MATH 311

Chapter 2

SECTION 2.2: MATRIX-VECTOR MULTIPLICATION

Contents

Matrix-Vector Multiplication	2
The Dot Product	4
Transformations	7

Created by: Pierre-Olivier Parisé Spring 2024

MATRIX-VECTOR MULTIPLICATION

EXAMPLE 1. Write the system

$$3x_1 + 2x_2 - 4x_3 = 0$$

$$x_1 - 3x_2 + x_3 = 3$$

$$x_2 - 5x_3 = -1$$

in a compact form using a linear combination of vectors.

SOLUTION.

$$(*) \Rightarrow \begin{bmatrix} 3x_1 + 2x_7 - 4x_3 \\ x_1 - 3x_2 + x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3x_1 \\ x_2 - 5x_3 \end{bmatrix} + \begin{bmatrix} 2x_2 \\ -3x_2 \end{bmatrix} + \begin{bmatrix} -4x_3 \\ x_3 \\ -5x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}$$

$$\Rightarrow x_1 \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ -3 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} -4 \\ 1 \\ -5 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}$$

Note: Any system of linear equations can be rewritten as $A\mathbf{x} = \mathbf{b}$, where A is the matrix of coefficients, \mathbf{x} is the n-vector containing the unknown, and \mathbf{b} is the m-vector containing the constant terms of each equation.

Definition 1.

- Let $A = [\mathbf{a_1} \ \mathbf{a_2} \ \cdots \ \mathbf{a_n}]$ be an $m \times n$ matrix, where the m-vectors $\mathbf{a_1}, \ \mathbf{a_2}, \ \ldots, \ \mathbf{a_n}$ represent the columns.
- Let \mathbf{x} be any n-vector.

Result is

The **product** $A\mathbf{x}$ is defined to be the m-vector:

$$A\mathbf{x} = x_1\mathbf{a_1} + x_2\mathbf{a_2} + \dots + x_n\mathbf{a_n}.$$

EXAMPLE 2. If
$$A = \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 2 & -3 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ -2 \end{bmatrix}$,

then compute $A\mathbf{x}$.

SOLUTION.

$$A\vec{x} = 2\begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix} + 1\begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix} + 0\begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix} + (-2)\begin{bmatrix} 5 \\ 2 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} -7 \\ 0 \\ -6 \end{bmatrix}$$

$$= 3 \times 1 \text{ Nector }.$$

KEMARK: Nb. of columns of A should be equal to the # of rows of =>.

Properties:

- $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$.
- $A(a\mathbf{x}) = a(A\mathbf{x}) = (aA)\mathbf{x}$, for any scalar a.
- $(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{\tilde{x}}$.

THE DOT PRODUCT

DEFINITION 2. If \mathbf{x} is an $1 \times n$ vector and \mathbf{y} is an $n \times 1$ vectors, their **dot product** is defined to be the number

$$\mathbf{x} \cdot \mathbf{y} := x_1 y_1 + x_2 y_2 + \ldots + x_n y_n.$$

EXAMPLE 3. Use the dot product to compute $A\mathbf{x}$ where A and \mathbf{x} are as in Example 2.

SOLUTION.

The 1st entry of
$$A\overline{z}$$
 is
$$-7 = 2 \cdot 2 + (1)(1) + (3)(0) + (5)(-2)$$

$$= \begin{bmatrix} 2 - 1 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 & 0 \\ A \end{bmatrix}$$

P.-O. Parisé

The 2nd entry of
$$A\vec{x}$$
:

$$0 = \begin{bmatrix} 0 & 2 & -31 \\ 2^{nd} & row & dA \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \\ -2 \end{bmatrix}$$

Finally, 3rd entry of $A\vec{x}$:

$$-6 = \begin{bmatrix} -3 & 4 & 1 & 2 \\ 0 & 2 & -31 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$

Now
$$A\vec{z} = \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 2 & -31 \\ 0 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ -6 \end{bmatrix}$$

The Dot Product Rule.

$$\begin{bmatrix} A & \mathbf{x} & A\mathbf{x} \\ \hline & & \end{bmatrix} \begin{bmatrix} \mathbf{x} & A\mathbf{x} \\ \hline & \end{bmatrix} = \begin{bmatrix} A\mathbf{x} & A\mathbf{x} \\ \hline & \end{bmatrix}$$

$$\text{row } i \qquad \text{entry } i$$

To obtain the entry i of $A\mathbf{x}$, take the dot product of row i of A with the vector \mathbf{x} .

EXAMPLE 4. Find an $n \times n$ matrix A such that $A\mathbf{x} = \mathbf{x}$, for any $\mathbf{x} \in \mathbb{R}^n$.

SOLUTION.

Shart with
$$2\times 2$$
: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. So

$$A\overrightarrow{x} = \overrightarrow{x} \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}. \quad \forall \overrightarrow{x} \in \mathbb{R}^2$$

$$\implies \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ \pi z \end{bmatrix}.$$

$$x_{1}=1, x_{2}=0: \quad \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ d \end{bmatrix} \implies a=1, c=0$$

$$x_{1}=0, x_{2}=1: \quad \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ d \end{bmatrix} = 5 \quad b=0, d=1$$
So, $A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 5 \quad 2\times 2 \quad \text{Identity matrix}.$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 5 \quad 3\times 3 \quad \text{Identity matrix}.$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 5 \quad 3\times 3 \quad \text{Identity matrix}.$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 5 \quad 3\times 3 \quad \text{Identity matrix}.$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 5 \quad 3\times 3 \quad \text{Identity matrix}.$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 5 \quad 3\times 3 \quad \text{Identity matrix}.$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = 5 \quad 3\times 3 \quad \text{Identity matrix}.$$

THEOREM 1. Let A and B be two $m \times n$ matrices. If $A\mathbf{x} = B\mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$, then A = B.

P.-O. Parisé

MATH 311

Page 6

TRANSFORMATIONS

EXAMPLE 5. A function is defined as follows: it reflects a 2×1 vector across the x-axis in the 2D space. Illustrate graphically the **action** of this function and find a formula to describe it.

SOLUTION.

$$\begin{array}{c} X_{2} \\ (x_{11}x_{2}) \\ \vdots \\ (x_{11}-x_{2}) \end{array}$$

So, the transformation
$$T is$$

$$T(\begin{bmatrix} x_1 \\ > z_2 \end{bmatrix}) = \begin{bmatrix} z_1 \\ -x_2 \end{bmatrix}$$

Here
$$\begin{bmatrix} x_1 \\ -x_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot x_1 + 0 \cdot x_2 \\ 0 \cdot x_1 + (-1) x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad (A\overrightarrow{x}) \quad f_n$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

DEFINITION 3. Given an $m \times n$ matrix A, the **matrix transformation induced** by the matrix A denoted by T_A is defined by

$$T_A(\mathbf{x}) = A\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

$$= \begin{bmatrix} -2i \\ \mathbf{x} \end{bmatrix}$$

Note:

- For each $\mathbf{x} \in \mathbb{R}^n$, we have $T_A(\mathbf{x}) \in \mathbb{R}^m$. In this case, the expression of $T_A(\mathbf{x})$ is called the **action** of T_A .
- Therefore, $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is a function.
- For two matrices A and B, we say that T_A and T_B are **equal** if they have the same action, meaning $T_A(\mathbf{x}) = T_B(\mathbf{x})$, for any $\mathbf{x} \in \mathbb{R}^n$.

EXAMPLE 6. Let A be the $m \times n$ zero matrix. Then T_A is called the **zero matrix-transformation**. Show that $T_A(\mathbf{x}) = \mathbf{0}$, where $\mathbf{0}$ is the m-vector with 0 in all its entries.

SOLUTION.

Write
$$A = \begin{bmatrix} \vec{0} & \vec{0} & \cdots & \vec{0} \end{bmatrix}$$

The series of the ser

$$T_{A}(\vec{z}) = A\vec{z}$$

$$= z_{1}\vec{0} + z_{2}\vec{0} + \dots + z_{n}\vec{0}$$

$$= \vec{0} + \vec{0} + \dots + \vec{0}$$

$$= \vec{0}$$