Seltsames Programm. Sei P(n) die Ausgabe des Programms P für eine positive ganze Zahl n als Eingabe. Unser Ziel ist es, P(2018) zu bestimmen.

Die aus der Aufgabenstellung bekannten Eigenschaften von P können wir für alle positiven ganzen Zahlen n folgendermaßen ausdrücken:

- (i) P(n) ist eine positive ganze Zahl.
- (ii) Größere Eingabewerte führen zu größeren Ausgabewerten: P(n+1) > P(n).
- (iii) Startet man P mit irgendeiner Eingabe und gibt ihm die Ausgabe in einem zweiten Durchlauf als Eingabe, dann ist die Ausgabe des zweiten Durchlaufs das Dreifache der ursprünglichen Eingabe: P(P(n)) = 3n.

Zuerst bestimmen wir P(1) und betrachten dazu zwei Fälle.

Fall 1: P(1) = 1

Einsetzen liefert P(P(1)) = P(1) = 1 im Widerspruch zu $P(P(1)) = 3 \cdot 1 = 3$ nach Eigenschaft (iii). Dieser Fall ist daher unmöglich und es ist $P(1) \neq 1$.

Fall 2: $P(1) \ge 3$

Wir setzen P(1) = k+3 mit einer ganzen Zahl $k \ge 0$. Nach Eigenschaft (ii) gilt dann $P(P(1)) = P(k+3) \ge P((k-1)+3) \ge \cdots \ge P(0+3) = P(3)$. Es ist aber auch P(P(1)) = 3 und somit $P(3) \le 3$. Wegen P(1) < P(2) < P(3) und Eigenschaft (i) gilt zwingend P(2) = 2 und P(1) = 1, was nach Fall 1 ausgeschlossen ist.

Da weder Fall 1 noch Fall 2 eintritt, folgt P(1) = 2. Wegen P(P(1)) = 3 und P(P(1)) = P(2) ergibt sich sofort P(2) = 3. Außerdem ist $P(P(2)) = 3 \cdot 2 = 6$ und P(P(2)) = P(3), sodass P(3) = 6 gilt. Analog erhalten wir P(6) = 9, P(9) = 18, P(18) = 27 und beliebig viele weitere Werte. Dabei ist ein Muster zu erkennen. Offenbar gilt für alle positiven ganzen Zahlen n:

$$P(3^{n}) = 2 \cdot 3^{n}$$

$$P(2 \cdot 3^{n}) = 3^{n+1}$$
(*)

Die Behauptung (\star) ist natürlich zu beweisen. Dazu verwenden wir das Prinzip der vollständigen Induktion und zeigen (\star) zunächst für n=1 (Induktionsanfang). Anschließend beweisen wir: Ist (\star) für eine beliebige positive ganze Zahl n wahr, dann ist (\star) auch für n+1 wahr (Induktionsschritt). Daraus folgt dann die Richtigkeit von (\star) für alle positiven ganzen Zahlen.

Induktionsanfang: $P(3^1) = P(3) = 2 \cdot 3^1 = 6$ und $P(2 \cdot 3^1) = P(6) = 3^{1+1} = 3^2 = 9$ haben wir bereits gezeigt (siehe oben).

Induktionsschritt: Sei (\star) für eine beliebige positive ganze Zahl n wahr. Dann gilt nach Eigenschaft (iii): $P(P(2 \cdot 3^n)) = 3 \cdot 2 \cdot 3^n = 2 \cdot 3^{n+1}$.

Es ist aber auch $P(2 \cdot 3^n) = 3^{n+1}$ und damit $P(P(2 \cdot 3^n)) = P(3^{n+1}) = 2 \cdot 3^{n+1}$, also genau der erste Teil von (\star) für n+1. Schließlich gilt $P(P(3^{n+1})) = P(2 \cdot 3^{n+1})$ sowie $P(P(3^{n+1})) = 3^{n+2}$ nach Eigenschaft (iii). Kombinieren liefert $P(P(3^{n+1})) = 2 \cdot 3^{n+2}$, den zweiten Teil von (\star) für n+1 und damit ist der Induktionsschritt vollständig.

Mit (\star) können wir P(n) für alle Dreierpotenzen und Doppelte von Dreierpotenzen berechnen. Allerdings ist die Zahl 2018 nicht von einer dieser Formen.

Uns hilft folgende Einsicht: Es ist P(3) = 6 und P(6) = 9. Welche Werte kommen für P(4) und P(5) infrage? Nach Eigenschaft (ii) gilt P(3) < P(4) < P(5) < P(6) und daher ist zwingend P(4) = 7 und P(5) = 8. Die Zahlen werden gewissermaßen zwischen dem kleinsten und dem größten Wert "eingequetscht".

Das führt auf folgende allgemeine Aussage: Für $0 \le k < 3^n$ ist

$$P(3^n + k) = 2 \cdot 3^n + k.$$

Für den Beweis betrachten wir zunächst folgende Abschätzung:

$$2 \cdot 3^n = P(3^n) < \underbrace{P(3^n + 1) < \dots < P(2 \cdot 3^n - 1)}_{3^n - 1 \text{ Zahlen}} < P(2 \cdot 3^n) = 3^{n+1}$$

Da zwischen $2 \cdot 3^n$ und 3^{n+1} genau $3^n - 1$ ganze Zahlen liegen ist die Menge der infragekommenden Zahlen für $P(3^n + 1)$ bis $P(2 \cdot 3^n - 1)$ nach Eigenschaft (i) eindeutig bestimmt. Wegen Eigenschaft (ii) ist sogar deren Reihenfolge bestimmt und es gilt $P(3^n + 1) = 2 \cdot 3^n + 1$, $P(3^n + 2) = 2 \cdot 3^n + 2$, ..., $P(2 \cdot 3^n - 1) = 3^{n+1} - 1$, womit die gewünschte Aussage bewiesen ist.

Schließlich können wir P(2018) folgendermaßen berechnen. Für n=6 und k=560 ergibt sich $P(P(3^n+k))=P(P(3^6+560))=P(2\cdot 3^6+560)=P(2018)$, aber nach Eigenschaft (iii) auch $P(P(3^n+k))=3(3^n+k)=3^{n+1}+3k=3^{6+1}+3\cdot 560=3867$. Kombinieren liefert das Ergebnis:

$$P(2018) = 3867.$$

Anmerkung 1. Das zur Berechnung von P(2018) verwendete Vorgehen lässt sich verallgemeinern. Für positive ganze Zahlen n und $0 \le k \le 3^{n-1}$ gilt nämlich

$$P(3^n - k) = 2 \cdot 3^n - 3k.$$

Beweis: Es ist $P(P(3^{n-1} + (3^{n-1} - k))) = P(2 \cdot 3^{n-1} + 3^{n-1} - k) = P(3^n - k)$ sowie nach Eigenschaft (iii) $P(P(3^{n-1} + (3^{n-1} - k))) = 3(2 \cdot 3^{n-1} - k) = 2 \cdot 3^n - 3k$.

Anmerkung 2. Mit den vorgestellten Beweisen inklusive Anmerkung 1 lässt sich P(n) für beliebige positive ganze Zahlen n berechnen. Tatsächlich können wir das Programm P in einer konkrete Programmiersprache implementieren. Zum Beispiel befindet sich auf der nächsten Seite eine Implementierung in C++.

```
#include <iostream>
3 // Dreierpotenzen
4
   int pw[20];
6
   // Programm P
7
   int program(int n) {
        int k = -1;
8
        while (pw[k + 1] <= n) ++k;</pre>
9
10
11
        if (n < 2 * pw[k]) {</pre>
12
            return pw[k] + n;
13
14
15
        return 3 * n - pw[k + 1];
   }
16
17
   int main() {
18
19
        pw[0] = 1;
20
        for (int i = 1; i < 20; ++i) {</pre>
21
            pw[i] = 3 * pw[i - 1];
22
23
24
        std::cout << program(2018) << std::endl; // 3867
25
        return 0;
26 }
```

Alternative Lösung oder Fehler gefunden?

Wir freuen uns über Verbesserungen und neue Lösungsideen.

Kontakt: itag-goethe@protonmail.com