<epam>

Normal Forms – Part 1

Relational Databases Basics

Disclaimer

Usually most people understand 1NF-3NF easily. Speaking about BCNF and further forms:

I hope you are here! ☺

- ~ 10% understand them at once.
- ~ 80% understand them after 1-2 years of experience.
- ~ 10% never understand them.

Any relation variable may (or may not) be in any normal form: it depends on subject matter ONLY. I.e. if subject matter rules change, any normal form may (or may not) be violated for any relation.

Normalization – a process of decomposition of relation variable R into projections R_1 , R_2 , ..., R_n , such that:

- the join of R₁, R₂, ..., R_n is guaranteed to be equal to R;
- each of R₁, R₂, ..., R_n is needed in order to provide that guarantee;
- at least one of R₁, R₂, ..., R_n is at a higher level of normalization than R is.

Normal forms hierarchy

Normal forms hierarchy

ONF: zero normal form

Read and remember!

A relation variable (relvar) is in **ONF** if it violates any higher NFs requirements, i.e. if it "is not in any NF".

ONF is "non-canonical" one, but it is a good start point for any further discussions.

Read and remember!

A relvar is in **1NF** if and only if every tuple contains exactly one value for each attribute.

In other words: every value must be an atomic one, i.e. must NOT be multivalued or compound one.

1NF: first normal form (violation examples)

1NF: first normal form (dealing with violations)

After **Before** student student <u>s_id</u> s_mark PK PK {3, 6, 8, 6, 4, 6, 7} 1731 1731 1824 • • • Multi-valued attribute 1-M relationship mark m_id m_student m_mark

PK

1123

1124

FK

3

6

1731

1731

1NF: first normal form (dealing with violations)

Before

student

After

student

s_id PK	s_addr_city	s_addr_street	s_addr_building
1731	Big City	New Street	1
1824			

1NF: first normal form (atomicity depends on subject matter)

Shall we store in separate fields...

The phone number and the operator code (prefix)?

The e-mail parts (username and domain)?

The date parts (year, month, day)?

The time parts (hours, minutes, seconds, milliseconds)?

The document id parts (like passport series id and number)?

1NF: first normal form (conclusion)

- Most DBMSes will not allow you to store "a table within a table".
- Each multi-valued attribute should be eliminated by moving it to another relation.
- Each compound attribute should be investigated for "if it **really** is compound" (of so, it should be split into several atomic attributes).

Read and remember!

A relvar is in **2NF** if it satisfies 1NF and every its nonprime attribute is fully functionally dependent on the primary key.

"Weak" definition

In other words: there must not be an attribute, that is not a part of PK and still depends on a part of PK (not the entire PK).

A relvar is in **2NF** if it satisfies 1NF and every its attribute is fully functionally dependent on any key. In other words: there must not be an attribute, that is not a part of any key and still depends on a part of any key (not the entire key).

"Strong" definition

2NF: second normal form (violation example, "weak" definition)

group Partial PK dependency						
g_number	g start	<u>year</u>	g_y	ears	g_head	
1	1998		5		23423	
1	1999		5		46345	
1	2000		4 /	$\overline{}$	3452345	
2	2000		4		NULL	
1	2008		4/		2453465	
2	2008		4		6786756	

"g_years" attribute is partially dependent on PK and should be moved to another relation

```
{g_number, g_start_year} → {g_head} 
{g_number, g_start_year} → {g_years}
```

2NF: second normal form (violation example, "strong" definition)

Partial AK dependency group g_id g number g start year \g_years/ g_head PK Alternate key 5 23423 1998 5 46345 1999 3 2000 3452345 4 2000 **NULL** 4 5 2008 2453465 6 2008 6786756 4

"g_years" attribute is partially dependent on AK and should be moved to another relation

```
{g_number, g_start_year} → {g_head}
{g_number, g_start_year} → {g_years}
```

2NF: second normal form (dealing with violations)

Before

After

education_length

el_start	el_years	
1998	5	
1999	5	
2000	4	

group

1-M relationship

g_id	g_number	g_start_year	g_head
PK	Alternate key		
1	1	1998	23423
2	1	1999	46345
3	1	2000	3452345
4 2		2000	NULL

2NF: second normal form (conclusion)

- Always try using "strong" definition and find partial alternate keys dependencies.
- Each attribute that is partially dependent on alternate key should be moved to another relation. That part of alternate key the moved attribute was dependent on should become the PK of that new relation.

<epam>

Normal Forms – Part 1

Relational Databases Basics

