```
In [1]: import pandas as pd
         import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
In [2]: Customer = pd.read_csv("Customers.csv")
In [3]: Product = pd.read_csv("Products.csv")
In [4]: Transaction = pd.read_csv("Transactions.csv")
In [5]: Customer
Out[5]:
             CustomerID
                            CustomerName
                                                 Region SignupDate
          0
                  C0001
                            Lawrence Carroll South America
                                                         2022-07-10
          1
                  C0002
                                                         2022-02-13
                              Elizabeth Lutz
                                                   Asia
          2
                  C0003
                             Michael Rivera South America
                                                         2024-03-07
          3
                  C0004
                         Kathleen Rodriguez South America
                                                         2022-10-09
           4
                  C0005
                               Laura Weber
                                                  Asia 2022-08-15
         195
                  C0196
                               Laura Watts
                                                         2022-06-07
                                                 Europe
         196
                  C0197
                            Christina Harvey
                                                 Europe
                                                         2023-03-21
         197
                  C0198
                              Rebecca Ray
                                                         2022-02-27
                                                 Europe
         198
                  C0199
                             Andrea Jenkins
                                                 Europe
                                                         2022-12-03
         199
                  C0200
                                Kelly Cross
                                                   Asia
                                                         2023-06-11
        200 rows × 4 columns
In [6]: Customer.shape
Out[6]:
         (200, 4)
In [7]: Product
Out[7]
```

:	ProductID		ProductName	Category	Price	
	0	P001	ActiveWear Biography	Books	169.30	
	1	P002	ActiveWear Smartwatch	Electronics	346.30	
	2	P003	ComfortLiving Biography	Books	44.12	
	3	P004	BookWorld Rug	Home Decor	95.69	
	4	P005	TechPro T-Shirt	Clothing	429.31	
	95	P096	SoundWave Headphones	Electronics	307.47	
	96	P097	BookWorld Cookbook	Books	319.34	
	97	P098	SoundWave Laptop	Electronics	299.93	
	98	P099	SoundWave Mystery Book	Books	354.29	
	99	P100	HomeSense Sweater	Clothing	126.34	

100 rows × 4 columns

In [8]: Product.shape

Out[8]: (100, 4)

In [9]: Transaction

Out[9]:		TransactionID	CustomerID	ProductID	TransactionDate	Quantity	TotalValue	Price
	0	T00001	C0199	P067	2024-08-25 12:38:23	1	300.68	300.68
	1	T00112	C0146	P067	2024-05-27 22:23:54	1	300.68	300.68
	2	T00166	C0127	P067	2024-04-25 07:38:55	1	300.68	300.68
	3	T00272	C0087	P067	2024-03-26 22:55:37	2	601.36	300.68
	4	T00363	C0070	P067	2024-03-21 15:10:10	3	902.04	300.68
	995	T00496	C0118	P037	2024-10-24 08:30:27	1	459.86	459.86
	996	T00759	C0059	P037	2024-06-04 02:15:24	3	1379.58	459.86
	997	T00922	C0018	P037	2024-04-05 13:05:32	4	1839.44	459.86
	998	T00959	C0115	P037	2024-09-29 10:16:02	2	919.72	459.86
	999	T00992	C0024	P037	2024-04-21 10:52:24	1	459.86	459.86

1000 rows × 7 columns

```
In [10]: Transaction.shape
```

Out[10]: (1000, 7)

Region (Univariate Analysis)

```
In [11]: Customer["Region"].value_counts()
Out[11]: Region
```

South America 59
Europe 50
North America 46
Asia 45
Name: count, dtype: int64

In [12]: Customer["Region"].value_counts().plot(kind="bar")

Out[12]: <Axes: xlabel='Region'>


```
In [14]: Customer["Region"].value_counts().plot(kind="pie",autopct="%0.1f%")
```

Out[14]: <Axes: ylabel='count'>


```
In [15]: Customer["Region"].isnull().sum()
Out[15]: 0
In [16]: Customer["CustomerID"].value counts().sum()
Out[16]: 200
In [17]: # Ensure the column is properly converted to datetime
         Customer['SignupDate'] = pd.to_datetime(Customer['SignupDate'], errors='coerce')
         # Check for any conversion errors
         if Customer['SignupDate'].isnull().sum() > 0:
             print("There are invalid dates in the SignupDate column.")
         # Extract monthly signup trends
         signup_trends = Customer['SignupDate'].dt.to_period('M').value_counts().sort_index()
         # Plot monthly signup trends
         plt.figure(figsize=(12, 6))
         signup_trends.plot(kind='line', marker='o', color='blue')
         plt.title("Monthly Signup Trends")
         plt.xlabel("Month")
         plt.ylabel("Number of Signups")
         plt.show()
```


Conclusions

There are no missing values in Region column.

There are no Outliers.

Category(Univariate Analysis)

Out[21]: <Axes: xlabel='Category'>


```
In [22]: Product["Category"].value_counts().plot(kind="pie",autopct="%0.1f%%")
```

Out[22]: <Axes: ylabel='count'>


```
In [23]: Product["Category"].isnull().sum()
```

Out[23]: 0

Conclusions

There are no missing values.

Price

```
In [25]: Product["Price"].describe()
```

```
Out[25]: count
                   100.000000
         mean
                   267.551700
                   143.219383
          std
                   16.080000
          min
          25%
                   147.767500
                   292.875000
          50%
          75%
                   397.090000
                   497.760000
          max
         Name: Price, dtype: float64
```

In [26]: Product["Price"].plot(kind="hist",bins = 20)

Out[26]: <Axes: ylabel='Frequency'>


```
In [27]: Product["Price"].plot(kind="kde")
```

Out[27]: <Axes: ylabel='Density'>


```
In [28]: Product["Price"].skew()
Out[28]: -0.2076196737826489
In [29]: Product["Price"].plot(kind="box")
```

Out[29]: <Axes: >

Conclusions

There are no Outliers.

It is left skewed.

Transactions

```
In [31]: Transaction["Quantity"].value_counts().plot(kind="bar")
```

Out[31]: <Axes: xlabel='Quantity'>

In [32]: Transaction["Quantity"].value_counts().plot(kind="pie",autopct="%0.1f%")

Out[32]: <Axes: ylabel='count'>


```
In [33]: Product["Price"].plot(kind="kde")
```

Out[33]: <Axes: ylabel='Density'>

In [34]: Product["Price"].skew()
Out[34]: -0.2076196737826489
In [35]: Product["Price"].plot(kind="box")
Out[35]: <Axes: >

Conclusions

There are no Outliers.

It is left skewed.

5 Business Insights

- 1. Top-Selling Products: The top 10 products contribute significantly to revenue. These should be prioritized for inventory and promotions.
- 2. Books Dominate: The "Books" category has the most products, showing customer preference. Offering discounts in this category could boost sales.
- 3. Regional Sales Focus: South America leads in transactions. Focusing marketing efforts in this region could yield higher returns.
- 4. Repeat Customers: Customers with frequent purchases (e.g., C0109) should be targeted for loyalty programs or personalized offers.
- 5. New Customer Acquisition: Efforts should focus on regions like Asia, which show fewer transactions but high potential for growth.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js