R Lesson 4

Using the matrix Function

- Creates a matrix from a single vector
- General form

```
matrix(data, nrow=n, ncol=n, byrow=FALSE)
```

- data: a data vector to be converted
- nrow: specify desired number of rows
- ncol: specify desired number of columns
- byrow: if FALSE matrix filled by columns, otherwise by rows

Using the matrix Function

Example:

mat1 <- matrix(1:12, nrow=4, byrow=TRUE)

Accessing Multiple Dimensions cpidf[??] cpicb[??]

	Country	CPI	countries		CPI
1	New Zealand	9.5	[1,]	"New Zealand"	"9.5"
2	Denmark	9.4	[2,]	"Denmark"	"9.4"
3	Finland	9.4	[3,]	"Finland"	"9.4"
4	Sweden	9.3	[4,]	"Sweden"	"9.3"
5	Singapore	9.2	[5,]	"Singapore"	"9.2"
6	Norway	9.0	[6,]	"Norway"	"9"
7	Netherlands	8.9	[7,]	"Netherlands"	"8.9"
8	Australia	8.8	[8,]	"Australia"	"8.8"
9	Switzerland	8.8	[9,]	"Switzerland"	"8.8"
10	Canada	8.7	[10,]	"Canada"	"8.7"
11	Luxembourg	8.5	[11,]	"Luxembourg"	"8.5"
12	Hong Kong	8.4	[12,]	"Hong Kong"	"8.4"
13	Iceland	8.3	[13,]	"Iceland"	"8.3"
14	Germany	8.0	[14,]	"Germany"	"8"
15	Japan	8.0	[15,]	"Japan"	"8"
16	Austria	7.8	[16,]	"Austria"	"7.8"

Flight #2292 - McDonnell Douglas Super MD-80

R is backwards compared to Excel

cpidf[row,col]

cpicb[row,col]

	Country	CPI		countries	CPI
1	New Zealand	9.5	[1,]	"New Zealand"	"9.5"
2	Denmark	9.4	[2,]	"Denmark"	"9.4"
3	Finland	9.4	[3,]	"Finland"	"9.4"
4	Sweden	9.3	[4,]	"Sweden"	"9.3"
5	Singapore	9.2	[5,]	"Singapore"	"9.2"
6	Norway	9.0	[6,]	"Norway"	"9"
7	Netherlands	8.9	[7,]	"Netherlands"	"8.9"
8	Australia	8.8	[8,]	"Australia"	"8.8"
9	Switzerland	8.8	[9,]	"Switzerland"	"8.8"
10	Canada	8.7	[10,]	"Canada"	"8.7"
11	Luxembourg	8.5	[11,]	"Luxembourg"	"8.5"
12	Hong Kong	8.4	[12,]	"Hong Kong"	"8.4"
13	Iceland	8.3	[13,]	"Iceland"	"8.3"
14	Germany	Germany 8.0 [14,] "Germany"		"Germany"	"8"
15	Japan	8.0	[15,]	"Japan"	"8"
16	Austria	7.8	[16,]	"Austria"	"7.8"

- Accessing sub-elements (matrix or data frame):
 - mat1[2,3] # element in the second row and third column
 - mat1[1:2,2:3] # sub-matrix of the first two rows and the second and third columns
 - mat1[2,] # the second row
 - mat1[,2] # the second column
 - mat1[,-2] # matrix with the second column removed

Accessing Data Frames

- Treat a row as a vector: cpidf[row#,]
- Treat a column as a vector (all rows)
 - 1. FrameName[,col#]
 - 2. FrameName\$ColName
 - attach(FrameName)
 - 4. with(FrameName, ColName or function using Colname)
- Get all column names: names(FrameName)
- Get all row names: row.names(FrameName)

Additional Matrix Functions

- dim(mat1) returns size of matrix
- rowSums(mat1) or colSums(mat1) summarize
- rowMeans(mat1) or colMeans(mat1) average
- apply(mat1,1,sum)
 - not as fast as row.../col... but more robust in handling missing values (they may return NaN)
 - can perform other functions besides sum and means
- NOTE: mat1 can also be indexes or expression

Applying Functions Across Data

- General form:
 - apply(array, rc, function, ...)
 - array: matrix or array to analyze (R coerces if needed)
 **Be sure to remove unwanted vectors
 - rc: specifies boundaries of application
 1=rows, 2=columns, c(1,2)=all cells
 - function: functions like mean, median, sqrt
 - ...: additional arguments to the function
- sapply apply for vectors
- lapply apply for lists
- tapply apply for ragged arrays

Putting it all Together

Indexing Vectors
 myvector[membernumbers]
 cpi\$Country[1:5]
 cpi\$Country[c(1,5)]

 Indexing Table-like structures mymatrix[rows, columns]
 cpi[, 2:16]

Applying Functions Across Data

- - matrix or array (R tries to coerce)
 - 1=rows, 2=columns, c(1,2)=all cells
 - functions like mean, median, sqrt
 - additional arguments to the function
- apply(mymatrix , 1 , sum , na.rm=TRUE)
- cpi[, 2:11]

Substituting Expressions

• cpi[, 2:11]

Suppose we wanted to analyze only those years after 2005?

names(cpi)>'y2005'

Combining Data Frames

- Merge two data frames by common columns or row names, or do other versions of database join operations.
- General form:

```
merge(frame1, frame2, all = FALSE)
```

- framen data frames being joined
- all
 - FALSE Only rows with matching data from data frames are included
 - TRUE nonmatching rows added to output

Combining Data Frames

			\longrightarrow			
(Country	CPI		Country	Capital	
	New Zealand	9.5		Austria	Vienna	
	Denmark	9.4	→	Denmark	Copenhager	1
	Finland	9.4		Finland	Helsinki	
	Sweden	9.3		Iceland	Reykjavik	

Example: merge(cpis, capitals, all=TRUE)

