스테레오 마이크 & 이미지 정보

일	월	화	수	목	금	토
1	2	3	4	5 A(1~3) C(4~6) B(7~9)	6 C(5, 8, 9)	7
8	9 A(1, 5, 9) B(6~8)	10	11	12 기말고사	13	14
15	16	17	18	19	20	21

센서로 소리의 방향을 알수 있을까?

전체 구성

소리 감지(마이크1)

모터를 이용하여 카메라 방향 이동

적외선 감지 센서 실험

적외선 라인감지 센서 실험


```
void setup()
{
}

void loop()
{
  int left = analogRead(A0);
  int right = analogRead(A1);

Serial.print(left);
  Serial.print(", ");
  Serial.println(right);
}
```

RC 서보모터

PWM을 이용한 RC 서보모터 제어

아두이노를 이용한 서보모터 제어

• 테스트 회로 구성

아두이노를 이용한 서보모터 제어

```
void setup()
 pinMode(8, OUTPUT) ;
void loop()
 digitalWrite(8, HIGH);
 delayMicroseconds(1400);
 digitalWrite(8, LOW);
 delayMicroseconds(20000-1400);
```


QUIZ: 소리에 반응

• 소리가 감지되면 소리 방향으로 서모모터를 제어하자.

PWM을 이용한 LED 밝기 제어 (analogWrite)

아두이노를 이용한 LED 밝기제어 예제

• 함수 : analogWrite(핀번호, duty cycle)

아두이노를 이용한 LED 밝기제어 예제

• 함수 : analogWrite(핀번호, duty cycle)

```
void setup()
{
  pinMode(9, OUTPUT);
}

void loop()
{
  analogWrite(9, 0);
}
```

```
void setup()
{
  pinMode(9, OUTPUT);
}

void loop()
{
  analogWrite(9, 255);
}
```


QUIZ: 다양한 색상 표현하기

• 3색(RGB) LED를 이용하여 아래의 색을 표현하시오

[그림 1] 빛의 3원색인 Red, Blue, Green, 세 가지 색상을 조합하면 White가 된다.

이미지를 어떻게 얻을까?

카메라 옵스큐라 (라틴어(camera obscura) 어두운방 이라는 뜻)

컴퓨터(카메라)는 어떻게 이미지를 얻을까?

컴퓨터(카메라)는 어떻게 이미지를 얻을까?

컴퓨터(카메라)는 어떻게 이미지를 표시 할까?

우리는 어떻게?

이제 무얼, 어떻게 하지?

• 영상처리를 이용한 서비스를 만들고 싶은데.

• 그럼 무엇부터 해야 하지?

OpenCV

- OpenCV : Opensource Computer Vision
 - https://opencv.org/
 - Open Source: OpenCV is open source and released under the BSD 3-Clause License. It is free for commercial use.
 - Optimized: OpenCV is a highly optimized library with focus on real-time applications.
 - Cross-Platform: C++, Python and Java interfaces support Linux, MacOS, Windows, iOS, and Android.
- Computer Vision 알고리즘을 오픈소스로 공개, 최신의 알고리 증을 가장 빠르게 적용
- 특별한 경우가 아니라면 거의 모든 Computer Vision의 기본
- OpenCV의 함수를 이용하여 편리하게 이미지 데이터에 접근하고 영상처리가 가능
 - 기본 데이터 컨테이너 : cv::Mat