Monotonic Alpha-divergence Variational Inference

Kamélia Daudel

University of Oxford kamelia.daudel@gmail.com

16/09/2021

Joint work with Randal Douc, François Portier and François Roueff

Outline

- 1 Introduction
- **2** Infinite-dimensional α -divergence minimisation
- **3** Monotonic α -divergence minimisation
- 4 Conclusion

Bayesian statistics

• Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many important models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family Q, where $q \in Q$.
- f 2 Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}|}$ (typically the KL divergence)

Bayesian statistics

 \bullet Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

- Problem : for many important models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family Q, where $q \in Q$.
- $oldsymbol{2}$ Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathcal{D}})$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}|}$ (typically the KL divergence)

Bayesian statistics

 \bullet Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D},y)}{p(\mathscr{D})} \; .$$

- Problem : for many important models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.
- → Variational Inference (VI) : inference is seen as an optimisation problem.
 - **1** Posit a variational family Q, where $q \in Q$.
 - $oldsymbol{2}$ Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$
,

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^{\star} = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q} || \mathbb{P}_{|\mathscr{D}}) \;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{Q}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
- ullet Choice of the approximating family ${\cal Q}$

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}),$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
- ullet Choice of the approximating family ${\cal Q}$

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}),$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
- ullet Choice of the approximating family ${\cal Q}$

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) ,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
 - ightarrow Alternative/more general D beyond the KL
- Choice of the approximating family Q
 - \rightarrow Expressiveness of ${\mathcal Q}$ beyond traditional parametric families

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^{\star} = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q} || \mathbb{P}_{|\mathscr{D}}) \;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{Q}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
 - ightarrow Alternative/more general D beyond the KL
- ullet Choice of the approximating family ${\cal Q}$
 - \rightarrow Expressiveness of ${\mathcal Q}$ beyond traditional parametric families

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) ,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
 - ightarrow Alternative/more general D beyond the KL
- ullet Choice of the approximating family ${\cal Q}$
 - \rightarrow Expressiveness of ${\mathcal Q}$ beyond traditional parametric families

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) ,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$ (typically the KL divergence)

- ullet Choice of the measure of dissimilarity D
 - ightarrow Alternative/more general D beyond the KL
- ullet Choice of the approximating family ${\cal Q}$
 - ightarrow Expressiveness of ${\cal Q}$ beyond traditional parametric families

- that performs **monotonic** α -divergence minimisation
- and enriches the typical variational (parametric) family

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q \text{, } \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p. \end{array}$

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}: \mathbb{Q} \preceq \nu, \, \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \, \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p. \end{array}$

lpha-divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{0,1\right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

A flexible family of divergences...

Figure: In red, the Gaussian which minimises the α -divergence to a mixture of two Gaussian for a varying α

Adapted from Divergence Measures and Message Passing. T. Minka (2005). Technical Report MSR-TR-2005-173

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{ 0, 1 \right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$q^* = \operatorname{arginf}_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$
$$= \operatorname{arginf}_{q \in \mathcal{Q}} \Psi_{\alpha}(q; p)$$

with
$$\Psi_{\alpha}(q;p)=\int_{\mathsf{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$$
 and $p=p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIP.

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{ 0, 1 \right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\begin{split} q^{\star} &= \operatorname{arginf}_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q} || \mathbb{P}_{|\mathscr{D}}) \\ &= \operatorname{arginf}_{q \in \mathcal{Q}} \Psi_{\alpha}(q; p) \end{split}$$

with
$$\Psi_{\alpha}(q;p)=\int_{\mathsf{Y}}f_{\alpha}\left(\frac{q(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$$
 and $p=p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIPS

Outline

- 1 Introduction
- 2 Infinite-dimensional α -divergence minimisation
- 3 Monotonic α -divergence minimisation
- 4 Conclusion

Infinite-dimensional α -divergence minimisation

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.K. Daudel, R. Douc and F. Portier (2020). To appear in the Annals of Statistics.

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{q: y \mapsto \mu k(y) := \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in the α -divergence at each step

Hierarchical Variational Inference

Hierarchical variational models. R. Ranganath, D. Tran, and D. Blei (2016). ICML Semi-Implicit Variational Inference. M. Yin and M. Zhou (2018). ICML

$$ightarrow$$
 Mixture Models : $\mu = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$

Infinite-dimensional α -divergence minimisation

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.K. Daudel, R. Douc and F. Portier (2020). To appear in the Annals of Statistics.

Idea: Extend the traditional variational parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{ q: y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in the $\alpha\text{-divergence}$ at each step

Hierarchical Variational Inference
 Hierarchical variational models. R. Ranganath, D. Tran, and D. Blei (2016). ICML
 Semi-Implicit Variational Inference. M. Yin and M. Zhou (2018). ICML

$$ightarrow$$
 Mixture Models : $\mu = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$

Infinite-dimensional α -divergence minimisation

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.K. Daudel, R. Douc and F. Portier (2020). To appear in the Annals of Statistics.

Idea: Extend the traditional variational parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{q: y \mapsto \mu k(y) := \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \; : \; \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in the $\alpha\text{-divergence}$ at each step

Hierarchical Variational Inference
 Hierarchical variational models. R. Ranganath, D. Tran, and D. Blei (2016). ICML
 Semi-Implicit Variational Inference. M. Yin and M. Zhou (2018). ICML

$$ightarrow$$
 Mixture Models : $\mu = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on T \times $\mathcal Y$ with density k

The (α, Γ) -descent algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on T \times $\mathcal Y$ with density k

The (α, Γ) -descent algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geq 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on T \times $\mathcal Y$ with density k

The (α, Γ) -descent algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

The (α, Γ) -descent algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geq 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta, y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; \mathbf{p}) \quad \text{with} \quad \Psi_{\alpha}(\mu k; \mathbf{p}) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

The (α, Γ) -descent algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geq 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; \mathbf{p}) \quad \text{with} \quad \Psi_{\alpha}(\mu k; \mathbf{p}) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

The (α, Γ) -descent algorithm

Let $\mu_1 \in \mathrm{M}_1(\mathsf{T})$ be such that $\Psi_\alpha(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n)$$
, $n \geqslant 1$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathbf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$

Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$

Conditions for a monotonic decrease

- (A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu\in M_1(T)$ be such that $\Psi_{\alpha}(\mu k)<\infty$ and $\mu(\Gamma(b_{\mu,\alpha}+\kappa))<\infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- **2** $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta, y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

 \bullet Power descent : $\eta \in (0,1]$, $(\alpha-1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta,y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha-1} \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\frac{\eta}{1-\alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_\mathsf{Y} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

• Power descent : $\eta \in (0,1]$, $(\alpha-1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

Examples satisfying (A2)

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

 \bullet Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

 \bullet Power descent : $\eta \in (0,1]$, $(\alpha-1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathbf{v}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

Algorithm

Convergence results

Entropic Mirror Descent

$$\eta \in (0, \frac{1}{|\alpha - 1||b|_{\infty,\alpha} + 1}), \ \kappa \in \mathbb{R}$$

Power Descent

$$\eta \in (0,1]$$
 , $(\alpha-1)\kappa \geqslant 0$

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha - 1 b _{\infty,\alpha} + 1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], (\alpha-1)\kappa \geqslant 0$	

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	$\alpha > 1$: $O(1/N)$ convergence rates

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	$\alpha>1$: $O(1/N)$ convergence rates $\alpha<1$: convergence toward the optimum

Convergence results

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	$\begin{array}{l} \alpha>1:O(1/N) \text{ convergence rates}\\ \alpha<1: \text{ convergence toward the optimum} \end{array}$

→ Minimal assumptions ensuring a systematic decrease

Convergence results

Algorithm	Convergence results
Entropic Mirror Descent $\eta \in (0, \frac{1}{ \alpha-1 b _{\infty,\alpha}+1}), \ \kappa \in \mathbb{R}$	O(1/N) convergence rates
Power Descent $\eta \in (0,1], \ (\alpha-1)\kappa \geqslant 0$	$\begin{array}{l} \alpha>1:\ O(1/N) \ \mbox{convergence rates} \\ \alpha<1: \mbox{convergence toward the optimum} \end{array}$

- \rightarrow Minimal assumptions ensuring a systematic decrease
- \rightarrow No $\beta\text{-smoothness}$ assumption

$$\begin{split} S_J &= \left\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \, , \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\} \\ \text{Let } \theta_1,...,\theta_J \in \mathsf{T} \text{ be fixed and denote} \end{split}$$

$$\mu_{\lambda} = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$$
 where $\lambda \in \mathcal{S}_J$.

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\boldsymbol{\lambda}})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \lambda_1 = \lambda \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

ightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,lpha}(heta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_{\alpha} \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \overset{\text{i.i.d}}{\sim} \mu_n k$

 \rightarrow NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

$$S_J = \left\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \ \text{and} \ \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad ext{where} \quad oldsymbol{\lambda} \in \mathcal{S}_J \ .$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \boldsymbol{\lambda}_1 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

 \rightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_{\alpha} \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \overset{\text{i.i.d}}{\sim} \mu_n k$

 \rightarrow NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

$$S_J = \left\{ \boldsymbol{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{oldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j} \quad ext{where} \quad oldsymbol{\lambda} \in \mathcal{S}_J \;.$$

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \boldsymbol{\lambda}_1 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

 \rightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \overset{\text{i.i.d}}{\sim} \mu_n k$.

 \rightarrow NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

$$S_J = \left\{ \boldsymbol{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\theta_1,...,\theta_J \in \mathsf{T}$ be fixed and denote

$$\mu_{m{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{ heta_j}$$
 where $m{\lambda} \in \mathcal{S}_J$.

Then, $\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda})$ is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

$$\begin{cases} \boldsymbol{\lambda}_1 = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \end{cases}.$$

 \rightarrow In practice, we use Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j,Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \stackrel{\text{i.i.d}}{\sim} \mu_n k$.

 \to NB : Exploitation step that does not require any information on the distribution of $\{\theta_1,...,\theta_J\}$

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- 2 Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5 \mathcal{N}(\bm{y}; -2 \bm{u_d}, \bm{I_d}) + 0.5 \mathcal{N}(\bm{y}; 2 \bm{u_d}, \bm{I_d})], \ Z=2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **①** Exploitation step : optimise λ using the (α, Γ) -descent.
- ② Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\pmb{y}; -2\pmb{u_d}, \pmb{I_d}) + 0.5\mathcal{N}(\pmb{y}; 2\pmb{u_d}, \pmb{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\pmb{y}; -2\pmb{u_d}, \pmb{I_d}) + 0.5\mathcal{N}(\pmb{y}; 2\pmb{u_d}, \pmb{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h\propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h\propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

 $\to \mathscr{D}=\{c,x\}:I$ binary class labels, $c_i\in\{-1,1\}$, L covariates for each datapoint, $x_i\in\mathbb{R}^L$

 \rightarrow Model: L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) \;, \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ p(c_i &= 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

ightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [oldsymbol{w}, \log eta]$

Comparison between

- 0.5-Power descent
- Typical AIS

N = 1, T = 500, $J_0 = M_0 = 20$, $J_{t+1} = M_{t+1} = J_t + 1$ initial mixture weights: $[1/J_t, ..., 1/J_t]$, $\eta_0 = \eta_0/\sqrt{\eta}$ with $\eta_0 = 0.05$

- $o \mathscr{D} = \{c,x\}$: I binary class labels, $c_i \in \{-1,1\}$, L covariates for each datapoint, $x_i \in \mathbb{R}^L$
- \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) , \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) , \quad 1 \leqslant l \leqslant L \\ p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} , \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

ightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- 0.5-Power descent
- Typical <u>AIS</u>

 $N=1, T=500, J_0=M_0=20, J_{t+1}=M_{t+1}=J_t+1$ initial mixture weights : $[1/J_t,...,1/J_t], \eta_n=\eta_0/\sqrt{n}$ with $\eta_0=0.05$

- $\to \mathscr{D}=\{c,x\}:I$ binary class labels, $c_i\in\{-1,1\}$, L covariates for each datapoint, $x_i\in\mathbb{R}^L$
- \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) \ , \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) \ , \quad 1 \leqslant l \leqslant L \\ p(c_i &= 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \ , \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

 \rightarrow Quantity of interest : $p(y|\mathscr{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- 0.5-Power descent
- Typical <u>AIS</u>

 $N=1, T=500, J_0=M_0=20, J_{t+1}=M_{t+1}=J_t+1$ initial mixture weights : $[1/J_t,...,1/J_t], \eta_n=\eta_0/\sqrt{n}$ with $\eta_0=0.05$

 $o \mathscr{D}=\{m{c},m{x}\}:I$ binary class labels, $c_i\in\{-1,1\}$, L covariates for each datapoint, $m{x}_i\in\mathbb{R}^L$

 \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} &p_0(\beta) = \operatorname{Gamma}(\beta; a, b) \;, \\ &p_0(w_l | \beta) = \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ &p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a = 1 and b = 0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

 \rightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- <u>0.5-Power descent</u>
- Typical AIS

 $N=1, T=500, J_0=M_0=20, J_{t+1}=M_{t+1}=J_t+1$ initial mixture weights : $[1/J_t,...,1/J_t], \eta_n=\eta_0/\sqrt{n}$ with $\eta_0=0.05$

$$Q = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacktriangle No constraint on how to update Θ
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacktriangle No constraint on how to update Θ
- Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacktriangle No constraint on how to update Θ
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacktriangle No constraint on how to update Θ
- 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacktriangle No constraint on how to update Θ
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** No constraint on how to update Θ
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- \rightarrow Exploitation Exploration algorithm
 - lacktriangle No constraint on how to update Θ
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacksquare No constraint on how to update Θ
 - 2 Empirical advantages of using the Power Descent algorithm

$$\mathcal{Q} = \left\{ q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - lacksquare No constraint on how to update Θ
 - Empirical advantages of using the Power Descent algorithm

Outline

- 1 Introduction
- **2** Infinite-dimensional α -divergence minimisation
- **3** Monotonic α -divergence minimisation
- 4 Conclusion

Monotonic α -divergence minimisation

Monotonic Alpha-divergence Minimisation.

K. Daudel, R. Douc and F. Roueff (2021). Submitted.

Idea: Consider the variational family

$$Q = \left\{ q : y \mapsto \mu_{\lambda,\Theta} k(y) = \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

and propose an update formula for (λ,Θ) that ensures a systematic decrease in the α -divergence at each step

 \rightarrow Novelty : optimisation w.r.t Θ !

Monotonic α -divergence minimisation

Monotonic Alpha-divergence Minimisation.

K. Daudel, R. Douc and F. Roueff (2021). Submitted.

Idea: Consider the variational family

$$Q = \left\{ q : y \mapsto \mu_{\lambda,\Theta} k(y) = \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

and propose an update formula for (λ, Θ) that ensures a systematic decrease in the α -divergence at each step

 \rightarrow Novelty : optimisation w.r.t Θ !

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{\rho}) \quad \text{with} \quad \Psi_\alpha(\mu k; \pmb{\rho}) := \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in T \times Y$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_Y p(y)\nu(\mathrm{d}y) < \infty$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n \ge 1}$ so that: $\forall n \ge 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{\rho}) \quad \text{with} \quad \Psi_\alpha(\mu k; \pmb{\rho}) := \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n \ge 1}$ so that: $\forall n \ge 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{p}) \quad \text{with} \quad \Psi_\alpha(\mu k; \pmb{p}) := \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that: $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n \ge 1}$ so that: $\forall n \ge 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

- (Weights) and (Components) permit simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for λ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots$$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n \ge 1}$ so that: $\forall n \ge 1$,

$$\int_{Y} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0$$
 (Weights)

$$\int_{\mathsf{Y}} \sum_{i=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

- (Weights) and (Components) permit simultaneous updates
- The dependency is simpler in (Weights

$$ightarrow$$
 (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n \ge 1}$ so that: $\forall n \ge 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

- (Weights) and (Components) permit simultaneous updates
- 2 The dependency is simpler in (Weights)

$$ightarrow$$
 (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n \ge 1}$ so that: $\forall n \ge 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in the α -divergence at each step.

- (Weights) and (Components) permit simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

Understanding the mixture weights update

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

ightarrow We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). To appear in the Annals of Statistics.

Core insight:

The mixture weights update is gradient-based, η_n plays the role of a learning rate

Understanding the mixture weights update

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). To appear in the Annals of Statistics.

Core insight:

The mixture weights update is gradient-based, η_n plays the role of a learning rate

Understanding the mixture weights update

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). To appear in the Annals of Statistics.

Core insight:

The mixture weights update is gradient-based, η_n plays the role of a learning rate

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y) , \quad j = 1 \dots J$$

• Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \mathrm{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

and $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

• Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}}, \quad j=1...J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

• Gradient-based approach

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}}, \quad j=1...J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $eta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

Maximisation approach

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) , \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0$, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha = 0$, $\eta_n = 1$ and $\kappa = 0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- $\ensuremath{\mathbf{2}}$ We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow We recover the M-PMC algorithm when lpha=0, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow We recover the M-PMC algorithm when lpha=0, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_{j} \in \mathbf{T}} \int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \log(k(\theta_{j}, y)) \nu(\mathrm{d}y), \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0$, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \;, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta_j \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta_j,y)) \nu(\mathrm{d}y) \;, \quad j = 1 \dots J$$

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

 \rightarrow We recover the M-PMC algorithm when $\alpha=0$, $\eta_n=1$ and $\kappa=0$

- **1** We introduce η_n and κ , where η_n acts as a learning rate
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

Application to GMMs

ightarrow Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;m_j,\Sigma_j)$ with $\theta_j = (m_j,\Sigma_j) \in \mathsf{T}$

Algorithm 1: α -divergence minimisation for GMMs

At iteration n.

For all $i = 1 \dots J$, se

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n}) (y - m_{j,n})^{T} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}.$$

ightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

$$\hat{\gamma}_{j,\alpha}^{n}(y) = \frac{k(\theta_{j,n}, y)}{q_n(y)} \left(\frac{\mu_{\lambda_n, \Theta_n} k(y)}{p(y)}\right)^{\alpha - 1}$$

Application to GMMs

ightarrow Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;m_j,\Sigma_j)$ with $\theta_j = (m_j,\Sigma_j) \in \mathsf{T}$

Algorithm 1: α -divergence minimisation for GMMs

At iteration n.

For all $j = 1 \dots J$, set

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) (y - m_{j,n})^T \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}.$$

 \rightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

$$\hat{\gamma}_{j,\alpha}^{n}(y) = \frac{k(\theta_{j,n}, y)}{q_n(y)} \left(\frac{\mu_{\lambda_n, \Theta_n} k(y)}{p(y)}\right)^{\alpha - 1}$$

Application to GMMs

ightarrow Gaussian kernels : $k(\theta_j,y) = \mathcal{N}(y;m_j,\Sigma_j)$ with $\theta_j = (m_j,\Sigma_j) \in \mathsf{T}$

Algorithm 1: α -divergence minimisation for GMMs

At iteration n.

For all $j = 1 \dots J$, set

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) (y - m_{j,n})^T \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}.$$

 \rightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

$$\hat{\gamma}_{j,\alpha}^n(y) = \frac{k(\theta_{j,n},y)}{q_n(y)} \left(\frac{\mu_{\boldsymbol{\lambda}_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , d = 16$$

$$\begin{split} &\alpha=0,\,\eta_n=\eta\\ &M=200,\,J=100\\ &q_n(y)=\sum_{j=1}^J\lambda_{j,n}k(\theta_{j,n},y)\\ &\rightarrow \text{varying }\eta\text{ and }\kappa \end{split}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , d = 16$$

$$\begin{split} &\alpha=0,\ \eta_n=\eta\\ &M=200,\ J=100\\ &q_n(y)=\sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)\\ &\rightarrow \text{varying } \eta \text{ and } \kappa \end{split}$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , d = 16$$

$$\begin{split} &\alpha=0,\ \eta_n=\eta\\ &M=200,\ J=100\\ &q_n(y)=\sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)\\ &\rightarrow \text{varying } \eta \text{ and } \kappa \end{split}$$

$$\mathsf{Target}: \quad p(y) = 2 \times \left[0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})\right] \;, d = 16$$

$$\begin{split} &\alpha=0,\ \eta_n=\eta\\ &M=200,\ J=100\\ &q_n(y)=\sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)\\ &\rightarrow \text{varying } \eta \text{ and } \kappa \end{split}$$

Gradient-based approach

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta) |_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- ullet Rényi's lpha-divergence minimisation :
- $c_{j,n} = \lambda_{j,n} \left(\int_{\mathsf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)^{-1}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_Y \gamma_{i,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation :
- $c_{j,n} = \lambda_{j,n} (\int_{\mathsf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_Y \gamma_{i,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_Y \gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_{\mathcal{N}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta) |_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1], c_{j,n} > 0$,

$$g_{j,n}(\theta) = \frac{\mathbf{c}_{j,n}}{\int_{\mathbf{Y}}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \frac{\lambda_{j,n}}{(\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- \rightarrow Solution enabled by our framework : $c_{j,n} = (\int_{Y} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y))^{-1}$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}, \quad j = 1 \dots J$$

where $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$,

$$g_{j,n}(\theta) = \frac{\mathbf{c}_{j,n}}{\int_{\mathbf{Y}}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

and $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$

- α -divergence minimisation : $c_{j,n} = \lambda_{j,n}$
- Rényi's α -divergence minimisation : $c_{j,n} = \frac{\lambda_{j,n}}{(\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}}$
- \rightarrow Problem : $\lambda_{j,n}$ appears as a multiplicative factor, which could prevent learning!
- o Solution enabled by our framework : $c_{j,n}=(\int_{\mathbf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y))^{-1}$

Application to GMMs (2)

- $\rightarrow \mathsf{Gaussian} \; \mathsf{kernels} \; k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \; \mathsf{with} \; \Theta \in \mathsf{T}^J, \, \mathsf{T} = \mathbb{R}^d \; \mathsf{and} \; \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathsf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n} = (\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$

ightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

- $\rightarrow \mathsf{Gaussian} \; \mathsf{kernels} \; k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \; \mathsf{with} \; \Theta \in \mathsf{T}^J, \, \mathsf{T} = \mathbb{R}^d \; \mathsf{and} \; \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$ • Case $2: c_{j,n} = (\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$

 \rightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

- $\rightarrow \text{Gaussian kernels } k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2\boldsymbol{I_d}) \text{ with } \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \text{ and } \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n} = (\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$

ightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

- $\rightarrow \text{Gaussian kernels } k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2 \pmb{I_d}) \text{ with } \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \text{ and } \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\boldsymbol{\lambda}_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{j,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n}=(1-\alpha)$

Algorithm 2: α -divergence minimisation for GMMs (2)

At iteration n.

For all $j = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \theta_{j,n+1} &= \begin{cases} \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - \theta_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} & \text{(Case 1)} \\ (1 - \gamma_n) \, \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \, y \, \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} & \text{(Case 2)} \end{cases} \end{split}$$

^{ightarrow} NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

- $\rightarrow \text{Gaussian kernels } k(\theta_j,y) = \mathcal{N}(y;\theta_j,\sigma^2\boldsymbol{I_d}) \text{ with } \Theta \in \mathsf{T}^J \text{, } \mathsf{T} = \mathbb{R}^d \text{ and } \sigma^2 > 0$
 - Case $1: c_{j,n} = \lambda_{j,n} (\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y))^{-1}$ with $\beta_{i,n} = \sigma^{-2} (1-\alpha)^{-1}$
 - Case 2: $c_{j,n} = \sigma$ $(1-\alpha)$

Algorithm 2: α -divergence minimisation for GMMs (2)

At iteration n.

For all $i = 1 \dots J$, set

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \theta_{j,n+1} &= \begin{cases} \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - \theta_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_{\lambda_n,\Theta_n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} & \text{(Case 1)} \\ (1 - \gamma_n) \, \theta_{j,n} + \gamma_n \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \, y \, \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} & \text{(Case 2)} \end{cases} \end{split}$$

 \rightarrow NB : Monte Carlo approximations e.g. M i.i.d samples generated from q_n

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})] \ , \ d = 16$$

Outline

- 1 Introduction
- **2** Infinite-dimensional α -divergence minimisation
- 3 Monotonic lpha-divergence minimisation
- **4** Conclusion

- applicable to mixture model optimisation
- enables simultaneous updates for mixture weights and mixture components parameters
- empirical benefits compared to Entropic Mirror Descent, Gradient Descent and Integrated EM algorithms

- applicable to mixture model optimisation
- enables simultaneous updates for mixture weights and mixture components parameters
- empirical benefits compared to Entropic Mirror Descent, Gradient Descent and Integrated EM algorithms

- applicable to mixture model optimisation
- enables simultaneous updates for mixture weights and mixture components parameters
- empirical benefits compared to Entropic Mirror Descent, Gradient Descent and Integrated EM algorithms

- applicable to mixture model optimisation
- enables simultaneous updates for mixture weights and mixture components parameters
- empirical benefits compared to Entropic Mirror Descent, Gradient Descent and Integrated EM algorithms

Thank you for your attention!

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2020). To appear in the Annals of Statistics.

Monotonic Alpha-divergence Minimisation.

K. Daudel, R. Douc and F. Roueff (2021). Submitted