Relatório 5 - Amplificador fonte comum

Patrik Loff Peres (20103830) Universidade Federal de Santa Catarina (UFSC) Departamento de Engenharia Elétrica e Eletrônica (DEEL)

I. Introdução

Neste laboratório foi implementado um amplificador fonte comum, que consiste em um transistor NMOS atuando como amplificador principal da entrada pela saída através da transcondutância de porta, e dois transistores PMOS em configuração espelho de corrente para polarizar o NMOS, sendo que um dos PMOS também influencia no ganho, na forma de carga para a saída. A topologia utilizada é mostrada na figura 1. A partir da teoria e dos resultados das simulações, foram determinados os valores de largura (W) e comprimento do canal (L) dos transistores MOS e da corrente de polarização, com objetivo de obter um valor alto da figura de mérito $(FoM = \frac{A_v}{A \times IDD})$.

II. ESQUEMÁTICO

Inicialmente foi criado um esquemático do circuito proposto, mostrado na figura 1, em que os transistores PMOS estão desempenhando o espelhamento de corrente i_{ref} . Para o devido espelhamento de corrente e buscando minimizar a área e potencia consumida, foram escolhidos PMOS com $L=2\mu m$ e W=400nm, resultados obtidos no Relatório 3 -Layout de circuitos.

Fig. 1: Esquemático do espelho de corrente

Realizando a análise AC do circuito, considerando uma fonte de tensão (DC + baixa valor AC) na porta de M1, temos

o circuito da figura 2, podemos notar que:

$$Av = \frac{V_{out}}{Vg} = \frac{-gm_1}{gmd_2 + gmd_1} \tag{1}$$

Fig. 2: Circuito equivalente AC

III. SIMULAÇÃO

Foi criado um testbench para simular o circuito com uma capacitância externa, como mostra a figura 3. Foi realizado uma parametric analysis variando valores de L e W do transistor NMOS com um Sweep na tensão de entrada variando de 0 a V_{DD} , de modo a obter o resultado de $V_{out} \times V_{in}$, sendo possível calcular o ganho do amplificador através da função derivada. Os resultados estão na tabela I.

Como é possível notar da tabela, a melhor combinação foi $L=0,8\mu m$ e $W=0,8\mu m$. No entanto, os transistores PMOS do espelho, que são maiores, vão requerer uma area maior, então, foi usado $L=1,2\mu m$ e $W=1.2\mu m$ de modo a aproveitar a area requerida e ter um bom valor de ganho. O ganho intrinseco do transistor NMOS deste tamanho é $\frac{gm}{gmd}=67,8$

Os resultados da simulação com *sweep* da tensão de entrada para os valores escolhidos estão nas figuras 4 e 5. Destaca-se o valor máximo de ganho de 55,3 V/V na tensão de operação 480mV.

Realizando uma simulação transiente, com tensão de entrada uma senoide de amplitude 1mV, frequencia de 100kHz e tensão DC de 480mV, obtemos o resultado da figura 6. A amplitude do sinal de saida é $V_{out_a} = \frac{487,95-380,64}{2} = 53,65mV$ e, portanto, o ganho é $A_V = \frac{53,65mV}{1mV} = 53,65$.

IV. LEIAUTE

Com os resultados da simulação validando o funcionamento do circuito, foi criado o leiaute da figura 7, que passou nos *checking's* DRC e LVS estão nas figuras 8 e 9 respectivamente.

Fig. 3: Testbench

Fig. 4: V_{out} em função de V_{in}

Fig. 5: Ganho em função de V_{in}

Fig. 6: Resultado da simulação transiente

Fig. 7: Leiaute

	Ganho	L[µm]	$W[\mu m]$	FoM (aproximada)
1	50.51	1.04	1.00	48.57
2	50.18	1.04	0.85	56.76
3	50.04	1.04	0.80	60.15
4	50.37	1.04	0.95	50.98
5	50.29	1.04	0.90	53.73
6	54.43	1.29	1.00	42.23
7	53.94	1.29	0.85	49.23
8	53.81	1.29	0.80	52.18
9	54.31	1.29	0.95	44.35
10	54.15	1.29	0.90	46.68
11	57.65	1.53	1.00	37.68
12	57.14	1.53	0.85	43.94
13	56.93	1.53	0.80	46.51
14	57.47	1.53	0.95	39.54
15	57.34	1.53	0.90	41.64
16	60.51	1.78	1.00	34.03
17	59.83	1.78	0.85	39.59
18	59.56	1.78	0.80	41.87
19	60.32	1.78	0.95	35.71
20	59.99	1.78	0.90	37.49
21	62.93	2.02	1.00	31.12
22	62.10	2.02	0.85	36.13
23	61.79	2.02	0.80	38.20
24	62.58	2.02	0.95	32.58
25	62.40	2.02	0.90	34.29
26	64.98	2.27	1.00	28.67
27	63.91	2.27	0.85	33.17
28	63.69	2.27	0.80	35.12
29	64.65	2.27	0.95	30.02
30	64.25	2.27	0.90	31.50
31	66.79	2.51	1.00	26.60
32	65.76	2.51	0.85	30.81
33	65.17	2.51	0.80	32.44
34	66.45	2.51	0.95	27.86
35	66.09	2.51	0.90	29.24
36	68.36	2.76	1.00	24.81
37	67.16	2.76	0.85	28.68
38	66.77	2.76	0.80	30.29
39	67.97	2.76	0.95	25.97
40	67.61	2.76	0.90	27.27
41	69.57	3.00	1.00	23.19
42	68.37	3.00	0.85	26.81
43	67.93	3.00	0.80	28.30
44	69.15	3.00	0.95	24.26
45	68.88	3.00	0.90	25.51
46	47.68	0.80	1.00	59.60
47	47.25	0.80	0.85	69.48
48	47.09	0.80	0.80	73.58
49	47.48	0.80	0.95	62.48
50	47.40	0.80	0.90	65.83
TADIE I. Tobolo do recultodos do resumetrio su alusia				

TABLE I: Tabela de resultados do parametric analysis

Refazendo a simulação transisente com os parasitas para verificar o ganho, foi verificado que o ponto de operação se alterou de 480mV para 490mV, e o resultado está na figura 10. A amplitude é de $V_{out_a} = \frac{647,2-538,0}{2} = 53,6mV$ e, portanto, o ganho é $A_V = \frac{53,6mV}{1mV} = 53,6$.

V. FIGURA DE MÉRITO

A figura de mérito depende da corrente consumida da fonte, que foi determinada por simulação como sendo $2\mu A$, sendo assim o valor de FoM é:

$$FoM = \frac{A_v}{A \times I_{DD}} = \frac{53,6}{5,83\mu \times 3,17\mu \times 2\mu}$$
 (2)

$$FoM = 1,45 \frac{1}{\mu^3 m^2 \times A} \tag{3}$$

Fig. 8: Checking DRC

Fig. 9: Checking LVS

Fig. 10: Resultado da simulação transiente com parasitas