1 Natural Frequency of Rectangular strip with axial load (NAS277)

Description:

Modal analysis of a rectangular strip with axial stress (N_2) on short edge.

Reference:

Arthur W.Leissa, Vibration of Plates, NASA SP-160, pg:277, Ch:10.2.

Material and Geometric data:

Figure 1: NAS277

Table 1: Input Data

Material Property	Geometric Da	ita	Loading Data		
Young's Modulus (E)	1E11 pa	Length (a)	1 m	N_2	$3E11 \ N/m^2$
Poission's Ratio (ν)	0.3	Breath (b)	$40 \ m$		
Density (ρ)	$7810~Kg/m^3$	Thickness (t)	1 m		

Mesh and boundary condition:

Analytically solution:

The analytical solution of the this problem is given by

$$\omega_{mn} = \sqrt{\frac{1}{\rho} \left(D \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right] + N_1 \left(\frac{m\pi}{a} \right)^2 + N_2 \left(\frac{n\pi}{b} \right)^2 \right)}$$
 (1)

Table 2: FEM and Boundary condition data

Direchlet Boundary			Loading Conditions		
Geo -Entity	w	θ_x	θ_y	Geo -Entity	N_2
line {1,3}	Fixed	Free	Free	line {1,3}	$3E11 \ N/m^2$

Natural frequencies are mode 1 : 77.479 Hz

 $\begin{array}{l} {\rm mode} \ 2: \ {\rm N.A} \\ {\rm mode} \ 3: \ 155.00 \ Hz \\ {\rm mode} \ 4: \ {\rm N.A} \\ {\rm mode} \ 5: \ 232.61 \ Hz \\ {\rm mode} \ 6: \ {\rm N.A} \end{array}$

note: modes 2,4 and 6 are twisting modes, which are not given by the formula.

Result and error analysis:

The natural frequencies of the plates are provided below.

 $\begin{array}{l} \text{mode 1}: 77.458 \ Hz \\ \text{mode 2}: 95.610 \ Hz \\ \text{mode 3}: 154.98 \ Hz \\ \text{mode 4}: 191.46 \ Hz \\ \text{mode 5}: 232.63 \ Hz \\ \text{mode 6}: 287.38 \ Hz \end{array}$

So the Error percentage for each mode is :

 $\begin{array}{l} \bmod {0.026~\%} \\ \bmod {0.012~\%} \\ \bmod {0.012~\%} \\ \bmod {0.013~\%} \end{array}$

Figure 3: Natural Modes of a rectangular strip

2 Error analysis of strip with various thickness (NAS277)

${\bf Description:}$

It is the continuation of previous problem but the error of the solution is compared for different thicknesses.

Material and Geometric data:

Table 3: Input Data

Material Property		Geometric Da	ta	Loading Data	
Young's Modulus (E)	1E11 pa	Length (a)	1 m	N_2	$\frac{T}{t} N/m^2$
Poission's Ratio (ν)	0.3	Breath (b)	40 m	Tension T	$3\text{E4}\ N/m$
Density (ρ)	$7810\ Kg/m^3$	Thickness (t)	$\{0.001, 0.005,, 0.5, 1\}\ m$		

Mesh and boundary condition:

Result and error analysis:

Table 4: FEM and Boundary condition data

Direchlet Boundary			Loading Conditions		
Geo -Entity	w	θ_x	θ_y	Geo -Entity	N_2
line {1,3}	Fixed	Free	Free	line {1,3}	$\frac{T}{t} N/m^2$

Figure 4: Natural Modes of a rectangular strip