5 on page 287
APSR	RW	Unknown	Application Program status register, see chapter 26.2.1.3.6 on page 288
IPSR	RW	0x0000 0000	Interrupt Program status register, see chapter 26.2.1.3.7 on page 288
ESPR	RW	Unknown **	Execution Program status register, see chapter 26.2.1.3.8 on page 289
PRIMASK	RW	0x0000 0000	Priority Mask Register, see chapter 26.2.1.3.11 on page 290
CONTROL	RW	0x0000 0000	Control Register, see chapter 26.2.1.3.12 on page 290

^{*.} Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

26.2.1.3.1. General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

^{**.} Bit[24] is the T-bit and is loaded from bit[0] of the reset vector.

26.2.1.3.2. Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to use:

- 0 = Main Stack Pointer (MSP). This Is the reset value.
- 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x0000 0000

26.2.1.3.3. Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On reset, the LR value is Unknown.

26.2.1.3.4. Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the PC with the value of the reset vector, which is at address 0x0000 0004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

26.2.1.3.5. Program Status Register

The Program Status Register (PSR) combines:

- Application Program Status Register (APSR)
- Interrupt Program Status Register (IPSR)
- Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR. The PSR bit assignments are:

Figure 26-3. PSR

Access these registers individually or as a combination of any two or all three registers, using the register name as an argument to the MSR or MRS instructions. For example:

read all of the registers using PSR with the MRS instruction

• write to the APSR using APSR with the MSR instruction.

The PSR combinations and attributes are:

Table 26-3. Core register set summary

REGISTER	TYPE*	COMBINATION
PSR	RW *, **	APSR, EPSR, and IPSR
IEPSR	RO	EPSR and IPSR
IAPSR	RW,*	APSR and IPSR
EAPST	RW,**	APSR and EPSR

^{*} The processor ignores writes to the IPSR bits.

See the instruction descriptions MRS in chapter 26.3.7.6 on page 339 and MSR in chapter 26.3.7.7 on page 340 for more information about how to access the program status registers.

26.2.1.3.6. Application Program Status Register

The APSR contains the current state of the condition flags, from previous instruction executions. See the register summary in Table 26-2. Core register set summary on page 286 for its attributes. The bit assignments are:

Table 26-4. APSR bit assignments

BIT	NAME	FUNCTION
31	N	Negative Flag
30	z	Zero Flag
29	С	Carry or Borrow Flag
28	V	Overflow Flag
27:0	Reserved	Reserved

See The condition flags in chapter 26.3.3.6.1 on page 313 for more information about the APSR negative, zero, carry or borrow, and overflow flags.

26.2.1.3.7. Interrupt Program Status Register

The IPSR contains the exception number of the current Interrupt Service Routine (ISR). See the register summary in Table 26-2. Core register set summary on page 286 for its attributes. The bit assignments are:

Table 26-5. IPSR bit assignments

BIT	NAME	FUNCTION
31:6	Reserved	Reserved

^{**} Reads of the EPSR bits return zero, and the processor ignores writes to the these bits

BIT	NAME	FUNCTION
5:0	Exception Number	This is the number of the current exception: 63-48: Reserved 47: IRQ31 16: IRQ0 15: SysTick 14: PendSV 13-12: Reserved 11: SVCALL 10-4: Reserved 3: HardFault 2: NMI 1: Reserved 0: Thread mode see Exception types in chapter 26.2.3.2 on page 297

26.2.1.3.8. Execution Program Status Register

The EPSR contains the Thumb state bit.

See the register summary in Table 26-2. Core register set summary on page 286 for ESPR attributes. The bit assignments are:

Table 26-6. EPSR bit assignments

BIT	NAME	FUNCTION
31:25	Reserved	Reserved
24	Т	Thumb state bit
23:0	Reserved	Reserved

Attempts by application software to read the EPSR directly using the MRS instruction always return zero. Attempts to write the EPSR using the MSR instruction are ignored. Fault handlers can examine the EPSR value in the stacked PSR to determine the cause of the fault. See Exception entry and return in chapter 26.2.3.6 on page 301. The following can clear the T bit to 0:

- instructions BLX, BX and POP{PC}
- restoration from the stacked xPSR value on an exception return
- bit[0] of the vector value on an exception entry.

Attempting to execute instructions when the T bit is 0 results in a HardFault or lockup.

See Lockup in chapter 26.2.4.1 on page 303 for more information.

26.2.1.3.9. Interruptible-restartable instructions

The interruptible-restartable instructions are LDM and STM, and the multiply instruction. When an interrupt occurs during the execution of one of these instructions, the processor abandons execution of the instruction.

After servicing the interrupt, the processor restarts execution of the instruction from the beginning.

26.2.1.3.10. Exception mask register

The exception mask register disables the handling of exceptions by the processor. Disable exceptions where they might impact on timing critical tasks or code sequences requiring atomicity.

To disable or re-enable exceptions, use the MSR and MRS instructions, or the CPS instruction, to change the value of PRIMASK. See MRS in chapter 26.3.7.6 on page 339, MSR in chapter 26.3.7.7 on page 340, and CPS in chapter 26.3.7.2 on page 336 for more information.

26.2.1.3.11. Priority Mask Register

The PRIMASK register prevents activation of all exceptions with configurable priority.

See the register summary in Table 26-2. Core register set summary on page 286 for its attributes. The bit assignments are:

Figure 26-4. PRIMASK

Table 26-7. PRIMASK register bit assignments

BIT	NAME	FUNCTION
31:1	Reserved	Reserved
0	PRIMASK	prevents activation of all exceptions with configurable priority o: no effect

26.2.1.3.12. Control Register

The CONTROL register controls the stack used when the processor is in Thread mode.

See the register summary in Table 26-2. Core register set summary on page 286 for its attributes. The bit assignments are:

Figure 1-5. CONTROL

Table 26-8. CONTROL re	aister bit	assignments
------------------------	------------	-------------

BIT	NAME	FUNCTION
31:1	Reserved	Reserved
0	Active Stack Pointer	Defines the current stack: 1: MSP is the current stack pointer 0: PSP is the current stack pointer In Handler mode this bit reads as zero and ignores writes.
0	Reserved	Reserved

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CONTROL register when in Handler mode. The exception entry and return mechanisms update the CONTROL register.

In an OS environment, it is recommended that threads running in Thread mode use the process stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, use the MSR instruction to set the Active stack pointer bit to 1, see MSR in chapter 26.3.7.7 on page 340.

Note

When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction. This ensures that instructions after the ISB execute using the new stack pointer. See ISB in chapter 26.3.7.5 on page 338.

26.2.1.4. Exceptions and interrupts

The Cortex-M0 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An interrupt or exception changes the normal flow of software control. The processor uses handler mode to handle all exceptions except for reset. See Exception entry in chapter 26.2.3.6.5 on page 302 and Exception return in chapter 26.2.3.6.6 on page 302 for more information.

The NVIC registers control interrupt handling. See Nested Vectored Interrupt Controller in chapter 26.4.2 on page 345 for more information.

26.2.1.5. Data Types

The processor:

- supports the following data types:
 - o 32-bit words
 - o 16-bit halfwords
 - 8-bit bytes
- manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus (PPB) accesses are always little-endian. See Memory regions, types and attributes in chapter 26.2.2.1 on page 293 for more information.

26.2.1.6. The Cortex Microcontroller Software Interface Standard

ARM provides the Cortex Microcontroller Software Interface Standard (CMSIS) for programming Cortex-M0 microcontrollers. The CMSIS is an integrated part of the device driver library. For a Cortex-M0 microcontroller system, CMSIS defines:

- a common way to:
 - access peripheral registers
 - o define exception vectors
- the names of:
 - the registers of the core peripherals
 - the core exception vectors
- a device-independent interface for RTOS kernels.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M0 processor. It also includes optional interfaces for middleware components comprising a TCP/IP stack and a Flash file system.

The CMSIS simplifies software development by enabling the reuse of template code, and the combination of CMSIS-compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions that address the processor core and the core peripherals.

Note

This document uses the register short names defined by the CMSIS. In a few cases these differ from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

- Power management programming hints in chapter 26.2.5.5 on page 306
- Intrinsic functions in chapter 26.3.2 onpage 308
- Accessing the Cortex-M0 NVIC registers using CMSIS in chapter 26.4.2.1 on page 346
- NVIC programming hints in chapter 26.4.2.8.1 on page 350

26.2.2. Memory model

This section describes the processor memory map and the behavior of memory accesses. The processor has a fixed memory map that provides up to 4GB of addressable memory. The memory map is:

Figure 26-6. Memory Map

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers, see About the Cortex-M0 processor and core peripherals in chapter 26.1.2 on page 283

26.2.2.1. Memory regions, types and attributes

The memory map is split into regions. Each region has a defined memory type, and some regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to the region.

The memory types are:

26.2.2.1.1. Normal

The processor can re-order transactions for efficiency, or perform speculative reads.

26.2.2.1.2. Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

26.2.2.1.3. Strongly-ordered

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

The additional memory attributes include.

26.2.2.1.4. Execute Never (XN)

Means the processor prevents instruction accesses. A HardFault exception is generated on executing an instruction fetched from an XN region of memory.

26.2.2.2. Memory system ordering of memory accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that the order in which the accesses complete matches the program order of the instructions, providing any re-ordering does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses completing in program order, software must insert a memory barrier instruction between the memory access instructions, see Software ordering of memory accesses in chapter 26.2.2.4 on page 295.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of the memory accesses caused by two instructions is:

Figure 26-7. Memory Ordering Restrictions

A2	Normal	Device access		Strongly- ordered	
A1	access	Non-shareable	Shareable	access	
Normal access	-	-	-	-	
Device access, non-shareable	-	<	-	<	
Device access, shareable	-	-	<	<	
Strongly-ordered access	-	<	<	<	

Where:

- Means that the memory system does not guarantee the ordering of the accesses.
- < Means that accesses are observed in program order, that is, A1 is always observed before A2.

26.2.2.3. Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

Table 26-9. Memory Access Behavior

ADDRESS RANGE	MEMORY REGION	MEMORY TYPE	XN*	DESCRIPTION
0xFFFF FFFF - 0xE010 0000	Device	Device	XN	Reserved
0xE00F FFFF - 0xE000 0000	Private Peripheral Bus	Strongly - ordered	XN	This region includes the NVIC, System timer, and System Control Block. Only word accesses can be used in this region.
0xDFFF FFFF – 0xA000 0000	External Device	Device	XN	External device memory
0x9FFF FFFF – 0x6000 0000	External RAM	Normal	-	Executable region for data
0x5FFF FFFF – 0x4000 0000	Peripheral	Device	XN	External device memory
0x3FFF FFFF – 0x2000 0000	SRAM	Normal	-	Executable region for data. You can also put code here
0x1FFF FFFF - 0x0000 0000	Code	Normal	-	Executable region for program code. You can also put data here

^{*} See Memory regions, types and attributes in chapter 26.2.2.1 on page 293 for more information.

The Code, SRAM, and external RAM regions can hold programs.

26.2.2.4. Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory transactions. This is because:

- the processor can reorder some memory accesses to improve efficiency, providing this does not affect the behavior of the instruction sequence
- memory or devices in the memory map might have different wait states
- some memory accesses are buffered or speculative.

Memory system ordering of memory accesses in chapter 26.2.2.2 on page 294 describes the cases where the memory system guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory barrier instructions to force that ordering. The processor provides the following memory barrier instructions:

26.2.2.4.1. DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent memory transactions. See DMB in chapter 26.3.7.3 on page 337.

26.2.2.4.2. DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete

before subsequent instructions execute. See DSB in chapter 26.3.7.4 on page 338.

26.2.2.4.3. ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is recognizable by subsequent instructions. See ISB in chapter 26.3.7.5 on page 338.

The following are examples of using memory barrier instructions:

26.2.2.4.4. Vector table

f the program changes an entry in the vector table, and then enables the corresponding exception, use a DMB instruction between the operations. This ensures that if the exception is taken immediately after being enabled the processor uses the new exception vector.

26.2.2.4.5. Self-modifying code

If a program contains self-modifying code, use an ISB instruction immediately after the code modification in the program. This ensures subsequent instruction execution uses the updated program.

26.2.2.4.6. Memory map switching

If the system contains a memory map switching mechanism, use a DSB instruction after switching the memory map. This ensures subsequent instruction execution uses the updated memory map.

Memory accesses to Strongly-ordered memory, such as the System Control Block, do not require the use of DMB instructions.

26.2.2.5. Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Little-endian format in chapter 26.2.2.5.1 on page 296 describes how words of data are stored in memory.

26.2.2.5.1. Little-endian format

In little-endian format, the processor stores the least significant byte (lsbyte) of a word at the lowest-numbered byte, and the most significant byte (msbyte) at the highest-numbered byte. For example:

Figure 26-8. Little Endian Format

26.2.3. Exception model

This section describes the exception model.

26.2.3.1. Exception states

Each exception is in one of the following states:

26.2.3.1.1. Inactive

The exception is not active and not pending.

26.2.3.1.2. Pending

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

26.2.3.1.3. Active

An exception that is being serviced by the processor but has not completed.

Note

An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in the active state.

26.2.3.1.4. Active and pending

The exception is being serviced by the processor and there is a pending exception from the same source.

26.2.3.2. Exception types

The exception types are:

26.2.3.2.1. Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts in Thread mode.

26.2.3.2.2. NMI

A NonMaskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This is the highest priority exception other than reset. It is permanently enabled and has a fixed priority of -2. NMIs cannot be:

- · masked or prevented from activation by any other exception
- preempted by any exception other than Reset.

26.2.3.2.3. HardFault

A HardFault is an exception that occurs because of an error during normal or exception processing. HardFaults have a fixed priority of -1, meaning they have higher priority than any exception with configurable priority.

26.2.3.2.4. SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can use SVC instructions to access OS kernel functions and device drivers.

26.2.3.2.5. PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching when no other exception is active.

26.2.3.2.6. SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a SysTick exception. In an OS environment, the processor can use this exception as system tick.

26.2.3.2.7. Interrupt (IRQ)

An interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software request. All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor

Table 26-10. Properties of the different exception types

EXCEPTION NUMBER*	IRQ NUMBER*	EXCEPTION TYPE	PRIORITY	VECTOR ADDRESS**	ACTIVATION
1	-	Reset	-3, the highest	0x0000 0004	Asynchronous
2	-14	NMI	-2	0x0000 0008	Asynchronous
3	-13	HardFault	-1	0x0000 000C	Synchronous
4-10	-	Reserved	-	-	-
11	-5	SVCall	Configurable***	0x0000 002C	Synchronous

EXCEPTION NUMBER*	IRQ NUMBER*	EXCEPTION TYPE	PRIORITY	VECTOR ADDRESS**	ACTIVATION
12-13	-	Reserved	-	-	•
14	-2	PendSV	Configurable***	0x0000 0038	Asynchronous
15	-1	SysTick	Configurable***	0x0000 003C	Asynchronous
16 and above	0 and above	Interrupt (IRQ)	Configurable***	0x0000 0040 and above***	Asynchronous

^{*}To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other than interrupts. The IPSR returns the Exception number, see Interrupt Program Status Register in chapter 26.2.1.3.5 on page 287.

For an asynchronous exception, other than reset, the processor can execute additional instructions between when the exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 26-10. Properties of the different exception types on page 298 shows as having configurable priority, see Interrupt Clear-enable Register in chapter 26.4.2.3 on page 347.

For more information about HardFaults, see Fault handling in chapter 26.2.4 on page 303.

26.2.3.3. Exception handlers

The processor handles exceptions using:

26.2.3.3.1. Interrupt Service Routines (ISRs)

Interrupts IRQ0 to IRQ31 are the exceptions handled by ISRs.

26.2.3.3.2. Fault handler

HardFault is the only exception handled by the fault handler.

26.2.3.3.3. System handlers

NMI, PendSV, SVCall SysTick, and HardFault are all system exceptions handled by system handlers.

26.2.3.4. Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for all exception handlers. Figure 26-9. Vector Table on page 300 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler is written in Thumb code.

^{**}See Vector table for more information.

^{***}See Interrupt Priority Registers in chapter 26.4.2.6 on page 348.

^{****}Increasing in steps of 4.

Figure 26-9. Vector Table

Exception number	IRQ number	Vector	Offset
47	31	IRQ31	OVEC
			0xBC
	J	· ·	- . ≈
		•	
18	2	IRQ2	0x48
17	1	IRQ1	0x44
16	0	IRQ0	0x40
15	-1	SysTick Reserved	0x3C
14	-2	PendSV	0x38
13		Reserved	OXSO
12		reserved	
11	-5	SVCall	0x2C
10			UNZC
9			
8			
7		Reserved	
6			
5			
4			0×10
3	-13	HardFault	0x0C
2	-14	NMI	0x08
1		Reset	0x04
		Initial SP value	0×00

The vector table is fixed at address 0x0000 0000.

26.2.3.5. Exception priorities

As Table 26-10. Properties of the different exception types on page 298 shows, all exceptions have an associated priority, with:

- · a lower priority value indicating a higher priority
- configurable priorities for all exceptions except Reset, HardFault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about configuring exception priorities see

- System Handler Priority Registers in chapter 26.4.3.7 on page 356
- Interrupt Priority Registers in chapter 26.4.2.6 on page 348.

Note

Configurable priority values are in the range 0-192, in steps of 64. The Reset, HardFault, and NMI exceptions, with fixed negative priority values, always have higher priority than any other exception.

Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

26.2.3.6. Exception entry and return

Descriptions of exception handling use the following terms:

26.2.3.6.1. Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the priority of the exception being handled.

When one exception preempts another, the exceptions are called nested exceptions. See Exception entry in chapter 26.2.3.6.5 on page 302 for more information.

26.2.3.6.2. Return

This occurs when the exception handler is completed, and:

- there is no pending exception with sufficient priority to be serviced
- the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See Exception return in chapter 26.2.3.6.6 on page 302 for more information.

26.2.3.6.3. Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler.

26.2.3.6.4. Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival because the state saved would be the same for both exceptions. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

26.2.3.6.5. Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:

- the processor is in Thread mode
- the new exception is of higher priority than the exception being handled, in which case the new exception preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has greater priority than any limit set by the mask register, see Exception mask register in chapter 26.2.1.3.10 on page 290. An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes information onto the current stack. This operation is referred to as stacking and the structure of eight data words is referred as a stack frame. The stack frame contains the following information:

Figure 26-10. Exception Entry Stack Contents

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The stack frame is aligned to a double-word address.

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This value is restored to the PC at exception return so that the interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the exception handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

26.2.3.6.6. Exception return

Exception return occurs when the processor is in Handler mode and execution of one of the following instructions attempts to set the PC to an EXC_RETURN value:

- a POP instruction that loads the PC
- a BX instruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism relies on this value to detect when the processor has completed an exception handler. Bits[31:4] of an EXC_RETURN value are 0xFFF FFFF. When the processor loads a value matching this pattern to the PC it detects that the operation is a not a normal branch operation and, instead, that the exception is complete. Therefore, it starts the exception return sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor mode, as Table 26-11. Execution return behavior on page 303 shows.

Table 26-11. Execution return behavior

EXEC_RETURN	DESCRIPTION
0xFFFF FFF1	Return to Handler mode. Exception return gets state from the main stack. Execution uses MSP after return.
0xFFFF FFF9	Return to Thread mode. Exception return gets state from MSP. Execution uses MSP after return.
0xFFFF FFFD	Return to Thread mode. Exception return gets state from PSP. Execution uses PSP after return.
All other values	Reserved

26.2.4. Fault handling

Faults are a subset of exceptions, see Exception model in chapter 26.2.3 on page 297. All faults result in the HardFault exception being taken or cause lockup if they occur in the NMI or HardFault handler. The faults are:

- execution of an SVC instruction at a priority equal or higher than SVCall
- execution of a BKPT instruction without a debugger attached
- a system-generated bus error on a load or store
- · execution of an instruction from an XN memory address
- execution of an instruction from a location for which the system generates a bus fault
- a system-generated bus error on a vector fetch
- execution of an Undefined instruction
- execution of an instruction when not in Thumb-State as a result of the T-bit being previously cleared to 0
- an attempted load or store to an unaligned address.

Note

Only Reset and NMI can preempt the fixed priority HardFault handler. A HardFault can preempt any exception other than Reset, NMI, or another hard fault.

26.2.4.1. Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or HardFault handlers, or if the system generates a bus error when unstacking the PSR on an exception return using the MSP. When the

processor is in lockup state it does not execute any instructions. The processor remains in lockup state until one of the following occurs:

- it is reset
- · a debugger halts it
- an NMI occurs and the current lockup is in the HardFault handler.

Note

If lockup state occurs in the NMI handler a subsequent NMI does not cause the processor to leave lockup state.

26.2.5. Power management

The Cortex-M0 processor sleep modes reduce power consumption:

- a sleep mode, that stops the processor clock
- a deep sleep mode, that stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see System Control Register in chapter 26.4.3.5 on page 355.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

26.2.5.1. Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore software must be able to put the processor back into sleep mode after such an event. A program might have an idle loop to put the processor back in to sleep mode.

26.2.5.1.1. Wait for interrupt

The Wait For Interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI instruction it stops executing instructions and enters sleep mode. See WFI in chapter 26.3.7.12 on page 344 for more information.

26.2.5.1.2. Wait for event

The Wait For Event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit event register. When the processor executes a WFE instruction, it checks the value of the event register:

0: The processor stops executing instructions and enters sleep mode

1: The processor sets the register to zero and continues executing instructions without entering sleep mode.

See WFE in chapter 26.3.7.11 on page 343 for more information.

If the event register is 1b, this indicates that the processor must not enter sleep mode on execution of a WFE instruction. Typically, this is because of the assertion of an external event, or because another processor in the system has executed a SEV instruction, see SEV in chapter 26.3.7.9 on page 341. Software cannot access this register directly.

26.2.5.1.3. Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of an exception handler and returns to Thread mode it immediately enters sleep mode. Use this mechanism in applications that only require the processor to run when an interrupt occurs.

26.2.5.2. Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that caused it to enter sleep mode.

26.2.5.2.1. Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1. If an interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK, see Exception mask register in chapter 26.2.1.3.10 on page 290.

26.2.5.2.2. Wakeup from WFE

The processor wakes up if:

- it detects an exception with sufficient priority to cause exception entry.
- it detects an external event signal, see The external event input in chapter 26.2.5.4 on page 306.
- in a multiprocessor system, another processor in the system executes a SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more information about the SCR see System Control Register in chapter 26.4.3.5 on page 355.

26.2.5.3. The Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the processor from deep sleep mode. The WIC is enabled only when the DEEPSLEEP bit in the SCR is set to 1b, see System Control Register in chapter 26.4.3.5 on page 355.

The WIC is not programmable, and does not have any registers or user interface. It operates entirely from hardware signals.

When the WIC is enabled and the processor enters deep sleep mode, the power management unit in the system can power down most of the Cortex-M0 processor. This has the side effect of stopping the SysTick timer. When the WIC receives an interrupt, it takes a number of clock cycles to wakeup the processor and restore its state, before it can process the interrupt. This means interrupt latency is increased in deep sleep mode.

26.2.5.4. The external event input

The processor provides an external event input signal. This signal is not available on this device.

26.2.5.5. Power management programming hints

ISO/IEC C cannot directly generate the WFI, WFE, and SEV instructions. The CMSIS provides the following intrinsic functions for these instructions:

```
void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt
void SEV(void) // Send Event
```

26.3. The Cortex-M0 Instruction Set

This chapter is the reference material for the Cortex-M0 instruction set description in a User Guide. The following sections give general information:

- Instruction set summary in chapter 26.3.1 on page 306.
- Intrinsic functions in chapter 26.3.2 on page 308.
- About the instruction descriptions in chapter 26.3.3 on page 309.

Each of the following sections describes a functional group of Cortex-M0 instructions.

Together they describe all the instructions supported by the Cortex-M0 processor:

- Memory access instructions in chapter 26.3.4 on page 314.
- General data processing instructions in chapter 26.3.5 on page 321.
- Branch and control instructions in chapter 26.3.6 on page 333.
- Miscellaneous instructions in chapter 26.3.7 on page 335.

26.3.1. Instruction set summary

The processor implements a version of the Thumb instruction set. Table 26-12. Cortex-M0 instructions lists the supported instructions.

Note

In Table 26-12. Cortex-M0 instructions:

- angle brackets, <>, enclose alternative forms of the operand
- braces, {}, enclose optional operands and mnemonic parts
- the Operands column is not exhaustive.

For more information on the instructions and operands, see the instruction descriptions.

Table 26-12. Cortex-M0 instructions

MNEMONIC	OPERANDS	BRIEF DESCRIPTION	FLAGS	CHAPTER, PAGE
ADCS	{Rd,} Rn, Rm	Add with Carry	N, Z, C, V	Chapter 26.3.5.1, page 322
ADD{S}	{Rd,} Rn, <rm\#imm></rm\#imm>	Add	N, Z, C, V	Chapter 26.3.5.1, page 322
ADR	Rd, label	PC-relative Address to Register	-	Chapter 26.3.4.1, page 315
ANDS	{Rd,} Rn, Rm	Bitwise AND	N, Z	Chapter 26.3.5.1, page 322
ASRS	{Rd,} Rn, <rm\#imm></rm\#imm>	Arithmetic Shift Right	N, Z, C	Chapter 26.3.5.3, page 326
B{cc}	label	Branch {conditionally}	-	Chapter 26.3.6.1, page 334
BICS	{Rd,} Rn, Rm	Bit Clear	N, Z	Chapter 26.3.5.2, page 324
ВКРТ	#imm	Breakpoint	-	Chapter 26.3.7.1, page 336
BL	label	Branch with Link	-	Chapter 26.3.6.1, page 334
BLX	Rm	Branch indirect with Link	-	Chapter 26.3.6.1, page 334
BX	Rm	Branch indirect	-	Chapter 26.3.6.1, page 334
CMN	Rn, RM	Compare Negative	N, Z, C, V	Chapter 26.3.5.4, page 327
CMP	Rn, <rm\#imm></rm\#imm>	Compare	N, Z, C, V	Chapter 26.3.5.4, page 327
CPSID	i	Change Processor State, Disable Interrupts	-	Chapter 26.3.7.2, page 336
CPSIE	i	Change Processor State, Enable Interrupts	-	Chapter 26.3.7.2, page 336
DMB	-	Data Memory Barrier	-	Chapter 26.3.7.3, page 337
DSB	-	Data Synchronization Barrier	-	Chapter 26.3.7.4, page 338
EORS	{Rd,} Rn, Rm	Exclusive OR	N, Z	Chapter 26.3.5.2, page 324
ISB	-	Instruction Synchronization Barrier	-	Chapter 26.3.7.5, page 338
LDM	Rn{!}, reglist	Load Multiple Registers, increment after	-	Chapter 26.3.4.5, page 319
LDR	Rt, label	Load Register from PC-relative Address	-	Chapter 26.3.4.4, page 318
LDR	Rt, [Rn, <rm\#imm>]</rm\#imm>	Load Register with Word	-	Chapter 26.3.4, page 314
LDRB	Rt, [Rn, <rm\#imm>]</rm\#imm>	Load Register with Byte	-	Chapter 26.3.4, page 314
LDRH	Rt, [Rn, <rm\#imm>]</rm\#imm>	Load Register with Half-Word	-	Chapter 26.3.4, page 314
LDRSB	Rt, [Rn, <rm #imm>]</rm #imm>	Load Register with signed Byte	-	Chapter 26.3.4, page 314
LDRSH	Rt, [Rn, <rm\#imm>]</rm\#imm>	Load Register with signed Half-Word	-	Chapter 26.3.4, page 314
LSLS	{Rd,} Rn, <rs #imm></rs #imm>	Logical Shift Left	N, Z, C	Chapter 26.3.5.3, page 326
LSRS	{Rd,} Rn, <rs #imm></rs #imm>	Logical Shift Right	N, Z, C	Chapter 26.3.5.3, page 326
MOV {S}	Rd, Rm	Move	N, Z	Chapter 26.3.5.5, page 328
MRS	Rd, spec_reg	Move to General Register from Special Register	-	Chapter 26.3.7.6, page 339
MSR	spec_reg, Rm	Move to special register from General Register	N, Z, C, V	Chapter 26.3.7.7, page 340

MNEMONIC	OPERANDS	BRIEF DESCRIPTION	FLAGS	CHAPTER, PAGE
MULS	Rd, Rn, Rm	Multiply, 32-bit result	N, Z	Chapter 26.3.5.6, page 329
MVNS	Rd, Rm	Bitwise NOT	N, Z	Chapter 26.3.5.5, page 328
NOP	-	No Operation	-	Chapter 26.3.7.8, page 341
ORRS	{Rd,} Rn, Rm	Logical OR	N, Z	Chapter 26.3.5.2, page 324
POP	reglist	Pop registers from stack	-	Chapter 26.3.4.6, page 320
PUSH	reglist	Push registers onto stack	-	Chapter 26.3.4.6, page 320
REV	Rd, Rm	Byte-Reverse word	-	Chapter 26.3.5.7, page 330
REV16	Rd, Rm	Byte-Reverse packed halfwords	-	Chapter 26.3.5.7, page 330
REVSH	Rd, Rm	Byte-Reverse signed halfword	-	Chapter 26.3.5.7, page 330
RORS	{Rd,] Rn, Rs	Rotate Right	N, Z, C	Chapter 26.3.5.3, page 326
RSBS	{Rd,] Rn, #0	Reverse Subtract	N, Z, C, V	Chapter 26.3.5.1, page 322
SBCS	{Rd,] Rn, Rm	Subtract with Carry	N, Z, C, V	Chapter 26.3.5.1, page 322
SEV	-	Send Event	-	Chapter 26.3.7.9, page 341
STM	Rn!, reglist	Store Multiple Registers, Increment After	-	Chapter 26.3.4.5, page 319
STR	Rt, [Rn, <rm #imm>]</rm #imm>	Store Register as word	-	Chapter 26.3.4, page 314
STRB	Rt, [Rn, <rm #imm>]</rm #imm>	Store Register as byte	-	Chapter 26.3.4, page 314
STRH	Rt, [Rn, <rm #imm>]</rm #imm>	Store Register as half word	-	Chapter 26.3.4, page 314
SUB {S}	Rt, Rn, <rm\#imm></rm\#imm>	Subtract	N,Z,C,V	Chapter 26.3.5.1, page 322
SVC	#imm	Supervisor Call	-	Chapter 26.3.7.10, page 342
SXTB	Rd, Rm	Sign extend byte	-	Chapter 26.3.5.8, page 331
SXTH	Rd, Rm	Sign extend half word	-	Chapter 26.3.5.8, page 331
TST	Rd, Rm	Logical AND based test	N, Z	Chapter 26.3.5.9, page 332
UXTB	Rd, Rm	Zero extend a byte	-	Chapter 26.3.5.8, page 331
UXTH	Rd, Rm	Zero extend a halfword	-	Chapter 26.3.5.8, page 331
WFE	-	Wait for Event	-	Chapter 26.3.7.11, page 343
WFI	-	Wait for Interrupt	-	Chapter 26.3.7.12, page 344

26.3.2. Intrinsic Functions

ISO/IEC C code cannot directly access some Cortex-M0 instructions. This section describes intrinsic functions that can generate these instructions, provided by the CMSIS and that might be provided by a C compiler. If a C compiler does not support an appropriate intrinsic function, you might have to use inline assembler to access the relevant instruction.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 26-13. CMSIS intrinsic functions to generate some Cortex-M0 instructions

INSTRUCTION	CMSIS INTRINSIC FUNCTION		
CPSIE i	voidenable_irq (void)		
CPSID i	voiddisable_irq (void)		
ISB	voidISB(void)		
DSB	voidDSB(void)		

INSTRUCTION	CMSIS INTRINSIC FUNCTION		
DMB	voidDMB(void)		
NOP	voidNOP(void)		
REV	uint32_t REV(uint32_t int value)		
REV16	uint32_t REV16(uint32_t int value)		
REVSH	uint32_t REVSH(uint32_t int value)		
SEV	voidSEV(void)		
WFE	voidWFE(void)		
WFI	voidWFI(void)		

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 26-14. CMSIS intrinsic functions to access special registers

SPECIAL REGISTER	ACCESS	CMSIS FUNCTION	
PRIMASK	Read	uint32_tget_PRIMASK (void)	
	Write	voidset_PRIMASK (uint32_t value)	
CONTROL	Read	uint32_tget_CONTROL (void)	
	Write	<pre>voidset_CONTROL (uint32_t value)</pre>	
MSP	Read	Read uint32_tget_MSP (void)	
	Write	voidset_MSP (uint32_t TopOfMainStack)	
PSP	Read	uint32_tget_PSP (void)	
	Write	voidset_PSP (uint32_t TopOfMainStack)	

26.3.3. About the Instruction Descriptions

The following sections give more information about using the instructions:

- Operands in chapter 26.3.3.1 on page 309
- Restrictions when using PC or SP in chapter 26.3.3.2on page 310
- Shift Operations in chapter 26.3.3.3 on page 310
- Address alignment in chapter 26.3.3.4 on page 312
- PC-relative expressions in chapter 26.3.3.5 on page 312
- Conditional execution in chapter 26.3.3.6 on page 313

26.3.3.1. Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on the operands and often store the result in a destination register. When there is a destination register in the instruction, it is usually specified before the other operands.

26.3.3.2. Restrictions when using PC or SP

Many instructions are unable to use, or have restrictions on whether you can use, the Program Counter (PC) or Stack Pointer (SP) for the operands or destination register. See instruction descriptions for more information.

Note

When you update the PC with a BX, BLX, or POP instruction, bit[0] of any address must be 1 for correct execution. This is because this bit indicates the destination instruction set, and the Cortex-M0 processor only supports Thumb instructions. When a BL or BLX instruction writes the value of bit[0] into the LR it is automatically assigned the value 1.

26.3.3.3. Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register shift can be performed directly by the instructions ASR, LSR, LSL, and ROR and the result is written to a destination register.

The permitted shift lengths depend on the shift type and the instruction, see the individual instruction description. If the shift length is 0, no shift occurs. Register shift operations update the carry flag except when the specified shift length is 0. The following sub-sections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

26.3.3.3.1. ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register *Rm*, to the right by n places, into the right-hand 32-n bits of the result, and it copies the original bit[31] of the register into the left-hand n bits of the result. See Figure 26-11. ASR #3 on page 310.

You can use the ASR operation to divide the signed value in the register *Rm* by 2n, with the result being rounded towards negative-infinity.

When the instruction is ASRS the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

Note

- If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
- If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 26-11. ASR #3

26.3.3.3.2. LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n bits of the result, and it sets the left-hand n bits of the result to 0. See Figure 26-12. LSR #3 on page 311.

You can use the LSR operation to divide the value in the register *Rm* by 2n, if the value is regarded as an unsigned integer.

When the instruction is LSRS, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

Note

- If n is 32 or more, then all the bits in the result are cleared to 0.
- If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 26-12. LSR #3

26.3.3.3.3. LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n bits of the result, and it sets the right-hand n bits of the result to 0. See Figure 26-13. LSL #3 on page 312.

You can use the LSL operation to multiply the value in the register Rm by 2n, if the value is regarded as an unsigned integer or a two's complement signed integer. Overflow can occur without warning.

When the instruction is LSLS the carry flag is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

Note

- If n is 32 or more, then all the bits in the result are cleared to 0.
- If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 26-13. LSL #3

26.3.3.3.4. ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n bits of the result, and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure 26-14. ROR #3 on page 312.

When the instruction is RORS the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

Note

- If n is 32, then the value of the result is same as the value in *Rm*, and if the carry flag is updated, it is updated to bit[31] of Rm.
- ROR with shift length, n, greater than 32 is the same as ROR with shift length n-32.

Figure 26-14. ROR #3

26.3.3.4. Address alignment

An aligned access is an operation where a word-aligned address is used for a word, or multiple word access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

There is no support for unaligned accesses on the Cortex-M0 processor. Any attempt to perform an unaligned memory access operation results in a HardFault exception.

26.3.3.5. PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the label and the address of the current instruction. If the offset is too big, the assembler produces an error.

Note

- For most instructions, the value of the PC is the address of the current instruction plus 4 bytes.
- Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number, or an expression of the form [PC, #imm].

26.3.3.6. Conditional execution

Most data processing instructions update the condition flags in the Application Program Status Register (APSR) according to the result of the operation, see Application Program Status Register in chapter 26.2.1.3.6 on page 288. Some instructions update all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction descriptions for the flags they affect.

You can execute a conditional branch instruction, based on the condition flags set in another instruction, either:

- · immediately after the instruction that updated the flags
- after any number of intervening instructions that have not updated the flags.

On the Cortex-M0 processor, conditional execution is available by using conditional branches.

This section describes:

- The condition flags in chapter 26.3.3.6.1 on page 313
- Condition code suffixes in chapter 26.3.3.6.2 on page 314

26.3.3.6.1. The condition flags

The APSR contains the following condition flags:

- N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
- Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.
- C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.
- V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see Program Status Register in chapter 26.2.1.3.5 on page 287

A carry occurs:

- if the result of an addition is greater than or equal to 2^32
- if the result of a subtraction is positive or zero
- as the result of a shift or rotate instruction.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the operation been performed at infinite precision, for example:

- · if adding two negative values results in a positive value
- if adding two positive values results in a negative value
- if subtracting a positive value from a negative value generates a positive value
- if subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded. See the instruction descriptions for more information.

26.3.3.6.2. Condition code suffixes

Conditional branch is shown in syntax descriptions as *B{cond}*. A branch instruction with a condition code is only taken if the condition code flags in the APSR meet the specified condition, otherwise the branch instruction is ignored. Table 26-15. Condition code suffixes on page 314 shows the condition codes to use.

Table 26-15. Condition code suffixes on page 314 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 26-15. Condition code suffixes

SUFFIX	FLAGS	MEANING	
EQ	Z = 1	Equal, last flag setting result was zero	
NE	Z = 0	Not equal, last flag setting result was non-zero	
CS or HS	C = 1	Higher or same, unsigned	
CC or LO	C = 0	Lower, unsigned	
MI	N = 1	Negative	
PL	N = 0	Positive or zero	
VS	V = 1	Overflow	
VC	V = 0	No overflow	
HI	C =1 and Z = 0	Higher, unsigned	
LS	C = 0 or Z = 1	Lower or same, unsigned	
GE	N = V	Greater than or equal, signed	
LT	N != V	Less than, signed	
GT	Z = 0 and N = V	Greater than, signed	
LE	Z =1 and N != V	Less than or equal, signed	
AL	Can have any value	Always. This is the default when no suffix is specified	

26.3.4. Memory access instructions

Table 26-16. Memory access instructions on page 314 shows the memory access instructions:

Table 26-16. Memory access instructions

MNEMONIC	BRIEF DESCIPTION	SEE
ADR	Generate PC-Relative Address	ADR in chapter 26.3.4.1on page 315
LDM	Load Multiple Registers	LDM and STM in chapter 26.3.4.5 on page 319
LDR{type}	Load Register using Immediate Offset	LDR and STR, immediate offset in chapter 26.3.4.2 on page 316
LDR{type}	Load Register Using Register Offset	LDR and STR, register offset in chapter 26.3.4.3 on page 317
LDR	Load Register from PC-Relative Address	LDR, PC-relative in chapter 26.3.4.4 on page 318
POP	Pop Registers From Stack	PUSH and POP in chapter 26.3.4.6 on page 320

MNEMONIC	BRIEF DESCIPTION	SEE
PUSH	Push Registers To Stack	PUSH and POP in chapter 26.3.4.6 on page 320
STM	Store Multiple Registers	LDM and STM in chapter 26.3.4.5 on page 319
STR{type}	Store Register Using Immediate Offset	LDR and STR in chapter 26.3.4.2 on page 316
STR{type}	Store Register Using Register Offset	LDR and STR in chapter 26.3.4.3 on page 317

26.3.4.1. ADR

Generates a PC-relative address.

26.3.4.1.1. Syntax

ADR Rd. label

where:

Rd is the destination register.

Label is a PC-relative expression. See PC-relative expressions in chapter 26.3.3.5 on page 312.

26.3.4.1.2. Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to the destination register.

ADR facilitates the generation of position-independent code, because the address is PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the address you generate is set to 1 for correct execution.

26.3.4.1.3. Restrictions

In this instruction *Rd* must specify R0-R7. The data-value addressed must be word aligned and within 1020 bytes of the current PC.

26.3.4.1.4. Condition flags

This instruction does not change the flags.

26.3.4.1.5. Examples

ADR R1, TextMessage ; Write address value of a location labeled as

; TextMessage to R1

ADR R3, [PC, #996] ; Set R3 to value of PC + 996.

26.3.4.2. LDR and STR, immediate offset

Load and Store with immediate offset.

26.3.4.2.1. Syntax

```
LDR Rt, [<Rn | SP> {, #imm}]

LDR<B|H> Rt, [Rn {, #imm}]

STR Rt, [<Rn | SP>, {,#imm}]

STR<B|H> Rt, [Rn {,#imm}]
```

where:

Rt is the register to load or store.

Rn is the register on which the memory address is based.

imm is an offset from *Rn*. If *imm* is omitted, it is assumed to be zero.

26.3.4.2.2. Operation

LDR, LDRB and LDRH instructions load the register specified by *Rt* with either a word, byte or halfword data value from memory. Sizes less than word are zero extended to 32-bits before being written to the register specified by *Rt*.

STR, STRB and STRH instructions store the word, least-significant byte or lower halfword contained in the single register specified by Rt in to memory. The memory address to load from or store to is the sum of the value in the register specified by either Rn or SP and the immediate value imm.

26.3.4.2.3. Restrictions

In these instructions:

- Rt and Rn must only specify R0-R7.
- *imm* must be between:
 - 0 and 1020 and an integer multiple of four for LDR and STR using SP as the base register
 - 0 and 124 and an integer multiple of four for LDR and STR using R0-R7 as the base register
 - 0 and 62 and an integer multiple of two for LDRH and STRH
 - 0 and 31 for LDRB and STRB
- The computed address must be divisible by the number of bytes in the transaction, see Address alignment in chapter 26.3.3.4 on page 312.

26.3.4.2.4. Condition flags

These instructions do not change the flags.

26.3.4.2.5. Examples

```
LDR R4, [R7] ; Loads R4 from the address in R7.

STR R2, [R0,#const-struc] ; const-struc is an expression evaluating ; to a constant in the range 0-1020.
```

26.3.4.3. LDR and STR, register offset

Load and Store with register offset.

26.3.4.3.1. Syntax

```
LDR Rt, [Rn, Rm]

LDR<B|H> Rt, [Rn, Rm]

LDR<SB|SH> Rt, [Rn, Rm]

STR Rt, [Rn, Rm]

STR<B|H> Rt, [Rn, Rm]
```

where:

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

26.3.4.3.2. Operation

LDR, LDRB, LDRB and LDRSH load the register specified by *Rt* with either a word, zero extended byte, zero extended halfword, sign extended byte or sign extended halfword value from memory.

STR, STRB and STRH store the word, least-significant byte or lower halfword contained in the single register specified by *Rt* into memory.

The memory address to load from or store to is the sum of the values in the registers specified by Rn and Rm.

26.3.4.3.3. Restrictions

In these instructions:

• Rt, Rn, and Rm must only specify R0-R7.

• the computed memory address must be divisible by the number of bytes in the load or store, see Address alignment in chapter 26.3.3.4 on page 312.

26.3.4.3.4. Condition flags

These instructions do not change the flags.

26.3.4.3.5. Examples

```
STR R0, [R5, R1] ; Store value of R0 into an address equal to
; sum of R5 and R1

LDRSH R1, [R2, R3] ; Load a halfword from the memory address
; specified by (R2 + R3), sign extend to 32-bits
; and write to R1.
```

26.3.4.4. LDR, PC-relative

Load register (literal) from memory.

26.3.4.4.1. Syntax

LDR *Rt, label*

where:

Rt is the register to load.

label is a PC-relative expression. See PC-relative expressions in chapter 26.3.3.5 on page 312.

26.3.4.4.2. Operation

Loads the register specified by Rt from the word in memory specified by label.

26.3.4.4.3. Restrictions

In these instructions, label must be within 1020 bytes of the current PC and word aligned.

26.3.4.4.4. Condition flags

These instructions do not change the flags.

26.3.4.4.5. Examples

```
LDR R0, LookUpTable ; Load R0 with a word of data from an address ; labeled as LookUpTable.

LDR R3, [PC, #100] ; Load R3 with memory word at (PC + 100).
```

26.3.4.5. LDM and STM

Load and Store Multiple registers.

26.3.4.5.1. Syntax

LDM $Rn\{!\}$, reglist STM Rn!, reglist

where:

Rn is the register on which the memory addresses are based.

! writeback suffix.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces.

It can contain register ranges. It must be comma separated if it contains more than one register or register range, see Examples in chapter 26.3.4.5.5 on page 320.

LDMIA and LDMFD are synonyms for LDM. LDMIA refers to the base register being Incremented After each access. LDMFD refers to its use for popping data from Full Descending stacks.

STMIA and STMEA are synonyms for STM. STMIA refers to the base register being Incremented After each access. STMEA refers to its use for pushing data onto Empty Ascending stacks.

26.3.4.5.2. Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

The memory addresses used for the accesses are at 4-byte intervals ranging from the value in the register specified by Rn to the value in the register specified by Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in order of increasing register numbers, with the lowest numbered register using the lowest memory address and the highest number register using the highest memory address. If the writeback suffix is specified, the value in the register specified by Rn + 4 *n is written back to the register specified by Rn.

26.3.4.5.3. Restrictions

In these instructions:

- reglist and Rn are limited to R0-R7.
- the writeback suffix must always be used unless the instruction is an LDM where *reglist* also contains *Rn*, in which case the writeback suffix must not be used.
- the value in the register specified by *Rn* must be word aligned. See Address alignment in chapter 26.3.3.4 on page 312.
- for STM, if *Rn* appears in *reglist*, then it must be the first register in the list.

26.3.4.5.4. Condition flags

These instructions do not change the flags.

26.3.4.5.5. Examples

```
LDM R0, \{R0,R3,R4\} ; LDMIA is a synonym for LDM STMIA R1!, \{R2-R4,R6\}
```

26.3.4.5.6. Incorrect examples

```
STM R5!,{R4,R5,R6} ; Value stored for R5 is unpredictable
LDM R2,{} ; There must be at least one register in the list
```

26.3.4.6. PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

26.3.4.6.1. Syntax

```
PUSH reglist
POP reglist
```

where:

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be comma separated if it contains more than one register or register range.

26.3.4.6.2. Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address and the

highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value in the SP register as the lowest memory address, implementing a full-descending stack. On completion, PUSH updates the SP register to point to the location of the lowest store value, POP updates the SP register to point to the location above the highest location loaded.

If a POP instruction includes PC in its *reglist*, a branch to this location is performed when the POP instruction has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit must be 1 to ensure correct operation.

26.3.4.6.3. Restrictions

In these instructions:

- reglist must use only R0-R7.
- The exception is LR for a PUSH and PC for a POP.

26.3.4.6.4. Condition flags

These instructions do not change the flags.

26.3.4.6.5. Examples

```
PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack

PUSH {R2,LR} ; Push R2 and the link-register onto the stack

POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to

; the new PC.
```

26.3.5. General data processing instructions

Table 26-17. Data processing instructions on page 321 shows the data access instructions:

Table 26-17. Data processing instructions

MNEMONIC	BRIEF DESCIPTION	SEE
ADCS	Add with Carry	ADC, ADD, RSB, SBC, and SUB in chapter 26.3.5.1on page 322
ADD{S}	Add	ADC, ADD, RSB, SBC, and SUB in chapter 26.3.5.1on page 322
ANDS	Logical AND	AND, ORR, EOR, and BIC on page
ASRS	Arithmetic Shift Right	ASR, LSL, LSR, and ROR in chapter 26.3.5.3 on page 326

MNEMONIC	BRIEF DESCIPTION	SEE	
BICS	Bit Clear	AND, ORR, EOR, and BIC in chapter 26.3.5.2 on page 324	
CMN	Compare Negative	CMP and CMN in chapter 26.3.5.4 on page 327	
CMP	Compare	CMP and CMN in chapter 26.3.5.4 on page 327	
EORS	Exclusive OR	AND, ORR, EOR, and BIC in chapter 26.3.5.2 on page 324	
LSLS	Logical Shift Left	ASR, LSL, LSR, and ROR in chapter 26.3.5.3 on page 326	
LSRS	Logical Shift Right	ASR, LSL, LSR, and ROR in chapter 26.3.5.3 on page 326	
MOV{S}	Move	MOV and MVN in chapter 26.3.5.5 on page 328	
MULS	Multiply	MULS in chapter 26.3.5.6 on page 329	
MVNS	Move NOT	MOV and MVN in chapter 26.3.5.5 on page 328	
ORRS	Logical OR	AND, ORR, EOR, and BIC in chapter 26.3.5.2 on page 324	
REV	Reverse Byte Order In A Word	REV, REV16, and REVSH in chapter 26.3.5.7 on page 330	
REV16	Reverse Byte Order In each Half Word	REV, REV16, and REVSH in chapter 26.3.5.7 on page 330	
REVSH	Reverse Byte Order In Bottom Half Word and Sign Extend	REV, REV16, and REVSH in chapter 26.3.5.7 on page 330	
RORS	Rotate Right	ASR, LSL, LSR, and ROR in chapter 26.3.5.3 on page 326	
RSBS	Reverse Subtract	ADC, ADD, RSB, SBC, and SUB in chapter 26.3.5.1on page 322	
SBCS	Subtract with Carry	ADC, ADD, RSB, SBC, and SUB in chapter 26.3.5.1on page 322	
SUBS	Subtract	ADC, ADD, RSB, SBC, and SUB in chapter 26.3.5.1on page 322	
SXTB	Sign Extend A Byte	SXT and UXT in chapter 26.3.5.8 on page 331	
SXTH	Sign Extend a Halfword	SXT and UXT in chapter 26.3.5.8 on page 331	
UXTB	Zero Extend a Byte	SXT and UXT in chapter 26.3.5.8 on page 331	
UXTH	Zero Extend a Halfword	SXT and UXT in chapter 26.3.5.8 on page 331	
TST	Test	TST in chapter 26.3.5.9 on page 332	

26.3.5.1. ADC, ADD, RSB, SBC, and SUB

Add with carry, Add, Reverse Subtract, Subtract with carry, and Subtract.

26.3.5.1.1. Syntax

ADCS {Rd,} Rn, Rm

ADD{S} {Rd,} Rn, <Rm|#imm>
RSBS {Rd,} Rn, Rm, #0
SBCS {Rd,} Rn, Rm
SUB{S} {Rd,} Rn, <Rm|#imm>

Where:

S causes an ADD or SUB instruction to update flags

Rd specifies the result register

Rn specifies the first source register

Rm specifies the second source register

imm specifies a constant immediate value.

When the optional Rd register specifier is omitted, it is assumed to take the same value as Rn, for example ADDS R1, R2 is identical to ADDS R1, R1, R2.

26.3.5.1.2. Operation

The ADCS instruction adds the value in Rn to the value in Rm, adding a further one if the carry flag is set, places the result in the register specified by Rd and updates the N, Z, C, and V flags.

The ADD instruction adds the value in Rn to the value in Rm or an immediate value specified by imm and places the result in the register specified by Rd.

The ADDS instruction performs the same operation as ADD and also updates the N, Z, C and V flags.

The RSBS instruction subtracts the value in *Rn* from zero, producing the arithmetic negative of the value, and places the result in the register specified by *Rd* and updates the N, Z, C and V flags.

The SBCS instruction subtracts the value of Rm from the value in Rn, deducts a further one if the carry flag is set. It places the result in the register specified by Rd and updates the N, Z, C and V flags.

The SUB instruction subtracts the value in *Rm* or the immediate specified by *imm*. It places the result in the register specified by *Rd*.

The SUBS instruction performs the same operation as SUB and also updates the N, Z, C and V flags.

Use ADC and SBC to synthesize multiword arithmetic, see Examples in chapter 26.3.5.1.4 on page 324.

See also ADR in chapter 26.3.4.1 on page 315.

26.3.5.1.3. Restrictions

Table 26-18. ADC, ADD, RSB, SBC, and SUB operand restrictions on page 323 lists the legal combinations of register specifiers and immediate values that can be used with each instruction.

Table 26-18. ADC, ADD, RSB, SBC, and SUB operand restrictions

INSTRUCTION	RD	Rn	Rm	imm	RESTRICTIONS
ADCS	R0-R7	R0-R7	R0-R7	-	Rd and Rn must specify the same register
	R0-R15	R0-R15	R0-PC	-	Rd and Rn must specify the same register Rn and Rm must not both specify PC
ADD	R0-R7	SP or PC	-	0-1020	Immediate value must be an integer multiple of four
	SP	SP	-	0-508	Immediate value must be an integer multiple of four
	R0-R7	R0-R7	-	0-7	-
ADDS	R0-R7	R0-R7	-	0-255	Rd and Rn must specify the same register
	R0-R7	R0-R7	R0-R7	-	-
RSBS	R0-R7	R0-R7	-	-	-
SBCS	R0-R7	R0-R7	R0-R7	-	Rd and Rn must specify the same register
SUB	SP	SP	-	0-508	Immediate value must be an integer multiple of four
	R0-R7	R0-R7	-	0-7	-
SUBS	R0-R7	R0-R7	-	0-255	Rd and Rn must specify the same register
	R0-R7	R0-R7	R0-R7	-	-

26.3.5.1.4. Examples

Example below shows two instructions that add a 64-bit integer contained in R0 and R1 to another 64-bit integer contained in R2 and R3, and place the result in R0 and R1.

```
ADDS R0, R0, R2 ; add the least significant words

ADCS R1, R1, R3 ; add the most significant words with carry
```

Multiword values do not have to use consecutive registers. Example below shows instructions that subtract a 96-bit integer contained in R1, R2, and R3 from another contained in R4, R5, and R6. The example stores the result in R4, R5, and R6.

```
SUBS R4, R4, R1 ; subtract the least significant words
SBCS R5, R5, R2 ; subtract the middle words with carry
SBCS R6, R6, R3 ; subtract the most significant words with carry
```

Example below the RSBS instruction used to perform a 1's complement of a single register.

```
RSBS R7, R7, #0 ; subtract R7 from zero
```

26.3.5.2. AND, ORR, EOR, and BIC

Logical AND, OR, Exclusive OR, and Bit Clear.

26.3.5.2.1. Syntax

ANDS {Rd,} Rn, Rm

ORRS {Rd,} Rn, Rm

EORS {Rd,} Rn, Rm

BICS {Rd,} Rn, Rm

where:

Rd is the destination register.

Rn is the register holding the first operand and is the same as the destination register.

Rm second register.

26.3.5.2.2. Operation

The AND, EOR, and ORR instructions perform bitwise AND, exclusive OR, and inclusive OR operations on the values in Rn and Rm.

The BIC instruction performs an AND operation on the bits in Rn with the logical negation of the corresponding bits in the value of Rm.

The condition code flags are updated on the result of the operation, see Condition flags in chapter 26.3.4.6.4 on page 321.

26.3.5.2.3. Restrictions

In these instructions, Rd, Rn, and Rm must only specify R0-R7.

26.3.5.2.4. Condition flags

These instructions:

- update the N and Z flags according to the result
- do not affect the C or V flag.

26.3.5.2.5. Examples

ANDS R2, R2, R1 ORRS R2, R2, R5 ANDS R5, R5, R8 EORS R7, R7, R6

BICS RO, RO, R1

26.3.5.3. ASR, LSL, LSR, and ROR

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, and Rotate Right.

26.3.5.3.1. Syntax

ASRS	{ <i>Rd</i> ,}	Rm,	Rs
ASRS	{ <i>Rd</i> ,}	Rm,	#imm
LSLS	{ <i>Rd</i> ,}	Rm,	Rs
LSLS	{ <i>Rd</i> ,}	Rm,	#imm
LSRS	{ Rd , }	Rm,	Rs
LSRS	{ <i>Rd</i> ,}	Rm,	#imm
RORS	{ <i>Rd</i> ,}	Rm,	Rs

where:

Rd is the destination register. If *Rd* is omitted, it is assumed to take the same value as *Rm*.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm.

imm is the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32 LSL shift length from 0 to 31

LSR shift length from 1 to 32.

Note

MOVS Rd, Rm is a pseudonym for LSLS Rd, Rm, #0.

26.3.5.3.2. Operation

ASR, LSL, LSR, and ROR perform an arithmetic-shift-left, logical-shift-left, logical-shift-right or a right-rotation of the bits in the register Rm by the number of places specified by the immediate imm or the value in the least-significant byte of the register specified by Rs.

For details on what result is generated by the different instructions, see Shift Operations in chapter 26.3.3.3 on page 310.

26.3.5.3.3. Restrictions

In these instructions, *Rd*, *Rm*, and *Rs* must only specify R0-R7. For non-immediate instructions, *Rd* and *Rm* must specify the same register.

26.3.5.3.4. Condition flags

These instructions update the N and Z flags according to the result.

The C flag is updated to the last bit shifted out, except when the shift length is 0, see Shift Operations in chapter 26.3.3.3 on page 310. The V flag is left unmodified.

26.3.5.3.5. Examples

```
ASRS R7, R5, #9 ; Arithmetic shift right by 9 bits

LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update

LSRS R4, R5, #6 ; Logical shift right by 6 bits

RORS R4, R4, R6 ; Rotate right by the value in the bottom byte of R6.
```

26.3.5.4. CMP and CMN

Compare and Compare Negative.

26.3.5.4.1. Syntax

```
CMN Rn, Rm

CMP Rn, #imm

CMP Rn, Rm
```

where:

Rn is the register holding the first operand.

Rm is the register to compare with.

imm is the immediate value to compare with.

26.3.5.4.2. Operation

These instructions compare the value in a register with either the value in another register or an immediate value. They update the condition flags on the result, but do not write the result to a register.

The CMP instruction subtracts either the value in the register specified by Rm, or the immediate imm from the value in Rn and updates the flags. This is the same as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Rm to the value in Rn and updates the flags. This is the same as an ADDS

instruction, except that the result is discarded.

26.3.5.4.3. Restrictions

For the:

- CMN instruction *Rn*, and *Rm* must only specify R0-R7.
- CMP instruction:
 - Rn and Rm can specify R0-R14
 - immediate must be in the range 0-255.

26.3.5.4.4. Condition flags

These instructions update the N, Z, C and V flags according to the result

26.3.5.4.5. Examples

CMP R2, R9 CMN R0, R2

26.3.5.5. MOV and MVN

Move and Move NOT.

26.3.5.5.1. Syntax

MOV{S} Rd, Rm

MOVS Rd, #imm

MVNS Rd, Rm

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see Conditional execution in chapter 26.3.3.6 on page 313.

Rd is the destination register.

Rm is a register.

imm is any value in the range 0-255.

26.3.5.5.2. Operation

The MOV instruction copies the value of *Rm* into *Rd*.

The MOVS instruction performs the same operation as the MOV instruction, but also updates the N and Z flags.

The MVNS instruction takes the value of Rm, performs a bitwise logical negate operation on the value, and places the result into Rd.

26.3.5.5.3. Restrictions

In these instructions, Rd, and Rm must only specify R0-R7.

When Rd is the PC in a MOV instruction:

- Bit[0] of the result is discarded.
- A branch occurs to the address created by forcing bit[0] of the result to 0. The T-bit remains unmodified.

•

Note

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction to branch for software portability.

26.3.5.5.4. Condition flags

If S is specified, these instructions:

- update the N and Z flags according to the result
- do not affect the C or V flags.

26.3.5.5.5. Example

```
MOVS R0, #0x000B ; Write value of 0x000B to R0, flags get updated

MOVS R1, #0x0 ; Write value of zero to R1, flags are updated

MOV R10, R12 ; Write value in R12 to R10, flags are not updated

MOVS R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to R8

MVNS R2, R0 ; Write inverse of R0 to the R2 and update flags
```

26.3.5.6. MULS

Multiply using 32-bit operands, and producing a 32-bit result.

26.3.5.6.1. Syntax

MULS Rd, Rn, Rm

where:

Rd is the destination register.

Rn, Rm are registers holding the values to be multiplied.

26.3.5.6.2. Operation

The MUL instruction multiplies the values in the registers specified by Rn and Rm, and places the least significant 32 bits of the result in Rd. The condition code flags are updated on the result of the operation, see Conditional execution in chapter 26.3.3.6 on page 313.

The results of this instruction does not depend on whether the operands are signed or unsigned.

26.3.5.6.3. Restrictions

In this instruction:

- Rd, Rn, and Rm must only specify R0-R7
- Rd must be the same as Rm.

26.3.5.6.4. Condition flags

This instruction:

- · updates the N and Z flags according to the result
- · does not affect the C or V flags.

26.3.5.6.5. Examples

MULS R0, R2, R0 ; Multiply with flag update, R0 = R0 \times R2

26.3.5.7. REV, REV16, and REVSH

Reverse bytes.

26.3.5.7.1. Syntax

REV Rd, Rn

REV16 Rd, Rn

REVSH Rd, Rn

where:

Rd is the destination register.

Rn is the source register.

26.3.5.7.2. Operation

Use these instructions to change endianness of data:

REV converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian data.

REV16 converts two packed 16-bit big-endian data into little-endian data or two packed 16-bit little-endian data into big-endian data.

REVSH converts 16-bit signed big-endian data into 32-bit signed little-endian data or 16-bit signed little-endian data into 32-bit signed big-endian data.

26.3.5.7.3. Restrictions

In these instructions, Rd, and Rn must only specify R0-R7.

26.3.5.7.4. Condition flags

These instructions do not change the flags.

26.3.5.7.5. Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3

REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0

REVSH R0, R5 ; Reverse signed halfword

26.3.5.8. SXT and UXT

Sign extend and Zero extend.

26.3.5.8.1. Syntax

SXTB Rd, Rm
SXTH Rd, Rm
UXTB Rd, Rm

UXTH Rd, Rm

where:

Rd is the destination register.

Rm is the register holding the value to be extended.

26.3.5.8.2. Operation

These instructions extract bits from the resulting value:

- SXTB extracts bits[7:0] and sign extends to 32 bits
- UXTB extracts bits[7:0] and zero extends to 32 bits
- SXTH extracts bits[15:0] and sign extends to 32 bits
- UXTH extracts bits[15:0] and zero extends to 32 bits.

26.3.5.8.3. Restrictions

In these instructions, *Rd* and *Rm* must only specify R0-R7.

26.3.5.8.4. Condition flags

These instructions do not affect the flags.

26.3.5.8.5. Examples

SXTH R4, F	R6 ;	Obtain the lower halfword of the
	;	value in R6 and then sign extend to
	;	32 bits and write the result to R4.
UXTB R3, B	R1 ;	Extract lowest byte of the value in R10 and zero
	;	extend it, and write the result to R3

26.3.5.9. TST

Test bits.

26.3.5.9.1. Syntax

TST Rn, Rm

where:

Rn is the register holding the first operand.

Rm the register to test against.

26.3.5.9.2. Operation

This instruction tests the value in a register against another register. It updates the condition flags based on the result, but does not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in *Rn* and the value in *Rm*. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with a register that has that bit set to 1 and all other bits cleared to 0.

26.3.5.9.3. Restrictions

In these instructions, *Rn* and *Rm* must only specify R0-R7.

26.3.5.9.4. Condition flags

This instruction:

- · updates the N and Z flags according to the result
- · does not affect the C or V flags.

26.3.5.9.5. Examples

TST R0, R1 ; Perform bitwise AND of R0 value and R1 value, ; condition code flags are updated but result is discarded

26.3.6. Branch and control instructions

Table 26-19. Branch and Control instructions on page 333shows the branch and control instructions:

Table 26-19. Branch and Control instructions

MNEMONIC	BRIEF DESCIPTION	SEE
B{CC}	Branch {conditionally}	B, BL, BX, and BLX in chapter 26.3.6.1 on page 334
BL	Branch with Link	B, BL, BX, and BLX in chapter 26.3.6.1 on page 334
BLX	Branch indirect with Link	B, BL, BX, and BLX in chapter 26.3.6.1 on page 334
BX	Branch indirect	B, BL, BX, and BLX in chapter 26.3.6.1 on page 334

26.3.6.1. B, BL, BX, and BLX

Branch instructions.

26.3.6.1.1. Syntax

B{cond} label

BL label

BX Rm

BLX Rm

where:

cond is an optional condition code, see Conditional execution in chapter 26.3.3.6 on page 313.

label is a PC-relative expression. See PC-relative expressions in chapter 26.3.3.5 on page 312.

Rm is a register providing the address to branch to.

26.3.6.1.2. Operation

All these instructions cause a branch to the address indicated by label or contained in the register specified by *Rm*. In addition:

- The BL and BLX instructions write the address of the next instruction to LR, the link register R14.
- The BX and BLX instructions result in a HardFault exception if bit[0] of Rm is 0.

BL and BLX instructions also set bit[0] of the LR to 1. This ensures that the value is suitable for use by a subsequent POP {PC} or BX instruction to perform a successful return branch.

Table 26-20. Branch ranges on page 334 shows the ranges for the various branch instructions.

Table 26-20. Branch ranges

INSTRUCTION	BRANCH RANGE
B label	-2KB to + 2KB
Bcond label	-256bytes to +254 bytes
BL label	-16MB to +16MB
BX Rm	Any value in register
BLX Rm	Any value in register

26.3.6.1.3. Restrictions

In these instructions:

- Do not use SP or PC in the BX or BLX instruction.
- For BX and BLX, bit[0] of Rm must be 1 for correct execution. Bit[0] is used to update the EPSR T-bit

and is discarded from the target address.

Note

BCOND is the only conditional instruction on the Cortex-M0 processor.

Condition flags

These instructions do not change the flags.

Examples

B loopA	;	Branch to loopA
BL funC	;	Branch with link (Call) to function funC, return address
	;	stored in LR
BX LR	;	Return from function call
BLX R0	;	Branch with link and exchange (Call) to an address stored
	;	in RO
BEQ labelD	;	Conditionally branch to labelD if last flag setting
	;	instruction set the Z flag, else do not branch.

26.3.7. Miscellaneous instructions

Table 26-21. Miscellaneous instructions on page 335 shows the remaining Cortex-M0 instructions:

Table 26-21. Miscellaneous instructions

MNEMONIC	BRIEF DESCIPTION	SEE
BKPT	Breakpoint	BKPT in chapter 26.3.7.1 on page 336
CPSID	Change Processor State, Diosable Interrupts	CPS in chapter 26.3.7.2 on page 336
CPSIE	Change Processor State, Enable Interrupts	CPS in chapter 26.3.7.2 on page 336
DMB	Data Memory Barrier	DMB in chapter 26.3.7.3 on page 337
DSB	Data Synchronization Barrier	DSB in chapter 26.3.7.4 on page 338
ISB	Instruction Synchronization Barrier	ISB in chapter 26.3.7.5 on page 338
MRS	Move from special register to register	MRS in chapter 26.3.7.6 on page 339
MSR	Move form register to special register	MSR in chapter 26.3.7.7 on page 340
NOP	No operation	NOP in chapter 26.3.7.8 on page 341
SEV	Send Event	SEV in chapter 26.3.7.9 on page 341
SVC	Supervisor Call	SVC in chapter 26.3.7.10 on page 342
WFE	Wait for Event	WFE in chapter 26.3.7.11 on page 343
WFI	Wait for interrupt	WFI in chapter 26.3.7.12 on page 344

26.3.7.1. BKPT

Breakpoint.

26.3.7.1.1. Syntax

BKPT #imm

where:

imm is an integer in the range 0-255.

26.3.7.1.2. Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint.

The processor might also produce a HardFault or go in to lockup if a debugger is not attached when a BKPT instruction is executed. See Lockup in chapter 26.2.4.1 on page 303 for more information.

26.3.7.1.3. Restrictions

There are no restrictions.

26.3.7.1.4. Condition flags

This instruction does not change the flags.

26.3.7.1.5. Examples

BKPT #0; Breakpoint with immediate value set to 0x0.

26.3.7.2. CPS

Change Processor State.

26.3.7.2.1. Syntax

CPSID i

CPSIE i

26.3.7.2.2. Operation

CPS changes the PRIMASK special register values. CPSID causes interrupts to be disabled by setting PRIMASK. CPSIE cause interrupts to be enabled by clearing PRIMASK. See Exception mask register in chapter 26.2.1.3.10 on page 290 for more information about these registers.

26.3.7.2.3. Restrictions

There are no restrictions.

26.3.7.2.4. Condition flags

This instruction does not change the condition flags.

26.3.7.2.5. Examples

```
CPSID i ; Disable all interrupts except NMI (set PRIMASK)

CPSIE i ; Enable interrupts (clear PRIMASK)
```

26.3.7.3. DMB

Data Memory Barrier.

26.3.7.3.1. Syntax

DMB

26.3.7.3.2. Operation

 $exttt{DMB}$ acts as a data memory barrier. It ensures that all explicit memory accesses that appear in program order before the $exttt{DMB}$ instruction are observed before any explicit memory accesses that appear in program order after the $exttt{DMB}$ instruction. $exttt{DMB}$ does not affect the ordering of instructions that do not access memory.

26.3.7.3.3. Restrictions

There are no restrictions.

26.3.7.3.4. Condition flags

This instruction does not change the flags.

26.3.7.3.5. Examples

DMB ; Data Memory Barrier

26.3.7.4. DSB

Data Synchronization Barrier.

26.3.7.4.1. Syntax

DSB

26.3.7.4.2. Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory accesses before it complete.

26.3.7.4.3. Restrictions

There are no restrictions.

26.3.7.4.4. Condition flags

This instruction does not change the flags.

26.3.7.4.5. Examples

DSB ; Data Synchronisation Barrier

26.3.7.5. ISB

Instruction Synchronization Barrier.

26.3.7.5.1. Syntax

ISB

26.3.7.5.2. Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

26.3.7.5.3. Restrictions

There are no restrictions.

26.3.7.5.4. Condition flags

This instruction does not change the flags.

26.3.7.5.5. Examples

ISB

; Instruction Synchronisation Barrier

26.3.7.6. MRS

Move the contents of a special register to a general-purpose register.

26.3.7.6.1. Syntax

MRS Rd, spec_reg

where:

Rd is the general-purpose destination register.

spec_reg is one of the special-purpose registers: APSR, IPSR, EPSR, IEPSR, IAPSR,

EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL.

26.3.7.6.2. Operation

MRS stores the contents of a special-purpose register to a general-purpose register. The MRS instruction can be combined with the MSR instruction to produce read-modify-write sequences, which are suitable for modifying a specific flag in the PSR.

See MSR in chapter 26.3.7.7 on page 340.

26.3.7.6.3. Restrictions

In this instruction, Rd must not be SP or PC.

26.3.7.6.4. Condition flags

This instruction does not change the flags.

26.3.7.6.5. Examples

MRS RO, PRIMASK

; Read PRIMASK value and write it to RO

26.3.7.7. MSR

Move the contents of a general-purpose register into the specified special register.

26.3.7.7.1. Syntax

MSR spec_reg, Rn

where:

Rn is the general-purpose source register.

spec_reg is the special-purpose destination register: APSR, IPSR, EPSR, IEPSR, IAPSR,

EAPSR, PSR, MSP, PSP, PRIMASK, or CONTROL.

26.3.7.7.2. Operation

MSR updates one of the special registers with the value from the register specified by *Rn*.

See MRSon 26.3.7.6 on page 339.

26.3.7.7.3. Restrictions

In this instruction, *Rn* must not be SP and must not be PC.

26.3.7.7.4. Condition flags

This instruction updates the flags explicitly based on the value in Rn.

26.3.7.7.5. Examples

MSR CONTROL, R1

; Read R1 value and write it to the CONTROL register

26.3.7.8. NOP

No Operation.

26.3.7.8.1. Syntax

NOP

26.3.7.8.2. Operation

NOP performs no operation and is not guaranteed to be time consuming. The processor might remove it from the pipeline before it reaches the execution stage. Use NOP for padding, for example to place the subsequent instructions on a 64-bit boundary.

26.3.7.8.3. Restrictions

There are no restrictions.

26.3.7.8.4. Condition flags

This instruction does not change the flags.

26.3.7.8.5. Examples

NOP ; No operation

26.3.7.9. SEV

Send Event.

26.3.7.9.1. Syntax

SEV

26.3.7.9.2. Operation

SEV causes an event to be signaled to all processors within a multiprocessor system. It also sets the local event register, see Power management in chapter 26.2.5 on page 304.

See also WFE in in chapter 26.3.7.11 on page 343.

26.3.7.9.3. Restrictions

There are no restrictions.

26.3.7.9.4. Condition flags

This instruction does not change the flags.

; Send Event

26.3.7.9.5. Examples

SEV

26.3.7.10. SVC

Supervisor Call.

26.3.7.10.1. Syntax

SVC #imm

where:

imm is an integer in the range 0-255.

26.3.7.10.2. Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is being requested.

26.3.7.10.3. Restrictions

There are no restrictions.

26.3.7.10.4. Condition flags

This instruction does not change the flags.

26.3.7.10.5. Examples

```
SVC #0x32 ; Supervisor Call (SVC handler can extract the immediate value ; by locating it via the stacked PC)
```

26.3.7.11. WFE

Wait For Event.

26.3.7.11.1. Syntax

WFE

26.3.7.11.2. Operation

If the event register is 0, WFE suspends execution until one of the following events occurs:

- an exception, unless masked by the exception mask registers or the current priority level
- an exception enters the Pending state, if SEVONPEND in the System Control Register is set
- a Debug Entry request, if debug is enabled
- an event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

If the event register is 1, WFE clears it to 0 and completes immediately.

For more information see see Power management in chapter 26.2.5 on page 304.

Note

WFE is intended for power saving only. When writing software assume that WFE might behave as NOP.

26.3.7.11.3. Restrictions

There are no restrictions.

26.3.7.11.4. Condition flags

This instruction does not change the flags.

26.3.7.11.5. Examples

WFE ; Wait for event

26.3.7.12. WFI

Wait for Interrupt.

26.3.7.12.1. Syntax

WFI

26.3.7.12.2. Operation

WFI suspends execution until one of the following events occurs:

- an exception
- · an interrupt becomes pending which would preempt if PRIMASK was clear
- a Debug Entry request, regardless of whether debug is enabled.

Note

WFI is intended for power saving only. When writing software assume that WFI might behave as a NOP operation.

26.3.7.12.3. Restrictions

There are no restrictions.

26.3.7.12.4. Condition flags

This instruction does not change the flags.

26.3.7.12.5. Examples

WFI ; Wait for interrupt

26.4. Cortex-M0 Peripherals

The following sections are the reference material for the ARM Cortex-M0 core peripherals descriptions in a User Guide:

- About the Cortex-M0 peripherals in chapter 26.4.1 on page 345
- Nested Vectored Interrupt Controller in chapter 26.4.2 on page 345
- System Control Block in chapter 26.4.3 on page 351
- System timer, SysTick in chapter 26.4.4 on page 358

26.4.1. About the Cortex-M0 peripherals

The address map of the Private peripheral bus (PPB) is:

Table 26-22. Core peripheral register regions

ADDRESS	CORE PERIPHERAL	DESCRIPTION
0xE000 E008 – 0xE000 E00F	System Control Block	Table 26-31. Summary of the SCB registeron page 351
0xE000 E010 – 0xE000 E01F	System Timer	Table 26-40. System timer register summary on page 358
0xE000 E100 – 0xE000 E4EF	Nested Vectored Interrupt Controller	Table 26-23. NVIC register summary on page 345
0xE000 ED00 – 0xE000 ED3F	System Control Block	Table 26-31. Summary of the SCB registeron page 351
0xE000 EF00 – 0xE000 EF03	Nested Vectored Interrupt Controller	Table 26-23. NVIC register summary on page 345

In register descriptions, the register type is described as follows:

RW Read and write.

RO Read-only.

WO Write-only.

26.4.2. Nested Vectored Interrupt Controller

This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports:

- 1 to 32 interrupts.
- A programmable priority level of 0-192 in steps of 64 for each interrupt. A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.
- · Level and pulse detection of interrupt signals.
- Interrupt tail-chaining.
- An external Non-maskable interrupt (NMI).

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead. This provides low latency exception handling. The hardware implementation of the NVIC registers is:

Table 26-23. NVIC register summary

ADDRESS	NAME	TYPE	RESET VALUE	DESCRIPTION
0xE000 E100	ISER	RW	0x0000 0000	Interrupt Set-enable Register in chapter 26.4.2.2 on page 346
0xE000 E180	ICER	RW	0x0000 0000	Interrupt Clear-enable Register in chapter 26.4.2.3 on page 347
0xE000 E200	ISPR	RW	0x0000 0000	Interrupt Set-pending Register in chapter 26.4.2.4 on page 347
0xE000 E280	ICPR	RW	0x0000 0000	Interrupt Clear-pending Register in chapter 26.4.2.5 on page 348
0xE000 E400 - 0xE000 E41C	IPR0-7	RW	0x0000 0000	Interrupt Priority Registers in chapter 26.4.2.6 on page 348

26.4.2.1. Accessing the Cortex-M0 NVIC registers using CMSIS

CMSIS functions enable software portability between different Cortex-M profile processors.

To access the NVIC registers when using CMSIS, use the following functions:

Table 26-24. CMSIS access NVIC functions

CMSIS FUNCTION	DESCRIPTION
void NVIC_EnableIRQ(IRQn_Type IRQn)*	Enables an interrupt or exception
void NVIC_DisableIRQ(IRQn_Type IRQn)*	Disables an interrupt or exception
void NVIC_SetPendingIRQ(IRQn_Type IRQn)*	Set the pending status of interrupt or exception to 1
<pre>void NVIC_ClearPendingIRQ(IRQn_Type IRQn) *</pre>	Clears the pending status of interrupt or exception to 0
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)*	Reads the pending status of interrupt or exception. This function returns non-zero value if the pending status is set to1.
<pre>void NVIC_SetPriority(IRQn_Type IRQn, uint32_t</pre>	Sets the priority of an interrupt or exception with configurable priority level to 1
uint32_t NVIC_GetPriority(IRQn_Type IRQn)*	Reads the priority of an interrupt or exception with configurable priority level. This function returns the current priority level

^{*} The input parameter IRQn is the IRQ number see Table 26-10. Properties of the different exception types on page 298 for more information

26.4.2.2. Interrupt Set-enable Register

The ISER enables interrupts, and shows which interrupts are enabled. See the register summary in Table 26-23. NVIC register summary on page 345 for the register attributes.

The bit assignments are:

Figure 26-15. ISER

Table 26-25. ISER bit assignments

BIT	NAME	FUNCTION
31:0	SETENA	Interrupt set-enable bits. Write: 1: enable interrupt 0: no effect Read: 1: interrupt enabled 0: interrupt disabled

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority.

26.4.2.3. Interrupt Clear-enable Register

The ICER disables interrupts, and show which interrupts are enabled. See the register summary in Table 26-23. NVIC register summary on page 345 for the register attributes.

The bit assignments are:

Figure 26-16. ICER

Table 26-26. ICER bit assignments

BIT	NAME	FUNCTION
31:0	CLEARENA	Interrupt clear-enable bits. Write: 1: disable interrupt 0: no effect Read: 1: interrupt enabled 0: interrupt disabled

26.4.2.4. Interrupt Set-pending Register

The ISPR forces interrupts into the pending state, and shows which interrupts are pending. See the register summary in Table 26-23. NVIC register summary on page 345 for the register attributes.

The bit assignments are:

Figure 26-17. ISPR

Table 26-27. ISPR bit assignments

BIT	NAME	FUNCTION
31:0	SETPEND	Interrupt set-pending bits. Write: 1: changes interrupt state to pending 0: no effect Read: 1: changes interrupt state to pending 0: interrupt not pending

Note

Writing 1 to the ISPR bit corresponding to:

- an interrupt that is pending has no effect
- a disabled interrupt sets the state of that interrupt to pending.

26.4.2.5. Interrupt Clear-pending Register

The ICPR removes the pending state from interrupts, and shows which interrupts are pending. See the register summary in Table 26-23. NVIC register summary on page 345 for the register attributes. The bit assignments are:

Figure 26-18. ICPR

Table 26-28. ICPR bit assignments

BIT	NAME	FUNCTION		
31:0	CLRPEND	Interrupt clear-pending bits. Write: 1: removes pending state an interrupt 0: no effect Read: 1: interrupt is pending 0: interrupt not pending		

Note

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt

26.4.2.6. Interrupt Priority Registers

The IPR0-IPR7 registers provide an 8-bit priority field for each interrupt. These registers are only word-accessible. See the register summary in Table 26-23. NVIC register summary on page 345 for their attributes. Each register holds four priority fields as shown:

Figure 26-19. IPR

Table 26-29. IPR bit assignments

BIT	NAME	FUNCTION
31:24	Priority, byte offset 3	
23:16	Priority, byte offset 2	Each priority field holds a priority value, 0-192. The lower the value, the greater the priority of the
15:8	Priority, byte offset 1	corresponding interrupt. The processor implements only bits[7:6] of each field, bits [5:0] read as zero ignore writes. This means writing 255 to a priority register saves value 192 to the register
7:0	Priority, byte offset 3	

See Accessing the Cortex-M0 NVIC registers using CMSIS in chapter 26.4.2.1 on page 346 for more information about the access to the interrupt priority array, which provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt M as follows:

- the corresponding IPR number, N, is given by N = N DIV 4
- the byte offset of the required Priority field in this register is M MOD 4, where:
 - byte offset 0 refers to register bits[7:0]
 - byte offset 1 refers to register bits[15:8]
 - byte offset 2 refers to register bits[23:16]
 - byte offset 3 refers to register bits[31:24]

26.4.2.7. Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC

detects the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the interrupt, see Hardware and software control of interrupts in chapter 26.4.2.7.1 on page 350. For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means that the peripheral can hold the interrupt signal asserted until it no longer needs servicing.

26.4.2.7.1. Hardware and software control of interrupts

The Cortex-M0 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

- the NVIC detects that the interrupt signal is active and the corresponding interrupt is not active
- the NVIC detects a rising edge on the interrupt signal
- software writes to the corresponding interrupt set-pending register bit, see Interrupt Set-pending Register in chapter 26.4.2.4 on page 347

A pending interrupt remains pending until one of the following:

- The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active. Then:
 - For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
 interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might
 cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes
 to inactive.
 - For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR. If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the ISR the state of the interrupt changes to inactive.
- Software writes to the corresponding interrupt clear-pending register bit. For a level-sensitive interrupt, if
 the interrupt signal is still asserted, the state of the interrupt does not change. Otherwise, the state of the
 interrupt changes to inactive. For a pulse interrupt, state of the interrupt changes to:
 - o inactive, if the state was pending
 - active, if the state was active and pending.

26.4.2.8. NVIC usage hints and tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to NVIC registers.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the processor from taking that interrupt.

26.4.2.8.1. NVIC programming hints

Software uses the CPSIE i and CPSID i instructions to enable and disable interrupts. The CMSIS provides the

following intrinsic functions for these instructions:

```
void __disable_irq(void) // Disable Interrupts
void enable irq(void) // Enable Interrupts
```

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 26-30. CMSIS access NVIC functions

CMSIS FUNCTION	DESCRIPTION
void NVIC_EnableIRQ(IRQn_Type IRQn	Enable IRQn
void NVIC_DisableIRQ(IRQn_Type IRQn)	Disable IRQn
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)	Return true (1) if IRQn is pending
void NVIC_SetPendingIRQ(IRQn_Type IRQn)	Set IRQn pending
<pre>void NVIC_ClearPendingIRQ(IRQn_Type IRQn)</pre>	Clear IRQn pending state
<pre>void NVIC_SetPriority(IRQn_Type IRQn, uint32_t</pre>	Set priority for IRQn
uint32_t NVIC_GetPriority(IRQn_Type IRQn)	Read priority of IRQn
void NVIC_SystemReset (void)	Reset the system

The input parameter IRQn is the IRQ number, see Table 26-10. Properties of the different exception types on page 298 more information. For more information about these functions, see the CMSIS documentation.

26.4.3. System Control Block

The System Control Block (SCB) provides system implementation information, and system control. This includes configuration, control, and reporting of the system exceptions. The SCB registers are:

Table 26-31. Summary of the SCB register

ADDRESS	NAME	TYPE	RESET VALUE	DESCRIPTION
0xE000 ED00	CPUID	RO	0x410C C200	CPUID Register in chapter 26.4.3.2 on page 352
0xE000 ED04	ICSR	RW*	0x0000 0000	Interrupt Control and State Register in chapter 26.4.3.3 on page 352
0xE00 ED0C	AIRCR	RW*	0xFA05 0000	Application Interrupt and Reset Control Register in chapter 26.4.3.4 on page 354
0xE000 ED10	SCR	RW	0x0000 0000	System Control Register in chapter 26.4.3.5 on page 355
0xE000 ED14	CCR	RW	0x0000 0204	Configuration and Control register in chapter 26.4.3.6 on page 356
0xE000 ED1C	SHPR2	RW	0x0000 0000	System Handler Priority register in chapter 26.4.3.7 on page 356
0xE000 ED20	SHPR3	RW	0x0000 0000	System Handler Priority register in chapter 26.4.3.7 on page 356

^{*} See the register description for more information

26.4.3.1. The CMSIS mapping of the Cortex-M0 SCB registers

To improve software efficiency, the CMSIS simplifies the SCB register presentation. In the CMSIS, the array SHP[1] corresponds to the registers SHPR2-SHPR3

26.4.3.2. CPUID Register

The CPUID register contains the processor part number, version, and implementation information. See the register summary in Table 26-32. CPUID register bit assignments on page 352 for its attributes. The bit assignments are:

Figure 26-20. CPUID

Table 26-32. CPUID register bit assignments

BIT	NAME	FUNCTION			
31:24	Implementer	Implementer code: 0x41 = ARM			
23:20	Variant	nt Variant number, the r value in the rnpn product revision identifier: 0x0 = Revision 0			
19:16	Constant	Constant Constant that defines the architecture of the processor:, reads as 0xC = ARMv6-M architecture			
15:4	Partno	Partno Part number of the processor: 0xC20 = Cortex-M0			
3:0	Revision number, the p value in the rnpn product revision identifier: 0x0 = Patch 0				

26.4.3.3. Interrupt Control and State Register

The ICSR:

- · provides:
 - o a set-pending bit for the Non-Maskable Interrupt (NMI) exception
 - set-pending and clear-pending bits for the PendSV and SysTick exceptions
- •indicates:
 - the exception number of the exception being processed
 - whether there are preempted active exceptions
 - the exception number of the highest priority pending exception
 - whether any interrupts are pending.

See the register summary in Table 26-33. ICSR register bit assignments on page 353 for the ICSR attributes. The bit assignments are:

Figure 26-21. ICSR

Table 26-33. ICSR register bit assignments

BIT	NAME	TYPE	FUNCTION
31	NMIPENDSET	RW	NMI set-pending bit Write: 1: changes NMI exception state to pending 0: no effect Read: 1: NMI exception is pending 0: NMI exception is not pending Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.
30:29	Reserved	RW	Reserved
28	PENDSVSET	RW	PendSV set-pending bit Write: 1: changes PendSV exception state to pending 0: no effect Read: 1: PendSV exception is pending 0: PendSV exception is not pending Writing 1 to this bit is the only way to set the PendSV state to pending
27	PENDSVCLR	wo	PendSV clear-pending bit Write: 1: removes the pending state from the PendSV exception 0: no effect
26	PENDSTSET	RW	SysTick exception set-pending bit. Write: 1: changes SysTick exception state to pending 0: no effect Read: 1: SysTick exception is pending 0: SysTick exception is not pending
25	PENDSTCLR	WO	SysTick exception clear-pending bit. Write: 1: removes the pending state from the SysTick exception This bit is WO. On a register read it's value is unknown
24:23	Reserved	RW	Reserved
22	ISRPENDING	RO	Interrupt pending flag, excluding NMI and Faults: 1: Interrupt pending 0: Interrupt not pending

BIT	NAME	TYPE	FUNCTION
21:18	Reserved	RW	Reserved
17:12	VECTPENDING	RO	Indicates the exception number of the highest priority pending enabled exception: Nonzero: the exception number of the highest priority pending enabled exception 0: no pending exceptions
11:6	Reserved	RW	Reserved
5:0	VECTACTIVE*	RO	Contains the active exception number: Nonzero: The exception number* of the currently active exception 0: Thread mode Note: Subtract 16 from this value to obtain the CMSIS IRQ number that identifies the corresponding bit in the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-pending, and Priority Register, see Table 26-5. IPSR bit assignments on page 288

^{*} This is the same value as IPSR bits[5:0], see Table 26-5. IPSR bit assignments on page 288

When you write to the ICSR, the effect is Unpredictable if you:

- write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
- write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

26.4.3.4. Application Interrupt and Reset Control Register

The AIRCR provides endian status for data accesses and reset control of the system. See the register summary in Table 26-31. Summary of the SCB register on page 351 and Table 26-34. AIRCR register bit assignments on page 354 for its attributes.

To write to this register, you must write 0x05FA to the VECTKEY field, otherwise the processor ignores the write.

The bit assignments are:

Table 26-34. AIRCR register bit assignments

BIT	NAME	TYPE	FUNCTION
31:16	VECTKEY	RW	Register key Read: unknown Write: write 0x05FA to VECTKEY, otherwise the write is ignored
15	ENDIANESS	RO	Data endianess implemented 0x0: Little Endian

BIT	NAME	TYPE	FUNCTION
14:3	Reserved	RW	Reserved
2	SYSRESETREQ	WO	System reset request: Read: This bit reads as 0. Write: 1: requests a system level reset. 0: no effect
1	VECTCLRACTIV E	wo	Reserved for debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is Unpredictable.
0	Reserved	RW	Reserved

26.4.3.5. System Control Register

The SCR controls features of entry to and exit from low power state. See the register summary in Table 26-35. SCR register bit assignments on page 355 for its attributes. The bit assignments are:

Table 26-35. SCR register bit assignments

BIT	NAME	TYPE	FUNCTION
31:5	Reserved	R	Reserved
4	SEVONPEND	RW	Send Event on Pending bit: 1: enabled events and all interrupts, including disabled interrupts, can wakeup the processor 0: only enabled interrupts or events can wakeup the processor ,disabled interrupts are excluded When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event ,the event is registered and affects the next WFE. The processor also wakes up on execution of an SEV instruction or external event
3	Reserved	R	Reserved
2	SLEEPDEEP	RW	Controls whether the processor uses sleep or deep sleep as its low power mode: 1: deep sleep 0: sleep

BIT	NAME	TYPE	FUNCTION
1	SLEEPONEXIT	RW	Indicates sleep-on-exit when returning from Handler mode to Thread mode: 1: enter sleep, or deep sleep, on return from an ISR to Thread mode. 0: do not sleep when returning to Thread mode. Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application
0	Reserved	R	Reserved

26.4.3.6. Configuration and Control Register

The CCR is a read-only register and indicates some aspects of the behavior of the Cortex-M0 processor. See the register summary in Table 26-36. CCR register bit assignments in page 356 for the CCR attributes. The bit assignments are:

Figure 26-24. CCR

Table 26-36. CCR register bit assignments

BIT	NAME	TYPE	FUNCTION
31:10	Reserved	R	Reserved
9	STKALIGN	RW	Always reads as one, indicates 8-byte stack alignment on exception entry. On exception entry, the processor uses bit[9] of the stacked PSR to indicate the stack alignment. On return from the exception it uses this stacked bit to restore the correct stack alignment.
8:4	Reserved	R	Reserved
3	UNALIGN_TRP	RW	Always reads as one, indicates that all unaligned accesses generate a HardFault.
0	Reserved	R	Reserved

26.4.3.7. System Handler Priority Registers

The SHPR2-SHPR3 registers set the priority level, 0 to 192, of the exception handlers that have configurable priority.

SHPR2-SHPR3 are word accessible. See the register summary in Table 26-31. Summary of the SCB register on page 351 for their attributes.

To access to the system exception priority level using CMSIS, use the following CMSIS functions:

- uint32 t NVIC GetPriority(IRQn Type IRQn)
- void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)

The input parameter IRQn is the IRQ number, see Table 26-10. Properties of the different exception types on

page 298 for more information.

The system fault handlers, and the priority field and register for each handler are:

Table 26-37. System fault handler priority fields

HANDLER	FIELD	REGISTER DESCRIPTION
SVCall	PRI_11	System handler Priority Register 2 on page
PendSV	PRI_14	System Handler Priority register 3 on page
SysTick	PRI_15	System Handler Priority register 3 on page

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:6] of each field, and bits[5:0] read as zero and ignore writes.

26.4.3.7.1. System Handler Priority Register 2

The bit assignments are:

Figure 26-25. SHPR2

Table 26-38. SHPR2 register bit assignments

BIT	NAME	TYPE	FUNCTION
31:24	PRI_11	RW	Priority of system Handler 11, SVCall
23:0	Reserved	R	Reserved

26.4.3.7.2. System Handler Priority Register 3

The bit assignments are:

Figure 26-26. SHPR3

Table 26-39. SHPR3 register bit assignments

BIT	NAME	TYPE	FUNCTION
31:24	PRI_15	RW	Priority of system Handler 15, SysTick exception

BIT	NAME	TYPE	FUNCTION
23:16	PRI_14	RW	Priority of system Handler 14, PendSV
15:0	Reserved	R	Reserved

26.4.3.8. SCB usage hints and tips

Ensure software uses aligned 32-bit word size transactions to access all the SCB registers.

26.4.4. System timer, SysTick

When enabled, the timer counts down from the reload value to zero, reloads (wraps to) the value in the SYST_RVR on the next clock cycle, then decrements on subsequent clock cycles. Writing a value of zero to the SYST_RVR disables the counter on the next wrap. When the counter transitions to zero, the COUNTFLAG status bit is set to 1. Reading SYST_CSR clears the COUNTFLAG bit to 0.

Writing to the SYST_CVR clears the register and the COUNTFLAG status bit to 0. The write does not trigger the SysTick exception logic. Reading the register returns its value mat the time it is accessed.

Note

When the processor is halted for debugging the counter does not decrement. The system timer registers are:

Table 26-40. System timer register summary

ADDRESS	NAME	TYPE	RESET VALUE	DESCRIPTION
0xE000 E010	SYST_CS R	RW	0x0000 0000	Systick Control and Status Register in chapter 26.4.4.1 on page 358
0xE000 E014	SYST_RV R	RW	Unknown	Systick Reload Value Register in chapter 26.4.4.2 on page 359
0xE000 E018	SYST_CV R	RW	Unknown	Systick Current Register in chapter 26.4.4.3 on page 360
0xE000 E01C	SYST_CA LIB	RO	0x0000 0000	Systick Calibration value Register in chapter 26.4.4.4 on page 360

26.4.4.1. SysTick Control and Status Register

The SYST_CSR enables the SysTick features. See the register summary in Table 26-41. SYST_CSR register bit assignments on page 359 for its attributes. The bit assignments are:

Figure 26-27. SYST_CSR

Table 26-41. SYST CSR register bit assignments

BIT	NAME	TYPE	FUNCTION
31:17	Reserved	R	Reserved
16	COUNTFLAG	RW	Returns 1 if timer counted to 0 since the last read of this register
15:3	Reserved	R	Reserved
2	CLKSOURCE	RW	Selects the SysTick timer clock source 1: HCLK 0: FCLK / 3
1	TICKINT	RW	Enables SysTick exception request 1: counting down to zero to assert the SysTick exception request 0: counting down to zero does not assert the SysTick exception request
0	ENABLE	RW	Enables the counter 1: counter enabled 0: counter disabled

26.4.4.2. SysTick Reload Value Register

The SYST_RVR specifies the start value to load into the SYST_CVR. See the register summary in Table 26-42. SYST_RVR register bit assignments on page 359 for its attributes. The bit assignments are:

Figure 26-28. SYST_RVR

Table 26-42. SYST_RVR register bit assignments

BIT	NAME	TYPE	FUNCTION
31:24	Reserved	R	Reserved
23:0	RELOAD	RW	Value to load into the SYST_CVR when the counter is enabled and when it reaches 0, see Calculating the RELOAD value.

26.4.4.2.1. Calculating the RELOAD value

The RELOAD value can be any value in the range 0x000 00001 – 0x00FF FFFF. You can program a value of 0,

but this has no effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

To generate a multi-shot timer with a period of N processor clock cycles, use a RELOAD value of N-1. For example, if the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

26.4.4.3. SysTick Current Value Register

The SYST_CVR contains the current value of the SysTick counter. See the register summary in Table 26-43. SYST_CVR register bit assignments on page 360 for its attributes. The bit assignments are:

Figure 26-29. SYST_CVR

Table 26-43. SYST_CVR register bit assignments

BIT	NAME	TYPE	FUNCTION
31:24	Reserved	R	Reserved
23:0	CURRENT	RW	Reads return the current value of the SysTick counter. A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

26.4.4.4. SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration properties. See the register summary in Table 26-44. SYST_CALIB register bit assignments on page 360 for its attributes. The bit assignments are:

Figure 26-30. SYST_CALIB

Table 26-44. SYST_CALIB register bit assignments

BIT	NAME	TYPE	FUNCTION
31	NOREF	R	Reads as one. Indicates no separate reference clock is provided
30	SKEW		Reads as one. Calibration value for the 10ms inexact timing is not known because TENMS is not known. This can affect the suitability of SysTick as a software real time clock.

ВІ	IT	NAME	TYPE	FUNCTION
29:	:24	Reserved	R	Reserved
23	3:0	TENMS	RW	Reads as zero. Indicates calibration value is not known

If calibration information is not known, calculate the calibration value required from the frequency of the processor clock or external clock.

26.4.4.5. SysTick usage hints and tips

The interrupt controller clock updates the SysTick counter.

Ensure software uses word accesses to access the SysTick registers.

If the SysTick counter reload and current value are undefined at reset, the correct initialization sequence for the SysTick counter is:

- 1. Program reload value.
- 2. Clear current value.
- 3. Program Control and Status register.

PAC5223 User Guide

27. LEGAL INFORMATION

Copyright © 2020 Qorvo, Inc. All rights reserved.

All information provided in this document is subject to legal disclaimers.

Active-Semi reserves the right to modify its products, circuitry or product specifications without notice. Active-Semi products are not intended, designed, warranted or authorized for use as critical components in life-support, life-critical or safety-critical devices, systems, or equipment, nor in applications where failure or malfunction of any Active-Semi product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Active-Semi accepts no liability for inclusion and/or use of its products in such equipment or applications. Active-Semi does not assume any liability arising out of the use of any product, circuit, or any information described in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Active-Semi or others. Active-Semi assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. Customers should evaluate each product to make sure that it is suitable for their applications. Customers are responsible for the design, testing, and operation of their applications and products using Active-Semi products. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. All products are sold subject to Active-Semi's terms and conditions of sale supplied at the time of order acknowledgment. Exportation of any Active-Semi product may be subject to export control laws.

Active-Semi® and Power Application Controller® are registered trademarks of Active-Semi, Inc. The Active-Semi logo, Solutions for Sustainability™, Micro Application Controller™, Multi-Mode Power Manager™, Configurable Analog Front End™, and Application Specific Power Drivers™ are trademarks of Active-Semi, Inc.

Arm® and Cortex® are registered trademarks of ARM Limited. All referenced brands and trademarks are the property of their respective owners.

For more information on this and other products, contact sales@active-semi.com or visit www.active-semi.com.