Dans tout le sujet, on considère des R-espaces vectoriels de dimension finie. Soit E un tel espace vectoriel et u un endomorphisme de E. On dit que u est **nilpotent** lorsqu'il existe un entier $p \geq 0$ tel que $u^p = 0$; le plus petit de ces entiers est alors noté $\nu(u)$ et appelé **nilindice** de u, et l'on remarquera qu'alors $u^k = 0$ pour tout entier $k \geq \nu(u)$. On rappelle que $u^0 = \mathrm{id}_E$. L'ensemble des endomorphismes nilpotents de E est noté $\mathcal{N}(E)$.

Un sous-espace vectoriel \mathcal{V} de $\mathcal{L}(E)$ est dit **nilpotent** lorsque tous ses éléments sont nilpotents, autrement dit lorsque $\mathcal{V} \subset \mathcal{N}(E)$.

Une matrice triangulaire supérieure est dite **stricte** lorsque tous ses coefficients diagonaux sont nuls. On note $T_n^{++}(\mathbf{R})$ l'ensemble des matrices triangulaires supérieures strictes de $M_n(\mathbf{R})$.

L'objectif du problème est d'établir le théorème suivant, démontré par Murray Gerstenhaber en 1958:

Théorème de Gerstenhaber

Soit E un \mathbf{R} -espace vectoriel de dimension n>0, et \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$. Alors, $\dim \mathcal{V} \leq \frac{n(n-1)}{2}$. Si en outre $\dim \mathcal{V} = \frac{n(n-1)}{2}$ alors il existe une base de E dans laquelle tout élément de \mathcal{V} est représenté par une matrice triangulaire supérieure stricte.

Les trois premières parties du sujet sont largement indépendantes les unes des autres. La partie I est constituée de généralités sur les endomorphismes nilpotents. Dans la partie II, on met en évidence un mode de représentation des endomorphismes de rang 1 d'un espace euclidien. Dans la partie III, on établit deux résultats généraux sur les sous-espaces vectoriels nilpotents : une identité sur les traces (lemme $\bf A$), et une condition suffisante pour que les éléments d'un sous-espace nilpotent non nul possèdent un vecteur propre commun (lemme $\bf B$). Dans l'ultime partie IV, les résultats des parties précédentes sont combinés pour établir le théorème de Gerstenhaber par récurrence sur la dimension de l'espace E.

I Généralités sur les endomorphismes nilpotents

Dans toute cette partie, on fixe un espace vectoriel réel E de dimension n > 0.

- $\sqrt{1}$. Soit $u \in \mathcal{N}(E)$. Montrer que $\operatorname{tr} u^k = 0$ pour tout $k \in \mathbb{N}^*$.
- $\sqrt[4]{2}$. On fixe une base **B** de *E*. On note $\mathcal{N}_{\mathbf{B}}$ l'ensemble des endomorphismes de *E* dont la matrice dans **B** est triangulaire supérieure stricte. Justifier que $\mathcal{N}_{\mathbf{B}}$ est un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$ et que sa dimension vaut $\frac{n(n-1)}{2}$.
- $\sqrt{3}$. Soit B une base de E. Montrer que

$$\{\nu(u)\mid u\in\mathcal{N}_{\mathbf{B}}\}=\{\nu(u)\mid u\in\mathcal{N}(E)\}=[\![1,n]\!].$$

- $\sqrt{4}$. Soit $u \in \mathcal{L}(E)$. On se donne deux vecteurs x et y de E, ainsi que deux entiers $p \geq q \geq 1$ tels que $u^p(x) = u^q(y) = 0$ et $u^{p-1}(x) \neq 0$. Montrer que la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre, et que si $(u^{p-1}(x), u^{q-1}(y))$ est libre alors $(x, u(x), \dots, u^{p-1}(x), y, u(y), \dots, u^{q-1}(y))$ est libre.
- **√** 5. Soit $u \in \mathcal{N}(E)$, de nilindice p. Déduire de la question précédente que si $p \ge n-1$ et $p \ge 2$ alors Im $u^{p-1} = \text{Im } u \cap \text{Ker } u$ et Im u^{p-1} est de dimension 1.

II Endomorphismes de rang 1 d'un espace euclidien

On considère ici un espace vectoriel euclidien $(E, (-\mid -))$. Étant donné $a \in E$ et $x \in E$, on notera $a \otimes x$ l'application de E dans lui-même définie par :

$$\forall z \in E, \ (a \otimes x)(z) = (a \mid z).x$$

 $\sqrt{6}$. On fixe $x \in E \setminus \{0\}$. Montrer que l'application $a \in E \mapsto a \otimes x$ est linéaire et constitue une bijection de E sur $\{u \in \mathcal{L}(E) : \operatorname{Im} u \subset \operatorname{Vect}(x)\}$.

 $\sqrt{7}$. Soit $a \in E$ et $x \in E \setminus \{0\}$. Montrer que $\operatorname{tr}(a \otimes x) = (a \mid x)$.

III Deux lemmes

On considère ici un R-espace vectoriel E de dimension n > 0. Soit \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$ contenant un élément non nul. On note

$$p := \max_{u \in \mathcal{V}} \nu(u),$$

appelé nilindice générique de \mathcal{V} (cet entier est bien défini grâce à la question 3). On notera que $p \geq 2$.

On introduit le sous-ensemble \mathcal{V}^{\bullet} de E formé des vecteurs appartenant à au moins un des ensembles $\operatorname{Im} u^{p-1}$ pour u dans \mathcal{V} ; on introduit de plus le sous-espace vectoriel engendré

 $K(\mathcal{V}) := \operatorname{Vect}(\mathcal{V}^{\bullet}).$

Enfin, étant donné $x \in E$, on pose

$$\mathcal{V}x := \{v(x) \mid v \in \mathcal{V}\}.$$

L'objectif de cette partie est d'établir les deux résultats suivants :

Lemme A. Soit u et v dans \mathcal{V} . Alors $\operatorname{tr}(u^k v) = 0$ pour tout entier naturel k.

Lemme B. Soit x dans $\mathcal{V}^{\bullet} \setminus \{0\}$. Si $K(\mathcal{V}) \subset \text{Vect}(x) + \mathcal{V}x$, alors v(x) = 0 pour tout v dans \mathcal{V} .

Dans les questions 8 à 11, on se donne deux éléments arbitraires u et v de \mathcal{V} .

 $\sqrt{8}$. Soit $k \in \mathbb{N}^*$. Montrer qu'il existe une unique famille $(f_0^{(k)}, \dots, f_k^{(k)})$ d'endomorphismes de E telle que

$$\forall t \in \mathbf{R}, \ (u+tv)^k = \sum_{i=0}^k t^i f_i^{(k)}.$$

Montrer en particulier que $f_0^{(k)} = u^k$ et $f_1^{(k)} = \sum_{i=0}^{k-1} u^i v u^{k-1-i}$.

$$\sqrt{9}$$
. Montrer que $\sum_{i=0}^{p-1} u^i v u^{p-1-i} = 0$.

- $\sqrt{10}$. Étant donné $k \in \mathbb{N}$, donner une expression simplifiée de $\operatorname{tr}(f_1^{(k+1)})$, et en déduire la validité du lemme \mathbf{A} .
- √11. Soit $y \in E$. Démontrer que $f_1^{(p-1)}(y) \in K(\mathcal{V})$. À l'aide d'une relation entre $u(f_1^{(p-1)}(y))$ et $v(u^{p-1}(y))$, en déduire que $v(x) \in u(K(\mathcal{V}))$ pour tout $x \in \text{Im } u^{p-1}$.
 - 12. Soit $x \in \mathcal{V}^{\bullet} \setminus \{0\}$ tel que $K(\mathcal{V}) \subset \operatorname{Vect}(x) + \mathcal{V}x$. On choisit $u \in \mathcal{V}$ tel que $x \in \operatorname{Im} u^{p-1}$. Étant donné $y \in K(\mathcal{V})$, montrer que pour tout $k \in \mathbb{N}$ il existe $y_k \in K(\mathcal{V})$ et $\lambda_k \in \mathbb{R}$ tels que $y = \lambda_k x + u^k(y_k)$. En déduire que $K(\mathcal{V}) \subset \operatorname{Vect}(x)$ puis que v(x) = 0 pour tout $v \in \mathcal{V}$.

IV Démonstration du théorème de Gerstenhaber

Dans cette ultime partie, nous démontrons le théorème de Gerstenhaber par récurrence sur l'entier n. Le cas n=1 est immédiat et nous le considérerons comme acquis. On se donne donc un entier naturel $n\geq 2$ et on suppose que pour tout espace vectoriel réel E' de dimension n-1 et tout sous-espace vectoriel nilpotent

 \mathcal{V}' de $\mathcal{L}(E')$, on a dim $\mathcal{V}' \leq \frac{(n-1)(n-2)}{2}$, et si en outre dim $\mathcal{V}' = \frac{(n-1)(n-2)}{2}$ alors il existe une base de E' dans laquelle tout élément de \mathcal{V}' est représenté par une matrice triangulaire supérieure stricte.

On fixe un espace vectoriel réel E de dimension n, ainsi qu'un sous-espace vectoriel nilpotent \mathcal{V} de $\mathcal{L}(E)$. On munit E d'un produit scalaire $(-\mid -)$, ce qui en fait un espace euclidien.

On considère, dans un premier temps, un vecteur arbitraire x de $E \setminus \{0\}$. On pose,

$$H:=\mathrm{Vect}(x)^\perp,\quad \mathcal{V}x:=\{v(x)\mid v\in\mathcal{V}\}\quad \text{et}\quad \mathcal{W}:=\{v\in\mathcal{V}:\ v(x)=0\}.$$

On note π la projection orthogonale de E sur H. Pour $u \in \mathcal{W}$, on note \overline{u} l'endomorphisme de H défini par

$$\forall z \in H, \ \overline{u}(z) = \pi(u(z)).$$

On considère enfin les ensembles

$$\overline{\mathcal{V}} := \{ \overline{u} \mid u \in \mathcal{W} \} \quad \text{et} \quad \underline{\mathcal{Z}} := \{ u \in \mathcal{W} : \overline{u} = 0 \}.$$

 $\sqrt{13}$. Montrer que $\mathcal{V}x$, \mathcal{W} , $\overline{\mathcal{V}}$ et \mathcal{Z} sont des sous-espaces vectoriels respectifs de E, \mathcal{V} , $\mathcal{L}(H)$ et \mathcal{V} .

$$\sqrt{14}$$
. Montrer que

$$\dim \mathcal{V} = \dim(\mathcal{V}x) + \dim \mathcal{Z} + \dim \overline{\mathcal{V}}.$$

 $\sqrt{15}$. Montrer qu'il existe un sous-espace vectoriel L de E tel que

$$\mathcal{Z} = \{a \otimes x \mid a \in L\} \quad \text{et} \quad \dim L = \dim \mathcal{Z},$$

et montrer qu'alors $x \in L^{\perp}$.

- 16. En considérant u et $a \otimes x$ pour $u \in \mathcal{V}$ et $a \in L$, déduire du lemme \mathbf{A} que $\mathcal{V}x \subset L^{\perp}$, et que plus généralement $u^k(x) \in L^{\perp}$ pour tout $k \in \mathbf{N}$ et tout $u \in \mathcal{V}$.
- $\sqrt[4]{17}$. Justifier que $\lambda x \notin \mathcal{V}x$ pour tout $\lambda \in \mathbf{R}^*$, et déduire alors des deux questions précédentes que

$$\dim \mathcal{V}x + \dim L \le n - 1.$$

- 18. Soit $u \in \mathcal{W}$. Montrer que $(\overline{u})^k(z) = \pi(u^k(z))$ pour tout $k \in \mathbb{N}$ et tout $z \in H$. En déduire que $\overline{\mathcal{V}}$ est un sous-espace vectoriel nilpotent de $\mathcal{L}(H)$.
- 19. Démontrer que

$$\dim \mathcal{V} \leq \frac{n(n-1)}{2}.$$

Dans toute la suite du problème, on suppose que dim $\mathcal{V} = \frac{n(n-1)}{2}$.

20. Démontrer que

$$\dim \overline{\mathcal{V}} = \frac{(n-1)(n-2)}{2}, \quad \dim(\operatorname{Vect}(x) \oplus \mathcal{V}x) + \dim L = n$$

et

$$L^{\perp} = \operatorname{Vect}(x) \oplus \mathcal{V}x.$$

En déduire que $\operatorname{Vect}(x) \oplus \mathcal{V}x$ contient $v^k(x)$ pour tout $v \in \mathcal{V}$ et tout $k \in \mathbf{N}$.

21. En appliquant l'hypothèse de récurrence, montrer que le nilindice générique de \mathcal{V} est supérieur ou égal à n-1, et que si en outre $\mathcal{V}x=\{0\}$ alors il existe une base de E dans laquelle tout élément de \mathcal{V} est représenté par une matrice triangulaire supérieure stricte.

Compte tenu du résultat de la question 21, il ne nous reste plus qu'à établir que l'on peut choisir le vecteur x de telle sorte que $\mathcal{V}x = \{0\}$.

On choisit x dans $\mathcal{V}^{\bullet} \setminus \{0\}$ (l'ensemble \mathcal{V}^{\bullet} a été défini dans la partie III). On note p le nilindice générique de \mathcal{V} , et l'on fixe $u \in \mathcal{V}$ tel que $x \in \text{Im } u^{p-1}$. On rappelle que $p \geq n-1$ d'après la question 21.

- 22. Soit $v \in \mathcal{V}$ tel que $v(x) \neq 0$. Montrer que $\operatorname{Im} v^{p-1} \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$. On pourra utiliser les résultats des questions 5 et 20.
- 23. On suppose qu'il existe v_0 dans \mathcal{V} tel que $v_0(x) \neq 0$. Soit $v \in \mathcal{V}$. En considérant $v + tv_0$ pour t réel, montrer que Im $v^{p-1} \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$.
- 24. Conclure.

Fin du problème