КОМП'ЮТЕРНИЙ СИНТЕЗ та ОБРОБКА ЗОБРАЖЕНЬ

2020 / 2021 навчальний рік

ОБЪЕМ УЧЕБНОЙ РАБОТЫ СТАЦИОНАР

Всего 6 кредита, 180 часов

• Аудиторные

•Лабораторные 32 часа 8 лаб.работ

•Экзамен

МЕТА ДИСЦИПЛІНИ

Надання представлення здобувачам вищої освіти базових методів та алгоритмів синтезу та обробки зображень при організації та розробці програмного забезпечення систем комп'ютерного зору.

ПРОГРАМА. Тематика лекцій

- **Tema 1.** Одновимірна безперервний сигнал. Спектр одновимірного сигналу. Дискретизація одновимірних неперервних сигналів. Теорема Найквіста Котельнікова. Відновлення сигналу.
- **Tema 2.** Зображення як двовимірний сигнал. Спектр двовимірного сигналу. Дискретизація двовимірного сигналу (зображення). Теорема Найквіста Котельнікова для двомірних сигналів. Відновлення зображення.
- **Тема 3. Квантування зображень.** Методи зменшення спотворень зображень при квантуванні.

ПРОГРАМА. Тематика лекцій

- **Tema 4.** Аліасинг (aliasing). Методи зменшення спотворень зображень, що викликані похибками дискретизації зображень при синтезі 3D сцен.
- **Тема 5.** Геометричні перетворення зображень. Корекція геометричних спотворень, збільшення, зменшення, повертання зображень.
- **Tema 6.** Методи сегментації зображень. Визначення характеристик об'єктів на зображеннях.
- Тема 7. Визначення об'єктів відомої форми на зображеннях.
- **Tema 8.** Методи та засоби синтезу 3D сцен в комп'ютерних іграх.

ПРОГРАМА. Тематика лабораторних занять

1 Blender2 Phaser \\ Unity \\ Android

Башков Евгений Александрович Д.т.н., проф., кафедра прикладной математики

mail: eabashkov@i.ua

Написать письмо, указать полностью ФИО и группу. !!!! В теме письма ВСЕГДА писать

2021DIPCG_MAG20

Команда в Teams: 2020-2021.

ІПЗм-20. Синтез та обробка

Материалы на GitHub:

https://github.com/eabshkvprof/2021 CG DIP

МЕТА МОДУЛЯ 1

Математичні основи представлення цифрових зображень

СИГНАЛИ

- 1. Загальна схема формування цифрового зображення.
- 2. Дискретизація, квантування.
- 3. Одновимірний безперервний сигнал.
- 4. Ряд Фур'є. Спектр сигналу.

Обробка зображень

Обробка зображень - будь-яка форма обробки інформації, для якої вхідні дані представлені зображенням, наприклад, фотографіями або відеокадрами. Результат обробки - нове зображення або інша інформація.

- Візуальне покращення зображення (усунення шуму, корекція яскравості, контрастності, колірного тону, підвищення різкості, усунення дисторсії). Підготовка для подальшого аналізу;
- Визначення характеристик об'єктів, їх форми, переміщення. Ідентифікація об'єктів.

Області застосування систем обробки зображень

- Системи керування процесами (промислові роботи, автономний транспорт, ...).
- Системи відеоспостереження.
- Системи індексації баз даних зображень.
- Системи аналізу та інтерпретації зображень (медичні зображення, аерофотознімків, космічні знімки, технічна діагностика,).
- Обчислювальна фотографія
- Додаткова реальність.

Загальна схема обробки зображень

Bxiд I[x,y]

Дискретизатор, Квантизатор

Цифрове зображення F[x,y]

ОБРОБКА

Оброблене зображення G[x,y]

Дисплей (відтворення)

Вихід $I_{proc}[x,y]$

Загальна схема обробки зображень

Оцифроване зображення

Система комп'ютерної обробки зображень

Метадані (результати обробки)

Оброблене **зображення**

Огляд застосування обробки зображень

https://www.baslerweb.com/ru/vision-campus/tehnoligii-kamer/what-is-image-processing/

Зображення – деякий сигнал I(...), призначений для зорового сприйняття

	Ахроматичне	Кольорове
Статичне	I(x,y)	$I(x, y, \lambda)$
Динамічне	I(x, y, t)	$I(x, y, t, \lambda)$

I(...) - функція розподілу яскравості,

х, у - просторові координати,

t – час,

λ – довжина хвилі світлового випромінювання.

Зображення - сигнал, призначений для зорового сприйняття людиною.

Класифікація сигналів

Дискретизація сигналів

Дискретизація (discretization) - це перетворення безперервного сигналу в послідовність відліків (sampls). Дискретизація здійснює перетворення безперервних сигналів (функцій *I(x)*), в функції миттєвих значень сигналів $I(n*\Delta x)$ по дискретному аргументу. $I(n^*\Delta x)$ – відлік I(x) в точці $n^*\Delta x$

Дискретизація сигналів

Декілька визначень.

Растрування - природний спосіб дискретизації - уявлення сигналу у вигляді вибірки його значень в окремих, регулярно розташованих точках.

Послідовність точок (вузлів), в яких беруться відліки, називається *растром*.

Інтервал, через який беруться значення безперервного сигналу називається кроком дискретизації.

Зворотне кроку величина називається частотою дискретизації.

Квантування сигналу за рівнем

Квантування (quantization) сигналу розбивка діапазону значень сигналу на скінченну кількість інтервалів. Кількість інтервалів (рівнів) **n** – глибина

2D – дискретизований квантований сигнал - цифрове зображення

Цифрове зображення

Найменший логічний елемент двовимірного цифрового зображення – *піксель* (*pixel*) - неділимий об'єкт, що характеризується певним кольором. Растрове комп'ютерне зображення складається з пікселів, розташованих *по рядках і стовицях*.

Роздільна здатність (роздільність, resolution) — величина, що визначає кількість пікселів одиницю площі (або одиницю довжини).

Цифрове зображення

Ряд Фур'є

Тригонометричний ряд Фур'є — спосіб представлення довільного безперервного безконечного періодичного сигналу (функції) I(x) сумою тригонометричних функцій синусу та косинусу. Процес знаходження параметрів ряду — розклад на гармоніки.

$$I(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(n\omega x) + b_n \sin(n\omega x))$$

$$\omega = \frac{2\pi}{T} \; ; \; a_0 = \frac{2}{T} \int_0^T I(x) dx \; ; \qquad a_n = \frac{2}{T} \int_0^T I(x) \cos(n\omega x) \, dx$$
$$b_n = \frac{2}{T} \int_0^T I(x) \sin(n\omega x) \, dx$$

Ряд Фур'є

Інша форма:

$$I(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos(n \frac{2\pi}{T} x + \theta_n) \right)$$

 A_n - амплітуда n—го гармонічного коливання,

 $n = n \omega$ - кругова частота n-го гармонічного коливання,

 θ_n - начальна фаза n—го гармонічного коливання. Т - період функції I(x)

Пример. Періодичний прямокутний імпульс

$$A$$
 - амплітуда,

$$au$$
 - тривалість

$$q = T/\tau$$
 скважність,

$$a_0 = \frac{2}{T} \int_{-T/2}^{T/2} A dx = \frac{2}{T} * A \tau = \frac{2A}{q} ; \frac{a_0}{2} = \frac{A}{q}$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} A \cos\left(n\frac{2\pi}{T}x\right) dx = \frac{4AT}{Tn2\pi} \sin\left(n\frac{\pi\tau}{T}\right) = \frac{2A}{n\pi} \sin\left(n\frac{\pi}{q}\right)$$

$$I(x) = \frac{A}{q} + \sum_{n=1}^{\infty} \frac{2A}{n\pi} \sin\left(n\frac{\pi}{q}\right) \left(\cos\left(n\frac{2\pi}{T}x\right)\right)$$

Ряд Фур'є

Комплексна форма ряду Фур'є

$$I(x) = \sum_{n=-\infty}^{\infty} \left(c_n e^{-\frac{i\pi nx}{l}} \right)$$

$$c_n = \frac{1}{2l} \int_{-l}^{l} I(x) e^{-\frac{i\pi nx}{l}} dx$$

$$n = 0, \pm 1, \pm 2, \dots$$

$$|c_n| = \sqrt{a_n^2 + b_n^2} /_2 - \text{спектр амплітуд}$$

$$\angle c_n = \text{arctg}(\frac{b_n}{a_n}) - \text{спектр фаз}$$

https://uk.wikipedia.org/wiki/%D0%A0%D1%8F%D0%B4 %D0%A4%D1%83%D1%80%27%D1%94

Ряд Фур'є. Спектр. Прямокутний Імпульс

Ряд Фур'є

- Сигнал будь-якої форми можна розкласти на синусоїдальні складові з різними частотами, кратними цілому числу.
- Сукупність цих складових називається спектром або поданням сигналу в частотній області.
- Сума цих складових формує значення сигналу у просторовій (часовій) області.

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 1. Lec 1