ZILFIMIAN

EM/DT (Q11L12) 15% (3/20)

With the increase of k, the decision boundary will be

- (A) simplified
- B more complex
- (c) I do not know
- (D) unchanged

X 2. Which of these algorithms can be used to fill the missing values

- (A) KNN for regression
- B KNN for classification
- (c) both
- I do not know

X 3. Decision Tree Decision Boundaries

- A are a step-wise constant function
- B I do not know
- (c) continuous function
- (D) are axis-parallel rectangles

× 4. Root Node has

- (A) no incoming edges and zero or more outgoing edges
- B one incoming edge and two or more outgoing edges
- (c) one incoming edge and no outgoing edges
- D I do not know

✓ 5. Pruning the tree means

- A Simplify the tree
- B Split the tree's nodes
- C Merge the tree's nodes
- D I do not know

Mary Page 1 of 4

×	6.	Gini index equals to
	A	1 - sum (pi^2)
	\bigcirc B	1 + sum (pi^2)
	\overline{C}	sum(pi * log(pi))
		-sum(pi * log(pi))
	E	I do not know
×	7.	Entropy starts with 0
	A	True
	\bigcirc B	False
	C	I do not know
×	8.	Overall impurity measure can be obtained by
	\bigcirc A	a weighted average of individual rectangles
	(B)	majority voting
	C	I do not know
/	9.	At each stage, we choose the split with
	A	the lowest Gini index
	\bigcirc B	the lowest Chi-square value
	$\left(C\right)$	the highest entropy
	D	I do not know
×	10.	We can perform the Decision Trees in r using
	A	rpart()
	\bigcirc B	decisiontree()
	\bigcirc	destree()
	D	reg.tree()
	E	I do not know
×	11.	minsplit in R means
	A	the minimum number of observations that must exist in a node in order for a split to be attempted
	\bigcirc B	the minimum number of observations in any terminal node
	C	the minimum number of splits
	D	I do not know

Mary Page 2 of 4

×	12. (A)	Bagging is a technique used to reduce the variance of our predictions
	\bigcirc B	the bias of our predictions
	\overline{C}	both
	D	I do not know
	13.	Bootstrap aggregation allows sampling with replacement
	B	without replacement
	$\overline{(c)}$	I do not know
	(D)	both
X	14.	How can Ensemble methods be constructed?
	(A)	By manipulating the training set
	B	By manipulating the input features
	(C)	By manipulating the class labels
	D	By manipulating the learning algorithm
	E	All of them
	F	None
	G	I do not know
×	15.	Repeatedly sampling observations are taken
	(A)	from general population
	(B)	original sample data set
	C	I do not know
	D	None
X	16.	Random Forest differs from bagging
	A	by a random sample of m predictors
	B	by bootstrapped training samples
	C	by adaptive sampling
		I do not know

Mary Page 3 of 4

×	17.	Boosting differs from bagging
	A	by a random sample of m predictors
	\bigcirc B	by bootstrapped training samples
	\bigcirc	by adaptive sampling
	D	I do not know
×	18.	Averaging many highly correlated quantities
	A	lead to as large of a reduction in variance
	B	does not lead to as large of a reduction in variance
	(c)	lead to as large of a reduction in bias
	D	I do not know
×	19.	We can perform a Random forest in R using the function
	A	randomForest()
	\bigcirc B	rf()
	C	randomF()
	(D)	boot()
	E	I do not know
×	20.	Random Forest works
	(A)	for classification
	В	for regression
	(c)	both
	D	I do not know

Mary Page 4 of 4