

SVM Implementation Evaluation

Group 4 - Machine Learning CSB

The Dream Team

Slide Making

Satwika Nino Wandhana 23/516202/PA/22066

Slide Making

Adam Maulana Haq 23/511623/PA/21832

Coding

Daniel Winston Mandela Tulung 23/516260/PA/22080

Coding

Rindra Adriansyah 23/511559/PA/21820

Coding

Mohammad Azka Khairur Rohman 23/511608/PA/21830

Notebook & Dataset

Notebook

Google Collab

Dataset (Kaggle)

heart.csv

Single Model Experiment


```
# Define SVM kernels
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
results = {}
for kernel in kernels:
    print(f"Training SVM with {kernel} kernel...")
    if kernel == 'poly':
        model = SVC(kernel=kernel, random_state=42, degree=3)
    else:
        model = SVC(kernel=kernel, random_state=42)
    # Train the model
    model.fit(X train, y train)
    # Predict on the test data
    y_pred = model.predict(X_test)
    # Evaluate the model
    accuracy = accuracy_score(y_test, y_pred)
    report = classification_report(y_test, y_pred)
    # Save a deep copy of the trained model along with results
    results[kernel] = {
        'model': copy.deepcopy(model),
        'accuracy': accuracy,
        'report': report
```

Model Type	Accuracy	Precision	Sensitivity	F1
Linear	0.861	0.865	0.855	0.857
Poly (degree=3)	0.666	0.672	0.646	0.639
RBF	0.673	0.694	0.651	0.640
Sigmoid	0.541	0.271	0.496	0.350

Key Takeaway

The **linear kernel is the best single model** with ~86% accuracy and balanced metrics. Sigmoid performs poorly and is the most unreliable.

Ensemble Model Experiment


```
# Base models (already defined earlier)
estimators = [
    ('lr', LogisticRegression(random_state=42, max_iter=1000)),
   ('dt', DecisionTreeClassifier(random_state=42)),
    ('nb', GaussianNB())
stacking results = {}
for kernel in results:
   meta model = results[kernel]['model']
   # Create stacking classifier
    stacking_clf = StackingClassifier(estimators=estimators,
                                      final_estimator=meta_model, cv=5)
   # Train
    stacking_clf.fit(X_train, y_train)
   y_pred_stacked = stacking_clf.predict(X_test)
   # Evaluate
    accuracy = accuracy_score(y_test, y_pred_stacked)
    report = classification_report(y_test, y_pred_stacked)
   # Save results
   stacking results[kernel] = {
        'model': stacking clf,
        'accuracy': accuracy,
        'report': report
```

Meta Model	Accuracy	Precision	Sensitivity	F1
Linear	0.858	0.857	0.855	0.855
Poly (degree=3)	0.874	0.874	0.875	0.873
RBF	0.868	0.867	0.867	0.865
Sigmoid	0.782	0.844	0.761	0.755

Key Takeaway

The **polynomial kernel meta model outperforms others** with the highest accuracy, this is likely due to its **ability to capture complex**, **nonlinear patterns**. Other kernels may have underperformed due to either oversimplifying (linear) or failing to generalize well (sigmoid).

Results & Comparison

Conclusion

The ensemble model with a polynomial kernel outperformed the best single model. This shows **ensembling improves**performance by combining model strengths.

Thank You

