THE FOLLOWING IS THE ENGLISH TRANSLATION OF THE ANNEXES TO THE INTERNATIONAL PRELIMINARY EXAMINATION REPORT UNDER ARTICLE 34: Amended Sheets (pages 210-217)

Translation of amended sheets annexed to the IPRP 210

We claim:

1. A process for dyeing leather with at least one dye F which has at least one alkaline-activable group of the formula A;

5

$$\begin{bmatrix} (X)_k \\ \\ S \\ O \end{bmatrix}$$
 (A)

where

denotes the bond to the dye molecule;

X is an electron-attracting radical,

k is 1, 2 or 3,

n is 0 or 1 and

B is a CH=CH₂ group or a CH₂-CH₂-Q group, where Q is an alkaline-detachable group,

15

10

which comprises treating the leather with an aqueous float comprising at least one dye F at a pH of 7.5 to 11.

- A process according to claim 1, wherein at least one radical X in the formula A is
 an SO₃H group.
 - 3. A process according to claim 1 or 2, wherein B in the formula A is CH=CH₂, a CH₂-CH₂-O-SO₃H group or a CH₂-CH₂-O-C(O)CH₃ group.
- 25 4. A process according to any preceding claim, wherein the group A is attached to the dye molecule via an -NH- or -N=N- group.
- A process according to claim 4, wherein the dye F is selected from dyes of the phthalocyanine series, anthraquinone dyes, azo dyes, formazan dyes, dioxazine dyes, actidine dyes, xanthene dyes, polymethine dyes, stilbene dyes, sulfur dyes and triarylmethane dyes.
 - 6. A process according to any preceding claim, wherein n = 0.
- 35 7. A process according to claim 6, wherein the radical A is selected from the following radicals A1 to A12:

$$HO_3S$$
 SO_2 -CH=CH₂
(A2)

$$HO_3S$$
 $-\cdots$
 SO_2 - CH_2 - CH_2 - O - SO_3 H
(A1)

$$HO_3S$$
 $-SO_2$ -CH=CH₂
 HO_3S (A3)

$$HO_3S$$
 SO_2 - CH_2 - CH_2 - O - SO_3H
 SO_3S
 SO_3 - SO_4 - SO_4 - SO_4 - SO_5 -

$$HO_3$$
S (A5) SO_2 -CH=CH $_2$

$$O_3$$
S (A6) O_2 -CH₂-CH₂-O-SO₃H

$$SO_3$$
H (A7)
 SO_2 -CH=CH₂

$$+O_3S$$
 $-\cdots$
 $-SO_3H$ (A8)
 $SO_2-CH_2-CH_2-O-SO_3H$

5

10

$$HO_3S$$
 $-- SO_2$ - CH_2 - CH_2 - O - $COCH_3$
(A9)

$$HO_3S$$
 $-- SO_2$ - CH_2 - CH_2 - O - $COCH_3$
 HO_3S (A11)

$$O_3S$$
 O_3H O_3H

8. A process according to any preceding claim, wherein the dye F is selected from the dyes of the general formulae I to XV:

 $Dk^{1}-N=N-[P-N=N-]_{p}Kk^{1}[-N=N-Dk^{2}]_{m}$ (I)

 $Dk^{1}-N=N-Napht^{1}[-N=N-Tk^{1}]_{r}[-N=N-Kk^{1}]_{k}[-N=N-Dk^{2}]_{n}$ (II)

AMENDED SHEET

	Dk¹-N=N-Nap	ht¹-N=N-Tk¹-N=N-Kk¹-N=N-Tk²-N=N-Napht²-N=N-Dk²	(III)
5	$Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-N=N-Kk^{2}-N=N-Dk^{2}$		
	Dk ¹ -N=N-[P-N=N-] _p Napht ¹ [-N=N-R] _r -NH-Tr ¹ -NH-Dk ²		(V)
	$Dk^{1}-N=N-P-NH-Tr^{1}-NH-R-N=N-Dk^{2}$ (7)		
10	Dk¹-N=N-Naph	nt ¹ -N=N-Tk ¹ -N=N-P-NH-Tr ¹ -NH-Dk ²	(VII)
	Dk ¹ -N=N-Napht ¹ -NH-Tr ¹ -NH-P-NH-Tr ² -NH-Napht ² -N=N-Dk ² (VIII)		
15	$Dk^{1}-N=N-Napht^{1}-NH-Tr^{1}-NH-Tk^{1}-NH-Tr^{2}-NH-Napht^{2}-N=N-Dk^{2}$ (IX)		
	Dk1[-N=N-L] _k -l	NH-Tr ¹ -NH-M-N=N-Napht ¹ -N=N-P-NH-Tr ² -NH-[R-N=N-] _n Dk ²	(X)
	$Dk^{1}-N=N-Kk^{1}-N=N-Tk^{1}-NH-Tr^{1}-NH-Dk^{2}$ (XI)		
20	Dk¹-N=N-[P-N	$=N-]_pR-N=N-Kk^1[-N=N-Dk^2]_n$	(XII)
	Dk ¹ -N=N-Pyr-A (XIII)		
25	$Kk^3-N=N-Tk^1-N=N-Kk^1-N=N-A$ (XIV)		
	$Dk^{1}-N=N-P-N=N-Kk^{1}-N=N-R-N=N-Dk^{2} $ (XV)		
	where		
30	k, n, p and r	are independently 0 or 1 subject to the condition that k+n+i formula II is = 1, 2 or 3;	in the
	m	is 0, 1 or 2;	
35	Dk ¹ , Dk ²	independently represent a radical derived from an aromatic amine or denotes a group of the formula A subject to the condition that in each of the formulae I - XII and XV at least one of Dk ¹ and Dk ² represents a radical of the formula A	
40	Kk ¹ , Kk ²	independently represent a mono-, di- or trivalent aromatic radical which derives from benzene, naphthalene, pyrazole, quinoline,	

5

10

15

20

25

30

35

40

Kk³

diphenylamine, diphenylmethane, pyrimidine, pyridine or diphenyl ether and which may optionally comprise one or more of the following radicals as substituents: SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, C_1 - C_4 -dialkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄alkylcarbonylamino, N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄dialkylaminocarbonylamino, phenylaminocarbonyloxy, phenylaminocarbonylamino, C₁-C₄-alkoxycarbonylamino, C₁-C₄hydroxy-C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄alkylsulfonyl, C₁-C₄-alkylaminosulfonyl, C₁-C₄-alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, a radical of the formula SO₂NR⁵⁶R⁵⁷, where R⁵⁶ and R⁵⁷ independently represent hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl, C₁-C₄alkyloxycarbonyl, NH₂-CO or C₁-C₄-alkylaminocarbonyl, C₁-C₄alkylaminosulfonylamino, di-C₁-C₄-alkylaminosulfonylamino, phenylsulfonylamino which may be substituted on the phenyl ring by one or two substituents selected from C₁-C₄-alkyl, C₁-C₄alkoxy or halogen, or 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 of the following radicals: OH, halogen, C₁-C₄-alkyl or phenyl, 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally comprise one or two of the following radicals: OH, SO₃H, C₁-C₄-alkyl, and/or C₁-C₄-alkoxy; is a monovalent radical which derives from benzene, pyrimidine, pyridine or naphthalene and which optionally comprises 1 or 2 hydroxysulfonyl groups and optionally 1, 2 or 3 further substituents selected from SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylcarbonylamino, N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄dialkylaminocarbonylamino, phenylaminocarbonyloxy, phenylaminocarbonylamino, C₁-C₄-alkoxycarbonylamino, C₁-C₄-

hydroxy-C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino,

Tk¹, Tk²

5

10

15

20

25

30

35

40

phenylcarbonylamino, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄alkylsulfonyl, C₁-C₄-alkylaminosulfonyl, C₁-C₄-alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, a radical of the formula SO₂NR⁵⁶R⁵⁷, where R⁵⁶ and R⁵⁷ independently represent hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl, C₁-C₄alkoxycarbonyl, NH₂-CO or C₁-C₄-alkylaminocarbonyl, C₁-C₄alkylaminosulfonylamino, di-C₁-C₄-alkylaminosulfonylamino, phenylsulfonylamino which may be substituted on the phenyl ring by one or two substituents selected from C₁-C₄-alkyl, C₁-C₄alkoxy or halogen, or 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 of the following radicals: OH, halogen, C₁-C₄-alkyl or phenyl, 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally comprise one or two of the following radicals: OH, SO₃H, C₁-C₄-alkyl, and/or C₁-C₄-alkoxy; independently represent a divalent aromatic radical which derives from benzene, diphenylamine, biphenyl, diphenylmethane, 2-phenylbenzimidazole, phenylsulfonylbenzene, phenylaminosulfonylbenzene, stilbene or phenylaminocarbonylbenzene which may each optionally comprise one or more of the following radicals as substituents: SO₃H, COOH, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl; L, M, P and R independently represent a divalent aromatic radical which derives from benzene or naphthalene which may each optionally comprise one or more, for example 1, 2, 3, 4 or 5, of the following radicals as substituents: SO₃H, COOH, CN, CONH₂, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, C₁-C₄-hydroxyalkyl, carboxy-C₁-C₄alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylaminocarbonyl, C₁-C₄-dialkylaminocarbonyl, C₁-C₄-alkylcarbonylamino, N-(C₁-C₄-alkylcarbonyl)-N-(C₁-C₄alkylcarbonyl)amino, C₁-C₄-alkylaminocarbonyloxy, C₁-C₄dialkylaminocarbonyloxy, C₁-C₄-alkylaminocarbonylamino, C₁-C₄dialkylaminocarbonylamino, phenylaminocarbonyloxy, phenylaminocarbonylamino, C₁-C₄-alkoxycarbonylamino, C₁-C₄hydroxy-C₁-C₄-alkylamino, carboxy-C₁-C₄-alkylamino, phenylcarbonylamino, C₁-C₄-alkylsulfonyl, hydroxy-C₁-C₄alkylsulfonyl, C_1 - C_4 -alkylaminosulfonyl, C_1 - C_4 -alkylsulfonylamino, phenylsulfonyl, phenylsulfonylamino, formamide, a radical of the formula SO₂NR⁵⁶R⁵⁷, where R⁵⁶ and R⁵⁷ independently represent

hydrogen, C₁-C₄-alkyl, formyl, C₁-C₄-alkylcarbonyl, C₁-C₄alkoxycarbonyl, NH₂-CO or C₁-C₄-alkylaminocarbonyl, C₁-C₄alkylaminosulfonylamino, di-C₁-C₄-alkylaminosulfonylamino, phenylsulfonylamino which may be substituted on the phenyl ring by one or two substituents selected from C₁-C₄-alkyl, C₁-C₄-5 alkoxy or halogen, or 5- or 6-membered heterocyclyl, which is optionally substituted by 1, 2 or 3 of the following radicals: OH, halogen, C₁-C₄-alkyl or phenyl, 5-membered aromatic heterocyclyl optionally bearing on the nitrogen a phenyl or naphthyl group which can optionally comprise one or two of the 10 following radicals: OH, SO₃H, C₁-C₄-alkyl, and/or C₁-C₄-alkoxy; Napht¹, Napht² independently represent a divalent radical which derives from naphthalene and which comprises 1 or 2 hydroxysulfonyl groups and may optionally comprise 1, 2 or 3 further substituents 15 selected from OH, NH₂, C₁-C₄-alkylamino, C₁-C₄-dialkylamino, C₁-C₄-alkylsulfonylamino, phenylsulfonylamino, 4-methylphenylsulfonylamino, C₁-C₄-alkylaminosulfonyl, di-C₁-C₄alkylaminosulfonyl, phenylaminosulfonyl, 20 4-methylphenylaminosulfonyl and NHC(O)R^x radicals, where R^x hydrogen, C₁-C₄-alkyl, maleyl or phenyl; represents pyrazole-1,4-diyl which attaches through the nitrogen Pyr atom to the A group and optionally comprises one or 2 substituents selected from halogen, C₁-C₄-alkyl, hydroxyl or 25 C₁-C₄-alkoxy; Tr¹, Tr² independently represent a 1,3,5-triazine-2,4-diyl radical which optionally further comprises a halogen atom, a methyl group or a 30 methoxy group as substituent, and the metal complexes of these dyes. A process according to any preceding claim, wherein initially the leather is 9. treated with the aqueous float comprising at least one dye F at a pH in the range 35 from 3 to 6.5 and then a pH of at least 7.5 is set in the float. A process according to any one of claims 1 to 7, wherein the dyeing is carried out 10.

AMENDED SHEET

A process according to any preceding claim, wherein the dyeing is carried out

as a one-stage process.

40

11.

5

15

35

40

before retanning.

- 12. A process according to any preceding claim, wherein the dyeing is effected at temperatures in the range from 10 to 60°C.
- 13. The use of dyes F which comprise at least one alkali-activable group of the formula A as defined in claim 1 and mixtures thereof for dyeing leather at pH 7.5 to 11.
- 10 14. Dyes F of the general formulae IIa, IIIa or IVa

$$Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-[N=N-Kk^{1}]_{k}-N=N-]_{k}Dk^{2}$$
 (IIa)

Dk¹-N=N-Napht¹-N=N-Tk¹-N=N-Kk¹-N=N-Tk²-N=N-Napht²-N=N-Dk² (IIIa)

 $Dk^{1}-N=N-Napht^{1}-N=N-Tk^{1}-N=N-Napht^{2}-N=N-Dk^{2}$ (IVa)

where Dk¹, Dk², Napht¹, Napht² and Kk¹ are each as defined above, k is 0 or 1 and where Tk¹ and Tk² independently represent a divalent radical which derives from biphenyl, diphenylmethane, 2-phenylbenzimidazole, phenylsulfonylbenzene, phenylaminosulfonylbenzene, diphenylamine, stilbene or phenylaminocarbonylbenzene and may optionally comprise one or more of the following radicals as substituents: SO₃H, COOH, OH, NH₂, NO₂, halogen, C₁-C₄-alkyl, although Tk¹ in formula IIa does not represent a diphenylaminederived radical when k is = 0 and either or both of the radicals Dk¹ and Dk² represent a radical of the formula A as defined in claim 1.

15. Dyes F of the general formula IIb

30
$$A-N=N-Napht^1-N=N-Tk^1-N=N-Kk^1-[N=N-Dk^2]_n$$
 (IIb)

where A, Dk^2 , Napht¹ and Kk^1 are each as defined above, n is 0 or 1 and where Tk^1 represents a divalent radical which derives from biphenyl, diphenylmethane, 2-phenylbenzimidazole, phenylsulfonylbenzene, phenylaminosulfonylbenzene, diphenylamine, stilbene or phenylaminocarbonylbenzene and may optionally comprise one or more of the following radicals as substituents: SO_3H , COOH, OH, NH_2 , NO_2 , halogen, C_1 - C_4 -alkyl, where Tk^1 does not represent a diphenylamine-derived radical when n is = 0 and where Dk^2 radical may also represent a radical of the formula A as defined in claim 1.

16. Dyes according to claim 14 or 15, wherein Tk¹ and/or Tk² in the formulae IIa, IIb,

Illa or IVa represents a radical of the general formula

- 5 where *** represent the bonds to the azo groups.
 - 17. Dyes according to any one of claims 14 to 16, wherein Napht¹ and/or Napht² represent a bivalent radical of the general formula

$$R^{1}$$
 R^{2} (II) $(SO_{3}^{-})_{s}$ $(SO_{3}^{-})_{t}$

10

15

where R^1 and R^2 are independently hydrogen, OH, NH₂ or NHC(O)R³, where R^3 represents hydrogen, C_1 - C_4 -alkyl, maleyl or phenyl and at least one of R^1 and R^2 is other than hydrogen, \cdots represent the bonds to the azo groups, s and t represent 0 or 1 and the s + t sum is 1 or 2.

- 18. Dyes according to any one of claims 14 to 17, wherein either or both of the radicals Dk¹ and Dk² represent one of the A1 to A12 radicals defined in claim 7.
- 20 19. Dyed leather obtainable by a dyeing process according to any one of claims to 1 to 12.
 - 20. Leather according to Claim 19 for handwear, footwear, automobiles, apparel or furniture.