CSE-303: COMPUTER GRAPHICS

PROFESSOR DR. SANJIT KUMAR SAHA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAHANGIRNAGAR UNIVERSITY, SAVAR, DHAKA

BOOKS

Textbook:

• Angel and Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Reference Book:

• Roy A. Plastock and Zhigang Xiang: Computer Graphics 2/E Book © Schaum's Outline Series

OBJECTIVES

- Fundamental imaging notions
- Physical basis for image formation
 - Light
 - Color
 - Perception
- Synthetic camera model
- Other models

WHAT IS AN IMAGE?

- Composed of discrete pixels or picture elements.
- Rectangular grid of pixels 5x5 grid
- What is a pixel?
 - Point/cell in the image that contains color data
 - Each pixel is made up of bits
- Resolution: details contained in an image
 - Defined by the number of pixels

[0,0]	[0,1]	[0,2]	[0,3]	[0,4]
[1,0]	[1,1]	[1,2]	[1,3]	[1,4]
[2,0]	[2,1]	[2,2]	[2,3]	[2,4]
[3,0]	[3,1]	[3,2]	[3,3]	[3,4]
[4,0]	[4,1]	[4,2]	[4,3]	[4,4]

IMAGE FORMATION

- In computer graphics, we form images which are generally two dimensional using a process analogous to how images are formed by physical imaging systems
 - Cameras
 - Microscopes
 - Telescopes
 - Human visual system

ELEMENTS OF IMAGE FORMATION

- Objects
- Viewer
- Light source(s)

- Attributes that govern how light interacts with the materials in the scene
- Note the independence of the objects, the viewer, and the light source(s)

LIGHT

- Light is the part of the electromagnetic spectrum that causes a reaction in our visual systems
- Generally these are wavelengths in the range of about 350-750 nm (nanometers)
- Long wavelengths appear as reds and short wavelengths as blues

SPECTRAL ENERGY DISTRIBUTIONS

LUMINANCE AND COLOR IMAGES

- Luminance image
 - Monochromatic
 - Values are gray levels
 - Analogous to working with black and white film or television
- Color image
 - Has perceptional attributes of hue, saturation, and lightness

THREE-COLOR THEORY

- Human visual system has two types of sensors
 - Rods: monochromatic, night vision
 - Cones
 - Color sensitive
 - Three types of cones
 - Only three values (the tristimulus values) are sent to the brain
- Need only match these three values
 - Need only three primary colors

ADDITIVE AND SUBTRACTIVE COLOR

- Additive color
 - Form a color by adding amounts of three primaries
 - CRTs, projection systems, positive film
- Primaries are
 - Red (R), Green (G), Blue (B)

RGB COLOR CUBE

- RGB used in monitors and other light emitting devices
- TV uses YIQ encoding which is somewhat similar to RGB

ADDITIVE AND SUBTRACTIVE COLOR

- Subtractive Color
 - Form a color by filtering white light with Cyan (C),

Magenta (M), and Yellow (Y) filters

- Light-material interactions
- Printing
- Negative film

COLOR MODELS CMY

- Describes hardcopy color output
- We see colors of reflected light

- Cyan ink absorbs red light and reflects green and blue
- To make blue, use Cyan ink (to absorb red), and Magenta ink (to absorb green)

14

CONVERSION

•
$$W = (0, 0, 0)$$
 $B = (1, 1, 1)$

Conversion from RGB to CMY

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = 1 - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Conversion from CMY to RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = 1 - \begin{bmatrix} C \\ M \\ Y \end{bmatrix}$$

BINARY IMAGES

- Remember, everything on a computer is stored as 0s and 1s.
- Thus, we must *interpret* these numbers as different forms of data.
- One bit (binary digit) can be either a 0 or a 1.
 - Therefore, it can only represent two possibilities: hot or cold, black or white, on or off, etc...

BIT COLOR DEPTH

RASTER VS VECTOR GRAPHICS

- Raster graphics: made up of pixels
 - Resolution dependent
 - Cannot be scaled without losing quality
 - Can represent photo realistic elements better than vector graphics
- Vector graphics: geometric primitives, composed of paths
 - Mathematical equations
 - Resolution independent
 - Can be scaled to any size without losing quality
 - Best for cartoon-like images
 - 3D modeling

RASTER VS VECTOR GRAPHICS...

- Raster graphics image formats:
 - BMP
 - GIF
 - JPEG
 - PNG
- Vector graphics image formats:
 - FLASH
 - SCALABLE VECTOR GRAPHICS (SVG)
 - CDR (CORELDRAW)
 - AI (ADOBE ILLUSTRATOR)

RASTER GRAPHICS

BMP (Bitmaps)

- Simple structure
- Pixel color values left to right, top to bottom
- Can be compressed using run-length encoding

GIF (Graphics Interchange Format)

- 8-bit palette (any 256 colors)
- Small size
- Simple images: line art, shapes, logos
- Lossless compression: covering areas with single color

• JPEG (Joint Photographic Experts Group)

- Is a *compression method* stored in JFIF (JPEG file interchange format)
- Lossy compression: averages color hues over short distances
 - Taking advantage of limitations of our visual system, discarding invisible information
- Compression ratio is usually 0.1
- Structure: sequence of segments. Marker followed by a definition of the marker

VECTOR GRAPHICS

- SVG (Scalable Vector Graphics)
 - Text based scripts

- Text compression
- Compression ratio can be as small as 0.2
- Great for web-based imaging

DIRECT CODING

- Image representation is essentially the representation of pixel colors.
- Using direct coding we allocate a certain amount of storage space for each pixel to code its color.

• For example, we may allocate 3 bits for each pixel, with one bit for each primary

color.

bit 1: r	bit 2: g	bit 3: b	Color name
0	0	0	black
0	0	1	blue
0	1	0	green
0	1	1	cyan
1	0	0	red
1	0	1	magenta
1	1	0	yellow
1	1	1	white

- This 3-bit representation allows each primary to vary independently between two intensity levels:
 - 0 (off) or 1 (on).
- Hence each pixel can take on one of the eight colors that correspond to the corners of the RGB color cube.

LOOKUP TABLE

A lookup table (LUT) maps input values to corresponding output colors, allowing a limited number of input colors to be displayed with a larger number of output colors. These tables are used to reduce memory usage and improve performance.

