

Window-Level is a Strong Denoising Surrogate

Ayaan Haque, Adam Wang, Abdullah-Al-Zubaer Imran

Overview

- Clinical and Computational Motivations
- Related Work
- Our Methods
- Results

Clinical Challenges and Motivation

- High radiation dose is required for good quality
 - Using lower dose introduces noise
- High radiation is harmful, so using lower dose is desirable
 - This creates a tradeoff between noise and safety
- Using Deep Learning approaches can help "denoise" low dose scans

Low Dose

Full Dose

Stanford University

Denoising Methods

Limited Reference Data

- To train effective deep denoising models, lots of data is required
 - Specifically full-dose reference data
- Collecting additional full-dose scans is challenging
 - can't acquiring two doses of same scan
 - harmful nature of radiation
- Less challenging to have low dose images

Self-Supervised Learning

- Self-Supervised Learning is an alternative to to FSL
- In SSL, synthetic labels are generated from the data itself
 - Similar to transfer learning, as both use pre-training
- "Surrogate" and "downstream"
 - back-to-back
- Improved representation learning

Self-Supervised Learning Cont.

- In SSL, "free" labels are produced by exploiting the data itself
- SSL tasks are not very valuable themselves
 - however, the model learns the data distribution
 - during fine-tuning, it has additional knowledge
- Examples include
 - Rotation prediction
 - colorization/restoration
 - patch prediction

Common Self-Supervised Tasks

Self-Supervised Proxy/Pretext Tasks

Current Self-Supervised Denoising Methods

- General-Purpose
 - Self2Self
 - Noise2Same
 - Noisy-As-Clean
- CT-Denoising
 - Noise2Noise
 - Noise2Void
 - Half2Half

Variational Autoencoders

- Built on autoencoders
 - deconstruct and reconstruct an input the exact same
- Introduces the latent space
 - gaussian noise is introduced
 - Makes the VAE generative
- VAEs have been used in many applications
 - not many for denoising, none for medical image denoising

Window-Leveling

- Window-Leveling is the process of modifying the grayscale of a CT image using the CT numbers
 - purpose is to highlight, brighten, and contrast important structures
- From a deep learning perspective, the images are essentially transformed and recolored

Challenges

- Denoising with limited reference data
- Task-relevant and domain specific self-supervised surrogates
- New architectures that can be effective at very low dose
- Generalization to different domains

Contributions: SSWL-IDN

- Task-relevant self-supervised window-level prediction surrogate
- Related to the downstream task

- Residual-based VAE architecture
- Hybrid loss for pixel-wise and perceptual optimization

- Extensive experimentation
- Varied quantities of labeled data on different proposed components
- In- and cross-domain results
- Extremely low dose (5%)

Self-Supervised Window Leveling

- Window-Leveled Images are easily attainable labels
 - DICOM metadata has the width and center values
- NWL are used as inputs, and WL are used as targets
 - model is trained to transform NWL to WL
- This task can be likened to image recolorization
- This task itself is not very useful, but it promotes important feature and representation learning

Window Leveling and Denoising

- Denoising Equation
 - X is LDCT, Y is FDCT, n is noise map
 - train model to remove the noise map
- Window-Leveling Equation
 - X is NWL, Z is WL, a and b are constants
- The two tasks are similar from a computational perspective
 - they are both image transformations
 - other tasks are arbitrary so they may result in worse performance
- Domain-specific task
 - encourages important and relevant feature learning
- end-to-end surrogate

Denoising

$$X = Y + n$$

Window-Leveling

$$Z = aX + b$$

Residual-VAE

Architectural Table

Layer	Ene	coder	Layer	Decoder		
	Feature maps (input)	Feature maps (output)	re maps (output)		Feature maps (output)	
Conv Layer - 1	$M \times 256 \times 256 \times 1$	$M \times 252 \times 252 \times 96$	Upsample	$M \times 4 \times 4 \times 96$	$M \times 236 \times 236 \times 96$	
ReLU	$M \times 252 \times 252 \times 96$	$M \times 252 \times 252 \times 96$	Transpose Conv Layer - 1	$M\times 236\times 236\times 1$	$M\times240\times240\times96$	
Conv Layer - 2	$M \times 252 \times 252 \times 96$	$M \times 248 \times 248 \times 96$	ReLU	$M \times 240 \times 240 \times 96$	$M\times240\times240\times96$	
ReLU	$M \times 248 \times 248 \times 96$	$M \times 248 \times 248 \times 96$	Residual (Conv 4)	$M \times 240 \times 240 \times 96$	$M\times240\times240\times96$	
Conv Layer - 3	$M \times 248 \times 248 \times 96$	$M \times 244 \times 244 \times 96$	Transpose Conv Layer - 2	$M \times 240 \times 240 \times 96$	$M \times 244 \times 244 \times 96$	
ReLU	$M \times 244 \times 244 \times 96$	$M\times 244\times 244\times 96$	ReLU	$M \times 244 \times 244 \times 96$	$M\times 244\times 244\times 96$	
Conv Layer - 4	$M \times 244 \times 244 \times 96$	$M \times 240 \times 240 \times 96$	Transpose Conv Layer - 3	$M \times 244 \times 244 \times 96$	$M\times 248\times 248\times 96$	
ReLU	$M \times 240 \times 240 \times 96$	$M \times 240 \times 240 \times 96$	ReLU	$M \times 248 \times 248 \times 96$	$M \times 248 \times 248 \times 96$	
Conv Layer - 5	$M \times 240 \times 240 \times 96$	$M \times 240 \times 240 \times 96$	Residual (Conv 2)	$M \times 248 \times 248 \times 96$	$M \times 248 \times 248 \times 96$	
ReLU	$M \times 236 \times 236 \times 96$	$M \times 236 \times 236 \times 96$	Transpose Conv Layer - 4	$M \times 248 \times 248 \times 96$	$M\times252\times252\times96$	
Global Average Pooling	$M \times 236 \times 236 \times 96$	$M \times 4 \times 4 \times 96$	ReLU	$M \times 252 \times 252 \times 96$	$M\times252\times252\times96$	
Linear - Mu	$M \times 4 \times 4 \times 96$	$M \times 1 \times 256$	Transpose Conv Layer - 5	$M \times 252 \times 252 \times 96$	$M \times 256 \times 256 \times 1$	
Linear - Logvar	$M \times 4 \times 4 \times 96$	$M \times 1 \times 256$	Residual (Input)	$M \times 256 \times 256 \times 1$	$M \times 256 \times 256 \times 1$	
Linear - Decoder	$M \times 1 \times 256$	$M \times 4 \times 4 \times 96$	ReLU	$M \times 256 \times 256 \times 1$	$M \times 256 \times 256 \times 1$	

Hybrid Loss

- Hybrid Loss combining MSE and Perceptual Loss
- Perceptual loss encourages high-level feature matching
- MSE provides pixel-based accuracy
- KL Divergence loss for the VAE component of the model

Perceptual Loss

$$\mathcal{L}_{perceptual} = \frac{1}{M} \sum_{i=1}^{M} \left\| \mathcal{F}(\hat{y}_i) - \mathcal{F}(y_i) \right\|^2$$

Final Loss Objective

$$L(y, \hat{y}, \mu, \sigma) = L_{MSE}(\hat{y}, y) + \beta \mathcal{L}_{perceptual}(\mathcal{F}(\hat{y}), \mathcal{F}(y)) + \alpha \mathcal{L}_{KL}(\mu, \sigma)$$

Datasets: Overview

- We used the Mayo CT Low-Dose Dataset
 - Abdomen scans
 - simulated quarter dose scans
- 15 abdomen scans, 10 for training, 5 for testing

Dataset Details

mode	Dataset	Total	Train	Test
in-domain	Abdomen	2,196	1,533	663
cross-domain	Chest	1,061	53 6	1,061

Datasets: Dose

- We simulate 5% dose
- 5% dose is for thorough evaluation of the denoising model
 - Clinically, it is better to use 25% dose and receive better predictions
 - Computationally, aggressive denoising is desirable

Different Dose Levels

Full Dose

Dose: 25%

Dose: 10%

Dose: 5%

Implementation Details

- Training
 - PyTorch, NVIDIA K80 GPU 12 GB RAM
 - Varying levels of supervision
 - **250**, 500, 1000, Full
 - Each experiment was performed 5 times, averages were reported
 - Inputs normalized and resized to 256x256x1
- Hyperparameters
 - Adam Optimizer, β = 0.6
- Evaluation
 - PSNR, SSIM, MSE, NRMSE
- Baselines
 - Architectures: AE, VAE, U-Net, DnCNN, RED-CNN
 - Loss: L1, MSE, Perceptual, L1-Smooth, L1+Perceptual
 - SSL Tasks: No pre-training, Reconstruction, Noisy-As-Clean

Results: Architecture Comparisons

Model		In-Domain				Cross-Domain				
	$ \mathcal{D}_l $	PSNR	SSIM	MSE	NRMSE	PSNR	SSIM	MSE	NRMSE	
LDCT	-	20.179	0.7554	0.0107	0.3082	16.876	0.6725	0.0207	0.4832	
	250	15.098	0.4623	0.0312	0.5344	14.814	0.3900	0.0331	0.6126	
AE	500	16.026	0.5716	0.0251	0.4794	15.284	0.5053	0.0297	0.5803	
AL	1000	16.407	0.5929	0.0230	0.4587	15.251	0.5285	0.0299	0.5822	
	Full	16.509	0.5964	0.0224	0.4538	15.289	0.5399	0.0297	0.5802	
() ()	250	17.325	0.5685	0.0201	0.4204	16.434	0.4781	0.0234	0.5186	
TT NT .	500	18.445	0.6606	0.0144	0.3629	17.385	0.6094	0.0187	0.4647	
U-Net	1000	20.930	0.7697	0.0083	0.2746	18.458	0.6883	0.0147	0.4110	
	Full	21.900	0.7918	0.0067	0.2470	18.843	0.7095	0.0135	0.3933	
	250	17.278	0.4656	0.0192	0.4173	16.318	0.3741	0.0238	0.5245	
XZA TS	500	19.241	0.5849	0.0121	0.3324	17.329	0.4859	0.0188	0.4671	
VAE	1000	20.771	0.6873	0.0086	0.2802	18.094	0.5634	0.0148	0.4266	
	Full	21.547	0.7510	0.0073	0.2573	18.364	0.5971	0.0145	0.4091	
	250	19.814	0.7031	0.0112	0.3171	16.861	0.6132	0.0207	0.4777	
D CONT	500	20.430	0.7372	0.0101	0.2981	17.192	0.6554	0.0202	0.4740	
DnCNN	1000	21.693	0.7460	0.0071	0.2533	18.702	0.6343	0.0157	0.4217	
	Full	21.186	0.7907	0.0088	0.2749	18.925	0.6584	0.0136	0.3662	
DED CAN	250	23.414	0.8433	0.0054	0.2155	18.625	0.6971	0.0139	0.4319	
	500	23.612	0.8522	0.0051	0.2078	18.919	0.7264	0.0132	0.4019	
RED-CNN	1000	24.097	0.8538	0.0052	0.1990	19.005	0.7327	0.0129	0.3819	
	Full	24.115	0.8616	0.0047	0.1979	19.005	0.7467	0.0124	0.3745	
	250	24.829	0.8483	0.0053	0.1889	19.033	0.7438	0.0131	0.3861	
DATA D	500	26.139	0.8538	0.0050	0.1889	19.193	0.7467	0.0127	0.3789	
RVAE	1000	26.286	0.8626	0.0046	0.1878	19.259	0.7497	0.0125	0.3763	
	Full	26.574	0.8646	0.0045	0.1817	19.288	0.7490	0.0122	0.3690	

Results: Hybrid Loss Comparisons

Model	Dataset Size	PSNR	SSIM	$_{ m MSE}$	NRSME
	250	20.331	0.7676	0.0100	0.2991
L1	500	20.928	0.7774	0.0091	0.2820
LI	1000	22.349	0.7970	0.0067	0.2412
	Full	22.588	0.8205	0.0063	0.2333
	250	23.414	0.8433	0.0054	0.2155
MSE	500	23.612	0.8522	0.0051	0.2078
MSE	1000	24.097	0.8538	0.0052	0.1990
	Full	24.115	0.8616	0.0047	0.1979
	250	19.246	0.7739	0.0126	0.3361
Dancontual	500	19.242	0.7901	0.0125	0.3354
Perceptual	1000	22.633	0.8322	0.0321	0.2323
	Full	23.623	0.8516	0.0049	0.2063
	250	22.145	0.7715	0.0106	0.2859
L1-Smooth	500	23.862	0.7952	0.0076	0.2382
L1-Smooth	1000	24.863	0.8187	0.0064	0.2159
	Full	25.532	0.8362	0.0056	0.2001
,	250	23.858	0.8555	0.0050	0.2068
[1 Dt1	500	24.069	0.8580	0.0047	0.2017
L1 + Perceptual	1000	24.151	0.8626	0.0046	0.1777
	Full	24.413	0.8656	0.0045	0.1752
	250	24.726	0.8568	0.0046	0.1828
MCE Dansonteral	500	26.530	0.8581	0.0046	0.1804
MSE + Perceptual	1000	26.517	0.8649	0.0045	0.1780
	Full	26.743	0.8660	0.0044	0.1752

Results: Self-Supervised Learning Comparisons

Model	$ \mathcal{D}_l $	In-Domain			Cross-Domain				
		PSNR	SSIM	MSE	NRMSE	PSNR	SSIM	MSE	NRMSE
	250	23.414	0.8433	0.0054	0.2155	19.351	0.7551	0.0122	0.3726
DED CAN L DEC	500	23.612	0.8522	0.0051	0.2078	19.430	0.7572	0.0120	0.3691
RED-CNN + REC	1000	24.097	0.8538	0.0052	0.1990	19.499	0.7523	0.0117	0.3644
	Full	24.115	0.8616	0.0047	0.1979	19.546	0.7555	0.0120	0.3678
E	250	23.795	0.8522	0.0051	0.2120	19.417	0.7583	0.0120	0.3694
DVAE DEC	500	24.088	0.8598	0.0050	0.2067	19.544	0.7602	0.0117	0.3640
RVAE + REC	1000	24.071	0.8650	0.0048	0.2007	19.570	0.7598	0.0116	0.3632
	Full	24.301	0.8669	0.0047	0.1958	19.609	0.7613	0.0115	0.3614
DED GIVE NAG	250	23.989	0.8375	0.0050	0.2050	19.122	0.7527	0.0124	0.3750
	500	24.033	0.8541	0.0048	0.2015	19.401	0.7565	0.0127	0.3703
RED-CNN + NAC	1000	24.219	0.8549	0.0045	0.1961	19.494	0.7577	0.0118	0.3660
	Full	24.422	0.8611	0.0045	0.1958	19.579	0.7588	0.0116	0.3625
2	250	23.890	0.8612	0.0052	0.2029	19.313	0.7545	0.0123	0.3739
DVAE NAC	500	24.168	0.8579	0.0047	0.1996	19.338	0.7532	0.0123	0.3726
RVAE + NAC	1000	24.019	0.8647	0.0047	0.1980	19.439	0.7580	0.0122	0.3686
	Full	24.186	0.8649	0.0046	0.1956	19.520	0.7596	0.0118	0.3650
	250	26.119	0.8509	0.0050	0.1890	19.550	0.7611	0.0117	0.3635
RED-CNN + SSWL	500	26.300	0.8542	0.0050	0.1865	19.460	0.7614	0.0120	0.3679
RED-CNN + 55WL	1000	26.710	0.8627	0.0046	0.1786	19.520	0.7617	0.0120	0.3652
	Full	26.747	0.8626	0.0045	0.1764	19.547	0.7619	0.0117	0.3642
	250	26.150	0.8612	0.0051	0.1900	19.566	0.7632	0.0116	0.3630
DVAE COM	500	26.464	0.8659	0.0048	0.1820	19.619	0.7634	0.0115	0.3607
RVAE + SSWL	1000	26.799	0.8669	0.0043	0.1781	19.549	0.7619	0.0117	0.3505
	Full	26.844	0.8701	0.0044	0.1774	19.617	0.7624	0.0115	0.3692
	250	26.581	0.8649	0.0046	0.1793	19.660	0.7645	0.0109	0.3556
COWI IDM	500	26.778	0.8723	0.0045	0.1783	19.854	0.7680	0.0107	0.3530
SSWL-IDN	1000	27.018	0.8744	0.0043	0.1732	20.016	0.7706	0.0105	0.3505
	Full	27.800	0.8815	0.0042	0.1701	20.178	0.7739	0.0104	0.3458

Results: SSL Visual Performance

Results: ROI Comparisons

Results: Additional Predictions

In-Domain

Results: Consistency Plots

Strengths/Weaknesses

Strengths

- Novel, task-relevant and explainable methods
- Significantly improved performance of architecture over SOTA
- SSL task outperforms baselines and SOTA
- Strong performance in ROIs, aggressive denoising

Weaknesses

- Promising cross-domain performance, but can be improved
- MSE and N-RMSE can be improved over other methods

Acknowledgements

Dr. Abdullah-Al-Zubaer Imran

Professor Adam Wang

- This was a great learning experience for me to learn a lot about CT
 - How CT works
 - Challenges in CT from the AI perspective

Research Challenges

- Original training of SSWL
 - Images were not normalized, so results were off
- Tried other surrogate tasks, and none worked out
 - DICOM metadata predictions
 - Learned why certain methods did not work theoretically
- Hard and quick deadline
 - started project in late December, entirely new, so learning curve was steep

Conclusions

- We introduce SSWL-IDN
- Novel, Task-Relevant Self-Supervised Learning
 - Window-Level Prediction, provides efficient and related representation learning
- Residual-VAE
 - Residual learning improves performance
 - Using the reparameterization trick
 - perceptual and MSE loss for pixel-wise and perceptual learning

Results

- Strong performance against baselines and other related methods
- Good predictions in ROIs, promising cross-domain performance

Future Work

- Cascaded and joint surrogate learning
- 3D architectures and models
- 25% dose evaluation

Questions?

Window-Level is a Strong Denoising **Surrogate**

Ayaan Haque, Adam Wang, Abdullah-Al-Zubaer Imran

