DERWENT-ACC-NO: 1982-25358E

DERWENT-WEEK: 198213

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE: Armouring material for a submarine cable -

produced by

coating jute with molten asphalt and

solidifying

PATENT-ASSIGNEE: NIPPON TAIYO KAITEIDENS[NITAN] , SANAI SEKYU

KK [SANAN]

PRIORITY-DATA: 1980JP-0106397 (August 4, 1980)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

PAGES MAIN-IPC

JP <u>57032508</u> A February 22, 1982 N/A

003 N/A

INT-CL (IPC): A01N043/42, H01B007/28

ABSTRACTED-PUB-NO: JP 57032508A

BASIC-ABSTRACT:

Armouring material comprises an asphalt layer produced by coating a jute layer

with molten asphalt and solidifying the asphalt. The asphalt layer contains

0.5-3.0 wt.% of 2-(4-thiazolyl) - benzoimidazole and 8-

hydroxyquinoline copper

as a fungicide compsn.

Specifically a fungicide compsn. consists of 10 wt.% of 2-(4-thiazolyl)-

benzoimidazole and 90 wt.% of 8-hydroxyquinoline. 0.7 wt.% of the fungicide

compsn. is added to asphalt to produce an asphalt compsn. Jute is wound around

an armouring wire to form a jute layer. The asphalt compsn. is melted and

coated on the jute layer, and solidified to form an asphalt layer. A deposition amt. of the asphalt is 15 wt.% in the asphalt layer.

Deterioration of armouring material due to microbes is prevented.

4/25/06, EAST Version: 2.0.3.0

TITLE-TERMS: ARMOUR MATERIAL SUBMARINE CABLE PRODUCE COATING JUTE MOLTEN

ASPHALT SOLIDIFICATION

ADDL-INDEXING-TERMS:

FUNGICIDE THIAZOLYL BENZIMIDAZOLE HYDROXY QUINOLINE

COPPER

DERWENT-CLASS: E12 E13 L02 L03 X12

CPI-CODES: E05-L03B; E06-D05; L02-D10; L03-A01B;

EPI-CODES: X12-D03B;

CHEMICAL-CODES:

Chemical Indexing M3 *01*

Fragmentation Code

D012 D711 F014 F710 M1 M116 M280 M320 M412 M511

M521 M530 M540 M782 M903 P241 Q453 R043

Chemical Indexing M3 *02*

Fragmentation Code

A429 A960 C710 D021 D621 H4 H401 H441 H8 M280

M320 M411 M511 M520 M530 M540 M630 M782 M903 P241

Q453 R043

UNLINKED-DERWENT-REGISTRY-NUMBERS: 1164U

4/25/06, EAST Version: 2.0.3.0

PAT-NO: JP357032508A

DOCUMENT-IDENTIFIER: JP 57032508 A

TITLE: SUBMARINE CABLE SHEATH MATERIAL

PUBN-DATE: February 22, 1982

INVENTOR-INFORMATION:
NAME
YABUSAKI MASAO
OOTAKE KUNINOBU

TOKITA YUTAKA KIMURA SUMIKO SHIMOTOMAI NAOYASU

ASSIGNEE-INFORMATION:

US-CL-CURRENT: 174/23C, 174/23R, 174/107

4/25/06, EAST Version: 2.0.3.0

(19) 日本国特許庁 (JP)

①特許出願公開

⑩ 公開特許公報 (A)

昭57—32508

A 01 N 4	7/28 3/42 3/52 7/14	識別記号 101	庁内整理番号 7161-5E 7055-4H 7055-4H 6730-5E	❸公開 発明の 審査部	数	157年(198 1 未請求	82) 2 (全		
H 01 B	7/14		6/30—5E				(王	J	貝ノ

⊗海底ケーブル外装材

油株式会社研究所内

加発 明 者 木村澄子

日野市旭ケ丘2-8-17三愛石

油株式会社研究所内

東京都渋谷区道玄坂1丁目16番 明 者 下斗米尚昌

日野市旭ケ丘2-8-17三愛石

日野市旭ケ丘2-8-17三愛石

油株式会社研究所内

切出 願 人 三愛石油株式会社

東京都中央区銀座6丁目14番6

仍代 理 人 弁理士 月村茂 外1名

最終頁に続く

願 昭55-106397 ②特

砂田 昭55(1980)8月4日

の発明 者 藪崎正男

10号日本大洋海底電線株式会社

20発 明 者 大竹邦信

東京都渋谷区道玄坂1丁目16番 10号日本大洋海底電線株式会社

@発 明 者 時田裕

商底ケーブル外装材

- 2. 特許請求の範囲
 - 1. ジュート層表面に溶融アスファルトを塗布 し、これを固化させてアスファルト層を形成 させた海底ケーナル外装材に於て、2-(4. - チアソリル) - ペンソイミダソールと 8 -ヒドロキシキノリン解とからなる防力ピ刺組 成物を、前記のアスフアルト層に配合したこ とを特徴とする海底ケーブル外装材。
 - 2. 防カビ刺組成物の配合量がアスファルト重 量の 0.5~3.0% である特許請求の範囲第1 項配載の海底ケーブル外装材。
- 3. 発明の詳細な説明

本発明はジュート層とアスファルト層とで構 成される海底ケープル外装材の改良に関する。 一般に海底ケープルは外装鉄線の周囲にジュ ートを告き付けたジュート層と、そのジュート 層の周囲に溶散アスフアルトを強布して固化さ せたアスファルト層で外装されているが、ジュ ート層及びアスファルト層で構成される外装材 は、微生物の寄生に原因する劣化に対して、必 ずしも耐性を備えていないのが適例である。こ のため、従来から海底ケーナル外装材に防カビ 剤乃至は防腐剤を配合して、微生物劣化を防止 する試みがなされているが、現在までのところ 満足すべき成果を収めていない。

ここに於て、2-(4-ナアゾリル)-ペン ソイミダゾールと8 - ヒドロキシキノリン飼と の併用が、海底ケーブル外装材の微生物劣化防 止に極めて有効であるとの知見を得た。

而して本発明はジュート層表面に溶融アスフ アルトを強布し、これを固化させてアスフアル ト層を形成させた海底ケーブル外装材に於て、 2 - (4 - ナアゾリル) - ペンソイミダソール と8-ヒドロキシャノリン飼とからなる防力ピ 割組成物を、前配のアスファルト層に配合した ことを特徴とする海底ケープル外装材である。 本発明の海底ケープル外装材に於て、そのジ

8 -ヒドロキシキノリン銅

9.0 wts

上記の防カビ刺組成物を溶融アスフアルトに 混合し、これをジュートに付着させて表 — 1 に 示す供駄検体を得た。

表一1 供飲検体

16.	アスフアルト処理	アスフアルト付着量が	ジュートの種類
1	アスファルトのみ	1 5	生ジュート
2	組成物A 0.5 %添加	1 5	生ジュート
3	組成物A 0.7 系统加	1 5	生ジュート
4	組成的A 1.0%於加	1 5	生ジユート
5	アスフアルトのみ	3 0	生ジュート
6	アスフアルトのみ	7 0	生ジュート
7	アスファルトのみ	1 2	ミストツクス築ジュート
8	相成的A 0.7 系統加	1 2	ミストツクス染ジュート

(2) 接種藍

1. スピカリア	
----------	--

1 11

4 種

2 11

ジュートの何れもが使用可能である。またアスファルト層には海底ケーナル用に常用されるすべてのアスファルトが使用可能である。 既なた で のの外装を行なうにあたって のの外装を行なる かんか は、外装鉄線の周囲にジュートを登布し、そのうえに溶 といる で で アルトを 強布し、これを 固化 させて アスアルト を 途布し、 な 本発明を 実施 アスファルト 中に前配の防カビ 刺組成物 が配合される。

ユート層には生ジュート及びミストックス染め

試 缺 例

(1) 供款検体の調製

防カピ刺組成物(A)

2 - (4 - チアソリル) - ペンゾイミダゾール 10 wt %

4.	クラドスポリウム	1種
5.	ペニシリウム	3 種
6.	ノデイリスポリウム	1 種
7	ナフアロスポリウム	1 56

各菌の胞子を分散液 5 0 ml 当り 1 白金耳の割合で分散させ、混合胞子が懸濁液とする。

(3) 試験方法

*	1000ml
硝酸アンモニウム	3. 0 <i>9</i> r
リン酸 - カリウム	1. 0 Fr
硫酸マグネシウム	0. 5 Fr
塩化カリウム	0. 2 5 Fr
硫酸第一鉄	0.002 <i>F</i> r
寒 天	2 5 Fr

上記 J I 8 - Z - 2 9 1 1 繊維試験用培地組成を 協煎して溶かして 1 2 0 で 1 5 分間 殺菌 後角型 シャーレに流し、固化させて培地とする。

表-1 に示す供款検体(1 検体はジュート4 0 cm×2 0 本からなる)を培地上に載せ、胞

子懸腐液 5 型ずつを検体及び培地上に均等に散布する。次いでシャーレを 3 0 ± 2 で湿度 9 0 %以上の状態で静置し、各別定期間終了毎に検体を取り出し、カピ抵抗性の観察及び破断強度機率の測定を行つた。結果を表 - 2 及び表 - 3 に示す。

表-2 カピ抵抗性

檢体 期間	0ケ月	0.5 ケ月	1.0 ケ月	2.0 ケ月	4.0 ケ月
1	3	1	1	1	1
2	3	3	3	2	3
3 ,	3	. 3	3	3	3
.4	3	3	3	3	3
5	3	1.	1	ı	1
6	3	1	1	1	1
7	3	2	2	2	2
.8	3	3	3	3	3

特開昭57-32508(3)

アスファルト付着量を増大させても改善することができない。しかし、本発明の防カピ刺組成物を配合したアスファルトを使用すれば、カピ 抵抗性及び破断強度残率を向上させることができる。

JIS 判定方法	判定	内容
	3	試験片に菌糸の発育は認められない
概略	2	試験片の菌糸の発育部分の面積は光 を結えない
	1	試験片の磁系の発育部分の面積は光 を越える

表一3 破断強度幾率

機体派 期間	0ヶ月	0.5/7月	1.0 ケ月	2.0 ケ月	4.0 ケ月
1 "	100%	7 8.6 ≸	3 4.3 %	3 1.2%	0 %
2	100	1 1 0.7	1 0 2.0	5 8.1	8.3
3	100	1 0 4.3	9 7.2	7 4.2	6 2.8
4	100	1 0 1.0	9 8.2	8 7.7	8 7.0
5	100	8 7.2	8.8	4.8	0
6	100	8 9.4	8 7.3	1 0.4	0
7	100	8 3.8	6 9.5	400	3 3.5
8	100	9 5.2	9 0.8	8 4.4	7 2.8

表 - 2 及び表 - 3 に示す結果から明らかな通り、ジュートのカビ抵抗性及び破断強度残率は、

第1頁の続き

⑩出 願 人 日本大洋海底電線株式会社 東京都渋谷区道玄坂1丁目16番 10号