Математическое и компьютерное моделирование

Лабораторная работа № 3

УРАВНЕНИЕ ШРЕДИНГЕРА. КВАНТОВЫЙ ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

1 Квантовая механика и уравнение Шредингера

Квантовая (волновая) механика — физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Субатомная частица — частица, намного меньшая, чем атом.

Квант — неделимая часть какой-либо величины в физике, например квант энергии.

Для описания состояния микрообъекта (например, электрона, протона, атома, молекулы) и вообще любой квантовой системы (например, кристалла) используется волновая функция ψ , которая является комплекснозначной функцией от координат и времени.

Описание состояния микрообъекта с помощью волновой функции имеет вероятностный характер. Например, если задана зависимость $\psi(x,y,z,t)$ частицы от координат x,y,z и времени t, то квадрат модуля этой волновой функции $|\psi|^2 = |\psi(x,y,z,t)|^2$ определяет вероятность обнаружить частицу в момент t в точке с координатами (x,y,z). Волновая функция находится из уравнения Шредингера.

Уравнение Шредингера, не зависящее от времени имеет вид

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi. \tag{1}$$

Здесь

- $\psi = \psi(x)$ волновая функция частица,
- \bullet x координата (смещение),
- m масса частицы,
- $\hbar = \frac{h}{2\pi}$, $h = 6,62607015 \cdot 10^{34} \ \mathrm{kr \cdot m^2 \cdot c^{-1}} \ (Дж \cdot c)$ постоянная Планка коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой,
- U(x) внешняя по отношению к частице функция потенциальной энергии частицы в точке x,
- Е полная энергия частицы.

Также уравнение (1) называется уравнением Шредингера для стационарных состояний. Уравнение Шредингера — основное уравнение нерелятивистской квантовой механики, описывающее динамику частиц. Уравнение Шредингера — один из фундаментальных законов физики. «Фундаментальный закон» означает, что уравнение Шредингера не может быть выведено из более базовых принципов; его можно только вывести или предположить на основе экспериментальных данных. Его обоснованность подтверждается бесчисленными успешными количественными предсказаниями и объяснениями экспериментальных наблюдений.

2 Решение двухточечной краевой задачи для ЛОДУ второго порядка

2.1 Построение сетки и введение сеточных функций

Рассмотрим численное решение методом сеток краевой задачи

$$-u''(x) + q(x)u(x) = f(x), a < x < b, (2)$$

$$u(a) = u_a, \qquad u(b) = u_b. \tag{3}$$

Произведем дискретизацию области непрерывного изменения аргумента x, заменив отрезок [a,b] сеткой ω^h — конечным набором точек $a=x_0< x_1< ...< x_N=b$. Точки $x_i, i=0,1,...,N$ называются **узлами сетки** ω^h . Пусть шаг сетки $h=\frac{b-a}{N}$. Тогда $x_i-x_{i-1}=h$ для всех i=1,2,...,N. Заметим, что при $N\to\infty$ шаг $h\to 0$ (сетка измельчается).

Сетка ω^h естественным образом разбивается на два подмножества:

$$\omega^h = \mathbf{w}^h \cup \gamma^h.$$

Множество внутренних узлов \mathbf{w}^h состоит из тех узлов x_i , $i \le i \le N-1$, которые лежат внутри интервала (a,b). Множество граничных узлов γ^h состоит из двух узлов $x_0=a$ и $x_N=b$, лежащих на границе отрезка [a,b].

Далее будем вычислять решение краевой задачи не в произвольных точках отрезка [a,b], а только в узлах сетки ω^h . Таким образом, искомой окажется не функция u, а сеточная функция u^h . Значения $u^h(x_i)$ этой функции в узлах x_i будем обозначать через u_i и рассматривать как приближения к значениям $u(x_i)$ решения задачи (2)–(3). Введем также сеточные функции q^h и f^h , принимающие в узлах сетки \mathbf{w}^h значения $q_i = q(x_i)$ и $f_i = f(x_i)$.

2.2 Построение разностной схемы

Производную u''(x) можно аппроксимировать второй разностной производной:

$$u''(x) \approx \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} \tag{4}$$

с погрешностью $r_h(x)=u^{(4)}(\xi)\frac{h^2}{12}$, где $\xi\in[x-h,x+h]$. Действительно, по формуле Тейлора

$$u(x \pm h) = u(x) \pm u'(x)h + \frac{u''(x)}{2}h^2 \pm \frac{u^{(3)}(x)}{6}h^3 + \frac{u^{(4)}(\xi_{\pm})}{24}h^4,$$

$$r_h(x) = u''(x) - \frac{u(x-h) - 2u(x) + u(x+h)}{h^2} =$$

$$= u''(x) - \frac{1}{h^2} \left[u(x) - u'(x)h + \frac{u''(x)}{2}h^2 - \frac{u^{(3)}(x)}{6}h^3 + \frac{u^{(4)}(\xi_{-})}{24}h^4 - 2u(x) + u(x) + u'(x)h + \frac{u''(x)}{2}h^2 + \frac{u^{(3)}(x)}{6}h^3 + \frac{u^{(4)}(\xi_{+})}{24}h^4 \right] =$$

$$= -\frac{u^{(4)}(\xi_{-}) + u^{(4)}(\xi_{+})}{24}h^2.$$

Используя формулу (4), заменим в каждом из внутренних узлов x_i , $1 \le i \le N-1$ дифференциальное уравнение (2) приближенным равенством

$$-\frac{u(x_{i-1}) - 2u(x_i) + u(x_{i+1})}{h^2} + q_i u(x_i) \approx f_i, \qquad 1 \le i \le N - 1,$$
(5)

связывающим неизвестные значения решения в трех последовательных узлах сетки.

Потребуем теперь, чтобы значения искомой сеточной функции u^h удовлетворяли во всех внутренних узлах сетки уравнениям (5), в которых знак приближенного равенства заменен на знак равенства:

$$-\frac{u^h(x_{i-1}) - 2u^h(x_i) + u^h(x_{i+1})}{h^2} + q_i u^h(x_i) = f_i, \qquad 1 \le i \le N - 1, \tag{6}$$

В результате дифференциальное уравнение (2) оказалось аппроксимированным его дискретным аналогом — разностным уравнением (6).

Естественно потребовать, чтобы в граничных узлах сеточная функция u^h удовлетворяла равенствам

$$u^h(x_0) = u_a, u^h(x_N) = u_b.$$
 (7)

Таким образом, мы пришли к системе линейных алгебраических уравнений (6), (7) в которой число уравнений совпадает с числом неизвестных $u_i = u^h(x_i)$, i = 0, 1, ..., N и равно N+1. Решая эту систему — систему сеточных уравнений — можно найти сеточную функцию u^h .

Введем линейный разностный оператор L^h с помощью равенства

$$L^{h}[u^{h}](x_{i}) = -\frac{u^{h}(x_{i-1}) - 2u^{h}(x_{i}) + u^{h}(x_{i+1})}{h^{2}} + q_{i}u^{h}(x_{i}), \qquad x_{i} \in \mathbf{w}^{h}$$

и запишем систему сеточных уравнений (6), (7) в следующем виде

$$L^h[u^h] = f^h(x), \qquad x \in \mathbf{w}^h, \tag{8}$$

$$u^h(x_0) = u_a, u^h(x_N) = u_b.$$
 (9)

Дискретную задачу (8), (9), зависящую от параметра h, принято называть **разностной схемой** для краевой задачи (2)–(3).

2.3 Вычисление решения разностной схемы с помощью метода прогонки

Приведем систему сеточных уравнений

$$-\frac{u^h(x_{i-1}) - 2u^h(x_i) + u^h(x_{i+1})}{h^2} + q_i u^h(x_i) = f_i, \qquad 1 \le i \le N - 1,$$
$$u^h(x_0) = u_a, \qquad u^h(x_N) = u_b.$$

к виду

$$-u_{i-1} + (2 + h^2 q_i)u_i + u_{i+1} = h^2 f_i, \qquad 1 \le i \le N - 1, \tag{10}$$

$$u_0 = u_a, \qquad u_N = u_b. \tag{11}$$

Эта система есть частный случай системы линейных алгебраических уравнений вида

$$b_0 u_0 + c_0 u_1 = d_0,$$

$$a_i u_{i-1} + b_i u_i + c_i u_{i+1} = d_i, 1 \le i \le N - 1,$$

$$a_N u_{N-1} + b_N u_N = d_N$$

матрица которой трехдиагональна. Здесь

$$a_i = -1, \quad b_i = 2 + h^2 q_i, \quad c_i = -1, \quad d_i = h^2 f_i, \qquad 1 \le i \le N,$$
 (12)

$$b_0 = 1, \quad c_0 = 0, \quad d_0 = u_a, \quad a_N = 0, \quad b_N = 1, \quad d_N = u_b.$$
 (13)

Эффективным методом решения таких систем является метод прогонки, вычисления которого состоят из двух этапов: прямого и обратного хода.

Прямой ход метода прогонки заключается в вычислении прогоночных коэффициентов α_i и $\beta_i,\ 0\leq i\leq N.$ При i=0 коэффициенты вычисляются по формулам

$$\alpha_0 = -\frac{c_0}{\gamma_0}, \quad \beta_0 = \frac{d_0}{\gamma_0}, \quad \gamma_0 = b_0,$$

а при i=1,2,...,N-1 — по рекуррентным формулам

$$\alpha_i = -\frac{c_i}{\gamma_i}, \quad \beta_i = \frac{d_i - a_i \beta_{i-1}}{\gamma_i}, \quad \gamma_i = b_i + a_i \alpha_{i-1}.$$

При i=N прямой ход завершают вычислением значения

$$\beta_N = \frac{d_N - a_N \beta_{N-1}}{\gamma_N}, \qquad \gamma_N = b_N + a_N \alpha_{N-1}.$$

Обратный ход метода прогонки дает значения неизвестных. Сначала полагают $u_N = \beta_N$, я затем значения остальных неизвестных находят по формуле

$$u_i = \alpha_i u_{i+1} + \beta_i.$$

Вычисления ведут в порядке убывания значения индекса i от N-1 до 0.

Применительно к решению системы (10)–(11) расчетные формулы метода прогонки упрощаются.

В нашем случае прогоночные коэффициенты вычисляются по формулам

$$\alpha_0 = 0, \quad \beta_0 = u_a, \quad \alpha_i = \frac{1}{2 + h^2 q_i - \alpha_{i-1}}, \quad \beta_i = \frac{h^2 f_i + \beta_{i-1}}{2 + h^2 q_i - \alpha_{i-1}},$$
 (14)

где i = 1, 2, ..., N - 1.

Обратные ход дает значения неизвестных $u_1, u_2, ..., u_{N-1}$ ($u_0 = u_a$ и $u_N = u_b$ известны). Для этого производят вычисления по формулам

$$u_N = u_b, \quad u_i = \alpha_i u_{i+1} + \beta_i, \quad i = N - 1, N - 2, ..., 1.$$
 (15)

Замечание 1. Коэффициенты (12)-(13) удовлетворяют неравенствам

$$a_i \le 0, \quad b_i > 0, \quad c_i < 0, \quad a_i + b_i + c_i \ge 0, \quad 1 \le i \le N.$$
 (16)

Отсюда следует, что для системы (10)–(11) выполнены условия диагонального преобладания:

$$|b_0| \ge |c_0|$$
, $|b_i| \ge |a_i| + |c_i| > |a_i|$, $1 \le i < N$, $|b_N| > |a_N|$.

Поэтому вычисления по формуле (14) могут быть доведены до конца (ни один из знаменателей γ_i не обратиться в нуль). Кроме того, обратная прогонка устойчива по входным данным.

2.4 Оценка погрешности по правилу Рунге

На практике применяются апостериорные оценки погрешности, использующие расчеты на сгущающихся сетках. Пусть, например, u^h и u^{2h} — решения разностной схемы (8)–(9), соответствующие шагам $h_1 = h$ и $h_2 = 2h$. Тогда в соответствии с правилом Рунге при определенных условиях справедлива приближенная формула

$$\varepsilon^h(x) = u(x) - u^h(x) \approx \frac{u^h(x) - u^{2h}(x)}{3}, \qquad x \in \omega^{2h}.$$
(17)

Отметим, что она применима только в узлах сетки ω^{2h} , т.е. там, где определены обе сеточные функции u^h и u^{2h} .

2.5 Иллюстративный пример решения в Excel

Используя разностную схему (8)–(9) с шагом h=1/8, найдем приближенное решение краевой задачи

$$-u''(x) + x^{2}u(x) = \left(\frac{\pi^{2}}{4} + x^{2}\right)\cos\frac{\pi}{2}x, \qquad 0 < x < 1,$$

$$u(0) = 1, \qquad u(1) = 0$$
(18)

и оценим его погрешность по правилу Рунге. Вычисления будем вести с шестью значащими цифрами.

В данном случае $q(x)=x^2,$ $f(x)=\left(\frac{\pi^2}{4}+x^2\right)\cos\frac{\pi}{2}x$ и система сеточных уравнений (10)–(11) примет вид

$$u_0 = 1,$$

$$-u_{i-1} + (2_h^2 x_i^2) u_i - u_{i+1} = \left(\frac{\pi^2}{4} + x_i^2\right) \cos \frac{\pi}{2} x_i, \qquad 1 \le i \le N - 1,$$

$$u_N = 0.$$

При $h_1 = \frac{1}{8} = 0, 125, x \in [0, 1]$ заполним таблицу (см. рис. 1).

- 1. Составим таблицу значений аргумента x (столбик B5:B13), учитывая, что $x \in [0,1]$, h=0, 125.
- 2. Заполним столбец C5:C13 соответствующими x значениями $q(x) = x^2$.
- 3. Заполним столбец D5:D13 соответствующими x значениями $f(x) = \left(\frac{\pi^2}{4} + x^2\right) \cos \frac{\pi}{2} x$.
- 4. По формулам (14) заполним столбец E5:E13. В E5 запишем значение $\alpha_0=0$, в E6 запишем формулу $\alpha_i=\frac{1}{2+h^2q_i-\alpha_{i-1}}$ и растянем до E13.
- 5. По формулам (14) заполним столбец F5:F13. В F5 запишем значение $\beta_0=u(0)=1$, в F6 запишем формулу $\beta_i=\frac{h^2f_i+\beta_{i-1}}{2+h^2q_i-\alpha_{i-1}}$ и растянем до F13.
- 6. Ячейку G13 заполним значением u(1)=0. Ячейку G12 заполним по формуле $u_i=\alpha_i u_{i+1}+\beta_i$ и растянем вверх до G5.
- 7. Поскольку известно точное решение этой задачи $u=\cos\frac{\pi}{2}x$, то запишем его в столбец I5:I13.
- 8. Поскольку известно точное решение, то погрешность можно найти по формуле $\varepsilon^h(x)=u(x)-u^h(x)$ и записать ее в столбец H5:H13.
- 9. Построим графики точного и приближенного решений (см. рис. 2) и график погрешности (см. рис.).

1	Α	В	С	D	E	F	G	Н	1
1	u(0)=	1							
2	u(1)=	0							
3	h=	0,1250							
4	i	x	q(x)	f(x)	alpha	beta	ui	Epsilon	u_exact
5	0	0,000000	0,000000	2,467401	0,000000	1,000000	1,000000	0,000000	1
6	1	0,125000	0,015625	2,435315	0,499939	0,518963	0,981121	-0,000335	0,98079
7	2	0,250000	0,062500	2,337324	0,666206	0,370066	0,924429	-0,000549	0,92388
8	3	0,375000	0,140625	2,168494	0,748508	0,302359	0,832119	-0,000650	0,83147
9	4	0,500000	0,250000	1,921493	0,796560	0,264762	0,707756	-0,000649	0,70711
10	5	0,625000	0,390625	1,587834	0,826758	0,239406	0,556133	-0,000563	0,55557
11	6	0,750000	0,562500	1,159493	0,846002	0,217865	0,383095	-0,000412	0,38268
12	7	0,875000	0,765625	0,630732	0,857661	0,195307	0,195307	-0,000217	0,19509
13	8	1,000000	1,000000	0,000000	0,863585	0,168664	0,000000	0,000000	6,1E-17
14									

Рис. 1: Решение в Excel

Рис. 2: График решения в Excel

3 Задача Штурма-Лиувилля и уравнение Шредингера

Задача Штурма—Лиувилля состоит в нахождении нетривиальных (то есть отличных от тождественного нуля) решений на промежутке (a, b) уравнения Штурма—Лиувилля

$$L[u] = \lambda \rho(x)u(x),$$

удовлетворяющих однородным краевым (граничным) условиям

$$\alpha_1 u'(a) + \beta_1 u(a) = 0,$$
 $\alpha_1^2 + \beta_1^2 \neq 0;$
 $\alpha_2 u'(b) + \beta_2 u(b) = 0,$ $\alpha_2^2 + \beta_2^2 \neq 0;$

и значений параметра λ , при которых такие решения существуют.

Рис. 3: График погрешности в Excel

Оператор L[u] здесь — это действующий на функцию u(x) линейный дифференциальный оператор второго порядка вида

$$L[u] \equiv \frac{d}{dx} \left[-p(x) \frac{du}{dx} \right] + q(x)u(x)$$

— оператор Штурма—Лиувилля или оператор Шрёдингера, x — вещественный аргумент.

Функции p(x), p'(x), q(x), $\rho(x)$ предполагаются непрерывными на (a, b), кроме того функции p(x), $\rho(x)$ положительны на (a, b).

Искомые нетривиальные решения называются собственными функциями этой задачи, а значения λ , при которых такое решение существует — её собственными значениями (каждому собственному значению соответствует собственная функция).

Если функции ρ и p дважды непрерывно дифференцируемы и положительны на отрезке [a,b] и функция q непрерывна на [a,b], то уравнение Штурма–Лиувилля вида

$$(p(x)u')' - q(x)u + \lambda \rho(x)u = 0$$

при помощи преобразования Лиувилля приводится к виду

$$-u''(x) + q_1(x)u(x) = \lambda u(x).$$
 (19)

Поэтому часто рассматривают уравнение Штурма—Лиувилля в виде (19), функцию $q_1(x)$ называют потенциалом. Изучаются задачи Штурма—Лиувилля с потенциалами из разных классов функций: непрерывными, L (суммируемыми), L_2 и других. Виды краевых условий

- Условия Дирихле u(a) = u(b) = 0.
- Условия Неймана u'(a) = u'(b) = 0.
- Условия Робена u'(a) hu(a) = 0, u'(b) + Hu(b) = 0.
- ullet Смешанные условия: условия разных видов в разных концах отрезка $[a,\ b].$

• Распадающиеся краевые условия общего вида

$$\alpha_1 u'(a) + \beta_1 u(a) = 0,$$
 $\alpha_1^2 + \beta_1^2 \neq 0;$
 $\alpha_2 u'(b) + \beta_2 u(b) = 0,$ $\alpha_2^2 + \beta_2^2 \neq 0.$

- Периодические условия u(a) = u(b), u'(a) = u'(b).
- Антипериодические условия $u(a) = -u(b), \quad u'(a) = -u'(b).$

Уравнение Шредингера, не зависящее от времени имеет вид (1)

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U(x)\psi = E\psi.$$

Нетрудно видеть, что уравнение Шредингера совпадает с уравнением Штурма—Лиувилля в виде (19) при

$$q_1(x) = \frac{2m}{\hbar^2}U(x), \qquad \lambda = \frac{2m}{\hbar^2}E.$$

Например, уравнение квантового гармонического осциллятора приводится к виду

$$-u''(x) + (x^2 - \lambda)u(x) = 0. (20)$$

Уравнение (20) совпадает с (2) при $q(x)=(x^2-\lambda), f(x)=0$. Следовательно, добавив к нему условия

$$u(a) = u_a, \qquad u(b) = u_b.$$

Его можно решить численно на отрезке [a,b] методом конечных разностей, как показано в разделе 2.

Аналогично, уравнение Шредингера

$$-u''(x) + q(x)u(x) = 0. (21)$$

с условиями

$$u(a) = u_a, \qquad u(b) = u_b. \tag{22}$$

можно решить численно на отрезке [a,b] методом конечных разностей, как показано в разделе 2, взяв f(x)=0.

Уравнение Шредингера (21) решается явно лишь для небольшого число поенциалов q(x). В частности, при q(x) = const и $q(x) = x^2$. Поэтому, для других потенциалов q(x) будем искать численное решение задачи (21)–(22) и находить погрешность по правилу Рунге, измельчая сетку

$$\varepsilon^h(x) \approx \frac{u^h(x) - u^{2h}(x)}{3}, \qquad x \in \omega^{2h}.$$

3.1 Иллюстративный пример решения в Excel

Используя разностную схему (8)–(9) с шагом h=1/8, найдем приближенное решение краевой задачи

$$-u''(x) - \frac{3}{x^2}u(x) = 0, 0, 5 < x < 1, 5;$$

$$u(0,5) = 1, u(1,5) = 0$$
(23)

и оценим его погрешность по правилу Рунге. Вычисления будем вести с шестью значащими цифрами. Повторяя действия из раздела 2, получим результат, приведенный на Рис. 5.

Рис. 4: График решения в Excel

4	Α	В	С	D	E	F	G	Н	1
1	u(0,5)=	1							
2	u(1,5)=	0							
3	h=	0,1250	h1=	0,062500					
4	i	x	q(x)	f(x)	alpha	beta	ui	u2i	Epsilon
5	0	0,500000	-12,000000	0,000000	0,000000	2,000000	2,000000	0,000000	0
6	1	0,625000	-7,680000	0,000000	0,531915	1,063830	2,284994	-0,005380	-0,00179
7	2	0,750000	-5,333333	0,000000	0,722151	0,768246	2,295790	-0,008908	-0,00297
8	3	0,875000	-3,918367	0,000000	0,821946	0,631457	2,115269	-0,010370	-0,00346
9	4	1,000000	-3,000000	0,000000	0,884034	0,558229	1,805242	-0,010142	-0,00338
10	5	1,125000	-2,370370	0,000000	0,926845	0,517392	1,410594	-0,008661	-0,00289
11	6	1,250000	-1,920000	0,000000	0,958630	0,495987	0,963703	-0,006297	-0,0021
12	7	1,375000	-1,586777	0,000000	0,983694	0,487900	0,487900	-0,003337	-0,00111
13	8	1,500000	-1,333333	0,000000	1,004548	0,490118	0,000000	0,000000	0
14									

Рис. 5: Решения в Excel

Чтобы оценить погрешность по методу Рунге найдем решение с удвоенной точностью $h_1 = \frac{1}{16}$ (см. Рис. 6.)

Графики решения с точностями $h = \frac{1}{8}$ и $h_1 = \frac{1}{16}$ приведены на Рис. 4. График погрешности дан на Рис. 7.

4	Α	В	C	D	Е	F	G
17	i	x	q(x)	f(x)	alpha	beta	ui
18	0	0,500000	-12,000000	0,000000	0,000000	2,000000	2,000000
19	1	0,562500	-9,481481	0,000000	0,509434	1,018868	2,185663
20	2	0,625000	-7,680000	0,000000	0,684666	0,697584	2,290375
21	3	0,687500	-6,347107	0,000000	0,774869	0,540537	2,326376
22	4	0,750000	-5,333333	0,000000	0,830360	0,448840	2,304698
23	5	0,812500	-4,544379	0,000000	0,868139	0,389655	2,235006
24	6	0,875000	-3,918367	0,000000	0,895612	0,348980	2,125639
25	7	0,937500	-3,413333	0,000000	0,916545	0,319856	1,983737
26	8	1,000000	-3,000000	0,000000	0,933065	0,298446	1,815385
27	9	1,062500	-2,657439	0,000000	0,946473	0,282471	1,625758
28	10	1,125000	-2,370370	0,000000	0,957609	0,270497	1,419256
29	11	1,187500	-2,127424	0,000000	0,967042	0,261582	1,199612
30	12	1,250000	-1,920000	0,000000	0,975174	0,255088	0,969999
31	13	1,312500	-1,741497	0,000000	0,982296	0,250572	0,733112
32	14	1,375000	-1,586777	0,000000	0,988625	0,247722	0,491237
33	15	1,437500	-1,451796	0,000000	0,994329	0,246317	0,246317
34	16	1,500000	-1,333333	0,000000	0,999537	0,246203	0,000000

Рис. 6: Решения с удвоенной точностью в Excel

Рис. 7: График погрешности в Excel

Задание 1.

Решить двухточечную краевую задачу для ЛОДУ второго порядка на отрезке [a,b] с шагом $h=rac{b-a}{N}$. Построить график решения u=u(x) при $x\in [a,b]$. Варианты заданий в таблице 1.

Таблица 1.								
Вариант	Дифференциальное	Краевые	[a,b]	N				
	уравнение	условия						
1	$-u'' + xu = -\sin x$	u(0) = 1, u(2) = 0	[0, 2]	10				
2	$-u'' + 2x^2u = -x$	u(0) = 2, u(2) = 1	[0, 2]	20				
3	$-u'' + 3\cos x u = -\operatorname{tg} x$	u(0) = 3, u(1) = 2	[0, 1]	30				
4	$-u'' + xu = -\sin^2 x$	u(0) = 1, u(2) = 3	[0, 2]	40				
5	$-u'' + \sin x u = -\sin x$	u(0) = 2, u(2) = 4	[0, 2]	50				
6	$-u'' + \cos x u = -\sin x$	u(1) = 3, u(2) = 1	[1,2]	10				
7	$-u'' + 2x^2 u = -\cos x$	u(1) = 1, u(2) = 2	[1, 2]	20				
8	$-u'' + \operatorname{tg}(x-1) u = -x$	u(1) = 2, u(2) = 3	[1, 2]	30				
9	$-u'' + \sin x u = -\sin^3 x$	u(1) = 3, u(2) = 2	[1, 2]	40				
10	$-u'' + \ln x u = -\sin x$	u(1) = 1, u(2) = 0	[1, 2]	50				
11	$-u'' + \cos x u = -x$	u(1) = 2, u(3) = 1	[1, 3]	10				
12	$-u'' + 2x^2 u = -x^2$	u(1) = 3, u(3) = 2	[1, 3]	20				
13	$-u'' + \lg x u = -2^x$	u(1) = 1, u(3) = 3	[1, 3]	30				
14	$-u'' + 2 \sin x u = -3x^3$	u(1) = 2, u(3) = 2	[1, 3]	40				
15	$-u'' + 2\ln x u = -(1+x)$	u(1) = 3, u(3) = 4	[1, 3]	50				
16	$-u'' + \cos x u = -\cos^2 x$	u(-1) = 2, u(1) = 2	[-1, 1]	10				
17	$-u'' + 2 x u = -\operatorname{tg} x$	u(-1) = 1, u(1) = 1	[-1, 1]	20				
18	$-u'' + \operatorname{tg} x u = -e^{2x}$	u(-1) = 3, u(1) = 0	[-1, 1]	30				
19	$-u'' + \ln(1+x^2) u = -\sin 2x$	u(-1) = 1, u(1) = 2	[-1, 1]	40				
20	$-u'' + \sin x u = -\sin x$	u(-1) = 2, u(1) = 1	[-1, 1]	50				
21	$-u'' + 2u = -\sin x$	$u(0) = 2, u(\pi) = 2$	$[0,\pi]$	10				
22	$-u'' + 3u = -\cos x$	$u(0) = 1, u(\pi) = 1$	$[0,\pi]$	20				
23	$-u'' + 2x u = -x^3$	$u(0) = 2, u(\pi) = 2$	$[0,\pi]$	30				
24	$-u'' + x u = -x^4$	$u(0) = 3, u(\pi) = 2$	$[0,\pi]$	40				
25	$-u'' + 2x^2 u = -x^2$	$u(0) = 1, u(\pi) = 3$	$[0,\pi]$	50				
26	$-u'' - \cos x u = -e^x \sin x$	$u(\pi/2) = 2, u(\pi) = 4$	$[\pi/2,\pi]$	10				
27	$-u'' + 2x^2 u = -2x\sin x$	$u(\pi/2) = 3, u(\pi) = 2$	$[\pi/2,\pi]$	20				
28	$-u''5 u = -3^{2x}$	$u(\pi/2) = 1, u(\pi) = 1$	$[\pi/2,\pi]$	30				
29	$-u'' + \sin x u = -\sin 3x$	$u(\pi/2) = 2, u(\pi) = 2$	$[\pi/2,\pi]$	40				
30	$-u'' + \ln x u = -1$	$u(\pi/2) = 3, u(\pi) = 4$	$[\pi/2,\pi]$	50				

Задание 2.

Решить двухточечную краевую задачу для уравнения Шредингера

$$-u''(x) + q(x)u(x) = 0,$$

$$u(a) = u_a, \qquad u(b) = u_b$$

на отрезке [a,b] с шагом $h=\frac{b-a}{N}$. Построить график решения u=u(x) при $x\in [a,b]$. Варианты заданий в таблице 2.

		Таблица 2.		
Вариант	Потенциал	Краевые	[a,b]	N
	q(x)	условия		
1	$\sin x$	u(0) = 1, u(2) = 0	[0, 2]	10
2	x^3	u(0) = 2, u(2) = 1	[0, 2]	20
3	2x	u(0) = 3, u(1) = 2	[0, 1]	30
4	$x^2 + 1$	u(0) = 1, u(2) = 3	[0, 2]	40
5	$\cos x$	u(0) = 2, u(2) = 4	[0, 2]	50
6	$\frac{1}{x}$	u(1) = 3, u(2) = 1	[1, 2]	10
7	$\frac{\frac{1}{x}}{\frac{4}{x^2}}$	u(1) = 1, u(2) = 2	[1, 2]	20
8	$\frac{3}{x^3}$	u(1) = 2, u(2) = 3	[1, 2]	30
9	$\ln x$	u(1) = 3, u(2) = 2	[1, 2]	40
10	e^{-x^2}	u(1) = 1, u(2) = 0	[1, 2]	50
11	$\operatorname{tg} x$	u(1) = 2, u(3) = 1	[1, 3]	10
12	$\operatorname{ch} x$	u(1) = 3, u(3) = 2	[1, 3]	20
13	$\lg x$	u(1) = 1, u(3) = 3	[1, 3]	30
14	$\operatorname{sh} x$	u(1) = 2, u(3) = 2	[1, 3]	40
15	$\frac{1}{1+x^2}$	u(1) = 3, u(3) = 4	[1, 3]	50
16	2^{-x}	u(-1) = 2, u(1) = 2	[-1, 1]	10
17	$tg^2 x$	u(-1) = 1, u(1) = 1	[-1, 1]	20
18	$\frac{2}{x^4+1}$	u(-1) = 3, u(1) = 0	[-1, 1]	30
19	$-\operatorname{tg} 2x$	u(-1) = 1, u(1) = 2	[-1, 1]	40
20	$-x^3$	u(-1) = 2, u(1) = 1	[-1, 1]	50
21	$1-\sin x$	$u(0) = 2, u(\pi) = 2$	$[0,\pi]$	10
22	$1-\cos x$	$u(0) = 1, u(\pi) = 1$	$[0,\pi]$	20
23	$-\sin x $	$u(0) = 2, u(\pi) = 2$	$[0,\pi]$	30
24	$-x^4$	$u(0) = 3, u(\pi) = 2$	$[0,\pi]$	40
25	$-x^2$	$u(0) = 1, u(\pi) = 3$	$[0,\pi]$	50
26	e^x	$u(\pi/2) = 2, u(\pi) = 4$	$[\pi/2,\pi]$	10
27	-3^{-2x}	$u(\pi/2) = 3, u(\pi) = 2$	$[\pi/2,\pi]$	20
28	x^4	$u(\pi/2) = 1, u(\pi) = 1$	$[\pi/2,\pi]$	30
29	$\ln x$	$u(\pi/2) = 2, u(\pi) = 2$	$[\pi/2,\pi]$	40
30	$\ln(1+x^2)$	$u(\pi/2) = 3, u(\pi) = 4$	$[\pi/2,\pi]$	50