

score greater than or equal to the score of the result being evaluated and its derived by analysis of the total score distribution.

SIMILARITIES

No.	Result	Oscillation										Preset Option
		Score	Match	Loudth	1B	1B	1B	1B	1B	1B	1B	
1	+	163	1000	0	163	6	AB147001		AB44581	SQ3P-DOCO	2	
2	-	38	24	6	19379	2	AB147004		AB12143	ABAP-SAPI		
C	-	47.3	24.2	2	12453	2	AB147005		AB12144	ABAP-SAPI		
C	-	4	37.2	22.3	19934	3	AB147006		AB12145	ABAP-SAPI		
C	-	5	36.7	22.5	19964	9	AB147007		AB12146	ABAP-SAPI		
C	-	6	36.6	22.5	19980	2	AB147008		AB12147	ABAP-SAPI		
C	-	7	36.4	22.4	19829	9	AB147009		AB12148	ABAP-SAPI		
C	-	8	36.4	22.4	19468	2	AB147010		AB12149	ABAP-SAPI		
C	-	9	36.4	22.4	19814	2	AB147011		AB12150	ABAP-SAPI		
10	-	36.2	22.2	19589	2	AB147012		AB12151	ABAP-SAPI			
11	-	36	22.1	18489	2	AB147013		AB12152	ABAP-SAPI			
12	-	37	22.1	99324	2	AB147014		AB12153	ABAP-SAPI			
C	-	13	37	22.1	18937	9	AB147015		AB12154	ABAP-SAPI		
C	-	14	37	22.1	19953	3	AB147016		AB12155	ABAP-SAPI		
C	-	15	37	22.1	16097	9	AB147017		AB12156	ABAP-SAPI		
C	-	16	37	22.1	16056	3	AB147018		AB12157	ABAP-SAPI		
C	-	17	37	22.1	17049	9	AB147019		AB12158	ABAP-SAPI		
C	-	18	37	22.1	17456	9	AB147020		AB12159	ABAP-SAPI		
C	-	19	37	22.1	17299	3	AB147021		AB12160	ABAP-SAPI		
C	-	20	37	22.1	17299	2	AB147022		AB12161	ABAP-SAPI		
C	-	21	37	22.1	16637	2	AB147023		AB12162	ABAP-SAPI		
C	-	22	37	22.1	16637	9	AB147024		AB12163	ABAP-SAPI		
C	-	23	37	22.1	16637	9	AB147025		AB12164	ABAP-SAPI		
C	-	24	37	22.1	17834	2	AB147026		AB12165	ABAP-SAPI		
C	-	25	37	22.1	18538	2	AB147027		AB12166	ABAP-SAPI		
C	-	26	37	22.1	19574	2	AB147028		AB12167	ABAP-SAPI		
C	-	27	37	22.1	17475	8	AB147029		AB12168	ABAP-SAPI		
C	-	28	37	22.1	17474	9	AB147030		AB12169	ABAP-SAPI		
C	-	29	37	22.1	17422	2	AB147031		AB12170	ABAP-SAPI		
C	-	30	37	22.1	17274	2	AB147032		AB12171	ABAP-SAPI		
C	-	31	37	22.1	16552	9	AB147033		AB12172	ABAP-SAPI		
C	-	32	37	22.1	16014	9	AB147034		AB12173	ABAP-SAPI		
C	-	33	37	22.1	15423	9	AB147035		AB12174	ABAP-SAPI		
C	-	34	37	22.1	15423	9	AB147036		AB12175	ABAP-SAPI		
C	-	35	37	22.1	15423	9	AB147037		AB12176	ABAP-SAPI		
C	-	36	37	22.1	15175	2	AB147038		AB12177	ABAP-SAPI		
C	-	37	37	22.1	16931	9	AB147039		AB12178	ABAP-SAPI		
C	-	38	37	22.1	16931	9	AB147040		AB12179	ABAP-SAPI		
C	-	39	37	22.1	16830	2	AB147041		AB12180	ABAP-SAPI		
C	-	40	37	22.1	16830	2	AB147042		AB12181	ABAP-SAPI		
C	-	41	37	22.1	16794	2	AB147043		AB12182	ABAP-SAPI		
C	-	42	37	22.1	16794	3	AB147044		AB12183	ABAP-SAPI		
C	-	43	37	22.1	16794	10	AB147045		AB12184	ABAP-SAPI		
C	-	44	37	22.1	21146	2	AB147046		AB12185	ABAP-SAPI		
C	-	45	37	22.1	16263	2	AB147047		AB12186	ABAP-SAPI		

ANNEX

RESULT	1
LOCUS	A94581
DEFINITION	Serotype Z from patient W [S.4756].
ACCESSION	A94581
VERSION	A94581.1
KEYWORDS	serotype Z
SOURCE	unpublished.

REFERENCE 1 (bases 1 to 16,300) (unpublished).

pred. No.) is the number of results predicted by chance to have at

JOURNAL OF CLIMATE

卷之三

biochemical activity. An average of 1000 eggs per cavity has been measured at both extremes. Foraging activity generally coincides with the time of oviposition. In most All manzanita colonies, however, there has been no evidence of simultaneous egg laying in the same tree. The number of eggs laid per colony in 100 trees, however, by basic foraging patterns, are not significantly different, indicating that the mean for all colonies is 1000 eggs per cavity.

14

RISCHIE	✓
ARMED FORCES	✓
DEFINITION	Ratings of various 69 unbroken pieces
DEPRESSION	✓
VERSUS	✓
KYUNGHEE	✓; 11-17
HONG HANSE	✓

1

Outer code: WLR
 Web site: <http://zexx-egm.ornl.gov/mi/34>
 Contact: Sequence Submissions Specimen.WL.MI.1410
 Project name: 15197
 Center clone name: 521_M_8

* Note: This record contains 83 individual sequencing reads that have not been assembled into contigs. The order in which they appear is completely arbitrary. Low pass sequence sampling is useful for identifying clones that may be heterogeneous and allows overall relationships among clones to be deduced. However, it should not be assumed that this clone will be sequenced to completion. In the event that the record is updated, the accession number will be preserved.

1 963: contig of 949 bp in length
 961 1060: gap of contig of 949 bp in length
 1061 1989: contig of 929 bp in length
 1990 2189: gap of 100 bp
 2390 2397: contig of 608 bp in length
 2998 3057: gap of 100 bp
 3096 3098: contig of 916 bp in length
 4063 4143: gap of 100 bp
 4144 5241: contig of 948 bp in length
 5142 5241: gap of 100 bp
 5242 6248: contig of 977 bp in length
 6219 6318: gap of 100 bp
 6319 6725: contig of 947 bp in length
 7266 7365: gap of 100 bp
 7366 8235: contig of 946 bp in length
 8296 8395: gap of 100 bp
 8394 11533: contig of 925 bp in length
 11534 12457: contig of 943 bp in length
 12458 12557: gap of 100 bp
 12558 13490: contig of 943 bp in length
 13491 13590: gap of 100 bp
 14591 14594: contig of 924 bp in length
 14555 14654: gap of 100 bp
 14655 15592: contig of 948 bp in length
 15593 15692: gap of 100 bp
 15693 16618: contig of 926 bp in length
 16619 16718: gap of 105 bp
 16719 17688: contig of 970 bp in length
 17689 17788: gap of 100 bp
 17789 18754: contig of 966 bp in length
 18755 18854: gap of 100 bp
 18855 19812: contig of 958 bp in length
 19812 19912: gap of 100 bp
 19913 20879: contig of 957 bp in length
 20880 20979: gap of 100 bp
 21980 21990: contig of 921 bp in length
 21991 22000: gap of 100 bp
 22001 22292: contig of 921 bp in length
 22992 23021: gap of 100 bp
 23022 23938: contig of 917 bp in length
 23939 24038: gap of 100 bp
 24039 24984: contig of 946 bp in length
 24985 25084: gap of 100 bp
 25085 25393: contig of 949 bp in length
 25394 25493: gap of 100 bp
 26094 27092: contig of 969 bp in length
 27095 27152: gap of 100 bp
 27163 28113: gap of 100 bp
 28114 28243: contig of 966 bp in length
 28214 29179: contig of 966 bp in length

29180 29279: gap of 100 bp
 29285 30227: contig of 948 bp in length
 30283 31273: gap of 100 bp
 31283 31673: gap of 100 bp
 32313 32412: gap of 100 bp
 32413 33378: contig of 966 bp in length
 33379 34378: gap of 100 bp
 34379 34499: contig of 948 bp in length
 34499 35533: gap of 100 bp
 35534 36681: contig of 948 bp in length
 36542 36581: gap of 100 bp
 36742 37442: contig of 911 bp in length
 37592 37593: gap of 100 bp
 37593 38553: contig of 961 bp in length
 38554 38653: gap of 100 bp
 38654 39673: contig of 922 bp in length
 39676 40673: gap of 100 bp
 40676 41673: contig of 962 bp in length
 41673 42734: gap of 100 bp
 42734 43734: contig of 977 bp in length
 43738 44737: gap of 100 bp
 44738 45737: contig of 941 bp in length
 45739 46738: gap of 100 bp
 46739 47738: contig of 962 bp in length
 47739 48738: gap of 100 bp
 48740 49740: contig of 923 bp in length
 49740 50709: gap of 100 bp
 50709 51129: gap of 100 bp
 51130 51730: contig of 975 bp in length
 51731 52731: gap of 100 bp
 52732 53732: contig of 943 bp in length
 53733 54733: gap of 100 bp
 54734 55734: contig of 942 bp in length
 55735 56735: gap of 100 bp
 56736 57736: contig of 936 bp in length
 57737 58737: gap of 100 bp
 58738 59738: contig of 932 bp in length
 59739 60739: gap of 100 bp
 60740 61740: contig of 929 bp in length
 61741 62741: gap of 100 bp
 62742 63742: contig of 936 bp in length
 63743 64743: gap of 100 bp
 64744 65744: contig of 936 bp in length
 65745 66745: gap of 100 bp
 66746 67746: contig of 936 bp in length
 67747 68747: gap of 100 bp
 68748 69748: contig of 966 bp in length
 69749 70749: gap of 100 bp
 70750 71750: contig of 966 bp in length
 71751 72751: gap of 100 bp
 72752 73752: contig of 966 bp in length
 73753 74753: gap of 100 bp
 74754 75754: contig of 966 bp in length
 75755 76755: gap of 100 bp
 76756 77756: contig of 966 bp in length
 77757 78757: gap of 100 bp
 78758 79758: contig of 966 bp in length
 79759 80759: gap of 100 bp
 80760 81760: contig of 966 bp in length
 81761 82761: gap of 100 bp
 82762 83762: contig of 966 bp in length
 83763 84763: gap of 100 bp
 84764 85764: contig of 966 bp in length
 85765 86765: gap of 100 bp
 86766 87766: contig of 966 bp in length
 87767 88767: gap of 100 bp
 88768 89768: contig of 966 bp in length
 89769 90769: gap of 100 bp
 90770 91770: contig of 966 bp in length
 91771 92771: gap of 100 bp
 92772 93772: contig of 966 bp in length
 93773 94773: gap of 100 bp
 94774 95774: contig of 966 bp in length
 95775 96775: gap of 100 bp
 96776 97776: contig of 966 bp in length
 97777 98777: gap of 100 bp
 98778 99778: contig of 966 bp in length
 99779 100779: gap of 100 bp

A temporary file containing a converted binary dump file was placed in the current working directory. The command-line arguments specified the input and output file names and requested all sections were converted to ASCII text. The command-line options were determined by the command-line arguments.

The specified verification file was generated by writing the original binary dump file to standard output. The system model file was read from standard input and the output was compared to the expected results. No mismatch was found.

The following table compares the expected and generated results. The first column lists the experimental and predicted values. The second column lists the difference between the expected and predicted values. The third column lists the absolute difference between the expected and predicted values. The fourth column lists the relative difference between the expected and predicted values. The fifth column lists the percentage difference between the expected and predicted values. The sixth column lists the standard deviation of the differences. The seventh column lists the standard deviation of the differences divided by the standard deviation of the differences.

The following table shows the results of the comparison between the expected and predicted values. The first column lists the experimental and predicted values. The second column lists the difference between the expected and predicted values. The third column lists the absolute difference between the expected and predicted values. The fourth column lists the relative difference between the expected and predicted values. The fifth column lists the percentage difference between the expected and predicted values. The sixth column lists the standard deviation of the differences. The seventh column lists the standard deviation of the differences divided by the standard deviation of the differences.

RESULTS

The following table shows the results of the comparison between the expected and predicted values. The first column lists the experimental and predicted values. The second column lists the difference between the expected and predicted values. The third column lists the absolute difference between the expected and predicted values. The fourth column lists the relative difference between the expected and predicted values. The fifth column lists the percentage difference between the expected and predicted values. The sixth column lists the standard deviation of the differences. The seventh column lists the standard deviation of the differences divided by the standard deviation of the differences.

RESULTS

ALBINI

GENERAL INFORMATION:
 APPLICANT: BOYSSYK, Mykola
 APPLICANT: Bojssyk, Lyudmyla
 TITLE OF INVENTION: Materials and Methods For Amplifying and Enhancing
 TITLE OF INVENTION: Transcription of polynucleotides in plants and microorganisms
 FILING DIFFERENCE: 2015-07-25/044
 CURRENT APPLICATION NUMBER: US2015/035214
 CURRENT FILING DATE: 1999-06-15
 EARLIER APPLICATION NUMBER: US 09/0097, 541
 EARLIER FILING DATE: 1998-06-15
 NUMBER OF SEQ ID NOS: 4
 SOFTWARE: PatentIN, Ver.: 2.0
 SEQ ID NO: 4
 LENGTH: 3254
 TYPE: rNA
 ORGANISM: L. esculentum
 US-09-0097-214-4

QUERY Match: 17, 74; Score: 28, 9; Id: 4; Length: 3254;
 best local Similarity: 43, 28; Fred: No.; 8, 3;
 Matches: 38; Conservative: 13; Mismatches: 37; Indels: 0; Gaps: 0

QF
 5'-A-C-A-T-G-A-T-A-T-A-G-T-A-G-A-C-T-T-G-A-C-A-A-T-G-T-T-A-T-A-G-
 1155-A-A-C-T-G-C-A-A-T-A-T-A-G-T-A-G-A-C-T-T-G-A-C-A-A-T-G-T-T-A-T-A-G-
 124-3-C-A-A-N-G-A-A-T-T-G-A-G-A-A-C-H-U-G-1096
 1095-A-C-G-A-A-C-G-T-T-A-A-G-A-A-C-H-A-C-A-A-T-G-T-T-A-T-A-G-1068

such as the one described. Many believe that this "new" technology will revolutionize the
Fertilizer Industry. (See Attached Article.)
Please forward your comments.

卷之三

卷之三

REVIEW OF THE LITERATURE ON CANADA'S ENERGY POLICIES

200

111

卷之三

10 MIS

115

Waterton, Peterman, Nonn, and others, the University of British Columbia, the IR, and the MRC maintain the International Society for the Study of the Sarcopenia of Aging.

Open Match 28000 Score 95 103 105 Total 400
Prestonians 10000 Score 95 103 105 Total 400
Match 28000 Score 95 103 105 Total 400
Match 28000 Score 95 103 105 Total 400

PHOTOGRAPHIC PLATES
AND FILM
LABORATORY
ADDRESS: N.
PROFESSIONAL PHOTOGRAPHIC EQUIPMENT
AND SUPPLIES
AND FILM
ADDRESS: N.
VITRINE: N.

POLYMER LETTERS
Volume 10 Number 1
January 1972
PARTICIPATING INSTITUTIONS
Polymer Letters Department, Worcester Polytechnic Institute, Worcester, Mass.
Massachusetts Institute of Technology, Cambridge, Massachusetts, Cambridge, Mass.
University of Massachusetts, Amherst, Mass., Worcester Polytechnic Institute, Worcester, Mass., Boston University, Boston, Mass., Northeastern University, Boston, Mass., Boston College, Chestnut Hill, Mass., Boston University, Boston, Mass.

Altlinger, H., and J. W. Voss. "New staining method for electron microscopy made from biological tissue fixatives." *Z. Zellforsch.* 117: 487-500, 1971.

vectors, the 5'-terminal 5'CA sequence was replaced with a double strand break signal and was flanked with SphI and SalI cleavage sites of the pSPK12 plasmid vector (Life Technologies). The library was constructed by Dr. Minori S. H. Ko and Dr. Xiaojun Wang.¹

Query	Match	Best Local Similarity	Score	Length	Length
BB	2. KOGAAAGGAGKGGGAGGAGAATACATTTTGTGTTGTTGTTAAAGAACTAC	49.4%	34.24	198	95
BB	3. KOGAAAGGAGKGGGAGGAGAATACATTTTGTGTTGTTGTTAAAGAACTAC	49.4%	34.24	198	95
BB	4. KOGAAAGGAGKGGGAGGAGAATACATTTTGTGTTGTTGTTAAAGAACTAC	49.4%	34.24	198	95
BB	5. KOGAAAGGAGKGGGAGGAGAATACATTTTGTGTTGTTGTTAAAGAACTAC	49.4%	34.24	198	95

ACCESSION NUMBER	A1551573
VERSION	A1551573.1
KEYWORD	EST
SOURCE	house mouse
ORGANISM	Mus musculus
REFERENCE	Mammalia: Eutheria: Rodentia: Sciuroidea: Muridae: Murinae: Mus
1 (bases 1 to 419)	Marra, M., Miller, J., Rungwani, T., Martin, J., Brock, S., Taylor, T., Underwood, K., Stoeckle, M., Heiligman, B., Alton, M., Brzustowski, M., Lefebvre, B., Swallert, T., Gitzelman, M., Park, J., Brubaker, K., Shaffer, R., Ritter, R., Kotilinek, L., Shopp, E., Jackson, Y., Gauthier, M., McEachern, R., Waterston, R., and Wilson, R.
TITLE	The WashU NCI Mouse EST Project
JOURNAL	Unpublished (1994)
CURRENT	Contact: Baaria B, Washington School of Medicine, 660 Harrison Street, San Francisco, CA 94158, USA; Tel: +1 415 450 2866; Fax: +1 415 450 2866; Email: baaria@itsa.ucsf.edu
FEATURES	This clone is available via GenBank (http://www.ncbi.nlm.nih.gov/Genbank) or via the IMAGE Consortium (http://image.llnl.gov). For further information, contact: Michael A. Milford, milford@mail.sci.washington.edu.
	This record is a RESEQUENCE of a previously sequenced mouse clone. This record has been verified (found to fit its original soft in the correct orientation).
	Seq primer: Primer name: ambidrons.
	Location/Qualifiers

卷之三

卷之三

卷之三

卷之三

A. T. HORNIG / *Journal of Macroeconomics* 26 (2004) 179–200

KINETIC ENERGY

ESTATE PLANNING FOR THE RETIREMENT YEARS

1948-1950. The first two years were spent in the field, the last two in the laboratory.

JOURNAL OF POLYMER SCIENCE: PART A: POLYMERS IN ADVANCED TECHNOLOGY

卷之三

1960-61
1961-62
1962-63
1963-64
1964-65
1965-66
1966-67
1967-68
1968-69
1969-70
1970-71
1971-72
1972-73
1973-74
1974-75
1975-76
1976-77
1977-78
1978-79
1979-80
1980-81
1981-82
1982-83
1983-84
1984-85
1985-86
1986-87
1987-88
1988-89
1989-90
1990-91
1991-92
1992-93
1993-94
1994-95
1995-96
1996-97
1997-98
1998-99
1999-2000
2000-01
2001-02
2002-03
2003-04
2004-05
2005-06
2006-07
2007-08
2008-09
2009-10
2010-11
2011-12
2012-13
2013-14
2014-15
2015-16
2016-17
2017-18
2018-19
2019-20
2020-21
2021-22

卷之三

Journal of Health Politics, Policy and Law, Vol. 30, No. 3, June 2005
DOI 10.1215/03616878-30-3 © 2005 by The University of Chicago

Ergonomics in Design

and the author's name is given in the title of the paper.

卷之三

卷之三

卷之三

SCHOLARLY PAPERS IN THE JOURNAL OF POLITICAL PHILOSOPHY

卷之三

