Fonctions de IR dans IR (2ème partie)

Fonctions trigonométriques et hyperboliques

Fonctions cosinus et sinus

- · Domaine de définition. Fonctions à valeurs dans [-1, 1], donc bornées. Régularité et dérivée.
- · Périodicité, parité/imparité. Conséquences pour l'étude et les représentations graphiques.
- Tableau de variation sur $[0, \pi]$, tracé de la courbe.
- · Absence de limite en $\pm \infty$ (admis).

I.2 Fonction tangente

- · Domaine de définition et représentation sur l'axe réel. C'est une réunion d'une infinité d'intervalles. Fonctions à valeurs dans IR, non bornée.
- · Régularité et dérivée (démonstration).
- · Périodicité, imparité et conséquences.
- · Tableau de variation sur $\left[0, \frac{\pi}{2}\right]$, limites, tracé de la courbe.
- · Absence de limite en $\pm \infty$ (admis).

Fonctions cosinus hyperbolique et sinus hyperbolique

- · Rappel des formules d'Euler + définition par analogie.
- · Signe, relation fonctionnelle, à valeurs dans...
- · dérivabilité et dérivées.
- · parité/imparité et conséquences.
- · Tableau de variation sur IR, limites.
- · Branches infinies : limites de f(x)/x, courbes asymptotes l'une de l'autre et position relative en $+\infty$.
- · Tracé des courbes.

Fonctions bijectives

II.1 Image directe d'un intervalle

• Image directe d'un intervalle

Soit f une fonction de \mathcal{D}_f dans \mathbb{R} , I un intervalle inclus dans \mathcal{D}_f .

On appelle **image directe de** *I* **par** *f* l'ensemble comprenant toutes les images des éléments x de I par la fonction f. On la note f(I).

Formellement : $f(I) = \{f(x), x \in I\}.$

Graphiquement:

Exercice 1 \blacktriangleright Déterminer graphiquement l'image directe des intervalles $I_1 = \left[\frac{\pi}{3}, \frac{3\pi}{4}\right]$ et $I_2 = \left\lceil \frac{\pi}{3}, \frac{5\pi}{4} \right\rceil$ par la fonction cosinus.

Thm • Théorème de l'image directe

Soit $f: \mathcal{D}_f \to \mathbb{R}$ une fonction. On suppose que

- 1) I est un intervalle inclus dans \mathcal{D}_f ,
- **2)** *f* est continue sur *I*,
- **3)** *f* est strictement monotone sur *I*.

Alors f(I) est aussi un intervalle, et ses bornes sont les limites de f au bornes de I; une borne incluse dans I devient une borne incluse dans f(I) et vice versa.

Rem. \diamond Quand f n'est pas strictement monotone sur I, on écrit I comme réunion d'intervalles sur chacun dequels f est strictement monotone, puis on utilise que $f(A \cup B) = f(A) \cup f(B)$.

Exercice 2 ► Montrer les conjectures faites dans l'exercice précédent. Déterminer également $\cos(]-\pi,\pi]$), $\operatorname{sh}(]-\infty,0[$) et $\operatorname{sh}(\mathbb{R})$.

II.2 Fonctions bijectives de I dans J

Déf. • Fonctions bijectives de I dans J

Soit
$$f: \mathcal{D}_f \to \mathbb{R}$$
,

I un intervalle tel que $I \subset \mathcal{D}_f$ et *J* un intervalle quelconque.

On dit que f est bijective de I dans J quand :

1) l'image de tout élément de I par la fonction f se trouve dans J:

$$\forall x \in I, \quad f(x) \in J,$$

2) tout élément de *J* admet un unique antécédent dans *I* par la fonction *f* :

$$\forall t \in J, \exists! x \in I, f(x) = t.$$

Graphiquement:

Pour montrer qu'une fonction est bijective, on dispose de deux méthodes :

a) Utiliser le théorème de la bijection monotone

Thm • Théorème de la bijection monotone

Soit $f: \mathcal{D}_f \to \mathbb{R}$. Si f est continue et strictement monotone sur l'intervalle I, alors f est bijective de I dans J = f(I).

Exercice 3 \blacktriangleright Montrer que la fonction $f: x \mapsto x + e^x$ est bijective de $I = \mathbb{R}$ dans un intervalle J que l'on précisera.

Exercice **4** \blacktriangleright Étudier la bijectivité des fonctions ln, exp, $x \mapsto x^2$, $x \mapsto x^3$.

b) En s'appuyant sur la définition :

- 1) On fait une conjecture sur les intervalles *I* et *J* qui vont convenir,
- **2)** On démontre que $\forall x \in I, f(x) \in J$,
- 3) On prend $t \in J$ fixé et on résout l'équation f(x) = t d'inconnue $x \in I$. On doit trouver une unique solution.
- Exercice 5 \blacktriangleright Montrer que la fonction $f: x \mapsto \frac{x-3}{x-2}$ est bijective de $I =]2, +\infty[$ dans un intervalle J que l'on précisera.

II.3 Bijection réciproque

Déf. • Bijection réciproque

Soit $f: \mathcal{D}_f \to \mathbb{R}$, I et J deux intervalles.

On suppose que f est bijective de I dans J.

- 1) Pour chaque $t \in J$, on note $f^{-1}(t)$ l'unique antécédent de t par la fonction f qui se trouve dans I.
- **2)** On définit ainsi une fonction $f^{-1}: J \longrightarrow I$ qu'on appelle la **bijection** $t \longmapsto f^{-1}(t)$

réciproque de f (sous-entendu : « de f restreinte à I »).

Schéma explicatif

Exercice **6** Préciser la bijection réciproque de $f: x \mapsto \frac{x-3}{x-2}$ restreinte à $]2,+\infty[$.

Exercice 7 ▶ Déterminer la bijection réciproque de exp et de ln.

Propr. • Propriétés algébriques des bijections réciproques

Soit f bijective de I dans J, f^{-1} sa bijection réciproque, x et t deux réels quelconques. Alors :

- 1) f^{-1} est bijective de J dans I.
- **2)** La bijection réciproque de f^{-1} est f.
- 3) $\forall x \in I, f^{-1}(f(x)) = x.$
- **4)** $\forall t \in J, f(f^{-1}(t)) = t.$

Démo. Sur les notes de cours.

Propr. • Courbe représentative d'une bijection réciproque

Les courbes représentatives d'une bijection f et de sa bijection réciproque f^{-1} sont symétriques par rapport à la droite d'équation y = x.

Démo. Sur les notes de cours.

Représentation graphique

II.4 Propriétés analytiques des bijections réciproques

Thm • Soit f continue et strictement monotone sur l'intervalle I. On note J = f(I), de sorte que f est bijective de I dans J.

Alors:

- 1) f^{-1} est continue sur J,
- 2) f^{-1} est également strictement monotone, de même sens de variation
- 3) Les limites de f^{-1} aux bornes de J sont les bornes de l'intervalle I.

Exercice 9 ► Que dit le théorème précédent sur ln et exp?

Thm • Dérivation des bijections réciproques

Soit f bijective de I dans J, f^{-1} sa bijection réciproque.

On suppose que f est dérivable sur I. Alors :

- 1) Soit $x \in I$ quelconque. Alors $f'(x) = 0 \iff f^{-1}$ n'est pas dérivable en f(x). En cas de non-dérivabilité, la courbe de f^{-1} admet une tangente verticale en f(x).
- **2)** En tout point $t \in J$ où f^{-1} est dérivable, on a

$$(f^{-1})'(t) = \frac{1}{(f' \circ f^{-1})(t)}.$$

Exercice 10 ► Soit $f: x \mapsto 4x^3 - 6x^2 + 3x + 1$.

- 1) Étudier f et tracer l'allure de la courbe de f.
- 2) Justifier que f est bijective de IR dans un intervalle J que l'on précisera.
- 3) Tracer l'allure de la courbe de f^{-1} .
- 4) Étudier les propriétés de f^{-1} en appliquant les théorèmes.

Fonctions trigonométriques réciproques

III.1 Fonction arc-cosinus

Propr. • La fonction cosinus est bijective de $[0, \pi]$ dans [-1, 1].

Démo. Sur les notes de cours.

Fonction arc-cosinus

On appelle fonction arc-cosinus et on note arccos la bijection réciproque de cos restreinte à $[0, \pi]$.

Attention 7 On n'utilise pas la notation cos⁻¹ car la fonction cosinus est bijective au départ d'autres intervalles que $[0,\pi]$ (par exemple $[-\pi,0]$) ce qui pourrait être source d'ambiguïtés.

Schéma cosinus / arc-cosinus

Valeurs remarquables de la fonction arc-cosinus

х	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	<u>5π</u>	π	arccos(t)
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	t

Courbes de cosinus et d'arc-cosinus

Propr. • Propriétés algébriques de la fonction arc-cosinus Soit *x* et *t* deux réels quelconques.

- 1) arccos est définie sur [-1,1] et à valeurs dans $[0,\pi]$.
- 2) $\forall x \in [0, \pi]$, $\operatorname{arccos}(\cos(x)) = x$.
- 3) $\forall t \in [-1, 1], \cos(\arccos(t)) = t.$

4)
$$\begin{cases} \cos(x) = t \\ x \in [0, \pi] \end{cases} \iff \begin{cases} x = \arccos(t) \\ t \in [-1, 1] \end{cases}$$

Attention \$\frac{1}{2}\$ Les intervalles jouent un rôle crucial! Les propriétés ne sont pas vraies lorsque x et t ne sont pas dans l'intervalle indiqué : soit l'un des deux membres n'existe pas, soit les deux membres ont des valeurs différentes.

Exercice 11 ► Calculer, si c'est possible, les nombres suivants :

- 1) $\cos(\arccos(0))$, $\cos(\arccos(\frac{1}{\sqrt{2}}))$, $\cos(\arccos(-2))$.
- 2) $\arccos(\cos(\frac{\pi}{3}))$, $\arccos(\cos(-\frac{\pi}{2}))$, $\arccos(\cos(\frac{7\pi}{2}))$.

Exercice 12 \blacktriangleright Résoudre dans $[0, \pi]$ puis dans IR l'équation $\cos(x) = \frac{2}{3}$.

• Pour tout $t \in [-1,1]$, $\sin(\arccos(t)) = \sqrt{1-t^2}$.

Démo. Sur les notes de cours (à savoir refaire).

- Propr. Régularité d'arc-cosinus
 - 1) La fonction arccos est continue sur son domaine de définition [-1, 1].
 - 2) Elle est dérivable sur son domaine de définition sauf en -1 et en 1. En ces points la courbe admet des tangentes verticales.
 - 3) Enfin, $\forall t \in]-1,1[$, $\arccos'(t) = \frac{-1}{\sqrt{1-t^2}}$.

Démo. Sur les notes de cours.

III.2 Fonction arc-sinus

L'étude est similaire pour la fonction sinus. Seul l'intervalle de départ de la fonction sinus change.

Propr. • La fonction sinus est bijective de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans [-1, 1].

Fonction arc-sinus

On appelle fonction arc-sinus et on note arcsin la bijection réciproque de sin restreinte à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Attention 7 On n'utilise pas non plus la notation sin⁻¹!

Schéma sinus / arc-sinus

Valeurs remarquables de la fonction arc-sinus

х	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	arcsin(t)
sin(x)	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	t

Courbes de sinus et d'arc-sinus

Propr. • Propriétés algébriques de la fonction arc-sinus

Soit x et t deux réels quelconques.

- 1) arcsin est définie sur [-1, 1] et à valeurs dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 2) $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\arcsin(\sin(x)) = x$.
- 3) $\forall t \in [-1, 1], \sin(\arcsin(t)) = t.$

4)
$$\begin{cases} \sin(x) = t \\ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{cases} \iff \begin{cases} x = \arcsin(t) \\ t \in [-1, 1] \end{cases}$$

Exercice 13 \blacktriangleright Montrer que, pour tout $t \in [-1,1]$, $\arccos(t) + \arcsin(t) = \frac{\pi}{2}$.

• Pour tout $t \in [-1,1]$, $\cos(\arcsin(t)) = \sqrt{1-t^2}$.

- Propr. Régularité d'arc-sinus
 - 1) La fonction arcsin est continue sur son domaine de définition [-1, 1].
 - 2) Elle est dérivable sur son domaine de définition sauf en -1 et en 1. En ces points la courbe admet des tangentes verticales.
 - 3) Enfin, $\forall t \in]-1,1[$, $\arcsin'(t) = \frac{1}{\sqrt{1-t^2}}$.

III.3 Fonction arc-tangente

On étudie de même tangente sur l'intervalle $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right[$.

Propr. • La fonction tangente est bijective de $]-\frac{\pi}{2}, \frac{\pi}{2}[]$ dans \mathbb{R} .

Fonction arc-tangente

On appelle fonction arc-tangente et on note arctan la bijection réciproque de tan restreinte à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Attention ♣ On n'utilise pas non plus la notation tan⁻¹!

Schéma tangente / arc-tangente

Valeurs remarquables de la fonction arc-tangente

x	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	arctan(t)
tan(x)	$-\infty$	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	+∞	t

Courbes de tangente et d'arc-tangente

Propr. • Propriétés algébriques de la fonction arc-sinus

Soit x et t deux réels quelconques.

- 1) arctan est définie sur IR et à valeurs dans $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$.
- 2) $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $\arctan(\tan(x)) = x$.
- 3) $\forall t \in \mathbb{R}$, tan(arctan(t)) = t.

4)
$$\begin{cases} \tan(x) = t \\ x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\iff \begin{cases} x = \arctan(t) \\ t \in \mathbb{R} \end{cases} \end{cases}$$

Exercice 14 \blacktriangleright Montrer que, pour tout $t \in]0, +\infty[$, $\arctan(t) + \arctan(\frac{1}{t}) = \frac{\pi}{2}$. Qu'obtient-on lorsque $t \in]-\infty, 0[?]$

- Propr. Régularité d'arc-tangente
 - 1) La fonction arctan est continue sur son domaine de définition IR.
 - 2) Elle est dérivable sur son domaine de définition.
 - 3) Enfin, $\forall t \in \mathbb{R}$, $tan'(t) = \frac{1}{\sqrt{1+t^2}}$.