CPSC 540: Machine Learning More DAGs, Undirected Graphical Models

Mark Schmidt

University of British Columbia

Winter 2017

Admin

- Assignment 3:
 - 2 late days to hand in today.
- Assignment 4:
 - Due March 20.
- For graduate students planning to graduate in May:
 - Send me a private message on Piazza ASAP.

• DAG models use a factorization of the joint distribution,

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}),$$

where pa(j) are the parents of node j.

Last Time: Directed Acyclic Graphical (DAG) Models

• DAG models use a factorization of the joint distribution,

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}),$$

where pa(j) are the parents of node j.

• This assumes a Markov property,

$$p(x_j|x_{1:j-1}) = p(x_j|x_{pa(j)}),$$

which generalizes the Markov property in Markov chains,

$$p(x_i|x_{1:i-1}) = p(x_i|x_{i-1}).$$

• DAG models use a factorization of the joint distribution,

$$p(x_1, x_2, \dots, x_d) = \prod_{j=1}^d p(x_j | x_{\mathsf{pa}(j)}),$$

where pa(j) are the parents of node j.

• We visualize the assumptions made by the model as a graph:

Structure determines conditional independences and computational tractability.

Outline

- D-Separation and Plate Notation
- 2 Learning and Inference in DAGs
- Undirected Graphical Models

• We say that A and B are d-separated (conditionally independent) if all paths P from A to B are "blocked" because at least one of the following holds:

- We say that A and B are d-separated (conditionally independent) if all paths P from A to B are "blocked" because at least one of the following holds:
 - lacksquare P includes a "chain" with an observed middle node (e.g., Markov chain):

- We say that A and B are d-separated (conditionally independent) if all paths P from A to B are "blocked" because at least one of the following holds:
 - lacktriangledown P includes a "chain" with an observed middle node (e.g., Markov chain):

 $oldsymbol{\circ}$ P includes a "fork" with an observed parent node (e.g., mixture model):

- We say that A and B are d-separated (conditionally independent) if all paths P from A to B are "blocked" because at least one of the following holds:
 - lacksquare P includes a "chain" with an observed middle node (e.g., Markov chain):

 $oldsymbol{0}$ P includes a "fork" with an observed parent node (e.g., mixture model):

 $oldsymbol{\circ}$ P includes a "v-structure" or "collider" (e.g., factor analysis):

where "child" and all its descendants are unobserved.

ullet Earthquake $\not\perp$ Call.

- Earthquake $\not\perp$ Call.
- ullet Earthquake ot Call | Alarm.

- Earthquake

 ∠ Call.
- ullet Earthquake \perp Call | Alarm.
- ullet Alarm $\not\perp$ Stuff Missing.

- ullet Earthquake ot Call | Alarm.
- ullet Alarm $\not\perp$ Stuff Missing.
- ullet Alarm ot Stuff Missing | Burglary.

 \bullet Earthquake \bot Burglary.

- ullet Earthquake ot Burglary.
- - Explaining away: Knowing Earthquake would make Burglary is less likely.

- ullet Earthquake ot Burglary.
- - Explaining away: Knowing Earthquake would make Burglary is less likely.

- ullet Earthquake ot Burglary.
- - Explaining away: Knowing Earthquake would make Burglary is less likely.
- Earthquake

 Stuff Missing.

- ullet Earthquake ot Burglary.
- - Explaining away: Knowing Earthquake would make Burglary is less likely.
- Earthquake \perp Stuff Missing.
- Earthquake ∠ Stuff Missing | Call.

• D-separation lets you say if conditional independence is implied by assumptions:

 $(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$

• D-separation lets you say if conditional independence is implied by assumptions:

$$(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$$

- However, there might be extra conditional independences in the distribution:
 - \bullet These would depend on specific choices of the $p(x_j|x_{\mathsf{pa}(j)}).$
 - Or some orderings may reveal extra independences....

• D-separation lets you say if conditional independence is implied by assumptions:

$$(A \text{ and } B \text{ are d-separated given } E) \Rightarrow A \perp B \mid E.$$

- However, there might be extra conditional independences in the distribution:
 - These would depend on specific choices of the $p(x_j|x_{\mathsf{pa}(j)})$.
 - Or some orderings may reveal extra independences....
- Instead of restricting to $\{1, 2, \dots, j-1\}$, consider general parent choices.
 - x_2 could be a parent of x_1 .
- As long the graph is acyclic, there exists a valid ordering.

(all DAGs have a "topological order" of variables where parents are before children)

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
 - Equivalent graphs: same v-structures and other (undirected) edges are the same.

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
 - Equivalent graphs: same v-structures and other (undirected) edges are the same.
 - Examples of 3 equivalent graphs

Non-Uniqueness of Graph and Equivalent Graphs

- Note that some graphs imply same conditional independences:
 - Equivalent graphs: same v-structures and other (undirected) edges are the same.
 - Examples of 3 equivalent graphs (left) and 3 non-equivalent graphs (right):

- So the graph is not necessarily unique and is not the whole story.
- But, we can do a lot with d-separation:
 - Implies every independence/conditional-independence we've used in 340/540.
- Here we start blurring distinction between data/parameters/hyper-parameters...

IID Assumption as a DAG

• On Day 2, our first independence assumption was the IID assumption:

 \bullet Training/test examples come independently from data-generating process D.

IID Assumption as a DAG

• On Day 2, our first independence assumption was the IID assumption:

- ullet Training/test examples come independently from data-generating process D.
- If we knew D, then there would be no need to learn.
- ullet But D is unobserved, so knowing about some x^i tells us about the others.
- We'll use this understanding later to relax the IID assumption.

Plate Notation

• Graphical representation of the IID assumption:

• We can concisely represent repeated parts of graphs using plate notation:

• When we write

$$y^i \sim \mathcal{N}(w^T x^i, 1),$$

we can interpret it as the DAG model:

When we write

$$y^i \sim \mathcal{N}(w^T x^i, 1),$$

we can interpret it as the DAG model:

• If the x^i are IID then we can represent supervised learning as

or

• From d-separation on this graph we have $p(y|X,w) = \prod_{i=1}^n p(y^i|x^i,w)$.

• When we do MAP estimation under the assumptions

$$y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_j \sim \mathcal{N}(0, 1/\lambda),$$

we can interpret it as the DAG model:

• When we do MAP estimation under the assumptions

$$y^i \sim \mathcal{N}(w^T x^i, 1), \quad w_i \sim \mathcal{N}(0, 1/\lambda),$$

we can interpret it as the DAG model:

Or introducing a second plate using:

Other Models in DAG/Plate Notation

ullet For naive Bayes or Gaussian discriminant analysis with diagonal Σ_c we have

$$y^i \sim \mathsf{Cat}(\theta), \quad x^i | y^i = c \sim D(\theta_c).$$

Other Models in DAG/Plate Notation

• For naive Bayes or Gaussian discriminant analysis with diagonal Σ_c we have

$$y^i \sim \mathsf{Cat}(\theta), \quad x^i | y^i = c \sim D(\theta_c).$$

Or in plate notation as

Other Models in DAG/Plate Notation

ullet In a full Gaussian model for a single x we have

$$x^i \sim \mathcal{N}(\mu, \Sigma).$$

Other Models in DAG/Plate Notation

ullet In a full Gaussian model for a single x we have

$$x^i \sim \mathcal{N}(\mu, \Sigma).$$

For mixture of Gaussians we have

$$z^i \sim \mathsf{Cat}(\theta), \quad x^i | z^i = c \sim \mathcal{N}(\mu_c, \Sigma_c).$$

or with n training examples data as:

Outline

- D-Separation and Plate Notation
- 2 Learning and Inference in DAGs

• The log-likelihood in DAG models is separable in the conditionals,

$$\log p(x) = \log \prod_{j=1}^{d} p(x_j | x_{\mathsf{pa}(j)})$$
$$= \sum_{j=1}^{d} \log p(x_j | x_{\mathsf{pa}(j)})$$

- ullet If each $p(x_j|x_{\mathsf{pa}(j)})$ has its own parameters, we can fit them independently.
 - We've done this before: naive Bayes, Gaussian discriminant analysis, etc.

• The log-likelihood in DAG models is separable in the conditionals,

$$\log p(x) = \log \prod_{j=1}^{d} p(x_j | x_{\mathsf{pa}(j)})$$
$$= \sum_{j=1}^{d} \log p(x_j | x_{\mathsf{pa}(j)})$$

- If each $p(x_j|x_{pa(j)})$ has its own parameters, we can fit them independently.
 - We've done this before: naive Bayes, Gaussian discriminant analysis, etc.
- Sometimes you want to have tied parameters:
 - Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.

• The log-likelihood in DAG models is separable in the conditionals.

$$\log p(x) = \log \prod_{j=1}^{d} p(x_j | x_{\mathsf{pa}(j)})$$
$$= \sum_{j=1}^{d} \log p(x_j | x_{\mathsf{pa}(j)})$$

- If each $p(x_j|x_{pa(j)})$ has its own parameters, we can fit them independently.
 - We've done this before: naive Bayes, Gaussian discriminant analysis, etc.
- Sometimes you want to have tied parameters:
 - Homogeneous Markov chains, Gaussian discriminant analysis with shared covariance.
 - Still easy, but need to fit $p(x_j|x_{pa(j)})$ and $p(x_k|x_{pa(k)})$ together if share parameters.

Tabular Parameterization in DAG Models

• To specify distribution, we need to decide on the form of $p(x_j|x_{\mathsf{pa}(j)})$.

Tabular Parameterization in DAG Models

- To specify distribution, we need to decide on the form of $p(x_j|x_{\mathsf{pa}(j)})$.
- For discrete data a default choice is the tabular parameterization:

$$p(x_j|x_{\mathsf{pa}(j)}) = \theta_{x_j, x_{\mathsf{pa}(j)}},$$

as we did for Markov chains (but now with multiple parents).

Tabular Parameterization in DAG Models

- To specify distribution, we need to decide on the form of $p(x_j|x_{pa(j)})$.
- For discrete data a default choice is the tabular parameterization:

$$p(x_j|x_{\mathsf{pa}(j)}) = \theta_{x_j, x_{\mathsf{pa}(j)}},$$

as we did for Markov chains (but now with multiple parents).

Intuitive: just need conditional probabilities of children given parents like

$$p(\text{``wet grass''} = 1 \mid \text{``sprinkler''} = 1, \text{``rain''} = 0),$$

and MLE is just counting.

https://en.wikipedia.org/wiki/Bayesian_network

https://en.wikipedia.org/wiki/Bayesian_network

Some quantities can be directly read from the tables:

$$p(R = 1) = 0.2.$$

 $p(G = 1|S = 0, R = 1) = 0.8.$

These conditionals are sufficient to do any calculations:

https://en.wikipedia.org/wiki/Bayesian_network

$$p(G=1|R=1) = p(G=1, S=0|R=1) + p(G=1, S=1|R=1) \qquad \left(p(a|c) = \sum_{b} p(a, b|c)\right)$$

These conditionals are sufficient to do any calculations:

https://en.wikipedia.org/wiki/Bavesian_network

$$p(G = 1|R = 1) = p(G = 1, S = 0|R = 1) + p(G = 1, S = 1|R = 1) \qquad \left(p(a|c) = \sum_{b} p(a, b|c)\right)$$
$$= p(G = 1|S = 0, R = 1)p(S = 0|R = 1) + p(G = 1|S = 1, R = 1)p(S = 1|R = 1)$$

These conditionals are sufficient to do any calculations:

https://en.wikipedia.org/wiki/Bayesian_network

$$p(G = 1|R = 1) = p(G = 1, S = 0|R = 1) + p(G = 1, S = 1|R = 1) \qquad \left(p(a|c) = \sum_{b} p(a, b|c)\right)$$
$$= p(G = 1|S = 0, R = 1)p(S = 0|R = 1) + p(G = 1|S = 1, R = 1)p(S = 1|R = 1)$$
$$= 0.8(0.99) + 0.99(0.01) = 0.81.$$

Some companies sell software to help companies reason using tabular DAGs:

- But tabular parameterization requires too many parameters:
 - With binary states and k parents, need 2^{k+1} parameters.
- One solution is letting users specify a "parsimonious" parameterization:
 - Typically have a linear number of parameters.
 - ullet For example, the "noisy-or" model: $p(x_j|x_{\mathsf{pa}(j)}) = 1 \prod_{k \in \mathsf{pa}(j)} q_j$.

- But tabular parameterization requires too many parameters:
 - With binary states and k parents, need 2^{k+1} parameters.
- One solution is letting users specify a "parsimonious" parameterization:
 - Typically have a linear number of parameters.
 - For example, the "noisy-or" model: $p(x_j|x_{\mathsf{pa}(j)}) = 1 \prod_{k \in \mathsf{pa}(j)} q_j$.
- But if we have data, we can use supervised learning.
 - Write fitting $p(x_j|x_{pa(j)})$ as our usual p(y|x).
 - ullet We're predicting one column of X given the values of other columns.

- Fitting DAGs using supervised learning:
 - For i = 1 : d:
 - ① Set $\tilde{y}^i = x^i_j$ and $\tilde{x}^i = x^i_{pa(j)}$.
 - 2 Solve a supervised learning problem using $\{\tilde{X}, \tilde{y}\}$.
 - ullet Use the d regression/classification models as the density estimator.

- Fitting DAGs using supervised learning:
 - For i = 1 : d:
 - ① Set $\tilde{y}^i = x^i_i$ and $\tilde{x}^i = x^i_{pa(i)}$.
 - 2 Solve a supervised learning problem using $\{\tilde{X}, \tilde{y}\}$.
 - Use the d regression/classification models as the density estimator.
- We can use our usual tricks:
 - Linear models, non-linear bases, regularization, kernel trick, random forests, etc.

- Fitting DAGs using supervised learning:
 - For i = 1 : d:
 - Set $\tilde{y}^i = x^i_i$ and $\tilde{x}^i = x^i_{pa(i)}$.
 - 2 Solve a supervised learning problem using $\{\tilde{X}, \tilde{y}\}$.
 - Use the d regression/classification models as the density estimator.
- We can use our usual tricks:
 - Linear models, non-linear bases, regularization, kernel trick, random forests, etc.
 - With least squares it's called a Gaussian belief network.
 - With logistic regression it's called a sigmoid belief networks.
 - Don't need Markov assumptions to tractably fit these models.

MNIST Digits with Tabular DAG Model

• Recall our latest MNIST model using a tabular DAG:

• This model is pretty bad because you only see 8 parents.

MNIST Digits with Sigmoid Belief Network

• Samples from sigmoid belief network:

(DAG with logistic regression for each variable)

where we use all previous pixels as parents (from 0 to 783 parents).

• Models long-range dependencies but has a linear assumption.

- We can use ancestral sampling to generate samples from a DAG:
 - Sample x_1 from $p(x_1)$.

- We can use ancestral sampling to generate samples from a DAG:
 - Sample x_1 from $p(x_1)$.
 - ② If x_1 is a parent of x_2 , sample x_2 from $p(x_2|x_1)$.
 - Otherwise, sample x_2 from $p(x_2)$.

- We can use ancestral sampling to generate samples from a DAG:
 - **1** Sample x_1 from $p(x_1)$.
 - ② If x_1 is a parent of x_2 , sample x_2 from $p(x_2|x_1)$.
 - Otherwise, sample x_2 from $p(x_2)$.
 - **3** Go through the subsequent j in order sampling x_j from $p(x_j|x_{\mathsf{pa}(j)})$.
- We can use these samples within Monte Carlo methods.

- We can use ancestral sampling to generate samples from a DAG:
 - **1** Sample x_1 from $p(x_1)$.
 - 2 If x_1 is a parent of x_2 , sample x_2 from $p(x_2|x_1)$.
 - Otherwise, sample x_2 from $p(x_2)$.
 - **3** Go through the subsequent j in order sampling x_i from $p(x_i|x_{pa(i)})$.
- We can use these samples within Monte Carlo methods.
- How do sample from a multivariate Gaussian?
 - Write it as a Gaussian belief network, apply ancestral sampling.

Inference in Forest DAGs

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s | x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

which works if each node has at most one parent.

Inference in Forest DAGs

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s | x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

which works if each node has at most one parent.

- Such graphs are called trees (connected), or forests (disconnected).
 - Also called "singly-connected".

- Forests allow efficient message-passing methods as in Markov chains.
 - ullet E.g., decoding and computing univariate marginals/conditionals in $O(dk^2)$.

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s | x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

• What goes wrong if nodes have multiple parents?

• If we try to generalize the CK equations to DAGs we obtain

$$p(x_j = s) = \sum_{x_{\mathsf{pa}(j)}} p(x_j = s, x_{\mathsf{pa}(j)}) = \sum_{x_{\mathsf{pa}(j)}} \underbrace{p(x_j = s | x_{\mathsf{pa}(j)})}_{\text{given}} p(x_{\mathsf{pa}(j)}).$$

- What goes wrong if nodes have multiple parents?
 - The expression $p(x_{pa(j)})$ is a joint distribution and is not given recursively.
- Consider the non-tree graph:

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_2} \sum_{x_2} \sum_{x_3} p(x_1, x_2, x_3, x_4)$$

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_2} \sum_{x_2} \sum_{x_3} p(x_4|x_2, x_3) p(x_3|x_1) p(x_2|x_1) p(x_1)$$

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 | x_2, x_3) p(x_3 | x_1) p(x_2 | x_1) p(x_1)$$

$$= \sum_{x_3} \sum_{x_2} p(x_4 | x_2, x_3) \underbrace{\sum_{x_1} p(x_3 | x_1) p(x_2 | x_1) p(x_1)}_{M_{23}(x_2, x_3)}$$

ullet Dependencies between $\{x_1,x_2,x_3\}$ mean our message depends on two variables.

• We can compute $p(x_4)$ in this non-tree using:

$$p(x_4) = \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_1, x_2, x_3, x_4)$$

$$= \sum_{x_3} \sum_{x_2} \sum_{x_1} p(x_4 | x_2, x_3) p(x_3 | x_1) p(x_2 | x_1) p(x_1)$$

$$= \sum_{x_3} \sum_{x_2} p(x_4 | x_2, x_3) \underbrace{\sum_{x_1} p(x_3 | x_1) p(x_2 | x_1) p(x_1)}_{M_{23}(x_2, x_3)}$$

ullet Dependencies between $\{x_1,x_2,x_3\}$ mean our message depends on two variables.

$$p(x_4) = \sum_{x_3} \sum_{x_2} p(x_4|x_2, x_3) M_{23}(x_2, x_3)$$
$$= \sum_{x_3} M_{34}(x_3, x_4),$$

• With 2-variable messages, our cost increases to $O(dk^3)$.

Inference in General DAGs

- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 > x_4$, then the cost is $O(dk^4)$.

(the same cost as enumerating all possible assignments)

Inference in General DAGs

- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 > x_4$, then the cost is $O(dk^4)$.

 (the same cost as enumerating all possible assignments)
- Unfortunately, cost is not as simple as counting number of parents.
 - Even if each node has 2 parents, we may need huge messages.
 - Decoding is NP-hard and marginals are #P-hard in general.

Inference in General DAGs

- With 2-variable messages, our cost increases to $O(dk^3)$.
- If we add the edge $x_1 > x_4$, then the cost is $O(dk^4)$.

 (the same cost as enumerating all possible assignments)
- Unfortunately, cost is not as simple as counting number of parents.
 - Even if each node has 2 parents, we may need huge messages.
 - Decoding is NP-hard and marginals are #P-hard in general.
 - We'll see later that maximum message is given by treewidth of a particular graph.
- In general, we'll need approximate inference methods to use general DAGs.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.
- For example, still easy if we condition on the first variables in the order:
 - Just fix these and run ancestral sampling.

Conditional Sampling in DAGs

- What about conditional sampling in DAGs?
 - Could be easy or hard depending on what we condition on.
- For example, still easy if we condition on the first variables in the order:
 - Just fix these and run ancestral sampling.

- Hard to condition on the last variables in the order:
 - Conditioning on descendent makes ancestors dependent.

Outline

- D-Separation and Plate Notation
- 2 Learning and Inference in DAGs
- Undirected Graphical Models

Directed vs. Undirected Models

- In some applications we have a natural ordering of the x_j .
 - In the "rain" data, the past affects the future.
- In some applications we don't have a natural order.
 - E.g., pixels in an image.

Directed vs. Undirected Models

- In some applications we have a natural ordering of the x_i .
 - In the "rain" data, the past affects the future.
- In some applications we don't have a natural order.
 - E.g., pixels in an image.
- In these settings we often use undirected graphical models.
 - Also known as Markov random fields and originally from statistical physics.

Undirected Graphical Models

• Undirected graphical models (UGMs) assume p(x) factorizes over subsets c,

$$p(x_1, x_2, \dots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

from among a set of subsets of C.

• The ϕ_c are called potential functions: can be any non-negative function.

Undirected Graphical Models

• Undirected graphical models (UGMs) assume p(x) factorizes over subsets c,

$$p(x_1, x_2, \dots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

from among a set of subsets of C.

- ullet The ϕ_c are called potential functions: can be any non-negative function.
 - Ordering doesn't matter: more natural for things like pixels of an image.
 - Theoretically, only need ϕ_c for maximal subsets in C.

• Undirected graphical models (UGMs) assume p(x) factorizes over subsets c,

$$p(x_1, x_2, \dots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

from among a set of subsets of C.

- The ϕ_c are called potential functions: can be any non-negative function.
 - Ordering doesn't matter: more natural for things like pixels of an image.
 - Theoretically, only need ϕ_c for maximal subsets in C.
- Important special case is pairwise undirected graphical model:

$$p(x) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right),$$

where E are a set of undirected edges.

Undirected Graphical Models

• Pairwise UGMs are a classic way to model dependencies in images:

• Can model dependency between neighbouring pixels, without imposing ordering.

From Probability Factorization to Graphs

• For a pairwise UGM,

$$p(x) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right),$$

we visualize independence assumptions as an undirected graph:

• We have edge i to j if $(i, j) \in E$.

From Probability Factorization to Graphs

For a pairwise UGM,

$$p(x) \propto \left(\prod_{j=1}^d \phi_j(x_j)\right) \left(\prod_{(i,j)\in E} \phi_{ij}(x_i, x_j)\right),$$

we visualize independence assumptions as an undirected graph:

- We have edge i to j if $(i, j) \in E$.
- For general UGMs,

$$p(x_1, x_2, \dots, x_d) \propto \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

we have the edge (i, j) if i and j are together in at least one c.

Conditional Independence in Undirected Graphical Models

- It's easy to check conditional independence in UGMs:
 - ullet $A\perp B$ C if C blocks all paths from any A to any B.

Conditional Independence in Undirected Graphical Models

- It's easy to check conditional independence in UGMs:
 - $A \perp B \ C$ if C blocks all paths from any A to any B.
- Example:

- \bullet $A \not\perp C$.
- $A \not\perp C|B$.
- $A \perp C|B, E$.

Conditional Independence in Undirected Graphical Models

- It's easy to check conditional independence in UGMs:
 - $A \perp B \ C$ if C blocks all paths from any A to any B.
- Example:

- \bullet $A \not\perp C$.
- $A \not\perp C|B$.
- $A \perp C|B, E$.
- $A, B \not\perp F|C$
- $A, B \perp F | C, E$.

Digression: Gaussian Graphical Models

Multivariate Gaussian can be written as

$$p(x) \propto \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \propto \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \underbrace{\Sigma^{-1}\mu}\right),$$

Digression: Gaussian Graphical Models

Multivariate Gaussian can be written as

$$p(x) \propto \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \propto \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \underbrace{\Sigma^{-1}\mu}_{x}\right),$$

and from here we can see that it's a pairwise UGM:

$$p(x) \propto \exp\left(\left(-\frac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}x_{i}x_{j}\Sigma_{ij}^{-1} + \sum_{i=1}^{d}x_{i}v_{i}\right)\right)$$

Digression: Gaussian Graphical Models

Multivariate Gaussian can be written as

$$p(x) \propto \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right) \propto \exp\left(-\frac{1}{2}x^T \Sigma^{-1}x + x^T \underbrace{\Sigma^{-1}\mu}_{v}\right),$$

and from here we can see that it's a pairwise UGM:

$$p(x) \propto \exp\left(\left(-\frac{1}{2}\sum_{i=1}^{d}\sum_{j=1}^{d}x_{i}x_{j}\Sigma_{ij}^{-1} + \sum_{i=1}^{d}x_{i}v_{i}\right)\right)$$

$$= \left(\prod_{i=1}^{d}\prod_{j=1}^{d}\exp\left(-\frac{1}{2}x_{i}x_{j}\Sigma_{ij}^{-1}\right)\right) \left(\prod_{i=1}^{d}\exp\left(x_{i}v_{i}\right)\right)$$

$$= \left(\prod_{i=1}^{d}\prod_{j=1}^{d}\exp\left(-\frac{1}{2}x_{i}x_{j}\Sigma_{ij}^{-1}\right)\right) \left(\prod_{i=1}^{d}\exp\left(x_{i}v_{i}\right)\right)$$

- We also call multivariate Gaussian a Gaussian graphical model (GGM).
 - Or Gaussian Markov random field.

- So Gaussians are pairwise UGMs with $\phi_{ij}(x_i, x_j) = \exp\left(-\frac{1}{2}x_ix_j\Theta_{ij}\right)$,
 - Where Θ_{ij} is element (i,j) of Σ^{-1} .
- Connection between precision matrix $\Theta = \Sigma^{-1}$ and conditional independence:
 - Setting $\Theta_{ij}=0$ is equivalent to removing $\phi_{ij}(x_i,x_j)$ from the UGM.

$$\Theta_{ij} = 0 \Rightarrow x_i \perp x_{-i} | x_j.$$

Independence in GGMs

- So Gaussians are pairwise UGMs with $\phi_{ij}(x_i, x_j) = \exp\left(-\frac{1}{2}x_ix_j\Theta_{ij}\right)$,
 - Where Θ_{ij} is element (i, j) of Σ^{-1} .
- Connection between precision matrix $\Theta = \Sigma^{-1}$ and conditional independence:
 - Setting $\Theta_{ij} = 0$ is equivalent to removing $\phi_{ij}(x_i, x_j)$ from the UGM.

$$\Theta_{ij} = 0 \Rightarrow x_i \perp x_{-i} | x_j.$$

Gaussian conditional independencies corresponds to sparsity in precision matrix.

Independence in GGMs

- So Gaussians are pairwise UGMs with $\phi_{ij}(x_i,x_j)=\exp\left(-\frac{1}{2}x_ix_j\Theta_{ij}\right)$,
 - Where Θ_{ij} is element (i,j) of Σ^{-1} .
- Connection between precision matrix $\Theta = \Sigma^{-1}$ and conditional independence:
 - Setting $\Theta_{ij}=0$ is equivalent to removing $\phi_{ij}(x_i,x_j)$ from the UGM.

$$\Theta_{ij} = 0 \Rightarrow x_i \perp x_{-i} | x_j.$$

- Gaussian conditional independencies corresponds to sparsity in precision matrix.
 - ullet Diagonal Θ gives disconnected graph: all variables are indpendent.
 - \bullet Full Θ gives fully-connected graph: there are no independences.

Independence in GGMs

• Consider Gaussian with tri-diagonal precision Θ :

$$\Sigma^{-1} = \begin{bmatrix} 32.0897 & 13.1740 & 0 & 0 & 0 \\ 13.1740 & 18.3444 & -5.2602 & 0 & 0 \\ 0 & -5.2602 & 7.7173 & 2.1597 & 0 \\ 0 & 0 & 2.1597 & 20.1232 & 1.1670 \\ 0 & 0 & 0 & 1.1670 & 3.8644 \end{bmatrix}$$

• Consider Gaussian with tri-diagonal precision Θ :

$$\Sigma^{-1} = \begin{bmatrix} 32.0897 & 13.1740 & 0 & 0 & 0 \\ 13.1740 & 18.3444 & -5.2602 & 0 & 0 \\ 0 & -5.2602 & 7.7173 & 2.1597 & 0 \\ 0 & 0 & 2.1597 & 20.1232 & 1.1670 \\ 0 & 0 & 0 & 1.1670 & 3.8644 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 0.0494 & -0.0444 & -0.0312 & 0.0034 & -0.0010 \\ -0.0444 & 0.1083 & 0.0761 & -0.0083 & 0.0025 \\ -0.0312 & 0.0761 & 0.1872 & -0.0204 & 0.0062 \\ 0.0034 & -0.0083 & -0.0204 & 0.0528 & -0.0159 \\ -0.0010 & 0.0025 & 0.0062 & -0.0159 & 0.2636 \end{bmatrix}$$

• $\Sigma_{ij} \neq 0$ so all variables are dependent: $x_1 \not\perp x_2, x_1 \not\perp x_5$, and so on.

• Consider Gaussian with tri-diagonal precision Θ :

$$\Sigma^{-1} = \begin{bmatrix} 32.0897 & 13.1740 & 0 & 0 & 0 \\ 13.1740 & 18.3444 & -5.2602 & 0 & 0 \\ 0 & -5.2602 & 7.7173 & 2.1597 & 0 \\ 0 & 0 & 2.1597 & 20.1232 & 1.1670 \\ 0 & 0 & 0 & 1.1670 & 3.8644 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 0.0494 & -0.0444 & -0.0312 & 0.0034 & -0.0010 \\ -0.0444 & 0.1083 & 0.0761 & -0.0083 & 0.0025 \\ -0.0312 & 0.0761 & 0.1872 & -0.0204 & 0.0062 \\ 0.0034 & -0.0083 & -0.0204 & 0.0528 & -0.0159 \\ -0.0010 & 0.0025 & 0.0062 & -0.0159 & 0.2636 \end{bmatrix}$$

- $\Sigma_{ij} \neq 0$ so all variables are dependent: $x_1 \not\perp x_2$, $x_1 \not\perp x_5$, and so on.
- But conditional independence is described by a Markov chain:

$$x_1\perp x_3, x_4, x_5|x_2,$$

so
$$p(x_1|x_2, x_3, x_4, x_5) = p(x_1|x_2)$$
.

Graphical Lasso

ullet Conditional independence in GGMs is described by sparsity in Θ .

Graphical Lasso

- Conditional independence in GGMs is described by sparsity in Θ .
- Recall fitting multivariate Gaussian with L1-regularization,

$$\underset{\Theta \succ 0}{\operatorname{argmin}} \operatorname{Tr}(S\Theta) - \log |\Theta| + \lambda ||\Theta||_1,$$

which is called the graphical Lasso because it encourages a sparse graph.

Special case of graph structure learning.

Graphical Lasso

- Conditional independence in GGMs is described by sparsity in Θ .
- Recall fitting multivariate Gaussian with L1-regularization,

$$\underset{\Theta \succ 0}{\operatorname{argmin}} \operatorname{Tr}(S\Theta) - \log |\Theta| + \lambda ||\Theta||_1,$$

which is called the graphical Lasso because it encourages a sparse graph.

- Special case of graph structure learning.
- Consider instead fitting DAG model with Gaussian probabilities:
 - DAG structure corresponds to sparsity in Cholesky of covariance.

In UGMs we assume that

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant such that

$$\sum_{x_1}\sum_{x_2}\cdots\sum_{x_d}p(x)=1 \text{ (discrete)}, \quad \int_{x_1}\int_{x_2}\cdots\int_{x_d}p(x)dx_ddx_{d-1}\ldots dx_1=1 \text{ (cont)}.$$

In UGMs we assume that

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant such that

$$\sum_{x_1}\sum_{x_2}\cdots\sum_{x_d}p(x)=1 \text{ (discrete)}, \quad \int_{x_1}\int_{x_2}\cdots\int_{x_d}p(x)dx_ddx_{d-1}\ldots dx_1=1 \text{ (cont)}.$$

 \bullet So Z is

$$Z = \sum_{c} \prod_{c,c} \phi_c(x_c)$$
 (discrete), $\int_x \prod_{c,c} \phi_c(x_c) dx$ (cont)

In UGMs we assume that

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant such that

$$\sum_{x_1}\sum_{x_2}\cdots\sum_{x_d}p(x)=1 \text{ (discrete)}, \quad \int_{x_1}\int_{x_2}\cdots\int_{x_d}p(x)dx_ddx_{d-1}\ldots dx_1=1 \text{ (cont)}.$$

ullet So Z is

$$Z = \sum_{x} \prod_{c \in \mathcal{C}} \phi_c(x_c)$$
 (discrete), $\int_{x} \prod_{c \in \mathcal{C}} \phi_c(x_c) dx$ (cont)

- Whether you can compute Z depends on the choice of ϕ_c :
 - Gaussian case: $O(d^3)$ in general, but O(d) for forests (no loops).

In UGMs we assume that

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant such that

$$\sum_{x_1}\sum_{x_2}\cdots\sum_{x_d}p(x)=1 \text{ (discrete)}, \quad \int_{x_1}\int_{x_2}\cdots\int_{x_d}p(x)dx_ddx_{d-1}\ldots dx_1=1 \text{ (cont)}.$$

ullet So Z is

$$Z = \sum_{x} \prod_{c \in \mathcal{C}} \phi_c(x_c)$$
 (discrete), $\int_{x} \prod_{c \in \mathcal{C}} \phi_c(x_c) dx$ (cont)

- Whether you can compute Z depends on the choice of ϕ_c :
 - Gaussian case: $O(d^3)$ in general, but O(d) for forests (no loops).
 - Discrete case: NP-hard in general, but $O(dk^2)$ for forests (no loops).

In UGMs we assume that

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(x_c),$$

where Z is the constant such that

$$\sum_{x_1}\sum_{x_2}\cdots\sum_{x_d}p(x)=1 \text{ (discrete)}, \quad \int_{x_1}\int_{x_2}\cdots\int_{x_d}p(x)dx_ddx_{d-1}\ldots dx_1=1 \text{ (cont)}.$$

 \bullet So Z is

$$Z = \sum_{x} \prod_{c \in \mathcal{C}} \phi_c(x_c)$$
 (discrete), $\int_{x} \prod_{c \in \mathcal{C}} \phi_c(x_c) dx$ (cont)

- Whether you can compute Z depends on the choice of ϕ_c :
 - Gaussian case: $O(d^3)$ in general, but O(d) for forests (no loops).
 - Discrete case: NP-hard in general, but $O(dk^2)$ for forests (no loops).
 - Continuous non-Gaussian: usually requires numerical integration.

Summary

- Plate Notation lets compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".

Summary

- Plate Notation lets compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_j|x_{pa(j)})$ independently.
 - Tabular parameterization, or treat as supervised learning.

Summary

- Plate Notation lets compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_i|x_{pa(i)})$ independently.
 - Tabular parameterization, or treat as supervised learning.
- Inference in DAGs:
 - Ancestral sampling and Monte Carlo methods work as faster.
 - Message-passing message sizes depend on graph structure.

- Plate Notation lets compactly draw graphs with repeated patterns.
 - There are fancier versions of plate notation called "probabilistic programming".
- Parameter learning in DAGs:
 - Can fit each $p(x_i|x_{pa(i)})$ independently.
 - Tabular parameterization, or treat as supervised learning.
- Inference in DAGs:
 - Ancestral sampling and Monte Carlo methods work as faster.
 - Message-passing message sizes depend on graph structure.
- Undirected graphical models factorize probability into non-negative potentials.
 - Simple conditional independence properties.
 - Include Gaussians as special case.
- Next time: our first visit to the wild world of apporximate inference.