Basic Hashing

dictionaries revisited

Def: *Universe* from which to choose keys

$$U = [0:N-1]$$

dictionary for keys x from a smaller subset S of U

$$S \subseteq U$$
, $\#S = n < N$

dictionary maintains subset $Y \subseteq S$. Operatons for $x \in S$

•
$$insert(x)$$

$$Y' = Y \cup \{x\}$$

• find(x):

$$find(x) = \begin{cases} 1 & x \in Y \\ 0 & x \notin Y \end{cases}$$

• delete(x):

$$Y' = Y \setminus \{x\}$$

dictionaries revisited

Def: *Universe* from which to choose keys

$$U = [0:N-1]$$

dictionary for keys x from a smaller subset S of U

$$S \subseteq U$$
, $\#S = n < N$

dictionary maintains subset $Y \subseteq S$. Operatons for $x \in S$

• insert(x)

$$Y' = Y \cup \{x\}$$

• find(x):

$$find(x) = \begin{cases} 1 & x \in Y \\ 0 & x \notin Y \end{cases}$$

• delete(x):

$$Y' = Y \setminus \{x\}$$

With balanced trees: time per operation

$$T = O(\log n)$$

Use hash function

$$h: U \rightarrow [0:m-1]$$

basic hashing

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

Use hash function

$$h: U \rightarrow [0: m-1]$$

• map keys $x \in U$ to

$$h(x) \in [0:m-1]$$

computable in time

$$T = O(1)$$

basic hashing

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

• Use hash function

$$h:U\to [0:m-1]$$

• map keys $x \in U$ to

$$h(x) \in [0:m-1]$$

For each hash value

$$i \in [0:m-1]$$

maintain linked list L(i) of elements in Y which are hashed to i. Abusing notation

$$x \in L(i) \leftrightarrow x \in Y \land h(x) = i$$

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

• Use hash function

$$h: U \rightarrow [0:m-1]$$

• map keys $x \in U$ to

$$h(x) \in [0:m-1]$$

For each hash value

$$i \in [0:m-1]$$

maintain linked list L(i) of elements in Y which are hashed to i. Abusing notation

$$x \in L(i) \leftrightarrow x \in Y \land h(x) = i$$

• in an array H of length m maintain pointers to the heads of the lists

$$H[i]* = hd(L(i))$$

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

distributing keys evenly

def: hash function *h distributes keys evenly* if

$$\forall i. \ \#\{x \in U \mid h(x) = i\} \le \lceil N/m \rceil$$

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

distributing keys evenly

def: hash function h distributes keys evenly if

$$\forall i. \ \#\{x \in U \mid h(x) = i\} \le \lceil N/m \rceil$$

Example:

$$N = 2^{\mathbf{v}}, m = 2^{\mu}$$

• represent x = x[v - 1:0] as binary number of length v

$$bin(x) \in \mathbb{B}^{\mathbf{v}}$$

• pick subset of μ indices in $[0: \nu - 1]$

$$0 \le j_0 < \ldots < j_{\mu} \le v$$

• concatenate bits $bin(x)[j_y]$

$$z = bin(x)[i_{\mu-1}], \dots, bin(x)[0]$$

and interpret as number

$$h(x) = \langle z \rangle$$

Even distribution of keys: exercise.

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

Figure 2: To hash x convert it into a binary number bin(x) of length v, obtain z by concatenating a prescribed subsequence of μ bits of bin(x) and convert back

distributing keys evenly

def: hash function h distributes keys evenly if

$$\forall i. \ \#\{x \in U \mid h(x) = i\} \le \lceil N/m \rceil$$

hope: if *h* distributes keys evenly *and* each set *S* is occurs randomly with probability:

$$p(S) = \binom{N}{n}^{-1}$$

then for *load factor*

$$\alpha = n/m$$

the expected length of lists L(i) (and hence the expected run time of operations) is

$$E(|L(i)|) = O(\alpha) = O(n/m)$$

Figure 1: A key $x \in S$ is stored as an element of list L(i), where i = h(x) is the hash value of x. Pointers to the heads of lists L(i) are stored in an array H(i). Run time of list operations on x is bounded by O(|L(i)|)

distribution of sets S

usually missing in textbook or lecture notes

recall: random permutations

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \to [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \to [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \to [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

Lemma 1. All subsets of U with k elements are chosen with equal probability: for all $S \subseteq U$ with #S = n

$$p\{S(\pi) = S\} = \binom{N}{n}^{-1}$$

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \to [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

Lemma 1. All subsets of U with k elements are chosen with equal probability: for all $S \subseteq U$ with #S = n

$$p\{S(\pi) = S\} = \binom{N}{n}^{-1}$$

proof:

$$p\{S(\pi) = S\} = \frac{\#\{\pi \mid S(\pi) = S\}}{N!}$$

$$= \frac{n! \cdot (N - n)!}{N!}$$

$$= \binom{N}{n}^{-1}$$

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \to [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

Lemma 1. All subsets of U with k elements are chosen with equal probability: for all $S \subseteq U$ with #S = n

$$p\{S(\pi) = S\} = \binom{N}{n}^{-1}$$

proof:

$$p\{S(\pi) = S\} = \frac{\#\{\pi \mid S(\pi) = S\}}{N!}$$

$$= \frac{n! \cdot (N - n)!}{N!}$$

$$= \binom{N}{n}^{-1}$$

Lemma 2. For all $k \in [0: n-1]$ and $y \in U$ the probability that the k'th chosen element $\pi(k)$ is y equals

$$p\{\pi(k) = y\} = 1/N$$

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \to [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

Lemma 1. All subsets of U with k elements are chosen with equal probability: for all $S \subseteq U$ with #S = n

$$p\{S(\pi) = S\} = \binom{N}{n}^{-1}$$

proof:

$$p\{S(\pi) = S\} = \frac{\#\{\pi \mid S(\pi) = S\}}{N!}$$

$$= \frac{n! \cdot (N - n)!}{N!}$$

$$= \binom{N}{n}^{-1}$$

Lemma 2. For all $k \in [0: n-1]$ and $y \in U$ the probability that the k'th chosen element $\pi(k)$ is y equals

$$p\{\pi(k) = y\} = 1/N$$

proof:

$$p\{\pi(k) = y\} = \frac{\#\{\pi \mid \pi(k) = y\}}{N!}$$

$$= \frac{(N-1)!}{N!}$$

$$= 1/N$$

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0:N-1] \rightarrow [0:N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

Lemma 1. All subsets of U with k elements are chosen with equal probability: for all $S \subseteq U$ with #S = n

$$p\{S(\pi) = S\} = \binom{N}{n}^{-1}$$

proof:

$$p\{S(\pi) = S\} = \frac{\#\{\pi \mid S(\pi) = S\}}{N!}$$

$$= \frac{n! \cdot (N - n)!}{N!}$$

$$= \binom{N}{n}^{-1}$$

Lemma 2. For all $k \in [0: n-1]$ and $y \in U$ the probability that the k'th chosen element $\pi(k)$ is y equals

$$p\{\pi(k) = y\} = 1/N$$

proof:

$$p\{\pi(k) = y\} = \frac{\#\{\pi \mid \pi(k) = y\}}{N!}$$

$$= \frac{(N-1)!}{N!}$$

$$= 1/N$$

Lemma 3. If hash function h distributes keys evely, then for all $k \in [0:n-1]$ and $i \in [0:m-1]$ the probability that the k'th chosen element $\pi(k)$ is mapped to i is bounded as

$$p\{h(m(\pi(k)) = i\} \le 1/m + 1/N$$

distribution of sets S

Consider permutations of U

$$\Pi_N = \{ \pi \mid \pi : [0 : N-1] \rightarrow [0 : N-1] \text{ bijective} \}$$

Pick permutation π random and equally distributed from Π_N . Probability space

$$W = (\Pi_N, p)$$
, $p(\pi) = \frac{1}{N!}$ for all π

see slide set 'hiring problem'

Form random set S with first n elements of π

$$S(\pi) = \{ \pi(j) \mid j < n \}$$

Lemma 1. All subsets of U with k elements are chosen with equal probability: for all $S \subseteq U$ with #S = n

$$p\{S(\pi) = S\} = \binom{N}{n}^{-1}$$

proof:

$$p\{S(\pi) = S\} = \frac{\#\{\pi \mid S(\pi) = S\}}{N!}$$

$$= \frac{n! \cdot (N-n)!}{N!}$$

$$= {\binom{N}{n}}^{-1}$$

Lemma 2. For all $k \in [0: n-1]$ and $y \in U$ the probability that the k'th chosen element $\pi(k)$ is y equals

$$p\{\pi(k) = y\} = 1/N$$

proof:

$$p\{\pi(k) = y\} = \frac{\#\{\pi \mid \pi(k) = y\}}{N!}$$

$$= \frac{(N-1)!}{N!}$$

$$= 1/N$$

Lemma 3. If hash function h distributes keys evely, then for all $k \in [0:n-1]$ and $i \in [0:m-1]$ the probability that the k'th chosen element $\pi(k)$ is mapped to i is bounded as

$$p\{h(p(\pi(k)) = i\} \le 1/m + 1/N$$

proof:

$$p\{h(\pi(k)) = i\} = \sum_{h(y)=i} p\{\pi(k) = y\}$$

$$= \sum_{h(y)=i} (1/N) \text{ (lemma 2)}$$

$$\leq \lceil N/m \rceil \cdot (1/N)$$

$$\leq (N/m+1) \cdot (1/N)$$

expected length of list L(i)

hope: if *h* distributes keys evenly *and* each set *S* is occurs randomly with probability:

$$p(S) = \binom{N}{n}^{-1}$$

then for *load factor*

$$\alpha = n/m$$

the expected length of lists L(i) (and hence the expected run time of operations) is

$$E(|L(i)|) = O(\alpha) = O(n/m)$$

def: indicator variable

$$X_{k,i} = \begin{cases} 1 & h(\pi(k)) = i \\ 0 & \text{otherwise} \end{cases}$$

expected length of list L(i)

hope: if *h* distributes keys evenly *and* each set *S* is occurs randomly with probability:

$$p(S) = \binom{N}{n}^{-1}$$

then for *load factor*

$$\alpha = n/m$$

the expected length of lists L(i) (and hence the expected run time of operations) is

$$E(|L(i)|) = O(\alpha) = O(n/m)$$

def: indicator variable

$$X_{k,i} = \begin{cases} 1 & h(\pi(k)) = i \\ 0 & \text{otherwise} \end{cases}$$

$$E(|L(i)|) \leq E(\sum_{k=0}^{n-1} X_{k,i})$$

$$= \sum_{k=0}^{n-1} E(X_{k,i}) \quad \text{(linearity)}$$

$$= \sum_{k=0}^{n-1} p\{h(\pi(k)) = i\} \quad \text{(indicator variable)}$$

$$\leq n \cdot (1/m + 1/N) \quad \text{(lemma 3)}$$

$$= n/m + 1 \quad (n \leq N)$$

expected length of list L(i)

Lemma: if *h* distributes keys evenly *and* each set *S* is occurs randomly with probability:

$$p(S) = \binom{N}{n}^{-1}$$

then for *load factor*

$$\alpha = n/m$$

the expected length of lists L(i) (and hence the expected run time of operations) is

$$E(|L(i)|) = O(\alpha) = O(n/m)$$

def: indicator variable

$$X_{k,i} = \begin{cases} 1 & h(\pi(k)) = i \\ 0 & \text{otherwise} \end{cases}$$

$$E(|L(i)|) \leq E(\sum_{k=0}^{n-1} X_{k,i})$$

$$= \sum_{k=0}^{n-1} E(X_{k,i}) \quad \text{(linearity)}$$

$$= \sum_{k=0}^{n-1} p\{h(\pi(k)) = i\} \quad \text{(indicator variable)}$$

$$\leq n \cdot (1/m + 1/N) \quad \text{(lemma 3)}$$

$$= n/m + 1 \quad (n \leq N)$$