Consider the following Python dictionary data and Python list labels:

data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no']}

```
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

1. Create a DataFrame birds from this dictionary data which has the index labels.

```
In [3]: import numpy as np import pandas as pd
```

In [6]: birds

Out[6]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes

	birds	age	visits	priority
Ф	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

2. Display a summary of the basic information about birds DataFrame and its data.

3. Print the first 2 rows of the birds dataframe

```
In [7]: birds.iloc[0:2]
```

Out[7]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

In [8]: birds[['birds','age']]

Out[8]:

	birds	age
а	Cranes	3.5
b	Cranes	4.0
С	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

In [13]: birds.iloc[[2,3,7]][['age','birds','visits']]

Out[13]:

	age	birds	visits
С	1.5	plovers	3
d	NaN	spoonbills	4
h	NaN	Cranes	2

6. select the rows where the number of visits is less than 4

In [14]: birds[birds['visits']<4]</pre>

Out[14]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

```
In [15]: birds[birds['age'].isnull()][['birds','visits']]
```

Out[15]:

	birds	visits
d	spoonbills	4
h	Cranes	2

8. Select the rows where the birds is a Cranes and the age is less than 4

```
In [16]: birds[(birds['birds']=='Cranes') & (birds['age']<4)]</pre>
```

Out[16]:

birds age	visits	priority
-----------	--------	----------

	birds	age	visits	priority
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

```
In [17]: birds['age']>=2) & (birds['age']<=4)]</pre>
```

Out[17]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
f	Cranes	3.0	4	no
j	spoonbills	4.0	2	no

10. Find the total number of visits of the bird Cranes

```
In [18]: birds[birds['birds']=='Cranes']['visits'].sum()
Out[18]: 12
```

11. Calculate the mean age for each different birds in dataframe.

12. Append a new row 'k' to dataframe with your choice of values for each column. Then delete that row to return the original DataFrame.

In [22]: birds.loc['x']=('peacock',3,3,'yes') #appending a row (x)
birds

Out[22]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no
x	peacock	3.0	3	yes

In [23]: birds.drop('x',axis=0,inplace=True) # drop the appended row (x)

In [24]: birds

Out[24]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes

	birds	age	visits	priority
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	Cranes	3.0	4	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

13. Find the number of each type of birds in dataframe (Counts)

```
In [25]: birds['birds'].value_counts()
```

Out[25]: Cranes

spoonbills 4 plovers 2

Name: birds, dtype: int64

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

```
In [26]: birds.sort_values('age',ascending=False)
```

Out[26]:

	birds	age	visits	priority
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no

	birds	age	visits	priority
g	plovers	5.5	2	no
b	Cranes	4.0	4	yes
j	spoonbills	4.0	2	no
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
h	Cranes	NaN	2	yes

In [27]: birds.sort_values('visits',ascending=True)

Out[27]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
j	spoonbills	4.0	2	no
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
i	spoonbills	8.0	3	no
b	Cranes	4.0	4	yes
d	spoonbills	NaN	4	yes
f	Cranes	3.0	4	no

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

```
In [7]: def boo(x):
    if x== 'yes':
        return 1
    else:
        return 0
```

In [8]: birds["priority"]=birds["priority"].apply(boo)

In [9]: birds

Out[9]:

	birds	age	visits	priority
а	Cranes	3.5	2	1
b	Cranes	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	Cranes	3.0	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

```
In [10]: birds['birds']=birds['birds'].apply(lambda x: 'trumpeters' if x=='Crane
    s' else x)
```

In [11]: birds

Out[11]:

	birds	age	visits	priority
а	trumpeters	3.5	2	1
b	trumpeters	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	trumpeters	3.0	4	0
g	plovers	5.5	2	0
h	trumpeters	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0