Redes e Sistemas Distribuídos

Fundamentos de Redes

Prof. Dr. Gilberto Fernandes Junior

- Unidade de Ensino: 1
- Competência da Unidade: Conhecer os fundamentos e princípios das redes de computadores
- Resumo: Saber como ocorre a comunicação de dados em rede, tipos de meios, hardwares e protocolos
- Palavras-chave: redes, comunicação, OSI, TCP/IP
- Título da Teleaula: Fundamentos de Redes
- Teleaula no: 1

Contextualização

- Introdução a redes de computadores
- Comunicação de dados
 - Sinais e meios de transmissão
- Classificação e topologia de redes
- Modelos de referência em redes
 - OSI e TCP/IP
- Protocolos e serviços de redes TCP/IP

Introdução a Redes de Computadores

Importância da aplicação de redes

Compartilhamento de recursos

 Tornar todos os programas, equipamentos e dados ao alcance de todas as pessoas na rede

Compartilhamento de informações

- Empresas possuem dependência vital de informações computadorizadas
- permitir acesso a informações e documentos relevantes de forma instantânea

Arquitetura cliente-servidor

amplamente usado e constitui a base da grande utilização da rede

Fonte: elaborada pelo autor

Arquitetura cliente-servidor

Há dois processos envolvidos, um na máquina cliente e um na máquina servidora

• A comunicação envolve solicitações e respostas

Fonte: elaborada pelo autor

Modos de Operação (Comunicação)

Simplex

comunicação unidirecional (rádio e TV)

Half-duplex

comunicação bidirecional alternada (rádio polícia)

Full-Duplex

comunicação bidirecional simultânea (telefone)

Comunicação de Dados

Tipos de sinais na comunicação

Sinal analógico

- são ondas eletromagnéticas que assumem infinitos valores ao longo do tempo.
- Este sinal é representado por uma onda senoidal com mplitude, frequência e fase

Sinal Digital

- representado por 0 s e 1 s (binário)
- diminuir a taxa de oscilação = aumento na qualidade

Fonte: disponível em: https://cutt.ly/ck2XTd9. Acesso em 19 fev. 2021

Tipos e meios de transmissão: Guiado

Par-trançado

- Nesta modalidade os fios são enrolados de forma helicoidal, pela qual ocorre menos interferência, uma vez que as ondas formadas em volta dos fios se cancelam.
- Esses fios suportam sinais analógicos e digitais nas suas transmissões e são divididos em CAT 5, 5e, 6 e 7, que se diferenciam pela largura de banda suportada ou pela presença ou não de blindagem.

Fonte: Pxhere. Disponível em: https://pxhere.com/pt/photo/1333968.

Acesso em: 19 fev. 2021

Tipos e meios de transmissão: Guiado

Cabo coaxial

- Tem um núcleo de cobre, envolto por uma camada plástica isolante, circundada por uma malha externa.
- Possibilita ligar redes com distância maiores, maior velocidade que o par trançado e recebe menos ruídos.
- 10Base2 10 Mbps e segmentos de até 185m
- 10Base5 banda larga e alcance de até 500m.

Fonte: Wikimedia Commons/FDominec. Disponível em:

https://commons.wikimedia.org/wiki/File:Coaxial cable cut.jpg. Acesso em: 19 fev. 2021

Tipos e meios de transmissão: Guiado

Fibra óptica

- o cabo de fibra é constituído por um núcleo e uma casca de sílica em sua volta.
- A luz é injetada por leds onde os dados são transmitidos.
- Ao receber as informações, o sinal óptico é transformado em sinal elétrico.
- Nesse tipo de transmissão, é possível alcançar velocidade de até 10 terabytes por segundo.

Fonte: Pixabay. Disponível em: https://pixabay.com/pt/photos/rede-fibra-%C3%B3ptica-comunica%C3%A7%C3%A3o-2633600/. Acesso em: 19 fey. 2021

Tipos e meios de transmissão: Não guiado

Rádio

 torres de transmissão até o ponto de instalação das antenas receptoras. Obstáculos causam perda na qualidade e às vezes até falha no sinal

Micro-ondas

 ondas viajam em linha reta entre o emissor e o receptor. Até 80 km (antena) a 100 m do solo plano.

Satélites

Classificação e Topologia de Redes

Classificação de Redes: por tecnologia

Redes de Broadcast

- Tipo de rede Dinâmica e estática
- Mensagens são enviadas e são recebidas por todos os nós da rede
- Exemplos: Redes Locais (LANs), Redes em anel, estrela, arvore, satélite, Redes em barra,

Redes Ponto a Ponto

- Vários destinos para chegar a um lugar, roteadores...
- Exemplos: WANs, ligações dedicadas,

Classificação de Redes: por escala

Redes Locais (LAN)

- Redes privadas contidas em um único edifício ou campus universitário com até alguns quilômetros de extensão.
- Velocidade de 10 Mbit/s a 100 Gigabit/s
- Principais tecnologias: Ethernet IEEE 802.3, u, z, ae

Redes Metropolitanas (MAN)

- Restrita a área de uma cidade até 10Km
- Exemplo: tv a cabo, WiMax

Classificação de Redes: por escala

Wide Area Network (WAN)

- País ou Continente,
- Computadores são ligados a sub-redes que transportam as mensagens. Estas sub-redes são mantidas por companhias telefônicas e outros provedores.
- Comutação por pacotes
- Sistema de satélite

Classificação de Redes

Redes sem fio

- Interconexão de sistemas (WPAN)
- LANs sem fios (WLAN)
 - IEEE 802.11 (a, b, g) wi-fi
- WANs sem fios (WWAN)
 - IEEE 802.16 (WiMax) alternativa ao uso de cabos na última milha

Topologias de Redes

Topologia Malha

 cada um dos dispositivos da rede (nós) possui um link dedicado com os demais da rede.

Fonte: elaborada pelo autor

Topologia em Anel

 Cada dispositivo possui uma conexão com o seu "vizinho". O sinal, quando enviado, percorre o anel até que o destino seja encontrado

Fonte: elaborada pelo autor

Topologias de Redes

Topologia Estrela

 cada dispositivo possui um link ponto a ponto com um concentrador, podendo este ser um hub, roteador ou switch

Fonte: elaborada pelo autor

Topologia de Barramento

 Esta topologia é considerada ponto a ponto, pois para fazer a conexão é necessário um backbone (tronco central) para interligar os dispositivos

Fonte: elaborada pelo autor

Conhecendo os hardwares de Redes

Descrição da SP

- Para estruturar as redes, existem alguns componentes de hardware que são básicos porém essenciais para prover a comunicação entre os dispositivos.
- Você está aprofundando seus conhecimentos em redes de computadores e precisa elaborar um relatório contend os princiapais tipos de hardares encontrados em redes!

Placas de Rede

- correspondem a um dispositivo de E/S
 (entrada/saída) que se conecta por meio
 de cabeamento aos nos de rede (Hub,
 roteador, switch ou brigde).
- O controlador de interface da rede (NIC Network Interface Controller) pode estar ou não integrado à placa-mãe.

Fonte: Pixabay.
Disponível em:
https://pixabay.com/pt/
https://pixabay.com/pt/
<a href="photos-p

Modem

- Tem a função de fazer a modulação e a demodulação das mensagens, podendo também ser
- o mercado oferece modems do tipo residencial, com conexão cabeada, 4G e fibra óptica, com a possibilidade de wi-fi integrado

Fonte: Wikimedia Comons.
Disponível em:
https://commons.wikimedia.or
g/wiki/File:Linksys ADSL Mod
em AM300 ethernet, USB, a
nd phone line ports.jpg.
Acesso em: 16 fev. 2021

Hub

- pode conter várias linhas de entrada que são responsáveis por distribuir conexão.
- Função de repetidor (replicar a mensagem recebida a todos os dispositivos)

Fonte: Wikimedia Comons.

Disponível em:

https://commons.wikimedia.or g/wiki/File:Netgear DS108 H ub_(2).jpg. Acesso em: 16

fev. 2021

Roteador

- contêm microprocessadores, responsáveis pelo gerenciamento dos tráfegos de pacotes de dados
- tem a capacidade de analisar o endereçamento lógico (TCP/IP).
- O roteador forma tabelas lógicas dos equipamentos disponíveis nas redes, como: roteador, switch, computadores, dispositivos móveis, impressoras IP e câmeras IP.

Switch

- É encontrado em empresas, faculdades, ou seja, redes que necessitam de maior número de dispositivos.
- quando a mensagem chega a uma das interfaces de rede, o sistema do equipamento lê o endereço destino do cabeçalho e envia para a interface apropriada.
- Domínio de colisão

Fonte: Wikimedia Comons/ProjectManhatta n. Disponível em: https://commons.wikime dia.org/wiki/File:Network cables and switch.jpg. O que são gargalos em redes de computadores?

O Modelo de Referência OSI

Introdução

- Proposta desenvolvida pela ISO (*International* Standards Organization) como um primeiro passo em direção à padronização internacional dos protocolos empregados nas diversas camadas
- O modelo possui 7 camadas
- Não é uma arquitetura de rede pois ele só define o modelo de referencia, ele não define exatamente os serviços e os protocolos para serem usados em cada nível

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace
1	Física

Fonte: elaborada pelo autor

Camada física

- transmissão de bits brutos por um canal de comunicação
- Como representar 0 e 1 no canal de transmissão
- Tempo de transmissão e transmissões simultâneas

Camada de enlace

- Organiza o acesso ao meio físico
- Prove um serviço de comunicação livre de erros, mediante a correção de erros

Camada de rede

- Controla a operação da sub-rede
- Se preocupa como os pacotes s\u00e3o roteados da origem para um destino
- Mantêm tabelas estáticas ou dinâmicas para o roteamento
- Controla e previne o congestionamento

Camada de transporte

 Recebe os dados da camada acima (sessão), os quebra em pequenos pedaços, se necessário, e os encaminha ao nível de rede certificando-se que cheguem corretamente do outro lado.

Camada de sessão

 Permite que os usuários de máquinas distintas estabeleçam sessões entre si, que irá permitir por exemplo transporte de dados, remote login, etc..

Camada de apresentação

- Diferentemente dos outros níveis que se preocupam apenas com a transferência de bits, o de apresentação se preocupa com a sintaxe dos dados.
- Execução de funções como compressão, encriptação e codificação (transformação de formatos)

Camada de aplicação

 Contém uma variedade de protocolos que são necessários às aplicações/usuários (Por exe: HTTP)

O Modelo de Referência TCP/IP

Descrição da SP

Realizar um levantamento das principais características do modelo de referência TCP/IP, atualmente utilizado nas redes de computadores, comparando-o com o modelo ISO/OSI.

Introdução

- Histórico (ARPANET)
- TCP/IP também é um modelo de referência para definição de camadas – 4 camadas

Características

- TCP/IP é completamente independente de qualquer fabricante ou marca de hardware
- TCP/IP permite que dois computadores ligados na Internet via TCP/IP se conectem e se comuniquem em qualquer parte do mundo
- A arquitetura oferece descrição de standards para protocolos do nível de aplicação como: FTP, correio eletrônico e remote login

Arquitetura TCP/IP

Fonte: elaborada pelo autor

Camadas do Modelo TCP/IP

Aplicação

- Define a sintaxe e a semântica das mensagens trocadas entre aplicações.
- Implementação realizada através de processos do sistema operacional.
- Trata os detalhes específicos da cada tipo de aplicação

Transporte

- comunicação fim-a-fim entre aplicações
- TCP e UDP

Camadas do Modelo TCP/IP

Internet (Inter-rede)

- realiza transferência e roteamento de pacotes entre dispositivos da inter-rede / evitar o congestionamento.
- Define um formato de pacote oficial e um protocolo chamado IP (Internet Protocol).

Interface de Rede (enlace / host / física)

 Tradução de bits em sinais de transmissão, especificação dos meios de transmissão, endereçamento e chaveamento Modelo TCP/IP Protocolos e Serviços
de Redes: Camadas
de Aplicação e
Transporte

Camada de Aplicação: protocolos e serviços

TELNET (*telephone network*)

- serviço de terminal virtual
- efetuar a conexão remota utilizando um terminal (no Windows o prompt de comando).

FTP (File Transfer Protocol)

transferência de arquivos entre dois dispositivos

SMTP (Simple Mail Transfer Protocol)

• gerenciar a distribuição de e-mail aos usuários

Camada de Aplicação: protocolos e serviços

SNMP (Simple Network Management Protocol)

- Utilizado por administradores de redes (gerência)
- coleta e na manipulação de informações geradas.
- Possibilita ao responsável pela rede saber se algum evento inesperado ocorre

DNS (Domain Name System)

mapeamento de nomes em endereços de rede

HTTP (Hypertext Transfer Protocol)

WWW (World Wide Web)

Camada de Transporte: protocolos

TCP – Transmission Control Protocol

- Orientado à conexão
- Provê fluxo confiável de dados
- Divide o fluxo de dados em segmentos.
- Confirmar o recebimento / Estabelecer a conexão / Escolher um caminho confiável
- Conexões do tipo elástico confirmação de recebimento e retransmissão em caso de falha para que não ocorra a degradação dos serviços

Camada de Transporte: protocolos

UDP – User Datagram Protocol

- considerada uma versão simplificada do protocolo TCP
- Provê serviço de datagrama não confiável
- apenas envia pacotes de uma estação para outra
- não garante que sejam entregues à aplicação destino
- Exemplo de utilização: streaming

Camada de Transporte: protocolos

ТСР	UDP
Serviço orientado à conexão	Serviço sem conexão
Garante a entrega por meio da confirmação de recebimento, pois os dados são sequenciados.	Não garante o recebimento, pois os dados não são sequenciados.
O programa que utiliza o TCP possui um transporte confiável.	A garantia de recebimento do software que utiliza o protocolo UDP deve ser garantida pelo programa.
Transmissão lenta e necessita de maior largura de banda.	Transmissão rápida e ocupa menos largura de banda.
Comunicação ponto a ponto.	Suporte a comunicação multicast.

Modelo TCP/IP Protocolos e Serviços
de Redes: Camadas
de Internet e de
Interface de Rede

Camada de Inter-Rede (Internet): protocolos

IP (Internet Protocol)

- Fornece o endereçamento para os dispositivos nas redes de computadores.
- Provê serviço de datagrama não confiável.
- Envia, recebe e roteia datagramas IP.

Camada de Inter-Rede (Internet): protocolos

ICMP (Internet Control Message Protocol)

- Permite a troca de informações de erro. Gerenciar os erros no processamento dos datagramas IP.
- Buffer Full: capacidade máxima de processamento.
- *Hops*: saltos necessários para que uma mensagem possa alcançar o seu destino.
- Ping: saber se a interface de rede está ativa ou inativa.
- *Traceroute*: mapear os saltos

Camada de Inter-Rede (Internet): protocolos

IGMP (Internet Group Management Protocol)

Protocolo de controle de grupo de endereços:;

BGP, OSPF e RIP

Protocolos de controle de informações de roteamento

ARP (Address Resolution Protocol)

 Permite certo computador se comunicar com outro computador em rede quando somente o endereço de IP é conhecido pelo destinatário.

Camada de Interface de Rede: protocolos

- Protocolos com estrutura de rede própria (X.25, Frame-Relay, ATM)
- Protocolos de Enlace OSI (PPP, Ethernet, Token-Ring, FDDI, HDLC, SLIP, ...)
- Protocolos de Nível Físico (V.24, X.21)
- Protocolos de barramento de alta-velocidade (SCSI, HIPPI, ...)
- Protocolos de mapeamento de endereços (ARP Address Resolution Protocol)

Dúvidas?

Recapitulando

Recapitulando

- Introdução a redes de computadores
- Comunicação de dados
 - Sinais e meios de transmissão
- Classificação e topologia de redes
- Modelos de referência em redes
 - OSI e TCP/IP
- Protocolos e serviços de redes TCP/IP