Problem Set 9 Topology II

Bennett Rennier bennett@brennier.com

Ex 1.

- a) Explain what an abelian covering space is. Show that there's an abelian covering space that is a covering space of every other abelian covering space and that such a "universal" abelian covering space is unique up to isomorphism. Describe the space explicitly for $S^1 \vee S^1$ and $S^1 \vee S^1 \vee S^1$.
- b) Repeat the previous exercise for nilpotent covering spaces.

Proof.

a) An abelian covering space is a normal covering space whose deck transformation group is abelian. Let X be a nicely connected space and let $G = \pi_1(X, x_0)$. Recall that [G, G], the commutator subgroup of G, is the unique smallest normal subgroup of G such that G/[G, G] is abelian. Let $p: \tilde{X} \to X$ be a covering such that $p_*(\pi_1(\tilde{X}, \tilde{x}_0)) = [G, G]$. Since [G, G] is a normal subgroup of G, we know that p is a normal covering. As p is normal, we also know that $\operatorname{Deck}(\tilde{X}) = \pi_1(\tilde{X}, \tilde{x}_0)/[G, G]$, which is abelian by the properties of [G, G]. This proves that p is an abelian cover.

Now let $q: \bar{X} \to X$ be any other abelian cover with $H = p_*(\pi_1(\tilde{X}, \tilde{x}_0))$. Since q is an abelian cover, its deck group is the abelian group $\pi_1(\tilde{X}, \tilde{x}_0)/H$. Since [G, G] is the smallest normal subgroup such that G/[G, G] is abelian, it must be that $H \leq [G, G]$. This proves that \tilde{X} covers \bar{X} . We see that \tilde{X} is unique up to isomorphism because [G, G] is the unique subgroup with these required properties.

Let $S^1 \vee S^1$ be generated by a and b and let \tilde{X} be the space of integer grid lines in \mathbb{R}^2 . If we project the vertices of the grid to the wedge point and the horizontal and vertical sides to a and b respectively, then we see that \tilde{X} is a covering space of $S^1 \vee S^1$. We see the deck group of \tilde{X} is simply the group of integer translations $\mathbb{Z} \oplus \mathbb{Z}$. As any vertex can be translated to any other vertex via translation, this covering is normal. Since

$$\mathbb{Z}*\mathbb{Z}/[\mathbb{Z}*\mathbb{Z},\mathbb{Z}*\mathbb{Z}]=(\mathbb{Z}*\mathbb{Z})_{\mathrm{ab}}=\mathbb{Z}\oplus\mathbb{Z},$$

we see that this is indeed the universal abelian covering space of $S^1 \vee S^1$. Similarly the universal abelian covering space of $S^1 \vee S^1 \vee S^1$ is simply the integer grid residing in \mathbb{R}^3 .

b) Assume G is finite. Similar to how [G, G] is the smallest normal subgroup of G such that G/[G, G] is abelian (which is really just a group with nilpotent class 1), if we let $G_0 = G$ and $G_i = [G_{i-1}, G]$ for $i \geq 1$, then G_i is the smallest normal subgroup of G such that G/G_i is nilpotent with class i. Since G is finite, these G_i must converge after some finite number of

steps. Let $H = \bigcap_i G_i$ be this group. We see that H is the smallest normal subgroup of G such that G/H is nilpotent. The existence of a universal nilpotent covering space follows similarly from the previous exercise.

I'm not sure how to prove that such an H exists if G is infinite, though. And unfortunately, I also have no idea how to describe the universal nilpotent covering space of $S^1 \vee S^1$.

Ex 2. Prove that a closed, orientable surface M_g^2 of genus g has a connected normal covering space with deck group \mathbb{Z}^n if and only if $n \leq 2g$. Draw pictures and understand for $g \in \{0, 1, 2\}$ and all possible n.

Proof. From the first few pages of the book (specifically page 5), a closed orientable surface M_g^2 can be constructing as a CW complex involving one 0-cell, 2g 1-cells, and 1 2-cell. This means that the fundamental group of M_g^2 is the free group on 2g elements modded by a single relation, specifically

$$\pi_1(M_q^2) = \langle a_1, b_1, a_2, b_2, \dots, a_g, b_g \mid [a_1, b_1][a_2, b_2] \dots [a_g, b_g] \rangle.$$

By Exercise 1, the universal abelian cover of M_g^2 has deck group $\pi_1(M_g^2)_{ab} \simeq \mathbb{Z}^n$ (as the modded relation becomes trivial in the abelianization). Since this covers all over abelian covers, there is no cover with deck group \mathbb{Z}^m for m > 2g.

Since the group

$$G = \langle a_1, b_1, a_2, b_2, \dots, a_q | [a_1, b_1] [a_2, b_2] [a_{q-1}, b_{q-1}] \rangle$$

is a subgroup of $\pi_1(M_g^2)$, there is a covering of M_g^2 with fundamental group G. Similar to the previous paragraph, this covering has its own universal abelian covering space, which has deck group $\pi_1(G)_{ab} \simeq \mathbb{Z}^{n-1}$. Since this space covers a space covering M_g^2 , it is a covering of M_g^2 as well. Note that since normality can be defined purely in terms of the automorphisms of the covering space, this means that the cover is still normal over M_g^2 . We can continue removing generators from G in this fashion to get abelian covering spaces with deck group \mathbb{Z}^n for all $n \leq 2g$.

Here are the pictures for $g \in \{0, 1, 2\}$ and all possible n (found on the next page):

Ex 3. Recall that each fiber $p^{-1}(x)$ of the universal cover $p: \tilde{X} \to X$ admits a left action by the deck group and a right action by $\pi_1(X,x)$. Remind yourself why these actions are both free and transitive and that they commute. When are they the same action?

Proof. Since \tilde{X} is a universal cover, let $\varphi : \operatorname{Deck}(\tilde{X}) \to \pi_1(X, x_0)$ be the usual isomorphism. The question is does this isomorphism agree across the two actions. To prove this, let d and b be deck transformations and α and β be loops that lift to paths on the fibers such that

$$\varphi(d) = \alpha, \qquad \varphi(b) = \beta.$$

Simply converting the right action $\tilde{x}.\alpha$ by $\pi_1(X,x_0)$ into a left action $\alpha.\tilde{x}$ gives use the same left action by $\operatorname{Deck}(\tilde{X})$ if and only if

$$\tilde{x}.(\alpha\beta) = (\alpha\beta).\tilde{x} = (db).\tilde{x} = d.(b.\tilde{x}) = d.(\beta.\tilde{x}) = \alpha.(\beta.\tilde{x}) = (\beta\alpha).\tilde{x} = \tilde{x}.(\beta\alpha)$$

As $\pi_1(X, x_0)$ acts transitively, this is equivalent to saying that $\alpha\beta = \beta\alpha$. Thus the two actions are the same when $\pi_1(X, x_0)$ is abelian.

Ex 4. (Hatcher 1.3.32) When a space X is a CW complex, we often require maps to and from X to map cells to cells. Moreover, when $p: \tilde{X} \to X$ is a covering map between CW complexes, we further insist that the cells are sufficiently small so that cells are mapped homeomorphically to cells.

- a) Prove that the restriction to the 1-skeleton is a covering, which is normal if and only if the original covering is normal. Moreover, the groups of deck transformations of the cover and its restriction are the same.
- b) Prove that two such covers are isomorphic if and only if their restrictions to the 1-skeleton are.

Proof. Proof not completed. \Box