Algorytm sztucznej kolonii pszczół Podstawy matematyczne

Adrian Pilarczyk

Politechnika Krakowska

Spis treści

- Wstęp
- Założenia algorytmu
- Rodzaje pszczół
 - pszczoła pracująca
 - pszczoła obserwator
 - pszczoła zwiadowca
- Działanie algorytmu
- Zastosowanie
- 6 Podsumowanie

Wstęp

Algorytm został wprowadzony przez Dervisa Karaboge [3] w 2005 roku w celu optymalizacji problemów numerycznych.

Celem algorytmu jest dążenie do najlepszego rozwiązania za pomocą mechanizmu wyszukiwania sąsiadów.

Założenia algorytmu

Algorytm zakłada na początku, że:

- Każde współrzędne źródła pokarmu są rozwiązaniem rozważanego problemu (x_i^j) .
- Ich ilość jest równa liczbie pszczół początkowych (N).
- Współrzędne zależą od wymiaru, w jakim się znajduje źródło.
- M liczba prób pobrań nektaru.

Założenia algorytmu

Algorytm wyznacza początkowe współrzędne pożywienia (x_i^j) z wykorzystaniem następującej zależności [4]:

Założenia algorytmu

Algorytm wyznacza początkowe współrzędne pożywienia (x_i^j) z wykorzystaniem następującej zależności [4]:

$$x_i^j = x_{min}^j + rand[0,1](x_{max}^j - x_{min}^j)$$

gdzie:

- \mathbf{x}_{i}^{j} $(i \in \{1,...,N\})$ jest położeniem źródła pożywienia w j-wymiarowej przestrzeni.
- ullet rand[0,1] jest funkcją generującą losowe liczby w zakresie [0,1].

W algorytmie dzielimy pszczoły na trzy odmiany gatunkowe:

W algorytmie dzielimy pszczoły na trzy odmiany gatunkowe:

• pszczoła pracująca,

W algorytmie dzielimy pszczoły na trzy odmiany gatunkowe:

- pszczoła pracująca,
- pszczoła obserwator,

W algorytmie dzielimy pszczoły na trzy odmiany gatunkowe:

- pszczoła pracująca,
- pszczoła obserwator,
- pszczoła zwiadowca.

W algorytmie dzielimy pszczoły na trzy odmiany gatunkowe:

- pszczoła pracująca,
- pszczoła obserwator,
- pszczoła zwiadowca.

Każda z nich ma określone warunki oraz zadania, jakie musi wykonywać w celu poprawnego działania algorytmu.

Pszczoła pracująca

Ocenia ona właściwości danego źródła pod względem odległości od ula, jakości oraz ilości nektaru. Szukają one pokarmu tam, gdzie jest go najwięcej.

Pszczoła pracująca

Ocenia ona właściwości danego źródła pod względem odległości od ula, jakości oraz ilości nektaru. Szukają one pokarmu tam, gdzie jest go najwięcej.

Zapamiętują one współrzędne za pomocą zależności [4]:

$$v_i^j = x_i^j + rand[-1, 1](x_i^j - x_k^j)$$

gdzie:

- v_i^j ($i \in \{1,...,N\}$) jest kolejnym położeniem źródła pożywienia w j-wymiarowej przestrzeni.
- ullet rand[-1,1] jest funkcją generującą losowe liczby w zakresie.
- $k \in \{1, ..., N\}, k \neq i$.

Pszczoła obserwator

Ocenia informacje otrzymane od innych pszczół. Wybiera ona najbardziej dochodowe źródło i podobnie postępuje z oceną następnego źródła.

Pszczoła obserwator

Ocenia informacje otrzymane od innych pszczół. Wybiera ona najbardziej dochodowe źródło i podobnie postępuje z oceną następnego źródła.

Zależność wynikająca z prawdopodobieństwa [4] wyboru nowego celu:

$$p_i = \frac{F(x_i^j)}{\sum_{i=1}^N F(x_i^j)}$$

Pszczoła zwiadowca

Jeżeli źródło pożywienia jest wykorzystane po M próbach lub nie następuje poprawa jakości następnych rozwiązań, pszczoła zwiadowca zaczyna poszukiwać nowych współrzędnych.

Pszczoła zwiadowca

Jeżeli źródło pożywienia jest wykorzystane po M próbach lub nie następuje poprawa jakości następnych rozwiązań, pszczoła zwiadowca zaczyna poszukiwać nowych współrzędnych.

Jej nowe współrzędne są wyznaczane za pomocą wzoru [4]:

$$x_i^j = x_{\min}^j + rand[0,1](x_{\max}^j - x_{\min}^j)$$

gdzie:

- x_{min}^{j} dolna granica współrzędnych w j-wymiarze.
- \bullet x_{max}^{j} górna granica współrzędnych w j-wymiarze.

Zdefiniowanie parametrów początkowych algorytmu.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Pętla:

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Petla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Petla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Pętla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.
 - Wybranie przez pszczoły obserwujące źródła pożywienia i wyznaczenie znajdującej się tam ilości nektaru.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Petla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.
 - Wybranie przez pszczoły obserwujące źródła pożywienia i wyznaczenie znajdującej się tam ilości nektaru.
 - Usunięcie z pamięci współrzędnych, do których pszczoły nie będą wracać.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Petla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.
 - Wybranie przez pszczoły obserwujące źródła pożywienia i wyznaczenie znajdującej się tam ilości nektaru.
 - Usunięcie z pamięci współrzędnych, do których pszczoły nie będą wracać.
 - Wysłanie pszczół zwiadowczych w celu odkrycia nowych źródeł pożywienia.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Petla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.
 - Wybranie przez pszczoły obserwujące źródła pożywienia i wyznaczenie znajdującej się tam ilości nektaru.
 - Usunięcie z pamięci współrzędnych, do których pszczoły nie będą wracać.
 - Wysłanie pszczół zwiadowczych w celu odkrycia nowych źródeł pożywienia.
 - Zapamiętanie najlepszego źródła pokarmu ze wszystkich rozwiązań możliwych.

- Zdefiniowanie parametrów początkowych algorytmu.
- Losowanie współrzędnych rozwiązań.
- Petla:
 - Wysłanie pszczół pracujących w pobliżu źródeł pożywienia i wyznaczenie ilości nektaru.
 - Obliczenie prawdopodobieństw wyboru poszczególnych źródeł przez pszczoły pracujące.
 - Wybranie przez pszczoły obserwujące źródła pożywienia i wyznaczenie znajdującej się tam ilości nektaru.
 - Usunięcie z pamięci współrzędnych, do których pszczoły nie będą wracać.
 - Wysłanie pszczół zwiadowczych w celu odkrycia nowych źródeł pożywienia.
 - **o** Zapamiętanie najlepszego źródła pokarmu ze wszystkich rozwiązań możliwych.
 - Powtarzaj aż do ukończenia N.

Zastosowanie

Algorytm sztucznej kolonii pszczół często stosuje się do problemów optymalizacyjnych. Swoje powodzenie znajduje w elektrotechnice, eksploracji danych, inżynierii mechanicznej i inżynierii lądowej.

Podsumowanie

Cechy algorytmu ABC:

- Opiera się na prostych krokach, w których możemy zmienić parametry początkowe do własnego rozważania.
- Szerokie zastosowanie nawet w złożonych funkcjach pozwala za pomocą algorytmu na zwalczenie problemów z optymalizacją.
- Cieszy się swoją popularnością przez swoją dokładność.

Bibliografia

[1] Ahmed Fouad Ali, Artificial Bee Colony algorithm https:

//www.slideshare.net/afar1111/swarm-intelligance-4 [dostep 08.03.2022]

- [2] D. Karaboga, Artificial bee colony algorithm http://www.scholarpedia.org/article/Artificial_bee_ colony_algorithm?ref=https://githubhelp.com [dostęp 05.03.2022]
- [3] D. Karaboga, B. Akay A comparative study of Artificial Bee Colony algorithm Applied Mathematics and Computation 214 (2009) p.108–132
- [4] M. Tomera Zastosowanie algorytmów rojowych do optymalizacji parametrów w modelach układów regulacji

Zeszyty Naukowe WEiA Politechniki Gdańskiej

A. Pilarczyk (PK)

Dziękuję za uwagę.

Przygotował i prezentował: Adrian Pilarczyk

