基礎程式設計技巧(一) 程式與計算

許胖

板燒高中

July 7, 2015

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧:遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 。變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧:遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

寫出一個完整的程式 ...

寫出一個完整的程式 ...

• 只要照著講義、照著書打一打,就可以動了。

寫出一個完整的程式 ...

• 只要照著講義、照著書打一打,就可以動了。

寫出一個完整的程式 ..

• 只要照著講義、照著書打一打,就可以動了。

寫「好」一個程式 ...

1 要了解資料怎麼儲存在電腦中

寫出一個完整的程式 ..

• 只要照著講義、照著書打一打,就可以動了。

- 1 要了解資料怎麼儲存在電腦中
- ② 程式怎麼開始執行,爲什麼會執行

寫出一個完整的程式 ..

• 只要照著講義、照著書打一打,就可以動了。

- 1 要了解資料怎麼儲存在電腦中
- 2 程式怎麼開始執行,爲什麼會執行
- ③ 什麼時候會什麼狀況,然後判斷出來、修正 (也就是 debug)

寫出一個完整的程式 ..

• 只要照著講義、照著書打一打,就可以動了。

- 1 要了解資料怎麼儲存在電腦中
- 2 程式怎麼開始執行,爲什麼會執行
- ❸ 什麼時候會什麼狀況,然後判斷出來、修正 (也就是 debug)
- 4 用適當的工具解決問題

寫出一個完整的程式 ..

• 只要照著講義、照著書打一打,就可以動了。

- ❶ 要了解資料怎麼儲存在電腦中
- 2 程式怎麼開始執行,爲什麼會執行
- ❸ 什麼時候會什麼狀況,然後判斷出來、修正 (也就是 debug)
- 4 用適當的工具解決問題
- 5 ... 族繁不及被宰備載

寫出一個完整的程式 ..

• 只要照著講義、照著書打一打,就可以動了。

- 要了解資料怎麼儲存在電腦中
- 2 程式怎麼開始執行,爲什麼會執行
- ❸ 什麼時候會什麼狀況,然後判斷出來、修正 (也就是 debug)
- 4 用適當的工具解決問題
- 5 ... 族繁不及被宰備載
- 以上就是培訓目標!

寫出一個完整的程式 ...

• 只要照著講義、照著書打一打,就可以動了。

- 要了解資料怎麼儲存在電腦中
- 2 程式怎麼開始執行,爲什麼會執行
- ③ 什麼時候會什麼狀況,然後判斷出來、修正 (也就是 debug)
- 4 用適當的工具解決問題
- 5 ... 族繁不及被宰備載
- 以上就是培訓目標!
- 就是要讓大家熟悉基本的 C++ 語法,以及學會基本的 coding 技巧。

給參與「演算法競賽」的人 ...

① 使用一個「有效」的方法解決問題

- ① 使用一個「有效」的方法解決問題
- 2 不僅如此,還要知道不同工具使用上的優缺點

- ① 使用一個「有效」的方法解決問題
- ② 不僅如此,還要知道不同工具使用上的優缺點
- 3 手爆出很多 code,勇往直前

- ① 使用一個「有效」的方法解決問題
- 2 不僅如此,還要知道不同工具使用上的優缺點
- 3 手爆出很多 code,勇往直前
- 4 進到 TOI 二階,保送大學

- ① 使用一個「有效」的方法解決問題
- 2 不僅如此,還要知道不同工具使用上的優缺點
- 3 手爆出很多 code,勇往直前
- 4 進到 TOI 二階,保送大學
- 寫程式不是只有演算法比賽,生命也不是只有一個出口
- 越往這個領域深入,就會看到更多無盡的事物

- ① 使用一個「有效」的方法解決問題
- ② 不僅如此,還要知道不同工具使用上的優缺點
- 3 手爆出很多 code, 勇往直前
- 4 進到 TOI 二階,保送大學
- 寫程式不是只有演算法比賽,生命也不是只有一個出口
- 越往這個領域深入,就會看到更多無盡的事物
 - 寫遊戲引擎

- ① 使用一個「有效」的方法解決問題
- 2 不僅如此,還要知道不同工具使用上的優缺點
- 3 手爆出很多 code, 勇往直前
- 4 進到 TOI 二階,保送大學
- 寫程式不是只有演算法比賽,生命也不是只有一個出口
- 越往這個領域深入,就會看到更多無盡的事物
 - 寫遊戲引擎
 - 網頁設計

- ① 使用一個「有效」的方法解決問題
- 2 不僅如此,還要知道不同工具使用上的優缺點
- 3 手爆出很多 code, 勇往直前
- 4 進到 TOI 二階,保送大學
- 寫程式不是只有演算法比賽,生命也不是只有一個出口
- 越往這個領域深入,就會看到更多無盡的事物
 - 寫遊戲引擎
 - 網頁設計
 - 手機 App

- ① 使用一個「有效」的方法解決問題
- 2 不僅如此,還要知道不同工具使用上的優缺點
- ⑤ 手爆出很多 code,勇往直前
- 4 進到 TOI 二階,保送大學
- 寫程式不是只有演算法比賽,生命也不是只有一個出口
- 越往這個領域深入,就會看到更多無盡的事物
 - 寫遊戲引擎
 - 網頁設計
 - 手機 App
 - 韌體 coding

目標

① 知道 C++ 的語法皆爲「運算」

目標

- ① 知道 C++ 的語法皆爲「運算」
- 2 各運算子的用法及特性

目標

- ① 知道 C++ 的語法皆爲「運算」
- 2 各運算子的用法及特性
- 3 注意未定義行爲

目標

- ① 知道 C++ 的語法皆爲「運算」
- 2 各運算子的用法及特性
- 3 注意未定義行爲

XD

• 希望各位在之後的内容都要動手快樂寫程式 XD!

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧: 遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

C++ 基本架構

```
C++ 基本架構

#include <iostream>
using namespace std;
int main() {
}
```

```
C++ 基本架構

#include <iostream>
using namespace std;
int main() {
}
```

註

• 怎麼理解?

```
C++ 基本架構

#include <iostream>
using namespace std;
int main() {
}
```

註

• 怎麼理解? 不需要理解,我們先記起來。

```
C++ 基本架構

#include <iostream>
using namespace std;
int main() {
}
```

註

- 怎麼理解? 不需要理解,我們先記起來。
- 基本上程式的内容都寫在大括號中。

C++ 基本架構

```
#include <iostream>
using namespace std;
int main() {
}
```

註

- 怎麼理解? 不需要理解,我們先記起來。
- 基本上程式的内容都寫在大括號中。
- 裡面每個符號都要一樣 (分號也是)。

輸出

① 試著在剛剛的大括號中打上「cout << 1;」,會發生什麼事?

輸出

- ① 試著在剛剛的大括號中打上「cout << 1;」,會發生什麼事?
- ② 還不清楚的話,可以在更下一行加上「system("PAUSE");」,在 觀察看看。

輸出

- ① 試著在剛剛的大括號中打上「cout << 1;」,會發生什麼事?
- ② 還不清楚的話,可以在更下一行加上「system("PAUSE");」,在 觀察看看。

註

• cout 是「輸出」符號,你要輸出的東西用「<<」串連。

輸出

- ① 試著在剛剛的大括號中打上「cout << 1;」,會發生什麼事?
- ② 還不清楚的話,可以在更下一行加上「system("PAUSE");」,在 觀察看看。

- cout 是「輸出」符號,你要輸出的東西用「<<」串連。
- system("PAUSE"); 代表「暫停」的意思。

輸出

- ① 試著在剛剛的大括號中打上「cout << 1;」,會發生什麼事?
- ② 還不清楚的話,可以在更下一行加上「system("PAUSE");」,在 觀察看看。

- cout 是「輸出」符號,你要輸出的東西用「<<」串連。
- system("PAUSE"); 代表「暫停」的意思。
 - 因爲沒加上這行,程式就會直接執行結束。

輸出

- ① 試著在剛剛的大括號中打上「cout << 1;」,會發生什麼事?
- ② 還不清楚的話,可以在更下一行加上「system("PAUSE");」,在 觀察看看。

- cout 是「輸出」符號,你要輸出的東西用「<<」串連。
- system("PAUSE"); 代表「暫停」的意思。
 - 因爲沒加上這行,程式就會直接執行結束。
 - 加上這行,程式會在這裡「等你」。

輸出

① 如果改成「cout << 1」(去掉分號) 會發生什麼結果?

輸出

① 如果改成「cout << 1」(去掉分號) 會發生什麼結果?

註

• 「分號」對 C++ 而言代表「一個句子的結束」,因此當一行指令 結束就要加分號。

輸出

- ① 如果改成「cout << 1」(去掉分號) 會發生什麼結果?
- ② 試試看「cout << 1 << 2;」,和你所想的有何不同?

註

• 「分號」對 C++ 而言代表「一個句子的結束」,因此當一行指令 結束就要加分號。

輸出

- ① 如果改成「cout << 1」(去掉分號) 會發生什麼結果?
- 2 試試看「cout << 1 << 2;」,和你所想的有何不同?

- 「分號」對 C++ 而言代表「一個句子的結束」,因此當一行指令 結束就要加分號。
- << 可以串很多東西一起輸出。

輸出

- ① 如果改成「cout << 1」(去掉分號) 會發生什麼結果?
- ② 試試看「cout << 1 << 2;」,和你所想的有何不同?
- 3 那麼「cout << 1 << ""<< 2;」呢?

- 「分號」對 C++ 而言代表「一個句子的結束」,因此當一行指令 結束就要加分號。
- << 可以串很多東西一起輸出。
- ",," 是雙引號中間夾著一個「空白」,要注意!

换行「符號」

换行

① 試試看「cout << 1 << 2 << endl;」,和「cout << 1 << 2;」 有什麼不同呢?

换行「符號」

换行

- ① 試試看「cout << 1 << 2 << endl;」,和「cout << 1 << 2;」 有什麼不同呢?
- 2 如果看不出來,試試看「cout << 1 << endl << 2;」。

换行「符號」

换行

- ① 試試看「cout << 1 << 2 << endl;」,和「cout << 1 << 2;」 有什麼不同呢?
- 2 如果看不出來,試試看「cout << 1 << endl << 2;」。

註

• 「endl」代表換行符號,輸出中很好用。

變數

• 和數學「變數」的概念不太一樣

變數

- 和數學「變數」的概念不太一樣
- 程式的變數像是「容器」,可以裝資料。

變數

- 和數學「變數」的概念不太一樣
- 程式的變數像是「容器」,可以裝資料。
- C++ 裡,每個容器都要先講好用途,這個步驟叫做「宣告」。

變數

- 和數學「變數」的概念不太一樣
- 程式的變數像是「容器」,可以裝資料。
- C++ 裡,每個容器都要先講好用途,這個步驟叫做「宣告」。

宣告變數

```
int x;
```

變數

- 和數學「變數」的概念不太一樣
- 程式的變數像是「容器」,可以裝資料。
- C++ 裡,每個容器都要先講好用途,這個步驟叫做「宣告」。

宣告變數

int x;

註

• 宣告就是幫變數取名字,此例將變數取名爲「x」。

變數

- 和數學「變數」的概念不太一樣
- 程式的變數像是「容器」,可以裝資料。
- C++ 裡,每個容器都要先講好用途,這個步驟叫做「宣告」。

宣告變數

int x;

- 宣告就是幫變數取名字,此例將變數取名爲「x」。
- 「int」代表的意義是「整數」,規定變數 x 只能裝整數。

變數的功用

把數字裝到變數

變數的功用

把數字裝到變數

註

• 「int」宣告變數可以裝整數之外,還有很多不同的種類,以後會慢慢介紹。

變數的功用

把數字裝到變數

- 「int」宣告變數可以裝整數之外,還有很多不同的種類,以後會慢慢介紹。
- 「x = 5;」這行不要和數學中的「等於」搞混。

練習

若把上個投影片「x = 5;」改成

① 「x = 5.0;」會發生什麼事?

練習

若把上個投影片「x = 5;」改成

- 1 「x = 5.0;」會發生什麼事?
- 2 「x = 0.5;」呢?

練習

若把上個投影片「x = 5;」改成

- ① 「x = 5.0;」會發生什麼事?
- 2 「x = 0.5;」呢?
- 3 那改成「5 = x;」呢?

練習

若把上個投影片「x = 5;」改成

- ① 「x = 5.0;」會發生什麼事?
- 2 「x = 0.5;」呢?
- 3 那改成「5 = x;」呢?

註

• 這些練習目的是要讓你了解問題出現時的現象,了解出問題的原因 才有辦法 debug

練習

若把上個投影片「x = 5;」改成

- ① 「x = 5.0;」會發生什麼事?
- 2 「x = 0.5;」呢?
- 3 那改成「5 = x;」呢?

- 這些練習目的是要讓你了解問題出現時的現象,了解出問題的原因 才有辦法 debug
- 爲什麼會出現這些現象我們繼續下去就知道了

宣告多個變數

宣告兩個整數

• 可以寫成這樣:

```
int a;
int b;
```

宣告多個變數

宣告兩個整數

• 可以寫成這樣:

```
int a;
int b;
```

• 更可以簡化成這樣:

```
int a, b;
```

宣告多個變數

宣告兩個整數

• 可以寫成這樣:

```
int a;
int b;
```

• 更可以簡化成這樣:

```
int a, b;
```

宣告三個整數

```
int a, b, c;
```

如果容器不塞東西呢 ...

變數不塞整數進去

如果容器不塞東西呢 ...

變數不塞整數進去

練習

1 執行看看,發生什麼事?

如果容器不塞東西呢 ...

變數不塞整數進去

練習

- 執行看看,發生什麼事?
- 2 再執行幾次,又會發生什麼事呢?

初始化

初始化

• C++ 中,所有變數都要自己去初始化。

初始化

初始化

- C++ 中,所有變數都要自己去初始化。
 - 例如:x = 5;,把整數5丢給x等等。

初始化

初始化

- C++ 中,所有變數都要自己去初始化。
 - 例如:x = 5;,把整數5丢給x等等。
- 沒有初始化過的變數,裡面裝的資料是不確定的。

初始化

初始化

- C++ 中,所有變數都要自己去初始化。
 - 例如:x = 5;,把整數5丢給x等等。
- 沒有初始化過的變數,裡面裝的資料是不確定的。
 - 或許你很幸運看到 x 都是 0

初始化

初始化

- C++ 中,所有變數都要自己去初始化。
 - 例如:x = 5;,把整數5丢給x等等。
- 沒有初始化過的變數,裡面裝的資料是不確定的。
 - 或許你很幸運看到 x 都是 0
 - 但那只是恰巧而已。

```
輸入
執行以下程式
  #include <iostream>
  using namespace std;
  int main() {
    int x;
    cin >> x;
    cout << x << endl;
會發生什麼事呢?
```

```
輸入
執行以下程式
  #include <iostream>
  using namespace std;
  int main() {
    int x;
    cin >> x;
    cout << x << endl:
會發生什麼事呢?
```

練習

如果沒發生什麼事,試著輸入「1」再按 enter 鍵,會發生什麼事呢?

輸入「符號」

• 「cin」代表輸入符號,可以輸入後面變數的資料。

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。
 - cin 的 >> 不要和 cout 的 << 搞混。

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。
 - cin 的 >> 不要和 cout 的 << 搞混。

練習 (續)

如果輸入「5.0」再按 enter 鍵呢?

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。
 - cin 的 >> 不要和 cout 的 << 搞混。

練習 (續)

- 如果輸入「5.0」再按 enter 鍵呢?
- 如果輸入「0.5」再按 enter 鍵呢?

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。
 - cin 的 >> 不要和 cout 的 << 搞混。

練習 (續)

- 如果輸入「5.0」再按 enter 鍵呢?
- 如果輸入「0.5」再按 enter 鍵呢?
- 如果輸入「XD」再按 enter 鍵呢?

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。
 - cin 的 >> 不要和 cout 的 << 搞混。

練習 (續)

- 如果輸入「5.0」再按 enter 鍵呢?
- 如果輸入「0.5」再按 enter 鍵呢?
- 如果輸入「XD」再按 enter 鍵呢?

多變數輸入

```
int x, y;
cin >> x >> y;
```

輸入「符號」

- 「cin」代表輸入符號,可以輸入後面變數的資料。
 - 此例中,x 是整數,因此可以輸入一個整數。
 - cin 的 >> 不要和 cout 的 << 搞混。

練習 (續)

- 如果輸入「5.0」再按 enter 鍵呢?
- 如果輸入「0.5」再按 enter 鍵呢?
- 如果輸入「XD」再按 enter 鍵呢?

多變數輸入

```
int x, y;
cin >> x >> y;
```

• 不要在輸入中加入「endl」。

資料型態

• 有裝整數的容器,那麼當然也可以宣告裝「小數點」的容器啦!

資料型態

- 有裝整數的容器,那麼當然也可以宣告裝「小數點」的容器啦!
- 這些不同用途的容器我們稱爲「資料型態」。

資料型態

- 有裝整數的容器,那麼當然也可以宣告裝「小數點」的容器啦!
- 這些不同用途的容器我們稱爲「資料型態」。

關鍵字	意義	備註
bool	布林值	只有 true 和 false
int	整數	
long long	長整數	存比較大的整數,以後會介紹
double	浮點數	也就是小數點

Table: 資料型態

資料型態

- 有裝整數的容器,那麼當然也可以宣告裝「小數點」的容器啦!
- 這些不同用途的容器我們稱爲「資料型態」。

關鍵字	意義	備註
bool	布林值	只有 true 和 false
int	整數	
long long	長整數	存比較大的整數,以後會介紹
double	浮點數	也就是小數點

Table: 資料型態

註

詳細内容之後再介紹, 先來用看看這些東西。

布林值

• 一種資料型態,只拿來裝兩種數值:「true」和「false」。

布林值

• 一種資料型態,只拿來裝兩種數值:「true」和「false」。

宣告

bool b;

布林值

• 一種資料型態,只拿來裝兩種數值:「true」和「false」。

宣告

bool b;

注意

• 兩種不同的宣告不能用「逗號」隔開:

```
int a, bool b;
```

布林值

• 一種資料型態,只拿來裝兩種數值:「true」和「false」。

宣告

bool b;

注意

• 兩種不同的宣告不能用「逗號」隔開:

int a, bool b;

• 逗號有特殊意義,不要想成一般的「逗號」。

賦值

定義

• 將一個「數值」裝進一個變數中,稱爲賦值。

賦值

定義

- 將一個「數值」裝進一個變數中,稱爲賦值。
- 例如,之前把整數5裝進整數變數x中:

```
int x;
x = 5;
```

賦值

定義

- 將一個「數值」裝進一個變數中,稱爲賦值。
- 例如,之前把整數5裝進整數變數x中:

```
int x;
x = 5;
```

賦值簡化

• 變數宣告和賦值可以寫在一起:

```
int x = 5; // 宣告一個整數變數 x 並且把 5 裝進去
```

```
bool b;
cout << b << endl;
對程式碼的 b 做以下賦值,會發生什麼事?
```

```
練習
```

```
bool b;
cout << b << endl;
對程式碼的 b 做以下賦值,會發生什麼事?
1 b = true;
```

```
練習
```

```
bool b;
cout << b << endl;
對程式碼的 b 做以下賦值,會發生什麼事?
1 b = true;
2 b = false;
```

```
bool b;
cout << b << endl;
對程式碼的 b 做以下賦值,會發生什麼事?
1 b = true;
2 b = false;
3 b = 2;
```

```
bool b;
cout << b << endl;
對程式碼的 b 做以下賦值,會發生什麼事?
① b = true;
② b = false;
③ b = 2;
④ b = 0;
```

```
bool b;
cout << b << endl;
對程式碼的 b 做以下賦值,會發生什麼事?
① b = true;
② b = false;
③ b = 2;
④ b = 0;
⑤ b = -1;
```

布林值的重要觀念

觀念

• C++ 中,「非零整數」會被當做「true」,印出時也會印出一個非零整數 (通常是 1)。

布林值的重要觀念

觀念

- C++ 中,「非零整數」會被當做「true」,印出時也會印出一個非零整數 (通常是 1)。
- 「O」會被當做「false」,印出時會印出「O」。

布林值的重要觀念

觀念

- C++ 中,「非零整數」會被當做「true」,印出時也會印出一個 非零整數 (通常是 1)。
- 「O」會被當做「false」,印出時會印出「O」。

技巧

這個特性在之後會非常常用!大家要注意!

浮點數

• 先跳過 long long, 先知道 long long 也是存整數就好。

浮點數

- 先跳過 long long, 先知道 long long 也是存整數就好。
- 謎之音:「那幹嘛現在説==」

浮點數

- 先跳過 long long, 先知道 long long 也是存整數就好。
- 謎之音:「那幹嘛現在説==」

浮點數宣告

double d;

- 先跳過 long long, 先知道 long long 也是存整數就好。
- 謎之音:「那幹嘛現在説==」

浮點數宣告

double d;

賦值

• 把 1.0 丢給 d ⇒ d = 1.0;

- 先跳過 long long, 先知道 long long 也是存整數就好。
- 謎之音:「那幹嘛現在説==」

浮點數宣告

double d;

賦值

- 把 1.0 丢給 d ⇒ d = 1.0;
- 把 0.5 丢給 d ⇒ d = 0.5;

- 先跳過 long long, 先知道 long long 也是存整數就好。
- 謎之音:「那幹嘛現在説==」

浮點數宣告

double d;

賦值

- 把 1.0 丢給 d ⇒ d = 1.0;
- 把 0.5 丢給 d ⇒ d = 0.5;
 - 0.5 也可寫爲 d = .5;

- 先跳過 long long, 先知道 long long 也是存整數就好。
- 謎之音:「那幹嘛現在説==」

浮點數宣告

double d;

賦值

- 把 1.0 丢給 d ⇒ d = 1.0;
- 把 0.5 丢給 d ⇒ d = 0.5;
 - 0.5 也可寫爲 d = .5;
- 18.23e5 ⇒ 代表 18.23 × 10⁵ (科學記號)

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧: 遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

算術運算子	意義	運算順序	結合性
+	加法	6	左→右
-	減法	6	左→右
*	乘法	5	左→右
/	除法	5	左→右
%	取餘數	5	左→右

Table: 算術運算子

算術運算子	意義	運算順序	結合性
+	加法	6	左→右
_	減法	6	左→右
*	乘法	5	左→右
/	除法	5	左→右
%	取餘數	5	左→右

Table: 算術運算子

註

• 不管運算順序和結合性,一般來說可以用五則運算來理解

算術運算子	意義	運算順序	結合性
+	加法	6	左→右
_	減法	6	左→右
*	乘法	5	左→右
/	除法	5	左→右
%	取餘數	5	左→右

Table: 算術運算子

註

- 不管運算順序和結合性,一般來說可以用五則運算來理解
- 只不過程式跟數學還是有差距 ...

算術運算子	意義	運算順序	結合性
+	加法	6	左→右
_	減法	6	左→右
*	乘法	5	左→右
/	除法	5	左→右
%	取餘數	5	左→右

Table: 算術運算子

註

- 不管運算順序和結合性,一般來說可以用五則運算來理解
- 只不過程式跟數學還是有差距 ...
 - 這個故事說來話長,我們先舉個簡單的例子吧!

$$1 + 2 + 3 = ?$$

$$1 + 2 + 3 = ?$$

答案:6。

$$1 + 2 + 3 = ?$$

- 答案:6。
- 爲什麼? (謎之音:「什麼爲什麼?」)

$$1 + 2 + 3 = ?$$

- 答案:6。
- 爲什麼? (謎之音:「什麼爲什麼?」)

定義

二元運算有一個運算子和兩個運算元,例如:

$$1 + 2 + 3 = ?$$

- 答案:6。
- 爲什麼? (謎之音:「什麼爲什麼?」)

定義

二元運算有一個運算子和兩個運算元,例如:

1+2:「+」稱爲「運算子」,「1」和「2」稱爲運算元 (我們常稱爲「被加數」和「加數」)。

$$1+2+3=?$$

- 答案:6。
- 爲什麼? (謎之音:「什麼爲什麼?」)

定義

二元運算有一個運算子和兩個運算元,例如:

- 1+2:「+」稱爲「運算子」,「1」和「2」稱爲運算元 (我們常稱爲「被加數」和「加數」)。
- 2 我們可以知道「加減乘除餘」都是二元運算。

1+2+3=?

- 答案:6。
- 爲什麼? (謎之音:「什麼爲什麼?」)

定義

二元運算有一個運算子和兩個運算元,例如:

- 1+2:「+」稱爲「運算子」,「1」和「2」稱爲運算元 (我們常稱爲「被加數」和「加數」)。
- 2 我們可以知道「加減乘除餘」都是二元運算。
- Well, 我們回到原來的問題 ...

$$1+2+3=?$$

• 出現大麻煩啦!

$$1 + 2 + 3 = ?$$

- 出現大麻煩啦!
 - 根據剛剛說的,加法只有兩個運算元,那麼「1+2+3」該怎麼辦呢?

1 + 2 + 3 = ?

- 出現大麻煩啦!
 - 根據剛剛說的,加法只有兩個運算元,那麼「1+2+3」該怎麼辦呢?
- 解法:決定運算的方向。例如:

$$1 + 2 + 3 = ?$$

- 出現大麻煩啦!
 - 根據剛剛說的,加法只有兩個運算元,那麼「1+2+3」該怎麼辦呢?
- 解法:決定運算的方向。例如:

$$1 + 2 + 3 = ?$$

- 出現大麻煩啦!
 - 根據剛剛說的,加法只有兩個運算元,那麼「1+2+3」該怎麼辦呢?
- 解法:決定運算的方向。例如:

 - ② 先算 2+3=5, 再算 1+5=6

$$1 + 2 + 3 = ?$$

- 出現大麻煩啦!
 - 根據剛剛說的,加法只有兩個運算元,那麼「1+2+3」該怎麼辦呢?
- 解法:決定運算的方向。例如:
 - **1** 先算 1+2=3,再算 3+3=6
 - ② 先算 2+3=5,再算 1+5=6
- 謎之音:「那還不是一樣嘛?廢話==」

$$1 + 2 + 3 = ?$$

- 出現大麻煩啦!
 - 根據剛剛說的,加法只有兩個運算元,那麼「1+2+3」該怎麼辦呢?
- 解法:決定運算的方向。例如:
 - **1** 先算 1+2=3,再算 3+3=6
 - ② 先算 2+3=5, 再算 1+5=6
- 謎之音:「那還不是一樣嘛?廢話==」

注意

決定運算方向對「計算機」而言意義重大!

$$1 - 2 - 3 = ?$$

$$1 - 2 - 3 = ?$$

• 我們直觀上會先算 1-2=-1, 再算 -1-3=-4。

$$1 - 2 - 3 = ?$$

- 我們直觀上會先算1-2=-1,再算-1-3=-4。
- 因此 C++ 在設計上也會把加減乘除餘的結合性「設定」成從左到 右算。

$$1 - 2 - 3 = ?$$

- 我們直觀上會先算1-2=-1,再算-1-3=-4。
- 因此 C++ 在設計上也會把加減乘除餘的結合性「設定」成從左到 右算。

算術運算子	意義	運算順序	結合性
+	加法	6	左→右
_	減法	6	左→右
*	乘法	5	左→右
/	除法	5	左→右
%	取餘數	5	左→右

Table: 算術運算子

$$1 + 2 * 3 - 4 = ?$$

$$1 + 2 * 3 - 4 = ?$$

• 我們的運算規則:「先乘除餘,後加減」。

$$1 + 2 * 3 - 4 = ?$$

- 我們的運算規則:「先乘除餘,後加減」。
- 因此 C++ 發展出一套規則:運算順序

$$1 + 2 * 3 - 4 = ?$$

- 我們的運算規則:「先乘除餘,後加減」。
- 因此 C++ 發展出一套規則:運算順序
 - 運算順序小的優先運算

1 + 2 * 3 - 4 = ?

- 我們的運算規則:「先乘除餘,後加減」。
- 因此 C++ 發展出一套規則:運算順序
 - 運算順序小的優先運算
 - 若運算順序相同,則依照運算方向做計算。

1 + 2 * 3 - 4 = ?

- 我們的運算規則:「先乘除餘,後加減」。
- 因此 C++ 發展出一套規則:運算順序
 - 運算順序小的優先運算
 - 若運算順序相同,則依照運算方向做計算。

算術運算子	意義	運算順序	結合性
+	加法	6	左→右
_	減法	6	左→右
*	乘法	5	左→右
/	除法	5	左→右
%	取餘數	5	左→右

Table: 算術運算子

回到原來例子

$$1 + 2 * 3 - 4 = ?$$

$$1 + 2 * 3 - 4$$

我們可以看到 * 的運算順序最高

回到原來例子

$$1 + 2 * 3 - 4 = ?$$

$$1 + 2 * 3 - 4$$

我們可以看到 * 的運算順序最高

$$=1+6-4$$

=1+6-4 加法和減法運算順序相同,依照結合性從左到右算

回到原來例子

$$1 + 2 * 3 - 4 = ?$$

$$1+2*3-4$$
 我們可以看到 $*$ 的運算順序最高 $=1+6-4$ 加法和減法運算順序相同,依照結合性從左到右算 $=7-4$ 依照結合性從左到右算

=3

回到原來例子

$$1 + 2 * 3 - 4 = ?$$

$$1+2*3-4$$
 我們可以看到 $*$ 的運算順序最高 $=1+6-4$ 加法和減法運算順序相同,依照結合性從左到右算 $=7-4$ 依照結合性從左到右算 $=3$

觀念

C++ 的四則運算用優先順序和結合性來處理。

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

回到原來例子

$$1 + 2 * 3 - 4 = ?$$

$$1+2*3-4$$
 我們可以看到 $*$ 的運算順序最高 $=1+6-4$ 加法和減法運算順序相同,依照結合性從左到右算 $=7-4$ 依照結合性從左到右算 $=3$

觀念

- C++ 的四則運算用優先順序和結合性來處理。
- 這件事情非常重要,稍後就會知道爲什麼。

整數除法

① cout << 8 / 5 << endl; 的結果?

整數除法

1 cout << 8 / 5 << endl; 的結果? Ans: 1

整數除法

- 1 cout << 8 / 5 << endl; 的結果? Ans: 1
- 2 cout << 8.0 / 5.0 << endl; 的結果?

整數除法

- 1 cout << 8 / 5 << endl; 的結果? Ans: 1
- 2 cout << 8.0 / 5.0 << endl; 的結果? Ans: 1.6

整數除法

- 1 cout << 8 / 5 << endl; 的結果? Ans: 1
- 2 cout << 8.0 / 5.0 << endl; 的結果? Ans: 1.6

註

• 在 8 / 5 中 , 8 和 5 被視爲 int , 因此 C++ 會做「整數除法」。

整數除法

- 1 cout << 8 / 5 << endl; 的結果? Ans: 1
- 2 cout << 8.0 / 5.0 << endl; 的結果? Ans: 1.6

註

- 在8/5中,8和5被視爲int,因此C++會做「整數除法」。
- 而在 8.0 / 5.0 中, 8.0 和 5.0 被視爲浮點數 double, 因此會做 「浮點數除法」。

整數除法

- ① cout << 8 / 5 << endl; 的結果? Ans: 1
- 2 cout << 8.0 / 5.0 << endl; 的結果? Ans: 1.6

註

- 在8/5中,8和5被視爲int,因此C++會做「整數除法」。
- 而在 8.0 / 5.0 中, 8.0 和 5.0 被視爲浮點數 double,因此會做 「浮點數除法」。
- 除法還有另外一個問題點 ...

試試看

我們知道數學上是不能除以零的,那程式呢?

1 cout << 1 / 0 << endl;</pre>

試試看

我們知道數學上是不能除以零的,那程式呢?

1 cout << 1 / 0 << endl;</pre>

註

試試看

我們知道數學上是不能除以零的,那程式呢?

- 1 cout << 1 / 0 << endl;</pre>
- 2 cout << 0 / 0 << endl;</pre>

註

試試看

我們知道數學上是不能除以零的,那程式呢?

- 1 cout << 1 / 0 << endl;</pre>
- 2 cout << 0 / 0 << endl;</pre>
- 3 cout << 1.0 / 0.0 << endl;

註

試試看

我們知道數學上是不能除以零的,那程式呢?

- 1 cout << 1 / 0 << endl;</pre>
- 2 cout << 0 / 0 << endl;</pre>
- 3 cout << 1.0 / 0.0 << endl;</pre>
- 4 cout << 0.0 / 0.0 << endl;</pre>

註

試試看

我們知道數學上是不能除以零的,那程式呢?

- 1 cout << 1 / 0 << endl;</pre>
- 2 cout << 0 / 0 << endl;</pre>
- 3 cout << 1.0 / 0.0 << endl;</pre>
- 4 cout << 0.0 / 0.0 << endl;</pre>

註

如果無法編譯成功,那麼就宣告一個變數,把分母裝進去再試試看。

注意

通常編譯可以過,但是在執行時會出些狀況,各位知道出了哪些狀況就 好,不用了解太詳細。

觀察現象

1 cout << 5 % 3 << endl; 會輸出什麼?

觀察現象

1 cout << 5 % 3 << endl; 會輸出什麼? Ans:2

觀察現象

- 1 cout << 5 % 3 << endl; 會輸出什麼? Ans:2
- 2 cout << (-5) % 3 << endl; 呢?

觀察現象

- 1 cout << 5 % 3 << endl; 會輸出什麼? Ans:2
- ② cout << (-5) % 3 << endl; 呢? Ans:-2

觀察現象

- 1 cout << 5 % 3 << endl; 會輸出什麼? Ans:2
- 2 cout << (-5) % 3 << endl; 呢? Ans:-2

註

• 事情不該是這樣發展的啊!!!

觀察現象

- 1 cout << 5 % 3 << endl; 會輸出什麼? Ans:2
- ② cout << (-5) % 3 << endl; 呢? Ans:-2

註

- 事情不該是這樣發展的啊!!!
- 謎之音:「應該結果是要1才對。」

觀察現象

- ① cout << 5 % 3 << endl; 會輸出什麼? Ans:2
- ② cout << (-5) % 3 << endl; 呢?Ans:-2

註

- 事情不該是這樣發展的啊!!!
- 謎之音:「應該結果是要1才對。」
 - C++ 一個奇怪的特性 ...

問題

問題

要怎麼做出取餘數的效果呢?

① 假設 n 要 mod m ...

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 n ≥ 0

問題

- 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0

問題

- 假設 n 要 mod m ...
- 2 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字

問題

- ① 假設 n 要 mod m ...
- 2 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- 3 接著加上 m

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- ③ 接著加上 m
 - 如果 n≥0

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- ③ 接著加上 m
 - 如果 n≥0,會得到介於 m 到 2m-1 的數字

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- ③ 接著加上 m
 - 如果 $n \ge 0$,會得到介於 m 到 2m-1 的數字
 - 如果 n < 0

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- ③ 接著加上 m
 - 如果 n≥0,會得到介於 m 到 2m-1 的數字
 - 如果 n < 0,會得到介於 -(m-1) + m = 1 到 m 的數字

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- ③ 接著加上 m
 - 如果 n≥0,會得到介於 m 到 2m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) + m = 1 到 m 的數字
 - 全都修成正值了!

問題

- ① 假設 n 要 mod m ...
- ② 首先,我們取 n % m
 - 如果 $n \ge 0$,會得到介於 0 到 m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- 3 接著加上 m
 - 如果 $n \ge 0$,會得到介於 m 到 2m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) + m = 1 到 m 的數字
 - 全都修成正值了!但還差最後一步 ...

解決辦法?

問題

要怎麼做出取餘數的效果呢?

- ① 假設 n 要 mod m ...
- 2 首先,我們取 n % m
 - 如果 n > 0, 會得到介於 0 到 m − 1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- 3 接著加上 m
 - 如果 $n \ge 0$,會得到介於 m 到 2m-1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) + m = 1 到 m 的數字
 - 全都修成正值了!但還差最後一步 ...
- ▲ 最後,再 mod m 一次,把所有數字修正回 0 到 m-1之間。

解決辦法?

問題

要怎麼做出取餘數的效果呢?

- ① 假設 n 要 mod m ...
- 2 首先,我們取 n % m
 - 如果 n > 0, 會得到介於 0 到 m − 1 的數字
 - 如果 n < 0, 會得到介於 −(m − 1) 到 0 的數字
- 3 接著加上 m
 - 如果 $n \ge 0$,會得到介於 m 到 2m-1 的數字
 - 如果 n < 0,會得到介於 -(m-1) + m = 1 到 m 的數字
 - 全都修成正值了!但還差最後一步 ...
- ❹ 最後,再 mod m 一次,把所有數字修正回 0 到 m-1之間。
 - 大功告成啦 (n % m + m) % m

練習題

UVa 10071 - Back to High School Physics

這題只要能夠讀懂題意就不難寫。如果不知道怎樣讀取多筆測資請先參 考迴圈部分 (EOF 版)。

練習題

UVa 10071 - Back to High School Physics

這題只要能夠讀懂題意就不難寫。如果不知道怎樣讀取多筆測資請先參 考迴圈部分 (EOF 版)。

UVa 10300 - Ecological Premium

一樣能讀懂題意就不難寫。

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧: 遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

比較運算子

比較運算子	意義	運算順序	結合性
==	等於	9	左→右
!=	不等於	9	左→右
>	大於	8	左→右
<	小於	8	左→右
>=	不小於	8	左→右
<=	不大於	8	左→右

Table: 比較運算子

比較運算子

比較運算子	意義	運算順序	結合性
==	等於	9	左→右
!=	不等於	9	左→右
>	大於	8	左→右
<	小於	8	左→右
>=	不小於	8	左→右
<=	不大於	8	左→右

Table: 比較運算子

注意

• C++ 的等於寫作「==」,不要和賦值的「=」搞混。

例子

① cout << (3 < 5) << endl;, 會發生什麼事?

例子

1 cout << (3 < 5) << endl;, 會發生什麼事?

註

• 比較運算子也是二元運算,他會比較兩邊數字大小:

例子

1 cout << (3 < 5) << endl;, 會發生什麼事?

- 比較運算子也是二元運算,他會比較兩邊數字大小:
 - 如果正確,則爲 true

例子

1 cout << (3 < 5) << endl;, 會發生什麼事?

- 比較運算子也是二元運算,他會比較兩邊數字大小:
 - 如果正確,則爲 true
 - 否則就是 false

例子

① cout << (3 < 5) << endl;, 會發生什麼事?

- 比較運算子也是二元運算,他會比較兩邊數字大小:
 - 如果正確,則爲 true
 - 否則就是 false
- 這種概念我們稱爲「回傳值」

例子

1 cout << (3 < 5) << endl;, 會發生什麼事?

- 比較運算子也是二元運算,他會比較兩邊數字大小:
 - 如果正確,則爲 true
 - 否則就是 false
- 這種概念我們稱爲「回傳值」
 - · 比較運算子的回傳值是布林值 bool

例子

1 cout << (3 < 5) << endl;, 會發生什麼事?

- 比較運算子也是二元運算,他會比較兩邊數字大小:
 - 如果正確,則爲 true
 - 否則就是 false
- 這種概念我們稱爲「回傳值」
 - · 比較運算子的回傳值是布林值 bool
 - 3 < 5 \Rightarrow true

例子

1 cout << (3 < 5) << endl;, 會發生什麼事?

- 比較運算子也是二元運算,他會比較兩邊數字大小:
 - 如果正確,則爲 true
 - 否則就是 false
- 這種概念我們稱爲「回傳值」
 - 比較運算子的回傳值是布林值 bool
 - 3 < 5 \Rightarrow true
 - 因爲我們要輸出 true,根據 C++ 的規則,我們知道 true 代表非零,因此會印出一個非零的數字 (通常是 1)

例子

判斷整數 n % m 是否「不是 0」。

例子

判斷整數 n % m 是否「不是 0」。

判斷整除

n % m != 0

例子

判斷整數 n % m 是否「不是 0」。

判斷整除

n % m != 0

• 如果 n % m 的回傳值 \neq 0 \Rightarrow true

例子

判斷整數 n % m 是否「不是 0」。

判斷整除

n % m != 0

- 如果 n % m 的回傳值 \neq 0 \Rightarrow true
- 如果是 0,則爲 false

例子

判斷整數 n % m 是否「不是 0」。

判斷整除

- n % m != 0
 - 如果 n % m 的回傳值 \neq 0 \Rightarrow true
 - 如果是 0,則爲 false

簡化寫法

n % m

例子

判斷整數 n % m 是否「不是 0」。

判斷整除

- n % m != 0
 - 如果 n % m 的回傳值 $\neq 0 \Rightarrow true$
 - 如果是 0,則爲 false

簡化寫法

- n % m
 - 如果 n % m 的回傳值 \neq 0 ,可以被當做「true」

例子

判斷整數 n % m 是否「不是 0」。

判斷整除

- n % m != 0
 - 如果 n % m 的回傳值 $\neq 0 \Rightarrow true$
 - 如果是 0,則爲 false

簡化寫法

- n % m
 - 如果 n % m 的回傳值 \neq 0 ,可以被當做「true」
 - 如果是 0,那麼就可以當做「false」

遙遠的記憶

布林值的重要觀念

- C++ 中,「非零整數」會被當做「true」,印出時也會印出一個非零整數 (通常是 1)。
- 「0」會被當做「false」,印出時會印出「0」。

遙遠的記憶

布林值的重要觀念

- C++ 中,「非零整數」會被當做「true」,印出時也會印出一個 非零整數 (通常是 1)。
- 「O」會被當做「false」,印出時會印出「O」。

註

• 簡化的寫法大多時候可以取代原來一般寫法。

遙遠的記憶

布林值的重要觀念

- C++ 中,「非零整數」會被當做「true」,印出時也會印出一個 非零整數 (通常是 1)。
- 「O」會被當做「false」,印出時會印出「O」。

- 簡化的寫法大多時候可以取代原來一般寫法。
- 通常比較運算子要和 if \else 配合。

邏輯運算子

邏輯運算子	意義	運算順序	結合性
&&	且	13	左→右
11	或	14	左→右
!	非	3	右→左

Table: 邏輯運算子

邏輯運算子

邏輯運算子	意義	運算順序	結合性
&&	且	13	左→右
11	或	14	左→右
!	非	3	右→左

Table: 邏輯運算子

作用

• 一般來說是連接比較運算子

邏輯運算子

邏輯運算子	意義	運算順序	結合性
&&	且	13	左→右
11	或	14	左→右
!	非	3	右→左

Table: 邏輯運算子

作用

- 一般來說是連接比較運算子
- 例如:1 < x && x < 5

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢?

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

用回傳值的觀點

• 我們知道 <= 運算子在列出很多個時,會由左到右算

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

- 我們知道 <= 運算子在列出很多個時,會由左到右算
- a <= x 先算出 true 或者是 false

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

- 我們知道 <= 運算子在列出很多個時,會由左到右算
- a <= x 先算出 true 或者是 false
- 假設 a=-4、b=-1、x=-2 (我們知道結果是 true)

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

- 我們知道 <= 運算子在列出很多個時,會由左到右算
- a <= x 先算出 true 或者是 false
- 假設 a=-4、b=-1、x=-2 (我們知道結果是 true)
 - a <= x <= b 先算 a <= x 得到 true

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

- 我們知道 <= 運算子在列出很多個時,會由左到右算
- a <= x 先算出 true 或者是 false
- 假設 a=-4、b=-1、x=-2 (我們知道結果是 true)
 - a <= x <= b 先算 a <= x 得到 true
 - true <= b, 因爲 true 通常是 1, 但此時 b=-1, 整句就會回傳 false

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

- 我們知道 <= 運算子在列出很多個時,會由左到右算
- a <= x 先算出 true 或者是 false
- 假設 a=-4、b=-1、x=-2 (我們知道結果是 true)
 - a <= x <= b 先算 a <= x 得到 true
 - true <= b, 因爲 true 通常是 1, 但此時 b=-1, 整句就會回傳 false
 - · 但事實上 x 是在 a 和 b 裡面。

舉個例子

例子

判斷 x 是否介於 a 和 b 之間能不能寫成 a <= x <= b; 呢? Ans:不行。

用回傳值的觀點

- 我們知道 <= 運算子在列出很多個時,會由左到右算
- a <= x 先算出 true 或者是 false
- 假設 a=-4、b=-1、x=-2 (我們知道結果是 true)
 - a <= x <= b 先算 a <= x 得到 true
 - true <= b, 因爲 true 通常是 1, 但此時 b=-1, 整句就會回傳 false
 - · 但事實上 x 是在 a 和 b 裡面。
- a <= x 是 false 也會有同樣的問題。

練習題 (1)

UVa 10055 - Hashmat the brave warrior

取絕對值有兩種做法,一種是用 if 判斷;另一種是呼叫函數 abs() 就好了。abs() 函數被定義在 <cstdlib> 中,雖然沒有 include 在 Visual C++ 依然能編譯過,但是上傳時因爲編譯器的原因會導致編譯 錯誤 (Compilation Error, CE)。

注意

另外要注意這一題的整數型態需用 long long,用 int 會造成「溢位現象」,這個原因會在後面説明。

練習題 (2)

UVa 11172 - Relational Operators

能夠理解題意就不難解決此道問題。

練習題 (2)

UVa 11172 - Relational Operators

能夠理解題意就不難解決此道問題。

UVa 11942 - Lumberjack Sequencing

依序給你一些木頭的長度,問你這些木頭是不是由長到短,或是由短到 長排列。

性質

• A && B

性質

- A && B
 - && 運算子: 只要 A 或 B 其中一個回傳 false,則整個運算式就會是 false

性質

- A && B
 - && 運算子: 只要 A 或 B 其中一個回傳 false,則整個運算式就會 是 false
 - C++ 設計上當 A 已經是 false (也就是確定整個運算式必為 false),則 C++ 會跳過 B

性質

- A && B
 - && 運算子: 只要 A 或 B 其中一個回傳 false,則整個運算式就會 是 false
 - C++ 設計上當 A 已經是 false (也就是確定整個運算式必為 false),則 C++ 會跳過 B

範例

```
int i, j;
i = j = 0;
if ((i++ < 0) && (j++ > 0))
cout << "XD" << endl; // 這行不會輸出
cout << i << "" << j << endl;
```

性質

• A || B

性質

- A | | B
 - || 運算子:只要 A 或 B 其中一個回傳 true,則整個運算式就會是true

性質

- A | | B
 - || 運算子: 只要 A 或 B 其中一個回傳 true,則整個運算式就會是true
 - C++ 設計上當 A 已經是 true (也就是確定整個運算式必爲 true), 則 C++ 會跳過 B

性質

- A | | B
 - || 運算子:只要 A 或 B 其中一個回傳 true,則整個運算式就會是 true
 - C++ 設計上當 A 已經是 true (也就是確定整個運算式必爲 true), 則 C++ 會跳過 B

範例

```
int i, j;
i = j = 0;
if ((i++ >= 0) || (j++ < 0))
  cout << "XD" << endl; // 會輸出 XD
cout << i << "" << j << endl;
```

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧:遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

觀念

• 位元 (bit, b):計算機儲存資料的基本單位,只儲存 0 和 1

觀念

- 位元 (bit, b):計算機儲存資料的基本單位,只儲存 0 和 1
- 位元組 (byte, B): 因爲位元很多,所以我們把 8 個位元「打包起來」,變成一個位元組

01001010

Table: 位元組

觀念

- 位元 (bit, b):計算機儲存資料的基本單位,只儲存 ○和 1
- 位元組 (byte, B): 因爲位元很多,所以我們把 8 個位元「打包起來」,變成一個位元組

01001010

Table: 位元組

• 常見應用

觀念

- 位元 (bit, b):計算機儲存資料的基本單位,只儲存 ○和 1
- 位元組 (byte, B): 因爲位元很多,所以我們把 8 個位元「打包起來」,變成一個位元組

01001010

Table: 位元組

- 常見應用
 - KB、MB、GB、TB、PB:資料大小

觀念

- 位元 (bit, b):計算機儲存資料的基本單位,只儲存 ○和 1
- 位元組 (byte, B): 因爲位元很多,所以我們把 8 個位元「打包起來」,變成一個位元組

01001010

Table: 位元組

- 常見應用
 - KB、MB、GB、TB、PB:資料大小
 - Kbps、Mbps、Gbps:資料傳輸速度

int ...

• 有至少 2 個位元組

- 有至少 2 個位元組
- 謎之音:「蝦米?」

- 有至少 2 個位元組
- 謎之音:「蝦米?」不是 4 個位元組嘛!!!

- 有至少 2 個位元組
- 謎之音:「蝦米?」不是 4 個位元組嘛!!!
- 事實上當初定義時, int 只有「至少」2位元組。

- 有至少 2 個位元組
- 謎之音:「蝦米?」不是 4 個位元組嘛!!!
- 事實上當初定義時, int 只有「至少」2 位元組。
- 現今大多是 4 位元組。

int ...

- 有至少 2 個位元組
- 謎之音:「蝦米?」不是 4 個位元組嘛!!!
- 事實上當初定義時, int 只有「至少」2位元組。
- 現今大多是 4 位元組。

型態	長度
bool	1 位元組
int	2或4位元組
long long	4或8位元組
double	8 位元組

Table: 位元組長度

int 表示法

• 一般來說, int 由 4 個位元組組成

10100010 00110011 00100111 1010	1101
---------------------------------------	------

int 表示法

• 一般來說, int 由 4 個位元組組成

• 可以視爲一個長度是 32 的二進位數字,我們將位數依照高低編號

$X_{31}X_{30}\cdots X_{24} \mid X_{23}X_{22}\cdots X_{1}$	$X_{15}X_{14}\cdots X_8$	$x_7x_6\cdots x_0$
---	--------------------------	--------------------

int 表示法

• 一般來說, int 由 4 個位元組組成

• 可以視爲一個長度是 32 的二進位數字,我們將位數依照高低編號

$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
-----------------------------	-----------------------------	--------------------------	--------------------

• x₃₁ 表示正負號

int 表示法

• 一般來說, int 由 4 個位元組組成

10100010 00110011	00100111	10101101
---------------------	----------	----------

• 可以視爲一個長度是 32 的二進位數字,我們將位數依照高低編號

$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
-----------------------------	-----------------------------	--------------------------	--------------------

- X31 表示正負號
 - 0 代表 int 是正數

int 表示法

• 一般來說, int 由 4 個位元組組成

• 可以視爲一個長度是 32 的二進位數字,我們將位數依照高低編號

$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$X_{15}X_{14}\cdots X_8$	$x_7x_6\cdots x_0$
-----------------------------	-----------------------------	--------------------------	--------------------

- x₃₁ 表示正負號
 - 0 代表 int 是正數
 - 1 代表 int 是負數

int 表示法

• 一般來說, int 由 4 個位元組組成

10100010 00110011	00100111	10101101
---------------------	----------	----------

• 可以視爲一個長度是 32 的二進位數字,我們將位數依照高低編號

$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$X_{15}X_{14}\cdots X_8$	$x_7x_6\cdots x_0$
-----------------------------	-----------------------------	--------------------------	--------------------

- x31 表示正負號
 - 0 代表 int 是正數
 - 1 代表 int 是負數

註

int 的儲存方式很特別,要多花一些力氣説明。

int 存正數的情況

規則

依照一般的二進位方式儲存。

int 存正數的情況

規則

依照一般的二進位方式儲存。

例如

• int x = 1;

00000000	00000000	00000000	00000001

int 存正數的情況

規則

依照一般的二進位方式儲存。

例如

• int x = 1;

00000000	00000000	00000000	00000001
----------	----------	----------	----------

• int x = 255;

int 存負數的情況

舉例

• int x = -1;

 111111111
 111111111
 111111111
 111111111

int 存負數的情況

舉例

• int x = -1;

 111111111
 111111111
 111111111
 111111111

• 謎之音:「根本黑魔法!」

int 存負數的情況

舉例

- int x = -1;
 - 11111111
 11111111
 11111111
 11111111
- 謎之音:「根本黑魔法!」

想法

• 我們知道 (-1)+1=0,那麼拿這種表示法加加看

		11111111	11111111	11111111	11111111
-	+	00000000	00000000	00000000	00000001
		1 00000000	00000000	00000000	00000000

int 存負數的情況

舉例

- int x = -1;
- 謎之音:「根本黑魔法!」

想法

我們知道 (-1)+1=0,那麼拿這種表示法加加看

	11111111	11111111	11111111	11111111
+	00000000	00000000	00000000	00000001
	100000000	00000000	00000000	00000000

• 紅色的 1 因爲超過 32 位元,因此被捨棄,稱爲溢位

練習

• int x = -2;

練習

• int x = -2;

11111111 11111111 11111111 111111

練習

• int x = -2;

11111111 11111111	11111111	11111110
-------------------	----------	----------

• int x = -256;

練習

• int x = -2;

• int x = -256;

練習

• int x = -2;

• int x = -256;

11111111 11111111	11111111	00000000
---------------------	----------	----------

重點

• 這種表示法稱爲二補數 (2's complement)

練習

• int x = -2;

11111111 11111111 11111111 1111111
--

• int x = -256;

重點

- 這種表示法稱爲二補數 (2's complement)
- 要想像負數 -x 的表示法, 訣竅是 (-x)+x 會因爲溢位等於 0

練習

• int x = -2;

11111111	11111111	11111111	11111110

• int x = -256;

重點

- 這種表示法稱爲二補數 (2's complement)
- 要想像負數 -x 的表示法, 訣竅是 (-x)+x 會因爲溢位等於 0
- 記得 0 是全 0,-1 是全 1

位元運算子

位元運算子	意義	運算順序	結合性
<<	左移運算子	7	左→右
>>	右移運算子	7	左→右
&	位元 AND	10	左→右
^	位元 XOR	11	左→右
I	位元 OR	12	左→右
~	1's 補數	3	右→左

Table: 位元運算子

位元運算子

位元運算子	意義	運算順序	結合性
<<	左移運算子	7	左→右
>>	右移運算子	7	左→右
&	位元 AND	10	左→右
^	位元 XOR	11	左→右
I	位元 OR	12	左→右
~	1's 補數	3	右→左

Table: 位元運算子

注意

• 左移運算子和右移運算子不要和 cin 與 cout 的 <<、>> 混淆

左移和右移

在位元操作上左移和右移 k 個位元。

左移和右移

在位元操作上左移和右移 k 個位元。

舉例

• 2 << 2

左移和右移

在位元操作上左移和右移 k 個位元。

舉例

左移和右移

在位元操作上左移和右移 k 個位元。

舉例

2 << 2 ⇒ 8

00000000	00000000	00000000	00000010

左移和右移

在位元操作上左移和右移 k 個位元。

舉例

2 << 2 ⇒ 8

00000000 00000000 00000000 0000				
II.				
₩				
0000000 0000000 0000000 00001000				

再來個例子 • 5 >> 1

再來個例子

5 >> 1 ⇒ 2

再來個例子

5 >> 1 ⇒ 2

再來個例子

5 >> 1 ⇒ 2

00000000	00000101			
\				
00000000 00000000 00000000 00000010				

再來個例子

• 5 \Rightarrow 1 \Rightarrow 2

00000000 00000000 00000000		00000101	
			
00000000 00000000 00000000 00000010			

注意

• 不管是左移還是右移,移出去的位元會被捨棄。

再來個例子

• 5 >> 1 \Rightarrow 2

00000000 00000000 00000000 0000				
				
00000000 00000000 00000000 00000010				

- 不管是左移還是右移,移出去的位元會被捨棄。
- 之前提到 x₃₁ 決定正負號,在左移右移會影響到 x₃₁ 時會比較複雜,例如

再來個例子

5 >> 1 ⇒ 2

00000000 00000000 00000000 0		00000101	
			
00000000 00000000 00000000 00000010			

- 不管是左移還是右移,移出去的位元會被捨棄。
- 之前提到 x₃₁ 決定正負號,在左移右移會影響到 x₃₁ 時會比較複雜,例如
 - 2147483647 << 1

再來個例子

5 >> 1 ⇒ 2

00000000 00000000 00000000 0000				
				
00000000 00000000 00000000 00000010				

- 不管是左移還是右移,移出去的位元會被捨棄。
- 之前提到 x_{31} 決定正負號,在左移右移會影響到 x_{31} 時會比較複雜,例如
 - 2147483647 << 1
 - -5 >> 1

再來個例子

• 5 >> 1 ⇒ 2

00000000 00000000 00000000 0000				
				
00000000 00000000 00000000 00000010				

- 不管是左移還是右移,移出去的位元會被捨棄。
- 之前提到 x₃₁ 決定正負號,在左移右移會影響到 x₃₁ 時會比較複雜,例如
 - 2147483647 << 1
 - -5 >> 1
 - (2147483647 << 1) >> 1

觀察

• a << k 會得到什麼數字呢?

觀察

- a << k 會得到什麼數字呢?
- 那麼 a >> k 呢?

觀察

- a << k 會得到什麼數字呢?
- 那麼 a >> k 呢?

結論

一般來說 a << k 會得到 a×2^k, a >> k 會得到 a/2^k

觀察

- a << k 會得到什麼數字呢?
- 那麼 a >> k 呢?

結論

- 一般來說 a << k 會得到 a × 2^k, a >> k 會得到 a/2^k
- 有些情況比較複雜,大家看看就好,起碼對這些運算「有感覺」

位元運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

位元運算子

對於兩個位元 x 和 y , 遵守以下運算規則:

&	1	0
1	1	0
0	0	0

Table: and 運算子

位元運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

&	1	0
1	1	0
0	0	0

 1
 0

 1
 0

 1
 0

 1
 0

Table: and 運算子

Table: xor 運算子

位元運算子

對於兩個位元 x 和 y , 遵守以下運算規則:

&	1	0
1	1	0
0	0	0

Table: and 運算子

^	1	0
1	0	1
0	1	0

Table: xor 運算子

	1	0
1	1	1
0	1	0

Table: or 運算子

位元運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

&	1	0
1	1	0
0	0	0

1	0	1
0	1	0

^ 1 0

	1	0
1	1	1
0	1	0

Table: and 運算子

Table: xor 運算子

Table: or 運算子

觀察

• and、or 運算子類似之前的邏輯運算子,不同在於這是位元運算。

位元運算子

Table:

對於兩個位元 x 和 y, 遵守以下運算規則:

&	1	0
1	1	0
0	0	0

and	運算子

^	1	0
1	0	1
0	1	0

Table: xor 運算子

	1	0
1	1	1
0	1	0

Table: or 運算子

觀察

- and、or 運算子類似之前的邏輯運算子,不同在於這是位元運算。
- xor 很特別,可以記爲不同數字爲 1,相同爲 0。

舉例

• 5 & 3

舉例

5 & 3 ⇒ 1

5 & 3 ⇒ 1

結果

	00000000	00000000	00000000	00000101
&	00000000	00000000	00000000	00000 <mark>011</mark>
	00000000	00000000	00000000	00000 <mark>001</mark>

5 & 3 ⇒ 1

結果

	00000000	00000000	00000000	00000101
&	00000000	00000000	00000000	00000 <mark>011</mark>
	00000000	00000000	00000000	00000 <mark>001</mark>

• 5 | 3

5 & 3 ⇒ 1

結果

	00000000	00000000	00000000	00000101
&	00000000	00000000	00000000	00000 <mark>011</mark>
	00000000	00000000	00000000	00000 <mark>001</mark>

5 | 3 ⇒ 7

5 & 3 ⇒ 1

結果

	00000000	00000000	00000000	00000101
&	00000000	00000000	00000000	00000 <mark>011</mark>
	00000000	00000000	00000000	00000001

5 | 3 ⇒ 7

結果

ſ	00000000	00000000	00000000	00000101
	00000000	00000000	00000000	00000 <mark>011</mark>
	00000000	00000000	00000000	00000111

補數運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

Table: and 運算子

補數運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

Table: and 運算子

説明

• 就是把1變爲0,把0變爲1(相當於邏輯運算子的!)

補數運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

Table: and 運算子

説明

- 就是把1變爲0,把0變爲1(相當於邏輯運算子的!)
- 又稱爲 1's 補數

補數運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

Table: and 運算子

説明

- 就是把1變爲0,把0變爲1(相當於邏輯運算子的!)
- 又稱爲 1's 補數
- ~0

補數運算子

對於兩個位元 x 和 y, 遵守以下運算規則:

Table: and 運算子

説明

- 就是把1變爲0,把0變爲1(相當於邏輯運算子的!)
- 又稱爲 1's 補數
- ~0 ⇒ -1

一元運算子

一元運算子

一元運算子就是只有一個運算元的運算子。

一元運算子

一元運算子

一元運算子就是只有一個運算元的運算子。

運算子	意義	運算順序	結合性
+	正號	3	右→左
_	負號	3	右→左

一元運算子

一元運算子

一元運算子就是只有一個運算元的運算子。

運算子	意義	運算順序	結合性
+	正號	3	右→左
-	負號	3	右→左

舉例

~~3 會先算右邊的 ~3,得到 -4,接著 -4 再和左邊的負號運算子「運算」,回傳結果爲 3。

問題

要怎樣產生 2 進位下連續 k 個 1?

問題

要怎樣產生 2 進位下連續 k 個 1?

舉例

• 3個1

00000000 00000000 00000000 00000111

問題

要怎樣產生 2 進位下連續 k 個 1?

舉例

• 3個1

00000000	00000000	00000000	00000111
----------	----------	----------	----------

• 5 個 1

00000000	00000000	00000000	00011111

問題

要怎樣產生 2 進位下連續 k 個 1?

問題

要怎樣產生 2 進位下連續 k 個 1?

觀察

可以很容易發現, k個1恰好是2^k−1。

問題

要怎樣產生 2 進位下連續 k 個 1?

觀察

- 可以很容易發現,k個1恰好是2^k-1。
- 前提是不牽扯到正負號 x31

問題

要怎樣產生 2 進位下連續 k 個 1?

觀察

- 可以很容易發現, k個1恰好是2^k−1。
- 前提是不牽扯到正負號 x31

結論

• (1 << k) - 1

問題

要怎樣產生 2 進位下連續 k 個 1?

觀察

- 可以很容易發現, k 個 1 恰好是 2^k − 1。
- 前提是不牽扯到正負號 x31

結論

- (1 << k) 1
- 注意減號和左移運算子的優先順序。

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

舉例

• x₀ 到 x₂

00000000 | 00000000 | 00000000 | 00000111

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

舉例

• x_0 到 $x_2 \Rightarrow$ 恰好是 3 個 1 的情形

00000000 00000000	00000000	00000111
-------------------	----------	----------

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

舉例

• x₀ 到 x₂ ⇒ 恰好是 3 個 1 的情形

00000000 00000000	00000000	00000111
-------------------	----------	----------

• X₃ 到 X₇

00000000 00000000 00000000 111111000

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

結論

• 觀察之後,可以發現是 2b+1 - 2a

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

結論

- 觀察之後,可以發現是 2b+1 2a
- 該怎麼實作就從之前取 k 個 1 的方法去擴展就可以得到。

問題 (加強版)

要怎樣產生 2 進位下 x_a 到 x_b 都是 1? (假設 a < b)

結論

- 觀察之後,可以發現是 2b+1 2a
- 該怎麼實作就從之前取 k 個 1 的方法去擴展就可以得到。
- 記得熟悉位元運算,有時候就會有題目會用到。

位元技巧:取負數

問題

給你一個正數 x, 問如何不用負號的情況下求出 -x 呢?

位元技巧:取負數

問題

給你一個正數 x, 問如何不用負號的情況下求出 -x 呢?

提示

比較-x和~x的不同。

位元技巧:取負數

問題

給你一個正數 x, 問如何不用負號的情況下求出 -x 呢?

提示

比較-x和~x的不同。

註

這個例子只是展現位元運算有時候很神奇,這個方法很多時候並不常用。

位元運算的性質

再看看位元運算的性質:

位元運算的性質

再看看位元運算的性質:

&	X
1	Х
0	0

Table: and 運算子

位元運算的性質

再看看位元運算的性質:

&	X
1	Х
0	0

Table: and 運算子

	X
1	1
0	Х

Table: or 運算子

位元運算的性質

再看看位元運算的性質:

&	X
1	Х
0	0

Table: and 運算子

-	X
1	1
0	Х

Table: or 運算子

觀察

x 是變數時 ... (可能是 0 或 1)

位元運算的性質

再看看位元運算的性質:

&	X
1	Х
0	0

Table: and 運算子

	X
1	1
0	Х

Table: or 運算子

觀察

- x 是變數時 ... (可能是 0 或 1)
 - x & 0 永遠是 0

更多性質

位元運算的性質

再看看位元運算的性質:

&	X
1	Х
0	0

Table: and 運算子

	X
1	1
0	Х

Table: or 運算子

觀察

- x 是變數時 ... (可能是 0 或 1)
 - x & 0 永遠是 0
 - x | 1 永遠是 1

更多性質

位元運算的性質

再看看位元運算的性質:

&	X
1	Х
0	0

Table: and 運算子

	X
1	1
0	Х

Table: or 運算子

觀察

- x 是變數時 ... (可能是 0 或 1)
 - x & 0 永遠是 0
 - x | 1 永遠是 1 (這些性質很有用途!)

問題

要知道 x_0 是 1 還是 0,要怎麼做呢?

問題

要知道 x_0 是 1 還是 0,要怎麼做呢?

做法

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	00000000	00000000	00000000	00000001
	00000000	00000000	00000000	0000000x ₀

問題

要知道 x_0 是 1 還是 0 ,要怎麼做呢?

做法

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	00000000	00000000	00000000	0000000 <mark>1</mark>
	00000000	00000000	00000000	0000000 <mark>x</mark> 0

還記得剛剛位元運算的性質嗎?

問題

要知道 x_0 是 1 還是 0,要怎麼做呢?

做法

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	00000000	00000000	00000000	00000001
	00000000	00000000	00000000	0000000x ₀

還記得剛剛位元運算的性質嗎?

推廣版

• 要知道 x; 是1還是0要怎麼做?

問題

要知道 x_0 是 1 還是 0,要怎麼做呢?

做法

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	00000000	00000000	00000000	0000000 <mark>1</mark>
	00000000	00000000	00000000	0000000x ₀

還記得剛剛位元運算的性質嗎?

推廣版

- 要知道 x; 是1還是0要怎麼做?
- 如果我們要取出 xa 到 xb 的位元,要怎麼做呢?

問題

要如何把一個整數 x 當中, x_a 的位元「變成」1?

問題

要如何把一個整數 x 當中, xa 的位元「變成」1?

觀察

將 xo 改爲 1

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
	00000000	00000000	00000000	00000001
	<i>x</i> ₃₁ <i>x</i> ₃₀ · · · <i>x</i> ₂₄	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_11$

問題

要如何把一個整數 x 當中, xa 的位元「變成」1?

觀察

將 xo 改為 1

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
-	00000000	00000000	00000000	00000001
	<i>x</i> ₃₁ <i>x</i> ₃₀ · · · <i>x</i> ₂₄	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_11$

註

利用剛剛提到的性質:1和任意位元 or 起來都是 1。

觀察 (續)

將 x2 改爲 1

$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7 \cdots x_3 x_2 x_1 x_0$
00000000	00000000	00000000	00000100
$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7 \cdots x_3 1 x_1 x_0$

觀察 (續)

將 x2 改爲 1

$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7 \cdots x_3 x_2 x_1 x_0$
00000000	00000000	00000000	00000100
$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7 \cdots x_3 1 x_1 x_0$

結論

可以套用之前連續 1 的技巧,就可以任意指定一些位元爲 1。

另一個問題

要如何把一個整數 x 當中, xa 的位元「變成」0?

另一個問題

要如何把一個整數 x 當中, xa 的位元「變成」0?

觀察

將 xo 改爲 0

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	11111111	11111111	11111111	11111110
	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_1$ 0

另一個問題

要如何把一個整數 x 當中, xa 的位元「變成」0?

觀察

將 xo 改爲 0

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	11111111	11111111	11111111	1111111 <mark>0</mark>
	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_1$ 0

結論

• 同樣也是利用位元運算的性質,和剛剛指定 1 相似。

另一個問題

要如何把一個整數 x 當中, xa 的位元「變成」0?

觀察

將 xo 改爲 0

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
&	11111111	11111111	11111111	11111110
	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_1$ 0

結論

- 同樣也是利用位元運算的性質,和剛剛指定 1 相似。
- 求出此常數可利用「補數」來求出。

• 取 2 的餘數

- 取2的餘數
 - 因爲餘數只有 $0 \cdot 1$ 兩種,恰好是看 x_0

- 取 2 的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 x₀
 - $x \% 2 \Rightarrow x \& 1$

- 取 2 的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xo
 - x % 2 ⇒ x & 1
- 取4的餘數

- 取2的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xo
 - x % 2 ⇒ x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀

- 取2的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xo
 - x % 2 ⇒ x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - x % 4 ⇒ x & 3

- 取2的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xo
 - x % 2 ⇒ x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - x % 4 \Rightarrow x & 3 \Rightarrow x & ((1 << 2) 1)

- 取2的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - x % 2 ⇒ x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - x % 4 \Rightarrow x & 3 \Rightarrow x & ((1 << 2) 1)
- 取 2^k 的餘數

- 取2的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - $x \% 2 \Rightarrow x \& 1$
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - $x \% 4 \Rightarrow x \& 3 \Rightarrow x \& ((1 << 2) 1)$
- 取 2^k 的餘數 ⇒ x & ((1 << k) 1)

- 取 2 的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - x % 2 ⇒ x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - x % 4 \Rightarrow x & 3 \Rightarrow x & ((1 << 2) 1)
- $\mathbb{R} \ 2^k$ 的餘數 $\Rightarrow x \& ((1 << k) 1)$

優點

•和「%」相比速度較快。

- 取2的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - x % 2 ⇒ x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - $x \% 4 \Rightarrow x \& 3 \Rightarrow x \& ((1 << 2) 1)$
- 取 2^k 的餘數 \Rightarrow x & ((1 << k) 1)

優點

- 和「%」相比速度較快。
- 在負數下也沒有問題。

- 取 2 的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - x % 2 \Rightarrow x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - $x \% 4 \Rightarrow x \& 3 \Rightarrow x \& ((1 << 2) 1)$
- $\mathbb{R} \ 2^k \ \text{olive} \Rightarrow \mathbb{R} \ \& \ ((1 << k) 1)$

優點

- •和「%」相比速度較快。
- 在負數下也沒有問題。

缺點

不易閱讀。

- 取 2 的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - x % 2 \Rightarrow x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - $x \% 4 \Rightarrow x \& 3 \Rightarrow x \& ((1 << 2) 1)$
- $\mathbb{R} \ 2^k \ \text{olive} \Rightarrow \mathbb{R} \ \& \ ((1 << k) 1)$

優點

- •和「%」相比速度較快。
- 在負數下也沒有問題。

缺點

- 不易閱讀。
- 只能取特定餘數。

- 取 2 的餘數
 - 因爲餘數只有 0、1 兩種,恰好是看 xn
 - x % 2 \Rightarrow x & 1
- 取 4 的餘數
 - 餘數只有 0(00)、1(01)、2(10)、3(11) 四種,恰好是看 x₁x₀
 - $x \% 4 \Rightarrow x \& 3 \Rightarrow x \& ((1 << 2) 1)$
- $\mathbb{R} \ 2^k$ 的餘數 ⇒ x & ((1 << k) 1)

優點

- 和「%」相比速度較快。
- 在負數下也沒有問題。

缺點

- 不易閱讀。
- 只能取特定餘數。
- 要注意運算順序!

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

範例

• Parity(5)

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

範例

• Parity(5) \Rightarrow 2

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

範例

• Parity(5) \Rightarrow 2

00000000	00000000	00000000	00000101

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

範例

• Parity(5) \Rightarrow 2

	00000000	00000000	00000000	00000101
--	----------	----------	----------	----------

• Parity(255)

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

範例

• Parity(5) \Rightarrow 2

|--|

• Parity(255) \Rightarrow 8

Parity₁

Parity 問題

給妳一個正整數 x, 問在 2 進位下有幾個 1?

範例

• Parity(5) \Rightarrow 2

• Parity(255) \Rightarrow 8

普通寫法

```
一個一個計算:
for (; x; x /= 2) {
   if (x % 2 != 0)
      cnt++;
}
```

普通寫法

```
一個一個計算:
for (; x; x /= 2) {
  if (x % 2 != 0)
     cnt++;
}
```

位元運算寫法

```
for (; x; x >>= 1) { // 右移代替除法 if (x & 1) // 省略「!= 0」,同時把除法改成位元運算 cnt++; }
```

究極 Parity 檢查 Parity 是否為奇數: unsigned int v; // 32-bit word v ^= v >> 1; v ^= v >> 2; v = (v & 0x111111111U) * 0x11111111U; (v >> 28) & 1;

```
究極 Parity
檢查 Parity 是否為奇數:

unsigned int v; // 32-bit word

v ^= v >> 1;

v ^= v >> 2;

v = (v & 0x111111111U) * 0x11111111U;

(v >> 28) & 1;
```

註

看看就好,不要刻意去記這些炫砲技能。

xor 性質

xor 性質

給一個整數 x,x ~ x 恆爲 0。

xor 性質

xor 性質

給一個整數 x, x ~ x 恆爲 0。

解説

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
^	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
	00000000	00000000	00000000	00000000

xor 性質

xor 性質

給一個整數 x,x ~ x 恆爲 0。

解説

	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
^	$x_{31}x_{30}\cdots x_{24}$	$x_{23}x_{22}\cdots x_{16}$	$x_{15}x_{14}\cdots x_8$	$x_7x_6\cdots x_0$
	00000000	00000000	00000000	00000000

註

xor 運算的性質是「同爲 0 或同爲 1 xor 起來就是 0」。

問題

交換兩個 int x 和 y 的值。

問題

交換兩個 int x 和 y 的值。

swap 版

swap(x, y);

問題

交換兩個 int x 和 y 的值。

swap 版

swap(x, y);

變數版

```
int tmp = x;
x = y;
y = tmp;
```

問題

交換兩個 int x 和 y 的值。

swap 版

swap(x, y);

變數版

位元運算版

位元運算版 x ^= y; y ^= x; x ^= y;

位元運算版

	X	y
原來的值	Х	у

位元運算版

$$x = y;$$

	X	y
原來的值	Х	У
第一行後	x xor y	у

位元運算版

x = y; y = x; x = y;

	X	y
原來的值	Х	У
第一行後	x xor y	У
第二行後	x xor y	y xor x xor y

位元運算版

x = y; y ^= x; x ^= y;

	X	y
原來的值	Х	У
第一行後	x xor y	У
第二行後	x xor y	X

位元運算版

x = y; y = x; x = y;

	X	у
原來的值	Х	У
第一行後	x xor y	У
第二行後	x xor y	X
第三行後	x xor y xor x	X

位元運算版

х

	21	,	
^=	v	•	

	×	y
原來的值	Х	у
第一行後	x xor y	у
第二行後	x xor y	X
第三行後	у	X

練習題

UVa 10469 - To Carry or not to Carry

這題算是位元運算的基本應用。

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧:連續的1
 - 常用技巧: 遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

指定運算子

運算子	意義	運算順序	結合性
=	賦值	16	右→左

Table: 指定運算子

運算子	意義	運算順序	結合性
+=	加法賦值	16	右→左
-=	加法賦值	16	右→左
*=	乘法賦值	16	右→左
/=	除法賦值	16	右→左
%=	取餘賦值	16	右→左

運算子	意義	運算順序	結合性
+=	加法賦值	16	右→左
-=	加法賦值	16	右→左
*=	乘法賦值	16	右→左
/=	除法賦值	16	右→左
%=	取餘賦值	16	右→左

意義

這些複合指定運算子代表的意義爲:

•
$$x += a \Rightarrow x = x + a$$

•
$$x -= a \Rightarrow x = x - a$$

•
$$x *= a \Rightarrow x = x * a$$

•
$$x \neq a \Rightarrow x = x \neq a$$

•
$$x \% = a \Rightarrow x = x \% a$$

運算子	意義	運算順序	結合性
<<=	左移賦值	16	右→左
>>=	右移賦值	16	右→左
&=	位元 AND 賦值	16	右→左
^=	位元 XOR 賦值	16	右→左
=	位元 OR 賦值	16	右→左

運算子	意義	運算順序	結合性
<<=	左移賦值	16	右→左
>>=	右移賦值	16	右→左
&=	位元 AND 賦值	16	右→左
^=	位元 XOR 賦值	16	右→左
=	位元 OR 賦值	16	右→左

意義

這些複合指定運算子代表的意義爲:

- $x \ll a \Rightarrow x = x \ll a$
- $x \ll a \Rightarrow x = x \ll a$
- $x >>= a \Rightarrow x = x >> a$
- $x \&= a \Rightarrow x = x \& a$

- $x = a \Rightarrow x = x a$
- $x \mid = a \Rightarrow x = x \mid a$
- 以此類推。

運算子	意義	運算順序	結合性
++	字尾遞增	2	左→右
	字尾遞減	2	左→右
++	字首遞增	3	左→右
	字首遞減	3	左→右

運算子	意義	運算順序	結合性
++	字尾遞增	2	左→右
	字尾遞減	2	左→右
++	字首遞增	3	左→右
	字首遞減	3	左→右

註

• 字尾系列寫做「i++」、「j--」。

運算子	意義	運算順序	結合性
++	字尾遞增	2	左→右
	字尾遞減	2	左→右
++	字首遞增	3	左→右
	字首遞減	3	左→右

註

- 字尾系列寫做「i++」、「j--」。
- 字頭系列寫做「++i」、「--j」。

運算子	意義	運算順序	結合性
++	字尾遞增	2	左→右
	字尾遞減	2	左→右
++	字首遞增	3	左→右
	字首遞減	3	左→右

註

- 字尾系列寫做「i++」、「j--」。
- 字頭系列寫做「++i」、「--j」。
- 不管是字首還是字尾,代表的意義都是 i = i + 1 和 j = j 1

試試看

- cout << i++ << endl;
- cout << ++i << endl;
- i++; cout << i << endl;
- ++i; cout << i << endl;

比較這四者之間有何不同?

試試看

- cout << i++ << endl;
- cout << ++i << endl;
- i++; cout << i << endl;
- ++i; cout << i << endl;

比較這四者之間有何不同?

字首系列

• 會先做運算,再回傳

試試看

- cout << i++ << endl;
- cout << ++i << endl;
- i++; cout << i << endl;
- ++i; cout << i << endl;

比較這四者之間有何不同?

字首系列

- 會先做運算,再回傳
- 回傳值是運算後的值

試試看

- cout << i++ << endl;
- cout << ++i << endl;
- i++; cout << i << endl;
- ++i; cout << i << endl;

比較這四者之間有何不同?

字首系列

- 會先做運算,再回傳
- 回傳值是運算後的值

字尾系列

• 會先回傳,再做運算

試試看

- cout << i++ << endl;
- cout << ++i << endl;
- i++; cout << i << endl;
- ++i; cout << i << endl;

比較這四者之間有何不同?

字首系列

- 會先做運算,再回傳
- 回傳值是運算後的值

字尾系列

- 會先回傳,再做運算
- 回傳值是運算前的值

未定義行爲

```
例子
```

```
int i = 0;
cout << i++ + ++i << endl;
答案是多少?
```

例子 int i = 0; cout << i++ + ++i << endl; 答案是多少?

註

• 答案:沒有人知道!

例子

```
int i = 0;
cout << i++ + ++i << endl;</pre>
```

答案是多少?

註

- 答案:沒有人知道!
- 在不同的編譯器會有不同的結果。

例子

```
int i = 0;
cout << i++ + ++i << endl;
答案是多少?
```

註

- 答案:沒有人知道!
- 在不同的編譯器會有不同的結果。
- 大多數是因爲在同一行之內改同一變數一次以上。

例子

```
int i = 0;
cout << i++ + ++i << endl;
答案是多少?
```

註

- 答案:沒有人知道!
- 在不同的編譯器會有不同的結果。
- 大多數是因爲在同一行之內改同一變數一次以上。

其他例子

• i = ++i + 1;

例子

```
int i = 0;
cout << i++ + ++i << endl;
答案是多少?
```

註

- 答案:沒有人知道!
- 在不同的編譯器會有不同的結果。
- 大多數是因爲在同一行之內改同一變數一次以上。

其他例子

- i = ++i + 1;
- i++*++i+i--*--i

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的儲存形式
 - 常用技巧: 連續的 1
 - 常用技巧:遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

其他運算子

運算子	意義	運算順序	結合性
sizeof	求記憶體大小	3	右→左
(type)	強制轉型	3	右→左
,	逗號	18	左→右

其他運算子

運算子	意義	運算順序	結合性
sizeof	求記憶體大小	3	右→左
(type)	強制轉型	3	右→左
,	逗號	18	左→右

觀念

• 萬物對計算機而言皆是「運算」。

其他運算子

運算子	意義	運算順序	結合性
sizeof	求記憶體大小	3	右→左
(type)	強制轉型	3	右→左
,	逗號	18	左→右

觀念

- 萬物對計算機而言皆是「運算」。
- 既然是運算,就有「結合性」和「運算順序」。

用途

可以知道某個資料型態或變數所使用的位元組數。

用途

可以知道某個資料型態或變數所使用的位元組數。

例子

• sizeof(int)

用途

可以知道某個資料型態或變數所使用的位元組數。

例子

• sizeof(int) 在筆者的機器上會是 4 位元組

用途

可以知道某個資料型態或變數所使用的位元組數。

- sizeof(int) 在筆者的機器上會是 4 位元組
- sizeof(double)

用途

可以知道某個資料型態或變數所使用的位元組數。

- sizeof(int) 在筆者的機器上會是 4 位元組
- sizeof(double) 在筆者的機器上會是 8 位元組

用途

可以知道某個資料型態或變數所使用的位元組數。

- sizeof(int) 在筆者的機器上會是 4 位元組
- sizeof(double) 在筆者的機器上會是 8 位元組

```
bool b = true;
cout << sizeof b << endl;</pre>
```

用途

可以知道某個資料型態或變數所使用的位元組數。

例子

- sizeof(int) 在筆者的機器上會是 4 位元組
- sizeof(double) 在筆者的機器上會是 8 位元組
- bool b = true;
 cout << sizeof b << endl;</pre>

在筆者的機器上會是1位元組

用途

可以知道某個資料型態或變數所使用的位元組數。

例子

- sizeof(int) 在筆者的機器上會是 4 位元組
- sizeof(double) 在筆者的機器上會是 8 位元組
- bool b = true;
 cout << sizeof b << endl;</pre>

在筆者的機器上會是1位元組

注意

每個人的機器會出現不同的結果,像是之前提到有些機器的 int 會是 2 個位元組。

(type) 運算子

C++ 有資料型態,若型態間需要強制轉換就要使用這個運算子

(type) 運算子

C++ 有資料型態,若型態間需要強制轉換就要使用這個運算子

例子

• int 變數 x 轉爲 double

(type) 運算子

C++ 有資料型態,若型態間需要強制轉換就要使用這個運算子

例子

• int 變數 x 轉爲 double \rightarrow (double) x 或者 double(x)

(type) 運算子

C++ 有資料型態,若型態間需要強制轉換就要使用這個運算子

- int \mathscr{E} x $\overset{\text{double}}{\Rightarrow}$ x $\overset{\text{doubl$
- double 常數轉爲 int

(type) 運算子

C++ 有資料型態,若型態間需要強制轉換就要使用這個運算子

- int 變數 x 轉爲 double \rightarrow (double) x 或者 double(x)
- double 常數轉爲 int \rightarrow (int) 5.14 或者 int(5.14)

(type) 運算子

C++ 有資料型態,若型態間需要強制轉換就要使用這個運算子

例子

- int 變數 x 轉爲 double → (double) x 或者 double(x)
- double 常數轉爲 int → (int) 5.14 或者 int(5.14)

註

我們說過資料型態代表容器可以裝的資料類型不同,因此我們之後會遇 到需要「改變資料類型」的狀況,那時需要做型別轉換。

意義

• 最常被人誤解的運算子

意義

• 最常被人誤解的運算子、運算子

意義

 最常被人誤解的運算子、運算子、運算子!(因爲很重要所以要說 三次)

意義

- 最常被人誤解的運算子、運算子、運算子!(因爲很重要所以要說 三次)
- 逗號運算子可以分隔兩個運算式,回傳值是右邊運算式的回傳值。

意義

- 最常被人誤解的運算子、運算子、運算子!(因爲很重要所以要說 三次)
- 逗號運算子可以分隔兩個運算式,回傳值是右邊運算式的回傳值。

實例

用迴圈讀入n,直到n=0停止:

意義

- 最常被人誤解的運算子、運算子、運算子!(因爲很重要所以要說 三次)
- 逗號運算子可以分隔兩個運算式,回傳值是右邊運算式的回傳值。

實例

```
用迴圈讀入n,直到n=0停止:
```

```
int n;
while (cin >> n, n) {
}
```

大綱

- 1 簡介
- 2 程式架構
 - 基本程式架構
 - 輸出
 - 變數
 - 輸入
 - 資料型態
- 3 算術運算子
 - 運算性質
 - 結合性與運算順序
 - 整數除法與除零問題
 - 應用:取餘數
- 4 比較和邏輯運算子

- 簡化規則
- 短路運算
- 5 位元運算子
 - int 和 long long 的储存形式
 - 常用技巧:連續的1
 - 常用技巧:遮罩與指定位元
 - Parity
 - xor 性質
- 6 指定運算子
 - 運算性質
 - 未定義行爲
- 7 其他運算子
- 8 結論

重點整理

① 句子結尾是分號「;」。

- ① 句子結尾是分號「;」。
- 2 初始化的重要性。

- ❶ 句子結尾是分號「;」。
- 2 初始化的重要性。
- ❸ C++ 運算子依照運算順序和結合性做運算,大約了解運算的優先順序。

- ① 句子結尾是分號「:」。
- 2 初始化的重要性。
- 3 C++ 運算子依照運算順序和結合性做運算,大約了解運算的優先順序。
- ④ 除以零會遇到的現象。

- ① 句子結尾是分號「:」。
- 初始化的重要性。
- 3 C++ 運算子依照運算順序和結合性做運算,大約了解運算的優先順序。
- ④ 除以零會遇到的現象。
- 5 「零」代表 false,「非零」代表 true。

- ① 句子結尾是分號「:」。
- 初始化的重要性。
- 3 C++ 運算子依照運算順序和結合性做運算,大約了解運算的優先順序。
- ④ 除以零會遇到的現象。
- 5 「零」代表 false,「非零」代表 true。
- 6 邏輯運算子是短路運算。

- ① 句子結尾是分號「:」。
- 初始化的重要性。
- 3 C++ 運算子依照運算順序和結合性做運算,大約了解運算的優先順序。
- ④ 除以零會遇到的現象。
- 5 「零」代表 false,「非零」代表 true。
- 6 邏輯運算子是短路運算。
- 7 int 和 long long 如何儲存,以及位元運算技巧。

- ① 句子結尾是分號「:」。
- 初始化的重要性。
- 3 C++ 運算子依照運算順序和結合性做運算,大約了解運算的優先順序。
- 除以零會遇到的現象。
- 5 「零」代表 false,「非零」代表 true。
- 6 邏輯運算子是短路運算。
- 7 int 和 long long 如何儲存,以及位元運算技巧。
- 8 注意未定義行爲。

運算子小結

運算優先順序

一元運算子→算術運算子→比較運算子→邏輯運算子→位元運算子→指定運算子、複合指定運算子→逗號運算子

運算子小結

運算優先順序

一元運算子 \rightarrow 算術運算子 \rightarrow 比較運算子 \rightarrow 邏輯運算子 \rightarrow 位元運算 子 \rightarrow 指定運算子、複合指定運算子 \rightarrow 逗號運算子

觀念

• 萬一忘記順序怎麼辦呢?

運算子小結

運算優先順序

一元運算子 \rightarrow 算術運算子 \rightarrow 比較運算子 \rightarrow 邏輯運算子 \rightarrow 位元運算 子 \rightarrow 指定運算子、複合指定運算子 \rightarrow 逗號運算子

觀念

- 萬一忘記順序怎麼辦呢?
- 當然是把括號括好啦~運算順序只要知道大概,這不是必背的東西,我們的目的是「寫出好程式」而非在運算順序上多作著墨!