МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление: Прикладная математика и информатика Отделение экспериментальной физики

Отчет по лабораторной работе №4

Исследование качества процессов регулирования автоматических систем

по дисциплине «Теория управления»

Выполнил:	
Студент группы	 Саматов Д. С.
0B01	
Проверил:	
Доцент ОМФ	111 N. A.
доцени отпт	 Шипуля М. А.

Целью данной работы является исследование показателей качества системы автоматического управления прямыми и корневыми оценками качества.

Программа работы

1. Создать с помощью инструментальных свойств **Simulink** схему исследуемой системы, изображенную на рис. 4.4.1.

Рис.4.4.1 Система автоматического регулирования третьего порядка

2. Получить для данной модели и зарисовать в отчет переходные характеристики h(t) для значений коэффициентов K_i , пределы варьирования которых приведены в табл. 4.4.1.

Таблица 4.4.1

K_i	K_1	K_2	K ₃	K_{oc}
Эксперимент 1	1	1	1	1
Эксперимент 2	0.5	1	1	1
Эксперимент 3	0.2 5	1	1	0.1
Эксперимент 4	0.1	1	1	0.1

- 3. По графикам h(t) определить количественные показатели системы:
 - время регулирования t_p;
 - перерегулирование σ, %;
 - коэффициент передачи К_п;
 - максимальное значение амплитуды.
- 4. Оценить влияние коэффициента K_1 на количественные показатели качества.
- 5. Задавая согласно табл. 4.4.2 значения коэффициентов, провести исследование влияния коэффициента K_3 , на характер переходного процесса и устойчивость системы:
 - по графикам переходной функции;
 - по расположению корней.

Таблица 4.4.2

			тиолици	
K_i	K_1	K ₂	K ₃	Koc
Эксперимент 1	1	1	0.7	1
Эксперимент 2	1	1	1	1
Эксперимент 3	1	1	2	1
Эксперимент 4	1	1	4	1
Эксперимент 5	1	1	4.5	1

- 6. Используя оператор **bode** для разомкнутой САР, провести исследование влияния коэффициента K_3 на запасы устойчивости системы по
 - φазе φ₃,
 - модулю L₃;
 - амплитуде H₃.

Пределы варьирования коэффициентов K_i приведены в табл. 4.4.3.

Таблица 4.4.3

K_i	K_1	K_2	K_3	K_{oc}
Эксперимент 1	1	1	1	1
Эксперимент 2	1	1	2	1
Эксперимент 3	1	1	4	1
Эксперимент 4	1	1	4.5	1

- 7. Сделать выводы о влиянии K_3 на запасы устойчивости системы.
- 8. Используя теорему о предельных значениях $s \cdot \lim_{s \to 0} W_{\rm pc}(s)$ и значения коэффициентов табл. 4.4.3, определить $K_{\rm pc}$ и сравнить результаты с экспериментальными данными п. 6.
- 9. Провести исследование влияния K_{oc} , задавая значения коэффициентам согласно табл. 4.4.4.
 - 10. На что влияет коэффициент K_{oc} ?

Таблица 4.4.4

K_{l}	K_1	K_2	<i>K</i> ₃	K_{oc}
Эксперимент 1	1	1	1	1
Эксперимент 2	1	1	1	0.8
Эксперимент 3	1	1	1	0.5

Ход работы

1. Создание модели, рис. 1.

Рисунок 1 — Система автоматического регулирования третьего порядка

2. Получим для данной модели и зарисуем в отчет переходные характеристики h(t) для значений коэффициентов K_i , пределы варьирования которых приведены в табл. 4.4.1.

Рисунок 2 – Результаты эксперимента 1

Рисунок 3 — Результаты эксперимента 2

Рисунок 4 — Результаты эксперимента 3

Рисунок 5 – Результаты эксперимента 4

- 3. Все количественные показатели системы:
 - Время регулирования;
 - Перерегулирование;
 - Коэффициент передачи;
 - Максимальное значение амплитуды

Представлены на графиках (рис. 2-5), в зависимости от эксперимента.

- 4. С уменьшением коэффициента K_1 все количественные показатели уменьшаются (этом можно пронаблюдать на примере изменения амплитуды).
- 5. Зададим согласно табл. 4.4.2 значения коэффициентов, проведем исследование влияния коэффициента K_3 , на характер переходного процесса и устойчивость системы.

Рисунок 6 – Результаты эксперимента 1

Рисунок 7 — Результаты эксперимента 2

Рисунок 8 – Результаты эксперимента 3

Рисунок 9 — Результаты эксперимента 4

Рисунок 10 – Результаты эксперимента 5

6. Используем оператор bode для разомкнутой САР, проведем исследование влияния коэффициента K_3 , на запасы устойчивости системы.

Рисунок 11 – Результаты эксперимента 1

Рисунок 12 — Результаты эксперимента 2

Рисунок 13 — Результаты эксперимента 3

Рисунок 14 – Результаты эксперимента 4

Рисунок 15 — Результаты эксперимента 5

- 7. При увеличении коэффициента K_3 запасы устойчивости системы по фазе уменьшаются, по модулю увеличиваются, по амплитуде тоже увеличиваются.
- 8. Проведем исследование влияния K_{oc} , задавая значения коэффициента согласно табл. 4.4.4.

Рисунок 16 – Результаты эксперимента 1

Рисунок 17 — Результаты эксперимента 2

Рисунок 18 – Результаты эксперимента 3

9. При уменьшении коэффициента $K_{\rm oc}$ все количественные показатели уменьшаются (этом можно пронаблюдать на примере изменения амплитуды).

Вывод

В ходе выполнения лабораторной работы было исследовано влияние параметров системы на характер переходного процесса и устойчивости системы.