Pythia

Predicting the Difficulty of Phylogenetic Analyses

Julia Haag

Phylogenetic Analysis

Sequence Data

Phylogenetic Tree

Phylogenetic Analysis

- Fast, but less accurate methods:
 - Maximum Parsimony
 - Neighbor Joining
 - •
- Slow, but more accurate methods:
 - Maximum Likelihood (e.g. RAxML-NG)
 - Bayesian Methods (e.g. MrBayes)

Based on "Compiling" https://xkcd.com/303/

What does difficult mean?

What does difficult mean?

What does difficult mean?

Difficulty = ruggedness of the tree space

Easy

- Few highly similar tree topologies
- Single likelihood peak

Difficult

- Highly distinct topologies, statistically indistinguishable
- Multiple likelihood peaks

Pythia

The oracle of difficulty

Pythia

- Pythia = Boosted Tree Regressor
- Supervised regression task:
 - predict difficulty from 0.0 (easy) to 1.0 (difficult)
 - ground-truth difficulty as target for training based on 100 ML tree inferences
- Trained on ~12.5k empirical MSAs
 - Mean absolute percentage error 1.7%

Prediction Features

- 10 features:
 - 5 MSA attributes:
 - sites-over-taxa, patterns-over-taxa, patterns-over-sites % gaps, % invariant sites
 - 3 MSA information metrics:
 - Shannon entropy, Bollback multinomial test statistic, Entropy-like pattern metric
 - 2 Parsimony-tree-based features:
 - Infer 100 parsimony trees → average RF-Distance, % unique topologies

Prediction Features: Runtime

How to use Pythia

- 3 options:
 - Command Line Interface, Python module: https://github.com/tschuelia/PyPythia
 - C library: https://github.com/tschuelia/CPythia
- Phylip or FASTA format
- DNA, Protein, or morphological data

How to use Pythia: example MSA

```
pythia -h

pythia -m examples/example.phy -r path/to/raxml-ng -v -b -shap
```

- Single likelihood peak → easy (difficulty = 0.16)
- Runtime:
 - Pythia: ~10 seconds
 - 1 tree inference: ~16 minutes

Shapley Values: example.phy

Julia Haag

HITS Heidelberg

How to use Pythia: example MSA

```
pythia -h

pythia -m examples/example.phy -r path/to/raxml-ng -v -b -shap
```

- Single likelihood peak → easy (difficulty = 0.16)
- Runtime:
 - Pythia: ~10 seconds
 - 1 tree inference: ~16 minutes

Example: Covid Data

"Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult" (https://doi.org/10.1093/molbev/msaa314)

```
The predicted difficulty for MSA examples/covid.fasta is: 0.82.
FEATURES:
num_taxa: 4869
num_sites: 28361
[ ... ]
num_sites/num_taxa: 5.82
[ ... ]
avg_rfdist_parsimony: 0.79
proportion_unique_topos_parsimony: 1.0
                                                                           ~12min ≪12 hours
Feature computation runtime:
                              737.182 seconds
[ ... ]
```

HITS Heidelberg

Use and Misuse of Pythia

- Prior to tree inferences
- Choose inference + post-processing setup
- MSA Adjust MSA
- Maptive Search Heuristic

Difficulty equals number of tree inferences

Summary

- Pythia = difficulty predictor
- Difficulty = ruggedness of the tree space
- Prediction prior to time-intensive tree inference
- Accurate and fast
 - faster than a single ML tree inference
- Paper: https://doi.org/10.1093/molbev/msac254
- Pythia on Github: https://github.com/tschuelia/PyPythia