



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

.

AD A130 517

5. TYPE OF REPORT & F

Final Report Jan 1982 - Dec. 1982

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)

R.W. Taft

8. CONTRACT OR GRANT NUMBER(a)

N 60921-82-C0039

9. PERFORMING ORGANIZATION NAME AND ADDRESS

University of California Dept. of Chemistry

Irvine, CA 92717 11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Surface Weapons Center White Oak, Silver Spring, MD

20910 Attn: Code R11 (M.J. Kamlet)
MONITORING AGENCY NAME & ADDRESSIT different for Controlling Office) PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

12. REPORT DATE March 1983

13. NUMBER OF PAGES

15. SECURITY CLASS. (of this report)

UNCLASSIF1ED

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for Public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in filock 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WC . DS (Continue on reverse side if necessary and inentity by block number)

Hydrogen Bonding Nitromethane Protonic Solvents

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Values of x, the hydrogen bond dono: ability of pure protonic solvents, have been obtained for 18 important solvents including nitromethane. The order of x values for C-H acidic solvents is (CH<sub>3</sub>)<sub>2</sub>CO<CH<sub>3</sub>CN<CH<sub>3</sub>NO<sub>2</sub><CH<sub>2</sub>Cl<sub>2</sub>CHCl<sub>3</sub>

DD 1 JAN 73 1473

EDITION OF I NOV 65 IS OBSOLE'S

S-N 0102- LF- 014- 6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

# Final Report for Contract N60921-82-C0039 with Naval Surface Weapons Laboratory

### Professor R.W. Taft

Attn: Dr. M.S. Kamlet

Values of  $\alpha$ , the hydrogen-bond donor ability of pure protonic solvents 1, have been obtained for 18 important solvents (cf. Table A). These values were calculated from 25 data sets which involve a significant number of both non-protonic and protonic solvents and for which the solute measurement is relatively sensitive to the solvent hydrogen bond donor ability. The individual  $\alpha_i$  values of Table A were calculated from the correlation equation  $^1$ , XYZ=c+s $\pi$ \*+a $\alpha$  expressed as:  $\alpha_i = \frac{XYZ - c - s\pi^*}{a}$ . The values were averaged to give  $\alpha_{ave}$ values given in Table A. In Table B are given the various spectroscopic probe measurements XYZ (electronic transitions,  $C^{13}$  and  $P^{31}$ NMR shifts) used in the 25 correlations, the values of c,s, and a obtained for each correlation equation, as well as the statistical fit parameters. For protonic solvents, the  $\pi^*$  values used were those recently reported2. Four iterations of the 25 correlations equations were carried out to obtain the "limiting" values of  $\pi_i$  given in Table A.

The  $\alpha$  scale includes structural effects of solvent self-association as well as of inherent molecular hydrogen-bond donor abilities. The results for C-H acidic solvents appear to be the least affected by self-association. The order of  $\alpha$  values found for these solvents is  $(CH_3)_2CO< CH_3CN< CH_3NO_2< CH_2Cl_2< CHCl_3$ . These are striking results since the  $\alpha$  values reflect approximately the inherent order of molecular hydrogen bond donor abilities of these C-H acids. This order is distinctly different than that for the gas phase acidities:

CH<sub>2</sub>Cl<sub>2</sub><CHCl<sub>3</sub><CH<sub>3</sub>CN<(CH<sub>3</sub>)<sub>2</sub>CO<CH<sub>3</sub>NO<sub>2</sub>. Consequently, the results are important in establishing different orders of acidity for hydrogen bonding than for proton transfer. For hydrogen-bonding acidities, there appears to be little importance of resonance stabilization of the conjugate base of the C-H acid, but instead inductive electron-withdrawal which increases the positive charge on hydrogen is the dominant effect. For proton transfer acidity, on the other hand, the dominant effect tends to be resonance stabilization of the carbanionic conjugate base.

Also included in this report is a summary of interrelation-ships between the various solvent property scales. This work was presented in a poster session at the Euchem Conference on Correlation Analysis in Organic Chemistry, Hull, England, July 19-23, 1982.

### References

- M.J. Kamlet, J.L.M. Abboud, and R.W. Taft, Progr. Phys. Org. Chem., 13, 485 (1981).
- B. Chawla, S.K. Pollack, C.B. Lebrilla, M.J. Kamlet, and R.W. Taft, J. Am. Chem. Soc., <u>103</u>, 6924 (1981).

PRECEDENC PAGE BLANK-NOT FILLED

Table A. a values from Individual Data Sets and dave Values for Solvents

|                                     |      |            |          |      |      |      |           |      |      | 9    |      |      |      |          |      |      |      |      |
|-------------------------------------|------|------------|----------|------|------|------|-----------|------|------|------|------|------|------|----------|------|------|------|------|
| Jata Set<br>Solvent                 | - /  | N          | <b>m</b> | •    | vn   | 9    | ~         | 99   | 3n   | 10   | 1    | 12   | 13   | <b>=</b> | 15   | 16   | 17   | 9 1  |
| HeEtCO                              | 8.   |            | 80.      |      |      |      |           |      | .02  | .02  | .00  |      |      |          |      |      |      |      |
| 14e 2c0                             | . 10 | .00        | 90.      | .05  | .15  |      | •         | .01  | •    | .05  | 60.  | . 10 | .12  | . 10     | 80.  | .10  | .15  | .16  |
| HeCN                                | .31  | . 30       | . 28     |      | . 26 | .27  | .22       | . 20 | .23  | . 18 | . 18 | .05  | . 08 | .12      | .12  |      |      |      |
| neNO <sub>2</sub>                   | .24  |            | .17      |      |      | . 18 | .33       | 61.  | èe.  | . 32 | . 28 | н.   | .17  | .12      | . 20 | . 32 | .36  | . 20 |
| cu <sub>2</sub> c1 <sub>2</sub>     | .11  | .08        |          |      | .22  |      |           |      | .47  | .46  | 40   |      | .21  | .15      | .27  | 9.   | . 39 | . 16 |
| CIIC13                              | .21  |            |          |      | •    |      |           |      |      |      |      | .30  | . 38 | . 29     | .42  |      |      |      |
| iCONII <sub>2</sub>                 | .81  | .68        | . 65     | . 70 | . 59 | .63  |           | .72  |      | .81  | .70  | . 68 | .67  | 99.      |      | TT.  | 69.  | .57  |
| t-BuOil                             | .50  | . 60       |          |      | .74  | .67  |           |      | .59  | .59  | .63  | 88   | .73  | 8.       | TT.  | п.   | .64  | .72  |
| i-Proll                             | .74  | u.         | .62      | .74  | . 82 | .72  | 11.       | u.   | .70  | . 70 | .70  |      | . 79 | .91      | .86  | . 80 | .73  | . 79 |
| n-Buott                             | 98.  | . 85       | .79      | . 80 | . 80 |      | 92.       |      | п.   | u.   |      |      |      |          |      |      |      |      |
| n-Profil                            | .85  | .83        | u.       | .82  |      |      | 98.       |      | 91.  | 94.  | 92.  |      |      |          |      |      |      |      |
| EtON                                | .91  | 8          | . 82     | .81  | . 85 | . 84 | <b>88</b> | . 85 | .75  | .74  | . 75 | . 89 | 98.  | 6.       | . 89 | . 83 | .81  | . 84 |
| (CII <sub>2</sub> OII) <sub>2</sub> | 8.   | <b>3</b> . |          | .87  | .91  | . 84 | .85       |      | 98.  | . 88 | . 85 | 1.04 | 1.04 | .98      | 96.  |      |      |      |
| MeOil                               | 1.09 | 1.02       | 1.03     | 66.  | 66.  | 1.01 | 1.01      | .95  | . 84 | .82  | .87  | .94  | .93  | .97      | .93  | .95  | 96.  | .92  |
| cn,co2,n                            |      |            |          |      |      |      |           |      | 1.01 | 1.05 | 1.06 |      |      |          |      | 1.11 | 1.04 | 1.12 |
| и <sub>2</sub> 0                    | 1.10 | 1.11       | 1.24     |      | 1.12 | 1.24 | 1.11      | 1.13 |      |      | 1.23 |      | 1.17 | 1.01     |      | 1.01 | 1.02 | 1.11 |
| CF 3CH 2OH                          |      |            |          |      |      | 1.38 |           |      | 1.74 | 1.75 | 1.66 | 1.39 | 1.45 | 1.46     | 1.40 | 1.63 | 1.62 | 1.43 |
| (CF <sub>3</sub> ) 2CHOH            |      | 1.97       |          |      |      | 2.03 |           |      |      |      |      |      |      |          |      | 1.83 | 1.97 | 2.07 |
|                                     |      |            |          |      |      |      |           |      |      |      |      |      |      |          |      |      |      |      |

Values for Solvents

|                                   | Table | Ø.   | (cont) | 5    | Values | from Inc | Values from Individual Data Sets and dave | Data S | ets and |    | Values | Ç   |
|-----------------------------------|-------|------|--------|------|--------|----------|-------------------------------------------|--------|---------|----|--------|-----|
| Pats Set                          | 61    | 20   | 21     | 22   | 23     | 74       | 25                                        | ave    | 30      | c  |        |     |
| Solvent                           |       |      |        |      |        |          |                                           |        |         |    |        | - 1 |
|                                   |       |      |        |      |        |          |                                           |        |         |    | •      |     |
| WeelCo                            |       | .11  | .12    | .01  | .04    | .05      | .04                                       | 90.    | .04     | 11 |        |     |
| Me2CO                             | .13   | 00.  | .01    |      | .02    | .06      | *0*                                       | 80.    | .05     | 23 |        |     |
| Necu                              |       | .13  | .07    | . 10 | .16    | . 28     | .19                                       | 61.    | 80.     | 20 |        |     |
| MeNO2                             | 92.   | ۲۲.  | 90.    | 11.  | .16    | .37      | .27                                       | .22    | 60.     | 22 |        |     |
| CH2C12                            | 12.   | .34  | .30    | .31  | .04    | .30      | .30                                       | .30    | .11     | 11 |        |     |
| cuct,                             |       | . 56 | .53    | . 59 | .56    | . 45     | .39                                       | 44     | .10     | 11 |        |     |
| HCOIIII <sub>2</sub>              | .61   | .75  | 88.    | . 27 | .92    | .56      | .78                                       | .71    | .03     | 24 |        |     |
| t-Buoil                           | 61.   | 99.  | 89.    | .61  | .65    | .33      | 19.                                       | 89.    | 60.     | 20 |        |     |
| i-rron                            | 18.   |      |        |      | •      |          |                                           | 94.    | .07     | 18 |        |     |
| n-Buoti                           |       |      |        |      |        |          |                                           | .79    | 90.     | 60 |        |     |
| ก-คราย                            |       | .74  | .76    | .78  | u.     | .57      | .57                                       | 87.    | .03     | 12 |        |     |
| Eton                              | .87   | .83  | . 80   | . 19 | 11.    | 1.15     | 1.12                                      | .83    | .05     | 23 |        |     |
| (cn <sup>2</sup> 0n) <sup>2</sup> |       |      |        |      |        |          |                                           | 06.    | .08     | 13 |        |     |
| MeOil                             | .92   | .87  | 61.    | .90  | .85    | .82      | 69.                                       | .93    | 90.     | 24 |        |     |
| Ch3C0211                          | 1.22  | 1.16 | 96.    | 1.24 | 1.30   |          |                                           | 1.12   | .11     | 11 |        |     |
| 028                               | 1.12  | 1.24 | 1.32   | 1.43 | 1.28   | 1.15     | 1.20                                      | 1.17   | .11     | 20 |        |     |
| CF 3C112OH                        | 1.44  | 1.47 | 1.39   | 1.45 | 1.40   | 1.51     | 1.62                                      | 1.51   | .13     | 18 |        |     |
| (CF 3) 2CHOIL 1.93                |       | 1.94 | 2.06   | 1.11 | 1.88   | 2.11     | 1.92                                      | 1.96   | 01.     | 12 |        |     |

Data Seta Used to Define a Values by Correlation Equa, XYZ = c , sf + a a Table B

| Properly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>c</b> | e e     |        | as            | 8/8           | SEs  | SEa 2 | E =   | \$33S       | SEE  | Excluded                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------|---------------|---------------|------|-------|-------|-------------|------|----------------------------------------------------------------------------|
| 1. E <sub>T</sub> (30) (cf. Fig. 47) <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27       | 30.58   | 14.31  | 14.97         | 1.05          | 1.08 | 0.82  | .984  | 4.9         | 1.58 | CF3CH2OH                                                                   |
| 2. E <sub>T</sub> (cf. Fig. 53). Kosower's Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91       | 51.25   | 18.29  | 21.01         | 1.15          | 2.41 | 0.99  | 986   | 4.8         | 1.04 | НОАС                                                                       |
| 3. E <sub>T</sub> (cf. Fig. 54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.       | 40.23   | 8.01   | <b>8</b> . 09 | 1.14          | 1.03 | 0.51  | . 985 | 5.3         | . 76 | t-BuOil, dioxane                                                           |
| 4. E <sub>T</sub> (cf. Fig. 55) <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =        | 61.11   | 4.34   | 8.80          | 2.03          | 0.44 | 0.23  | .997  | 3.6         | .27  |                                                                            |
| 5. E <sub>T</sub> (cf. Fig. 56) <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1      | 79.84   | 1.68   | 5.10          | 3.00          | 0.32 | 0.23  | .989  | 4.8         | .37  | HOAC, CHCI3                                                                |
| 6. E <sub>T</sub> (cf. Fig. 57) <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1      | 67.61   | 7.31   | 6.62          | 0.91          | 0.58 | 0.26  | . 993 | 3.4         | 9.   |                                                                            |
| 7. v max (cf. Fig. 49a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13       | 14.11   | 0.89   | 1.50          | 1.70          | 0.10 | 90.0  | .994  | 8.          | 80.  |                                                                            |
| 8. P <sup>31</sup> Shift Et <sub>3</sub> PO, Gutmann's AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17       | 0.63    | 16.17  | 32.47         | 2.01          | 1.21 | 0.85  | 986   | 2.5         | 1.36 | НОАС                                                                       |
| 9. $C^{19}$ Shift, $\bigcirc$ -5- $CH_3$ - $\bigcirc$ - $CF_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52       | 1.38    | 0.01   | 1.36          | 226.          | 0.10 | 90.0  | 186   | 5.1         | .13  | $\operatorname{ccl}_{4}$ , сисі $_{3}$ , (с $\mathbf{F}_{3}$ ) $_{2}$ снон |
| 10. $C^{13}$ Shift, $\bigcirc$ -8- $\stackrel{?}{\bigcirc}$ - $\stackrel{?}{}$ - $\stackrel{?}{\bigcirc}$ - $\stackrel{?}{\bigcirc}$ - $\stackrel{?}{\bigcirc}$ - $\stackrel{?}{\bigcirc}$ - $\stackrel{?}{\bigcirc}$ - $\stackrel{?}{$ | 26       | - 1.37  | - 0.51 | 1.35          | - 2.64        | 0.08 | 90.0  | 186   | <b>4</b> .9 | .12  | CHCI3, (CF3)2CHOH                                                          |
| 11. C" Shift, O-8-CH <sub>3</sub> -O-8-CH <sub>3</sub> <sup>7</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25       | 1.05    | 0.36   | 0.75          | 3.06          | 0.04 | 0.03  | . 993 | 3.2         | .05  | CH2Cl2, CHCl3, CHOH                                                        |
| 12. C'' Shul, $\bigcirc$ $-8 - CH_3 - Cl_3 CCH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15       | - 3.83  | - 0.28 | - 1.31        | 4.70          | 0.13 | 90.0  | 180.  | 8.8         | Ξ.   | 7.7                                                                        |
| 13. C'13 Shill, (1) - (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20       | 11.65   | 0.44   | 0.98          | 2.20          | 0.04 | 0.04  | . 989 | 4.6         | 80.  | нолс, (СГ <sub>3</sub> ) <sub>2</sub> снон                                 |
| 14. C' Shill, (O) - (O),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20       | 15.31   | - 1.33 | - 2.85        | 2.23          | 0.27 | 0.18  | . 979 | 6.1         | .34  | HOAC, (CF3)2CHOH                                                           |
| 16. C'13 Shift, (O)-(O)-CF3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3        | 3.35    | 0.00   | 2.03          | •             | 0.11 | 0.07  | 086   | 4.6         | . 13 | HOAc, $(CF_3)_2$ CHOH                                                      |
| 16. C's Shift, Tropone of Co. , 6,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11       | 57.68   | 1.49   | 2.75          | 1.84          | 0.22 | 0.11  | . 992 | 4.0         | .25  |                                                                            |
| 17. C's Shift, Tropone, 6 a 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11       | 43.01   | 2.86   | 3.42          | 1.19          | 0.24 | 0.11  | . 994 | 3.1         | .27  |                                                                            |
| 18. C's Shift, Tropone, by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1      | 9.25    | - 3.96 | - 3.91        | 0.99          | 0.28 | 0.13  | . 995 | 2.8         | .31  |                                                                            |
| 19. C's Shiff, Tropone, by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11       | 0.27    | 1.20   | 1.35          | 1.12          | 0.08 | 0.04  | 986   | 2.7         | 8    |                                                                            |
| 20. C" Shift, (1); - C NMe, 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21       | 32.58   | 0.73   | 4.01          | 5.            | 0.23 | 0.11  | . 994 | 3.1         | . 26 |                                                                            |
| 21. C" Shift, (() - () - () C () 1. NMe2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | - 8, 52 | 0.36   | 2.38          | <b>9</b><br>9 | 0.27 | 0.13  | . 980 | 5.7         | .30  |                                                                            |

8

| R SEE' SEE | .984 5.8 .47 (CH <sub>3</sub> ) <sub>2</sub> CO | .979 6.4 .33 CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .974 6.2 .15 (-BuOH, n-ProH, EtoH | .982 б.7 .12 п-РгОН, ЕСОН, МеОН       |
|------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|
|            | ā,                                              | ò.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ġ.                                | <b>5</b> .                            |
| SEs SEa    | 0.20                                            | 0.30 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                              | 0.05                                  |
| SEs        | 0.43                                            | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                              | 0.11                                  |
| 8/a        | 3.6                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00 1.90                         | 9.0                                   |
| æ          | 4.23                                            | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                              | 1.01                                  |
| <b>80</b>  | 1.18                                            | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.63                              | 0.34                                  |
| ပ          | 31.52                                           | ~10.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.81                             | 14.64                                 |
| =          | 77                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                | 20                                    |
| Property   | 22. C" Shift, O C NMe2, b &                     | 23. C13 Shift, (1) C - | 24. C" Shift, O-C Me              | 25. C <sup>13</sup> Shift, O -C Neb B |

- (1) Standard Error of s

- (2) Standard Error of a
  (3) Multiple Correlation Coefficient
  (4) Standard Error of Estimate as \$ of the range of XYZ
  (5) Standard Error of Estimate
- (6) cf. ligures given in Kamlet, Abboud, and Taft, Prog. Phys. Org. Chem., 13, 486 (1981).
   (7) B. Chawla, S. K. Pollack, M. Fujio, L. Simanyi, C. Lebrilla, and R. W. Taft, unpublished.
   (8) C. W. Fong and H. G. Grant, unpublished.

# INTERRELATIONSHIPS BETWEEN THE VARIOUS SOLVENT PROPERTY SCALES

R. W. TAFT AND M. J. KAMLET

DEPT. OF CHEMISTRY, UNIVERSITY OF CALIFORNIA, IRVINE,
CA 92717, AND NAVAL SURFACE WEAPONS CENTER, WHITE DAK
LABORATORY, SILVER SPRING, MD 20910, U. S. A.

### THE SOLVATOCHROMIC EQUATIONS AND PARAMETERS

- 1.  $XYZ = XYZ_0 + \underline{s}(\underline{n}^* + \underline{b}\underline{\delta}) + \underline{A}\underline{\alpha} + \underline{B}\underline{\beta} + \underline{H}\underline{\delta}_H + \underline{E}\underline{\xi}$ 
  - 1 IS A SCALE OF SOLVENT DIPOLARITY/POLARIZABILITY,
  - IS A SCALE OF <u>SOLVENT HYDROGEN BOND DONOR (HBD)</u> ACIDITY.
  - B IS A SCALE OF SOLVENT HYDROGEN BOND ACCEPTOR (HBA) BASICITY.
  - IS A "POLARIZABILITY CORRECTION FACTOR" EQUAL TO 0.0 FOR NON-CHLORINATED ALIPHATIC SOLVENTS, 0.5 FOR POLYCHLORINATED ALIPHATICS AND 1.0 FOR AROMATIC SOLVENTS
  - THE HILDEBRAND SOLUBILITY PARAMETER, IS A MEASURE OF SOLVENT-SOLVENT INTERACTIONS WHICH ARE INTERRUPTED IN CREATING A CAVITY FOR THE SOLUTE.
  - is a coordinate covalency parameter, equal to -0.20 for P=0 bases, 0.0 for C=0, S=0 and N=0 bases, 0.2 for single bonded oxygen bases, 0.5 for pyridines, and 1.0 for alkylamine bases.

THE S. D. A. B. AND H COEFFICIENTS MEASURE THE RELATIVE SUSCEPTIBILITIES OF XYZ TO THE INDICATED SOLVENT PROPERTIES. THE D TERM IS NIL FOR ELECTRONIC SPECTRA WHICH ARE SHIFTED BATHOCHROMICALLY WITH INCREASING SOLVENT DIPOLARITY, AND IS FINITE AND (USUALLY) NEGATIVE FOR OTHER XYZ'S.

BY A JUDICIOUS CHOICE OF SOLVENTS AND REACTANTS OR INDICATORS, IT IS USUALLY POSSIBLE TO REDUCE EQ 1 TO A MORE MANAGEABLE ONE OR TWO TERM EQUATION. FOR EXAMPLE, FOR CERTAIN BASICITY DEPENDENT PROPERTIES,

2.  $XYZ = XYZ_0 + BB + E$ 

XYZ IN EQ 1 IS, FOR EXAMPLE, THE LOGARITHM OF A RATE OR EQUILIBRIUM CONSTANT, A FLUORESCENCE LIFETIME, OR A SLC PARTITION COEFFICIENT, A POSITION OR INTENSITY OF MAXIMAL ABSORPTION IN AN NMR, ESR, IR, OR UV/VISIBLE SPECTRUM, AN NMR COUPLING CONSTANT, OR A FREE ENERGY OF SOLUTION OR OF TRANSFER BETWEEN SOLVENTS OF A DIPOLAR SOLUTE.

XYZ in Eq 2 is, for example, an IR frequency shift (free minus hydrogen bonded), an enthalpy of formation of a hydrogen bonded or Lewis acid/base complex, or the free energy of transfer of a proton to aqueous base from aqueous  $\mathrm{NH}_4^+$  (the latter quantity being linear with  $\mathrm{PK}_A$ ).

Table II. Correlation Coefficients For Linear Regression Equations with  $\pi^*$  (Select Solvents).

| SOLVENT SCALE OR PROPERTY                                                                      | R     | _N_ |
|------------------------------------------------------------------------------------------------|-------|-----|
| DIPOLE MOMENT, L                                                                               | 0.985 | 23  |
| Reichardt and Dimroth's $E_{T}(30)$ , UV/vis betaine                                           | 0.987 | 12  |
| BROOKER'S XR. UV/VIS MEROCYANINE                                                               | 0.987 | 16  |
| Lassau and Jungers' Log K(MeI + PrzN)                                                          | 0.985 | 13  |
| WALTHER'S EX- UV/VIS MOLYBDENUM COMPLEX                                                        | 0.977 | 9   |
| Napier and Knauer's An. ESR nitroxide                                                          | 0.978 | 6   |
| ALLERHAND AND SCHLEYER'S G. IR SHIFTS                                                          | 0.993 | 8.  |
| ALLERHAND AND SCHLEYER'S G. IR SHIFTS TAFT'S P. 19F-NMR 4-F-C <sub>5</sub> H <sub>4</sub> -N=0 | 0.989 | 12  |
| Brownstein's S (Extension of Kosower's Z)                                                      | 0.981 | 10  |
| Snyder's P, GAS/LIQUID PARTITION COEFFICIENTS                                                  | 0.991 | 21  |
| GUTMANN'S ACCEPTOR NUMBER, AN, 31P-NMR SHIFTS OF ET3P=0                                        | 0.960 | 10  |



DIMROTH'S  $E_T(30)$ , BROOKER'S  $\chi_R$ . AND THE NMR-BASED SOLVENT POLARITY PARAMETER, P, FOR SELECT SOLVENTS PLOTTED AGAINST CORRESPONDING SOLVENT  $\tau^*$  VALUES. SELECT SOLVENT ARE NON-CHLORINATED ALIPHATIC SOLVENTS FOR WHICH  $\tau^*$  IS PROPORTIONAL TO MOLECULAR DIPOLE MOMENT.



Allerhand and Schleyer's G Values Plotted against  $\pi*$ 



Figure 3.  $\int_{\mathbb{R}} P^{N=0}$  for p-fluoronitrosobenzene plotted (a) against  $\pi^a$  and (b) against  $(\pi^a - 0.16\delta)$ . Symbols for the solvent families are as in Figure 1.



Figure 4. AN for di-tert-butyl nitroxide plotted (a) against  $\pi^a$  and (b) against  $(\pi^a - 0.13\delta)$ .

Taft's P plotted against  $\mathfrak{L}^*$  and against  $(\mathfrak{L}^* - 0.16 \delta)$ 

Napier and Knauer's  $A_N$  plotted against  $(\mathbf{1}^* - 0.13\mathbf{6})$ 





Figure 8. Correlation of  $\pi^a$  with  $\mu$  and  $\phi$ .

Correlation of  $\boldsymbol{\mathcal{U}}^*$  with the solvent dipole moment,  $\boldsymbol{\mathcal{U}}_*$  and the "reducing function"  $\boldsymbol{\varphi}_*$ .

THE P/F RATIO IN THE RELATIONSHIP,

XYZ = XYZ<sub>0</sub> + FLL + PP

IS LINEAR WITH THE D TERM IN

(1 + D), WITH THE D TERM BECOMING

INCREASINGLY NEGATIVE AS THE POLAR
IZABILITY CONTRIBUTION BECOMES LESS

IMPORTANT.

### HBD Solvents, Correlations with Total AND &.

When the set of solvents considered includes also protonic solvents, effects of solvent HBD (hydrogen bond donor) acidity must also be included in the solvatochromic equations. Multiple linear regression equations in  $\pi$  and  $\alpha$  or ( $\pi$  + D $\delta$ ) and  $\alpha$  show that the earlier solvent property scales, represented as measures of either solvent polarity (ion izing power) or solvent electrophilicity (acidity) are, in fact, measures of linear combinations of both properties.

Thus, for Reichardt and Dimroth's Betaine,  $E_T(30) = 30.3 + 14.6 (7* - 0.23 \delta) + 16.4 \alpha$ , N = 44, R = 0.993

### SIMILARLY,



# EXAMPLES OF FI CORRELATIONS



# EXAMPLES OF FD CORRELATIONS



| Table I. Correlations of Basicity Dependent Properties with $E_{\mathrm{B}}/C_{\mathrm{B}}$ and $	heta/\xi$ | Prope    | rties wi       | th $E_{ m B}/c_{ m B}$ ar | 1/8 pu | •      |                      |                    |
|-------------------------------------------------------------------------------------------------------------|----------|----------------|---------------------------|--------|--------|----------------------|--------------------|
| X                                                                                                           | X = ZYX  | YZO + EA       | XYZO + EAEB + CACB        | XXZ    | = XYZ  | + bβ + eξ            | \$                 |
| Family Independent Properties                                                                               | <b>=</b> | CA/EA_         | ٤                         | =      | q/a    | r                    | ria                |
| 1. $-\Delta \Delta v_{\text{max}}$ , 3,5- $(NO_3)_3-\phi$ -NII, in pure base                                | 14       | 0.027          | 0.926                     | 14     | -0.035 | 0.995                | 0.995              |
| 2. $\Delta G_{F}$ , $h - 1^{-} - \varphi - 011$ : IIBA 1n CC1 <sub>11</sub>                                 | 14       | 0.044          | 0.891                     | 14     | -0.026 | 0,982                | 0.982              |
| 3. $^{1}9^{\mu}$ -NMR $_{\Delta}$ , 5-fluoroindole: IIBA in $^{1}60^{1}$                                    | 8        | 0.015          | 0.951                     | 14     | -0.010 | 0.983                | 0.977              |
| Family Dependent Properties                                                                                 | average  | v              | 0.922                     |        |        | 0.987                | 0.986              |
| 4. Alle, n-Buoll: HBA in CCI, or Cally                                                                      | 6        | 090.0          | 0.984                     | 14     | 0.225  | 0.982                | 0.955              |
| 5. $\Delta H_{c}$ , $1/2 - P - \varphi - OH$ ; IIBA in pure base                                            | 13       | 0.0 <b>7</b> 6 | 0.968                     | 23     | 0.244  | 0.974b               | 0.984              |
| $5a.$ " $1n CCI_H$                                                                                          | Θ        | 0.058          | 0.973°                    | 23     | 0.310  | 0.966 <sup>d</sup>   | 0.973 <sup>c</sup> |
| Alle, 19-011 1n CC1                                                                                         | 17       | 0.112          | 986.0                     | 17     | 111110 | 0.967                | 0.967              |
| 7. Log k/ko, catalyzed n-butylaminolysis of                                                                 | 5        | 0.169          | 0.989                     | Ċ      | 0,460  | $0.985^{\mathbf{f}}$ | 0.998              |
| 8. All $_{\rm L}$ , $_{\rm CF_2CH_2OH: IIBA}$ in $_{\rm CC1_L}$ or $_{\rm C_{\rm H_1S}}$                    | 10       | 0.106          | 0.992                     | 10     | 0.485  | 0.984                | 0.984              |
| 9. $\Delta v(0-D)$ , MeOD: IIBA in pure base                                                                | 1.3      | 0.122          | 0.987                     | 25     | 0.570  | 0.988                | 0.983              |
| 10. AGr., Is: IIBA in heptane                                                                               | 15       | 0.175          | 0.950                     | 34     | 0.570  | 0.982                | 0.968              |
| 11. All, BF3: HBA in CH2Cl2                                                                                 | 13       | 0.110          | 0.953                     | 34     | 0.577  | 0.978                | 0.973              |
| 12. $\Delta v(0-11)$ , $\varphi$ -OII: HBA in $CCl_{h}$                                                     | 17       | 0.129          | 0.991                     | 113    | 0.611  | 0.989                | 0.989              |
| 13. 19F-NMR A, 4-F-\$-502 BH 1on pair in CH2Cl2                                                             |          |                |                           | 10     | 0,642  | 0.953                |                    |
| 14. AHr, 4-F-6-502 BH 10n pair in CH2Cl2                                                                    |          | ·              |                           | 10     | 0.744  | 0.993                |                    |
| 15. $\Delta v(c-1)$ , I-CN:IIBA in $CCI_{ll}$                                                               | 11       | 0.217          | 1,66.0                    | 25     | 0.787  | 0.981                | 0.989              |
| 16. All, $I_2$ : HBA in heptane                                                                             | 10       | 0.253          | 0.995                     | 23     | 0.859  | 0.989                | 0.989              |
| 17. AGr., Aq Buit in water                                                                                  | 14       | 0.210          | 0.978                     | 36     | 0.859  | 0.992                | 0.986              |
|                                                                                                             | average  | a)             | 0.980                     |        |        | 0.980                | 0.983              |

a) r' is  $\beta/\xi$  correlation coefficient for same data set as was used with E/C. b) ex diphenyl ether and 1,2-dimethoxyethane; if these are included r=0.969. c) Ex tetramethylures; if included r=0.813. d) Ex tetramethylures and triphenyl phosphate; if the latter is included r=0.926. e) Ex  $\beta$ -dimethyleminopyridine and quinuclidine; if included r=0.971: f) Ex  $\beta$ -dimethylaminopyridine; if inclosed r=0.973.

# END DATE FILMED

8-83 DTIC