Álgebra Linear

Aula 1: Vetores

Mauro Rincon

Márcia Fampa

Informações sobre o curso

 Introdução a Álgebra Linear com Aplicações 6ª edição

Editora: LTC

Autor: Bernard Kolman

- Grandezas Físicas Escalares
 - Massa
 - Pressão
- Grandezas Físicas Vetoriais
 - Velocidade
 - Força
 - Deslocamento

cederj

- Todos os segmentos orientados que têm a mesma direção, o mesmo sentido e o mesmo comprimento são representantes de um mesmo vetor.
- Por exemplo: No paralelogramo os segmentos orientados AB e CD determinam o mesmo vetor:

$$\mathbf{v} = \overrightarrow{AB} = \overrightarrow{CD}$$

Quando escrevemos $\mathbf{v} = \overrightarrow{AB}$, estamos afirmando que o vetor \mathbf{v} é determinado pelo segmento orientado AB de origem A e extremidade B. Porém, qualquer outro segmento de mesmo comprimento, mesma direção e mesmo sentido de AB representa também o vetor \mathbf{v} .

Vetor Nulo

— Qualquer ponto do espaço é representante do vetor zero (ou vetor nulo), que é indicado por 0.

A cada vetor não nulo v corresponde um vetor simétrico (-v), que tem o mesmo módulo, a mesma direção, porém com sentido oposto de v.

Vetor Unitário

→ Um vetor \mathbf{v} é unitário se o seu comprimento é um, ou seja $|\mathbf{v}| = 1$.

Dois vetores u e v são chamados de colineares se tiverem a mesma direção, ou seja, u e v são colineares se tiverem representantes AB e CD pertencentes a uma mesma reta ou a retas paralelas.

Vetores Coplanares

Quando os vetores não nulos u e v possuem representantes AB e CD pertencentes a um plano, diz-se que eles são coplanares.

1.2.1 - Adição de vetores

 Uma forma prática de calcular a soma entre dois vetores é construindo um paralelogramo

 \blacksquare Note que $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.

cederj

1.2.1 - Adição de vetores

1) Associativa: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$

Adição)

Voltar

1.2.1 - Adição de vetores

- 2) Comutativa: u + v = v + u
- 3) Existe um único vetor nulo 0 tal que, para todo vetor **v**, se tem:

$$\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$$

4) Para todo vetor v, existe um único vetor
 −v (vetor oposto de v) tal que:

$$\mathbf{v} + (-\mathbf{v}) = -\mathbf{v} + \mathbf{v} = \mathbf{0}$$

1.2.1 - Adição de vetores

Diferença entre dois vetores: Dados dois vetores \mathbf{u} e \mathbf{v} então a diferença entre \mathbf{u} e \mathbf{v} é dado pela soma: $\mathbf{u} + (-\mathbf{v})$. Por exemplo:

1.2.2 - Multiplicação de um número real por um vetor

- a) Módulo: $|\mathbf{u}| = |k\mathbf{v}| = |k| \cdot |\mathbf{v}|$.
- b) Direção: u e v tem a mesma direção.
- c) Sentido: Se k > 0 então \mathbf{u} e \mathbf{v} tem o mesmo sentido. Se k < 0 então \mathbf{u} e \mathbf{v} tem sentidos contrários.

cederj

1.2.2 - Multiplicação de um número real por um vetor

Observação: Se k = 0 ou $\mathbf{v} = \mathbf{0}$ então $\mathbf{u} = \mathbf{0}$. Se k = -1 então $\mathbf{u} = -\mathbf{v}$ é o vetor simétrico. Por exemplo:

1.2.2 - Multiplicação de um número real por um vetor

Propriedades da multiplicação por um número real Sejam **u** e **v** dois vetores quaisquer e a e b números reais. Então:

- a) $a(b\mathbf{u}) = (ab)\mathbf{u}$
- **b)** $(a + b)(\mathbf{u}) = a\mathbf{u} + b\mathbf{u}$ (propriedade distributiva)
- c) $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- **d)** 1(u) = u

1.3 - Vetores no \mathbb{R}^2

O conjunto:

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) | x, y \in \mathbb{R}\}$$

é interpretado geometricamente como sendo o plano cartesiano XOY.

Todo vetor \overrightarrow{AB} considerado neste plano tem sempre um representante, cuja origem é a origem do sistema.

cederi

1.3 - Vetores no \mathbb{R}^2

- Vetores representados por segmentos de retas orientados com origem na origem do sistema
 - Cada vetor do plano é determinado pelo ponto extremo do segmento. Desta forma, o ponto $P(x,y) \in \mathbb{R}^2$ está associado ao vetor $\mathbf{v} = \overrightarrow{OP}$ e escreve-se $\mathbf{v} = (x,y)$.

1.3 - Vetores no \mathbb{R}^2

- Vetores representados por segmentos de retas orientados com origem na origem do sistema
 - \blacksquare A origem do sistema O(0,0) é o vetor nulo.
 - O vetor simétrico de $\mathbf{v} = (x, y)$ é o vetor $-\mathbf{v} = (-x, -y)$.

1.4 - Igualdade e Operações

Dois vetores $\mathbf{u} = (x_1, y_1)$ e $\mathbf{v} = (x_2, y_2)$, são iguais se, e somente se, $x_1 = x_2$ e $y_1 = y_2$. Escreve-se $\mathbf{u} = \mathbf{v}$.

Exemplos:

- 1) Os vetores $\mathbf{u} = (1, 2)$ e $\mathbf{v} = (1, 2)$ são iguais.
- 2) Sejam $\mathbf{u} = (x 1, 3)$ e $\mathbf{v} = (3, 2y 1)$. Determine x e y de tal forma que $\mathbf{u} = \mathbf{v}$. Usando a definição:

$$x - 1 = 3 \Leftrightarrow x = 4$$

 $3 = 2y - 1 \Leftrightarrow y = 2$

1.4 - Igualdade e Operações

- Sejam os vetores $\mathbf{u} = (x_1, y_1)$ e $\mathbf{v} = (x_2, y_2)$ e $\alpha \in \mathbb{R}$. Define-se:
- a) $\mathbf{u} + \mathbf{v} = (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$
- **b)** $\alpha \mathbf{u} = \alpha(x_1, y_1) = (\alpha x_1, \alpha y_1)$

1.4 - Igualdade e Operações

<u>Operações</u>

- Exemplo: Sejam $\mathbf{u} = (1, -2) \text{ e } \mathbf{v} = (2, 3).$ $\mathbf{u} + \mathbf{v} = (1 + 2, -2 + 3) = (3, 1)$

Então: $\begin{cases} \mathbf{u} + \mathbf{v} = (1+2, -2+3) = (3, 1) \\ -2\mathbf{u} = -2(1, -2) = (-2, 4) \end{cases}$

ceder

1.5 - Vetor definido por dois pontos

Consideremos o vetor \overrightarrow{AB} de origem no ponto $A(x_1, y_1)$ e extremidade $B(x_2, y_2)$. Então o vetor pode ser escrito na forma:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

Logo:

$$\overrightarrow{AB} = (x_2, y_2) - (x_1, y_1) = (x_2 - x_1, y_2 - y_1)$$

1.5 - Vetor definido por dois pontos

 \blacksquare Por exemplo, se A(-1,2) e B(2,1), então:

$$\overrightarrow{AB} = B - A = (2 - (-1), 1 - 2) = (3, -1)$$

Definição

Chama-se produto escalar de dois vetores $\mathbf{u} = (x_1, y_1)$ e $\mathbf{v} = (x_2, y_2)$ e representa-se por $\mathbf{u} \cdot \mathbf{v}$ ou " $\langle \mathbf{u}, \mathbf{v} \rangle$ " ao número real: $\mathbf{u} \cdot \mathbf{v} = (x_1, y_1) \cdot (x_2, y_2) = (x_1 x_2 + y_1 y_2)$

Por exemplo:

Seja
$$\mathbf{u} = (-1, 2)$$
 e $\mathbf{v} = (2, 3)$. Então: $\mathbf{u} \cdot \mathbf{v} = (-1) \cdot 2 + 2 \cdot 3 = 4$

Módulo de um vetor

O módulo de um vetor $\mathbf{v} = (x, y)$, representado por $|\mathbf{v}|$ é um número real não negativo, dado por:

$$|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{(x,y) \cdot (x,y)} = \sqrt{x^2 + y^2}$$

Por exemplo:

Seja
$$\mathbf{v} = (2, -3)$$
, então:
 $|\mathbf{v}| = \sqrt{2^2 + (-3)^2} = \sqrt{13}$

Vetor unitário

— Quando $|\mathbf{v}| = 1$, dizemos que o vetor é unitário.

Observação

- 1) Para cada vetor $\mathbf{v} \neq \mathbf{0}$ é possível obter um vetor unitário \mathbf{u} fazendo $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|}$.
 - Por exemplo, seja $\mathbf{v} = (2, -3)$ então $|\mathbf{v}| = \sqrt{13}$. Logo: $\mathbf{u} = \frac{(2, -3)}{\sqrt{13}} = \left(\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}\right)$ e $|\mathbf{u}| = 1$.

2) Dado um vetor \overrightarrow{AB} com extremidades nos pontos $A(x_1, y_1)$ e $B(x_2, y_2)$. O módulo do vetor \overrightarrow{AB} é dado por:

$$\overrightarrow{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

que é a distância entre os pontos A e B.

Propriedades do Produto Escalar

- Dados quaisquer vetores \mathbf{u} , \mathbf{v} e \mathbf{w} e $\alpha \in \mathbb{R}$, tem-se:
 - I) $\mathbf{u} \cdot \mathbf{u} > 0$ para $\mathbf{u} \neq \mathbf{0}$ e $\mathbf{u} \cdot \mathbf{u} = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}$.
 - II) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$ (comutativa)
 - III) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ (distributiva)

IV)
$$\alpha(\mathbf{u}.\mathbf{v}) = (\alpha \mathbf{u}).\mathbf{v} = \mathbf{u}.(\alpha \mathbf{v})$$

Das propriedades (I) - (IV) obtemos que:

1)
$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + 2\mathbf{u}.\mathbf{v} + |\mathbf{v}|^2$$

De fato:

$$|\mathbf{u} + \mathbf{v}|^2 = (\mathbf{u} + \mathbf{v}).(\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u}.(\mathbf{u} + \mathbf{v}) + \mathbf{v}.(\mathbf{u} + \mathbf{v})$$

$$= \mathbf{u}.\mathbf{u} + \mathbf{u}.\mathbf{v} + \mathbf{v}.\mathbf{u} + \mathbf{v}.\mathbf{v}$$

$$= |\mathbf{u}|^2 + 2\mathbf{u}.\mathbf{v} + |\mathbf{v}|^2$$

Mostre que, de forma análoga:

$$|\mathbf{u} - \mathbf{v}|^2 = |\mathbf{u}|^2 - 2\mathbf{u} \cdot \mathbf{v} + |\mathbf{v}|^2$$

O ângulo de dois vetores $\mathbf{u} = \overrightarrow{OA}$ e $\mathbf{v} = \overrightarrow{OB}$, não nulos, é o ângulo θ formado pelas semi-retas OA e OB, onde $0 \le \theta \le \pi$.

Sejam os vetores não nulos u e v. O ângulo θ formado por u e v pode ser calculado pela fórmula:

$$\cos \theta = \frac{\mathbf{u}.\mathbf{v}}{|\mathbf{u}|.|\mathbf{v}|}$$

 \blacksquare De fato: Aplicando a lei dos co-senos ao triângulo ABC, temos:

$$|\mathbf{u} - \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 - 2|\mathbf{u}| \cdot |\mathbf{v}| \cos \theta$$

Mas sabemos que:

$$|\mathbf{u} - \mathbf{v}|^2 = |\mathbf{u}|^2 - 2\mathbf{u} \cdot \mathbf{v} + |\mathbf{v}|^2$$

Comparando 1 e 2 , obtemos:

$$|\mathbf{u}|^2 - 2\mathbf{u} \cdot \mathbf{v} + |\mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 - 2|\mathbf{u}| \cdot |\mathbf{v}| \cos \theta$$

Cálculo do Ângulo de dois Vetores

Logo:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos \theta$$

Daí:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|}$$

Com o valor do $\cos \theta$ calculado então o ângulo θ pode ser determinado.

■ Note que $0 \le \theta \le \pi$.

Exemplo: Seja $\mathbf{u} = (2, 2)$ e $\mathbf{v} = (0, -2)$.

Determine o ângulo θ entre vetores \mathbf{u} e \mathbf{v} .

1.7 - Ângulo de dois vetores

Resolução do Exemplo:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|}$$

Temos que:

$$|\mathbf{u}| = \sqrt{2^2 + 2^2} = \sqrt{8}$$

 $|\mathbf{v}| = \sqrt{0^2 + (-2)^2} = \sqrt{4} = 2$

Assim:

$$\cos \theta = \frac{-4}{\sqrt{8} \cdot 2}$$

Logo

$$\theta = \arccos \frac{-\sqrt{2}}{2} = 135^o = \frac{3\pi}{4}$$

a) <u>Vetores Paralelos</u>:

Dizemos que dois vetores $\mathbf{u} = (x_1, y_1)$ e $\mathbf{v} = (x_2, y_2)$ são paralelos (ou colineares), se existe um número real α tal que:

$$\mathbf{u} = \alpha \mathbf{v} \Leftrightarrow (x_1, y_1) = \alpha(x_2, y_2) = (\alpha x_2, \alpha y_2)$$

Logo:

$$\left(\frac{x_1}{x_2} = \frac{y_1}{y_2} = \alpha\right)$$
 3

A relação 3 significa que dois vetores são paralelos se suas componentes são proporcionais.

Por exemplo, os vetores $\mathbf{u} = (-3, 2)$ e $\mathbf{v} = (6, -4)$ são paralelos pois:

$$\frac{-3}{6} = \frac{2}{-4} = -\frac{1}{2}$$

ou seja,

$$\mathbf{u} = -\frac{1}{2}\mathbf{v}$$

cederj

b) Vetores Ortogonais:

Dois vetores $\mathbf{u} = (x_1, y_1)$ e $\mathbf{v} = (x_2, y_2)$ são ortogonais ($\mathbf{u} \perp \mathbf{v}$), se o ângulo θ por eles formado é de 90^o , ou seja, $\cos \theta = 0$. Da definição de ângulo temos:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|}$$

Assim, $\mathbf{u} \perp \mathbf{v}$ se $\mathbf{u} \cdot \mathbf{v} = 0$. Também dizemos que dois vetores são ortogonais se pelo menos um deles é o vetor nulo. Portanto, $\mathbf{u} \perp \mathbf{v} \Leftrightarrow \mathbf{u} \cdot \mathbf{v} = 0$.

- Exemplo:

Os vetores $\mathbf{u} = (1, 2)$ e $\mathbf{v} = (-2, 1)$ são ortogonais. De fato:

$$\mathbf{u} \cdot \mathbf{v} = (1, 2) \cdot (-2, 1) = 1 \cdot (-2) + 2 \cdot 1 = 0$$

cederi

O conjunto $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ é interpretado geometricamente como sendo o espaço cartesiano tridimensional OXYZ. Neste espaço, o ponto P(x, y, z) individualiza o vetor $\mathbf{v} = \overrightarrow{OP}$ e escreve-se $\mathbf{v} = (x, y, z)$.

- A origem do sistema O(0,0,0) representa o vetor nulo. O vetor simétrico de $\mathbf{v} = (x,y,z)$ é o vetor $-\mathbf{v} = (-x,-y,-z)$.
- Propriedades:
 - 1) Dois vetores $\mathbf{u} = (x_1, y_1, z_1)$ e $\mathbf{v} = (x_2, y_2, z_2)$ são iguais se, e somente se, $x_1 = x_2, y_1 = y_2$ e $z_1 = z_2$.
 - 2) Dados $\mathbf{u} = (x_1, y_1, z_1), \mathbf{v} = (x_2, y_2, z_2)$ e $\alpha \in \mathbb{R}$. Então: $\mathbf{u} + \mathbf{v} = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$ $\alpha \mathbf{u} = \alpha(x_1, y_1, z_1) = (\alpha x_1, \alpha y_1, \alpha z_1)$

Propriedades:

3) Se $A(x_1, y_1, z_1)$ e $B(x_2, y_2, z_2)$ são dois pontos quaisquer no espaço, então:

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

4) Produto escalar:

$$\mathbf{u} \cdot \mathbf{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$

5) Módulo do vetor $\mathbf{v} = (x, y, z)$ é dado por:

$$|\mathbf{v}| = \sqrt{x^2 + y^2 + z^2}$$

Propriedades:

6) Se \mathbf{u} e \mathbf{v} são vetores não-nulos e θ é o ângulo formado por eles, então:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \cdot |\mathbf{v}|}$$

- 7) Sejam $\mathbf{u} = (x_1, y_1, z_1) \in \mathbf{v} = (x_2, y_2, z_2).$
 - a) $\mathbf{u} \parallel \mathbf{v}$ se, e somente se, $\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$.
 - **b)** $\mathbf{u} \perp \mathbf{v}$ se, e somente se, $x_1x_2 + y_1y_2 + z_1z_2 = 0$.

O conjunto

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}}_{n \text{ vezes}} = \{(x_1, x_2, \dots, x_n) | x_i \in \mathbb{R}\}$$

Se \mathbf{u} e \mathbf{v} são vetores do \mathbb{R}^n , então eles são representados por: $\mathbf{u} = (x_1, x_2, \dots, x_n)$ e $\mathbf{v} = (y_1, y_2, \dots, y_n)$.

- Seja $\alpha \in \mathbb{R}$ então define-se:
 - a) $\mathbf{u} = \mathbf{v}$, se e somente se, $x_i = y_i$, para $i = 1, 2, \dots, n$.
 - **b)** $\mathbf{u} + \mathbf{v} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n).$
 - c) $\alpha \mathbf{u} = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$.
 - **d)** $\mathbf{u}.\mathbf{v} = (x_1y_1 + x_2y_2 + ... + x_ny_n)$.
 - e) $|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$.

Exercícios

Faça os seguintes exercícios da seção 3.1, páginas 115/116 do livro texto.

1) (a), (c) e (e)

12) (a) e (c)

2) (a) e (b)

14)

3)

19) (a) e (b)

5) (a), (b) e (c)

21) (b) e (c)

7) (a), (b) e (c)

24) (a), (b) e (c)

10) (a) e (d)

T.1, T.3, T.5 e T.8.