Digital Signal Processing

Class 9 02/17/2025

ENGR 71

- Class Overview
 - Z-Transform
- Assignments
 - Reading:

Chapter 3: The z-Transform and its Applications to the Analysis of LTI

ENGR 71

Homework 3

```
- Problems: 2.9 (a), 2.17(a), 2.28(a & c), 2.35, 2.46, C2.14(write your own code) C2.8 (use Matlab functions)

Due Feb. 20
```

ENGR 71

- Lab 1-Aliasing Lab
 - Find a short piece of music to download
 - Subsample to demonstrate aliasing
 - Repeat the subsampling, but prior to subsampling, apply a low-pass anti-aliasing filter.
 - Compare the results
 - Mystery piece

Class Information

- Z-Transform Topics
 - The z-Transform
 - Properties of the z-Transform
 - Rational z-Transforms
 - Inversion of the z-Transform
 - Analysis of Linear Time-Invariant Systems in the z-Domain
 - The One-sided z-Transform

- As with continuous systems LTI systems, there is an easier way to solve Discrete Linear Time (Shift) Invariant systems (LTI or LSI)
- The z-transform
 - Discrete version of Laplace transform
 - Many properties analogous to Laplace
 - Continuous Laplace: differential equations → algebraic equations
 - Discrete z-transform: difference equations → algebraic equations
 - Continuous Laplace: Stability determined by pole locations
 - Left half-plane
 - Discrete z-transform: Stability determined by pole locations
 - Inside unit circle
 - Other properties like convolution, time shift, initial & final values, etc.

- Connection of Laplace and z-transform
 - Laplace transform of sampled signal

$$x(t) = \sum_{n} x(nT_s) \delta(t - nT_s)$$

$$\mathcal{L}\left\{x(t)\right\} = X(s) = \mathcal{L}\left\{\sum_{n} x(nT_s)\delta(t - nT_s)\right\}$$

$$X(s) = \sum_{n} x(nT_s) \mathcal{L}\left\{\delta(t - nT_s)\right\}$$

$$\mathcal{L}\left\{\delta(t)\right\} = 1$$
 ; $\mathcal{L}\left\{f(t-t_0) = F(s)e^{-st_0}\right\}$

so,
$$\mathcal{L}\left\{\delta(t-nT_s)\right\} = 1e^{-snT_s} = \left(e^{-sT_s}\right)^n$$

$$X(s) = \sum x(nT_s)(e^{-sT_s})^n \qquad z = e^{sT_s} \qquad x[n] = x(nT_s)$$

$$X(s) = \sum_{n} x[n]z^{-n}$$

$$\mathcal{Z}\left\{x[n]\right\} \equiv \sum_{n} x[n]z^{-n}$$

- The Laplace transform of sampled signal on the imaginary axis is periodic
 - In the Laplace domain the $s = j\Omega$ corresponds to frequency domain (Fourier transform)
 - On imaginary axis

$$X(\Omega) = \sum_{n} x(nT_s) (e^{-j\Omega T_s})^n$$

This is periodic with period $2\pi/T_s$ (This is the sampling frequency)

$$X(\Omega + 2\pi k/T_s) = X(\Omega)$$

$$z = e^{sT_s} = e^{(\sigma + j\Omega)T_s} = e^{\sigma T_s} e^{j\Omega T_s}$$

In polar form, defining: $r = e^{\sigma T_s}$ and $\omega = \Omega T_s$

• Picture of the mapping *s*-plane to *z*-plane:

Notice that $j\pi/T_s$ is the Nyquist frequency Left half-plane of strip maps into interior of unit circle Imaginary axis maps to unit circle. Right half-plane maps to exterior of unit circle

- Computing the z-transform:
 - Important thing to remember: Geometric Series

$$\left| \sum_{k=0}^{n-1} r^k = \frac{1 - r^n}{1 - r} \quad \text{for } r \neq 1 \right|$$

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} \quad \text{for } |r| < 1$$

• Z-transform:

$$X(s) = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

- As in the case of the Laplace transform, we are mainly interested in causal signals and systems: x(t) = x(t)u(t)

$$x[n] = x[n]u[n]$$

– Limits in sum and integral start at 0:

$$X(s) = \int_{0}^{+\infty} x(t)e^{-st}dt$$
$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

• Z-transform:

- Laplace: You can easily solve linear differential equations with constant coefficients in the Laplace domain.
 - These equations correspond to linear time-invariant systems
- z-transform: Same function as Laplace, except for discrete time signals and systems.
 - LTI systems represented by difference equations.
 - You can solve for system response in the z-transform domain, and then use inverse z-transform to find response in sampled time domain.

- Definition of z-transform:
 - Bilateral

$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$

- Unilateral (causal signals & systems)

$$X(z) = \sum_{n=0}^{\infty} x(n) z^{-n}$$

– Inverse:

$$h(n) = \frac{1}{2 \pi j} \oint H(z) z^{-n+1} dz$$

- Rarely use this, although this is common integral in complex variables math courses.
- We compute forward & inverse by use of transform pairs and properties.
- Can also find inverse by long division.

Rational function

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

• Can also be written with positive powers of z

$$X(z) = \left(\frac{b_0 z^{-M}}{a_0 z^{-N}}\right) \frac{z^M + (b_1/b_0) z^{M-1} + \dots + (b_M/b_0)}{z^N + (a_1/a_0) z^{N-1} + \dots + (a_N/a_0)}$$

• The numerator and denominator can be factor into product of linear terms:

$$X(z) = \left(\frac{b_0}{a_0}\right) z^{N-M} \frac{(z-z_1)(z-z_2)\cdots(z-z_M)}{(z-p_1)(z-p_2)\cdots(z-p_M)}$$

• A few examples:

$$h(n) = \delta(n)$$

$$H(z) = \sum_{n=0}^{\infty} \delta[n] z^{-n} = 1$$

 $H(z) = \sum_{n=0}^{\infty} \delta[n] z^{-n} = 1$ Region of convergence is entire z-plane

– Delayed impulse:

$$h(n) = \delta(n-1)$$

$$H(z) = \sum_{n=0}^{\infty} \delta[n-1] z^{-n} = z^{-1}$$
 Region of convergence is entire z-plane

Causal exponential signal (geometric series)

$$x(n) = a^n u[n]$$

$$X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n = \frac{1}{1 - \frac{a}{z}} \quad \text{if } \left|\frac{a}{z}\right| < 1$$

Region of convergence: |z| > |a|

Causal exponential signal (geometric series)

$$x(n) = a^n u[n]$$
 (causal signal)

$$X(z) = \sum_{n=0}^{\infty} a^n \ z^{-n} = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n = \frac{1}{1 - \frac{a}{z}} \quad \text{if } \left|\frac{a}{z}\right| < 1$$

Region of convergence: |z| > |a|

$$x(n) = -a^n u[-n-1]$$
 (anti-causal signal)

$$X(z) = \sum_{n=-\infty}^{1} -a^n z^{-n} = \frac{1}{1 - \frac{a}{z}} \text{ if } \left| \frac{z}{a} \right| < 1$$

Region of convergence: |a| > |z|

Same expression as before, but region of convergence is different

Neither caual nor anti-causal

$$x(n) = \alpha^n u(n) + b^n u(-n-1)$$

$$H(z) = \sum_{n=0}^{\infty} \alpha^{n} z^{-n} + \sum_{n=-\infty}^{-1} b^{n} z^{-n} = \sum_{n=0}^{\infty} \left(\frac{\alpha}{z}\right)^{n} + \sum_{n=1}^{\infty} \left(\frac{z}{b}\right)^{n}$$

Infinite-Duration Signals

Causal $|z| > r_2$ Anticausal $|z| < r_1$ Two-sided r_1 $r_2 < |z| < r_1$

Finite duration signals always converge

Infinite duration signals have regions have circular or annulus shaped regions of convergence

	Signal, $x(n)$	z-Transform, $X(z)$	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{1}{1-z^{-1}}$	z > 1
3	$a^n u(n)$	$\frac{1}{1 - az^{-1}}$	z > a
4	$na^nu(n)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
5	$-a^n u(-n-1)$	$\frac{1}{1 - az^{-1}}$	z < a
6	$-na^nu(-n-1)$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
7	$(\cos \omega_0 n)u(n)$	$\frac{1 - z^{-1}\cos\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
8	$(\sin \omega_0 n)u(n)$	$\frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}}$	z > 1
9	$(a^n\cos\omega_0 n)u(n)$	$\frac{1 - az^{-1}\cos\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a
10	$(a^n\sin\omega_0 n)u(n)$	$\frac{az^{-1}\sin\omega_0}{1 - 2az^{-1}\cos\omega_0 + a^2z^{-2}}$	z > a

Linearity

$$a_1 x_1 [n] + a_2 x_2 [n] \Leftrightarrow a_1 X_1(z) + a_2 X_2(z)$$

– Example: Use linearity to find z-transform of

$$x(n) = (\cos \omega_0 n) u(n)$$

$$x(n) = (\sin \omega_0 n) u(n)$$

$$\mathcal{Z}\left[\left(\cos\omega_{0}n\right)u(n)\right] = \frac{1-z^{-1}\cos\omega_{0}}{1-2z^{-1}\cos\omega_{0}+z^{-2}} \quad \text{ROC } |z| > 1$$

$$\mathcal{Z}\left[\left(\sin\omega_0 n\right)u(n)\right] = \frac{z^{-1}\sin\omega_0}{1 - 2z^{-1}\cos\omega_0 + z^{-2}} \quad \text{ROC } |z| > 1$$

• Time shift

For
$$x[n] \Leftrightarrow X(z)$$

$$x[n-k] \Leftrightarrow z^{-k}X(z)$$

$$Z[x(n)] = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$Z[x(n-k)] = \sum_{n=-\infty}^{\infty} x[n-k]z^{-n} = \sum_{n=-\infty}^{\infty} x[n-k]z^{-(n-k)}z^{-k} = z^{-k}\sum_{n=-\infty}^{\infty} x[n-k]z^{-(n-k)} = z^{-k}\sum_{m=-\infty}^{m} x[m]z^{-m}$$

$$Z[x(n-k)] = z^{-k}Z[x(n)]$$

- Time shift
 - We have seen how systems are described in terms of delays
 - In the z-transform domain, these delays become factors of z^{-1}

Scaling

For
$$x[n] \Leftrightarrow X(z)$$
 ROC $r_1 < |z| < r_2$

$$\alpha^n x[n] \Leftrightarrow X\left(\frac{z}{\alpha}\right) \quad \text{ROC} \quad |\alpha| r_1 < |z| < |\alpha| r_2$$

Easy to prove from definition of z-transform

$$Z[x(n)] = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$Z\left[\alpha^{n}x(n)\right] = \sum_{n=-\infty}^{\infty} x[n]\alpha^{n}z^{-n} = \sum_{n=-\infty}^{\infty} x[n]\left(\frac{z}{\alpha}\right)^{-n}$$

• Time reversal:

For
$$x[n] \Leftrightarrow X(z)$$
 ROC $r_1 < |z| < r_2$

$$x[-n] \Leftrightarrow X\left(\frac{1}{z}\right) \quad \text{ROC} \quad \frac{1}{r_1} < |z| < \frac{1}{r_2}$$

• Convolution: (convolution in time is product in z-domain)

For
$$x[n] \Leftrightarrow X(z)$$
 & $y[n] \Leftrightarrow Y(z)$
 $x[n] * y[n] \Leftrightarrow X(z)Y(z)$

ROC is at least the intersection of ROC's for x and y

- Note on convolution:
 - For LTI system, output of system is convolution of input with impulse response

$$y[n] = \sum_{k=0}^{\infty} x[k]h[n-k] = x[n]*h[n]$$

$$Z\{y[n]\} = Y(z) = Z\{x[n]*h[n]\} = X(z)H(z)$$

$$H(z) = \frac{Y(z)}{X(z)}$$

-H(z) is transfer function

Correlation

For
$$x[n] \Leftrightarrow X(z)$$
 & $y[n] \Leftrightarrow Y(z)$

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(l)y(n-l) \Leftrightarrow X(z)Y(-z)$$

Using relationship between correlation and convolution:

$$r_{xv}(l) = x(l) * y(-l)$$

 Multiplication in time domain (Involves integration in complex space)

$$x(n)y^*(n) \Leftrightarrow \frac{1}{2\pi j} \oint X(v)Y^* \left(\frac{z^*}{v^*}\right) v^{-1} dv$$

- Parseval's relation for energy in z-transform domain

$$\sum_{n=-\infty}^{\infty} x(n) y^*(n) = \frac{1}{2\pi j} \oint X(v) Y^* \left(\frac{1}{v^*}\right) v^{-1} dv$$

- Initial and final value theorem (for causal signals)
 - Initial value:

$$x(0) = \lim_{z \to \infty} X(z)$$

- Final value

$$\lim_{n\to\infty} x(n) = \lim_{z\to 1} (z-1)X(z)$$

Z Transform Properties					
Property Name	Illustration				
Linearity	$af_1[k] + bf_2[k] \stackrel{\mathbb{Z}}{\longleftrightarrow} aF_1(z) + bF_2(z)$				
Left Shift by 1	$f[k+1] \stackrel{\mathbb{Z}}{\longleftrightarrow} zF(z) - zf[0]$				
Left Shift by 2	$f[k+2] \stackrel{\mathbb{Z}}{\longleftrightarrow} z^2 F(z) - z^2 f[0] - z f[1]$				
Left Shift by n	$f[k+n] \stackrel{\mathbb{Z}}{\longleftrightarrow} z^n F(z) - z^n \sum_{k=0}^{n-1} f[k] z^{-k}$ $= z^n \left(F(z) - \sum_{k=0}^{n-1} f[k] z^{-k} \right)$				
Right Shift by n	$f[k-n] \stackrel{\mathbb{Z}}{\longleftrightarrow} z^{-n}F(z)$				
Multiplication by time	$kf[k] \stackrel{\mathbb{Z}}{\longleftrightarrow} -z \frac{dF(z)}{dz}$				
Scale in z	$a^k f[k] \stackrel{\mathbb{Z}}{\longleftrightarrow} F\left(\frac{z}{a}\right)$				
Scale in time	$f\left[\frac{k}{n}\right] \longleftrightarrow F(z^n); $ $n \text{ is an integer} \atop n \ge 1$				
Convolution	$f_1[k] * f_2[k] \stackrel{\mathbb{Z}}{\longleftrightarrow} F_1(z)F_2(z)$				
Initial Value Theorem	$f[0] = \lim_{z \to \infty} F(z)$				
Final Value Theorem (if final value exists)	$\lim_{k\to\infty} f[k] = \lim_{z\to 1} (z-1)F(z)$				

Property	Time Domain	z-Domain	ROC
Notation	x(n)	X(z)	ROC: $r_2 < z < r_1$
	$x_1(n)$	$X_1(z)$	ROC_1
	$x_2(n)$	$X_2(z)$	ROC_2
Linearity	$a_1 x_1(n) + a_2 x_2(n)$	$a_1 X_1(z) + a_2 X_2(z)$	At least the intersection of ROC ₁ and ROC ₂
Time shifting	x(n-k)	$z^{-k}X(z)$	That of $X(z)$, except $z = 0$ if $k > 0$ and $z = \infty$ if $k < 0$
Scaling in the z-domain	$a^n x(n)$	$X(a^{-1}z)$	$ a r_2 < z < a r_1$
Time reversal	x(-n)	$X(z^{-1})$	$\frac{1}{r_1} < z < \frac{1}{r_2}$
Conjugation	$x^*(n)$	$X^*(z^*)$	ROC
Real part	$Re\{x(n)\}$	$\frac{1}{2}[X(z) + X^*(z^*)]$	Includes ROC
Imaginary part	$Im\{x(n)\}$	$\frac{1}{2}j[X(z)-X^*(z^*)]$	Includes ROC
Differentiation in the z-domain	nx(n)	$-z\frac{dX(z)}{dz}$	$r_2 < z < r_1$
Convolution	$x_1(n) * x_2(n)$	$X_1(z)X_2(z)$	At least, the intersection of ROC ₁ and ROC ₂
Correlation	$r_{x_1x_2}(l) = x_1(l) * x_2(-l)$	$R_{x_1x_2}(z) = X_1(z)X_2(z^{-1})$	At least, the intersection of ROC of $X_1(z)$ and $X_2(z^{-1})$
Initial value theorem	If $x(n)$ causal	$x(0) = \lim_{z \to \infty} X(z)$	
Multiplication	$x_1(n)x_2(n)$	$\frac{1}{2\pi j} \oint_C X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$	At least, $r_{1l}r_{2l} < z < r_{1u}r_{2u}$
Parseval's relation	$\sum_{n=-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi}$	$\frac{1}{\tau j} \oint_C X_1(v) X_2^*(1/v^*) v^{-1} dv$	

Rational function

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

• Can also be written with positive powers of z

$$X(z) = \left(\frac{b_0 z^{-M}}{a_0 z^{-N}}\right) \frac{z^M + (b_1/b_0) z^{M-1} + \dots + (b_M/b_0)}{z^N + (a_1/a_0) z^{N-1} + \dots + (a_N/a_0)}$$

• The numerator and denominator can be factor into product of linear terms:

$$X(z) = \left(\frac{b_0}{a_0}\right) z^{N-M} \frac{(z-z_1)(z-z_2)\cdots(z-z_M)}{(z-p_1)(z-p_2)\cdots(z-p_M)}$$

• Zeros and Poles

$$\frac{(z-z_1)(z-z_2)\cdots(z-z_M)}{(z-p_1)(z-p_2)\cdots(z-p_M)}$$

 z_1, z_2, \dots are the zeros

 p_1, p_2, \dots are the poles

Zeros and Poles

$$\frac{(z-z_1)(z-z_2)\cdots(z-z_M)}{(z-p_1)(z-p_2)\cdots(z-p_M)}$$

 $z_1, z_2,...$ are the zeros $p_1, p_2,...$ are the poles

• Example:

$$x(n) = a^{n}u(n)$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a} \quad \text{ROC} \quad |z| > a$$

zero at z = 0, pole at z = a

• Example:

$$x(n) = a^{n}u(n)$$

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a} \quad \text{ROC} \quad |z| > a$$

$$\text{zero at } z = 0,$$

$$\text{pole at } z = a$$

• Example:

Zeros:
$$z_1 = 0$$
, $z_2 = r \cos \omega_0$

Poles:
$$p_1 = re^{j\omega_0}$$
, $p_2 = re^{-j\omega_0}$ (complex conjugate pair)

$$X(z) = G \frac{(z-z_1)(z-z_2)}{(z-p_1)(z-p_2)} =$$

$$x(n)=r^n\cos(n\omega_0)u(n)$$

$$X(z) = G \frac{(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)} = \frac{z(z - r\cos\omega_0)}{(z - re^{j\omega_0})(z - re^{-j\omega_0})} \quad \text{ROC} \quad |z| > r$$

• Example:

$$x(n)=r^n\cos(n\omega_0)u(n)$$

$$X(z) = \frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}} \quad \text{ROC} \quad |z| > r$$

Try several values to see how rate of oscillation and decay vary with pole location

Z-Transform Inverse

- Three ways to find inverse
 - Contour integration in complex plane using Cauchy residue theorem (which we will not do)

$$h(n) = \frac{1}{2 \pi j} \oint H(z) z^{-n+1} dz$$

Power series expansion of function (which we will not do)

$$H(z) = \sum_{n=-\infty}^{\infty} c_n z^{-n}$$

$$x(n) = c_n$$

Z-Transform Inverse

- Three ways to find inverse
 - Partial fraction expansion and then beat it into shape we recognize from table (which we will do)

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

To be a proper rational expression, order of numerator must be less than that of the denominator

$$\frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \dots + b_M z^{N-M-1}}{z^N + a_1 z^{N-1} + \dots + a_N}$$

Z-Transform of rational functions

• Detailed examples of how to find inverse *z*-transform:

$$H_1(z) = \frac{1 + 2z^{-1} + 2z^{-2}}{1 - 3z^{-1} + 2z^{-2}}$$

Easier to work with:

$$H_1(z) = \left(\frac{z^2}{z^2}\right) \frac{1 + 2z^{-1} + 2z^{-2}}{1 - 3z^{-1} + 2z^{-2}} = \frac{z^2 + 2z + 2}{z^2 - 3z + 2}$$

- As in the case of the Laplace, do partial fractions expansion
 - However, to have proper rational polynomial expression, do partial fractions of

$$\frac{H(z)}{z} = \frac{z^2 + 2z + 2}{z(z^2 - 3z + 2)} = \frac{A}{z} + \frac{B}{z - 1} + \frac{C}{z - 2}$$

$$\frac{H(z)}{z} = \frac{z^2 + 2z + 2}{z(z^2 - 3z + 2)} = \frac{A}{z} + \frac{B}{z - 1} + \frac{C}{z - 2}$$

$$A = 1 \quad B = -5 \quad C = 5$$

$$h[n] = \delta[n] - 5u[n] + 5 \cdot 2^n u[n]$$

• A few Matlab tools:

zplane(b,a) plots poles and zeros in z-plane

$$H_1(z) = \frac{1 + 2z^{-1} + 2z^{-2}}{1 - 3z^{-1} + 2z^{-2}}$$

```
b = [1 2 2]; a = [1 -3 2];
impz(b,a)
zplane(b,a)
```


$$H_2(z) = \frac{1 - (1/2)z^{-1} + (3/16)z^{-2}}{1 - z^{-1} + (3/16)z^{-2}} = 1 - \frac{3z}{z - 1/4} + \frac{3z}{z - 3/4}$$

$$h_2[n] = \delta[n] - 3 \cdot \left(\frac{1}{4}\right)^n u[n] + 3 \cdot \left(\frac{3}{4}\right)^n u[n]$$

$$H_2(z) = \frac{z^{-2}}{1 - (1/2)z^{-1} + (1/2)z^{-2}} = \frac{0 + 0z^{-1} + z^{-2}}{1 - (1/2)z^{-1} + (1/2)z^{-2}}$$

$$h_2[n] = 2 \left[\delta[n] + \frac{2}{\sqrt{7}} \cdot \left(\frac{1}{\sqrt{2}} \right)^{n-1} \sin((n-1)\theta) u(n) \right] \text{ where } \theta = \tan^{-1}(\sqrt{7})$$

$$H(z) = \frac{z^{-2}}{1 - (1/2)z^{-1} + (1/2)z^{-2}} = \frac{0 + 0z^{-1} + z^{-2}}{1 - (1/2)z^{-1} + (1/2)z^{-2}}$$

Sequence	z-Transform	ROC
δ[n]	1	All values of z
u[n]	$\frac{1}{1-z^{-1}}$	z > 1
α ⁿ u[n]	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
nα ⁿ u[n]	$\frac{\alpha z^{-1}}{\left(1-\alpha z^{-1}\right)^2}$	z > α
(n+1) α ⁿ u[n]	$\frac{1}{(1-\alpha z^{-1})^2}$	z > α
(rº cos ω _o n) u[n]	$\frac{1 - (r\cos\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r
(r ⁿ sin ω _o n) [n]	$\frac{1 - (r\sin\omega_0)z^{-1}}{1 - (2r\cos\omega_0)z^{-1} + r^2z^{-2}}$	z > r

TABLE 5.1 (Unilateral) z-Transform Pairs

No.	x[n]	X[z]
1	$\delta[n-k]$	z^{-k}
2	u[n]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2 + 4z + 1)}{(z - 1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$

8
$$n\gamma^n u[n]$$
 $\frac{\gamma z}{(z-\gamma)^2}$
9 $n^2\gamma^n u[n]$ $\frac{\gamma z}{(z-\gamma)^3}$
10 $\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n u[n]$ $\frac{z}{(z-\gamma)^{m+1}}$
11a $|\gamma|^n \cos \beta n u[n]$ $\frac{z(z-|\gamma|\cos \beta)}{z^2-(2|\gamma|\cos \beta)z+|\gamma|^2}$
11b $|\gamma|^n \sin \beta n u[n]$ $\frac{z|\gamma|\sin \beta}{z^2-(2|\gamma|\cos \beta)z+|\gamma|^2}$
12a $r|\gamma|^n \cos (\beta n+\theta) u[n]$ $\frac{rz[z\cos \theta-|\gamma|\cos (\beta-\theta)]}{z^2-(2|\gamma|\cos \beta)z+|\gamma|^2}$
12b $r|\gamma|^n \cos (\beta n+\theta) u[n]$ $\gamma=|\gamma|e^{j\beta}$ $\frac{(0.5re^{j\theta})z}{z-\gamma}+\frac{(0.5re^{-j\theta})z}{z-\gamma^*}$
12c $r|\gamma|^n \cos (\beta n+\theta) u[n]$ $\frac{z(Az+B)}{z^2+2az+|\gamma|^2}$
 $r=\sqrt{\frac{A^2|\gamma|^2+B^2-2AaB}{|\gamma|^2-a^2}}$
 $\beta=\cos^{-1}\frac{-a}{|\gamma|}$
 $\theta=\tan^{-1}\frac{Aa-B}{A\sqrt{|\gamma|^2-a^2}}$

Z- Transform Operations				
Operation	f[k]	F[z]		
Addition	$f_1[k] + f_2[k]$	$F_1[z] + F_2[z]$		
Scalar multiplication	af[k]	aF[z]		
Right-shift	f[k-m]u[k-m]	$\frac{1}{z^m} F[z]$		
	f[k-m]u[k]	$\frac{1}{z^m}F[z]+\frac{1}{z^m}\sum_{k=1}^mf[-k]z^k$		
	f[k-1]u[k]	$\frac{1}{z}F[z]+f[-1]$		
	f[k-2]u[k]	$\frac{1}{z^2} F[z] + \frac{1}{z} f[-1] + f[-2]$		
	f[k-3]u[k]	$\frac{1}{z^3}F[z] + \frac{1}{z^2}f[-1] + \frac{1}{z}f[-2] + f[-3]$		
Left-shift	f[k+m]u[k]	$z^m F[z] - z^m \sum_{k=0}^{m-1} f[k] z^{-k}$		
	f[k+1]u[k]	zF[z] - zf[0]		
	f[k+2]u[k]	$z^2 F[z] - z^2 f[0] - z f[1]$		
	f[k+3]u[k]	$z^3 F[z] - z^3 f[0] - z^2 f[1] - z f[2]$		

Multiplication by
$$\gamma^k = \gamma^k f[k]u[k]$$
 $F\left[\frac{z}{\gamma}\right]$

Multiplication by
$$k = kf[k]u[k] = -z\frac{d}{dz}F[z]$$

Time Convolution
$$f_1[k] * f_2[k]$$
 $F_1[z]F_2[z]$

Frequency Convolution
$$f_1[k]f_2[k]$$

$$\frac{1}{2\pi j} \oint F_1[u]F_2\left[\frac{z}{u}\right]u^{-1}du$$

Initial value
$$f[0]$$
 $\lim_{z\to\infty} F[z]$

Final value
$$\lim_{N\to\infty} f[N] = \lim_{z\to 1} (z-1)F[z]$$
 poles of

(z-1)F[z] inside the unit circle.