Distributed Machine Learning

Peacock

Yi Wang

Goal

- Scalability
 - engineering
 - mathematical

Gibbs Sampling

Random initialization

words

Bill	Gates							
Bill	Gates	Microsoft						
		Microsoft	Windows					
				Steve	Jobs			
				Steve	Jobs	Apple		
						Apple	iPhone	
						Apple		iPad

text

Gibbs Sampling

- Update iteratively
 - the color of a word tend to be similar to other words in the same document.
 - the color of a word tend to be similar to its major color in the whole corpus.

Gibbs Sampling

After convergence

words

Bill	Gates							
Bill	Gates	Microsoft						
		Microsoft	Windows					
				Steve	Jobs			
				Steve	Jobs	Apple		
						Apple	iPhone	
						Apple		iPad

text

Sufficient Statistics

Random initialization

Bill	Gates							
Bill	Gates	Microsoft						
		Microsoft	Windows					
				Steve	Jobs			
				Steve	Jobs	Apple		
						Apple	iPhone	
						Apple		iPad

- 1	1
- 1	2
- 1	ı
I	I
- 1	2
I	I
- 1	1

Sufficient Statistics

After convergence

Bill	Gates							
Bill	Gates	Microsoft						
		Microsoft	Windows					
				Steve	Jobs			
				Steve	Jobs	Apple		
						Apple	iPhone	
						Apple		iPad

2
3
2
2

2	2	2	I					
				2	2	3	I	1

Many Documents

Distribute by documents, duplicate model

Bill	Gates								2	
Bill	Gates	Microsoft							3	
		Microsoft	Windows						2	
				Steve	Jobs					2
				Steve	Jobs	Apple				3
						Apple	iPhone			2
						Apple		iPad		2

Many Documents

- Distribute by documents, duplicate model
 - n computers, each handle some documents and related statistics.
 - the model is duplicated on each computer.
 - computers sync up changes they made to local models.

Many Documents

- Sync-up local models
 - Synchronous can be done with MapReduce.
 - http://www.datalab.uci.edu/papers/ distributed_topic_modeling.pdf
 - http://link.springer.com/chapter/
 10.1007/978-3-642-02158-9_26
 - Asynchronous sync-up needs self-made frameworks.
 - http://papers.nips.cc/paper/3524-asynchronousdistributed-learning-of-topic-models

Many Tokens

Distribute by tokens.

Bill	Gates									2	
Bill	Gates	Microsoft								3	
		Microsoft	Windows							2	
				Steve	Jobs						2
				Steve	Jobs	Apple					3
						Apple	iPhone				2
						Apple		iPad			2
									ı		
2	2	2	I								
				2	2	3	L	1			
					11				-		

Many Tokens

- Distribute by tokens, duplicate topic distributions.
 - n computers, each handle some tokens, and maintains part of the model.
 - the topic distributions is duplicated on each computer.
 - computers sync up changes they made to topic distributions.

Many Documents and Tokens

Distribute by documents and tokens.

Many Documents and Tokens

- Distribute by documents and by tokens
 - n loaders, each handle some documents and related statistics.
 - another n samplers, each has a partition of the model.
 - An iteration has n steps.
 - In each step, a loader works with a sampler on a block.
 - no model or distribution sync-up required.

Scalable and Recoverable

Processes

- A master process, which controls all groups.
- m groups, each contains
 - a coordinator process,
 - n loaders, and
 - n samplers
- A group of n aggregators.

Master

- Ask Kubernetes to start m coordinators,
 - Maintain an active queue of M segments,
 - assign each coordinator a segment, and move assigned segments to pending queue.
- Waiting for coordinators' calls
 - If a coordinator finishes a segment, move it to done.
- watch these coordinators
 - if anyone died, restart it, assign pending segments.

Coordinator

- Ask Kubernetes to start n loaders and n samplers.
- Report to master and accept a segment (task):
 - for step i = 0 ... n-I
 - loader x works with sampler (x+i)%n on updating block located at x, (x+i)%4n.
 - each sampler report model updates to corresponding aggregator.
- If restarted, restart samplers and loaders, and samplers load model from aggregators.

Conclusion

Done:

- Modeling: asymmetric Dirichlet prior mimics Dirichlet process with huge K.
- Engineering: asymmetric Dirichlet prior simplifies communication and sync-up so enables our architecture to learn huge K.
- Automatically estimate K.

Todo:

Extend Peacock to learn a deep hierarchical model.