This article was downloaded by: [Georgetown University]

On: 21 August 2015, At: 18:52 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place,

London, SW1P 1WG

Critical Reviews in Food Science and Nutrition

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/bfsn20

Dairy Products and Inflammation: A Review of the Clinical Evidence

Alessandra Bordoni^a, Francesca Danesi^a, Dominique Dardevet^{bc}, Didier Dupont^d, Aida S. Fernandez^e, Doreen Gille^f, Claudia Nunes Dos Santos^{gh}, Paula Pinto^{gi}, Roberta Re^e, Didier Rémond^{bc}, Danit R Shahar^j & Guy Vergères^f

- ^a Department of Agri-Food Sciences and Technologies, University of Bologna, Bologna, Italy
- ^b INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
- ^c Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- ^d INRA, Joint Research Unit1253, Science & Technology of Milk and Egg Products, Rennes, France
- ^e Department of Human Nutrition, Leatherhead Food Research, Leatherhead, United Kingdom
- f Agroscope, Institute for Food Sciences IFS, Federal Department of Economic Affairs, Education and Research EAER, Berne, Switzerland
- ^g Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
- ^h Insituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ⁱ Escola Superior Agrária, Insituto Politécnico de Santarém, Portugal
- ^j The S. Daniel Abraham International Center for Health and Nutrition, Department of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel Accepted author version posted online: 19 Aug 2015.

To cite this article: Alessandra Bordoni, Francesca Danesi, Dominique Dardevet, Didier Dupont, Aida S. Fernandez, Doreen Gille, Claudia Nunes Dos Santos, Paula Pinto, Roberta Re, Didier Rémond, Danit R Shahar & Guy Vergères (2015): Dairy Products and Inflammation: A Review of the Clinical Evidence, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2014.967385

To link to this article: http://dx.doi.org/10.1080/10408398.2014.967385

Disclaimer: This is a version of an unedited manuscript that has been accepted for publication. As a service to authors and researchers we are providing this version of the accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proof will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also.

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Versions of published Taylor & Francis and Routledge Open articles and Taylor & Francis and Routledge Open Select articles posted to institutional or subject repositories or any other third-party website are without warranty

from Taylor & Francis of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. Any opinions and views expressed in this article are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

It is essential that you check the license status of any given Open and Open Select article to confirm conditions of access and use.

Dairy Products and Inflammation: A Review of the Clinical Evidence

ALESSANDRA BORDONI,¹ FRANCESCA DANESI,¹ DOMINIQUE DARDEVET,²,³

DIDIER DUPONT,⁴ AIDA S. FERNANDEZ,⁵ DOREEN GILLE,⁶ CLAUDIA NUNES DOS

SANTOS,^{7,8} PAULA PINTO,^{7,9} ROBERTA RE,⁵ DIDIER RÉMOND,²,³ DANIT R

SHAHAR,¹⁰ GUY VERGÈRES⁶

¹Department of Agri-Food Sciences and Technologies, University of Bologna, Bologna, Italy

²INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France

³Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France

⁴INRA, Joint Research Unit1253, Science & Technology of Milk and Egg Products, Rennes, France

⁵Department of Human Nutrition, Leatherhead Food Research, Leatherhead, United Kingdom

⁶Agroscope, Institute for Food Sciences IFS, Federal Department of Economic Affairs, Education and Research EAER, Berne, Switzerland

⁷Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal

⁸Insituto de Biologia Experimental e Tecnológica, Oeiras, Portugal

⁹Escola Superior Agrária, Insituto Politécnico de Santarém, Portugal

¹⁰The S. Daniel Abraham International Center for Health and Nutrition, Department of Public Health, Ben-Gurion University of the Negev, Beer-Sheva, Israel

The authors of this review are members of the FA COST Action FA1005 'Improving health properties of food by sharing our knowledge on the digestive process' (INFOGEST).

Address correspondence to Guy Vergères, Agroscope, Institute for Food Sciences IFS, Federal Department of Economic Affairs, Education and Research EAER, Berne, Switzerland. E-mail: guy.vergeres@agroscope.admin.ch

Inflammation is a major biological process regulating the interaction between organisms and the environment, including the diet. Because of the increase in chronic inflammatory diseases, and in light of the immune-regulatory properties of breastfeeding, the ability of dairy products to modulate inflammatory processes in humans is an important but unresolved issue. Here, we report a systematic review of 52 clinical trials investigating inflammatory markers in relation to the consumption of dairy products. An inflammatory score (IS) was defined to quantitatively evaluate this interaction. The IS was significantly positive for the entire data set, indicating an anti-inflammatory activity in humans. When the subjects were stratified according to their health status, the IS was strongly indicative of an anti-inflammatory activity in subjects with metabolic disorders and of a pro-inflammatory activity in subjects allergic to bovine milk. Stratifying the data by product categories associated both low-fat and high-fat products, as well as fermented products, with an anti-inflammatory activity. Remarkably, the literature is characterized by a large gap in knowledge on bioavailability of bioactive nutrients. Future research should thus better combine food and nutritional sciences to adequately follow the fate of these nutrients along the gastrointestinal and metabolic axes.

Keywords: Milk, Cheese, Yoghurt, Immune system, Chronic diseases, Obesity, Health

INTRODUCTION

Immunity is a major process among the biological phenomena regulating the interaction of higher organisms with the environment, in particular as it provides a mechanism by which external agents are either rejected (*e.g.* phagocytosis of pathogens) or internalized (*e.g.* oral tolerance to ingested food) by the organism. One main expression of the immune system is its ability to mount an inflammatory reaction to these stimuli. If sustained, the inflammatory response may, however, turn against the host's own tissues, leading to a range of chronic inflammatory diseases that have now supplanted infectious diseases worldwide (Hunter & Reddy, 2013). The Global Business Intelligence Research estimated the global inflammatory therapeutics market to reach \$85.9 billion in 2017 (Global Business Intelligence Research, 2011).

Most chronic inflammatory diseases (*e.g.* obesity, diabetes) as well as allergic diseases are strongly influenced by nutrition, the metabolism of food being intimately associated with inflammatory processes (Hotamisligil, 2006). In addition, postprandial inflammation is part of the normal stress reaction of the cell in response to the ingestion of food (Hernandez-Aguilera *et al.*, 2013). Nutrients thus appear to be able to modulate the inflammatory status of humans and inflammation has consequently emerged as an important research topic in food and nutrition sciences (Calder *et al.*, 2011;Calder *et al.*, 2013;Klop *et al.*, 2012).

Dairy products represent a particularly interesting food type to study in the context of inflammation. From an evolutionary point of view, ancestors of mammalians may have possessed primitive apocrine-like glands in the skin, approximately 310 million years ago, that

⁴ ACCEPTED MANUSCRIPT

incorporated elements of the innate immune system in providing protection to the skin and to eggs that were moistened (Oftedal, 2012). Because of its ability to support the development of the immune system of the infant, to inhibit bacterial growth (e.g. lactoferrin) and to deliver antioxidative protection (e.g. vitamins or glutathione), the potential of maternal milk to inhibit inflammation in the offspring has consequently raised interest (Lepage & Van de Perre, 2012). Part of these properties may be maintained when boundaries across species and life cycles are crossed, i.e. in the context of the consumption of dairy products by human adults (Labonte et al., 2013). In addition, the importance of food in modulating the gut microbiota, a key regulator of immunity, has become more evident during the last decade (Kau et al., 2011). Milk is a natural and culturally accepted vector to deliver supplements to the human organism (Ceapa et al., 2013), in particular prebiotic and probiotics that both modulate the microflora and thus influence immune and inflammatory processes. Besides, milk is amenable to a wide range of technological transformations, including its fermentation by lactic acid bacteria to produce fermented dairy products such as yoghurt or cheese whose metabolites may further modulate the ability of milk to influence immune processes in humans (Augustin & Udabage, 2007). Milk and dairy products are major food products in human nutrition, amounting to 14% of the caloric intake in developed countries (FAO, 2013b). The Food and Agriculture Organization (FAO) forecasted a world milk production of 784 million tons in 2013 (FAO, 2013a), which amounts to an average of circa 100 L milk per year per human being. An evaluation of the ability of dairy products to modulate inflammatory processes in humans is, thus justified.

Studies addressing the impact of dairy products on inflammatory processes present a contradictory landscape. Indeed, dairy products were reported to be beneficial, inactive, as well

as detrimental. For illustration, the ATTICA study reported an inverse relationship between the consumption of dairy products and markers of the metabolic syndrome, including the inflammatory markers associated with this syndrome (Panagiotakos et al., 2010). On the other hand, the relatively high concentrations of saturated fat and dietary antigens in cow milk have raised concern and some scientists claimed that dairy products are a major cause in the development of chronic inflammatory disorders and autoimmune diseases (Melnik, 2009). These opposite statements reflect the wide spectrum of information available in the scientific literature on the relationship between the consumption of dairy products and inflammation. Indeed, many articles have been published on this relationship, but systematic reviews are scarce (Labonte et al., 2013) and incomplete. The association between the consumption of dairy products and inflammation in humans, thus merits clarification for the following reasons: i) milk and dairy products play qualitatively and quantitatively an important role in human nutrition (Haug et al., 2007); ii) inflammation, in particular low-grade systemic inflammation, has a significant impact on human health and longevity (Candore et al., 2010); iii) nutrient metabolism and inflammation are mechanistically closely interconnected (Calder et al., 2011; Calder et al., 2013; Hernandez-Aguilera et al., 2013; Hotamisligil, 2006; Klop et al., 2012).

The property of the foods investigated in human nutritional trials are often poorly documented what renders an objective evaluation of the clinical outcome very difficult. This review aimed to narrow the gap between food science and nutritional science. The information usually provided by reviews on medical topics (Moher *et al.*, 2009) was thus complemented with product-related information that is usually requested by regulatory authorities to document the functional properties of the food products and nutrients of interest (EFSA Panel on Dietetic Products

Nutrition and Allergies, 2011;FDA Office of Nutrition Labeling and Dietary Supplements, 2009).

The specific goals of this review are to:

- Present a structured overview of published original human studies investigating the impact of the consumption of dairy products on inflammatory processes;
- Develop a method to quantitatively evaluate the results extracted from these studies;
- Use this method, in order to evaluate whether pro- or anti-inflammatory properties of dairy products can be concluded from these studies;
- Identify research gaps that should be filled to allow a better evaluation of the anti- or proinflammatory properties of specific dairy products in specific human populations.

METHODS

Literature Search Strategy

A review was conducted using Medline and Scopus search that includes all original research articles written in English, published since January 1990, on the relationship between inflammatory markers and the consumption of dairy products in humans.

A first Medline search was conducted on February 13, 2013. A search of the Scopus database was also conducted on June 18, 2013 and the entries not identified in Medline were included into

OUTPUT <p

the evaluation. Medline and Scopus were searched again on December 10, 2013 to identify and include additional articles published until November 30, 2013. The search strategies were as follows:

- Medline search strategy. (milk OR cheese OR yog* OR dair*) AND inflam* NOT ("breast milk" NOT "human milk") NOT review*. Filters: Case Reports; Clinical Trial; Clinical Trial, Phase I; Clinical Trial, Phase II; Comparative Study; Controlled Clinical Trial; Multicenter Study; Randomized Controlled Trial; Evaluation Studies; Meta-Analysis; Systematic Reviews; Humans; English;

Data Collection Process

Figure 1 shows the flow diagram with the five phases leading to the quantitative analysis of the 52 clinical studies. Seventy-eight study results were extracted from these clinical studies to measure the impact of dairy products on inflammation in humans.

Phase 1. For phase 1, all studies identified by the search strategy were randomly split into six groups. Each group of studies was distributed to reviewers of one partner institution. Based on title and abstract, only studies that were clearly associated with inflammatory mediators and with the ingestion of dairy products (i.e. milk, cheese, yoghurt, fermented milk, whey products, and

other dairy foods) by humans, were kept for phase 2 of the review process. Studies investigating human milk and/or breastfeeding, were excluded. Studies in which dairy products were used as a vector to deliver ingredients such as probiotics, prebiotics or bioactive nutrients such as vitamins or peptides, were excluded. However, studies were included if non-supplemented dairy products were used as control products and if information was available on the impact of these control products on inflammatory markers compared to the baseline values (e.g. comparison before and after treatment). Studies investigating isolated dairy proteins or lipids, were excluded. The information derived from the abstracts and the titles was summarized in tabulated form (see section 'Tabulated summary' below) and used for selecting the studies to be evaluated in phase 2 of the review.

Phase 2. The studies retained, based on their abstracts, were again randomly split into six groups and each group of studies was distributed to reviewers of one partner institution. The tabulated summary was completed, based on the content of the articles. A workshop took place in Lisbon on June 4-6, 2013 during which the reviewers presented an overview of their evaluation of the studies. Based on these presentations the content and form of the tabulated summary were refined.

Phase 3. The study results were grouped into five subject categories (see section 'Tabulated summary' below) and each group of studies was accordingly redistributed to the reviewers of one partner institution. The studies were re-evaluated to finalize the content of the tabulated summary. Finally, a non-systematic search of the literature was conducted by the reviewers, for each of the five subject categories, to identify human studies that may not have been identified

by the previous searches. The form of the complementary search strategy was left to the discretion of the reviewing authors and no additional studies were identified.

Phase 4. The tabulated summary of all studies was finally revised by two reviewers from one institution, in order to harmonize its content. In particular, the status of each column in the tabulated summary was changed from the description of one clinical study per column to the description of one *study result* per column. This adaptation was motivated by the fact that several studies reported results for more than one dairy product or more than one subject category, each of these study results needing a separate evaluation.

Phase 5. A quantitative estimation of the ability of dairy products to modulate inflammation was conducted, for each study result, based on the content of the tabulated summary and on the establishment of the IS (see the next two sections).

Tabulated Summary

The tabulated summary was not only defined in broad compliance with the reporting of systematic reviews according to the PRISMA checklist (Moher *et al.*, 2009), but also integrated elements requested by regulatory authorities for the preparation of applications on health claims (EFSA Panel on Dietetic Products Nutrition and Allergies, 2011;FDA Office of Nutrition Labeling and Dietary Supplements, 2009). The tabulated summary contains the following descriptors:

<u>Reference</u> - Presents the bibliographic reference of the clinical trial from which each study result was extracted. Studies for which more than one study result was extracted are indicated and the study results are numbered.

<u>Subject category</u> - The articles are grouped into five categories based on the clinical status of the subjects enrolled in the selected studies:

- HEALTH, for studies investigating healthy subjects;
- MET, for studies on subjects with metabolic and cardiovascular disorders, including obesity and overweight;
- GIT, for studies enrolling subjects with non-allergic gastrointestinal disorders;
- HYPER, for studies with subjects suffering from food hypersensitivity, in particular allergy to dairy products, but not from lactose intolerance;
- OTHERS, for studies describing subjects with all other disorders, in particular lung disease,
 joint disease, and infection.

Articles discussing both gastrointestinal disorders and food hypersensitivity are included in the category HYPER.

<u>Target indication</u> - Potential health benefit, clinical indication, or safety issue investigated in the study.

<u>Target population</u> - Population targeted by the target indication.

<u>Fat content</u> - The dairy product investigated is categorized as 'high-fat', 'low-fat', or, otherwise, 'not available (n.a.)'. The classification between high-fat and low-fat dairy products was made

ACCEPTED MANUSCRIPT 11 ACCEPTED MANUSCRIPT 12 ACCEPTED MANUSCRIPT 13 ACCEPTED MANUSCRIPT 14 ACCEPTED MANUSCRIPT 15 ACCEPTED MANUSCRIPT 16 ACCEPTED MANUSCRIPT 16 ACCEPTED MANUSCRIPT 17 ACCEPTED MANUSCRIPT 18 ACC

based on the information given in the corresponding paper. When the authors did not mention the fat content of the investigated product or when they did not use special terminology such as 'fat-reduced, skimmed, semi-skimmed, high-fat, normal-fat', the study product was classified as 'n. a.'.

<u>Fermentation</u> - The dairy product investigated is categorized as 'fermented', 'non-fermented', or, otherwise, 'n.a.'.

<u>Test and control products</u> - Details on the foods used as test or control products (dairy or non-dairy) are reported. Only studies using dairy food products as the test or the control product are considered. For studies with more than one dairy product investigated, each dairy product is reported as a separate study result (one column for each product).

<u>Test and control subjects</u> - For each group enrolled in the study as test or control subjects, the number of subjects in the group, their gender (if available), age (including range) and health or disease status is provided (if appropriate). For studies with more than one group of subject investigated, each group is reported as a separate study result (one column for each group).

<u>Diet</u> -The composition of the dairy products investigated, its quantity, and the duration of the dairy products consumption during the study period is reported.

<u>Controlled dairy test</u> - Studies that are controlled and in which a dairy product is the test product are labeled as 'yes', otherwise as 'no'.

<u>Randomization</u> - Studies that are randomized are labeled as 'randomized', otherwise either 'non-randomized' or 'n.a.'.

<u>Time factor</u> - The studies are categorized as either 'longitudinal' or 'cross-sectional'.

<u>Study results</u> - The study results are generally expressed by presenting the food products investigated, the inflammatory markers measured, and the direction of the effect. Depending on the study design, seven different types of outcome are presented:

- Outcome 1 [Dairy vs Control], when dairy products are the test products and compared against control products;
- Outcome 2 [Dairy (end time vs baseline)], when dairy products at baseline are compared under fasting conditions over several days (dn vs d0), weeks (wn vs w0), or months (mn vs m0);
- Outcome 3 [Dairy (xh vs 0h)], when dairy products at baseline are compared over several hours in challenge postprandial studies (nh vs 0h);
- Outcome 4 [Dairy (test subjects vs control subjects)], for studies in which the effects of dairy products are compared in two populations of subjects;
- Outcome 5 [Dairy: Correlation], for studies in which the consumption of dairy products is
 quantitatively correlated to inflammatory markers. If available, adjustments for confounders
 are indicated;
- Outcome 6 [Dietary pattern 1 vs Dietary pattern 2], for studies in which the relative impact
 on inflammation of different dietary patterns containing dairy products is evaluated;

Outcome 7 [Dietary patterns: Correlation], for studies in which dietary patterns containing
dairy products are correlated with inflammatory markers. If available, adjustments for
confounders are indicated.

The type of outcome (1-7) is indicated for each study result.

The strength of the effects was expressed by the direction of the statistically significant change in the inflammatory signal (\rightarrow : no statistically significant effect; \uparrow : statistically significant increase; \downarrow : statistically significant decrease) or of the correlations (corr \rightarrow : no statistically significant correlation; corr \uparrow : statistically significant positive correlation; corr \downarrow : statistically significant negative correlation). The criteria for statistical significance are indicated as reported in each study but are not documented in this review. To avoid bias, care was taken to document all results obtained with the inflammatory markers, including results in which no statistically significant changes were observed. Inflammatory markers are shown in italics in the table if their increase are associated with an anti-inflammatory effect.

Net change in inflammatory markers - The inflammatory markers shown in **Table 1** were considered for inclusion in this review. This list was extracted from recently published work that compiles a comprehensive list of inflammatory markers reported in nutritional studies (Calder *et al.*, 2013). It offered clear harmonizing criteria for inclusion or exclusion of the IS that were evaluated by each reviewer. The net change in inflammatory markers was calculated for each study result by summing up the changes in all inflammatory results measured. A value of -1 was attributed for each change in inflammatory parameters contributing to a pro-inflammatory status (*e.g.* an increase in a pro-inflammatory parameter or a decrease in an anti-inflammatory parameter). A value of +1 was attributed for each change in inflammatory parameters

contributing to an anti-inflammatory status (*e.g.* a decrease in a pro-inflammatory parameter or an increase in an anti-inflammatory parameter). A value of 0 was attributed for study results in which the inflammatory markers did not change. None of the 78 study results for which the net change in inflammatory markers was measured provided results in which both anti- and pro-inflammatory changes were observed together.

<u>Sustainability of effect over time</u> - This line reports whether sustainability of the inflammatory effect over time was 'investigated', 'discussed', or 'not discussed'. A study result investigating and reporting a maintenance of the inflammatory effect after a washout phase of at least one week is labeled 'yes'.

<u>Dose-response</u> - This line reports whether a dose-response relationship was investigated ('yes') or not ('No'). If yes, a short description is presented.

<u>Bioavailability data</u> - Label as 'yes' if information is provided on bioavailability of dairy product components, otherwise label as 'no'. In cases where bioavailability data was obtained in the study ('yes'), a short presentation of the information is presented in the table.

<u>Biological plausibility</u> - This line presents whether the mechanism of action by which the dairy constituents exert their anti- or pro-inflammatory effects was discussed or investigated. The mechanism of action is shortly presented.

<u>Bioactive components</u> – If discussed or investigated, the components of the dairy products considered as responsible for the anti- or pro-inflammatory effect are shortly presented.

<u>Clinical evidence</u> - If available, this line presents the results of clinical endpoints that, if changed, contribute to an upgrading of the overall effect. The list of clinical endpoints includes: non-systemic inflammatory markers (such as cellular, organ inflammation, joint pain, flare), parameters formally recognized as being associated with the metabolic syndrome including changes in triglycerides, HDL cholesterol, blood pressure, plasma glucose, insulin tolerance, BMI, waist circumference, glucose tolerance, insulin resistance, waist:hip ratio, urinary albumin excretion, albumin:creatinine ratio, markers of oxidative stress known to promote inflammation and other clinical endpoints such as mortality or cardiovascular events.

<u>Financing of research</u> - This line mentions how the study was supported financially and is labeled as either 'public', 'private', 'private and public', or 'not presented'.

Grading criteria - This line presents the grading criteria used to calculate the IS according to Table 2. The label 'None' is attributed a value of 0, indicating a study result in which no net change in inflammatory markers was measured. The label 'Anti' is attributed a value of +1, indicating a study result with a positive net change in inflammatory markers. The label 'Pro' is attributed a value of -1, indicating a study result with a negative net change in inflammatory markers. For study results with a net change in inflammatory markers different from zero, the labels 'Anti' and 'Pro' are completed with the numbers 1 to 11 indicating which one of the quality criteria presented in Table 2 were met. These criteria could be retrieved from the following descriptors in the tabulated summary: (1) 'controlled dairy test', (2) 'randomization', (3) 'time factor', (4) 'test product' or 'control product', (5) 'study results' and 'net change in

inflammatory marker', (6-7) 'study results', (8) 'sustainability of effect over time', (9) 'dose-response', (10) 'biological plausibility' or 'bioactive components', (11) 'clinical evidence'.

<u>IS</u> - The IS is the sum of the criteria reported above. Study results in which all criteria are fulfilled could thus theoretically reach an IS of -12 for results indicating a pro-inflammatory activity of dairy products and an IS of +12 for results indicating an anti-inflammatory activity of dairy products. Study results with an initial IS of 0 could not be modified by these criteria and the final IS thus remained 0, independently of the quality of the clinical study.

Supplemental Table 1 provides an example of the calculation of the IS for one study result.

Determination of the IS for Groups of Study Results

A median IS was calculated for the entire data set as well as for the following categories of study results:

- Subjects category (HEALTH, MET, GIT, HYPER);
- Fat content of dairy product (low-fat, high-fat);
- Fermentation status of dairy product (non-fermented, fermented).

Non-parametric statistics were conducted to analyze the data (significance level: p < 0.05). The two-sided Wilcoxon Signed-Rank test was conducted to identify whether the median IS of the selected categories were statistically different from zero (H0: median IS = 0; Ha: median IS \neq 0). A mean IS > 0 indicated an anti-inflammatory effect whereas a pro-inflammatory effect was indicated by a mean IS < 0. The Kruskall-Wallis test was conducted to identify difference in the mean IS between different categories of study results.

RESULTS

Tables 3-5 show the tabulated summary of the 78 study results extracted from the 52 human studies retained for this review. Each table contains 25 descriptors covering a wide range of study characteristics including, amongst others, a description of the enrolled subjects, the test and control products, the study designs, and the IS (documented in the last line). Table 3 shows the data for study results with a positive IS, *i.e.* for results indicative of an anti-inflammatory effect of dairy products. Table 4 shows the data for study results with a negative IS, *i.e.* for results indicative of a pro-inflammatory effect of dairy products. Finally, Table 5 shows the data for study results with an IS = 0, *i.e.* for results with no modulation of inflammatory processes by dairy products.

Figure 2 shows the overall distribution of the data obtained for each of the inflammatory markers listed in Table 1, that were measured at least once in the set of 78 study results reviewed. Out of the 98 inflammatory markers listed in Table 1, 57 markers were investigated at least once (58%). A total of 309 observations were reported with these inflammatory markers, 131 (42%) being accounted for by three cytokines, *i.e.* CRP (51 observations), IL-6 (44 observations), and TNF-α (36 observations). For each of these cytokines, the number of observations reporting no effect was the highest (CRP: 34 out of 51; IL-6: 26 out of 44; TNF-α: 23 out of 36) followed by the observations reporting an anti-inflammatory effect (CRP: 16 out of 51; IL-6: 15 out of 44; TNF-α: 11 out of 36). The number of these observations reporting a pro-inflammatory effect was the lowest for all three cytokines (CRP: 1 out of 51; IL-6: 3 out of 44; TNF-α: 2 out of 36). The only parameter systematically pointing to the pro-inflammatory state

was 'eosinophil count' (5 out of 5), a parameter that was exclusively measured in studies investigating subjects with milk allergy and thus categorized in the subject category HYPER.

Taking into account the quality of all studies reviewed in the present article, we have developed a quantitative method that calculates an IS based on the range of eleven criteria listed in Table 2. Figure 3 presents the results of this analysis. Panel A first illustrates the number of study results identified with evidence for an anti-inflammatory activity (32 study results), a pro-inflammatory activity (19 results), or no change in inflammatory activity (27 study results).

Panel B shows a distribution of the IS calculated for each of these study results, according to the criteria presented in Table 2. Although both panels in Figure 3 illustrate that the study results are well distributed among all three categories (anti-inflammatory, no effect, pro-inflammatory), the data indicating an anti-inflammatory activity appear to prevail over data pointing to a pro-inflammatory activity. This observation was confirmed by the positive mean IS for the set of 78 study results and the rejection of the null hypothesis for the median IS in the two-sided Wilcoxon Signed-Rank test, indicating an anti-inflammatory activity of dairy products (Table 6).

When the results were stratified according to subject categories, differences in the distribution of the study results appeared between these categories (**Figure 4**). The group of 37 study results investigating healthy subjects, was characterized by study results covering each of the three possible effects (anti-inflammatory, no effect, pro-inflammatory). On the other hand, the group of 24 study results investigating subjects with metabolic disorders, including healthy obese subjects, was characterized by a lack of data pointing to a pro-inflammatory effect. The groups of study results investigating subjects with gastrointestinal disorders (8 study results) and of

subjects with allergy to dairy products (6 study results) lacked study results indicative of an antiinflammatory effect.

These observations were statistically confirmed by comparing the distribution of the IS for the groups of study results investigating healthy subjects and subjects with metabolic disorders (Table 6). Both mean IS were positive and the null hypothesis for the median IS in the two-sided Wilcoxon Signed-Rank test was rejected, pointing to an anti-inflammatory activity of dairy products in these two subject categories. The mean IS of the MET subject category were higher than for the HEALTH subject category, but the Kruskal-Wallis test did not point to a statistically significant difference in the median IS between both subject categories. The mean IS for the GIT subject category was negative, but the Wilcoxon Signed-Rank test on the median IS did not point to a statistically significant effect. However, the mean IS for the HYPER subject category was negative and the null hypothesis for the median IS in the two-sided Wilcoxon Signed-Rank test was rejected, indicating a pro-inflammatory effect of dairy products in subjects allergic to dairy products. Finally, a group of studies in which the subjects could not be attributed to any of the above categories, had a median IS that was statistically not different from zero.

In order to investigate the impact of dairy product processing, in particular fat processing and fermentation on the IS, the study results were stratified according to the fat content and fermentation status of the dairy products investigated.

Thirty-five study results with high-fat dairy products and 20 study results with low-fat products were reported (**Figure 5**). In contrast to the high-fat products, none of the study results with low-fat products indicated a pro-inflammatory activity. The mean IS of the low-fat product

category was, indeed, lower than for the high-fat product category but the Kruskal-Wallis test on the median IS did not demonstrate this difference to reach statistical significance (p = 0.094). However, the mean IS of each product category was positive and the null hypothesis for the median IS in the two-sided Wilcoxon Signed-Rank test was rejected, indicating an anti-inflammatory activity for both low-fat and high-fat dairy products (Table 6).

Thirty-three study results could be identified in which non-fermented dairy products were investigated, whereas 16 study results were reported with fermented products (**Figure 6**). The mean IS of both the non-fermented and fermented product category were positive, but the two-sided Wilcoxon Signed-Rank test on the median IS only indicated a significant anti-inflammatory activity for the fermented product category (Table 6).

In an attempt to identify the bioactive nutrients potentially modulating inflammation, and to complement the human data with preclinical data, we conducted a non-systematic and non-quantitative evaluation of the literature available on the inflammatory properties of dairy products in animal models (unpublished data). Most of these studies reported an anti-inflammatory effect; however, due to the different animal models and protocols used in the selected articles, it was not possible to compare results and to perform an analysis as we did for human studies. It was anyway clear that the importance of identifying the molecule(s) responsible for the effect, and its mechanism of action, is poorly considered in animal studies, too.

DISCUSSION

Pro- and ant-inflammatory properties of dairy products

Overall, the IS of the entire data set composed of 78 study results, extracted from 52 human studies indicates that the consumption of dairy products is associated with anti-inflammatory properties in humans. We qualify this association as weak, although significant, because the IS has a low magnitude that is indicative of a low level of confidence in the effect estimate.

By stratifying the study results according to the health status of the enrolled subjects, we identified a pro-inflammatory activity of dairy products in subjects with milk allergy. This result is mechanistically expected, as hypersensitive reactions can obviously be linked to the pro-inflammatory state (Savilahti & Westerholm-Ormio, 2004). We therefore conclude that the IS is an adequate tool to evaluate the impact of food and dietary patterns on inflammation.

A systematic review recently assessed eight randomized controlled nutritional intervention studies, which have investigated the impact of dairy product consumption on biomarkers of inflammation in overweight and obese adults (Labonte *et al.*, 2013). The authors concluded that the consumption of dairy products did not exert adverse effects on biomarkers of inflammation in these subjects, and that limitations among these studies did not allow for the differentiation between a beneficial or neutral impact of dairy products on inflammation. In our review, stratifying the data according to the health status of the subjects, allowed us to identify 24 study results in the MET subject category. The IS of this data set indicates an anti-inflammatory property of dairy products in subjects with metabolic disorders. Noteworthy, the significantly positive IS was also indicative of an anti-inflammatory effect of dairy products in the HEALTH group. We found, however, a trend towards a higher IS in the MET group, compared to the

HEALTH group suggesting a stronger evidence for an anti-inflammatory activity of dairy products in the former subject category. This finding is illustrated by the identification of ten studies reporting a pro-inflammatory activity of dairy products in the HEALTH group, whereas the MET group is the only category in which none of the studies reported a pro-inflammatory activity of dairy products. The specific reactivity of the MET group may be linked mechanistically to the inflammatory nature of obesity. Obesity is associated with a low-grade systemic chronic inflammatory state, characterized by the abnormal production of inflammatory cytokines (Guri & Bassaganya-Riera, 2011; Schwander et al., 2014). As low-grade systemic inflammation links obesity to metabolic pathologies, including insulin resistance, cardiovascular diseases, or type-2 diabetes, targeting obesity-related inflammatory components may be a useful preventive strategy. Low-grade chronic inflammation is modulated by nutrients such as fatty acids, glucose, bioactive plant compounds, vitamins and minerals, which either enhance or alleviate the inflammatory state (Hirai et al., 2010). In this context, as obese subjects are characterized by low-grade systemic inflammation, the MET group may be more prone to the anti-inflammatory action of dairy products than metabolically healthy subjects.

Stratifying the data according to categories of dairy products, revealed an anti-inflammatory activity for both low-fat and high-fat dairy products. The IS indicated an anti-inflammatory activity of high-fat dairy products despite the fact that nine studies were identified in which these products were associated with a pro-inflammatory activity. The pro-inflammatory activity identified with high-fat dairy products in these studies was mainly attributed to the presence of saturated fat. Fat consumption, in particular saturated fat (Steinberg, 2005) and *trans*-fatty acids (Micha & Mozaffarian, 2009), has been associated with inflammatory processes in humans.

However, recent opinions in nutrition research advocate that the adverse health effects formerly associated with saturated fats, were most likely due to other factors (Lawrence, 2013). The positive IS, calculated for the high-fat products, is thus in line with this reevaluation of the impact of fat consumption on human health. Additionally, as both low-fat and high-fat products were associated with a positive IS, the molecules with a potential anti-inflammatory activity in milk may cover a broad range of nutrients, including polyunsaturated fatty acids (German & Dillard, 2006), proteins (Chatterton *et al.*, 2013), and glycans (Newburg, 2013).

The IS of the product category 'fermented dairy products' indicates a beneficial antiinflammatory contribution, possibly resulting from the bacteria present in dairy products or their
metabolic activity. The anti-inflammatory activity of strains of lactic acid bacteria and
bifidobacteria has indeed been reported (Lomax & Calder, 2009;Tsai *et al.*, 2012). The recent
awareness of the role of the gut microbiota in the modulation of the immune system (Hakansson
& Molin, 2011), further raises interest in the integration of bacteria with anti-inflammatory
properties into dairy products (Dunne *et al.*, 2001). Moreover, products deriving from the
fermentation of milk with bacteria, in particular bioactive peptides (Ceapa *et al.*, 2013) and
glycans (Newburg, 2013), which both interact with gut microbes or immune cells, may
contribute to an anti-inflammatory activity of dairy products.

Research gaps

Our review also aimed at identifying research gaps preventing a comprehensive understanding of inflammatory processes in food and nutrition sciences. In particular, we have identified the following gaps:

No consensus is available yet which clearly defines clinically relevant inflammatory markers. For illustration in Europe, the EFSA was required, following a consultation of stakeholders, to give guidance on potential markers of inflammation. In its response, the EFSA stated that "for function claims referring to reduction of inflammation, a change in markers of inflammation such as various interleukins does not indicate a beneficial physiological effect per se, but should be accompanied by a beneficial physiological or clinical outcome" (EFSA Panel on Dietetic Products, 2011). This position is an important challenge to the food and nutrition research community, given the difficulties associated with the identification of validated clinical markers of disease reduction by dietary interventions. In that context, the importance of validating sets of molecules present in the circulation as biomarkers of low-grade inflammation has been emphasized (Calder et al., 2013). At the same time, the predictive value tentatively attributed by the authors of this review to these sets of inflammatory markers, illustrates the gap with the position of regulatory authorities. The present review further highlights this gap: human studies complementing the inflammatory markers with convincingly addressing clinical outcomes, as described by the descriptor "Clinical evidence" in Tables 3-5, are unsurprisingly scarce.

Validation issues are raised by new analytical technologies that now allow researchers to quantitate large sets of inflammatory markers in a single measurement (Breen *et al.*, 2011;Liu *et al.*, 2005;Thompson *et al.*, 2012). Although these analytical issues were not discussed in the set of human trials reviewed, particular care should be taken in the future to better characterize the performance of these tests.

Regulatory authorities clearly highlights the importance of characterizing the food products investigated in human trials in their guidance for the authorization of health claims (EFSA Panel on Dietetic Products Nutrition and Allergies, 2011;FDA Office of Nutrition Labeling and Dietary Supplements, 2009). However, the studies reported in this review give little emphasis on the characterization of the dairy products investigated, as illustrated by a range of uncharacterized descriptors in Tables 3-5 (e.g. identification of bioactive nutrients, bioavailability data, dose-response effects, sustainability of the effect of the food product over time). In particular, integrating the variable 'dose' into study designs could allow researchers to draw a causal relationship between the food investigated and the physiological response measured in humans (Schwander et al., 2014). Also, although dozens of nutrients with immunomodulatory activity have been proposed in the literature (Ballard & Morrow, 2013), the bioactive nutrients potentially modulating inflammation in the reviewed studies, remain largely unknown even considering animal studies. The major reason for this gap is clearly inherent to the complex molecular composition of food. In light of the importance of the food matrix on the properties of bioactive nutrients, we endorse that food and nutrition research should shift its focus from the characterization of the nutritional and immunomodulatory properties of isolated nutrients to the characterization of foods, meals, and even dietary patterns.

The scientific basis for claims on bioactive food and nutrients established by national regulatory authorities is not harmonized, thereby hindering internationally harmonized market access (Aggett *et al.*, 2012). To date, a very high number of requested health claims (more than 80%) have been rejected by the EFSA's NDA Panel, who underlined the need to identify the molecule(s) responsible of the claimed effect, and their mechanisms of action. The mechanisms

of action of bioactives are usually studied in vitro, whereas in vivo studies are very often focused on demonstrating an effect on specific endpoints, without considering the underlying mechanisms. Evidence of the anti-inflammatory effectiveness of dairy components could be retrieved from *in vitro* studies, but they were not considered in this review for a specific reason, i.e. bioactive components are just one part of food, embedded in a very complex matrix. Cell supplementation in *in vitro* studies, as well as intervention studies administering bioactives as pure compounds assume that there are no confounding effects related to the food matrix. The food matrix, as well as food processing (Bordoni et al., 2011) can, indeed modify the digestibility and bioavailability of bioactive compounds, thus introducing a fundamental bias when translating *in vitro* data to humans. The ideal *in vitro* study should thus digest food in a static or dynamic model of digestion, have the digested nutrients transported through an intestinal cellular layer mimicking the gastrointestinal barrier, ideally with a model integrating the gut microbiota, and finally measure the ability of the absorbed nutrients to modulate inflammation. Such integrated in vitro models have not yet been successfully developed, although first steps in that direction have already been taken (Vergeres et al., 2012). Meanwhile, the COST action FA1005 'Improving health properties of food by sharing our knowledge on the digestive process' (INFOGEST) has published an harmonized protocol of in vitro digestion (Minekus et al., 2014). To perform in vitro digestion prior to in vitro studies will help to bypass the enormous, and unscientific, gap in our knowledge related to the assumption, without any demonstration, that the *in vivo* effects of foods are related to the mechanisms of action observed in vitro supplementing cells with pure molecules. In vitro studies supplementing cells with digested food can mimic in a closer way the *in vivo* effects and underlying mechanism of actions

of food bioactives, thus evidencing the cause-effect relationship as requested by the body authorities.

Strengths and Limitations of the IS

The literature focusing on the impact of dairy products on inflammatory processes in humans revealed a very heterogeneous methodological landscape. The IS was therefore defined in order to take these limitations into account as follows:

Inflammation is a complex phenomenon that cannot be described by a single biomarker (Calder *et al.*, 2013). Indeed, more than fifty inflammatory markers were reported in the pool of the 52 human studies reviewed. The data consisted of cellular markers of inflammation and measures of tissue infiltration, but the majority of studies concentrated on a few soluble circulatory cytokines. Furthermore, the number of markers measured in each study varied from one to more than ten. These points all raised the issue of the weighting of each study result in this heterogeneous environment. For the sake of simplicity, and to avoid over-interpreting the data, we decided to (i) rate each of the inflammatory markers listed in Table 1 at the same level and (ii) to increase the IS by one unit in cases in which changes in the concentration of more than one inflammatory markers were pointing in the same direction (see point 5 in Table 2). Note, however, that the IS was not upgraded by additional grades for studies in which more than two inflammatory markers were concordantly changed as this would have given too much weight to this criterion compared to the ten other criteria presented in Table 2.

As milk is amenable to a wide range of technological transformations and important in human diets, a large spectrum of dairy products was investigated in the 52 reviewed studies. As each of these products may differently modulate inflammation, we addressed this issue by defining a limited range of product categories in which the data could be stratified and analyzed (low-fat *vs* high fat; fermented *vs* non-fermented).

The health status of the subjects enrolled in the 52 studies was quite diverse, reflecting the generic importance of inflammatory processes in modulating human health and disease. The clinical indications targeted by these studies were consequently heterogeneous and we therefore classified the study results according to a limited, but clinically meaningful, set of subject categories (HEALTH, MET, GIT, HYPER).

Given the relative paucity of high-quality studies on the topic of dairy and inflammation, we chose an inclusive strategy which means that we considered all available publications on dairy and systemic inflammation, including randomized controlled trials, cross-over design trials and longitudinal cohort studies. This approach enabled us to analyze data from studies per se not considered in systemic reviews and we could thus provide a wide overview of studies dealing with dairy and inflammation. The downside of this strategy is that some studies of low quality, small sample size and short duration, were included in this review.

The last issue that became evident during the reviewing process, is the usage of dairy products as controls in human studies actually aiming at investigating the ability of other food products to modulate inflammatory processes. This phenomenon was particularly the case for clinical studies using the milk matrix to supplement the test meals with bioactive components. Given the

potential bioactivity of dairy products, we decided to also evaluate their properties even when used as control products, although this might pose the risk of misleading information when comparing data against baseline within randomized groups (Bland & Altman, 2011).

Conclusions

We have established the IS as a new tool to conduct a quantitative evaluation of human studies investigating the impact of dairy products on inflammation. Taken together, our review suggests that dairy products, in particular fermented products, have anti-inflammatory properties in humans not suffering from allergy to milk, in particular in subjects with metabolic disorders. As the clinical relevance of inflammatory markers is currently debated among researchers and regulatory authorities, the translation of these findings into dietary guidelines remains to be clarified.

ACKNOWLEDGMENTS

We thank Ueli Bütikofer and Diklah Geva for support on the statistical analyses. We also thank Capucine Musard for a preliminary analysis of the literature on the topic of this review.

FUNDING

The authors of this review are members of the FA COST Action FA1005 'Improving health properties of food by sharing our knowledge on the digestive process' (INFOGEST) that financed the travel costs for the meetings of the MindTheGap project team. This work was, furthermore financed by the institutions employing the authors of this report. The work of PP and

CNS was supported by Fundação para a Ciência e Tecnologia (PEst-OE/EQB/LA0004 /2011 and IF/01097/2013).

REFERENCES

- Aggett, P. J., Hathcock, J., Jukes, D., Richardson, D. P., Calder, P. C., Bischoff-Ferrari, H., Nicklas, T., Muhlebach, S., Kwon, O., Lewis, J., Lugard, M. J. & Prock, P. (2012). Nutrition issues in Codex: health claims, nutrient reference values and WTO agreements: a conference report. *Eur J Nutr* 51 Suppl 1, S1-S7.
- Augustin, M. A. & Udabage, P. (2007). Influence of processing on functionality of milk and dairy proteins. *Adv Food Nutr Res* 53, 1-38.
- Ballard, O. & Morrow, A. L. (2013). Human milk composition: nutrients and bioactive factors.

 *Pediatr Clin North Am 60, 49-74.
- Bland, J. M. & Altman, D. G. (2011). Comparisons against baseline within randomised groups are often used and can be highly misleading. *Trials* 12, 264.
- Bordoni, A., Picone, G., Babini, E., Vignali, M., Danesi, F., Valli, V., Di, N. M., Laghi, L. & Capozzi, F. (2011).NMR comparison of in vitro digestion of Parmigiano Reggiano cheese aged 15 and 30 months. *Magn Reson Chem* 49 Suppl 1, S61-S70.
- Breen, E. C., Reynolds, S. M., Cox, C., Jacobson, L. P., Magpantay, L., Mulder, C. B., Dibben,
 O., Margolick, J. B., Bream, J. H., Sambrano, E., Martinez-Maza, O., Sinclair, E.,
 Borrow, P., Landay, A. L., Rinaldo, C. R. & Norris, P. J. (2011). Multisite comparison of high-sensitivity multiplex cytokine assays. *Clin Vaccine Immunol* 18, 1229-1242.

- Calder, P. C., Ahluwalia, N., Albers, R., Bosco, N., Bourdet-Sicard, R., Haller, D., Holgate, S.
 T., Jonsson, L. S., Latulippe, M. E., Marcos, A., Moreines, J., M'Rini, C., Muller, M.,
 Pawelec, G., van Neerven, R. J., Watzl, B. & Zhao, J. (2013). A consideration of
 biomarkers to be used for evaluation of inflammation in human nutritional studies. *Br J Nutr* 109 Suppl 1, S1-34.
- Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., Esposito, K.,
 Jonsson, L. S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., Matusheski, N.,
 Nordmann, H., O'Brien, J., Pugliese, G., Rizkalla, S., Schalkwijk, C., Tuomilehto, J.,
 Warnberg, J., Watzl, B. & Winklhofer-Roob, B. M. (2011). Dietary factors and low-grade inflammation in relation to overweight and obesity. *Br J Nutr* 106 Suppl 3, S5-78.
- Candore, G., Caruso, C., Jirillo, E., Magrone, T. & Vasto, S. (2010).Low grade inflammation as a common pathogenetic denominator in age-related diseases: novel drug targets for antiageing strategies and successful ageing achievement. *Curr Pharm Des* 16, 584-596.
- Ceapa, C., Wopereis, H., Rezaiki, L., Kleerebezem, M., Knol, J. & Oozeer, R. (2013).Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. *Best Pract Res Clin Gastroenterol* 27, 139-155.
- Chatterton, D. E., Nguyen, D. N., Bering, S. B. & Sangild, P. T. (2013). Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. *Int J Biochem Cell Biol* 45, 1730-1747.

- Dunne, C., O'Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O'Halloran, S., Feeney, M.,
 Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O'Sullivan, G. C., Shanahan, F. & Collins,
 J. K. (2001). In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. *Am J Clin Nutr* 73, 386S-392S.
- EFSA Panel on Dietetic Products Nutrition and Allergies (2011). Scientific and technical guidance for the preparation and presentation of an application for authorisation of a health claim (revision 1). 9 edn, p. 2170.
- EFSA Panel on Dietetic Products, N. a. A. (2011).Guidance on the scientific requirements for health claims related to gut and immune function. *EFSA J* 9, 1984.
- FAO (2013a). Food outlook Biannual report on global food markets.
- FAO (2013b). Milk and dairy products in human nutrition.
- FDA Office of Nutrition Labeling and Dietary Supplements (2009). Guidance for Industry: Evidence-Based Review System for the Scientific Evaluation of Health Claims.
- German, J. B. & Dillard, C. J. (2006). Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. *Crit Rev Food Sci Nutr* 46, 57-92.
- Global Business Intelligence Research (2011). Anti-Inflammatory Therapeutics Market to 2017 Respiratory Diseases and Arthritis Continue to Dominate.

- Guri, A. J. & Bassaganya-Riera, J. (2011). Systemic effects of white adipose tissue dysregulation and obesity-related inflammation. *Obesity (Silver Spring)* 19, 689-700.
- Hakansson, A. & Molin, G. (2011). Gut microbiota and inflammation. *Nutrients* 3, 637-682.
- Haug, A., Hostmark, A. T. & Harstad, O. M. (2007). Bovine milk in human nutrition--a review. Lipids Health Dis 6, 25.
- Hernandez-Aguilera, A., Rull, A., Rodriguez-Gallego, E., Riera-Borrull, M., Luciano-Mateo, F., Camps, J., Menendez, J. A. & Joven, J. (2013). Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. *Mediators Inflamm* 2013, 135698.
- Hirai, S., Takahashi, N., Goto, T., Lin, S., Uemura, T., Yu, R. & Kawada, T. (2010). Functional food targeting the regulation of obesity-induced inflammatory responses and pathologies.

 *Mediators Inflamm 2010, 367838.
- Hotamisligil, G. S. (2006).Inflammation and metabolic disorders. *Nature* 444, 860-867.
- Hunter, D. J. & Reddy, K. S. (2013). Noncommunicable diseases. N Engl J Med 369, 1336-1343.
- Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. *Nature* 474, 327-336.
- Klop, B., Proctor, S. D., Mamo, J. C., Botham, K. M. & Castro, C. M. (2012). Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. *Int J Vasc Med* 2012, 947417.

- Labonte, M. E., Couture, P., Richard, C., Desroches, S. & Lamarche, B. (2013).Impact of dairy products on biomarkers of inflammation: a systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. *Am J Clin Nutr* 97, 706-717.
- Lawrence, G. D. (2013). Dietary fats and health: dietary recommendations in the context of scientific evidence. *Adv Nutr* 4, 294-302.
- Lepage, P. & Van de Perre, P. (2012). The immune system of breast milk: antimicrobial and antiinflammatory properties. *Adv Exp Med Biol* 743, 121-137.
- Liu, M. Y., Xydakis, A. M., Hoogeveen, R. C., Jones, P. H., Smith, E. O., Nelson, K. W. & Ballantyne, C. M. (2005). Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. *Clin Chem* 51, 1102-1109.
- Lomax, A. R. & Calder, P. C. (2009). Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. *Curr Pharm Des* 15, 1428-1518.
- Melnik, B. C. (2009). Milk--the promoter of chronic Western diseases. *Med Hypotheses* 72, 631-639.
- Micha, R. & Mozaffarian, D. (2009). Trans fatty acids: effects on metabolic syndrome, heart disease and diabetes. *Nat Rev Endocrinol* 5, 335-344.

- Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F.,
 Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S.,
 Birkhus, B., Le Feunteun, S., Lesmes, U., Maczierzanka, A., MacKie, A., Marze, S.,
 McClements, D. J., Ménard, O., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E.,
 Wickham, M. S. J., Weitschies, W. & Brodkorb, A. (2014). A standardized static in vitro digestion method suitable for food an international consensus. *Food Funct*.
- Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. (2009).Reprint--preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Phys Ther* 89, 873-880.
- Newburg, D. S. (2013). Glycobiology of human milk. *Biochemistry (Mosc)* 78, 771-785.
- Oftedal, O. T. (2012). The evolution of milk secretion and its ancient origins. Animal 6, 355-368.
- Panagiotakos, D. B., Pitsavos, C. H., Zampelas, A. D., Chrysohoou, C. A. & Stefanadis, C. I. (2010). Dairy products consumption is associated with decreased levels of inflammatory markers related to cardiovascular disease in apparently healthy adults: the ATTICA study. *J Am Coll Nutr* 29, 357-364.
- Savilahti, E. & Westerholm-Ormio, M. (2004). Gut inflammation and extraintestinal manifestation of food allergy. *J Pediatr Gastroenterol Nutr* 39 Suppl 3, S742-S743.
- Schwander, F., Kopf-Bolanz, K. A., Buri, C., Portmann, R., Egger, L., Chollet, M., mcTernan, P. G., Piya, M. K., Gijs, M. A. M., Vionnet, N., Pralong, F., Laederach, K. & Vergères, G. (2014). A dose-response strategy reveals differences between normal weight and obese

men in their metabolic and inflammatory responses to a high-fat meal. *J Nutr* In the Press.

- Steinberg, D. (2005). Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part II: the early evidence linking hypercholesterolemia to coronary disease in humans. *J Lipid Res* 46, 179-190.
- Thompson, D. K., Huffman, K. M., Kraus, W. E. & Kraus, V. B. (2012). Critical appraisal of four IL-6 immunoassays. *PLoS One* 7, e30659.
- Tsai, Y. T., Cheng, P. C. & Pan, T. M. (2012). The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. *Appl Microbiol Biotechnol* 96, 853-862.
- Vergeres, G., Bogicevic, B., Buri, C., Carrara, S., Chollet, M., Corbino-Giunta, L., Egger, L., Gille, D., Kopf-Bolanz, K., Laederach, K., Portmann, R., Ramadan, Q., Ramsden, J., Schwander, F., Silacci, P., Walther, B. & Gijs, M. (2012). The NutriChip project-translating technology into nutritional knowledge. *Br J Nutr* 108, 762-768.

TABLE 1 List of inflammatory mediators selected for the evaluation of the articles

Inflammatory mediator	
12-HETE	LTB4
15-HETE	LTB5
15-HPETE	LTC4
2-Arachidonoylglycerol	Lung function in response to indirect challenge LXA4
5-HETE 5-HPETE	
	Lyso-PA Magraphagas (total count, tissue infiltration
a-1-Antichymotrypsin	Macrophages (total count, tissue infiltration,
a-1-Antitrypsin	MAPK, activated (Crohn's disease) MaR1
Ab42, increased (Alzheimer's disease)	
Adiponectin, low (obesity, type 2 diabetes)	MCP-1 (CCL2) Migraphic activated (Alphaiman's diagram)
Anandamide	Microglia, activated (Alzheimer's disease)
Antimicrobial antibodies (Crohn's disease)	MIP-1 (CCL3)
Antimicrobial peptides	MIP-2 (CXCL2; GROb; GRO-2)
Astrocytes, reactive (Alzheimer's disease)	Monocytes (total count, CD66b, CD11c)
Autoantibodies	Neutrophils (total count, tissue infiltration,
B lymphocytes (total count)	NF-kB (Crohn's disease)
Basophils, mast cells (total count, tissue	NO (cardiovascular diseases)
Calprotectin (Crohn's disease)	Osteopontin (Allergic asthma)
Complement C3 (C3)	PAF
Complement C4 (C4)	PD1 (NPD1)
CPN60 (Crohn's disease)	PGD2
CRP	PGD3
Cysteinyl-LT (Allergic asthma)	PGE1
Eicosanoids (Rheumatoid arthritis)	PGE2
Eosinophilic cationic protein (Allergic	PGE3
Eosinophils (total count, tissue infiltration,	$PGF2\square$
Eotaxin (Allergic asthma)	PGI2
E-selectin (CD62E)	PKR (Crohn's disease)
Fibrinogen	Plasminogen activator inhibitor-1 (PAI-1)
GRP78 (Crohn's disease)	P-selectin (CD62P)
ICAM-1 (CD54)	RANTES (CCL5)
IFN-□	Rheumatoid factor (Rheumatoid arthritis)
IgE, total and allergen specific (Allergic	RvD1
IL-10	RvE1
IL-12 (IL-12A or p35 or IL-12B or p40	S100 proteins (S100A12, S100A8/A9) (Crohn's
IL-13 (Allergic asthma)	Serum amyloid A (SAA)
IL-17A	SMAD7 (Crohn's disease)

IL-18	Sphingosine-1-phosphate
IL-1β	sPLA2
IL-1ra	T lymphocytes (total count, tissue infiltration)
IL-23 (IL-23A or p19 or IL-12B or p40	Tau, total (Alzheimer's disease)
IL-4 (Allergic asthma)	TNF-α
IL-5 (Allergic asthma)	TNFR (TNFR1 and TNFR2)
IL-6	tPA
IL-8 (CXCL8)	Tryptase (Allergic asthma)
Inflammatory gene expression, cytokine	TXA2
IP-10 (CXCL10)	VCAM-1 (CD106)
Leptin	VEGF (Psoriasis)
Leucocytes (WBC) (total count, tissue	von Willebrand factor (vWF)

¹The markers are listed in alphabetical order. Adapted from (Calder et al., 2013)

TABLE 2 Criteria used to establish the IS to quantitatively evaluate the impact of dairy products on inflammatory processes in humans

Initial grading

- a Grade 0 for a null net change in inflammatory markers ('None')
- b Grade +1 for a positive net change in inflammatory markers ('Anti')
- c Grade -1 for a negative net change in inflammatory markers ('Pro')

Cumulative upgrade of IS towards positive (+1) or negative (-1) values

- 1 Controlled study with dairy as test product
- 2 Randomized study
- 3 Longitudinal study
- 4 The dairy product is not solely measured as part of a dietary pattern
- $5 \ge 2$ inflammatory markers are changed
- 6 At least one inflammatory marker is measured in vivo (and not ex vivo)
- 7 The change in inflammatory marker is measured over $\geq 12h$, e.g. not postprandially
- 8 The effect is still measured after washout period of at least one week
- 9 A dose-response is demonstrated with the dairy product
- 10 Bioactive molecules or the biological plausibility have been convincingly investigated
- 11 A clinical endpoint is changed that can be related to a metabolic dysregulation associated with inflammation

TABLE 3 Tabulated summary of the study results with evidence for an anti-inflammatory effect of dairy products

Reference	(Zemel &	(Zemel &	(Sugawara	(Stancliffe	(Zemel et	(Holmer-
Subject	MET	MET	OTHER	MET	MET	MET
Target	Oxidative	Oxidative	Chronic	Metabolic	Overweigh	Low-grade
indication	stress and	stress and	obstructive	syndrome	t and	inflammation
	inflammati	inflammati	pulmonary		obesity	
	on	on	disease			
Target	Obese	Obese	Elderly	Metabolic	Overweigh	Obese non-
population	subjects	subjects	with	syndrome	t and obese	diabetic
			chronic	subjects	subjects	subjects
			obstructive			
			pulmonary			
			disease			
Fat content	Low-fat	High-fat	High-fat	N.a.	Low-fat	N.a.
Fermentation	Fermented	N.a.	Non-	N.a.	Non-	Non-

Test product	Yoghurt	High dairy	Nutritional	Adequate	Milk	Fat-rich meal
		diet (milk,	supplement	dairy diet	smoothies	supplemented
		yoghurt,	containing		containing	with cod
		hard	whey		350 mg	protein, whey
		cheese)	peptides		calcium	isolate, gluten
			plus low			or casein
			intensity			
			exercise			
Control	Sugar-free,	Low dairy	Normal	Low dairy	Soy	
product	calcium-	diet	diet plus	diet	smoothies	
	free gelatin		low		containing	
	dessert		intensity		50 mg	
			exercise		calcium	
Test subjects	13 F, 5 M /	17 /	15 M, 2 F/	10 M, 10 F/	14 M, 6 F/	8 F, 3 M /
	39±10 y/	42.5±2.6 y	77.4±5.2 y	34.4±9.4 y /	31±10.3 y/	52±9.4 y /
	obese	/ obese	/ COPD	overweight	overweight	non-diabetic
				and obese	or mildly	obese
				with	obese	
				metabolic	adults	
				syndrome		

Control	14 F, 2 M /	17 /	14 M, 0 F /	9 M, 11 F/		
subjects	42±6 y/	41.3±2.7 y	77.1±5.8 y	39.5±10.2 y		
	obese	/ obese	/ COPD	/		
				overweight		
				and obese		
				with		
				metabolic		
				syndrome		
Diet	3x6 oz	3 dairy	2x200 kcal	Adequate	3	5'000 KJ fat-
	yoghurt,	servings /	of	dairy (>3.5	smoothies/	rich meal and
	including a	24 weeks /	nutritional	servings/d)	d / 28 days	45 g protein /
	caloric	isocaloric	supplement	or low dairy		single
	deficit of		plus low	(<0.5		challenge
	500 kcal/d /		intensity	servings/d) /		study
	12 weeks		exercise / 3	7, 28, 84		
			months	days		
Controlled	Yes	Yes	Yes	Yes	Yes	Yes
Randomizati	Randomize	Randomize	Randomize	Randomized	Randomize	Randomized
Time factor	Longitudin	Longitudin	Longitudin	Longitudina	Longitudin	Longitudinal
	•	-	•	1	-	

Study results	¹ Yoghurt	¹ High dairy	¹ Treatment	¹ Adequate	¹ Milk vs	¹ Whey vs cod
	(high Ca)	vs low	(whey	dairy vs low	soy	(4h iAUC
	vs control	dairy: CRP	supplement	dairy: TNF-	smoothies:	postprandial):
	(low Ca):	↓ ;	+ exercise)	α, MCP-1,	IL-6, TNF-	CCL5/RANTE
	CRP ↓;	adiponectin	vs control	IL-6, CRP	α, MCP-1,	S, MCP-1 ↓,
	adiponectin	↑	(normal	\ ;	CRP ↓;	IL-1ra, IFN-□,
	↑		diet +	adiponectin	adiponecti	adiponectin,
			exercise):	↑	<i>n</i> ↑; IL-15	eotaxin, IP-10,
			CRP, IL-6,		\rightarrow	MIP-1β,
			IL-8, TNF-			$VEGF \rightarrow$
			$\alpha\downarrow$			
Net change	2	2	4	5	5	2
Sustainibility	Not	Not	Not	Not	Not	Not discussed
Dose-	 No	 No	 No	 No	 No	No
Bioavailibilit	Not	Not	Not	Not	Not	Not discussed

Biological	Discussed -	Discussed -	Discussed -	Discussed -	Not	Not discussed
plausibility	Ca	Ca-	cytokine	calcitriol	discussed	
	signaling,	signaling,	production	signaling		
	ROS,	ROS,		and		
	angiotensin	angiotensin		adiposity-		
	-converting	-converting		induced		
	enzyme, fat	enzyme, fat		inflammator		
	oxidation,	oxidation,		y cytokines		
	energy	energy				
	utilisation	utilisation				
Bioactive	Investigate	Investigate	Discussed -	Discussed -	Discussed	Not discussed
components	d - calcium	d - calcium	whey	calcium,	- ACE	
			peptides	whey	inhibitors,	
				protein	bioactive	
					peptides,	
					leucine	

Clinical	Yes -	Yes -	Yes -	Yes -	Yes -	Yes -
evidence	yoghurt	calcium-	improveme	reduction of	reduction	insulinotropic
	improves	rich foods	nt of	waist	of	effect of whey
	fat loss	improve fat	metabolic	circumferen	oxidative	proteins
		loss	and	ce and trunk	stress	
			respiratory	fat	markers	
			functions			
Financing of	Private	Private	Not	Private	Private	Public
Grading	Anti, 1, 2,	Anti, 1, 2,	Anti, 1, 2,	Anti, 1, 2, 3,	Anti, 1, 2,	Anti, 1, 2, 3, 4,
IS	10	10	9	9	9	8

TABLE 3 Tabulated summary of the study results with evidence for an anti-inflammatory effect of dairy products (continued)

Reference	(Hunter et	(de	(Panagiotak	(Panagiotak	(Panagiotak	(Panagiotak
	al., 2012)	Aguilar-	os et al.,	os et al.,	os et al.,	os et al.,
		Nasciment	2010) 1	2010) 2	2010) 3	2010) 4
		o et al.,				
		2011)				
Subject	HEALTH	MET	HEALTH	HEALTH	HEALTH	HEALTH
category						
Target	Oxidative	Acute	Cardiovascu	Cardiovascu	Cardiovascu	Cardiovascu
indication	stress	ischemic	lar disease	lar disease	lar disease	lar disease
		stroke				
Target	Smokers	Elderly	Healthy	Healthy	Healthy	Healthy
population		with acute	adults	adults	adults	adults
		ischemic				
		stroke fed				
		on enteral				
		formula				
Fat content	Low-fat	N.a.	High-fat	High-fat	Low-fat	High-fat
Fermentatio	Non-	Non-	Fermented	Non-	Non-	N.a.
n	fermented	fermented		fermented	fermented	
Test product	Non-	Enteral	High dairy	High dairy	High dairy	High dairy

	supplement	feeding	diet (cheese)	diet (full-fat	diet (low fat	diet
	ed milk	formula		milk)	milk)	
		containing				
		hydrolized				
		whey				
		protein				
Control	Lemonade	Enteral	Low dairy	Low dairy	Low dairy	Low dairy
product		formula	diet (cheese)	diet (full-fat	diet (low fat	diet
		containing		milk)	milk)	
		hydrolized				
		casein				
		protein				
Test subjects	18 M, 25 F/	6 M, 4 F/	1514 M,	1514 M,	1514 M,	1514 M,
	30-63 y/	67-88 y/	1528 F / 25-	1528 F / 25-	1528 F / 25-	1528 F / 25-
	healthy	acute	50 y/	50 y/	50 y/	50 y/
	smokers	ischemic	healthy	healthy	healthy	healthy
		stroke				
Control		3 M, 12 F	456 M, 292	456 M, 292	456 M, 292	456 M, 292
subjects		/ 66-90 y /	F/33-53 y/	F/33-53 y/	F/33-53 y/	F/33-53 y/
		acute	healthy	healthy	healthy	healthy
		ischemic				
		stroke				

Diet	2 weeks	Formula /	Cheese /	Full-fat milk	Low-fat	Dairy /
	lemonade	20 mL/h /	servings/wee	/	milk /	servings/wee
	run-in / 400	5 days	k: <8; 8-10;	servings/wee	servings/wee	k: <8; 8-10;
	mL test		11-14; 🗆 14 /	k: <8; 8-10;	k: <8; 8-10;	11-14; 🗆 14 /
	product 1,2		frequency of	11-14; 🗆 14 /	11-14; 🗆 14 /	frequency of
	or 3 / 6		consumption	frequency of	frequency of	consumption
	weeks		over past	consumption	consumption	over past
	separated		year (FFQ)	over past	over past	year (FFQ)
	by 4 weeks			year (FFQ)	year (FFQ)	
	washout					
Controlled	Yes	Yes	Yes	Yes	Yes	Yes
dairy test						
Randomizati	Randomize	Randomiz	Randomized	Randomized	Randomized	Randomized
on	d	ed				
Time factor	Longitudin	Longitudin	Cross-	Cross-	Cross-	Cross-
	al	al	sectional	sectional	sectional	sectional
Study results	¹ Non-	¹ Whey	⁴ Feta	⁴ High-fat	⁴ Low-fat	⁴ Full-fat
	supplement	formula vs	cheese:	milk: corr↓	milk: corr↓	dairy: corr↓
	ed milk vs	casein	corr↓ with	with IL-6,	with CRP,	with CRP,
	lemonade:	formula:	CRP, IL-6;	TNF-α;	IL-6, TNF-α	IL-6, TNF-α
	p-selectin,	$CRP \rightarrow ;$	corr→ with	corr→ with	(not adjusted	(adjusted for
	tPA, MCP-		TNF-α	CRP	for	confounders

-	1, IL-8,	IL-6↓	(not adjusted	(not adjusted	confounders)
	VCAM →;		for	for)	
	IL-6, IL-		confounders	confounders		
	1β, TNF-α))		
	\downarrow					
Net change	3	2	2	2	3	3
in						
inflammator						
y marker						
Sustainibilit	Not	Not	Not	Not	Not	Not
y of effect	discussed	discussed	discussed	discussed	discussed	discussed
over time						
Dose-	No	No	Yes	Yes	Yes	Yes
response						
Bioavailibilit	Not	Not	Not	Not	Not	Not
y data	discussed	discussed	discussed	discussed	discussed	discussed
Biological	Discussed -	Not	Not	Not	Not	Not
plausibility	anti-	discussed	discussed	discussed	discussed	discussed
	inflammato					
	ry activities					
Bioactive	Discussed -	Not	Not	Not	Not	Not
components	whey	discussed	discussed	discussed	discussed	discussed

	proteins,					
	lactalbumin					
	,					
	lactoglobuli					
	n,					
	lactoferrin					
Clinical	N.a.	No	No - obesity,	No - obesity,	No - obesity,	No - obesity,
evidence			hypertension	hypertension	hypertension	hypertension
			and diabetes	and diabetes	and diabetes	and diabetes
			mellitus did	mellitus did	mellitus did	mellitus did
			not correlate	not correlate	not correlate	not correlate
			with the	with the	with the	with the
			consumption	consumption	consumption	consumption
			of dairy	of dairy	of dairy	of dairy
			products	products	products	products
Financing of	Public	Private	Public	Public	Public	Public
research						
Grading	Anti, 1, 2,	Anti, 1, 2,	Anti, 1, 2, 4,			
criteria	3, 4, 5, 6, 7	3, 4, 5, 6,	5, 6, 7, 9	5, 6, 7, 9	5, 6, 7, 9	5, 6, 7, 9
		7				
IS	8	8	8	8	8	8

TABLE 3 Tabulated summary of the study results with evidence for an anti-inflammatory effect of dairy products (continued)

Reference	(Panagiotak	(Panagiotak	(van Meijl	(Sofi et al.,	(Pintus et al.,	(Nestel et
	os et al.,	os et al.,	&	2010) 1	2013) 1	al., 2012)
	2010) 5	2010) 6	Mensink,			1
			2010)			
Subject	HEALTH	HEALTH	MET	HEALTH	MET	MET
category						
Target	Cardiovasc	Cardiovasc	Metabolic	Atheroscler	Hypercholesterol	Systemic
indication	ular disease	ular disease	syndrome	osis	emia	inflammat
			and			ion
			cardiovasc			
			ular			
			disease			
Target	Healthy	Healthy	Overweigh	Healthy	Mildly	Overweig
population	adults	adults	t and obese	adults	hypercholesterola	ht or
			subjects		emic subjects	obese
						subjects
Fat content	Low-fat	Low-fat	Low-fat	High-fat	High-fat	High-fat
Fermentatio	N.a.	Fermented	N.a.	Fermented	Fermented	Non-
n						fermented
Test	High dairy	High dairy	Low-fat	Pecorino	Sheep cheese	Butter

product	diet	diet (low-	dairy (milk	sheep	naturally	
		fat yoghurt)	and	cheese	enriched with	
			yoghurt)	naturally	CLA	
				high in		
				CLA		
Control	Low dairy	Low dairy	Carbohydr	Commercia	Sheep cheese	
product	diet	diet (low-	ate-rich	1 cow	with pill	
		fat yoghurt)	product	cheese low	containing 1 g of	
				in CLA	a palm oil–	
					soybean oil mix	
Test	1514 M,	1514 M,	10 M, 25 F	4 M, 6 F/	19 M, 23 F / 30-	13 /
subjects	1528 F /	1528 F/	/ 50±13 y /	30-65 y/	60 y / mild	61.6±7.6
	25-50 y/	25-50 y/	BMI: 32±4	healthy	hypercholesterola	y /
	healthy	healthy			emia	overweigh
						t or obese
Control	456 M, 292	456 M, 292				
subjects	F/33-53 y	F/33-53 y				
	/ healthy	/ healthy				
Diet	Low-fat	Low-fat	Milk (500	Cheese /	Naturally	50 g
	dairy /	yoghurt /	mL/d),	200 g/week	enriched sheep	butter /
	servings/we	servings/we	yoghurt	/ 10 weeks	cheese or control	postprandi
	ek: <8; 8-	ek: <8; 8-	(150 g/d)/		cheese / 90 g/d /	al

	10; 11-14;	10; 11-14;	8 weeks		3 weeks /	challenge
	□14 /	□14/			between 3 weeks	study
	frequency	frequency			washout	
	of	of				
	consumptio	consumptio				
	n over past	n over past				
	year (FFQ)	year (FFQ)				
Controlled	Yes	Yes	Yes	Yes	Yes	No
dairy test						
Randomizat	Randomize	Randomize	Randomize	Non-	Randomized	N.a.
ion	d	d	d	randomized		
Time factor	Cross-	Cross-	Longitudin	Longitudina	Longitudinal	Longitudi
	sectional	sectional	al	1		nal
Study	⁴ Low-fat	⁴ Low-fat	¹ Low-fat	¹ Pecorino	¹ Enriched sheep	² Butter
results	dairy: corr↓	yoghurt:	dairy vs	vs control	cheese vs control	(3h vs
	with CRP,	corr↓ with	carbohydra	cheese: IL-	cheese: IL-6	0h):
	IL-6, TNF-	TNF-α;	te-rich	6, IL-8,	(n=16), CRP	MCP-1,
	α	$corr \rightarrow with$	meal: s-	TNF-α ↓;	(n=16), leptin	MIP-1α,
	(adjusted	CRP, IL-6	<i>TNFR-2</i> ↑,	IL-10, IL-	(n=16),	ICAM-1,
	for	(not	TNF-α, s-	12 →	adiponectin	VCAM-1
	confounder	adjusted for	TNFR-1,		(n=16) →;	→; IL-6,
	s)	confounder	MCP-1,		anandamide ↓	IL-1β,

↓
issed
issed
issed

components	discussed	discussed	discussed	CLA,		discussed
				eventually		
				other		
				nutrients in		
				sheep milk		
Clinical	No -	No -	No	No	No	N.a.
evidence	obesity,	obesity,				
	hypertensio	hypertensio				
	n and	n and				
	diabetes	diabetes				
	mellitus did	mellitus did				
	not	not				
	correlate	correlate				
	with the	with the				
	consumptio	consumptio				
	n of dairy	n of dairy				
	products	products				
Financing	Public	Public	Private	Public	Public	Private
of research						
Grading	Anti, 1, 2,	Anti, 1, 2,	Anti, 1, 2,	Anti, 1, 3,	Anti, 1, 2, 3, 4, 6,	Anti, 2, 3,
criteria	4, 5, 6, 7, 9	4, 6, 7, 9	3, 4, 6, 7	4, 5, 6, 7	7	4, 5, 6
IS	8	7	7	7	7	6

TABLE 3 Tabulated summary of the study results with evidence for an anti-inflammatory effect of dairy products (continued)

Reference	(Wang et al.,	(Meyer et	(Meyer et	(Jones et	(Romeo et	(Nestel et
	2011) 1	al., 2011) 1	al., 2011) 2	al., 2013) 1	al., 2011)	al., 2012) 2
Subject	HEALTH	HEALTH	HEALTH	MET	HEALTH	MET
category						
Target	Obesity and	Coronary	Coronary	Metabolic	Cardiovascul	Systemic
indication	cardiovascul	heart	heart	syndrome	ar disease	inflammati
	ar disease	disease	disease	(MS)		on
Target	Normal-	General	General	Overweigh	Children	Overweight
population	weight and	population	population	t and obese		or obese
	overweight			MS		subjects
	adolescents			participant		
				S		
Fat content	High-fat	High-fat	High-fat	Low-fat	High-fat	High-fat
Fermentation	Non-	Non-	Non-	N.a.	Non-	Non-
	fermented	fermented	fermented		fermented	fermented
Test product	Dairy fatty	Inflammato	Inflammato	High dairy,	Dairy	Cream
	acids	ry risk	ry risk	high	product	
		dietary	dietary	calcium	enriched	
		pattern	pattern	diet plus	with	
		(IRDP),	(IRDP),	caloric	nutrients	

		containing	containing	restriction		
		butter	curd			
Control				Low dairy	Milk	
product				low		
				calcium		
				diet plus		
				caloric		
				restriction		
Test subjects	62 M, 51 F/	981 M / 45-	981 M / 45-	7 M, 13F/	27 M, 26 F/	13 /
	14.7±1.2 y /	64 y /	64 y /	52.1±1.5 y	8-14 y /	61.6±7.6 y /
	overweight	healthy	healthy	/ obese	healthy	overweight
				with MS		or obese
Control				7 M, 11F/	26 M, 25 F/	
subjects				50.1±2.7 y	8-14 y /	
				/ obese	healthy	
				with MS		
Diet	FFQ /	Diet	Diet	3–4	600 mL test	115 ml
	measuremen	assessment	assessment	servings	or control	cream /
	ts of dairy	(FFQ)	(FFQ)	low-fat	product per	postprandia
	fatty acids			dairy (milk	day / 5	l challenge
				or	months	study
				yoghurt)/d		

				and 250		
				and 350		
				mg/d Ca		
				supplement		
				or 1		
				serving of		
				yoghurt/d		
Controlled	No	No	No	Yes	No	No
dairy test						
Randomizati	N.a.	N.a.	N.a.	Randomize	N.a.	N.a.
on				d		
Time factor	Cross-	Cross-	Cross-	Longitudin	Longitudinal	Longitudin
	sectional	sectional	sectional	al		al
Study results	⁴ Dairy fatty	⁴ Butter: IL-	⁴ Curd: IL-6,	¹ High	² Milk (m5 vs	² Cream (3h
	acids: corr↓	6, IL-18,	CRP ↓; IL-	dairy diet	m0): E-	vs 0h):
	with CRP;	CRP ↓	18 →	and Ca	selectin,	MCP-1,
	corr→ with	(not	(not	(0.5h):	VCAM-1,	MIP-1a,
	TNF-α	adjusted for	adjusted for	IL6, TNF-	ICAM-1,	ICAM-1,
	(adjusted for	confounder	confounder	α, IL-1ß	WBC count	IL-6, IL-1β,
	confounders	s)	s)	→; MCP-	(leukocytes,	TNF-α,
)			1:↓	neutrophils,	CRP ↓;
					lynphocytes,	VCAM-1
					eosinophils,	\rightarrow

					monocytes)	
					→;	
					adiponectin	
					\downarrow	
Net change	1	3	2	1	1	7
in						
inflammatory						
marker						
Sustainibility	Not	Not	Not	No	Not	Not
of effect over	discussed	dicussed	dicussed		discussed	discussed
time						
Dose-	No	No	No	No	No	No
response						
Bioavailibilit	Not	Not	Not	No	Not	Not
y data	discussed	discussed	discussed		discussed	discussed
Biological	Investigated	Not	Not	Not	Not	Not
plausibility	- odd-	discussed	discussed	discussed	discussed	discussed
	numbered					
	dairy fatty					
	acids					
	accumulate					
	in					
,						

Bioactive Investigated formula Not Not Not Not Not Not Bioactive Investigated fairy fatty discussed discussed discussed discussed discussed discussed acids (15:0, acids (15:0, acids (15:0), acids (15:0) Yes - higher Yes - Yes - No No - no N.a. evidence levels of acids inflammato inflammato inflammato inflammato acids effect on Acids pattern pattern ferritin, acids ferritin, associated isgnificantl inflammato inflammato acids glucose and insulin insulin Acids yassociated insulin insulin Acids yassociated insulin insulin Acids yassociated insulin insulin Acids Acids yassociated insulin insulin Acids Acid		epididymal					
Bioactive Investigated Not Not Not Not Not Not Not Omponents Acids (15:0, 17:0) Clinical Yes - higher Yes - Yes - No No No - no Na. evidence levels of inflammato inflammato acids y fatty ry dietary ry dietary acids associated significantl significantl with lower y associated with alloxidative fattes and with alloxidative fattes an		fat rather					
Bioactive Investigated Not Not Not Not Not Not Not Components		than being					
Bioactive Investigated Not Not Not Not Not Not Omponents - dairy fatty discussed discussed discussed discussed discussed discussed discussed discussed discussed acids (15:0, 17:0) Clinical Yes - higher Yes - Yes - No No - no No - no N.a. evidence levels of inflammato inflammato effect on dairy fatty ry dietary ry dietary ry dietary acids pattern pattern ferritin, associated significantl significantl insulin in		β-oxidized					
components		in liver					
acids (15:0, 17:0) Clinical Yes - higher Yes - Yes - No No - no N.a. evidence levels of inflammato inflammato effect on dairy fatty ry dietary ry dietary albumin, acids pattern pattern ferritin, associated significantl significantl glucose and with lower y associated y associated with all-oxidative cause cause stress mortality; butter curd contributed negatively negatively	Bioactive	Investigated	Not	Not	Not	Not	Not
Clinical Yes - higher Yes - Yes - No No - no N.a. evidence levels of inflammato inflammato effect on dairy fatty ry dietary ry dietary albumin, acids pattern pattern ferritin, associated significantl significantl glucose and with lower y associated y associated with all-oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively	components	- dairy fatty	discussed	discussed	discussed	discussed	discussed
Clinical Yes - higher Yes - Yes - No No - no N.a. evidence levels of inflammato inflammato effect on dairy fatty ry dietary ry dietary ry dietary albumin, acids pattern pattern ferritin, associated significantl significantl glucose and with lower y associated y associated insulin markers of with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively		acids (15:0,					
evidence levels of inflammato inflammato effect on dairy fatty ry dietary ry dietary albumin, acids pattern pattern ferritin, associated significantl significantl glucose and with lower y associated y associated insulin markers of with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively		17:0)					
dairy fatty ry dietary ry dietary albumin, acids pattern pattern ferritin, associated significantl significantl glucose and with lower y associated y associated insulin markers of with all- with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively	Clinical	Yes - higher	Yes -	Yes -	No	No - no	N.a.
acids pattern pattern ferritin, associated significantl significantl glucose and with lower y associated y associated insulin markers of with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively	evidence	levels of	inflammato	inflammato		effect on	
associated significantl significantl glucose and with lower y associated y associated insulin markers of with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively		dairy fatty	ry dietary	ry dietary		albumin,	
with lower y associated y associated insulin markers of with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively		acids	pattern	pattern		ferritin,	
markers of with all- with all- oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively		associated	significantl	significantl		glucose and	
oxidative cause cause stress mortality; mortality; butter curd contributed contributed negatively negatively		with lower	y associated	y associated		insulin	
stress mortality; mortality; butter curd contributed contributed negatively negatively		markers of	with all-	with all-			
butter curd contributed contributed negatively negatively		oxidative	cause	cause			
contributed contributed negatively negatively		stress	mortality;	mortality;			
negatively negatively			butter	curd			
			contributed	contributed			
to the effect to the effect			negatively	negatively			
			to the effect	to the effect			

Financing of	Public	Public	Public	Public	Private	Private
research						
Grading	Anti, 4, 6, 7,	Anti, 4, 5,	Anti, 4, 5,	Anti, 1, 2,	Anti, 3, 4, 6,	Anti, 3, 4,
criteria	10, 11	6, 7, 11	6, 7, 11	3, 4, 6	7	5, 6
IS	6	6	6	6	5	5

TABLE 3 Tabulated summary of the study results with evidence for an anti-inflammatory effect of dairy products (continued)

Reference	(Nestel et	(Meyer et	(Meyer et	(Anderson	(Esmaillzad	(Nettleton et
	al., 2012) 3	al., 2011) 3	al., 2011) 4	et al.,	eh et al.,	al., 2006) 1
				2012) 1	2007) 1	
Subject	MET	HEALTH	HEALTH	HEALTH	HEALTH	HEALTH
category						
Target	Systemic	Coronary	Coronary	Insulin	Systemic	Cardiovascul
indication	inflammati	heart	heart	sensitivity	inflammatio	ar disease
	on	disease	disease	and	n	
				systemic		
				inflammati		
				on		
Target	Overweight	General	General	General	Healthy	Healthy
population	or obese	population	population	population	women	adults
	subjects					
Fat content	Low-fat	High-fat	High-fat	Low-fat	Low-fat	Low-fat
Fermentation	N.a.	Fermented	Non-	N.a.	N.a.	N.a.
			fermented			
Test product	Low-fat	Inflammato	Inflammato	Food	Dietary	Dietary
	dairy	ry risk	ry risk	cluster	patterns	patterns low-
		dietary	dietary	including	including	fat milk and

P), dairy dairy ning products products nsed and Food cluster high-fat
nsed and Food cluster
Food cluster
Food
Food cluster
cluster
high-fat
dairy
products
I / 45- 1751 M 486 F / 40- 2407 M,
and F / 70- 60 y / 2682 F / 45-
y 79 y/ healthy 84 y/
healthy healthy
Diet Diet Diet
ment assessment assessment assessment
(FFQ) (FFQ) (FFQ)
r

	l challenge					
	study					
Controlled	No	No	No	No	No	No
dairy test						
Randomizati	N.a.	N.a.	N.a.	N.a.	N.a.	N.a.
on						
Time factor	Longitudin	Cross-	Cross-	Cross-	Cross-	Cross-
	al	sectional	sectional	sectional	sectional	sectional
Study results	² Low-fat	⁴ Cheese:	⁴ Condensed	⁵ Cluster	⁷ Pattern	⁷ Pattern
	dairy (3h vs	CRP↓; IL-	milk and	including	including	including
	0h): MCP-	6 and IL-18	cream: CRP	low-fat	low-fat	low-fat milk
	1, MIP-1α,	\rightarrow	↓; IL-6, IL-	dairy vs	dairy: corr↓	and yoghurt:
	ICAM-1,	(not	18 →	cluster with	with CRP,	corr↓ with
	VCAM-1	adjusted for	(not	high-fat	VCAM-1;	CRP, IL-6,
	→; IL-6,	confounder	adjusted for	dairy	corr→ with	ICAM-1;
	IL-1β,	s)	confounder	products:	TNF-α,	corr→ with
	TNF-α,		s)	IL-6 ↓;	SAA, IL-6,	E-selectin
	CRP ↓			TNF-α,	E-selectin,	(adjusted for
				$\text{CRP} \rightarrow$	ICAM-1	confounders)
					(after	
					adjustment	
					for	

					confounders	
)	
Net change	4	1	1	1	2	3
in						
inflammatory						
marker						
Sustainibility	Not	Not	Not	Not	Not	Not
of effect over	discussed	discussed	discussed	discussed	discussed	discussed
time						
Dose-	No	No	No	No	No	No
response						
Bioavailibilit	Not	Not	Not	Not	Not	Not
y data	discussed	discussed	discussed	discussed	discussed	discussed
Biological	Not	Not	Not	Discussed -	Not	Not
plausibility	discussed	discussed	discussed	interaction	discussed	discussed
				between		
				dietary		
				pattern and		
				PPAR-γ		
				genotype		
Bioactive	Not	Not	Not	Not	Not	Not
components	discussed	discussed	discussed	discussed	discussed	discussed

Clinical	N.a.	Yes -	Yes -	Yes -	N.a.	No
evidence		inflammato	inflammato	cluster		
		ry dietary	ry dietary	containing		
		pattern	pattern	low-fat		
		significantl	significantl	dairy		
		y associated	y associated	associated		
		with all-	with all-	with greater		
		cause	cause	insulin		
		mortality;	mortality;	sensitivity		
		cheese	condensed	than cluster		
		contributed	milk and	with high-		
		negatively	cream	fat dairy		
		to the effect	contributed	products		
			negatively			
			to the effect			
Financing of	Private	Public	Public	Public	Public	Public
research						
Grading	Anti, 3, 4,	Anti, 4, 6,	Anti, 4, 6,	Anti, 6, 7,	Anti, 5, 6, 7	Anti, 5, 6, 7
criteria	5, 6	7, 11	7, 11	11		
IS	5	5	5	4	4	4

TABLE 3 Tabulated summary of the study results with evidence for an anti-inflammatory effect of dairy products (continued)

Reference	(Dawczynski et al., 2013)	(Hlebowicz et al., 2011) 1
Subject category	MET	HEALTH
Target indication	Hypertriacylglyceridemia and	Cardiovascular disease
	CVD	
Target population	Adults with	General population
	hypertriacylglyceridemia and	
	risk of CVD	
Fat content	High-fat	Low-fat
Fermentation	Fermented	Non-fermented
Test product	Two yoghurts differently	Dietary pattern including
	enriched with fat (fish oil)	low-fat milk
Control product	Yoghurt	Dietary pattern including
		high-fat dairy products
		(cheese, whole milk, butter)
Test subjects	1) 17 / 61.6±11.9 y /	2040 M, 2959 F / 45-68 y /
	hypertriacylglyceridemia	healthy
	2) 16 / 61.8±7.1 y /	
	hypertriacylglyceridemia	
Control subjects	14 / 58.2±7.4 y /	
	hypertriacylglyceridemia	

Diet	125 g control or test product	Diet assessment (FFQ) / 13 y
	/ 10 weeks	of follow-up for CVD events
Controlled dairy test	No	No
Randomization	N.a.	N.a.
Time factor	Longitudinal	Cross-sectional
Study results	² Yoghurt (w10 vs w0): CRP,	⁵ Low-fat milk pattern vs
	IFN-□ (T-cells $ex\ vivo$) \rightarrow ;	high-fat dairy pattern: WBC
	TNF-α (T-cells <i>ex vivo</i>) ↓	\downarrow ; CRP \rightarrow
Net change in inflammatory	1	1
marker		
Sustainibility of effect over time	Not discussed	N.a.
Dose-response	No	No
Bioavailibility data	Not discussed	Not discussed
Biological plausibility	Not discussed	Not discussed
Bioactive components	Discussed - PUFA	Not discussed
Clinical evidence	No - cardiovascular risk	No
	factors not changed after 10	
	weeks	
Financing of research	Public	Public
Grading criteria	Anti, 3, 4, 7	Anti, 6, 7
IS	4	3

TABLE 4 Tabulated summary of the study results with evidence for a pro-inflammatory effect of dairy products

Reference	(Iacono et	(Kristjansson	(Rebholz et	(Henderson	(Ulsemer	(Kagalwalla
	al., 1998)	et al., 2007)	al., 2013)	et al., 2012)	et al.,	et al., 2011)
					2012)	
Subject	HYPER	GIT	HEALTH	HYPER	HEALTH	HYPER
category						
Target	Chronic	Coeliac	Cardiovasc	Food	General	Food
indication	constipation	disease	ular disease	allergy	health	allergy
			risk			
Target	Children	Subjects with	Healthy	Subjects	General	Children
population	with chronic	coeliac	adults	with food	population	with
	constipation	disease		allergies		eosinophilic
						esophagitis
Fat content	High-fat	N.a.	N.a.	N.a.	N.a.	N.a.
Fermentatio	Non-	Non-	Non-	N.a.	N.a.	N.a.
n	fermented	fermented	fermented			
Test	Milk	Milk powder,	Milk	SFED (six	Spray-	SFED (six
product		purified	protein	food	dried	food
		bovine casein	supplement	elimination	pasteurised	elimination
		and □-		diet): milk,	fermented	diet): cow's

		lactalbumin		soy, wheat,	milk	milk, soy,
				egg,	products	wheat, egg,
				peanuts/tree	with	peanuts/tree
				nuts,	inactivated	nuts,
				seafood	B.	seafood
					xylanisolv	
					ens	
Control	Soy milk		Carbohydra		Milk	
product			te placebo		powder	
Test	29 M, 36 F/	6 M, 14 F/	34 F, 68 M	$98 / \leq 21 \text{ y} /$	47 M, 43 F	25 M, 11 F/
subjects	34.6±17.1	25-68 y/	/46 y/	eosinophilic	/ 18-65 y/	7.6±4.3 y/
	mo /	coeliac	healthy	esophagitis	healthy	eosinophilic
	constipation	disease				esophagitis
	and perianal					
	lesions with					
	pain on					
	defecation					
Control		10 M, 5 F/			12 M, 16 F	
subjects		19-58 y/			/ 18-65 y/	
		healthy			healthy	
Diet	470±135	Single rectal	Milk	SFED / 4	2 weeks	SFED $/ \ge 6$
	mL/d Milk	challenge	protein or	months	depletion /	weeks /

	and	with wheat	placebo / 40		1 serving/d	reintroducti
	450±120	gluten, dried	g/d / 2		/ 6 weeks	on of foods
	mL/d soy	cow's milk	weeks		interventio	
	milk / 15	powder in	intervention		n / 2	
	days	NaCl, α-	separated		weeks	
		lactalbumin	by 3 weeks		recovery	
		and casein	washout			
Controlled	Yes	Yes	Yes	No	No	No
dairy test						
Randomizat	Randomized	Randomized	Randomize	N.a.	N.a.	N.a.
ion			d			
Time factor	Longitudinal	Longitudinal	Longitudina	Longitudina	Longitudin	Longitudina
			1	1	al	1
Study	¹ Milk vs soy	³ Milk	¹ Milk	⁶ SFED (m4	² Milk	⁶ SFED
results	milk: IgE,	(coeliac vs	protein vs	vs baseline):	powder	(≥w6 vs
	infiltration	healthy):	carbohydrat	eosinophilic	(w3, w6,	baseline):
	of	Myeloperoxid	e: CRP, IL-	esophagitis	w8 vs w0):	eosinophilic
	inflammator	ase (MPO),	6, TNF-α,	(eosinophil	ex vivo	esophagitis
	y cells in	NO ↑;	VCAM-1,	count) ↓	phagocytot	(eosinophil
	rectal	Eosinophil	ICAM-1,		ic activity	count) ↓
	mucosa ↑;	cationic	leptin,		of	
	$CRP \rightarrow$	protein (ECP)	adiponectin		granulocyt	

		\rightarrow	→; E-		es (w3), <i>ex</i>	
			selectin ↑		vivo NK	
					cell	
					activities	
					(w3, w6),	
					TNF-α	
					(w8) ↑; all	
					other	
					conditions	
					including	
					CRP,	
					WBC and,	
					lymphocyt	
					e counts	
					\rightarrow	
Net change	-2	-2	-1	-1	-3	-1
in						
inflammator						
y marker						
Sustainibilit	N.a.	Not discussed	Not	N.a.	No	N.a.
y of effect			discussed			

over time						
Dose-	No	No	No	No	No	No
response						
Bioavailibili	Not	Not discussed	Not	Not	Not	Not
ty data	discussed		discussed	discussed	discussed	discussed
Biological	Discussed -	Discussed -	Not	Investigated	Not	Investigated
plausibility	hypersensiti	innate	discussed	- re-	discussed	- re-
	vity and	immune		occurrence		occurrence
	infiltration	response to		eosinophilic		eosinophilic
	of	milk protein,		esophagitis		esophagitis
	eosinophils	and casein		after milk		after milk
	influence			reintroducti		reintroducti
	constipation			on		on
Bioactive	Not	Investigated -	Not	Not	Not	Discussed -
components	discussed	bovine casein	discussed	discussed	discussed	milk
						antigens
						(peptides)
Clinical	Yes - anal	N.a.	No -	Yes - SFED	No -	Yes -
evidence	lesions		cardiovascu	reduces	control	reduction
	tended to		lar risk	endoscopic	milk	endoscopic
	disappear		factors do	and	powder	and
	after		not change	histopatholo	did not	histopatholo

	removal of		significantl	gic features	modify	gic features
	milk and		y	of	liver	of
	introduction			eosinophilic	enzyme	eosinophilic
	of soy milk			esophagitis	values	esophagitis
Financing	Not	Private and	Public	Private	Private	Private and
of research	presented	Public				Public
Grading	Pro, 1, 2, 3,	Pro, 1, 2, 3, 4,	Pro, 1, 2, 3,	Pro, 3, 6, 7,	Pro, 3, 4,	Pro, 3, 6, 7,
criteria	4, 5, 6, 7, 11	5, 6, 7, 10	4, 6, 7	10, 11	5, 6, 7	10, 11
IS	-9	-9	-7	-6	-6	-6

TABLE 4 Tabulated summary of the study results with evidence for a pro-inflammatory effect of dairy products (continued)

Reference	(Spergel et	(Gonsalves	(Kagalwall	(Deopurkar	(Jyonouchi et	(Meyer et
	al., 2005)	et al., 2012)	a et al.,	et al.,	al., 2002)	al., 2007)
			2012)	2010)		
Subject	HYPER	HYPER	GIT	HEALTH	GIT	HEALTH
category						
Target	Food	Food allergy	Eosinophili	Postprandi	Gastrointesti	Systemic
indication	allergy		c	al	nal	immunity
			esophageal	oxidative	symptoms	
			inflammati	stress and		
			on	inflammati		
				on		
Target	Subjects	Adults with	Children	General	Children	Healthy
population	allergic to	eosinophilic	with	population	with autism	subjects
	milk and	esophagitis	eosinophili		spectrum	
	patients		c		disorder	
	with		esophageal			
	eosinophilic		inflammati			
	esophagitis		on			
Fat content	N.a.	N.a.	N.a.	High-fat	N.a.	N.a.
Fermentatio	N.a.	N.a.	N.a.	Non-	Non-	Fermented

			fermented	fermented	
Elimination	SFED (six	Milk	Cream	Milk protein	Probiotic
diet	food				yoghurt
excluding	elimination				
milk	diet): milk,				
	soy, wheat,				
	egg,				
	peanuts/tree				
	nuts, seafood				
			Water		Convention
					al yoghurt
100 M, 46	25 M, 25 F/	12 M, 5 F/	48 / 25-47	59 M,13 F/	33 F / 22-29
F/	19-76 y/	5.5±3.2 y/	y / healthy	1-17 y/	y / healthy
6.50±4.50 y	eosinophilic	eosinophili		autism	
/	esophagitis	c		spectrum	
eosinophilic		esophagitis		disorder	
esophagitis				(ASD)	
				17 M, 7 F/	
				0.5-13 y/	
				dietary	
				protein	
				intolerance	
	diet excluding milk 100 M, 46 F/ 6.50±4.50 y / eosinophilic	excluding elimination milk diet): milk, soy, wheat, egg, peanuts/tree nuts, seafood 100 M, 46 25 M, 25 F/ F/ 19-76 y/ 6.50±4.50 y eosinophilic / esophagitis eosinophilic	diet food excluding elimination milk diet): milk, soy, wheat, egg, peanuts/tree nuts, seafood 100 M, 46 25 M, 25 F / 12 M, 5 F / F / 19-76 y / 5.5±3.2 y / 6.50±4.50 y eosinophilic eosinophili / esophagitis c eosinophilic esophagitis	Elimination SFED (six Milk Cream diet food excluding elimination milk diet): milk, soy, wheat, egg, peanuts/tree nuts, seafood Water 100 M, 46 25 M, 25 F/ 12 M, 5 F/ 48 / 25-47 F/ 19-76 y/ 5.5±3.2 y/ y/ healthy 6.50±4.50 y eosinophilic eosinophilic / esophagitis c esophagitis	Elimination SFED (six Milk Cream Milk protein diet food excluding elimination milk diet): milk, soy, wheat, egg, peanuts/tree nuts, seafood Water 100 M, 46 25 M, 25 F / 12 M, 5 F / 48 / 25-47 59 M,13 F / F / 19-76 y / 5.5±3.2 y / y / healthy 1-17 y / 6.50±4.50 y eosinophilic eosinophilic esophagitis c esophagitis c esophagitis c esophagitis c esophagitis (ASD) 17 M, 7 F / 0.5-13 y / dietary protein

Randomizati	N.a.	N.a.	N.a.	Non-	Non-	N.a.
dairy test						
Controlled	No	No	No	Yes	Yes	No
						weeks
						yoghurt / 2
						200 g/d
						washout /
		2 weeks			protein)	weeks
		group every		study	(e.g.milk	weeks / 2
		of one food		l challenge	allergens	yoghurt / 2
		n by addition		postprandia	dietary	probiotic
	4-8 weeks	reintroductio	/ 6 weeks	/	(PBMCs) by	l or
	diet milk /	weeks /	elimination	or 300 mL	activation of	conventiona
Diet	Elimination	SFED / 6	Milk	33 g cream	Ex vivo	100 g/d
					siblings	
					healthy	
					0.5-2 y/	
					18 M, 8 F/	
					healthy	
subjects					1-16 y /	
Control					12 M, 3 F/	
					(DPI)	

on				randomize	randomized	
				d		
Time factor	Longitudina	Longitudinal	Longitudin	Longitudin	Cross-	Longitudina
	1		al	al	sectional	1
Study results	⁶ Milk	⁶ SDEF (w6	² Milk	² Cream	³ Milk protein	² Conventio
	elimination	vs baseline):	elimination	(1h, 3h and	(ex vivo:	nal yoghurt
	diet (w4-8	eosinophilic	(w6 vs w0)	5 h vs 0h):	ASD and	(w2 or w4
	vs	esophagitis ↓	:	TNF-α:↑ at	DPI PBMCs	vs w0) (<i>ex</i>
	baseline):		eosinophil	1h and 3h;	vs control	vivo blood
	eosinophilic		count ↓	\rightarrow at 5h;	PBMCs):	culture):
	esophagitis			IL-1 β : \rightarrow	TNF-α, IFN-	TNF-α, IL-
	\downarrow			at 1h; ↑ at	\Box \(\frac{1}{2}\), IL-5 \(\rightarrow\)	1β, ↑; IFN-
				3h and 5h;		□, IL-10,
				IL-6: \rightarrow at		IL-6 \rightarrow
				1h, 3h and		
				5h; NF-κB:		
				↑ at 3h		
Net change	-1	-1	-1	-3	-2	-2
in						
inflammator						
y marker						
Sustainibilit	N.a.	N.a.	Not	Not	Discussed	No

	No	No	No	No	No
	Not	Not	Not	Not	Not
ssed	discussed	discussed	discussed	discussed	discussed
igated	Investigated	Not	Discussed -	Discussed -	Discussed -
	-	discussed	LPS and	macrophage	Th1
rence	reintroductio		TLR-4	activation,	promoting
nptons	n of milk		signaling,	aberrant	activity of
nilk	leads to re-		SOCS3	innate	lactic acid
oducti	occurrence		and TLR-4	immune	bacteria
	eosinophilic		expression	responses	
	esophagitis			against LPS	
ssed -	Discussed -	Not	Discussed -	Investigated -	Not
egg,	milk and	discussed	saturated	β-	discussed
nd	wheat		fats	lactoglobulin	
				, casein, α-	
				lactalbumin	
	Yes -	Yes -	No -	N.a.	N.a.
ase of	reduction of	histological	increase		
coms	endoscopic	remission	free fatty		
1	rence mptons milk oducti assed - egg, nd	Not Seed discussed tigated Investigated - rence reintroductio mptons n of milk leads to re- oducti occurrence eosinophilic esophagitis Seed - Discussed - egg, milk and md wheat Yes - ase of reduction of	Not Not ssed discussed discussed tigated Investigated Not - discussed rence reintroductio mptons n of milk milk leads to re- oducti occurrence eosinophilic esophagitis ssed - Discussed - Not egg, milk and discussed mulk wheat Yes - Yes - ase of reduction of histological	Not Not Not Not Sessed discussed discussed discussed discussed discussed discussed - Discussed - TLR-4 signaling, solution of milk signaling, solution of milk eads to resophagitis sessed - Discussed - Not Discussed - egg, milk and discussed saturated and wheat Yes - Yes - No - ase of reduction of histological increase	Not Not Not Not Not Sessed discussed discussed discussed discussed discussed discussed discussed discussed - Discussed - Discussed - Discussed - TLR-4 activation, aberrant signaling, aberrant soducti occurrence and TLR-4 immune eosinophilic expression responses against LPS assed - Discussed - Not Discussed - Investigated - egg, milk and discussed saturated β- and wheat I fats lactoglobulin , casein, α- lactalbumin Yes - Yes - No - N.a.

	of	and	after 6	acids,		
	eosinophilic	histopatholo	weeks milk	triglycerise		
	esophagitis	gic features	elimination	s, VLDL,		
	and	of	diet	and		
	esophageal	eosinophilic		endotoxin,		
	inflammatio	esophagitis		no effect		
	n			on total		
				cholesterol		
Financing of	Public	Public	Public	Public	Public	Private and
research						public
Grading	Pro, 3, 6, 7,	Pro, 3, 6, 7,	Pro, 3, 6, 7,	Pro, 1, 3, 4,	Pro, 1, 4, 5,	Pro, 3, 4, 5,
criteria	10, 11	10, 11	11	5, 6	7, 10	7
IS	-6	-6	-5	-6	-6	-5

TABLE 4 Tabulated summary of the study results with evidence for a pro-inflammatory effect of dairy products (continued)

Reference	(Unknown,	(Anderson	(Nettleton et	(Vazquez-	(Hlebowicz	(Esmaillzad
	1994) 1	et al.,	al., 2006) 2	Agell et al.,	et al., 2011)	eh et al.,
		2012) 2		2013)	2	2007) 2
Subject	GIT	HEALTH	HEALTH	HEALTH	HEALTH	HEALTH
category						
Target	Ulcerative	Insulin	Cardiovascul	Systemic	Cardiovascul	Systemic
indication	colitis	sensitivity	ar disease	inflammati	ar disease	inflammatio
		and		on		n
		systemic				
		inflammati				
		on				
Target	General	General	Healthy	Healthy	General	Healthy
population	population	population	adults	adults	population	women
Fat content	High-fat	High-fat	High-fat	High-fat	High-fat	High-fat
Fermentation	N.a.	N.a.	Fermented	Non-	N.a.	N.a.
				fermented		
Test product	Dietary	Food	Dietary	Cocoa	Dietary	Dietary
	patterns	cluster	patterns	powder	pattern:	patterns
	including	including	including	with milk	'Milk fat'	including

	'Western	high-fat	cheese	or water	including	high-fat
	food'	dairy			cheese,	dairy
	(includes	products			whole milk,	products
	butter,				butter	
	cheese)					
Control		Food		Whole milk	Dietary	
product		cluster			patterns:	
		including			'Many foods	
		low-fat			and drinks'	
		dairy			and 'Low-fat	
		products			and high-	
					fibre'	
					including	
					low-fat milk	
Test subjects	56 M, 45 F	1751 / 70-	2407 M,	9 F, 9 M /	2040 M,	486 F / 40-
	/ 10-42 y /	79 y /	2682 F / 45-	19-49 y /	2959 F / 45-	60 y /
	ulcerative	healthy	84 y /	healthy	68 y /	healthy
	colitis		healthy		healthy	
Control	79 M, 64 F					
subjects	/ 10-42 y /					
	other					
	diseases					

Diet	Food	Diet	Diet	Washout /	Diet	Diet
	frequency	assessment	assessment	40 g cocoa	assesment	assessment
	questionnai	(FFQ)	(FFQ)	in 250 mL	(FFQ) / 13 y	(FFQ)
	re (FFQ)			whole milk	follow-up	
				or 40 g	for CVD	
				cocoa in	events	
				250 mL		
				water or		
				250 mL		
				whole milk		
Controlled	No	No	No	No	No	No
dairy test						
Randomizati	N.a.	N.a.	N.a.	N.a.	N.a.	N.a.
on						
Time factor	Cross-	Cross-	Cross-	Longitudin	Cross-	Cross-
	sectional	sectional	sectional	al	sectional	sectional
Study results	³ Western	⁵ Cluster	⁷ Pattern	² Whole	⁵ 'Milk fat'	⁷ Pattern
	food	including	including	milk (6h vs	pattern vs	including
	(butter,	high-fat	cheese: corr↑	0h): NF-	'Many food	high-fat
	cheese)	dairy	with CRP,	$\Box B$	and drinks'	dairy
	(ulcerative	products vs	IL-6; corr→	activation	and 'Low-fat	products:
	colitis	cluster	with ICAM-	in PBMC	and high-	corr↑ with

	patients vs	including	1, E-selectin	↑; ICAM-1,	fibre'	IL-6, SAA;
	control	low-fat	(adjusted for	VCAM-1,	patterns:	$corr \rightarrow with$
	subjects): ↑	dairy): IL-6	confounders)	E-selectin	WBC ↑;	CRP, TNF-
		↑; TNF-α,		\rightarrow	$CRP \rightarrow$	α, Ε-
		$\text{CRP} \rightarrow$				selectin,
						ICAM-1,
						VCAM-1
						(after
						adjustment
						for
						confounders
)
Net change	-1	-1	-2	-1	-1	-2
in						
inflammator						
y marker						
Sustainibility	N.a.	Not	Not	Not	N.a.	Not
of effect over		discussed	discussed	discussed		discussed
time						
Dose-	Yes - FFQ	No	No	No	No	No
response	with					
	consumptio					
	consumptio					

	n from					
	'none or					
	hardly' to					
	'almost					
	daily'					
Bioavailibilit	Not	Not	Not	Not	Not	Not
y data	discussed	discussed	discussed	discussed	discussed	discussed
Biological	Not	Discussed -	Not	Discussed -	Not	Not
plausibility	discussed	no	discussed	postprandia	discussed	discussed
		interaction		l NF-kB		
		between		activation		
		dietary		after high-		
		pattern and		fat meal		
		PPAR-γ				
		genotype				
Bioactive	Not	Not	Not	Not	Not	Not
components	discussed	discussed	discussed	discussed	discussed	discussed
Clinical	No	Yes -	N.a.	No	N.a.	N.a.
evidence		cluster				
		containing				
		low-fat				
		dairy				

		associated				
		with				
		greater				
		insulin				
		sensitivity				
		than cluster				
		with high-				
		fat dairy				
		products				
Financing of	Public	Public	Public	Public	Public	Public
research						
Grading	Pro, 6, 7, 9	Pro, 6, 7,	Pro, 5, 6, 7	Pro, 3, 4, 6	Pro, 6, 7	Pro, 5, 6, 7
criteria		11				
IS	-4	-4	-4	-4	-3	-4

TABLE 4 Tabulated summary of the study results with evidence for a pro-inflammatory effect of dairy products (continued)

Reference	(Nettleton et al., 2006) 3
Subject category	HEALTH
Target indication	Cardiovascular disease
Target population	Healthy adults
Fat content	High-fat
Fermentation	N.a.
Test product	Dietary pattern including cheese, whole
	milk and yoghurt
Control product	
Test subjects	2407 M, 2682 F / 45-84 y / healthy
Control subjects	
Diet	Diet assessment (FFQ)
Controlled dairy test	No
Randomization	N.a.
Time factor	Cross-sectional
Study results	⁷ Pattern including cheese, whole milk, and
	yoghurt: corr↑ with ICAM-1; corr→ with
	CRP, IL-6, E-selectin (adjusted for
	confounders)

Net change in inflammatory marker	-1
Sustainibility of effect over time	Not discussed
Dose-response	No
Bioavailibility data	Not discussed
Biological plausibility	Not discussed
Bioactive components	Not discussed
Clinical evidence	N.a.
Financing of research	Public
Grading criteria	Pro, 6, 7
IS	-3

TABLE 5 Tabulated summary of the study results with no evidence for an inflammatory modulation of dairy products

Reference	(Beavers et	(Monagas et	(Dawczyns	(Raff et al.,	(Lee et al.,	(Unknown,
	al., 2009)	al., 2009)	ki et al.,	2008)	2007)	1994) 2
			2009)			
Subject	HEALTH	MET	OTHER	HEALTH	MET	GIT
category						
Target	Systemic	Cardiovascu	Rheumatoi	Cardiovascu	Mild	Ulcerative
indication	inflammation	lar disease	d arthritis	lar disease	hypertensi	colitis
	and oxidative		(RA)	and diabetes	on	
	stress					
Target	Postmenopau	Patients at	Adults with	Healthy	Mildly	General
population	sal healthy	high risk of	RA	subjects	hypertensi	population
	women	cardiovascul			ve subjects	
		ar disease				
Fat content	Low-fat	Low-fat	High-fat	High-fat	Low-fat	High-fat
Fermentatio	Non-	Non-	Fermented	Non-	Non-	Non-
n	fermented	fermented		fermented	fermented	fermented
Test product	Soy milk	Skim milk	n-3	CLA-	Skim milk	Milk
		with cocoa	supplement	enriched	+ whey	

		powder	ed dairy	butter	peptides	
			(yoghurt,		powder	
			cheese,			
			butter)			
Control	Low-fat milk	Skim milk	Convention	Butter with	Skim milk	
product			al dairy	low CLA		
			products			
			(yoghurt,			
			cheese and			
			butter)			
Test subjects	16 F /	45 / ≥55 y /	37 F, 2 M /	18 M / 27-35	14 M, 13 F	56 M, 45 F
	53.88±3.65 y	cardiovascul	57.9±10.8 y	y / healthy	/	/ 10-42 y /
	/ healthy	ar disease	/ RA		55.3±10.4	ulcerative
					y / mild	colitis
					hypertensi	
					on	
Control	15 F /			20 M /19-33	16 M, 10 F	79 M, 64 F
subjects	55.00±3.12 y			y / healthy	/	/ 10-42 y /
	/ healthy				47.8±11.6	other
					y / mild	diseases
					hypertensi	
					on	

Diet	3 servings/d	500 mL/d	200 g	CLA	125 mL/d /	Food
	low-fat milk	milk or milk	yoghurt, 30	enriched	12 weeks	frequency
	or soy milk /	+40 g/d	g cheese	butter (4.6		questionnai
	28 days	cocoa	and 20-30 g	g/d CLA) or		re (FFQ)
		powder / 4	butter daily	control		
		weeks	/ 3 months	butter (0.3		
			for test and	g/d CLA) / 5		
			3 month	weeks		
			control			
			products /			
			washout 8			
			weeks			
Controlled	No	No	No	No	No	No
dairy test						
Randomizati	N.a.	N.a.	N.a.	N.a.	N.a.	N.a.
on						
Time factor	Longitudinal	Longitudinal	Longitudin	Longitudinal	Longitudin	Cross-
			al		al	sectional
Study results	² Low-fat mik	² Skim milk	² Control	² Control	² Skim	³ Milk
	(d28 vs d0):	(4w vs w0):	dairy (w12	butter (w5	milk (w12	consumptio
	TNF-α, IL-	P-selectin,	vs w0):	vs w0):	vs w0):	n
	1 β , IL-6 →	E-selectin,	CRP,	CRP, PAI-1	IL-6, CRP,	(ulcerative

		ICAM-1,	lymphocyte	\rightarrow	PAI-1,	colitis
		VCAM-1,	S,		leucocyte	patients vs
		MCP-1, IL-	monocytes,		number \rightarrow	control
		6, CRP, T-	granulocyte			subejcts):
		lymphocyte	$s \rightarrow$			\rightarrow
		adhesion				
		markers,				
		monocyte				
		adhesion				
		$markers \rightarrow$				
Net change	0	0	0	0	0	0
in						
inflammator						
y marker						
Sustainibilit	Not discussed	Not	Not	Not	Not	N.a.
y of effect		discussed	discussed	discussed	discussed	
over time						
Dose-	No	No	No	No	No	Yes - FFQ
response						with
						consumptio
						n from
						'none or

						hardly' to
						ʻalmost
						daily'
Bioavailibilit	Not discussed	Not	Not	Not	Not	Not
y data		discussed	discussed	discussed	discussed	discussed
Biological	Not discussed	Not	Not	Not	Not	Not
plausibility		discussed	discussed	discussed	discussed	discussed
Bioactive	Not discussed	Not	Not	Not	Not	Not
components		discussed	discussed	discussed	discussed	discussed
Clinical	No - no effect	Yes - BMI	No - no	Yes - FVIIc,	Yes -	No
evidence	on oxidative	and weight	changes in	HOMA-R	blood	
	stress	decreased,	joint	increased	pressure	
	markers	blood	inflammati		significant	
		pressure and	on		ly reduced,	
		heart rate			metabolic	
		unchanged			variables	
					unchanged	
Financing of	Private and	Public	Private and	Public	Public	Public
research	public		public			
Grading	None	None	None	None	None	None
criteria						
IS	0	0	0	0	0	0

TABLE 5 Tabulated summary of the study results with no evidence for an inflammatory modulation of dairy products (continued)

Reference	(Nestel et	(Nestel et	(Sofi et al.,	(Wang et	(van Bussel	(Meyer et
	al., 2012) 4	al., 2012) 5	2010) 2	al., 2011) 2	et al., 2011)	al., 2011) 5
Subject	MET	MET	HEALTH	HEALTH	HEALTH	HEALTH
category						
Target	Systemic	Systemic	Atherosclero	Obesity and	Endothelial	Coronary
indication	inflammati	inflammati	sis	cardiovascul	dysfunction	heart
	on	on		ar disease	and low	disease
					grade	
					inflammatio	
					n	
Target	Overweight	Overweight	Healthy	Normal-	Healthy	Overall
population	or obese	or obese	adults	weight and	adults	population
	subjects	subjects		overweight		
				adolescents		
Fat content	High-fat	High-fat	High-fat	High-fat	N.a.	N.a.
Fermentation	Fermented	Fermented	Fermented	Non-	N.a.	Non-
				fermented		fermented
Test product	Cheese	Yoghurt	Pecorino	Dietary	Dairy	Inflammato
			sheep cheese	dairy fatty	products	ry risk
			naturally rich	acids		dietary

			in CLA			pattern
						(IRDP)
						containing
						milk
Control			Commercial			
product			cow cheese			
			low in CLA			
Test subjects	13 /	13 /	4 M, 6 F/	112 M, 80 F	140 M, 161	981 M / 45-
	61.6±7.6 y	61.6±7.6 y	30-65 y/	/ 15.2±1.2 y	F / 42.5±0.6	64 y /
	/	/	healthy	/ normal	y / healthy	healthy
	overweight	overweight		weight		
	or obese	or obese				
Control						
subjects						
Diet	110 g	600 mL	Cheese / 200	FFQ /	510±334 g	Diet
	cheddar	yoghurt /	g per week /	measuremen	dairy/d	assessment
	cheese /	postprandia	10 weeks	t of dairy	(dietary	(FFQ)
	postprandia	l challenge		fatty acids	history	
	l challenge	study			method 6y	
	study				before	
					biomarker	
					determinatio	

					n) /	
					measuremen	
					t of serum	
					biomarkers	
Controlled	No	No	No	No	No	No
dairy test						
Randomizati	N.a.	N.a.	N.a.	N.a.	N.a.	N.a.
on						
Time factor	Longitudin	Longitudin	Longitudinal	Cross-	Cross-	Cross-
	al	al		sectional	sectional	sectional
Study results	² Cheese	² Yohgurt	² Control	⁴ Dairy fatty	⁴ Dairy:	⁴ Milk: IL-6,
	(3h vs 0h):	(3h vs 0h):	cheese (w10	acids:	$corr \rightarrow with$	CRP, IL-18
	MCP-1,	MCP-1,	vs w0): IL-	$corr \rightarrow with$	von	\rightarrow
	MIP-1α,	MIP-1α,	6, IL-8,	CRP, TNF-	Willebrand	(not
	ICAM-1,	ICAM-1,	TNF-α, IL-	α (adjusted	factor, E-	adjusted for
	VCAM-1,	VCAM-1,	10, IL-12 →	for	selectin,	confounder
	IL-6, IL-	IL-6, IL-		confounders	VCAM-1,	s)
	1β, TNF-α,	1β, TNF-α,)	ICAM-1,	
	$CRP \rightarrow$	$\operatorname{CRP} \to$			CRP, SAA,	
					IL-6, IL-8,	
					TNF-α	
					(corrected	

					for	
					confounders	
)	
Net change	0	0	0	0	0	0
in						
inflammator						
y marker						
Sustainibility	Not	Not	Not	Not	Not	Not
of effect	discussed	discussed	discussed	discussed	discussed	dicussed
over time						
Dose-	No	No	No	No	No	No
response						
Bioavailibilit	Not	Not	Not	Not	Not	Not
y data	discussed	discussed	discussed	discussed	discussed	discussed
Biological	Not	Not	Not	Investigated	Not	Not
plausibility	discussed	discussed	discussed	- odd-	discussed	discussed
				numbered		
				dairy fatty		
				acids		
				accumulate		
				in		
				epididymal		

				fat rather		
				than being		
				β-oxidized		
				in liver in		
				obese but		
				not normal-		
				weight		
Bioactive	Not	Not	Not	Investigated	Not	Not
components	discussed	discussed	discussed	- dairy fatty	discussed	discussed
				acids (15:0,		
				17:0)		
Clinical	N.a.	N.a.	No	Yes - higher	No	Yes -
evidence				levels of		inflammato
				dairy fatty		ry dietary
				acids		pattern
				associated		significantl
				with lower		у
				markers of		associated
				oxidative		with all-
				stress		cause
						mortality;
						milk did

						not
						contribute
						to the effect
Financing of	Private	Private	Public	Public	Private and	Public
research					public	
Grading	None	None	None	None	None	None
criteria						
IS	0	0	0	0	0	0

TABLE 5 Tabulated summary of the study results with no evidence for an inflammatory modulation of dairy products (continued)

Reference	(Jimenez-	(Rosti et al.,	(Dalbeth et	(Pal & Ellis,	(Wennersbe	(Topuz et
	Flores et	2011)	al., 2012)	2011)	rg et al.,	al., 2008)
	al., 2012)				2009)	
Subject	HEALTH	GIT	OTHER	MET	MET	GIT
category						
Target	Endurance	Food	Gout	Cardiovascul	More than 2	Mucositis
indication	exercise	allergy		ar disease risk	factors	induced by
		(inflammato		factors	metabolic	chemoterap
		ry bowel			syndrome	у
		disease)			(MS)	
Target	Young	Infants not	Subjects	Overweight	Overweight	Subjects
population	active	being	with	and obese	and MS	undergoing
	persons	breast-fed	recurrent	postmenopau	subjects	standard-
			gout flares	sal women	with low	dose
					dairy intake	chemothera
						ру
Fat content	N.a.	N.a.	N.a.	N.a.	N.a.	N.a.
Fermentation	Non-	Non-	Non-	Non-	N.a.	Fermented
	fermented	fermented	fermented	fermented		
Test product	Milk bar	Milk protein	Skim milk	Breakfast	High dairy	Kefir

		formula	powder	including	consumptio	
			(SMP)	whey protein	n	
				isolate or		
				sodium		
				caseinate		
Control	Commercia	Mother milk	Lactose	Breakfast	Low dairy	0.9% NaCl
product	1		powder	including	consumptio	
	carbohydrat			glucose	n	
	e					
	supplement					
Test subjects	33 M, 2 F/	12 M, 14 F/	37 M, 3 F/	20 F / 57±1 y	52-56 out of	12 M, 5 F/
	20.7±0.4 y /	87±9 d /	57±16 y /	/ overweight	a total of 37	19-75 y/
	healthy	formula-fed	gout	and obese	M (51.2±8.1	colorectal
					y) and 76 F	cancer
					(56.7±7.4 y)	
					/ obese and	
					2 MS	
					symptoms	
Control		14 M, 25 F/	36 M, 4 F /		52-57 out of	12 M, 8 F/
subjects		82.6±7.9 d/	56±12 y /		a total of 37	34-72 y/
		breast-fed	gout		M and 76 F	colorectal
					/ obese and	cancer

					2 MS	
					symptoms	
Diet	Carbohydra	N.a.	250 mL/d /	Single	Dairy	Kefir or
	te (250		3 months	ingestion of	products / 3	NaCl 0.9% /
	kcal) or			whey, casein	to 5	2 x 250 mL
	milk bar			or glucose	portions/d /	per day / 5
	(290 kcal)			breakfast	6 months	days and 6
	plus					chemoterap
	intensive					y cycles
	excercise /					
	one bar at					
	the end of					
	each day of					
	exercise / 3					
	days					
Controlled	Yes	Yes	Yes	Yes	Yes	Yes
dairy test						
Randomizati	Randomize	Non-	Randomiz	Randomized	Randomize	Randomize
on	d	randomized	ed		d	d
Time factor	Longitudin	Cross-	Longitudin	Longitudinal	Longitudina	Longitudina
	al	sectional	al		1	1
Study results	¹ Milk bar	¹ Formula-	¹ SMP vs	¹ Whey	¹ High vs	¹ Kefir vs

	VS	fed vs	lactose:	breakfast vs	low dairy:	control:
	commercial	breast-fed:	$\operatorname{CRP} \to$	control	CRP, IL-6,	mucositis
	carbohydrat	fecal		breakfast (6h	TNF-α, C3,	grading,
	e: CRP \rightarrow	calprotectin		postprandial,	C4, VCAM-	TNF-α, IL-
		\rightarrow		AUC): TNF-	1, E-	1 β , IL-6 →
				α, CRP, IL-6	selectin,	
				\rightarrow	PAI-1,	
					vWF, 8-iso-	
					$PGF2 \square \rightarrow$	
Net change	0	0	0	0	0	0
in						
inflammator						
y marker						
Sustainibility	Not	Not	Not	Not discussed	Not	Discussed
of effect	discussed	discussed	discussed		discussed	
over time						
Dose-	No	No	No	No	No	No
response						
Bioavailibilit	Not	Not	Not	Not discussed	Not	Not
y data	discussed	discussed	discussed		discussed	discussed
Biological	Not	Not	Not	Not discussed	Discussed -	Not
plausibility	discussed	discussed	discussed		Whey	discussed

					protein	
					contains	
					ACE-	
					inhibitory	
					peptides	
Bioactive	Not	Not	Not	Not discussed	Not	Not
components	discussed	discussed	discussed		discussed	discussed
Clinical	No - no	N.a.	Yes -	No - no effect	Yes -	N.a.
evidence	significant		frequency	on blood	decreased	
	effect on		of gout	pressure	HOMA	
	metabolic		flares		index, waist	
	parameters		reduced		circumferen	
					ce and	
					abdominal	
					diameter,	
					metabolic	
					parameters	
					unchanged	
Financing of	Public	Public	Private and	Private and	Public	Not
research			public	public		presented
Grading	None	None	None	None	None	None
criteria						

IS	0	0	0	0	0	0

TABLE 5 Tabulated summary of the study results with no evidence for an inflammatory modulation of dairy products (continued)

Reference	(Arvola et	(Wojcik et	(Nestel et	(Nestel et	(Asemi et	(Strisciuglio
	`	` 3	`	`	`	
	al., 2006)	al., 2001)	al., 2012) 6	al., 2012) 7	al., 2013)	et al., 2013)
Subject	HYPER	HEALTH	MET	MET	MET	GIT
category						
Target	Rectal	Post-	Systemic	Systemic	Pregnancy	Ulcerative
indication	bleeding in	exercice	inflammatio	inflammatio	with	colitis
	infants with	recovery	n	n	gestational	
	and without				diabetes	
	milk allergy				mellitus	
					(GDM)	
Target	Infants with	General	Overweight	Overweight	Pregnant	Children
population	rectal	population	or obese	or obese	women	with
	bleeding		subjects	subjects	with GDM	ulcerative
						colitis
Fat content	N.a.	Low-fat	High-fat	High-fat	Low-fat	N.a.
Fermentation	N.a.	Non-	N.a.	N.a.	N.a.	N.a.
		fermented				
Test product	Milk	Milk-based	High-fat	High-fat	DASH diet	Milk
	elimination	carbohydrat	dairy meals	fermented	(including	protein

	diet	e-protein	including	dairy	low-fat	elimination
		beverage	cheddar	(cheese,	dairy)	diet
			cheese,	yoghurt)		
			butter,			
			cream, or			
			yoghurt			
Control	Normal diet	Aspartame-	Low- fat	High-fat	DASH but	Free Diet
product		flavored	milk	unfermente	less fruits	
		placebo		d dairy	and	
				(butter,	vegetables	
				cream, ice	and more	
				cream)	fat	
Test subjects	19 / 4-24	8 M /	13 /	12 / 59±8.2	32 F / 18-	14 M, 15 F/
	weeks /	23.5±0.7 y/	61.6±7.6 y /	y /	40 y /	4.6-17y/
	rectal	healthy	overweight	overweight	pregnant	newly
	bleeding	untrained	or obese	or obese	with GDM	diagnosed
						ulcerative
						colitis
Control	21 / 4-24	9 M				
subjects	weeks /	(placebo) /				
	rectal	23.5±0.7 y/				
	bleeding	healthy				
	bleeding	healthy				

		untrained				
Diet	Milk	Beverage	110 g	2 weeks	DASH / 4	Milk
	elimination	immediately	cheddar or	run-in /	weeks	elimination
	or normal	and 2h after	115 mL	dairy		or free diet
	diet / 1	exercise	cream or 50	(fermented		/ 1 year
	month		g butter or	or not		
			600 mL	fermented) /		
			yoghurt or	4 weeks / 2		
			400 mL	weeks		
			reduced fat	washout /		
			milk /	dairy		
			postprandial	(fermented		
			challenge	or not		
			study	fermented) /		
				4 weeks		
Controlled	Yes	Yes	Yes	Yes	Yes	Yes
dairy test						
Randomizatio	Randomize	Randomized	Randomize	Randomize	Randomize	Randomize
n	d		d	d	d	d
Time factor	Longitudina	Longitudinal	Longitudina	Longitudina	Longitudin	Longitudina
	1		1	1	al	1
Study results	¹ Milk	¹ Milk-based	¹ Postprandi	¹ Fermented	⁷ DASH	¹ Milk

	elimination	beverage vs	al response	vs	diet	protein
	diet vs	placebo:	between	unfermente	containing	elimination
	normal diet:	TNF-α, IL-	each of the	d dairy	dairy: CRP	diet vs free
	tissue	1 β , IL-6 →	high- fat	(4w): MCP-	corr→	diet:
	inflammatio		and the	1, MIP-1α,		Histological
	n (identified		low-fat	ICAM-1,		Matt score,
	by rectal		dairy	VCAM-1,		CRP,
	bleeding		groups:	IL-6, IL-1β,		calprotectin
	and bloody		MCP-1,	TNF-α,		\rightarrow
	$stools) \rightarrow$		MIP-1α,	$\text{CRP} \rightarrow$		
			ICAM-1,			
			VCAM-1,			
			IL-6, IL-1β,			
			TNF-α,			
			$CRP \rightarrow$			
Net change in	0	0	0	0	0	0
inflammatory						
marker						
Sustainibility	N.a.	Discussed	Not	Not	Not	Not
of effect over			discussed	discussed	discussed	discussed
time						
Dose-	No	No	No	No	No	No

response						
Bioavailibilit	Not	Not	Not	Not	Not	Not
y data	discussed	discussed	discussed	discussed	discussed	discussed
Biological	Discussed -	Discussed -	Not	Not	Not	Discussed -
plausibility	inflammatio	modulation	discussed	discussed	discussed	gut
	n processes	of protein				inflammatio
	in	synthesis				n or
	developing	and				inadequate
	GIT	catabolism				caloric
						intake
Bioactive	Discussed -	Discussed -	Not	Not	Discussed -	Discussed -
components	milk protein	protein and	discussed	discussed	arginine	milk protein
		carbohydrat			(not related	antigens
		es			to dairy),	
					magnesium	
					and	
					calcium	
Clinical	No	No - no	N.a.	N.a.	Yes -	No - milk
evidence		improvemen			DASH	protein
		t of muscle			reduced	elimination
		glycogen			fasting	vs free diet:
		replacement			plasma	remission

		or muscle	_	_	glucose,	rate
		function			serum	$(\text{PUCAI}) \rightarrow$
					insulin, and	
					HOMA-IR	
					score;	
					increased	
					antioxidant	
					capacity	
					and	
					glutathione	
					levels	
Financing of	Public	Public	Private	Private	Public	Not
research						presented
Grading	None	None	None	None	None	None
criteria						
IS	0	0	0	0	0	0

TABLE 5 Tabulated summary of the study results with no evidence for an inflammatory modulation of dairy products (continued)

Reference	(Iwasa et al., 2013)	(Jones et al., 2013) 2	(Pintus et al., 2013) 2
Subject category	HEALTH	MET	MET
Target indication	Glucose metabolism	Metabolic syndrome	Hypercholesterolemia
	and muscle damage	(MS)	
	after exercise		
Target population	Athletes	Overweight and obese	Mildly
		MS subjects	hypercholesterolaemic
			subjects
Fat content	Low-fat	Low-fat	High-fat
Fermentation	Fermented	N.a.	Fermented
Test product	Milk fermented with	High dairy high	Sheep cheese
	Lactobacillus	calcium diet plus	naturally enriched
	helveticus	caloric restriction	with CLA
Control product	Unfermented milk	Low dairy low	Sheep cheese with pill
		calcium diet plus	containing 1 g of a
		caloric restriction	palm oil-soybean oil
			mix
Test subjects	18 M / 21.6 \square 0.8 y /	7 M, 13F / 52.1±1.5 y	19 M, 23 F / 30-60 y /
	healthy	/ obese MS	mild
			hypercholesterolaemia

Control subjects		7 M, 11F / 50.1±2.7 y	
		/ obese MS	
Diet	200 mL of each	3–4 servings dairy	Naturally enriched
	beverage / 3x before	(low-fat milk or	sheep cheese or
	and after exercise	yoghurt)/d and 350	control cheese / 90 g/d
		mg/d Ca supplement	/ 3 weeks / between 3
		or 1 serving yoghurt/d	weeks washout
		/ 12 weeks	
Controlled dairy test	Yes	Yes	Yes
Randomization	Randomized	Randomized	Randomized
Time factor	Longitudinal	Longitudinal	Longitudinal
Study results	¹ Fermented vs non-	¹ High vs low dairy	² Sheep cheese (w3 vs
	fermented milk: TNF-	(w12): IL6, TNF-α,	w0): IL-6 (n=16),
	α , CRP \rightarrow	MCP-1, IL-1 β →	CRP (n=16), leptin
			(n=16), adiponectin
			(n=16), anandamide
			\rightarrow
Net change in	0	0	0
inflammatory marker			
Sustainibility of effect	N.a.	No	Not discussed
over time			
Dose-response	No	No	No

Bioavailibility data	Not discussed	No	Not discussed
Biological plausibility	Discussed - activated	Not discussed	Not discussed
	antioxidants		
	contribute to		
	supression of muscle		
	damage and glucose		
	impairment		
Bioactive components	Discussed - peptides	Not discussed	Not discussed
Clinical evidence	Yes - Muscle	No - no higher weight	No - sheep cheese
	soreness and	loss	decreased total
	reduction of		cholesterol and LDL-
	antioxidant capacity		cholesterol
	suppressed by		
	fermented milk, blood		
	glucose unchanged		
Financing of research	Public	Public	Public
Grading criteria	None	None	None
IS	0	0	0

TABLE 6 Inflammatory Score for the impact of dairy products on humans

	_	N	Q1 ¹	Median	Q3 ¹	Mean	p ²	p ³
All data								
	ALL study results	78	0	0	6	1.4	0.008	
Subject ca	itegory							
	HEALTH	37	-3	0	6	1.7	0.018	0.070
	HEALTH MET	3724	-3 0	0 4.5	6 7.5	1.7 3.9	0.018 0.001	0.078
								0.078
	MET	24	0	4.5	7.5	3.9	0.001	0.078

Product category

High-fat	35	-2.25	0	6	1.8	0.012	0.095
Low-fat	20	0	4	7.5	4.1	0.001	0.075
Non-fermented	33	0	0	6	1.8	0.112	0.927
Fermented	16	0	0	7	2.4	0.037	0.837

¹Abbreviations: Q1, first quartile; Q3: third quartile

²Wilcoxon Signed-Rank test (two-sided)

³Kruskal-Wallis test

Phase 1	
Articles randomly distributed to reviewers of six partner institutions Tabulated summary of each study based on abstracts (n>300)	
Articles randomly redistributed to reviewers of six partner institutions Tabulated summaries reviewed based on complete articles (n=52)	
Phase 3	
Articles redistributed to reviewers of five partner insi	tutions according to the categories of subjects
Tabulated summaries reviewed in the context of the five subject categories (n=52)	
Phase 4	
Harmonization of the tabulated summaries by two	reviewers from one institution
Trainionization of the tabalated sammanes by two	reviewers from one institution
Phase 5	
Quantitative evaluation of the data	
Defining the Inflammatory Score for each study result (n=78)	

Figure 1 Flow diagram of the five phases conducted to establish an IS for the 78 study results extracted from the 52 human studies in which the impact of dairy products on inflammation was investigated.

Figure 2 Distribution of the inflammatory markers measured in the 52 human studies. The x-axis presents the inflammatory markers. The y-axis presents the number of study results reporting a specific analytical result with the corresponding inflammatory marker. The color code indicates the direction of change of the inflammatory marker: significant anti-inflammatory change (black bars), no significant change (grey bar), significant pro-inflammatory change (white bars). The inflammatory markers are ranked in descending order with regard to their frequency of reporting in all 52 studies reviewed.

Figure 3 Distribution of the study results labeled as 'anti-inflammatory', 'no effect', and 'pro-inflammatory' for the entire data set composed of 78 study results. A) Number of study results labeled as 'anti-inflammatory', 'no effect', 'pro-inflammatory' based on the initial grading defined in Table 2. B) Distribution of the Inflammatory Score. The color code indicates the direction of change of the inflammatory marker, *i.e.* significant anti-inflammatory change (black bars), no significant change (grey bars), and significant pro-inflammatory change (white bars).

Figure 4 Distribution of the study results labeled as 'anti-inflammatory', 'no effect', and 'pro-inflammatory' among the subject categories. Subject categories: HEALTH, healthy subjects; MET, subject with metabolic disorders including obesity; GIT, subjects with gastrointestinal disorders; HYPER, subjects with hypersensitivity, including allergy, to milk products. The color code indicates the direction of change of the inflammatory marker, *i.e.* significant anti-inflammatory change (black bars), no significant change (grey bars), and significant pro-inflammatory change (white bars).

Figure 5 Distribution of the study results labeled as 'anti-inflammatory', 'no effect', and 'pro-inflammatory' among the dairy product categories 'high-fat' and 'low-fat'. The color code indicates the direction of change of the inflammatory marker, *i.e.* significant anti-inflammatory change (black bars), no significant change (grey bars), and significant pro-inflammatory change (white bars).

Figure 6 Distribution of the study results labeled as 'anti-inflammatory', 'no effect', and 'pro-inflammatory' among the dairy product categories 'fermented' and 'non-fermented'. The color code indicates the direction of change of the inflammatory marker, *i.e.* significant anti-inflammatory change (black bars), no significant change (grey bars), and significant pro-inflammatory change (white bars).