

Guía de trabajo en laboratorio N° 11:

Fundamentos de programación - Arduino

Secciones:	Apellidos:
Docente: Miguel Tupac Yupanqui Alanya	Nombres:
	Fecha :/2020

Instrucciones: Desarrollar las actividades que indica el docente en base a la guía de trabajo que se presenta.

1. Propósito: Comprender las estructuras repetitivas empleando el IDE de Arduino.

2. Equipos, herramientas o materiales

- Simulador Tinkercad
- Computador con acceso a Internet

3. Fundamento Teórico

 Arduino Uno – La tarjeta de desarrollo del microcontrolador la cual será el corazón de tus proyectos. Descrito en clase.

• Protoboard (Placa de pruebas) – Placa con filas de agujeros sobre la cual se puede conectar cables y componentes sin necesidad de usar un soldador.

 Cables puente – Utilizarlos para conectar unos componentes con otros sobre la placa de prueba, y la tarjeta de Arduino.

- Diodos Emisores de Luz (LEDs) Diodo que emite luz cuando la corriente lo atraviesa.
 Como en todos los diodos, la corriente solo fluye en un sentido a través de estos componentes. El ánodo, que normalmente se conecta al positivo de la alimentación, es generalmente el terminal más largo, y el cátodo el terminal más corto.
- Resistencias Se opone al paso de la corriente eléctrica en un circuito, dando como resultado a un cambio en la tensión y en dicha corriente. El valor de las resistencias se mide en ohmios (Ω) . Las bandas de colores en un lado de la resistencia indica su valor.

 $\frac{https://www.digikey.com/es/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band}{https://www.inventable.eu/paginas/ResCalculatorSp/ResCalculatorSp.html}$

• Interruptor deslizante – Es un dispositivo que trabaja como un conmutador con dos posiciones: abierto (0) o cerrado (1).

4. Procedimiento

Implementamos el siguiente circuito:

En el editor de código escribimos el siguiente programa:

```
1
   int sw=0;
 2
   int led;
 3
 4
   void setup() {
 5
      pinMode (3, INPUT);
 6
      for (led=5;led<=12;led++) {
 7
        pinMode(led, OUTPUT);
 8
 9
10
11
   void loop() {
12
      int sw = digitalRead(3);
13
14
      if (sw == HIGH) {
15
        for (led=12;led>=9;led--) {
16
          digitalWrite(led, HIGH);
17
18
        for (led=8;led>=5;led--) {
19
          digitalWrite(led, LOW);
20
21
     -}
22
      else{
23
        for (led=12;led>=9;led--) {
24
          digitalWrite(led, LOW);
25
        for (led=8;led>=5;led--) {
26
27
          digitalWrite(led, HIGH);
28
29
      }
30
```

A continuación, compilamos y verificamos que no haya errores en el código escrito (botón **Iniciar simulación**).

El circuito debe operar de la siguiente manera:

Input	Output										
Interruptor	Pin 12 Led_12	Pin 11 Led_11	Pin 10 Led_10	Pin 9 Led_9	Pin 8 Led_8	Pin 7 Led_7	Pin 6 Led_6	Pin 5 Led_5			
0 (0V)											
1 (5V)											

Conservando el mismo circuito, implementamos el siguiente programa:

```
1 int sw=0;
2 int led;
3 int timer=300;
 5 void setup() {
     pinMode(3, INPUT);
 6
 7
     for (led=5;led<=12;led++) {
8
       pinMode(led, OUTPUT);
9
   }
10
11
12 void loop() {
13
     int sw = digitalRead(3);
14
15
     if (sw == HIGH) {
       for (led=12;led>=5;led--) {
16
17
         digitalWrite(led, HIGH);
18
         delay(timer);
19
         digitalWrite(led, LOW);
20
       }
21
22
    else{
23
      for (led=12;led>=5;led--) {
24
        digitalWrite(led, LOW);
25
26
27
   }
```

A continuación, compilamos y verificamos que no haya errores en el código escrito (botón **Iniciar simulación**).

El circuito debe operar de la siguiente manera:

Input	Output										
Interruptor	Pin 12 Led_12	Pin 11 Led_11	Pin 10 Led_10	Pin 9 Led_9	Pin 8 Led_8	Pin 7 Led_7	Pin 6 Led_6	Pin 5 Led_5			
0 (0V)											
1 (5V)											
									_		
									_		
		\bigcirc		\bigcirc							

Conservando el mismo circuito, implementamos el siguiente programa:

```
int sw=0;
   int led;
 3
   int timer=300;
 5
   void setup() {
 6
     pinMode(3, INPUT);
     led=5;
 8
     while(led<=12){
 9
       pinMode(led, OUTPUT);
10
       led++;
11
     }
12
   }
13
14
   void loop(){
15
     int sw = digitalRead(3);
16
    if (sw == HIGH) {
17
18
       led=12;
19
       while(led>=5){
20
         digitalWrite(led, HIGH);
21
         delay(timer);
22
         digitalWrite(led, LOW);
23
          led--;
       }
24
25
    }
26
     else{
27
      led=12;
28
      while(led>=5){
       digitalWrite(led, LOW);
29
         led--;
30
31
32
     }
33
   }
```

A continuación, compilamos y verificamos que no haya errores en el código escrito (botón **Iniciar simulación**).

El circuito debe operar de la siguiente manera:

Input				Outp	out				
Interruptor	Pin 12 Led_12	Pin 11 Led_11	Pin 10 Led_10	Pin 9 Led_9	Pin 8 Led_8	Pin 7 Led_7	Pin 6 Led_6	Pin 5 Led_5	
0 (0V)									
									•
									_
1 (5)()									
1 (5V)									

Podemos apreciar que ambos programas, uno empleando **for** y el otro empleando **while**, trabajan de la misma manera.

5. Actividades

a. Al circuito anterior adicionar un interruptor deslizante, como se muestra a continuación:

Luego implementar un programa que cumpla con:

	Ing	out		Output								
	Interruptor 1		Pin 12 Led_12	Pin 11 Led_11	Pin 10 Led_10	Pin 9 Led_9	Pin 8 Led_8	Pin 7 Led_7	Pin 6 Led_6	Pin 5 Led_5		
	0 (0) ()	0 (0) ()	\bigcirc									
Emplear for	0 (OV)	0 (OV)										

								M
								\
								- 1
			\bigcirc					- 1
Emplear for 1 (5V	1 (5\/)	0 (OV)						
	1 (34)	0(00)						
		1 (5V)						
Emplear while	1 (5V)							
Lilipieal wille	. (01)	. (31)		\circ				
_								1
Emplear while								
	0 (OV)	1 (5V)					\bigcirc	
			0		0		0	

b. Crear un documento en Word (APELLIDOS Y NOMBRES) donde copiará el enlace correspondiente del ejercicio (actividad), luego subir este documento al Aula Virtual.

6. Referencias

- Arduino Libro de Proyectos, Traducido by Florentino Blas Fernández Cueto (Tino Fernández).
 http://www.futureworkss.com. Bajo una Licencia Creative Commons Reconocimiento –
 NoComercial -CompartirIgual 3.0 del 2015 por futureworkss.
- https://www.arduino.cc/reference/es/