Polyatomic compounds are chemical compounds that contain more than two different elements in their formula (i.e., sulfuric acid = H_2SO_4). Also, polyatomic compounds usually contain at least one **polyatomic ion** (i.e., 2 hydrogen ions ($2H^{+1}$) and a sulfate ion (SO_4^{-2}) = sulfuric acid (H_2SO_4)). In this example, sulfate (SO_4^{-2}) is the polyatomic ion. Polyatomic compounds may also contain 2 polyatomic ions (i.e., ammonium (NH_4^{+1}) and hydroxide (OH^{-1}) = ammonium hydroxide (NH_4OH)). Remember, the positive ion (cation) or negative ion (anion), or both, contain two or more different elements in their formula. **Writing a formula** for a polyatomic compound follows **exactly the same rules** as we used in Part 1. That is, polyatomic chemical compounds are **neutral**, having a charge of zero (i.e., the combination of charges on the cation(s) and anion(s) must add to zero). **The naming** of polyatomic compounds is **similar** to naming binary compounds but some memorization is required initially. Many polyatomic ions are derived from oxygen-containing acids or **"oxy-acids**". The names and formulas of these oxy acids and their derivatives is your starting point for Part 2 of this independent study.

I. OXY ACIDS

An **oxy acid** is a polyatomic compound containing hydrogen, oxygen and an electronegative element (i.e., Cl, N, S, P, etc.). These acids are sometimes referred to as "mother acids" because many other chemical compounds are derived from them. Therefore, the <u>names and formulas</u> of related oxy acids and polyatomic ions are derived from them. The top 5 oxy acids are the main oxy acids used in industry. Use the names already given to help fill in the chart below.

oxy acid chemical name	oxy acid chemical formula
phosphoric acid	H ₃ PO ₄
sulfuric acid	H ₂ SO ₄
carbonic acid	H ₂ CO ₃
nitric acid	HNO ₃
chloric acid	HClO₃
fluoric acid	HFO ₃
bromic acid	HBrO ₃
iodic acid	HIO ₃

J. OXY ACIDS DERIVATIVES

An **oxy acid derivative** may be formed during a chemical reaction when oxygen atom(s) are added to or removed from an **oxy acid**. (**Note:** Although you can write the chemical formulas and names of all oxy acid derivatives using the system described below, some may not exist naturally or be able to be synthetically produced.)

NAMING and WRITING FORMULAS for OXY ACID DERIVATIVES:

Information in the box below shows how the name and formula of an oxy acid are changed when adding or removing oxygen atoms from the original **oxy acid** formula.

- + if **ONE OXYGEN ATOM IS ADDED**, add prefix "per" to the "ic" acid name = **per**sulfuric acid (called "per-ic" acid)
- + OXY ACID = sulfuric acid (called "ic" acid, AKA Amother acid@)
- + if **ONE OXYGEN ATOM IS REMOVED**, remove "ic" and add "ous" to acid name = <u>sulfur**ous** acid</u> (called "ous" acid)
- + if **TWO OXYGEN ATOMS ARE REMOVED**, add prefix "hypo" to "ous" acid name = hyposulfurous acid (called "hypo-ous" acid)

Complete the following table to show how you would name and write the formulas for the oxy acid derivatives of sulfuric acid (use information from the box above).

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom(*) ("per-ic" acid)	persulfuric acid	H ₂ SO ₅
no change ("ic" acid)	sulfuric acid	H₂SO₄
remove one oxygen atom(*) ("ous" acid)	sulfurous acid	H₂SO₃
remove two oxygen atoms(*) ("hypo-ous" acid)	hyposulfurous acid	H ₂ SO ₂

(*) These are the **derivatives** of the original **oxy acid**. Since the derivatives contain oxygen and are acids (like the original oxy acid), they are also referred to as oxy acids.

OTHER OXY ACID DERIVATIVES

Complete a similar table for each of the other four main oxy acids:

a) H_3PO_4 b) H_2CO_3 c) HNO_3 d) $HCIO_3$

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)	perphosphoric acid	H ₃ PO ₅
no change ("ic" acid)	phosphoric acid	H ₃ PO ₄
remove one oxygen atom ("ous" acid)	phosphorous acid	H ₃ PO ₃
remove two oxygen atoms ("hypo-ous" acid)	hypophosphorous acid	H ₃ PO ₂

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)	percarbonic acid	H ₂ CO ₄
no change ("ic" acid)	carbonic acid	H ₂ CO ₃
remove one oxygen atom ("ous" acid)	carbonous acid	H ₂ CO ₂
remove two oxygen atoms ("hypo-ous" acid)	hypocarbonous acid	H₂CO

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)	pernitric acid	HNO₄
no change ("ic" acid)	nitric acid	HNO₃
remove one oxygen atom ("ous" acid)	nitrous acid	HNO ₂
remove two oxygen atoms ("hypo-ous" acid)	hyponitrous acid	HNO

change in oxy acid formula	oxy acid name	oxy acid formula
add one oxygen atom ("per-ic" acid)	perchloric acid	HClO₄
no change ("ic" acid)	chloric acid	HClO₃
remove one oxygen atom ("ous" acid)	chlorous acid	HCIO ₂
remove two oxygen atoms ("hypo-ous" acid)	hypochlorous acid	HCIO

Worksheet IJ

Complete the following table in order to practice the naming and formula writing for oxy acids and their derivatives.

chemical name	chemical formula	chemical name	chemical formula
sulfurous acid	H ₂ SO ₃	persulfuric acid	H ₂ SO ₅
fluoric acid	HFO₃	fluorous acid	HFO ₂
hypophosphorous acid	H ₃ PO ₂	perphosphoric acid	H ₃ PO ₅
percarbonic acid	H ₂ CO ₄	carbonic acid	H ₂ CO ₃
pernitric acid	HNO ₄	hyponitrous acid	HNO
bromous acid	HBrO ₂	perbromic acid	HBrO ₄
hypoiodous acid	HIO	iodic acid	HIO ₃
perfluoric acid	HFO ₄	hyposulfurous acid	H ₂ SO ₂
phosphoric acid	H ₃ PO ₄	hypochlorous acid	HCIO
carbonic acid	H ₂ CO ₃	nitrous acid	HNO ₂
nitrous acid	HNO ₂	percarbonic acid	H ₂ CO ₄
hypochlorous acid	HCIO	phosphoric acid	H ₃ PO ₄

Oxy acids and their derivatives dissociate (separate from) their positive hydrogen ions, forming negative polyatomic anions. These negative ions are commonly found combined with **positive metal ions**. This combination of a **metal cation** and a **polyatomic anion** is called a "**salt**". Some of the names of the polyatomic anions which are derived from the oxy acids are given below. Writing the formula of salts that contain these polyatomic anions follows the same rules you have used in the past (i.e., the chemical compound formed is neutral). The names of the chemical compounds are determined by placing the cation name in front of the polyatomic anion name. Use the examples in the right column as a guide. (**Note:** The Aic@ acid always results in the Aate@ anion!)

K. POLYATOMIC ANIONS from "ic" acids

"ic" acid name and formula	polyatomic anion chemical formula	polyatomic anion chemical name	example of chemical name and formula for sodium salt
phosphoric acid H ₃ PO ₄	PO ₄ ⁻³	phosphate	sodium phosphate Na₃PO₄
sulfuric acid H ₂ SO ₄	SO ₄ -2	sulfate	sodium sulfate Na₂SO₄
carbonic acid H ₂ CO ₃	CO ₃ ⁻²	carbonate	sodium carbonate Na₂CO₃
nitric acid HNO₃	NO ₃ ⁻¹	nitrate	sodium nitrate NaNO₃
chloric acid HClO₃	CIO ₃ ⁻¹	chlorate	sodium chlorate NaClO ₃
fluoric acid HFO ₃	FO ₃ ⁻¹	fluorate	sodium fluorate NaFO ₃
bromic acid HBrO ₃	BrO ₃ ⁻¹	bromate	sodium bromate NaBrO ₃
iodic acid HIO₃	IO ₃ -1	iodate	sodium iodate NaIO ₃

L1. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the **polyatomic anions** from sulfuric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
persulfuric acid H₂SO₅	SO ₅ ⁻²	persulfate (Aic@ acids always result in Aate@ ions)	sodium persulfate Na₂SO₅
sulfuric acid H₂SO₄	SO ₄ ⁻²	sulfate (Aic@ acids always result in Aate@ ions)	sodium sulfate Na₂SO₄
sulfurous acid H₂SO₃	SO ₃ -2	Sulfite (Aous@ acids always result in Aite@ ions)	sodium sulfite Na ₂ SO ₃
hyposulfurous acid H ₂ SO ₂	SO ₂ -2	hyposulfite (Aous@ acids always result in Aite@ ions)	sodium hyposulfite Na ₂ SO ₂

Practice Problems:

Note: When writing the chemical formulas for the examples below, if more than one polyatomic ion is required in the chemical formula, **brackets** must be placed around the polyatomic ion.

chemical name	chemical formula	chemical name	chemical formula
potassium persulfate	K₂SO₅	radium sulfate	RaSO₄
aluminum sulfate	Al ₂ (SO ₄) ₃	boron persulfate	B ₂ (SO ₅) ₃
copper(I) sulfite	Cu₂SO₃	copper(II) hyposulfite	CuSO ₂
ferrous hyposulfite	FeSO ₂	iron(III) sulfite	Fe ₂ (SO ₃) ₃
nickel(III) persulfate	Ni ₂ (SO ₅) ₃	nickel(II) hyposulfite	NiSO ₂

L2. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from phosphoric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
perphosphoric acid H ₃ PO ₅	PO ₅ ⁻³	perphosphate	sodium perphosphate Na ₃ PO ₅
phosphoric acid H ₃ PO ₄	PO ₄ ⁻³	phosphate	sodium phosphate Na₃PO₄
phosphorous acid H ₃ PO ₃	PO ₃ ⁻³	phosphite	sodium phosphite Na ₃ PO ₃
hypophosphorous acid H ₃ PO ₂	PO ₂ -3	hypophosphite	sodium hypophosphite Na ₃ PO ₂

chemical name	chemical formula	chemical name	chemical formula
lithium perphosphate	Li ₃ PO ₅	cesium hypophosphite	Cs ₃ PO ₂
calcium phosphate	Ca ₃ (PO ₄) ₂	magnesium phosphate	Mg ₃ (PO ₄) ₂
aluminum phosphite	AIPO ₃	gallium perphosphate	GaPO₅
lead(II) hypophosphite	Pb ₃ (PO ₂) ₂	gold(I) hypophosphite	Au ₃ PO ₂
mercurous phosphite	Hg₃PO₃	manganese(IV) phosphite	Mn ₃ (PO ₃) ₄

L3. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from carbonic acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
percarbonic acid H ₂ CO ₄	CO ₄ ⁻²	percarbonate	sodium percarbonate Na₂CO₄
carbonic acid H₂CO₃	CO ₃ -2	carbonate	sodium carbonate Na₂CO₃
carbonous acid H ₂ CO ₂	CO ₂ -2	carbonite	sodium carbonite Na ₂ CO ₂
hypocarbonous acid H₂CO	CO ⁻²	hypocarbonite	sodium hypocarbonite Na₂CO

chemical name	chemical formula	chemical name	chemical formula
rubidium percarbonate	Rb ₂ CO ₄	potassium carbonite	K ₂ CO ₂
beryllium carbonate	BeCO ₃	aluminum percarbonate	Al ₂ (CO ₄) ₃
boron carbonite	B ₂ (CO ₂) ₃	silver hypocarbonite	Ag ₂ CO
cobalt(II) hypocarbonite	CoCO	nickel(II) carbonate	NiCO ₃
cuprous percarbonate	Cu ₂ CO ₄	tin(IV) carbonite	Sn(CO ₂) ₂

L4. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from nitric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
pernitric acid HNO ₄	NO ₄ ⁻¹	pernitrate	sodium pernitrate NaNO₄
nitric acid HNO₃	NO ₃ -1	nitrate	sodium nitrate NaNO ₃
nitrous acid HNO ₂	NO ₂ ⁻¹	nitrite	sodium nitrite NaNO ₂
hyponitrous acid HNO	NO ⁻¹	hyponitrite	sodium hyponitrite NaNO

chemical name	chemical formula	chemical name	chemical formula
zinc pernitrate	Zn(NO ₄) ₂	antimony(V) nitrate	Sb(NO ₃) ₅
barium nitrate	Ba(NO ₃) ₂	mercury(I) nitrite	HgNO ₂
boron nitrite	B(NO ₂) ₃	iron(II) hyponitrite	Fe(NO) ₂
arsenic(V) hyponitrite	As(NO) ₅	gold(III) nitrite	Au(NO ₂) ₃
plumbous nitrate	Pb(NO ₃) ₂	calcium pernitrate	Ca(NO ₄) ₂

L5. POLYATOMIC ANIONS from OXY ACID DERIVATIVES

The following chart shows how you would name the polyatomic anions from chloric acid and its oxy acid derivatives.

oxy acid	polyatomic anion formula	polyatomic anion name	example of sodium salt
perchloric acid HClO ₄	CIO ₄ ⁻¹	perchlorate	sodium perchlorate NaClO₄
chloric acid HClO₃	CIO ₃ -1	chlorate	sodium chlorate NaClO₃
chlorous acid HClO ₂	CIO ₂ -1	chlorite	sodium chlorite NaClO ₂
hypochlorous acid HCIO	CIO ⁻¹	hypochlorite	sodium hypochlorite NaClO

chemical name	chemical formula	chemical name	chemical formula
lithium perchlorate	LiClO ₄	magnesium chlorate	Mg(ClO ₃) ₂
aluminum chlorate	Al(ClO ₃) ₃	boron chlorite	B(ClO ₂) ₃
zinc chlorite	Zn(ClO ₂) ₂	copper(II) hypochlorite	Cu(ClO) ₂
tin(II) hypochlorite	Sn(ClO) ₂	cobalt(II) perchlorate	Co(ClO ₄) ₂
nickelous hypochlorite	Ni(CIO) ₂	antimony(V) chlorate	Sb(ClO ₃) ₅

M. ACID POLYATOMIC ANIONS from OXY ACIDS

Oxy acids and their derivatives with two or more hydrogen ions in their chemical formulas may form **acid polyatomic anions**. The 3 oxy acids that may form acid polyatomic anions are: H₂SO₄, H₂CO₃ and H₃PO₄. Acid polyatomic anions are formed when only one hydrogen ion Adissociates@ (separates) from the oxy acid. This leaves a negative polyatomic anion with a hydrogen ion still attached to it. Phosphoric acid (H₃PO₄) has the ability to lose **one or two** hydrogen ions and still remain an acid polyatomic anion. These acid polyatomic anions can form **acid salts** when they combine with **positive metal ions**.

oxy acid formula	acid polyatomic anion (remove 1 or 2 H ⁺¹ ions)	acid anion name	examples (formula and name)
H ₂ SO ₄	HSO₄ ⁻¹	hydrogen sulfate (preferred name) or bisulfate (common name)	NaHSO₄ sodium hydrogen sulfate or sodium bisulfate
H ₂ CO ₃	HCO ₃ ⁻¹	hydrogen carbonate (preferred) or bicarbonate (common)	NaHCO ₃ sodium hydrogen carbonate or sodium bicarbonate
H ₃ PO ₄	H ₂ PO ₄ ⁻¹	dihydrogen phosphate (preferred) or (no common name)	NaH₂PO₄ sodium dihydrogen phosphate
H₃PO₄	HPO ₄ -2	monohydrogen phosphate (preferred) or biphosphate (common)	Na₂HPO₄ sodium monohydrogen phosphate or sodium biphosphate

N1. ACID ANIONS from H₂SO₄ and its DERIVATIVES

The following chart outlines the formulas and names of acid polyatomic anions derived from sulfuric acid and its derivatives. Study the chart below and identify the system used to write formulas and names for these **acid anions**.

oxy acid formula	acid anion formula (remove 1 H ⁺¹)	acid anion chemical name	examples
H₂SO₅	HSO ₅ ⁻¹	hydrogen persulfate	NaHSO₅
		or	sodium hydrogen persulfate
		(no common name)	
н со	HSO ₄ ⁻¹	hydrogen sulfate	NaHSO ₄
H ₂ SO ₄	П5О4	or	sodium hydrogen sulfate
		bisulfate	or sodium bisulfate
H₂SO₃	HSO ₃ ⁻¹	hydrogen sulfite	NaHSO₃
112003	11303	or	sodium hydrogen sulfite or
		bisulfite	sodium bisulfite
H ₂ SO ₂	HSO ₂ ⁻¹	hydrogen hyposulfite	NaHSO ₂
112002	11002	or	sodium hydrogen hyposulfite
		(no common name)	71

N2. ACID ANIONS from H₂CO₃ and its DERIVATIVES

Complete the chart below using the formula writing and naming system demonstrated in N1.

oxy acid formula	acid anion formula (remove 1 H ⁺¹)	acid anion chemical name	examples
H₂CO ₄	HCO₄ ⁻¹	hydrogen percarbonate	NaHCO₄ sodium hydrogen percarbonate
		(no common name)	
		hydrogen carbonate	NaHCO₃
H₂CO₃	HCO₃ ⁻¹	or bicarbonate	sodium hydrogen carbonate or sodium bicarbonate
H ₂ CO ₂	HCO ₂ -1	hydrogen carbonite or bicarbonite	NaHCO ₂ sodium hydrogen carbonite or sodium bicarbonite
H₂CO	HCO ⁻¹	hydrogen hypocarbonite	NaHCO sodium hydrogen hypocarbonite
		(no common name)	

N3. ACID ANIONS from H₃PO₄ and its DERIVATIVES

Complete the table below using the formula writing and naming system demonstrated in N1. Since one or two hydrogens can dissociate (separate) from these acids without losing all the hydrogens, a prefix must be used to indicate how many hydrogen ions remain bonded to the acid anion.

oxy acid formula	acid anion formula (remove 1 H ⁺¹)	acid anion chemical name	examples
H₃PO₅	H ₂ PO ₅ -1	dihydrogen perphosphate	NaH₂PO₅ sodium dihydrogen perphosphate
		(no common name)	
H₃PO₄	H ₂ PO ₄ ⁻¹	dihydrogen phosphate	NaH₂PO₄
		(no common name)	sodium dihydrogen phosphate
H₃PO₃	H ₂ PO ₃ ⁻¹	dihydrogen phosphite	NaH₂PO₃ sodium dihydrogen phosphate
		(no common name)	
H₃PO₂	H ₂ PO ₂ ⁻¹	dihydrogen hypophosphite	NaH ₂ PO ₂ sodium dihydrogen hypophosphite
		(no common name)	

N4. ACID ANIONS from H₃PO₄ and DERIVATIVES

Complete the following table using the formula writing and naming system demonstrated in N1, N2 and N3.

oxy acid formula	acid anion formula (remove 2 H ⁺¹)	acid anion chemical name	examples
H₃PO₅	HPO ₅ ⁻²	monohydorgen perphosphate (no common name)	Na₂HPO₅ sodium monohydrogen perphosphate
H₃PO₄	HPO ₄ ⁻²	monohydrogen phosphate or biphosphate	Na₂HPO₄ sodium monohydrogen phosphate or sodium biphosphate
H₃PO₃	HPO ₃ -2	monohydrogen phosphite or biphosphite	Na₂HPO₃ sodium monohydrogen phosphite or sodium biphosphite
H₃PO₂	HPO ₂ -2	monohydrogen hypophosphite (no common name)	Na ₂ HPO ₂ sodium monohydrogen hypophosphite

Worksheet MN

chemical name	chemical formula	chemical name	chemical formula
sodium hydrogen sulfate	NaHSO₄	lithium hydrogen persulfate	LiHSO ₅
potassium bicarbonate	KHCO₃	rubidium hydrogen hypophosphite	RbHCO
magnesium dihydrogen phosphite	Mg(H ₂ PO ₃) ₂	calcium dihydrogen hypophosphite	Ca(H ₂ PO ₂) ₂
aluminum monohydrogen hypophosphite	Al ₂ (HPO ₂) ₃	boron monohydrogen phosphite	B ₂ (HPO ₃) ₃
zinc bisulfite	Zn(HSO ₃) ₂	silver hydrogen sulfate	AgHSO₄
barium hydrogen carbonite	Ba(HCO ₂) ₂	strontium monohydrogen hypophosphite	SrHPO ₂
nickel(II) dihydrogen perphosphate	Ni(H ₂ PO ₅) ₂	copper(I) hydrogen percarbonate	CuHCO₄
cupric hydrogen hypocarbonite	Cu(HCO) ₂	iron(II) dihydrogen phosphite	Fe(H ₂ PO ₃) ₂
iron(III) biphosphite	Fe ₂ (HPO ₃) ₃	cobalt(III) hydrogen hyposulfite	Co(HSO ₂) ₃
mercurous hydrogen persulfate	HgHSO₅	mercury(I) hydrogen sulfite	HgHSO₃
tin(IV) biphosphate	Sn(HPO ₄) ₂	calcium hydrogen carbonite	Ca(HCO ₂) ₂
sodium hydrogen carbonate	NaHCO₃	manganese(IV) hydrogen carbonate	Mn(HCO ₃) ₄
plumbic dihydrogen hypophosphite	Pb(H ₂ PO ₂) ₄	lead(IV) dihydrogen phosphate	Pb(H ₂ PO ₄) ₄
arsenic(V) monohydrogen perphosphate	As ₂ (HPO ₅) ₅	antimony(V) monohydrogen perphosphate	Sb ₂ (HPO ₅) ₅
aurous hydrogen carbonite	AuHCO ₂	arsenic(III) dihydrogen perphosphate	As(H ₂ PO ₅) ₃

O. MISCELLANEOUS POLYATOMIC IONS

Other polyatomic anions and cations are commonly found in chemical compounds. The following are just two examples of other polyatomic ions. Complete the table using rules you have learned in Part 2 of this independent study.

polyatomic ion name	ammonium	hydroxide OH ⁻¹	
polyatomic ion symbol	NH ₄ ⁺¹		
example of chemical formula with this ion	NH₄CI	NaOH	
chemical name of example above	ammonium chloride	sodium hydroxide	

MISCELLANEOUS POLYATOMIC IONS - more examples

The following chemical formulas and chemical names contain other common polyatomic ions. Use the "**Oxidation States**" sheet to determine the formula of the ion being used and its charge and complete this table.

chemical name	chemical formula	chemical name	chemical formula
sodium thiocyanate	NaSCN	magnesium dichromate	MgCr ₂ O ₇
calcium permanganate	Ca(MnO ₄) ₂	lead(II) or plumbous cyanide	Pb(CN) ₂
ferrous acetate	Fe(CH ₃ CO ₂) ₂	aluminum cyanate	AI(OCN) ₃
copper(II) chromate	CuCrO ₄	ammonium thiocyanate	NH₄SCN
gold(III) dichromate	Au ₂ (Cr ₂ O ₇) ₃	lithium acetate	LiCH ₃ CO ₂
arsenic cyanate	As(OCN) ₅	potassium permanganate	KMnO ₄
potassium cyanide	KCN	lead(IV) or plumbic chromate	Pb(CrO ₄) ₂
boron hydroxide	B(OH) ₃	ammonium hypocarbonite	(NH ₄) ₂ CO