PATENT ABSTRACTS OF JAPA

(11)Publication number:

2003-008319

(43)Date of publication of application: 10.01.2003

(51)Int.CI.

H01Q 1/24 H01Q 1/38 H01Q 5/01 HO4M

(21)Application number : 2001–169999 🦜 (71)Applicant : SAMSUNG ELECTRONICS CO LTD

(22)Date of filing:

05.06.2001

(72)Inventor: HARUYAMA SHINICHI

(54) PORTABLE TERMINAL

(57) Abstract:

PROBLEM TO BE SOLVED: To reduce the electromagnetic field near the head to improve SAR, without flowing a ground board current in a PCB and deal with transmitting and receiving multi-frequency

signals. SOLUTION: The terminal comprises an antenna board 61 provided on the opposite side of a printed wiring board 1 to one side having a speaker, a first and second antenna elements 62A, 62B on the antenna board for transmitting/ receiving signals of a first and second frequencies, respectively, a coaxial cable 9 for feeding the first and second antenna elements with power and a dielectric sleeve 63 having a first and second resonant conductors 630A, 630B disposed with their top ends apart from each other for transmitting/receiving signals of the first and second frequencies on a plate-like dielectric surface in the length direction of the coaxial cable; the other ends of the first and second resonant conductors being short-circuited on the plate-like

dielectric backside and connected to an outer conductor 91 at the top end of the coaxial cable.

LEGAL STATUS

[Date of request for examination]

05.06.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-8319 (P2003-8319A)

(43)公開日 平成15年1月10日(2003.1.10)

		 識別記号		FΙ			テ	-7]ド(参考)
(51) Int.Cl. ⁷	1/0/	商权力164 7		H01Q	1/24		Z	5 J O 2 1
,H01Q	1/24 1/38				1/38			5 J O 4 6 5 J O 4 7
	5/01				5/01 9/36			5K023
7.	9/36				9/36 9/42			5 K 0 2 7
	9/42		審査請求	有 鄙		OL	(全 6 頁)	最終頁に続く

(21)出願番号

特願2001-169999(P2001-169999)

(22)出願日

平成13年6月5日(2001.6.5)

(71)出願人 390019839

三星電子株式会社

大韓民国京畿道水原市八達区梅滩洞416

(72)発明者 春山 眞一

神奈川県横浜市鶴見区菅沢町2-7 株式

会社サムスン横浜研究所 電子研究所内

(74)代理人 100064908

弁理士 志賀 正武

最終頁に続く

(54) 【発明の名称】 携帯端末機

(57)【要約】

【課題】 PCBに地板電流を流すことなく頭部の近傍 電磁界を低減して、SARを改善することができ、かつ 多周波数の信号の送受信に対応できるようにする。

【解決手段】 ブリント配線基板1のスピーカが設けられた面とは反対側の面に設けられたアンテナ基板61と、アンテナ基板に第1の周波数の信号を送受信する第1のアンテナ素子62A及び第2の周波数の信号を送受信する第2のアンテナ素子62Bと、第1、第2のアンテナ素子に給電するための同軸ケーブル9と、同軸ケーブルの長手方向に第1の周波数の信号を送受信する第1の共振導体630Aと、第2の周波数の信号を送受信する第1の共振導体630Bとが離間して先端が開放状で板状の誘電体表面に形成され、第1、第2の共振導体の他端側は前記板状の誘電体裏面側で短絡された状態で同軸ケーブルの先端部における外部導体91に接続されてなる誘電体スリーブ63とを設ける。

. 【特許請求の範囲】

少なくともスピーカが設けられたブリン -【請求項1】 ト配線基板の前記スピーカが設けられた面とは反対側の 面に設けられたアンテナ基板と、

前記アンテナ基板にアンテナ・バターンとして形成され た、第1の周波数の信号を送受信するための第1のアン テナ素子及び第2の周波数の信号を送受信するための第 2のアンテナ素子と、

前記第1、第2のアンテナ素子に給電するための同軸ケ ーブルと、

前記同軸ケーブルの長手方向に前記第1の周波数の信号 のケーブル側への漏洩を阻止するための第1の共振導体 と、前記第2の周波数の信号のケーブル側への漏洩を阻 止するための第2の共振導体とが離間して先端が開放状 態で、板状の誘電体表面に形成され、これら第1、第2 の共振導体の他端側は前記板状の誘電体裏面側で短絡さ れた状態で前記同軸ケーブルの先端部における外部導体 に接続されてなる誘電体スリーブとを設けたことを特徴 とする携帯端末機。

前記誘電体スリーブは前記アンテナ基板 【請求項2】 上に設けられ、該アンテナ基板は、前記プリント配線基 板から電気的に浮き上がって取り付けられていることを 特徴とする請求項1に記載の携帯端末機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、携帯電話機、PH S、PDA等の携帯端末機に関し、特に、SAR(Sp ecific Absorption Rate)の改 善に関するものである。

[0002]

【従来の技術】近年、携帯電話機等の携帯端末機の普及 に伴って端末機から輻射される電波の人体への影響、特 に使用者の人体頭部への影響(SAR)が喧伝されてい る。携帯端末機においては、アンテナの腹部に電流が集 中し、この結果、アンテナ給電点等の輻射源近傍の人体 頭部に電磁界が集中してSARが増大することになる。 このようなSARの改善について防護指針も開示されつ つある。

【0003】図5は従来の携帯電話機に広く用いられて いるモノポール・アンテナ方式によるアンテナ構造及び 動作時の電流分布、電圧分布等を示す。同図(a)にお いて、電話機本体のPCB(プリント配線基板) 1 に は、 λ / 4 モノポール・アンテナ2 が給電点3を介して 取り付けられている。同図(a)、(b)において、モ ノポール・アンテナ1はアンテナ素子とアンテナ地板と により1つのアンテナを構成するため、アンテナ電流 i aに応じてPCB1を地板とする地板電流i e が図示の ようにPCB1に流れる。

【0004】図6 (a) はこのときのアンテナ電流 i a と地板電流 i e による近傍電界分布を示し、同図(b)

体、5は使用者の頭部である。図示のように、頭部5の 近傍に地板電流ieによる電磁界が集中して大きなSA Rを誘起する原因となる。

[0005]

【発明が解決しようとする課題】上記の構成において、 SARを低減するには、実使用状態で使用者の頭部方向 への近傍電磁界の強度を低減すればよいが、その観点か ら見ると図5のアンテナ構造には次の問題があった。

【0006】(1) λ/4モノポール・アンテナ方式で は、電話機本体4のPCB1が地板を形成するため、P CB1に地板電流ieが流れる。このPCB1を流れる 地板電流 i e を制御することは難しいので、近傍電磁界 を制御、低減することができない。

(2) アンテナの給電点3付近にアンテナ電流 i a が集 中して流れるが、通常はこの電流集中部分は頭部5が最 も接近する部分である。

(3) このため、頭部側に遮蔽板を別途設けて、頭部方 向への電力輻射を軽減する方式が提案されているが、モ ノポール・アンテナ方式では、PCB1に地板電流 i e が流れるため、遮蔽板にも地板電流が流れ、遮蔽効果が 少ない。

【0007】本発明は上記の問題を解決するためになさ れたもので、PCBに地板電流を流すことなく頭部の近 傍電磁界を低減して、SARを改善することができ、か つ多周波数の信号の送受信に対応することができるアン テナ構造を有する携帯端末機を提供することを目的とす る。

[0008]

【課題を解決するための手段】上記目的を達成するため に、本発明に係る携帯端末機では、少なくともスピーカ が設けられたプリント配線基板の前記スピーカが設けら れた面とは反対側の面に設けられたアンテナ基板と、該 アンテナ基板にアンテナ・パターンとして形成された、 第1の周波数の信号を送受信するための第1のアンテナ 素子及び第2の周波数の信号を送受信するための第2の アンテナ索子と、該第1、第2のアンテナ索子に給電す るための同軸ケーブルと、該同軸ケーブルの長手方向に 前記第1の周波数の信号のケーブル側への漏洩を阻止す るための第1の共振導体と、前記第2の周波数の信号の ケーブル側への漏洩を阻止するための第2の共振導体と が離間して先端が開放状態で、板状の誘電体表面に形成 され、これら第1、第2の共振導体の他端側は前記板状 の誘電体裏面側で短絡された状態で前記同軸ケーブルの 先端部における外部導体に接続されてなる誘電体スリー ブとを設けている。

【0009】また、本発明に係る携帯端末機では、前記 誘電体スリーブは前記アンテナ基板上に設けられ、該ア ンテナ基板は、前記プリント配線基板から電気的に浮き 上がって取り付けられる。

・【発明の実施の形態】以下、本発明の実施の形態を図面 を参照して説明する。図1は本発明の実施の形態による 携帯端末機としての携帯電話機におけるアンテナ構造を 原理的に示す構成図であり、 (a) は平面図、 (b) は 側面図、(c)は使用状態を示す正面図である。

【0011】図1において、4は電話機本体、1は電話 機本体4ののPCB、6はPCB1に設けたスリーブ・ アンテナアンテナ、7はスピーカで、PCB1のスリー プ・アンテナ6が設けられた面とは反対側の面に取り付 けられている。スリーブアンテナ6には、同軸ケーブル 9を介して給電される。

【0012】図1のように、PCB1の適当な位置にス リーブ・アンテナ 6 を設けて給電すると、アンテナ共振 電流はスリーブの作用により同軸ケーブル9側には漏洩 しなくなり、基本的にPCB1に地板電流は流れない。 電話機の使用状態では図1 (c) のように、使用者の頭 部5はPCB1のスピーカ7側にある。このため、PC B 1 が電磁遮蔽板として作用し、頭部 5 の近傍電磁界を 低減してSARを低減することができる。

。【0013】図2、図3は上記の原理に基づく本発明の 実施の形態によるアンテナ構造の具体的な構成を示すも のである。本実施の形態は、f1、f2の2つの使用周 波数を有する携帯電話機に適用したものである。図2、 図3において、スリーブ・アンテナ6は、PCB1の上 部に設けられたアンテナPCB61と、アンテナPCB 61にアンテナ・パターンとして形成された周波数 f 1 (波長 λ 1) を受信するための長さ λ 1/4のアンテナ 素子62Aと、アンテナ素子62Aと給電点で接続され アンテナ・バターンとして形成された周波数 f 2 (波長 λ2) を受信するための長さλ2/4のアンテナ素子6 2Bと、アンテナPCB61上に設けられた誘電体スリ ーブ63とで構成されている。アンテナ素子62のパタ ーンはアンテナ長を短くするた**めに**、図示のようにメア ンダライン化されている(図2、図3 (A)、

【0014】PCB1の下部には送受信回路部8が設け られている。送受信回路部8とスリーブ・アンテナ6と は、同軸ケーブル9、アンテナPCB61のアンテナ素 子62A、62Bと同じ面に形成されたマイクロストリ ップライン65を通じて接続されている。同軸ケーブル 9は外部導体91と中心導体92とを有している。図示 では同軸ケーブル9の先端部における中心導体92が、 アンテナPCB61にマイクロストリップライン65を 介してアンテナ素子 6 2 A, 6 2Bの一端である給電点 64に接続されている。また、矧部導体92がマイクロ ストリップラインのグランドパターン66に接続されて いる。このグランドパターン 6 6は、アンテナPCB6 1におけるアンテナ素子62A、62Bが形成された面 からその反対側の面にわたって飛ばされている(図3

(A) (C)) o

【0015】また、図示のように同軸ケーブル9を折り 曲げることにより、アンテナPCB61と誘電体スリー ブ63をPCB1から電気的に浮き上がるようにしてい る (図3 (B))。尚、一般の携帯電話機においては、 図1のように、PCBの上部にアンテナが配され、下部 に送受信回路部が配されている。

【0016】図4は誘電体スリーブ63の構造を示す斜 視図である。誘電体スリーブ63は誘電体セラミックで 形成された板体631と、共振導体630とからなる。 この共振導体630は、図4(A)に示すように、第1 の周波数 f 1 に共振する第1の共振導体 6 3 0 A と、第 2の周波数 f 2に共振する第2の共振導体 6 3 0 Bとが 離間して先端が開放状態で、他端側は、誘電体セラミッ クの板体631を挟持するように折り曲げられ、板状の 導体630Cを介して短絡され、一体的に形成されてい

【0017】この共振導体630は、図4(B)に示す ように、その折曲部に誘電体セラミックの板体631を 挿入することにより、誘電体スリーブ63を構成する。 そしてこの誘電体スリーブ63の導体630Cの底面が アンテナPCB61におけるアンテナ素子62A,62 Bが形成された面とは反対側の面に形成されたマイクロ ストリップラインのグランドパターン66上に接続され る(図4(A))。なお、共振導体は銀ペースト等で誘 電体板に印刷された後焼結されたいわゆるセラミック配 線板状の構造でもよい。

【0018】すなわち、誘電体スリーブ63の共振導体 6 3 0 は、同軸ケーブル 9 の長手方向に第 1 の周波数 f 1の信号のケーブル側への漏洩を阻止するための第1の 共振導体630Aと、第2の周波数 f 2の信号のケーブ ル側への漏洩を阻止するための第2の共振導体630B とが離間して先端が開放状態で、板状の誘電体631表 面に形成され、これら第1、第2の共振導体630A、 630Bの他端側は板状の誘電体631の裏面側で短絡 された状態で同軸ケーブル9の先端部における外部導体 9 1 に接続されることとなる(図 3 (A)、(C))。 【0019】誘電体スリーブ63は、図4(B)、

(C) に示すように、第1の共振導体630Aの電気長 が lgl / 4、第2の共振導体630Bの電気長が lg2 /4となり、上記共振導体630A、630Bの一端が 短絡され、他端が開放端とされた λ g l / 4 波長共振 器、 $\lambda g2 / 4$ 共振器を構成している。ここで $\lambda g1$ は、 誘電体スリーブを構成する誘電体セラミックの比誘電率 をεrとすると、λgl≒λl/√εr、λg2≒λ2/ √ crである。このように、第1の共振導体630A、 第2の共振導体630Bの電気長を、本来、それぞれ、 λ 1 / 4 、 λ 2 / 4 の長さが必要であるのに対し、誘電 体スリーブ63を構成する誘電体セラミックの比誘電率 ε r により 1 / √ ε r に短縮することができる。 50

【0020】上記構成によれば、送受信回路部 8 からの 送信電力は同軸ケーブル 9 を通じて誘電体スリーブ 6 3 *に導かれ、すなわち同軸ケーブル 9 の外部導体 9 1 がマイクロストリップのグランドパターン 6 6 を介して誘電体スリーブ 6 3 の上記導体 6 3 0 A, 6 3 0 Bに接続され、中心導体 9 2 がマイクロストリップライン 9 2、給電点 6 4 を介してアンテナ素子 6 2 A、6 2 Bに接続される。同軸ケーブル 9 とマイクロストリップライン 6 5 は、共に不平衡伝送線路であるため、電力反射無く、接続される。

【0021】ここでマイクロストリップのグランドパターン(導体)66は、給電点64で物理的に開放状態にあり、この給電点64で共振導体630A,630Bが短絡状態となる誘電体スリーブ63が同軸ケーブル9の外部導体91に接続される。この結果、アンテナ素子62A,62Bと誘電体スリーブ63は電気長 λ g1/2、 λ g2/2のダイボール・アンテナと同様の構成となり、2つの周波数f1、f2でそれぞれ独立して動作する、いわゆるスリーブ・アンテナとして動作することになり、外部導体91へアンテナ共振電流の一部が漏れることはなく、従って、電話機のPCB1に地板電流は流れない。

【0022】また、このとき使用者の頭部5は、図1 (c) のようにPCB1のアンテナ側とは反対側のスピーカ7側にあるので、PCB1が遮蔽板として作用し、頭部の近傍電磁界を低減してSARを改善することができる。尚、アンテナ素子62A、62Bのうちの1つだけ用い、その1つのアンテナ素子の途中にトラップ回路を設けることにより、周波数の異なる2つのアンテナ素子を構成するようにしてもよい。

【0023】上記構成によれば、スリーブ・アンテナが 実現される。本実施の形態によれば、PCB1が遮蔽板 として作用し、頭部の近傍電磁界を低減してSARを改 善することができる。尚、2つの周波数f1、f2は、 例えばPHSや普通の携帯電話機等で用いられる。

【0024】各実施の形態においては、携帯電話機について説明したが、本発明は携帯電話機に限らずPDA等の他の携帯端末機に適用することができる。

[0025]

【発明の効果】以上説明したように本発明によれば、携 40 帯端末機のPCBのスピーカとは反対側に多周波数の信

号を送受信できるスリープ・アンテナを構成したことにより、PCBに地板電流を流すことなく頭部の近傍電磁界を低減して、SARを改善することができ、かつ多周波数の信号の送受信に対応することができるアンテナ構造を有する携帯端末機を小型で安価に実現することがで

【図面の簡単な説明】

きる。

【図1】 本発明を原理的に示す携帯電話機のアンテナ 構造を示す正面図、側面図及び使用状態の正面図であ る。

10 る。 【図2】 本発明の実施の形態によるアンテナ構造の基本構成を示す説明図。平面図及び側面図である。

【図3】 本発明実施の形態によるアンテナの電気的構造を示す平面図、側面図及び底面図である。

【図4】 誘電体スリーブの組立て構成図である。

【図5】 従来の携帯端末機におけるモノポール・アンテナの取り付け構造及び電流分布、電圧分布を示す構成図である。

【図6】 従来の携帯端末機における頭部近傍磁界を概略的に示す構成図である。

【符号の説明】

- 1 電話機本体のPCB (プリント配線基板)
- 4 電話機本体
- 5 使用者の頭部
- 6 スリーブ・アンテナ
- 61 アンテナPCB
- 62A、62 アンテナ素子
- 63 誘電体スリーブ
- 65 マイクロストリップライン
- 30 66 マイクロストリップラインのグランドパターン
 - 630 共振導体
 - 630A 第1の共振導体
 - 630B 第2の共振導体
 - 630C 板状の導体
 - 631 誘電体セラミック
 - 7 スピーカ
 - 8 送受信回路
 - 9 同軸ケーブル
 - 91 外部導体
 - 40 92 中心導体

フロントページの続き

- (51) Int.Cl. ⁷ H O 1 Q 21/30	識別記号	F I H O 1 Q 21/30	テ-マコート*(参考) 5 K O 6 7
H 0 4 M 1/00		H 0 4 M 1/00 1/02	A C
1/725 H 0 4 Q 7/32		1/725 .H 0 4 B 7/26	ν

「F ターム(参考) 5J021 AA02 AB02 CA06 GA08 HA05 HA10 5J046 AA02 AA04 AB06 PA07 5J047 AA02 AA04 AB06 FD01 5K023 AA07 BB06 BB23 LL01 LL05

5K027 AA11 CC08 MM00 5K067 AA35 BB04 EE02 KK17

-6-