Topic 19 - Inference

STAT 525 - Fall 2013

STAT 525

Outline

- Inference for
 - Means
 - Differences in cell means
 - Contrasts
- Multiplicity

Topic 19

_

STAT 525

The Cell Means Model

• Expressed numerically

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where μ_i is the theoretical mean of all observations at level i (or in cell i)

- The ε_{ij} are iid $N(0, \sigma^2)$ which implies the Y_{ij} are independent $N(\mu_i, \sigma^2)$
- Parameters
 - $-\mu_1, \mu_2, ..., \mu_r$
 - $-\sigma^2$

STAT 525

Estimates

• Estimate μ_i using the sample mean of the observations at level i

$$\hat{\mu}_i = \overline{Y}_i$$

• Pool the sample variances s_i^2 using weights proportional to sample size (i.e., df) to get s^2

$$s^{2} = \frac{\sum (n_{i} - 1)s_{i}^{2}}{\sum (n_{i} - 1)}$$
$$= \frac{\sum (n_{i} - 1)s_{i}^{2}}{n_{T} - r}$$

Topic 19

3

Topic 19

pic 19

Confidence Intervals of μ_i 's

• From model

$$\overline{Y}_{i.} \sim N(\mu_i, \sigma^2/n_i)$$

• Confidence interval

$$\overline{Y}_{i} \pm t(1-\alpha/2; n_T-r)s/\sqrt{n_i}$$

• Degrees of freedom larger than $n_i - 1$ because pooling variance estimates across treatments (i.e., borrowing information from other groups)

Topic 19

SAS Commands

```
data a1;
   infile 'u:\.www\datasets525\CH15TA01.TXT';
   input cases design store;
proc means data=a1 mean std stderr clm maxdec=2;
   class design;
   var cases;
proc glm data=a1;
   class design;
   model cases=design;
   means design/t clm;
proc mixed data=a1;
   class design;
   model cases=design;
   lsmeans design / cl;
```

Topic 19

STAT 525

Output

The MEANS Procedure

Analysis Variable : cases

Lower 95% Upper 95%

Des	N	Mean	n StdDev StdErr		CL for	Mean
1	5	14.60	2.30	1.03	11.74	17.46
2	5	13.40	3.65	1.63	8.87	17.93
3	4	19.50	2.65	1.32	15.29	23.71
4	5	27.20	3.96	1.77	22.28	32.12

Note: $4 \times 2.30^2 + 4 \times 3.65^2 + 3 \times 2.65^2 + 4 \times 3.96^2 = 158.24$. Except for rounding, this is equal to SSE. Also, 19-4=15 which is the df error in the ANOVA table.

There is no pooling of error (or df) when computing these confidence intervals.

STAT 525

Output

The GLM Procedure

t Confidence Intervals for cases Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 10.54667 Critical Value of t 2.13145

			95% Confidence			
design	N	Mean	Limi	ts		
4	5	27.200	24.104	30.296		
3	4	19.500	16.039	22.961		
1	5	14.600	11.504	17.696		
2	5	13.400	10.304	16.496		

These confidence intervals are often narrower due to the increase in degrees of freedom. Results can vary if there does not appear to be a common variance.

Topic 19 Topic 19

Output

The Mixed Procedure

Covariance Parameter

Estimates

Cov Parm Estimate 10.5467 Residual

Least Squares Means

Standard

Design	Estimate	Error	DF	t Value	Pr > t	Lower	Upper
1	14.6000	1.4524	15	10.05	<.0001	11.5044	17.6956
2	13.4000	1.4524	15	9.23	<.0001	10.3044	16.4956
3	19.5000	1.6238	15	12.01	<.0001	16.0390	22.9610
4	27.2000	1.4524	15	18.73	<.0001	24.1044	30.2956

These confidence intervals are the same as the previous page. Standard errors, based on constant variance assumption, are provided.

Topic 19

STAT 525

SAS Commands

```
proc glm data=a1;
   class design;
   model cases=design;
   means design/bon clm;
proc mixed data=a1;
   class design;
   model cases=design;
   lsmeans design /alpha=0.125 cl;
run;
```

Multiplicity

- \bullet Have generated r confidence intervals
- Overall confidence level (all intervals contain its true mean) is less than $1 - \alpha$
- Many different approaches have been proposed
- Previously discussed using Bonferroni

Topic 19

10

STAT 525

Output

Bonferroni t Confidence Intervals for cases

Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 10.54667 Critical Value of t 2.83663

			Simultaneo	us 95%
design	N	Mean	Confidence	Limits
4	5	27.200	23.080	31.320
3	4	19.500	14.894	24.106
1	5	14.600	10.480	18.720
2	5	13.400	9.280	17.520

Topic 19 11-1 Topic 19

Output

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Residual 10.5467

Least Squares Means

Standard

Design	Estimate	Error	DF	t Value	Pr > t	Alpha	Lower	Upper
1	14.6000	1.4524	15	10.05	<.0001	0.0125	10.4802	18.7198
2	13.4000	1.4524	15	9.23	<.0001	0.0125	9.2802	17.5198
3	19.5000	1.6238	15	12.01	<.0001	0.0125	14.8939	24.1061
4	27.2000	1.4524	15	18.73	<.0001	0.0125	23.0802	31.3198

Topic 19

Hypothesis Tests on μ_i 's

- Not usually done
- SAS typically gives output for $H_0: \mu_i = 0$ which rarely is of any interest
- If interested in $H_0: \mu_i = c$, it is easiest to subtract of c from all observations in a data step and then test whether the new mean is equal to zero.
- Can also use CI to make decision

Topic 19

STAT 525

Differences in means

• From model

$$\overline{Y}_{i.} - \overline{Y}_{k.} \sim N\left(\mu_i - \mu_k, \sigma^2\left(\frac{1}{n_i} + \frac{1}{n_k}\right)\right)$$

• Confidence interval

$$\overline{Y}_{i.} - \overline{Y}_{k.} \pm t(1 - \alpha/2; n_T - r)s\sqrt{1/n_i + 1/n_k}$$

- In this case $H_0: \mu_i \mu_k = 0$ is of interest
- Similar multiplicity problem
- Now have $\frac{r(r-1)}{2}$ pairwise comparisons to consider

STAT 525

Topic 19

Multiplicity Adjustment

- $\bullet\,$ Approaches adjust multiplier of the SE
 - Alter α level (e.g., Bonferroni)
 - Use different distribution
- ullet Conservative \to strong control of overall Type I error avoids false positives
- \bullet Powerful \to able to pick up differences that exist avoids false negatives
- All approaches try to strike to strike some sort of balance

Topic 19

14

15

Least Significant Difference

- Simply ignores multiplicity issue
- Most powerful of the procedures but also results in most false positives
- Uses $t(1-\alpha/2; n_T-r)$ to determine multiplier
- Called T or LSD in SAS

Topic 19

10

STAT 525

Scheffe'

- Based on the F distribution
- Accounts for multiplicity for <u>all</u> linear combinations of means, not just pairwise comparisons
- Protects against data snooping
- Uses $\sqrt{(r-1)F(1-\alpha;r-1,n_T-r)}$ to determine multiplier
- Called SCHEFFE in SAS

Tukey

- ullet Based on studentized range distribution q
- Range is $\max(\overline{Y}_i) \min(\overline{Y}_i)$ in r levels
- Accounts for any possible pair being furthest apart
- Controls overall experimentwise error rate
- Uses $q(1-\alpha; r, n_T r)/\sqrt{2}$ to determine multiplier
- Called TUKEY in SAS

Topic 19

16 19

STAT 525

Bonferroni

• Replaces α by

$$\alpha^* = \frac{\alpha}{r(r-1)/2}$$

- Uses $t(1 \alpha^*/2; n_T r)$ to determine multiplier
- Called BON in SAS

Topic 19

18

Topic 19

Holm

- Refinement of Bonferroni
- Instead of using

$$\alpha^* = \frac{\alpha}{q}$$

for all comparisons

- Rank unadjusted P-values from smallest to largest
- Continue to reject until $P_k \ge \alpha/(g-k+1)$
- Available in Proc Multtest in SAS

False Discovery Rate

- FDR defined as expected proportion of false positives in the collection of rejected null hypotheses
- Becoming more popular, especially when # of tests in the thousands or millions
- Rank P-values from smallest to largest
- Continue to reject until $P_k \ge k\alpha/g$
- Available in Proc Multtest in SAS

Topic 19

STAT 525

Topic 19

Topic 19

SAS Commands

```
proc glm data=a1;
   class design;
   model cases=design;
   means design/lsd tukey bon scheffe;
   means design/lines tukey;
run:
proc mixed data=a1;
   class design;
   model cases=design;
   lsmeans design / diff=all; lsmeans design / adjust=tukey;
   lsmeans design / adjust=bon; lsmeans design / adjust=scheffe;
run;
proc glimmix data=a1;
   class design;
   model cases=design;
   lsmeans design / adjust=tukey lines;
run;
```

Output t Tests (LSD) for cases NOTE: This test controls the Type I comparisonwise error rate not the experimentwise error rate. Alpha Error Degrees of Freedom Error Mean Square 10.54667 Critical Value of t 2.13145 Comparisons significant at the 0.05 level are indicated by ***. Difference Between 95% Confidence Limits 3.057 12.343 12.600 13.800 -7.700 -12.600 -4.900 1.200

-13.800

-6.100

-1.200

Topic 19

-9.422

-1.457

3.178

-10.743

-5.578

Output

Tukey's Studentized Range (HSD) Test for cases NOTE: This test controls the Type I experimentwise error rate.

Error Degrees of Freedom 15 Error Mean Square 10.54667 Critical Value of Studentized Range 4.07597

Comparisons significant at the 0.05 level are indicated by ***.

		Difference			
	design	Between	Simultane	ous 95%	
C	omparison	Means	Confidence	Limits	
4	- 3	7.700	1.421	13.979	***
4	- 1	12.600	6.680	18.520	***
4	- 2	13.800	7.880	19.720	***
3	- 4	-7.700	-13.979	-1.421	***
3	- 1	4.900	-1.379	11.179	
3	- 2	6.100	-0.179	12.379	
1	- 4	-12.600	-18.520	-6.680	***
1	- 3	-4.900	-11.179	1.379	
1	- 2	1.200	-4.720	7.120	
2	- 4	-13.800	-19.720	-7.880	***
2	- 3	-6.100	-12.379	0.179	
2	- 1	-1.200	-7.120	4.720	

Topic 19

Output

Bonferroni (Dunn) t Tests for cases ${\tt NOTE}\colon {\tt This}\ {\tt test}\ {\tt controls}\ {\tt the}\ {\tt Type}\ {\tt I}\ {\tt experimentwise}\ {\tt error}\ {\tt rate},\ {\tt but}\ {\tt it}$ generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha 0.05 Error Degrees of Freedom 15 Error Mean Square 10.54667 Critical Value of t 3.03628

Comparisons significant at the 0.05 level are indicated by ***.

		Difference			
de	sign	Between	Simultane	ous 95%	
Comp	arison	Means	Confidence	Limits	
4	- 3	7.700	1.085	14.315	***
4	- 1	12.600	6.364	18.836	***
4	- 2	13.800	7.564	20.036	***
3	- 4	-7.700	-14.315	-1.085	***
3	- 1	4.900	-1.715	11.515	
3	- 2	6.100	-0.515	12.715	
1	- 4	-12.600	-18.836	-6.364	***
1	- 3	-4.900	-11.515	1.715	
1	- 2	1.200	-5.036	7.436	
2	- 4	-13.800	-20.036	-7.564	***
2	- 3	-6.100	-12.715	0.515	
2	- 1	-1.200	-7.436	5.036	

Topic 19

25

STAT 525

Topic 19

Output

Scheffe's Test for cases NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

0.05 Alpha Error Degrees of Freedom 10.54667 Error Mean Square Critical Value of F 3.28738

Comparisons significant at the 0.05 level are indicated by ***.

		Difference			
d	lesign	Between	Simultane	ous 95%	
Com	parison	Means	Confidence	Limits	
4	- 3	7.700	0.859	14.541	***
4	- 1	12.600	6.150	19.050	***
4	- 2	13.800	7.350	20.250	***
3	- 4	-7.700	-14.541	-0.859	***
3	- 1	4.900	-1.941	11.741	
3	- 2	6.100	-0.741	12.941	
1	- 4	-12.600	-19.050	-6.150	***
1	- 3	-4.900	-11.741	1.941	
1	- 2	1.200	-5.250	7.650	
2	- 4	-13.800	-20.250	-7.350	***
2	- 3	-6.100	-12.941	0.741	
2	- 1	-1.200	-7.650	5.250	

STAT 525

24

26

Output

Tukey's Studentized Range (HSD) Test for cases

Alpha 0.05 Error Degrees of Freedom 15 10.54667 Error Mean Square Critical Value of Studentized Range 4.07597 Minimum Significant Difference 6.1019 Harmonic Mean of Cell Sizes 4.705882

NOTE: Cell sizes are not equal.

Means with the same letter are not significantly different.

	Mean	N	design
A	27.200	5	4
ВВ	19.500	4	3
B B	14.600	5	1
В	13.400	5	2

Topic 19 27

Mixed Output

				Standard					
Effect	design	_design	Estimate	Error	DF	t Value	Pr > t	Adjustment	Adj P
design	1	2	1.2000	2.0539	15	0.58	0.5677		
design	1	3	-4.9000	2.1785	15	-2.25	0.0399		
design	1	4	-12.6000	2.0539	15	-6.13	<.0001		
design	2	3	-6.1000	2.1785	15	-2.80	0.0135		
design	2	4	-13.8000	2.0539	15	-6.72	<.0001		
design	3	4	-7.7000	2.1785	15	-3.53	0.0030		
design	1	2	1.2000	2.0539	15	0.58	0.5677	Tukey-Kramer	0.9353
design	1	3	-4.9000	2.1785	15	-2.25	0.0399	Tukey-Kramer	0.1549
design	1	4	-12.6000	2.0539	15	-6.13	<.0001	Tukey-Kramer	0.0001
design	2	3	-6.1000	2.1785	15	-2.80	0.0135	Tukey-Kramer	0.0583
design	2	4	-13.8000	2.0539	15	-6.72	<.0001	Tukey-Kramer	<.0001
design	3	4	-7.7000	2.1785	15	-3.53	0.0030	Tukey-Kramer	0.0142
design	1	2	1.2000	2.0539	15	0.58	0.5677	Bonferroni	1.0000
design	1	3	-4.9000	2.1785	15	-2.25	0.0399	Bonferroni	0.2397
design	1	4	-12.6000	2.0539	15	-6.13	<.0001	Bonferroni	0.0001
design	2	3	-6.1000	2.1785	15	-2.80	0.0135	Bonferroni	0.0808
design	2	4	-13.8000	2.0539	15	-6.72	<.0001	Bonferroni	<.0001
design	3	4	-7.7000	2.1785	15	-3.53	0.0030	Bonferroni	0.0180
design	1	2	1.2000	2.0539	15	0.58	0.5677	Scheffe	0.9507
design	1	3	-4.9000	2.1785	15	-2.25	0.0399	Scheffe	0.2125
design	1	4	-12.6000	2.0539	15	-6.13	<.0001	Scheffe	0.0002
design	2	3	-6.1000	2.1785	15	-2.80	0.0135	Scheffe	0.0895
design	2	4	-13.8000	2.0539	15	-6.72	<.0001	Scheffe	<.0001
design	3	4	-7.7000	2.1785	15	-3.53	0.0030	Scheffe	0.0248

Topic 19

STAT 525

SAS Commands

```
proc multtest data=a1 holm fdr out=new noprint;
class design;
contrast '12' 1 -1 0 0;
contrast '13' 1 0 -1 0;
contrast '14' 1 0 0 -1;
contrast '23' 0 1 -1 0;
contrast '24' 0 1 0 -1;
contrast '34' 0 0 1 -1;
test mean(cases);
run;

proc print data=new;
run;
```

Glimmix Output

Differences of design Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

			Standard				
design	_design	Estimate	Error	DF	t Value	Pr > t	Adj P
1	2	1.2000	2.0539	15	0.58	0.5677	0.9353
1	3	-4.9000	2.1785	15	-2.25	0.0399	0.1549
1	4	-12.6000	2.0539	15	-6.13	<.0001	0.0001
2	3	-6.1000	2.1785	15	-2.80	0.0135	0.0583
2	4	-13.8000	2.0539	15	-6.72	<.0001	<.0001
3	4	-7.7000	2.1785	15	-3.53	0.0030	0.0142

Tukey-Kramer Grouping for design Least Squares Means (Alpha=0.05) LS-means with the same letter are not significantly different.

design	Estimate		
4	27.2000	A	
3	19.5000	E	
1	14.6000	E	
2	13.4000	E	

Topic 19

STAT 525

Output

Obs	_test_	_var_	_contrast_	_value_	_se_	_nval_	raw_p	stpbon_p	fdr_p	
1	MEAN	cases	12	22.8	39.0248	15	0.56774	0.56774	0.56774	
2	MEAN	cases	13	-93.1	41.3921	15	0.03995	0.07990	0.04794	
3	MEAN	cases	14	-239.4	39.0248	15	0.00002	0.00010	0.00006	
4	MEAN	cases	23	-115.9	41.3921	15	0.01346	0.04038	0.02019	
5	MEAN	cases	24	-262.2	39.0248	15	0.00001	0.00004	0.00004	
6	MEAN	cases	34	-146.3	41.3921	15	0.00300	0.01201	0.00601	

Instead of comparing each raw P-value to a different α level, the P-values are adjusted based on the procedure.

This approach works for experiments with a small number of levels. Can also input a set of P-values and perform the analysis.

Topic 19 30 Topic 19

Linear Combination of Means

- Would like to test $H_0: L = \sum c_i \mu_i = L_0$
- Hypotheses usually planned but can be "after the fact"

Can use statistical model to construct t-test

$$\widehat{L} = \sum c_i \overline{Y}_i.$$
 $\operatorname{Var}(\widehat{L}) = \operatorname{Var}(\sum c_i \overline{Y}_i.)$
 $= \sum c_i^2 \operatorname{Var}(\overline{Y}_i.)$
 $= \operatorname{MSE} \sum (c_i^2/n_i)$

$$t^* = \frac{\widehat{L} - L_0}{\sqrt{\operatorname{Var}(\widehat{L})}}$$

Under H_0 : $t^* \sim t_{n_T-r}$

Topic 19

Contrasts

- Special case of linear combination
- Requires $\sum c_i = 0$
- Example 1: $\mu_1 \mu_2 = 0$
- Example 2: $\mu_1 (\mu_2 + \mu_3)/2 = 0$
- Example 3: $(\mu_1 + \mu_2) (\mu_3 + \mu_4) = 0$

Topic 19

STAT 525

Topic 19

SAS Commands

STAT 525

34

Output

Contrast DF Contrast SS Mean Square F Value Pr > F 1&2 v 3&4 1 411.4000000 411.4000000 39.01 <.0001

Standard

Parameter Estimate Error t Value Pr > |t| 1&2 v 3&4 -9.35000000 1.49705266 -6.25 <.0001

Contrast does an F test while Estimate does a t-test and gives an estimate of the linear combination. Contrast allows you to simultaneously test a collection of contrasts.

Contrast DF Contrast SS Mean Square F Value Pr > F 1 v 2&3&4 1 108.4739502 108.4739502 10.0959 2 v 3 v 4 2 477.9285714 238.9642857 22.66 <.0001

Topic 19 35

Topic 19