Rappel des notions élémentaires en mécanique quantique PMO1008 – Mécanique quantique II

Gabriel Antonius

Cours 1

- 1 Fonction d'onde et opérateurs
- 2 Équation de Schrödinger
- 3 Notation de Dirac
- 4 États propres et valeurs propres des opérateurs
- 5 Mesure d'un observable
- 6 Bases complètes de fonctions orthonormales
- 7 Représentation matricielle des opérateurs

Fonction d'onde et opérateurs

Fonction d'onde

(1)

La fonction d'onde $\psi(r)$ est une fonction réelle ou complexe qui encode toute l'information sur une particule.

La densité de probabilité d'observer une particule à la position r est

$$|\psi(\mathbf{r})|^2 = \psi^*(\mathbf{r})\psi(\mathbf{r})$$

La fonction d'onde doit donc être normalisée:

$$\int |\psi(\mathbf{r})|^2 d^3 \mathbf{r} = 1 \tag{2}$$

Aussi, la fonction d'onde doit être continue et différenciable.

Fonction d'onde

Par exemple, en 1D, si $\psi(x)$ est la fonction d'onde d'une particule, alors la probabilité d'observer la particule dans l'intervalle $a \le x \le b$ est

$$\int_{a}^{b} |\psi(x)|^{2} dx \tag{3}$$

En 3D, la probabilité de trouver particule dans le volume ($x_1 \le x \le x_2$; $y_1 \le y \le y_2$; $z_1 \le z \le z_2$) est

$$\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} |\psi(\mathbf{r})|^2 dx dy dz \tag{4}$$

Opérateurs

Un opérateur est un objet qui peut modifier une fonction d'onde.

Si $\psi(r)$ est une fonction d'onde, et A est un opérateur, alors on peut former une nouvelle fonction en faisant agir A sur ψ selon

$$\phi(\mathbf{r}) = A\psi(\mathbf{r}) \tag{5}$$

Remarque: la fonction $\phi(r)$ n'est pas nécessairement une fonction d'onde normalisée.

Opérateurs

La valeur moyenne d'un opérateur pour la particule décrite par la fonction d'onde $\psi(r)$ est

$$\langle A \rangle = \int \psi^*(\mathbf{r}) A \psi(\mathbf{r}) d^3 \mathbf{r} \tag{6}$$

Par exemple, si une particule se trouve dans un potentiel V(r), ce potentiel est un opérateur, et la valeur moyenne du potentiel pour l'état $\psi(r)$ est

$$\langle V \rangle = \int \psi^*(\mathbf{r}) V(\mathbf{r}) \psi(\mathbf{r}) d^3 \mathbf{r}$$
 (7)

Opérateur de position

En 1 dimension, l'opérateur de position, noté X, agit sur une fonction d'onde en la multipliant par la position

$$X\psi(x) = x\psi(x) \tag{8}$$

La valeur moyenne de l'opérateur de position est

$$\langle X \rangle = \int_{-\infty}^{\infty} \psi^*(x) x \psi(x) dx = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx \tag{9}$$

Opérateur d'impulsion

Dans l'espace des positions, l'opérateur d'impulsion P en 1D est représenté par

$$P = -i\hbar \frac{\partial}{\partial x} \tag{10}$$

Lorsqu'on fait agir l'opérateur d'impulsion sur une fonction d'onde, on a

$$P\psi(x) = -i\hbar \frac{\partial \psi(x)}{\partial x} \tag{11}$$

On peut calculer la valeur moyenne de l'impulsion pour la fonction d'onde $\psi(x)$ avec

$$\langle P \rangle = -i\hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{\partial}{\partial x} \psi(x) dx \tag{12}$$

La constante de Plank réduite \hbar possède des unités de positions \times impulsion.

Opérateurs de position et d'impulsion en 3D

(13)

(14)

(15)

10/40

En 3D, l'opérateur de position est noté

$$R = X + Y + Z$$

Un autre notation possible pour l'opérateur de position est

$$V - V \perp V \perp V$$

L'opérateur d'impulsion est

$$\mathbf{A} = \mathbf{A}_x + \mathbf{A}_y + \mathbf{A}_z$$

$$\boldsymbol{P} = \boldsymbol{P}_x + \boldsymbol{P}_y + \boldsymbol{P}_z$$

In a respace despositions est represent
$$P = -i\hbar \nabla = -i\hbar \left(\hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z} \right)$$

$$\hat{z} \frac{\partial}{\partial z}$$

$$\mathbf{R} = \mathbf{X} + \mathbf{Y} + \mathbf{Z}$$
 Un autre notation possible pour l'opérateur de position
$$\mathbf{X} = \mathbf{X}_x + \mathbf{X}_y + \mathbf{X}_z$$

Hamiltonien

L'Hamiltonien est l'opérateur d'énergie

$$H = \frac{\mathbf{P}^2}{2m} + V(\mathbf{r})$$

(17)

En 3D, l'opérateur d'impulsion au carré est

$$\mathbf{P}^2 = -\hbar^2 \nabla^2 = -\hbar^2 \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right]$$

(18)

L'énergie movenne d'une particule en 1D est

$$\langle H \rangle = \int \psi^*(x) H \psi(x) dx = \int \psi^*(x) \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \psi(x) dx$$

Relations de commutation

(20)

(21)

(22)

12/40

En général, l'action de deux opérateurs A et B sur une fonction d'onde est non-commutative, c'est à dire que

$$AB\psi(\mathbf{r}) \neq BA\psi(\mathbf{r})$$

$$[A,B] = AB - BA$$

On dit que A et B commutent si [A, B] = 0.

Dans ce cas, on peut inverser l'ordre de ces deux opérateurs:

 $AB\psi(\mathbf{r}) = BA\psi(\mathbf{r})$ ssi [A, B] = 0

Commutation des opérateurs de position et d'impulsion

(23)

(24)

(25)

(26)

13/40

En 1D, les opérateurs de position et d'impulsion ne commutent pas, et on a

$$[X,P]=i\hbar$$

En 3D, pour les 3 compostantes
$$X_i$$
 et P_i ($i = 1, 2, 3$), on a

$$[X_i, X_j] = 0$$

$$] = 0$$

$$j = 0$$

$$j \rfloor = 0$$

$$[P_i, P_j] = 0$$

$$[P_i, P_j] = 0$$
$$[X_i, P_i] = i\hbar \delta_{ii}$$

Observables

Un **observable** est une quantité physique que l'on peut mesurer. Par exemple:

- La position
- L'impulsion
- Le moment cinétique
- L'énergie

Un observable est représenté par un opérateur des valeurs propres réelles (un opérateur hermitien).

Équation de Schrödinger

Équation de Schödinger

L'équation de Schrödinger nous donne l'évolution temporelle de la fonction d'onde.

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = H\psi(\mathbf{r}, t) \tag{27}$$

Si une fonction d'onde correspond à un état propre de l'hamiltonien

$$H\psi_j(\mathbf{r},t) = E_j\psi_j(\mathbf{r},t)$$

Alors l'évolution temporelle de cette fonction d'onde sera donnée par

$$\psi_j(\mathbf{r},t) = e^{-iE_j t/\hbar} \psi_j(\mathbf{r},0)$$
(29)

(28)

Équation de Schödinger

L'équation de Schrödinger est donc une équation aux valeurs propres.

Au temps t = 0, la fonction d'onde $\psi_i(r) = \psi_i(r, 0)$ obéit à l'équation différentielle

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi_j(\mathbf{r}) = E_j \psi_j(\mathbf{r})$$
(30)

L'indice j est un **nombre quantique** et indique que la fonction d'onde ψ_j est la j^e solution possible de l'équation de Schrödinger, et l'énergie E_j est la j^e valeur propre de l'Hamiltonien.

Les solutions de H peuvent aussi être continues et être décrites par un nombre quantique réel, par exemple, pour une particule libre

$$E(\mathbf{p}) = \frac{\mathbf{p}^2}{2m} \tag{31}$$

États dégénérés

Lorsque deux états propres différents ϕ_i et ϕ_j possèdent la même valeur propre $E_i = E_j$, on dit que ces états sont **dégénérés**.

La dégénérescence d'un état g_j est le nombre d'états qui possèdent la même énergie E_j . On introduit alors un nombre quantique additionnel α pour distinguer les différents états dégénérés

$$H\phi_{j\alpha} = E_j\phi_{j\alpha} \quad ; \quad \alpha = 1, \dots, g_j \tag{32}$$

La notation de Dirac traite les fonctions d'ondes comme des vecteurs et les opérateurs comme des matrices.

On note $|\psi\rangle$ le ket de la fonction d'onde, et $\langle\psi|$ le bra de la fonction d'onde, avec la correspondance

$$|\psi\rangle \longrightarrow \psi(\mathbf{r})$$

$$\langle\psi| \longrightarrow \psi^*(\mathbf{r})$$
(33)

Le *braket* $\langle \phi | \psi \rangle$ correspond à un produit scalaire, ou encore à la projection de ψ sur ϕ :

$$\langle \phi | \psi \rangle = \int \phi^*(\mathbf{r}) \psi(\mathbf{r}) d^3 \mathbf{r} \tag{34}$$

Par exemple, pour deux fonctions d'onde en 1D, on a

$$\langle \phi | \psi \rangle = \int_{-\infty}^{\infty} dx \phi^*(x) \psi(x) \tag{35}$$

Pour un fonction d'onde à une particule en 1D, on a

$$\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} dx |\psi(x)|^2 = 1 \tag{36}$$

Et de façon générale, la fonction d'onde d'une particule est toujours normalisée, de sorte que

$$\langle \psi | \psi \rangle = 1 \tag{37}$$

(38)

(39)

La notation de Dirac permet d'exprimer la valeur moyenne d'un opérateur comme

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \int \psi^*(\mathbf{r}) A \psi(\mathbf{r}) d^3 \mathbf{r}$$

Remarque: si l'application d'un opérateur A sur la fonction d'onde $|\psi\rangle$ est

$$|\phi\rangle = A |\psi\rangle$$

alors

$$\langle \phi | = \langle \psi | A^{\dagger} \tag{40}$$

où A^{\dagger} (prononcé A *dagger*) est le conjugué hermitien de A (le conjugué complexe de la matrice transposée).

États propres et valeurs propres des opérateurs

Valeurs propres et fonctions propres d'un opérateur

(41)

Un opérateur possède des valeurs propres a_i et des états propres $|\phi_i\rangle$ tel que

$$A\ket{\phi_i} = a_i\ket{\phi_i}$$

Les états propres d'un opérateur sont orthonormés:

$$\langle \phi_i | \phi_j \rangle = \int \phi_i^*(\mathbf{r}) \phi_j(\mathbf{r}) d^3 \mathbf{r} = \delta_{ij}$$
(42)

On peut exprimer un opérateur en termes de ses fonctions propres et de ses valeurs propres comme

$$A = \sum_{i} |\phi_{i}\rangle \, a_{i} \, \langle \phi_{i}| \tag{43}$$

Si toutes les valeurs propres d'un opérateur sont réelles, alors on dit que c'est un opérateur **hermitien**.

operateur **nermitien**. L'ensemble des états propres d'un opérateur forment une base complète.

24/40

Opérateurs qui commutent

Théorème: Si deux opérateurs A et B commutent (AB = BA), alors ils possèdent les mêmes états propres.

Preuve: Si $|\phi_i\rangle$ est un état propre de A avec valeur propre a_i , alors

$$AB |\phi_i\rangle = BA |\phi_i\rangle$$

$$AB |\phi_i\rangle = a_i B |\phi_i\rangle$$

$$A |\tilde{\phi}_i\rangle = a_i |\tilde{\phi}_i\rangle$$

Donc, l'état $|\tilde{\phi}_i\rangle = B |\phi_i\rangle$ est aussi un état propre de A avec valeur propre a_i .

Cet état est forcément proportionnel à $|\phi_i\rangle$. Si on nomme cette constante de proportionalité b_i , alors on a

$$|\tilde{\phi}_i\rangle = B |\phi_i\rangle = b_i |\phi_i\rangle \tag{44}$$

Donc, $|\phi_i\rangle$ est aussi un état propre de B, avec valeur propre b_i .

États propres de l'opérateur de position

Les états $|r\rangle$ sont orthonormés, tel que

(45)

(46)

(47)

26/40

On note $|r\rangle$ un état propres de l'opérateur de position tel que

Ils décrivent une fonction d'onde infiniement étroite autour de la position r.

$$X|r\rangle = r|r\rangle$$

Lorsqu'on écrit $\psi(r)$, on parle en fait de la projection de $|\psi\rangle$ sur l'état $|r\rangle$

 $\psi(r) = \langle r | \psi \rangle$

 $\langle \mathbf{r} | \mathbf{r}' \rangle = \delta^3 (\mathbf{r} - \mathbf{r}')$

États propres de l'opérateur d'impulsion

(48)

(49)

On note $|p\rangle$ un état propres de l'opérateur d'impulsion tel que

$$P \mid p \rangle = p \mid p \rangle$$

Les états $|p\rangle$ sont orthonormés, tel que

Ils décrivent une fonction d'onde avec une impulsion bien définie, ou encore, une particule libre. La projection de ces états dans l'espace est

 $\langle \boldsymbol{p} | \boldsymbol{p}' \rangle = \delta^3 (\boldsymbol{p} - \boldsymbol{p}')$

$$\psi(\mathbf{r}) = \langle \mathbf{r} | \mathbf{p} \rangle = e^{i\mathbf{p} \cdot \mathbf{r}/\hbar} \tag{50}$$

États propres de l'hamiltonien

(51)

(52)

(53)

$$|\psi(0)\rangle = \sum_{i} c_{j} |\phi_{j}\rangle$$

$$c_j = \langle \phi_j | \psi(0) \rangle$$

$$c_j = \langle \psi_j | \psi(0) \rangle$$

Au temps
$$t$$
, l'évolution temporelle de la fonction d'onde nous donne

lle de la fonction d'onde nous donne
$$|\psi(t)\rangle = \sum_i c_j e^{-iE_jt/\hbar} |\phi_j\rangle$$

28/40

Si au temps
$$t = 0$$
, une fonction d'onde est une combinaison linéaire de ces états

$$H\ket{\phi_j} = E_j\ket{\phi_j}$$

$$H|\phi_j\rangle = E_j|\phi_j\rangle$$

Mesure d'un observable

Mesure d'un observable

Soit un observable A, qui possède des valeurs propres a_i et des fonctions propres $|\phi_i\rangle$, et soit une particule dont la fonction d'onde est $|\psi\rangle$.

Si l'on mesure A, les résultats possibles sont les valeurs propres a_i , chacune avec une probabilité $|\langle \phi_i | \psi \rangle|^2$.

Immédiatement après avoir mesurée la valeur a_i pour l'observable A, la fonction d'onde est projetée dans l'état $|\phi_i\rangle$

Mesure d'un observable

(55)

(56)

La valeur moyenne, ou valeur attendue, d'un observable A pour l'état $|\psi\rangle$, est

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \sum_{i} a_{i} |\langle \phi_{i} | \psi \rangle|^{2}$$

La variance d'un observable
$$(\Delta A)^2$$
 est définie comme

$$(\Delta A)^2 = \langle A^2 \rangle - \langle A \rangle^2$$

Et
$$\Delta A$$
 est appellé la déviation standard de A .

Bases complètes de fonctions orthonormales

Opérateur d'identité

L'identité *I* est un opérateur qui ne modifie pas la fonction d'onde

$$I |\psi\rangle = |\psi\rangle$$

(57)

Il existe plusieurs façons de construire l'identité...

Base complète de fonctions orthonormales

(58)

(59)

En général, il existe une infinité d'états propres de l'hamiltonien (ou de tout autre

Ces fonctions sont orthonormales:

opérateur):

$$H \mid \phi$$

$$H\left|\phi_{j}\right\rangle = E_{j}\left|\phi_{j}\right\rangle$$

$$I = \sum_{i=1}^{\infty} |\phi_j\rangle \langle \phi_j|$$

(60)

$$\langle \phi_i | \phi_j \rangle = \delta_{ij}$$
rthonormale avec l'id

Décomposition de la fonction d'onde

Une fonction d'onde peut être décomposée dans la base des fonctions propres de l'hamiltonien

$$|\psi\rangle = \sum_{j=1}^{\infty} c_j |\phi_j\rangle \tag{61}$$

Les coefficients de la fonction d'onde $|\psi\rangle$ dans cette base sont

$$c_i = \langle \phi_i | \psi \rangle$$

On peut démontrer ceci à l'aide de l'opérateur d'identité

$$|\psi\rangle = I |\psi\rangle = \sum_{j=1}^{\infty} |\phi_j\rangle \langle \phi_j | \psi\rangle = \sum_{j=1}^{\infty} |\phi_j\rangle c_j$$
 (63)

(62)

Espace vectoriel

Si l'on dispose d'un ensemble de N fonctions orthornormales $|u_i\rangle$ tel que

$$\langle u_i | u_j \rangle = \delta_{ij} \tag{64}$$

Ces N fonctions définissent un **espace vectoriel** à N dimensions, et dans cet espace vectoriel, on a l'identité

$$I = \sum_{i=1}^{N} |u_i\rangle \langle u_i| \tag{65}$$

Une fonction d'onde $|\psi\rangle$ fait partie de cet espace vectoriel si on peut l'exprimer comme une combinaison linéaire

$$|\psi\rangle = \sum_{i=1}^{N} c_i |u_i\rangle \tag{66}$$

Les coefficients de la fonction d'onde $|\psi\rangle$ dans la base de $|u_i\rangle$ sont

$$c_i = \langle u_i | \psi \rangle \tag{67}$$

Représentation matricielle des opérateurs

Représentation matricielle d'un opérateur

Il est toujours possible de représenter un opérateur comme une matrice à l'aide d'un ensemble de fonctions de bases $|u_i\rangle$ avec

$$A_{ij} = \langle u_i | A | u_j \rangle \tag{68}$$

Par exemple, dans un espace vectoriel à 3 dimensions avec les fonctions de base $|u_1\rangle$, $|u_2\rangle$, $|u_3\rangle$, on exprimerait un opérateur comme

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} \langle u_1 | A | u_1 \rangle & \langle u_1 | A | u_2 \rangle & \langle u_1 | A | u_3 \rangle \\ \langle u_2 | A | u_1 \rangle & \langle u_2 | A | u_2 \rangle & \langle u_2 | A | u_3 \rangle \\ \langle u_3 | A | u_1 \rangle & \langle u_3 | A | u_2 \rangle & \langle u_3 | A | u_3 \rangle \end{bmatrix}$$
(69)

Un terme $\langle u_i|A|u_j\rangle$ est appelé un **élément de matrice**.

Valeurs propres et fonctions propres d'un opérateur

La représentation matricielle des opérateurs permet de trouver leurs valeurs propres et fonctions propres. Par exemple, l'opérateur

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} \tag{70}$$

possède les valeurs propres

$$a_1 = -1$$
 ; $a_2 = 1$; $a_3 = 2$ (71)

et les vecteurs propres

$$|\phi_1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \quad ; \quad |\phi_2\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix} \quad ; \quad |\phi_3\rangle = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

(72)

Valeurs propres et fonctions propres d'un opérateur

Remarque 1: si on a exprimé un opérateur dans la base des $|u_i\rangle$, alors un état comme

$$|\psi\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\i\\0 \end{bmatrix} \tag{73}$$

signifie en fait

$$|\psi\rangle = \frac{1}{\sqrt{2}}|u_1\rangle + \frac{i}{\sqrt{2}}|u_2\rangle \tag{74}$$

Remarque 2: un ket est représenté par un vecteur-colonne, et un bra est représenté par un vecteur-ligne, e.g.

$$\langle \psi | = \frac{1}{\sqrt{2}} \begin{bmatrix} 1, & -i, & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \langle u_1 | -\frac{i}{\sqrt{2}} \langle u_2 |$$
 (75)