INT201 Decision, Computation and Language

Tutorial 8 Dr Yushi Li

1. With any input w, computation of the given NTM is represented by a configuration tree as below:

- (1) What is the address of "accept" configuration?
- (2) What is the address of configuration C_6 ?
- (3) What is the address of configuration C_1 ?
- (4) What's the meaning of address 132?

- 2. Give an implementation-level description of a Turing machine that decides the language $B = \{ 0^n 1^n 2^n \mid n \ge 0 \}$.
- 3. Answer the following questions (and justify your answers):
- (1) Can a Turing machine ever write the blank symbol _ on its tape?
- (2) Can the tape alphabet Γ be equal to the input alphabet Σ ?
- (3) Can the head of a Turing machine ever stay on the same cell for two subsequent steps of a computation?

Solution

- 1.
- (1) "accept" configuration has address 231
- (2) Configuration C_6 has address 12.
- (3) Configuration C_1 has address ε .
- (4) Address 132 is meaningless.
- 2.

M = "On input string w:

- 1. Scan the input from left to right to make sure that it is a member of 0*1*2*, and **reject** if it isn't.
- 2. Return tape head to left-hand end of tape.
- 3. Repeat the following until no more 0s left on tape.
- 4. Replace the leftmost 0 with x.
- 5. Scan right until a 1 occurs. If there are no 1s, reject.
- 6. Replace the leftmost 1 with x.
- 7. Scan right until a 2 occurs. If there are no 2s, reject.
- 8. Replace the leftmost 2 with x.
- 9. Return tape head to left-hand end of tape, and go to stage 3.
- 10. If the tape contains any 1s or 2s, reject. Otherwise, accept."

Solution

3.

- (1) A Turing machine can write a _ , since _ $\in \Gamma$ and the transition function has type $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$
- (2) The tape alphabet Γ can never be equal to the input alphabet Σ , since $\underline{\ } \in \Gamma$, whereas $\underline{\ } \notin \Sigma$.
- (3) The head of a Turing machine can stay on the same cell for two consecutive steps of a computation if the head is at the leftmost tape cell and the machine tries to move left.

