Formelsammlung - ET/TI

Marc Ludwig

4. Juli 2012

Inhaltsverzeichnis

Ι	\mathbf{M}	athen	aatik	6
1	Alg	ebra		7
	1.1		enregeln fuer Potenzen	7
	1.2	Zusan	nmenhang zwischen Wurzeln und Potenzen	7
	1.3		zen und Logarithmen	8
	1.4		Sinomische Lehrsatz	8
	1.5		Kosinus, Tangens und Kotangens	Ś
		1.5.1	Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens	Ć
		1.5.2	Additionstheoreme	Q
	1.6	Komp	olexe Zahlen	11
		1.6.1	Umrechnungen zwischen den Darstellungsformen	11
		1.6.2	Rechnen mit Komplexen Zahlen	12
2	Fun	ktione	en	13
_	2.1		nungen	13
		2.1.1	Gleichungen <i>n</i> -ten Grades	13
		2.1.2	Lineare Gleichungen	13
		2.1.3	Quadratische Gleichungen	14
		2.1.4	Biquadratische Gleichungen	14
		2.1.5	Gleichungen höheren Grades	14
		2.1.6	Wurzelgleichung	14
		2.1.7	Ungleichungen	15
		2.1.8	Betragsgleichungen	15
3	Vek	torrec	chnung	16
U	3.1		rrechnung	16
	0.1	3.1.1	Grundlagen	16
		3.1.2	Vektoroperationen	17
		3.1.3	Geraden	18
		3.1.4		18
		0.1.4	Ebenen	10

4	Diff	erentialrechnung 2
	4.1	Differntialrechnung
		4.1.1 Erste Ableitungen der elementaren Funktionen 2
		4.1.2 Rechenregeln
		4.1.3 Fehlerrechnung
		4.1.4 Linearisierung und Taylor-Polynom
		4.1.5 Grenzwertregel von Bernoulli und de l'Hospital 2
		4.1.6 Differentielle Kurvenuntersuchung
	4.2	Differentialgleichungen
		4.2.1 DG 1. Ordnung
		4.2.2 Lineare DG 2. Ordnung
	4.3	Differential- und Integralrechnung mit mehreren Variablen 2
		4.3.1 Differentialrechnung
		4.3.2 Mehrfachintegral
5	Fold	gen und Reihen 3
J	5.1	Reihen
	9.1	5.1.1 Geometrische Folge
		5.1.2 Harmonische Reihe
		5.1.3 Konvergenz
		5.1.4 Bekannte konvergente Reihen
	5.2	Funktionenreihen
	0.2	5.2.1 Potenzreihen
		5.2.2 Bekannte Potenzreihen
		5.2.3 spezielle Reihen
		5.2.4 Fourier Reihen
6		rpolation 3
	6.1	Interpolationspolynome
II	P	hysik 3
7	Kin	ematik 3
	7.1	Analogietabelle
		7.1.1 Translation
		7.1.2 Rotation
	7.2	Dynamik
	•	7.2.1 Geradlinig (Translation)
		7.2.2 Drehbewegung(Rotation)
		7.2.3 Geneigte Ebene
		7.2.4 Reibung
		7.2.5 Feder

		7.2.6 Elastischer Stoß	. 43
		7.2.7 Unelastischer Stoß	. 44
		7.2.8 Rotierendes Bezugssystem	. 45
	7.3	Schwerpunkt	
	7.4	Trägheitsmoment	
	7.5	Elastizitätslehre	
	7.6	Schwingungen	
	• • •	7.6.1 Ungedämpfte Schwingungen	
		7.6.2 Gedämpfte Schwingungen	
		Tion 2 Goddan proc Son wing dinger T.	. 50
8	Flui	ddynamik	51
	8.1	Ohne Reibung	. 51
	8.2	Laminare Reibung	
9	Gra	vitation	53
10	Elek	trostatik	5 4
	2101		0.
11	The	rmodynamik	56
	11.1	Wärmedehnung	. 56
	11.2	Wärme	. 56
	11.3	Mischtemperatur	. 56
		Wärmeleitung	
	11.5	Wärmekonvektion	. 56
	11.6	Wärmewiderstand	. 57
		11.6.1 Wärmeübertragung	
		11.6.2 Wärmestrahlung	
		11.6.3 Zustandsänderung des idealen Gases	
10	04		60
14	Opt		
		ě	
		Totalreflexion	
		Hohlspiegel	
		Linse	
	12.5	Lichtwellenleiter	. 62
TT.		Noleturat a alousila	os.
II	ı E	Elektrotechnik	63
13	Glei	chstromtechnik	64
	13.1	Grundgrößen	. 64
		Lineare Quellen	
		Kirchhoffsche Gesetze	

	chselstromtechnik		66
14.1	Definitionen		66
	14.1.1 Periodische zeitabhängige Größen		66
	14.1.2 Wechselgrößen		66
	14.1.3 Mischgrößen		66
	Anteile und Formfaktoren		67
	Leistung und Leistungsfaktoren		67
14.4	Sinusförmige Größen	•	68
_	nal- und Systemtheorie		75
	Einfache Impulse		75
	Elementare Operationen auf zeitliche Verläufe		76
	Signale		80
	Signalbeschreibung Leistungssignale		82
	Signalbeschreibung Energiesignale		85
15.6	Systeme	•	86
	nalverarbeitung		90
	Laplace / Fourier-Transformation		90
	Spektrum		95
16.3	Korrelation		95
	Analoge Schaltungstechnik		96 97
17 Gru			97
17 Gru V M	ndschaltungen	10	97
17 GruV M18 Gru	Iesstechnik	10	97)1
17 Gru V M 18 Gru 18.1	lesstechnik undlagen	1(10 . 1	97 91
17 Gru V M 18 Gru 18.1	Iesstechnik Indlagen Begriffe	1(10 . 1 . 1	97 01 02
17 Gru V M 18 Gru 18.1	Iesstechnik Indlagen Begriffe Messabweichung e	1(10 . 1 . 1	97 01 02 02 02
17 Gru V M 18 Gru 18.1 18.2	Iesstechnik Indlagen Begriffe Messabweichung e 18.2.1 relative Messabweichung 18.2.2 Messabweichung e_y 18.2.3 Fortpflanzung systematischer Messabweichungen	1(10 . 1 . 1 . 1 . 1	97 02 02 02 03 03
17 Gru V M 18 Gru 18.1 18.2	$egin{array}{llllllllllllllllllllllllllllllllllll$	1(10 . 1 . 1 . 1 . 1	97 01 02 02 02 03
17 Gru V M 18 Gru 18.1 18.2	Iesstechnik Indlagen Begriffe Messabweichung e 18.2.1 relative Messabweichung 18.2.2 Messabweichung e 18.2.3 Fortpflanzung systematischer Messabweichungen Statistische Größen Erwartungswert, Varianz und Standardabweichung	1(10 . 1 . 1 . 1 . 1 . 1 . 1	97 01 02 02 03 04 04
17 Gru V M 18 Gru 18.1 18.2	Iesstechnik Indlagen Begriffe Messabweichung e 18.2.1 relative Messabweichung 18.2.2 Messabweichung e_y 18.2.3 Fortpflanzung systematischer Messabweichungen Statistische Größen Erwartungswert, Varianz und Standardabweichung Verteilungsfunktionen	1(10 10 11 1 1 1 1 1 1 1 1	97 02 02 02 03 03 04
17 Gru V M 18 Gru 18.1 18.2	Iesstechnik Indlagen Begriffe Messabweichung e 18.2.1 relative Messabweichung 18.2.2 Messabweichung e_y 18.2.3 Fortpflanzung systematischer Messabweichungen Statistische Größen Erwartungswert, Varianz und Standardabweichung Verteilungsfunktionen Stichprobe	1(10 10 11 11 11 11 11 11 11 11	97 01 02 02 03 04 04 05 06
17 Gru V M 18 Gru 18.1 18.2 18.3 18.4 18.5 18.6 18.7	$\begin{tabular}{ll} \textbf{Iesstechnik} \\ \textbf{Indlagen} \\ \textbf{Begriffe} \\ \textbf{Messabweichung } e \\ \textbf{18.2.1 relative Messabweichung} \\ \textbf{18.2.2 Messabweichung } e_y \\ \textbf{18.2.3 Fortpflanzung systematischer Messabweichungen} \\ \textbf{Statistische Größen} \\ \textbf{Erwartungswert, Varianz und Standardabweichung} \\ \textbf{Verteilungsfunktionen} \\ \textbf{Stichprobe} \\ \textbf{Vertrauensbereich für den Erwartungswert} \\ \end{tabular}$	10 10 11 1 1 1 1 1 1 1 1 1 1	97 01 02 02 03 04 04 06 06
17 Gru V M 18 Gru 18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8	Iesstechnik Indlagen Begriffe Messabweichung e 18.2.1 relative Messabweichung 18.2.2 Messabweichung e_y 18.2.3 Fortpflanzung systematischer Messabweichungen Statistische Größen Erwartungswert, Varianz und Standardabweichung Verteilungsfunktionen Stichprobe	10 10 11 1 1 1 1 1 1 1 1 1 1 1 1	97 01 02 02 03 04 04 05 06

Sa	achregister	 . 108
T 7 T		100
VI	Anhang	109

5

INHALTS VERZEICHNIS

Teil I Mathematik

Kapitel 1

Algebra

Why waste time learning when ignorance is instantaneous?
- Hobbes

1.1 Rechenregeln fuer Potenzen

$$a^{m} \cdot a^{n} = a^{m+n} \qquad \frac{a^{m}}{a^{n}} = a^{m-n} \qquad (a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n}$$
$$a^{n} \cdot b^{n} = (a \cdot b)^{n} \qquad \frac{a^{n}}{b^{n}} = \left(\frac{a}{b}\right)^{n} \qquad \text{(fuer a > 0) } a^{b} = e^{b \cdot \ln a}$$

1.2 Zusammenhang zwischen Wurzeln und Potenzen

 Im Folgenden wird vorausgesetzt, dass alle Potenzen und Wurzeln existieren.

$$\sqrt[n]{a} = a^{\frac{1}{n}} \qquad \qquad \sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \left(\sqrt[n]{a}\right)^m = a^{\frac{m}{n}}$$

1.3 Potenzen und Logarithmen

Schreibweise: $x = \log_a(b)$ mit $a > 0, a \neq 1$ und b > 0.

Es gillt: $\log_a(1) = 0$, $\log_a(a) = 1$.

Der natuerliche Logarithmus

Der Logarithmus zur Basis e mit $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2,71828...$

$$\log_e(b) = \ln(b) \qquad \qquad \ln\left(\frac{1}{e}\right) = -1; \text{ da } e^{-1} = \frac{1}{e}$$

Man beachte: $x^a = e^{\ln(x) \cdot a}$

Rechnen mit Logarithmen

Es gillt:	Weitere Beziehungen:
$\log_a(u \cdot v) = \log_a(u) + \log_a(v)$	$\log_a\left(\sqrt[n]{u}\right) = \frac{1}{n}\log_a\left(u\right)$
$\log_a\left(\frac{u}{v}\right) = \log_a\left(u\right) - \log_a\left(v\right)$	$a^{\log_a(u)} = \log_a^n(a^u) = u$
$\log_a(u^p) = p \cdot \log_a(u)$	$\log_a(u) = \frac{\log_c(u)}{\log_c(a)}$

1.4 Der Binomische Lehrsatz

Die Potenzen eines Binoms a+b lassen sich nach dem Binomischen Lehrsatz wie folgt entwickeln $(n \in \mathbb{N}^*)$:

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1} \cdot b^1 + \binom{n}{2}a^{n-2} \cdot b^2 + \binom{n}{3}a^{n-3} \cdot b^3 + \ldots + \binom{n}{n-1}a^1 \cdot b^{n-1} + b^n$$

Die Koeffizienten $\binom{n}{k}$ heißen Binominalkoeffizienten, ihr Bildungsgesetz lautet:

$$\binom{n}{k} = \frac{n(n-1)(n-2)...[n-(k-1)]}{k!} = \frac{n!}{k!(n-k)!}$$

9

Einige Eigenschaften der Binominalkoeffizienten

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \binom{n}{k} = 0 \text{ fuer } k > n \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

1.5 Sinus, Kosinus, Tangens und Kotangens

1.5.1 Beziehungen zwischen Sinus, Kosinus, Tangens und Kotangens

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1 \qquad \tan(\alpha) \cdot \cot(\alpha) = 1$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \qquad \cot(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)}$$

$$1 + \tan^{2}(\alpha) = \frac{1}{\cos^{2}(\alpha)} \qquad 1 + \cot^{2}(\alpha) = \frac{1}{\sin^{2}(\alpha)}$$

1.5.2 Additions theoreme

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$$

Funktionen des doppelten und halben Winkels

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 2\cos^2(\alpha) - 1 = 1 - 2\sin^2(\alpha)$$

$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$$

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 - \cos(\alpha))$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1}{2}(1 + \cos(\alpha))$$

$$\tan^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos(\alpha)}{1 + \cos(\alpha)}$$

Umformungen

Summe oder Differenz in ein Produkt

$$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
$$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$

Produkt in eine Summe oder Differenz

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

1.6 Komplexe Zahlen

Für die Menge aller komplexen Zahlen schreibt man:

$$=\{z|z=a+bj,a\in\mathbb{R}\wedge b\in\mathbb{R}\}$$

a-Realteil b-Imaginaerteil j-imaginaere Einheit

kartesiche Form	trigonometrische Form	exponentialform	
z = a + bj	$z = z (\cos \varphi + j \cdot \sin \varphi)$	$z = z \cdot e^{j\varphi}$	
$z^* = (a+bj)^* = a-bj$	$z^* = z (\cos \varphi - j \cdot \sin \varphi)$	$z^* = z \cdot e^{-j\varphi}$	

|z| = Betrag von z

 $\varphi = \text{Argument (Winkel) von z}$

 $z^* = \text{Konjugiert komplexe Zahl}$

1.6.1 Umrechnungen zwischen den Darstellungsformen

 $Polarform \rightarrow Kartesiche Form$

$$z = |z| \cdot e^{j\varphi} = |z| \left(\cos\varphi + j \cdot \sin\varphi\right) = \underbrace{|z| \cdot \cos\varphi}_a + j \cdot \underbrace{|z| \cdot \sin\varphi}_b = a + bj$$

 $\mathbf{Kartesische\ Form\ } \rightarrow \mathbf{Polarform}$

$$|z| = \sqrt{a^2 + b^2}$$
, $\tan \varphi = \frac{b}{a}$

1.6.2 Rechnen mit Komplexen Zahlen

Multiplikation

In kartesischer Form:

$$z_1 \cdot z_2 = (a_1 + jb_1) \cdot (a_2 + jb_2) = (a_1a_2 - b_1b_2) + j \cdot (a_1b_2 + a_2b_1)$$

In der Polarform:

$$z_{1} \cdot z_{2} = [|z_{1}| (\cos \varphi_{1} + j \cdot \sin \varphi_{1})] \cdot [|z_{2}| (\cos \varphi_{2} + j \cdot \sin \varphi_{2})]$$

$$= (|z_{1}| |z_{2}|) \cdot [\cos (\varphi_{1} + \varphi_{2}) + j \cdot \sin (\varphi_{1} + \varphi_{2})]$$

$$= (|z_{1}| \cdot e^{j\varphi_{1}}) \cdot (|z_{2}| \cdot e^{j\varphi_{2}}) = (|z_{1}| |z_{2}|) \cdot e^{j(\varphi_{1} + \varphi_{2})}$$

Division

In kartesischer Form

In der Polarform

Kapitel 2

Funktionen

2.1 Gleichungen

2.1.1 Gleichungen n-ten Grades

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0 = 0 \quad (a_n \neq 0, a_k \in \mathbb{R})$$

Eigenschafften

- \bullet Die Gleichung besitzen maximal n reelle Lösungen.
- ullet Es gibt genau n komplexe Lösungen.
- \bullet Für ungerades n gibt es mindestens eine reelle Lösung.
- Komplexe Lösungen treten immer Paarweise auf.
- Es existieren nur Lösungsformeln bis $n \leq 4$. Für n > 4 gibt es nur noch grafische oder numerische Lösungswege.
- Wenn eine Nullstelle bekannt ist kann man die Gleichung um einen Grad verringern, indem man denn zugehörigen Linearfaktor $x-x_1$ abspaltet(Polynome Division).

2.1.2 Lineare Gleichungen

$$a_1 \cdot x + a_0 = 0 \Rightarrow x_1 = -\frac{a_0}{a_1} \quad (a_1 \neq 0)$$

2.1.3 Quadratische Gleichungen

$$a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0 \quad (a_2 \neq 0)$$

Normalform mit Lösung

$$x^{2} + p \cdot x + q = 0 \Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

Überprüfung (Wurzelsatz von Vieta)

$$x_1 + x_2 = -p \qquad \qquad x_1 \cdot x_2 = q$$

 x_1, x_2 : Lösung der quadratischen Gleichung.

2.1.4 Biquadratische Gleichungen

Diese Gleichungen lassen sich mithilfe der Substitution lösen.

$$a \cdot x^4 + b \cdot x^2 + c = 0$$

$$a \cdot u^2 + b \cdot u + c = 0$$

$$u = x^2$$

$$x = \pm \sqrt{u}$$

Das u kann mithilfe der Lösungsformel einer quadratischen Gleichung gelöst werden.

2.1.5 Gleichungen höheren Grades

Gleichungen höheren Grades kann man durch graphische oder numerische Ansätze lösen. Hilfreich ist das finden einer Lösung und das abspalten eines Linearfaktor , mithilfe der Polynomdivision oder dem Hornor Schema,von der ursprünglichen Gleichung.

Polynomdivision

$$\frac{f(x)}{x - x_0} = \frac{a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0}{x - x_0} = b_2 \cdot x^2 + b_1 \cdot x + b_0 + r(x)$$

 x_0 ist dabei die erste gefunden Nullstelle. r(x) verschwindet wenn x_0 ein Nullstellen oder eine Lösung von f(x) ist.

$$r(x) = \frac{a_3 \cdot x_0^3 + a_2 \cdot x_0^2 + a_1 \cdot x_0 + a_0}{x - x_0} = \frac{f(x_0)}{x - x_0}$$

2.1.6 Wurzelgleichung

Wurzelgleichungen löst man durch quadrieren oder mit hilfe von Substitution. Bei Wurzelgleichung ist zu beachten das quadrieren keine Aquivalente Umformung ist und das Ergebniss überprüft werden muss.

2.1.7 Ungleichungen

- Beidseitiges Subtrahieren oder Addieren ist möglich
- Die Ungleichung darf mit einer beliebige positiven Zahl multipliziert oder dividiert werden
- Die Ungleichung darf mit einer beliebige negativen Zahl multipliziert oder dividiert werden, wenn man gleichzeitig das Relationszeichen umdreht.

2.1.8 Betragsgleichungen

Betragsgleichungen löst man mithilfe der Fallunterscheidung. Dabei wird einmal davon ausgegangen das der Term inerhalb des Betrags einmal positiv und einmal negativen sein kann.

$$y = |x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$$

Kapitel 3

Vektorrechnung

3.1 Vektorrechnung

3.1.1 Grundlagen

Darstellung

$$\vec{a} = \vec{a}_x + \vec{a}_y + \vec{a}_z$$

$$= a_x \vec{e}_x + a_y \vec{e}_y + a_y \vec{e}_y$$

$$= \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$$

Betrag

$$\begin{aligned} |\vec{a}| &= a \\ &= \sqrt{a_x^2 + a_y^2 + a_z^2} \\ &= \sqrt{\vec{a} \circ \vec{a}} \end{aligned}$$

2 Punkt Vektor

$$\vec{P_1P_2} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix}$$

Richtungswinkel

$$\cos \alpha = \frac{a_x}{|\vec{a}|}$$

$$\cos \beta = \frac{a_y}{|\vec{a}|}$$

$$\cos \gamma = \frac{a_z}{|\vec{a}|}$$

$$1 = \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$$

3.1.2 Vektoroperationen

Addition und Subtraktion

$\vec{a} \pm \vec{b} = \begin{pmatrix} a_x \pm b_x \\ a_y \pm b_y \\ a_x + b_y \end{pmatrix}$

Skalarprodukt

$$\vec{a} \circ \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \circ \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$
$$= a_x b_x + a_y b_y + a_z b_z$$
$$= |\vec{a}| \cdot |\vec{b}| \cdot \cos \angle (\vec{a}, \vec{b})$$

Kreuzprodukt

 $|\vec{a} \times \vec{b}|$ Fläche des Parallelograms \vec{a}, \vec{b} $\vec{a} \times \vec{b} \perp \vec{a} \wedge \vec{a} \times \vec{b} \perp \vec{b}$

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

$$= \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix}$$

$$= \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Schnittwinkel

$$\cos \angle (\vec{a}, \vec{b}) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Multiplikation mit einem Skalar

$$a \cdot \vec{b} = \begin{pmatrix} ab_x \\ ab_y \\ ab_z \end{pmatrix}$$

Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|} = \begin{pmatrix} a_x/|\vec{a}| \\ a_y/|\vec{a}| \\ a_z/|\vec{a}| \end{pmatrix}$$

Spatprodukt

 $\vec{a}\circ(\vec{b}\times\vec{c})$ Volumen des Parallelpipe
d \vec{a},\vec{b},\vec{c}

$$\begin{aligned} [\vec{a}\vec{b}\vec{c}] &= \vec{a} \circ (\vec{b} \times \vec{c}) \\ &= a_x (b_y c_z - b_z c_y) \\ &+ a_y (b_z c_x - b_x c_z) \\ &+ a_z (b_x c_y - b_y c_x) \\ &= \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} \end{aligned}$$

Projektion

$$\vec{a}_b = \left(\frac{\vec{a} \circ \vec{b}}{|\vec{a}|^2}\right) \vec{a} = (\vec{b} \circ \vec{e}_a) \vec{e}_a$$

3.1.3 Geraden

Geradegleichung

Geraden

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}$$

= $\vec{r}_1 + t(\vec{r}_2 - \vec{r}_1)$

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}$$

$$d = \frac{|\vec{a} \times (\vec{OP} - \vec{r}_1)|}{\vec{a}}$$

Abstand zweier paralleler Geraden

Abstand zweier windschiefen Geraden

Abstand eines Punktes von einer

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_1$$

$$d = \frac{|\vec{a}_1 \times (\vec{r}_2 - \vec{r}_1)|}{\vec{a}_1}$$

$$\vec{r}(t) = \vec{r}_1 + t\vec{a}_1$$

$$\vec{g}(t) = \vec{r}_2 + t\vec{a}_2$$

$$d = \frac{|\vec{a}_1 \circ (\vec{a}_2 \times (\vec{r}_2 - \vec{r}_1))|}{\vec{a}_1 \times \vec{a}_2}$$

3.1.4 Ebenen

Ebenengleichung

Parameterfreie Darstellung

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t\vec{a}_1 + s\vec{a}_2 \\ &= \vec{r}_1 + t(\vec{r}_2 - \vec{r}_1) \\ &+ s(\vec{r}_3 - \vec{r}_1) \end{split}$$

$$\begin{split} \vec{r}(t,s) &= \vec{r}_1 + t \vec{a}_1 + s \vec{a}_2 \\ \vec{r} \circ (\vec{a}_1 \times \vec{a}_2) &= \vec{r}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ t \vec{a}_1 \circ (\vec{a}_1 \times \vec{a}_2) \\ &+ s \vec{a}_2 \circ (\vec{a}_1 \times \vec{a}_2) \\ \vec{r} \circ \vec{n} &= \vec{r}_1 \circ \vec{n} + 0 + 0 \\ \vec{n} \circ (\vec{r} - \vec{r}_1) &= 0 \end{split}$$

Normalenvektor

Normierter Normalenvektor

$$\vec{n} = \vec{a}_1 \times \vec{a}_2$$

$$\vec{e}_n = \frac{\vec{a}_1 \times \vec{a}_2}{|\vec{a}_1 \times \vec{a}_2|}$$

Hessesche Normalform

Abstand eines Punktes von einer Ebene

$$0 = \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}}$$

$$d = \frac{|\vec{n} \times \left(\vec{OP} - \vec{r_1} \right)|}{\vec{n}}$$

$$d = \frac{Ap_1 + Bp_2 + Cp_3 + D}{\sqrt{A^2 + B^2 + C^2}}$$

Abstand einer Geraden von einer Abstand zweier paralleler Ebenen Ebene

$$\vec{r}(t) = \vec{r}_G + t\vec{a}_1$$

$$d = \frac{|\vec{n} \times (\vec{r}_G - \vec{r}_1)|}{\vec{n}}$$

$$d = \frac{Ar_{G1} + Br_{G2} + Cr_{G3} + D}{\sqrt{A^2 + B^2 + C^2}}$$

$$\vec{r}(t,s) = \vec{r}_1 + t\vec{a}_1 + s\vec{a}_2$$

$$\vec{g}(t,s) = \vec{r}_2 + t\vec{a}_3 + s\vec{a}_4$$

$$d = \frac{|\vec{n} \times (\vec{r}_1 - \vec{r}_2)|}{\vec{n}}$$

Schnittwinkel zweier Ebenen

Durchstoßpunkt

$$\cos\angle(\vec{n}_1,\vec{n}_2) = \frac{\vec{n}_1 \circ \vec{n}_2}{|\vec{n}_1| \cdot |\vec{n}_2|}$$

$$\vec{r}(t) = \vec{r}_G + t\vec{a}$$

$$\vec{r}_s = \vec{r}_G + \frac{\vec{n} \circ (\vec{r}_1 - \vec{r}_G)}{\vec{n} \circ \vec{a}} \vec{a}$$

$$\varphi = \arcsin\left(\frac{|\vec{n} \circ \vec{a}|}{|\vec{n}| \cdot |\vec{a}|}\right)$$

Kapitel 4

Differentialrechnung

4.1 Differntial rechnung

4.1.1 Erste Ableitungen der elementaren Funktionen

Potenzfunktion

$x^n \iff n \cdot x^{n-1}$

${\bf Exponential funktionen}$

$$\begin{array}{ccc} e^x & \iff & e^x \\ a^x & \iff & \ln a \cdot a^x \end{array}$$

Logarithmusfunktionen

$$\ln x \qquad \iff \qquad \frac{1}{x} \\
\log_a x \qquad \iff \qquad \frac{1}{(\ln a) \cdot x}$$

Trigonometrische Funktionen

$$\begin{array}{ccc}
\sin x & \iff & \cos x \\
\cos x & \iff & -\sin x \\
\tan x & \iff & \frac{1}{\cos^2 x} \\
\tan x & \iff & 1 + \tan^2 x
\end{array}$$

Arcusfunktionen

Hyperbolische Funktionen

4.1.2 Rechenregeln

Faktorregel

Summenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(C \cdot f(x) \right) = C \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(g(x) + f(x) \right) = g'(x) + f'(x)$$

Produktregel

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(x) \cdot f(x)) = g'(x) \cdot f(x) + g(x) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} (h(x) \cdot g(x) \cdot f(x)) = h' \cdot g \cdot f + h \cdot g' \cdot f + h \cdot g \cdot f'$$

Quotientenregel

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{g(x)}{f(x)} \right) = \frac{g'(x) \cdot f(x) - g(x) \cdot f'(x)}{f(x)^2}$$

Kettenregel

Logarithmische Ableitungen

$$\frac{\mathrm{d}}{\mathrm{d}x} (g(f(x))) = g'(f) \cdot f'(x)$$

$$\frac{\mathrm{d}}{\mathrm{d}x} y = f(x)$$

$$\frac{1}{y} y' = \frac{\mathrm{d}}{\mathrm{d}x} \ln f(x)$$

4.1.3 Fehlerrechnung

Absoluter Fehler

 Δx Absoluter Fehler der Eingangsgröße Δy Absoluter Fehler der Ausgangsgröße

$$\Delta y = f(x + \Delta x) - f(x)$$

Relativer Fehler

 δx Relativer Fehler der Eingangsgröße in % δy Relativer Fehler der Ausgangsgröße in %

$$\delta x = \frac{\Delta x}{x}$$

$$\delta y = \frac{\Delta y}{y}$$

$$\Delta y = f'(x) \cdot \Delta x$$

$$\delta y = \frac{x \cdot f'(x)}{f(x)} \delta x$$

4.1.4 Linearisierung und Taylor-Polynom

Tangentengleichung

 x_0 Punkt an dem das Polynom entwickelt wird

$$y_T(x) = f(x_0) + f'(x_0)(x - x_0)$$

Taylor Polynom

 \boldsymbol{x}_0 Punkt an dem das Polynom entwickelt wird \boldsymbol{R}_n Restglied

$$y(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$
$$y(x) = \sum_{i=0}^n \frac{f^{(i)}}{i!}(x - x_0)^i + R_n(x)$$

Restglied

 x_0 Punkt an dem das Polynom entwickelt wird

$$x_0 < c < x$$
, wenn $x_0 < x$

$$x_0 > c > x$$
, wenn $x_0 > x$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

4.1.5 Grenzwertregel von Bernoulli und de l'Hospital de l'Hospital

Gilt nur wenn $\lim_{x \to x_0} f(x)$ gleich $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ ist

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

4.1.6 Differentielle Kurvenuntersuchung

Normale der Kurve

$$y_N(x) = f(x_0) - \frac{1}{f'(x)} (x - x_0)$$

Monotonie-Verhalten

$f'(x) = \begin{cases} > 0 \text{ Monoton wachsend} \\ < 0 \text{ Monoton fallend} \end{cases}$

Ableitung in Polarkordinaten

 \dot{r} Ableitung nach φ \ddot{r} Zweite Ableitung nach φ

$$y(\varphi) = r(\varphi)\sin\varphi$$

$$x(\varphi) = r(\varphi)\cos\varphi$$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}$$

$$y'' = \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{2(r')^2 - r\cdot r'' + r^2}{(r'\cos\varphi - r\sin\varphi)^3}$$

Krümmungs-Verhalten

$$f''(x) = \begin{cases} > 0 \text{ Linkskr.(konvex)} \\ < 0 \text{ Rechtskr.(konkav)} \end{cases}$$

Ableitung in Parameterform

 \dot{x} Ableitung nach t \dot{y} Ableitung nach t

$$y = y(t)$$

$$x = x(t)$$

$$y' = \frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$$

$$y'' = \frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$$

Bogendifferential

"Wegelement" einer Funktion

$$ds = \sqrt{1 + (f'(x))^2} \cdot dx$$
$$ds = \sqrt{(\dot{x})^2 + (\dot{y})^2} \cdot dt$$
$$ds = \sqrt{r^2 + (r')^2} \cdot d\varphi$$

Krümmungskreis

$$\rho = \frac{1}{|\kappa|}$$

$$x_K = x_P - y' \frac{1 + (y')^2}{|y''|}$$

$$y_K = y_P + \frac{1 + (y')^2}{|y''|}$$

$$\rho : \text{Radius}$$

 (x_K, y_K) : Kreismittelpunkt (x_P, y_P) : Kurvenpunkt

Winkeländerung

$$\tau = \arctan y'$$
$$d\tau = \frac{y''}{1 + (y')^2} \cdot dx$$

Kurvenkrümmung

$$\kappa = \frac{d\tau}{ds}$$

$$= \frac{y''}{\sqrt{(1 + (y')^2)^3}}$$

$$= \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\sqrt{(\dot{x}^2 + \dot{y}^2)^3}}$$

$$= \frac{2(r')^2 - r \cdot r'' + r^2}{\sqrt{(r^2 + (r')^2)^3}}$$

4.2 Differentialgleichungen

Anfangswertproblem: Werte nur an einer Stelle vorgegeben Randwertproblem: Werte an mehreren Stellen vorgegeben

Lineare DG

$$y_{all} = y_h + y_p$$

4.2.1 DG 1. Ordnung

Trennung der variablen

$y'(x) = f(x) \cdot g(y)$ $\int \frac{\mathrm{d}y}{g(y)} = \int f(x) \, \mathrm{d}x$

Lineare DG

$$y'+f(x)\cdot g(y) = g(x)g(x) = 0 \Rightarrow \text{homogen}$$

$$y_{all} = e^{-F(x)} \cdot \left(\int g(x) \cdot e^{F(x)} \, dx + C \right)$$

4.2.2 Lineare DG 2. Ordnung

Darstellung

$$a(x) \cdot y'' + b(x) \cdot y' + c(x) \cdot y = g(x)$$

 $g(x) = 0 \Rightarrow \text{homogen}$

Fundamental Lösungen

$$a\lambda^{2} + b\lambda + c = 0$$

$$\lambda_{1/2} = \alpha \pm \beta \cdot j$$

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}e^{\lambda_{2}x} \quad \lambda_{1} \neq \lambda_{2}$$

$$y_{h} = C_{1}e^{\lambda_{1}x} + C_{2}xe^{\lambda_{2}x} \quad \lambda_{1} = \lambda_{2}$$

$$y_{h} = C_{1}e^{\alpha x} \cdot \cos(\beta x)$$

$$+ C_{2}e^{\alpha x} \cdot \sin(\beta x)$$

In Folgenden Aufzählungen gillt:

- G(x) Ansatz
- g(x) Störglied
- r Anzahl der Resonanzfälle

Partikuläre Lösungen(Polynom)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}$$

$$G(x) = B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n} \qquad \lambda \neq 0$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) \cdot x^{r} \qquad \lambda = 0$$

Partikuläre Lösungen(Polynom und e-Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx}$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \qquad \lambda \neq m$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot x^{r} \qquad \lambda = m$$

Partikuläre Lösungen(sin- und cos Funktion)

$$a\lambda^{2} + b\lambda + c = 0$$

$$g(x) = a\cos(kx) + b\sin(kx)$$

$$G(x) = A\cos(kx) + B\sin(kx)$$

$$\lambda \neq \pm kj$$

$$G(x) = A\cos(kx) + B\sin(kx) \cdot x^{r}$$

$$\lambda = \pm kj$$

Partikuläre Lösungen(e-, sin- und cos Funktion)

$$0 = a\lambda^{2} + b\lambda + c$$

$$g(x) = (b_{0} + b_{1}x + b_{2}x^{2} + \dots + b_{n}x^{n}) e^{mx} \cdot (c\cos(kx) + d\sin(kx))$$

$$G(x) = (B_{0} + B_{1}x + B_{2}x^{2} + \dots + B_{n}x^{n}) e^{mx} \cdot (C\cos(kx) + D\sin(kx))$$

$$\lambda \neq m \pm kj$$

$$G(x) = (B_0 + B_1 x + B_2 x^2 + \dots + B_n x^n) e^{mx} \cdot (C\cos(kx) + D\sin(kx)) \cdot x^r$$

$$\lambda = m \pm kj$$

4.3 Differential- und Integralrechnung mit mehreren Variablen

4.3.1 Differential rechnung

Aleitung

$$y = f(x_1, x_2, \dots, x_3)$$

$$\frac{\partial y}{\partial x_1} = y_{x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$\frac{\partial y}{\partial x_n} = y_{x_n}$$
Alles bis auf x_n ist konstant beim ableiten
$$\frac{\partial^2 y}{\partial x_1^2} = y_{x_1 x_1}$$
Alles bis auf x_1 ist konstant beim ableiten
$$y_{x_1 x_2} = y_{x_2 x_1}$$

Tangentialebene

 (x_0, y_0) Entwicklungspunkte der Ebene

$$z - z_0 = f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

Totales Differential

$$dz = f_x \cdot dx + f_y \cdot dy$$

Extrema

$$\begin{split} f_x(x_0,y_0) &= 0 & f_y(x_0,y_0) = 0 \\ f_{xx}(x_0;y_0) &< 0 & \text{Maximum} \\ f_{xx}(x_0;y_0) &> 0 & \text{Minimum} \\ \left| f_{xx}(x_0;y_0) & f_{xy}(x_0;y_0) \right| &> 0 \end{split}$$

Sattelpunkt

$$\begin{aligned} f_x(x_0, y_0) &= 0 & f_y(x_0, y_0) &= 0 \\ \begin{vmatrix} f_{xx}(x_0; y_0) & f_{xy}(x_0; y_0) \\ f_{xy}(x_0; y_0) & f_{yy}(x_0; y_0) \end{vmatrix} &< 0 \end{aligned}$$

Richtungsableitung

$$\frac{\partial z}{\partial \vec{a}} = \frac{1}{\sqrt{a_x^2 + a_y^2}} \cdot (a_x z_x + a_y z_y)$$
$$\frac{\partial z}{\partial \alpha} = z_x \cos \alpha + z_y \sin \alpha$$
$$\frac{\partial z}{\partial \alpha} = \vec{e_a} \cdot \text{grad}(z)$$

4.3.2 Mehrfachintegral

Polarkordinaten

$$x = x_0 + r\cos\varphi \qquad \qquad y = y_0 + r\sin\varphi$$

Volumen

$$\begin{split} & \qquad \qquad \qquad \mathbf{Fl\"{a}che} \\ & \iiint_V \mathrm{d}V = \int_x \int_y \int_z \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x \\ & \iiint_V \mathrm{d}V = \int_r \int_\varphi \int_z r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\varphi \\ & \qquad \qquad A = \iint_{(A)} \mathrm{d}A \end{split}$$

Masse

$$\begin{split} m &= \iint_{(A)} \rho(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ &= \iint_{(A)} \rho(r,\varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi \\ &= \iiint_{(V)} \rho(x,y) \, \mathrm{d}z \, \mathrm{d}x \, \mathrm{d}y \\ &= \iiint_{(V)} \rho(r,\varphi) r \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\varphi \end{split}$$

Statisches Moment

 $y_s = \frac{M_x}{m}$

 $(M_x, M_y) \text{ Achsmomente}$ $M_x :$ $= \iint_{(A)} y \rho(x, y) \, dx \, dy$ $= \iint_{(A)} y_0 + r \sin \varphi \rho(r, \varphi) r \, dr \, d\varphi$ $M_y :$ $= \iint_{(A)} x \rho(x, y) \, dx \, dy$

 $= \iint_{(A)} x_0 + r \cos \varphi \rho(r, \varphi) r \, \mathrm{d}r \, \mathrm{d}\varphi$

Schwerpunkt

$$x_s = \frac{M_y}{m}$$

Trägheitsmoment

$$I_x = \iint_{(A)} y^2 \rho(x, y) \, dx \, dy$$

$$I_x = \iint_{(A)} (y_0 + r \sin \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

$$I_y = \iint_{(A)} x^2 \rho(x, y) \, dx \, dy$$

$$I_y = \iint_{(A)} (x_0 + r \cos \varphi)^2 \rho(r, \varphi) r \, dr \, d\varphi$$

Polares Trägheitsmoment

$$I_x = \iint_{(A)} (y^2 + x^2) \rho(x, y) dx dy$$
$$I_x = \iint_{(A)} ((y_0 + r \sin \varphi)^2 + (x_0 + r \cos \varphi)^2) \rho(r, \varphi) r dr d\varphi$$

${\bf Kugelkoordinaten}$

$$V = \int_r \int_{\vartheta} \int_{\varphi} r^2 \sin \vartheta \, \mathrm{d}\varphi \, \mathrm{d}\vartheta \, \mathrm{d}r$$

Kapitel 5

Folgen und Reihen

5.1 Reihen

5.1.1 Geometrische Folge

Darstellung

$$a_n = a \cdot q^n$$

$$\sum_{n=0}^{\infty} a \cdot q^n = \frac{a}{1-q}$$

Konvergent für |q| < 1

5.1.2 Harmonische Reihe

Darstellung

$$\sum_{n=1}^{\infty} \frac{1}{n^s}$$

Konvergent für $s>1\,$

5.1.3 Konvergenz

Majorantenkriterium

Minorantenkriterium

$$\sum_{n=0}^{\infty} a_n \leq \sum_{n=0}^{\infty} b_n$$

$$b_n \text{ bekannte konvergente Reihe}$$

$$\sum_{n=0}^{\infty} a_n \ge \sum_{n=0}^{\infty} b_n$$

$$b_n \text{ bekannte divergente Reihe}$$

Wurzelkriterium

$$\lim_{n\to\infty} \sqrt[n]{a_n} = q \begin{cases} q>1 \text{ ist die Reihe divergent} \\ q<1 \text{ ist die Reihe konvergent} \\ q=1 \text{ ist keine Aussage möglich} \end{cases}$$

Quotientenkriterium

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q\begin{cases}q>1\text{ ist die Reihe divergent}\\q<1\text{ ist die Reihe konvergent}\\q=1\text{ ist keine Aussage möglich}\end{cases}$$

Leibnizkriterium

Nur bei alternierenden Reihen

$$\lim_{n \to \infty} (-1)^n a_n$$

$$\lim_{n \to \infty} a_n = q$$

$$\lim_{n \to \infty} (-1)^n a_n = \lim_{n \to \infty} a_n$$

$$q = 0 \text{ ist die Reihe divergent}$$

$$\lim_{n \to \infty} (-1)^n a_n = \lim_{n \to \infty} a_n$$
Absolut Konvergent

5.1.4 Bekannte konvergente Reihen

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e} \qquad \sum_{n=0}^{\infty} \frac{1}{2^n} = 2$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = \frac{2}{3} \qquad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2 \qquad \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n-1} = \frac{\pi}{4}$$

5.2 Funktionenreihen

Darstellung

$$\sum_{n=0}^{\infty} f_n(x)$$

5.2.1 Potenzreihen

Darstellung

$\sum_{n=0}^{\infty} a_n x^n$ $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ $x_0: \text{Verschiebung des}$ Entwicklungspunktes.

Konvergenz

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$
Ränder müssen

untersucht werden.

5.2.2 Bekannte Potenzreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \qquad x \in \mathbb{R}$$

$$\ln x = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-1)^{n} \qquad x \in (0,2]$$

$$\ln (1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^{n} \qquad x \in (-1,1]$$

$$\ln (1-x) = -\sum_{n=1}^{\infty} \frac{x^{n}}{n} \qquad x \in [-1,1]$$

$$(1+x)^{\alpha} = \sum_{n=1}^{\infty} {\alpha \choose n} x^{n} \qquad x \in [-1,1]$$

5.2.3 spezielle Reihen

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$\sinh x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\cosh x = \sum_{n=0}^{\infty} \frac{1}{(2n)!} x^{2n} \qquad x \in \mathbb{R}$$

$$\arcsin x = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2 (2n+1)} x^{2n+1} \qquad x \in [-1,1]$$

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} \qquad x \in \mathbb{R}$$

$$\operatorname{arsinh} x = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{2^{2n} (n!)^2 (2n+1)} x^{2n+1} \qquad x \in [-1,1]$$

$$\operatorname{artanh} x = \sum_{n=0}^{\infty} \frac{1}{(2n+1)} x^{2n+1} \qquad x \in \mathbb{R}$$

5.2.4 Fourier Reihen

Allgemein

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega_0 t) + a_n \cdot \sin(n\omega_0 t))$$
$$a_0 = \frac{2}{T} \int_{(T)} y(t) dt$$
$$a_n = \frac{2}{T} \int_{(T)} y(t) \cdot \cos(n\omega_0 t) dt$$
$$b_n = \frac{2}{T} \int_{(T)} y(t) \cdot \sin(n\omega_0 t) dt$$

Symetrie

$$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n\omega_0 t))$$
$$y(t) = \sum_{n=1}^{\infty} (b_n \cdot \sin(n\omega_0 t))$$
gerade Funktion $b_n = 0$ ungerade Funktion $a_n = 0$

Komplex

$$y(x) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{jnx}$$
 $c_n = \frac{1}{T} \int_{(T)} y(x) \cdot e^{-jnx} dx$

Umrechnung

$$c_{0} = \frac{1}{2}a_{0}$$

$$c_{n} = \frac{1}{2}(a_{n} - jb_{n})$$

$$c_{-n} = \frac{1}{2}(a_{n} + jb_{n})$$

$$a_{0} = 2c_{0}$$

$$a_{n} = c_{n} + c_{-n}$$

$$b_{n} = j(c_{n} - c_{-n})$$

Interpolation

6.1 Interpolationspolynome

Entwicklung einer Polynomfunktion anhand von n+1 Kurvenpunkten.

- \bullet 1. Möglichkeit: Aufstellen von n+1 Gleichungen und ermitteln der Kurvenfunktion mithilfe des Gauß' Algorithmus.
- 2. Möglichkeit: Interpolationspolynome nach Newton.

Interpolationspolynome nach Newton

Gegeben sind die Punkte:

 $P_0 = (x_0; y_0), P_1 = (x_1; y_1), P_2 = (x_2; y_2), \dots, P_n = (x_n; y_n),$ damit lautet die Funktion wie folgt.

$$f(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1)$$

$$+ a_3 \cdot (x - x_0) \cdot (x - x_1) \cdot (x - x_2)$$

$$+ \dots$$

$$+ a_n \cdot (x - x_0) \cdot \dots \cdot (x - x_{n-1})$$

Die Koeffizienten $a_0, a_1, a_2, \ldots, a_n$ lassen sich mithilfe des Differentenschema berechnen. Dabei ist $y_0 = a_0, [x_0, x_1] = a_1, [x_0, x_1, x_2] = a_2$ usw.

Differentenschema

k	x_k	y_k	1	2	3	
0	x_0	y_0				
			$[x_0, x_1]$			
1	x_1	y_1		$[x_0, x_1, x_2]$		
			$[x_1, x_2]$		$[x_0, x_1, x_2, x_3]$	
2	x_2	y_2		$[x_1, x_2, x_3]$		
			$[x_2, x_3]$		$[x_0, x_1, x_2, x_3]$	
3	x_3	y_3		$[x_2, x_3, x_4]$		
:	:	:				
•	•	•				
n	x_n	y_n				

Rechenregeln für dividierte Differenzen

$$[x_0, x_1] = \frac{y_0 - y_1}{x_0 - x_1} \qquad [x_1, x_2] = \frac{y_1 - y_2}{x_1 - x_2}$$

$$[x_0, \dots, x_2] = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2} \qquad [x_1, \dots, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3}$$

$$[x_0, \dots, x_3] = \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_2} [x_1, \dots, x_4] = \frac{[x_1, x_2, x_3] - [x_2, x_3, x_4]}{x_1 - x_3}$$

Teil II Physik

Kinematik

Perfection is achieved only on the point of collapse.

- C. N. Parkinson

7.1 Analogietabelle

Translation		Rotation
\vec{s}		$ec{arphi}$
$\downarrow \frac{ds}{dt}$		$ \downarrow \frac{d\varphi}{dt} $
$ec{v}$	$\vec{v} = \vec{\omega} \times \vec{r}$	(i)
$ \downarrow \frac{ds}{dt} \vec{v} \downarrow \frac{dv}{dt} \vec{a} $		$ \downarrow \frac{d\omega}{dt} \\ \vec{\alpha} $
\vec{a}	$a = \alpha \times r - \omega^2 r$	\vec{lpha}
	a_{Tan} a_{R}	
m		J
$ec{ec{F}}_{dt}$		$\downarrow \frac{dJ}{dt}$
$ec{F}$		$ec{M}$
$ \downarrow \frac{dF}{dt} \\ \vec{p} \\ \frac{m}{2}v^2 $		$\downarrow \frac{dM}{dt}$
$ec{p}$		\dot{L}
$\frac{m}{2}v^2$	E_{kin}	$ec{L} rac{\omega_M}{dt} \ rac{J}{2} \omega^2$

7.1.1 Translation

$$a(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$
$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Bahngroessen

$$a_t(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s}$$
$$v(t) = a_0 \cdot t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
$$s(t) = \frac{1}{2}a_0 \cdot t^2 + v_0 \cdot t + s_0$$

Kreisfrequenz

$$\omega = \frac{2 \cdot \pi}{T}$$

$$= 2 \cdot \pi \cdot n$$

$$= 2 \cdot \pi \cdot f$$

Umdrehungen

$$N = \frac{\omega_0 \cdot t}{2 \cdot \pi} + \frac{1}{2} \cdot \frac{\alpha}{2 \cdot \pi} \cdot t^2$$
$$= n_0 \cdot t + \frac{\alpha}{4 \cdot \pi} \cdot t^2$$

7.1.2 Rotation

$$\alpha(t) = \alpha_0 = \frac{d\omega}{dt} = \dot{\omega} = \ddot{\varphi}$$

$$\omega(t) = \alpha_0 \cdot t + \omega_0 = \frac{d\varphi}{dt} = \dot{\varphi}$$

$$\varphi(t) = \frac{1}{2}\alpha_0 \cdot t^2 + \omega_0 \cdot t + \varphi_0$$

Winkelgroessen

$$\vec{a_t} = \vec{\alpha} \times \vec{r} = \alpha \cdot r \qquad \alpha \perp r$$

$$\vec{\alpha} = \vec{r} \times \vec{a_t}$$

$$\vec{v} = \vec{\omega} \times \vec{r} = \omega \cdot r \qquad \omega \perp r$$

$$\vec{\omega} = \vec{r} \times \vec{v}$$

$$s = \varphi \cdot r$$

Radialbeschleunigung

$$a_r = \frac{v^2}{r}$$
$$= v \cdot \omega$$
$$= \omega^2 \cdot r$$

7.2 Dynamik

7.2.1 Geradlinig (Translation)

$$\vec{F} = m \cdot \vec{a}$$

$$\vec{F}_{Tr} = -m \cdot \vec{a}$$

Impuls

Kraftstoss

$$\vec{p} = m \cdot \vec{v}$$

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m \cdot \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \vec{v} \cdot \frac{\mathrm{d}m}{\mathrm{d}t}$$
$$\Delta \vec{p} = \vec{p}_2 - \vec{p}_1 = \int_{\vec{p}_2}^{\vec{p}_1} \mathrm{d}p = \int_0^t \vec{F} \, \mathrm{d}t$$

Arbeit

Hubarbeit

$$W = -\int_{\vec{s}_1}^{\vec{s}_2} \vec{F}_{\text{Tr}} \circ d\vec{s}$$
$$= \int_{\vec{v}_0}^{\vec{v}_1} m\vec{v} \circ d\vec{v} = \frac{1}{2} m \left(v_1^2 - v_0^2 \right)$$

 $W_{\rm hub} = mgh$

Kinetische Energie

Leistung

$$E_{\rm kin} = \frac{1}{2}mv^2$$

$$P = \vec{F} \circ \vec{v} = \frac{\mathrm{d}W}{\mathrm{d}t} = \dot{W}$$

7.2.2 Drehbewegung(Rotation)

Massentraegheitsmoment

Drehmoment

$$J = \int r^2 \, \mathrm{d}m$$

$$\vec{M} = \vec{r} \times \vec{F} = J\vec{\alpha} = \dot{\vec{L}}$$

Drehimpuls

$\vec{L} = \vec{r} \times \vec{p}$ = $J \cdot \vec{\omega}$

Arbeit

$$W = \int_{\varphi_0}^{\varphi_1} \vec{M} \circ \vec{e_\omega} \, d\varphi$$
$$= \int_{\vec{\omega}_0}^{\vec{\omega}_1} J \vec{\omega} \, d\vec{\omega}$$
$$= \frac{1}{2} J \left(\omega_1^2 - \omega_0^2 \right)$$

7.2.3 Geneigte Ebene

Kräfte

$$\vec{F}_N = \vec{F}_G \cos \alpha$$
$$\vec{F}_H = \vec{F}_G \sin \alpha$$

7.2.4 Reibung

 ${\bf Reibungskraft}$

$$F_R = \mu \cdot F_N$$

Kinetische Energie

$$E_{kin} = \frac{1}{2}J\omega^2$$

Leistung

$$P = \vec{M} \circ \vec{\omega}$$

Zentripedalkraft

$$F_{zp} = -m \cdot \omega^2 \cdot r$$
$$= -m \cdot v^2 \cdot \frac{\vec{e_r}}{r}$$

Rollreibung

$$M = f \cdot F_N$$
$$F_R = \frac{f}{r} \cdot F_N$$

7.2.5 Feder

HOOKsches Gesetz

Federspannarbeit

$$F = -kx$$
$$M = D\varphi$$

$$W = \int_{x_{\min}}^{x_{\max}} F \, \mathrm{d}x = \int_{x_{\min}}^{x_{\max}} kx \, \mathrm{d}x$$
$$= \frac{1}{2} \cdot k \cdot \left(x_{\max}^2 - x_{\min}^2\right)$$

7.2.6 Elastischer Stoß

Energie vor den Stoß = Energie nach den Stoß

$$\sum E_{\rm kin} = \sum E'_{
m kin}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Zentraler, Gerader, Elastischer Stoß

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$
$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2$$
$$v_1' = \frac{2m_2}{m_1 + m_2} v_2 + \frac{m_1 - m_2}{m_1 + m_2} v_1$$

7.2.7 Unelastischer Stoß

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß + Arbeit

$$\sum E_{\rm kin} = \sum E'_{\rm kin} + \Delta W$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}'$$

Total unelastischer Stoss

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$$
$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$

${\bf Drehimpulser haltungs satz}$

Drehinpuls zur Zeit 1 = Drehinpuls zur Zeit 2

$$\sum \vec{L} = \sum \vec{L}'$$

Kopplung zweier Rotationskörper

$$\vec{\omega}' = \frac{J_0 \vec{\omega_0} + J_1 \vec{\omega_1}}{J_1 + J_2}$$

$$W = \frac{J_0 \cdot J_1}{2(J_0 + J_1)} (\omega_0 - \omega_1)^2$$

7.2.8 Rotierendes Bezugssystem

Zentrifugalkraft

$$\vec{F}_Z = F_r \cdot \vec{e}_r = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$
$$= -m\vec{\omega} \times \vec{v}$$
$$F_Z = -m\frac{v^2}{r} = -m\omega^2 r$$

Corioliskraft

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v}$$

7.3 Schwerpunkt

mehrere Punktmassen

$$\vec{r}_{\mathrm{Sp}} = \frac{\sum \vec{r}_i m_i}{\sum m_i}$$

Schwerpunkt in Zylinderkoordinaten

$$\begin{split} r_{\mathrm{Sp}} &= \frac{\int_{z} \int_{\varphi} \int_{r} r^{2} \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z}{\int_{z} \int_{\varphi} \int_{r} r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z} \\ \varphi_{\mathrm{Sp}} &= \frac{\int_{z} \int_{\varphi} \int_{r} \varphi r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z}{\int_{z} \int_{\varphi} \int_{r} r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z} \\ z_{\mathrm{Sp}} &= \frac{\int_{z} \int_{\varphi} \int_{r} z r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z}{\int_{z} \int_{\varphi} \int_{r} r \rho \, \mathrm{d}r \, \mathrm{d}\varphi \, \mathrm{d}z} \\ x &= r \cos \varphi \quad y = r \sin \varphi \quad z = z \end{split}$$

Allgemein

$$\vec{r}_{\mathrm{Sp}} = \frac{\int \vec{r} \, \mathrm{d}m}{\int \mathrm{d}m}$$

Schwerpunkt in karthesischen Koordinaten

$$x_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} x \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$y_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} y \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$
$$z_{\mathrm{Sp}} = \frac{\int_{z} \int_{y} \int_{x} z \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\int_{z} \int_{y} \int_{x} \rho \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$

7.4 Trägheitsmoment

$$J = \sum_{i} m_{i} r_{i}^{2}$$

$$J = \int_{m} r^{2} dm$$

$$J = \int_{z} \int_{\varphi} \int_{r} r^{3} \rho dr d\varphi dz$$

STEINER'scher Satz

$$J_x = mr^2 + J_s$$

Trägheitsmoment Kugel

$$J_{\rm Sp} = \frac{2}{5}mr^2$$

Trägheitsmoment Zylinder

$$J_{\rm Sp} = \frac{1}{2}mr^2$$

Trägheitmoment Kreisring (Torus)

$$J_{\rm Sp} = mr^2$$

Trägheitsmoment Stab

$$J_{\rm Sp} = \frac{1}{12} m l^2$$

7.5 Elastizitätslehre

Spannung

$$\vec{\sigma} = \frac{\mathrm{d}\vec{F}_n}{\mathrm{d}A}$$

$$\sigma = E\varepsilon = E\frac{\Delta l}{l}$$

$$\vec{\tau} = \frac{\mathrm{d}\vec{F}_t}{\mathrm{d}A}$$

Schubmodul

$$G = \frac{\tau}{\varphi}$$

$\mathbf{Drillung}$

$$\psi = \frac{\mathrm{d}\varphi}{\mathrm{d}l} = \frac{W_t}{G \cdot J_p} \tau = \frac{M_t}{G \cdot J_p}$$

48

Flächenmoment

Verformungsarbeit

$$J_p = \int r^2 dA = \int_{\varphi} \int_r r^3 dr d\varphi \qquad W = V \int \sigma(\varepsilon) d\varepsilon$$

7.6 Schwingungen

Harmonische Schwingungen

$$u(t) = A\cos(\omega t + \varphi_0)$$

7.6.1 Ungedämpfte Schwingungen

$$\ddot{x} = -\frac{k}{m}x$$

$$x(t) = \hat{x}\cos(\omega_0 t + \varphi_0)$$

$$\dot{x}(t) = -\hat{x}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{x}(t) = -\hat{x}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

$$T = 2\pi\sqrt{\frac{m}{k}}$$

Mathemetisches Pendel

$$\ddot{\varphi} = -\frac{g}{l}\varphi$$

$$\varphi(t) = \hat{\varphi}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{q}}$$

Torsionsschwingung

$$\ddot{\varphi} = -\frac{D}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{D}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{D}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{D}}$$

Elektrischer Schwingkreis

$$0 = L\ddot{Q} + \frac{Q}{C}$$

$$q(t) = \hat{Q}\cos(\omega_0 t + \varphi_0)$$

$$\dot{q}(t) = -\hat{Q}\omega\sin(\omega_0 t + \varphi_0)$$

Physikalisches Pendel

$$\ddot{\varphi} = -\frac{lmg}{J_A} \varphi$$

$$\varphi(t) = \hat{\varphi} \cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{\varphi} \omega \sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{\varphi} \omega^2 \cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{mgl}{J_A}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{mgl}{J_A}}$$

$$T = 2\pi \sqrt{\frac{J_A}{mgl}}$$

Flüssigkeitspendel

$$\ddot{y} = -\frac{2A\rho g}{m}y$$

$$\varphi(t) = \hat{y}\cos(\omega_0 t + \varphi_0)$$

$$\dot{\varphi}(t) = -\hat{y}\omega\sin(\omega_0 t + \varphi_0)$$

$$\ddot{\varphi}(t) = -\hat{y}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{2A\rho g}{m}} = \sqrt{\frac{2g}{l}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{2g}{l}}$$

$$T = 2\pi\sqrt{\frac{l}{2g}}$$

$$\ddot{q}(t) = -\hat{Q}\omega^2\cos(\omega_0 t + \varphi_0)$$

$$\omega = \sqrt{\frac{1}{LC}}$$

$$f = \frac{1}{2\pi}\sqrt{\frac{1}{LC}}$$

$$T = 2\pi\sqrt{\frac{1}{LC}}$$

7.6.2 Gedämpfte Schwingungen

Schwingungsgleichung

COULOMB Reibung

$$m\ddot{x} = -kx + F_R$$

$$F_R = -\operatorname{sgn}(\dot{x})\mu F_N$$
$$0 = m\ddot{x} + kx + \operatorname{sgn}(\dot{x})\mu F_N$$

Gleitreibung

$$x(t) = -(\hat{x}_0 - \hat{x}_1)\cos(\omega t) - \hat{x}_1 \qquad 0 \le t \le \frac{T}{2}$$

$$x(t) = -(\hat{x}_0 - 3\hat{x}_1)\cos(\omega t) + \hat{x}_1 \qquad \frac{T}{2} \le t \le T$$

$$\hat{x}_1 = \frac{\mu F_N}{k}$$

Viskosereibung

$$d = 2D$$

$$Q = \frac{1}{d}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\sqrt{\omega_0^2 - \delta^2}t}$$

$$x(t) = \hat{x}e^{-\delta t}e^{\pm j\omega_0\sqrt{1 - D^2}t}$$

$$\delta = \frac{b}{2m}$$

$$D = \frac{\delta}{\omega_0}$$

$$D = \frac{b}{2\sqrt{mk}}$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

$$\Lambda = \ln\left(\frac{x(t)}{x(t+T)}\right)$$

$$\Lambda = \delta T$$

$$\omega_D = \sqrt{\frac{k}{m}} - \left(\frac{b}{2m}\right)^2$$

$$Aperiodischer Grenzfall \delta = \omega_0$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

$$x(t) = \hat{x}e^{-\delta t}(1 - \delta t)$$

Fluiddynamik

Premature optimization is the root of all evil.
- D. Knuth

On the other hand, we cannot ignore efficiency. - Jon Bentley

8.1 Ohne Reibung

Statischer Druck

Dynamischer Druck

 ${\bf Schweredruck}$

$$p = \frac{\mathrm{d}F_N}{\mathrm{d}A}$$

$$p = \frac{1}{2}\rho v^2$$

$$p = \frac{\rho V g}{A}$$
$$= h \rho g$$

Volumenstrom

Massenstrom

$$\begin{split} \dot{V} &= vA \\ &= \iint_A \vec{v} \, \mathrm{d}\vec{A} \\ &= \frac{\mathrm{d}V}{\mathrm{d}t} \\ &= Q \end{split}$$

$$\dot{m} = jA$$

$$= \iint_{A} \vec{j} \, d\vec{A}$$

$$= \frac{dm}{dt}$$

Auftrieb

$$\vec{F_A} = -\rho_V \vec{g}V$$
$$= -\frac{\rho_V}{\rho_M} \vec{F_G}$$

Kompressibilität

$$\kappa = \frac{\Delta V}{\Delta p V}$$

Volumenausdehnungskoeffezient

$$\frac{\Delta V}{V} = \gamma \Delta T$$

8.2 Laminare Reibung

Newtonsches Reibungsgesetz

$$F_R = \eta A \frac{\mathrm{d}v}{\mathrm{d}x}$$

Laminare Strömung (Rohr)

$$v(r) = \frac{p}{4\eta l} \left(R^2 - r^2 \right)$$
$$p = \frac{4\eta l}{R^2} v(0)$$
$$\dot{V} = \frac{\pi R^4}{8\eta l} p$$

Umströmung (Kugel)

$$F_R = 6\pi \eta r v$$

Kontinuitätsgleichung

$$\begin{split} \dot{m}|_1 &= \dot{m}|_2 \quad \dot{V}\Big|_1 = \dot{V}\Big|_2 \\ v_1 A_1 &= v_2 A_2 \quad \rho_1 = \rho_2 \end{split}$$

Barometrische Höhenformel

$$p = p_0 e^{-Ch}$$
$$C = \frac{\rho_0 g}{p_0}$$

Bernoulli Gleichung

$$p + \frac{1}{2}\rho v^2 + \rho gh = \text{const}$$

Bernoulligleichung mit Reibung

$$p_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1$$

= $p_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2 + \Delta p$

Reynoldszahl

$$Re = \frac{L\rho v}{\eta}$$

$$Re > Re_{krit}$$
 Strömung wird Turbulent

Gravitation

The year is 787!

A.D.?

- Monty Python

Gravitationskraft

$$\begin{split} \vec{F}_{g,2} &= -G\frac{m_1m_2}{r_{12}^2}\vec{e}_r \\ \vec{F}_g &= \vec{E}_g \cdot m = \vec{g}m \end{split}$$

Arbeit

$$W_{12} = -\int_{\vec{r}_1}^{\vec{r}_2} \vec{F}_g \circ d\vec{r}$$
$$= GmM\left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Gravitationspotential

$$\phi = -G\frac{M}{r}$$

$$\vec{E}_g = \operatorname{grad}\phi$$

Planetenbahnen

$$\left(\frac{a}{a_E}\right)^3 = \left(\frac{T}{T_E}\right)^2$$

Elektrostatik

Don't interrupt me while I'm interrupting.

- Winston S. Churchill

Ladung

$$Q = n \cdot e_0$$
$$= CU$$
$$= \int i \, dt$$

COULOMB Gesetz

$$\begin{split} \vec{F}_{12} &= \frac{1}{4\pi\epsilon} \frac{Q_1 Q_2}{r^2} \vec{r_1} 2 \\ &= \vec{E} Q \\ \vec{E} &= \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \vec{r} \\ &= -\operatorname{grad} \varphi \\ &= -\left(\frac{\partial \varphi}{\partial x} \vec{e}_x + \frac{\partial \varphi}{\partial y} \vec{e}_y + \frac{\partial \varphi}{\partial z} \vec{e}_z\right) \end{split}$$

Punktladungen

$$\vec{E}(\vec{r}) = \sum_{i=1}^{N} \vec{E}_i \vec{r}_i$$

Spannung

$$U_{AB} = \frac{W_{AB}}{Q}$$

$$= \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \oint_{s} \vec{E} \circ d\vec{s} = 0$$

$$= \varphi_{A} - \varphi_{B}$$

$$= -\int_{\infty}^{A} \vec{E} \circ d\vec{s}$$

$$-\left(-\int_{\infty}^{B} \vec{E} \circ d\vec{s}\right)$$

El- / Verschiebungsfluß

$$\psi = \int_A \vec{E} \circ d\vec{A}$$
$$\psi = \oint_A \vec{E} \circ d\vec{A} = \frac{Q}{\epsilon}$$

Kapazität

$$Q = CU$$

OHMsches Gesetz

$$\begin{split} I &= \oint_{A} \vec{j} \circ \mathrm{d}\vec{A} \\ &= \oint_{A} \kappa \vec{E} \circ \mathrm{d}\vec{A} \\ &= \underbrace{\kappa E \cdot 4\pi r^{2}}_{\mathrm{Kugel}} \end{split}$$

Flußdichte

$$\vec{D} = \frac{\mathrm{d}Q}{\mathrm{d}A}\vec{e}_A$$

$$\vec{D} = \epsilon \vec{E}$$

$$Q = \oint_A D \,\mathrm{d}A$$

Arbeit im elektrischen Feld

$$w = \frac{1}{2}\vec{E} \circ \vec{D}$$

$$W = \int_{V} w \, dV$$

$$= -Q \int_{A}^{B} \vec{E} \circ d\vec{s}$$

$$= \int_{U} Q \, dU$$

$$= \int_{U} CU \, dU$$

$$= \frac{1}{2}CU^{2}$$

Thermodynamik

11.1 Wärmedehnung

$$\rho(T) = \rho_0 (1 - \beta (T - T_0))$$

$$V(T) = V_0 (1 + \gamma (T - T_0))$$

$$l(T) = l_0 (1 + \alpha (T - T_0))$$

$$\gamma \approx 3 \cdot \alpha$$

$$\gamma \approx \beta$$

11.2 Wärme

$$\Delta Q = c \cdot m(T - T_0)$$

$$\Delta Q = C(T - T_0)$$

$$\Delta Q = \int_{T_0}^T c \cdot m \, dT$$

$$\Delta Q = c_{mol} \cdot n(T - T_0)$$

11.3 Mischtemperatur

$$T_{m} = \frac{\sum_{i=1}^{n} T_{i} m_{i} c_{i}}{\sum_{i=1}^{n} m_{i} c_{i}}$$

 \dot{Q} Ist durch einen mehrschichtiges stationäres System Konstant

11.4 Wärmeleitung

$$\begin{split} \dot{Q} &= \frac{\mathrm{d}Q}{\mathrm{d}t} = \Phi = P \\ \vec{q} &= \frac{\dot{Q}}{A} \cdot \vec{e_A} \\ \vec{q} &= -\lambda \, \mathrm{grad}T \\ \vec{q} &= \frac{\lambda}{s} \left(T_A - T_B \right) \cdot \vec{e_s} \\ \dot{q} &= \frac{1}{\sum_{i=1}^n \frac{s_i}{\lambda_i}} \cdot \left(T_A - T_B \right) \end{split}$$

11.5 Wärmekonvektion

$$\dot{q} = \alpha \left(T_A - T_B \right)$$

$$\dot{q} = \frac{1}{\sum_{i=1}^n \frac{1}{\alpha_i}} \cdot \left(T_A - T_B \right)$$

11.6 Wärmewiderstand

$$R_{th} = \frac{T_A - T_B}{\dot{q} \cdot A} = \frac{s}{\lambda A} = \frac{1}{k} = \frac{1}{\alpha A} = \sum_{i=1}^{n} R_i$$

11.6.1 Wärmeübertragung

$$k = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i} + \sum_{i=1}^{n} \frac{1}{\alpha_i} + \sum_{i=1}^{n} R_i}$$

$$\dot{q} = \frac{1}{\sum_{i=1}^{n} \frac{s_i}{\lambda_i} + \sum_{i=1}^{n} \frac{1}{\alpha_i} + \sum_{i=1}^{n} R_i} \cdot (T_A - T_B)$$

$$\dot{q} = k \cdot (T_A - T_B)$$

11.6.2 Wärmestrahlung

$$\sigma = 5,6704 \cdot 10^{-8} \frac{W}{m^2 K^4} \quad BoltzmannKonstante$$

$$\sigma_A = c_A$$

$$\alpha = \varepsilon$$

$$1 = \alpha + \tau + \vartheta$$

$$\dot{Q} = \varepsilon A \sigma T^4$$

$$\dot{Q}_{AB} = C_{AB} A_A \left(T_A^4 - T_B^4 \right)$$

$$C_{AB} = \varepsilon_{AB} \sigma = \frac{\sigma}{\frac{1}{\varepsilon_A} + \frac{1}{\varepsilon_B} - 1} = \frac{1}{\frac{1}{\sigma_A} + \frac{1}{\sigma_B} - \frac{1}{\sigma}}$$

$$Parallel$$

$$C_{AB} = \frac{\sigma}{\frac{1}{\varepsilon_A} + \frac{A_A}{A_B} \left(\frac{1}{\varepsilon_B} - 1 \right)}$$

$$C_{AB} \approx \varepsilon_A \sigma$$

$$Parallel (A_A \ll A_B)$$

11.6.3 Zustandsänderung des idealen Gases

Teilchen stehen nicht in Wechselwirkung, besitzen kein Volumen und es kommt zu keinem Phasenübergang

Energie

$$U_{12} = Q_{12} + W_{12}$$
Nur Isobar:
$$dH = c_p m dT = U + p dV$$

$$dS = \frac{dQ}{T}$$

Isotherm

$$\begin{split} pV &= \text{const} \\ T &= \text{const} \\ U_{12} &= 0 \\ U_{12} &= Q_{12} + W_{12} \\ Q_{12} &= -W_{12} \\ W_{12} &= p_1 V_1 \ln \frac{V_2}{V_1} \\ W_{12} &= p_1 V_1 \ln \frac{p_1}{p_2} \\ S_{12} &= m c_p \ln \frac{V_2}{V_1} + m c_V \ln \frac{p_2}{n_1} \end{split}$$

Isobar

$$\begin{split} \frac{V}{T} &= \text{const} \\ p &= \text{const} \\ Q_{12} &= mc_p \left(T_2 - T_1 \right) \\ W_{12} &= -p \left(V_2 - V_1 \right) \\ U_{12} &= Q_{12} + W_{12} \\ S_{12} &= mc_p \ln \frac{V_2}{V_1} \end{split}$$

Zustandsgleichung

$$\begin{aligned} \frac{pV}{T} &= \text{const} \\ pV &= NkT = mR_sT = nRT \\ R_s &= \frac{nR}{m} \\ R_s &= c_p - c_v \end{aligned}$$

Isochor

$$\frac{p}{T} = \text{const}$$

$$V = \text{const}$$

$$Q_{12} = mc_v (T_2 - T_1)$$

$$W_{12} = 0$$

$$U_{12} = Q_{12}$$

$$S_{12} = mc_v \ln \frac{p_2}{p_1}$$

Adiabat

$$pV^{\kappa} = \text{const}$$

$$Q = \text{const}$$

$$\kappa = \frac{c_p}{c_V}$$

$$\frac{T_2}{T_1} = \left(\frac{V_2}{V_1}\right)^{1-\kappa} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}}$$

$$Q_{12} = 0$$

$$W_{12} = mc_v \left(T_2 - T_1\right)$$

$$W_{12} = \frac{RT_1}{\kappa - 1} \left(\left(\frac{V_2}{V_1}\right)^{1-\kappa} - 1\right)$$

$$U_{12} = W_{12}$$

$$S_{12} = 0;$$

Kreisprozeß

$$\oint dU = 0$$

$$\oint dU = \oint dQ + \oint dW \qquad \qquad \eta_C = \frac{W_{ab}}{Q_{zu}}$$

$$\text{Revesiebel: } \oint dS \qquad = 0 \qquad \qquad \eta_C = \frac{Q_{zu} - Q_{AB}}{Q_{zu}}$$

$$\text{Irrevesiebel } \oint dS \qquad > 0 \qquad \qquad \eta_C = \frac{T_h - T_n}{T_n}$$

Optik

The path taken between two points by a ray of light is the path that can be traversed in the least time.

- Pierre de Fermat

12.1 Brechung

$$\begin{split} \frac{\sin \varepsilon_1}{\sin \varepsilon_2} &= \frac{n_2}{n_1} = \frac{c_1}{c_2} \\ \varepsilon_2 &= \arcsin \frac{\sin \varepsilon_1 \cdot n_1}{n_2} \end{split}$$

12.2 Total reflexion

$$\sin \varepsilon_g = \frac{n_2}{n_1}$$

Totalreflexion tritt nur auf, wenn der Lichtstrahl von einem dichteren in einen optisch dünneren Stoff übergeht.

12.3 Hohlspiegel

$$\frac{1}{f'} = \frac{1}{a} + \frac{1}{a'}$$
$$f' = \frac{r}{2}$$

$$\beta' = \frac{y'}{y}$$
$$\beta' = -\frac{a'}{a}$$

12.4 Linse

$$\frac{1}{f'} = \frac{1}{a'} - \frac{1}{a}$$
$$\frac{1}{f} = \frac{1}{a'} + \frac{1}{a}$$

$$f = \frac{a \cdot a'}{a + a'} = -f'$$

$$a' = \frac{af'}{a + f'}$$

$$\beta' = \frac{f'}{a + f'}$$

$$\beta' = \frac{y'}{y}$$

$$D' = \frac{1}{f'} = (n_L - 1) \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$

Linsenform	\bigcirc					
Bezeichnung	bi- konvex	plan- konvex	konkav- konvex	bi- konkav	plan- konkav	konvex- konkav
Radien	$r_1 > 0$ $r_2 < 0$	$\begin{array}{c} r_1 = \infty \\ r_2 < 0 \end{array}$	$r_1 < r_2 < 0$	$r_1 < 0 \\ r_2 > 0$	$r_1 = \infty \\ r_2 > 0$	$r_2 < r_1 < 0$
Brennweite im optisch dünneren Medium	f'>0	f'>0	f'>0	f' < 0	f' < 0	f' < 0

12.5 Lichtwellenleiter

Totalreflexion (Grenzwinkel)

$$n_1 \sin (90^\circ - \vartheta_1) = n_2 \Longrightarrow \cos \vartheta_1 = \frac{n_2}{n_1}$$

numerische Apertur

$$\begin{aligned} A_{WL} &= n_0 \sin \vartheta_0 = n_1 \sqrt{1 - \cos^2 \vartheta_1} \\ &= n_1 \sqrt{1 - \left(\frac{n_2}{n_1}\right)^2} \\ &= \sqrt{n_1^2 - n_2^2} \\ &= \sqrt{n_{Kern}^2 - n_{Mantel}^2} \end{aligned}$$

Teil III Elektrotechnik

Gleichstromtechnik

13.1 Grundgrößen

Elementarladung

$$e \approx 1, 6 \cdot 10^{-19} C$$

Strom

$$[I] = 1A$$
$$i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Potential

$$[\varphi] = 1V = 1\frac{Nm}{As} = 1\frac{kgm^2}{As^3}$$
$$\varphi = \frac{W}{Q}$$

$$[Q] = 1C = 1As$$
$$Q = n \cdot e$$

Stromdichte

$$[J] = 1 \frac{A}{mm^2}$$

$$\vec{J} = \frac{I}{\vec{A}}$$

Spannung

$$[U] = 1V$$

$$U_{AB} = \varphi_a - \varphi_b$$

Widerstand und Leitwert

$$[R] = 1\Omega = 1\frac{V}{A}$$

$$R = \frac{U}{I}$$

$$= \rho \frac{l}{A} = \frac{1}{\kappa} \frac{l}{A}$$

$$[G] = 1S = 1\frac{A}{V}$$

$$G = \frac{I}{U}$$

$$= \frac{1}{R}$$

$$= \kappa \frac{A}{l} = \frac{1}{\rho} \frac{A}{l}$$

Temperaturabhängigkeit

$$R_{2} = R_{1} \cdot \left(1 + \alpha \left(\vartheta_{2} - \vartheta_{1}\right) + \beta \left(\vartheta_{2} - \vartheta_{1}\right)^{2}\right)$$

Leistung

Leistung im Mittel

$$[P] = 1W = 1VA$$
$$P = u(t) \cdot i(t)$$

$$P = \frac{1}{T} \int_0^T u(t) \cdot i(t) \, \mathrm{d}t$$

13.2 Lineare Quellen

Spannungsquelle

$$U = U_q - R_i \cdot I$$
$$I_K = \frac{U_q}{R_i}$$

Stromquelle

$$I = I_q - \frac{U}{R_i}$$
$$U_l = I_q \cdot R_i$$

13.3 Kirchhoffsche Gesetze

Knotenpunktsatz

$$\sum_{i=1}^{n} I_i = 0$$

Maschensatz

$$\sum_{i=1}^{n} U_i = 0$$

Wechselstromtechnik

No rule is so general, which admits not some exception.

- Robert Burton

14.1 Definitionen

14.1.1 Periodische zeitabhängige Größen

Allgemein
$$x(t) \to \text{speziell } u(t); i(t); q(t); \dots$$

es gillt $x(t) = x(t + n \cdot T); (n \in \mathbb{N}^*)$

14.1.2 Wechselgrößen

Allgemein $x_{\sim}(t)$; periodisch sich ändernde Größe, deren Gleichanteil bzw. zeitlich linearer Mittelwert gleich Null ist.

Nachweis:

$$\int_{t_1}^{t_1+n \cdot T} x_{\sim}(t) dt = 0 \; ; \; (n \in \mathbb{N}^*) \; ; \; t_1 \text{ beliebiger Zeitwert}$$

14.1.3 Mischgrößen

Sind periodisch, Ihr Gleichanteil \overline{x} bzw. zeitlich linearer Mittelwert jedoch ist ungleich Null.

Mischgröße = Wechselgröße + Gleichanteil

$$x(t) = x_{\sim}(t) + \overline{x}$$

= gleichanteilbehaftete Wechselgröße

14.2 Anteile und Formfaktoren

Gleichanteil

$$\overline{x} = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} x(t) dt$$

Gleichrichtwert

$$\left|\overline{x}\right| = \frac{1}{n \cdot T} \cdot \int_{t_1}^{t_1 + n \cdot T} \left|x\right|(t) dt$$

Effektivwert

$$x_{eff} = X = \sqrt{\frac{1}{n \cdot T} \cdot \int_{t_{1}}^{t_{1} + n \cdot T} x^{2} \left(t \right) dt}$$

 $n \in \mathbb{N}^* \to t1$ beliebiger Zeitwert $\to [|\overline{x}|] = [x(t)]$

14.3 Leistung und Leistungsfaktoren

Wirkleistung

$$P = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} P(t) dt$$
$$= \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u(t) \cdot i(t) dt$$

Mittlere Leistung

Formfaktor

crest - Faktor

 $\sigma = \frac{\hat{x}}{x_{\text{off}}}$

$$\bar{p}(t) = P = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} P(t) dt$$

 $F = \frac{x_{eff}}{|\overline{x}|} \qquad x_{eff} = |\overline{x}| \cdot F$

Scheinleistung

$$S = u_{eff} \cdot i_{eff} = U \cdot I$$

Leistungsfaktor

$$\begin{split} \lambda &= \frac{P}{S} \\ &= \frac{\frac{1}{n \cdot T} \int_{t_{1}}^{t_{1} + n \cdot T} p\left(t\right) dt}{u_{eff} \cdot i_{eff}} \\ &= \frac{\int_{t_{1}}^{t_{1} + n \cdot T} u\left(t\right) \cdot i\left(t\right) dt}{\sqrt{\int_{t_{1}}^{t_{1} + n \cdot T} u^{2}\left(t\right) dt} \cdot \sqrt{\int_{t_{1}}^{t_{1} + n \cdot T} i^{2}\left(t\right) dt}} \end{split}$$

14.4 Sinusförmige Größen

Sinusschwingung

$$x(t) = \hat{x}\sin(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\sin(\omega t + \varphi_x)$$

- \hat{x} : Amplitude
- φ_x : Nullphasenwinkel
- $\varphi_x > 0$: Linksverschiebung der Kurve

Kosinusschwingung

$$x(t) = \hat{x}\cos(2\pi f + \varphi_x)$$
$$x(\omega t) = \hat{x}\cos(\omega t + \varphi_x)$$

- \hat{x} : Amplitude
- φ_x : Nullphasenwinkel
- $\varphi_x > 0$: Rechtssverschiebung der Kurve

Nullphasenzeit

$$t_x = -\frac{\varphi_x}{\omega} = -\varphi_x \cdot \frac{T}{2\pi}$$

Addition zweier Sinusgrößen gleicher Frequenz

mit:
$$a = \hat{a}\sin(\omega t + \alpha) \wedge b = \hat{b}\sin(\omega t + \beta)$$

Resultierende Funktion:

$$x = a + b$$

$$= \hat{a}\sin(\omega t + \alpha) + \hat{b}\sin(\omega t + \beta)$$

$$= \hat{x}\sin(\omega t + \varphi)$$

- \hat{x} : resultierende Amplitude
- φ : Nullphasenwinkel

Wobei:
$$\hat{x} = +\sqrt{\hat{a}^2 + \hat{b}^2 + 2\hat{a}\hat{b}\cos(\alpha - \beta)}$$

$$\varphi = \arctan\frac{\hat{a}\sin\alpha + \hat{b}\sin\beta}{\hat{a}\cos\alpha + \hat{b}\cos\beta}$$

Vierquadrantenarkustangens

$\varphi = \operatorname{arc}$	$\tan \frac{ZP}{NP}$
2. Quadrant $ZP > 0, NP < 0$	1. Quadrant $ZP > 0, NP > 0$
3. Quadrant $ZP < 0, NP < 0$	4. Quadrant $ZP < 0, NP > 0$

Der rotierende Zeiger als rotierender Vektor

Allgemein gillt:
$$\sin{(\omega t + \varphi_x)} = \frac{GK}{HT} = \frac{b}{\hat{x}}$$

$$\cos{(\omega t + \varphi_x)} = \frac{AK}{HT} = \frac{a}{\hat{x}}$$

$$b = \hat{x}\sin{(\omega t + \varphi_x)}$$

$$a = \hat{x}\cos{(\omega t + \varphi_x)}$$
Als Einheitsvektor: $\vec{x} = a \cdot \vec{i} + b \cdot \vec{j}$

Zeigerspitzenendpunkt

Wechsel zwischen Sinus und Kosinus

$$\hat{x}(t)\cos(\omega t + \varphi_x) \equiv \hat{x}(t)\sin(\omega t + \varphi_x + \frac{\pi}{2})$$

$$\hat{x}(t)\sin(\omega t + \varphi_x) \equiv \hat{x}(t)\cos(\omega t + \varphi_x - \frac{\pi}{2})$$

Merke:
$$\frac{1}{j} = -j \qquad j = e^{j\frac{\pi}{2}}$$

Differentiation und Integration von Sinusgrößen

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\frac{d^n x(t)}{dt^n} \xrightarrow{HT_{1/2}}$	$\frac{d^n \underline{x}(t)}{dt^n} = (j\omega)^n \underline{x}$

Zeitbereich	Zeigerbereich
$x(t) = \hat{x}\sin(\omega t + \varphi_x) \xrightarrow{HT_1} x(t) = \hat{x}\cos(\omega t + \varphi_x) \xrightarrow{HT_2}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
$\int \cdots \int x(t) dt^n \xrightarrow{HT_{1/2}}$	$\int \cdots \int \underline{x}(t) dt = \frac{1}{(j\omega)^n} \underline{x}$

R, L und C im kompl. Zeigerbereich

Ohmscher Widerstand	$\hat{U} = R\hat{I} \hat{I} = \frac{\hat{U}}{R}$
Induktivität	$\hat{U} = \omega L \hat{I}$ $\hat{I} = \frac{\hat{U}}{\omega L}$
Kapazität	$\hat{U} = \frac{\hat{I}}{\omega C} \hat{I} = \omega C \hat{U}$

Widerstands und Leitwertoperator

\underline{Z} komplexer Widerstand / Impedanz	\underline{Y} komplexer Leitwert / Admitanz
$\underline{Z} = \frac{\underline{u}}{\underline{i}} = \frac{\hat{U}}{\hat{I}} \cdot e^{j(\varphi_u - \varphi_i)}$	$\underline{Y} = \frac{1}{\underline{Z}} = \frac{\hat{I}}{\hat{U}} \cdot e^{j(\varphi_i - \varphi_u)}$
$ \underline{Z} = Z = \frac{\hat{U}}{\hat{I}} = \frac{U}{I}$	$ \underline{Y} = Y = \frac{1}{\underline{Z}} = \overline{U}$
$mit \varphi_u - \varphi_i = \varphi_Z$	$mit \varphi_i - \varphi_u = -\varphi_Z = \gamma_Y$

Widerstand

$$\underline{Z} = R \wedge \underline{Y} = 1/R$$

 $Kapazit\ddot{a}t$

$$\underline{Z} = \frac{1}{j\omega C} = \frac{1}{\omega C} e^{-j\frac{\pi}{2}} \wedge \underline{Y} = j\omega C = \omega C e^{j\frac{\pi}{2}}$$

 $Induktivit \ddot{a}t$

$$\underline{Z} = j\omega L = \omega L e^{j\frac{\pi}{2}} \wedge \underline{Y} = \frac{1}{j\omega L} = \frac{1}{\omega L} e^{-j\frac{\pi}{2}}$$

Zeitbereich		komplexer Zeitbereich
$x = \hat{x}\sin\left(\omega t + \varphi_x\right)$	$\frac{Hintransformation1}{-}$	$\underline{x} = \hat{x}\cos(\omega t + \varphi_x) + j\hat{x}\sin(\omega t + \varphi_x)$
$x = \hat{x}\cos\left(\omega t + \varphi_x\right)$	$\frac{Hintransformation2}{}$	$\underline{x} = \hat{x}e^{j(\omega t + \varphi_x)}$
		Berechnungen im komplexen Bereich
$y = Im \{y\} = \hat{y} \sin (\omega t + \varphi_y)$	$\langle Ruecktransformation1 \rangle$	$\underline{y} = \hat{y}e^{j(\omega t + \varphi_y)}$
$y = Re\{y\} = \hat{y}\cos(\omega t + \varphi_y)$	$\langle Ruecktransformation2 \rangle$	$\underline{y} = \hat{y}\cos(\omega t + \varphi_y) + j\hat{y}\sin(\omega t + \varphi_y)$

HT1 erfordert die Ergänzung eines gleichwertigen reellen Kosinusterms mit dem ursprünglichen Sinusterm als Imaginärteil

HT2 erfordert die Ergänzung eines gleichwertigen imaginären Sinusterms mit dem ursprünglichen Kosinusterm als Realteil

RT1 entnahme des Imaginärteils

RT2 entnahme des Realteils

Resultierende Operatoren

Reihenschaltung

Parallelschaltung

$$\underline{Z}_{ges} = \sum_{i=1}^{n} \underline{Z}_{i}$$

$$\underline{Y}_{ges} = \sum_{i=1}^{n} \underline{Y}_{i}$$

Spannungsteiler

Stromteiler

$$\frac{\underline{u}_1}{\underline{u}_2} = \frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_2}$$

$$\frac{\underline{i}_1}{\underline{i}_2} = \frac{\underline{Y}_1}{\underline{Y}_2}$$

Anteile am komplexen Widerstand (Impedanz)

$$\underline{Z} = \operatorname{Re}\{\underline{Z}\} + j \cdot \operatorname{Im}\{\underline{Z}\} = R + jX = |\underline{Z}| \cdot e^{j\varphi}$$

mit $\varphi = \varphi_u - \varphi_i$ Phasenwinkel; R = Wirkwiderstand; X = Blindwiderstand; $|\underline{Z}| =$ Scheinwiderstand

$$R = R \qquad L = \frac{X}{\omega} \text{ mit } X > 0 \qquad C = -\frac{1}{\omega X} \text{ mit } X < 0$$

Anteile am komplexen Leiwert (Admitanz)

$$\underline{Y} = \text{Re}\{\underline{Y}\} + j \cdot \text{Im}\{\underline{Y}\} = G + jB = |\underline{Y}| \cdot e^{j\gamma}$$

mit $\gamma = \varphi_i - \varphi_u$ Phasenwinkel; G = Wirkleitwert; B = Blindleitwert; $|\underline{Y}| =$ Scheinleitwert

$$R = \frac{1}{G} \qquad C = \frac{B}{\omega} \text{ mit } B > 0 \qquad L = -\frac{1}{\omega B} \text{ mit } B < 0$$

komplexer Widerstand / komplexer Leitwert

$$\underline{Y} = G + jB = \frac{1}{\underline{Z}} = \frac{1}{Z} \cdot e^{-j\varphi}$$

$$= \frac{1}{\sqrt{R^2 + X^2}} \cdot e^{-j \arctan \frac{X}{R}}$$

$$= \frac{1}{R + jX} = \frac{R - jX}{R^2 + X^2} = \underbrace{\frac{R}{R^2 + X^2}}_{G} \underbrace{-j\frac{X}{R^2 + X^2}}_{B}$$

$$\underline{Z} = R + jX = \frac{1}{\underline{Y}} = \frac{1}{Y} \cdot e^{-j\gamma}$$

$$= \frac{1}{\sqrt{G^2 + B^2}} \cdot e^{-j \arctan \frac{B}{G}}$$

$$= \frac{1}{G + jB} = \frac{G - jB}{G^2 + B^2} = \underbrace{\frac{G}{G^2 + B^2}}_{R} - j\frac{B}{G^2 + B^2}$$

Momentanleistung / Augenblicksleistung

$$P(t) = \underbrace{UI\cos\varphi}_{\text{zeitlich konstant}} - \underbrace{UI\cos\left(2\omega t + \varphi_u + \varphi_i\right)}_{\text{mit doppelter Frequenz schwingend}}$$
$$= UI\cos\varphi - UI\cos\left(2\omega t + 2\varphi_u - \varphi\right)$$

$$mit \varphi = \varphi_u - \varphi_i \to \varphi_i = \varphi_u - \varphi$$

Blindleistung Ermittlung des Blindleistungsanteils aus der Momentanleistung

$$P\left(t\right) = \underbrace{UI\cos\varphi}_{\text{Wirkleistung}} \underbrace{-UI\sin\varphi \cdot \sin\left(2\omega t + 2\varphi_u\right)}_{\text{Blindleistung}}$$
$$P_{ges}\left(t\right) = P_{wirk}\left(t\right) + P_{blind}\left(t\right)$$

$$u\left(t\right)\cdot i\left(t\right) \begin{cases} > 0$$
 Energie zum Verbraucher
 < 0 Energie zum Erzeuger

Mittlere Leistung / Wirkleistung

$$P = \overline{P}(t) = \frac{1}{n \cdot T} \int_{t_1}^{t_1 + n \cdot T} u(t) \cdot i(t) dt = UI \cos \varphi$$

Definition von Blind- und Scheinleistung

$$Q = UI \sin \varphi \quad [Q] = \text{var} \quad \text{mit} \begin{cases} Q > 0 \text{ induktive Blindleistung } Q_{ind} \\ Q < 0 \text{ kapazitive Blindleistung } Q_{kap} \end{cases}$$

$$S = u_{eff} \cdot i_{eff} = U \cdot I \quad [S] = VA$$

Beziehungen zwischen Wirk- Blind- und Scheinleistung

$$P = UI \cdot \cos \varphi \qquad Q = UI \cdot \sin \varphi \qquad S = UI$$

$$\tan \varphi = \frac{Q}{P} = \frac{\sin \varphi}{\cos \varphi}$$
 Leistungsfaktor
$$\lambda = \frac{P}{S} = \cos \varphi$$

$$P = \sqrt{S^2 - Q^2}$$

$$= S \cdot \cos \varphi$$

$$= \frac{Q}{\tan \varphi}$$

$$Q = \begin{cases} > 0 \rightarrow Q_{ind} = \sqrt{S^2 - P^2} \\ < 0 \rightarrow Q_{kap} = -\sqrt{S^2 - P^2} \end{cases}$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = S \cdot \sin \varphi = P \cdot \tan \varphi$$

$$Q = \frac{Q}{\sin \varphi}$$

$$Q = \frac{$$

Die komplexe Leistung

$$\underline{S} = \underline{U} \cdot \underline{I}^* \qquad * - \text{konjugiert Komplex}$$

$$= U \cdot I \cdot e^{j(\varphi_u - \varphi_i)}$$

$$= S \cdot e^{j\varphi}$$

$$= \underline{S \cdot \cos \varphi} + j \cdot \underline{S \cdot \sin \varphi}$$

$$= P + jQ \qquad [S] = VA \quad [P] = W \quad [Q] = var$$

Zusammenhang mit dem komplexen Leitwert / Widerstand

$$S = I^2 \cdot Z$$
 $P = I^2 \cdot R = U^2 \cdot G$ $Q = I^2 \cdot X = -U^2 \cdot B$

Kapitel 15

Signal- und Systemtheorie

15.1 Einfache Impulse

Rechteckimpuls/ -funktion $rect_T(t)$

$$x\left(t\right) = X_{0} \cdot rect_{T}\left(t\right)$$

- an den Sprungstellen nimmt der Impuls die Hälfte des max. Wertes an

Dreiecksimpuls/ -funktion $\Lambda_T(t)$

$$x\left(t\right) = X_{0} \cdot \Lambda_{T}\left(t\right)$$

$$\Lambda_{T}\left(t\right) = \begin{cases} 1 - |t/T| & \text{für } |t| < T \\ 0 & \text{für } |t| > T \end{cases}$$

• T: Dauer einer ansteigenden / abfallenden Flanke

15.2 Elementare Operationen auf zeitliche Verläufe

Beeinflußung der Ordinate

Signaloffset X_{OFFS}

$$x_{neu}(t) = x_{alt}(t) + X_{OFFS}$$

Skalierungsfaktor $V(V \neq 0)$

$$x_{neu}(t) = V \cdot x_{alt}(t)$$

Beeinflußung der Abszisse

zeitliche Verschiebung t_0

$$x_{neu}(t) = x_{alt}(t - t_0)$$
 mit $t_0 = const.$

- Zusammenfassung der Offsetbehafteten Zeit $t-t_0$ zu einer neuen Zeitbasis $\tau=t-t_0$
- $x_{neu} (\tau + t_0) = x_{alt} (\tau)$ t > 0 Verschiebung nach rechts t < 0 Verschiebung nach links

Negation des Arguments t

$$x_{neu}\left(t\right) = x_{alt}\left(-t\right) \text{ mit } \tau = -t$$

 $x_{neu}\left(-\tau\right) = x_{alt}\left(\tau\right)$

• gleiche Funktionswerte mit negierter Zeitbasis, somit Spiegelung an der Ordinate

Nagation des Arguments t sowie eine Verschiebung um t_0

$$\begin{aligned} x_{neu}\left(t\right) &= x_{alt}\left(t_0 - t\right) \\ \text{mit } t_0 &= const. \\ x_{neu}\left(t\right) &= x_{alt}\left(\tau + 1/2t_0\right) \\ x_{neu}\left(1/2t_0 - \tau\right) &= x_{alt}\left(\tau + 1/2t_0\right) \end{aligned}$$

- neue Zeitbasis $\tau + 1/2t_0$
- \bullet gleiche Funktionswerte, gespiegelt an der Senkrechten von $1/2t_0$

Skalierungsfaktor $a \neq 0$

$$x_{neu}(t) = x_{alt}(a \cdot t)$$
mit $a = const$.
$$x_{neu}(t) = x_{alt}(\tau)$$

$$x_{neu}(\tau/a) = x_{alt}(\tau)$$

- neue Zeitbasis $\tau = a \cdot t$
- $\bullet\,$ gleiche Funktionswerte, wenn die Zeitbasis durch a geteilt wird
- a > 1 Funktion wird gestaucht 0 < a < 1 Funktion wird gestreckt

Einheitssprungfunktion

angenäherte Einheitssprungfunktion $\tilde{\sigma}\left(t,\epsilon\right)$

- endlicher Geradenanstieg
- Endwert von 1

Einheitsimpuls / Deltaimpuls $\tilde{\delta}(t,\epsilon)$

- Fläche des Impulses ist 1
- Impulshöhe und Breite variabel

Mathematischer Zusammenhang:

$$\tilde{\delta}\left(t,\epsilon\right) = \frac{d\tilde{\sigma}\left(t,\epsilon\right)}{dt} \quad \leftrightarrow \quad \tilde{\sigma}\left(t,\epsilon\right) = \int_{-\infty}^{t} \tilde{\delta}\left(t,\epsilon\right) dt$$

Beim Grenzübergang $\epsilon \to 0$ ergibt die Einheitssprungfunktion $\sigma(t)$ bzw. deren Ableitung den Deltaimpuls $\delta(t)$.

$$\delta\left(t\right) = \frac{d\sigma\left(t\right)}{dt} = \begin{cases} +\infty \text{ für } t = 0\\ 0 \text{ für } t \neq 0 \end{cases} \qquad \sigma\left(t\right) = \int_{-\infty}^{t} \delta\left(t\right) dt = \begin{cases} 1 \text{ für } t > 0\\ \frac{1}{2} \text{ für } t = 0\\ 0 \text{ für } t < 0 \end{cases}$$

Zusammenhang zwischen Deltaimpuls, Einheitssprungfunktion und Einheitsanstiegsfunktion

$$\delta(t) = \frac{d\sigma(t)}{dt} = \frac{d^{2}\alpha(t)}{dt^{2}} \qquad \qquad \sigma(t) = \int_{0}^{t} \delta(t) dt = \frac{d\alpha(t)}{dt}$$

$$\alpha\left(t\right) = \begin{cases} t \text{ für } t > 0 \\ 0 \text{ für } t \leq 0 \end{cases} = \int_{-\infty}^{t} \sigma\left(t\right) dt = \int_{-\infty}^{t} \int_{-\infty}^{t} \delta\left(t\right) dt$$

zeitliche Verschiebung und Wichtung

Deltaimpuls

$$x(t) = A_x \cdot \delta(t - t_0)$$
$$[x(t)] = [A_x] \cdot [\delta(t)]$$

Einheitssprung

$$x(t) = X_0 \cdot \sigma(t - t_0)$$
$$[x(t)] = [X_0]$$

${\bf Einheits anstiegs funktion}$

$$x(t) = m \cdot \alpha(t - t_0)$$
$$[x(t)] = [m] \cdot [\alpha(t)]$$

15.3 Signale

Definition: Ein Signal ist eine zeitlich und / oder örtlich veränderliche Größe (physikalisch). Die Veränderung dieser physikalischen Größe, sagt nichts über Ihren Informationsgehalt aus.

Energiewandlung

$$E_R = \int_{-\infty}^{\infty} u(t) \cdot i(t) dt$$

$$[E_R] = V \cdot A \cdot s = Ws$$

$$\text{mit } i(t) = \frac{u(t)}{R} \text{ folgt}$$

$$E_R = \frac{1}{R} \int_{-\infty}^{\infty} u^2(t) dt$$

Momentanleistung $P_r(t_1)$

$$P_{R}\left(t_{1}\right)=u\left(t_{1}\right)\cdot i\left(t_{1}\right) \qquad \qquad \left[P_{R}\left(t_{1}\right)\right]=W$$

$$P_{R}=U_{0}\cdot I_{0}=\frac{U_{0}^{2}}{R} \qquad \qquad \text{bei Gleichleistung}$$

Mittlere Leistung P_R

$$P_R = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1+T} u(t) \cdot i(t) dt$$

$$= \frac{1}{R} \cdot \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1+T} u^2(t) dt$$

$$[P_R] = W$$

Spezialfall: Periodische Signalverläufe

$$=\frac{1}{n \cdot t_{P}} \int_{t_{1}}^{t_{1}+n \cdot t_{P}} u_{P}\left(t\right) \cdot i_{P}\left(t\right) dt = \frac{1}{R \cdot n \cdot t_{P}} \int_{t_{1}}^{t_{1}+n \cdot t_{P}} u_{P}^{2}\left(t\right) dt$$

T: Betrachtungszeit, Meßdauer t_1 : Startzeitpunkt t_P : Periodendauer R = const.

Signalenergie / Impulsenergie / Impulsmoment 2. Ordnung E_U Nur für Energiesignale sinnvoll.

$$E_U = m_{i2} = \int_0^\infty u^2(t) dt \qquad [E_U] = V^2 s$$

Zeitdiskrete Signalverläufe:

$$E_X = m_{i2} = \sum_{k=-\infty}^{\infty} X_q^2(k)$$
 $[E_X] = 1$

Entnormierung über einem realen Widerstand:

$$E_R = E_U \cdot \frac{1}{R} \qquad [E_R] = Ws$$

Mittlere Signalleistung P_u / Gesamtsignalleistung P_i / quadratischer Mittelwert $\overline{u^2}$ / gewöhnliches Moment 2. Ordnung m_2

Nur für Leistungssignale sinnvoll.

$$P_u = \overline{u^2} = m_2 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} u^2(t) dt$$
 $[P_u] = V^2$

Spezialfall: Periodische Signalverläufe

$$P_u = \overline{u^2} = m_2 = \frac{1}{t_p} \int_{t_1}^{t_1 + t_p} u_p^2(t) dt$$

Spezialfall: zeitdiskrete Signalverläufe

beliebiges nichtperiodisches Signal:

periodisches Signal:

$$P_X = \lim_{N \to \infty} \frac{1}{N} \cdot \sum_{k=k_1}^{k_1+N-1} X_q^2(k)$$

$$P_X = \frac{1}{N_P} \sum_{k=k_1}^{k_1+N-1} X_q^2(k)_P$$

Spezialfall: konstannte Werte

$$P_X = X_q^2 \left(k_1 \right)_k$$

Entnormierung über einem realen Widerstand:

$$P_R = P_U \cdot \frac{1}{R} \qquad [P_R] = W$$

$Signalenergie \leftrightarrow Signalleistung$

	Energiesignal	Leistungssignal
Signalenergie	endlicher Wert	$+\infty$
Signalleistung	0	endlicher Wert

15.4 Signalbeschreibung Leistungssignale

Effektivwert

Energiesignale haben einen Effektivwert von Null.

$$u_{eff} = \sqrt{P_u} = \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} u^2(t) dt}$$

Spezialfall: zeitdiskrete Signalverläufe

$$X_{eff} = \sqrt{P_X} = \sqrt{\lim_{N \to \infty} \frac{1}{N} \cdot \sum_{k=k_1}^{k_1 + N - 1} X_q^2(k)}$$

gerader-/ungerader Anteil

gerader Anteil:

ungerader Anteil:

$$u_{g}(t) = \frac{u(t) + u(-t)}{2}$$

$$u_{u}\left(t\right) = \frac{u\left(t\right) - u\left(-t\right)}{2}$$

Gleichanteil / linearer Mittelwert / gewöhnliches Moment 1. Ordnung m_1

Enrgiesignale haben einen Gleichanteil von Null.

beliebige Signalverläufe

$$\overline{x} = m_1 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} x(t) dt \qquad [\overline{x}] = [x]$$

periodische Signalverläufe

$$\overline{x} = m_1 = \frac{1}{t_p} \int_{t_1}^{t_1 + t_p} x(t) dt \qquad [\overline{x}] = [x]$$

zeitdiskrete Signalverläufe

$$\overline{x_k} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=k_1}^{k_1+N-1} x_q(k)$$

periodische zeitdiskrete Signalverläufe

$$\overline{x_k} = \frac{1}{N_p} \sum_{k=k_1}^{k_1+N-1} x_q \left(k\right)_p$$

Signalgleichleistung / quadrierter linearer Mittelwert $\overline{u}^2/$ quadriertes gewöhnliches Moment 1. Ordnung m_1^2

Energiesignale haben eine Signalgleichleistung von Null.

beliebige Signalverläufe

$$P_{u_{=}} = \left[\overline{u}\right]^{2} = m_{1}^{2} = \left[\lim_{T \to \infty} \frac{1}{T} \int_{t_{1}}^{t_{1}+T} u(t) dt\right]^{2}$$
 $[P_{u_{=}}] = V^{2}$

zeitdiskrete Signalverläufe

$$P_{X_{=}} = \left[\overline{x}\right]^{2} = m_{1}^{2} = \left[\lim_{N \to \infty} \frac{1}{N} \sum_{k=k_{1}}^{k_{1}+N-1} X_{q}(k)\right]^{2} \qquad [P_{X_{=}}] = 1$$

Entnormierung

$$P_{R_{=}} = \frac{P_{u_{=}}}{R}$$

$$[P_{R_{=}}] = W$$

Signalwechselleistung $P_{u_{\sim}}/$ Varianz $\sigma^2/$ zentrales Moment 2. Ordnung μ_2

Energiesignale haben eine Signalwechselleistung von Null.

$$P_{u_{\sim}} = \sigma^2 = \mu_2 = \lim_{T \to \infty} \frac{1}{T} \int_{t_1}^{t_1 + T} [u(t) - \overline{u}]^2 dt$$

periodischer Spannungsverlauf

$$P_{p_{\sim}} = \frac{1}{t_p} \int_{t_1}^{t_1+t_p} [u(t) - \overline{u}]^2 dt$$

zeitdiskrete Signale

$$P_{X_{\sim}} = \lim_{N \to \infty} \frac{1}{N} \sum_{k=k_{1}}^{k_{1}+N-1} \left[X_{q}(k) - \overline{X} \right]^{2}$$

periodische zeitdiskrete Signale

$$P_{X_{\sim}} = \frac{1}{N_p} \sum_{k=k_1}^{k_1+N-1} \left[X_q \left(k \right)_p - \overline{X} \right]^2$$

Entnormierung

$$P_{R_{\sim}} = \frac{P_{u_{\sim}}}{R}$$
 $[P_{R_{\sim}}] = W$

Leistungsbilanz

$$P_u = P_{u_{=}} + P_{u_{\sim}} = m_2 = m_1^2 + \mu_2 = [\overline{u}]^2 + \sigma^2$$

15.5 Signalbeschreibung Energiesignale

Impulsfläche A_u / Impulsmoment 1. Ordnung m_{i1}

Leistungssignale besitzen Flächen von $\pm \infty$ bzw. Null.

$$A_{u} = \int_{-\infty}^{\infty} u(t) dt \qquad [A_{u}] = Vs$$

zeitdiskrete Signale

$$A_X = \sum_{k=-\infty}^{\infty} X_q(k) \qquad [A_X] = 1$$

15.6 Systeme

Definition: Ein System ist ein physikalisches oder auch technisches Gebilde, welches ein Signal (Eingangssignal, Systemerregung / -anregung) in ein im Allgemeinen andersartiges Signal umformt. Dieses wird Ausgangssignal bzw. Systemantwort / -reaktion genannt.

Übersicht:

Ubersicht:	
Linearität	Ist nur vorhanden, wenn Homogenität und Additivität vorliegen.
	Die Multiplikation eines konstannten Faktors mit dem Eingang,
	führt zu Multiplikation des gleichen Faktors mit dem Ausgang.
Additivität	$x\left(t\right)$ ist additiv zerlegbar, diese Anteile können getrennt verarbei-
	tet sowie die Systemreaktionen addiert werden.
Zeitinvarianz	Zeitinvarianz ist vorhanden, wenn sich die Systemeigenschaften
	zeitlich nicht ändern.
	Eine Zeitverzögerung des Eingangssignals überträgt sich somit
	um eine gleiche Verzögerung ins Ausgangssignal.
Kausalität	Kausalität ist Vorhanden, wenn die Systemreaktion nicht schon
	vor Begin der Systemerregung einsetzt.
	Somit ist jedes realisierbare System zwingend kausal.
Stabilität	Stabilität
	Ist vorhanden, wenn bei einem betragsmäßig beschränktem, be-
	liebigem breitbandigen Eingangssignal auch ein betragsmäßig be-
	schränktes Ausgangssignal vorliegt.
	Grenzstabilität
	Bedingungen der Stabilität werden nicht erfüllt, jedoch ist die Si-
	gnalleistung ab einem best Zeitpunkt konstannt.
	Instabilität
	Ausgangssignal wächst selbst beim verschwinden von $x\left(t\right)$ unbe-
	grenzt an.

Impulsantwort / Gewichtsfunktion g(t)

mit
$$x(t) = \delta(t)$$
 folgt $y(t) = g(t)$
$$[g(t)] = [\delta(t)] = s^{-1}$$

$$y(t) = T\{x(t)\} = \int_{-\infty}^{\infty} x(\tau) \cdot g(t - \tau) d\tau = x(t) \star g(t)$$

Zeitdiskret:

$$y(k) = \sum_{L=-\infty}^{\infty} x(k) \cdot g(k-L) = x(k) \star g(k)$$

Sprungantwort / Übergangsfunktion h(t)

Zusammenhang:

$$\sigma(t) = \int_{-\infty}^{t} \delta(t) dt \Leftrightarrow \delta(t) = \frac{d\sigma(t)}{dt}$$
$$FT\{\sigma(t)\} = \frac{1}{2}\delta(f) - j\frac{1}{2\pi f}$$

Zusammenhang zwischen Übergangs- und Gewichtsfunktion

$$g\left(t\right) = \frac{\mathrm{d}h\left(t\right)}{\mathrm{d}t} \qquad \qquad \Rightarrow \qquad \qquad h\left(t\right) = \int\limits_{-\infty}^{t} g\left(t\right) \mathrm{d}t$$

$$= \int\limits_{KausalesSystem}^{t} g\left(t\right) \mathrm{d}t$$

Faltungsoperation

- setzt LTI-Systeme voraus
- Gewichtsfunktion wird nur bei LTI-Systemen angegeben

$$y(t) = T\{x(t)\} = \int_{-\infty}^{\infty} x(\tau) \cdot g(t - \tau) d\tau = x(t) * g(t)$$

zeitdiskrete Systeme:

$$y(k) = T\{x(k)\} = \sum_{L=-\infty}^{\infty} x(k) \cdot g(k-L) = x(k) * g(k)$$

Polynommultiplikation:

$$p_{p} = \sum_{p} Ordinatenwert \cdot r^{Abszissenwert}$$
$$y_{p}(k) = x_{p} \cdot g_{p}$$

Kapitel 16

Signalverarbeitung

16.1 Laplace / Fourier-Transformation Laplaceintegral

$$X(p)$$
 \bullet \sim $x(t)$
$$X(p) = \mathcal{L}\{x(t)\} = \int_{0}^{\infty} x(t) e^{-p \cdot t} dt$$

Fourierintegral

$$X(\omega) = \mathscr{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$X(\omega) \quad \bullet \longrightarrow x(t)$$

$$X(f) = \mathscr{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

$$X(f) = \int_{-\infty}^{\infty} (x_{re} + jx_{im}) \cdot (\cos(2\pi f t) - j \cdot \sin(2\pi f t)) dt$$

$$X(f) \quad \bullet \longrightarrow x(t)$$

$$x(t) = \frac{1}{2 \cdot \pi} \cdot \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} d\omega$$

Diskrete Fourier Transformation

1. Variante

$$X(l) = \sum_{k=0}^{N-1} x(k) e^{-j2\pi \cdot l \cdot \frac{k}{N}}$$
$$x(k) = \frac{1}{N} \sum_{l=0}^{N-1} x(k) e^{j2\pi \cdot l \cdot \frac{k}{N}}$$

2. Variante

$$X(l) = \frac{1}{N} \sum_{k=0}^{N-1} x(k) e^{-j2\pi \cdot l \cdot \frac{k}{N}}$$

$$x(k) = \sum_{k=0}^{N-1} x(k) e^{j2\pi \cdot l \cdot \frac{k}{N}}$$

3. Variante

$$X(l) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) e^{-j2\pi \cdot l \cdot \frac{k}{N}}$$
$$x(k) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) e^{j2\pi \cdot l \cdot \frac{k}{N}}$$

DFT als Matrizen-Multiplikation

$$[X(l)] = \frac{1}{\alpha} \cdot [F_{l,k}^{N}] \cdot [x(k)] \qquad t \Rightarrow f$$

$$[x(k)] = \frac{1}{\alpha} \cdot [f_{k,l}^{N}] \cdot [X(l)] \qquad f \Rightarrow t$$

$$[f_{k,l}^{N}] = \frac{1}{\alpha} \cdot [F_{l,k}^{N}]^{*}$$

 α ist je nach Art der Transformationsvariante 1, N oder \sqrt{N} und eigentlich schon in der Transformationsvorschrifft enthalten.

$$F_{l,k}^{N} = e^{-j2\pi \cdot l \cdot \frac{k}{N}} = \cos\left(2\pi l \frac{k}{N}\right) - j\sin\left(2\pi l \frac{k}{N}\right)$$

Additionssatz

$$x(t) = x_1(t) + x_2(t) + \dots \quad \bigcirc \quad X(f) \qquad = X_1(f) + X_2(f) + \dots$$

Linearität

$$x(t) = C \cdot x_1(t)$$
 $\circ \longrightarrow X(f) = C \cdot X_1(f)$

Verschiebungssatz

$$x(t) = x_1(t - t_0)$$
 \longrightarrow $X(f) = X_1(f) \cdot e^{-j2\pi f \cdot t_0}$

Ähnlichkeitssatz

$$x(t) = x_1(a \cdot t) \quad \circ \longrightarrow \quad X(f) = \frac{1}{|a|} X_1\left(\frac{f}{a}\right)$$
$$x(t) = \frac{1}{|b|} x_1\left(\frac{t}{b}\right) \quad \circ \longrightarrow \quad X(f) = X_1(b \cdot f)$$

Differentiationssatz

$$x\left(t\right) = \frac{\mathrm{d}x_{1}\left(t\right)}{\mathrm{d}t} \quad \circ -\!\!\!\!- \quad X\left(f\right) = j2\pi f \cdot X\left(f\right)$$

$$x\left(t\right) = \frac{\mathrm{d}^{K}x_{1}\left(t\right)}{\mathrm{d}t^{K}} \quad \circ -\!\!\!\!- \quad X\left(f\right) = j^{K}\left(2\pi f\right)^{K} \cdot X\left(f\right)$$

$$x\left(t\right) = \frac{\mathrm{d}^{K}x_{1}\left(t\right)}{\mathrm{d}t^{K}} \quad \circ -\!\!\!\!- \quad X\left(\omega\right) = j^{K}\left(\omega\right)^{K} \cdot X\left(\omega\right)$$

Integrationssatz

$$x(t) = \int_{-\infty}^{t} x_{1}(\tau) d\tau \quad \circ \longrightarrow \quad X(f) = \frac{1}{j2\pi f} \cdot X_{1}(f) + \frac{1}{2}X_{1}(f = 0) \delta(f)$$
$$x(t) = \int_{-\infty}^{t} x_{1}(\tau) d\tau \quad \circ \longrightarrow \quad X(\omega) = \frac{1}{j\omega} \cdot X_{1}(\omega) + \pi \cdot X_{1}(\omega = 0) \delta(\omega)$$

Integrationssatz im Frequenzbereich

$$x(t) = \frac{1}{-j2\pi t} \cdot x_1(t) + \frac{1}{2}x_1(t=0) \,\delta(t) \quad \circ \longrightarrow \quad X(f) = \int_{-\infty}^{f} X_1(\varphi) \,\mathrm{d}\varphi$$
$$x(t) = \frac{1}{-jt} \cdot x_1(t) + \pi \cdot x_1(t=0) \,\delta(t) \quad \circ \longrightarrow \quad X(\omega) = \int_{-\infty}^{\omega} X_1(\varphi) \,\mathrm{d}\varphi$$

Vertauschungssatz

$$x(t) = x_1(t) \quad \circ \longrightarrow \quad X(f) = X_1(f)$$

$$x(t) = X_1(t) \quad \circ \longrightarrow \quad X(f) = x_1(-f)$$

$$x(t) = x_1(t) \quad \circ \longrightarrow \quad X(\omega) = X_1(\omega)$$

$$x(t) = X_1(t) \quad \circ \longrightarrow \quad X(\omega) = 2\pi \cdot x_1(-\omega)$$

Faltung

$$x(t) = x_1(t) \quad \circlearrowleft \quad X(f) = \int_{-\infty}^{\infty} X_1(\varphi) \cdot X_2(f - \varphi) \, \mathrm{d}\varphi$$

$$x(t) = x_1(t) \quad \circlearrowleft \quad X(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\varphi) \cdot X_2(\omega - \varphi) \, \mathrm{d}\varphi$$

$$x(t) = \int_{-\infty}^{\infty} x_1(\tau) \cdot x_2(t - \tau) \, \mathrm{d}\tau \quad \circlearrowleft \quad X(f) = x_1(f) \cdot x_2(f)$$

Delta-Impulsfläche

$$\coprod_{p} (t) = \sum_{k=-\infty}^{\infty} \delta (t - kt_{p}) s^{-1} \quad \bigcirc \quad \coprod_{A} (f) = f_{a} \sum_{m=-\infty}^{\infty} \delta (f - mf_{a}) Hz^{-1}$$

$$f_{a} = \frac{1}{t_{p}}$$

$$\coprod_{a} (t) = t_{a} \sum_{k=-\infty}^{\infty} \delta (t - kt_{a}) s^{-1} \quad \bigcirc \quad \coprod_{P} (f) = \sum_{m=-\infty}^{\infty} \delta (f - mf_{p}) Hz^{-1}$$

$$f_{p} = \frac{1}{t_{p}}$$

Periodifizierung

$$x(t) = x_T(t) * \coprod_p (t) \circ \longrightarrow X(f) = X_T(f) \cdot \coprod_A (f)$$

Abgetastete Funktionen

$$x_{\delta}\left(t\right) = x\left(t\right) \cdot \coprod_{a}\left(t\right) \quad \circ \longrightarrow \quad X_{\delta}\left(f\right) = X\left(f\right) \ast \coprod_{p}\left(f\right)$$

$$x_{\delta}\left(t\right) = \sum_{k=-\infty}^{\infty} x\left(kt_{a}\right) \cdot t_{a} \cdot \delta\left(t - kt_{a}\right) \quad \circ \longrightarrow \quad X_{\delta} = \sum_{m=-\infty}^{\infty} X\left(f - mf_{p}\right)$$

Abgetastete und Periodifizierte Funktionen

$$x_{\delta p}(t) = (x_T(t) * \coprod_p (t)) \cdot \coprod_a (t)$$

$$x_{\delta p}(t) = \sum_{m = -\infty}^{\infty} \sum_{k = -\infty}^{\infty} x_T(kt_a - mt_p) \cdot t_a \cdot \delta(t - kt_a)$$

$$X_{\delta p}(t) = (X_T(f) \cdot \coprod_a (f)) * \coprod_p (f)$$

$$X_{\delta p}(t) = \sum_{m = -\infty}^{\infty} \sum_{k = -\infty}^{\infty} X_T(mf_a - kf_p) \cdot f_a \cdot \delta(f - mf_a)$$

$$f_a = \frac{1}{t_p}$$

$$f_p = \frac{1}{t_a}$$

Korrespodenz

$$x(t) = \hat{X} \operatorname{rect}_{T}(t) \quad \circ \longrightarrow \quad X(j\omega) = \hat{X}T \cdot \operatorname{si}\left(\omega \cdot \frac{T}{2}\right)$$

$$x(t) = \hat{X}\Lambda_{T}(t) \quad \circ \longrightarrow \quad X(j\omega) = \hat{X}T \cdot \operatorname{si}^{2}\left(\omega \cdot \frac{T}{2}\right)$$

$$x(t) = \hat{X} \sin(2\pi f_{0}t) \quad \circ \longrightarrow \quad X(f) = \frac{j\hat{X}}{2}\left(\delta\left(f + f_{0}\right) - \delta\left(f - f_{0}\right)\right)$$

$$x(t) = \hat{X} \cos(2\pi f_{0}t) \quad \circ \longrightarrow \quad X(f) = \frac{\hat{X}}{2}\left(\delta\left(f + f_{0}\right) + \delta\left(f - f_{0}\right)\right)$$

16.2 Spektrum

Betragsspektrum

$$|X(f)| = \sqrt{(\text{Re}\{X(f)\})^2 + (\text{Im}\{X(f)\})^2}$$

Betragsquadratspektrum

$$|X(f)|^2 = (\text{Re}\{X(f)\})^2 + (\text{Im}\{X(f)\})^2$$

Theorem von Parseval

$$E = m_{i2} = \int_{-\infty}^{\infty} x^2(t) dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

16.3 Korrelation

Kreuzkorrelationsfunktion

$$E_{x_1 x_2}(\tau) = \int_{-\infty}^{\infty} x_2(t+\tau) \cdot x_1(t) dt = \int_{-\infty}^{\infty} x_1(t-\tau) \cdot x_2(t) dt$$
$$E_{x_1 x_2}(l) = \sum_{k=-\infty}^{\infty} x_2(k+l) \cdot x_1(k) dt$$

Normierte Kreuzkorrelationsfunktion

$$\mathring{x} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

$$\mathring{E}_{x_1 x_2} = \sqrt{\int_{-\infty}^{\infty} x_1^2(t) \, dt} \cdot \int_{-\infty}^{\infty} x_2^2(t) \, dt$$

$$r_{x_1 x_2}(\tau) = \frac{E_{x_1 x_2}(\tau)}{\mathring{E}_{x_1 x_2}} = \frac{\int_{-\infty}^{\infty} x_2(t+\tau) \cdot x_1(t) \, dt}{\sqrt{\int_{-\infty}^{\infty} x_1^2(t) \, dt} \cdot \int_{-\infty}^{\infty} x_2^2(t) \, dt}$$

$$|r_{x_1 x_2}(\tau)| \le 0$$

Teil IV Analoge Schaltungstechnik

Kapitel 17

Grundschaltungen

Konstantstromquelle

mit Bipolartransistoren

$$\begin{split} I_E \approx & I_c = \frac{U_B - U_{BE}}{R_E} = const. \\ \sim & \underbrace{I_c = \frac{R_2}{R_E} \cdot I_1}_{Stromspiegel} \end{split}$$

Emitterschaltung

Verstärkung

$$A \text{ bzw. } V = \frac{\mathrm{d}U_a}{\mathrm{d}U_e}$$

$$= -S\left(R_C \| r_{CE}\right)$$

Eingangswiderstand

$$r_e = r_{BE} = \frac{\mathrm{d}U_e}{\mathrm{d}I_e} = \frac{1}{Y_{11}}$$

Ausgangswiderstand

$$r_a = -\frac{\mathrm{d}U_a}{\mathrm{d}I_a} = R_C || r_{CE}$$

Parameter

$$dI_{B} = \underbrace{\frac{\partial I_{B}}{\partial U_{BE}}}_{Y_{11} = \frac{1}{r_{BE}}} \cdot dU_{BE}$$

$$+ \underbrace{\frac{\partial I_{B}}{\partial U_{CE}}}_{Y_{12} = Sr} \cdot dU_{CE}$$

$$dI_{C} = \underbrace{\frac{\partial I_{C}}{\partial U_{BE}}}_{Y_{21} = S} \cdot dU_{BE}$$

$$+ \underbrace{\frac{\partial I_{C}}{\partial U_{CE}}}_{Y_{22} = \frac{1}{r_{CE}}} \cdot dU_{CE}$$

Differenzverstärker

reine Differenzaussteuerung

$$\Delta U_{B_1} = -\Delta U_{B_2} \quad \rightsquigarrow \quad \mathrm{d} U_{B_1} = -\mathrm{d} U_{B_2} = \tfrac{\mathrm{d} U_D}{2}$$

mit $U_E = const.$ folgt:

$$\begin{split} \frac{\mathrm{d}U_{C1}}{\mathrm{d}U_D} &= \frac{\mathrm{d}U_{C1}}{2\mathrm{d}U_{B_1}} = -\frac{1}{2}S\left(R_C \parallel r_{CE}\right) = -A_D\\ \frac{\mathrm{d}U_{C2}}{\mathrm{d}U_D} &= \frac{\mathrm{d}U_{C2}}{2\mathrm{d}U_{B_2}} = \frac{1}{2}S\left(R_C \parallel r_{CE}\right) = A_D \end{split}$$

Gleichtaktaussteuerung

$$dU_E = dU_{GL} \quad \leadsto \quad dI_K = \frac{dU_{GL}}{r_K} \neq const.$$

mit $dU_C = -dI_C \cdot R_C$ folgt:

$$dU_{C1} = dU_{C2} = -\frac{R_C}{2r_K} \cdot dU_{Gl} \quad \rightsquigarrow \quad A_{Gl} = \frac{dU_a}{dU_{Gl}} = -\frac{R_C}{2r_K}$$

Mischaussteuerung (lineare Überlagerung)

$$dU_{C1} = -\frac{1}{2}S\left(R_C \parallel r_{CE}\right) \cdot dU_D - \frac{1}{2} \cdot \frac{R_C}{r_K} \cdot dU_{Gl}$$
$$dU_{C2} = +\frac{1}{2}S\left(R_C \parallel r_{CE}\right) \cdot dU_D - \frac{1}{2} \cdot \frac{R_C}{r_K} \cdot dU_{Gl}$$

Eingangswiderstand

Teil V Messtechnik

Kapitel 18

Grundlagen

18.1 Begriffe

- Messwert x_i : gemessener Wert der Messgröße
- Wahrer Wert x_w : existierender Wert der Messgröße
- \bullet Richtiger Wert x_r : bekannter Wert mit vernachläßigbarer Differenz zum wahren Wert
- \bullet Messabweichung e: Differenz zwischen gemessenem und wahrem Wert
- Systematische Messabweichung e_{sys} : Bekannte systematische Messabweichung (korrigierbar)
- Messunsicherheit u: Intervall um den Messwert in dem der wahre Wert mit einer bestimmten Wahrscheinlichkeit zu finden ist

18.2 Messabweichung e

$$e = x - x_w$$

18.2.1 relative Messabweichung

$$e_{rel} = \frac{e}{x_w} = \frac{x - x_w}{x_w} = \frac{x}{x_w} - 1$$

103

Korrekturfaktor K

Korrigierter Messwert x_{korr}

Bei bekannter systematischer Messabweichung.

$$K = -e_{sys} x_{korr} = x + K$$

18.2.2 Messabweichung e_y

$$e_y = y - y_w = f(x_1 + e_{x_1}, x_2 + e_{x_2}, \dots, x_n + e_{x_n})$$

$$e_y = \sum_{i=1}^n \frac{\partial f}{\partial x_i} e_{x_i}$$

$$\Delta y = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \Delta x_i$$

18.2.3 Fortpflanzung systematischer Messabweichungen Addition / Subtraktion

$$y = x_1 \pm x_2$$
 \longrightarrow $e_y = e_{x_1} \pm e_{x_2}$

Multiplikation

$$y = x_1 \cdot x_2 \qquad \longrightarrow \qquad e_y = x_2 \cdot e_{x_1} + x_1 \cdot e_{x_2}$$

$$e_{rel} = \frac{e_y}{y} = \frac{x_2 \cdot e_{x_1} + x_1 \cdot e_{x_2}}{x_1 \cdot x_2} = e_{rel, x_1} + e_{rel, x_2}$$

Division

$$y = \frac{x_1}{x_2} \qquad \qquad \longrightarrow \qquad \qquad e_y = \frac{1}{x_2} e_{x_1} - \frac{x_1}{x_2^2} e_{x_2}$$

$$e_{rel} = \frac{e_y}{y} = \frac{\frac{1}{x_2}e_{x_1} - \frac{x_1}{x_2^2}e_{x_2}}{x_1 \cdot x_2^{-1}} = e_{rel,x_1} - e_{rel,x_2}$$

18.3 Statistische Größen

Verteilungsfunktion

Verteilungsdichtefunktion

$$F\left(x\right) = prob\left(X \le x\right)$$

$$f\left(x\right) = \frac{d}{dx}F\left(x\right)$$

Es gillt:

$$\begin{split} F\left(x\right) &= \int_{-\infty}^{x} f\left(t\right) dt \\ F\left(x \to \infty\right) &= \int_{-\infty}^{\infty} f\left(t\right) dt = 1 \\ prob\left(a < x \le b\right) &= F\left(b\right) - F\left(a\right) = \int^{b} f\left(x\right) dx \end{split}$$

18.4 Erwartungswert, Varianz und Standardabweichung

Erwartungswert μ

wahrer Wert X

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$= \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$
 nur für stetige Zufallsgrößen

$$x_w = \mu$$
 nach Korrektur der systematischen Abweichung

Varianz σ^2

Standardabweichung

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
$$= \int_{-\infty}^{\infty} (x_i - \mu)^2 \cdot f(x) dx$$

$$\sigma = \sqrt{\sigma^2}$$

18.5 Verteilungsfunktionen

Normalverteilung

- Normal oder Gaußverteilung
- gute Näherung bei unbekannter statistischer Verteilung
- Werteverteilung:
 - -68.3% aller Werte liegen in $\mu \pm \sigma$
 - -95.5% aller Werte liegen in $\mu \pm 2\sigma$
 - -99.7% aller Werte liegen in $\mu \pm 3\sigma$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$
$$\int_{-\infty}^{\infty} f(x) = 1$$

Gleichverteilung

- auch Rechteckverteilung
- alle vorkommenden Werte besitzen gleiche Wahrscheinlichkeit im Intervall

$$f(x) = \begin{cases} \frac{1}{2a} & \mu - a < x < \mu + a \\ 0 & \text{sonst} \end{cases}$$
$$\int_{-\infty}^{\infty} f(x) = 1$$
$$\sigma^2 = \frac{1}{3}a^2$$

18.6 Stichprobe

Mittelwert \overline{x}

empirische Varianz s^2

Der Mittelwert ist ein Schätzwert für den Erwartungswert μ und damit für den wahren Wert.

Die empirische Varianz ist ein Schätzwert für die eigentliche Varianz der Messreihe.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

18.7 Vertrauensbereich für den Erwartungswert

Endlich große Stichprobe liefert zufällige Differenz zwischem Schätzwert \overline{x} und wahrem Wert $\mu=x_w$.

$$\overline{x_g} = \frac{1}{m} \sum_{i=1}^m \overline{x_i} s_g^2 = \frac{1}{m} s_i^2 s_g = \frac{1}{\sqrt{m}} s_i$$

Vertrauensbereich:

$$\overline{x} - \frac{t}{\sqrt{n}}s < \mu < \overline{x} + \frac{t}{\sqrt{n}}$$
 mit $t = t(n, \alpha)$

Studentverteilung

Gibt den t Faktor für Normalverteilungen an

 α Überschreitungswhrscheinlichkeit

$1 - \alpha$ Vertrauensniveau

_		1 ~~~	
$1-\alpha$	$68,\!3\%$	95%	99,73%
n=2	1,84	12,70	235,80
n = 3	1,32	4,30	19,21
n = 4	1,20	3,18	$9,\!22$
n = 5	1,15	2,78	6,62
n = 6	1,11	$2,\!57$	$5,\!51$
n = 10	1,06	2,26	4,09
n = 20	1,03	2,09	$3,\!45$
n = 50	1,01	2,01	3,16
$n \to \infty$	1,00	2,00	3,00

18.8 Fortpflanzung zufälliger Abweichungen

Bedingung: Messergebnis setzt sich aus mehreren Messgrößen x_i zusammen

Erwartungswerte

Varianzen

$$\mu_n = \frac{1}{N} \sum_{i=1}^{N} x_{n_i}$$

$$\sigma_n^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{n_i} - \mu_n)^2$$

Worst-Case-Kombination

Maximale Abweichung des Ergebnisses vom Mittelwert.

$$y = f(x_1, x_2, \dots, x_n)$$
$$|\Delta y| = \sum_{i=1}^{n} \left| \frac{\partial f}{\partial x_i} \Delta x_i \right|$$

statistische Kombination der Varianzen

Gaußsches Fehlerfortpflanzungsgesetz...

$$y = f(x_1, x_2, \dots, x_n)$$

$$\sigma_y^2 = \sum_{k=1}^n \left(\left(\frac{\partial f}{\partial x_k} \Big|_{(\mu_1, \mu_2, \dots, \mu_n)} \right)^2 \sigma_k^2 \right)$$

$$\sigma_y^2 = \left(\frac{\partial f}{\partial x_1} \Big|_{\mu_1} \sigma_1 \right)^2 + \left(\frac{\partial f}{\partial x_2} \Big|_{\mu_2} \sigma_2 \right)^2 + \left(\frac{\partial f}{\partial x_3} \Big|_{\mu_3} \sigma_3 \right)^2 + \cdots$$

...kann auf empirische Varianz übertragen werden.

$$y = f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})$$

$$s_y^2 = \sum_{k=1}^n \left(\left(\frac{\partial f}{\partial \overline{x_k}} \Big|_{(\mu_1, \mu_2, \dots, \mu_n)} \right)^2 s_k^2 \right)$$

18.9 Fortpflanzung von Messunsicherheiten

Worst Case Abschätzung und Gaußsches Fortpflanzungsgesetz lassen sich auf die Messunsicherheiten übertragen.

Worst Case Abschätzung der Unsi- Statistische Fortpflanzung der Unsichercherheit heit

$$u_y = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| u_{x_i} \qquad \qquad u_y^2 = \sum_{i=1}^n \left(\frac{\partial f}{\partial x_i} \right)^2 u_{x_i}^2$$

Teil VI Anhang

Sachregister

A	Polynom
	Polynom und e-Funktion 26
Additionssatz92	sin- und cos Funktion 26
Additions theoreme	Differentiationssatz 92
Aehnlichkeitssatz	Differenzverstärker99
Anteil	Differenzaussteuerung 99
gerade	Eingangswiderstand 100
ungerade83	Gleichtaktaussteuerung100
Anteile	Mischaussteuerung 100
crest - Faktor 67	Diskrete Fourier Transformation 92
Effektivwert67	Matrizen-Multiplikation 91
Formfaktor	
Gleichanteil 67	\mathbf{E}
Gleichrichtwert 67	T21 16
D	Ebenen
В	Abstand Geraden - Ebene 19
Potro gaqua dratan eletrum 05	Hessesche Normalform19
Betragsquadratspektrum95 Betragsspektrum95	Schnittwinkel zweier Ebenen 19
Binomischer Lehrsatz	Einheitsanstiegsfunktion
Dinomischer Lemsatz	Einheitssprungfunktion77 f
\mathbf{C}	Elastischer Stoß
	Impulserhaltung4
Carnot'prozeß	Zentral und Gerade
	Elastizitätslehre
D	Drill
D 1. T 1.01.1	Flächenmoment 48
Delta Impulsfläche	Schub
Deltaimpuls	Spannung 4
Differentialgleichungen	Verformungsarbeit48
1.Ordnung	Elektrostatik
2.Ordnung	Arbeit im elektrischen Feld55
Linear25	Coulomb Gesetz54
Partikuläre Lösungen	Fluß
e-, sin- und cos Funktion26	Flußdichte 58

Kapazität 55 Ladung 54 Ohm'sches Gesetz 55 Punktladungen 54 Spannung 54 Elementarladung 64 Emitterschaltung 98 Energiesignale 85 Impulsfläche 85 Impulsmoment 1. Ordnung 85 Erwartungswert 104	Gesamtsignalleistung 8 gewöhnliches Moment 2. Ordnung 8 Gewichtsfunktion 8 Gleichungen 1 Gravitation 5 Arbeit 5 Planetenbahnen 5 H Hook'sches Gesetz 4
F	I
Faltung $88 \mathrm{f.}$, 93 Polynommultiplikation 89 zeitdiskret 89 FluiddynamikLaminare Reibung 52 Ohne Reibung 51 Formfaktoren 67 crest - Faktor 67 Effektivwert 67 Formfaktoren 67 Gleichanteil 67 Gleichrichtwert 67 Fortpflanzung 67 Fehlerfortpflanzungsgesetz 60 Zufällige Abweichungen 108 Erwartungswerte 107 Varianzen 107 Fourier Reihen 34 Fourierintegral 90 Funktionenreihen 33	Ideales Gas Adiabat 58 Energie 58 Isobar 58 Isochor 58 Isotherm 58 Zustandsgleichung 58 Impulsantwort 88 Impulse 75 Rechteck 75 Impulsenergie 81 Impulsmoment 2. Ordnung 82 Integrationssatz 92 Interpolation 36 Differentenschema 37 nach Newton 36 Rechenregeln 37 K K
G	Analogietabelle Translation - Rota tion
Geneigte Ebene	Bahngrößen 40 Rotation 40 Translation 40 Winkelgrößen 40 Knotenpunktsatz 65 Komplexe Zahlen 11 f

Konstantstromquelle	Varianz
Bipolar97	zentrales Moment 2. Ordnung 84
Konvergenz	Leitwert
Bekannte konvergente Reihen32	Linearität92
Leibnizkriterium 32	Logarithmus
$Majorantenkriterium \dots 32$	
Minorantenkriterium 32	\mathbf{M}
Quotientenkriterium32	3.5
Wurzelkriterium32	Maschensatz
Korrekturfaktor103	Messabweichung
Korrelation	Fortpflanzung
Kosinus9	relativ
Differentiation70	Messtechnik
Schwingung	Begriffe
zu Sinus69	Mischgrößen 66
Kotangens	N
Kreisprozeß	TV .
Kreuzkorrelationsfunktion95	Nullphasenzeit68
-normierte95	1 vanphasenzer
Kreuzprodukt17	0
T.	
L	Operatoren
Laplaceintegral 90	Leitwertsop70
Leistung	Parallelschaltung
Blindleistung	Reihenschaltung72
Definition	Spannungsteiler
komplexe L	Stromteiler
Leistungssfaktor67	Widerstandsop70
Mittlere Leistung67	Optik
Momentanleistung73	Brechung
Scheinleistung67	Hohlspiegel
Definition	Lichtwellenleiter
Wirkleistung	Linse
Leistungssignale	numerische Apertur
Effektivwert82	
gewöhnliches Moment 1. Ordnung83	Р
Gleichanteil	•
linearer Mittelwert 83	Polynomdivision
quadriertes gewöhnliches Moment 1.	Potential
Ordnung83	Potenzen7 f
Signalgleichleistung83	Potenzreihen33
Signalwechselleistung84	Bekannte Potenzreihen
5	

spezielle Reihen	Signalleistung82
D	Mittlere
R	Sinus 9
Reihen	Addition
Geometrische Folge31	Differentiation70
Harmonische Reihe	Schwingung
Rotation Relation	zu Kosinus 69
	Skalierungsfaktor76 f
Drehimpuls	Spannung64
Drehmoment	Spannungsquelle 65
Massenträgheitsmoment	Spatprodukt
Zentripedalkraft42	Spektrum95
rotierender Zeiger69	Sprungantwort88
Rotierendes Bezugssystem	Standardabweichung104
Corioliskraft45	Stichprobe
Zentrifugalkraft 45	empirische Varianz 106
~	Mittelwert
\mathbf{S}	Strom
0.1	-dichte
Schwerpunkt	Stromquelle65
Allgemein	Studentverteilung106
Kartesischekoordinaten45	Systeme
Punktmasse	Übersicht 86
Zylinderkoordinaten45	Eigenschaften
Schwingungen	Eigenschaften
Flüssigkeitspendel49	T
gedämpft	-
COULOMB Reibung50	Tangens
Gleitreibung 50	Theorem von Parseval 95
Schwingungsgleichung50	Thermodynamik
Viskosereibung50	Mischtemperatur56
Mathematisches Pendel49	Wärme
Physikalisches Pendel49	-übertragung57
Torsionsschwingung 49	-konvektion
Signale	-leitung
Abtastung94	-strahlung57
$Abtastung + Periodifizierung \dots 94$	-widerstand
Definition	Wärmedehnung
Energiewandlung80	Trägheitsmoment
Mittlere Leistung81	Transformation 40
Momentanleistung80	Bildbereich71
Periodifizierung 94	
Signalenergie	Zeitbereich71
2-0	Transformationen

Korrespondenz 94 Translation 41 Impuls 41
\mathbf{U}
Übergangsfunktion
V
Varianz104Vektorrechnung16Verschiebungssatz92Vertauschungssatz92Verteilungsdichtefunktion104Verteilungsfunktion104Gleichverteilung105Normalverteilung105Vertrauensbereich106
W
wahrer Wert 104 Wechselgrößen 66 Widerstand 65 Temperaturabhängigkeit 65 Worst Case siehe Wurst Käse Wurst Käse 107 Wurzelsatz von Vieta 14
${f z}$
Zeigerbereich C