Configuration State Function (CSF)

2018.11.23

宋胤萱

内容

- 背景
- CSF
- CSF与Slater行列式的转换
- 组态空间的产生
- 附录

背景

对He原子,第一激发态的电子排布有如下4种

$$\psi_2 \stackrel{\uparrow}{ }$$
 $\psi_1 \stackrel{}{ }$

$$\frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(1)\alpha(1) & \psi_2(1)\alpha(1) \\ \psi_1(2)\alpha(2) & \psi_2(2)\alpha(2) \end{vmatrix}$$

$$\frac{1}{\sqrt{2}}[\psi_1(1)\psi_2(2) - \psi_1(2)\psi_2(1)]\alpha(1)\alpha(2)$$

$$\psi_2 \stackrel{\downarrow}{ \downarrow} \psi_1 \stackrel{\uparrow}{ \downarrow}$$

$$\frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(1)\alpha(1) & \psi_2(1)\beta(1) \\ \psi_1(2)\alpha(2) & \psi_2(2)\beta(2) \end{vmatrix}$$

$$\frac{1}{\sqrt{2}} [\psi_1(1)\psi_2(2)\alpha(1)\beta(2) \\ -\psi_1(2)\psi_2(1)\alpha(2)\beta(1)]$$

自旋部分与空间部分波函数 不分离,需要 线性组合

$$\psi_2 \stackrel{\downarrow}{ \stackrel{}{ \downarrow}} \psi_1 \stackrel{}{ \stackrel{}{ \stackrel{}{ \downarrow}}}$$

$$\frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(1)\beta(1) & \psi_2(1)\beta(1) \\ \psi_1(2)\beta(2) & \psi_2(2)\beta(2) \end{vmatrix}$$

$$\frac{1}{\sqrt{2}}[\psi_1(1)\psi_2(2) - \psi_1(2)\psi_2(1)]\beta(1)\beta(2)$$

$$\psi_2 \stackrel{\uparrow}{\longrightarrow} \psi_1 \stackrel{\downarrow}{\longrightarrow}$$

$$\frac{1}{\sqrt{2}} \begin{vmatrix} \psi_1(1)\beta(1) & \psi_2(1)\alpha(1) \\ \psi_1(2)\beta(2) & \psi_2(2)\alpha(2) \end{vmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} \psi_1(1)\psi_2(2)\alpha(2)\beta(1) \\ -\psi_1(2)\psi_2(1)\alpha(1)\beta(2) \end{bmatrix}$$

背景

$$\Psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} \xrightarrow{\psi_{1}} \psi_{1} \xrightarrow{\psi_{2}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} \xrightarrow{\psi_{2}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{1} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(2) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(2)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(1)\psi_{2}(1)]\beta(1)\beta(2) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(1)\psi_{2}(1)]\beta(1)\beta(1) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(1)\psi_{2}(1)]\beta(1)\beta(1) \qquad \psi_{2} \xrightarrow{\psi_{1}} \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(1)\psi_{2}(1)]\beta(1)\beta(1) \qquad \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(1)\psi_{2}(1)]\beta(1) \qquad \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{1}(1)\psi_{2}(1)]\beta(1) \qquad \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{1}(1)\psi_{2}(1) - \psi_{2}(1)\psi_{2}(1)]\beta(1) \qquad \psi_{2} = \frac{1}{\sqrt{2}} [\psi_{2}(1)\psi_{2}($$

$$\Psi_3 = \frac{1}{2} [\psi_1(1)\psi_2(2) - \psi_1(2)\psi_2(1)] [\alpha(1)\beta(2) + \alpha(2)\beta(1)]$$

$$\Psi_4 = \frac{1}{2} [\psi_1(1)\psi_2(2) + \psi_1(2)\psi_2(1)] [\alpha(1)\beta(2) - \alpha(2)\beta(1)]$$

可将Slater行列式线性 组合得到 \hat{S}^2 与 \hat{S}_z 共同的 本征波函数

$$egin{pmatrix} \psi_2 & \downarrow & \downarrow & \downarrow \ \psi_1 & \uparrow & -\psi_1 & \downarrow & \downarrow \ \end{pmatrix}$$

三重态(
3
S): Ψ_{1} , Ψ_{2} , Ψ_{3} $M_{S} = 1$, -1 , 0

$$S = 1$$

Slater行列式是 \hat{S}_z 的本征波函数,

单重态(
1
S): Ψ₄ $M_S = 0$

$$M_S=0$$

$$S = 0$$

不一定是 \hat{S}^2 的本征波函数

CSF

• Slater行列式的线性组合

$$|CSF\rangle = \sum_{n} c_n |det\rangle_n$$

- \hat{S}^2 的本征波函数 $\hat{S}^2|CSF\rangle = \hbar S(S+1)|CSF\rangle$
- \hat{S}_z 的本征波函数 $\hat{S}_z | CSF \rangle = \hbar M_s | CSF \rangle$

$$\psi_{2} \xrightarrow{\uparrow} \qquad S = 1 \qquad M_{S} = 1 \qquad |\frac{1}{2}, 1\rangle \qquad |uu\rangle \qquad |11\rangle$$

$$\psi_{2} \xrightarrow{\downarrow} \qquad S = 1 \qquad M_{S} = -1 \qquad |\frac{1}{2}, 1\rangle \qquad |uu\rangle \qquad |11\rangle$$

$$\psi_{2} \xrightarrow{\downarrow} \qquad + \psi_{1} \xrightarrow{\downarrow} \qquad S = 1 \qquad M_{S} = 0 \qquad |\frac{1}{2}, 1\rangle \qquad |uu\rangle \qquad |11\rangle$$

$$\psi_{2} \xrightarrow{\downarrow} \qquad - \psi_{2} \xrightarrow{\uparrow} \qquad S = 0 \qquad M_{S} = 0 \qquad |\frac{1}{2}, 0\rangle \qquad |ud\rangle \qquad |12\rangle$$

- 第n个数字表示第n个空间轨道上的电子加入体系后体系的S值
- 第n个数字表示该空间轨道上的电子加入体系后对体系S的影响
- (2) (3)(2) u: 轨道上有1个使S增大的电子 2: 轨道上有2个电子
 - d: 轨道上有1个使S减小的电子 0: 轨道上无电子
- 0: 轨道上无电子 1: 轨道上有1个使S增大的电子
 - 2: 轨道上有1个使S减小的电子 3: 轨道上有2个电子

一个CSF可能对应一种电子排布,也可能是几种电子排布的线性组合

|3101213

① ②
$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & \\ 4 & 7 & \\ b & 7 & \end{bmatrix} [p] = \begin{vmatrix} 3 & 2 & 2 & \\ 2 & 2 & 2 & \\ 2 & 1 & 2 & \\ 1 & 2 & 1 & \\ 1 & 1 & 0 & \\ 1 & 0 & 0 & \\ \end{bmatrix} d = \begin{pmatrix} 3 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 3 \end{pmatrix} [p] = \begin{vmatrix} a_n & b_n & c_n \\ a_{n-1} & b_{n-1} & c_{n-1} \\ a_1 & b_1 & c_1 \end{pmatrix} d = \begin{pmatrix} d_n \\ d_{n-1} \\ \vdots \\ a_1 \end{pmatrix}$$

$$[p] = \begin{bmatrix} a_n & b_n & c_n \\ a_{n-1} & b_{n-1} & c_{n-1} \\ \vdots & \vdots & \ddots \end{bmatrix} d = \begin{pmatrix} d_n \\ d_{n-1} \\ \vdots \\ d_n \end{pmatrix}$$

第k行强调了前k个轨道上的 N_k 个电子

步矢

Paldus盘(ABC盘)

方块 电.子 数字 电子所在空间轨道 (1)列 其中的电子使体系总自旋增大 ②列 其中的电子使体系总自旋减小 图中含有(1)②列的行数 图中含有①列的行数

构成自旋量子数 S_k 时的累加结果,且 $a_k + b_k + c_k = k$ $x_k \ge 0 \ (x = a, b, c)$

总电子数 N = 2a + b总轨道数 n = a + b + c总自旋 $S = \frac{1}{3}b$

Paldus盘(ABC盘)

步矢

$$\Delta a_k + \Delta b_k + \Delta c_k = 1$$

$$[p] = \begin{vmatrix} a_n & b_n & c_n \\ a_{n-1} & b_{n-1} & c_{n-1} \\ \vdots & \vdots & \vdots \\ a_1 & b_1 & c_1 \end{vmatrix} \qquad d = \begin{pmatrix} d_n \\ d_{n-1} \\ \vdots \\ d_1 \end{pmatrix}$$

$$d_k = 3\Delta a_k + \Delta b_k$$

$$d_k = \frac{3}{2}\Delta N_k - \Delta S_k$$

$$\Delta x_k = x_k - x_{k-1}(x = a, b, c, N, S)$$

d_k	Δa_k	Δb_k	Δc_k	ΔN_k	ΔS_k
0	0	0	1	0	0
1	0	1	0	1	1/2
2	1	-1	1	1	-1/2
3	1	0	0	2	0

 d_k 的取值对应4种情况

轨道k上无电子

轨道k上有1个使体系总自旋增加的电子 轨道k上有1个使体系总自旋减少的电子 轨道k上有2个电子

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6				
5				
4				
3				
2				
1				
0	0	0	0	_

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6				
5				
4				
3				
2				
1	1	0	0	3
0	0	0	0	-

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6				
5				
4				
3				
2	1	1	0	1
1	1	0	0	3
0	0	0	0	-

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6				
5				
4				
3	1	1	1	0
2	1	1	0	1
1	1	0	0	3
0	0	0	0	_

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6				
5				
4	1	2	1	1
3	1	1	1	0
2	1	1	0	1
1	1	0	0	3
0	0	0	0	_

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6				
5	2	1	2	2
4	1	2	1	1
3	1	1	1	0
2	1	1	0	1
1	1	0	0	3
0	0	0	0	-

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7				
6	2	2	2	1
5	2	1	2	2
4	1	2	1	1
3	1	1	1	0
2	1	1	0	1
1	1	0	0	3
0	0	0	0	-

总电子数
$$N=2a+b$$

总轨道数 $n=a+b+c$
总自旋 $S=\frac{1}{2}b$

$$N = 8, n = 7, S = 1$$

k	а	b	С	d
7	3	2	2	3
6	2	2	2	1
5	2	1	2	2
4	1	2	1	1
3	1	1	1	0
2	1	1	0	1
1	1	0	0	3
0	0	0	0	-

CSF与Slater行列式的转换

- 1. 确定体系总电子数N, 总空间轨道数n, 总自旋量子数S, 总自旋z分量量子数 M_s
- 2. 对某个满足条件1的CSF, 找出所有可以线性组合成该CSF的Slater行列式。
- 3. 所有Slater行列式除满足条件1外,还需满足: 第*k*个空间轨道上的电子数与CSF的相同
- 4. 满足条件的Slater行列式根据下列公式计算其系数f

$$f = \prod_{k=1}^{n} f_k$$

$$f_k = 1 \quad \text{if } d_k = 0$$

$$f_k = \sqrt{(a_k + b_k - \gamma_k)/b_k} \quad \text{if } d_k = 1$$

$$f_k = (-1)^{b_k + \delta_k} \sqrt{(\gamma_k - a_k + 1)/(b_k + 2)} \quad \text{if } d_k = 2$$

$$f_k = (-1)^{b_k} \quad \text{if } d_k = 3$$

 γ_k : 在Slater行列式的第k个空间轨道之前,与第k个空间轨道上的电子自旋相反的自旋轨道数

$$\psi_2 \xrightarrow{\downarrow} + \psi_2 \xrightarrow{\uparrow}$$

$$N = 2, n = 2, S = 1, M_S = 0$$

k	а	b	С	d
2	0	2	0	1
1	0	1	0	1

	$ 1\overline{2}\rangle_d$		12	$\langle a \rangle_d$
k	γ	δ	γ	δ
2	1	0	1	1
1	0	1	0	0

$$|11\rangle_C = \frac{1}{\sqrt{2}}|1\overline{2}\rangle_d + \frac{1}{\sqrt{2}}|\overline{1}2\rangle_d$$

CSF与Slater行列式的转换

- 1. 确定体系总电子数N,总空间轨道数n,总自旋量子数S,总自旋z分量量子数 M_s
- 2. 对某个满足条件1的CSF, 找出所有可以线性组合成该CSF的Slater行列式。
- 3. 所有Slater行列式除满足条件1外,还需满足: 第*k*个空间轨道上的电子数与CSF的相同
- 4. 满足条件的Slater行列式根据下列公式计算其系数f

$$f = \prod_{k=1}^{n} f_k$$

$$f_k = 1 \quad \text{if } d_k = 0$$

$$f_k = \sqrt{(a_k + b_k - \gamma_k)/b_k} \quad \text{if } d_k = 1$$

$$f_k = (-1)^{b_k + \delta_k} \sqrt{(\gamma_k - a_k + 1)/(b_k + 2)} \quad \text{if } d_k = 1$$

$$f_k = (-1)^{b_k} \quad \text{if } d_k = 2$$

$$f_k = (-1)^{b_k} \quad \text{if } d_k = 3$$

 γ_k : 在Slater行列式的第k个空间轨道之前,与第k个空间轨道上的电子自旋相反的自旋轨道数

 $\delta_k = 1$: 第k个轨道上为 α 电子 $\delta_k = 0$: 第k个轨道上为 β 电子

$$N = 2, n = 2, S = 0, M_S = 0$$

k	а	b	С	d
2	1	0	1	2
1	0	1	0	1

	12	$\langle z \rangle_d$	$ \overline{1}2\rangle_d$		
k	γ	δ	γ	δ	
2	1	0	1	1	
1	0	1	0	0	

$$|12\rangle_C = \frac{1}{\sqrt{2}}|1\overline{2}\rangle_d - \frac{1}{\sqrt{2}}|\overline{1}2\rangle_d$$

CSF与Slater行列式的转换

$$f_k = 1$$
 if $d_k = 0$ $f_k = \sqrt{(a_k + b_k - \gamma_k)/b_k}$ if $d_k = 1$ $f_k = (-1)^{b_k + \delta_k} \sqrt{(\gamma_k - a_k + 1)/(b_k + 2)}$ if $d_k = 2$ if $d_k = 3$ γ_k : 在Slater行列式的第 k 个空间轨道之前,与第 k 个

空间轨道上的电子自旋相反的自旋轨道数

k	a	b	С	d
7	2	1	4	2
6	1	2	3	0
5	1	2	2	0
4	1	2	1	1
3	1	1	1	3
2	0	1	1	0
1	0	1	0	1

$\delta_k = 1$:	第k个轨道上为α电子
$\delta_k = 0$:	第k个轨道上为β电子

1	3	11021002\
3	7	1031002⟩
4		$N = 5, n = 7, S = \frac{1}{2}, M_S = \frac{1}{2}$
$\frac{0310}{-}$, ,	$\overline{3}4\overline{7}\rangle_d - \overline{1}3\overline{3}47\rangle_d - 13\overline{3}\overline{4}7\rangle_d$

			_	•					
	$ \overline{1}3\overline{3}47\rangle_d$			$ 13\overline{3}\overline{4}7\rangle_d$			$ 13\overline{3}4\overline{7}\rangle_d$		
k	γ	δ	f	γ	δ	f	γ	δ	f
7	2	1	$\frac{1}{\sqrt{3}}$	2	1	$\frac{1}{\sqrt{3}}$	3	0	$\frac{-2}{\sqrt{6}}$
4	2	1	$\frac{1}{\sqrt{2}}$	2	0	$\frac{1}{\sqrt{2}}$	1	1	1
3	ı	ı	-1	ı	ı	-1	ı	ı	-1
1	0	0	1	0	1	1	0	1	1

- 1. 纵向为轨道级, 自上 而下从大到小排列
- 2. 四种斜率不同的线段 标记 d_k
- 3. 各结点用其对应的 $(a_k b_k c_k)$ 标记
- 4. 从图的顶行头结点 (head)出发按 d_k 向下 连接不同结点
- 5. 为使图形封闭,在最后一行增加一个尾结点(tail)
- 6. 从尾结点到头结点的 任意一条线路表示一 个CSF

结点向下连接时不同 d_k 取值对应(a_k b_k c_k)的变化

$d_k = 0$	$c_{k} - 1$
$d_k = 1$	$b_{k} - 1$
$d_k = 2$	$a_k - 1, c_k - 1$ $b_k + 1$
$d_k = 3$	$a_k - 1$

结点向下连接时的禁戒规则 (保证 $a_k, b_k, c_k \ge 0$)

结构特征	禁止步数
$a_k = 0$	$d_k = 2$ $d_k = 3$
$b_k = 0$	$d_k = 1$
$c_k = 0$	$d_k = 0$ $d_k = 2$

结点向下连接时不同 d_k 取值对应(a_k b_k c_k)的变化

1 0	
$d_k = 0$	c_k-1
$d_k = 1$	$b_k - 1$
$d_k = 2$	$\begin{vmatrix} a_k - 1, c_k - 1 \\ b_k + 1 \end{vmatrix}$
$d_k = 3$	$a_k - 1$

结点向下连接时的禁戒规则 (保证 $a_k, b_k, c_k \ge 0$)

结构特征	禁止步数
$a_k = 0$	$d_k = 2$ $d_k = 3$
$b_k = 0$	$d_k = 1$
$c_k = 0$	$d_k = 0$ $d_k = 2$

每一结点赋予一个指标 *J*,它是该结点在图中 自上而下产生的顺序

结点权:结点*J* 到尾的通 道数

结点J的权等于与之相 连的数个下结点 Jd_{\downarrow} 的 权之和

$$X_J = \sum_{d=0}^3 X_{Jd\downarrow}$$

约定<mark>尾结点的权为1</mark> 头结点的权是图形从头 到尾的通道数,即该图 形所代表的组态数目

每一条连接两个结点的 弧可以定义<mark>弧权</mark>

弧权:该弧上结点所连结的小于该弧步数(d')的下结点Jd_{\downarrow}的结点权之和,即d < d'的弧所连结的下结点的结点权之和,记为 Y_{Id}

$$Y_{Jd} = \sum_{d'=0}^{d-1} X_{Jd'_{\downarrow}}$$
$$= Y_{Jd-1} + X_{Jd-1_{\downarrow}}$$

由定义, $Y_{J0} = 0$

整步由n段弧连接而成, 这些弧的弧权之和定义 为该整步的步权,记作 W(d)

$$W(d) = \sum_{k=1}^{n} (Y_{Jd})_{k}$$

利用步权可以给整步所 代表的CSF赋予一种编 序方式

组态的<mark>辞典顺序(Lexical)</mark> 定义为步权加1

组态	步权	顺序
31100>	0	1
00113>	44	45

不同行表(Distinct Row Table, DRT)

<u> </u>	k	а	b	С	<i>J</i> 0 _↓	<i>J</i> 1↓	<i>J</i> 2↓	<i>J</i> 3↓	<i>Y</i> 1	<i>Y</i> 2	<i>Y</i> 3	X
1	5	1	2	2	2	3	4	5	15	35	39	45
2	4	1	2	1	6	7	8	10	3	11	12	15
3	4	1	1	2	7	9	10	11	8	14	17	20
4	4	0	3	1	8	10			1	0	0	4
5	4	0	2	2	10	11			3	0	0	6
6	3	1	2	0		12		14	0	0	2	3
7	3	1	1	1	12	13	14	15	2	5	6	8
8	3	0	3	0		13			0	0	0	1
9	3	1	0	2	13		15	16	0	3	5	6
10	3	0	2	1	14	15			1	0	0	3
11	3	0	1	2	15	16			2	0	0	3
12	2	1	1	0		17		18	0	0	1	2
13	2	1	0	1	17		18	19	0	1	2	3
14	2	0	2	0		18			0	0	0	1
15	2	0	1	1	18	19			1	0	0	2
16	2	0	0	2	19				0	0	0	0
17	1	1	0	0				20	0	0	0	1
18	1	0	1	0		20			0	0	0	1
19	1	0	0	1	20				0	0	0	1
20	0	0	0	0					0	0	0	1

参考文献

- 1. 文振翼, 王育邠. 酉群方法的理论和应用. 上海 科学技术出版社, 1994
- 2. Isaiah Shavitt. The graphical unitary group approach and Its application to direct configuration interaction calculations.
- 3. Isaiah Shavitt. Graph Theoretical Concepts for the Unitary Group Approach to the Many-Electron Correlation Problem. International Journal of Quantum Chemistry: Quantum Chemistry Symposium 11, 131-148 (1977)

- 类比角动量算符的性质,可定义自旋角动量算符
- $\hat{S}^2|s,m_s\rangle = \hbar^2 s(s+1)|s,m_s\rangle$
- $\hat{S}_z | s, m_s \rangle = \hbar m_s | s, m_s \rangle$
- $\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2$
- $[\hat{S}^2, \hat{S}_x] = [\hat{S}^2, \hat{S}_y] = [\hat{S}^2, \hat{S}_z] = 0$
- $\left[\hat{S}_{x}, \hat{S}_{y}\right] = i\hbar \hat{S}_{z} \quad \left[\hat{S}_{y}, \hat{S}_{z}\right] = i\hbar \hat{S}_{x} \quad \left[\hat{S}_{z}, \hat{S}_{x}\right] = i\hbar \hat{S}_{y}$

• 定义自旋角动量的升降算符

$$\bullet \ \hat{S}_{+} = \hat{S}_{x} + i\hat{S}_{y}$$

$$\bullet \ \hat{S}_{-} = \hat{S}_{x} - i\hat{S}_{y}$$

• 升降算符有如下性质:

•
$$\hat{S}_{+}^{*} = \hat{S}_{-}$$

$$\hat{S}_{-}^* = \hat{S}_{+}$$

•
$$\hat{S}_{+}\alpha = 0$$

$$\hat{S}_{+}\beta = \hbar\alpha$$

•
$$\hat{S}_{-}\alpha = \hbar \beta$$

$$\hat{S}_{-}\beta = 0$$

•
$$\left[\hat{S}_{z}, \hat{S}_{+}\right] = \hbar \hat{S}_{+}$$
 $\left[\hat{S}_{z}, \hat{S}_{-}\right] = -\hbar \hat{S}_{-}$

$$\left[\hat{S}_{z},\hat{S}_{-}\right]=-\hbar\hat{S}_{-}$$

•
$$[\hat{S}_+, \hat{S}_-] = 2\hbar \hat{S}_z$$

•
$$\hat{S}_{+}\hat{S}_{-} = \hat{S}^{2} - \hat{S}_{z}^{2} + \hbar \hat{S}_{z}$$

• 证明
$$\hat{S}_{+}\hat{S}_{-} = \hat{S}^{2} - \hat{S}_{z}^{2} + \hbar \hat{S}_{z}$$

$$\hat{S}_{+}\hat{S}_{-}$$

$$= (\hat{S}_{x} + i\hat{S}_{y})(\hat{S}_{x} - i\hat{S}_{y})$$

$$= \hat{S}_{x}^{2} - i^{2}\hat{S}_{y}^{2} + i(\hat{S}_{y}\hat{S}_{x} - \hat{S}_{x}\hat{S}_{y})$$

$$= \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + i[\hat{S}_{y}, \hat{S}_{x}]$$

$$= \hat{S}^{2} - \hat{S}_{z}^{2} - i^{2}\hbar \hat{S}_{z}$$

$$= \hat{S}^{2} - \hat{S}_{z}^{2} + \hbar \hat{S}_{z}$$

• 证明
$$[\hat{S}_{z}, \hat{S}_{+}] = \hbar \hat{S}_{+}$$
 $[\hat{S}_{z}, \hat{S}_{-}] = -\hbar \hat{S}_{-}$ $[\hat{S}_{z}, \hat{S}_{+}]$ $= \hat{S}_{z}\hat{S}_{+} - \hat{S}_{+}\hat{S}_{z}$ $= \hat{S}_{z}(\hat{S}_{x} + i\hat{S}_{y}) - (\hat{S}_{x} + i\hat{S}_{y})\hat{S}_{z}$ $= \hat{S}_{z}\hat{S}_{x} - \hat{S}_{x}\hat{S}_{z} + i(\hat{S}_{z}\hat{S}_{y} - \hat{S}_{y}\hat{S}_{z})$ $= [\hat{S}_{z}, \hat{S}_{x}] + i[\hat{S}_{z}, \hat{S}_{y}]$ $= i\hbar \hat{S}_{y} - i^{2}\hbar \hat{S}_{x}$ $= \hbar (\hat{S}_{x} + i\hat{S}_{y})$ $= \hbar \hat{S}_{+}$ 同理可得, $[\hat{S}_{z}, \hat{S}_{-}] = -\hbar \hat{S}_{-}$

• 证明
$$[\hat{S}_{+}, \hat{S}_{-}] = 2\hbar \hat{S}_{z}$$

$$[\hat{S}_{+}, \hat{S}_{-}]$$

$$= \hat{S}_{+}\hat{S}_{-} - \hat{S}_{-}\hat{S}_{+}$$

$$= (\hat{S}_{x} + i\hat{S}_{y})(\hat{S}_{x} - i\hat{S}_{y}) - (\hat{S}_{x} - i\hat{S}_{y})(\hat{S}_{x} + i\hat{S}_{y})$$

$$= \hat{S}_{x}^{2} - i^{2}\hat{S}_{y}^{2} + i(\hat{S}_{y}\hat{S}_{x} - \hat{S}_{x}\hat{S}_{y})$$

$$-[\hat{S}_{x}^{2} - i^{2}\hat{S}_{y}^{2} + i(\hat{S}_{x}\hat{S}_{y} - \hat{S}_{y}\hat{S}_{x})]$$

$$= 2i(\hat{S}_{y}\hat{S}_{x} - \hat{S}_{x}\hat{S}_{y})$$

$$= 2i[\hat{S}_{y}, \hat{S}_{x}]$$

$$= -2i^{2}\hbar\hat{S}_{z}$$

$$= 2\hbar\hat{S}_{z}$$

• 证明
$$\hat{S}_{+}\beta = \hbar\alpha$$

 $\hat{S}_{z}\hat{S}_{+}\beta$
 $= [\hat{S}_{z}, \hat{S}_{+}]\beta + \hat{S}_{+}\hat{S}_{z}\beta$
 $= \hbar\hat{S}_{+}\beta - \frac{1}{2}\hbar\hat{S}_{+}\beta$
 $= \frac{1}{2}\hbar\hat{S}_{+}\beta$
 $\Rightarrow \psi = \hat{S}_{+}\beta$,
则有 $\hat{S}_{z}\psi = \frac{1}{2}\hbar\psi$

則
$$\psi = \lambda \alpha$$
, 即 $\hat{S}_{+}\beta = \lambda \alpha$

$$\langle \beta | \hat{S}_{+}^{*} \hat{S}_{+} | \beta \rangle = \lambda^{2} \langle \alpha | \alpha \rangle$$

$$\langle \beta | \hat{S}_{-} \hat{S}_{+} | \beta \rangle = \lambda^{2}$$

$$\langle \beta | \hat{S}^{2} - \hat{S}_{z}^{2} - \hbar \hat{S}_{z} | \beta \rangle = \lambda^{2}$$

$$\left(\frac{3}{4} \hbar^{2} - \frac{1}{4} \hbar^{2} + \frac{1}{2} \hbar^{2} \right) \langle \beta | \beta \rangle = \lambda^{2}$$

$$\hbar^{2} = \lambda^{2}$$
取 $\lambda = \hbar$, 則 $\hat{S}_{+}\beta = \hbar \alpha$

对以下4个波函数,可利用升降算符求得总自旋量子数

$$\hat{S}^{2} = \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2}$$

$$= (\hat{S}_{x1} + \hat{S}_{x2})^{2} + (\hat{S}_{y1} + \hat{S}_{y2})^{2} + (\hat{S}_{z1} + \hat{S}_{z2})^{2}$$

$$= (\hat{S}_{x1}^{2} + \hat{S}_{y1}^{2} + \hat{S}_{x2}^{2} + \hat{S}_{y2}^{2}) + (\hat{S}_{x1}\hat{S}_{x2} + \hat{S}_{x2}\hat{S}_{x1} + \hat{S}_{x2}\hat{S}_{x1})^{2}$$

$$\hat{S}^{2} = \frac{1}{2} (\hat{S}_{+1} \hat{S}_{-1} + \hat{S}_{-1} \hat{S}_{+1} + \hat{S}_{+2} \hat{S}_{-2} + \hat{S}_{-2} \hat{S}_{+2}) + \frac{1}{2} (\hat{S}_{+1} \hat{S}_{-2} + \hat{S}_{-1} \hat{S}_{+2} + \hat{S}_{-2} \hat{S}_{+1} + \hat{S}_{+2} \hat{S}_{-1}) + (\hat{S}_{z1}^{2} + \hat{S}_{z2}^{2} + \hat{S}_{z1} \hat{S}_{z2} + \hat{S}_{z2} \hat{S}_{z1})$$

$$\hat{S}^{2} \phi_{1} = \hat{S}^{2} \alpha(1) \alpha(2) = \frac{1}{2} \hbar^{2} [\alpha(1) \alpha(2) + 0 + \alpha(1) \alpha(2) + 0] + \frac{1}{2} \hbar^{2} [0 + 0 + 0 + 0] + \hbar^{2} (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}) \alpha(1) \alpha(2) = 2 \hbar^{2} \alpha(1) \alpha(2)$$

故S=1

$$\hat{S}^{2} = \frac{1}{2}(\hat{S}_{+1}\hat{S}_{-1} + \hat{S}_{-1}\hat{S}_{+1} + \hat{S}_{+2}\hat{S}_{-2} + \hat{S}_{-2}\hat{S}_{+2}) + \frac{1}{2}(\hat{S}_{+1}\hat{S}_{-2} + \hat{S}_{-1}\hat{S}_{+2} + \hat{S}_{-2}\hat{S}_{+1} + \hat{S}_{+2}\hat{S}_{-1}) + (\hat{S}_{z1}^{2} + \hat{S}_{z2}^{2} + \hat{S}_{z1}\hat{S}_{z2} + \hat{S}_{z2}\hat{S}_{z1})$$

$$\hat{S}^{2}\phi_{2} = \hat{S}^{2}\beta(1)\beta(2) = \frac{1}{2}\hbar^{2}[0 + \beta(1)\beta(2) + 0 + \beta(1)\beta(2)] + \frac{1}{2}\hbar^{2}[0 + 0 + 0 + 0] + \hbar^{2}(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4})\beta(1)\beta(2) = 2\hbar^{2}\beta(1)\beta(2)$$

故S=1