Assignment-8

Q.1) Test the hypothesis that the mean systolic blood pressure in a certain population equals 140mmHg. The standard deviation has a known value of 20 and a data set of 55 patients is available.BBb

```
Ans
```

```
> No<-seq(1:55)

> Status <- c(rep(0,25),rep(1,30))

> M<-
c(120,115,94,118,111,102,102,131,105,107,115,139,115,113,114,105,115,134,
109,109,93,118,109,106,125,150,142,119,127,141,149,144,142,149,161,143,1
40,148,149,141,146,159,152,135,134,161,130,125,141,148,153,145,137,147,1
75)

> BP<-data.frame(No,Status,M)
> BP
```

R Console

> BP				
	No	Status	M	
1	1	0	120	
2	2	0	115	
3	3	0	94	
4	4	0	118	
5	5	0	111	
6	6	0	102	
7	7	0	102	
8	8	0	131	
9	9	0	105	
10	10	0	107	
11	11	0	115	
12	12	0	139	
13	13	0	115	
14	14	0	113	
15	15	0	114	
16	16	0	105	
17	17	0	115	
18	18	0	134	
19	19	0	109	
20	20	0	109	
21	21	0	93	
22	22	0	118	
23	23	0	109	
24	24	0	106	
25	25	0	125	
26	26	1	150	
27	27	1	142	
28	28	1	119	
29	29	1	127	
30	30	1	141	
31	31	1	149	
32	32	1	144	
33	33	1	142	
34	34	1	149	
35	35	1	161	
36	36	1	143	
37	37	1	140	
38	38	1	148	

34	34	1	149
35	35	1	161
36	36	1	143
37	37	1	140
38	38	1	148
39	39	1	149
40	40	1	141
41	41	1	146
42	42	1	159
43	43	1	152
44	44	1	135
45	45	1	134
46	46	1	161
47	47	1	130
48	48	1	125
49	49	1	141
50	50	1	148
51	51	1	153
52	52	1	145
53	53	1	137
54	54	1	147
55	55	1	175

```
> MU=140
> XB=mean(BP$M)
> Sigma=20
> N=55
> ##Z-Value
> Z=(XB-MU)/(Sigma/sqrt(N))
> Z
[1] -3.660905
> ##P-Value
> P=2*pnorm(-abs(Z))
> P
[1] 0.0002513257
> if(P<0.5) {
+ print("The Null Hypothesis is Rejected")
+ } else{
+ print("The Null Hypothesis is Accepted")
+ }
[1] "The Null Hypothesis is Rejected"
```

Q.2) A coin is tossed 100 times and turns up head 43 times Test the claim that this is a fair coin. Use 5% level of significance to test the claim.

```
Ans
> a=100
> b = 43
> c=b/a
> d=0.5
> e=1-d
> #Z - value
> f=(c-d)/(sqrt((d*e)/a))
> f
[1] - 1.4
> ## P - value
> g=2*pnorm(-abs(f),lower.tail=FALSE)
> g
[1] 1.838487
> if(f<g){
+ print("This Coin is Fair")
+ } else{
+ print("This Coin is Not Fair")
+ }
[1] "This Coin is Fair"
```

Q.3) A manufacturer of sports equipment has developed a new synthetic fishing line that the company claims has a mean breaking strength of 8 kilograms with a standard deviation of 0.5kilogram. Test the hypothesis that μ =8 kilograms against the alternative that μ is not equal to 8kilograms if a random sample of 50 lines is tested and found to have a mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance.

```
Ans
> a=7.8
> b = 8
> c = 0.5
> d=50
> ##Z-value
> e=(a-b)/(c/sqrt(d))
> e
[1] -2.828427
> ##P-Value
> f=2*pnorm(-abs(Z))
> f
[1] 0.0002513257
> if(e<f){
+ print("The Null Hypothesis is Rejected")
+ }else{
+ print("The Null Hypothesis is Accepted")
+ }
[1] "The Null Hypothesis is Rejected"
```