

Content

- 1. Overview of the current state of Industry 4.0
- 2. Kinematics in the field of Industrial robotics
- Use of available tools for creating robotic applications
- Current state of the Dissertation thesis Industry 4.0 Cell (I4C)
- 5. The main aims of the Dissertation thesis
- 6. Conclusion
- 7. Doctoral Activities

Theoretical Part

Overview of the current state of Industry 4.0

Kinematics in the field of Industrial robotics

Overview of the current state of Industry 4.0

- History of the Industrial Revolution
- The Characteristics of the Fourth Industrial Revolution
- Industrial communication
- The future of industry 15.0

BRIEF OVERVIEW OF THE 4TH INDUSTRIAL REVOLUTION

Overview of the current state of Industry 4.0

- History of the Industrial Revolution
- The Characteristics of the Fourth Industrial Revolution
- Industrial communication
- The future of industry 15.0

Main pillars of Industry 4.0

Overview of the current state of Industry 4.0

- History of the Industrial Revolution
- The Characteristics of the Fourth Industrial Revolution
- Industrial Communication
- The future of industry I5.C

Overview of the current state of Industry 4.0

- History of the Industrial Revolution
- The Characteristics of the Fourth Industrial Revolution
- Industrial communication
- The future of industry I5.0

Topology Enablers of Industry 5.0

Kinematics in the field of Industrial robotics

Forward Kinematics

$$\theta_1, \theta_2, \dots, \theta_n$$

$$A = f(\theta)$$

$$TCP \begin{cases} x, y, z, R_x, R_y, R_z \\ x, y, z, q_x, q_y, q_z, q_w \end{cases}$$

Inverse Kinematics

$$\theta_1, \theta_2, \dots, \theta_n$$

$$\theta = f^{-1}(A)$$

$$TCP \begin{cases} x, y, z, R_x, R_y, R_z \\ x, y, z, q_x, q_y, q_z, q_w \end{cases}$$

Kinematics in the field of Industrial robotics

<u>Denavit – Hartenberger</u> <u>Representation</u>

$$A_{i} = R_{z,\theta_{i}} Trans_{z,d_{i}} Trans_{x,a_{i}} R_{x,\alpha_{i}}$$

$$= \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_{i} & -s\alpha_{i} & 0 \\ 0 & s\alpha_{i} & c\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} \end{bmatrix} \begin{bmatrix} a_{i}c\theta_{i} \\ a_{i}s\theta_{i} \\ a_{i}s\theta_{i} \end{bmatrix}$$
Translation Part

Kinematics in the field of Industrial robotics

Methods solving the Inverse kinematics Task

- Analytical methods
- Numerical methods

Practical Part

Current state of the Dissertation thesis Industry 4.0 Cell (I4C)

The main aims of the Dissertation thesis

Current state of the Dissertation thesis

Design and construction of a robotic cell

Design and construction of a robotic cell

Design and construction of a robotic cell

Timeline of i4C construction

2018 (Q4) 2019 (Q3)

2020 (Q2)

2021 (Q2)

Current state of the Dissertation thesis

System Integration

POWERLINK

PROFINET

ETHERNET/IF

Digital/Analog I/C

System Integration

POWERLINK

PROFINET

ETHERNET/IF

Digital/Analog I/C

System Integration

POWERLINK

PROFINET

ETHERNET/IP

Digital/Analog I/O

System Integration

POWERLINK

PROFINET

ETHERNET/IF

Digital/Analog I/O

System Integration

POWERLINK

PROFINET

ETHERNET/IP

Digital/Analog I/O

System Integration

System Integration

Current state of the Dissertation thesis

Human-Machine Interface

Intuitive Operation

Platform Independence

OPC Unified Architecture (UA)

Multi-client / Multi-user

mapp View

Current state of the Dissertation thesis

Virtual / Digital Twin

Virtual / Digital Twin

Blender

Virtual / Digital Twin

Current state of the Dissertation thesis

Augmented Reality

Augmented Reality

Test Application

The main aims of the Dissertation thesis

The main aims of the Dissertation thesis

Forward Kinematics

 $A = f(\theta)$

Inverse Kinematics

 $\theta = f^{-1}(A)$

Method 1

Default Approach

Method 2

Sampling Approach

Method 3

Deep Reinforcement Learning

Simple trajectory generation from multiple points.

$$p(t) = (1-t)p_0 + tp_1, t \in [0,1]$$

RRT (Rapidly-Exploring Random Tree) RRT-Connect

Bidirectional-RRT
PRM (Probabilistic Roadmap)

 $EXTEND(T, q_{rand})$

Deep Q-Network (DQN)
Double Deep Q-Network (DDQN)
Deep Deterministic Policy Gradient
(DDPG)

Trajectory smoothing using Bézier curves

$$p(t) = \sum_{i=0}^{n} {n \choose i} t^{i} (1-t)^{n-i} p_{i}, t \in [0,1]$$

Simulation tool

Т

The main aims of the Dissertation thesis

Conclusion

Conclusion

Doctoral Activities

Doctoral Activities

- Pedagogical practice
- Projects
- Overview of supervised master's / bachelor's theses
- Publications
- Cooperation with industrial companies
- Other

Computer Science

Control Theory I & II

Automation

Industry 4.0

Programming for robots and manipulators

Machine Vision

Programmable Logic Controllers

Doctoral Activities

- Pedagogical practice
- Projects
- Overview of supervised master's / bachelor's theses
- Publications
- Cooperation with industrial companies
- O Other

Research in the field of Digital twins for the production of electrical switchboards. Cooperation with ABB Group.

Duration: 01.12.2018 - 31.05.2020

Use of augmented reality for product presentation. Cooperation with SMC Industrial Automation.

Duration: 01.12.2019 - 29.02.2020

Industry 4.0 and Artificial Intelligence methods.

Duration: 01.03.2020 - 28.02.2023

Robotic workplace for the analysis of test samples. Cooperation with University Hospital Brno and CEITEC.

Program Czech Rise Up 2.0 – Research against COVID-19.

Duration: 01.06.2021 - 30.04.2022

TEST EXCHANGE. Network of Testbeds for Industry 4.0 in Czech-Austrian cooperation.

Duration: 1. 10. 2021 - 31. 12. 2022

Doctoral Activities

- Pedagogical practice
- Projects
- Overview of supervised Master's / Bachelor's theses
- Publications
- Cooperation with industrial companies
- Other

Doctoral Activities

- Pedagogical practice
- Projects
- Overview of supervised master's / bachelor's theses
- Publications
- Cooperation with industrial companies
- Other

PARAK, R.; MATOUSEK, R; LACKO, B. I4C - Robotic cell according to the Industry 4.0 concept. Automa, 2021, vol. 27, no. 1, p. 10 – 12. ISSN: 1210-9592.

PARAK, R.; MATOUSEK, R. Comparison of multiple Reinforcement Learning and Deep Reinforcement Learning methods for the task aimed at achieving the goal. Mendel Journal series, 2021, vol. 27 (2021), no. 1, p. 1–8. ISSN: 1803-3814

Czech Institute of Informatics, Robotics and Cybernetics (CIIRC CTU) and Industry 4.0 Cluster:

14C - Robotic Cell of Industry 4.0 at IACS FME BUT in Brno

T

Doctoral Activities

- Pedagogical practice
- Projects
- Overview of supervised master's / bachelor's theses
- Publications
- Cooperation with industrial companies
- Other

Doctoral Activities

- Pedagogical practice
- Projects
- Overview of supervised master's / bachelor's theses
- Publications
- Cooperation with industrial companies
- Other

Organizer / co-organizer

International Conference on Soft Computing MENDEL, Principia Cybernetica, Open Days, Night of Scientists

Speaker

Science enjoys us, Trade Media International - Conference on robotics (2020, 2021), Industry 4.0 Cluster (2021)

Collaborator

University Course – master's studies (Programming for robots and manipulators) / bachelor's studies (Industry 4.0), Teaching materials for bachelor's / master's studies, Laboratory improvement / development

Member of the Commission - State Examination

Secretary

Honors & Awards:

Rector's Award for Ph.D. students, Silver medal – Team Award

Thank You!

Questions?

