第四章作业题答案

1. 有一信源,它有 6 个可能的输出,其概率分布如下表所示,表中给出了对应的码 A、B、C、D、E 和 F。

消息	$p(a_i)$	A	В	С	D	Е	F
a_1	1/2	000	0	0	0	0	0
a_2	1/4	001	01	10	10	10	100
a_3	1/8	010	011	110	110	1100	101
a_4	1/16	011	0111	1110	1110	1101	110
a_5	1/32	100	01111	11110	1011	1110	111
a_6	1/32	101	011111	111110	1101	1111	011

Answer: 唯一可译码是ABCE

非延长码为ACE

A的平均码长:
$$\bar{n} = \sum_{i=1}^{6} p(s_i) n_i = 3(1/2 + 1/4 + 1/16 + 1/16 + 1/16 + 1/16) = 3$$
码符号 / 信源符号

编码效率:
$$\eta = \frac{H(S)}{\overline{n} \log r} = \frac{2}{3} \times 100\% = 66.67\%$$

B的平均码长
$$\overline{n} = \sum_{i=1}^{6} p(s_i) n_i = 1*1/2 + 2*1/4 + 3*1/16 + 4*1/16 + 5*1/16 + 6*1/16$$

=17/8=2.125码符号/信源符号

编码效率:
$$\eta = \frac{H(S)}{\overline{n} \log r} = \frac{2}{2.125} \times 100\% = 94.12\%$$

C的平均码长
$$\bar{n} = \sum_{i=1}^{6} p(s_i)n_i = 2.125$$
码符号 / 信源符号

编码效率:
$$\eta = \frac{H(S)}{\overline{n} \log r} = \frac{2}{2.125} \times 100\% = 94.12\%$$

E的平均码长
$$\overline{n} = \sum_{i=1}^{6} p(s_i) n_i = 2*1/2 + 3*1/4 + 3*1/16 + 3*1/16 + 3*1/16 + 3*1/16 + 3*1/16$$

=10/4=2.5码符号/信源符号

C4的编码效率:
$$\eta = \frac{H(S)}{\overline{n} \log r} = \frac{2}{2.5} \times 100\% = 80\%$$

2. 有一个信源 X 如下:

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ 0.32 & 0.22 & 0.18 & 0.16 & 0.08 & 0.04 \end{bmatrix}$$

- (1)、求信源熵H(X);
- (2)、用 Shannon 编码法编成二进制变长码,并计算其编码效率;
- (3)、用 Fano 编码法编成二进制变长码,并计算其编码效率;

- (4)、用 Huffman 码编码成二进制变长码,并计算其编码效率;
- (5)、用 Huffman 码编码成三进制变长码,并计算其编码效率;
- (6)、比较三种编码方法的优缺点。
- (7)、如果对信源采用定长二元编码,要求编码效率 η 达到三进制 Huffman 编码的

效率,同时允许错误概率 $P_{\scriptscriptstyle E} \leq 10^{-3}$,求所需要的信源符号序列长度 N。

$$H(X) = \sum_{i=1}^{6} p(x_i) \log \frac{1}{p(x_i)} = 2.3522bit / 信源符号$$

$$\log_r \frac{1}{p(x_i)} \le n_i < \log_r \frac{1}{p(x_i)} + 1$$
 由于:每个码长肯定是正整数,上式给出了选择

范围

1011						
符号	$p(x_i)$	累加概	$-\log p(x_i)$	码字长		码字
		率		度		
<i>X</i> 1	0.32	0	1.6439	2	0000	00
<i>x</i> ₂	0.22	0.32	2.1844	3	0100	010
<i>x</i> ₃	0.18	0.54	2.4739	3	1000	100
<i>X</i> 4	0.16	0.72	2.6439	3	1011	101
<i>X</i> 5	0.08	0.88	3.6439	4	11100	11100
<i>X</i> 6	0.04	0.96	4.6439	5	111101	11110

编码效率
$$\eta = \frac{H(X)}{\overline{n} \log r} = \frac{2.3522}{2.84 \log 2} \times 100\% = 82.82\%$$

FINO 编码

符号	$P(x_i)$								码字	码字长度
<i>x</i> ₁	0.32	0.54	0	0					00	2
<i>x</i> ₂	0.22			1					01	2
<i>x</i> ₃	0.18			0.18	0				10	2
<i>X</i> 4	0.16	0.46	1			0.16	0		110	3
<i>X</i> 5	0.08			0.28	1	0.12	1	0	1110	4
X 6	0.04							1	1111	4

编码效率
$$\eta = \frac{H(X)}{\overline{n}\log r} = \frac{2.3522}{2.4\log 2} \times 100\% = 98\%$$

二进制 Huffman 编码

符号	$p(x_i)$					码字	码字长度
<i>x</i> ₁	0.32	0.32	0.32	0.40	0.60	00	2
<i>x</i> ₂	0.22	-0.22	0.28	0.32	0.40	10	2
<i>X</i> 3	0.18	0.18	0.22	0.28		11	2
<i>X</i> 4	0.16	0.16	0.18			010	3
<i>X</i> 5	0.08	0.12				0110	4
<i>X</i> 6	0.04					0111	4

编码效率
$$\eta = \frac{H(X)}{\overline{n} \log r} = \frac{2.3522}{2.4 \log 2} \times 100\% = 98\%$$

三进制 Huffman 编码

判断
$$q-(r-1)\alpha = r$$

首先, $6-(3-1)\times 2=2<3$
选择 $m=r-[q-(r-1)\alpha]=3-2=1$ 个虚假符号

符号	$p(x_i)$			码字	码字长度	
<i>X</i> 1	0.32	0.32	0.48	1	1	
<i>X</i> 2	0.22	0.22	0.32	2	1	
<i>X</i> 3	0.18	0.18	0.22	00	2	
<i>X</i> 4	0.16	0.16		01	2	
<i>X</i> 5	0.08	0.12		020	3	
<i>X</i> 6	0.04			021	3	
χ,	0			022	舍去	

编码效率
$$\eta = \frac{H(X)}{\overline{n}\log r} = \frac{2.3522}{1.58\log 3} \times 100\% = 93.93\%$$

$$H(X) = \sum_{i=1}^{6} p(x_i) \log \frac{1}{p(x_i)} = 2.3522bit$$
 / 信源符号

对于信源所有符号的自信息的方差 $D[I(s_i)] = \sum_{i=1}^6 p(s_i)[-\log_2 p(s_i)]^2 - H_2(S) = 0.5265$

$$\varepsilon = \frac{1 - \eta}{\eta} H(S) = 0.152$$

$$N \ge \frac{D[I(s_i)]}{\varepsilon^2 \delta} = \frac{0.5256}{0.0231 \times 10^{-3}} = 2.275 \times 10^4$$

- 3. 现有一幅已离散量化后的图像,图像的灰度量化分成 8 级,如下表所示。表中数字为相应像素上的灰度级。
- 另有一无噪无损二元信道,单位时间(秒)内传输 100 个二元符号。
- (1)、现将图像通过给定的信道传输,不考虑图像的任何统计特性,并采用二元等 长码,问需要多长时间才能传送完这幅图像?
- (2)、若考虑图像的统计特性(不考虑图像的像素之间的依赖性),求这幅图像的信源 H(S),并对每个灰度级进行 Huffman 最佳二元编码,问平均每个像素需用多少二元码符号来表示?这时需多少时间才能传送完这幅图像?
- (3)、从理论上简要说明这幅图像还可以压缩,而且平均每个像素所需的二元码符号数可以小于 H(S)比特。

解:

(1)一幅已离散化后的图象,其灰度划分成8级, 先不考虑图象的任何统计特性,采用二元等长码,因为 q=8,所以要满足

$$2^l \ge q = 8$$

故 l=3 二元码符号 / 灰度级即每个灰度等级需采用三位二元符号来传输。

这一幅图象空间离散化后共有N=100个像素,每个像素的灰度需用三个二元符号来编码,所以这幅图象采用二元等长码后共需300个二元符号来描述。所传输的信道是无噪无损信道,其每秒钟传输100个二元符号。因此,需3秒钟才能传送完这幅图象。

(2)考虑图象的统计特性(不考虑图象的像素之间的依赖性)时,根据此图象进行统计,把像素的灰度值作为信源S,可得

$$\begin{bmatrix} S \\ P(s_i) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \frac{40}{100} & \frac{17}{100} & \frac{10}{100} & \frac{7}{100} & \frac{6}{100} & \frac{5}{100} & \frac{5}{100} \end{bmatrix}$$

所以 $H(S) = -\sum_{i=1}^{8} p(s_i) \log p(s_i) \approx 2.572$ 比特 / 灰度级

对此灰度进行哈夫曼最佳二元编码:

码 长 <i>l_i</i>	码 字	灰度 级	概率 P(s _i)					
1	1	1	0.40	0.40		0.40	0.40	0.60_0
3	001	2	0.17	0.17 0.13	0.20 0.17	0.23 0.20—0	0.37 <u>0</u> 0.23 <u>1</u>	`0.40—1
4	0000	3	0.10	0.10	0.13_0	0.17—1		
4	0001	4	0.10	0.10—0 0.10—1	0.10—1			
4	0100	5	0.07_0	0.10				
4	0101	6	0.06 1					
4	0110	7	0.050					
4	0111	8	0.05—1					

得
$$\bar{L} = \sum_{i=1}^{8} P(s_i) l_i = 2.63$$
 二元符号 / 灰度级

通过哈夫曼最佳二元编码后,每个像素平均需要用2.63个二元符号,则此图象平均共需要用263个二元符号来表示。因此,需2.63秒才能传送完这幅图象。

- (3)在(2)题中计算时没有考虑图象的像素之间的依赖关系,但实际此图象的像素之间是有依赖的。例如,若考虑像素前后之间灰度的依赖关系,就有灰度"1"后面只可能出现灰度"1"或"2";灰度"2"后只可能出现灰度"1"或"2";灰度"2"后只可能出现、发",等等。这时,此图象灰度值信源S可以看成一阶马尔可夫信源。还可以进一步看成为m阶马尔可夫信源。因此,在考虑了这些依赖关系后,像素的灰度值信源S的实际信息熵 H_{∞} <H(S)。根据香农第一理,总可以找到一种编码,使每个灰度级的平均码长 $\overline{L} \to H_{\infty}$ (极限熵)。所以,这幅图象还可以进一步压缩,平均每个像素(灰度)所需要的二元码符号数 \overline{L} <H(S)。
- 4.一个离散无记忆信源,它的样本空间为 $\{W,B\}$,符号 W 出现概率为 0.99,符号 B 出现的概率为 0.01.
- (1)、对此信源的二次扩展信源,求出信源符号序列的概率分布, 找出与之相应的二元 Huffman 编码,并求出平均码长;
- (2)、对此信源的三次扩展信源,重复上一问;
- (3)、计算信源的单符号熵,并于以上两个结果进行比较;
- (4)、要想使得单符号平均码长 $\overline{L_n}/n$ 只比单符号信源熵大 10%,请确定信源最小的扩展次数 n。

解:

(1) 二次扩展信源的符号序列、概率分布及码字如表 5 11 所示。

表 5 11

符号序列	概率	码 字
WW	0 99 × 0 99 = 0 980 1	0
WB	0 99 × 0 D1 = 0 D09 9	11
BW	0 01 × 0 99 = 0 009 9	100
BB	0 D1 × 0 D1 = 0 D00 1	101

平均码长为

 $L_2 = 0.9801 \times 1 + 0.0099 \times 2 + 0.0099 \times 3 + 0.0001 \times 3 = 1.0299$

- (2) 三次扩展信源的符号序列、概率分布及码字如表 5 12 所示。
- (2) 三次扩展信源的符号序列、概率分布及码字如表 5 12 所示。

表 5 12

符号序列	概 率	码 字
W W W	0 99×0 99×0 99=0 970299	0
WWB	0 99×0 99×0 D1=0 D09801	100
WBW	0 99×0 D1×0 99=0 D09801	101
$B \ W \ W$	0 D1 × 0 99 × 0 99 = 0 D09801	110
WBB	0 99 × 0 D1 × 0 D1 = 0 D00 099	11100
BWB	0 D1 × 0 99 × 0 D1 = 0 D00 099	11101
BBW	0 D1 × 0 D1 × 0 99 = 0 D00 099	11110
BBB	$0 \mathfrak{Q1} \times 0 \mathfrak{Q1} \times 0 \mathfrak{Q1} = 0 \mathfrak{Q00} \mathfrak{Q01}$	11111

平均码长为

 $\overline{L}_3 = 0$ 970 299×1+0 009 801× (3+3+3)+0 000 099× (5+5+5)+0 000 001×5=1 06

(3) 信源的单符号熵为

$$H(S) = 0$$
 99 $\log_2 \frac{1}{0.99} + 0$ 01 $\log_2 \frac{1}{0.01} = 0$ 080 179 比特/ 符号

二次扩展信源和三次扩展信源的单符号平均码长分别为

$$\frac{\overline{L}_2}{2} = 0$$
 514 95, $\frac{\overline{L}_3}{3} = 0$ 353 33

都远大于信源的单符号熵。

(4) 单符号信源熵的 110% 是 1 1×0 080 179 = 0 088 19,而 L_n 至少为 1,即单符号 平均码长至少为 1/n,因此,根据题意有

$$\frac{1}{n} \le 0 \ 088 \ 19 \qquad n \ge 11 \ 339 \qquad n = 12$$

- 5.假设有一页传真文件,其中有三条扫描线上的像素点如下图所示,分别为第一行、 第二行以及最后一行。
- 1) 请编制这些扫描行的 MH(Modified Huffman)编码;
- 2) 计算第三行的数据压缩比。

	686 黑	455 É		355 黑	155 白	13 黑	5白 14 景	45 白
85 白	720 黑	108 白	3 黑	64 白	6 黑	30 白	712 黑	
•••••								
	832 白		728	黑		68 白	64 黑	36 白

原则:

- 1) 0-63 像素的游程,用对应的结尾码表示;
- 2)64-1728像素的游程,用一个构造码+结尾码表示;
- 3)为了保证收发双方颜色同步,数据行的起点都是白游程开始(如果其中开始游程为黑游程,那么先增加一个白游程长度为0编码字为00110101);
- 4) 行终码 EOL (<u>000000000001</u>即 11 个 0 后加一个 1) 出现在每一行扫描线之最后; 行终码也出现在每一页的第一行数据之前(如果出现阵发性差错后可以重新建立同步)。
- 5)页面结尾码:一页面结束后,发送控制规程码(RTC,连续发送6个EOL码);

参考 MH 编码表:

第一行:

第一行	编码	长度
插入 EOL;	00000000001	12
加入长度为零的白色游程	00110101	8
686 黑游程: 640+46	0000001001010+000001010110	13+12=25
455 白游程: 448+7	01100101+ <u>1111</u>	8+4=12
355 黑游程: 320+35	000000110011+ 000011010011	12+12=24
155 白游程: 128+27	10010+ <u>0100100</u>	5+7=12
13 黑游程:	00000100	8
5 白游程:	1100	4
14 黑游程:	00000111	8
45 白游程:	00000100	8
EOL	00000000001	12
合计		

第2行	编码	长度
85 白游程: 64+21	11011+ <u>0010111</u>	8+4=12
720 黑游程: 704+16	0000001001011+ <u>0000010111</u>	10+13=23
108 白游程: 64+44	11011+ <u>00101101</u>	5+8=13
3 黑游程:	10	2
64 白游程:加入长度为零	11011+ <u>00110101</u>	5+8=13

6 黑游程:	0010	4
30 白游程:	00000011	8
712 黑游程: 704+8	0000001001011+ <u>000101</u>	13+6=19
EOL	000000000001	12
合计		

最后一行	编码	长度
832 白游程:加入长度为零	011010010+ <u>00110101</u>	9+8=17
728 黑游程: 704+24	0000001001011+00000010111	10+11=21
68 白游程: 64+4	11011+ <u>1011</u>	5+4=9
64 黑游程:加入长度为零	0000001111+ <u>0000110111</u>	10+10=20
36 白游程:	00010101	8
1 个控制规程码 RTC	6个EOL	6*12=72
合计		147

计算第三行的数据压缩比: 1728/147=11.76