# CLASE 05 - PERMUTACIÓN Y CORRELACIÓN.

OCE 313 - Técnicas de análisis no paramétricos

Dr. José Gallardo Matus | https://genomics.pucv.cl/

10 April 2022

## PLAN DE LA CLASE

#### 1.- Introducción

- Concepto de permutación:
- ▶ ¿Qué es? ¿Por qué es importante? ¿Qué haremos?
- Permutación : caso 1, 2 y 3
- Problema de permutación.
- Prueba de correlación no paramétrica.

## 2). Práctica con R y Rstudio cloud.

- Realizar cálculo de permutación usando R.
- Realizar prueba de correlación.
- Realizar gráficas avanzadas con ggplot2.

# **PERMUTACIÓN**

### ¿Qué es?

Una permutación es una combinación ordenada de elementos.

## ¿Por qué es importante?

El concepto matemático de permutación está subyacente a muchos métodos de análisis no paramétricos.

## ¿Qué haremos?

Calcularemos las posibles permutaciones de los elementos de un conjunto de datos de un experimento aleatorio y evaluaremos si se acepta o rechaza la hipótesis de las pruabas paramétricas más comunes.

# PRÁCTICA PERMUTACIÓN

```
1.- Si para el conjunto {a,b} existen 2 permutaciones a-b y b-a
¿Cuántas permutaciones de los elementos {a,b,c} existen? - P3 =
3! = 3 \times 2 \times 1 = 6
factorial(3)
## [1] 6
permutations(3,3,letters[1:3])
##
         [,1] [,2] [,3]
## [1,] "a" "b" "c"
         "a" "c"
                    "b"
##
   [2,]
##
   [3,]
         "b"
              "a"
                    " כ "
   [4.]
         "b"
              "c"
                    "a"
   [5.]
         "c"
               "a"
                     "h"
##
   [6.]
         "c"
               "h"
                     "a"
```

# CASO 2 - PERMUTACIÓN CON REPETICIÓN

¿Cuántas claves diferentes existen en el candado de 3 filas?

Para 3 filas con 10 números  $\{0...9\}$  existen  $10 \times 10 \times 10$  permutaciones = 1000.

10^3

## [1] 1000



# CASO 3 - PERMUTACIÓN CON REPETICIÓN

- ¿Cuántas permutaciones/palabras se forman la palabra GATA?
  Ej. {TAGA, ...}
- ▶ Si, G = 1 vez; T = 1 vez y A = 2 veces , entonces

```
factorial(4) / (factorial(1)*factorial(1)*factorial(2))
```

## [1] 12



# PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

### ¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- La distribución conjunta de (X, Y) no es una distribución Bivariable normal.



# **EJEMPLO FUNCIÓN MONÓTONA**

## ¿Cuál es el supuesto que no se cumple?

No existe una relación lineal



## **EJEMPLO VARIABLES DISCRETAS U ORDINALES**

### ¿Cuál es el supuesto que no se cumple?

Parásitos es variable discreta.



# **CORRELACIÓN NO PARAMÉTRICA**

- Se basa en calcular el ranking de las variables.
- ► Calculamos ranking para cada variable.

| Fish size (X) | Parásitos (Y) | Ranking X | Ranking Y |
|---------------|---------------|-----------|-----------|
| 942           | 13            | 4         | 2         |
| 101           | 14            | 1         | 3         |
| 313           | 18            | 2         | 4         |
| 800           | 10            | 3         | 1         |

- ▶ Si la correlación es +, valores ordenados en ambas variables.
- ▶ Si la correlación en -, valores en orden inverso.
- ▶ Si la correlación es 0, valores desordenados.

# COEFICIENTE DE CORRELACIÓN DE SPEARMAN

## ¿Cómo se calcula?

| Daulius V | Dandina V | d  | $d^2$ |
|-----------|-----------|----|-------|
| Ranking A | Ranking Y |    |       |
| 4         | 2         | 2  | 4     |
| 1         | 3         | -2 | 4     |
| 2         | 4         | -2 | 4     |
| 3         | 1         | 2  | 4     |

$$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} = \frac{1}{n(n^2 - 1)}$$

$$rho = -0, 6$$

## **OTRAS CORRELACIONES POSIBLES**

Opción 1: Correlación negativa.

| Ranking X | Ranking Y |
|-----------|-----------|
| 4         | 1         |
| 1         | 4         |
| 2         | 3         |
| 3         | 2         |
| ho= -1    |           |

Opción 2: Correlación positiva.

| Ranking X  | Ranking Y |
|------------|-----------|
| 4          | 4         |
| 1          | 1         |
| 2          | 2         |
| 3          | 3         |
| $\rho = 1$ |           |

# ¿CUÁNTAS CORRELACIONES SON POSIBLES?

Calculamos número de permutaciones/correlaciones.

factorial(4)

## [1] 24

- ► Las 24 permutaciones/correlaciones corresponden a nuestro espacio muestreal para 4 pares de variables.
- Esto es independiente de las variables utilizadas.

## **ESPACIO MUESTRAL**

► En nuestro experimento

$$\rho = -0.6$$

▶ 1 de 24 correlaciones posibles.

|     | -0.8 |     | I   | I   | l   |     |     |
|-----|------|-----|-----|-----|-----|-----|-----|
|     | -0.2 | 1   | I   | I   | l   |     |     |
| 0.4 | 0.4  | 0.4 | 0.6 | 0.8 | 0.8 | 8.0 | 1.0 |

# PRUEBA DE HIPÓTESIS DE CORRELACIÓN

| Hipótesis                                        | Verdadera cuando |
|--------------------------------------------------|------------------|
| H <sub>0</sub> : X e Y mutuamente independientes | $\rho = 0$       |
| $H_1$ : X e Y no son mutuamente independientes   | ho  eq 0         |

► ¿Cuántas correlaciones son >= 0.6 y <= -0.6?

# **DISTRIBUCIÓN MUESTRAL**

Solo por azar 10 correlaciones podrían tomar estos valores.



# PRUEBA DE HIPÓTESIS DE CORRELACIÓN

| Hipótesis                                               | Verdadera cuando |  |  |
|---------------------------------------------------------|------------------|--|--|
| H <sub>0</sub> : X e Y mutuamente independientes        | $\rho = 0$       |  |  |
| $\mathbf{H_1}$ : X e Y no son mutuamente independientes | ho  eq 0         |  |  |

$$p = 10 / 24$$
  
 $p = 0.4167$ 

No se rechaza  $H_0$  porque p=0.416 es mayor a 0.05

# PRUEBA DE CORRELACIÓN CON R

```
# Crea objetos X e Y
X \leftarrow c(942,101,313,800)
Y \leftarrow c(13,14,18,10)
# Realiza test de correlación
cor.test(X,Y, method = "spearman",
         alternative = "two.sided")
##
    Spearman's rank correlation rho
##
##
## data: X and Y
## S = 16, p-value = 0.4167
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.6
```

## **RESUMEN DE LA CLASE**

- Revisión de conceptos de permutación.
- Recordatorio correlación Pearson.
- Funciones monótonas.
- Uso de permutación para calcular espacio y distribución muestral.
- Aplicación interpretación prueba de correlación de Spearman con R.