

Cultivons nos talents
Scalian Academy

FORMATION DEEP LEARNING

ENCODER DECODER

Neural encoder-decoder architectures

LES AUTO-ENCODEURS

Principe : Apprendre X à partir de X.

Mais quel est donc l'intérêt?

LES AUTO-ENCODEURS

Principe : Apprendre X à partir de X.

- Apprend une représentation condensée de X.
- N'apprend que les caractéristiques les plus pertinentes de X.

Applications:

 Permet de trouver l'exemple appris le plus proche de l'entrée.

Exemple : trouver des textes similaires à un texte en entrée.

 La représentation condensée peut être utilisée comme entrée pour d'autres réseaux

OBJET SEGMENTATION

PERSON, CAT, DOG

(A) Classification

(B) Detection

(C) Segmention

THE FULLY-CONVOLUTIONNAL NETWORK

SCALIAN

UNE APPROCHE DIFFÉRENTE

UPSAMPLING

Upsampling Via Deconvolution (Blue: Input, Green: Output)

SEGMENTATION D'IMAGES

SCALIAN

L'AJOUT DE SKIP CONENCTION

- On réduit la taille de l'information pour la reconstruire à l'aide d'Upsampling
- On réalise une prédiction par pixel

SEGMENTATION D'IMAGES

SCALIAN

VUE DÉTAILLÉE

- On observe une décomposition en 2 parties : encoder, decoder
- On utilise des « skip connections »

SEGMENTATION D'IMAGES

SCALIAN

SKIP CONNECTIONS

LE CALCUL DE LA FONCTION DE LOSS

Prediction for a selected pixel

Target for the corresponding pixel

Pixel-wise loss is calculated as the log loss, summed over all possible classes

$$-\sum_{classes} y_{true} \log \left(y_{pred}\right)$$

This scoring is repeated over all **pixels** and averaged

DE MULTIPLES VARIANTES

- Fully Convolutional Networks
- •U-Net: Convolutional Networks for Biomedical Image Segmentation
- •The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation
- •DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
- •FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation

. . .

Pour en savoir plus: source

CONCLUSION

Il existe plusieurs problèmes pour du traitement d'image : classification, détection, segmentation.

L'usage du deep learning a révolutionné les performances pour ces 3 problématiques.

Il existe plusieurs architectures différentes pour chaque problème. Certains ont une meilleur performance de prédiction et d'autres un temps d'inférence plus rapide.

Là encore, tout est question de compromis.

L'ESPACE LATENT D'UN AUTOENCODER

SCALIAN

Peut-on, en modifiant l'espace latent de manière aléatoire générer de nouvelles images ?

Visualisation de l'espace latent d'un autoencoder entraîné sur MNIST

LES VAE

VAE: variationnal auto-encodeur

 Principe : utiliser l'encodage compressé appris par un auto-encodeur pour générer de nouvelles images

 Problème : si je génère un encodage aléatoire, comment garantir que celui-ci soit suffisamment proche d'un vrai encodage, pour générer une image ayant du sens ?

LES VAE

VAE: variationnal auto-encodeur

 Solution : imposer que le vecteur latent suive une distribution gaussienne, ce qui permet de générer facilement des vecteurs aléatoires « crédibles ».

Un VAE

VAE

• Dernier problème : comment faire pour que les nouvelles couches apprennent bien une moyenne et une standard deviation ?

VAE

- Dernier problème : comment faire pour que les nouvelles couches apprennent bien une moyenne et une standard deviation ?
- Solution : inclure ces contraintes lors de l'apprentissage du réseau.

Erreur = erreur_reconstruction + erreur_latente

Et le réseau est entraîné à minimiser cette erreur comme un réseau classique.

- Erreur_reconstruction mesure la différence entre l'entrée et la sortie reconstruite.
- Erreur_latente mesure si les valeurs de la couche latente suit bien une loi gaussienne avec pour paramètre les valeurs des couches mean et std.

VAE

- Avantages : plus rapides que les gans.
- Très bon compromis entre temps d'entraînement et qualité de l'image générée.

Nous verrons ça sur une application!

DRAW

Draw: Recurrent neural network for image generation

- Basé sur un VAE.
- Idée: inspiré des artistes, ils ne dessinent pas le dessin final d'un seul coup, mais améliore leur dessin au fur et à mesure et partie par partie.
- Utilisation de récurrence dans le réseau.
- Utilisation de mécanisme attentionnel :
 - A chaque étape de la récurrence le réseau se concentre sur une région partielle différente de l'image
- Meilleur qu'un VAE, mais plus long

DRAW

Fonctionnement du Modèle DRAW

PIXEL RNN

Pixel RNN: Modèle autorégressif utilisé pour la génération ou reconstruction d'image.

- Autorégressif car prédit les pixels au fur et à mesure, et prend en compte les derniers pixels prédits pour prédire le suivant.
- Utilisation de neurones récurrents de type LSTM.
- Apprend la probabilité de la couleur d'un pixel en fonction des précédents.

PIXEL RNN

Utilisé pour la génération ou reconstruction d'entrée.

Figure 1. Image completions sampled from a PixelRNN.

LES MACHINES DE BOLTZMANN

Machine de boltzmann : réseau constitué d'une entrée et d'une couche cachée

- Restreinte (RBM) si toutes les connections sont entre l'entrée et la couche cachée.
- En pratique seule les RBM sont entraînables.
- « Auto-encodeur » replié qui apprend à estimer la distribution de probabilité des features en entrée.

Couche cachée = features en entrées souvent présentes ensembles.

Entrée

Machine de Boltzmann restreinte

LES MACHINES DE BOLTZMANN

- Les neurones cachées représentent les dépendances entre les features de l'entrée
- Applicables à la génération de données
 - Si l'on connait la distribution de probabilité on peut générer de nouvelles images

- Application à la reconstruction de donnée
 - En passant une entrée partielle, reconstruit l'entrée.

Deep belief network : réseau construit en « empilant » des RBMs

Deep belief network : réseau construit en « empilant » des RBMs

Entraînement « greedy » des RBMs une par une.

Deep belief network : réseau construit en « empilant » des RBMs

Entraînement « greedy » des RBMs une par une.

Deep belief network : réseau construit en « empilant » des RBMs

Entraînement « greedy » des RBMs une par une.

Application : reconstruction d'une entrée bruitée ou partielle

Application : extracteur de feature non supervisé

- Pour les images, le transfert learning donne de meilleurs résultats.
- Applicable dans des domaines, ou sur des données, où le transfert learning n'est pas applicable.
- Ou si les modèles entraînés n'ont pas appris de features adaptées à la tâche.

CAS D'USAGE

SCALIAN

MOTEUR DE RECOMMENDATIONS

Permet, une fois entrainé,

À partir des films aimés ou non par l'utilisateur de générer une liste de features latentes qui décrivent les « gouts » pour un utilisateur.