3.1. Group Tracking

3.1.高级算法设计

随着检测精度的提高,真实世界的雷达目标(汽车、行人、墙壁、着陆地面等)。作为一组多个反射点的形式呈现给跟踪处理层。这些探测点形成了一组与范围、角度和角速度相关的测量值。当然,在任何时候都可能有多个现实世界的目标。因此,我们寻找一种能够与多个目标群体一起工作的跟踪器。组跟踪方法如下图所示。

Figure 5. Group Tracking

ttps://blog.csdn.net/djfjkj52

3.2. 群组跟踪框图

Figure 6. Tracking Block Diagram

tps://blog.csdn.net/djfjkj52

3.3. Prediction Step

我们使用卡尔曼滤波器预测过程,根据在时间n-1估计的状态和过程协方差矩阵,估计时间n的跟踪组质心。 我们为每个可跟踪对象计算先验状态和协方差估计。 在这一步,我们还计算测量矢量估计。

3.4. Association Step

假设存在一个或多个tracks以及相关的预测状态向量。 对于每个给定的track ,我们形成一个关于预测质心的门gate。

gate口应考虑以下因素:

目标操纵maneuver 组的分散dispersion of the group 测量噪声

我们使用组残差协方差矩阵在跟踪组质心周围的3D测量空间中构建椭球。椭球将代表gating函数,以限定我们在时间n观察到的单个测量结果。 gating设计在以下部分中说明

对于gate的测量,我们将归一化距离函数作为cost函数进行计算,以将测量与每个轨迹相关 联

assignment process将cost函数最小化,一次将一项测量分配给最近的track。 这将创建与每个轨道相关的一组测量

4.Implementation Details

4.1. Group Tracker

跟踪算法被实现为一个库。 应用程序任务使用配置参数创建算法实例,该配置参数描述传感器,场景和雷达目标的行为。 从应用程序任务上下文每帧调用一次算法。 可以创建组跟踪器的多个实例。

下图说明了算法在每个帧调用期间执行的步骤。 算法以极坐标(范围,角度,多普勒)输入测量数据,并在笛卡尔空间中跟踪对象。 因此,我们使用扩展卡尔曼滤波器(EKF)流程。

Figure 9. Group Tracking Algorithm [95://blog.csdn.net/djfjkj52

首先基于场景边界标记 点云输入。有些点可能被标记为"边界外",在关联和分配过程中将被忽略。

预测函数根据在时间n-1估计的状态和过程协方差矩阵估计时间n的跟踪组质心。我们为每个可跟 踪对象计算先验状态和误差协方差估计。在这一步,我们还计算测量矢量估计。

关联功能允许每个跟踪单元指示每个测量点是否"足够近"(门控),如果是,则提供出价值(scoring)。point分配给最高出价者。未分配的点正在通过分配功能。

在分配过程中,首先根据点在测量坐标中的接近度将它们合并为一组集合。每个集合成为分配决策的候选者。它必须通过多项测试才能成为新的track。一旦通过,就分配新的跟踪单元。

在"更新"步骤中,将根据一组关联点来更新track。我们计算innovation,,卡尔曼增益以及后验状态向量和误差协方差。

除经典EKF外,误差协方差计算还包括测量噪声协方差矩阵中的 group dispersion。

报告功能查询每个跟踪单元并产生算法输出。

4.2. Building and using the library

该算法以现成的makefile基础结构作为源代码提供。 可以构建库来支持2D或3D几何。 应用程序 应包括库(2D或3D),因为它需要。以流量监控(TM)和人数统计(PC)用例的建议值为例。

与以前(仅2D)版本的更改以红色突出显示。配置将在模块创建时传递给算法实例。下一章介绍了配置参数。

4.3. Configuration Parameters

配置参数用于配置跟踪算法。 它们应根据特定的场景和目标特性进行调整,以匹配客户用例。 参数分为强制性和可选(高级)。 强制性参数如下所述。

4.3.1.强制性配置参数

参数	T M	PC	单 位	描述	
maxNumPoi nts	2 5 0	250	-	每一帧的最大检测点云数	
maxNumTra cks	2	20	-	在任何给定时间内要跟踪的最大目标数量	
stateTrackin gVectorTyp e	2 D A	2D A	-	2DA={x,y,vx,vy,ax,ay} 3DA={x,y,z,vx,vy,vz,ax,ay,az}	
initialRadial Velocity	- 2 0	0	m/ s	在探测时刻的预期目标径向速度	
maxRadialV elocity	N/ A	N/A	m/ s	由传感器报告的最大绝对径向速度。这应与传感器的ch irp配置相匹配	
radialVelocit yResolution	N/ A	N/A	m/ s	由传感器报告的最小非零径向速度。这应与传感器的ch irp配置相匹配	
maxAcceler ation	0, 2 0, 0	0.1, 0.1, 0.1	m/ s ^ 2	横向、纵向和垂直方向的最大目标加速度。用于计算处理噪声矩阵。对于2D选项,将忽略垂直方向	
deltaT	N/ A	N/A	m s	帧速率。这应与传感器的chirp配置相匹配	

参数	T M	PC	单 位	描述
verbosityLe vel	N O N E	NO NE	-	表示冗长级别的位掩码:NONE WARNING

4.3.2. Advanced parameters

高级参数分为几组。 每个集合都可以省略, 默认值将由算法使用。 客户应修改所需的参数以获得更好的性能。

Scenery Parameters

这组参数描述了场景。 它允许用户为跟踪器配置预期的边界和静态行为区域。 用户最多可以定义 2个边界框和2个静态框。 方框坐标以米为单位, 传感器位于笛卡尔 (X, Y) 空间的 (0, 0, 0)。

Table 2. Scenery Parameters

Parameter	TM	PC		Description
numBoundary Boxes	10	10	-	Number of boundary boxes defined. Points outside boundary box will be ignored
boundaryBox[2]	{-1.f,12.f, 15.f,75.f,0.f,0.f}, {0.f,0.f,0.f,0.f,0.f,0.f}	{-4.f,4.f, 0.5.f,7.5f,0.f,0.f}, {0.f,0.f,0.f,0.f,0.f,0.f}	m	(x1,x2, y1,y2,z1,z2 }
numStatic Boxes	10	10	-	Number of static boxes defined. Targets inside static box are allowed to persist as static
staticBox[2]	{0.f, 11.f,19.f,50.f,0.f,0.f}, {0.f,0.f,0.f,0.f,0.f,0.f}	{-3.f,3.f,2.f,6.f,0.f,0.f}, {0.f,0.f,0.f,0.f,0.f,0.f}	m	(x1,x2, y1,y2,z1,z2 }

numBoundaryBoxes: 已定义的边界框数。边界框之外的点将被忽略

numStaticBoxes: 已定义的静态方框数。静态框内的目标被允许作为静态框持续存在

Measurement Standard Deviation Parameters 测量标准偏差参数

这一组参数被忽略了

Allocation Parameters 分配参数