1º teste

Soluços i algumas resoluções

1. He' valvos tads com resoluções, de modo que so se apresentam as soluções aque:

(6)
$$D_j = [-\pi, \sqrt{\pi}]$$
.

2013/14

(c)
$$CD_{j} = [-1,\pi].$$

- 2. Hz' valvios tada com resoluções, de modo que só se espresentam as soluções aqui:
 - (a) of a continue un 0 mas não e diferenciabil un 0.
 - (b) [cf. tipe de resolução nos tads.].

(c)
$$f': \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

 $x \longmapsto \text{accests } \frac{1}{x} + \frac{x}{x^2+1}$

(d)
$$y = \frac{\pi + 2}{4}x - \frac{1}{2} \left(\text{on } y - \frac{\pi}{4} = \frac{\pi + 2}{4} (n - 1) \right)$$
.

(e) Note tem porter action.

Mariner absolute: 0 (obtide en 0).

Hasiner absolute: \frac{17}{4} (obtide en 1).

- 3. (a) . Dy = 18180.
 - · f(0) who existe (0 & by)

 f(1)=0 (In1=ln |n1; não parea to roluções,
 o que podos our confirmado mais à frente
 - · f(-x)=1-x1-h-1-x1=1x1-h-(x)=f(x), \text{ \text{TheDy,}} logo f & par, for ins continuarence, o extra par ja' so par x>0.

 ografier de f
 - · lim x-lux = 00, log ten unz assistete x > 0+ varical quando x > 0+ (e, por sinution, tambaín quando x > 0-). Não tem outra, assistete, varicais.

Regards = 1 - line = 1;
Country, studends = 5;
for aquels = 0;
limits existe

lim (x-lux-1,x) = lim (-lux) = -0; x->00 n + 00 logr o grafier d f não tem amintotas mão verticois.

• n > 0: $f'(n) = (n - \ln n)' = 1 - \frac{1}{n}$; f'(n) > 0 see $\frac{1}{n} < 1$ see n > 1.

Isteraly de monotonia: Jo, 1), and of decree; [1,00[, ond fana; por muetra, també [-1,0[, onde fasce, e]-0,-1], onde fdeasce Extremo, e extremante, locais: minimor 1 storgid en 1 e (por rimetria) en 1. Não tem ontros minimos nen minimater. Não tem maximos.

• 270: $\int_{-\infty}^{\infty} (x) = \left(1 - \frac{1}{n}\right)^{1} = \frac{1}{n^{2}} > 0$.

(b) O erbogo apresentado no sumando priece indica have m mækim tolden 0, mar im & falso. Ele grafico podeis truben ten simpersos que existen duas assistatas obliques, mas in também não à verdade.

4. Não e possibel usar a regra pretiza para o callento do limite da composição poque of não e continua um O. Assim, devenis aplicar diretamente a definição de limite de função:

Made una qualque successes (u_m) $n \in \mathbb{N}$ con $u_m \in D_f \setminus \{0\} = \mathbb{R} \setminus \{0\}$, $m \in \mathbb{N}$, e $u_m \to \infty$, term - ne que $f(u_m) = 0$ e, portant, $f(f(u_m)) = f(0) = -1$ $m \to \infty$, o que formate que $\lim_{n \to \infty} f(f(u_j)) = 1$.

5. (a) $f: D \subset \mathbb{R} \to \mathbb{R}$ dit-nestritamente decescente $n \in \mathbb{R}$ $\forall x, y \in D$, $n < y \Rightarrow f(x) > f(y)$.

(6) } - [cf. parte 5 de secção 1.4, onde er (c)) ununciado o teoreme de begrange e se de indiceção de como se perore o Cutation de monotonia, o quel contine, como caso particular, aquelo que se pede por se provou sor teste,]

> A. Cadam 15-11-2013