LINEAR MOTION

Dr Muhammad Adeel

CONTENTS

- Derivation of velocity & acceleration in terms of integration
- 3–Equations of Motion
- Motion in 2-Dimension/3-Dimension
- Motion of Free Fall Body
- Special case of motion when Acceleration is constant
- Problems related to the topics discussed

MOTION IN ONE DIMENSION

- Here we'll discuss velocity, displacement and acceleration in terms of Cartesian components as they all are vector quantities.
- Considering motion only in the direction of a single component, for example, the x direction, that is, motion in a straight line.
- If we start $(x_0 = 0)$ an object moving in the x direction when it starts from $x_0 = 0$ point, we may write

$$\overrightarrow{v_{x}} = \frac{\overrightarrow{x} - \overrightarrow{x_0}}{t - t_0}; (x_0 = 0)$$

2024/9/12 (3)

$$\overline{\upsilon}_x = \frac{x-0}{t-0}$$

Equation 1.1 results from the definition of average velocity; thus, it holds in all cases whether the acceleration is constant.

DERIVATION OF THREE EQUATIONS OF MOTION

$$\upsilon = \upsilon_0 + at$$

$$\upsilon^2 - \upsilon_0^2 = 2ax$$

$$x = \upsilon_0 t + \frac{1}{2}at^2$$

1ST EQUATION OF MOTION

- •The acceleration is defined as the rate of change of the velocity.
- •If the acceleration is constant, the change in the velocity during the first, second, third, and all succeeding seconds of the motion will be the same and equal to the acceleration \vec{a}
- •if the motion lasts t seconds, the change in the velocity $\Delta v = v v_0 = at$, where v is the final velocity and v_0 is the initial velocity.
- •We can rewrite this result as

$$v = v_0 + at$$
 — Eq.1.2

VELOCITY — TIME GRAPH

- If we plot equation 1.2 on graph we will obtain a straight line, as indicated in the Figure below.
- The slope of this line is the constant acceleration a.

Dr Muhammad Adeel 2024/9/12 7

2ND EQUATION OF MOTION

• Another important relation that we can have when the velocity increases at a constant rate the average velocity is one half the sum of the initial velocity v_o and the final velocity namely, v

$$\overline{\upsilon} = \frac{\upsilon + \upsilon_0}{2} \longrightarrow \text{Eq. 1.3}$$

Previously we have,

$$x = \overline{v} \ t \longrightarrow \text{Eq. 1.1}$$

• On substituting value of \overline{v} in eq 1.1, we get

$$x = \frac{\upsilon + \upsilon_0}{2}t$$

2ND EQUATION OF MOTION

$$x = \frac{\upsilon + \upsilon_0}{2}t \longrightarrow Eq. 1.4$$

If we substitute the value of "v" from 1st equation of motion in eq.1.4 then we will have

$$x = \frac{v_0 + at + v_0}{2}t$$

Or we can have,

$$x = \upsilon_0 t + \frac{1}{2} a t^2$$

3RD EQUATION OF MOTION

Considering equation 1.4,

$$x = \frac{\upsilon + \upsilon_0}{2}t \longrightarrow Eq. 1.4$$

• We can find out the value of "t" from 1st equation of motion that is,

$$t = \frac{\upsilon - \upsilon_0}{a}$$

 On substituting the above value of "t" in eq. 1.4 we will have the following results

$$x = \frac{(\upsilon + \upsilon_0)}{2} \frac{(\upsilon - \upsilon_0)}{a}$$

$$v^2 - v_0^2 = 2ax$$

We may derive these equations more formally by integration.

By definition

$$a = \frac{dv}{dt}$$

Rearranging terms and integrating, we write

$$\int_{v_0}^v dv = \int_0^t a \, dt$$

acceleration is taken as constant, so a can be taken out of the integral and we write

11

$$\int_{v_0}^v dv = a \int_0^t dt$$

This integrates to

$$v - v_0 = at$$

and

$$v = v_0 + at$$

 1^{st} equation of motion

• From definition we know, $v=rac{dx}{dt}$

Rearranging terms

$$\int_{x_0}^x dx = \int_0^t v \, dt$$

$$\int_{x_0}^x dx = \int_0^t (v_0 + at)dt$$

$$\int_{x_0}^x dx = v_0 \int_0^t dt + a \int_0^t t \, dt$$

After applying limits, we will have the following result,

$$x - x_0 = \upsilon_0 t + \frac{1}{2} a t^2$$

Above is the 2nd Equation of motion

Note that in this formulation we have not required that x = 0 at t = 0 as in the previous algebraic derivations.

For 3rd equation of motion

We may use the chain rule to write

$$a = \frac{d\upsilon}{dt} = \frac{d\upsilon}{dx}\frac{dx}{dt} = \upsilon\frac{d\upsilon}{dx}$$

$$\int_{v_0}^v v \, dv = a \int_{x_0}^x dx$$

$$\frac{v^2}{2} - \frac{v_0^2}{2} = a(x - x_0)$$

$$v^2 - v_0^2 = 2a(x - x_0)$$

RESULTS BY INTEGRATION

Fol
$$v = v_0 + at$$
 egration,

$$x - x_0 = v_0 t + \frac{1}{2}at^2$$

$$v^2 - v_0^2 = 2a(x - x_0)$$

• All the equations that we have derived for motion are in the x-direction. Similar equations can simply be written for motion in the y and z directions when the components of the acceleration in these directions are also constant.

CONSTANT ACCELERATION

$$v = v_0 + at,$$

$$x - x_0 = v_0 t + \frac{1}{2}at^2,$$

$$v^2 = v_0^2 + 2a(x - x_0),$$

$$x - x_0 = \frac{1}{2}(v_0 + v)t,$$

$$x - x_0 = vt - \frac{1}{2}at^2.$$

These are *not* valid when the acceleration is not constant.

17

POSITION OF A POINT IN SPACE

DISPLACEMENT VECTOR

As a particle moves, its position vector changes in such a way that the vector always extends to the particle from the reference point (the origin). If the position vector changes—say, from \vec{r}_1 to \vec{r}_2 during a certain time interval—then the particle's **displacement** $\Delta \vec{r}$ during that time interval is

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1.$$

Using the unit-vector notation we can rewrite this displacement as

$$\Delta \vec{r} = (x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}) - (x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k})$$

$$\Delta \vec{r} = (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k},$$

$$\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j} + \Delta z \hat{k}.$$

AVG. VELOCITY IN 3-DIMENSIONS

$$\overrightarrow{v}_{\mathrm{avg}} = \frac{\Delta \overrightarrow{r}}{\Delta t}.$$

$$\Delta \vec{r} = \Delta x \hat{i} + \Delta y \hat{j} + \Delta z \hat{k}.$$

Put in the formula of average velocity we'll get

$$\overrightarrow{v}_{\rm avg} = \frac{\Delta x \hat{\mathbf{i}} + \Delta y \hat{\mathbf{j}} + \Delta z \hat{\mathbf{k}}}{\Delta t} = \frac{\Delta x}{\Delta t} \, \hat{\mathbf{i}} \, + \frac{\Delta y}{\Delta t} \, \hat{\mathbf{j}} \, + \frac{\Delta z}{\Delta t} \, \hat{\mathbf{k}}.$$

INSTANTANEOUS VELOCITY IN 3-D

When we speak of the **velocity** of a particle, we usually mean the particle's **instantaneous velocity** \vec{v} at some instant. This \vec{v} is the value that \vec{v}_{avg} approaches in the limit as we shrink the time interval Δt to 0 about that instant. Using the language of calculus, we may write \vec{v} as the derivative

$$\vec{v} = \frac{d\vec{r}}{dt}$$
.

• Substitute the value of unit

$$\vec{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}},$$

$$\vec{v} = \frac{d}{dt}(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}) = \frac{dx}{dt}\hat{\mathbf{i}} + \frac{dy}{dt}\hat{\mathbf{j}} + \frac{dz}{dt}\hat{\mathbf{k}}.$$

2024/9/12

INSTANTANEOUS VELOCITY IN 3-D

• Simply
$$\vec{v} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k}.$$

$$\vec{v} = v_x\hat{i} + v_y\hat{j} + v_z\hat{k},$$

where the scalar components of \vec{v} are

$$v_x = \frac{dx}{dt}$$
, $v_y = \frac{dy}{dt}$, and $v_z = \frac{dz}{dt}$.

INSTANTANEOUS VELOCITY IN 3-D

The velocity vector is always tangent to the path.

SOLVE FOR INSTANTANEOUS ACCELERATION IN 3-D

Class task: Find out the scalar components of acceleration.

instantaneous acceleration

$$\vec{a} = \frac{d\vec{v}}{dt}.$$

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k},$$

$$\vec{a} - \frac{d}{dt} (v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$

$$= \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} + \frac{dv_z}{dt} \hat{k}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k},$$

where the scalar components of \vec{a} are

$$a_x = \frac{dv_x}{dt}$$
, $a_y = \frac{dv_y}{dt}$, and $a_z = \frac{dv_z}{dt}$.