Strings and Pattern Matching

Outline

- Strings
- Pattern matching algorithms
 - Brute-force algorithm
 - Boyer-Moore algorithm
 - Knuth-Morris-Pratt algorithm

Strings

- A string is a sequence of characters
- Examples of strings:
 - C++ program
 - HTML document
 - DNA sequence
 - Digitized image
- lacktriangle An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII (used by C and C++)
 - Unicode (used by Java)
 - **•** {0, 1}
 - {A, C, G, T}

- \bullet **P** is a string of size **m**
 - A substring P[i..j] of P is the subsequence of P consisting of the characters with ranks between i and j
 - A prefix of P is a substring of the type P[0..i]
 - A suffix of *P* is a substring of the type *P*[*i* ..*m* − 1]

Alphabets

name	R()	lgR()	characters					
BINARY	2	1	01					
OCTAL	8	3	01234567					
DECIMAL	10	4	0123456789					
HEXADECIMAL	16	4	0123456789ABCDEF					
DNA	4	2	ACTG					
LOWERCASE	26	5	abcdefghijklmnopqrstuvwxyz					
UPPERCASE	26	5	ABCDEFGHIJKLMNOPQRSTUVWXYZ					
PROTEIN	20	5	ACDEFGHIKLMNPQRSTVWY					
BASE64	64	6	ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef ghijklmnopqrstuvwxyz0123456789+/					
ASCII	128	7	ASCII characters					
EXTENDED_ASCII	256	8	extended ASCII characters					
UNICODE16	65536	16	Unicode characters					
Standard alphabets								

Interesting Fact

- ◆ IBM System/360 defined 8 bit byte (1964)
 - Instead of 4 or 6 bits which was cheaper
 - Enabled the extended ASCII set, both upper and lowercase, as well as symbols
 - Huge ramifications!
 - Decided by <u>Fred Brooks</u>
 - His most important decision:

"The most important single decision I ever made was to change the IBM 360 series from a 6-bit byte to an 8-bit byte, thereby enabling the use of lowercase letters. That change propagated everywhere."

Pattern Matching: Problem Statement

- Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P
- Applications:
 - Text editors
 - Search engines
 - Biological research
 - And many others...

Brute-Force Algorithm

- Compares the pattern P (of length m) with the text T (of length n) for each possible shift of P relative to T, until
 - a match is found, or
 - all placements of the pattern have been tried
- Brute-force pattern matching runs in what time?
 - lacksquare O(nm)
- What is an example worst case?
 - $T = aaa \dots ah$
 - \blacksquare P = aaah
 - may occur in images and DNA sequences
 - unlikely in English text

Algorithm **BruteForceMatch**(**T**, **P**)

Input text *T* of size *n* and pattern *P* of size *m*

Output starting index of a substring of *T* equal to *P* or -1 if no such substring exists

```
for i \leftarrow 0 to n - m

{ test shift i of the pattern }

j \leftarrow 0

while j < m \land T[i+j] = P[j]

j \leftarrow j+1

if j = m
```

return i {match at i}

else

break while loop {mismatch}

return -1 {no match anywhere}

How can we do better? Ideas?

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

 $r \mid i \mid t \mid h \mid m$

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare *P* with a subsequence of *T* moving backwards

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

Last-Occurrence Function

- lacktriangle Boyer-Moore's algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where L(c) is defined as
 - the largest index i such that P[i] = c or
 - -1 if no such index exists
- Example:
 - $\Sigma = \{a, b, c, d\}$
 - \blacksquare P = abacab

<i>c</i>	<i>a</i>	b	c	d
L(c)	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time O(m + s), where m is the size of P and s is the size of Σ

- ◆P=ab, S={a,b,c,d}
 - L=[a,0], [b,1], [c,-1], [d,-1]
- ◆P=abab
 - L=[a,2], [b,3], [c,-1], [d,-1]
- ◆P=dcba
 - L=[a,3], [b,2], [c,1], [d,0]

The Boyer-Moore Algorithm

```
Algorithm BoyerMooreMatch(T, P, \Sigma)
    L \leftarrow lastOccurenceFunction(P, \Sigma)
    i \leftarrow m-1
   j \leftarrow m - 1
    repeat
         if T[i] = P[j]
              if j = 0
                  return i { match at i }
              else
                  i \leftarrow i - 1
                 j \leftarrow j - 1
         else
              { character-jump }
             l \leftarrow L[T[i]]
             i \leftarrow i + m - \min(j, 1 + l)
             j \leftarrow m - 1
    until i > n - 1
    return −1 { no match }
```

```
Case 1: j \le 1 + l
Case 2: 1 + l \le j
                            |m - (1 + l)|
```

Example

Analysis

- Boyer-Moore's algorithm runs in time O(nm + s)
- Example of worst case:
 - $T = aaa \dots a$
 - P = baaa
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore's algorithm is significantly faster in practice than the brute-force algorithm on English text

The KMP Algorithm - Motivation

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in **left-to-right**, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the **most** we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of P[0..j] that is a suffix of P[1..j]

KMP Failure Function

Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself

j	0	1	2	3	4	5
P[j]	a	b	a	a	b	a
F(j)	0	0	1	1	2	3

- The failure function F(j) is defined as the size of the largest prefix of P[0..j] that is also a suffix of P[1..j]
- Nuth-Morris-Pratt's algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j-1)$

The KMP Algorithm

- The failure function can be represented by an array and can be computed in O(m) time
- At each iteration of the whileloop, either
 - *i* increases by one, or
 - the shift amount i j increases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2n iterations of the while-loop
- Thus, KMP's algorithm runs in time

```
O(m+n)!!
```

```
Algorithm KMPMatch(T, P)
    F \leftarrow failureFunction(P)
    i \leftarrow 0
   j \leftarrow 0
    while i < n
         if T[i] = P[j]
             if j = m - 1
                  return i - j { match }
             else
                  i \leftarrow i + 1
                 j \leftarrow j + 1
         else
             if j > 0
                 j \leftarrow F[j-1]
             else
                  i \leftarrow i + 1
    return −1 { no match }
```

Computing the Failure Function

- The failure function can be represented by an array and can be computed in O(m) time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
 - *i* increases by one, or
 - the shift amount i j increases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2m iterations of the while-loop

```
Algorithm failureFunction(P)
     F[0] \leftarrow 0
    i \leftarrow 1
    j \leftarrow 0
     while i < m
         if P[i] = P[j]
               {we have matched j + 1 chars}
               F[i] \leftarrow j + 1
               i \leftarrow i + 1
              j \leftarrow j + 1
          else if j > 0 then
               {use failure function to shift P}
              j \leftarrow F[j-1]
          else
               F[i] \leftarrow 0 \{ \text{ no match } \}
               i \leftarrow i + 1
```

Pattern: aba 123

Failure function f: 0 0 1

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f:

??

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(a) = 0 (always = 0 for one letter) f(aa) = 1 ('a' is both a prefix and suffix) f(aab) = ?

Pattern:

a a b a a b a b b

1 2 3 4 5 6 7 8 9

Failure function f: f(a) = 0 (always = 0 for one letter) f(aa) = 1 ('a' is both a prefix and suffix) f(aab) = 0 (no same suffixes and prefixes: a != b, aa != ab)

35

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aaba) = ?

Pattern:

a a b a a b a b b 1 2 3 4 5 6 7 8 9

Failure function f:

f(aaba) = 1 ('a' is the same in the beginning and the end, but if you take 2 letters, they won't be equal: aa != ba)

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aabaa) = ?

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aabaa) = 2 (you can take 'aa' but no more: aab != baa)

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aabaab) = ?

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aabaab) = 3 (you can take 'aab') f(aabaaba) = ?

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aabaab) = 3 (you can take 'aab') f(aabaaba) = 4 (you can take 'aaba')

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f: f(aabaab) = 3 (you can take 'aab') f(aabaaba) = 4 (you can take 'aaba') f(aabaabab) = ?

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f:

f(aabaab) = 3 (you can take 'aab')

f(aabaaba) = 4 (you can take 'aaba')

f(aabaabab) = 0 ('a' != 'b', 'aa' != 'ab',

etc & can't be = 5, 'aabaa' != 'aabab')

44

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f:

f(aabaab) = 3 (you can take 'aab')

f(aabaabab) = 4 (you can take 'aaba')

f(aabaabab) = 0

f(aabaababb) = ?

45

Pattern:
a a b a a b a b b
1 2 3 4 5 6 7 8 9

Failure function f:

f(aabaab) = 3 (you can take 'aab')

f(aabaabab) = 4 (you can take 'aaba')

f(aabaabab) = 0

f(aabaababb) = 0

46

Pattern:

aabaababb

123456789

Failure function f:

010123400

Example

a b a c a a b a c c a b a b b

 $a \mid b \mid a \mid c \mid a \mid b$

j	0	1	2	3	4	5
P [j]	а	b	a	c	а	b
F(j)	0	0	1	0	1	2

Example

$m{j}$	0	1	2	3	1	5
P[j]	а	b	а	c	a	b
F(j)	0	0	1	0	1	2

Rabin-Karp

- Calculates a hash value for the pattern, and for each M-character subsequence of text.
- If hash values unequal, then calculate the hash value for next M-character sequence.
- If hash values equal, then do Brute Force comparison.

Rabin-Karp: Analysis

- For "good" hash functions, the hashed values of two different patterns will usually be distinct.
- Thus, average case O(N), where N is size of text.
- Worst case complexity O(MN) but rare for good hash functions.