Семинар 27 (19.04.2023)

Краткое содержание

Продолжили тему линейных операторов.

Обсудили соответствие между линейными операторами и матрицами, формулу действия линейного оператора в координатах, формулу изменения матрицы линейного оператора при замене базиса. Обсудили, как изменится матрица линейного оператора при перестановке двух векторов базиса, а также при умножении одного из векторов базиса на ненулевой скаляр.

Определили собственные векторы и собственные значения линейного оператора, спектр, собственные подпространства, характеристический многочлен, а также критерий диагонализуемости.

Для линейного оператора с прошлого семинара посчитали его характеристический многочлен; его единственный корень — $\lambda=0$, это единственное собственное значение. Для этого собственного значения нашли базис соответствующего собственного подпространства.

Определили алгебраическую и геометрическую кратности собственного значения линейного оператора, обсудили связь между ними.

Сформулировали критерий диагонализуемости: линейный оператор φ диагонализуем тогда и только тогда, когда выполнены два условия:

- 1) характеристический многочлен разлагается на линейные множители;
- 2) для всякого собственного значения геометрическая кратность равна алгебраической.

Решили номера П1472 и П1473, в каждом случае исследовали диагонализуемость, в П1473 нашли также базис, в котором матрица оператора диагональна, соответствующую матрицу перехода и саму диагональную матрицу.

Проговорили алгоритм проверки оператора на диагонализуемость и нахождения диагонального вида и соответствующей матрицы перехода: пусть A — матрица линейного оператора φ в некотором базисе.

- 1) вычисляем многочлен $\det(A-tE)$ от переменной t (с точностью до знака это характеристический многочлен оператора φ) и находим все его корни; это будут в точности все собственные значения оператора φ ; убеждаемся, что многочлен раскладывается на линейные множители со своими корнями: $\chi_{\varphi}(t) = (x \lambda_1)^{a_1} \dots (x \lambda_k)^{a_k}$
- 2) для каждого найденного собственного значения λ_i находим базис соответствующего ему собственного подпространства $V_{\lambda_i}(\varphi) = \{v \in V \mid \varphi(v) = \lambda_i \cdot v\}$ это ФСР для ОСЛУ $(A \lambda_i E)x = 0$; убеждаемся, что $g_i := dim V_{\lambda_i}(\varphi)$ равно a_i
- 3) если первые два пункта выполнились, то оператор диагонализуем. В этом случае матрица перехода C будет состоять из координат собственных векторов, которые вы нашли при поиске ФСР. Если собственные векторы (а точнее, их координаты) для λ_i есть $\{v_{i1},\ldots,v_{ia_i}\}$, то $C=(v_{11}\mid\cdots\mid v_{1a_1}\mid v_{21}\mid\cdots\mid v_{2a_2}\mid\cdots\mid v_{k1}\mid\cdots\mid v_{ka_k})$. В новом базисе новая будет диагональная матрица $C^{-1}AC=diag(\lambda_1,\ldots,\lambda_1,\lambda_2,\ldots,\lambda_2,\ldots,\lambda_k,\ldots,\lambda_k)$, где каждое λ_i встречается по a_i раз.

 \bigcirc

Домашнее задание к семинару 28. Дедлайн 26.04.2023

Номера с пометкой Π даны по задачнику Проскурякова, с пометкой K – Кострикина, с пометкой KK – Ким-Крицкова.

- 1. П1448 (здесь и далее «линейное преобразование» = «линейный оператор»)
- 2. Π1449
- 3. П1452(б)
- 4. $\Pi 1458$

Номера 5)—8) решите с такой формулировкой: найти все собственные значения линейного оператора и базисы всех его собственных подпространств. Проверить, что линейный оператор не диагонализуем.

5. Π1465

- 6. $\Pi 1466$
- 7. $\Pi 1469$

8. матрица
$$\begin{pmatrix} 3 & -1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \end{pmatrix}$$
 (линейный оператор рассматривается над $\mathbb R$)

В номерах 9)-11) докажите, что линейный оператор с заданной матрицей диагонализуем; найдите базис, в котором его матрица диагональна, выпишите эту матрицу и матрицу перехода к новому базису.

- 9. П1481 (над ℝ)
- 10. П1483 (над ℝ)
- 11. матрица из номера 8 (над \mathbb{C})