Обзор основных результатов теории вероятностей

5.11.2022

Содержание

1	Bep	оятностные пространства	4
	1.1	Элементарные исходы и случайные события	4
	1.2	Классическое вероятностное пространство и комбинаторика	7
2 Независимые события			10
	2.1	Условная вероятность	10
	2.2	Независимость двух событий и совместная независимость	11
	2.3	Биномиальные вероятности	13
3 Случайные величины		чайные величины	14
	3.1	Понятие случайной величины	14
	3.2	Некоторые распределения случайных величин	16
	3.3	Независимость случайных величин	17

4	Мат	ематическое ожидание	19		
	4.1	Определение	19		
	4.2	Примеры	20		
	4.3	Основные свойства математического ожидания	21		
5	Пре	дельные теоремы	23		
	5.1	Закон больших чисел	23		
	5.2	Центральная предельная теорема	24		
Л	Литература				

1. Вероятностные пространства

1.1. Элементарные исходы и случайные события

Определение. Вероятностное пространство – это пара (Ω, P) , где

- Ω непустое не более чем счетное множество элементарных исходов;
- ullet $P(\omega)$ вероятность, т.е. функция со свойствами

$$\forall \omega \ P(\omega) \geqslant 0 \quad \text{if} \quad \sum_{\omega \in \Omega} P(\omega) = 1.$$

Считается, что в результате вероятностного эксперимента происходит один и только один исход из Ω .

Замечание. Строго говоря, определение выше – это определение дискретного вероятностного пространства. Общие вероятностные пространства с несчетным множеством исходов нам не потребуются.

Определение. Случайное событие A — это любое подмножество Ω . Считается, что событие происходит, если происходит какой-либо исход, входящий в него.

Вероятность события по определения равна сумме вероятностей его исходов.

Пример

С какой вероятностью при бросании трех монет выпадет ровно один орел?

Решение

- $\Omega = \{000, 00P, 0PO, \ldots\}$ (8 исходов).
- $A = \{ PPO, POP, OPP \}.$
- P(A) = 3/8.

Операции с событиями

Так как события являются множествами, то для них определены операции на множествах (объединение, пересечение, разность, дополнение), которые имеют следующий смысл:

- $A \cup B =$ "произойдет событие A или B (или оба)"
- ullet $A\cap B=$ "произойдут оба события A и B"
- ullet $A\setminus B=$ "событие A произойдет, а B не произойдет"
- ullet $\overline{A}=\Omega\setminus A=$ "событие A не произойдет"

Отношения между событиями

- События A и B называются несовместными, если $A \cap B = \emptyset$ (пересечение пусто, т.е. у них нет общих исходов). Тогда $P(A \cup B) = P(A) + P(B)$.
- Если $A\subseteq B$, то если происходит A, то происходит и B. В этом случае $\mathrm{P}(A)\leqslant\mathrm{P}(B)$ и $\mathrm{P}(B\setminus A)=\mathrm{P}(B)-\mathrm{P}(A).$

1.2. Классическое вероятностное пространство и комбинаторика

Определение. Классическим вероятностным пространством называется конечное Ω с вероятностью $\forall \omega \ P(\omega)=1/n$, где $n=|\Omega|$ – число всех исходов в Ω .

Для для любого события в классическом вероятностном пространстве

$$P(A) = \frac{|A|}{|\Omega|}.$$

Подсчет |A| и $|\Omega|$ можно осуществить с помощью комбинаторики.

Элементы комбинаторики

Теорема. Число последовательностей длины k, которые можно составить из n объектов, задается следующими формулами:

Последовательность	Без повторения	С повторением
Упорядоченная	$A_n^k = \frac{n!}{(n-k)!}$	n^k
Неупорядоченная	$C_n^k = \frac{n!}{k!(n-k)!}$	$C_{n+k-1}^k = \frac{(n+k-1)!}{k!(n-1)!}$

Пример

С какой вероятностью при бросании n монет выпадет ровно k орлов?

Решение

- $|\Omega| = 2^n$ (упорядоченные последовательности с повторением из 2 объектов, "O" и "P")
- $|A| = C_n^k$ (неупорядоченный набор k номеров мест в последовательности, где стоят "Р")
- $P(A) = C_n^k/2^n$.

2. Независимые события

2.1. Условная вероятность

Определение. Условной вероятностью события A при условии события B, где $\mathrm{P}(B)>0$, называется

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Предложение (правило умножения вероятностей). Если ${\rm P}(B)>0$, то выполнено равенство

$$P(A \cap B) = P(A \mid B) P(B).$$

2.2. Независимость двух событий и совместная независимость

Определение. События A,B называются независимыми (обозначение: $A \perp\!\!\!\perp B$), если

$$P(A \cap B) = P(A) P(B).$$

Если $P(B) \neq 0$, то это эквивалентно тому, что $P(A \mid B) = P(A)$.

Упражнение. Бросаются две монетки. Покажите, что события "орел на первой" и "исходы монеток различны" независимы.

Определение. События A_1,A_2,\ldots называются совместно независимыми, если $\mathrm{P}(A_{i_1}\cap A_{i_2}\cap\ldots\cap A_{i_n})=\mathrm{P}(A_{i_1})\cdot\mathrm{P}(A_{i_2})\cdot\ldots\cdot\mathrm{P}(A_{i_n})$ для любых различных индексов i_1,\ldots,i_n .

Предложение. Если A_1,A_2,\ldots совместно независимы, и события B_i равны A_i или \overline{A}_i , то B_i тоже совместно независимы.

Пример. n человек договорились встретиться. Каждый из них опоздает на встречу с вероятностью p, независимо от других. Какова вероятность, что хотя бы один опоздает?

Ответ.
$$1 - (1 - p)^n$$
.

2.3. Биномиальные вероятности

Теорема. Пусть события A_1, \dots, A_n совместно независимы и имеют одинаковую вероятность p. Тогда вероятность того, что произойдет ровно k из n событий равна

$$C_n^k p^k (1-p)^{n-k}.$$

Идея доказательства. Пусть C – рассматриваемое событие. Искомую вероятность можно представить в виде

$$P(C) = P(\bigcup B_1 \cap ... \cap B_n)$$

= $\sum P(B_1 \cap ... \cap B_n) = \sum p^k (1-p)^{n-k} = C_n^k p^k (1-p)^{n-k},$

где B_i равно либо A_i , либо \overline{A}_i , а объединение и сумма берутся по всевозможным таким комбинациям B_i . Количество комбинаций (количество способов взять k событий и n-k отрицаний) равно C_n^k .

3. Случайные величины

3.1. Понятие случайной величины

Определение. Случайной величиной на дискретном вероятностном пространстве называется любая функция $X(\omega) \colon \Omega \to \mathbb{R}$.

Операции со случайными величинами определяются как операции с функциями. Например, Z=X+Y – это такая с.в., что $Z(\omega)=X(\omega)+Y(\omega)$.

Примеры

- 1. Монетка бросается n раз. Количество орлов X это случайная величина, которая может принимать значения $0,1,\ldots,n$.
- 2. Бросаются два кубика. Тогда количества очков на них X и Y являются случайными величинами. Сумма очков Z=X+Y тоже является случайной величиной

Определение. Распределением дискретной с.в. называется функция

$$p(x) = P(X = x), \qquad x \in \mathbb{R}.$$

Определение. Случайные величины X,Y называются равными

- почти наверное, если P(X = Y) = 1. Обозначение: $X \stackrel{\text{п.н.}}{=} Y$.
- по распределению, если $\mathrm{P}(X=a)=\mathrm{P}(Y=a)$ для любого $a\in\mathbb{R}.$ Обозначение: $X\stackrel{\mathsf{d}}{=} Y.$

Пример. Если X, Y – количества очков на кубиках, то $X \stackrel{d}{=} Y$, но $X \not\stackrel{\mathsf{n,h.}}{\not=} Y$.

3.2. Некоторые распределения случайных величин

1. Равномерное распределение на конечном множестве S из n элементов:

$$\mathrm{P}(X=s)=rac{1}{n}$$
 для любого $s\in S.$

2. Распределение Бернулли (вероятность "успеха/неудачи"):

$$P(X = 1) = p,$$
 $P(X = 0) = 1 - p.$

3. Биномиальное распределение (число успехов в n испытаниях):

$$P(X=k) = C_n^k p^k (1-p)^{n-k}$$
, где $k = 0, 1, \dots, n$

4. Геометрическое распределение (число испытаний до первого успеха):

$$P(X = k) = p(1-p)^{k-1}$$
, где $k = 1, 2, ...$

3.3. Независимость случайных величин

Определение. Случайные величины X,Y называются независимыми, если

$$\mathrm{P}(X=x,Y=y)=\mathrm{P}(X=x)\,\mathrm{P}(Y=y)$$
 для любых $x,y\in\mathbb{R}.$

Обозначение: $X \perp\!\!\!\perp Y$.

Определение. С.в. X_1, X_2, \ldots называются (совместно) независимыми, если

$$P(X_{i_1} = x_{i_1}, \dots, X_{i_n} = x_{i_n}) = P(X_{i_1} = x_{i_1}) \cdot \dots \cdot P(X_{i_n} = x_{i_n})$$

для любых различных индексов i_1,\ldots,i_n и произвольных чисел $x_{i_k}\in\mathbb{R}.$

Теорема (распределение суммы независимых величин). Если $X \perp\!\!\!\perp Y$, то Z = X + Y имеет распределение

$$P(Z = z) = \sum_{x} P(X = x) P(Y = z - x)$$

("свертка распределений").

Упражнение: докажите, что если $X \perp\!\!\!\perp Y$ имеют биномиальное распределение с параметрами (n,p) и (m,p), то

$$X+Y$$
 имеет биномиальное p-e с параметрами $(n+m,p)$.

Отсюда следует, что X можно представить в виде

$$X = X_1 + \ldots + X_n,$$

где X_n – независимые бернуллиевские с.в.

4. Математическое ожидание

4.1. Определение

Определение. Математическим ожиданием с.в. X называется число

$$E X = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

Замечание. Определение корректно, если $\sum_{\omega}|X(\omega)|\,\mathrm{P}(\omega)<\infty$ (т.е. ряд сходится абсолютно или Ω конечно). Мы будем рассматривать только такие случайные величины.

Эквивалентным образом можно определить

$$E X = \sum_{x} x P(X = x),$$

где сумма берется по всем значениям X. (Это следует из первой формулы, если сгруппировать слагаемые с одинаковыми значениями $X(\omega)$.)

4.2. Примеры

- 1. X число очков на кубике. Тогда EX = 3.5.
- 2. X имеет равномерное распределение на множестве $\{a, a+1, a+2, \dots, b\}$. Тогда E X = (a + b)/2.
- 3. X имеет биномиальное распр. с параметрами (n,p). Тогда $\mathrm{E}\,X=np$. Доказательство. Можно посчитать напрямую, а можно представить в виде $E(X) = E(X_1 + ... + X_n) = n E X_1 = np$, где X_i имеют распределение Бернулли.
- 4. X имеет геометрическое распр. с параметром p. Тогда $EX = \frac{1}{p}$.

$$EX = \sum_{k=1}^{\infty} kp(1-p)^k = -p\left(\sum_{k=1}^{\infty} (1-p)^k\right)' = -p\left(\frac{1-p}{p}\right)' = \frac{1}{p}$$

4.3. Основные свойства математического ожидания

Теорема. Выполнены следующие свойства:

- 1. E a = a для любой константы a;
- 2. $E(aX+bY)=a\,E\,X+b\,E\,Y$ для любых констант a,b;
- 3. если $X \stackrel{\mathsf{п.н.}}{\geqslant} Y$ п.н., то $\mathrm{E} X \geqslant \mathrm{E} Y$;
- 4. если $X \stackrel{\mathsf{d}}{=} Y$, то $\mathrm{E} X = \mathrm{E} Y$;
- 5. если X_1,\ldots,X_n независимы, то $\mathrm{E}(X_1X_2\ldots X_n)=\mathrm{E}\,X_1\cdot\mathrm{E}\,X_2\cdot\cdots\cdot\mathrm{E}\,X_n.$

Примеры

- 1. В задаче о количестве беспорядков число адресатов X, получивших свои письма, имеет $\mathrm{E}\,X=1.$
 - Доказательство. $X=X_1+\ldots+X_n$, где $X_i=0$ или 1 в зависимости от того, получил ли адресат i свое письмо. Тогда $\mathrm{P}(X_i=1)=1/n$ и $\mathrm{E}\,X_i=1/n$, значит $\mathrm{E}\,X=1$.
- 2. В n изначально пустых коробок бросают случайных образом k шаров. Найдите ожидание числа непустых коробок.

ОТВЕТ.
$$E X = n(1 - (1 - \frac{1}{n})^k).$$

5. Предельные теоремы

5.1. Закон больших чисел

Теорема. Пусть X_1, X_2, \ldots – независимые случайные величины с одинаковым распределением и $\mu = \mathrm{E}(X_i)$. Тогда

$$\frac{X_1 + \ldots + X_n}{n} \to \mu.$$

Замечание. Необходимо определить, в каком смысле понимать сходимость последовательности случайным величин $Y_n = (X_1 + \dots + X_n)/n$.

Можно понимать в смысле сходимости по вероятности:

$$\forall \varepsilon > 0 : P(|Y_n - \mu| \geqslant \varepsilon) \to 0 \text{ при } n \to \infty.$$

5.2. Центральная предельная теорема

Теорема. Пусть X_1, X_2, \ldots – независимые случайные величины с одинаковым распределением и $\mu = \mathrm{E}(X_i), \ \sigma = \sqrt{\mathrm{E}((X-\mu)^2)}.$

Обозначим $S_n = X_1 + \ldots + X_n$. Тогда для любого $x \in \mathbb{R}$

$$P\left(\frac{S_n - \mu n}{\sigma \sqrt{n}} \leqslant x\right) \to \Phi(x) \text{ при } n \to \infty,$$

где
$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$$
.

Замечания

- 1. Величина σ называется стандартным отклонением. Функция $\Phi(x)$ называется нормальной функцией распределения.
- 2. Такой тип сходимости называется сходимостью по распределению.

Пример

Бросают 1000 монеток. С какой вероятностью число орлов будет между 480 и 520?

Решение

Пусть $X_i=0$ или 1 для монетки i (решка или орел). Тогда S_n – число орлов. Имеем $\mu=1/2,\ \sigma=1/2.$

$$P(480 \leqslant S_n \leqslant 520) = P\left(\frac{480 - 500}{\sqrt{1000}/2} \leqslant \frac{S_n - \mu n}{\sigma \sqrt{n}} \leqslant \frac{520 - 500}{\sqrt{1000}/2}\right)$$
$$\approx \Phi(1.265) - \Phi(-1.265) = 0.79,$$

где значения $\Phi(x)$ находятся численными методами.

Домашнее задание

Слайды и домашние задания:

 $\verb|https://ldrv.ms/u/s!ApOhrtgHCg50gZt2hfThdlDCMTsXoA?e=sIjPY6|$

Срок сдачи домашнего задания 1:7 ноября, 23:59 Присылайте решения на info@vega-institute.org

Литература

А. Н. Ширяев, *Вероятность-1*, гл. 1, § 1–4.

У. Феллер, Ведение в теорию вероятностей и ее приложения, т. 1, гл. I–VI, IX.