$\Delta_1^\#$	#1 1 ⁺ αβ	$\Delta_{1}^{\#2}{}_{lphaeta}$	$\Delta_{1}^{\#3}_{lphaeta}$	$\Delta_{1}^{\#1}{}_{\alpha}$	$\Delta_{1-lpha}^{\#2}$	$\Delta_{1}^{#3}{}_{lpha}$	$\Delta_{1}^{\#4}{}_{lpha}$	$\Delta_{1}^{\#5}{}_{\alpha}$	$\Delta_1^{\#6}{}_{lpha}$	${\mathcal T}_1^{\sharp 1}{}_{lpha}$
$^{\pm 1}_{+}$ † $^{\alpha\beta}$	0	$-\frac{2\sqrt{2}}{a_0}$	0	0	0	0	0	0	0	0
$\frac{1}{1+} + \frac{\alpha\beta}{1+} = \frac{2}{1+}$	$\frac{2\sqrt{2}}{a_0}$ $\frac{2}{a_0}$	$\frac{(a_0^2 - 14 a_0 c_1 k^2 - 35 c_1^2 k^4)}{a_0^2 (a_0 - 29 c_1 k^2)}$	$\frac{40\sqrt{2}c_1k^2}{a_0^2-29a_0c_1k^2}$	0	0	0	0	0	0	0
$\frac{3}{7} + \frac{\alpha \beta}{2}$	0	$\frac{40\sqrt{2}c_1k^2}{a_0^2-29a_0c_1k^2}$	$\frac{4}{a_0-29c_1k^2}$	0	0	0	0	0	0	0
# ¹ † ^α	0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$-\frac{2k^2}{\sqrt{3} a_0 (2+k^2)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	0	$-\frac{2 i \sqrt{2} k}{a_0 (2+k^2)}$
#2 † ^α	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{a_0^2 (4+k^2)^2 - 30 a_0 c_1 k^2 (4+k^2) (4+3 k^2) + c_1^2 k^4 (6416 + 7928 k^2 + 1901 k^4)}{2 a_0^2 (2+k^2)^2 (a_0 - 33 c_1 k^2)}$	$\frac{k^2 (a_0^2 (-2+k^2) + a_0 c_1 (560 + 302 k^2 + 71 k^4) - 2 c_1^2 k^2 (9440 + 1901 k^2 (4+k^2)))}{2 \sqrt{6} a_0^2 (2+k^2)^2 (a_0 - 33 c_1 k^2)}$	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+c_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 c_1 k^2)}$	$\frac{k^2 (2 a_0^2 (5 + 2 k^2) - a_0 c_1 (880 + 778 k^2 + 199 k^4) + c_1^2 k^2 (9440 + 1901 k^2 (4 + k^2)))}{2 \sqrt{3} a_0^2 (2 + k^2)^2 (a_0 - 33 c_1 k^2)}$	$\frac{k^2 \left(-a_0 + c_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} a_0 \left(2 + k^2\right) \left(a_0 - 33 c_1 k^2\right)}$	$-\frac{i k (-30 a_0 c_1 k^4 + a_0^2 (4 + k^2) + 27 c_1^2 k^4 (-28 + 3 k^2))}{a_0^2 (2 + k^2)^2 (a_0 - 33 c_1 k^2)}$
^{#3} † ^α	0	0	0	$-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	$\frac{k^2 \left(a_0^2 \left(-2+k^2\right)+a_0 c_1 \left(560+302 k^2+71 k^4\right)-2 c_1^2 k^2 \left(9440+1901 k^2 \left(4+k^2\right)\right)\right)}{2 \sqrt{6} \ a_0^2 \left(2+k^2\right)^2 \left(a_0-33 c_1 k^2\right)}$	$\frac{-a_0^2 (76+52 k^2+3 k^4)+4 a_0 c_1 k^2 (472+214 k^2+19 k^4)+4 c_1^2 k^4 (5120+7280 k^2+1901 k^4)}{12 a_0^2 (2+k^2)^2 (a_0-33 c_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + (3 a_0 - 328 c_1) k^2 - 62 c_1 k^4)}{12 a_0 (2 + k^2) (a_0 - 33 c_1 k^2)}$	$\frac{2a_0^2(-2+k^2) + a_0c_1k^2(472 + 934k^2 + 289k^4) - 2c_1^2k^4(5120 + 7280k^2 + 1901k^4)}{6\sqrt{2}a_0^2(2+k^2)^2(a_0 - 33c_1k^2)}$	$-\frac{2a_0+(3a_0-56c_1)k^2+86c_1k^4}{6a_0(2+k^2)(a_0-33c_1k^2)}$	$\frac{i k (54 c_1^2 k^4 (40 + 3 k^2) + a_0^2 (6 + 5 k^2) - 3 a_0 c_1 k^2 (86 + 23 k^2))}{\sqrt{6} a_0^2 (2 + k^2)^2 (a_0 - 33 c_1 k^2)}$
# ⁴ † ^α	0	0	0	0	$-\frac{\sqrt{\frac{5}{6}} k^2 (a_0+c_1 (40-31 k^2))}{2 a_0 (2+k^2) (a_0-33 c_1 k^2)}$	$\frac{\sqrt{5} (10 a_0 + k^2 (3 a_0 - 2 c_1 (164 + 31 k^2)))}{12 a_0 (2 + k^2) (a_0 - 33 c_1 k^2)}$	$\frac{1}{12 a_0 - 396 c_1 k^2}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + c_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 c_1 k^2\right)}$	$-\frac{\sqrt{5}}{6(a_0-33c_1k^2)}$	$-\frac{i\sqrt{\frac{5}{6}} k(a_0-51c_1k^2)}{a_0(2+k^2)(a_0-33c_1k^2)}$
# ⁵ † ^α	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_0 + a_0 k^2}$	$\frac{k^2 (2 a_0^2 (5 + 2 k^2) - a_0 c_1 (880 + 778 k^2 + 199 k^4) + c_1^2 k^2 (9440 + 1901 k^2 (4 + k^2)))}{2 \sqrt{3} a_0^2 (2 + k^2)^2 (a_0 - 33 c_1 k^2)}$	$\frac{2a_0^2 (-2+k^2) + a_0 c_1 k^2 (472 + 934 k^2 + 289 k^4) - 2c_1^2 k^4 (5120 + 7280 k^2 + 1901 k^4)}{6 \sqrt{2} a_0^2 (2+k^2)^2 (a_0 - 33 c_1 k^2)}$	$\frac{\sqrt{\frac{5}{2}} \left(-2 a_0 + c_1 k^2 \left(164 + 31 k^2\right)\right)}{6 a_0 \left(2 + k^2\right) \left(a_0 - 33 c_1 k^2\right)}$	$\frac{4a_0^2 (17 + 14k^2 + 3k^4) - 4a_0c_1k^2 (236 + 287k^2 + 77k^4) + c_1^2k^4 (5120 + 7280k^2 + 1901k^4)}{6a_0^2 (2 + k^2)^2 (a_0 - 33c_1k^2)}$	$-\frac{c_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 c_1 k^2)}$	$\frac{i k (2 a_0^2 (3+k^2)-27 c_1^2 k^4 (40+3 k^2)+3 a_0 c_1 k^2 (34+7 k^2))}{\sqrt{3} a_0^2 (2+k^2)^2 (a_0-33 c_1 k^2)}$
^{#6} † ^α	0	0	0	0	$\frac{k^2 \left(-a_0 + c_1 \left(200 + 43 k^2\right)\right)}{\sqrt{6} \ a_0 \left(2 + k^2\right) \left(a_0 - 33 c_1 k^2\right)}$	$-\frac{2a_0 + (3a_0 - 56c_1)k^2 + 86c_1k^4}{6a_0(2+k^2)(a_0 - 33c_1k^2)}$	$-\frac{\sqrt{5}}{6(a_0-33c_1k^2)}$	$-\frac{c_1 k^2 (28-43 k^2)+2 a_0 (7+3 k^2)}{3 \sqrt{2} a_0 (2+k^2) (a_0-33 c_1 k^2)}$	$\frac{5}{3(a_0-33c_1k^2)}$	$-\frac{i\sqrt{\frac{2}{3}}k(a_0+57c_1k^2)}{a_0(2+k^2)(a_0-33c_1k^2)}$
# ¹ † ^α	0	0	0	$\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	$\frac{i(-30a_0c_1k^5 + a_0^2k(4+k^2) + 27c_1^2k^5(-28+3k^2))}{a_0^2(2+k^2)^2(a_0-33c_1k^2)}$	$-\frac{i(54c_1^2k^5(40+3k^2)+a_0^2k(6+5k^2)-3a_0c_1k^3(86+23k^2))}{\sqrt{6}a_0^2(2+k^2)^2(a_0-33c_1k^2)}$	$\frac{i\sqrt{\frac{5}{6}}k(a_0-51c_1k^2)}{a_0(2+k^2)(a_0-33c_1k^2)}$	$-\frac{i(2a_0^2k(3+k^2)-27c_1^2k^5(40+3k^2)+3a_0c_1k^3(34+7k^2))}{\sqrt{3}a_0^2(2+k^2)^2(a_0-33c_1k^2)}$	$\frac{i \sqrt{\frac{2}{3}} k (a_0 + 57 c_1 k^2)}{a_0 (2 + k^2) (a_0 - 33 c_1 k^2)}$	$\frac{2k^{2}(a_{0}^{2}+30a_{0}c_{1}k^{2}-459c_{1}^{2}k^{4})}{a_{0}^{2}(2+k^{2})^{2}(a_{0}-33c_{1}k^{2})}$

	Γ ₀ ^{#1}	Γ ₀ ^{#2}	Γ ₀ ^{#3}	Γ ₀ ^{#4}	$h_{0}^{#1}$	$h_{0}^{\#2}$	Γ ₀ ^{#1}
Γ ₀ ^{#1} †	$\frac{1}{2} \left(-a_0 + 25 c_1 k^2 \right)$	0	$10\sqrt{\frac{2}{3}}c_1k^2$	$-\frac{10c_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{2 \sqrt{2}}$	0	0
$\Gamma_{0}^{\#2}$ †	0	0	<u>a₀</u> 2	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
Γ ₀ ^{#3} †	$10 \sqrt{\frac{2}{3}} c_1 k^2$	<u>a₀</u> 2	$\frac{23c_1k^2}{3}$	$-\frac{3a_0+46c_1k^2}{6\sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{1}{4}\bar{l}a_0k$	0
Γ ₀ ^{#4} †	$-\frac{10c_1k^2}{\sqrt{3}}$	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{3a_0+46c_1k^2}{6\sqrt{2}}$	$\frac{1}{6} \left(3 a_0 + 23 c_1 k^2 \right)$	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0
$h_{0}^{\#1}$ †	$\frac{i a_0 k}{2 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$h_{0}^{\#2}$ †	0	0	<u>i a ₀ k</u> 4	$-\frac{i a_0 k}{4 \sqrt{2}}$	0	0	0
Γ ₀ -1 †	0	0	0	0	0	0	$\frac{1}{2}\left(-a_0+c_1k^2\right)$

			$\Delta_{2}^{\#1}{}_{lphaeta}$	$\Delta^{\#2}_{2^+ lphaeta}$	$\Delta^{\#3}_{2^+ lphaeta}$	${\cal T}^{\sharp 1}_{2^+lphaeta}$	$\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$	$\Delta_{2}^{\#2}_{\alpha\beta\chi}$
		$\Delta_{2}^{#1} \dagger^{lphaeta}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3} \ a_0}$	$\frac{4i\sqrt{2}}{a_0k}$	0	0
	4	$\Delta_{2+}^{#2}\dagger^{lphaeta}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8(a_0+13c_1k^2)}{3a_0^2}$	$-\frac{2\sqrt{2}(a_0+52c_1k^2)}{3a_0^2}$	$-\frac{4i(a_0+31c_1k^2)}{\sqrt{3}a_0^2k}$	0	0
				$-\frac{2\sqrt{2}(a_0+52c_1k^2)}{3a_0^2}$	$\frac{8(a_0-26c_1k^2)}{3a_0^2}$	$-\frac{4i\sqrt{\frac{2}{3}}(a_0+31c_1k^2)}{{a_0}^2k}$	0	0
	9	$\mathcal{T}_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{4i\sqrt{2}}{a_0k}$	$\frac{4i(a_0 + 31c_1 k^2)}{\sqrt{3} a_0^2 k}$	$\frac{4i\sqrt{\frac{2}{3}}(a_0+31c_1k^2)}{{a_0}^2k}$	$-\frac{8(a_0+11c_1k^2)}{a_0^2k^2}$	0	0
	Δ	$\chi_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0 \cdot c_1 k^2}$	0
)	Δ	$\chi_{2}^{\#2} \uparrow^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0-5c_1k^2}$

	$\Gamma^{\#1}_{2}{}^{+}_{lphaeta}$	$\Gamma_{2}^{\#2}_{\alpha\beta}$		$h_{2}^{\#1}{}_{lphaeta}$	$\Gamma_{2}^{\#1}_{\alpha\beta\chi}$	$\Gamma_{2}^{\#2}_{\alpha\beta\chi}$
$\Gamma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} (a_0 + 11 c_1 k^2)$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{5c_1k^2}{\sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$	$-5\sqrt{\frac{2}{3}}c_1k^2$	$\frac{1}{6} \left(-3 a_0 + c_1 k^2 \right)$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
$\Gamma_2^{#3} \dagger^{\alpha\beta}$	$\frac{5c_1k^2}{\sqrt{3}}$	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$\frac{1}{12} \left(3 a_0 + c_1 k^2 \right)$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
$h_{2+}^{\#1} \dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$-\frac{#_{1}}{2} + \frac{\alpha \beta \chi}{2}$	0	0	0	0	$\frac{1}{4}(a_0-c_1k^2)$	0
$\frac{-\#2}{2}$ † $\alpha\beta\chi$	0	0	0	0	0	$\frac{1}{4}(a_0-5c_1k^2)$

	а	$0^{(2+k)}$	(a_0)	-33 <i>c</i> 1	. k^)				
Total #:	$2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$	$6 \mathcal{T}_{1^{-}}^{\#1\alpha} - ik (3 \Delta_{1^{-}}^{\#2\alpha} - \Delta_{1^{-}}^{\#5\alpha} + \Delta_{1^{-}}^{\#3\alpha}) == 0$	$\Delta_{0+}^{#3} + 2 \Delta_{0+}^{#4} + 3 \Delta_{0+}^{#2} == 0$	$2\mathcal{T}_{0+}^{\#2} - ik\Delta_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints	$\left \frac{\pi}{3}\right ^{2} + \frac{cr^{2}}{2} \left(-a_{0} - I c_{1} K^{-}\right)$	$-\#1$. $\alpha\beta\gamma$ 1 / $-$ 1.2	Γ#1 3- αβν
_		$+ \Delta_{1^{-}}^{\#3\alpha}) == 0$					Δ_{3}^{-} T a_{0}		D
∞	ω	3	1	1	#		$a_0 + 7c_1 k^2$	2	$\Delta_{3^{-}}^{\#1}\alpha\beta\chi$
							1 k ²		Xβ

β	$^{1}2^{+}\alpha\beta$	$n_{2}^{+} \alpha \beta$	$\frac{1}{2} \alpha \beta \chi$	$1^{\frac{n}{2}-\alpha}\alpha\beta\chi$	_	otal	Δ_1^*	ع او) 0+ + + +		100	+	
$c_1 k^2$	$\frac{5c_1k^2}{\sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0		#:	+	Ω	$+ 2 \Delta_{0}^{#4} +$	0(3) irreps	ource constraints	$\frac{1}{2} + \alpha \beta \chi \frac{1}{2}$	
$c_1 k^2$)	$-\frac{c_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0				\triangleright 1	ω $!!$	9	nstrair	$\Gamma_{3^{-}\alpha\beta\chi}^{\#1}$ $(-a_0 - 7c_1 k^2)$	
	$\frac{1}{12} \left(3 a_0 + c_1 k^2 \right)$	$-\frac{ia_0k}{4\sqrt{6}}$	0	0			>	<u> </u>	$\Delta_{2+}^{#2} == 0$)ts	$C_1 k^2$	
<u>:</u>	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0				-5α +					
	0	0	$\frac{1}{4}(a_0-c_1k^2)$	0			$\Delta_{1}^{\#3\alpha} ==$	$\Delta_{1}^{\#3}\alpha$)				$\Delta_{3}^{#1} + \alpha \beta \chi$	
	0	0	0	$\frac{1}{4}(a_0-5c_1k^2)$			0) == 0					
						∞			 	, #	1	$\Delta_{3}^{#1} \alpha \beta \chi$ 2 $a_{0}+7c_{1} k^{2}$	
												$\frac{\alpha\beta\chi}{2}$	

IC	ie	
:	$\frac{4}{5c_1} > 0$? 1 P =
5:	5	
5:	$\frac{a_0}{5c_1} > 0$	\sqrt{k}
	2	•
	Odd	

	$\Gamma_{1}^{\#1}{}_{lphaeta}$	$\Gamma_{1}^{\#2}{}_{\alpha\beta}$	$\Gamma_{1}^{\#3}{}_{lphaeta}$	$\Gamma_{1}^{\#1}{}_{\alpha}$	$\Gamma_{1}^{\#2}\alpha$	$\Gamma_{1}^{#3}$ α	$\Gamma_{1}^{\#4}$	Γ ₁ - α	$\Gamma_{1}^{\#6}$ α	$h_{1}^{\#1}{}_{\alpha}$
$\Gamma_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{1}{4} \left(-a_0 - 15 c_1 k^2 \right)$	$-\frac{a_0}{2\sqrt{2}}$	$5c_1k^2$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#3} \dagger^{\alpha\beta}$	$5c_1k^2$	0	$\frac{1}{4}(a_0-29c_1k^2)$	0	0	0	0	0	0	0
$\Gamma_{1}^{#1} \dagger^{\alpha}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 c_1 k^2 \right)$	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} c_1 k^2$	$-\frac{5}{2} \sqrt{\frac{5}{3}} c_1 k^2$	$5\sqrt{\frac{3}{2}}c_1k^2$	$-\frac{5c_1k^2}{\sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{2}}$
$\Gamma_1^{#2} \uparrow^{\alpha}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_1^{#3} \dagger^{\alpha}$	0	0	0	$\frac{5}{2} \sqrt{3} c_1 k^2$	0	$-\frac{a_0}{3}$	$\frac{1}{6} \sqrt{5} (a_0 - 8c_1 k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 c_1 k^2 \right)$	<u>ia₀k</u> 4√6
$\Gamma_{1}^{\#4} \uparrow^{\alpha}$	0	0	0	$-\frac{5}{2} \sqrt{\frac{5}{3}} c_1 k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8c_1 k^2)$		$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 c_1 k^2)$	$-\frac{1}{6} \sqrt{5} (a_0 - 5 c_1 k^2)$	$-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$
$\Gamma_{1}^{\#5} \uparrow^{\alpha}$	0	0	0	$5\sqrt{\frac{3}{2}}c_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} (a_0 + 16 c_1 k^2)$	<u>a₀</u> 3	$\frac{a_0 + 40 c_1 k^2}{6 \sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$
Γ ₁ -6 †α	0	0	0	$-\frac{5c_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} \left(-a_0 + 20 c_1 k^2 \right)$	$-\frac{1}{6} \sqrt{5} (a_0 - 5 c_1 k^2)$	$\frac{a_0 + 40 c_1 k^2}{6 \sqrt{2}}$	$\frac{5}{12} (a_0 - 17 c_1 k^2)$	$\frac{i a_0 k}{4 \sqrt{6}}$
$h_1^{\#1} \dagger^{\alpha}$	0	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{i a_0 k}{4 \sqrt{6}}$	0

_	$\Delta_0^{\#1}$	Δ ₀ ^{#2}	Δ ₀ ^{#3}	Δ ₀ ^{#4}	${\cal T}_0^{\#1}$	${\cal T}_0^{\#2}$	$\Delta_0^{\#1}$
$\Delta_{0}^{#1}$ †	0	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$	$-\frac{2i\sqrt{2}}{a_0k}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	0
$\Delta_{0}^{#2}$ †	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{48 (3 a_0 + 197 c_1 k^2)}{{a_0}^2 (16 + 3 k^2)^2}$	$\frac{16(19a_0 + (3a_0 + 197c_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394c_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8i\sqrt{3}(a_0-65c_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{24 i k (3 a_0 + 197 c_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	0
Δ ₀ ^{#3} †	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	$\frac{16(19a_0 + (3a_0 + 197c_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{16 \left(35 a_0 + \left(6 a_0 + 197 c_1\right) k^2\right)}{3 a_0^2 \left(16 + 3 k^2\right)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394c_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{8i(a_0-65c_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8ik(19a_0+(3a_0+197c_1)k^2)}{{a_0}^2(16+3k^2)^2}$	0
Δ ₀ ^{#4} †	$-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$-\frac{8\sqrt{2}(10a_0+(3a_0-394c_1)k^2)}{a_0^2(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22a_0+(3a_0+394c_1)k^2)}{3a_0^2(16+3k^2)^2}$	$\frac{32 (13 a_0 + (3 a_0 - 197 c_1) k^2)}{3 a_0^2 (16 + 3 k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}(a_0-65c_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{4i\sqrt{2}k(10a_0+(3a_0-394c_1)k^2)}{a_0^2(16+3k^2)^2}$	0
${\cal T}_{0}^{\#1}\dagger$	2 i √2 a ₀ k	$\frac{8i\sqrt{3}(a_0-65c_1k^2)}{a_0^2k(16+3k^2)}$	$-\frac{8i(a_0-65c_1k^2)}{\sqrt{3}a_0^2k(16+3k^2)}$	$-\frac{8i\sqrt{\frac{2}{3}}(a_0-65c_1k^2)}{a_0^2k(16+3k^2)}$	$\frac{4(a_0-25c_1k^2)}{a_0^2k^2}$	$\frac{4\sqrt{3}(a_0-65c_1k^2)}{a_0^2(16+3k^2)}$	0
$\mathcal{T}_{0}^{\#2}$ †	$\frac{2i\sqrt{6}k}{16a_0 + 3a_0k^2}$	$-\frac{24 i k (3 a_0 + 197 c_1 k^2)}{a_0^2 (16 + 3 k^2)^2}$	$\frac{8ik(19a_0 + (3a_0 + 197c_1)k^2)}{a_0^2(16 + 3k^2)^2}$	$-\frac{4i\sqrt{2}k(10a_0+(3a_0-394c_1)k^2)}{a_0^2(16+3k^2)^2}$	$\frac{4\sqrt{3}(a_0-65c_1k^2)}{a_0^2(16+3k^2)}$	$-\frac{12k^2(3a_0+197c_1k^2)}{a_0^2(16+3k^2)^2}$	0
$\Delta_{0}^{#1}$ †	0	0	0	0	0	0	$-\frac{2}{a_0 \cdot c_1 k^2}$

Unitarity conditions

(Unitarity is demonstrably impossible)

Lagrangian density $-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} +$ $\frac{1}{4} a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} - \frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} c_1 \partial^{\alpha} \Gamma^{\chi\delta}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}^{\beta} +$ $\frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\chi\alpha}^{\ \beta} \partial_{\beta} \Gamma^{\chi\delta}_{\ \delta} - 19 c_1 \partial^{\alpha} \Gamma^{\chi\delta}_{\ \chi} \partial_{\beta} \Gamma_{\delta\alpha}^{\ \beta} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha}_{\ \alpha}^{\ \beta} \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta \chi}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} + \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta\delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\delta\beta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{11}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\chi}{}^{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} +$ $\frac{19}{2} c_1 \partial_{\beta} \Gamma^{\delta}_{\chi \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} + \frac{11}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta \delta} \partial^{\chi} \Gamma^{\alpha \beta}_{\alpha} \frac{1}{2} c_1 \partial_{\chi} \Gamma^{\delta}_{\beta\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} + c_1 \partial_{\alpha} \Gamma^{\delta}_{\chi\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\beta} - c_1 \partial_{\chi} \Gamma^{\delta}_{\alpha\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\beta} \frac{1}{2} c_1 \partial_\chi \Gamma^{\alpha\beta\chi} \partial_\delta \Gamma_{\alpha\beta}^{} - \frac{1}{2} c_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \Gamma_{\alpha\chi}^{} - \frac{1}{2} c_1 \partial_\beta \Gamma^{\alpha\beta\chi} \partial_\delta \Gamma_{\alpha\chi}^{} +$ $\frac{19}{2} c_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{\delta} + c_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma_{\beta\chi}^{\delta} + \frac{1}{2} c_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma_{\chi\beta}^{\delta} +$ $\frac{1}{2} c_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\quad \alpha} \partial_{\delta} \Gamma_{\chi\beta}^{\quad \delta} - \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\chi \alpha}^{\quad \delta} + \frac{1}{2} c_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\quad \beta} \partial_{\delta} \Gamma_{\chi}^{\quad \delta\alpha} +$ $c_1 \, \partial^\chi \Gamma^\alpha_{\ \alpha}^{\ \beta} \, \partial_\delta \Gamma^{\ \delta}_{\chi \ \beta} - \tfrac{1}{2} \, c_1 \, \partial_\beta \Gamma^\alpha_{\ \alpha}^{\ \beta} \, \partial_\delta \Gamma^{\chi \ \delta}_{\ \chi} + c_1 \, \partial_\beta \Gamma^\alpha_{\ \alpha}^{\ \beta} \, \partial_\delta \Gamma^{\chi \delta}_{\ \chi} \frac{1}{2} c_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\quad \alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\quad \chi} + \frac{1}{2} c_1 \partial_{\alpha} \Gamma_{\beta\chi\delta} \partial^{\delta} \Gamma^{\alpha\beta\chi} + c_1 \partial_{\alpha} \Gamma_{\beta\delta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} +$ $c_1 \, \partial_\alpha \Gamma_{\chi\beta\delta} \, \partial^\delta \Gamma^{\alpha\beta\chi} + \tfrac{1}{2} \, c_1 \, \partial_\alpha \Gamma_{\chi\delta\beta} \, \partial^\delta \Gamma^{\alpha\beta\chi} + c_1 \, \partial_\alpha \Gamma_{\delta\beta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} +$ $c_1 \, \partial_{\alpha} \Gamma_{\delta \chi \beta} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_1 \, \partial_{\beta} \Gamma_{\alpha \chi \delta} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_1 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} \, c_2 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} - \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma_{\alpha \delta \chi} \, \partial^{\delta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, c_3 \, \partial_{\beta} \Gamma^{\alpha \delta \chi} + \frac{1}{2} \, \partial_{\beta} \Gamma^{\alpha \delta \chi} +$ $\frac{1}{2} c_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$ $c_1 \, \partial_\chi \Gamma_{\beta\delta\alpha} \, \partial^\delta \Gamma^{\alpha\beta\chi} - c_1 \, \partial_\delta \Gamma_{\alpha\beta\chi} \, \partial^\delta \Gamma^{\alpha\beta\chi} - c_1 \, \partial_\delta \Gamma_{\alpha\chi\beta} \, \partial^\delta \Gamma^{\alpha\beta\chi} \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \alpha \chi} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\beta \chi \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \gamma \gamma} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \beta \alpha} \partial^{\delta} \Gamma^{\alpha \gamma \gamma} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \gamma \gamma} \partial^{\delta} \Gamma^{\alpha \gamma \gamma} - \frac{1}{2} c_1 \partial_{\delta} \Gamma_{\chi \gamma \gamma} \partial^{\delta} \Gamma^{\alpha \gamma \gamma} \partial^{\delta} \Gamma^$

 $\frac{11}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{\ \chi} - \frac{1}{2} c_1 \partial^{\alpha} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma_{\beta \ \chi}^{\ \chi} + \frac{1}{2} c_1 \partial_{\beta} \Gamma_{\delta \alpha}^{\ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{\ \chi}$

Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$