[4]

Do each of the following:

- (a) Draw the precedence diagram.
- (b) What is the shortest cycle time that will permit use of only two workstations? Is this cycle time feasible?
- (c) What is the daily output under this arrangement?
- (d) Determine the output rate that would be associated with the maximum cycle time.
- Consider four jobs A, B, C and D which have to be processed on three OR machines M₁, M2 and M₃. The processing times for each job on each of the three machines are given in the table below:

Job	Processing Time (Minutes) On Machines					
J 00	M_1	M_2	M_3			
A	12	6	10			
В	6	4	8			
С	7	5	6			
D	8	3	7			

Using Johnson's rule, find the optimal sequence. Also draw the sequence of operation on Gantt Chart and compute the Cycle time.

0.6 Attempt any two:

- i. Define Benchmarking. What the types of benchmarking. Describe the process of benchmarking
- Define TQM. List the principles of TQM. What are the Obstacles to implementing TQM
- What do you understand by acceptance sampling and Operating 5 Characteristic Curve? List the various sampling plans.

Total No. of Questions: 6 Total No. of Printed Pages:4

	Faculty of Management
haladadadada .	Facility of Management

7

5

Faculty of Management End Sem (Even) Examination May-2018 MS5CO10 Operations Management

Enrollment No.

Programme: MBA Branch/Specialisation: Management **Duration: 3 Hrs. Maximum Marks: 60**

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. If inputs decrease while output remains constant, what will happen to 1 productivity?
 - (a) Increases

(b) Decreases

- (c) Remain Constant
- (d) Can't Say
- Operations can be classified according to their volume and variety of production as well as the degree of variation and visibility. Which of the following operations would be classified as high volume, low variety?
 - (a) A Carpenter

- (b) A front office bank
- (c) A fast food restaurant
- (d) All of these
- Product design may be accomplished more quickly through the use of cross-functional teams that work on various aspects of the design at the same time. This approach is known as
 - (a) Simultaneous design.
 - (b) Concurrent engineering.
 - (c) The "throw it over the wall" approach.
 - (d) Robust Design
- A key advantage of a process layout is
 - (a) High levels of inventory
 - (b) High degree of automation
 - (c) Flexible use of equipment and resources
 - (d) Smooth flow of materials
- Quantitative methods of forecasting include
 - (a) Exponential smoothing. (b) Sales force composite.
 - (c) Jury of executive opinion.

(d) Consumer market survey. P.T.O.

1

1

1

	vi.	A list of all parts and product is called:	l materials no	eeded to as	semble one unit of a	1
		(a) A master schedule.		(b) A kanb	a n	
		(c) A bill of materials.		(d) None o		
	vii.	A major disadvantage of	of the EDD ru	` /	1 111000	1
	, 11,	(a) It results in high in-				
		(b) It does not take prod	-			
		(c) It tends to make lon	•			
		(d) None of these.				
	viii.	Which of the following	g dispatch rul	es tends to	maximize the number	1
		of jobs completed on time	=			
		(a) LPT (b) SPT	(c) EDD	(d) FCFS	
	ix.	In acceptance sampling	, the produce	r's risk is the	e risk of having a	1
		(a) Bad lot accepted.		(b) Bad lot	Rejected	
		(c) Good lot rejected.		(d) Good lo	ot accepted.	
	х.	Evaluating Self perforn	nance by com	paring exter	rnal sources which are	1
		at high level is known a	as			
		(a) Benchmarking (b) Kaizen	(c) Samplin	ng (d) None of these	
Q.2	i.	Describe the functions	of an operation	on manager?	,	3
	ii.	Draw the volume varie	-	•		7
		characteristics, advanta	ges and limita	ations of job	shop production?	
OR	iii.	Define productivity. L	ist the variou	is types of	productivity. Discuss	7
		any four measuremen	t techniques	to improve	e the productivity of	
		organization.				
Q.3	i.	Define plant layout. WI	hat are the ob	jectives of g	good plant layout?	4
	ii.	Discuss the validity	of location	of most of	of the steel plant in	6
		Chattisgarh, Odisha an	d Jharkhand	and Informa	ation Technology(IT)	
		companies in Bangalore	e, Hyderabad.			
OR	iii.	Three potential location	ns A, B and C	have the co	ost structure as shown	6
		in table below:				
		Location	Fixed Cost/	Year	Variable Cost/Unit	
		A	Rs. 2,00,00	0	Rs.10	
		В	Rs. 2,00,00	0	Rs.15	
		С	Rs. 2,00,00	0	Rs.20	

		(a) Plat the tot(b) Identify th(c) If the expe	e range	of out	put for	which	each a	lterna	ive is s	superior.	
		year, which	h locati	ion wo	uld pro	vide th	e lowe	st tota	l cost?		
Q.4	i. ii.	Define the agg	•	-	_		-		-	_	3 7
		(a) Moving Av	_								
		(b) Exponentia			_						
		(c) Weighted N	_		_					_	
OR	iii.	The owner of							-		
		window locks			-						
		reported each	week 1	n the n	iews pa	aper. T	he data	a are g	ive in	the table	<u>;</u>
		below:	T =			T _	1.	T _			
		Break-ins	9	3	3	5	4	7	2	6	
		Sales	46	18	20	24	27	34	14	30	_
		(a) Obtain a re	_	-							7
		(b) Estimate sa	iles wh	en the	numbe	r of bre	eak-ins	is 12 a	and 15.		
Q.5	i.	Describe the fo	ollowin	g singl	e crite	rion sec	quencir	ng rule	:		3
		(a) FCFS (b)) Least	Slack	(c) E	arliest	Due D	ate			
	ii.	A large manuf	facture	of pe	ncil Sh	arpene	ers is p	lannin	g to ac	ld a new	7 7
		line of sharpen									
		Task	Task '	Time (minute	es)	Imme	diate l	Follow	er	
		Α	0.2				В				
		В	0.4				D				
		С	0.3 D								
		D	1.3								
		E	0.1				F				
		F	0.8				G				
		G	0.3				Н				
		1 1 1	1 7				I N				

None

0.3 1.2

Marking Scheme MS5CO10 Operations Management

		MS5CO10 Operations Management				4 Characteristics (0.5 mark * 4)	2 marks
		Wissesto Operations Wanagement				4 Advantages (0.5 mark * 4)	2 marks
Q.1	i.	If inputs decrease while output remains constant, what will happen to	1			4 Limitations (0.5 mark * 4)	2 marks
		productivity?			iii.	Define productivity. List the various types of pro	ductivity. Discuss
		(a) Increases				any four techniques to improve the productivity of o	organization.
	ii.	Operations can be classified according to their volume and variety of	1			Definition of productivity	1 mark
		production as well as the degree of variation and visibility. Which of				Types of productivity	2 marks
		the following operations would be classified as high volume, low variety?				Any four Techniques 1 mark each (1 mark *4)	4 marks
		(b) A front office bank		Q.3	i.	Define plant layout. What are the objectives of good	l plant layout.
	iii.	Product design may be accomplished more quickly through the use of	1			Definition of plant layout	1 mark
		cross-functional teams that work on various aspects of the design at				6 objectives (0.5 mark * 6)	3 marks
		the same time. This approach is known as			ii.	Discuss the validity of location of most of the steel	plant in
		(b) Concurrent engineering.				Chattisgarh, Odish and Jharkhand and Information	Γechnology(IT)
	iv.	A key advantage of a process layout is	1			copanies in Bangalore, Hyderabad.	
		(c) Flexible equipment and resources				Any four factors each 1.5 mark	(1.5 mark *4)
	v.	Quantitative methods of forecasting include	1	OR	iii.	Three potential locations A, B and C have the cost	structure as shown
		(a) Exponential smoothing.				in table below:	
	vi.	A list of all parts and materials needed to assemble one unit of a product is called:	1			(a) Plat the total cost curve for these locations on a	single graph. 2 marks
		(c) A bill of materials.				(b) Identify the range of output for which each alter	rnative is superior.
	vii.	A major disadvantage of the EDD rule is:	1				2 marks
		(b) It does not take processing time into account.				(c) If the expected output at selected location is to	be 9,000 units per
	viii.	Which of the following dispatch rules tends to maximize the number	1			year, which location would provide the lowest total	cost?
		of jobs completed on time? (b) SPT					2 marks
	ix.	In acceptance sampling, the producer's risk is the risk of having a	1	Q.4	i.	Define the aggregate planning and material requirem	nent planning.
		(c) Good lot rejected.				Aggregate planning	2 marks
	х.	Evaluating Self performance by comparing external sources which are	1			Material Requirement planning	1 mark
		at high level, known as			ii.	Define forecasting. And discuss the following method	od of forecasting:
		(a) Benchmarking				a) Moving Average Method b) Exponential Smo	oothening Method
						c) Weight Moving Average Method	
Q.2	i.	Describe the functions of an operation manager?	3			Definition of forecasting	1 mark
		Any three functions each 1 mark (1 mark * 3)				Moving average method	2 marks
	ii.	Draw the volume variety graph of production system. What are the	7			Exponential Smoothening method	2 marks
		characteristics, advantages and limitations of job shop production				Weight moving Average method	2 marks

Drawing volume variety graph

4 Characteristics (0.5 mark * 4)

1 mark

2 marks

7

3

OR iii. The owner of a small hardware store has noted a sales pattern for window locks that seems to parallel the number of break ins reported each week in the news paper. The data are give in the table below:

Break-ins	9	3	3	5	4	7	2	6
Sales	46	18	20	24	27	34	14	30

a) Obtain a regression equation for the data

b) Estimate sales when the number of break-ins is 12 and 15.

Preparing the table

3 marks

Finding constant a and b and establishing equation of line y=a+bx

2 marks

Estimating sales at break-ins 12 and 15

2 marks

Q.5 i. Describe the following single criterion sequencing rule :

3

7

7

7

Q.6

a) FCFS b) Least Slack c) Earliest Due Date

Defining above terms each 1 mark (1 mark*3)

ii. A large manufacturer of pencil Sharpeners is planning to add a new line of sharpeners. Following the details are given:

Do each of the following:

(a) Draw the precedence diagram

2 marks

- (b) What is the shortest cycle time that will permit use of only two workstations? Is this cycle time feasible? 2 marks
- (c) What is the daily output under this arrangement? 1 mark
- (d) Determine the output rate that would be associated with the maximum cycle time. 2 marks
- OR iii. Consider four jobs A, B, C and D which have to be processed on three machines M_1, M_2 and M_3 . The processing times for each job on each of the three machines are given in the table below:

Job	Processing Time (Minutes) On Machines				
300	\mathbf{M}_1	M_2	M_3		
A	12	6	10		
В	6	4	8		
С	7	5	6		
D	8	3	7		

Using Johnson's rule, find the optimal sequence. Also draw the sequence of operation on Gantt Chart and compute the Cycle time.

Assign job to machine (sequencing)

3 marks

Preparing Gantt chart and computing cycle time

4 marks

	Attempt any two:		
i.	Define Benchmarking. What the types of benchmarking. It process of benchmarking	Describe the	5
	Definition of benchmarking	1 mark	
	Types of bench marking	1 mark	
	Process of benchmarking	3 marks	
ii.	Define TQM. List the principles of TQM. What are the C	Obstacles to	5
	implementing TQM		
	Definition TQM	1 mark	
	Principles of TQM	1 mark	
	Obstacles to implementing TQM	3 marks	
iii.	What do you understand by acceptance sampling and	Operating	5
	Characteristic Curve ? List the various sampling plans.		
	Defining acceptance sampling	2 marks	
	Operating Characteristic cure	2 marks	
	Types of Sampling Plan	1 mark	

6.3 (iii)

Cocation	Fixed Gost/Year	Vaniable Cost / Unit
A	2,00000	R. & 10 (-
B	2,00,00	Pr. 15/-
C	₹,00,00	Pr 201 -

Sul Total Gest = Fixed Cost traviable cost
Assuming the annual production of 10,000 units.

Total cost of plant B = 2,00,000 + 10 × 10000 = 3,00,000 (Total cost of plant B = 2,00,000 + 15 × 10000 = 3,50,000 (Total cost of plant C = 2,00,000 + 20 × 10000 = 4,00,000 (-

N . 1

alterestive is superior.

From the graph, it when the output is O unit, all location have the same fixed output. But as there are clifferent vericions ast, from graph we see that total ast ourse on fur location as is, less compare to others location inespective of output.

There here For all range of out pout, location A is Euperiote.

3 If the expected output at selected location D to be 9000, units per year, location A will provide the lowest total lost.

Total cest = 2,00,000+ 9000×10

$$b = \frac{8 \times 1202 - 39 \times 219}{8 \times 1202 - 39 \times 219}$$

$$b = \frac{9616 - 8307}{1832 - 1521} = \frac{1309}{311} = 4.209$$

$$c = \frac{24 - b \times b}{3} = \frac{219 - (4.209 \times 39)}{8}$$

Thus equation is $y_0 = a+bk$ $\int y_0 = a+bk$ $\int y_0 = a+bk$

Q.5(ii) A leave memufacture-

given

a Draw the Precedence diagrams

B) min cycletime:

min cycle time = longest tesk time (Bottleneck operation)

1964. Cycle time = 2+ = Summation of all task time = 0.2+0.4+0.3+0.1+1.3+0.8+0.3+12 = 4.6 roin

Assuming 8 hr frift & A vailable time = 400 min

Map & min output :

Map. output = Available time = 400 = 369.23

Map. output = min wate time = 13 = 369.23

= 369.23

min output = Arailable time = 480 = 104.34 map, cycle time = 46 = 104.34

The range of out put is 104 unit to 369 units & nangrafthe femine cycle time is 1.3 min to 4.6 min

The smartest cycle time that will parmit we on (b) only two work chan'ons. (Wankstution) Nmin = BET Cucletime RDA 2 = 4.6 Cucletime Cucletime = 4.6 = 2.3 min Is this cycle time to fearible! Yes, this choice time is fearible, as it I thin the range of min cycletind (13 min) & may cycletime (416 min). ____ × ____ Wheat is the daily output under this consequent Cycletime = Available time
Desired output Derived output = Atrailable time Culletime = 408.69 208 units (d) may. Cycle filme = Et = 4.6 min minimum out prut: ArabiAvailable time

minimum outpout: Arehanidable time

- 480
- 400 = 104.31 units

- 104.31 units

- 2 - 7

Sol: Step 1: Convert the given Problem into n-jobs - 2 machine form. as below:

.	Processing ti	me in minuted
job	Im	IM2
0	WItWS	M2+173
A	12+6 = 18	6+10=16
\mathcal{B}	6+4=10	4+8=12
د_	7+5 = 12	5+6 = 11
\mathcal{D}	8+3=11	3+7=10

Now captalling John lang Rule.

Step 2: Find the Shortest processing time on either MC

The shortest processing time is 10 min for job & on mic 1 & for job D on mic 2.

Therefore, the job B should be placed first in the sequence & B at the last in the sequence.

After Removing the Job B & D, Now see the remeining

jobs are	Proceeding	time in (Minutes)
dol	mi+ms	W5+413
A	12+6=18	6410=16
C	7+6=12	576=11

Again, finding the snortest processing time for either m/c.

The snortest processing time is 11 min for job C on m/c 2.

There fore, converging the job C, at the last a in the Sequence, for & remaining portitions.

1		
1 251	1 0 1	D
100		

Now only job A a to the remained, pouring it

The Optimal secuence is

B	A	C	\mathcal{D}	
)		

Cycle time: Using Gant Chart

Total flow time on Cycle time = 19 47 19 min

Total opposition time = operating time My + operating time Me + operating

= 33+18+31 = 82 min

= Idle timeon M.+ Idletine on M2+ & Idletine My Total Idle time

= 14+29+16 = 59 min

Total operation time + Total Idle time = Total 3x cycletime 82+59 = 3x47 141 = 141 min