Introduction to Algorithms, Fall, 2023 Programming Homework 5

Problem C Isolated Verticies

Time limit: 1 second

Memory limit: 2048 megabytes

Problem Description

Given a directed graph with n vertices and m directed edges, where the vertices are numbered from 1 to n.

A cycle in a directed graph is a sequence of vertices $v_1, v_2, \ldots, v_k, v_1$, where $k \geq 1$, only the first and last vertices are equal and each pair of adjacent vertices share an edge. Define a vertex to be *isolated* if it is not in any cycle. Find the number of isolated vertices in the graph.

Input Format

The first line of the input contains two integers n and m. Each of the following m lines contains two integers u_i and v_i , where the i-th line denotes that there is a directed edge from vertex u_i to v_i in the graph.

Output Format

Output the number of isolated verticies in one line.

Technical Specification

- $1 \le n \le 2 \times 10^5$
- $0 \le m \le \min(n(n-1), 2 \times 10^5)$
- $1 \le u_i, v_i \le n \text{ for } i = 1, 2, \dots, m$
- It is guaranteed that the input graph does not contain loops and multiple edges.

Scoring

- 1. (30 points) $1 \le n \le 100$
- 2. (70 points) No additional constraints.

Introduction to Algorithms, Fall, 2023 Programming Homework 5

Sample Input 1

5	
1	
4	
5	
5	
2	
2	
1	

Sample Output 1

2

Sample Input 2

9	12		
8	6		
2	1		
9	1		
1	3		
	5		
	4		
5	6		
6	7		
7	8		
4	9		
3	2		
7	5		

Sample Output 2

О

Introduction to Algorithms, Fall, 2023 Programming Homework 5

Sample Input 3

Sample Output 3

6

Sample Input 4

200000 0

Sample Output 4

200000