

# On the Equilibrium of Query Reformulation and Document Retrieval

#### Authors:

Shihao Zou (UCL), Guanyu Tao (UCL), Jun Wang (UCL), Weinan Zhang (SJTU), Dell Zhang (UoL)

ICTIR 2018, Tianjin, China



### Self-introduction — Shihao Zou

- BSc in Beijing Institute of Technology in 2017.06
- Master of Research in University College London, 2017.09 now
- I am going to pursue PhD in University of Alberta, Canada in Jan 2019
- Research interest: machine learning in data mining topics, reinforcement learning

## Introduction



Two challenges in information retrieval:



- how to formulate optimal queries to best represent the user's information needs
- relevance estimation for the document given the information need representation
- Query reformulation (relevance feedback)

Retrieval model

Equilibrium theory of information retrieval:

 a strategic game, simultaneously playing between the query reformulation and the retrieval model

## Introduction



#### Intuition:

- The query reformulation would refine the query that is the best response to the relevance estimation given by retrieval model
- The retrieval model would also need to produce the document relevant estimation that is the **best response** toward the formulated query
- Two components shall cooperate to achieve the best response to each other. (an equilibrium state)

# Definition: IR Strategic Game



# An IR Strategic Game is a tuple (P, S, U), where :

- $P = \{Q, M\}$  is the set of two players: query formulator Q and retrieval model M.
- $S = S_Q \times S_M$  are finite sets of strategies available to player Q and M.
- $s_q \in S_Q$  denotes whether the term is included in the query or not.
- $s_m \in S_M$  denotes relevance estimation by retrieval model.
- An equilibrium state: both players have no incentive to change their strategies  $s_m^*$  and  $s_q^*$ , so that

$$u_{Q}(s_{q}^{*}, s_{m}^{*}) \ge u_{Q}(s_{q}, s_{m}^{*}), u_{M}(s_{q}^{*}, s_{m}^{*}) \ge u_{M}(s_{q}^{*}, s_{m})$$

# IR Game with Relevance Feedback



Common utility: 
$$u(\mathbf{s}_q, \mathbf{s}_m) = \frac{1}{|D_r|} \sum_{\mathbf{d}_i \in D_r} \log p(r = 1|\mathbf{d}_i, \mathbf{q}; \theta) - \frac{1}{|D_n|} \sum_{\mathbf{d}_i \in D_n} \log p(r = 0|\mathbf{d}_i, \mathbf{q}; \theta),$$

Toy example: Table 1: An IR game example (relevance feedback).

|       | $d_1$ | $\mathbf{d}_2$ |
|-------|-------|----------------|
| $t_1$ | 1     | 0              |
| $t_2$ | 0     | 1              |
| r     | 1     | 0              |

$$s_{m_1} = s_{m_2} = \{1, 0.2\}$$
  $\{0.2, 1\}$   
 $s_{q_1} = \{1, 0\}$   $\{0.2, 1\}$   
 $s_{q_2} = \{0, 1\}$   $\{0.2, 1\}$   $\{0.2, 1\}$   
 $\{0.2, 1\}$   $\{0.2, 1\}$   
 $\{0.2, 1\}$   $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   
 $\{0.2, 1\}$   

(a) Corpus

(b) Utilities of Strategies

$$p(r = 1|\mathbf{d}_i, \mathbf{q}; \theta) = \operatorname{sigmoid}(\theta_1 \mathbf{q}_1 \mathbf{d}_{i1} + \theta_2 \mathbf{q}_2 \mathbf{d}_{i2})$$

$$p(r = 1|\mathbf{d}_1, \mathbf{q}; \theta) = \operatorname{sigmoid}(1 \times 1 \times 1 + 0.2 \times 0 \times 0) = 0.7311$$

$$p(r = 1|\mathbf{d}_2, \mathbf{q}; \theta) = \operatorname{sigmoid}(1 \times 1 \times 0 + 0.2 \times 0 \times 1) = 0.5$$

$$u(\mathbf{s}_a, \mathbf{s}_m) = \log p(r = 1|\mathbf{d}_1, \mathbf{q}; \theta) + \log p(r = 0|\mathbf{d}_2, \mathbf{q}; \theta) = -1.0064.$$

# IR Game with Pseudo Relevance Feedback



#### Utility for retrieval model:

$$u_{M}(\mathbf{s}_{q}, \mathbf{s}_{m}) = \frac{1}{|D_{r}|} \sum_{\mathbf{d}_{i} \in D_{r}} \log p(r = 1|\mathbf{d}_{i}, \mathbf{q}; \theta) - \frac{1}{|D_{n}|} \sum_{\mathbf{d}_{i} \in D_{n}} \log p(r = 0|\mathbf{d}_{i}, \mathbf{q}; \theta).$$

#### Utility for query reformulation (top-k):

$$u_Q(\mathbf{s}_q,\mathbf{s}_m) = \frac{1}{|D_k|} \sum_{\mathbf{d}_i \in D_k} \log p(r=1|\mathbf{d}_i,\mathbf{q};\theta) - \\ \frac{1}{N-|D_k|} \sum_{\mathbf{d}_i \notin D_k} \log p(r=0|\mathbf{d}_i,\mathbf{q};\theta),$$

# IR Game with Pseudo Relevance Feedback



#### Toy example for pseudo relevance feedback:

Table 2: An IR game example (pseudo relevance feedback).

|                       | $\mathbf{d}_1$ | $\mathbf{d}_2$ |
|-----------------------|----------------|----------------|
| $t_1$                 | 1              | 0              |
| <i>t</i> <sub>2</sub> | 0              | 1              |
| r                     | 1              | 0              |

|                               | $s_{m_1} = \{1, 0.2\}$ | $s_{m_2} = \{0.2, 1\}$ |
|-------------------------------|------------------------|------------------------|
| $\mathbf{s}_{q_1} = \{1, 0\}$ | (-1.0064,<br>-1.0064)  | (-1.2913,<br>-1.2913)  |
| $\mathbf{s}_{q_2} = \{0, 1\}$ | (-1.2913,<br>-1.4913)  | (-1.0064,<br>-2.0064)  |

(a) Corpus

(b) Utilities of Strategies  $(u_O, u_M)$ 

$$p(r = 1|\mathbf{d}_1, \mathbf{q}; \theta) = \text{sigmoid}(1 \times 0 \times 1 + 0.2 \times 1 \times 0) = 0.5$$
  
 $p(r = 1|\mathbf{d}_2, \mathbf{q}; \theta) = \text{sigmoid}(1 \times 0 \times 0 + 0.2 \times 1 \times 1) = 0.5498$   
 $u_Q(\mathbf{s}_{q_2}, \mathbf{s}_{m_1}) = \log p(r = 1|\mathbf{d}_2, \mathbf{q}; \theta) + \log p(r = 0|\mathbf{d}_1, \mathbf{q}; \theta) = -1.2913$   
 $u_M(\mathbf{s}_{q_2}, \mathbf{s}_{m_1}) = \log p(r = 1|\mathbf{d}_1, \mathbf{q}; \theta) + \log p(r = 0|\mathbf{d}_2, \mathbf{q}; \theta) = -1.4913$ 

# Experiment: text retrieval



#### Five training schemes:

- Case 1: No iteration (Naïve)
- Case 2: Update once (Rocchio)
- Case 3: Query Iteration (Conv-Q)

$$\theta_{i} = \operatorname{sigmoid}(\mathbf{q}^{\top} \mathbf{d}_{i}) = \frac{1}{1 + e^{-\mathbf{q}^{\top} \mathbf{d}_{i}}}$$
$$\frac{\partial u_{Q}(\mathbf{s}_{q}, \mathbf{s}_{m})}{\partial \mathbf{q}} = \frac{1}{|D_{r}|} \sum_{d_{i} \in D_{r}} (1 - \theta_{i}) \mathbf{d}_{i} - \frac{1}{|D_{n}|} \sum_{d_{i} \in D_{n}} \theta_{i} \mathbf{d}_{i}$$

Case 4: Retrieval Model Iteration (Conv-M)

$$\theta_i = \operatorname{sigmoid} \left( \sum_{k=1}^K w_k \cdot (\mathbf{d}_i^k)^\top \mathbf{q}^k \right) \qquad \text{Logistic regression of } \mathbf{K} \text{ weight schemes}$$

$$\frac{\partial u_M(\mathbf{s}_q, \mathbf{s}_m)}{\partial w_k} = \frac{1}{|D_r|} \sum_{\mathbf{d}: \in D} (1 - \theta_i) \cdot (\mathbf{d}_i^k)^\top \mathbf{q}^k - \frac{1}{|D_n|} \sum_{\mathbf{d}: \in D} \theta_i \cdot (\mathbf{d}_i^k)^\top \mathbf{q}^k$$

Case 5: Equilibrium of the Query and Retrieval Model (Equil-Q&M)

# Experiment: text retrieval



Dataset: TREC disks 4 & 5

Utility after each iteration in training stage:



Figure 1: Utility in both cases of relevance feedback Observations:

 Iterations on Q&M in both RF and PRF help improve the ranking performance (utility) in training stage

# Text retrieval (RF)



| Algorithm       | NDCG@10     | NDCG@30          | MRR              |
|-----------------|-------------|------------------|------------------|
| Naive (VSM)     | 0.395±0.37  | 0.412±0.32       | 0.352±0.38       |
| Naive (TFIDF)   | 0.511±0.37  | $0.528 \pm 0.33$ | $0.478 \pm 0.41$ |
| Naive (BM25)    | 0.504±0.37  | 0.517±0.32       | $0.459 \pm 0.40$ |
| Rocchio (VSM)   | 0.407±0.37  | 0.422±0.32       | 0.367±0.39       |
| Rocchio (TFIDF) | 0.519±0.38  | $0.536 \pm 0.33$ | $0.487 \pm 0.41$ |
| Rocchio (BM25)  | 0.518±0.37  | 0.531±0.32       | $0.474\pm0.40$   |
| Conv-Q (VSM)    | 0.527±0.34  | 0.554±0.29       | 0.475±0.39       |
| Conv-Q (TFIDF)  | 0.568±0.35  | 0.571±0.30       | $0.530\pm0.40$   |
| Conv-Q (BM25)   | 0.563±0.35  | $0.573\pm0.30$   | $0.522 \pm 0.40$ |
| Conv-M          | 0.463±0.38  | 0.482±0.34       | 0.431±0.41       |
| Equil-Q&M       | 0.583±0.34  | 0.601*±0.29      | 0.537*±0.39      |
| Algorithm       | P@10        | P@30             | MAP              |
| Naive (VSM)     | 0.152±0.18  | 0.134±0.15       | 0.184±0.16       |
| Naive (TFIDF)   | 0.221±0.22  | 0.179±0.18       | $0.263\pm0.23$   |
| Naive (BM25)    | 0.217±0.22  | 0.178±0.17       | $0.262\pm0.23$   |
| Rocchio (VSM)   | 0.162±0.18  | 0.139±0.15       | 0.193±0.17       |
| Rocchio (TFIDF) | 0.225±0.22  | $0.186\pm0.18$   | $0.276\pm0.24$   |
| Rocchio (BM25)  | 0.221±0.21  | $0.183\pm0.17$   | $0.272\pm0.24$   |
| Conv-Q (VSM)    | 0.245±0.23  | 0.212±0.18       | 0.288±0.22       |
| Conv-Q (TFIDF)  | 0.264±0.24  | $0.220\pm0.20$   | 0.317±0.25       |
| Conv-Q (BM25)   | 0.265±0.24  | $0.214\pm0.20$   | 0.319±0.25       |
| Conv-M          | 0.190±0.20  | 0.160±0.16       | 0.238±0.21       |
| Equil-Q&M       | 0.278*±0.24 | 0.233±0.19       | 0.331*±0.25      |
|                 | •           |                  |                  |

#### Datasets

TREC disks 4 & 5

#### Task

- Text retrieval ranking
- Key observations
  - Conv-Q shows better performance than Naïve and Rocchio, esp. Conv-Q(TFIDF)
  - Conv-M fails to perform well on test set although well on training set
  - The best Equil-Q&M indicates the effectiveness of coordinating Q and M

# Text retrieval (PRF)



| Algorithm                      | NDCG@10                  | NDCG@30                  | MRR                      |
|--------------------------------|--------------------------|--------------------------|--------------------------|
| Naive (VSM)                    | 0.323±0.38               | 0.378±0.29               | 0.287±0.36               |
| Naive (TFIDF)                  | 0.463±0.36               | $0.493\pm0.30$           | 0.413±0.38               |
| Naive (BM25)                   | 0.439±0.35               | 0.474±0.28               | 0.375±0.36               |
| Rocchio (VSM)                  | 0.323±0.36               | 0.378±0.30               | 0.285±0.36               |
| Rocchio (TFIDF)                | 0.460±0.36               | $0.493\pm0.30$           | $0.410\pm0.38$           |
| Rocchio (BM25)                 | 0.444±0.35               | 0.477±0.29               | $0.386 \pm 0.37$         |
| Conv-Q (VSM)                   | 0.245±0.34               | 0.308±0.29               | 0.228±0.33               |
| Conv-Q (TFIDF)                 | 0.428±0.37               | $0.465 \pm 0.32$         | $0.370\pm0.38$           |
| Conv-Q (BM25)                  | 0.400±0.36               | $0.456 \pm 0.30$         | $0.349 \pm 0.36$         |
| Conv-M                         | 0.415±0.37               | 0.447±0.31               | 0.367±0.39               |
| Equil-Q&M                      | 0.469*±0.37              | 0.499±0.31               | 0.397±0.38               |
| Algorithm                      | P@10                     | P@30                     | MAP                      |
| Naive (VSM)                    | 0.112±0.14               | 0.100±0.12               | 0.158±0.15               |
| Naive (TFIDF)                  | 0.200±0.21               | $0.142 \pm 0.14$         | $0.239 \pm 0.22$         |
| Naive (BM25)                   | 0.187±0.20               | $0.137 \pm 0.13$         | $0.226\pm0.21$           |
| Rocchio (VSM)                  | 0.108±0.14               | 0.100±0.12               | 0.157±0.16               |
| Rocchio (TFIDF)                | 0.207±0.22               | $0.145 \pm 0.14$         | 0.244±0.23               |
|                                |                          |                          |                          |
| Rocchio (BM25)                 | 0.193±0.20               | $0.141 \pm 0.14$         | $0.233 \pm 0.22$         |
| Rocchio (BM25)<br>Conv-Q (VSM) | 0.193±0.20<br>0.095±0.15 | 0.141±0.14<br>0.090±0.12 | 0.233±0.22<br>0.138±0.15 |
| , ,                            |                          |                          |                          |
| Conv-Q (VSM)                   | 0.095±0.15               | 0.090±0.12               | 0.138±0.15               |
| Conv-Q (VSM)<br>Conv-Q (TFIDF) | 0.095±0.15<br>0.211±0.23 | 0.090±0.12<br>0.150±0.16 | 0.138±0.15<br>0.253±0.24 |

- Datasets
  - TREC disks 4 & 5
- Task
  - Text retrieval ranking
  - Key observations
    - Conv-Q shows worse performance than Naïve and Rocchio (One cannot fully rely on the top-k retrieved docs from the model to update the query)
    - The best Equil-Q&M indicates the coordination of Q and M help overcome the issue of bad query representation

# Experiment: User-based item recommendation



• Revise a linear retrieval model as  $\theta_i = p(r = 1 | \mathbf{d}_i, \mathbf{q}_u) = \operatorname{sigmoid}(\mathbf{q}_u^\top \mathbf{W} \mathbf{d}_i)$  $\mathbf{q}_u$ : target user's profile,  $\mathbf{d}_i$ : memory user's profile.

#### Results:

| Algorithm | NDCG@10     | NDCG@30        | MRR              |
|-----------|-------------|----------------|------------------|
| Rocchio   | 0.194±0.31  | 0.220±0.28     | 0.167±0.28       |
| Conv-Q    | 0.201±0.31  | $0.234\pm0.28$ | $0.172\pm0.29$   |
| Conv-M    | 0.199±0.32  | 0.223±0.29     | $0.170\pm0.30$   |
| Equil-Q&M | 0.204*±0.31 | 0.237±0.28     | 0.174*±0.29      |
| Algorithm | P@10        | P@30           | MAP              |
| Rocchio   | 0.111±0.20  | 0.039±0.07     | 0.021±0.03       |
| Conv-Q    | 0.113±0.19  | $0.043\pm0.07$ | $0.024\pm0.03$   |
| Conv-M    | 0.111±0.21  | $0.040\pm0.07$ | $0.022 \pm 0.03$ |
| Equil-Q&M | 0.116±0.19  | 0.045*±0.07    | $0.025 \pm 0.03$ |

- Datasets
  - Movielens(100k)
- Task
  - Item recommendation
- Key observations
  - Conv-Q and Conv-M outperform Rocchio
  - Equil-Q&M slightly exceeds the other three cases.

# Summary of this work:



- We study the interactions between query reformulation and retrieval model relevance estimation in a game theoretical framework.
- The performance of an equilibrium solution from relevance feedback consistently outperforms other separate cases.
- Larger dataset is required to investigate more interesting things in the equilibrium solution.
- We shall perform a deeper inquiry of the utility design in the proposed normal-form IR game.



# Thank you for listening.

Questions?