- Existen numerosos modelos de MT que se han probado equivalentes
- **Definición**. Dos MT M₁ y M₂ son equivalentes sii L(M₁)=L(M₂)
- Definición. Dos modelos de MT son equivalentes si para cada MT de un modelo existe una MT equivalente en el otro modelo.

- **Teorema**: El modelo q_A-q_R de MT visto es equivalente al modelo de MT que comienza su computación apuntando al último símbolo de la cadena de entrada (al que llamaremos también "*ultsim*" para abreviar).
- Demostración. Hay que probar 2 cosas:
 - 1) Para toda MT M del modelo q_A-q_R existe una MT M' equivalente que comienza con el cabezal apuntando al último símbolo de la cadena de entrada
 - 2) para toda MT M' del modelo *ultsim* existe una MT M del modelo q_A-q_R equivalente.

1) Vamos a probar que para toda MT M del modelo q_A - q_R existe una máquina de MT M' del modelo *ultsim* equivalente.

Sea $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$ una MT arbitraria del modelo q_A - q_R , construiremos M' del modelo *ultsim* tal que L(M') sea igual a L(M)

M' =
$$<$$
Q', Σ, Γ, δ', q'₀, q_A, q_R>
$$con Q' = Q ∪ {q'0} y q'0 ∉ Q$$

M'

Notar que la entrada tiene solo símbolos de Σ ¿Qué pasa si la entrada es λ ?

Definimos $\delta': Q'x \Gamma \rightarrow Q' \cup \{q_A, q_R\} x \Gamma x \{D, I\}$

- a) Si $\delta(q_i, x) = (q_j, y, Z)$ con $x, y \in \Gamma$, $Z \in \{D, I\}$ definitions $\delta'(q_i, x) = (q_j, y, Z)$ (con esto se tiene en M' lo mismo que en M)
- b) y agregamos las siguientes transiciones:

$$δ'(q'_0, x) = (q'_0, x, I), (∀x)(x ∈ Σ)$$

 $δ'(q'_0, B) = (q_0, B, D)$

(con esto M' queda apuntando al inicio y en estado q_0)

Hay que probar L(M) = L(M')

- i) $L(M) \subseteq L(M')$
- ii) $L(M') \subseteq L(M)$

Sea
$$w = s_1 s_2 ... s_n \in L(M)$$
 (si $n = 0$ entonces $w = \lambda$)

$$\Rightarrow q_0 s_1 s_2 ... s_n = *_M \alpha q_A \beta \text{ (por def. L(M))}$$

Para M' se cumple que:

$$s_1 s_2 \dots q'_0 s_n$$
 $-*_M$, $q_0 s_1 s_2 \dots s_n$ $-*_M$, $\alpha q_A \beta$ (por def. $\delta' b$) (por def. $\delta' a$)

$$\Rightarrow$$
 $s_1 s_2 \dots q'_0 s_n \mid *_{M'} \alpha q_A \beta$, (por def. $\mid *$)

$$\Rightarrow w \in L(M')$$
 por def. $L(M')$ y también se cumple para $w=\lambda$

Por lo tanto
$$L(M) \subseteq L(M')$$


```
Hay que probar L(M) = L(M')
i) L(M) \subseteq L(M')
ii) L(M') \subseteq L(M) Usaremos contrarecíproca (w \notin L(M) \Rightarrow w \notin L(M'))
       Sea w = s_1 s_2 ... s_n tal que w \notin L(M), por def. de L(M) se
       tienen dos casos:
     -A) M se detiene en q_R con entrada w
       B) M no se detiene con entrada w
              Traza de M: q_0s_1.s_2...s_n \models^*_{M} \alpha q_R \beta,
               Traza de M':
                      s_1 s_2 \dots q_0 s_n = *_{M}, q_0 s_1 s_2 \dots s_n = *_{M}, \alpha q_R \beta
                                (por def. \delta'b) (por def. \delta'a)
                   \Rightarrow s<sub>1</sub>s<sub>2</sub>... q'<sub>0</sub>s<sub>n</sub> \models *_{M}, \alpha q_R \beta (por def. \models *)
                   \Rightarrow w \notin L(M') (por def. L(M'))
```

Observe que también se cumple para $w=\lambda$


```
Hay que probar L(M) = L(M')
i) L(M) \subseteq L(M')
ii) L(M') \subseteq L(M) Usaremos contrarecíproca (w \notin L(M) \Rightarrow w \notin L(M'))
      Sea w = s_1 s_2 ... s_n tal que w \notin L(M), por def. de L(M) se
      tienen dos casos:
      A) M se detiene en q_R con entrada w \Rightarrow w \notin L(M')
      -B) M no se detiene con entrada w
          A partir de q_0s_1s_2...s_n M nunca se detiene
          Para M' se cumple que:
            s_1s_2...q'_0s_n | *_{M'}q_0s_1s_2...s_n y a partir de aquí M' loopea
                      (por def. \delta' b)
                                                        (por def. \delta' a)
            \Rightarrow A partir de s_1 s_2 \dots q'_0 s_n M' nunca se detiene
            \Rightarrow w \notin L(M') (por def. L(M'))
               Observe que también se cumple para w=\lambda
```


Hay que probar L(M) = L(M')

- i) $L(M) \subseteq L(M')$
- ii) $L(M') \subseteq L(M)$ Usaremos contrarecíproca $(w \notin L(M) \Rightarrow w \notin L(M'))$

Sea $w = s_1 s_2 ... s_n$ tal que $w \notin L(M)$, por def. de L(M) se tienen dos casos:

- A) M se detiene en q_R con entrada $w \Rightarrow w \notin L(M')$
- B) M no se detiene con entrada $w \Rightarrow w \notin L(M')$

Por lo tanto si $w \notin L(M) \Rightarrow w \notin L(M')$ (por casos A y B)

Por contrarecíproca si $w \in L(M') \Rightarrow w \in L(M)$.

Por lo tanto $L(M') \subseteq L(M)$.


```
Hay que probar L(M) = L(M')

i) L(M) \subseteq L(M') \Rightarrow L(M) = L(M')

ii) L(M') \subseteq L(M)
```

Se ha demostrado que para toda MT M del modelo q_A - q_R existe una MT M' equivalente del modelo *ultsim*

Para demostrar que ambos modelos son equivalentes faltaría demostrar que para toda MT M' del modelo *ultsim* existe una MT M del modelo q_A - q_R equivalente (la demostración es análoga),

Modelo D-I-S (Derecha-Izquierda-Sin movimiento)

Máquina de Turing que admite transiciones sin movimiento del cabezal de la cinta.

 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$ con $Q, \Sigma, \Gamma, q_0, q_A, q_R$, definidos como en el modelo de referencia (que llamaremos modelo D-I en este caso)

y δ : Q x $\Gamma \rightarrow Q \cup \{q_A, q_R\}$ x Γ x $\{D, I, S\}$

(S significa sin movimiento)

Ejemplo: Construir una máquina de Turing que se posicione en el primer símbolo '1' del input de la cinta para luego saltar a una subrutina $(\Sigma = \{0,1\})$

Teorema: Los modelos de máquinas de Turing D-I-S y D-I son equivalentes

Preguntas:

- ¿Qué se necesita demostrar?
- ¿Alguna demostración es trivial? ¿Por qué?

Se demuestra trivialmente que para toda MT del modelo D-I existe una MT equivalente del modelo D-I-S, pues las máquinas del modelo D-I son un caso particular de las del modelo D-I-S

- Ejercicio 1: Demostrar que para toda MT del modelo D-I-S existe una MT del modelo D-I equivalente
- Ejercicio 2: Demostrar que para toda MT del modelo D-I-S existe una MT M' equivalente con la restricción de no poder cambiar el símbolo de la cinta y mover el cabezal simultáneamente

 Consiste en un control con k cintas y k cabezales que pueden moverse en forma independiente.

 La entrada se encuentra en la primera cinta y todas las demás están en blanco.

Máquina de Turing de 3 cintas

$$M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$$

con Q, Σ , Γ , q_0 , q_A , q_R definidos como en el modelo estándar D-I-S de una cinta

y
$$\delta: Q \times \Gamma^k \to Q \cup \{q_A, q_R\} \times (\Gamma \times \{D, I, S\})^k$$

Ejemplo:
$$\delta(q_i,(a_1,a_2)) = (q_j,(a_3,D),(a_4,I))$$

Estando en el estado q_i, al leer a₁ en la primera cinta y a₂ en la segunda, escribe a₃ en la primera y a₄ en la segunda, mueve a la derecha el cabezal de la primera cinta y a la izquierda en de la segunda cinta.

NOTA: Puede probarse que este modelo multicinta es equivalente a cualquiera de los que ya hemos visto.

Ejercicio: Definir la δ de transición de una MT con 2 cintas que reconozca el lenguaje:

$$L = \{ 0^n 1^n / n \ge 1 \}$$

```
\begin{split} \delta(q_0,(0,B)) &= (q_0,(0,D),(0,D)) \\ \delta(q_0,(1,B)) &= (q_1,(1,S),(B,I)) \\ \delta(q_1,(1,0)) &= (q_1,(1,D),(0,I)) \\ \delta(q_1,(B,B)) &= (q_A,(B,S),(B,S)) \\ \text{Las transiciones que faltan van todas a } q_R \end{split}
```

