from sklearn.datasets import load_wine
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

dataset=load_wine()

df=pd.DataFrame(dataset['data'],columns=dataset['feature_names'])
df.head()

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	n
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	

df['Wine Quality']=dataset["target"]
df.head()

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	n
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	

dataset['target_names']
 array(['class_0', 'class_1', 'class_2'], dtype='<U7')</pre>

at wine name j=at wine quality j.replace(to_replace=[0,1,2],value=aataset[target_names]) df.head()

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	n
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	

df.tail()

С→

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids
173	13.71	5.65	2.45	20.5	95.0	1.68	0.61
174	13.40	3.91	2.48	23.0	102.0	1.80	0.75
175	13.27	4.28	2.26	20.0	120.0	1.59	0.69
176	13.17	2.59	2.37	20.0	120.0	1.65	0.68
177	14.13	4.10	2.74	24.5	96.0	2.05	0.76

from sklearn.model_selection import train_test_split

X=df.iloc[:,0:13]

Y=df.iloc[:,14:15]

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_size=0.20,random_state=1)

xtest.head()

		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids
1	61	13.69	3.26	2.54	20.0	107.0	1.83	0.56
1	17	12.42	1.61	2.19	22.5	108.0	2.00	2.09
	19	13.64	3.10	2.56	15.2	116.0	2.70	3.03

```
print("Xtest shape",xtest.shape)
print("Xtrain shape",xtrain.shape)
print("Ytrain shape",ytrain.shape)

    Xtest shape (36, 13)
    Xtrain shape (142, 13)
```

Ytrain shape (142, 1)

from sklearn.preprocessing import MinMaxScaler

```
scaler=MinMaxScaler()
xtrain_transform=scaler.fit_transform(xtrain)
xtest_transform=scaler.fit_transform(xtest)
```

xtrain transform[0:10]

```
array([[0.25526316, 0.1244898, 0.56684492, 0.63687151, 0.17391304,
       0.16206897, 0.19198312, 0.74
                                     , 0.38485804, 0.19795222,
       0.43103448, 0.50549451, 0.12268188],
       [0.44473684, 0.18571429, 0.44919786, 0.45810056, 0.17391304,
       0.42068966, 0.46202532, 0.26
                                     , 0.42902208, 0.22354949,
       0.52586207, 0.68498168, 0.31098431],
                          , 0.60962567, 0.66480447, 0.15217391,
       [0.27631579, 0.1
       0.54482759, 0.41139241, 0.6
                                         , 0.19873817, 0.13822526,
       0.32758621, 0.7032967, 0.07631954],
       [0.80789474, 0.22857143, 0.55614973, 0.45810056, 0.35869565,
       0.61034483, 0.5443038, 0.38
                                         , 0.6214511 , 0.41979522,
       0.44827586, 0.54212454, 0.55777461],
       [0.71315789, 0.15714286, 0.47593583, 0.32402235, 0.52173913,
                                     , 0.38170347, 0.38993174,
       0.55862069, 0.54008439, 0.16
       0.31896552, 0.70695971, 0.55777461
       [0.35263158, 0.00816327, 0.
                                                     , 0.19565217,
       0.34482759, 0.04852321, 0.3
                                         , 0.00315457, 0.05716724,
       0.43103448, 0.2014652, 0.17261056],
       [0.71052632, 0.70612245, 0.48128342, 0.66480447, 0.19565217,
       0.10344828, 0.02742616, 0.78
                                       , 0.23343849, 0.4556314 ,
       0.19827586, 0.17582418, 0.17261056],
       [0.83947368, 0.63061224, 0.61497326, 0.1452514, 0.63043478,
       0.69655172, 0.56962025, 0.14 , 0.52681388, 0.32593857,
       0.29310345, 0.82783883, 0.34379458],
       [0.83947368, 0.16326531, 0.5026738, 0.31843575, 0.52173913,
       0.76551724, 0.56118143, 0.26
                                         , 0.51104101, 0.43515358,
       0.3362069 , 0.74725275, 0.4935806 ],
       [0.53157895, 0.17755102, 0.39572193, 0.3575419, 0.40217391,
```

```
, 0.51104101, 0.32081911,
            0.69655172, 0.56118143, 0.3
            0.28448276, 0.76190476, 0.43295292]
from sklearn.neural network import MLPClassifier
xtest transform[0:10]
     array([[0.76767677, 0.65116279, 0.67521368, 0.44444444, 0.34328358,
            0.234375 , 0.02531646, 0.69230769, 0.
                                                      , 0.39422085,
            0.57831325, 0.23043478, 0.29797571],
            [0.34006734, 0.2248062, 0.37606838, 0.58333333, 0.35820896,
            0.32291667, 0.50949367, 0.38461538, 0.375 , 0.
            0.69879518, 0.72608696, 0.02672065],
            [0.75084175, 0.60981912, 0.69230769, 0.17777778, 0.47761194,
                      , 0.80696203, 0.05769231, 0.39814815, 0.31372549,
            0.57831325, 0.9
                               , 0.43157895],
            [0.26936027, 0.11627907, 0.
                                              , 0.26666667, 1.
                                              , 0.78703704, 0.08152735,
            0.24479167, 0.25316456, 0.
            0.96385542, 0.77391304, 0.32874494],
            [0.79461279, 0.2997416 , 0.79487179, 0.28333333, 0.46268657,
            0.84375 , 0.73101266, 0.48076923, 0.40740741, 0.4375645 ,
            0.78313253, 0.71304348, 0.86072874],
            [0.7003367, 0.73643411, 0.37606838, 0.41666667, 0.05970149,
                            , 0.84615385, 0.03703704, 0.37564499,
                      , 0.
            0.39759036, 0.23043478, 0.21700405],
                                              , 0.44444444, 0.28358209.
            [0.11784512, 0.50129199, 1.
            0.19270833, 0.49050633, 0.88461538, 0.11574074, 0.17956656,
            0.90361446, 0.52608696, 0.2388664 ],
                      , 0.29198966, 0.53846154, 0.
                                                          , 0.26865672,
                                                     , 0.56140351,
                            , 0.28846154, 1.
            1.
                      , 1.
            0.86746988, 0.74347826, 1.
            [0.31986532, 0.79844961, 0.53846154, 0.5
                                                         , 0.05970149,
            0.47916667, 0.13924051, 0.69230769, 0.111111111, 0.57688338,
            0.09638554, 0.12608696, 0.16842105],
            [0.44107744, 0.26098191, 0.45299145, 0.58333333, 0.
                      , 0.40506329, 0.65384615, 0.38425926, 0.12796698,
            0.48192771, 0.49130435, 0.14251012]])
model=MLPClassifier(hidden_layer_sizes=(300,200,100),alpha=0.0001,activation='relu',max_iter=
model.fit(xtrain transform,ytrain)
    /usr/local/lib/python3.7/dist-packages/sklearn/neural_network/_multilayer_perceptron.py
      y = column_or_1d(y, warn=True)
    MLPClassifier(hidden layer sizes=(300, 200, 100), max iter=300)
ypred=model.predict(xtest_transform)
from sklearn.metrics import accuracy score, confusion matrix
```

```
accuracy=accuracy_score(ytest,ypred)
print("accuracy is",accuracy)
```

accuracy is 0.97222222222222

cm=confusion_matrix(ytest,ypred)
cm

from sklearn.metrics import classification_report
cr=classification_report(ytest,ypred)

print(cr)

	precision	recall	f1-score	support
class_0	1.00	1.00	1.00	14
class_1	0.93	1.00	0.96	13
class_2	1.00	0.89	0.94	9
accuracy			0.97	36
macro avg	0.98	0.96	0.97	36
weighted avg	0.97	0.97	0.97	36

```
plt.plot(model.loss_curve_)
plt.xlabel("iteration")
plt.ylabel("loss")
```


✓ 0s completed at 10:46 AM

×