REFERENCE

1. Determine the quantity of bars of the footing.

LEGEND:

If there is no input on the quantity box, but only on the spacing.

$$Qty_{L} = Qty_{F} \left[Round \ up \ to \ whole \ number \left(\frac{\left(F_{B} \ or \ F_{B_{T}}\right) - 2CC_{F}}{S_{L}} + 1 \right) \right]$$

$$Qty_{T} = Qty_{F} \left[Round \ up \ to \ whole \ number \left(\frac{F_{L} - 2CC_{F}}{S_{T}} + 1 \right) \right]$$

If there is an input on the quantity box.

$$Qty_{L} = Qty_{F} \bullet Qty_{L(input)}$$

$$Qty_{L} = Qty_{L} \bullet Qty_{L(input)}$$

$$Qty_{T} = Qty_{F} \bullet Qty_{T(input)}$$

Example:

Since there is an input on the quantity box on the longitudinal reinforcement. Thus,

$$Qty_L = Qty_F \bullet Qty_{L(input)} = 1.5 = 10 \ pcs$$

Since there is no input on the quantity box on the transverse reinforcement. Thus,

$$Qty_T = Qty_F \left(\frac{F_L - 2CC_F}{S_T} + 1 \right) = 1 \left(\frac{30440 - 2(75)}{300} + 1 \right) = 1(101.97) = 1(102) = 102 \ pcs$$

2. The program will compute the required length of each quantity. (The answer must be converted to meters)

LEGEND:

Note:

If the hook type is 0 then,

For Longitudinal Reinforcement

$$L_{R} of Qty_{L} = F_{L} - 2CC_{F} + 2H_{L}$$

For Transverse Reinforcement

If the Wall Footing is Regular

$$L_{R} of Qty_{T} = F_{W} - 2CC_{E} + 2H_{L}$$

If the Wall Footing is Trapezoidal

$$L_{B} of Qty_{T} = \left[F_{B_{B}} - 2CC_{F} \tan tan (22.5)\right] + 600 + \frac{\left[F_{B_{T}} - F_{B_{B}} + 2CC_{F} (\tan tan (22.5) - \cos cos (45))\right]}{\cos cos (45)} + 2H_{L} +$$

Example:

$$L_B of Qty_L = F_L - 2CC_F + 2H_L$$

$$L_B \text{ of } Qty_L = 30440 - 2(75) + 2(0)$$

 $L_B \text{ of } Qty_L = 30290 \text{ } mm = 30.29 \text{ } m$

$$\begin{split} L_{B} \, of \, Qty_{T} &= F_{B_{B}} + \, 2CC_{F}[\cos\cos(45) \, - \, \tan\tan(22.5) \,] + \frac{\left[F_{B_{\tau}} - F_{B_{B}} + 2CC_{F}(\tan\tan(22.5) - \cos\cos(45))\right]}{\cos\cos(45)} \, + \, 2H_{L} \\ L_{B} \, of \, Qty_{T} &= \left[300 \, - \, 2(75) \tan\tan(22.5) \,] + \, 600 \, + \frac{\left[500 - 300 + 2(75)(\tan\tan(22.5) - \cos\cos(45))\right]}{\cos\cos(45)} \, + \, 2(0) \\ L_{B} \, of \, Qty_{T} &= \, 1058.579 \, mm \, = \, 1.059 \, m \end{split}$$

3. The program will check the available manufactured bar lengths. And will compute the following equations to determine the manufactured bar length and its corresponding manufactured quantity.

LEGEND:

For Longitudinal Reinforcement

• If L_B of $Qty_L < Largest L_M$

$$Qty_{p} = \frac{L_{M}}{L_{R} of \ Qty_{L}}$$

$$Qty_{M} = \frac{Qty_{L}}{Qty_{p}(round\ down\ to\ whole\ number)}$$

 $L_{_{E}} = \left[\textit{Qty}_{_{M}}(\textit{round up to whole number}) - \textit{Qty}_{_{M}} \right] \bullet L_{_{M}}$

And

 $Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M}(round\ down\ to\ whole\ number) \Big]$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

• If L_B of $Qty_L > Largest L_M$

$$Qty_{M} = \frac{L_{B} of Qty_{L}}{L_{M} - S_{L}}$$

 $L_{_{X}} = \left[\textit{Qty}_{_{M}} - \textit{Qty}_{_{M}} (\textit{round down into whole number}) \right] \left(L_{_{M}} - \textit{S}_{_{L}} \right)$

Note: Splice Length (S,)

If there is no Splice Length in the table. Thus,

$$L_{\scriptscriptstyle E} = L_{\scriptscriptstyle M} - L_{\scriptscriptstyle X}$$

And

$$Total\ Wastage = L_{E} \bullet Qty_{L}$$

The manufactured bar length that has the smallest total waste will be the chosen manufactured bar length and its corresponding manufactured quantity

$$Qty_{_{CM}} = Qty_{_{L}} \bullet Qty_{_{M}} (round \ up \ into \ whole \ number)$$

For Transverse Reinforcement

$$Qty_p = \frac{L_M}{L_B of \ Qty_T}$$

$$Qty_{M} = \frac{Qty_{T}}{Qty_{p}(round\ down\ to\ whole\ number)}$$

$$\boldsymbol{L_{E}} = \left[\textit{Qty}_{\textit{M}}(\textit{round up to whole number}) - \textit{Qty}_{\textit{M}} \right] \bullet \boldsymbol{L_{\textit{M}}}$$

And

$$Total \ Wastage = L_{_E} + L_{_W} \Big[Qty_{_M}(round\ down\ to\ whole\ number) \Big]$$

The manufactured bar length that has the smallest total wastage will be the chosen manufactured bar length and its corresponding manufactured quantity

Example:

Based on the reference the available manufactured lengths are 6, 7.5, 9, 10.5, 12, 13.5, and 15 meters.

• For Longitudinal Reinforcement

Since
$$(L_B of Qty_L = 30.29) > (Largest L_M = 15)$$
. Thus,

$$D_{M} = 6 m$$

$$Qty_M = \frac{L_B of \ Qty_L}{L_M - S_L} = \frac{30.29}{6 - 0.300} = 5.314$$

 $L_X = [Qty_M - Qty_M (round\ down\ into\ whole\ number)](L_M - S_L) = (5.314 - 5)(6 - 0.3) = 1.79\ m$

$$L_E = L_M - L_V = 6 - 1.79 = 4.21 \, m$$

$$Total \, Wastage = L_{_E} \bullet \, Qty_{_L} = \, 4.\, 21 \cdot 5 \, = \, 21.\, 05$$

 $Qty_{CM} = Qty_{L} \cdot Qty_{M}(round\ up\ into\ whole\ number) = 5.6 = 30$

The results of the computations of other $L_{_{\scriptsize M}}$

L [M]	Qty [T]	L [B] of Qty [T]	Splice Length	Qty [M]		L [x]	L [E]	Qty [CM]	Total Waste
6				5.31	6	1.79 0	4.210	30	21.050
7.5				4.21	5	1.49 0	6.010	25	30.050
9				3.48	4	4.19 0	4.810	20	24.050
10.5	5	30.29	0.30	2.97	3	9.89 0	0.610	15	3.050
12				2.59	3	6.89 0	5.110	15	25.550
13.5				2.29	3	3.89 0	9.610	15	48.050
15				2.06	3	0.89 0	14.11 0	15	70.550

The smallest average is $L_{M} = 10.5 m$. Thus, $L_{M(chosen)} = 10.5 m$ and $Qty_{P(chosen)} = 15$

For Transverse Reinforcement

$$Qty_P = \frac{L_M}{L_B of \ Qty_T} = \frac{6}{0.565} = 10.62$$

Since $Qty_p > 1$. Thus,

 $L_{W} = L_{M} - (L_{B} \text{ of } Qty_{T}) \bullet Qty_{P} (round \text{ down into whole number}) = 6 - 0.565(10) = 0.35 \text{ m}$

$$Qty_{M} = \frac{Qty_{T}}{Qty_{P}(round\ down\ to\ whole\ number)} = \frac{102}{10} = 10.2$$

$$L_E = \left[Qty_M(round\ up\ to\ whole\ number) - Qty_M\right] \bullet L_M = [11\ -\ 10.\ 2] \cdot 6 = 4.\ 8\ m$$

 $Total\ Wastage = L_{E} + L_{W} \Big[Qty_{M} (round\ down\ to\ whole\ number) \Big] =\ 4.\ 8\ +\ 0.\ 35[10] =\ 8.\ 3$

The results of the computations of other $L_{_{M}}$

L [M]	Qty [T]	L [B] of Qty [T]	Qty [P]		Qty [M]		L [W]	L [E]	Total Wastage
6			5.67	5	20.40	21	0.70 5	3.600	17.700
7.5			7.08	7	14.57	15	0.08 7	3.214	1.651
9			8.50	8	12.75	13	0.52 8	2.250	1.389
10.5	102	1.059	9.92	9	11.33	12	0.96 9	7.000	3.985
12			11.33	11	9.27	10	0.35 1	8.727	4.539
13.5			12.75	12	8.50	9	0.79 2	6.750	3.771
15			14.16	14	7.29	8	0.17 4	10.714	5.444

The smallest average is $L_{M} = 9 m$. Thus, $L_{M(chosen)} = 9 m$ and $Qty_{P(chosen)} = 13$

4. The program will compute the weight of the chosen manufactured bar length in transverse and longitudinal reinforcement of the footing.

$$Weight = L_{M(chosen)} \bullet Qty_{M(chosen)} \bullet W_{D}$$

Where:

 $W_{_{D}} = corresponding weight of the reinforcement diameter (Table in the Parameters)$

Example:

- WEIGHT —			
BAR SIZE (Diameter)	kg/m		
6 mm	0.222		
8 mm	0.395		
10 mm	0.616		
12 mm	0.888		
16 mm	1.597		
20 mm	2.466		
25 mm	3.854		
28 mm	4.833		
32 mm	6.313		
36 mm	7.991		
40 mm	9.864		
44 mm	11.926		
50 mm	15.413		
56 mm	19.318		

WF-1

- @ Longitudinal Reinforcement: $diameter = 10 \ mm$, thus $W_{_D} = 0.616$
- @ Transverse Reinforcement: $diameter = 10 \ mm$, thus $W_{_D} = 0.616$

For WF-1

@ Longitudinal Reinforcement

$$Weight_L = L_{M(chosen)} \bullet Qty_{M(chosen)} \bullet W_D = (10.5) \bullet (15) \bullet (0.616) = 97.02 \ kg$$

@ Transverse Reinforcement

$$Weight_U = L_{M(chosen)} \bullet Qty_{M(chosen)} \bullet W_D = (9) \bullet (13) \bullet (0.616) = 72.072 \ kg$$

5. The program will compute the total weight of reinforcements on each footing.

$$Weight_{TOTAL} = Weight_{L} + Weight_{T}$$

Example:

For WF-1

$$Weight_{TOTAL} = Weight_{L} + Weight_{T} = 97.02 + 72.072 = 169.092 \ kg$$