Field Extensions and Elliptic Curves

August 1, 2024

Distributed Lab

zkdl-camp.github.io

github.com/ZKDL-Camp

Plan

Field Extensions

- 1 Field Extensions
 - A bit of intuition
 - General Definition
 - Polynomial Fraction Rings
 - Finite Field Extensions
- 2 Algebraic Closure
 - Definition
- 3 Elliptic Curve
 - Definition
 - Group Structure

Field Extensions

Question #1

What is the difference between rational numbers $\mathbb Q$ and real numbers $\mathbb R$?

Definition

Rational numbers \mathbb{Q} are defined as the set $\{\frac{n}{m}: n \in \mathbb{Z}, m \in \mathbb{N}\}.$

Question #2

Why cannot we say $m \in \mathbb{Z}$, similarly to n?

Theorem

 $\sqrt{2}$ is not a rational number. Neither is π and e. But they are reals.

Conclusion

 \mathbb{R} is sort of "an extended version of \mathbb{Q} ".

What about \mathbb{R} ?

Rethorical Question

Can we extend \mathbb{R} ?

Yes — just use complex numbers $\mathbb{C}!$

Definition

Complex numbers \mathbb{C} is defined as the set of x + iy where $i^2 = -1$.

Definition

Complex numbers \mathbb{C} are defined as the set of pairs $(x, y) \in \mathbb{R}^2$ where addition is defined as $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$, and the multiplication is:

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1).$$

A bit about complex numbers

Theorem

 $(\mathbb{C},+,\times)$ is a field.

Example

Let us see how arithmetic is performed in \mathbb{C} .

- Addition: (2+3i)+(4+5i)=6+8i.
- Multiplication: $(1+i)(2+i) = 2+3i+i^2 = 1+3i$.
- Division:

$$\frac{2+i}{1+i} = \frac{(2+i)(1-i)}{(1+i)(1-i)} = \frac{2-i-i^2}{1-i^2} = \frac{3-i}{2} = \frac{3}{2} - \frac{1}{2}i$$

Question

What is (1+i) + (2+i)? i(1+i)? 1/i?

Field Extension

Conclusion + Question

 $\mathbb C$ is sort of "an extended version of $\mathbb R$ ". Thus, we have

 $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, where $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields

So we have two questions in mind:

- Is there any mathematical term for this?
- Can we go further?

Definition

Let \mathbb{F} be a field. A field \mathbb{K} is called an **extension** of \mathbb{F} if $\mathbb{F} \subset \mathbb{K}$ which we denote as \mathbb{K}/\mathbb{F} .

Example

 \mathbb{C}/\mathbb{R} is a field extension. So is \mathbb{R}/\mathbb{Q} .

$\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i)$

Example

Define $\mathbb{Q}(\sqrt{2}) := \{p + q\sqrt{2} : p, q \in \mathbb{Q}\}$. This is a field extension of \mathbb{Q} . Arithmetic over $\mathbb{Q}(\sqrt{2})$ looks like:

- Addition: $(1+2\sqrt{2})+(3+4\sqrt{2})=4+6\sqrt{2}$.
- Multiplication:

$$(1+2\sqrt{2})(1+\sqrt{2}) = 1+3\sqrt{2}+2\sqrt{2}^2 = 5+3\sqrt{2}.$$

Division:

$$\frac{1+2\sqrt{2}}{1+\sqrt{2}} = \frac{(1+2\sqrt{2})(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$$

Example

Similarly, $\mathbb{Q}(i) := \{p + qi : p, q \in \mathbb{Q}\}$ is a field extension of \mathbb{Q} .

$$\mathbb{Q}(\sqrt{2},i)$$

Example

Define $\mathbb{Q}(\sqrt{2}, i) = \{\alpha + \beta\sqrt{2} : \alpha, \beta \in \mathbb{Q}(i)\}$. Typicall element of $\mathbb{Q}(\sqrt{2}, i)$ can be written as:

$$(a + bi) + (c + di)\sqrt{2} = a + c\sqrt{2} + b\sqrt{2}i + di\sqrt{2}$$

Notice

Each element of $\mathbb{Q}(\sqrt{2},i)$ is a linear combination of $\{1,\sqrt{2},i,\sqrt{2}i\}$. This is usually called a **basis**. Moreover, to denote the dimensionality of $\mathbb{Q}(\sqrt{2},i)$ over \mathbb{Q} , we write $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}]=4$.

Real Polynomials modulo $x^2 + 1$

Definition. . . "Kinda"

Consider the set \mathcal{P} — a set of polynomials $\mathbb{R}[x]$ modulo $p(x) := x^2 + 1$.

Example

For example, $1, 5 + x, 3x, 1 + 2x \in \mathcal{P}$.

But what about $x^2 + 2x + 4$? We can divide by $x^2 + 1$!

$$x^{2} + 2x + 4 = (x^{2} + 1) \cdot 1 + (2x + 3)$$

So in P, we have $x^2 + 2x + 4 = 2x + 3$.

Real Polynomials modulo $x^2 + 1$

Arithmetic

Over this field, we can do arithmetic as usual.

- Addition: (1+x)+(2+3x)=3+4x.
- Multiplication: $(1+x)(2+x) = x^2 + 3x + 2 = 3x + 1$.
- Inverse:

$$\left(\frac{1+x}{2}\right)^{-1} = 1-x$$

Indeed,

$$\frac{1+x}{2} \cdot (1-x) = \frac{1}{2} \cdot (1-x^2) = \frac{1}{2} \left(-(x^2+1) + 2 \right) = 1 \text{ (in } \mathcal{P})$$

Hold on a minute...

Results

- (1+x)+(2+3x)=3+4x
- (1+x)(2+x) = 1+3x
- $\bullet \left(\frac{1+x}{2}\right)^{-1} = 1-x$

Same, but over C

Let us do the same, but instead of X, use i.

- (1+i)+(2+3i)=3+4i.
- $(1+i)(2+i) = 2+3i+i^2 = 1+3i$.
- $\frac{1}{\frac{1+i}{2}} = \frac{2}{1+i} = \frac{2(1-i)}{(1+i)(1-i)} = 1-i$.

Hold on a minute...

So, basically, $\mathcal P$ and $\mathbb C$ have the same structure! Formally, they are isomorphic: $\mathcal P\cong\mathbb C$.

Question

Could we have used $x^2 + 3$ instead of $x^2 + 1$? What about $x^2 + x + 1$?

Yes, any irreducible 2nd-degree polynomial p(x) over \mathbb{R} can be used. Typically, this is denoted as $\mathbb{R}[x]/(p(x))$.

Reminder

For two groups $(\mathbb{G},+)$ and (\mathbb{H},\times) we defined homomorphism to be a function $\phi:\mathbb{G}\to\mathbb{H}$ such that

$$\phi(\mathsf{a}+\mathsf{b}) = \phi(\mathsf{a}) \times \phi(\mathsf{b})$$

However, we claim that $\mathbb{R}/(x^2+1)\cong\mathbb{C}$, which are fields!

Definition

A field isomorphism is a function $\phi:(\mathbb{F},+,\times)\to(\mathbb{K},\oplus,\otimes)$ such that

- $\phi(a+b) = \phi(a) \oplus \phi(b)$
- $\phi(a \times b) = \phi(a) \otimes \phi(b)$
- $\phi(1_{\mathbb{F}}) = 1_{\mathbb{K}}$

But for now, \cong means "exhibit the same structure".

Theorem

00000**0000000**00000

Field Extensions

Let \mathbb{F} be a field and $\mu(x)$ — irreducible polynomial over \mathbb{F} (reduction polynomial). Consider a set of polynomials over $\mathbb{F}[x]$ modulo $\mu(x) \in \mathbb{F}[x]$, formally denoted as $\mathbb{F}[x]/(\mu(x))$. Then, $\mathbb{F}[x]/(\mu(x))$ is a field.

Theorem

Let \mathbb{F} be a field and $\mu \in \mathbb{F}[X]$ is an irreducible polynomial of degree n and let $\mathbb{K} := \mathbb{F}[X]/(\mu(X))$. Let $\theta \in \mathbb{K}$ be the root of μ over \mathbb{K} . Then,

$$\mathbb{K} = \{c_0 + c_1\theta + \dots + c_{n-1}\theta^{n-1} : c_0, \dots, c_{n-1} \in \mathbb{F}\}\$$

Example

Field Extensions

Again, consider $\mathbb{Q}(\sqrt{2}) = \{q + p\sqrt{2} : p, q \in \mathbb{Q}\}$. Then,

$$\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x]/(x^2 - 2)$$

Example

Similarly, $\mathbb{Q}(i) \cong \mathbb{Q}[x]/(x^2+1)$.

Example

And $\mathbb{Q}(\sqrt{2},i)$ is just a little bit more tricky. Notice that we can take

$$p(x) := (x^2 - 2)(x^2 + 1) = x^4 - x^2 - 2$$

So $\mathbb{Q}(\sqrt{2},i) \cong \mathbb{Q}[x]/(x^4-x^2-2)$.

Finite Field Extension

Definition

Recall that \mathbb{F}_p (prime field) is a set $\{0, 1, \dots, p-1\}$ with arithmetic modulo p.

In many cases, we need to extend \mathbb{F}_p 2, 4, 8, 12, 24 times. For this, we use the so-called **finite field extension**.

Definition

Suppose p is prime and $m \geq 2$. Let $\mu \in \mathbb{F}_p[X]$ be an irreducible polynomial of degree m. Then, elements of \mathbb{F}_{p^m} are polynomials in $\mathbb{F}_p^{(\leq m)}[X]$ modulo $\mu(x)$. In other words,

$$\mathbb{F}_{p^m} = \{c_0 + c_1 X + \dots + c_{m-1} X^{m-1} : c_0, \dots, c_{m-1} \in \mathbb{F}_p\},\$$

where all operations are performed modulo $\mu(X)$.

Examples

It would be convenient to build \mathbb{F}_{p^2} as $\mathbb{F}_p[i]/(i^2+1)$, but is it always possible? In other words, when $X^2=-1$ has a solution in \mathbb{F}_p ?

Theorem

Let p be an odd prime. Then $X^2 + 1$ is irreducible in $\mathbb{F}_p[X]$ if and only if $p \equiv 3 \pmod{4}$.

Example

Pick p = 19. Then $\mathbb{F}_{361} := \mathbb{F}_{19}[i]/(i^2 + 1)$. So typical elements are: 1 + 3i, 10 + 15i, 18 + 18i, 5, 7i, ...

- Addition: (1+10i)+(18+15i)=19+25i=6i.
- Multiplication: $(5+6i)(6+7i) = 30+71i+42i^2 = -12+71i = 7+14i$.

More Examples: Binary Extension Fields

Example

Consider the \mathbb{F}_{2^4} . Then, there are 16 elements in this set:

$$0, 1, X, X + 1,$$

 $X^{2}, X^{2} + 1, X^{2} + X, X^{2} + X + 1,$
 $X^{3}, X^{3} + 1, X^{3} + X, X^{3} + X + 1,$
 $X^{3} + X^{2}, X^{3} + X^{2} + 1, X^{3} + X^{2} + X, X^{3} + X^{2} + X + 1.$

Set $\mu(X) := X^4 + X + 1$. Then, operations are performed in the following manner:

- Addition: $(X^3 + X^2 + 1) + (X^2 + X + 1) = X^3 + X$.
- Multiplication: $(X^3 + X^2 + 1) \cdot (X^2 + X + 1) = X^2 + 1$ since:
- Inversion: $(X^3 + X^2 + 1)^{-1} = X^2$ since $(X^3 + X^2 + 1) \cdot X^2 \mod (X^4 + X + 1) = 1$.

More Examples: BN254

Example

Consider the BN254 scalar field, used in SNARKs:

$$p = 0 \times 30644 = 72 = 131 = 029 \cdots = 8d3c208c16d87cfd47$$

- Then, $\mathbb{F}_{p^2} := \mathbb{F}_p[u]/(u^2+1)$ since $p \equiv 3 \pmod{4}$.
- Define $\xi := 9 + u \in \mathbb{F}_{p^2}$. Then, set $\mathbb{F}_{p^6} := \mathbb{F}_{p^2}[v]/(v^3 \xi)$.
- Finally, set $\mathbb{F}_{p^{12}} := \mathbb{F}_{p^6}[w]/(w^2 v)$.

Equivalently, we can write:

$$\mathbb{F}_{p^{12}} := \mathbb{F}_p[w]/(w^{12} - 18w^6 + 82)$$

Algebraic Closure

Definition

Definition

A field \mathbb{F} is called **algebraically closed** if every non-constant polynomial $p(x) \in \mathbb{F}[X]$ has a root in \mathbb{F} .

Example

 \mathbb{R} is not algebraically closed since X^2+1 has no roots in \mathbb{R} . However, \mathbb{C} is algebraically closed, which follows from the fundamental theorem of algebra. Since \mathbb{C} is a field extension of \mathbb{R} , it is also an algebraic closure of \mathbb{R} . This is commonly denoted as $\overline{\mathbb{R}}=\mathbb{C}$.

Definition

A field $\mathbb K$ is called an **algebraic closure** of $\mathbb F$ if $\mathbb K/\mathbb F$ is algebraically closed. This is denoted as $\overline{\mathbb F}=\mathbb K$.

Algebraic Closure for Finite Fields

Recall that we are cryptographers, not mathematicials. So we are interested in $\overline{\mathbb{F}}_p$. So I have two news to you:

- Good news: $\overline{\mathbb{F}}_p$ exists.
- Bad news: $\overline{\mathbb{F}}_p$ is infinite.

Theorem

No finite field \mathbb{F} is algebraically closed.

Proof. Suppose $a_1, a_2, \ldots, a_n \in \mathbb{F}$ are all elements of \mathbb{F} . Consider

$$p(x) := \prod_{i=1}^{n} (x - a_i) + 1 = (x - a_1)(x - a_2) \cdots (x - a_n) + 1.$$

Clearly, p(x) is a non-constant polynomial and has no roots in \mathbb{F} , since for any $a \in \mathbb{F}$, one has p(a) = 1.

So what?

But what form does the $\overline{\mathbb{F}}_p$ have? Well, it is a union of all \mathbb{F}_{p^k} for $k \geq 1$. This is formally written as:

$$\overline{\mathbb{F}}_p = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^k}$$

Remark

But this definition is super counter-intuitive! So here how we usually interpret it. Suppose I tell you that polynomial q(x) has a root in $\overline{\mathbb{F}}_p$. What that means is that there exists some extension \mathbb{F}_{p^m} such that for some $\alpha \in \mathbb{F}_{p^m}$, $q(\alpha) = 0$. We do not know how large this m is, but we know that it exists. For that reason, $\overline{\mathbb{F}}_p$ is defined as an infinite union of all possible field extensions.

Elliptic Curve

Definition

Definition

Suppose that \mathbb{K} is a field. An **elliptic curve** E over \mathbb{K} is defined as a set of points $(x, y) \in \mathbb{K}^2$:

$$y^2 = x^3 + ax + b,$$

called a **Short Weierstrass equation**, where $a,b\in\mathbb{K}$ and $4a^3+27b^2\neq 0$. We denote E/\mathbb{K} to denote the elliptic curve over field \mathbb{K} .

Definition

We say that $P=(x_P,y_P)\in \mathbb{A}^2(\mathbb{K})$ is the affine representation of the point on the elliptic curve E/\mathbb{K} if it satisfies the equation $y_P^2=x_P^3+ax_P+b$.

Examples

Example

Consider E/\mathbb{Q} : $y^2=x^3-x+9$. Valid affine points on E/\mathbb{Q} are, for example, $P=(0,3), Q=(-1,-3)\in \mathbb{A}^2(\mathbb{Q})$.

More Examples

Some more examples¹:

Figure 2.1: Singular curve $y^2 = x^3 - 3x + 2$ over \mathbb{R} .

Figure 2.2: Singular curve $y^2 = x^3$ over \mathbb{R} .

Figure 2.3: Smooth curve

 $y^2 = x^3 + x + 1$ over \mathbb{R} .

2.4: Figure Smooth curve $y^2 = x^3 - x$ over \mathbb{R} .

¹Figure taken from "Pairings for Beginners"

Real Elliptic Curves

But real elliptic curves are not that simple. Here how they look like²:

Figure: Curve $E/\mathbb{F}_{9973}: y^2 = x^3 - 2x + 1$ over the finite field

²Figure taken from "Moonmath"

Defining a Group Structure: A Few Words

Definition

The set of points on the curve, denoted as $E_{a,b}(\mathbb{K})$, is defined as:

$$E_{a,b}(\mathbb{K}) = \{(x,y) \in \mathbb{A}^2(\mathbb{K}) : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\},\$$

where \mathcal{O} is the so-called **point at infinity**.

Remark #1

If $(x_P, y_P) \in E(\mathbb{K})$ then $(x_P, -y_P) \in E(\mathbb{K})$.

Remark #2

Typically, $\mathbb{K} = \overline{\mathbb{F}}_p$: we do not conretize over which finite field we define the elliptic curve.

Defining a Group Structure: Chord Method

Figure: Chord method for adding two points

Defining a Group Structure: Tangent Method

Figure: Tangent method for the point doubling

Idea of Derivation

Line equation through $P = (x_P, y_P), Q = (x_Q, y_Q)$:

$$\ell: y = \lambda(x - x_P) + y_P, \ \lambda = \frac{y_Q - y_P}{x_Q - x_P}$$

So all we need is to solve the system of equations:

$$\begin{cases} y^2 = x^3 + ax + b \\ y = \lambda(x - x_P) + y_P \end{cases}$$

Substituting y from the second equation to the first one, we get a cubic equation. Using Vieta's formula, one can derive

$$x_P + x_Q + x_R = \lambda^2$$

The rest is easy to finish.

Group Law

Definition

- 1. Point at infinity \mathcal{O} is an identity element.
- 2. If $x_P \neq x_Q$, use the **chord method**. Define $\lambda := \frac{y_P y_Q}{x_P x_Q}$ the slope between P and Q. Set the resultant coordinates as:

$$x_R := \lambda^2 - x_P - x_Q, \quad y_R := \lambda(x_P - x_R) - y_P.$$

3. If $x_P = x_Q$ and $y_P = y_Q$ (that is, P = Q), use the **tangent method**. Define the slope of the tangent at P as $\lambda := \frac{3x_P^2 + a}{2y_P}$ and set

$$x_R := \lambda^2 - 2x_P, \quad y_R := \lambda(x_P - x_R) - y_P.$$

4. Otherwise, define $P \oplus Q := \mathcal{O}$.

One more Illustration

Figure 2.5: Elliptic curve addition.

Figure 2.6: Elliptic curve doubling.

Example

Example

Consider $E/\mathbb{R}: y^2 = x^3 - 2x$.

• Addition: $(-1,1) \oplus (0,0) = (2,-2), (2,2) \oplus (-1,-1) = (0,0).$

• Doubling: $[2](-1,-1)=(\frac{9}{4},-\frac{21}{8}).$

Hasse's Theorem

Theorem

 $(E(\overline{\mathbb{F}}), \oplus)$ forms an abelian group.

Now, let us consider the group order $r := |E(\mathbb{F}_{p^m})|$.

Theorem

Hasse's Theorem on Elliptic Curves. $r = p^m + 1 - t$ for some integer $|t| \le 2\sqrt{p^m}$. A bit more intuitive explanation: the number of points on the curve is close to $p^m + 1$. The value t is called the trace of Frobenius.

Remark

In fact, $r = |E(\mathbb{F}_{p^m})|$ can be computed in $O(\log(p^m))$, so the number of points can be computed efficiently even for fairly large primes p.

Discrete Logarithm

Definition

Let $P \in E(\overline{\mathbb{F}}_p)$ and $\alpha \in \mathbb{Z}_r$. Define the scalar multiplication $[\alpha]P$ as adding P to itself $\alpha - 1$ times (also set $[0]P := \mathcal{O}$).

Definition

Suppose E is cyclic, meaning, $\langle G \rangle = E$ for some $G \in E$. The discrete logarithm problem on E consists in the following: suppose $P = [\alpha]G$ for some $\alpha \in \mathbb{Z}_r$. Find α based on P.

Remark

If r is a product of primes p_1, p_2, \ldots, p_k such that $p_1 < p_2 < \cdots < p_k$, then the best-known algorithm to solve the discrete logarithm problem is no significantly better than $O(\sqrt{p_1})$.

Thank you for your attention

zkdl-camp.github.io
 github.com/ZKDL-Camp

