Coefficient of Concordance

Proposed by Maurice G. Kendall and Bernard Babington Smith, Kendall's coefficient of concordance (W) is a measure of the agreement among several (m) quantitative or semiquantitative variables that are assessing a set of n objects of interest. In the social sciences, the variables are often people, called "judges", assessing different subjects or situations. In community ecology, they may be species whose abundances are used to assess habitat quality at study sites. In taxonomy, they may be characters measured over different species, biological populations, or individuals.

There is a close relationship between Friedman's two-way analysis of variance without replication by ranks and Kendall's coefficient of concordance. They address hypotheses concerning the same data table and they use the same χ^2 statistic for testing. They only differ in the formulation of their respective null hypothesis. Consider Table 1 which contains illustrative data. In Friedman's test, the null hypothesis is that there is no real difference among the n objects (sites, rows of Table 1) because they pertain to the same statistical population. Under H_0 , they should have received random ranks along the various variables, so that their sums of ranks should be approximately equal. Kendall's test focuses on the m variables. If the null hypothesis of Friedman's test is true, this means that the variables have produced rankings of the objects that are independent of one another. This is the null hypothesis of Kendall's test.

*** Coefficient of Concordance Table 1 about here ***

Computing Kendall's W

Textbooks describe two ways of computing Kendall's W statistic (left and right-hand forms of equations 1 and 2); they lead to the same result. S or S' is computed first from the row-marginal sums of ranks R_i received by the objects:

$$S = \sum_{i=1}^{n} (R_i - \overline{R})^2$$
 or $S' = \sum_{i=1}^{n} R_i^2 = SSR$ (1)

where S is a sum-of-squares statistic over the row sums of ranks R_i . \bar{r} is the mean of the R_i values. Following that, Kendall's W statistic can be obtained from either of the following formulas:

$$W = \frac{12S}{m^2(n^3 - n) - mT} \qquad \text{or} \qquad W = \frac{12S' - 3m^2n(n+1)^2}{m^2(n^3 - n) - mT}$$
 (2)

where n is the number of objects and m is the number of variables. T is a correction factor for tied ranks:

$$T = \sum_{k=1}^{g} (t_k^3 - t_k)$$
 (3)

in which t_k is the number of tied ranks in each (k) of g groups of ties. The sum is computed over all groups of ties found in all m variables of the data table. T = 0 when there are no tied values.

Kendall's W is an estimate of the variance of the row sums of ranks R_i divided by the maximum possible value the variance can take; this occurs when all variables are in total agreement. Hence $0 \le W \le 1$, 1 representing perfect concordance. To derive the formulas for W (eq. 2), one has to know that the sum of all ranks in the data table is mn(n + 1)/2 and that the sum of squares of all ranks is $m^2n(n + 1)(2n + 1)/6$.

There is a close relationship between Spearman's correlation coefficient r_s and Kendall's W statistic: W can be directly calculated from the mean (\bar{r}_s) of the pairwise Spearman correlations r_s using the following relationship:

$$W = \frac{(m-1)\bar{r}_S + 1}{m}$$
 (4)

where m is the number of variables (judges) among which Spearman correlations are computed. Equation 4 is strictly true for untied observations only; for tied observations, ties are handled in a bivariate way in each Spearman r_s coefficient whereas in Kendall's W the correction for ties is computed in a single equation (eq. 3) for all variables. For two variables (judges) only, W is simply a linear transformation of r_s : $W = (r_s + 1)/2$. In that case, a permutation test of W for two variables is the exact equivalent of a permutation test of r_s for the same variables.

The relationship described by eq. 4 clearly limits the domain of application of the coefficient of concordance to variables that are all meant to estimate the same general property of the objects: variables are only considered concordant if their Spearman correlations are positive. Two variables that give perfectly opposite ranks to a set of objects have a Spearman correlation of -1, hence W = 0 for these two variables (eq. 4); this is the lower bound of the coefficient of concordance. For two variables only, $r_s = 0$ gives W = 0.5. So coefficient W applies well to rankings given by a panel of judges called in to assess overall performance in sports, or quality of wines, or food in restaurants, to rankings obtained from criteria used in quality tests of appliances or services by consumer organizations, etc. It does not apply, however, to variables used in multivariate analysis where negative as well as positive relationships are informative. Jerrold H. Zar, for example, uses wing length, tail length and bill length of birds to illustrate the use of the

coefficient of concordance. These data are appropriate for W because they are all indirect measures of a common property, the size of the birds.

In ecological applications, one can use the abundances of various species as indicators of the good or bad environmental quality of the study sites. If a group of species is used to produce a global index of the overall quality (good or bad) of the environment at the study sites, only the species that are significantly associated and positively correlated to one another should be included in the index, since different groups of species may be associated to different environmental conditions. This idea will be developed with the illustrative example, which will try to identify groups of species that are positively associated to one another.

Testing the Significance of W

Milton Friedman's χ^2 statistic is obtained from W using the formula:

$$\chi^2 = m (n-1)W \tag{5}$$

This quantity is asymptotically distributed like chi-square with v = (n - 1) degrees of freedom; it can be used to test W for significance. According to Maurice G. Kendall and Bernard Babington Smith, this approach is satisfactory only for moderately large values of m and n.

Sidney Siegel and N. John Castellan Jr. recommend the use of a table of critical values for W when $n \le 7$ and $m \le 20$; otherwise, they recommend testing the χ^2 statistic (eq. 5) using the chi-square distribution. Their table of critical values of W for small n and m is derived from a table of critical values of S assembled by Freedman using the z-test of Kendall and Babington Smith, and reproduced in Kendall's classical monograph, Rank correlation methods. Using numerical simulations, Pierre Legendre compared results of the classical chi-square test of the χ^2 statistic (eq. 5) to the permutation test that Siegel and Castellan also recommend for small

samples (small n). The simulation results showed that the classical chi-square test was too conservative for any sample size (n) when the number of variables m was smaller than 20; the test had rejection rates well below the significance level, so it remained valid. The classical chi-square test had a correct level of type I error for 20 variables and more. The permutation test had a correct rate of type I error for all values of m and n. The power of the permutation test was higher than that of the classical chi-square test because of the differences in rates of type I error between the two test. The differences in power disappeared asymptotically as the number of variables increased.

An alternative approach is to compute the following *F*-statistic:

$$F = (m-1) W / (1-W)$$
 (6)

which is asymptotically distributed like F with $v_1 = n - 1 - (2/m)$ and $v_2 = v_1(m-1)$ degrees of freedom. Kendall and Babington Smith described this approach using a Fisher z transformation of the F-statistic, $z = 0.5 \log_e(F)$. They recommended it for testing W for moderate values of m and n. Numerical simulations show, however, that this F-statistic has correct levels of type I error for any value of n and m (Pierre Legendre, unpublished results). It is unfortunate that this statistic has been forgotten by authors of recent textbooks on nonparametric statistics who recommend to carry out chi-square tests of W using eq. 5 instead of F-tests using eq. 6.

In permutation tests of Kendall's W, the objects are the permutable units under H_0 (the objects are sites in Table 1). For the global test of significance, the rank values in all variables are permuted at random, independently from variable to variable because the null hypothesis is the independence of the rankings produced by all variables. The alternative hypothesis is that at least one of the variables is concordant with one, or with some of the other variables. Actually, for

permutation testing, the four statistics SSR (eq. 1), W (eq. 2), χ^2 (eq. 5), and F (eq. 6) are monotonic to one another since n, m, as well as T, are constant within a given permutation test; thus they are equivalent statistics for testing, producing the same permutational probabilities. The test is one-tailed because it only recognizes positive associations between vectors of ranks. This is shown by considering two vectors with exactly opposite rankings: they produce a Spearman statistic of -1, hence a value or zero for W (eq. 4).

Many of the problems subjected to Kendall's concordance analysis involve fewer than 20 variables. The chi-square test should be avoided in these cases. The F-test (eq. 6) as well as the permutation test can safely be used with all values of m and n.

3. Contributions of Individual Variables to Kendall's Concordance

The overall permutation test of W suggests a way of testing a posteriori the significance of the contributions of individual variables to the overall concordance to determine which of the individual variables are concordant with one or several other variables in the group. There is interest in several fields for identifying discordant variables or judges. This includes all fields that use panels of judges to assess the overall quality of the objects or subjects under study (sports, law, consumer protection, etc.). In other types of studies, scientists are interested to identify variables that agree in their estimation of a common property of the objects. This is the case in environmental studies where scientists are interested in identifying groups of concordant species that are indicators of some property of the environment and can be combined into indices of its quality, in particular in situations of pollution or contamination.

The contribution of individual variables to the W statistic can be assessed by a permutation test proposed by Pierre Legendre. The null hypothesis is the monotonic

independence of the variable subjected to the test, with respect to all the other variables in the group under study. The alternative hypothesis is that this variable is concordant with other variables in the set under study, having similar rankings of values (one-tailed test). The statistic W can be used directly in a posteriori tests (see also next paragraph). Contrary to the global test, only the variable under test is permuted here. If that variable has values that are monotonically independent of the other variables, permuting its values at random should have little influence on the W statistic. If, on the contrary, it is concordant with one or several other variables, permuting its values at random should break the concordance and induce a noticeable decrease on W.

Two specific partial concordance statistics can also be used in *a posteriori* tests. The first one is the mean, \bar{r}_j , of the pairwise Spearman correlations between variable j under test and all the other variables. The second statistic, W_j , is obtained by applying eq. 4 to \bar{r}_j instead of \bar{r} , with m the number of variables in the group. These two statistics are shown in Table 2 for the example data. \bar{r}_j and W_j are monotonic to each other since m is constant in a given permutation test. Within a given a posteriori test, W is also monotonic to W_j because only the values related to variable j are permuted when testing variable j. These three statistics are thus equivalent for a posteriori permutation tests, producing the same permutational probabilities. Like \bar{r}_j , W_j can take negative values; this is not the case of W.

There are advantages in performing a single *a posteriori* test for variable j, instead of (m-1) tests of the Spearman correlation coefficients between variable j and all the other variables: the tests of the (m-1) correlation coefficients would have to be corrected for multiple testing, and they could provide discordant information; a single test of the contribution of variable j to the W statistic has greater power and provides a single, clearer answer. In order to preserve a correct

or approximately correct experimentwise error rate, the probabilities of the *a posteriori* tests computed for all species in a group should be adjusted for multiple testing.

A posteriori tests are useful to identify the variables that are not concordant with the others, as will be seen in the examples, but they do not tell us if there are one or several groups of congruent variables among those for which the null hypothesis of independence is rejected. This information can be obtained by computing Spearman correlations among the variables and clustering them into groups of variables that are significantly and positively correlated.

Example Continued

The example data are analyzed in Table 2. The overall permutational test of the W statistic is significant at $\alpha = 5\%$, but marginally (Table 2a). The cause appears when examining the a posteriori tests in Table 2b: species 23 has a negative mean correlation with the three other species in the group ($\bar{r}_j = -0.168$). This indicates that species 23 does not belong in that group. Were we analyzing a large group of variables, we could look at the next partition in an agglomerative clustering dendrogram, or the next K-means partition, and proceed to the overall and a posteriori tests for the members of these new groups. In the present illustrative example, species 23 clearly differs from the other three species. We can now test species 13, 14 and 15 as a group. Table 2c shows that this group has a highly significant concordance, and all individual species contribute significantly to the overall concordance of their group (Table 2d).

In Table 2a and 2c, the F-test results are concordant with the permutation test results, but due to small m and n the chi-square test lacks power.

*** Coefficient of Concordance Table 2 about here ***

Discussion

The Kendall coefficient of concordance can be used to assess the degree to which a group of variables provide a common ranking for a set of objects. It should only be used to obtain a statement about variables that are all meant to measure the same general property of the objects. It should not be used to analyse sets of variables in which the negative and positive correlations have equal importance for interpretation. When H₀ is rejected, one cannot conclude that all variables are concordant with one another, as shown in Table 2a,b; only that at least one variable is concordant with one or some of the others.

The partial concordance coefficients and *a posteriori* tests of significance are essential complements of the overall test of concordance. In several fields, there is interest in identifying discordant variables; this is the case in all fields that use panels of judges to assess the overall quality of the objects under study (sports, law, consumer protection, etc.). In other applications, one is interested to use the sum of ranks, or the sum of values, provided by several variables or judges, to create an overall indicator of the response of the objects under study. It is advisable to look for one or several groups of variables that rank the objects broadly in the same way, using clustering, and then carry out *a posteriori* tests on the putative members of each group. Only then can their values or ranks be pooled into an overall index.

Pierre Legendre

See also Friedman's Test; Holm's Sequential Bonferroni Procedure; Permutation Test; Spearman Rank Order Correlation

Further Readings

- Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the American Statistical Association*, 32, 675-701.
- Friedman, M. (1940). A comparison of alternative tests of significance for the problem of *m* rankings. *Annals of Mathematical Statistics*, 11, 86-92.
- Kendall, M. G. (1948). *Rank correlation methods, 1st edition*. London, England: Charles Griffith & Co.
- Kendall, M. G., & Babington Smith, B. (1939). The problem of *m* rankings. *Annals of Mathematical Statistics*, 10, 275-287.
- Legendre, P. (2005). Species associations: the Kendall coefficient of concordance revisited. *Journal of Agricultural, Biological, and Environmental Statistics*, 10, 226-245.
- Zar, J. H. (1999). *Biostatistical analysis, 4th edition*. Upper Saddle River, NJ, USA: Prentice Hall.

Author information –

Pierre Legendre is Professor, Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, Canada. H3C 3J7.

E-mail: Pierre.Legendre@umontreal.ca

Table 1. Illustrative example: ranked relative abundances of 4 soil mite species (variables) at 10 sites (objects). The ranks are computed column-wise with ties. Right-hand column: sum of the ranks for each site. Source: From "Species associations: the Kendall coefficient of concordance revisited" by P. Legendre, 2005, *Journal of Agricultural, Biological, and Environmental Statistics*, 10, p. 230. Copyright 2005 by the American Statistical Association and the International Biometric Society. Reprinted with permission of the ASA.

		Sum of ranks			
	Species 13	Species 14	Species 15	Species 23	R_i
Site 4	5	6	3	5	19.0
Site 9	10	4	8	2	24.0
Site 14	7	8	5	4	24.0
Site 22	8	10	9	2	29.0
Site 31	6	5	7	6	24.0
Site 34	9	7	10	7	33.0
Site 45	3	3	2	8	16.0
Site 53	1.5	2	4	9	16.5
Site 61	1.5	1	1	2	5.5
Site 69	4	9	6	10	29.0

Table 2. Results of (a) the overall and (b) the *a posteriori* tests of concordance among the four species of Table 1; (c) overall and (d) *a posteriori* tests of concordance among three species. \bar{r}_j : mean of the Spearman correlations with the other species. W_j : partial concordance per species. P-value: permutational probability (9999 random permutations). Corrected P: Holm-corrected P-value. * Reject H₀ at $\alpha = 0.05$. (a) and (b): Adapted from "Species associations: the Kendall coefficient of concordance revisited" by P. Legendre, 2005, *Journal of Agricultural, Biological, and Environmental Statistics*, 10, p. 233. Copyright 2005 by the American Statistical Association and the International Biometric Society. Reprinted with permission of the ASA.

	Kendall's W		0.44160	Permutational P-value = 0.0448*				
	F-statistic =		2.37252	F distribution P-value = 0.0440 *				
	Friedman's chi-square =		15.89771	Chi-square distribution P-value = 0.0690				
(b) A posteriori	tests, 4 species	s. H ₀ : This spec	ies is not con	cordant with the	e other three.		
		\overline{r}_j	W_{j}	P-value	Corrected P	Decision at $\alpha = 5\%$		
	Species 13	0.32657	0.49493	0.0766	0.1532	Do not reject H ₀		
	Species 14	0.39655	0.54741	0.0240	0.0720	Do not reject H ₀		
	Species 15	0.45704	0.59278	0.0051	0.0204*	Reject H ₀		
	Species 23	-0.16813	0.12391	0.7070	0.7070	Do not reject H ₀		
(c)	Overall test	of W statistic, 3	3 species. H ₀ : T	The 3 species	are not concord	ant with one another.		
	Kendall's $W =$		0.78273	Permutational P-value = 0.0005*				
	<i>F</i> -statistic =		7.20497	F distribu	F distribution P-value = $0.0003*$			
	Friedman's	chi-square =	21.13360	Chi-square distribution P-value = 0.0121*				

	r_j	W_{j}	P-value	Corrected P	Decision at $\alpha = 5\%$
Species 13	0.69909	0.79939	0.0040	0.0120*	Reject H ₀
Species 14	0.59176	0.72784	0.0290	0.0290*	Reject H ₀
Species 15	0.73158	0.82105	0.0050	0.0120*	Reject H ₀