INFLUÊNCIA DO TAMANHO DAS PARTÍCULAS NA COR DE EXTRATOS DE SOJA

Andrielly Rosa Lima¹, Julia Martinez², Talita Kato¹ e Neusa Fátima Seibel¹

¹Universidade Tecnológica Federal do Paraná– Campus Londrina. Programa de Pós-Graduação em Tecnologia de Alimentos (PPGTAL)

¹Universidade Tecnológica Federal do Paraná - Campus Londrina. PIBIC/CNPq

Contato: neusaseibel@utfpr.edu.br

https://doi.org/10.5281/zenodo.15464046

Em matrizes alimentares as características presentes, físicas ou químicas, influenciam na qualidade do produto, como o tamanho das partículas geradas na etapa de trituração dos grãos para a elaboração do extrato de soja.

INTRODUÇÃO

Extrato de soja é a bebida oriunda dos grãos após a maceração, trituração e separação da fração sólida, okara, tipicamente da culinária oriental, o qual fornece proteínas de alta qualidade biológica e é livre de lactose. Para a população ocidental o extrato de soja tem sabor desagradável, assim, pode-se iniciar o processo com a inativação enzimática, a qual minimiza o sabor adstringente. Visando o clareamento do extrato de soja o tempo da maceração foi aumentado, em relação ao processo tradicional, e a água utilizada descartada, já que esta carrega parte dos compostos coloridos das cascas (SEIBEL, 2018).

Nos alimentos, o tamanho das partículas é definido pelas etapas de produção como a trituração, onde a temperatura pode afetar a dureza influenciando a quebra em partículas menores, assim como a umidade pode causar inchaço e agregação das partículas, aumentando o tamanho. A cor dos alimentos industrializados recebe a influência dos ingredientes e do processamento aplicado, sendo o atributo sensorial mais valorizado pelos consumidores, que geralmente associam a cor com o sabor, assim, instrumentos de medição colorimétrica são utilizados no controle de qualidade (SEIBEL, KATO, LIMA, 2022).

DESENVOLVIMENTO

Grãos oriundos de quatro diferentes safras foram branqueados e macerados em água *over night*. Após o peneiramento, os grãos foram fervidos em água na proporção 1:10 por 5 minutos, triturados e centrifugados, obtendo-se os extratos e os okaras úmidos. Os extratos elaborados foram comparados entre si quanto ao tamanho das partículas e cor. As partículas foram avaliadas por espalhamento dinâmico de luz - DLS (Litesizer 500, ANTON PAAR) e a cor foi medida pelo Colorímetro Konica Minolta CR410.

A partir dos resultados do diâmetro hidrodinâmico das partículas dos extratos de soja, foi verificado que os grãos das safras 15/16 e 19/20 geraram partículas com tamanhos similares, diferindo das outras duas amostras (Tabela 1). O índice de polidispersão da amostra 16/17 foi menor (21,73), diferindo (p<0,05) das demais amostras; mesmo assim, esta amostra também se caracterizou como heterogênea, pois o valor foi acima de 20%, sendo um perfil de matrizes alimentares. Essas variações dos dados podem ser observadas nas imagens geradas pelo equipamento (Figura 1). O Potencial Zeta do extrato de soja da safra 19/20 foi maior, diferindo dos demais, mas as quatro amostras apresentaram dispersão coloidal estável, já que o Potencial Zeta foi maior do que -30 e as moléculas presentes são predominantemente de cargas negativas.

Tabela 1. Tamanho das partículas e cor dos extratos de soja.

Safra dos grãos	Diâmetro Hidrodinâmico (nm)	Índice de polidispersão (%)	Potencial Zeta	L*	a*	b*
15/16	353,03 ^b	28,03ª	-33,27b	57,52° ±0,15	-4,69 ^b ±0,02	3,28 ^a ±0,14
	± 3,89	± 0,40	± 0,51			
16/17	283,03 ^c	21,73 ^b	-33,73b	63,23 ^a ±0,39	-4,81 ^a ±0,03	3,27ª ±0,02
	± 11,94	± 1,69	± 0,35			
18/19	484,50 ^a	26,63a	-33,37b	54,53 ^d ±0,63	-4,25° ±0,01	1,86° ±0,17
	± 30,68	± 2,36	± 0,49			
19/20	369,90 ^b	27,30 ^a	-36,27a	58,98 ^b	-4,70 ^b	2,44 ^b
	± 12,86	± 1,35	± 0,40	±0,21	±0,04	±0,10

O parâmetro L* indicou que os extratos de soja são claros, mas apresentou diferença (p<0,05) entre todas as amostras, sendo o extrato elaborado com os grãos da safra 16/17 o mais claro (63,23) e da safra 18/19 o mais escuro (54,53). Estes resultados de luminosidade estão diretamente relacionados com os parâmetros a* e b* que indicaram cor verde e amarela, respectivamente, cujas intensidades foram maiores no extrato dos grãos da safra 16/17 e menores no extrato dos grãos da safra 18/19.

Figura 1. Tamanho das partículas (nm) dos extratos de soja das safras 15/16 (A), 16/17 (B), 18/19 (C) e 19/20 (D).

A cor dos grãos de soja utilizados para elaborar os extratos em questão foi analisada por LIMA, SANTOS E SEIBEL (2021), onde a luminosidade foi intermediária e não apresentou diferença estatística entre as amostras. O parâmetro a* dos grãos apresentou cor oposta aos extratos, sendo vermelha, com maior intensidade nos grãos da safra 15/16. E o parâmetro b* indicou cor amarela, com intensidade de oito a nove vezes maior do que os extratos.

CONSIDERAÇÕES FINAIS

A cor dos produtos alimentícios elaborados a partir de matérias-primas naturais é influenciada pela cor original, no entanto, as etapas de produção e os ingredientes das formulações geram alterações. No caso dos extratos de soja, a interferência ocorreu pela maceração, que solubilizou compostos coloridos dos grãos, adição de água e principalmente pela trituração, pois foi verificada uma relação entre o tamanho das partículas e a cor, sendo inversamente proporcional. Assim, o extrato de soja com as menores partículas teve a maior luminosidade e intensidade das cores medidas pelos parâmetros a* e b*.

REFERÊNCIAS

LIMA, Andrielly Rosa de; SANTOS, Milena; SEIBEL, Neusa Fátima. AVALIAÇÃO TECNOFUNCIONAL E INSTRUMENTAL DE GRÃOS DE SOJA BRS 232 DE DIFERENTES SAFRAS. In: Anais do XVI Encontro Regional Sul de Ciência e Tecnologia de Alimentos. Anais. Curitiba (PR) UFPR, 2021. Disponível em: https://www.even3.com.br/anais/xvierscta2021/395195-AVALIACAO-TECNOFUNCIONAL-E-INSTRUMENTAL-DE-GRAOS-DE-SOJA-BRS-232-DE-DIFERENTES-SAFRAS. Acesso em: 02/05/2025.

SEIBEL, Neusa Fátima. Soja: cultivo, benefícios e processamento. Curitiba: CRV, 2018. 148p.
SEIBEL, Neusa Fátima, KATO, Talita, LIMA, Andrielly Rosa. Importância da difração de raios X e colorimetria em alimentos . In: Avanços em Ciência e Tecnologia de Alimentos. Editora Científica Digital. p. 219-235. Vol. 6. 2022. DOI: 10.37885/211106668.

