HW Report #6

Problem 1.

(a)

Code is written as the function normalize_data.m which was included in the code submission.

(b)

Done

(c)

weights:

w0 = -2.3183

w1 = 2.9235

w2 = 3.7750

w3 = -0.8629

w4 = -2.0081

w5 = -2.3304

w6 = 1.2046

w7 = 0.4079

w8 = 1.9199

(d)

Train error: 0.3061

Test error: 0.2707

Train matrix:

111 76

89 263

Test matrix:

46 40

22 121

Test sensitivity = 0.6765

Test specificity = 0.7516

This graph was generated for the model described in the instructions without any alteration.

(e)

With weights initialized to 0:

Train error = 0.2542

Test error = 0.2358

With learning rate of 0.05

Train error = 0.2913

Test error = 0.2969

With epoch of 100

Train error = 0.3061

Test error = 0.2707

The best result I got was a Train error of 0.2542 and a Test error of 0.2358. This was achieved by only changing the initialization of the weights from 1 to 0.

Problem 2.1

Part a.

Done

Part b.

Attribute 1: exponential
Attribute 2: normal
Attribute 3: normal
Attribute 4: normal
Attribute 5: exponential
Attribute 6: normal
Attribute 7: exponential
Attribute 8: exponential

Problem 2.2

Part a.

Function is written

Part b.

Class 0 prior: 0.6289 Class 1 prior: 0.3711

exp_0_1_muhat: 3.2419

exp_0_5_muhat: 67.7168 exp_1_5_muhat: 103.72 exp_0_7_muhat: 0.4164 exp_1_7_muhat: 0.5491 exp_0_8_muhat: 31.1032 exp_1_8_muhat: 37.12 norm_0_2_mu: 109.6254 norm_1_2_mu: 141.395 norm_1_3_mu: 70.19 norm_0_3_mu: 67.5339 norm_0_4_mu: 19.7316 norm_1_4_mu: 22.935 norm_0_6_mu: 30.3059 norm_1_6_mu: 35.258 norm_0_2_sigma: 26.2304 norm_1_2_sigma: 33.6655 norm 1 3 sigma: 21.6213 norm 0 3 sigma: 18.6683 norm_0_4_sigma: 14.5828 norm_1_4_sigma: 17.8275 norm_0_6_sigma: 7.7258 norm_1_6_sigma: 7.3286

I have included the data that proves to be useful to our Naïve Bayes classifier even though some more was returned from each call of expfit and normfit.

exp_1_1_muhat: 4.71

Problem 2.3

Part (a)

Done

Part(b)

Train error = 0.2393

Test error = 0.2271

Train Confusion Matrix

121 5079 289

Test Confusion Matrix

392329138

Sensitivity = 0.5735 (for test) Specificity = 0.8571 (for test)

Part (c)

The Naïve Bayes model has lower test and train error, and has both higher specificity and lower sensitivity than the Logistic Regression model does. As of now the Naïve Bayes model appears to do a better job of predicting the class of the data than the logistic regression does (without altering anything in logistic regression).

Problem 3.

I used a cost of 1

Train error = 0.2319

Test error = 0.1965

Train Confusion Matrix

115 4085 299

Test Confusion Matrix

42 19

This model has a lower train error and test error than both the Logistic Regression and Naïve Bayes models. So far it appears that the SVM model has done the best job of predicting the class for input data.

Problem 4.

Part a.

Done.

Part b.

Done.

Part c.

AUClog: 0.7633

AUCnb: 0.8150

AUCsvm: 0.8497

Based on these AUC values (higher AUC meaning that the model does a better job of predicting the class for input data) it appears that my previous conclusions are correct. The SVM model does the best job, Naïve Bayes does the second-best job, and Logistic Regression (using the model described by the assignment) does the third-best job of predicting the class based on input data.