Paradigmas de Programación

Correspondencia de Curry–Howard Puntos fijos y recursión

2do cuatrimestre de 2024

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Correspondencia de Curry-Howard

Operador de punto fijo

Sistema de tipos para el cálculo- λ^b

Sistema de tipos para el cálculo- λ^b

```
Reglas de tipado
    \Gamma \vdash \mathsf{true} : \mathsf{bool}^{\mathsf{T-TRUE}}
                                                                         \Gamma \vdash \mathsf{false} : \mathsf{bool}^{\mathsf{T-FALSE}}
    \Gamma \vdash M: bool \Gamma \vdash N : \tau \Gamma \vdash P : \tau
                \Gamma \vdash \text{if } M \text{ then } N \text{ else } P : \tau
```

Vamos a omitir las reglas para booleanos.

Sistema de tipos para el cálculo- λ^b

Reglas de tipado $\Gamma \vdash \mathsf{true} : \mathsf{bool}^{\mathsf{T-TRUE}}$ $\Gamma \vdash \mathsf{false} : \mathsf{bool}^{\mathsf{T-FALSE}}$ $\Gamma \vdash M$: bool $\Gamma \vdash N : \tau$ $\Gamma \vdash P : \tau$ $\Gamma \vdash \text{if } M \text{ then } N \text{ else } P : \tau$ $\frac{\Gamma, x : \tau \vdash x : \tau}{\Gamma, x : \tau \vdash x : \tau}^{\text{T-VAR}} \qquad \frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x : \tau . M : \tau \rightarrow \sigma}^{\text{T-ABS}}$ $\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau$ $\Gamma \vdash M N : \tau$

Sistema de tipos para el cálculo- λ

```
Reglas de tipado
                      \overline{\Gamma, \mathbf{x} : \tau \vdash \mathbf{x} : \tau}T-VAR
                      \frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x : \sigma.M : \tau \to \sigma} \text{T-ABS}
                       \Gamma \vdash M : \tau \to \sigma \Gamma \vdash N : \tau
                                                 \Gamma \vdash MN : \tau
```

Sistema de tipos para el cálculo- λ

Ignoremos los términos

Sistema de tipos para el cálculo- λ

Deducción natural $\frac{}{\Gamma, \quad \tau \vdash \quad \tau} ax$

- ► Ignoremos los términos
- Las reglas de tipado se corresponden con reglas de deducción natural.

Correspondencia de Curry

Curry y Feys observaron que si se lee el tipo $au o \sigma$ como una implicación $au \Rightarrow \sigma$:

la regla de tipado de la aplicación de una función es la regla **modus ponens**

Pruebas y Programas

 $\begin{array}{ccc} \text{F\'ormulas} & \longleftrightarrow & \text{T\'ipos} \\ \text{Demostraciones} & \longleftrightarrow & \text{T\'erminos} \end{array}$

Pruebas y Programas

```
\begin{array}{ccc} \mathsf{F\acute{o}rmulas} & \leftrightarrow & \mathsf{T\acute{i}pos} \\ \mathsf{Demostraciones} & \leftrightarrow & \mathsf{T\acute{e}rminos} \end{array}
```

Un juicio $\vdash \sigma$ es derivable si y sólo si el tipo σ está habitado, esto es, existe un término M tal que $\vdash M : \tau$ es derivable.

¿Es derivable $dash \sigma \Rightarrow \sigma$?

¿Es derivable $\vdash \sigma \Rightarrow \sigma$? Si, por ejemplo:

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

Si, por ejemplo:

$$\frac{\overline{\sigma \vdash \sigma} \, \mathsf{ax}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i}$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{\mathbf{x}: \sigma \vdash \mathbf{x}: \sigma}^{\text{T-VAR}}}{\vdash \lambda \mathbf{x}: \sigma.\mathbf{x}: \sigma \to \sigma}^{\text{T-ABS}}$$

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

Si, por ejemplo:

$$\frac{\overline{\sigma \vdash \sigma}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i}$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{\mathbf{x}: \sigma \vdash \mathbf{x}: \sigma}^{\text{T-VAR}}}{\vdash \lambda \mathbf{x}: \sigma.\mathbf{x}: \sigma \rightarrow \sigma}^{\text{T-ABS}}$$

El **término** $\lambda x: \sigma.x$ se asocia con la **prueba** de $\sigma \Rightarrow \sigma$ que se muestra en la parte superior

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\sigma \vdash \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\neg \vdash \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \vdash \sigma \Rightarrow \sigma$$

; Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\overline{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}^{ax}}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\overline{\sigma \vdash \sigma}^{ax}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \\ \vdash \sigma \Rightarrow \sigma$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{x : \sigma \to \sigma \vdash x : \sigma \to \sigma}^{\text{T-VAR}}}{\vdash \lambda x : \sigma \to \sigma.x : (\sigma \to \sigma) \to \sigma \to \sigma}^{\text{T-ABS}} \frac{\overline{y : \sigma \vdash y : \sigma}^{\text{T-VAR}}}{\vdash \lambda y : \sigma.y : \sigma \to \sigma}^{\text{T-ABS}}}{\vdash \lambda y : \sigma.y : \sigma \to \sigma}^{\text{T-ABS}}$$

$$\vdash (\lambda x : \sigma \to \sigma.x)(\lambda y : \sigma.y) : \sigma \to \sigma$$

; Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\overline{\sigma \Rightarrow \sigma \vdash \sigma \Rightarrow \sigma}^{ax}}{\vdash (\sigma \Rightarrow \sigma) \Rightarrow \sigma \Rightarrow \sigma} \Rightarrow_{i} \frac{\overline{\sigma \vdash \sigma}^{ax}}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i}$$

$$\vdash \sigma \Rightarrow \sigma$$

Corresponde al siguiente juicio de tipado:

$$\frac{\overline{x : \sigma \to \sigma \vdash x : \sigma \to \sigma}^{\text{T-VAR}}}{\vdash \lambda x : \sigma \to \sigma.x : (\sigma \to \sigma) \to \sigma \to \sigma}^{\text{T-VAR}} \xrightarrow{\text{T-ABS}} \frac{\overline{y : \sigma \vdash y : \sigma}^{\text{T-VAR}}}{\vdash \lambda y : \sigma.y : \sigma \to \sigma}^{\text{T-ABS}}}{\vdash (\lambda x : \sigma \to \sigma.x)(\lambda y : \sigma.y) : \sigma \to \sigma}^{\text{T-API}}$$

El **término** $(\lambda x : \sigma \to \sigma.x)(\lambda y : \sigma.y)$ se asocia con la **prueba** que se muestra en la parte superior.

¿Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\frac{\overline{\sigma \vdash \sigma} ax}{\sigma \vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \quad \frac{}{\sigma \vdash \sigma} ax}{\frac{\sigma \vdash \sigma}{\vdash \sigma} \Rightarrow_{e}} \Rightarrow_{e}$$

$$\frac{}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{i}$$

; Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\frac{\overline{\sigma \vdash \sigma} \, \mathsf{ax}}{\sigma \vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \quad \overline{\sigma \vdash \sigma} \, \mathsf{ax}}{\sigma \vdash \sigma} \Rightarrow_{e} \\
\frac{\overline{\sigma \vdash \sigma} \Rightarrow \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{e}$$

$$x: \sigma, y: \sigma \vdash y: \sigma$$
 T-VAR

$$\frac{x : \sigma, y : \sigma : \gamma}{x : \sigma \vdash \lambda y : \sigma. y : \sigma \to \sigma} \text{T-ABS} \qquad \frac{}{x : \sigma \vdash x : \sigma} \text{T-VAR}$$

$$x: \sigma \vdash (\lambda y: \sigma.y)x: \sigma$$

$$\vdash \lambda x : \sigma.(\lambda y : \sigma.y)x : \sigma \to \sigma$$

-T-ABS

; Es derivable $\vdash \sigma \Rightarrow \sigma$?

También existe la siguiente prueba

$$\frac{\frac{\overline{\sigma \vdash \sigma} \, \mathsf{ax}}{\sigma \vdash \sigma \Rightarrow \sigma} \Rightarrow_{i} \quad \overline{\sigma \vdash \sigma} \, \mathsf{ax}}{\sigma \vdash \sigma} \Rightarrow_{e} \\
\frac{\overline{\sigma \vdash \sigma} \Rightarrow \sigma}{\vdash \sigma \Rightarrow \sigma} \Rightarrow_{e}$$

$$\frac{\overline{x : \sigma, y : \sigma \vdash y : \sigma}^{\text{T-VAR}}}{x : \sigma \vdash \lambda y : \sigma : \sigma \rightarrow \sigma}^{\text{T-ABS}} \qquad \frac{\overline{x : \sigma \vdash x : \sigma}^{\text{T-VAR}}}{x : \sigma \vdash (\lambda y : \sigma. y) x : \sigma}^{\text{T-APP}}$$

$$\frac{x : \sigma \vdash (\lambda y : \sigma. y) x : \sigma}{\vdash \lambda x : \sigma. (\lambda y : \sigma. y) x : \sigma \rightarrow \sigma}^{\text{T-ABS}}$$

El **término** $\lambda x : \sigma.(\lambda y : \sigma.y)x$ se asocia con la **prueba** que se muestra en la parte superior.

Pruebas vs términos

- Una fórmula puede tener muchas pruebas distintas.
- Distintas pruebas corresponden a distintos juicios de tipado, es decir distintos términos.
- Notar que algunas pruebas de la misma proposición son mas complejas que otras:

Correspondencia de Curry-Howard

William Alvin Howard extendió la correspondencia:

- Tratando los restantes conectivos lógicos.
- lacktriangle Usando el cálculo- λ en lugar de la lógica combinatoria.
- Mostrando una correspondencia entre la simplificación de pruebas y la computación.

Corte (cut)

Un corte es una "vuelta" innecesaria en una demostración.

Está dado por una regla de introducción seguida inmediatamente de una regla de eliminación.

Corte (cut)

Un corte es una "vuelta" innecesaria en una demostración.

- Está dado por una regla de introducción seguida inmediatamente de una regla de eliminación.
- Involucra a una fórmula de corte que no es subfórmula de la tesis.

Corte (cut)

Un corte es una "vuelta" innecesaria en una demostración.

- Está dado por una regla de introducción seguida inmediatamente de una regla de eliminación.
- Involucra a una fórmula de corte que no es subfórmula de la tesis.

Eliminación de cortes (cut-elimination)

Reescribir una prueba de manera tal que no tenga cortes:

▶ Eliminamos σ reemplazando cada uso σ en la prueba de ρ por una copia de la prueba de σ .

$$\frac{\frac{\vdots}{\Gamma, \sigma \vdash \rho}}{\frac{\Gamma \vdash \sigma \Rightarrow \rho}{\Gamma \vdash \rho}} \Rightarrow_{i} \frac{\vdots}{\Gamma \vdash \sigma} \Rightarrow_{e}$$

$$\frac{\left\{ \psi \right\}}{\Gamma \vdash \sigma} \\
\frac{\left\{ \varphi \right\}}{\Gamma \vdash \rho}$$

Computación como simplificación de pruebas

Eliminación de cortes y reducción β

Un paso de eliminación de cortes se corresponde con un paso de cómputo (aplicación de la regla β o E-APPABS).

$$\frac{\vdots}{ \begin{array}{c} \Gamma, \tau \vdash M : \rho \\ \hline \Gamma \vdash \lambda x : \tau . M : \tau \to \rho \end{array}} \overset{\vdots}{ \begin{array}{c} \Gamma \vdash N : \tau \\ \hline \Gamma \vdash (\lambda x : \tau . M) : \rho \end{array}} \xrightarrow{T-APP} \xrightarrow{\begin{array}{c} \vdots \\ \hline \Gamma \vdash N : \tau \\ \hline \end{array}} \\ \frac{\vdots}{ \begin{array}{c} \Gamma \vdash M : \tau \\ \hline \end{array}}$$

Conjunción

$$\frac{\Gamma \vdash \quad \tau \quad \Gamma \vdash \quad \sigma}{\tau \vdash \quad \tau \land \sigma} \land_{i}$$

$$\frac{\Gamma \vdash \quad \tau \land \sigma}{\Gamma \vdash \quad \tau} \land_{e_{1}} \quad \frac{\Gamma \vdash \quad \tau \land \sigma}{\Gamma \vdash \quad \sigma} \land_{e_{2}}$$

Producto

$$\frac{\Gamma \vdash M : \tau \quad \Gamma \vdash N : \sigma}{\tau \vdash \langle M, N \rangle : \tau \times \sigma}$$

$$\frac{\Gamma \vdash M : \tau \times \sigma}{\Gamma \vdash \mathsf{fst}(M) : \tau} \qquad \frac{\Gamma \vdash M : \tau \times \sigma}{\Gamma \vdash \mathsf{snd}(M) : \sigma}$$

Conjunción: corte

$$\begin{array}{c|cc}
\vdots & \vdots \\
\hline
\Gamma \vdash & \tau & \hline
\Gamma \vdash & \sigma \\
\hline
\Gamma \vdash & \tau \land \sigma
\end{array}$$

$$\begin{array}{c|cc}
\hline
\Gamma \vdash & \tau \land \sigma
\end{array}$$

$$\begin{array}{c|cc}
\vdots & \vdots \\
\hline
\Gamma \vdash & \tau & \hline
\Gamma \vdash & \sigma \\
\hline
\Gamma \vdash & \tau \land \sigma
\end{array}$$

$$\begin{array}{c|cc}
\hline
\Gamma \vdash & \tau \land \sigma
\end{array}$$

$$\begin{array}{c|cc}
\land_{e_1}
\end{array}$$

Conjunción: eliminación de corte

$$\frac{\vdots}{\Gamma \vdash \tau} \frac{\vdots}{\Gamma \vdash \sigma} \xrightarrow{\Gamma \vdash \sigma} \wedge_{i} \rightarrow \frac{\vdots}{\Gamma \vdash \tau} \xrightarrow{\Gamma \vdash \sigma} \wedge_{e_{1}} \xrightarrow{\Xi} \xrightarrow{\Xi} \frac{\vdots}{\Gamma \vdash \tau} \xrightarrow{\Gamma \vdash \sigma} \wedge_{e_{2}} \xrightarrow{\Xi} \xrightarrow{\Xi} \frac{\Xi}{\Gamma \vdash \sigma}$$

Producto: reducción

$$\begin{array}{c|c} \vdots & \vdots \\ \hline {\Gamma \vdash M : \tau} & \hline {\Gamma \vdash N : \sigma} \\ \hline {\Gamma \vdash \langle M, N \rangle : \tau \times \sigma} \\ \hline {\Gamma \vdash \mathsf{fst}(\langle), M \rangle N : \tau} \\ \hline \vdots & \vdots \\ \hline {\Gamma \vdash M : \tau} & \hline {\Gamma \vdash N : \sigma} \\ \hline {\Gamma \vdash \langle M, N \rangle : \tau \times \sigma} \\ \hline {\Gamma \vdash \mathsf{snd}(\langle), M \rangle N : \sigma} \\ \hline \end{array} \rightarrow \begin{array}{c} \vdots \\ \hline {\Gamma \vdash N : \sigma} \\ \hline \hline {\Gamma \vdash \mathsf{N} : \sigma} \\ \hline \end{array}$$

Cálculo- λ^{\times} — resumen

Tipos y términos

```
	au, \sigma, \dots ::= \dots \mid \tau \times \sigma

M, N, \dots ::= \dots \mid \langle M, N \rangle \mid \mathsf{fst}(M) \mid \mathsf{snd}(M)
```

Tipos y términos

$$au, \sigma, \dots ::= \dots \mid \tau \times \sigma$$

 $M, N, \dots ::= \dots \mid \langle M, N \rangle \mid \mathsf{fst}(M) \mid \mathsf{snd}(M)$

Reglas de tipado

$$\frac{\Gamma \vdash M : \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \langle M, N \rangle : \tau \times \sigma} \times_{I}$$

Tipos y términos

$$au, \sigma, \dots ::= \dots \mid \tau \times \sigma$$

 $M, N, \dots ::= \dots \mid \langle M, N \rangle \mid \mathsf{fst}(M) \mid \mathsf{snd}(M)$

Reglas de tipado

$$\frac{\Gamma \vdash M : \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash \langle M, N \rangle : \tau \times \sigma} \times_{i}$$

$$\frac{\Gamma \vdash M : \tau \times \sigma}{\Gamma \vdash \mathsf{fst}(M) : \tau} \times_{e_{1}} \frac{\Gamma \vdash M : \tau \times \sigma}{\Gamma \vdash \mathsf{snd}(M) : \tau} \times_{e_{2}}$$

Valores

$$V, W, \ldots ::= \ldots \mid \langle V, W \rangle$$

Valores

$$V, W, \ldots := \ldots \mid \langle V, W \rangle$$

Reglas de cómputo

$$\frac{}{\mathsf{fst}(\langle V,W\rangle)\to V}\text{E-FSTPAIR} \quad \frac{}{\mathsf{snd}(\langle V,W\rangle)\to W}\text{E-SNDPAIR}$$

Valores

$$V, W, \ldots := \ldots \mid \langle V, W \rangle$$

Reglas de cómputo

$$\overline{\mathsf{fst}(\langle V,W\rangle) \to V}^{\text{E-FSTPAIR}} \quad \overline{\mathsf{snd}(\langle V,W\rangle) \to W}^{\text{E-SNDPAIR}}$$

Reglas de congruencia

$$\frac{M \to M'}{\langle M, N \rangle \to \langle M', N \rangle} \text{E-PAIR1} \qquad \frac{N \to N'}{\langle V, N \rangle \to \langle V, N' \rangle} \text{E-PAIR2}$$

$$\frac{M \to M'}{\text{fst}(M) \to \text{fst}(M')} \text{E-FST} \qquad \frac{M \to M'}{\text{snd}(M) \to \text{snd}(M')} \text{E-SND}$$

Disyunción

Suma

$$\frac{\Gamma \vdash M : \tau}{\Gamma \vdash \mathsf{left}^{\sigma}(M) : \tau + \sigma} \qquad \frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \mathsf{right}^{\tau}(M) : \tau + \sigma}$$

$$\frac{\Gamma \vdash M : \tau + \sigma \qquad \Gamma, x : \tau \vdash M : \rho \qquad \Gamma, x : \tau \vdash N : \rho}{\Gamma \vdash \mathsf{case} \ M \left\{ \mathsf{left}(x) \mapsto N \ \| \ \mathsf{right}(x) \mapsto P \right\} : \rho}$$

Disyunción: corte

$$\begin{array}{c|c} \vdots \\ \hline {\Gamma \vdash M : \tau} \\ \hline \\ \hline {\Gamma \vdash \mathsf{left}^{\sigma}(M) : \tau + \sigma}^{\bigvee_{i_2}} & \overline{\Gamma, x : \tau \vdash N : \rho} & \overline{\Gamma, x : \sigma \vdash P : \rho} \\ \hline \\ {\Gamma \vdash \mathsf{case} \; \mathsf{left}^{\sigma}(M) \, \{\mathsf{left}(x) \mapsto N \; \| \; \mathsf{right}(x) \mapsto P\} : \rho} \\ \hline \end{array} \\ \vee_e \\$$

Suma: reducción (1)

```
 \frac{ \overline{\Gamma \vdash M : \tau} }{ \frac{\Gamma \vdash \mathsf{left}^\sigma(M) : \tau + \sigma}{\Gamma \vdash \mathsf{case} \; \mathsf{left}^\sigma(M) \, \{ \mathsf{left}(x) \mapsto N \; \| \; \mathsf{right}(x) \mapsto P \} : \rho} }{ \Gamma \vdash \mathsf{case} \; \mathsf{left}^\sigma(M) \, \{ \mathsf{left}(x) \mapsto N \; \| \; \mathsf{right}(x) \mapsto P \} : \rho } \vee_e 
                                                                                                                                                                                                                                                                                 \Gamma \vdash N\{x := M\} : \rho
```

Suma: reducción (2)

```
\frac{\overline{\Gamma \vdash M : \sigma}}{\frac{\Gamma \vdash \mathsf{right}^\tau(M) : \tau + \sigma}{\Gamma \vdash \mathsf{case} \ \mathsf{right}^\sigma(M) \, \{\mathsf{left}(x) \mapsto N \parallel \mathsf{right}(x) \mapsto P\} : \rho}}{\Gamma \vdash \mathsf{case} \ \mathsf{right}^\sigma(M) \, \{\mathsf{left}(x) \mapsto N \parallel \mathsf{right}(x) \mapsto P\} : \rho} \vee_e
                                                                                                                                                                                                                                                                              \Gamma \vdash M : \tau
                                                                                                                                                                                                                                                         \Gamma \vdash P\{x := M\} : \rho
```

Tipos y términos

Tipos y términos

Reglas de tipado

$$\frac{\Gamma \vdash M : \tau}{\Gamma \vdash \mathsf{left}^{\sigma}(M) : \tau + \sigma} +_{i_1} \frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \mathsf{right}^{\tau}(M) : \tau + \sigma} +_{i_2}$$

Tipos y términos

Reglas de tipado

$$\begin{split} \frac{\Gamma \vdash M : \tau}{\Gamma \vdash \mathsf{left}^{\sigma}(M) : \tau + \sigma} +_{i_1} \frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \mathsf{right}^{\tau}(M) : \tau + \sigma} +_{i_2} \\ \frac{\Gamma \vdash M : \tau + \sigma \quad \Gamma, x : \tau \vdash N : \rho \quad \Gamma, y : \sigma \vdash P : \rho}{\Gamma \vdash \mathsf{case} \ M \left\{ \mathsf{left}(x) \mapsto N \ \| \ \mathsf{right}(y) \mapsto P \right\} : \rho} +_{e} \end{split}$$

Valores

$$V,W,\ldots ::=\ldots \mid \mathsf{left}^{ au}(V) \mid \mathsf{right}^{ au}(V)$$

Valores

$$V, W, \ldots := \ldots \mid \mathsf{left}^{\tau}(V) \mid \mathsf{right}^{\tau}(V)$$

Reglas de cómputo

```
\overline{\mathsf{case}\;\mathsf{left}^\tau(V)\,\{\mathsf{left}(x)\mapsto M\;\|\;\mathsf{right}(y)\mapsto N\}\to M\{x:=V\}}^{\mathrm{E-CASEL}}
```

Valores

$$V, W, \ldots := \ldots \mid \mathsf{left}^{\tau}(V) \mid \mathsf{right}^{\tau}(V)$$

Reglas de cómputo

$$\overline{\mathsf{case}\;\mathsf{left}^\tau(V)\,\{\mathsf{left}(x)\mapsto M\;\|\;\mathsf{right}(y)\mapsto N\}\to M\{x:=V\}}^{\mathrm{E-CASEL}}$$

 $\overline{\mathsf{case}\;\mathsf{right}^{\scriptscriptstyle\mathsf{T}}(V)\,\{\mathsf{left}(x)\mapsto \textit{M}\;\|\;\mathsf{right}(y)\mapsto \textit{N}\}\to\textit{N}\{y:=V\}}^{\,\,\mathsf{E-CASER}}$

Valores

$$V,W,\ldots:=\ldots\mid \mathsf{left}^{ au}(V)\mid \mathsf{right}^{ au}(V)$$

Reglas de cómputo

$$\overline{\mathsf{case}\;\mathsf{left}^\tau(V)\,\{\mathsf{left}(x)\mapsto M\;\|\;\mathsf{right}(y)\mapsto N\}\to M\{x:=V\}}^{\mathrm{E-CASEL}}$$

$$\overline{\mathsf{case}\;\mathsf{right}^{\scriptscriptstyle\mathsf{T}}(V)\,\{\mathsf{left}(\mathsf{x})\mapsto \mathit{M}\;\|\;\mathsf{right}(y)\mapsto \mathit{N}\}\to \mathit{N}\{y:=V\}}^{\,\mathrm{E-CASER}}$$

Reglas de congruencia

$$\frac{M \to M'}{\mathsf{left}^{\tau}(M) \to \mathsf{left}^{\tau}(M')} \text{E-INL} \qquad \frac{M \to M'}{\mathsf{right}^{\tau}(M) \to \mathsf{right}^{\tau}(M')} \text{E-INR}$$
$$M \to M'$$

$$\frac{M \to M}{\text{case } M \{ \text{left}(x) \mapsto N \parallel \text{right}(y) \mapsto P \}} \text{E-CASE}$$

$$\to \text{case } M' \{ \text{left}(x) \mapsto N \parallel \text{right}(y) \mapsto P \}$$

$$\frac{\Gamma \vdash \qquad \perp}{\Gamma \vdash \qquad \qquad \tau} \perp_e$$

$$\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case}^{\tau} \ M\left\{\,\right\} : \tau} \bot_{\mathsf{e}}$$

```
\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case}^{\tau} \ M\{\} : \tau} \bot_{\mathsf{e}}
```

- ▶ Notar que no hay constructores para el tipo ⊥.
- ► El tipo ⊥ es el tipo vacío (sin habitantes).
- Se puede definir como un tipo de datos algebraico sin constructores.

```
\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case}^{\tau} \ M\{\} : \tau} \bot_{e}
```

- Notar que no hay constructores para el tipo ⊥.
- ► El tipo ⊥ es el tipo vacío (sin habitantes).
- Se puede definir como un tipo de datos algebraico sin constructores.
- ▶ El eliminador es un case con 0 ramas.
- Las ocurrencias de case^{τ} $M\{\}$ siempre corresponden a situaciones imposibles (código inalcanzable).

Cálculo- λ^{\perp} : resumen

Tipos y términos

```
\begin{array}{cccc} \tau, \sigma, \dots & ::= & \dots \mid & \bot \\ \textit{M}, \textit{N}, \dots & ::= & \dots \mid & \mathsf{case}^{\tau} \; \textit{M} \, \{ \, \} \end{array}
```

Cálculo- λ^{\perp} : resumen

Tipos y términos

$$\begin{array}{cccc} \tau, \sigma, \dots & ::= & \dots \mid & \bot \\ \mathit{M}, \mathit{N}, \dots & ::= & \dots \mid & \mathsf{case}^{\tau} \; \mathit{M} \, \{ \, \} \end{array}$$

Reglas de tipado

$$\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case}^{\tau} \ M\{\} : \tau} \bot_{e}$$

Cálculo- λ^{\perp} : resumen

Tipos y términos

$$au, \sigma, \dots ::= \dots \mid \perp$$

 $M, N, \dots ::= \dots \mid \mathsf{case}^{\tau} M\{\}$

Reglas de tipado

$$\frac{\Gamma \vdash M : \bot}{\Gamma \vdash \mathsf{case}^{\tau} \ M\{\} : \tau} \bot_{\mathsf{e}}$$

No se extienden los valores ni las reglas de reducción.

Se puede considerar una extensión de NJ con la fórmula \top ("verdadero"):

$$\overline{\Gamma \vdash \top}^{\top_i}$$

Se puede considerar una extensión de ${\bf NJ}$ con la fórmula \top ("verdadero"):

$$\overline{\Gamma \vdash \top}^{\top_i}$$

► El cálculo- λ^{\top} resulta de la siguiente extensión:

$$\sigma, \tau, \dots$$
 ::= ... | \top M, N, P, \dots ::= ... | \star

Se puede considerar una extensión de \mathbf{NJ} con la fórmula \top ("verdadero"):

$$\overline{\Gamma \vdash \top}^{\top_i}$$

ightharpoonup El cálculo- λ^{\top} resulta de la siguiente extensión:

$$\sigma, \tau, \dots$$
 ::= ... | \top M, N, P, \dots ::= ... | \star

► Con una única regla de tipado:

$$\overline{\Gamma \vdash \star : \top}^{\top_i}$$

Se puede considerar una extensión de ${\bf NJ}$ con la fórmula \top ("verdadero"):

$$\overline{\Gamma \vdash \top}^{\top_i}$$

ightharpoonup El cálculo- $\lambda^{ op}$ resulta de la siguiente extensión:

$$\sigma, \tau, \dots$$
 ::= ... | \top M, N, P, \dots ::= ... | \star

► Con una única regla de tipado:

$$\overline{\Gamma \vdash \star : \top}^{\top_i}$$

► El tipo ⊤ es un tipo algebraico con un único constructor ⋆.

El cálculo- $\lambda^{\times,+,\perp,\top}$ tiene buenas propiedades:

1. Unicidad de tipos. Si $\Gamma \vdash M : \tau$ y $\Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.

- 1. Unicidad de tipos. Si $\Gamma \vdash M : \tau$ y $\Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.
- 2. Weakening + Strengthening. Si $\Gamma \vdash M : \tau$ es derivable y $fv(M) \subseteq dom(\Gamma \cap \Gamma')$ entonces $\Gamma' \vdash M : \tau$ es derivable.

- 1. Unicidad de tipos. Si $\Gamma \vdash M : \tau$ y $\Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.
- 2. Weakening + Strengthening. Si $\Gamma \vdash M : \tau$ es derivable y $fv(M) \subseteq dom(\Gamma \cap \Gamma')$ entonces $\Gamma' \vdash M : \tau$ es derivable.
- 3. Determinismo. Si $M \to N_1$ y $M \to N_2$ entonces $N_1 = N_2$.

- 1. Unicidad de tipos. Si $\Gamma \vdash M : \tau$ y $\Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.
- 2. Weakening + Strengthening. Si $\Gamma \vdash M : \tau$ es derivable y $fv(M) \subseteq dom(\Gamma \cap \Gamma')$ entonces $\Gamma' \vdash M : \tau$ es derivable.
- 3. Determinismo. Si $M \rightarrow N_1$ y $M \rightarrow N_2$ entonces $N_1 = N_2$.
- 4. Preservación de tipos. Si $\vdash M : \tau \ y \ M \to N$ entonces $\vdash N : \tau$.

- 1. Unicidad de tipos. Si $\Gamma \vdash M : \tau$ y $\Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.
- 2. Weakening + Strengthening. Si $\Gamma \vdash M : \tau$ es derivable y $fv(M) \subseteq dom(\Gamma \cap \Gamma')$ entonces $\Gamma' \vdash M : \tau$ es derivable.
- 3. Determinismo. Si $M \rightarrow N_1$ y $M \rightarrow N_2$ entonces $N_1 = N_2$.
- 4. Preservación de tipos. Si $\vdash M : \tau \ y \ M \to N$ entonces $\vdash N : \tau$.
- 5. Progreso. Si \vdash M : τ entonces:
 - 5.1 O bien M es un valor.
 - 5.2 O bien existe N tal que $M \rightarrow N$.

- 1. Unicidad de tipos. Si $\Gamma \vdash M : \tau$ y $\Gamma \vdash M : \sigma$ son derivables, entonces $\tau = \sigma$.
- 2. Weakening + Strengthening. Si $\Gamma \vdash M : \tau$ es derivable y $fv(M) \subseteq dom(\Gamma \cap \Gamma')$ entonces $\Gamma' \vdash M : \tau$ es derivable.
- 3. Determinismo. Si $M \rightarrow N_1$ y $M \rightarrow N_2$ entonces $N_1 = N_2$.
- 4. Preservación de tipos. Si $\vdash M : \tau \ y \ M \to N$ entonces $\vdash N : \tau$.
- 5. Progreso. Si \vdash M : τ entonces:
 - 5.1 O bien M es un valor.
 - 5.2 O bien existe N tal que $M \rightarrow N$.
- 6. Terminación. Si $\vdash M : \tau$, entonces no hay una cadena infinita de pasos:

$$M \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

Correspondencia de Curry-Howard

Teorema (Correspondencia de Curry-Howard)

Son equivalentes:

- 1. $\tau_1, \ldots, \tau_n \vdash \sigma$ es derivable en **NJ**
- 2. Existe un término M tal que $x_1 : \tau_1, \ldots, x_n : \tau_n \vdash M : \sigma$.

Correspondencia de Curry-Howard

Teorema (Correspondencia de Curry-Howard)

Son equivalentes:

- 1. $\tau_1, \ldots, \tau_n \vdash \sigma$ es derivable en **NJ**
- 2. Existe un término M tal que $x_1 : \tau_1, \dots, x_n : \tau_n \vdash M : \sigma$.

Nota

En el teorema de arriba identificamos tácitamente los símbolos:

Consistencia de la lógica

La relación entre reducción y pruebas permite concluir que la lógica es consistente.

Corolario

El juicio $\vdash \bot$ **no** es derivable en NJ.

Consistencia de la lógica

La relación entre reducción y pruebas permite concluir que la lógica es consistente.

Corolario

El juicio $\vdash \bot$ **no** es derivable en NJ.

Se obtiene a partir del siguiente razonamiento:

- ▶ Debe existir M, tal que $\vdash M : \bot$.
- Por terminación y preservación de tipos, debería existir un valor V, tal que ⊢ V : ⊥. Por analisis de casos en los posibles valores, se puede concluir que no existe.

Sobre la negación

La negación se puede codificar como:

$$\neg \sigma \equiv (\sigma \to \bot)$$

- Notar que la regla:
 - $ightharpoonup \neg_i$ corresponde a \Rightarrow_i
 - ightharpoonup \neg_e corresponde $a \Rightarrow_e$
- $lackbox{ No hay necesidad de extender el cálculo-}{\lambda}$ con negación.

Sobre los booleanos

▶ Los ignoramos porque se pueden codificar.

Sobre los booleanos

Los ignoramos porque se pueden codificar.

Booleanos como sumas

```
\begin{aligned} \mathsf{Bool} &\equiv \top + \top \\ \mathsf{true} &\equiv \mathsf{left}^\top(\star) \\ \mathsf{false} &\equiv \mathsf{right}^\top(\star) \\ \mathsf{if} \ \mathit{M} \ \mathsf{then} \ \mathit{N} \ \mathsf{else} \ \mathit{P} &\equiv \mathsf{case} \ \mathit{M} \ \{\mathsf{left}(\_) \mapsto \mathit{N} \ \| \ \mathsf{right}(\_) \mapsto \mathit{P} \} \end{aligned}
```

Correspondencia de Curry-Howard

Operador de punto fijo

Recursión

Extendemos la sintaxis con un nuevo operador:

$$M ::= \dots \mid \text{fix } M$$

Recursión

Extendemos la sintaxis con un nuevo operador:

$$M ::= \dots \mid \text{fix } M$$

▶ No se precisan nuevos tipos pero sí una regla de tipado.

$$\frac{\Gamma \vdash M : \tau \to \tau}{\Gamma \vdash \text{fix } M : \tau} \text{T-FIX}$$

Semántica operacional small-step

No hay valores nuevos pero sí reglas de evaluación nuevas.

$$\frac{M \to M'}{\text{fix } M \to \text{fix } M'} \text{E-FIX}$$

Semántica operacional small-step

No hay valores nuevos pero sí reglas de evaluación nuevas.

$$\frac{M \to M'}{\text{fix } M \to \text{fix } M'} \text{E-FIX}$$

$$\overline{\text{fix } (\lambda x : \tau. M)} \rightarrow M\{x := \text{fix } (\lambda x : \tau. M)\}$$
 E-FIXBETA

Ejemplos

```
Sea M el término
```

```
\lambda f: \mathsf{nat} \to \mathsf{nat}.

\lambda x: \mathsf{nat}.

if \; \mathsf{iszero}(x) \; then \; \underline{1} \; else \; x * f(\mathsf{pred}(x))
```

en

fix $M \underline{3}$

Ejemplos

Ahora podemos definir funciones parciales:

fix
$$(\lambda x : \sigma.x)$$

- ▶ Notar que \vdash fix $(\lambda x : \sigma.x) : \sigma$ para cualquier σ .
- ▶ En particular, vale para $\sigma = \bot$.
- ▶ En consecuencia, si se extiende NJ con un operador fix , la lógica resulta inconsistente ($\vdash \bot$ sería derivable)