定理 2.26 環の準同型像はまた環である。

【証明】

環 $< B, \oplus, \otimes >$ を環 $< A, +, \times >$ の準同型像とし, f を準同型写像とする。

- (1) 定理 2.21(3)により,< A,+ > がアーベル群であるとき,< B, \oplus > は群である。B の任意の要素 b_1 と b_2 に対して,A の中に a_1 と a_2 があり, $b_1 = f(a_1)$ と $b_2 = f(a_2)$ が成り立つ。 + は可換演算であるから, $a_1 + a_2 = a_2 + a_1$ である。 よって, $b_1 \oplus b_2 = f(a_1) \oplus f(a_2) = f(a_1 + a_2) = f(a_2 + a_1) = f(a_2) \oplus f(a_1) = b_2 \oplus b_1$ である。すなわち, \oplus は可換演算である。ゆえに,< B, \oplus > はアーベル群である。
- (2) 定理 2.21(1)により, < A ,× > が半群であるとき , < B ,⊗ > は半群である。
- (3) Bの任意の要素 $b_1 \geq b_2 \geq b_3$ に対して,Aの中に $a_1 \geq a_2 \geq a_3$ があり, $b_1 = f(a_1) \geq b_2 = f(a_2) \geq b_3 = f(a_3)$ が成り立つ。よって, $b_1 \otimes (b_2 \oplus b_3) = f(a_1) \otimes (f(a_2) \oplus f(a_3))$ $= f(a_1) \otimes f(a_2 + a_3)$ $= f(a_1 \times (a_2 + a_3))$ $= f(a_1 \times a_2) + (a_1 \times a_3)$ $= f(a_1 \times a_2) \oplus f(a_1 \times a_3)$

 $= (f(a_1) \otimes f(a_2)) \oplus (f(a_1) \otimes f(a_3))$ $= (b_1 \otimes b_2) \oplus (b_1 \otimes b_3)$

である。 $(b_2\oplus b_3)\otimes b_1=(b_2\otimes b_1)\oplus (b_3\otimes b_1)$ であることは , 同様に証明される。

(1)と(2)と(3)より,環<A,+, \times >の準同型像<B, \oplus , \otimes >はまた環である。