

Using R's Caret Package for Machine Learning

Earl F Glynn
Kansas City R Users Group
9 September 2017

https://github.com/EarlGlynn/kc-r-users-caret-2017

Using R's Caret Package for Machine Learning

- Regressions Models vs Machine Learning
- Caret Package Overview
 - Visualize Data
 - Preprocess / Transform Data
 - Partition Data into Train and Test Sets
 - Train and Tune Model
 - Evaluate Model Performance
 - Estimate Variable Importance
 - Parallel Processing
- Caret Machine Learning: Forensic Glass Dataset
- Toy Shiny App to Compare Machine Learning Models
- Summary

Regression Models vs. Practical Machine Learning

Johns Hopkins University
Regression Models

Focus: Interpretability

Johns Hopkins University

Practical Machine Learning

Focus: Accurate Predictions

https://www.coursera.org/specializations/jhu-data-science

Caret Package:

Classification And Regression Training

2013

http://appliedpredictivemodeling.com/
http://appliedpredictivemodeling.com/blog/

Max Kuhn

topepo

https://github.com/topepo/caret

Super excited to announce that Max Kuhn is joining my team at @rstudio: appliedpredictivemodeling.com/blog/2016/1

appliedpredictivemodeling.com/blog/2016/

orking at RStudio

I've joined Hadley's team at RStudio. Unsurprisingly, I'll be working on some modeling related R packages and infrastructure. It is very exciting and I'm looking forward to learning a lot and...

appliedpredictivemodeling.com

Caret Package Features

- Provides uniform interface to machine learning models
- Streamlines model training and tuning
- Standardizes common tasks
- Uses dozens of R packages
- Provides parallel processing

Building Predictive Models in R Using the caret Package https://www.jstatsoft.org/article/view/v028i05/v28i05.pdf
Max Kuhn, Pfizer Global R&D Journal of Statistical Software, Nov. 2008

Caret Package Models

6 Available Models

✓ entries

Show 238

The models below are available in train. The code behind these protocols can be obtained using the function <code>getModelInfo</code> or by going to the github repository.

		Search:	
Model	$method \ {\it Value}$	Туре	Libraries
AdaBoost Classification Trees	adaboost	Classification	fastAdaboost
AdaBoost.M1	AdaBoost.M1	Classification	adabag, plyr
Adaptive Mixture Discriminant Analysis	amdai	Classification	adaptDA
Adaptive-Network-Based Fuzzy Inference System	ANFIS	Regression	frbs
Adjacent Categories Probability Model for Ordinal Data	vglmAdjCat	Classification	VGAM
Bagged AdaBoost	AdaBag	Classification	adabag, plyr
Bagged CART	treebag	Classification, Regression	ipred, plyr, e1071

http://topepo.github.io/caret/modelList.html

Files: caret-overview.Rmd and caret-overview.html

Forensic Glass Dataset

https://sha.org/bottle/links.htm

fgl dataset in MASS package

- RI = refractive index
- Percentages by weight of oxides: Na, Mg, Al, Si, K, Ca, Ba, Fe
- type
 - window float glass (WinF: 70),
 - window non-float glass (WinNF: 76),
 - vehicle window glass (Veh: 17),
 - containers (Con: 13),
 - tableware (Tabl: 9)
 - vehicle headlamps (Head: 29).

RI Na Mg Al Si K Ca Ba Fe type 3.01 13.64 4.49 1.10 71.78 0.06 8.75 0 0.00 WinF -0.39 13.89 3.60 1.36 72.73 0.48 7.83 0 0.00 WinF

Also available through <u>UCI Repository</u>.

Discussed in book <u>Data Mining and Business Analytics with R</u>.

Caret: Parallel Processing

On a PC ...

```
# Setup parallel processing
# Let's use 6 cores
library(doParallel)
rCluster <- makePSOCKcluster(6)
registerDoParallel(rCluster)
...
stopCluster(rCluster)</pre>
```

```
CPU Usage 76%
Clock 3501 MHz
Core 17-4770K 3.50GHz
prime2\efg
Used Free Total
10.25GB 21.64GB 31.9GB
46MB 31.84GB 32GB
RAM 32%
Page 0%
Core 1 55%
Core 2 69%
Core 3 80%
Core 4 98%
Core 4 98%
Core 5 88%
Core 6 91%
Core 7 97%
Core 8 28%
```

Caret: Visualize Data

Files: Forensic-Glass-Exploratory.Rmd or Forensic-Glass-Exploratory.html

Data Visualization with the Caret R package https://machinelearningmastery.com/data-visualization-with-the-caret-r-package/

Caret: Partition Data into Train & Test

Use function **createDataPartition** to create splits of the data

```
library(MASS)
library(caret)
```

Forensic Glass Data

```
rawData <- fgl
dim(rawData)

[1] 214 10
```

Define train and test datasets

```
set.seed(71)

trainSetIndices <- createDataPartition(rawData$type, p=0.70, list=FALSE)

trainSet <- rawData[ trainSetIndices, ]

testSet <- rawData[-trainSetIndices, ]</pre>
```

Caret: Partition Data into Train & Test

Use function **createDataPartition** to create splits of the data.

http://topepo.github.io/caret/data-splitting.html

Approach Using Forensic Glass Dataset

214 glass samples each with 9 predictors

Split original dataset: 70% training, 30% final test

153 samples training

61 samples final test

Use for training and tuning

Use once and only once for final test of model. Why?

Caret: Preprocess / Transform Data

- Impute Missing Values
- Create Dummy Variables
- Remove Zero- / Near Zero-Variance Predictors
- Remove Correlated Predictors
- Remove Linear Dependencies
- Center / Scale / Standardize Data
- Transformations (BoxCox, YeoJohnson)

Caret: Train Model

Linear Discriminant Analysis

```
set.seed(29)
CVfolds <- 5 # 5-fold cross validation (not enough data for 10 fold here)
CVrepeats <- 10 # repeat 10 times
# Used createMultiFolds to study
indexFolds <- createMultiFolds(trainSet$type, CVfolds, CVrepeats) # for repeated CV
trainControlParms <- trainControl(method = "repeatedcv", # repeated cross validation
                              number = CVfolds,
                              repeats = CVrepeats,
                              index = indexFolds,
                              summaryFunction = defaultSummary)
fit <- train(type ~ ., data=trainSet,
           preProcess = c("center", "scale"),
           method = "lda",
           metric = "Kappa",
           trControl = trainControlParms)
```

Caret: Train Model

K – Fold Cross–Validation

Original Data		
	Build Model With	Predict On
CV Group #1		
CV Group #2		
CV Group #3		

Max Kuhn (Pfizer) Predictive Modeling 39 /142

Underfit vs Overfit

Bias-Variance Tradeoff

Caret: Tune Model

Often default tuning is adequate, but when not ...

Hyperparameters

0.1 1

J48

```
0.1 2
                                                                                               0.1 3
set.seed(29)
                                                                                               0.1 4
CVfolds <- 5 # 5-fold cross validation (not enough data for 10 fold here)
                                                                                               0.1 5
CVrepeats <- 10 # repeat 10 times
                                                                                               0.2 1
TUNEgrid <- expand.grid(C = 1:4 * 0.1,
                                                                                               0.2 2
                       M = 1:5
                                                                                               0.2 3
                                                                                               0.2 4
trainControlParms <- trainControl(method = "repeatedcv", # repeated cross validation
                                                                                               0.2 5
                                 number = CVfolds,
                                                                                               0.3 1
                                 repeats = CVrepeats,
                                                                                               0.3 2
                                 classProbs = TRUE, # Estimate class probabilities
                                                                                               0.3 3
                                 summaryFunction = defaultSummary)
                                                                                               0.3 4
                                                                                               0.3 5
fit <- train(type ~ ., data=trainSet,
                                                                                               0.4 1
            method = "J48".
                                                                                               0.4 2
            metric = "Kappa",
                                             # helps with imbalance
                                                                                               0.4 3
            tuneGrid = TUNEgrid,
                                             # expanded range
                                                                                               0.4 4
            trControl = trainControlParms)
                                                                                               0.4 5
```

Files: Forensic-Glass-caret-J48.Rmd and Forensic-Glass-caret-J48f.html

Tune Machine Learning Algorithms in R (random forest case study) https://machinelearningmastery.com/tune-machine-learning-algorithms-in-r/

HYPERPRIRETER TUNING

Finding the hyperparameter values of a learning algorithm that produce the best model.

ChrisAlbon

@ChrisAlbon
MachineLearningFlashcards.com

PRRAMETERS VS. Hyperparameters

Parameters are learned through the training procedure. For example, the weights of a neural network.

Hyperparameters are set before training starts, can be tuned through grid search or related methods.

ChrisAlbon

Classification Metrics

- Accuracy
- Area Under Curve (AUC) [2 classes]
- Kappa (better than Accuracy when groups not balanced)
- LogLoss

Regression Metrics

- RMSE (Root Mean Squared Error)
- R²

ChrisAlbon

For classification models:

Kappa

- overall accuracy can be used, but this may be problematic when the classes are not balanced.
- the **Kappa statistic** takes into account the expected error rate:

$$\kappa = \frac{O - E}{1 - E}$$

where O is the observed accuracy and E is the expected accuracy under chance agreement (psych:::cohen.kappa, vcd:::Kappa, ...)

https://www.r-project.org/conferences/useR-2013/ Tutorials/kuhn/user caret 2up.pdf

the accuracy of a classifier by comparing the true and predicted classes. Off diagonal squares are incorrect predictions.

Confusion matrices visualize

Chris Albon

@ChrisAlbon MachineLearningFlashcards.com

- **Sensitivity**: given that a result is truly an event, what is the probability that the model will predict an event results?
- **Specificity**: given that a result is truly not an event, what is the probability that the model will predict a negative results?

 $https://www.r-project.org/conferences/use R-2013/Tutorials/kuhn/user_caret_2 up.pdf$

Train: Overly Optimistic Results for Generalization

Results on Train Set (In Sample)

Test: More Realistic Results on Predictions with New Data

Results on Test Set (Out of Sample)

More realistic results on predictions with new data

options(width=120)
OutOfSample <- predict(fit, newdata=testSet)
confusion <- confusionMatrix(testSet\$type, OutOfSample)
print(confusion)</pre>

Caret: Estimate Variable Importance

Random Forest: Single Prediction Model

Caret: Estimate Variable Importance

J48: Separate Model for Each Type

Variable Importance

Caret Machine Learning

Which Machine Learning Algorithms to use?

Theorem (No Free Lunch)

In the absence of any knowledge about the prediction problem, no model can be said to be uniformly better than any other

Given this, it makes sense to use a variety of different models to find one that best fits the data

Max Kuhn (Pfizer Global R&D)

caret

2 / 17

Caret Machine Learning

Which Machine Learning Algorithms to use?

Algorithms

It is important to have a good mix of algorithm representations (lines, trees, instances, etc.) as well as algorithms for learning those representations.

A good rule of thumb I use is "a few of each", for example in the case of binary classification:

- Linear methods: Linear Discriminant Analysis and Logistic Regression.
- Non-Linear methods: Neural Network, SVM, kNN and Naive Bayes
- Trees and Rules: CART, J48 and PART
- Ensembles of Trees: C5.0, Bagged CART, Random Forest and Stochastic Gradient Boosting

You want some low complexity easy to interpret methods in there (like LDA and kNN) in case they do well, you can adopt them. You also want some sophisticated methods in there (like random forest) to see if the problem can even be learned and to start building up expectations of accuracy.

How many algorithms? At least 10-to-20 different algorithms.

Caret Machine Learning Examples

Group	Algorithms	Caret Model	FILE
Linear	Linear Discriminant Analysis	lda	lda
Methods	Linear Discriminant Analysis with	lda w/YeoJohnson	lda-YeoJohnson
	YeoJohnson preprocessing		
	LASSO, Ridge, and Elastic Net	glmnet	glmnet
	LASSO, Ridge, and Elastic Net	glmnet w/SMOTE	glmnet-SMOTE
	with Synthetic Minority Over-		
	Sampling Technique (SMOTE)		
Non-Linear	Neural Network	nnet	nnet
Methods	Support Vector Machine with Radial	svmRadial	svmRadial
	Basis Function Kernel		
	Naïve Bayes	nb	nb
	Naïve Bayes with Independent	nb w/ICA	nb-ica-
	Component Analysis (ICA)		transform
	k Nearest Neighbors	knn	knn
Trees and	J48	J48	J48
Rules	Classification and Regression Trees	rpart	rpart
Ensembles of	C5.0	C5.0	C50
Trees	Random Forest	rf	rf
	Random Forest with SMOTE	rf w/SMOTE	rf-SMOTE

Summary of Results From Variety of Machine Learning Methods

Hold Out Test Dataset Results

Group	Model	Accuracy	Kappa
Linear Methods	lda	0.541	0.369
	lda w/YeoJohnson	0.623	0.486
	glmnet	0.639	0.498
	glmnet w/SMOTE	0.672	0.547
Non-Linear Methods	nnet	0.672	0.555
	svmRadial	0.639	0.486
	nb	0.607	0.459
	nb w/ICA	0.508	0.314
	knn	0.689	0.582
Trees and Rules	J48	0.672	0.560
	rpart	0.574	0.373
Ensembles of Trees	C5.0	0.689	0.573
	rf	0.771	0.686
	rf w/SMOTE	0.754	0.666

Toy Shiny App To Compare Models

Open ShinyCaret Folder as project in RStudio. Open file server.R. Select Run App.

Machine Learning Algorithms Using R's Caret Package Summary

- Caret provides uniform approach to using many classification and regression algorithms
- Many machine algorithms can be explored quickly using Caret.
- Caret provides many useful tools for machine learning

Question

Do We Need Hundreds of Classifiers to Solve Real World Classification Problems?

http://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf

Forensic Glass Dataset: PCA

Files: Forensic-Glass-PCA.Rmd and Forensic-Glass-PCA.html