A Book of Abstract Algebra (2nd Edition)

≡	Chapter 27, Problem 2EF	Bookmark	Show all steps: ON	K 7 K 3
Problem				
	Let F be a finite field, and F^* the multiplicative group of nonzero elements of F . Obviously $H = \{x^2 : x \in F^*\}$ is a subgroup of F^* ; since every square x^2 in F^* is the square of only two different elements, namely $\pm x$, exactly half the elements of F^* are in H . Thus, H has exactly two cosets: H itself, containing all the squares, and aH (where $a \notin H$), containing all the nonsquares. If a and b are nonsquares, then by Chapter 15, Theorem 5(i), $ab^{-1} = \frac{a}{b} \in H$ Thus: if a and b are nonsquares, a/b is a square. Use these remarks in the following: If the minimum polynomial of a over F has degree 2, we call $F(a)$ a quadratic extension of F . Let F be a finite field. If a , $b \in F$, let $p(x) = x^2 - a$ and $q(x) = x^2 - b$ be irreducible in $F[x]$, and let \sqrt{a} and \sqrt{b} denote roots of $p(x)$ and $q(x)$ in an extension of F . Explain why a/b is a square, say $a/b = c^2$ for some $c \in F$. Prove that \sqrt{b} is a root of $p(cx)$.			
Step-by-step solution Step 1 of 3 ^				
	Objective is to prove that a/b is a square and \sqrt{b} is a root of $p(cx)$ for some c in F .			
	Consider the following result:			
	The ca is a root of $p(x)$ if and only if a is a root of $p(cx)$.			
	Comment			
Comment				
	Step 3 of 3			
	Since $c=\sqrt{\frac{a}{b}}$, so $\sqrt{a}=c\sqrt{b}$.			
	This implies that $c\sqrt{b}$ is a root of polynomial $p(x) = x^2 - a$ in K . Thus, $c\sqrt{b}$ is a root of polynomial $p(x)$ implies \sqrt{b} is a root of $p(cx)$ (by the above result). Comment			

2 4 B