MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

ILSVRC 2016 Object Detection from Video

Byungjae Lee¹, Songguo Jin¹, Enkhbayar Erdenee¹, Mi Young Nam², Young Gui Jung², Phill Kyu Rhee¹

Inha University¹, NaeulTech²

Results with additional training data

- Object Detection from Video (VID)
 2nd place (mAP: 73.15%)
- Object Detection/Tracking from Video (VID)
 2nd place (mAP: 49.09%)

Overview

I. Faster R-CNN Object Detector

- + Context region
- + Larger feature map
- + Ensemble
- + Data configuration

II. MCMOT: Multi-Class Multi-Object Tracking

- Tracking by Detection
- Detection: Ensemble of CNNs
- Tracking: MCMOT using CPD

B. Lee, E. Erdenee, S. Jin, & P. Rhee. "Multi-Class Multi-Object Tracking using Changing Point Detection". arXiv 2016.

I. Faster R-CNN Object Detector

Challenge I: Small Object

Challenge I: Small Object

Solution – Larger feature map

Challenge II: Blurred Object

Challenge II: Blurred Object

Solution – Context Region

I. Faster R-CNN with VGG16

I. Faster R-CNN with VGG16

- I. Faster R-CNN with VGG16
 - + Larger feature map (remove 'pool4' layer) (+2.9% mAP)

I. Faster R-CNN with VGG16

- + Larger feature map (remove 'pool4' layer) (+2.9% mAP)
- + Context region (+2.6% mAP)

Overview of ILSVRC VID Dataset

ILSVRC VID	Training	Validation
Images	1122397	176126
Snippets	3862	555

Overview of ILSVRC VID Dataset

ILSVRC VID	Training	Validation
Images	1122397	176126
Snippets	3862	555

- Redundant images within each snippet
- Diversity is too low to train CNN

Overview of ILSVRC VID Dataset

ILSVRC VID	Training	Validation
Images	1122397	176126
Snippets	3862	555

- Redundant images within each snippet
- Diversity is too low to train CNN
- We need more data

ImageNet CLS Pre-trained Model

Detection Components

VGG 16

Baseline

70.7%

ResNet-101 mAP(%)
Baseline 78.8%

Detection Components

VGG 16	mAP(%)
Baseline	70.7%
+ Larger feature map	73.6%
+ Context layer	76.2%

ResNet-101 mAP(%)
Baseline 78.8%

Detection Components

II. MCMOT: Multi-Class Multi-Object Tracking using Changing Point Detection

Motivation

- Object detector becomes robust
- Should we use complex multi-object tracking algorithm?

Motivation

Based on high performance detection, simple & fast MOT algorithm can achieve competitive result

Results

ILSVRC2016 Object Detection/Tracking from Video (VID) with additional training data
 2nd place (mAP: 49.09%)

Results

- ILSVRC2016 Object Detection/Tracking from Video (VID) with additional training data
 2nd place (mAP: 49.09%)
- Our MCMOT also achieves state-of-the-art results in different MOT datasets

Multiple Object Tracking Benchmark 2016

KITTI Tracking Benchmark (Car)

Tracking by Detection

- Object Detection: Ensemble of CNNs
- Multi-Object Tracking: MCMOT using CPD

MCMOT using CPD

Track Segment Creation

MCMC-based MOT approach

Changing number of moving objects are challenging, which require high computation overheads due to a high-dimensional state space

Separating motion dynamics

The method separates the motion dynamic model of Bayesian filter into the entity transitions and motion moves

No dimension variation in the iteration loop by separating the moves of birth and death

Track Segment Creation

Estimation of entity state transition (Birth, Death)

The entity transitions are modeled as the birth and death events We estimate the entity prior by data-driven approach, instead of the inside of MCMC loop

B. Lee, E. Erdenee, S. Jin, & P. Rhee. "Multi-Class Multi-Object Tracking using Changing Point Detection". arXiv 2016.

Track Segment Creation

Separating motion dynamics

Pros

Since the Markov chain has no dimension variation in the iteration loop, it can reach to stationary states with **less computation overhead**

Cons

such a simple approach cannot deal with complex situations that occur in MOT Many of them are **suffered from track drifts** due to appearance variations

Drift problem is attacked by a CPD algorithm

Changing Point Detection

Two-Stage Learning for Changing Point Detection

- Drifts in MCMOT are investigated by detection such abrupt change points between stationary time series that represent track segment
- A possible track drift is determined by a changing point detection
- 2nd level time series is built using the scanned average responses to reduce outliers in the time series

Changing Point Detection

Changing Point Detection

^{*} Images are from MOT 2016 benchmark

Tracking Speed

Method	MOTA↑	MOTP↑	FAF↓	MT↑	$\mathrm{ML}\!\!\downarrow$	FP↓	FN↓	ID Sw↓	Frag↓	Hz↑
GRIM	-14.5%	73.0%	10.0	9.9%	49.5%	59,040	147,908	1,869	2,454	10.0
JPDA_m	26.2%	76.3%	0.6	4.1%	67.5%	3,689	130,549	365	638	22.2
SMOT	29.7%	75.2%	2.9	5.3%	47.7%	17,426	107,552	3,108	4,483	0.2
DP_NMS	32.2%	76.4%	0.2	5.4%	62.1%	1,123	121,579	972	944	212.6
CEM	33.2%	75.8%	1.2	7.8%	54.4%	6,837	114,322	642	731	0.3
TBD	33.7%	76.5%	1.0	7.2%	54.2%	5,804	112,587	2,418	2,252	1.3
LINF1	41.0%	74.8%	1.3	11.6%	51.3%	7,896	99,224	430	963	1.1
olCF	43.2%	74.3%	1.1	11.3%	48.5%	$6,\!651$	96,515	381	1,404	0.4
NOMT	46.4%	76.6%	1.6	18.3%	41.4%	9,753	87,565	359	504	2.6
AMPL	50.9%	77.0%	0.5	16.7%	40.8%	3,229	86,123	196	639	1.5
NOMTwSDP16	62.2%	79.6%	0.9	$\boldsymbol{32.5\%}$	31.1%	5,119	63,352	406	642	3.1
MCMOT_HDM (Ours)	62.4%	78.3%	1.7	31.5%	24.2%	9,855	$57,\!257$	1,394	1,318	34.9

Tracking performances comparison on the MOT benchmark 2016

- The timing excludes detection time
- With a Titan X Maxwell GPU, the detector runs at approximately 3.5 FPS

Results

ImageNet VID

MOT Benchmark

KITTI Tracking Benchmark

Acknowledgement

Thank You