Relación de Problemas 13: Transistores

Cuestiones

- 1. ¿Cuál es el terminal de control de un MOSFET? ¿Y los terminales controlados? ¿Qué magnitud eléctrica es la que controla el funcionamiento del transistor?
- 2. ¿Cuándo se dice que un transistor MOSFET está en región óhmica? ¿Qué sabemos de las tensiones y corrientes en los terminales del dispositivo cuando está en esta región de comportamiento?
- 3. En qué región o regiones de funcionamiento trabaja un transistor MOSFET cuando se emplea como conmutador? ¿Por qué?
- 4. Consideremos un NMOS con un $V_{to}=2$ V. ¿ Cuál es la región de funcionamiento (óhmica, saturación o corte) si : a) $V_{GS}=1$ V, y $V_{DS}=5$ V; b) $V_{GS}=3$ V, y $V_{DS}=0.5$ V; c) $V_{GS}=3$ V, y $V_{DS}=6$ V, ; d) $V_{GS}=5$ V, y $V_{DS}=6$ V.

Problemas

1. Dado el circuito de la figura 1a determinar en qué región de funcionamiento se encuentra el transistor y calcular el valor de la corriente de drenador, así como la tensión drenador-fuente. Para ello tenga en cuenta que entre drenador-fuente se comporta como una resistencia de 1 Ω y V_{to} =2V.

Sol. Región óhmica. $I_{DS} = 417mA$; $V_{DS} = 0.42V$

2. El 2N700 es un MOSFET con $V_{to}=2$ V y $R_{DS(ON)}=6$ Ω . Calcular la corriente a través del LED i_D , cuando a) $V_{in}=0$ V y b) $V_{in}=4.5$ V. Puede suponer el LED un diodo ideal Sol. a) $I_{DS}=0$; b) $I_{DS}=20$ mA.

Figura 1: a) Figura del problema 1; b) Figura del problema 2