PROBLEM STATEMENT -

Design a harmonically tuned power amplifier to efficiently operate in S-band frequency for satellite communications.

Steps involved in designing of a power amplifier -

- 1. DC biasing
- 2. Stability analysis
- 3. Load pull analysis
- 4. Input and output Impedance matching
- 5. Optimize the design for required specifications.

DC Biasing

Stability analysis - [with resistor]

Use with 2-port S-parameter simulations

Available Gain Circles & Source Stability Circle

Set step size and number of circles:

Eqn num_GAcircles=3

Eqn GAstep_size=1

Stability Factor, K

MaxGain is the maximum available gain if K>1. If K<1, it is the maximum stable gain, 10*log(|S21|/|S12|).

2.057

MaxGain 17.081

Source Stable Region (inside or outside circle)

s_stab_region(S[FreqCGS])
Outside

Eqn MaxGain=max_gain(S[FreqCGS])

waxoam=max_gam(o[rreqc

Eqn GA value 1 = MaxGain - . 002

qn GAcircles=ga_circle(S[FreqCGS],GAvalue1-[0::num_GAcircles]*GAstep_size,51)

Eqn SourceStabCircle=s_stab_circle(S[FreqCGS],2001)

RF Frequency Selector

Move marker to desired frequency to update plot. FreqCGS indep(FreqCGS)=2.200G vs([0::sweep_size(SP.freq)-1],SP.freq)=34.00

FreqCGS

Stability analysis – [without resistor]

Available Gain Circles & Source Stability Circle

RF Frequency Selector

7. 2. 40 G 7. 2. 20 G 7. 20 G 7.

SP.freq, Hz

Set step size and number of circles:

Eqn num_GAcircles=3

Eqn GAstep_size=1

Stability Factor, K

MaxGain is the maximum available gain if K>1. If K<1, it is the maximum stable gain, 10*log(|S21|/|S12|).

0.457

MaxGain 22.941

Source Stable Region (inside or outside circle)

s_stab_region(S[FreqCGS])
Outside

Eqn MaxGain=max_gain(S[FreqCGS])

Eqn GAvalue1=MaxGain-.002

Eqn GAcircles=ga_circle(S[FreqCGS],GAvalue1-[0::num_GAcircles]*GAstep_size,51)

SourceStabCircle=s_stab_circle(S[FreqCGS],2001)

Move marker to desired frequency to update plot.

ADS ,

-400.

FreqCGS indep(FreqCGS)=2.200G vs([0::sweep_size(SP.freq)-1],SP.freq)=34.00

-2.80G -2.60G

-3.00G

Load pull Analysis

9.265

Z_in_at_m1
5.538 + j0.409

Pdel_dBm_at_m1
34.865

Black dot is input reflection coefficient with load selected by marker m1.

Matching network with Lumped components.

Textbook

Matching network with Transmission lines.

Complex impedance matching Journal.

Matching network with TLINs with optimized values targeting PAE of 60% +.

