

Why tune your model?

Untuned Model Example

```
In [1]: import pandas as pd
In [2]: import xgboost as xgb
In [3]: import numpy as np
In [4]: housing data = pd.read csv("ames housing trimmed processed.csv")
In [5]: X,y = housing data[housing data.columns.tolist()[:-1]],
        housing data[housing data.columns.tolist()[-1]]
In [6]: housing dmatrix = xgb.DMatrix(data=X,label=y)
In [7]: untuned params={"objective":"reg:linear"}
In [8]: untuned cv results rmse = xgb.cv(dtrain=housing dmatrix,
        params=untuned params,nfold=4,
        metrics="rmse",as pandas=True,seed=123)
In [9]: print("Untuned rmse: %f" %((untuned cv results rmse["test-rmse-mean"]).ta
Untuned rmse: 34624.229980
```


Tuned Model Example

```
In [1]: import pandas as pd
In [2]: import xgboost as xgb
In [3]: import numpy as np
In [4]: housing data = pd.read csv("ames housing trimmed processed.csv")
In [5]: X,y = housing data[housing data.columns.tolist()[:-1]],
   ...: housing data[housing data.columns.tolist()[-1]]
In [6]: housing dmatrix = xgb.DMatrix(data=X,label=y)
In [7]: tuned params = {"objective":"reg:linear",'colsample bytree': 0.3,
   ...: 'learning rate': 0.1, 'max depth': 5}
In [8]: tuned cv results rmse = xgb.cv(dtrain=housing dmatrix,
   ...: params=tuned params, nfold=4, num boost round=200, metrics="rmse",
   ...: as pandas=True, seed=123)
In [9]: print("Tuned rmse: %f" %((tuned cv results rmse["test-rmse-mean"]) \
   ...: .tail(1)))
Tuned rmse: 29812.683594
```


Let's tune some models!

Tunable parameters in XGBoost

Common tree tunable parameters

- learning rate: learning rate/eta
- gamma: min loss reduction to create new tree split
- lambda: L2 reg on leaf weights
- alpha: L1 reg on leaf weights
- max_depth: max depth per tree
- subsample: % samples used per tree
- colsample_bytree: % features used per tree

Linear tunable parameters

• lambda: L2 reg on weights

• alpha: L1 reg on weights

• lambda_bias: L2 reg term on bias

 You can also tune the number of estimators used for both base model types!

Let's get to some tuning!

Review of Grid Search and Random Search

Grid Search: Review

- Search exhaustively over a given set of hyperparameters, once per set of hyperparameters
- Number of models = number of distinct values per hyperparameter
 multiplied across each hyperparameter
- Pick final model hyperparameter values that give best crossvalidated evaluation metric value

Grid Search: Example

```
In [1]: import pandas as pd
In [2]: import xgboost as xgb
In [3]: import numpy as np
In [4]: from sklearn.model selection import GridSearchCV
In [5]: housing_data = pd.read csv("ames housing trimmed processed.csv")
In [6]: X, y = housing_data[housing_data.columns.tolist()[:-1]],
   ...: housing data[housing data.columns.tolist()[-1]
In [7]: housing dmatrix = xgb.DMatrix(data=X,label=y)
In [8]: gbm param grid = {
   ...: 'learning rate': [0.01,0.1,0.5,0.9],
   ...: 'n estimators': [200],
   ...: 'subsample': [0.3, 0.5, 0.9]}
In [9]: gbm = xgb.XGBRegressor()
In [10]: grid mse = GridSearchCV(estimator=gbm,
    ...: param grid=gbm param grid,
    ...: scoring='neg_mean_squared_error', cv=4, verbose=1)
In [11]: grid mse.fit(X, y)
In [12]: print("Best parameters found: ",grid mse.best params )
Best parameters found: {'learning rate': 0.1,
'n estimators': 200, 'subsample': 0.5}
In [13]: print("Lowest RMSE found: ", np.sqrt(np.abs(grid_mse.best_score_)))
Lowest DMCE found: 20520 1020241
```


Random Search: Review

- Create a (possibly infinite) range of hyperparameter values per hyperparameter that you would like to search over
- Set the number of iterations you would like for the random search to continue
- During each iteration, randomly draw a value in the range of specified values for each hyperparameter searched over and train/evaluate a model with those hyperparameters
- After you've reached the maximum number of iterations, select the hyperparameter configuration with the best evaluated score

Random Search: Example

```
In [1]: import pandas as pd
In [2]: import xgboost as xgb
In [3]: import numpy as np
In [4]: from sklearn.model selection import RandomizedSearchCV
In [5]: housing data = pd.read csv("ames housing trimmed processed.csv")
In [6]: X,y = housing data[housing data.columns.tolist()[:-1]],
   ...: housing data[housing data.columns.tolist()[-1]]
In [7]: housing dmatrix = xgb.DMatrix(data=X,label=y)
In [8]: gbm param grid = {
   ...: 'learning rate': np.arange(0.05,1.05,.05),
   ...: 'n estimators': [200],
   ...: 'subsample': np.arange(0.05,1.05,.05)}
In [9]: gbm = xgb.XGBRegressor()
In [10]: randomized mse = RandomizedSearchCV(estimator=gbm,
    ...: param distributions=gbm param grid, n iter=25,
    ...: scoring='neg mean squared error', cv=4, verbose=1)
In [11]: randomized mse.fit(X, y)
In [12]: print("Best parameters found: ",randomized mse.best params )
'n estimators': 200, 'learning rate': 0.2000000000000001}
In [13]: print("Lowest RMSE found: ",
    ...: np.sqrt(np.abs(randomized mse.best score )))
1 -- -- + DMCE farmal 20200 2274201
```


Let's practice!

Limits of Grid Search and Random Search

Grid Search and Random Search Limitations

- Grid Search
 - Number of models you must build with every additional new parameter grows very quickly
- Random Search
 - Parameter space to explore can be massive
 - Randomly jumping throughout the space looking for a "best" result becomes a waiting game

Let's practice!