Matrix derivatives

Quiz, 3 questions

1	
point	

1.

Choose the correct statements about MLP implementation:

- You shouldn't prefer matrix operations when working with GPU
- A backward pass of a dense layer needs a 4-d tensor derivative
- A forward pass of a dense layer can be done with matrix product
- You can write both passes of a dense layer with NumPy and make it quick even in Python

1 point

2.

How many dimensions will a derivative of a 3-d tensor by a 4-d tensor have?

7

1 point

3

Let's play around with matrix derivatives!

A trace Tr(X) of a matrix X is a sum of its diagonal elements.

For example: $Tregin{pmatrix}1&3\\3&1\end{pmatrix}=1+1=2.$ Note that trace is a scalar!

Let's find a matrix notation for $\frac{\partial Tr(X^2)}{\partial X}$ for matrix $X = \begin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{pmatrix}$, where X^2 is a matrix product $X \cdot X$.

Please do this element-wise and figure out a matrix notation for it:

	Tr(2X) $trix derivatives$ $Tr(2X)$ $Tr(2X)$ $Tr(2X)$ $Tr(2X)$	
	\bigcirc 2 X	
	\bigcirc $2X^T$	
	$\bigcirc 2Tr(X^T)$	
	I, Jiadai Zhao , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code	1
	Submit Quiz	
S		