BME Gépészmérnöki Kar	STATIKA	Név: Vári Gergő	
Műszaki Mechanikai Tanszék	4. HÁZI FELADAT	Neptun kód: MQHJ0H	
2024/25 I.	Határidő: lásd Moodle	Késés 🗆	Javítás 🗆
Nyilatkozat: Aláírásommal igazolom, hogy tettem el, az abban leírtak saját megértéseme	Aláírás: L=	11	

Csak a formai követelményeknek megfelelő feladatokat értékeljük! Javítás vagy pótlás csak a Moodle-ben megadott határidőig lehetséges!

Feladatkitűzés

A vázolt statikailag határozott megtámasztású rúdszerkezet egy L-alakú rúdból és egy egyenes rúdból áll, melyek a *C* csuklóban csatlakoznak egymáshoz. A szerkezetet az állandó intenzitású *p* megoszló erőrendszer és az **F** koncentrált erő terheli.

- 1. Készítsen méretarányos ábrát a szerkezetről és határozza meg a rúdszerkezet reakcióit!
- 2. Írja fel a vízszintes rudakból álló rész és a függőleges rúd igénybevételi függvényeit! Egyértelműen jelölje mindkét (vízszintes és függőleges) rúd esetén az alkalmazott koordinátarendszer origóját!
- 3. A jellegzetes értékek feltüntetésével rajzolja meg minden egyes rúdszakasz igénybevételi ábráit! Parabolaív esetén a kezdő és végpontokban szerkessze meg az érintőket! Továbbá a parabolaívek esetén számítsa ki a lokális szélsőérték helyét (x^*) és értékét $(M_h(x^*))$ és jelölje ezeket az igénybevételi ábrán!

Adatok

а	b	С	k	p	F
[m]	[m]	[m]	[m]	[kN/m]	[kN]
0.6	0.6	0.5	0.1	5	4

(Rész)eredmények

A táblázatba a vízszintes helyzetű rúd igénybevételeinek abszolút értelemben vett szélsőértékeit ($V(x_V)$, és $M_h(x_{M_h})$) és azok helyét/tartományát(x_V illetve x_{M_h}) be kell írni az előjelkonvenciónak megfelelően!

A_x [kN]	A_y [kN]	M_A [kNm]	$x_V[m]$	$V(x_V)$ [kN]	x_{M_h} [m]	$M_h(x_{M_h})$ [kNm]
6.25	1.5	0.9	1.2	2.5	0	0.9

 $(|V(x_V)| \ge |V(x)|, |M_h(x_{M_h})| \ge |M_h(x)|, \forall x \in [0, a+b+c].)$

B_x [kN]	B_y [kN]
-6.25	0

Lokális szélsőérték:	$V(x^{\star})$	x* [m]	$M_h(x^*)$ [kNm]
	0	0.9	-0.225

Statika 4. HF

Vári Gergő

2024. november 17.

1. Reakcióerők meghatározása

1.1. Méretarányos ábra

A kényszerek ábrázolásra kerültek az esetleges félreértések elkerülése érdekében. Egy darab külső erő jelenik meg illetve C és B között pedig egy megoszló erő.

$$a = 0.6[\mathrm{m}]$$

$$b = 0.6[\mathrm{m}]$$

$$c = 0.5 [m]$$

$$k = 0.1[kN]$$

$$p=5[\mathrm{kN}]$$

$$F = 4[kN]$$

1.2. SZTÁ

1.3. Egyensúlyi egyenletek

$$F_{p}(x) = p \times x$$

$$F_{p_{max}} = F_{p}(b+c) = 5.5[kN]$$

$$\begin{split} & \sum F_{\rm x} := 0 = A_{\rm x} + B_{\rm x} \\ & \sum F_{\rm y} := 0 = A_{\rm y} + F - F_{\rm p_{\rm max}} \\ & \sum M_{\rm z}^{\rm A} := 0 = M_{\rm A} - F_{\rm p}(a + \frac{b+c}{2}) + F \times (a+b) - B_{\rm x} \times k \end{split}$$

$$A_{\rm y} = F_{\rm p_{\rm max}} - F = 1.5[\rm kN]$$

3 ismeretlen és 2 egyenlet maradt tehát a szerkezetet részekre kell bontanunk.

1.4. Részek vizsgálata

A C pontban kettévágva a rácsszerkezetet részenként vizsgálhatom (így ezen pont mindkét ábrának része). Az ebben a pontban ébredő belső reakcióerőket a két részen ellentétesen veszem fel **Newton III. törvénye** (hatás-ellenhatás) miatt.

1.4.1.

$$\begin{split} \sum F_{\mathbf{x}} &:= 0 = A_{\mathbf{x}} + C_{\mathbf{x}} \\ \sum F_{\mathbf{y}} &:= 0 = A_{\mathbf{y}} + C_{\mathbf{y}} \\ \sum M_{\mathbf{z}}^{\scriptscriptstyle \text{C}} &:= 0 = -A_{\mathbf{y}} \times a + M_{\mathbf{A}} \end{split}$$

$$C_{y} = -A_{y} = -1.5$$

 $M_{A} = A_{y} \times a = 0.9$
 $A_{x} = -C_{x} = 6.25$

$$\begin{split} &\sum F_{\mathbf{x}} := 0 = -C_{\mathbf{x}} + B_{\mathbf{x}} \\ &\sum F_{\mathbf{y}} := 0 = -C_{\mathbf{y}} - F_{\mathbf{p}} + F \\ &\sum M_{\mathbf{z}}^{\scriptscriptstyle \mathrm{C}} := 0 = -F_{\mathbf{p}\,\mathrm{max}} \times \frac{b+c}{2} - B_{\mathbf{x}} \times k + F \times b \end{split}$$

$$B_{\mathbf{x}} = \frac{F \times b - F_{\mathbf{p_{max}}} \times \frac{b+c}{2}}{k} = -6.25$$

$$C_{\mathbf{x}} = B_{\mathbf{x}} = -6.25$$

Mivel megfelelő számú ismeretlenünk és egyenletünk van, a reakció-erőrendszer megoldható és a keresett reakcióerők kifejezhetőek.

$$A = \begin{bmatrix} 6.25 \\ 1.5 \end{bmatrix} \quad [kN]$$

$$B = \begin{bmatrix} -6.25 \\ 0 \end{bmatrix} \quad [kN]$$

2. Igénybevételi függvények

Körüljárással meglehet mind a két rúd igénybevételi függvényeit vizsgálni. Megfelelő koordináta-rendszerek és előjelkonvenciók felvétele után az 1-es rudat balról, míg a 2-es rudat jobbról nézhetjük. (Az utóbbinak az az indoka hogy a B_x erővel egyszerűbb lesz számolni.)

2.1. Függvények felírása

	1	1	1	2
	$0 \le x_1 \le a$	$a \le x_1 \le a + b$	$a+b \le x_1 \le a+b+c$	$0 \le x_2 \le k$
N(x)	$-A_{\mathbf{x}}$	$-A_{\mathrm{x}}$	$-A_{\mathrm{x}}$	0
V(x)	$A_{ m y}$	$A_{ m y}-F_{ m p}(x_1)$	$A_{\mathbf{y}} - F_{\mathbf{p}}(x_1) + F$	$-B_{\mathrm{x}}$
$M_{ m h}(x)$	$M_{ m A} - A_{ m y} imes x_1$	$M_{\mathbf{A}} - A_{\mathbf{y}} \times x_1 + F_{\mathbf{p}}(x_1 - a) \times \frac{x_1 - a}{2}$	$M_{\rm A} - A_{\rm y} \times x_1 + F_{\rm p}(x_1 - a) \times \frac{x_1 - a}{2} - F \times (x_1 - (a + b))$	$-B_{\mathbf{x}} \times (k - x_2)$
$M_{ m t}(x)$	0	0	0	0

2.2. Átrendezés

	1	1		2
	$0 \le x_1 \le 0.6$	$a \le x_1 \le 1.2$	$a+b \le x_1 \le 1.7$	$0 \le x_2 \le 0.1$
N(x)	-6.25	-6.25	-6.25	0
V(x)	1.5	$-5x_1 + 4.5$	$-5x_1 + 8.5$	6.25
$M_{\rm h}(x)$	$-1.5x_1 + 0.9$	$2.5x_1^2 - 4.5x_1 + 1.8$	$2.5x_1^2 - 8.5x_1 + 6.6$	$-6.25x_2 + 0.625$
$M_{\mathrm{t}}(x)$	0	0	0	0

3. Igénybevételi ábrák¹

3.1. Vízszintes rúd

3.1.1. Parabola szerkesztése

A véges differenciák módszere itt abban nyújt segítséget hogy a derivált értékét numerikusan közelíthetjük, különösen ha a függvény nem analitikus hanem diszkrét pontokból áll. Például ha a parabola értékei f(x) egy adott x_0 pont környezetében ismertek akkor a deriváltat közelíthetjük előre (előre differencia), hátra (hátra differencia), vagy közép differenciával.

– Előre differencia: $f'(x_0) pprox rac{f(x_0+h)-f(x_0)}{h}$

– Hátra differencia: $f'(x_0) pprox rac{f(x_0) - f(x_0 - h)}{h}$

– Közép differencia: $f'(x_0) pprox rac{f(x_0+h)-f(x_0-h)}{2h}$

A közép differencia módszer különösen pontos mert elsőrendű hibákat eliminál és így gyorsabban közelíti az analitikus deriváltat. Ezekkel a módszerekkel a parabola pontjaira és érintőire numerikus módon, a véges differenciák segítségével is jó közelítést adhatunk ami különösen hasznos diszkrét adathalmazok vagy numerikus modellek esetében.

A megfelelő szélsőértékek megállapítása után ezen pontokban kiszámolhatjuk a parabola érintőinek meredekségét (és ezzel egyenletük egyszerűbb ábrázolás érdekében). Ezt az $M'_h = -V$ összefüggéssel egyszerűen megteheiük.

Megnézve hol a derivált zérushelye (parabolánál mindig a középvonalra esik) abban az x_0 -ban kiszámítjuk a függvény értékét.

Ezekkel az adatokkal felvértezve már egy egész jó közelítést adhatunk a parabola pontjaira.

$2.5x^2 - 4.5x + 1.8$	$2.5x^2 - 4.5x + 1.8$
$x_{1} = 0.6$ $x_{2} = 1.2$ $m_{1} = M'_{h}(x) _{x=x_{1}} = -\frac{3}{2}$ $\Rightarrow m_{1} : -\frac{3}{2} \times x + 0.9$ $m_{2} = M'_{h}(x) _{x=x_{2}} = \frac{3}{2}$ $\Rightarrow m_{2} : \frac{3}{2} \times x - 1.8$ $y_{0} = M_{h}(\frac{x_{1}+x_{2}}{2}) = -0.225$ $M'_{h}(x^{*}) = 0$ $x^{*} = 0.9$ $M_{h}(x^{*}) = -0.225$	$x_{1} = 1.2$ $x_{2} = 2.2$ $m_{1} = M'_{h}(x) _{x=x_{1}} = -\frac{5}{2}$ $\Rightarrow m_{1} : -\frac{5}{2} \times x + 3$ $m_{2} = M'_{h}(x) _{x=x_{2}} = \frac{5}{2}$ $\Rightarrow m_{2} : \frac{5}{2} \times x - 5.5$ $y_{0} = M_{h}(\frac{x_{1} + x_{2}}{2}) = -0.46875$ $M'_{h}(x_{0}) = 0$ $x_{0} = 1.7$

 $^{^{1}\,\}mathrm{A}$ konstant 0 függvények nem kerültek ábrázolásra.

3.1.2. Igénybevételi ábrák

3.2. Függöleges rúd

3.2.1. Igénybevételi ábrák

