In [1]:

import pandas as pd

In [2]:

```
df = pd.read_csv('exp4.csv')
df.head()
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
4)	•

In [3]:

df.drop(['PassengerId', 'Name', 'SibSp', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis='col
df.head()

Out[3]:

	Survived	Pclass	Sex	Age	Fare
0	0	3	male	22.0	7.2500
1	1	1	female	38.0	71.2833
2	1	3	female	26.0	7.9250
3	1	1	female	35.0	53.1000
4	0	3	male	35.0	8.0500

In [17]:

```
inputs = df.drop('Survived', axis='columns')
inputs.head()
```

Out[17]:

	Pclass	Sex	Age	Fare
0	3	male	22.0	7.2500
1	1	female	38.0	71.2833
2	3	female	26.0	7.9250
3	1	female	35.0	53.1000
4	3	male	35.0	8.0500

In [5]:

```
inputs.Sex = inputs.Sex.map({'male':1, 'female':2})
inputs
```

Out[5]:

	Pclass	Sex	Age	Fare
0	3	1	22.0	7.2500
1	1	2	38.0	71.2833
2	3	2	26.0	7.9250
3	1	2	35.0	53.1000
4	3	1	35.0	8.0500
886	2	1	27.0	13.0000
887	1	2	19.0	30.0000
888	3	2	NaN	23.4500
889	1	1	26.0	30.0000
890	3	1	32.0	7.7500

891 rows × 4 columns

In [6]:

```
inputs.Age = inputs.Age.fillna(inputs.Age.mean())
inputs
```

Out[6]:

	Pclass	Sex	Age	Fare
count	891.000000	891.000000	891.000000	891.000000
mean	2.308642	1.352413	29.699118	32.204208
std	0.836071	0.477990	13.002015	49.693429
min	1.000000	1.000000	0.420000	0.000000
25%	2.000000	1.000000	22.000000	7.910400
50%	3.000000	1.000000	29.699118	14.454200
75%	3.000000	2.000000	35.000000	31.000000
max	3.000000	2.000000	80.000000	512.329200

In [7]:

```
target = df.Survived
target.head()
```

Out[7]:

- 0 0
- 1 1
- 2 1
- 3 1
- 4 6

Name: Survived, dtype: int64

In [8]:

```
from sklearn import tree
from sklearn.model_selection import train_test_split
```

In [9]:

```
x_train, x_test, y_train, y_test = train_test_split(inputs, target, test_size=0.3)
```

In [10]:

```
model = tree.DecisionTreeClassifier()
model.fit(x_train, y_train)
model.score(x_test, y_test)
```

Out[10]:

0.7947761194029851

In [11]:

```
print(x_test)
print(y_test)
     Pclass
              Sex
                          Age
                                    Fare
297
           1
                2
                     2.000000
                                151.5500
           1
                2
                    35.000000
                                 90.0000
486
825
           3
                1
                    29.699118
                                  6.9500
836
           3
                1
                    21.000000
                                  8.6625
509
           3
                    26.000000
                                 56.4958
                1
. .
         . . .
                           . . .
                                      . . .
243
           3
                1
                    22.000000
                                  7.1250
           3
                1
                                  8.0500
121
                    29.699118
272
           2
                2
                   41.000000
                                 19.5000
                    35.000000
701
           1
                1
                                 26.2875
455
           3
                1
                    29.000000
                                  7.8958
[268 rows x 4 columns]
297
       0
       1
486
825
       0
       0
836
509
       1
       . .
243
       0
121
       0
272
       1
701
       1
455
       1
Name: Survived, Length: 268, dtype: int64
```

In [12]:

```
model.predict([[2, 1, 23.000000, 13.0000]])
```

C:\Users\manth\AppData\Local\Programs\Python\Python310\lib\site-packages\skl
earn\base.py:450: UserWarning: X does not have valid feature names, but Deci
sionTreeClassifier was fitted with feature names
warnings.warn(

Out[12]:

array([0], dtype=int64)

In [13]:

```
text_tree = tree.export_text(model)
print(text_tree)
|--- feature_1 <= 1.50
    |--- feature_0 <= 1.50
        |--- feature_2 <= 57.00
            --- feature_2 <= 17.50
                |--- class: 1
             --- feature_2 > 17.50
                |--- feature_3 <= 37.00
                    |--- feature_3 <= 26.11
                        |--- class: 0
                    |--- feature_3 > 26.11
                        |--- feature_3 <= 27.14
                            |--- feature_2 <= 31.85
                                --- feature_2 <= 28.85
                                    |--- class: 1
                                 --- feature_2 > 28.85
                                    |--- class: 0
                            |--- feature_2 > 31.85
                                |--- feature_2 <= 43.50
                                    --- class: 1
```

In [14]:

```
from matplotlib import pyplot as plt
```

In [15]:

```
fig = plt.figure(figsize=(200,200))
tree_ = tree.plot_tree(model, feature_names=["Pclass","Sex","Age","Fare"], class_names='Sur
```