Q1

Prove, or give a counterexample to disprove, the following hold for all sets S and all binary relations $R_1, R_2 \subseteq S \times S$ on S:

1.

16 If R_1 and R_2 are reflexive then so is $R_1; R_2$.

2.

17 If R_1 and R_2 are symmetric then so is $R_1; R_2$.

3

If R_1 and R_2 are antisymmetric then so is $R_1; R_2$.

Define the function $f: \mathbb{N} \to \mathbb{N}$ recursively as follows:

• f(0) = 0• f(1) = 1• f(n) = 3f(n-1) - f(n-2) for $n \ge 2$ Consider the following code that could be used to compute f(n):

myFunc(n):

if n < 2:

return n
else: x = 3*myFunc(n-1) y = myFunc(n-2)return x-yLet T(n) denote the running time required to execute myFunc(n).

1.

19 Compute the values of f(n) for $n \in \{2,3,4,5\}$

2.

20 Prove that
$$f(n) \leq 3^n$$
 for all $n \in \mathbb{N}$

3.

21 With justification, give a **recursive equation** that gives an asymptotic upper bound for T(n)

4.

22 Give, with justification, an asymptotic upper bound for T(n)

5.

23 Prove, or disprove, that $T(n) \in O(f(n))$

Draw a graph that:

- · has 8 vertices and 12 edges
- · is planar
- has chromatic number 3
- has an Eulerian path

Justify that your graph has each of these properties.

1.

draw your graph

2.

Justify that your graph is planar

3.

Justify that your graph has chromatic number 3

4.

Justify that your graph has chromatic number 3

5.

Justify that your graph has an Eulerian path

Let p, q, r be propositional variables, and consider the following formulas:

$$A = ((p \rightarrow q) \land (q \rightarrow r))$$

$$B = (p \rightarrow r)$$

$$C = ((p
ightarrow oldsymbol{\perp})
ightarrow p)$$

$$D = \neg(\top \rightarrow r)$$

1.

28 Prove or disprove

$$A \equiv B$$

2.

29 Prove or disprove

$$B \equiv C \rightarrow \neg D$$

3.

30 Explain how you could use the transitivity of logical equivalence, and the logical equivalences presented in the lectures to establish if

$$A, C \models \neg D$$

4.

31 Prove or disprove

$$A, C \models \neg D$$

(You do not have to use the procedure outlined in 6(c))

5.

32 Using the results of 6(a), 6(b) and/or 6(d), prove or disprove:

$$B \models A$$

Partial marks are available for any approach that does not use the results of 6(a), 6(b) and 6(d).

Prove, or give a counterexample to disprove the following for all probability spaces (X,P) , and events $A,B\subseteq X$:

1.

33
$$P(A|B) \cdot P(B|A) \leq P(A \cap B)$$

2.

34 If
$$A$$
 and B are independent then $P(A|B) \cdot P(B|A) = P(A \cap B)$

3.

35 If
$$P(A|B) \cdot P(B|A) = P(A \cap B)$$
 then A and B are independent.