(viii) If \vec{a} and \vec{b} are orthogonal vectors, we have $\theta = \frac{\pi}{2}$; $\vec{a} \cdot \vec{b} = ab \cos \theta = 0$.

(9) **Projection**

Let $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}$ and $\angle BOA = \theta$; also $AM \perp OB$.

Then, OM is the projection of \vec{a} on \vec{b} .

$$OM = OAcos\theta = |\vec{a}|cos\theta = \frac{\vec{a}.\vec{b}}{|\vec{b}|}.$$

(10) Condition of Perpendicularity

Let $\vec{a} = a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{\imath} + b_2 \hat{\jmath} + b_3 \hat{k}$

 \vec{a} will be perpendicular on \vec{b} if \vec{a} . $\vec{b}=0 \iff a_1b_1+a_2b_2+a_3b_3=0$.

(11) Vector product / Cross product of vectors

Let \vec{a} and \vec{b} be two non — zero, non — parallel vectors, and let θ be the angle between them such that $0 < \theta < \pi$.

Then, the cross product of \vec{a} and \vec{b} is defined as $\vec{a} \times \vec{b} = (|\vec{a}||\vec{b}|\sin\theta)\hat{n}$ where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} .

(i) If \vec{a} and \vec{b} are parallel or collinear, i. e., when $\theta = 0$ or $\theta = \pi$ then, $\vec{a} \times \vec{b} = \vec{0}$.

(ii) If
$$\vec{a} = \vec{0}$$
 or $\vec{b} = \vec{0}$, we define $\vec{a} \times \vec{b} = \vec{0}$.

- (iii) For any vector \vec{a} , we have $\vec{a} \times \vec{a} = (|\vec{a}||\vec{a}|\sin 0)\hat{n} = \vec{0}$.
- (iv) The angle θ between two vectors is defined by $\theta = \sin^{-1} \left[\frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} \right]$.
- (v) A unit vector \hat{n} perpendicular to each one of \vec{a} and \vec{b} is given by $\hat{n} = \frac{(\vec{a} \times \vec{b})}{|\vec{a} \times \vec{b}|}$.

(vi)
$$\vec{a} \times \vec{b}$$
. $\vec{c} = \vec{a}$. $\vec{b} \times \vec{c}$

(vii)
$$\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$$

(viii)
$$\left(-\vec{b}\right) \times \vec{a} = \left(\vec{a} \times \vec{b}\right) = \vec{b} \times \left(-\vec{a}\right)$$

(12) Area of Triangle

Let us consider $\triangle ABC$ in which $\overrightarrow{AB} = \vec{a} \& \overrightarrow{AC} = \vec{b}$