

TDA2822M

DUAL LOW-VOLTAGE POWER AMPLIFIER

- SUPPLY VOLTAGE DOWN TO 1.8V
- LOW CROSSOVER DISTORSION
- LOW QUIESCENT CURRENT
- BRIDGE OR STEREO CONFIGURATION

DESCRIPTION

The TDA2822M is a monolithic integrated circuit in 8 lead Minidip package. It is intended for use as dual audio power amplifier in portable cassette players and radios.

PIN CONNECTION (Top view)

March 1995 1/11

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	15	V
Io	Peak Output Current	1	Α
P _{tot}	Total Power Dissipation at T _{amb} = 50 °C at T _{case} = 50 °C	1 1.4	>
T _{stg} , T _j	Storage and Junction Temperature	- 40, + 150	°C

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Ma	x. 100	°C/W
R _{th j-case}	Thermal Resistance Junction-pin (4) Ma	x. 70	°C/W

ELECTRICAL CHARACTERISTICS ($V_S = 6V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
STEREO (test circuit of Figure 1)					
Vs	Supply Voltage		1.8		15	V
Vo	Quiescent Output Voltage	V _s = 3V		2.7 1.2		V
I _d	Quiescent Drain Current			6	9	mA
I _b	Input Bias Current			100		nA
Po	Output Power (each channel) (f = 1kHz, d = 10%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90 15 170 300 450	300 120 60 20 5 220 1000 380 650 320 110		mW
d	Distortion (f = 1kHz)	$\begin{array}{ll} R_L = 32\Omega & P_o = 40 \text{mW} \\ R_L = 16\Omega & P_o = 75 \text{mW} \\ R_L = 8\Omega & P_o = 150 \text{mW} \end{array}$		0.2 0.2 0.2		% % %
G√	Closed Loop Voltage Gain	f = 1kHz	36	39	41	dB
ΔG_{v}	Channel Balance				± 1	dB
Ri	Input Resistance	f = 1kHz	100			kΩ
en	Total Input Noise	$R_s = 10k\Omega$ B = Curve A B = 22Hz to 22kHz		2 2.5		μV μV
SVR	Supply Voltage Rejection	f = 100Hz, C1 = C2 = 100μF	24	30		dB
Cs	Channel Separation	f = 1kHz		50		dB
BRIDGE (1	est circuit of Figure 2)					
Vs	Supply Voltage		1.8		15	V
I _d	Quiescent Drain Current	R _L = ∞		6	9	mA
V _{os}	Output Offset Voltage (between the outputs)	$R_L = 8\Omega$			± 50	mV
I _b	Input Bias Current			100		nA
Po	Output Power (f = 1kHz, d = 10%)	$\begin{array}{lll} R_L = 32\Omega & V_S = 9V \\ & V_S = 6V \\ & V_S = 4.5V \\ & V_S = 3V \\ & V_S = 2V \\ R_L = 16\Omega & V_S = 9V \\ & V_S = 6V \\ & V_S = 3V \\ R_L = 8\Omega & V_S = 6V \\ & V_S = 3V \\ & V_S = 2V \\ \end{array}$	320 50 900 200	1000 400 200 65 8 2000 800 120 1350 700 220 1000 350 80		mW
d	Distortion	$P_0 = 0.5W, R_L = 8\Omega, f = 1kHz$		0.2		%
G√	Closed Loop Voltage Gain	f = 1kHz		39		dB
Ri	Input Resistance	f = 1kHz	100			kΩ
e _N	Total Input Noise	$R_s = 10k\Omega$ B = Curve A B = 22Hz to 22kHz		2.5 3		μV μV
SVR	Supply Voltage Rejection	f = 100Hz	1	40		dB
В	Power Bandwidth (–3dB)	$R_L = 8\Omega$, $P_o = 1W$		120		kHz

Figure 1 : Test Circuit (Stereo)

Figure 2: Test Circuit (Bridge)

Figure 3 : P.C. Board and Components Layout of the Circuit of Figure 1

Figure 4 : P.C. Board and Components Layout of the Circuit of Figure 2

S-6132/1

1 100μF 100μF

Figure 16: Typical Application in Portable Players

Figure 17: Application in Portable Radio Receivers

Figure 18: Portable Radio Cassette Players

Figure 19: Portable Stereo Radios

Figure 20: Low Cost Application in Portable Players (using only one 100μF output capacitor)

Figure 21: 3V Stereo Cassette Player with Motot Speed Control