Felder

e(+,t), v(+,t), T(+,t)

Wraftdilte I(Ft) Feld

 $\frac{\gamma}{\gamma_{\hat{\mathbf{g}}}} \neq \frac{\alpha}{3\hat{\mathbf{g}}}$

Geschwindighuitstold $\vec{v} = \vec{r}(\vec{r})$ bei stat Sto.

An nimm ort ist die Geschw. immer gleich, doch tür jeden einzelenen Tropten nicht - kraftfeld

Seschw. am Ort & dur Zeit t ist. vi(F,t)

Geschw. desselben Troplens zur Zeit t+dt am ort F+v-dt: V(P+vdt, t+dt)

Zwisdanrech:

 $\frac{1}{2}\left(x+\varepsilon^{-1}A+A\right) = \frac{1}{2}\left(x+at\right) = \frac{1}{2}\left(x+at\right) + \frac{$

$$e^{i} \frac{d\vec{v}}{dt} := e^{i} \left((\vec{v} \text{ grad}) \vec{v} + \frac{\delta \vec{v}}{\delta t} \right) = \vec{f}$$
 Euler - Gleichung

Bomoulli

20.10.04

Rehrquerschnit

Q = Q(x)

Masse, die pro teiteinheit durch einen Rohrquerschnitt strömt, ist W=Q(x). V(x) = corest. Lant Massawrhaltung Volumenerhalt Pursu = Corest

hussenstrom E. v. Q

Strömmasfeld: v= {\omega_{le)},0,0}

Wolde brutte sind not wendig - Beschlunigunger berechnen Beschlennigung

$$\frac{d\vec{v}}{dt} = \left(\vec{v} \cdot \text{grad}\right) \vec{v} \cdot \left(\vec{v} \cdot \frac{\lambda}{\lambda \lambda}\right) \cdot \left\{\vec{v}, 0, 0\right\} = \left\{\vec{v} \cdot \vec{v}', 0, 0\right\}$$

$$= \left\{\frac{1}{2} \frac{\lambda}{\lambda \lambda} \vec{v}^{2}, 0, 0\right\}$$

-> Wann Robriquereschnitt konstant, treten keine krafte auf. Anderung des Robriquereschnitt veruredt krafte

Druck und Kraff

/~				
<i>(</i>)				
\)	20	2. 1	2.00	۱
\	C	200 t	20 Bart	ļ
¥			_1 /	•

braft a Druckunterschied

$$P = p(x)$$

$$\int_{-\infty}^{\infty} \left\{ -\frac{de}{dx} , o, o \right\}$$

$$f = \frac{-(P + dP) \cdot 4 + PA}{A - dx} = \frac{dP}{dx}$$
; $A = Querschnittstläche$

$$\frac{1}{2}e\frac{dv^2}{dx} = -\frac{dp}{dx}$$
 $i e = const$

$$\frac{qr}{q}\left(\frac{s}{s}s_{3}+b\right)=0 \iff \frac{s}{s}s_{3}+b=const=b$$

Benoalli - Glichung

Ball in "votierander" Flüssigheit

Der Pfeil auf dem Ball Zeige immer in derselben Richtung Wie sight das Strömungsteld aus?

Extinder Koordinaten

Ansatz: and wenn Pfeil wicht immer in dieselbe Richtung zeigt

v= vp.e, rotationstreier
"Badewannenwirbel"

Flichbräfte? Warren wird der Ball nicht nach außen gednicht)

 $\vec{f} = (\vec{v}, \vec{q}, rad) \vec{v} = \sum_{i=1}^{3} \vec{v}_i \frac{\partial}{\partial x_i} \vec{v}$ in Kartesischen Koord.

Umredning der Formel in tylinderhoord for homphitiset, deher Strömungsteld in kart loord ûbertragen

$$(\vec{r} \cdot \vec{q}_{rad}) \vec{r} = \begin{cases} v_{x} \frac{\lambda v_{x}}{\lambda v_{x}} + v_{y} \frac{\lambda v_{x}}{\lambda v_{y}}, v_{x} \frac{\lambda v_{y}}{\lambda v_{x}} + v_{y} \frac{\lambda v_{y}}{\lambda v_{x}}, o \end{cases}$$

$$\vec{e}_{r} = \begin{cases} v_{x} \frac{\lambda v_{x}}{\lambda v_{x}} + v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, v_{x} \frac{\lambda v_{y}}{\lambda v_{y}} + v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, o \end{cases}$$

$$\vec{e}_{r} = \begin{cases} v_{x} \frac{\lambda v_{x}}{\lambda v_{x}} + v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, o \end{cases}$$

$$\vec{e}_{r} = \begin{cases} v_{x} \frac{\lambda v_{y}}{\lambda v_{x}} + v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, o \end{cases}$$

$$\vec{e}_{r} = \begin{cases} v_{x} \frac{\lambda v_{y}}{\lambda v_{y}} + v_{y} \frac{\lambda v_{y}}{\lambda v_{y}}, o \end{cases}$$

$$\frac{x_1 y_1 e}{x_2 y_2} = \frac{\vec{e}_r}{r}$$

Literatur

Paul A. Topler: "Physik" (Speltrum, NY, 1991)

Edward M. Purcell: "Elektrisität und magnetismus" (ne yrav. Hill,
bis Montag: 2 Büdar orglaider, Thema elektr. Feld

Ladungserhaltung
Für die Ladung gilt ein Erheltungssatz
Ladungsalsnieb

- Abstoßung - Anzichung

E sementarladung.

Website für übungen:

Physik/astarke/Teaching/ExpPhys2/

Kreifte Zwischen Ladungen

Experiment:

Position/			
Auslan 1 4 11-8+10	Abstand (+)	L2	F. r2
18±0,5 23 29 2±34	14±1 10 8 ≥+ 6, 5	190 64 (4	1568 1300 1216 1014

Ruhe = 10

Bostimmung der kraft.

× = l · «

Feliger.

- Kreisbogen
- Entlading
- ladungs verschidsung " Influenz"

Coulomb-Kraft

Einheiten [Q] =
$$C = A \cdot s$$

 $[F] = N = \frac{k_0 m}{s^2}$

Elektrisches Feld

hypothetische Testladung

$$\vec{E} := \frac{\vec{r}}{q} \wedge \vec{E} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} \wedge$$

El. Feld einer Punktladung a

Asmossungen der Ladung müssen blein sein gegenüber dem Asstand der Ladungen

Elektrisches Feld Liner Anordnung von 2 ldg

Weldre Arbeit muss man verrichten, um ldez og von A nach B zu bringen?

tut sinen Geschlossenen Weg wird Vaine Arbeit verrichtet (Vonservatives Feld)

housevotives braffeld: 87 ds =0

$$\Delta W_{Akm} = \frac{\Lambda}{4\pi\epsilon_{c}} \frac{Q_{\frac{1}{4}}}{f^{2}} \Lambda cm$$

$$\Delta W_{Am} = \frac{\Lambda}{4\pi\epsilon_{c}} \frac{\Lambda}{(M)^{2}} \Lambda cm$$

großes Vehältnis Zwischen Allem und

Delde troeit Winuss man antbringen, um g ans r= 20 nach r= 5 heranzudnücken?

$$W = \int_{r=\infty}^{r=r} \vec{F} \cdot d\vec{s} = \frac{\Lambda}{4\pi\epsilon_0} Q_q \int_{\infty}^{\pi} \left(-\frac{\Lambda}{r^2} \vec{F}\right) \left(-dr \cdot \vec{F}\right) = 1 \cdot \int_{\infty}^{\pi} dr$$

Potentialditterenz = p(rz)-p(rn)=Unz vol. Spommung"
[U]=V= {

Elehtrischer Fluss

n: Obertla dien norma lenveletor

- Yan Bisher Sutz

mathematisch

physikalisch

$$\oint \vec{E} \hat{n} dA = \frac{1}{\varepsilon_0} \int d^3r \, \varepsilon_0(\vec{r})$$

le ladungsdichte

· 7 Anwerdingen d. G.S. i

1. lagelsymmetric

bromag Ida.

$$r > R$$
 ("an Ben") $\Rightarrow \frac{1}{\epsilon_s}Q = \vec{E} \cdot \hat{n} + \pi r^2$; $\vec{E} = \vec{E}(r)$

$$\Gamma = R \left(\text{"inna"} \right) : \frac{1}{\varepsilon_0} \frac{1}{R^2} = E(r) H_{R} r^2$$

Wondersator und Napazität

d << TA

Randbereich werden vernachlässigt

Ganßsche Dose (nerecky) $\begin{cases}
\frac{2}{\varepsilon} = 4 \\
\frac{2}{\varepsilon} = 4
\end{cases}$ $\begin{aligned}
E \cdot A &= \frac{2}{\varepsilon} = 4
\end{aligned}$

Arbeit, um die Testladung og van o nach @ Zabringen:

Mit Dielektrizitätskonstante

$$\zeta = \xi_0 \cdot \xi \cdot \frac{A}{\lambda}$$

$$C = \xi_0 \cdot \frac{A}{d}$$
 Q=C·u

E' Feld outgregengesetzt im Diel Jesuntes Feld E= E+ E

Feld wird Heiner - Spanning wird Vleiner - Lapazitäl wird größer

Polarisistan hait

" Polarisation"

$$\vec{P} = \frac{\sum \vec{P_i}}{V_b \ell} \quad [\vec{P}] = \frac{C}{m^2}$$

Die lehtrische Verschriebung

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{\rho}$$

$$\oint \vec{D} \cdot d\vec{A} = \int_{\text{wis}} e_{\text{fini}} d^3r$$

Cyspeidente Encryic

$$|\vec{z}| = \frac{1}{6} |\vec{z}| + \frac{1}{6} |\vec{z$$

Energie didite:
$$\frac{\omega}{Vol} = bbe w_{ii} = \frac{1}{2} C \vec{u} \cdot \frac{\Lambda}{Ad} = \frac{1}{2} \epsilon \epsilon \left[\frac{\omega}{d}\right]^2$$

Kirchhoffsche Potentialvaage

$$V = \frac{1}{2}CU^{2} : C = \varepsilon_{0} \frac{A}{A}$$

$$F = -\frac{d\omega}{dx}$$

$$= \frac{1}{2}\varepsilon_{0} \frac{A}{A^{2}}U^{2}$$

Stationaire elektr. Ströme

Station are Strone
$$\left(\frac{dI}{dt}=0\right)$$
: $I=\frac{dQ}{dt}$

Was treibt den Stom? (Donde-Theorie d. el laiting)

random walk'

> honstante mittlere Drifogeschwindigheit

"Donde-Theorie d. el Leitung

8.11.04

vo: Driftgeschwindigheit T mittlere Zeit Zwischen zwei Stößen typisch pilosekunden 10-125

$$j = n (-e) \vec{v_0}$$
 $j : Stromdidte n : Tildendidte (Ladungen) [n] = m^3$
 $j = n \cdot (-e) \frac{j \cdot dE}{m} = \frac{n \cdot e^2 \tau}{m} = \frac{n \cdot e^2 \tau}{m}$

Beispielwerte

neta l	le T/K	0/12m)		Ī
Ae	273/14	4/286	8 10 3/~ 60	17nm /12, m
Ag	273/4	4 / 286 -7 / 2480	٠ -	- · · -
Cu	273/13	~7/2.104	77-10 ³ /93	42 nm /1 som

Ohnscher Widerstand eines Drahtes (Zyl. Form)

$$R = \left(\frac{\ell}{A}\right)$$

Sper Wid. [P] = 2m, natural - Temp-alshangiq

RC-Schalthreis/hondersatorentladurg_

bot Dett
$$\lambda(v) - \lambda(s) = m + \frac{C}{V} \cdot \sigma(s)$$

$$= U(t) = R \cdot I(t) = R \left(\frac{dt}{dt} \right)$$

Magnetfelder um Strondurchflossene Leiter

B. "Magnetfeld" (Magnetische Indultion)

Burn , lektrisden Feld ear

SE ds =0

LINO = B 2+1

M. = 4 107 Vs

& B. ds = No. I sper Form des Ampereschen Verkithungssetzes

8 B. ds = 1. SJ. dA

Nomphizuite Geometinen:

Biot-Savartsdus gosetz

First - severtschis gasette
$$\overrightarrow{AB} = \frac{\mu_0}{4\pi} \frac{\overrightarrow{I} \cdot \overrightarrow{ds} \times \overrightarrow{f}}{r^2}$$

hagnetischer Dipal"

2 >> R

B(2) | 2mg = Mo I
$$\frac{1}{2z^3}$$
 \times \frac{1}{2^3} \times \frac{1}{2^3} \times Dipolcharakteristik

Grenzfall , Lange Spule B= 1. I.

Eur Bescheibung v. Induktionstorgång.

$$\phi_m = \frac{1}{2} \frac{1}{2$$

in du Freste Spannung

hind a dom at

rodständig:

Uind = - fin (langsolves Minus)

Selbstinduktion in der Sprile

Und = - Pm= - L. I , L: Friduktivität der Spub

LIE MO R. A.I

$$IL+IR=0$$

$$I+P_LI=0$$

Answer I(t) = I ett => == 1/8

Enorgia im Maynetteld

Analog Zum Kondensator (Eel = { Cu2)

Emag = 1/2 LT2

Bop: L=10mH To=10A >> Emag = 0.5 }

Emany = ZMO RA IO B=MO XI

= $\frac{\Lambda}{Z_{M_0}}B^2 =: \epsilon_{may}$ Energiedichte

Energiedichte des ragnetteldes

(Spule mit Indult L: Emay = 12LI2

$$U_c(t) = \frac{1}{C}Q(t)$$

$$\overline{L}(t) = \overline{L} \cdot \sin(\omega t)$$

$$\mathring{Q}(t) = \frac{dQ}{dt} = \overline{L}$$

hascher regel $h + \frac{1}{6}\ddot{Q} = RI$ R blein $h = -\frac{1}{6}\ddot{Q}$

Vorgleicher mit demochen Gesetz

... Vergleiden mit Ohnischen Jesetz (U(t) = R. I(t)) Einsetzen: - who sin (wt) = ITo sin (wt) Us= - 1 Is := Xc haparitier Wickestand Ammendung: Tietpass uin C Tex und Hookpass ungehebrt -> "Tietze Schanck" (i. Finführung : d. Eleltronik "Horrowitz, Hill" L gwet Filter? P Juid = -LI mit I = Iosin wt -I - Wind = +L Iow - cos wt

Val. mit N=R.I X_ := oL "Indultiver Widerstand"

Momplexe Widerstände

$$R = R$$

Phasenverschibrung mit hampluren techler cos a = 2 (eia + eia)

$$\sin \alpha = \frac{\Lambda}{2i} \left(e^{i\alpha} - e^{-i\alpha} \right)$$

 $\chi_{c} = \frac{\Lambda}{i\omega C} = -i \cdot \frac{\Lambda}{\omega C}$

Inhomogenes tragnetfeldmit einem Gradienten 382 to

Martinia im Magnetteld

Motorie im ragnetfeld: 2 Wassan

FN	Pro la Sissani.	— PAPC
-1.1 -0.03 Dia -0.2 -0.1 Para +75 +0.17	Graphit Cu HzO L-Nz L-Oz Al	Die-Nagnet ist standard Die nagnet ist standard Die einigen Stoffen überlagent eine Peraneg. Eigenschaft.
rgl Ferro +4000	Fe	2 2

Hagnetisches Dipolmanent

Def. 1. Mag. Ospolmoment Pm = 2 Sd3+ + xj(+)

Speziell : elsone leiterschleife.

linienlaste leiter

Spezialler: Lier

$$\vec{\rho}_{m} = \vec{\perp} \cdot \vec{\lambda} \cdot \hat{x}$$

besser tur Ovelimoment: 0 = Pu x B

mit inhonogren traquetteld gibt es Nettohvätte auf den Schwerpunkt

PN N

Magnetische Suszeptibilität

$$\chi_{m}: \vec{n} = \chi_{n}\vec{H}$$

Alla, in natorie

Substanz	X 10 nol	Λ.
Dian L- Nz	-12	≈1
Pn L- 02	3450	=1+€
PM AQ	+ 16,5	≈1

Aussidat: Ferromagnetika

Gyromagnetisches Verhältnis

$$E_{pot} \approx M_B \cdot B$$
 $B = 1T$
 $E_{pot} \approx 60 \mu \text{ eV} \approx 10^{-23} \text{ s}$

Abschätzung des durch die losente-Kreft induzierten Momentes (Diamog.).

1 Umlant:
$$\int d\xi = 2mV/r \cdot \int dv = \xi = q \cdot v \cdot B$$

$$= 2mv/r \cdot \Delta v$$

Induzintes Moment

BSP:
$$\Gamma = 1.10^{-10} \text{ m}$$
 $q = e$ $m = me$ $B = 1T$

$$P_m^{int} = 10^{-28} \text{ Am}^2 \quad \text{ord} \quad M_B = 9.27.10^{-24} \frac{8}{T}$$

=> Diamagnetische Reaktionen sind deutlich Geringer als die Paramag. Reaktion (5 Größenordmanger)

Ferromagnete

Ferromegnete werden angezoger mor unterhalb line bestimmter Tamp.

Magnetisiering in Eisen:

(Abschätzung)

$$\dot{N} = \frac{\sum_{i} P_{i}}{V_{0} \ell}$$

$$= \frac{1 \cdot 10^{-23}}{1} 18^{3} \frac{\Delta u^{2}}{10^{6} m^{3}}$$

(regl. B = 1, H+1, M)

outspielt B=Mo.M = 1T

"Boreida"
ragnetische Homente
Leigen alle in sim
Richtung
"Domanen"

M. + + - 1

Fat= -从.B

Typisole Größe: Am = MB Bohrsches (1)

magnetisolar Fluss dm = SBdA = No S(H+H) dA M= \frac{\Substanting Mi=\frac{\Substanting Mi}{Vol}}{Vol}

~ 59m la Apalte M=0 => Hwind willing

Ummagnetisisen in Wedsel feld

(rel. Permeabilität

 $U_n = U_0 \cos(\omega t + \varphi)$ $I_n = I_0 \cos(\omega t)$

Wand (Blockwand):

Hystorese- hurve

Fläche beschreibt Energie verlust

Em= 2 No MH

B= Mo H+ Mo M außeres Fold may- Feld

Energiedidte eines tagneten M

Bai guten Spular home sollte die Fläche der Hystraschung Wein

Michanisches Federpendel

$$M = 50$$
 $10.7 = 10$ $M = 40$ $M = 40$ $M = 20$ $M = 20$

$$-k(x-x_0) = m \times \infty \times + \frac{k}{m}(x-x_0) = 0$$
Ribelacy
mit in

$$\times_{c} := 0 \text{ (Messalate)}$$

lösung
$$x(t) = e^{-t/\tau} A \cdot \cos(\omega t + \beta)$$
; $\tau = \frac{1}{\beta}$

Daro lel schwinghreis

$$M_c = \frac{C}{4} \cdot Q = \frac{C}{4} \left(\prod(t) dt \right)$$

$$I(t) = I_0 \cos(\omega t)$$

$$\int_0^t I(t') dt = \int_0^t I_0 \sin(\omega t) + \cos t$$

Bsp.:

Benegurasasseichung für el-mag Osi Mator

(Maschenegel)

$$\frac{1}{C}Q + RI = -L\dot{I} \qquad \text{mit } \dot{Q} = I$$

$$\omega_{c} = \frac{1}{\sqrt{L \cdot C^{\dagger}}} \quad \omega_{r} = \omega_{c} \sqrt{1 - \left(\frac{\omega_{c} T}{2}\right)^{2}} \text{ where}$$

$$T = R \cdot C$$

Aquivalente größen

mech el mag ×(f) Q(X)

k

$$Q(t) = Q_0 e^{-t/S_0} \cos(\omega t + p)$$

$$T_0 = \frac{1}{R}$$

Farad . Ind Gesety

hind = SE. ds = - d SB-dA

Amparesolar Verlettungssutz

8 Fi. L = I

Maxwellsder Verschiebungsstrom

hondersatorplate

SH. de = I + dt SD. dA At SD. dA (E80) = 1

Maxw. Vradiabungstrom

wiederhaung

Ungedample Ostillator

4s = Sendesignal

U= Uo cos vot

Wellon ausbreitung

> stehende Wellon

f=1000 57 =15-16 s

Gemessen. 2x 2w 2 hoster

17mm=2 => 1=3,4cm

 $\sin \alpha + \sin \beta = 2 \cdot \cos \frac{\alpha - \beta}{2} \cdot \sin \frac{\alpha + \beta}{2}$

Elebtronagneticche Welle

- Im Fernfeld

- elsane Walle

- lin. polarisient

Polarisationstiller.

Lichtwind mile

Vakum ist midt perfekt. Tamperatureffekt åberhoupensiert den tupals

— Liebtmilde drett sich in die Falcole "Liebtung

Energie dichte und Impuls ainer EM Welle

WEN: Energiadialite = Strahlungsdruck (m2)

$$[W_{En}] = \frac{1}{2} \left(\varepsilon_o E^2 + \frac{1}{M_o} B^2 \right)$$

$$[W_{En}] = \frac{1}{N^3}$$

$$A = 1 \text{ cm}^2$$

$$P = \frac{100 \text{ W}}{10^{-4} \text{ cm}^2} = 1.16 \frac{\text{W}}{\text{W}^2}, P = 151$$

Evergie strondichte

" Ladungsstrandichte

a.M. Energeaustansd Evischen EM-Welle a. Umgebung Mur in Einheiten homöglich ; h= 6,686.10-34 Js Wirkung

Strahlungsdruck
$$\beta = \frac{1}{c} \cdot S$$
 [PS] = $\frac{1}{m^3} = \frac{N}{M^2}$

Frahlungscharakteristik

Jede Gradl. Ladung en Hiert EN. Wellen

In Fernterd.
$$R \gg d_0$$

$$\vec{E}(\vec{R},t) = \frac{1}{4\pi\epsilon_0} \cdot \frac{\vec{d}(t-\vec{R})}{c^2r} \sin \theta$$

Wie Schnell verliest der Hertz - Dipol Energie?

$$\langle 95 \text{ Th} \rangle = \frac{1}{4\pi\epsilon_0} \frac{3^2 d_0^2 \text{ w}^4}{3c^3} = \left(-\frac{dE_{en}}{dt}\right)_{\tau}$$

Gesantenergie d. Hertz. Dip.

Relative Abrahme

Insutz

char. Zeit
$$T = \frac{1}{X} = 6\pi \xi \frac{mc^3}{4^2} \cdot \frac{1}{w^2}$$

m=m, T=18 ns

Lär rotes licht 2= (33 nm -> orheblide Anzald schwingungen

Fine Welle, die vour eine andliche Zeit emitiert wird, ham midst monodrom Sein.

(Alla: Fourier-Transformation, Bop: t () w; x ()

Function $f(t) = \begin{cases} c & cos(\omega t + p) \end{cases}$ für t > 0

F(w): Former - transformiente von f(t)

Spaktvak Verteilung
$$|F(w)|^2 = \frac{f_0^2}{2\pi} \frac{1}{\chi^2 + (w-w)^2}$$

"Transformations be schränlet"

Bredung und Reflexion

Ebene Welle

- o gebrochene Welle Eg = Fg ei(wat-ty 7)
- · reflektinte Welle Ēr = Ār · ei(u, t - \$\frac{1}{4})

$$\frac{B}{a_{2}}$$

$$\frac{B}{A}$$

$$\Rightarrow B_{n_1}A + (-B_{n_2}A) = 0 \Rightarrow B_{n_2} = B_{n_2}$$

(4) B-Feld: tangential not
$$\vec{H} = \vec{j} \implies \text{not } \vec{H} = \vec{o}$$

=> $\vec{j} + \vec{k} = 0 \implies \vec{k} = 0 \implies \vec{k} = \vec{k} = \vec{k} = \vec{k} = 0 \implies \vec{k} = \vec{k} = \vec{k} = 0 \implies \vec{k} = 0 \implies$

Für nicht ferromagne tische traterialien na zuz = 1 dann ist and dei turgentialhanponente steticy $n \approx \sqrt{\epsilon}$

Für die tangential homponenten gilt

Y Punte der Grenzfläche haben die gleiche Phase

Es wilt. Wex = ke · Sind

$$k_{tx} = k_t \cdot Sind$$

$$k_{gx} = k_g \cdot Sin\beta$$

$$\dot{k} = \frac{\omega}{c!} = n \cdot \frac{\omega}{c} \Rightarrow \frac{\sin \alpha}{c!} = \frac{\sin \alpha}{c!} = \frac{\sin \beta}{c!}$$

Sind =
$$\frac{C_1'}{Sin\beta} = \frac{C_1'}{C_1'} = \frac{N_2}{N_1}$$
 Stell'sches Brechungsgesetz

Abhän gigheit von der Polarisation

Betraditung von S-polarisierten licht

wit
$$\vec{B} = \frac{1}{C} (\vec{l} \times \vec{E}) = \frac{1}{\omega} (\vec{l} \times \vec{E})$$

$$(\vec{k}_e \times \vec{E}_e)_x + (\vec{k}_r \times \vec{E}_r)_x = (\vec{k}_g \times \vec{E}_g)_x$$

Relation der Amplituden durch Zusammennehman von (*) und (**)

$$A_{3} = \frac{2}{1+\alpha} A_{2}$$

$$\alpha := \frac{k_{3} \cos \beta}{k_{2} \cos \beta}$$
 $k_{2} \cos \beta$

$$A_{rs} = \frac{\Lambda - \alpha}{\Lambda + \alpha} A_{es} = \frac{n_2}{n_A} \frac{\cos \beta}{\cos \alpha}$$

Fresnel - Formeln

I)
$$e_s = \frac{A_{rs}}{A_{es}} = \frac{v_1 \cos \alpha - v_2 \cos \beta}{v_3 \cos \alpha + v_3 \cos \beta} = \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}$$
 Pel-Noeth.

$$\frac{\overline{IV}}{T_p} = \frac{A_{sp}}{A_{ep}} = \frac{2u_x \cos x}{h_x \cos x \tan x \cos \beta} = \frac{2 \sin \beta \cos x}{\sin (\alpha + \beta) \cos (\alpha - \beta)}$$

=> Pantriolar 2 Uap 8.5

Reflexions removen R = 02

Transmissions vermögen T= - 2 \frac{\xi_2 \cdot_2}{\xi_c'}

T+R=1

Beroster-Winkel:

He flektinte Strahl Senbredt

Zu dipolachese heim

Abstrahlung möglich

mur für p-Polanisistes hielt

tends = hr

Lishular Polarisiates Liebt

Lineare Polarisation als Zwei Zirhular polarisierte Wellan

 $\alpha = \frac{2\pi}{\lambda_s} d(n - n^t)$ 1. Welle (links) 2. Welle (redits)

 $24 - \text{Plätchen}: = \frac{2\pi \text{ dest}}{4(n_3 - n_n)}$ $d = \frac{\lambda}{4(n_3 - n_n)}$ $d = \frac{2\pi}{\lambda} d(n_3 - n_n)$ $d = \frac{\pi}{2} \Rightarrow d = \frac{2\pi}{\lambda} d(n_3 - n_n)$

Quantoneigenschaften des Lichts

E=hv Energie sines lichtquants

Drehimpules cines Photons + to

Tunnel offelet sind = $\frac{v_2}{v_1}$ Total refl. venn of > 90°

Spring trotz Totalretherion

vær Wallenläng

Warmen breitet sich Licht in Medien langsamer aus all im Valenne?

n = 6 ; v: Gesdw in Medium

Medium

Elektromen reimmitiven (aufgrund der Rubemasse Verzögenung)

Semme : breitet sich langgamer aus

Im Medium grist es Absorption and Dispersion Dispersion: N = N(V)

Fata Morgana

Superior (Wiste)

inferior (Mar)

mit Tändert sich die Gasdidte

Farmatsdres Prinzip

n Ausbreitung von Licht zwischen Zwei Punkten, die in rerschriedenen Medien liegen, erfolgt so, dass der einegeschlagene Weg gegenüber benachbarten Wegen extremal ist"

Dh.: Ant jeden Strahl ACB ligt diselbe Zahl von Wellenlängen; Oder: Alle Strahlen sind um Phase

Fernat Vol Snellius: Gesantzeit $T(A \rightarrow B) = \frac{AO}{C} + \frac{OB}{C}$ Fernat $T = \min \left(\frac{\partial T(x)}{\partial x} \right) = 0$

- hohärente Mbelagening Zweier Strallen

divergente Strablen => Ringmuster

Michelson-Morley-Experiment (1884)

Cycelas. d. Erde and Umlandbalen $w = 3.10^{4} \text{ m} = \frac{2}{C} \left(\frac{lx}{1-\beta^{2}} - \frac{lx}{\sqrt{1-\beta^{2}}} \right)$ VM.M.—Trich": (Doppelt - Diff. messa; 90° drehan): $\Delta t'$ $\Delta t' = \frac{2}{C} \left(\frac{lx}{\sqrt{1-\beta^{2}}} - \frac{lx}{\sqrt{1-\beta^{2}}} \right)$ $\Delta t - \Delta t' = : St = \frac{2}{C} \left(lx + lx | \cdot \beta^{2} \right)$

Bedingungen. lx = ly = 11m $\Delta = \text{St.c.}; \frac{\Delta}{\lambda} \approx 22 \text{m. 16}^{8} \frac{1}{6.10^{-7} \text{m}} \approx 0.37$ Uniterschied bounte micht bestätigt werden => kein Ather

Absorption u. Dispresion, I

Modell: Getrichener Oszillator

Leg: y(t) = years (wt + p)

Alternative Log: y(t) = years · sin (wt)
+ year · cos (wt)

Wolder Teil, Jobs (t) oder yel (t) ist für die leistung (mittlere heistung (P(t))? = $\frac{1}{T} \int_{0}^{T} dt P(t)$) ist für die leistung relevant? $P(t) = F(t) - \dot{y}(t) : \dot{y}(t) = \omega \cdot \dot{y}_{0,abs} - \cos(\omega t)$ $= -\omega \dot{y}_{0,abs} - \sin(\omega t)$ $\dot{y}_{0,abs} = \frac{F_{0}}{m} \frac{\Gamma_{\omega}}{(\omega - \omega)^{2} + (\Gamma \omega)^{2}}$

El.-magn. Wellen: Zeitliche und räumliche Kohärenz

"Monochromatische Punktquelle"

Fermfeld: $\vec{E} = i(\vec{K} \cdot \vec{\Gamma} - \omega_0 t)$

Reale Quelle: endliche Abstrahlzeit

Bandbreite ⇔longitudinale Kohärenzlänge:

Herausforderung: Röntgenlaser

- Besetzungsinversion?

- Resonator?

$$oldsymbol{\ell}_{\mathsf{long}} = rac{\overline{\lambda}^2}{2\,\Delta\lambda}$$

Mit Laser im Sichtbaren: Long > 0.1 m!

⇒ Holographie, ...

.~.

$$\gamma = \frac{E}{m_0 c^2} \checkmark 1$$

$$\beta = \frac{1}{2} \approx 1$$

Beschleunigte Ladung im Ablenkmagneten

Schwerpunktsystem

Laborsystem

Spektrale Verteilung

(Bsp: R=12 m, E=5 GeV)

'ω

↑

Strahlungscharakteristik "Scheinwerfer"

"Meh Lieht"?

10°,

4

E [€]

Photonendich 5 5 5 W.L. Ginsburg (1947)

max. Winkel zur z-Achse

$$\theta_{w} = K/\gamma$$

mit
$$K = \frac{\lambda_0 e B}{2\pi m_e c}$$

Wiggler (K>1): inkohärente

Undulator(K≤1): kohärente

Überlagerung des abgestrahlten Lichts

$$\Delta W = -\bullet \int \vec{E} d\vec{s}$$
$$= -\bullet \int \vec{v} \cdot \vec{E} dt$$

Für Netto-Energieübertrag ∆W muss Phase Ψ

$$\psi = (k_L + k_U)z - \omega_L t + \varphi_0$$

im Undulator konstant sein!

... die Resonanzbedingung.

Undulatorspektrum

Bandbreite:
$$\frac{\lambda_1}{\lambda \lambda} = N_0$$

höhere Harmonische:
$$\lambda_{L,n} = \frac{\lambda_L}{n}$$

3-dim. Undulatorgleichung:

$$\lambda_L = \lambda_U \frac{1}{2\gamma^2} \left[1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right]$$

θ : Winkel zur z-Achse

Strahlungsleistung:

$$P_{coh} \propto N_{coh}^2$$

Magnetismus

Hall Effekt	49
Hall Effekt (Anwendungen)	50
Drehmoment einer Leiterschleife	51
Beispiel: Drehmoment einer Spule	54
Biot-Savart Gesetz	55
Magnetfeld im Inneren einer Leiterschleife	56
Magnetfeld eines stromführenden Leiters	57
Magnetische Kraft zwischen zwei parallelen Leitern	59
Ampere'sches Gesetz	60
Magnetfeld in einer langen Spule	61
Magnetischer Fluß	62

EM 48 fh-pw

Hall Effekt (1879)

Ladungsträger bewegen sich mit vund werden mit $F = q v \times B$ abgelenkt

- ⇒ Aufladung der oberen und unteren Seite des Leiters
- \Rightarrow Elektrisches Feld E und elektrische Kraft auf Ladungsträger mit F = qE

Ladungsträger werden durch die magnetische Lorentz - Kraft $F = qv \times B$ abgelenkt Es bildet sich ein E - Feld zwischen Ober - und Unterseite des Leiters und eine zusätzliche elektrische Kraft F = qE wirkt auf die Ladungsträger

Im Gleichgewichtsfall gilt : Summe der Kräfte = $0 \rightarrow qvB = qEe$ bzw. E = vB

Hall-Spannung: $V_H = Ed = vBd$

Hall Effekt (Anwendungen)

Ladungsträgergeschwindigkeit $v: V_H = vBd$ $v = V_H/Bd$

<u>Ladungsträgerdichte n</u>: $\Delta Q = n q v \Delta t A$, $I = \frac{\Delta Q}{\Delta t} = n q v A$ bzw. $n = \frac{I}{v q A} = \frac{I B d}{V_{u} q A}$

oder $V_H = \frac{1}{nq} \frac{IB}{t}$ | $t = \text{Dicke des Leiters } (A = d \cdot t), \frac{1}{nq} = \boxed{\text{Hall-Koeffizient } (R_H)}$

Messung des magnetischen Feldes $B: B = \frac{V_H}{I} nqt$ meßbar mit kalibrierten "Hallsonden"

Drehmoment einer Leiterschleife

Kraft auf Leiter : $d\mathbf{F} = I d\mathbf{l} \times \mathbf{B}$ $| qv \rightarrow I$

Leiterschleife im homogenen Magnetfeld : $F = I \oint dl \times B$

Summe der Kräfte, die auf die Schleife wirken = 0

Aber: die Kräfte können ein Drehmoment erzeugen!

Strom im linken Teilstück a verursacht eine Kraft F_1 Strom im rechten Teilstück a verursacht eine Kraft $F_2 = -F_1$

> Keine Kräfte auf Teilstücke b solange $b \parallel B$ Kräfte F_1 und F_2 verursachen ein Drehmoment auf die Leiterschleife

Drehmoment einer Leiterschleife

Drehmoment dreht die Leiterschleife, zusätzlich zwei Kräfte F_3 und F_4 an den Seiten b $F_3 = -F_4$

Drehmoment
$$M = F_1 \frac{b}{2} \sin \mathbf{q} + F_2 \frac{b}{2} \sin \mathbf{q}$$

$$F_{1} = F_{2} = IaB \rightarrow$$

$$M = IaB \frac{b}{2} \sin \mathbf{q} + IaB \frac{b}{2} \sin \mathbf{q}$$

$$M = IaBb \sin \mathbf{q}$$

$$M = IAB \sin \mathbf{q}$$

Fläche der Leiterschleife:

$$A = ab$$

Drehmoment = null, wenn alle vier Kräfte parallel zur Fläche der Leiterschleife zeigen $\sum F = \text{immer Null}$

Drehmoment einer Leiterschleife

Drehmoment $M = IAB \sin q$

Wir wissen:

Drehmoment ist ein Vektor und Strom = skalare Größe Man kann daher den Ausdruck $M = IAB \sin q$ auch darstellen

als: $\vec{M} = I\vec{A} \times \vec{B}$ wobei $\vec{A} = Vektor der Flächennormale$

Rechte Hand Regel zur Bestimmung von A:

(Vektor m)

$$\vec{M} = I\vec{A} \times \vec{B} = \vec{m} \times \vec{B}$$

Der Ausdruck für das Drehmoment gilt für beliebige Orientierungen von B und beliebige Leiterschleifen (z.B. Spule, N Wicklungen $\vec{M} = N \vec{m} \times \vec{B}$)

Beispiel: Drehmoment einer Spule

Im Meßgerät befindet sich eine rechteckige Spule mit

60 Wicklungen und der Abmessung 3 cm x 1.5 cm

Strom durch die Spule: 20 mA

Magnetfeld des Permanentmagneten im Meßgerät: 400 mT

Im Ruhezustand ist das Magnetfeld parallel zur Spulenfläche

Ges.: Welches Drehmoment wirkt auf die Spule?

Wie groß ist das magnetische Moment der Spule?

Magnetische Moment einer Wicklung der Spule:

$$m = IA = (0.02 \,\mathrm{A}) \cdot (0.03 \cdot 0.015 \,\mathrm{m}^2) = 9 \cdot 10^{-6} \,\mathrm{Am}^2$$

magnetisches Moment der gesamten Spule: $m_{Spule} = NIA = 5.4 \cdot 10^{-4} \text{ Am}^2$

Drehmoment:
$$M = m_{Spule} \times B = m_{Spule} \cdot B = (5.4 \cdot 10^{-4} \text{ Am}^2) \cdot (400 \text{ mT}) = 2.16 \cdot 10^{-4} \text{ Nm}$$

Biot-Savart Gesetz

Oersted: "ein stromführender Leiter beeinflußt eine Kompaßnadel" Biot und Savart berechneten das B-Feld, das von einem stromführenden Leiterelement an einer beliebiger Stelle im Raum hervorgerufen wird

$$d\vec{B} = \frac{\mu_0}{4\mathbf{p}} \frac{Id\mathbf{l} \times \hat{\mathbf{r}}}{r^2}$$

Die Stärke des Magnetfeldes

- nimmt mit $1/r^2$ mit der Enfernung vom Leiterelement ab.
- ist proportional zum Strom I im Leiter.
- ist proportional zum Sinus des Winkels zwischen dl und \vec{r} . Die Richtung des Magnetfeldes
- ist senkrecht zur Richtung des Leiterelementes und senkrecht zum Verbindundsvektor zwischen Leiter element und Meßpunkt P.

$$\frac{\mu_0}{4p}$$
 = Proportionalitätsfaktor im SI- Einheitensystem

 μ_0 ="magnetische Feldkonstante" oder "Permeabililät des Vakuums"

$$\mu_0 = 4p \cdot 10^{-7} \text{ T} \cdot \text{m/A} \left(\text{oder } \frac{\text{Vs}}{\text{Am}} \right)$$

Magnetfeld im Inneren einer Leiterschleife

Feld am Koordinatenursprung O (r = R):

$$B = \oint dB = \frac{\mu_0}{4\mathbf{p}} \frac{I}{R^2} \oint dl = \frac{\mu_0}{4\mathbf{p}} \frac{I}{R^2} 2R\mathbf{p} = \frac{\mu_0 I}{2R} \quad \left| \oint dl = 2R\mathbf{p} \right|$$

Feld im Punkt P (auf der x - Achse):

nur B_x Anteile bleiben übrig, alle B_y Anteile heben sich nach dem Aufsummieren über die gesamte Schleife auf

$$dB_{x} = dB \sin \mathbf{q} = dB \frac{R}{\sqrt{R^{2} + x^{2}}} = \frac{\mu_{0}}{4\mathbf{p}} \cdot \frac{Idl}{R^{2} + x^{2}} \cdot \frac{R}{\sqrt{R^{2} + x^{2}}} \qquad \left| \sin \mathbf{q} \right| = \frac{R}{\sqrt{R^{2} + x^{2}}}$$

$$B_{x} = \oint dB_{x} = \oint \frac{\mu_{0}}{4\mathbf{p}} \frac{IR}{\left(R^{2} + x^{2}\right)^{3/2}} \cdot dl = \frac{\mu_{0}IR}{4\mathbf{p}\left(R^{2} + x^{2}\right)^{3/2}} \cdot \oint dl = \frac{\mu_{0}}{4\mathbf{p}} \frac{2\mathbf{p}R^{2}I}{\left(R^{2} + x^{2}\right)^{3/2}} \qquad \left| \oint dl = 2R\mathbf{p} \right|$$

$$\text{für große x gilt : } \left(R^{2} + x^{2}\right)^{3/2} \approx \left(x^{2}\right)^{3/2} = x^{3} \rightarrow B_{x} = \frac{\mu_{0}}{4\mathbf{p}} \frac{2\mathbf{p}R^{2}I}{x^{3}} = \frac{\mu_{0}}{4\mathbf{p}} \frac{2m}{x^{3}} \qquad \left| m = IR^{2}\mathbf{p} \right|$$

Magnetfeld eines stromführenden Leiters

Gesucht: Magnetfeld B am Punkt P

$$d\vec{B} = \frac{\mu_0}{4p} \frac{Id\vec{l} \times \hat{r}}{r^2} = \frac{\mu_0}{4p} \frac{Idx}{r^2} \sin f = \frac{\mu_0}{4p} \frac{Idx}{r^2} \cos q$$

Es gilt: $x = y \tan q$ und $y = r \cos q$ bzw. $\cos q = y/r$

$$x = y \tan \mathbf{q} \rightarrow dx = y \frac{1}{\cos^2 \mathbf{q}} d\mathbf{q} = y \frac{r^2}{y^2} d\mathbf{q} = \frac{r^2}{y} d\mathbf{q}$$

$$dB = \frac{\mu_0}{4\mathbf{p}} \frac{I}{r^2} \frac{r^2}{y} \cos \mathbf{q} \, d\mathbf{q} = \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \cos \mathbf{q} \, d\mathbf{q}$$
 |Integration für linke und rechte Hälfte des Leiters

$$B_{rechts} = \int_{0}^{q_R} \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \cos \mathbf{q} \, d\mathbf{q} = \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \sin \mathbf{q}_R \qquad |\mathbf{q}_R| = \text{maximaler Winkel } \mathbf{q} \text{ am rechten Leiterende}$$

$$B_{links} = \int_{0}^{q_L} \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \cos \mathbf{q} \, d\mathbf{q} = \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \sin \mathbf{q}_L \rightarrow B = B_R + B_L = \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \left(\sin \mathbf{q}_R + \sin \mathbf{q}_L \right)$$

Magnetfeld eines stromführenden Leiters

Rechte Hand Regel definiert die Richtung der magnetischen Feldlinien

<u>Leiterabschnitt</u>: $B = B_R + B_L = \frac{\mu_0}{4p} \frac{I}{y} (\sin q_R + \sin q_L)$

Sehr langer Leiter: $\mathbf{q}_R = \mathbf{q}_L \approx 90^\circ \rightarrow \sin \mathbf{q}_R + \sin \mathbf{q}_L \approx 2$

$$B = B_R + B_L = \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \left(\sin \mathbf{q}_R + \sin \mathbf{q}_L \right) \rightarrow \frac{\mu_0}{4\mathbf{p}} \frac{I}{y} \cdot 2 = \frac{\mu_0 I}{2\mathbf{p} y}$$

fh-pw

Magnetische Kraft zwischen zwei parallelen Leitern

Kraft auf Leiter : $dF = I dl \times B$

Magnetfeld von Leiter 2 verursacht eine Kraft auf Leiter 1

$$F_1 = I_1 l \times B_2 = I_1 l B_2 = I_1 l \frac{\mu_0 I_2}{2pa} = \frac{\mu_0 I_1 I_2}{2pa} l$$

Kraft auf Leiter 1 weist Richtung Leiter 2

Kraft/Längeneinheit:

$$\frac{\mathbf{F}_1}{l} = \frac{\mu_0 I_1 I_2}{2\mathbf{p}a} = 4\mathbf{p} \cdot 10^{-7} \frac{I_1 I_2}{2\mathbf{p}a} = 2 \cdot 10^{-7} \frac{I_1 I_2}{a}$$

$$\Rightarrow \text{SI-Definition des Amperes}$$

Parallele Leiter mit Strom

- in dieselbe Richtung ziehen einander an
- in entgegengesetzte Richtung stoßen einander ab

Ampere'sches Gesetz

$$\oint_C Bdl = \mu_0 I_C \quad \text{Ampere' sches Gesetz}$$

Das Integral von B über eine beliebig geschlossene Kurve C ist proportional zu dem Strom I_C , der durch diese Fläche hindurchtritt.

B läßt sich damit für <u>symmetrische</u> Anordungen berechnen

Beispiel: langer Leiter, Kurve C = Kreis um den Leiter mit Radius r B = konstant, da B überall am Kreis gleich groß ist

$$\oint_C Bdl = \mu_0 I_C \to B \oint_C dl = B \cdot 2\mathbf{p}r = \mu_0 I \quad \text{oder} \quad B = \frac{\mu_0 I}{2\mathbf{p}r}$$

Magnetfeld in einer langen Spule

Anwendung des Ampere'schen Gesetzes Integration entlang des rot eingezeichneten Rechteckes (Länge I in Spulenrichtung)

$$\oint_C Bdl = \int_a Bdl + \int_b Bdl + \int_c Bdl + \int_d Bdl = Bl$$

$$\int_a Bdl = Bl \qquad \int_b Bdl = \int_d Bdl = 0$$

$$\int_d Bdl \approx 0 \quad \text{für eine lange Spule}$$

N Windungen entlang der Länge I

 \rightarrow Gesamtstrom durch die rot umrandete Fläche = NI

$$\oint_C Bdl = Bl = \mu_0 NI \rightarrow B = \mu_0 \frac{N}{l} I = \mu_0 nI$$

n = Wicklungen / Längeneinheit

Magnetischer Fluß

Eine Fläche kann man sich aus kleinen Flächen-Elementen zusammengesetzt denken Zu jedem Flächenelement gehört ein Vektor dA: dA steht normal auf das Flächenelement und die Länge von dA entspricht der Fläche des Elementes

Magnetischer Fluß: $F_B = \int \mathbf{B} \cdot d\mathbf{A} = \int \mathbf{B} \cdot d\mathbf{A} \cdot \cos \mathbf{q}$

Der magnetische Fluß ist maximal, wenn B parallel zur Flächennormalen $(\cos q = 1)$

Wenn keine magnetischen Feldlinien durch die Fläche passieren (B | Oberfläche), dann ist der magnetische Fluß = Null

SI-Einheit des magnetischen Flusses: Weber (Wb), 1Wb=1T m²