OM-M20-08: More on LP Relaxation

C. V. Jawahar

IIIT Hyderabad

Review-06 Link: http://tiny.cc/64jajz

31 Jan 2020

Graph Problems (Revisit)

Maximum weight bipartite matching Given a bipartite graph G(V,E) with |X| = |Y|

$$max\sum_{e\in E}w_ex_e$$
 Subject to
$$\sum_{v\in e}x_e=1 \forall v\in V; x_e\in\{0,1\} \forall e\in E$$

Min Vertex Cover Find min|V'|, $V' \subset V$ such that $\forall (u,v) \in e, e \in E$, either $u \in V'$ or $v \in V'$ or both.

$$\min \sum_{v \in V} x_v \text{ Subject to}$$

$$x_u + x_v \ge 1 \forall (u, v) \in E; x_u \in \{0, 1\}$$

Maximum Independent Set $\max_{v \in V} x_v$ such that $x_u + x_v \le 1 \forall (u, v) \in E$, $x_u \in \{0, 1\}$ ie Maximum size set such that no two vertices in it are connected by an edge.

Rounding for Other Two Problems

Minimum Vertex Cover

$$S_{LP} = \{ v \in V | x_v^* \ge \frac{1}{2} \}$$

$$|S_{LP}| = \sum_{v \in S_{LP}} 1 \le \sum_{v \in S_{LP}} 2.x_v^* \le \sum_{v \in V} 2.x_v^* \le 2 \sum_{v \in V} y_v = 2|S_{OPT}| \quad (1)$$

Therefore,

$$|S_{OPT}| \le |S_{LP}| \le 2|S_{OPT}| \tag{2}$$

- •
- Maximum Independent Set
 - No useful bounds !!

LP Relaxation for 2 machines

Two machines and J jobs. d_{ij} is the time for job j to run on machine
 i. We know the max time is the time taken by the machine ends last.

$$\min_{t,x_{ij}} t; Subject to$$

$$\sum_{j} x_{ij} d_{ij} \leq t \forall i \in M$$

$$\sum_{i} x_{ij} = 1 \forall j \in J; x_{ij} \in \{0,1\}$$

- Only one job will get split. **Why?** Let s be the job that gets split. We assign s to m_1 if $x_{1s} > x_{2s}$ otherwise, assign to m_2 .
- If this leads to T_{approx} and T^* is the optimal solution then $T_{approx} \leq 2\,T^*$

$$T_{approx} \le T' + T_s \text{ and } T' \le T^*, T_s \le T^*$$

$$T_{approx} \le 2T^*$$

Where T' be optimal solytion before assigning s to one.

When does an LP Lead to Integer Solution?

- Note 1: The constraints of $Ax \le b$ can be converted to A'x = b with additional variables.
- **Definition:** A matrix is Totally unimodular (TU) if all its square submatrices have a determinant in $\{-1,0,1\}$
- Note 2: If A is TU, A' = [A, I] is also TU.
- If A is TU and b is integral, LP gives integral solutions.

When does an LP Lead to Integer Solution?

for BPG, A is TU

Consider a matrix A ($|V| \times |E|$). A has only two 1 in every column. We can prove by Induction. Sketch.

- Q is 1×1 . Q is TU Why?
- If sub-matrices of $(I-1) \times (I-1)$ are TU, Q then Q of $I \times I$ is also TU. Why?
 - Q has a column of no 1
 - Q has a solumn of one 1
 - All columns of Q have two 1s

Numerical Example