Doing things with data frames

Doing things with data frames

Let's go back to our Australian athletes:

۲_

NI_+

```
## Rows: 202 Columns: 13
## -- Column specification -----
## Delimiter: "\t"
```

chr (2): Sex, Sport
dbl (11): RCC, WCC, Hc, Hg, Ferr, BMI, SSF, %Bfa...
##

i Use `spec()` to retrieve the full column specification for
i Specify the column types or set `show col types = FALSE`

	•	•		0 1						
athle	etes									
Sex	Sport	RCC WCC	Hc	Hg	Ferr	BMI	SSF	%Bfat LBM	Ht	Wt

Sex	Sport	RCC	WCC	Hc	Hg	Ferr	BMI	SSF	%Bfat	LBM	Ht	Wt
fe-	Net-	4.56	13.30	42.2	13.6	20	19.16	49.0	11.29	53.14	176.8	59.90
male fe- male	Net-	4.15	6.00	38.0	12.7	59	21.15	110.2	25.26	47.09	172.6	63.00

Doing things with data frames

Choosing a column

athletes %>% select(Sport)

Sport Netball Netball

Choosing several columns

athletes %>% select(Sport, Hg, BMI)

Sport	Hg	ВМІ
Netball	13.6	19.16
Netball	12.7	21.15
Netball	12.3	21.40
Netball	12.3	21.03
Netball	12.8	21.77
Netball	11.8	21.38
Netball	12.7	21.47
Netball	12.4	24.45
Netball	12.4	22.63
Netball	14.1	22.80
Netball	12.5	23.58
Netball	12.1	20.06
Netball	12.7	23.01
Doing thin	gs with data	frames

Choosing consecutive columns

athletes %>% select(Sex:WCC)

Sex	Sport	RCC	WCC
female	Netball	4.56	13.30
female	Netball	4.15	6.00
female	Netball	4.16	7.60
female	Netball	4.32	6.40
female	Netball	4.06	5.80
female	Netball	4.12	6.10
female	Netball	4.17	5.00
female	Netball	3.80	6.60
female	Netball	3.96	5.50
female	Netball	4.44	9.70
female	Netball	4.27	10.60
female	Netball	3.90	6.30
female	Netball	4.02	9.10
	Cartina and the control of the	data Commen	

Choosing all-but some columns

athletes %>% select(-(RCC:LBM))

Sex	Sport	Ht	Wt
female	Netball	176.8	59.90
female	Netball	172.6	63.00
female	Netball	176.0	66.30
female	Netball	169.9	60.70
female	Netball	183.0	72.90
female	Netball	178.2	67.90
female	Netball	177.3	67.50
female	Netball	174.1	74.10
female	Netball	173.6	68.20
female	Netball	173.7	68.80
female	Netball	178.7	75.30
female	Netball	183.3	67.40
female	Netball	174.4	70.00
	Doing things wit	h data frames	

Select-helpers

Other ways to select columns: those whose name:

- starts_with something
- ends_with something
- contains something
- matches a "regular expression"
- everything() select all the columns

Columns whose names begin with S

athletes %>% select(starts_with("S"))

Sex	Sport	SSF
female	Netball	49.0
female	Netball	110.2
female	Netball	89.0
female	Netball	98.3
female	Netball	122.1
female	Netball	90.4
female	Netball	106.9
female	Netball	156.6
female	Netball	101.1
female	Netball	126.4
female	Netball	114.0
female	Netball	70.0
female	Netball	77.0
Doing t	hings with data f	rames

Columns whose names end with C

either uppercase or lowercase:

athletes %>% select(ends_with("c"))

RCC	WCC	Нс
4.56	13.30	42.2
4.15	6.00	38.0
4.16	7.60	37.5
4.32	6.40	37.7
4.06	5.80	38.7
4.12	6.10	36.6
4.17	5.00	37.4
3.80	6.60	36.5
3.96	5.50	36.3
4.44	9.70	41.4
4.27	10.60	37.7
Doing th	e 20 nings with data	OF O a frames

Case-sensitive

This works with any of the select-helpers:

athletes %>% select(ends_with("C", ignore.case=F))

RCC	WCC
4.56	13.30
4.15	6.00
4.16	7.60
4.32	6.40
4.06	5.80
4.12	6.10
4.17	5.00
3.80	6.60
3.96	5.50
4.44	9.70
4.27	10.60
oing things v	vith data frames

Column names containing letter R

athletes %>% select(contains("r"))

Sport	RCC	Ferr
Netball	4.56	20
Netball	4.15	59
Netball	4.16	22
Netball	4.32	30
Netball	4.06	78
Netball	4.12	21
Netball	4.17	109
Netball	3.80	102
Netball	3.96	71
Netball	4.44	64
Netball	4.27	68
Netball	3.90	78
Netball	4.02	107
Data a Aktas	and the state of the state of	c

Exactly two characters, ending with T

In regular expression terms, this is ^.t\$:

- ^ means "start of text"
- means "exactly one character, but could be anything"
- \$ means "end of text".

athletes %>% select(matches("^.t\$"))

Ht	Wt
176.8	59.90
172.6	63.00
176.0	66.30
169.9	60.70
183.0	72.90
178.2	67.90
177.3	67.50
174.1	74.10
Doing things with	data frames

Choosing columns by property

- Use where as with summarizing several columns
- eg, to choose text columns:

athletes %>% select(where(is.character))

Sex	Sport
female	Netball
famala Doing things v	Na+hall

Choosing rows by number

athletes %>% slice(16:25)

Sex

male

fe-

male

fe-

ball

Net-

Net-

ball

fe-	Net-	4.25	10.7	39.5	13.2	127	24.47	156.6	26.50	54.46	174.0	74.10
male	ball											
fe-	Net-	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01	57.20	176.0	74.30
male	ball											
fe-	Net-	4.40	9.3	40.4	13.6	86	26.24	181.7	30.10	54.38	172.2	77.80
male	ball											
fe-	Net-	4.83	8.4	41.8	13.4	40	20.04	71.6	13.93	57.58	182.7	66.90
male	ball											
fe-	Net-	4 23	6 9	38 3	12 6	50	25.72	143 5	26 65	61 46	180 5	83 80
		20	0.5	55.5	0		_0.12	± .5.5	_0.00	01.10	100.0	55.00

Sport RCC WCC Hc Hg Ferr BMI SSF %BfatLBM Ht

3.95 6.6 38.4 12.8 33 19.87 68.9 15.59 54.11 179.6 64.10

4.24 8.4 37.6 12.5 58 25.64 200.8 35.52 53.46 179.8 82.90

Wt

Non-consecutive rows

```
athletes %>% slice(10,13,17,42)
```

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	ВМІ	SSF	%Bfat	LBM	Ht	Wt
fe-	Net-	4.44	9.7	41.4	14.1	64	22.80	126.4	24.97	51.62	173.7	68.8
male	ball											
fe-	Net-	4.02	9.1	37.7	12.7	107	23.01	77.0	18.14	57.30	174.4	70.0
male	ball											
fe-	Net-	4.46	10.9	39.7	13.7	102	23.99	115.9	23.01	57.20	176.0	74.3
male	ball											
fe-	Row	4.37	8.1	41.8	14.3	53	23.47	98.0	21.79	62.96	185.2	80.5
male												

A random sample of rows

Sex

male male

male

athletes %>% slice_sample(n=8)

Swim 5.11 6.7 46.1 15.6 93

T400m5.21 7.5 47.5 16.5

male	Field	5.11	9.3	45.4	15.8	189	24.78 4	13.2	8.18	87.00	195.4	94.6
fe-	Row	4.41	5.9	41.1	13.5	41	23.97 1	123.6	22.39	61.70	182.1	79.5
male												
fe-	T400r	n4.09	6.4	40.1	13.2	44	19.16 4	1.1	9.02	46.31	163.0	50.9
male												
male	Field	5.48	4.6	49.4	18.0	132	32.52 5	55.7	8.51	102.00	185.0	111.3
fe-	Ten-	4.38	7.9	39.8	13.5	88	21.25 8	30.6	17.07	46.52	162.5	56.1
male	nis											
fe-	Gvm	4 10	9 N	30 N	13 4	69	18 93 4	13 5	10 16	42 95	158 0	4 7 8

Sport RCC WCCHc Hg Ferr BMI SSF %BfatLBM

20

Ht

22.32 40.5 6.86 78.00 193.4 83.5

21.89 46.7 9.50 70.00 187.3 76.8

Wt

Rows for which something is true

athletes %>% filter(Sport == "Tennis")

Sex	Sport	RCC	WCC	Нс	Hg	Ferr	BMI	SSF	%Bfat	LBM	Ht	Wt
fe- male	Ten- nis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86	56.58	167.9	71.5
fe- male	Ten- nis	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64	56.01	177.5	69.7
fe- male	Ten- nis	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07	46.52	162.5	56.1
fe- male	Ten- nis	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31	51.75	172.5	61.1
fe- male	Ten- nis	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07	42.15	166.7	47.4
fe- male	Ten- nis	5.16	7.2	44.3	14.5	88	18.29	61.9	12.92	48.76	175.0	56.0
fe- male	Ten- nis	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45	41.93	157.9	45.8
male	Ten- nis	5.66	8.3	50.2	17.7	38	23.76	56.5	10.05	72.00	183.5	80.0
mala	Tan	ድ ሀሪ	6 1	17 7		1つつ ngs with o	つつ ∩1 data frames	176	ያ 斥1	68 ሀሀ	122 1	7 2 Ω 17/4

More complicated selections

athletes %>% filter(Sport == "Tennis", RCC < 5)

Sex	Sport	RCC	WC	СНс	Hg	Ferr	BMI	SSF	%Bfat	LBM	Ht	Wt
fe-	Ten-	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86	56.58	167.9	71.5
male	nis											
fe-	Ten-	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64	56.01	177.5	69.7
male	nis											
fe-	Ten-	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07	46.52	162.5	56.1
male	nis											
fe-	Ten-	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31	51.75	172.5	61.1
male	nis											
fe-	Ten-	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07	42.15	166.7	47.4
male	nis											
fe-	Ten-	4.66	6.4	40.9	13.9	109	18.37	38.2	8.45	41.93	157.9	45.8
male	nis											
male	Ten-	4.97	8.8	43.0	14.9	233	22.34	60.4	11.50	63.00	178.4	71.1

Doing things with data frames

18 / 42

Another way to do "and"

male

fe-

male

nis

nis

Sport DCC WCCUs Us

```
athletes %>% filter(Sport == "Tennis") %>%
filter(RCC < 5)</pre>
```

Sex	Sport	NCC	VVCC	LIIC	пд	ren	DIVII	335	/0DIat	LDIVI	Пι	٧٧٤
fe- male	Ten-	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86	56.58	167.9	71.5
fe-	Ten-	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64	56.01	177.5	69.7
	Ten-	4.38	7.9	39.8	13.5	88	21.25	80.6	17.07	46.52	162.5	56.1
male fe-	nis Ten-	4.08	6.6	37.8	12.1	182	20.53	68.3	15.31	51.75	172.5	61.1
male fe-	nis Ten-	4.98	6.4	44.8	14.8	80	17.06	47.6	11.07	42.15	166.7	47.4

Forr RMI

SSE %Rfa+LRM

Doing things with data frames

Ten- 4.66 6.4 40.9 13.9 109 18.37 38.2 8.45 41.93 157.9 45.8

Either/Or

athletes %>% filter(Sport == "Tennis" | RCC > 5)

Sex	Sport	RCC	WCC	Hc	Hg	Ferr	BMI	SSF	% BfatLBM	Ht	Wt
fe- male	Row	5.02	6.4	44.8	15.2	48	19.76	91.0	19.20 53.65	183.3	66.40
fe- male	T400r	тБ.31	9.5	47.1	15.9	29	21.35	57.9	11.07 57.54	174.1	64.70
fe- male	Field	5.33	9.3	47.0	15.0	62	25.27	102.8	19.51 59.89	171.6	74.40
fe- male	TSprn	ıt5.16	8.2	45.3	14.7	34	20.30	46.1	10.15 51.48	168.0	57.30
fe- male	Ten- nis	4.00	4.2	36.6	12.0	57	25.36	109.0	20.86 56.58	167.9	71.50
fe- male	Ten-	4.40	4.0	40.8	13.9	73	22.12	98.1	19.64 56.01	177.5	69.70
fe-	Ten-	4.38	7.9		13.5 Doing thin		21.25 data frame		17.07 46.52	162.5	56.10 20 / 42

Sorting into order

f~

athletes %>% arrange(RCC) Sport RCC WCC Hc Hg Ferr BMI SSF %BfatLBM Sex Wt

16-	Met-	3.00	0.00	30.5	12.4	102	24.45 150.0	20.57 54.41	114.1 14.10
male	ball								
fe-	Net-	3.90	6.30	35.9	12.1	78	20.06 70.0	15.01 57.28	183.3 67.40
male	ball								
fe-	T400m	13.90	6.00	38.9	13.5	16	19.37 48.4	10.48 53.71	176.0 60.00

2 90 6 60 26 5 12 4 102 24 45 156 6 26 57 54 41 174 1 74 10

21 / 42

male

Row 3.91 7.30 37.6 12.9 43 22.27 125.9 25.16 54.78 181.3 73.20 female fe-3.95 6.60 38.4 12.8 33 19.87 68.9 15.59 54.11 179.6 64.10 Netmale ball

fe-3.95 3.30 36.9 12.5 40 24.54 74.9 16.38 63.05 175.3 75.40 Row male fe-3.96 5.50 36.3 12.4 22.63 101.1 17.93 55.97 173.6 68.20 Doing things with data frames

Breaking ties by another variable

athletes %>% arrange(RCC, BMI) Sport RCC WCC Hc Hg Ferr BMI SSF %BfatLBM Wt Sex

fe-	Net-	3 80	6.60	36 5	12.4	102	24 45 156 6	26.57 54.41	174 1 74 10
		5.00	0.00	30.3	12.1	102	21.13 130.0	20.57 51.11	174.174.10
male									
fe-	T400r	n3.90	6.00	38.9	13.5	16	19.37 48.4	10.48 53.71	176.0 60.00

male

fe-3.90 6.30 35.9 12.1 78 20.06 70.0 15.01 57.28 183.3 67.40 male ball

fe-3.91 7.30 37.6 12.9 43 22.27 125.9 25.16 54.78 181.3 73.20 male fe-3.95 6.60 38.4 12.8 33 19.87 68.9 15.59 54.11 179.6 64.10 Netmale ball

3.95 3.30 36.9 12.5 40 24.54 74.9 16.38 63.05 175.3 75.40 fe-Row male fe-BBall 3.96 7.50 37.5 12.3 20.56 109.1 19.75 63.32 195.9 78.90 Doing things with data frames

22 / 42

Descending order

Sex

female

female male

athletes %>% arrange(desc(BMI))

maie	i ieiu	5.40	0.20	40.2	10.5	94	34.42 02.1	13.91	100.00	0109.2	. 123.20
male	Field	4.96	8.30	45.3	15.7	141	33.73 113.5	17.41	89.00	179.1	108.20
male	Field	5.48	4.60	49.4	18.0	132	32.52 55.7	8.51	102.00	0185.0	111.30
fe-	Field	4.75	7.50	43.8	15.2	90	31.93 131.9	23.01	72.98	172.3	94.80
male											
male	Field	5.01	8.90	46.0	15.9	212	30.18 112.5	19.94	78.00	180.1	97.90
male	Field	5.01	8.90	46.0	15.9	212	30.18 96.9	18.08	80.00	180.1	97.90
male	Field	5.09	8.90	46.3	15.4	44	29.97 71.1	13.97	88.00	185.1	102.70

Field 4.58 5.80 42.1 14.7 164 28.57 109.6 21.30 68.86 175.0 87.50

4.51 9.00 39.7 14.3 36 28.13 136.3 24.88 63.03 172.7 83.90

Sport RCC WCC Hc Hg Ferr BMI SSF %BfatLBM

5 48 6 20 48 2 16 3 04 34 42 82 7

WPolo 5.34 6.20 49.8 17.2 143 27.79 75.7 13.49 82.00 184.6 94.70 Doing things with data frames

Wt

13 01 106 00180 2 123 20

"The top ones"

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Another way

```
athletes %>%
  slice_max(order_by = Wt, n=7) %>%
  select(Sport, Wt)
```

Sport	Wt
Field	123.2
BBall	113.7
Field	111.3
Field	108.2
Field	102.7
WPolo	101.0
BBall	100.2

Create new variables from old ones

```
athletes %>%
 mutate(wt_lb = Wt * 2.2) \%
 select(Sport, Sex, Wt, wt_lb) %>%
 arrange(Wt)
```

Sport	Sex	Wt	wt_lb
Gym	female	37.80	83.16
Gym	female	43.80	96.36
Gym	female	45.10	99.22
Tennis	female	45.80	100.76
Tennis	female	47.40	104.28
Gym	female	47.80	105.16
T400m	female	49.20	108.24
Row	female	49.80	109.56
T400m	female	50.90	111.98
Netball	female	51.90	114.18

Doing things with data frames

Turning the result into a number

Output is always data frame unless you explicitly turn it into something else, eg. the weight of the heaviest athlete, as a number:

```
athletes %>% arrange(desc(Wt)) %>% pluck("Wt", 1)
```

```
## [1] 123.2
```

Or the 20 heaviest weights in descending order:

```
athletes %>%
  arrange(desc(Wt)) %>%
  slice(1:20) %>%
  pluck("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

Another way to do the last one

```
athletes %>%
arrange(desc(Wt)) %>%
slice(1:20) %>%
pull("Wt")
```

```
## [1] 123.20 113.70 111.30 108.20 102.70 101.00

## [7] 100.20 98.00 97.90 97.90 97.00 96.90

## [13] 96.30 94.80 94.80 94.70 94.70 94.60

## [19] 94.25 94.20
```

pull grabs the column you name as a vector (of whatever it contains).

To find the mean height of the women athletes

```
Two ways:
```

```
athletes %>% group_by(Sex) %>% summarize(m = mean(Ht))
```

```
        Sex
        m

        female
        174.5940

        male
        185.5059
```

```
athletes %>%
  filter(Sex == "female") %>%
  summarize(m = mean(Ht))
```

m 174.594

Summary of data selection/arrangement "verbs"

Verb	Purpose
select	Choose columns
print	Display non-default # of rows/columns
slice	Choose rows by number
$sample_n$	Choose random rows
filter	Choose rows satisfying conditions
arrange	Sort in order by column(s)
mutate	Create new variables
group_by	Create groups to summarize by
summarize	Calculate summary statistics (by groups if defined)
pluck	Extract items from data frame
pull	Extract a single column from a data frame as a vector

Looking things up in another data frame

• Suppose you are working in the nails department of a hardware store and you find that you have sold these items:

```
my_url <- "http://ritsokiguess.site/datafiles/nail_sales.csv"
sales <- read_csv(my_url)
sales</pre>
```

product_code	sales
061-5344-6	10
161-0090-0	6
061-5388-2	2
161-0199-4	8
061-5375-2	5
061-4525-2	3

Product descriptions and prices

- but you don't remember what these product codes are, and you would like to know the total revenue from these sales.
- Fortunately you found a list of product descriptions and prices:

```
my_url <- "http://ritsokiguess.site/datafiles/nail_desc.csv"
desc <- read_csv(my_url)
desc</pre>
```

product_code	description	size	qty	price
061-4525-2	spike nail	10"	1	1.49
061-5329-4	masonry nail	1.5"	112	8.19
061-5344-6	finishing nail	1"	1298	6.99
061-5375-2	roofing nail	1.25"	192	6.99
061-5388-2	framing nail	4"	25	8.19
161-0090-0	wood nail	1"	25	2.39
161-0199-4	panel nail	1-5/8"	20	4.69

The lookup

- How do you "look up" the product codes to find the product descriptions and prices?
- left_join.

```
sales %>% left_join(desc)
```

product_code	sales	description	size	qty	price
061-5344-6	10	finishing nail	1"	1298	6.99
161-0090-0	6	wood nail	1"	25	2.39
061-5388-2	2	framing nail	4"	25	8.19
161-0199-4	8	panel nail	1-5/8"	20	4.69
061-5375-2	5	roofing nail	1.25"	192	6.99
061-4525-2	3	spike nail	10"	1	1.49

What we have

- this looks up all the rows in the *first* dataframe that are also in the *second*.
- by default matches all columns with same name in two dataframes (product_code here)
- get all columns in both dataframes. The rows are the ones for that product_code.

So now can work out how much the total revenue was:

```
sales %>% left_join(desc) %>%
  mutate(product_revenue = sales*price) %>%
  summarize(total_revenue = sum(product_revenue))
```

```
## Joining, by = "product_code"
```

total_revenue

177.56

More comments

- if any product codes are not matched, you get NA in the added columns
- anything in the second dataframe that was not in the first does not appear (here, any products that were not sold)
- other variations (examples follow):
 - if there are two columns with the same name in the two dataframes, and you only want to match on one, use by with one column name
 - if the columns you want to look up have different names in the two dataframes, use by with a "named list"

Matching on only some matching names

 Suppose the sales dataframe also had a column qty (which was the quantity sold):

```
sales %>% rename("qty"="sales") -> sales1
sales1
```

product_code	qty
061-5344-6	10
161-0090-0	6
061-5388-2	2
161-0199-4	8
061-5375-2	5
061-4525-2	3

 The qty in sales1 is the quantity sold, but the qty in desc is the number of nails in a package. These should not be matched: they are different things.

Matching only on product code

```
sales1 %>%
  left_join(desc, by = "product_code")
```

product_code	qty.x	description	size	qty.y	price
061-5344-6	10	finishing nail	1"	1298	6.99
161-0090-0	6	wood nail	1"	25	2.39
061-5388-2	2	framing nail	4"	25	8.19
161-0199-4	8	panel nail	1-5/8"	20	4.69
061-5375-2	5	roofing nail	1.25"	192	6.99
061-4525-2	3	spike nail	10"	1	1.49

• Get qty.x (from sales1) and qty.y (from desc).

Matching on different names 1/2

Suppose the product code in sales was just code:

```
sales %>% rename("code" = "product_code") -> sales2
sales2
```

code	sales
061-5344-6	10
161-0090-0	6
061-5388-2	2
161-0199-4	8
061-5375-2	5
061-4525-2	3

• How to match the two product codes that have different names?

Matching on different names 2/2

Use by, but like this:

```
sales2 %>%
  left_join(desc, by = c("code"="product_code"))
```

code	sales	description	size	qty	price
061-5344-6	10	finishing nail	1"	1298	6.99
161-0090-0	6	wood nail	1"	25	2.39
061-5388-2	2	framing nail	4"	25	8.19
161-0199-4	8	panel nail	1-5/8"	20	4.69
061-5375-2	5	roofing nail	1.25"	192	6.99
061-4525-2	3	spike nail	10"	1	1.49

Other types of join

- right_join: interchanges roles, looking up keys from second dataframe in first.
- anti_join: give me all the rows in the first dataframe that are not in the second. (Use this eg. to see whether the product descriptions are incomplete.)
- full_join: give me all the rows in both dataframes, with missings as needed.

Full join here

```
sales %>% full_join(desc)
```

```
## Joining, by = "product_code"
```

product_code	sales	description	size	qty	price
061-5344-6	10	finishing nail	1"	1298	6.99
161-0090-0	6	wood nail	1"	25	2.39
061-5388-2	2	framing nail	4"	25	8.19
161-0199-4	8	panel nail	1-5/8"	20	4.69
061-5375-2	5	roofing nail	1.25"	192	6.99
061-4525-2	3	spike nail	10"	1	1.49
061-5329-4	NA	masonry nail	1.5"	112	8.19

• The missing sales for "masonry nail" says that it was in the lookup table desc, but we didn't sell any.

The same thing, but with anti_join

Anything in first df but not in second?

desc %>% anti_join(sales)

Joining, by = "product_code"

product_code	description	size	qty	price
061-5329-4	masonry nail	1.5"	112	8.19