

In this talk

commutative algebra and number theory

numerical content

a fractal without points

foundational crisis

traveling the multiverse

monadic side effects

proof assistants

alien algorithms $\,$

A first glimpse of proof mining

Theorem. For every natural number n, there is a prime number larger than n. \diamondsuit *Proof (Euclid)*. Every prime factor of n! + 1 will do.

A first glimpse of proof mining

Theorem. For every natural number n, there is a prime number larger than n. \diamondsuit

Proof (Euclid). Every prime factor of n! + 1 will do.

Let $p_0, p_1, p_2, ...$ be the sequence of prime numbers. **Scholium.** $p_{n+1} \le p_n! + 1$. **Scholium.** $p_n < 2^{2^n}$.

A first glimpse of proof mining

Theorem. For every natural number n, there is a prime number larger than n. \diamondsuit

Let p_0, p_1, p_2, \ldots be the sequence of prime numbers. **Scholium.** $p_{n+1} \leq p_n! + 1$.

Scholium. $p_n < 2^{2^n}$.

Proof (Euler). If there were only finitely many primes, the identity

$$\prod_{p} \frac{1}{1 - 1/p} = \sum_{n \ge 1} \frac{1}{n}$$

would imply that the harmonic series converges.

Proof (Euclid). Every prime factor of n! + 1 will do.

Scholium. $p_n \leq \lceil e^{n+1-\gamma} \rceil$.

Proof mining in convex analysis

Theorem (zero displacement conjecture). Let H be a Hilbert space. Let $C_1, \ldots, C_N \subseteq H$ be nonempty closed convex subsets with orthogonal projections P_{C_i} . Let $T = P_{C_N} \circ \ldots \circ P_{C_1}$. Then for every $x \in H$, $||T^{n+1}x - T^nx|| \xrightarrow{n \to \infty} 0.$

Proof. See [Bauschke 2003], employing Minty's theorem, the Brézis–Haraux theorem, Rockafellar's maximal monotonicity and sum theorems, strongly nonexpansive mappings, conjugate functions, normal cones, ...

Proof mining in convex analysis

Theorem (zero displacement conjecture). Let H be a Hilbert space. Let $C_1, \ldots, C_N \subseteq H$ be nonempty closed convex subsets with orthogonal projections P_{C_i} . Let $T = P_{C_N} \circ \ldots \circ P_{C_1}$. Then for every $x \in H$,

$$||T^{n+1}x-T^nx|| \xrightarrow{n\to\infty} 0.$$

Proof. See [Bauschke 2003], employing Minty's theorem, the Brézis–Haraux theorem, Rockafellar's maximal monotonicity and sum theorems, strongly nonexpansive mappings, conjugate functions, normal cones, ...

Scholium [Kohlenbach 2018]. In this situation, let b be an upper bound on the norm of x and let K be an upper bound on the norm of N arbitrary points $c_i \in C_i$. Then

$$\forall \varepsilon > 0. \, \forall n \ge \phi(\varepsilon, N, b, K). \, ||T^{n+1}x - T^nx|| < \varepsilon,$$

where $\phi(\varepsilon, N, b, K)$ is given by a certain explicit formula.

Proof mining in approximation theory

Let $n \in \mathbb{N}$. Let P_n be the space of polynomials of degree at most n. Let $f \in C[0, 1]$ be a continuous function.

Theorem. There is a unique best L^1 -approximation of f in P_n .

Proof mining in approximation theory

Let $n \in \mathbb{N}$. Let P_n be the space of polynomials of degree at most n. Let $f \in C[0, 1]$ be a continuous function.

Theorem. There is a unique best L^1 -approximation of f in P_n .

Let ω be a modulus of uniform continuity for f, i.e. a function $\mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\forall x, \tilde{x} \in [0, 1]. \, \forall \varepsilon > 0. \, \big(|x - \tilde{x}| < \omega(\varepsilon) \Longrightarrow |f(x) - f(\tilde{x})| < \varepsilon \big).$$

Scholium [Kohlenbach 1990]. $\forall \varepsilon > 0. \forall p_1, p_2 \in P_n$.

$$\bigwedge^{2} (\|f - p_i\|_1 - \operatorname{dist}_1(f, P_n) < \phi(\omega, n, \varepsilon)) \Longrightarrow \|p_1 - p_2\|_1 \le \varepsilon,$$

where $\phi(\omega, n, \varepsilon)$ is given by a certain explicit formula.

Backed by logical metatheorems?

Metatheorems for backing proof mining have been and are being developed which ...

- guarantee the **extractability** of suitable numerical information in principle (bounds, convergence rates, moduli of uniqueness, rates of asymptotic regularity, ...),
- in describe an algorithm for carrying out the extraction and
- support modular treatments of auxiliary lemmas,

provided the input proof is **formally** supplied in a **certain system**. [Kohlenbach–Oliva 2002]

Backed by logical metatheorems?

Metatheorems for backing proof mining have been and are being developed which ...

- guarantee the **extractability** of suitable numerical information in principle (bounds, convergence rates, moduli of uniqueness, rates of asymptotic regularity, ...),
- in describe an algorithm for carrying out the extraction and
- support modular treatments of auxiliary lemmas,

provided the input proof is **formally** supplied in a **certain system**. [Kohlenbach–Oliva 2002]

In practice (2025): Algorithms not used, only followed as rough guidelines, combined with hand-rolled optimizations. Let us explore tool support!

Backed by logical metatheorems?

Metatheorems for backing proof mining have been and are being developed which ...

- guarantee the extractability of suitable numerical information in principle (bounds, convergence rates, moduli of uniqueness, rates of asymptotic regularity, ...),
- in describe an algorithm for carrying out the extraction and
- support modular treatments of auxiliary lemmas,

provided the input proof is **formally** supplied in a **certain system**. [Kohlenbach–Oliva 2002]

In practice (2025): Algorithms not used, only followed as rough guidelines, combined with hand-rolled optimizations. Let us explore tool support!

NB: The **quality** of the extracted data depends on the **sophistication** of the **logical principles** used in the proof (Heine–Borel, Bolzano–Weierstraß, ...).

Curry-Howard's Rosetta stone

Curry-Howard's Rosetta stone

Curry-Howard's Rosetta stone

To extract numerical data from a proof, run the proof.

Three case studies

Theorem. For every natural number n, there is a prime larger than n. \diamondsuit

Proof. Every prime factor of n! + 1 will do.

Theorem. Every infinite sequence $f: \mathbb{N} \to \mathbb{N}$ is good in that there are numbers i < j such that f(i) < f(j).

Proof. There is a minimal value f(i). Set j := i + 1.

Theorem. Let *M* be a surjective matrix with more rows than columns over a commutative ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal m. The matrix is still surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Three case studies

Proof. Every prime factor of n! + 1 will do.

Theorem. For every natural number n, there is a prime larger than n.

Theorem. Every infinite sequence $f : \mathbb{N} \to \mathbb{N}$ is *good* in that there are numbers i < j such that $f(i) \le f(j)$.

Theorem. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is still surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

A case study in commutative algebra

Theorem. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is still surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

A case study in commutative algebra

Theorem. Let M be a surjective matrix with more rows than columns over a commutative ring A. Then 1 = 0 in A.

Proof. Assume not. Then there is a maximal ideal \mathfrak{m} . The matrix is still surjective over A/\mathfrak{m} . Since A/\mathfrak{m} is a field, this is a contradiction to basic linear algebra.

Proof. Write $M = \binom{x}{y}$. By surjectivity, have $u, v \in A$ with $u\binom{x}{y} = \binom{1}{0}$ and $v\binom{x}{y} = \binom{0}{1}$. Hence 1 = (vy)(ux) = (uy)(vx) = 0.

▶ In classical mathematics, every ring has a maximal ideal by Zorn's lemma.

- ▶ In classical mathematics, every ring has a maximal ideal by Zorn's lemma.
- ▶ Without Zorn, at least every countable ring $A = \{x_0, x_1, ...\}$ has a maximal ideal. Iterative construction given an ideal membership test [Krull 1929]:

$$\mathfrak{m}_0 = \{0\}, \qquad \qquad \mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$$

- ▶ In classical mathematics, every ring has a maximal ideal by Zorn's lemma.
- ▶ Without Zorn, at least every countable ring $A = \{x_0, x_1, ...\}$ has a maximal ideal.
 - Iterative construction given an ideal membership test [Krull 1929]:

$$\mathfrak{m}_0 = \{0\},$$
 $\mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$

- Also without membership test! [Krivine 1996], [Berardi-Valentini 2004]

$$\mathfrak{m}_0 = \{0\},$$
 $\mathfrak{m}_{n+1} = \mathfrak{m}_n + (\underbrace{\{x_n \mid 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a certain subsingleton set}})$

- ▶ In classical mathematics, every ring has a maximal ideal by Zorn's lemma.
- ▶ Without Zorn, at least every countable ring $A = \{x_0, x_1, ...\}$ has a maximal ideal.
 - Iterative construction given an ideal membership test [Krull 1929]:

$$\mathfrak{m}_0 = \{0\},$$
 $\mathfrak{m}_{n+1} = \begin{cases} \mathfrak{m}_n + (x_n), & \text{if } 1 \not\in \mathfrak{m}_n + (x_n), \\ \mathfrak{m}_n, & \text{else.} \end{cases}$

- Also without membership test! [Krivine 1996], [Berardi-Valentini 2004]

$$\mathfrak{m}_0 = \{0\}, \qquad \qquad \mathfrak{m}_{n+1} = \mathfrak{m}_n + (\underbrace{\{x_n \mid 1 \not\in \mathfrak{m}_n + (x_n)\}}_{\text{a contain subsinglation set}})$$

▶ Without Zorn, every ring has a maximal ideal in a "suitable forcing extension of the universe" [B.–Schuster 2024]. In plain terms: Approximate a (perhaps non-existing) surjection $\mathbb{N} \to A$ by partial functions which can grow on demand.