# Myhill Nerode Theorem

Ayush Tandon (2K22/CO/133)

September 9, 2024

## 1 Introduction

Myhill-Nerode Theorem is a fundamental result in automata theory and formal languages. It provides a method to prove whether a language L is regular or not and it is also used for minimization of states in DFA (Deterministic Finite Automata).

# 2 Prerequisites

### Deterministic Finite Automata

In DFA, for each input symbol, one can determine the states to which the machine will move in a finite number of steps. A DFA is represented as a five tuple  $(Q, \Sigma, \delta, q_0, F)$  where:

Q is a finite set of states,  $\Sigma$  is a finite alphabet,  $\delta: Q \times \Sigma \to Q$  is the **transition function**,  $q_0 \in Q$  is the **initial state** and  $F \subseteq Q$  is the set of **final states**.

## Indistinguishability

Given a language L and x, y are strings over  $\Sigma^*$ , if for every string  $z \in \Sigma^*$ , **either**  $xz, yz \in L$  **or**  $xz, yz \notin L$ , then x and y are said to be **indistinguishable** over the language L.

In other words, x is **equivalent** to y with respect to L, written  $x \equiv_L y$ , if and only if, for any  $z \in \Sigma^*$ ,

$$xz \in L \iff yz \in L.$$

 $\equiv_L$  is an equivalence relation: it is reflexive, symmetric and transitive. Since  $\equiv_L$  is an equivalence relation over  $\Sigma^*$ ,  $\equiv_L$  partitions  $\Sigma^*$  into disjoint sets called **equivalence classes.** 

### 3 Theorem Defintion

A language L is regular if and only if the number of equivalence classes of  $\equiv_L$  is **finite**. If  $\equiv_L$  partitions  $\Sigma^*$  into n equivalence classes, then a minimal DFA recognizing L has at least n states.

L is not regular if and only if there are infinitely many strings  $w_1, w_2, \ldots$  such that for all  $w_i \neq w_j$ ,  $w_i$  and  $w_j$  are distinguishable with respect to L.

# 4 Check if Langauge is Regular or not

Example: L = {  $a^n b^n \mid n \ge 0$ }

Consider the strings a and b. We will check equivalence for this relation and find if the number of equivalence classes is finite or not. For k and j (where  $j \neq k$ ), take  $x = a^k$  and  $y = a^j$ .

Take  $z = b^k$ , and we get:

$$xz = a^k b^k \in L$$

$$yz = a^j b^k \notin L$$

We conclude that,

$$xz \in L$$
 but  $yz \notin L$ 

Therefore, all such pairs  $a^k$  and  $a^j$  are distinguishable and there are **infinitely many** equivalence classes. Hence, L is **not regular.** 

# 5 DFA Minimization using Myhill Nerode Theorem

# 5.1 Steps for minimization

- 1. Draw a table for all pairs of states (P, Q).
- 2. Mark all pairs where  $P \in F$  and  $Q \notin F$ , where F is the set of final states.
- 3. If there are any unmarked pairs (P,Q) such that for all input symbols  $x \in \Sigma^*$ ,  $(\delta(P,x), \delta(Q,x))$  are marked, then mark (P,Q).
- 4. Repeat the above step until no more markings can be done.
- 5. Combine all **unmarked pairs** and make them a single state in the minimized DFA.

### 5.2 Illustration

Consider DFA:



We will also create a transition table to map all transitions.

| $q_0$          | 0 | 1 |  |
|----------------|---|---|--|
| A              | В | С |  |
| В              | A | D |  |
| $\overline{C}$ | E | F |  |
| D              | Е | F |  |
| Е              | Е | F |  |
| F              | F | F |  |

Table 1: Transition table  $\delta: Q \times \Sigma \to Q$ 

- Set of Final States : {C,D,E}
- Table for all pairs: (T[i][j] means i is final state and j is not a final state)
- Note: Only lower triangular matrix is drawn without diagonal values to **remove** duplicate pairs.

#### 5.2.1 Draw State Pairs Table & Mark Final/Non-Final Pairs

|                  | A            | В | $\mid C \mid$ | D | E | F |
|------------------|--------------|---|---------------|---|---|---|
| A                |              |   |               |   |   |   |
| В                |              |   |               |   |   |   |
| $\mathbf{C}$     | $\checkmark$ | ✓ |               |   |   |   |
| B<br>C<br>D<br>E | ✓            | ✓ |               |   |   |   |
|                  | ✓            | ✓ |               |   |   |   |
| F                |              |   | ✓             | ✓ | ✓ |   |

Table 2: Pairs where  $P \in F$  and  $Q \notin F$ 

### 5.2.2 Mark by Transition Closure

- Unmarked Pairs are (B,A), (D,C), (E,C), (E,D), (F,A), (F,B).
- Find transitions for all states  $(\delta(P,x), \delta(Q,x))$  and mark where  $(P,x) \in F$  and  $(Q,x) \notin F$ .
- Keep repeating this step until no more pairs can be marked.

Here, we found that  $(\delta(F,1), \delta(A,1)) = (F, C)$ , which is marked and then  $(\delta(F,0), \delta(B,0)) = (F, A)$ , which is also marked. So, we mark (F,A) and (F,B). No more pairs can be marked now and so we **stop.** 

Table 3: Modified table after markings

### 5.2.3 Combine Unmarked States

- Unmarked Pairs are (B,A), (D,C), (E,C) and (E,D).
- Further, C,D,E can be combined together. So we get 3 states, (A,B), (C,D,E) and (F).
- These are 3 equivalence classes. DFA states reduced from 6 to 3.

Minimal DFA is drawn below:



# 6 Conclusion

The Myhill Nerode theorem is a powerful tool for classifying languages as **regular or non-regular** and minimizing DFA. It provides a systematic approach for identifying the structure of a language and optimizing the states to achieve minimal DFA.