Aufgabe 1: Thévenin- und Norton-Ersatzquelle

Daten:

$$U_{q1} = 24 \text{ V}$$
 $U_{q2} = 12 \text{ V}$ $R_1 = 4.7 \Omega$ $R_2 = 6.8 \Omega$ $R_3 = 2.2 \Omega$

Ermitteln Sie die Ersatzspannungsquelle (Thévenin) und die Ersatzstromquelle (Norton) zwischen den Anschlüssen A und B:

Skizze der beiden Schaltungen mit Angabe von U_{qE} (mit Referenzrichtung) und R_{iE} , sowie I_{qE} (mit Referenzrichtung) und R_{iE} .

Aufgabe 2: Stromberechnung

Daten:
$$U_{q1} = 12 \text{ V}$$
 $I_{q2} = 2 \text{ A}$
 $I_1 = 2 \text{ A}$ $I_2 = 6 \text{ A}$ $I_3 = 3 \text{ A}$ $I_4 = 4 \text{ A}$ $I_5 = 3 \text{ A}$
 $R_1 = 10 \Omega$ $R_2 = 20 \Omega$ $R_3 = 30 \Omega$ $R_4 = 40 \Omega$
 $R_5 = 50 \Omega$ $R_6 = 60 \Omega$ $R_7 = 70 \Omega$

Berechnen Sie den Strom I.

Aufgabe 3: Anpassung

- a) Bestimmen Sie den Lastwiderstand R_L , so dass in ihm die Leistung maximal wird.
- b) Berechnen Sie die maximale Leistung P_{Lmax} in der Last.