Name:	
MATH 308 Fall 2023 HW 4: Due 09/21	"Most of the mistakes in thinking are inadequacies of perception rather than mistakes of logic."
	–Edward de Bono

Problem 1. (10pt) Suppose that P(x) is a predicate with nonempty universe \mathcal{U} . Being sure to justify your answer, explain whether the following statements are true or false.

- (a) There are values of x for which $\forall x, P(x)$ is true and values for which the statement is false.
- (b) If $\forall x, P(x)$ is false, then the statement $\exists x, \neg P(x)$ must be true.
- (c) If $\exists x P(x)$ is true, then so is $\forall x P(x)$.

Problem 2. (10pt) Showing all your work and simplifying your logical expression as much as possible, negate the following quantified open statements:

- (a) $\forall x \exists y \forall z P(x, y, z)$
- (b) $\exists x (\neg P(x) \land Q(x))$
- (c) $\forall x (\neg P(x) \to Q(x))$
- (d) $\exists y \, \forall x \big(P(x,y) \land \neg Q(x,y) \big)$
- (e) $\exists x (P(x) \to (1 < x \lor x \ge 3))$

Problem 3. (10pt) Being as clear and as detailed as possible, explain why $\forall x \, P(x) \land \forall x \, Q(x)$ implies $\forall x \, [P(x) \land Q(x)]$.

Problem 4. (10pt) A certain computer program has n as an integer variable. Suppose that A is an array of 10 integers values, i.e. A is a 'list' of the integer values $A[1], A[2], \ldots, A[10]$. Write the following as quantified open statements using A[k]:

- (a) Every entry in the array is greater than 100.
- (b) There is an entry in the array that is negative.
- (c) The value A[10] is the largest value in the array.
- (d) There are two entries in the array that are the same.

Problem 5. (10pt) A function f(x) is said to be *uniformly continuous* if for all $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$.

- (a) Write the definition of uniform continuity as a quantified statement.
- (b) Find a quantified statement for a function to be *not* uniformly continuous by negating your answer in (a).
- (c) Write your answer in (b) as an English sentence.