Lecture Section:

Monday, Sep 29, 2025

Student Name:

1. (2 pts.) We have a graph with *n* vertices, which is given in the adjacency list representation. How much time will it take to verify that a single edge exists?

- (a) $O(n \log n)$
- (b) O(n)
- (c) O(1)
- (d) $O(n^2)$

2. (2 pts.) Consider the following graph,

Which of the following are plausible DFS traversals of the graphs? **Mark all correct answers**.

- (a) a b f e h g
- (b) a b f h g e
- (c) afbehg
- (d) gebafh

3. (2 pts.) What is the maximum number of edges possible in a simple undirected graph having *n* vertices?

PSU Email ID:

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n-1)}{2}$$

(c)
$$n(n-1)$$

4. (2 pts.) The topological sort of a Directed Acyclic Graph (DAG) is always unique.

- (a) True
- (b) False

5. (2 pts.) In a DFS tree, back edges are defined as:

- (a) Edges that lead to the root node.
- (b) Edges that point into the current node.
- (c) Edges that lead to a child node.
- (d) Edges that lead to an ancestor node.