Report 11183 July 1998

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Report
Subassembly and Complete Instrument Assembly
EOS AMSU-A1 Antenna Drive Subassembly,
P/N 1356008-1, S/N 202

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

AMSU-A VERIFICATION TEST REPORT

TEST ITEM:

AMSU- A1 ANTENNA DRIVE SUBSYSTEM

PART OF P/N: 1356008-1 SERIAL NUMBER: 202

LEVEL OF ASSEMBLY:

SUBASSEMBLY AND COMPLETE INSTRUMENT

ASSEMBLY

TYPE HARDWARE:

FLIGHT

VERIFICATION: PROCEDURE NO. AE-26002/1C

TEST DATE:

SUBSYSTEM:

START DATE:

18 December 1997

FINISH DATE:

10 April 1998

TABLE OF CONTENTS

ITEM

1.0	INTRODUCTION
2.0	SUMMARY
3.0	TEST CONFIGURATION
4.0	TEST SETUP
5.0	TEST RESULTS
5.1	REFLECTOR DRIVE ASSEMBLIES
5.2	CIRCUIT CARD ASSEMBLIES
5.3	SIGNAL PROCESSOR
5.4	TRANSISTOR ASSEMBLY
5.5	ANTENNA DRIVE SUBSYSTEM TESTS
5.5.1	SCAN MOTION AND JITTER
5.5.2	NOISY BUS PEAK CURRENT AND RISE TIME
5.5.3	RESOLVER READING AND POSITION ERROR
5.5.4	GAIN/PHASE MARGIN
5.5.5	OPERATIONAL GAIN MARGIN
6.0	CONCLUSIONS AND RECOMMENDATIONS
7.0	TEST DATA

1.0 INTRODUCTION

An antenna drive subsystem test was performed on the EOS AMSU-A1, S/N 202 instrument. The objective of the test was to demonstrate compliance with applicable paragraphs of AMSU-A specifications S-480-80. Tests were conducted at both the subassembly and instrument level.

2.0 SUMMARY

The antenna drive subsystem of the EOS AMSU-A1, S/N 202, P/N 1356008-1, completed acceptance testing per AES Test Procedure AE-26002/1C. The test included: Scan Motion and Jitter, Noisy Bus Peak Current and Rise Time, Resolver Reading and Position Error, Gain/Phase Margin, and Operational Gain Margin.

The drive motors and electronic circuitry were also tested at the component level. The drive motor test includes: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The electronic circuitry was tested at the Circuit Card Assembly (CCA) level of production; each test exercised all circuit functions. The transistor assembly was tested during the W3 cable assembly (1356424-1) test. Refer to Figure 1 for test flow.

Antenna Subsystem and Subsystem Component Test Flow Figure 1.

The antenna drive subsystem satisfactorily passed all of the performance requirements. There were no failures in any of the antenna drive components during subsystem testing.

The results of the subsystem and component level testing are discussed in more detail in the following sections:

Reflector Drive Assembly	5.1
Circuit Card Assemblies	5.2
Signal Processor	5.3
Transistor Assembly	5.4
Antenna Drive Subsystem	5.5

3.0 TEST CONFIGURATION

The *Reflector Drive Assembly Tests* confirm the operability of the motor under test. The test configuration includes, the motor, motor shaft, bearings, and a supporting housing.

The Circuit Card Assembly (CCA) Tests confirm the operability of each CCA. Each test includes the CCA under test, electronic test fixtures, and the necessary loads.

A segment of the *Signal Processor Tests* ensures the scan drive electronics are functioning properly prior to it's assembly into the instrument. The test configuration includes:

- Timing and Control CCA
- Scan Control Interface CCA
- Mux/ Relay Control CCA
- Interface Converter CCA
- Resolver Data Isolator CCA
- R/D Converter CCA
- Motor Driver CCA
- Test fixture and cabling to simulate the 1553 bus interface
- Test fixture and cabling to interrogate and analyze positional data
- Test motor and inertia wheel

The *Transistor Assembly Test* verifies the correct wiring of the transistor assembly and associated cabling. Test configuration includes the CKT 1000 (continuity and Hi-Pot tester), and test fixtures.

The Antenna Drive Subsystem Tests:

- Are configured with the same motor control CCA's used in the signal processor test, interconnecting wiring, the power transistor assembly, and the drive assembly with reflector.
- The antenna drive subsystem components were all installed in the instrument when the subsystem test was performed.
- DC power for the motor control circuit cards was provided by a DC/DC converter simulator P/N: 1359322-1. The simulator operates on 120VAC facility supplied

power. The power for the reflector motor drive circuits however was provided directly by the STE Noisy Bus power supply.

4.0 TEST SETUP

The antenna drive subsystem tests are performed during system integration. During system integration testing, the instrument is proven electrically safe via ground isolation, and power distribution checks. Next, the communication link is exercised to ensure commands are received and interpreted correctly. The Antenna Drive Subsystem Test is then performed.

5.0 TEST RESULTS

The Antenna Drive Subsystem components designated for use in the EOS AMSU-A1 instrument are shown in Table 1.

CCA (A1-1)	S/N
Resolver Data Isolator Assembly (A1-1)	F25
Interface Converter Assembly (A1-1)	F19
Motor Driver Assembly (A1-1)	F01
R/D Converter/ Oscillator Assembly (A1-1)	F21

CCA (A1-2)	S/N
Resolver Data Isolator Assembly (A1-2)	F26
Interface Converter Assembly (A1-2)	F20
Motor Driver Assembly (A1-2)	F02
R/D Converter/ Oscillator Assembly (A1-2)	F16

OTHER	S/N
Reflector Drive Motor (A1-1)	F04
Reflector Drive Motor (A1-2)	F05
Signal Processor	F01
Transistor Assembly (W3 cable)	N/A

Table 1.
EOS AMSU-A1 S/N: 202 Antenna
Subsystem Component S/N Designations

During preliminary testing of these components (in preparation for the antenna drive subsystem test), several component failures occurred. The component failures and system related dispositions are listed below:

• Reflector Drive Motor (A1-1) - during assembly test, it was noted that the motor was binding. It was determined that excessive bonding material was used and it flowed onto the shaft. The shaft was cleaning

and tests showed a positive resolution. The process planning was altered to reduce the risks of recurrence.

• Reflector Drive Motor (A1-2) - during vibration testing the resonant frequency shifted. The motor was disassembled but anomalies were found. Electronic tests found nothing abnormal either. The motor was successfully re-vibrated without failure.

All other components designated for use in the EOS AMSU-A1 instrument (pertaining to the scan drive circuitry) passed on the first time through component testing.

5.1 REFLECTOR DRIVE ASSEMBLIES

The tests performed on this unit are: Starting Torque Test, Motor Commutation Test, Resolver Operation/ No-Load Speed Test, and Random Vibration. The Motor Commutation and Resolver Operation tests are performed both pre and post-vibration.

Starting Torque

The starting torque test is performed on the rotating segment of the drive assembly to verify the torque associated with bearing friction. Reflector drive assembly (F04) failed the starting torque test at ambient temperature. The motor was binding due to a process error. Bonding material flowed onto the motor shaft preventing it from turning with voltage applied. The shaft was cleaned and re-tested. The reflector drive assembly (F04) then passed the starting torque test at ambient temperature as well as at the colder plateaus.

Reflector drive assembly (F05) passed the starting torque test at ambient temperature as well as at the colder plateaus first time through testing.

Motor Commutation Test

This test is performed to determine the commutation characteristics of the motor under test. Both reflector drive assemblies (F04 and F05) passed the motor commutation test both pre- and post-vibration tests without incident.

Resolver Operation/ No-Load Speed Test

This test is performed to verify resolver operation as well as speed characteristics and back electromotive force of the motor. Both reflector drive assemblies (F04 and F05) passed the resolver operation/ no-load speed test both pre- and post-vibration tests without incident.

Random Vibration

Reflector drive assembly (F04) passed vibration testing first time through. The motor assembly also passed the pre- and post-vibration electronic tests as well as the post-vibration visual inspection without incident.

Reflector drive assembly (F05) experienced a significant change in resonant frequency at the random vibration, -6db level. The motor was disassembled, but no anomalies were found. The motor was successfully re-tested and returned to vibration testing. The motor was re-vibrated without incident. The reflector drive assembly passed the pre- and post-vibration electronic tests as well as the post-vibration visual inspection without incident.

5.2 CIRCUIT CARD ASSEMBLIES

Test procedures were prepared for each motor control circuit card; document revision status is controlled by reference in the shop order. The cards were individually tested to the procedures and results were recorded on data sheets found in Appendix A. The following list indexes the CCA Test Data Sheets:

Appendix A1 Resolver Data Isolator Assembly (A1-1)
Appendix A2 Resolver Data Isolator Assembly (A1-2)
Appendix A3 Interface Converter Assembly (A1-1)
Appendix A4 Interface Converter Assembly (A1-2)
Appendix A5 Motor Driver Assembly (A1-1)
Appendix A6 Motor Driver Assembly (A1-2)
Appendix A7R/D Converter/ Oscillator Assembly (A1-1)
Appendix A8

All circuit card assemblies passed testing the first time through. The assembly build shop orders contain the part number and accept tag record the of test and select resistors.

5.3 SIGNAL PROCESSOR

For the first time, the entire antenna drive motor electronics is mated together. The test instrumentation commands and interrogates the electronics during this segment of testing. The instrumentation sends position commands to the Interface Converter CCA. The Interface Converter D/A's the command and provides inputs to the Motor Driver CCA. The test motor (instrumentation) responds to the drive signal and feeds back positional data via resolver outputs. The instrumentation then interrogates the Resolver Data Isolator CCA for position data. A comparison is made in the instrumentation between the

position command sent and the actual position received. The pass/ fail indication is presented to the operator for test data sheet recording.

The signal processor assembly (F01) passed all scan drive tests.

5.4 TRANSISTOR ASSEMBLY

All transistor assemblies are tested along with their respective W3 cable. The cable is continuity, then hi-pot tested prior to attaching the transistor circuitry. Each transistor pair is exercised validating the turn on voltage, current drawn, and cable wiring as well. The W3 cable assembly was placed on an Inspection Report (IR# 101780) for cracks in a connector. The connector was subsequently repair by applying .003 inch minimum 2216 epoxy over the cracks. This action precludes the separation of any connector molding material.

The W3 cable and transistor assembly underwent component testing and passed without incident.

5.5 ANTENNA SUBSYSTEM DRIVE TESTS

The antenna drive motor electronics mates with the instrument microprocessor for the first time during this segment of testing. The microprocessor sends position commands from the memory CCA to the Interface Converter CCA. The Interface Converter D/A's the command and provides inputs to the Motor Driver CCA. The Reflector Drive Motor responds to the drive signals and feeds back positional data via the resolver outputs. The microprocessor then interrogates the Resolver Data Isolator CCA for position data. The microprocessor in turn communicates with the 1553 interface which subsequently relays positional data to the STE.

During other segments of the test, positional data is monitored via a potentiometer attached to the shaft of each reflector drive assembly. This provides scan characteristic information in regard to overshoot, jitter, and beam position transition timing for each motor assembly.

The remaining paragraphs in this section discuss tests that ensures the instrument complies with specific operating parameters. Prior to conducting these tests there is a series of preliminary checks that are run to select component values that customize the operating parameters of each motor. These checks perform the following functions:

- Program "on board" memory with Beam Position Pointing Angles for each reflector drive assembly
- Adjust for peak Motor Current Limits on both A1-1 and A1-2 motor drive circuits
- Observe Preliminary Scan Dynamics on both A1-1 and A1-2 motor drive circuits
- Identify Mechanical Resonant Frequencies of each reflector drive assembly

Beam Position Pointing Angles are calculated from Nadir pointing direction which is determined on the antenna range. The instrument's EPROMs (EPROMs for testing; PROMs for final configuration) are programmed to reflect the position commands. The initial programming may require fine tuning; fine tuning is determined during the remaining segments of the test procedure.

Motor Current Limits were adjusted, via selecting "test and select" resistors, to comply with the specification requirement; less than 1 amp peak current.

Preliminary Scan Dynamics looked good; transition times, overshoot and jitter were all acceptable at the sampled pointing directions (5).

The *Mechanical Resonant Frequencies* were identified; notch filters were calculated and installed to compensate for these resonant frequencies.

5.5.1 SCAN MOTION AND JITTER

In this test, the antenna position was measured in a series of five 8-sec full scans. The measurement was made with a 1-turn test potentiometer temporarily affixed to the rear end of the motor shaft. A Dynamic Signal Analyzer (DSA) was connected to the pot wiper to record the antenna position data. Five scans of each A1-1 and A1-2 were captured and stored on the AMSU-A1 Test Data File disc. One representative waveform from each subassembly is presented in Appendix B1 (A1-1) and Appendix B34 (A1-2).

Each 3.33 degrees scene step was expanded and checked for both a 35 msec max step time, and a 165 msec integration period. Expanded waveforms were plotted and are presented in Appendix B2 thru B31 for the A1-1 subassembly and Appendix B35 thru B64 for the A1-2 subassembly. All of the scene steps meet the step response requirement for transition time, overshoot, and jitter.

Slew periods to the cold and warm calibration stations were measured and met requirements. A time of 0.21 sec is allocated for the 35.0 degree slew to cold cal, and 0.40 sec for the 96.67 degree slew to warm cal. Calibration station jitter was less than the \pm 5 % maximum permitted. Expanded waveforms for each subassembly were plotted and are presented in Appendix B32 and B33 (A1-1) and Appendix B65 and B66 (A1-2). The waveforms are also stored on the AMSU-A1 Test Data File disc. The test data sheets are presented in Appendix B67 (A1-1) and B68 (A1-2).

5.5.2 NOISY BUS PEAK CURRENT AND RISE TIME

The Noisy pulse load bus peak current and the rate of change of current were measured. The peak current must be less than 1A at any beam position along the scan. Peak current along the scan is .940A. The current rate of change while transitioning from one beam position to the next (including the transition to the cold calibration and warm calibration targets) should be greater than 35 microseconds. A random 3.33° step was selected; the transition to the next step was 1.6 ms. The transition to the warm cal position start and stop was significantly longer than the required 35 ms; 1.95 and 1.56 ms respectively.

The peak bus current was measured across the entire scan and met the requirement. The full scan waveform was plotted and is presented in Appendix C1. The waveform is also stored on the AMSU-A1 Test Data File disc. The test data sheet is presented in Appendix C2.

5.5.3 RESOLVER READING AND POSITION ERROR

The 14-bit command position word is stored in the "on-board" memory and is read to the motor drive circuitry under microprocessor program control. The microprocessor also reads the resolver output at each of the thirty scene stations, and at the cold and warm calibration positions. The readings are made at the start of integration (LOOK 1), and halfway into the integration period (LOOK 2). The resolver data is sent to the 1553 bus interface for subsequent transmission to the STE.

The purpose of this portion of the test is to demonstrate that the antenna is meeting beam pointing requirements.

If the antenna is out of the pointing tolerance of $> \pm 10$ counts at LOOK 1 or $> \pm 5$ counts at LOOK 2, the EPROM is reprogrammed to bring the pointing direction to within the prescribe tolerances. A copy of the STE computer print out showing the pointing direction is shown in Figure 2 for the A1-1 subassembly and Figure 3 for the A1-2 subassembly.

		Ac	tual	Differ	ence*
BP	Command	Look 1	Look2	Look 1	Look2
11	14520	14522	14522	-2	-2
2	14672	14677	14671	-5	1
3	14824	14830	14823	-6	1
4	14975	14985	14974	-10	1
5	15127	15134	15127	-7	0
6	15279	15286	15279	-7	0
7	15430	15439	15429	-9	1
8	15582	15590	15582	-8	0
9	15734	15739	15733	-5	1
10	15885	15893	15884	-8	1
11	16037	16043	16036	-6	1
12	16189	16196	16188	-7	1
13	16340	16349	16339	-9	1
14	108	116	108	-8	0
15	260	265	260	-5	0
16	411	421	410	-10	1

		Ac	tual	Differ	ence*
BP	Command	Look 1	Look2	Look 1	Look2
17	563	571	563	-8	0
18	715	720	714	-5	1
19	866	874	865	-8	1
20	1018	1023	1017	-5	1
21	1170	1176	1169	-6	1
22	1321	1331	1321	-10	0
23	1473	1479	1473	-6_	0
24	1625	1631	1625	-6	0
25	1776	1784	1775	-8	1
26	1928	1936	1928	-8	0
27	2080	2085	2079	-5	1
28	2231	2238	2230	-7	1
29	2383	2388	2382	-5	1
30	2535	2541	2534	-6	1
CC 1	4129	4132	4132	-3	-3
WC	8528	8527	8527	1	1

Difference between Command and Actual

Figure 2. Beam Position Pointing Directions and Error Calculation for A1-1

		Act	tual	Differ	ence*
BP	Command	Look 1	Look2	Look 1	Look2
1	14168	14169	14169	-1	-1
2	14320	14324	14319	4	1
3	14472	14473	14469	-1	3
4	14623	14625	14622	-2	11
5	14775	14775	14773	0	2
6	14927	14930	14926	-3	1
7	15078	15082	15078	4	0
8	15230	15234	15233	-4	-3
9	15382	15385	15381	-3	11
10	15533	15538	15533	-5	0
11	15685	15687	15684	-2	1
12	15837	15841	15835	-4	2
13	15988	15990	15986	-2	2
14	16140	16141	16138	-1	2
15	16292	16295	16290	-3	2
16	59	62	57	-3	2

		Act	tual	Differ	ence*
BP	Command	Look 1	Look2	Look 1	Look2
17	211	212	210	-1	1
18	363	366	361	-3_	2
19	514	518	513	-4	1
20	666	670	664	-4	2
21	818	819	816	-1	2
22	969	971	967	-2	2
23	1121	1121	1119	0	2
24	1273	1276	1272	-3	1
25	1424	1427	1422	-3	2
26	1576	1578	1575	-2	1
27	1728	1731	1726	-3	2
28	1879	1883	1878	-4	1
29	2031	2035	2029	-4	2
30	2183	2184	2181	-1	2
CC 1	3777	3779	3779	-2	-2
wc	8176	8178	8178	-2	-2

^{*} Difference between Command and Actual

Figure 3. Beam Position Pointing Directions and Error Calculation for A1-2

5.5.4 GAIN/PHASE MARGIN

A gain/phase margin test was performed on the antenna drive subsystem. The test was performed by obtaining a Bode plot of the control loop and measuring the gain at 180° phase differential and the phase margin at the 0db crossover point.

The Dynamic Signal Analyzer (DSA) was used to make the measurement operating in the swept sine mode. Three separate Bode plots were made on the antenna and the gain and phase margins were determined from each plot. The gain margin measured was 9.55 db (average of three) for the A1-1 subsystem and 9.26 db (average of three) for the A1-2 subsystem. The phase margin measured was 71.1° (average of three) for the A1-1 subsystem and 70.0° (average of three) for the A1-2 subsystem. These margins exceed the specification requirements of 9.2 db and 25 degrees and therefore are acceptable. The three Bode waveforms were plotted and are presented in Appendix D1 thru D3 for the A1-1 subsystem and Appendix D4 thru D6 for the A1-2 subsystem. The waveforms are also stored on the AMSU-A1 Test Data File disc. The test data sheets are presented in Appendix D7 and D8 for A1-1 and A1-2 respectively.

5.5.5 OPERATIONAL GAIN MARGIN

An operational gain margin test was performed on the instrument three times. This test consists of increasing the gain of the control loop until oscillation occurs. The gain increase and frequency of oscillation are measured. An increase in gain greater than 8 db is required; the frequency of oscillation is an observation.

A 50K pot was connected in series with the R58 feedback resistor on amplifier AR8. The resistance of the test pot was slowly added to the feedback resistor while observing the reflector for oscillations.

The reflector begins to produce an audible sound as gain is increased. The following added resistance values are calculated to have the following gain margins for the A1-1 and A1-2 subsystems:

Resistance (ohms)	Gain
36.94 K	8.6 db
36.01 K	8.4 db
36.03 K	8.4 db

Resistance (ohms)

34.16 K 8.1 db

37.67 K 8.7 db

34.32 K 8.2 db

A1-1

A1-2

The first mode mechanical resonance of the shaft and reflector is about 171 Hz for the A1-1 subsystem. The power spectrum waveform was plotted and is presented in Appendix E1. The first mode mechanical resonance of the shaft and reflector is about 181 Hz for the A1-2 subsystem. The power spectrum waveform was plotted and is presented in Appendix E2. These waveforms are also stored on the AMSU-A1 Test Data File disc. The test data sheets are presented in Appendix E3 and E4 for the A1-1 and A1-2 subsystems respectively.

6.0 CONCLUSION

Based on the test results, it can be concluded that the EOS AMSU-A1 S/N 202 antenna drive subsystem meets the AMSU-A specification requirements.

7.0 TEST DATA

Test data for the EOS AMSU-A1 S/N 202 obtained in the antenna drive subsystem test is attached. Data sheet number and type of test is shown in the following Appendix Index.

APPENDIX INDEX

Appendix A1	Resolver Data Isolator CCA TDS (A1-1)
Appendix A2	Resolver Data Isolator CCA TDS (A1-2)
Appendix A3	Interface Converter CCA TDS (A1-1)
Appendix A4	Interface Converter CCA TDS (A1-2)
Appendix A5	Motor Driver CCA TDS (A1-1)
Appendix A6	Motor Driver CCA TDS (A1-2)
Appendix A7	R/D Converter/ Oscillator CCA TDS (A1-1)
Appendix A8	R/D Converter/ Oscillator CCA TDS (A1-2)
Appendix B1	Full Scan Step Response (A1-1)
	Full Scan Step Response (A1-1) Single Step Responses (A1-1)
Appendix B2 thru B31	
Appendix B2 thru B31 Appendix B32	Single Step Responses (A1-1)
Appendix B2 thru B31 Appendix B32 Appendix B33	Single Step Responses (A1-1) Cold Calibration Step Response (A1-1)
Appendix B2 thru B31 Appendix B32 Appendix B33 Appendix B34	Single Step Responses (A1-1) Cold Calibration Step Response (A1-1) Warm Calibration Step Response (A1-1)
Appendix B2 thru B31 Appendix B32 Appendix B33 Appendix B34 Appendix B35 thru B64	Single Step Responses (A1-1) Cold Calibration Step Response (A1-1) Warm Calibration Step Response (A1-1) Full Scan Step Response (A1-2)
Appendix B2 thru B31 Appendix B32 Appendix B33 Appendix B34 Appendix B35 thru B64 Appendix B65	Single Step Responses (A1-1) Cold Calibration Step Response (A1-1) Warm Calibration Step Response (A1-1) Full Scan Step Response (A1-2) Single Step Responses (A1-2)
Appendix B2 thru B31 Appendix B32 Appendix B33 Appendix B34 Appendix B35 thru B64 Appendix B65 Appendix B66	Single Step Responses (A1-1) Cold Calibration Step Response (A1-1) Warm Calibration Step Response (A1-1) Full Scan Step Response (A1-2) Single Step Responses (A1-2) Cold Calibration Step Response (A1-2)

Appendix C1Peak Pulse Load Bus Current Waveform
Appendix C2Pulse Load Bus Current TDS
Appendix D1 thru D3Gain/Phase Margin Bode Plots (A1-1)
Appendix D4 thru D6Gain/ Phase Margin Bode Plots (A1-2)
Appendix D7Gain/ Phase Margin TDS (A1-1)
Appendix D8Gain/ Phase Margin TDS (A1-2)
Appendix E1Operational Gain Margin Power Spectrum (A1-1)
Appendix E2Operational Gain Margin Power Spectrum (A1-2)
Appendix E3Operational Gain Margin TDS (A1-1)
Appendix E4Operational Gain Margin TDS (A1-2)

: =

AE-26693A 10 Feb 97

TEST DATA SHEET B-6 (Sheet 1 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7.)

4/14/17 Date: F-25 S/N:

(33 4912-1 6.6.7.1 <u>Supply Voltages</u>

Supply*	Measured Value (V)	Limits (Vdc)	Pass/Fail
+5 V (I)	5.00	± 0.25	P
+5 V (U)	2.01	± 0.25	P

6.6.7.2 Supply Currents

Steps 1 and 2:

	Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)		53.28	100 max	P
+5 V (U)	328.30	400 max	P

₽L

Steps 3 and 4:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	82-47	150 max	F
+5 V (U)	11.04	30 max	P

^{*} I = Isolated, U = Unisolated

6.6.7.3 Resolver Data

Bit No.	Pass/Fail
API 0 - AP Bit 0	(
API 1 - AP Bit 1	l l
API 2 - AP Bit 2	P
API 3 - AP Bit 3	P
API 4 - AP Bit 4	γ
API 5 - AP Bit 5	l P
API 6 - AP Bit 6	Ę .
API 7 - AP Bit 7	Q .
API 8 - AP Bit 8	f
API 9 - AP Bit 9	l e
API 10 - AP Bit 10	β
API 11 - AP Bit 11	P P
API 12 - AP Bit 12	ş
API 13 - AP Bit 13	g

6.6.7.4 Converter Busy Pulse

Converter Busy Pulse	Measured Value (µsec)	Limits (µsec)	Pass/Fail
15.0	14.9	± 3.0	P

The state of the s

TEST DATA SHEET B-6 (Sheet 2 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

		Comments: NoNG			
	1				
					·
	1				
	<u>.</u>				
	.				
			no -1 /	4/14/97	
		Conducted by:	Rest Engineer		
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		Verified by:	- Company	Date	
			Quality Control Inspector	11.1127	
عام الماري عام الماري		Approved by:	DCM	4//6/9.) Date	
1 p 5	Marine Marine Marine	- ~~.	DCMC		
	Programme Control	The state of the s			

TEST DATA SHEET B-6 (Sheet 1 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

4/14/91 Date: S/N: 6.6.7.1 <u>Supply Voltages</u>

Supply*	Measured Value (V)	Limits (Vdc)	Pass/Fail
+5 V (I)	5,00	± 0.25	!
+5 V (U)	5.00	± 0.25	Ρ

6.6.7.2 Supply Currents

Steps 1 and 2:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	53.31	100 max	P
+5 V (U)	322.00	400 max	8

Steps 3 and 4:

Supply*	Measured Value (mA)	Limits (mA)	Pass/Fail
+5 V (I)	83.37	150 max	Y
+5 V (U)	11.11	30 max	Y

^{*} I = Isolated, U = Unisolated

6.6.7.3 Resolver Data

Bit No.	Pass/Fail
API 0 - AP Bit 0	8
API 1 - AP Bit 1	P
API 2 - AP Bit 2	١ ٩
API 3 - AP Bit 3	l e
API 4 - AP Bit 4	P
API 5 - AP Bit 5	P
API 6 - AP Bit 6	ρ
API 7 - AP Bit 7	P
API 8 - AP Bit 8	ę
API 9 - AP Bit 9	P
API 10 - AP Bit 10	P
API 11 - AP Bit 11	P
API 12 - AP Bit 12	P
API 13 - AP Bit 13	9

6.6.7.4 Converter Busy Pulse

Converter Busy Pulse	Measured Value (µsec)	Limits (µsec)	Pass/Fail
15.0	14.90 14.9 04	± 3.0	P

ng deleng di mer gang di mer gang di merupakan di merupak

TEST DATA SHEET B-6 (Sheet 2 of 2)

RESOLVER DATA ISOLATOR CCA (P/N 1334972) (Paragraph 6.6.7)

		Comments:	<u>E</u>	
				·
			A	
		Conducted by:	Test Engineer Date All 4/14/97 Audie Verreu 269 4-14-97	
		Verified by:	(Quality Control Inspector) Date	
erden () english engagan	The state of the s	Approved by:	DCMC Date 7	
	Acres 1988	Trench Strong At		

TEST DATA SHEET B-13 (Sheet 1 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date: CCA S/N: 5/5/11 F&19

133/697-1

6.13.7.1 Supply Voltages

Supply	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
+5V (U)	5.00 V	+5V± 0.05	8
+15V (I)	15.03V	+15V± 0.15	8
-15V (I)	-15. ocv	-15V± 0.15	8
+5V (I)	15.01V	+5V± 0.05	P

6.13.7.2 Supply Currents

Step I (CP and API Low):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	85.48	70 - 110	f _
+5V (I)	3.40	1.5 - 5.5	ρ
+15V (I)	17.71	15 - 23	P
-15V (I)	20.37	18 - 26	f_

Step 2 (CP and API High):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	56.20	40 - 70	P
+5V (I)	23.33	18 - 30	P
+15V (I)	17.70	15 - 23	
-15V (I)	20.34	18 - 26	P

6.13.7.3 Amplifier Offsets

Γ	Amplifier	Measured Value (mV)	Limits (mV)	Pass/Fail
r	AR1	- 0.01	0.0 ±0.15	Ρ
r	AR2	0.20	0.0 ±2.0	P

TEST DATA SHEET B-13 (Sheet 2 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.4 Subtraction and D-A Conversion

Step 1:

			To a Donale	
Actual Position (API)	Command Position (CP)	ARI Output*	Test Result	Pass/Fail
MSB LSB	MSB LSB	Voltage Required (Vdc)	(Vdc)	
00000000000000	0000000000000	0.00000	- 0.00001	<u> </u>
00000000000001	00000000000000	-0.00061	- 0, 00061	P
000000000000000000000000000000000000000	00000000000000	-0.00122	-0.00124	φ
	0000000000000	-0.00184	-0.00188	P
0000000000011	000000000000000	-0.00245	-0.00249	P
00000000000100	000000000000000000000000000000000000000	-0.00490	-0.00499	P
0000000001000	000000000000000000000000000000000000000	-0.00979	-0.01000	P
00000000010000		-0.01958	-0 02004	P
0000000100000	00000000000000		-0.04011	P
00000001000000	00000000000000	-0.03917	-0.08025	P
00000010000000	00000000000000	-0.07834		P
00000100000000	00000000000000	-0.15667	-0.16053	9
00001000000000	0000000000000	-0.31334	-0.32113	
000000000000000000000000000000000000000	00000000000000	-0.62669	-0.64240	ρ
0010000000000	00000000000000	-1.25338	-1.2850	P
	00000000000000	-2.50675	-2.3699	P
01000000000000	000000000000000000000000000000000000000	-5.01350	-5.1398	P
10000000000000	0000000000000			

^{*} Tolerance on output voltage is ± 10%

Step 2:

Actual Position (API)	Command Position	(CP) AR1 Output*	Test Result	
		SB Voltage Required (Vdc) (Vdc)	Pass/Fail
1/102	000000000000000000000000000000000000000		+ 0.00001	<u></u>
00000000000000	000000000000000000000000000000000000000		+0.00055 W	n p
00000000000000	000000000000000000000000000000000000000		40.00116	P
00000000000000		<u> </u>	+0.00171	P
00000000000000	100000000000		40. cc 242	P
00000000000000	000000000000000000000000000000000000000		to. co493	P
00000000000000	000000000100	70	+0.00999	P
00000000000000	000000001000			P
00000000000000	000000010000		fc. c2003	0
00000000000000	0000010000000		10.04010	0
00000000000000	0000001000000	0.07834	+0.08026	0
0000000000000000000	000001000000	0.15667	+0. 16063	1 0
000000000000000000	0000100000000		10.32128	-
	0001000000000		10.64263	
00000000000000	001000000000		PUN141 + 1. 28 49	P
00000000000000	010000000000		12. >698	P
00000000000000		20000	-5.1399	P
000000000000000	1000000000000	00 1 -3.01330		

^{*} Tolerance on output voltage is ± 10%

TEST DATA SHEET B-13 (Sheet 3 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.5 Strobe Function	
Step 1: Strobe Low	Pass/Fail
No E11 Change with Input CP Changes	
Step 2: Strobe High	Pass/Fail
E11 Change with Input CP Changes	
6.13.7.6 Amplifier Gain	·
E11 Measured Value (Vdc) 0.32128	Limits (Vdc) Pass/Fail - L
E10 <u>+3.5387</u>	- <u>P</u>
E10 Voltage E11 Voltage	10.7 - 11.3 <u>11.01</u>
6.13.7.7 Ground Isolation	
Measured Value (MΩ) Pin 91 to Pin 7 DC Resistance	Limits (MΩ) Pass/Fail >20 \square
Comments: NONE	
Dening Lind	5/5/97
Conducted by: Test Engineer Total A Robbert (84)	Date 5/8/97
Verified by: Quality Control Inspector	Date Company of the C
Approved by: DCMC	713/97 Date

TEST DATA SHEET B-13 (Sheet 1 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

Date: 5/6/91 CCA S/N: F20 1331697-1

6.13.7.1 Supply Voltages

Supply	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
+5V (U)	45.01 V	+5V± 0.05	P
+15V (I)	+15, c3 V	+15V± 0.15	P
-15V (I)	-15.01 V	-15V± 0.15	P
+5V (I)	-15.00V	+5V± 0.05	P

6.13.7.2 Supply Currents

Step 1 (CP and API Low):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	86.17 mA	70 - 110	P
+5V (I)	3.37 NB	1.5 - 5.5	P
+15V (I)	17.41 MA	15 - 23	P
-15V (I)	20.69 DA	18 - 26	8

Step 2 (CP and API High):

Supply	Measured Value (mA)	Limits (mA)	Pass/Fail
+5V (U)	56.24ng	40 - 70	P
+5V (I)	23.81 MA	18 - 30	8
+15V (I)	17.91 mA	15 - 23	8
-15V (I)	20.69 NA	18 - 26	8

6.13.7.3 Amplifier Offsets

Γ	Amplifier	Measured Value (mV)	Limits (mV)	Pass/Fail
上	ARI	+0.05	0.0 ±0.15	ρ
r	AR2	10.27	0.0 ±2.0	ρ

TEST DATA SHEET B-13 (Sheet 2 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.4 Subtraction and D-A Conversion

Step 1:

Actual Position (API)	Command Position (CP)	ARI Output*	Test Result	
MSB LSB	MSB LSB	Voltage Required (Vdc)	(Vdc)	Pass/Fail
00000000000000	00000000000000	0.00000	to. 00005	P
0000000000001	00000000000000	-0.00061	-0 00057	ρ
0000000000010	0000000000000	-0.00122	-0.0012 C	P
0000000000011	00000000000000	-0.00184	-0.00186	f
0000000000100	00000000000000	-0.00245	-0.20248	P
0000000001000	00000000000000	-0.00490	- 0.00501	P
0000000010000	00000000000000	-0.00979	-0.01010	P
0000000100000	00000000000000	-0.01958	-0. c2c26	P
0000001000000	00000000000000	-0.03917	-0.04059	f
00000010000000	00000000000000	-0.07834	-0.03127	8
00000100000000	00000000000000	-0.15667	-0.16263	f
00001000000000	00000000000000	-0.31334	-0.32537	P
00010000000000	00000000000000	-0.62669	-0.65100	P
00100000000000	000000000000000	-1.25338	-1.3023	P
01000000000000	000000000000000	-2.50675	-2.6047	٤
10000000000000000	00000000000000	-5.01350	-5.2094	<u> </u>

^{*} Tolerance on output voltage is ± 10%

Step 2:

	<u>,</u>	T		
Actual Position (API)	Command Position (CP)	AR1 Output*	Test Result	5 (5.1)
MSB LSB	MSB LSB	Voltage Required (Vdc)	(Vdc)	Pass/Fail
00000000000000	00000000000000	0.00000	+0.00004	<u> </u>
00000000000000	00000000000001	0.00061	40.00060	<u> </u>
00000000000000	0000000000010	0.00122	+0.0c125	<u> </u>
00000000000000	0000000000011	0.00184	+0. coi80	<u> </u>
000000000000000	0000000000100	0.00245	10. cc251	<u> </u>
000000000000000	0000000001000	0.00490	10.005055	<u> </u>
000000000000000	00000000010000	0.00979	40.010176	P
000000000000000000000000000000000000000	00000000100000	0.01958	10.020350	<u> </u>
000000000000000	00000001000000	0.03917	10.040695	<u> </u>
000000000000000000000000000000000000000	00000010000000	0.07834	40.c8i385	P
000000000000000	00000100000000	0.15667	+0-16281	<u> </u>
000000000000000	00001000000000	0.31334	10.32569	<u> </u>
000000000000000000000000000000000000000	00010000000000	0.62669	10.65141	<u> </u>
00000000000000	00100000000000	1.25338	11.3021	P
000000000000000	01000000000000	2.50675	+2.6044	P
00000000000000	10000000000000	-5.01350	-5.2094	٩

^{*} Tolerance on output voltage is ± 10%

AE-26693A . 10 Feb 97

TEST DATA SHEET B-13 (Sheet 3 of 3)

INTERFACE/CONVERTER CCA (P/N 1331697) (Paragraph 6.13.7)

6.13.7.5 Strobe Fur	ection	
Step 1: Strobe Low No E11 Change with Input CP C		Pass/Fail
Step 2: Strobe High E11 Change with Input CP C	•	Pass/Fail
6.13.7.6 Amplifier E11 E10 E10 Voltage E11 Voltage	Gain Measured Value (Vdc) 0.32569 3.5835 11.0	Limits (Vdc) Pass/Fail - P - P - P - P - P - P - P - P - P - P
6.13.7.7 Ground Is Pin 91 to Pin 7 DC Resistance	iolation <u>Measured Value (ΜΩ)</u>	Limits (MΩ) Pass/Fail >20 P
Comments:	£	
Conducted by: Verified by: Approved by:	Test Engineer Quality Control Inspector DCMC	$\frac{5/L/97}{Date}$ Date $\frac{5/8/97}{Date}$ Date

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N:

Føl

Date:

4/30/97

1331694-3 6.4.3.2 <u>Input Signal Offset</u>

Step No.	Test Results	Limits
4	c. 15 mv	0.0 ±1 mVdc
6	1.18 WV	0.0 ±1 mVdc
8	0.98 %	0.0 ±1 mVdc

Step No.	Test Resistor	Resistance Measured
13	E7-E8 (R25)	3,40K
	E9-E10 (R52)	4.28 K
	E11-E12 (R33)	3.16k
	E13-E14 (R53)	4.76K .
	E15-E16 (R42)	3.40k
	E17-E18 (R54)	4.72 k

Step No.	Resistors	Selected Trim Resistors
14	R25	RNC >5J3401FS
	R52	RNC55J4221F5
	R33	RNCSSJ3161FS
<u> </u>	R53	RNC 555 4751 FS
-	R42	RUCSST3491FS
<u> </u>	R54	RNC35 J4751FS

Step No.	E Point	Test Results	Limits	Pass/Fail
19	E19	0.09 NV	0.0 ±1 mVdc	P
19	E20	-0.02NV	0.0 ±1 mVdc	P
<u> </u>	F21	O. GINV	0.0 ±1 mVdc	P

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
2	4.93V	+5V±0.05Vdc	P
- F	51.40 MA	70mAdc max	Y
-	15.07 \	+15V±0.15Vdc	P
<u> </u>	i sohA	3.0mAdc max	P
<u> </u>	-14. 98 V	-15V±0.15Vdc	P
<u> </u>	18.7MA	25mAdc max	P
<u> </u>	28.10V	+28V±0.5Vdc	P
 -	5.6mA	8mAdc max	•
	272 MV	400mVdc max	1 9
- - - - - - - - - - - -	42.7MA	50mAdc max	P
 	48.3 mg	50mAdc max	P

AE-26693A 10 Feb 97

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
3	264 m V	400mVdc max	ρ
4	36.6 MA	50mAdc max	8
5	40.2 mA	50mAdc max	9

6.4.3.4 Current Limit Test

Step No.	Test Results	Limits	Pass/Fail
3.2	466mA	350-500mAdc	l

3-3-97 (227) 2/3/97

Comments:	NENE	
		<u> </u>

Conducted by:

Test Engineer

4/30/97

Verified by:

Odality Control Inspector

5-3-97

Approved by:

DCMC TOONES

20/8/97

TEST DATA SHEET B-4 (Sheet 1 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

S/N: Date:

FØZ 4/30/97

1331694-3 6.4.3.2 <u>Input Signal Offset</u>

Cest Results	Limits
	0.0 ±1 mVdc
	0.0 ±1 mVdc
·	0.0 ±1 mVdc
	1.24 hV 1.20 hV

Step No.	Test Resistor	Resistance Measured
13	E7-E8 (R25)	4.22 K
13	E9-E10 (R52)	7.30 K
	E11-E12 (R33)	3.16 K
	E13-E14 (R53)	4.73 K
	E15-E16 (R42)	2.30k
	E17-E18 (R54)	4.2ck

Step No.	Resistors	Selected Trim Resistors
3tep 140.	R25	RNC5554221FS
14	R52	RNC 5557321FS
-	R33	RNC 35 J3161FS
	R53	RNC 55 54751 F 8
<u> </u>	R42	RNC55J28Ø1FS
<u> </u>	R54	RNC5554221F5

			Limits	Pass/Fail
Step No.	E Point	Test Results		
		-104mV	0.0 ±1 mVdc	1 _ <u></u>
19	E19	<u> </u>	0.0 ±1 mVdc	P
ſ	E20	- 0.04 mV		
}		a. Cc by	0.0 ±1 mVdc	
	E21	0.00111		

6.4.3.3 Motor Driver Operation

Clockwise Rotation:

	Test Results	Limits	Pass/Fail
Step No.	4.93 V	+5V±0.05Vdc	P
² -	51.2MA	70mAdc max	P
}-	15.071	+15V±0.15Vdc	P
-	1.5mA	3.0mAdc max	<u> </u>
}	-14.98V	-15V±0.15Vdc	P
}-	18.4 mA	25mAdc max	P
<u> </u>	28.10 V	+28V±0.5Vdc	1
ļ-	5.6 MA	8mAdc max	<u> </u>
	285 mV	400mVdc max	P P
	42.6 mit	50mAdc max	8
	47.8 MA	50mAdc max	<u> </u>

TEST DATA SHEET B-4 (Sheet 2 of 2)

MOTOR DRIVER 3-HALL SENSOR CCA (P/N 1331694) (Paragraph 6.4.3)

Counter Clockwise Rotation:

Step No.	Test Results	Limits	Pass/Fail
3	2.85 hV	400mVdc max	P
4	36.9 mA	50mAdc max	P
5	40.4 mA	50mAdc max	P

6.4.3.4 Current Limit Test

Step No.	Test Results	Limits	Pass/Fail
3.2	447mA	350-500mAdc	<u> </u>

3-3-97 (227) 3/9/97

Comments:	NONE	

Conducted by:

Test Engineer

4/30/97 Date

Verified by:

Quality Control Inspector

5-3-97

Approved by:

Rishel Shome

10/8/37 Date

TEST DATA SHEET B-5 (Sheet 1 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date 3/21/97 CCA S/N F21 1331139-1-6.5.7.1 UUT Pre-Test

Step 2:

Supply Currents (Without UUT)

Supply (Vdc)	(Baseline) Measured Value (mA) (Without UUT)	Limits (mA)	Pass/Fail
+15	0.06	0-1	<u> </u>
-15	-0.28	-1 - 0	P
+5	0.06	0-1	<u> </u>

Supply Voltages (Without UUT)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.02	± 0.50	<u> </u>
-15V (I)	-15.01	± 0.50	<u> </u>
+5V (I)	5.03	±0.25	J P

Step 6:

Supply Currents (UUT Installed)

Supply (Vdc)	Measured Value (mA) (UUT Installed)	Difference (mA) (Measured - Baseline)	Limits (mA)	Pass/Fail
. 15	30.68	30.62	20-40	P
+15	36.36	- 36.08	-3050	P
+5	56.10	56.04	30-70	<u> </u>

6.5.7.2 Supply Voltages (UUT Installed)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.01	± 0.50	P
-15V (I)	-14.97	± 0.50	<u> </u>
+5V (I)	5.02	±0.25	

6.5.7.3 Oscillator Frequency. Duty Cycle, and Output Voltage

	1 37 137 137	Limits	Pass/Fail
Parameter	Measured Value		0
Frequency	161042	1550-1650 Hz	ļ
Duty Cycle	51.5%	45-55 %	ļ
Output Voltage	7910	7.6-8.4 Vrms	P
I Output voitage	/ / / / / / / / / / / / / / / / / / / /		

TEST DATA SHEET B-5 (Sheet 2 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

R-D Converter Operation 6.5.7.4

Step 1:

		CCW
Bit Number/	CW	Pass/Fail
Test Fixture Label	Pass/Fail	ρ
API 0/1	f	
API 1/2		
API 2/3		
API 3/4		
API 4/5		
API 5/6		
API 6/7		
API 7/8	P	
API 8/9		
API 9/10		
API 10/11		0
API 11/12	P	ΙΙρ
API 12/13		0
API 13/14		
Converter Busy		I

Step 2:

Otep 2.			Calculated Value (Vdc) *	Pass/Fail
RS	Measured Value	Calculated Tuite	CCA -2 Assy	
(E10)	(Vdc)	CCA -1 Assy	CCA -2 Assy	P
CW Rotation**	1.4471	(+) 1.790 V	(+) P/A	P
CCW Rotation**	-1.521	(-) 1.790V	d value and measured value.	Measured

* Signal level function of test and calibration gain resistors. Record calculated value and measured value. Measured value shall be within ±10 percent of calculated value. The equation is as follows:

shall be within
$$\pm 10$$
 percent of calculated value. The equation $\frac{20}{20}$ with $\frac{20}{3-26-97}$ $V = \pm 0.155 \left(\frac{R20}{R17}\right) \pm 10\%$

$$\frac{20}{3-26-97}$$

Amplifier Gain 6.5.7.5

<u> </u>			
PES-RS	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
770 -0 200 Vdo	1.0(1	1.00 to1.30	P
PES = +0.300 Vdc PES = -0.300 Vdc	1.165	1.00 to 1.30	

Direction Control Signal 6.5.7.6

	 -	Limits (Vdc)	Pass/Fail
DIR CNTRL	Measured Value	LITIES (+GC)	
_	(Vdc)		
	5.601	4.5 to 5.5	
CW Rotation		0.0 to 0.4	P
CCW Rotation	0.133	0.0 to 0.	

TEST DATA SHEET B-5 (Sheet 3 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

CETT Notch E	ilter Frequency Response			
6.5.7.7 Notch F	Measured Value (Hz)	Calculated Value (Hz) *	Calculated Value (Hz) *	Pass/Fail
Frequency	(****	CCA -1 Assy	CCA -2 Assy	110
AR3 Notch	MA	NIA	NA	NA
AR4 Notch				
			Peo Peo	ord calculated
* Notch frequencies s and measured values.	hall be within ±3 percent o	f values determined by test a	and calibration resistors. Rec	ord calculated
Comments:				
			•	
·				
Conducted by:	Test Engineer	$\frac{8/27/97}{\text{Date}}$		
Verified by:	Quality Control Inspector	Date (2) 09/02/9 Date		
Approved by:	DCMC	Date	-	

TEST DATA SHEET B-5 (Sheet 1 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Date 5/14/91 CCA S/N F16 133 7739 - 1 6.5.7.1 <u>UUT Pre-Test</u>

Step 2:

Supply Currents (Without UUT)

Supply (Vdc)	(Baseline) Measured Value (mA) (Without UUT)	Limits (mA)	Pass/Fail
+15	0.06 mA	0-1	P
-15	-0.28h4	-1 - 0	<u> </u>
+5	0.06 mA	0-1	P

Supply Voltages (Without UUT)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15 o2V	± 0.50	P
-15V (I)	-15 OIV	± 0.50	Ρ
+5V (I)	5. 03V	±0.25	P

Step 6:

Supply Currents (UUT Installed)

Supply (Vdc)	Measured Value (mA) (UUT Installed)	Difference (mA) (Measured - Baseline)	Limits (mA)	Pass/Fail
+15	31 24	31.18 mA	20-40	P
-15	-40. 47 OLAN	-40.29 mA	-3050	ρ
<u>-15</u>	50.58m1	50.52 MA	30-70	P

6.5.7.2 Supply Voltages (UUT Installed)

Supply	Measured Value (V)	Limits (V)	Pass/Fail
+15V (I)	15.01V	± 0.50	P
-15V (I)	-14.96V	± 0.50	P
+5V (I)	5.02V	±0.25	P - P -

6.5.7.3 Oscillator Frequency, Duty Cycle, and Output Voltage

Parameter	Measured Value	Limits	Pass/Fail
Frequency	1615 Hz	1550-1650 Hz	Ρ
Duty Cycle	52.90	45-55 %	P
Output Voltage	3.005V	7.6-8.4 Vrms	P

AE-26693A .* 10 Feb 97

TEST DATA SHEET B-5 (Sheet 2 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

6.5.7.4 R-D Converter Operation

Step 1:

Bit Number/	CW	CCW
Test Fixture Label	Pass/Fail	Pass/Fail
API 0/1	P	P
API 1/2	P	<u> </u>
API 2/3	<u> </u>	<u> </u>
API 3/4		P
API 4/5	<u> </u>	P
API 5/6	l l	P
API 6/7	P	P
API 7/8		P
API 8/9		P
API 9/10	· · · · · · · · · · · · · · · · · · ·	
API 10/11	<u> </u>	ļ
API 11/12	P	<u> </u>
API 12/13	<u> </u>	ļ <u> </u>
API 13/14	Y	<u> </u>
Converter Busy	ρ	<u> </u>

Step 2: wonfummed (0°)

クーチー	<i>y</i> •		1	Dans/Eatl
PESRSO		Calculated Value (Vdc) * CCA -1 Assy	Calculated Value (Vdc) * CCA -2 Assy	Pass/Fail
RS (E10)	(Vdc)	1 79 V	N/A	P
CW Rotation**	1.550	<u> </u>	NIA	0
CCW Rotation**	-1.79V	- 1.74V	1 170	

* Signal level function of test and calibration gain resistors. Record calculated value and measured value. Measured value shall be within ±10 percent of calculated value.

-1:Can Cain

(P17)=

± 3370

R20 = 59K R17 = 5.11K

6.5.7.5 Amplifier Gain

PES-RS	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
PES = +0.300 Vdc	1.10 1	1.00 to1.30	P
PES = +0.300 Vdc	1.12 V	1.00 to 1.30	

6.5.7.6 <u>Direction Control Signal</u>

DIR CNTRL	Measured Value (Vdc)	Limits (Vdc)	Pass/Fail
CCW Rotation	5,00 V	4.5 to 5.5	P
CCW Rotation	0.131	0.0 to 0.4	P

5-15-97 (20)

TEST DATA SHEET B-5 (Sheet 3 of 3)

R-D CONVERTER/OSCILLATOR CCA (P/N 1337739) (Paragraph 6.5.7)

Frequency	Measured Value (Hz)	Calculated Value (Hz) *	Calculated Value (Hz) *	Pass/Fa
		CCA -1 Assy	CCA -2 Assy	1//
AR3 Notch	hit	NA	AIA	N/A
AR4 Notch				
AR5 Notch		•	nd calibration resistors. Rec	
Comments: No No	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wrotun	rmeel at the tenna dri ing. (30) imee	بع
Conducted by: Verified by:	Test Engineer Outlity Control Inspector	Date Date 15/14/91	7	
Approved by:	Jonna L. Syrouski	(lark 5/15/97 Date		

This page has been intentionally left blank

This page has been intentionally left blank

TEST DATA SHEET 7 (Sheet 1 Of 4) Scan Motion and Jitter Test (A1-1) (Paragraph 3.4.4.5)

Test Setup Verified: (ay Ment 144 Shop Order No. 29856!

	•	The second secon		
Step No.	Description	Requirement (1)	Test Result	Pass/Fail
7	••	Stepping Slewing 8 0 < 8 sec period per Figure 6	48.0 Sec	P
9	Scene 1-2 3.33° step	<35 msec rise time per Figure 7	2 35 msec	ρ
	•	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< 3%	P
10	Scene 2-3 3.33° step	<35 msec rise time per Figure 7	(\$5% m sec.	Ρ
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	6 25% 6 3 %	P
11	Scene 3-4 3,33° step	<35 msec rise time per Figure 7	< 35 msec	ρ
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	LI5% L3%	P
12	Scene 4-5 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±57. < 3 % < 35 m 566	P
13	Scene 5-6 3.33° step	<35 msec rise time per Figure 7		P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ± 5% < 3%	ρ
14	Scene 6-7 3.33° step	<35 msec rise time per Figure 7	235 Micc	ρ
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠ ± 5% ∠ 3 %	P
15	Scene 7-8 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	<= 5% <= 3%	P
16	Scene 8-9 3.33° step	<35 msec rise time per Figure 7	< 35 msc	P
		< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	41570 4370	P

TEST DATA SHEET 7 (Sheet 2 Of 4) Scan Motion and Jitter Test (A1-1)

·	Description	Requirement	Test Result	Pass/Fai
Step No.	Scene 9-10 3.33° step	<35 msec rise time per Figure 7	< 35 MSEC	P
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠ ± 5 % c ∠ 3 %	ρ
18	Scene 10-11 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5 % < 3 %	f P
19	Scene 11-12 3,33° step	<35 msec rise time per Figure 7	< 35 msec	ρ
	3.35 Stop	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ± 5 % < 3 %	P
20	Scene 12-13 3.33° step	<35 msec rise time per Figure 7	< 35 mscc	P
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠ ± 5 % ∠ 3 %	P
21	Scene 13-14 3.33° step	<35 msec rise time per Figure 7	< 35 Msei	ρ
ļ	3.33 Stop	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5 % < 3 %	P
22	Scene 14-15 3.33° step	<35 msec rise time per Figure 7	< 35 mscc	ρ
	3.33 step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5 %	P
23	Scene 15-16 3.33° step	<35 msec rise time per Figure 7	235 MSCC	ρ
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5 % < 3 %	ρ
24	Scene 16-17 3.33° step	<35 msec rise time per Figure 7	< 35 msec	ρ
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5% < 3%	P

TEST DATA SHEET 7 (Sheet 3 Of 4) Scan Motion and Jitter Test (A1-1)

Step No.	Description	Requirement	Test Result	Pass/Fa
25	Scene 17-18 3.33° step	<35 msec rise time per Figure 7	235 msec	P
	0.00 GICP	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ± 5 % < < 3 % < < > 3 % < < > < < > < < > < < > < < < > < < < > < < < > < < < > < < < < > < < < < > < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < < > < < < < > < < < < < > < < < < < > < < < < < < > < < < < < > < < < < < < > < < < < < < < > < < < < < < < > < < < < < < < < < < < < < < < < < < < <	ρ
26	Scene 18-19 3.33° step	<35 msec rise time per Figure 7	< 35 MSCC	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< t 5 % < 3 %	ρ
27	Scene 19-20 3.33° step	<35 msec rise time per Figure 7	L 35 MSCC	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	2 ± 5 % 2 3 %	ρ
28	Scene 20-21 3.33° step	<35 msec rise time per Figure 7	< 35 msec	ρ
	0.00 0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< + 5 % < 3 %	P
29	Scene 21-22 3.33° step	<35 msec rise time per Figure 7	= 35 mscc	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5%; < 3%.	ρ
30	Scene 22-23 3.33° step	<35 msec rise time per Figure 7	< 35 MSCC	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< 15 % < 3 70	p
31	Scene 23-24 3,33° step	<35 msec rise time per Figure 7	< 35 M sec	p
	3.00 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	2 t 5 % 2 3 %	P
32	Scene 24-25 3.33° step	<35 msec rise time per Figure 7	235 MSCC	ρ
	0.00 0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	- +5 % - 3 %	ρ

TEST DATA SHEET 7 (Sheet 4 Of 4) Scan Motion and Jitter Test (A1-1)

	Description	Requirement	Test Result	Pass/Fai
Step No.	Description	<35 msec rise time per Figure 7	20044	P
33	Scene 25-26 3.33° step	233 Maec hae time per vigera	<35mscc	
	3.33 Step	< ±5% jitter per Figure 7	< ±5070	ρ
		< 3% overshoot for 10 msec	< 3%	
34	Scene 26-27	<35 msec rise time per Figure 7	≥ 35m sec	P
57	3.33° step		1	+
İ	•	< ±5% jitter per Figure 7	Z=570	P
		< 3% overshoot for 10 msec	<u> </u>	
35	Scene 27-28	<35 msec rise time per Figure 7	< 35 mscc	P
	3.33° step	Fig. 7	Z±590	
		< ±5% jitter per Figure 7	< 37 ₀	P
		< 3% overshoot for 10 msec		
36	Scene 28-29	<35 msec rise time per Figure 7	L35msec	P
	3.33° step	< ±5% jitter per Figure 7	< ±5%	P
		< 3% overshoot for 10 msec	< 3%	
	Scene 29-30	<35 msec rise time per Figure 7	< 35 mice	P
37	3.33° step			- -'
	0.00 Stop	< ±5% jitter per Figure 7	4±5-73	ρ
		< 3% overshoot for 10 msec	< 3% < 0.2. sec	
38	Scene 30	<0.21 sec slew time per Figure 10	< 0.2 sec	P
50	Cold Cal		7	P
	35.0° slew	< ±0.165° jitter per Figure 11	Z = 0.10= 70	'-
		=======================================	1 - 10 515	P
39	Cold Cal -	<0.40 sec slew time per Figure 12	∠0.40 Scc	\ '
	Warm Cal		< ± 0.165%	P
	96.67° slew	< ±0.165° jitter per Figure 13	2 2 0.700 70	1 '

	D/11
Unit: <u>1356 00 8-1 - 1 T</u>	Test Engineer: Nav Bernself
Serial No.: 202	Quality Assurance: 498
Date: 1-28-9-8	Customer Representative:

TEST DATA SHEET 8 (Sheet 1 Of 4) Scan Motion and Jitter Test (A1-2) (Paragraph 3.4.4.5)

Test Setup Verified: Kay Junited Shop Order No. 29856

Step No.	Description	Requirement ()	Test Result	Pass/Fail
44		Stepping Slewing { <8 sec period per Figure 8	< 8.0 Sec	P
9	Scene 1-2 3.33° step	<35 msec rise time per Figure 7	< 35 MSCC	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠ ± 5 % 0 ∠ 3 %	P
10	Scene 2-3 3,33° step	<35 msec rise time per Figure 7	∠ 35 MSCC	P
	0.50 0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	C ± 6 7 8 C 3 7 0	P
11	Scene 3-4 3.33° step	<35 msec rise time per Figure 7	L 35 mscc	P
	3.33 SIEP	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ± 5% < 3%	P
12	Scene 4-5 3.33° step	<35 msec rise time per Figure 7	Z 35 msec	P
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	Z ± 5 % Z 3 %	P
13	Scene 5-6 3.33° step	<35 msec rise time per Figure 7	< 35 mse	P
	0.00 5.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠±5% ∠3%	P
14	Scene 6-7 3,33° step	<35 msec rise time per Figure 7	∠ 35 msec	ρ
	3.33 step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5 % < 3 %	P
15	Scene 7-8 3.33° step	<35 msec rise time per Figure 7	235 msec	P
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	6 ± 5 % 6 3 %	P
16	Scene 8-9 3.33° step	<35 msec rise time per Figure 7	L35 msec	P
	3.33 step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	L±590 L 390	P

TEST DATA SHEET 8 (Sheet 2 Of 4) Scan Motion and Jitter Test (A1-2)

Step No.	Description	Requirement	Test Result	Pass/Fa
17	Scene 9-10 3.33° step	<35 msec rise time per Figure 7	< 35 m sc c	P
	0.00 0.00	< ±5% jitter per Figure 7	L 15 70	ρ
İ		< 3% overshoot for 10 msec	L 370	'
18	Scene 10-11 3.33° step	<35 msec rise time per Figure 7	2 35 MSC	P
İ	3.00 Step	< ±5% jitter per Figure 7	L 15%	P
ļ		< 3% overshoot for 10 msec	L 370	
19	Scene 11-12 3.33° step	<35 msec rise time per Figure 7	4 35 MSEC	P
	3.33 Step	< ±5% jitter per Figure 7	< ±5'70	ρ
		< 3% overshoot for 10 msec	237c	P
20	Scene 12-13 3.33° step	<35 msec rise time per Figure 7	∠35 msec	ρ
	3.33 Step	< ±5% jitter per Figure 7	L 1570	P
l		< 3% overshoot for 10 msec	< 37 ₀	1
21	Scene 13-14 3.33° step	<35 msec rise time per Figure 7	< 35 MSCC	P
	3.55 Step	< ±5% jitter per Figure 7	2 ± 5 70	P
		< 3% overshoot for 10 msec	4370	<u> </u>
22	Scene 14-15 3.33° step	<35 msec rise time per Figure 7	< 35 mscc	P
	3.35 Step	< ±5% jitter per Figure 7	4590	P
1		< 3% overshoot for 10 msec	Z 390	1
23	Scene 15-16 3.33° step	<35 msec rise time per Figure 7	=35 msec	P
	3.33 Step	< ±5% jitter per Figure 7	L±590	P
		< 3% overshoot for 10 msec	< 3%	[
24	Scene 16-17	<35 msec rise time per Figure 7	< 35 msec	P
	3.33° step	< ±5% jitter per Figure 7	L±570	\sim
		< 3% overshoot for 10 msec	2 390	1

TEST DATA SHEET 8 (Sheet 3 Of 4) Scan Motion and Jitter Test (A1-2)

Step No.	Description	Requirement	Test Result	Pass/Fa
25	Scene 17-18 3.33° step	<35 msec rise time per Figure 7	235msec	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	2±590 2 390	P
26	Scene 18-19 3.33° step	<35 msec rise time per Figure 7	< 35 MSEC	P
	,	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠ ±57° ∠ 390	f
27	Scene 19-20 3.33° step	<35 msec rise time per Figure 7	< 35 msec	f
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	4 ± 570 4-370	F
28	Scene 20-21 3.33° step	<35 msec rise time per Figure 7	< 35 msec	<u> </u>
	5.55 Stop	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	2 5 70 2 3 70	F
29	Scene 21-22 3.33° step	<35 msec rise time per Figure 7	∠ 35 mscc	\hat{P}
	0.00 0.0p	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	2 ± 5 7 c 2 3 7 c	P
30	Scene 22-23 3.33° step	<35 msec rise time per Figure 7	L35MSCC	f
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠ ± 570 < 37c	P
31	Scene 23-24 3.33° step	<35 msec rise time per Figure 7	< 35 mscc	P
	0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5% < 3%	P
32	Scene 24-25 3.33° step	<35 msec rise time per Figure 7	∠35msec	/
	0.00 0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5%	ρ

Pass = P Fail = F

TEST DATA SHEET 8 (Sheet 4 Of 4) Scan Motion and Jitter Test (A1-2)

Step No.	Description	Requirement	Test Result	Pass/Fai
33	Scene 25-26 3.33° step	<35 msec rise time per Figure 7	< 35 mse.c	P
	3.00 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	∠± 5 ⁶ 70 ∠ 3 ⁷⁶	P
34	Scene 26-27 3.33° step	<35 msec rise time per Figure 7	< 35 msec	P
	0.00 0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ± 5 % < < > 76	ρ
35	Scene 27-28 3.33° step	<35 msec rise time per Figure 7	∠35 msec	P
	0.00 0.00	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ± 5 % < < < > 3 % < < < > 20 < < < > 20 < < < > 3 % < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < > 3 % < < < < > 3 % < < < > 3 % < < < < > 3 % < < < < > 3 % < < < < > 3 % < < < < > 3 % < < < < > 3 % < < < < > 3 % < < < < < > 3 % < < < < < > 3 % < < < < < > 3 % < < < < < < > 3 % < < < < < < < > 3 % < < < < < < < > 3 % < < < < < < > 3 % < < < < < < < > 3 % < < < < < < < < < < < < < > 3 % < < < < < < < < < < < < < < < < < <	ρ
36	Scene 28-29 3.33° step	<35 msec rise time per Figure 7	< 35 MSE-	P
	3.33 Step	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	4 ± 5 % 4 3 %	ρ
37	Scene 29-30 3.33° step	<35 msec rise time per Figure 7	< 35 M sec	ρ
	J.33 3tep	< ±5% jitter per Figure 7 < 3% overshoot for 10 msec	< ±5 % < 3 %	<i> </i>
38	Scene 30 Cold Cal	<0.21 sec slew time per Figure 10	< 0.210 Sec	ρ
	35.0° slew	< ±0.165° jitter per Figure 11	2±0.165%	P
39	Cold Cal - Warm Cal	<0.40 sec slew time per Figure 12	< 0.40 Sec	P
	96.67° slew	< ±0.165° jitter per Figure 13	< ±0.165 %	ρ

Pass = P Fail = F

	DAH
Unit: 1356008-1-1T	Test Engineer:
Oorlaa 1.on	Quality Assurance:
Date: 1-28-98	Customer Representative: 1PR 1 98

TEST DATA SHEET 9 28V Bus Peak Current and Rise Time Test (Paragraph 3.4.4.6)

Test Setup Verified: ay was signature
U

Shop Order No. 29856/

Step No.	Requirement	Test Result	Pass/Fail
4	< 1 A peak any place in the scan	940 ma	ρ
5	> 35 µsec rise time, 3.33° step	1.562 msec	P
6	> 35 µsec rise time, start of WC slew	10953 msec	P
6	> 35 µsec rise time, end of WC slew	1.562 MSec	P

Pass = P Fail = F

Unit: 1356008-1-17

Serial No.: 202

Test Engineer:__/

Quality Assurance:_

898)

UR 2 '98

Date: 1-20-98

. . . .

TEST DATA SHEET 10

Test Setup Verified: Nay Yukhung	Shop Order No
Temperature: 7/.5°C	
Requirement	Test Result Pass/Fail
9.2 dB minimum	1 -9.5846 dB P 2 -9.517 dB P 3 -9.5466 dB P
25 degrees minimum	1 7/2 Deg P PER CUSTOMER REQUES 1-21-981
	Pass = P Fail = F
	a Def Har
Unit: 1356 00 8-1-17 Serial No.: 202	Quality Assurance: Customer Representative:
Date: 1-20-98	Customer Representative

TEST DATA SHEET 11 Gain/Phase Margin (A1-2) (Paragraph 3.4.4.8)

	Dual.	30 (ou = / ()	
Test Setup Verifi	ied: Nay Ny Vella Signature	Shop Order No. <u>298561</u>	
Temperature: Z	0F 2.3 ℃		
	Requirement	Test Result	Pass/Fail
	9.2 dB minimum	1 - 9.2289 dB 2 - 9.2979 dB 3 - 9.2572. dB	P P P P P P P P P P P P P P P P P P P
*.	25 degrees minimum	1 7000 Seq 2 69.49 Steg 3 69.75 Deg	P PER CUSTOMER REQUEST /
			Pass = P Fail = F
Unit: <u>/356</u> Serial No.: <u>20</u> Date: <u>/~2</u>		Quality Assurance: Customer Representative:	199 1 78
Date: I E	:		

AE-26002/1C . 2 Oct 97

TEST DATA SHEET 12

Operational Gain Margin (A1-1) (Paragraph 3.4.4.9)

Test Setup Verified: (a

Shop Order No. 29856(

Temperature: 70

Step No.	Requirement	Requirement		Pass/Fail
	R58 Resistance (kohms)			
11		1	36.91 KS-	P
• •	Test Pot Resistance (kohms)	2	36.01 Ks-	
	,	3	36.03 Ks_	
		1	171.09 Hz	Δ
12	Oscillation Frequency (Hz)	2	171.09 H3	
12	Community (**=)	3	171009 HR	
		1	8.5597 4B	
16	Gain Margin, 8 dB minimum	2	8.4216 dB	P
.0		3	8.4246 dB	

Pass = P Fail = F

Unit: 1356008-1-1T

Serial No.:___

Test Engineer:_

Quality Assurance

BUR 2 '98

Date:_

TEST DATA SHEET 13

Operational Gain Margin (A1-2) (Paragraph 3.4.4.9)

	0 1111			
To a Some Vorified:	Run Hondry	Shop Order No.	298561	
Test Setup Vermed	Signature 1-25	1-98		
~	_012			

Temperature: 70.3°F°C

Step No.	Requirement	Test Result	Pass/Fail
Olep 110.	R58 Resistance (kohms)	0	
11	Test Pot Resistance (kohms)	1 184.16 KIL 2 KING 181.25 H= 37.67 KI 31-29-10 1 34.32 KIL	P
12	Oscillation Frequency (Hz)	1 /8/.25 Hz 2 /8/.25 Hz 3 /80.08 Hz	P
16	Gain Margin, 8 dB minimum	1 8.1401 dB 2 8.6667 dB 3 8.1648 dB	P

Pass = P Fail = F

Unit:	1356 00	18-1-	- 1	I	
Serial No.:_	ZOZ				

Test Engineer:_

Quality Assurance:

Date: 1-29-98

National Aeronautics and Space Administration						
1. Report No.	. Government Accession No	D.	Recipient's Catalog N	lo.		
4. Title and Subtitle		5	5. Report Date			
Integrated Advanced Mic	rowave Sounding U	nit-A	July 1998			
(AMSU-A), Performance		le	 Performing Organization 	on Code		
7. Author(s)			3. Performing Organization	on Report No.		
		į	11183			
A. Nieto		1	10. Work Unit No.			
Performing Organization Name and a	Address					
Aerojet		[7	11. Contract or Grant No			
1100 W. Ho		1		5-32314		
Azusa, CA 9 12. Sponsoring Agency Name and Add			13. Type of Report and F	Period Covered		
NASA	C 55		Final			
Goddard Sp	pace Flight Center	ľ	14. Sponsoring Agency (Code		
Greenbelt,	Maryland 20771					
This is the Performance Verification Report, EOS AMSU-A1 Antenna Drive Subassy, P/N 1356008-1, S/N 202 for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).						
17. Key Words (Suggested by Author(s)) EOS Microwave System 18. Distribution Statement Unclassified Unlimited						
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of pages	22. Price		
Unclassified	Unclassified					

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's Catalog No.. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code. Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. Abstract. The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.
- Block 19. <u>Security Classification</u> (of the report). Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Self-explanatory.
- Block 21. No. of Pages. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <u>Price Code</u>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

					
REPORT DO	070	Form Approved OMB No. 0704-0188			
Public reporting burden fothls collection of info gathering andmaintaining thedata needed, and collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 22:	ormation is estimated oaverage 1 hour per res of completing andreviewing the collection inform ar reducing this burden to Washington Headqu 202-4302, and to the Office of Management ar	oonseincluding t ation. Send com arters ServicesD id Budget, Pape	he timefor reviewing instruction instruction in the following in the follo	ctions searching existing data sources restimate or any other aspect of this perationand Reports, 1215 Jefferson 704-0188). Washington, DC 20503.	
AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPO	EPORT TYPE AND DATES COVERED		
4. TITLE AND SUBTITLE	licrowave Sounding Unit-A e Verification Report	1	5. FUNDING NUMBERS NAS 5-32314		
6. AUTHOR(S) A. Nieto					
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aerojet 1100 W. Hollyvale Azusa, CA 91702			8. PERFORMING ORGANIZATION REPORT NUMBER 11183 July 1998		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center Greenbelt, Maryland 20771			10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY STATEMENT			12b. DISTRIBUTION CODE		
					
	Verification Report, EOS ed Advanced Microwave S				
14. SUBJECT TERMS				15. NUMBER OF PAGES	
EOS Microwave System				16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	OF ABS	Y CLASSIFICATION TRACT Classified	20. LIMITATION OF ABSTRACT SAR	

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date Full publication date including day, month, andyear, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program Element
 WU
 Work Unit Accession No.

Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing Organization Report Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. Sponsoring/MonitoringAgency Reports Number (if known).

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement</u>Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOF - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b <u>Distribution Code</u>.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 word*; factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price code\(TIS\) only).

Block 17 - 19. <u>Security Classifications.</u> Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u>This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

DOCUMENT APPROVAL SHEET

TITLE	DOCUMENT NO.							
Performance Verification Report	Report 11183							
Subassembly and Complete Instrum	July 1998							
EOS AMSU-A1 Antenna Drive Suba	duly 1000							
	ŕ							
				I				
INPUT FROM: DATE	CDRL:	SPECIFICATION ENGINEER:		DATE				
A. Nieto	208			i				
CHECKED BY:	DATE	JOB NUMBER:	· ·	DATE				
APPROVED SIGNATURES			DEPT. NO.	DATE				
APPROVED SIGNATURES		<u> </u>	<i>JE.</i> 7. 110.					
	\sim \sim \sim	1		,				
F. J. vita v (T. Himming)	A	7831	7/4/ax 1					
Engineering (T. Higgins)		7001	7/14/98					
		- Inlea						
Product Team Leader (A. Nieto)	8341	7/14/20						
·		11.0						
Systems Engineer (R. Platt) $\widehat{\mathcal{P}}$	8311	2/14/16						
Cystems Engineer (14. 1 latt)								
D 1 A	8331	2/15/98						
Design Assurance (E. Lorenz) _	0331							
	 004	2/-/						
Quality Assurance (R. Taylor)	7831	1/13/58						
		7/14/18 1/15/98 7/15/98 7/15/98						
Technical Director/PMO (R. Hau	4001	7/15/98						
`		nu 165						
Configuration Management (J. C	8361	7/16/98						
Comiguration Management (3. C	0001							
By my signature, I certify the above document has been reviewed by me and concurs with the technical								
requirements related to my area of responsibility.								
RELEASE (Data Center) FINAL								
RELEASE (Data Center) 1 11 V L								