Chap 6 Medium Access Control Protocols and Local Area Networks

- Broadcast Networks: a single transmission medium is shared by many users. (Multiple access networks)
- User transmissions interfering or "colliding"
- Medium Access Control (MAC): to coordinate the access to the channel.

6.1 Multiple Access Communications

- Two schemes for sharing a transmission medium:
 - Channelization scheme (static): partition the medium into separate channels.
 - MAC scheme (dynamic): minimize or eliminate the incidence of collisions
 - · Random access
 - Scheduling
- Examples:
 - Networks based on radio communications
 - two frequency bands:
 - one for transmitting
 - one for receiving
 - Ring networks
 - Shared buses and hub topology networks

Delay-Bandwidth Product and MAC Performance

- Propagation delay

 - $t_{prop} = \frac{d}{v}$ d: distance (meters)
 - v: 3x108 m/s
- Transmission bit rate
 - R: 10 Mbps, 100 Mbps, 1Gbps
 - L: number of bits in a frame
 - Then the sending station requires $X = \frac{L}{R}$ seconds to transmit the frame
- Throughput
 - the actual rate at which information is sent over the shared channel. (bit/second or frames/ second) $R_{\rm eff}$
 - since the shared medium is the ONLY means available for the stations to communicate with each other. Some of the transmission resource will be utilized to transfer coordination information. So $R_{eff} < R$.
 - When a collision happens, resource is wasted.

Delay-Bandwidth Product and MAC Performance (continue)

Normalized maximum throughput or efficiency

$$-\rho_{max} = \frac{R_{eff}}{R} < 1$$

- Normalized delay-bandwidth product α $-\alpha = \frac{t_{mop}R}{L} = \frac{t_{mop}R}{X}$ $-\rho_{max}$ is related to α

 - E.g in Ethernet LAN.
- α↑, ρ_{max}↓
 - α =0.01, ρ_{max} =0.94; α =1, ρ_{max} =0.13
- For desk area and local area networks. (t_{prop} small). α : acceptable.
- For very high speed or long distance. α large. This is why broadcast techniques are used primarily in LANs.
- Normalized throughput or load
 - λ: aggregate rate of generated frames from all stations (frames/second)

 - λL: the average bit rate generated. Load: $ρ = \frac{λL}{R}$ $ρ < ρ_{max} < 1$.

6.2 Random Access

- •Developed by university of Hawaii to interconnect terminals on different islands to the host computer: the network has a <u>single</u> central node (the host) and N terminal nodes
- •Two channels: the broadcast channel and the random access channel
- •The N terminal nodes share the random access channel for sending frames to the central node.
- •The central node uses the broadcast channel to broadcast acknowledgement frames and clock signals to the terminal nodes.
- •No direct communication between terminal nodes.
- •No collision in the broadcast channel since only one node (the central node) transmits in the broadcast channel.
- •In the random access channel, N terminal nodes use the ALOHA protocol to compete for the transmission resource.

6.2 Random Access 6.2.1 ALOHA

- The Protocol:
 - 1. Message are transmitted as soon as they become available.
 - 2. Frame transmissions may collide, treated as transmission errors
 - 3. Collided frames are recovered by retransmission
 - Back off algorithm: when a collision happens, involved stations choose random numbers as time-out value to schedule their retransmissions (Spread out the retransmissions and reduce the likelihood of additional collisions)
- Performance Analysis of ALOHA

See Fig 6.10

- t_{prop} : the maximum one-way propagation delay
- R: transmission bit rate.
- L: number of bits in a frame
- $X = \frac{L}{R}$: time needed to transmit a frame.
- vulnerable period t_0 -X to t_0 +X (see Fig 6.10)

6.2.1 ALOHA (continue)

- The probability of a successful transmission is the probability that there are no additional frame transmissions in t₀-X to t₀+X
 - S: arrival rate of new frames per X seconds. (also the throughput)
 - G: total arrival rate (new arrivals + retransmissions) (or total load) per X seconds.
- Assume that the back off algorithm spreads the retransmission, so that frame transmissions are equally likely to occur at any instant in time.

number of frames transmitted in a time interval has a Poisson distribution with average number of arrivals of 2G arrivals/2X seconds

- $P[K \text{ transmissions in 2X seconds}] = \frac{(2G)^k}{k!} e^{-2G} k=0, 1, 2 \dots$
- $S = GP[no\ collision] = GP[0\ transmission\ in\ 2X\ seconds] = G \cdot \frac{(2G)^4}{0!} e^{-2G}$ = $G \cdot e^{-2G}$ Fig 6.11

When G=0.5, $S_{max}=\frac{1}{2e}\approx 18.4\%$

6.2.2 Slotted ALOHA

- 1. Frames are assumed to be constant and to occupy one time slot ($X = \frac{L}{R}$ one time slot)
- 2. Stations are allowed to initiate transmissions only at the beginning of a time slot

See Fig 6.12

• The vulnerable period is t_0 -X to t_0 , the average arrivals in t_0 -X to t_0 is G.

So:

S=GP[0 transmission in X seconds] = $G \cdot \frac{G^0}{0!}$ e-G = $G \cdot G$

When G=1, $S_{max} = \frac{1}{e} = 36.8\%$.

6.2.2 Slotted ALOHA

Example:

In a radio system, R=9600 bps, frame length L=120 bits, what is the max throughput possible with ALOHA and slotted ALOHA

Answer: The frame rate is: $\frac{9600}{120}$ =80 frames/sec.

The max throughput is:

80*0.184≈15 frames/sec (ALOHA)

80*0.368≈30 frames/sec (Slotted ALOHA)

6.2.3 Carrier Sense Multiple Access (CSMA)

•When a station wants to transmit a frame, it first sense the medium for the presence of a carrier signal from other stations to determine whether there is an ongoing transmission. If the medium is idle, the station begins the transmission.

Otherwise:

➤1-persistent CSMA: sense the channel continuously. As soon as the channel is sensed idle, transmit frames.

"greedy". → high collision rate

➤Non-persistent CSMA: run the back off algorithm and reschedule a future resensing time. → longer delay

▶P-persistent CSMA: sense until the channel becomes idle, then:

with prob. p, transmits the frame

with prob. 1-p, waits an additional tprop before resensing

CSMA is sensitive to the end-to-end propagation delay. See *Fig 6.15* for *S* versus *G*

6.2.4 CSMA with Collision Detection (CSMA/CD)

- If a collision is detected, during transmission, aborting the frame transmission to reduce the wasted bandwidth.
- Fig 6.16: A station need 2t_{prop} seconds to find out whether it has successfully capture the channel.
- In CSMA collisions result in wastage of X seconds spent transmitting an entire frame
- CSMA-CD reduces wastage to time to detect collision and abort transmission

CSMA-CD Model

- Assumptions
 - Collisions can be detected and resolved in $2t_{prop}$
 - Time slotted in 2t_{prop} slots during contention periods
 - Assume *n* stations, and each may transmit with probability *p* in each contention time slot
 - Once the contention period is over (a station successfully occupies the channel), it takes X seconds for a frame to be transmitted
 - It takes t_{prop} before the next contention period starts.

Contention Resolution

- · How long does it take to resolve contention?
- Contention is resolved ("success") if exactly 1 station transmits in a slot:

$$P_{success} = np(1-p)^{n-1}$$

By taking derivative of P_{success} we find max occurs at p=1/n

$$P_{success}^{\max} = n \frac{1}{n} (1 - \frac{1}{n})^{n-1} = (1 - \frac{1}{n})^{n-1} \to \frac{1}{e}$$

 On average, 1/P^{max} = e = 2.718 time slots to resolve contention

Average Contention Period = $2t_{prop}e$ seconds

CSMA/CD Throughput

• At maximum throughput, systems alternates between contention periods and frame transmission times

$$\rho_{\text{max}} = \frac{X}{X + t_{prop} + 2et_{prop}} = \frac{1}{1 + (2e + 1)a} = \frac{1}{1 + (2e + 1)Rd / v L}$$

where

R bits/sec, L bits/frame, X=L/R seconds/frame

$$a = t_{prop}/X$$

 ν meters/sec. speed of light in medium

d meters is diameter of system

$$2e+1 = 6.44$$

- For small a: CSMA-CD has best throughput
- For larger a: Aloha & slotted Aloha better throughput
- ALOHA, slotted ALOHA are not sensitive to α