Politechnika Wrocławska

Katedra Teorii Pola, Układów Elektronicznych i Optoelektroniki

Zespół Układów Elektronicznych

LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

TENNATE CONTINUES	
Grupa: -	Godzina: 8-12
Data: 04.06.2020	Dzień: Czwartek

TEMAT ĆWICZENIA:

WZMACNIACZ ODWRACAJĄCY I NIEODWRACAJĄCY

DANE PROJEKTOWE:

WO_ODWR: $K_u = -50 \frac{v}{v}$ WO_NIEODWR: $K_u = 8 \frac{v}{v}$

Lp.	Nazwisko i Imię	Oceny
1.	Grajoszek Dawid, 249021	

1. Cel ćwiczenia

Celem tego ćwiczenia laboratoryjnego jest zapoznanie się z właściwościami, działaniem oraz podstawowymi parametrami wzmacniaczy operacyjnych.

2. Wzmacniacz odwracający

$$K_u = -\frac{R_f}{R_0}$$

Aby powyższe równanie było spełnione, przyjęto wartości rezystorów $R_f=5k\Omega,\,R_0=100\Omega$

Użyte elementy z szeregu E12:

$$R_f=4.7k\Omega,\,R_0=100\Omega,\,R_1=100\Omega$$

Wzmocnienie rzeczywiste wynosi wówczas: $K_u = -47 \frac{v}{v}$

Zasilanie: ±12V

Schemat układu wzmacniacza odwracającego:

Przebieg czasowy sygnału wyjściowego dla wzmacniacza odwracającego przy pobudzeniu sinusoidalnym:

a) Badanie zakresu liniowej pracy wzmacniacza:

Na generatorze przebiegu sinusoidalnego ustawiano amplitudę z zakresu od 176mV do 248mV oraz badano jaką amplitudę ma sygnał wyjściowy. W wyniku tego otrzymano następujące wyniki:

$U_{we}[mV](pp)$	$U_{wy}[mV](pp)$
352	16.2
368	17.2
384	18.0
408	19.0
416	19.8
432	20.0
440	20.8
448	21.0
456	21.4
464	21.6
472	21.8
488	22.2
496	22.2

Na poniższym wykresie przedstawiono w jaki sposób zmienia się moduł amplitudy sygnału wyjściowego względem zmiany amplitudy sygnału wejściowego.

Dla 11.1V wzmacniacz operacyjny się nasyca i przestaje już dalej wzmacniać, napięcie wyjściowe utrzymuje się na stałym poziomie. Na podstawie tego wykresu można oszacować zakres liniowej pracy wzmacniacza: od -255 do 255 mV.

Z powyższych danych wyliczono rzeczywisty współczynnik wzmocnienia układu, który jest równy ilorazowi przyrostu sygnały wyjściowego do przyrostu sygnału wejściowego:

$$K_U = \frac{\Delta U_{wy}}{\Delta U_{we}} = \frac{-3.1V}{72mV} = -43.06 \frac{V}{V}$$

Wzmocnienie uzyskane z obliczeń oraz otrzymane z pomiarów różnią się jedynie niewielkim odchyleniem względem siebie. Wzmocnienie otrzymane z pomiarów jest nieco mniejsze od założonego co do modułu.

b) Badanie częstotliwości granicznej wzmacniacza

Na wejściu generatora ustawiono amplitudę sygnału równą 30mV i zmieniając częstotliwość w górę od wartości początkowej równej 1 kHz, obserwowano kiedy wzmocnienie układu zmniejszy się $\sqrt{2}$ – krotnie (spadnie o 3dB). Częstotliwość graniczna otrzymana z pomiarów wynosi f_g = 21.9 kHz. Powyższy wykres został wygenerowany w programie LTSpice i jak można zauważyć wyświetlona częstotliwość graniczna wynosi około 21.8 kHz. Można powiedzieć, że wyniki są praktycznie identyczne, co nasuwa wniosek, iż pomiar częstotliwości granicznej w warunkach laboratoryjnych został wykonany prawidłowo, a wyznaczona wartość również jest poprawna.

Następnie równolegle do rezystora w pętli sprzężenia zwrotnego dolutowano kondensator o pojemności C=1 nF, a amplituda sygnału wejściowego wynosiła 24mV. Taki zabieg pozwala na modulację częstotliwości granicznej układu. Powtórzono pomiary według schematu z poprzedniej części. W ich wyniku zaobserwowano, że f_g przesunęła się do wartości $f_g'=14.45$ kHz. Z wykresu wygenerowanego przez LTSpice wartość częstotliwości granicznej już przesuniętej dzięki kondensatorowi wynosi około 13.54 kHz. Na tej podstawie można stwierdzić, iż pomiar został wykonany prawidłowo, gdyż z pewnym przybliżeniem zgadza się z wartością osiągniętą w wyniku symulacji. Błąd względny pomiaru jest rzędu 6.3%.

3. Wzmacniacz nieodwracający

$$K_u = 1 + \frac{R_f}{R_0}$$
, stąd $\frac{R_f}{R_0} = K_u - 1 = 7$

Aby powyższe równanie było spełnione, przyjęto wartości rezystorów $R_f=7k\Omega,\,R_0=1k\Omega$

Użyte elementy z szeregu E12:

$$R_f=6.8k\Omega,\,R_0=1k\Omega,\,R_1=100\Omega$$

Wzmocnienie rzeczywiste wynosi wówczas: $K_u = 7.8 \frac{v}{v}$

Zasilanie: ±12V

Schemat układu wzmacniacza nieodwracającego:

Ze względu na kończący się czas owego laboratorium, w przypadku wzmacniacza nieodwracającego dokonano jedynie pomiaru parametru SR – szybkości zmian napięcia wyjściowego, które wyraża się wzorem:

$$SR = \frac{dU_{wy}}{dt}$$

Warunki pomiaru:

Na generatorze ustawiono częstotliwość sygnału sinusoidalnego bliską częstotliwości granicznej wzmacniacza, a następnie zmieniano jego amplitudę, aby na wyjściu uzyskać przebieg zbliżony do trójkątnego.

$$dU_{wy} = 9.36V$$
$$dt = 5.6\mu s$$

$$SR = \frac{9.36V}{5.6\mu s} = 1.67 \frac{V}{\mu s}$$

Oszacowany parametr SR jest poprawny i możliwy do uzyskania, gdyż jego wartość powinna znajdować się w przedziale $1:100 \frac{V}{US}$.

4. Wnioski

Po wykonaniu wszystkich zadań można stwierdzić, iż wyniki otrzymane w warunkach laboratoryjnych są dosyć bardzo zbliżone do wcześniejszych założeń teoretycznych czy też wyników symulacji. Nasuwa to wniosek, iż zadania zostały wykonane prawidłowo, a używane układy działały zgodnie z naszymi przewidywaniami.

Niemniej jednak występujące błędy mogą wynikać bezpośrednio z dokładności używanych komponentów. Rezystory były dobierane z szeregu E12, a kondensatory z szeregu E6. Są to tolerancje odpowiednio na poziomie ±10% oraz ±20%.

Symulacje były wykonywane na tych samych układach, ale o idealnych właściwościach, stąd widoczne różnice między tymi wynikami a rzeczywistymi.

5. Raporty z ćwiczeń

