

Датчик уровня топлива LLS 30160

Инструкция по монтажу

ИМ LLS 30160

Номер редакции 5

OOO «Омникомм Технологии» Россия, 101000 г. Москва, ул. Бутырский вал, д. 68/70 Тел.: 8-800-100-2442, 8-495-989-6220

E-mail: info@omnicomm.ru

www.omnicomm.ru, www.fuelmetrix.ru

СОДЕРЖАНИЕ

1	ОБЩИЕ СВЕДЕНИЯ	5
2	МЕРЫ БЕЗОПАСНОСТИ	5
3	ПОДГОТОВКА К МОНТАЖУ	6
3.1	Проверка комплектности изделия	6
3.2	Выбор места установки изделия	6
3.3	Подготовка топливного бака к установке изделия	8
3.4	Обрезка изделия под конкретный топливный бак	10
3.5	Настройка изделия с помощью программы Omnicomm Configurator	11
3.5.	1 Установка настроек подключения к изделию	12
3.5.	2 Установка верхнего и нижнего пределов измерения уровня	12
3.5.	3 Обновление встроенного программного обеспечения	15
4	МАТНОМЕН И ЖАТНОМЕН И Ж	17
5	НАЛАДКА И СТЫКОВКА	19
5.1	Наладка изделий подключаемых по интерфейсу RS-485	19
5.2	Требования к прокладке соединительных кабелей	19
5.3	Подключение к внешнему устройству	19
5.4	Установка предохранителя	19
6	ТАРИРОВКА ТОПЛИВНОГО БАКА	20
6.1	Тарировка топливного бака при установке одного изделия	20
6.2	Тарировка топливного бака при установке двух изделий	22
6.2.	1 Тарировка топливного бака правильной геометрической формы	22
7	СДАЧА СМОНТИРОВАННОГО И СОСТЫКОВАННОГО ИЗДЕЛИЯ	25
7.1	Пломбирование	25
7.1.	1 Установка защитной пломбы на изделие	25
7.1.	2 Установка защитных пломб на разъем	25
7.2	Перечень приемо-сдаточной документации и порядок ее оформления	26
ПРИЛ	IОЖЕНИЕ А Перечень необходимого оборудования	27
ПРИЛ	ЮЖЕНИЕ Б Инструкция по установке заклепок гаечного типа	28
	ЮЖЕНИЕ В Схема подключения изделия к ПК и назначение выводов разъ пия	
ПРИЛОЖЕНИЕ Г Порядок подготовки бака круглой формы к монтажу изделия и его монтаж31		
ПРИЛОЖЕНИЕ Д Схемы подключения изделия/изделий к внешнему устройству32		
ПРИЛ	ОЖЕНИЕ Е Схемы подключения, с установленными согласующими резистора	ами

ПРИЛОЖЕНИЕ 3 Герметики (формирователи прокладок) рекомендованные для использования при монтаже датчиков уровня топлива LLS.......36

1 ОБЩИЕ СВЕДЕНИЯ

Настоящая инструкция устанавливает правила и порядок проведения работ по монтажу, пуску, наладке и стыковке датчика уровня топлива LLS 30160 (далее по тексту изделие), а также определяет порядок действий при тарировке топливного бака с установленным датчиком.

Датчик уровня топлива LLS 30160 устанавливается на транспортных средствах, для которых не предъявляются требования к взрывозащите оборудования.

Перечень всех необходимых работ по монтажу изделия

- 1. Проверка комплектности изделия (п.3.1)
- 2. Выбор места установки изделия (п.3.2)
- 3. Подготовка топливного бака к установке (п.3.3)
- 4. Обрезка изделия под конкретный топливный бак (п.3.4)
- 5. Настройка изделия с помощью программы Omnicomm Configurator (п.3.5)
- 6. Монтаж изделия (п.4)
- 7. Подготовка и прокладка кабеля для подключения изделия к внешнему устройству (п.5.2)
- 8. Установка предохранителей (п.5.3)
- 9. Тарирование топливного бака (п.6)
- 10. Пломбирование (п7.1)

Перечень необходимого оборудования и инструмента приведен в Приложении А (Таблица 2).

Список сокращений:

- ОС операционная система;
- **ПК** персональный компьютер;
- ПО программное обеспечение;
- **ТС** транспортное средство;
- L рабочая длина датчика уровня топлива LLS (мм);
- **L1** рабочая длина датчика, после обрезки под конкретный топливный бак (мм);

2 МЕРЫ БЕЗОПАСНОСТИ

К проведению монтажных пусковых работ допускается только персонал, имеющий сертификат, с актуальным сроком действия и свидетельствующий о прохождении обучения в компании Omnicomm.

При проведении монтажных пусковых работ соблюдать требования техники безопасности, предусмотренные в эксплуатационной документации производителя транспортного средства, на котором будут производиться работы по установке изделия, а также требования нормативной документации для данного вида техники.

3 ПОДГОТОВКА К МОНТАЖУ

3.1 ПРОВЕРКА КОМПЛЕКТНОСТИ ИЗДЕЛИЯ

- 1) Вскрыть упаковочную тару. Проверить комплектность изделия согласно паспорту.
 - В случае если изделие не соответствует комплектности, указанной в паспорте, производится устранение несоответствия на предприятии поставщике изделия.
- 2) Произвести внешний осмотр изделия. Изделие не должно иметь видимых повреждений.

В случае обнаружения повреждений изделие подлежит замене на предприятии-поставщике.

3.2 ВЫБОР МЕСТА УСТАНОВКИ ИЗДЕЛИЯ

1) Установку изделия производить в зависимости от геометрической формы бака в места, указанные на рисунках (Рисунок 1, Рисунок 2, Рисунок 3). Установка изделия в этих местах обеспечивает независимость уровня топлива от наклона TC.

Рисунок 3

- 2) В случаях, когда невозможно обеспечить установку изделия в места, указанные на рисунках (Рисунок 1, Рисунок 2, Рисунок 3), место установки необходимо максимально приблизить к указанным.
- 3) Установка изделия вне мест, указанных на рисунках (Рисунок 1, Рисунок 2, Рисунок 3), может привести к зависимости уровня топлива от угла наклона ТС. Например, для техники, работающей на рельефной местности, к завышенным или заниженным показаниям уровня топлива.

Установка двух изделий в один топливный бак позволяет значительно уменьшить зависимость уровня топлива от угла наклона ТС. Установку двух изделий производить в места, указанные на рисунках (Рисунок 4, Рисунок 5)

Buð cbepxy

Рисунок 4

Вид сверху

Рисунок 5

3.3 ПОДГОТОВКА ТОПЛИВНОГО БАКА К УСТАНОВКЕ ИЗДЕЛИЯ

- 1) При подготовке отверстий для установки датчиков уровня топлива LLS:
 - В случае если бак использовался под дизельное топливо, рекомендуется перед сверлением отверстий заполнить бак дизельным топливом до максимального уровня, что позволит минимизировать наличие паров в баке.
 - В случае если бак использовался под бензин любых марок, бак необходимо пропарить.
 - При сверлении отверстий без предварительного пропаривания бака (только при использовании бака под дизельное топливо без агрессивных примесей) рекомендуется обильно обмазать биметаллические коронки и сверла солидолом или литолом, что позволит избежать образования искр в процессе сверления.
- 2) Подготовить бак к проведению слесарно-сварочных работ в соответствии с требованиями предприятия изготовителя и другой нормативной документации по технике безопасности, связанной с проведением данного вида работ.
- 3) Определить к какому типу относится топливный бак, на который будет производиться установка изделия, и произвести подготовку бака в зависимости от его типа. Типы топливных баков:
 - а. Пластиковый бак или металлический бак с толщиной стенок до 3 мм

Подготовку баков, форма которых соответствует рисунку (Рисунок 2) проводить согласно Приложению Г.

Подготовить бак для крепления изделия заклепками.

Просверлить отверстия в баке: центральное отверстие коронкой биметаллической ø35мм., а крепежные отверстия сверлом ø7мм. в соответствии с рисунком (Рисунок 6).

Установить заклепки с помощью клепальщика в подготовленные отверстия ø7мм. Подробное описание установки заклепок приведено в Приложении Б.

Рисунок 6

Использование саморезов для крепления изделия к металлическому или пластиковому баку с толщиной стенок менее 3 мм не рекомендуется. Данный вид крепления не может обеспечить надежность крепления изделия к баку.

b. Металлический бак с толщиной стенок более 3 мм

Подготовить бак под установку изделия на резьбовое соединение.

Подготовку баков, форма которых соответствует рисунку (Рисунок 2) проводить согласно Приложению Г.

Просверлить отверстия баке: центральное коронкой отверстие биметаллической ø35мм., а крепежные отверстия сверлом ø4мм., в соответствии с рисунком (Рисунок 7).

В крепежных отверстиях нарезать резьбу М5 с помощью метчика М5.

Рисунок 7

с. Пластиковый бак с толщиной стенок более 3 мм.

Просверлить отверстия в баке: центральное отверстие коронкой биметаллической ø35мм., а крепежные отверстия сверлом ø4мм., в соответствии с рисунком (Рисунок 8).

3.4 ОБРЕЗКА ИЗДЕЛИЯ ПОД КОНКРЕТНЫЙ ТОПЛИВНЫЙ БАК

- 1) Измерить измерительной линейкой глубину бака, опустив ее в центральное отверстие для датчика.
- 2) На рабочей длине изделия L отмерить измерительной линейкой длину L1 равную глубине бака минус 20 мм.

Минимальная длина обрезки измерительной части 150 мм.

- 4) Отрезать ножовкой длину L1 изделия таким образом, чтобы линия среза была строго перпендикулярна продольной оси изделия (Рисунок 9).
- 5) Заполнить герметиком изолирующий колпачок, входящий в комплект поставки изделия, на 1/4 1/5 от объема внутренней полости изолирующего колпачка. Список рекомендуемых герметиков приведен в Приложении 3.
- 6) Надеть на центральный стержень изделия пластиковый изолирующий колпачок.

Примечание: При использовании датчика без обрезки необходимо снять резиновый транспортный колпачок, и надеть пластиковый изолирующий.

3.5 НАСТРОЙКА ИЗДЕЛИЯ С ПОМОЩЬЮ ПРОГРАММЫ OMNICOMM CONFIGURATOR

- 1) Подключить изделие к ПК согласно схеме подключения (Приложение Д), используя Устройство настройки УНУ, производства компании Omnicomm.
- 2) Запустить программу Omnicomm Configurator. Откроется главное окно программы (Рисунок 10), в котором отображены текущие настройки подключенного изделия.

Рисунок 10

Примечание: Подробное описание работы с программой Omnicomm Configurator приведено в документе «Руководство пользователя. Программа Omnicomm Configurator»

3) В случае если в главном окне программы отобразиться сообщение «Оборудование не подключено» необходимо изменить настройки подключения к изделию (п.3.5.1).

3.5.1 Установка настроек подключения к изделию

1) В главном меню выбрать закладку «Сервис»/ «Настройки»/ «Настройки подключения» и в открывшемся окне (Рисунок 12) выбрать СОМ-порт, к который был создан при подключении Устройства настройки УНУ (Рисунок 11).

Рисунок 11

2) Установить скорость обмена данными. Также имеется возможность выбрать язык интерфейса программы. Нажать кнопку «Сохранить».

В изделии, по умолчанию, установлено значение скорости обмена – 19200 бит./сек.

Рисунок 12

3) Если все параметры указаны верно, в главном окне программы отобразятся текущие настройки изделия и в нижней части окна появится надпись: «Подключено» (Рисунок 10).

3.5.2 УСТАНОВКА ВЕРХНЕГО И НИЖНЕГО ПРЕДЕЛОВ ИЗМЕРЕНИЯ УРОВНЯ

В окне «Настройки» откройте вкладку «Пустой-полный» (Рисунок 13).

Рисунок 13

В случае если настройка датчика уровня топлива LLS производится впервые в разделе «Мониторинг» отобразится надпись «Не настроено». Если настройка датчика уровня топлива LLS производилась ранее отобразиться надпись «Настроено».

Настройку производите в том топливе, в котором данный датчик уровня топлива LLS будет работать.

Опустите датчик уровня топлива LLS в мерную емкость.

Залейте в мерную ёмкость топливо таким образом, чтобы датчик уровня топлива LLS было погружено на всю длину L1. Выждать не менее 1 минуты до появления надписи «Уровень стабилизирован».

В окне программы (Рисунок 13) нажмите кнопку «Полный». Напротив параметра «Максимальное показание» отобразится надпись «Установлено» (Рисунок 14).

Рисунок 14

Выньте датчик уровня топлива LLS из емкости и дайте топливу стечь в течение 1 минуты.

В окне программы (Рисунок 14) нажмите кнопку «Пустой». Напротив параметра «Минимальное показание» отобразится надпись «Установлено» (Рисунок 15).

Рисунок 15

Нажмите кнопку «Сохранить».

В окне программы **Настройки**/ **Пустой-полный** в разделе «**Мониторинг**» отобразиться надпись «**Настроено**».

Если в процессе настройки были допущены ошибки, появится одно из диалоговых окон (Рисунок 16, Рисунок 17, Рисунок 18), в котором нажмите кнопку «ОК» (Рисунок 16) или «Нет» (Рисунок 17, Рисунок 18) и повторите установку верхнего и нижнего уровней измерения.

Рисунок 16

Рисунок 17

Рисунок 18

3.5.3 ОБНОВЛЕНИЕ ВСТРОЕННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Примечание: Обновление встроенного программного обеспечения может потребоваться при обнаружении сбоев в работе изделия или при желании улучшить его технические или функциональные характеристики.

- 1) Проверить наличие новой версии встроенного программного обеспечения на сайте производителя www.omnicomm.ru или обратиться в отдел технического обслуживания «Omnicomm» support@omnicomm.ru. В случае, если существует более новая версия программного обеспечения, чем установленная, его возможно обновить.
- 2) Сохранить на ПК новую версию встроенного программного обеспечения.

Обновление встроенного программного обеспечения осуществляется только на скорости 19200 бит./сек.

3) Нажать кнопку «Сменить прошивку» в окне программы LLS Monitor (Рисунок 10). Откроется окно (Рисунок 19), в котором указать путь к файлу новой версии встроенного программного обеспечения, выбрать файл и нажать кнопку «Открыть».

Рисунок 19

Если выбранный файл не является встроенным программным обеспечением, откроется окно (Рисунок 20).

Рисунок 20

Нажать кнопку «ОК», выбрать файл встроенного программного обеспечения и нажать кнопку «Открыть».

В нижней части главного окна программы отобразится ход процесса обновления встроенного программного обеспечения (Рисунок 21).

Рисунок 21

Если обновление встроенного программного обеспечения прошло успешно, откроется окно (Рисунок 22).

Рисунок 22

Если в процессе обновления произошла ошибка, откроется диалоговое окно (Рисунок 23).

Рисунок 23

Нажать кнопку «ОК» и повторить выполнение п. 3.6.3.

4 МОНТАЖ И ДЕМОНТАЖ

Для баков, форма которых соответствует рисунку (Рисунок 2) монтаж изделия производить согласно Приложению Г.

1) Надеть на измерительную часть изделия прокладку, входящую в комплект поставки изделия.

- 2) Установить изделие в бак.
- 3) Закрепить изделие на баке болтами, предварительно надев шайбу и гровер, как показано на рисунке (Рисунок 24, Рисунок 25). Болты завинчивать ключом гаечным

Рисунок 24

Рисунок 25

- 4) При монтаже изделия на пластиковые баки с толщиной стенок более 3 мм, закрепить изделие саморезами, входящими в комплект поставки. Усилия при затягивании саморезов должно быть таковым, чтобы резиновые шайбы, одетые на саморезы, не сминались и не лопались.
- 5) При монтаже изделий с длиной измерительной части более 1,5м в топливные баки ТС (бензовозы, тепловозы) необходимо обеспечить отсутствие ударов волн топлива при резких ускорениях и торможениях ТС. Для этих целей рекомендуется установка изделий вблизи гасящих волны переборок или установка изделий в защитные металлические трубы диаметром 50-100мм, закрепленные (приваренные) к днищу или к верху бака.

Приваривать и к днищу и к верху бака одновременно Запрещается.

Между краем трубы и верхней стенкой бака оставлять зазор, т.к. емкости такого размера при заполнении могут деформироваться (Рисунок 26).

При монтаже необходимо обеспечить отсутствие контакта изделия с защитной трубой или внутренними переборками бака.

Рисунок 26

5 НАЛАДКА И СТЫКОВКА

5.1 НАЛАДКА ИЗДЕЛИЙ ПОДКЛЮЧАЕМЫХ ПО ИНТЕРФЕЙСУ RS-485

В случае если скорость передачи данных установлена более 19200 бит./сек. и длина соединительных кабелей между внешним устройством и наиболее удаленным изделием более 30 метров, необходимо установить согласующие резисторы.

Установку согласующих резисторов производить согласно схемам (Приложение Е).

5.2 ТРЕБОВАНИЯ К ПРОКЛАДКЕ СОЕДИНИТЕЛЬНЫХ КАБЕЛЕЙ

- 1) При монтаже необходимо использовать кабели производства компании Omnicomm, либо входящие в комплект поставки, либо приобретаемые отдельно.
- 2) На пути прокладки кабелей должны отсутствовать нагретые части механизмов и узлов транспортного средства во избежание плавки изоляции проводов.
- 3) На пути прокладки кабелей должны отсутствовать движущиеся части механизмов транспортного средства.

5.3 ПОДКЛЮЧЕНИЕ К ВНЕШНЕМУ УСТРОЙСТВУ

1) Подключить изделие к внешнему устройству согласно схеме подключения (Приложение Д)

5.4 УСТАНОВКА ПРЕДОХРАНИТЕЛЯ

1) Предохранитель предназначены для защиты бортовой сети транспортного средства от короткого замыкания, вызванного пробоем в проводке изделия.

Подключить держатель предохранителя к проводу питания изделия и в непосредственной близости к цепи питания ТС (Рисунок 43, Рисунок 44, Рисунок 45).

2) Установить предохранитель в держатель предохранителя.

6 ТАРИРОВКА ТОПЛИВНОГО БАКА

Тарировка топливного бака необходима для установки соответствия цифрового кода, выдаваемого изделием, и объема топлива в конкретном топливном баке.

Тарировка топливного бака представляет собой заправку топлива в бак – от пустого до полного, с определенным шагом заправки, и фиксацию показаний изделия в тарировочной таблице.

При установке в топливный бак двух изделий необходимо составить тарировочную таблицу для каждого изделия.

Шаг заправки выбирается самостоятельно, в зависимости от формы топливного бака – чем сложнее форма, тем меньше шаг заправки «n». Шаг заправки при необходимости можно изменять в процессе тарировки. Рекомендуемый шаг заправки, в зависимости от объема топливного бака, приведен в таблице (Таблица 1).

Таблица 1

Объем бака V, литры	Шаг заправки п, литры	Количество контрольных точек, $\mathbf{m} = \mathbf{V} \backslash \mathbf{n}$
0-60	3	20
61-100	5	12 - 20
101-500	10	10 - 50
501-1000	20	20 - 50
Более 1000	По возможностям	

Для точности показаний рекомендуется делать не менее 20 контрольных точек.

6.1 ТАРИРОВКА ТОПЛИВНОГО БАКА ПРИ УСТАНОВКЕ ОДНОГО ИЗДЕЛИЯ

- 1) Опустошить топливный бак
- 2) Подключить датчик уровня топлива к ПК согласно приложению Г.
- 3) Запустить программу Omnicomm Configurator. Откроется главное окно программы (Рисунок 10), в котором отображены текущие настройки подключенного изделия.

Рисунок 27

Примечание! Во время тарировки внутренняя фильтрация результатов измерения датчика не производится.

4) Открыть вкладку «Тарировка» (Рисунок 28).

Рисунок 28

- 5) В первой строке столбца «Литры» указать начальный объем топлива в баке.
- 6) Установить «Шаг пролива, литров», согласно объему мерной емкости и нажать кнопку «Применить».
- 7) Заправку производить мерной емкостью или под контролем расходомера жидкости с заданным шагом. Заполнить таблицу следующим образом:

В столбце «Литры» указать количество литров соответствующее объему заправки. В столбце «Показания датчика» отобразится значение соответствующее объему заправки.

Фиксацию показаний датчика производить только в процессе или после стабилизации уровня топлива (желтый и зеленый индикатор).

Зафиксировать показание датчика соответствующее данному объему заправки, нажав одну из следующих кнопок: Enter" или "Добавить строку" при этом будет добавлена новая строка таблицы.

Для удаления введенной строки нажать кнопку "del".

- 1) Значения относительного уровня должны монотонно возрастать в процессе заправки.
- 2) Повторяющиеся значения относительного уровня в таблицу не заносятся.

Для сохранения тарировочной таблицы в виде xml-файла нажать кнопку «Экспорт».

Данные тарировочной таблицы используются при работе с пакетом программ Autocheck, Системой контроля расхода топлива FMS, Сервером обработки топливных данных FPS и другими продуктами производства компании Omnicomm.

6.2 ТАРИРОВКА ТОПЛИВНОГО БАКА ПРИ УСТАНОВКЕ ДВУХ ИЗДЕЛИЙ

При использовании двух и более датчиков уровня топлива LLS их показания, переведенные в литры по индивидуальным тарировочным таблицам, суммируются.

6.2.1 ТАРИРОВКА ТОПЛИВНОГО БАКА ПРАВИЛЬНОЙ ГЕОМЕТРИЧЕСКОЙ ФОРМЫ

Тарировка топливного бака правильной геометрической формы заключается в составлении тарировочной таблицы для каждого изделия (Рисунок 29), как показано на рисунке (Рисунок 30). Данные таблицы будут сгенерированы автоматически при сохранении в xml файл.

Объем

заправленного

топлива, литры

0

n

2 n

3 n

m n

Рисунок 29, где n — шаг заправки (литры), m — количество контрольных точек, mn — объем топливного бака (V, литры).

Тарировочная таблица для изделия «Д1»

Столбец тарировочной таблицы «Литры», литры	Показания датчика 1 «Д1»
0	0
0,5 n	
n	
1,5 n	
0,5m n	

Тарировочная таблица для изделия «Д2»		
Столбец тарирововчной таблицы «Литры», литры	Показания датчика 2 «Д2»	
0	0	
0,5 n		
n		
1,5 n		
0,5m n		

Рисунок 30, где n – шаг заправки (литры), m – количество контрольных точек, mn – объем топливного бака (V, литры).

Номер

контрольной

точки, і

0

1

2

3

При использовании тарировочных таблиц в программе Dalcon Configurator и в пакете программ Autocheck показания датчиков соответствующие объему полного бака (mn) должно быть не более 1023 (п.5.1.2 пп.5)).

- 1) Опустошить топливный бак
- 2) Подключить датчик уровня топлива LLS «Д1» к ПК согласно приложению Д.
- 3) Запустить программу Omnicomm Configurator. Откроется главное окно программы (Рисунок 33), в котором отображены текущие настройки подключенного изделия «Д1».
 - 4) Открыть вкладку «Тарировка».
- 5) Подключить второй датчик уровня топлива LLS, используя разветвитель КТЗ.
- 6) Добавить шаблон тарировочной таблицы для второго датчика уровня топлива LLS, нажав кнопку «Добавить датчик». Откроется окно (Рисунок 31), в котором выберете сетевой адрес подключенного датчика уровня топлива LLS.

Рисунок 31

Внимание! Датчик уровня топлива необходимо предварительно настроить. Одновременно подключенные датчики уровня топлива LLS должны иметь одинаковые диапазоны измерения и скорости обмена.

Рисунок 32

- 7) Дождаться стабилизации уровня топлива обоих датчиков уровня топлива LLS.
 - 8) Залить объем топлива соответствующий первой контрольной точке.
 - 9) Дождаться стабилизации уровня обоих датчиков.
 - 10) Нажать кнопку «Добавить строку».
- 11) Повторять выполнение пп.7) 11) для каждой контрольной точки тарировочной таблицы.

7 СДАЧА СМОНТИРОВАННОГО И СОСТЫКОВАННОГО ИЗДЕЛИЯ

7.1 ПЛОМБИРОВАНИЕ

7.1.1 УСТАНОВКА ЗАЩИТНОЙ ПЛОМБЫ НА ИЗДЕЛИЕ

Установка пломбы предусмотрена только для изделий, крепление которых осуществляется с помощью болтов.

- 1) Совместить отверстия внутренней трещотки с внешними отверстиями пломбы.
- 2) Продеть пломбировочную проволоку через отверстия в двух болтах, обмотать проволоку вокруг металлорукава, как показано на рисунке (Рисунок 33) и концы проволоки провести через отверстия пломбы.
- 3) Закрутить проволоку до полного натяжения, вращая ручку трещотки по часовой стрелке.
- 4) Отломить ручку трещотки.

Рисунок 33

7.1.2 УСТАНОВКА ЗАЩИТНЫХ ПЛОМБ НА РАЗЪЕМ

Для датчика уровня топлива LLS30160 установить защитную пломбу на разъем (Рисунок 35).

Рисунок 34

Рисунок 35

- 1) Продеть пломбировочную проволоку через отверстия разъема изделия и ответного разъема, таким образом, чтобы проволока проходила с разных сторон разъемов (Рисунок 35).
- 2) Концы проволоки провести через отверстия пломбы.
- 3) Закрутить проволоку до полного натяжения и отломить ручку трещотки.

7.2 ПЕРЕЧЕНЬ ПРИЕМО-СДАТОЧНОЙ ДОКУМЕНТАЦИИ И ПОРЯДОК ЕЕ ОФОРМЛЕНИЯ

- 1) После опломбирования изделия оформляется «Акт установки», который должен содержать:
 - наименование организации, для которой проводили установку изделия;
 - наименование организации, которая производила установку изделия;
 - дату установки;
 - перечень проведенных работ;
 - марка ТС;
 - государственный номер ТС;
 - неисправности объекта установки;
 - заводской номер изделия (изделий);
 - номера пломб;
 - ФИО и подпись установщика и лица принявшего работу.

ПРИЛОЖЕНИЕ А Перечень необходимого оборудования

Таблица 2

№	Наименование	Количест во	Пункт методики	Примечание
	Инструменты:			
1	Коронка биметаллическая ø35мм	1 шт.	3.4	
2	Хвостовик к коронке	1 шт.	3.4	
3	Сверло по металлу ø7мм или ø4мм	1 шт.	3.4	ø7мм для заклепок ø4мм для болтов
4	Линейка измерительная	1шт.	3.5	Длина не менее длины бака
5	Ножовка по металлу	1 шт.	3.5	
6	Ключ гаечный на 8мм	1 шт.	3.5	
7	Заклепочный инструмент для резьбовых заклепок TR-100	1 шт.	3.5	Для установки на заклепки
8	Метчик М5 с держателем	1 шт.	3.5	Для установки на болты
	Принадлежности:			
9	Роторная пломба	2 шт.	7.1	
10	Проволока пломбировочная ø0.7мм	до 0,8м.	7.1	
11	Персональный компьютер IBM Совместимый с ОС Windows XP	1 шт.	3.6	
12	Программа Omnicomm Configurator	1 шт.	3.6	Пр-во компании Omnicomm
13	Устройство настройки УНУ (с комплектом проводов)	1 шт.	3.6	Пр-во компании Omnicomm
14	Блок питания постоянного напряжения (10 - 15)B, 0.5A	1 шт.	3.6	Поставляется в комплекте с УНУ
15	Мерная ёмкость	1 шт.	3.6	высота ≥L1
16	Топливо		3.6, 6	
17	Емкость для тарировки	1шт.	6	Рекомендуемый объем см. п. 6
18	Герметик силиконовый для наружных работ	100г.	Приложение Г	Для монтажа на круглые баки

ПРИЛОЖЕНИЕ Б Инструкция по установке заклепок гаечного типа

Заклепку навинтить на шпильку заклепочника (Рисунок 36). Заклепка должна быть навинчена на всю глубину.

Рисунок 36

Установить заклепку в отверстие (Рисунок 37), таким образом, чтобы заклепка была строго перпендикулярна пластине датчика и стенке бака и исключала перекос.

Проверьте отсутствие зазора между пластиной датчика уровня топлива LLS и заклепкой.

Рисунок 37

Расклепать заклепку заклепочником (Рисунок 38).

Продолжение приложения Б

Рисунок 38

Выкрутить шпильку заклепочника из заклепки (Рисунок 39).

Рисунок 39

Проверьте качество установки заклепки. Для этого необходимо взять болт, входящий в комплект монтажных частей, и произвести пробное завинчивание. В случае если болт завинчивается туго или не на максимальную глубину необходимо высверлить заклепку и установить новую.

ПРИЛОЖЕНИЕ В Схема подключения изделия к ПК и назначение выводов разъема изделия

Рисунок 40

Подключение изделия к ПК производить с помощью УНУ, красным разъемом кабеля, входящего в комплект поставки УНУ.

Название сигнала	Цвет провода
RS-485 A	Оранжево-белый
RS-485 B	Бело-голубой
RS-232 Tx	Розовый
RS-232 Rx	Серый
+Ипит	Коричневый
Общий	Белый

приложение г

Порядок подготовки бака круглой формы к монтажу изделия и его монтаж

Отметить отверстия для крепления изделия с учетом кривизны бака. Поместить болт в отверстие для крепления изделия таким образом, чтобы болт был перпендикулярен поверхности бака (Рисунок 41).

Рисунок 41

Просверлить отверстия согласно выбранному типу бака и методу крепления изделия к баку.

Нанести тонкий слой герметика между пластиной корпуса изделия и резиновой прокладкой. Надеть прокладку на изделие.

Нанести герметик на подготовленный бак, как показано на рисунке (Рисунок 42). Толщина слоя герметика должна быть не менее 5 мм.

Рисунок 42

Произвести монтаж согласно выбранному способу крепления п.4.

Визуально проверьте герметичность соединения. В случае если между прокладкой и баком существуют пустоты заполнить их герметиком.

ПРИЛОЖЕНИЕ Д Схемы подключения изделия/изделий к внешнему устройству

Рисунок 43 Схема подключения одного изделия к внешнему устройству по интерфейсу RS-485

Примечание.

Нумерация контактов разъема X1 приведена условно.

Рисунок 44. Схема подключения одного изделия к внешнему устройству по интерфейсу RS-232

Примечание.

Нумерация контактов разъема X1 приведена условно.

Продолжение приложения Д

Бортовая сеть

Рисунок 45. Схема подключения нескольких изделий к внешнему устройству по интерфейсу RS-485

Примечание.

Нумерация контактов разъема внешнего устройства приведена условно.

Количество изделий, подключаемых к одному внешнему устройству, по данной схеме от 2 до 4.

ПРИЛОЖЕНИЕ Е Схемы подключения, с установленными согласующими резисторами

Рисунок 46

Примечание.

Нумерация контактов разъема внешнего устройства приведена условно.

Согласующие резисторы должны устанавливаться как можно ближе к разъемам внешнего устройства и изделия.

Внешнее устройство может включать в себя согласующий резистор, в таких случаях, установка согласующего резистора со стороны внешнего устройства не требуется. Наличие во внешнем устройстве согласующего резистора уточняется по документации на внешнее устройство.

Продолжение приложения Е

Рисунок 47

Примечание.

Нумерация контактов разъема внешнего устройства приведена условно.

Согласующие резисторы должны устанавливаться как можно ближе к разъемам внешнего устройства и изделия.

Внешнее устройство может включать в себя согласующий резистор, в таких случаях, установка согласующего резистора со стороны внешнего устройства не требуется. Наличие во внешнем устройстве согласующего резистора уточняется по документации на внешнее устройство.

приложение 3

Герметики (формирователи прокладок) рекомендованные для использования при монтаже датчиков уровня топлива LLS

Список герметиков приведен в соответствии с рекомендациями по применению.

- 1. Бензостойкий формирователь прокладок PERMATEXTM MotoSeal® Black.
- 2. Силиконовый герметик-прокладка ABROTM Black.
- 3. Силиконовый герметик-прокладка ABROTM Red.
- 4. Силиконовый герметик-прокладка ABRO^{тм} Blue.
- 5. Бензостойкий формирователь прокладок PERMATEXTM MotoSeal® Red.
- 6. Автомобильный герметик (красный) ПЕНТЭЛАСТ-1161.