Introduction to Memory Management Strategies

Understanding memory management is crucial in computer science, as it impacts system performance and resource utilization. It involves allocation and deallocation of memory in an efficient manner.

BY:

Sachin R K (192211826)

Sreenivasulu K (192211798)

Dilli Prakash Reddy V (192211768)

Overview of Best Fit, First Fit, and Worst

Fit Strategies

allocators (such as

Best Fit Strategy

Dynamic Memory Allocator

Heap

User stack

Finds the smallest available partition that fits the process. Minimizes wastage but may at run time result in fragmentation.

- For data structures whose
 - First Fit Strategy

Allocates the first available partition large enough to accommodate a process. Simple but runtime. can lead to external fragmentation.

Dynamic memory

hean

Worst Fit Strategy

Allocates the largest available partition to a segment, leading to more wasted memory.

Reduces the number of remaining holes but can cause slower performance.

memory known as the

Initialized data (.data)

Heap (via malloc)

Program text (.text)

Top of heap (brk ptr)

Explanation of Best Fit Strategy

1 Efficiency

Finds the smallest block that fits, minimizing internal fragmentation.

3 Memory Utilization

Enhances overall memory utilization, reducing wastage.

2 Complexity

More complex search algorithm, leading to slower allocation times.

4

Explanation of First Fit Strategy

1

Simple Allocation

Allocates based on the first block that fits the process size.

2

Fragmentation Risk

Tends to create external fragmentation due to variable block sizes.

3

Memory Utilization

May lead to lower overall memory utilization.

7

Fir	st F	it A	llo	ca	tic	n ir	OS
	Process Si	izes					
		20	60	70	40		
		Pī	P2	P3	P4	1	
				,			
-		Firs	t FIT A	llocat	ion		
100		50	30		120		35
Block 1		Block 2	Bloc	Block 3 Block 4		ock 4	Block 5
	Size	Allocated to		A	Memory Wastage After Process Occupies		
Block 1	100	PI			100 - 20 = 80		0
Block 2	50	P4			50 - 40 = 10		
Block 3	30	*1					Unallocate
Block 4	120	P2			120 - 60 = 60		0
Block 5	35	+1					

Explanation of Worst Fit Strategy

Memory Wastage

Allocates the largest available partition, often leading to wasted memory.

Performance Impact

Slower performance may be experienced due to increased wastage.

Comparison of Best, First and Worst-Fit Strategies

Best Fit

Minimizes wastage, but potential for internal fragmentation.

First Fit

Simple allocation, but risk of external fragmentation.

Worst Fit

Higher wastage, potential for slower performance.

Result

The project "Memory Master" comprehensively analyzed memory allocation strategies—First Fit, Best Fit, and Worst Fit—under various conditions. Through practical implementation and experimentation, we evaluated their performance based on metrics such as fragmentation, overhead, and throughput. Results showed that while First Fit offers quick allocation with less computational work, it poses a risk of memory fragmentation. Best Fit minimizes memory waste but incurs higher computational overhead, whereas Worst Fit ensures sufficient memory for larger processes but may lead to significant memory waste.

Conclusion

Optimization

Choosing the right strategy is crucial for efficient memory management.

Trade-offs

Each strategy has its advantages and trade-offs, impacting system performance differently.

Future Research

Continued research is essential to develop more effective memory management strategies.