Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2020

Motivation

- We know: In finite strategic games, mixed-strategy Nash equilibria are guaranteed to exist.
- We don't know: How to systematically find them?
- Challenge: There are infinitely many mixed strategy profiles to consider. How to do this in finite time?

This section:

Computation of mixed-strategy Nash equilibria for finite zero-sum games.

Next section:

Computation of mixed-strategy Nash equilibria for general finite two player games. We start with finite zero-sum games for two reasons:

- They are easier to solve than general finite two-player games.
- Understanding how to solve finite zero-sum games facilitates understanding how to solve general finite two-player games.

Mixed-Strategy Nash Equilibria in Finite Zero-Sum Games

In the following, we will exploit the zero-sum property of a game *G* when searching for mixed-strategy Nash equilibria. For that, we need the following result.

Proposition

Let G be a finite zero-sum game. Then the mixed extension of G is also a zero-sum game.

Proof.

Homework.

Let G be a finite zero-sum game with mixed extension G'.

Then we know the following:

- Previous proposition implies: G' is also a zero-sum game.
- 2 Nash's theorem implies: G' has a Nash equilibrium.
- Maximinimizer theorem + $\boxed{1}$ + $\boxed{2}$ implies: Nash equilibria and pairs of maximinimizers in G' are the same.

Consequence:

When looking for mixed-strategy Nash equilibria in G, it is sufficient to look for pairs of maximinimizers in G'.

Method: Linear Programming

Approach:

- Let $G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$ be a finite zero-sum game:
 - $N = \{1,2\}.$
 - \blacksquare A_1 and A_2 are finite.
 - $U_1(\alpha, \beta) = -U_2(\alpha, \beta)$ for all $\alpha \in \Delta(A_1), \beta \in \Delta(A_2)$.
- Player 1 looks for a maximinimizer mixed strategy α .
- For each possible α of player 1:
 - Determine expected utility against best response of pl. 2. (Only need to consider finitely many pure candidates for best responses because of Support Lemma).
 - Maximize expected utility over all possible α .

- Result: maximinimizer α for player 1 in G'(= Nash equilibrium strategy for player 1)
- Analogously: obtain maximinimizer β for player 2 in G' (= Nash equilibrium strategy for player 2)
- With maximinimizer theorem: we can combine α and β into a Nash equilibrium.

"For each possible α of player 1, determine expected utility against best response of player 2, and maximize."

translates to the following LP:

Maximize
$$u$$
 subject to $lpha(a) \geq 0$ for all $a \in A_1$ $\sum_{a \in A_1} lpha(a) = 1$ $\sum_{a \in A_1} lpha(a) \cdot u_1(a,b) \geq u$ for all $b \in A_2$ $u \in A_1$

Note: Each $\alpha(a)$ is a single LP variable, and so is u. The values $u_1(a,b)$ are constant coefficients.

Linear Program Encoding

Example (Matching pennies)

	Н	Τ		
Н	1,-1	-1, 1		
Т	-1, 1	1,-1		

Linear program for player 1:

Maximize *u* subject to the constraints

$$\begin{split} \alpha(H) \geq 0, \ \alpha(T) \geq 0, \ \alpha(H) + \alpha(T) = 1, \\ \alpha(H) \cdot u_1(H,H) + \alpha(T) \cdot u_1(T,H) = \alpha(H) - \alpha(T) \geq u, \\ \alpha(H) \cdot u_1(H,T) + \alpha(T) \cdot u_1(T,T) = -\alpha(H) + \alpha(T) \geq u. \end{split}$$

Solution: $\alpha(H) = \alpha(T) = 1/2, u = 0.$

Theorem

A mixed strategy α is a maximinimizer with payoff u if and only if it is a solution to the LP encoding over α and u.

Proof.

By construction.

Similarly with β and ν for the opposite player.

Linear Program Encoding

Resulting LPs can be solved using off-the-shelf LP solver, e.g.:

- lp_solve
- CLP
- GLPK
- CPLEX
- gurobi

- Remark: There is an alternative encoding based on the observation that in zero-sum games that have a Nash equilibrium, maximinimization and minimaximization yield the same result.
- Idea: Formulate linear program with inequalities

$$U_1(a,\beta) \le u$$
 for all $a \in A_1$

and minimize u. Analogously for β .

Summary

Summary:

- Computing mixed-strategy Nash equilibria in finite zero-sum games can be reduced to solving certain linear programs.
- Some theory is required to justify the reduction: Nash's theorem, maximinimizer theorem, support lemma.
- Resulting LPs are of linear size.
 - → polynomial-time Nash equilibrium computation

Software:

- Gambit (http://www.gambit-project.org) can be used to compute Nash equilibria.
- It also has LP solving built-in as one of the solution methods.

3. Nash Equilibrium Computation Algorithms3.2. General Finite Two-Player Games

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2020

Motivation

- We know: In finite strategic games, mixed-strategy Nash equilibria are guaranteed to exist.
- We don't know: How to systematically find them?
- Challenge: There are infinitely many mixed strategy profiles to consider. How to do this in finite time?

Previous section:

Computation of mixed-strategy Nash equilibria for finite zero-sum games.

This section:

Computation of mixed-strategy Nash equilibria for general finite two player games.

- For general finite two-player games, the LP approach does not work.
- Instead, use instances of the linear complementarity problem (LCP):
 - Linear (in-)equalities as with LPs.
 - Additional constraints of the form $x_i \cdot y_i = 0$ (or equivalently $x_i = 0 \lor y_i = 0$) for variables $X = \{x_1, \dots, x_k\}$ and $Y = \{y_1, \dots, y_k\}$, and $i \in \{1, \dots, k\}$.
 - no objective function.
- With LCPs, we can compute Nash equilibria for arbitrary finite two-player games.

General Finite Two-Player Games

Let A_1 and A_2 be finite and let (α, β) be a Nash equilibrium with payoff profile (u, v). Then consider this LCP encoding:

$$u - U_1(a, \beta) \ge 0$$
 for all $a \in A_1$ (1)

$$v - U_2(\alpha, b) \ge 0$$
 for all $b \in A_2$ (2)

$$\alpha(a) \cdot (u - U_1(a, \beta)) = 0 \quad \text{for all } a \in A_1$$
 (3)

$$\beta(b) \cdot (v - U_2(\alpha, b)) = 0$$
 for all $b \in A_2$ (4)

$$\alpha(a) \ge 0$$
 for all $a \in A_1$ (5)

$$\sum_{a \in A_1} \alpha(a) = 1 \tag{6}$$

$$\beta(b) \ge 0$$
 for all $b \in A_2$ (7)

$$\sum_{b \in A_0} \beta(b) = 1 \tag{8}$$

Remarks about the encoding:

■ In (3) and (4): for instance,

$$\alpha(a)\cdot(u-U_1(a,\beta))=0$$

if and only if

$$\alpha(a) = 0$$
 or $u - U_1(a, \beta) = 0$.

This holds in every Nash equilibrium, because:

- if $a \notin supp(\alpha)$, then $\alpha(a) = 0$, and
- if $a \in supp(\alpha)$, then $a \in B_1(\beta)$, thus $U_1(a,\beta) = u$.
- With additional variables, the above LCP formulation can be transformed into LCP normal form.

Theorem

A mixed strategy profile (α, β) with payoff profile (u, v) is a Nash equilibrium if and only if it is a solution to the LCP encoding over (α, β) and (u, v).

Proof.

- Nash equilibria are solutions to the LCP: Obvious because of the support lemma.
- Solutions to the LCP are Nash equilibria: Let (α, β, u, v) be a solution to the LCP. Because of (5)–(8), α and β are mixed strategies.

Proof (ctd.)

Solutions to the LCP are Nash equilibria (ctd.): Because of (1), u is at least the maximal payoff over all possible pure responses, and because of (3), u is exactly the maximal payoff.

If $\alpha(a) > 0$, then, because of (3), the payoff for player 1 against β is u.

The linearity of the expected utility implies that α is a best response to β .

Analogously, we can show that β is a best response to α and hence (α, β) is a Nash equilibrium with payoff profile (u, v).

Naïve algorithm:

Enumerate all $(2^n - 1) \cdot (2^m - 1)$ possible pairs of support sets.

For each such pair $(supp(\alpha), supp(\beta))$:

- Convert the LCP into an LP:
 - Linear (in-)equalities are preserved.
 - Constraints of the form $\alpha(a) \cdot (u U_1(a, \beta)) = 0$ are replaced by a new linear equality:

■
$$u - U_1(a, \beta) = 0$$
, if $a \in supp(\alpha)$, and

$$\blacksquare$$
 $\alpha(a) = 0$, otherwise,

Analogously for $\beta(b) \cdot (v - U_2(\alpha, b)) = 0$.

- Objective function: maximize constant zero function.
- Apply solution algorithm for LPs to the transformed program.

- Runtime of the naïve algorithm: $O(p(n+m) \cdot 2^{n+m})$, where p is some polynomial.
- Better in practice: Lemke-Howson algorithm.
- Complexity:
 - unknown whether LcpSolve \in **P**.
 - LcpSolve ∈ **NP** is clear (naïve algorithm can be seen as a nondeterministic polynomial-time algorithm).

- This section: Computation of mixed-strategy Nash equilibria for general finite two player games using linear complementarity problem.

3. Nash Equilibrium Computation Algorithms

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel and Robert Mattmüller

Summer semester 2020

Appendix:

In this appendix, we briefly discuss linear programming. (We need it to find Nash equilibria.)

Goal of linear programming:

Solving a system of linear inequalities over *n* real-valued variables while optimizing some linear objective function.

Example

Production of two sorts of items with time requirements and profit per item. Objective: Maximize profit.

	Cutting	Assembly	Postproc.	Profit per item
(x) sort 1	25	60	68	30
(y) sort 2	75	60	34	40
per day	≤ 450	≤ 480	≤ 476	maximize!

Goal: Find numbers of pieces *x* of sort 1 and *y* of sort 2 to be produced per day such that the resource constraints are met and the objective function is maximized.

(1)

$$x \ge 0, y \ge 0$$

$$25x + 75y \le 450$$
 (or $y \le 6 - 1/3 x$) (2)

$$60x + 60y \le 480$$
 (or $y \le 8 - x$) (3)

$$68x + 34y \le 476$$
 (or $y \le 14 - 2x$) (4)

$$maximize z = 30x + 40y (5)$$

- Inequalities (1)–(4): Admissible solutions (They form a convex set in \mathbb{R}^2 .)
- Line (5): Objective function

_

Definition (Linear program)

A linear program (LP) in standard from consists of

- \blacksquare *n* real-valued variables x_i ; *n* coefficients b_i ;
- *m* constants c_i ; $n \cdot m$ coefficients a_{ii} ;
- m constraints of the form

$$c_j \leq \sum_{i=1}^n a_{ij} x_i,$$

and an objective function to be minimized ($x_i \ge 0$)

$$\sum_{i=1}^n b_i x_i.$$

Solution of an LP:

assignment of values to the x_i satisfying the constraints and minimizing the objective function.

Remarks:

- Maximization instead of minimization: easy, just change the signs of all the b_i 's, i = 1,...,n.
- Equalities instead of inequalities: $x + y \le c$ if and only if there is a $z \ge 0$ such that x + y + z = c (z is called a slack variable).

Solution algorithms:

- Usually, one uses the simplex algorithm (which is worst-case exponential!).
- There are also polynomial-time algorithms such as interior-point or ellipsoid algorithms.

Tools and libraries:

- lp_solve
- CLP
- GLPK
- CPLEX
- gurobi