Simulation of a Pitot Tube

Submission for the Community Christmas Competition III

Mario Cesar Ito
Laboratory of Thermodynamics and Heat Transfer
College of Engineering Bauru - FE
São Paulo State University, Brazil

Agenda

- Introduction
- Objective
- Geometry
- Mesh
- Physics
- Results

Introduction

- The pitot tube is device that measures the flow velocity
- The velocity is derived by taking two pressures measurements. One in the front of the tube wich is the stagnation pressure, and another measurement that is taking by the side of the tube that is the static pressure
- Then this two pressures can be used in Bernulli's Equation to solve for velocity of the flow:

$$U = \sqrt{\frac{2(p_t - p_s)}{\rho}}$$

• Where U is the flow velocity, p_t is the total pressure, p_s is the static pressure and ρ the density of the fluid

https://en.wikipedia.org/wiki/Pitot_tube

Objectives

This Community Christmas Competition III aims:

- Simulate the flow around a Pitot Tube using OpenFOAM
- Verify the free stream velocity by the measured pressures in the Pitot Tube
- Use the following flow stream velocities:

U_{∞} [m/s]				
240				
100				
67				
1				
0,1				

https://en.wikipedia.org/wiki/Pitot_tube

Geometry

• The pitot's geometry was created using a CAD software. And the pitot has the following dimensions:

Geometry

Geometry

• Before the mesh generation, the STL file of the pitot tube was treated in Blender where the static and total measuring surfaces were created.

Mesh

The mesh was generated with the snappyHexMesh utility in OpenFOAM

3D Mesh 2840284 cells

Mesh

• The boundaries of the domain

3D Mesh 2840284 cells

Physics

The physics considered in these simulations were:

- Steady-State
- Incompressible (Air : $\nu = 1, 5 \times 10^{-5} m^2/s$)
- Turbulent (k-Omega SST)
- 3D flow

outlet

Leading to : simpleFoam (solver)

Fixed pressure

top/bottom
left/right

symmetry

inlet
Fixed velocity

- Inner/ Outer Walls: k and Omega wall functions
- Static / Total Measures : velocity = (0 0 0); Zero gradiente for pressure

U[m/s] Magnitude

Velocity Magnitude Countour

Kinematic Pressure Countour

 U_{∞} = 240 m/s

 Convergence/ Monitoring of pressure results in staticMeasure and totalMeasure boundaries

Case	U _∞ [m/s]	$P_{totalMeasure}/\rho [m^2/s^2]$	$P_{\text{staticMeasure}}/\rho \text{ [m}^2/\text{s}^2]$	Calculated U _∞ [m/s]	Rel. Error [%]
1	240	28818	134,2237	239,5152	0,202
2	100	5009,385	72,7171	99,36466	0,635
3	67	2249,822	44,63195	66,41069	0,880
4	1	0,5071537	0,002347069	1,004795	0,480
5	0,1	0,00600133	0,00001429373	0,109426	9,43

