Lógica Proposicional

Márcio Lopes Cornélio DSC-Poli-UPE mlc@dsc.upe.br

Lir	guagem	. 2
Sir	ntaxe da Lógica Proposicional	3
	Alfabeto	. 4
	Fórmulas	. 5
	Boa formação de fórmulas	. 6
	Precedência	. 7
	Subfórmula	. 8
	Subfórmula imediata	. 9
Se	mântica da Lógica Proposicional	10
	Interpretação	11
	Interpretação de Fórmulas	
	Regras para interpretação de fórmulas $(1/2)$	
	Regras para interpretação de fórmulas $(2/2)$	
	Tabelas verdade	
	Negação	
	Disjunção	
	Conjunção	
	Implicação	
	Equivalência	

Linguagem

- Especificação de uma linguagem
 - ♦ Sintaxe
 - ◆ Semântica
- Métodos de produção ou verificação de fórmulas
 - ◆ Prova e conseqüência lógica
- Definição de um sistema de dedução formal
 - ♦ Derivação de argumentos

2

Sintaxe da Lógica Proposicional

3

Alfabeto

- Constituição do alfabeto:
 - ◆ Símbolos de pontuação: (,)
 - ◆ Símbolos de verdade: true, false
 - Símbolos proposicionais: P, Q, R, S, P_1 , Q_1 , R_1 , S_1 , P_2 , Q_2 , ...
 - lacktriangle Conectivos proposicionais: \neg , \lor , \land , \rightarrow , \leftrightarrow

4

Fórmulas

- Regras de formação (construção)
 - ◆ Todo símbolo de verdade é uma fórmula
 - ◆ Todo símbolo proposicional é uma fórmula
 - Se H é uma fórmula, então $(\neg H)$, a negação de H é uma fórmula
 - ♦ Se H e G são fórmulas, então $(H \lor G)$ é uma fórmula. Disjunção.
 - Se H e G são fórmulas, então $(H \land G)$ é uma fórmula. Conjunção.
 - Se H e G são fórmulas, então $(H \to G)$ é uma fórmula. H é o antecedente; G, o conseqüente.
 - ♦ Se H e G são fórmulas, então $(H \leftrightarrow G)$ é uma fórmula. H é o lado esquerdo; G, o lado direito.

5

Boa formação de fórmulas

- Qualquer símbolo proposicional é uma fórmula bem-formada (well-formed formula wff)
- \blacksquare Se ϕ é uma fórmula bem-formada, $\neg \phi$ também o é
- Se ϕ e ψ são fórmulas bem-formadas, também o são $(\phi \wedge \psi)$, $(\phi \wedge \psi)$, $(\phi \to \psi)$ e $(\phi \leftrightarrow \psi)$

Precedência

- A ordem de precedência dos conectivos proposicionais é a seguinte:
 - ♦ maior precedência: ¬
 - ◆ precedência intermediária: →, ↔
 - ♦ menor precedência: ∨, ∧

7

Subfórmula

- Seja *H* uma fórmula da Lógica Proposicional. Uma subfórmula de *H* é definida da seguinte maneira:
 - ♦ H é uma subfórmula de H
 - ♦ Se $H = (\neg G)$, então G é uma subfórmula de H
 - lacktriangle Se H é do tipo $(G \vee E)$, $(G \wedge E)$, $(G \rightarrow E)$ ou $(G \leftrightarrow E)$, então G e E são subfórmulas de H
 - ullet Se G é subfórmula de H, então toda subfórmula de G é subfórmula de H

8

Subfórmula imediata

- Definimos as subfórmulas imediatas de uma fórmula da seguinte maneira:
 - 1. fórmulas atômicas não têm subfórmulas imediatas
 - 2. a subfórmula imediata de $\neg \phi$ é ϕ
 - 3. as subfórmulas imediatas de $(\phi \lor \psi)$, $(\phi \land \psi)$, $(\phi \to \psi)$ e $(\phi \leftrightarrow \psi)$ são ϕ e ψ

9

Semântica da Lógica Proposicional

10

Interpretação

- Função de verdade toma como argumentos valores de verdade e associa a este um outro valor de verdade
 - ♦ Função binária
- Uma interpretação / é uma função binária com as seguintes características:
 - ◆ o domínio de I é constituído pelo conjunto das fórmulas da Lógica Proposicional
 - lack o o contradomínio é o conjunto $\{T, F\}$
 - o valor da interpretação I, tendo como argumentos os símbolos de verdade é dado por I[true] = T e I[false] = F
 - ♦ dado um símbolo proposicional P, $I[P] \in \{T, F\}$

Interpretação de Fórmulas

- Proposições atômicas são declarações sem conectivos lógicos
- A verdade de uma proposição composta é determinada unicamente pela verdade das partes constituintes.
- Fórmulas formadas pela concatenação de símbolos do alfabeto
- Definição de interpretação das fórmulas feita a partir da interpretação dos símbolos
- Regras para interpretação de fórmulas

12

Regras para interpretação de fórmulas (1/2)

- Dadas uma fórmula E e uma interpretação I, então o significado de E, indicado por I[E], é assim determinado:
 - Se E = P, onde P é um símbolo proposicional, então I[E] = I[P] e $I[P] \in \{T, F\}$
 - Se E = true, então I[E] = I[true] = T. Se E = false, então I[E] = I[false] = F
 - Seja H uma fórmula. Se $E = \neg H$, então

$$I[E] = I[\neg H] = T$$
, se $I[H] = F$
 $I[E] = I[\neg H] = F$, se $I[H] = T$

♦ Sejam H e G duas fórmulas. Se $E = (H \lor G)$, então

$$I[E] = I[H \lor G] = T$$
, se $I[H] = T$ e/ou $I[G] = T$
 $I[E] = I[H \lor G] = F$, se $I[H] = F$ e $I[G] = F$

13

Regras para interpretação de fórmulas (2/2)

■ Sejam H e G duas fórmulas. Se $E = (H \land G)$, então

$$I[E] = I[H \land G] = T$$
, se $I[H] = T$ e $I[G] = T$
 $I[E] = I[H \land G] = F$, se $I[H] = F$ e/ou $I[G] = F$

■ Sejam H e G duas fórmulas. Se $E = (H \rightarrow G)$, então

$$I[E] = I[H \rightarrow G] = T$$
, se $I[H] = F$ e/ou $I[G] = T$
 $I[E] = I[H \rightarrow G] = F$, se $I[H] = T$ e $I[G] = F$

■ Sejam H e G duas fórmulas. Se $E = (H \rightarrow G)$, então

$$I[E] = I[H \leftrightarrow G] = T$$
, se $I[H] = I[G]$
 $I[E] = I[H \leftrightarrow G] = F$, se $I[H] \neq I[G]$

14

Tabelas verdade

- Construídas para fórmulas bem-formadas
- Todas as combinações possíveis de valores de verdade para todas as fórmulas atômicas
- Número de linhas da tabela é igual a 2^n , onde n é o número de fórmulas atômicas

Negação

- Tabelas verdade descrevem precisamente o significado dos conectivos lógicos
- A negação $\neg P$ é verdadeira se, e somente se, P é falsa.

16

Disjunção

■ A disjunção $P \lor Q$ é verdadeira se, e somente se, P é verdadeiro ou Q é verdadeiro (ou inclusivo).

Р	Q	$P \vee Q$
V	V	V
V	F	V
F	V	V
F	F	F

17

Conjunção

lacktriangle A conjunção $P \wedge Q$ é verdadeira apenas quando as proposições P e Q são verdadeiras.

Р	Q	$P \wedge Q$
V	V	V
V	F	F
F	V	F
F	F	F

18

Implicação

A implicação estabelece que o antecedente p é mais forte (ou igual) ao consequente q. Falso é mais forte que verdadeiro. Implicação material.

Р	Q	$P \to Q$
V	V	V
V	F	V
F	V	F
F	F	V

Equivalência

 \blacksquare A equivalência $P \leftrightarrow Q$ significa que P e Q têm a mesma força. Também chamada de bi-implicação.

Р	Q	$P \leftrightarrow Q$
V	V	V
V	F	F
F	V	F
F	F	V