Rozwinięcie liczby rzeczywistej przy danej podstawie

Twierdzenie

Niech b będzie większą od 1 liczbą całkowitą. Każda nieujemna liczba rzeczywista x jest sumą jednoznacznie określonego szeregu postaci $\sum_{k=0}^{\infty} \frac{x_k}{b^k}$, takiego że

- $x_0 = \lfloor x \rfloor$ oraz $x_k \in \{0, 1, \dots, b-1\}$ dla k > 0.
- Nie istnieje liczba naturalna K taka, że dla każdego k>K zachodzi $x_k=b-1$.

Szereg zdefiniowany w powyższym twierdzeniu nazywamy **standardowym (lub normalnym) rozwinięciem liczby** x **przy podstawie** b.

Twierdzenie o dzieleniu z resztą

Dla dowolnych niezerowych całkowitych liczb a i b istnieją jednoznacznie wyznaczone liczby całkowite q i r $(0 \leqslant r < |b|)$ takie, że

$$a = q \cdot b + r.$$

Liczbę q nazywamy **ilorazem**, a liczbę r resztą z dzielenia a przez b.

Przykład 1

ullet Dla a=33 i b=7 otrzymujemy q=4 i r=5:

$$33 = 4 \cdot 7 + 5$$
.

ullet Dla a=-27 i b=-6 otrzymujemy q=5 i r=3:

$$-27 = 5 \cdot (-6) + 3.$$

• Dla a=59 i b=-20 otrzymujemy q=-2 i r=19:

$$59 = (-2) \cdot (-20) + 19.$$

40 40 40 42 42 42 2 414 (*

Niektóre zbiory liczbowe

N — zbiór liczb naturalnych

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

(UWAGA! W trakcie tego kursu będziemy domyślnie zakładać, że 0 nie jest liczbą naturalną.)

ℤ — zbiór liczb całkowitych

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$$

ullet \mathbb{Q} — zbiór liczb wymiernych

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N}, q \neq 0 \right\}$$

- \bullet \mathbb{R} zbiór liczb rzeczywistych \mathbb{R} zbiór granic wszystkich ciągów zbieżnych o współczynnikach wymiernych
- ullet ${\Bbb C}$ zbiór liczb zespolonych

$$\mathbb{C} = \left\{ a + bi : a, b \in \mathbb{R}, \ i^2 = -1 \right\}$$

• H, O, S,...

Konwersja $a^s \rightarrow a^t$

System o podstawie a może posłużyć jako system pośredni między systemami o podstawiach a^s i a^t :

$$n_{a^s} \to n_a \to n_{a^t}$$
.

Przykład

Liczbę 10012031_4 zapisać w systemie o podstawie 8.

Liczby 4 i 8 są potęgami liczby 2, więc pośrednio użyjemy systemu binarnego.

1							
01	00	00	01	10	00	11	01

Zatem $10012031_4 = 100000110001101_2$.

100	000	110	001	101
4	0	6	1	5

Ostatecznie $10012031_4 = 40615_8$.

Konwersja z systemu dziesiętnego

Jak przekształcić liczbę naturalną n zapisaną w systemie o podstawie 10 na liczbę n zapisaną w systemie o podstawie b?

Konwersja z systemu dziesiętnego: Pierwszy sposób

- Liczbę n zapisujemy w postaci $n=q_0\cdot b+r_0$. Liczba r_0 odpowiada cyfrze \bar{a}_0 w zapisie liczby n przy podstawie b.
- ② Liczbę q_0 zapisujemy w postaci $q_0=q_1\cdot b+r_1$. Liczba r_1 odpowiada cyfrze \bar{a}_1 w zapisie liczby n przy podstawie b.
- **3** Procedure powtarzamy do momentu, gdy $q_i = 0$.

Korzystając ze wzoru (1), można przyjąć notację

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b^1 + a_0 b^0 =: (\bar{a}_k \bar{a}_{k-1} \ldots \bar{a}_1 \bar{a}_0)_b,$$
 (2)

gdzie \bar{a}_i jest cyfrą odpowiadającą liczbie a_i (nawiasy można pominąć). Prawą stronę równania (2) nazywamy **zapisem liczby** n **przy podstawie** b.

Przykład

Otrzymujemy

$$1202 = (1202)_{10}$$
$$= (14302)_5$$
$$= (10010110010)_2$$

Uwaga!

Liczby w zapisie o podstawie 10 będziemy zwyczajowo zapisywać w postaci $\bar{a}_k \bar{a}_{k-1} \dots \bar{a}_1 \bar{a}_0$ zamiast $(\bar{a}_k \bar{a}_{k-1} \dots \bar{a}_1 \bar{a}_0)_k$.

4□ > 4回 > 4 亘 > 4 亘 > 0 Q ()

Liczbę 352 zapisać w systemie o podstawie 11.

$$352 = 32 \cdot 11 + 0$$
$$32 = 2 \cdot 11 + 10$$
$$2 = 0 \cdot 11 + 2$$

Resztom 0,10 i 2 przypisujemy, odpowiednio, cyfry 0,A i 2.

Ostatecznie $352 = 2A0_{11}$.

14 / 25

Zauważmy, że

$$\begin{split} 1202 &= 1 \cdot 10^3 + 2 \cdot 10^2 + 0 \cdot 10^1 + 2 \cdot 10^0 \\ &= 1 \cdot 5^4 + 4 \cdot 5^3 + 3 \cdot 5^2 + 0 \cdot 5^1 + 2 \cdot 5^0 \\ &= 1 \cdot 2^{10} + 0 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + \\ &\quad + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 \end{split}$$

Zatem

$$1 \cdot 10^3 + 2 \cdot 10^2 + 0 \cdot 10^1 + 2 \cdot 10^0$$

jest postacią potęgową liczby 1202 przy podstawie 10,

$$1 \cdot 5^4 + 4 \cdot 5^3 + 3 \cdot 5^2 + 0 \cdot 5^1 + 2 \cdot 5^0$$

jest postacią potęgową liczby 1202 przy podstawie 5, natomiast

$$1 \cdot 2^{10} + 0 \cdot 2^9 + 0 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

jest postacią potęgową liczby 1202 przy podstawie 2.

← □ → ← □ → ← □ → ← □ →

8 marca 2024

Systemy liczbowe

Systemem liczbowym nazywamy sposób zapisu liczb.

Przykładowe dawne systemy liczbowe:

 \bullet egipski (ok. 3000 p.n.e. — 1000 n.e.) — system oparty na hieroglifach reprezentujących kolejne potęgi liczby 10

ı	n	9	Q -\$		9	32
1	10	100	1000	10000	100000	10 ⁶

 $\label{eq:first-andrews} \textbf{\'Z} \textbf{r\'od\'lo}: \ \textit{https://mathshistory.st-andrews.ac.uk/HistTopics/Egyptian_numerals} \\$

- babiloński używany w Mezopotamii, system pozycyjny o podstawie 60
- grecki system alfabetyczny (każdej literze alfabetu przypisywano wartość liczbową)
- rzymski (wybrane litery alfabetu, dodawanie i odejmowanie) obecnie używany głównie w celach edukacyjnych lub w pewnych specyficznych kontekstach (liczby na zegarach, numery rozdziałów)

Zauważmy, że poprzednie twierdzenie umożliwia zapis dowolnej dodatniej liczby rzeczywistej x w systemie o podstawie b. Jeżeli

$$x = \sum_{k=0}^{\infty} \frac{x_k}{b^k},$$

to możemy przyjąć, że

$$x = (\bar{a}_n \bar{a}_{n-1} \dots \bar{a}_0 . \bar{x}_1 \bar{x}_2 \dots)_b,$$

gdzie $(\bar{a}_n \bar{a}_{n-1} \dots \bar{a}_0)_b = x_0$ oraz \bar{x}_i jest cyfrą o wartości x_i .

Przykład

Zauważmy, że

$$251.84 = 250 + 1 + 0.6 + 0.24 =$$

$$= 2 \cdot 125 + 1 + 4 \cdot 0.2 + 1 \cdot 0.04 =$$

$$= 2 \cdot 5^{3} + 0 \cdot 5^{2} + 0 \cdot 5^{1} + 1 \cdot 5^{0} + 4 \cdot 5^{-1} + 1 \cdot 5^{-2} =$$

$$= 2001.41_{5}.$$

Zatem $251.84 = 2001.41_5$.

Przykład (1/5)

Wyzaczyć liczbę permutacji zbioru $[7]=\{1,2,3,4,5,6,7\}$, które nie zawierają czterech kolejnych elementów w porządku rosnącym.

Niech X będzie zbiorem permutacji o szukanej własności. Zauważmy, że liczba wszystkich permutacji zbioru [7] to 7!=5040.

W zbiorze [7] wyszczególnimy pozdbiór A złożony z tych permutacji, które zawierają cztery kolejne elementy w porządku rosnącym. Oczywiście

$$|X| = 7! - |A|.$$

W zbiorze A określamy cztery podzbiory:

- A_1 zbiór permutacji zawierających elementy w porządku rosnącym na pozycjach 1, 2, 3 i 4. (• • $\circ \circ$)
- A_2 zbiór permutacji zawierających elementy w porządku rosnącym na pozycjach 2, 3, 4 i 5. (\circ • • \circ)
- A_3 zbiór permutacji zawierających elementy w porządku rosnącym na pozycjach 3, 4, 5 i 6. ($\circ \circ \bullet \bullet \bullet \circ$)
- A_4 zbiór permutacji zawierających elementy w porządku rosnącym na pozycjach 4, 5, 6 i 7. $(\circ \circ \circ \bullet \bullet \bullet \bullet)$

Określ liczbę 12-cyfrowych liczb złożonych z czterech cyfr 1, czterech cyfr 2, trzech cyfr 5 i jednej cyfry 8.

$$\binom{12}{4} \cdot \binom{8}{4} \cdot \binom{4}{3} \cdot \binom{1}{1} = 495 \cdot 70 \cdot 4 \cdot 1 = 138\,600$$

Przykład

Wyznacz liczbę anagramów słowa rearrange.

W rozważanym słowie występują trzy litery r, dwie litery e, dwie litery a i po jednej literze n i g.

$$\binom{9}{3} \binom{6}{2} \binom{4}{2} \binom{2}{1} \binom{1}{1} \binom{1}{1} = \frac{9!}{3! \cdot 2! \cdot 2! \cdot 1! \cdot 1!} = 15120.$$

B. Pawlik

Liczba elementów sumy zbiorów

Przykład

Adaś uczy się dwóch języków europejskich, Beatka uczy się jednego języka afrykańskiego, a Celinka uczy się trzech języków azjatyckich. Ilu różnych języków uczą się dzieci?

$$2+1+3=6.$$

Prawo sumy dla zbiorów rozłącznych

Niech S_1,\ldots,S_n będą zbiorami skończonymi, które są parami rozłączne. Wtedy

$$\left| \bigcup_{i=1}^{n} S_i \right| = \sum_{i=1}^{n} |S_i|.$$

Wartości symbolu dwumianowego $\binom{n}{k}$ dla małych wartości n i k:

n	0	1	2	3	4	5	6	7	8	9	10
0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
2	1	2	1	0	0	0	0	0	0	0	0
3	1	3	3	1	0	0	0	0	0	0	0
4	1	4	6	4	1	0	0	0	0	0	0
5	1	5	10	10	5	1	0	0	0	0	0
6	1	6	15	20	15	6	1	0	0	0	0
7	1	7	21	35	35	21	7	1	0	0	0
8	1	8	28	56	70	56	28	8	1	0	0
9	1	9	36	84	126	126	84	36	9	1	0
10	1	10	45	120	210	252	210	120	45	10	1

Przykład (4/5)

Obliczmy $|A_1 \cap A_2 \cap A_3|$.

Zauważmy, że w tym przypadku elementy na początkowych 6-ciu pozycjach muszą być ustawione w porządku rosnącym (◆ • • • • • ○), więc

$$|A_1 \cap A_2 \cap A_3| = {7 \choose 6} \cdot 1! = |A_2 \cap A_3 \cap A_4|.$$

Natomiast w przypadku, w którym pomijamy jeden z "wewnętrznych" podzbiorów, np. A_3 , musimy mieć wszystkie elementy w porządku rosnącym ($\bullet \bullet \bullet \bullet \bullet \bullet \bullet$). Zatem

$$|A_1 \cap A_2 \cap A_4| = 1 = |A_1 \cap A_3 \cap A_4|.$$

W przypadku przecięcia wszystkich zbiorów ($\bullet \bullet \bullet \bullet \bullet \bullet$) ponownie mamy tylko jeden przypadek, więc

$$|A_1 \cap A_2 \cap A_3 \cap A_4| = 1.$$

Definicja

Niech $k \le n$. k-permutacją (permutacją częściową) zbioru n-elementowego nazywamy dowolny k-elementowy ciąg różnych elementów tego zbioru.

Stwierdzenie

- Liczba różnych k-permutacji zbioru n-elementowego wynosi $\frac{n!}{(n-k)!}$.
- ullet Permutacja zbioru n-elementowego jest jego n-permutacją.

Uwaga! (semantyczne wariactwo)

W starszej literaturze naukowej (oraz w polskich szkołach) permutacje częściowe bywają nazywane wariacjami i oznaczane przez V_n^k , P_n^k , nP_k , nP_k , $P_{n,k}$ itp. (w zależności od źródła).

Kombinacje

Przykład

Losujemy trzy spośród siedmiu numerowanych kul. Na ile sposobów możemy to zrobić?

Z poprzedniego przykładu wiemy, że liczba uporządkowanych trójek kul wynosi 210. Teraz interesuje nas liczba nieuporządkowanych trójek. Zauważmy, że każdej nieuporządkowanej trójce $\{K_1, K_2, K_3\}$ odpowiada

$$(K_1, K_2, K_3), (K_2, K_1, K_3), (K_3, K_1, K_2),$$

 $(K_1, K_3, K_2), (K_2, K_3, K_1), (K_3, K_2, K_1).$

Zatem szukana liczba to $\frac{210}{6} = 35$.

dokładnie sześć uporządkowanych trójek:

Definicia

Kombinacją n **po** k nazywamy k-elementowy podzbiór zbioru n-elementowego.

lle jest liczb dodatnich mniejszych od 1000, które są podzielne przez $2\ \mathrm{lub}\ 9\ \mathrm{lub}\ 11?$

Zauważmy, że

$$A_2$$
 — zbiór rozpatrywanych liczb podzielnych przez 2; $|A_2| = 499$

 A_9 — zbiór rozpatrywanych liczb podzielnych przez 9; $|A_9| = 111$

$$A_{11}$$
 — zbiór rozpatrywanych liczb podzielnych przez 11; $|A_{11}|=90$

$$A_{18} = A_2 \cap A_9; |A_{18}| = 55$$

$$A_{22} = A_2 \cap A_{11}; |A_{22}| = 45$$

$$A_{99} = A_9 \cap A_{11}; |A_{99}| = 10$$

$$A_{198} = A_2 \cap A_9 \cap A_{11}; |A_{198}| = 5$$

Ostatecznie, stosując zasadę włączeń i wyłączeń, otrzymujemy

$$|A_2 \cup A_9 \cup A_{11}| = |A_2| + |A_9| + |A_{11}| - |A_{18}| - |A_{22}| - |A_{99}| + |A_{198}| =$$

= $499 + 111 + 90 - 55 - 45 - 10 + 5 = 595$.

4□ > 4□ > 4 = > 4 = > = 900

Wniosek

Dla każdej liczby całkowitej nieujemnej n zachodzi

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n.$$

Dowód.

Zauważmy, że $\binom{n}{k}$ oznacza liczbę podzbiorów zbioru n-elementowego. Zatem

$$\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$

to liczba wszystkich podzbiorów zbioru n-elementowego. Z drugiej strony, wiemy że liczba podzbiorów danego zbioru to 2^n , wiec dana równość jest prawdziwa.

Dowód (2/2).

Dodajemy z lewej strony sztuczne zero, a następnie korzystamy ze wzoru dwumianowego Newtona:

$$\frac{1 - \binom{m}{0} + \binom{m}{1} - \binom{m}{2} + \binom{m}{3} - \dots + (-1)^{m-1} \binom{m}{m}}{m} = \\
= 1 - \left(\binom{m}{0} - \binom{m}{1} + \binom{m}{2} - \binom{m}{3} + \dots + (-1)^m \binom{m}{m} \right) = \\
= 1 - \sum_{k=0}^m \binom{m}{k} 1^{m-k} (-1)^k = 1 - (1-1)^m = 1.$$

Zatem powyższe wyrażenie zliczyło element s dokładnie raz, co dowodzi poprawności zasady włączeń i wyłączeń.

