1. Calculați
$$\int_0^1 xe^{-x}dx$$
. (6 pct.)

a)
$$e - 1$$
; b) e ; c) 1; d) $1 - e$; e) $2e$; f) $1 - \frac{2}{e}$.

Soluție. Integrând prin părți, obținem

$$\int xe^{-x}dx = \int x(-e^{-x})'dx = -xe^{-x} - \int (-e^{-x})dx = -xe^{-x} - e^{-x} = -(x+1)e^{-x},$$

deci
$$\int_0^1 xe^{-x} dx = -(x+1)e^{-x}|_0^1 = -(2e^{-1}-1) = 1 - \frac{2}{e}$$
.

2. Într-o progresie aritmetică primii doi termeni sunt $a_1 = 1$ şi $a_2 = 6$. Să se calculeze a_3 . (6 pct.) a) 9; b) 14; c) 8; d) 16; e) 12; f) 11.

Soluţie. Metoda 1. Raţia progresiei aritmetice este $r = a_2 - a_1 = 5$, deci $a_3 = a_2 + r = 11$. Metoda 2. Are loc egalitatea $2a_k = a_{k-1} + a_{k+1}$, $\forall k \geq 2$. Pentru k = 2, obţinem $2a_2 = a_1 + a_3$, deci $a_3 = 2a_2 - a_1 = 11$.

- 3. Mulțimea soluțiilor ecuației $x^3 5x^2 + 4x = 0$ este: (6 pct.)
 - a) $\{0,1,4\}$; b) $\{1,7\}$; c) $\{4,5\}$; d) $\{-1,6\}$; e) $\{0,2\}$; f) $\{-2,3,5\}$.

Soluție. Ecuația se rescrie: $x(x^2 - 5x + 4) = 0 \Leftrightarrow x(x - 1)(x - 4) = 0 \Leftrightarrow x \in \{0, 1, 4\}.$

4. Să se rezolve ecuația $\sqrt{2-x} = x$. (6 pct.)

a)
$$x = 4$$
; b) $x = -1$; c) $x = -4$; d) $x = 1$; e) $x = 2$; f) $x = 6$.

Soluție. Condiția de existență a radicalului este $2-x\geq 0 \Leftrightarrow x\leq 2$. Pozitivitatea radicalului conduce la pozitivitatea membrului drept, deci $x\geq 0$. În concluzie soluțiile (dacă există), trebuie să satisfacă $x\in [0,2]$. Ridicând la pătrat ecuația, rezultă $2-x=x^2\Leftrightarrow x^2+x-2=0\Leftrightarrow x\in \{-2,1\}$. Dar $-2\not\in [0,2]$ și $1\in [0,2]$, deci ecuația admite unica soluție x=1.

- 5. Fie $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Să se calculeze $\det(A^2)$. (6 pct.)
 - a) 4; b) 2; c) 3; d) 1; e) -1; f) 14.

Soluţie. Metoda 1. Prin calcul direct, obţiem $A^2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$, deci det $A^2 = \begin{vmatrix} 1 & -2 \\ 0 & 1 \end{vmatrix} = 1$. Metoda 2. Se observă că det $A = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$, deci det $(A^2) = (\det A)^2 = 1^2 = 1$.

- 6. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + e^x$. Să se calculeze f''(0). (6 pct.)
 - a) -2; b) 3; c) $\frac{1}{2}$; d) 2e; e) $\frac{1}{2}$; f) 1 + e.

Soluție. Avem $f''(x) = (x^2 + e^x)'' = (2x + e^x)' = 2 + e^x$, deci $f''(0) = 2 + e^0 = 3$.

- 7. Să se rezolve ecuația $5^{x+1} = 125$. (6 pct.)
 - a) x = 6; b) x = 2; c) x = 3; d) x = 1; e) x = 4; f) x = 5.

Soluție. Ecuația se rescrie $5^{x+1} = 5^3 \Leftrightarrow x+1=3 \Leftrightarrow x=2$.

8. Soluția ecuației 2x - 1 = 3 este: (6 pct.)

a)
$$x = 3$$
; b) $x = 1$; c) $x = -3$; d) $x = 0$; e) $x = -1$; f) $x = 2$.

Solutie. Obtinem $2x = 4 \Leftrightarrow x = 2$.

9. Calculați $S = C_4^1 + C_4^2 + C_4^3$. (6 pct.)

a)
$$S = 6$$
; b) $S = 12$; c) $S = 14$; d) $S = 10$; e) $S = 8$; f) $S = 16$.

Soluţie. Metoda 1. Folosind formula $C_m^n = \frac{m!}{n!(m-n)!}$, obţinem $S = \frac{4!}{1!3!} + \frac{4!}{2!2!} + \frac{4!}{3!1!} = 4 + 6 + 4 = 14$.

Metoda 2. Folosim egalitatea $2^n = \sum_{k=0}^n C_n^k$ pentru k = 4. Obţinem $S = \sum_{k=0}^4 C_4^k - C_4^0 - C_4^4 = 2^4 - 2 = 14$.

10. Suma soluțiilor ecuației $x^2 - 7x + 12 = 0$ este: (6 pct.)

Soluție. Metoda 1. Prima relație Viete conduce la $x_1 + x_2 = -\frac{-7}{1} = 7$. Metoda 2. Rezolvăm ecuația: $x^2 - 7x + 12 = 0 \Leftrightarrow x \in \{3,4\}$, deci $x_1 + x_2 = 3 + 4 = 7$.

11. Mulţimea soluţiilor inecuaţiei $x^2 + x - 2 \le 0$ este: (6 pct.)

a)
$$(1, \infty)$$
; b) $(-\infty, 2]$; c) $(0, 1)$; d) $(0, \infty)$; e) $[-2, 1]$; f) $[-3, -2)$.

Soluție. Ecuația $x^2+x-2=0 \Leftrightarrow (x+2)(x-1)=0$ are soluțiile $x_1=-2, x_2=1$. Deci mulțimea soluțiilor inecuației $x^2+x-2\leq 0 \Leftrightarrow (x+2)(x-1)\leq 0$ este intervalul $[x_1,x_2]=[-2,1]$.

12. Să se calculeze determinantul $d = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$. (6 pct.)

a)
$$d = 6$$
; b) $d = 12$; c) $d = 5$; d) $d = 14$; e) $d = -12$; f) $d = 18$.

Soluţie. Metoda 1. Aplicând regula lui Sarrus, rezultă $\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 & 3 \end{vmatrix} = 1 + 8 + 27 - (6 + 6 + 6) = 18$. Metoda 2. Adunăm ultimele două coloane la prima, dăm factor 6 din prima coloană, scădem prima linie din următoarele două, apoi dezvoltăm după prima coloană. Obţinem:

$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 & 3 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 6 & 2 & 3 \\ 6 & 3 & 1 \\ 6 & 3 & 1 \end{vmatrix} = 6 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 3 & 1 \end{vmatrix} = 6 \cdot \begin{vmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 1 & -2 \end{vmatrix} = 6 \cdot \begin{vmatrix} -1 & -1 \\ 1 & -2 \end{vmatrix} = 6 \cdot 3 = 18.$$

13. Determinați abscisele punctelor de extrem pentru funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 3x + 1$. (6 pct.)

a)
$$x \in \{-1, 1\}$$
; b) $x \in \{-3, 0\}$; c) $x \in \{0, 4\}$; d) $x = 5$; e) $x \in \{-2, 1\}$; f) $x \in \{2, 3\}$.

Soluţie. Pentru $f(x) = x^3 - 3x + 1$ extremele locale (dacă există) sunt conform Teoremei Fermat, printre rădăcinile ecuației f'(x) = 0. Aceasta se rescrie: $3x^2 - 3 = 0 \Leftrightarrow (x+1)(x-1) = 0 \Leftrightarrow x \in \{-1,1\}$. Dar $\lim_{x \to -\infty} f(x) = -\infty < 0$, f(-1) = 3 > 0, f(1) = -1 < 0, $\lim_{x \to \infty} f(x) = +\infty > 0$, deci f creşte, scade şi apoi creşte respectiv pe intervalele $(-\infty, -1)$, [-1, 1] şi $(1, \infty)$. Rezultă că x = -1 este abscisă de maxim local, iar x = 1 este abscisă de minim local pentru f. Prin urmare abscisele căutate sunt $\{-1, 1\}$.

14. Rezolvații inecuația 3x + 1 > 2x. (6 pct.)

a)
$$x \ge -3$$
; b) $x \in (-2,0)$; c) $x > -1$; d) $x < 0$; e) $x < -3$; f) $x < -5$.

Soluție. Inecuația see rescrie $3x + 1 > 2x \Leftrightarrow x + 1 > 0 \Leftrightarrow x > -1$.

15. Soluția sistemului de ecuații $\begin{cases} 2x + 3y = 5 \\ 2x - y = 1 \end{cases}$ este: (6 pct.)

a)
$$x = 1, y = 1$$
; b) $x = -1, y = 0$; c) $x = 3, y = -3$; d) $x = 0, y = 1$; e) $x = -1, y = -1$; f) $x = 1, y = 2$.

Soluție. Metoda 1. Scăzând cele două ecuații obținem $4y=4\Rightarrow y=1$, care înlocuită în prima ecuație conduce la $2x+3=5\Leftrightarrow x=1$. Decix=y=1. Metoda 2. Determinantul matricei coeficienților este $\Delta=\left|\frac{2}{2},\frac{3}{-1}\right|=-8\neq 0$, deci sistemul este compatibil determinat. Aplicănd regula lui Cramer, rezultă: $x=\frac{\Delta_x}{\Delta}=\frac{1}{-8}\left|\frac{5}{1},\frac{3}{-1}\right|=\frac{-8}{-8}=1$, iar $y=\frac{\Delta_y}{\Delta}=\frac{1}{-8}\left|\frac{2}{2},\frac{5}{1}\right|=\frac{-8}{-8}=1$, decix=y=1.