

Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciência e Tecnologia Laboratório de Física Geral I

Relatório N° 1

Movimento Retilíneo Uniformemente Variado

Turma E

Ciência da Computação

Felipe Garcia Matrícula: 20221100007 Pablo Chaves Matrícula: 20221100016 Matheus Gama Matrícula: 20221100021

Professor: Marcelo Massunaga

1 Introdução

O movimento retilíneo uniformemente variado se dá quando um corpo ou alguma partícula tem energia cinética cuja velocidade varia com o tempo, tendo a presença de uma aceleração, ou seja. No caso da Terra, há uma aceleração gravitacional de aproximadamente $9.8~\mathrm{m/s}$, no qual os corpos são atraídos para o centro dela através de uma força denominada peso.

Isto posto, através desse experimento, foi possível observar a presença da aceleração, descrevendo o movimento retilíneo uniformemente variado e também a veracidade da fórmula horária do MRUV.

Sendo assim, o experimento teve como objetivo observar o movimento retilíneo uniformemente variado através de um carrinho com diferentes massas e um trilho de ar, que torna o atrito quase nulo, e observar que a massa não influencia na posição em função do tempo. Portanto, o tempo médio de cada carrinho com massas diferentes deve dar aproximadamente igual em um mesmo intervalo de tempo.

1.1 Fundamentação teórica

Para realizarmos esse experimento foi de grande valia a fundamentação teórica obtida na disciplina de Física 1, de posse dessas informações conseguimos identificar melhor o tipo do movimento e as forças que atuam no corpo em questão além de medirmos o tempo para que o evento se concretizasse.

Como esse experimento requer uma aceleração constante, o ideal é usarmos a natureza a nosso favor e utilizarmos uma constante física para fornecer essa aceleração constante que precisamos, nada melhor do que a gravidade para nos auxiliar nesse experimento, entretanto a gravidade atrai tudo para o centro da terra, todavia nosso material utilizado para esse experimento é de características retilíneas, portanto devemos utilizar apenas uma porcentagem da gravidade de modo que possamos conciliar o nosso instrumento com a nossa grandeza constante. Nesse instante deve entrar em ação o nosso conhecimento sobre vetores, ora se o vetor gravidade atrai tudo para o centro da terra, na direção y, o melhor caminho é decompor esse vetor utilizando um ângulo entre a superfície do trilho de ar e o próprio trilho de ar. Decompondo esse vetor gravidade teremos que a componente x desse vetor vale o módulo do vetor gravidade multiplicado pelo cosseno do ângulo entre a superfície e o trilho de ar. Logo esse será o nosso valor referência para aceleração, tendo em vista que a gravidade é constante e que esse ângulo também é constante.

Fórmulas usadas na construção do relatório:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \overline{t})^2}{(n-1)}} \tag{1}$$

$$\Delta \bar{t} = \frac{\sigma}{\sqrt{n}} \tag{2}$$

$$x = x_0 + v_0 t + \frac{at^2}{2} \tag{3}$$

2 Procedimento Experimental

- -Photogate timer with memory.
- -PASCO scientific ME-9215A.
- -Trilho de ar PASCO scientific.
- -Carrinho com encaixe para trilho de ar.
- -Triple beam balance.
- -Pesos auxiliares
- -Objetos de ressalto para trilho de ar.

Para realizarmos o experimento de modo que ele seja do tipo uniformemente variado, usaremos a gravidade para ser esse fator de aceleração. Com os objetos de ressalto vamos causar uma inclinação no trilho de ar, decompondo o vetor de aceleração gravitacional de acordo com o ângulo entre a superfície e o trilho de ar. Além disso, devemos posicionar o Photogate para a medição de tempo determinando seu respectivo erro, junto a medição na régua anexa ao trilho de ar, pelo diâmetro da haste que sustenta o aparelho de detecção. Com essa estrutura já montada, devemos pesar o carrinho, sem os pesos auxiliares, com a balança mencionada entre os materiais utilizados para o experimento e aí então realizarmos o procedimento, que consiste em encaixar o carrinho no trilho de ar e deixar com que a gravidade possa conduzi lo da sua posição inicial até a posição final, indicada na tabela preenchida em laboratório calculando assim, com auxílio do photogate, o tempo que o carrinho demora para passar pelo primeiro instrumento e chegar no segundo. O processo mencionado no parágrafo acima, é idêntico para o carrinho anexado dos pesos auxiliares. Já devemos anexar os pesos auxiliares ao carrinho encaixando o espaço vazado na estrutura do peso pela estrutura cilíndrica soldada no carrinho. Desse modo realizar o mesmo procedimento, que foi feito para o carrinho sem peso, agora para o carrinho com peso.

3 Resultados

Tabela 1 – Posição e erro do fotogate com display

$x_0(cm)$	$\Delta x(cm)$
20,65	0,60

Fonte: Procedimento realizado em laboratório pelos integrantes

Tabela 2 – Resultados das medidas para Massa = 179,45g

x (cm)	$t_1(s)$	$t_2(s)$	$t_3(s)$	$t_4(s)$	$t_5(s)$	$\bar{t}(s)$	$\Delta \bar{t}(s)$
40,00	1,617	1,613	1,614	1,616	1,641	1,620	$5,248 \times 10^{-3}$
50,00	1,986	1,988	1,988	1,986	1,990	1,988	$7,483 \times 10^{-}4$
60,00	2,301	2,324	2,310	2,309	2,301	2,319	$3,957 \times 10^{-}3$
70,00	2,595	2,630	2,609	2,594	$2,\!592$	2,604	$7,162 \times 10^{-}3$
80,00	2,841	$2,\!845$	$2,\!836$	2,843	2,842	2,841	$1,503 \times 10^{-}3$
90,00	3,063	3,065	3,069	3,086	3,080	3,073	$4,456 \times 10^{-3}$
100,00	3,298	$3,\!298$	$3,\!295$	$3,\!296$	3,306	$3,\!299$	$1,939 \times 10^{-3}$
110,00	3,502	$3,\!506$	$3,\!497$	3,499	3,503	3,501	$1,568 \times 10^{-3}$
120,00	$3,\!689$	3,697	3,696	3,707	3,703	3,698	$3,092 \times 10^{-3}$
130,00	3,881	3,900	$3,\!846$	$3,\!879$	$1,\!896$	$3,\!880$	$9,522 \times 10^{-3}$

Fonte: Procedimento realizado em laboratório pelos integrantes

3.1 Análise dos Resultados e Discussão

O experimento realizado demonstrou o que as fórmulas do movimento, obtidas da física clássica, já apontavam. No primeiro momento a medição do tempo, sem o peso, é bem próxima ao segundo, com os pesos auxiliares. A força resultante atuando no carrinho está apontando para a mesma direção da componente em x do vetor gravidade (considere o eixo das abscissas paralelo à superfície do trilho de ar), e tem seu módulo obtido pela multiplicação da massa pela componente x do vetor gravidade. Como não há movimento na direção y, podemos dizer que o peso do carrinho se equipara à força normal exercida pelo trilho de ar sobre o carrinho. Com essas informações é possível identificar que, entre o primeiro momento e o segundo, a aceleração não muda.

Tabela 3 – Resultados das medidas para Massa = 279,50g

x (cm)	$t_1(s)$	$t_2(s)$	$t_3(s)$	$t_4(s)$	$t_5(s)$	$\bar{t}(s)$	$\Delta \bar{t}(s)$
40,00	1,611	1,613	1,609	1,629	1,617	1,616	$5,555 \times 10^{-3}$
50,00	1,992	1,987	1,988	2,016	1,986	1,994	$5,643 \times 10^{-3}$
60,00	2,301	$2,\!298$	2,316	$2,\!298$	$2,\!299$	2,302	$3,444 \times 10^{-}3$
70,00	2,600	2,611	2,588	2,584	2,585	2,594	$5,202 \times 10^{-}3$
80,00	$2,\!847$	2,850	$2,\!835$	2,839	$2,\!862$	$2,\!847$	$4,697 \times 10^{-}3$
90,00	3,070	3,071	3,068	3,071	3,081	3,072	$2,267 \times 10^{-}3$
100,00	$3,\!295$	3,311	3,306	3,306	$3,\!292$	3,302	$3,619 \times 10^{-}3$
110,00	3,493	3,498	3,498	3,506	3,498	3,499	$2,088 \times 10^{-}3$
120,00	3,695	3,693	3,700	3,695	3,696	3,696	$1,158 \times 10^{-}3$
130,00	3,898	3,881	3,882	3,875	1,868	3,881	$4,974 \times 10^{-3}$

Fonte: Procedimento realizado em laboratório pelos integrantes

Com isso as outras variáveis de comparação permanecem constantes tais quais, posição final; posição inicial; velocidade inicial; velocidade final e aceleração, portanto na faixa em que a posição final é 1 metro, temos que a diferença entre seus respectivos tempos médio está na casa dos milésimos de segundo, sendo contemplado com a variação do tempo médio com isso, dentro da "Margem de Erro". E com a simples observação da tabela 3 é possível identificar esse mesmo comportamento nas outras faixas de medição.

Tabela 4 – Resultados das medidas do MRUV

$\mathrm{Massa} = 179{,}45~\mathrm{g}$		
x (cm)	$\bar{t}(s)$	$\overline{t}^2(s^2)$
40,00	1,620	2,624
50,00	1,988	3,952
60,00	2,319	$5,\!378$
70,00	2,604	6,781
80,00	2,841	8,071
90,00	3,073	9,443
100,00	$3,\!299$	10,883
110,00	3,501	$12,\!257$
120,00	3,698	13,675
130,00	3,880	15,054

Fonte: Procedimento realizado em laboratório pelos integrantes

4 Conclusão

De acordo com os resultados obtidos pelo experimento, foi possível observar que a massa não influencia no movimento retilíneo uniformemente variado, como previsto anteriormente, visto que os resultados de ambos carrinhos foram praticamente iguais. Além disso, de acordo com o gráfico feito, da posição em função do tempo ao quadrado, é possível notar que a aceleração é constante, visto que o resultado deu uma reta que passa bem próximo de todos os pontos, e como a massa não influencia na aceleração, ambos resultados dos experimentos deram muito similares, por isso ambas retas quase se coincidem.

- HALLIDAY, D. e RESNICK, R., Fundamentos da Física, 8 ed., vol. 1
- HALLIDAY, D. e RESNICK, R., Fundamentos da Física, 8 ed., vol. 2

Tabela 5 – Resultados das medidas do MRUV

Massa = 279,50 g		_
x (cm)	$\overline{t}(s)$	$\overline{t}^2(s^2)$
40,00	1,616	2,611
50,00	1,994	3,975
60,00	2,302	5,301
70,00	2,594	6,727
80,00	2,847	8,103
90,00	3,072	9,438
100,00	3,302	10,903
110,00	3,499	12,240
120,00	3,696	13,659
130,00	3,881	15,061

Fonte: Procedimento realizado em laboratório pelos integrantes