Macapype

An open multi-software framework for non-human primate anatomical MRI processing

David Meunier, Bastien Cagna, Kep Kee Loh,

Régis Trapeau, Julien Sein, Sylvain Takerkart, Olivier Coulon, Pascal Belin

Presentation RMN Centre IRM Cerimed, 10/09/2020

History

How it all started:

- starting from the local hackathon on monkey MRI processing
- different teams working with macaques were having different approach on PNH MRI processing

A common framework:

- each approach may be optimal for different set of acquisitions
- how to compare them (bash scripts, matlab code, etc)?
 - -> develop a common framework to share the knowledge
 - -> make Marseille great again!

History

How it all started:

- starting from the local hackathon on monkey MRI processing
- different teams working with macaques were having different approach on PNH MRI processing

A common framework:

- each approach may be optimal for different set of acquisitions
- how to compare them (bash scripts, matlab code, etc)?
 - -> develop a common framework to share the knowledge
 - -> make Marseille great again!

Outline

David and Bastien will present macapype, a tool dedicated to build PNH MRI pipelines 3

Kep Kee

Using MRI to study NHP brains, and compare them with humans...

Heuer et al, 2019, Cortex

To understand the homologies...

Primate Voice Areas (Bodin et Belin, 2019)

To understand the specialisations...

Evolution of Frontal-Temporal connections (Balezeau et al, 2020)

Using MRI to study NHP brains, and compare them with humans..

Key Advantages

- Less invasive...
- Repeatable *****
- <u>Equivalent measurements</u> across individuals and species
- <u>Multimodal</u> gives a complete picture of the brain.. (DTI, rs-fMRI, sMRI...)
- <u>Digital</u> data-sharing, public databases, big data..

Using MRI to study NHP brains, and compare them with humans...

Key Advantages

- Less invasive...
- Repeatable *****
- <u>Equivalent measurements</u> across individuals and species
- Multimodal gives a complete picture of the brain.. (DTI, rs-fMRI, sMRI...)
- <u>Digital</u> data-sharing, public databases, big data..

Cottereau et al 2017

Autio et al 2020

Using MRI to study NHP brains, and compare them with humans...

Key Advantages

- Less invasive...
- Repeatable *****
- <u>Equivalent measurements</u> across individuals and species
- Multimodal gives a complete picture of the brain.. (DTI, rs-fMRI, sMRI...)
- <u>Digital</u> data-sharing, public databases, big data..

http://www.j-monkey.jp/BIR/about_e.html

Amiez et al 2019

Roumazeilles et al 2020

NHP MRI - An emergent and "open" field

http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html

An Open Resource for Non-human Primate Imaging

Milham et al., 2018, Neuron 100, 61–74 October 10, 2018 © 2018 The Authors. Published by Elsevier Inc. https://doi.org/10.1016/j.neuron.2018.08.039

Accelerating the Evolution of Nonhuman Primate Neuroimaging

The PRIMatE Data Exchange (PRIME-DE) Global Collaboration Workshop and Consortium*.*
*Correspondence: michael.milham@childmind.org or chris.petkov@ncl.ac.uk
https://doi.org/10.1016/j.neuron.2019.12.023

600 Neuron 105, February 19, 2020 @ 2019 Elsevier Inc.

NHP MRI – An emergent and "open" field

https://prime-re.github.io/

An Open Resource for Non-human Primate Imaging

Milham et al., 2018, Neuron 100, 61–74 October 10, 2018 © 2018 The Authors. Published by Elsevier Inc. https://doi.org/10.1016/j.neuron.2018.08.039

Accelerating the Evolution of Nonhuman Primate Neuroimaging

The PRIMatE Data Exchange (PRIME-DE) Global Collaboration Workshop and Consortium*.*
*Correspondence: michael.milham@childmind.org or chris.petkov@ncl.ac.uk
https://doi.org/10.1016/j.neuron.2019.12.023

A collaborative resource platform for non-human primate neuroimaging

© Adam Messinger, © Nikoloz Sirmpilatze, © Katja Heuer, © Kep Kee Loh, © Rogier B. Mars, © Julien Sein, © Ting Xu, © Daniel Glen, © Benjamin Jung, © Jakob Seidlitz, © Paul Taylor, © Roberto Toro, © Eduardo A. Garza-Villarreal, © Caleb Sponheim, © Xindi Wang, © R. Austin Benn, © Bastien Cagna, © Rakshit Dadarwal, © Henry C. Evrard, © Pamela Garcia-Saldivar, Steven Giavasis, © Renée Hartig, Claude Lepage, © Cirong Liu, © Piotr Majka, © Hugo Merchant, © Michael P. Milham, © Marcello G.P. Rosa, © Jordy Tasserie, © Lynn Uhrig, © Daniel S. Margulies, © P. Christiaan Klink

Neuroimage, under review

NHP MRI – An emergent and "open" field

Comparative MRI
Consortium
(no logo yet...)

https://prime-re.github.io/

An Open Resource for Non-human Primate Imaging

Milham et al., 2018, Neuron 100, 61-74 October 10, 2018 © 2018 The Authors. Published by Elsevier Inc. https://doi.org/10.1016/j.neuron.2018.08.039

Accelerating the Evolution of Nonhuman Primate Neuroimaging

The PRIMatE Data Exchange (PRIME-DE) Global Collaboration Workshop and Consortium*,*
*Correspondence: michael.milham@childmind.org or chris.petkov@ncl.ac.uk
https://doi.org/10.1016/j.neuron.2019.12.023

600 Neuron 105, February 19, 2020 @ 2019 Elsevier Inc.

A collaborative resource platform for non-human primate neuroimaging

© Adam Messinger, © Nikoloz Sirmpilatze, © Katja Heuer, © Kep Kee Loh, © Rogier B. Mars, © Julien Sein, © Ting Xu, © Daniel Glen, © Benjamin Jung, © Jakob Seidlitz, © Paul Taylor, © Roberto Toro, © Eduardo A. Garza-Villarreal, © Caleb Sponheim, © Xindi Wang, © R. Austin Benn, © Bastien Cagna, © Rakshit Dadarwal, © Henry C. Evrard, © Pamela Garcia-Saldivar, Steven Giavasis, © Renée Hartig, Claude Lepage, © Cirong Liu, © Piotr Majka, © Hugo Merchant, © Michael P. Milham, © Marcello G.P. Rosa, © Jordy Tasserie, © Lynn Uhrig, © Daniel S. Margulies, © P. Christiaan Klink

Neuroimage, under review

Imaging the primate brain evolution: the next frontier?

Patrick Friedrich^{1,2}, Stephanie J. Forkel¹⁻³, Céline Amiez¹⁵, Joshua H. Balsters⁹, Olivier Coulon¹⁶⁻¹⁷, Lingzhong Fan¹⁹⁻²⁰, Alexandros Goulas¹³, Fadila Hadj-Bouziane²², Erin E. Hecht¹⁴, Katja Heuer^{23,24}, Tianzi Jiang¹⁹⁻²¹, Robert D. Latzman¹⁰, Xiaojin Liu⁴⁻⁵, Kep Kee Loh¹⁶⁻¹⁷, Kaustubh R. Patil⁴⁻⁵, Alizée Lopez-Persem^{6, 18}, Emmanuel Procyk¹⁵, Jerome Sallet^{15,18}, Roberto Toro^{23,25}, Sam Vickery⁴⁻⁵, Susanne Weis⁴⁻⁵, Charlie Wilson¹⁵, Ting Xu¹¹, Valerio Zerbi¹², Simon B. Eickoff^{4-5*}, Daniel Margulies^{1,6*}, Rogier B. Mars^{7,8*}, Michel Thiebaut de Schotten^{1,2*}

Neuroimage, under review

Getting started on NHP MRI (processing)!

https://prime-re.github.io/

https://github.com/PRIME-RE/prime-re.github.io/wiki

Clone this wiki locally

https://github.com/PRIM

NHP MRI processing – same same, but different...

Typical human anatomical pipeline

Dicom2nii

Reorientation/denoising/ bias-correction

Skull-stripping

Tissue Segmentation

Normalise to standard space (MNI)

Registration with functional/DTI

NHP MRI processing – same same, but different...

Typical human anatomical pipeline

Dicom2nii

Reorientation/denoising/ bias-correction

Skull-stripping

Tissue Segmentation

Normalise to standard space (MNI)

Registration with functional/DTI

pretty-good T1
(uc davis dataset)

quite-good T1
(newcastle dataset)

NHP MRI processing – same same, but different...

Typical human anatomical pipeline

Dicom2nii

Reorientation/denoising/ bias-correction

Skull-stripping

?

Tissue Segmentation

Normalise to standard space (MNI)

?

Registration with functional/DTI

pretty-good T1
(uc davis dataset)

quite-good T1 (newcastle dataset)

NHP MRI data processing – Key challenges...

- 1. Non-classic orientations
- 2. Non-head/brain parts
- 3. Bias-correction
- 4. Denoising
- 5. Registration
- 6. Segmentation

NHP MRI data processing – *Solutions*

1. Data Preparation	
Reorientation	FSL: fslreorient2std , fslswapdim + fslreorient Freesurfer: mri_convert -sphinx , mri_convertin_orientation Jip analysis toolkit Web-based Reorient Tool
Deoblique	AFNI: 3drefit -deoblique (for changing header information)
Cropping	FSL: fslroi,FSLeyes AFNI: @clip_volume FreeSurfer: mri_convertslice-crop
Denoising	Adaptive non-local means filter denoising in ANTs (ImageDenoise), SPM or Matlab package
Averaging multiple images	Linear Registration tools: FSL-FLIRT, AFNI-3dVolReg, 3dAllineate, SPM Register, etc. Image averaging: fslmaths, SPM Imcalc, etc.

3. Brain Extraction	
Template-based	AntsBrainExtraction (ANTs), Atlasbrex
Non Template-based	FSL-BET (can also be used with a template), bet_macaque.sh
Deep Learning Model	U-NET
Manual corrections	ITK-SNAP, Slicer, BrainBox
4. Brain Segmentation	
Template-based	AntsAtroposN4 script, Atropos (ANTs), SPM Segment
Non Template-based	FSL-Fast (can be used with templates)
Manual segmentations/corrections	ITK-SNAP, BrainBox
5. Templates and Atlases	See PRIME-RE

2. Bias-Correction	
T1xT2 bias field correction (HCP Method)	Can be implemented using standard image calculation software such as fslmaths based on procedures described in Rilling et al. (2011) A module for this bias-correction is also available in Macapype (correct_bias.py).
N3, N4BiasFieldCorrection	Available in ANTs, MINC, Freesurfer packages. One could also consider N3biascorrection which works better in some cases.
FSL-Fast	FSL
CMTK-mrbias	Find it here
3. Brain Extraction	
Template-based	AntsBrainExtraction (ANTs), Atlasbrex
Non Template-based	FSL-BET (can also be used with a template), bet_macaque.sh
Deep Learning Model	U-NET
Manual corrections	ITK-SNAP, Slicer, BrainBox

- Involves a "mix-n-match" of available neuroimaging tools and codes.
- Need to adapt to various acquisitions.
- No one single pipeline to rule them all..

David

What is macapype?

Nipype-based framework:

Nipype wraps the most used softwares in Neuroimaging

i.e. FSL/SPM/AFNI/ANTS

(Quick self ad):

neuropycon for EEG/MEG (ephypype)

and functional connectivity / graph

analysis (graphpype)

What is macapype?

Nipype-based framework:

 Notion of pipeline/nodes: design of sequences that can be easily re-used, or re-combined

Based on the notion of workflow

A workflow is a sequence of nodes Each node is a step in the full processing

it can call another program (interface/ wrapper) or be written by the user (in python)

A node in the workflow can be a workflow itself (by convention, called a pipeline)

Wraps of specific NHP tools

AtlasBREX:

- · a specific tool for brain extraction,
- multiple fine-grain parameters for contrast differences

Wraps of specific NHP tools

AtlasBREX:

- a specific tool for brain extraction,
- multiple fine-grain parameters for contrast differences

NMTSubjectAlign:

- Advanced tools for normalisation to NMT template
- also works for normalisation to other templates

Wraps of specific NHP tools

AtroposN4: Ants based tools for segmentation

Wraps of specific NHP tools

- AtroposN4: Ants based tools for segmentation
- Shell-based tools by Regis Trapeau:
 - IterREG, T1xT2BiasCorrection, T1xT2BET, etc.)

General scheme of the pipelines

Split in 3 big categories

- Data preparation
- Brain extraction
- Segmentation

2 types of input data

- T1/T2 available
- T1 only (~ work in progress ?)

General scheme of the pipelines

- Data preparation
 - short (using the T1xT2BET by Regis),
 - long single (average same modality images, then crop and N4debias)
 - long multi (crop and N4debias before average same modality images)

Wrapped pipelines

Pipeline by Kepkee: ANTS-based T1*T2

- data preparation (long single)
 - average same modality images,
 - crop
 - N4debias
 - denoise
 - then align T2 on T1

Wrapped pipelines

Pipeline by Kepkee: ANTS-based T1*T2

Brain extraction:

! Local know-how! first T1*T2BiasCorrection (sub-pipeline)

AtlasBREX

Wrapped pipelines

Pipeline by Kepkee: ANTS-based T1*T2

Brain segmentation

! Local know-how!

T1*T2 bias correction on masked T1 (i.e. brain only)

! Local know-how!

Normalisation of the NMT template to native space

AtroposN4 (ANTS)

Bastien

SPM based pipelines

T1w + T2w

Only T1w

How to use Macapype?

Anaconda cloud

conda install -c macatools macapype

PIP

pip install macapype

Github (source code)

git clone https://github.com/Macatools/macapype.git
cd macapype
python setup.py install

8 days ago

M Readme

T2

Ready to use workflow: python segment_pnh.py -data /path/to/my/bids/data -out /path/to/output/directory -soft SPM_t1 -params params_segment_macaque_spm_based.json -subjects Elouk Apache -acq Op4mm indiv_params indiv_params_segment_macaque_spm_based.json Pipeline to use (SPM, SPM_T1 or ANTS) JSON parameters (SPM, SPM_T1 or ANTS) JSON parameters file (opt.) Acquisition name (opt.)

Ready to use workflow:

```
python segment_pnh.py -data /path/to/my/bids/data -out /path/to/output/directory
-soft SPM_t1 -params params_segment_macaque_spm_based.json -subjects Elouk Apache -acq
0p4mm -indiv_params indiv_params_segment_macaque_spm_based.json
```

```
"general":
    "template name": "inia19"
},
"short_preparation_pipe":
    "bet crop":
        "m": true,
        "n": 2
"debias":
"reg":
```

```
"sub-Apache":
    "ses-01":
        "threshold gm":
            "thresh": 0.05
        "threshold wm":
            "thresh": 0.05
        "threshold csf":
            "thresh": 0.05
```

New python script:

New nipype workflow:

```
#!/usr/bin/env python3

from macapype.nodes.correct_bias import T1xT2BiasFieldCorrection

correction = T1xT2BiasFieldCorrection()
correction.inputs.t1 = "/path/to/the/T1w.nii"
correction.inputs.t2 = "/path/to/the/T2w.nii"
correction.run()
```

```
# Init a new workflow
wf = pe.Workflow(name="Preprocessing workflow")
wf.base dir = process path
# List matching file from the BIDS directory
datasource = create datasource(
    data path, task, subjects, sessions, acquisitions)
 **** Preprocessing part ****
correct bias = pe.Node(T1xT2BiasFieldCorrection(), name="bias correction")
wf.connect(datasource, 'T1', correct bias, 't1')
wf.connect(datasource, 'T2', correct bias, 't2')
wf.config['execution'] = {'remove unnecessary outputs': 'false'}
wf.write graph(graph2use="colored")
# Run the pipeline
wf.run()
```

Nipype tools: Parallel processing & caching

Idiosynchratic, Heterogeneous APIs

Execution Plugins

S/OGE MultiProc Linear

Torque IPython SSH

Several running strategies:

- Simple processing
 wf.run()
- Multicores processing
 wf.run(plugin='MultiProc', plugin args={'n procs' : 8})
- Others parallel processing
 wf.run(plugin='SGE', plugin_args=dict(qsub_args='-q long -l sps=1'))

Caching:

Re-run the pipeline = starting where it has stopped

Earlier tests on macaque:

- iterative FLIRT/FNIRT
- OldSegment SPM

Data courtesy of Regis Trapeau/Pascal Belin. For more information, see https://macatools.github.io/macapype/auto_examples/plot_segment_macaque_spm_based.html

Macaque (same dataset):

- atlasbrex
- ANTS atropos

Data courtesy of Regis Trapeau/Pascal Belin. For more information, see https://macatools.github.io/macapype/auto_examples/plot_segment_macaque_ants_based.html

Some results: on baboons

infant baboon (same dataset):

atlasbrex (using adult template)

Data courtesy of Yannick Becker/Adrien Meguerditchian (ERC GestImage). For more information, see https://macatools.github.io/macapype/auto_examples/plot_segment_baboon_ants_based.html

Also tried on marmoset (from cerimed 3T):

- atlas brex (different settings)
- ANTS atropos

Data courtesy of Thomas Brochier/Frederic Chavane (Marmobrain project). For more information, see https://macatools.github.io/macapype/auto_examples/plot_segment_marmo_ants_based.html

https://macatools.github.io/macapype

- . Test it!
- Install Macapype
- Input your data to the segmentation workflow
- Wait and see what append!
- Use mattermost channel to get some help or report bugs or failures
 https://framateam.org/signup_user_complete/?id=ebtxf45nmiyqmkm8e6oh9qjsoe
- . Be part of the development
- Fork the github repository
- Create a new branch
- Modify the package (adding new features or pipelines)
- Submit a pull request

Thanks for your attention!

Further information?

david.meunier AT univ-amu.fr

This is the "unofficial logo", let us know what you think...

Macapype links:

Official Repo: https://github.com/Macatools/macapype

Documentation: https://macatools.github.io/macapype/index.html

PYPI: https://pypi.org/project/macapype/

Docker hub: https://hub.docker.com/r/macatools/macapype

Useful links:

PRIME-RE: https://github.com/PRIME-RE/prime-re.github.io/wiki

PRIME-DE: http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html

References

<u>Nipype</u>:Gorgolewski, K et al. (2011). Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform.5:13. <u>BIDS</u>: Gorgolewski, K et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data 3:160044.

<u>AtlasBREX</u>: Lohmeier, J et al. (2019). AtlasBREX: Automated template-derived brain extraction in animal MRI. Sci Rep. 9(1):12219

NMT template and scripts: Seidlitz J et al. (2018). A population MRI brain template and analysis tools for the macaque. Neuroimage 170:121-131