0 vector,	algorithms (cont'd)
[definition]; (2.4.1): 68	Shrink; (5.3.2): 214
2D geometry,	for minimum spanning forest; (5.4.2): 217
transformations in, [lab]; (4.15.0): 196-200	analysis of; (5.5.6): 223
A^T (matrix A transpose); (4.5.4): 157	simplex; (13.8.0): 490-494
absolute value,	singular value and vector finding; (11.3.1): 423
complex number; (1.4.1): 43	approximation,
abstract/abstracting,	data,
over fields; (1.3.0): 41	industrial espionage problem; (9.9.4): 367
vector spaces; (3.4.4): 130	sensor node problem; (9.9.5): 368
accessing,	matrix,
list elements, Python, [lab]; (0.5.5): 23	best rank-k; (11.3.5): 429
lists and sets from other collections, Python, [lab];	rank-one; (11.2.2): 420
(0.5.6): 25	with low-rank matrices; (11.1.0): 415
tuple elements, Python, [lab]; (0.5.6): 24	area,
addition,	parallelograms; (12.10.1): 459
complex numbers; (1.4.2): 44	polygon, in terms of parallelogram area; (12.10.3): 462
elementary row-addition operations; (7.1.4): 295	arithmetic,
row, row space preservation; (7.1.6): 297	Python, [lab]; (0.5.1): 15
vector; (2.4.0): 67	arrows,
associativity and transitivity of; (2.4.2): 68	scaling; (2.5.1): 71
combining scalar multiplication with; (2.6.0): 74-77	vectors as; (2.4.3): 69
dictionary representation; (2.7.3): 80	assignment statements,
distributivity of scalar-vector multiplication and;	Python, [lab]; (0.5.2): 16
(2.6.2): 75	associativity,
invertibility of; (2.7.4): 80	function composition; (0.3.6): 6
translation and; (2.4.1): 67	scalar-vector multiplication; (2.5.2): 72
affine,	vector addition; (2.4.2): 68
combinations; (3.5.2): 131	attacking,
a first look; (2.6.4): 77	simple authentication scheme; (2.9.7): 97
definition [3.5.2]; (3.5.2): 132	revisiting; (2.9.9): 99
hull, normal to plane in R^3 as; (9.6.3): 358	augmentation,
spaces; (3.5.0): 130-138	augmented orhogonalize procedure; (9.5.3): 356
as solution set of linear systems; (3.5.4): 134	project.orhogonal; (9.2.2): 349
characteristics; (3.5.3): 133	authentication,
closest k-dimensional; (11.3.9): 431	simple scheme; (2.9.6): 95
closest one-dimensional; (11.2.5): 422	attacking; (2.9.7): 97
definition [3.5.8]; (3.5.3): 133	attacking, revisiting; (2.9.9): 99
lines and planes compared; (3.5.5): 135	revisiting; (6.2.8): 266
algebraic properties,	backward,
dot product; (2.9.8): 98	problem, function relationship with; (0.3.2): 4
matrix-vector multiplication; (4.6.5): 165	substitution; (2.11.2): 103
algorithms,	first implementation; (2.11.3): 104
enumerative, linear programming; (13.6.0): 488	with arbitrary-domain vectors; (2.11.5): 105
Fast Fourier; (10.6.5): 397	transform, wavelets; (10.3.9): 389
greedy,	basis,
finding as set of generators; (5.3.0): 213-215	See also span;
handling failure of; (5.3.3): 214	change of,
Grow; (5.3.1): 213	circulant matrices and; (10.8.2): 403
for minimum spanning forest; (5.4.2): 217	first look; (5.8.0): 229
analysis of; (5.5.5): 223	matrix invertibility and; (6.4.8): 277
PageRank; (12.9.0): 459	[chapter]; (5.0.0): 209-256
[lab]; (12.12.0): 471-476	characteristics; (5.6.0): 224-228
rounding error handling; (9.5.4): 356	computational problems involving; (5.10.0): 236

computing, with orthogonalize procedure; (9.5.1):	vector, k-sparse; (10.1.0): 379
355	codes,
definition [5.6.1]; (5.6.1): 224	error-correcting; (4.7.3): 167
direct sum; (6.3.3): 269	[lab]; (4.14.0): 192-195
finite set of vectors; (5.6.4): 227	Hamming; (4.7.5): 168
finite sets D, subspaces of FD; (6.2.6): 264	linear; (4.7.4): 168
functions, Discrete Fourier space; (10.6.3): 394	coefficients,
Gaussian elimination and; (7.1.7): 298	linear combinations and; (3.1.3): 115
linear independence and; (5.6.5): 228	column(s),
null space; (7.4.4): 305	See also matrix/matrices;
orthonormal, coordinate representation with respect to;	column-orthogonal,
(10.2.1): 380	[9.7.1]; (9.7.1): 361
row space, from echelon form to; (7.1.1): 293	matrix, coordinate representation; (9.8.4): 364
size of; (6.1.0): 257-260	matrix, multiplication, norm preservation; (10.2.2):
special, [chapter]; (10.0.0): 379-414	381
standard, for F _D ; (5.6.2): 226	proof that left singular vector matrix is; (11.3.10):
subset, computing, with orthogonalize procedure;	432
(9.5.2): 355	matrix; (9.7.1): 360
unique representation in terms of; (5.7.0): 228	Fourier matrix, circulant matrix multiplication by;
vector spaces and; (5.6.3): 227	(10.8.1): 402
vectors, normalizing; (10.3.8): 389	introduction; (4.1.3): 149
wavelet; (10.3.3): 384	irrelevant, in Gaussian elimination of matrix-vector
Basis Theorem [6.1.2]; (6.0.0): 257	equations; (7.4.3): 305
benefit,	rank, definition [6.2.9]; (6.2.1): 261
total cost of; (2.9.1): 88	space,
Booleans,	definition [4.2.1]; (4.2.0): 153
Python, [lab]; (0.5.1): 16	row space and; (4.2.0): 152
camera,	-stochastic matrix, definition; (12.8.3): 456
coordinate system; (5.9.3): 232	vectors; (4.11.4): 185
coordinates, from world coordinates to; (5.9.5): 235	combinations,
image plane and; (5.9.2): 231	affine; (3.5.2): 131
cardinality,	a first look; (2.6.4): 77
vector space over $GF(2)$; (6.2.4): 263	linear; (3.1.0): 113-117
Cartesian product; (0.2.0): 1	coefficients and; (3.1.3): 115-116
characteristic,	definition; (3.1.1): 113
polynomial, [definition]; (12.10.5): 465	matrix-vector and vector-matrix multiplication;
checksum,	(4.5.0): 154-158
functions; (3.6.4): 141	matrix-vector multiplication; (4.5.1): 154
revisited; (6.4.6): 275	of linear combinations; (3.2.4): 120
circulant matrix; (10.8.0): 401-403	of linear combinations, revisited; (4.11.6): 186
definition [10.8.1]; (10.8.0): 401	uses; (3.1.2): 113
class(es),	vector-matrix multiplication; (4.5.2): 155
mat, implementation; (4.1.4): 150	combining,
Vec, implementation; (2.10.0): 100-102	operations; (1.4.11): 53
closed under,	comparisons,
[definition]; (3.4.2): 128	Python, [lab]; (0.5.1): 16
closest,	complement, orthogonal,
k-dimensional affine space; (11.3.9): 431	See orthogonal/orthogonality, complement;
k-dimensional space, finding with right singular	complementary subspaces,
vectors; (11.3.4): 427	definition [6.3.11]; (6.3.5): 270
dimension-k vector space; (11.3.0): 423-432	complex numbers,
point,	absolute value; (1.4.1): 43
finding; (8.3.4): 331	adding; (1.4.2): 44
in span of many vectors, solving; (9.4.0): 354	characteristics; (1.4.0): 42-54

Coding the Matrix Index - Version 0

complex numbers (cont'd)	corollaries,
inner product; (10.7.0): 399	Direct-Sum Dimension Corollary, [6.3.9]; (6.3.3): 269
introduction to; (1.1.0): 39	Grow-Algorithm Corollary, [5.5.10]; (5.5.5): 223
mapping to real numbers, linear function	Shrink-Algorithm Corollary, [5.5.11]; (5.5.5): 223
representation by matrix; (4.10.7): 178	correctness,
multiplying,	QR factorization square case; (9.8.2): 363
negative real number; (1.4.4): 46	Correctness of project-orthogonal [9.2.3]; (9.2.1): 348
positive real number; (1.4.3): 46	cost,
polar representation; (1.4.8): 51	total, or benefit; (2.9.1): 88
rotation,	cryptography,
by 180 degrees; (1.4.4): 46	See also authentication; also secrecy;
by 90 degrees; (1.4.5): 47	D-vector,
unit circle; (1.4.6): 49	definition [2.2.2]; (2.2.0): 64
composition,	data,
function, matrix-matrix multiplication and; (4.11.2):	approximate,
182	industrial espionage problem; (9.9.4): 367
functions; (0.3.5): 5	sensor node problem; (9.9.5): 368
comprehension(s),	decomposition,
dictionary,	singular value decomposition (SVD); (11.0.0): 415-440
iterating over, Python, [lab]; (0.5.8): 29	unique, of a vector; (6.3.4): 269
Python, [lab]; (0.5.8): 28	vector,
list, Python, [lab]; (0.5.5): 21	into parallel and perpendicular components; (8.3.2):
set, Python, [lab]; (0.5.4): 18	329
compression,	space, as a direct sum; (10.3.2): 383
lossy, first look; (5.2.0): 210-212	wavelet; (10.3.7): 387
sensing; (13.14.0): 504	defining,
wavelets use for, [lab]; (10.9.0): 403-412	one-line procedures, Python, [lab]; (0.5.9): 30
computational problems,	definition(s), affine,
functions vs.; (0.3.1): 3	
concatenation,	combination, [3.5.2]; (3.5.2): 132
list, Python, [lab]; (0.5.5): 21	space, [3.5.8]; (3.5.3): 133
conditional statements,	basis, [5.6.1]; (5.6.1): 224
Python, [lab]; (0.5.3): 17, (0.6.3): 33	circulant matrix, [10.8.1]; (10.8.0): 401
conditions,	column,
Python, [lab]; (0.5.1): 16	stochastic matrix; (12.8.3): 456
conjugate,	orthogonal, [9.7.1]; (9.7.1): 361
definition [1.4.2]; (1.4.1): 43	rank, [6.2.9]; (6.2.1): 261
constraint,	space, [4.2.1]; (4.2.0): 153
linear, [definition]; (13.0.0): 482	complementary subspaces, [6.3.11]; (6.3.5): 270
control structures,	conjugate, [1.4.2]; (1.4.1): 43
Python, [lab]; (0.6.0): 31-38	D-vector, [2.2.2]; (2.2.0): 64
conversions,	diagonal matrix, [4.10.20]; (4.10.8): 178
between representations; (6.5.1): 278	diagonalizable, [12.3.12]; (12.3.1): 447
convex,	dimension, [6.2.1]; (6.2.1): 260
combinations, a first look; (2.6.3): 76	direct sum, [6.3.1]; (6.3.1): 267
coordinate(s),	dual vector space, [6.5.7]; (6.5.1): 280
camera, from world coordinates to; (5.9.5): 235	echelon form, [7.1.1]; (7.1.0): 292
pixel, from world coordinates to; (5.9.6): 236	edges,
representation, eigenvectors; (12.4.0): 448	path; (5.4.1): 216
systems; (5.1.0): 209-210	spanning; (5.4.1): 216
camera; (5.9.3): 232	eigenvalue, [12.3.1]; (12.3.0): 445
world, to camera coordinates; (5.9.5): 235	eigenvector, [12.3.1]; (12.3.0): 445
copying,	first left singular vector, [11.3.2]; (11.3.1): 424
Vec class; (2.10.5): 101	first right singular vector, [11.2.2]; (11.2.1): 419

definition(s) (cont'd)	definition(s) (cont'd)
first singular value, [11.2.2]; (11.2.1): 419	projection onto and orthogonal, [9.141]; (9.1.2): 345
flats; (3.3.1): 124	QR factorization, [9.7.4]; (9.7.2): 361
forest; (5.4.1): 217	rank, [6.2.5]; (6.2.1): 260
four-vector over R, [2.1.1]; (2.1.0): 63	right singular vectors, [11.3.2]; (11.3.1): 424
functional inverse, [0.3.14]; (0.3.7): 7	row rank, [6.2.9]; (6.2.1): 261
generators, [3.2.9]; (3.2.3): 119	row space, [4.2.1]; (4.2.0): 153
gradient, [8.4.2]; (8.4.5): 338	satisfaction of inequality with equality, [13.4.3];
Hermitian adjoint of a matrix A over C,, [10.7.7];	(13.4.0): 486
(10.7.0): 401	scalar-vector multiplication, [2.5.1]; (2.5.0): 70
homogeneous linear,	similar matrix, [12.3.9]; (12.3.0): 446
equation, [3.3.8]; (3.2.2): 124	singular matrix; (4.13.2): 188
system, [3.3.11]; (3.3.2): 125	singular value,
identity matrix, [4.1.6]; (4.1.5): 151	[11.3.2]; (11.3.1): 424
imaginary number i; (1.0.0): 39	decomposition, [11.3.9]; (11.3.3): 426
inner product; (4.12.1): 187	span, [3.2.1]; (3.2.1): 117
over field of complex numbers, [10.7.2]; (10.7.0): 399	spectrum, [12.6.7]; (12.6.4): 451
kernel, [4.10.11]; (4.10.3): 175	stochastic matrix; (12.8.3): 456
left singular vectors, [11.3.7]; (11.3.3): 426	subspace, [3.4.9]; (3.4.3): 128
linear,	subsystem of linear inequalities, [13.4.2]; (13.4.0): 486
combinations, [3.1.1]; (3.1.1): 113	system of linear equations, [2.9.10]; (2.9.2): 90
dependence, [5.5.2]; (5.5.2): 220	transpose, [4.4.1]; (4.4.0): 153
equation, [2.9.6]; (2.9.2): 89	triangular matrix, [4.6.10]; (4.6.4): 164
function, [4.10.1]; (4.10.2): 172	trivial,
independence, [5.5.2]; (5.5.2): 220	linear combination [definition]; (5.5.2): 220
matrix,	vector space [3.4.7]; (3.4.2): 128
inverse, [4.13.3]; (4.13.2): 188	unitary matrix, [10.7.8]; (10.7.0): 401
rank, [6.2.18]; (6.2.7): 266	upper triangular matrix, [4.6.9]; (4.6.4): 164
matrix-matrix multiplication,	vector,
dot-product, [4.11.7]; (4.11.1): 182	addition, [2.4.1]; (2.4.1): 67
matrix-vector, [4.11.3]; (4.11.1): 180	space, [3.4.1]; (3.4.2): 127
vector-matrix, [4.11.1]; (4.11.1): 179	vector-matrix multiplication,
matrix-vector multiplication; (4.6.1): 159	by dot product, [4.6.3]; (4.6.1): 160
ordinary definition [4.8.1]; (4.8.0): 169	by linear combination, [4.5.6]; (4.5.2): 155
by dot product, [4.6.1]; (4.6.1): 159	vertex, [13.4.4]; (13.4.0): 486
by linear combination, [4.5.1]; (4.5.1): 154	dependence (linear); (5.5.0): 219-223
n-state Markov chain; (12.8.3): 456	definition [5.5.2]; (5.5.2): 220
n-vector over F, [2.1.2]; (2.1.0): 63	in Minimum Spanning Forest; (5.5.3): 221
norm; (8.1.1): 326	properties; (5.5.4): 222
null space, [4.7.1]; (4.7.1): 165	deriving,
one-to-one; (0.3.7): 7	matrices from functions; (4.9.13): 171
onto; (0.3.7): 7	Descartes, René,
orthogonal,	coordinate system invention; (5.1.1): 209
complement, [9.6.1]; (9.6.1): 357	determinant; (12.10.0): 459-465
matrix, [9.7.1]; (9.7.1): 361	characteristics; (12.10.4): 463
orthogonality,	diagonal matrix,
[8.3.6]; (8.3.2): 329	definition [4.10.20]; (4.10.8): 178
[9.1.1]; (9.1.1): 344	diagonalizable,
orthonormal, [9.7.1]; (9.7.1): 361	definition [12.3.12]; (12.3.1): 447
outer product; (4.12.2): 187	diagonalization,
path; (5.4.1): 216	Fibonacci matrix; (12.2.0): 444
positive-definite matrix, [12.6.1]; (12.6.1): 451	matrix; (12.3.1): 446
projection, b onto V. [9.1.4]; (9.1.2): 345	symmetric matrices, proof; (12.11.2): 467
projection of b, orthogonal to v, [8.3.6]; (8.3.1): 329	

Diagonalization of symmetric matrices Theorem	duality; (6.5.0): 278-282
[12.6.4]; (12.6.3): 452	linear programming; (13.7.0): 488
dictionaries (Python),	[should be called annihilator], vector space; (6.5.2): 280
[lab]; (0.5.8): 26	Duality Theorem [6.5.14]; (6.5.4): 282
representing vectors with; (2.2.1): 65, (2.7.0): 78	echelon form; (7.1.0): 292-299
scalar-vector multiplication; (2.7.2): 79	definition [7.1.1]; (7.1.0): 292
vector addition; (2.7.3): 80	edges,
diet problem; (13.1.0): 481	spanning, definition; (5.4.1): 216
dimension,	eigenfaces,
[chapter]; (6.0.0): 257-290	[lab]; (11.6.0): 435
definition [6.2.1]; (6.2.1): 260	eigenspace,
greater than 2; (1.4.12): 54	characteristics; (12.3.0): 445
linear functions and; (6.4.0): 272-277	eigentheorems,
rank and; (6.2.0): 260-266	proofs; (12.11.0): 466-470
Dimension Principle; (6.2.5): 263	eigenvalues,
direct sum; (6.3.0): 267-271	[chapter]; (12.0.0): 441-480
basis; (6.3.3): 269	characteristics; (12.3.0): 445-447
decomposition of vector space as; (10.3.2): 383	definition [12.3.1]; (12.3.0): 445
definition [6.3.1]; (6.3.1): 267	determinant function characterization of; (12.10.5): 465
generators; (6.3.2): 268	existence theorem proof; (12.11.1): 466
orthogonal complement and; (9.6.2): 357	Markov chains; (12.8.0): 454-458
Direct Sum Basis Lemma [6.3.8]; (6.3.3): 269	power method; (12.7.0): 454
discrete dynamic processes,	requirements for; (12.6.0): 450-453
modeling; (12.1.0): 441-443	eigenvectors,
Discrete Fourier transform,	[chapter]; (12.0.0): 441-480
Fast Fourier algorithm; (10.6.5): 397	characteristics; (12.3.0): 445-447
Fourier,	coordinate representation; (12.4.0): 448
matrix inverse; (10.6.4): 395	definition [12.3.1]; (12.3.0): 445
transform; (10.6.0): 393-399	Markov chains; (12.8.0): 454-458
space, sampling the basis functions; (10.6.3): 394	power method; (12.7.0): 454
distance,	elementary row-addition matrix; (4.11.1): 180
norm relationship to; (8.1.1): 326	elements,
distributions,	list, accessing, Python, [lab]; (0.5.5): 23
probability; (0.4.1): 9	tuples, accessing, Python, [lab]; (0.5.6): 24
distributivity,	entries,
scalar-vector multiplication and vector addition;	matrix, introduction; (4.1.3): 149
(2.6.2): 75	enumerative algorithm,
dot product; (2.9.0): 87-99	linear programming; (13.6.0): 488
See also matrix(s), multiplication;	equations,
algebraic properties of; (2.9.8): 98	linear; (2.9.2): 89
matrix-matrix multiplication, definition [4.11.7];	formulating systems as matrix-vector equation;
(4.11.1): 182	(4.6.3): 162
matrix-vector multiplication; (4.6.0): 159-165	homogeneous, definition [3.3.8]; (3.2.2): 124
definition [4.6.1]; (4.6.1): 159	system, implications; (3.2.2): 118
over $GF(2)$; (2.9.4): 94	triangular system of, solving; (2.11.0): 102-105
vector-matrix multiplication, definition [4.6.3]; (4.6.1):	matrix,
160	homogeneous linear systems and; (4.7.1): 165
Dual Dimension Theorem [6.5.12],	QR factorization solving; (9.8.0): 362
[misnomer]; (6.5.3): 281	matrix-vector,
dual space,	formulating; (4.5.3): 156
[should be called annihilator],	formulating linear equation system as; (4.6.3): 162
definition [6.5.7]; (6.5.1): 280	Gaussian elimination solution; (7.4.0): 304
orthogonal complement and; (9.6.4): 359	solution space of; (4.7.2): 166
	solving; (4.5.4): 157

equations (cont'd)	forest,
normal to a plane in \mathbb{R}^3 ; (9.6.5): 359	definition; (5.4.1): 217
errors,	minimum spanning, GF(2) and; (5.4.0): 216-218
error-correcting codes,	formulating,
introduction to; (4.7.3): 167	linear,
[lab]; (4.14.0): 192-195	equation system, as matrix-vector equation; (4.6.3):
rounding, algorithms that work with; (9.5.4): 356	162
Euler's formula; (1.4.7): 50	program; (13.11.0): 499
evaluation,	matrix-vector equations; (4.5.3): 156
polynomial; (10.4.0): 390	minimum spanning forest; (5.4.3): 218
events,	forward problem,
adding probabilities; (0.4.2): 10	function relationship with; (0.3.2): 4
Exchange Lemma ; (5.11.0): 237	four-vector over R,
exponentiation laws,	definition [2.1.1]; (2.1.0): 63
Discrete Fourier transform; (10.6.1): 393	Fourier Inverse Theorem [10.6.1]; (10.6.4): 396
first law; (1.4.9): 51	Fourier transform; (10.5.0): 391-393
expressions,	Discrete Fourier transform; (10.6.0): 393-399
simple, Python, [lab]; (0.5.1): 15	Fast Fourier algorithm; (10.6.5): 397
factoring/factorization,	Fourier matrix inverse; (10.6.4): 395
integers; (7.5.0): 306	space, sampling the basis functions; (10.6.3): 394
[lab]; (7.7.0): 312	Function Invertibility Theorem [0.3.18]; (0.3.7): 8
QR; (9.7.0): 360	function(s),
definition [9.7.4]; (9.7.2): 361	See also transformations;
failure,	applying to random input; (0.4.3): 11
Gaussian elimination; (7.1.8): 298	basis, Discrete Fourier space; (10.6.3): 394
Fast Fourier algorithm; (10.6.5): 397	[chapter]; (0.0.0): 1-38
feasible,	characteristics; (0.3.0): 2
linear program solution, [definition]; (13.3.1): 483	checksum; (3.6.4): 141
Fibonacci,	composition, matrix-matrix multiplication and;
matrix, diagonalization of; (12.2.0): 444	(4.11.2): 182
numbers; (12.1.2): 442	composition of; (0.3.5): 5
fields,	associativity; (0.3.6): 6
See also complex numbers; also $GF(2)$ field; also real	computational problems vs.; (0.3.1): 3
numbers;	identity; (0.3.4): 5
abstracting over; (1.3.0): 41	inverse; (0.3.7): 6
[chapter]; (1.0.0): 39-60	perfect secrecy and; (0.4.5): 13
files,	to matrix inverse; (4.13.0): 187-191
reading, Python, [lab]; (0.6.6): 34	linear; (4.10.0): 173-178
Fire Engine Lemma [8.3.8]; (8.3.3): 330	definition; (4.10.2): 173
fire engine problem; (8.1.0): 325	dimension and; (6.4.0): 272-277
orthogonality property of solution to; (8.3.3): 330	inverse, linearity of; (4.13.1): 187
solution; (8.3.5): 332	invertibility; (6.4.1): 272
first left singular vector,	invertibility, revisited; (6.4.4): 275
definition [11.3.2]; (11.3.1): 424	lines and; (4.10.4): 176
first right singular vector,	one-to-one; (4.10.5): 176
definition [11.2.2]; (11.2.1): 419	onto; (4.10.6): 177
first singular value,	zero vectors and; (4.10.3): 175
definition [11.2.2]; (11.2.1): 419	mapping to vectors; (5.8.1): 229
flats,	matrices and; (4.9.0): 170-172
containing the origin, representation of; (3.3.3): 125	matrix-vector product, functions that can be
definition; (3.3.1): 124	represented as; (4.10.1): 173
not through the origin; (3.5.1): 130	notation; (0.3.3): 5
not through the origin, (oldin), 150	objective, [definition]; (13.0.0): 481
	procedures vs.; (0.3.1): 3

function(s) (cont'd)	Grow algorithm; (5.3.1): 213
subfunctions, largest invertible; (6.4.2): 272	analysis of; (5.5.5): 223
vectors as; (2.2.0): 64	correctness proof, for Minimum Spanning Forest;
functional inverse,	(5.11.2): 238
definition, definition [0.3.14]; (0.3.7): 7	minimum spanning forest; (5.4.2): 217
game(s),	Hamming Code ; (4.7.5): 168
Lights Out, GF(2) representation; (2.8.3): 83	Hermitian adjoint,
nonzero-sum; (13.12.0): 500	matrix A over C , definition [10.7.7]; (10.7.0): 401
theory; (13.10.0): 497	higher dimensions,
Gaussian elimination,	fire engine problem; (8.3.7): 334
[chapter]; (7.0.0): 291-324	homogeneous,
failure; (7.1.8): 298	linear equation,
GF(2); (7.2.0): 299	definition [3.3.8]; (3.2.2): 124
invertible matrices, MA in echelon form; (7.3.1): 301	[3.3.8]; (3.2.2): 124
matrix-vector equation; (7.4.0): 304	linear systems; (3.6.0): 139-142
general square matrix,	definition [3.3.11]; (3.3.2): 125
eigenvalues and; (12.6.5): 453	geometry of solution sets; (3.3.2): 124
generator(s); (3.2.3): 119	matrix equations and; (4.7.1): 165
direct sum; (6.3.2): 268	hull,
orthogonal, building a set of; (9.3.0): 351-353	affine, normal to plane in R ³ as; (9.6.3): 358
Python, [lab]; (0.5.7): 25	
* · · · · · · · · · · · · · · · · · · ·	identity,
set of, greedy algorithms for finding; (5.3.0): 213-215	matrix; (4.1.5): 151
standard; (3.2.5): 121	definition [4.1.6]; (4.1.5): 151
V, generators for V* and; (6.5.4): 282	function; (0.3.4): 5
geometry,	Im f linear function image,
2D, transformations in, [lab]; (4.15.0): 196-200	[definition]; (4.10.8): 177
dimension and rank and; (6.2.2): 262	image(s),
homogeneous linear system solution sets; (3.3.2): 124	Im f linear function, [definition]; (4.10.8): 177
linear programming; (13.4.0): 484	MRI, more quickly acquiring; (13.14.0): 504
parallelepiped volume; (12.10.2): 461	one-dimensional, of different resolutions; (10.3.1): 382
parallelogram area; (12.10.1): 459	plane, camera and; (5.9.2): 231
polygon area, in terms of parallelogram area; (12.10.3): 462	vector, representation by coordinate representation, in lossy compression; (5.2.2): 212
vector sets; (3.3.0): 122-125	imaginary number i,
getter procedure; (2.7.1): 79	definition; (1.0.0): 39
GF(2) field; (1.5.0): 54-57	independence (linear),
all-or-nothing secret sharing; (2.8.2): 82	Gaussian elimination and; (7.1.7): 298
dot product over; (2.9.4): 94	properties; (5.5.4): 222
Gaussian elimination over; (7.2.0): 299	vector subset, basis from; (5.6.5): 228
minimum spanning forest and; (5.4.0): 216-218	indexing,
vector spaces over, cardinality of; (6.2.4): 263	dictionaries, Python, [lab]; (0.5.8): 27
vectors over; (2.8.0): 81-86	inequality,
gradient,	linear, [definition]; (13.0.0): 482
definition [8.4.2]; (8.4.5): 338	inner product; (4.12.1): 187
graphs,	[chapter]; (8.0.0): 325-342
dimension and rank in; (6.2.3): 262	complex number field; (10.7.0): 399
greedy algorithms,	definition; (4.12.1): 187
finding as set of generators; (5.3.0): 213-215	over field of complex numbers, definition [10.7.2];
handling failure of; (5.3.3): 214	(10.7.0): 399
grouping statements,	integers,
Python, [lab]; (0.6.4): 33	factoring; (7.5.0): 306
- v, [2m~], (0.0.2). 00	[lab]; (7.7.0): 312
	linear programming; (13.3.3): 484
	11110at programming, (10.0.0). 404

Internet worm; (12.5.0): 449	lemmas (cont'd)
interpolation,	Unique-Representation Lemma, [5.7.1]; (5.6.5): 228
polynomial; (10.4.0): 390	length,
intersection,	See also norm;
plane and line; (3.6.3): 141	vectors; (8.1.1): 326
set, Python, [lab]; (0.5.4): 18	line(s),
inverse(s),	intersections with planes; (3.6.3): 141
Fourier matrix; (10.6.4): 395	line-fitting, as least-squares application; (9.9.1): 365
function; (0.3.7): 6	linear functions and; (4.10.4): 176
to matrix inverse; (4.13.0): 187-191	segments,
index, Python, [lab]; (0.6.0): 31	that don't go through origin; (2.6.1): 74
linear function, linearity of; (4.13.1): 187	through the origin; (2.5.3): 72
matrix; (4.13.2): 188	that don't go through origin; (2.6.1): 74
from function inverse to; (4.13.0): 187-191	through the origin; (2.5.4): 73
uses of; (4.13.3): 189	linear,
invertibility,	codes; (4.7.4): 168
linear functions; (6.4.1): 272	combinations; (3.1.0): 113-117
revisited; (6.4.4): 275	coefficients and; (3.1.3): 115
matrices; (6.4.7): 276	definition; (3.1.1): 113
change of basis and; (6.4.8): 277	matrix-vector and vector-matrix multiplication;
Gaussian elimination use; (7.3.1): 301, (7.4.1): 304	(4.5.0): 154-158
vector addition; (2.7.4): 80	matrix-vector multiplication; (4.5.1): 154
k-dimensional space,	of linear combinations; (3.2.4): 120
affine, closest; (11.3.9): 431	of linear combinations, revisited; (4.11.6): 186
closest, finding with right singular vectors; (11.3.4):	uses; (3.1.2): 113
427	vector-matrix multiplication; (4.5.2): 155
k-sparse vector,	constraint, [definition]; (13.0.0): 482
closest; (10.1.0): 379	dependence; (5.5.0): 219-223
representation with respect to; (10.2.0): 380-382	definition [5.5.2]; (5.5.2): 220
kernel,	in Minimum Spanning Forest; (5.5.3): 221
definition [4.10.11]; (4.10.3): 175	properties; (5.5.4): 222
Kernel-Image theorem; (6.4.3): 274	equations; (2.9.2): 89
Kernel-Image Theorem [6.4.7]; (6.4.3): 275	definition [2.9.6]; (2.9.2): 89
least-squares problem; (9.8.3): 364	system, implications; (3.2.2): 118
applications of; (9.9.0): 365-369	triangular system of, solving; (2.11.0): 102-105
using SVD to do; (11.4.1): 434	functions; (4.10.0): 173-178
left hand side,	definition; (4.10.2): 173
expression, [definition]; (0.5.2): 16	definition [4.10.1]; (4.10.2): 172
left singular vectors,	dimension and; (6.4.0): 272-277
definition [11.3.7]; (11.3.3): 426	inverse, linearity of; (4.13.1): 187
matrix, column-orthogonal proof; (11.3.10): 432	invertibility; (6.4.1): 272
lemmas,	invertibility, revisited; (6.4.4): 275
Direct Sum Basis Lemma, [6.3.8]; (6.3.3): 269	lines and; (4.10.4): 176
Exchange; (5.11.0): 237	one-to-one; (4.10.5): 176
Fire Engine Lemma, [8.3.8]; (8.3.3): 330	onto; (4.10.6): 177
Matrix-Multiplication Lemma, [4.11.8]; (4.11.1): 182	zero vectors and; (4.10.3): 175
Morphing,	independence,
implications of; (6.1.1): 257	definition [5.5.2]; (5.5.2): 220
proof; (6.1.2): 258	Gaussian elimination and; (7.1.7): 298
One-to-One Lemma, [0.3.16]; (0.3.7): 7	properties; (5.5.4): 222
Span Lemma, [5.5.9]; (5.5.4): 222	vector subset, basis from; (5.6.5): 228
Subset-Basis Lemma, [5.6.11]; (5.6.3): 227	inequality, [definition]; (13.0.0): 482
Superfluous-Vector; (5.5.1): 219	programming,
Superset-Basis Lemma, [5.6.14]; (5.6.5): 228	[chapter]; (13.0.0): 481-508

Coding the Matrix Index - Version 0

linear (cont'd)	matrix/matrices,
programming (cont'd)	See also dot product; also echelon form; also Gaussian
duality; (13.7.0): 488	elimination;
formulating; (13.11.0): 499	approximation,
game theory; (13.10.0): 497	best rank-k; (11.3.5): 429
geometry; (13.4.0): 484	rank-one; (11.2.2): 420
learning through, [lab]; (13.13.0): 500-504	[chapter]; (4.0.0): 147-208
nonzero-sum games; (13.12.0): 500	characteristics; (4.1.0): 147-152
origins; (13.3.0): 482	circulant; (10.8.0): 401-403
simplex algorithm; (13.8.0): 490-494	definition [10.8.1]; (10.8.0): 401
terminology, [definitions]; (13.3.1): 483	column-orthogonal; (9.7.1): 360
unbounded linear program, [definition]; (13.3.1): 483	coordinate representation; (9.8.4): 364
vertex finding; (13.9.0): 495	multiplication, norm preservation; (10.2.2): 381
vertex of a polyhedron solution; (13.4.1): 487	columns; (4.1.3): 149
regression; (9.9.1): 365	diagonal; (4.10.8): 178
systems,	diagonalization; (12.3.1): 446
affine spaces as solution set for; (3.5.4): 134	distinct eigenvalues; (12.6.2): 451
formulating as matrix-vector equation; (4.6.3): 162	elementary row-addition; (4.11.1): 180
general, homogeneous correspondence; (3.6.1): 139	entries; (4.1.3): 149
homogeneous; (3.6.0): 139-142	introduction; (4.1.3): 149
homogeneous, geometry of solution sets; (3.3.2): 124	equations,
homogeneous, matrix equations and; (4.7.1): 165	homogeneous linear systems and; (4.7.1): 165
transformation, [definition]; (4.10.2): 174	QR factorization solving; (9.8.0): 362
Linear-Function Invertibility Theorem [6.4.8];	Fibonacci, diagonalization of; (12.2.0): 444
(6.4.3): 275	Fourier matrix inverse; (10.6.4): 395
list(s),	functions and; (4.9.0): 170-172
dictionaries, Python, [lab]; (0.5.8): 27	general square, eigenvalues and; (12.6.5): 453
obtaining from other collections, Python, [lab]; (0.5.6):	identity; (4.1.5): 151
25	inverse; (4.13.2): 188
Python, [lab]; (0.5.0): 14-30, (0.5.5): 20	definition [4.13.3]; (4.13.2): 188
row, in echelon form; (7.1.2): 294	from function inverse to; (4.13.0): 187-191
Vec class and; (2.10.6): 102	uses of; (4.13.3): 189
loops,	invertible; (6.4.7): 276
breaking out of, Python, [lab]; (0.6.5): 34	change of basis and; (6.4.8): 277
Python, [lab]; (0.6.3): 33	Gaussian elimination use; (7.3.1): 301, (7.4.1): 304
lossy compression,	left singular vector, column-orthogonal proof; (11.3.10)
first look; (5.2.0): 210-212	432
$m \times n$ matrix,	low-rank,
[definition]; (4.1.1): 147	benefits of; (11.1.1): 415
machine learning,	matrix approximation with; (11.1.0): 415
[lab]; (8.4.0): 334-339	matrix-matrix multiplication,
least-squares use in; (9.9.6): 369	dot-product, definition [4.11.7]; (4.11.1): 182
manipulation,	matrix-vector, definition [[4.11.3]; (4.11.1): 180
Vec class, syntax for; (2.10.1): 100	vector-matrix, definition [4.11.1]; (4.11.1): 179
mapping,	matrix-vector equations,
See also functions;	formulating; (4.5.3): 156
from complex numbers real numbers, linear function	formulating linear equation system as; (4.6.3): 162
representation by matrix; (4.10.7): 178	solution space of; (4.7.2): 166
Markov chains; (12.8.0): 454-458	solving; (4.5.4): 157
mat class,	matrix-vector product,
implementation; (4.1.4): 150	functions that can be represented as; (4.10.1): 173
Matrix-Multiplication Lemma [4.11.8]; (4.11.1): 182	sparse, computing; (4.8.0): 169

matrix/matrices (cont'd)	Morphing Lemma,
multiplication,	implications of; (6.1.1): 257
circulant matrix by Fourier matrix column; (10.8.1):	proof; (6.1.2): 258
402	MRI image,
elementary row-addition matrix; (7.1.5): 296	more quickly acquiring; (13.14.0): 504
function composition and; (4.11.2): 182	MSF (Minimum Spanning Forest),
matrix-matrix; (4.11.0): 179-186	GF(2) and; (5.4.0): 216-218
matrix-matrix, relationship to matrix-vector and	Grow algorithm correctness proof; (5.11.2): 238
vector-matrix multiplication; (4.11.1): 179	linear dependence in; (5.5.3): 221
matrix-vector, algebraic properties of; (4.6.5): 165	multiplication,
matrix-vector, coordinate representation; (5.1.3):	See also dot product;
210	circulant matrix, by Fourier matrix column; (10.8.1):
matrix-vector, definition [4.6.1]; (4.6.1): 159	402
matrix-vector, definition [4.8.1]; (4.8.0): 169	column-orthogonal matrix, norm preservation; (10.2.2):
matrix-vector, definitions [4.5.1]; (4.5.1): 154	381
matrix-vector, definitions [4.6.1], (4.6.1). 154 matrix-vector, dot products; (4.6.0): 159-165	complex numbers,
matrix-vector, dot products, (4.0.0): 153-163 matrix-vector, linear combinations; (4.5.0): 154-158,	negative real number; (1.4.4): 46
(4.5.1): 154	positive real number; (1.4.4): 46
vector-matrix, linear combinations; (4.5.2): 155	computing M without; (7.3.2): 301
	elementary row-addition matrix; (7.1.5): 296
orthogonal; (9.7.1): 360	•
definition [9.7.1]; (9.7.1): 361	matrix-matrix; (4.11.0): 179-186
positive-definite; (12.6.1): 450	function composition and; (4.11.2): 182
definition [12.6.1]; (12.6.1): 451	matrix-vector and vector-matrix relationship;
Python implementation; (4.1.4): 150	(4.11.1): 179
rank,	definition [4.11.3]; (4.11.1): 180
definition [6.2.18]; (6.2.7): 266	dot-product, definition [4.11.7]; (4.11.1): 182
number of nonzero singular values; (11.3.7): 430	matrix-vector,
representations, converting between; (4.1.6): 151	algebraic properties of; (4.6.5): 165
rows; (4.1.3): 149	coordinate representation; (5.1.3): 210
similarity; (12.3.1): 446	definition [4.5.1]; (4.5.1): 154
singular, [definition]; (4.13.2): 188	definition [4.6.1]; (4.6.1): 159
symmetric; (12.6.3): 452	dot products; (4.6.0): 159-165
eigenvalues and; (12.6.3): 452	linear combinations; (4.5.0): 154-158
traditional; (4.1.1): 147	ordinary definition [4.8.1]; (4.8.0): 169
triangular, triangular systems and; (4.6.4): 163	scalar-vector; (2.5.0): 70-73
upper-triangular, eigenvalues and; (12.6.4): 452	combining vector addition with; (2.6.0): 74
vector equations, Gaussian elimination solution;	dictionary representation; (2.7.2): 79
(7.4.0): 304	distributivity of vector addition and; (2.6.2): 75
vectors; (4.3.0): 153	associativity; (2.5.2): 72
matuitil.py file; (4.1.7): 152	vector-matrix,
measuring,	definition [4.6.3]; (4.6.1): 160
similarity; (2.9.3): 91	linear combinations; (4.5.0): 154-158, (4.5.2): 155
Minimum Spanning Forest (MSF),	mutating,
GF(2) and; (5.4.0): 216-218	dictionaries, Python, [lab]; (0.5.8): 28
Grow algorithm correctness proof; (5.11.2): 238	lists, Python, [lab]; (0.5.5): 24
linear dependence in; (5.5.3): 221	set, Python, [lab]; (0.5.4): 18
modeling,	n-state Markov chain,
discrete dynamic processes; (12.1.0): 441-443	[definition]; (12.8.3): 456
web surfers, PageRank; (12.9.0): 459	n-vector over F,
modules,	definition [2.1.2]; (2.1.0): 63
creating, Python, [lab]; (0.6.2): 32	negation,
Python, [lab]; (0.6.0): 31	vector; (2.7.4): 80
using existing, Python, [lab]; (0.6.1): 31	network,
- ·gg, - y, [], (). 01	coding: (1.5.2): 56

nonzero-sum games; (13.12.0): 500	orthogonal/orthogonality,
norm(s),	[chapter]; (9.0.0): 343-378
See also inner product; also vector(s), length;	complement; (9.6.0): 357-359
[definition]; (8.1.1): 326	computing; (9.6.6): 359
matrix; (11.1.2): 416	definition [9.6.1]; (9.6.1): 357
preservation, by column-orthogonal matrix	direct sum and; (9.6.2): 357
multiplication; (10.2.2): 381	null space, dual space [should be annihilator], and;
properties; (8.1.1): 326	(9.6.4): 359
vectors over reals; (8.2.0): 326-328	definition [8.3.6]; (8.3.2): 329
normal/normalizing,	definition [9.1.1]; (9.1.1): 344
basis vectors; (10.3.8): 389	fire engine problem solution role of; (8.3.3): 330
plane in \mathbb{R}^3 ,	generators, building a set of; (9.3.0): 351-353
as span or affine hull; (9.6.3): 358	introduction; (8.3.0): 328-334
given by an equation; (9.6.5): 359	matrices; (9.7.1): 360
notation,	matrix, definition [9.7.1]; (9.7.1): 361
functions; (0.3.3): 5	multiple vectors, projection; (9.1.0): 344-346
sets; (0.1.0): 1	projection, vector space; (9.1.2): 345
null space; (4.7.0): 165-168	properties; (8.3.1): 328
definition [4.7.1]; (4.7.1): 165	orthogonalize procedure; (9.3.1): 351
finding a basis for; (7.4.4): 305	solving problems with; (9.5.0): 354-356
orthogonal complement and; (9.6.4): 359	orthonormal,
numbers,	basis, coordinate representation with respect to;
Python, [lab]; (0.5.1): 15	(10.2.1): 380
numerical,	definition [9.7.1]; (9.7.1): 361
analysis, pivoting and; (7.1.9): 299	vectors, definition [9.7.1]; (9.7.1): 361
rank; (11.3.8): 431	outer product; (4.12.2): 187
objective function,	definition; (4.12.2): 187
[definition]; (13.0.0): 481	projection and; (8.3.6): 333
one-dimensional,	PageRank algorithm; (12.9.0): 459
affine space, closest; (11.2.5): 422	[lab]; (12.12.0): 471-476
images, of different resolutions; (10.3.1): 382	parallel,
one-to-one,	components, vector decomposition into; (8.3.2): 329
definition; (0.3.7): 7	parallelepiped,
linear functions that are; (4.10.5): 176	volume; (12.10.2): 461
One-to-One Lemma [0.3.16]; (0.3.7): 7	parallelograms,
onto,	area; (12.10.1): 459
definition; (0.3.7): 7	parity bit; (2.9.5): 95
linear functions that are; (4.10.6): 177	path,
projection, vector space; (9.1.2): 345	definition; (5.4.1): 216
operations,	PCA (principal component analysis); (11.5.0): 434
combining; (1.4.11): 53	perfect secrecy; (0.4.4): 12
operator precedence; (0.5.1): 15, (1.2.0): 40	GF(2); (2.8.1): 82
precedence; (2.5.1): 71	invertible functions and; (0.4.5): 13
optimal,	revisited, with $GF(2)$; (1.5.1): 54
solution of a linear program, [definition]; (13.3.1): 483	perpendicular,
origin,	components, vector decomposition into; (8.3.2): 329
flats,	perspective,
containing, representation of; (3.3.3): 125	rectification, [lab[; (5.12.0): 238-246
that don't go through; (3.5.1): 130	rendering; (5.9.0): 230-236
line segments through; (2.5.3): 72	pivoting,
lines and line segments that don't go through; (2.6.1):	numerical analysis and; (7.1.9): 299
74	pixel,
lines through; (2.5.4): 73	coordinates, from world coordinates to; (5.9.6): 236

plane(s),	programming (linear) (cont'd)
image, camera and; (5.9.2): 231	simplex algorithm; (13.8.0): 490-494
intersections with lines; (3.6.3): 141	terminology, [definitions]; (13.3.1): 483
\mathbb{R}^3 ,	vertex of a polyhedron solution; (13.4.1): 487
normal to, as span or affine hull; (9.6.3): 358	projection,
normal to, given by an equation; (9.6.5): 359	b; (9.8.3): 364
points,	b onto V, definition [9.1.4]; (9.1.2): 345
world; (5.9.1): 230	b orthogonal to v, definition [8.3.6]; (8.3.1): 329
polar representation,	finding; (8.3.4): 331
complex numbers; (1.4.8): 51	orthogonal to multiple vectors; (9.1.0): 344-346
polygons,	outer product and; (8.3.6): 333
areas, in terms of parallelogram area; (12.10.3): 462	vector, onto a list of mutually orthogonal vectors;
polyhedra,	(9.2.0): 347-350
linear programming and; (13.4.0): 484	proof(s),
polynomial,	diagonalization of symmetric matrices; (12.11.2): 467
characteristic, [definition]; (12.10.5): 465	eigentheorem; (12.11.0): 466-470
evaluation and interpolation; (10.4.0): 390	eigenvalues existence theorem; (12.11.1): 466
positive-definite matrix; (12.6.1): 450	Grow algorithm correctness, MSF (Minimum Spanning
definition [12.6.1]; (12.6.1): 451	Forest); (5.11.2): 238
power method,	left-singular vector matrix, column-orthogonal;
finding eigenvalues and eigenvectors; (12.7.0): 454	(11.3.10): 432
precedence,	Morphing Lemma; (6.1.2): 258
operator; (0.5.1): 15, (1.2.0): 40, (2.5.1): 71	project.orhogonal correctness; (9.2.1): 347
Prime Factorization Theorem [7.5.1]; (7.5.0): 307	triangularization; (12.11.3): 469
Prime Number Theorem; (7.5.1): 308	properties,
principal component analysis (PCA); (11.5.0): 434	algebraic,
printing,	of dot product; (2.9.8): 98
Vec class; (2.10.4): 101	matrix-vector multiplication; (4.6.5): 165
probability(s),	linear,
adding to events; (0.4.2): 10	dependence; (5.5.4): 222
characteristics; (0.4.0): 9-13	independence; (5.5.4): 222
Markov chains; (12.8.0): 454-458	norm; (8.1.1): 326
procedures,	orthogonality; (8.3.1): 328
functions vs.; (0.3.1): 3	right singular vectors; (11.3.2): 424
getter; (2.7.1): 79	singular values; (11.3.2): 424
one-line, Python, [lab]; (0.5.9): 30	Pythagorean Theorem; (1.4.1): 43
orthongonalize; $(9.3.1)$: 351	for vectors over the reals, [8.3.1]; (8.3.0): 328
solving problems with; (9.5.0): 354-356	Python lab,
setter; (2.7.1): 79	introduction to, [lab]; (0.5.0): 14
processes,	modules, [lab]; (0.6.0): 31
discrete dynamic, modeling; (12.1.0): 441-443	QR factorization; (9.7.0): 360
product,	definition [9.7.4]; (9.7.2): 361
Cartesian; (0.2.0): 1	least-squares problem; (9.8.3): 364
inner; (4.12.1): 187	square case; (9.8.1): 362
outer; (4.12.2): 187	quadratic,
programming (linear),	fitting to; (9.9.2): 366
[chapter]; (13.0.0): 481-508	two variables; (9.9.3): 367
duality; (13.7.0): 488	radians,
formulating; (13.11.0): 499	rotation by; (1.4.10): 52
game theory; (13.10.0): 497	ranges,
geometry; (13.4.0): 484	Python, [lab]; (0.5.7): 25
learning through, [lab]; (13.13.0): 500-504	rank,
nonzero-sum games; (13.12.0): 500	definition [6.2.5]; (6.2.1): 260
origins; (13.3.0): 482	dimension and; (6.2.0): 260-266

rank (cont'd)	right singular vectors,
Gaussian elimination and; (7.1.7): 298	definition [11.3.2]; (11.3.1): 424
low-rank matrices,	finding; (11.3.1): 423
benefits of; (11.1.1): 415	closest k-dimensional space with; (11.3.4): 427
matrix approximation with; (11.1.0): 415	properties; (11.3.2): 424
matrix, number of nonzero singular values; (11.3.7):	rotation,
430	complex numbers,
numerical; (11.3.8): 431	by 180 degrees; (1.4.4): 46
rank-one approximation to a matrix; (11.2.2): 420	by 90 degrees; (1.4.5): 47
Rank Theorem [6.2.17]; (6.2.7): 264	pi radians; (1.4.10): 52
Rank-Nullity Theorem [6.4.9]; (6.4.3): 275	rounding,
reading files,	errors, algorithms that work with; (9.5.4): 356
Python, [lab]; (0.6.6): 34	row(s),
real numbers,	See also matrix/matrices;
mapping from complex numbers real numbers, linear	addition operations, row space preservation; (7.1.6):
function representation by matrix; (4.10.7): 178	297
rectification,	elementary row-addition operations, sorting by; (7.1.4)
perspective, [lab[; (5.12.0): 238-246	295
regression,	introduction; (4.1.3): 149
linear; (9.9.1): 365	list, in echelon form; (7.1.2): 294
representation,	rank, definition [6.2.9]; (6.2.1): 261
affine spaces, as solution set of linear systems; (3.5.4):	sorting; (7.1.3): 294
134	space,
conversions between; (6.5.1): 278	column space and; (4.2.0): 152
coordinate, column-orthogonal matrix; (9.8.4): 364	definition [4.2.1]; (4.2.0): 153 from echelon form to basis for; (7.1.1): 293
eigenvectors; (12.4.0): 448	vectors; (4.11.4): 185
coordinate system; (5.1.2): 209	zero, in Gaussian elimination of matrix-vector
flats containing the origin; (3.3.3): 125	equations; (7.4.2): 304
GF(2), in Lights Out game; (2.8.3): 83	satisfaction of inequality with equality,
image vector, by coordinate representation, in lossy	definition [13.4.3]; (13.4.0): 486
compression; (5.2.2): 212	scalar,
lines and planes, compared, for affine spaces; (3.5.5):	definition [2.5.1]; (2.5.0): 70
135	scalar-vector multiplication; (2.5.0): 70
matrix, converting between; (4.1.6): 151	associativity of; (2.5.2): 72
polar, complex numbers; (1.4.8): 51	combining vector addition with; (2.6.0): 74
uniqueness, in terms of a basis; (5.7.0): 228	dictionary representation; (2.7.2): 79
vectors,	distributivity of vector addition and; (2.6.2): 75
arrows use for; (2.4.3): 69	scaling,
changing; (5.8.2): 229	arrows; (2.5.1): 71
spaces, comparison of different; (3.4.1): 126	scene,
uses for; (2.3.0): 65	camera coordinates of point in, mapping to point in
with Python dictionaries; (2.2.1): 65, (2.7.0): 78-81	image plane; (5.9.4): 233
with respect to k-sparse vector; (10.2.0): 380-382	search,
residual,	mini-search engine, Python, [lab]; (0.6.7): 34
vector, [definition]; (9.8.3): 364	secrecy,
resolution,	See also perfect secrecy;
one-dimensional images; (10.3.1): 382	all-or-nothing secret sharing, with $GF(2)$; (2.8.2): 82
right hand side,	perfect; (0.4.4): 12
expression, [definition]; (0.5.2): 16	invertible functions and; (0.4.5): 13
	threshold secret-sharing, [lab]; (7.6.0): 308
	segments (line),
	that don't go through origin; (2.6.1): 74
	through the origin; (2.5.3): 72

sensing,	space(s),
compressed; (13.14.0): 504	affine; (3.5.0): 130-138
set(s),	as solution set of linear systems; (3.5.4): 134
obtaining from other collections, Python, [lab]; (0.5.6):	characteristics; (3.5.3): 133
25	closest k-dimensional; (11.3.9): 431
Python, [lab]; (0.5.4): 17	closest one-dimensional; (11.2.5): 422
terminology and notation; (0.1.0): 1	definition; (3.5.3): 133
vectors, geometry; (3.3.0): 122	lines and planes compared; (3.5.5): 135
setter procedure; (2.7.1): 79	closest k-dimensional, finding with right singular
Shrink algorithm; (5.3.2): 214	vectors; (11.3.4): 427
analysis of; (5.5.6): 223	column, row space and; (4.2.0): 152
minimum spanning forest; (5.4.2): 217	Discrete Fourier, sampling the basis functions; (10.6.3)
similar matrix,	394
definition [12.3.9]; (12.3.0): 446	dual [should be called <i>annihilator</i>], orthogonal
similarity,	complement and; (9.6.4): 359
matrix; (12.3.1): 446	null; (4.7.0): 165-168
measuring; (2.9.3): 91	finding a basis for; (7.4.4): 305
simplex algorithm; (13.8.0): 490-494	orthogonal complement and; (9.6.4): 359
singular matrix,	row,
[definition]; (4.13.2): 188	column space and; (4.2.0): 152
singular value decomposition (SVD); (11.0.0): 415-440	from echelon form to basis for; (7.1.1): 293
characteristics; (11.3.3): 425	row-addition operations preserve; (7.1.6): 297
closest dimension-k vector space; (11.3.0): 423-432	solution, matrix-vector equations; (4.7.2): 166
definition [11.3.9]; (11.3.3): 426	vector,
matrix approximation, with low-rank matrices;	abstract; (3.4.4): 130
(11.1.0): 415	basis and; (5.6.3): 227
trolley-line-location problem; (11.2.0): 416-422	[chapter]; (3.0.0): 113-146
using; (11.4.0): 433	closest dimension-k vector; (11.3.0): 423-432
singular value(s),	decomposition as a direct sum; (10.3.2): 383
definition [11.3.2]; (11.3.1): 424	definition [3.4.1]; (3.4.2): 127
finding; (11.3.1): 423	dual [should be called annihilator] of; (6.5.2): 280
nonzero, number of; (11.3.7): 430	over $GF(2)$, cardinality of; (6.2.4): 263
properties; (11.3.2): 424	projection onto and orthogonal to; (9.1.2): 345
size,	subspaces; (3.4.3): 128
basis; (6.1.0): 257-260	span; (3.2.0): 117-121
slices,	See also basis;
list, Python, [lab]; (0.5.5): 23	basis, for finite set of vectors; (5.6.4): 227
solution(s),	definition [3.2.1]; (3.2.1): 117
affine systems, affine spaces as solution set for; (3.5.4):	many vectors, closest point in, solving; (9.4.0): 354
134	normal to plane in R^3 as; (9.6.3): 358
fire engine problem; (8.3.5): 332	vectors over R, geometry of; (3.3.1): 122
homogeneous linear systems, geometry of solution sets;	Span Lemma [5.5.9]; (5.5.4): 222
(3.3.2): 124	spanning,
linear programming, vertex of a polyhedron; (13.4.1):	edges, definition; (5.4.1): 216
487	minimum spanning forest, $GF(2)$ and; $(5.4.0)$: 216-218
matrix-vector equations; (4.5.4): 157	sparsity; (2.2.2): 65, (10.1.0): 379
Gaussian elimination; (7.4.0): 304	matrix-vector product, computing; (4.8.0): 169
number of, homogeneous linear systems; (3.6.2): 140	spectrum,
space, matrix-vector equations; (4.7.2): 166	definition [12.6.7]; (12.6.4): 451
triangular system of linear equations; (2.11.0): 102-105	square case,
trolley-line-location problem; (11.2.1): 417	QR factorization; (9.8.1): 362
sorting,	standard,
rows; (7.1.3): 294	basis, for F ^D ; (5.6.2): 226
	generators; (3.2.5): 121

statements,	theorems (cont'd)
assignment, Python, [lab]; (0.5.2): 16	Diagonalization of symmetric matrices, [12.6.4];
conditional, Python, [lab]; (0.5.3): 17, (0.6.3): 33	(12.6.3): 452
grouping, Python, [lab]; (0.6.4): 33	Dual Dimension Theorem, [6.5.12]; (6.5.3): 281
stochastic matrix,	Duality Theorem, [6.5.14]; (6.5.5): 282
definition; (12.8.3): 456	Fourier Inverse Theorem, [10.6.1]; (10.6.4): 396
stopwatches; (10.6.2): 394	Function Invertibility Theorem, [0.3.18]; (0.3.7): 8
strings,	Kernel-Image Theorem, [6.4.7]; (6.4.3): 275
Python, [lab]; (0.5.1): 15	Linear-Function Invertibility Theorem, [6.4.8]; (6.4.3)
Subset-Basis Lemma [5.6.11]; (5.6.3): 227	275
subspace(s) ; (3.4.3): 128	Prime Factorization Theorem, [7.5.1]; (7.5.0): 307
complementary; (6.3.5): 270	Prime Number Theorem; (7.5.1): 308
definition [3.4.9]; (3.4.3): 128	Pythagorean Theorem; (1.4.1): 43
substitution,	Pythagorean Theorem for vectors over the reals,
backward; (2.11.2): 103	[8.3.1]; (8.3.0): 328
first implementation; (2.11.3): 104	Rank Theorem, [6.2.17]; (6.2.7): 264
with arbitrary-domain vectors; (2.11.5): 105	Rank-Nullity Theorem, [6.4.9]; (6.4.5): 275
subsystem of linear inequalities,	total cost,
definition [13.4.2]; (13.4.0): 486	benefit; (2.9.1): 88
subtraction,	transformation(s),
vector; (2.7.4): 80	See also functions;
suffixes,	2D geometry, [lab]; (4.15.0): 196-200
list, Python, [lab]; (0.5.5): 23	backward, wavelets; (10.3.9): 389
summing,	Discrete Fourier transform; (10.6.0): 393-399
Python, [lab]; (0.5.4): 17	Fourier transform; (10.5.0): 391-393
Superfluous-Vector Lemma; (5.5.1): 219	linear, [definition]; (4.10.2): 174
Superset-Basis Lemma [5.6.14]; (5.6.5): 228	wavelet; (10.3.6): 386
SVD (singular value decomposition),	transitivity,
See singular value decomposition (SVD);	vector addition; (2.4.2): 68
symmetric matrices,	translation,
eigenvalues and; (12.6.3): 452	vector addition and; (2.4.1): 67
syntax,	
Vec class manipulation; (2.10.1): 100	
systems,	transpose; (4.4.0): 153
affine, affine spaces as solution set for; (3.5.4): 134	A ^T A transpose matrix; (4.5.4): 157
coordinate; (5.1.0): 209-210	definition [4.4.1]; (4.4.0): 153
camera; (5.9.3): 232	matrix-matrix product; (4.11.3): 184
linear,	triangular,
equations, definition [2.9.10]; (2.9.2): 90	matrices,
formulating as matrix-vector equation; (4.6.3): 162	definition [4.6.10]; (4.6.4): 164
general, homogeneous correspondence; (3.6.1): 139	triangular systems and; (4.6.4): 163
homogeneous; (3.6.0): 139-142	systems,
homogeneous, geometry of solution sets; (3.3.2): 124	of linear equations, solving; (2.11.0): 102-105
homogeneous, matrix equations and; (4.7.1): 165	triangular matrices and; (4.6.4): 163
terminology,	upper-triangular systems; (2.11.1): 102
linear program, [definitions]; (13.3.1): 483	triangularization,
sets; (0.1.0): 1	proof; (12.11.3): 469
testing,	trivial,
dictionary membership, Python, [lab]; (0.5.8): 27	linear combination, [definition]; (5.5.2): 220
set membership, Python, [lab]; (0.5.4): 18	vector space, definition [3.4.7]; (3.4.2): 128
theorems,	trolley-line-location problem; (11.2.0): 416-422
Basis Theorem, [6.1.2]; (6.0.0): 257	solution; (11.2.1): 417
Correctness of project-orthogonal, [9.2.3]; (9.2.1): 348	tuples,
theorems,	Python, [lab]; (0.5.6): 24

set, Python, [lab]; (0.5.4); 18 Unique-Representation Lemma [5.7.1]; (5.6.5); 228 unit circle, complex plane; (1.4.6); 49 unitary matrix, definition [10.7.8]; (10.7.0); 401 unpacking, list, Python, [lab]; (0.5.5); 23 tuples, Python, [lab]; (0.5.5); 23 tuples, Python, [lab]; (0.5.6); 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4); 164 eigenvalues and; (12.6.4); 452 systems; (2.1.1); 102 value(s), absolute, complex number; (1.4.1); 43 feasible solution, [definition]; (13.3.1); 483 linear program, [definition]; (13.3.1); 483 singular, first singular value definition [11.2.2]; (11.2.1); 419 number of nonzero; (11.3.7); 430 definition [11.3.2]; 424 finding; (11.3.1); 423 properties; (11.3.2); 424 singular value decomposition (SVD); (11.0.0); 415- 440 Vec class; (2.10.0); 100-102 copying; (2.10.5); 101 implementation; (2.10.2); 101 lists and; (2.10.6); 102 printing; (2.10.3); 101 vector(s), See also matrix/matrices; addition; (2.4.0); 67-69 associativity and transitivity of; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 dictionary representation; (2.7.3); 80 distributivity of scalar-vector multiplication and; (2.6.0); 75 invertibility of; (2.7.4); 80 k-sparse, representation with respect to; (10.2.0); 34 column; (4.11.4); 185 decomposition, into parallel and perpendicular components; (8.3.2); 329 functions; (2.2.0; 68 dF(2); (2.8.0); 81 inage, representation by coordinate representation, in lossy compression; (5.2.2); 212 inage, representation by coordinate representation, in lossy compression; (5.2.2); 212 matrix sector space to a vector; (5.8.1); 229 matrix vector quations, formulating linear equation system as; (4.6.3); 162 Gaussian elimination solution; (7.4.0); 304 solution space of; (4.7.2); 166 matrix-vector, algebraic properties of; (4.6.5); 165 matrix-vector, definition [4.8.1]; (4.8.0); 169 matrix-vector, inhear combination with; (2.6.0); 70 scalar-vector, doi:prioticular components; (8.3.2); 329 functions; (2.2.0; 1.1) inplementation [4.1.1]; 4.1.	unbounded,	vector(s) (cont'd)
set, Python, [lab]; (0.5.4): 18 Unique-Representation Lemma [5.7.1]; (5.6.5): 228 unit circle, complex plane; (1.4.6): 49 unitary matrix, definition [10.7.8]; (10.7.0): 401 unpacking, list, Python, [lab]; (0.5.5): 23 tuples, Python, [lab]; (0.5.6): 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (1.2.6.4): 452 systems; (2.1.1.1): 102 value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]: 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.0): 75 invertibility of; (2.7.4): 80 k-sparse, representation with respect to; (10.2.0): 380 asolutin, 118.5 decomposition, into parallel and perpendicular components; (8.3.2): 229 functions; (2.2.0): 64 GP(2): (2.8.0): 81 image, representation with respect to; (10.2.0): 342 propersentation [10.7.2]: 105 image, representation in to parallel and perpendicular components; (8.3.2): 229 functions; (2.2.0): 64 GP(2): (2.8.0): 81 image, representation by coordinate representation; into parallel and perpendicular components; (8.3.2): 229 matrix ector scaluming, (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 mapping from a vector space to a vector; (5.8.1): 229 matrix vector quations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.0): 163 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, inherity in the pa	linear program, [definition]; (13.3.1): 483	closest,
Unique-Representation Lemma [5.7.1]; (5.6.5): 228 unit circle, complex plane; (1.4.6): 49 unitary matrix, definition [10.7.8]; (10.7.0): 401 unpacking, list, Python, [lab]; (0.5.5): 23 tuples, Python, [lab]; (0.5.6): 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.0): 75 invertibility of; (2.7.4): 80 380-382 point in span of many, solving; (9.4.0): 354 column; (4.11.3): 185 decomposition, into parallel and perpendicular components; (8.32): 329 functions; (2.2.0): 64 GF(2): (2.8.0): 81 image, representation by coordinate representation, in lossy compression; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 matrix welton as evetor space to a vector; (5.8.1): 229 matrix as si, (4.3.0): 153 matrix multiplication definition [4.5.1]; (4.5.1): 154 definition [4.6.9]; (4.6.4): 159 matrix-vector equation space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 matrix-vector, definition; (4.6.5): 165 matrix-vector, definition	union,	k-sparse; (10.1.0): 379
unitary matrix, definition [10.7.8]; (10.7.0): 401 unpacking, list, Python, [lab]; (0.5.6): 23 tupper-triangular, matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 systems; (2.11.1): 102 value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 linkst and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.1): 67-69 associativity and transitivity of; (2.4.2): 68 combining sealar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 point in span of many, solving; (9.1.0): 354 column; (4.11.1): 125 column; (4.11.1): 125 column; (4.11.1): 125 components; (8.3.2): 329 functions; (2.2.0): 61 function space of; (8.3.2): 329 functions; (2.2.0): 61 limage, representation by coordinate representation, in lossy compression; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 matrix weltor space to a vector; (5.8.1): 229 matrix-vector apaction as vector space to a vector; (5.8.1): 229 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, inear combinations	set, Python, [lab]; (0.5.4): 18	k-sparse, representation with respect to; (10.2.0):
column; (4.1.4): 185 definition [10.7.8]; (10.7.0): 401 unpacking, list, Python, [lab]; (0.5.5): 23 tuples, Python, [lab]; (0.5.6): 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 value(8), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]: (21.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 244 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; additior; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining sealar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 definition [2.4.1]; (2.4.1): 67 definition [2.4.1]; (2.4.1): 67 definition [4.1.5): 185 decomposition, into parallel and perpendicular components; (8.3.2): 329 functions; (2.2.0): 64 GF(2); (2.8.0): 81 inseaper-presentation by coordinate representation, in lossy compression; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 leapth; (8.1.1): 326 matrix multiplication by coordinate representation, in lossy compression; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 leapth; (8.1.1): 326 matrix wester space to a vector; (5.8.1): 229 matrix wester space to a vector; (5.8.1): 229 matrix-wester space to a vector; (6.8.1): 229 matrix-wester space to a vector; (6.8.1): 129 matrix-wester space to a vector; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.9): 159-165 matrix-vect	Unique-Representation Lemma [5.7.1]; (5.6.5): 228	380-382
unitary matrix, definition [10.7.8]; (10.7.0); 401 unpacking, list, Python, [lab]; (0.5.5); 23 tuples, Python, [lab]; (0.5.6); 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4); 164 eigenvalues and; (12.6.4); 452 systems; (2.11.1); 102 value(s), absolute, complex number; (1.4.1); 43 feasible solution, [definition]; (13.3.1); 483 singular, first singular value definition [11.2.2]; (11.2.1); 419 number of nonzero; (11.3.7); 430 definition [11.3.2]; (11.3.1); 424 finding; (11.3.1); 423 sproperties; (11.3.2); 424 singular value decomposition (SVD); (11.0.0); 415- 440 Vec class; (2.10.0); 100-102 copying; (2.10.5); 101 implementation; (2.10.2); 101 lists and; (2.10.6); 102 printing; (2.10.4); 101 using; (2.10.3); 101 vector(s), See also matrix/matrices; addition; (2.4.0); 67-69 associativity and transitivity of; (2.4.2); 68 combining sealar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [4.6.1]; (4.6.1); 159 matrix-vector, algebraic properties of; (4.6.5); 165 matrix-vector, definition; (4.6.1); 159 matrix-vector, definition; (4.6.1); 159 matrix-vector, definition; (4.6.1); 159 matrix-vector, finear combining seclatarions; (4.5.0); 154-158 matrix-vector, definition; (4.6.1); 179 scalar-vector, planer combining vector addition with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [4.5.1]; (4.6.1); 159 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0); 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 173 scalar-vector, definition; (4.	unit circle,	point in span of many, solving; (9.4.0): 354
definition [10.7.8]; (10.7.0); 401 unpacking, list, Python, [lab]; (0.5.6); 23 tuples, Python, [lab]; (0.5.6); 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4); 164 eigenvalues and; (12.6.4); 452 systems; (2.11.1); 102 value(s), absolute, complex number; (1.4.1); 43 feasible solution, [definition]; (13.3.1); 483 linear program, [definition]; (13.3.1); 483 singular, first singular value definition [11.2.2]; (11.2.1); 419 number of nonzero; (11.3.7); 430 definition [11.3.2]; (11.3.1); 424 finding; (11.3.1); 423 properties; (11.3.2); 424 singular value decomposition (SVD); (11.0.0); 415- 440 Vec class; (2.10.0); 100-102 copying; (2.10.5); 101 implementation; (2.10.2); 101 lists and; (2.10.6); 102 printing; (2.10.4); 101 using; (2.10.3); 101 vector(s), See also matrix/matrices; addition; (2.4.0); 67-69 associativity and transitivity of; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (complex plane; (1.4.6): 49	column; (4.11.4): 185
definition [10.7.8]; (10.7.0); 401 unpacking, list, Python, [lab]; (0.5.6); 23 tuples, Python, [lab]; (0.5.6); 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4); 164 eigenvalues and; (12.6.4); 452 systems; (2.11.1); 102 value(s), absolute, complex number; (1.4.1); 43 feasible solution, [definition]; (13.3.1); 483 linear program, [definition]; (13.3.1); 483 singular, first singular value definition [11.2.2]; (11.2.1); 419 number of nonzero; (11.3.7); 430 definition [11.3.2]; (11.3.1); 424 finding; (11.3.1); 423 properties; (11.3.2); 424 singular value decomposition (SVD); (11.0.0); 415- 440 Vec class; (2.10.0); 100-102 copying; (2.10.5); 101 implementation; (2.10.2); 101 lists and; (2.10.6); 102 printing; (2.10.4); 101 using; (2.10.3); 101 vector(s), See also matrix/matrices; addition; (2.4.0); 67-69 associativity and transitivity of; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.1); 67 definition [2.4.1]; (2.4.2); 68 combining scalar multiplication with; (2.6.0); 74 definition [2.4.1]; (unitary matrix,	decomposition, into parallel and perpendicular
unpacking, list, Python, [lab]; (0.5.5): 23 tuples, Python, [lab]; (0.5.6): 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 definition [12.4.1]; (2.4.1): 67 definition [11.3.2]; (2.8.0): 81 limage, representation by coordinate representation, in lossy compression; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 matrix vector space to a vector; (5.8.1): 229 matrices as; (4.3.0): 153 matrix wultiplication, definition [4.5.1]; (4.5.1): 154 definition [4.6.1]; (4.6.1): 159 matrix-vector equations, solution space of; (4.7.2): 166 matrix-vector product, functions; (2.2.0): 64 GP(2); (2.8.0): 81 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 matrix wultiplication action, definition [4.5.1]; (4.5.1): 154 definition [4.6.1]; (4.6.1): 159 matrix-vector equations, solution space of; (4.7.2): 166 matrix-vector product, functions; (2.2.0): 64 GP(2); (2.8.0): 81 matrix weltor equations, see of; (4.6.1): 159 matrix-vector product, functions; (2.2.0): 64 GP(2); (2.8.0): 81 matrix weltor equations, see of; (4.6.1): 159 matrix-vector product, functions; (2.2.0): 64 GP(2); (3.8.0): 169 matrix-vector equations, see of; (4.6.3): 162 Gaussian elimination solution; (4.6.0): 173 sparse, computing; (4.8.0): 169 matrix-vector, d		
list, Python, [lab]; $(0.5.5)$: 23 tuples, Python, [lab]; $(0.5.6)$: 24 tupper-triangular, matrix, definition [4.6.9]; $(4.6.4)$: 164 eigenvalues and; $(12.6.4)$: 452 systems; $(2.11.1)$: 102 matrix absolute, complex number; $(1.4.1)$: 43 feasible solution, [definition]; $(13.3.1)$: 483 linear program, [definition]; $(13.3.1)$: 483 singular, first singular value definition [11.2.2]; $(11.2.1)$: 419 number of nonzero; $(11.3.7)$: 430 definition [11.3.2]; $(11.3.1)$: 424 finding; $(11.3.1)$: 423 properties; $(11.3.2)$: 424 singular value decomposition (SVD); $(11.0.0)$: 415-440 Vec class; $(2.10.0)$: 100 100 2 copying; $(2.10.5)$: 101 lists and; $(2.10.6)$: 102 printing; $(2.10.4)$: 101 using; $(2.10.3)$: 101 vector(s), See also matrix/matrices; addition; $(2.4.0)$: 67-69 associativity and transitivity of; $(2.4.2)$: 68 combining scalar multiplication with; $(2.6.0)$: 74 definition $(2.4.1)$: 67 each some multiplication with; $(2.6.0)$: 74 scalar-vector, distributivity of feather with first order of the first bultivity of feather with first bultiplication and; $(2.6.0)$: 75 scalar-vector indition and; invertibility of; $(2.7.4)$: 80 $(2.6.2)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of vector addition and; $(2.6.0)$: 75 scalar-vector, distributivity of		
tuples, Python, [lab]; (0.5.6): 24 upper-triangular, matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.6): 102 printing; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 image, representation by coordinate representation, in lossy compressio; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 mapping from a vector space to a vector; (5.8.1): 229 matrices as; (4.3.0): 153 matrix multiplication, (4.6.1);		
matrix, definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition (2.4.1); (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 lossy compression; (5.2.2): 212 interpretation as column vectors; (4.11.5): 185 length; (8.1.1): 326 mapping from a vector space to a vector; (5.8.1): 229 matrices as; (4.3.0): 153 matrix intriplication, definition [4.6.1]; (4.6.1): 159 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (9.1.0): 345-346 multiple, arity in the properties of; (4.6.0): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.0): 159-165 matrix-vector, combining vector ad		
matrix, definition [4.6.9]; (4.6.4): 164		
definition [4.6.9]; (4.6.4): 164 eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 matrices as; (4.3.0): 153 matrix multiplication, definition [4.5.1]; (4.5.1): 154 definition [4.5.1]; (4.5.1): 159 matrix-vector equations, singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [13.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 length; (8.1.1): 326 matrices as; (4.3.0): 153 matrix multiplication, definition [4.5.1]; (4.5.1): 159 matrix-vector equations, soformulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, odifinition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.0): 159-165 matrix-vector, definition; (4.6.0): 159-165 matrix-vector, definition; (4.6.0): 159-165 matrix-vector, definition; (4.6.0): 159-165 matrix-vector, coordinate representation; (5.1.3): matrix multiplication, matrix multiplication, definition [4.5.1]; (4.5.1): 159 matrix-vector orthogonal to; (4.6.3): 162 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (4.6.1): 159 matrix-vector, definition; (4.6.0): 159 matrix-vector, definition; (4.6.0): 159 matrix-vector, condinate representation; (5.2.2): 72 scala		
eigenvalues and; (12.6.4): 452 systems; (2.11.1): 102 systems; (2.11.1): 102 matrices as; (4.3.0): 153 matrix multiplication, definition [4.5.1]; (4.5.1): 154 definition [4.5.1]; (4.6.1): 159 matrix-vector equations, solution, general elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, funding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 mapping from a vector space to a vector; (5.8.1): 229 matrices as; (4.3.0): 153 matrix multiplication, definition [4.5.1]; (4.5.1): 154 definition [4.6.1]; (4.6.1): 159 matrix-vector requations, definition [4.6.1]; (4.6.1): 159 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.8.1]: (4.6.1): 159 matrix-vector, definition [4.8.1]: (4.6.0): 169 matrix-vector, definition [4.8.1]: (4.8.0): 16		
systems; (2.11.1): 102 walue(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrics as; (4.3.0): 153 matrix multiplication, definition [4.5.1]; (4.5.1): 154 definition [4.6.1]; (4.6.1): 159 matrix-vector equations system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix multiplication, definition [4.5.1]; (4.6.1): 159 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, definition; (4.6.1): 159 matrix-vector, definition [4.8.1]; (4.6.9): 165 matrix-vector, definition [4.8.1]; (4.6.0): 159 matrix-vector, definition [4.8.1]; (4.6.		
value(s), absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [4.5.1]; (4.5.1): 154 definition [4.6.1]; (4.6.1): 159 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, definition [4.5.1]; (4.6.1): 159 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, definition [4.5.1]; (4.8.0): 169 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition [2.5.0): 70 scalar-vector, distributivity of vector addition and; (2.6.2): 75 scalar-vector, distributivity of vector addition and; (2.6.2): 75		
absolute, complex number; (1.4.1): 43 feasible solution, [definition]; (13.3.1): 483 linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [4.5.1]; (4.5.1): 154 definition [4.5.1]; (4.6.1): 159 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition [4.5.1]; (4.8.0): 169 matrix-vector orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, definition [4.5.1]; (4.8.0): 169 matrix-vector orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, definition [4.5.1]; (4.8.0): 169 matrix-vector, definition solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition [4.5.1]; (4.8.0): 169 matrix-vector, definition [4.5.1		
definition [4.6.1]; (4.6.1): 159 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [4.6.1]; (4.6.1): 159 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.6.1): 179 matrix-vector, definition [4.6.1): 159 mutriy-vector, definition [4.6.1): 173 sparse, computing; (4.8.0): 169 mutrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.6.1]: 159 matrix-vector, definition [4.6.1]: 179 matrix-vector, definition [4.8.1]: (4.6.3): 162 matrix-vector, definition [4.6.1]: 159 matrix-vector, definition [4.6.1]: 179 scalar-vector, relationship to matrix-matrix multiplication; (4.5.0): 154-158 matrix-vector, definition [4.6.1]: 159 matrix-vector, relationship to matrix-matrix mult		_
linear program, [definition]; (13.3.1): 483 singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrix-vector equations, formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, coordinate representation; (5.1.3): 210 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition solution; (4.6.0): 174 matrix-vector orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector orthogonal to; (9.1.0: 314-346 multiple, projection orthogonal to; (9		
first singular, first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 formulating linear equation system as; (4.6.3): 162 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector, due in matrix equation system as; (4.6.0): 174 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, coordinate representation; (5.1.3): 210 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, linear equation solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector oftenduct, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, plearing function; (4.5.0): 159-165 matrix-vector, plearing function; (4.5.0): 169 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.5.0): 159-165 matrix-vector, cordinate representation; (5.1.3): matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definition [4.8.1]; (4.8.0)		
first singular value definition [11.2.2]; (11.2.1): 419 number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 Gaussian elimination solution; (7.4.0): 304 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, inear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, distributivity of vector addition and; (2.6.2): 75 invertibility of; (2.7.4): 80 Gaussian elimination solution; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (9.1.0): 342-346 multiple, projection orthogonal to;		
number of nonzero; (11.3.7): 430 definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 solution space of; (4.7.2): 166 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, poducts; (4.6.0): 169 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.5.0): 154-158 matrix-vector, combinations; (4.5.0): 154-158 matrix-vector, definition; (4.5.0): 152-158 matrix-vector, definition; (4.6.1): 159 matrix-vector		
definition [11.3.2]; (11.3.1): 424 finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrix-vector product, functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (9.1.0): 340-36 multiple, projection orthogonal to; (9.1.0): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.5.0): 159-165 matrix-vector, definition; (4.5.0		
finding; (11.3.1): 423 properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 functions that can be represented as; (4.10.1): 173 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (9.1.0): 346-346 multiple, projection orthogonal to; (9.1.0): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.0): 159-165 matrix-vector, definition; (4.6.0):		
properties; (11.3.2): 424 singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 sparse, computing; (4.8.0): 169 multiple, projection orthogonal to; (9.1.0): 344-346 multiple, projection orthogonal to; (4.6.1): 155 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, plaining; (2.6.0): 159-165 matrix-vector, plaining; (4.8.0): 169 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, plaining; (2.6.0): 159-165 matrix-vector, plaining; (2.6.0): 159-165 matrix-vector, plaining; (4.8.0): 169 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159		
singular value decomposition (SVD); (11.0.0): 415- 440 Vec class; (2.10.0): 100-102 copying; (2.10.5): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 multiple, projection orthogonal to; (9.1.0): 344-346 multiplication, matrix-vector, algebraic properties of; (4.6.5): 165 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, distributivity of vector addition and; (2.6.2): 75 scalar-vector, distributivity of vector addition and; (2.6.2): 75		
wettor(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 distributivity of scalar-vector multiplication and; (2.6.2): 75 implementation; (2.7.3): 80 (2.6.2): 75 implementation; (2.10.9): 101 210 matrix-vector, coordinate representation; (5.1.3): 210 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector; (2.5.0): 70 scalar-vector, dot products; (4.6.0): 154-158 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, condinate representation; (4.6.1): 159 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, condinate representation; (4.6.1): 159 matrix-vector, definition; (4.6.1): 179 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.1): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definiti		
copying; (2.10.5): 101 implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 (2.6.2): 75 implementation; (2.10.2): 101 matrix-vector, coordinate representation; (5.1.3): 210 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.8.1): (4.8.0): 169 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector; (2.5.0): 70 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 matrix-vector, coordinate representation; (5.1.3): 210 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, combinations; (4.5.0): 159-165 matrix-vector, combinations; (4.5.0): 154-158 matrix-vector, combinations; (4.5.0): 154-158 matrix-vector, combinations; (2.5.2): 72 scalar-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 159 matrix-vector, definition; (4.6.1): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.6.0): 169 matrix-vector, definition; (4.5.0): 169 matrix-vector		
implementation; (2.10.2): 101 lists and; (2.10.6): 102 printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 210 matrix-vector, definition; (4.6.1): 159 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75	Vec class; (2.10.0): 100-102	matrix-vector, algebraic properties of; (4.6.5): 165
lists and; (2.10.6): 102 printing; (2.10.4): 101 matrix-vector, definition; (4.6.1): 159 printing; (2.10.3): 101 matrix-vector, dot products; (4.6.0): 159-165 printing; (2.10.3): 101 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.4.1.1): 179 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, definitio	copying; (2.10.5): 101	matrix-vector, coordinate representation; (5.1.3):
printing; (2.10.4): 101 using; (2.10.3): 101 vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; (2.6.2): 75	implementation; (2.10.2): 101	210
printing; (2.10.4): 101 using; (2.10.3): 101 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrix-vector, definition [4.8.1]; (4.8.0): 169 matrix-vector, dot products; (4.6.0): 159-165 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75	lists and; (2.10.6): 102	matrix-vector, definition; (4.6.1): 159
vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75	printing; (2.10.4): 101	
vector(s), See also matrix/matrices; addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 matrix-vector, linear combinations; (4.5.0): 154-158 matrix-vector, relationship to matrix-matrix multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; (2.6.2): 75	using; (2.10.3): 101	matrix-vector, dot products; (4.6.0): 159-165
See also matrix/matrices; matrix-vector, relationship to matrix-matrix addition; (2.4.0): 67-69 multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 scalar-vector, combining vector addition with; dictionary representation; (2.7.3): 80 (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 distributivity of scalar-vector multiplication and; invertibility of; (2.7.4): 80 (2.6.2): 75	vector(s),	
addition; (2.4.0): 67-69 associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 (2.6.2): 75 invertibility of; (2.7.4): 80 multiplication; (4.11.1): 179 scalar-vector; (2.5.0): 70 scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; (2.6.2): 75		
associativity and transitivity of; (2.4.2): 68 combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 (2.6.2): 75 (2.6.2): 75 combining scalar multiplication with; (2.6.0): 74 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75		
combining scalar multiplication with; (2.6.0): 74 definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 (2.6.2): 75 combining scalar-vector, associativity of; (2.5.2): 72 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75	associativity and transitivity of; (2.4.2): 68	scalar-vector; (2.5.0): 70
definition [2.4.1]; (2.4.1): 67 dictionary representation; (2.7.3): 80 distributivity of scalar-vector multiplication and; (2.6.2): 75 invertibility of; (2.7.4): 80 scalar-vector, combining vector addition with; (2.6.0): 74 scalar-vector, dictionary representation; (2.7.2): 79 scalar-vector, distributivity of vector addition and; (2.6.2): 75	combining scalar multiplication with; (2.6.0): 74	
dictionary representation; (2.7.3): 80 (2.6.0): 74 distributivity of scalar-vector multiplication and; scalar-vector, dictionary representation; (2.7.2): 79 (2.6.2): 75 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75	• • • • • • • • • • • • • • • • • • • •	
distributivity of scalar-vector multiplication and; scalar-vector, dictionary representation; (2.7.2): 79 (2.6.2): 75 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75		
(2.6.2): 75 scalar-vector, distributivity of vector addition and; invertibility of; (2.7.4): 80 (2.6.2): 75		
invertibility of; (2.7.4): 80 (2.6.2): 75	•	
translation and: (2.4.1): 67 vector-matrix, linear combinations: (4.5.2): 155	translation and; (2.4.1): 67	vector-matrix, linear combinations; (4.5.2): 155
backward substitution; (2.11.5): 105 vector-matrix, relationship to matrix-matrix		
basis, normalizing; (10.3.8): 389 multiplication; (4.11.1): 179		
[chapter]; (2.0.0): 61-112 negative; (2.7.4): 80		
	characteristics; (2.1.0): 63	
over reals, inner product of; (8.2.0): 326-328		
project, onto a list of mutually orthogonal vectors;		
(9.2.0): 347-350		

Coding the Matrix Index - Version 0

```
vector(s) (cont'd)
                                                                 zip,
   replacement with closest sparse vector, in lossy
                                                                    Python, [lab]; (0.5.7): 26
         compression; (5.2.1): 211
   representation,
      arrows use; (2.4.3): 69
      with Python dictionaries; (2.2.1): 65, (2.7.0): 78
   residual, [definition]; (9.8.3): 364
   right singular,
      finding closest k-dimensional space with; (11.3.4):
         427
      finding; (11.3.1): 423
      properties; (11.3.2): 424
   row; (4.11.4): 185
   sets of, geometry; (3.3.0): 122
   spaces,
      abstract; (3.4.4): 130
      basis and; (5.6.3): 227
      [chapter]; (3.0.0): 113-146
      characteristics; (3.4.0): 126-130
      closest dimension-k vector; (11.3.0): 423-432
      decomposition as a direct sum; (10.3.2): 383
      definition [3.4.1]; (3.4.2): 127
      dual [should be called annihilator] of; (6.5.2): 280
      over GF(2), cardinality of; (6.2.4): 263
      projection onto and orthogonal to; (9.1.2): 345
      subspaces; (3.4.3): 128
   span, geometry of; (3.3.1): 122
   subtraction; (2.7.4): 80
   unique decomposition of; (6.3.4): 269
   uses for; (2.3.0): 65
   zero, linear functions and; (4.10.3): 175
vertex/vertices,
   definition [13.4.4]; (13.4.0): 486
   finding; (13.9.0): 495
   linear programming and; (13.4.0): 484
   polyhedron solution; (13.4.1): 487
volume,
   parallelepiped; (12.10.2): 461
voting records,
   dot-product comparison, [lab]; (2.12.0): 106-108
wavelet(s); (10.3.0): 382-389
   backward transform; (10.3.9): 389
   basis; (10.3.3): 384
   compression with, [lab]; (10.9.0): 403-412
   decomposition; (10.3.7): 387
   transformation; (10.3.6): 386
   coordinates, to camera coordinates; (5.9.5): 235
   points in the; (5.9.1): 230
   rows, in Gaussian elimination of matrix-vector
         equations; (7.4.2): 304
   vectors, linear functions and; (4.10.3): 175
```