目录

— 、	问题重述	3
	1.1 问题背景	3
	1.2 问题概述	3
二、	模型假设	3
三、	符号说明	4
四、	问题一模型的建立与求解	4
	4.1 问题描述与分析	4
	4.2 模型的建立	5
	4.2.1 经典旅行商模型	5
	4.3 模型的求解	5
	4.3.1 遗传算法	5
	4.3.2 动态赌轮	6
	4.4 实验结果及分析	7
五、	问题二模型的建立与求解	8
	5.1 问题描述与分析	8
	5.2 带约束的多旅行商模型	9
	5.3 模型的求解	10
	5.3.1 插板式编码遗传算法	10
	5.4 实验结果及分析	11
六、	问题三模型的建立与求解	14
	6.1 模型的求解	14
	6.1.1 启发式调度算法	14
	6.2 结果分析	15
七、	模型的评价	15
	7.1 模型的优点	15
	7.2 模型的缺点	15
	7.3 模型改进	15
附录	A 模型的代码实现	17
	A.1 GATSP-matlab 源代码	17
	A.2 MGATSP-matlab 源代码	18
	A.3 distan-matlab 源代码	20

附录 B	数据可视化的实现	21
В	3.1 第一问画图–python 源代码	21
В	3.2 第二问画图-python 源代码	22

一、问题重述

1.1 问题背景

在物资调运过程中,完成指定点的调运任务是最基本的要求,在完成基本的任务之外,往往有更高的追求,比如如何使总运费最省?怎样才能使得运输时间最短?如何选择运输路径使得运输总距离最短等等。这些更高的追求往往是企业期望达到的目标,为了解决这些类似问题,有必要对物资调运的过程进行数学模型的建立,以期通过模型来理解和分析物资调运的过程,并为其找到解决的方法。现以具体的食品调运案例进行分析研究[1]。

某食品公司有 19 个食品销售点,销售点的地理坐标和每天的需求量见附件。每天凌晨都要从仓库(第 20 号站点)出发将食品运至每个销售点,运送物品后最终返回仓库。现有运送食品的运输车,每台车每日工作 4 小时,运输车重载运费 2 元/吨公里,并且假定街道方向均平行于坐标轴,任意两站点间都可以通过一次拐弯到达。

1.2 问题概述

围绕相关附件和条件要求,研究食品运输车在各仓库间的调度方案,依次提出以下问题:

问题一: 若只有一辆载重 100 吨的大型运输车,运输车平均速度为 40 公里 / 小时,每个销售点需要用 20 分钟的时间下货,空载费用 0.6 元/公里。它送完所有食品并回到仓库,求最少需要时间及其对应的总距离,总运费。

问题二:有一种小型运输车,运输车平均速度为50公里/小时,每个销售点需要用5分钟的时间下货,载重为6吨,空载费用0.4元/公里;要使它们送完所有食品并回到仓库,运输车应如何调度使总体调度效率最高?

问题三:如果有载重量为 4 吨、6 吨两种运输车,空载费用分别为 0.2、0.4 元/公里, 其他条件均相同,又如何安排车辆数和调度方案。

二、模型假设

- (1) 假设汽车速度均匀,不会随载重而发生变化。
- (2) 假定街道方向均平行于坐标轴,任意两站点间都可以通过一次拐弯到达。

三、符号说明

符号	说明
P_n	20 个站点
d	曼哈顿距离
f	最短路径
$\{A_n\}$	原始染色解集
$W(B_k)$	小车 k 的总重量和
$T(B_k)$	货运总时间
$\Gamma(P_n)$	运输成本目标函数
B_k	k量小型运输车路径
θ	惩罚因子

四、问题一模型的建立与求解

4.1 问题描述与分析

问题一要求规划大型运输车的行驶路径,使得货物运输时间达到最短。该问题本质 是旅行商问题,基于街道方向均平行于坐标轴,我们求解任意两点间的曼哈顿距离作为 其间的距离,并设计动态赌轮遗传算法对其进行求解。

其思维流程图如图 1 所示:

图 1 问题一思维流程图

4.2 模型的建立

4.2.1 经典旅行商模型

分析问题一,由于大型运输车的行驶速度固定,优化行驶路径使得运输车行驶路程最短时,即可求得最小运输时间。遍历路径可表示为二维有限序列如下:

$$P_n = [p_1, p_2, \cdots, p_i, \cdots, p_{19}], \tag{1}$$

其中 $p_i(1 \le i \le 19, i \in Z)$ 表示处运输起点外的的仓库坐标, 且对于 $\forall i \ne j$ 都有 $p_i \ne p_j$ 。 任意两坐标点 $p_i(x_i, y_i), p_j(x_j, y_j)$ 间的曼哈顿距离可表示为:

$$d(p_i, p_j) = |x_i - x_j| + |y_i - y_j|,$$

将运输车行驶路程作为优化目标即可得到目标函数如下:

$$f(P_n) = d(p_0, p_1) + d(p_0, p_{19}) + \sum_{i=1}^{18} d(p_i, p_{i+1}),$$

即可得到整体优化模型如下:

$$f(P_n) = d(p_0, p_1) + d(p_0, p_{19}) + \sum_{i=1}^{18} d(p_i, p_{i+1}),$$
(2)

$$\begin{cases} 1 \leqslant i \leqslant 19, i \in \mathbb{Z} \\ \forall i \neq j, p_i \neq p_j \end{cases}$$
 (3)

4.3 模型的求解

4.3.1 遗传算法

初始化编码 对于表示为二维有限序列的遍历路径 P_n , 对其进行整数编码为

$$A_n = [a_{n1}, a_{n2}, \cdots, a_{ni}, \cdots, a_{n19}],$$

$$1 \le a_i \le 19, i \in Z; \forall i, \neq j \Rightarrow p_i \neq p_j$$

定义 A_n 为解序列 P_n ,其中 a_{ni} 表式对应仓库的访问顺序,例如 ai=7 表示第 i 次访问 7 号仓库。即随机生成初始解集 $A=\{A_n\}$ 其中 $n=1,2,\cdots,w$,w 为的种群容量。

交叉 在原染色解集 $\{A_n\}$ 中的染色体按照随机顺序配对,按照以下的方式交叉 (补全),生成交叉解集 $\{H_n\}$,为保证变异率并保留优秀基因片段和本题采用的两种交叉方式:

(1) 单点交叉:

对于两个父代个体 $A_n = [a_{n1}, a_{n2}, \cdots, a_{ni}, \cdots, a_{n19}]$ 和 $H_n = [a'_{n1}, a'_{n2}, \cdots, a'_{ni}, \cdots, a'_{n19}]$,随机选择第 k 个基因处为交叉点,将该基因后所有基因进行交换,得到子代基因。

(2) 中间值交叉:

对于两个父代个体 $A_n = [a_{n1}, a_{n2}, \cdots, a_{ni}, \cdots, a_{n19}]$ 和 $H_n = [a'_{n1}, a'_{n2}, \cdots, a'_{ni}, \cdots, a'_{n19}]$,随机选取 $a''_k \in [a_k, a'_k]$ 得到子代基因。

再选取交叉个体时采用混合分组的方法,将父代均匀混合后选取所有编号为奇数的个体,与其相邻对应编号为偶数的个体,通过两种交叉方式产生处两种类型的子代。其过程如下表所示:

表 1 各个小型运输车对应运输路径方案

交叉片段编号	对应运输路线
基因序列 A_1	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
基因序列 A_2	[13, 11, 12, 19, 14, 15, 18, 16, 17, 10, 9, 1, 2, 5, 6, 7, 4, 3, 8]
基因序列 A3	[13, 19, 12, 11, 6, 7, 5, 2, 4, 1, 3, 8, 9, 10, 17, 16, 18, 15, 14]
•••	$[\cdots,\cdots,\cdots,\cdots]$
基因序列 A ₁₉	[20, 8, 3, 4, 5, 2, 1, 9, 10, 17, 16, 18, 14, 15, 19, 13, 11, 12, 6, 7, 20]
基因序列 A ₂₀	[20,8,3,4,5,2,1,9,10,17,16,18,15,14,19,13,12,11,6,7,20]

变异 鉴于序列式染色体的特殊性,为了在变异阶段内尽可能不破坏原有的基因段,采取改良圈算法的思路进行变异操作。即在染色体 A 中随机选取 a_i 与 a_j ($1 \le i < j \le j$),颠倒 a_{ni} 与 a_{nj} 间顺序的顺序,即:

$$M = [a_1, \dots, a_i, a_{j-1}, a_{j-2}, \dots, a_{i+1}, a_i, \dots, a_{19}]$$
(4)

M 为染色体 A 对应的变异染色体,对于每个染色体 A_n ,都设定相同的变异概率 γ 去执行上述的变异操作。

4.3.2 动态赌轮

将第 g 代的染色体与其交叉和变异产生的子代并入同一解集 $G_g = \{A, H, M\}$ 。k 表示原解集 A,交叉解集 H 和变异解集 M 中解的数量之和,即为 G_g 中的解的数目。设置

 G_g 第 i 个解 $G_g(i)$ 被选择进入下一代的概率为:

$$P(G_g(i)) = \frac{wf^{-g/\gamma}(G_g(i))}{\sum_{j=1}^k f^{-g/\gamma}(G_g(j))},$$
(5)

 $f^{-g/\gamma}(G_g(i))$ 为 $G_g(i)$ 对应的目标函数值,即为 $G_g(i)$ 对应的适应度。其中参数 γ 为衰减系数,w 为种群容量。即适应度值相对较小的解保留概率将逐渐增大,即算法初始阶段将保留丰富度尽可能多的解,而愈到算法后期,策略就越接近于精英策略,加快算法的收敛速度,即有:

$$\lim_{g \to \infty} P(G_g(min)) = \lim_{g \to \infty} \frac{wf^{-g/\gamma}(min)}{\sum_{j=1}^k f^{-g/\gamma}(G_g(j))} \to 1, \tag{6}$$

该式表明当迭代次数 g 足够大时,选择策略将趋近于为精英策略,将加速算法的收敛。重复上述进化过程,当进化代数足够多时,求解得到全局最优解。

4.4 实验结果及分析

遗传算法的算法收敛图如图2所示:

图 2 遗传算法收敛图

由算法收敛图可知算法收敛速度较快,早熟问题解决的较好,全局搜素能力较强,求得最短距离为116km,其最优个体基因为:

route = [20, 8, 3, 4, 5, 2, 1, 9, 10, 17, 16, 18, 15, 14, 19, 13, 12, 11, 6, 7, 20].

其对应大型运输车运输方案为 route 的路径如图 3所示:

图 3 大型运输车运输方案路径

则大型送完所有食品并回到仓库,最少需要2.9时间,总费用为7695.2元。

五、问题二模型的建立与求解

5.1 问题描述与分析

问题二要求设计小型运输车的调度方案,从而使得总体调度效率最高。我们将时间限制设置为约束,着重优化方案的经济效率。在问题一的基础上重新建立模型,鉴于第二问的决策变量是多段序列的和,我们设计了插板编码对决策变量进行编码,并基于问题一中的动态赌轮遗传算法以运输总成本为目标进行优化。

其思维流程图如图 4 所示:

图 4 问题二思维流程图

5.2 带约束的多旅行商模型

当雇佣 b 辆小型运输车时,总决策序列可表示为

$$P_n = \{[p_1, p_2]_1, [\cdots, p_i]_k, [\cdots]_{b-1}, [p_{19}]_b\},$$

即将类似于模型一中的坐标序列分割为多段,每一段分别由一辆小型运输车单独完成,定义小型运输车 k 的运输路径为:

$$B_k = [p_i, p_{i+1}, \cdots, p_{i-1}, p_i]_k,$$

即总路径决策变量可表示为:

$$P_n = \{B_1, B_2, \cdots, B_b\}.$$

小车 k 的载重总和可表示为:

$$W(B_k) = \sum_{p_i \in B_k} w(p_i),\tag{7}$$

其中 $w(p_i)$ 为仓库 p_i 的订货量。其货运总时间可表示为:

$$T(B_k) = L(B_k)/50 + size(B_k)/12,$$
 (8)

将运输成本作为目标函数可表示为:

$$\Gamma(P_n) = \sum_{k=1}^b \left[\sum_{j=1}^{size(B_k)} (0.4 + 2\sum_{i=1}^j w(p_i)) \times d(p_i, p_{i+1})_{pi \in B_k} \right].$$

小型运输车的负载量约束可表示为:

$$\max_{B_k \in P_n} W(B_k) \leqslant 6,$$

其运输时间约束可表示为时间约束可表示为:

$$\max_{B_k \in P_n} T(B_k) \leqslant 4,$$

即整体模型可以表示为

$$\Gamma(P_n) = \sum_{k=1}^b \left[\sum_{j=1}^{size(B_k)} (0.4 + 2\sum_{i=1}^j w(p_i)) \times d(p_i, p_{i+1})_{pi \in B_k} \right]$$
(9)

$$\begin{cases}
\max_{B_k \in P_n} W(B_k) \leq 6 \\
\max_{B_k \in P_n} T(B_k) \leq 4
\end{cases}$$
(10)

5.3 模型的求解

5.3.1 插板式编码遗传算法

由于问题中的决策变量 P_n 表示多个不同小型运输车的运输路径,我们将染色体变量中插入无意义基因作为隔板,例如在派遣两辆运输车时,决策变量可表示为

$$P_n = \{[p_1, p_2, \cdots, p_i]_1, [p_{i+1}, \cdots, p_{19}]_2\},\$$

即在染色体中插入一个无意义基因作为挡板即可表示出染色体:

$$A_n = [a_{n1}, a_{n2}, \cdots, a_{ni}, \varphi, a_{ni+1}, \cdots, a_{n19}].$$

其中 φ 为无意义挡板基因。当雇佣小型运输车数量为N时,在染色体中插入N-1个挡板基因即可将染色体分成N段,即能分别代表每辆小车的行驶的路径。之后将无意义挡板基因作为普通基因进行交叉,变异即可优化求解每一辆小车的行驶路径。引入

冗余惩罚因子 θ :

$$\theta(P_n) = \begin{cases} 1, (\exists (Loc(\varphi_i) + 1) = Loc(\varphi_{i+1})) \lor (\exists (Loc(\varphi_i) = 0) \lor (\exists (Loc(\varphi_i) = size(A_n)) \\ 0, otherwise \end{cases}$$
(11)

其中 $Loc(\varphi_i)$ 表示无意义挡板基因 φ_i 在染色体 A_n 中的位置, $size(A_n)$ 表示染色体 A_n 的维数。即当决策变量 P_n 中的挡板基因存在于其开头或末尾时,或者当两个挡板基因相邻时,表明有被雇佣车辆并没有参加运输工作,此时将惩罚因子 $\theta(P_n)$ 置一,否决置零。

求解第二问时,我们沿用第一问的动态赌轮遗传算法进行优化计算。即将目标函数替换为:

$$F(P_n) = \Gamma(P_n) + \theta(P_n)M_1 + \max(\max_{B_k \in P_n} W(B_k) - 6, 0)M_2 + \max(\max_{B_k \in P_n} T(B_k) - 4, 0)M_3$$
(12)

其中 M_1 、 M_2 和 M_3 为较大的正系数,即可达到罚函数约束功能。

5.4 实验结果及分析

实验从六量车到十三量车每个模型计算了100次迭代之后,其各自费用为:

表 2 每组小型运输车对应运输路径总费用

运输车数量	对应运输路径总费用
6量运输车	909.80
7量运输车	852.60
8 量运输车	850.00
9量运输车	815.30
10 量运输车	800.70
11 量运输车	842.60
12 量运输车	810.00
13 量运输车	856.20

由表2可知求得所需要 10 量小型运输车时,调运方案所需要的运输费用最小,并给出最优个体基因如表3所示:

表 3 各个小型运输车对应运输路径方案

运输车编号	对应运输路线
1号运输车	[20, 14, 20]
2号运输车	[20, 18, 15, 20]
3号运输车	[20, 10, 9, 20]
4号运输车	[20, 17, 16, 20]
5号运输车	[20, 12, 11, 20]
6号运输车	[20, 4, 2, 3, 8, 20]
7号运输车	[20, 5, 1, 20]
8号运输车	[20, 19, 20]
9号运输车	[20, 6, 7, 20]
10 号运输车	[20, 13, 20]

其对应各量小型运输车运输方案为 routes 的路径如图 5所示,每一辆运输车的对应运输均用两点间哈曼吨距离表示,其中箭头表述运输的方向,得到 10 量小型运输车的运输方案路径图如下:

图 5 小型运输车运输方案图

其各个小车的运输细节图下图所示:

图 6 各个小车的运输细节图

六、 问题三模型的建立与求解

针对第三问,我们在第二问模型的基础上,引入启发式算法以决策每个任务需要派 遣何种类型的小车。首先沿用第二问模型的插板式编码方法,在适应度计算时分析每个 小车的负载情况,并由此作为依据派遣小车。再通过交叉,变异及动态赌轮选择操作,优化出最合理的小车调度方案。

6.1 模型的求解

6.1.1 启发式调度算法

在计算总运费时,针对运输车k的任务 B_k ,使得:

$$\alpha(B_k) = \begin{cases} 0.2, 0 < W(B_k) \le 4\\ 0.4, 4 < W(B_k) \le 6 \end{cases}$$
 (13)

其中 $\alpha(B_k)$ 为任务 B_k 中的空载运输费用。即将成本目标函数修改为:

$$\Gamma'(P_n) = \sum_{k=1}^{b} \left[\sum_{j=1}^{size(B_k)} (\alpha(B_k) + 2\sum_{i=1}^{j} w(p_i)) \times d(p_i, p_{i+1})_{pi \in B_k} \right]$$
(14)

其对应的优化目标函数可表示为:

$$F(P_n)' = \Gamma'(P_n) + \theta(P_n)M_1 + \sum_{B_k \in P_n} \max(W(B_k) - 6, 0)M_2 + \max(\max_{B_k \in P_n} T(B_k) - 4, 0)M_3$$
(15)

以 $F(P_n)'$ 为目标函数进行动态赌轮遗传算法即可得到最终的最优调度方案。

6.2 结果分析

七、模型的评价

7.1 模型的优点

- (1) 使用插板式的编码方式求解多旅行商模型,设计模式较为新颖,最终能快速优化出最合理的小车调度方案,使用船支数量少。
- (2) 利用遗传算法,具有很强的全局搜索能力和鲁棒性,运算时间远小于全遍历算法。

7.2 模型的缺点

多目标遗传算法初始解由卡特蒙洛法随机生成,每次搜索结果不完全相同,可能引起结果的偏差,需要多搜索几次选择才能得到最优结果。

7.3 模型改进

可使用改进的生命遗传算法,加强算法的局部搜索能力,解决算法早熟的问题。

参考文献

- [1] 张斯嘉, 郭建胜, 钟夫, 等. 基于蝙蝠算法的多目标战备物资调运决策优化 [J]. 火力与指挥控制, 2016, 41(1): 58-61.
- [2] 李健, 张文文, 白晓昀, 等. 基于系统动力学的应急物资调运速度影响因素研究 [J]. 系统工程理论与实践, 2015, 35(3): 661-670.
- [3] Wang J, Ersoy O K, He M, et al. Multi-offspring genetic algorithm and its application to the traveling salesman problem[J]. Applied Soft Computing, 2016, 43: 415-423.
- [4] 陶丽华, 马振楠, 史朋涛, 等. 基于 TSP 问题的动态蚁群遗传算法 [J]. 机械设计与制造, 2019 (12): 39.

附录 A 模型的代码实现

A.1 GATSP-matlab 源代码

```
clear;
w=20;g=100;d=19;%w为种群数,g代数,d维数
G(1:w,1:d)=0;%初始化空间
for i=1:w%初始化
c=randperm(d);
for t=1:20
flag=0;
for t1=1:d-1
for t2=t1+1:d
cl=c;
cl(t1:t2)=cl(t2:-1:t1);
if distan(cl) < distan(c)</pre>
c=cl;
flag=1;
end
end
end
if flag==0
G(i,1:d)=c;break
end
end
end
for k=1:g %进入遗传循环
A=G;%预备交叉阵
c=randperm(w);%配对序列
%c=1:w;
for i=1:2:w %交叉
F1=ceil(rand*d);%交叉点1
F2=ceil(rand*d);%交叉点2
while(F1==F2)
F2=ceil(rand*d);
if(F1>F2)%交叉地址调序
tem=F1;
F1=F2;
F2=tem;
end
j=0;t=1;%计数标值
while(j~=d+F1-F2-1)%如果剩余基因没完全插入就继续
if(isempty(find(A(c(i),F1:F2)==G(c(i+1),t),1))) %目标基因于交换片段中都不同
j=j+1;
if j<F1 %前半段基因交换
```

```
A(c(i),j)=G(c(i+1),t);
A(c(i+1),t) = G(c(i),j);
else %后半段基因交换
A(c(i),j+F2-F1+1)=G(c(i+1),t);
A(c(i+1),t)=G(c(i),j+F2-F1+1);
end
t=t+1;
end
end
by=[];
while isempty(by)
by=find(rand(1,w)<0.3);%变异地址
end
B=G(by,1:d);%预备变异阵
for j=1:length(by)
bw=sort(ceil(rand(1,2)*d));%变异基因节点
B(j,bw(1))=G(j,bw(2));%单点基因交换
B(j,bw(2))=G(j,bw(1));
end
GG=[G;A;B];%GG为选择阵
clear A; clear B;%清除数据防止规格保存
m=size(G,1);%选择阵个体数
long(1:m)=0;%目标函数初始化
for i=1:m%计算函数
long(i)=distan(GG(i,:));
[slong,ind]=sort(long(1:m));%目标函数排序
for i=1:w%精英选择
G(i,:)=GG(ind(i),:);
clear GG;%清除数据防止规格保存
end
```

A.2 MGATSP-matlab 源代码

```
clear;
for pp=6:13 %6:13
for ppp=1:100
n=pp;w=20;g=100;d=19+n-1;%n为车数,w为种群数,g代数,d维数
G(1:w,1:d)=0;%初始化空间
for i=1:w%初始化
c=randperm(d);
for t=1:20
flag=0;
```

```
for t1=1:d-1
for t2=t1+1:d
cl=c;
cl(t1:t2)=cl(t2:-1:t1);
if price(cl)<price(c)</pre>
c=cl;
flag=1;
end
end
end
if flag==0
G(i,1:d)=c;break
end
end
for k=1:g %进入遗传循环
A=G;%预备交叉阵
c=randperm(w);%配对序列
%c=1:w;
for i=1:2:w %交叉
F1=ceil(rand*d);%交叉点1
F2=ceil(rand*d);%交叉点2
while(F1==F2)
F2=ceil(rand*d);
if(F1>F2)%交叉地址调序
tem=F1;
F1=F2;
F2=tem;
end
j=0;t=1;%计数标值
while(j~=d+F1-F2-1)%如果剩余基因没完全插入就继续
if(isempty(find(A(c(i),F1:F2)==G(c(i+1),t),1))) %目标基因于交换片段中都不同
j=j+1;
if j<F1 %前半段基因交换
A(c(i),j)=G(c(i+1),t);
A(c(i+1),t) = G(c(i),j);
else %后半段基因交换
A(c(i),j+F2-F1+1)=G(c(i+1),t);
A(c(i+1),t)=G(c(i),j+F2-F1+1);
end
end
t=t+1;
end
end
by=[];
while isempty(by)
```

```
by=find(rand(1,w)<0.3);%变异地址
end
B=G(by,1:d);%预备变异阵
for j=1:length(by)
bw=sort(ceil(rand(1,2)*d));%变异基因节点
B(j,bw(1))=G(j,bw(2));%单点基因交换
B(j,bw(2))=G(j,bw(1));
end
GG=[G;A;B];%GG为选择阵
clear A; clear B;%清除数据防止规格保存
m=size(G,1);%选择阵个体数
long(1:m)=0;%目标函数初始化
for i=1:m%计算函数
long(i)=price(GG(i,:));
[slong,ind]=sort(long(1:m));%目标函数排序
for i=1:w%精英选择
G(i,:)=GG(ind(i),:);
clear GG;%清除数据防止规格保存
result(pp-5,ppp)=long(1);
XXX(pp-5,ppp,1:d)=G(1,1:d);
end
end
```

A.3 distan-matlab 源代码

```
function f=distan(X)
n=size(X,2);
a = [3 \ 2]
1 5
5 4
4 7
0 8
3 11
7 9
9 6
10 2
14 0
2 16
6 18
11 17
15 12
19 9
```

```
22 5
21 0
27 9
15 19];
f=sum(abs(a(X(1),:)-10));%距离值初始化
for i=1:n-1%计算距离和
f=f+sum(abs(a(X(i+1),:)-a(X(i),:)));
end
f=f+sum(abs(a(X(n),:)-10));%头尾固定
```

附录 B 数据可视化的实现

B.1 第一问画图-python 源代码

```
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
dict = {"1":[3,2], "2":[1,5], "3":[5,4],"4":[4,7], "5":[0,8],"6":[3,11],"7":[7,9],
"8":[9,6],"9":[10,2], "10":[14,0],"11":[2,16], "12":[6,18],"13":[11,17],"14":[15,12],
"15": [19,9], "16": [22,5], "17": [21,0], "18": [27,9], "19": [15,19], "20": [10,10],}
x_axis_data = []
y_axis_data = []
road = [20,8,3,4,5,2,1,9,10,17,16,18,15,14,19,13,12,11,6,7,20]
x_{tem} = []
y_{tem} = []
for i in range(len(road)):
x = str(road[i])
print(dict[x])
x_axis_data.append(dict[x][0])
y_axis_data.append(dict[x][1])
try:
x_tem.append(dict[str(road[i+1])][0])
y_tem.append(dict[str(road[i])][1])
except:
pass
x_{-} = []
y_{-} = []
for i in range(len(x_tem)):
x_.append(x_axis_data[i])
y_.append(y_axis_data[i])
x_.append(x_tem[i])
y_.append(y_tem[i])
```

```
x_.append(x_axis_data[i+1])
y_.append(y_axis_data[i+1])

plt.plot(x_, y_, 'ro-', color='#4169E1', alpha=0.8, label='路径')

for x, y in zip(x_axis_data, y_axis_data):
plt.text(x, y+0.3, '({},{})'.format(x,y), ha='center', va='bottom', fontsize=10.5)

# plt.legend(loc="road")
plt.xlabel('X轴/km')

plt.ylabel('Y轴/km')

# plt.show()
plt.savefig('demo.jpg') # 保存该图片
```

B.2 第二问画图-python 源代码

```
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
# import matplotlib.pyplot as plt
import numpy
import matplotlib.colors as colors
import matplotlib.cm as cmx
dicts = {"1":[3,2], "2":[1,5], "3":[5,4],"4":[4,7], "5":[0,8],"6":[3,11],"7":[7,9],
"8":[9,6],"9":[10,2], "10":[14,0],"11":[2,16], "12":[6,18],"13":[11,17],"14":[15,12],
"15":[19,9],"16":[22,5], "17":[21,0],"18":[27,9], "19":[15,19],"0":[10,10],}
x_axis_data = []
y_axis_data = []
cars = [14,0,18,15,0,10,9,0,17,16,0,12,11,0,4,2,3,8,0,5,1,0,19,0,6,7,0,13]
c_ = []
x = [0]
for j in range(len(cars)):
x.append(cars[j])
if cars[j]==0:
c_.append(x)
x = [0]
print(c_)
cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(c_))
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cmap)
```

```
for fff in range(len(c_)):
##########
x_axis_data = []
y_axis_data = []
road = c_[fff]
x_{tem} = []
y_tem = []
for i in range(len(road)):
x = str(road[i])
x_axis_data.append(dicts[x][0])
y_axis_data.append(dicts[x][1])
try:
x_tem.append(dicts[str(road[i + 1])][0])
y_tem.append(dicts[str(road[i])][1])
except:
pass
x_ = []
y_{-} = []
for i in range(len(x_tem)):
x_.append(x_axis_data[i])
y_.append(y_axis_data[i])
x_.append(x_tem[i])
y_.append(y_tem[i])
colorVal = scalarMap.to_rgba(fff)
x_.append(x_axis_data[i + 1])
y_.append(y_axis_data[i + 1])
plt.plot(x_, y_, 'o-', alpha=0.8)
for i in range(0,len(x_)-1):
plt.arrow(x_[i], y_[i], x_[i+1] - x_[i], y_[i+1] - y_[i],
length_includes_head=True, head_width=0.3, lw=2,
color=colorVal)
for x, y in zip(x_axis_data, y_axis_data):
plt.text(x, y + 0.3, '({},{})'.format(x, y),)
plt.xlabel('X轴/km')
plt.ylabel('Y轴/km')
# plt.show()
plt.savefig('demo.jpg') # 保存该图片
```