MILP:
$$\min C_1 \times + C_2 Y$$

 $5+.$ $A_2 \times + A_2 Y 7, b$
 $\times 70$ integer
 470

ILP: unin
$$\underline{c}^{T}\underline{x}$$

St. $\underline{A}\underline{x}$ \underline{b}
 \underline{x} 7.0 integer \longrightarrow if $\underline{x}_{i} \in \{0,1\}$ $\forall i \Rightarrow 0-1$ ILP

• Knapsack:
$$\max \sum_{i=1}^{n} p_i x_i$$

 $s.t. \sum_{i=1}^{n} q_i x_i \leq b$ b corpacity
 $x_i \in \{0,1\}$ a_i weight

• Jet covering: min
$$Z_{j=1}^{n} c_{j} x_{j}$$
 $S.t. Z_{j \in N} a_{ij} x_{j} z_{1} \forall i$
 $C_{j} cost for M_{j}$
 $(M=U_{j} n_{j} i) = cover)$
 $X_{j} \in \{0,1]$

=
$$\min \sum_{j=1}^{n} c_j x_j$$

 $5+. A \times > 1$
 $\times \in \{0,1\}^n$

· Set parching:

1. Binary avoice

- · knapsach
- · Set wering
- · Jet pading
- · tet pontitioning
- 2. Association between entities
- · Assignment problem
- 3. forcing constraints
- · UFL (uncapacitated facility Locations)
- 4- Piecewise likeat
- · minimisation of piecewine linear cost function
- 5. Exp many constraints
- · ATSP (asym. Thanking Salesman Problem)
- 6. Disjunctive constraints
- · scheduling

7. linearization