#### Shi Yu Lin 1216287878

## **Assignment 1**

- a) Four different types of feature: Glucose level, CGM velocity, moving rms, and FFT
- b) Glucose level can be used to check the health status of patient given their MAX, MIN, Variance values. For example, the blood glucose target range for diabetics, according to the American Diabetes Association, should be 90 130 mg/dL before meals, and less than 180 mg/dL two hours after meals.

CGM velocity can be used to blood level fluctuations between the current timestamp and the next timestamp, which can come in handy to check the health status of the patient.

Moving rms is defined as the rms of the current index up to current value plus an offset, in this case the offset is 5. This statistical value is useful if the model is a normal distribution.

Fast fourier transform is a technique that samples a signal over a period of time and divides it into its frequency components. FFT feature was used to segregate the data based on its frequency.

c) Feature matrix is saved in feature matrix.csv.

| Glucose_max | Glucose_min | Glucose_variance |
|-------------|-------------|------------------|
| 256         | 133         | 1483.346514      |
| 276         | 147         | 2060.884495      |
| 331         | 71          | 9238.176899      |
| 230         | 137         | 1167.841831      |
| 186         | 129         | 151.8043704      |
| 269         | 182         | 433.0114464      |
| 184         | 115         | 571.4172737      |
| 262         | 109         | 2534.915713      |
| 253         | 50          | 3056.863684      |
| 320         | 73          | 7570.705515      |
| 208         | 102         | 1315.537981      |
| 329         | 130         | 5027.450572      |
| 183         | 83          | 1209.733611      |
| 354         | 195         | 2659.612903      |
| 324         | 160         | 2636.08949       |
| 229         | 143         | 471.2049948      |
| 261         | 72          | 3920.372529      |

From the table, we can observe that for this subject, there are times that shows abnormal results, for example, the maximum glucose level are higher than 300. For those data, it is likely the subject did not take medicine on time. From my perspective, these are valid and useful features and can be save for future use.

| velocity_max | velocity_min | velocity_variance |
|--------------|--------------|-------------------|
| 22           | -4           | 36.03222222       |
| 14           | -6           | 27.74333333       |
| 18           | -6           | 51.86222222       |
| 23           | -8           | 48.57888889       |
| 7            | -12          | 21.51555556       |
| 11           | -20          | 46.55666667       |
| 14           | -11          | 36.28888889       |
| 27           | -16          | 140.61            |
| 31           | -44          | 259.8322222       |
| 23           | -8           | 60.26222222       |
| 18           | -7           | 28.39555556       |
| 23           | -32          | 163.0322222       |
| 12           | -17          | 55.87666667       |
| 12           | -3           | 14.61             |
| 23           | -5           | 31.91555556       |
| 18           | -26          | 107.7555556       |
| 24           | -28          | 81.17333333       |

From the table, we can observe the glucose level variation over given time period. Variance of velocity gives an idea of the range of the fluctuation. However, minor change should be applied to maximum and minimum, I should extract these features with absolute measurement.

| rms_max     | rms_min     | rms_variance |
|-------------|-------------|--------------|
| 241.9165145 | 137.253051  | 886.6534415  |
| 272.2157233 | 149.2085788 | 1757.915133  |
| 324.4305781 | 73.62879871 | 7724.069166  |
| 228.4031523 | 141.6601567 | 1150.003367  |
| 168.0928315 | 134.4291635 | 76.4994152   |
| 255.9796867 | 200.6653931 | 182.1513839  |
| 179.8193538 | 122.2939083 | 534.5295495  |
| 243.9139192 | 114.7004795 | 2484.898764  |
| 236.3065805 | 73.24206442 | 2012.592584  |
| 313.418889  | 76.8583112  | 6145.977672  |
| 199.9354896 | 105.2558787 | 1115.140702  |
| 316.2995416 | 135.2553141 | 4842.260879  |
| 175.3567792 | 87.25136102 | 1024.763029  |
| 338.2191597 | 200.4874061 | 1993.066352  |
| 316.447152  | 173.8815689 | 1845.646386  |
| 216.9783399 | 150.7812986 | 363.5618426  |
| 258.2134776 | 81.74227792 | 3310.913996  |
|             |             |              |

From the table, apparently, the value does not change drastically, it is because I choose a window of 5, calculating the neighbor values. However, this feature type compensates cgm velocity in a sense that it gives an idea of the average trend of the data, so it is easier to check if the variation is within acceptable range.

| fft_max | fft_min     | fft_variance |  |
|---------|-------------|--------------|--|
| 5472    | 45.91906204 | 906784.3169  |  |
| 6393    | 47.09868926 | 1262654.843  |  |
| 5979    | 121.8501525 | 1177265.522  |  |
| 6065    | 16.64115546 | 1141534.275  |  |
| 4580    | 19.5570804  | 640758.1284  |  |
| 6739    | 41.12887454 | 1381494.327  |  |
| 4859    | 6.869133981 | 726461.8011  |  |
| 5819    | 14.40563008 | 1065774.209  |  |
| 4691    | 12.83570816 | 715832.2561  |  |
| 6543    | 111.4566297 | 1352620.428  |  |
| 4791    | 35.21664127 | 707528.1155  |  |
| 6447    | 34.83602676 | 1338011.715  |  |
| 4200    | 36.79243053 | 542044.8276  |  |
| 8277    | 77.9243189  | 2081427.403  |  |
| 8163    | 81.32798586 | 2016935.086  |  |
| 5685    | 1.954583012 | 993270.7153  |  |
| 5655    | 69.51626651 | 1007814.147  |  |

This table gives the information of the FFT of the dataset. Now to think of it, these numbers alone doesn't make any sense. To understand the frequency component of the dataset, it should be observed in a continuous perspective.

d) New derived feature matrix is saved in final\_pca.csv.

e)

For each PCA component, I plot graphs among each time series.

### PCA component 1



PCA component 2



## PCA component 3



# PCA component 4



PCA component 5



f)

| 4        | 3        | 2        | 1        | 0        |
|----------|----------|----------|----------|----------|
| 292.8666 | 38.82736 | 505.1583 | -159985  | -1048081 |
| -36.0505 | -178.041 | -402.938 | -23251.8 | -1164744 |
| 260.4075 | -186.691 | -387.653 | -180279  | -1054099 |
| -94.0702 | -337.664 | -1569.82 | -201144  | 704933.7 |
| -137.773 | 463.1061 | -404.146 | 21079.41 | -549559  |
| -236.164 | 92.77632 | -519.623 | 76686.78 | -896364  |
| 361.2127 | 313.8432 | -1261.38 | -322248  | -402720  |
| 249.7999 | 226.225  | -55.7228 | -116289  | -1244947 |
| -209.872 | 339.0881 | 216.2151 | 135523.3 | -288347  |
| 197.3244 | -975.028 | -2122.04 | -495914  | 872403.3 |
| -345.381 | -345.934 | -84.2307 | 195501.3 | -648634  |
| 296.7981 | -787.137 | -42.9953 | -158787  | -1393040 |
| -163.899 | 208.8645 | -1505.59 | -51867.2 | 425107.9 |
| -85.4679 | 460.6703 | -315.04  | -7447.25 | 67119.73 |
| 128.6045 | -226.763 | -125.308 | -266214  | 213379.4 |
| 118.5866 | 673.7842 | 3621.638 | 115234.4 | -371521  |
| -371.96  | -268.386 | 207.7095 | 278800   | -195912  |
| -102.293 | 185.1741 | 1493.456 | 97575.26 | -606791  |
| 267.0415 | 196.5971 | -470.045 | -162295  | -1118161 |
| 50.20904 | 1204.551 | -1063.14 | -144760  | 782002.7 |
| -257.132 | -102.496 | 550.0396 | 146123.6 | -534376  |
| 238.8876 | -128.49  | 2570.796 | -247112  | 1232998  |
| -156.235 | -436.501 | -237.943 | -55419.3 | 1500893  |
| -182.344 | 449.9967 | -1845.41 | -28117   | 213599.4 |
| -162.601 | 363.9752 | 282.2157 | 83864.1  | -737775  |
| -10.8222 | -371.678 | 1733.779 | -82457.8 | 537123.4 |
| 28.64458 | 575.2019 | -1965.08 | -292911  | 978944.1 |
| 7.147838 | 230.8347 | 849.7068 | -107165  | 983487.2 |
| -346.064 | -834.413 | -2.88319 | 157232.4 | -1141564 |
| 11.14634 | -651.747 | 360.9777 | -270849  | 1416580  |
| -58.7088 | 228.8417 | 371.9705 | 94228.96 | 1837675  |
| 419.8408 | -202.521 | -1299.76 | 1964125  | 743599.3 |
| 28.32056 | -218.869 | 2917.102 | 8538.137 | 886790.4 |



As you can see from the variance explained graph, first three(component 0,1,2) components account for 100% of the variance, which entirely explained the data set.