ARISTOTLE UNIVERSITY OF THESSALONIKI

SLAM for Autonomous Planetary Exploration using Global Map Matching

Author:
Dimitrios GEROMICHALOS

Supervisor: Assoc. Prof. Loukas PETROU

A dissertation submitted to the Faculty of Engineering in partial fulfillment of the requirements for the degree of

Diploma in Electrical and Computer Engineering

> February 3, 2018 Thessaloniki, Greece

Abstract

Write abstract here.....

Contents

A۱	bstrac	ct	iii
Co	onten	ts	v
Li	st of	Figures	vii
Li	st of	Tables	ix
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Problem Statement	1
		1.2.1 Presumptions	1
	1.3	Literature Review	1
		1.3.1 Planetary Absolute Localization	1
		1.3.2 SLAM	1
	1.4	Thesis Objectives and Organization	1
		1.4.1 Research Objectives	1
		1.4.2 Organization	1
2	Alg	orithm Design	3
	2.1	Algorithm Overview	3
	2.2	Data Registration	
		2.2.1 Point Cloud Processing	3
		2.2.2 Map Prediction and Update	3
	2.3	Data Fusion	3
		2.3.1 Sensor Fusion	3
		2.3.2 Neighborhood Fusion	3
	2.4	Pose Estimation	
		2.4.1 Initialization	3
		2.4.2 Prediction	3
		2.4.3 Update	3
		2.4.4 Resampling	
		2.4.5 Estimation	
	2.5	Pose Correction	
		2.5.1 Global to Local Map Matching	
		2.5.2 Criteria Checking	
		Elevation Features Checking	
		Traversed Distance Checking	
3	Svs	tem Implementation	5
-	3.1	Library	
		3.1.1 Concurrency	
		3.1.2 Robotic Software Framework	

		3.1.3 Orbiter Data Preprocessing	5
	3.2	System Architecture	
	3.3	Planetary Rover Testbed	_
4	Exp	erimental Validation	7
	4.1^{-}	Scope of Experiments	7
		4.1.1 Environment	
		4.1.2 Metrics	7
	4.2		
		4.2.1 Relative Localization Results	7
	4.3		7
		4.3.1 Absolute Localization Results	7
		4.3.2 Map Resolution Viability	
5	Con	clusion	ç
	5.1	Thesis Summary	٥
	5.2	Contributions	
	5.3		٥
	5.4	Applications	٥

List of Figures

List of Tables

Introduction

- 1.1 Motivation
- 1.2 Problem Statement
- 1.2.1 Presumptions
- 1.3 Literature Review
- 1.3.1 Planetary Absolute Localization
- 1.3.2 SLAM
- 1.4 Thesis Objectives and Organization
- 1.4.1 Research Objectives
- 1.4.2 Organization

Algorithm Design

- 2.1 Algorithm Overview
- 2.2 Data Registration
- 2.2.1 Point Cloud Processing
- 2.2.2 Map Prediction and Update
- 2.3 Data Fusion
- 2.3.1 Sensor Fusion
- 2.3.2 Neighborhood Fusion
- 2.4 Pose Estimation
- 2.4.1 Initialization
- 2.4.2 Prediction
- 2.4.3 Update
- 2.4.4 Resampling
- 2.4.5 Estimation
- 2.5 Pose Correction
- 2.5.1 Global to Local Map Matching
- 2.5.2 Criteria Checking

Elevation Features Checking

Traversed Distance Checking

System Implementation

- 3.1 Library
- 3.1.1 Concurrency
- 3.1.2 Robotic Software Framework
- 3.1.3 Orbiter Data Preprocessing
- 3.2 System Architecture
- 3.3 Planetary Rover Testbed

Experimental Validation

- 4.1 Scope of Experiments
- 4.1.1 Environment
- 4.1.2 Metrics
- 4.2 Experiments on Pose Estimation
- 4.2.1 Relative Localization Results
- 4.3 Experiments on Global Map Matching
- 4.3.1 Absolute Localization Results
- 4.3.2 Map Resolution Viability

Conclusion

- 5.1 Thesis Summary
- 5.2 Contributions
- 5.3 Directions for Future Extensions
- 5.4 Applications