Natural Language Processing

Lecture 2 Syntax Analysis - Part 1 **Syntax analysis** is the process of analyzing a string of symbols (words, tokens) conforming to the rules of a formal grammar.

Result is a parse tree showing words syntactic relation to each other.

Parse trees:

- Constituency-based parse trees;
- Dependency-based parse trees

Syntactic Parsing

Parse trees are directly useful in applications such as:

- grammar checking in word-processing systems: a sentence that cannot be parsed may have grammatical errors (or at least be hard to read);
- semantic analysis;
- question answering;
- information extraction.

Example: What books were written by British women authors before 1800?

Let x be an arbitrary non-empty chain in the vocabulary V. The set C of chain x segments is called **constituency-based system** of this chain if:

- 1) *C* contains a segment, consisting of all chain *x* points, and all one-point segments of *x*;
- 2) any two segments are not intersected or one of them contains another.

Elements of S are called **constituents**. One-point segments are called **point constituents**. The segment consisting of all chain points is called **full constituent**. Full and point constituents are called **trivial**, the others - **non-trivial**.

(John (hit (the ball))).

If A and B are constituents of the system C, then "B is immediate constituent of A" ($B \subset \subset A$) means $B \subset A$ and C doesn't contain any constituent which is constituent of A, contains B and is different from A and B.

VP and NP are immediate constituents.

VP and N are not immediate constituents as

 $\exists NP \in S: NP \subset S \land N \subset S \land VP \neq NP \land N \neq NP$

The ordered triple < C, W, $\varphi >$ is called **annotated constituency-based system**, where C is constituency-based system, W is set of annotations, φ is mapping C in 2^{W} .

The constituent consisting of more than one words is called the **phrase**. The **head** of a phrase is a word that determines the syntactic type of that phrase.

Syntactic phrases:

- noun phrase;
- adjectival phrase;
- adverbial phrase;
- prepositional phrase;
- verb phrase;
- sentence

Dependency-based systems

Let x be an arbitrary non-empty chain in the vocabulary V and let X be the set of all chain x elements.

An arbitrary binary relation \rightarrow on X such that the graph $\langle X, \rightarrow \rangle$ is a tree, is called **dependency relation** for X.

An **annotated dependency tree** for chain x is four $\langle X, \rightarrow, Z, \psi \rangle$, where $\langle X, \rightarrow \rangle$ is a dependency tree for x, Z is finite set (its elements are annotations), ψ is mapping of set of tree $\langle X, \rightarrow \rangle$ arcs on Z.

Annotated dependency tree

Representing dependencies

Dependency-based systems

Dependency tree $\langle X, \rightarrow \rangle$ for chain x is called **non-projective** if for any three points α , β , γ of chain x:($\alpha \rightarrow \beta$ and γ is lying between α and β) $\Rightarrow \gamma$ depends on α .

Dependency tree $\langle X, \rightarrow \rangle$ for chain x is called **projective** if for any four points α , β , γ , σ of chain x: $(\alpha \rightarrow \beta$ and $\gamma \rightarrow \sigma) \Rightarrow$ pairs α , β and γ , σ don't divide each other.

A dependency tree for a non-projective English sentence

Universal Dependencies http://universaldependencies.org/

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
ЮВЈ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
cc	Coordinating conjunction

Selected
dependency
relations from
the Universal
Dependency set

Universal Dependencies

Relation	Examples with head and dependent
NSUBJ	United canceled the flight.
DOBJ	United diverted the flight to Reno.
	We booked her the first flight to Miami.
IOBJ	We booked her the flight to Miami.
NMOD	We took the morning flight.
AMOD	Book the cheapest flight.
NUMMOD	Before the storm JetBlue canceled 1000 flights.
APPOS	United, a unit of UAL, matched the fares.
DET	The flight was canceled.
	Which flight was delayed?
CONJ	We flew to Denver and drove to Steamboat.
CC	We flew to Denver and drove to Steamboat.
CASE	Book the flight through Houston.

Examples of core Universal Dependency relations

Dependency Treebanks

- http://universaldependencies.org
 - A Gold Standard Universal Dependencies Corpus for English (16,622 sentences);
 - Treebank of Learner English (TLE) (4,624 sentences)
 - some more...
- https://catalog.ldc.upenn.edu/ldc2013t19 OntoNotes

Comparison

a. They killed the man with a gun.

Phrase structure grammar

b. They killed the man with a gun.

Dependency grammar

Comparison

- 1. Dependency trees are less than constituency-based systems as usually they contain a smaller number of heads;
- 2. Dependency trees present the hierarchy relations, not the word order;
- Phrase structure grammar bases on the binary division (noun phrase and verb phrase are marked), in dependency grammar a verb is a base of the whole sentence structure.

Top-down parser

Bottom-up parser

Problems of syntax analysis

- Part-of-speech tagging, word-category disambiguation;
- Syntactic homonymy;
- Word sense disambiguation;
- Syntactic synonymy;
- Coreference resolution

POS-tagging, word-category disambiguation

Morphological homonymy is phonetic and graphic equivalence of wordforms, which have different parts of speech. Example: *I read a <u>book</u>* vs. *Please*, <u>book</u> a *hotel*.

Methods of POS disambiguation:

- 1. Deterministic;
- 2. Statistical.

POS-tagging, word-category disambiguation

Example:

Buffalo buffalo buffalo buffalo buffalo Buffalo buffalo.

Buffalo[a] buffalo[n] Buffalo[a] buffalo[n] buffalo[v] buffalo[v] Buffalo[a] buffalo[n].

- a adjective;
- n noun;
- v verb

Syntactic homonymy

Syntactic homonymy rises when phrases, complexes or clauses of similar pattern can have different syntactic functions.

Example:

He hit a woman with a baby.

Lexical homonymy and polysemy

Lexical homonymy is phonetic and graphic equivalence of the wordforms with the same part of speech but different meanings.

Example:

Bank (of a river) vs. bank (financial organization)

Methods of lexical disambiguation:

- Deep approach;
- Superficial approach.

Syntactical synonimy

Syntactical construction have similar meanings and can replace each other in certain contexts.

- John fell silent not knowing what to say.
- John fell silent as he didn't know what to say.
- John fell silent without knowing what to say.

- The Byron poems.
- The poems by Byron.
- Byron's poems.
- The poems of Byron.

Coreference resolution

Coreference resolution is identifying relations between sentence (statement) components, in which the names are referred to the same object.

Example:

- 1. Carol told Bob to attend the party. They arrived together.
- 2. If they are angry about the music, the neighbours will call the cops.

Reference expressions:

- graphical: photocontent photo-content photo content;
- transliteration: Google Гугл;
- abbreviation: NSU Novosibirsk State University;
- synonymy: aim goal.

Next lecture

- Approaches to parse sentences;
- Tools, state-of-arts parsers;
- Performance evaluation

Thank you for your attention!