Ordenación por selección directa

Complejidad de la ordenación por selección directa

¿Cuántas comparaciones se realizan?

Bucle externo: N - 1 ciclos

Tantas comparaciones como elementos queden en la lista:

$$(N-1) + (N-2) + (N-3) + ... + 3 + 2 + 1 =$$

$$N \times (N-1) / 2 = (N^2 - N) / 2 \rightarrow O(N^2)$$

Mismo número de comparaciones en todos los casos

Complejidad: $O(N^2)$

Igual que el método de inserción

Algo mejor (menos intercambios; uno en cada paso)

No es estable: intercambios "a larga distancia"

No se garantiza que se mantenga el mismo orden relativo original

Comportamiento no natural (trabaja siempre lo mismo)

Fundamentos de la programación: Algoritmos de ordenación

Fundamentos de la programación

Método de la burbuja

Método de la burbuja

Algoritmo de ordenación por el método de la burbuja

Variación del método de selección directa

El elemento menor va ascendiendo hasta alcanzar su posición

Luis H

Fundamentos de la programación: Algoritmos de ordenación

Página 717

Método de la burbuja

\					\
12	32	14	5	14	7
ø ↓	1	2	3	4 🗸	1 5
12	32	14	5	7	14
ø ↓	1	2	3 ↓	4	5
12	32	14	5	7	14
 ↓	1	2 \) 3	4	5
12	32	5	14	7	14
 ↓	1 ↓	J 2	3	4	5
12	5	32	14	7	14
0	1	2	3	4	5
5	12	32	14	7	14
0	1	2	3	4	5

Ordenación de un array por el método de la burbuja

```
Desde el primero (i = 0), hasta el penúltimo (N - 2):
Desde el último (j = N – 1), hasta i + 1:
Si elemento en j < elemento en j - 1, intercambiarlos
```

```
const int N = 10;
typedef int tLista[N];

// Del primero al penúltimo...
for (int i = 0; i < N - 1; i++) {

    // Desde el último hasta el siguiente a i...
    for (int j = N - 1; j > i; j--) {
        if (lista[j] < lista[j - 1]) {
            tmp = lista[j];
            lista[j] = lista[j - 1];
            lista[j - 1] = tmp;
        }
    }
}</pre>
```

BY NC SA

Luis Hernández Yáñez

Fundamentos de la programación: Algoritmos de ordenación

Página 719

Método de la burbuja

Algoritmo de ordenación por el método de la burbuja

Complejidad: $O(N^2)$

Comportamiento no natural

Estable (mantiene el orden relativo)

Mejora:

Si en un paso del bucle exterior no ha habido intercambios:

La lista ya está ordenada (no es necesario seguir)

14	14	14	/ 12
16	16	/ ₁₂ /	14
35	12	16	16
12 /	35	35	35
50	50	50	50

La lista ya está ordenada No hace falta seguir


```
bool inter = true;
      int i = 0;
      // Desde el 1º hasta el penúltimo si hay intercambios...
      while ((i < N - 1) \&\& inter) \{
         inter = false;
         // Desde el último hasta el siguiente a i...
         for (int j = N - 1; j > i; j--) {
             if (lista[j] < lista[j - 1]) {</pre>
                int tmp;
                tmp = lista[j];
                lista[j] = lista[j - 1];
                lista[j - 1] = tmp;
                inter = true;
             }
         }
if (inter) {
Luis Hernández Yáñez
             i++;
          }
              Esta variación sí tiene un comportamiento natural
```

Página 721

Fundamentos de la programación

Fundamentos de la programación: Algoritmos de ordenación

Listas ordenadas

