Introduction to ML

What is ML?

2 Taxonomy of ML problems

- Using algorithms to build models from a large amount of examples (training) data.
- Area at the intersection of several scientific domains
 - statistics
 - optimization
 - computer science
 - image/signal processing

Some examples of ML tasks

Sentiment analysis

Sentiment	Tweet mention						
	Maybe I'm mad but I'm now the proud owner of a potentially #bendy						
Positive	#iPhone6, it's so much bigger than the #4s						
rositive	Finally got to see an iPhone 6 today. Not revolutionary at all but it's						
	absolutely gorgeous. (And I want one). #iPhone6						
	I'm not sure I want it. It's too big to fit in my back pocket! lol #iphone6						
Negative	I'm really disappointed with the #iPhone6. It took them 2 years to						
	change the screen & size. Let down.						

Some examples of ML tasks

Urban traffic prediction

Some examples of ML tasks

Face recognition and emotion detection

Some examples of ML tasks

Identification of fMRI patterns related to specific tasks

Challenges

- Deal with large scale data?
 - Data that does not fit in RAM;
 - Data streams;
 - Algorithms do not run in a reasonable time on a single machine.
- Deal with complex data: unstructured textual data, time series, graphs

A large range of applications

A rich ecosystem

A large range of applications

A rich ecosystem

1 What is ML?

2 Taxonomy of ML problems

Unsupervised learning

Aim: learn the structure of the data without no pre-existing labels to discover patterns

Some class of unsupervised problems

- Clustering: find groups in the data
- Dimension reduction: how can we represent the data in a lower dimension space, either in an automatic manner, either using a priori knowledge (for e.g. dictionaries?

		1	2	3	4	5	6	7		
1	Apple	0.9898	0.7865	0.5645	0.7509	0.4534	0.5467	0.6498	0.7613	3.0
2	Banana	0.4533	0.8644	0.1538	0.4313	0.3511	0.2422	0.2422	0.3553	0.2
3	Cat	0.8734	0.8363	0.4821	0.1378	0.2341	0.2122	0.6775	0.3432	0.
4	Dog	0.9873	0.4836	0.1342	0.19564	0.2131	0.3433	0.2244	0.7453	0.5
5	Eag	0.9473	0.4836	0.4343	0.9211	0.1221	0.4634	0.7464	0.2424	0.5
6	Google	0.7634	0.4836	0.1313	0.1344	0.1232	0.6222	0.6564	0.3522	0.3
7	Home	0.8463	0.9732	0.4411	0.1333	0.6453	0.3435	0.3535	0.2442	0.3
		0.8653	0.4835	0.1343	0.4421	0.7567	0.2424	0.5241	0.3221	0.3
100	Zoo	0.4736	0.9473	0.1453	0.1134	0.6564	0.1749	0.1892	0.1344	0.3

The example of words embeddings

Supervised learning

Aim: make a prediction.

We can predict

- either discrete predictions : classification
- either continuous ones : regression

Classification vs regression

More ML paradigms

- Unsupervised learning:
 - Dimensionality reduction
 - Clustering;
- Supervised learning:
 - Regression
 - Classification
- Semi-supervised learning.
- Reinforcement learning.

A classical pipeline in ML

In what follows we shall focus on two main topics

- Dimensionality reduction
- Supervised learning