Homework 4 Solutions

Problem 1

For each of the following, express the set in list or interval notation (whichever is appropriate) or as a union of such sets.

- (a) f[(-1,3)], where $f:\mathbb{R}\to\mathbb{R}$ is defined by $f(x)=x^2$ for all $x\in\mathbb{R}$.
- (b) $g^{-1}[(0,2]]$, where $g: \mathbb{R} \to \mathbb{R}$ is defined by g(x) = |x-1| + |x+1| for all $x \in \mathbb{R}$.
- (c) $h[\mathbb{R} \setminus \mathbb{Z}]$, where $h: \mathbb{R} \to \mathbb{R}$ is defined by $h(x) = x^2$ for all $x \in \mathbb{R}$.
- (d) (Extra practice, not to be submitted) $p^{-1}[\{2,3\}]$, where $p: \mathbb{Z} \to \mathbb{Z}$ is defined by letting p(n) be the remainder of n^2 when divided by 5 (for example, $7^2 = 49 = 9 \times 5 + 4$, so p(7) = 4).

Suggested solutions:

- (a) f[(-1,3)] = [0,9). Let $y \in f[(-1,3)]$. Then y = f(x) for some $x \in (-1,3)$. There are two cases: if $x \in (-1,0)$, then $x^2 \in (0,1) \subseteq [0,9)$. If $x \in [0,3)$, then $x^2 \in [0,9)$. Therefore, we must have $y = x^2 \in [0,9)$. Let $y \in [0,9)$. We need to find $x \in (-1,3)$ such that f(x) = y. Define $x = \sqrt{y} \in [0,3) \subseteq (-1,3)$.
- (b) $g^{-1}[(0,2]] = [-1,1]$. Before proving the equality, we consider cases of x. When x < -1, $g(x) > |-1-1| + |x+1| = 2 + |x+1| \ge 2$ so g(x) > 2. When $x \in [-1,1]$, g(x) = -(x-1) + (x+1) = 2. When x > 1, $g(x) > |x-1| + |1+1| = |x-1| + 2 \ge 2$ so g(x) > 2. Let $x \in [-1,1]$. The middle case of the previous paragraph has already showed that g(x) = 2 so $x \in g^{-1}[(0,2]]$. Let $x \in g^{-1}[(0,2]]$. The case analysis above gives $x \in [-1,1]$ (if x is outside [-1,1], g(x) > 2).
- (c) $h[\mathbb{R} \setminus \mathbb{Z}] = \bigcup_{n \in \mathbb{N}} (n^2, (n+1)^2)$. Let $y \in h[\mathbb{R} \setminus \mathbb{Z}]$. There is $x \in \mathbb{R} \setminus \mathbb{Z}$ such that $y = h(x) = x^2$. Since $x \notin \mathbb{Z}$, there is $z \in \mathbb{Z}$ such that $x \in (z, z+1)$. If $z \geq 0$, then $y = x^2 \in (z^2, (z+1)^2)$ so n = z witnesses $y \in \bigcup_{n \in \mathbb{N}} (n^2, (n+1)^2)$. If z < 0, then $y = x^2 \in ((z+1)^2, z^2) = ((-z-1)^2, (-z)^2)$ so n = -z - 1 witnesses $y \in \bigcup_{n \in \mathbb{N}} (n^2, (n+1)^2)$. Let $y \in \bigcup_{n \in \mathbb{N}} (n^2, (n+1)^2)$. There is $n \in \mathbb{N}$ such that $y \in (n^2, (n+1)^2)$. We need to find $x \in \mathbb{R} \setminus \mathbb{Z}$ such that $y = h(x) = x^2$. Define $x = \sqrt{y}$. Then $x \in (n, n+1) \subseteq \mathbb{R} \setminus \mathbb{Z}$.

(d) $p^{-1}[\{2,3\}] = \emptyset$. Let $n \in \mathbb{Z}$. We can write n = 5k + r for some $r \in \{0,1,2,3,4\}$. Consider $(5k + r)^2 = 25k^2 + 10kr + r^2 = 5(5k^2 + 2kr) + r^2$. Since the first term $5(5k^2 + 2kr)$ is divisible by 5, we know p(n) is the remainder of r^2 when divided by 5. For $r \in \{0,1,2,3,4\}$, the remainder of r^2 when divided by 5 can only be 0, 1 or 4. Therefore it is impossible for p(n) to be 2 or 3.

Problem 2

Let $f: X \to Y$ be a function. Suppose that $A, B \subseteq X$ and $C, D \subseteq Y$. Decide (with proof) whether each of the following is true or false. If the statement is false, prove which of the inclusions (\subseteq or \supseteq) must be true and provide a counterexample for the other inclusion.

- (a) $f[A \cap B] = f[A] \cap f[B]$
- (b) $f^{-1}[C \cap D] = f^{-1}[C] \cap f^{-1}[D]$
- (c) (Extra practice, not to be submitted) $f[A \cup B] = f[A] \cup f[B]$
- (d) (Extra practice, not to be submitted) $f^{-1}[C \cup D] = f^{-1}[C] \cup f^{-1}[D]$

Suggested solutions:

- (a) Only \subseteq is true: let $y \in f[A \cap B]$. There is $x \in A \cap B$ such that f(x) = y. Since $x \in A \cap B$, $x \in A$ and $x \in B$. Therefore, $x \in A$ and f(x) = y. This implies $y \in f[A]$. Similarly, $x \in B$ and f(x) = y. This implies $y \in f[B]$. Therefore $y \in f[A] \cap f[B]$. We show that $f[A] \cap f[B] \not\subseteq f[A \cap B]$: let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$, $A = \{x \in \mathbb{R} \mid x > 0\}$ and $B = \{x \in \mathbb{R} \mid x < 0\}$. We have $f[A \cap B] = f[\emptyset] = \emptyset$ which cannot contain $f[A] \cap f[B] = A \cap A = A \neq \emptyset$.
- (b) True: let $x \in f^{-1}[C \cap D]$. $f(x) \in C \cap D$. Hence $f(x) \in C$ and $f(x) \in D$. Since $f(x) \in C$, $x \in f^{-1}[C]$. Since $f(x) \in D$, $x \in f^{-1}[D]$. Therefore, $x \in f^{-1}[C] \cap f^{-1}[D]$. Let $x \in f^{-1}[C] \cap f^{-1}[D]$. $x \in f^{-1}[C]$ and $x \in f^{-1}[D]$. Thus $f(x) \in C$ and $f(x) \in D$. These give $f(x) \in C \cap D$. $x \in f^{-1}[C \cap D]$.
- (c) True: let $y \in f[A \cup B]$. There is $x \in A \cup B$ such that f(x) = y. Case (1): $x \in A$. Since y = f(x), we can conclude that $y \in f[A]$. Hence $y \in f[A] \cup f[B]$. Case (2): $x \in B$. Since y = f(x), we can conclude that $y \in f[B]$. Hence $y \in f[A] \cup f[B]$. Therefore, we can conclude $y \in f[A] \cup f[B]$.

 Let $y \in f[A] \cup f[B]$. Case (1): $y \in f[A]$. There is $x \in A$ such that y = f(x). Since $x \in A$, $x \in A \cup B$. Therefore $y \in f[A \cup B]$. Case (2): $y \in f[B]$. There is $x \in B$ such
- (d) True: let $x \in f^{-1}[C \cup D]$. $f(x) \in C \cup D$. Case (1): $f(x) \in C$. Then $x \in f^{-1}[C]$. Case (2): $f(x) \in D$. Then $x \in f^{-1}[D]$. Therefore, $x \in f^{-1}[C] \cup f^{-1}[D]$. Let $x \in f^{-1}[C] \cup f^{-1}[D]$. Case (1): $x \in f^{-1}[C]$. $f(x) \in C$. Thus $f(x) \in C \cup D$. $x \in f^{-1}[C \cup D]$. Case (2): $x \in f^{-1}[D]$. $f(x) \in D$. Thus $f(x) \in C \cup D$. $x \in f^{-1}[C \cup D]$. Therefore, $x \in f^{-1}[C \cup D]$.

that y = f(x). Since $x \in B$, $x \in A \cup B$. Therefore $y \in f[A \cup B]$.

Problem 3

Let $f: X \to Y$ and $g: Y \to Z$ be two functions. Suppose that $g \circ f$ is bijective. Decide (with proof) if each of the following must be true, otherwise, provide a counterexample.

- (a) f is injective.
- (b) f is surjective.
- (c) g is injective.
- (d) g is surjective.

Suggested solutions:

- (a) True: suppose f(a) = f(b) for some $a, b \in X$. Then g(f(a)) = g(f(b)). Since $g \circ f$ is injective, a = b.
- (b) False: let $f: \mathbb{N} \to \mathbb{N}$ be defined by f(x) = 2x and $g: \mathbb{N} \to \mathbb{N}$ be defined by

$$g(y) = \begin{cases} y/2 & y \text{ is even} \\ 0 & y \text{ is odd.} \end{cases}$$

f is not surjective because the range does not contain 3. $g \circ f$ is the identity function so it is bijective.

- (c) False: using the same example in (b), g is not injective because g(1) = 0 = g(3).
- (d) True: let $z \in Z$. Since $g \circ f$ is surjective, we can find $x \in X$ such that g(f(x)) = z. Since $f: X \to Y$, $f(x) \in Y$. Therefore we can choose y = f(x) to be the input of g such that g(y) = z.

Problem 4

Let $f: \mathscr{P}(\mathbb{R}) \times \mathscr{P}(\mathbb{R}) \to \mathscr{P}(\mathbb{R} \times \mathbb{R})$ be defined by

$$f(A,B) = A \times B.$$

Decide (with proof) whether each of the following is true or false.

- (a) f is injective.
- (b) f is surjective.

Suggested solutions:

- (a) False: $f(\{1\}, \emptyset) = \emptyset = (\emptyset, \{1\}).$
- (b) False: we claim that there are no $A, B \in \mathscr{P}(\mathbb{R})$ such that $f(A, B) = C = \{(0, 0), (0, 1), (1, 0)\}$. Since (0, 0) and (1, 0) are in C, A must contain 0 and 1. Similarly, since (0, 0) and (0, 1) are in C, B must contain 0 and 1. Hence $A \times B$ contain $\{0, 1\} \times \{0, 1\}$ as a subset. However C does not contain (1, 1).

Problem 5

For each of the following functions, determine whether it is injective, surjective, bijective, or neither injective nor surjective.

- (a) $f : [0,1] \to [a,b], f(x) = a + x(b-a)$ for all $x \in [0,1]$, where $a, b \in \mathbb{R}$ with a < b.
- (b) $g: \mathbb{R}^2 \to \mathbb{R}^3$, $g(x,y) = (x+y, x-y, x^2-y^2)$ for all $(x,y) \in \mathbb{R}^2$.
- (c) $h: \mathcal{P}(\mathbb{R})^2 \to \mathcal{P}(\mathbb{R}), h(A, B) = A \cup B \text{ for all } (A, B) \in \mathcal{P}(\mathbb{R})^2.$

Suggested solutions:

- (a) It is bijective. Injectivity: let $x_1, x_2 \in [0,1]$ be such that $f(x_1) = f(x_2)$. Solving $a + x_1(b a) = a + x_2(b a)$ gives $x_1 = x_2$. Surjectivity: let $y \in [a, b]$. Define $x = (y a)/(b a) \in [0, 1]$. Then y = f(x).
- (b) Injective: let $x_1, y_1, x_2, y_2 \in \mathbb{R}$ such that

$$g(x_1, y_1) = g(x_2, y_2)$$

$$(x_1 + y_1, x_1 - y_1, x_1^2 - y_1^2) = (x_2 + y_2, x_2 - y_2, x_2^2 - y_2^2)$$

$$x_1 + y_1 = x_2 + y_2 \land x_1 - y_1 = x_2 - y_2 \text{ (we ignore the last coordinate)}$$

$$x_1 = x_2 \land y_1 = y_2$$

Not surjective: consider $(1,1,2) \in \mathbb{R}^3$. Suppose g(x,y) = (1,1,2) for some $x,y \in \mathbb{R}$.

$$x^{2} - y^{2} = (x + y)(x - y) = 1 \cdot 1 = 1 \neq 2$$

contradiction.

(c) Not injective: $h(\{1\}, \{2\}) = \{1, 2\} = h(\{2\}, \{1\})$. Surjective: let $C \in \mathcal{P}(\mathbb{R})$. We can choose A = B = C. Then $h(A, B) = h(C, C) = C \cup C = C$.

Problem 6

- (a) Find functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ such that $f \circ g = \mathrm{id}_{\mathbb{N}}$ but $g \circ f \neq \mathrm{id}_{\mathbb{N}}$.
- (b) Find functions $h: \mathbb{Z} \to \mathbb{Q}$ and $k: \mathbb{Q} \to \mathbb{Z}$ such that $k \circ h = \mathrm{id}_{\mathbb{Z}}$ but $h \circ k \neq \mathrm{id}_{\mathbb{Q}}$.

Suggested solutions:

(a) Let $g: \mathbb{N} \to \mathbb{N}$ be defined by g(x) = 2x and $f: \mathbb{N} \to \mathbb{N}$ be defined by

$$f(x) = \begin{cases} x/2 & x \text{ is even} \\ 0 & x \text{ is odd.} \end{cases}$$

 $g(f(1)) = g(0) = 0 \neq 1$ so $g \circ f$ is not an identity function.

(b) Let $h: \mathbb{Z} \to \mathbb{Q}$ be defined by h(x) = x for $x \in \mathbb{Z}$. Let $k: \mathbb{Q} \to \mathbb{Z}$ be defined by

$$k(x) = \begin{cases} x & \text{if } x \in \mathbb{Z} \\ 0 & \text{if } x \in \mathbb{Q} \setminus \mathbb{Z} \end{cases}$$

 $h(k(1/2)) = h(0) = 0 \neq 1/2$ so $h \circ k$ is not an identity function.