Minería de Datos IIC2433

Modelos de Clasificación Regresión Logística Vicente Domínguez

¿Qué veremos esta clase?

- ¿Qué es el aprendizaje automático (machine learning)?
- Clasificación
- Modelo de Regresión Logística

Knowledge Discovery in Databases

Aprendizaje de máquina

(Machine Learning)

Darle a los computadores la habilidad de realizar una actividad, sin programarlos explícitamente.

*La **minería de datos** y el **aprendizaje de máquina** se traslapan y no tienen límites claros

Programación tradicional (explícita)

Kasparov vs. Deep Blue (1997)

Aprendizaje de máquina

Lee Sedol vs. AlphaGo (2016)

Aprendizaje de máquina

Tipos de tareas

- Aprendizaje supervisado
 - Clasificación
 - Regresión
- Aprendizaje no supervisado
 - Clustering
 - Aprendizaje por refuerzo
 - o etc

Aprendizaje supervisado

Clasificación

Tarea para el computador:

Decir si en una foto hay un perro o un gato

Aprendizaje supervisado

Clasificación

Conjunto de entrenamiento etiquetado

Aprendizaje supervisado

Clasificación

¿Qué es eso?

Aprendizaje **no supervisado**Clustering

Tarea para el computador:

Identificar grupos de elementos similares

Aprendizaje no supervisado

Clustering

Conjunto de datos **no etiquetados**

Aprendizaje de máquina

Tipos de tareas

- Aprendizaje supervisado (necesita etiquetas)
 - Clasificación
 - Regresión
- Aprendizaje no supervisado (no necesita etiquetas)
 - Clustering
 - Aprendizaje por refuerzo
 - o etc

Calendario

Fecha semana	Martes	Jueves	Clase Martes - 1	Clase Martes - 2	Ayudantía Jueves / Control	Enunciados
10-ago.	11-ago.	13-ago.	Intro Administrativo		Clase - Data Warehouse - OLAP	
17-ago.	18-ago.	20-ago.	Web Scrapping	Actividad	Control Data WH	
24-ago.	25-ago.	27-ago.	Data Prep	Pandas	Ayudantía Pandas y librerías	
31-ago.	1-sept.	3-sept.	Association Rules	Association Rules	Ayudantía Association Rules	Tarea 1
7-sept.	8-sept.	10-sept.	PCA	Actividad	Control AR	
14-sept.	15-sept.	17-sept.	Regresiones	Actividad	Feriado	
21-sept.	22-sept.	24-sept.	Semana Receso	Semana Receso	Semana Receso	
28-sept.	29-sept.	1-oct.	Reg log	Actividad	Control PCA y Reg	
5-oct.	6-oct.	8-oct.	KNN	Árboles de Decision	Ayudantía Knn y Árbol de Decisión	Tarea 2

Regresiones Lineales

- Técnica estadística donde se trata de ajustar parámetros de una función lineal sobre un conjunto de datos.
- Se busca predecir el valor de una variable dependiente cuantitativa (predicha) utilizando variables independientes (predictores)
- Finalmente, queremos determinar cómo afecta nuestra variable independiente a la dependiente

$$Y = \alpha + \beta X$$

¿Cómo podemos utilizar una regresión lineal como un clasificador?

- ¿Hay alguna propiedad o modelamiento que debamos hacer en ella?
- ¿Alguna idea?
- ¿Qué valores debería tener Y?

$$Y = \alpha + \beta X$$

- Se puede ajustar una regresión para cada clase
- Luego, cambiamos el valor de Y de cada instancia por:
 - Y = 1 si pertenece a la clase
 - Y = 0 si no pertenece
- Ahora, si me llega un valor nuevo:
 - Calculo el valor predicho por cada regresión.
 - El valor más alto obtenido por una regresión me dirá la clase que predeciré de dicha instancia

- ¿Basta sólo esto?
- ¿Está acotado el output de la regresión lineal a valores entre 0 y
 1?
- ¿Cómo distribuye el valor del Y predicho?

Las siguientes slides están basadas en las del profesor Mauricio Arriagada

 Modelamos la salida del clasificador deseado como una función de probabilidad

class(X) = 1 P(class =
$$1 \mid X$$
)

Class(X) = 0 P(class = $0 \mid X$)

 Si reducimos la salida de una regresión lineal al intervalo [0,1], podríamos usar esa salida como P (Y = y)

 Si reducimos la salida de una regresión lineal al intervalo [0,1], podríamos usar esa salida como P (Y = y)

 Si reducimos la salida de una regresión lineal al intervalo [0,1], podríamos usar esa salida como P (Y = y)

- Otro punto de vista: estamos haciendo una regresión sobre las probabilidades (log odds)
- Log odds: log de la proporción de obtener un "éxito" (codificado como 1) sobre obtener "fracaso" (codificado como 0)
- Entonces, lo que realmente estamos haciendo es una regresión en log odds:

$$\log \frac{\theta}{(1-\theta)} = \beta_0 + \sum_{j=1}^d \beta_j x_j \qquad \theta = \frac{1}{1 + e^{-(\beta_0 + \sum_{j=1}^d \beta_j x_j)}}$$

(Logit) (Sigmoide)

Finalmente, lo que se busca es un W tal que se optimice

$$max\; P(Y| heta)$$

$$\theta = \frac{1}{1 + e^{-(\beta_0 + \sum_{j=1}^d \beta_j x_j)}}$$