The Duke GPA Data Analysis: In Class

the class

2023-08-30

Task 1.

First, we will read the data from our csv file "gpa.csv" into a data.frame called gpa.data:

```
gpa.data<-read.csv("gpa.csv")
#gpa.data</pre>
```

If you want to see what your data frame looks like, you can click on it in the **Global environment** in the upper right pane. The data frame will get displayed in the upper left pane.

Task 2.

You interested in the types and names of the variables in your data.frame. What do you run?

```
ls.str(gpa.data)

## gender : chr [1:55] "female" "female" "female" "male" "female" "male" "female" "male" "female" ...

## gpa : num [1:55] 3.89 3.9 3.75 3.6 4 ...

## out : num [1:55] 3 1 1 4 3 3 1 3 2 4 ...

## sleepnight : num [1:55] 6 6 7 6 7 7 6 8 8 8 8 ...

## studyweek : int [1:55] 50 15 15 10 25 20 15 10 12 2 ...
```

You see that the students/cases all have corresponding rows. They are labeled by the row indices. The column names stand for the variable names.

Then, you can do a bit of exploratory analysis.

Task 3.

What are the minimum and maximum GPAs? What is the mean GPA? What is the median GPA?

```
gpa<-gpa.data$gpa
min(gpa)
## [1] 2.9
max(gpa)
## [1] 4.67
mean(gpa)
## [1] 3.600073
sd(gpa)
## [1] 0.3356183
summary(gpa)
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
    2.900 3.400 3.650
                            3.600 3.825
                                            4.670
```

Task 4.

Plot the histogram of the GPAs. Make sure that your plot has the main title and that the axes are also labeled.

```
hist(gpa,
    breaks=15,
    main="Histogram of GPA",
    xlab="GPA",
    ylab="Frequency",
    col="lightblue")
```

Histogram of GPA

Task 5.

Plot the histogram of the number of hours spent studying per week. Make sure that your plot has the main title and that the axes are also labeled.

```
hrs<-gpa.data$studyweek
hist(hrs,
    breaks=18,
    main="Histogram of hours spent studying",
    xlab="Hours",
    ylab="Frequency",
    col="steelblue")</pre>
```

Histogram of hours spent studying

Task 6.

Is the mean number of hours spent studying different for females than for males?

```
gpa.data$gender
## [1] "female" "female" "male" "female" "male"
                                                           "female" "female"
                        "female" "female" "female" "female" "male"
## [9] "female" "male"
                "female" "female" "female" "female" "male"
## [17] "male"
## [25] "female" "female" "female" "female" "female" "female" "female" "female"
## [33] "female" "male"
                        "female" "female" "female" "male"
## [41] "female" "female" "male"
                               "female" "female" "male"
## [49] "female" "female" "female" "female" "female" "female" "female"
gpa.data$gender=="female"
## [1]
        TRUE
             TRUE TRUE FALSE TRUE FALSE
                                          TRUE
                                                TRUE
                                                      TRUE FALSE TRUE
## [13]
        TRUE
              TRUE
                   TRUE FALSE FALSE
                                     TRUE
                                          TRUE
                                                TRUE
                                                      TRUE TRUE FALSE
                                                                       TRUE
## [25]
        TRUE
              TRUE
                   TRUE
                         TRUE
                               TRUE
                                     TRUE
                                          TRUE
                                                TRUE
                                                      TRUE FALSE TRUE
## [37]
        TRUE
             TRUE FALSE
                                                TRUE TRUE FALSE FALSE FALSE
                         TRUE
                               TRUE
                                     TRUE FALSE
        TRUE TRUE TRUE TRUE
                               TRUE
                                     TRUE
                                          TRUE
## [49]
hrs.f=hrs[gpa.data$gender=="female"]
hrs.f
## [1] 50 15 15 25 15 10 12 10 30 30 21 10 12 4 45 6 10 13 35 10 40 14 30 8 8
## [26] 20 40 25 10 18 15 11 28 4 25 42 20 7 6 20 45 30 20
hrs.m=hrs[gpa.data$gender=="male"]
hrs.m
## [1] 10 20 2 14 12 12 15 30 4 3 42 25
mean(hrs.f)-mean(hrs.m)
## [1] 4.343023
```

Task 7.

Any difference in the GPA?

```
gpa.f=gpa[gpa.data$gender=="female"]
gpa.m=gpa[gpa.data$gender=="male"]
mean(gpa.f)-mean(gpa.m)
## [1] 0.05125581
```

Task 8.

Is there a relationship between the hours studied and the GPA?

```
plot(hrs,gpa, pch=19, col="blue",
    main="Scatterplot of hours studied and GPA",
    xlab="Hours",
    ylab="GPA")
slr=lm(gpa ~ hrs)
slr
##
## Call:
## lm(formula = gpa ~ hrs)
##
## Coefficients:
## (Intercept)
                      hrs
     3.578490 0.001127
summary(slr)
##
## Call:
## lm(formula = gpa ~ hrs)
##
## Residuals:
      Min
                1Q Median
                                 3Q
## -0.71231 -0.18864 0.04784 0.22274 1.07573
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 3.578490 0.084568 42.315
                                         <2e-16 ***
## hrs
                        0.003719 0.303
                                            0.763
            0.001127
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3385 on 53 degrees of freedom
## Multiple R-squared: 0.001731, Adjusted R-squared: -0.0171
## F-statistic: 0.0919 on 1 and 53 DF, p-value: 0.763
abline(slr, col="red")
```

Scatterplot of hours studied and GPA

Task x. What else could we ask?

