## Álgebra Universal e Categorias

— 2º teste (9 de junho de 2017) — duração: 2 horas \_\_\_\_\_

## 1. Considere a categoria C definida por



onde  $i = f \circ h = g \circ h$ ,  $j = k \circ h$ .

Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

(a) Para quaisquer C-morfismos  $p:X\to Y$  e  $q:Y\to Z$ , se p não é um epimorfismo, então  $q\circ p$  não é um epimorfismo

Um  ${f C}$ -morfismo r:X o Y diz-se um epimorfismo se, para quaisquer  ${f C}$ -morfismos s,t:Y o W ,

$$s \circ r = t \circ r \Rightarrow s = t.$$

Claramente, o C-morfismo h não é um epimorfismo, pois

$$f \circ h = g \circ h \in f \neq g$$
.

No entanto, o C-morfismo  $i=f\circ h$  é um epimorfismo. De facto, para quaisquer C-morfismos  $s,t:D\to W$ ,

$$s \circ i = t \circ i \Rightarrow s = \mathrm{id}_D = t$$
,

uma vez que  $\mathrm{id}_D$  é o único C-morfismo com domínio D.

Logo a afirmação é falsa, pois h não é um epimorfismo, mas  $f\circ h$  é um epimorfismo.

(b) Para qualquer objeto X de C, se X não é um objeto terminal de C, então  $(X, \mathrm{id}_X)$  não é um objeto terminal da categoria C/A dos objetos sobre A.

Sendo  $\mathbf{C} = (\mathrm{Obj}(\mathbf{C}), \mathrm{hom}_{\mathbf{C}}, \mathrm{id}^{\mathbf{C}}, \circ^{\mathbf{C}})$  a categoria dada no enunciado, a categoria dos objetos sobre A é a categoria  $\mathbf{C}/A = (\mathrm{Obj}(\mathbf{C}/A), \mathrm{hom}, \mathrm{id}^{\mathbf{C}/A}, \circ^{\mathbf{C}/A})$  tal que

- os objetos de  ${\bf C}/A$  são todos os pares (X,f), onde X é um objeto de  ${\bf C}$  e  $f:X\to D$  é um morfismo de  ${\bf C}$ ;
- dados objetos (X,f) e (Y,g) de  ${\bf C}/A$ , um  ${\bf C}/A$ -morfismo de (X,f) em (Y,g) é um  ${\bf C}$ -morfismo  $j:X\to Y$  tal que  $g\circ^{\bf C} j=f;$
- para cada objeto (X,f) de  $\mathbf{C}/A$ , o morfismo identidade  $\mathrm{id}_{(X,f)}^{\mathbf{C}/A}$  é o  $\mathbf{C}$ -morfismo  $\mathrm{id}_X^{\mathbf{C}}:X\to X;$
- dados morfismos  $j:(X,f)\to (Y,g)$  e  $k:(Y,g)\to (Z,h)$  a sua composição  $k\circ^{\mathbf{C}/A}j:(X,f)\to (Z,h)$  é o **C**-morfismo  $k\circ^{\mathbf{C}}j:X\to Z.$

Ou seja,  $\mathbf{C}/A$  é a categoria representada por



Um objeto T de uma categoria  $\mathbf D$  diz-se um objeto terminal se, para qualquer objeto X de  $\mathbf D$ , existe um, e um só,  $\mathbf D$ -morfismo de X em T.

Na categoria C, o objeto A não é terminal, pois D é um objeto de C e não existe morfismo de D em A.

Na categoria  $\mathbb{C}/A$ , o objeto  $(A, \mathrm{id}_A)$  é terminal, pois, para qualquer objeto (X,q) de  $\mathbb{C}/A$ , existe um, e um só, morfismo de (X,q) em  $(A,\mathrm{id}_A)$ .

Logo a afirmação é falsa, pois A é um objeto de  ${\bf C}$  que não é objeto terminal, mas  $(A, {\rm id}_A)$  é objeto terminal de  ${\bf C}/A$ .

(c) O par  $(C, (id_C, f))$  é um produto de C e D.

O par  $(C, (\mathrm{id}_C, f))$  é um produto de C e D se forem satisfeitas as seguintes condições:

- (i) C é um objeto de  $\mathbb{C}$ ;
- (ii)  $id_C$  é um C-morfismo de C em C e f é um C-morfismo de C em D;
- (iii) para quaisquer C-morfismos  $p: X \to C$  e  $q: X \to D$ , existe um, e um só, morfismo  $u: X \to C$  tal que  $\mathrm{id}_C \circ u = p$  e  $f \circ u = q$ .

Ora, embora as condições (i) e (ii) sejam satisfeitas, verifica-se que a condição (iii) não se verifica. De facto, como  $id_C: C \to C$  e  $g: C \to D$  são morfismos de C, tem-se o seguinte diagrama em C



Como  $\mathrm{id}_C$  é o único morfismo de C em C e  $f\circ\mathrm{id}_C\neq g$ , concluímos que não existe qualquer C-morfismo  $u:C\to C$  tal que  $f\circ u=g$  e  $\mathrm{id}_C\circ u=\mathrm{id}_C$ . Por conseguinte,  $(C,(\mathrm{id}_C,f)$  não é um produto de C e D.

Logo a afirmação é falsa.

2. Sejam C uma categoria e  $f:A\to B$  e  $g:B\to C$  morfismos de C. Mostre que se  $g\circ f$  é invertível à direita, então g é um epimorfismo.

Um C-morfismo  $p:X\to Y$  diz-se invertível à direita se existe um C-morfismo  $q:Y\to X$  tal que  $p\circ q=\mathrm{id}_Y.$ 

Um C-morfismo  $p:X\to Y$  diz-se um epimorfismo se, para quaisquer C-morfismos  $i,j:Y\to Z$ ,

$$i\circ p=j\circ p\Rightarrow i=j.$$

Sejam  $f:A\to B$  e  $g:B\to C$  morfismos de  ${\bf C}$  tais que  $g\circ f$  é invertível à direita. Uma vez que  $g\circ f:A\to C$  é invertível à direita, então existe um morfismo  $h:C\to A$  tal que  $(g\circ f)\circ h=\mathrm{id}_C$ .

Sejam  $i, j: C \to D$  morfismos de  ${\bf C}$  tais que  $i \circ g = j \circ g$ . Então

$$(i \circ q) \circ (f \circ h) = (j \circ q) \circ (f \circ h)$$

donde segue que

$$i \circ ((g \circ f) \circ h) = j \circ ((g \circ f) \circ h).$$

Logo

$$i \circ \mathrm{id}_C = j \circ \mathrm{id}_C$$

e, portanto, i = j.

Desta forma, provámos que g é um epimorfismo.

3. Mostre que se C e D são categorias com objetos terminais, então a categoria  $C \times D$  também tem objetos terminais. Conclua que a categoria Set  $\times$  Set tem objetos terminais. Dê um exemplo de um objeto terminal de Set  $\times$  Set. Justifique a sua resposta.

Um objeto T de uma categoria  $\mathbf C$  diz-se um objeto terminal se, para qualquer objeto X de  $\mathbf C$ , existe um, e um só,  $\mathbf C$ -morfismo  $f:X\to T$ .

Suponhamos que  $T_1$  e  $T_2$  são objetos terminais de  ${\bf C}$  e  ${\bf D}$ , respetivamente.

Facilmente se prova que  $(T_1,T_2)$  é um objeto terminal de  $\mathbf{C} \times \mathbf{D}$ . De facto, como  $T_1$  é um objeto de  $\mathbf{C}$  e  $T_2$  é um objeto de  $\mathbf{D}$ , o par  $(T_1,T_2)$  é um objeto de  $\mathbf{C} \times \mathbf{D}$ . Além disso, para qualquer objeto (X,Y) de  $\mathbf{C} \times \mathbf{D}$ , existe um, e um só,  $\mathbf{C} \times \mathbf{D}$ -morfismo de (X,Y) em  $(T_1,T_2)$ . Com efeito, como X é objeto de  $\mathbf{C}$  e  $T_1$  é objeto terminal de  $\mathbf{C}$ , existe um  $\mathbf{C}$ -morfismo  $f:X \to T_1$ . De modo análogo, como Y é um objeto de  $\mathbf{D}$  e  $T_2$  é um objeto terminal de  $\mathbf{D}$ , existe um  $\mathbf{D}$ -morfismo  $g:Y \to T_2$ . Logo existe um  $\mathbf{C} \times \mathbf{D}$ -morfismo de (X,Y) em  $(T_1,T_2)$ : o morfismo (f,g). O morfismo (f,g) é o único  $\mathbf{C} \times \mathbf{D}$ -morfismo de (X,Y) em  $(T_1,T_2)$ , segue que f' é um  $(T_1,T_2)$ . Se admitirmos que (f',g') é um  $(T_1,T_2)$  mas  $(T_1,T_2)$  e que  $(T_1,T_2)$  mas  $(T_1,T_2)$  e um objeto terminal de  $(T_1,T_2)$  pelo que  $(T_1,T_2)$  de  $(T_1,T_2)$  pelo que  $(T_1,T_2)$  de  $(T_1,T_2)$  per forma semelhante, conclui-se que  $(T_1,T_2)$  (pois  $(T_1,T_2)$  e um objeto terminal de  $(T_1,T_2)$  besta forma, provámos que, para qualquer objeto  $(T_1,T_2)$  de  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um so,  $(T_1,T_2)$  e um objeto terminal de  $(T_1,T_2)$  besta forma, provámos que, para qualquer objeto  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um so,  $(T_1,T_2)$  e um objeto terminal de  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um objeto terminal de  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  besta forma, provámos que, para qualquer objeto  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um so,  $(T_1,T_2)$  e um só,  $(T_1,T_2)$  e um so,  $(T_1,T_2)$ 

Logo  $(T_1, T_2)$  é um objeto terminal de  $\mathbf{C} \times \mathbf{D}$ .

A categoria **Set** tem objetos terminais: os conjuntos singulares. Logo, pelo que foi provado anteriormente, a categoria **Set**  $\times$  **Set** tem objetos terminais. Uma vez que  $\{1\}$  e  $\{2\}$  são objetos terminais de **Set**, o par  $(\{1\}, \{2\})$  é um objeto terminal de **Set**  $\times$  **Set**.

4. Sejam  $f:A\to B$  e  $g:B\to A$  morfismos de uma categoria C tais que  $f\circ g=id_B$ . Mostre que (A,f) é um coigualizador de  $g\circ f$  e  $\mathrm{id}_A$ .

Sejam  $f:A\to B$  e  $g:B\to A$  morfismos de uma categoria  ${\bf C}$  tais que  $f\circ g=id_B$ . Pretendemos mostrar que (A,f) é um coigualizador de  $g\circ f$  e  $id_A$ , i.e., pretendemos mostrar que:

- (1)  $f \circ (g \circ f) = f \circ id_A$ ;
- (2) para qualquer C-morfismo  $f': A \to X$ , se  $f' \circ (g \circ f) = f' \circ \mathrm{id}_A$ , então existe um, e um só morfismo,  $u: B \to X$  tal que  $u \circ f = f'$ .

Mostremos (1) e (2).

(1) Uma vez que  $f\circ g=id_B$ , tem-se

$$f \circ (g \circ f) = (f \circ g) \circ f = \mathrm{id}_B \circ f = f = f \circ \mathrm{id}_A.$$

(2) Seja  $f': A \to X$  um C-morfismo tal que  $f' \circ (g \circ f) = f' \circ \mathrm{id}_A$ . Então  $f' \circ (g \circ f) = f'$  e, portanto, existe o C-morfismo  $u = f' \circ g$  tal que  $u \circ f = f'$ .

$$A \xrightarrow{\operatorname{id}_A} A \xrightarrow{f} B$$

$$f' \qquad X$$

$$u = f' \circ g$$

Além disso, o morfismo  $f'\circ g$  é o único  ${\bf C}$ -morfismo  $u:B\to X$  tal que  $u\circ f=f'.$  De facto, se  $f'':B\to X$  é um morfismo tal que  $f''\circ f=f'$ , tem-se  $f''\circ f\circ g=f'\circ g$ , donde segue que  $f''\circ {\rm id}_B=f'\circ g$ . Logo  $f''=f'\circ g$ .

## 5. Numa categoria C, considere o seguinte diagrama



Mostre que se o diagrama anterior é comutativo e  $(A,(f_1,f_2))$  é um produto fibrado de  $(h_1,h_2)$ , então  $(A,(f_1,f_2))$  é um produto fibrado de  $(g_1,g_2)$ .

Admitamos que o diagrama anterior é comutativo e que  $(A,(f_1,f_2))$  é um produto fibrado de  $(h_1,h_2)$ . Pelo facto de  $(A,(f_1,f_2))$  ser um produto fibrado de  $(h_1,h_2)$ , tem-se que:

- (1)  $h_1 \circ f_1 = h_2 \circ f_2$ ;
- (2) para quaisquer C-morfismos  $i_1: X \to B_1$ ,  $i_2: X \to B_2$ , se  $h_1 \circ i_1 = h_2 \circ i_2$ , então existe um, e um só, C-morfismo  $u: X \to A$  tal que  $f_1 \circ u = i_1$  e  $f_2 \circ u = i_2$ .

Pretende-se mostrar que  $(A,(f_1,f_2))$  é um produto fibrado de  $(g_1,g_2)$ , isto é, pretende-se mostrar que:

- (3)  $g_1 \circ f_1 = g_2 \circ f_2$ ;
- (4) para quaisquer C-morfismos  $j_1: X \to B_1$ ,  $j_2: X \to B_2$ , se  $g_1 \circ j_1 = g_2 \circ j_2$ , então existe um, e um só, C-morfismo  $v: X \to A$  tal que  $f_1 \circ v = j_1$  e  $f_2 \circ v = j_2$ .

Mostremos (3) e (4).

- (3) A igualdade  $g_1 \circ f_1 = g_2 \circ f_2$  é imediata, uma vez que o diagrama anterior é comutativo e  $g_1 \circ f_1$  e  $g_2 \circ f_2$  são morfismos com o mesmo domínio e o mesmo codomínio.
- (4) Sejam  $j_1: X \to B_1$  e  $j_2: X \to B_2$  morfismos de  ${\bf C}$  tais que  $g_1 \circ j_1 = g_2 \circ j_2$ . Então  $h \circ g_1 \circ j_1 = h \circ g_2 \circ j_2$ , donde segue que  $h_1 \circ j_1 = h_2 \circ j_2$  (note-se que  $h \circ g_1 = h_1$  e  $h \circ g_2 = h_2$ , pois o diagrama é comutativo). Então, atendendo a (2) segue que existe um, e um só, morfismo  $v: X \to A$  tal que  $f_1 \circ v = j_1$  e  $f_2 \circ v = j_2$ .

## 6. Sejam X um conjunto e $F_X$ a correspondência que

- a cada conjunto A associa o conjunto  $F_X(A) = A \times X$ ;
- a cada função  $f:A\to B$  associa a função

$$F_X(f): A \times X \rightarrow B \times X$$
  
 $(a,x) \mapsto (f(a),x)$ 

(a) Mostre que, para qualquer conjunto X,  $F_X$  é um funtor de Set em Set.

Dado um conjunto X, a correspondência  $F_X$  é um funtor de **Set** em **Set** se  $F_X$  é uma correspondência que a cada objeto A de **Set** associa um objeto de **Set**, a cada morfismo  $f:A\to B$  de **Set** associa um morfismo  $f(f):F(A)\to F(B)$  de **Set** e tal que:

- para qualquer objeto A de **Set**,  $F(id_A) = id_{F(A)}$ ;
- para quaisquer **Set**-morfismos  $f: A \to B$ ,  $g: B \to C$ ,  $F(g \circ f) = F(g) \circ F(f)$ .

4

Facilmente se verifica que  $F_X$  é um funtor de **Set** em **Set**. De facto:

- (1) Para cada conjunto A de **Set**,  $A \times X$  é um conjunto, logo  $A \times X$  é um objeto de **Set**. Assim, a cada objeto A de **Set**, a correspondência  $F_X$  associa um objeto de **Set**.
- (2) Para qualquer função  $f:A\to B$ , a correspondência  $F_X(f)$  é uma função, logo  $F_X(f)$  é um morfismo de **Set**. Assim, a cada morfismo  $f:A\to B$  de **Set**, a correspondência  $F_X$  associa um morfismo  $F_X(f):F_X(A)\to F_X(B)$  de **Set**.
- (3) Para qualquer objeto A de **Set**, tem-se  $F_X(\mathrm{id}_A) = \mathrm{id}_{F_X(A)}$ .

Com efeito, como  $\mathrm{id}_A$  é a função definida por

$$id_A: A \to A$$
$$a \mapsto a$$

da definição de  $F_X$  segue que a função  $F_X(\mathrm{id}_A)$  é a função dada por

$$\begin{array}{cccc} F_X(\mathrm{id}_A): A\times X & \to & A\times X \\ (a,x) & \mapsto & (\mathrm{id}_A(a),x) = (a,x) \end{array}.$$

A função  $\mathrm{id}_{F_X(A)}$  é a função definida por

$$\operatorname{id}_{F_X(A)}: F_X(A) \quad \to \quad F_X(A) \\ u \quad \mapsto \quad u \quad ,$$

ou seja,  $\mathrm{id}_{F_X(A)}$  é a função

$$\mathrm{id}_{F_X(A)} : A \times X \quad \to \quad A \times X \\ (a,x) \quad \mapsto \quad (a,x) \ .$$

Obviamente, as funções  $F(id_A)$  e  $id_{F(A)}$  são iguais.

(4) Para quaisquer funções  $f: A \to B$  e  $g: B \to C$ ,  $F_X(g \circ f) = F_X(g) \circ F_X(f)$ .

Por definição de composição de funções,  $g\circ f$  é a função definida por

$$g \circ f : A \rightarrow C$$
  
 $a \mapsto g(f(a))$ 

donde segue que  $F_X(g \circ f)$  é a função

$$F_X(g \circ f) : A \times X \rightarrow C \times X$$
  
 $(a,x) \mapsto (g(f(a)),x)$ 

Atendendo a que  $f:A \to B$  e  $g:B \to C$  são funções, pela definição de  $F_X$  temos

e por definição de composição de funções segue que

$$F_X(g) \circ F_X(f) : A \times X \to C \times X$$
  
 $(a, x) \mapsto (F_X(g) \circ F_X(f))(a, x)$ 

onde

$$(F_X(g) \circ F_X(f))(a, x) = F_X(g)(F_X(f)(a, x)) = F_X(g)(f(a), x) = (g(f(a)), x).$$

Claramente, as funções  $F_X(g \circ f)$  e  $F_X(g) \circ F_X(f)$  são iguais.

(b) Diga, justificando, se o funtor  $F_X$  é um funtor fiel quando: (i)  $X = \emptyset$ . (ii)  $X \neq \emptyset$ .

Dado um conjunto X, o funtor  $F_X$  é fiel se, para quaisquer funções  $f,g:A\to B$ ,

$$F_X(f) = F_X(g) \Rightarrow f = g.$$

(i) Se  $X=\emptyset$ , o funtor  $F_X$  não é fiel, pois as funções f e g definidas por

não são iguais e  $F_X(f) = \emptyset = F_X(g)$ .

(ii) Se  $X \neq \emptyset$ , o funtor  $F_X$  é fiel.

De facto, se  $X \neq \emptyset$ , então existe  $x \in X$ . Logo, para quaisquer funções  $f,g:A \to B$  tais que  $F_X(f) = F_X(g)$ , tem-se f = g. Com efeito:

- f e g são funções com o mesmo domínio e o mesmo conjunto de chegada,
- para qualquer  $a \in A$ , f(a) = g(a) (se  $a \in A$ , tem-se  $(a, x) \in A \times X$  e de  $F_X(f) = F_X(g)$  segue que (f(a), x) = (g(a), x); por conseguinte, f(a) = g(a)).

Cotação: 1.(1.5+1.5+1.5); 2.(2.0); 3.(2.25); 4.(2.25); 5.(2.5); 6.(2.5); 6.(2.0+2.0).