TD 18

Espaces vectoriels

Exercice 1

Soit E un \mathbb{K} -espace vectoriel et soit A, B et C des sous-espaces.

- 1. Montrer que $(A \cap B) + (A \cap C) \subseteq A \cap (B + C)$.
- 2. A-t-on toujours l'égalité?
- 3. Montrer que $(A \cap B) + (A \cap C) = A \cap (B + A \cap C)$.

Exercice 2

Soit E un \mathbb{K} -espace vectoriel et soit A, B et C des sous-espaces vectoriels de E tels que $A \cap B = A \cap C$, A + B = A + C, et $B \subseteq C$. Montrer que B = C.

Exercice 3

Soit E un \mathbb{K} -espace vectoriel et soit A, B et C des sous-espaces. Montrer que :

$$(A\cap B)+(B\cap C)+(C\cap A)\subseteq (A+B)\cap (B+C)\cap (C+A)$$

Exercice 4

Montrer que $\left\{f \in \mathcal{C}^0\left(\left[0,1\right],\mathbb{R}\right) \mid \int_0^1 f = 0\right\}$ est un hyperplan de $\mathcal{C}^0\left(\left[0,1\right],\mathbb{R}\right)$ dont un supplémentaire est l'ensemble des fonctions constantes sur $\left[0,1\right]$.

Exercice 5

Soit $e_1 = (1, 2, 3, 4)$, $e_2 = (1, 1, 1, 3)$, $e_3 = (2, 1, 1, 1)$, $e_4 = (-1, 0, -1, 2)$, et $e_5 = (2, 3, 0, 1)$ des vecteurs dans \mathbb{R}^4 . Soit $F = \text{Vect}(e_1, e_2, e_3)$ et $G = \text{Vect}(e_4, e_5)$. Déterminer les dimensions de $F, G, F \cap G$ et F + G.

Exercice 6 – Tout sev admet une infinité de supplémentaires

Soit E un \mathbb{K} -espace vectoriel, F un sous-espace (non nul et distinct de E) et G un supplémentaire de F dans E.

- 1. Justifier l'existence d'un vecteur $x \in E \setminus (F \cup G)$.
- 2. Montrer que $F \cap Vect(x) = \{0\}$.
- 3. On se donne \tilde{G}_1 un supplémentaire de $F \oplus \operatorname{Vect}(x)$ dans E et on pose $G_1 = \tilde{G}_1 + \operatorname{Vect}(x)$. Montrer que $G_1 = \tilde{G}_1 \oplus \operatorname{Vect}(x)$ est un supplémentaire de F dans E distinct de G.
- 4. Montrer que F admet une infinité de supplémentaires dans E.

Exercice 7 – Image réciproque d'image directe et vice-versa

Soit E un K-ev, F un sev de E et $u \in \mathcal{L}(E)$. Déterminer $u^{-1}(u(F))$ et $u(u^{-1}(F))$ en fonction de F, Im u et Ker u.

Exercice 8

Soit E, E', E'', F, F' et F'' des \mathbb{K} -espaces vectoriels. Soit $f, f', f'', \varphi, \varphi', \psi$ et ψ' des applications linéaires suivant :

$$E \xrightarrow{\varphi} E' \xrightarrow{\psi} E''$$

$$f \downarrow \qquad f' \downarrow \qquad f'' \downarrow$$

$$F \xrightarrow{\varphi'} F' \xrightarrow{\psi'} F''$$

On suppose que $f' \circ \varphi = \varphi' \circ f$, $f'' \circ \psi = \psi' \circ f'$, $\operatorname{Im} \varphi = \operatorname{Ker} \psi$ et $\operatorname{Im} \varphi' = \operatorname{Ker} \psi'$.

- 1. Montrer que si φ' , f et f'' sont injectives alors f' l'est aussi.
- 2. Montrer que si ψ , f et f'' sont surjectives alors f' l'est aussi.

Exercice 9 – Endomorphismes nilpotents

Soit E un \mathbb{K} -espace vectoriel non nul et $f \in \mathcal{L}(E)$ un endomorphisme nilpotent. On note p l'indice de nilpotence de f, i.e. le plus petit entier naturel vérifiant $f^p = 0$.

- 1. f peut-il être un automorphisme?
- 2. Montrer qu'il existe $x \in E$ tel que $(x, f(x), \dots, f^{p-1}(x))$ est libre.
- 3. En déduire que si E est de dimension finie alors $p \leq \dim E$.

Exercice 10 – Suite des noyaux itérés et suite des images itérées

Soit E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}$ on note $N_k = \operatorname{Ker} f^k$ et $I_k = \operatorname{Im} f^k$.

- 1. Montrer que $(N_k)_{k\in\mathbb{N}}$ est une suite strictement croissante ou bien strictement croissante puis constante.
- 2. Montrer que $(I_k)_{k\in\mathbb{N}}$ est une suite strictement décroissante ou bien strictement décroissante puis constante.
- 3. À partir de la question 1, retrouver que si E est de dimension finie et f nilpotent d'indice p alors p < n.

Exercice 11 – Caractérisation des applications linéaires injectives

Soient E, F, G des K-espaces vectoriels et soient $u \in \mathcal{L}(E, G), v \in \mathcal{L}(E, F)$.

- 1. Montrer que : Ker $v \subseteq \text{Ker } u \Leftrightarrow \exists w \in \mathcal{L}(F,G) : u = w \circ v$.
- 2. En déduire que : v injective $\Leftrightarrow \exists w \in \mathcal{L}(F, E) : w \circ v = \mathrm{Id}_E$.

Exercice 12 – Caractérisation des applications linéaires surjectives

Soient E, F, G des \mathbb{K} -espaces vectoriels et soient $u \in \mathcal{L}(E, G), v \in \mathcal{L}(F, G)$.

- 1. Montrer que : Im $v \subseteq \text{Im } u \Leftrightarrow \exists w \in \mathcal{L}(F, E) : v = u \circ w$.
- 2. En déduire que : u surjective $\Leftrightarrow \exists w \in \mathcal{L}(G, E) : u \circ w = \mathrm{Id}_G$.

Exercice 13 – Centre de $\mathcal{L}(E)$

- 1. Soit E un \mathbb{K} -ev et $f \in \mathcal{L}(E)$ tel que $\forall u \in E, \exists \lambda \in \mathbb{K} : f(u) = \lambda u$. Montrer que f est une homothétie.
- 2. Déterminer l'ensemble des endomorphismes de E qui commutent avec tous les endomorphismes de E.

Exercice 14 – Lemme de Fitting

Soit E un K-espace vectoriel et $f \in \mathcal{L}(E)$. Pour tout $k \in \mathbb{N}$ on note $N_k = \operatorname{Ker} f^k$ et $I_k = \operatorname{Im} f^k$.

1. Soient $N = \bigcup_{k \in \mathbb{N}} N_k$ et $I = \bigcap_{k \in \mathbb{N}} I_k$. Montrer que N et I sont des sous-espaces vectoriels de E.

On suppose désormais que E est de dimension finie.

- 2. Montrer que $N_k = N_{k+1} \Leftrightarrow I_k = I_{k+1}$ quelque soit $k \in \mathbb{N}$.
- 3. Montrer que $E = N \oplus I$.

Solutions

Exercice 1

1. Comme $B \subseteq B + C$ alors $A \cap B \subseteq A \cap (B + C)$. De même, comme $C \subseteq B + C$ alors $A \cap C \subseteq A \cap (B + C)$. Comme $A \cap (B + C)$ est un sous-espace vectoriel de E (en tant qu'intersection de sous-espaces vectoriels) alors :

$$(A \cap B) + (A \cap C) \subseteq A \cap (B + C)$$

2. Pas toujours, par exemple si $E = \mathbb{R}^2$ et A, B, C trois droites vectorielles distinctes de E:

$$(A \cap B) + (A \cap C) = \{0\} + \{0\} + \{0\} \subsetneq A = A \cap E = A \cap (B + C)$$

3. Par double inclusion.

 \subseteq : Comme $B \subseteq B + A \cap C$ alors $A \cap B \subseteq A \cap (B + A \cap C)$. Mais aussi $A \cap C \subseteq B + A \cap C$ et $A \cap C \subseteq A$ alors $A \cap C \subseteq A \cap (B + A \cap C)$. Comme $A \cap (B + A \cap C)$ est un sous-espace vectoriel alors:

$$(A \cap B) + (A \cap C) \subseteq A \cap (B + A \cap C)$$

 \supseteq : On se donne $x \in A \cap (B + A \cap C)$. Comme $x \in B + A \cap C$ alors il existe $u \in B$ et $v \in A \cap C$ tels que x = u + v. Comme $x \in A$ alors $u = x - v \in A$ en tant que différence d'éléments de A. Mais par ailleurs $u \in B$ donc $u \in A \cap B$. Ainsi $x = u + v \in (A \cap B) + (A \cap C)$. D'où:

$$A \cap (B + A \cap C) \subseteq (A \cap B) + (A \cap C)$$

Conclusion: $(A \cap B) + (A \cap C) = A \cap (B + A \cap C)$

Exercice 2

On sait déjà que $B \subseteq C$, il suffit donc de montrer que $C \subseteq B$.

Soit $x \in C$ alors $x \in A + C = A + B$ donc il existe $a \in A$ et $b \in B$ tels que x = a + b. Comme $B \subseteq C$ alors $b \in C$ et comme $x \in C$ alors $a = x - b \in C$ donc $a \in A \cap C = A \cap B$ donc $a \in B$ et donc $x = a + b \in B$ comme somme d'éléments de B.

On a bien montré $C \subseteq B$ d'où :

$$B = C$$

Exercice 3

On remarque que A est inclus dans A + B, B + C et C + A donc :

$$A \cap B \subseteq (A+B) \cap (B+C) \cap (C+A)$$

Mais par symétrie des rôles de A, B, C on obtient de la même manière :

$$B \cap C \subseteq (A+B) \cap (B+C) \cap (C+A)$$

$$C \cap A \subseteq (A+B) \cap (B+C) \cap (C+A)$$

Comme $(A+B)\cap (B+C)\cap (C+A)$ est un sous-espace vectoriel de E on en déduit :

$$(A \cap B) + (B \cap C) + (C \cap A) \subseteq (A+B) \cap (B+C) \cap (C+A)$$

Exercice 4

On notera $H = \left\{ f \in \mathcal{C}^0([0,1],\mathbb{R}) \mid \int_0^1 f = 0 \right\}, \, D$ l'ensemble des fonctions constantes et $\mathbbm{1}: x \longmapsto 1$.

On peut commencer par remarquer que H est un hyperplan de $\mathcal{C}^0([0,1],\mathbb{R})$ en tant que noyau de la forme linéaire non nulle $f \longmapsto \int_0^1 f$.

L'unique fonction constante d'intégrale nulle sur [0,1] est la fonction nulle donc $H \cap D = \{0\}$.

Pour toute fonction $f \in \mathcal{C}^0([0,1],\mathbb{R})$ on a $f = f - \left(\int_0^1 f\right)\mathbb{1} + \left(\int_0^1 f\right)\mathbb{1}$ avec $f - \left(\int_0^1 f\right)\mathbb{1}$ d'intégrale nulle sur [0,1] donc appartenant à H et $\left(\int_0^1 f\right)\mathbb{1}$ fonction constante donc appartenant à D. Donc $f \in H + D$.

Comme H et D sont des sous-espaces vectoriels de $\mathcal{C}^0([0,1],\mathbb{R})$ ceci montre :

$$\mathcal{C}^0([0,1],\mathbb{R}) = H + D$$

Finalement:

$$\boxed{\mathcal{C}^0([0,1],\mathbb{R}) = H \oplus D}$$

Exercice 5

Comme e_1 et e_2 sont non colinéaires la famille (e_1, e_2) est libre. Comme (e_1, e_2) est une sous-famille libre à deux éléments d'une famille génératrice de F alors :

$$\dim F \geq 2$$

Par ailleurs F est engendré par une famille à trois éléments donc :

$$\dim F < 3$$

Reste à voir si $e_3 \in \text{Vect}(e_1, e_2)$ auquel cas (e_1, e_2) engendre F et alors $\dim F = 2$ ou si $e_3 \notin \text{Vect}(e_1, e_2)$ auquel cas (e_1, e_2, e_3) est libre et alors $\dim F = 3$.

Soient λ, μ des réels. Alors :

$$\lambda e_1 + \mu e_2 = e_3 \Leftrightarrow (\lambda + \mu, 2\lambda + \mu, 3\lambda + \mu, 4\lambda + 3\mu) = (2, 1, 1, 1)$$

$$\Leftrightarrow \begin{cases} \lambda + \mu = 2 \\ 2\lambda + \mu = 1 \\ 3\lambda + \mu = 1 \\ 4\lambda + 3\mu = 1 \end{cases}$$

Les deux premières lignes de ce système équivalent à $\lambda = -1$ et $\mu = 3$ ce qui est incompatible avec la troisième ligne : $3(-1) + 3 \neq 1$. De tels réels λ, μ ne peuvent donc pas exister et alors $e_3 \notin \text{Vect}(e_1, e_2)$. Ainsi :

$$\dim F = 3$$

Comme e_4 et e_5 sont non colinéaires la famille (e_4, e_5) est libre. Comme $G = \text{Vect}(e_4, e_5)$ alors c'est une base de G et donc :

$$\dim G = 2$$

On sait que $\dim(F \cap G) \ge 1$ car $F \cap G \ne \{0\}$ car autrement $\dim(F + G) = \dim F + \dim G = 3 + 2 = 5 > \dim \mathbb{R}^4$. Comme $F \cap G \subseteq G$ avec $\dim G = 2$ alors $\dim(F \cap G) \le 2$.

Si $G \subseteq F$ alors $F \cap G = G$ est de dimension 2 et si $G \not\subseteq F$ alors $F \cap G \subsetneq G$ et alors $\dim(F \cap G) = 1$.

Soient α, β, γ des réels.

$$\alpha e_1 + \beta e_2 + \gamma e_3 = e_4 \Leftrightarrow \begin{cases} \alpha + \beta + 2\gamma = -1 \\ 2\alpha + \beta + \gamma = 0 \\ 3\alpha + \beta + \gamma = -1 \\ 4\alpha + 3\beta + \gamma = 2 \end{cases}$$

Des lignes 2 et 3 on déduit que $\alpha = -1$ et $\beta + \gamma = 2$, la ligne 1 donne alors que $\gamma = -2$ donc $\beta = 2 - \gamma = 4$. La ligne 4 donne alors 4(-1) + 3(4) - 2 = 2 i.e. 6 = 2, ce qui est faux. Ce système n'admet donc pas de solution, ce qui prouve que $e_4 \notin \text{Vect}(e_1, e_2, e_3)$ et donc $G \not\subseteq F$. Ainsi:

$$\dim(F \cap G) = 1$$

La formule de Grassmann $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$ donne enfin:

$$\dim(F+G)=4$$

C'est-à-dire:

$$F + G = \mathbb{R}^4$$

Exercice 6 – Tout sev admet une infinité de supplémentaires

1. Il s'agit de montrer que $F \cup G \neq E$.

On sait que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subseteq G$ ou $G \subseteq F$ i.e. $F \cap G = F$ ou $F \cap G = G$.

Ici $E = F \oplus G$ donc $F \cap G = \{0\}$ donc $F \cap G \neq F$ et $F \cap G \neq G$ (car $F \neq \{0\}$ et donc $F \neq E$ i.e. $G \neq \{0\}$). Donc $F \cup G$ n'est pas un sous-espace vectoriel de E et en particulier $F \cup G \neq E$.

2. Soit $y \in F \cap \text{Vect}(x)$. Comme $y \in \text{Vect}(x)$ il existe $\lambda \in \mathbb{K}$ tel que $y = \lambda x$. Comme $x \neq 0$ (car $E \setminus (F \cup G)$ ne contient pas 0 puisque $0 \in F \cup G$) alors $y = 0 \Leftrightarrow \lambda = 0$.

Si $\lambda \neq 0$ alors $x = \frac{1}{\lambda} y \in F$ car $y \in F$. Comme $x \notin F$ alors $\lambda = 0$ i.e. y = 0. D'où :

$$F\cap G=\{0\}$$

3. Comme $\tilde{G}_1 \cap \text{Vect}(x) \subseteq \tilde{G}_1 \cap (F \oplus \text{Vect}(x)) = \{0\}$ alors $\tilde{G}_1 \cap \text{Vect}(x) = \{0\}$. Autrement dit :

$$G_1 = \tilde{G}_1 \oplus \operatorname{Vect}(x)$$

Vérifions maintenant que G_1 et F sont en somme directe.

Soit $y \in F \cap G_1$. Comme $y \in G_1$ il existe un unique $(g, \lambda) \in \tilde{G}_1 \times \mathbb{K}$ tel que $y = g + \lambda x$.

Alors $g = y - \lambda x \in \tilde{G}_1 \cap (F \oplus \operatorname{Vect}(x)) = \{0\}$ donc g = 0 i.e. $y = \lambda x$. Si $y \neq 0$ alors $\lambda \neq 0$ et alors $x = \frac{1}{\lambda}y \in F$. Comme $x \notin F$ alors y = 0. D'où:

$$F \cap G_1 = \{0\}$$

Par ailleurs:

$$E = (F + \text{Vect}(x)) + \tilde{G}_1 = F + (\text{Vect}(x) + \tilde{G}_1) = F + G_1$$

Finalement:

$$E = F \oplus G_1$$

Reste à vérifier que $G_1 \neq G$ ce qui vient immédiatement du fait que $x \in G_1$ mais $x \notin G$.

4. Lemme : Un K-espace vectoriel E n'est pas réunion de sous-espaces stricts de E.

Preuve : Par l'absurde, supposons que $E = F_1 \cup \cdots \cup F_n$ où F_1, \ldots, F_n sont des sous-espaces vectoriels stricts de E distincts.

Si $F_n \subseteq F_1 \cup \cdots \cup F_{n-1}$ alors $E = F_1 \cup \cdots \cup F_{n-1}$. On itère ce raisonnement jusqu'à avoir $E = F_1 \cup \cdots \cup F_k$ avec $F_k \not\subseteq F_1 \cup \cdots \cup F_{k-1}$ (nécessairement $k \geq 2$ puisque $E \neq \emptyset$ $(k \neq 0)$ et $E \neq E_1$ $(k \neq 1)$). Quitte à renommer k en n (i.e. à supposer n minimal) on peut écrire $E = F_1 \cup \cdots \cup F_n$ avec $F_n \not\subseteq F_1 \cup \cdots \cup F_{n-1}$.

De plus, si $F_1 \cup \cdots \cup F_{n-1} \subseteq F_n$ alors $E = F_n$ ce qui est impossible puisque $F_n \subsetneq E$. Ainsi :

$$F_n \not\subseteq F_1 \cup \cdots \cup F_{n-1} \text{ et } F_1 \cup \cdots \cup F_{n-1} \not\subseteq F_n$$

Il existe donc $x \in F_1 \cup \cdots \cup F_{n-1}$ tel que $x \notin F_n$ et il existe $y \in F_n$ tel que $y \notin F_1 \cup \cdots \cup F_{n-1}$.

Comme $x \in F_1 \cup \cdots \cup F_{n-1}$ alors il existe $i \in [1, n-1]$ tel que $x \in F_i$.

Comme $E = F_1 \cup \cdots \cup F_n$ alors pour tout $\lambda \in \mathbb{K}$ on a $x + \lambda y \in F_1 \cup \cdots \cup F_n$. Autrement dit :

$$\forall \lambda \in \mathbb{K}, \exists j \in [1, n] : x + \lambda y \in F_i$$

Comme \mathbb{K} est infini et [1, n] est fini alors par principe des tiroirs il existe λ, μ distincts dans \mathbb{K} tels qu'il existe $j \in [1, n]$ pour lequel $x + \lambda y \in F_j$ et $x + \mu y \in F_j$. En faisant leur différence :

$$(\lambda - \mu)y \in F_i$$

Comme $\lambda - \mu \neq 0$ on en déduit :

$$y \in F_i$$

Ce qui contredit le fait que $y \notin F_1 \cup \cdots \cup F_{n-1}$ (puisque $j \in [1, n-1]$).

On pose $G_0 = G$ et on construit par récurrence une suite $(G_n)_{n \in \mathbb{N}}$ de supplémentaires de F dans E distincts.

Soit $n \in \mathbb{N}$ tel qu'on ait G_0, \ldots, G_n des supplémentaires de F dans E distincts.

D'après le lemme ci-dessus :

$$\bigcup_{k=0}^{n} G_k \cup F \neq E$$

Il existe donc $x_{n+1} \in E \setminus (\bigcup_{k=0}^{n} G_k \cup F)$.

Vérifions que $F \cap \text{Vect}(x_{n+1}) = \{0\}$. Soit $y \in F \cap \text{Vect}(x_{n+1})$ alors il existe $\lambda \in \mathbb{K}$ tel que $y = \lambda x_{n+1}$. Comme $x_{n+1} \neq 0$ (car $x_{n+1} \notin F$) alors $y = 0 \Leftrightarrow \lambda = 0$. Si $\lambda \neq 0$ alors $x_{n+1} = \frac{1}{\lambda}y \in F$. Comme $x_{n+1} \notin F$ alors $\lambda = 0$ i.e. y = 0. D'où:

$$F \cap Vect(x_{n+1}) = \{0\}$$

On se donne un supplémentaire \tilde{G}_{n+1} de $F \oplus \text{Vect}(x_{n+1})$ dans E et on pose :

$$G_{n+1} = \tilde{G}_{n+1} + \text{Vect}(x_{n+1})$$

Alors $\tilde{G}_{n+1} \cap \text{Vect}(x_{n+1}) \subseteq G_{n+1} \cap (F + \text{Vect}(x_{n+1})) = \{0\} \text{ donc } \tilde{G}_{n+1} \cap \text{Vect}(x_{n+1}) = \{0\} \text{ i.e. } :$

$$G_{n+1} = \tilde{G}_{n+1} \oplus \operatorname{Vect}(x_{n+1})$$

Par ailleurs:

$$E = (F + \text{Vect}(x_{n+1})) + \tilde{G}_{n+1} = F + (\text{Vect}(x_{n+1}) + \tilde{G}_{n+1} = F + G_{n+1})$$

Finalement:

$$E = F \oplus G_{n+1}$$

De plus G_{n+1} est distinct de chaque G_k $(k \in [0, n])$ car $x_{n+1} \in G_{n+1}$ mais $x_{n+1} \notin G_k$.

On a donc bien construit un supplémentaire G_{n+1} de F distinct de G_1, \ldots, G_n ce qui achève la construction par récurrence.

On a construit une suite $(G_n)_{n\in\mathbb{N}}$ de supplémentaires de F dans E distincts. En particulier :

F admet une infinité de supplémentaires

Exercice 7 – Image réciproque d'image directe et vice-versa

On remarque d'abord que $F \subseteq u^{-1}(u(F))$ (vrai quelle que soit l'application u car pour tout $x \in F$ on a $u(x) \in u(F)$). De plus, $\operatorname{Ker} u \subseteq u^{-1}(u(F))$ car si $x \in \operatorname{Ker} u$ alors $u(x) = 0 = u(0) \in u(F)$ (car $0 \in F$). Comme $u^{-1}(u(F))$ est un sous-espace vectoriel de E alors :

$$F + \operatorname{Ker} u \subseteq u^{-1}(u(F))$$

Réciproquement soit $x \in u^{-1}(u(F))$. Alors $u(x) \in u(F)$ i.e. il existe $y \in F$ tel que u(x) = u(y). Alors :

$$x = y + (x - y)$$

avec $y \in F$ et $x - y \in \text{Ker } u$. Donc $x \in F + \text{Ker } u$. D'où l'inclusion :

$$u^{-1}(u(F)) \subseteq F + \operatorname{Ker} u$$

Finalement:

$$u^{-1}(u(F)) = F + \operatorname{Ker} u$$

On remarque de même que $u(u^{-1}(F)) \subseteq F$ (vrai quelle que soit l'application u car pour tout $y \in u(u^{-1}(F))$ il existe $x \in u^{-1}(F)$ tel que y = u(x) et alors $y \in F$). De plus, $u(u^{-1}(F)) \subseteq \operatorname{Im} u = u(E)$ puisque $u^{-1}(F) \subseteq E$. Ainsi :

$$u(u^{-1}(F)) \subseteq F \cap \operatorname{Im} u$$

Réciproquement soit $y \in F \cap \text{Im } u$. Comme $y \in \text{Im } u$ il existe $x \in E$ tel que y = u(x) et comme $y \in F$ alors $x \in u^{-1}(F)$ et donc $y \in u(u^{-1}(F))$. D'où l'inclusion :

$$F \cap \operatorname{Im} u \subseteq u(u^{-1}(F))$$

Finalement:

$$u(u^{-1}(F)) = F \cap \operatorname{Im} u$$

Exercice 8

1. Supposons φ' , f et f'' injectives, montrons que f' l'est aussi.

Soit $x' \in \operatorname{Ker} f'$. Autrement dit f'(x') = 0. Donc $\psi' \circ f'(x') = 0$. Comme $\psi' \circ f' = f'' \circ \psi$ alors $f'' \circ \psi(x') = 0$. Comme f'' est injective alors $\psi(x') = 0$ i.e. $x \in \operatorname{Ker} \psi = \operatorname{Im} \varphi$ donc il existe $x \in E$ tel que $x' = \varphi(x)$. Ainsi f'(x') = 0 devient $f' \circ \varphi(x) = 0$ i.e. $\varphi' \circ f(x) = 0$. Mais comme φ' et f sont injectives $\varphi' \circ f$ l'est aussi et alors x = 0 d'où $x' = \varphi(0) = 0$.

Ceci prouve que Ker $f' = \{0\}$ autrement dit f' injective.

2. Supposons ψ , f et f'' surjectives, montrons que f' l'est aussi.

Soit $y' \in F'$. Comme $\psi'(y') \in F''$ alors par surjectivité de $f'' \circ \psi$ il existe $x' \in E'$ tel que $\psi'(y') = f'' \circ \psi(x')$. Mais alors $\psi'(y') = \psi' \circ f'(x')$ i.e. $y' - f(x') \in \text{Ker } \psi'$. Comme $\text{Ker } \psi' = \text{Im } \varphi'$ il existe $y \in F$ tel que $y' - f'(x') = \varphi'(y)$. Par surjectivité de f il existe alors $x \in E$

tel que y = f(x) et donc $y' = f'(x') + \varphi' \circ f(x) = f'(x') + f' \circ \varphi(x) = f'(x' + \varphi(x)) \in \operatorname{Im} f'$.

Ce qui prouve que f' est surjective.

Exercice 9 – Endomorphismes nilpotents

- 1. Si f était bijectif alors $f^p = 0$ le serait aussi. Or l'endomorphisme nul n'est pas bijectif (puisque $E \neq \{0\}$) donc f n'est pas bijectif. En particulier, f ne peut pas être un automorphisme.
- 2. Comme $f^{p-1} \neq 0$ il existe $x \in E$ tel que $f^{p-1}(x) \neq 0$. Montrons que $(x, f(x), \dots, f^{p-1}(x))$ est libre.

Soient $\lambda_0, \ldots, \lambda_{p-1}$ des scalaires tels que $\sum_{k=0}^{p-1} \lambda_k f^k(x) = 0$ (*). On montre par récurrence forte descendante sur k que :

$$\forall k \in [0, p-1], \lambda_k = 0$$

On initialise la récurrence en appliquant f^{p-1} à (*) ce qui donne par linéarité de f^{p-1} : $\sum_{k=0}^{p-1} \lambda_k f^{p-1+k}(x) = 0$.

Or $f^{p-1+k}=0$ dès que $p-1+k\geq p$ i.e. dès que $k\geq 1$. L'égalité devient donc $\lambda_p f^{p-1}(x)=0$.

Comme
$$f_{p-1}(x) \neq 0$$
:

$$\lambda_n = 0$$

On effectue l'hérédité en supposant $\lambda_p = \cdots = \lambda_k = 0$ pour un certain $k \in [1, p-1]$ et on montre que $\lambda_{k-1} = 0$.

La relation (*) devient $\sum_{j=0}^{k-1} \lambda_j f^j(x) = 0$ et en appliquant f^{p-k} on obtient $\lambda_{k-1} f^{p-1}(x) = 0$.

Comme
$$f_{p-1}(x) \neq 0$$
:

$$\lambda_{k-1} = 0$$

Ce qui conclut la récurrence :

$$\forall k \in [0, p-1], \ \lambda_k = 0$$

Finalement:

$$(x, f(x), \dots, f^{p-1}(x))$$
 est libre

3. La famille $(x, f(x), \dots, f^{p-1}(x))$ est libre de cardinal p. Comme le cardinal d'une famille libre est toujours inférieur à la dimension de l'espace :

$$p \leq \dim E$$

Exercice 10 – Suite des noyaux itérés et suite des images itérées

1. On commence par montrer que $(N_k)_{k\in\mathbb{N}}$ est croissante pour l'inclusion.

Soit $k \in \mathbb{N}$. Pour tout $x \in N_k$ on a $f^{k+1}(x) = f(f^k(x)) = f(0) = 0$ donc $x \in N_{k+1}$. D'où :

$$\forall k \in \mathbb{N}, \ N_k \subseteq N_{k+1}$$

Reste à montrer que :

$$\forall k \in \mathbb{N}, \ N_k = N_{k+1} \Rightarrow N_{k+1} = N_{k+2}$$

Soit $k \in \mathbb{N}$. On suppose $N_k = N_{k+1}$, montrons que $N_{k+1} = N_{k+2}$.

Comme on sait déjà que $N_{k+1} \subseteq N_{k+2}$ il suffit de montrer $N_{k+2} \subseteq N_{k+1}$. Soit $x \in N_{k+2}$. Alors $f^{k+1}(f(x)) = f^{k+2}(x) = 0$ i.e. $f(x) \in N_{k+1}$. Comme $N_{k+1} = N_k$ alors $f(x) \in N_k$ i.e. $f^k(f(x)) = f^{k+1}(x) = 0$ i.e. $x \in N_{k+1}$. D'où $N_{k+2} \subseteq N_{k+1}$ et ainsi $N_{k+1} = N_{k+2}$.

On a bien montré:

$$\forall k \in \mathbb{N}, \ N_k = N_{k+1} \Rightarrow N_{k+1} = N_{k+2}$$

Deux cas se présentent donc : la suite $(N_k)_{k\in\mathbb{N}}$ est strictement croissante ou bien non strictement croissante, auquel cas en notant $p=\min\{k\in\mathbb{N}\,|\,N_k=N_{k+1}\}$ la suite $(N_k)_{k\in\mathbb{N}}$ est strictement croissante jusqu'au rang p puis constante.

2. On commence par montrer que $(I_k)_{k\in\mathbb{N}}$ est décroissante pour l'inclusion.

Soit $k \in \mathbb{N}$. Pour tout $y \in I_{k+1}$ il existe $x \in E$ tel que $y = f^{k+1}(x) = f^k(f(x))$ donc $y \in I_k$. D'où;

$$\forall k \in \mathbb{N}, \ I_{k+1} \subseteq I_k$$

Reste à montrer que :

$$\forall k \in \mathbb{N}, \ I_k = I_{k+1} \Rightarrow I_{k+1} = I_{k+2}$$

Soit $k \in \mathbb{N}$. On suppose $I_k = I_{k+1}$, montrons que $I_{k+1} = I_{k+2}$.

Comme on sait déjà que $I_{k+2} \subseteq I_{k+1}$ il suffit de montrer que $I_{k+1} \subseteq I_{k+2}$. Soit $y \in I_{k+1}$ il existe alors $x \in E$ tel que $y = f^{k+1}(x)$. Comme $f^k(x) \in I_k = I_{k+1}$ il existe $x' \in E$ tel que $f^k(x) = f^{k+1}(x')$ et alors :

$$y = f^{k+1}(x) = f(f^k(x)) = f(f^{k+1}(x')) = f^{k+2}(x') \in I_{k+2}$$

D'où $I_{k+1} \subseteq I_{k+1}$.

On a bien montré :

$$\forall k \in \mathbb{N}, \ I_k = I_{k+1} \Rightarrow I_{k+1} = I_{k+2}$$

Deux cas se présentent donc : la suite $(I_k)_{k\in\mathbb{N}}$ est strictement décroissante ou bien non strictement décroissante, auquel cas en notant $p=\min\{k\in\mathbb{N}\,|\,I_k=I_{k+1}\}$ la suite $(I_k)_{k\in\mathbb{N}}$ est strictement décroissante jusqu'au rang p puis constante.

3. Soit $f \in \mathcal{L}(E)$ nilpotent d'indice p. Autrement dit :

$$f^p = 0 \text{ et } \forall k \in [0, p-1], f^k \neq 0$$

C'est-à-dire:

$$N_p = E$$
 et $\forall k \in [0, p-1], N_k \neq E$

En particulier la suite $(N_k)_{k\in\mathbb{N}}$ n'est pas strictement croissante. On observe alors que $N_p=N_{p+1}=E$ et $N_{p-1}\neq N_p$ donc $p=\min\{k\in\mathbb{N}\,|\,N_k=N_{k+1}\}$. D'après la question 1 on en déduit :

$$N_0 \subseteq \cdots \subseteq N_{p-1} \subseteq N_p = E$$

Ce qui donne:

$$\dim N_0 < \dots < \dim N_{p-1} < \dim N_p = n$$

C'est-à-dire étant donné qu'il s'agit d'entiers :

$$p + \dim N_0 \le \dots \le 1 + \dim N_{p-1} \le \dim N_p = n$$

Comme $N_0 = \text{Ker } f^0 = \text{Ker } \text{Id}_E = \{0_E\} \text{ on a dim } N_0 = 0 \text{ et alors} :$

$$p \leq n$$

Exercice 11 – Caractérisation des applications linéaires injectives

1. Par double implication.

= : Supposons qu'il existe $w \in \mathcal{L}(F,G)$ tel que $u = w \circ v$. Alors pour tout $x \in \text{Ker } v$ on a :

$$u(x) = w(v(x)) = w(0) = 0$$

et donc $x \in \text{Ker } u$. D'où $\text{Ker } v \subseteq \text{Ker } u$.

 \implies : Supposons Ker $v \subseteq \text{Ker } u$. Soit F_0 un supplémentaire de Im v dans F. On va définir une application linéaire w de $F = F_0 \oplus \text{Im } v$ vers G en définissant $w_0 = w_{|F_0|} \in \mathcal{L}(F_0, G)$ et $w_1 = w_{|\text{Im } v|} \in \mathcal{L}(\text{Im } v, G)$.

Commençons par définir w_1 . Pour tout $y \in \text{Im } v$ il existe $x \in E$ tel que y = v(x). On pose alors $w_1(y) = u(x)$. Ceci définit bien une fonction $w_1 : \text{Im } v \longrightarrow G$ puisque $w_1(y)$ ne dépend pas du choix de l'antécédent x de y par $v : \text{si } x, x' \in E$ vérifient y = v(x) = v(x') alors $x - x' \in \text{Ker } v \subseteq \text{Ker } u$ et donc u(x) = u(x').

Reste à vérifier que w_1 est linéaire. Soient $y, y' \in \text{Im } v$ et $\lambda \in \mathbb{K}$. Il existe $x, x' \in E$ tels que y = v(x) et y' = v(x'). Alors :

$$w_1(\lambda y + y') = w_1(\lambda v(x) + v(x')) = w_1(v(\lambda x + x')) = u(\lambda x + x') = \lambda u(x) + u(x') = \lambda w_1(y) + w_1(y')$$

D'où la linéarité de w_1 .

On définit ensuite $w_0 \in \mathcal{L}(F_0, G)$ comme étant l'application nulle et on note w l'unique application linéaire de F vers G telle que :

$$w_{|F_0} = w_0 \text{ et } w_{|\text{Im } v} = w_1$$

On a bien $u = w \circ v$ car pour tout $x \in E$ on a :

$$u(x) = w_1(v(x)) = w(v(x))$$

2. On se place dans le cas où G = E et $u = \mathrm{Id}_E$. D'après la question précédente :

$$\operatorname{Ker} v \subseteq \operatorname{Ker} \operatorname{Id}_E \Leftrightarrow \exists w \in \mathcal{L}(F, E) : w \circ v = \operatorname{Id}_E$$

Or Ker $\mathrm{Id}_E = \{0_E\}$ et comme Ker v est un sous-espace vectoriel de E alors :

$$\operatorname{Ker} v \subseteq \operatorname{Ker} \operatorname{Id}_E \Leftrightarrow \operatorname{Ker} v = \{0_E\} \Leftrightarrow v \text{ injective}$$

Finalement:

$$v$$
 injective $\Leftrightarrow \exists w \in \mathcal{L}(F, E) : w \circ v = \mathrm{Id}_E$

Exercice 12 – Caractérisation des applications linéaires surjectives

1. Par double implication.

 \sqsubseteq : Supposons qu'il existe $w \in \mathcal{L}(F, E)$ tel que $v = u \circ w$. Soit $y \in \operatorname{Im} v$. Alors il existe $x \in F$ tel que y = v(x) = u(w(x)) donc $y \in \operatorname{Im} u$. D'où $\operatorname{Im} v \subseteq \operatorname{Im} u$.

 \Rightarrow : Supposons Im $v \subseteq \text{Im } u$. Soit E_0 un supplémentaire de Ker u dans E.

Définissons $w: F \longrightarrow E$. Soit $x \in F$. Comme $v(x) \in \operatorname{Im} v \subseteq \operatorname{Im} u$ alors v(x) admet au moins un antécédent par u.

On va définir w(x) comme l'unique antécédent de v(x) par u qui soit dans E_0 . Pour cela, il faut d'abord vérifier que v(x) admet un unique antécédent dans E_0 par u. Soient $y_0, y_0' \in E_0$ des antécédents de v(x) par u. On a donc :

$$v(x) = u(y_0) = u(y'_0)$$

Ce qui donne $y_0 - y_0' \in \text{Ker } u$. Comme par ailleurs y_0 et y_0' sont dans E_0 alors $y_0 - y_0' \in E_0 \cap \text{Ker } u = \{0\}$ et donc $y_0 - y_0' = 0$ i.e. $y_0 = y_0'$. D'où l'unicité de y_0 en tant qu'antécédent de v(x) dans E_0 par u. On pose alors :

$$w(x) = y_0$$

Ce qui définit w(x) de façon unique par rapport à x. On obtient ainsi une fonction $w: F \longrightarrow E$.

Vérifions que w est linéaire. Soient $x, x' \in F$ et $\lambda \in \mathbb{K}$. On doit vérifier que $w(\lambda x + x') = \lambda w(x) + w(x')$, i.e. que l'unique antécédent de $v(\lambda x + x')$ par u qui soit dans E_0 est $\lambda w(x) + w(x')$ i.e. que :

$$v(\lambda x + x') = u(\lambda w(x) + w(x'))$$
 avec $\lambda w(x) + w(x') \in E_0$

Le fait que $\lambda w(x) + w(x') \in E_0$ est directement assuré par le fait que w(x) et w(x') appartiennent à E_0 qui est un sous-espace vectoriel de E. De plus on a bien :

$$v(\lambda x + x') = \lambda v(x) + v(x') = \lambda u(w(x)) + u(w(x')) = u(\lambda w(x) + w(x'))$$

Ce qui prouve que $w(\lambda x + x') = \lambda w(x) + w(x')$ et donc la linéarité de w.

Enfin, w vérifie bien $v = u \circ w$ car pour tout $x \in E$, w(x) étant un antécédent de v(x) par u on a v(x) = u(w(x)).

2. On se place dans le cas où F = G et $v = Id_G$. D'après la question précédente :

$$\operatorname{Im} \operatorname{Id}_G \subseteq \operatorname{Im} u \Leftrightarrow \exists w \in \mathcal{L}(G, E) : u \circ w = \operatorname{Id}_G$$

Or $\operatorname{Im} \operatorname{Id}_G = G$ et comme $\operatorname{Im} u \subseteq G$ alors :

$$\operatorname{Im} \operatorname{Id}_G \subseteq \operatorname{Im} u \Leftrightarrow \operatorname{Im} u = G \Leftrightarrow u \text{ surjective}$$

Finalement:

$$u$$
 surjective $\Leftrightarrow \exists w \in \mathcal{L}(G, E) : u \circ w = \mathrm{Id}_G$

Exercice 13 – Centre de $\mathcal{L}(E)$

1. On sait que pour tout $u \in E$ il existe $\lambda_u \in \mathbb{K}$ tel que $f(u) = \lambda_u u$. On va montrer que λ_u est unique, i.e. ne dépend pas de u pour $u \neq 0$.

Soient u,v des éléments non nuls de E et $\lambda_u,\lambda_v\in\mathbb{K}$ tels que :

$$\begin{cases} f(u) = \lambda_u u \\ f(v) = \lambda_v v \end{cases}$$

Montrons que $\lambda_u = \lambda_v$.

 $1^{\mathbf{er}}$ cas : (u, v) libre

Soit $\lambda_{u+v} \in \mathbb{K}$ tel que $f(u+v) = \lambda_{u+v}(u+v)$. Par linéarité de f on obtient alors :

$$\lambda_u u + \lambda_v v = \lambda_{u+v} u + \lambda_{u+v} v$$

Par unicité de la décomposition d'un vecteur selon la famille libre (u, v) on en déduit :

$$\lambda_u = \lambda_v = \lambda_{u+v}$$

 $2^{\text{nd}} \cos : (u, v)$ liée

Il existe alors $\mu \in \mathbb{K}$ tel que $u = \mu v$. Par linéarité de f on obtient $f(u) = \mu f(v)$ i.e.:

$$\lambda_u u = \mu \lambda_v v$$

C'est-à-dire comme $u = \mu v$:

$$\lambda_u \mu v = \mu \lambda_v v$$

Comme $v \neq 0$ on en déduit $\lambda_u \mu = \mu \lambda_v$. Comme $u \neq 0$ et $u = \mu v$ on en déduit que $\mu \neq 0$ ce qui donne :

$$\lambda_u = \lambda_v$$

Dans tous les cas on a montré que $\lambda_u = \lambda_v$, ce qui prouve qu'il existe un $\lambda \in \mathbb{K}$ tel que $\forall u \in E \setminus \{0\}$, $f(u) = \lambda u$. Comme par ailleurs $f(0) = 0 = \lambda 0$ on a bien :

$$\forall u \in E, \ f(u) = \lambda u$$

Ce qui prouve que $f = \lambda \operatorname{Id}_E$ est l'homothétie vectorielle de rapport λ .

2. Montrons que les endomorphismes qui commutent avec tous les endomorphismes de E sont les homothéties.

Dans un premier temps on constate que les homothéties commutent bien avec tous les endomorphismes de E. En effet, pour tout $\lambda \in \mathbb{K}$ et $f \in \mathcal{L}(E)$ on a :

$$(\lambda \mathrm{Id}_E) \circ f = f \circ (\lambda \mathrm{Id}_E) = \lambda f$$

Reste à vérifier que si un endomorphisme commute avec tous les endomorphismes de E alors c'est une homothétie. Soit $f \in \mathcal{L}(E)$ tel que :

$$\forall q \in \mathcal{L}(E), \ f \circ q = q \circ f$$

Montrons que f est une homothétie. D'après la question 1 il suffit de vérifier que, quel que soit $u \in E$, f(u) est colinéaire à u. On se donne donc $u \in E$ et on vérifie que $f(u) \in \text{Vect}(u)$.

Soit $p \in \mathcal{L}(E)$ le projecteur sur $\mathrm{Vect}(u)$ parallèlement à un supplémentaire F de $\mathrm{Vect}(u)$ dans E. Par définition de f on a :

$$p \circ f = f \circ p$$

En particulier, p(f(u)) = f(p(u)) = f(u) puisque p(u) = u. Autrement dit :

$$f(u) \in \operatorname{Ker}(p - \operatorname{Id}_E) = \operatorname{Im} p = \operatorname{Vect}(u)$$

On a bien montré que $\forall u \in E, f(u) \in \text{Vect}(u)$ donc f est une homothétie d'après la question précédente.

<u>Conclusion</u>: En notant $Z(\mathcal{L}(E)) = \{ f \in \mathcal{L}(E) | \forall g \in \mathcal{L}(E), f \circ g = g \circ f \}$, on a montré que $Z(\mathcal{L}(E))$ est l'ensemble des homothéties. Autrement dit :

$$Z(\mathcal{L}(E)) = \operatorname{Vect}(\operatorname{Id}_E)$$

Exercice 14 – Lemme de Fitting

1. $I = \bigcap_{k \in \mathbb{N}} I_k$ est un sous-espace vectoriel de E en tant qu'intersection de sous-espaces vectoriels de E.

Soient $x, y \in N$ et $\lambda \in \mathbb{K}$. Il existe alors $k, l \in \mathbb{N}$ tels que $x \in N_k$ et $y \in N_m$ et alors :

$$f^{\max(k,l)}(\lambda x + y) = \lambda f^{\max(k,l)}(x) + f^{\max(k,l)}(y) = \lambda 0 + 0 = 0$$

Donc $\lambda x + y \in N_{\max(k,l)}$ et alors $\lambda x + y \in N$. Ce qui prouve que N est un sous-espace vectoriel de E.

2. Par double implication. Soit $k \in \mathbb{N}$ fixé.

 \Rightarrow : Supposons $N_k = N_{k+1}$. On sait déjà que $I_{k+1} \subseteq I_k$, il suffit donc de vérifier que dim $I_k = \dim I_{k+1}$.

D'après le théorème du rang appliqué aux endomorphismes f^k et f^{k+1} :

$$\dim E = \dim N_k + \dim I_k$$
$$= \dim N_{k+1} + \dim I_{k+1}$$

Comme $N_k = N_{k+1}$ alors dim $N_k = \dim N_{k+1}$ et on déduit de ce qui précède que dim $I_k = \dim I_{k+1}$. D'où :

$$I_k = I_{k+1}$$

 \Leftarrow : Supposons $I_k = I_{k+1}$. On sait déjà que $N_k \subseteq N_{k+1}$, il suffit donc de vérifier que dim $N_k = \dim N_{k+1}$.

D'après le théorème du rang appliqué aux endomorphismes f^k et f^{k+1} :

$$\dim E = \dim N_k + \dim I_k$$
$$= \dim N_{k+1} + \dim I_{k+1}$$

Comme $I_k = I_{k+1}$ alors dim $I_k = \dim I_{k+1}$ et on déduit de ce qui précède que dim $N_k = \dim N_{k+1}$. D'où :

$$N_k = N_{k+1}$$

3. La suite $(N_k)_{k\in\mathbb{N}}$ est croissante dans E donc $(\dim N_k)_{k\in\mathbb{N}}$ est croissante dans $[0, \dim E]$. En particulier elle est stationnaire et donc $(N_k)_{k\in\mathbb{N}}$ aussi. Notons :

$$p = \min\{k \in \mathbb{N} \mid N_k = N_{k+1}\}$$

D'après la question précédente :

$$p = \min\{k \in \mathbb{N} \mid I_k = I_{k+1}\}$$

Comme $(N_k)_{k\in\mathbb{N}}$ est croissante et $(I_k)_{k\in\mathbb{N}}$ décroissante on en déduit :

$$\begin{cases} N = N_p \\ I = I_p \end{cases}$$

Il s'agit donc de vérifier que $E = N_p \oplus I_p$.

D'après le théorème du rang on sait déjà que dim $E=\dim N_p+\dim I_p$, il suffit donc de vérifier $N_p\cap I_p=\{0\}$. Soit $y\in N_p\cap I_p$. Comme $y\in I_p$ il existe $x\in E$ tel que $y=f^p(x)$ et comme $y\in N_p$ alors $f^p(y)=0$ i.e. :

$$f^{2p}(x) = 0$$

Ainsi $x \in N_{2p}$. Mais par définition de p on a $N_{2p} = N_p$ (car $2p \ge p$) et donc $x \in N_p$ i.e. $f^p(x) = 0$ i.e. y = 0.

On vient de montrer :

$$N_p \cap I_p = \{0\}$$

Ce qui prouve finalement :

$$E = N_p \oplus I_p$$

Autrement dit:

$$E = N \oplus I$$