EXERCICE 3.

Pour tout entier n tel que $n \ge 2$, on considère une urne U_n contenant n boules numérotées de 1 à n. On effectue, dans U_n , des tirages d'une boule avec remise. On suppose que tous les tirages dans U_n sont équiprobables. On s'arrête dès que l'on obtient une boule déjà obtenue.

On suppose l'expérience modélisée par un espace probabilisé fini (Ω, P) et on note T_n la variable aléatoire égale au nombre de tirages effectués.

1. Déterminer $T_n(\Omega)$ et justifier que :

$$P(T_n > n+1) = 0$$

2. Prouver que pour tout entier naturel k tel que $k \le n$, on a :

$$P(T_n > k) = \frac{n!}{(n-k)! n^k}$$

Pour tout $n \ge 2$, on considère la variable aléatoire $Y_n = \frac{T_n}{\sqrt{n}}$. Soit $y \in]0, +\infty[\underline{\text{fix\'e}}]$.

Pour tout entier $n \ge 2$, on note $k_n(y)$ l'entier naturel égal à la partie entière de $y\sqrt{n}$ de sorte que l'on a :

$$k_n(y) \leq y\sqrt{n} < 1 + k_n(y)$$

Justifier que pour tout entier n ≥ 2 :

$$P(Y_n > y) = P(T_n > k_n(y))$$

4. On admet la formule de Stirling:

$$n! \underset{n \to +\infty}{\sim} n^n e^{-n} \sqrt{2\pi n}$$

Montrer que:

$$P(Y_n > y) \sim e^{-k_n(y)} \left(1 - \frac{k_n(y)}{n}\right)^{k_n(y) - n}$$

- 5. (a) Déterminer le développement limité à l'ordre 2 au voisinage de 0 de la fonction $f: t \mapsto -t + (t-1) \ln(1-t)$.
 - (b) En déduire que :

$$\lim_{n \to +\infty} \left(-k_n(y) + \left(k_n(y) - n \right) \ln \left(1 - \frac{k_n(y)}{n} \right) \right) = -\frac{y^2}{2}$$

Montrer que:

$$\lim_{n \to +\infty} P(Y_n \leqslant y) = 1 - e^{-\frac{y^2}{2}}$$