6 解线性代数方程组的迭代法

前一章已经介绍了解线性代数方程组

$$AX = b \tag{6.1}$$

的一些直接法. 这里 A 是 $n \times n$ 矩阵 ; X, b 都是 n 维向量. 而大多数计算过程均需对系数矩阵进行分解,因而一般不能保持 A 的稀疏性. 而在实际问题中,特别是偏微分方程数值求解,常会遇到大型稀疏矩阵. 另外,从上一章分析可以看到,高斯消去法、LU 分解法的乘除次数为 $\frac{1}{3}n^3 + O(n^2)$,LDL 分解法的乘除次数为 $\frac{1}{6}n^3 + O(n^2)$,当 n 较大时,计算量相当大. 迭代法的基本思想是构造一个向量序列 { $X^{(n)}$ },使其收敛至某个极限向量 X^* ,而 X^* 就是要求的方程组 AX = b 的准确解. 迭代法能充分利用系数矩阵的稀疏性,当 n 较大时,能有效控制计算量.

迭代法要解决的主要问题如下:

- (1)如何构造迭代格式?
- (2)构造的格式所产生的序列在什么情况下收敛?
- (3)如果收敛,收敛的速率如何?
- (4) 近似解的误差估计.

6.1 几种常用的迭代格式

6.1.1 简单迭代法(Jacobi 迭代)

设有方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

$$(6.2)$$

用矩阵表示为

$$AX = b$$

其中A 是系数矩阵,非奇异;b,X 为n 维向量.

假设 $a_{ii} \neq 0$,将方程组(6.2)中第一个方程的 $a_{1i}x_1$ 项保留在左端,其余项移到右端,然后两边再除以 a_{1i} . 同理将第 k 个方程的 $a_{kk}x_k$ 项保留在左端,其余项移到

右端,然后两边再除以 $a_{kk}(k=2,3,\cdots,n)$. 这样,方程组(6.2)变成下列等价方程组

$$\begin{cases} x_{1} = b_{12}x_{2} + b_{12}x_{3} + \cdots + b_{1n}x_{n} + g_{1} \\ x_{2} = b_{21}x_{1} + b_{23}x_{3} + \cdots + b_{2n}x_{n} + g_{2} \\ \vdots \\ x_{n} = b_{n1}x_{1} + b_{n2}x_{2} + \cdots + b_{n,n-1}x_{n-1} + g_{n} \end{cases}$$

$$\begin{cases} b_{ij} = \frac{-a_{ij}}{a_{ii}} & (i \neq j) \\ b_{ii} = 0 & (i = 1, 2, \dots, n) \\ g_{i} = \frac{b_{i}}{a_{ii}} & (i = 1, 2, \dots, n) \end{cases}$$

其中

$$\mathbf{B} = \begin{bmatrix} 0 & b_{12} & b_{13} & \cdots & b_{1n} \\ b_{21} & 0 & b_{23} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \cdots & 0 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} a_{11} \\ a_{22} \\ \vdots \\ a_{nn} \end{bmatrix} \qquad \mathbf{g} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix}$$

容易看出

$$B = D^{-1}(D - A) = I - D^{-1}A$$
$$g = D^{-1}b$$

方程(6.3)用矩阵可表示为

$$X = BX + g \tag{6.4}$$

由此便可构造一个迭代格式(Jacobi 迭代)

$$X^{(k+1)} = BX^{(k)} + g \tag{6.5}$$

当取定初始向量 $X^{(0)} \in \mathbf{R}^{*}$ 后,上式便产生一个向量序列

$${\pmb X}^{\scriptscriptstyle (0)}$$
 , ${\pmb X}^{\scriptscriptstyle (1)}$, \cdots , ${\pmb X}^{\scriptscriptstyle (k)}$, \cdots

若它收敛于 X^* ,则 X^* 一定是方程(6.4)的解,当然也是原方程 AX = b的解.此时,称 Jacobi 迭代关于初始向量 $X^{(0)}$ 收敛.

Jacobi 迭代算法

- ①输入A.b.初始向量Y.容许误差 ε .容许最大迭代次数M.
- ③形成迭代矩阵 B(存放在A中).

对 $i=1,2,\cdots,n$,循环

若 $|a_{ii}|<\epsilon$,则打印"求解失败",停机;否则

$$T=a_{ii}$$

対 $j=1,2,\cdots,n$,计算
$$a_{ij}=-rac{a_{ij}}{T}$$

$$a_{ii}=0\,,g_i=rac{b_i}{T}$$

④迭代:

对 $i = 1, 2, \dots, n$, 计算

$$x_i = g_i + \sum_{i \neq i} a_{ij} y_j$$

- ⑤若 $||X Y|| < \varepsilon$,输出 X,k,停机;否则
- ⑥若k < M,则k = k + 1,将X赋值给Y,转④;否则,输出求解失败信息,停机.

6.1.2 Seidel 迭代法

设有简单迭代法

$$\boldsymbol{X}^{(k+1)} = \boldsymbol{B}\boldsymbol{X}^{(k)} + \boldsymbol{g}$$

将迭代矩阵 $\mathbf{B} = (b_{ii})_{n \times n}$ 分解为 $\mathbf{B} = \mathbf{L} + \mathbf{U}$,其中

$$L = \begin{bmatrix} 0 & & & & & \\ b_{21} & 0 & & & & \\ \vdots & \vdots & \ddots & & \\ b_{n1} & b_{n2} & \cdots & 0 \end{bmatrix} \qquad U = \begin{bmatrix} 0 & b_{12} & \cdots & b_{1n} \\ & 0 & \cdots & b_{2n} \\ & & \ddots & \vdots \\ & & & 0 \end{bmatrix}$$

则

$$X^{(k+1)} = LX^{(k)} + UX^{(k)} + g \quad (k = 0, 1, 2, \cdots)$$

将其修改为

$$X^{(k+1)} = LX^{(k+1)} + UX^{(k)} + g \quad (k = 0, 1, 2, \dots)$$
(6.6)

上式称为 Seidel 迭代,其分量形式为

$$x_i^{(k+1)} = \sum_{j=1}^{i-1} b_{ij} x_j^{(k+1)} + \sum_{j=i+1}^{n} b_{ij} x_j^{(k)} + g_i \quad (i = 1, 2, \dots, n)$$
 (6.7)

它的特点在于,计算第 i 个分量 $x_i^{(k+1)}$ 时,前边的 i-1 个分量用的是最新算出的 $x_1^{(k+1)}$,…, $x_n^{(k+1)}$,而不是旧值 $x_n^{(k)}$,…, $x_n^{(k)}$,这样有可能提高收敛速度.

因 $(I-L)^{-1}$ 存在,迭代格式(6.6)可以改写成

$$X^{(k+1)} = (I - L)^{-1} U X^{(k)} + (I - L)^{-1} g$$
(6.8)

称 $B_1 = (I - L)^{-1} U$ 为 Seidel 迭代法的迭代矩阵.

Seidel 迭代算法

- ①输入A,b,初始向量Y,容许误差 ε ,容许最大迭代次数M
- ②置 k = 1, 对 $i = 1, 2, \dots, n, x_i = y_i$
- ③形成迭代矩阵 B(存放在A中)

对
$$i = 1, 2, \dots, n$$
,循环

若 $|a_{ii}|<\epsilon$,则打印"求解失败",停机;否则

$$T = a_i$$

对 $j = 1, 2, \dots, n$, 计算

$$a_{ij} = \frac{-a_{ij}}{T}$$

$$a_{ii} = 0$$
 $g_i = \frac{b_i}{T}$

④ 迭代:

对 $i = 1, 2, \dots, n$, 计算

$$x_i = g_i + \sum_{i \neq i} a_{ij} x_j$$

- ⑤若 $||X-Y|| < \varepsilon$,输出 X,k,停机;否则
- ⑥若 k < M,则 k = k + 1,将 X 赋值给 Y,转④;否则,输出求解失败信息,停机

6.1.3 松弛法(SOR 迭代)

松弛法可以看作是 Seidel 迭代法的加速, Seidel 迭代法是松弛法的特例. Seidel 迭代格式为

$$m{X}^{(k+1)} = m{L} m{X}^{(k+1)} + m{U} m{X}^{(k)} + m{g}$$
 现令
$$\Delta m{X} = m{X}^{(k+1)} - m{X}^{(k)} = m{L} m{X}^{(k+1)} + m{U} m{X}^{(k)} + m{g} - m{X}^{(k)}$$
 干是 $m{X}^{(k+1)} = m{X}^{(k)} + \Delta m{X}$.

对于 Seidel 迭代法, $X^{(k+1)}$ 可以看成向量 $X^{(k)}$ 加上修正项 ΔX 得到. 现在,若在修正项的前面加上一个参数 ω ,便得到松弛法的计算格式

$$X^{(k+1)} = X^{(k)} + \omega \Delta X = (1 - \omega) X^{(k)} + \omega (LX^{(k+1)} + UX^{(k)} + g)$$
 (k = 0,1,…) (6.9) 用分量形式即为

$$x_{i}^{(k+1)} = (1 - \omega) x_{i}^{k} + \omega \left[\sum_{j=1}^{i-1} b_{ij} x_{j}^{(k+1)} + \sum_{j=i+1}^{n} b_{ij} x_{j}^{(k)} + g_{i} \right]$$

$$(i = 1, 2, \dots, n; k = 0, 1, 2, \dots)$$
(6. 10)

其中,ω称为松弛因子,当ω>1 时叫超松弛;ω<1 时称低松弛;ω=1 时就是 Seidel 迭代法.

迭代格式(6.9)还可改写成

$$\boldsymbol{X}^{(k+1)} = (\boldsymbol{I} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{I} + \omega \boldsymbol{U}] \boldsymbol{X}^{(k)} + \omega (\boldsymbol{I} - \omega \boldsymbol{L})^{-1} \boldsymbol{g}$$
$$\boldsymbol{B}_{\omega} = (\boldsymbol{I} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{I} + \omega \boldsymbol{U}]$$

称为松弛法的迭代矩阵.

松弛迭代法算法

- ①输入A,b,初始向量Y,松弛因子 ω ,容许误差 ε ,容许最大迭代次数M.
- ②置 k = 1, 对 $i = 1, 2, \dots, n, x_i = y_i$.
- ③形成迭代矩阵 B(仍存放在 A 中):

对
$$i = 1, 2, \dots, n$$
,循环

若 $|a_{ii}|<\epsilon$,则打印"求解失败",停机;否则

$$T = a_{ii}$$

对 $j = 1, 2, \dots, n$, 计算

$$a_{ij} = -\omega * \frac{a_{ij}}{T}$$

$$a_{ii} = 1 - \omega$$
, $g_i = \omega * \frac{b_i}{T}$

④迭代:

对 $i = 1, 2, \dots, n$, 计算

$$x_i = g_i + \sum_{i=1}^n a_{ij} x_j$$

- ⑤若 || X Y || < ε, 输出 X, k; 停机; 否则
- ⑥若k < M,则k = k + 1,将X赋值给Y,转④;否则,输出求解失败信息,停机

6.2 迭代法收敛性理论

任意选取初始向量,利用迭代格式(6.5)构造向量序列 $\{X^{(k)}\}$,向量序列是否一定收敛呢? 先看两个例子.

例 6-1 用 Jacobi 迭代法解方程组

$$\begin{cases} 10x_1 - x_2 - 2x_3 = 7.2 \\ -x_1 + 10x_2 - 2x_3 = 8.3 \\ -x_1 - x_2 + 5x_3 = 4.2 \end{cases}$$

解 上述方程组的准确解是 $x_1 = 1.1, x_2 = 1.2, x_3 = 1.3$. 先把方程改写成

$$\begin{cases} x_1 = 0.1x_2 + 0.2x_3 + 0.72 \\ x_2 = 0.1x_1 + 0.2x_3 + 0.83 \\ x_3 = 0.2x_1 + 0.2x_2 + 0.84 \end{cases}$$

取 $X^{(0)} = (0,0,0)^{\mathrm{T}}$,利用 Jacobi 迭代,计算结果如表 6 – 1 所示.

\overline{k}	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
0	0	0	0	5	1. 095 1	1. 195 1	1. 294 1
1	0. 72	0. 83	0. 84	6	1. 098 3	1. 198 3	1. 298 0
2	0. 971	1. 070	1. 150	7	1. 099 4	1. 199 8	1. 299 3
3	1. 057	1. 157 1	1. 248 2	8	1. 099 8	1. 199 8	1. 299 7
4	1. 085 3	1. 185 3	1. 282 8	9	1. 099 9	1. 199 9	1. 299 9

表 6-1 计算结果

从表 6-1 中可以看到,近似解向量序列收敛,且收敛到准确解.

例 6-2 用 Jacobi 迭代法解方程组

$$\begin{cases} x_1 - 10x_2 + 20x_3 = 11 \\ -10x_1 + x_2 - 5x_3 = -14 \\ 5x_1 - x_2 - x_3 = 3 \end{cases}$$

上述方程的准确解是 $x_1 = x_2 = x_3 = 1$.

同样取 $X^{(0)} = (0,0,0)^{\mathsf{T}}$,利用 Jacobi 迭代,计算结果如表 6 – 2 所示.

从表 6-2 中可以看到,此迭代发散. 可以证明,除 $X^{(0)} = (1,1,1)^{\mathsf{T}}$ 外,无论选什么初值都不会收敛.

从上面两个例子可以看出,迭代序列收敛是有条件的.下面给出迭代法收敛性基本理论.

表 6-2 计算结果

THE STREET					
k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$		
0	0	0	0		
1	11	- 14	-3		
2	-69	81	66		
3	- 499	- 374	- 429		

定理 6.1 对任何初始向量 $X^{(0)}$ 和常数项 f, 由迭代格式

$$X^{(k+1)} = MX^{(k)} + f \quad (k = 0, 1, 2, \dots)$$

产生的向量序列 $\{X^{(k)}\}$ 收敛的充要条件是迭代矩阵的谱半径

$$\rho(\mathbf{M}) < 1$$

证明 先证必要性. 假设 $\{X^{(k)}\}$ 收敛到 X^* ,即 $\lim X^{(k)} = X^*$,则有

$$X^* = MX^* + f$$

$$\Leftrightarrow \varepsilon_k = X^{(k)} - X^*$$
,则

$$\varepsilon_{k+1} = X^{(k+1)} - X^* = MX^{(k)} - MX^* = M(X^{(k)} - X^*)$$

所以有

$$\boldsymbol{\varepsilon}_{k+1} = \boldsymbol{M}\boldsymbol{\varepsilon}_k = \boldsymbol{M}^2 \boldsymbol{\varepsilon}_{k-1} = \dots = \boldsymbol{M}^{k+1} \boldsymbol{\varepsilon}_0 \tag{6.11}$$

对任意初始向量 ε_0 ,要使向量序列 $\{M^t\varepsilon_0\}$ 收敛于零向量,必须

$$\lim \mathbf{M}^{k} = 0 \tag{6.12}$$

由定理 5.10 可知

$$\rho(\mathbf{M}) < 1$$

再证充分性. 假设 $\rho(M) < 1$,则 I - M 非奇异,从而方程组(I - M)X = f 有惟一解,并记为 X^* ,于是(6.11)式仍成立. 由(6.12)推出 $\lim_{} X^{(k)} = X^*$. 证毕.

在具体问题中,谱半径 $\rho(M)$ 往往很难计算,但由于 $\rho(M) \leq \|M\|$,所以有时可以用 $\|M\|$ 作为 $\rho(M)$ 的一种估计. 当 $\|M\|$ < 1 时迭代一定收敛,不过这只是充分条件.

定理 6.2 若迭代矩阵 M 的范数 $\|M\| = q < 1$,则迭代格式 $X^{(k+1)} = MX^{(k)} + f$ 对任何初始向量 $X^{(0)}$ 一定收敛,且

$$\|\boldsymbol{X}^{(k)} - \boldsymbol{X}^*\| \leq \frac{q}{1-q} \|\boldsymbol{X}^{(k-1)} - \boldsymbol{X}^{(k)}\| \leq \frac{q^k}{1-q} \|\boldsymbol{X}^{(1)} - \boldsymbol{X}^{(0)}\|$$

证 由迭代格式得

$$\boldsymbol{X}^{(k+1)} - \boldsymbol{X}^{(k)} = \boldsymbol{M}(\boldsymbol{X}^{(k)} - \boldsymbol{X}^{(k-1)}) = \cdots = \boldsymbol{M}^{k}(\boldsymbol{X}^{(1)} - \boldsymbol{X}^{(0)})$$
$$\|\boldsymbol{X}^{(k+1)} - \boldsymbol{X}^{(k)}\| \leq q \|\boldsymbol{X}^{(k)} - \boldsymbol{X}^{(k-1)}\| \leq q^{k} \|\boldsymbol{X}^{(1)} - \boldsymbol{X}^{(0)}\|$$

注意到

6.2.1 三种迭代法迭代矩阵的谱半径与系数矩阵 A 的关系

6.2.1.1 Jacobi 迭代

Jacobi 迭代的迭代矩阵
$$\mathbf{B} = \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A})$$
. 由
$$|\lambda \mathbf{I} - \mathbf{B}| = 0$$
得
$$|\lambda \mathbf{I} - \mathbf{D}^{-1}(\mathbf{D} - \mathbf{A})| = 0$$
即
$$|\mathbf{D}^{-1}| \cdot |\lambda \mathbf{D} - (\mathbf{D} - \mathbf{A})| = 0$$
所以
$$|\lambda \mathbf{D} - (\mathbf{D} - \mathbf{A})| = 0$$

上式写成分量形式为

$$\begin{vmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda a_{nn} \end{vmatrix} = 0$$
 (6. 13)

由定理 6.1 可知:

定理 6.3 Jacobi 迭代收敛的充要条件是行列式(6.13)的所有根 λ_i ($i = 1, 2, \dots, n$)的绝对值(复数理解为模)小于 1.

6.2.1.2 Seidel 迭代

对于 Seidel 迭代, $B = (I - L)^{-1} U$. 由

$$|\lambda \mathbf{I} - \mathbf{B}| = 0$$

$$|\lambda \mathbf{I} - (\mathbf{I} - \mathbf{L})^{-1} \mathbf{U}| = 0$$

$$|\lambda (\mathbf{I} - \mathbf{L})^{-1} (\mathbf{I} - \mathbf{L}) - (\mathbf{I} - \mathbf{L})^{-1} \mathbf{U}| = 0$$

$$|\lambda (\mathbf{I} - \mathbf{L}) - \mathbf{U}| = 0 \qquad |\lambda \mathbf{D} - \lambda \mathbf{D} \mathbf{L} - \mathbf{D} \mathbf{U}| = 0$$

得即

所以

写成分量的形式为

$$\begin{vmatrix} \lambda a_{11} & a_{12} & \cdots & a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{n1} & \lambda a_{n2} & \cdots & \lambda a_{nn} \end{vmatrix} = 0$$

$$(6. 14)$$

定理 6.4 Seidel 迭代收敛的充要条件是行列式(6.14)的所有根 λ_i (i = 1, 2, ..., n)的绝对值小于 1.

6.2.1.3 松弛迭代(SOR 迭代)

对于松弛迭代,

$$\boldsymbol{B}_{\omega} = (\boldsymbol{I} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{I} + \omega \boldsymbol{U}]$$

由 $|\lambda I - B_{\omega}| = 0$ 得

$$|\lambda \mathbf{I} - (\mathbf{I} - \omega \mathbf{L})^{-1}[(1 - \omega)\mathbf{I} + \omega \mathbf{U}]| = 0$$

化简即得

$$|\lambda(I - \omega L) - [(1 - \omega)I + \omega U]| = 0$$

注意到 | **D** | ≠0,得

$$|\lambda \mathbf{D} - \omega \lambda \mathbf{D} \mathbf{L} - [(1 - \omega)\mathbf{D} + \omega \mathbf{D} \mathbf{U}]| = 0$$

写成分量形式为

$$\begin{vmatrix} (\lambda + \omega - 1) a_{11} & \omega a_{12} & \cdots & \omega a_{1n} \\ \omega \lambda a_{21} & (\lambda + \omega - 1) a_{22} & \cdots & \omega a_{2n} \\ \vdots & \vdots & & \vdots \\ \omega \lambda a_{n1} & \omega \lambda a_{n2} & \cdots & (\lambda + \omega - 1) a_{nn} \end{vmatrix} = 0 \quad (6.15)$$

定理 6.5 松弛迭代收敛的充要条件是行列式(6.15)的所有根 λ_i (i = 1,2, ...,n)的绝对值小于 1.

对于一些特定的系数矩阵 A,有一些特定的判别方法. 为了说明方便起见,在此先引进一些概念.

定义 6.1 如果矩阵 A 不能通过行交换和相应的列交换变成

$$\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}$$

其中 A_{11} , A_{22} 为方阵,则称A为不可约.

定义 6.2 若矩阵 $A = (a_{ij})_{n \times n}$ 满足

$$|a_{ii}| \ge \sum_{i \ne j} |a_{ij}| \quad (i = 1, 2, \dots, n)$$

且至少有一个i值使上式中不等式严格成立,则称矩阵A具有对角优势(又称为弱对角占优).特别地,若所有的i值对上式中不等式都严格成立,则称矩阵A具有强对角占优.

定理 6.6 若 A 是强对角占优,或者 A 弱对角占优且不可约,则 $\det A \neq 0$.

矩阵的不可约与矩阵对应的邻接图有一个必然的联系.

定理 6.7 A 矩阵不可约的充要条件是 A 矩阵对应的邻接图是一个强连通图.

定理 6.8 若 A 是强对角占优,或者 A 弱对角占优且不可约,则

- (1) Jacobi 迭代、Seidel 迭代一定收敛.
- (2) 若松弛因子ω满足0<ω≤1,则松弛迭代一定收敛.

证明 现以 Jacobi 迭代为例予以证明, Seidel 迭代同样适用.

采用反证法. 若 Jacobi 迭代不收敛,即存在一个 λ_0 , $|\lambda_0| \ge 1$, 使

$$\begin{vmatrix} \lambda_{0}a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \lambda_{0}a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & \lambda_{0}a_{nn} \end{vmatrix} = 0$$
 (6. 16)

注意到

$$\left|\lambda_{0}\right| \cdot \left|a_{ii}\right| \geqslant \left|a_{ii}\right| \geqslant \sum_{i \neq i} \left|a_{ij}\right| \quad (i = 1, 2, \dots, n)$$

因此(6.16)式构成的矩阵的对角占优性与 A 矩阵相同,因此(6.16)式不可能成立. 说明 Jacobi 迭代收敛.

定理 6.9 松弛法收敛的必要条件是 0 < ω < 2.

证明 因为松弛法收敛,故有 $\rho(B_{\omega})$ < 1. 由矩阵 B_{ω} 的特征值的性质可知

$$|\det \pmb{B}_{\omega}| = |\lambda_1 \lambda_2 \cdots \lambda_n| < 1$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是矩阵 \boldsymbol{B}_{ω} 的n个特征值. 而

$$\boldsymbol{B}_{\omega} = (\boldsymbol{I} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{I} + \omega \boldsymbol{U}]$$

所以 即

$$|\det \boldsymbol{B}_{\omega}| = |(1 - \omega)^{n}| = |\lambda_{1}\lambda_{2}\cdots\lambda_{n}| < 1$$
$$|1 - \omega| < 1, \ 0 < \omega < 2.$$

上述定理说明,对于任何系数矩阵 A,若要松弛法收敛,其松弛因子 $\omega \in (0,2)$.然而,当松弛因子满足条件 $0 < \omega < 2$ 时,并不是对所有系数矩阵 A 松弛法均收敛.

定理 6.10 若矩阵 A 对称且对角线元素均为正实数,则当 0 < ω < 2 时,松弛 法收敛的充要条件是 A 正定.

证明 松弛法的迭代矩阵

$$\boldsymbol{B}_{\omega} = (\boldsymbol{I} - \omega \boldsymbol{L})^{-1} [(1 - \omega)\boldsymbol{I} + \omega \boldsymbol{U}]$$

设其特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,相应的特征向量为 Y_1, Y_2, \cdots, Y_n ,则

$$[(1-\omega)\mathbf{I} + \omega \mathbf{U}]\mathbf{Y}_k = \lambda_k (\mathbf{I} - \omega \mathbf{L})\mathbf{Y}_k$$

两边用 Y_k 作内积得

$$\lambda_{k} = \frac{(1 - \omega)(Y_{k}, Y_{k}) + \omega(UY_{k}, Y_{k})}{(Y_{k}, Y_{k}) - \omega(LY_{k}, Y_{k})}$$

$$(6.17)$$

设 $(LY_k, Y_k) = \alpha_k + \beta_k i, (Y_k, Y_k) = a.$ 则

$$(\boldsymbol{U}\boldsymbol{Y}_{k},\boldsymbol{Y}_{k}) = (\boldsymbol{L}^{\mathrm{T}}\boldsymbol{Y}_{k},\boldsymbol{Y}_{k}) = (\boldsymbol{Y}_{k},\boldsymbol{L}\boldsymbol{Y}_{k}) = \alpha_{k} - \beta_{k}i$$

将上面结果代入(6.17)式得

$$\lambda_{k} = \frac{(1 - \omega) a + \omega \alpha_{k} - \omega \beta_{k} i}{(a - \omega \alpha_{k}) - i \omega \beta_{k}}$$

$$|\lambda_{k}|^{2} = \frac{\left[(1 - \omega) a + \omega \alpha_{k}\right]^{2} + \omega^{2} \beta_{k}^{2}}{(a - \omega \alpha_{k})^{2} + \omega^{2} \beta_{k}^{2}}$$
(6.18)

由于A正定,则 $A_1 = D^{-1}A$ 对称正定.

$$(\boldsymbol{A}_{1}\boldsymbol{Y}_{k},\boldsymbol{Y}_{k}) = ((\boldsymbol{I} - \boldsymbol{L} - \boldsymbol{U})\boldsymbol{Y}_{k},\boldsymbol{Y}_{k}) = a - 2\alpha_{k} > 0$$

所以 $[(1-\omega)a+\omega\alpha_k]^2-(a-\omega\alpha_k)^2=(2-\omega)\omega a(2\alpha_k-a)<0$

即(6.18)式中的分子[$(1-\omega)a + \omega\alpha_k$]² + $\omega^2\beta_k^2$ 小于分母($a-\omega\alpha_k$)² + $\omega^2\beta_k^2$,于是 $|\lambda_k|^2 < 1, \rho(\mathbf{B}_{\omega}) < 1$,松弛迭代法收敛.

松弛迭代法的收敛速度与松弛因子ω有关.下面举一个例子.

例 6 - 3 取初始向量 $X^{(0)} = (1,1,1)^{\mathsf{T}}$,用 SOR 法求解方程组

$$\begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 24 \\ 30 \\ -24 \end{bmatrix}$$

使 $|X^{(k+1)} - X^{(k)}| < 10^{-5}$. 该方程组的精确解为 $X^* = (3,4,-5)$.

解 SOR 法的迭代公式为

$$\begin{cases} x_1^{(k+1)} = (1 - \omega)x_1^{(k)} + \frac{\omega}{4} [24 - 3x_2^{(k)}] \\ x_2^{(k+1)} = (1 - \omega)x_2^{(k)} + \frac{\omega}{4} [30 - 3x_1^{(k+1)} + x_3^{(k)}] \\ x_3^{(k+1)} = (1 - \omega)x_3^{(k)} + \frac{\omega}{4} [-24 + x_2^{(k+1)}] \end{cases}$$

分别取 $\omega = 1.8, \omega = 1.22$, 迭代结果如表 6-3 和表 6-4 所示.

-	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	
0	1	1	1	
1	8. 65	1. 472 4	- 10. 937 37	
2	1. 892 126	4. 845 811	0. 130 513 5	
3	2. 744 454	5. 977 064	-8.21429	
4	0. 535 393 2	4. 298 935	-2. 293 696	
÷	:	:	:	
64	3. 000 001	3. 999 999	-4. 999 996	
65	3. 000 001	4. 000 001	-5.000 002	

表 6-3 $\omega=1.8$ 时的迭代结果

	表 6 - 4	$\omega = 1$	22 时的	读代结果
--	---------	--------------	-------	------

\overline{k}	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
0	1	1	1
1	6. 185	3. 575 732	- 6. 449 404
2	2. 687 512	3. 937 199	-4.700 285
3	3. 126 210	3. 989 747	-5.069 064
4	2. 981 615	3. 998 013	-4. 985 412
:	:	: :	:
10	3. 000 000	3. 999 998	-4.999999
11	3. 000 002	4. 000 000	-5.000 000

从表 6-3、表 6-4 可以看到,在相同的初始条件下,ω=1.8 时 SOR 法迭代了 65 步,而 ω=1.22 时 SOR 法仅迭代了 11 次.

使松弛法收敛最快的松弛因子叫最优松弛因子,记为 ω。μ. 对于某些特殊类型

的矩阵,可以证明最优松弛因子为:

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \rho^2(\boldsymbol{B})}}$$

其中 $\rho(B)$ 是迭代矩阵的谱半径. 对一般的矩阵(即使是正定对称矩阵),目前尚无法确定 ω_{opt} 的理论值. 实际计算时,大部分由经验或通过试算来确定 ω_{opt} 的一个近似值.

定理 6.11 设

- ①A 为分块三对角阵,且 $a_{ii} \neq 0$;
- ②Jacobi 迭代的迭代矩阵 B 的特征值为实值,且 $0 < \rho(B) < 1$.

则

- (1) 当 0 < ω < 2 时, SOR 法迭代收敛;
- (2)SOR 法最优松弛因子

$$\omega_{\rm opt} = \frac{2}{1 + \sqrt{1 - \rho^2 (\mathbf{B})}}$$

练习与思考

1. 用简单迭代法, Seidel 迭代法和取 ω = 1.46 的超松弛迭代法解方程组

$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

并写出相应的迭代矩阵.

2. 已知方程组

$$\begin{bmatrix} 10 & -2 & -2 \\ -2 & 10 & -1 \\ -1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.5 \\ 1 \end{bmatrix}$$

- (1)构造简单迭代法和 Seidel 迭代法的迭代格式:
- (2)讨论这些迭代格式的收敛性.
- 3. 设有系数矩阵

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$

证明:

- (1)对系数矩阵 A,简单迭代法收敛,而 Seidel 迭代法不收敛;
- (2)对系数矩阵 B,简单迭代法收敛,而 Seidel 迭代法收敛.
- 4. 设常数 $a \neq 0$,试求 a 的取值范围 ,使得方程组

$$\begin{bmatrix} a & 1 & 3 \\ 1 & a & 2 \\ -3 & 2 & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

的简单迭代法关于任何初始向量均收敛.

5. 设 $\boldsymbol{B} \in \mathbf{R}^{n \times n}$, $\rho(\boldsymbol{B}) > 1$, 但 \boldsymbol{B} 有一个特征值满足 $|\lambda| < 1$. 试证明存在初始向量 $x^{(0)}$. 使得简单迭代

$$X^{(k+1)} = BX^{(k)} + f \quad (k = 0, 1, 2, \cdots)$$

关于此初始向量收敛.

6. 设 $A \in \mathbb{R}^{n \times n}$, 且对称正定, 其最小特征值和最大特征值分别是 λ_1 , λ_n . 试证 迭代法

$$\boldsymbol{X}^{(k+1)} = \boldsymbol{X}^{(k)} + \alpha(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{X}^{(k)})$$

收敛的充要条件是0<α<2/λ_n. 又问参数取何值时迭代矩阵的谱半径最小?

7. 对方程组

$$\begin{bmatrix} 1 & 2 \\ 0.3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

拟用迭代法

$$\boldsymbol{X}^{(k+1)} = \boldsymbol{X}^{(k)} + \alpha(\boldsymbol{A}\boldsymbol{X}^{(k)} - \boldsymbol{b})$$

求解. 试确定一个 α 的取值范围, 使得上述迭代公式收敛.