PREDETERMINED PROXIMAL SPACES ARE METRIZABLE

STEVEN CLONTZ

Abstract. TODO

1. Predetermined Proximal

We take the following from Willard's text.

Definition 1.1. A normal covering sequence for a space X is a sequence $\{U_n : n < \omega\}$ of open covers such that U_{n+1} star-refines U_n . Such a sequence is compatible with X if $\{St(x, U_n) : n < \omega\}$ is a local base at each $x \in X$.

Theorem 1.2. A space X is psuedometrizable if and only if it has a compatible normal covering sequence.

For convenience, we will recast these results in terms of entourages.

Definition 1.3. An entourage sequence for a space X $\{D_n : n < \omega\}$ is compatible with X if $\{D_n[x] : n < \omega\}$ is a local base at each $x \in X$.

Theorem 1.4. A space X is psuedometrizable if and only if it has a compatible entourage sequence.

Proof. Let d be a psuedometric generating X; then $\{D_n : n < \omega\}$ given by $D_n = \{\langle x, y \rangle : d(x, y) < 2^{-n}\}$ is a entourage sequence, which is compatible since $D_n[x] = B_{2^{-n}}(x)$.

On the other hand, given a compatible entourage sequence $\{D_n : n < \omega\}$, let $E_0 = D_0$, $E_{n+1} = \frac{1}{4}D_n \cap \frac{1}{4}E_n$, and $\mathcal{U}_n = \{E_{n+1}[x] : x \in X\}$. Fix $x \in X$ and consider $St(x,\mathcal{U}_n) \subseteq St(E_{n+1}[x],\mathcal{U}_n) = \bigcup \{E_{n+1}[y] \in \mathcal{U}_n : E_{n+1}[x] \cap E_{n+1}[y] \neq \emptyset\}$.

Let $z \in St(E_{n+1}, \mathcal{U}_n)$, so $z \in E_{n+1}[y]$ for some $y \in X$ where $w \in E_{n+1}[x] \cap E_{n+1}[y]$ for some $w \in X$. It follows that $\langle z, y \rangle, \langle y, w \rangle, \langle w, x \rangle \in E_{n+1} = \frac{1}{4}D_n \cap \frac{1}{4}E_n$; therefore $\langle z, x \rangle \in D_n \cap E_n$ and $z \in D_n[x] \cap E_n[x]$. Therefore $St(x, \mathcal{U}_n) \subseteq St(E_{n+1}[x], \mathcal{U}_n) \subseteq D_n[x] \cap E_n[x]$.

We can then observe that \mathcal{U}_{n+1} star refines \mathcal{U}_n since for each $U \in \mathcal{U}_{n+1}$, $U = E_{n+2}[x]$ for some $x \in X$ and $St(E_{n+2}[x], \mathcal{U}_{n+1}) \subseteq E_{n+1}[x] \in \mathcal{U}_n$, making $\{\mathcal{U}_n : n < \omega\}$ a normal covering sequence. Finally, the sequence is compatible since for $x \in X$, $St(x,\mathcal{U}_n) \subseteq D_n[x]$ and $\{D_n[x] : n < \omega\}$ is a local base at x.

Theorem 1.5. A space X is psuedometrizable if and only if $I \uparrow_{pre} Bell_{D,P}^{\to,\emptyset}(X)$.

²⁰¹⁰ Mathematics Subject Classification. 54E15, 54D30, 54A20.

Key words and phrases. Proximal; predetermined proximal; topological game; limited information strategies.

Proof. Suppose X is psuedometrizable by d; then let σ be the predetermined strategy for $Bell_{D,P}^{\to,\emptyset}(X)$ defined by $\sigma(n)=\{\langle x,y\rangle:d(x,y)<2^{-n}\}$. For any legal attack α against $\sigma,\alpha(n+1)\in\sigma(n)[\alpha(n)]$. It follows that if $x\in\bigcap_{n<\omega}\sigma(n)[\alpha(n)]$ and $\epsilon>0$, we may choose $N<\omega$ such that $2^{-N}<\epsilon$. Therefore $d(x,\alpha(n))<2^{-n}\leq 2^{-N}<\epsilon$ for all $n\geq N$, showing α converges to x. Thus σ is a winning strategy.

Now let σ be any predetermined winning strategy satisfying $\sigma(n) \subseteq \sigma(m)$ for all $n \geq m$, and suppose $\left\{\frac{1}{2^{n+1}}\sigma(n)[x]: n < \omega\right\}$ is not a local base at some $x \in X$. Then we may pick an entourage D such that $\frac{1}{2^{n+1}}\sigma(n)[x] \not\subseteq D[x]$ for all $n < \omega$. So choose $\alpha(n) \in \frac{1}{2^{n+1}}\sigma(n)[x] \setminus D[x]$.

Observe that $\langle \alpha(n), x \rangle \in \frac{1}{2^{n+1}}\sigma(n)$ and $\langle \alpha(n+1), x \rangle \in \frac{1}{2^{n+2}}\sigma(n+1) \subseteq \frac{1}{2^{n+1}}\sigma(n)$. It follows that $\langle \alpha(n), \alpha(n+1) \rangle \in \frac{1}{2^n}\sigma(n) \subseteq \sigma(n)$, witnessing that $\alpha(n+1) \in \sigma(n)[\alpha(n)]$, that is, α is a legal counterattack to σ . Since $x \in \frac{1}{2^{n+1}}\sigma(n)[\alpha(n)] \subseteq \sigma(n)[\alpha(n)]$ for all $n < \omega$, σ can only win for I if α converges. But $\alpha(n) \notin D[x]$ for all $n < \omega$, so α fails to converge as well. Thus σ is not a winning strategy.

As a result, if σ is a winning predetermined strategy, we have that $\left\{\frac{1}{2^{n+1}}\sigma(n)[x]:n<\omega\right\}$ is a local base at each $x\in X$. This shows that $\left\{\frac{1}{2^{n+1}}\sigma(n):n<\omega\right\}$ is a compatible entourage sequence; therefore by the previous lemma, X is psuedometrizable. \square

2. A SELECTIVELY PROXIMAL GAME AND A DUAL PROXIMAL GAME

Because the choices of P2 do not depend solely on the choices of P1 each round, the proximal game is not a selection game. However, it can be somewhat emulated as a selection game as follows.

Definition 2.1. Let \mathcal{A}_X be the collection of basic neighborhood assignments $N: X \to \mathcal{T}_X$ such that $x \in N(x)$ (equivalently, $x \in U$ for each $\langle x, U \rangle \in N$), and let \mathcal{PR}_X be the collection of countable sets of tuples $\{\langle x_n, U_n \rangle : n < \omega\}$ satisfying all of the following:

- For each $n < \omega$, $x_n \in U_m$ for cofinitely-many $m < \omega$
- $\{x_n : n < \omega\}$ fails to converge to any point of X
- $\bigcap \{U_n : n < \omega\} \neq \emptyset$

Then we call $G_1(\mathcal{A}_X, \mathcal{PR}_X)$ the selectively proximal game.

Theorem 2.2. The selectively proximal game is equivalent to the proximal game when considering only paracompact spaces.

Proof. TODO

Let σ be a winning predetermined strategy for P1 in the proximal game such that $\sigma(n) \subseteq \sigma(m)$ for all $n \ge m$, and define the neighborhood assignment $\tau(n)$ for P1 in the selectively proximal game by $\tau(n)(x) = \sigma(n)[x]$. Then consider when P2 responds to τ by $\langle x_n, \sigma(n)[x_n] \rangle$ during round $n < \omega$, and suppose that for each $n < \omega$, $x_n \in \sigma(m)[x_m]$ for cofinitely-many $m < \omega$. Pick some S(n) > n such that $x_n \in U_{S(n)}$, and let $\langle y_n, V_n \rangle = \langle x_{S^n(0)}, U_{S^n(0)} \rangle$.

Definition 2.3. Let $\mathcal{N}_X = \{N_x : x \in X\}$ where $N_x = \{\langle x, U \rangle : U \in \mathcal{T}_{X,x}\}$. Then we call $G_1(\mathcal{N}_X, \neg \mathcal{PR}_X)$ the dual selectively proximal game.

We should defend this nominclature.

Proposition 2.4. $G_1(\mathcal{A}_X, \mathcal{PR}_X)$ is dual to $G_1(\mathcal{N}_X, \neg \mathcal{PR}_X)$.

Proof. We proceed by showing that \mathcal{N}_X is a reflection of \mathcal{A}_X ; that is,

$$\mathcal{A}_X' = \{ \operatorname{range}(f) : f \in \mathbf{C}(\mathcal{N}_X) \}$$

is a selection basis for \mathcal{A}_X . To see this, first observe that for each $f \in \mathbf{C}(\mathcal{N}_X)$ and $x \in X$, $f(N_x) \in N_x$, so $f(N_x) = \langle x, U \rangle$ for some open neighborhood U of x. It follows that range $(f) \in \mathcal{A}_X$ and $\mathcal{A}_X' \subseteq \mathcal{A}_X$. Furthermore for each neighborhood assignment $N \in \mathcal{A}_X$, we may define $f_N \in \mathbf{C}(\mathcal{N}_X)$ by $f_N(N_x) = \langle x, N(x) \rangle$. It follows that range $(f_N) \subseteq N$ yielding our result, but in fact we have shown that $N = \text{range}(f_N) \in \mathcal{A}'_X$ and thus $\mathcal{A}'_X = \mathcal{A}_X$.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SOUTH ALABAMA, MOBILE, AL 36688

E-mail address: sclontz@southalabama.edu

 $\mathit{URL} \colon \mathtt{clontz.org}$