НАЗВАНИЕ УЧРЕЖДЕНИЯ, В КОТОРОМ ВЫПОЛНЯЛАСЬ ДАННАЯ ДИССЕРТАЦИОННАЯ РАБОТА

На правах рукописи УДК xxx.xxx

КУЗНЕЦОВ КОНСТАНТИН ИГОРЕВИЧ

ХАРАКТЕРИСТИКИ ВЕТРОВОГО ВОЛНЕНИЯ НА ПОБЕРЕЖЬЕ О.САХАЛИН ПО ДАННЫМ ДАТЧИКОВ ПРИДОННОГО ДАВЛЕНИЯ

Специальность 01.02.05 — «Механика жидкости газа и плазмы»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: д.ф.-м.н., профессор Куркин А.А.

Содержание

Bı	веден	ие	4
1	Mea	годы исследования	6
	1.1		6
	1.2	Форматирование текста	6
	1.3	Ссылки	6
	1.4	Формулы	6
		1.4.1 Ненумерованные одиночные формулы	6
		1.4.2 Ненумерованные многострочные формулы	7
		1.4.3 Нумерованные формулы	7
2	Резу	ультаты натурных наблюдений волнения на юго-восточном побережье о.Сахалин	9
	2.1	Одиночное изображение	9
	2.2	Длинное название параграфа, в котором мы узнаём как сделать две картинки с	
		общим номером и названием	9
	2.3	Пример вёрстки списоков	9
3	Мод	делирование	11
	3.1	Таблица обыкновенная	11
	3.2	Параграф - два	11
	3.3	Параграф с подпараграфами	11
		3.3.1 Подпараграф - один	11
		3.3.2 Подпараграф - два	11
3 a	ключ	чение	12
Cı	писон	к рисунков	13
Cı	писон	к таблиц	14
Лı	итера	атура	15
Δ	Наз	квание первого приложения	16

В	Очень длинное название второго приложения, в котором продемонстрирована рабо)-
	та с длинными таблицами	17
	В.1 Подраздер приложения	. 17
	В.2 Еще один подраздер приложения	. 19
	В.3 Очередной подраздер приложения	. 20
	В.4 И еще один подраздер приложения	. 20

Введение

Обзор, введение в тему, обозначение места данной работы в мировых исследованиях и т.п. **Целью** данной работы является . . .

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать, разработать, вычислить и т.д. и т.п.
- 2. Исследовать, разработать, вычислить и т.д. и т.п.
- 3. Исследовать, разработать, вычислить и т.д. и т.п.
- 4. Исследовать, разработать, вычислить и т.д. и т.п.

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые ...
- 2. Впервые . . .
- 3. Было выполнено оригинальное исследование ...

Научная и практическая значимость ...

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т.п.

Личный вклад. Автор принимал активное участие . . .

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [1–5], X из которых изданы в журналах, рекомендованных ВАК [1–3], XX — в тезисах докладов [4,5].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

Методы исследования

В данной главе будут показаны средства и методы изучения волнения:

- 1. Методы натурных наблюдений (датчики и т.д.). Статья датчики и системы
- 2. Методы хранения База данных
- 3. Методы Пересчета из придонного давления в обычное
- 4. Методы учета влияния нелинейности

1.1

1.2 Форматирование текста

Мы можем сделать жирный текст и курсив.

1.3 Ссылки

Сошлёмся на библиографию: [1], [2], [3–5].

Сошлёмся на приложения: Приложение А, Приложение В.2.

Сошлёмся на формулу: формула (1.1).

Сошлёмся на изображение: рисунок 2.2.

1.4 Формулы

1.4.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

αβγδεεζηθθικλπινξπωροσςτυφφχψωΓΔΘΛΞΠΣΥΦΨΩ

1.4.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.4.3 Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

В последствии на формулы (1.1) и (1.2) можно ссылаться.

Глава 2

Результаты натурных наблюдений волнения на юго-восточном побережье о. Сахалин

Сюда пойдет информация из статей: 1. по Холмску 2. По Взморью 3. Статьи с ЕН по пересчету

2.1 Одиночное изображение

Рисунок 2.1: ТеХ.

2.2 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

2.3 Пример вёрстки списоков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.

a)

Рисунок 2.2: Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Глава 3

Моделирование

Сюда пойдет содержание статьи по пересчету из нелинейности и моделированию на конечном дне.

3.1 Таблица обыкновенная

Так размещается таблица:

Таблица 3.1: Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min})$, K
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

3.2 Параграф - два

Некоторый текст.

3.3 Параграф с подпараграфами

3.3.1 Подпараграф - один

Некоторый текст.

3.3.2 Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан . . .

И какая-нибудь заключающая фраза.

Список рисунков

2.1	TeX	9
2.2	Очень длинная подпись к изображению, на котором представлены две фотогра-	
	фии Дональда Кнута	10

Список таблиц

3.1	Название таблицы																																				1	1
-----	------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

Литература

- 1. Название статьи / Автор1, Автор2, Автор3 [и др.] // Журнал. 2012. Т. 1. с. 100.
- 2. Автор. Название книги / под ред. Редактор. Издательство, 2012.
- 3. Автор. название тезисов конференции // Название сборника. 2012.
- 4. Название буклета.
- 5. "This is english article" / Author1, Author2, Author3 et al. // Journal. 2012. Vol. 2. p. 200.

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1 Подраздер приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
			продолжение следует

		I	(продолжение)
Параметр	Умолч.	Тип	Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
		. ,	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума 2: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
KICK	1	1111	1: генерация белого шума $(p_s - const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	:4	экватора
mars kick	0	int int	1: инициализация модели для планеты Марс 0: инициализация без шума ($p_s = const$)
KICK	1	IIIt	1: генерация белого шума ($p_s = const$)
			2: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	1	1111	1: генерация белого шума $(p_s = const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
&SURFPAI			
kick	1	int	0 : инициализация без шума ($p_s=const$)
			продолжение следует

			(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s = const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума ($p_s=const$)
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
-	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

В.2 Еще один подраздер приложения

Нужно больше подразделов приложения!

В.3 Очередной подраздер приложения

Нужно больше подразделов приложения!

В.4 И еще один подраздер приложения

Нужно больше подразделов приложения!