CPT_S 534 HW3

Yang Zhang

11529139

1. Calculate E_{val} at each degree(1-5)

Degree(order)	1	2	3	4	5
E _{val}	195.6959	135.2558	84.3556	83.6796	82.5139
Ein	67.7956	37.0746	32.8439	23.7083	21.8037

2. Plot your result to find the "elbow" in E_{val} and best complexity for data mining

For the graph above, the elbow degree is 3, because after degree of 3 there is no significant decrease of the error.

3. Use the full data set to find the optimum polynomial of best complexity
Show this result as plot of data and fit on the same set of axes.
Report the minimum sum of squared residuals and coefficient of determination

Figures for degree 1 to 5:

批注 [Y1]:

批注 [Y2R1]:

The optimum polynomial of the complexity is 3, because after degree of 3 there is no significant improve of data fitting.

Degree	1	2	3	4	5
Sum of	250.4270	175.9094	105.7786	97.4958	94.5210
squared					
residuals(E _{in})					
Coefficient of	0.1481	0.4016	0.6402	0.6684	0.6785
determination					

The minimum sum of squared residuals is 94.5210