WHAT IS CLAIMED IS:

1		1.	A body fluid sampling device comprising:	
2		a sing	gle cartridge;	
3		a pen	etrating member coupled to said single cartridge; and	
4		an an	alyte detecting members.	
1		2.	A method of controlling fluid flow, the method comprising:	
2		(a)	providing a cartridge configured to slidably hold a plurality of	
3	penetrating members and to have a plurality of analyte detecting members; and			
4		(b)	using surface texturing on the cartridge to form texturing to direct	
5	fluid into a desired area on the cartridge.			
1		3.	The method of claim 2 wherein said texturing is formed	
2	chemically.		•	
1		4.	The method of claim 2 wherein the surface texturing guides the	
2	fluid to one of said analyte detecting members.			
1		5.	A body fluid sampling device comprising:	
2		a sing	gle cartridge;	
3		a plu	rality of penetrating members coupled to said single cartridge and	
4	operatively couplable to a penetrating member driver, said penetrating members movabl			
5	to extend radially outward from the cartridge to penetrate tissue;			
6	a plurality of analyte detecting members coupled to said single cartridge,			
7	wherein at least one of said analyte detecting members positioned on the cartridge to			
8	receive body fluid from a wound in the tissue created by the penetrating member when			
9	the cartridge is in an operative position; and			
10		a text	ture structure on said cartridge positioned to guide fluid generated by	
11	said tissue towards one of the analyte detecting members.			
1	•	6.	A body fluid sampling device comprising:	
2	a single cartridge;			

PCT/US2004/032025 WO 2005/033659

3	a p	lurality of penetrating members coupled to said single cartridge and			
4	operatively couplable to the penetrating member driver, said penetrating members				
5	movable to extend radially outward from the cartridge to penetrate tissue;				
6	a plurality of analyte detecting members coupled to said single cartridge,				
7	wherein at least one of said analyte detecting members positioned on the cartridge to				
8	receive body fluid from a wound in the tissue created by the penetrating member when				
9	the cartridge is in an operative position; and				
10	a plurality of mesh structures positioned to draw fluid generated by said				
11	tissue towards one of the analyte detecting members.				
1	7.	The device of claim 6 further comprising a ring around the			
2	cartridge wherein said analyte detecting members are mounted on said ring, along with				
3	said mesh.				
1	8.	The device of claim 6 further comprising a ring around the			
2	cartridge wherein said analyte detecting members are coupled to said cartridge through				
3	said ring.				
1	9.	The device of claim 6 further comprising a plurality of electrodes			
2	coupled to said analyte detecting member.				
1	10.	The device of claim 6 wherein the mesh is a gradient mesh.			
1	11.	A body fluid sampling device comprising:			
2	a support structure;				
3	a sensory material on a first side of said support structure;				
4	a conductor material coupled to the sensory material; and				
5	a commutator positioned to engage said conductor material to obtain				
6	analyte measurme	nts.			
1	12.	The device of claim 11 further comprising a radial cartridge, said			
2	support structure coupled to said radial cartridge.				
1	13.	The device of claim 11 further comprising a plurality of electrodes			
2	each having said sensory material.				
1	14.	A penetrating member actuator comprising:			

WO 2005/033659 PCT/US2004/032025

2	a support structure;				
3	a first electrode; "				
4	a second electrode;				
5	an elastomeric material between said electrodes, wherein said material				
6	elongates upon activation of the electrodes, causing a penetrating member to move.				
1	15 The device of claims 14 footbox communicients and intermedial contribution and				
1	15. The device of claim 14 further comprising a radial cartridge, said				
2	material having a gripper positioned to engage penetrating members on said radial				
3	cartridge.				
1	16. The device of claim 14 further comprising a coupler in contact with				
2	the material for coupling the penetrating member to the material.				
1					
1	17. A method for designing an analyte detecting member, the method				
2	comprising:				
3	(a) mathematically replicating the significant physical and chemical				
4	processes taking place in the analyte detecting member and sample; and				
5	(b) dividing assay time into small time steps and the analyte detecting				
6	member into small control volumes, wherein during each time step (and in each control				
7	volume), the model simultaneously solves a specie conservation equation for each				
8	important constituent: oxygen, glucose, glucose oxidase, catalase, and hydrogen peroxide.				
1	18. The method of claim 17 wherein each conservation equation				
2	includes an accumulation term, a diffusion term, and a production/destruction term				
3	wherein the latter relies on a production rate calculated either as a Michaelis-Menton				
4	reaction (catalase) or Ping-Pong Bi-Bi reaction (glucose oxidase).				
1	19. The method of claim 17 wherein tracking the diffusion of each				
2	important chemical component of the emulsion and sample, the chemical reactions				
3	between them, and the resulting signal from oxygen depletion.				
1					
1	20. The method of claim 17 wherein treating the emulsion as a				
2	continuum with properties based on volume-fraction averages of the properties of the				
3	hydrophobic and hydrophilic phases.				
1					