

Mechatronics

Week 8 Day 1

Previously

- We learned that delays may modify the stability properties of a system
- We studied the Nyquist's criterion as an alternative to check the stability of a system without computing its poles
- We learned to compute phase and gain margin of a system, and how to obtain them from their Nyquist plot
- We learned the phase margin of a system is helpful to determine how much the system is robust or not in the presence of delays

Today's lecture: Absolute stability.

Stability of nonlinear system as per Circle criterion and Popov's criterion

Learning objectives

After today's lecture, you will be able to

 Check closed-loop stability of linear systems with sector nonlinearities

Linear Systems with Sector Nonlinearities

Linear systems with sector nonlinearities

A class of non-linear systems include linear time-invariant systems, with transfer function G(s) and a feedback part with static nonlinearity.

$$\dot{x} = Ax - b\phi(y)$$
$$y = c^T x$$

Linear systems with sector nonlinearities

A class of non-linear systems include linear time-invariant systems, with transfer function G(s) and a feedback part with static nonlinearity.

Special nonlinearities fall in the class of section nonlinearities. For example:

- Saturations
 Hysteresis
 - Dead zones Relais

Only one equilibrium point is allowed!

Sector nonlinearities

Sector nonlinearities ϕ are continuous and belong to a sector $[k_1, k_2]$ if k_1 and k_2 exist such that

$$y \neq 0 \Rightarrow k_1 \le \frac{\phi(y)}{y} \le k_2$$

with
$$\phi(0) = 0$$
, $\phi(y)y \ge 0$

Sector nonlinearities

Sector nonlinearities ϕ are continuous and belong to a sector $[k_1, k_2]$ if k_1 and k_2 exist such that

$$y \neq 0 \Rightarrow k_1 \leq \frac{\phi(y)}{y} \leq k_2$$
 with $\phi(0) = 0$, $\phi(y)y \geq 0$

- *A special class is defined when $0 \le \phi(y) \le ky$
- *If $k_1, k_2 \ge 0$, then ϕ lies only in the first and third quadrant

Only useful for nonlinearities in sector [0, k]

Generalisation of Nyquist criterion with (-1,0) replaced with a line

Only useful for nonlinearities in sector [0, k]

Generalisation of Nyquist criterion with (-1,0) replaced with a line What line?

Consider
$$G(j\omega) = G_1(\omega) + jG_2(\omega)$$
 and correspondingly: $W(j\omega) = G_1(\omega) + j\omega G_2(\omega)$
Then $\Re\{W(j\omega)\} = \Re\{G(j\omega)\}$ and $\Im\{W(j\omega)\} = \omega\Im\{G(j\omega)\}$.

Only useful for nonlinearities in sector [0, k]

Generalisation of Nyquist criterion with (-1,0) replaced with a line What line?

Consider
$$G(j\omega) = G_1(\omega) + jG_2(\omega)$$
 and correspondingly: $W(j\omega) = G_1(\omega) + j\omega G_2(\omega)$
Then $\Re\{W(j\omega)\} = \Re\{G(j\omega)\}$ and $\Im\{W(j\omega)\} = \omega\Im\{G(j\omega)\}$.

Consider the polar plot of W, called Popov plot, and take the line

$$x - \alpha y + \frac{1}{k} = 0$$

Proposition

If a linear system combines with a static nonlinearity in the feedback and fulfills

- A is asympt. stable (Hurwitz) i.e $\lambda_i(A) < 0$ for all i and (A, b) is controllable, i.e., $[b \ Ab \ ... A^{n-1}b]$ full rank
- Φ belongs to sector [0, k]
- There exists an $\alpha>0$ such that for all $\omega\geq0$

$$\Re((1+j\alpha\omega)G(j\omega)) + \frac{1}{k} \ge \epsilon$$

for an arbitrarily small $\epsilon > 0$

then 0 is globally asymptotically stable

Proposition

If a linear system combines with a static nonlinearity in the feedback and fulfills

- A is asympt. stable (Hurwitz) i.e $\lambda_i(A) < 0$ for all i and (A, b) is controllable, i.e., $[b \ Ab \ ... A^{n-1}b]$ full rank
- Φ belongs to sector [0, k]
- There exists an $\alpha > 0$ such that for all $\omega \geq 0$

$$\Re((1+j\alpha\omega)G(j\omega)) + \frac{1}{k} \ge \epsilon$$

for an arbitrarily small $\epsilon > 0$

then 0 is globally asymptotically stable

- *Line in Popov plot corresponds with Popov's inequality.
- *Popov plot needs to stay below the line for stability

Proposition

If a linear system combines with a static nonlinearity in the feedback and fulfills

- A is asympt. stable (Hurwitz) i.e $\lambda_i(A) < 0$ for all i and (A, b) is controllable, i.e., $[b \ Ab \ ... A^{n-1}b]$ full rank
- Φ belongs to sector [0, k]
- There exists an $\alpha > 0$ such that for all $\omega \geq 0$

$$\Re((1+j\alpha\omega)G(j\omega)) + \frac{1}{k} \ge \epsilon$$

for an arbitrarily small $\epsilon > 0$

then 0 is globally asymptotically stable

- *Line in Popov plot corresponds with Popov's inequality.
- *Popov plot needs to stay below the line for stability

Only a sufficient condition!!

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [0,1]

The Popov plot looks as follows:

Consider the nonlinear system on the right G(s)where nonlinearity $\phi(s)$ belongs to sector [0,1] The Popov plot looks as follows: Im -0.5

We have a nonlinearity in sector [0,1]

We have a nonlinearity in sector [0,1]

We can draw a line cutting the real line at -1 with slope $\frac{1}{\alpha}$ with $\alpha > 0$

We have a nonlinearity in sector [0,1]

We can draw a line cutting the real line at -1 with slope $\frac{1}{\alpha}$ with $\alpha > 0$

There exists a line for which the whole Popov's plot stays underneath, therefore the closed loop system is stable

Useful for sector nonlinearities Φ in sector $[k_1, k_2]$

Generalisation of Nyquist criterion with (-1,0) replaced by a circle.

Useful for sector nonlinearities Φ in sector $[k_1, k_2]$

Generalisation of Nyquist criterion with (-1,0) replaced by a circle.

Useful for sector nonlinearities Φ in sector $[k_1, k_2]$

Generalisation of Nyquist criterion with (-1,0) replaced by a circle.

- *Note that if $k_2 \rightarrow k_1$:
- -sector becomes thinner
- -nonlinearity → linear
- -circle → point

Then circle criterion becomes Nyquist criterion

Theorem

If a linear system combines with a static nonlinearity in the feedback and fulfills

- A no eigenvalues on j ω —axis and ρ eigenvalues in RHP
- Φ belongs to sector $[k_1, k_2]$
- One of the following holds
 - $0 < k_1 \le k_2$, Nyquist plot of $G(j\omega)$ does not enter $\mathcal{D}(k_1, k_2)$ and encircles it ρ times anti-clockwise
 - $0 = k_1 < k_2$, Nyquist plot of $G(j\omega)$ stays to the right of $\Re(s) > -\frac{1}{k_2}$
 - $k_1 < 0 < k_2$, Nyquist plot of $G(j\omega)$ stays in $\mathcal{D}(k_1, k_2)$
 - $k_1 < k_2 < 0$, Nyquist plot of $-G(j\omega)$ does not enter $\mathcal{D}(-k_1, -k_2)$
 - and encircles it ρ times anti-clockwise
- then 0 is globally asymptotically stable

Theorem

If a linear system combines with a static nonlinearity in the feedback and fulfills

- A no eigenvalues on $j\omega$ —axis and ρ eigenvalues in RHP
- Φ belongs to sector $[k_1, k_2]$
- One of the following holds
 - $0 < k_1 \le k_2$, Nyquist plot of $G(j\omega)$ does not enter $\mathcal{D}(k_1, k_2)$ and encircles it ρ times anti-clockwise

$$0 = k_1 < k_2$$
, Nyquist plot of $G(j\omega)$ stays to the right of $\Re(s) > -\frac{1}{k_2}$

 $k_1 < 0 < k_2$, Nyquist plot of $G(j\omega)$ stays in $\mathcal{D}(k_1,k_2)$

 $k_1 < k_2 < 0$, Nyquist plot of $-G(j\omega)$ does not enter $\mathcal{D}(-k_1, -k_2)$

and encircles it ρ times anti-clockwise

then 0 is globally asymptotically stable

Only a sufficient condition!

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [0,2]

The Nyquist plot looks as follows:

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [0,2]

The Nyquist plot looks as follows:

We have a nonlinearity in sector [0,2] The nonlinearity corresponds to case $0 = k_1 < k_2$

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [0,2]

G(s) $\phi(y)$

The Nyquist plot looks as follows:

We have a nonlinearity in sector [0,2]

The nonlinearity corresponds to case $0 = k_1 < k_2$

We need to look at $\Re(s) > -\frac{1}{k_2}$ and check that the Nyquist plot stays to the right

G(s)

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [0,2]

The Nyquist plot looks as follows:

Real Axis

We have a nonlinearity in sector [0,2]

The nonlinearity corresponds to case $0 = k_1 < k_2$

We need to look at $\Re(s) > -\frac{1}{k_2}$ and check that the Nyquist plot stays to the right

Since Nyquist plot stays to the right of real line crossing at $-\frac{1}{2}$, the closed loop system is stable

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [-1,2]

The Nyquist plot looks as follows:

Consider the nonlinear system on the right where nonlinearity $\phi(s)$ belongs to sector [-1,2]

G(s) $\phi(y)$

The Nyquist plot looks as follows:

We have a nonlinearity in sector [-1,2]The nonlinearity corresponds to the case $k_1 < 0 < k_2$

We need to take circle D(-1,2) and check that Nyquist plot stays inside Since the Nyquist plot does not exist the circle, we conclude the closed loop system is stable

Summary

- Circle criterion is a generalisation of Nyquist criterion with point (-1,0) replaced with a circle
- Popov's criterion is a generalisation of Nyquist criterion with point (-1,0) replaced with a line
- Circle and Popov's criterion can be used to study closed loop stability of linear systems with sector nonlinearities
- They only provide sufficient stability conditions

The End