MESUREMENT ENERGY CONSUMUPTION:

PHASE-III

Import relevant python packages:

Let's use the electrical meter data to create clusters of typical load profiles for analysis. First we can load our conventional packages.

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib
```

Next let's load all the packages we will need for analysis

```
import sklearn
from sklearn import metrics
from sklearn.neighbors import KNeighborsRegressor
from scipy.cluster.vq import kmeans, vq, whiten
from scipy.spatial.distance import cdist
import numpy as np
from datetime import datetime
```

<u>Electricity Prediction for Measurement and Verification</u>

Prediction is a common machine learning (ML) technique used on building energy consumption data. This process is valuable for anomaly detection, load profile-based building control and measurement and verification procedures.

The graphic below comes from the IPMVP to show how prediction can be used for M&V to calculate how much energy **would have** been consumed if an energy savings intervention had not been implemented.

Load electricity data and weather data

First we can load the data from the BDG in the same as our previous weather analysis influence notebook from the Construction Phase videos

```
elec_all_data = pd.read_csv("electricity.csv",
parse_dates=True)
```

```
elec all data.info()
```

OUTPUT:

3	Utility.Type	3174	non-null	object
4	Demand.Summer Peak	3174	non-null	float64
5	Demand.Winter Peak	3174	non-null	float64
6	Sources.Generation	3174	non-null	float64
7	Sources.Purchased	3174	non-null	float64
8	Sources.Other	3174	non-null	float64
9	Sources.Total	3174	non-null	float64
10	Uses.Retail	3174	non-null	float64
11	Uses.Resale		non-null	float64
12	Uses.No Charge		non-null	float64
13	Uses.Consumed	3174	non-null	float64
14	Uses.Losses	3174	non-null	float64
15	Uses.Total	3174	non-null	float64
16	Revenues.Retail	3174	non-null	float64
17	Revenue.Delivery	3174	non-null	float64
18	Revenue.Resale	3174	non-null	float64
19	Revenue.Adjustments		non-null	float64
20	Revenue.Transmission	3174	non-null	float64
21	Revenue.Other		non-null	float64
22	Revenue.Total	3174	non-null	float64
23	Retail.Residential.Revenue	3174	non-null	float64
24	Retail.Residential.Sales	3174	non-null	float64
25	Retail.Residential.Customers	3174	non-null	float64
26	Retail.Commercial.Revenue	3174	non-null	float64
27	Retail.Commercial.Sales	3174	non-null	float64
28	Retail.Commercial.Customers	3174	non-null	float64
29	Retail.Industrial.Revenue		non-null	float64
30	Retail.Industrial.Sales	3174	non-null	float64
31	Retail.Industrial.Customers		non-null	float64
32	Retail.Transportation.Revenue	3174	non-null	float64
33	Retail.Transportation.Sales		non-null	float64
34	Retail.Transportation.Customers	3174	non-null	float64
35	Retail.Total.Revenue	3174	non-null	float64
36	Retail.Total.Sales	3174	non-null	float64
37	Retail.Total.Customers	3174	non-null	float64

dtypes: float64(34), int64(1), object(3) memory usage: 942.4+ KB

TEAM:

1.M.MANIKANDAN

2.R.MANIKANDAN

3.P.ANTONY FRANCIS

4.R.CHERMA RAJA

5.B.PREM KUMAR