Numerical Analysis Notes

Abdullah Faraz

Contents

Chapter 1	Error Analysis	Page 2
	·	
Chapter 2	Solutions of Non-Linear Equations	Page 5
2.1	Bisection Method	5

Chapter 1

Error Analysis

Definition 1.0.1: Truncation Error

Error between the true value and approximate value due to chopping of the number from the series.

Example 1.0.1 (Taylor Series)

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x) + \cdots$$
$$x_0 \neq 0$$

Example 1.0.2 (Maclaurin Series)

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \cdots$$
$$x = 0$$

Definition 1.0.2: Round-off Error

Error between the true value and approximate value due to rounding off.

Definition 1.0.3: Absolute True Error

Error between the true value and the approximate value

$$\epsilon_t = |p - p^*|$$

 ϵ_t is the Absolute True Error p is the True Error

 p^* is the Approximate Value

Definition 1.0.4: Absolute Relative Error

The relative error between the true value and the approximate value

$$\epsilon_r = \left| \frac{p - p^*}{p} \right| \cdot 100$$

 ϵ_r is the Absolute Relative Error

p is the True Error

 p^* is the Approximate Value

Definition 1.0.5: Absolute Approximation Error

The relative error between the previous approximation and current approximation

$$\epsilon_a = \left| \frac{p_0 - p_1}{p_0} \right| \cdot 100$$

 ϵ_a is the Absolute Approximation Error

 p_0 is the Previous Approximation

 p^* is the Current Approximation

Definition 1.0.6: Tolerance

The maximum expected error in approximating error

$$\epsilon = 0.5 \cdot 10^{2-n} \%$$

 ϵ is the Tolerance

n is the required Significant figures or decimal places

$$\epsilon = 10^{-n}$$

 ϵ is the Tolerance

n is the required Significant figures or decimal places

Note:-

Use ϵ_a instead of ϵ_r when true value is not available

Algorithm 1: Approximating f(x)

- 1 Find the series representing f(x)
- 2 Find tolerance
- ${f 3}$ Find first approximating using only first two numbers of the series
- 4 while $\epsilon_a > \epsilon$ do
- 5 Calculate new approximate using another number from the series
- 6 Calculate new ϵ_a
- 7 This value is the approximation

Abdullah Faraz 4

Chapter 2

Solutions of Non-Linear Equations

2.1 Bisection Method

Theorem 2.1.1 Intermediate Value Theorem

If f is continuous on [a, b] and if f(a) and f(b) are non-zero and have opposite signs, then there is at least one solution of f(x) = 0 in the interval (a, b)

Algorithm 2: Finding root of f(x) using Bisection Method

1 For any continuous function f(x), find a closed interval [a, b] such that f(a).f(b) < 0.
2 Find the midpoint of a, b. Let x₁ = (a + b)/2
3 if f(x₁) = 0 then
4 | then x₁ is the root.
5 if f(x₁) ≠ 0 then
6 | if f(a).f(x₁) < 0 then
7 | Root of f(x) lies in [a, x₁], continue the above steps for interval [a, x₁]
8 else
9 | Root of f(x) lies in [x₁, b], continue the above steps for interval [x₁, b].
10 Continue the process repeatedly until we find a point x₀ in [a, b] for which f(x₀) = 0.

Theorem 2.1.2 Error Analysis of Bisection Method

If f is a continuous function on [a,b] and $f(a) \cdot f(b) < 0$ and let $\{c_n\}$ be a sequence generated using bisection method and let c be the exact root of f(x) = 0, then error at the n^{th} interval is

$$|c - c_n| \le \frac{b - a}{2^n}$$

Theorem 2.1.3

The number of iterations n required to obtain a approximating that is less than the tolerance ϵ is given by

$$n \geq \frac{\log(b-a) - \log(\epsilon)}{\log(2)}$$

n is the number of iterations

a is the lower bound of the interval

b is the upper bound of the interval

 ϵ is the tolerance

Abdullah Faraz 6