Title: Carbonsphere: Modular Dome-Lattice Architecture for Energy and Memory

Author: Randall Simmons

Version: 0.1 (Concept Draft)

Abstract

This high-surface-area nanostructure inspired whitepaper proposes modular, partial

buckminsterfullerene ("buckyball") geometry for dual-purpose applications: energy storage (as

battery/supercapacitor electrodes) and advanced memory (charge- or state-based data storage). The core

structure features an interlinked array of open-faced buckyball domes (resembling an egg-carton-like lattice),

designed for maximum internal surface area, charge mobility, and state isolation.

1. Introduction

Surface area is a critical parameter in both energy and memory systems:

- In batteries and supercapacitors, increased surface area provides more active sites for ion exchange and

electron flow.

- In memory devices, especially charge-based and neuromorphic architectures, surface topologies enable

denser bit storage, state separation, and improved charge confinement.

This concept blends these domains into a unified structural approach.

Page 1

2. Structural Concept: The Carbonsphere Lattice
2.1 Geometry
- Constructed from half-dome segments derived from truncated buckyballs (C60 or similar topology).
- Each dome is open at the base and linked at these points to form a continuous egg-carton-like array.
- The structure can be arranged in single-layer sheets or stacked for multi-layer 3D configurations.
2.2 Key Properties
- Massive internal surface area
- Directional pathways for ion/electron flow
- Natural cavities for state or charge trapping
- Scalable through folding, tessellation, or extrusion

3. Energy Storage Application
3.1 Supercapacitor Use
- The lattice functions as a high-capacitance electrode scaffold.
- Material: Graphene, CNTs, doped carbon, or conductive polymers.
- High surface contact with electrolyte improves charge/discharge rates.
3.2 Battery Use (e.g., Lithium-Ion)

- Anode or cathode material can be layered inside cups.
- Hollow cavities prevent structural swelling.
- Fast charge-discharge response due to short ion pathways.
4. Memory Storage Application
4.1 Charge-Based Memory
- Each dome can act as an isolated charge trap, similar to floating gates or quantum dots.
- Bit storage defined by presence or absence of charge in each pocket.
4.2 Quantum / Neuromorphic Storage
- Geometry supports state-based storage through resistance or spin orientation.
- Possible use in memristor arrays, ReRAM, or 3D NAND stacking.
5. Material Considerations
Layer Material Function
Outer shell Graphene/CNT mesh Conduction and structural support
Internal cavity walls Doped polymer or MOF Ion or charge isolation
Routing layer Carbon nanowires Pathways for charge flow

Optional coating for battery: LiFePO4, Si, SnO2, etc.
6. Fabrication Ideas
- Layered molecular assembly using self-organizing carbon cages
- 3D printed nano-extrusion for rapid prototyping
- Laser sintering or chemical vapor deposition on flexible substrates
- Roll-to-roll sheet fabrication for scalable membrane deployment
7. Future Possibilities
- Integration into flexible electronics or smart textiles
- Use in modular memory cards or on-chip power supplies
- Development of self-healing structures with nano-patching
- Possible integration with Al-driven neuromorphic processors
8. Conclusion
The Carbonsphere architecture presents a biomimetic and geometrically advanced framework for
simultaneous energy and memory storage. Its modular, hollow, and highly-interconnected design opens

pathways for multifunctional smart materials that blur the lines between power, computation, and structure.
Status: Concept draft - Ready for collaboration, prototyping, or simulation studies.
Contact: [Placeholder for repository/contact info]