MTH 114: ODE: Assignment-5

1. Solve: (i) $x^2y'' + 2xy' - 12y = 0$ (ii) (T) $x^2y'' + 5xy' + 13y = 0$ (iii) $x^2y'' - xy' + y = 0$

Solution: [Recall: The ODE of the form $x^2 \frac{d^2y}{dx^2} + ax \frac{dy}{dx} + by = 0$, where a, b are constants, is called the Cauchy-Euler equation. Under the transformation $x = e^t$ (when x > 0) for the independent variable, the above reduces to $\frac{d^2y}{dt^2} + (a-1)\frac{dy}{dt} + by = 0$, which is an equation with constant coefficients.

(i) Using the substitution $x = e^t$, the given equation reduces to

$$\frac{d^2u}{dt^2} + \frac{du}{dt} - 12u = 0 \implies m^2 + m - 12 = 0 \implies m = -4, 3 \implies u(t) = Ae^{-4t} + Be^{3t} = y(e^t).$$

The general solution is thus

$$y(x) = \frac{A}{r^4} + Bx^3.$$

(ii) Using the substitution $x = e^t$, the given equation reduces to,

$$\frac{d^2u}{dt^2} + 4\frac{du}{dt} + 13u = 0 \implies m^2 + 4m + 13 = 0 \implies m = -2 \pm 3i.$$

Thus

$$u(t) = e^{-2t} (A\cos 3t + B\sin 3t) = y(e^t).$$

The general solution is

$$y(x) = \frac{1}{x^2} (A\cos(3\ln x) + B\sin(3\ln x)).$$

(iii) Using the substitution $x = e^t$, the given equation reduces to

$$\frac{d^2u}{dt^2} - 2\frac{du}{dt} + u = 0 \implies m^2 - 2m + 1 = 0 \implies m = 1, 1 \implies u(t) = e^t(A + Bt) = y(e^t)$$

The general solution is thus

$$y(x) = e^x(A + B \ln x).$$

- 2. (i) Let $y_1(x), y_2(x)$ are two linearly independent solutions of y'' + p(x)y' + q(x)y = 0. Show that $\phi(x) = \alpha y_1(x) + \beta y_2(x)$ and $\psi(x) = \gamma y_1(x) + \delta y_2(x)$ are two linearly independent solutions if and only if $\alpha \delta \neq \beta \gamma$.
 - (ii) Show that the zeros of the functions $a \sin x + b \cos x$ and $c \sin x + d \cos x$ are distinct and occur alternately whenever $ad bc \neq 0$.

Solution:

- (i) We have $W(\phi, \psi) = (\alpha \delta \beta \gamma)W(y_1, y_2)$. Since y_1, y_2 are fundamental solutions, $W(y_1, y_2) \neq 0$. If $\alpha \delta \neq \beta \gamma$, then $W(\phi, \psi) \neq 0$. Conversely if $W(\phi, \psi) \neq 0$, then $\alpha \delta \neq \beta \gamma$.
- (ii) We know $\sin x$, $\cos x$ are independent solutions of y'' + y = 0. So by part (i) $a \sin x + b \cos x$ and $c \sin x + d \cos x$ are independent solutions whenever $ad bc \neq 0$. Hence the result follows from Sturm Separation theorem (Simmons, page 190, Theorem A).

3. (T) Show that any nontrivial solution u(x) of u'' + q(x)u = 0, q(x) < 0 for all x, has at most one zero.

Solution:

Consider the equation z'' = 0. Then z = 1 is a solution of the equation. By Strum comparison theorem, between two zeros of u(x) there must be at least one zero of z(x). But z = 1 has no zero. Hence u(x) can have at most one zero.

4. Let u(x) be any nontrivial solution of u'' + [1 + q(x)]u = 0, where q(x) > 0. Show that u(x) has infinitely many zeros.

Solution:

Consider

$$v'' + v = 0,$$
 $u'' + (1 + q(x))u = 0$

Now $v = \sin x$ is a nontrivial solution of v'' + v = 0. Since 1 + q(x) > 1, by Strum comparison theorem, u must vanish between two zeros of $\sin x$. Since, $\sin x$ has infinitely many zeros, u also has infinitely may zeros.

5. Let u(x) be any nontrivial solution of u'' + q(x)u = 0 on a closed interval [a, b]. Show that u(x) has at most a finite number of zeros in [a, b].

Solution:

Suppose, on the contrary, u(x) has infinite number of zeros in [a, b]. It follows that there exists $x_0 \in [a, b]$ and a sequence of zeros $x_n \neq x_0$ such that $x_n \to x_0$. Since u(x) is continuous and differentiable at x_0 , we have

$$u(x_0) = \lim_{x_n \to x_0} u(x_n) = 0, \qquad u'(x_0) = \lim_{x_n \to x_0} \frac{u(x_n) - u(x_0)}{x_n - x_0} = 0$$

By uniqueness theorem, $u \equiv 0$ which contradicts the fact that u is nontrivial.

6. Let J_p be any non-trivial solution of the Bessel equation

$$x^2y'' + xy' + (x^2 - p^2)y = 0, \quad x > 0.$$

Show that J_p has infinitely many positive zeros.

Solution:

The normal form of Bessel equation is

$$u'' + (1 + \frac{1/4 - p^2}{x^2})u = 0.$$

Given $p \geq 0$, we can choose x_0 large enough such that $1 + \frac{1/4 - p^2}{x^2} > 1/4$ for all $x \in (x_0, \infty)$. Compare J_p with $\sin(x/2)$ which is solution of $v'' + \frac{1}{4}v = 0$ in (x_0, ∞) . Clearly $\sin(x/2)$ has infinitely many zeros in (x_0, ∞) . By Sturm comparison theorem, between two consecutive zeros of $\sin(x/2)$ there is a zero of J_p . Hence J_p has infinitely many zero in (x_0, ∞) . 7. (T) Consider u'' + q(x)u = 0 on an interval $I = (0, \infty)$ with $q(x) > m^2$ for all $t \in I$. Show any non trivial solution u(x) has infinitely many zeros and distance between two consecutive zeros is at most π/m .

Solution: Compare u(x) with $\sin mx$ which is a solution of $v'' + m^2v = 0$. By Sturm comparison theorem, between two consecutive zeros of $v(x) = \sin(mx)$ there is a zero of u(x). Hence u(x) has infinitely many zero in (x_0, ∞) .

Let u(a) = 0. We will show that u(x) has a zero in $(a, a + \pi/m]$. Consider $v(x) = \sin(mx - ma)$ which is a solution of $v'' + m^2v = 0$. Clearly $v(a) = v(a + \pi/m) = 0$. Hence by Sturm comparison theorem, there exists at least one zero of u(x) in $(a, a + \pi/m)$. Hence distance between two consecutive zeros of u(x) is at most π/m .

8. Consider u'' + q(x)u = 0 on an interval $I = (0, \infty)$ with $q(x) < m^2$ for all $t \in I$. Show that distance between two consecutive zeros is at least π/m .

Solution:

Suppose u(a)=0 and u(b) be two consecutive zeros. Consider $v(x)=\sin(mx-ma)$ which is a solution of $v''+m^2v=0$. By Sturm comparison theorem, there exists a zero of v(x) in (a,b). But we know that v(a)=0 and next zero of v is at v(a)=00 and v(a)=01. So v(a)=02 and v(a)=03 are v(a)=03 and v(a)=04.

9. (T) Let J_p be any non-trivial solution of the Bessel equation

$$x^2y'' + xy' + (x^2 - p^2)y = 0, \quad x > 0.$$

Show that (i) If $0 \le p < 1/2$, then every interval of length π has at least contains at least one zero of J_p .

- (ii) If p = 1/2 then distance between consecutive zeros of J_p is exactly π .
- (iii) If p > 1/2 then every interval of length π contains at most one zero of J_p .

Solution: The normal form of Bessel equation is

$$u'' + (1 + \frac{1/4 - p^2}{x^2})u = 0.$$

The zeros of J_p and u(x) are same.

- (i) Apply exercise 7 with m = 1.
- (ii) Clear from normal form.
- (iii) Apply exercise 8 with m=1.
- 10. Let y(x) be a non-trivial solution of y'' + q(x)y = 0. Prove that if $q(x) > k/x^2$ for some k > 1/4 then y has infinitely many positive zeros. If $q(x) < \frac{1}{4x^2}$ then y has only finitely many positive zeros.

Solution:

Consider the Cauchy-Euler equation $y'' + \frac{ky}{x^2} = 0$. With $x = e^t$, it transforms into y'' - y' + ky = 0. So characteristic equation $m^2 - m + k = 0$. So 1 - 4k = 0 implies two equal real roots and so the solution has finitely many zeros. If 1 - 4k < 0 then complex conjugate roots and solution look like $x^m \sin(\beta x)$ and it has infinitely many zeros. Rest follows from Sturm comparison theorem.

11. Find the eigen values and eigen functions of the following Sturm-Liouville problems:

(i) (T)
$$y'' + \lambda y = 0$$
, $y(0) = y'(1) + y(1) = 0$

(ii)
$$(e^{2x}y')' + (\lambda + 1)e^{2x}y = 0$$
, $y(0) = y(\pi) = 0$. [Substitute $y = e^{-x}u$]

[Recall: (Sturm-Liouville Boundary Value Problem (SL-BVP)) With the notation

$$L[y] = \frac{d}{dx}(p(x)\frac{dy}{dx}) + q(x)y$$

consider the Sturm-Liouville equation

$$L[y] + \lambda r(x)y = 0$$

where p > 0, $r \ge 0$, and p, q, r are continuous functions on interval [a, b]; along with the boundary conditions $a_1y(a) + a_2p(a)y'(a) = 0$, $b_1y(b) + b_2p(b)y'(b) = 0$ where $a_1^2 + a_2^2 \ne 0$ and $b_1^2 + b_2^2 \ne 0$. The problem of finding a values of λ if any, such that the BVP has a non-trivial solution is called a Sturm-Liouville Eigen Value Problem (SL-EVP). Such a value of λ is called an eigenvalue and the corresponding non-trivial solutions are called eigenfunctions.

Solution:

- (i) $\lambda \leq 0$ leads to trivial solution. Thus, let $\lambda = p^2 > 0$. Then $y = c_1 \cos px + c_2 \sin px$. Using the boundary conditions $c_1 = 0$ and $\sin p + p \cos p = 0$ or $p + \tan p = 0$. This has infinite number of roots (plot the curves y = -x and $y = \tan x$). Thus, the eigen values are the roots of the above equation and the eigen functions are $y_p = \sin px$.
- (ii) Using the given transformations, we get $u'' + \lambda u = 0$. Again for $\lambda \leq 0$ trivial solution. Thus, $\lambda = p^2 > 0$ and $y = c_1 \cos px + c_2 \sin px$. The transformed BCs are $u(0) = u(\pi) = 0$ and thus $c_1 = 0$ and p = n, $n = 1, 2, 3, \dots$. Thus, $\lambda_n = n^2$ and $y_n = e^{-x} \sin nx$.
- 12. If p(x), q(x), r(x) are all greater than zero on (a, b), then prove that the eigen values of the Sturm-Liouville problem, $(p(x)y')' + q(x)y + \lambda r(x)y = 0$, are positive with any of the boundary conditions: (i) p(a) = p(b) = 0, (ii) y(a) ky'(a) = y(b) + my'(b) = 0, k, m > 0, (iii) p(a) = p(b) with y(b) = y(a), y'(b) = y'(a).

Solution:

Multiplying by y and using integration by parts, we get

$$\lambda \int_{a}^{b} ry^{2} dx = \int_{a}^{b} qy^{2} dx + \int_{a}^{b} py'^{2} dx - [pyy']_{a}^{b}$$

(i) $p(a) = p(b) = 0 \implies [pyy']_a^b = 0$ (ii) $y(a) - ky'(a) = y(b) + my'(b) = 0, k, m > 0, \implies [pyy']_a^b = -mp(b)y'(b)^2 - kp(a)y'(a)^2$ (iii) p(a) = p(b) with y(b) = y(a), $y'(b) = y'(a) \implies [pyy']_a^b = 0$

Thus, in (i) & (iii) $[pyy']_a^b = 0$ and in (ii) $[pyy']_a^b \leq 0$. Thus, λ is positive.

13. (**T**) Consider the Strum-Liouville problem

$$(p(x)y')' + [q(x) + \lambda r(x)]y = 0$$

with p(x) > 0 on [a, b] and $y(a) \neq y(b)$, $y'(a) \neq y'(b)$. Show that every eigen function is unique except for a constant factor.

Solution:

The boundary conditions $y(a) \neq y(b) \implies$ either $y(a) \neq 0$ or $y(b) \neq 0$ and $y'(a) \neq y'(b) \implies$ either $y'(a) \neq 0$ or $y'(b) \neq 0$. Also y(a) = y'(a) = 0 is not possible since then we get trivial solution only. Similarly y(b) = y'(b) = 0 is not possible. Thus, we can write the BCs as

$$c_1y(a) + c_2y'(a) = 0$$
 and $d_1y(b) + d_2y'(b) = 0$

where c_1 or c_2 not equal to zero and d_1 or d_2 not equal to zero.

Let u and v are eigen functions corrsponding to an eigen value λ . Then $(pu')'+qu+\lambda ru=0$ and $(pv')'+qv+\lambda rv=0$. Multiplying the 1st by v and the second by u and subtracting we get [pW(u,v)]'=0 where W is the Wronskian. Since u and v satisfy the above BCs, W(u,v)=0 at x=a and x=b. Thus, $pW(u,v)\equiv 0$ or $W(u,v)\equiv 0$. Hence u and v are lineally dependent.