UNIVERSIDADE FEDERAL DE OURO PRETO CIÊNCIA DA COMPUTAÇÃO

CÉSAR GABRIEL DE PAULA BATISTA JULIANA APARECIDA BORGES MARIA CLARA MIRANDA DE SÁ

RELATÓRIO 12

Circuitos Sequenciais Básicos

MINAS GERAIS 2022

INTRODUÇÃO

Neste relatório vamos montar e analisar o funcionamento dos circuitos sequenciais básicos, onde as saídas dependem além de uma combinação das entradas, também do estado que o sistema se encontra no momento anterior da mudança de nível lógico. O circuito sequencial que vamos apresentar é conhecido como flip-flop, que é capaz de funcionar como uma memória de um bit.

Além disso, vamos entender mais sobre o flip-flop RS (R significa RESET e S significa SET). Por fim, vamos utilizar o software Multisim para montar os circuitos sequenciais e observaremos cada comportamento lógico apresentado.

DESENVOLVIMENTO

ATIVIDADE PRÁTICA 1:

Na primeira parte prática, foi pedido que fizéssemos uma tabela verdade do circuito abaixo:

Tabela feita abaixo:

Após fazer a tabela desse circuito deveríamos montar o mesmo circuito no simulador online Multisim, porém fizemos o uso do Proteus o que nos ajudou a melhor visualizar o funcionamento do circuito , e verificar o comportamento das saídas em função das entradas, o comportamento do circuito está baixo, para cada caso:

CASO 0 0:

CASO 0 1:

CASO 1 0:

CASO 1 1:

Após o teste de todos os casos, foi pedido que comparássemos com a tabela verdade gerada pelo circuito no simulador, e como podese ver para todas entradas tanto no simulador, quanto na tabela verdade, obtemos os mesmos resultados nas saídas.

ATIVIDADE PRÁTICA 2:

Na atividade prática 2, foi pedido que montássemos outra tabela verdade, porém a mesma seria do circuito abaixo, que agora possuí uma outra entrada, que é conhecida como entrada de controle, pois através dela, se controla as saídas.

Tabela verdade do circuito está logo abaixo:

T	TABELA 2						
-0		S	R	Q	a		
10		0	0.	QA	QA		
10) !	.0	1	QA	QA		
C),	1	0	QA	QA	Manten	
C),	1	1,	QA	QA.		
1		0	0	Qn.	DA		
1		0	.1	0	1		
1		1	0	1	0		
1		11	11	11	10	(Proifida)	

Após montar a tabela acima, deveríamos fazer , assim como no circuito acima, sua simulação no Multisim, porém assim como foi feito no circuito de cima, utilizamos o Proteus para melhor visualização. Cada caso estará disposto abaixo, sendo 8 casos diferentes.

CASO 0 0 0:

CASO 0 0 1:

CASO 0 1 0:

CASO 0 1 1:

CASO 1 0 0:

CASO 1 0 1:

CASO 1 1 0:

CASO 1 1 1:

Após isso foi pedido que comparássemos os resultados obtidos em nossa simulação, e da nossa tabela verdade feita, e os resultados conferem. Uma coisa que podemos observar é que sempre que o nível lógico de C for baixo, a saída final será o próprio resultado anterior, ou seja, não vai ter nenhuma alteração.

Além disso, foi pedido em sala que fizéssemos o circuito abaixo:

E sua tabela verdade está abaixo:

D	Q	Q ₁
0	0	0
1	0	1

Porém ela está incorreta, quando a entrada em D é 0, a saída em Q e Q1 é igual a 0 e 1 respetivamente. Os testes feitos no Proteus está logo abaixo:

CASO 0:

CASO 1:

E as tabelas verdades se conferem, com a aquele erro concertado. Com isso conclui-se o que foi pedido no laboratório, e na atividade prática.

CONCLUSÃO:

Com a realização deste relatório aprendemos mais uma vez a montar tabelas verdades observando o circuito, além de fazê-lo em um simulador. Aprendemos mais sobre circuitos sequencias, e aprendemos que dependendo da entrada ele pode retornar um valor, novo ou o valor antigo, ou seja manter o valor anterior, que pode ser de um circuito anterior, ou vindo de chaves.