

ANÁLISIS DE VARIANZA MULTIVARIADO (MANOVA)

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

SEXO: Masculino, Femenino

y₁

TRATAMIENTO: Sí, No

MANOVA es significativa al 0.001 Ninguna prueba univariada es significativa al 0.05

	Grupo I	Grupo II	Grupo III
Y ₁	4.6	5.0	6.2
Y ₂	8.2	6.6	6.2

KERLINGER & PEDHAZUR (1973) Multiple regression in behavioral research. New York. Holt, Renehart & Winston

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

Distancia de las medias entre grupos es mayor que en los ejes

A	l _i	A	2	A	3
1	2	1	2	1	2
3	7	4	5	5	5
4	7	4	6	6	5
5	8	5	7	6	6
5	9	6	7	7	7
6	10	6	8	7	8

Las pequeñas diferencias no detectables en cada variable combinadas producen una diferencia acumulada significativa cuando las variables se analizan en forma conjunta

CASOS: Cuestionamientos que pueden ser analizados por MANOVA

¿Los estudiantes a quienes se ha asignado aleatoriamente en cada uno de los tres centros de preparación pre-universitaria tienen diferentes rendimientos en aptitud matemática, verbal y analítica?

¿Existen diferencias entre los escolares provenientes de los centros de educación pública y privada en cuanto al uso del lenguaje en términos de expresión oral, expresión escrita y grado de elaboración?

Un investigador está interesado en el efecto de los tratamientos asignados aleatoriamente sobre diferentes tipos de ansiedad: prueba de ansiedad, ansiedad en reacción al estrés y ansiedad inercial. El investigador también está interesado si existen diferencias por sexo, incorporando en tal sentido el efecto factorial.

Sobre la base del rol de los sexos se ha clasificado a las personas como masculino fuerte y débil y femenino fuerte y débil. Un investigador desea saber si los cuatro grupos (masculino y femenino cruzados factorialmente) difieren colectivamente en término de autoestima, introversión-extroversión y neuroticismo.

CUATRO RAZONES CON SUSTENTO ESTADÍSTICO PARA PREFERIR EL MANOVA

1. El uso fragmentado (independiente) de pruebas univariadas eleva el <u>error tipo I</u>, es decir, la probabilidad de rechazar la hipótesis planteada cuando en realidad es verdadera. Por ejemplo,

Caso. - Comparación de dos grupos con 10 variables de investigación

(.95)(.95)...(.95)≈.60 (nivel de confianza)

2. Las pruebas estadísticas univariadas <u>ignoran información importante</u>. Al contrario, las pruebas multivariadas incorporan la relación de las variables en el coeficiente de correlación.

CUATRO RAZONES CON SUSTENTO ESTADÍSTICO PARA PREFERIR EL MANOVA

3. Aunque los grupos podrían no ser significativamente diferentes en alguna de sus variables individualmente podrían serlo en un análisis multivariado

¡la prueba multivariada puede ser más potente en este caso!

4. El análisis multivariado de las pruebas estadísticas individuales puede reflejar diferencias significativas que no sería posibles detectar con un enfoque univariado. Por ejemplo: "No hubieron diferencias significativas en la prueba multivariada" y, sin embargo, en las pruebas individuales se obtuvo:

Prueba parcial II Grupo 1 muy superior a Grupo 2 Prueba parcial III Grupo 1 no hay diferencia Grupo 2

Prueba parcial III Grupo 1 algo superior Grupo 2 Prueba parcial IV Grupo 1 muy inferior al Grupo 2

Por otro lado, exagerar en el uso del MANOVA sin una razón empírica o teórica, entonces, pequeñas o no significativas diferencias podrían ocultar reales diferencias univariadas

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

	Univariado	Multivariado	
Dos Grupos	ANOVA (prueba t)	MANOVA T ² Hotelling	
Dos o Más Grupos	ANOVA (Prueba F)	MANOVA (Prueba F)	
	ANOVA Factorial	MANOVA (Factorial)	

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

MANOVA Supuestos

SUPUESTOS

- 1. X_{l1} , X_{l2} , ..., X_{lnl} es una muestra aleatoria de tamaño n_l de una población con media μ_l ; l=1, 2, ..., g
- 2. Muestras Aleatorias de diferentes poblaciones son independientes (La violación de este supuesto es un problema serio)
- 3. Todas las poblaciones tienen matriz varianza-covarianza común igual a Σ

(Condicionalmente robusta muestra más pequeña/muestra más grande<1.5; robusta si los tamaños de muestra son aproximadamente iguales)

4. Cada población es normal multivariada

(robusto con respecto al error tipo I; no existen estudios con respecto al efecto de las asimetrias, pero una distribución 'platicurtica atenua la potencia)

SUPUESTOS ESPECIALES DEL MANOVA (Y ANÁLISIS DISCRIMINANTE)

ANOVA

"Homogeneidad de Varianzas"

MANOVA

"Homogeneidad de Dispersión" (varianzas y covarianzas)

HOMOGENEIDAD DE DISPERSIÓN

HETEROGENEIDAD DE DISPERSIÓN

Varianzas Diferentes Correlaciones Iguales Varianzas Iguales Correlaciones Diferentes Varianzas Diferentes Correlaciones Diferentes

Modelos de Análisis

- Análisis Multivariado No Estructurado
- Análisis Multivariado Estructurado (un factor o un sentido)
- Análisis Multivariado Estructurado (dos factores o dos sentido)
- Análisis de Medidas Repetidas
- Análisis de Un Factor Entre Grupos
- Análisis de Dos Factores Entre Grupos
- Análisis de Tres Factores Entre Grupos
- Covariación

MANOVAUn factor o un sentido

El Modelo

Los Datos

Muestras Aleatorias recolectadas de "g" poblaciones:

[&]quot; MANOVA nos permite averiguar si el vector de medias poblacional es el mismo en cada población "

El Modelo

$$X_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

$$j = 1, 2, ..., n_1$$

$$i = 1, 2, ..., g$$

$$\varepsilon_{ij} \sim N_p(0,\Sigma)$$

μ : Media Poblacional Global

 τ_i : i-ésimo efecto del tratamiento

Condición: $\sum_{i=1}^{9} \mathbf{n_i} \ \tau_i = \mathbf{0}$

Descomposición de una observación

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

$$= \sum_{i} n_{i}(\overline{x_{i}} - \overline{x})(\overline{x_{i}} - \overline{x})^{t} + \sum_{i} \sum_{j} (x_{ij} - \overline{x_{i}})(x_{lj} - \overline{x_{i}})^{t}$$

$$= \sum_{i} n_{i}(\overline{x_{i}} - \overline{x})(\overline{x_{i}} - \overline{x})^{t} + \sum_{i} \sum_{j} (x_{ij} - \overline{x_{i}})(x_{lj} - \overline{x_{i}})^{t}$$

$$= \sum_{i} n_{i}(\overline{x_{i}} - \overline{x})(\overline{x_{i}} - \overline{x})^{t} + \sum_{i} \sum_{j} (x_{ij} - \overline{x_{i}})(x_{lj} - \overline{x_{i}})^{t}$$

$$= \sum_{i} n_{i}(\overline{x_{i}} - \overline{x})(\overline{x_{i}} - \overline{x})^{t} + \sum_{i} \sum_{j} (x_{ij} - \overline{x_{i}})(x_{lj} - \overline{x_{i}})^{t}$$

$$= \sum_{i} n_{i}(\overline{x_{i}} - \overline{x})(x_{ij} - \overline{x_{i}})^{t}$$

$$= \sum_{i} n_{i}(x_{ij} - \overline{x_{i}})(x_{ij} - \overline{x_{i}})^{t}$$

$$= \sum_{i} n_{i}(x_{ij} - \overline{x_{i}})(x_{$$

SUMA DE CUADRADOS RESIDUAL

$$\sum_{i} \sum_{j} (x_{ij} - \overline{x_i})(x_{ij} - \overline{x_i})^{t} =$$

=
$$(n_1 - 1)S_1 + (n_2 - 1)S_2 + ... + (n_g - 1)S_g$$

Prueba de Hipótesis

HIPÓTESIS DE NO EFECTO DE TRATAMIENTOS O NO DIFERENCIA ENTRE GRUPOS

$$H_0$$
: $\tau_1 = \tau_2 = ... = \tau_g = 0$

$$H_0$$
: $\mu_1 = \mu_2 = ... = \mu_g$

DADO QUE:
$$\Sigma_1 = \Sigma_2 = \dots = \Sigma_g$$

Prueba del Ratio de Verosimilitud

Ho: $\theta \in \Omega_0$ H₁: $\theta \in \Omega_1$

Teorema

Si $\Omega_1 \subset \mathbb{R}$ q es un espacio q-dimensional y si $\Omega_0 \subset \Omega_1$ es un subespacio r-dimensional, entonces, bajo condiciones de regularidad:

$$\forall \theta \in \Omega_o$$
: $-2\log \lambda \to \chi^2_{(q-r)}$ cuando $n \to \infty$

Región de rechazo R:

$$R = \{X: -2\log \lambda_{(X)} > \chi^2_{1-\alpha;(q-r)}\}$$

Donde λ se determina como:

$$\lambda = \frac{\text{Max L}(\Omega_0)}{\text{Max L}(\Omega_1)}$$

En el contexto del modelo de regresión lineal:

$$\lambda^{\frac{2}{n}} = \frac{\hat{\epsilon}' \hat{\epsilon}' \Omega_{0}}{\hat{\epsilon}' \hat{\epsilon}' \Omega_{1}}$$

$$\Rightarrow (\lambda^{\frac{2}{n}} - 1) \underline{n - k} \sim F_{(q, n-k)}$$

Prueba de A Wilks

A partir de una muestra aleatoria \mathbf{x}_i de tamaño n de una población con distribución normal $\mathbf{f}(\mathbf{x};\theta)$:

$$L(\mathbf{X}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(\mathbf{x}_{i}; \boldsymbol{\theta}).$$

$$\Rightarrow l(\mathbf{X}; \boldsymbol{\theta}) = \log L(\mathbf{X}; \boldsymbol{\theta}) = \sum_{i=1}^{n} \log f(\mathbf{x}_{i}; \boldsymbol{\theta}). \tag{1}$$

Donde, $L(\mathbf{X}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = |2\pi\boldsymbol{\Sigma}|^{-n/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x}_i - \boldsymbol{\mu})\right\}$, tomando logaritmos a L

$$\Rightarrow l(\mathbf{X}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log L(\mathbf{X}; \boldsymbol{\theta}) = -\frac{n}{2} \log |2\pi\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}).$$

Analizando el argumento de la sumatoria se tiene:

$$(\mathbf{x}_{i} - \mathbf{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x}_{i} - \mathbf{\mu}) = (\mathbf{x}_{i} - \bar{\mathbf{x}})' \mathbf{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}) + (\bar{\mathbf{x}} - \mathbf{\mu})' \mathbf{\Sigma}^{-1} (\bar{\mathbf{x}} - \mathbf{\mu}) + 2(\bar{\mathbf{x}} - \mathbf{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x}_{i} - \bar{\mathbf{x}}),$$
 (2)

Aplicando sumatoria a ambos miembros de (2):

$$\sum_{i=1}^n (\mathbf{x}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}) = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \bar{\mathbf{x}}) + n(\bar{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu}), \quad \text{, además,} \quad (\mathbf{x}_i - \bar{\mathbf{x}})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \bar{\mathbf{x}}) = \operatorname{tr} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \bar{\mathbf{x}})' (\mathbf{x}_i - \bar{\mathbf{x}})' \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i$$

$$l(\mathbf{X}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{n}{2} \log |2\pi \boldsymbol{\Sigma}| - \frac{n}{2} \operatorname{tr} \boldsymbol{\Sigma}^{-1} \mathbf{S} - \frac{n}{2} (\bar{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}}). \tag{3}$$

En un caso de ${\bf g}$ muestras independientes de tamaño ${\bf n_i}$ se tiene la siguiente estructura de datos:

$$\mathbf{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_g \end{bmatrix}$$

Donde:

 n^{-1} **W** es el estimador MV de la varianza común y **W**= $\sum n_i S_i$

$$n = \sum n_i$$

Suma de cuadrados dentro de grupos (SCP)

De (3) y asumiendo que: $\Sigma_1 = \Sigma_2 = ... = \Sigma_g$

$$l = -\frac{1}{2} \sum_{i} \left[n_i \log \left[2\pi \mathbf{\Sigma} \right] + n_i \operatorname{tr} \mathbf{\Sigma}^{-1} (\mathbf{S}_i + \mathbf{d}_i \mathbf{d}_i') \right], \tag{4}$$

Donde S_i es la matriz de covarianzas de la i-esima muestra y $d_i=x_i-\mu_i$.

MANOVA

FUENTE DE VARIABILIDAD	MATRIZ SUMA DE CUADRADOS Y CRUZADOS	GRADOS DE LIBERTAD
GRUPOS	$B = \sum_{i} n_{i} (\overline{x_{i}} - \overline{x}) (\overline{x_{i}} - \overline{x})^{t}$	g -1
RESIDUAL	$w = \sum_{i} \sum_{j} (x_{ij} - x_{i})(x_{ij} - x_{i})^{t}$	g ∑n _i - g 1
TOTAL (corregido en media)	B+W	g ∑n _i - 1 1

IV. La Prueba de Wilks

Rechazamos Ho si Λ es muy pequeño

$$\Lambda^* = \frac{|\mathbf{w}|}{|\mathbf{B} + \mathbf{w}|} = \frac{\sum_{i} \sum_{j} (\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i})(\mathbf{x}_{ij} - \overline{\mathbf{x}}_{i})^{t}}{\sum_{i} \sum_{j} (\mathbf{X}_{ij} - \overline{\mathbf{x}})(\mathbf{X}_{ij} - \overline{\mathbf{x}})^{t}}$$

$$\Lambda^* = \prod \frac{1}{1 + \lambda_{j}} \qquad \Lambda^* \text{ (Lamda de Wilks)}$$

"A mayor valor de (1 - 1/4), mayor la proporción de varianza generalizada que puede ser atribuida a la variación entre grupos"

Donde los λ_j son los valores característicos de BW^{-1}

Veamos la distribución de
$$\Lambda^{2/n} = \frac{|W|}{|B+W|} = |I + W^{-1}B|^{-1}$$

Bajo **Ho**, $X_{(nxp)} \sim N_p(\mu, \Sigma)$ Cochran (teorema 3.4.4) y Craig (teorema 3.4.5)

$$W = X'C_1X \sim W_p(\Sigma, n-k)$$

$$\mathsf{B} = X' C_2 X \sim W_p(\Sigma, k-1)$$

$$T = B + W$$

B y W son independientes

$$|I + W^{-1}B|^{-1} \sim \Lambda(p,n-g,g-1)$$

Distribución de T=W+B:

Sean $\mathbf{X}_i(n_i x p)$ ($\forall i=1,...k$) muestras aleatorias independientes de una población normal con media μ y matriz de covarianzas Σ . Además, si $\mathbf{1}_i$ es un vector nx1 con unos en los lugares correspondientes a la i-esima muestra, \mathbf{I}_i = diag($\mathbf{1}_i$) y la matriz de centralización $\mathbf{H}_i = \mathbf{I}_{i-1} \cdot \mathbf{1}_{i-1} \cdot \mathbf{1}_{i-1}$

$$\mathbf{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_g \end{bmatrix}_{(\mathsf{n}_g \mathsf{xp})}^{(\mathsf{n}_1 \mathsf{xp})}$$

$$\frac{\mathbb{1}_{i}}{nx1} = \begin{bmatrix} 0 \\ \mathbb{1}_{n_{i}} \\ \mathbb{1}_{n_{i}} \\ 0 \end{bmatrix}, \frac{\mathbb{I}_{i}}{nxn} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbb{I}_{n_{i}} & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ y } \frac{H_{i}}{nxn} = \frac{\mathbb{I}_{i}}{nxn} - \frac{n_{i}^{-1}\mathbb{1}_{i}\mathbb{1}'_{i}}{nxn} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \mathbb{I}_{n_{i}} - n_{i}^{-1}\mathbb{I}_{n_{i}} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Se debe entender que: $\sum_{i} \mathbb{1}_{i} = \mathbb{1}_{n}$ y $\sum_{i} \mathbb{I}_{n_{i}} = \mathbb{I}_{n}$

Definiendo C₁:

$$C_1 = \sum H_i = diag(\mathbb{I}_{n_i} - n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i})$$

$$C_1 = \begin{bmatrix} \mathbb{I}_{n_1} - n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mathbb{I}_{n_k} - n_k^{-1} \mathbb{1}_{n_k} \mathbb{1}'_{n_k} \end{bmatrix}$$

Se verifica que C₁ es simétrica e idempotente

$$r(C_1) = Tr(C_1) = n - k \text{ dado que:}$$

$$Tr(\mathbb{I}_{n_i} - n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i}) = n_i - 1 \text{ para } i = \overline{1, k}$$

$$X'C_1 X \sim W_p(\Sigma, n - k)$$

Definiendo C₂:

$$C_{2} = \sum_{i} n_{i}^{-1} \mathbb{1}_{i} \mathbb{1}'_{i} - n^{-1} \mathbb{1} \mathbb{1}'$$

$$= n_{1}^{-1} \mathbb{1}_{1} \mathbb{1}'_{1} + n_{2}^{-1} \mathbb{1}_{2} \mathbb{1}'_{2} + \ldots + n_{k}^{-1} \mathbb{1}_{k} \mathbb{1}'_{k} - n^{-1} \mathbb{1}_{n} \mathbb{1}_{n}$$

$$= \begin{bmatrix} n_1^{-1} \mathbbm{1}_{n_1} \mathbbm{1}'_{n_1} & 0 & \dots & 0 \\ 0 & n_2^{-1} \mathbbm{1}_{n_2} \mathbbm{1}'_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & n_k^{-1} \mathbbm{1}_{n_k} \mathbbm{1}'_{n_k} \end{bmatrix} - \begin{bmatrix} n^{-1} \mathbbm{1}_{n_1} \mathbbm{1}'_{n_1} & n^{-1} \mathbbm{1}_{n_1} \mathbbm{1}'_{n_2} & \dots & n^{-1} \mathbbm{1}_{n_1} \mathbbm{1}'_{n_k} \\ n^{-1} \mathbbm{1}_{n_2} \mathbbm{1}'_{n_1} & n^{-1} \mathbbm{1}_{n_2} \mathbbm{1}'_{n_2} & \dots & n^{-1} \mathbbm{1}_{n_2} \mathbbm{1}'_{n_k} \\ \vdots & \vdots & \ddots & \vdots \\ n^{-1} \mathbbm{1}_{n_k} \mathbbm{1}'_{n_1} & n^{-1} \mathbbm{1}_{n_k} \mathbbm{1}'_{n_2} & \dots & n^{-1} \mathbbm{1}_{n_k} \mathbbm{1}'_{n_k} \end{bmatrix}$$

Se verifica que C₂ es simétrica

Se verifica que C₂ es simétrica e idempotente

Para el bloque (1,1)

Para el bloque (1,1)
$$= \begin{bmatrix} n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} & -n^{-1} \mathbb{1}_{n_1} \mathbb{1}_{n_2} & \dots & -n^{-1} \mathbb{1}_{n_1} \mathbb{1}_{n_k} \end{bmatrix} \begin{bmatrix} n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} \\ -n^{-1} \mathbb{1}_{n_1} \mathbb{1}_{n_2} \\ \vdots \\ -n^{-1} \mathbb{1}_{n_1} \mathbb{1}_{n_k} \end{bmatrix} = n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} \end{bmatrix}$$

Para el bloque (1,2)

$$\begin{split} &= \left[n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} \right. \\ &= \left[n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_2} \right. \\ &= \left[n_1^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_1} - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_2} \right. \\ &= \left. - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_2} + \frac{n_1 + n_2 + \dots + n_k}{n^2} \mathbb{1}_{n_1} \mathbb{1}'_{n_2} \right. \\ &= \left. - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_2} \right. \\ &= \left. - n^{-1} \mathbb{1}_{n_1} \mathbb{1}'_{n_2} \right. \end{split}$$

Se verifica que C₂ es idempotente

$$Tr(n_i^{-1}\mathbb{1}_{n_i}\mathbb{1}'_{n_i} + n^{-1}\mathbb{1}_{n_i}\mathbb{1}'_{n_i}) = 1 - \frac{n_i}{n} \implies \sum_{i=1}^k \left(1 - \frac{n_i}{n}\right) = k - 1 \Longrightarrow r(C_2) = k - 1$$

$$X'C_2X \sim W_p(\Sigma, k - 1)$$

Aplicamos el teorema de Craig.

Calculamos $C_1'C_2$. Como C_1 es bloque diagonal solo calcularemos un bloque genérico i-ésimo y a partir de allí generalizamos.

$$\begin{split} & \big(I_{n_i} - n_1^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} \big) \big(\ n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} - n^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} \big) \\ & = n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} - n_1^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} - n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} + n_1^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} n^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} \\ & = n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} - n_i^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} - n^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} + n^{-1} \mathbb{1}_{n_i} \mathbb{1}'_{n_i} = 0 \end{split}$$

Entonces, $C_1'C_2 = 0$ y concluimos que $X'C_1X$ y $X'C_2X$ son independientes.

Además,
$$X'C_1X + X'C_2X = W_p(\Sigma, n-k) + W_p(\Sigma, k-1) = W_p(\Sigma, n-1)$$

DISTRIBUCIÓN DE LAMBDA WILKS

No.Variables	No.Grupos	Distribución Muestral Datos Normales
p = 1	g ≥ 2	$\frac{\sum n_{l} - g}{g - 1} \left\{ \begin{array}{c} 1 - \Lambda \star \\ \hline \Lambda^{\star} \end{array} \right\} \sim F(g-1, \sum n_{l} - g)$
p = 2	g ≥ 2	$\frac{\sum_{n_l-g-1}}{g-1} \left\{ \begin{array}{c} 1-\sqrt{\Lambda^*} \\ \sqrt{\Lambda^*} \end{array} \right\} \sim F(2(g-1),\sum_{n_l-g-1})$
p ≥ 1	g = 2	$\frac{\sum_{n_l-p-1}}{p} \left\{ \begin{array}{c} 1 - \Lambda^* \\ \hline \Lambda^* \end{array} \right\} \sim F(p, \sum_{l=0}^{\infty} p-1)$
p ≥ 1	g = 3	$\frac{\sum_{n_l-p-2}}{p} \left\{ \begin{array}{c} 1-\sqrt{\Lambda^*} \\ \sqrt{\Lambda^*} \end{array} \right\} \sim F(2p,2(\sum_{n_l-p-2}))$

I. La Traza de Pillai-Barttlet

$$Tp = \sum_{j} \frac{\lambda_{j}}{1 + \lambda_{j}}$$

Donde los λ_i son los valores característicos de $B(B+W)^{-1}$

II. La Traza de Hotelling-Lawley

Th =
$$\sum_{j} \lambda_{j}$$

Donde los λ_{j} son los valores característicos de BW^{-1}

III. La Prueba de Roy

$$Tr = \lambda_1$$

$$Max \{\lambda_j\} = \lambda_1$$

$$\forall j, j=1,...,p$$

Donde los λ_j son los valores característicos de $W(B+W)^{-1}$

HIPÓTESIS DE IGUALDAD DE MATRICES DE COVARIANZAS ENTRE GRUPOS

$$H_0: \sum_1 = \sum_2 = ... = \sum_g$$

$$H_1$$
: $\sum_i \neq \sum_j$

PRUEBA M DE BOX

$$\mathbf{X}_{K} \sim \mathbf{N}_{k}(\mu_{k}, \Sigma_{k}) \quad ; k = 1, 2, ..., g$$

$$\mathbf{M} = \frac{\left(\begin{array}{c} \mathbf{g} \\ \prod_{k=1} |\mathbf{s}_{k}| \\ \end{array} \right) (\mathbf{n}_{k} - 1) / 2}{|\mathbf{S}|}$$

S_k: matriz de covarianzas muestral del grupo "k"

$$S = \sum_{k=1}^{g} (n_k - 1) S_k / (n - g)$$

$$n = \sum_{k=1}^{g} n_k$$

Distribuciones aproximadas de "M"

A)
$$-2 (1 - c_1) \text{ Ln M} \sim \chi_{(\frac{1}{2}p(p+1)(g-1))}^2$$

$$c_1 = \frac{(2p^2 + 3p - 1)}{6(p+1)(g-1)} \sum_{k=1}^g \frac{1}{(n_k - 1)} - \frac{1}{(n - g)}$$

B) -2b log M ~ F
$$(v_1, v_2)$$

$$V_1 = \frac{1}{2} p(p+1)(g-1) \qquad b = (1 - c_1 - v_1/v_2)/v_1$$

$$V_2 = (v_1 + 2) / c_2 - c_1^2$$

$$c_2 = \frac{(p-1)(p+2)}{6(g-1)} \sum_{k=1}^g \frac{1}{(n_k - 1)^2} - \frac{1}{(n-g)^2}$$

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

MANOVA

En la Investigación Social

POTENCIA DE PRUEBA Y DETERMINACIÓN A PRIORI DEL TAMAÑO DE MUESTRA

Tamaños de Muestra por Grupo de 3 a 6 Variables

(Potencia=70% y α =5%)

		Cantidad	de Variables	
Efecto	3	4	5	6
Muy grande Grande Mediano Pequeño	12-16 25-32 42-54 92-120	14-18 28-36 48-62 105-140	15-19 31-40 54-70 120-155	16-21 33-44 58-76 130-170

POTENCIA DE PRUEBA Y DETERMINACIÓN A PRIORI DEL TAMAÑO DE MUESTRA

Parámetros para la tabla de Lauter para una desviación mínima de la hipótesis nula multivariada:

- 1. Existe una variable i tal que: $\frac{1}{\sigma^2} \sum_{j=1}^{j} (\mu_{ij} \mu_i) \ge q^2 \quad \text{donde } \mu_i \text{ es la media total}$ y σ^2 la varianza
- 2. Existe una variable i tal que $\frac{1}{\sigma_i} \mid_{\mu_{i,j1}} \mu_{i,j2} \mid_{\geq d}$ para dos grupos j_1 y j_2
- 3. Existe una variable *i* tal que para todo par de los grupos *1* y *m* tenemos que:

$$\frac{1}{--} \mid_{\mu_{i1}} - \mu_{im} \mid_{\geq c}$$

Tamaño de muestra necesario en tres grupos MANOVA para potencia 70%, 80% y 90% para α =0.05 y α =0.01

				$\alpha = .05$			$\alpha = .01$	
	Po	ower =	.70	.80	.90	.70	.80	.90
Number o	f Variables	2	11	13	16	15	17	21
Effect Size		3	12	14	18	17	20	2
-	$q^2 = 1.125$	4	14	16	19	19	22	20
Very Large	d=1.5	5	15	17	21	20	23	2
	c = 0.75	6	16	18	22	22	25	2
		8	18	21	25	24	28	3
		10	20	23	27	27	30	3
		15	24	27	32	32	35	4
Large	$q^2 = 0.5$, 2	21	26	33	31	36	4
	d=1	3	25	29	37	35	42	5
	c = 0.5	4	27	33	42	38	44	5
		5	30	35	44	42	48	5
		6	32	38	48	44	52	(
		8	36	42	52	50	56	•
		10	39	46	56	54	62	7
		15	46	54	66	64	72	8
Moderate	$q^2 = 0.2813$	2	36	44	58	54	62	7
	d=0.75	3	42	52	64	60	70	1
	c = 0.375	4	46	56	70	66	78	9
		5	50	60	76	72	82	L
		6	54	66	82	76	88	10
		8	60	72	90	84	98	13
		10	66	78	98	92	105	L:
		15	78	92	115	110	125	14
Small	$q^2 = 0.125$	2	80	98	125	115	140	1.
	d = 0.5	3	92	115	145	135	155	19
	c = 0.25	4	105	125	155	145	170	21
		5	110	135	170	155	185	23
		6	120	145	180	165	195	24
		8	135	160	200	185	220	20
		10	145	175	220	200	230	28
		15	170	210	250	240	270	33

Tamaño de muestra necesario en <u>cuatro</u> grupos MANOVA para potencia 70%, 80% y 90% para α =0.05 y α =0.01

				$\alpha = .05$			$\alpha = .01$	
	Po	wer =	.70	.80	.90	.70	.80	.9
Number o	f Variables	2	12	14	17	17	19	2
Effect Size		3	14	16	20	19	22	2
	$q^2 = 1.125$	4	15	18	22	21	24	2
Very Large	d=1.5	5	16	19	23	23	26	3
	c = 0.4743	6	18	21	25	24	27	3
		8	20	23	28	27	30	
		10	22	25	30	29	33	
		15	26	30	36	35	39	-
Large	$q^2 = 0.5$	2	24	29	37	34	40	:
	d=1	3	28	33	42	39	46	:
	c = 0.3162	4	31	37	46	44	50	(
		5	34	40	50	48	54	-
		6	36	44	54	50	58	•
		8	42	48	60	56	64	•
		10	46	52	64	62	70	
		15	54	62	76	72	82	ų.
Moderate	$q^2=0.2813$	2	42	50	64	60	7 0	1
	d=0.75	3	48	58	72	68	80	
	c=0.2372	4	54	64	80	76	88	1
		5	58	70	86	82	94	1
		6	62	74	92	86	100	1:
		8	70	84	105	96	115	1
		10	78	92	115	105	120	1
		15	92	110	130	125	145	1
Small	$q^2=0.125$	2	92	115	145	130	155	1
	d = 0.5	3	105	130	165	150	175	2
	c = 0.1581	4	120	145	180	165	195	2
		5	130	155	195	180	210	2
		6	140	165	210	190	220	2
		8	155	185	230	220	250	3
		10	170	200	250	240	270	3
		15	200	240	290	2 80	320	3

Tamaño de muestra necesario en <u>cinco</u> grupos MANOVA para potencia 70%, 80% y 90% para α =0.05 y α =0.01

				$\alpha = .05$			$\alpha = .01$	
	Por	wer =	.70	.80	.90	.70	.80	.90
Number o	f Variables	2	13	15	19	18	20	2:
Effect Size		3	15	17	21	20	23	2
	$q^2=1.125$	4	16	19	23	22	26	3
Very Large	d=1.5	5	18	21	25	24	28	3
	c=0.3354	6	19	22	27	26	30	3
		8	22	25	30	29	33	3
		10	24	27	33	32	36	4
		15	28	33	39	38	44	5
Large	$q^2 = 0.5$	2	26	32	40	37	44	5
	d=1	3	31	37	46	44	50	6
	c = 0.2236	4	34	42	50	48	5 6	6
		5	37	44	54	52	60	7
		6	40	48	58	56	64	•
		8	46	54	66	62	7 0	8
		10	50	58	72	68	78	9
		15	60	70	84	80	90	11
Moderate	$q^2=0.2813$	2	46	56	70	66	76	9
	d = 0.75	3	54	64	80	74	86	10
	c = 0.1677	4	60	72	88	82	96	1
		5	64	78	96	90	105	13
		6	70	82	105	96	110	1:
		8	78	92	115	110	125	14
		10	86	105	125	120	135	10
		15	105	120	145	140	160	18
Small	$q^2 = 0.125$	2	100	125	155	145	170	2
	d=0.5	3	120	145	180	165	195	2
	c = 0.1118	4	130	160	195	185	210	20
		5	145	170	220	200	230	2
		6	155	185	230	220	250	30
		8	175	210	260	240	280	3:
		10	190	230	280	260	300	34
		15	230	270	330	310	350	4:

Tamaño de muestra necesario en <u>cinco</u> grupos MANOVA para potencia 70%, 80% y 90% para α =0.05 y α =0.01

						21000000 1	190 (0.000)	
				$\alpha = .05$			$\alpha = .01$	
	Po	wer =	.70	.80	.90	.70	.80	.90
Number o	f Variables	2	14	16	20	19	22	26
Effect Size		3	16	18	23	22	25	29
	$q^2 = 1.125$	4	18	21	25	24	27	32
Very Large	d=1.5	5	19	22	27	26	30	35
	c=0.2535	6	21	24	29	28	32	37
		8	23	27	33	31	35	4:
		10	25	30	36	34	39	40
		15	3 0	35	42	42	46	54
Large	$q^2 = 0.5$	2	28	34	44	40	46	50
_	d=1	3	33	39	50	46	54	6-
	c = 0.1690	4	37	44	54	52	60	70
		5	40	48	60	5 6	64	70
		6	44	52	64	60	68	8
		8	50	58	70	68	76	9
		10	54	64	78	74	84	9
		15	64	76	90	88	98	11:
Moderate	$q^2 = 0.2813$	2	50	60	76	70	82	9
	d = 0.75	3	58	70	86	80	94	11:
	c = 0.1268	4	64	76	96	90	105	12
		5	70	84	105	98	115	13:
		6	76	90	110	105	120	14:
		8	86	100	125	120	135	16
		10	94	110	135	130	145	17
		15	115	135	160	155	175	21
Small	$q^2 = 0.125$	2	110	135	170	155	180	22
	d = 0.5	3	130	155	190	180	210	25
	c=0.0845	4	145	170	220	200	230	28
		5	155	185	230	220	250	30
		6	170	200	250	23 0	270	32
		8	190	23 0	280	260	300	35
		10	210	250	300	290	33 0	39
		15	250	29 0	360	340	380	46

EJERCICIOS

Un investigador tiene que analizar cuatro grupos por MANOVA con 5 variables dependientes. Se desea una potencia de 80% y α =0.05. de investigaciones previas y su conocimiento acerca de la naturaleza de los tratamientos anticipa un moderado efecto del tamaño de la muestra. ¿Cuántas observaciones por grupo necesitará?

RPTA.-

Según la tabla para cuatro grupos necesitará 70 observaciones por grupo.

EJERCICIOS

(Continuación)

Un equipo de investigadores tiene cinco grupos y 7 variables dependientes para analizar por MANOVA. Ellos desean una potencia del 70% y α =0.05. De estudios anteriores anticipan un gran efecto del tamaño de la muestra. ¿Cuántas observaciones por grupo necesitan?

RPTA.-

Interpolando en la tabla para 5 grupos entre 6 y 8 variables vemos que son necesarias 43 observaciones por grupo , haciendo un total de 215 observaciones.

ESTUDIO DE LAS TORTUGAS"CARETTA CARETTA" Quelónidos

X₁: Peso (kgs)

X₂: Patas anteriores (cm)

X₃: Patas posteriores (cm)

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

X₁: Peso (kgs)

X₂: Patas anteriores (cm)X₃: Patas posteriores (cm)

La muestra: n=48 $n_1=24$ $n_2=24$

id	x1	x2	х3	sexo
1	98	81	38	Masculino
2	103	84	38	Masculino
3	103	86	42	Masculino
4	105	86	42	Masculino
5	109	88	44	Masculino
6	123	92	50	Masculino
7	123	95	46	Masculino
8	133	99	51	Masculino
9	133	102	51	Masculino
10	133	102	51	Masculino
11	134	100	48	Masculino
12	136	102	49	Masculino
13	138	98	51	Masculino
14	138	99	51	Masculino
15	141	105	53	Masculino
16	147	108	57	Masculino
17	149	107	55	Masculino
18	153	107	56	Masculino
19	155	115	63	Masculino
20	155	117	60	Masculino
21	158	115	62	Masculino
22	159	118	63	Masculino
23	162	124	61	Masculino
24	177	132	67	Masculino
25	93	74	37	Femenino
26	94	78	35	Femenino
27	96	80	35	Femenino
28	101	84	39	Femenino
29	102	85	38	Femenino
30	103	81	37	Femenino
31	104	83	39	Femenino
32	106	83	39	Femenino
33	107	82	38	Femenino
34	112	89	40	Femenino
35	113	88	40	Femenino
36	114	86	40	Femenino
37	116	90	43	Femenino
38	117	90	41	Femenino
39	117	91	41	Femenino
40	119	93	41	Femenino
41	120	89	40	Femenino
42	120	93	44	Femenino
43	121	95	42	Femenino
44	125	93	45	Femenino
45	127	96	45	Femenino
46	128	95	45	Femenino
46	131	95	45	Femenino
48	131	106	46	Femenino
48	135	100	4/	remenino

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

Prueba de normalidad

A. Tortugas masculinas

Ho: La muestra de tortugas masculinas proviene de una población con distribución normal

Prueba de Mardia

Test	Statistic	
1 Mardia	Skewness	11.239711247582
2 Mardia	Kurtosis	-1.0079037501503
3	MVN	<na></na>

p value 0.339149885307009 0.313500671138852 <NA> Result

YES

Prueba de Royston

Test H p value MVN 1 Royston 0.534647 0.5587516 YES

Chi-Square Q-Q Plot

Prueba de normalidad

B. Tortugas femeninas

Ho: La muestra de tortugas femeninas proviene de una población con distribución normal

Prueba de Mardia

Test		Statistic	p value
1 Mardia	Skewness	5.82683513935361	0.829595853447198
2 Mardia	Kurtosis	-0.184710642782656	0.853455998087885
3	MVN	<na></na>	<na></na>

Prueba de Royston

Test H p value MVN 1 Royston 0.4508114 0.6799438 YES

Chi-Square Q-Q Plot

Squared Mahalanobis Distance

6

8

10

0

2

Chi-Square Q-Q Plot

Prueba de igualdad de varianzas

$$H_0$$
: $\Sigma_{\text{macho}} = \Sigma_{\text{hembra}}$

La matriz de covarianzas de las poblaciones de tortugas machos y hembras son iguales

Prueba de M de Box Box's M-test for Homogeneity of Covariance Matrices

data: X[, 2:4]

Chi-Sq (approx.) = 23.405, df = 6, **p-value = 0.0006716**

Escuela Profesional de Ingeniería Estadística – FIEECS ESTADÍSTICA MULTIVARIADA– MANOVA Prof. Luis Huamanchumo de la Cuba

Cargar datos X = read.delim("clipboard")

#Observar la distribución de los datos boxplot(x1~sexo,data=X, main="Morfologia Tortugas", xlab="Sexo", ylab="Peso (kgs)") boxplot(x2~sexo,data=X, main="Morfologia Tortugas", xlab="Sexo", ylab="Patas anteriore (cm)") boxplot(x3~sexo,data=X, main="Morfologia Tortugas", xlab="Sexo", ylab="Patas posteriores (cm)")

#Instalacion de paquetes prueba de normalidad multivariada install.packages("MVN") library(MVN)

#Distribución normal de datos Tortugas masculinas mvn(X[1:24,2:4],mvnTest="mardia", multivariatePlot = "qq",multivariateOutlierMethod = "quan") mvn(X[1:24,2:4],mvnTest="royston", multivariatePlot = "qq",multivariateOutlierMethod = "quan")

#Distribución normal de datos Tortugas femeninas mvn(X[25:48,2:4],mvnTest="mardia", multivariatePlot = "qq",multivariateOutlierMethod = "quan") mvn(X[25:48,2:4],mvnTest="royston", multivariatePlot = "qq",multivariateOutlierMethod = "quan")

#Prueba de igualdad de varianzas install.packages("biotools") library(biotools)

#Prueba M de Box boxM(X[,2:4],X[,5])

MANOVA

En este caso es equivalente a T² por solo tener dos poblaciones


```
library(mvtnorm)
MV1 <- manova(cbind(x1,x2,x3)~sexo,data=X)
summary(data, test="Wilks")
summary(data, test="Roy")
summary(data, test="Pillai")
summary(data, test="Hotelling-Lawley")
```

```
Df Wilks approx F num Df den Df Pr(>F)
        1 0.38857 23.078 3 44 3.967e-09 ***
sexo
Residuals 46
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(MV1, test="Roy")
     Df Roy approx F num Df den Df Pr(>F)
        1 1.5735 23.078 3 44 3.967e-09 ***
sexo
Residuals 46
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(MV1, test="Pillai")
     Df Pillai approx F num Df den Df Pr(>F)
        1 0.61143 23.078 3 44 3.967e-09 ***
sexo
Residuals 46
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> summary(MV1, test="Hotelling-Lawley")
      Df Hotelling-Lawley approx F num Df den Df Pr(>F)
sexo 1 1.5735 23.078 3 44 3.967e-09 ***
Residuals 46
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```