To-do's from last meeting

- 1. Fit loglogistic AFT model
- 2. Extract the estimated surface from additive model
- 3. Apply method to real data
- 4. Check the FTTM paper and AOAS latex template

User-defined functions

- optimize_AFT(Y, delta, X, data, family, lambda, k = 30, se = FALSE)
 - Y: survival time variable
 - delta: censoring indicator variable
 - X: functional predictor variable
 - data: name of data frame
 - family: lognormal or loglogistic
 - k: number of spline basis to construct beta1(s)
 - lambda: smoothing parameter
 - se: whether to calculate standard error and CI for parameters
- Will add Z (scalar variables)

User-defined functions

- optimize_lambda <- function(Y, delta, X, data, family, lambda_grid)
 - Perform a grid search on lambda_grid to find the optimal lambda which minimizes the GCV value

Estimated coefficient function

• True model is lognormal; estimation model is lognormal

Estimated coefficient function

• True model is loglogistic; estimation model is lognormal

Estimated coefficient function

- True model is loglogistic; estimation model is loglogistic
- Need to troubleshoot the gradient function

Average MISE of coefficient function across 10 iterations

b	beta_type [‡]	family [‡]	n [‡]	nS [‡]	mise_coef_norm	mise_coef_cox	mise_coef_faft [‡]
0.5	simple	lognormal	500	100	0.011	0.439	0.069
0.5	simple	loglogistic	500	100	0.035	0.063	0.123
0.5	simple	cox.ph	500	100	0.040	0.009	0.062

Average coverage of the 95% pointwise CI of coefficient function

b [‡]	beta_type	family [‡]	n [‡]	nS [‡]	cp_coef_norm	cp_coef_cox	cp_coef_faft [‡]
0.5	simple	lognormal	500	100	0.901	0.078	0.654
0.5	simple	loglogistic	500	100	0.592	0.080	0.465
0.5	simple	cox.ph	500	100	0.014	0.828	0.716

- Potential reason for the high bias of FAFT:
 - A sparse lambda grid was used (100 grids), and model is highly sensitive to lambda...

Average Brier score across 10 iterations

b	beta_type [‡]	family [‡]	n	nS [‡]	Brier_norm	Brier_cox [‡]	Brier_faft [‡]
0.5	simple	lognormal	500	100	0.041	0.276	0.271
0.5	simple	loglogistic	500	100	0.070	0.184	0.244
0.5	simple	cox.ph	500	100	0.056	0.103	0.190

Average MISE of survival function across 10 iterations

b	÷	beta_type 🗦	family [‡]	n [‡]	nS [‡]	mise_surv_norm	mise_surv_cox	mise_surv_faft [‡]
0).5	simple	lognormal	500	100	0.000	0.040	0.019
0).5	simple	loglogistic	500	100	0.004	0.033	0.010
0).5	simple	cox.ph	500	100	0.038	0.038	0.173

Addictive functional AFT model

Addictive functional AFT model

Addictive functional AFT model

Real data analysis

- 84 subjects, 401 time frames
- Fitted with functional AFT (cnorm) and LFCM

```
Family: cnorm(0.102)
                                                                  Family: Cox PH
Link function: identity
                                                                  Link function: identity
Formula:
                                                                  Formula:
logY \sim 1 + s(S, by = X_L, bs = "ps", k = 30)
                                                                  Y \sim s(S, by = X_L, bs = "ps", k = 30)
Parametric coefficients:
                                                                  Approximate significance of smooth terms:
           Estimate Std. Error z value Pr(>|z|)
                                                                             edf Ref.df Chi.sq p-value
(Intercept) 4.12359 0.04103 100.5 <2e-16 ***
                                                                  s(S):X_L 2.186  2.345  6.257  0.0447 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
                                                                  Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                                                                  Deviance explained = 6.99%
          edf Ref.df Chi.sq p-value
                                                                  -REML = 90.2 Scale est. = 1
                                                                                                 n = 53
s(S):X_L 2.569  2.91  6.35  0.0745 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0311 Deviance explained = 13.6%
-REML = -62.995 Scale est. = 1
                                      n = 53
```

Estimate coefficient functions

Estimated survival functions

• A subject from the user group:

• A subject from the non-user group:

