English Abstract of JP 63-092021 U

Publication date: June 14, 1988

Applicant: Masanori MISUMI

Fig. 2 shows an exhaust heat energy recovery apparatus for an internal combustion engine 1. The exhaust heat energy recovery apparatus comprises a Brayton cycle apparatus includes a compressor 4 for compressing a working fluid. The compressed working fluid fed from the compressor 4 to an evaporator 16 is heat by the engine 1. The compressor 4 is a vane type as shown in Fig. 3.

INFORMATION SHEET FOR IDS

Y/R: 960/216 O/R: P3P2004228US

LIST OF REFERENCES AND RELEVANCE

Concise explanation of relevance	June 14, 1988 Fig. 2 shows an exhaust heat energy recovery apparatus for an internal combustion engine 1. The exhaust heat energy recovery apparatus comprises a Brayton cycle apparatus includes a compressor 4 for compressing a working fluid. The compressed working fluid fed from the compressor 4 to an evaporator 16 is heat by the engine 1. The compressor 4 is a vane type as shown in Fig.3.
Country Publication date	June 14, 1988
Country	Japan
Document No.	JP 63-092021 U

19 日本国特許庁(JP)

①実用新案出願公開

母 公開実用新案公報(U)

昭63-92021

@Int_Cl_4

識別記号

庁内整理番号

❷公開 昭和63年(1988)6月14日

F 01 N 5/02 B 60 H 1/32

102

F-6706-3G B-7219-3L

審査請求 未請求 (全 頁)

❷考案の名称

エンジンの排熱回収装置

ூ実 顧 昭61-187147

❷出 願 昭61(1986)12月4日

砂考 案 者

三角

正法

広島県安芸郡府中町新地3番1号 マツダ株式会社内

⑫出 顧 人 マッダ株式会社

広島県安芸郡府中町新地3番1号

砂代 理 人 弁理士 前 田 弘

明 細 書

- 1. 考案の名称 エンジンの排熱回収装置
- 2. 実用新案登録請求の範囲
- (1) エンジンの出力軸に連結される圧縮機と、 該圧縮機の冷媒ガスを凝縮する凝縮器と、該凝 縮器で凝縮された冷媒を膨張させる膨張機構と、 車室に配置され、上記膨張機構の冷媒を蒸発さ せて車室内を冷却する蒸発器とを閉回路に形成 してなる車載クーラを備えるとともに、上記閉 回路の凝縮器と膨張機構との間には第1切換弁 が配置され、上記閉回路の圧縮機と蒸発器との 間には第2切換弁が配置され、該両切換弁は、 排熱回収用の流体ポンプと、排熱回収用の蒸発 器とを直列に接続した冷媒配管により互いに連 結されていて、上記第1及び第2切換弁は、上 記車載クーラの作動時には上記閉回路を形成す るよう切換わる一方、車載クーラの非作動時に は、上記凝縮器の冷媒を流体ポンプに流し、上 記排熱回収用の蒸発器の冷媒を圧縮機に流すよ

- 1 - 261

<u>ج</u>نہ

う切換わるものであることを特徴とするエンジンの排熱回収装置。

3. 考案の詳細な説明

(産業上の利用分野)

本考案は、エンジンの排熱を回収して有効利用 するようにしたエンジンの排熱回収装置の改良に 関する。

(従来の技術)

従来より、この種のエンジンの排熱回収装置として、例えば実開昭56-154503号公報に開示されるように、エンジンの排熱により冷媒を蒸発器と、エンジンの出力軸に連結エルション出力軸の回転駆動を補助する流体モータからの冷媒を凝縮する凝縮器と、該流体モータからの冷媒を膨張させる膨張機構からの冷媒を膨張させる膨張機構が多の冷媒を上記蒸発器に圧送する流体ポンプとを備え、該各機器を冷媒の循環可能に閉回路に形成して、いわゆるランキンサイクルを構成することにより、エンジンの排熱を回収して、

この排熱によりエンジンの回転駆動を補助して、 排熱の有効利用を図るようにしたものが知られて いる。

(考案が解決しようとする問題点)

しかるに、上記従来のものでは、ランキンサイクルの構成機器として、排熱回収用の蒸発器、流体モータ、凝縮器、膨張機構及び流体ポンプの多数の機器を要する関係上、これら機器を車両の狭いエンジンルーム内に収容するのは困難であるという感みがある。特に、昨今の如く排気還流装置や空調装置を装備したものでは、上記機器の収容スペースが大きく制限され、排熱回収システムの採用が困難である。

本考案は斯かる点に鑑みてなされたものであり、特に上記ランキンサイクルの構成機器が車載クーラの構成機器と共通する機能である点に着目し、その目的は、排熱回収に際し、車載クーラの構成機器の一部を利用して、ランキンサイクルを構成するようにすることにより、可及的に少ない機器でもって排熱回収を行い、よって該各機器を比較

.. السياليد

的容易にエンジンルーム内に収容して、排熱回収 システムの採用を容易にすることにある。

(問題点を解決するための手段)

上記目的を達成するため、本考案の解決手段は、 車載クーラを備えたエンジン、つまり第1図に示 すように、エンジンの出力軸 1 a に連結される圧 縮機4と、該圧縮機4の冷媒を凝縮する凝縮器5 と、該凝縮器5で凝縮された冷媒を膨張させる膨 張機構6と、車室に配置され、上記膨張機構6の 冷媒を蒸発させて車室内を冷却する蒸発器7とを 閉回路10に形成してなる車載クーラ2を備えた エンジンに対する排熱回収装置を前提とする。そ して、上記閉回路10の凝縮器5と膨張機構6と の間に第1切換弁18を配置すると共に、上記閉 回路10の圧縮機4と蒸発器7との間に第2切換 弁19を配置し、さらに該両切換弁18.19を、 排熱回収用の流体ポンプ17と、排熱回収用の蒸 発器16とを直列に接続した冷媒配管20により 互いに連結し、且つ上記第1及び第2切換弁18. 19を、上記車載クーラ2の作動時には上記閉回

路10を形成するよう切換える一方、車載クーラの非作動時には、上記凝縮器5の冷媒を流体ポンプ17に流し、上記排熱回収用の蒸発器16の冷媒を蒸気圧縮機4に流すよう切換える構成とした

(作用)

ものである。

以上の構成により、本考案では、車載クーラ2 の作動時には、第1及び第2の切換弁18,19 が車室内冷却用の閉回路10を形成するよう切換 って、圧縮機4からの冷媒が順次凝縮器5、膨張 機構6及び蒸発器7を経て再び圧縮機4に戻るこ とを繰返すので、上記車室内の蒸発器7で車室内 の空気から吸熱した熱量が上記凝縮器5で外気に 放熱されるのが繰返されて、車室内が良好に冷却 される。

一方、車載クーラの非作動時には、上記第1及び第2切換弁18,19が切換って、上記膨張機構6及び蒸発器7には冷媒は流通せず、冷媒は、流体ポンプ17から圧送された後、順次排熱回収用の蒸発器16から、上記圧縮機4及び凝縮器5

----ارد ----ارد

を経て再び流体ポンプ17に戻ることを繰返すので、排熱回収用の蒸発器16でエンジン排熱が吸熱回収された後、該エンジン排熱が圧縮機4に流入して、該エンジン排熱により該圧縮機4が逆にモータとして作用して、エンジン出力軸1aの回転駆動が補助され、その排熱の有効利用が図られる。

その場合、エンジンの排熱回収時には、車載クーラ2の圧縮機4及び凝縮器5が利用されていて、排熱回収専用の機器としては流体ポンプ17及び排熱回収用の蒸発器16のみであるので、その分、排熱回収用機器が少なくなって、車両の狭いエンジンルーム内にも該各機器を比較的容易に収容することができ、排熱回収システムの採用が容易になる。

(実施例)

以下、本考案の実施例を第2図以下の図面に基 いて説明する。

第2図は本考案に係るエンジンの排熱回収装置 の全体構成を示し、1はエンジン、2は該エンジ

الله الله

ンに装備された車載クーラであって、該車載クー ラ2は、エンジン1の出力軸1a にベルト3で駆 動可能に連結された圧縮機4と、エンジンルーム 内に配置された凝縮器5と、膨張機構6と、車室 内に配置される蒸発器7とを備え、上記凝縮器5 は、冷媒の熱量をエンジンルーム内の空気(外気)に放熱して該冷媒を凝縮する作用を行うもので あり、上記膨張機構6は、冷媒を膨張させる機能 を有し、上記蒸発器7は、その近傍に送風機8を 有し、該送風機8で吸込まれた車室内の空気の有 する熱量を冷媒に与えて該冷媒を蒸発させると同 時に該車室内の空気を冷して、この冷風を送風機 8から車室内に吹出させるよう機能するものであ る。そして、上記4台の機器4~7は、各々冷媒 配管9により冷媒の循環可能に接続されて車室内 冷却用の閉回路10が形成されていて、圧縮機4 からの冷媒を順次凝縮器5、膨張機構6及び蒸発 器7を経て再び圧縮機4に戻して循環させるよう に構成されている。尚、上記車室内冷却用の閉回 路10には、凝縮器5と膨張機構6との間に受液

器11が介設されている。

また、上記エンジン1には、その排気管15に添設されてエンジン排熱を吸熱して冷媒を蒸発させる排熱回収用の蒸発器16が設けられているとともに、該排熱回収用の蒸発器16には、該蒸発器16に対して冷媒を圧送する排熱回収用の流体ポンプ17が接続されている。

そして、上記室内冷却用の閉回路10には、凝縮器5と膨張機構6との間の冷媒配管9に三方弁よりなる第1切換弁18が配置されているとともに、蒸発器7と圧縮機4との間の冷媒配管9には、同様に三方弁よりなる第2切換弁19が配置されている。第2切換弁19は上記排熱回収用の蒸発器16と流体ポンプ17とを直列に接続した冷媒配管20により冷媒の流通可能に接続されている。而して、上記第1切換弁18は、準載クーラ2の作動時には、凝縮器5からの冷媒を圧縮機4に流すように切換わって、車室内冷却用の閉回路10を形成するように切換

わる一方、車載クーラ2の非作動時には、第1切換弁18は、蒸発器7への冷媒配管9との連通を断って凝縮器5からの冷媒を上記流体ポンプ17に流し、第2切換弁18は、蒸発器7からの冷媒配管9との連通を断って排熱回収用の蒸発器16からの冷媒を圧縮機4に流通させるように切換わるものである。

尚、上記圧縮機4は、第3図に示すように、エンジン出力軸1aに連結されたロータ4aと、該コータ4aの外周に出没自在に設けた複数個(第3図では4個)のベーン4b、4b…により容積では、4c…とを備え、中では、エンジン出力軸1aのの冷燥を圧縮性出する一方、中域を発達4c内の海には、非熱回収用の蒸発器16からの冷燥をに流入して、上記ロータ4aを逆には、排熱回収用の蒸発器16からの冷燥が各冷媒室4c内に流入して、上記ロータ4aを逆には、エンジン出力軸1aの回転駆動することにより、エンジン出力軸1aの回転駆動を補助するよう、圧縮機としての機能とを併有するもので構成

されている。

したがって、上記実施例においては、車載クー ラ2の作動時には、第1及び第2の切換弁18. 19が切換って、車室内冷却用の閉回路10が形 成されて、圧縮機4からの冷媒が順次凝縮器5、 膨張機構6及び蒸発器7を経て再び圧縮機4に戻 るのが繰返されるので、例えば第4図(ィ) に示 す如く、凝縮器5で凝縮されて液化した冷媒(図 中①で示す)は、膨張機構6を経て断熱膨張して 圧力と温度とが下がり、霧状(図中②で示す)に なって車室内の蒸発器7に流入する。その後、該 蒸発器7で室内空気から熱量ロ」を吸熱して室内 空気を冷却して(室内冷房して)気化し、等温膨 張して過熱蒸気(図中③で示す)となり、圧縮機 4に流入する。そして、圧縮機4は、エンジン出 力軸1a からの動力により熱量AL1 の仕事を行 って冷媒を断熱圧縮して、髙温高圧のガス状態(図中④で示す)にし、この冷媒ガスが凝縮器5に 流入して冷却されて、外気に熱量口2を放熱して、 初期状態に戻る冷凍サイクルを繰返す。

一方、上記車載クーラ2の非作動時には、第1 及び第2切換弁18、19が切換って、膨張機構 6及び蒸発器7への冷媒の流通が阻止され、冷媒 は今度は、流体ポンプ17から排熱回収用の蒸発 器16を経て圧縮機4に流入した後、室内冷却用 の凝縮器5から再び流体ポンプ17に循環するの が繰返される。このことにより、冷媒の熱量の吸 熱及び放熱作用は、第4図(ロ)に示す如く、室 内冷却用の凝縮器5からの液冷媒(図中Aで示す) は流体ポンプ17に流入し、該流体ポンプ17 で熱量AL3の仕事分だけ断熱圧縮され、加圧さ れた状態(図中Bで示す)で排熱回収用の蒸発器 16に流入し、その後、該蒸発器16でエンジン 1から熱量Q1 の熱量を奪って排熱回収し、等圧 加熱されて(図中Cで示す)高圧高温の過熱蒸気 になる。そして、この過熱蒸気が圧縮機4に流入 して、該圧縮機4で熱量AL2の仕事量をエンジ ン出力軸 1a に与えて、該エンジン出力軸 1a の 回転駆動を補助して燃費性の向上が図られ、エン ジン排熱の有効利用が図られる。その後、該圧縮

機4の冷媒は上記仕事に伴い断熱膨張して(図中 Dで示す)湿り蒸気の状態になった後、凝縮器5 で外気に熱量Q2の熱量を放熱し、冷却されて図 中Aの飽和液の状態に戻るランキンサイクルを繰 返す。

その場合、エンジン排熱の回収時には、室内冷却用の圧縮機4及び凝縮器5が利用されていて、排熱回収用の機器としては、別途に蒸発器16及び流体ポンプ17のみが使用されているので、可及的に少ない機器でもって排熱回収を行って、該各機器16.17を狭いエンジンルーム内にも比較的容易に収容することができ、排熱回収システムを容易に採用することができる。

(考案の効果)

以上説明したように、本考案のエンジンの排熱 回収装置によれば、既存の車載クーラの一部の機 器を利用して、エンジン排熱を回収するようにし たので、可及的に少ない機器でもって排熱回収作 用を行って、該各構成機器を比較的容易にエンジ ンルーム内に収容でき、排熱回収システムの採用 を容易にすることができる。

4. 図面の簡単な説明

第1図は本考案の構成を示すブロック図である。 第2図ないし第4図は本考案の実施例を示し、第 2図は全体概略構成図、第3図は圧縮機の具体的 構成を示す図、第4図(イ)及び(ロ)は各々室 内冷却時の冷凍サイクル及び排熱回収時のランキ ンサイクルを示す図である。

1…エンジン、1a …エンジン出力軸、2…車 載クーラ、4…圧縮機、5…凝縮器、6…膨張機 構、7…蒸発器、10…閉回路、15…排気管、 16…排熱回収用蒸発器、17…流体ポンプ、1 8…第1切換弁、19…第2切換弁、20…冷媒 配管。

実用新案登録出願人 マ ツ ダ 株式会社 代 理 人 弁 理 士 前 田 弘

524

実踢 63 - 920 21

汉余社 棌 田 爽用新築藍像山閣人

実用新深登録出限人マッダル

∜ ₩

·特丽祖 "

276 実用63-92021 実用新案登録出版人 マッグ株式会社 代 理 人 前 田 弘