Lógica

Lógica Proposicional Aula 05 – Álgebra e Leis de Equivalência

Profa. Helena Caseli helenacaseli@ufscar.br

$$x + y = y + x$$

Álgebra da Lógica Proposicional

- Análoga à álgebra matemática
 - Especifica como os elementos podem ser manipulados em fórmulas bem-formadas
 - Especifica como fórmulas <u>equivalentes</u> podem ser geradas para serem usadas na simplificação e na manipulação de expressões lógicas
 - Útil, principalmente, na prova da validade de argumentos

Álgebra da Lógica Proposicional

Dual

- O dual de uma fórmula definida em termos de símbolos atômicos (p, q, ...), símbolos de verdade (V e F) e dos conectivos lógicos de conjunção (Λ) e disjunção (ν) é obtido substituindo-se todas as ocorrências de
 - V por F e vice-versa
 - Λ por V (ou) e vice-versa
- Exemplo: (p Λ q) v F tem como dual (p v q) Λ V

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - p ∧ ¬p ≡ F
 - p v ¬p ≡ V

lei da contradição

lei do terceiro (meio) excluído

- Álgebra da Lógica Proposicional
 - Equivalências lógicas (leis) importantes
 - $p \wedge V \equiv p$

leis da identidade

- Álgebra da Lógica Proposicional
 - Equivalências lógicas (leis) importantes
 - p ∧ F ≡ F
 - p v V ≡ V

leis da dominação

- Álgebra da Lógica Proposicional
 - Equivalências lógicas (leis) importantes
 - $p \wedge p \equiv p$
 - p v p ≡ p

leis idempotentes

- Álgebra da Lógica Proposicional
 - Equivalências lógicas (leis) importantes
 - $\neg(\neg p) \equiv p$ lei da dupla negação

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - $b \lor d \equiv d \lor b$

 $p \lor q \equiv q \lor p$

leis comutativas

р	q	рлд	q∧p	pvq	qvp
V	V	V	V	V	V
V	F	F	F	V	V
F	V	F	F	V	V
F	F	F	F	F	F

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

leis associativas

• $(p \lor q) \lor r \equiv p \lor (q \lor r)$

р	q	r	pΛq	(p ∧ q) ∧ r	q ∧ r	p Λ (q Λ r)
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	F	F	F
V	F	F	F	F	F	F
F	V	V	F	F	V	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - $\bullet p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

leis distributivas

• $p v (q \wedge r) \equiv (p v q) \wedge (p v r)$

р	q	r	qvr	p ∧ (q ∨ r)	pΛq	p∧r	(p ∧ q) ∨ (p ∧ r)
V	V	V	V	V	V	V	V
V	V	F	V	V	V	F	V
V	F	V	V	V	F	V	V
V	F	F	F	F	H	H	F
F	V	V	V	F	F	F	F
F	V	F	V	F	F	F	F
F	F	V	V	F	F	F	F
F	F	F	F	F	F	F	F

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - $\neg (p \land q) \equiv \neg p \lor \neg q$

leis de De Morgan

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

р	¬р	q	¬q	p ^ q	¬(p ∧ q)	¬p ∨ ¬q
V	H	V	F	V	F	F
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	V	F	V	F	V	V

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - $\mathbf{p} \rightarrow \mathbf{q} \equiv \neg \mathbf{p} \lor \mathbf{q}$
 - $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
 - $p \leftrightarrow q \equiv (\neg p \lor q) \land (\neg q \lor p)$

р	¬р	q	$p \rightarrow q$	¬p∨q
V	F	V	V	V
V	F	F	F	F
F	V	V	V	V
F	V	F	V	V

Álgebra da Lógica Proposicional

- Equivalências lógicas (leis) importantes
 - $p \lor (p \land q) \equiv p$

leis da absorção

- $p \land (p \lor q) \equiv p$
- $(p \land q) \lor (\neg p \land q) \equiv q$

(generalização)

• $(b \land d) \lor (\neg b \land d) \equiv d$

Álgebra da Lógica Proposicional

 Utilize as equivalências lógicas vistas anteriormente para demonstrar:

a) $p \land (p \lor q) \equiv p (absorçâ)$	au)
--	-----

$$b) (b \lor d) \lor (\neg b \lor d) \equiv d$$

$p \land \neg p \equiv F$	Lei da contradição
$\mathfrak{p}\vee\neg\mathfrak{p}\equiv V$	Lei do terceiro excluído
$\mathfrak{p} \wedge V \equiv \mathfrak{p}$	Leis da identidade
$\mathfrak{p}\vee F\equiv \mathfrak{p}$	
$p \wedge F \equiv F$	Leis da dominação
$p \vee V \equiv V$	
$p \land p \equiv p$	Leis idempotentes
$\mathfrak{p}\vee\mathfrak{p}\equiv\mathfrak{p}$	
$\neg(\neg p) \equiv p$	Lei da dupla negação
$\mathfrak{p} \wedge \mathfrak{q} \equiv \mathfrak{q} \wedge \mathfrak{p}$	Leis comutativas
$p \vee q \equiv q \vee p$	
$(p \land q) \land r \equiv p \land (q \land r)$	Leis associativas
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Leis distributivas
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
a e Leis de equivalência	15/17

Lei da contradição

Álgebra da Lógica Proposicional

 Utilize as equivalências lógicas vistas anteriormente para demonstrar:

a)
$$p \land (p \lor q) \equiv p \text{ (absorção)}$$

$$b) (b \lor d) \lor (\neg b \lor d) \equiv d$$

$\mathfrak{p}\vee\neg\mathfrak{p}\equiv V$	Lei do terceiro excluído
$\mathfrak{p} \wedge V \equiv \mathfrak{p}$	Leis da identidade
$\mathfrak{p}\vee F\equiv \mathfrak{p}$	
$\mathfrak{p} \wedge F \equiv F$	Leis da dominação
$\mathfrak{p}\vee V\equiv V$	
$\mathfrak{p} \wedge \mathfrak{p} \equiv \mathfrak{p}$	Leis idempotentes
$\mathfrak{p}\vee\mathfrak{p}\equiv\mathfrak{p}$	
$\neg(\neg \mathfrak{p}) \equiv \mathfrak{p}$	Lei da dupla negação
$p \wedge q \equiv q \wedge p$	Leis comutativas
$\mathfrak{p}\vee\mathfrak{q}\equiv\mathfrak{q}\vee\mathfrak{p}$	
$(p \land q) \land r \equiv p \land (q \land r)$	Leis associativas
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Leis distributivas

 $\mathfrak{p} \wedge \neg \mathfrak{p} \equiv F$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

RESPOSTAS

a) $p \land (p \lor q) \equiv (p \lor F) \land (p \lor q)$ identidade $\equiv p \lor (F \land q)$ distributiva $\equiv p \lor (q \land F)$ comutativa $\equiv p \lor F$ dominação $\equiv p$ identidade

Lei da contradição

Álgebra da Lógica Proposicional

 Utilize as equivalências lógicas vistas anteriormente para demonstrar:

a)	р٨	(p v	q) ≡	p ((absorção)	
------------	----	------	--------------	------------	------------	--

$$b) (b \lor d) \lor (\neg b \lor d) \equiv d$$

P' P = I	Lor da comiradição
$\mathfrak{p} \vee \neg \mathfrak{p} \equiv V$	Lei do terceiro excluído
$\mathfrak{p} \wedge V \equiv \mathfrak{p}$	Leis da identidade
$\mathfrak{p}\vee F\equiv \mathfrak{p}$	
$p \wedge F \equiv F$	Leis da dominação
$p \vee V \equiv V$	
$\mathfrak{p} \wedge \mathfrak{p} \equiv \mathfrak{p}$	Leis idempotentes
$\mathfrak{p}\vee\mathfrak{p}\equiv\mathfrak{p}$	

 $n \wedge \neg n = F$

RESPOSTAS

b) $(p \land q) \lor (\neg p \land q) \equiv ((p \land q) \lor \neg p) \land ((p \land q) \lor q)$ distributiva $\equiv ((p \lor \neg p) \land (q \lor \neg p)) \land (q \lor (p \land q))$ distributiva e comutativa $\equiv (V \land (q \lor \neg p)) \land (q \lor (p \land q))$ terceiro excluído $\equiv (q \lor \neg p) \land q$ identidade e absorção $\equiv q \land (q \lor \neg p)$ comutativa $\equiv q$ absorção

a negação

utativas

ociativas

ributivas