

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

ransformações

/létodos nãoaramétricos

Resumo

Felipe Figueiredo

Métodos não-paramétricos

Ou: o que fazer caso seus dados não sejam normais?

Instituto Nacional de Traumatologia e Ortopedia

Sumário

- Visualização
- Testes contra a normalidade
- 2 Transformações
 - Transformações
 - Exemplo
- Métodos não-paramétricos
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 4 Resumo

INTO

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações

Métodos não

Resumo

A hipótese da normalidade

- Todos os métodos que vimos até aqui presumem que os dados são normalmente distribuídos
- Desvios da normalidade precisam ser contornados¹
- Veremos duas maneiras: transformações e alternativas
- Mas antes, como identificar essa necessidade?

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade Visualização Normalidade

ransformações

Métodos não-

Raciima

Dados normais

Métodos nãoparamétricos

Felipe Figueiredo

Normalidad Visualização

Transformaçõe

Métodos não paramétricos

Resumo

há controvérsias: https://www.r-bloggers.com/
normality-tests-don't-do-what-you-think-they-do/

Visualização - Histograma

40

9

0

10 20 30 50

х2

Dados não-normais

60

Frequency

Métodos nãoparamétricos

Felipe Figueiredo

Visualização

Visualização - Histograma

Métodos nãoparamétricos

> Felipe Figueiredo

Visualização

Visualização - Histograma

Métodos nãoparamétricos Felipe Figueiredo

Visualização

Dados não-normais

Visualização - Histograma

20 15

Visualização Normalidade

Visualização - boxplot

Métodos não paramétricos

Felipe Figueiredo

20 15 9

> 150 160

170 180

20 9

x2

O Q-Q plot

quantis teóricos

referência

Métodos não paramétricos

> Felipe Figueiredo

Visualização Normalidade

Métodos não paramétricos • Dados normalmente distribuídos, ficam próximos da

• Gráfico que compara os quantis da amostra com os

• Adicionalmente uma reta "ideal" é sobreposta, como

• Quanto maior o desvio da normalidade, maior a distância à reta

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

²Lembre que **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar sua recíproca.

• Objetivo: é possível determinar se uma amostra veio

• Resposta longa: podemos examinar se há evidências

de uma população normalmente distribuída?

Resposta curta: NÃO.

para "aceitar" esta hipótese²

Alguns testes de normalidade

- Métodos não paramétricos

Felipe Figueiredo

Visualização Normalidade

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

Shapiro-Wilk

Métodos nãoparamétricos

Felipe Figueiredo

Visualização Normalidade

Shapiro-Wilk

Métodos não paramétricos Felipe Figueiredo

Normalidade

Transformações

- Algumas vezes, podemos aplicar uma transformação nos dados, para que eles se adequem às premissas requeridas
- Transformações comuns incluem:
 - logaritmo
 - exponencial
 - raiz quadrada
 - potências
- Geralmente envolve tentativa e erro³
- Hipóteses sobre o problema ou desenho experimental ajudam

Métodos nãoparamétricos

Felipe Figueiredo

Transformações

³Mas a transformação de Box-Cox pode ajudar!

Exemplo

40

30

20

9

0

0

Frequency

Métodos não paramétricos

Felipe Figueiredo

Exemplo

20 70

х2

Transformação sugerida: logaritmo.

Exemplo

Métodos não paramétricos

> Felipe Figueiredo

Exemplo

Métodos não paramétricos Felipe

Figueiredo

Exemplo

Teste para 1 amostra

Métodos nãoparamétricos

> Felipe Figueiredo

1 amostra

3+ amostras

log-transformados (p-valor Shapiro-Wilk: 0.05032)

possível • Caso não seja, deve-se usar um teste não-paramétrico

Desvios da normalidade severos impactam os testes

Teste para uma amostra

paramétricos

Ao invés do teste t, usar o teste de Wilcoxon (Capítulo 25)

Nesses casos, deve-se transformar os dados, se

Testes para 2 amostras Métodos não-paramétricos Pelipe Figueiredo Normalidade Transformação Métodos não-paramétricos amostras independentes ⇒ t-teste não-pareado amostras pareadas ⇒ t-teste pareado Dados não-normais amostras independentes ⇒ Mann-Whitney (Capítulo 24) amostras pareadas ⇒ Wilcoxon (Capítulo 25)

Histogramas

Métodos não paramétricos

Felipe

2 médias

3+ amostras

Frequency

10

Figueiredo

Amostra 2

6

30

9

2

0 2

Frequency

Amostra 1

10

Х

15 20

QQ-plots

• Para testar se há diferença significativa em 3 ou mais

Leva em conta as variâncias entre os grupos (inter)

• Leva em conta a variância em cada grupo (intra)

H₁: pelo menos um grupo é significativamente ≠

Análise de Variâncias (ANOVA)

• H_0 : Todos os grupos são =

Métodos não paramétricos

> Felipe Figueiredo

2 médias

3+ amostras

Mann-Whitney

Métodos não paramétricos

Felipe Figueiredo

2 médias

3+ amostras

Teste t

p-valor = 0.259 (não significativo)

- Aplicando o teste de Shapiro-Wilk em x e y
 - x: p-valor = 5.515e-16
 - y: p-valor = 5.274e-09
- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

p-value = 0.0001346 (significativo)

Relembrando

amostras

Métodos nãoparamétricos

Felipe Figueiredo

2 médias

3+ amostras

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

Transformaçõe

paramétricos

2 médias 3+ amostras

Resum

Kruskal-Wallis

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês):< 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Teste de Kruskal-Wallis

p-value = 6.901e-06 (significativo)

Relembrando

- A correlação de Pearson associa dados numéricos
- Mede a direção e força desta associação

Correlação

Ao invés da correlação linear de Pearson, usar a correlação de ranks de Spearman (Capítulo 17).

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Métodos não paramétricos

1 amostra 2 médias

.

Número de resultados no PUBMED

• t-test: 61488

ANOVA: 431252Wilcoxon: 19881

Mann-Whitney: 25571Kruskal-Wallis: 11943

Shapiro-Wilk: 519

Kolmongorov-Smirnoff: 0

• Anderson-Darling: 49

• Chi-Square: 107277

OR: 221034RR: 344996

Métodos não

paramétricos

Felipe

Figueiredo

2 médias

3+ amostras

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformações

Métodos nãoparamétricos

Resumo

Resumo (teste oftálmico)

Table 37.1. Selecting a Statistical Test

Goal	Type of Data				
	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time	
Describe one group	Mean, SD	Median, interquartile range	Proportion	Kaplan Meier survival curve	
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test	Chi-square or Binomial test**	_	
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel-Haenszel*	
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportiona hazards regression**	
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression*	
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test	Cochrane Q**	Conditional proportiona hazards regression**	
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**		
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*	
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*	

Métodos nãoparamétricos

Felipe Figueiredo

Normalidade

Transformações Pransformações Pransf

létodos não-

Resumo

Pós-aula

*Only briefly mentioned in this book.

**Not discussed in this book.

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Iransformações

Métodos não-

Resumo

Leitura obrigatória

- Capítulo 37
- Capítulo 38

Leitura recomendada

Seções de métodos não-paramétricos dos capítulos mencionados na aula.

Resumo (agora sim)

Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)
Describe one group	Mean, SD	Median, interquartile range
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test
Compare two unpaired groups	Unpaired t test	Mann-Whitney test
Compare two paired groups	Paired t test	Wilcoxon test
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test
Quantify association between two variables	Pearson correlation	Spearman correlation

Métodos nãoparamétricos

> Felipe Figueiredo

Normalidade

Transformaçõe

Métodos nãoparamétricos

Resumo