HAI702I — **TDs**

Ivan Lejeune

11 septembre 2025

Table des matières												
TD1 — Espaces vectoriels												2

TD1 — Espaces vectoriels

Les exercices ou les questions marqués d'une étoile ne sont pas prioritaires.

Exercice 1.1.

Déterminer une base orthonormale directe dont le premier vecteur est colinéaire au vecteur (1,2,2).

Solution. On rappelle les définitions importantes :

- Deux vecteurs u et v sont orthogonaux si $\langle u, v \rangle = 0$.
- Une base est orthonormale si ses vecteurs sont de norme 1 et deux à deux orthogonaux.
- Une base est directe si le produit vectoriel du premier vecteur par le deuxième donne le troisième.

Commençons par choisir notre premier vecteur u. On veut u colinéaire à (1,2,2) donc on a

$$u = \lambda(1, 2, 2), \quad \lambda \in \mathbb{R}^*.$$

Ensuite on veut que u soit de norme 1:

$$||u|| = 1 \iff \sqrt{\sum_{i=1}^{3} u_i^2} = 1$$

$$\iff \sum_{i=1}^{3} u_i^2 = 1$$

$$\iff \lambda^2 (1^2 + 2^2 + 2^2) = 1$$

$$\iff 9\lambda^2 = 1$$

$$\iff \lambda = \pm \frac{1}{3}.$$

On prend $\lambda = \frac{1}{3}$, donc

$$u = \frac{1}{3}(1,2,2)$$

Ensuite on veut choisir v. Il faut que v soit orthogonal à u:

$$\langle u, v \rangle = 0.$$

Si on note v' = (x, y, z), on a:

$$\langle u, v' \rangle = 0 \iff \frac{1}{3}(1, 2, 2) \cdot (x, y, z) = 0 \iff \frac{1}{3}(x + 2y + 2z) = 0. \iff x + 2y + 2z = 0.$$

Pour des questions de simplicité, on peut choisir x = 0, y = 1 et z = -1. Il faut ensuite normaliser v' pour obtenir v.

$$||v'|| = \sqrt{0^2 + 1^2 + (-1)^2} = \sqrt{2}.$$

On peut alors prendre $v = \frac{1}{\sqrt{2}}(0, 1, -1)$

Enfin, pour w, on peut faire le produit vectoriel $u \wedge v$ pour être sûr que la base soit directe. Il y a plusieurs manières de faire le calcul, ici on utilise le déterminant :

$$w = u \wedge v = \begin{vmatrix} e_1 & e_2 & e_3 \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} = e_1 \begin{vmatrix} \frac{2}{3} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix} - e_2 \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ 0 & -\frac{1}{\sqrt{2}} \end{vmatrix} + e_3 \begin{vmatrix} \frac{1}{3} & \frac{2}{3} \\ 0 & \frac{1}{\sqrt{2}} \end{vmatrix}.$$

2

On trouve:

$$w = \frac{1}{3\sqrt{2}}(-4, 1, 1)$$

On a alors notre base orthonormale directe :

$$\mathcal{B} = (u, v, w) = \left(\frac{1}{3}(1, 2, 2), \frac{1}{\sqrt{2}}(0, 1, -1), \frac{1}{3\sqrt{2}}(-4, 1, 1)\right)$$

On peut vérifier rapidement qu'on a bien :

- ||u|| = 1, ||v|| = 1 et ||w|| = 1.
- $\langle u, v \rangle = 0$, $\langle u, w \rangle = 0$ et $\langle v, w \rangle = 0$.
- $u \wedge v = w$.

Exercice 1.2.

Pour quelles valeurs de a les vecteurs suivant sont-ils coplanaires?

- (1,0,a),
- (a, 1, 0),
- (0, a, 1).

Solution. Trois vecteurs sont coplanaires si et seulement si la matrice formée par ces vecteurs a un déterminant nul. Ici on a :

$$\begin{vmatrix} 1 & 0 & a \\ a & 1 & 0 \\ 0 & a & 1 \end{vmatrix} = 1 + a^3.$$

On cherche donc les valeurs de a telles que :

$$1 + a^3 = 0 \iff a^3 = -1 \iff a = -1.$$

Il n'y a pas d'autres solutions réelles. On peut le vérifier en factorisant $a^3 + 1$:

$$a^3 + 1 = (a+1)(a^2 - a + 1).$$

où $a^2 - a + 1$ n'a pas de racines réelles.

Donc les vecteurs sont coplanaires si et seulement si a = -1

Exercice 1.3.

Soient u,v et w trois vecteurs de l'espace et $a \in \mathbb{R}$. On considère l'équation vectorielle d'inconnue x suivante :

$$u \wedge x = v$$

- 1. Montrer que si l'équation admet une solution, alors u et v sont orthogonaux. On supposera dans la suite que u et v sont orthogonaux.
- 2. Déterminer toutes les solutions colinéaires à $u \wedge v$.
- 3. En déduire toutes les solutions de l'équation.
- 4. Déterminer les vecteurs solutions qui vérifient en outre $\langle x,w \rangle$ = a.

Solution.

Exercice 1.4.

Dans l'espace muni d'un repère orthonormal. On note \mathcal{D} la droite passant par le point A = (1,3,-2) et de vecteur directeur u = (2,1,0), \mathcal{P} le plan d'équation 2x - 3y + 5z = 7 et M le point de coordonnées (1,2,3).

1. Calculer la distance de M à la droite \mathcal{D} .

Calculer la distance de M au plan P.
 Indication: remarquer que le point (1,0,1) appartient au plan P.

Solution.

1. Il y a plusieurs manières de calculer la distance d'un point à une droite. Première méthode : on cherche le point X de la droite \mathcal{D} tel que le segment MX soit orthogonal à la droite. Le point X de la droite \mathcal{D} s'écrit :

$$X = A + \lambda u = (1, 3, -2) + \lambda(2, 1, 0) = (1 + 2\lambda, 3 + \lambda, -2).$$

On cherche λ tel que MX soit orthogonal à u, c'est-à-dire :

$$\langle MX, u \rangle = 0$$

$$\iff \langle X - M, u \rangle = 0$$

$$\iff \langle (1 + 2\lambda - 1, 3 + \lambda - 2, -2 - 3), (2, 1, 0) \rangle = 0$$

$$\iff \langle (2\lambda, 1 + \lambda, -5), (2, 1, 0) \rangle = 0$$

$$\iff 4\lambda + 1 + \lambda = 0$$

$$\iff 5\lambda + 1 = 0$$

$$\iff \lambda = -\frac{1}{5}.$$

On en déduit :

$$X = \left(1 - \frac{2}{5}, 3 - \frac{1}{5}, -2\right) = \left(\frac{3}{5}, \frac{14}{5}, -2\right).$$

La distance cherchée est donc :

$$d(M, \mathcal{D}) = ||MX||$$

$$= \sqrt{\left(\frac{3}{5} - 1\right)^2 + \left(\frac{14}{5} - 2\right)^2 + (-2 - 3)^2}$$

$$= \sqrt{\frac{4}{25} + \frac{16}{25} + 25}$$

$$= \sqrt{\frac{4 + 16 + 625}{25}}$$

$$= \sqrt{\frac{645}{25}}$$

$$= \frac{\sqrt{645}}{5}.$$

Deuxième méthode : on utilise la formule de la distance d'un point à une droite :

$$d(M,\mathcal{D}) = \frac{\|AM \wedge u\|}{\|u\|}.$$

On a:

$$AM = M - A = (1 - 1, 2 - 3, 3 - (-2)) = (0, -1, 5).$$

Calculons le produit vectoriel :

$$AM \wedge u = \begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -1 & 5 \\ 2 & 1 & 0 \end{vmatrix} = e_1 \begin{vmatrix} -1 & 5 \\ 1 & 0 \end{vmatrix} - e_2 \begin{vmatrix} 0 & 5 \\ 2 & 0 \end{vmatrix} + e_3 \begin{vmatrix} 0 & -1 \\ 2 & 1 \end{vmatrix} = -5e_1 + 10e_2 + 2e_3.$$

On en déduit :

$$||AM \wedge u|| = \sqrt{(-5)^2 + 10^2 + 2^2} = \sqrt{25 + 100 + 4} = \sqrt{129}.$$

De plus:

$$||u|| = \sqrt{2^2 + 1^2 + 0^2} = \sqrt{5}.$$

On trouve donc:

$$d(M, \mathcal{D}) = \frac{\sqrt{129}}{\sqrt{5}} = \frac{\sqrt{645}}{5}.$$

2. De même, il y a plusieurs manières de calculer la distance d'un point à un plan. Première méthode : on cherche le point Y du plan \mathcal{P} tel que le segment MY soit orthogonal au plan. Le plan \mathcal{P} est orthogonal au vecteur normal n = (2, -3, 5). Ainsi, Y s'écrit :

$$Y = M + \mu n = (1, 2, 3) + \mu(2, -3, 5) = (1 + 2\mu, 2 - 3\mu, 3 + 5\mu).$$

On cherche μ tel que Y appartienne au plan, c'est-à-dire :

$$2(1+2\mu) - 3(2-3\mu) + 5(3+5\mu) = 7$$

$$\iff 2+4\mu-6+9\mu+15+25\mu=7$$

$$\iff 38\mu+11=7$$

$$\iff 38\mu=-4$$

$$\iff \mu=-\frac{2}{19}.$$

On en déduit :

$$Y = \left(1 - \frac{4}{19}, 2 + \frac{6}{19}, 3 - \frac{10}{19}\right)$$
$$= \left(\frac{15}{19}, \frac{44}{19}, \frac{47}{19}\right).$$

La distance cherchée est donc :

$$d(M, \mathcal{P}) = ||MY||$$

$$= \sqrt{\left(\frac{15}{19} - 1\right)^2 + \left(\frac{44}{19} - 2\right)^2 + \left(\frac{47}{19} - 3\right)^2}$$

$$= \sqrt{\frac{16}{361} + \frac{36}{361} + \frac{100}{361}}$$

$$= \sqrt{\frac{16 + 36 + 100}{361}}$$

$$= \sqrt{\frac{152}{361}}$$

$$= \frac{\sqrt{152}}{19}.$$

Deuxième méthode : on utilise la formule de la distance d'un point à un plan :

$$d(M,\mathcal{P}) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}},$$

où ax + by + cz + d = 0 est l'équation du plan et $M = (x_0, y_0, z_0)$. Ici, a = 2, b = -3, c = 5 et

d = -7. On a :

$$d(M, \mathcal{P}) = \frac{|2 \cdot 1 - 3 \cdot 2 + 5 \cdot 3 - 7|}{\sqrt{2^2 + (-3)^2 + 5^2}}$$

$$= \frac{|2 - 6 + 15 - 7|}{\sqrt{4 + 9 + 25}}$$

$$= \frac{|4|}{\sqrt{38}}$$

$$= \frac{4}{\sqrt{38}} = \frac{4\sqrt{38}}{38} = \frac{2\sqrt{38}}{19} = \frac{\sqrt{152}}{19}.$$

La distance cherchée est donc :

$$d(M, \mathcal{P}) = \frac{\sqrt{152}}{19}$$

Exercice 1.5. *

Déterminer la projection orthogonale Δ' de la droite Δ d'équation :

$$\begin{cases} x = 1 + 2\lambda \\ y = -1 + \lambda \\ z = 2 \end{cases}$$

dans le plan \mathcal{P} d'équation x + y + z = 1.

Solution.

Exercice 1.6. *

Calculer l'équation de la sphère de centre (1,1,1) et dont le plan tangent est x+y+z=2.

Solution.