THE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH4402 Analysis II

Tutorial 6 (Mar 28)

- 1. (a) Show that the set of irrational numbers in [0,1] does not have measure zero in \mathbb{R} .
 - (b) Show that any nonempty open set in \mathbb{R}^n does not have measure zero in \mathbb{R}^n . Hence show that every measure zero set must have empty interior.
- 2. (a) Show that any unbounded set cannot have content zero.
 - (b) Give an example of a closed set of measure zero which does not have content zero.

3. (The Cantor Set)

The *Cantor Set* C is obtained from $C_0 := [0,1]$ by successive deletion of middle thirds, and can be written as

$$C = \bigcap_{n=0}^{\infty} C_n,$$

where $C_1:=[0,\frac{1}{3}]\cup[\frac{2}{3},1]$, $C_2:=[0,\frac{1}{9}]\cup[\frac{2}{9},\frac{1}{3}]\cup[\frac{2}{3},\frac{7}{9}]\cup[\frac{8}{9},1]$, etc. Show that C has measure zero in $\mathbb R$ (This gives an example of an **uncountable set** in $\mathbb R$ which has **measure zero**).

- 4. Let A be a closed rectangle in \mathbb{R}^n and let $f:A\longrightarrow \mathbb{R}$ be a bounded function.
 - (a) Prove that if f is integrable over A and f vanishes except on a subset C of A of measure zero, then $\int_A f = 0$ (Theorem 5.18 (a)).
 - (b) Give an example of a bounded function $f:A\longrightarrow \mathbb{R}$ such that f vanishes except on a subset C of A of measure zero but f is not integrable over A.
 - (c) Prove that if f vanishes except on a closed subset C of A of measure zero, then f is integrable over A with $\int_A f = 0$.
- 5. Let A be a closed rectangle in \mathbb{R}^n and let $f:A\longrightarrow \mathbb{R}$ be a bounded function. Prove that if $f(x)\geq 0$ for any $x\in A$ and if f is integrable over A with $\int_A f=0$, then f vanishes except on a subset of A of measure zero (*Theorem 5.18 (b)*).
- $\text{6. Let } A = [0,1] \times [0,1] \text{ and let } a,b \in \mathbb{R}. \text{ Define } f:A \longrightarrow \mathbb{R} \text{ by } f(x,y) = \left\{ \begin{array}{ll} a & \text{if } x \leq y \\ b & \text{if } x > y. \end{array} \right.$

1

- (a) Show that f is integrable over A.
- (b) Find $f_x(y)$ for each $x \in [0,1]$ and $f_y(x)$ for each $y \in [0,1]$. Hence find L(x), U(x), L(y) and U(y).
- (c) Use Fubini's Theorem to compute the value of $\int_A f$.