Contents

Gc	val 1	3
	Introduction	3
	Description of the data with a table or a reference to a table in an Appendix	3
	Data Cleaning / Wrangling (any renaming of variables or standardizing of values.)	4
	Individual Variable Outlier Identification and Handling	4
	Checking Assumptions & Model Outlier Identification and Handling	5
	Variable Selection	6
	Potential Interactions	7
	Modeling	7
	Prediction	8
Gc	pal 2	8
	Introduction	8
	Data Wrangling	8
	Serial Correlation Verification	10
	Time Series Predictions	10
Αp	pendix	12
	Table of missing values	12
	Variable transformations samples: histograms	12
	Proportional Imputation Example	13
	Correlation Matrix Example	13
	Variance Inflation Factor	13
	Predictor Variables Interaction Plots	14
	Data Dictionary	20
	Model Cross-Validations	22
	LASSO Regression Using LASSO-Selected Variables – Model 1	22
	OLS Backward Elimination Using LASSO Variables and OLS – Model 2	22
	OLS Backward Elimination Using OLS Backward Elimination Variables – Model 3	23
	Custom Model Using OLS Backward Elimination Selection, Correlation Matrix, & VIF – Custom	23
	Serial Correlation Verification	24
	EDA R Code: Imputations & Transformations	25
	Test Data Cleaning R Code: Preparation for External Cross-Validation	30

Applied Statistics: Inference & Modeling Master of Science Data Science, Southern Methodist University Paul Adams, Reannan McDaniel, Jeff Nguyen

Goal 1 SAS Code: Modeling & Cross-Validation	. 33
Goal 2 SAS Code: Time-Series Modeling & Predictions	. 47

Goal 1

Introduction

Linear regression has many applications within the realm of predictive analytics, including the prediction of housing prices. At the request of Sberbank – Russia's oldest and largest bank – our team was tasked with performing this type of analysis using data provided by the bank. Our team's first goal in the introductory project for the Applied Statistics: Inference & Modeling course in the Southern Methodist University Master of Science in Data Science (MSDS) program was to build a model employing linear regression techniques we've learned in this course - and the course prior - to date. Our team elected to use SAS as the preferred analysis platform for its analytical power and statistical reliability, as it has been proven stable for decades within the industry. We elected to use R for data wrangling and performing intermediary analysis as R performs quickly and scales easily when transformations are required across large dimensions of data.

The object of our first goal was to apply four distinct predictive models to assess the suitability of our parameter selections for determining the realty prices across a region of Russia relative in distance to the Kremlin – roughly 70 kilometers, or 43 miles. The measures of accuracy were applied in terms of Akaike Information Criterion, Standard Block Metric, k-fold internal Cross Validation measured in terms of the CV PRESS statistic, and external cross validation between competing models. Our approach outlined in this first objective is limited in that we were not permitted to use more advanced algorithms we will be exposed to later in the MSDS program; rather, in conjunction with the aforementioned linear regression techniques.

Description of the data with a table or a reference to a table in an Appendix.

The Sberbank real estate data set describes the sale of both investment and owner occupier properties from 2011-2015 in the Moscow, Russia metropolitan region. The data provided was comprised of 70 quantitative variables and three qualitative variables. Altogether, our data was split conservatively, with 75% for used for training the models and 25% used for testing. Altogether, these splits were applied to 19,835 observations. While data originally included 25,471 observations, 5,636 were excluded in the analysis and transformation process after being identified as either outliers or possibly the result of data entry or survey sampling error. Within the first objective of the project, we determined sale prices (price_doc) as the response of 69 selected linear ("main effects") and interactive variables, featuring proportional imputation of missing values and logarithmic and square root transformations of the numeric variables, as well as one-hot encoding for the categorical variables. For reference, an example of the proportional transformation is explicated in the appendix.

A <u>complete list of the variables</u> provided is in the data dictionary section of the appendix. From this list, we excluded from our model the variables timestamp, full_sq, material, build_year, raion_popul, children_preschool, preschool_quota, hospital_beds_raion, office_raion, metro_min_avto, metro_min_walk, metro_km_walk, railroad_station_walk_km, railroad_station_walk_min, railroad_station_avto_min, public_transport_station_min_walk, public_trans_station_time_walk and basketball km.

Data Cleaning / Wrangling (any renaming of variables or standardizing of values.)

The variables with missing observations for which we provided imputations were floor of building (floor), number of floors in any given building (max_floor), total living area, excluding balconies and other non-residential areas (life_sq), kitchen area (kitch_sq), number of living rooms (num_room), number of seats in pre-school organizations (preschool_quota), walking time to the nearest railroad station (railroad_station_walk_min) and the ID of that railroad station (ID_railroad_station_walk), walking distance to the nearest railroad (railroad_station_walk_km), and shares of local buildings constructed within particular time periods - build_count_before_1920, build_count_1921-1945, build_count_1946-1970, build_count_1971-1995, and build_count_after_1995 - (metro_min_walk), and (metro_km_walk). A table of our missing values and counts can be seen in the appendix.

Next, we removed variables for wall material (material), number of hospital beds within the district (hospital_beds_raion, and the year build of buildings (build_year) as these contained too much missing information to provide imputation – we considered imputing these variables, but determined the risk of imputing outweighed the benefits to modeling. We also dropped count of preschools (preschool_quota) and walk time to nearest public transportation station (public_trans_station_time_walk) as these were not in the projectionData.csv file.

We furthermore removed observations for imputed values of life_sq and kitch_sq where these exceeded the total area (again, designated by full_sq). These imputations – originally calculated as a mean response of their total non-null values proportional to corresponding total square meters – exceeded total square meters and were thus determined to be impractical imputations.

Finally, we provided logarithmic (of varying bases) transformations to floor and price_doc and square root transformations of values raised to various exponentials within the predictor features kitch_sq, and office_raion. We considered further transformations, but determined this would increase the risk of over-fitting once our chosen model was applied to new data, as done for the predictions provided using our file projectionData.csv. This panned to likely be a reasonable decision as evidenced by the very close adjusted R-squared value in our projected data (44%, roughly) compared to our modeling data (46%, roughly). Our approach was to make as much use of the available data as possible, but not to the extent that we would have over-fit modeling in our project. While this is not a guarantee in any statistical project, we feel confident in our efforts herein to mitigate this risk. Sample histograms for our variables' transformations can be seen in the appendix.

Individual Variable Outlier Identification and Handling

Because of the high volume of imputations and transformations to non-imputed variables, we determined, with the assistance of analyzing histograms of the individual predictors, that the best approach would be to run the models without first removing individual observations. Instead, we removed for key variables – based on their significance in predictive power as indicated by the correlation matrix – where the values were extreme. For example, where the kitchen was equal to less than two square meters of the total square meters or where living space was greater than the full square meters available, we removed these observations (2314 observations for life_sq and 68 observations for kitch_sq).

Checking Assumptions & Model Outlier Identification and Handling

Following the development of our models (more on this later), we analyzed diagnostics plots to determine what further outlying observations should be removed. We performed this analysis in R due to the support R provided; we encountered obstacles where the large dimensions of our data and model prevented us from visualizing these diagnostics in SAS. Although our missing data was handled en masse earlier on in our initial individual predictor variable exploratory data analysis (EDA), we determined the most appropriate method would be to assess the diagnostics following development of our final model in SAS and remove additional outliers following this analysis, as needed. We then reassessed our model after removing outliers to determine if one of our other models was better suited for the task assigned by Sberbank in objective one. The residuals diagnostics plots are output as follows:

Linear regression diagnostics residuals plots for custom OLS model, prior to outlier removal

As indicated above, it appeared possible that some of our imputations – while necessary to capture a sufficient volume of data relevant to our entire analysis and predictions – resulted in a minor violation of the required non-constant variance assumptions for the regression model, as indicated in our **Residuals** (and Studentized Residuals, which has a higher consideration of standard error) **vs. Fitted** plot above. This could also be the result of sampling error or other phenomena that occurred concurrently with the timeframe relevant to our project's scope. Even so, there remained a healthy enough scatter among the residuals to assume constant variance in the model.

In analyzing the **QQ plot**, it is notably left-skewed. However, based on the relative adherence to normality of the remaining residuals in the distribution, we feel confident that the central limit theorem – especially with more data gathered over time – would resolve this kurtosis. With that in consideration,

it is important to note that this data was gathered over time and we therefore cannot safely assume a high likelihood of independence among the observations.

Finally, in analyzing the **Residuals vs. Leverage**, we identified several outlying observations that required removal from the dataset. Upon removing these, our leverage measurement – especially with respect to Cook's distance, improved significantly (below plots), which resulted in a 0.3% overall improvement on our final adjusted R-squared metric. While the leverage was improved, the removal of these observations had very little impact on the skewedness and variance within our model.

Linear regression diagnostics residuals plots for custom OLS model, following outlier removal

Variable Selection

Variable selection was initially managed by the Ordinary Least Squares (OLS) and LASSO regression techniques. Using all variables, excluding wall materials, hospital bed counts by district, and build year variables, which, as previously mentioned, were dropped for excessively high volumes of missing observations that were too risky for imputation. After processing all variables through these methods, Backward Elimination provided the highest adjusted R-squared and lowest AIC and SBC metrics. Consequently, we chose the variables suggested by this method. However, we provided further variable elimination based on direct analysis of the correlation matrix and Variable Inflation Factor (VIF) table's thresholds. We then considered interactions between linear terms based on our reasonable domain knowledge and reapplied the updated variable set through our OLS and LASSO selection processes again, removing those that were not significant. Following this, we removed interactions based on outputs from the interaction plots (dropping interaction terms where lines were parallel and their 95% confidence intervals did not overlap) and applied OLS and LASSO one more time. A complete list of

interaction plots can be viewed in the <u>appendix</u>, with a sample of significant interaction immediately below:

Potential Interactions

Given the variables present in the data set there may be combinations of variables that would make sense to paired together. Interactions such as school and distance to a school may be of interest to buyers with children; the build material and the year the home was built may be informative as different time periods may have had preferred building materials or availability. By including these types of interactions, a model may have better fit statistics suggesting that it can better describe and predict home pricing values.

Modeling

In expansion of the modeling methodology, this section will provide statistical output and discussion of results from our modeling. We tested four models, opting to make predictions based on our custom model. The models we developed were OLS Forward Selection, OLS Backward Elimination, OLS Stepwise Regression, and LASSO Regression. Ultimately, the aforementioned combination of OLS Backward Elimination, VIF analysis, and a correlation matrix with visual inspection of interaction plots proved the best. SAS code for these models can be found in the appendix.

Overall, the custom model outperformed all other models in terms of AIC, SBC, Internal k-fold Cross Validation, and external cross validation. Because these results changed slightly as testing was repeated across the folds, we considered this and a combination of other metrics, including Mean Square Errors produced from the models as well as the adjusted R-Square values across both internal and external cross validation as this data source diversity would increase chances of representing natural phenomena encountered under practical scenarios. Output tables are in the appendix for this section.

	LASSO Estimates using LASSO Variables	OLS (Backward) Estimates using LASSO Variables	OLS (Backward) Estimates using OLS Variables	OLS (Backward) Estimates using Custom OLS Variables
	Appendix table	Appendix table	Appendix table	<u>Appendix table</u>
AIC (Internal)	621818	621818	620432	620750
AIC (External)	470167	470167	468947	469383
SBC (Internal)	602100	602100	601094	601467

SBC (External)	455277	455277	454424	454912
Internal Cross Validation (5 folds)	3.0667x10 ¹⁷	3.0698X10 ¹⁷	5.1845x10 ¹⁷	3.089X10 ¹⁷
External Cross Validation (5 folds)	2.3004x10 ¹⁷	2.2927x10 ¹⁷	5.2081x10 ¹⁷	2.3074x10 ¹⁷

Prediction

After considering information provided by internal and external cross validation, it was found that the custom model had the highest performance. Compared to the other models, the Custom model had the lowest RMSE, indicating that the amount of variation in predicted and observed values are smaller. Although the AIC and SBC values — which suggest better goodness of fit while not being over-fit — were between 0.05% and 0.1% better for the Backward OLS model, the backward OLS model produced the worst of the four models in terms of CV PRESS, suggesting the amount of error from the test and training sets was the worst for this model. However, since the Custom model performed consistently well, and better than all four on the CV PRESS metrics — here, indicating the amount of error from test and training sets was the least, we used the Custom model for predictions. Cross Validation and Model performance statistics can be found in the <u>appendix</u>, along with the Extra Sums of Squares outputs.

Data from the test set was cleaned in a similar manner to the training set and appended to the training set. After cleaning the test data there were 3,912 observations. Many of these observations were removed due to absence of values and to maintain consistency within the structures of the training and test sets. The Custom model was then re-run with the training/test set in SAS to allow for predictions with 95% confidence intervals. Our final RMSLE for this objective was 0.5980.

Please reference the supplemental SampleSubmission.csv for the Custom model predictions.

Goal 2

Introduction

Many factors play a role in housing price and demand. Sberbank, a large bank in Russia provide historical housing data from August 2011 to June 2015 so we could predict the average property price for July 2015 through July 2016. The housing market appears to be stable during this time – although the country's economy was not, which can make forecasting difficult.

Data Wrangling

Using the data provided we extracted the timestamp and price values from the data provided by Sberbank. The timestamp required formatting into a proper standard datetime construct. Our goal was to recognize the average price by month-year and the variation over time. The date field was separated into three additional columns; month, day year. Then we merged the year and month columns together to capture the average price by month-year then this was numbered by in ascending order, example below.

1	Α	В	С
1	MonthNumber	monthYear	AvgPrice
2	1	201108	5850000
3	2	201109	6255310.057
4	3	201110	5667466.103
5	4	201111	6140269.116
6	5	201112	5812806.357

Looking at the data graphically we can see an upward trend of the average home price in the 47 months of data collected, however looking at the average price by year the trend is upward but has a sharp decline in 2015. To explain the trends we analyzed the 71 variables the bank provided and we need to consider Russia's volatile economy.

Looking at a simple linear regression model: $AveragePrice = \hat{\beta}_0 + \hat{\beta}_1 MonthNumber$. Can we assume the average home price will trend above or below the regression line for an extended amount of time, suggesting in serially correlated residuals? Upon visual inspection of the residual plot, there evidence the series will run above and below the trend line.

Serial Correlation Verification

This model has 1 variable, with 47 observations; given this information and the use of a Durban-Watson (DW) Table the lower and upper bounds used for identifying serial correlation are approximately: $DW_{LB} \approx 1.50$ and $DW_{UB} \approx 1.59$. For a set of data to exhibit serial correlation, a model needs that have a DW statistic that is less than the DW lower bound. If a model's DW statistic is between the upper and lower bound than the model is inconclusive for serial correlations; if a model's DW statistic is larger than the DW upper bound than that model does not have, or no longer has, serial correlation.

Upon initial inspection of an AR(0) model, the DW statistic of 0.7524 suggests that there is serial correlation between time observations. The ACF and PACF plots suggest that a lag of 1 is a strong candidate for serial correlation correction. When studying the PACF plot in more detail, the plot suggests that a lag of 5 may also be a candidate for serial correlation correction.

To screen for the correct number of lags to apply for time series, models for AR(1) – AR(5). The main requirement for selecting the best lag for time series requires that the DW statistic be greater than 1.59, and that ACF and PACF plots show that there is no longer serial correlation, AIC, and SBC statistics provide further evidence confirming the performance of a model. It is important to select the correct lag for prediction as it will adjust the standard error appropriately given the correlation between time values. If the incorrect lag is selected prediction estimates may not be as accurate and may also have larger error terms and confidence interval widths.

After running time series models for AR(1) – AR(5), the AR(1) model had a DW statistic of 2.1502 (Pr < DW) = 0.6422; AIC = 1340.68; and SBC = 1346.24. Although the PACF plots in the AR(0) suggested that there was a potential for a lag 5 model, the DW-statistics for AR(2) – AR(5) models all showed DW statistics that were less than the DW lower limit of 1.50. This confirmed that these models all still have serial correlation and are probably not the best models for describing this data. The AR(1) model's AIC and SBC statistics were also lower than the AR(2) – AR(5) models. This suggests that the AR(1) model is a better fit for the data. Please see the appendix for DW, AIC, SBC, ACF, and PACF statistics.

Time Series Predictions

Predictions were calculated using the AR(1) time series model based on criteria describe in the "Serial Correlation Verification" section. The predictions include an upper and lower bound for the 95% confidence intervals. There are no residuals as residuals cannot be calculated unless there are response values (AvgPrice) present.

Obs	prediction	resid	lower	upper	trend	MonthNumber	monthYear	AvgPrice
47	8160280.59	-68679.64	7396850.52	8923710.66	7999709.17	47	201506	8091600.9525
48	8103451.83		7338341.79	8868561.86	8046186.61	48	201507	
49	8128350.65		7194375.86	9062325.43	8092664.05	49	201508	
50	8161380.70		7148278.17	9174483.23	8139141.49	50	201509	
51	8199477.98		7142064.79	9256891.18	8185618.93	51	201510	
52	8240733.07		7154947.40	9326518.74	8232096.37	52	201511	
53	8283956.03		7177810.24	9390101.83	8278573.81	53	201512	
54	8328405.35		7206179.85	9450630.84	8325051.25	54	201601	
55	8373618.90		7237681.70	9509556.09	8371528.68	55	201602	
56	8419308.70		7270981.92	9567635.49	8418006.12	56	201603	
57	8465295.31		7305301.15	9625289.46	8464483.56	57	201604	
58	8511466.86		7340172.27	9682761.46	8510961.00	58	201605	
59	8557753.68		7375311.02	9740196.35	8557438.44	59	201606	

The AR(1) Time Series plot has prediction value with upper and lower 95% CI bounds. Note how prediction values for months 48-59 fall on the fitted line. These values are generated by the AR(1) model which is represented by the fitted line.

Please reference the supplemental documentation tsPrediction.csv for the full set of data pertaining to this objective, including both training and test data.

Appendix

Table of missing values

Feature Name	Count Missing	Feature Name	Count Missing
hospital_beds_raion	12,096	build_count_before_1920	4,195
build_year	11,392	build_count_1921.1945	4,195
max_floor	7,991	build_count_1946.1970	4,195
material	7,991	build_count_1971.1995	4,195
num_room	7,991	build_count_after_1995	4,195
kitch_sq	7,991	floor	146
preschool_quota	5,604	metro_min_walk	19
life_sq	5,333	metro_km_walk	19
build_count_block	4,195	railroad_station_walk_km	19
build_count_wood	4,195	railroad_station_walk_min	19
build_count_frame	4,195	ID_railroad_station_walk	19
build_count_brick	4,195		

Reference Table for Missing Values in modelingData.csv

Variable transformations samples: histograms

Proportional Imputation Example

Correlation Matrix Example

Below is a portion of our correlation matrix used in the custom model. This table is too large to replicate in this document in its entirety. However, the code used to develop this is contained in section <u>Goal 1</u> <u>SAS Code: Modeling & Cross-Validation</u>.

	price_doc	id	timestamp	full_sq	life_sq	floor	max_floor	num_room	kitch_sq	product_type	raion_popul	green_zone_part
price_doc price_doc	1.00000	0.12706	0.12363	0.30723	0.54569	0.11404	0.12010	0.26425	0.29385	-0.02040	0.04657	-0.01552
id id	0.12706	1.00000	0.97916	0.01663	0.03354	-0.00844	-0.01423	0.00516	-0.04901	0.05348	-0.00555	0.01299
timestamp timestamp	0.12363	0.97916	1.00000	0.01643	0.03472	0.00003	-0.01311	0.00529	-0.04990	0.07635	-0.01767	0.00584
full_sq full_sq	0.30723	0.01663	0.01643	1.00000	0.44234	0.08269	0.84351	0.94965	0.54860	0.10070	-0.03057	0.02087
life_sq life_sq	0.54569	0.03354	0.03472	0.44234	1.00000	0.10607	0.18300	0.39532	0.27885	0.19963	-0.07542	0.02520
floor	0.11404	-0.00844	0.00003	0.08269	0.10607	1.00000	0.20568	0.03315	0.06428	0.22320	-0.02927	-0.01262
max_floor max_floor	0.12010	-0.01423	-0.01311	0.84351	0.18300	0.20568	1.00000	0.79475	0.55589	0.09722	-0.02148	0.02654
num_room num_room	0.26425	0.00516	0.00529	0.94965	0.39532	0.03315	0.79475	1.00000	0.53215	0.02253	0.00402	0.01929
kitch_sq kitch_sq	0.29385	-0.04901	-0.04990	0.54860	0.27885	0.06428	0.55589	0.53215	1.00000	-0.35885	0.14393	0.04130
product_type product_type	-0.02040	0.05348	0.07635	0.10070	0.19963	0.22320	0.09722	0.02253	-0.35885	1.00000	-0.35263	-0.02990
raion_popul raion_popul	0.04657	-0.00555	-0.01767	-0.03057	-0.07542	-0.02927	-0.02148	0.00402	0.14393	-0.35263	1.00000	0.12366
green_zone_part green_zone_part	-0.01552	0.01299	0.00584	0.02087	0.02520	-0.01262	0.02654	0.01929	0.04130	-0.02990	0.12366	1.00000

Variance Inflation Factor

Below is a portion of our variance inflation factor scores and table output. As with the correlation matrix, this table is too large to replicate in this document in its entirety. However, the code used to develop this is contained in section <u>Goal 1 SAS Code: Modeling & Cross-Validation</u>. For our custom model, we applied a threshold cutoff for most variables of a Tolerance value less than 0.1. Terms used in significant interactions that breached this threshold were still used in the model as this provides a degree of healthy error in a model, which in turn prevents over-fitting to the modeling data.

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation	
Intercept	Intercept	1	-6532056	525008	-12.44	<.0001		0	
id	id	1	68.27688	3.14594	21.70	<.0001	0.97694	1.02361	
life_sq	life_sq	В	148107	2186.27762	67.74	<.0001	0.63643	1.57126	
floor	floor	В	765819	45893	16.69	<.0001	0.82679	1.20950	
max_floor	max_floor	В	-60872	4940.04196	-12.32	<.0001	0.24349	4.10689	
num_room	num_room	1	266811	32115	8.31	<.0001	0.26703	3.74495	
kitch_sq	kitch_sq	В	8449982	411851	20.52	<.0001	0.43002	2.32547	
product_type	product_type	В	440279	103931	4.24	<.0001	0.42628	2.34588	
green_zone_part	green_zone_part	В	-1853163	255005	-7.27	<.0001	0.43994	2.27306	
indust_part	indust_part	В	-3031984	310902	-9.75	<.0001	0.51052	1.95878	
preschool_quota	preschool_quota	В	-12313	4002.28731	-3.08	0.0021	0.13412	7.45583	
children_school	children_school	В	-408.75477	109.88984	-3.72	0.0002	0.00454	220.13674	
healthcare_centers_raion	healthcare_centers_raion	1	25930	28220	0.92	0.3582	0.41394	2.41580	
university_top_20_raion	university_top_20_raion	В	301476	100519	3.00	0.0027	0.33464	2.98830	
shopping_centers_raion	shopping_centers_raion	В	-83135	11240	-7.40	<.0001	0.26419	3.78518	
railroad_terminal_raion	railroad_terminal_raion	В	-1946728	209013	-9.31	<.0001	0.42896	2.33121	
big_market_raion	big_market_raion	В	96335	158500	0.61	0.5433	0.72396	1.38129	

Predictor Variables Interaction Plots

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7496958.248	81118.29796	92.42	<.0001
children_school	4.624	12.35193	0.37	0.7082
school_km	-392931.574	41312.60587	-9.51	<.0001
children_s*school_km	70.993	16.12351	4.40	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7265815.776	58455.48390	124.30	<.0001
build_count_block	3204.990	863.31668	3.71	0.0002
build_count_1921_194	4585.718	852.93075	5.38	<.0001
build_cou*build_coun	-37.931	8.11408	-4.67	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	6815357.931	73348.17177	92.92	<.0001
build_count_block	10205.651	1874.59132	5.44	<.0001
build_count_1946_197	5467.237	485.09060	11.27	<.0001
build_cou*build_coun	-55.043	5.82153	-9.46	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7139221.473	84124.34752	84.87	<.0001
build_count_block	14093.678	1497.97823	9.41	<.0001
build_count_1971_199	4036.298	880.73819	4.58	<.0001
build_cou*build_coun	-164.376	17.30349	-9.50	<.0001

Parameter	Estimate	t Value	Pr > t	
Intercept	6880680.118	68615.29625	100.28	<.0001
build_count_block	6686.790	929.48046	7.19	<.0001
build_count_after_19	8669.985	746.88577	11.61	<.0001
build_cou*build_coun	-58.349	5.02467	-11.61	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7375296.649	38990.02960	189.16	<.0001
build_count_wood	-1849.435	379.43315	-4.87	<.0001
build_count_before_1	12798.671	701.03674	18.26	<.0001
build_cou*build_coun	-14.321	2.30077	-6.22	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7261397.781	41052.14304	176.88	<.0001
build_count_frame	44161.676	5150.99892	8.57	<.0001
build_count_1921_194	15089.430	958.40439	15.74	<.0001
build_cou*build_coun	-584.934	36.85870	-15.87	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t	
Intercept	7098142.417	57092.68093	124.33	<.0001	
build_count_frame	5789.399	4918.46604	1.18	0.2392	
build_count_1946_197	3220.803	322.22753	10.00	<.0001	
build_cou*build_coun	-79.447	14.22334	-5.59	<.0001	

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	7096973.883	50126.38029	141.58	<.0001
build_count_frame	65939.662	7167.87457	9.20	<.0001
build_count_after_19	10300.697	778.04935	13.24	<.0001
build_cou*build_coun	-588.054	48.16212	-12.21	<.0001

Parameter	Estimate	Standard Error	t Value	Pr > t
Intercept	8094353.522	55356.23735	146.22	<.0001
office_km	-402150.050	30115.06210	-13.35	<.0001
X16_29_all	1.999	0.85603	2.34	0.0195
office_km*X16_29_all	-2.120	0.55557	-3.82	0.0001

Data Dictionary

		Data Type - Post
Attribute	Attribute Description	Transformation
id	transaction id	integer
timestamp	date of transaction	time series
	total area in square meters, including loggias,	
full_sq	balconies and other non-residential areas	integer
	living area in square meters, excluding loggias,	
life_sq	balconies and other non-residential areas	numeric
floor	for apartments, floor of the building	numeric
max_floor	number of floors in the building	numeric
material	wall material	numeric
build_year	year building was constructed	numeric
num_room	number of living rooms	numeric
kitch_sq	kitchen area	numeric
		categorical factor with two
product_type	owner-occupier purchase or investment	levels; one-hot encoded
raion_popul	Number of municipality population. district	integer
green_zone_part	Proportion of area of greenery in the total area	numeric
indust_part	Share of industrial zones in area of the total area	numeric
children_preschool	Number of pre-school age population	integer
preschool_quota	Number of seats in pre-school organizations	numeric
children_school	Population of school-age children	integer
hospital_beds_raion	Number of hospital beds for the district	integer
healthcare_centers_raion	Number of healthcare centers in district	integer
	Number of higher education institutions in the top	
university_top_20_raion	ten ranking of the Federal rank	integer
shopping_centers_raion	Number of malls and shopping centers in district	integer

office_raion	Number of malls and shopping centers in district	numeric
		categorical factor with two
railroad_terminal_raion	Presence of the railroad terminal in district	levels; one-hot encoded
		categorical factor with two
big_market_raion	Presence of large grocery / wholesale markets	levels; one-hot encoded
full_all	Total number of population in the municipality	integer
0_6_all	Population count of age 0-6 years	integer
7_14_all	Population count of age 7-14 years	integer
0_17_all	Population count of age 0-17 years	integer
16_29_all	Population count of age 16-19 years	integer
0_13_all	Population count of age 0-13 years	integer
build_count_block	Share of block buildings	integer
build_count_wood	Share of wood buildings	integer
build_count_frame	Share of frame buildings	integer
build_count_brick	Share of brick buildings	integer
build_count_before_1920	Share of buildings constructed before year 1920	integer
	Share of buildings constructed between years 1921	
build_count_1921-1945	and 1945	integer
	Share of buildings constructed between 1946 and	
build_count_1946-1970	1970	integer
	Share of buildings constructed between 1971 and	
build_count_1971-1995	1995	integer
build_count_after_1995	Share of buildings constructed after 1995	integer
metro_min_avto	Time to subway by car, min.	numeric
metro_km_avto	Distance to subway by car, km	numeric
metro_min_walk	Time to metro by foot	numeric
metro_km_walk	Distance to the metro, km	numeric
school_km	Distance to high school	numeric
park_km	Distance to park	numeric
green_zone_km	Distance to green zone	numeric
industrial_km	Distance to industrial zone	numeric
railroad_station_walk_km	Distance to the railroad station (walking)	numeric
railroad_station_walk_min	Time to the railroad station (walking)	numeric
ID_railroad_station_walk	Nearest railroad station id (walk)	integer
railroad_station_avto_km	Distance to the railroad station	numeric
railroad_station_avto_min	Time to the railroad station	numeric
public_transport_station_km	Distance to the public transport station (walk)	numeric
public_transport_station_min_walk	Time to the public transport station (walk)	numeric
kremlin_km	Distance to the city center (Kremlin)	numeric
big_road1_km	Distance to Nearest major road	numeric
big_road2_km	The distance to next distant major road	numeric
	Distance to the railway / Moscow Central Ring /	
railroad_km	open areas Underground	numeric
bus_terminal_avto_km	Distance to bus terminal	numeric

big_market_km	Distance to grocery / wholesale markets	numeric
market_shop_km	Distance to markets and department stores	numeric
fitness_km	Distance to fitness	numeric
swim_pool_km	Distance to swimming pool	numeric
ice_rink_km	Distance to ice palace	numeric
stadium_km	Distance to stadium	numeric
basketball_km	Distance to the basketball courts	numeric
public_healthcare_km	Distance to public healthcare	numeric
university_km	Distance to universities	numeric
workplaces_km	Distance to workplaces	numeric
shopping_centers_km	Distance to shopping centers	numeric
office_km	Distance to business centers/ offices	numeric
big_church_km	Distance to large church	numeric
price_doc	sale price (this is the target variable)	numeric

Model Cross-Validations

LASSO Regression Using LASSO-Selected Variables – Model 1

External Cr	oss	Validation	on Using	Test/	Γrain Split	Internal Cross Validation Using Full Data				
Root MSE		3905728		•		Root MSE		391	9496	
Dependent Mea	an	7503500				Dependent	Mean	748	3904	
R-Square		0.4055				•	moun			
Adj R-Sq		0.4050				R-Square		0.4	4075	
AIC		470167				Adj R-Sq		0.4	4071	
AICC		470167				AIC		62	1818	
SBC		455277				AICC		62	1818	
ASE (Train)	1.5	524047E13						-		
ASE (Test)	1.5	74238E13				SBC		602	2100	
CV PRESS	2.3	800366E17				CV PRESS		3.066611	IE17	
	Ana	lysis of Varian	ice				Ana	lysis of Variar	ice	
Source	DF	Sum of Squares	Mean Square	F Value		Source	DF	Sum of Squares	Mean Square	F Value
Model	13	1.558466E17	1.19882E16	785.87		Model	13	2.093126E17	1.610097E16	1048.07
Error	14980	2.285156E17	1.525471E13			Error	19812	3.043609E17	1.536245E13	
Corrected Total	14993	3.843622E17				Corrected Total	19825	5.136735E17		

OLS Backward Elimination Using LASSO Variables and OLS – Model 2

External Cross Validation Using Test/Train Split	Internal Cross Validation Using Full Data

Root MSE		3905728			Root MSE		3919	9496	
Dependent Mea	an	7503500			Dependent	Mean	748	3904	
R-Square		0.4055				mean			
Adj R-Sq		0.4050			R-Square		0.4	4075	
AIC		470167			Adj R-Sq		0.4	4071	
AICC		470167			AIC		62	1818	
SBC		455277			AICC		62	1818	
ASE (Train)	1.5	524047E13							
ASE (Test)	1.6	74238E13			SBC		602	2100	
CV PRESS	2.2	92747E17			CV PRESS		3.063805	E17	
	Ana	alysis of Varia	nce			Analysis of Variance			
Source	DF	Sum of Squares		F Value	Source	DF	Sum of Squares	Mean Square	F Value
Model	13	1.558466E17	1.19882E16	785.87	Model	13	2.093126E17	1.610097E16	1048.07
Error	14980	2.285156E17	1.525471E13		Error	19812	3.043609E17	1.536245E13	
Corrected Total	14993	3.843622E17			Corrected Total	19825	5.136735E17		

OLS Backward Elimination Using OLS Backward Elimination Variables – Model 3

External Cross Validation Using Test/Train Split						Internal Cross Validation Using Full Data					
Root MSE		3744159				Root MSE		378	0340		
Dependent Mea	an	7503500				Dependent	Moar	7/18	3904		
R-Square		0.4554					wear				
Adj R-Sq		0.4532				R-Square		0.	4501		
AIC		468947				Adj R-Sq		0.	4484		
AICC		468948				AIC		62	0432		
SBC		454424				AICC		62	0433		
ASE (Train)	1.3	396076E13									
ASE (Test)	1.5	531753E13				SBC		60	1094		
CV PRESS	5.2	208058E17				CV PRESS		5.18445	2E17		
	Analysis of Variance					Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value		Source	DF	Sum of Squares	Mean Square	F Value	
Model	61	1.750347E17	2.86942E15	204.68		Model	61	2.312267E17	3.790602E15	265.24	
Error	14932	2.093276E17	1.401872E13			Error	19764	2.824468E17	1.429097E13		
Corrected Total	14993	3.843622E17				Corrected Total	19825	5.136735E17			

Custom Model Using OLS Backward Elimination Selection, Correlation Matrix, & VIF – Custom

External Cross Validation Using Test/Train Split	Internal Cross Validation Using Full Data

Root MSE		3798015			Root MSE		381	0126	
Dependent Me	an	7503500			Dependent	t Mear	748	3904	
R-Square		0.4399				wear			
Adj R-Sq		0.4373			R-Square		0.	4416	
AIC		469383			Adj R-Sq		0.	4397	
AICC		469383			AIC		62	0750	
SBC		454912			AICC		62	0751	
ASE (Train)	1.4	435854E13					-		
ASE (Test)	1.4	490589E13			SBC		60	1467	
CV PRESS	2.3	307358E17			CV PRESS		3.08547	5E17	
	Ana	llysis of Variar	nce			Analysis of Variance			
Source	DF	Sum of Squares		F Value	Source	DF	Sum of Squares		F Value
Model	68	1.690703E17	2.486328E15	172.36	Model	68	2.268599E17	3.336176E15	229.81
Error	14925	2.152919E17	1.442492E13		Error	19757	2.868136E17	1.451706E13	
Corrected Total	14993	3.843622E17			Corrected Total	19825	5.136735E17		

Serial Correlation Verification

EDA R Code: Imputations & Transformations

```
library(pacman)
p_load(lmtest
        ,dplyr
        ,Hmisc
        ,skimr
        ,tidyr
        ,na.tools
        , tidyverse
        ,olsrr
        ,caret
        ,multcomp
        ,ggthemes
        ,MASS# for OLS
,regclass# for VIF
        , stats
        ,glmnet
        ,sjPlot
        ,sjmisc
        ,ggplot2
        ,xĺsx)
#format dates:
df <- read.csv("./modelingData.csv", header=T, sep=",", strip.white=T,</pre>
stringsAsFactors = F)
names(df)[36] <- "build_count_1921_1945"</pre>
```

```
names(df)[37] <- "build_count_1946_1970"
names(df)[38] <- "build_count_1971_1995"</pre>
####### Floor
#df$floor <- df$floor %>% replace_na(0)
df$floor[is.na(df$floor)] <- 0
df$floor <- log(df$floor+1)
#########
##########
#df[which(df\$year == 2011),]
######## max floor
df2.maxf1 <- df[which(!is.na(df$max_floor)),]</pre>
maxfl.Mean <- data.frame(df2.maxfl$max_floor/df2.maxfl$full_sq)
colnames(maxfl.Mean) <- "percentofFloor"</pre>
maxflMultiplier <- mean(head(maxfl.Mean$percentofFloor,7000))</pre>
df[which(is.na(df$max_floor)),6] <-</pre>
df[which(is.na(df$max_floor)),3]*maxflMultiplier
##########
#df[which(df\$year == 2011),]
######### life sq
df2.lifesq <- df[which(!is.na(df$life_sq)),]
life.Mean <- data.frame(df2.lifesq$life_sq/df2.lifesq$full_sq)
colnames(life.Mean) <- "percentofFull"</pre>
lifesqMultiplier <- mean(head(life.Mean$percentofFull,11000))
df[which(is.na(df$life_sq)),4] <</pre>
df[which(is.na(df$life_sq)),3]*lifesqMultiplier
df$life_sq <- as.numeric(df$life_sq)</pre>
dishonestLivingSpace <- (df$life_sq - df$full_sq)</pre>
df <- data.frame(dishonestLivingSpace, df)</pre>
df <- df[which(df$dishonestLivingSpace < 0),] #living space shouldn't be
greater than the full sq, considering lofts that have shared external</pre>
bathrooms
df <- subset(df, select = -c(dishonestLivingSpace)) # remove the counter</pre>
variable dishonestLivingSpace
##########
#df[which(df\$year == 2011),]
####### kithcen sq
df2.kitchsq <- df[which(!is.na(df$kitch_sq)),]</pre>
kitch.Mean <- data.frame(df2.kitchsq$kitch_sq/df2.kitchsq$full_sq)
colnames(kitch.Mean) <- "percentofFullkitch"
kitchsqMultiplier <- mean(head(kitch.Mean$percentofFullkitch,7000))
df[which(is.na(df$kitch_sq)),10] <-
df[which(is.na(df$kitch_sq)),3]*kitchsqMultiplier
df$kitch_sq[is.na(df$kitch_sq)] <- 0</pre>
dishonestKitchens <- (df$kitch_sq - df$full_sq)</pre>
df <- data.frame(dishonestKitchens, df)</pre>
df <- df[which(df$dishonestKitchens < -2),] #kitchen space shouldn't be</pre>
greater than more than 2 meters less than the full sq
df <- subset(df, select = -c(dishonestKitchens)) # remove the counter</pre>
variable dishonestKitchens
dfkitch_sq <- sqrt(dfkitch_sq^1/16+1)
##########
#df[which(df$vear == 2011),]
####### num room
df$num_room <- as.integer(df$num_room)</pre>
df2.numRm <- df[which(!is.na(df$num_room)),]</pre>
numRm.Mean <- as.numeric(df2.numRm\$num_room)/as.numeric(df2.numRm\$full_sq)
#colnames(numRm.Mean) <- "percentofFullrm"</pre>
class(numRm.Mean)
#numRm.Mean$percentofFullrm <- as.numeric(percentofFullrm)</pre>
numRmMultiplier <- mean(head(numRm.Mean,7000))</pre>
df[which(is.na(df$num_room)),9] <-</pre>
as.integer(df[which(is.na(df$num_room)),3])*numRmMultiplier
```

```
################################df <- df[which(df$num_room < 30),]
#####################
#########
#df[which(df\$year == 2011),]
######## office raion
df$office_raion <- sqrt(df$office_raion^1/10)</pre>
##########
#df[which(df\$year == 2011),]
######### big market raion
df$big_market_raion <- dplyr::recode(df$big_market_raion, "no" = 0, "yes"=
####### Product_type
df$product_type <- dplyr::recode(df$product_type, "Investment" = 0,</pre>
'OwnerOccupier"= 1)
#########
#df[which(df\$year == 2011),]
######## railroad terminal raion
df$railroad_terminal_raion <- dplyr::recode(df$railroad_terminal_raion,
                                                                    "no"
= 0, "yes"= 1)
#########
#df[which(df\$year == 2011),]
#########
#df <- df %>% mutate(railroad_station_walk_min =
if_else(is.na(railroad_station_walk_min),0,railroad_station_walk_min))
df$railroad_station_walk_min[is.na(df$railroad_station_walk_min)] <- 0
##########
#df[which(df\$year == 2011),]
##########
#df <- df %>% mutate(ID_railroad_station_walk =
if_else(is.na(ID_railroad_station_walk),0,ID_railroad_station_walk))
df$ID_railroad_station_walk[is.na(df$ID_railroad_station_walk)] <- 0
#df[which(df\$year == 2011),]
#########
#df$railroad_station_walk_km <- df$railroad_station_walk_km %>% replace_na(0)
df$railroad_station_walk_km[is.na(df$railroad_station_walk_km)] <- 0
##########
#df[which(df\$year == 2011),]
##########
df <- df[which(!is.na(df$build_count_before_1920)),] #one fell swoop to take</pre>
out all NA 'build_count_{year range}' rows
##########
#df[which(df\$year == 2011),]
#df$metro_min_walk <- df$metro_min_walk %>% replace_na(0)
df$metro_min_walk[is.na(df$metro_min_walk)] <- 0</pre>
##########
#df[which(df\$year == 2011),]
#########
#df$metro_km_walk <- df$metro_km_walk %>% replace_na(0)
df$metro_km_walk[is.na(df$metro_km_walk)] <- 0</pre>
##########
#df[which(df\$year == 2011).]
################year_month <- as.factor(paste0(df$year,df$month))
################df <- data.frame(year_month,df)
```

```
######## Material, Hospital bed raion
df <- subset(df, select = -c(material, hospital_beds_raion, build_year,</pre>
public_trans_station_time_walk, children_preschool, preschool_quota))
df <- df %>% mutate_if(is.integer, as.numeric) %>% mutate_if(is.character,
as.factor) %>% data.frame()
#df <- df[-c(2958, 1192, 2998,134, 3156, 1452, 2994, 3151, 98),]
write.csv(df, "cleanData.csv", row.names = F)
df <- read.csv("cleanData.csv", header = T)</pre>
########################## ignore the below
skim(df)
df2 <- df
df2$life_sq <- log(df$full_sq + 1)
df2$basketball_km <- log(df$basketball_km + 1)
df2$fitness_km <- log(df$fitness_km + 1)
df2$green_zone_km <- log(df$fitness_km + 1)
df2$green_zone_km <- log(df$green_zone_km + 1)
df2$indust_part <- log(df$indust_part + 1)
df2$kitch_sq <- log(df$life_Sq + 1)
df2$figeren_sone_km <- log(df$market_shop_km <- log(df$market_s
df2$market_shop_km <- log(df$market_shop_km + 1)
df2$max_floor <- log(df$max_floor + 1)</pre>
df2$metro_km_avto <- log(df$metro_km_avto + 1)
df2$metro_km_walk <- log(df$metro_km_walk + 1)
df2$metro_km_walk <- log(df$metro_km_walk + 1)
df2$metro_min_avto <- log(df$metro_min_avto + 1)
df2$metro_min_walk <- log(df$metro_min_walk + 1)
df2$num_room <- log(df$num_room + 1)
df2$park_km <- log(df$office_km + 1)
df2$park_km <- log(df$park_km + 1)
df2$price_doc <- log(df$price_doc + 1)
df2$priblic_hoalthcare_km <- log(df$public_hoalth
df2$public_healthcare_km <- log(df$public_healthcare_km + 1)
df2$public_transport_station_km <- log(df$public_transport_station_km + 1)
df2$railroad_km <- log(df$railroad_km + 1)
df2$school_km <- log(df$school_km + 1)</pre>
df2\$shopping_centers_km <- log(df\$shopping_centers_km + 1)
skim(df2)
######################### ignore the above
lm.Model <- lm(log(price_doc) ~ id + life_sq + floor + max_floor + num_room +</pre>
kitch_sq + product_type + green_zone_part + indust_part + children_school +
healthcare_centers_raion +
                                               university_top_20_raion + shopping_centers_raion +
railroad_terminal_raion + big_market_raion + x0_17_all + x16_29_all +
build_count_block + build_count_wood + build_count_frame +
                                               build_count_brick + build_count_before_1920 +
build_count_1921_1945 + build_count_1946_1970 + build_count_1971_1995 +
build_count_after_1995 + metro_km_avto + school_km +
                                               green_zone_km + industrial_km +
ID_railroad_station_walk + railroad_station_avto_km +
big_market_km + market_shop_km + fitness_km + swim_pool_km + ice_rink_km +
stadium_km + public_healthcare_km + university_km + workplaces_km + shopping_centers_km + office_km +
big_church_km + X0_17_all*X16_29_all + children_school*school_km +
build_count_block*build_count_1921_1945 +
                                               build_count_block*build_count_1946_1970 +
build_count_block*build_count_1971_1995 +
build_count_block*build_count_after_1995 +
build_count_wood*build_count_before_1920 +
```

```
build count wood*build count 1946 1970 +
build_count_wood*build_count_after_1995 +
build_count_frame*build_count_before_1920 +
build_count_frame*build_count_1921_1945 +
                        build_count_frame*build_count_1946_1970 +
build_count_frame*build_count_after_1995 +
build_count_brick*build_count_1946_1970 +
build_count_brick*build_count_1971_1995 +
                        build_count_brick*build_count_after_1995 +
office_km*x16_29_all, data=df)
# viewing diagnostics residuals:
par(mfrow=c(2,2))
plot(lm.Model)
# Based on the suggested model above from SAS, we dropped outlier
observations:
df \leftarrow df[-c(12946, 16104, 8678, 18323, 8924, 6425, 9728),]
# After updating to remove the outliers, we re-ran the model:
lm.Model <- lm(log(price_doc) ~ id + life_sq + floor + max_floor + num_room +</pre>
kitch_sq + product_type + green_zone_part + indust_part + children_school +
healthcare_centers_raion +
                        university_top_20_raion + shopping_centers_raion +
railroad_terminal_raion + big_market_raion + X0_17_all + X16_29_all +
build_count_block + build_count_wood + build_count_frame +
                        build_count_brick + build_count_before_1920 +
ID_railroad_station_walk + railroad_station_avto_km +
public_transport_station_km + kremlin_km + big_road1_km +
                        big_road2_km + railroad_km + bus_terminal_avto_km +
biq_market_km + market_shop_km + fitness_km + swim_pool_km + ice_rink_km +
stadium_km + public_healthcare_km + university_km +
                        workplaces_km + shopping_centers_km + office_km +
big_church_km + X0_17_all*X16_29_all + children_school*school_km + build_count_block*build_count_1921_1945 + build_count_block*build_count_1946_1970 +
build_count_block*build_count_1971_1995 +
build_count_block*build_count_after_1995 +
build_count_wood*build_count_before_1920 +
                        build_count_wood*build_count_1946_1970 +
build_count_wood*build_count_after_1995 +
build_count_frame*build_count_before_1920 +
build_count_frame*build_count_1921_1945 +
                        build_count_frame*build_count_1946_1970 +
build_count_frame*build_count_after_1995 +
build_count_brick*build_count_1946_1970 +
build_count_brick*build_count_1971_1995 +
                        build_count_brick*build_count_after_1995 +
office_km*x16_29_all, data=df)
# viewing post-outlier removal diagnostics residuals:
par(mfrow=c(2,2))
plot(lm.Model)
# As indicated by the residuals diagnostics, our model is better, with the
exception of issues with independence and non-constant
# variance from some of the imputations. This is also causing a left-skew in
the QQ plot.
#updating with removed variables
write.csv(df,"cleanData.csv", row.names = F)
```

Test Data Cleaning R Code: Preparation for External Cross-Validation

```
library(pacman)
p load(lmtest
        ,dplyr
        , Hmisc
        ,skimr
        ,tidyr
        ,na.tools
        , tidvverse
        ,olsrr
        , caret
        , multcomp
        ,ggthemes
        ,MASS# for OLS
        ,regclass# for VIF
        , stats
        ,glmnet
        ,sjPlot
        ,sjmisc
        ,ggplot2
        ,xlsx)
#format dates:
df <- Test
names (df) [35] <- "build count 1921 1945"
names(df)[36] <- "build count 1946 1970"
names(df)[37] <- "build count 1971 1995"
##############df <- df %>% mutate(timestamp = as.Date(timestamp,
origin="1899-12-30"))
##################tryFormats = c("%Y-%m-%d", "%Y/%m/%d")
###############timestamp2 <- df$timestamp
##############df <- data.frame(timestamp2, df)
################df <- df %>% mutate(timestamp = as.Date(timestamp,
origin="1899-12-30"))
###################tryFormats = c("%Y-%m-%d", "%Y/%m/%d")
###############df <- df %>% separate(timestamp2, sep="-", into = c("year",
"month", "day"))
#names(df$build count 1921.1945)[36] <- "build count 1921 1945"
#names(df$build count 1946.1970)[37] <- "build count 1946 1970"
#names(df$build count 1971.1995)[38] <- "build count 1971 1995"
#$colnames(df) <- c('year', 'month', 'day', 'id', 'timestamp', 'full_sq',
'life_sq', 'floor', 'max_floor', 'num_room', 'kitch_sq', 'product_type',
'raion_popul', 'green_zone_part', 'indust_part', 'children_school',</pre>
'healthcare centers raion', 'university top 20 raion',
'shopping centers raion', 'office raion', 'railroad terminal raion',
```

```
'big market raion', 'full all', 'X0 6 all', 'X7 14 all', 'X0 17 all',
'X16_29_all', 'X0_13_all', 'build_count_block', 'build count_wood',
'build count frame', 'build count brick', 'build_count_before_1920',
'build_count_1921_1945', 'build_count_1946_1970', 'build_count_1971_1995', 'build_count_after_1995', 'metro_min_avto', 'metro_km_avto',
'metro_min_walk', 'metro_km_walk', 'school km', 'park km', 'green zone km',
'industrial km', 'railroad station walk km', 'railroad station walk min',
'ID_railroad_station_walk', 'railroad_station_avto_km', 'railroad_station_avto_min', 'public_transport_station_km', 'kremlin_km',
'big_road1_km', 'big_road2_km', 'railroad_km', 'bus_terminal_avto_km', 'big_market_km', 'market_shop_km', 'fitness_km', 'swim_pool_km',
'ice rink km', 'stadium km', 'basketball km', 'public healthcare km',
'university_km', 'workplaces_km', 'shopping_centers_km', 'office_km',
'big_church km', 'price doc')
######## Floor
#df$floor <- df$floor %>% replace na(0)
df$floor[is.na(df$floor)] <- 0</pre>
df$floor <- log(df$floor+1)</pre>
#########
#df$product type <- as.factor(df$product type)</pre>
#########
#df[which(df\$year == 2011),]
######## max floor
df2.maxfl <- df[which(!is.na(df$max floor)),]</pre>
maxfl.Mean <- data.frame(df2.maxfl$max floor/df2.maxfl$full sq)</pre>
colnames (maxfl.Mean) <- "percentofFloor"</pre>
maxflMultiplier <- mean(head(maxfl.Mean$percentofFloor,7000))</pre>
df[which(is.na(df$max_floor)),7] <-</pre>
df[which(is.na(df$max floor)),4]*maxflMultiplier
#########
#df[which(df\$year == 2011),]
####### life sq
df2.lifesq <- df[which(!is.na(df$life sq)),]</pre>
life.Mean <- data.frame(df2.lifesq$life sq/df2.lifesq$full sq)
colnames(life.Mean) <- "percentofFull"</pre>
lifesqMultiplier <- mean(head(life.Mean$percentofFull,11000))</pre>
df[which(is.na(df$life sq)),5] <-</pre>
df[which(is.na(df$life sq)),4]*lifesqMultiplier
df$life sq <- as.numeric(df$life sq)</pre>
dishonestLivingSpace <- (df$life sq - df$full sq)</pre>
df <- data.frame(dishonestLivingSpace, df)</pre>
df <- df[which(df$dishonestLivingSpace < 0),] #living space shouldn't be</pre>
greater than the full sq, considering lofts that have shared external
bathrooms
df <- subset(df, select = -c(dishonestLivingSpace)) # remove the counter</pre>
variable dishonestLivingSpace
#########
#df[which(df\$year == 2011),]
######## kithcen sq
df2.kitchsq <- df[which(!is.na(df$kitch sq)),]</pre>
kitch.Mean <- data.frame(df2.kitchsq$kitch sq/df2.kitchsq$full sq)
colnames(kitch.Mean) <- "percentofFullkitch"</pre>
kitchsqMultiplier <- mean(head(kitch.Mean$percentofFullkitch,7000))</pre>
```

```
df[which(is.na(df$kitch sq)),9] <-</pre>
df[which(is.na(df$kitch sq)),4]*kitchsqMultiplier
df$kitch sq[is.na(df$kitch sq)] <- 0</pre>
dishonestKitchens <- (df$kitch sq - df$full sq)
df <- data.frame(dishonestKitchens, df)</pre>
df <- df[which(df$dishonestKitchens < -2),] #kitchen space shouldn't be
greater than more than 2 meters less than the full sq
df <- subset(df, select = -c(dishonestKitchens)) # remove the counter</pre>
variable dishonestKitchens
df$kitch sq <- sqrt(df$kitch sq^1/16+1)
#########
#df[which(df\$year == 2011),]
####### num room
df$num room <- as.integer(df$num room)</pre>
df2.numRm <- df[which(!is.na(df$num room)),]</pre>
numRm.Mean <- as.numeric(df2.numRm$num room)/as.numeric(df2.numRm$full sq)
#colnames(numRm.Mean) <- "percentofFullrm"</pre>
class(numRm.Mean)
#numRm.Mean$percentofFullrm <- as.numeric(percentofFullrm)</pre>
numRmMultiplier <- mean(head(numRm.Mean,7000))</pre>
df[which(is.na(df$num room)),8] <-</pre>
as.integer(df[which(is.na(df$num room)),4])*numRmMultiplier
#########
#########
#df[which(df\$year == 2011),]
######## office raion
df$office raion <- sqrt(df$office raion^1/10)</pre>
#########
#df[which(df\$year == 2011),]
######## big market raion
df$big_market_raion <- dplyr::recode(df$big market raion, "no" = 0, "yes"=</pre>
#########
####### Product type
df$product type <- dplyr::recode(df$product type, "Investment" = 0,</pre>
"OwnerOccupier"= 1)
#########
#df[which(df\$year == 2011),]
######## railroad terminal raion
df$railroad terminal raion <- dplyr::recode(df$railroad terminal raion,
= 0, "yes" = 1)
#########
#df[which(df\$year == 2011),]
#########
#df <- df %>% mutate(railroad station walk min =
if else(is.na(railroad station walk min),0,railroad station walk min))
df$railroad station walk min[is.na(df$railroad station walk min)] <- 0
#########
#df[which(df\$year == 2011),]
#########
#df <- df %>% mutate(ID railroad station walk =
if else(is.na(ID railroad station walk),0,ID railroad station walk))
df$ID railroad station walk[is.na(df$ID railroad station walk)] <- 0
```

```
#########
#df[which(df$year == 2011),]
#df$railroad station walk km <- df$railroad station walk km %>% replace na(0)
df$railroad station walk km[is.na(df$railroad station walk km)] <- 0
#########
#df[which(df\$year == 2011),]
#########
df <- df[which(!is.na(df$build count before 1920)),] #one fell swoop to take</pre>
out all NA 'build count {year range}' rows
#########
#df[which(df\$year == 2011),]
#########
#df$metro min walk <- df$metro min walk %>% replace na(0)
df$metro min walk[is.na(df$metro min walk)] <- 0</pre>
#########
\#df[which(df\$vear == 2011),]
#########
#df$metro km walk <- df$metro km walk %>% replace na(0)
df$metro km walk[is.na(df$metro km walk)] <- 0</pre>
#########
#df[which(df\$year == 2011),]
####################year month <- as.factor(paste0(df$year,df$month))
#################df <- data.frame(year month, df)
######## Material, Hospital bed raion
df <- subset(df, select = -c(material, hospital beds raion, build year))</pre>
df <- df %>% mutate if(is.integer, as.numeric) %>% mutate if(is.character,
as.factor) %>% data.frame()
#df <- df[-c(2958, 1192, 2998,134, 3156, 1452, 2994, 3151, 98),]
write.csv(df, "cleanTestData.csv", row.names = F)
```

Goal 1 SAS Code: Modeling & Cross-Validation

```
FILENAME REFFILE 'C:/Users/Pablo/Desktop/KG6372/cleanData.xlsx';
PROC IMPORT DATAFILE=REFFILE
DBMS=XLSX
OUT= DF;
GETNAMES=YES;
run;
proc print data = DF(obs=10);
run;
/* backward elimination */
```

```
title "Backward Elimination";
proc glmselect data=DF
testdata=DF
seed=1 plots(stepAxis=number) = (criterionPanel ASEPlot CRITERIONPANEL);
model PRICE DOC = id timestamp full sq life sq floor max floor num room
kitch_sq product_type raion_popul green_zone_part indust_part children_school
healthcare_centers_raion university_top_20_raion shopping_centers_raion
office raion railroad terminal raion big market raion full all X0 17 all
X16 29 all X0 13 all build count block build count wood build count frame
build count brick build count before 1920 build count 1946 1970
build count 1971 1995 build count after 1995 metro min avto metro km avto
metro min walk school km green zone km industrial km railroad station walk km
ID railroad station walk railroad station avto km railroad station avto min
public transport station km kremlin km big road1 km big road2 km railroad km
bus terminal avto km big market km market shop km fitness km swim pool km
ice rink km stadium km basketball km public healthcare km university km
workplaces km shopping centers km office km big church km x16 29 all*x0 6 all
x16 29 all*x0 13 all x0 17 all*x0 13 all x0 17 all*x16 29 all
x7 14 all*x0 17 all x7 14 all*x0 17 all x7 14 all*x0 17 all
x16_29_all*x0_13_all x16_29_all*x0_17_all x16_29_all*x7_14_all
children school*school km build count block*build count before 1920
build count block*build count 1921 1945
build count block*build count 1946 1970
build count block*build count 1971 1995
build count block*build count after 1995
build count wood*build count before 1920
build_count_wood*build_count_1921_1945 build_count_wood*build_count_1946_1970
build count wood*build count 1971 1995
build count wood*build count after 1995
build count frame*build count before 1920
build count frame*build count 1921 1945
build count frame*build count 1946 1970
build count frame*build count 1971 1995
build_count_frame*build_count_after_1995
build count brick*build count before 1920
build count brick*build count 1921 1945
build count brick*build count 1946 1970
build count brick*build count 1971 1995
build count brick*build count after 1995 fitness km*X16 29 all
swim\_pool\_km*X0\_6\_all\ swim\_pool\_km*X7\_14\ all\ swim\_pool\ km*X0\ 17\ all
swim pool km*X0 13 all swim pool km*X16 29 all ice rink km*X0 6 all
ice rink km*X7 14 all ice rink km*X0 17 all ice rink km*X0 13 all
ice rink km*X16 29 all stadium km*X16 29 all office km*X16 29 all
/ selection=backward( choose=CV stop=CV include = 107) CVdetails;
run;
quit;
title "Forward Selection";
proc glmselect data=DF
testdata=DF
seed=1 plots(stepAxis=number) = (criterionPanel ASEPlot CRITERIONPANEL);
model PRICE DOC = id life sq floor max floor kitch sq indust part kremlin km
/ selection=forward( choose=CV stop=CV ) CVdetails;
run;
quit;
```

```
title "Stepwise Regression";
proc glmselect data=DF
testdata=DF
seed=1 plots(stepAxis=number) = (criterionPanel ASEPlot CRITERIONPANEL);
model PRICE DOC = id timestamp full sq life sq floor max floor num room
kitch_sq product_type raion_popul green_zone_part indust_part children_school
healthcare_centers_raion university_top_20_raion shopping_centers_raion
office raion railroad terminal raion big market raion full all X0 17 all
X16 29 all X0 13 all build count block build count wood build count frame
build count brick build count before 1920 build count 1946 1970
build count 1971 1995 build count after 1995 metro min avto metro km avto
metro min walk school km green zone km industrial km railroad station walk km
ID railroad station walk railroad station avto km railroad station avto min
public transport station km kremlin km big road1 km big road2 km railroad km
bus terminal avto km big market km market shop km fitness km swim pool km
ice rink km stadium km basketball km public healthcare km university km
workplaces km shopping centers km office km big church km x16 29 all*x0 6 all
x16 29 all*x0 13 all x0 17 all*x0 13 all x0 17 all*x16 29 all
x7 14 all*x0 17 all x7 14 all*x0 17 all x7 14 all*x0 17 all
x16_29_all*x0_13_all x16_29_all*x0_17_all x16_29_all*x7_14_all
children_school*school_km build_count_block*build count_before 1920
build count block*build count 1921 1945
build count block*build count 1946 1970
build count block*build count 1971 1995
build count block*build count after 1995
build count wood*build count before 1920
build_count_wood*build_count_1921_1945 build_count_wood*build_count_1946_1970
build count wood*build count 1971 1995
build count wood*build count after 1995
build count frame*build count before 1920
build count frame*build count 1921 1945
build count frame*build count 1946 1970
build count frame*build count 1971 1995
build_count_frame*build_count_after_1995
build count brick*build count before 1920
build count brick*build count 1921 1945
build count brick*build count 1946 1970
build count brick*build count 1971 1995
build count brick*build count after 1995 fitness km*X16 29 all
swim\_pool\_km*X0\_6\_all\ swim\_pool\_km*X7\_14\ all\ swim\_pool\ km*X0\ 17\ all
swim pool km*X0 13 all swim pool km*X16 29 all ice rink km*X0 6 all
ice rink km*X7 14 all ice rink km*X0 17 all ice rink km*X0 13 all
ice rink km*X16 29 all stadium km*X16 29 all office km*X16 29 all
/ selection=stepwise(choose=CV stop=CV include = 30) CVdetails;
run;
quit;
/* LASSO selection */
title "LASSO Selection";
/* R-squared is not a great measure for LASSO here */
proc glmselect data =DF
       seed=1 plots(stepAxis = number) = (criterionPanel ASEPlot
CRITERIONPANEL);
       model price doc = id timestamp full sq life sq floor max floor
num room kitch sq product type raion popul green zone part indust part
children school healthcare centers raion university top 20 raion
shopping centers raion office raion railroad terminal raion big market raion
```

```
full all X0 6 all X7 14 all X0 17 all X16 29 all X0 13 all build count block
build count wood build count frame build count brick build count before 1920
build count 1921 1945 build count 1946 1970 build count 1971 1995
build count after 1995 metro min avto metro km avto metro min walk
metro km walk school km park km green zone km industrial km
railroad station walk km railroad station walk min ID railroad station walk
railroad station avto km railroad station avto min
public transport station km kremlin km big road1 km big road2 km railroad km
bus terminal avto km big market km market shop km fitness km swim pool km
ice_rink_km stadium_km basketball_km public_healthcare_km university_km
workplaces km shopping centers km office km big church km price doc
/selection = LASSO(choose = CV stop=CV) CVdetails;
run;
quit;
/* The start of our custom model (below) uses interaction terms and all
variables suggested by our best OLS linear model (from backward) */
proc glmselect data=DF
testdata=DF
seed=1 plots(stepAxis=number) = (criterionPanel ASEPlot CRITERIONPANEL);
model PRICE DOC = id life sq floor max floor num room kitch sq product type
green zone part indust part children school healthcare centers raion
university top 20 raion shopping centers raion railroad terminal raion
big market raion X0 17 all X16 29 all build count block build count wood
build count frame build count brick build count before 1920
build count 1921 1945 build count 1946 1970 build count 1971 1995
build count after 1995 metro km avto school km green zone km industrial km
ID railroad station walk railroad station avto km public transport station km
kremlin km big road1 km big road2 km railroad km bus terminal avto km
big market km market shop km fitness km swim pool km ice rink km stadium km
public_healthcare_km university_km workplaces_km shopping_centers_km
office_km big_church_km x16_29_all*x0_6_all x16_29_all*x0_13_all
X0 17 all*X0 13 all X0 17 all*X16 29 all X0 17 all*X7 14 all
X16 29 all*X7 14 all children school*school km
build count block*build count before 1920
build count block*build count 1921 1945
build count block*build count 1946 1970
build count block*build count 1971 1995
build count block*build count after 1995
build count wood*build count before 1920
build count wood*build count 1921 1945 build count wood*build count 1946 1970
build count wood*build count 1971 1995
build count wood*build count after 1995
build count frame*build count before 1920
build_count_frame*build_count_1921_1945
build count frame*build count 1946 1970
build count frame*build count 1971 1995
build count frame*build count after 1995
build count brick*build count before 1920
build count brick*build count 1921 1945
build count brick*build count 1946 1970
build_count_brick*build_count_1971_1995
build count brick*build count after 1995 X16 29 all*fitness km
swim pool km*X0 6 all swim pool km*X7 14 all X0 17 all*swim pool km
X0 13 all*swim pool km ice rink km*X0 6 all ice rink km*X7 14 all
X0 17 all*ice rink km X0 13 all*ice rink km office km*X16 29 all
/ selection=backward( choose=CV stop=CV include = 40) CVdetails;
run;
```

```
quit;
/* first, a correlation matrix to check collinearity */
proc corr data = DF noprob output=OutCorr nomiss
var price doc id timestamp full sq life sq floor max floor num room kitch sq
product_type raion_popul green_zone_part indust_part children_school
healthcare_centers_raion university_top_20_raion shopping_centers_raion
office raion railroad terminal raion big market raion full all X0 17 all
X16 29 all X0 13 all build count block build count wood build count frame
build count brick build count before 1920 build count 1921 1945
build_count_1946_1970 build_count 1971 1995 build count after 1995
metro min avto metro km avto school km green zone km industrial km
railroad station walk km ID railroad station walk railroad station avto km
railroad station avto min public transport station km kremlin km big road1 km
big road2 km railroad km bus terminal avto km big market km market shop km
fitness km swim pool km ice rink km stadium km basketball km
public_healthcare_km university_km workplaces_km shopping_centers_km
office km big church km;
run;
/* then, a variance importance factor matrix to also check collinearity. We
don't want anything that falls below a tolerance of 0.1*/
proc reg data=df;
model price doc = id life sq floor max floor num room kitch sq product type
green zone part indust part children school healthcare centers raion
university top 20 raion shopping centers raion railroad terminal raion
big market raion X0 17 all X16 29 all build count block build count wood
build count frame build count brick build count before 1920
build count 1921 1945 build count 1946 1970 build count 1971 1995
build count after 1995 metro km avto school km green zone km industrial km
ID railroad station walk railroad station avto km public transport station km
kremlin km big road1 km big road2 km railroad km bus terminal avto km
big market km market shop km fitness_km swim_pool_km ice_rink_km stadium_km
public healthcare km university km workplaces km shopping centers km
office km big church km / vif tol collin;
run;
/* start interaction term visuals */
/****** Plotting Interaction
ods graphics on;
proc glm data=DF;
  model price doc = X0 17 all | X16 29 all / solution;
  ods select ParameterEstimates ContourFit;
  store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=X0 17 all sliceby=X16 29 all) / clm;
run;
proc glm data=DF;
  model price doc = children school | school km / solution;
  ods select ParameterEstimates ContourFit;
  store GLMModel;
/* step two (final step) for plotting interaction terms */
```

```
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=children school sliceby=school km) / clm;
proc glm data=DF;
  model price doc = build count block | build count 1921 1945 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count block sliceby=build count 1921 1945) /
clm;
run;
proc glm data=DF;
   model price doc = build count block | build count 1946 1970 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run:
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count block sliceby=build count 1946 1970) /
clm;
run;
proc glm data=DF;
   model price doc = build count block | build count 1971 1995 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count block sliceby=build count 1971 1995) /
clm;
run;
proc glm data=DF;
  model price doc = build count block | build count after 1995 / solution;
   ods select ParameterEstimates ContourFit;
  store GLMModel;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count block sliceby=build count after 1995) /
clm;
run;
proc glm data=DF;
  model price doc = build count wood | build count before 1920 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count wood sliceby=build count before 1920) /
clm;
run;
proc glm data=DF;
  model price doc = build count wood | build count 1946 1970 / solution;
   ods select ParameterEstimates ContourFit;
```

```
store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count wood sliceby=build count 1946 1970) / clm;
proc glm data=DF;
  model price doc = build count wood | build count after 1995 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count wood sliceby=build count after 1995) /
clm;
run;
proc glm data=DF;
  model price doc = build count frame | build count before 1920 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run:
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count frame sliceby=build count before 1920) /
clm;
run;
proc glm data=DF;
  model price doc = build count frame | build count 1921 1945 / solution;
   ods select ParameterEstimates ContourFit;
  store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count frame sliceby=build count 1921 1945) /
clm;
run;
proc glm data=DF;
  model price doc = build count frame | build count 1946 1970 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count frame sliceby=build count 1946 1970) /
clm;
run;
proc qlm data=DF;
  model price doc = build count frame | build count after 1995 / solution;
   ods select ParameterEstimates ContourFit;
  store GLMModel;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count frame sliceby=build count after 1995) /
clm;
run;
```

```
proc glm data=DF;
  model price doc = build count brick | build count 1946 1970 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count brick sliceby=build count 1946 1970) /
clm;
run;
proc glm data=DF;
  model price doc = build count brick | build count 1971 1995 / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count brick sliceby=build count 1971 1995) /
clm;
run;
proc glm data=DF;
  model price doc = build count brick | build count after 1995 / solution;
   ods select ParameterEstimates ContourFit;
  store GLMModel;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=build count brick sliceby=build count after 1995) /
clm;
run;
proc glm data=DF;
  model price doc = office km | X16 29 all / solution;
   ods select ParameterEstimates ContourFit;
   store GLMModel;
run;
/* step two (final step) for plotting interaction terms */
proc plm restore=GLMModel noinfo;
effectplot slicefit(x=office km sliceby=X16 29 all) / clm;
run:
ods graphics off;
/****** Plotting Interaction
/* After updating using the suggestion from Backward on our interactions,
filtering using correlation matrix and dropping using VIF threshold,
we continued removing interaction terms based on interaction plots. The above
plots visualize the terms we left in the model below, which is
our best model. Although we reduced our adjusted R-squared by using the above
methods (corr matrix, VIF, interaction plots), we feel this
was because the models were overfit. Below, we are confident in the fit.*/
ods graphics on;
proc glm data = DF plots(unpack) = ALL;
proc glm data = DF plots(unpack) = (DIAGNOSTICS RESIDUALS);
model price doc = id life sq floor max floor num room kitch sq product type
green zone part indust part children school healthcare centers raion
```

```
university top 20 raion shopping centers raion railroad terminal raion
big market raion X0 17 all X16 29 all build count block build count wood
build count frame build count brick build count before 1920
build count 1921 1945 build count 1946 1970 build count 1971 1995
build count after 1995 metro km avto school km green zone km industrial km
ID railroad station walk railroad station avto km public transport station km
kremlin km big road1 km big road2 km railroad km bus terminal avto km
big market km market shop km fitness km swim pool km ice rink km stadium km
public healthcare km university km workplaces km shopping centers km
office_km big_church_km X0_17_all*X16_29_all children_school*school_km
build_count_block*build_count_1921_1945
build count block*build count 1946 1970
build count block*build count 1971 1995
build count block*build count after 1995
build count wood*build count before 1920
build_count_wood*build_count_1946 1970
build count wood*build count after 1995
build count frame*build count before 1920
build count frame*build count 1921 1945
build count frame*build count 1946 1970
build count frame*build count after 1995
build count brick*build count 1946 1970
build count brick*build count 1971 1995
build count brick*build count after 1995 office km*X16 29 all / cli;
/****************************
******************
/***************************
******************
/***** After updating model using
/****** correlation matrix
******************
*******************
/******************************
******************
/****************************
******************
%let inputData = DF;
%let numObs = 19836; *number of our cleanData observations (19,835) + 1;
%let numVarsLasso = 13;
%let lassoVars = id life sq floor kitch sq indust part office raion
green zone km ID railroad station walk kremlin km fitness km swim pool km
university km office km;
*below are the linear variables selected outright by our best performing
Ordinary Least Squares method (Backward Elimination);
%let numVarsOLS = 62;
%let OLSVars = id full sq life sq floor max floor num room kitch sq
product type raion popul green zone part indust part children school
healthcare centers raion university top 20 raion shopping centers raion
office raion railroad terminal raion big market raion full all XO 17 all
X16 29 all X0 13 all build count block build count wood build count frame
build count brick build count before 1920 build count 1921 1945
build count 1946 1970 build count 1971 1995 build count after 1995
metro min avto metro km avto school km green zone km industrial km
```

```
railroad station walk km ID railroad station walk railroad station avto km
railroad_station_avto_min public_transport_station_km kremlin_km big_road1_km
big road2 km railroad_km bus_terminal_avto_km big_market_km market_shop_km
fitness km swim pool km ice rink km stadium km basketball km
public healthcare km university km workplaces km shopping centers km
office km big church km;
%let numVarsOLSFwd = 7; * we may want to use these in the future to compare,
but for now, we just need four models (same for OLSVarsFwd below);
%let OLSVarsFwd = id life sq floor max floor kitch sq indust part kremlin km;
/* below we are setting the variables for the SQL we will eventually use for
our custom model */
%let numVarsCustom = 69;
%let customOLSVars = id life sq floor max floor num room kitch sq
product type green zone part indust part children school
healthcare centers raion university top 20 raion shopping centers raion
railroad_terminal_raion big_market_raion X0_17_all X16_29_all
build count block build count wood build count frame build count brick
build count before 1920 build count 1921 1945 build count 1946 1970
build count 1971 1995 build count after 1995 metro km avto school km
green zone km industrial km ID railroad station walk railroad station avto km
public transport station km kremlin km big road1 km big road2 km railroad km
bus terminal avto km big market km market shop km fitness km swim pool km
ice rink km stadium km public healthcare km university km workplaces km
shopping centers km office km big church km X0 17 all*X16 29 all
children school*school km build count block*build count 1921 1945
build count block*build count 1946 1970
build count block*build count 1971 1995
build count block*build count after 1995
build count wood*build count before 1920
build_count_wood*build_count_1946_1970
build count wood*build count after 1995
build count frame*build count before 1920
build count frame*build count 1921 1945
build count frame*build count 1946 1970
build count frame*build count after 1995
build count brick*build count 1946 1970
build_count_brick*build_count_1971_1995
build_count_brick*build_count_after_1995 office km*X16 29 all;
/* dependent variable is price doc */
%let depVar = price doc;
     /**************************
    *************
    /***********************
                                   /****** External Cross-
    Validation Steps Here *******/
data DF;
set &inputData;
randNumber = ranuni(11);
```

```
if n < &numObs;
run;
/* build training data set for external cross-validation. We will train in
25% blocks, test on 75%. We feel this is reasonable.
   75% for training */
data dfTrain;
set &inputData;
if randNumber <= 1/4 then delete;
/* build our test data set for external cross-validation; 25% for testing */
data dfTest;
set &inputData;
if randNumber > 1/4 then delete;
run;
ods graphics on;
title "Selection Method LASSO Using LASSO Variables and Cross Validation";
proc glmselect data=dfTrain testdata = dfTest
                     seed=1 plots(stepAxis=number)=(criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &lassoVars
               / selection=LASSO( choose=CV stop=CV ) CVdetails;
               score data=dfTest out=scoredLASSO;
run;
quit;
ods graphics off;
ods graphics on;
title "Selection Method Backward Elimination Using LASSO Variables and OLS";
proc glmselect data=dfTrain testdata = dfTest
                     plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &lassoVars
               / selection=backward( choose=CV stop=CV include =
&numVarsLASSO ) CVdetails;
               score data=dfTest out=scoredOLSLASSO;
run;
quit;
ods graphics off;
ods graphics on;
title "Selection Method Backward Elimination Using OLS Variables and OLS";
proc glmselect data=dfTrain testdata = dfTest
                     plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &OLSVars
               / selection=backward( choose=CV stop=CV include = &numVarsOLS
) CVdetails; /*default to 5 folds*/
               score data=dfTest out=scoredOLS;
run;
quit;
ods graphics off;
ods graphics on; /* This sets up the SQL for our custom model cross validation
title "Selection Method Custom Combined Backward Elimination, Corr Matrix,
VIF Using OLS Variables";
```

```
proc glmselect data=dfTrain testdata = dfTest
                 plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &customOLSVars
            / selection=backward( choose=CV stop=CV include =
&numVarsCustom ) CVdetails;
            score data=dfTest out=scoredOLSvarsCustom;
run:
quit;
ods graphics off;
/****************************
**********
/****************************
**********
/****** End of External Cross-Validation
***********
/*****************************
**********
/******************************
*********
                          /****** Internal Cross-Validation Steps
Here ******/
ods graphics on;
title "Selection Method LASSO Using LASSO Variables and Cross Validation";
proc glmselect data=df
                 seed=1 plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &lassoVars
            / selection=LASSO( choose=CV stop=CV ) CVdetails;
            score data=df out=scoredLASSO;
run;
quit;
ods graphics off;
ods graphics on;
title "Selection Method Backward Elimination Using LASSO Variables and OLS";
proc glmselect data=df
                 plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &lassoVars
            / selection=backward( choose=CV stop=CV include =
&numVarsLASSO ) CVdetails;
            score data=df out=scoredOLSLASSO;
run;
quit;
ods graphics off;
ods graphics on;
title "Selection Method Backward Elimination Using OLS Variables and OLS";
proc glmselect data=df
                 plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &OLSVars
            / selection=backward( choose=CV stop=CV include = &numVarsOLS
) CVdetails; /*default to 5 folds*/
            score data=df out=scoredOLS;
```

```
run;
quit;
ods graphics off;
ods graphics on; /* This sets up the SQL for our custom model cross validation
* /
title "Selection Method Custom Combined Backward Elimination, Corr Matrix,
VIF Using OLS Variables";
proc glmselect data=df
                 plots(stepAxis=number) = (criterionPanel ASEPlot
CRITERIONPANEL);
model &depVar = &customOLSVars
            / selection=backward( choose=CV stop=CV include =
&numVarsCustom ) CVdetails;
            score data=df out=scoredOLSvarsCustom;
run;
quit;
ods graphics off;
/***********************
**********************************
/***************************
**********
*************
/***************************
*********
/****************************
**********
/* Calculate Sums of Squares from LASSO and OLS outputs */
proc sql;
create table fitLasso as
  select
    count(&depVar) as n
    ,css(&depVar) as totSS
     , sum((&depVar - p &depvar)**2) as errSSLasso
  from scoredLasso;
 create table fitOLSLasso as
   select sum((&depVar - p &depvar)**2) as errSSOLSLasso /*THIS IS THE SAME
AS BELOW */
    from scoredOLSLasso;
 create table fitOLS as
   select sum((&depVar - p &depvar)**2) as errSSOLS /* THIS IS THE SAME AS
ABOVE */
    from scoredOLS;
 create table customModel as /* this is for our custom model, which will be
our Regression Model */
   select sum((&depVar - p_&depvar)**2) as errSScustomOLS
    from scoredOLSvarsCustom;
quit;
run;
/* Calculate rsq and adjRsq using sums of squares from LASSO and OLS outputs
data allMeasures;
merge fitLasso fitOLSLasso fitOLS customModel;
```

```
rsqLasso = (1 - errSSLasso / totSS);
 rsqOLSLasso = (1 - errSSOLSLasso / totSS);
 rsqOLS = (1 - errSSOLS / totSS);
 rsqCustomOLS = (1 - errSScustomOLS / totSS); /* this is for our custom
model */
 adjRsqLasso = (1 - errSSLasso / totSS)*((n - 1) / (n - &numVarsLasso - 1));
 adjRsqOLSLasso = (1 - errSSOLSLasso / totSS)*((n - 1) / (n - &numVarsLasso)
- 1));
 adjRsqOLS = (1 - errSSOLS / totSS)*((n - 1) / (n - &numVarsOLS - 1));
 adjRsqCustomOLS = (1 - errSScustomOLS / totSS)*((n - 1) / (n - 1))
&numVarsCustom - 1)); /* this is for our custom model */
 title "Goodness of Fit Measures Using Test Data - All Models (LASSO with
LASSO Vars, OLS with LASSO Vars, OLS, and Custom OLS)";
 proc print data = allMeasures;
 run;
FILENAME REFFILE '/home/u38493344/Applied Stats/Project
1/cleanTestData2.csv';
PROC IMPORT DATAFILE=REFFILE
      DBMS=csv
      OUT=cleanTest2;
      getnames = yes;
RUN;
proc print data = cleanTest2(obs=10);
run;
data forPred1;
set DF cleanTest2;
run;
proc print data = forPred1(obs=10);
/*****************************
/*****************************
/*Best Model - Backwards with Interactions*/
proc glm data = forPred1 plots = ALL;
class PRODUCT TYPE;
model price doc = id life sq floor max floor num room kitch sq product type
green zone part indust part children school healthcare centers raion
university top 20 raion shopping centers raion railroad terminal raion
big market raion X0 17 all X16 29 all build count block build count wood
build count frame build count brick build count before 1920
build count 1921 1945 build count 1946 1970 build count 1971 1995
build count after 1995 metro km avto school km green zone km industrial km
ID railroad station walk railroad station avto km public transport station km
kremlin km big road1 km big road2 km railroad km bus terminal avto km
big market km market_shop_km fitness_km swim_pool_km ice_rink_km stadium_km
public healthcare km university km workplaces km shopping centers km
office km big church km X0 17 all*X16 29 all children school*school km
```

```
build count block*build count 1921 1945
build count block*build count 1946 1970
build count block*build count 1971 1995
build count block*build count after 1995
build count wood*build count before 1920
build count wood*build count 1946 1970
build count wood*build count after 1995
build count frame*build count before 1920
build count frame*build count 1921 1945
build count frame*build count 1946 1970
build count frame*build count after 1995
build count brick*build count 1946 1970
build count brick*build count 1971 1995
build count brick*build count after 1995 office km*X16 29 all;
output out = predsMLR p = prediction lcl = lower ucl = upper;
proc print data = predsMLR(obs=10);
run;
proc export data = predsMLR
dbms = csv outfile="/home/u38493344/Applied Stats/Project
1/mlrPredictions.csv" replace;
run;
```

Goal 2 SAS Code: Time-Series Modeling & Predictions

```
FILENAME REFFILE '/home/u38493344/Applied Stats/Project 1/timeSeriesB.xlsx';
PROC IMPORT DATAFILE=REFFILE
       DBMS=xlsx
       OUT=ts;
       getnames = yes;
RUN;
proc print data = ts;
run;
/*Goal2 - 4a.*/
proc reg data=ts;
model AvgPrice = MonthNumber;
output out = residualData residual= residual;
run;
/*Goal2 - 4b.*/
proc sgplot data = residualData;
scatter x = MonthNumber y = residual;
series x = MonthNumber y = residual;
xaxis label= "Month";
run;
/*Goal2 - 4c.(No Lag)*/
```

```
proc autoreg data = ts;
model AvgPrice = monthNumber/dwprob;
/*****************************
/*****************************
**/
/*Goal2 - 4c.(AR(1))*/
proc autoreg data = ts plots = residual;
model AvgPrice = MonthNumber/nlag=(1) dwprob;
output out = residData residual= residual;
run;
proc sgplot data = residData;
scatter x = MonthNumber y = residual;
series x = MonthNumber y = residual;
xaxis label= "Month";
run;
/*****************************
/***************************
/*Goal2 - 4d. & 5*/
data predict;
input MonthNumber monthYear @@;
cards;
48 201507
49 201508
50 201509
51 201510
52 201511
53 201512
54 201601
55 201602
56 201603
57 201604
58 201605
59 201606
run;
data forPred;
set ts predict;
run;
proc autoreg data = forPred plots(unpack);
model AvgPrice = MonthNumber/nlag=(1) dwprob;
output out = preds p = prediction lcl = lower ucl = upper pm = trend
residual=resid;
run:
proc print data = preds; run;
proc sgplot data = preds;
band x = MonthNumber upper = upper lower = lower;
```

Applied Statistics: Inference & Modeling Master of Science Data Science, Southern Methodist University Paul Adams, Reannan McDaniel, Jeff Nguyen

```
scatter x = MonthNumber y = prediction;
series x = MonthNumber y = prediction;
series x = MonthNumber y = trend/lineattrs = (color=black);
xaxis label= "Month";
run;

/*Question 6*/
proc export data = preds
dbms = csv outfile="/home/u38493344/Applied Stats/Project
1/tsPredictions.csv" replace;
run;
```