Suppose you are given an $n \times m$ grid, and I then think of a rectangle with its corners on grid points. I then ask you to "black out" as many of the gridpoints as possible, in such a way that you can still guess my rectangle after I tell you all of the non-blacked out vertices that its corners lie on.

Figure 1: An example of an invalid "black out" for an 3×4 grid. The blue rectangle and the red rectangle have the same presentation.

Question. How many vertices may be crossed out such that every rectangle can still be uniquely identified? Related.

- 1. What if the interior of the rectangle is lit up instead?
- 2. What if all gridpoints that instersect the perimeter are lit up?
- 3. What if the rectangles must be square?
- 4. What if parallelogams are used instead of rectangles?
- 5. What if the rectangles must be horizontal or vertical?
- 6. What if the rectangles must be horizontal, vertical, or 45 diagonal?
- 7. What if this is done on a triangular grid with equilateral triangles?
- 8. What if this is done in more dimensions (e.g. with a rectangular prism or tetrahedron?)