IIC3253

Introducción

¿Hay alguna condición básica para que esto funcione?

B debe conocer un algoritmo para obtener m en base a c

E no puede saber cuál es ese algoritmo

¿Tiene sentido que el algoritmo sea secreto?

Necesitamos definir un algoritmo nuevo para cifrar mensajes a un nuevo destinatario 😱

¿Qué hacemos?

Definiremos una familia de algoritmos para descifrar

B conoce el algoritmo correcto de la familia

Pero E no puede conocerlo

Tienen que ser muchos algoritmos!

Algo así como 2^{128} ...

Para reconocerlos fácilmente los vamos a parametrizar

Dado $k \in [0, 2^{128} - 1]$, llamaremos Dec_k al k-ésimo algoritmo

$$Dec_k(c)=m$$

$$Dec_k(c) = m$$

Dado k, cualquiera puede obtener Dec_k

¿Alguna otra condición para que esto funcione?

A debe ser capaz de cifrar mensajes que luego son descifrables con Dec_k

Para pensar: ¿Implica esto que A debe conocer k?

¿Hay alguna condición básica para que esto funcione?

A debe conocer un algoritmo para generar t en base a m

 ${\it E}$ no puede saber cuál es ese algoritmo

¿Tiene sentido que el algoritmo sea secreto?

¿Qué hacemos?

Definiremos una familia de algoritmos para autentificar

A conoce el algoritmo correcto de la familia

Pero E no puede conocerlo

Tienen que ser muchos algoritmos!

Algo así como 2^{128} ...

Para reconocerlos fácilmente los vamos a parametrizar

Dado $k \in [0, 2^{128}-1]$, llamaremos MAC_k al k-ésimo algoritmo

$$MAC_k(m) = t$$

$$MAC_k(m) = t$$

Dado k, cualquiera puede obtener MAC_k

¿Alguna otra condición para que esto funcione?

B debe ser capaz de verificar tags que son generados con MAC_k

Para pensar: ¿Implica esto que B debe conocer k?

Principio de Kerckhoffs

La seguridad de un sistema criptográfico **no** debe depender de que los algoritmos de cifrado y descifrado sean secretos, solo debe depender de que las claves sean secretas

Auguste Kerckhoffs, 1883

¿Por qué queremos seguir este principio?

- Es más fácil mantener la privacidad de una clave que la de un algoritmo
- Si la seguridad se ve comprometida es más fácil cambiar una clave que un algoritmo
- Es mejor usar algoritmos públicos que hayan sido ampliamente verificados

Este principio es fácil de olvidar ...

← Hilo

Hoy la comisión mixta de Seg Pública del congreso aprobó criminalizar el #hackingético al aprobar la #leydelitoinformatico Tras 3 años de discusión, primó una visión miope, antidiluviana de la ciberseguridad. Seguridad por oscuridad desde ahora en Chile . Hilo largo 1/n

7:51 p. m. 2 mar. 2022 Twitter Web App

Principios de la criptografía moderna

- Es importante definir formalmente los sistemas criptográficos y nociones de seguridad usados
- Es importantes que los supuestos detrás del funcionamiento de un sistema criptográfico tengan una formulación precisa y sean conocidos
- Es importante construir demostraciones formales de seguridad (basadas en las definiciones y supuestos)

Definición de una noción de seguridad

Debe incluir:

- Un modelo de amenaza, que define las capacidades de un **adversario**
- Una garantía de seguridad, lo cual normalmente se traduce en definir qué significa que el adversario (no) tenga éxito en su ataque

Un poco de notación

Un poco de notación

Un poco de notación

Ataques contra un esquema de cifrado

Solo texto cifrado

El adversario conoce textos cifrados c_1 , c_2 , ..., c_ℓ

El adversario realiza este ataque simplemente escuchando lo que se envían A y B por la red

¿Cuál debería ser la garantía de seguridad?

Texto plano conocido

El adversario conoce textos planos m_1 , m_2 , ..., m_ℓ y sus correspondientes textos cifrados c_1 , c_2 , ..., c_ℓ

El adversario conoce un texto plano y espera a que su cifrado sea enviado por la red, por ejemplo un mensaje inicial "buenos días B"

Texto plano elegido

El adversario elige textos planos m_1 , m_2 , ..., m_ℓ y obtienes sus cifrados c_1 , c_2 , ..., c_ℓ

Texto plano elegido

Batalla de Midway (junio 1942)

Texto plano elegido: "el sistema de purificación de agua del atolón de Midway está averiado"

Texto cifrado elegido

El adversario elige:

- Textos planos $m_1, m_2, ..., m_\ell$ y obtienes sus cifrados $c_1, c_2, ..., c_\ell$
- Textos cifrados $c_{\ell+1}$, $c_{\ell+2}$,, ..., $c_{\ell+k}$ y obtienes los correspondientes mensajes descifrados $m_{\ell+1}$, $m_{\ell+2}$, ..., $m_{\ell+k}$

Ataques contra un esquema de autentificación

¿A qué tiene acceso el adversario?

¿Cuál es la garantía de seguridad?

¿Contra qué ataque debemos defendernos?

Tenemos que ponernos en el peor escenario

- Una cadena se corta por el eslabón más débil
- Un 90% de seguridad es equivalente a 0%: piense en instalar el 90% de la reja para protejer su casa