CS/DSC/AI 391L: Machine Learning

Homework 2 - Theory

Lecture: Prof. Adam Klivans

Keywords: Perceptron, SGD, Boosting

Instructions: Please either typeset your answers (IAT_FX recommended) or write them very clearly and legibly and scan them, and upload the PDF on edX. Legibility and clarity are critical for fair grading.

- 1. [10 points] Consider running the Perceptron algorithm on a training set S arranged in a certain order. Now suppose we run it with the same initial weights and on the same training set but in a different order, S'. Does Perceptron make the same number of mistakes? Does it end up with the same final weights? If so, prove it. If not, give a counterexample, i.e. an S and S' where order matters.
- 2. [10 points] We have mainly focused on squared loss, but there are other interesting losses in where z=yi·wT·xi due to how linear machine learning. Consider the following loss function which we denote by $\phi(z) = \max(0, -z)$. classifiers Let S be a training set $(x^1, y^1), \ldots, (x^m, y^m)$ where each $x^i \in \mathbb{R}^n$ and $y^i \in \{-1, 1\}$. Consider running stochastic gradient descent (SGD) to find a weight vector w that minimizes $L(w) = \frac{1}{m} \sum_{i=1}^{m} \phi(y^i \cdot w^T x^i)$. Explain the explicit relationship between this algorithm and the Perceptron algorithm. Recall that for SGD, the update rule when the i^{th} example is picked at

examples

random is if you define your loss function as given, what can you infer about

the relationship between SGD and the Perceptron algorithm?

 $w_{
m new} = w_{
m old} - \eta
abla \phi \left(y^i w^T x^i
ight)$. SGD update step for this L function

Note: You do not need to be overly concerned about the discontinuity at $\phi(0)$, so you can ignore this when calculating the gradient for this problem.

- 3. [6 points] Here we will give an illustrative example of a weak learner for a simple concept class. Let the domain be the real line, \mathbb{R} , and let \mathcal{C} refer to the concept class of "3-piece classifiers", which are functions of the following form: for $\theta_1 < \theta_2$ and $b \in \{-1,1\}$, $h_{\theta_1,\theta_2,b}(x)$ is b if $x \in [\theta_1, \theta_2]$ and -b otherwise. In other words, they take a certain Boolean value inside a certain interval and the opposite value everywhere else. For example, $h_{10,20,1}(x)$ would be +1 on [10, 20], and -1 everywhere else. Let \mathcal{H} refer to the simpler class of "decision stumps", i.e. functions $h_{\theta,b}$ such that h(x) is b for all $x \leq \theta$ and -b otherwise.
 - (a) Show formally that for any distribution on \mathbb{R} (assume finite support, for simplicity; i.e., assume the distribution is bounded within [-B, B] for some large B) and any unknown labeling function $c \in \mathcal{C}$ that is a 3-piece classifier, there exists a decision stump $h \in \mathcal{H}$ that has error at most 1/3, i.e. $\mathbb{P}[h(x) \neq c(x)] \leq 1/3$.
 - (b) Describe a simple, efficient procedure for finding a decision stump that minimizes error with respect to a finite training set of size m. Such a procedure is called an empirical risk minimizer (ERM).
 - (c) Give a short intuitive explanation for why we should expect that we can easily pick msufficiently large that the training error is a good approximation of the true error, i.e. why we can ensure generalization. (Your answer should relate to what we have gained in

- going from requiring a learner for \mathcal{C} to requiring a learner for \mathcal{H} .) This lets us conclude that we can weakly learn \mathcal{C} using \mathcal{H} .
- 4. [10 points] Consider an iteration of the AdaBoost algorithm (using notation from the video lecture on Boosting) where we have obtained classifer h_t . Show that with respect to the distribution D_{t+1} generated for the next iteration, h_t has accuracy exactly 1/2.