

Data access through Virtual Research Environments

Antoine QUÉRIC,

IFREMER

Data is:

- converted to an inter-operable format (netCDF),
- compliant with Marinet2 data standards

How should you access to the data from the VRE or your desktop?

What are we going to talk about?

Jupyter notebooks / lab: interact with your python code on the go, in your web browser and easily share youur code

Xarray: convenient python module to handle multidimensional data

Intake: virtualize the access to your data for your users

Opening files with Python

Data is stored on your datacenter.

Open one file or a collection with xarray

Import python modules

```
In [1]: import warnings
    warnings.filterwarnings('ignore')
    import xarray as xr
    import glob
```

Locate the files on your datacenter

Here we only show some of them, the collection is bigger.

Open the collection of files with xarray

Where are my files, again?

Handling data in different directories can become painful.

Users do not always know how to load it.

Intake catalogs in a nutshell

Data loading instructions

Intake catalogs in a nutshell

Easy data handling with xarray

Create a subset of your dataset In [13]: ds = ds.squeeze().sortby("TIME") # Removing DEPTH dimension which is not necessary here subset = ds.where((ds.TIME >= np.datetime64("2019-06-04T11:50:00")) & (ds.TIME <= np.datetime64("2019-06-04T12:00:00")), subset Out[13]: xarray.Dataset Dimensions: (TIME: 26481) ▼ Coordinates: TIME (TIME) datetime64[ns] 2019-06-04T11:50:00 ... 2019-06-04T12:00:00 array(['2019-06-04T11:50:00.000000000', '2019-06-04T11:50:00.009999872', '2019-06-04T11:50:00.020000000', ..., '2019-06-04T11:59:59.980000000', '2019-06-04T11:59:59.990000128', '2019-06-04T12:00:00.000000000'], dtype='datetime64[ns]') Data variables: float32 dask.array<chunksize=(4880,), meta=np.ndarray> DEPH (TIME) М1 (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> float32 dask.array<chunksize=(4880,), meta=np.ndarray> M2 (TIME) Null (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> S (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> float32 dask.array<chunksize=(4880,), meta=np.ndarray> Amont (TIME) 25m (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> RRWind X (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> RRWind Y (TIME) float32 dask.array<chunksize=(4880,), meta=np.ndarray> float32 dask.array<chunksize=(4880,), meta=np.ndarray> RRWind Z (TIME)

Easy data handling with xarray

Generate plots

```
In [15]: import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np

    plt.rcParams.update({'font.size': 22})

    fig = plt.figure(figsize=(40,40))
        ax = fig.add_subplot(211, projection='3d')

    ax.set
    ax.plot(subset.RRWind_X, subset.RRWind_Y, subset.RRWind_Z)

    ax2 = fig.add_subplot(212)
    ax2.plot(subset.TIME, subset.RRWind_Roll)

Out[15]: [<matplotlib.lines.Line2D at 0x2aab21dbbb80>]
```


Perspectives with Intake

Intake provides a **server** mode :

share your catalog and the related data outside your datacenter

