2_Life_Expectancy_Initial_Data_Analysis

January 29, 2023

Table of Contents

- 1 Initial_Data_Analysis
- 2 Load, rename columns, information
- 3 Check number of null values
- 3.1 NOTE 1:
- 3.2 NOTE 2:
- 3.3 NOTE 3:
- 4 Imputation using column means
- 5 Re-Check null data points
- 6 Save intermediate dataframe

1 Life_Expectancy_WHO_UN_Analysis_Modeling

1.1 Initial_Data_Analysis

To: Magnimind

From: Matt Curcio, matt.curcio.ri@gmail.com

Date: 2023-01-29

Re: NOTEBOOK #2

This python notebook simply takes the original data file Life_Expectancy_Data.csv and produces an intermediate file Clean_LE_Data_w_Means_1.csv.

List Of Features	Description
Year	Year
Country	Country
Status	Developed(1) or $Developing(0)$
GDP	Gross Domestic Product per capita (in
	USD)
TotalExpen	Total Expenditure
PercExpen	Percent Expenditure

List Of Features	Description
Income	Income composition of resources,
	Human Development Index
Population	Population of country
Education	Years of Education
EtOH	Alcohol consumption, litres of pure
	alcohol per capita
HepB	Hepatitis B: % immunization coverage
•	among 1-year-olds
Measles	Number of reported cases per 1,000
1.200.5202	population
DTP	Diphtheria, tetanus toxoid & pertussis
211	% immunization coverage among
	1-year-olds
Polio	Pol3: % immunization coverage among
	1-year-olds
HIV	HIV/AIDS: Deaths per 1,000 (0-4
111 V	years)
BMI	Average Body Mass Index of entire
DIVII	population
AdultMort	Adult Mortality Rates of both sexes
Additiviort	(probability of dying between 15 and 60
	(2
InfD	years per 1000 population)
IniD	Number of Infant Deaths per 1,000
lis D	population
lt5y_D	Number of under-five deaths per 1,000
FT1.4.4.4.0	population
Thin1_19y	% Prevalence of thinness among
TILL V 0	children and adolescents $10 < Age < 19$
Thin5_9y	% Prevalence of thinness among
	children and adolescents $5 < Age < 9$
LifeExpectancy	Life Expectancy (Yr)

```
[1]: # Common Python Libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

[2]: !ls *.csv

```
Clean_LE_Data_FEng_4.csv Life_Expectancy_Data.csv y_test.csv Clean_LE_Data_Post_EDA_3.csv x_test.csv y_train.csv Clean_LE_Data_w_Means_2.csv x_train.csv
```

1.2 Load, rename columns, information

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype	
0	Country	2938 non-null	object	
1	Year	2938 non-null	int64	
2	Status	2938 non-null	object	
3	LifeExpectancy	2928 non-null	float64	
4	AdultMort	2928 non-null	float64	
5	InfD	2938 non-null	int64	
6	EtOH	2744 non-null	float64	
7	PercExpen	2938 non-null	float64	
8	НерВ	2385 non-null	float64	
9	Measles	2938 non-null	int64	
10	BMI	2904 non-null	float64	
11	lt5yD	2938 non-null	int64	
12	Polio	2919 non-null	float64	
13	TotalExpen	2712 non-null	float64	
14	DTP	2919 non-null	float64	
15	HIV	2938 non-null	float64	
16	GDP	2490 non-null	float64	
17	Population	2286 non-null	float64	
18	Thin1_19y	2904 non-null	float64	
19	Thin5_9y	2904 non-null	float64	
20	Income	2771 non-null	float64	
21	Education	2775 non-null	float64	
dtypes: float64(16),		int64(4), object(2)		
memory usage: 505.1+		KB		

1.3 Check number of null values

]:	df.isnull().sum(()
4]:	Country	0
	Year	0
	Status	0
	LifeExpectancy	10
	AdultMort	10
	InfD	0
	EtOH	194
	PercExpen	0
	НерВ	553
	Measles	0
	BMI	34
	lt5yD	0
	Polio	19
	TotalExpen	226
	DTP	19
	HIV	0
	GDP	448
	Population	652
	Thin1_19y	34

dtype: int64

Thin5_9y

Education

Income

1.3.1 NOTE 1:

• The feature 'LifeExpectancy' has 10 missing values.

34

167

163

- Therefore the 10 rows that have NAN values will be deleted. Because 'LifeExpectancy' is a Dependent variable, I will delete those 10 observations with NO labels rather than impute them.
- Drop 10 rows containing null in LifeExpectancy column
- The 'LifeExpectancy' feature appear to be Missing Completely at Random(MCAR). The main advantage of MCAR is that the analysis is unbiased. Data lost with design fault do not impact other parameters in the model.

```
[5]: df.dropna(subset=['LifeExpectancy'], inplace=True) # 10 rows deleted
[6]: print('\nDataframe df shape:', df.shape)
    df.isnull().sum()
```

Dataframe df shape: (2928, 22)

[6]:	Country	0
	Year	0
	Status	0
	LifeExpectancy	0
	AdultMort	0
	InfD	0
	EtOH	193
	PercExpen	0
	НерВ	553
	Measles	0
	BMI	32
	lt5yD	0
	Polio	19
	TotalExpen	226
	DTP	19
	HIV	0
	GDP	443
	Population	644
	Thin1_19y	32
	Thin5_9y	32
	Income	160
	Education	160
	dtype: int64	

dtype: int64

1.3.2 NOTE 2:

• The five features with the highest number of mising values (out of 2928) are:

	Feature	Number Missing	% Missing
1	Population	644	22.0%
2	HepB	553	18.9%
3	GDP	448	15.3%
4	TotalExpen	226	7.7%
5	EtOH	193	6.6%

1.3.3 NOTE 3:

- Drop feature columns ['Population', 'HepB', 'GDP'] where % Missing is greater than 15%.
- $\bullet\,$ More data scraping or gathering needs to be done in at least 5 areas.
 - 1 Country Population
 - 2 Hepititus B Vaccination rates
 - 3 Gross Domestic Product
 - 4 Total Expenditure of Country Funds: Health Related
 - 5 Ethanol Comsumption per capita

```
[7]: df.drop(['Population', 'HepB', 'GDP'], axis=1, inplace=True)

df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2928 entries, 0 to 2937
Data columns (total 19 columns):

Dava	COLUMNIS (COCAL .	io corumnis).		
#	Column	Non-Null Count	Dtype	
0	Country	2928 non-null	object	
1	Year	2928 non-null	int64	
2	Status	2928 non-null	object	
3	LifeExpectancy	2928 non-null	float64	
4	AdultMort	2928 non-null	float64	
5	InfD	2928 non-null	int64	
6	EtOH	2735 non-null	float64	
7	PercExpen	2928 non-null	float64	
8	Measles	2928 non-null	int64	
9	BMI	2896 non-null	float64	
10	lt5yD	2928 non-null	int64	
11	Polio	2909 non-null	float64	
12	TotalExpen	2702 non-null	float64	
13	DTP	2909 non-null	float64	
14	HIV	2928 non-null	float64	
15	Thin1_19y	2896 non-null	float64	
16	Thin5_9y	2896 non-null	float64	
17	Income	2768 non-null	float64	
18	Education	2768 non-null	float64	
<pre>dtypes: float64(13),</pre>		int64(4), object(2)		
memory usage: 457 5+		KB		

memory usage: 457.5+ KB

1.4 Imputation using column means

```
[8]: df['InfD'].fillna(np.mean(df.InfD), inplace=True)
    df['EtOH'].fillna(np.mean(df.EtOH), inplace=True)
    df['PercExpen'].fillna(np.mean(df.PercExpen), inplace=True)
    df['Measles'].fillna(np.mean(df.Measles), inplace=True)
    df['BMI'].fillna(np.mean(df.BMI), inplace=True)
    df['Polio'].fillna(np.mean(df.Polio), inplace=True)
    df['TotalExpen'].fillna(np.mean(df.TotalExpen), inplace=True)
    df['DTP'].fillna(np.mean(df.DTP), inplace=True)
    df['Thin1_19y'].fillna(np.mean(df.Thin1_19y), inplace=True)
    df['Thin5_9y'].fillna(np.mean(df.Thin5_9y), inplace=True)
    df['Income'].fillna(np.mean(df.Income), inplace=True)
    df['Education'].fillna(np.mean(df.Education), inplace=True)
```

```
# Convert Dev status to a binary variable, where Developing Nations = 0, □

→Developed Nation status = 1.

df['Status'] = df['Status'].apply(lambda x: 0 if x == 'Developing' else 1).

→astype('int8')
```

1.5 Re-Check null data points

```
[9]: print('\nShape of Cleaned and Imputed dataframe:', df.shape)

df.isnull().sum()
```

Shape of Cleaned and Imputed dataframe: (2928, 19)

```
[9]: Country
     Year
                         0
     Status
                        0
     LifeExpectancy
                        0
     AdultMort
                        0
     InfD
                         0
     EtOH
                         0
                         0
     PercExpen
     Measles
                         0
     BMI
                         0
     1t5yD
                         0
     Polio
                         0
                         0
     TotalExpen
     DTP
                         0
     HIV
                         0
                         0
     Thin1_19y
     Thin5_9y
                         0
     Income
                         0
     Education
                         0
     dtype: int64
```

1.6 Save intermediate dataframe

```
[12]:
           Country Year Status LifeExpectancy AdultMort InfD EtOH \
     0 Afghanistan 2015
                             0
                                         65.0
                                                   263.0
                                                           62 0.01
     1 Afghanistan 2014
                                         59.9
                                                           64 0.01
                             0
                                                   271.0
     2 Afghanistan 2013
                             0
                                         59.9
                                                   268.0
                                                           66 0.01
        PercExpen Measles
                         BMI lt5yD Polio TotalExpen
                                                       DTP HIV Thin1_19y \
     0 71.279624
                    1154 19.1
                                       6.0
                                                  8.16 65.0 0.1
                                                                      17.2
                                  83
                     492 18.6
                                       58.0
                                                                      17.5
     1 73.523582
                                  86
                                                  8.18 62.0 0.1
                                       62.0
     2 73.219243
                     430 18.1
                                  89
                                                  8.13 64.0 0.1
                                                                      17.7
        Thin5_9y Income Education
           17.3
                0.479
     0
                             10.1
     1
           17.5
                0.476
                             10.0
     2
           17.7
                0.470
                             9.9
[]:
```