Computer Vision HW1 Report

Student ID: B10705034

Name: 許文鑫

<u>Part 1.</u>

- Visualize the DoG images of 1.png.

	DoG Image (threshold = 3)		DoG Image (threshold = 3)
DoG1-1.png	ANPANMAN OCCO	DoG2-1.png	(anganman)
DoG1-2.png	ANPANMAN	DoG2-2.png	ANPANMAN
DoG1-3.png	ANPANMAN	DoG2-3.png	ANPANMAN
DoG1-4.png	ANPANMAN	DoG2-4.png	ANDANMAN

- Use three thresholds (1,2,3) on 2.png and describe the difference.

(describe the difference)

當 threshold 低的時候,可以看到除了貓咪邊界有 key points 以外,貓咪身上的花紋以及鬍鬚上也有,但是當 threshold 調高後,邊界以外的區域 key points 都減少了。

Part 2.Report the cost for each filtered image.

	0
Gray Scale Setting	Cost (1.png)
cv2.COLOR_BGR2GRAY	1207800
R*0.0+G*0.0+B*1.0	1439568
R*0.0+G*1.0+B*0.0	1305962
R*0.1+G*0.0+B*0.9	1386155
R*0.1+G*0.4+B*0.5	1277423
R*0.8+G*0.2+B*0.0	1127895

Gray Scale Setting	Cost (2.png)
cv2.COLOR_BGR2GRAY	183852
R*0.1+G*0.0+B*0.9	78490
R*0.2+G*0.0+B*0.8	86425
R*0.2+G*0.8+B*0.0	187521
R*0.4+G*0.0+B*0.6	128826
R*1.0+G*0.0+B*0.0	110861

- Show original RGB image / two filtered RGB images and two grayscale images with highest and lowest cost.

(Describe the difference between those two grayscale images)

在 low cost 的灰階圖中,紅色葉子和草地的 intensity 的差距比較明顯,而 high cost 的灰階圖中,葉子和草地的差距不大,葉子就比較不明顯。

(Describe the difference between those two grayscale images)

Low cost 的灰階圖可以比較明顯的看出原圖各個顏色的邊界, high cost 的就很不明顯。

- Describe how to speed up the implementation of bilateral filter.

因為計算的過程會將兩個 kernel 相乘,所以我把 exp(a) * exp(b) 的部分都用 exp(a + b)處理,不果也只有快一點點。