Занятие 20. ЛНДУ с правой частью в виде квазиполинома.

Для линейных неоднородных уравнений с постоянными коэффициентами и с правой частью, состоящей из сумм и произведений функкций $b_0 + b_1 x + \cdots + b_m x^m, e^{\alpha x}, \cos(\beta x), \sin(\beta x),$ частное решение можно искать методом неопределенных коэффициентов.

Для уравнений с правой частью $P_m(x)e^{\gamma x}$, где $P_m(x)=b_0+b_1x+\cdots+b_mx^m$, частное решение имеет вид

$$y_1 = x^s Q_m(x) e^{\gamma x},\tag{1}$$

где $Q_m(x)$ – многочлен той же степени m.

Число s=0, если γ – не корень характеристического уравнения, а если γ – корень, то s равно кратности этого корня.

Чтобы найти коэффициенты многочлена Q_m , надо решение (1) подставить в дифференциальное уравнение и приравнять коэффициенты при подобных членах в левой и правой частях уравнения.

Для уравнения с правой частью

$$e^{\alpha x}(P(x)\cos(\beta x) + Q(x)\sin(\beta x)) \tag{2}$$

можно искать частное решение в виде

$$y_1 = x^s e^{\alpha x} (R_m(x) \cos(\beta x) + T_m(x) \sin(\beta x))$$
(3)

где s=0, если $\alpha+\beta i$ не корень характеристического уравнения, и s равно кратности корня $\alpha+\beta i$ в противном случае, а R_m и T_m – многочлены степени m, равной наибольшей из степеней многочленов P и Q. Чтобы найти коэффициенты R_m и T_m надо подставить решение(2) в уравнение и приравнять коэффициенты при подобных членах.

Если правая часть уравнения равна сумме нескольких функций вида $P(x)e^{\gamma x}$ и вида (2), то частное решение с правой частью $f_1 + \cdots + f_p$ равно сумме частных решений уравнений с той же левой частью и правыми частями f_1, \cdots, f_p .

Общее решение линейного неоднородного уравнения во всех случаях равно сумме частного решения этого уравнения и общего однородного уравнения с той же левой частью.

Рассмотрим пример:

$$y''' - 6y'' + 9y' = xe^{3x} + e^{3x}\cos 2x \tag{4}$$

Характеристическое уравнение: $\lambda^3 - 6\lambda^2 + 9\lambda = 0$, корни уравнения : $\lambda_{1,2} = 3$ кратности 2 и $\lambda_3 = 0$ кратности 1.

Запишем общее решение однородного уравнения:

$$y_0 = (C_1 + C_2 x)e^{3x} + C_3$$

Правая часть (4) состоит из двух слагаемых вида (2): $f_1 = xe^{3x}$ и $f_2 = e^{3x}\cos 2x$. Для первого $\gamma = \alpha + \beta i = 3$, а для второго $\alpha + \beta i = 3 + 2i$. Поскольку эти числа различны, то надо искать отдельно частные решения уравнений

$$y''' - 6y'' + 9y' = xe^{3x} (5)$$

$$y''' - 6y'' + 9y' = e^{3x} \cos 2x \tag{6}$$

Число $\gamma=3$ является корнем кратности s=2, поэтому частное решение уравнения (2) примет согласно (1) вид

$$y_1 = x^2 (Ax + B)e^{3x}$$

Подставив $y=y_1$ в (4) и приравняв коэффициенты при соответствующих степенях (метод неопределенных коэффициентов) x, получим $A=\frac{1}{18},\ B=-\frac{1}{18}.$

Далее, число $\alpha + \beta i = 3 + 2i$ не является корнем характеристического уравнения, поэтому частное решение уравнения (6) согласно (3) примет вид

$$y_2 = e^{3x}(C\cos(2x) + D\sin 2x)$$

Подставив y_2 в (6), воспользовавшись методом неопределенных коэффициентов, найдем $C=-\frac{3}{52}, D=-\frac{1}{26}$

2994. Указать вид частных решений для данных неоднородных уравнений.

a)
$$y'' - 4y = x^2 e^{2x}$$
;

Характеристическое уравнение: $\lambda^2 - 4\lambda = 0$

Корни: $\lambda_1 = 2$ кратности $1, \lambda_2 = -2$ кратности 1.

Справа стоит единственная функция $f_1 = x^2 e^{2x}$, частное решение ищем в виде (1): $\gamma = 2$, m = 2.

 $\gamma = 2$ является корнем характеристического уравнения, значит s = 1.

Частное решение согласно (1) примет вид: $y_{\rm ЧH} = xe^{2x}(Ax^2 + Bx + C)$.

в) $y'' - 4y' + 4y = \sin 2x + e^{2x}$; Характеристическое уравнение: $\lambda^2 - 4\lambda + 4 = 0$ Корни: $\lambda_1, 2 = 2$ кратности 2.

Правая часть состоит из суммы двух функций f_1 и f_2 , поэтому частное решение примет вид $y_{\text{ч.н}} = y_1 + y_2$.

 $f_1 = \sin 2x$, частное решение ищем в виде (2): $\alpha + \beta i = 2i, m = 0, s = 0$, так как 2i не является корнем характеристического уравнения. Согласно (2): $y_{\rm H1} = C_1 \cos 2x + C_2 \sin 2x$.

 $f_2 = e^{2x}$, частное решение ищем в виде (1): $\gamma = 2$, m = 0, s = 2, так как $\gamma = 2$ - корень характерестического уравнения, значит s равен крастности корня.

Согласно (1): $y_{42} = Ax^2e^{2x}$.

Частное решение: $y_{\text{ч.н}} = C_1 \cos 2x + C_2 \sin 2x + Ax^2 e^{2x}$

д) $y''-5y'+6y=(x^2+1)e^x+xe^{2x}$. Характеристическое уравнение: $\lambda^2-5\lambda+6=0$ Корни: $\lambda_1=2$ кратности $1,\lambda_1=3$ кратности 1 .

Правая часть состоит из суммы двух функций f_1 и f_2 , поэтому частное решение примет вид $y_{\text{ч.н}}=y_1+y_2$.

 $f_1=(x^2+1)e^x,\; m=2, \gamma=1$ — не является корнем характеристического уравнения, значит s=0.

Согласно (1): $y_{\text{Ч1}} = e^x (Ax^2 + Bx + C)$.

 $f_2 = xe^{2x}, \ m=1, \gamma=2$ – является корнем характеристического уравнения, значит s=1.

Согласно (1): $y_{\text{Ч2}} = xe^{2x}(Dx + F)$.

Частное решение: $y_{\text{ч.н}} = e^x (Ax^2 + Bx + C) + xe^{2x} (Dx + F).$

Найти общие решения уравнений:

2999.
$$y'' - y = e^x$$
.

Характеристическое уравнение и корни: $\lambda^2 - 1 = 0$, $\lambda_1 = 1, \lambda_2 = -1$, оба корня кратности

Решение однородного уравнения $y_{\rm o} = C_1 e^x + C_2 e^{-x}$

 $f=e^x$, значит $m=0, \gamma=1$ – корень характеристического уравнения, значит s=1. $\Rightarrow y_{\rm YH} = Ax \cdot e^x$.

Далее определяем неизвестный коэффициент:

$$y'_{\text{HH}} = Ae^x + Axe^x = A(1+x)e^x.$$

$$y''_{\text{HH}} = Ae^x + A(1+x)e^x = A(2+x)e^x.$$

Подставляем частное решение и его производные в исходное уравнение и находим A:

$$A(2+x)e^x - Ax \cdot e^x = e^x \Rightarrow 2A + Ax - Ax = 1 \Rightarrow A = \frac{1}{2}.$$

$$y_{\text{OH}} = C_1 e^x + C_2 e^{-x} + \frac{1}{2} x e^x.$$

3000.
$$y'' + y = \cos x$$
.

Характеристическое уравнение и корни: $\lambda^2 + 1 = 0$, $\lambda = \pm i$.

Решение однородного уравнения $y_0 = C_1 \cos x + C_2 \sin x$

 $f = \cos x$, значит m = 0, $\alpha + \beta i = i$ – корень характеристического уравнения, значит s = 1. $\Rightarrow y_{\text{HH}} = x(A\cos x + B\sin x).$

Далее определяем неизвестные коэффициенты:

$$y'_{\text{HH}} = (A\cos x + B\sin x) + x(-A\sin x + B\cos x) = (B - Ax)\sin x + (A + Bx)\cos x.$$

$$y''_{\text{HH}} = -A\sin x + (B - Ax)\cos x + B\cos x - (A + Bx)\sin x = -(2A + Bx)\sin x + (2B - Ax)\cos x.$$

Подставляем частное решение и его производные в исходное уравнение, определяем A, B:

$$-(2A + Bx)\sin x + (2B - Ax)\cos x + x(A\cos x + B\sin x) = \cos x.$$

$$-2A\sin x + 2B\cos x = \cos x$$
. $A = 0, B = \frac{1}{2}$.

Решение общего неоднородного- сумма однородного и частного решений:

 $y_{\text{OH}} = C_1 \cos x + C_2 \sin x + \frac{1}{2} x \sin x.$

3004.
$$y'' + y' = \sin^2 x$$
.

Известно: $\sin^2 x = \frac{1-\cos 2x}{2}$, тогда $y'' + y' = \frac{1-\cos 2x}{2}$. Характеристическое уравнение и его корни: $\lambda^2 + \lambda = 0$, $\lambda_1 = -1$ кратности $1, \ \lambda_2 = 0$ кратности 1.

Решение однородного уравнения $y_0 = {}_1e^{-x} + {}_2$

 $f_1 = \frac{1}{2}$, значит $m = 0, \gamma = 0$ – корень характеристического уравнения, значит s = 1.

$$\Rightarrow y_{\rm H1} = Ax$$

$$f_2=-rac{\cos 2x}{2}$$
,значит $m=0, lpha+eta i=2i$ – не является корнем, значит $s=0$

$$\Rightarrow y_{42} = B\cos 2x + C\sin 2x$$

Частное решение:

 $y_{\text{ЧH}} = Ax + B\cos 2x + C\sin 2x.$

Найдем неизвестные коэффициенты:

$$y'_{\text{HH}} = A + -2B\sin 2x + 2C\cos 2x;$$

$$y_{\text{YH}}'' = -4B\cos 2x - 4C\sin 2x.$$

Подставляем частное решение и его производные в исходное уравнение:

$$-4B\cos 2x - 4C\sin 2x + A - 2B\sin 2x + 2C\cos 2x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

$$(-4B + 2C)\cos 2x + (-2B - 4C)\sin 2x + A = \frac{1}{2} - \frac{1}{2}\cos 2x$$

$$\begin{cases}
-4B + 2C &= -\frac{1}{2} \\
-2B - 4C &= 0 \\
A &= \frac{1}{2}
\end{cases} \Rightarrow A = \frac{1}{2}, B = \frac{1}{10}, C = -\frac{1}{20}.$$

 $y_{\text{OH}} = C_1 e^{-x} + C_2 + \frac{1}{2}x + \frac{1}{10}\cos 2x - \frac{1}{20}\sin 2x.$

3016.
$$y'' - 2y' + 10y = \sin 3x + e^x$$
.

Характеристическое уравнение и его корни: $\lambda^2 - 2\lambda + 10 = 0$, $\lambda_{1,2} = 1 \pm 3i$ кратности 2. Решение однородного уравнения $y_0 = e^x(C_1 \cos 3x + C_2 \sin 3x)$.

 $f_1 = \sin 3x, m = 0, \alpha + \beta i = 3i$ – не является корнем, значит s = 0.

 $\Rightarrow y_{41} = A\cos 3x + B\sin 3x$

 $f_2 = e^x, m = 0, \gamma = 1$ – не является корнем, значит s = 0.

 $\Rightarrow y_{\mathbf{q}_2} = Ce^x$

Частное решение: $y_{\text{ЧН}} = A\cos 3x + B\sin 3x + Ce^x$.

 $y'_{\text{HH}} = -3A\sin 3x + 3B\cos 3x + Ce^x.$

 $y''_{HH} = -9A\cos 3x - 9B\sin 3x + Ce^x$.

Подставляем частное решение и его производные в исходное уравнение:

$$(-9A - 6B + 10A)\cos 3x + (-9B + 6A + 10B)\sin 3x + (C - 2C + 10C)e^x = \sin 3x + e^x$$

$$(A - 6B)\cos 3x + (6A + B)\sin 3x + (C - 2C + 10C)e^x = \sin 3x + e^x$$

$$A=rac{6}{37},\,B=rac{1}{37},\,C=rac{1}{9}.$$
 Общее решение неоднородного уравнения:

$$y_{\text{OH}} = e^x \left(C_1 \cos 3x + C_2 \sin 3x \right) + \frac{1}{37} (6 \cos 3x + \sin 3x) + \frac{1}{9} e^x.$$

Найти общие решения уравнений:

3062.
$$y''' - y = x^3 - 1$$
.

Характеристическое уравнение и его корни: $\lambda^3 - 1 = 0$, $\lambda_1 = -1$ кратности1, $\lambda_{2,3} = -\frac{1}{2} \pm \frac{1}{2}$ $\frac{\sqrt{3}}{2}i$ кратности 2.

Решение однородного уравнения $y_0 = e^{-x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right).$

 $f=x^3-1, m=3, \gamma=0$ -не является корнем, значит s=0

$$y_{\rm HH} = Ax^3 + Bx^2 + Cx + D.$$

$$y_{\text{YH}}' = 3Ax^2 + 2Bx + C.$$

$$y''_{\text{YH}} = 6Ax + 2B.$$

$$v'''_{1111} = 6A$$

Подставляем частное решение и его производные в исходное уравнение:

$$-Ax^3 - Bx^2 - Cx - D + 6A = x^3 - 1.$$

$$A = -1$$
, $B = 0$, $C = 0$, $D = -5$.

Общее решение неоднородного уравнения:

$$y_{\text{OH}} = C_1 e^x + e^{-x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right) - x^3 - 5.$$

3064.
$$y''' + y'' = x^2 + 1 + 3xe^x$$
.

Характеристическое уравнение и его корни: $\lambda^3 + \lambda^2 = 0$, $\lambda_1 = -1$ – кратность 1, $\lambda_{2,3} = 0$ – кратность 2.

Решение однородного уравнения $y_0 = C_1 e^{-x} + C_2 + C_3 x$.

$$f_1=x^2+1, m=2, \gamma=0$$
-является корнем, значит $s=2$ $\Rightarrow y_{\rm H1}=x^2(Ax^2+Bx+C).$ $f_2=3xe^x, m=1, \gamma=1$ - не является корнем, значит $s=0$

$$\Rightarrow y_{42} = (Dx + E)e^x$$
. Частное решение:

$$y_{\text{YH}} = x^2(Ax^2 + Bx + C) + (Dx + E)e^x.$$

$$y'_{\text{HH}} = 4Ax^3 + 3Bx^2 + 2Cx + De^x + (Dx + E)e^x$$

$$y'_{\text{HH}} = 4Ax^3 + 3Bx^2 + 2Cx + De^x + (Dx + E)e^x.$$

$$y''_{\text{HH}} = 12Ax^2 + 6Bx + 2C + 2De^x + (Dx + E)e^x.$$

$$y_{\text{HH}}^{""} = 24Ax + 6B + 3De^x + (Dx + E)e^x.$$

Подставляем частное решение и его производные в исходное уравнение:

$$12Ax^{2} + (24A + 6B)x + 6B + 2C + (5D + E)e^{x} + Dxe^{x} = x^{2} + 1 + 3xe^{x} D = \frac{3}{2}, E = -\frac{15}{4},$$

$$A = \frac{1}{12}, B = -\frac{1}{3}, C = \frac{3}{2}.$$
 Общее решение неоднородного уравнения:

$$y_{\text{OH}} = C_1 e^{-x} + C_2 + C_3 x + \frac{1}{12} x^4 - \frac{1}{3} x^3 + \frac{3}{2} x^2 + \left(\frac{3}{2} x - \frac{15}{4}\right) e^x. \triangleright$$

3063.
$$y^{IV} + y''' = \cos 4x$$
.

Характеристическое уравнение и его корни: $\lambda^4 + \lambda^3 = 0$, $\lambda_1 = -1$ кратности 1, $\lambda_{2,3,4} = 0$ кратности 3.

Решение однородного уравнения: $y_0 = C_1 + C_2 x + C_3 x^2 + C_4 e^{-x}$.

 $f=\cos 4x, m=0, \alpha+\beta i=4i$ - не является корнем, значит s=0.

⇒ частное решение:

 $y_{\rm YH} = A\cos 4x + B\sin 4x.$

 $y'_{\text{YH}} = -4A\sin 4x + 4B\cos 4x.$

 $y_{\text{YH}}'' = -16A\cos 4x - 16B\sin 4x.$

 $y_{\text{YH}}^{""} = 64A\sin 4x - 64B\cos 4x.$

 $y_{\text{YH}}^{IV} = 256A\cos 4x + 256B\sin 4x.$

Подставляем частное решение и его производные в исходное уравнение и находим неизвестные переменные:

 $(256A - 64B)\cos 4x + (64A + 256B)\sin 4x = \cos 4x.$

$$\left\{ \begin{array}{ll} 256A - 64B & = & 1 \\ 64A + 256B & = & 0 \end{array} \right. \Rightarrow A = \frac{1}{272}, \ B = -\frac{1}{1088}.$$

Общее решение неоднородного уравнения:

$$y_{\text{OH}} = C_1 + C_2 x + C_3 x^2 + C_4 e^{-x} + \frac{1}{1088} (4\cos 4x - \sin 4x).$$

9.369.
$$y^{(5)} - y^{(4)} = xe^x - 1$$
.

Характеристическое уравнение и его корни: $\lambda^5 - \lambda^4 = 0$, $\lambda_{1,2,3,4} = 0$ кратности 4, $\lambda_5 = 1$ кратности 1. Решение однородного уравнения: $y_0 = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + C_5 e^x$.

$$f_1=xe^x,\,m=1,\gamma=1$$
-корень уравнения, значит $s=1.$

$$\Rightarrow y_{\rm H1} = x(Ax + B)e^x$$

$$f_2 = -1, m = 0, \gamma = 0$$
 – корень уравнения, значит $s = 4$.

$$\Rightarrow y_{42} = Dx^4$$

Значит частное неоднородное решение: $y_{\rm ЧH} = y_{\rm Ч1} + y_{\rm Ч2}$.

$$y_{\text{H}1}'' = (2Ax + 2A + B)e^{x} + (Ax^{2} + (2A + B)x + B)e^{x} = (Ax^{2} + (4A + B)x + 2A + 2B)e^{x}.$$

$$y_{\text{H}1}''' = (2Ax + 4A + B)e^{x} + (Ax^{2} + (4A + B)x + 2A + 2B)e^{x} = (Ax^{2} + (6A + B)x + 6A + 3B)e^{x}.$$

$$y_{\text{H}1}^{(4)} = (2Ax + 6A + B)e^{x} + (Ax^{2} + (6A + B)x + 6A + 3B)e^{x} = (Ax^{2} + (8A + B)x + 12A + 4B)e^{x}.$$

$$y_{\text{H}1}^{(5)} = (2Ax + 8A + B)e^{x} + (Ax^{2} + (8A + B)x + 12A + 4B)e^{x} = (Ax^{2} + (10A + B)x + 20A + 5B)e^{x}.$$

Подставляем в исходное уравнение с правой частью xe^x :

 $y'_{\text{HI}} = (Ax + B)e^x + Axe^x + x(Ax + B)e^x = (Ax^2 + (2A + B)x + B)e^x$

$$(Ax^{2} + (10A + B)x + 20A + 5B)e^{x} - (Ax^{2} + (8A + B)x + 12A + 4B)e^{x} = xe^{x}$$
$$2Ax + 8A + B = x \quad \Rightarrow \quad A = \frac{1}{2}, \ B = -4, \ y_{\text{H}1} = x\left(\frac{1}{2}x - 4\right)e^{x}.$$

$$y'_{\text{H}2} = 4Dx^3, \ y''_{\text{H}2} = 12Dx^2, \ y'''_{\text{H}2} = 24Dx,$$

 $y_{\text{H}2}^{(4)} = 24D, \ y_{\text{H}2}^{(5)} = 0.$

Подставляя в исходное уравнение с правой частью -1, получаем -24D=-1, т.е. D=1/24и $y_{42} = \frac{x^4}{24}$.

Общее решение неоднородного уравнения: $y_{\text{OH}} = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + C_5 e^x + \left(\frac{1}{2}x^2 - 4x\right)e^x + \frac{x^4}{24}$

3067. Найти частное решение уравнения y''' + 2y'' + 2y' + y = x, удовлетворяющее начальному условию y''(0) = y'(0) = y(0) = 0.

Решение однородного уравнения: $y_0 = C_1 e^{-x} + e^{-x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right) x$.

Характеристическое уравнение и его корни: $\lambda^3 + 2\lambda^2 + 2\lambda + 1 = 0$, $\lambda_1 = -1$ кратности 1,

$$\lambda_{2,3} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$$
 кратности 2.

 $f=x, m=1, \gamma=0$ -не является корнем уравнения, значит $s=0, \Rightarrow$

$$y_{\rm YH} = Ax + B.$$

$$y'_{\text{YH}} = A$$

$$y'_{\text{YH}} = A,$$

 $y''_{\text{YH}} = y'''_{\text{YH}} = 0.$

Подставляя в исходное уравненение:

$$2A + Ax + B = x \Rightarrow A = 1, B = -2.$$

Общее неоднородное:

$$y_{\text{OH}} = C_1 e^{-x} + e^{-x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right) + x - 2.$$

Решим задачу Коши:

$$y(0) = C_1 + C_2 - 2 = 0;$$

$$y' = -C_1 e^{-x} - \frac{1}{2} e^{-x/2} \left(C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \sin \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x + C_3 \frac{\sqrt{3}}{2} \cos \frac{\sqrt{3}}{2} x \right) + e^{-x/2} \left(-C_2 \frac{\sqrt{3}}{2}$$

$$y' = -C_1 e^{-x} + e^{-x/2} \left(\left(-\frac{1}{2} C_3 - C_2 \frac{\sqrt{3}}{2} \right) \sin \frac{\sqrt{3}}{2} x + \left(-\frac{1}{2} C_2 + C_3 \frac{\sqrt{3}}{2} \right) \cos \frac{\sqrt{3}}{2} x \right) + 1$$

$$y'(0) = -C_1 - \frac{1}{2}C_2 + C_3\frac{\sqrt{3}}{2} + 1 = 0$$

$$y'' = C_1e^{-x} - \frac{1}{2}e^{-x/2}\left(\left(-\frac{1}{2}C_3 - C_2\frac{\sqrt{3}}{2}\right)\sin\frac{\sqrt{3}}{2}x + \left(-\frac{1}{2}C_2 + C_3\frac{\sqrt{3}}{2}\right)\cos\frac{\sqrt{3}}{2}x\right) + e^{-x/2}\left(\left(-\frac{1}{2}C_3 - C_2\frac{\sqrt{3}}{2}\right)\frac{\sqrt{3}}{2}\cos\frac{\sqrt{3}}{2}x - \left(-\frac{1}{2}C_2 + C_3\frac{\sqrt{3}}{2}\right)\frac{\sqrt{3}}{2}\sin\frac{\sqrt{3}}{2}x\right)$$

$$y''(0) = C_1 - \frac{1}{2}\left(-\frac{1}{2}C_2 - C_3\frac{\sqrt{3}}{2}\right)\frac{\sqrt{3}}{2} + \left(-\frac{1}{2}C_3 - C_2\frac{\sqrt{3}}{2}\right)\frac{\sqrt{3}}{2} = 0$$

$$C_1 = 1, C_2 = 1, C_3 = \frac{1}{\sqrt{3}}.$$

$$y = e^{-x} + e^{-x/2}\left(\cos\frac{\sqrt{3}}{2}x + \frac{1}{\sqrt{3}}\sin\frac{\sqrt{3}}{2}x\right) + x - 2.$$

 $Teкущее \ \mathcal{A}3: 2994 \ (б, г, e), 3003, 3002, 2995, 3018, 3012, 3060, 3061, 3065.$