

Matematické modelování Nestacionární vedení tepla

(Modelování pomocí Matlabu)

Ondřej Tuček ondrej_tucek@seznam.cz

Abstrakt

Tato práce se zabývá modelováním nestacionárního vedení tepla v tyčových útvarech. Simulace je provedena za pomoci programu Matlab, ve kterém jsou provedeny všechny výpočty. Součástí práce je též vizualizace modelovaného procesu taktéž v programu Matlab.

Zákon tepelné bilance

Nechť v Ω probíha proces vedení tepla pro $t \in (0, \infty)$, kde Ω je libovolná omezená oblast. Tento proces je charakterizován teplotou $u = u(\mathbf{x}, t)$, tepelným tokem $\mathbf{w} = \mathbf{w}(\mathbf{x}, t)$ a hustotou rozložení tepelných zdrojů $\mathbf{f} = \mathbf{f}(\mathbf{x}, t)$. Formulujme **globální tvar tepelné bilance**. Nechť $\forall \Omega_B \subset \Omega, \forall [t_1, t_2] \subset (0, +\infty)$ platí:

$$\int_{\Omega_B} c\varrho(\mathbf{x})[u(\mathbf{x}, t_2) - u(\mathbf{x}, t_1)] \, d\mathbf{x} = -\int_{t_1}^{t_2} \int_{\Omega_B} \mathbf{w}(\mathbf{x}, t) \mathbf{n}(\mathbf{x}) \, dS \, dt + \int_{t_1}^{t_2} \int_{\Omega_B} \mathbf{f}(\mathbf{x}, t) \, d\mathbf{x} \, dt, \quad (1)$$

kde ϱ je hustota, c je měrná tepelná kapacita, tzv. specifické teplo. Vztah (1) popisuje změnu tepla v oblasti Ω_B , která je rovna množství tepla vteklého hranicí $\partial\Omega_B$ do Ω_B a množství tepla vyprodukovaného zdroji v Ω_B . Tyto změny probíhají v době od t_1 do t_2 . Postupem uvedeným v [1] odvodíme z (1) lokální tepelnou bilanci:

$$c\varrho(\mathbf{x})\frac{\partial u(\mathbf{x},t)}{\partial t} + \operatorname{div}\mathbf{w}(\mathbf{x},t) = \mathbf{f}(\mathbf{x},t), \forall \mathbf{x} \in \Omega_B, \forall t \in (0,+\infty)$$
(2)

Dále uvažujme kontinuum v oblasti $\Omega \subset \mathbb{R}^3$ a předpokládejme, že:

- (i) prostředí se nepohybuje, tj. $\mathbf{v} = 0$,
- (ii) hustota $\varrho=\varrho(\mathbf{x})$ nezávisí na čase, tj. $\frac{\partial\varrho}{\partial t}=0$,
- (iii) vnitřní energie je funkcí teploty $u = u(\mathbf{x}, t)$ a nikoliv hustoty, tj. e = e(u),
- (iv) vnější síly (např. gravitační) a vnitřní síly nemění vnitřní energii (teplo, teplotu), tj. $F=0, \mathcal{T}=0,$
- (v) vektor toku energie (toku tepla) $\mathbf{w} = \mathbf{w}(\mathbf{x},t)$ závisí pouze na gradientu teploty podle konstitutivního Fourierova zákona

$$\mathbf{w} = -k \operatorname{grad} u,\tag{3}$$

kde $k = k(\mathbf{x})$ je koeficient vnitřní tepelné vodivosti.

Dosazením rovnice (3) do (2) dostáváme lokální podobu zákona tepelné bilance

$$c\varrho(\mathbf{x})\frac{\partial u}{\partial t}(\mathbf{x},t) - \operatorname{div}\left(k\operatorname{grad} u(\mathbf{x},t)\right) = \mathbf{f}(\mathbf{x},t), \, \forall \mathbf{x} \in \Omega_B, \forall t \in (0,+\infty).$$
 (4)

Vztah (4) nazveme **rovnicí vedení tepla** tehdy, máme-li stanovit teplotu u v oblasti Ω_B . Poznamenejme, že jde o parciální diferenciální rovnice parabolického typu.

Nestacionární vedení tepla v tyči, základní předpoklady

Uvažujme tyč (konečné délky) z tepelně vodivého materiálu, jehož koeficient vnitřní tepelné vodivosti označíme k=k(x,y). Dále předpokládejme, že

- (i) délka tyče je l > 0 a tyč je geometricky popsaná rovinnou oblastí Ω_B ,
- (ii) průřez tyče nezávisí na čase,
- (iii) teplota u = u(x, y, t) je v každém místě řezu stejná,
- (iv) přenos tepla pláštěm tyče je nulový,
- (v) tepelný tok $\mathbf{w} = \mathbf{w}(x, y, t)$ je dán Fourierovým zákonem [2]

$$\mathbf{w} = -k(x, y) \operatorname{grad} u(x, y, t), \, \forall [x, y] \in \Omega_B, \forall t \in [0, T]$$

Tepelný tok w představuje množství tepla v Joulech proteklého místem [x, y] (tj. řezem tyče v místě x) v okamžiku t za jednotku času ve směru kladné osy x. Rovnici (2) lze poté psát ve tvaru

$$c\varrho(x,y)\frac{\partial u}{\partial t} - \operatorname{div}\left(k(x,y)\operatorname{grad} u(x,y,t)\right) = f(x,y,t),$$
 (5)

kde $c\varrho(x,y), k(x,y), f(x,y,t)$ se považují za dané.

Počáteční úloha: Chceme stanovit rozložení teploty u=u(x,y,t) v tyči pro $t\in[0,T]$, je-li dáno počáteční rozložení teploty jež popisuje funkce $\varphi(x,y)$. Počáteční podmínka pro $t_0=0$ je tedy

$$u(x, y, 0) = \varphi(x, y). \tag{6}$$

Počáteční-okrajová úloha: Chceme stanovit rozložení teploty u=u(x,y,t) v tyči pro $[x,y]\in\Omega_B$ za těchto předpokladů:

- (i) fyzikální veličiny $c, \varrho(x,y), k(x,y), f(x,y,t)$ jsou dány
- (ii) je dáno počáteční rozložení teploty
- (iii) je dán "teplotní režim" na začátku a na koncích tyče, tzn. jsou dány Dirichletovy okrajové podmínky

$$u(0,y,t)=u_0(t)$$
 na nějaké části $\Gamma_i\subset\partial\Omega_B,\ y\in\Gamma_i,$ $u(l,y,t)=u_l(t)$ na nějaké části $\Gamma_j\subset\partial\Omega_B,\ y\in\Gamma_j,$ (7)

pro $i, j = 1, 2, \dots, N, \ N \in \mathbb{N}. \ \partial \Omega_B$ značí hranici oblasti Ω_B .

(iv) jsou zadány Neumannovy okrajové podmínky na $\partial\Omega_B$

$$\frac{\partial u}{\partial n} = u_n(t),\tag{8}$$

kde n je vektor vnější normály definovaný na $\partial\Omega_B$.

Dirichletova podmínka (resp. Neumannova) představuje známou teplotu (resp. hustotu tepelného toku) na hranici (povrchu tyče) oblasti Ω_B .

Příklady vedení tepla v tyči

Příklad 1: Stanovme průběh teploty v tyči o konečné délce v časovém intervalu $t \in [0, 0.3]$. Tuto tyč interpretujme jako oblast Ω_B (Obr. 1) jenž je podmnožinou

$$\Omega = (-0.2, 1.2) \times (-0.2, 0.6),$$

kde Ω je rovinná omezená souvislá oblast. Matematicky vyjádřeno: $\Omega_B \subset \Omega$ kde

$$\Omega_B = [0, 1] \times [0, 0.5],$$

hranici oblasti Ω_B tvoří

$$\partial\Omega_B = \bigcup_{i=1}^4 \Gamma_i.$$

Na obrázku (Obr. 1) tvoří části hranice Γ_1 a Γ_2 průřez tyče, který je konstantní. Není těžké nahlédnout, že tato tyč má konečnou délku.

Obr. 1: Vyšetřovaná oblast

Zadejme fyzikální veličiny charakterizující vlastnosti tyče takto: $c=1, \, \varrho(x,y)=0.5, \, k(x,y)=1, \, f(x,y,t)=10$, pak rovnici (5) lze přepsat do tvaru

$$\frac{1}{2}\frac{\partial u}{\partial t} - \operatorname{div}\operatorname{grad} u = 10.$$

Zvolme okrajové podmínky (7) a (8) takto

- Dirichletovy ... $u_0(t) = 30$ na Γ_1 a $u_l(t) = 0$ na Γ_2
- Neumannovy . . . $\frac{\partial u}{\partial n}=0$ na Γ_3 a Γ_4

a počáteční podmínku $u(x, y, 0) = \varphi(x, y) = 0$.

Dirichletovy podmínky nám říkají, že hranice Γ_1 tvoří "tepelný zdroj" a hranice Γ_2 tvoří "noru" (je to místo s nulovou či zápornou teplotou). Kdežto Neumannovy podmínky říkají, že pohyb (rychlost změny) teploty ve směru vnější normály je na hranici Γ_3 a Γ_4 nulový, tj. nedochází k přenosu tepla plášťem tyče. Počáteční rozložení teploty v Ω_B je v čase $t_0=0$ rovné nule, jak můžeme vidět na obrázku (Obr. 3).

Nyní již můžeme přistoupit k modelováni popsaného problému použitím programu Matlab. K simulaci průběhu tepelného toku využijeme nástroj na řešení PDR, tzv. PDE Toolbox.

Na námi zadanou vyšetřovanou oblast (Obr. 1) aplikujeme diskretizační síť (Obr. 2) a nastavíme okrajové a počáteční podmínky v $\mathrm{GUI^1}$ PDE Toolboxu. Poznamenejme, že geometrický tvar oblasti a diskretizační síť byly též vytvořeny v GUI PDE Toolbox. Rozložení teploty v čase $t_0=0$ vidíme na obrázku (Obr. 3). Obrázek (Obr. 4) popisuje k jaké změně došlo v časovém intervalu od 0 s do 0.3 s.

Obr. 2: Diskretizační síť

Poznámka: V animaci pr1.avi můžeme tento průběh změny teploty sledovat.

¹Graphical User Interface

Obr. 3: Rozložení teploty v čase t=0

Obr. 4: Rozložení teploty v čase t=0.3

Příklad 2: Stanovme průběh teploty v tyči v časovém intervalu $t \in [0, 1.5]$. Nechť má tato tyč konečnou délku a je geometricky interpretována, tak jak vidíme na obrázku (Obr. 5), resp. na (Obr. 6). Tyč je matematicky popsána takto:

$$\Omega_B = \Omega_1 \setminus (\Omega_2 \cup \Omega_3),$$

kde

$$\Omega_1 = [0, 1.5] \times [0, 0.5], \qquad \Omega_2 = \{x^2 + (y - 0.5)^2 \le 0.3\}, \qquad \Omega_3 = [0.6, 1] \times [0.6, 0.35]$$

s hranicí

$$\partial\Omega_B = \bigcup_{i=1}^9 \Gamma_i.$$

Opět platí $\Omega_B \subset \Omega$, kde Ω je rovinná omezená souvislá oblast:

$$\Omega = (-0.4, 2) \times (-0.5, 1).$$

Na obrázku (Obr. 5) tvoří části hranice Γ_1 a Γ_7 průřez tyče, který je konstantní.

Obr. 5: Vyšetřovaná oblast

Zvolme fyzikální veličiny charakterizující vlastnosti tyče takto: c=2, $\varrho(x,y)=x$, k(x,y)=1, f(x,y,t)=150x, pak rovnici (5) lze přepsat do tvaru

$$2x\frac{\partial u}{\partial t} - \operatorname{div}\operatorname{grad} u = 150x.$$

Zvolme okrajové podmínky (7) a (8) takto

- Dirichletovy ... $u_0(t) = 20$ na Γ_1 a $u_l(t) = -5$ na Γ_7
- Neumannovy . . . $\frac{\partial u}{\partial n}=0$ na $\Gamma_i,\,i=2,\ldots,6,8,9$

a počáteční podmínku $u(x, y, 0) = \varphi(x, y) = 0$.

Význam těchto podmínek je stejný jako u předchozího příkladu.

Stejným postupem použijeme GUI v PDE Toolboxu. Na námi zadanou vyšetřovanou oblast (Obr. 5) aplikujeme diskretizační síť (Obr. 6) a nastavíme okrajové a počáteční podmínky v GUI PDE Toolboxu. Opět geometrický tvar oblasti a diskretizační síť byly též vytvořeny v GUI PDE Toolboxu. Rozložení teploty v čase $t_0=0$ vidíme na obrázku (Obr. 7). Obrázek (Obr. 8) popisuje k jaké změně došlo v časovém intervalu od $0\ s$ do $1.5\ s$.

Obr. 6: Diskretizační síť

Poznámka: V animaci pr2.avi můžeme tento průběh změny teploty sledovat.

Obr. 7: Rozložení teploty v čase t=0

Obr. 8: Rozložení teploty v čase t=1.5

Přehled užitých symbolů a veličin

Značení	Veličina	Rozměr
\overline{t}	čas	\overline{s}
l	délka	m
u	teplota	$^{\circ}C,K$
\mathbf{w}	tepelný tok	$Jm^{-2}s^{-1}$
${f f}$	hustota rozložení teplených zdrojů	$Jm^{-3}s^{-1}$
k	koeficient tepelné vodivosti	$Wm^{-1}K^{-1}$
c	měrná tepelná kapacita	$Jkg^{-1}K^{-1}$
ϱ	plošná hustota	kgm^{-2}
Značení	Pojem	
\mathbb{R}^3	reálný prostor	
N	množina přirozených čísel	
Ω	omezená oblast v \mathbb{R}^2 (tj. otevřená souvislá podmnožina v \mathbb{R}^2)	
Ω_B	omezená podoblast oblasti Ω , tj. $\Omega_B\subset\Omega$	
$\partial\Omega_B$	hranice množiny Ω_B	
$\operatorname{div} \mathbf{w}$	divergence vektoru w	
$\operatorname{grad} u$	gradient u	
$\mathbf{n}(\mathbf{x})$	vektor vnější normály	

Literatura a jiné zdroje

- [1] MÍKA, S. Matematické modelování. Učební text ZCU. Plzeň, 2005.
- [2] Kuneš, J. Modelování tepelných procesů. SNTL, Praha, 1989.

Internet:

[3] www.mathworks.com