cando su respu	iesta:
$ n^n + 3n = \omega(n!) $) ,
ara	comostrar que $u(n!)$ © equal $q(x) = n^{n} + 3n$
aplicamo	de limite signiente
	$IM f(x) = n^{1} + 3n$
	$\chi \rightarrow \infty$ $\gamma(\chi)$
<u>.</u>	
gve	de Polde (EENCI, pir como
	$\lim (1 - n - n - n) + 3n \rightleftharpoons n (n^{n-1} + 3)$
	$-)$ $(n^{n-1}+3)$
V	
J	si nos damos cuenta el numerador ciere
maj	rúpido que el denominador poes se multiplica
Λ	vecer et numero n y se le suma las 3 veces de
٨.	
6	numerador aunque crece de manera rápida, cada vet se
	property of opening the proof of the proof
multiple	ca por un vilor menor, hayendo que cretca menos rápido
I	
gu el	numerador. Es por ello que se tiene:
	$\frac{1}{1} \frac{1}{1} \frac{1}{1} = \infty$
	$\sim \sim $

1. Muestre que las siguientes afirmaciones son falsas o verdaderas justifi

$ n^3 = o$	$(n^3 \lg n)$ (if the 0
Para o	emonstrur que se cumple $n^3 = O(n^3 \lg n)$ podemos plantear
4	signiente ecuación:
Factoriz	$n^3 < (n^3 y n) c$ and o anterior se time:
	$\rightarrow n^3 < n^3 \mid_{g} n C$
	-> 1 < Ign C
Palemy	análiza la anterior designilad en varios casos.
Pula 1	n=1 se liene:
	-) { < og (1) C
	\rightarrow $1 < 0$
Para	$n=2 \text{se fiene:}$ $-) 1 < \log(z)$ $-) 1 < 1$
Jun	$N=3$ de fine $1 < \log(3)$ $1 < 1,58$
Dudo	lo anterior nos dumos cuenta que el enunciado es

\bullet $n^2 \log n =$	$=\omega(n^3\log n)$
Para	Verificar di la expredión anterior es verdadera o no
Pudemos	expresor la signente designificat:
	$(n^3 \log n) \subset -n^2 \log n$
Simplifican	ido de fiere que:
	> n³ logn (< n² logn
	\rightarrow Λ ($< \underline{1}$
V Si N	us damos cuenta la anterior deviguilde es falsa para
companies V.	76. Es por ello que el enerciado es falso tal y como se
puede ver	en la signiente gráfica
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $n^3 - 1 = \Omega(n^4)$ Mar Suber si la expresión anterior es verdidem o fulsa teremos: que: n4 C < 13 -1 Jimply ando: $C \leq \frac{n^3 - 1}{n^4}$ $C \leq \frac{1}{\sqrt{\Lambda}} - \frac{1}{\sqrt{\Lambda}}$ Para que el enunciado sea verdadero se dise complir que: $C \leq \lim_{n \to \infty} \frac{f(n)}{g(n)}$ Pur la que aplianda el límile a la viltura expresión tenemos: $C \leq \lim_{N \to \infty} \frac{1}{N} - \frac{1}{N^{4}}$ $C \leq \lim_{N \to \infty} \frac{1}{N} - \lim_{N \to \infty} \frac{1}{N}$ Ambos límiles on decrevientes igniles a O coundo notrende a O, por la que la vinca manora de que se compla la designaldade es cundo c=0. Lo que significa que la designal dad original estaria como $N^{4}(0) \leq N^{3}-1$

(

$ n^3 \log n =$	$\Theta(n^3)$
Por de l	FINICION JE Jude que:
	$ \left(f(x) \right) = c_1 F(x) \leq g(x) \leq c_2 f(x) $
(n don	le re comple que:
,	·
	$C_1 \leq \lim_{\Lambda \to \infty} g(\chi) \leq C_2$
En este	cub de time que:
	-) cy n3 logn < n3 < cz logn n3
	${N^3 \log N} \leq C_2$
	n3 log n
	$\frac{1}{\log n} \leq c_2$
	Jug N
Apluand	el límile cundo n fiende u or se tiene:
y yoursen so	or fine control of the of the file.
	$c_1 \leq l_m \qquad l \leq c_2$
	N > 2 lug n
Analizan	d havin la izquiera lenomo:
1 100 11 (
	Cy < lim
	$N \rightarrow \infty / M$
	$C_1 \leq 0$

(0 a	interor es fulso pres no hay un valor c	
	den menor o ignel a o y portenezca a 17t	
	·	
61 br	ello que el en unciado es Falso	