Kholle 15 filière MPSI/MP2I Planche 1

- 1. Soit $(a, b) \in \mathbb{Z}^2$. Montrer que $a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$.
- 2. (a) Décomposer 5929 en produit de facteurs premiers.
 - (b) Quelles sont les paires d'entiers naturels dont le pgcd et le ppcm sont les racines de $x^2 91x + 588 = 0$?
- 3. Pour tout entier n, on pose $F_n = 2^{2^n} + 1$. Montrer que

$$\forall n \neq m, \quad F_n \wedge F_m = 1$$

Kholle 15 filière MPSI/MP2I Planche 2

- 1. Démontrer qu'il existe une infinité de nombres premiers positifs.
- 2. Déterminer, suivant les valeurs de $n \in \mathbb{N}$, le reste dans la division euclidienne par 7 de

$$A = 851^{3n} + 851^{2n} + 851^n + 2$$

3. Soit p un entier premier positif et $x \in \mathbb{N}$. A quelle condition nécessaire et suffisante x est-il son propre inverse modulo p? En déduire que $(p-1)! \equiv -1[p]$.

Kholle 15 filière MPSI/MP2I Planche 3

- 1. Théorème fondamental de l'arithmétique : existence. Énoncé et preuve.
- 2. Montrer que pour tout entier naturel n supérieur ou égal à 2, la somme de n entiers impairs consécutifs n'est pas un nombre premier.
- 3. Déterminer le dernier chiffre dans l'écriture décimale de $2023^{2023^{2023}}$.

Kholle 15 filière MPSI/MP2I Bonus

- 1. Déterminer tous les entiers a et b tels que 13 divise $a^2 + b^2$.
- 2. Montrer qu'il existe une infinité de nombres premiers congrus à -1 modulo 6.