Trees

Introduction to trees

Node

- Edge
- Root
- Path
- Children
- Parent
- Sibling
- Subtree
- Leaf Node

- Node
- Edge
- Root
- Path
- Children
- Parent
- Sibling
- Subtree
- Leaf Node

- Node
- Edge

Root

- Path
- Children
- Parent
- Sibling
- Subtree
- Leaf Node

- Node
- Edge
- Root

Path

- Children
- Parent
- Sibling
- Subtree
- Leaf Node

- Node
- Edge
- Root
- Path

• Children

- Parent
- Sibling
- Subtree
- Leaf Node

- Node
- Edge
- Root
- Path
- Children

Parent

- Sibling
- Subtree
- Leaf Node

- Node
- Edge
- Root
- Path
- Children
- Parent
- Sibling
- Subtree
- Leaf Node

- Node
- Edge
- Root
- Path
- Children
- Parent
- Sibling

Subtree

• Leaf Node

- Node
- Edge
- Root
- Path
- Children
- Parent
- Sibling

Subtree

• Leaf Node

- Node
- Edge
- Root
- Path
- Children
- Parent
- Sibling
- Subtree
- Leaf Node

Degree

- **Degree of a node** is the total number of children of that node.
- Degree of a tree is the highest degree of a node among all the nodes in the tree.

Level

- In a tree, each step from top to bottom is called as level of a tree.
- The level count starts with 0 and increments by 1 at each level or step.

Binary Tree

Binary Tree Example

- Binary tree is a special tree data structure in which each node can have at most 2 children.
- Thus, in a binary tree, each node has either 0 child or 1 child or 2 children.

Binary Tree Example

- Rooted Binary Tree
- Full / Strictly Binary Tree
- Complete / Perfect Binary Tree
- Almost Complete Binary Tree
- Skewed Binary Tree

- Rooted Binary Tree
 - It has a root node.
 - Each node has at most 2 children.

Rooted Binary Tree

Full / Strictly Binary Tree

 A binary tree in which every node has either 0 or 2 children is called as a Full binary tree.

Complete / Perfect Binary Tree

- Every internal node has exactly 2 children.
- All the leaf nodes are at the same level.

Almost Complete Binary Tree

- All the levels are completely filled except possibly the last level.
- The last level must be strictly filled from left to right.

Left Skewed Binary Tree

Right Skewed Binary Tree

Skewed Binary Tree

- All the nodes except one node has one and only one child.
- The remaining node has no child.

Tree Traversal

Tree Traversal Techniques

- Depth First Traversal
 - Preorder Traversal
 - Inorder Traversal
 - Postorder Traversal
- Breadth First Traversal

Preorder Traversal

- Visit the root
- Traverse the left sub tree
- Traverse the right sub tree

Preorder Traversal: A, B, D, E, C, F, G

Inorder Traversal

- Traverse the left sub tree
- Visit the root
- Traverse the right sub tree

Inorder Traversal: D, B, E, A, F, C, G

Postorder Traversal

Postorder Traversal : D , E , B , F , G , C , A

- Traverse the left sub tree
- Traverse the right sub tree
- Visit the root

Breadth First Traversal

Level Order Traversal: A, B, C, D, E, F, G

- Breadth First Traversal of a tree prints all the nodes of a tree level by level.
- Breadth First Traversal is also called as Level Order Traversal

Binary Search Tree

- Smaller values in its left sub tree
- Larger values in its right sub tree

Binary Search Tree

BST Traversal

Binary Search Tree

Preorder Traversal-

100, 20, 10, 30, 200, 150, 300

Inorder Traversal-

10, 20, 30, 100, 150, 200, 300

Postorder Traversal-

10,30,20,150,300,200,100