STAT 135, Concepts of Statistics

Helmut Pitters

Goodness of fit: further techniques.

Department of Statistics University of California, Berkeley

March 29, 2016

Consider independent random samples X_1,\ldots,X_n that we conjecture to have uniform [0,1] distribution.

We are interested in a graphical method that allows to check qualitatively whether our conjecture is at all reasonable.

Figure shows a plot of the pairs $(k/100, X_k)$ for $1 \le k \le 100$.

Order the X_1, \ldots, X_n in increasing order to obtain order statistics

$$X_{(1)} < \cdots < X_{(n)}^{1}$$

Recall from Stat 134: $X_{(k)} \sim \text{beta}(k, n-k+1)$, in particular

$$\mathbb{E}X_{(k)} = \frac{k}{n+1}.$$

The points

$$(\frac{k}{m+1}, X_{(k)})$$
 $(1 \le k \le 100)$

should be spread close to their averages

$$(\frac{k}{n+1}, \mathbb{E}X_{(k)}) = (\frac{k}{n+1}, \frac{k}{n+1})$$

which lie on the straight line through (0,0) with slope 1.

¹In particular $X_{(1)} = \min(X_1, \dots, X_n), X_{(n)} = \max(X_1, \dots, X_n).$

Figure shows a plot of the pairs $(k/101, X_{(k)})$ for $1 \le k \le 100$.

What if the common distribution of X_1, \ldots, X_n is not uniform[0,1]?

A simple observation allows us to extend this graphical method to general distributions on \mathbb{R} .

Let X denote a real r.v. with cumulative distribution function (cdf)

$$F(t) := \mathbb{P}\left\{X \le t\right\} \qquad (t \in \mathbb{R}).$$

Lemma

If X is continuous and F is strictly increasing, then F(X) is a real random variable with distribution uniform[0,1].

Proof.

Notice first that $0 \leq F(t) \leq 1$ for all $t \in \mathbb{R}.$ Moreover, for $0 \leq u \leq 1$

$$\mathbb{P}\{F(X) \le u\} = \mathbb{P}\{X \le F^{-1}(u)\} = F(F^{-1}(u)) = u,$$

where F^{-1} denotes the right inverse of F.

Back to our problem: random sample X_1, \ldots, X_n , and we conjecture that their common cdf is F.

Provided our conjecture is true, the $F(X_1), \ldots, F(X_n)$ are i.i.d. uniform[0, 1]. Consequently, the points

$$\left(\frac{k}{n+1}, F(X_{(k)})\right) \qquad (1 \le k \le n)$$

should be spread close to a linear function. Alternatively, can plot

$$(F^{-1}(\frac{k}{n+1}), X_{(k)}) \qquad (1 \le k \le n)$$

where F^{-1} denotes the right inverse of F.

Probability plots of theoretical distributions against each other

- ► uniform-uniform
- uniform-normal
- ▶ normal-normal
- normal-uniform

Probability plots of data against theoretical distributions

- percentage of manganese in iron (data: manganese.txt)
- strength of Kevlar/epoxy, a material used in space shuttle (kevlar.txt)
- Michelson's measurements of light speed (michelson.txt)
- ► precipitation in Illinois storms (illinois60.txt, ..., illinois64.txt)