МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Вариант № 26

Студент гр.1381	Хомутинников Н.А.
Преподаватель	Ефремов М. А.

Санкт-Петербург

Цель работы.

Изучить представление и обработку целых чисел на языке Ассемблер. Научиться организовывать ветвящиеся процессы.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a, b, i) и i2 = f2(a, b, i);
- b) значения результирующей функции res = f3(i1, i2, k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1, n2, n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант №26

/ 2*(i+	1)-4, при а>b	/ -(6*i+8), при a>b	/ min (i1, i2), при k=0
f6 = <	*.4\	$f8 = \langle 2*(1) \rangle$	$f1 = \langle (1, 2), (1, 2$
\ 5-3*(i+1), при a<=b	$\setminus 9-3*(i+1)$, при a<=b	\ max (i1, i2) при k!=0

Выполнение работы.

- 1. Объявлена упрощенная модель сегмантации типа SMALL. Под стек отведено 256 байт. Исходный код программы см. в приложении А.
 - 2. В сегменте данных (.data) были объявлены однобайтные переменные a, b, i, k, i1, i2, res.
- 3. В сегменте кода (.code) адрес сегмента данных помещается в регистр ds, после чего начинается работа с функциями. Были использованы регистры al, bl, cl, dl, ах. Для выполнения задания при реализации функций использовались следующие команды:
 - 1) JMP (JUMP) команда дальнего или ближнего перехода к метке

- 2) JL (Jump if less) команда, выполняющая короткий переход к метке, если при сравнении командой стр первый операнд меньше второго.
- 3) JLE (Jump if less or equal) команда, выполняющая короткий переход, если при сравнении командой стр первый операнд меньше или равен второму.
- 4) JNE (Jump if not equal) команда, выполняющая короткий переход, если при сравнении командой стр первый операнд не равен второму.
- 5) JE (Jump if equal) команда, выполняющая короткий переход, если при сравнении командой стр первый операнд равен второму.
 - 6) NEG меняет знак числа

Тестирование.

Чтобы проверить корректность работы программы, было проведено три 1. Результаты работы программы при a=5; b=3; i=10; k=0 представлены в табл.1.

i1	i2	res	Итог
12 (18)	BC (-68)	BC (-68)	Верно

Таблица 1 – Результаты первого теста

2. Результаты работы программы при a=3; b=5; i=10; k=0 представлены в табл.2.

i1	i2	res	Итог
E4 (-28)	EE (-18)	E4 (-28)	Верно

Таблица 2 – Результаты второго теста

3. Результаты работы программы при a=15; b=15; i=10; k=1 представлены в табл.3.

i1	i2	res	Итог
E4 (-28)	EE (-18)	EE (-18)	Верно

Таблица 3 – Результаты третьего теста

Выводы.

В ходе выполнения лабораторной работы было изучено представление и обработка целых чисел, и организация ветвящихся процессов. Для выполнения задания была написана программа, которая вычисляет значения функций согласно заданным условиям.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММ

Название файла: lab3.asm

```
DOSSEG
.MODEL SMALL
.STACK 100H
.DATA
    a db 5
   b db 3
   i db 10
   k db 0
    i1 db ?
    i2 db ?
    res db ?
.CODE
    mov ax, @data
    mov ds, ax
    mov al, a
    cmp al, b
    jle another
; f6 1 (2*(i+1)-4)
    mov bl, i
    add bl, 1
    mov ax, 2
    mul bl
    sub al, 4
    mov i1, al
;f8 1 (-(6*i+8))
    mov bl, i
    mov ax, 6
    mul bl
    add al, 8
    neg al
    mov i2, al
    cmp k, 0
    jmp f1 1
    another:
;f6 2 (5-3*(i+1))
    mov bl, i
```

```
add bl, 1
    mov ax, 3
    mul bl
    neg al
    add al, 5
    mov i1, al
;f8 2 (9-3*(i-1))
    mov bl, i
    sub bl, 1
    mov ax, 3
    mul bl
    neg al
    add al, 9
    mov i2, al
    jmp f1 1
    f1 1:
;min(i1, i2)
    mov al, i1
    mov bl, i2
    mov cl, k
    cmp k, 0
    jne f1_2
    cmp al, bl
    jl min
    je equal
    mov dl, i2
    jmp ending
    f1 2:
;max(i1, i2)
    mov al, i1
    mov bl, i2
    cmp bl, al
    jg max
    je equal
    mov dl, i1
    jmp ending
    min:
    mov dl, i1
    mov res, dl
    jmp ending
    equal:
    mov dl, i1
    mov res, dl
    jmp ending
    max:
    mov dl, i2
```

```
mov res, dl
jmp ending
ending:
mov ah, 4ch
int 21h
```

END

Название файла: lab3.lst

```
Microsoft (R) Macro Assembler Version 5.10
                                                         12/4/22
02:43:07
                                                          Page 1-
1
                   DOSSEG
                   .MODEL SMALL
                   .STACK 100H
                   .DATA
 0000 05
                      a db 5
                      b db 3
 0001 03
 0002 OA
                      i db 10
                      k db 0
 0003 00
                     il db ?
 0004 00
                      i2 db ?
 0005 00
 0006 00
                      res db ?
                  . CODE
                           mov ax, @data
 0000 B8 ---- R
                           mov ds, ax
mov al, a
 0003 8E D8
 0005 A0 0000 R
 0008 3A 06 0001 R
                           cmp al, b
 000C 7E 29
                            jle another
                  ;f6_1 (2*(i+1)-4)
 000E 8A 1E 0002 R — mov bl, i
 0012 80 C3 01
                                add bl, 1
 0015 B8 0002
                           mov ax, 2
 0018 F6 E3
                            mul bl
 001A 2C 04
                            sub al, 4
                            mov il, al
 001C A2 0004 R
                   ;f8 1 (-(6*i+8))
 001F 8A 1E 0002 R
                           mov bl, i
7
```

```
      0023
      B8 0006
      mov ax, 6

      0026
      F6 E3
      mul bl

      0028
      04 08
      add al, 8

                                              add al, 8
neg al
mov i2, al
0028 04 08
002A F6 D8
002C A2 0005 R
002F 80 3E 0003 R 00
                                                       cmp k, 0
jmp f1_1
0034 EB 2A 90
0037
                                                 another:
                 ;f6_2 (5-3*(i+1))
0037 8A 1E 0002 R mov bl, i
0037 ØA IL 000
003B 80 C3 01
                                                 add bl, 1
003E B8 0003
                                               mov ax, 3
0041 F6 E3
                                                mul bl

      0043
      F6 D8
      neg al

      0045
      04 05
      add al, 5

      0047
      A2 0004 R
      mov i1, al

      ;f8_2
      (9-3*(i-1))

      004A
      8A 1E 0002 R
      mov bl, i

0043 F6 D8
```

2

```
004E 80 EB 01
                                       sub bl, 1
                              mov ax, 3
0051 B8 0003
0054 F6 E3
                                 mul bl
0056 F6 D8
                                neg al
add al, 9
0058 04 09
                                 mov i2, al
005A A2 0005 R
005D EB 01 90
                                       jmp fl 1
0060
                                  f1 1:
                     ;min(i1, i2)
                                mov al, i1
0060 A0 0004 R
                                mov bl, i2

mov cl, k

cmp k, 0

jne f1_2
0063 8A 1E 0005 R
0067 8A 0E 0003 R
006B 80 3E 0003 R 00
0070 75 0D
0072 3A C3
                                 cmp al, bl
                                 jl min
0074 7C 1D
                           je equal
mov dl, i2
0076 74 26
0078 8A 16 0005 R
007C EB 36 90
                                       jmp ending
007F
                                  f1 2:
                      ;max(i1, i2)
                               mov al, i1
mov bl, i2
007F A0 0004 R
0082 8A 1E 0005 R
0086 3A D8
                                 cmp bl, al
0088 7F 1F
                                  jg max

      008A
      74 12
      je equal

      008C
      8A 16 0004 R
      mov dl, i1

0090 EB 22 90
                                       jmp ending
0093
                                  min:

      0093
      8A 16 0004 R
      mov dl, i1

      0097
      88 16 0006 R
      mov res, dl

009B EB 17 90
                                        jmp ending
009E
                                  equal:
009E 8A 16 0004 R mov dl, i1
00A2 88 16 0006 R mov res, dl
00A6 EB 0C 90
                                       jmp ending
00A9
                                  max:
00A9 8A 16 0005 R mov dl, i2
00AD 88 16 0006 R mov res, dl
00B1 EB 01 90
                                        jmp ending
```

00B4 ending: 00B4 B4 4C mov ah, 4ch 00B6 CD 21 int 21h Microsoft (R) Macro Assembler Version 5.10 12/4/22 02:43:07

Page 1-

END

Segments and Groups:

N a m e	Length Align Combine Class
DGROUP	GROUP 0007 WORD PUBLIC 'DATA' 0100 PARA STACK 'STACK' 00B8 WORD PUBLIC 'CODE'
Symbols:	
$N\ a\ m\ e$	Type Value Attr
A	L BYTE 0000 _DATA L NEAR 0037 _TEXT
B	L BYTE 0001 _DATA
ENDING	L NEAR 00B4 _TEXT L NEAR 009E _TEXT
F1_1	L NEAR 0060 _ TEXT L NEAR 007F _ TEXT
I	L BYTE 0002 _ DATA L BYTE 0004 _ DATA L BYTE 0005 _ DATA
K	L BYTE 0003 _DATA
MAX	L NEAR 00A9 _TEXT L NEAR 0093 _TEXT
RES	L BYTE 0006 _DATA
@CODE	TEXT _TEXT TEXT 0 TEXT 0101h TEXT 0 TEXT 1ab3 TEXT 510

Symbols-2

109 Source Lines 109 Total Lines

31 Symbols

48046 + 459214 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors