Europäisches Patentamt

European Patent Office

Office european des brevets

EP 1 101 510 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 23.95.2001 Bulletin 2001/21

(51) Int Cl.7: **A61P 39/06**, A61K 33/00, C02F 1/461

(21) Application number: 00310203.5

(22) Date of filling: 16.11.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 19.11.1999 JP 32923199

(71) Applicant Morisawa, Shinkatsu Osaka-shi, Osaka (JP) (72) Inventors:

Shirahata, Sanetaka
 Kasuya-gun, Fukuoka (3P)

Otsubo, Kazumichi
 Kita-ku, Osaka-shi, Osaka (JP)

(74) Representative: Lipscombe, Martin John et al Keith W Nash & Co, Pearl Assurance House, 90-92 Regent Street Cambridge CB2 1DP (GB)

- (54) Condensate of superoxide anion radical abolisher, producing method thereof and superoxide anion radical abolisher powder
- (57) Condensate of supercxide anion radical (SAR) abolisher exhibiting strong and stable SAR abolishing activity is provided. Hydrogen adsorbent is introduced into a solution obtained by dissolving electrolyte into purified water. The solution containing hydrogen adsorbent is introduced into both cathode (2) and anode chambers (4) separated by a diaphragm (5). With a cathode
- (1) immersed in the cathode chamber (2) and with an anode (3) immersed in the anode chamber (4), electricity is applied between the cathode (1) and the anode (3) to electrolyze the solution. Electrolytic reduced water produced in the cathode chamber (2) is derived, and water included in the electrolytic reduced water is evaporated.

30: CARTRIDGE CONTAINING ACTIVATED CARBON

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

10

25

30

35

40

[0001] The present invention generally relates to condensate of superoxide ariion radical (SAR) abolisher, and more particularly, to condensate of SAR abolisher that has potency to abolish SAR that causes diseases such as cerebral stroke, cardiac inferction, arteriosclerosis, cancer and the like. The present invention also relates to a method of producing such condensate of SAR abolisher. The present invention further relates to SAR abolisher powder having potency to abolish SAR.

Description of the Background Art

15 [0002] In recent years, mortality from cancer has been rising all over the world. A major factor of the death by cancer is remote metastasis to other organs, which in many cases has already occurred when a person is given a diagnosis of cancer.

[0003] In the current cancer treatment, however, cure is often difficult once the cancer has metastasized. Solving this problem will be a key to overcome the cancer. The cancer is considered to occur due to damage to DNA that is caused by SAR. The applicant has already proposed high concentration hydrogen dissolved water obtained by electrolysis, which has potency to prevent or repair such damage to the DNA caused by SAR (Japanese Patent Laying-Open No. 10-118653).

[0004] To evaluate SAR abolishing capability of reduced water obtained by electrolysis (hereinafter, referred to as "electrolytic reduced water"), a solution of super purified water with 0.01 % NaCl added therein was first electrolyzed by an electrolysis apparatus ("TI-8000"). The SAR abolishing capability of the electrolytic reduced water thus obtained was evaluated by a chemiluminescence analyzer using luminol luminescent reagent as reactant. The result showed that the reaction was weak, and the SAR abolishing activity was small.

SUMMARY OF THE INVENTION

[0005] Based on the above, a main object of the present invention is to provide condensate of SAR abolisher improved to exhibit strong and stable SAR abolishing activity.

[0006] Another object of the present invention is to provide a method of producing such condensate of SAR abolisher.
[0007] A further object of the present invention is to provide SAR abolisher powder exhibiting strong SAR abolishing activity.

[0008] In the method of producing condensate of SAR abolisher according to a first aspect of the present invention, hydrogen adsorbent is first introduced into a solution obtained by dissolving electrolyte into purified water. The solution containing the hydrogen adsorbent is then introduced into both a cathode chamber and an anode chamber separated from each other by a diaphragm. With a cathode immersed in the cathode chamber and an anode immersed in the anode chamber, electricity is applied between the cathode and the anode to electrolyze the solution. Electrolytic reduced water is obtained in the cathode chamber, which is derived therefrom. Water contained in the electrolytic reduced water is then evaporated.

[0009] In the method of producing condensate of SAR abolisher according to a second aspect, the hydrogen adsorbent to be used may be selected from carbon (C), platinum (Pt), platinum sait (H₂PtC₆), gold (Au), vanadium (V) and palladium (Pd), which are substances capable of adsorbing hydrogen (H³, H₂).

[0010] In the method of producing condensate of SAR abolisher according to a third aspect, the electrolyte includes NaCH or NaCH.

[0011] In the method of producing condensate of SAR abolisher according to a fourth aspect, the step of introducing the hydrogen adsorbent into a solution obtained by dissolving electrolyte into purified water includes the step of causing the solution containing the electrolyte to pass through a cartridge including the hydrogen adsorbent.

[00:0] In the method of producing condensate of SAR abolisher according to a fifth aspect, a solution obtained by dissolving electrolyte into purified water is first introduced into both a cathode chamber and an anode chamber separated from each other by a diaphragm. A first cathode for electrolysis is immersed in the cathode chamber, and a first anode for the electrolysis is immersed in the anode chamber. A second cathode is also immersed in the cathode chamber, and a second anode, formed of hydrogen adsorbent, is immersed in the anode chamber for application of electricity between itself and the second cathode. Electricity is applied between the first cathode and the first anode to electrolyze the solution. Electricity is also applied between the second cathode and the second anode to dissolve the hydrogen adsorbent into the solution. Electrolytic reduced water produced in the cathode chamber is derived. Water

EP 1 101 510 A1

within the electrolytic reduced water is then evaporated.

[9013] In the method of producing condensate of SAR abolisher according to a sixth aspect, carbon, platinum, platinum salt, gold, vanadium, or palladium is used as the hydrogen adsorbent cited in the fifth aspect.

[0014] In the method of producing condensate of SAR abolisher according to a seventh aspect, NaCl or NaOH is used as the electrolyte cited in the fifth aspect.

[0015] The condensate of SAR abolisher according to an eighth aspect is produced by reducing a solution containing electrolyte and hydrogen adsorbent by electrolysis, and by condensing the obtained electrolytic reduced water.

[0016] The powder of SAR abolisher according to a ninth aspect is produced by reducing, by electrolysis, a solution of purified water with electrolyte and hydrogen adsorbent dissolved therein, and by evaporating the obtained electrolytic reduced water to divness.

[D017] The foregoing and other objects, leatures, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Fig. 1 illustrates steps of producing condensate of SAR abolisher according to a first example of the present invention.

[0019] Fig. 2 is a diagram showing an electrolytic reduced water generator.

[0020] Fig. 3 illustrates an effect of the condensate of SAR abolisher.

[9021] Fig. 4 illustrates relation between degree of concentration of the condensate of SAR abolisher and OH• radical abolishing capability.

[0022] Fig. 5 is a diagram illustrating a method of producing condensate of SAR abolisher according to a second example of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Example 1

10

15

25

35

40

45

55

[0023] Steps of producing condensate of SAR abolisher according to the present invention will be described with reference to Fig. 1.

[0024] Electrolyte (0.01% NaCl and 0.008% NaOH) is introduced into super purified water (e.g., purified water passed through a reverse osmosis membrane). The solution of the purified water with the electrolyte dissolved therein is caused to pass through a carridge 30 including hydrogen adsorbent (i.e., active carbon with its primary component being carbon).

[8025] The hydrogen adsorbent employed in the present example were those including fibrous active carbon, granulated active carbon with silver attached thereto (hereinafter, referred to as "silver-coated granulated active carbon"), and binder fiber, respectively, as shown in Table 1 below. Table 2 shows detailed data as to the performance or qualities of the fibrous active carbon (FR-20) and the silver-coated granulated active carbon (T-SB48/100).

Table 1

Component	Name	Content (weight %)
Fibrous active carbon	FR-20	46.5
Silver-coated granulated active carbon	T-SB48/100	46.5
Binder fiber		7.0

Table 2

Performance etc.	Unit	FR-20	T-\$B48/100
Adsorbable amount of lodine	mg/g	≥1850	≥ 1400
Adsorbable amount of benzene	weight %	≥ 50	≥ 45
Packed density	g/mi	-	9.38 - 0.44
Amount of attached silver	weight %	-	0.08 - 0.14

[0026] The solution passed through cartridge 30 is then electrolyzed in an electrolysis tank (TI-8000) as shown in Fig. 2.

[0027] The electrolysis was conducted under the following conditions. The above-described solution was introduced into both a cathode chamber 2 and an anode chamber 4. Between a cathode 1 and an anode 3, electricity was applied to electrolyze the solution, for at least 0.5 seconds but no longer than 5 seconds, in a room temperature (16°C-22°C). At this time, the amount of the current being applied was selected within a range from 0.16 mA/cm² to 3.2 mA/cm² per two electrodes and one diaphragm.

[0028] Electrolytic reduced water obtained in cathode chamber 2 is then condensed using a rotary evaporator (vacuum condenser) at 60°C. Thus, condensate of the electrolytic reduced water, i.e., condensate of SAR abolisher, is obtained.

10

15

20

25

30

35

43

45

50

55

[0029] Here, a small amount of white powder was obtained by completely removing water from the electrolytic reduced water using the rotary evaporator. This white powder is Na in NaOH that was added to the purified water as catalyst, or a mixture of Na and active carbon, it was found that the powder thus obtained also had potency to abolish SAR, as will be described later.

[0036] The generation of such mixture of Na and active carbon can be explained by considering that carbon was first dissolved into the purified water during its passing through cartridge 30; active hydrogen generated by electrolysis was adsorbed by the carbon; and the carbon having adsorbed the active hydrogen was precipitated.

[0031] In the present example, NaCl and NaOH have been used as the electrolyte. However, the present invention is not limited thereto. Any substance that can be ionized when dissolved into water may be used alternatively.

[0032] Further, in the present example, carbon dissolving into water during its passage through the cartridge has been used as the hydrogen adsorbent. However, the present invention is not limited thereto. Any substance that can adsorb hydrogen (H*, H₂), such as platinum (Pt), platinum salt (H₂PtCl₈), gold (Au), vanadium (V), and palladium (Pd), may be used alternatively. In particular, platinum (Pt), gold (Au), vanadium (V) and palladium (Pd), each of no more than 50 mesh, preferably of a diameter of 350 µm to 300 µm, are preferred.

[0033] Fig. 3 illustrates comparison of OH+ radical abolishing capabilities of the electrolytic reduced water processed with active carbon as described above and the electrolytic reduced water unprocessed with active carbon. OH+ radical is equivalent to SAR, which was generated by Fenton reaction ($H_2O_2 + Fe^{2+}$) as below, and detected by luminescent reagent luminol.

$$H_2O_2 + Fe^{2+} \rightarrow Fe^{3+} + HO^{-} + *OH$$

[0034] Detailed procedures are as follows. First, a solution having the following composition was prepared:

Reduced water (obtained with the conditions stated above)	440 µ
1M Tris hydrochloric acid buffer solution (pH: 7.8)	18 µí
0.01mM Hydrogen perexide	20 µJ
0.1mM FeSO ₄ + DETAPAC (1mM)	20 μl
Total	500 μl

[9035] Next, an intensity of chemiliuminescence of luminol by OH• radical was measured using a CLA instrument (CLD-110 type) available from Tohoku Denshi Kogyo Co. A relative luminescence intensity was then calculated, with a luminescence intensity obtained when using super purified water instead of the reduced water being represented as 100%. Thus, SAR abolishing capabilities of various kinds of reduced water were examined. Fig. 3 shows the results. [9036] Referring to Fig. 3, (1) represents the result obtained when unprocessed purified water was used. (2) represents the result obtained in the case where a solution of super purified water with 0.01 % NaCl dissolved therein was processed with active carbon as described above, electrolyzed using Ti-8000, and the electrolytic reduced water obtained was condensed by 30 times. Herein, the term "condensed by 30 times", for example, means that water is reduced in volume by a factor of 30, or more specifically, 300 cc of electrolytic reduced water is condensed to the volume of 10 cc. [9037] In Fig. 3, (3) represents the result obtained in the case where a solution of super purified water with 0.002N of NaCH as the electrolyte added therein, unprocessed with active carbon, was electrolyzed using an electrolysis apparatus Ti-7000S3 (a strong electrolysis apparatus formed of three Ti-8000 connected in series) having greater electrolytic capability than Ti-8000. (4) represents the result obtained in the case where the sample obtained at (3) was condensed by 30 times.

[9038] Fig. 4 shows companson of OH• radical abolishing capabilities of the electrolytic reduced waters processed with active carbon, condensed in different degrees. In Figs. 3 and 4, CONTROL represents the value obtained when supportfield water was used for testing.

[0039] Table 3 lists numerical data corresponding to the results shown in Fig. 4.

Table 3

OH•redical reaction (%)
100
96
74
48
23

×2: reduced water condensed by 2 times ×10: reduced water condensed by 10 times ×20: reduced water condensed by 20 times ×30: reduced water condensed by 30 times

[0040] Referring to Figs. 3 and 4 and Table 3, it was found that the OH* radical reaction decreased by condensing the electrolytic reduced water processed with active carbon.

[0041] Thus, condensate of SAR abolisher exhibiting strong and stable SAR abolishing capability was obtained by causing a solution of super purified water with 0.01% NaCl dissolved therein to pass through an active carbon filter containing carbon (C) as hydrogen adsorbent before electrolysis by TI-8000, and by condensing the obtained electrolytic reduced water.

[0042] Referring to (2) of Fig. 3, when the electrolyte-containing solution, processed with active carbon, was electrolyzed using TI-8000, electrolytic reduced water exhibiting pH of 11.4 and exidation-reduction potential (ORP) of -900 mV was obtained, it was proved that condensate of SAR abolisher having satisfactory SAR abolishing capability was obtained by condensing this water.

[0043] Referring to (3) of Fig. 3, when the solution of super purified water with 0.002N (0.008%) of NaOH added therein was electrolyzed using strong electrolysis apparatus Ti-700CS3 formed of a series of three Ti-8000, the electrolytic reduced water exhibiting SAR abolishing capability to some extent was obtained. This means that it is basically possible to generate active hydrogen even if the water is not passed through active carbon. However, the SAR abolishing capability is increased when the water is processed with active carbon, which is considered because the carbon adsorbs active hydrogen, thereby stabilizing the same.

[0044] Further, a solution obtained by adding 0.01% NaCl to super purified water was passed through a filter of active carbon and electrolyzed. Electrolytic reduced water thus obtained was evaporated to dryness using a rotary evaporator at a temperature of 60°C. Solid material thus obtained was then dissolved into the super purified water. When the water was condensed by twice, the SAR abolishing capability doubled approximately. When the water was condensed by 1/2, the capability approximately halved. Thus, it was revealed that the active hydrogen could be condensed.

[0045] The electrolytic reduced water condensed by 30 times exhibited strong SAR abolishing activity, or, activity to strongly abolish most dangerous OH• radical, it also exhibited capabilities to abolish strong active oxygen (O_2^{-*}) and H_2O_2 .

[0046] Referring to (4) of Fig. 3, when the super reduced water containing 0.002N (0.008%) of NaOH was condensed by 30 times, it did not exhibit strong OH* radical abelishing capability. It was determined that the active hydrogen was not condensed in this case. This is considered because any substance that is capable of stabilizing the active hydrogen is not dissolved in this electrolytic reduced water.

[0047] Referring to Table 3, the level of the SAR abolishing reaction changed according to the degree of concentration of the electrolytic reduced water. Thus, it was found that the active hydrogen within the electrolytic reduced water reacts according to the law of amount and function.

Example 2

5

10

15

20

25

35

40

45

50

55

[0048] Fig. 5 illustrates a method of producing condensate of SAR abolisher according to the second example. A solution obtained by dissolving NaOH, NaCl or the like into purified water is introduced into a cathode chamber 21 and an anode chamber 22 separated from each other by a diaphragm 20. A first cathode 23 for electrolysis is immersed in cathode chamber 21, and a first anode 24 for electrolysis is immersed in anode chamber 22.

[0049] A second cathode 25 is also immersed in cathode chamber 21, and a second anode 26 formed of hydrogen adsorbent (C, Pt, H₂PtCl₆, Au, V or Pd) is immersed in anode chamber 22 for application of electricity between itself and second cathode 25. Electricity is applied between first cathode 23 and first anode 24 to electrolyze the solution.

EP 1 101 510 A1

Electricity is also applied between second cathode 25 and second anode 26 to cause the hydrogen adsorbent to dissolve into the solution. Thereafter, the electrolytic reduced water produced within cathode chamber 21 is derived, and water contained in the derived electrolytic reduced water is evaporated using a rotary evaporator.

[0050] With such a method, again, condensate of SAR abolisher exhibiting strong and stable SAR abolishing activity was obtained. This is considered because the hydrogen adsorbent of second anode 26 was dissolved into the solution and transferred via disphragm 20 to cathode chamber 21, where it adsorbed the active hydrogen (H•), so that the active hydrogen was stabilized and condensed.

[0051] The quantitative analysis of the active hydrogen was performed as follows.

[9052] WO₃ (yellow) turns blue when it specifically adsorbs the active hydrogen, WO₃ does not adsorb hydrogen molecules. Utilizing such reaction, it is possible to detect the active hydrogen by discoloration of WO₃.

[0053] The detailed procedures were as follows.

[9654] 12.6 mg of WO₃ was added to 500 mf of reduced water. It was cooled with iccd water for 30 minutes, and then stirred. The solution thus obtained was subjected to centrifugation, supernatant was discarded, and WO₃ precipitated at the bottom was recovered. Thus recovered WO₃ was placed in a 96-well micro plate, which was stirred by a volted mixer, subjected to centrifugation, and WO₃ was collected at the bottom layer of the well. An image of colored WO₃ was captured by an image scenner into a personal computer. Using an image processing software (PhotoShop), the degree of coloration of WO₃ was quantified. Thereafter, it was compared with a degree of coloration as the reference that would be obtained when using super purified water. Thus, a relative amount of the active hydrogen being contained was determined.

[0055] According to the present example, the amount of the hydrogen adsorbent to be dissolved from second anode 26 can be controlled by altering the magnifude of the current flowing between second cathode 25 and second anode 26. Correspondingly, it is also possible to control the amount of active hydrogen (H•) to be adsorbed.

[0056] In the present invention, it has become clear that active hydrogen within electrolytic reduced water can be condensed by causing a solution of purified water with electrolyte dissolved therein to be processed with active carbon before being electrolyzed. Such condensed active hydrogen exhibiting strong SAR abolishing capability may be applicable to prevention and treatment of many diseases listed as follows, including cancer diabetes, arteriosclerosis, allergic reaction, Parkinson's disease, and Alzheimer's disease, for which excessive SAR and lipid peroxide are named as their causes or exacerbating factors.

[0057] The diseases said to be caused by such excessive SAR or lipid peroxide include: cerebral stroke (cerebral hemorrhage, cerebral infarction, cerebral thrombosis), cardiac infarction, arteriosclerosis, cancer, thrombopathy, high-degree lipemia, diabetes, hepatitis, nephritis, ulcer, gastric mucosa disorder, pneumonia, cataract, retinitis pigmentosa, retinodialysis, autoimmune diseases such as collagen diseases, articular rheumatism, AIDS, Parkinson's disease, Alzheimer's disease, encephalopathy, lung scleroma, allergic diseases such as atopic dematitis, gout, blotches, freckles, wrinkles, dermatitis, neuralgia, hypertension, prostatomegaly, gastroenteropathy, arrhythmia, epilepsy, rough dry skin, aging, menopausal syndrome, Meniere's disease, wan, hangover, latigue, pollinosis, cold, depression, trigeminal neuralgia, cholelithiasis, nasal polyp, chronic diarrhea, constipation, hives, backache, excessive cholesterol, disorder of pregnancy, decline of virility, obesity, menstrual irregularity, asthma, acne, eczema, summer blahs, autonomic imbalance, and others. Further, the present invention is expected to improve enterobacterium flora by bacteriostasis.

[0058] Moreover, the present invention can also be used for plants that are constantly exposed to strong stresses due to exidation. The present invention is expected to make the plants resistant to insects causing damage, and tolerant to dryness, continual rain, and sequential cropping. In addition, it is expected to promote growth and increase harvest of fruits, and also promote growth of roots. In fact, it has become clear that the condensate of electrolytic reduced water obtained by the present invention, i.e., the condensate and powder of SAR abolisher, has the following adventages.

1. It suppresses growth of cancer cells.

30

35

de

45

50

55

- 2. It suppresses colony formation of the cancer cells within soft agar culture.
- 3. It changes conformation of the cancer cells.
- 4. It reduces activity of telomere specific binding protein of the cancer cells, and shortens the telomere length dependent on the number of times of cell division.
- 5 it prevents intranuclear localization of telamelaze.
- 6. It suppresses metastasis of the cancer cells.
- 7. It suppresses growth of the cancer cells in the body of mouse.
- 8. It promotes sugar intake to muscle and lipocyte. It has become clear that the operation mechanism is based on the fact that it promotes transfer of sugar transporter GLUT-4 to cell membrane by activity of P1-3 kinase, as is the case of insulin.
- When using together with platinum ion (H₂PtCl₈), it operates synergistically to alleviate sugar tolerance disorder
 of It type diabetes model mouse (db/db mouse).

EP 1 101 510 A1

[0059] Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims

5

20

25

35

40

45

50

- 1. A method of producing condensate of superoxide anion radical (SAR) abolisher, comprising the steps of
- introducing hydrogen adsorbent into a solution obtained by dissolving electrolyte late purified water; introducing said solution containing said hydrogen adsorbent into both a cathode chamber (2) and an anode chamber (4) separated from each other by a diaphragm (5); with a cathode (1) immersed in said cathode chamber (2) and an anode (3) immersed in said anode chamber (4), applying electricity between the cathode (1) and the anode (3) to electrolyze said solution; deriving electrolytic reduced water from said cathode chamber (2); and evaporating water within said electrolytic reduced water.
 - 2. The method of producing condensate of SAR abolisher according to claim 1, wherein said hydrogen adsorbent includes one of carbon, platinum, platinum sait, gold, vanadium and palladium.
 - The method of producing condensate of SAR abolisher according to claim 1, wherein said electrolyte includes one of NaCl and NaOH.
 - 4. The method of producing condensate of SAR abolisher according to claim 1, wherein said step of introducing hydrogen adsorbent into a solution obtained by dissolving electrolyte into purified water includes the step of causing said solution containing electrolyte to pass through a cartridge (30) including the hydrogen adsorbent.
 - A method of producing condensate of SAR abolisher, comprising the steps of:
- introducing a solution obtained by dissolving electrolyte into purified water into both a cathode chamber (21) and an anode chamber (22) separated from each other by a diaphragm (20);

immersing a first cathode (23) for electrolysis in said cathode chamber (21) and immersing a first anode (24) for electrolysis in-said anode chamber (22);

immersing a second cathode (25) in said cathode chamber (21) and immersing a second anode (26) formed of hydrogen adsorbent in said enode chamber (22) for application of electricity between the second anode (26) and said second cathode (25);

applying electricity between said first cathode (28) and said first anode (26) to electrolyze said solution; applying electricity between said second cathode (25) and said second anode (26) to dissolve said hydrogen adsorbent into said solution;

deriving electrolytic reduced water produced within said cathode chamber (21); and evaporating water within said electrolytic reduced water.

- The method of producing condensate of SAR abolisher according to claim 5, wherein said hydrogen adsorbent includes one of carbon, platinum, platinum sait, gold, vanadium and palladium.
- The method of producing condensate of SAR abolisher according to claim 5, wherein said electrolyte includes one
 of NaCl and NaOH.
- Condensate of SAR abolisher obtained by reducing a solution containing electrolyte and hydrogen adsorbent by electrolysis, and by condensing electrolytic reduced water obtained.
 - Powder of SAR abolisher obtained by reducing, by electrolysis, a solution containing electrolyte and hydrogen adsorbent, and by evaporating obtained electrolytic reduced water to dryness.

30: CARTRIDGE CONTAINING ACTIVATED CARBON

FIG.2

FIG.3

FIG.4

FIG.5

EUROPEAN SEARCH REPORT

Application Number

EP 00 31 0203

Category	Citation of document with indication, w of relevant passages	mere appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (INCCLT)	
Ā	PATENT ABSTRACTS OF JAPAN vol. 1999, no. 12, 29 October 1999 (1999-10-2 & JP 11 192485 A (RIVER SUYUKIAKI; HANAOKA KOKICHI), 21 July 1999 (1999-07-21) * abstract *	JTON: KK: MATSUC	F-3	A61K	39/06 33/00 1/461
P,A	EP 0 987 222 A (RIVERSTON) YOSHIAKI (JP); HANAGKA KON 22 March 2000 (2000-03-22) * the whole document *	KICHI (JP))	1		
A	EP 0 531 783 A (JANIX KK) 17 March 1993 (1993-03-17, * the whole document *)	103		·
Á	US 5 378 339 A (AOK1 KAZU 3 January 1995 (1995-01-0 * the whole document *		And a		HNICAL FIELDS
Å.	EP 0 752 391 A (NIHON TRI 8 January 1997 (1997-01-0) * the whole document *		Prof.		ACHED (Inc.CL.T)
A	SHIRAHATA S ET AL: "ELEC WATER SCAVENGES ACTIVE OX PROTECTS DNA FROM OXIDATI BIOCHEMICAL AND BIOPHYSIC COMMUNICATIONS, ACADEMIC P ORLANDO, FL.US, vol. 234, no. 1, 1997, pa XP000978700 ISSN: 0006-291X * the whole document *	YGEN SPECIES AND VE DAMAGE" AL RESEARCH RESS INC.	t-id	***************************************	
	The present search report has been draw	201001		<u></u>	
	THE HAGUE	Date of commercion of the seator 16 March 2001	De	visme	, F
X pa Y:pa 900 A:leo	CATEGORY OF CITED DOCUMENTS Inclusing inserted a cambring with abother colleging relevant of combined with abother coment of the same category phological background in-written discound in-	7: theory or princ E: conier patent of situr ros sang D: document cite L: document cite 5: member of the	Richment, Dut put tale I in the application I for other reason	s n s	, er

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 31 0203

This annex lists the patent tamily membersrelating to the patent documents used in the above-mentioned fluropean search report. The members are as contained in the European Patent Office EDP file on.

The European Patent Office is in no way listile for these particulars which are merely given for the purpose of information.

16-03-2001

Patent document cited in search report		Publication date	Patent tamily member(s)	Publication date
JP 11192485	Ą	21-07-1999	NONE	
EP 0987222	A	22-03-2000	JP 2000061470 A	29-02-200
EP 0531783	Å	17-03-1993	JP 5138170 A CA 2075755 A	01-06-199 01-03-199
US 5378339	Ā	03011995	JP 5208190 A JP 2061723 C JP 5220482 A JP 7094038 B WO 9315022 A	20-08-199 10-06-199 31-08-199 11-10-199 05-08-199
EP 0752391	A	08-01-1997	JP 9077672 A CA 2180487 A CN 1144193 A JP 2000350989 A RU 2120413 C US 5938915 A	25-03-199 08-01-199 05-03-199 19-12-200 20-10-199 17-08-199

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82