# Actividad 2

# El oscilador armónico: solución numérica

En esta tarea resolveremos numéricamente la ecuación diferencial del oscilador armónico, considerando el amortiguamiento y una fuerza externa periódica:

$$\ddot{x} = -\alpha x - \beta \dot{x} + \Gamma \cos(\omega_d t) \tag{2.1}$$

Las dimensiones de las distintas magnitudes son:  $[\alpha] = T^{-2}$ ,  $[\beta] = T^{-1}$ ,  $[\Gamma] = L \cdot T^{-2}$ ,  $[\omega_d] = T^{-1}$ .

#### 2.1. Introducción

#### 2.1.1. Integración numérica: método de Euler

Reescribimos la ecuación 2.1 como un sistema de dos ecuaciones diferenciales de primer orden acopladas:

$$\frac{dx}{dt} = v$$

$$\frac{dv}{dt} = a(x, v, t; \alpha, \beta, \Gamma, \omega_d)$$
(2.2)

donde a, la aceleración, es la expresión del segundo miembro de 2.1. Observamos que la aceleración es una función del tiempo, del estado del oscilador  $(x, \dot{x})$  y de los parámetros del mismo  $(\alpha, \beta, \Gamma, \omega_d)$ .

De la definición de derivada se tiene:

$$x(t + \Delta t) = x(t) + \int_{t}^{t+\Delta t} \dot{x}(t') dt'$$

$$\dot{x}(t + \Delta t) = \dot{x}(t) + \int_{t}^{t+\Delta t} \ddot{x}(t') dt'$$
(2.3)

El significado de las expresiones previas nos es de sobra conocido: la posición se obtiene integrando la velocidad, que a su vez se obtiene integrando la aceleración.

Si en las ecuaciones 2.3 se toma un valor de  $\Delta t$  muy pequeño, podemos hacer la aproximación de que la función integrada permanece prácticamente constante en el intervalo

de integración, y por tanto  $\int_t^{t+\Delta t} \dot{x}(t') dt' \approx \dot{x}(t) \Delta t$  y  $\int_t^{t+\Delta t} \ddot{x}(t') dt' \approx \ddot{x}(t) \Delta t$ . Dicho de otro modo: conocidas la posición y la velocidad en un instante t, si  $\Delta t$  es lo suficientemente pequeño podemos calcular  $x(t+\Delta t)$  y  $v(t+\Delta t)$  haciendo el desarrollo en serie de Taylor de x y v en t y truncando la serie en el término  $\Delta t$ .

Además, discretizaremos el tiempo: consideraremos sólo instantes  $t_n = n\Delta t$ . Denominaremos  $x_n = x(t_n)$ ,  $\dot{x_n} = \dot{x}(t_n)$  y  $\ddot{x_n} = \ddot{x}(t_n)$ . Las ecuaciones 2.3 quedan:

$$x_{n+1} = x_n + \dot{x}_n \, \Delta t$$

$$\dot{x}_{n+1} = \dot{x}_n + a(x_n, \dot{x}_n, t; \alpha, \beta, \Gamma, \omega_d) \, \Delta t \tag{2.4}$$

Con las consideraciones anteriores, describiremos la dinámica del oscilador mediante un proceso iterativo. Al inicio de la iteración n-ésima conocemos la posición y la velocidad en  $t_n$ ,  $x_n$  y  $\dot{x}_n$ . Calculamos la aceleración mediante la expresión 2.1 y, siguiendo las expresiones 2.4, obtenemos la posición y la velocidad en el instante inmediatamente posterior,  $t_{n+1}$ .

#### 2.1.2. Tiempos relevantes

En esta tarea existen tres magnitudes temporales relevantes:

- $\Delta t$ . Su valor debe ser una solución de compromiso entre precisión y eficiencia: cuanto más pequeño sea, tanto mejor será la aproximación presentada en la subsección 2.1.1 (sustituir una integral por una suma finita), y más precisos serán los resultados. Por otro lado, a menor  $\Delta t$  más iteraciones deberemos realizar para cubrir el intervalo de tiempo en que deseamos estudiar la dinámica.
- Con qué frecuencia se mostrará al usuario el estado del oscilador,  $t_{cont}$ .
- Cuánto tiempo cubrirá la simulación,  $t_{simul}$ .

En el guión os propondremos valores adecuados para estas magnitudes.

En concreto, tomaremos como referencia un tiempo característico del sistema T:

- En ausencia de término forzante ( $\Gamma = 0$ ),  $T = 2\pi\alpha^{-1/2}$  (el periodo de oscilación natural).
- Si  $\Gamma \neq 0$ ,  $T = 2\pi/\omega_D$  (el periodo del término forzante).

 $\Delta t$ ,  $t_{simul}$  y  $t_{cout}$  se calcularán a partir de sendos factores, que serán datos de entrada del programa:

$$\Delta t = \text{factor}_{\Delta} \cdot T,$$

$$t_{cout} = \text{factor}_{\text{cout}} \cdot T,,$$

$$t_{simul} = \text{factor}_{tSimul} \cdot T.$$
(2.5)

## 2.2. Descripción de la tarea

Diseña y escribe un programa que pida al usuario los factores factor $_{\Delta}$ , factor $_{\rm cout}$  y factor $_{\rm tSimul}$ , la posición y velocidad iniciales  $(x_0, \dot{x}_0)$  y los parámetros de la ecuación 2.1  $(\alpha, \beta, \Gamma \ y \ \omega_d)$ .

2.3. AYUDA 7

Por simplicidad, suponemos que todas las magnitudes se dan en unidades del Sistema Internacional (la longitud, en metros; el tiempo, en segundos; la velocidad, en  $m s^{-1}$ ).

Para que la simulación tenga sentido,  $\alpha$ , factor $_{\Delta}$ , factor $_{\rm cout}$  y factor $_{\rm tSimul}$  deben ser positivos, y  $\beta$  no negativo. De no ser así, el programa mostrará un mensaje de error y finalizará.

A continuación, se calcularán los valores de T,  $\Delta t$ ,  $t_{simul}$  y  $t_{cout}$  tal como se indica en la subsección 2.1.2.

El programa calculará la dinámica del oscilador hasta  $t = t_{simul}$  siguiendo el método de Euler, tal como se ha explicado en la subsección 2.1.1 (ecuaciones 2.4). A intervalos regulares  $t_{cout}$  mostrará por pantalla los valores de t, x,  $\dot{x}$ , así como  $\dot{x}^2 + \alpha x^2$  (la energía dividida por m/2).

Se mostrarán también:

- En el caso de oscilador sin pérdidas ( $\beta = \Gamma = 0$ ), la solución exacta (ecuación 2.7).
- En el caso del oscilador amortiguado ( $\beta \neq 0, \Gamma = 0$ ),  $e^{-\beta \cdot t/2} \sqrt{x_0^2 + \frac{\dot{x}_0^2}{\alpha}}$  (la envolvente de la solución en el límite  $\beta \to 0$ ) y  $x e^{\beta \cdot t/2}$  (el producto de la solución numérica por el factor  $e^{\beta \cdot t/2}$ ); el análisis de esta última curva hace patente la diferencia entre los amortiguamientos débil, crítico y fuerte.
- En el caso del oscilador forzado ( $\Gamma \neq 0$ ), la solución estacionaria (ecuación 2.12).

## 2.3. Ayuda

Con la suposición de que  $t_{cout}$  es un múltiplo de  $\Delta t$ , el programa escribirá una línea en pantalla cada round  $(t_{cout}/\Delta t)$  iteraciones.

## 2.4. Ejemplos de ejecución

El fichero datosTarea\_02.txt, descargable desde Moodle, contiene los datos de entrada de los ejemplos discutidos en esta sección.

Al ejecutar nuestro programa reproducimos resultados ya estudiados en Física:

## 2.4.1. Oscilador armónico sin pérdidas ( $\beta = \Gamma = 0$ )

Para los datos de entrada:

```
0.001 0.02 2 0.5 -1 1 0 0 0
```

las primeras líneas devueltas por el programa son:

```
t x v E solucionSinusoidal

0 0.5 -1 1.25 0.5

0.125664 0.370872 -1.0552 1.25099 0.370724

0.251327 0.235791 -1.09379 1.25198 0.235602

0.376991 0.0968839 -1.11516 1.25296 0.0967637

0.502655 -0.0436618 -1.11895 1.25395 -0.0436003
```

El resultado se puede ver en la Figura 2.1, donde se muestra la dinámica del oscilador mediante desde dos perspectivas: la evolución de x y  $\dot{x}$  en función de t, y la trayectoria en el espacio de fases (cuyas coordenadas son  $x,\dot{x}$ ). Como la energía es constante, en el espacio de fases el oscilador describe una eclipse de semiejes  $\sqrt{2E/m}$  y  $\sqrt{2E/k}$ , donde E, m y k son la energía, la masa y la constante de recuperación.



(a) x (círculos),  $\dot{x}$  (rombos) frente a la solución (b) Trayectoria del oscilador en el espacio de fases  $x=x_M$  seno ( $\omega_0\,t+\varphi_0$ ) (línea continua)

Figura 2.1: x y  $\dot{x}$  frente a t (izquierda) y  $\dot{x}$  vs. x (derecha). Los datos de la simulación son:  $t_{\Delta}=0.0001$  T,  $t_{\rm tSimul}=2$  T,  $t_{\rm cout}=0.02$  T,  $x_0=0.5$ ,  $\dot{x}_0=-1$ ,  $\alpha=1$ ,  $\beta=0$ ,  $\Gamma=0$ ,  $\omega_D=0$ .

#### **2.4.2.** Oscilador amortiguado ( $\beta \neq 0$ , $\Gamma = 0$ )

El término  $-\beta \dot{x}$ , opuesto a la velocidad, modeliza la fricción y frena al oscilador. Éste va perdiendo energía hasta llegar finalmente al reposo.

Más concretamente,  $x(t) = e^{-\beta \cdot t/2} g(t)$ : el factor dominante es una exponencial que decrece con el tiempo. La forma de g(t) depende de la relación entre los parámetros  $\alpha$  y  $\beta$ :

- Si  $\beta < 2\sqrt{\alpha}$  (amortiguamiento débil), g(t) es una función sinusoidal.
- Si  $\beta = 2\sqrt{\alpha}$  (amortiguamiento crítico), g(t) es una función lineal.
- Si  $\beta > 2\sqrt{\alpha}$  (oscilador sobreamortiguado), g(t) es una combinación de funciones exponenciales de t.

Esos casos se ilustran en las figuras 2.2a a 2.2f.

#### 2.4.3. Oscilaciones forzadas ( $\Gamma \neq 0$ )

Si  $\Gamma \neq 0$  el sistema, tras un tiempo transitorio, acaba oscilando a la frecuencia que le impone el término forzante,  $\omega_D$ , con una amplitud

$$x_M = \frac{\Gamma}{\sqrt{\beta^2 \,\omega_D^2 + (\alpha - \omega_D^2)^2}} \tag{2.6}$$

Si la frecuencia del término forzante es igual a la propia del oscilador ( $\omega_0 \equiv \sqrt{\alpha} = \omega_D$ ), tiene lugar el fenómeno llamado resonancia. En todo momento, la fuerza empuja al oscilador en el sentido adecuado, y la transferencia de potencia es máxima. De no ser por el amortiguamiento, la amplitud de oscilación crecería indefinidamente. La resonancia se ilustra en las simulaciones mostradas en la figura 2.3: tras un tiempo transitorio (en torno a 80 s en 2.3a y 120 s en 2.3b), el sistema oscila con un periodo  $T = 2\pi/\sqrt{\alpha} = 2\pi$  y la amplitud dada por 2.6.

Si  $\omega_0 \neq \omega_D$ , el péndulo inicialmente tiende a oscilar a su frecuencia propia; con el tiempo, acaba oscilando a la que le impone el término forzante. La figura 2.4 muestra esta situación, con  $T_0 = 2\pi\alpha^{-1/2} = 2\pi$  y  $T_D = 2\pi/\omega_D = \pi$ . Inicialmente, la dinámica tiene un periodo  $T_0$ : en  $t \in [0, 6\pi]$  se producen tres oscilaciones (tal como tiende a hacer espontáneamente el oscilador). Pero en cada periodo x tiene una estructura fina con un mínimo local y dos máximos.

Conforme avanza el tiempo, los mínimos locales y los absolutos tienden a hacerse más próximos, hasta igualarse. En ese momento ya nos encontramos en el régimen estacionario, con un periodo  $T_D$  (entre 900 s y 900 +  $6\pi$  s tienen lugar 6 oscilaciones completas).



Figura 2.2: Oscilador amortiguado sin término forzante ( $\Gamma=0$ ). En ambos casos, t\_{\Delta}=0.0001 T, t\_{\rm cout}=0.02 T,  $x_0=2$  ,  $\dot{x}_0=0$  ,  $\alpha=1$  ,  $\Gamma=0$ 



Figura 2.3: Resonancia. Se muestra el valor de x (línea continua) en función del tiempo. En todos los casos,  $t_{\Delta}=0.0001~T,~t_{tSimul}=30~T,~t_{cout}=0.02~T~,~x_0=0~,~\dot{x}_0=0~,~\alpha=1~,~\Gamma=0.1~,~\omega_D=1.$ 



Figura 2.4: Influencia del término forzante. Se muestra el valor de x (línea continua) en función del tiempo. Los datos de la simulación son:  $t_{\Delta}=0.0001~T,\,t_{tSimul}=500~T,\,t_{cout}=0.02~T$ ,  $x_0=0$ ,  $\dot{x}_0=0$ ,  $\alpha=1$ ,  $\beta=0.01$ ,  $\Gamma=0.0003$ ,  $\omega_D=2$ 

#### 2.5. Solución del oscilador armónico

Podemos distinguir distintos casos, caracterizados por los valores de los coeficientes  $\alpha, \beta, \Gamma$ .

### **2.5.1.** Oscilador armónico sin pérdidas ( $\beta = \Gamma = 0$ )

La energía del oscilador E es constante, ya que no hay disipación ( $\beta=0$ ) ni aporte ( $\Gamma=0$ ). Independientemente del estado inicial ( $x_0, \dot{x}_0$ ), pasado un tiempo el oscilador vuelve a encontrarse en la misma posición y con la misma velocidad: el movimiento es periódico.

Más concretamente, x es una función sinusoidal, cuya frecuencia es la raíz cuadrada de  $\alpha$  y cuyos coeficientes vienen determinados por las condiciones iniciales:

$$x = x_M \operatorname{seno}(\omega_0 t + \varphi_0), \quad \operatorname{con}$$

$$\omega_0 = \sqrt{\alpha}, \quad \tan(\varphi_0) = \frac{\sqrt{\alpha} x_0}{\dot{x}_0}, \quad x_M = \sqrt{x_0^2 + \frac{\dot{x}_0^2}{\alpha}}$$
(2.7)

Hacemos notar que si  $x_M=0$ , el ángulo de fase está indefinido; en ese caso, le podemos asignar un valor arbitrario  $\varphi_0=0$ . En general,  $\varphi_0$  se calcula como el arco tangente de  $\frac{\sqrt{\alpha} x_0}{\hat{x}_0}$ .

Dado que la función atan en C/C++ devuelve un ángulo en el intervalo  $[-\pi/2, \pi/2]$ , si  $\dot{x}_0 < 0$  es necesario añadir  $\pi$  al valor devuelto:  $\varphi_0 = \operatorname{atan}\left(\frac{\sqrt{\alpha}\,x_0}{\dot{x}_0}\right) + \pi$ .

## **2.5.2.** Oscilador armónico amortiguado ( $\beta \neq 0, \Gamma = 0$ )

Debido a la fricción, modelizada por el término  $-\beta \dot{x}$ , el oscilador va perdiendo energía hasta llegar finalmente al reposo.

Más concretamente,

$$x(t) = e^{-\beta \cdot t/2} g(t) \tag{2.8}$$

En función de la relación entre los parámetros  $\alpha$  y  $\beta$  se identifican dos regímenes (subamortiguado y sobreamortiguado), separados por una transición (amortiguamiento crítico):

• Si  $\beta < 2\sqrt{\alpha}$  (amortiguamiento débil), g(t) es una función sinusoidal:

$$g(t) = x_M \operatorname{seno}(\omega t + \varphi_0), \quad \operatorname{con} \quad (2.9)$$

$$\omega = \sqrt{\alpha - \beta^2/4}, \quad \tan(\varphi_0) = \frac{\omega x_0}{\dot{x}_0 + \beta x_0/2}, \quad x_M = \sqrt{\left(\frac{\dot{x}_0 + \beta x_0/2}{\omega}\right)^2 + x_0^2}$$

Hacemos notar que si  $x_M = 0$ , el ángulo de fase está indefinido; en ese caso, le podemos asignar un valor arbitrario  $\varphi_0 = 0$ . En general,  $\varphi_0$  se calcula como el arco tangente de  $\frac{\omega x_0}{\dot{x}_0 + \beta x_0/2}$ .

Dado que la función atan en C/C++ devuelve un ángulo en el intervalo  $[-\pi/2, \pi/2]$ , para calcular  $\varphi_0$  es necesario añadir  $\pi$  al valor devuelto si  $\dot{x}_0 + \beta x_0/2 < 0$ .

• Si  $\beta = 2\sqrt{\alpha}$  (amortiguamiento crítico), g(t) es una función lineal.

$$g(t) = A + Bt$$
, con (2.10)  
 $A = x_0$ ,  $B = \dot{x}_0 + \beta x_0/2$ 

• Si  $\beta > 2\sqrt{\alpha}$  (socilador sobreamortiguado), g(t) es una combinación de funciones exponenciales de t.

$$g(t) = Ae^{\Omega t} + Be^{-\Omega t}, \quad \text{con}(2.11)$$

$$\Omega = \sqrt{\beta^2/4 - \alpha}, \quad A = 0.5 \left(x_0 + \frac{\dot{x}_0 + \beta x_0/2}{\Omega}\right), \quad B = 0.5 \left(x_0 - \frac{\dot{x}_0 + \beta x_0/2}{\Omega}\right)$$

## **2.5.3.** Oscilaciones forzadas $(\Gamma \neq 0)$

El oscilador, tras un tiempo transitorio, acaba oscilando a la frecuencia que le impone el término forzante,  $\omega_D$ . La amplitud depende de la relación entre la frecuencia natural de oscilación ( $\sqrt{\alpha}$ ) y  $\omega_D$ .

Si la frecuencia del término forzante es igual a la propia del oscilador ( $\omega_0 \equiv \sqrt{\alpha} = \omega_D$ ), tiene lugar el fenómeno llamado resonancia: en todo momento, la fuerza empuja al oscilador en el sentido adecuado, y la transferencia de potencia es máxima. De no ser por el amortiguamiento, la amplitud de oscilación crecería indefinidamente.

La solución es la suma de dos términos:

• El término estacionario, dado por las ecuaciones siguientes:

$$x = x_M \operatorname{seno}(\omega_D t + \varphi_0), \quad \text{con}$$

$$\varphi_0 = \arctan\left(\frac{\alpha - \omega_D^2}{\beta \omega_D}\right), \quad x_M = \frac{\Gamma}{\sqrt{\beta^2 \omega_D^2 + (\alpha - \omega_D^2)^2}}$$
(2.12)

• La solución a la ecuación del oscilador amortiguado ( $\Gamma = 0$ ), con los mismos valores de  $\alpha$  y  $\beta$ , para las condiciones iniciales ( $x_0 - x_M \operatorname{seno} \varphi_0$ ,  $\dot{x}_0 - x_M \omega_d \cos \varphi_0$ ).

Para tiempos suficientemente largos, el segundo término tiende a cero y sólo queda el estacionario.