Number theory, midterm exam

24th October 2024, 2pm - 4:30pm

In all the exercises, K is a discrete valuation field, with valuation ring \mathfrak{O}_K , maximal ideal \mathfrak{m}_K and residue field k. The corresponding absolute value on K is denoted by $|\cdot|$.

Exercise 1 (Structure of the group of units) Let $U^{(0)} = \mathcal{O}_K^*$ be the multiplicative group of the units of \mathcal{O}_K . Denote by \mathfrak{m}_K the maximal ideal of \mathcal{O}_K , and for all $n \geq 1$, denote

$$U^{(n)} := 1 + \mathfrak{m}_K^n = \{1 + x \mid x \in \mathfrak{m}_K^n\}$$

- 1. Show that $U^{(n)}$ is a subgroup of $U^{(0)}$.
- 2. Show that the quotient map $s: \mathcal{O}_K \to k$ induces an isomorphism of groups

$$U^{(0)}/U^{(1)} \to k^*.$$

3. Fix a uniformizing element π_K of \mathcal{O}_K . Show that the map $1 + \mathfrak{m}_K^n \to k$, $1 + x \mapsto s(\pi_K^{-n}x)$, induces an isomorphism of groups

$$U_K^{(n)}/U_K^{(n+1)} \simeq k$$

for all $n \geq 1$.

Exercise 2 Consider $P(X) = X^3 - X + 2 \in \mathbb{Z}[X]$. Its discriminant is $-104 = -2^3.13$.

- 1. Show that P(X) is irreducible in $\mathbb{Q}[X]$.
- 2. Let p be a prime number $\neq 2,13$. Explain why X^3-X+2 is separable in $\mathbb{F}_p[X]$.
- 3. Let $L = \mathbb{Q}[\alpha]$ be the extension of \mathbb{Q} generated by a root $\alpha \in \mathbb{C}$ of P(X). Let $p \neq 2, 13$. Show that L/\mathbb{Q} is unramified for the p-adic valuation.
- 4. Let $\widetilde{\mathcal{O}}_2$ be the integral closure of $\mathbb{Z}_{2\mathbb{Z}}$ in L.
 - (a) Show that $N_{L/\mathbb{Q}}(\alpha-1)=-2$ and that $\alpha-1$ is not invertible in $\widetilde{\mathfrak{O}}_2$.
 - (b) Let \mathfrak{m} be a maximal ideal of $\widetilde{\mathfrak{O}}_2$ containing $\alpha 1$. Show that $\mathbb{Z}_{2\mathbb{Z}} \to (\widetilde{\mathfrak{O}}_2)_{\mathfrak{m}}$ is ramified.

Exercise 3 Let p > 2 be a prime number. Consider $L = \mathbb{Q}_p(\xi_{p^2})$ for some primitive p^2 -th of unit $\xi_{p^2} \in \mathbb{C}_p$. Let $K = \mathbb{Q}_p(\xi_p)$ with $\xi_p = \xi_{p^2}^p$. We know that $\lambda_p := \xi_p - 1$ is a uniformizing element of \mathcal{O}_K and that $p \in \lambda_p^{p-1} \mathcal{O}_K^*$.

- 1. Why is the integral closure of \mathcal{O}_K in L a discrete valuation ring \mathcal{O}_L ?
- 2. Show that $[L:K] \leq p$.
- 3. Let $\lambda_{p^2} = \xi_{p^2} 1$. Find a relation between λ_{p^2} and λ_p .
- 4. Show that $\mathcal{O}_K \to \mathcal{O}_L$ has ramification index $\geq p$.

5. Show that [L:K] = p with ramification index p and trivial residue extension.

Exercise 4 (Henselian discrete valuation ring) A discrete valuation ring \mathcal{O}_K is said to be *Henselian* if it satisfies the conclusion of Hensel's lemma, namely: for any polynomial $P(X) \in \mathcal{O}_K[X]$, if we have a decomposition

$$\bar{P}(X) = f(X)g(X) \in k[X]$$

with coprime f(X), g(X), then there exist $F(X), G(X) \in \mathcal{O}_K[X]$ such that P(X) = F(X)G(X) with $\bar{F}(X) = f(X)$, $\bar{G}(X) = g(X)$ and $\deg F(X) = \deg f(X)$. For example, if K is complete, then \mathcal{O}_K is Henselian.

- 1. Let p be a prime number. Show that $\mathbb{Z}_{p\mathbb{Z}}$ is not Henselian by considering a suitable quadratic polynomial in $\mathbb{Z}_{p\mathbb{Z}}[X]$.
- 2. Show that in the conclusion of Hensel's lemma, the polynomials F(X), G(X) are coprime.
- 3. Suppose \mathcal{O}_K Henselian. We want to prove that for any finite extension L/K, there is a unique extension of $| \cdot |$ to L. Equivalently, the integral closure of \mathcal{O}_K in L is a discrete valuation ring.
 - (a) Let $P(X) = X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0 \in K[X]$ be a monic irreducible polynomial with $|a_0| > 1$. Show that $|a_0| > |a_i|$ for all i > 0 (consider the polynomial $a_{i_0}^{-1}P(X)$ for the smallest i_0 such that $|a_{i_0}| = \max_{0 \le i \le d-1} |a_i|$).
 - (b) Suppose that $P(\alpha) = 0$ for some $\alpha \in L$. Show that $|\alpha|_L > 1$ for any extension $| \cdot |_L$ of $| \cdot |_L$ to L.
 - (c) Let $| \cdot |_L$ be an extension of $| \cdot |$ with valuation ring \mathcal{O}_L . Show that \mathcal{O}_L is integral over \mathcal{O}_K , thus equal to the integral closure of \mathcal{O}_K in L.
- 4. (Construction of a Henselian discrete valuation ring). Let K_h be the algebraic closure of K in \widehat{K} , endowed with the restriction of $|\cdot|_{\widehat{K}}$.
 - (a) Let $P(X) \in K_h[X] \setminus \{0\}$. Suppose that we have a decomposition

$$P(X) = \widehat{F}(X)\widehat{G}(X), \quad \widehat{F}(X), \widehat{G}(X) \in \widehat{K}[X]$$

in $\widehat{K}[X]$ with $\widehat{F}(X)$ monic. By considering the roots of $\widehat{F}(X)$ in some algebraic closure of \widehat{K} , show that $\widehat{F}(X) \in K_h[X]$ and hence $\widehat{G}(X) \in K_h[X]$.

- (b) Show that \mathcal{O}_{K_h} is Henselian.
- 5. Suppose $\operatorname{char}(K) = p > 0$. Let L/K be an algebraic purely inseparable extension (for all $x \in L$, $x^{p^r} \in K$ for some $r \geq 0$). Endow L with an extension of $| \ |$ and suppose that \mathcal{O}_L is Henselian. We want to show that \mathcal{O}_K is Henselian.
 - (a) Let $P(X) \in K[X] \setminus \{0\}$ and suppose that we have

$$P(X) = F_L(X)G_L(X), \quad F_L(X), G_L(X) \in L[X]$$

be a decomposition in L[X] with coprime $F_L(X), G_L(X)$ and $F_L(X)$ monic.

- i. Show that for some $r \geq 0$ we have $F_L(X)^{p^r} \in K[X]$, and that $\gcd(P(X), F_L(X)^{p^r}) \in K[X]$ (by convention the gcd is a monic polynomial).
- ii. Determine the above gcd and conclude that $F_L(X) \in K[X]$, and hence $G_L(X) \in K[X]$.
- (b) Show that \mathcal{O}_K is Henselian (use Question (2) of this exercise).
- 6. Let K^h be the separable closure of K in \widehat{K} . Show that for any field L with $K^h \subseteq L \subseteq K_h$, \mathcal{O}_L is Henselian.