Geometric Algebra

Davi Sales Barreira

October 18, 2022

Contents

1 Brief Note on Algebra

6

List of Definitions

1.1	Definition (Groups)	6
1.2	Definition (Abelian Group)	6
1.3	Definition (Subgroup Generated)	6

List of Theorems

List of Examples

1 Brief Note on Algebra

Let's start by presenting some definitions from Algebra.

Definition 1.1 (Groups). Consider the triple (G, \odot, e) , where G is a set, $\odot : G \times G \to G$ is the product mapping and $e \in G$ is the identity element. This triple is a group if:

- 1. (Associativity): $a \odot (b \odot c) = (a \odot b) \odot c$ for every $a, b, c \in G$;
- 2. (Identity): $a \odot e = e \odot a = a$ for every $a \in G$;
- 3. (Inverse): For every $a \in G$ there exists $a^{-1} \in G$ such that $a \odot a^{-1} = a^{-1} \odot a = a$;

Definition 1.2 (Abelian Group). A group (G, \odot, e) is *Abelian* if besides the group properties (i.e. associativity, identity and inverse) it's also commutative, i.e. $a \odot b = b \odot a$ for every $a, b \in G$.

Example 1.1. Note that $(\mathbb{R}, +, 0)$ is an Abelian Group. In this case, a^{-1} is usally denoted as -a. The triple $(\mathbb{R} \setminus \{0\}, \cdot, 1)$ is also an Abelian Group.

An example of non-Abelian group would be the set of invertible matrices from \mathbb{R}^n to \mathbb{R}^n , with \odot as matrix composition, e.g. $A \odot B = AB$. Since every matrix considered is invertible and we have the identity matrix as our identity element, then we indeed have a non-Abelian group, since the matrix product is not commutative.

Definition 1.3 (Subgroup Generated). Let (G, \odot, e) be a group. We say that $S \subset G$ is a subgroup of G if (S, \odot, e) is a group. For $A \subset G$, Gr(A) is called the subgroup generated by A, and it's the smallest subgroup of G containing A, i.e. $\cap_{\alpha \in \Gamma} S_{\alpha}$ where $\{S_{\alpha}\}_{\alpha \in \Gamma}$ are all the sets that are subgroups of G. It's easy to prove that such set is indeed a subgroup.

References