```
In [1]:
```

```
# Importing relevent libraries:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

pd.set_option('display.max_columns', None)

path = './supply_chain_data.csv'
data = pd.read_csv(path)
data.head()
```

Out[1]:

	Product type	SKU	Price	Availability	Number of products sold	Revenue generated	Customer demographics			Order quantities	Shipping times	Shipping carriers
0	haircare	SKU0	69.808006	55	802	8661.996792	Non-binary	58	7	96	4	Carrier B
1	skincare	SKU1	14.843523	95	736	7460.900065	Female	53	30	37	2	Carrier A
2	haircare	SKU2	11.319683	34	8	9577.749626	Unknown	1	10	88	2	Carrier B
3	skincare	SKU3	61.163343	68	83	7766.836426	Non-binary	23	13	59	6	Carrier C
4	skincare	SKU4	4.805496	26	871	2686.505152	Non-binary	5	3	56	8	Carrier A
4												<u> </u>

In [2]:

data.shape

Out[2]:

(100, 24)

In [3]:

data.dtypes

Out[3]:

Product type	object			
SKU	object			
Price	float64			
Availability	int64			
Number of products sold	int64			
Revenue generated	float64			
Customer demographics	object			
Stock levels	int64			
Lead times	int64			
Order quantities	int64			
Shipping times	int64			
Shipping carriers	object			
Shipping costs	float64			
Supplier name	object			
Location	object			
Lead time	int64			
Production volumes	int64			
Manufacturing lead time	int64			
Manufacturing costs	float64			
Thereation regults	~h-i-~+			

```
THIS PECELTOH TESUTES
                             object
Defect rates
                            float64
Transportation modes
                            object
Routes
                             object
                            float64
Costs
dtype: object
In [4]:
data.isnull().sum()
Out[4]:
                            0
Product type
                            0
SKU
Price
                            \cap
Availability
                            0
Number of products sold
                            0
Revenue generated
                            0
Customer demographics
                            0
Stock levels
Lead times
Order quantities
                            0
                            0
Shipping times
Shipping carriers
                            0
                            0
Shipping costs
Supplier name
                            0
Location
                            0
Lead time
                            0
Production volumes
                            0
Manufacturing lead time
                            0
Manufacturing costs
                            0
                            0
Inspection results
                            \cap
Defect rates
                            0
Transportation modes
                            0
Routes
Costs
                            0
dtype: int64
In [5]:
data['Product type'].unique()
Out[5]:
array(['haircare', 'skincare', 'cosmetics'], dtype=object)
In [6]:
data['Customer demographics'].unique()
Out[6]:
array(['Non-binary', 'Female', 'Unknown', 'Male'], dtype=object)
In [7]:
data['Location'].unique()
Out[7]:
array(['Mumbai', 'Kolkata', 'Delhi', 'Bangalore', 'Chennai'], dtype=object)
In [8]:
data['Transportation modes'].unique()
Out[8]:
array(['Road', 'Air', 'Rail', 'Sea'], dtype=object)
In [9]:
data['Routes'].unique()
```

Out[9]: array(['Route B', 'Route C', 'Route A'], dtype=object)

In [10]:

```
sales = data.groupby('Product type')['Number of products sold'].sum().reset_index()

plot = sns.barplot(data = sales, y = 'Number of products sold', x = 'Product type')
for var in plot.containers:
    plot.bar_label(var)
plt.show()
```


In [11]:

```
transportation = data.groupby('Transportation modes')['Number of products sold'].sum().r
eset_index()

plot = sns.barplot(data = transportation, y = 'Number of products sold', x = 'Transportation modes')
for var in plot.containers:
    plot.bar_label(var)
plt.show()
```



```
Air Rail Road Sea
Transportation modes
```

In [12]:

```
revenue = data.groupby('Shipping carriers')['Revenue generated'].sum().reset_index()

plot = sns.barplot(data = revenue, y = 'Revenue generated', x = 'Shipping carriers')
for var in plot.containers:
    plot.bar_label(var)
plt.show()
```


In [13]:

```
revenue_location = data.groupby('Location')['Revenue generated'].sum().reset_index()

plot = sns.barplot(data = revenue_location, y = 'Revenue generated', x = 'Location')
for var in plot.containers:
    plot.bar_label(var)
plt.show()
```



```
Bangalore Chennai Delhi Kolkata Mumbai
```

In [14]:

```
revenue_modes = data.groupby('Transportation modes')['Revenue generated'].sum().reset_ind
ex()

plot = sns.barplot(data = revenue_modes, y = 'Revenue generated', x = 'Transportation mod
es')
for var in plot.containers:
    plot.bar_label(var)
plt.show()
```


In []: