Convolution in Neural Networks

Jonathon Hare

Vision, Learning and Control University of Southampton

Many pictures used here are from https://github.com/vdumoulin/conv_arithmetic

Receptive Fields

- We saw from the lecture on neuroanatomy that parts of the visual system consist spatially local connections being fed into the neurons
 - In such a scenario, we can think about the Receptive Field (RF) of a neuron

Equivariance

- A function f(x) is **equivariant** to a function g if f(g(x)) = g(f(x))
 - If the input changes, the output changes the same way

Translation Equivariance

- Consider what would happen if you had grids of neurons with their own receptive fields, but with shared weights.
 - Each neuron would respond in the same way to a given stimulus within its RF
 - If an input stimulus were moved over the grid, then the outputs of the neurons would move in the same way
 - This is **translational equivariance** and this is the key property of a 'Convolutional Layer' in a network

Signal Processing: Convolution and Cross-Correlation

- Convolution is an element-wise multiplication in the Fourier domain (c.f. Convolution Theorem)
 - $f * g = ifft(fft(f) \cdot fft(g))$
 - Whilst S and F might only contain real numbers, the FFTs are complex (real + imagi)
 - Need to do complex multiplication!

$$(x+yi)(u+vi) = (xu-yv) + (xv+yu)i$$

Template Convolution

• In the time domain, convolution is:

$$\begin{split} (f*g)(t) &\stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) \, g(t-\tau) \, d\tau \\ &= \int_{-\infty}^{\infty} f(t-\tau) \, g(\tau) \, d\tau. \end{split}$$

- · Notice that the image or kernel is "flipped" in time
 - Also notice that the is no normalisation or similar

Template Convolution

What if you don't flip the kernel?

- Obviously if the kernel is symmetric there is no difference
- However, you're actually not computing convolution, but another operation called cross-correlation

$$(f \star g)(\tau) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f^*(t) \ g(t+\tau) \ dt,$$

- * represents the complex conjugate
- (you can compute this with the multiplication of the FFTs just like convolution: iFFT(FFT(f)* . FFT(g))

"Convolution" in Neural Networks

- "Convolution" in the neural network literature almost always refers to an operation akin cross-correlation
 - An element-wise multiplication of learned weights across a receptive field, which is repeated at various positions across the input.
 - Normally, we also add an additional bias term
 - Most often a single one (for each *kernel*), but could be one for each spatial position.
 - There are also other parameters of these "convolutions"...

Convolutional Layers

- In a convolutional layer, we have multiple kernels or filters which are learnt (plus the biases)
 - Each filter produces a single "Response Map" or "Feature Map" which are stacked together as "channels" of the resultant output tensor

Efficient Computation of Convolutions

- Classical theory would suggest that the most efficient way to compute convolution (or cross-correlation) is via the Fourier transform if the kernels are larger
 - Or via direct spatial-domain implementation for small kernels
- In neural networks we need to be able to compute many convolutions on a single input as quickly as possible
 - We have specialised multi-core hardware to help though...

Convolution as a Matrix Multiplication

 The convolution operation can be expressed as a matrix multiplication if either the kernel or the signal is manipulated into a form known as a Toeplitz matrix:

$$y = h * x = \begin{bmatrix} h_1 & 0 & \dots & 0 & 0 \\ h_2 & h_1 & \dots & \vdots & \vdots \\ h_3 & h_2 & \dots & 0 & 0 \\ \vdots & h_3 & \dots & h_1 & 0 \\ h_{m-1} & \vdots & \dots & h_2 & h_1 \\ h_m & h_{m-1} & \vdots & \vdots & h_2 \\ 0 & h_m & \dots & h_{m-2} & \vdots \\ 0 & 0 & \dots & h_{m-1} & h_{m-2} \\ \vdots & \vdots & \vdots & h_m & h_{m-1} \\ 0 & 0 & 0 & \dots & h_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

 For 2D convolution one would use a "doubly block circulate matrix"

GEMM

- Efficient numeric computing tools have a long heritage
 - BLAS is a standard interface for high performance computing
 - The GEneral Matrix Multiply (GEMM) defined in the interface for matrix-matrix multiplications
 - Matrix-Matrix multiplication has many ways in which it can be optimised, including with multiple cores (like on a GPU!)

N-d Tensor Convolution

- In neural networks we want to expand our use of convolutions to work with tensors of any number of dimensions
 - If the input is say N x P x Q, where N is the "channels" dimension and P & Q are the spatial dimensions, we would define a convolutional kernel of size N x K x L

N-d Tensor Convolution

- We also don't typically want a single kernel, but rather many
 - Each one acting as a feature detector producing "feature maps"
 - We can just add another dimension to the kernel tensor to incorporate convolution with all kernels in one operation:

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m-1,k+n-1} K_{i,l,m,n}$$

Data Types

 Convolutions are applied to many dimensionalities and types of data - for example:

	Single Channel	Multichannel	
1-D	Audio	Multiple sensor data over time	
2-D	Audio data preprocessed into a spectrogram; greyscale images	Colour image data (e.g. RGB)	
3-D	Volumetric data, e.g. CT scans	Colour video data	

Convolutional Layer Parameters

- The core parameters of a convolution are:
 - The dimensionality (is it 1-D, 2-D, 3-D in the spatial sense?)
 - The spatial extent of the kernel(s)
 - The number of kernels (or output channels)

2d convolutions, kernel size=(1,1)

- 1x1 convolutions are a common place operation, but might seem non-sensical at first
 - They do not capture any local spatial information
 - They are used to change the number of feature maps without affecting the spatial resolution

Padding

- What happens to a convolution at the edges of its spatial extent?
 - In signal processing, using the Fourier transform the "image" wraps around, so the output is the same size as the input
 - In spatial convolution if we do nothing, the output will be smaller...
 - So, we often use zero-padding to retain the size

Striding

 Convolution is expensive... could we make it cheaper by skipping over positions?

Stride=(2,2)

Fractional Striding/Transpose Convolution

- What if we consider fractional strides between 0 and 1?
 - Intuitively, if bigger strides subsample, then fractional strides should upsample
 - This is equivalent to "expanding" the input by padding and performing convolution
 - And potentially also striding by adding zeros around all the values

No padding

Arbitrary padding

Transpose convolution, stride=2

No padding

Padding

- You'll often find fractionally strides convolutions described as "transposed convolutions"
 - That's because they can be implemented by transposing the kernel's Toeplitz matrix before the multiply
- Some literature also refers to this as "deconvolution"
 - Please don't do that!!
- Also note that this might not be the best way of upsampling (see https://distill.pub/2016/deconv-checkerboard/)

Pooling

- Striding is a popular way to reduce spatial dimensionality in modern networks
 - before striding was devised, pooling, was the defacto way of reducing dimensionality

Max Pooling, 2x2, stride=2

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	7	112	37
112	100	25	12			

Max Pooling Gradients

- The gradient of the max pooling operation is 1 everywhere a max value was selected, and zero elsewhere
 - This means that implementations not only need to record the max values in the forward-pass, but also keep track of the positions of those maximums for the backward pass

Average Pooling

Local Versus Global Pooling

- The pooling operations on the previous slides are local
 - They result in a feature map reducing in spatial size
- Global pooling reduces a feature map to a scalar
 - So a tensor of many feature maps would be reduced to a single feature vector
 - Often used near the end of networks to flatten feature maps into feature vectors that can be fed into an MLP

Dilated Convolutions

- Sometimes we want to have larger receptive fields in our networks
 - We can increase the kernel size to achieve this, but this introduces more weights
 - We can downsample/pool the input, but this decreases spatial resolution
 - Or we could 'pad' the kernel with zeros throughout to increase the effective size without increasing the number of parameters

