Ime4qtl: an efficient and flexible tool for QTL mapping in related individuals

Andrey Ziyatdinov¹, Helena Brunel¹, Miquel Vázquez-Santiago², Angel Martinez-Perez¹, José Manuel Soria¹

- (1) Unitat de Genomica de Malalties Complexes. Institut d'Investigació Biomédica Sant Pau (IIB-Sant Pau). Barcelona. Spain.
- (2) Unitat de Trombosis i Hemostasia. Hospital de la Santa Creu i Sant Pau. Barcelona. Spain

About Ime4qtl

Ime4 (Bates et al.) provided linear mixed models (LMMs) in R since 2002, while Ime4qtl extends it with random effects defined via the covariance matrices, e.g. the double kinship matrix.

Use cases of Ime4qtl

- Regress out experimental noise (e.g. gene expression data)
- Introduce custom similarity matrices (e.g. pathway s) into LMMs
- Bootstrap parameters (lme4); exact significance tests (RLRsim)

Failures when using tools other than Ime4qtl

- Get residuals of a model using SOLAR
- Run logistic regression for a binary trait using GEMMA
- Include twins in the study using pedigreemm

Features

Features of Ime4 inherited by Ime4qtl

- Allows arbitrarily many nested and crossed random effects
- Efficient for large data sets by using the Eigen package
- Fits generalized LMMs and nonlinear LMMs
 - Laplace approx. or adaptive Gauss-Hermite quadrature
 - GLMMs allow user-defined families and link functions

Features implemented in Ime4qtl

- Cholesky decomposition of the covariance matrix and further update of the incidence matrix (Harville and Callanan)
- The nearest positive definite of a real symmetric matrix estimated for semidefinite covariance matrices (Higham)
- Constraints on the model parameters for the inference

Binary trait

Thrombosis is a common complex disease. The major determinants of thrombosis include both environmental and genetic factors.

- Enironmental: age & gender
- Genetic: ABO blood group system
 - Group O is protector
- The heritability is 60% (Souto et al.)
- The prevalence is between 0.2% & 2%

Combined Linkage & Assoc.

(Soria et al.) showed that a locus in the F12 gene influences both

- Susceptibility to thrombosis

Figure below shows (a) linkage and (b) association mappings on Chromosome 5 for Factor FXII in the GAIT1 sample.

Modeling prevalence?

- Left: GAIT2 (118 cases vs. 817 controls)
- Right: GAIT1 (53 cases vs. 340 controls)
- Solid red line: prevalence is fixed
- Dashed red line: prevalence is free

Links

- Repository github.com/variani/lme4qtl
- Presentation lives here bit.ly/1UiTZvQ

Coagulation Factor XII (FXII) activity

c46t is the key player

##	Data	a:	dat								
##	Mode	els	:								
##	m0:	FX	(II ~ (I	1 ID)							
##	m1:	FX	(II ~ (I	1 ID)	+ (1]	IBDID)					
##	m2:	FX	II ~ C4	46t + (1	l ID)						
##	m:	FXI	I ~ c46	6t + (1	ID) +	(1 IBD]	ID)				
##		Df	AIC	BIC	logLik	deviance	Chisq	Chi [)f	Pr(>Chisq)	
##	m0	3	3739.8	3751.6	-1866.9	3733.8					
##	m1	4	3698.8	3714.6	-1845.4	3690.8	42.9508		1	5.614e-11	***
##	m2	4	3592.7	3608.5	-1792.4	3584.7	106.0915		0	< 2.2e-16	***
##	m	5	3592.0	3611.8	-1791.0	3582.0	2.7186		1	0.09918	
##											
##	Sign	oif	codes	. 0 1	L++1 0 00	1 1441 0	01 141 0	05 1	1	01111	

Gene x Env. Interaction

Body mass index (bmi) is known to depend on age and gender. Do genetic components also depend on gender?

- Sex-specificity model shows
- P-value for the env. component: 0.03
- P-value for the gen. Component: 0.09 (anova test with df = 2 was used)

Ime4qtl is efficient

GWAS on GAIT2

- N = 934 individuals, M = 10M markers
- Server with RAM 128G, 64 CPU x 2.3G
- SOLAR 7.6.6 (stable on March, 2015)

Model	SOLAR (days)	lme4qtl (days)
APTT ~ 1 + (1 ID)	1.2	1.6
APTT ~ AGE + SEX + (1 ID)	1.6	1.6
APTT ~ 1 + (1 HHID) + (1 ID)	5.6	1.7
APTT ~ AGE+ SEX + (1 HHID) + (1 ID)	8.2	1.7