Conception de filtres LTI

Un filtre LTI avec une réponse en fréquence : H(f)
agit comme une fonction de pondération des différentes composantes
fréquentielles du spectre du signal d'entrée X(ω), pour conduire à un
signal de sortie :

Les filtres LTI sont classés suivant l'amplitude de leur réponse |H(f)|, comme passe-bas, passe-haut, passe-bande ou coupe-bande.

S. Gibet : S. Gibet :

Filtre LTI passe-bas idéal

- Gain unité dans la bande passante [0 Fc], et 0 dans la bande coupée [Fc Fs/2]
- Phase linéaire dans la bande passante, i.e.

5. Gibet fraitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Filtre LTI passe-bas idéal

• En général le délai temporel subi par une composante du signal à la fréquence w lorsqu'elle passe dans une filtre est donnée par :

5. Gibet fraitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Conception de filtres LTI

 On peut définir les filtres LTI par leur sortie en fonction de l'entrée, qui donne une équation aux différences. Ils sont alors déterminés par les coefficients a_k et b_k:

$$y_n = \sum_{k=0}^{N-1} b_k x_{n-k} - \sum_{k=1}^{M-1} a_k y_{n-k}(1)$$

S. Gibet Traitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Conception de filtres LTI

- En choisissant correctement les coefficients a_k et b_k ainsi que les ordres P et Q, il est possible de réaliser des filtres causaux qui approximent les filtres idéaux, c.à.d. ayant une réponse en amplitude et une réponse en phase désirées.
- Les contraintes suivantes doivent être respectés :
 - Stabilité : Les pôles doivent être placés dans le cercle unité
 - Les zéros et les pôles complexes doivent apparaître par paires complexes-conjugués de telle façon que les coefficients a_k et b_k soient réels.

S. Gibet fraitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Synthèse de filtres numériques

- Respect de la causalité : implique de gérer un certain nombre de contraintes :
 - l'amplitude |H(ω)| ne peut être constante sur une bande de fréquences finie, et la transition de la bande-passante à la bandecoupée ne peut pas être infiniment raide.
 - L'amplitude et la réponse en phase du filtre sont interdépendantes et ne peuvent donc pas être spécifiées indépendamment.

Conception de filtres LTI

- Il existe différentes méthodes de synthèse de filtres LTI qui permettent d'approcher de manière optimale ces spécifications; il s'agit alors de déterminer les paramètres a_k et b_k qui permettent de les créer (concevoir).
 - Filtres FIR : filtres à réponse impulsionnelle finie
 - réponse en phase linéaire dans la bande passante (BP)
 - Filtres IIR : filtres à réponse impulsionnelle infinie
 - réponse en phase non linéaire dans la BP
 - si la distorsion de phase est tolérable, les filtres IIR sont préférables car leur implémentation demande moins de paramètres, moins de mémoire et a une complexité algorithmique plus petite.

Conception de filtres FIR

$$y_n = \sum_{k=0}^{N-1} b_k x_{n-k}$$

Il existe plusieurs méthodes de synthèse de filtres FIR

S. Gibet : S. Gibet :

Synthèse de filtres FIR en Python librairie signal

b1=signal.firwin(ordre,cutoff=[0.2],window='hann',nyq=0.5)

ordre : ordre du filtre (nombre de paramètres b_{k} , soit N)

cutoff: fréquence de coupure normalisée

btype: fonction du filtre

par défaut passe-bas lowpass (1 fréquence de coupure)

ou passe-bande (2 fréquences de coupure)

highpass: passe-haut

stopband: pour coupe-bande

window: fenêtre prise en compte par défaut *Hamming* (ici *Hanning*)

nyq : fréquence de Nyquist normalisée (fs/2 : ici 0.5 si on regarde la réponse de 0 à fs/2, et 1.0 si on regarde la réponse de 0 à fs)

S. Giber Praitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Conception de filtres IIR

$$y_n = \sum_{k=0}^{N-1} b_k x_{n-k} - \sum_{k=1}^{M-1} a_k y_{n-k}(1)$$

Il existe plusieurs méthodes de synthèse de filtres IIR

S. Gibet Traitement Numérique de l'Information, Master Informatique MIS-M1, UBS

..

Synthèse de filtres FIR en Python librairie signal

b,a = signal.iirfilter(N=2,Wn=[0.4],btype="highpass",ftype="butter", nyq = 0.5)

N: ordre du filtre (nombre de paramètres a_k et b_k): ici 2

Wn: fréquence de coupure normalisée : ici 0.4

btype : fonction du filtre : ici highpassftype : type du filtre : ici butterworthnyq : fréquence de Nyquist normalisée

5. Gibet fraitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Synthèse de filtres en Python avec gabarits librairie signal

- Autres filtres FIR firls, minimum phase, remez
- Exemple

scipy.signal.firls(numtaps, bands, desired, weight=None, nyq=None, fs=None)

S. Gibet in ditement Numérique de l'Information, Master Informatique MIS-M1, UBS

15

Synthèse de filtres en Python avec gabarits librairie signal

- Autres filtres IIR
 - butterFilter design using order and critical points
 - cheby1, cheby2, ellip, bessel
 - <u>buttord</u>Find order and critical points from passband and stopband spec
 - cheb1ord, cheb2ord, ellipord
- <u>iirdesign</u>General filter design using passband and stopband spec
- Exemple

scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba', fs=None)

- Butterworth digital and analog filter design.
- Design an Nth-order digital or analog Butterworth filter and return the filter coefficients.

S. Gibet Traitement Numérique de l'Information, Master Informatique MIS-M1, UBS

Démarche

- ◆ 1. Conception de filtre (synthèse):
 Calcul des vecteurs b,a
- 3. Application du filtre
 Sortie y en fonction de x : y = Ifilter(b,a,x)

S. Gibet ...
Il gitement Numérique de l'Information, Master Informatique MIS-M1, UBS