

Détection de Fraude des Prestataires de Santé aux États-Unis

Projet Machine Learning en assurance M2 Actuariat 2024-2025

Groupe ADMW

AMIEL Florian

DJIBRIL OMAR Emma

MOREL-LE GUYADER Julie

WENDLING Solène

Plan

- 1 | Contexte et problématique
- 2 | Données
- 3 | Modèles
- 4 | Optimisation des hyperparamètres
- **5** | Conclusion

1 Contexte du projet

- Medicare aux Etats-Unis
- Types de Fraudes et Sanctions
- Visualisation et chiffres principaux
- Problématique

Medicare

- Programme gouvernemental américain d'assurance santé
- Créé en 1965 sous Lyndon B. Johnson
- 4 parties (A, B, C, D) couvrant hospitalisations, soins médicaux, médicaments
- Éligibilité: 65+ ans, résidents américains, cotisations sociales

Force et Défis de Medicare :

- Croissance démographique massive
- Coûts de santé en augmentation
- Risques de fraudes et abus
- Coordination avec d'autres programmes

Types de Fraude en santé

Fraudes par Prestataires de Santé

- Double facturation : Multiplier les réclamations pour un service
- Facturation fictive : Facturer des services jamais réalisés
- Upcoding : Facturer un service plus cher que le réel
- Pots-de-vin : Rémunérations contre recommandations

Impact: Augmentation artificielle des coûts médicaux

Fraude par patients/individus

- Vol d'identité : Utiliser l'assurance d'autrui
- Marketing frauduleux : Collecter des informations personnelles
- Usurpation d'identité professionnelle : Services sans licence

Risque: Atteinte à la vie privée, système de santé

Fraudes liées aux prescriptions

- Falsification d'ordonnances
- Détournement : Revente de médicaments
- Doctor shopping : Multiplier les consultations pour obtenir des substances

<u>Danger</u>: Trafic de médicaments, risques sanitaires

SANCTIONS

- Amendes
- Peines de prison
- Exclusion des programmes publics

Nécessité: Collaboration public-privé

Visualisation de la fraude

- Fraude répartie sur l'ensemble des Etats-Unis
- Perte moyenne de plus de 1 M\$
- Plus de 300 personnes condamnées chaque année

Median Loss for Individuals Sentenced for Health Care Fraud

Number of Individuals Sentenced for Health Care Fraud $_{\rm 500}$

Problématique

Comment peut-on utiliser les données des réclamations médicales pour détecter de manière fiable les comportements frauduleux parmi les prestataires de soins de santé ?

2 Données

- Présentation des données et Caractéristiques principales
- Data Preprocessing
- Gestion des données manquantes et autres traitements appliqués aux données
- Exploration des données

Données

- Données réelles : Kaggle
- Plusieurs fichiers distincts, regroupés en quatre grandes catégories : les données sur les prestataires, les bénéficiaires, et les réclamations médicales pour soins hospitaliers ou ambulatoires

Données des Prestataires (Providers):

- Identifiant unique du prestataire
- Variable cible : Indicateur de fraude
- Permet l'entraînement des modèles prédictifs

Données des Bénéficiaires (Beneficiaries) :

- Informations démographiques
- Contexte médical (âge, sexe, conditions chroniques)
- Identifiant du bénéficiaire

Données Hospitalières (Inpatient) ou Ambulatoires (Outpatient) :

- Réclamations patients hospitalisés ou non hospitalisés
- Trois catégories :
 - Informations générales
 - Données cliniques
 - Procédures réalisées

Data Preprocessing

Gestion des Données manquantes

- Le traitement des valeurs manquantes = crucial en machine learning
- ⇒ Evite les biais + préserve la capacité de généralisation des modèles.

Les stratégies clés :

- imputation
- suppression
- transformation
 des colonnes en fonction des motifs spécifiques de ces valeurs manquantes.

Diagnostics (ClmDiagnosisCode):

- 10 colonnes avec taux de valeurs manquantes > 70%
- Action : Suppression des colonnes
- Création d'une nouvelle colonne NbDiagnosis

Procédures (ClmProcedureCode):

- 5 colonnes avec taux de valeurs manquantes 95-100%
- Action : Suppression totale des colonnes

Montant Déductible (DeductibleAmtPaid) :

- 0,16% de valeurs manquantes
- Méthode : Imputation par la médiane
- Avantages : robuste face aux valeurs extrêmes (outliers) + distribution de la variable reste cohérente

Autres traitements des données

Nouvelles Colonnes:

- PatientType : Différenciation des soins hospitaliers
- DureeClaim : Calcul de la durée d'hospitalisation
- StateRisk : Classification des États en 4 niveaux de risque :
 - Formule : Risk_Score = Fraud_Percentage × log(Total_Count + 1)
 - Niveaux : Faible, Modéré, Élevé, Très élevé
- CountyRisk : Classification des comtés par risque
- CodeProvider : Regroupement des identifiants de prestataires

Transformations de Colonnes

- PotentialFraud : Conversion Yes/No en 1/0
- RenalDiseaseIndicator : Conversion 0/Y en 0/1

Nombre de fraudes potentielles par mois et année

Mois et Année

Part des fraudes potentielles par état (%)

Nombre de cas par état

Exploration des données

- Majorité des cas observés dans nos données : Outpatient
- Proportion plus élevée de femmes

Répartition des fraudes par type de patient et genre

- Majorité des réclamations pour un faible nombre de diagnostics : non-fraude
- Réclamations avec nombre élevé de diagnostics corrélé avec risque de fraude

Exploration des données

Répartition des valeurs pour les 6 variables relatives aux montants payés et remboursés

3 Modèle

- Démarche
- Présentation des modèles
- Comparaison des modèles

Démarche

- Rappelons les différentes étapes du projet
- Utilisation de la bibliothèque Scikit-learn

Comparaison des modèles

Métriques utilisées :

- Précision globale (Accuracy)
- Précision et rappel spécifiques
- Aire sous la courbe ROC accompagnée des valeurs de l'AUC (Aire sous la courbe)

Comparaison des modèles

	AUC	AUC PR		Précision	Rappel	F1-score	Temps d'inférence moyen par échantillon	
KNeighborClassifier	0.61	0.50		0.495	0.412	0.450	1038.31 µs	
LDA	0.70	0.55		0.592	0.538	0.564	0.22 µs	
Régression Linéaire	0.68	0.52		0.527	0.153	0.238	0.19 µs	
Decison Tree	0.64	0.63		0.546	0.547	0.547	0.88 µs	
Random Forest	0.75	0.64		0.635	0.562	0.596	70.45 μs	
Neural Network	0.70	0.54		0.561	0.603	0.581	1.74 µs	
XGBoost	0.72	0.58	JT	0.599	0.544	0.570	1.42 µs	

Analyse des performances des modèles :

AUC et AUC PR

Random Forest: meilleures AUC et AUC PR

XGBoost et LDA : performances élevées aussi

KNeighborClassifier : AUC la plus faible

Précision et Rappel

 Random Forest : modèle le plus équilibré suivi par :

XGBoost et LDA : performances proches

F1-Score

Random Forest : score le plus élevé

Neural Network : 2ème

XGBoost : 3ème

Temps d'Inférence

LDA et Régression Linéaire : les plus rapides

KNeighborClassifier : le plus lent

Random Forest le plus performant

4 Optimisation des hyperparamètres

- Objectif
- Approche adoptée
- Résultats de l'optimisation

Hyperparamètres

Définition des Hyperparamètres :

- Paramètres définis avant l'entraînement du modèle
- Influencent directement la performance du modèle
- Impactent la capacité de généralisation

Hyperparamètres Clés de Random Forest :

- Nombre d'arbres (n_estimators)
- Profondeur maximale (max_depth)
- Échantillons pour diviser un nœud (min_samples_split)
- Échantillons dans une feuille (min_samples_leaf)
- Variables par division (max_features)
- Pondération des classes (class_weight)

Objectif maximiser la performance prédictive

Optimisation

Méthodes d'Optimisation :

Validation Croisée:

- Recherche par grille (Grid Search)
- Recherche aléatoire (Random Search)
- Exploration systématique de l'espace des hyperparamètres

- Division des données en sous-ensembles
- Évaluation sur des partitions indépendantes
- Evaluation sur des partitions independantes
- Prévention du surapprentissage

Généralisation des performances observées

Résultats de l'optimisation

- Recherche par grille + validation croisée à 3 plis
- 432 combinaisons d'hyperparamètres

Meilleurs hyperparamètres trouvés :

- class_weight : balanced
- max_depth : None
- max_features : sqrt
- min samples leaf: 4
- min samples split: 10
- n_estimators : 200

Résultats de l'optimisation

- Amélioration de la précision
- Amélioration de la capture des cas positifs
- Meilleur équilibre précision/rappel

	Précision	Rappel	F1-score
Random Forest	0.635	0.562	0.596
Random Forest Optimisé	0.644	0.692	0.667

Résultats de l'optimisation

5 Conclusions

Bénéfices majeurs :

- Réduction significative des pertes financières
- Protection du système de santé
- Identification proactive des comportements frauduleux

Modèle retenu:

- Random Forest
- AUC de 0.75
- Meilleur équilibre précision/rappel

Merci pour votre attention

