Računarska statistika

Snježana Lubura Strunjak

Zagreb, 25. ožujka 2021.

Metode za generiranje neuniformnih podataka - nastavak

2/26

Ostale metode za generiranje neuniformnih podataka:

- Jednostavna metoda prihvaćanja/odbacivanja (acceptance/rejection)
- Metode za posebne distribucije, kao npr. Box-Mullerova tehnika za normalnu distribuciju

3/26

Jednostavna metoda prihvaćanja/odbacivanja (acceptance/rejection)

Koraci za generiranje podataka koji dolaze iz distribucije s p_X funkcijom gustoće: Krećemo od proizvoljne funkcije gustoće (kod nas će to biti funkcija gustoće uniformne razdiobe)

- **1** Generiraj y iz distribucije s funkcijom gustoće g_Y
- ② Generiraj u iz U(0,1) razdiobe
- **3** Ako je $u \leq \frac{p_X(y)}{cg_Y(y)}$, tada uzmi y za realizaciju i vrati se na korak 1, inače odbaci y i vrati se na korak 1. Konstanta c je izabrana tako da vrijedi $cg_Y(x) \geq p_X(x)$, za sve x.

Beta distribucija s parametrima α i β ima funkciju gustoće:

$$p_X(x) = \frac{1}{Beta(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1.$$

Kako odabrati konstantu c?

Beta distribucija s parametrima α i β ima funkciju gustoće:

$$p_X(x) = \frac{1}{Beta(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1.$$

Kako odabrati konstantu c?

Konstantu *c* biramo tako da algoritam bude što efikasniji, tj. da imamo što manji postotak odbacivanja.

Beta distribucija s parametrima α i β ima funkciju gustoće:

$$p_X(x) = \frac{1}{Beta(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1.$$

Kako odabrati konstantu c?

Konstantu c biramo tako da algoritam bude što efikasniji, tj. da imamo što manji postotak odbacivanja.

Za beta distribuciju c je vrijednost maksimuma funkcije gustoće p_X , koji se postiže u točci $x_{mode} = \frac{\alpha-1}{\alpha+\beta-2}$.

Beta distribucija s parametrima α i β ima funkciju gustoće:

$$p_X(x) = \frac{1}{Beta(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1.$$

Kako odabrati konstantu c?

Konstantu c biramo tako da algoritam bude što efikasniji, tj. da imamo što manji postotak odbacivanja.

Za beta distribuciju c je vrijednost maksimuma funkcije gustoće p_X , koji se postiže u točci $x_{mode} = \frac{\alpha - 1}{\alpha + \beta - 2}$.

Kako izračunati $\overset{\alpha}{c}$ u SAS-u? Uputa: funkcija $B(\alpha, \beta)$ se računa pomoću naredbe $beta(\alpha, \beta)$.

Normalni generator

Ako je X sluč. varijabla s očekivanjem μ i standardnom devijacijom σ , onda se skewness definira kao

$$\mathbb{E}\left(\left(\frac{X-\mu}{\sigma}\right)^3\right),\,$$

a kurtosis kao

$$\mathbb{E}\left(\left(\frac{X-\mu}{\sigma}\right)^4\right).$$

Neka osnovna svojstva normalne razdiobe:

• funkcija gustoće za $N(\mu, \sigma^2)$ razdiobu je

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- mean (sredina)= μ
- standard deviation (standardna devijacija)= σ
- skewness (asimetrija)= $\gamma_1 = 0$
- kurtosis (spljoštenost)= $\gamma_2 = 0$ (3) (excess kurtosis=kurtosis-3, relativna mjera s obzirom na kurtosis normalne razdiobe koji iznosi 3).

Skewness i kurtosis - interpretacija

Slika: Skewness - interpretacija

Slika: Excess kurtosis - interpretacija

SAS-ov generator normalnih podataka

Slika: Program CHAPTER1_1_NORMAL1.SAS

```
2 /** CHAPTER1 1 NORMAL1.sas **/
4 /** Generating a REPRODUCIBLE sequence of 100 random numbers from **/
5 /** STANDARD NORMAL and general NORMAL distribution **/
7 %LET SEED =1235; %LET SIGMA=3;
8 %LET NREP=100; %LET MU=5;
10 DATA NORMAL:
11 DO REP = 1 TO &NREP;
12 X = NORMAL (&SEED); X1=&SIGMA * NORMAL(&SEED) + Μ
   OUTPUT:
14 END:
15 RUN;
17 /** or **/
19 DATA NORMAL;
20 CALL STREAMINIT(&SEED);
21 DO REP = 1 TO &NREP:
22 X = RAND ("NORM"); X1=&SIGMA * RAND ("NORM") + Μ
23 OUTPUT;
24 END;
25 RUN;
```

Zadatak (Generiranje podataka po normalnoj distribuciji)

Izvedite program $CHAPTER1_1_NORMAL1.SAS$. Ispitajte grafički i pomoću KS testa slaganje varijabli X i X1 s normalnom razdiobom.

Može li se odbaciti nulta hipoteza da uzorak dolazi iz populacije koja slijedi normalnu razdiobu?

Box-Mullerov algoritam

Alternativna metoda za generiranje normalnih podataka.

Neka su X,Y nezavisne standardne normalne slučajne varijable i neka su R,θ polarne kooordinate točke (X,Y) u ravnini. Tada su:

$$R^{2} = X^{2} + Y^{2}$$
$$\theta = \tan^{-1}\left(\frac{Y}{X}\right)$$

nezavisne slučajne varijable i vrijedi $R^2 \sim Exp(2), \ \theta \sim U(0,2\pi).$ Na osnovu veze

$$X = R \cos \theta$$

$$Y = R \sin \theta$$

dobijemo algoritam:

Generiraj U_1 i U_2 kao nezavisne slučajne varijable koje su uniformno U(0,1) distribuirane. Zatim definiraj

$$X = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$$

$$Y = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$$

Generiranje podataka po gamma distribuciji

Neka osnovna svojstva gamma razdiobe:

• funkcija gustoće za $\Gamma(k,\beta)$ razdiobu je

$$f(x) = \frac{\beta^k x^{k-1} e^{-\beta x}}{\Gamma(k)}, \text{ za } x > 0, \text{ inače } 0.$$

- mean (sredina)= $\mu = \frac{k}{\beta}$
- ullet standard deviation (standardna devijacija)= $\sigma=rac{\sqrt{k}}{eta}$
- skewness (asimetrija)= $\gamma_1 = \frac{2}{\sqrt{k}}$
- kurtosis (spljoštenost)= $\gamma_2 = \frac{6}{k}$

RANGAM generator

Zadatak (Gamma generator SB)

Koristite program CHAPTER1_1_EXPO.SAS

Pročitati u SAS dokumentaciji o funkciji RANGAM.

Zamjenite eksponencijalni generator sa Gamma generatorom (*RANGAM*(&seed, &k)). Ime dataseta promijenite u GAMMA. Definirajte macro varijablu k (sa %let naredbom). Za vrijednost parametra (macro varijable) k stavite 0.5. Spremite program u folder Exercises. Izvedite program. Ispitajte grafički formu distribucije generiranih podataka. Zatim u programu promijenite vrijednost parametra k u 1. Ponovno ispitajte

Zatim u programu promijenite vrijednost parametra k u 1. Ponovno ispitajte distribuciju. Ponovite sa k=5.

Generatori slučajnih brojeva u SAS-u

Slika: Generatori SB u SAS-u

Distribucija	SAS funkcija	SAS RAND funkcija	
binomijalna	RANBIN(seed,n,p)	rand("BINOM",n,p)	
Cauchy	RANCAU(seed)	rand("CAUCHY")	
eksponencijalna	RANEXP(seed)	rand("EXPO")	
gamma	RANGAM(seed,a)	rand("GAMMA",a)	
normalna	RANNOR(seed) ili NORMAL (seed)	rand("NORM") ili rand("NORMAL")	
Poissonova	RANPOI(seed,m)	rand("POISSON",m)	
tablična	RANTABL(seed,p ₁ ,p _n)	rand("TABLE", p ₁ ,p _n)	
triangularna	RANTRI(seed,h)	rand("TRIANGLE",h)	
uniformna	RANUNI(seed) ili UNIFORM(seed)	rand("UNIFORM")	

Svi generatori dostupni preko SAS RAND funkcije

Slika: Generatori SB u SAS-u dostupni preko RAND funkcije

Distribucija	Primjer SAS naredbe	Rezultat 0	
Bernoullijeva	x=rand('BERN',.75);		
Beta	x=rand('BETA',3,0.1);	.99920	
Binomijalna	x=rand('BINOM',10,0.75);	10	
Cauchy	x=rand('CAUCHY');	-1.41525	
ζ ²	x=rand('CHISQ',22);	25.8526	
Erlangova	x=rand('ERLANG', 7);	7.67039	
eksponencijalna	x=rand('EXPO');	1.48847	
F	x=rand('F',12,322);	1.99647	
Gamma	x=rand('GAMMA',7.25);	6.59588	
geometrijska	x=rand('GEOM',0.02);	43	
nipergemoetrijska	x=rand('HYPER',10,3,5);	1	
ognormalna	x=rand('LOGN');	'); 0.66522	
neg.binomijalna	x=rand('NEGB',5,0.8); 33		
normalna	x=rand('NORMAL');	1.03507	
Poissonova	x=rand('POISSON',6.1);	6	
i e	x=rand('T',4);	2.44646	
ablična	x=rand('TABLE',.2,.5,.3);	2	
riangularna	x=rand('TRIANGLE',0.7);	.63811	
uniformna	x=rand('UNIFORM');	.96234	
Weibulova	x=rand('WEIB',0.25,2.1);	6.55778	

RANTBL ili RAND("TABLE",...) funkcija

Jedan od najčešće korištenih generatora:

- Za diskretne distribucije
- Ako je teorijska distribucija nepoznata, ali je poznata stepenasta aproksimacija

 $RANTBL(seed, p_1, p_2, ..., p_n)$, gdje je

- $p_i > 0 (i = 1, ..., n)$
- $\sum_{i=1}^{n} p_i = 1$

RANTBL ili RAND("TABLE",...) funkcija

Primjer (Generiranje slučajnih cijena (boniteta) obveznica)
Koristite programe
CHAPTER1_1_RANTBL.SAS i CHAPTER1_1_RANTBL1.SAS (macro verzija).
Izvedite programe. Usporedite stupčaste dijagrame generiranog uzorka sa "teorijskim".

Upute za usporedbu:

Slika: CHAPTER1_1_RANTBL1.SAS - stupčasti dijagrami

Primjer (Generiranje dobi žena u RH)

Koristite program $CHAPTER1_1_DOB_ZENA.SAS$ (u folderu Exercises) i podatke $dob_zenaHR_18_30$ (u folderu Data), (popis 2001), varijable STAROST (kategorije) i DPROB (relativna frekvencija tj p_i).

Pozovite macro *mrantbl* iz prethodnog programa (*CHAPTER*1_1_*RANTBL*1.*SAS*) sa 10000 replikacija (varijabla rep). Usporedite stupčaste dijagrame generiranog uzorka sa "teorijskim".

Ponovite isto sa 1000 replikacija.

Generiranje podataka po nenormalnim distribucijama sa zadanim koeficijentima asimetrije i spljošenosti

U MC studijama je često potrebno generirati podatke sa raznim stupnjevima i tipovima nenormalnosti, definiranim

- koeficijentom asimetrije (skewness, γ_1) i
- koeficijentom spljoštenosti (kurtosis, γ_2).

Fleishmanova metoda polinomijalne transformacije (pročitati prve tri stranice rada Fleishman.pdf u folderu PDF materijali):

$$Y = a + bZ + cZ^2 + dZ^3$$

gdje je

- ullet Y= nenormalna varijabla sa zadanim γ_1 i γ_2
- Z = standardna normalna varijabla (N(0,1))
- a, b, c, d(a = -c) koeficijenti transformacije (iz tablica ili programa/macroa)

FLEISHMAN-ov algoritam

Primjer (Izračunavanje Fleishmanovih koeficijenata (b,c,d))

Koristite program *CHAPTER*1_1_*NONNORMAL_FLEISHMAN.SAS* (u folderu Programs)

Izračunajte, uz pomoć macro-a FLEISHMAN koeficijente a,b,c,d za generiranje nenormalnih varijabli sa slijedećim vrijednostima skewness i kurtosis:

varijabla	skewness	kurtosis	
X_1	-1	2.5	
X_2	2	7	
<i>X</i> ₃	0	0	
X_4	2	7	

Izvedite program: 1. dio izračunava koeficijente, 2.dio primjenjuje koeficijente za generiranje varijable X (npr. sa skewness=2, kurtosis=7).

Usporedite skewness i kurtosis varijable X (generiranih podataka) sa "teorijskim" (zadanim) vrijednostima.

Uočite vrijednosti mean i std.

FLEISHMAN-ov algoritam

Primjer (Generiranje 3 nenormalne varijable sa zadanim skewness, kurtosis, mean i sigma)

Koristite program *CHAPTER*1_1_*NONNORMAL_FLEISHMAN_EX.SAS* Izračunajte, uz pomoć macro-a FLEISHMAN koeficijente a,b,c,d za generiranje nenormalnih varijabli sa slijedećim vrijednostima skewness, kurtosis, mean, sigma:

varijabla	skewness	kurtosis	mean	sigma
X_1	0.75	0.80	100	15
X_2	-0.75	0.80	50	10
<i>X</i> ₃	0.75	2.40	0	1

Generirajte 10000 observacija za varijable X_1, X_2 i X_3 . Usporedite skewness i kurtosis varijabli X_1, X_2, X_3 sa "teorijskim" (zadanim) vrijednostima.

Usporedite vrijednosti mean i std sa zadanim vrijednostima.

Izračunajte matricu korelacija i pripadajuće p vrijednosti. Što uočavate?

Uputa: za zadnji dio koristite

Slika: PROC CORR procedura

```
ods noproctitle;
ods graphics / imagemap=on;
17
18 proc corr data=MORK.NONNOR;
19 var x1 x2 x3;
20 run;
```

Generiranje podataka sa karakteristikama uzorka

Prethodni algoritam se može koristiti u situacijama kada želimo odrediti empirijsku distribuciju statistike od interesa (npr. kada uvjeti nisu ispunjeni, a transformacije nisu prikladne)

Npr. t-test za 2 uzorka na nenormalnim podacima:

- Procjenimo prva 4 momenta iz uzoraka
- Generiramo (ponavljano) uzorke i u svakom koraku računamo t
- Odredimo empirijsku (MC) distribuciju *t* statistike (tzv. MC *t* vrijednost)

Generiranje bivarijatnih i multivarijatnih normalnih podataka

Generiranje bivarijatnih normalnih podataka (sa korelacijom ρ između X i Y): Generiraj nezavisno X_1 i X_2 po N(0,1) razdiobi i nakon toga definiraj:

$$X = X_1$$
$$Y = \rho X_1 + \sqrt{1 - \rho^2} X_2$$

Slika: CHAPTER1_1_NORMAL2.SAS

```
2 /* CHAPTER1 1 NORMAL2.SAS */
 4 /** Generating a REPRODUCIBLE sequence of 100 random numbers from **/
 5 /** bivariate NORMAL NORMAL distribution **/
 7 %LET SEED =1235;
 8 %LET NREP=100:
 9 %let rho=0.7;
11 DATA NORMAL2:
12 DO REP = 1 TO &NREP;
13 X1 = NORMAL (&SEED);
14 X2 = NORMAL (&SEED);
X = X1;
16 Y = &RHO * X1 + SORT(1 - &RHO**2)* X2;
    OUTPUT;
18 END:
19 *DROP X1 X2;
20 RUN:
```

Generiranje bivarijatnih normalnih podataka

Ako unesete kod (može i preko Tasks and Utilities -> Correlation Analysis):

Slika: CHAPTER1_1_NORMAL2.SAS - proc corr

dobit ćete scatter plot s pouzdanim elipsama:

Slika: CHAPTER1_1_NORMAL2.SAS - proc corr rezultat

Bivarijatni generator

Zadatak (Bivarijatni normalni generator)

Koristite program CHAPTER1_1_NORMAL2.SAS

Izvedite program. Izračunajte Pearsonov koeficijent korelacije.

Promjenite NREP (broj replikacija) na 1000. Izvedite program. Za dateset NORMAL2

ispitajte grafički i analitički linearnu povezanost X i Y. Koliki je r? Ponovite sa

NREP = 10000. Koliki je r?

Što uočavate?

Zadaće

- 1. zadaća: rok za predaju 08.04.
- 2. zadaća: rok za predaju 15.04.

Zadaće se nalaze u folderu Zadaće na MERLINU.

UPUTE: Svaki zadatak iz zadaće mora biti u svom .sas programu. Sve .sas programe nazovite na način <code>prezime_ime_zad1.sas</code>, ako je npr. 1.zadatak u pitanju, itd. Sve što radite u zadaćama mora biti u obliku koda (možete koristiti sve dostupne materijale da dobijete tražene rezultate, ali sve mora biti napisano u obliku koda).