CHALLENGE 3

Riccardo Striano

INTRODUZIONE

Lo scopo della challenge è allenare una serie di reti neurali Fully Connected e Convolutional sul dataset KMNIST per poi commentare i risultati.

Tutti i modelli sono stati allenati su 10 epoche con una batch size di 128.

RESULTS

Dalle Test Accuracy nella tabella sottostante si può osservare come i modelli convoluzionali siano superiori a quelli lineari e che le operazioni di pooling sembrano migliorare ancora di più le prestazioni, in particolare funziona bene un kernel 3x3.

All'interno dei due design notiamo che funzionano meglio i modelli con più hidden layer rispetto a quelli meno complessi. Allo stesso modo un maggior numero di neuroni migliora sia l'accuracy che la Delta Acc. Suppongo che questo comportamento derivi dal fenomeno della regolarizzazione intrinseca.

Rete	Train Loss	Test Loss	Train Acc	Test Acc	Δ Acc
1-Lineare: 1 hidden layer con 64 neuroni e 32 nell'output layer	0.1378	0.5193	95.9647	87.4299	8.5348
2-Lineare: 2 hidden layer con 64 e 32 neuroni e 16 nell'output layer	0.1371	0.5743	95.9864	85.6871	10.2993
3-Lineare: 2 hidden layer con 256 e 128 neuroni e 64 nell'output layer	0.0447	0.4637	98.7836	90.9856	7.7980
4-Convoluzionale: 1 hidden layer con 32 canali e 64 neuroni nell'output layer	0.0062	0.7274	100.0000	90.0040	9.9960
5-Convoluzionale: 2 hidden layer con 32 canali e 16 canali. 64 neuroni nell'output layer	0.0106	0.4369	99.8609	94.1006	5.7603
6-Convoluzionale: 2 hidden layer con 32 canali e 16 canali con maxpooling con kernel 2x2. 64 neuroni nell'output layer	0.0542	0.3023	98.4937	93.7400	4.7537
7-Convoluzionale: 2 hidden layer con 32 canali e 16 canali con maxpooling con kernel 3x3. 64 neuroni nell'output layer	0.0422	0.2608	98.8760	94.3510	4.5250
8-Miglior modello(7) con regolarizzazione lam=0.001	0.0432	0.2277	98.8693	95.3826	3.4867
9-Miglior modello (8) con drop-out 0.1	0.4080	0.2722	99.1230	95.0421	4.0809
10-Miglior modello (8) allenato per 30 epoche	0.2211	0.2898	100.0000	95.9435	4.0565

Notiamo anche che la differenza tra la Train e la Test Accuracy, riassunta nella colonna ∆Acc, è molto grande per i modelli lineari e i modelli convoluzionali più semplici; ciò suggerisce un overfitting. Nonostante la cosa migliori con l'aggiunta dell'operazione di max-pooling si è visto che, aggiungendo un fattore di regolarizzazione o il drop-out, abbiamo degli ulteriori miglioramenti.

Si noti come il modello migliore sia decisamente il numero 8 caratterizzato sia dalla Test Accuracy più alta che dalla Δ Acc più bassa, tipiche di una buona generalizzazione

Nota: uso il 5% di differenza come discrimine tra overfitting da smussare o meno.

ANALISI DEI GRAFI

Andiamo ora a analizzare i grafici di Loss e Accuracy comparandoli tra Train e Test. Quello che notiamo è che, come descritto prima, i modelli più semplici sono tutti simili al grafico 1, dove la distanza tra le curve è relativamente grande suggerendo un overfitting.

I modelli regolarizzati invece sono simili al grafico 2, con una distanza più piccola tra le curve che suggerisce una miglior generalizzazione del modello.

1-Modelli con overfitting. In particolare questo è il modello lineare con 2 hidden layer da 256 e 128 neuroni e 64 nell'output layer

2-Modelli senza overfitting. In particolare questo è il modello convoluzionale con 2 hidden layer da 32 e 16 canali che usa maxpooling 3x3 e 64 neuroni di output con regolarizzazione lambda = 0.001