# Area Heterogeneity and the Adoption of "Green" Building Certifications

Evan Perry

Spellman Program

June 8, 2021

#### **Overview**

- 1 What is this about?
- 2 Why should we care?
- 3 What do we already know?
- 4 How will we do this?
- 5 What's next?

## What is this about?

Research Question

## **Project Focus**

#### **Research Question**

What places attract energy-efficient buildings? How do neighborhood and area characteristics relate to the number of certified energy-efficient buildings?

# Why should we care?

Motivation

## Figure 1: Climate Change Mortalities



Credit: Carleton et al. (2020)

# Why Buildings?

- 30% of U.S. Greenhouse Gas Emissions come from Buildings (Resources for the Future, 2021)
  - ▶ 12% directly at buildings
  - ▶ 18% indirectly from electricity

# Why Buildings?

- 30% of U.S. Greenhouse Gas Emissions come from Buildings (Resources for the Future, 2021)
  - ▶ 12% directly at buildings
  - ▶ 18% indirectly from electricity

Energy Efficiency is an apparent Win-Win

# Why Buildings?

- 30% of U.S. Greenhouse Gas Emissions come from Buildings (Resources for the Future, 2021)
  - ▶ 12% directly at buildings
  - ▶ 18% indirectly from electricity

Energy Efficiency is an apparent Win-Win

- It's timely the American Jobs Plan includes:
  - ▶ \$213 Billion to Housing
  - More funding to the Weatherization Assitance Program

## What do we already know?

Literature Review

# The Energy-Efficiency Gap

### Definition (Energy-Efficiency Gap)

"The wedge between the cost-minimizing level of energy efficiency and the level actually realized." (Allcott and Greenstone, 2012)

Common Explanations (Gerarden et al., 2017):

- Modeling Flaws
- Behavioral Explanations
- Market Inefficiencies

#### **Certifications**

Certifications can help reduce some market inefficiencies

Popular Energy-Efficient Building Certifications:

- Energy Star Program
- Leadership in Energy and Environmental Design (LEED)
- Home Energy Rating System (HERS) Index

# How will we do this?

Data & Methodology

#### **Data Sources**

- LEED Project Directory
  - Address, Certification Date, Building Type for mostly Commercial buildings
  - Over 100,000 points

- Energy Star Certified Buildings Registry
  - Address, Certification Date, Building Type for Commercial buildings and Multifamily Housing
  - Over 30,000 points

Create counts at the census tract level

#### **Data Structure**

State/Region: Area Data e.g. Climate

MSA: Area Data e.g. Utility Costs, Housing Stock

Census Tract: LEED Directory, Energy Star Registry

# Figure 2: A Multilevel Modeling Framework



What's next?

What is this about?
 Characterizing the areas where there are lots of certified energy-efficient buildings

- What is this about?
   Characterizing the areas where there are lots of certified energy-efficient buildings
- Why should we care?
   Climate change threatens our world and buildings are a significant contributor

- What is this about?
   Characterizing the areas where there are lots of certified energy-efficient buildings
- Why should we care?
   Climate change threatens our world and buildings are a significant contributor
- What do we already know?
   There is an apparent energy-efficiency gap and certifications help close it

- What is this about?
   Characterizing the areas where there are lots of certified energy-efficient buildings
- Why should we care?
   Climate change threatens our world and buildings are a significant contributor
- What do we already know?
   There is an apparent energy-efficiency gap and certifications help close it
- 4. How will we do this?

  Use data to estimate a multilevel model

## **Next Steps**

- Continue the hunt for residential data
- Start cleaning data
- Read more papers:
  - Investigate the theory behind the energy-efficiency gap
  - Allcott, Hunt and Michael Greenstone, "Is there an energy efficiency gap?," Journal of Economic Perspectives, 2012, 26 (1), 3–28.

## Questions?

#### References I

- **Allcott, Hunt and Michael Greenstone**, "Is there an energy efficiency gap?," *Journal of Economic Perspectives*, 2012, 26 (1), 3–28.
- Carleton, Tamma A, Amir Jina, Michael T Delgado, Michael Greenstone, Trevor Houser, Solomon M Hsiang, Andrew Hultgren, Robert E Kopp, Kelly E McCusker, Ishan B Nath et al., "Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits," Technical Report, National Bureau of Economic Research 2020.
- **Dunlap, Lauren and James Round**, "US carbon emissions at a glance," 2021.
- Fowlie, Meredith, Michael Greenstone, and Catherine Wolfram, "Do energy efficiency investments deliver? Evidence from the weatherization assistance program," *The Quarterly Journal of Economics*, 2018, 133 (3), 1597–1644.
- Gerarden, Todd D, Richard G Newell, and Robert N Stavins, "Assessing the energy-efficiency gap," *Journal of Economic Literature*, 2017, 55 (4), 1486–1525.

#### References II

**IPCC**, "Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change," 2014.

**OECD**, *The Economic Consequences of Climate Change*, OECD Publishing, 2015.

WHO, "Climate change and health," 2021.

# Figure 3: U.S. GHG Emissions by Sector



Credit: Dunlap and Round (2021)

## Table 1: Data Sources

| Data Source                                           | Data Level   |
|-------------------------------------------------------|--------------|
| LEED Project Directory                                | Point        |
| Energy Star Certified Buildings Registry              | Point        |
| American Community Survey (ACS)                       | Census Tract |
| Utility Rate Database (URDB)                          | Zip Code     |
| American Housing Survey (AHS)                         | MSA          |
| Energy Star Program Indicators                        | State        |
| Commercial Building Energy Consumption Survey (CBECS) | Regional     |