

Mode of Exam

OFFLINE

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: AY2023-24-ODD set C

Test: CLAT-2 Date: 10/10/2023

Course Code & Title: 18AIC301J, Deep Learning Techniques. Duration: 90 minutes

Year & Sem: 3rd year, Vth sem Max. Marks: 50

Course Lea	arning Rationale (CLR):	The purpose of learning this course is to:		Learn	ing				ľ	Prog	ram L	.earni	ng Oı	utcon	nes (P	LO)				
CLR-1:	Illustrate the basic conce	pts of deep learning	1	2	3	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5
CLR-2:	Gain knowledge in Optin	ization algorithms and dimensionality reduction																		
CLR-3:	Develop a broad underst	anding of word2vec models and Convolution Neural Network models							5			ilit								
CLR-4:	Acquire knowledge in Tr	nnsfer learning and Sequential Models	(moo	%	(%)	ge		Ħ	Research			inab		Work		ø				
CLR-5:	Implement the attention	nechanism and advanced deep learning models	画	ency	Attainment	wed	S	Development	, Re	age	Ф	Sustainability		W W		Finance	<u>B</u>			
			Thinking	ofici	taint	ž	Analysis	svelc	Design, F	I Us	Culture	∘ర		Team	tion	∞ర	Leaming			
				P.		ening	ηAn	∘ర	Š,	T00	ంర	men		ale	nica	Mat.	ig Le		2	8
Course Lea	arning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected Proficiency	Expected	Engineering Knowledge	Problem	Design	Analysis,	Modern Tool Usage	Society	Environment	Ethics	Individual &	Communication	Project Mat.	Life Long	PS0-1	PSO-2	PSO-
CLO-1:	Understand various deep	learning models to solve real world problems	2	85	75	L	Н	-	123	-	128	-	-0	M	120	-	<u></u>	Н	M	М
CLO-2:	Compare the optimizatio	n algorithms and high dimensional data using reduction techniques	2	80	70	М	М	-	-	-	-	-	-	М	-	-	-	М	L	М
CLO-3:	Implement word2vec mo	dels and Convolution Neural Network models	3	85	75	М	Н	-	-	-	-	-	-	Н		-	-	Н	М	М
CLO-4:	Apply RNN and transfer	earning to real world scenarios	3	85	80	М	Н	-	-	-	-	-	17.1	Н	(5)	-	-	Н	М	Н
CLO-5:	Use deep learning mode	ls to solve real-world applications	3	80	70	М	Н	-	- 1	-	-	-	-	Н	-	-	-	L	L	L

	Part - A					
Inctu	(20 x 1 = 20 Marks) uctions: Answer all					
Q.	Answer with choice variable	Marks	BL	СО	PO	PI
No	Thiswer with choice variable	Williams	DL			Code
1	(d)All of the above	1	1	2	1	1.6.1*
2	*(a)Learning rate is adaptive	1	2	2	1	1.6.1
3	*(b)Rectified Linear Unit	1	1	2	1	1.6.1
4	*D) All of the above	1	2	3	1	1.6.1
5	*(b) Dropout	1	2	2	1	1.6.1
6	*C) 218 x 218 x 5	1	3	3	2	2.4.1
7	*(c)Resnet	1	1	3	1	1.6.1
8	*C) PCA	1	1	3	1	1.6.1
9	*(c)3	1	3	3	2	1.7.1
10	*(d)Pooling	1	1	2	1	1.6.1
	Part – B					
	(2x 5 = 10 Marks; 2x 10 = 20)	Marks)				_
11		5	2	2	1	1.6.1
	Unit2: SLIDE 5, DLclass5.pdf					

12					5	1	3	1	1.6.1
	Haith CI	IDE 14 DI alagat ndf							
	Ullitz. SLI	IDE 14,DLclass1.pdf							
13					10	2	2	1	1.6.1
		2)/1]+1=34*34*8							
14	Unit3:DLo								
15	Unit2: DL	class2.pdf							
16	Unit2: DL	class3.pdf							
17	Layer	Activation map dimensions	Number of weights	Number of biases	10	3	3	2	1.7.1
	INPUT	$128 \times 128 \times 3$	0	0					
	CONV-9-32								
	POOL-2								
	CONV-5-64								
	POOL-2								
	CONV-5-64								
	POOL-2								
	FC-3								
				11					
	Solution	: Successively:							
	• 120 :	\times 120 \times 32 and 32 \times (9 \times 9 \times	3 + 1)						
	• 60 ×	60×32 and 0							
	• 56 ×	56×64 and $64\times(5\times5\times32$	+1)						
		28×64 and 0							
		24×64 and $64 \times (5 \times 5 \times 64)$	+1)						
		12×64 and 0							
	• 3 an	$d\ 3\times(12\times12\times64+1)$							
18	Unit3: DL	class4.pdf							

Question Paper Setter

Approved by Audit Professor/ Course Coordinator

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

^{*} Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: AY 23-24-ODD SET D

Test: CLAT-2 Date: 10/10/2023

Course Code & Title: 18AIC301J, Deep Learning Techniques. Duration: 90 minutes

Year & Sem: 3rd year, Vth sem Max. Marks: 50

Course Le	arning Rationale (CLR):	The purpose of learning this course is to:		Le	earni	ing					Prog	ram L	earni.	ing Οι	ıtcon	nes (F	LO)				
CLR-1:	Illustrate the basic conce	pts of deep learning			2	3	1	2	3	4	5	6	7	8	9	1 0	1	1 2	1 3	1 4	1 5
CLR-2:	Gain knowledge in Optin	nization algorithms and dimensionality reduction																			
CLR-3:	Develop a broad unders	anding of word2vec models and Convolution Neural Network models								45			ilit.								
CLR-4:	Acquire knowledge in Tr	ansfer learning and Sequential Models	(Bloom)	(70)	%	(%)	ge		Ħ	Research			Sustainability		¥		ø				
CLR-5:	Implement the attention	mechanism and advanced deep learning models			ancy	nent	wed	"	bme	,Re	ge	•	nsta		n W		nance	g			
			Thinking	ofici		Attainment	Kno	Analysis	Development	Design, F	l Usage	Culture	t & S		Tear	tion	×.	saming			
			Ē	3	<u>8</u>	cted Al	ing	An	∞ర	ď,	Tool	ంర	men		ale	nica	ect Mgt.	g Le	_	2	8
Course Le	arning Outcomes (CLO):	At the end of this course, learners will be able to:	level of	Pynood	Expected Proficiency	Expecte	Engineering Knowledge	Problem	Design	Analysis,	Modern	Society	Environment &	Ethics	Individual & Team Work	Communication	Project	Life Long	PS0-1	PSO-2	PSO-
CLO-1:	Understand various deep	learning models to solve real world problems	- 10	? 8	85	75	L	Н	-		-	123	-	120	М	1-1	-	12	Н	M	М
CLO-2:	Compare the optimization	n algorithms and high dimensional data using reduction techniques		2 8	80	70	М	М	-	-	-	-	-	2-3	М		-	0-0	М	L	М
CLO-3:	Implement word2vec mo	dels and Convolution Neural Network models		3 8	85	75	М	Н	-	-	-	1-7	-	-	Н	-	-		Н	М	М
CLO-4:	Apply RNN and transfer	learning to real world scenarios		3 8	85	80	М	Н	-	-	-	-	-	15.0	Н	150	-	-	Н	М	Н
CLO-5:	Use deep learning mode	els to solve real-world applications		3 8	80	70	М	Н	-	-	-	-	-		Н	-	-	(-)	L	L	L

	Part - A					
	(10 x1 = 20 Marks)					
Instru	uctions: Answer all					
Q. No	Question	Marks	BL	СО	PO	PI Code
1	CNN is mostly used when there is a) structured Data b) unstructured Data c)Both a and b d)none of the above	1	1	2	1	1.6.1*
2	Which neural network has only one hidden layer between the input and output? a) shallow neural network b) Deep neural network c)Feed-forward neural networks d) Recurrent neural networks	1	1	2	1	1.6.1
3	Which of the following SGD variants is based on both momentum and adaptive learning? a) RMSprop. b) Adagrad. c) Adam d)Nestrov	1	2	2	1	1.6.1

4	Which of the following function in the outpu probabilities of n classes all n equals to 1? (a) Softmax (b) ReLu (c) Sigmoid (d) Tanh	t layer if we v s (p1, p2,,pk) sud	wish to predict the ch that sum of p over	1	3	2	1	1.6.1
5	Which of the following i a) Batch normalization b) Dropout c) Leaking ReLU d)Low learning rate	s NOT a solution	for Dying ReLU?	1	1	2	1	1.6.1
6	Suppose an input to AVO pooling size of neurons i			1	3	3	2	2.4.1
	What would be the output a) 3 b) 5 c) 5.5 d) 7	6	7					
7	Which of the following to a dropout in a neural net a) bagging b) Boosting c)Stacking d)None of these		n similar operation as	1	2	3	1	1.6.1
8	The input image has bee and a kernel/filter of size the size of the convolute a)20*20 b)21*21 c)22*22 d)25*25	27*7 with a stride		1	1	3	1	1.6.1
9	The number of nodes in layer is 5. The maximum layer to the hidden layer a)50 b) more than 50 c)less than 50 d)It is an arbitrary value	n number of conne		1	1	3	1	1.6.1
10	How many input nodes a of 28X28? a)28 X 28 X 3 b) 28 X 28 X 1 c) 56 X 56 X 1 d) 56 X 56 X 3	re required to prod	cess a colored image	1	1	3	2	2.4.1

Mode of Exam **OFFLINE**

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: AY 23-24-ODD SET D

Course Code & Title: 18AIC301J, Deep Learning Techniques

Date: 10/10/2023

Part – B (4x 5 = 20 Marks) Answer all the questions

07	Explain how the following concepts help to overcome verfitting. (a)L2 regularization (b)Data augmentation Unit-2 DL class 3- ppt	5	2	2	1	1.6.1
10 17					4	0.1.0
S	What is dimensionality deduction? Illustrate the concept of VD. Unit -2 DL class 5- page 7	5	2	2	1	2.1.3
13 O	Outline the concepts of one hop representation with an example. Unit 3 ppt- page 2	5	2	3	1	1.6.1
14 Ex	Explain any two word-representations used in NLP? Detail the exchniques with an example each. Juit 3 ppt- page 5	5	2	3	1	1.6.1
	Part – C (2x 10 = 20 Mark	ks)		1		•
	Answer all the questions					
A.	Define Autoencoders. Explain relation between PCA and Autoencoders.	10	3	2	1	1.6.1
0	Unit 2 DL class 5 - page 2 OR					
16 W	What are the limitations of vennila gradient decent algorithm?	10	3	2	1	1.6.1
	explain the optimization algorithms to overcome that.	10	3	2	1	1.0.1
	Init 2- DL class 2- page 2					
U	Calculate CNN operation using below Using 5*5 input data calculate using kernel filter 3 3 1 0 0 0 1 3 1 3 1 3 1 2 2 3 3 2 0 0 2 2 2 2 2 0 0 0 0 1 4 2 2 2 2 2 0 0 0 1 2 2 2 2 2 0 0 0 1 2 2 2 2	10	3	3	2	2.4.1

	Avg pooling 8.66					
	OR	<u>'</u>				
18	Explain the intuition behind GoogleNet	10	3	3	1	1.6
	Unit 3- DL class 5- page-10					

SET C

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: AY2023-24-ODD

Test: CLAT-2
Course Code & Title: 18AIC301J, Deep Learning Techniques.
Year & Sem: 3rd year, Vth sem

Date: 10/10/2023
Duration: 90 minutes
Max. Marks: 50

Course Lea	arning Rationale (CLR):	The purpose of learning this course is to:		Le	arning						Prog	gram l	Learn	ing O	utcon	nes (F	PLO)			
CLR-1:	Illustrate the basic conce	ots of deep learning		2		3	1	2	3	4	5	6	7	8	9	1	1	1 2	1 3	1 4
CLR-2:	Gain knowledge in Optim	ization algorithms and dimensionality reduction						\top	Т											
CLR-3:	Develop a broad underst	anding of word2vec models and Convolution Neural Network models								to to			il.							
CLR-4:	Acquire knowledge in Tra	nsfer learning and Sequential Models	(mo	%		%	6	2	ŧ				inab		송		9			
CLR-5:	Implement the attention r	nechanism and advanced deep leaming models) j	ency	.	ment	do		ome o	Se Se	age	d)	Sustainability		×		Finance	_D		
			Thinking	d Proficiency (%)		d Attainment	opology Variabada	Anahoio	& Development	. Design.	Modern Tool Usage	& Culture	ent &		Individual & Team Work	nication	≪ర	20		
Course Lea	arning Outcomes (CLO):	At the end of this course, learners will be able to:	Level of	Expected		Expected	Pagina	Drohlom	Design	Analysis.	Modern	Society	Environm	Ethics	Individua	Communication	Project Mat.	Life Long	PS0-1	PS0-2
CLO-1:	Understand various deep	learning models to solve real world problems		8	5	75	L	Н	-	-	-	-	-	-	М	(2)	-	1-	Н	М
CLO-2:	Compare the optimization	algorithms and high dimensional data using reduction techniques		80)	70	М	М	-	-	-	-	-	-	М	-	-	-	M	L
CLO-3:	Implement word2vec mod	dels and Convolution Neural Network models		8	5	75	М	Н	-	-	-	-	-	-	Н	-	-	-	Н	М
CLO-4:	Apply RNN and transfer I	eaming to real world scenarios		8	5	80	М	Н	-	-	-	-	-	-	Н	(5)	-	-	Н	М
CLO-5:	Use deep learning mode	ls to solve real-world applications		80)	70	М	Н	-	-	-	-	-	-	Н	-	-	-	L	L

	Part - A					
Instru	(10 x1 = 15 Marks	5)				
Q. No	Question	Marks	BL	CO	PO	PI Code
1	The technique which is used to predict the target word from the contextA. CBOW B. CNN C. Skip Gram Model D. LSTM	1	1	2	1	1.6.1*
2	Which of the following layers is NOT a part of	1	2	2	1	1.6.1

CNN?		
Α.		
Convolutional		
Layer		
B. Pooling		
Layer		
C. Code Layer		
D. Fully		
connected		
Lay Which of		
the following		
layers is NOT		
a part of		
CNN?		
A.		
Convolutional		
Layer		

	B. Pooling					
	Layer					
	C. Code Layer					
	D. Fully					
	connected					
	Laye					
	Which of the following layers is NOT a part of CNN?					
	A. Convolutional Layer					
	B. Pooling Layer					
	C. Code Layer D. Fully connected Laye					
3	•	1	1	2	1	1.7.1
	When uses PCA? (a) When my data is small and with a few features					
	(b)Everytime before uses a Machine Learning					
	algorithm					
	(c)When I have a overfit case					
	(d)You want to find latent features and reduce dimensionality					
4	Which of the following model is best suited for	1	2	2	1	1.6.1
	sequential data?					
	A. Convolutional Neural Networks (ConvNets)					
	B. Capsule Neural Networks (CapsNets)					
	C. RNN (Recurrent Neural Network) D. Autoencoder					
5	Which of the following is FALSE about Dropout?	1	1	3	1	1.6.1
	A. Dropout is a learnable parameter in the network					
	B. Dropout increases the accuracy and performance					
	of the model					
	C. Dropout introduces sparsity in the network					
6	D. Dropout makes training process noisy Data Augmentation helps in:	1	1	3	1	1.6.1
	A. Reducing overfitting					
	B. Increasing generalization capacity of the network					
	C. Generating data from data					
7	D. All of the abov	1	1	3	1	1.6.1
'	computes the average of the elements present in the region of feature map covered by the	1	1		1	1.0.1
	filter.					
	A. Max Pooling					

	B. Average Pooling C. Global pooling D. None of these					
8	Which of the following is a hyperparameter in a neural network? A. Activation Function B. Learning Rate C. Momentum D. All of the above	1	3	3	2	1.7.1
9	Using too many epochs while training a network may lead to: A. High training time B. Overfitting C. Unnecessary time wastage D. All of the above	1	1	3	1	1.6.1
10	You have an input volume that is 63x63x16, and convolve it with 32 filters that are each 7x7, and stride of 1. You want to use a "same" convolution. What is the padding? (a)1 (b)2 (c)3 (d)7	1	3	3	2	1.7.1
	Part – B				l	
11	Differentiate Skip Gram model and continuous bag of model with example.	5	1	3	1	1.6.1
	Skip Gram Model explanation 1 Marks Example 1 continuous bag of model with example 2 Example 1					
12	Discuss about the limitations of gradient descent algorithm. 1. Choice of learning rate: The choice of learning rate is crucial for the convergence of gradient descent and its variants. Choosing a learning rate that is too large can lead to oscillations or overshooting while choosing a learning rate that is too small can lead to slow convergence or getting stuck in local minima. 2. Sensitivity to initialization: Gradient descent and its variants can be sensitive to the initialization of the model's parameters, which can affect the convergence and the quality of the solution.	5	1	2	1	1.6.1

	 Time-consuming: Gradient descent and its variants can be time-consuming, especially when dealing with large datasets and high-dimensional models. The convergence speed can also vary depending on the variant used and the specific problem. Local optima: Gradient descent and its variants can converge to a local minimum instead of the global minimum of the cost function, especially in non-convex problems. This can affect the quality of the solution, and techniques like random initialization and multiple restarts may be used to mitigate this issue. 					
13	Discuss about the Nesterov and Momentum Based Gradient decedent with Pseudocode.	5	1	2	1	1.7.1
14	Illustrate the use of convolution operation in CNN with example.	5	1	3	1	1.6.1
	Part – C (2x 10 = 20 Mark	·s)				
15	Explain the one hot representation and Distributed word representation with example. Illustrate the challenges of both representations.	10	2	2	1	1.6.1
16	https://www.geeksforgeeks.org/ml-one-hot-encoding-of-datasets-in-python/	10	2	2	2	1.6.1
	(OR) Illustrate the need of optimization in deep learning and discuss about the optimization techniques.					
17	Explain the Alexnet Model in detail with its architecture diagram. (OR)	10	3	3	2	1.7.1
18	Discuss about the ResNet architecture with its diagram and list out the pros by comparing with other architecture	10	3	3	2	1.6.1

 $^{{}^{\}star}$ Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy.

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Mode of Exam

OFFLINE

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: AY 23-24-ODD SET

Test: CLAT-2 Date: 10/10/2023

Course Code & Title: 18AIC301J, Deep Learning Techniques. Duration: 90 minutes

Year & Sem: 3rd year, Vth sem Max. Marks: 50

Course Lea	arning Rationale (CLR):	The purpose of learning this course is to:			Learn	ning	- 8		Program Learning Outcomes (PLO)													
CLR-1:	Illustrate the basic conce	ots of deep learning		1	2	3		1	2	3	4	5	6	7	8	9	1	1	1 2	1 3	1 4	1 5
CLR-2:	LR-2: Gain knowledge in Optimization algorithms and dimensionality reduction										T								Ť			
CLR-3:	Develop a broad underst	anding of word2vec models and Convolution Neural Network models									45			E A								1
CLR-4:	Acquire knowledge in Tra	nsfer learning and Sequential Models		(moo	(%)			ge		ŧ	Research			inab		Work		e)				
CLR-5:	Implement the attention	nechanism and advanced deep learning models		面	ciency	Attainment		owled	Sis	Development	Ju, Re	sage	a.	Sustainability		Team W	_	Finance	guin		l	
				Thinking	d Profi		ing Kr	ring Kr	Analysis	& Deve	, Design,	Tool	& Culture	nent &		ంర	nicatio	Agt. &			022	
Course Lea	arning Outcomes (CLO):	At the end of this course, learners will be able to:				PS0-1	PS0-2	PS0-3														
CLO-1:	Understand various deep	learning models to solve real world problems		2	85	75	П	L	Н	-	-	-	-	-	-	М	-	-	12	Н	M	М
CLO-2:	Compare the optimizatio	algorithms and high dimensional data using reduction techniques		2	80	70		М	М	-	-6	-	15-8	-	:-:	М	1-1	-	0-0	М	L	М
CLO-3:	Implement word2vec models and Convolution Neural Network models			3	85	75		М	Н	-	-	-	7-2	-	-	Н	-	-	124	Н	М	М
CLO-4:	Apply RNN and transfer learning to real world scenarios			3	85	80		М	Н	-	17.0	-	.50	-	-	Н	150	-	-	Н	М	Н
CLO-5:	Use deep learning mode	ls to solve real-world applications		3	80	70		М	Н	-	-	-	-	-	-	Н	-	-	-	L	L	L

	Part - A									
	(10 x1 = 10 Marks)									
Instructions: Answer all										
Q. No	Question	Marks	BL	CO	PO	PI Code				
1	Which of the following is FALSE about CNN?	1	1	3	1	1.6.1*				
_	A. We must flatten the output before feeding it to a fully connected layer	_	_		_					
	B. There can be only one fully connected layer in CNN									
	C. We can use as many convolutional and pooling layers									
	in CNN									
	D. None of the above									
2	Filter of size 3X3 is rotated over input matrix of size 4X4	1	3	2	1	1.6.1				
	(stride=1). What will be the size of output matrix after									
	applying zero padding?									
	A. 4X4 B. 3X3 C. 2X2 D. 1X1									
3	Which of the following SGD variants is based on both momentum and adaptive learning?	1	2	2	1	1.6.1				
	A. RMSprop.									
	B. Adagrad.									

	C. Adam					
	D. Nestrov					
4	Which of the following functions can be used as an	1	2	2	1	1.6.1
	activation function in the output layer if we wish to					
	predict the probabilities of n classes (p1, p2,,pk) such					
	that sum of p over all n equals to 1?					
	A. Softmax					
	B. ReLu					
	C. Sigmoid					
	D. Tanh					
5	Which of the following is a hyperparameter in a neural	1	1	2	1	1.6.1
	network?					
	A. Activation Function					
	B. Learning Rate					
	C. Momentum					
	D. All of the above					
6	Which of the following is NOT a way to increase	1	3	2	2	2.4.1
	generalization in auto encoder?					
	A. Use larger code size					
	B. Use L1 and L2 regularization					
	C. Add some random noise to the input					
	D. Limit the number of nodes in the hidden layers					
7	How many numbers of convolution layers in ZFNet	1	2	3	1	1.6.1
	architecture?					
	A. 3 B. 4 C. 5 D. 6					
8	A. 3 B. 4 C. 5 D. 6 Which of the following is TRUE about Softmax and	1	1	3	1	1.6.1
	Sigmoid function?					
	A. Softmax is usually used for hidden layers and sigmoid					
	for outer layers					
	B. Sigmoid is usually used for hidden layers and softmax					
	for outer layers					
	C. Softmax function is usually used for binary					
	classification problem					
	D. All of the above					
9	How many numbers of inception modules available in	1	1	3	1	1.6.1
	GoogleNet architecture?					
	A. 5 B. 7 C. 9 D. 3					
10	After training a neural network, you observe a large gap	1	3	3	2	2.4.1
	between the training accuracy (100%) and the test					
	accuracy (42%). Which of the following methods is					
	commonly used to reduce this gap?					
	A. Generative Adversarial Networks					
	B. Dropout					
	C. Sigmoid activation					
	D. RMSprop optimizer					
	LL -L					
			L	I	L	L

Mode of Exam

OFFLINE

Date: 10/10/2023

DEPARTMENT OF COMPUTATIONAL INTELLIGENCE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: AY 23-24-ODD SET A

Course Code & Title: 18AIC301J, Deep Learning Techniques

Part – B (4x5 = 20 Marks) Answer all the questions

11	Explain about Neste RMSProp optimizers in		d gradient dece	ent and	5	2	2	1	1.6.1
12	Explain about dimens with an example.		on using Auto e	encoders	5	2	2	1	2.1.3
13	Explain the concept of	skip-gram mode	el with an exampl	le.	5	2	3	1	1.6.1
14	You come up with a Cl layer, calculate the outpassociated with each lather the Layer	5	3	3	1	1.6.1			
	Dayer	Activation map size	No of parameters						
	input	128*128*3	0	1					
	Conv -5-16	120 120 0		1					
	MaxPool-2			-					
	Conv-3-32								
	MaxPool-2			-					
	Conv-3-64			-					
	MaxPool-2			1					
	FC-1(128)			-					
	FC-2(25)			-					
	notation follows the co	nvention:]					
	notation follows the convention.								
	• CONV-K-N denotes a	a convolutional	layer with N filte	rs, each					
	of them of size K x K.	Padding and stri	de parameters are	e					
	always 0 and 1 respecti								
	• POOL-K indicates a I	K x K pooling la	yer with stride K	and					
	padding 0.								
	FC(X) indicates X num								
		P	art - C (2x 10) =		(s)				
	T		Answer all the			1 -			
15	(i) Write in detail about example. (ii) What are the		-		7+3	2	2	1	1.6.1
	algorithm?	iiiiitatiolis 01	vennina gradieni	decent					
	aigoriumi.		OR						
16	(i) Explain the techn	igues to overco		in deen	7+3	2	2	1	1.6.1
10	neural network model.		and over munig	acep	,		-	•	
	(ii) Compare PCA and	Auto encoders							
17	Consider a CNN with f		stacked 1-convol	lution,	10	3	3	2	2.4.1
	1-activation(ReLu), 1-A								
	layer with 3 neurons ar	nd softmax funct	ion. Show the						
	processing and output of	of each layer for	the following in	put data.					
	3 3 3 1 0								
	0 0 1 3 1								
	3 1 2 2 3								

	2 0 0 2 2 2 2 0 0 0									
	OR									
18	Write in detail about AlexNet and Google Net with their	10	2	3	1	1.6.1				
	architectures and highlight the difference between them.									

^{*}Performance Indicators are available separately for Computer Science and Engineering in AICTE examination reforms policy. Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

QP Setter / Course Coordinator

Approved by the Audit Professor