Introduction

Neha Bora Tuo Chen Dana Cochran Kelly Dougan Gautam Sabnis Chuanping Yu

Industrial Math/Stat Modeling Workshop Environmental Protection Agency

May 8, 2017

Outline

- Introduction
- - PM_{2.5} time series
 - AOD and PM_{2.5} fitting

Health Impacts

Figure: Donora, PA at noon on October 29, 1948

- 20 people died, thousands were sickened by smog from a steel mill.
- PM_{2.5} one of the most harmful pollutants, can get lodged in lungs and cause respiratory problems

PM and AOD

Figure: Size of PM_{2,5} compared to other particulate matter

- PM_{2.5} is a particulate matter that is less than 2.5 micrometers in diameter.
- Aerosol Optical Depth (AOD) measures the amount of light from the sun blocked by dust and pollutants.

Background

Pollution in Western U.S.

- The Clean Air Act imposes a national standard of permissible amount of PM_{2.5}.
- Sites in California, such as in the Los Angeles area consistently violate this standard.
- Want to investigate the possibility of external impact by international air travel of PM_{2.5}.

Outline

- Data Sources and methods
- - PM_{2.5} time series
 - AOD and PM_{2.5} fitting

 $PM_{2.5}$

- Ground sites of PM_{2.5} measurements, as collected by EPA
- Data collected either daily, every three days or every six days.

Figure: AOD readings on Jun 6, 2009

- AOD data collected over Pacific Ocean, near coast of California.
- Satellites travel around the Earth once every 16 days.
- AOD data is collected at each location least twice a month.

Data Cleaning

Figure: (left) CA PM_{2.5} sites we compared with AOD data, (right) Hawaii PM_{2.5} sites we compared with AOD data

- Picked PM sites closest to coast (13 in California, 9 in Hawaii)
- Found closest locations of AOD measurements to these sites
- Matched data by date of AOD/PM readings

Challenges

- AOD and PM_{2.5} datasets are quite sparse in space-time.
- Need additional information to improve fits and predictions.

Covariates used in this analysis

- wind speed and direction
- humidity
- planetary boundary layer height
- air temperature
- added values of these measures at each location at each date

Overall big picture

Fuse AOD and PM_{2.5} datasets to

- Understand their quantitative relationships,
- Predict PM measurements from years 1991 2000.

Overall Goal

Methods:

- 1. Time Series
- 2. Spatial Interpolation
- 3. Multivariate Regression

Outline

- Experiments
 - PM_{2.5} time series
 - AOD and PM_{2.5} fitting

PM_{2.5} Time Series

- Goal is to make predictions about PM_{2.5} in 2015.
- Overall pollution appears to be decreasing.
- Seasonal variations are observed.
- Two methods used Holt-Winter Exponential smoothing and ARIMA model

Holt-Winters Exponential Smoothing

- Mean square error is 5.5 but the mean of PM_{2.5} values is 12.6
- Similar result observed using different method ARIMA.
- PM_{2.5} dataset itself not sufficient to make predictions
- This motivates using covariates and AOD data.

Spatial interpolation of AOD data

- Interpolation using Ordinary Kriging.
- The quality of interpolation depends on availability of data.
- Understand the transport of pollutants to inform regression models.

Spatial interpolation of PM_{2.5} data

Need further validation with satellite date to confirm plume tracking.

- Goal relationship between PM_{2.5} and AOD in presence of other meteorological variables.
- Response variable PM_{2.5} "What we want to predict"
- Covariates "What we use to predict"
 - continuous variables: wind direction, wind velocity, relative humidity, air temperature
 - factors: season a discrete variable that models seasonality.
- \bullet Model the relationship at a particular $PM_{2.5}$ site or combine data from two nearby $PM_{2.5}$ sites along the west coast of United States.

Snapshot of the dataset

date	value_aod [‡]	value_pm [‡]	winspeed [‡]	windirection $^{\scriptsize \scriptsize $	hum ‡	airtemp $^{\diamondsuit}$	season [‡]
2006-12-28	0.01794	17.8	4.25	193.17	71.9	283	4
2007-01-12	0.10983	21.8	3.33	194.59	61.1	281	4
2007-01-21	0.04382	17.7	3.83	190.70	81.1	283	4
2007-03-28	0.17270	7.2	4.53	173.31	76.3	283	1
2007-04-18	0.13014	3.6	4.97	122.07	78.0	282	1
2007-05-18	0.01794	5.2	2.38	130.32	93.2	283	1
2007-06-05	0.24137	2.5	3.78	95.29	95.4	285	2
2007-06-11	0.10983	5.1	4.74	163.40	92.0	285	2
2007-08-10	-0.02195	4.0	4.44	158.96	93.4	287	2
2007-09-21	0.06187	8.2	2.91	188.68	92.6	288	3

- PM_{2.5} sites' coordinates near Eureka, CA (40.8, -124) and (40.9, -123)
- This site was chosen since it provides best fits.

Preliminary Analysis I

- Shows nonlinear relationships between covariates and responses.
- skewed data, outliers.

Figure: Some model diagnostics

Multiple linear regression does not provide good fits.

Generalized Additive Model

Experiments 00000000000

Regression splines:

$$s_j(x) = \sum_{j,k} \beta_{jk} \phi_{jk}(x) = \beta' \phi_j$$

• Estimate β by minimizing the penalized least squares objective function.

Introduction

Results I

- Formula: PM_{2.5} ~ AOD + s(windspeed) + s(winddirection) + s(hum) + s(airtemp) + season
- Coefficient = 4.085, β_{AOD} = -2.283 (t = 3.84, p-value = 0.0023).
- $P^2 = 0.782, Deviance = 81.4\%$
- We compared various models using a subset of covariates and chose the model with the smallest AIC (Akaike's Information Criterion).

Results II

• Equivalent degrees of freedom = (2.69, 2.54, 2.37, 3.00)

Outline

- - PM_{2.5} time series
 - AOD and PM_{2.5} fitting
- Conclusions

Conclusions and future work

Conclusions

- AOD has a linear relationship with the PM_{2.5} measurements.
- Meteorological information is also important in predicting PM_{2.5} (particularly wind speed).
- GAM model better than multivariate linear regression model better than mixed effects model.

Future work

- Perform analysis on Hawaii sites.
- Use data from more years to train our model.
- Performing spatio-temporal analysis.

Acknowledgments

- Faculty mentors
- EPA Brett Gantt and Elizabeth Mannshardt
- NOAA, specifically Jessica Matthews for help with satellite data
- IMSM
- NSF

References

Lee, H. J., et al. "A novel calibration approach of MODIS AOD data to predict PM2. 5 concentrations." Atmos. Chem. Phys 11.15 (2011): 7991-8002.

van Donkelaar, Aaron, et al. "Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter." Diss. University of British Columbia. 2015.

Li, Jing, Barbara E. Carlson, and Andrew A. Lacis. "How well do satellite AOD observations represent the spatial and temporal variability of PM 2.5 concentration for the United States?." Atmospheric Environment 102 (2015): 260-273.

Liu, Yang, Christopher J. Paciorek, and Petros Koutrakis. "Estimating Regional Spatial and Temporal Variability of PM_{2.5} Concentrations Using Satellite Data, Meteorology, and Land Use Information." Environmental health perspectives 117.6 (2009): 886.

National Centers for Environmental Information. National Oceanic and Atmospheric Administration. Department of Commerce, n.d. Web. 23 July 2016. https://www.ncdc.noaa.gov/cdr/atmospheric/avhrr-aerosol-optical-thickness.

United States Environmental Protection Agency. AirData. EPA, 5 July 2016. Web. 23 July 2016. https://www3.epa.gov/airdata/.