Estatística para Cursos de Engenharia e Informática

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia

São Paulo: Atlas, 2004

Cap. 9 – Comparação entre tratamentos

APOIO:

Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)

Departamento de Informática e Estatística – UFSC (INE/CTC/UFSC)

Amostras independentes

- Exemplo 9.1 Considere o problema de comparar dois materiais (A e B), para sola de tênis, em termos do grau de desgaste após um certo período de uso. Seguem dois projetos de experimentos alternativos:
- Projeto I Um grupo de indivíduos usa tênis com solas feitas com o material A; e outro grupo usa tênis com solas feitas com o material B.

Amostras independentes

Amostras pareadas (se g > 2, "em blocos")

- Exemplo 9.1:
- Projeto II Fabricam-se, para a realização do experimento, pares de tênis com os dois tipos de sola, isto é, um dos pés com o material A e o outro pé com o material B. Em cada par, o material usado em cada pé (direito ou esquerdo) é decidido por sorteio

Amostras pareadas (se g > 2, "em blocos")

Alocação aleatória de A e B em cada par

Mensuração do grau de desgaste

Amostras pareadas

• Importância de considerar os pares na análise:

Teste t para duas amostras

• H_0 : $\mu_1 = \mu_2$ e H_1 : $\mu_1 \neq \mu_2$

onde: μ_1 é o valor esperado da resposta sob o tratamento 1 e μ_2 é o valor esperado da resposta sob o tratamento 2.

• Na abordagem unilateral, a hipótese alternativa é do tipo H_1' : $\mu_1 > \mu_2$ ou H_1'' : $\mu_1 < \mu_2$.

Teste t para duas amostras pareadas

• Exemplo 9.2 Seja o problema de verificar se um novo algoritmo de busca em um banco de dados é mais rápido que o algoritmo atualmente usado. Para se fazer a comparação dos dois algoritmos, planeja-se realizar uma amostra aleatória de 10 buscas experimentais (ensaios). Em cada ensaio, uma dada busca é realizada pelos dois algoritmos e o tempo de resposta de cada algoritmo anotado. Observamos que em cada ensaio os dois algoritmos são usados em condições idênticas, caracterizando 10 pares de observações.

Teste t para duas amostras pareadas

- H₀: em média, os dois algoritmos são igualmente rápidos e
- H₁: em média, o algoritmo novo é mais rápido do que o algoritmo em uso.

Ou:

• H_0 : $\mu_2 = \mu_1$ e H_1 : $\mu_1 < \mu_2$

onde: μ_1 é o tempo esperado de resposta do algoritmo novo e μ_2 é o tempo esperado de resposta do algoritmo antigo.

Dados:

	Tempo de resposta (s)			
Ensaio	Novo X_I	Antigo X_2	Diferença $D = X_2 - X_1$	
1	22	25	3	
2	21	28	7	
3	28	26	-2	
4	30	36	6	
5	33	32	-1	
6	33	39	6	
7	26	28	2	
8	24	33	9	
9	31	30	-1	
10	22	27	5	

Teste t para duas amostras pareadas Estatística do teste

$$t = \frac{\overline{d} \cdot \sqrt{n}}{s_d}$$

- onde: n é o tamanho da amostra (número de pares);
 - d é a média das diferenças observadas; e
 - s_d é o desvio padrão das diferenças observadas.
- Usa distribuição t de *Student* com gl = n 1 graus de liberdade (supondo populações com distribuição normal).

Exemplo 9.2 (continuação)

Valores de *D*: 3, 7, -2, 6, -1, 6, 2, 9, -1, 5

$$n = 10$$

$$\bar{d} = 3.4$$

$$s_d = \sqrt{\frac{1}{n-1} \cdot \left(\sum_i d_i^2 - n.\overline{d}^2\right)} = \sqrt{\frac{246 - (10)(3,4)^2}{9}} = 3.81$$

$$t = \frac{\overline{d} \cdot \sqrt{n}}{s_d} = \frac{3.4 \cdot \sqrt{10}}{3.81} = 2.82$$

Exemplo 9.2 (continuação). Teste considerando nível de significância de 5%.

Abordagem do Valor p:

Conclusão: rejeita H₀.

Ver comentários e abordagem clássica no livro.

a = 0.010

t = 2.82

Teste t para duas amostras independentes

Exemplo 9.3 Desejamos verificar se os catalisadores A e B têm efeitos diferentes no rendimento de uma certa reação química. As hipóteses são:

- H₀: em média, os dois catalisadores são iguais em termos de rendimento; e
- H₁: em média, os dois catalisadores são *diferentes* em termos de rendimento.

Ou, ainda:

$$H_0$$
: $\mu_1 = \mu_2$ e H_1 : $\mu_1 \neq \mu_2$, onde

 μ_1 : rendimento esperado com o catalisador A; e

 μ_2 : rendimento esperado com o catalisador B.

Exemplo 9.3 – amostras:

Tabela 9.2 Rendimentos (%) de uma reação química em função do catalisador utilizado.

catalisador A	catalisador B
45 51 50 62 43	45 35 43 59 48
42 53 50 48 55	45 41 43 49 39

Exemplo 9.3 – amostras:

Teste t para duas amostras independentes Estatística do teste

Se
$$n_1 = n_2 = n$$
:

$$s_a^2 = \frac{s_1^2 + s_2^2}{2}$$

$$t = \left(\overline{x}_1 - \overline{x}_2\right) \cdot \sqrt{\frac{n}{2s_a^2}}$$

tamanho da amostra em cada grupo;

média da amostra 1

média da amostra 2

variância da amostra 1

 $\frac{n}{2s_a^2}$ s_a^2 variância da amostra 2 s_a^2 variância agregada das variância agregada das duas amostras

Usa distribuição t de *Student* com gl = 2n - 2 graus de liberdade (supondo populações com distribuição normal).

Exemplo 9.3 (continuação). Abordagem valor p

Portanto, $0.05 < \text{Valor } \mathbf{p} < 0.10$

 \rightarrow Aceita H_0 .

Ver comentários, abordagem clássica e exemplo com $n_1 \neq n_2$ no livro.

Comparação entre vários tratamentos. Amostras independentes

- Análise de variância (ANOVA), que supõe:
 - as observações devem ser independentes;
 - as variâncias populacionais devem ser iguais nos g grupos; e
 - a distribuição das observações em cada grupo deve ser normal.

Exemplo 9.4: Comparação de três tipos de rede.

- Considere o problema de comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo médio de transmissão de pacotes de dados entre duas máquinas.
- Experimento (projeto completamente aleatorizado com um fator): 8 replicações com cada tipo de rede, aleatorizando a ordem dos 24 ensaios e mantendo fixos os demais fatores controláveis.

Exemplo 9.4: Projeto do experimento.

ensaios de 1 a 8: C1 ensaios de 9 a 16: C2 ensaios de 17 a 24: C3

Seqüência	número	Uso da
dos testes	do ensaio	rede
1	16	C2
2	14	C2
3	24	C3
4	6	C1
	•••	•••
24	11	C3

Exemplo 9.4. Dados do experimento:

Seqüência	número		Tempo de
dos testes	do ensaio	Rede	resposta (y)
1	16	C2	7,8
2	14	C2	8,2
3	24	C3	6,3
4	6	C1	7,2
•••	•••		•••
24	11	C2	7,8

Exemplo 9.4: Perguntas a serem respondidas pela análise estatística.

 Existe diferença real (significativa) entre os 3 tipos de rede?

 Qual é a estimativa do tempo de resposta para cada tipo de rede?

Exemplo 9.4: Dados do experimento

	Tipo de rede		
Replicação	C1	C2	C3
1	7,2	7,8	6,3
2	9,3	8,2	6,0
3	8,7	7,1	5,3
4	8,9	8,6	5,1
5	7,6	8,7	6,2
6	7,2	8,2	5,2
7	8,8	7,1	7,2
8	8,0	7,8	6,8
Soma	65,7	63,5	48,1
Média	8,21	7,94	6,01

Modelo da ANOVA g = 3 grupos

tratamento

$$y_{11}$$
 y_{21} y_{31}

$$y_{12}$$
 y_{22} y_{32}

$$y_{1n}$$
 y_{2n} y_{3n}

$$\overline{y}_1$$
, \overline{y}_2 , \overline{y}_3 , \overline{y}_3 .

$$\overline{y}_{3.}$$

$$\overline{y}_{..}$$

erro aleatório

Média

global:

$$y_{ij} = \mu + \tau_i + e_{ij}$$
 $i = 1, 2, 3$ $j = 1, 2, ..., n$

observação

média global

efeito do tratamento i

$$\mu_i = \mu + au_i$$
 = média do fator i

Hipóteses

As observações

Sob H₁:

$$y_{ij} = \mu + \tau_i + e_{ij}$$

Sob H₀:

$$y_{ij} = \mu + e_{ij}$$

Hipóteses e modelo subjacente

Sob
$$H_0$$
: $\tau_1 = \tau_2 = ... = \tau_g = 0$

$$y_{ij} = \mu + \tau_i + e_{ij}$$

$$y_{ij} = \mu + e_{ij}$$

Hipóteses e modelo subjacente

Sob H_1 : $\tau_i \neq 0$ para algum i

	Tratamento			
Replicação	1	2	•••	g
1	<i>y</i> ₁₁	y_{21}	•••	y_{g1}
2	<i>y</i> ₁₂	y_{22}	•••	y_{g2}
	•••	•••	•••	•••
n	y_{1n}	y_{2n}	•••	\mathcal{Y}_{gn}
Soma	<i>y</i> _{1.}	<i>y</i> ₂ .	•••	$y_{g.}$
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$	•••	$\overline{\mathcal{Y}}_{g}$.

Soma de quadrados total:

Graus de liberdade:

$$SQ_{Tot} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^2$$

gl = N - 1

onde: N = ng

	Tratamento				
Replicação	1	2	•••	g	
1	y_{11}	y_{21}	•••	y_{g1}	
2	<i>y</i> ₁₂	y_{22}	•••	\mathcal{Y}_{g2}	
	•••	•••	•••	•••	
n	y_{1n}	y_{2n}	•••	\mathcal{Y}_{gn}	
Soma	<i>y</i> _{1.}	<i>y</i> _{2.}	•••	$y_{g.}$	$y = \sum_{i}$
Média	$\overline{y}_{1.}$	$\overline{y}_{2.}$	•••	$\overline{\mathcal{Y}}_{g}$.	$\overline{y} = \frac{1}{\rho} \sum_{i}$

Soma de quadrados dos tratamentos:

$$SQ_{Trat} = \sum_{i=1}^{g} \sum_{j=1}^{n} (\overline{y}_{i.} - \overline{y}_{..})^{2} = n \sum_{i=1}^{g} (\overline{y}_{i.} - \overline{y}_{..})^{2}$$

Graus de liberdade:

$$gl = g - 1$$

	Tratamento				
Replicação	1	2	•••	g	
1	y_{11}	y_{21}	•••	y_{g1}	
2	<i>y</i> ₁₂	y ₂₂	•••	y_{g2}	
	•••	•••	•••	•••	
n	y_{1n}	y_{2n}	•••	\mathcal{Y}_{gn}	
Soma	<i>y</i> _{1.}	y ₂ .	•••	y_{g} .	$y = \sum_{i}$
Média	$\overline{\mathcal{Y}}_{1.}$	$\overline{y}_{2.}$	•••	$\overline{\mathcal{Y}}_{g}$.	$\overline{y} = \frac{1}{a} \sum_{i}$

Soma de quadrados do erro:

$$SQ_{Erro} = \sum_{i=1}^{g} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{i.})^2$$

Graus de liberdade:

$$gl = N - g$$

Fórmulas equivalentes às anteriores

Fonte de variação	Somas de quadrados	gl	Quadrados médios	Razão f
Entre tratamentos	$SQ_{Trat} = \sum_{i=1}^{g} \frac{y_{i.}^{2}}{n} - \frac{y_{}^{2}}{N}$	g-1	$QM_{Trat} = \frac{SQ_{Trat}}{gl_{Trat}}$	$f = \frac{QM_{Trat}}{QM_{Erro}}$
Dentro trat. (Erro)	$SQ_{Erro} = SQ_{lot} - SQ_{trat}$		$QM_{Erro} = \frac{SQ_{Erro}}{gl_{Erro}}$	
Total	$SQ_{Tot} = \sum_{i=1}^{g} \sum_{j=1}^{n} y_{ij}^{2} - \frac{y_{ij}^{2}}{N}$	<i>N</i> –1		

Estatística do teste (possíveis valores da razão f):

$$f = \frac{QM_{Trat}}{QM_{Erro}}$$

Teste F

• Se H_0 : $\tau_1 = \tau_2 = ... = \tau_g = 0$ for verdadeira e considerando as suposições anteriormente enunciadas, a estatística \mathbf{f} tem distribuição F com (g - 1) graus de liberdade no numerador e (N - g) graus de liberdade no denominador.

Regra de decisão. Abordagem valor p

 α = nível de significância (probab. tolerável de se rejeitar H_o quando esta for verdadeira)

Usual: $\alpha = 0.05 = 5\%$

rejeita H_0 (prova-se estatisticamente H_1)

aceita H₀ (os dados não mostram evidência para afirmar H₁)

Teste F

 Ver no livro como usar a Tabela F e como fazer o teste pela abordagem clássica.

Análise dos resíduos

Avaliação das suposições da ANOVA através de gráficos dos resíduos:

Estimação das médias

Intervalo de confiança para o valor esperado da resposta sob o i-ésimo tratamento (nível de conf. γ):

$$IC(\mu_i, \gamma) = \overline{y}_{i.} \pm t_{\gamma} \sqrt{\frac{QM_{erro}}{n}}$$

Teste F para amostras em blocos

Notação para os dados:

	Tratamento				
Bloco	1	2	•••	g	Soma
1	<i>y</i> ₁₁	y_{21}	•••	y_{g1}	$y_{.1}$
2	<i>y</i> ₁₂	y_{22}	•••	y_{g2}	$y_{.2}$
•••	•••	• • •	•••	•••	
h	y_{1h}	y_{2h}	• • •	\mathcal{Y}_{gh}	<i>y</i> _{.h}
Soma	$y_{1.}$	<i>y</i> _{2.}	•••	$y_{g.}$	$v_{\cdot \cdot} = \sum v_{\cdot \cdot} = \sum v_{\cdot \cdot}$
					$y = \sum_{i} y_{i.} = \sum_{j} y_{.j}$

Modelo para os dados

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

- μ é a média global da resposta;
- τ_i é o efeito do *i*-ésimo tratamento;
- β_i é o efeito do *j*-ésimo bloco; e
- ε_{ij} é o efeito aleatório (i = 1, 2, ..., g; j = 1, 2, ..., h).

Teste F para amostras em blocos: quadro da ANOVA

Fonte de variação	Somas de quadrados	gl	Quadrados médios	Razão f
Entre tratamentos	$SQ_{Trat} = \sum_{i=1}^{g} \frac{y_{i.}^2}{h} - \frac{y_{}^2}{N}$	g-1	$QM_{Trat} = \frac{SQ_{Trat}}{gl_{Trat}}$	$f = \frac{QM_{Trat}}{QM_{Erro}}$
Entre blocos	$SQ_{Blocos} = \sum_{j=1}^{h} \frac{y_{.j}^{2}}{g} - \frac{y_{}^{2}}{N}$	h-1	$QM_{Bloco} = \frac{SQ_{Bloco}}{gl_{Bloco}}$	
Dentro (Erro)		(g-1)(h-1)	$QM_{Erro} = \frac{SQ_{Erro}}{gl_{Erro}}$	
Total	$SQ_{Tot} = \sum_{i=1}^{g} \sum_{j=1}^{h} y_{ij}^{2} - \frac{y_{}^{2}}{N}$	N-1		

 Seja o problema de comparar 3 algoritmos de busca em um banco de dados. Realiza-se um experimento com 6 buscas experimentais, sendo que em cada uma é sorteado um número aleatório que indica o registro do banco de dados a ser localizado. Em cada um dos 6 processos de busca, são usados separadamente os três algoritmos em estudo, mas sob as mesmas condições, em termos dos fatores controláveis. São anotados os tempos de resposta ao usuário.

Hipóteses:

- H₀: em média, os três algoritmos são igualmente rápidos; e
- H₁: em média, os três algoritmos não são igualmente rápidos

Ensaio	Algoritmo de busca			
(bloco)	A1	A2	A3	
1	8,3	8,1	9,2	
2	9,4	8,9	9,8	
3	9,1	9,3	9,9	
4	9,9	9,6	10,3	
5	8,2	8,1	8,9	
6	10,9	11,2	13,1	
Soma	55,8	55,2	61,2	
Média	9,3	9,2	10,2	

Fonte da variação	SQ	gl	QM	f
Algoritmos	3,64	2	1,82	14,29
Blocos	21,95	5	4,39	
Erro	1,27	10	0,13	
Total	26,86	17		

Qual é a conclusão?

Conclusão?

ANOVA em projetos fatoriais com 2 fatores

 Ver comentários sobre esse projeto e as hipóteses no livro.

ANOVA em projetos fatoriais com 2 fatores

Notação para os dados:

	Fator A				
Fator B	1	2		g	Soma
1	$y_{111},, y_{11n}$	$y_{211},, y_{21n}$	•••	$y_{g11},,y_{g1n}$	y _{.1.}
2	$y_{121},, y_{12n}$	$y_{221},, y_{22n}$	•••	$y_{g21},, y_{g2n}$	y _{.2.}
			•••	•••	
h	$y_{1h1},,y_{1hn}$	$y_{2h1},, y_{2hn}$	•••	$y_{gh1},,y_{ghn}$	${\cal Y}_{.h.}$
Soma	y ₁	y ₂	•••	\mathcal{Y}_{g}	$y = \sum_{i} y_{i} = \sum_{j} y_{.j.}$

ANOVA em projetos fatoriais com 2 fatores Somas de quadrados

Somas em cada célula:

$$y_{ij.} = \sum_{k=1}^{n} y_{ijk}$$

$$SQ_{Subtot} = \sum_{i=1}^{g} \sum_{j=1}^{h} \frac{y_{ij.}^{2}}{n} - \frac{y_{...}^{2}}{N}$$

ANOVA em projetos fatoriais com 2 fatores

Fonte de variação	Somas de quadrados	gl	Quadrados médios	Razão f
Fator A	$SQ_A = \sum_{i=1}^{g} \frac{y_{i}^2}{hn} - \frac{y_{}^2}{N}$	g-1	$QM_A = \frac{SQ_A}{gl_A}$	$f = \frac{QM_A}{QM_{Erro}}$
Fator B	$SQ_B = \sum_{j=1}^h \frac{y_{.j.}^2}{gn} - \frac{y_{}^2}{N}$		$QM_B = \frac{SQ_B}{gl_B}$	$f = \frac{QM_B}{QM_{Erro}}$
Interação A*B	$SQ_{AB} = SQ_{Subtot} - SQ_A - SQ_B$	(g-1)(h-1)	\mathcal{E}^l_{AB}	$f = \frac{QM_{AB}}{QM_{Erro}}$
Erro	$SQ_{Erro} = SQ_{Tot} - SQ_{Subtot}$	hg(n-1)	$QM_{Erro} = \frac{SQ_{Erro}}{gl_{Erro}}$	
Total	$SQ_{Tot} = \sum_{i=1}^{g} \sum_{j=1}^{h} \sum_{k=1}^{n} y_{ijk}^{2} - \frac{y_{}^{2}}{N}$	N-1		

- Considere o problema de comparar 3 topologias de rede de computadores (C1, C2 e C3) e 2 protocolos (L1 e L2), em termos do tempo de resposta ao usuário. Realizou-se um experimento com 4 replicações em cada combinação de topologia e protocolo. Deseja-se verificar se há diferenças entre as topologias, entre os protocolos e eventual interação entre topologia e protocolo. Então, quer-se testar as seguintes hipóteses nulas:
 - H₀^(A): os tempos esperados de resposta são iguais para as três topologias;
 - H₀^(B): os tempos esperados de resposta são iguais para os dois protocolos;
 - H₀^(AB): a mudança de protocolo *não altera* as diferenças médias do tempo de resposta nas três topologias (ausência de interação).

Dados:

		Topologia			
Protocolo	Ç1	<u>Ç2</u>	Ç3	Soma	Média
L1	6,2	5,9	5,9		
	7,6	8,4	6,2		
	7,2	7,1	5,2		
	8,8	7,1	7,2	$y_{.1.} = 82.8$	6,90
L2	9,0	7,1	6,2		
	8,9	8,6	6,1		
	9,4	9,1	8,9		
	8,0	7,8	6,8	$y_{2.} = 95.9$	7,99
Soma	χ ₁ = 65,1	$y_{2} = 61.1$	$y_{3} = 52.5$	$y_{} = 178,7$	
Média	8,21	7,94	6,01		7,45

ANOVA:

Fonte de variação	SQ	gļ	QИ	f
Topologia	10,36	2	5,18	5,44
Protocolo	7,15	1	7,15	7,51
Interação	0,26	2	0,13	0,14
Erro	17,14	18	0,95	
Total	34,92	23		

Quais as conclusões?

(a) Perfil das médias

(b) Análise dos resíduos

Quais as conclusões?

ANOVA para projetos fatoriais 2^k e 2^{k-p}

Ver no livro as técnicas e exemplos.