Contrastive Loss Explained

© Goal First: What are we trying to do?

We want a network to compare two things and learn whether they are similar or dissimilar.

- Show it pairs of inputs
 - Label them as:
 - \bullet 0 = similar
 - 1 = dissimilar
- Let the network learn embeddings (i.e., numeric summaries) for each input
- Use a loss function to:
 - Pull embeddings together if similar
 - Push them apart if dissimilar

Step-by-Step Intuition: Deriving Contrastive Loss

Step 1: Define a distance between the two embeddings

Let's say:

- The network creates embedding A for input 1
- Embedding B for input 2
- We calculate the distance D between A and B (using Euclidean, cosine, etc.)
- Think of this like the distance between two dots on a 2D map.
- Now let's ask...

Step 2: What should happen for similar pairs (label = 0)?

If two things are similar, we want their distance to be:

As small as possible (close together)

So, the loss function should:

Step 3: What should happen for dissimilar pairs (label = 1)?

- At least some margin apart (say, 1 or 2 units)
- X But we don't want to push them apart forever (no need to separate the moon from the earth!)

So we use:

```
Loss = max(0, margin - D)^2 (for dissimilar pairs)
```

This means:

- If they are already far enough apart → loss = 0 (no problem!)
- If they are too close → penalize!
 - ★ Intuition: You're telling the network:
 - "These are supposed to be different make sure they don't look too close!"

Step 4: Combine both cases using the label Y

Let's say:

- Y=0 for similar
- Y=1 for dissimilar

Then we write a **single formula** to handle both:

Contrastive Loss =
$$(1 - Y) \cdot D^2 + Y \cdot \max(0, \text{margin} - D)^2$$

Case	Label (Y)	Desired Action	Loss Term
Similar	0	Pull together	D^2
Dissimilar	1	Push apart (at least by margin)	$(\mathrm{margin} - D)^2$ if D < margin

Step-by-Step Numerical Example

Case 1: Similar Pair (Y = 0)

Let's say:

- Embedding distance: D=0.5
- Label Y=0 (similar pair)
- Margin m=1

Plug into formula:

$$L = (1-0)\cdot(0.5)^2 + 0\cdot \max(0,1-0.5)^2 \ L = 1\cdot0.25 + 0\cdot0.25 = 0.25$$

- **▼** So, the loss is **0.25**.
- This means: There's still a little distance between the similar pair, so the model gets a small penalty.

Case 2: Dissimilar Pair, Too Close (Y = 1)

Let's say:

•
$$D=0.3$$
 (too close!)

- Y=1
- m=1

Now:

$$L = (1-1) \cdot (0.3)^2 + 1 \cdot \max(0, 1-0.3)^2$$

$$L = 0 + 1 \cdot (0.7)^2 = 0.49$$

Case 3: Dissimilar Pair, Far Enough (Y = 1)

Let's say:

•
$$D = 1.5$$

•
$$Y=1$$

•
$$m = 1$$

Now:

$$L = (1-1)\cdot (1.5)^2 + 1\cdot \max(0,1-1.5)^2 \ L = 0 + 1\cdot (0)^2 = 0$$

Case

Y (Label)

Similar Pair (close)	0	0.5	1	0.25	Still a bit apart, small penalty
Dissimilar Pair (too close)	1	0.3	1	0.49	Not far enough, medium penalty
Dissimilar Pair (far enough)	1	1.5	1	0	Already separated, no penalty

Margin (m)

Loss

Explanation

Distance (D)