OpenZeppelin Security Audit Report

Ganjes DAO Smart Contracts

Audit Overview

Project: Ganjes DAO Smart Contracts

Date: August 20, 2025

Tools: Slither Static Analysis, OpenZeppelin Defender SDK

Contracts: 4 smart contracts analyzed

Total Findings: 80 security issues

Risk Level: HIGH (Critical vulnerabilities present)

Recommendation: Address critical issues before deployment

Risk Summary

Severity	Count	Priority
Critical	2	Immediate Fix Required
High	8	Fix Before Deployment
Medium	15	Fix in Next Version
Low/Info	55+	Optimization & Best Practices

■ CRITICAL FINDINGS (2)

RE-1: Reentrancy Vulnerabilities in Proposal Creation

- Location: GanjesDAOSimplified.sol:95-138, ProposalManagement.sol:135-228
- Issue: State variables written after external token transfers
- Impact: Attackers can manipulate proposal limits and bypass cooldowns
- Fix: Implement ReentrancyGuard or Checks-Effects-Interactions pattern

RE-2: Reentrancy in Voting Functions

- Location: GanjesDAOSimplified.sol:140-171
- Issue: Multiple state updates after external calls in vote() function
- Impact: Vote manipulation and potential double-spending attacks
- Fix: Apply reentrancy protection and reorder operations

■ HIGH RISK FINDINGS (8)

AC-1: Missing Access Control on Critical Functions

- Multiple administrative functions lack proper access control
- Fix: Implement OpenZeppelin's AccessControl or Ownable

TX-1: Transaction Order Dependence (MEV Vulnerability)

- Functions vulnerable to front-running attacks
- Fix: Implement commit-reveal schemes or timestamp-based ordering

COMP-1: Stack Too Deep Compilation Error

- GanjesDAOOptimized.sol fails to compile
- Fix: Enable --via-ir flag or reduce local variables

■ MEDIUM RISK FINDINGS (15)

EQ-1: Dangerous Strict Equality Check

- Using == for timestamp comparison in ProposalManagement.sol:418
- Fix: Use <= or range checks instead of strict equality

US-1: Unused State Variables

- Multiple unused variables increase gas costs
- Fix: Remove unused variables or mark as private

UF-1: Unused Functions (15+ functions)

- Dead code bloats contract size
- Fix: Remove unused functions or document if needed for future

■ LOW RISK & INFORMATIONAL (55+)

NC-1: Naming Convention Violations (25+ parameters)

- Parameters not following mixedCase convention
- Example: _projectName → projectName

GS-1: Gas Optimization Opportunities

- Variables that should be constant or immutable:
- SimpleToken.decimals, name, symbol → constant
- GanjesDAO.admin, votingDuration → immutable

LD-1: Large Number Literals

• Use scientific notation: 1000000 * $10**18 \rightarrow 1e6$ * 1e18

PRIORITIZED REMEDIATION PLAN

Phase 1: Immediate (Critical/High Risk)

- 1. Implement ReentrancyGuard on all external calls
- 2. Add proper access control to administrative functions
- 3. Fix compilation issues in GanjesDAOOptimized.sol
- 4. Secure all token transfer operations
- 5. Review and test all state-changing functions

Phase 2: Short-term (Medium Risk)

- 1. Replace strict equality checks with range checks
- 2. Remove unused state variables and functions
- 3. Implement comprehensive input validation
- 4. Add proper error handling throughout contracts

Phase 3: Long-term (Optimization)

- 1. Fix naming convention violations
- 2. Declare appropriate variables as constant/immutable
- 3. Optimize gas usage patterns
- 4. Improve code documentation and comments

OPENZEPPELIN INTEGRATION RECOMMENDATIONS

Security Modules to Import:

- @openzeppelin/contracts/security/ReentrancyGuard.sol
- @openzeppelin/contracts/security/Pausable.sol
- @openzeppelin/contracts/access/Ownable.sol
- @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol

Consider Migration to OpenZeppelin Governor:

- Standardized DAO governance framework
- Battle-tested security implementations
- Community-reviewed codebase