| Graduate | Model         | Accuracy | F1 Score |
|----------|---------------|----------|----------|
| Original | ANN           | 0.86     | 0.86     |
| Original | Random Forest | 0.86     | 0.88     |
| Original | SVM           | 0.85     | 0.85     |
| Original | XGBoost       | 0.99     | 0.99     |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          |          |
|          |               |          | ⊏        |

| Stage-Drop Out                                   | Model         | Accuracy + | /- F1 Score +/ |                                                   | X train                  | X test                 | v_pred                   |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
|--------------------------------------------------|---------------|------------|----------------|---------------------------------------------------|--------------------------|------------------------|--------------------------|------------------|-------------------------|--------------------|-----------------------------|----------------------|------------------------|--------------------|----------------------|-------------------|----------------------|-----------------------|--------|
|                                                  |               |            |                |                                                   |                          | _                      |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Original                                         | ANN           | 0.87       | 0.78           |                                                   |                          | X_test_ann_filter      | ed y_pred_ann_filter     |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Original                                         | Random Forest | 0.86       | 0.77           |                                                   | X_train_ann_f2           | X_test_ann_f2          | y_pred_ann_f2            | Final Best Parar | neters for ANN: {'ne    | urons_layer1': 1   | 6, 'neurons_layer2': 16}    |                      |                        |                    |                      |                   |                      |                       |        |
| Original                                         | SVM           | 0.85       | 0.77           |                                                   |                          |                        |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Original                                         | XGBoost       | 0.85       | 0.77           |                                                   |                          |                        |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Drop low important(threshold = 0.02,<br>34->31)  | ANN           | 0.87       | 0.79           |                                                   | X_train_svm              | X_test_svm             | y_pred_svm               |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Drop low important(threshold = 0.01,<br>34->24)  | Random Forest | 0.87       | 0.79           |                                                   | X_train_svm              | X_test_svm             | y_pred_svm               | Final Best Parar | neters: {'C': 10, 'kern | el': 'linear'}     |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Drop low important(threshold = 0.01,<br>34->31)  | SVM           | 0.88       | 0.80           |                                                   |                          |                        |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Drop low important (threshold = 0.01,<br>34->30) | XGBoost       | 0.86       | 0.79           |                                                   |                          |                        |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Fine-Tuned                                       | ANN           | 0.87       | 0.85           | {'neurons_layer1': 32, 'neurons_layer2': 8}       | X_train_rf               | X_test_rf              | y_pred_rf                |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Fine-Tuned                                       | Random Forest | 0.87       | 0.79           | Final Best Parameters for Random Forest: {        | X_train_rf               | X_test_rf              | y_pred_rf                | Final Best Parar | neters for Random F     | orest: {'n_estim   | ators': 300, 'max_depth':   | 3, 'min_samples_spli | it': 10, 'min_samp     | les_leaf: 1}       |                      |                   |                      |                       |        |
| Fine-Tuned                                       | SVM           | 0.88       | 0.80           | Final Best Parameters: {'C': 10, 'kernel': 'line: | ar'}                     |                        |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Fine-Tuned                                       | XGBoost       | 0.87       | 0.79           | Final Best Parameters: {'learning_rate': 0.1,     | subsample': 0.8, 'colsam | ple_bytree': 0.8, 'tre | e_method': 'hist', 'earl | stopping rounds' | 10, 'eval_metric': 'lo  | ogloss', 'random   | state': 42, 'n estimators': | 100, 'max_depth': 3  | }                      |                    |                      |                   |                      |                       |        |
| Feature Engineering                              | ANN           | 0.87       | 0.87           |                                                   | -                        |                        |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Feature Engineering                              | Random Forest | 0.87       | 0.80           |                                                   | X train selected         | X_test_selected        | y pred selected          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| Feature Engineering                              | SVM           | 0.87       | 0.81           | -                                                 | X train selected         | X_test_selected        | y_pred                   | Final Best Para  | neters: { learning ra   | ite': o 1. 'subsam | ple': 0.8, 'colsample bytre | e' o.8. 'tree method | l': 'hist', 'early ste | onning rounds's to | n 'eval metric': 'lo | gloss' 'random st | ite': 42 'n estimate | rs': 100, 'max, dent' | h': 2} |
| Feature Engineering                              | XGBoost       | 0.87       | 0.82           |                                                   |                          |                        |                          |                  |                         |                    |                             |                      |                        |                    | ,                    |                   |                      |                       | - 0,7  |
|                                                  |               |            |                |                                                   | X_train_final            | X_test_final           | y_pred                   |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| 做到超參數 要查一下為什麼Ann的準確度                             | 降低一點          |            |                |                                                   | Use the evaluate_and_I   | olot function          |                          |                  |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |
| 在做特徵工程                                           |               |            |                |                                                   | evaluate_and_plot(y_te   | st, y_pred_rf, "Rand   | lom Forest After Featu   | re Selection")   |                         |                    |                             |                      |                        |                    |                      |                   |                      |                       |        |

Jasonnwaneti@outlook.com jutirado2004@gmail.com isa002014@gmail.com

andrescuervo1024@gmail.com

zoeyhuang1@gmail.com

```
2 df_factors_encoded['Scholarship Yes Debt Yes' ] = df_factors_encoded['Scholarship holder']& df_factors_encoded['Debtor']
                                                   4 df_factors_encoded['Scholarship No Debt No'] = ~ df_factors_encoded['Scholarship holder'] & ~ df_factors_encoded['Debtor']
                                                   6 df_factors_encoded['Scholarship No Debt Yes' ] = ~df_factors_encoded['Scholarship holder']& df_factors_encoded['Debtor']
one by one?
                                                   8 df_factors_encoded['Scholarship Yes Debt No'] = df_factors_encoded['Scholarship holder'] & ~ df_factors_encoded['Debtor']
                                                   10 grouped_data = df_factors_encoded.groupby('Scholarship Yes Debt Yes')['Target_Graduate'].mean() * 100
depends
                                                   11 plt.figure(figsize=(6, 5))
                                                   12 bars = plt.bar(grouped_data.index, grouped_data.values, color="skyblue")
                                                   14 # Add text labels above bars
                                                   15 for bar, value in zip(bars, grouped_data.values):
                                                   16 plt.text(
                                                             bar.get_x() + bar.get_width() / 2,
                                                             bar.get_height() + 1,
                                                             f"{value:.1f}%",
                                                             fontsize=12,
```



| SVM Feature Remove < 0.010                     | Weight   |                                       | Top 10 Fea | ture Weights in SVM (I | Linear Kernel) |     |
|------------------------------------------------|----------|---------------------------------------|------------|------------------------|----------------|-----|
| Tuition fees up to date                        | 1.541711 | Tuition fees up to date -             |            |                        |                |     |
| International                                  | 1.386583 | International -                       |            |                        |                |     |
| Educational special needs                      | 0.510332 | Educational special needs -           |            |                        |                |     |
| Debtor                                         | 0.466021 | Debtor -                              |            |                        |                |     |
| Daytime/evening attendance                     | 0.435421 | g Daytime/evening attendance          |            |                        |                |     |
| Curricular units 2nd sem (approved)            | 0.430958 | Baytime/evening attenuance            |            |                        |                |     |
| Scholarship holder                             | 0.356493 | Scholarship holder                    |            |                        |                |     |
| Displaced                                      | 0.352999 |                                       |            |                        |                |     |
| Curricular units 2nd sem (enrolled)            | 0.34928  | Displaced -                           |            |                        |                |     |
| Curricular units 1st sem (approved)            | 0.294194 | Curricular units 2nd sem (enrolled)   |            |                        |                |     |
| Curricular units 1st sem (without evaluations) | 0.180606 | Curricular units 1st sem (approved) - |            |                        |                |     |
| Curricular units 1st sem (credited)            | 0.126723 | 0.                                    | 0 0.2 0.4  | 0.6 0.8 1<br>Weight    | .0 1.2 1.4     | 1.6 |
| Curricular units 2nd sem (credited)            | 0.126482 |                                       |            |                        |                |     |
| Nacionality                                    | 0.121448 |                                       |            |                        |                |     |
| Gender                                         | 0.111448 |                                       |            |                        |                |     |
| Curricular units 1st sem (enrolled)            | 0.085908 |                                       |            |                        |                |     |
| Course                                         | 0.042924 |                                       |            |                        |                |     |
| Unemployment rate                              | 0.039552 |                                       |            |                        |                |     |
| Curricular units 1st sem (grade)               | 0.038162 |                                       |            |                        |                |     |
| Curricular units 2nd sem (evaluations)         | 0.036674 |                                       |            |                        |                |     |
| Inflation rate                                 | 0.029582 |                                       |            |                        |                |     |
| Age at enrollment                              | 0.029292 |                                       |            |                        |                |     |
| Father's occupation                            | 0.028219 |                                       |            |                        |                |     |
| Marital status                                 | 0.025888 |                                       |            |                        |                |     |
| Application order                              | 0.025857 |                                       |            |                        |                |     |
| Mother's occupation                            | 0.019267 |                                       |            |                        |                |     |
| Mother's qualification                         | 0.014491 |                                       |            |                        |                |     |
| Curricular units 2nd sem (grade)               | 0.010583 |                                       |            |                        |                |     |
| Curricular units 1st sem (evaluations)         | 0.008876 |                                       |            |                        |                |     |
| Application mode                               | 0.008452 |                                       |            |                        |                |     |
| Curricular units 2nd sem (without evaluations) | 0.00792  |                                       |            |                        |                |     |
| Previous qualification                         | 0.005463 |                                       |            |                        |                |     |
| Father's qualification                         | 0.003284 |                                       |            |                        |                |     |
| GDP                                            | 0.002459 |                                       |            |                        |                |     |

| Feature,Importance                             | Importance | meaningless                           |  |
|------------------------------------------------|------------|---------------------------------------|--|
| Curricular units 2nd sem (approved)            | 0.230968   |                                       |  |
| Curricular units 1st sem (approved)            | 0.076557   | Top 10 Most Important Features        |  |
| Tuition fees up to date                        | 0.054343   | Curricular units 2nd sem (approved) - |  |
| Curricular units 2nd sem (enrolled)            | 0.044345   | Curricular units 1st sem (approved)   |  |
| Debtor                                         | 0.03641    | Tuition fees up to date               |  |
| Course                                         | 0.032716   | Curricular units 2nd sem (enrolled)   |  |
| Age at enrollment                              | 0.029964   | g Debtor-                             |  |
| Displaced                                      | 0.025933   | Course -                              |  |
| Curricular units 1st sem (enrolled)            | 0.023776   | Age at enrollment -                   |  |
| Curricular units 2nd sem (grade)               | 0.021577   | Displaced -                           |  |
| Mother's qualification                         | 0.020278   | Curricular units 1st sem (enrolled)   |  |
| Scholarship holder                             | 0.019598   | Curricular units 2nd sem (grade) -    |  |
| Curricular units 2nd sem (credited)            | 0.016207   | 0.00 0.05 0.10 0.15 0.20              |  |
| Mother's occupation                            | 0.014565   | SHAP Importance                       |  |
| Nacionality                                    | 0.014021   |                                       |  |
| Unemployment rate                              | 0.013562   |                                       |  |
| Gender                                         | 0.013441   |                                       |  |
| Daytime/evening attendance                     | 0.013382   |                                       |  |
| Curricular units 1st sem (evaluations)         | 0.013162   |                                       |  |
| Curricular units 2nd sem (evaluations)         | 0.010569   |                                       |  |
| Curricular units 1st sem (credited)            | 0.010349   |                                       |  |
| Father's qualification                         | 0.009964   |                                       |  |
| International                                  | 0.009891   |                                       |  |
| GDP                                            | 0.00574    |                                       |  |
| Application mode                               | 0.004474   |                                       |  |
| Educational special needs                      | 0.003716   |                                       |  |
| Inflation rate                                 | 0.002799   |                                       |  |
| Application order                              | 0.002613   |                                       |  |
| Father's occupation                            | 0.00238    |                                       |  |
| Curricular units 1st sem (grade)               | 0.00207    |                                       |  |
| Previous qualification                         | 0.001595   |                                       |  |
| Curricular units 2nd sem (without evaluations) | 0.000828   |                                       |  |
| Marital status                                 | 0.000609   |                                       |  |
| Curricular units 1st sem (without evaluations) | 0.000377   |                                       |  |





| Why is XGBoost so effective for predi    | cting the Graduate ta   | rget?                  |                          |                           |                                      | 為什麼 XGBoost 在             | : Graduate 目標的預     | 測上效果這麼好?                                |                              |                                               |                                     |             |               |        |
|------------------------------------------|-------------------------|------------------------|--------------------------|---------------------------|--------------------------------------|---------------------------|---------------------|-----------------------------------------|------------------------------|-----------------------------------------------|-------------------------------------|-------------|---------------|--------|
| Strong data-fitting capability:          |                         |                        |                          |                           |                                      | 對於數據的擬合能                  | 力強: XGBoost 是一      | 種基於梯度提升的相                               | 模型,擅長處理數                     | 值型和分類型混合的                                     | 的數據, 對於高維度、                         | 非線性關係的數據月   | 有很強的表現力。      |        |
| XGBoost, as a gradient boosting tree     | model, excels at hand   | lling mixed numerio    | cal and categorical da   | ta. Its ability to captur | e non-linear relationships and ma    | an 我們的數據中, 影響             | P畢業與否的主要特征          | 數(如 Curricular u                        | its approved, Tuit           | ion fees up to date #                         | (2) 具有很強的判別力                        | ,且數據之間的模式   | 對 XGBoost 來說! | 更容易捕捉。 |
|                                          |                         | · ·                    |                          |                           | •                                    |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Highly predictive features in the data   |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| In your dataset, key features influence  |                         | such as Curricular     | units approved and I     | Puition fees up to date   | nossess strong discriminative no     | wer These natterns a      | re well-captured by | XGRoost contribut                       | ing to its excellent         | performance                                   |                                     |             |               |        |
| myour dutabet, ney reatures immunic      | ing graduation others   | , ouen uo curricului   | umo approved und         | untion rees up to dute    | , possess strong discriminative pe   |                           | 顯著提升 Drop Out       |                                         | ing to its executive         | periorinancei                                 |                                     |             |               |        |
| Why does feature engineering signific    | eantly improve the Fi   | Score for Drop Out     |                          |                           |                                      | 99 11 /25 10 BX 11 125 HG | sk-H JE /           | a) I'l beore :                          |                              |                                               |                                     |             |               |        |
|                                          |                         | Score for Drop Out     |                          |                           |                                      | P. C                      |                     |                                         |                              |                                               |                                     |             |               |        |
| Reasons for the F1 Score improvemen      | it:                     |                        |                          |                           |                                      | F1 Score 提升的原             |                     |                                         |                              |                                               |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      | 新特徵捕捉了關鍵(                 |                     | · Waste — Ale Di de Di                  | A Jam 89 oh I m Jon 888 J.L. |                                               | W. L. S.L. al., Al. of our Six N.A. |             |               |        |
| New features captured critical inform    |                         |                        |                          |                           |                                      |                           | olarship 和 Debt Rat | 10, 這些可能定與學                             | 生 報学 密切相關的                   | 以素, 網光 J 数據中原                                 | R.本献失的重要信號。                         |             |               |        |
| The inclusion of Scholarship and Deb     | t Ratio added vital si  | gnals closely associa  | ated with student droj   | pout, compensating to     | r previously missing data.           | 解決數據分布不均                  |                     |                                         |                              |                                               |                                     |             |               |        |
| Addressed data imbalance issues:         |                         |                        |                          |                           |                                      |                           | 不平衡或噪聲特徵, i         | <b>由過特徵工程過濾掉</b>                        | 低相關特徵, 可以甚                   | 是高模型對輟學學生的                                    | 内辨別能力。                              |             |               |        |
| Original data may have contained iml     | balanced or noisy fea   | tures. Feature engin   | neering filtered out les | s relevant features, in   | proving the model's ability to ide   |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Why accuracy did not improve:            |                         |                        |                          |                           |                                      |                           | 的預測影響,但新增物          | 寺徽主要對輟學這-                               | 類別的預測有幫助,                    | 因此主要反映在                                       | F1 Score 而非準確度                      | Ŀ.          |               |        |
| Accuracy reflects predictions for all sa | amples, but the newly   | added features pri     | marily benefited drop    | out predictions, which    | n impacted F1 Score rather than o    | verall accuracy.          |                     |                                         |                              |                                               |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Which model performs best for Drop       | Out, and why?           |                        |                          |                           |                                      | 哪個模型在 Drop (              | Out 表現最好, 為什麼       | 图?                                      |                              |                                               |                                     |             |               |        |
| Best-performing model:                   |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      | 表現最好的模型:                  |                     |                                         |                              |                                               |                                     |             |               |        |
| XGBoost: Performed the best due to i     | ts high flexibility and | responsiveness to f    | feature engineering.     |                           |                                      | XGBoost 表現最佳              | :由於其高靈活性和對          | 對特徵工程的良好響                               | 應, XGBoost 在 C               | Fraduate 和 Dropout                            | 目標上都表現出色。                           |             |               |        |
| Random Forest: Demonstrated high s       | stability, making it a  | eliable choice for in  | nterpretability and con  | nsistent performance.     |                                      | Random Forest 穩           | 定性高:在解釋性和和          | ®定性方面,Rando                             | m Forest 是一個可                | 靠的選擇                                          |                                     |             |               |        |
| Why XGBoost and Random Fore              | est outperform oth      | ers:                   | 分析一下各模型優缺                | 點                         |                                      | XGBoost 的優勢:              |                     |                                         |                              |                                               |                                     |             |               |        |
|                                          | 1                       |                        | 跟我們的資料?                  |                           |                                      | 高爨活性: XGBoos              | t 能夠處理複雜的非          | 線性關係, 並且通過                              | 正則化防止過擬合。                    |                                               |                                     |             |               |        |
| XGBoost's strengths:                     |                         |                        | DC.3411.75.C11.          |                           |                                      |                           | ost 能夠自動選擇重         |                                         |                              |                                               |                                     |             |               |        |
| High flexibility: Handles comple         | y non-linear relat      | ionshins effective     | elv                      |                           |                                      | Random Forest 的           |                     | 2111017 22 10111101-                    |                              |                                               |                                     |             |               |        |
| Feature importance: Automatically se     |                         |                        |                          | feature engineering       |                                      |                           | orest 通過集成多棵相       | 計本減小古羊 寿祖                               | <b>五学齢 各理</b> 定              |                                               |                                     |             |               |        |
| Random Forest's strengths:               | ices the most critica   | i icatures, wincii is  | cspecially dscrut arter  | reature engineering.      |                                      |                           | orest 的特徵重要性。       |                                         |                              | 9                                             |                                     |             |               |        |
| Stability: Reduces variance thro         | uah tha anaambla        | of two on              |                          |                           |                                      | 為什麼比其他模型                  |                     | かぶ 件件, 垣112万旬                           | 城字囚杀时升币刊片                    | d <sub>o</sub>                                |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      |                           |                     | n                                       | Martin Ale Ale VIVIII Ar     | A 44 - 10 10 10 10 10 10 10 10 10 10 10 10 10 | a the wall Not date at              |             |               |        |
| Interpretability: Feature importance     |                         | easy to understand,    | aiding dropout analy     | SIS.                      |                                      |                           | IGBoost 和 Random    |                                         |                              |                                               | 6両項側形刀。                             |             |               |        |
| Why these models are better than oth     | iers:                   |                        |                          |                           |                                      | 到特像 <b>上</b> 程的警應:        | :這些模型能 夠充分          | 利用狩飯工程後的第                               | [特俶, 從而促力性]                  | E                                             |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Ensemble learning advantages: Both       |                         |                        |                          |                           | power.                               | 相同的特徵:                    |                     |                                         |                              |                                               |                                     |             |               |        |
| Response to feature engineering: The     | se models effectively   | utilize new features   | s, leading to superior p | performance.              |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Common and unique top features           |                         |                        |                          |                           |                                      | Curricular units 2n       |                     |                                         |                              |                                               |                                     |             |               |        |
| Common features across models:           |                         |                        |                          |                           |                                      | Curricular units 1s       | t sem (approved)    |                                         |                              |                                               |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      | Tuition fees up to o      | late                |                                         |                              |                                               |                                     |             |               |        |
| Curricular units 2nd sem (approved)      |                         |                        |                          |                           |                                      | Age at enrollment         |                     |                                         |                              |                                               |                                     |             |               |        |
| Curricular units 1st sem (approved)      |                         |                        |                          |                           |                                      | International             |                     |                                         |                              |                                               |                                     |             |               |        |
| Tuition fees up to date                  |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Age at enrollment                        |                         |                        |                          |                           |                                      | 不同的特徵:                    |                     |                                         |                              |                                               |                                     |             |               |        |
| International                            |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Unique features:                         |                         |                        |                          |                           |                                      | Scholarship holder        | 和 Debt Ratio 是新     | 增的特徵,對於輟學                               | 模型的 F1 Score 提               | 升有顯著幫助。                                       |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Newly added features like Scholarship    | p holder and Debt Ra    | tio significantly imp  | proved F1 Score for dr   | opout prediction.         |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Why do the new features, Scholarship     |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Scholarship:                             |                         |                        |                          |                           |                                      | 為什麼 Scholarship           | o 和 Debt Ratio 新特   | 微對 F1 Score 有幫                          | <b>劫?</b>                    |                                               |                                     |             |               |        |
| Students receiving scholarships typics   | ally exhibit stable aca | demic performance      | reducing their risk o    | of dropout. This featur   | e helps the model better identify    | -                         |                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                              |                                               |                                     |             |               |        |
| ordanio receiving orioniompo typic       | any campic stable act   | deime performance      | , reducing their riok o  | a dropodd Tillo iedda     | e neipo ine model better identity i  | Scholarship:              |                     |                                         |                              |                                               |                                     |             |               |        |
| Debt Ratio:                              |                         |                        |                          |                           |                                      | Schomonip.                |                     |                                         |                              |                                               |                                     |             |               |        |
| Debt ratio is an indicator of financial  | processes discost lim   | rad to dranaut librali | ibood This footure or    | unbloc the model to dis   | tinguich high rick groups immest     | od 獲得終明 A b B L           | 不労日女母会的 B **        | ** 18                                   | 100 AL 200 OL 80 DL 40       | ち 平月 1日 3年 7年 4日 1月 11 1 1 4                  | 広区 (A #4 Am)                        |             |               |        |
| Debt fatio is an indicator of financial  | pressure, unrectly lift | xea to aropout likeli  | mood. This readure en    | ianes the model to dis    | sunguish ingn-risk groups impact     | cu 授待奨学室的學生)              | <b>四市共有標定的學業</b>    | 衣光,颗学風願更化                               | 。這一特級肥潔即標                    | B/至東平匯地辨別出1                                   | 4人四、灰 科 百里。                         |             |               |        |
|                                          |                         |                        |                          |                           |                                      | n.1n:                     |                     |                                         |                              |                                               |                                     |             |               |        |
| Impact on accuracy:                      |                         |                        |                          |                           |                                      | Debt Ratio:               |                     |                                         |                              |                                               |                                     |             |               |        |
| The new features primarily improved      | the model's ability to  | predict dropout (a     | minority class). Over    | all accuracy is influen   | ced by the majority class, so the in |                           |                     |                                         |                              |                                               |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      | 債務比例是經濟壓                  | 力的指標,與輟學的可          | 可能性有直接關聯。                               | 该特徵幫助模型區分                    | 分出受經濟壓力影響的                                    | 的高風險群體。                             |             |               |        |
| Key Takeaways                            |                         |                        |                          |                           |                                      |                           |                     |                                         |                              |                                               |                                     |             |               |        |
| Feature engineering is critical for imp  |                         |                        |                          |                           |                                      | 影響準確度的原因                  |                     |                                         |                              |                                               |                                     |             |               |        |
| Adding Scholarship and Debt Ratio si     | ignificantly enhanced   | the F1 Score, highli   | ighting the important    | e of effective feature of | reation for predicting key categor   | ries.                     |                     |                                         |                              |                                               |                                     |             |               |        |
|                                          |                         |                        |                          |                           |                                      | 新特徵主要改善了                  | 模型對輟學學生(小片          | 比例類別)的預測,而                              | 整體準確度受大比                     | 列類別影響更大,因此                                    | 比對準確度的影響不同                          | <b></b> 男顯。 |               |        |

| XGBoost's stability in predicting Graduate:                                                                                                        |                                                                                          |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| XGBoost fully utilized highly predictive features like Curricular units approved, achieving high accuracy in most cases.                           |                                                                                          |  |  |  |  |  |  |  |
|                                                                                                                                                    | Key Takeaways                                                                            |  |  |  |  |  |  |  |
| Different models excel in different scenarios:                                                                                                     | 特徽工程是提升模型性能的關鍵: 新增的 Scholarship 和 Debt Ratio 成功提高了 F1 Score, 說明有效的特徵能顯著改善模型對關鍵類別的預測。     |  |  |  |  |  |  |  |
|                                                                                                                                                    | XGBoost 對 Graduate 預測的穩定性: 該模型充分利用了數據中強相關特徵(如 Curricular units approved), 在多數情況下能達到高準確度。 |  |  |  |  |  |  |  |
| SVM and Random Forest performed best after feature engineering for Drop Out, demonstrating their ability to leverage new features effectively.     | 不同模型適合不同場景:                                                                              |  |  |  |  |  |  |  |
| Shared and unique features:                                                                                                                        | SVM 和 Random Forest 在 Drop Out 的特徽工程後表現最佳,說明這些模型更能利用新增特徽。                                |  |  |  |  |  |  |  |
| While most models shared common top features, newly added features like Scholarship and Debt Ratio provided critical improvements for predicting d | lropo 共通與差異性:多數模型的前 10 大特徵相似, 但新增的特徵(如 Scholarship 和 Debt Ratio)為提升預測報學率提供了關鍵幫助。         |  |  |  |  |  |  |  |
|                                                                                                                                                    | 數據洞察:                                                                                    |  |  |  |  |  |  |  |
| Data insights:                                                                                                                                     | 經濟因素(獎學金、負債)對學生的學習成果有顯著影響                                                                |  |  |  |  |  |  |  |
|                                                                                                                                                    | 學業表現指標(GPA、出席率)是很好的預測指標                                                                  |  |  |  |  |  |  |  |
| Economic factors (e.g., scholarships, debt levels) significantly influence student outcomes.                                                       | 家庭背景對學生成功有重要影響                                                                           |  |  |  |  |  |  |  |
| Academic performance indicators (e.g., GPA, attendance) are strong predictors.                                                                     |                                                                                          |  |  |  |  |  |  |  |
| Family background plays a crucial role in student success.                                                                                         |                                                                                          |  |  |  |  |  |  |  |
| Practical Applications                                                                                                                             | 實際應用價值:                                                                                  |  |  |  |  |  |  |  |
| Early identification of at-risk students:                                                                                                          | 可以早期識別有輟學風險的學生                                                                           |  |  |  |  |  |  |  |
| Enables proactive interventions for students with a high risk of dropping out.                                                                     | 幫助學校更好地分配獎學金和支援資源                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                    | 提供具體的干預指標(如經濟支援需求)                                                                       |  |  |  |  |  |  |  |
| Better allocation of resources:                                                                                                                    |                                                                                          |  |  |  |  |  |  |  |
| Assists schools in distributing scholarships and support services more effectively.                                                                |                                                                                          |  |  |  |  |  |  |  |
| Specific intervention indicators:                                                                                                                  |                                                                                          |  |  |  |  |  |  |  |
| Provides actionable insights (e.g., financial support needs) for targeted assistance programs.                                                     |                                                                                          |  |  |  |  |  |  |  |