RANCANG BANGUN SISTEM FMCW RADAR BERBASIS SOFTWARE DEFINED RADIO DENGAN GNURADIO UNTUK MENDETEKSI, ESTIMASI JARAK, DAN KECEPATAN OBJEK

DESIGN OF FMCW RADAR BASED ON SOFTWARE DEFINED RADIO WITH GNURADIO FOR DETECTION, RANGE ESTIMATION, AND VELOCITY OF AN OBJECT

TUGAS AKHIR

Disusun sebagai syarat mata kuliah Tugas Akhir Program Studi S1 Teknik Telekomunikasi

Disusun oleh:

BIMA PANCARA HARYONO PUTRA 1101210528

FAKULTAS TEKNIK ELEKTRO UNIVERSITAS TELKOM SURABAYA 2024

LEMBAR PENGESAHAN POPOSAL TUGAS AKHIR

Judul = Rancang Bangun Sistem FMCW Radar Berbasis Software

Defined Radio dengan GNURadio Untuk Mendeteksi, Estimasi

Jarak, dan Kecepatan Objek

Nama = Bima Pancara Haryono Putra

NIM = 1101210528

Telah diseminarkan pada

Hari = Tanggal = Tempat =

Mengetahui/menyetujui

Pembimbing I

Pembimbing II

Dr. Fannush Shofi Akbar, S.ST. 20910026

Risdilah Mimma Untsa, S.ST., M.T. 20910025

ABSTRAK

Abstrak ini

@todo	
tulis abstrak di sini	

Kata Kunci: kata kunci 1, kata kunci 2, kata kunci 3, kata kunci 4, kata kunci 5

DAFTAR ISI

LEMBAR PENGESAHAN

Al	BSTR	AK		iii
D A	AFTA	R ISI		iv
D A	AFTA	R GAM	IBAR	vi
D A	AFTA	R TABI	EL	vii
I	PEN	DAHU	LUAN	1
	1.1	Latar I	Belakang	. 1
	1.2	Rumus	san Masalah	. 2
	1.3	Tujuan	dan Manfaat	. 3
	1.4	Batasa	n Permasalahan	. 3
	1.5	Manfa	at	. 4
	1.6	Metod	e Penelitian	. 4
	1.7	Jadwal	Penelitian	. 4
II	KO	NSEP D	ASAR	5
	2.1	Kajian	Penelitian Terkait	. 5
	2.2	Radar		. 8
	2.3	Pengol	ahan Sinyal Radar	. 11
		2.3.1	Bentuk Gelombang Radar	. 11
		2.3.2	Frequency Modulated Continuous Wave Radar	. 12
		2.3.3	Linear Frequency Modulated Continuous Wave Radar	. 14
		2.3.4	Teknik Pengolahan Sinyal	. 15
		2.3.5	Perhitungan Error	. 16
	2.4	Softwa	re Defined Radio	. 16
		2.4.1	Universal Software Radio Peripheral	. 17
		2.4.2	GNURadio	. 18
III	MO	DEL SI	STEM DAN PERANCANGAN	20
	3.1	Alur P	enelitian	. 20
	3.2	Studi I	Literatur	. 21

3.3	Penentuan Parameter	21
3.4	Perancangan Spesifikasi Sistem	22
3.5	Implementasi Sistem	23
3.6	Pengambilan Data	24
3.7	Konfigurasi Pengujian	25
DAFTA	R REFERENSI	26

DAFTAR GAMBAR

1.1	Penggunaan Radar Otomotif	1
2.1	Skema Dasar Radar	9
2.2	Blok Diagram Radar	9
2.3	Radar Cross Section	11
2.4	Bentuk Gelombang Radar	11
2.5	Blok Diagram Radar FMCW	12
2.6	FMCW Dalam Domain Waktu	13
2.7	LFM Tipe Segitiga	14
2.8	LFM Tipe Gigi Gergaji	15
2.9	Detail Analisis LFM Sawtooth	15
2.10	USRP B210	17
2.11	Logo GNURadio	18
2.12	Contoh Flowgraph GNURadio	19
2.13	Hasil Desain Sistem GNURadio	19
3.1	Flowchart Penelitian	20
3.2	Lokasi Pengujian	24
3.3	Skema Penelitian	25
3.4	Konfigurasi Pengujian	25

DAFTAR TABEL

1.1	Agenda Penelitian	4
2.1	Penelitian Terdahulu	5
2.2	Spesifikasi USRP B210	18
3.1	Parameter Penelitian	21
3.2	Parameter Pengujian	21
3.3	Spesifikasi Sistem Radar	22

BAB I PENDAHULUAN

1.1 Latar Belakang

Untuk melakukan pendeteksian objek, banyak cara yang dapat dilakukan agar hal itu bisa dicapai. Seperti contohnya adalah dengan menggunakan pengolahan visual dari hasil tangkapan kamera untuk melakukan analisis video, apalagi dengan menggunakan *multi-camera network* [1]. Adapula penggunaan gelombang suara yang memanfaatkan frekuensi suara pada jarak ultrasonik untuk mendeteksi objek dan jarak dengan menggunakan mikrokontroler dan sensor ultrasonik [2]. Teknik lain yang menjadi alternatif adalah penggunaan gelombang elektromagnetik untuk mendeteksi objek dan jarak suatu benda dengan menggunakan radar.

Radar sendiri adalah singkatan dari *radio detection and ranging* yang berarti bahwa fokus kegunaan radar adalah pada pendeteksian dan estimasi jarak suatu benda. Dibandingkan dengan teknik pengukuran lain, keunggulan dari penggunaan radar adalah mampu mendeteksi objek pada jarak yang jauh serta dapat menembus kabut. Keunggulannya tersebut adalah alasan awal digunakannya radar dahulu kala, yaitu pada medan perang untuk mendeteksi pasukan sebelum nampak sehingga dapat melakukan persiapan terlebih dahulu.

Gambar 1.1: Penggunaan Radar Otomotif

Namun, saat zaman semakin modern dan peperangan mulai berkurang, maka radar pun beralih fungsi. Seperti contohnya radar pendeteksi cuaca yang digunakan oleh badan klimatologi untuk memudahkan prediksi cuaca, radar pada menara pengawas bandara yang berguna dalam memonitor pergerakan pesawat di udara, dan radar pendeteksi objek pada kendaraan otomotif yang berguna untuk mendeteksi objek dan mencegah tabrakan seperti pada gambar 1.1.

Karena kemampuan radar dalam melakukan deteksi dan estimasi jarak tersebut, maka riset untuk mengembangkan implementasi radar dengan berbagai teknik semakin banyak [3–6]. Salah satu diantaranya adalah implementasi *Real-Time Frequency Modulated Continous Wave Radar* yang dikembangkan dengan GNURadio dan digunakan pada *Software Defined Radio* [6]. Teknik *Frequency Modulated Continous Wave* atau yang disingkat dengan FMCW merupakan teknik transmisi secara kontinyu dari radar yang dapat memiliki energi yang lebih tinggi dengan *peak power* yang lebih rendah [7]. FMCW sangat populer digunakan pada industri, seperti untuk mendeteksi objek bawah tanah [8], pada sistem pengawasan maritim [9], dan bidang otomotif karena dapat bertahan pada berbagai cuaca, dapat menghasilkan performa yang sangat baik, dapat memprediksi jarak dan kecepatan suatu objek [10].

Sedangkan Software Defined Radio, atau dalam kasus ini Radar, merupakan penggunaan fungsionalitas dari sistem radar yang diatur lewat Software dengan maksud untuk memvirtualisasikan hardware dan membuat manajemen pemrograman yang dilakukan menjadi lebih mudah [11]. Dengan menggunakan SDR lewat Universal Software Radio Peripheral (USRP) sebagai perangkat kerasnya, maka proses riset dan pengembangan menjadi lebih murah, dikarenakan tidak diperlukannya fabrikasi material tiap uji coba pada frekuensi tertentu. Peneliti hanya perlu memprogram USRP yang dimilikinya untuk menghasilkan frekuensi tertentu yang mereka inginkan. Salah satu alat yang dapat digunakan dalam melakukan pemrograman terhadap USRP adalah GNURadio.

GNURadio merupakan aplikasi tak berbayar yang berada dibawah lisensi *GNU* General Public License untuk mempelajari pembuatan dan pengimplementasian sistem software defined radio. Dengan melakukan pemrograman pada GNURadio untuk melakukan antarmuka dengan USRP yang dimiliki, peneliti dapat menentukan berapa frekuensi hingga sampling rate yang diinginkan [12].

Oleh karena itu, pada proposal ini dilakukan "Rancang Bangun Sistem *FMCW* Radar Berbasis *Software Defined Radio* dengan *GNURadio* Untuk Mendeteksi, Estimasi Jarak, dan Kecepatan Objek" sehingga dapat membuktikan bahwa sistem yang dirancang dapat melakukan pendeteksian objek dan estimasi jarak.

1.2 Rumusan Masalah

Dari latar belakang yang telah dipaparkan diatas, maka ditemukannya rumusan masalah, yaitu:

1. Bagaimana rancangan sistem radar FMCW berbasis USRP B210 menggunakan GNURadio?

- 2. Bagaimana sistem radar FMCW berbasis USRP B210 yang telah dirancang dapat mendeteksi, mengestimasi jarak, dan kecepatan objek?
- 3. Bagaimana tingkat keakurasian dari sistem radar FMCW pada USRP dalam mendeteksi objek, melakukan estimasi jarak, dan kecepatan?

1.3 Tujuan dan Manfaat

Dari rumusan masalah yang sudah didapatkan, maka bisa diambil beberapa tujuan yang ingin dicapai oleh penulis, yaitu:

- Untuk melakukan perancangan sistem radar FMCW berbasis USRP B210 menggunakan GNURadio.
- 2. Untuk melakukan pengujian deteksi, estimasi jarak, dan kecepatan objek dari sistem radar FMCW pada USRP B210.
- 3. Untuk mengetahui tingkat keakurasian pendeteksi objek, estimasi jarak, dan kecepatan menggunakan radar FMCW pada USRP.

1.4 Batasan Permasalahan

Hal yang akan dilakukan dalam penelitian ini adalah.

- 1. Parameter yang diidentifikasi pada rancang bangun ini adalah resolusi jarak, tingkat keakurasian, dan kecepatan.
- 2. Pengujian sistem dengan menggunakan USRP B210 untuk melakukan pendeteksian objek dan estimasi jarak.
- 3. Perangkat lunak yang digunakan adalah GNURadio.
- 4. Antena yang digunakan adalah antena Log Periodik
- 5. Frekuensi kerja radar pada 3 GHz.
- 6. Objek deteksi adalah kendaraan empat roda.

1.5 Manfaat

Manfaat yang diharapkan dari hasil penelitian terkait dengan penelitian ini adalah.

- 1. Menguji keakurasian dari sistem FMCW Radar lewat estimasi jarak dan deteksi objek.
- 2. Menjadi referensi dalam implementasi FMCW Radar pada berbagai macam industri.

1.6 Metode Penelitian

Dalam melakukan pengerjaan Tugas Akhir yang diajukan, penyelesaian yang digunakan adalah dengan beberapa pendekatan yaitu: studi literatur, simulasi, analisis statistik, perancangan, dan implementasi.

1.7 Jadwal Penelitian

Untuk memastikan proposal ini berjalan dengan lancar, maka diperlukannya penentuan capaian yang ingin diraih pada suatu periode yang sudah ditentukan. Dengan teraihnya capaian tersebut maka tahapan selanjutnya dapat mulai dilakukan.

Tabel 1.1: Agenda Penelitian

No.	Deskripsi Tahapan	Durasi	Tanggal	Milestone
1.	Desain Sistem	1 bulan	1 September 2024 - 30 September 2024	Diagram blok dan simulasi
2.	Implementasi dan pengujian	1 bulan	1 Oktober 2024 - 31 Oktober 2024	Pengujian sistem selesai
3.	Penyusunan laporan Tugas Akhir	2 minggu	1 November 2024 - 15 November 2024	Buku Tugas Akhir selesai

BAB II KONSEP DASAR

2.1 Kajian Penelitian Terkait

Banyak sekali referensi yang menjadi bagian besar dalam tertulisnya proposal ini, referensi tersebut terdiri atas berbagai macam jenis literatur dari sumber yang dapat diakses secara daring. Tak sedikit pula literatur tersebut menjadi alasan besar latar belakang dari proposal ini dilahirkan, berikut adalah beberapa penelitian terdahulu yang menjadi referensi dalam melakukan penyusunan proposal ini:

Tabel 2.1: Penelitian Terdahulu

No.	Judul	Penulis	Hasil
1.	Respiratory and Heart	Lenz, Isabella;	Penggunaan radar CW
	Rate Detection Using	Holtom, Jacob;	untuk memonitor detak
	Continuous-Wave	Herschfelt, Andrew;	jantung dan pernapasan
	Radar Testbed	Rong, Yu;	menggunakan
	Implemented in GNU	Bliss, Daniel	GNURadio dan
	Radio (2022)		USRP X310. Proses
			pengolahan data
			secara langsung dapat
			dilakukan dengan hasil
			estimasi di dalam jarak
			5 BPM dibanding
			dengan alat monitor
			detak jantung.

2.	Development of L-Band	Wankhede, Animesh;	Penggunaan radar
2.	FMCW Radar on SDR	De, Sampurna	FMCW pada pita
	using GNU RADIO	20, 20119 01110	frekuensi kelas L yang
	(2024)		di aplikasikan sebagai
			radar penembus tanah
			menunjukkan hasil
			yang efektif dalam
			melakukan deteksi dan
			imaging objek dengan
			akurasi dan resolusi
			tinggi.
3.	FMCW Radar With	Hilario Re, Pascual D.;	Pengimplementasian
	Enhanced Resolution	Comite, Davide;	radar FMCW pada
	and Processing Time by	Podilchak, Symon K.;	pita frekuensi kelas K
	Beam Switching (2021)	Alistarh, Cristian A.;	dengan antena array
		Goussetis, George;	dan beammforming
		Sellathurai, Mathini;	untuk sistem deteksi
		Thompson, John;	arah pada kendaraan
		Lee, Jaesup	otomotif. Dengan
			penggunaan frekuensi
			24 GHz, radar mampu mendeteksi objek
			mendeteksi objek dengan jarak 2°.
4.	An X-band FMCW	Dabrowski, Grzegorz;	Desain dan
7.	Radar Demonstrator		implementasi radar
	Based on an SDR	Drozdowicz, Jedrzej;	FMCW dengan
	Platform (2020)	Gromek, Damian;	bandwidth 1 GHz untuk
	3	Samczynski, Piotr	mendapatkan resolusi
			jarak yang kecil
			dilakukan, didapati
			hasil pengujian yang
			memuaskan dengan
			menunjukkan adanya
			pergerakan pada daerah
			yang ditandai memiliki
			banyak aktivitas.

5.	Single Target	Rizik, Ali;	Implementasi dan
	Recognition Using	Tavanti, Emanuele;	pengolahan sinyal
	a Low-Cost FMCW	Vio, Roberto;	radar dilakukan dengan
	Radar Based on	Delucchi, Alessandro;	melakukan klasifikasi
	Spectrum Analysis	Chible, Hussien;	terhadap data yang
	(2020)	Randazzo, Andrea;	diterima. Klasifikasi
	(2020)	Caviglia, Daniele D.	dilakukan dengan
		Cavigna, Bamele B.	menggunakan Support
			Vector Machine
			(SVM), didapati
			hasil menunjukkan
			hasil akurasi klasifikasi
			target mencapai 100%.
6.	Educational Low-Cost	Jeong, Hyunmin;	Desain dan
0.	C-Band FMCW Radar	Kim, Sangkil	implementasi radar
	System Comprising	Kiiii, Sangkii	FMCW pada frekuensi
	Commercial Comprising		kelas C dilakukan
	Off-the-Shelf		menggunakan
	Components for Indoor		komponen elektronik
	Through-Wall Object		yang mudah didapat di
	Detection (2021)		pasar. Implementasi
	Detection (2021)		
			dilakukan dengan skenario pengujian
			dalam ruangan dan
			tembus dinding.
			Didapatkan hasil rata rata akurasi sekitar 5.6
7	M. J.C. J EMCH	December Alexan	cm dibanding data asli.
7.	Modified FMCW	Pramudita, Aloysius	-
	system for non-contact	Adya;	
	sensing of human	Suratman, Fiky Y.;	
	respiration (2020)	Arseno, Dharu	

8.	FMCW Radar for	Pramudita, Aloysius	-
	Noncontact Bridge	Adya;	
	Structure Displacement	Lin, Ding-Bing;	
	Estimation (2023)	Dhiyani, Azizka Ayu;	
		Ryanu, Harfan Hian;	
		Adiprabowo, Tjahjo;	
		Yudha, Erfansyah Ali	
9.	A Novel Scheme of	Zhou, Min; Liu,	-
	High-Precision Heart	Yunxue; Wu, Shie;	
	Rate Detection With	Wang, Chengyou;	
	a mm-Wave FMCW	Chen, Zekun; Li,	
	Radar (2023)	Hongfei	

2.2 Radar

Penggunaan gelombang elektromagnetik sebagai sarana untuk mendeteksi objek adalah konsep dasar dari radar. Radar sendiri merupakan singkatan dari *Radio Detection and Ranging*, dari situ sangat nampak sekali tujuan dari penggunaan alat ini, yaitu untuk mendeteksi sesuatu dan mengukur jarak dengan menggunakan gelombang radio.

Cara kerja dari radar adalah dengan memancarkan gelombang di dalam ruang bebas yang kemudian radar akan mendeteksi gelombang pantulan dari objek tersebut. Adanya gelombang yang terpantul ini tidak hanya menunjukkan keberadaan dari suatu objek, namun dengan membandingkan gelombang pantulan yang diterima dengan gelombang yang dikirimkan maka informasi tentang objek yang terdeteksi dapat didapat [13].

$$R = \frac{cT_R}{2} \tag{2.1}$$

Persamaan 2.1 menjelaskan jarak antara target dengan antena, dengan T_R sebagai waktu sinyal radar bergerak secara bolak balik dari dan menuju objek. Karena radar memakai gelombang elektromagnetik, maka c memiliki kecepatan yang sama dengan cahaya, yaitu 3×10^8 .

Pada gambar 2.1 berikut, skema dan konsep dasar dari cara kerja radar dapat diamati. Terlihat bahwa sinyal yang dikirimkan akan mengenai target, dalam kasus ini adalah pesawat, lalu sinyal yang mengenai objek akan kembali dengan sinyal

yang lebih kecil dengan amplitudo yang lebih rendah. Perubahan pada gelombang yang terpantul dapat menggambarkan perilaku yang sedang ditunjukkan oleh objek yang di deteksi, mulai dari pengurangan amplitudo hingga pergeseran fasa.

Gambar 2.1: Skema Dasar Radar [13]

Gambar 2.2 menunjukkan blok diagram dari sistem radar pulsa sederhana. Dapat dilihat beberapa komponen yang membentuk seluruh sistem radar, semua komponen ini memiliki perannya sendiri sehingga proses pengiriman dan pendeteksian sinyal dapat dilakukan. Bila seluruh sistem bekerja dengan baik, maka proses yang ditunjukkan pada penjelasan skema dasar radar dapat berjalan dengan lancar.

Gambar 2.2: Blok Diagram Radar Sederhana [14]

Persamaan radar berguna untuk menghubungkan seluruh komponen yang terdapat pada suatu sistem radar. Hubungan di antara seluruh komponen tersebut akan di perlihatkan secara matematis, sehingga penerapannya pada suatu alat akan terlihat dengan jelas. Dengan adanya beberapa persamaan ini, proses desain suatu radar akan menjadi lebih mudah dilakukan dan prediksi dari hasil radar yang dirancang bisa didapatkan.

Salah satu persamaan pada radar adalah *maximum unambiguous range*, yang bersimbol R_{un} , dengan T_p sebagai periode pengulangan pulsa, yang bernilai $\frac{1}{f_p}$, dengan f_p sebagai frekuensi pengulangan pulsa.

$$R_{un} = \frac{cT_p}{2} = \frac{c}{2f_p} \tag{2.2}$$

Bila antena yang digunakan dalam memancarkan gelombang elektromagnetika radar bersifat isotrop, maka kerapatan daya pada jarak R dari radar akan sama dengan daya di transmisi (P_t) dibagi luas permukaan $4\pi R^2$ dari sebuah bola imajiner dengan radius R, atau dapat didefinisikan pula dengan.

$$P = \frac{P_t}{4\pi R^2} \tag{2.3}$$

Namun, pada kenyataannya radar seringkali menggunakan antena *directive* untuk mengkonsentrasikan daya yang terradiasi pada arah tertentu. Maka kerapatan dayanya adalah

Kerapatan daya antena
$$directional = \frac{P_t G}{4\pi R^2}$$
 (2.4)

Dengan G sebagai gain maksimum suatu antena, yaitu

$$G = \frac{\text{Kerapatan daya maksimum dari antena } directional}{\text{Kerapatan daya antena Isotrop } lossless \text{ dengan daya yang sama}}$$
 (2.5)

Radar Cross Section atau yang sering disingkat dengan RCS merupakan daerah suatu objek dari target yang dapat terdeteksi oleh suatu radar. Area tersebut diperhitungkan dengan mempertimbangkan bentuk dari objek dan interaksinya dengan gelombang elektromagnetik. Pada 2.3 ditunjukkan beberapa sifat RCS dan persamaannya.

(a) Bentuk dan Persamaan Radar Cross Section

(b) Pola Radiasi dari Radar Cross Section

Gambar 2.3: Radar Cross Section [15]

2.3 Pengolahan Sinyal Radar

Untuk mendapat suatu kesimpulan dari sinyal radar, maka dibutuhkan pengolahan sinyal radar yang tepat. Pengolahan sinyal tersebut dilakukan mulai dari pembentukan gelombang hingga pengambilan kesimpulan.

2.3.1 Bentuk Gelombang Radar

Gambar 2.4: Bentuk Gelombang Radar [16]

Bentuk gelombang radar dapat dibedakan menjadi dua kelas, yaitu radar dengan gelombang kontinyu dan radar pulsa. Seperti pada gambar 2.4, kedua kelas tersebut masih dapat dibagi lagi kedalam beberapa teknik lain. Penggunaan salah satu jenis gelombang ditentukan berdasarkan kebutuhan radar yang akan di desain.

Radar dengan gelombang pulsa akan memancarkan gelombang elektromagnetik

dalam waktu singkat lalu jeda sejenak sesuai waktu yang ditentukan. Pada waktu jeda tersebut, radar akan mendeteksi sinyal pantul dari gelombang yang dikirim sebelumnya. Setelah waktu jeda berakhir, radar akan kembali memancarkan gelombang pulsa lagi. Radar dengan gelombang ini akan memancarkan gelombang elektromagnetik dengan *power* yang tinggi.

Sedangkan radar dengan gelombang kontinyu akan terus memancarkan serta menerima gelombang elektromagnetik tanpa henti dalam waktu yang bersamaan. Sehingga radar dengan gelombang kontinyu hanya digunakan pada sistem dengan *power* yang rendah dengan jarak maksimum deteksi yang kecil. Hal ini disebabkan karena sering terjadinya kebocoran dari antena pengirim ke antena penerima. Alasan ini pula yang mendasari keputusan penggunaan *power* yang rendah [17].

2.3.2 Frequency Modulated Continuous Wave Radar

Radar FMCW memancarkan sinyal yang bila terpantul objek, akan kembali terdeteksi. Hal ini dapat direalisasikan dengan blok diragram dari sistem radar FMCW seperti pada gambar 2.5.

Gambar 2.5: Blok Diagram Radar FMCW

Dari blok diagram tersebut, dapat dilihat bahwa sinyal yang diterima dicampurkan dengan sinyal yang dikirim, sehingga karena adanya *delay* yang disebabkan oleh jarak gelombang bergerak, maka akan terdeteksi perbedaan frekuensi. Dengan begitu, perbedaan pada fasa dan frekuensi menjadi tolok ukur antara sinyal yang dikirim dengan sinyal yang di dapatkan kembali.

Gambar 2.6: FMCW Dalam Domain Waktu

Oleh karena itu, salah satu karakteristik dari radar FMCW adalah bahwa jarak pengukuran dapat dihitung dengan membandingkan frekuensi sinyal yang diterima dengan sinyal yang ditransmisikan.

$$R = \frac{c\Delta t}{2} = \frac{c\Delta f}{2(\frac{d(f)}{d(t)})}$$
 (2.6)

Persamaan 2.6 menunjukkan jarak (R) dengan objek yang terdeteksi. Yang mana Δt adalah waktu tunda dalam detik, Δf merupakan pergeseran frekuensi terukur dalam Hertz, dengan d(f)/d(t) sebagai pergeseran frekuensi dalam suatu periode.

$$R_{max} = \frac{F_s c}{2K} \tag{2.7}$$

Persamaan 2.7 menunjukkan jarak maksimum yang dapat di deteksi oleh radar FMCW. F_s merupakan frekuensi sampling, dan K adalah tingkat kenaikan frekuensi pada suatu periode yang dapat dihitung dengan persamaan 2.8 yaitu mengurangi nilai maksimum frekuensi dengan nilai minimumnya, lalu membaginya dengan waktu sweep (chirp).

$$K = \frac{f_{atas} - f_{bawah}}{T_c} \tag{2.8}$$

Selain itu, salah satu faktor penting yang perlu diperhitungkan dalam perancangan radar FMCW adalah resolusi jarak. Resolusi jarak sendiri merupakan kemampuan dari suatu radar dalam membedakan dua buah objek yang berdekatan.

$$\Delta R = \frac{c}{2BW} \tag{2.9}$$

Persamaan 2.9 menjelaskan bahwa dengan membagi kecepatan cahaya dengan dua kali lebar pita frekuensi (*Bandwidth*), maka resolusi jarak akan didapatkan.

2.3.3 Linear Frequency Modulated Continuous Wave Radar

Linear Frequency Modulated, yang juga sering disingkat sebagai LFM adalah teknik pengolahan sinyal yang dilakukan dengan menyapu frekuensi dari bawah ke atas (Up-Chirp) atau dari atas ke bawah (Down-Chirp). Dengan f_0 sebagai frekuensi tengah, dan dilakukan pada bandwidth yang telah ditentukan. Teknik ini akan membantu pencapaian radar dengan resolusi yang lebih tinggi karena bandwidth yang dicapai akan menjadi lebih tinggi.

Salah satu jenis gelombang LFM adalah *Linear Triangular Frequency Modulation* yang ditunjukkan pada gambar 2.7. Penggunaan jenis gelombang tersebut akan mempermudah proses evaluasi target.

Gambar 2.7: LFM Tipe Segitiga [18]

Selain gelombang LFM segitiga, ada pula yang berbentuk seperti gigi gergaji (*Sawtooth*) seperti gambar 2.8.

Gambar 2.8: LFM Tipe Gigi Gergaji [18]

Seluruh teknik tersebut memiliki keunggulannya masing masing. Keunggulan tersebut didapat karena proses analisis yang berbeda. Pada LFM berbentuk gigi gergaji, maka hanya objek diam saja yang dapat dideteksi jarak dan kecepatannya seperti pada gambar 2.9. Namun bila menggunakan LFM berbentuk segitiga, maka objek yang bergerak dapat dideteksi jarak dan kecepatannya dalam waktu yang bersamaan.

Gambar 2.9: Detail Analisis LFM Sawtooth [18]

2.3.4 Teknik Pengolahan Sinyal

Untuk melakukan pengambilan keputusan dari data yang diambil oleh radar, maka dibutuhkan langkah pengolahan yang benar dan mencakup berbagai hal. Beberapa parameter yang bisa diambil estimasinya adalah jarak dan kecepatan dari objek yang terdeteksi. Pada estimasi jarak, persamaan 2.10 dapat menjelaskan hubungan jarak dengan beberapa faktor yang mempengaruhinya.

$$d_0 = \frac{cf_b}{2\mu} = \frac{cT_c f_b}{2B} \tag{2.10}$$

Pada persamaan tersebut, terdapat c sebagai kecepatan cahaya, f_b adalah *beat* frequency yang merupakan perbedaan pada frekuensi, μ yang merupakan laju perubahan frekuensi pada suatu waktu (chirp rate), dengan T_c sebagai waktu Sweep. Sedangkan untuk melakukan estimasi kecepatan terdapat pergeseran frekuensi akibat efek doppler, yang menjelaskan perubahan frekuensi suatu gelombang karena suatu objek sumber yang bergerak. Bila pergeseran doppler (f_d), dengan v sebagai kecepatan, dan λ adalah panjang gelombang, maka didapatkan persamaan 2.11.

$$v = \frac{f_d}{2}\lambda \tag{2.11}$$

2.3.5 Perhitungan *Error*

Penghitungan galat dari radar yang telah didesain dapat dilakukan dengan menguji keakurasian dari hasil deteksi. Hasil akurasi deteksi radar dapat diuji dengan menggunakan *Root Mean Square Error* (RMS E) dari *Signal to Noise Ratio*, sesuai persamaan 2.12.

$$\sigma_{RN} = \frac{RMSE}{\sqrt{2SNR_L}} \tag{2.12}$$

Dengan nilai dari RMS E bisa didapat dengan persamaan 2.13.

$$RMSE = \frac{\sqrt{\sum_{t=1}^{k} (m(t) - n(t))^2}}{k}$$
 (2.13)

Nilai dari k adalah jumlah data, dengan m sebagai hasil data berdasarkan simulasi, dan n adalah data sebenarnya. Dengan begitu, nilai akurasi deteksi radar dapat dihitung dengan persamaan 2.14.

$$Akurasi = 1 - \sigma_{RN} \tag{2.14}$$

2.4 Software Defined Radio

Software Defined Radio atau yang sering disingkat menjadi SDR merupakan teknologi komunikasi berbasis nirkabel yang kegunaannya dapat ditentukan oleh perangkat lunak [19]. Sehingga dalam implementasinya, tidak perlu dilakukan perubahan perangkat keras baru bila ingin melakukan perubahan, baik dari segi standar, teknologi, dan layanan. Hanya dengan melakukan perubahan konfigurasi saja, lalu SDR akan langsung dapat digunakan.

Dalam implementasinya, SDR membutuhkan *Universal Software Radio Peripheral*, atau yang sering disingkat menjadi USRP merupakan *hardware* yang merupakan bagian *front end* pada arsitektur sistem SDR. USRP terdiri dari modul yang dapat terkoneksi dengan komputer sehingga memperbolehkan pemrograman dengan aplikasi seperti GNURadio dan LabVIEW [20].

Penggunaan USRP sangat memudahkan proses perancangan prototipe dan pengujian karena adanya antarmuka yang dapat mengkoneksikan USRP dengan antena dan berbagai macam bagian perangkat keras yang dibutuhkan.

2.4.1 Universal Software Radio Peripheral

Universal Software Radio Peripheral atau yang sering disingkat dengan USRP merupakan platform yang digunakan dalam mengimplementasikan SDR. Di dalam USRP terdapat Field Programmable Gate Array atau FPGA yang merupakan suatu Integrated Circuit yang dapat diprogram. Pada hal ini, USRP adalah perangkat keras yang dapat menerima dan mentransmisikan gelombang radio.

Kemampuannya untuk berinteraksi dengan gelombang radio inilah, ditambah pula dengan kemudahannya untuk melakukan pemrograman terhadap USRP ini yang membuat alat ini terkenal di kalangan akademisi dan peneliti. Karena pelaksanaan dan pengembangan prototipe menjadi lebih mudah dengan menghapuskan keperluan pengadaan komponen dalam prototipe.

(a) USRP B210 dengan enclosure

(b) Board USRP B210

Gambar 2.10: USRP B210

Ada beberapa USRP yang ada di pasar, salah satu yang cukup seringkali digunakan adalah USRP buatan dari *Ettus*. Salah satu serinya adalah B210 seperti

pada gambar 2.10. Penggunaan seri ini tidak tanpa alasan, karena seperti yang dapat dilihat pada tabel 2.2, spesifikasi USRP ini cukup memenuhi kebutuhan riset pada frekuensi yang sering di gunakan, dengan kapabilitas pengolahan sampel yang baik.

Tabel 2.2: Spesifikasi USRP B210

No.	Keterangan	Nilai	Satuan
1.	RF Coverage	70 - 6	MHz - GHz
2.	Analog to Digital Converter Sample Rate (maksimum)	61.44	MS/s
3.	Analog to Digital Resolution	12	bits
4.	Analog to Digital Wideband SFDR	78	dBc
5.	Digital to Analog Converter Sample Rate (maksimum)	61.44	MS/s
6.	Digital to Analog Resolution	12	bits
7.	Host Sample Rate (16b)	61.44	MS/s
8.	Frequency Accuracy	±2.0	ppm
9.	W/ GPS Unlocked TCXO Reference	±75	ppb
10.	W/ GPS Locked TCXO Reference	< 1	ppb

Dengan spesifikasi tersebut, maka USRP B210 memiliki kemampuan *instantneous bandwidth* hingga 56 MHz pada transmisi 1 X 1 dan 30.72 MHz pada transmisi 2 X 2.

2.4.2 GNURadio

Gambar 2.11: Logo GNURadio

GNURadio adalah aplikasi yang dapat melakukan pemrograman terhadap USRP lewat antarmuka. GNURadio merupakan software open source sehingga semua orang dapat mengakses, mengubah, dan membagikan source code dari program tersebut secara bebas. Dengan menggunakan aplikasi ini, perubahan parameter pada USRP dapat dilakukan dengan mudah.

Gambar 2.12: Contoh Flowgraph GNURadio

Gambar 2.12 adalah contoh blok diagram sistem (*flowgraph*) yang sukses dibuat pada aplikasi GNURadio. Pada gambar 2.13 menunjukkan hasil bila desain sistem tersebut dijalankan.

Gambar 2.13: Hasil Desain Sistem GNURadio

BAB III MODEL SISTEM DAN PERANCANGAN

3.1 Alur Penelitian

Dalam suatu penelitian, terdapat urutan tahapan yang perlu dilakukan. Alur penelitian ini mengandung seluruh langkah yang harus ditempuh, mulai dari fase perancangan hingga tahap akhir penelitian.

Gambar 3.1: Flowchart Penelitian

Pada alur penelitian yang telah dirancang, terdapat 6 tahap yang perlu dilakukan setelah penelitian dimulai dan sebelum penelitian diakhiri. Tiap tahapan yang telah dirancang harus dilaksanakan sebaik mungkin agar hasil yang diharapkan dapat tercapai.

3.2 Studi Literatur

Pada tahap ini, dilakukan studi literatur terhadap masalah yang diangkat serta solusi yang diajukan pada proposal ini. Studi literatur meliputi kajian artikel terdahulu hingga kajian terhadap perangkat lunak yang digunakan serta metode yang dilakukan dalam penyelesaian masalah.

3.3 Penentuan Parameter

Pada tahap ini, parameter penelitian ditentukan, dengan parameter perancangan sebagai berikut.

Tabel 3.1: Parameter Penelitian

No.	Parameter Penelitian	Satuan
1.	Center Frequency	GHz
2.	Bandwidth	MHz

Sementara itu, untuk memastikan hasil yang dicapai baik, maka perlu ditentukan pula parameter pengujian, sebagai berikut.

Tabel 3.2: Parameter Pengujian

No.	Parameter Pengujian	Satuan
1.	Jarak	m
2.	Kecepatan	m/s
3.	Arah	-
4.	RMSE	-

3.4 Perancangan Spesifikasi Sistem

Pada tahap ini, dilakukan perancangan tentang penelitian yang diangkat, dalam konteks ini adalah radar. Sehingga perlu dilakukannya penentuan spesifikasi radar berdasarkan perangkat keras yang digunakan. Penelitian ini menggunakan alat USRP berseri B210. Spesifikasi dari alat ini akan dijelaskan pada tabel berikut.

No.	Spesifikasi	Keterangan
1.	USRP	B210
2.	Center Frequency	3 GHz
3.	Bandwidth	5 MHz
4.	Jarak Maksimum	4500 m
5.	Resolusi Jarak	30 m
6.	Kecepatan Maksimum	5000 m/s
7.	Resolusi Kecepatan	10 m/s

Tabel 3.3: Spesifikasi Sistem Radar

• Menghitung resolusi jarak berdasarkan persamaan 2.9 dan dengan menentukan *bandwidth* bernilai 5 MHz, maka.

$$\Delta R = \frac{c}{2 \times BW}$$

$$\Delta R = \frac{3 \cdot 10^8}{2 \cdot 5 \times 10^6}$$

$$\Delta R = \frac{3 \cdot 10^8}{10^7}$$

$$\Delta R = 30m$$

 Menghitung jarak maksimum yang dapat dideteksi oleh radar digunakanlah persamaan 2.7, namun sebelumnya harus ditentukan terlebih dahulu nilai K, yang merupakan tingkat kenaikan frekuensi pada suatu periode sesuai dengan persamaan 2.8

$$K = \frac{f_{atas} - f_{bawah}}{T_c}$$

$$K = \frac{3.005 \cdot 10^9 - 3 \cdot 10^9}{5 \cdot 10^{-6}}$$

$$K = 1 \cdot 10^{12} s$$

Sehingga jarak maksimum yang didapat adalah.

$$R_{max} = \frac{F_s c}{2K}$$

$$R_{max} = \frac{30 \cdot 10^6 \times 3 \cdot 10^8}{2 \times 10^{12}}$$

$$R_{max} = \frac{9 \cdot 10^{15}}{2 \cdot 10^{12}}$$

$$R_{max} = 4500m$$

• Kecepatan maksimum dapat dihitung dengan persamaan.

$$v_{max} = \frac{\lambda}{4T_c} \tag{3.1}$$

Sehingga, dengan T_c 5 · 10⁻⁶ dengan λ bernilai 0.1 m maka.

$$v_{max} = \frac{0.1}{4 \times 5 \cdot 10^{-6}}$$
$$v_{max} = 5000 m/s$$

• Resolusi kecepatan dapat dihitung dengan persamaan.

$$\Delta v = \frac{\lambda}{2T_f} \tag{3.2}$$

Dengan T_f sebagai durasi frame bernilai 0.005 maka.

$$\Delta v = \frac{\lambda}{2T_f}$$

$$\Delta v = \frac{0.1}{2 \times 0.005}$$

$$\Delta v = 10m/s$$

3.5 Implementasi Sistem

Tahap implementasi ini dilakukan pada aplikasi GNURadio dan menghasilkan flow diagram yang merepresentasikan langkah yang dilakukan pada USRP. Flow diagram yang didesain sudah memenuhi spesifikasi sistem radar pada tabel 3.3.

Implementasi sistem akan dilaksanakan pada beberapa perangkat, mulai dari laptop, antena, dan USRP. Berikut detail perangkat yang akan digunakan pada saat implementasi guna mendapat hasil yang baik.

1. IdeaPad Gaming 3 15ARH7:

• Processor: AMD Ryzen 7 6800H dengan Radeon Graphics 3.20 GHz

• *Memory* : 8,00 GB (7,19 GB *usable*)

1. Perangkat Software Defined Radio:

• Tipe: USRP B210

• Jarak Frekuensi: 70 MHz - 6 GHz

1. Antena Log-periodic:

• Frekuensi: 800 M - 6G

• Pola Radiasi : Directional

• *Gain*: 5.2 - 6.3 dB

3.6 Pengambilan Data

Pada tahap ini, pengambilan data dengan radar yang sudah didesain dan diimplementasikan pada USRP dilakukan. Pengambilan data akan dilaksanakan di lokasi lapangan Univertitas Telkom Surabaya yang beralamat Jl. Ketintang No.156, Ketintang, Kec. Gayungan, Surabaya, Jawa Timur 60231.

Gambar 3.2: Lokasi Pengujian

Pengujian dilakukan dengan menggunakan kendaraan roda empat sebagai objek yang akan dideteksi. Dengan begitu, maka pengambilan data kecepatan dapat dilakukan dan dapat dibandingkan dengan hasil yang didapat dari radar yang telah didesain.

Gambar 3.3: Skema Penelitian

3.7 Konfigurasi Pengujian

Konfigurasi pengujian dilakukan sesuai dengan gambar 3.3. Terdapat satu buah perangkat laptop yang terhubung dengan dua buah USRP, masing masing USRP terhubung dengan antena *Log-periodic*. USRP 1 berperan sebagai *transmitter* sedangkan USRP 2 berperan sebagai *receiver*.

Gambar 3.4: Konfigurasi Pengujian

DAFTAR REFERENSI

- [1] S. Zhang, C. Wang, S.-C. Chan, X. Wei, and C.-H. Ho, "New object detection, tracking, and recognition approaches for video surveillance over camera network," *IEEE Sensors Journal*, vol. 15, pp. 2679–2691, May 2015.
- [2] A. Biswas, S. Abedin, and M. A. Kabir, "Moving object detection using ultrasonic radar with proper distance, direction, and object shape analysis," *Journal of Information Systems Engineering and Business Intelligence*, vol. 6, p. 99, Oct. 2020.
- [3] M. Jia, S. Li, J. L. Kernec, S. Yang, F. Fioranelli, and O. Romain, "Human activity classification with radar signal processing and machine learning," in 2020 International Conference on UK-China Emerging Technologies (UCET), IEEE, Aug. 2020.
- [4] Y. Xia, Z. Ma, and Z. Huang, "Over-the-air radar emitter signal classification based on sdr," in 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), IEEE, Apr. 2021.
- [5] D. A. Mora-Huaman, F. Palomino Quispe, R. J. Coaquira-Castillo, and M. Clemente-Arenas, "Distance to object estimation based on software defined radio usrp using python," in 2020 IEEE XXVII International Conference on Electronics, Electrical Engineering and Computing (INTERCON), IEEE, Sept. 2020.
- [6] S. S, A. C, T. Zacharia, and G. R, "Real time implementation of fmcw radar for target detection using gnu radio and usrp," in 2015 International Conference on Communications and Signal Processing (ICCSP), IEEE, Apr. 2015.
- [7] K. Stasiak and P. Samczynski, "Fmcw radar implemented in sdr architecture using a usrp device," in 2017 Signal Processing Symposium (SPSympo), IEEE, Sept. 2017.
- [8] J. M. S. Macasero, O. J. L. Gerasta, D. P. Pongcol, V. J. V. Ylaya, and A. B. Caberos, "Underground target objects detection simulation using fmcw radar with sdr platform," in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), IEEE, Nov. 2018.

- [9] A. Lestari, D. D. Patriadi, I. H. Putri, B. Harnawan, O. D. Winarko, W. Sediono, and M. A. K. Titasari, "Fpga-based sdr implementation for fmcw maritime surveillance radar," in 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), IEEE, Oct. 2017.
- [10] J.-H. Deng, P.-N. Chen, C.-F. Lee, Y.-F. Chan, and Y.-C. Lin, "Sdr measurement platform design for fmcw radar performance verification," in 2017 IEEE Conference on Dependable and Secure Computing, IEEE, Aug. 2017.
- [11] L. Zeng, C. Yang, Y. Zhao, M. Huang, and C. Zhi, "Research on evaluation index system for software defined radar (sdr)," in *2019 IEEE Radar Conference (RadarConf)*, IEEE, Apr. 2019.
- [12] A. Prabaswara, A. Munir, and A. B. Suksmono, "Gnu radio based software-defined fmcw radar for weather surveillance application," in 2011 6th International Conference on Telecommunication Systems, Services, and Applications (TSSA), IEEE, Oct. 2011.
- [13] M. I. Skolnik, *Introduction to radar systems*. McGraw-Hill electrical engineering series, Boston, Mass.: McGraw Hill, third edition ed., 2001. International edition.
- [14] S. Kingsley, *Understanding radar systems*. Mendham, NJ: SciTech Pubishing, 1999. This is a reprinting of the 1992 edition originally published by McGraw-Hill Book company Europe.. Includes bibliographical references and index.
- [15] S. O'Neill, N. Dvn, and U. Command, *Electronic Warfare and Radar Systems Engineering Handbook*. Military Studies Press, 2012.
- [16] W. L. Melvin, ed., *Principles of modern radar*, vol. 3. Edison, NJ: SciTech Publ., 2014.
- [17] J. Scheer, M. A. Richards, and W. A. Holm, eds., *Principles of modern radar*, vol. Volume 1. Raleigh, NC: SciTech Pub, reprinted with corrections ed., 2015. Includes bibliographical references and index.
- [18] M. Jankiraman, *FMCW radar design*. Artech House radar series, Boston: Artech House, 2018. Includes bibliographical references and index.

- [19] I. Anisah, H. Briantoro, A. Zainudin, and D. I. Permatasari, "Implementasi sistem komunikasi nirkabel ofdm berbasis software defined radio (sdr)," *Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI)*, vol. 7, June 2018.
- [20] M. M. Gulo, I. G. P. Astawa, Arifin, Y. Moegiharto, and H. Briantoro, "The joint channel coding and pre-distortion technique on the usrp-based mimo-ofdm system," *Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)*, vol. 7, pp. 930–939, Aug. 2023.