0000000

CMPE 322/327 - Theory of Computation Week 6: Derivatives & Kleene Algebra & Equivalence of Regular Expressions

Burak Ekici

March 28 - April 1, 2022

1/28

A Quick Recap •000000

Derivatives 0000

Kleene Algebra 000000

Equivalence of Regular Expressions 000000000

Outline

- 1 A Quick Recap
- 3 Kleene Algebra
- 4 Equivalence of Regular Expressions

3/28

A Quick Recap 000000

Derivatives 0000

Kleene Algebra 000000

Equivalence of Regular Expressions 000000000

Definition

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$X \equiv_{\mathsf{M}} y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

 \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $\forall a \in \Sigma$ $xa \equiv_M ya$ $x \equiv_M y$

 \equiv_M refines L(M): either $x, y \in L(M)$ or $x, y \notin L(M)$ $\forall x, y \in \Sigma^*$ $x \equiv_M y$

 \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

Definition

Myhill-Nerode relation for $L \subseteq \Sigma^*$ is right congruent equivalence relation of finite index on Σ^* that refines L

5/28

A Quick Recap 0000•00

Derivatives 0000

Kleene Algebra 000000

Equivalence of Regular Expressions 000000000

Definition

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

- $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$

well-defined: $x \equiv y \implies xa \equiv ya$

- $s := [\varepsilon]_{\equiv}$
- $F := \{ [x]_{\equiv} \mid x \in L \}$

 $\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv} \text{ for all } y \in \Sigma^*$

 $2x \in L \iff [x]_{\equiv} \in F$

for all $x \in \Sigma^*$

Definition

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, \ (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\forall x,y \in \Sigma^*, \ x \sim y \implies x \equiv_L y$$

 \equiv_L has fewest equivalence classes

7/28

A Quick Recap

Derivatives 0000 Kleene Algebra

Equivalence of Regular Expressions

Theorem (Myhill-Nerode)

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation
- \equiv_L is of finite index

Corollary

for every regular set L, $M_{(\equiv_L)}$ is minimum-state DFA for L

Theorem

for every DFA M, $M/\approx \simeq M_{\equiv_I}$

Outline

- 1 A Quick Recap
- 2 Derivatives
- 3 Kleene Algebra
- 4 Equivalence of Regular Expressions

9/28

A Quick Recap

Derivatives 0•00 Kleene Algebra

Equivalence of Regular Expressions

 $x \in \Sigma^*$

 $A \subseteq \Sigma^*$

 $a \in \Sigma$

regular expression α over Σ

Definitions

- x-derivative of A: $A_x := \{y \mid xy \in A\}$
- a-derivative of α is regular expression defined inductively as follows:

$$\alpha_a := \begin{cases} \varnothing & \text{if } \alpha = \varnothing \text{ or } \alpha = \varepsilon \text{ or } \alpha = b \text{ with } b \neq a \\ \varepsilon & \text{if } \alpha = a \\ \beta_a + \gamma_a & \text{if } \alpha = \beta + \gamma \\ \beta_a \gamma + \gamma_a & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \in L(\beta) \\ \beta_a \gamma & \text{if } \alpha = \beta \gamma \text{ and } \varepsilon \notin L(\beta) \\ \beta_a \beta^* & \text{if } \alpha = \beta^* \end{cases}$$

Lemma

 $L(\alpha_a) = L(\alpha)_a$

• $\alpha = (a+b)^*$ $\alpha_a = (a+b)_a(a+b)^*$ $= (a_a+b_a)(a+b)^*$ $= (\varepsilon+\emptyset)(a+b)^*$ $\equiv (a+b)^*$

 $\alpha_b = (a+b)_b(a+b)^*$ $= (a_b+b_b)(a+b)^*$ $= (\emptyset+\varepsilon)(a+b)^*$ $\equiv (a+b)^*$

• $\beta = (a^*b)^*a^*$

 $\beta_{a} = ((a^{*}b)^{*})_{a}a^{*} + (a^{*})_{a}$ $= (a^{*}b)_{a}(a^{*}b)^{*}a^{*} + a_{a}a^{*}$ $= ((a^{*})_{a}b + b_{a})(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$ $= ((a_{a})a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$ $= (\varepsilon a^{*}b + \emptyset)(a^{*}b)^{*}a^{*} + \varepsilon a^{*}$ $\equiv a^{*}b(a^{*}b)^{*}a^{*} + a^{*}$ $\equiv (a^{*}b)^{*}a^{*}$

 $\beta_{b} = ((a^{*}b)^{*})_{b}a^{*} + (a^{*})_{b}$ $= (a^{*}b)_{b}(a^{*}b)^{*}a^{*} + a_{b}a^{*}$ $= ((a^{*})_{b}b + b_{b})(a^{*}b)^{*}a^{*} + \emptyset a^{*}$ $= ((a_{b})a^{*}b + \varepsilon)(a^{*}b)^{*}a^{*} + \emptyset a^{*}$ $= (\emptyset a^{*}b + \varepsilon)(a^{*}b)^{*}a^{*} + \emptyset a^{*}$ $\equiv (a^{*}b)^{*}a^{*}$

11/28

A Quick Recap

Derivatives ○○○● Kleene Algebra

Equivalence of Regular Expressions

Notation

 $\alpha \downarrow$ for $\varepsilon \in L(\alpha)$ $\alpha \uparrow$ for $\varepsilon \notin L(\alpha)$ $\varepsilon(\alpha) = \emptyset$ if $\alpha \uparrow$ $\varepsilon(\alpha) = \varepsilon$ if $\alpha \downarrow$

- Ø1
- ε↓
- $a \uparrow$ for all $a \in \Sigma$
- $(\alpha + \beta) \downarrow \iff \alpha \downarrow \text{ or } \beta \downarrow$
- $(\alpha\beta)\downarrow \iff \alpha\downarrow \text{ and }\beta\downarrow$
- a*↓

Theorem

for every regular expression α over $\Sigma = \{a_1, \dots, a_n\}$ $\alpha \equiv \varepsilon((\alpha)) + a_1\alpha_{a_1} + \dots + a_n\alpha_{a_n}$

Outline

- 1 A Quick Recap
- 2 Derivatives
- 3 Kleene Algebra
- 4 Equivalence of Regular Expressions

13/28

A Quick Recap

Derivatives

Kleene Algebra ○●○○○○ Equivalence of Regular Expressions

Definition

Kleene Algebra consists of set K with distinguished elements $0, 1 \in K$ and operations $* : K \to K$ and $+, \times : K \times K \to K$ such that (A.1) - (A.13)

```
0
a + (b + c)
                  (a + b) + c
                                       a0
                                                          a(bc)
                                                                        (ab)c
                                                                                            1 + aa^*
                                                                                                            a*
                                                  0
     a+b
                  b + a
                                       0a
                                                        (a+b)c =
                                                                        ac + bc
                                                                                                            a*
                                                                                            1+a*a
                                                                                                       =
     a + a
                                                  а
                                                        a(b+c) =
                                                                        ab + ac
            =
                  а
                                                                                          ac \leq c \implies a^*c \leq c
     a + 0
                                       a1
                                                                                          ca \leq c \implies ca^* \leq c
```

(A.14) $b + ac \le c \implies a^*b \le c$ (A.15) $b + ca \le c \implies ba^* \le c$ (A.16) $(a + b)^* = (a^*b)^*a^*$ (A.17) $a(ba)^* = (ab)^*a$

for all $a, b, c \in K$

Notation

- ab for $a \times b$ a^* for *(a) $a \leq b$ for a + b = b
- binding precedence: * > × > +

- ullet regular sets over alphabet Σ form Kleene algebra
 - Ø for 0
 - {ε} for 1
 - union for +
 - concatenation for ×
 - asterate for *
- binary relations over set A form Kleene algebra
 - empty relation Ø for 0
 - identity relation $\{(a, a) \mid a \in A\}$ for 1
 - union for +
 - relational composition for x
 - reflexive transitive closure for *

15/28

A Quick Recap

Derivatives

Kleene Algebra ○○○●○○ Equivalence of Regular Expressions

Theorem

for all regular expressions lpha and eta

 $\alpha \equiv \beta \iff \alpha = \beta$ can be proven from Kleene algebra axioms

Inference Rules

equivalence

$$\frac{\alpha = \beta}{\alpha = \alpha} \qquad \frac{\alpha = \beta}{\beta = \alpha} \qquad \frac{\alpha = \beta \quad \beta = \gamma}{\alpha = \gamma}$$

application

$$\frac{\sigma(\gamma) = \sigma(\delta)}{\sigma(\alpha) = \sigma(\beta)} \qquad \text{\forall axioms $\gamma = \delta \implies \alpha = \beta$} \quad \text{$\forall$ substitutions σ}$$

congruence

$$\frac{\alpha = \gamma \quad \beta = \delta}{\alpha + \beta = \gamma + \delta} \qquad \frac{\alpha = \gamma \quad \beta = \delta}{\alpha \beta = \gamma \delta} \qquad \frac{\alpha = \beta}{\alpha^* = \beta^*}$$

```
Example (page 11)
```

17/28

A Quick Recap

Derivatives 0000 Kleene Algebra ○○○○○● Equivalence of Regular Expressions

Example (w4.pdf – page 19)

```
(0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0)+(0+(1+\boldsymbol{\varepsilon})(1+\boldsymbol{\varepsilon})^*0)((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0)^*((0+\boldsymbol{\varepsilon})+1(1+\boldsymbol{\varepsilon})^*0)
α
            x + xy^*y x := (0 + (1 + \varepsilon)(1 + \varepsilon)^*0) y := ((0 + \varepsilon) + 1(1 + \varepsilon)^*0)
       = x(\varepsilon + y^*y) = xy^*
     := 0 + (1 + \boldsymbol{\varepsilon})(1 + \boldsymbol{\varepsilon})^* 0
                                                                                          y := (0+\boldsymbol{\varepsilon}) + 1(1+\boldsymbol{\varepsilon})^*0
                                                                                                       (0 + \epsilon) + 11*0
      = 0 + (1 + \varepsilon)1^*0
               0+11*0+1*0
                                                                                                          \varepsilon + (0 + 11*0)
                                                                                                  = \boldsymbol{\varepsilon} + (\boldsymbol{\varepsilon} + 11^*)0
               (\epsilon + 11^* + 1^*)0
               (1* + 1*)0
                                                                                                           \epsilon + 1*0
                1*0
xy*
        := (1*0)(\varepsilon + 1*0)*
                    (1*0)(1*0)*
           =
                    (1*0)*(1*0)
                   ((1*0)*1*)0
                    (1+0)*0
                    (0+1)*0
```

Outline

- 1 A Quick Recap
- 2 Derivatives
- 3 Kleene Algebra
- 4 Equivalence of Regular Expressions

19/28

A Quick Recap

Derivatives 0000 Kleene Algebra

Equivalence of Regular Expressions

Theorem

equivalence problem for regular expression

instance: regular expressions α and β over alphabet Σ

question: $L(\alpha) = L(\beta)$

is decidable

Decision Procedure

- ① convert α and β into equivalent finite automata N_{α} and N_{β}
- ② determinize and minimize N_{α} and N_{β} into D_{α} and D_{β}
- **(3)** check whether D_{α} and D_{β} are identical (isomorphic):

yes
$$\Longrightarrow$$
 $L(\alpha) = L(\beta)$ no \Longrightarrow $L(\alpha) \neq L(\beta)$

inefficient decision procedure

Alternative Approaches (employing derivatives)

1 derivatives: build DFAs D_{α} and D_{β} then minimize and check whether $D_{\alpha} \simeq D_{\beta}$

(next slide)

2 derivatives + bisimulation: check whether $L(\alpha) = L(\beta)$

(slides #23 - #26)

• $\alpha = (a+b)^*$, $\alpha_a \equiv \alpha$, $\alpha_b \equiv \alpha$, $\alpha \downarrow$

start
$$\rightarrow \alpha$$
 ab

• $\beta = (a^*b)^*a^*$, $\beta_a \equiv a^*b(a^*b)^*a^* + a^* = \gamma$, $\beta_b \equiv \beta$, $\beta \downarrow$, $\gamma_a \equiv \gamma$, $\gamma_b \equiv \beta$, $\gamma \downarrow$

Lemma

every regular expression α can be transformed into equivalent DFA using derivatives (and 'easy' Kleene algebra axioms for simplification)

21/28

A Quick Recap

Derivatives

Kleene Algebra

Equivalence of Regular Expressions

Example

$$\begin{array}{lll} \alpha = a^* & \alpha_a = \epsilon a^* & (\alpha_a)_a = \varnothing a^* + \epsilon a^* & ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \epsilon a^* & (((\alpha_a)_a)_a)_a = \cdots \\ ((\alpha_a)_a)_a = \varnothing a^* + \varnothing a^* + \epsilon a^* & \equiv \varnothing a^* + \epsilon a^* = (\alpha_a)_a & \text{modulo ACI of } + \end{array}$$

Remark

 $\bullet\,$ 'easy' Kleene algebra axioms: ACI of +

$$a + (b+c) = (a+b) + c$$

$$a+b=b+a$$

$$a + a = a$$

• using more Kleene algebra axioms might speed up computation of equivalent DFA

Lemma

every regular expression has finitely many derivatives modulo ACI of \pm

Notation

 $A \downarrow$ denotes $\varepsilon \in A$

Definition

bisimulation is binary relation \sim between languages over alphabet Σ such that if $A \sim B$ then

- \bigcirc $A\downarrow \iff B\downarrow$

23/28

A Quick Recap

Derivatives

Kleene Algebra

Equivalence of Regular Expressions

Example (bisimulation of languages)

 $L = \{aa, ba\}$ and $M = \{aa, bb\}$ over $\Sigma = \{a, b\}$

if $L \sim M$ then it must be that

1
$$L_a \sim M_a = \{a\} \sim \{a\}$$

2
$$L_b \sim M_b = \{a\} \sim \{b\}$$

3
$$L\downarrow \iff M\downarrow \checkmark$$

if $L_b \sim M_b$ then it must be that

$$(L_b)_b \sim (M_b)_b = \emptyset \sim \{\varepsilon\} \qquad \mathsf{X}$$

3
$$L_b \downarrow \iff M_b \downarrow \checkmark$$

languages L_b and M_b are not bisimilar therefore L and M cannot be bisimilar

Remark

only equal languages are bisimilar (next slide)

Theorem

- 1 regular expressions α and β are equivalent $\iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim
- 2 $L(\alpha) = L(\beta) \iff L(\alpha) \sim L(\beta)$ for some bisimulation \sim

Proof. (second statement)

- \implies identity relation on languages is bisimulation that satisfies $L(\alpha) = L(\beta)$
- \iff suppose $x \in L(\alpha)$

we show $x \in L(\beta)$ by induction on x

- if $x = \varepsilon$ then $L(\alpha) \downarrow$ $L(\beta)\downarrow$ because $L(\alpha) \sim L(\beta)$ and thus $x \in L(\beta)$
- x = ay for some $a \in \Sigma$ with IH: $\forall a \in \Sigma, y \in L(\alpha)_a \leftrightarrow y \in L(\beta)_a$ given x = ay then $y \in L(\alpha)_a$ $y \in L(\beta)_a$ according to IH therefore $L(\alpha)_a = L(\beta)_a \quad \forall a \in \Sigma$ and thus $L(\alpha) = L(\beta)$

25/28

A Quick Recap

Derivatives

Kleene Algebra 000000

Equivalence of Regular Expressions 000000000

Example

 $\alpha = (a+b)^*$ and $\beta = (a^*b)^*a^*$ and $\gamma = a^*b(a^*b)^*a^* + a^*$

if $L(\alpha) \sim L(\beta)$, it must be that

if $L(\alpha) \sim L(\gamma)$, it must be that

- 1 $L(\alpha)_a \sim L(\beta)_a = L(\alpha_a) \sim L(\beta_a) = L(\alpha) \sim L(\gamma)$
- 2 $L(\alpha)_b \sim L(\beta)_b = L(\alpha_b) \sim L(\beta_b) = L(\alpha) \sim L(\beta)$
- 2 $L(\alpha)_b \sim L(\gamma)_b = L(\alpha_b) \sim L(\gamma_b) = L(\alpha) \sim L(\beta)$

hence $\{(L(\alpha), L(\beta)), (L(\alpha), L(\gamma))\}$ is bisimulation and thus $L(\alpha) = L(\beta) = L(\gamma)$

 $\alpha = ab^*(a+b)^*b \text{ and } \beta = aa^*(b^*a)^*b$

tables

	а	b			a	b	
α	α_1	Ø	1	β		Ø	1
α_1	α_2	α_3	1	eta_1	β_2	β_3	1
α_2	α_2	α_4	1	β_2	β_2	β_3	1
α_3	α_2	α_3	↓	$oldsymbol{eta}_3$	β_4	β_5	↓
α_4	α_2	α_4	1	β_4	β_4	β_3	1
Ø	Ø	Ø	1	$oldsymbol{eta}_5$	β_4	β_5	1
				Ø	Ø	Ø	1

- any bisimulation \sim satisfying $L(\alpha) \sim L(\beta)$ requires $L(\alpha_3) \sim L(\beta_5)$
- $L(\alpha_3)\downarrow$ and $L(\beta_5)\uparrow$
- $L(\alpha) \neq L(\beta)$ (witness: $abb \in L(\alpha) \setminus L(\beta)$)

27/28

A Quick Recap

Derivatives 0000 Kleene Algebra

Equivalence of Regular Expressions 00000000●

Thanks! & Questions?