华东师范大学期末试卷(A) 2021-2022 学年第一学期

课程名称:	统计方法与机器学习				
学生姓名:		学	号:_	 	
专业:		年级	/班级:		

课程性质:专业必修课

_	 Ξ	四	五.	六	总分	阅卷人签名

一、(本题共20分)

表 1 是一个不完整的双因素方差分析表。

表 1 不完整的双因素方差分析表

	- 70 1	I JULLA HOVE	1 71/2 / L. / J	01.00	
来源	自由度	平方和	均方	F统计量	p 值
因素 A	/	/	0.0833	0.05	0.952
因素 B	/	96.333	96.333	57.80	< 0.001
交互效应	2	12.167	6.0833	3.65	/
AB	2	12.107	0.0655	3.03	1
误差	6	10	/		
汇总	11	118.667			

请根据表1回答以下问题:

- 1.(2 分) 因素 A 的平方和 SS_A 是___。
- 2. (2分) 因素 A 的自由度为___。
- 3. (2 分) 在实验中, 因素 B 的水平数为___。
- 4. (2分) 均方误差为___。
- 5. (2分) 在这个实验中,每种组合的重复次数为___。
- 6. (5 分) 如何计算交互效应的p值?并给定显著性水平 $\alpha = 0.05$ 时,简述如何判断交互效应的显著性。
- 7. (5分) 证明: 在双因素方差分析中, $SS_T = SS_A + SS_B + SS_{AB} + SS_E$ 。

二、(本题共20分)

现有一个数据集,其中包含 400 条观测,每条观测有 1 个因变量y以及 20 个中心化后的特征 x_1, x_2, \cdots, x_{20} 。前 5 行数据如图 2 所示。

	у	X1	X2	ХЗ	X4	X 5	X6	X7	X8	Х9	 X11	X12	X13	X14	X15	X16	X17	X18	X19	X20
0	-1.24	0.31	-0.95	-0.99	-0.58	-0.47	0.70	-0.88	1.05	0.03	 -1.42	-0.85	-0.37	-0.52	-0.19	-1.75	0.78	-0.78	0.23	0.05
1	-0.72	-0.04	-2.58	1.32	-0.75	-0.92	1.43	-1.85	-0.83	1.36	 0.31	-0.01	-0.49	-1.20	80.0	-0.83	-0.98	2.89	-0.79	-0.82
2	6.40	-0.89	0.91	-0.07	0.14	1.31	0.60	0.34	-0.96	1.67	 1.58	0.44	1.80	-0.04	1.65	-0.06	-1.01	-0.87	-0.41	-1.03
3	1.10	1.81	0.20	-0.70	-1.03	0.72	-0.89	1.56	-0.03	-0.28	 0.61	0.01	-1.39	-0.78	-1.20	-2.09	-0.70	-0.73	-1.96	0.48
4	2.33	0.15	-0.27	-0.82	-0.21	0.42	-0.15	-0.04	0.80	2.55	 -0.44	-0.47	-1.08	-2.31	0.87	-0.62	1.10	1.02	1.26	0.58

图 2 前 5条数据的示意图

取显著性水平 $\alpha = 0.05$, 现回答以下问题:

1. (5 分) 同学 A 想构建利用 X_1 来预测y,从而构建了一个一元线性回归模型。请根据图 3 中 Python 运行的结果,写出一元线性回归模型,并从一个角度阐述该模型是否显著。

Dep. Varia		:	у	R-squ	ared:	0.127	
Mo	Model:			S Ad	j. R-squa	ared:	0.125
Meth	od:	Least	t Square	s	F-stat	istic:	58.04
Da	ate:	Fri, 02 l	Dec 202	2 Prob	(F-stati	stic):	1.90e-13
Tir	me:		15:55:38	B Lo g	g-Likelih	ood:	-1120.5
No. Observation	ns:		400	0		AIC:	2245.
Df Residu	als:		398	В		BIC:	2253.
Df Mo	del:			1			
Covariance Ty	pe:	n	onrobus	t			
С	oef	std err	t	P> t	[0.025	0.975]	ı
Intercept 0.69	954	0.200	3.482	0.001	0.303	1.088	3
X1 1.60	034	0.210	7.618	0.000	1.190	2.017	•
Omnibus	s: :	2.449	Durbin	-Watsor	n: 2.120)	
Prob(Omnibus)): (0.294 J	arque-E	Bera (JB): 2.200)	
Skew	/ : -(0.093	ı	Prob(JB): 0.333	3	
Kurtosis	s: :	2.688	C	ond. No	1.05	5	

图 3 Python 的运行结果(一个特征)

- 2. (5 分) 根据图 3 中 Python 运行的结果,请给出当 X_1 的取值为 0.5 时,y的点预测。同时,阐述如何计算其 $1-\alpha$ 的预测区间。
- 3. (5 分) 同学 B 将特征 X_1 和 X_2 同时纳入线性回归模型,并利用 Python 得到结果,如图 4 所示。将图 3 和图 4 进行比较,发现在线性回归模型中 R^2 从 0.127 提升到了 0.320,即结果为 $R^2_{mod_1}=0.127 \leq R^2_{mod_2}=0.320$ 。请问这个结论是否普

遍存在?如果是,请证明它;如果不是,请举出反例。

Dep. \	/ariable:		у		ed:	0.320	
	Model:		OLS	Adj.	ed:	0.317	
	Method:	Leas	t Squares		F-statis	tic:	93.54
	Date:	Fri, 02	Dec 2022	Prob (F-statist	ti c): 5	.19e-34
	Time:		17:04:30	Log-	Likeliho	od:	-1070.5
No. Obser	vations:		400		A	NC:	2147.
Df Re	siduals:		397		E	BIC:	2159.
D	f Model:		2				
Covarian	се Туре:	r	nonrobust				
	coef	std err	t	P> t	[0.025	0.975	ı
Intercept	0.6500	0.177	3.682	0.000	0.303	0.997	,
X1	1.4421	0.187	7.728	0.000	1.075	1.809)
X2	1.8526	0.174	10.618	0.000	1.510	2.196	3
Omr	nibus:	2.166	Durbin-\	Vatson:	2.004		
Prob(Omn	ibus):	0.339	Jarque-Be	ra (JB):	2.246		
\$	Skew:	-0.169	Pı	ob(JB):	0.325		
Kur	tosis:	2.859	Co	nd. No.	1.12		

图 4 Python 的运行结果(两个特征)

4. (5分) 经验所知, R^2 越大表明特征的拟合效果越好。于是,同学 C 逐一将特征放入线性回归模型中。具体方案是,第一个模型的特征是 X_1 ; 第二个模型的特征是 X_1 和 X_2 ; 第三个模型的特征是 X_1 , X_2 和 X_3 ,以此类推。结果发现 R^2 的数值如表 1 所示。

表 120 个模型中不同特征维度下的R²值

维度	1	2	3	4	5	6	7	8	9	10
R^2	0.127	0.320	0.495	0.568	0.637	0.707	0.779	0.841	0.902	0.948
维度	11	12	13	14	15	16	17	18	19	20
R^2	0.949	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.950	0.952

请问, R²是否适合作为模型选择的指标?并请说明理由。如果不是,请给出一个改进方案。

三、(本题共10分)

请阐述一下,如何诊断出数据中存在多重共线性? (提示: 只需要提供一种完整的方案)。

四、(本题共15分)

比较感知机和线性 SVM 的损失函数。

五、(本题共10分)

- 1. (5分)解释生成式模型和判别式模型,并分析二者的不同点;
- 2. 列出三种判别式模型(3分)和两种生成式模型(2分)。

六、(本题共25分)

考虑利用线性支持向量机对如下两类可分数据进行分类:

$$-1: (0,0), (1,0), (0,1)$$

- 1. (8分) 在图中做出这6个训练点,构造具有最优超平面和最优间隔的权重向量:
- 2. (4分) 哪些是支撑向量?
- 3. (13 分)通过寻找拉格朗日乘子来构造在对偶空间的解,并将它与第一小问中的结果比较。