Subjectul D.OPTICĂ

Nr. item	Soluţie/Rezolvare
III.a.	$\frac{hc}{\lambda_1} = h\nu_0 + Ec_{\text{max 1}}, \frac{hc}{\lambda_2} = h\nu_0 + Ec_{\text{max 2}}$
	$V_0 = \frac{c}{(k^2 - 1)} \left(\frac{k^2 \lambda_1 - \lambda_2}{\lambda_2 \lambda_1} \right)$
	Rezultat final: $\nu_0 \cong 4,55 \cdot 10^{14} Hz$
b.	$\frac{hc}{\lambda_1} = h\nu_0 + Ec_{\text{max 1}}$ $Ec_{\text{max 1}} = h(\frac{c}{\lambda_1} - \nu_0)$
	$Ec_{\max 1} = h(\frac{c}{\lambda_1} - \nu_0)$
	Rezultat final: $Ec_{\text{max}10} \cong 2.6 \cdot 10^{-19} J$
C.	$\varepsilon_1 = \frac{hc}{\chi_1}$
	$\varepsilon_2 = \frac{hc}{\chi_2}$
	Rezultat final: $\frac{\mathcal{E}_2}{\mathcal{E}_1} \cong 0,65$
d.	reprezentare corectă a \log ii $Ec_{ m max} = h { m \emph{V}} - L$
	Rezultat final: