Problem 12-1

Estimate the size of the motor necessary to pump a lean oil to the top of an absorption tower operating at a pressure of 445 kPa. The oil is to be pumped from an open tank with a liquid level 3 m above the floor through 46 m of pipe with an inside diameter of 0.078 m. There are five 90° elbows in the line, and the top of the tower is 9.1 m above the floor level. A flow of 2.7 kg/s of lean oil is required. The viscosity of the oil is 15 cP, and its density is 857 kg/m³. Assume that the efficiency of the pumping system including the motor is 40%.

Solution:

Start by making a sketch of the system such as the one shown below, and then apply the mechanical energy balance.

Assuming that the fluid is incompressible, Equation 12-12 on page 492 is the most convenient and appropriate form of the mechanical energy balance:

$$W_o = g\Delta z + \Delta \left(\frac{V^2}{2\alpha}\right) + \Delta \left(pv\right) + \Sigma F = g\left(z_2 - z_1\right) + \frac{V_2}{2} + \frac{p_2 - p_1}{\rho} + \Sigma F$$

The correction factor α is assumed to be 1 (assuming turbulent flow). Also assume that the velocity of the fluid entering the pipeline is zero, so that $V_1=0$, and that the velocity in the tower is zero, so that $V_3=0$. The velocity of the fluid inside the pipe is given by

$$V_{2} = \frac{\left(2.7 \frac{kg}{s}\right) / \left(857 \frac{kg}{m^{3}}\right)}{\pi \left(0.078 m\right)^{2} / 4} = 0.659 \frac{m}{s}$$

The Reynolds number is needed to calculate the frictional losses, and is given by

$$Rn = \frac{DV_2\rho}{\mu} = \frac{0.078m \cdot 0.659 \frac{m}{s} \cdot 857 \frac{kg}{m^3}}{0.015 \frac{kg}{m \cdot s}} = 2938.25$$

Use this value of Reynolds number to read the friction factor from Figure 12-1 on page 487, getting f=0.011.

To calculate the frictional losses, we must use Equation 12-7 on page 488. However, we must first determine the *total equivalent length* to account for the elbow, using Table 12-1:

$$L = 46m + 5 \cdot 32 \cdot 0.078m = 58.48m$$

$$F = \frac{2 \cdot f \cdot V^2 \cdot L}{D} = \frac{2 \cdot 0.011 \cdot \left(0.659 \frac{m}{s}\right)^2 \cdot 58.48m}{0.078m} = 7.163 \frac{m^2}{s^2}$$

There are also frictional losses F_C due to the sudden constriction where the fluid enters the pipe. F_C for sudden constriction is given by the equation in Table 12-1 on page 490:

$$F_{\rm C} = \frac{K_{\rm C} \cdot V^2}{2 \cdot \alpha} = \frac{0.4 \cdot 1.25 \cdot \left(0.659 \, \frac{\rm m}{\rm s}\right)^2}{2} = 0.109 \, \frac{\rm m^2}{\rm s^2}$$

Note that K_C is really a function of the big and small areas of the constriction (A_1 and A_2 in the sketch), but the maximum value is $0.4 \cdot 1.25$.

There are also frictional losses F_E due at the end of the pipe due to the sudden expansion where the fluid enters the column. F_E for sudden expansion is given in Table 12-1 on page 490:

$$F_{e} = \frac{\left(V_{2} - V_{3}\right)^{2}}{2 \cdot \alpha} = \frac{\left(\sim 0 - 0.659 \, \frac{m}{s}\right)^{2}}{2} = 0.217 \, \frac{m^{2}}{s^{2}}$$

Now, go back and apply the mechanical energy balance:

$$W_o = 9.8 \frac{m}{s^2} \cdot \left(9.1 m - 3.0 m\right) + \frac{445000 Pa - 101325 Pa}{857 \frac{kg}{m^3}} + \frac{\left(0.659 \frac{m}{s}\right)^2}{2} + \left(0.109 + 7.170 + 0.217\right) \frac{m^2}{s^2} = 468.5 \frac{m^2}{s^2} + \frac{10.109 + 10.000 Pa}{s^2} + \frac{10.1000 Pa}{s^2} + \frac{10$$

To convert this answer to Watts, multiply by the mass flow rate:

$$W_o = 468.5 \frac{m^2}{s^2} \cdot 2.7 \frac{kg}{s} = 1265.0 \text{ Watts}$$

To calculate the power input to the pump-motor system, divide by the efficiency:

$$W_{in} = \frac{1265.0 \text{ Watts}}{0.4} = \frac{3162.5 \text{ Watts}}{4 \text{ NS}}$$

"Piping Design Tool" from Github web page

	Design tool for incompressible flow in pipes		PTW, Problem 12-1. Yellow highlighting designates required user input.		d user input.	
	QUANTITY	Symbol	Units	Specs	Cell Name	Formulae and notes
	viscosity	μ	kg/m·s	0.015	mu	u/s (user specified)
	density	ρ	kg/m ³	857	rho	u/s
	flow rate, specified	m_v	m ³ /s	0.00315	mv	u/s
	diameter, specified	D	m	0.07800	D	u/s
	pipe cross-sectional area	Α	m ²	0.00478	Α	s/c (spreadsheet calculation), $\pi D^2/d$
	velocity	v Re	m/s	0.65933	V D-	s/c, volumetric flow rate divided by cross-sectional area
	Reynolds number	Re	dimensionless	2938	Re	s/c, Dvρ/μ
	Optimal Diameter Section					
	diameter, optimal, SI	D _{opt}	m	0.0589	Dopt	s/c, nested IF statements using eqns 9-76 to 9-79, PTW, p. 404
	area, optimal	A _{opt}	m ²	0.0027	Aopt	s/c, $\pi D_{opt}^2/4$
	velocity, optimal	V _{opt}	m/s	1.1576	vopt	s/c, volumetric flow divided by A _{opt}
	Reynolds number, optimal	Re _{opt}	dimensionless	3893	Reopt	s/c, D _{opt} V _{opt} ρ/μ
D C	Potential Energy Section					
Static Head (Gravitation)	elevation 1	h ₁	m	3	hinit	u/s
avita	elevation 2	h ₂	m	9.1	hfinal	u/s
Sta	gravitational acceleration constant	g	m/s ²	9.8	g	u/s
	gravitational potential head	g·∆h	m²/s² or N⋅m/kg	59.78	not named	s/c
~	External Pressure Section					
Static Head (Pressure)	pressure 1	p ₁	Pa	101325	pinit	u/s
Static Head ressur	pressure 2	p ₂	Pa	445000	pfinal	u/s
0, 7 €	pressure head	Δ(pv)	m ² /s ² or N⋅m/kg	401.0210035	not named	s/c
		-4-7				
_	Kinetic Energy Section					
Dynamic Head Kinetic E)	initial fluid velocity	V ₁	m/s	0.00000	Vinit	s/c, from cell E10
Dynami Head (Kinetic	final fluid velocity	V ₂	m/s	0.65933	Vfinal	s/c, from cell E10
및 휴	velocity correction	α	dimensionless	1	alpha	n/a
	kinetic energy head	$\Delta(v^2/2\alpha)$	m²/s² or N⋅m/kg	0.217359032	not named	s/c
	Pipe Friction Section					
	Colebrook relation for f			-0.000278739	not named	s/c, eq. 12-6, p. 487
_	pipe length	L	m	46	L	u/s
eac (pipe roughness	ε	m	0.0000457	eps	u/s, fig. 12-1, p. 487
Ť (o	fanning friction factor, turbulent	f	dimensionless	0.01108	not named	s/c; run solver to minimize blue cell with respect to cell E40
namic He (Friction)	fanning friction factor, laminar	f	dimensionless	0.00545	not named	s/c, eq. 12-4, p. 487
Dynamic Head (Friction)	fanning friction factor	f	dimensionless	0.01108	f	s/c, IF statement to choose laminar or turbulent
Δ.	frictional loss due to straight pipe	F _{pipe}	m²/s² or N·m/kg	5.7	not named	s/c, eq. 12-7, p. 488
	losses due to straight pipe + fittings	F _{pipe+fittings}	m²/s² or N⋅m/kg	7.2	not named	s/c, eq. 12-7, p. 488, with equivalent length L+Le
	total friction head	F _{pipe+fittings+ec}	m²/s² or N⋅m/kg	7.5	not named	s/c, eq. 12-7, p. 488, with expansions and constrictions
	- w					
	Pump Work Section	Б	2. 2	400		
	total head (pump work @ 100% efficiency)	P _o	m²/s² or N⋅m/kg	469	not named	Energy balance; summation of all gray cells
	total head in Watts	Po	W	1265	not named	s/c, m ² /s ² ·kg/s
	efficiency	η P	dimensionless	0.4	eta	u/s
	pump work at specified efficiency pump work at specified efficiency	P	m²/s² or N·m/kg W	3163	not named not named	s/c, divide by efficiency s/c, divide by efficiency
	pamp work at opcomed emotericy		••	0100	nothamea	ore, arriad by emoleracy
	Frictional Losses Due to Fittings and Valves					
	Description of fittings	Le/D		<u>number</u>		
	45° elbows	15	dimensionless	-	not named	u/s, Table 12-1, p. 490, fittings, vavles, etc.
	90° elbows, standard radius 90° elbows, medium radius	32 26	dimensionless dimensionless	5	not named not named	u/s u/s
	90° elbows, Inediam radius	20	dimensionless		not named	u/s
	90° elbows, square	60	dimensionless		not named	u/s
	180° bends, close return	75	dimensionless		not named	u/s
	180° bends, medium radius	50	dimensionless		not named	u/s
	Tee (used as elbow, entering run)	60	dimensionless		not named	u/s
	Tee (used as elbow, entering branch)	90	dimensionless		not named	u/s
	Couplings Unions	0	dimensionless dimensionless		not named not named	u/s u/s
	Gate valves, open	7	dimensionless		not named	u/s
	Globe valves, open	300	dimensionless		not named	u/s
	Angle valves, open	170	dimensionless		not named	u/s
	Water meters, disk	400	dimensionless		not named	u/s
	Water meters, piston	600	dimensionless		not named	u/s
	Water meters, impulse-wheel Equivalent length of fittings	300 Le	dimensionless m	12.48	not named Le	u/s s/c, summation of all losses due to fittings
	=== sion longer of marigo	-6		12.70		5.5, 55
	Frictional Losses Due to Enlargements and C	onstrictions				
	Area on narrow side of constriction/expansion	Anarrow	m ²	0.00478	not named	s/c, calculated earlier in cell E9
	Area on wide side of constriction/expansion	A_{wide}	m ²	4.77836	not named	u/s, used a ratio of 1000 in this case
	Ratio of narrow area to wide area	A _{narrow} /A _{wide}	dimensionless	0.001	not named	s/c, $\boldsymbol{A}_{\text{wide}}$ is not known in this case, so the ratio is made small
	Velocity on narrow side of constriction/expansion	V _{narrow}	m/s	0.65933	not named	s/c, volumetric flow divided by area of narrow side
	Velocity on wide side of constriction/expansion	v_{wide}	m/s	0.00066	not named	s/c, volumetric flow divided by area of wide side
	Losses due to enlargements	Fe	m²/s² or N⋅m/kg	0.21692	not named	s/c, Table 12-1, p. 490, sudden enlargement
	Losses due to constrictions	F _c	m²/s² or N⋅m/kg	0.10859	not named	s/c, Table 12-1, p. 490, sudden constriction
	Number of enlargements		dimensionless	1	not named	u/s, typical value is 1 for pipe emptying into a vessel
	Number of constrictions		dimensionless	1	not named	u/s, typical value is 1 for pipe removing liquid from a vessel
	Losses due to enlargements and constrictions	$F_e + F_c$	m²/s² or N⋅m/kg	0.32552	not named	s/c

CHEMCAD Solution

Stream	n No.	1	2	3
Nar	ne	"lean oil"		
Ove	rall			
Mass flow	/ kg/sec	2.7000	2.7000	2.7000
Tem	рK	231.5000	232.1012	232.1012
Pres	Pa	101325.0000	502079.0000	445000.0000
Enth k	J/sec	-13982.	-13978.	-13978.
Entropy	kJ/K/sec	-21.96	-21.94	-21.94
GibbsEner	gy kJ/sec	-8898.2	-8885.8	-8885.9
Liquid	only			
Actual de	ns kg/m3	854.4092	853.9491	853.9490
Visc cP		14.98	14.65	14.64
Flow rates	in kg/sec			
Ethanol		0.0000	0.0000	0.0000
N-Propanol		2.7000	2.7000	2.7000

Equip. No.	1
Name	
	2
Method	2
Diameter m	0.0780
Calculated ID m	0.0780
Pipe length m	46.0000
Roughness factor m	4.5720e-005
Elevation change m	6.1000
Pressure drop Pa	57079.0039
Reynolds # liq	3008.6821
Fric factr liq	0.0450
Avg density kg/m3	853.9491
Calc. velocity m/sec	0.6617
Min. velocity m/sec	0.4158
DP friction Pa	5995.2720
DP elevation Pa	51083.7344
Output press. Pa	445000.0000
DP/100ft, psi	0.4768
Liquid flow kg/sec	2.7000
Liquid density kg/m3	853.9491
Liq viscosity cP	14.6487
Surface tension N/m	0.0285
EL. fittings m	9.5862
Total ELength m	55.5862
small dia./large dia.	0.0010
Standard elbow 90 de	5
Sudden contraction	1
Sudden expansion	1
Friction fac. model	1
Incl. expansion fac.	1
Pipe wall cond. W/m-	51.2818
Inclination angle	7.6204

Equip. No.	2			
Name				
Output pressure Pa	502079.0000			
Efficiency	0.4000			
Calculated power	3168.3052			
(J/sec)				
Calculated Pout Pa	502079.0000			
Head m	47.8290			
Vol. flow rate m3/h	11.3763			
Mass flow rate kg/sec	2.7000			

This problem would be fairly easy to solve in ChemCAD if the chemical composition of the lean oil were known. However, this was not given. The key to the problem is therefore to identify a reasonable component that matches the density and viscosity of the lean oil. This is sometimes referred to as using a "psuedo-component."

After some searching, I settled on 1-propanol at 231.5 K, which is a pretty close match. The given density was 857 kg/m3 and the viscosity was given as 15 cP. The corresponding values for 1-propanol at 231.5 K are 854.4 and 14.98.

The calculated pump power of 3168 J/s is in good agreement with the value of 3163 W from the by-hand calculations. The small difference is due to small differences in viscosity and density and the Le/D values used by CHEMCAD.

The pipeline tool allows the user to set fluid properties to their own values and then override the CHEMCAD values. Trying this and changing the density and viscosity to the values given in the problem statement, changes the Reynolds number from 3009 to 2938, in excellent agreement with the by-hand calculations. However, this changes the pump power from 3168 W to 3170, or an increase of 2 W. So there is an effect, but it is small and in the wrong direction.

Problem 12-2

What is the pressure loss when 2.14 kg/s of pure benzene at 40 °C flows through a 21-m length of straight pipe with an inside diameter of 0.0409 m? The pipeline contains six 90° elbows, one tee used as an elbow (equivalent resistance equal to 60 pipe diameters), one globe valve, and one gate valve. The density of benzene is 849 kg/m³, and its viscosity at 40 °C is 5×10^{-4} Pa·s.

Solution:

Start by making a sketch of the system, and then apply the frictional loss Equation 12-7, p. 488.

Start with velocity inside the pipe, which is given by

$$V_{2} = \frac{\left(2.14 \frac{kg}{s}\right) / \left(849 \frac{kg}{m^{3}}\right)}{\pi \left(0.0409 m\right)^{2} / 4} = 1.919 \frac{m}{s}$$

The Reynolds number is given by

$$Rn = \frac{DV\rho}{\mu} = \frac{0.0409 \, \text{m} \cdot 1.919 \, \frac{\text{m}}{\text{s}} \cdot 849 \, \frac{\text{kg}}{\text{m}^3}}{0.0005 \, \frac{\text{kg}}{\text{m}^6}} = 133,271$$

Use the Reynolds number, read the friction factor from Figure 12-1 on page 487, getting f=0.0055. The total equivalent length accounts for the elbows, tee, and valves (Table 12-1):

$$L = 21m + (6.32 + 60 + 300 + 7) \cdot 0.0409m = 43.86m$$

$$F = \frac{2 \cdot f \cdot V^2 \cdot L}{D} = \frac{2 \cdot 0.0055 \cdot \left(1.919 \frac{m}{s}\right)^2 \cdot 43.86m}{0.0409m} = 43.440 \frac{m^2}{s^2}$$

To convert this answer to Pa, multiply by the density:

CHEMCAD answer is 37.1 kPa (set roughness correctly!)

ANS may vary slightly depending on how you read the "Moody Plot"

$$F = 43.440 \frac{m^2}{s^2} \cdot 849 \frac{kg}{m^3} = \frac{36,881 \text{ Pa}}{\text{ANS}}$$
(set roughness correctly!)

Excel answer is 43.5 N·m/kg
36.9 kPa when multiplied by ρ

36.9 kPa when multiplied by ρ (essentially the same)

ALTERNATE SOLUTION

"Piping Design Tool" from Github web page

PROBLEM SET 1

	Design tool for incompressible flow in pipes		Yellow highlighting designates required user input.		user input.	
	QUANTITY	Symbol	Units	Specs	Cell Name	Formulae and notes
	viscosity	μ	kg/m·s	0.0005	mu	u/s (user specified)
	density	ρ	kg/m ³	849	rho	u/s
	flow rate, specified	m,	m³/s	0.002521	mv	u/s
	diameter, specified	D	m	0.04090	D	u/s
	pipe cross-sectional area	Α	m ²	0.00131	Α	s/c (spreadsheet calculation), πD2/d
	velocity	V	m/s	1.91883	V	s/c, volumetric flow rate divided by cross-sectional area
	Reynolds number	Re	dimensionless	133259	Re	s/c, Dvρ/μ
	Optimal Diameter Section					
	diameter, optimal, SI	D_{opt}	m	0.0488	Dopt	s/c, nested IF statements using eqns 9-76 to 9-79, PTW, 5th ed, p. 404
	area, optimal	A _{opt}	m ²	0.0019	Aopt	s/c , $\pi D_{opt}^2/4$
	velocity, optimal	V _{opt}	m/s	1.3452	vopt	s/c, volumetric flow divided by A _{oot}
	Reynolds number, optimal	Re _{opt}	dimensionless	111577	Reopt	s/c, D _{opt} v _{opt} p/µ
		op.				, op. op
70 6	Potential Energy Section					
Static Head (Gravitation)	elevation 1	h ₁	m	0	hinit	u/s
Z its	elevation 2	h ₂	m	0	hfinal	u/s
stati Sra	gravitational acceleration constant	g	m/s ²	9.8	g	u/s
00 9	gravitational potential head	g∙∆h	m²/s² or N·m/kg	0	not named	s/c
ad (e)	External Pressure Section					
H is	pressure 1	p_1	Pa	101325	pinit	u/s
Static Head (Pressure)	pressure 2	p_2	Pa	101325	pfinal	u/s
\$ €	pressure head	$\Delta(pv)$	m ² /s ² or N·m/kg	0	not named	s/c
			· ·			
Dynamic Head (Kinetic E)	Kinetic Energy Section					
ĬШ	initial fluid velocity	V ₁	m/s	1.91883	Vinit	s/c, from cell E10
햹	final fluid velocity	V ₂	m/s	1.91883	Vfinal	s/c, from cell E10
밑호	velocity correction	α	dimensionless	1	alpha	n/a
6	kinetic energy head	$\Delta(v^2/2\alpha)$	m ² /s ² or N-m/kg	0	not named	s/c
	Pipe Friction Section					
	Colebrook relation for f			-2.1104E-07	not named	s/c, eq. 12-6, p. 487
ag	pipe length	L	m	0.0000457	L	U/S
∄ €	pipe roughness fanning friction factor, turbulent	ε f	m dimensionless	0.0000457 0.00551	eps not named	u/s, fig. 12-1, p. 487 s/c; run solver to minimize blue cell with respect to cell E40
등 등	fanning friction factor, laminar	f	dimensionless	0.00031	not named	s/c, eq. 12-4, p. 487
Fi ia	fanning friction factor	f	dimensionless	0.00551	f	s/c, IF statement to choose laminar or turbulent
Dynamic Head (Friction)	frictional loss due to straight pipe	F _{pipe}	m ² /s ² or N·m/kg	20.8	not named	s/c, eq. 12-7, p. 488
	losses due to straight pipe + fittings		m ² /s ² or N·m/kg	43.5	not named	s/c, eq. 12-7, p. 488, with equivalent length L+Le
	total friction head	F _{pipe+fittings}				
	total inction nead	F _{pipe+fittings+ec}	m ² /s ² or N·m/kg	43.5	not named	s/c, eq. 12-7, p. 488, with expansions and constrictions
	Book Work Continu					
	Pump Work Section		2, 2 1, 4	40.5		F
	total head (pump work @ 100% efficiency)	P _o	m ² /s ² or N·m/kg	43.5	not named	Energy balance; summation of all gray cells
	total head in Watts	P _o	W	93	not named	s/c, m ² /s ² ·kg/s
	efficiency	η	dimensionless	0.4	eta	u/s
	pump work at specified efficiency	P P	m²/s² or N·m/kg W	109 233	not named	s/c, divide by efficiency
	pump work at specified efficiency	Р	VV	233	not named	s/c, divide by efficiency
	Frictional Losses Due to Fittings and Valves					
	Description of fittings	Le/D		number		
	45° elbows	15	dimensionless	110111001	not named	u/s, Table 12-1, p. 490, fittings, vavles, etc.
	90° elbows, standard radius	32	dimensionless	6	not named	u/s
	90° elbows, medium radius	26	dimensionless		not named	u/s
	90° elbows, long sweep	20	dimensionless		not named	u/s
	90° elbows, square	60	dimensionless		not named	u/s
	180° bends, close return	75	dimensionless		not named	u/s
	180° bends, medium radius	50	dimensionless		not named	u/s
	Tee (used as elbow, entering run) Tee (used as elbow, entering branch)	60 90	dimensionless dimensionless	1	not named not named	u/s u/s
	Couplings	0	dimensionless		not named	u/s
	Unions	ő	dimensionless		not named	u/s
	Gate valves, open	7	dimensionless	1	not named	u/s
	Globe valves, open	300	dimensionless	1	not named	u/s
	Angle valves, open	170	dimensionless		not named	u/s
	Water meters, disk	400	dimensionless		not named	u/s
	Water meters, piston	600	dimensionless		not named	u/s
	Water meters, impulse-wheel	300	dimensionless	00.00	not named	U/S
	Equivalent length of fittings	Le	m	22.86	Le	s/c, summation of all losses due to fittings
	Frictional Losses Due to Enlargements and (Constrictions				
	Area on narrow side of constriction/expansion	A _{narrow}	m ²	0.00131	not named	s/c, calculated earlier in cell E9
			m ²			
	Area on wide side of constriction/expansion	A _{wide}		1.31382	not named	u/s, used a ratio of 1000 in this case
	Ratio of narrow area to wide area	A_{narrow}/A_{wide}	dimensionless	0.001	not named	s/c, A _{wide} is not known in this case, so the ratio is made small
	Velocity on narrow side of constriction/expansion	l V _{narrow}	m/s	1.91883	not named	s/c, volumetric flow divided by area of narrow side
	Velocity on wide side of constriction/expansion	V _{wide}	m/s	0.00192	not named	s/c, volumetric flow divided by area of wide side
	Losses due to enlargements	Fe	m ² /s ² or N·m/kg	1.83727	not named	s/c, Table 12-1, p. 490, sudden enlargement
	Losses due to constrictions	F _c	m ² /s ² or N·m/kg	0.91974	not named	s/c, Table 12-1, p. 490, sudden constriction
	Number of enlargements		dimensionless	0	not named	u/s, typical value is 1 for pipe emptying into a vessel
	Number of constrictions		dimensionless	0	not named	u/s, typical value is 1 for pipe removing liquid from a vessel
	Losses due to enlargements and constrictions	F _e +F _o	m ² /s ² or N·m/kg	0.00000	not named	s/c

CHEMCAD Solution

CHEMCAD gives a pressure drop of 37,077 Pa, compared to 36,881 Pa from the by-hand calculation. CHEMCAD allows input of the exact same properties, so the difference is not due to the property estimations in CHEMCAD. There is a difference in friction factor. CHEMCAD uses 0.0222 and in Lesson 2, I showed 0.022, which accounts for the difference.