Predict ICU
 admissions
 two weeks ahead
 based on positives



# Linear Regression

Marco Loog

## Past, Present, Future

- > Previous focus largely on classification
- > Today linear regression
- > Tomorrow mainly classification again
  With a focus on linear classifiers

# Why Regression?

Other examples of prediction problems where you may not be interested in a class label?

## Input-Output and Error Measure

Given input-output data

 $\rightarrow$  Function f(x)

How to measure goodness of fit?



## Input-Output and Error Measure

- Given p(x, y)Distribution over input-output
- $\rightarrow$  Function f(x)

How to calculate goodness of fit?



# Taking Squared Loss...

Risk of interest and "Bayes regression function"?

I.e., what is the optimal solution given p(x, y)?

Consider a fixed x for this...

## Model Assumption

Given examples of (positives,admissions)

input = positives
output = admissions

What functions to consider?



# Ingredients

ModelWill look at linear models

> Fitting functionSquared lossProbabilistic



### So...

> Regression aims to minimize expected squared loss

$$\int (f(x) - y)^2 p(x, y) dx dy$$

Other losses possible of course

- We do not know p
- We need to assume a model for *f*

# Least Squares Linear Regression

#### Assuming linearity...

Given N iid input-output pairs  $(x_i, y_i)$ 

Find the *w* that minimizes

Note: input typically is multidimensional!

$$\sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2} = \|Xw - Y\|^{2}$$

$$\sum_{i=1}^{N} (w^{T} x_{i} - y_{i})^{2} = \|Xw - Y\|^{2}$$

> Let's solve this for 1D inputs...

# On Our Running Example



## Note: Intercept / Bias

> w<sup>T</sup> x always goes through 0 for input 0 How do we fix this?



# Q? / Recap / Remainder

> Regression is for ordered / continuous outputs

$$\sum_{i=1}^{\infty} (w^T x_i + w_0 - y_i)^2$$

Probabilistic extension Simple prior knowledge "Nonlinear" model

## Extension to Probabilistic Model

#### But why?

Model spread in prediction Express confidence Combine with other probabilistic models



## Extension to Probabilistic Model

> How to?

Again: assume a model

One possibility is to assume Gaussian conditional for p(y|x)



### How To

- Conditional at  $x : p(y|x) = N(y|w^Tx, \sigma^2)$
- > Fit to data by maximizing (conditional) likelihood

$$\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)$$

What are the parameters to optimize? Depends on what the model assumes...

$$\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)$$

 $\rightarrow$  Let's fit it assuming  $\sigma$  known...

$$\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)$$

> What if we assume w known?

# Q? / Recap / Further Topics

 Can reinterpret standard linear regression in terms of a probabilistic model

- > First: important way of incorporating prior knowledge [more on this in Week 5]
- > Second: nonlinear relations [relates to Week 4]

### Initial Idea

- > Estimate average student height in specific ML class
- > What do you do in case of 0 observations?



### Maximum a Posteriori Estimation

One way of combining a prior information with actual data: take likelihood  $\times$  [so-called] prior  $p(\text{data}|\theta)p(\theta)$ 

 $\rightarrow$  MAP estimate obtained by maximizing for heta

So, think about how you would approach ML student height estimation...

# Generic Prior in Regression

- Assume that w is [relatively] close to 0
- More specifically take prior  $N(w|0, \alpha I)$  [ $\alpha = \text{fixed!}$ ]
- $\rightarrow$  MAP estimate  $\widehat{w}_{MAP}$  maximizes

$$\left( \prod_{i=1}^{N} N(y_i|w^T x_i, \sigma^2) \right) N(w|0, \alpha I)$$

You should be able to solve this [at least for 1D case,  $\sigma$  fixed]

## Generic Prior in Regression

 $\rightarrow$  MAP estimate  $\widehat{w}_{MAP}$  maximizes

$$\left(\prod_{i=1}^{N} N(y_i|w^Tx_i,\sigma^2)\right)N(w|0,\alpha I)$$

> Solution for this specific choice [with  $\sigma$  fixed]

$$\widehat{w}_{\text{MAP}} = \left( X^T X + \frac{\sigma^2}{\alpha} I \right)^{-1} X^T Y$$

## Behavior?

 $\rightarrow$  Solution for this specific choice [with  $\sigma$  fixed]

$$\widehat{w}_{\text{MAP}} = \left( X^T X + \frac{\sigma^2}{\alpha} I \right)^{-1} X^T Y$$

What if  $\alpha \to \infty$ ?

What if  $\alpha \downarrow 0$ ?

Makes sense?

## Next: Nonlinear Relations...

> Often variables relate in a nonlinear way

$$E = mc^2$$
,  $G = \frac{m_1 m_2}{r^2}$ , etc.

> What can we do?







### Feature Transformations

- > Nothing prevents inventing own combinations
- Already added constant for intercept / bias / offset
- > Why stop there?

With  $x \in \mathbb{R}^3$  a feature vector, we could add...

 $x_1^2$ , sin  $x_3$ ,  $x_1x_2$ , etc.

[Note potential confusion with indexed samples]

) Generally, invent mapping  $\phi\colon\mathbb{R}^d\longrightarrow\mathbb{R}^D$  from d-dimensional space to new D-dimensional one

## Feature Transformations

 $\rightarrow$  With your choice of  $\phi$ , new objective becomes

$$\sum_{i=1}^{N} (w^T \phi(x_i) - y_i)^2$$

Typically, model is still called linear

- > Special case: polynomial regression of some order
- > Relation to the kernel trick [Week 4]

## Feature Transformations



- > Special case: polynomial regression of some order
- > Relation to the kernel trick [Week 4]

## Wrap-up

- > Discussed regression, linear in particular
- > Both squared loss formulation and probabilistic
- > Extensions using prior and feature transformations
- > Tomorrow we look at linear classifiers
- > Think about the following :
  - Which linear ones did you see already?
  - How to use linear regression to build a linear classifier?