Predicción de Precios de Autos Usados con Regresión Lineal

Melissa Gómez Rentería

En este ejercicio, utilizaremos un dataset de precios de autos usados para entrenar un modelo de Regresión Lineal Simple. El objetivo es predecir el precio de un auto en función de una variable independiente, como el año del vehículo o el kilometraje.

Descripción del Dataset

Este dataset contiene información sobre distintos modelos de autos, sus características y su precio de venta. Se utilizará para analizar cómo ciertos factores influyen en el valor de un auto y para entrenar un modelo de regresión lineal.

Variables del Dataset

- · Brand: Marca del auto
- · Model: Modelo específico del auto
- Year: Año de fabricación del auto. Autos más recientes tienden a ser más caros.
- Engine_Size: Tamaño del motor en litros (ej. 1.6L, 2.0L). Puede influir en el precio.
- Fuel_Type: Tipo de combustible del auto (Gasolina, Diesel, Híbrido, Eléctrico).
- Transmission: Tipo de transmisión (Manual, Automática, CVT).
- Mileage: Millaje recorrido por el auto. Normalmente, más millaje reduce el precio.
- Doors: Número de puertas del auto (2, 4, 5, etc.).
- Owner_Count: Número de dueños anteriores del auto. Un auto con más dueños puede valer menos.
- Price Precio de venta del auto (variable objetivo). Se usará como la variable dependiente en la regresión.

Objetivo del Análisis

El objetivo es entrenar un modelo de Regresión Lineal Simple utilizando una de las variables independientes (como Year o Mileage) para predecir el Price. Luego, evaluaremos el modelo con métricas como MAE, RMSE y R2, y analizaremos si la regresión es adecuada.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
data=pd.read csv('car price dataset.csv')
print(f'data.shape: {data.shape}')
data.head()
```


	Brand	Model	Year	Engine_Size	Fuel_Type	Transmission	Mileage	Doors	Owner_Count	Price	
0	Kia	Rio	2020	4.2	Diesel	Manual	289944	3	5	8501	11.
1	Chevrolet	Malibu	2012	2.0	Hybrid	Automatic	5356	2	3	12092	
2	Mercedes	GLA	2020	4.2	Diesel	Automatic	231440	4	2	11171	
3	Audi	Q5	2023	2.0	Electric	Manual	160971	2	1	11780	
4	Volkswagen	Golf	2003	2.6	Hybrid	Semi-Automatic	286618	3	3	2867	

Próximos pasos: (Generar código con data Ver gráficos recomendados New interactive sheet

	Brand	Model	Year	Engine_Size	Fuel_Type	Transmission	Mileage	Doors	Owner_Count	Price
0	Kia	Rio	2020	4.2	Diesel	Manual	289944	3	5	8501
1	Chevrolet	Malibu	2012	2.0	Hybrid	Automatic	5356	2	3	12092
2	Mercedes	GLA	2020	4.2	Diesel	Automatic	231440	4	2	11171
3	Audi	Q5	2023	2.0	Electric	Manual	160971	2	1	11780
4	Volkswagen	Golf	2003	2.6	Hybrid	Semi-Automatic	286618	3	3	2867
9995	Kia	Optima	2004	3.7	Diesel	Semi-Automatic	5794	2	4	8884
9996	Chevrolet	Impala	2002	1.4	Electric	Automatic	168000	2	1	6240
9997	BMW	3 Series	2010	3.0	Petrol	Automatic	86664	5	1	9866
9998	Ford	Explorer	2002	1.4	Hybrid	Automatic	225772	4	1	4084
9999	Volkswagen	Tiguan	2001	2.1	Diesel	Manual	157882	3	3	3342

Próximos pasos: (Generar código con df)

Ver gráficos recomendados

New interactive sheet

Análisis exploratorio de datos

print(df.info())

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 10000 entries, 0 to 9999 Data columns (total 10 columns):

Data	COTUMNIS (COCA.	1 10 CO1411113).	
#	Column	Non-Null Count	Dtype
0	Brand	10000 non-null	object
1	Model	10000 non-null	object
2	Year	10000 non-null	int64
3	Engine_Size	10000 non-null	float64
4	Fuel_Type	10000 non-null	object
5	Transmission	10000 non-null	object
6	Mileage	10000 non-null	int64
7	Doors	10000 non-null	int64
8	Owner_Count	10000 non-null	int64
9	Price	10000 non-null	int64
dtype	es: float64(1)	, int64(5), obje	ct(4)
memor	ry usage: 781.4	4+ KB	
None			

df.isnull().sum().to_frame('NaN Value').T

__ Model Year Engine_Size Fuel_Type Transmission Mileage Doors Owner_Count Price Brand_Audi Brand_BMW Brand_Chevrolet Bran NaN

df.describe(include=[np.number]).T

→		count	mean	std	min	25%	50%	75%	max	
	Year	10000.0	2011.54370	6.897699	2000.0	2006.00	2012.0	2017.0	2023.0	ıl.
	Engine_Size	10000.0	3.00056	1.149324	1.0	2.00	3.0	4.0	5.0	
	Mileage	10000.0	149239.11180	86322.348957	25.0	74649.25	149587.0	223577.5	299947.0	
	Doors	10000.0	3.49710	1.110097	2.0	3.00	3.0	4.0	5.0	
	Owner_Count	10000.0	2.99110	1.422682	1.0	2.00	3.0	4.0	5.0	
	Price	10000.0	8852.96440	3112.596810	2000.0	6646.00	8858.5	11086.5	18301.0	

Las columnas tengan datos de un tipo que no sea numérico, se cambiarán.

- El modelo no es algo que afecte en gran cantidad, por lo que se eliminará.
- El tipo de combustible y de transmisón puede cambiarse a forma numérica, para que con ello, sea mas sencilla su implementación

df.drop('Model', axis=1, inplace=True)

→	Year	Engine Size	Fuel Tyne	Transmission	Mileage	Doors	Owner Count	Price	Brand Audi	Brand BMW	Brand Chevrolet	Brand Ford
							-			-		
0	2020	4.2	Diesel	0	289944	3	5	8501	False	False	False	False
1	2012	2.0	Hybrid	1	5356	2	3	12092	False	False	True	False
2	2020	4.2	Diesel	1	231440	4	2	11171	False	False	False	False
3	2023	2.0	Electric	0	160971	2	1	11780	True	False	False	False
4	2003	2.6	Hybrid	2	286618	3	3	2867	False	False	False	False
9995	2004	3.7	Diesel	2	5794	2	4	8884	False	False	False	False
9996	2002	1.4	Electric	1	168000	2	1	6240	False	False	True	False
9997	2010	3.0	Petrol	1	86664	5	1	9866	False	True	False	False
9998	2002	1.4	Hybrid	1	225772	4	1	4084	False	False	False	True
9999	2001	2.1	Diesel	0	157882	3	3	3342	False	False	False	False
10000	rows × 1	18 columns										

Próximos pasos: (Generar código con df

Ver gráficos recomendados

New interactive sheet

df['Transmission']=df['Transmission'].replace(['Manual', 'Automatic', 'Semi-Automatic'], [0,1,2]) df['Fuel_Type']=df['Fuel_Type'].replace(['Diesel', 'Petrol', 'Electric', 'Hybrid'], [1,2,3,4])

<ipython-input-14-7ac10214bb42>:2: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future versic df['Fuel_Type']=df['Fuel_Type'].replace(['Diesel', 'Petrol', 'Electric', 'Hybrid'], [1,2,3,4])

_												
	Year	Engine_Size	Fuel_Type	Transmission	Mileage	Doors	Owner_Count	Price	Brand_Audi	Brand_BMW	Brand_Chevrolet	Brand_Ford
0	2020	4.2	1	0	289944	3	5	8501	False	False	False	False
1	2012	2.0	4	1	5356	2	3	12092	False	False	True	False
2	2020	4.2	1	1	231440	4	2	11171	False	False	False	False
3	2023	2.0	3	0	160971	2	1	11780	True	False	False	False
4	2003	2.6	4	2	286618	3	3	2867	False	False	False	False
9995	2004	3.7	1	2	5794	2	4	8884	False	False	False	False
9996	2002	1.4	3	1	168000	2	1	6240	False	False	True	False
9997	2010	3.0	2	1	86664	5	1	9866	False	True	False	False
9998	2002	1.4	4	1	225772	4	1	4084	False	False	False	True
9999	2001	2.1	1	0	157882	3	3	3342	False	False	False	False

10000 rows × 18 columns

Estadísticas descriptivas

print(df.describe())

		Year	<pre>Engine_Size</pre>	Fuel_Type	Transmission	Mileage	\
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	
	mean	2011.543700	3.000560	2.501900	0.993900	149239.111800	
	std	6.897699	1.149324	1.114953	0.817514	86322.348957	
	min	2000.000000	1.000000	1.000000	0.000000	25.000000	
	25%	2006.000000	2.000000	1.000000	0.000000	74649.250000	
	50%	2012.000000	3.000000	3.000000	1.000000	149587.000000	
	75%	2017.000000	4.000000	3.000000	2.000000	223577.500000	
	max	2023.000000	5.000000	4.000000	2.000000	299947.000000	
		Doors	Owner_Count	Price			
	count	10000.000000	10000.000000	10000.00000			
	mean	3.497100	2.991100	8852.96440			
	std	1.110097	1.422682	3112.59681			
	min	2.000000	1.000000	2000.00000			
	25%	3.000000	2.000000	6646.00000			
	50%	3.000000	3.000000	8858.50000			
	75%	4.000000	4.000000	11086.50000			
	max	5.000000	5.000000	18301.00000			

Visualización de la distribución del precio de los autos

```
plt.figure(figsize=(8, 5))
sns.histplot(df["Price"], bins=30, kde=True, color="blue")
plt.xlabel("Precio del auto (en miles de dólares)")
plt.ylabel("Frecuencia")
plt.title("Distribución de los precios de los autos")
plt.show()
```


Distribución de los precios de los autos


```
# Calcular la matriz de correlación
correlation_matrix = df.corr()

# Visualizar la matriz de correlación con un heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Matriz de Correlación del Dataset De Autos")
plt.show()
```


- Year: El año del auto tiene una alta correlación POSITIVA con Price (0.66).
- Millage: El millaje tiene una alta correlación NEGATIVA con el Price (-0.55), lo que indica que entre mayor sea el millaje en los autos, menor será el precio.
- Se observa que Millage tiene una fuerte correlación negativa con Price, mientras que Year muestra una fuerte correlación positiva.

```
import numpy as np
import matplotlib.pyplot as plt
# Seleccionar las características y la variable objetivo
features = ['Mileage', 'Year']
target = df['Price']
# Crear la figura con dos subgráficos
plt.figure(figsize=(20, 5))
for i, col in enumerate(features):
   plt.subplot(1, len(features), i + 1)
   x = df[col]
   y = target
   # Dibujar los puntos de dispersión
   plt.scatter(x, y, marker='o', alpha=0.5, label="Datos")
   # Ajustar y dibujar la línea de tendencia (regresión lineal)
   coef = np.polyfit(x, y, 1) # Ajuste de una recta (grado 1)
   poly1d_fn = np.poly1d(coef) # Función de la recta obtenida
   plt.plot(x, poly1d\_fn(x), color="red", label="Linea de tendencia")\\
   plt.title(f'Relación entre {col} y Price')
   plt.xlabel(col)
   plt.ylabel('Price')
```

```
plt.legend()
```

plt.show()

• En las gráficas anteriores se observa que se tienen lineas de tendencia negativa y positivas para los datos Millage y Year

```
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
# Definir variables predictoras y objetivo
X = df.drop(columns=["Price"]) # Todas las columnas excepto MEDV
y = df["Price"] # Variable objetivo
# Dividir los datos en conjunto de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Crear y entrenar el modelo de regresión lineal
model = LinearRegression()
model.fit(X_train, y_train)
# Realizar predicciones
y_pred = model.predict(X_test)
# Evaluar el modelo
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
# Mostrar métricas de evaluación
metrics = pd.DataFrame({
    "Métrica": ["Error Absoluto Medio (MAE)", "Error Cuadrático Medio (MSE)",
                "Raíz del Error Cuadrático Medio (RMSE)", "Coeficiente de Determinación (R²)"],
    "Valor": [mae, mse, rmse, r2]
})
print("Métricas de Evaluación del Modelo")
print(metrics)

→ Métricas de Evaluación del Modelo
                                       Métrica
                                                        Valor
                    Error Absoluto Medio (MAE)
                                                   824.478745
                  Error Cuadrático Medio (MSE)
                                                866700.544077
        Raíz del Error Cuadrático Medio (RMSE)
                                                   930.967531
             Coeficiente de Determinación (R²)
                                                     0.905668
```

• Error Absoluto Medio (MAE) = 824.48 Representa aproximadamente el 9.3% del precio promedio (824.48 / 8,853). No es un error muy alto en comparación con los valores del dataset.

- Raíz del Error Cuadrático Medio (RMSE) = 930.97 También está cerca del 10% del precio promedio. Esto significa que, en la mayoría de los casos, el modelo se equivoca por menos de 1,000 unidades.
- Coeficiente de Determinación (R2) = 0.9057 Un valor excelente, indicando que el modelo explica el 90.57% de la variabilidad en los

```
# Crear la figura
plt.figure(figsize=(8, 6))
# Graficar los valores reales vs. predichos
plt.scatter(y_test, y_pred, alpha=0.5, color="blue", label="Predicciones")
# Graficar la línea ideal (y = x)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], '--', color='red', label="Ideal")
# Etiquetas y título
plt.xlabel("Valor Real (Price)")
plt.ylabel("Valor Predicho (Price)")
plt.title("Comparación de Valores Reales vs. Predichos")
plt.legend()
# Mostrar la gráfica
plt.show()
```

_

Comparación de Valores Reales vs. Predichos

- · Los valores predichos siguen la misma dirección que la línea roja (valores reales), significa que el modelo captura bien la tendencia.
- Es una buena señal que los puntos están cerca de la línea roja, aunque no caigan exactamente sobre ella.
- · La distribución equilibrada de puntos arriba y abajo de la línea indica que el modelo no tiene un sesgo claro.

Comienza a programar o generar con IA.