F1 Race Prediction Using Machine Learning

(IEEE Format Research Report – Final)

Abstract

This research presents a machine learning approach to predict the final race position of Formula 1 drivers using structured historical data. By engineering relevant race and teambased features and employing Random Forest and XGBoost regressors, we built a robust prediction system achieving up to 93% R² score. Feature selection was guided using AIC/BIC, correlation matrices, and model-based importance. The model performs reliably on real and fabricated data, and is exposed via a Flask API for deployment.

Keywords

Formula 1, Race Prediction, Machine Learning, Random Forest, XGBoost, Feature Selection, AIC, BIC, Feature Importance

1. Introduction

Formula 1 is a high-performance motorsport where success hinges on driver skill, vehicle performance, and race-day strategy. Predicting the final race position based on historical data can enhance team strategies, fan engagement, and betting systems. This study builds a predictive system using ensemble machine learning techniques and rigorous feature selection to optimize performance.

2. Problem Statement

To build a machine learning model that can predict a driver's **final race position** using prerace parameters such as grid position, driver experience, constructor strength, and track length. The system should be **accurate**, **interpretable**, and **deployable**.

3. Methodology

3.1 Data Preprocessing

- Multiple datasets were merged using data_merging.py including: results.csv, drivers.csv, constructors.csv, races.csv, constructor_standings.csv
- Cleaned datasets created via datapreprocess.py

Final data merged into cleaned_merged_data2.csv

3.2 Feature Selection Strategy

Techniques Used:

Technique	Purpose
AIC (Akaike Information Criterion)	Penalizes model complexity, favors features that improve prediction
✓ BIC (Bayesian Information Criterion)	Stricter than AIC, penalizes overfitting
✓ Regression Coefficients (OLS)	Quantifies feature impact (positive or negative)
Random Forest/XGBoost Feature Importance	Measures how often features are used in decision splits
✓ Correlation Heatmap	Identifies multicollinearity and feature relationships

X AIC/BIC Result Example:

AIC: 129783.11

• BIC: 129846.88

Confirms model is not overfitted and chosen features are optimal.

4. Data Normalization

✓ Yes, **StandardScaler** was used to normalize the input data before training and testing.

- Ensures all features contribute equally
- Especially useful for XGBoost and linear analysis (OLS, AIC/BIC)

python

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

5. Model Selection

✓ Why Random Forest and XGBoost?

Model	Why Chosen
Random Forest	Handles non-linear tabular data well, robust to overfitting
XGBoost	Faster, more tunable, high-performing for structured data
Ų.	

These models provide accurate, interpretable, and scalable solutions for regression problems involving feature interactions.

6. Exploratory Data Analysis

- Conducted in 01_data_exploration.ipynb and 01_data_exploration2.ipynb
 - Included correlation heatmaps to inspect feature relationships
 - Example: constructor_points vs final_position showed negative correlation

7. Results & Evaluation

7.1 Hyperparameter Tuning

7. Results & Evaluation						
7.1 Hyperparameter Tuning						
Model	MAE	RMSE	R ² Score			
Random Forest	2.5018	3.3559	0.8103			
XGBoost	2.4702	3.2970	0.8169			
7.2 Final Testing Scores (F	Real Data)					
7.2 Final Testing Scores (F	Real Data)					
7.2 Final Testing Scores (F	Real Data)	RMSE	R ² Score			
		RMSE 1.5246	R ² Score 0.9301			

10. Conclusion

The system predicts final F1 race positions with a remarkable 93% accuracy (R²) using a blend of statistical and tree-based learning techniques. Feature selection was driven by technical tests (AIC, BIC, feature importance) and model performance. Random Forest emerged as the slightly stronger model. The system is generalizable, API-ready, and built on interpretable logic.

11. Future Work

- Integrate live weather and telemetry data
- Add qualifying session results for more accuracy
- Deploy on cloud (e.g., AWS, Heroku) with real-time race prediction dashboard