形式语言与自动机理论笔记

Leo Lu

2021年9月30日

蒋宗礼 信息楼 214 jiangzl@bjut.edu.cn

第一章 第一章绪论

1.1 引入: 过河问题

人 -> m 狼 -> w 羊 -> g 白菜 -> c 初状态:

mwgc -

wc - mg

mwc - g

c - mwg

mgc - w

g - mcw

mg - cw

- mgcw

1.2 重要性

GRE 中 80 道题, 其中有 8~15 道形式语言。

1.3 Basic Concepts

1.3.1 Alphabet

An alphabet is a collection of characters.

Product of two alphabets:

$$\{0,1\} \times \{a,b\} = \{0a,0b,1a,1b\}$$

Power of an alphabet:

$$\Sigma^0 = \epsilon, \Sigma^n = \Sigma^{n-1} \times \Sigma$$

Positive closure of an alphabet:

$$\Sigma^+ = \bigcup_{i=1}^{\infty} \Sigma^i$$

Kleene closure of an alphabet:

$$\Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i = \{\epsilon\} \cup \Sigma^+$$

第一章 第一章绪论

1.3.2 Senctence

X is a "Sentence" if: $\forall X \in \Sigma^*$

1.3.3 Empty sentence

An empty sentence, denoted by ϵ or λ , is a string with no characters at all.

1.3.4 "Length" of a "Sentence"

 $\forall X \in \Sigma^*$, the count of characters appeared in x is called the length of x, denote by |x|For example: |ababab| = 6; $|\epsilon| = 0$ Note that $\{\epsilon\} \neq \Phi$.

1.3.5 Concatenation of sentences

 $\forall x, y \in \Sigma^*$, the concatenation of sentences x, y, denoted by |xy|, is the direct join of two strings.

$$|xy| = |x| + |y|$$

1.3.6 N-power of sentences

 $\forall x \in \Sigma^*$, the n-power of sentence x:

$$x^n = \begin{cases} \epsilon & \text{n=0} \\ x^{n-1}x & \text{Other} \end{cases}$$

1.3.7 Prefix and Suffix

 $\forall x, y, z, w, v \in \Sigma^*$, given that x = yz, w = yv, then:

- 1. y is the Prefix of x
- 2. z is the Suffix of x
- 3. if $z \neq \epsilon$, y is "Proper Prefix" of x
- 4. if $y \neq \epsilon$, z is "Proper Suffix" of x
- 5. y is the "Common Suffix" of x and w

For example, if x = 0110:

- Prefix of x is ϵ , 0, 01, 011, 0110
- Proper prefix of x is ϵ , 0, 01, 011
- Suffix of x is ϵ , 0, 10, 110, 0110
- Proper suffix of x is ϵ , 0, 10, 110

1.3.8 Reverse of a sentence

The reverse of sentence x is denoted by x^R or x^T .

1.3.9 Language on Alphabet Σ

 $\forall L \subseteq \Sigma^*, L \text{ is called a Language on alphabet } \Sigma$

 $\forall x \in L, x \text{ is called } a \text{ sentence of } L$

For example: let $\Sigma = \{0, 1\}$, we have

- 1. $L_1 = \{0, 1\}$
- 2. $L_2 = \{00, 01, 10, 11\}$
- 3. $L_3 = \{0, 1, 00, 01, 10, 11, \ldots\} = \Sigma^+$
- 4. $L_4 = \{\epsilon, 0, 1, 00, 01, 10, 11, \ldots\} = \Sigma^*$
- 5. $L_5 = \{0^n | n \ge 1\}$
- 6. $L_6 = \{0^n 1^n | n \ge 1\}$
- 7. $L_7 = \{1^n | n \ge 1\}$
- 8. $L_8 = \{0^n 1^m | n, m > 1\}$
- 9. $L_9 = \{0^n 1^n 0^n | n \ge 1\}$
- 10. $L_{10} = \{0^n 1^m 0^k | n, m, l \ge 1\}$
- 11. $L_{11} = \{x | x \in \Sigma^+ \text{ and the number of } 0 \text{ and } 1 \text{ of } x \text{ are same} \}$

1.3.10 Operation of Language

All operatio on Sets also works on Language.

Note that \cup , \cap , -, - *are closure* (封闭的).

Product of Languages:

Given $L_1 \subseteq \Sigma_1^*, L_2 \subseteq \Sigma_2^*$, the product of L_1 and L_2 is a Language on alphabet $\Sigma_1 \cup \Sigma_2$.

$$L_1L_2 = \{xy | x \in L_1, y \in L_2\}$$

Power of Languages:

Given a language L, we have:

$$L^{n} = \begin{cases} \epsilon & n = 0\\ L^{n-1}L & Other \end{cases}$$

Positive closure of a language:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Kleene closure of a language:

$$L^* = \bigcup_{i=0}^{\infty} L^i = \{\epsilon\} \cup L^+$$

Note that: $L^+ = L^* \iff \epsilon \in L$

Examples

第二章 第二章 文法

- 给定 Σ , 讨论 Σ 上典型语言的结构特征
 - $-\{0^n1^m|n,m\geq 1\}:$

- $\{0^n 1^n 0^n | n \ge 1\}$
- 给定 Σ , 讨论语言的结构与表示

$$- \{xx|x \in \Sigma^{+}\} = \{a_{1}a_{2} \dots a_{n}a_{1}a_{2} \dots a_{n}|a_{1}, a_{2}, \dots, a_{n} \in \Sigma, n \geq 1\}$$

$$- \{xx^{T}|x \in \Sigma^{+}\}$$

$$- \{xx^{T}w|x, w \in \Sigma^{+}\}$$

$$= \{a_{1}a_{2} \dots a_{n} \dots a_{1}b_{1} \dots b_{m}|a_{1}, \dots, a_{n}, b_{1}, \dots, b_{m} \in \Sigma, n, m \geq 1\}$$

$$- \{xwx^{T}|x, w \in \Sigma^{+}\}$$

$$= \{a_{1} \dots a_{n}b_{1}b_{2} \dots b_{n}a_{n} \dots a_{1}|a_{1}, \dots, a_{n}, b_{1}, \dots, b_{m} \in \Sigma, n, m \geq 1\}$$

= $\{aa_1 \dots a_n a | a, a_1, a_2, \dots, a_n \in \Sigma, n \ge 1\}$

第二章 第二章 文法

2.1 启示

- 对无穷对象的描述
 - $\{0^n | n \ge 1\}$
 - * 0 是 S 的元素
 - $* \forall x \in S, x0 \in S$
 - $* S \rightarrow 0$
 - $*~S \to S0$
 - $-\{0^n1^m|n,m\geq 1\}$
 - $* 0 \in S$

 $\forall x \in S, 0x, x1 \in S$

- * $S \rightarrow 01$
 - $S \to 0S|S1$
- $* S \rightarrow S_1S_2$
 - $S_1 \to 0$
 - $S_1 \to S_1 0$
 - $S_2 \to 0$
 - $S_2 \rightarrow S_2 0$
- $-\{0,1\}^*$
 - $* \ \epsilon \in S$

 $\forall x \in S, 0x, 1x \in S$

*
$$S \to \epsilon$$

 $S \to 0S$
 $S \to 1S$
- $\{0,1\}^*\{11\}\{0,1\}^*$
* $11 \in S$
 $\forall x \in S, 0x, 1x, x0, x1 \in S$
* $S \to 11$

- $S \to 0S|1S|S0|S1$
- 描述:
 - * ident 是表达式

• 如何定义中缀表达式: 递归

- * 表达式加表达式是表达式
- * 表达式减表达式是表达式
- * 表达式乘表达式是表达式
- * 表达式除表达式是表达式
- * 表达式加括号是表达式
- 定义:
 - * 表达式定义为标识符
 - * 表达式定义为表达式 + 表达式
 - * 表达式定义为表达式 表达式
 - * 表达式定义为表达式 × 表达式
 - * 表达式定义为表达式 : 表达式
 - * 表达式定义为(表达式)
- 符号化

 $E \to ident$

 $E \to E + E$

 $E \to E - E$

 $E \to E \times E$

 $E \to E \div E$

 $E \to (E)$

- 表示优先级
 - * 因子是标识符
 - * 因子是括号的表达式
 - * 项是因子
 - * 项是因子 */ 因子
 - * 表达式是项
 - * 表达式是表达式 +- 表达式
- 符号化
 - * Variables: E, T, F

- * Terminals: $+ \times \div ident()$
- * Products:

$$E \to T + T$$

$$E \to T - T$$

$$E \to T$$

$$T \to F \times F$$

$$T \to F \div F$$

$$T \to F$$

$$F \rightarrow ident$$

$$F \to (E)$$

* Start Symbol: E

2.2 形式定义

定义 2.1. 文法 (Grammar) G 是一个四元组

$$G = (V, T, P, S)$$

其中,

V— 变量(Variable)的非空有穷集。 $\forall A \in V$,A 叫做语法变量($syntactic\ variable$),也叫非终极符号(nonterminal)。

T— 终极符 (Terminal) 的非空有穷集。 $\forall a \in T$, a 叫做终极符。 $V \cup T = \Phi$ 。

P— 产生式 (Production) 的非空有穷集。对于 $a \rightarrow b$, a 是左部, b 是右部。

 $S-S \in V$, 文法 G 的开始符号 (Start symbol)。

约定:

- 只写产生式,第一个产生式的左部为开始符号
- 对一组有相同左部的产生式 $\alpha \to \beta_1, \alpha \to \beta_2, \alpha \to \beta_3, \ldots$ 可以记为 $\alpha \to \beta_1 | \beta_2 | \beta_3 \ldots \beta_1, \beta_2, \beta_3$ 称为候选式(Candidate)
- 形如 $\alpha \to \epsilon$ 的产生式叫做空产生式, 也可叫做 ϵ 产生式
- 符号
 - 英文大写字母为语法变量
 - 英文小写字母为终结符号
 - 英文较后的大写字母为语法变量或者终极符号
 - 英文较后的大写字母为终极符号行
 - 希腊字母表示语法变量和终极符号组成的行

定义 2.2. 设 G = (V, T, P, S) 是一个文法,如果 $\alpha \to \beta \in P, \gamma, \delta \in (V \cup T)$,则称 $\gamma \alpha \delta$ 在 G 中直接推导(Derivation)出 $\gamma \beta \delta$,记作 $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$ 。

于此相对应, $\gamma\beta\delta$ 归约到 $\gamma\alpha\delta$, 简称 β 归约为 α 。

 $\Rightarrow_G \mathbb{R} (V \cup T)^*$ 上的二元关系。

第二章 第二章 文法

定义 2.3. 对于文法 G:

$$\frac{n}{G} = \left(\overrightarrow{\Rightarrow} \right)^{n}$$

$$\stackrel{*}{\Longrightarrow} = \left(\overrightarrow{\Rightarrow} \right)^{*}$$

$$\stackrel{=}{\Longrightarrow} = \left(\overrightarrow{\Rightarrow} \right)^{+}$$

当只有唯一的文法 G 时,可以省略 G: $\stackrel{n}{\Longrightarrow}$, $\stackrel{*}{\Longrightarrow}$, $\stackrel{+}{\Longrightarrow}$

定义 2.4. 对于语言 G = (V, T, P, S):

语法范畴
$$A$$
 $L(A) = \left\{ w | w \in T^* \, \mathbb{1}A \stackrel{*}{\Rightarrow} w \right\}$

语言 (Language)
$$L(G) = \left\{ w | w \in T^* \text{且}S \stackrel{*}{\Rightarrow} w \right\}$$

句子 (Sentence) $\forall w \in L(G)$

句型 (Sentential Form) $\forall \alpha \in (V \cup T)^*$,如果 $S \stackrel{*}{\Rightarrow} \alpha$,则称 α 是 G 产生的一个句型。

定义 2.5. 对于文法 G_1, G_2 , 如果 $L(G_1) = L(G_2)$, 则称 G_1 与 G_2 等价。

2.3 文法的构造

- $L(G) = \{0, 1, 00, 11\}$
 - $-G_1: S \to 0|1|00|11$
 - $-G_2: S \to A|B|AA|BB, A \to 0, B \to 1$
 - $-G_3: S \to 0|1|0A|1B, A \to 0, B \to 1$
 - $-G_4: S \to A|B|AA|BB, A \to 0, B \to 1, C \to 1$
- $\{x | x \in \mathbb{Z} \setminus \{x \in \mathbb{Z}$
 - $-~G:S\rightarrow A1A1A1A, A\rightarrow \epsilon|0A|1A$
 - $-G: S \to A1A1A1B, A \to \epsilon | 0A, B \to \epsilon | 0B | 1B$
 - $-G: S \to AAAB, A \to 1|0A, B \to \epsilon|0B|1B$

2.4 文法的乔姆斯体系

定义 2.6. 对于文法 G = (V, T, P, S):

G 叫做 0 型文法, $Type\ 0$ Grammar, 也叫短语结构文法 (PSG, $Phrase\ Structure\ Grammar$) L(G) 是 0 型语言, 也叫短结构语言, 可递归枚举集。

定义 2.7. 对于 0 型文法文法 G = (V, T, P, S):

如果对于 $\forall \alpha \to \beta \in P$, 均有 $|\beta| \ge |\alpha|$, 则 $G \neq 1$ 型文法, 或上下文有关文法。

定义 2.8. 对于 1 型文法文法 G = (V, T, P, S):

如果对于 $\forall \alpha \to \beta \in P$,均有 $|\beta| \ge |\alpha|$,并且 $\alpha \in V$ 则 $G \in \mathbb{Z}$ 型文法,或上下文无关文法。

定义 2.9. 对于 2 型文法文法 G = (V, T, P, S):

如果对于 $\forall \alpha \rightarrow \beta \in P$:

如果形如 $A \to wB$ 和 $A \to w$, 其中 $A, B \in V, w \in T^+$: G 是右线性文法。

如果形如 $A \to Bw$ 和 $A \to w$, 其中 $A, B \in V, w \in T^+$: G 是左线性文法。

则 G 是 3 型文法, 或正则文法。

第二章 第二章 文法 8

2.5 空产生式

允许在 CSG, CFG, RG 文法中存在空产生式。 允许在 CSL, CFL, RL 语言中存在空语句。 特点:

- 对于 \forall 右线性文法 G_1 , \exists 左线性文法 G_2 使得 $L(G_1) = L(G_2)$
- 对于 ∀ 左线性文法 G₁, ∃ 右线性文法 G₂ 使得 L(G₁) = L(G₂)
 所以,某种意义上二者等价。其中,左线性文法的表述好。
 左递归? 线性文法不是正则文法!
- $\forall G, \exists G', L(G') = L(G)$,但是 G' 中的开好似符号不出现在任何产生式的右部,且在 $\epsilon \in L(G')$ 时,G' 中只有 $S' \to \epsilon$ 这样一个 ϵ 产生式。

2.5.1 语言运算

给定上下文无关文法 G_1, G_2 , 构造 G 使得:

1.
$$L(G) = L(G_1)L(G_2)$$

其中 $V_1 \cup V_2 = \phi$, $S \notin V_1 \cup V_2$
 $G = (V_1 \cup V_2 \cup S, T, P_1 \cup P_2 \cup S \to S_1S_2, S)$

2.
$$L(G) = L(G_1) \cup L(G_2)$$

 $G_{\cup} = (V_1 \cup V_2 \cup S, T, P_1 \cup P_2 \cup P_3, S)$
 $P_3 = \{S \rightarrow S_1 | S_2\}$

3.
$$L(G) = L(G_1)^*$$

 $G_* = (V_1 \cup \{S\}, T, P_1 \cup P_2, S)$
 $P_2 = \{S \rightarrow \epsilon | SS_1\}$

给定 RG G_1, G_2 , 构造 RG G 使得:

1.
$$L(G) = L(G_1)L(G_2)$$

其中 $V_1 \cup V_2 = \phi$, $S \notin V_1 \cup V_2$
 $S_1 \Rightarrow a_1 A_1$
 $\Rightarrow a_1 a_2 \dots a_{n-1} A_n$ 所以,我们需要改造 P_1 。
 $\Rightarrow a_1 a_2 \dots a_n S_2$
 $G = (V_1 \cup V_2 \cup S, T, P'_1 \cup P_2 \cup P_3, S_1)$
 $P'_1 = \{A \to aB | A \to aB \in P_1\}$
 $P_3 = \{A \to aS_2 | A \to a \in P_1\}$
2. $L(G) = L(G_1) \cup L(G_2)$

$$L(G) = L(G_1) \cup L(G_2)$$

$$G_{\cup} = (V_1 \cup V_2 \cup S, T, P_1 \cup P_2 \cup P, S)$$

$$P = \{S \to \alpha | S_1 \to \alpha \in P_1\}$$

$$\cup \{S \to \alpha | S_2 \to \alpha \in P_2\}$$

3. $L(G) = L(G_1)^*$

自己想!

例子:

1. 设
$$L = \{x | 101 \text{ in } x\}$$
, 构造 $G, L(G) = L$ 。

朴素构造:
$$\begin{cases} S \to A101A \\ A \to \epsilon |0A|1A \end{cases}$$
 正则构造:
$$\begin{cases} S \to 0S|1A \\ A \to 0B|1A \\ B \to 1C|0S \\ C \to 0C|1C|\epsilon \end{cases}$$

2. 构造
$$G$$
 使 $L(G) = \{x | 101 \text{ not in } x\}$

正则构造:
$$\begin{cases} S \to 0S | 1A \\ A \to 0B | 1A \\ B \to 0S | \epsilon \end{cases}$$

2.6 小结

习题: p67 3, 4, 8.2, 8.6, 10.3, 11.3

第三章 有穷状态自动机 Finite Automata

3.1 FA 的基本定义

定义 **3.1.** $M = (Q, \Sigma, \delta, q_0, F)$, 其中:

Q: 状态的有穷集合

 Σ : 输入字母表

 δ : 状态转义函数

 $Q \times \Sigma \to Q$ 。 $\forall (q,a) \in Q \times \Sigma$, $\delta(q,a) = p$ 表示 M 在状态 q 读入一个字符 a,状态改为 p 并指向下一个字符。

 q_0 : 开始状态

F: 终止状态

定义 3.2. 有穷状态自动机 $M = (Q, \Sigma, \delta, q_0, F)$:

状态转移图是满足如下条件的有向图。

- 1. 对于 $q \in Q$, q 是一个顶点
- 2. $\forall (q,a) \in \delta, q$ 到 p 有一条标记为 a 的弧。
- 3. 标有 S 的箭头所指的状态为开始状态。
- 4. 用双圈标记结束状态。

扩展 δ 为 $\hat{\delta}: Q \times \Sigma^* \to Q$

- 1. $\hat{\delta}(q, \epsilon) = q$
- 2. $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

注意到 $Q \subset Q \times \Sigma^*$,且对 $\forall (q,a) \in Q \times \Sigma^*$, $\hat{\delta}(q,a) = \delta(q,a)$ 所以,不用区分 δ 与 $\hat{\delta}$ 定义 3.3. 有穷状态自动机 $M = (Q, \Sigma, \delta, q_0, F)$ 识别的语言: $L(M) = \{x | \delta(q_0, x) \in F\}$ 定义 3.4. 对于有穷状态自动机 M_1, M_2 : 若有 $L(M_1) = L(M_2)$,则称二者等价。 例 3.1. 构造 M,使得 $L(M) = \{x000 | x \in \{0,1\}^*\}$ 。

例 3.2. 构造 M,使得 $L(M) = \{0x0|x \in \{0,1\}^*\}$ 。

例 3.3. 构造 M,使得 $L(M) = \{0x0 | x$ 看作二进制时, $x \mod 3 = 1\}$ 。

