CLASSIFICATION

EVALUATION METRICS

CONFUSION MATRIX

- A confusion matrix is a summary of prediction results on a classification problem
- The number of correct and incorrect predictions are summarized with count values and broken down by each class

True Positives(TP):

• When we predict positive and the actual is positive

False Positives(FP):

• When we predict that someone is positive and the actual is negative.

False Negatives(FN):

• When we predict that someone is negative and the actual result from the blood test is positive.

True Negatives(TN):

• When we predict that someone is negative and the actual result from the blood test is negative

Accuracy:

Overall, how often is the classifier correct?

Error Rate / Misclassification Rate:

Overall, how often is it wrong?

All incorrect / total = (FP+FN) / TP+FP+TN+FN

Specificity (True Negative Rate):

- When it's actually no, how often does it predict no?
- Equivalent to 1 minus False Positive Rate

True negatives/ all negatives (actual no) = TN / TN+FP

Sensitivity or Recall (True Positive Rate):

• When the class was actually positive, how often does it predict positive?

True positives/all positives (actual yes) = TP / TP+FN

Precision:

When model predicted positive class, how often it correct?

True positives / predicted positives = TP / TP+FP

Other metrics

ROC - AUC score

- AUC score is that if you randomly choose a positive case and a negative case, the probability that the positive case outranks the negative case according to the classifier
- The value can range from 0 to 1. However AUC score of a random classifier for balanced data is 0.5

F1 Score:

This is a weighted average of the true positive rate (recall) and precision

Kappa:

Cohen's kappa statistic is a very good measure that can handle very well both multi-class and imbalanced class problems

A measure of how well the classifier performed as compared to how well it would have performed simply by chance

$$\kappa \equiv rac{p_o-p_e}{1-p_e} = 1-rac{1-p_o}{1-p_e}$$

where,

Po is the relative observed agreement

Pe is the hypothetical probability of chance agreement

• Calculation:

		В	
		Yes	No
A	Yes	a	b
	No	С	d

- Po = a+d/a+b+c+d
- \bullet P yes = a+b / a+b+c+d
- \bullet P no = c+d / a+b+c+d
- Pe = P yes + P no

Python: sklearn.metrics.cohen_kappa_score