High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains

Majid Janzamin and Anima Anandkumar

U.C. Irvine

High-Dimensional Covariance Estimation

- n i.i.d. samples, p variables $\mathbf{X} := [X_1, \dots, X_p]^T$.
- High-dimensional regime: both $n, p \to \infty$ and $n \ll p$.
- Covariance estimation:

$$\Sigma^* := \mathbb{E}[\mathbf{X}\mathbf{X}^T].$$

• Challenge: empirical (sample) covariance ill-posed when $n \ll p$:

$$\widehat{\Sigma}^n := \frac{1}{n} \sum_{k=1}^n \mathbf{x}(k) \mathbf{x}(k)^T.$$

Sparse Covariance

Sparse Inverse Covariance

$$\left[egin{array}{c} \sum^* & J_M^{-1} \end{array}
ight]$$

Sparse Covariance

$$\left[egin{array}{c} \sum_{1}^{*} & \sum_{R} \end{array}
ight]$$

Sparse Inverse Covariance

$$\left[egin{array}{c} \sum^* & J_M^{-1} \end{array}
ight]$$

Relationship with Statistical Properties (Gaussian)

- Sparse Covariance= Independence Model: marginal independence.
 - Sparse Inverse Covariance=Markov Model: conditional independence

Sparse Covariance

$$\left[egin{array}{c} \sum_{k}^{*} & \sum_{R} \end{array}
ight]$$

Sparse Inverse Covariance

$$\left[\begin{array}{c} \ \ \ \end{array}
ight] = \left[\begin{array}{c} \ \ \ \ \ \ \end{array}
ight]^{-1}$$

Relationship with Statistical Properties (Gaussian)

- Sparse Covariance= Independence Model: marginal independence.
- Sparse Inverse Covariance=Markov Model: conditional independence

Guarantees under Sparsity Constraints in High Dimensions

Consistent Estimation when
$$n = \Omega(\log p) \Rightarrow n \ll p$$
.

Sparse Covariance

$$\left[\begin{array}{c} \ \ \end{array}
ight] = \left[\begin{array}{c} \ \ \ \end{array}
ight]$$
 Σ_R

Sparse Inverse Covariance

Relationship with Statistical Properties (Gaussian)

- Sparse Covariance= Independence Model: marginal independence.
 - Sparse Inverse Covariance=Markov Model: conditional independence

Guarantees under Sparsity Constraints in High Dimensions

Consistent Estimation when
$$n = \Omega(\log p) \Rightarrow n \ll p$$
.

Going beyond Sparsity in High Dimensions?

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.

One Possibility: Sparse Markov + Sparse Independence Models

• Sparsity in Multiple Domains: Multiple Statistical Relationships.

$$\left[\begin{array}{c} \end{array}
ight] = \left[\begin{array}{c} \end{array}
ight]^{-1} + \left[\begin{array}{c} \Sigma_R \end{array}
ight]$$

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.

One Possibility: Sparse Markov + Sparse Independence Models

• Sparsity in Multiple Domains: Multiple Statistical Relationships.

$$\left[\begin{array}{c} \sum^* \end{array}\right] = \left[\begin{array}{c} \sum^{-1} \sum_{R} \end{array}\right]$$

Efficient Decomposition and Estimation in High Dimensions?

Motivation

- Sparsity constraints restrictive to have faithful representation.
- Data not sparse in a single domain
- Solution: Sparsity in Multiple Domains.

One Possibility: Sparse Markov + Sparse Independence Models

• Sparsity in Multiple Domains: Multiple Statistical Relationships.

$$\left[\begin{array}{c} \\ \\ \Sigma^* \end{array}
ight] = \left[\begin{array}{c} \\ \\ \end{array}
ight]^{-1} + \left[\begin{array}{c} \\ \\ \end{array}
ight]^{-1} = \sum_R$$

Efficient Decomposition and Estimation in High Dimensions?

Unique Decomposition? Good Sample Requirements?

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

$$\begin{bmatrix} & & \\ & & \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Contribution 1: Novel Method for Decomposition

- Decomposition into Markov and residual domains.
- Unification of Sparse Covariance and Inverse Covariance Estimation.

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Contribution 1: Novel Method for Decomposition

- Decomposition into Markov and residual domains.
- Unification of Sparse Covariance and Inverse Covariance Estimation.

Contribution 2: Guarantees for Estimation

- Conditions for unique decomposition (exact statistics).
- Sparsistency and norm guarantees in both Markov and independence domains (sample analysis)
- Sample requirement: no. of samples $n = \Omega(\log p)$ for p variables.

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Contribution 1: Novel Method for Decomposition

- Decomposition into Markov and residual domains.
- Unification of Sparse Covariance and Inverse Covariance Estimation.

Contribution 2: Guarantees for Estimation

- Conditions for unique decomposition (exact statistics).
- Sparsistency and norm guarantees in both Markov and independence domains (sample analysis)
- Sample requirement: no. of samples $n = \Omega(\log p)$ for p variables.

Efficient Method for Covariance Decomposition and Estimation

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - ▶ ℓ₁ Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - Non-Convex Methods (Anandkumar et. al) (Zhang)

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - ▶ ℓ₁ Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - ► Non-Convex Methods (Anandkumar et. al) (Zhang)

Beyond Sparse Models: Decomposition Issues

- Sparse + Low Rank (Chandrasekaran et. al) (Candes et. al)
- Decomposable Regularizers (Negahban et. al)

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - ▶ ℓ₁ Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - ► Non-Convex Methods (Anandkumar et. al) (Zhang)

Beyond Sparse Models: Decomposition Issues

- Sparse + Low Rank (Chandrasekaran et. al) (Candes et. al)
- Decomposable Regularizers (Negahban et. al)

Multi-Resolution Markov+Independence Models (Choi et. al)

- Decomposition in inverse covariance domain
- Lack theoretical guarantees

Sparse Covariance/Inverse Covariance Estimation

- Sparse Covariance Estimation: Covariance Thresholding.
 - ► (Bickel & Levina) (Wagaman & Levina) (Cai et. al.)
- Sparse Inverse Covariance Estimation:
 - $ightharpoonup \ell_1$ Penalization (Meinshausen and Bühlmann) (Ravikumar et. al)
 - ► Non-Convex Methods (Anandkumar et. al) (Zhang)

Beyond Sparse Models: Decomposition Issues

- Sparse + Low Rank (Chandrasekaran et. al) (Candes et. al)
- Decomposable Regularizers (Negahban et. al)

Multi-Resolution Markov+Independence Models (Choi et. al)

- Decomposition in inverse covariance domain
- Lack theoretical guarantees

Our contribution: Guaranteed Decomposition and Estimation

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Conclusion

Some Intuitions and Ideas

- $\Sigma^* = J_M^{*-1} + \Sigma_R^*$.
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

Some Intuitions and Ideas

•
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

 $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

Review Ideas for Special Cases: Sparse Covariance/Inverse Covariance

Some Intuitions and Ideas

- $\Sigma^* = J_M^{*-1} + \Sigma_R^*$.
- $\widehat{\Sigma}^n \text{: sample covariance} \\ \text{using } n \text{ i.i.d. samples}$

Review Ideas for Special Cases: Sparse Covariance/Inverse Covariance

Sparse Covariance Estimation (Independence Model)

- $\widehat{\Sigma}^n$: sample covariance using n samples

- p variables: $p \gg n$.
- Thresholding estimator for off-diagonals (Bickel & Levina): threshold chosen as $\sqrt{\frac{\log p}{n}}$
- Sparsistency (support recovery) and Norm guarantees when $n = \Omega(\log p) \Rightarrow n \ll p$.

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

- $\Sigma^* = J_M^{*-1}$
- $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al. '08)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

Max-entropy Formulation (Lagrangian Dual)

$$\widehat{\Sigma}_M := \operatorname*{argmax}_{\Sigma_M \succ 0} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty, \text{off}} \le \frac{\gamma}{\gamma}, (\Sigma_M)_d = (\widehat{\Sigma}^n)_d$$

- $\Sigma^* = J_M^{*-1}$
- \bullet $\widehat{\Sigma}^n$: sample covariance using n i.i.d. samples

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al. '08)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \frac{\gamma \|J_M\|_{1, \text{off}}}{J_M}$$

Max-entropy Formulation (Lagrangian Dual)

$$\widehat{\Sigma}_M := \operatorname*{argmax}_{\Sigma_M \succ 0} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty, \text{off}} \le \frac{\gamma}{\gamma}, (\Sigma_M)_d = (\widehat{\Sigma}^n)_d$$

Consistent Estimation Under Certain Conditions, $n = \Omega(\log p)$

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Sparse Covariance Estimation

Threshold off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Sparse Covariance Estimation

Threshold off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

Is it possible to unify above methods and guarantees?

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Sparse Covariance Estimation

Threshold off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

Is it possible to unify above methods and guarantees?

Challenges and Insights

Penalties in above methods are in different domains

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Sparse Covariance Estimation

Threshold off-diagonal entries of $\widehat{\Sigma}^n$.

Sparse Inverse Covariance Estimation

Add ℓ_1 penalty to maximum likelihood program (involving inverse covariance matrix estimation)

Is it possible to unify above methods and guarantees?

Challenges and Insights

- Penalties in above methods are in different domains
- Insight: Consider dual program of MLE
- Dual program is in covariance domain for Markov model.

•
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

• Extend ℓ_1 -penalized MLE

Max-entropy Formulation

• Lagrangian dual of ℓ_1 -penalized MLE

$$\widehat{\Sigma}_M := \underset{\Sigma_M \succ 0}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty,\text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

•
$$\Sigma^* = J_M^{*-1} + \Sigma_R^*$$
.

• Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$\widehat{\Sigma}_M := \underset{\Sigma_M \succ 0}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M\|_{\infty,\text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

$$\bullet \ \Sigma^* = {J_M^*}^{-1} + \Sigma_R^*.$$

• Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$\widehat{\Sigma}_M := \underset{\Sigma_M \succ 0}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty,\text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

- $\Sigma^* = J_M^{*-1} + \Sigma_R^*$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

Our Algorithm: Covariance Decomposition

- $\Sigma^* = J_M^{*-1} + \Sigma_R^*$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

Our Algorithm: Covariance Decomposition

- $\Sigma^* = J_M^{*-1} + \Sigma_R^*$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

ℓ_1 -MLE for Sparse Inverse Covariance (Ravikumar et. al)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

s. t.
$$||J_M||_{\infty,\text{off}} \leq \lambda$$
,

Our Algorithm: Covariance Decomposition

- $\Sigma^* = J_M^{*-1} + \Sigma_R^*$.
- ullet Extend ℓ_1 -penalized MLE

Max-entropy Formulation $+ \ell_1$ -penalized Residuals (This work)

• Lagrangian dual of ℓ_1 -penalized MLE

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \lambda \|\Sigma_R\|_{1, \text{off}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

$\ell_1 - \ell_{\infty}$ -penalized MLE (This work)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}$$

s. t.
$$||J_M||_{\infty,\text{off}} \leq \lambda$$
,

 $\ell_1 - \ell_{\infty}$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

Max-entropy Markov + ℓ_1 -penalized Residuals (Dual)

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \operatorname*{argmax}_{\Sigma_M \succ 0, \Sigma_R} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{\|\Sigma_R\|_{1, \text{off}}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

Max-entropy Markov + ℓ_1 -penalized Residuals (Dual)

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{\|\Sigma_R\|_{1, \text{off}}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Case: $\lambda \to 0$ (Sparse Covariance Estimation)

- ullet Threshold estimator for off-diagonals of Σ_R^* (under exact statistics)
- With samples, $\lambda = \sqrt{\log p/n}$ reduces to threshold estimator.

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

Max-entropy Markov $+ \ell_1$ -penalized Residuals (Dual)

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Case: $\lambda \to 0$ (Sparse Covariance Estimation)

- Threshold estimator for off-diagonals of Σ_R^* (under exact statistics)
- With samples, $\lambda = \sqrt{\log p/n}$ reduces to threshold estimator.

Case: $\lambda \to \infty$ (Sparse Inverse Covariance Estimator)

ullet Residual matrix $\widehat{\Sigma}_R=0$: ℓ_1 -penalized MLE of Ravikumar et. al

 $\ell_1 - \ell_\infty$ -penalized MLE (Primal)

$$\widehat{J}_M := \underset{J_M \succ 0}{\operatorname{argmin}} \langle \widehat{\Sigma}^n, J_M \rangle - \log \det J_M + \gamma \|J_M\|_{1, \text{off}}, \text{ s. t. } \|J_M\|_{\infty, \text{off}} \leq \lambda$$

Max-entropy Markov $+ \ell_1$ -penalized Residuals (Dual)

$$(\widehat{\Sigma}_M, \widehat{\Sigma}_R) := \underset{\Sigma_M \succ 0, \Sigma_R}{\operatorname{argmax}} \log \det \Sigma_M - \frac{\lambda \|\Sigma_R\|_{1, \text{off}}}{\|\Sigma_R\|_{1, \text{off}}}$$

s.t.
$$\|\widehat{\Sigma}^n - \Sigma_M - \Sigma_R\|_{\infty, \text{off}} \le \gamma$$
, $(\Sigma_M)_d = (\widehat{\Sigma}^n)_d$, $(\Sigma_R)_d = 0$.

Case: $\lambda \to 0$ (Sparse Covariance Estimation)

- Threshold estimator for off-diagonals of Σ_R^* (under exact statistics)
- With samples, $\lambda = \sqrt{\log p/n}$ reduces to threshold estimator.

Case: $\lambda \to \infty$ (Sparse Inverse Covariance Estimator)

• Residual matrix $\widehat{\Sigma}_R = 0$: ℓ_1 -penalized MLE of Ravikumar et. al

Unification of Sparse Covariance & Inverse Covariance Estimation

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Conclusion

Guarantees for High-Dimensional Estimation

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*.$$

Conditions for Recovery

- Maximum degree Δ in the Markov graph (corresponding to J_M^*).
- Number of samples n, number of nodes p satisfy $n = \Omega(\Delta^2 \log p)$.
- Regularization constant: $\lambda = \max_{i \neq j} J_M^*(i,j) + \Theta(\sqrt{\log p/n}).$

Theorem

The proposed method outputs estimates $(\widehat{J}_M,\widehat{\Sigma}_R)$ such that

- $(\widehat{J}_M, \widehat{\Sigma}_R)$ are sparsistent and sign consistent.
- satisfy norm guarantees.

$$\|\widehat{J}_M - J_M^*\|_{\infty}, \|\widehat{\Sigma}_R - \Sigma_R^*\|_{\infty} = O\left(\sqrt{\log p/n}\right).$$

Guarantee Sparsistency and Efficient Estimation in Both Domains

Observations

Corollary 1 (Sparse Covariance Estimation)

With $\lambda = \Theta(\sqrt{\log p/n})$, our method reduces to threshold estimator (Bickel & Levina) and is sparsistent for covariance estimation.

Corollary 2 (Sparse Inverse Covariance Estimation)

With $\lambda \to \infty$, our method reduces to ℓ_1 -penalized MLE (Ravikumar et. al) and is sparsistent for inverse covariance estimation.

Conditions for Recovery

- Mutual incoherence-type conditions
- Sample complexity $n = \Omega(\Delta^2 \log p)$.
- Comparable to inverse covariance estimation (Ravikumar et. al).

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Conclusion

Synthetic Data

$$\Sigma^* = J_M^{*-1} + \Sigma_R^*, \quad J^* = (\Sigma^*)^{-1}.$$

Setup

- \bullet 8 × 8 2-d grid for Markov model.
- Mixed Markov model (both positive and negative correlations).
- Arbitrary-valued sparse residuals.

estimation

Performance under LBP

Advantage over existing techniques.

Experiments on Stock Market Data

Setup

- Monthly stock returns of companies on S&P index.
- Companies in divisions E.Trans, Comm, Elec&Gas and G.Retail Trade.
- Apply the proposed method.

• Solid line: Markov graph. Dotted line: Independence graph.

Outline

- Introduction
- 2 Algorithm
- Guarantees
- 4 Experiments
- Conclusion

Conclusion

Summary

- Covariance decomposition and estimation in high dimensions
- Combination of Markov and independence models
- Efficient method and guarantees for estimation in both domains
- Unifying sparse covariance/inverse covariance estimation

Conclusion

Summary

- Covariance decomposition and estimation in high dimensions
- Combination of Markov and independence models
- Efficient method and guarantees for estimation in both domains
- Unifying sparse covariance/inverse covariance estimation

Not covered in this talk

- Analysis under Exact Statistics: Conditions for Unique Decomposition.
- Sample Analysis: Careful control of perturbations in both domains.

Longer version available on webpage.

Conclusion

Summary

- Covariance decomposition and estimation in high dimensions
- Combination of Markov and independence models
- Efficient method and guarantees for estimation in both domains
- Unifying sparse covariance/inverse covariance estimation

Not covered in this talk

- Analysis under Exact Statistics: Conditions for Unique Decomposition.
- Sample Analysis: Careful control of perturbations in both domains.

Longer version available on webpage.

Outlook

- Discrete Model (via pseudo-likelihood)
- Other forms of residuals (e.g. low rank).

