Pollock's Closed Robust Design

Dr RW Rankin and KE Nicholson

Georgetown University, Murdoch University

October 29, 2017

Outline and Key-Points: PCRD

Capture-Mark-Recapture

- secondary periods
- effective capture probabilities
- ► temporary emigration

Bayesian Modelling

- hierarchical Bayes
- hyper-priors
- ▶ shrinkage

Pollock

- ▶ do repeated instantaneous sampling -> secondary periods
- \triangleright S_t secondary capture periods per primary period
- ▶ if we assume closure this increases the effective capture probability

$$p_t^* = 1 - \prod_{s=1}^{S_t} (1 - p_{s,t})$$

solves some of parameter confounding

[Pollock, 1982]

PCRD Overview

0001001: are the zeros due to animal not being there? or missed-capture?

Kendall Model

repeated sampling also allows us to separate temporary emigration from missed-captures. [Kendall et al., 1995, Kendall and Nichols, 1995, Kendall et al., 1997]

- $ightharpoonup \gamma''$ probability of leaving the study area and becoming a temp. emigrant
- $1 \gamma''$ probability of staying on-site
- $\blacktriangleright \ \gamma'$ probability of staying as a temp. emigrant, conditional on already being a temp. emigrant
- lacksquare $1-\gamma'$ probability of return to the study-site

unobservable states

- ► TE is an unobservable state
- ▶ probability of capture is $0|z = \{TE\}$
- (we've already encountered other unobservable states, like unrecruited and dead)

PCRD as an HMM

 \blacktriangleright example capture history (y = {101000001111000000000}) and plausible latent state sequence

HMM Matrices: Connection with CMR (PCRD)

HMM matrices for Pollock's Closed Robust Design (full capture model):

Transition Matrix

from t-1 to t

$$\boldsymbol{\Phi}_t = \begin{bmatrix} \textbf{Unborn} & \textbf{Onsite} & \textbf{TE} & \textbf{Dead} \\ \textbf{Unborn} & \begin{pmatrix} 1-\psi_t & 0 & 0 & 0 \\ \psi_t & \phi_{t-1}(1-\gamma_t'') & \phi_{t-1}(1-\gamma_t') & 0 \\ 0 & \phi_{t-1}\gamma_t'' & \phi_{t-1}\gamma_t' & 0 \\ \textbf{Dead} & 0 & 1-\phi_{t-1} & 1-\phi_{t-1} & 1 \end{bmatrix}$$

- lacktriangledown ϕ_{t-1} is the apparent survival between primary periods t-1 and t
- $ightharpoonup \gamma_t''$ is the probability of becoming a temporary emigrant between t-1 and t
- $ightharpoonup \gamma_t'$ is the probability of staying as a temporary emigrant between t-1 and t
- lacksquare $\psi_{m{t}}$ are "recruitment" parameters between t-1 and t

Emission Matrix

$$oldsymbol{\Psi}_{s,t} = egin{array}{cccc} ext{Capture} & 0 & p_{s,t} & 0 & 0 \ 1 & 1-p_{s,t} & 1 & 1 \end{array}$$

DATA: 3D Arrays

The capture histories are now 3D: [individual, secondary, primary]

(order is arbitrary)

```
Y.tt[2,]
[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 0 0 0 0 0 0
[4,] 0 0 0 1 NA
[5,] 0 0 0 0 1 NA
[6,] NA NA 0 NA NA
[8,] NA NA 0 NA NA
```

PCRD Emission Matrix in JAGS

the emission matrix is now per secondary period

i.e., an extra for loop in jags

```
for(t in 1:T){ # loop through primary periods
    for(s in 1:T2[t]){ # loop secondary periods
      # unrecruited: state 1
      em[1,1,t,s] <-1 # no capture
      em[2,1,t,s] <- 0 # capture illegal
      # onsite: state 2
      em[2,2,t,s] < 1/(1+exp(-1*(lp.mu+lp.t[t]+lp.tt[s,t]))) # capture
      em[1,2,t,s] <- 1-em[2,2,t,s] # no capture
      # TE: state 3
      em[1,3,t,s] <- 1 # 100% no capture
      em[2,3,t,s] < 0 #
      # dead: state 4
      em[1,4,t,s] <- 1 # no capture
      em[2,4,t,s] < -0 #
    } # s
```

- the latent state process is still per perimary period
- ▶ the conditional likelihood is now per secondary period

i.e., an extra for loop in jags

```
# HMM PROCESS for t>1
for(t in 2:T){
    # LATENT STATE
    z[i,t] ~ dcat(tr[1:4, z[i,t-1], t-1])
    # EMISSION
    for(s in 1:T2[t]){ # loop through secondary periods
        y[i,s,t] ~ dcat(em[,z[i,t],t,s])
    }
} #t
# i
```

PCRD Priors

All the PCRD Parameters are probabilities: can use Beta or logit-Normal or probit-Normal

 $ightharpoonup \gamma'$: difficult to separate from ϕ (especially at low T) avoid References priors or Jeffrey's Priors

Hierarchical Bayes

The complexity of PCRD and MSCRD mean that it starts to make sense to use Hierarchical Bayesian models Why HB?

- conceptual: build dependencies and share information among similar parameters [Cressie et al., 2009, Halstead et al., 2012]
- ▶ estimation: shrinkage $\phi(t) \rightarrow \phi(\cdot)$ [Royle and Link, 2002, Burnham and White, 2002, Rankin, 2016]
- type of multi-model inference: smooth over several "fixed-effects" specifications [Rankin et al., 2016]

Why not?

shrinkage sometimes arbitrary, difficult to place prior information about "hyper-priors"

Hierarchical Bayes for PCRD

3 stages of model

$$\begin{split} & \sigma_{p} \sim \mathcal{T}(0, s_{0}^{2}, \nu) \mathbb{I}[\sigma > 0] \\ & \delta_{s,t} \sim \mathcal{N}(0, \sigma_{p}^{2}) \; \forall \; s \in S_{t}, t \in \mathcal{T} \\ & y_{s,t} \sim \mathsf{Bern}\left(\frac{1}{1 + exp(-\delta_{\mu} - \delta_{s,t})}\right) \end{split}$$

 $\delta_{1,1}, \delta_{2,1}, \delta_{3,1}, \ldots, \delta_{S_T,T}$ are random effects that come from a distribution the spread and dispersion among the δ effects: controlled by hyperprior σ_p .

• if
$$\sigma_P o 0$$
, then $\delta_{s,t} o 0$

$$\log \operatorname{id}^{-1}(-\delta_\mu - \delta_{s,t}) o \log \operatorname{id}^{-1}(-\delta_\mu)$$

... i.e., the time-constant capture model $p(\cdot)$

• if $\sigma_p \gg 0$, then

$$\mathsf{logit}^{-1}(-\delta_{\mu}-\delta_{s,t}) o \hat{p}_{s,t}$$

... i.e., the fully-time-varying capture model p(s, t)

Hierarchical Bayes for PCRD

Intermediate values of $\sigma_p\gg 0$ results in a model something between time-constant p and time-varying $p_{s,t}$

• i.e., p(s,t) is shrunk towards $p(\cdot)$

Bias-Variance Trade-off

- ▶ at <u>low amount</u> of data, the Hyperprior is relatively <u>stronger</u> and the shrinkage $p(s,t) \rightarrow p(\cdot)$ is <u>more pronounced</u>.
- ▶ at high amount of data, the data can drive the values of p(s, t), and shrinakge is less pronounced.

less data = simpler models more data = more complex models

Hyperpriors

How to control the value of the hypeprior σ_p ?

- depends on the information in the data, and
- ${f 2}$ the hyper-parameters of the half-student-t distribution ${f s}_0^2$ and ${f
 u}_0$.

small s_0 equals more shrinkage big ν equals more shrinkage (long tails)

Shrinkage

- Shrinkage is the bias induced by random-effects: the distribution pulls the individual effects towards the distributions' shape and central tendency.
- 2 Shrinkage is desirable in low-information / small-sample size situations

Visualiation

► See a visualization of shrinkage here:

http://colugos.blogspot.ca/2016/02/hierarchical-bayesian-automatic-occams.html

▶ or navigate to

PART7_PCRD/HalfTdemo.gif
... and open with an internet-browser

Hierarchical Model in JAGS PCRD

PCRD Demo

We will build random effects for

- mean (logit) capture probability per primary period 1p.t with hyper prior sigma.p.t
- mean (logit) capture probability per secondary period 1p.tt with hyper prior sigma.p.tt

... using the half-student-t distribution (truncation at zero)

```
# JAGS hyperpriors
sigma.p.t ~ dt(0,pr.sigma.p.t[1],pr.sigma.p.t[2]) T(0,)
sigma.p.tt ~ dt(0,pr.sigma.p.tt[1],pr.sigma.p.tt[2]) T(0,)
```

Next, sample the lp.t and lp.tt and lp.mu

```
# hierarchical capture process
lp.mu ~ dnorm(pr.lp.mu[1],pr.lp.mu[2]) # mean capture (logit)
for(t in 1:T){ # loop through primary periods
    lp.t[t] ~ dnorm(0, pow(sigma.p.t,-2))
    for(s in 1:T2[t]){ # loop through secondary periods
        lp.tt[s,t] ~ dnorm(0, pow(sigma.p.tt,-2))
    }
}
```

Next, add them all together and back-transform to a probability

```
em[2,2,t,s] <- 1/(1+exp(-1*(lp.mu + lp.t[t] + lp.tt[s,t]))) # capture
...or...
em[2,2,t,s] <- ilogit(lp.mu+lp.t[t]+lp.tt[s,t]) # capture</pre>
```

Rather than each $p_{s,t}$ capture probability be *independent*, there is information sharing across primary and secondary periods

outliers are pulled towards logit⁻¹(lp.mu)

open the file R_pcrd.R

- ► DEMONSTRATION Individual-heterogeneity PCRD using random-effects
- ► EXERCISE 1 play with hyperpriors-hyperparameters and learn their affect on inference for an HB-PCRD (hierarchical capture probability). Modify:

```
pr.sigma.p.t<-c(0.05^(-2), 3)
pr.sigma.p.tt<-c(0.05^(-2), 3)
```

EXERCISE 2 make the other parameters $(\gamma'', \gamma', \phi)$ into a HB model with random-effects for the temporal variation!

Make your own random effects

- ▶ make hyperpriors like sigma.gamma1.t
- ▶ make a global intercept: lgamma1.mu
- ▶ then make random effects lgamma1[t] ~ dnorm(0,pow(sigma.gamma1.t,-2))
- ▶ then <u>back-transform</u> to a probability: gamma1[t] <- ilogit(lgamma.mu + lgamma1[t])</p>

- Kenneth P. Burnham and Gary C. White. Evaluation of some random effects methodology applicable to bird ringing data. Journal of Applied Statistics, 29(1-4):245–264, January 2002. ISSN 0266-4763, 1360-0532. doi: 10.1080/02664760120108755.
- Noel Cressie, Catherine A. Calder, James S. Clark, Jay M. Ver Hoef, and Christopher K. Wikle. Accounting for uncertainty in ecological analysis: The strength and limitations of hierarchical statistical modeling. Ecological Applications, 19(3):553-570, 2009. ISSN 1051-0761. doi: 10.1890/07-0744.1.
- B. J. Halstead, G. D. Wylie, P. S. Coates, P. Valcarcel, and M. L. Casazza. 'Exciting statistics': The rapid development and promising future of hierarchical models for population ecology. Animal Conservation, 15(2): 133-135, March 2012. ISSN 1469-1795. doi: 10.1111/j.1469-1795.2012.00540.x.
- William L Kendall and James D Nichols. On the use of secondary capture-recapture samples to estimate temporary emigration and breeding proportions. Journal of Applied Statistics, 22(5-6):751 — 762, November 1995. ISSN 0266-4763. doi: 10.1080/02664769524595.
- William L Kendall, Kenneth H Pollock, and Cavell Brownie. A likelihood-based approach to capture-recapture estimation of demographic parameters under the robust design. Biometrics, 51(1):293–308, 1995. doi: 10.2307/2533335.
- William L Kendall, James D Nichols, and James E Hines. Estimating temporary emigration using capture-recapture data with Pollock's robust design. Ecology, 78(2):563 – 578, March 1997. ISSN 0012-9658. doi: 10.1890/0012-9658(1997)078[0563:ETEUCR]2.0.CO;2.
- Kenneth H Pollock. A capture-recapture design robust to unequal probability of capture. The Journal of Wildlife Management, 46:752-757, 1982. doi: 10.2307/3808568.
- Robert W. Rankin, Krista E. Nicholson, Simon J. Allen, Michael Krützen, Lars Bejder, and Kenneth H. Pollock. A full-capture Hierarchical Bayesian model of Pollock's Closed Robust Design and application to dolphins. Frontiers in Marine Science. 3(25), 2016. doi: 10.3389/fmans.2016.00025.
- Robert William Rankin. EM and component-wise boosting for Hidden Markov Models: A machine-learning approach to capture-recapture. bioRxiv, 2016. doi: 10.1101/052266.
- J. Andrew Royle and William A. Link. Random effects and shrinkage estimation in capture-recapture models. Journal of Applied Statistics, 29(1-4):329-351, January 2002. ISSN 0266-4763, 1360-0532. doi: 10.1080/02664760120108746.