Schwerpunktfach Chemie

Zusammenfassung:

Säure-Base-Reaktionen (Reaktion, Autoprotolyse, pH-Wert)

Michael Liebich

Inhaltsverzeichnis

1 V	Varum schmeckt Zitronensaft sauer?	3		1.2	Warum reines Wasser auch Oxonium-Ionen enthält	4
1	.1 Das Oxonium-Ion	3	2	Der	pH-Wert	5
	Abbildur	ngs	ve	rzei	chnis	
1	Das Oxonium-Ion					3
2	Protonierung eines Wasser-Moleküls					3
3	Das Chlorwasserstoff-Molekül					3
4	Beaktion von HCl mit H _o O					4

1 Warum schmeckt Zitronensaft sauer?

1.1 Das Oxonium-Ion

Im Zitronensaft ist ein Ion vorhanden, das wir mit unserer Zunge wahrnehmen könnnen: H₃O⁺.

Abb. 1: Das Oxonium-Ion

Das Oxonium-Ion bildet sich, wenn ein H⁺-Ion mit einem Wasser-Molekül reagiert. Weil es sich bei H⁺ um ein Proton handelt, wird also ein Proton auf das Wasser-Molekül übertragen. Man sagt auch, dass Wasser-Molekül wird "protoniert":

$$H^{+} + |\overline{O} - H \longrightarrow \begin{bmatrix} H - \overline{O} - H \end{bmatrix}^{+}$$

$$H$$

Abb. 2: Protonierung eines Wasser-Moleküls

Woher aber stammt das Proton? Es stammt von einem Teilchen, das ein Proton spenden kann. Beim Zitronensaft ist dies die Zitronensäure, 2-Hydroxypropan-1,2,3-tricarbonsäure. Um zu verstehen, was genau eine Säure ausmacht, schauen wir uns eine "einfachere" Säure, Chlorwasserstoff, HCl, an:

Abb. 3: Das Chlorwasserstoff-Molekül

Das Chlorwasserstoff-Molekül ist ein polares Molekül - das Wasserstoff-Atom ist partiell positiv, das Chlor-Atom partiell negativ geladen. Nähert sich ein Wasser-Molekül dem Chlorwasserstoff-Molekül, so werden die freien Elektronenpaare des Wasser-Moleküls zum partiell positiv geladenen Wasserstoff-Atom angezogen. Es bildet sich eine Bindung zwischen dem Proton des Wasserstoff-Atoms und dem Wassermolekül. Dabei bildet sich ein Oxonium-Ion, H₃O⁺.

Abb. 4: Reaktion von HCl mit H₂O

Dieser Typ von Reaktionen wird Säure-Base-Reaktion genannt. HCl ist die Säure, der Protonendonor (Protonen-Spender). Das Wasser-Molekül ist die Base, der Protonenakzeptor.

• H ⁺	Proton
 Säure-Base-Reaktion 	Protonen-Transferreaktion
• Säure	H ⁺ -Donor, verfügt über mind. 1 H-Atom
• Base	H ⁺ -Akzeptor, verfügt über mind. 1 freies Elektronenpaar
 Saure Lösung 	Lösung, die mehr H ₃ O ⁺ -Ionen enthält als Wasser
 Neutrale Lösung 	Lösung, die gleichviel H ₃ O⁺-lonen enthält wie Wasser
Basische Lösung	Lösung, die weniger H ₃ O ⁺ -lonen enthält als Wasser

1.2 Warum reines Wasser auch Oxonium-Ionen enthält

Wasser enthält ebenfalls H₃O⁺-lonen. Woher stammen diese? Wasser ist doch ein Reinstoff?! Wasser-Moleküle enthalten H-Atome und verfügen über freie Elektronenpaare. Somit können sie sowohl als Säuren als auch als Basen reagieren. Wasser-Moleküle können sich somit gegenseitig protonieren. Man nennt ein solches Phänomen *Autoprotolyse*.

$$H_2O + H_2O \implies OH^- + H_3O^+$$

Jedes Teilchen, das über ein H-Atom verfügt, ist eine potenzielle Säure. Ammoniak, NH₃, könnte also auch als Säure reagieren. Wird Ammoniak zu Wasser gegeben, beobachtet man aber die Bildung einer basischen Lösung, die Anzahl Oxonium-Ionen nimmt also ab. Offenbar muss ein Teilchen entstanden sein, das mit den H₃O⁺-Ionen in Wasser reagiert hat.

Reaktion von Ammoniak mit Wasser:

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

Abb. 5: Reaktion von Ammoniak mit Wasser

Die gebildeten OH⁻-Ionen reagieren mit H₃O⁺-Ionen. Dabei nimmt die Anzahl an H₃O⁺-Ionen ab, die Lösung wird basisch. Man sagt, dass die Hydroxid-Ionen die Oxonium-Ionen *neutralisieren*. Sind mehr Hydroxid-Ionen in Lösung als Oxonium-Ionen, dann wird die Lösung basisch.

2 Der pH-Wert

Sie wissen, dass Wasser weder sauer noch basisch schmeckt. Es schmeckt neutral. Schauen wir uns dazu nochmals die Autoprotolyse von Wasser an:

$$H_2O + H_2O \implies OH^- + H_3O^+$$

Offenbar bilden sich gleichviele Hydroxid- wie Oxonium-Ionen bei dieser Reaktion, deshalb ist die Lösung neutral. Die Konzentrationen sind:

$$[OH^{-}] = [H_3O^{+}] = 10^{-7} \text{ mol/L}$$

Um diese Konzentration leserlicher zu machen, wird der negative Zehnerlogarithmus der Konzentration als pOH- bzw. pH-Wert geschrieben:

$$pOH = -log_{10}(OH-) = 7 \text{ und } pH = -log_{10}(H_3O^+) = 7$$

 $pH + pOH = 14$