BASES DE DATOS PARA DATA SCIENCE *.

Lopez, Yoel Pelli, Nahuel

BASES DE DATOS RELACIONALES

Modelo lógico, relaciones, relaciones y más relaciones

AGENDA

Relaciones
Llaves
Diagramas de entidad relación
Modelo Relacional
Introducción a SQL

RELACIONES

Repasamos!

0

Recordamos que a una tabla también la podemos llamar relación. Sin embargo, este término es mucho más utilizado para describir las interrelaciones entre tablas.

Una relación entre tablas supone que existen referencias entre llaves de una tabla.

Uno a uno

One-to-one

- Las relaciones uno a uno son aquellas que para cada registro de ambas tablas existe una relación univoca.
- Esto significa que cada valor en las tablas aparece solo una vez en la tabla.

Uno a muchos

One-to-many

- En estos casos, consideramos que los datos de una tabla pueden aparecer múltiples veces en la siguiente.
- La restricción es que en una de ellas el registro debe ser único

Muchos a muchos

Many-to-Many

 Es un tipo de relación que ocurre cuando múltiples registros de una tabla se relacionan con muchos elementos de la otra tabla

BASES DE DATOS

Relaciones

representación

0

LLAVES

Claves (Keys)

Dentro del mundo de RDBs vamos a encontrar que siempre se habla de distintos tipos de llaves (*keys*) que gobiernan nuestros datos.

Estas llaves no son más que uno o más atributos que nos permiten identificar de manera univoca un dato en nuestra tabla.

Además permiten establecer las relaciones del modelo.

Llaves (keys)

Primary	Nos permite identificar unívocamente TODAS las tuplas.		
Key	Obligatoria		
,	No Nula		
Unique	Sirven para identificar unívocamente una tupla.		
Unique	Uno o mas registros pueden ser UK		
Key	Puede ser Nula		
	Se utilizan para mejorar performance		
Candidate Key	Son registros que se proponen como <i>unique keys</i>		
	Toda tabla tiene al menos una CK		
	Cada CK puede comportarse como PK en ciertos casos		
Alternate Key	Es un registro que se propone como alternativa a una FK si es necesario		
	Es una posibilidad como FK pero en un diseño implementado no lo es.		
Composite	También conocida como <i>compound</i> o <i>concatenated key</i> .		
Key	Refiere a un grupo de registros que pueden identificar a una tupla en la base		
- /	Se utilizan cuando el grupo identifica tuplas pero cada componente por separado no lo hace		
Super Key	Es una combinación de una o mas <i>keys</i>		
	Identifican unívocamente un registro		
	PK, UK, AK son un subset de super keys		
Foreign	Es una <i>key</i> que en otra tabla de nuestro modelo es una PK		
Key	Acepta nulos		
	Acepta duplicados		

Llaves (keys)

DER

Conceptos básicos

Diagrama Entidad Relación (DER/ERD)

El modelo Entidad-Relación (E-R) es una manera de representar nuestra percepción del sistema que vamos a modelar.

Este consiste en un conjunto de objetos básicos:

- Entidades
- Atributos
- Interrelaciones

BASES DE DATOS

13

Entidoul: el concepto en el q'esso el models.

Entidad: Todo objeto o concepto del cual queremos registrar información constituye una entidad.

out. [Estud.]

-> Entidades fuertes -> existe por si unisma

L> Eut. débites -> depende de ma fuerte

ent [Legajo]

Atributos: sou los comp. de mi entidael.

Atributo: Las

propiedades que componen mi entidad

- _ Multivolvales -> prede tener un set de
- comprestos

 S Existen uno o más ættr

 4 Jerorquios que forman este attr

Ly mi atte princ. puelle clos o más formos.

Relaciones: son las acciones que interconectan las entidades. Las relaciones pueden tener una o mas entidades participantes

. interaloriones 7 las acciones: es el fenómens que conecta entidades

Carlos

LU	wombre	Apeliclo	Corsa
1	cachs	gatito	6

en interrelociones tenemos 3 características -> Graelo

(-> Carclinalidad

(-> participación

Grants: es la canticlor de enticlarles a rebeionar

-> reloeión unaria (consigo misma) [Estudiante]

-> 4 binaria (entre 2 ent).

-> 4 ternaria (3 ent.) [bimestre]

-> 4 n-aria

materia

Cardinalidael: réfière a la court de régistres que conectan

la interreloción.

Porticipación: la necesidad de una entidad en una rebeiou

- -> Participación parcial (opeional)
- -> Participarción Total (obligatoria):

A PRACTICAR!!

Ejemplo de análisis

Vamos a crear un DER a partir del desarrollo de un problema de advertising. Supongamos que nuestra empresa patitos TM debemos crear una base relacional para hacer storage de todas las transacciones que hay de publicidades (si fueron presentadas, si el usuario clickeo). Nos dan una tabla de ejemplo.

ldx	Marca	Producto	interacción	Fecha
1	5E325T5HYL61QSABVR 5V	9trbal	impression	4/1/2022
2	03KNVBO915KY2ZPGA 57J	qd5esu	impression	4/1/2022
3	HC26ZE93SA4WWA0B RFM6	99watc	impression	4/1/2022

BASES DE DATOS

SOLUCIÓN PROPUESTA (CASI UNÁNIME!)

SQL PRIMEROS PASOS

Primeros pasos

0

- Para esta parte vamos a crear nuestra base directamente en AWS.
- Por simplicidad vamos a utilizar PostgresSQL
- Tutorial:

https://aws.amazon.com/gettingstarted/hands-on/create-connectpostgresql-db/

NOTA: No es necesario activar Enhanced
Monitoring ni logs. Lo más importante es exponer
publicamente la base de datos para poder
conectarnos desde Dbeaver, pgAdmin, o el
connector de su gusto

