Сходимости случайных величин

Задача 1

- 1. Докажите, что последовательность случайных величин $X_n \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$ сходится по распределению к распределению Пуассона с параметром λ .
- 2. Докажите, что последовательность случайных величин $X_n \sim \text{Geom}(\frac{\lambda}{n}), Y_n = \frac{1}{n} X_n$ сходится по распределению к экспоненциальному распределению с параметром λ .
- 3. Случайные величины $X_n \sim U[a;b]$. Пусть $Y_n = max(X_1,...,X_n)$. Покажите, что

$$n \cdot \frac{b - Y_n}{b - a} \stackrel{d}{\rightarrow} Exp(1)$$

Задача 2

Определите как (по распределению, по вероятности, в среднем) и к чему сходятся следущие последовательности случайных величин:

- 1. $X_n \sim U \left[0; \frac{1}{n}\right]$
- 2. $X_n \sim N(0, \frac{1}{n})$
- 3. $X_n \sim \text{Exp}\left(\frac{1}{n}\right)$
- 4. $X_n \sim Bern\left(\frac{1}{n}\right)$
- 5. $X_n \sim N\left(\frac{n-1}{n+1}, 9\right)$
- 6. $X_n \sim N\left(0, \frac{5+n}{n^2}\right)$
- 7. $X_n \sim N\left(\frac{n-8}{n^2+8}, \frac{n+1}{n-1}\right)$
- 8. $X_n \sim t(n)$
- 9. $X_n = \frac{Y_n}{n}$, где $Y_n \sim \chi_n^2$
- 10. $X_n = \frac{Y_n}{n+5}$, где $Y_n \sim \chi_n^2$
- 11. $X_n = 2011 \cdot Y_n$, где $Y_n \sim F_{2011,n}$
- 12. $X_n = \frac{Y_n n}{\sqrt{n}}$, где $Y_n \sim \chi_n^2$

Задача 3

Задача 4

Задача 5

Задача 6