

Ingat Definisi Tautologi

Definition

- Tautologi adalah sebuah formula proposisi yang mempunyai nilai kebenaran True (T) untuk semua nilai kebenaran dari variabel yang membentuk formula tersebut
- Tautologi juga disebut logically valid formulae.
- Bagaimana membuktikan sebuah formula itu Tautologi?
 - Dengan menggunakan Tabel Kebenaran

Contradictory formula

- Kebalikan dari Tautologi adalah Contradictory formula
 - Formula yang selalu mempunyai nilai kebenaran False
 - Contoh: (p /1 ¬p) adalah contradictory formula.

Satisfiable

Definition

– Sebuah formula proposisi yang memperoleh formula kebenaran True untuk beberapa nilai kebenaran dari variabel pembentuk formula tersebut dinamakan satisfiable.

Contoh :

- The formula $p \land \neg q \land r$ is satisfied by the assignment p : T, q : F, r : T.
- The formula $p \land \neg p$ is not satisfiable.

Soal Latihan 1

 Construct the truth tables of the following propositional formulae and determine which of them (if any) are tautologies, which are contradictory formulae and which are satisfiable formulae.

a)
$$\neg ((p \land \neg p) \rightarrow q)$$

b)
$$((p \rightarrow q) \rightarrow p) \rightarrow p$$

c)
$$(p \lor \neg q) \rightarrow \neg (q \land \neg p)$$

d)
$$(p \rightarrow q) \land (q \rightarrow r) \land \neg (\neg p \lor r)$$

e)
$$\neg(\neg p \leftrightarrow q) \rightarrow (r \lor \neg q)$$

f)
$$\neg((p \land \neg q) \rightarrow r) \leftrightarrow (\neg(q \lor r) \rightarrow \neg p)$$

Pembuktian Tautologi

Selain dengan Tabel Kebenaran, pembuktian
 Tautologi dapat dilakukan dengan Indirect Proof atau Proof by Contradiction

- Menemukan falsifying assigment

– Jika ada kontradiksi (ada nilai yang harus benar dan salah), maka terbukti Tautologi

Contoh

- Misalkan dibuat notasi sbb :
 - A:T, artinya 'A must be true',
 - A:F, artinya 'A must be false'.
- Buktikan $\neg(p \rightarrow \neg q) \rightarrow (p \lor \neg r)$.
 - Pernyataan akan salah jika $\neg(p \rightarrow \neg q) : T$ dan $p \lor \neg r : F$.
 - Pada Anteseden , $p \rightarrow \neg q : F$, sehingga p : T dan $\neg q : F$.
 - − Pada Konsekuen , p : F dan $\neg r : F$.
 - Lihat pada Anteseden p harus True dan pada konsekuen p harus False. Hal tersebut "impossible"
 - Sehingga menyatakan formula tersebut salah telah gagal, oleh karena itu **Tautology**.

Contoh lain

Apakah $\neg p \rightarrow \neg (p \lor \neg q)$ Tautology?

- Pernyataan akan salah untuk ¬p:T, ¬(p V ¬q):F.
- Oleh karena itu p:F dan p V ¬q:T.
- $-pV \neg q:T$ berarti p:T or $\neg q:T$.
- Perhatikan 2 kasus yang ada:

Case 1 p: T. kontradiksi dengan p: F.

Case 2 $\neg q:T$. Maka q:F.

 Pada kasus kedua ini tidak ada kontradiksi dan tidak ada yang bisa kita lakukan lagi. Namun kita dapat cek bahwa untuk p : F and q : F akan didapatkan formula yang False → Bukan Tautologi

Pembuktian kontradiksi pada sub formula

- Untuk membuktikan kontradiksi tidak harus sampai ke variable, bisa dibuktikan cukup hanya pada sub formulanya
- Contoh:
- Buktikan apakah (p $\lor \neg q$) → ($\neg p$ → ($p \lor \neg q$)) tautology?
- Pernyataan false, maka (p ∨ ¬q) : T dan (¬p → (p ∨ ¬q)) : F, sehingga ¬p : T and (p ∨ ¬q) : F, yang kontradiksi dengan semula

Pembuktian untuk Biimplikasi

- Misalkan: $((p \land \neg q) \rightarrow \neg r) \leftrightarrow ((p \land r) \rightarrow q)$.
- Untuk nilai kebenaran False , maka terdapat 2 kemungkinan:

Case 1 ((p $\land \neg q$) $\rightarrow \neg r$) : T dan ((p $\land r$) $\rightarrow q$) : F.

- Dari pernyataan kedua (p \land r) : T and q : F, sehingga p : T, q : F, r : T.
- Dari pernyataan pertama terdapat 2 subkasus:
 - = Case 1.1 \neg r: T. Then r: F, kontradiksi dengan r: T.
 - Case 1.2 (p $\land \neg q$) : F, maka:
 - Case 1.2.1 p : F kontradiksi dengan p : T.
 - Case 1.2.1 ¬q: F. Then q: T kontradiksi dengan q: F.
- Subcase ini dapat dihindari jika kita berikan nilai p : T, q : F, r : T akan membuat ((p ∧ ¬q) \rightarrow ¬r) : F.

Lanjutan

Case 2 ((p \land r) \rightarrow q) : T and (p \land ¬q) \rightarrow ¬r) : F.

- Sehingga (p \land ¬q) : T and ¬r : F, i.e., p : T, q : F, r : T.
- Nilai kebenaran tersebut bisa kita masukkan ke pernyataan ke formula 1 sehingga membuat $((p \land r) \rightarrow q)$: F
- Dengan kata lain pernyataan tersebut kontradiksi dengan ((p ∧ r) → q) : T.

Karena tidak ada semua kasis yang dapat di "falsified" maka pernyataan formula tersebut tautology.

Soal Latihan 2

Apakah formula proposisi berikut Tautologi?
Buktikan dengan Indirect proof

- $-p \rightarrow r$ and $q \rightarrow r$ logically imply $(p \ V \ q) \rightarrow r$.
- Soal latihan sebelumnya (b,c,e,f)