Exercise Sheet – Mathematical Analysis III

Taiyang Xu*

23/10/2025, Week 7

练习 1. $\Omega \subset \mathbb{R}^n$ 中的开集. $f \in C^{\infty}(\Omega)$, $\bar{x} \in \Omega$. 如果 $\nabla f(\bar{x}) = 0$, 我们称 \bar{x} 是 f 的临界点. 如果 $\nabla^2 f(\bar{x}) = (\frac{\partial^2 f}{\partial x_i \partial x_j})$ 是可逆的,我们称 \bar{x} 是 f 的非退化临界点. 在非退化临界点附近我们可以做 Taylor 展开:

$$f(x) = f(\bar{x}) + \frac{1}{2}(x - \bar{x})^{\mathrm{T}} \nabla^2 f(\bar{x})(x - \bar{x}) + o(\|x - \bar{x}\|^2).$$

(Morse 引理) 设 f 是开集 $\Omega \subset \mathbb{R}^n$ 上的光滑函数, \bar{x} 是 f 的非退化临界点. 那么, 存在 \bar{x} 的一个开邻域 U, \mathbb{R}^n 原点的开邻域 $V, 以及微分同胚 <math>\varphi: V \to U$ 使得对每个 $(y_1, \ldots, y_n) \in V$, 都有

$$(f \circ \varphi)(y) = f(\bar{x}) - \sum_{k=1}^{m} (y_k)^2 + \sum_{k=m+1}^{n} (y_k)^2,$$

其中整数 m 称为临界点 \bar{x} 的指标.

(1) (Hadamard 引理) $\Omega \subset \mathbb{R}^n$ 是凸的开集, $0 \in \Omega$, 函数 $f \in C^{\infty}(\Omega)$ 且 f(0) = 0. 证明, 存在光滑函数 $g_i \in C^{\infty}(\Omega)$, 使得对任意的 $(x_1, \ldots, x_n) \in \Omega$, 都有

$$f(x_1, \dots, x_n) = \sum_{i=1}^n x_i g_i(x_1, \dots, x_n)$$

并且 $g_i(0) = \frac{\partial f}{\partial x_i}(0)$.

注: 在 Morse 引理的证明中, 我们只需要在临界点的一个凸邻域 (如开球) 中应用此引理, 因此凸性条件不会失去一般性. 同时我们这里把 \bar{x} 平移到 0 处, 也不失去一般性, 只是为了写起来方便一点.

- (2) 二次表示: (条件同上) 如果 f(0) = 0 并且 0 是 f 的非退化临界点, 证明: 存在 0 的开邻域 $U \subset \Omega$ 以及 $U \perp n^2$ 个光滑函数 $h_{ij}(1 \leq i, j \leq n)$, 它们满足:
 - 对任意的指标 i 和 j, $h_{ij} = h_{ji}$;
 - 对任意的 $(x_1, ..., x_n) \in U$, 矩阵 $(h_{ij}(x_1, ..., x_n))$ 是可逆的;
 - 对任意的 $(x_1,\ldots,x_n)\in U$, 有

$$f(x_1, \dots, x_n) = \sum_{i,j=1}^n x_i x_j h_{ij}(x_1, \dots, x_n).$$

^{*}School of Mathematical Sciences, Fudan University, Shanghai 200433, China. Email: tyxu19@fudan.edu.cn

(3) 证明, 存在 0 的邻域 $U_1 \subset U$ 和 V_1 (它的坐标用 u_1, \ldots, u_n), 微分同胚 $\varphi_1 : V_1 \to U_1$, 光滑函数 $H_{ij}(2 \leq i, j \leq n)$, 使得

$$(f \circ \varphi_1)(u) = c_1(u_1)^2 + \sum_{i,j=2}^n u_i u_j H_{ij}(u), \quad u = (u_1, \dots, u_n) \in U_1,$$

其中常数 $c_1 = 1$ 或者 -1 并且 $H_{ij} = H_{ji}$.

(4) 对于 $r \leq n-1$, 证明, 存在 0 的邻域 $U_r \subset U$ 和 V_r (它的坐标用 u_1, \ldots, u_n), 微分同胚 $\varphi_r : V_r \to U_r$, 光滑函数 $H_{ij}(r+1 \leq i,j \leq n)$, 使得

$$(f \circ \varphi_r)(u) = \sum_{k=1}^r c_k(u_k)^2 + \sum_{i,j=r+1}^n u_i u_j H_{ij}(u), \quad u = (u_1, \dots, u_n) \in U_r,$$

其中 $c_k \in \{\pm 1\}$ 是常数并且 $H_{ij} = H_{ji}$.

- (5) (非退化临界点是孤立的) 证明: 如果 \bar{x} 是 f 的非退化临界点, 那么存在 \bar{x} 的开邻域 U, 使得 \bar{x} 是 f 在 U 上唯一的临界点.
- (6) (指标 m 的无关性) \bar{x} 是 f 的非退化临界点. 证明: 指标 m 与局部坐标 φ 的选取无关并且等于 $\nabla^2 f(\bar{x})$ 的负特征值的个数 (按重数计算).

解答 2.