

UTILIZAÇÃO DO OPENDSS NA CEMIG D

Cemig Figures

LARGEST INTEGRATED COMPANY IN THE BRAZILIAN POWER INDUSTRY

Largest Distributor (By network length and number of clients)

4th largest Transmission group

6th largest Generation group

HIGHEST STOCK LIQUIDITY IN THE BRAZILIAN POWER INDUSTRY

More than 140,000 stockholders, in over 40 countries

Listed on 3 stock exchanges: São Paulo, New York, and Madrid

Ebitda well diversified balanced between generation, transmission, distribution, and other businesses

DIVERSIFIED PORTFOLIO OF BUSINESSES

More than 80 generation plants; more than 9,000km of transmission lines; **567,000km of distribution networks**

LEADER IN SUSTAINABILITY

Only Latin American utility included in the **Dow Jones Sustainability Index** since 1999.

One of only 3 Brazilian companies included in the **Global Dow** index.

Source: http://ri.cemig.com.br/en

Números da Cemig

Números Cemig Distribuição (Cemig D)*

Elemento SDMT	Quantidade (2018)					
Alimentadores	1.865					
Rede MT(km)	431.651					
Chaves MT	301.796					
Reguladores Tensão	7.263					
Trafos MT/MT_MT/BT	884.292					
Rede BT(km)	87.404					
Clientes MT	14.940					
Clientes BT	8.686.379					
Geradores MT	186					
Geradores BT	9.364					

^{*} Fontes: BDGD 2018

Customização do OpenDSS Cemig D

Customização do OpenDSSCemig, desenvolvida em C# (MS Visual Studio)

Utilização do OpenDSS na Cemig D

A cutomização da OpenDSS/Cemig possibilita:

- Cálculo antes da execução do prog GeoPerdas ANEEL;
- 2. Cálculo perdas técnicas alimentadores atípicos;
- 3. Cálculo perdas técnicas mensais;
- Estudos de reconfiguração do SDMT;
- 5. Relatórios customizados:
 - Nível de tensão barra primária dos transformadores;
 - Número de clientes com DRP e DRC;
 - Tap de reguladores de tensão;
- 6. Cálculo de parâmetros de LD.

1.Cálculo antes da execução do prog GeoPerdas

Prog GeoPerdas ANEEL

Somente os alimentadores que são executados corretamente no OpenDSSCemig é que são submetidos ao prog. GeoPerdas/ANEEL, uma vez que o cálculo neste programa é mais demorado, devido ao processo iterativo de alocação de PNT.

2. Cálculo perdas técnicas alimentadores atípicos

2.1 Alimentadores com injeção significativa de energia

 Criação de curva diária de potência ativa, em pu, com dados de medição, para a distribuição da energia injetada pela usina no mês

$$E_{m\hat{e}s} = Dem \cdot Dias_{m\hat{e}s} \sum_{n=1}^{24} pu(n)$$

Curva real de geração da Usina Fotovoltaica do Mineirão 1,42MWp

2. Cálculo perdas técnicas alimentadores atípicos

2.2. Alimentadores de distribuição com "características de transmissão"

alimentadores de 22,0kV que além de distribuirem energia alimentam outras SEs.

Exemplo:

 União do alimentador 11 da SE Juiz de Fora com os alimentadores 05 e 06 da SE Lima Duarte e com a PCH Cachoeira do Brumado.

4. Estudos de Reconfiguração do SDMT

Heurística: branch exchange. Para cada chave NA (normalmente aberta), por <u>força-bruta</u>, calcula-se a chave NF (normalmente fechada) com a configuração de menor perda e será a nova chave NA.

Resultados 2019:

Os resultados das 37 manobras validadas parcialmente, previstas e executadas em campo proporcionaram a redução de perdas de aproximadamente 165 MWh/mês, o que ao custo da energia de 210,00 R\$/MWh representam **297 mil R\$/ano**.

Exemplo Reconfiguração

Alimentador AMN06 – Redução 8.622 kWh/mês (R\$ 21.728 /ano)

FECHAR 233454 (Prot. 95mm2)

ABRIR 53296 (Prot. 150,00mm2)

Eliminação de estrangulamento da rede de 1km pelo cabo de 95mm2.

Distância até a SE e do tronco foi reduzida em 900m.

Exemplo Reconfiguração

Alimentador SSP06

Redução: 2.130 kWh/mês

(5.369 R\$/ano)

FECHAR 237583

(Prot 150,0 mm2)

ABRIR 52689

(1/0 AWG 53,43mm2)

(1567 cli. 1 prim.)

5. Relatórios customizados

Os relatórios customizados beneficiam-se da facilidade do OpenDSS em executar o fluxo de potência para todos os alimentadores da concessionária.

Relatório do nível de tensão barra primária dos transformadores

O relatório com o nível de tensão na barra primária dos transformadores de MTBT é utilizado para o ajuste do tap dos GeoPerdas, de acordo com o item 4.12 do módulo nº7 do PRODIST

"Caso as tensões em qualquer ponto do sistema não estiverem dentro dos limites estabelecidos na Seção 8.1 do Módulo 8 do PRODIST, relativos aos níveis de tensão precária ou crítica, poderão ser efetuados ajustes nos Taps dos reguladores de tensão e nas cargas conectadas ao alimentador."

5. Relatórios customizados

Relatório quantidade de clientes com DRP e DRC

5. Relatórios customizados

Relatório quantidade de clientes com DRP e DRC

5. Cálculo de parâmetros de LD

Utilização do módulo de cálculo de parâmetros de LDs do OpenDSS para o cálculo considerando a resistividade média do solo do estado de Minas Gerais.

5. Cálculo de parâmetros de LD

Com 12 arranjos de MT trifásicos, 4 monofásicos de MT e 8 de BT cobre-se, respectivamente, **99%** e **89%** da extensão da rede de MT e BT da Cemig D.

Resultados: acréscimo nos valores de impedância de sequência zero.

	Fase		Rho = 100 ohm.m			Rho = 4557 ohm.m				
	Cond.	Bitola	R1	X 1	R0	X0	R0	acres.	X0	acres.
CAB102	4 AWG	21,15	1,5501	0,4543	1,9885	1,7453	2,1462	7,93%	2,0127	15,32%
CAB103	2AWG	33,63	0,9744	0,4367	1,4128	1,7277	1,5706	11,17%	1,9951	15,48%
CAB104	1/0 AWG	53,43	0,6132	0,4192	1,0615	1,5589	1,2068	13,69%	1,7491	12,20%
CAB107	4/0 AWG	107,20	0,3062	0,3927	0,7054	1,3851	0,8135	15,32%	1,5195	9,70%
CAB108	336,6 MCM	170,50	0,1952	0,3565	0,5944	1,3489	0,7025	18,19%	1,4833	9,96%
CAB202	4 AWG	21,15	1,5379	0,4746	1,9793	1,6718	2,139	8,07%	1,9372	15,88%
CAB203	2AWG	33,63	0,9663	0,4570	1,4077	1,6542	1,5651	11,18%	1,9196	16,04%
CAB204	1/0 AWG	53,43	0,6131	0,4396	1,0651	1,4836	1,2121	13,80%	1,6709	12,62%
CAB207	4/0 AWG	107,20	0,3061	0,4133	0,7103	1,3103	0,8205	15,51%	1,4417	10,03%
CAB208	336,6 MCM	170,50	0,1951	0,3871	0,5993	1,2842	0,7095	18,39%	1,4156	10,23%
CABA06	P, XLPE	50,00	0,7314	0,3035	1,1707	1,8013	1,3041	11,39%	2,0219	12,25%
CABA08	P, XLPE	150,00	0,2347	0,2409	0,6258	1,5956	0,7241	15,71%	1,7654	10,64%
							média	13,36%	média	12,53%

OBS: valores de R1,X1,R0,X0 em ohms/km

Obrigado!

ezequiel.pereira@cemig.com.br

linkedin.com/in/ezequiel-campos-pereira-7440b690

Arquivos:

https://github.com/Zecao/ExecutorOpenDssBr

https://github.com/Zecao/ExportadorGeoPerdasDSS

https://github.com/Zecao/ThesisFiles/tree/master/2019_LineConstants