RESUMO TEÓRICO

OBJETIVO

Analisar circuitos elétricos alimentados em corrente alternada, para levantamento do diagrama fasorial.

1- IMPEDÂNCIA COMPLEXA

Em CA, a impedância é dada por 1 \mathbf{Z} = R + j X = | \mathbf{Z} | | ϕ onde | \mathbf{Z} | = $\sqrt{R^{2} + X^{2}}$ e ϕ = arctang (X/R).

Casos Particulares:

1.1- Impedância capacitiva

$$\mathbf{Z}_C = -j / wC = 1 / wC \left[-90^{\circ} \right]$$

1.2 - Impedância indutiva

$$\mathbf{Z}_{L} = \mathbf{j} \mathbf{w} L = \mathbf{w} L \, \underline{90^{\circ}}$$

1.3- Impedância resistiva

$$\mathbf{Z} = \mathbf{R} = \mathbf{R} \, \boxed{0^{\circ}}$$

2-ANÁLISE VETORIAL DA LEI DE OHM

$$V = Z \cdot I$$

Supondo que a fase de V é α e a fase de Z é ϕ , temos:

$$\mathbf{I} = |\mathbf{V}| \quad \boxed{\alpha}$$

$$|\mathbf{Z}| \quad \boxed{\phi}$$

$$\mathbf{I} = |\mathbf{V}| \quad \boxed{\alpha - \phi}$$

2.1 -Para impedância resistiva, a corrente está em fase com a tensão :

¹ números complexos serão escritos em negrito

2.2 -Para impedância capacitiva, a corrente está adiantada em relação à tensão:

$$\mathbf{I} = |\mathbf{V}| \quad \underline{\alpha}$$

$$\frac{1}{wC} \quad \boxed{-90}$$

$$\mathbf{I} = |\mathbf{I}| \underline{\alpha + 90^{\circ}}$$

$$|\mathbf{I}| = |\mathbf{V}|.w.C$$

2.3 Para impedância indutiva, a corrente está atrasada em relação à tensão:

$$\mathbf{I} = |\mathbf{V}| \quad \underline{\alpha}$$

$$\mathbf{wL} \quad \boxed{90}$$

$$\mathbf{I} = |\mathbf{I}| \quad \alpha - 90^{\circ}$$

$$|\mathbf{I}| = |\mathbf{V}|$$

$$\mathbf{w.L}$$

3- LEIS DE KIRCHOFF

3.1 Primeira Lei de Kirchoff:

A somatória das correntes em um nó é nula . Vale observar que a somatória é vetorial.

$$\sum_{k=1}^{n} \mathbf{I_k} = 0$$
 em um nó

3.2 Segunda Lei de Kirchoff:

A somatória das tensões em uma malha fechada é nula. Como no caso anterior, vale observar que a somatória é vetorial.

$$\sum_{j=1}^{n} \mathbf{V_j} = 0$$
 em uma malha fechada

4- DIAGRAMA FASORIAL DE CIRCUITOS ELÉTRICOS

Com os conceitos acima, é possível, com o uso de um multímetro (respeitada a limitação de frequência do mesmo) ou oscilóscopio, construir o diagrama fasorial de circuitos elétricos como o da próxima figura, obtendo corrente e tensão de cada um dos elementos do mesmo. Para a confecção do diagrama fasorial, em muitos casos estamos impossibilitados de medir as correntes. Assim sendo, a partir apenas do módulo das tensões, devemos obter o diagrama fasorial (das tensões). Vamos analisar tal processo tomando o circuito a seguir como exemplo.

Construção do diagrama:

1- Inicialmente, medimos as tensões $|V_G|$, $|V_{C1}|$, $|V_{R1}|$, $|V_{C2}|$ e $|V_{R2}|$.

As leis de Kirchoff, vetoriais, para as orientações indicadas são:

$$\begin{split} I &= I_1 + I_2 \\ V_G &= V_{C1} + V_{R1} \\ V_{R1} &= V_{C\,2} + V_{R\,2} \end{split}$$

- 2- Vamos supor que a corrente I_2 possua fase α e desenhemos tal vetor no diagrama fasorial. Também:
- A tensão **V**_{C 2} está atrasada com relação a **I**₂ de 90°;
- A tensão V_{R 2} está em fase com I₂.

Como
$$|V_{R1}| = |V_{C2} + V_{R2}|$$
, obtemos $|V_{R1}|$

A fase β de V_{R1} é dada por:

$$\alpha + \beta = arctang(|\mathbf{V}_{C2}|/|\mathbf{V}_{R2}|)$$

logo,

$$\beta = arctang(|\mathbf{V}_{C2}|/|\mathbf{V}_{R2}|) - \alpha$$

3- Pela orientação do circuito temos: $|\mathbf{I}| = |\mathbf{I_1} + \mathbf{I_2}|$, onde a corrente $\mathbf{I_1}$ está em fase com $\mathbf{V_{R1}}$. Vamos supor que não conhecemos o valor das impedâncias do circuito, de tal forma que não conheçamos $|\mathbf{I_1}|$ e $|\mathbf{I_2}|$. Sendo assim, apenas sabemos que a adição de $\mathbf{I_1}$ e $\mathbf{I_2}$ está dentro do ângulo γ ($= \alpha + \beta$).

Também, sabemos que V_{C1} está atrasada de 90° em relação a I. Logo, a tensão V_{C1} deve recair em um ângulo δ , atrasado de 90° com relação ao ângulo de I.

Obs: Como desconhecemos a fase da tensão, V_{C1} deve estar no ângulo δ .

Por outro lado, devemos ter $|\mathbf{V}_{G}| = |\mathbf{V}_{C1} + \mathbf{V}_{R1}|$. Podemos então afirmar que temos um triângulo

de lados V_G , V_{C1} e V_{R1} . Desta forma, o nosso problema é puramente geométrico: sabemos onde está V_{R1} , conhecemos $|V_{C1}|$ e $|V_{R1}|$. Devemos então desenhar o triângulo $|V_{C1}|$, $|V_{R1}|$, $|V_G|$ da seguinte forma:

- a- A partir do extremo de V_{R1} , traçamos uma circunferência com raio igual a $|V_{C1}|$;
- b- A partir da origem de V_{R1} traçamos uma circunferência de raio igual a |V_G|;
- c- A intersecção das duas circunferências nos dá o outro vértice do triângulo.

Devemos notar que temos duas soluções possíveis. Entretanto, como V_{C1} deve recair num ângulo δ , devemos escolher a solução a qual satisfaça esta restrição. Analiticamente, após inspeção do diagrama, podemos, por exemplo, calcular o ângulo θ de V_{C1} pela expressão:

$$|\mathbf{V_G}|^2 = |\mathbf{V_{C1}}|^2 + |\mathbf{V_{R1}}|^2 + 2 \cdot |\mathbf{V_{C1}}| \cdot |\mathbf{V_{R1}}| \cos(\theta - \beta)$$
.

Analisando o triângulo formado por $|V_G|$, $|V_{C1}|$ e $|V_{R1}|$, podemos escrever por semelhança de triângulos :

$$X = 180^{\circ} - (\theta - \beta)$$

Onde X é o ângulo oposto ao cateto |V_G|. Aplicando Lei dos Senos :

$$\frac{\operatorname{sen}(X)}{|\mathbf{V}_{\mathbf{G}}|} = \frac{\operatorname{sen}(\phi - \beta)}{|\mathbf{V}_{\mathbf{C}1}|}$$

Logo, a fase de VG é dada por:

$$\phi = \arcsin \left\{ \frac{|\mathbf{V}_{C1}|}{|\mathbf{V}_{G}|} \cdot \operatorname{sen}(X) \right\} + \beta$$

Obtemos assim todos os fasores de tensão do circuito. Embora calculamos as fases de maneira analítica, caso construamos o diagrama em escala, as mesmas podem ser obtidas por um transferidor.

O diagrama fasorial final é dado na figura a seguir. Caso desejemos que a fase de V_G seja nula, basta rodar todo o diagrama do ângulo ϕ .

BIBLIOGRAFIA

• Orsini, L. Q., Circuitos Elétricos. Ed. Edgard Blücher Ltda, 1980.

LISTA DE MATERIAL

- Painel universal;
- Multímetro Digital;
- Resistores: 22K/1W, 220K/1W, 150K/1W;
- Capacitores: 100nF/250Vca, 10nF/250Vca (poliéster metalizado).

TURMA	BANCADA	DATA	NOTA
		/ /	
NOME			NÚMERO

1- Monte o circuito abaixo:

onde:

R1 = 22K/1W;

R2 = 220K/1W;

C1=100nF/250Vca;

C2 = 10nF/250Vca;

VG = 110Vac

2. Com o voltímetro, meça as tensões conforme a orientação dada e construa o diagrama fasorial de tensões. Adote inicialmente a fase de I_2 como sendo α para construir o diagrama. Em seguida, indique o módulo e fase da tensão de cada bipolo tomando como referência V_G . Verifique a segunda lei de Kirchoff (vetorial) nas duas malhas do circuito e comente os resultados.