Sound Level Monitoring System

Report Highlights

Igor Iurevici July 26, 2023

Università degli Studi di Bologna

Overview

Introduction

Architecture

- · Technology
- · Architecture diagram

Implementation

- · Acquisition
- Communication
- Storage
- · Dashboard
- Forecasting

Conclusions

Introduction

Introduction [1/2]

Urban areas' **noise pollution** affects the quality of life of millions of people worldwide.

High noise levels are potentially **harmful** in regards of stress, sleep disturbances and cognitive function.

Introduction [2/2]

The project goal is to **monitor indoor sound level** in order to detect and alert when the noise is too high by exploiting IoT technology. **In particular:**

- · Acquire and process periodically sound level values;
- Store the data in a time series database;
- · Forecast future noise values;
- · Visualize the data in a dashboard.

Architecture

Technology

Hardware:

- ESP32: power-efficient MCU;
- MAX4466: adjustable microphone amplifier module.

Software:

- · Arduino IDE and Wiring language;
- HTTP and MQTT: communication protocol;
- Flask: Python web application framework;
- · InfluxDB: time series data database;
- · Prophet: time series data forecaster;
- Grafana: time series data visualization and analysis platform.

Architecture

Figure 1: Project Architecture

Implementation

Acquisition

Sound level values:

- Window Sampling: analog reading over 50ms window;
- · Computing Peak-to-Peak voltage:

$$PeakToPeak = signalMax - signalMin$$
 (1)

Computing Voltage in RMS:

$$RMS = \frac{PeakToPeak \cdot 3.3}{4095} \cdot 0.707 \tag{2}$$

Computing SPL:

$$SPL = 20 \cdot \log_{10} \left(\frac{RMS}{0.00631} \right) - Gain + Sensitivity + 94$$
 (3)

Where MAX4466 Gain is kept at 25dB and Sensitivity is -44dB.

Communication [1/3]

Payload:

 Composition of Sound level, RSSI and Alarm status characters ';' separated.

HTTP Communication:

- HTTP 1.1 persistent connection;
- The average Round-trip time is ~40ms (same network), and ~410ms if considering (cloud) storage.

Figure 2: Payload round-trip time representation.

Communication [2/3]

SNMS Configuration
Sampling Rate
Noise Threshold
Alarm Level
Alarm Counter
Submit changes
Configuration sent via MQTT
Noise: 737 Alarm: 3FF RSSI: -67

Figure 3: Configuration web page.

Communication [3/3]

Configuration Parameters:

- samplingRate, noiseThreshold, alarmLevel and alarmCounter are saved server-side in json format;
- When awaken, the ESP32 asks (and receives after) the Proxy for the latest configuration via MQTT (QoS 1);
- · Proxy responsabilities:
 - · Retrieve and send current configuration via MQTT;
 - · Get, check and update new configuration via web page.

Storage

Two Buckets:

- · Samples Bucket:
 - · Stores sensor values received by the Proxy;
 - · Fields: rssi, noise and alarm;
 - · Data retention: 12 hours.
- Aggregation Bucket:
 - Collection of tasks compute and store (average) aggregations of sample bucket values;
 - · Aggregation Window: 10 seconds;
 - Data retention: 7 days.

Dashboard [1/2]

Grafana dashboard:

- Periodically queries the InfluxDB database;
- For each of *rssi*, *noise* and *alarm* values, shows:
 - · History graph;
 - · Current status:
 - Forecasted values (just for noise values).

Dashboard [2/2]

Figure 4: Sound level monitoring system dashboard.

Forecasting [1/2]

Prophet model:

- · Allows to forecast time series data trends;
- Trained on the **sliding window** of the last 6 hours of data;
- · Forecasts 10 seconds in the future.

Evaluation:

- · Trained on 1 hour of train dataset;
- Tested on 30 minutes of test dataset;
- Predictions every 10 seconds;
- MSE: 40.

Forecasting [2/2]

Figure 5: Forecasting sound values validation.

Conclusion

Results

- The system is overall reliable for the given task;
- Grafana dashboard allows a clear understanding of the overall environment sound level situation;
- The forecaster allows to predict quite accurately the trend direction.

Future works

- · Hardware adjustments in order to reduce fluctuations;
- · Improvement in security aspect;
- Extending the system to a cluster of devices: one for each room.

Questions?