In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]:

```
housing_df=pd.read_csv("housing.csv")
housing_df.tail()
```

Out[2]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	por
20635	-121.09	39.48	25	1665	374.0	845
20636	-121.21	39.49	18	697	150.0	356
20637	-121.22	39.43	17	2254	485.0	100
20638	-121.32	39.43	18	1860	409.0	741
20639	-121.24	39.37	16	2785	616.0	138

Data preprocessing

In [3]:

```
housing_df.isnull().any()
```

Out[3]:

The manufacture of the	1- -
longitude	False
latitude	False
housing_median_age	False
total_rooms	False
total_bedrooms	True
population	False
households	False
median_income	False
ocean_proximity	False
median_house_value	False
dtype: bool	

here we find the column total_bedrooms have null value

In [4]:

```
housing_df.isna().any()
```

Out[4]:

longitude False latitude False housing_median_age False False total rooms total bedrooms True population False households False median income False ocean_proximity False median house value False dtype: bool

Impute mean of column value in place of missing value

In [5]:

```
housing_df.total_bedrooms=housing_df.total_bedrooms.fillna(housing_df.total_bedr
ooms.mean())
housing_df.isna().any()
```

Out[5]:

longitude	False
latitude	False
housing_median_age	False
total_rooms	False
total_bedrooms	False
population	False
households	False
median_income	False
ocean_proximity	False
median_house_value	False
dtype: bool	

Exploratory Data analysis

In [6]:

housing_df.describe()

Out[6]:

	longitude	latitude	housing_median_age	total_rooms	total_bedro
count	20640.000000	20640.000000	20640.000000	20640.000000	20640.00000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553
std	2.003532	2.135952	12.585558	2181.615252	419.266592
min	-124.350000	32.540000	1.000000	2.000000	1.000000
25%	-121.800000	33.930000	18.000000	1447.750000	297.000000
50%	-118.490000	34.260000	29.000000	2127.000000	438.000000
75%	-118.010000	37.710000	37.000000	3148.000000	643.250000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000

Bivariate analysis

In [7]:

housing_df.boxplot(column='median_house_value',by='ocean_proximity')

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f531e00f748>

In [8]:

Out[8]:

[]

from above diagram we found that there is high correlation between

total_bedrooms and households
total_bedrooms and total_rooms
households and total_rooms
population and households

At this point we can drop households and total_rooms columns while creating model; since other columns are present which can convey similar information

09/05/2018 project_housing

In [9]:

```
housing_df.plot.scatter('total_bedrooms','households')
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f530b97ce48>

In [10]:

```
housing_df.plot.scatter('total_rooms','total_bedrooms')
```

Out[10]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f530b954c88>

In [11]:

In [12]:

```
fig=plt.figure(figsize=(8,6))
ax=fig.add_subplot(111)
s=housing_df.ocean_proximity.value_counts()

rect=ax.bar(s.index,s,alpha=0.64)
plt.title('Count of houses against ocean proximity')
plt.xlabel('Ocean proximity')
autolabel(rect)
plt.ylabel('Count')
plt.show()
```


In [13]:

```
plt.figure(figsize=(8,6))
plt.hist(housing_df.median_income,bins=100)
plt.title('income distribution')
plt.plot()
```

Out[13]:

[]

Encode the categorial data. So now instead of character values we will have numerical value

In [14]:

housing_df.head()

Out[14]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populatior
0	-122.23	37.88	41	880	129.0	322
1	-122.22	37.86	21	7099	1106.0	2401
2	-122.24	37.85	52	1467	190.0	496
3	-122.25	37.85	52	1274	235.0	558
4	-122.25	37.85	52	1627	280.0	565

In [15]:

from sklearn.preprocessing import LabelEncoder

x labelencoder = LabelEncoder()

housing_df.ocean_proximity=x_labelencoder.fit_transform(housing_df.ocean_proximi
ty)

housing_df.head()

Out[15]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populati
0	-122.23	37.88	41	880	129.0	322
1	-122.22	37.86	21	7099	1106.0	2401
2	-122.24	37.85	52	1467	190.0	496
3	-122.25	37.85	52	1274	235.0	558
4	-122.25	37.85	52	1627	280.0	565

In [16]:

x_labelencoder.classes_

Out[16]:

Implementing OneHotEncoder to separate category variables into dummy variables.

In [17]:

from sklearn.preprocessing import OneHotEncoder
X_onehotencoder = OneHotEncoder (categorical_features = [8])
X = X_onehotencoder.fit_transform(housing_df)

```
In [18]:
```

```
x=X.toarray()
x[:,8:11]
Out[18]:
array([[ 880., 129., 322.],
       [7099., 1106., 2401.],
       [1467.,
                190., 496.],
                485., 1007.],
       [2254.,
                409., 741.],
616., 1387.]])
       [1860.,
       [2785.,
In [19]:
columns=housing_df.columns.tolist()
new_columns=[('proximity_'+i) for i in x_labelencoder.classes_]
new columns[5:]=columns[0:-2]
new columns.append(columns[-1])
new columns
Out[19]:
['proximity_<1H OCEAN',
 'proximity_INLAND',
 'proximity_ISLAND',
 'proximity_NEAR BAY',
 'proximity NEAR OCEAN',
 'longitude',
 'latitude',
 'housing median age',
 'total rooms',
 'total bedrooms',
 'population',
 'households',
 'median income',
 'median_house_value']
```

In [20]:

09/05/2018

```
housing_df_new=pd.DataFrame(x,index=housing_df.index,columns=new_columns)
housing_df_new.head()
```

Out[20]:

	proximity_<1H OCEAN	proximity_INLAND	proximity_ISLAND	proximity_NEAR BAY	proximity_
0	0.0	0.0	0.0	1.0	0.0
1	0.0	0.0	0.0	1.0	0.0
2	0.0	0.0	0.0	1.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0
4					

Feature Engineering

Instead of having longitude and latitude as separate attribute we will put an attribute distance_from_california california is at

Latitude 36.778259

Longitude -119.41793

Haversine

we use the 'haversine' formula to calculate the great-circle distance between two points – that is, the shortest distance over the earth's surface – giving an 'as-the-crow-flies' distance between the points (ignoring any hills they fly over, of course!).

```
formula: a = \sin^2(\Delta \phi/2) + \cos \phi 1 \cdot \cos \phi 2 \cdot \sin^2(\Delta \lambda/2)

c = 2 \cdot a \tan 2(\sqrt{a}, \sqrt{1-a})

d = R \cdot c
```

where ϕ is latitude, λ is longitude, R is earth's radius (mean radius = 6,371km);

note that angles need to be in radians to pass to trig functions!

In [21]:

```
from math import radians, cos, sin, asin, sqrt

def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points
    on the earth (specified in decimal degrees)
    """
    # convert decimal degrees to radians
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

# haversine formula
    dlon = lon2 - lon1
    dlat = lat2 - lat1
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a))
    r = 6371 # Radius of earth in kilometers. Use 3956 for miles
    return c * r
```

In [22]:

Out[22]:

	proximity_<1H OCEAN	proximity_INLAND	proximity_ISLAND	proximity_NEAR BAY	proximi
0	0.0	0.0	0.0	1.0	0.0
1	0.0	0.0	0.0	1.0	0.0
2	0.0	0.0	0.0	1.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0

NOW DELETE LONGITUDE AND LATITUDE COLUMN

In [23]:

```
housing_df_new=housing_df_new.drop(columns=['longitude','latitude'])
housing_df_new.head()
```

Out[23]:

	proximity_<1H OCEAN	proximity_INLAND	proximity_ISLAND	proximity_NEAR BAY	proximity_
0	0.0	0.0	0.0	1.0	0.0
1	0.0	0.0	0.0	1.0	0.0
2	0.0	0.0	0.0	1.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0

In [24]:

Out[24]:

[]

09/05/2018 project housing

Standerdise our data

In [25]:

```
x_feature=housing_df_new.drop(columns='median_house_value')
y_target=housing_df_new['median_house_value']
```

In [26]:

In [27]:

```
x_train.head()
```

Out[27]:

	proximity_<1H OCEAN	proximity_INLAND	proximity_ISLAND	proximity_NEAR BAY	pro
19226	1.121845	-0.679323	-0.013923	-0.353669	-0.3
14549	-0.891389	-0.679323	-0.013923	-0.353669	2.5
9093	-0.891389	1.472053	-0.013923	-0.353669	-0.3
12213	1.121845	-0.679323	-0.013923	-0.353669	-0.3
12765	-0.891389	1.472053	-0.013923	-0.353669	-0.3

In [28]:

y_train.hist(bins=50)

Out[28]:

In [29]:

np.sqrt(y_train).hist(bins=50)

Out[29]:

In [30]:

```
np.log(y_train).hist(bins=50)
```

Out[30]:

from above histograms we can say square root of y_{train} gives distribution close to normal distribution. hence we will take square root of y_{train} and y_{train}

In [31]:

```
y_train=np.sqrt(y_train)
y_test=np.sqrt(y_test)
```

In [32]:

y_train.head()

Out[32]:

	median_house_value
19226	617.494939
14549	573.846669
9093	430.581003
12213	707.107488
12765	312.249900

```
In [33]:
```

```
y_test.head()
```

Out[33]:

	median_house_value
14740	370.000000
10101	491.222964
20566	447.995536
2670	269.258240
15709	678.232998

Predictive Modeling

Linear Regression

```
In [34]:
```

```
from sklearn.linear_model import LinearRegression
linear_regressoragent = LinearRegression()
linear_regressoragent.fit(x_train,y_train)

Out[34]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normaliz e=False)

In [35]:
#predict the X_test
predictValues = linear_regressoragent.predict(x_test)
```

In [36]:

```
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test, predictValues))
```

Out[36]:

72.33141914038299

In [37]:

```
linear_regressoragent.score(x_test,y_test)
```

Out[37]:

0.6512403943232119

Decision tree Regression

```
In [38]:
```

```
from sklearn.tree import DecisionTreeRegressor
model_dtregress=DecisionTreeRegressor(max_depth=8,random_state=10,criterion='ms
e',presort=True)
model_dtregress.fit(x_train,y_train)

predict_dtregress=model_dtregress.predict(x_test)
np.sqrt(mean_squared_error(y_test,predict_dtregress))
```

Out[38]:

67.19112486979536

In [39]:

```
model_dtregress.score(x_test,y_test)
```

Out[39]:

0.6990488345070018

Random forest Regression

In [40]:

```
from sklearn.ensemble import RandomForestRegressor
model_rfregressor=RandomForestRegressor(n_estimators=15,criterion='mse',min_samp
les_split=3,random_state=40)
model_rfregressor.fit(x_train,np.array(y_train).ravel())
predict_rfregressor=model_rfregressor.predict(x_test)
np.sqrt(mean_squared_error(y_test,predict_rfregressor))
```

Out[40]:

59.624760503580426

In [41]:

```
model_rfregressor.score(x_test,y_test)
```

Out[41]:

0.7630124664153124

At this point we can drop households and total_rooms columns while creating model; since other columns are present which can convey similar information

09/05/2018 project_housing

In [42]:

```
x_train=x_train.drop(columns=['households','total_rooms'])
x_test=x_test.drop(columns=['households','total_rooms'])
x_test.head()
```

Out[42]:

	proximity_<1H OCEAN	proximity_INLAND	proximity_ISLAND	proximity_NEAR BAY	proxi
14740	-0.891389	-0.679323	-0.013923	-0.353669	2.585
10101	1.121845	-0.679323	-0.013923	-0.353669	-0.386
20566	-0.891389	1.472053	-0.013923	-0.353669	-0.386
2670	-0.891389	1.472053	-0.013923	-0.353669	-0.386
15709	-0.891389	-0.679323	-0.013923	2.827503	-0.386

In [43]:

```
model_rfregressorl=RandomForestRegressor(n_estimators=15,criterion='mse',min_sam
ples_split=3,random_state=40)
model_rfregressorl.fit(x_train,np.array(y_train).ravel())
predict_rfregressorl=model_rfregressorl.predict(x_test)
np.sqrt(mean_squared_error(y_test,predict_rfregressorl))
```

Out[43]:

59.98290152069001

In [44]:

```
model_rfregressor1.score(x_test,y_test)
```

Out[44]:

0.7601569459974005

Bonus Exercise:

In [45]:

```
x_train=x_train.median_income
x_test=x_test.median_income
```

In [46]:

```
x_train=np.array(x_train).reshape(-1,1)
x_test=np.array(x_test).reshape(-1,1)
y_train=np.array(y_train).reshape(-1,1)
y_test=np.array(y_test).reshape(-1,1)
```

```
In [47]:
```

```
model_linear_regression=LinearRegression()
model_linear_regression.fit(x_train,y_train)
```

Out[47]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normaliz
e=False)

In [48]:

```
predicted_test=model_linear_regression.predict(x_test)
predicted_train=model_linear_regression.predict(x_train)
```

In [49]:

```
model_linear_regression.score(x_test,y_test)
```

Out[49]:

0.44302338196197383

In [50]:

```
np.sqrt(mean_squared_error(y_test,predicted_test))
```

Out[50]:

91.40761530242808

In [51]:

```
plt.scatter(x_train, y_train, color = 'green')
plt.plot (x_train, predicted_train, color = 'red')
plt.title ('compare Training result')
plt.xlabel('normalized income')
plt.ylabel('house Price')
plt.show()
```


In [52]:

```
plt.scatter(x_test, y_test, color = 'green')
plt.plot (x_test, predicted_test, color = 'red')
plt.title ('compare Test result')
plt.xlabel('normalized income')
plt.ylabel('house Price')
plt.show()
```

