

Term Evaluation (Even) Semester Examination March 2025

Roll no.													٠			•	•			•	á		•		•	•
----------	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	---	---	--	--	---	---	--	---	--	---	---

Name of the Course: B.Tech

Semester: II

Name of the Paper: Basic Electrical Engineering

Paper Code: TEE 201

Time: 1.5 hour

Maximum Marks: 50

CO 1 (10 Marks)

Note:

- Answer all the questions by choosing any one of the sub-questions
- Each question carries 10 marks.

01. a. Determine the current in 8 Ω using mesh analysis.

- b. How would you define the following terms with suitable examples?
 - (i) Voltage
 - (ii) Current
 - (iii)Ohm's law
 - (iv) Node and junction
 - (v) Mesh and loop
 - (vi)Circuit

CO 1 (10 Marks)

a. Find out the voltage drop across 17.5 Ω using Norton's theorem 17.5 Ω

b. State and prove maximum power transfer theorem.

Find out the value of R_L for which it can draw maximum power.

Term Evaluation (Even) Semester Examination March 2025

CO 1 (10 Marks) a. Find out the input current which will flow if a dc source of 15 V is connected across AB in the

following circuit. $R_{1}\!\!=\!\!4\Omega,\, R_{2}\!\!=\!\!2\Omega,\, R_{3}\!\!=\!\!8\Omega,\, R_{4}\!\!=\!\!1\Omega,\, R_{5}\!\!=\!\!12\Omega,\, R_{6}\!\!=\!\!3\Omega,\, R_{7}\!\!=\!\!10\Omega\,\,\&\,\, R_{8}\!\!=\!\!5\Omega$

b. What is star and delta interconnection? Derive the expressions from delta to star transformation.

a. Find the equivalent resistance for the circuit shown below

CO 1 (10 Marks)

b. State superposition theorem. Also find out the current in 4Ω using superposition theorem in the following circuit.

Term Evaluation (Even) Semester Examination March 2025

Q5. a. Differentiate the following terms CO 1 (10 Marks)

- Unilateral and Bilateral Elements (i)
- Short circuit and Open circuit (ii)
- Linear and Non-linear elements (iii)
- Independent and Dependent sources (iv)

OR

b. Define KVL and KCL. Find current in 3Ω resistor using nodal analysis 5Ω

