Package 'pctax'

December 2, 2024

Type Package

Title Professional Comprehensive Omics Data Analysis

Version 0.1.3

Description Provides a comprehensive suite of tools for analyzing omics data. It includes functionalities for alpha diversity analysis, beta

diversity analysis, differential abundance analysis, community assembly analysis, visualization of phylogenetic tree, and

functional enrichment analysis. With a progressive approach, the package offers a range of analysis methods to explore and

understand the complex communities. It is designed to support researchers and practitioners in conducting in-depth and professional omics data analysis.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 4.2.0)

LazyData true

Imports pcutils (>= 0.2.5), dplyr, ggplot2 (>= 3.2.0), vegan, magrittr, grDevices, RColorBrewer, ggrepel, reshape2, stats, tibble, utils, ggpubr, ggnewscale, ade4, scales

Suggests picante, httr, NST, permute, aplot, pheatmap, MASS, Rtsne, mixOmics, geosphere, phyloseq, phyloseqGraphTest, plotly, umap, Hmisc, minpack.lm, bbmle, snow, foreach, doSNOW, patchwork, tidytree, ggtree, ggtreeExtra, vctrs, zoo, ape, DESeq2, limma, ALDEx2, Mfuzz, edgeR, methods, randomForest, knitr, rmarkdown, MetaNet, showtext, jsonlite, prettydoc, readxl, clipr, zetadiv, ggforce

VignetteBuilder knitr

BugReports https://github.com/Asa12138/pctax/issues

URL https://github.com/Asa12138/pctax

ByteCompile true

2 Contents

biocViews Microbiome, Software, Visualization

NeedsCompilation no

Author Chen Peng [aut, cre] (<https://orcid.org/0000-0002-9449-7606>)

Maintainer Chen Peng <pengchen2001@zju.edu.cn>

Repository CRAN

Date/Publication 2024-12-02 10:00:02 UTC

Contents

add_strip
add_tax
ALDEX
all_ec_info
all_sp_la_zh_name
ann_tree
aor
as.b_dist
as.dist.b_dist
a_diversity
bbtt 11
before_tree
b_analyse
b_NTI1
b_res_3d
check_taxonkit
convert_taxon_name
cor_net
df2tree
df2tree1
diff_da
download_taxonkit_dataset
envfitt
geo_sim
get_all_sp_la_zh_name
get_diff_type
gp_dis_density
grap_p_test
install_taxonkit
kwtest
load_N_data
mat_dist
micro_sbatch
multi_bar
myRDA
name_or_id2df
ncm

add_strip 3

add_strip add strips for a tree plot					
Index				65	
	•				
	_ •				
				63	
	_ • _				
	_				
	• i —				
	<u>-</u> 1				
	•				
	rare_curve_species				
	_				
	rarefaction			46	
	print.pc_otu			45	
	. – –				
	•				
	–				
	1 0-				
	_				
	*				
	*				
	- —				
	• –				
	• -				
	nti_rc				
	nst			31	

Description

add strips for a tree plot

4 add_tax

Usage

```
add_strip(trp, some_tax, flat_n = 5, strip_params = NULL)
```

Arguments

trp tree plot from ggtree
some_tax some tax you want to add strip
flat_n flat the text when taxa number more than flat_n.
strip_params parameters parse to geom_strip

Value

tree plot

Examples

```
data(otutab, package = "pcutils")
# run yourself
if (interactive()) {
   ann_tree(taxonomy, otutab) -> tree
   easy_tree(tree) -> p
   some_tax <- table(taxonomy$Phylum) %>%
      sort(decreasing = TRUE) %>%
      head(5) %>%
      names()
   add_strip(p, some_tax)
}
```

 $\mathsf{add}_\mathsf{tax}$

Add taxonomy for a pc_otu object

Description

Add taxonomy for a pc_otu object

Usage

```
add_tax(pc, taxonomy)
```

Arguments

pc a pc_otu object

taxonomy a taxomomy data.frame, look out the rownames of taxonomy and otutab should

matched!

ALDEX 5

Value

```
pc_otu
```

Examples

```
data(otutab, package = "pcutils")
pc_tax1 <- pc_otu(otutab, metadata)
pc_tax1 <- add_tax(pc_tax1, taxonomy)</pre>
```

ALDEX

ALDEX

Description

ALDEX

Usage

```
ALDEX(otutab, group_df)
```

Arguments

otutab otutab

group_df a dataframe with rowname same to dist and one group column

Value

diff

References

https://cloud.tencent.com/developer/article/1621879

```
if (requireNamespace("ALDEx2")) {
  data(otutab, package = "pcutils")
  ALDEX(otutab, metadata["Group"]) -> res
  res %>%
   dplyr::top_n(9, -glm.eBH) %>%
    .[, "tax"] -> sig
  data.frame(t(otutab[sig, ])) %>% pcutils::group_box(., "Group", metadata)
}
```

6 ann_tree

all_ec_info

all element cycle information.

Description

all element cycle information.

Format

```
a list contains four tables.
```

ec_node chemicals

ec_link reactions

ec_gene genes

ec_path reactions labels

all_sp_la_zh_name

all species latin names and chinese names

Description

all species latin names and chinese names.

Format

a dataframe.

latin_name latin name

chinese_name chinese name

ann_tree

Annotate a tree

Description

Annotate a tree

Easy way to plot a phylogenetic tree

ann_tree 7

Usage

```
ann_tree(f_tax, otutab = NULL, level = ncol(f_tax))

easy_tree(
    tree,
    highlight = "Phylum",
    colorfill = "color",
    topN = NULL,
    pal = NULL,
    name_prefix = FALSE,
    basic_params = NULL,
    add_abundance = TRUE,
    color_name = "abundance",
    add_tiplab = TRUE,
    fontsize = NULL
)
```

Arguments

 f_tax taxonomy dataframe otutab otutab, rowname==rowname(taxonomy) level 1~7 tree result from ann_tree highlight highlight which level, one of tree\$level "color" or "fill" colorfill topN to show topN pal color pal name_prefix keep the prefix like "k__" or "p__" in the label? Default: FALSE basic_params parameters parse to ggtree logical add_abundance color_name color name logical add_tiplab fontsize tip label fontsize

Value

a treedata a ggplot

```
if (interactive()) {
  data(otutab, package = "pcutils")
  ann_tree(taxonomy, otutab) -> tree
# run yourself
```

8 aor

```
easy_tree(tree, add_abundance = FALSE) -> p
  p
}
```

aor

Calculate Abundance-occupancy_relationship

Description

Calculate Abundance-occupancy_relationship Plot a AOR

Usage

```
aor(otutab, ...)
## S3 method for class 'data.frame'
aor(
  otutab,
  top_r = 0.7,
  ocup_n = ceiling(0.8 * ncol(otutab)),
  special_n = ceiling(0.1 * ncol(otutab)),
  ...
)
## S3 method for class 'AOR'
plot(x, ...)
```

Arguments

```
otutab

... add

top_r percentage of top relative abundance
ocup_n percentage of top occupied
special_n how many occupancy define as specialists
x AOR object
```

Value

AOR ggplot

References

Barberán, A., Bates, S. T., Casamayor, E. & Fierer, N. (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities.

as.b_dist

Examples

```
data(otutab, package = "pcutils")
aor(otutab) -> AOR
plot(AOR)
```

as.b_dist

Transfer dist to b_dist

Description

```
Transfer dist to b_dist
Plot dist
Plot b_dist
```

Usage

```
as.b_dist(dist, group_df = NULL)
## S3 method for class 'dist'
plot(x, group_df = NULL, ...)
## S3 method for class 'b_dist'
plot(x, mode = 1, c_group = "inter", ...)
```

Arguments

```
dist a dist object
group_df a dataframe with rowname same to dist and one group column
x a b_dist
... additional
mode 1~3
c_group "inter" or "intra" or both to plot
```

Value

```
a b_dist with annotation by group
a pheatmap
a ggplot or pheatmap
```

```
data(otutab, package = "pcutils")
mat_dist(otutab) %>% as.b_dist(., group_df = metadata["Group"]) -> aa
plot(aa)
plot(aa, mode = 2)
```

10 a_diversity

 $as.dist.b_dist$

Transfer b_dist to dist

Description

Transfer b_dist to dist

Usage

```
## S3 method for class 'b_dist'
as.dist(m, diag = FALSE, upper = FALSE)
```

Arguments

m a b_dist object

diag logical value indicating whether the diagonal of the distance matrix should be

printed by print.dist.

upper logical value indicating whether the upper triangle of the distance matrix should

be printed by print.dist.

Value

dist

a_diversity

Calculate a_diversity of otutab

Description

Calculate a_diversity of otutab

Usage

```
a_diversity(otutab, ...)
## S3 method for class 'data.frame'
a_diversity(
  otutab,
  method = c("richness", "shannon"),
  tree = NULL,
  digits = 4,
  ...
)
## S3 method for class 'pc_otu'
```

bbtt 11

```
a_diversity(otutab, method = "all", tbl = "otutab", ...)
## S3 method for class 'numeric'
a_diversity(otutab, ...)
```

Arguments

otutab numeric

... pass to a_diversity.data.frame

method one of "all", "richness", "chao1", "ace", "gc", "shannon", "simpson", "pd", "pielou"

tree a iphylo object match the rownames of otutab

digits maintance how many digits

tbl which table

Value

a a_res object

Examples

```
data(otutab, package = "pcutils")
a_diversity(otutab) -> a_res
plot(a_res, "Group", metadata)
```

bbtt

ggdotchart for diff analysis

Description

ggdotchart for diff analysis

Usage

```
bbtt(res, pvalue = "glm.eBH", topN = 20)
```

Arguments

res result of ALDEX or kwtest

pvalue the name of pvaule

 $topN \hspace{1cm} topN$

Value

ggplot

b_analyse

before_tree

Before df2tree check

Description

Before df2tree check

Usage

```
before_tree(f_tax)
```

Arguments

f_tax

table

Value

table

Examples

```
wrong_taxdf <- data.frame(
   kingdom = c(rep(c("A", "B"), each = 4), "C", NA),
   "phylum" = c("A", "a", "b", "c", "c", "c", "d", NA, NA, "e")
)
before_tree(wrong_taxdf)</pre>
```

b_analyse

Beta diversity Ordination: dimensionality reduction

Description

Species abundance data can be preprocessed with Hellinger transformation or chord transformation data before PCA analysis. Because the Hellinger distance or chord distance with-without data is equal to $\sqrt{2}\sqrt{1-Ochiai\ similarity}$, therefore, the sorting diagram (type 1 scale) of PCA analysis after Hellinger transformation or chord transformation with-without data is internal sample The distance between the squares is the Ochiai distance. $\sqrt{2}\sqrt{1-Ochiai\ similarity}$ is a distance measure, which is also suitable for the analysis of species data. The processed data is then used for pca without norm.

b_analyse 13

Usage

```
b_analyse(otutab, ...)

## S3 method for class 'data.frame'
b_analyse(
   otutab,
   norm = TRUE,
   method = c("pca"),
   group = NULL,
   dist = "bray",
   ndim = 2,
   scale = FALSE,
   ...
)
```

Arguments

otutab	an otutab data.frame, samples are columns, taxs are rows.
	add
norm	should normalized or not? (hellinger)
method	one of "pca","pcoa","ca","dca","nmds","plsda","tsne","umap","lda","all"
group	if needed, give a group vector
dist	if use pcoa or nmds, your can choose a dist method (default: bray) or input a distance matrix.
ndim	how many dimension be kept? (default:2). 3 for b_res_3d()
scale	scale, default: FALSE

Value

b_res object

References

https://www.jianshu.com/p/9694c0b6302dhttps://zhuanlan.zhihu.com/p/25501130

```
data(otutab, package = "pcutils")
b_analyse(otutab, method = "pca") -> b_res
plot(b_res, "Group", metadata)
```

b_res_3d

b_NTI1

Calculate beta_NTI

Description

Calculate beta_NTI

Usage

```
b_NTI1(
   phylo,
   otutab,
   beta.reps = 9,
   weighted = TRUE,
   threads = 1,
   verbose = TRUE
)
```

Arguments

phylo a phylo object

otutab otutab

beta.reps how many simulation performed?

weighted logical

threads use how many threads to calculate (default:4)

verbose verbose

Value

a dist: b_NTI

b_res_3d

3D plot for b_res

Description

```
3D plot for b_res
```

Usage

```
b_res_3d(b_res, Group, metadata = NULL, ...)
```

check_taxonkit 15

Arguments

```
b_res a b_res object

Group group vector for color

metadata metadata contain Group

... add
```

Value

plotly list

Examples

```
if (requireNamespace("plotly")) {
  data(otutab, package = "pcutils")
  b_analyse(otutab, method = "pca", ndim = 3) -> b_res
  b_res_3d(b_res, "Group", metadata)
}
```

check_taxonkit

Check taxonkit

Description

Check taxonkit

Usage

```
check_taxonkit(print = TRUE)
```

Arguments

print print

Value

taxonkit path

See Also

```
Other Rtaxonkit: download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()
```

16 cor_net

convert_taxon_name

Convert taxon names between Chinese and Latin

Description

Convert taxon names between Chinese and Latin

Usage

```
convert_taxon_name(input_names, mode = "latin_to_chinese", fuzzy = FALSE)
```

Arguments

input_names input names

mode conversion mode, "latin_to_chinese" or "chinese_to_latin"

fuzzy whether to use fuzzy matching, default is FALSE

Value

character vector of converted names

Examples

```
convert_taxon_name(c("Escherichia coli", "Clostridioides difficile"))
```

cor_net

Correlation network, species-interaction network for omics

Description

Correlation network, species-interaction network for omics

Usage

```
cor_net()
```

Value

No value

df2tree 17

df2tree

From a dataframe to construct a phylo

Description

NOTE: this function will do before_tree first.

Usage

```
df2tree(data, edge_df = FALSE)
```

Arguments

data dataframe

edge_df if the data is edge_df?

Value

phylo object

Examples

```
data(otutab, package = "pcutils")
df2tree(taxonomy) -> tax_tree
print(tax_tree)
# check all nodes matched!
if (requireNamespace("picante")) {
  picante::match.phylo.comm(tax_tree, t(otutab)) -> nn
  nrow(nn$comm) == nrow(t(otutab))
}
```

df2tree1

From a dataframe to construct a phylo (save nwk)

Description

NOTE: this function will transfer all space to _

Usage

```
df2tree1(taxa)
```

Arguments

taxa

dataframe

18 diff_da

Value

```
phylo object
```

Examples

```
data(otutab, package = "pcutils")
df2tree(taxonomy) -> tax_tree
print(tax_tree)
```

diff_da

Difference analysis

Description

Difference analysis

Usage

```
diff_da(
   otutab,
   group_df,
   ctrl = NULL,
   method = "deseq2",
   log = TRUE,
   add_mini = NULL,
   ...
)
```

Arguments

```
otutab
group_df a dataframe with rowname same to dist and one group column
ctrl the control group, one level of groups
method one of "deseq2","edger","limma","t.test","wilcox.test"
log do log transfer for limma?
add_mini when calculate the logFC. e.g (10+0.1)/(0+0.1), default 0.5*min(abundance)
... other parameters
```

Value

a dataframe

Examples

```
if (requireNamespace("limma")) {
  data(otutab, package = "pcutils")
  diff_da(otutab, metadata["Group"], method = "limma") -> res
  volcano_p(res)
  volcano_p(res, mode = 2)
}
```

download_taxonkit_dataset

Download taxonkit dataset

Description

Download taxonkit dataset

Usage

```
download_taxonkit_dataset(make_sure = FALSE, taxdump_tar_gz = NULL)
```

Arguments

```
make_sure make sure to do this
taxdump_tar_gz file from https://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
```

Value

No value

See Also

```
Other Rtaxonkit: check_taxonkit(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()
```

envfitt

Envfit test for RDA result

Description

Envfit test for RDA result

Usage

```
envfitt(phy.rda, env, ...)
```

20 geo_sim

Arguments

```
phy.rda a rda result
env environmental factors
```

add

Value

```
g_test object
```

See Also

```
envfit
```

Examples

```
data(otutab, package = "pcutils")
env <- metadata[, 6:10]
# RDA
myRDA(otutab, env) -> phy.rda
envfitt(phy.rda, env) -> envfit_res
plot(envfit_res)
```

geo_sim

Lm for sample similarity and geographical distance

Description

Lm for sample similarity and geographical distance

Usage

```
geo_sim(otutab, geo, method = "bray", spe_nwk = NULL, ...)
```

Arguments

```
otutab an otutab data.frame, samples are columns, taxs are rows.

geo a two-columns dataframe, first is latitude, second is longitude

method Dissimilarity index, partial match to "bray", "euclidean"...see vegdist; unifrac

spe_nwk a phylo tree if use unifrac...

... additional
```

Value

```
a ggplot
```

References

Graco-Roza, C. et al. (2022) Distance decay 2.0 - A global synthesis of taxonomic and functional turnover in ecological communities. Glob Ecol Biogeogr 31, 1399–1421.

Examples

```
if (requireNamespace("geosphere")) {
  library(ggplot2)
  data(otutab, package = "pcutils")
  metadata[, c("lat", "long")] -> geo
  geo_sim(otutab, geo) -> geo_res
}
```

get_all_sp_la_zh_name get all species Latin and Chinese name from the CCTCC database

Description

get all species Latin and Chinese name from the CCTCC database

Usage

```
get_all_sp_la_zh_name(
  download_dir = "~/Documents/",
  each_verbose = FALSE,
  max_requests = 50,
  max_id = 30609,
  failure_ids = NULL
)
```

Arguments

```
download_dir default
each_verbose each_verbose
max_requests default 50
max_id default 30609, try to make sure on the website
failure_ids failure_ids
```

Value

No value

gp_dis_density

get_diff_type

Get mean and type

Description

Get mean and type

Usage

```
get_diff_type(otutab, group_df)
```

Arguments

otutab otutab

group_df a dataframe with rowname same to dist and one group column

Value

No value

gp_dis_density

Group inter-intra density

Description

Group inter-intra density

Usage

```
gp_dis_density(otutab, group)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

group group vector

Value

ggplot

```
data(otutab, package = "pcutils")
gp_dis_density(otutab, metadata["Group"])
```

grap_p_test 23

grap_p_test

Performs graph-based permutation tests

Description

Performs graph-based permutation tests

Usage

```
grap_p_test(otutab, metadata, group = "Group", nperm = 999, ...)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

metadata
group one group name in columns of metadata

nperm numbers of permutations to perform

... additional

Value

ggplot

Examples

```
if (requireNamespace("phyloseqGraphTest") && requireNamespace("phyloseq")) {
  data(otutab, package = "pcutils")
  grap_p_test(otutab, metadata, "Group")
}
```

install_taxonkit

Install taxonkit

Description

Install taxonkit

Usage

```
install_taxonkit(make_sure = FALSE, taxonkit_tar_gz = NULL)
```

Arguments

```
make_sure make sure to do this taxonkit_tar_gz
```

your download taxonkit_tar_gz file from https://github.com/shenwei356/taxonkit/releases/

24 kwtest

Value

No value

See Also

Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()

kwtest

KW test

Description

KW test

Usage

```
kwtest(otutab, group_df, method = "kruskal.test")
```

Arguments

otutab otutab

group_df a dataframe with rowname same to dist and one group column

method "kruskal.test", see compare_means

Value

res

```
data(otutab, package = "pcutils")
kwtest(otutab, metadata["Group"]) -> res
bbtt(res, pvalue = "p.format")
```

load_N_data 25

load_N_data

Load N-cycle data

Description

Load N-cycle data

Usage

load_N_data()

Value

list

References

Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. (2019) NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048. Kuypers, M. M. M., Marchant, H. K. & Kartal, B. (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16, 263–276.

mat_dist

Calculate distance for otutab

Description

Calculate distance for otutab

Usage

```
mat_dist(otutab, method = "bray", spe_nwk = NULL)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

method Dissimilarity index, partial match to "bray", "euclidean"...see vegdist; unifrac

spe_nwk a phylo tree if use unifrac...

Value

dist

```
data(otutab, package = "pcutils")
mat_dist(otutab)
```

26 multi_bar

micro_sbatch

Microbiome sbatch

Description

Microbiome sbatch

Usage

```
micro_sbatch(
  work_dir = "/share/home/jianglab/pengchen/work/asthma/",
  step = "fastp",
  all_sample_num = 40,
  array = 1,
  partition = "cpu",
  cpus_per_task = 1,
  mem_per_cpu = "2G"
)
```

Arguments

```
work_dir
step     "fastp","rm_human","megahit","prodigal","salmon-quant",...
all_sample_num     all sample number
array     array number
partition     partition
cpus_per_task     cpus_per_task
mem_per_cpu     mem_per_cpu, "2G"
```

Value

No value

multi_bar

Difference analysis

Description

Difference analysis

myRDA 27

Usage

```
multi_bar(
   otutab,
   group_df,
   mode = 1,
   text_df = NULL,
   text_x = NULL,
   text_angle = -90,
   errorbar = "bottom"
)
```

Arguments

```
otutab otutab
group_df a dataframe with rowname same to dist and one group column
mode 1~2
text_df text_df
text_x text_x
text_angle text_angle
errorbar top, bottom, none
```

Value

a data.frame

Examples

```
data(otutab, package = "pcutils")
multi_bar(otutab[1:10, ], metadata["Group"])
```

myRDA

RDA

Description

RDA

Usage

```
myRDA(
   otutab,
   env,
   norm = TRUE,
   scale = FALSE,
   choose_var = FALSE,
```

28 myRDA

```
direction = "forward",
  nperm = 499,
  verbose = TRUE,
 method = "rda",
  dist = "bray"
)
myCCA(
 otutab,
  env,
  norm = TRUE,
  scale = FALSE,
  choose_var = FALSE,
  nperm = 499,
  verbose = TRUE
)
myCAP(
  otutab,
  env,
 norm = TRUE,
  scale = FALSE,
  choose_var = FALSE,
  nperm = 499,
  verbose = TRUE,
  dist = "bray"
)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

env environmental factors

norm should normalize? (default:TRUE)
scale should scale species? (default:FALSE)

choose_var should choose variables? use forward step

direction The direction of the stepwise selection, "both", "forward" or "backward", default

is "forward"

nperm number of permutation

verbose verbose

method "rda", "cca", "cap", "dbrda"

dist The name of the dissimilarity (or distance) index for "cap" or "dbrda", for vegdist

Value

rda/cca

name_or_id2df 29

See Also

```
vegdist;unifrac
```

Examples

```
data(otutab, package = "pcutils")
env <- metadata[, 6:10]
# RDA
myRDA(otutab, env) -> phy.rda
RDA_plot(phy.rda, "Group", metadata)
```

name_or_id2df

Transfer taxon name or taxid to the lineage dataframe

Description

Transfer taxon name or taxid to the lineage dataframe

Usage

```
name_or_id2df(
  name_or_id,
  mode = "name",
  add_prefix = TRUE,
  fill_miss_rank = TRUE,
  data_dir = NULL
)
```

Arguments

```
name_or_id name or taxid

mode "id" or "name"

add_prefix add_prefix

fill_miss_rank

data_dir directory containing nodes.dmp and names.dmp (default "/Users/asa/.taxonkit")
```

Value

dataframe

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), taxonkit_filter(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()
```

30 ncm

Examples

```
## Not run:
name_or_id2df(c("Homo sapiens", "Akkermansia muciniphila ATCC BAA-835"))
## End(Not run)
```

ncm

Sloan Neutral Model

Description

```
Sloan Neutral Model
```

Plot ncm_res

Usage

```
ncm(otutab, model = "nls")
## S3 method for class 'ncm_res'
plot(
    x,
    mycols = c(Above = "#069870", Below = "#e29e02", In = "#1e353a"),
    text_position = NULL,
    pie_text_params = list(size = 2.5),
    ...
)
```

Arguments

```
otutab an otutab data.frame, samples are columns, taxs are rows.

model fit method, one of "nls","mle"

x a ncm_res object

mycols mycols

text_position text_position

pie_text_params

pie text parameters

... add
```

Value

```
ncm_res
ggplot
```

nst 31

References

Sloan, W. TRUE. et al. (2006) Quantifying the roles of immigration and chance in shaping prokary-ote community structure. Environmental Microbiology 8, 732–740.

Examples

```
if (requireNamespace("Hmisc") && requireNamespace("minpack.lm")) {
  data(otutab, package = "pcutils")
  ncm(otutab) -> ncm_res
  plot(ncm_res)
}
```

nst

Calculate NST for each group

Description

Calculate NST for each group

Usage

```
nst(otutab, group_df, threads = 1, file = NULL, rep = 20, save = FALSE)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

group_df a dataframe with rowname and one group column

threads default:4

file filename to save

rep repeat numbers: suggest 999

save save the file

Value

```
a b_dist object, dis is MSTij
```

References

Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. (2019) A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences 116, 16892–16898.

nti_rc

Examples

```
if (requireNamespace("NST")) {
   library(ggplot2)
   data(otutab, package = "pcutils")
   nst(otutab, metadata["Group"]) -> nst_res
   plot(nst_res, c_group = "intra") + geom_hline(yintercept = 0.5, lty = 2) + ylab("NST")
}
```

nti_rc

Calculate b_NTI and RC_bray for each group

Description

```
Calculate b_NTI and RC_bray for each group Plot NTI_RC object
```

Usage

```
nti_rc(
   otutab,
   phylo,
   group_df,
   threads = 1,
   file = NULL,
   rep = 20,
   save = FALSE
)

## S3 method for class 'NTI_RC'
plot(x, ...)
```

Arguments

```
otutab
                  an otutab data.frame, samples are columns, taxs are rows.
phylo
                  a phylo object
group_df
                  a dataframe with rowname and one group column
                  default:4
threads
file
                  filename to save
                  repeat numbers: suggest 999
rep
                  save the file
save
                  NTI_RC object
Х
                  pass to stackplot
```

pc_otu 33

Value

```
a b_dist object, dis is MSTij ggplot
```

References

Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. (2019) A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences 116, 16892–16898.

Examples

```
if (requireNamespace("NST") && requireNamespace("pctax")) {
  data(otutab, package = "pcutils")
  pctax::df2tree(taxonomy) -> phylo
  nti_rc(otutab, phylo, metadata["Group"]) -> nti_res
  plot(nti_res)
}
```

pc_otu

Create a pc_otu class object

Description

Create a pc_otu class object

Usage

```
pc_otu(otutab = data.frame(), metadata = data.frame(), taxonomy = NULL, ...)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

metadata a metadata data.frame, samples are rows

taxonomy a taxomomy data.frame, look out the rowname of taxonomy and otutab should

matched!

... add

Value

pc_otu

```
data(otutab, package = "pcutils")
pc_tax1 <- pc_otu(otutab, metadata)
print(pc_tax1)</pre>
```

pc_valid

pc_tax1

test data (pc_otu class) for pc_tax package.

Description

an otutab, metadata and a taxonomy table.

Format

```
a pc_otu contains an otutab, metadata and a taxonomy table.
```

tbls contians otutable rawdata

metas contians metadata

otus contians taxomomy table

pc_valid

Judge pc_otu is valid or not

Description

Judge pc_otu is valid or not

Usage

```
pc_valid(pc)
```

Arguments

рс

a pc_otu object

Value

logical

permanova 35

permanova

Permanova between a otutab and a variable

Description

Permanova between a otutab and a variable

Usage

```
permanova(
   otutab,
   envs,
   norm = TRUE,
   each = TRUE,
   method = "adonis",
   dist = "bray",
   nperm = 999,
   ...
)
```

Arguments

otutab an otutab data.frame, samples are columns, taxs are rows.

envs factors need to test

norm should normalize?(default:TRUE)

each test factor one by one, rather than whole

method adonis/mrpp/anosim/mantel

dist if use pcoa or nmds, your can choose a dist method (default: bray)

nperm numbers of permutations to perform

... additional

Value

a g_test object with these columns

group the test group or factor

r relationship
r2 model R-square
p_value model test p_value
sig whether significant

References

https://blog.csdn.net/qq_42458954/article/details/110390488

36 plot.b_res

Examples

```
data(otutab, package = "pcutils")
permanova(otutab, metadata[, c(2:10)]) -> adonis_res
print(adonis_res)
plot(adonis_res)
```

plot.a_res

Plot a_res object

Description

Plot a_res object

Usage

```
## S3 method for class 'a_res'
plot(x, group, metadata, ...)
```

Arguments

x a a_res object

group one of colname of metadata

metadata metadata

... addditional parameters for group_box or my_lm

Value

patchwork object, you can change theme with &

See Also

```
a_diversity
```

plot.b_res

Plot a b_res

Description

Plot a b_res

plot.b_res 37

Usage

```
## S3 method for class 'b_res'
plot(
  х,
 Group,
 metadata = NULL,
 Group2 = NULL,
 mode = 1,
 bi = FALSE,
  Topn = 10,
  rate = 1,
 margin = FALSE,
 margin_label = TRUE,
 permanova_res = NULL,
  text_param = list(),
  box_margin = TRUE,
 box_param = list(),
  pal = NULL,
  sample_label = TRUE,
  stat_ellipse = TRUE,
  coord_fix = FALSE,
 bi_text_size = 3,
)
```

Arguments

Χ a b_res object Group group vector for color metadata contain Group metadata Group2 mapping point shape mode plot mode:1~3 bi plot variables segments? how many variables to show? Topn rate segments length rate plot the margin boxplot? margin margin_label, TRUE margin_label permanova_res permanova result text_param text_param for annotate box_margin margin plot box or density? box_param box_param for group_box colors for group pal sample_label plot the labels of samples?

38 plot.g_test

```
stat_ellipse plot the stat_ellipse?
```

coord_fix fix the coordinates y/x ratio

bi_text_size biplot text size

... add

Value

a ggplot

See Also

b_analyse

 $plot.g_test$

 $Plot\ g_test$

Description

Plot g_test

Usage

```
## S3 method for class 'g_test' plot(x, ...)
```

Arguments

x a g_test object

... add

Value

ggplot

See Also

permanova

plot.pro_res 39

plot.pro_res

Plot pro_res

Description

Plot pro_res

Usage

```
## S3 method for class 'pro_res'
plot(x, group, metadata = NULL, pal = NULL, ...)
```

Arguments

```
x pro_res
group group
metadata metadata
pal pal
... add
```

Value

a ggplot

plot.time_cm

 $Plot\ time_cm$

Description

Plot time_cm

Usage

```
## S3 method for class 'time_cm'
plot(x, mem_thr = 0.6, ...)
```

Arguments

```
x time_cm
```

mem_thr membership threshold

... add

Value

ggplot

40 plot_element_cycle

Description

Plot element cycle

Usage

```
plot_element_cycle(
  cycle = "Nitrogen cycle",
  anno_df = NULL,
  only_anno = FALSE,
  cell_fill = NA,
  cell_color = "orange",
  use_chinese = FALSE,
  chemical\_size = 7,
  chemical_bold = TRUE,
  chemical_color = "black",
  chemical_label = TRUE,
  reaction_width = 1,
  reaction\_arrow\_size = 4,
  reaction_arrow_closed = TRUE,
  gene_or_ko = "gene",
  gene_size = 3,
  gene_x_offset = 0.3,
  gene_y_offset = 0.15,
  gene_label = TRUE,
  gene_color = NULL,
  gene_bold = TRUE,
 gene_italic = TRUE,
  gene_label_fill = "white"
)
```

Arguments

```
cycle
                  one of c("Carbon cycle", "Nitrogen cycle", "Phosphorus cycle", "Sulfur cycle", "Iron
                  cycle")
                  anno_df, columns should contains Gene or KO and Group
anno_df
only_anno
                  only show genes in anno_df?
cell_fill
                  cell fill color
cell_color
                  cell border color
                  use chinese label?
use_chinese
chemical_size
                  chemical text size
chemical_bold
                  chemical text bold
```

plot_N_cycle 41

```
chemical_color chemical text color
chemical_label chemical text in geom_label or geom_text?
reaction_width reaction line width
reaction_arrow_size
                 reaction arrow size
reaction_arrow_closed
                 reaction arrow closed?
                 "gene" or "ko"
gene_or_ko
gene_size
                 gene text size
gene_x_offset
                 gene_x_offset
gene_y_offset
                 gene_y_offset
gene_label
                 gene text in geom_label or geom_text?
gene_color
                 gene text color
gene_bold
                 gene text blod?
                 gene text italic?
gene_italic
gene_label_fill
                 gene label fill color
```

Value

ggplot

Examples

```
if (requireNamespace("ggforce")) plot_element_cycle()
```

plot_N_cycle

Plot the N-cycling pathway and genes

Description

Plot the N-cycling pathway and genes

```
plot_N_cycle(
   my_N_genes = NULL,
   just_diff = FALSE,
   path_col = NULL,
   type_col = c(up = "red", down = "blue", none = NA),
   fill_alpha = 0.5,
   arrow_size = 0.1,
   line_width = 1,
   title = "Nitrogen cycling",
   legend.position = c(0.85, 0.15)
)
```

42 plot_two_tree

Arguments

```
dataframe, "Gene_families", "type" should in colnames of my_N_genes
my_N_genes
                  logical, just plot the different genes?
just_diff
                  colors of pathways
path_col
type_col
                  colors of types
fill_alpha
                  alpha, default 0.5
arrow_size
                  arrow_size, default 0.1
line_width
                  line_width, default 1
title
                  title, default "Nitrogen cycling"
legend.position
                  default c(0.85,0.15)
```

Value

ggplot

Examples

```
N_data <- load_N_data()
my_N_genes <- data.frame(
    `Gene_families` = sample(N_data$N_genes$Gene_families, 10, replace = FALSE),
    change = rnorm(10), check.names = FALSE
)
my_N_genes <- dplyr::mutate(my_N_genes,
    type = ifelse(change > 0, "up", ifelse(change < 0, "down", "none"))
)
plot_N_cycle(my_N_genes, just_diff = FALSE, fill_alpha = 0.2)
# ggsave(filename = "test.pdf", width = 14, height = 10)</pre>
```

plot_two_tree

Plot two trees in one plot

Description

Plot two trees in one plot

```
plot_two_tree(
   tree1,
   tree2,
   edge_df = NULL,
   tree2_x = 10,
   filter_link = FALSE,
   tree1_param = list(),
```

plot_two_tree 43

```
tree2_param = list(),
line_param = list(),
tree1_tip = FALSE,
tip1_param = list(),
tree2_tip = FALSE,
tip2_param = list(),
tree1_highlight = NULL,
highlight1_param = list(),
highlight1_scale = NULL,
tree2_highlight = NULL,
highlight2_param = list(),
highlight2_param = list(),
highlight2_scale = ggplot2::scale_fill_hue(na.value = NA))
```

Arguments

```
phylo object
tree1
tree2
                 phylo object
                  dataframe with edge information, containing "from" and "to" columns
edge_df
                 x position of tree2
tree2_x
filter_link
                  filter the link between tree1 and tree2
tree1_param
                 parameters for geom_tree
tree2_param
                 parameters for geom_tree
line_param
                 parameters for geom_line
                 tree tip label
tree1_tip
tip1_param
                 parameters for geom_tiplab
                 tree tip label
tree2_tip
tip2_param
                 parameters for geom_tiplab
tree1_highlight
                 tree1 highlight data.frame
highlight1_param
                 parameters for geom_hilight
highlight1_scale
                  scale_fill_ for highlight1
tree2_highlight
                 tree2 highlight data.frame
highlight2_param
                  parameters for geom_hilight
highlight2_scale
                 scale_fill_ for highlight2
```

Value

ggplot object

pre_tax_table

Examples

```
if (requireNamespace("ggtree")) {
  data(otutab, package = "pcutils")
  df2tree(taxonomy[1:50, ]) -> tax_tree
  df2tree(taxonomy[51:100, ]) -> tax_tree2
  link <- data.frame(from = sample(tax_tree$tip.label, 20), to = sample(tax_tree2$tip.label, 20))
  plot_two_tree(tax_tree, tax_tree2, link)
}</pre>
```

pre_fastp

Prepare the result from fastp (.json file)

Description

Prepare the result from fastp (.json file)

Usage

```
pre_fastp(jsonfiles, prefix = c("Raw", "Clean"))
```

Arguments

jsonfiles the directory contains .json file

prefix default c("Raw","Clean"), for the before filtering and after filtering.

Value

data.frame

pre_tax_table

Complete a taxonomy table

Description

Complete a taxonomy table

```
pre_tax_table(
  tax_table,
  tax_levels = c("k", "p", "c", "o", "f", "g", "s", "st"),
  na_tax = "Unclassified|uncultured|Ambiguous|Unknown|unknown|metagenome|Unassig",
  ignore.case = TRUE,
  na_repalce = "Unknown"
)
```

print.pc_otu 45

Arguments

tax_table taxonomy table

tax_levels a vector whose length longer than ncol(taxdf), use to be prefix. Default: c("k",

"p", "c", "o", "f", "g", "s", "st")

na_tax grepl some words and turn to na_repalce, default: "Unclassifiedluncultured|Ambiguous|Unknown|un

ignore.case ignore.case for na_tax
na_repalce defalut: Unknown

Value

a good taxonomy table

References

MicrobiotaProcess

Examples

```
taxmat <- matrix(sample("onelevel", 7 * 2, replace = TRUE), nrow = 2, ncol = 7) %>% as.data.frame()
colnames(taxmat) <- c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
pre_tax_table(taxmat)</pre>
```

print.pc_otu Print

Description

Print

Usage

```
## S3 method for class 'pc_otu'
print(x, ...)
```

Arguments

x pc_otu
... add

Value

No value

46 rarefaction

procrustes_analyse

Procrustes Rotation of Two Configurations and PROTEST

Description

Procrustes Rotation of Two Configurations and PROTEST

Usage

```
procrustes_analyse(b_res1, b_res2, nperm = 999, ...)
```

Arguments

b_res1 Target matrix

b_res2 Matrix to be rotated

nperm numbers of permutations to perform

... additional

Value

pro_res

Examples

```
data(otutab, package = "pcutils")
b_analyse(otutab, method = "pca") -> b_res1
b_analyse(otutab * abs(rnorm(10)), method = "pca") -> b_res2
pro_res <- procrustes_analyse(b_res1, b_res2)
plot(pro_res, "Group", metadata)</pre>
```

rarefaction

Rarefy a otutab

Description

Rarefy a otutab

Usage

```
rarefaction(otutab, sample = NULL)
```

Arguments

otutab otutab sample number rare_curve_sample 47

Value

a rarefied otutab

Examples

```
data(otutab, package = "pcutils")
rarefaction(otutab)
```

rare_curve_sample

Rare the sample

Description

Rare the sample

Plot a rare curve

Usage

```
rare_curve_sample(otutab, rep = 30, count_cutoff = 1)
## S3 method for class 'rare_res'
plot(x, ...)
```

Arguments

```
otutab otutab

rep repeats number

count_cutoff cutoff to be 0

x AOR object
... add
```

Value

```
ggplot
ggplot
```

```
data(otutab, package = "pcutils")
a <- rare_curve_sample(otutab)
plot(a)</pre>
```

48 rare_curve_species

rare_curve_species

Rare the species

Description

Rare the species

Usage

```
rare_curve_species(
  otutab,
  step = 2000,
  method = "richness",
  mode = 2,
  reps = 3,
  threads = 1,
  verbose = TRUE
)
```

Arguments

```
otutab
step default 2000
method one of "richness", "chao1", "ace", "gc", "shannon", "simpson", "pd", "pielou"
mode 1 for little table, 2 for big
reps reps
threads use how many threads to calculate (default:1)
verbose verbose
```

Value

ggplot

```
data(otutab, package = "pcutils")
a <- rare_curve_species(otutab, mode = 1)
plot(a)</pre>
```

RCbray1 49

RCbray1

Calculate RCbray-curtis

Description

Calculate RCbray-curtis

Usage

```
RCbray1(
  otutab,
  reps = 9,
  threads = 1,
  classic_metric = TRUE,
  split_ties = TRUE
)
```

Arguments

otutab otutab

reps how many simulation performed?

threads use how many threads to calculate (default:4) classic_metric standardizes the metric to range from -1 to 1

split_ties adds half of the number of null observations that are equal to the observed num-

ber of shared species to the calculation- this is highly recommended

Details

Parallelized version of the Raup-Crick algorithm for "abundance" data (Stegen et al. 2013).

Value

a dist

```
if (requireNamespace("picante")) {
   data(otutab, package = "pcutils")
   df2tree(taxonomy) -> phylo
   b_NTI1(phylo, otutab) -> bnti_res
   RCbray1(otutab, reps = 9) -> rc_res

data.frame(
   type = factor(c("Homo_S", "Heter_S", "Homo_D", "D_limit", "Undominated"),
        levels = c("Homo_S", "Heter_S", "Homo_D", "D_limit", "Undominated")
   ),
   number = c(
```

50 RDA_plot

```
sum(bnti_res < (-2)), sum(bnti_res > 2),
sum((abs(bnti_res) < 2) & (abs(rc_res) < 0.95)),
sum((abs(bnti_res) < 2) & (rc_res < (-0.95))),
sum((abs(bnti_res) < 2) & (rc_res > 0.95))
)
) -> com_pro
pcutils::gghuan(com_pro, reorder = FALSE)
}
```

RDA_plot

Plot RDA res

Description

Plot RDA res

Usage

```
RDA_plot(
 phy.rda,
 Group,
 metadata = NULL,
 Group2 = NULL,
 env_rate = 1,
 mode = 1,
  tri = FALSE,
 Topn = 10,
  rate = 1,
 margin = FALSE,
 box = TRUE,
 pal = NULL,
  sample_label = TRUE,
  stat_ellipse = TRUE,
  coord_fix = FALSE,
 bi_text_size = 3,
 env_text_param = NULL,
)
```

Arguments

```
phy.rda rda/cca object

Group group vector for color

metadata metadata contain Group

Group2 mapping point shape

env_rate default 1
```

suijisenlin 51

mode plot mode:1~3

tri plot variables segments?
Topn how many variables to show?

rate segments length rate
margin plot the margin boxplot?
box margin plot box or density?

pal colors for group

sample_label plot the labels of samples?
stat_ellipse plot the stat_ellipse?

coord_fix fix the coordinates y/x ratio

bi_text_size biplot text size

env_text_param parameters pass to geom_text

... add

Value

ggplot

See Also

myRDA

suijisenlin

RandomForest

Description

RandomForest

Usage

```
suijisenlin(otutab, group_df, topN = 10)
```

Arguments

otutab otutab

group_df a dataframe with rowname same to dist and one group column

topN default: 10

Value

diff

52 taxonkit_filter

Examples

```
if (requireNamespace("randomForest")) {
  data(otutab, package = "pcutils")
  suijisenlin(otutab, metadata["Group"]) -> rf_res
}
```

summary.pc_otu

Summary pc_otu

Description

Summary pc_otu

Usage

```
## S3 method for class 'pc_otu'
summary(object, ...)
```

Arguments

```
object pc_otu
... add
```

Value

No value

Examples

```
data("pc_tax1")
summary(pc_tax1)
```

taxonkit_filter

Filter TaxIDs based on Taxonomic Ranks

Description

This function uses the "taxonkit filter" command to filter TaxIDs based on taxonomic ranks.

taxonkit_filter 53

Usage

```
taxonkit_filter(
   file_path,
   black_list = NULL,
   discard_noranks = FALSE,
   discard_root = FALSE,
   equal_to = NULL,
   higher_than = NULL,
   lower_than = NULL,
   rank_file = NULL,
   root_taxid = NULL,
   save_predictable_norank = FALSE,
   taxid_field = NULL,
   text = FALSE,
   data_dir = NULL
)
```

Arguments

file_path The path to the input file containing TaxIDs. Or file text (text=TRUE)

black_list A character vector specifying the ranks to discard.

discard_noranks

Logical value indicating whether to discard all ranks without order (default is

FALSE).

discard_root Logical value indicating whether to discard the root taxid (default is FALSE).

equal_to A character vector specifying the ranks for which TaxIDs should be equal to.

higher_than The rank above which the TaxIDs should be (exclusive).

The rank below which the TaxIDs should be (exclusive).

rank_file The path to a user-defined ordered taxonomic ranks file.

root_taxid The root taxid (default is 1).

save_predictable_norank

Logical value indicating whether to save some special ranks without order when

using lower_than (default is FALSE).

taxid_field The field index of the taxid in the input file (default is 1).

text logical

data_dir directory containing nodes.dmp and names.dmp (default "/Users/asa/.taxonkit")

Value

A character vector containing the output of the "taxonkit filter" command.

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_lca(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()
```

54 taxonkit_lca

Examples

```
## Not run:
taxids2 <- system.file("extdata/taxids2.txt", package = "pctax")
taxonkit_filter(taxids2, lower_than = "genus")
## End(Not run)</pre>
```

taxonkit_lca

Compute Lowest Common Ancestor (LCA) of TaxIDs

Description

This function uses the "taxonkit lca" command to compute the Lowest Common Ancestor (LCA) of TaxIDs.

Usage

```
taxonkit_lca(
  file_path,
  buffer_size = "1M",
  separator = " ",
  skip_deleted = FALSE,
  skip_unfound = FALSE,
  taxids_field = NULL,
  text = FALSE,
  data_dir = NULL
)
```

Arguments

The path to the input file containing TaxIDs. Or file text (text=TRUE) file_path buffer_size The size of the line buffer (supported units: K, M, G). The separator for TaxIDs. separator skip_deleted Whether to skip deleted TaxIDs and compute with the remaining ones. skip_unfound Whether to skip unfound TaxIDs and compute with the remaining ones. taxids_field The field index of TaxIDs. Input data should be tab-separated (default 1). text logical directory containing nodes.dmp and names.dmp (default "/Users/asa/.taxonkit") data_dir

Value

A character vector containing the computed LCAs.

taxonkit_lineage 55

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()
```

Examples

```
## Not run:
taxonkit_lca("239934, 239935, 349741", text = TRUE, separator = ", ")
## End(Not run)
```

taxonkit_lineage

Retrieve Taxonomic Lineage using taxonkit

Description

Retrieve Taxonomic Lineage using taxonkit

Usage

```
taxonkit_lineage(
  file_path,
  delimiter = ";",
  no_lineage = FALSE,
  show_lineage_ranks = FALSE,
  show_lineage_taxids = FALSE,
  show_name = FALSE,
  show_rank = FALSE,
  show_status_code = FALSE,
  taxid_field = 1,
  text = FALSE,
  data_dir = NULL
)
```

Arguments

```
file_path The path to the input file with taxonomic IDs. Or file text (text=TRUE)

delimiter The field delimiter in the lineage (default ";").

no_lineage Logical, indicating whether to exclude lineage information (default: FALSE).

show_lineage_ranks

Logical, indicating whether to append ranks of all levels in the lineage (default: FALSE).

show_lineage_taxids

Logical, indicating whether to append lineage consisting of taxids (default: FALSE).

show_name Logical, indicating whether to append scientific name (default: FALSE).
```

56 taxonkit_list

Value

A character vector containing the taxonomic lineage information.

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_list(), taxonkit_name2taxid(), taxonkit_reformat()
```

Examples

```
## Not run:
taxonkit_lineage("9606\n63221", show_name = TRUE, show_rank = TRUE, text = TRUE)
## End(Not run)
```

taxonkit_list

Taxonkit list

Description

This function uses Taxonkit to perform the "list" operation, which retrieves information about taxa based on their TaxIDs.

```
taxonkit_list(
  ids,
  indent = " ",
  json = FALSE,
  show_name = FALSE,
  show_rank = FALSE,
  data_dir = NULL
)
```

taxonkit_name2taxid 57

Arguments

ids	A character vector of TaxIDs to retrieve information for.	
indent	The indentation string to use for pretty-printing the output. Default is " ".	
json	Logical value indicating whether to output the result in JSON format. Default is FALSE.	
show_name	Logical value indicating whether to show the scientific names of taxa. Default is FALSE.	
show_rank	Logical value indicating whether to show the ranks of taxa. Default is FALSE.	
data_dir	directory containing nodes.dmp and names.dmp (default "/Users/asa/.taxonkit")	

Value

The output of the Taxonkit list operation.

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_lineage(), taxonkit_name2taxid(), taxonkit_reformat()
```

Examples

```
## Not run:
taxonkit_list(ids = c(9605), indent = "-", show_name = TRUE, show_rank = TRUE)
## End(Not run)
```

taxonkit_name2taxid

Convert Taxonomic Names to TaxIDs

Description

This function uses the "taxonkit taxonkit_name2taxid" command to convert taxonomic names to corresponding taxonomic IDs (TaxIDs).

```
taxonkit_name2taxid(
  file_path,
  name_field = NULL,
  sci_name = FALSE,
  show_rank = FALSE,
  text = FALSE,
  data_dir = NULL
)
```

58 taxonkit_reformat

Arguments

file_path	The path to the input file containing taxonomic names. Or file text (text=TRUE)	
name_field	The field index of the taxonomic name in the input file (default is 1).	
sci_name	Logical value indicating whether to search only for scientific names (defaurable).	
show_rank	Logical value indicating whether to show the taxonomic rank in the output (default is FALSE).	
text	Logical	
data_dir	directory containing nodes.dmp and names.dmp (default "/Users/asa/.taxonkit")	

Value

A character vector containing the output of the "taxonkit_name2taxid" command.

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_lineage(), taxonkit_list(), taxonkit_reformat()
```

Examples

```
## Not run:
names <- system.file("extdata/name.txt", package = "pctax")
taxonkit_name2taxid(names, name_field = 1, sci_name = FALSE, show_rank = FALSE)
"Homo sapiens" %>% taxonkit_name2taxid(text = TRUE)
## End(Not run)
```

taxonkit_reformat

Reformat Taxonomic Lineage using taxonkit

Description

Reformat Taxonomic Lineage using taxonkit

```
taxonkit_reformat(
  file_path,
  delimiter = NULL,
  add_prefix = FALSE,
  prefix_kingdom = "K__",
  prefix_phylum = "p__",
  prefix_class = "c__",
  prefix_order = "o__",
```

taxonkit_reformat 59

```
prefix_family = "f__",
 prefix_genus = "g__",
 prefix_species = "s__"
 prefix_subspecies = "t__",
 prefix_strain = "T__",
  fill_miss_rank = FALSE,
  format_string = "",
 miss_rank_repl_prefix = "unclassified ",
 miss_rank_repl = "",
 miss_taxid_repl = "",
 output_ambiguous_result = FALSE,
 lineage_field = 2,
  taxid_field = NULL,
  pseudo_strain = FALSE,
  trim = FALSE,
  text = FALSE,
  data_dir = NULL
)
```

Arguments

```
file_path
                  The path to the input file with taxonomic lineages. Or file text (text=TRUE)
                  The field delimiter in the input lineage (default ";").
delimiter
add_prefix
                  Logical, indicating whether to add prefixes for all ranks (default: FALSE).
prefix_kingdom
                  The prefix for kingdom, used along with –add-prefix (default: "K___").
prefix_phylum
                  The prefix for phylum, used along with –add-prefix (default: "p").
prefix_class
                  The prefix for class, used along with –add-prefix (default: "c").
prefix_order
                  The prefix for order, used along with –add-prefix (default: "o").
                  The prefix for family, used along with –add-prefix (default: "f").
prefix_family
prefix_genus
                  The prefix for genus, used along with –add-prefix (default: "g").
prefix_species The prefix for species, used along with -add-prefix (default: "s__").
prefix_subspecies
                  The prefix for subspecies, used along with –add-prefix (default: "t__").
                  The prefix for strain, used along with –add-prefix (default: "T__").
prefix_strain
fill_miss_rank Logical, indicating whether to fill missing rank with lineage information of the
                  next higher rank (default: FALSE).
format_string
                  The output format string with placeholders for each rank.
miss_rank_repl_prefix
                  The prefix for estimated taxon level for missing rank (default: "unclassified").
miss_rank_repl The replacement string for missing rank.
miss_taxid_repl
                  The replacement string for missing taxid.
output_ambiguous_result
                  Logical, indicating whether to output one of the ambiguous result (default: FALSE).
```

60 tax_lca

lineage_field	The field index of lineage. Input data should be tab-separated (default: 2).
taxid_field	The field index of taxid. Input data should be tab-separated. It overrides -i/-lineage-field.
pseudo_strain	Logical, indicating whether to use the node with lowest rank as strain name (default: FALSE).
trim	Logical, indicating whether to not fill missing rank lower than current rank (default: FALSE).
text	logical
data_dir	directory containing nodes.dmp and names.dmp (default "/Users/asa/.taxonkit")

Value

A character vector containing the reformatted taxonomic lineages.

See Also

```
Other Rtaxonkit: check_taxonkit(), download_taxonkit_dataset(), install_taxonkit(), name_or_id2df(), taxonkit_filter(), taxonkit_lca(), taxonkit_lineage(), taxonkit_list(), taxonkit_name2taxid()
```

Examples

```
## Not run:
# Use taxid
taxids2 <- system.file("extdata/taxids2.txt", package = "pctax")
reformatted_lineages <- taxonkit_reformat(taxids2,
   add_prefix = TRUE, taxid_field = 1, fill_miss_rank = TRUE
)
reformatted_lineages
taxonomy <- strsplit2(reformatted_lineages, "\t")
taxonomy <- strsplit2(taxonomy$V2, ";")

# Use lineage result
taxonkit_lineage("9606\n63221", show_name = TRUE, show_rank = TRUE, text = TRUE) %>%
   taxonkit_reformat(text = TRUE)
```

tax_lca

Calculate the lowest common ancestor (LCA) of a set of taxa

Description

Calculate the lowest common ancestor (LCA) of a set of taxa

```
tax_lca(df)
```

time_by_cm 61

Arguments

df

a data frame with taxonomic information, with columns representing taxonomic levels

Value

character

Examples

```
df <- data.frame(
    A = c("a", "a", "a", "a"),
    B = c("x", "x", "y", "y"),
    C = c("1", "1", "2", "3"),
    stringsAsFactors = FALSE
)
tax_lca(df)</pre>
```

time_by_cm

Time series analysis

Description

Time series analysis

Usage

```
time_by_cm(otu_time, n_cluster = 6, min.std = 0)
```

Arguments

otu_time otutab hebing by a time variable
n_cluster number of clusters
min.std min.std

Value

time_cm

```
if (interactive()) {
  data(otutab, package = "pcutils")
  otu_time <- pcutils::hebing(otutab, metadata$Group)
  time_by_cm(otu_time, n_cluster = 4) -> time_cm_res
  plot(time_cm_res)
}
```

62 volcano_p

volcano_p

Volcano plot for difference analysis

Description

Volcano plot for difference analysis

Usage

```
volcano_p(
  res,
  logfc = 1,
  adjp = 0.05,
  text = TRUE,
  repel = TRUE,
  mode = 1,
  number = FALSE
)
```

Arguments

res result of diff_da which have colnames: tax, log2FoldChange, padj, compare, sig

logfc log_fold_change threshold

adjp adjust_p_value threshold

text text, TRUE

repel repel, TRUE

mode 1:normal; 2:multi_contrast

number show the tax number

Value

ggplot

See Also

diff_da

 z_{-} diversity 63

	-1.5		•	4
Z_	_d1	vei	rsı	ty

Calculate Zeta Diversity

Description

This function calculates Zeta diversity for each group in the provided otutab.

This function plots the Zeta diversity results obtained from the z_diversity function.

Usage

```
z_diversity(otutab, group_df = NULL, zetadiv_params = list())
## S3 method for class 'zeta_res'
plot(x, lm_model = c("exp", "pl")[1], ribbon = FALSE, text = TRUE, ...)
```

Arguments

otutab A matrix or data frame containing OTU (Operational Taxonomic Unit) counts.

group_df A data frame containing group information.

zetadiv_params Additional parameters to be passed to the Zeta.decline.mc function from the zetadiv package.

x Zeta diversity results obtained from z_diversity function.

lm_model The linear model to be used for fitting ('exp' or 'pl').

ribbon Logical, whether to add a ribbon to the plot for standard deviation.

text Logical, whether to add R-squared and p-value text annotations.

Additional arguments to be passed to ggplot2 functions.

Value

```
zeta_res
A ggplot object.
```

```
if (requireNamespace("zetadiv")) {
  data(otutab, package = "pcutils")
  zeta_result <- z_diversity(otutab, metadata["Group"], zetadiv_params = list(sam = 10))
  plot(zeta_result, lm_model = "exp", text = TRUE)
}</pre>
```

64 z_diversity_decay

z_diversity_decay

Calculate Zeta Diversity with Distance

Description

This function calculates Zeta diversity for each group in the provided otutab.

Usage

```
z_diversity_decay(otutab, xy_df, group_df = NULL, zetadiv_params = list())
## S3 method for class 'zeta_decay'
plot(x, ribbon = TRUE, ...)
```

Arguments

otutab A matrix or data frame containing OTU (Operational Taxonomic Unit) counts.

xy_df Site coordinates.

group_df A data frame containing group information.

zetadiv_params Additional parameters to be passed to the Zeta.ddecay function from the zetadiv

package.

x Zeta diversity results obtained from z_diversity_decay function.

ribbon Logical, whether to add a ribbon to the plot for standard deviation.

... Additional arguments to be passed to ggplot2 functions.

Value

```
zeta_decay
A ggplot object.
```

```
if (requireNamespace("zetadiv")) {
  data(otutab, package = "pcutils")
  zeta_decay_result <- z_diversity_decay(otutab, metadata[, c("lat", "long")],
   metadata["Group"],
  zetadiv_params = list(sam = 10)
  )
  plot(zeta_decay_result)
}</pre>
```

Index

* Rtaxonkit	easy_tree (ann_tree), 6
<pre>check_taxonkit, 15</pre>	envfit, 20
<pre>download_taxonkit_dataset, 19</pre>	envfitt, 19
<pre>install_taxonkit, 23</pre>	
name_or_id2df, 29	geo_sim, 20
taxonkit_filter, 52	<pre>geom_hilight, 43</pre>
taxonkit_lca, 54	geom_line, 43
taxonkit_lineage, 55	<pre>geom_strip, 4</pre>
taxonkit_list, 56	geom_text, 51
taxonkit_name2taxid, 57	geom_tiplab, 43
taxonkit_reformat, 58	geom_tree, 43
	<pre>get_all_sp_la_zh_name, 21</pre>
a_diversity, 10, <i>36</i>	<pre>get_diff_type, 22</pre>
add_strip, 3	ggtree, 7
add_tax, 4	<pre>gp_dis_density, 22</pre>
ALDEX, 5	<pre>grap_p_test, 23</pre>
all_ec_info, 6	group_box, <i>36</i> , <i>37</i>
all_sp_la_zh_name, 6	
ann_tree, 6	install_taxonkit, 15, 19, 23, 29, 53, 55–58,
annotate, 37	60
aor, 8	kwtest, 24
as.b_dist, 9	(Wiest, 24
as.dist.b_dist,10	load_N_data, 25
b_analyse, 12, 38	mat_dist, 25
b_NTI1, 14	micro_sbatch, 26
b_res_3d, 14	multi_bar, 26
bbtt, 11	my_lm, 36
before_tree, 12	myCAP (myRDA), 27
	myCCA (myRDA), 27
check_taxonkit, 15, 19, 24, 29, 53, 55–58, 60	myRDA, 27, <i>51</i>
compare_means, 24	•
convert_taxon_name, 16	name_or_id2df, 15, 19, 24, 29, 53, 55-58, 60
cor_net, 16	ncm, 30
	nst, 31
df2tree, 17	nti_rc, 32
df2tree1, 17	
diff_da, 18, 62	pc_otu, 33
download_taxonkit_dataset, 15, 19, 24, 29,	pc_tax1, 34
53, 55–58, 60	pc_valid, 34

66 INDEX

```
permanova, 35, 38
                                                  volcano_p, 62
plot.a_res, 36
                                                  z_diversity, 63
plot.AOR (aor), 8
                                                  z_diversity_decay, 64
plot.b_dist(as.b_dist), 9
plot.b_res, 36
plot.dist(as.b_dist), 9
plot.g_test, 38
plot.ncm_res(ncm), 30
plot.NTI_RC (nti_rc), 32
plot.pro_res, 39
plot.rare_res (rare_curve_sample), 47
plot.time_cm, 39
plot.zeta_decay(z_diversity_decay), 64
plot.zeta_res(z_diversity), 63
plot_element_cycle, 40
plot_N_cycle, 41
plot_two_tree, 42
pre_fastp, 44
pre_tax_table, 44
print.pc_otu, 45
procrustes_analyse, 46
rare_curve_sample, 47
rare_curve_species, 48
rarefaction, 46
RCbray1, 49
RDA_plot, 50
stackplot, 32
suijisenlin, 51
summary.pc_otu, 52
tax_lca, 60
taxonkit_filter, 15, 19, 24, 29, 52, 55-58,
taxonkit_lca, 15, 19, 24, 29, 53, 54, 56-58,
taxonkit_lineage, 15, 19, 24, 29, 53, 55, 55,
        57, 58, 60
taxonkit_list, 15, 19, 24, 29, 53, 55, 56, 56,
         58,60
taxonkit_name2taxid, 15, 19, 24, 29, 53,
        55–57, 57, 60
taxonkit_reformat, 15, 19, 24, 29, 53,
        55–58, 58
time_by_cm, 61
unifrac, 20, 25, 29
vegdist, 20, 25, 28, 29
```