

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE MATEMATICA - 2005

Duração: 120 minutos

LEIA ATENTAMENTE AS SEGUINTES INSTRUÇÕES:

- 1. A prova é constituída por trinta e duas (32) questões, todas com quatro (4) alternativas de resposta, estando correcta somente UMA (1) das alternativas.
- Para cada questão assinale a resposta escolhida na FOLHA DE RESPOSTAS que lhe foi fornecida no início do exame. Não será aceite qualquer outra folha adicional.
- 3. Pinte o rectângulo com a letra correspondente à resposta escolhida. Por exemplo, se as respostas às questões 45 e 46 forem B e C, pinte assim:

- 4. Preencha a lápis HB, pois contrariamente ao preenchimento por esferográfica, os erros podem ser totalmente apagados sem deixar nenhuma marca que possa perturbar a leitura da máquina óptica.
- 5. Se o candidato tiver certeza de que as respostas assinaladas a lápis são as definitivas, PODE passar à esferográfica de tinta azul ou preta.

BOM TRABALHO!

- 1. Escreva sob forma de percentagem a razão: $\frac{7}{15}$
 - A. 31,1%
- B. 4,7%
- C. 150%
- D. 46,7%

- 2. Qual è o valor de (16)-1.75

- A. 128 B. 256 C. $\frac{1}{128}$ D. $\frac{1}{256}$
- 3. $\sqrt{(2-\sqrt{5})^2}$ é igual a:

- A. $2 \sqrt{5}$ B. $\sqrt{5} 2$ C. $9 4\sqrt{5}$ D. $9 + 4\sqrt{5}$
- 4. Determine $\log_2\left(\sqrt[3]{\frac{3}{4}}\right)$, se $\log_2 3 = a$.

- A. $\frac{3a}{4}$ B. $\frac{3}{4}(a-2)$ C. $\frac{1}{3}(2-a)$ D. $\frac{1}{3}(a-2)$.
- 5. Efectue a operação seguinte, simplificando o resultado se possível

$$\frac{4p-4}{p}$$
: $\frac{10-10p}{8p^2}$

- A. $\frac{40p^2 + 80p + 40}{8p^3}$ B. $\frac{32p^3 32p^2}{10p^2 10p}$ C. $\frac{5}{16p}$ D. $-\frac{16p}{5}$

- 6. A soma de recíprocos de dois números inteiros consecutivos é $\frac{13}{42}$. Encontre esses números?
 - A. 7 e 8
- B. 6 e 7
- C. 13 e 14
- D. 5 e 6.
- 7. O Manuel tem uma máquina fotográfica que tira chapas 6 por 9 (6cm de largura e 9cm de comprimento). Que largura deverà ter uma ampliação se o comprimento tiver 18 cm?
 - A. 27cm
- B. 12cm
- C. 24cm
- D. 108cm

8. Na figura o segmento AB é paralelo ao segmento CD . Identifique dois pares de ângulos congruentes e as medidas dos respectivos ângulos.

A.
$$\angle CDA \cong \angle FAB$$

$$\angle EDC \cong \angle DAB$$

B.
$$\angle ADC \cong \angle BAD$$

$$\angle FAB \cong \angle EDC$$

c.
$$\angle FAB \cong \angle EDC$$

$$\angle ADC \cong \angle BAD$$

D.
$$\angle FAB \cong \angle BAD$$

$$\angle EDC \cong \angle CDA$$

todos com 64º

- 9. A Vila de Gondola gastou 25 milhões de Meticais para a recolha de lixo em 2002 e em 2003 a mesma vila gastou 20 milhões de Meticais para os mesmos fins. Qual foi a variação dos gastos?
 - A. Desceram em 20%

B. Desceram em 25%

C. Desceram em 35%

- D. Nenhuma das anteriores.
- 10. Qual dos seguintes números é raiz do polinómio $P(x) = x^3 + 2x^2 7x 2$.
 - A) -3
- B) 2
- C) -2
- D) -1.

- 11. Compare o perímetro P da circunferência maior e a soma S dos perímetros das circunferências menores
- A. P > S
- B. P < S
- C. $P = \frac{3}{4}S$

D.
$$P = S$$

- 12. As raizes da equação $(5x+5)^2 = 100$ são:
 - A. 21 e –21
- B. -3 e 1
- C. -1 e 10
- D. –1 e 3.
- 13. Resolva a equação $\cos^2 x = \frac{1}{4}$, sendo $x \in \left[\pi; \frac{3\pi}{2}\right]$.
 - A. $\frac{5\pi}{4}$ B. $\frac{7\pi}{6}$ C. π D. $\frac{4\pi}{3}$

- 14. Simplifique o número $8^{2-2\log_4 \sqrt[3]{3}} + \frac{1}{3} \cdot 7^{\log_{49} 4}$
 - A. 11
- B. 20
- C. 12
- D. 22
- 15. Resolva a equação: $\frac{x+5}{x-5} + \frac{x-5}{x+5} = \frac{10}{3}$
- A. $x_1 = -5$; ou $x_2 = 5$ B. $x_1 = -10$; ou $x_2 = 10$

- C. $x_1 = -5$; ou $x_2 = 0$ D. $x_1 = 10$; ou $x_2 = 5$
- 16. Escreva o termo geral da sucessão que se segue: { 2,5, 8, 11,......}
 - A. $a_n = n^2 1$

B. $a_n = 3n^2 - 1$

C. $a_n = 3n - 1$

D. $a_n = n^2 + 1$

- $6; 4; \frac{8}{3}; \frac{16}{9}; \dots$ 17. Calcule a soma de todos os termos da sucessão
 - A. 15
- B. $\frac{58}{3}$ C. 18
- D. $+\infty$

18. Na figura está representada a função y = f(x). Qual das expressões analíticas corresponde a representação gráfica.

A.
$$f(x) = \begin{cases} (1+x)^2; & se \quad x \in \Re \\ -x; & se \quad |x| < 1 \\ x^2; & se \quad x > 1 \end{cases}$$

B.
$$f(x) = \begin{cases} (1+x)^2; & se & x \in (-\infty;-1) \\ x; & se & |x| < 1 \\ x^2; & se & x > 1 \end{cases}$$

A.
$$f(x) = \begin{cases} (1+x)^2; & se & x \in \Re \\ -x; & se & |x| < 1 \\ x^2; & se & x > 1 \end{cases}$$
B. $f(x) = \begin{cases} (1+x)^2; & se & x \in (-\infty;-1) \\ x; & se & |x| < 1 \\ x^2; & se & x > 1 \end{cases}$
C. $f(x) = \begin{cases} (1+x)^2; & se & x \in [-\infty;-1] \\ -x; & se & -1 \le x \le 1 \\ \sqrt{x-1}; & se & x \ge 1 \end{cases}$
D. Nenhuma das alternativas anteriores.

- 19. A recta y = 3x è tangente ao gráfico de uma certa função f,no ponto de abcissa x = 1. Qual das seguintes expressões pode definir a função f?

A.
$$x^2 + 2x + 1$$

B.
$$x^2 + 3x$$

C.
$$x^2 + x + 1$$

A.
$$x^2 + 2x + 1$$
 B. $x^2 + 3x$ C. $x^2 + x + 1$ D. $x^2 + 3x + 1$

20. A solução da inequação |x+1| < 0.01 è:

A.
$$-0.01 < x < 0.01$$
 B. $-1.01 < x < -0.99$ C. $-0.99 < x < 1.01$

B.
$$-1,01 < x < -0,99$$

$$C_{x} - 0.99 < x < 1.01$$

D. Nenhuma das alternativas anteriores.

21. Indique o domínio da função seguinte

A.
$$x \in [-\infty; +\infty]$$

B.
$$x \in]-\infty; -3] \cup [1; +\infty[$$

C.
$$x \in]-\infty; -2] \cup [2; +\infty[$$

D.
$$x \in]-\infty; -2[\cup]-2; 2[\cup]2; +\infty[$$

22. O valor dos limites $\lim_{x\to +\infty} f(x)$ e $\lim_{x\to -\infty} f(x)$, sendo f(x) a função representada no gráfico do exercício anterior, são respectivamente:

A.
$$\lim_{x \to +\infty} f(x) = 2$$
 e $\lim_{x \to -\infty} f(x) = -2$

B.
$$\lim_{x \to +\infty} f(x) = -3$$
 e $\lim_{x \to -\infty} f(x) = 1$

C.
$$\lim_{x \to +\infty} f(x) = 1$$
 e $\lim_{x \to -\infty} f(x) = -3$

$$D. \lim_{x \to +\infty} f(x) = +\infty \quad \text{e} \quad \lim_{x \to -\infty} f(x) = -\infty$$

23. Calcule $\lim_{x \to +\infty} \left(\frac{a+x}{x} \right)^{5x}$

B.
$$e^{5a}$$

$$D. + \infty$$

24. Na figura ao lado està parte da representação gráfica de uma função de domínio R\{0}. Qual das figuras seguintes poderá ser parte da repre-sentação gráfica da função f derivada de f?

A.

В.

C.

D.

25. Considere o triângulo seguinte. Tomando em consideração que b mede 4cm, c mede 5cm e o ângulo formado pelos lados AB e AC é de 60°. Quanto mede o lado a?

A.
$$\sqrt{21}$$
 cm

B.
$$\sqrt{19}$$
 cm

C. 5cm D.
$$\sqrt{13}$$
 cm

26. Determine o valor de m (ou os valores de m) de modo a que tenha sentido a expressão:

$$tg\alpha = \frac{m+1}{m}$$

$$tg\alpha = \frac{m+1}{m}$$
 e $\alpha \in 2^{\circ}$ Quadrante

B.
$$m \neq 0$$
 C. $m \in]-1,0[$ D. $m \in [-1,0[$

D.
$$m \in [-1,0]$$

27. Qual è o valor da soma?

Sen240°-cos150°+tg330°

A.
$$-\frac{\sqrt{3}}{3}$$

B.
$$\sqrt{3}$$

C.
$$\frac{\sqrt{3}}{2}$$

A. $-\frac{\sqrt{3}}{3}$ B. $\sqrt{3}$ C. $\frac{\sqrt{3}}{2}$ D. Nenhuma das alternativas anteriores

28. Calcule a derivada de y = sen(3x) onde x é igual a 20°.

A. 3

B.
$$\frac{3}{2}$$

C.
$$\frac{3}{4}$$

B.
$$\frac{3}{2}$$
 C. $\frac{3}{4}$ D. $\frac{-3}{2}$

29. Qual o valor de k para o qual a função definida por f(x) é contínua

$$f(x) = \begin{cases} 0 & \text{se } x \le 0\\ \ln(x+k) & \text{se } x > 0 \end{cases}$$

- A. 0
- B.1
- C. *e*
- 30. Resolva a inequação: $f(x) < \phi'(-1)$, se $f(x) = x^2 3x + 3$ e $\phi(x) = \frac{1}{2}x^2 + 2x$
 - A. $x \in]1, 2[$

B. $x \in]-\infty, 1] \cup [2, +\infty]$

C. $x \in [1, 2]$

- 31. Dada a função $f(x) = \frac{x}{x^2 + 1}$ no intervalo $x \in [0; +\infty[$. Usando a derivada indique em qual dos pontos o gráfico tem um máximo.
 - A. P(-1; 1/4)
- B. P(1; 1/2)
- C. P(0;0)
- D. P(0; 2)
- 32. Na figura está representado o gráfico da função <u>derivada</u> de y = f(x). A função y = f(x) tem extremo(s) no(s) ponto(s) de abcissa:

A.
$$x = 1$$

B.
$$x = -1$$
 e $x = 3$

C.
$$x = 1$$
 e $x = 4$ D. $x = 3$

D.
$$x = 3$$

