

CLAIMS

1. A heat-curable resin composition comprising an alicyclic epoxy compound (a) having a structure represented by the following general formula (1),

General formula (1)



[In the general formula (1): R<sup>1</sup> to R<sup>10</sup> each represent hydrogen, or a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms (an ether bond, an ester bond, or an alcoholic hydroxyl group may be included in the hydrocarbon group); R<sup>1</sup> to R<sup>10</sup> may each represent a residue derived by removing any one of R<sup>1</sup> to R<sup>10</sup> from the structure represented by the general formula (1), or a residue derived by removing hydrogen from any one of R<sup>1</sup> to R<sup>10</sup>; and the phrase "in the hydrocarbon group" refers to "inside the hydrocarbon group", "at terminals of the hydrocarbon group", or "within bonds of the hydrocarbon group"], a cationic polymerization initiator (i), and optionally a surfactant (e).

2. A heat-curable resin composition according to claim 1, further comprising a polyol (b) having two or more hydroxyl groups on

terminals.

3. A heat-curable resin composition comprising an alicyclic epoxy compound (a') having a structure represented by the following general formula (2),

General formula (2)



or



[In the general formula (2):  $R^1$  represents hydrogen, or a hydrocarbon group of a valence  $k$  having 1 to 20 carbon atoms (an ether bond, an ester bond, or an alcoholic hydroxyl group may be included in the hydrocarbon group);  $R^2$  represents hydrogen, a hydroxyl group, or a hydrocarbon group having 1 to 20 carbon atoms (an ether bond, an ester bond, or an alcoholic hydroxyl group may be included in the hydrocarbon group); at least one of  $R^1$  and  $R^2$  may represent a residue derived by removing any one of  $R^1$  to  $R^{10}$  from the structure represented by the following general formula (1);  $R^3$  and  $R^4$  each represents hydrogen, or a hydrocarbon group having 1 to 20 carbon atoms; a plurality of  $R^3$ 's and  $R^4$ 's may be the same or different from

each other; "n" represents an integer of 3 to 10; "m" represents an integer of 2 to 10; "k" represents an integer of 1 to 10; when "k" is 2 or more, "k" pieces of group structures (that is, "k" pieces of ns, ms, R<sup>2</sup>s, R<sup>3</sup>s, and R<sup>4</sup>s) may be the same or different from each other; and the phrase "in the hydrocarbon group" refers to "inside the hydrocarbon group", "at terminals of the hydrocarbon group", or "within bonds of the hydrocarbon group"],

General formula (1)



[In the general formula (1): R<sup>1</sup> to R<sup>10</sup> each represent hydrogen, or a saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms (an ether bond, an ester bond, or an alcoholic hydroxyl group may be included in the hydrocarbon group); R<sup>1</sup> to R<sup>10</sup> may each represent a residue derived by removing any one of R<sup>1</sup> to R<sup>10</sup> from the structure represented by the general formula (1), or a residue derived by removing hydrogen from any one of R<sup>1</sup> to R<sup>10</sup>; and the phrase "in the hydrocarbon group" refers to "inside the hydrocarbon group", "at terminals of the hydrocarbon group", or "within bonds of the hydrocarbon group"], a cationic polymerization initiator (i), and optionally a surfactant (e).

4. A curable-resin composition according to claim 1, characterized in that the surfactant (e) comprises a silicon-based surfactant (e1) having a dimethylsiloxane skeleton and/or a fluorine-based surfactant (e2) having hydrophobic groups of a hydrocarbon-based surfactant entirely or partially substituted with fluorine atoms.

5. A curable-resin composition according to claim 2, characterized in that the surfactant (e) comprises a silicon-based surfactant (e1) having a dimethylsiloxane skeleton and/or a fluorine-based surfactant (e2) having hydrophobic groups of a hydrocarbon-based surfactant entirely or partially substituted with fluorine atoms.

6. A curable-resin composition according to claim 3, characterized in that the surfactant (e) comprises a silicon-based surfactant (e1) having a dimethylsiloxane skeleton and/or a fluorine-based surfactant (e2) having hydrophobic groups of a hydrocarbon-based surfactant entirely or partially substituted with fluorine atoms.

7. A cured product, which is obtained by heat curing the heat-curable resin composition according to any one of claims 1 to 6.

8. A cured product according to claim 7, which is used for an adhesive or an encapsulant.

9. A cured product according to claim 7, wherein a warping by shrinkage in curing is 15 mm or less through a measurement method A, 6 mm or less through a measurement method B.

10. A cured product according to claim 8, wherein a warping by shrinkage in curing is 15 mm or less through a measurement method A, 6 mm or less through a measurement method B.