Hough Lin Huang hough hough Lin Huang

1. Support Vector Machines

1.1 Feature Haps

I' No, because we can't use one line to seperate blue and red points. Therefore, it's not linear separable.

2. Yes, X2-2,570, the corresponding margin TS1.5.

1,2 Constructing Kernels

1.
$$K(\mathbf{X}, \mathbf{z}) = C_1 k_1(x_1 \mathbf{z}) + C_2 k_2(x_1 \mathbf{z})$$
 with $C_1, C_2 y_1 \mathbf{0}$
 $\phi(\mathbf{x}) = (\overline{C_1} \phi_1(\mathbf{x}), \overline{C_2} \phi_2(\mathbf{x}))$
 $\phi(\mathbf{x}) \cdot \phi(\mathbf{z}) = C_1 \phi_1(\mathbf{x}) \cdot \phi_1(\mathbf{z}) + C_2 \phi_2(\mathbf{x}) \phi_2(\mathbf{z})$
 $k_1(x_1 \mathbf{z})$ $k_2(x_1 \mathbf{z})$

$$\begin{array}{l} (x,z) = k_{1}(x,z) \cdot k_{2}(x,z) \\ \phi(x) = (\phi_{1,\lambda}(x) \phi_{2,\delta}(x))_{\lambda \in \{1,...n\}, j \in \{1,...m\}} \\ \phi(x) \cdot \phi(z) = \sum_{\lambda \in j} \phi_{1,\lambda}(x) \phi_{2,j}(x) \phi_{1,\lambda}(z) \phi_{2,j}(z) \\ = \sum_{\lambda \in j} \phi_{1,\lambda}(x) \phi_{1,\lambda}(z) \left(\sum_{j} \phi_{2,j}(x) \phi_{2,j}(z)\right) \\ = \sum_{\lambda} \phi_{1,\lambda}(x) \phi_{1,\lambda}(z) \left(\sum_{j} \phi_{2,j}(x) \phi_{2,j}(z)\right) \\ = \sum_{\lambda} \phi_{1,\lambda}(x) \phi_{1,\lambda}(z) \left(\sum_{j} \phi_{2,j}(x) \phi_{2,j}(z)\right) \end{aligned}$$

7.
$$q(t) = \sum_{T=0}^{p} C_{\lambda} t^{T}$$
, prove $k(x,z) = q(k_{1}(x,z))$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{0} + C_{1}k_{1}(x,z)^{1} + ... + C_{p}k_{1}(x,z)^{p}$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{0} + C_{1}k_{1}(x,z)^{1} + ... + C_{p}k_{1}(x,z)^{p}$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z) + C_{1}k_{1}(x,z)^{1} + ... + C_{p}k_{1}(x,z)^{p}$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z) + C_{1}k_{1}(x,z)^{p} + ... + C_{p}k_{1}(x,z)^{p}$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} + (C_{\lambda}k_{1}(x,z)^{T} + ... + C_{p}k_{1}(x,z)^{p})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} + C_{1}k_{1}(x,z)^{T} + ... + C_{p}k_{1}(x,z)^{p})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} + ... + {}_{0}k_{1}(x,z)^{T})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} + ... + {}_{0}k_{1}(x,z)^{T})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} + ... + {}_{0}k_{1}(x,z)^{T})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} + ... + {}_{0}k_{1}(x,z)^{T})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} + {}_{0}k_{1}(x,z)^{T} + {}_{0}k_{1}(x,z)^{T})$$

$$\sum_{T=0}^{p} C_{\lambda} k^{T}_{1}(x,z)^{T} = ({}_{0}k_{1}(x,z)^{T} +$$

1.3 Support Vectors

1 d(w,x,y)=max(0,1-yw.x)

C controls the relative weighting between the twin goals of making the IIwII small (margin is large) and ensuring that most examples have functional margin >1

Tf C→o, r will be very large C→ x, r will be very small

Classifier = $f(x) = \sum_{i=1}^{N} \alpha_{i} y_{i} \phi(x_{i}) \phi(x) + b$ $\Rightarrow f(x) = \sum_{i=1}^{N} \alpha_{i} y_{i} F(x_{i}, x) + b$

Learning max Idi - 1 I didjyiyj \$\phi(xi)^\phi(xj)

dizo

=> max [x, - =] [x, x; y, y; k(x, x;)

2. Feed-forward Neural Networks

1. Yes

y=(W,W5+W3W6) x,+(W2W5+W4W6) X2+W0

(W, W5) (W2W5) (W2W5) (X2)

for (1,1)

$$W_{5}$$
 W_{6}
 $W_{1}+W_{2}$) $W_{5}+(W_{3}+W_{4})$ $W_{6}+W_{0}=1$
 $W_{1}+W_{2}$
 $W_{2}+W_{3}+W_{4}$
 $W_{2}+W_{4}$
 $W_{2}+W_{4}$
 $W_{3}+W_{4}$
 $W_{4}+W_{5}+(W_{3}+W_{4})$ $W_{6}+W_{0}=-1$
 $W_{1}+W_{2}$
 $W_{2}+W_{3}+W_{4}$
 $W_{3}+W_{4}$
 $W_{4}+W_{5}+(W_{3}+W_{4})$ $W_{6}+W_{0}=-1$
 $W_{1}+W_{2}$
 $W_{2}+(W_{3}+W_{4})$ $W_{3}+(W_{3}+W_{4})$ $W_{6}+W_{0}=-1$
 $W_{1}+W_{2}+W_{3}+W_{4}$
 $W_{2}+W_{4}+W_{4}+W_{4}$
 $W_{3}+W_{4}+W_{$

From (1),(3), We conclude that Wo = 1] conflicts!

3, Ada Boost

$$\begin{array}{c|c} X & X & X \\ \hline X & 0 & X \\ \hline X & X \\ \hline X & X \\ \hline \end{array}$$

$$\emptyset \times_{1} < 1, \times_{2} > 2 \Rightarrow h_{1} = -1 \ h_{2} = 1, h_{3} = 1, h_{4} = -1$$

San Carlo Mark State of the Sta

$$\forall x_1 < 1, (\leq x_1 \leq 2 \Rightarrow h_1 = -1, h_2 = 1, h_3 = 1, h_4 = 1)$$

$$(8)$$
 (4×16) , (4×16) $(4$

for
$$0$$
 $y_{x}f(x_{x}) = -1 \cdot \frac{1}{7}(0-3) = \frac{3}{7}$

$$\Im_{y_{x}f(x_{x})} = -1 \cdot \frac{1}{7} (0-3) = \frac{3}{7}$$

$$9y_{x}f(x_{x})=-1\cdot\frac{1}{7}(0-3)=\frac{3}{7}$$

3,2 Complexity and Overfitting

4 params - dimension, threshold, direction, weight

2. 5×T params.

3. No. because the testing error doesn't increase.

3,3 Margin

In Margin $f(x) = \sum_{t=y=h_t(x)} at - \sum_{t=y+h_t(x)} at = y \cdot \sum_{t=y+h_t(x)} at + y \cdot f_t(x)$

if y=he(x) =) y . he(x)=1 y + h+(x) > y · h+(x) = 1

2,

3.5.1 Report Questions

1. the highest weighted error rate: [h12, error rate = 0.0010]

2. & 3. T = 20

5.

