Class 02 DATA1220-55, Fall 2024

Sarah E. Grabinski

2024-08-21

Load Packages

```
library(Hmisc)
library(GGally)
library(palmerpenguins)
library(tidyverse)

theme_set(theme_bw())
```

Welcome Back

Figure 1: Correlation

► Source: XKCD

What is data science?

Program

Source: Figure 1.1 in https://r4ds.hadley.nz/intro.html

Chatfield's Six Rules for Data Analysis

- 1. Do not attempt to analyze the data until you understand what is being measured and why.
- 2. Find out how the data were collected.
- 3. Look at the structure of the data.
- 4. Carefully examine the data in an exploratory way, before attempting a more sophisticated analysis.
- 5. Use your common sense at all times.
- 6. Report the results in a clear, self-explanatory way.

Chatfield, Chris (1996) Problem Solving: A Statistician's Guide, 2nd ed.

Introduction to R

- ▶ R is an open source statistical programming language managed by a core team of 15 people and thousands of code writers/statisticians who contribute their work
- Most of R is written in R
- Community available for fixing bugs/software
- Promotes reproducible research through open and accessible tools

R vs RStudio

- ▶ R is the programming language itself
- RStudio is an interface for working with R

RStudio

Figure 2: RStudio Default Screen

Projects

Projects are a convenient way to keep all your files for an analysis in one place.

Go to File > New Project to begin one now. Call the project "homework1" and save it to your computer in a folder for this class.

Types of Document

- R script
 - ► End with .R and are pure code. If you run them, output will appear in the bottom left corner called the console.
- Quarto documents
 - End in .qmd and use markdown language to turn characters into formatted text.
 - Processes code in code chunks, and output appears directly in the document
- ▶ Begin a new markdown script now

Environment

Your project now has it's own "environment" in which you can store your data, variables and results.

Add a code chunk to your document, copy the code below, and run it.

Example:

$$x \leftarrow c(1, 2, 3, 4, 5)$$

Environment (cont.)

Figure 3: Stored variable now appears in the environment

Packages

Packages are collections of functions to use for statistical analyses. Some are loaded automatically, and some need to be separately installed. Let's install the tidyverse package.

Install Packages

Either...

Install packages

or...

Getting Help

Search for functions, packages, vignettes, and more directly in RStudio in the "Help" panel.

Exercise: Palmer Penguins

Figure 6: The Palmer Penguins

Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R package version 0.1.0. https://allisonhorst.github.io/palmerpenguins/. doi: 10.5281/zenodo.3960218.

Install the package and load the library

```
library(palmerpenguins)
library(tidyverse)
```

Find the data

```
data(package = 'palmerpenguins')

# Add the data to your environment
penguins <- penguins</pre>
```

Inspect the data

head(penguins)

```
# A tibble: 6 x 8
 species island bill length mm bill depth mm flipper le
 <fct> <fct>
                           <dbl>
                                        <dbl>
1 Adelie Torgersen
                                         18.7
                            39.1
2 Adelie Torgersen
                            39.5
                                         17.4
3 Adelie Torgersen
                          40.3
                                         18
4 Adelie Torgersen
                          NA
                                         NΑ
5 Adelie Torgersen
                            36.7
                                         19.3
6 Adelie Torgersen
                            39.3
                                         20.6
# i 2 more variables: sex <fct>, year <int>
```

Dataframes

- Data structure in rows and columns like a spreadsheet
- Rows: (ideally) uniquely identified observations
- Columns: parameters which describe the observations

How many rows does penguins have?

nrow(penguins)

[1] 344

How many variables does penguins have?

Can I find this out more quickly?

glimpse(penguins)

How else can I get a description of the data?

Use the Hmisc::describe() function to quickly summarize data.

Hmisc::describe(penguins)

How else can I get a description of the data?

penguins

8 Varia	oles 34	14 Observa	ations		
species					
n	missing dis	stinct			
344	0	3			
Value	Adelie	Chinstrap	Gentoo		
Frequency	152	68	124		
Proportion	n 0.442	0.198	0.360		
island					
n	missing dis	stinct			
344	0	3			
Value	Biscoe	Dream	Torgersen		
Frequency	168	124	- -52	4 ≥ b < ≥ b = ≥	90 C

\$2 B A B A B A B A B A C C

Meet the penguins!

Figure 7: Meet the Palmer Penguins

Types of data

The key distinction we'll make is between

- quantitative (numerical) and
- **categorical** (qualitative) information.

Information that is quantitative describes a quantity.

- ▶ All quantitative variables have units of measurement.
- Quantitative variables are recorded in numbers, and we use them as numbers (for instance, taking a mean of the variable makes some sense.)

Continuous vs. Discrete Quantities

Continuous variables (can take any value in a range) vs. **Discrete** variables (limited set of potential values)

- Is time a continuous or a discrete variable?
- Time is certainly continuous as a concept, but how precise is our unit (e.g. hour, year, decade)?

Qualitative (Categorical) Data

Qualitative variables consist of names of categories.

- ► Each possible value is a code for a category (could use numerical or non-numerical codes.)
 - **Binary** categorical variables (two categories, often labeled 1 or 0)
 - ► Multi-categorical variables (three or more categories)
- Can distinguish nominal (no underlying order) vs. ordinal (categories are ordered.)

Some Categorical Variables

- How is your overall health? (Excellent, Very Good, Good, Fair, Poor)
- Which candidate would you vote for if the election were held today?
- Did this patient receive this procedure?
- If you needed to analyze a small data set right away, which of the following software tools would you be comfortable using to accomplish that task?

Are these quantitative or categorical?

- 1. Do you **smoke**? (1 = Non-, 2 = Former, 3 = Smoker)
- 2. How much did you pay for your most recent **haircut**? (in \$)
- 3. What is your favorite color?
- 4. How many hours did you **sleep** last night?
- 5. Statistical thinking in your future career? (1 = Not at all important to 7 = Extremely important)
- If quantitative, are they discrete or continuous? Do they have a meaningful zero point?
- ▶ If categorical, how many categories? Nominal or ordinal?

Data Dictionary

description		
Penguin species: chinstrap, gentoo, adelie		
Island where penguin was observed		
how long is the bill from base to tip		
how wide is the bill from bottom to top		
length of flipper		
body mass		
male or female		
2007, 2008, 2009		

How do you visualize variables?

- ► Histogram (bar plot)
- Density, violin plot
- ▶ Boxplot

Histogram

Histogram

Density Plot

```
penguins |>
  ggplot(aes(x = bill_length_mm)) +
  geom_density(fill = 'steelblue', alpha = 0.5) +
  labs(title = 'Distribution of Bill Lengths',
        subtitle = 'In Adelie, Chinstrap, and Gentoo Penguin
        x = 'Bill Length (mm)',
        y = '# of Individuals')
```

Density Plot

Boxplot + Violin

```
penguins |>
  ggplot(aes(x = species, y = bill_length_mm)) +
  geom_violin(aes(fill = species)) +
  geom_boxplot(width = 0.3)
```

Boxplot + Violin

How do you find relationships between variables?

- Develop a research question
- Examine summary statistics
- Data exploration

Plotting Relationships

Plotting Relationships

Adding Regression Lines - LM

Adding Regression Lines - LM

Plotting Regression Lines - LOESS

Plotting Regression Lines - LOESS

Plotting Regression Lines - By Group

Plotting Regression Lines - By Group

Quarto Resources

- How to use Quarto in RStudio: https://quarto.org/docs/get-started/hello/rstudio.html
- Markdown language basics: https://quarto.org/docs/authoring/markdown-basics.html
- ➤ Themes for projects: https://quarto.org/docs/output-formats/html-themes.html