NTIN071 A&G: Cvičení 3 – Myhill-Nerodeova věta, ekvivalentní a minimální reprezentace, testování vlastností

Vyřešte nejprve 1, 2, 3a-f, 4abc pro A&B, 5 (zbytek je na procvičení).

Příklad 1 (Ekvivalentní a minimální reprezentace). Pro následující automaty:

- (a) Najděte a odstraňte nedosažitelné stavy.
- (b) Určete relaci ekvivalence (nerozlišitelnosti) stavů. (Navíc pro každou rozlišitelnou dvojici stavů najděte všechna nejkratší rozlišující slova.)
- (c) Zkonstruujte jejich redukty.
- (d) Jsou některé dva z automatů ekvivalentní? Použijte algoritmus z přednášky.

A a	a	b	В	a	b	\mathbf{C}	a	b
$\rightarrow * 0$	1	2	$\rightarrow * 0$	0	5	 $\rightarrow 1$	2	3
1 3	3	0	1	1	3	2	2	4
2 4	4	5	2	2	7	* 3	3	5
3 (0	2	3	3	2	4	2	7
$4 \mid 2$	2	5	* 4	6	1	* 5	6	3
5 (0	3	5	5	1	* 6	6	6
,			* 6	4	2	7	7	4
			7	7	0	8	2	3
				,		9	9	4

Příklad 2 (Testování vlastností). Mějme konečné automaty A, B. Navrhněte algoritmy, které rozhodnou, zda platí následující vlastnosti. (Umíte odhadnout jejich časovou složitost?)

(a)
$$L(A) = \emptyset$$
,

(c)
$$L(A) \subseteq L(B)$$
,

(b)
$$L(A) = L(B)$$
,

(d)
$$L(A)$$
 je konečný.

Příklad 3 (Homomorfismus automatů). Najděte DFA A, B takové, že:

- (a) Jsou oba redukované, a nejsou izomorfní.
- (b) A je homomorfní na B, ale nejsou izomorfní.
- (c) Jsou ekvivalentní, ale ne izomorfní.
- (d) Jsou oba homomorfní na, ale ne izomorfní sC,a zároveň Anení homomorfní na B ani B na A.

$$C = (\{p,q\},\{0,1\},\{((p,0),q),((p,1),p),((q,0),p),((q,1),q)\},p,\{q\})$$

Příklad 4 (Regulární? Zredukuj). Uvažme jazyk L nad abecedou $\{a,b\}$ sestávající ze všech slov, která neobsahují trojici po sobě jdoucích stejných písmen. Rozhodněte, zda je L regulární. Pokud ano, najděte regulární DFA, který ho rozpoznává.