MIDPOINT

Variable Key:

Y₁ - The function to be evaluated

A - Lower bound

B - Upper bound

N – Number of subintervals

T – The x value for the left bound of the current interval

R – The approximate area under the curve

D – The width of each interval

C – The midpoint of the current interval

H – The value of the function at the current midpoint

I - Current number of Iterations

Program:

Input "INTEGRAND:",Y₁

Input "LOWER LIMIT:",A Input "UPPER LIMIT:",B

Input "SUB-INTERVAL:",N

prgmEQUATION

 $A \rightarrow T$

 $0\rightarrow R$

 $(B-A)/N \rightarrow D$

For(I,1,N,1)

T+.5*D→C

 $Y_1(C) \rightarrow H$

 $R+H*D\rightarrow R$

A+I*D→T

End

Disp "AREA IS:",R

Stop

Comments: (not in actual program)

Trapezoidal

Variable Key:

Y₁ - The function to be evaluated

A - Lower bound

B - Upper bound

N – Number of subintervals

T – The x value for the left bound of the current interval

R – The approximate area under the curve

D – The width of each interval

I - Current number of Iterations

Program:

Input "INTEGRAND:",Y₁

Input "LOWER LIMIT:",A

Input "UPPER LIMIT:",B

Input "SUB-INTERVAL:",N

prgmEQUATION

 $A \rightarrow T$

 $0\rightarrow R$

 $(B-A)/N \rightarrow D$

For(I,1,N-1,1)

A+I*D→T

 $R+Y_1(T) \rightarrow R$

End

2*R→R

 $R+Y1(A)+Y1(B) \rightarrow R$

R*0.5*D→R

Disp "INTERVALS:",N

Disp "AREA IS:",R

Stop

Comments: (not in actual program)

Simpson's 1/3 Rule

Variable Key:

Y₁ - The function to be evaluated

A - Lower bound

B - Upper bound

N - Number of subintervals

T – The x value for the left bound of the current interval

R – The total approximate area under the curve

O – Summation of the area for the odd intervals

E – Summations of the area of the even intervals

D – The width of each interval

I - Current number of iterations for the odd intervals

J – Current number of iterations for the even intervals

Program:

Input "INTEGRAND:",Y₁ Input "LOWER LIMIT:",A Input "UPPER LIMIT:",B Input "SUB-INTERVAL:",N prgmEQUATION

A→T 0→R 0→O 0→E

 $(B-A)/N \rightarrow D$

For(I,1,N-1,2) A+I*D \rightarrow T O+Y1(T) \rightarrow O End

For(J,2,N-2,2) A+J*D \rightarrow T E+Y1(T) \rightarrow E End

4*O→O 2*E→E O+E+Y1(A)+Y1(B) →R

 $R*(1/3)*D \rightarrow R$

Disp "INTERVALS:",N Disp "AREA IS:",R

Comments: (not in actual program)

//Input the equation
//Input Lower limit
//Input upper limit
//Input the number of sub-intervals
//Call the Equation sub-program, sets Y₁ to the equation specified in the Equation sub-program
//Set the T to the lower limit
//Set the odd interval summation variable to zero
//Set the even interval summation variable to zero
//Set the total approximation variable to zero
//Calculate the width of the intervals and assign to delta