

Método de Euler 02

Materia: Seminario de Problemas de Modelado y Simulación de Sistemas Profesor: Javier Lorenzo Dominguez Beltran

Carlos Omar Rodriguez Vazquez 219570126

Fecha de Entrega: September 4, 2024

1 Objetivo

1. Construir los diagramas de bloques en SIMULINK para el método de **Euler** y para el método de **Euler Predictor-Corrector** que resulva la ecuación

$$\frac{\mathrm{d}^2 y(t)}{\mathrm{d}t^2} + 6\frac{\mathrm{d}y(t)}{\mathrm{d}t} + 5y(t) = 0$$

considerando las dos posibles descomposiciones de esta

(a)

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$$
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -5x(t)$$

(b)

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = w(t)$$
$$\frac{\mathrm{d}w(t)}{\mathrm{d}t} = -6w(t) - 5y(t)$$

- 2. Simular para ambas descomposiciones para ambos métodos con varios tamaños de paso T (al menos dos) y varias condiciones iniciales (la menos dos).
 - Comparar para cada valor de paso y condiciones iniciales, la solución y(t) de las ecuaciones diferenciales con los resultados obtenidos por el método de Euler Predicotr-Corrector y(kT), con cada una de las descomposiciones.
 - Comparar para cada valor de paso y condiciones iniciales, los resultados de y(kT) obtenidos por el método de Euler Predictor-Corrector de ambas descomposiciones entre sí. ¿Son iguales o difieren? ¿Qué pasa con la diferencia entre ellas al cambiar el valor de T?
 - Comparar los resultados obtenidos por el método de Euler con los obtenidos por el método de Euler Preictor-Corrector.

2 Resultados

2.1 Diagramas de Bloques

Descomposiciones

Figure 1: Descomposiciones de la Eucación Diferencial.

El uso del bloque de SIMUILINK subystem se implemento en las descomposiciones para facilitar el uso de las descomposciones en los distintos metodos.

Metodos

(b) Método de Euler Predictor-Corrector.

Figure 2: Diagrama de Bloques de los métodos de resolución de la ecuación diferencial.

2.2. Comparación 1 Método de Euler 02

Diagrama

Figure 3: Diagrama de bloques que se utilizo para realizar las comparaciones.

Se decicio utilizar el bloque subsystem para los método de Euler y Euler Predictor-Corrector para facilitar el proceso de comparación de las señales.

2.2 Comparación 1

Para la primera comparación se compara la solución "analitica" otorgada por SIMULINK con la solucion obtenida con el método de Euler Predictor-Correcor. La manera en la que se compara es mediante la diferencia de las señales en valor absoluto para tener una mejor visualización del "error" del método.

Condiciones iniciales.

- y(0) = 2
- y'(0) = -1

(b) T = 0.05

Figure 4: Respuesta a la comparación 1 con condiciones iniciales y diferentes valores de paso T. — Descomposicion (a) — Descomposicion (b).

Para estas condiciones iniciales se puede obervar que la descomposicón (b) tiene una mejor resultado cuando T es mas grande viendo que en T=0.03 tuvo un pico mas alto ademas que tardo mas en estabilisarse, mientras que descomposicion (a) tuve el efecto contrario, para T mas pequeñas tuve mejor rendimiento, llegando a una estabilidad mas rapida.

Condiciones iniciales.

- y(0) = -0.5
- y'(0) = 2

Figure 5: Respuesta a la comparación 1 con condiciones iniciales y diferentes valores de paso T. — Descomposicion (a) — Descomposicion (b).

Para estas condiciones iniciales vemos que la descomposición (b) tuve un comportamiento similar para ambos valores de T al igual que la descomposición (a) pero con una pequeña mejor con T=0.3. Es importante notar que para estos valores iniciales el método en ambas descomposiciones tuvieron un peor resultado con respecto a las condicioenes iniciales pasadas.

2.3 Comparación 2

Para la segunda comparación se compara la solución obtenida con el método de Euler Predictor-Corrector pero en comparación las dos descomposiciones.

Condiciones iniciales.

- y(0) = 2
- y'(0) = -1

2.4. Comparación 3 Método de Euler 02

Figure 6: Respuesta a la comparación 2 con condiciones iniciales y diferentes valores de paso T. — Descomposicion (a) — Descomposicion (b).

Condiciones iniciales.

Figure 7: Respuesta a la comparación 2 con condiciones iniciales y diferentes valores de paso T. — Descomposicion (a) — Descomposicion (b).

Al igual que con las otras condiciones iniciales, el comportamiento de la señal es mas suave cuando T es mas pequeño, sin embargo para estas condicione iniciales encontramos una mayor diferencia entre las señales.

2.4 Comparación 3

Para la tercera comparción se compara la solución obtenida con el método de Euler con la solución obtenida con el método de Euler Predictor-Corrector.

Condiciones iniciales.

•
$$y(0) = 2$$

•
$$y'(0) = -1$$

Figure 8: Respuesta a la comparación 2 con condiciones iniciales y diferentes valores de paso T.

Condiciones iniciales.

- y(0) = -0.5
- y'(0) = 2

Figure 9: Respuesta a la comparación 2 con condiciones iniciales y diferentes valores de paso T.

Para ambos sets de condiciones iniciales encontramos un comportamiento similar. La diferencia entre ambos métodos en casi nula cuando el valor de T es mas pequeño mientas que se nota una mayor diferencia cuando T es mas grande,

ademas que en la descomposiciones (b) el comportamiento de ambos métodos es mas semejante que con respecto a la descoposicion (a).

3 Conclusiones

Es fundamental comprender los distintos métodos numéricos y cómo se comportan bajo diferentes condiciones. A lo largo del estudio, observamos que en ciertos casos el método de Euler resultó más eficaz, mientras que en otros el método de Euler predictor-corrector ofreció mejores resultados. Estas comparaciones nos permiten identificar las diferencias y ventajas de cada método, lo que facilita su adecuada selección y aplicación según el contexto.