计算机组成原理与系统结构

第4章 运算方法与运算器

- 4.1 定点数的加减运算及实现
- 4. 定点数的乘法运算及实现
- 4.3 定点数除法运算及

实现

- 4.4 定点运算器的组成与结构
- 4. 浮点运算及运算器
- 4. 浮点运算器举例
 - 本章小结

4.2 定点数的乘法运算及实现

原码乘法及实现

补码乘法及实现

阵列乘法器

一、原码乘法及实现

1、手工乘法算法

- ❖ 手工计算 1011×1101, 步骤:
- ※手工算法:
 - ■对应每一位乘数求得1项位积
 - ■将位积逐位左移
 - ■将所有的位积一次相加,得到最后的乘积
- ❖在计算机上能否实现?如何实现?

1011
× 1101
1011
0000
1011
1011
10001111

改造手工算法适合计算机硬件实现:

2、原码一位乘法算法: 累加、右

移

- ◆ 假设 [X]_原 = X_s X₁ X₂ ······X_n , [Y]_原
 = Y_s Y₁ Y₂ ······Y_n , P=X · Y , P_s是积
 的符号:
- ① 符号位单独处理 Ps=Xs ⊕ Ys
- ② 绝对值进行数值运算 |P|=|X|*|Y|
- ③ 初始部分积为 0 , Yi=1 , 部分积加 | X | , Yi=0 , 部分积加 0 , 累加结果右移一位,得新部分积。
- ④ 累加右移 n 次,即 i=n, n-1, …, 2

举例

- ❖例如: X=+1011 , Y=-1101, 用 原码一位乘法计 算 P=X · Y。
- **☆** [Y] 原

 =1, 1101
- ❖ Ps=Xs ⊕ Ys

部分积	乘数Y	操作说明
0, 0000	1 1 0 <u>1</u>	
+ 0, 1011		$Y_4=1, + X $
0, 1011		
0, 0101	1 1 1 <u>0</u>	右移一位
+ 0, 0000		$Y_3=0, +0$
0, 0101	L	
0, 0010	1 1 1 <u>1</u>	右移一位
+ 0, 1011		$Y_2=1, + X $
0, 1101	L	
0, 0110	1 1 1 <u>1</u>	右移一位
+ 0, 1011		$\mathbf{Y}_1=1, + \mathbf{X} $
1, 0001	L	
0, 1000	1 1 1 1	右移一位

3、原码乘法的硬件实现:加法器、移

3、原码乘法的硬件实现

❖A: 累加寄存器

❖B:被乘数寄存 ❖A、Q:右移寄存器

器

<u>❖∩. 乖粉</u> 存器

初始:

- **♦** A=0
- ** Q**=|Y|
- ❖计数器 =n

累加、右移n次

结果:

- ❖A= 乘积高位
- **♦ B = |X|**
- *Q=乘积低位
- ❖计数器 =0

第一次求部分

加运算: + X

第一次求部分积 右移1位

00000 1101

第二次求部分积 加运算: +0

00000 1101

01011 1101

00101 1110

CF

 $\mathbf{C}_{\mathbf{n}}$

第二次求部分积

缓冲器

右移1位

CP

第三次求部分积 加运算: + |X| 00000 1101

第三次求部分积

右移1位

00000

1101

0 1 1

01011 1101

00101 1110

00101 1110

00010 1111

01101 1111

第四次求部分积 加运算: + |X| 00000 1101

原码一位乘法流程

二、补码乘法及实现

- ❖ 1、补码乘法算法
- ❖ (1) 补码一位乘法──校正法
- ❖ (2)补码一位乘法——Booth算法
- ❖ 2、补码乘法的硬件实现

(1)补码一位乘法——校正法

- ❖ 假设 $[X]_{*} = X_0 . X_1 \cdots X_n$,
- * 则有:
- ❖ 证明如下:

(1)补码一位乘法——校正法

❖ 当被乘数 X 的符号任意, Y 为正数时:根据补码定义有:

```
[X]_{k} = 2 + X = 2^{n+1} + X \pmod{2}
[Y]_{*} =Y 则:
[X]_{\frac{1}{4h}} \cdot [Y]_{\frac{1}{4h}} = (2^{n+1}+ X) \cdot Y = 2^{n+1} \cdot Y +
   X - Y
= 2^{n+1} \cdot (0 \cdot Y_1 \cdot \cdots Y_n) + X \cdot Y
= 2 \cdot (Y_1 \cdot \cdots Y_n) + X \cdot Y = 2 + X \cdot Y  (mo
    d 2)
= [X \cdot Y]_{\lambda k}
```

- ◆ 即: Y >0 时,

(1)补码一位乘法——校正法

❖ 当被乘数 X 的符号任意, Y 为负数时:

```
 [Y]_{\stackrel{}{A}} = 2 + Y = 1 . Y_{1} \cdots Y_{n}   [Y]_{\stackrel{}{A}} - 2 = 0 . Y_{1} \cdots Y_{n} - 1   [X \cdot Y]_{\stackrel{}{A}} = [X \cdot 0 . Y_{1} \cdots Y_{n} - X]_{\stackrel{}{A}}   = [X \cdot 0 . Y_{1} \cdots Y_{n}]_{\stackrel{}{A}} + [-X]_{\stackrel{}{A}}  因为  0 . Y_{1} \cdots Y_{n} > 0  ,所以 :  [X \cdot 0 . Y_{1} \cdots Y_{n}]_{\stackrel{}{A}} = [X]_{\stackrel{}{A}} \cdot (0 . Y_{1} \cdots Y_{n})
```

- ❖ 所以: Y<0 时,</p>

校正法举例1

X=+0.1011, Y= 0.1101, 用补码一
 位乘法的校正法计
 算 P=X · Y。

[X]
$$_{kh}$$
 =00.1011

$$[Y]_{\lambda} = 11.0011$$

$$[-X]_{*h} = 11.0101$$

$$[X \cdot Y]_{*} = 1.0111$$

$$X \cdot Y = -0.1000 1111$$

校正法举例 2

- ❖设 X=-0.1101 Y =-0.1011,即:
- $(X)_{3h} = 11.0011$
- ♣ [Y] _¾ = 11.0101
- **♦** $[-X]_{\lambda}$ = 0.1101
- ❖求 [X*Y]

计算结果:

$$[X*Y]_{*} = 0.10001111$$

	即万亿
. [** 7]	00.0000
+[X] <u>补</u>	11.0011
	11.0011
右移一位	11.1001
+0	00.0000
	11.1001
右移一位	11.1100
+[X] _补	11.0011
	10.1111
右移一位	11.0111
+0	00.0000
	11.0111
右移一位	11.1011
+[-X] _补 校正	00.1101
	00.1000

(2)补码一位乘法——Booth

❖ 做出如下推导:

 $a \cdot 2^{-n}$

```
[X \cdot Y]_{\stackrel{\lambda_1}{\downarrow_1}} = [X]_{\stackrel{\lambda_1}{\downarrow_1}} \cdot (0.Y_1 \cdot \cdots Y_n) + Y_0 \cdot [-X]_{\stackrel{\lambda_1}{\downarrow_1}}
= [X]_{\frac{1}{2}} \cdot (Y_1 \cdot 2^{-1} + Y_2 \cdot 2^{-2} + \cdots + Y_n \cdot 2^{-n} - Y_0)
= [X]_{\frac{1}{4}} \cdot [Y_1 \cdot (2^0 - 2^{-1}) + Y_2 \cdot (2^{-1} - 2^{-2}) + \cdots +
    Y_n \cdot (2^{-n+1} - 2^{-n}) - Y_0 \cdot 2^0
= [X]_{\frac{1}{2}} \cdot [Y_1 \cdot 2^0 - Y_1 \cdot 2^{-1} + Y_2 \cdot 2^{-1} - Y_2 \cdot 2^{-2} + \cdots + Y_n \cdot 2^{-n+1} -
    Y_n \cdot 2^{-n} - Y_0 \cdot 2^0
= [X]_{\frac{1}{4}} \cdot [(Y_1 - Y_0) \cdot 2^0 + (Y_0 - Y_1) \cdot 2^{-1} + (Y_3 - Y_2) \cdot 2^{-2} +
     •••• (Y_n - Y_{n-1}) - 2^{-n+1} - Y_n - 2^{-n}]
= [X]_{\frac{1}{4}} \cdot [(Y_1 - Y_0) \cdot 2^0 + (Y_2 - Y_1) \cdot 2^{-1} + (Y_3 - Y_2) \cdot 2^{-2}]
    + ----+ (Y_n - Y_{n-1}) - 2^{-n+1} + (Y_{n+1} - Y_n) - 2^{-n}
= [X]_{\frac{1}{2}} · (a_0 \cdot 2^0 + a_1 \cdot 2^{-1} + a_2 \cdot 2^{-2} + \cdots + a_{n-1} \cdot 2^{-n+1} +
```


Booth 算法的运算规则

假设 [Y] _{**} = Y0 . Y1 ······Yn

- ① 被乘数 X 和乘数 Y 均以补码的形式参加乘法运算,运算的结果是积的补码。
- ② 部分积和被乘数 X 采用双符号位, 乘数 Y 采用单符号位。
- ③ 初始部分积为 0;运算前,在乘数 Y 的补码末位后添加一位附加位 Yn+1,初始为 0。
- ④ 根据 YnYn+1 的值,按照表 4 3 进行累加方移操作 右移时遵循补码的移位 1 Yn Yn+1 操作
- ⑤ 累加 n+1 次, 右移 n 次,

Y _n	Y _{n+1}	操作
0	0	+0,右移一位
0	1	+[X] _补 ,右移一位
1	0	+[-X] _补 ,右移一位
1	1	+0 ,右移一位

Booth 算法举例

部分积 **9**00.0000

+ 11.0101

11.0111

乘数Y (Yn Yn+1) 操作说明

- ❖ X=+0.1011, Y=-0.1101, 用补码一位 乘法的 Booth 算法计 算 P=X • Y。

- $[X \cdot Y]_{*h} = 1.0111$
- $X \cdot Y = -0.1000$

0 0 0 1

 $Y_0Y_1=10$, $+[-X]_{k}$

2、补码乘法的硬件实现

❖ Booth 乘法的硬件实现

开始

补码乘法的 Booth 算法流程

0→A, [X]_补→B, [Y]_补→Q, n+1→计数器, 0→Q_{n+1}

控制逻辑电路

计数器=0?

三、阵列乘法器

- ❖ 原理类似于二进制手工算法
 - 位积的每一位 XiYj 用一个与门产生。
 - 每一次的累加都用单独一组 FA 实现。
 - 本次累加的 FA 之间的进位,送至下一次再累加

绝对值阵列乘法器

举例: 1101×1011

补码阵列乘法器

补码→绝对值电路

n

绝对值→补码电路

$$X < 0 : X_0' = 1, X \ge 0:$$

$$X_0' = 0$$

The Engl