# Discrete Random Variables Chapter 3

Kevin Lutz PhD Candidate of Statistics Wednesday, September 6, 2022

Department of Mathematical Sciences The University of Texas at Dallas



## Table of Contents

1 Random Variable

2 Discrete RV

3 Mean/Variance/Standard Deviation

## What is a Random Variable?

#### Definition: Random Variable

A random variable (RV) is a numerical outcome of a probability experiment where the outcome is determined randomly and by chance.

- We denote a RV using capitol letters:  $X, Y, Z, \dots$
- We denote a particular value of a RV using lower case letters:  $x,y,z,\ldots$ 
  - The expression X = x tells us the random variable (X) and a particular outcome (x).
- Mathematically, the RV is a rule or mapping from the sample space to a numerical outcome.

$$X:\Omega\to\mathbb{R}$$

## Example

A coin is flipped 10 times. The results are:

$$\{TTHTHTTHHH\}$$

- The value of a RV can be thought of as the "answer to a question".
  - 1 Let X = the number heads.

$$X = 5$$

2 Let Y = the number of tosses until the first H occurs.

$$Y = 3$$

## Table of Contents

1 Random Variable

2 Discrete RV

3 Mean/Variance/Standard Deviation

### Definition

#### Discrete Random Variable

A discrete r.v. is a variable whose value is obtained by counting. The value of the random variable X can only take on values from  $\{0,1,2,3,4,\ldots\}$  and so X is countably finite.



- $\blacksquare$   $\mathbb N$  is the set of natural numbers:  $\{0,1,2,3,4,\ldots\}$  so we say  $X\in\mathbb N$  for any discrete r.v.
- Discrete can NOT be negative, decimals/fractions,  $\pi$ , etc.
- If a r.v. can take on *any* real number, then it is continuous (i.e.,  $X \in \mathbb{R}$ ).

# Examples

#### Discrete or Continuous?

| Random Variable                                                       | Answer     |
|-----------------------------------------------------------------------|------------|
| 1. Number of students in this class.                                  | Discrete   |
| <ol><li>Number of people attending the World Series.</li></ol>        | Discrete   |
| 3. Today's temperature at UTD.                                        | Continuous |
| <ol><li>Amount of time spent working<br/>on HW1.</li></ol>            | Continuous |
| <ol><li>Number of heads when flipping a coin 20 times.</li></ol>      | Discrete   |
| <ol><li>The distance or time it takes to<br/>get to school.</li></ol> | Continuous |

## Probability Distribution for a Discrete R.V.

- Probability Distribution
  - $\blacksquare$  A table/list of the probabilities associated with each value of X.
  - 2 Called the "probability mass function" or p.m.f.
  - B Properties: The 3 Axioms!
  - 4 The probability that X = x is notated as

$$P(X=x)$$
 or  $f_X(x)$ 

Example

| X    | 1   | 2   | 3   | 4    | 5    |
|------|-----|-----|-----|------|------|
| P(X) | 0.1 | 0.2 | 0.4 | 0.25 | 0.05 |

Plots of the p.m.f.



# Cumulative Probability Distribution for a Discrete R.V.

- Cumulative Probability Distribution
  - A function giving the probability that the r.v. X is less than or equal to x.
  - 2 Called the "cumulative distribution function" or c.d.f.
  - The probability that  $X \leq x$  is notated as

$$P(X \le x) \text{ or } F_X(x)$$

Example

| X                         | 1 | 2 | 3 | 4 | 5 |
|---------------------------|---|---|---|---|---|
| $\frac{P(X)}{P(X \le x)}$ |   |   |   |   |   |

Plots of the c.d.f.





## Your Turn

The cumulative probability distribution for the r.v. X is given:

| X | $F_X(x)$ |
|---|----------|
| 0 | 0.08     |
| 1 | 0.30     |
| 2 | 0.43     |
| 3 | 0.71     |
| 4 | 1        |
|   |          |

Compute and interpret:

- $\mathbf{I}$   $F_X(2)$
- $f_x(2)$

## Table of Contents

1 Random Variable

2 Discrete RV

3 Mean/Variance/Standard Deviation

## Statistical Summaries of a R.V.

- Statistical summaries are numbers that describe data or a r.v.
- Measures of center and spread (width) are common summaries.



- Measure of Center
  - Expected Value (which is the mean)
- Measure of Spread
  - Variance
  - Standard Deviation

# Calculating the Mean

#### Formula: The Mean of a Discrete R.V.

The mean or expected value of a discrete r.v. X is calculated as

$$E(X) = \sum_{i=1}^{n} x_i \cdot P(x_i)$$

where the expected value of X is denoted as E(X).

- The symbol  $\mu$  is sometimes used in place of E(X).
- Example: Mean of a Probability Distribution

$$\mu = E(X)$$

$$= (1)(0.1) + (2)(0.2) + (3)(0.4)$$

$$+ (4)(0.25) + (5)(0.05)$$

$$= 2.95$$

# Additional Examples

(a) Suppose the following are your overall scores for this class. What is your final grade based on my grading criteria?

| Category | HW  | Quizzes | Exam 1 | Exam 2 |
|----------|-----|---------|--------|--------|
| Score    | 90  | 80      | 75     | 88     |
| Weight   | 30% | 10%     | 30%    | 30%    |

(b) You play a game that costs \$5. One winner receives a prize of 1000. If the probability of winning is 1/10000, what is your expected return?

See handwritten solutions.

# Variance/Standard Deviation

| Measure               | Abbreviation      | Notation   | Units                            |
|-----------------------|-------------------|------------|----------------------------------|
| 1. Variance           | Var(X)            | $\sigma^2$ | squared units                    |
| 2. Standard Deviation | $StD(X) \\ SD(X)$ | σ          | Un-squared units<br>Same as data |

- Variance measures the expected squared distance (or "deviation") of all the data from the mean.
  - "On average, the data are \_\_\_ units<sup>2</sup> from the mean."

#### Formula: Variance and Standard Deviation of a Discrete R.V.

The variance of a discrete r.v. is computed as

$$\sigma^{2} = \sum_{i=1}^{n} (x_{i} - \mu)^{2} \cdot P(x_{i})$$

and the standard deviation is simply  $\sigma = \sqrt{variance}$ .

# Variance/Standard Deviation

- Variance (and standard deviation) indicates the wideness of a distribution.
- Larger means wider!
- Example:



- Red is wider than black and green.
  - .:. Red's variance is the greatest.
- Black and green look equally as wide.
  - ∴ The variances of black and green should be about the same, but less than red's variance.

## Example

Calculate the variance and standard deviation of X given by:

| X    | 1   | 2   | 3   | 4    | 5    |
|------|-----|-----|-----|------|------|
| P(X) | 0.1 | 0.2 | 0.4 | 0.25 | 0.05 |

 $\implies$  We already found the mean  $\mu=E(X)=2.95$ . Then,

$$\Rightarrow \sigma^2 = \sum_{i=1}^{n} (x_i - \mu)^2 \cdot P(x_i)$$

$$= (1 - 2.95)^2 \cdot (0.1) + (2 - 2.95)^2 \cdot (0.2) + (3 - 2.95)^2 \cdot (0.4)$$

$$+ (4 - 2.95)^2 \cdot (0.25) + (5 - 2.95)^2 \cdot (0.05)$$

$$= 1.0475$$

Variance:  $\sigma^2 = 1.0475 \text{ units}^2$ 

Standard Deviation:  $\sigma = \sqrt{1.0475} \approx 1.023474$  units

## Alternative Formula for Variance

#### Alternative Formula for Variance

The variance of the r.v. X can also be found using

$$\sigma^2 = E(X^2) - [E(X)]^2$$

Example: Find the variance of the r.v. X:

| P(X) |
|------|
| 0.1  |
| 0.2  |
| 0.4  |
| 0.25 |
| 0.05 |
|      |

Step 1: We can use the fact that  $E(X)=2.95\,$  which gives so far

$$Var(X) = E(X^2) - [2.95]^2$$

# Alternative Formula for Variance (Continued)

#### Alternative Formula for Variance

The variance of the r.v. X can also be found using

$$\sigma^2 = E(X^2) - [E(X)]^2$$

Step 2: Calculate  $E(X^2)$ : Square each X value and use the fact that

| $\overline{X}$ | $X^2$ | P(X) |
|----------------|-------|------|
| 1              | 1     | 0.1  |
| 2              | 4     | 0.2  |
| 3              | 9     | 0.4  |
| 4              | 16    | 0.25 |
| 5              | 25    | 0.05 |
|                |       |      |

$$E(X^{2}) = \sum_{i=1}^{n} x^{2} \cdot P(x_{i})$$

$$= 1 \cdot (0.1) + 4 \cdot (0.2) + 9 \cdot (0.4)$$

$$+16 \cdot (0.25) + 25 \cdot (0.05)$$

$$= 9.75$$

# Alternative Formula for Variance (Continued)

#### Alternative Formula for Variance

The variance of the r.v. X can also be found using

$$\sigma^2 = E(X^2) - [E(X)]^2$$

Step 3: Put it all together:

| $\overline{X}$ | $X^2$ | P(X) |
|----------------|-------|------|
| 1              | 1     | 0.1  |
| 2              | 4     | 0.2  |
| 3              | 9     | 0.4  |
| 4              | 16    | 0.25 |
| 5              | 25    | 0.05 |

$$\sigma^{2} = E(X^{2}) - [E(X)]^{2}$$

$$= 9.75 - [2.95]^{2}$$

$$= 1.0475\checkmark$$

Same answer as before!

## Your Turn

#### Calculate the mean and variance of X:

| P(X) |
|------|
| 0.01 |
| 0.10 |
| 0.38 |
| 0.51 |
|      |

