

CNAPs

Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes^[1]

James Requeima* University of Cambridge. Invenia Labs

Jonathan Gordon* University of Cambridge

John Bronskill* University of Cambridge

Sebastian Nowozin Google Research Berlin

Richard E. Turner University of Cambridge, Microsoft Research

Department of Engineering

Motivation

Humans can learn a new concept from just a few examples.^[1]

Motivation

Humans can learn a new concept from just a few examples.^[1]

Goal:

 Quickly adapt and learn to make predictions from a small number of training examples or shots at test time on diverse tasks.

Motivation

Humans can learn a new concept from just a few examples.^[1]

Goal:

 Quickly adapt and learn to make predictions from a small number of training examples or shots at test time on diverse tasks.

Strategy:

Learn across many tasks in order to generalize to a new unseen task.

• 3D reconstruction of objects from a small number of views.

 3D reconstruction of objects from a small number of views.

- Recommendation/personalization:
 - many users, few ratings/likes per user.

 3D reconstruction of objects from a small number of views.

- Recommendation/personalization:
 - many users, few ratings/likes per user.

- Face recognition/tagging within groups:
 - Many groups of different sizes, with varying number of photos per person.

Stop Watch

Digital Clock

Digital Watch

Parking Meter

Test Images (Target Set)

Predictions

Stop Watch

Digital Watch

Parking Meter

0.69	0.02	0.07	0.24	
0.04	0.13	0.11	0.32	
0.27	0.85	0.80	0.35	
0.00	0.01	0.02	0.10	

Predictions

Stop Watch

Digital Watch

Parking Meter

0.69	0.02	0.07	0.24	
0.04	0.13	0.11	0.32	
0.27	0.85	0.80	0.35	
0.00	0.01	0.02	0.10	

Predictions

Stop Watch

Digital Clock

Digital Watch

Parking Meter

0.69	0.02	0.07	0.24	
0.04	0.13	0.11	0.32	
0.27	0.85	0.80	0.35	
0.00	0.01	0.02	0.10	

Predictions

Stop Watch

Digital Watch

Parking Meter

0.63	0.02	0.04	0.11	
0.04	0.09	0.13	0.11	
0.29	0.70	0.61	0.24	
0.04	0.19	0.22	0.54	

Test Images (Target Set)

Predictions

Stop Watch

Digital Watch

Parking Meter

0.63	0.02	0.04	0.11	
0.04	0.09	0.13	0.11	
0.29	0.70	0.61	0.24	
0.04	0.19	0.22	0.54	

Predictions

Stop Watch

Parking Meter

0.63	0.02	0.04	0.11
0.04	0.09	0.13	0.11
0.29	0.70	0.61	0.24
0.04	0.19	0.22	0.54

Predictions

Stop Watch

Digital Watch

Sundial

	0.81	0.04	0.07	0.11	0.11
0	0.01	0.12	0.09	0.12	0.16
	0.08	0.68	0.72	0.12	0.13
	0.02	0.16	0.12	0.54	0.12
	0.07	0.00	0.00	0.12	0.47

Test Images (Target Set)

Predictions

Stop Watch

Digital Clock

Digital Watch

Parking Meter

Sundial

0.81	0.04	0.07	0.11	0.11
0.01	0.12	0.09	0.12	0.16
0.08	0.68	0.72	0.12	0.13
0.02	0.16	0.12	0.54	0.12
0.07	0.00	0.00	0.12	0.47

Test Images (Target Set)

Predictions

Stop Watch

Digital Watch

Parking Meter

Sundial

0.81	0.04	0.07	0.11	0.11
0.01	0.12	0.09	0.12	0.16
0.08	0.68	0.72	0.12	0.13
0.02	0.16	0.12	0.54	0.12
0.07	0.00	0.00	0.12	0.47

Traditional multi-task modelling approach:

$$p(y^{\tau}|x^{\tau},\theta,\psi^{\tau})$$

$$\begin{aligned} \tau &= \operatorname{task} \\ \theta &= \operatorname{global parameters} \\ \psi^{\tau} &= \operatorname{task specific params} \end{aligned}$$

Traditional multi-task modelling approach:

$$p(y^{\tau}|x^{\tau},\theta,\psi^{\tau})$$

$$\begin{aligned} \tau &= \operatorname{task} \\ \theta &= \operatorname{global parameters} \\ \psi^{\tau} &= \operatorname{task specific params} \end{aligned}$$

Train task specific parameters on task data $\mathcal{D}^{ au}=\{x_n^{ au},y_n^{ au}\}_{n=1}^N$ giving $\hat{\psi}^{ au}$

Traditional multi-task modelling approach:

$$p(y^{\tau}|x^{\tau},\theta,\psi^{\tau})$$

$$au$$
 = task

$$\theta$$
 = global parameters

$$\psi^{ au}$$
 = task specific params

Train task specific parameters on task data $\mathcal{D}^{ au}=\{x_n^{ au},y_n^{ au}\}_{n=1}^N$ giving $\hat{\psi}^{ au}$

$$p(y^*|x^*, \theta, \hat{\psi}^{\tau})$$

Traditional multi-task modelling approach:

$$p(y^{\tau}|x^{\tau},\theta,\psi^{\tau})$$

$$au$$
 = task $heta$ = global parameters

 $\psi^{ au}$ = task specific params

Train task specific parameters on task data $\mathcal{D}^{ au}=\{x_n^{ au},y_n^{ au}\}_{n=1}^N$ giving $\hat{\psi}^{ au}$

Predict using:

$$p(y^*|x^*, \theta, \hat{\psi}^{\tau})$$

New approach: directly specify the predictive in terms of the task data

$$p(y^*|x^*, \theta, \psi_{\phi}(\mathcal{D}^{\tau}))$$

Traditional multi-task modelling approach:

$$p(y^{\tau}|x^{\tau},\theta,\psi^{\tau})$$

$$\tau$$
 = task θ = global parameters

 $\psi^{ au}$ = task specific params

Train task specific parameters on task data $\mathcal{D}^{ au}=\{x_n^{ au},y_n^{ au}\}_{n=1}^N$ giving $\hat{\psi}^{ au}$

Predict using:

$$p(y^*|x^*, \theta, \hat{\psi}^{\tau})$$

New approach: directly specify the predictive in terms of the task data

$$p(y^*|x^*, \theta, \psi_{\phi}(\mathcal{D}^{\tau}))$$

Relates to Conditional Neural Processes [1] and auto-regressive models.

Traditional multi-task modelling approach:

$$p(y^{\tau}|x^{\tau},\theta,\psi^{\tau})$$

$$\tau$$
 = task θ = global parameters

 $\psi^{ au}$ = task specific params

Train task specific parameters on task data $\mathcal{D}^{ au}=\{x_n^{ au},y_n^{ au}\}_{n=1}^N$ giving $\hat{\psi}^{ au}$

Predict using:

$$p(y^*|x^*,\theta,\hat{\psi}^{\tau})$$

New approach: directly specify the predictive in terms of the task data

$$p(y^*|x^*, \theta, \psi_{\phi}(\mathcal{D}^{\tau}))$$

Relates to Conditional Neural Processes [1] and auto-regressive models.

 ϕ is trained via maximum likelihood.

Conditional Neural Processes

Regression

Conditional Neural Processes

Regression

Classification

Conditional Neural Processes

For classification:

- Aggregation is class by class.
- 'r' grows with number of classes
- Parameters in 'g' grow with number of classes
- CNP limited to fixed way classification

Classification

Regression

CNAPs specialize CNPs to the multi-task classification setting:

• The task-specific parameters ψ^{τ} are parameters of the model itself versus CNPs fixed dimensional vector r as a model input.

- The task-specific parameters ψ^{τ} are parameters of the model itself versus CNPs fixed dimensional vector r as a model input.
 - Allows for varying-way classification with a fixed number of parameters.
 CNPs have pre-specified number of classes and the parameters grow (at least) linearly with the number of classes.

- The task-specific parameters ψ^{τ} are parameters of the model itself versus CNPs fixed dimensional vector r as a model input.
 - Allows for varying-way classification with a fixed number of parameters.
 CNPs have pre-specified number of classes and the parameters grow (at least) linearly with the number of classes.
 - Allows modeling of explicit hierarchy in the data (task vs class vs global).
 CNPs share all parameters across tasks and use r to adapt.

- The task-specific parameters ψ^{τ} are parameters of the model itself versus CNPs fixed dimensional vector r as a model input.
 - Allows for varying-way classification with a fixed number of parameters.
 CNPs have pre-specified number of classes and the parameters grow (at least) linearly with the number of classes.
 - Allows modeling of explicit hierarchy in the data (task vs class vs global).
 CNPs share all parameters across tasks and use r to adapt.
 - Allows support for continual learning in a natural way (more on this later)

- The task-specific parameters ψ^{τ} are parameters of the model itself versus CNPs fixed dimensional vector r as a model input.
 - Allows for varying-way classification with a fixed number of parameters.
 CNPs have pre-specified number of classes and the parameters grow (at least) linearly with the number of classes.
 - Allows modeling of explicit hierarchy in the data (task vs class vs global).
 CNPs share all parameters across tasks and use r to adapt.
 - Allows support for continual learning in a natural way (more on this later)
 - Two-step training procedure facilitates multi-task and transfer learning geared toward to diverse tasks.

Competitive Landscape

adapt feature extractor (very different types of input image)

- FiLM (Feature-wise Linear Modulation) layer:
 - scales (by factor γ); and
 - shifts (with offset β) convolutional layer feature maps.

Adapting the feature extractor: FiLM layers[1]

- FiLM (Feature-wise Linear Modulation) layer:
 - scales (by factor γ); and
 - shifts (with offset β) convolutional layer feature maps.
- When added to a ResNet block:
 - enable expressive feature adaptation
 - add a small number of parameters (< 1% of the system).

- FiLM (Feature-wise Linear Modulation) layer:
 - scales (by factor γ); and
 - shifts (with offset β) convolutional layer feature maps.
- When added to a ResNet block:
 - enable expressive feature adaptation
 - add a small number of parameters (< 1% of the system).

- FiLM (Feature-wise Linear Modulation) layer:
 - scales (by factor γ); and
 - shifts (with offset β) convolutional layer feature maps.
- When added to a ResNet block:
 - enable expressive feature adaptation
 - add a small number of parameters (< 1% of the system).

• θ parameters are learned via pre-training (e.g. on ImageNet)

- FiLM (Feature-wise Linear Modulation) layer:
 - scales (by factor γ); and
 - shifts (with offset β) convolutional layer feature maps.
- When added to a ResNet block:
 - enable expressive feature adaptation
 - add a small number of parameters (< 1% of the system).

• θ parameters are learned via pre-training (e.g. on ImageNet)

 PointNet^[1] / Deep Sets^[2] / Neural Statistician^[3] statistics network → permutation invariance.

$$\psi(\mathcal{D}^{\tau}) = f\left(\sum_{n=1}^{N} g(x_n^{\tau})\right)$$

^[1] Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017

^[2] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems. 2017.

^[3] Edwards, Harrison, and Amos Storkey. "Towards a neural statistician." arXiv preprint arXiv:1606.02185 (2016).

- PointNet^[1] / Deep Sets^[2] / Neural Statistician^[3] statistics network → permutation invariance.
- $\psi(\mathcal{D}^{\tau}) = f\left(\sum_{n=1}^{N} g(x_n^{\tau})\right)$
- MLP network maps set encoding to FiLM weights.

^[1] Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017

^[2] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems. 2017.

^[3] Edwards, Harrison, and Amos Storkey. "Towards a neural statistician." arXiv preprint arXiv:1606.02185 (2016).

- PointNet^[1] / Deep Sets^[2] / Neural Statistician^[3] statistics network → permutation invariance.
- $\psi(\mathcal{D}^{\tau}) = f\left(\sum_{n=1}^{N} g(x_n^{\tau})\right)$
- MLP network maps set encoding to FiLM weights.
- Continual learning supported by running averages of task set encoding.

^[1] Qi, Charles R., et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017

^[2] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems. 2017.

^[3] Edwards, Harrison, and Amos Storkey. "Towards a neural statistician." arXiv preprint arXiv:1606.02185 (2016).

Pass context set through feature extractor class by class.

Pass context set through feature extractor class by class.

Pass context set through feature extractor class by class.

- Pass context set through feature extractor class by class.
- Features for each class c are averaged (a la PointNet / Deep Sets).

- Pass context set through feature extractor class by class.
- Features for each class c are averaged (a la PointNet / Deep Sets).
- Head adaptation network generates the weights and biases for class c.

- Pass context set through feature extractor class by class.
- Features for each class c are averaged (a la PointNet / Deep Sets).
- Head adaptation network generates the weights and biases for class c.

- Pass context set through feature extractor class by class.
- Features for each class c are averaged (a la PointNet / Deep Sets).
- Head adaptation network generates the weights and biases for class c.

- Pass context set through feature extractor class by class.
- Features for each class c are averaged (a la PointNet / Deep Sets).
- Head adaptation network generates the weights and biases for class c.

- Pass context set through feature extractor class by class.
- Features for each class c are averaged (a la PointNet / Deep Sets).
- Head adaptation network generates the weights and biases for class c.

Feature Extractor

1. Use context set to adapt feature extractor FiLM layers

- 1. Use context set to adapt feature extractor FiLM layers
- Pass context set class by class through adapted feature extractor and generate head

- 1. Use context set to adapt feature extractor FiLM layers.
- 2. Pass context set class by class through adapted feature extractor and generate head.
- 3. Apply adapted network to test examples.

1. Pretraining θ

• Feature extractor parameters θ are pre-trained on a large dataset (e.g. ImageNet) in a full-way classification procedure and then *frozen*.

1. Pretraining θ

• Feature extractor parameters θ are pre-trained on a large dataset (e.g. ImageNet) in a full-way classification procedure and then *frozen*.

2. Meta-training ϕ

• The adaptation parameters ϕ with are trained via maximum likelihood:

- 1. Pretraining θ
 - Feature extractor parameters θ are pre-trained on a large dataset (e.g. ImageNet) in a full-way classification procedure and then *frozen*.
- 2. Meta-training ϕ
 - The adaptation parameters ϕ with are trained via maximum likelihood:
 - 1 Sample task $\tau \sim U$.

- 1. Pretraining θ
 - Feature extractor parameters θ are pre-trained on a large dataset (e.g. ImageNet) in a full-way classification procedure and then *frozen*.
- 2. Meta-training ϕ
 - The adaptation parameters ϕ with are trained via maximum likelihood:
 - 1 Sample task $\tau \sim U$.
 - ② Randomly split data into D^{τ} (context) and $\{(x_m^{*\tau}, y_m^{*\tau})\}_{m=1}^{M_{\tau}}$ (target).

- 1. Pretraining θ
 - Feature extractor parameters θ are pre-trained on a large dataset (e.g. ImageNet) in a full-way classification procedure and then *frozen*.
- 2. Meta-training ϕ
 - The adaptation parameters ϕ with are trained via maximum likelihood:
 - 1 Sample task $\tau \sim U$.
 - ② Randomly split data into D^{τ} (context) and $\{(x_m^{*\tau}, y_m^{*\tau})\}_{m=1}^{M_{\tau}}$ (target).
 - (3) Evaluate $L^{\tau} = \frac{1}{M_{\tau}} \sum_{m=1}^{M_{\tau}} \log p(y_m^{*\tau} | x_m^{*\tau}, \theta, \psi_{\phi}(D^{\tau}, \theta)).$

- 1. Pretraining θ
 - Feature extractor parameters θ are pre-trained on a large dataset (e.g. ImageNet) in a full-way classification procedure and then *frozen*.
- 2. Meta-training ϕ
 - The adaptation parameters ϕ with are trained via maximum likelihood:
 - 1 Sample task $\tau \sim U$.
 - ② Randomly split data into D^{τ} (context) and $\{(x_m^{*\tau}, y_m^{*\tau})\}_{m=1}^{M_{\tau}}$ (target).
 - (3) Evaluate $L^{\tau} = \frac{1}{M_{\tau}} \sum_{m=1}^{M_{\tau}} \log p(y_m^{*\tau} | x_m^{*\tau}, \theta, \psi_{\phi}(D^{\tau}, \theta)).$
 - 4 Update $\phi_{new} = \phi_{old} + \eta \nabla_{\phi} L^{\tau}$ with learning rate η .

Training θ and ϕ (con't)

• Freezing θ is essential for good feature extractor adaptation.

Training θ and ϕ (con't)

- Freezing θ is essential for good feature extractor adaptation.
 - a. The small number of generated FiLM-layer parameters cannot "compete" with the large number of parameters θ when adapting to a new context set.

Training θ and ϕ (con't)

- Freezing θ is essential for good feature extractor adaptation.
 - a. The small number of generated FiLM-layer parameters cannot "compete" with the large number of parameters θ when adapting to a new context set.
 - b. We want to "train as we test", and only the FiLM parameters will update during test.

Meta-Dataset^[1] Multi-task, Few-shot Benchmark

Meta-Dataset^[1] Multi-task, Few-shot Benchmark

Meta-Dataset Task Sampling

- Task (τ) sampling procedure:
 - Choose a dataset uniformly at random.
 - Choose a random number of classes (between 5 and 50) from the dataset.
 - Choose a random number of shots per class (minimum of 1, maximum of 500 across all classes).
 - Dataset hierarchy is respected in Omniglot and ImageNet
- Adaptation networks are trained on 100,000 of these tasks.

Meta-Dataset Few-Shot Classification Results

Dataset	Finetune	MatchingNet	ProtoNet	fo-MAML	Proto-MAML	CNAPs	
ILSVRC [21] Omniglot [31]	43.1 ± 1.1 71.1 ± 1.4	36.1 ± 1.0 78.3 ± 1.0	44.5 ± 1.1 79.6 ± 1.1	32.4 ± 1.0 71.9 ± 1.2	47.9 ± 1.1 82.9 ± 0.9	$52.3 \pm 1.0 \\ 88.4 \pm 0.7$	1
Aircraft [32]	72.0 ± 1.1	69.2 ± 1.0	71.1 ± 0.9	52.8 ± 0.9	74.2 ± 0.8	80.5 ± 0.6	held
Birds [33] Textures [34]	59.8 ± 1.2 69.1 \pm 0.9	56.4 ± 1.0 61.8 ± 0.7	67.0 ± 1.0 65.2 ± 0.8	47.2 ± 1.1 56.7 ± 0.7	70.0 ± 1.0 67.9 ± 0.8	72.2 ± 0.9 58.3 ± 0.7	out
Quick Draw [35]	47.0 ± 1.2 38.2 ± 1.0	60.8 ± 1.0 33.7 ± 1.0	64.9 ± 0.9 40.3 ± 1.1	50.5 ± 1.2 21.0 ± 1.0	66.6 ± 0.9 42.0 ± 1.1	72.5 ± 0.8	classes
Fungi [36] VGG Flower [37]	38.2 ± 1.0 85.3 ± 0.7	81.9 ± 0.7	40.3 ± 1.1 86.9 ± 0.7	70.9 ± 1.0	88.5 ± 0.7	47.4 ± 1.0 86.0 ± 0.5	↓
Traffic Signs [38] MSCOCO [39]	-66.7 ± 1.2 35.2 ± 1.1	$-\frac{55.6 \pm 1.1}{28.8 \pm 1.0}$	$\overline{46.5} \pm 1.\overline{0}$ 39.9 ± 1.1	$\overline{34.2 \pm 1.3}$ 24.1 ± 1.1	$\overline{52.3} \pm 1.\overline{1}$ 41.3 ± 1.0	$\overline{60.2} \pm 0.9$ 42.6 ± 1.1	1 entirely
MNIST [29]	33.2 ± 1.1	20.0 ± 1.0	33.3 🛨 1.1	24.1 🛨 1.1	41. 3 ± 1.0	$\textbf{92.7} \pm \textbf{0.4}$	held
CIFAR10 [30] CIFAR100 [30]						61.5 ± 0.7 50.1 ± 1.0	out

FiLM Parameter Learning: SGD vs Adaptation Nets

Figure 5: Comparing CNAPs to gradient based feature extractor adaptation: accuracy on 5-way classification tasks from withheld datasets as a function of processing time. Dot size reflects shot number (1 to 25 shots).

- Given sufficient data and processing time, SGD will yield higher accuracy, but:
 - CNAPs is at least 5x faster at test time as it only requires a single forward pass through the network while SGD needs multiple forward + backward passes.
 - CNAPs has higher accuracy at low shot, as it is resistant to overfitting as a result of the adaptation network parameters being shared and trained on diverse tasks.

Continual Learning

- Continual (or lifelong) learning involves learning from a sequence of new tasks without forgetting earlier ones.
- We employ the same meta-trained model that was use in the few-shot, multi-task classification experiments.
- Memory:
 - We allow our model to "remember" by storing running averages of the adaptation networks set encodings as new tasks are encountered.
- The following results are an "apples to oranges" comparison:
 - Model has been meta-trained on many datasets and has learned to adapt!

Continual Learning Results

	M N	/IST	CIFAR100		
Method	Multi	Single	Multi	Single	
SI [41]	99.3	57.6	73.2	22.8	
EWC [43]	99.3	55.8	72.8	23.1	
VCL [44]	98.5 ± 0.4	-	-	-	
RWalk [42]	99.3	82.5	74.2	34.0	
CNAPs	98.9 ± 0.2	80.9 ± 0.9	76.0 ± 0.5	37.2 ± 0.6	

- Results are competitive with or better than state of the art baselines. Despite:
 - Not being trained to do continual learning.
 - Not exposed to these datasets during meta-training.
 - Observing orders of magnitude fewer examples.

Thanks for listening!

Any questions?

Paper: https://arxiv.org/pdf/1906.07697.pdf

• Code: https://github.com/cambridge-mlg/cnaps

