ĨĒ.-

AATCTTTTATTTTATCGATGTTAACAAGCTTAGTAATCGATGCCACGTCGAGGGGTGTCGACC CACGCGTCCGGGAGTAGGTTGAGCTCGCCTGTTCTCCCATTGTCAGCCAGTCTATTTCCAG CAGCAAGAGCAAACTATCAGAATGGGAAGAACAATGTGCCAAGGCTGAAATTATCCTACAAA GAAATGTTGGAATCCAACAATGTGATCACTTTCAATGGCTTGGCCAACAGCTCCAGTTATCAT ACCTTCCTTTTGGATGAGGAACGGAGTAGGCTGTATGTTGGAGCAAAGGATCACATATTTTC ATTCGACCTGGTTAATATCAAGGATTTTCAAAAGATTGTGTGGCCAGTATCTTACACCAGAAG AGATGAATGCAAGTGGGCTGGAAAAGACATCCTGAAAGAATGTGCTAATTTCATCAAGGTAC TTAAGGCATATAATCAGACTCACTTGTACGCCTGTGGAACGGGGGCTTTTCATCCAATTTGC ACCTACATTGAAATTGGACATCATCCTGAGGACAATATTTTTAAGCTGGAGAACTCACATTTT GAAAACGGCCGTGGGAAGAGTCCATATGACCCTAAGCTGCTGACAGCATCCCTTTTAATAGA TGGAGAATTATACTCTGGAACTGCAGCTGATTTTATGGGGCGAGACTTTGCTATCTTCCGAA CTCTTGGGCACCACCCAATCAGGACAGAGCAGCATGATTCCAGGTGGCTCAATGATCC AAAGTTCATTAGTGCCCACCTCATCTCAGAGAGTGACAATCCTGAAGATGACAAAGTATACTT TTTCTTCCGTGAAAATGCAATAGATGGAGAACACTCTGGAAAAGCTACTCACGCTAGAATAG GTCAGATATGCAAGAATGACTTTGGAGGGCACAGAAGTCTGGTGAATAAATGGACAACATTC CTCAAAGCTCGTCTGATTTGCTCAGTGCCAGGTCCAAATGGCATTGACACTCATTTTGATGA ACTGCAGGATGTATTCCTAATGAACTTTAAAGATCCTAAAAATCCAGTTGTATATGGAGTGTT GAAGGGTGTTCCTTGGTCCATATGCCCACAGGGATGGACCCAACTATCAATGGGTGCCTTAT CAAGGAAGAGTCCCCTATCCACGGCCAGGAACTTGTCCCAGCAAAACATTTGGTGGTTTTGA CTCTACAAAGGACCTTCCTGATGATGTTATAACCTTTGCAAGAAGTCATCCAGCCATGTACAA TCCAGTGTTTCCTATGAACAATCGCCCAATAGTGATCAAAACGGATGTAAATTATCAATTTAC ACAAATTGTCGTAGACCGAGTGGATGCAGAAGATGGACAGTATGATGTTTATCGGAA CAGATGTTGGGACCGTTCTTAAAGTAGTTTCAATTCCTAAGGAGACTTGGTATGATTTAGAAG AGGTTCTGCTGGAAGAATGACAGTTTTTCGGGAACCGACTGCTATTTCAGCAATGGAGCTT TCCACTAAGCAGCAACAACTATATTGGTTCAACGGCTGGGGTTGCCCAGCTCCCTTTACA CCGGTGTGATATTTACGGGAAAGCGTGTGCTGAGTGTTGCCTCGCCCGAGACCCTTACTGT GCTTGGGATGGTTCTCGCTATTTTCCCACTGCAAAGAGACGCACAAGACGACA AGATATAAGAAATGGAGACCCACTGACTCACTGTTCAGACTTACACCATGATAATCACCATG GCCACAGCCCTGAAGAGAGAATCATCTATGGTGTAGAGAATAGTAGCACATTTTTGGAATGC AGTCCGAAGTCGCAGAGAGCGCTGGTCTATTGGCAATTCCAGAGGCGAAATGAAGAGCGAA AAGAAGAGATCAGAGTGGATGATCATCATCAGGACAGATCAAGGCCTTCTGCTACGTAGT

....

Za.-

GAATTCTCGAGCTCGTCGACCACGCCCTCCTTGTGCAAGAACTCTGAGCCCCAGGTGCAGG AGGCTGAGGCCTGCAGAGAGACTTGCAGAGAGACCCAGCAAGCCATGGTGTTTCCATGGA GATGTGAGGGTACTTACTGGGGCTCGAGGAACATCCTGAAGCTGTGGGTCTGGACACTGCT CTGTTGTGACTTCCTGATACACCATGGAACTCACTGTTGGACTTACCATTATTCTGAAAAGCC CATGAACTGGGAAAATGCTAGAAAGTTCTGCAAGCAAAATTACACAGATTTAGTCGCCATAC AAAACAAGAGAGAAATTGAGTATTTAGAGAATACATTGCCCAAAAGCCCTTATTACTACTGGA GAAGCAGAGAACTGGGGTGCTGGGGAGCCCAACAACAAGAAGTCCAAGGAGGACTGTGTG GAGATCTATATCAAGAGGGAACGAGACTCTGGGAAATGGAACGATGACGCCTGTCACAAAC GAAAGGCAGCTCTCTGCTACACAGCCTCTTGCCAGCCAGGGTCTTGCAATGGCCGTGGAGA ATGTGTGGAAACTATCAACAATCACACGTGCATCTGTGATGCAGGGTATTACGGGCCCCAGT GTCAGTATGTGGTCCAGTGTGAGCCTTTGGAGGCCCCTGAGTTGGGTACCATGGACTGCAT CCACCCCTTGGGAAACTTCAGCTTCCAGTCCAAGTGTGCTTTCAACTGTTCTGAGGGAAGAG AGCTACTTGGGACTGCAGAAACACAGTGTGGAGCATCTGGAAACTGGTCATCTCCAGAGCC AATCTGCCAAGTGGTCCAGTGTGAGCCTTTGGAGGCCCCTGAGTTGGGTACCATGGACTGC ATCCACCCTTGGGAAACTTCAGCTTCCAGTCCAAGTGTGCTTTCAACTGTTCTGAGGGAAG AGAGCTACTTGGGACTGCAGAAACACAGTGTGGAGCATCTGGAAACTGGTCATCTCCAGAG CCAATCTGCCAAGAGACAAACAGAAGTTTCTCAAAGATCAAAGAAGGTGACTACAACCCCCT CTTCATTCCTGTAGCCGTCATGGTCACCGCATTCTCGGGGCTGGCATTTCTCATTTGGCTGG CTTTGTGAAAGGAAAGCCATGAAGTGCTAAAGACAAAACATTGGAAAATAACGTCAAGTCCT CCCGTGAAGATTTTACACGCAGGCATCTCCCACATTAGAGATGCAGTGTTTGCTCAACGAAT ACCCTATCCCATAATGTGTGTCTATACAGAGTAGTATTTTATCATCTTTTCTGTGGAGGAACA AGCAAAAGTGTTACTGTAGAATATAAAGACAGCTGCTTTTACTCTTTCCTAACTCTTGTTTCCT AGTTCAATTCAGCACAGAAGCTAATGCCAAACACAGTGAAAATATGATCCATGAGTAATTGGA AACTCAGACTCCTTGCGCATAGTACGTACCCTATGTAACATCGACAAAAATCTTTCATTTCCA CCTCCAAAGAACAGTGCTCTATTCAAGTTGGGAAAGTCCTACTTCCTCTGTAGACCCACTAT CTGTGAGTGACAGCCACTGTAGCTGTTCACATTAACCTTCCCCATCTCCTTTTCCTAGGAGA ATAATTCCACACACTGCACCCCATGATGGCCACCAAACATCAAAGAAGGGGAAAATCTCCTGC ATTGAGTTTTAGTTTTCCCTTCTCTTTATTAGATCTCTGATGGTTCCTTGAAGTCAG TGTTCTGATGATTATTAATAGTTAATGATAACACACCCACTCTCTTGGAGCTGATGTTATGAA

.=_-

TATAACTTGCTCCTTAACTTGCCCAACCTGTAGGCTATCTCATTTTCTCGCTTCACTCTGCAA GGTTTATAACATGATGAATTTAAATAC (SEQ ID NO:2) ia.

.....

=

MALSVMCLGLALLGVLQSQAQDSTQNLiPAPSLLTVPLQPDFRSDQFRGRWYVVGLAGNAVQK KTEGSFTMYSTIYELQENNSYNVTSILVRDQDQGCRYWIRTFVPSSRAGQFTLGNMHRYPQVQS YNVQVATTDYNQFAMVFFRKTSENKQYFKITLYGRTKELSPELKERFTRFAKSLGLKDDNIIFSVC LPLHLSCCQRATWLPHQPPYQGASGASSYLASTPHPPVLTPPMASPFC (SEQ ID NO:4)

CCCCTTTTGGTTTTTGTTCTATCGACCCTAACAAGCTTAGTAATCGATGCCACTCGAGGCCAA GAATTCATTACGAGCCTGAGCTCCTTCGGCTTTTTCCCCCCCTTTTGCATCTTGTTTCCCGGGA TACCTGCAACTCAAGGATGGATGCCCTGAGACTGGCAAATTCAGCTTTTGCTGTTGACTTGT CTTCTCTGTCCCTTGCGCAAGTGGGCACCAAAGGCGACACAGCAAATGAAATTGGACAGGT CCTTCATTTTGAGAATGTCAAAGATGTACCCTTTGGGTTTCAAACAGTCACTTCTGATGTTAA TAAGCTCAGTTCTTTTTACTCTTTGAAACTTGTCAAGCGACTCTACATAGACAAATCTCTGAAC CCTTCTACAGAATTTATCAGTTCTACCAAAAGACCATATGCAAAAGAATTGGAAACTGTTGAC TTCAAAGACAAACTGGAAGAAACGAAAGGTCAAATTAACAGCTCCATTAAGGAGCTCACAGA TGGCCACTTTGAGGACATTTTGTCAGAGAACAGTATAAGTGACCAGACCAAAATCCTTGTGG TTAATGCTGCCTACTTTGTTGGAAAGTGGATGAAGAAATTTCCGGAATCAGAAACAAAAGAAT GTCCTTTCAGAATCAGCAAGACAGACACCAAACCCGTACAAATGATGAATCTTGAGGCCACT TTCTGCTTGGGTAACATTGATGACATCAGCTGTAAGATCATAGAACTTCCTTTCCAGAATAAG CATCTGAGTATGCTCATTGTGCTCCCCAAGGACGTGGAGGATGAGTCCACAGGCCTGGAGA AGATTGAACAGCAACTCAACCCAGAAACATTGTTACAGTGGACCAACCCCAGTACCATGGCC AGTCTGGAAAGCCTAGGGCTGAAAAGTCTCTTCAATGAAAGTACATCGGATTTCTCTGGAAT GTCAGAGACCAAGGGAGTGTCCCTGTCAAATGTGATTCATAGAGTATGCCTAGAAATAACCG AAGATGGTGGTGAGTCCATCGAGGTGCCAGGGTCCCGGATCTTACAGCACAAGGATGAATT CAATGCTGACCATCCATTTATTTATATCATTAGACACAACAACAACATCGAAACATCATTTTCTTT GGCAAATTCTGTTCTCCTTAGCTGGCAGGGCCTTGCCAAGTCTCAGGGAACTTGTCTGTAGT CGCAGAGCTCTGTAAACTTTGTATCCAGACAATCACTTTCTATACAATAAATTGTAAATGTTG CTGAAAAAAAAAAAAAAAAAAAAAA (SEQ ID NO:5)

GGTGGAGACTAAATATAATCTTTTATTTTATCGATGTTAACAAGCTTAGTAATCGATGCCACG TCGAGGGGTGTCGACCCACGCGTCTCGCTTGCCTGTTCCTTTTCCACGCATTTTCCAGGATA ACTGTGACTCCAGGCCCGCAATGGATGCCCTGCAACTAGCAAATTCGGCTTTTGCCGTTGAT CTGTTCAAACAACTATGTGAAAAGGAGCCACTGGGCAATGTCCTCTTCTCTCCAATCTGTCT CTCCACCTCTCTGTCACTTGCTCAAGTGGGTGCTAAAGGTGACACTGCAAATGAAATTGGAC AGGTTCTTCATTTTGAAAATGTCAAAGATGTACCCTTTGGATTTCAAACAGTAACATCGGATG TAAACAAACTTAGTTCCTTTTACTCACTGAAACTAATCAAGCGGCTCTACGTAGACAAATCTC TGAATCTTTCTACAGAGTTCATCAGCTCTACGAAGAGCCCTATGCAAAGGAATTGGAAACT GTTGACTTCAAAGATAAATTGGAAGAAACGAAAGGTCAGATCAACAACTCAATTAAGGATCTC ACAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGTGTGAACGACCAGACCAAAATCCT TGTGGTTAATGCTGCCTACTTTGTTGGCAAGTGGATGAAGAAATTTCCTGAATCAGAAACAAA AGAATGTCCTTTCAGAGTCAACAAGACAGACACCAAACCAGTGCAGATGATGAACATGGAGG CCACGTTCTGTATGGGAAACATTGACAGTATCAATTGTAAGATCATAGAGCTTCCTTTTCAAA ATAAGCATCTCAGCATGTTCATCCTACTACCCAAGGATGTGGAGGATGAGTCCACAGGCTTG GAGAAGATTGAAAAACAACTCAACTCAGAGTCACTGTCACAGTGGACTAATCCCAGCACCAT AGGCTTGTCTGGAAAATCTAGGGCTGAAACATATCTTCAGCGAAGACACATCTGATTTCTCT GGAATGTCAGAGACCAAGGGAGTGGCCCTATCAAATGTTATCCACAAAGTGTGCTTAGAAAT AACTGAAGATGGTGGGGATTCCATAGAGGTGCCAGGAGCACGGATCCTGCAGCACAAGGAT GAATTGAATGCTGACCATCCCTTTATTTACATCATCAGGCACAACAAAACTCGAAACATCATT TTCTTTGGCAAATTCTGTTCTCCTTAAGTGGCATAGCCCATGTTAAGTCCTCCCTGACTTTTC TGTGGATGCCGATTTCTGTAAACTCTGCATCCAGAGATTCATTTTCTAGATACAATAAATTGC TAATGTTGCTGGATCAGGAAGCCGCCAGTACTTGTCATATGTAGCCTTCACACAGATAGACC TTTTTTTTTTCCAATTCTATCTTTTGTTTCCTTTTTTCCCATAAGACAATGACATACGCTTTT AATGAAAAGGAATCACGTTAGAGGAAAAATATTTATTCATTATTTGTCAAATTGTCCGGGGTA GTTGGCAGAAATACAGTCTTCCACAAAGAAAATTCCTATAAGGAAGATTTGGAAGCTCTTCTT CCCAGCACTATGCTTTCCTTTTGGGATAGAGAATGTTCCAGACATTCTCGCTTCCCTGAAA GACTGAAGAAAGTGTAGTGCATGGGACCCACGAAACTGCCCTGGCTCCAGTGAAACTTGGG CTTCATGGATCAGATCTGGGGCAGCACCCTATAAATCACCACCTTAATATGCTGCAACAAAA TGTAGAATATTCAGACAAAATGGATACATAAAGACTAAGTAGCCCATAAGGGGTCAAATTTTG

...........

. 11.- GGAATGTTGGATAAGGAATTATAGACCTCTAGTAGCTGAAATGCAAGACCCCAAGAGGAAGT TCAGATCTTAA (SEQ ID NO:6)

TO THE TO THE STATE TO THE THE SECOND SECTION OF THE SECOND SECTION OF THE SECOND SECTION OF THE SECOND SECTION OF THE SECOND SECOND SECTION OF THE SECOND S

	Semaphorin D	Maspin	B94	mel-14 Antigen	24p3	Proliferin
Up in re: tu	Up-regulated in CDDP resistant tumor	Down-regulated in CDDP resistant tumor	Up- regulated in CDDP resistant tumor	Up- regulated in CDDP resistant tumor	Up- regulated in CDDP resistant tumor	Up- regulated in CDDP resistant tumor
Rem reg CDD res cel pas (pa	Remain up- regulated in CDDP resistant cell line to passage 13 (passage 3, 6, 10, and	Remain down- regulated in CDDP resistant cell line to passage	Remain up- regulated in CDDP cell line to passage 10	Remain up- regulated in CDDP cell line to passage	Remain up- regulated in CDDP cell line to passage 10	Remain up- regulated in CDDP cell line to passage
	Higly expressed in SCC25 CDDP cell line, not significant-ly expressed in other cell line pairs.	Highly expressed in SCC25 wild type cell line (and HL60 AD cell line), not significantly expressed in other cell line pairs.	Different -ially expressed in HL60 and U937 cell lines (lower in resistant cell line).	Different -ially expressed in HL60 cell lines (high in HL60 and HL60Rev, low in HL60AD)	slightly up- regulated in SCC25 CDDP cell line; not signifi- cantly different- ially expressed in other cell line pairs.	Slightly up- regulated in A2780AD and SCC25 CDDP cell lines; Not signifi- cantly differ- entially expressed in other cell line pairs.