Q Learning

The goal of reinforcement learning is to compute an optimal policy π^* . As previously explained, the optimal policy can be easily computed from $Q^*(s,a)$. The following algorithm can be used to compute $Q^*(s,a)$.

0. Start with \hat{Q} as an estimate for Q^* . For example, for all states s and actions a set $\hat{Q}(s,a)=0$.

1. Repeat:

- **1.1** Select a state s and an action a.
- **1.2** Let r = r(s, a) be the reward.
- **1.3** Let $s' = \delta(s, a)$ be the state one moves to from s if action a is taken.
- **1.4** Update:

$$\hat{Q}(s, a) = r + \gamma \max_{a'} \hat{Q}(s', a')$$

The method of selecting a state and an action at 1.1 is arbitrary. The algorithm is guaranteed to converge to the right Q^* if each (s, a) pair is visited infinitely many times.

Convergence

Let t be the iteration number. In terms of t the iteration in 1.4 can be written as:

$$\hat{Q}_{t+1}(s, a) = r + \gamma \max_{a'} \hat{Q}_t(s', a')$$
(*)

Consider the following error terms:

$$e_{t}(s, a) = |\hat{Q}_{t}(s, a) - Q^{*}(s, a)|$$

$$e_{t}(s) = \max_{a} e_{t}(s, a)$$

$$e_{t} = \max_{s} e_{t}(s)$$

$$= \max_{s, a} |\hat{Q}_{t}(s, a) - Q^{*}(s, a)|$$

At iteration t the algorithm selects s, a, computes r, s', and updates $\hat{Q}(s, a)$. The key technical lemma here states that:

$$e_{t+1}(s,a) \le \gamma e_t$$

Proof:

$$\begin{aligned} e_{t+1}(s, a) &= |\hat{Q}_{t+1}(s, a) - Q^*(s, a)| \\ &= |(r + \gamma(\max_{a'} \hat{Q}_t(s', a')) - (r + \gamma(\max_{a'} Q^*(s', a'))|)| \\ &= \gamma |\max_{a'} \hat{Q}_t(s', a') - \max_{a'} Q^*(s', a')| \\ &\leq \gamma \max_{a'} |\hat{Q}_t(s', a') - Q^*(s', a')| \\ &= \gamma \max_{a'} |e_t(s', a')| \\ &< \gamma e_t \end{aligned}$$

The inequality between the third and the fourth line is:

$$\left|\max_{a} f(a) - \max_{a} g(a)\right| \le \max_{a} |f(a) - g(a)|$$

It follows from the triangle inequality in the l_{∞} norm, and can also be easily proved directly.

The value of $e_t(s, a)$ is not guaranteed to decrease as a function of t, and may even increase. But as shown below the value of e_t cannot increase. It is guaranteed to decrease by a factor of γ in a cycle where all (s, a) pairs are visited. The first observation is that for all pairs s, a:

$$e_{t+j}(s,a) \le e_t \quad \text{for } j \ge 0$$

For the proof it is enough to show that it holds for j = 1, and then apply induction. The case j = 1 follows from the lemma. Now consider the relation between the error at iteration t and the error at iteration $t + \Delta$. We can make the following observations:

- **1.** $e_{t+j} \leq e_t \text{ for } j = 0, 1, \dots, \Delta.$
- **2.** $e_{t+\Delta}(s,a) \leq \gamma \ e_t$ for all (s,a) that were visited in the Δ iterations.
- **3.** $e_{t+\Delta} \leq \gamma \ e_t$ if all (s, a) were visited in the Δ iterations.

Conclusion: $\hat{Q}(s,a)$ approaches $Q^*(s,a)$ if each (s,a) is visited infinitely many times.

Another conclusion: An optimal policy always exists.

A practical Q learning algorithm

The online algorithm Q learning algorithm is interesting, but in most cases it is too slow to be practical. A related practical algorithm can be obtained by updating all \hat{Q} values simultaneously.

Recall that the pair (s, a) corresponds to an edge, and let m be the number of edges. (It is also the number of actions.) Define the four m-vectors \overrightarrow{Q}_t , \overrightarrow{Q}_{t+1} , \overrightarrow{R} , \overrightarrow{P}_{t+1} as follows:

$$\overrightarrow{Q}_{t} = \begin{pmatrix} \hat{Q}_{t}(s_{1}, a_{1}) \\ \vdots \\ \hat{Q}_{t}(s_{m}, a_{m}) \end{pmatrix}, \overrightarrow{Q}_{t+1} = \begin{pmatrix} \hat{Q}_{t+1}(s_{1}, a_{1}) \\ \vdots \\ \hat{Q}_{t+1}(s_{m}, a_{m}) \end{pmatrix}, \overrightarrow{R} = \begin{pmatrix} r(s_{1}, a_{1}) \\ \vdots \\ r(s_{m}, a_{m}) \end{pmatrix}, \overrightarrow{P}_{t+1} = \begin{pmatrix} \hat{P}_{t+1}(s_{1}, a_{1}) \\ \vdots \\ \hat{P}_{t+1}(s_{m}, a_{m}) \end{pmatrix}$$

where:

$$\hat{P}_{t+1}(s_i'a_i) = \max_{a'} \hat{Q}_t(s_i', a'), \quad s_i' = \delta(s_i, a_i)$$

Here we view \hat{Q} as a vector, where each coordinate is $\hat{Q}(s,a)$. (\hat{Q} has a value for each edge.) Let R be the vector corresponding to all the rewards. (It is of the same size as \hat{Q} .) Then the update of all \hat{Q} values at once can be written as:

$$\overrightarrow{Q}_{t+1} = \overrightarrow{R} + \gamma \overrightarrow{P}_{t+1} \tag{**}$$

This update rule is typically too aggressive. Instead, the practical rule is the following:

$$\overrightarrow{Q}_{t+1} = \overrightarrow{Q}_t + \alpha (\overrightarrow{R} + \gamma \overrightarrow{P}_{t+1} - \overrightarrow{Q}_t)$$
 (***)

Here α is the "learning rate" parameter that should satisfy $0 < \alpha \le 1$.

The main practical problem with this algorithm is that m may be too big. Modern implementations use deep learning to represent \overrightarrow{Q} compactly.