

Agenda Presentation

01 Introduction

Materials and Methods

Result and Discussion

O4 Conclusion

Introduction

- Lahan basah Indonesia 40,5 jt hektar dan 22.6 % dari total luasan mangrove global. Kekayaan alamnya sangat besar dan penting untuk kehidupan manusia
- □ Lahan basah berfungsi sistem penyangga kehidupan, menjadi sumber air, sumber pangan, menjaga kekayaan keanekaragaman hayati.
- ☐ Lahan Basah : Pesisir dan Dataran
- □ Lahan Basah untuk Pengurangan Risiko Bencana.
- ☐ World Wetlands Day 2019 di Demak, Jawa Tengah "Memperkenalkan Pentingnya Mangrove Sejak Dini untuk Menyelamatkan Kawasan Pesisir Kita"

Area of Interest

Bencana alam di pesisir Kab. Demak

- a. Abrasi dan Erosi pantai
- b. Naiknya permukaan air laut oleh perubahan iklim global.
- c. Banjir rob, diiringi dengan terjadinya penurunan muka tanah telah menenggelamkan sebagian kawasan pesisir dan menjadikan Pesisir Demak rutin mengalami banjir.

Materials and Methods

Algoritma Fuzzy K-Mean

Algoritma K-mean, dimana $||x_i^{(j)} - c_j||$ merupakan jarak titik data $x_i^{(j)}$ dan pusat klaster C_i .

$$\sum_{i=1}^{k} \sum_{j=1}^{n} \|x_i^{(j)} - c_j\|^2$$

Langkah-langkah dalam algoritma Fuzzy K-Means:

- a. Menentukan titik k awal pada objek yang akan diklaster.
- b. Menetapkan setiap objek dalam kelompok yang memiliki nilai objektif terdekat.
- c. Ketika semua objek telah ditetapkan, posisi titik k dihitung kembalkan
- d. Langkah ke-2 dan ke-3 diulangi sampai tidak lagi berubah.

Multi Temporal Citra Satelit

Pola sebaran air permukaan dengan SAR Data

Klasifikasi Lahan basah dengan SAR Sentinel 1

SAR Image Processing for Wetland and Surface Water Mapping

Fuzzy K Mean Supervisied (Pengawasan) adalah untuk menentukan kemungkinan jumlah kelas di area lahan basah dan sekitarnya. Hasilnya menunjukan bahwa ada empat kelas lahan basah dalam penelitian ini yaitu Sawah, tambak, mangrove, and open water bodies

Nilai Backscatter (Hamburan Balik) Pada Perubahan Air Permukaan Data Multitemporal

Classification	July 2015	July 2016	July 2017	July 2018	Maret 2019
Field	0.004229	0.008858	0.050254	0.001976	0.178336
Mangrove	0.182700	0.178336	0.001976	0.001976	0.002130
Open water bodies	0.182700	0.000494	0.001976	0.004229	0.182700
Ponds	0.001976	0.178336	0.004229	0.182700	0.001976

Tampilan data SAR adalah kekasaran, tekstur, dan rona yang dihasilkan dari backscatter sehingga interpretasi secara visual akan sulit membedakan lahan basah dan bukan lahan basah.

Conclusion

☐ Citra Data SAR Sentinel-1 dapat dengan mudah untuk pemantauan perubahan air permukaan di lahan basah.

□ Metode K Mean juga dapat menghasilkan pola sebaran air permukaan yang berada pada cluster lahan basah.

□ Hasil Algoritma metode K-Mean berjala dengan baik dalam mengklasterkan daerah lahan basah yang saling memiliki kesamaan berdasarkan nilai yang dihasilkan.

International Conference on Disaster Management ICDM 2019