Real-Time Visual Analytics for User-Driven Machine Learning

Jaegul Choo

Assistant Professor

Dept. of Computer Science and Engineering

Korea University

Two Approaches for Data Analysis

Machine Learning	Visualization	
Automated	Interactive (human in the loop)	
Clearly defined tasks	Exploratory analysis	
Fast computation	Deeper understanding	
>Millions of data items	Thousands of data items	

Visual Analytics

My Research: True Integration of Both Worlds

Visual Analytics Systems for Real-World Tasks

New Computing Paradigms

Visual Analytics

Machine Learning

Visualization

High-Impact Applications

Data Mining Methods for Visual Analytics

My Research: True Integration of Both Worlds

Visual Insight to Machine Learning Handwritten Digit Recognition

Subclusters in digit '5'

Handling them as separate clusters

Better prediction (89%→ 93%)

Visual Insight to Machine Learning Handwritten Digit Recognition

Challenges in Machine Learning + Visualization

Machine learning methods should be

- More interpretable
- More user-interactive
- Real-time responsive, i.e., faster

UTOPIAN: <u>User-Driven Topic</u> Modeling Based on <u>Interactive NMF</u>

TVCG'13 Visualization Example: **Car Reviews** lawesome, lexus, & vehicle, badge, hyundai nice, black best series, azera, compare chrysler, 300, maxima economy, fuel, gps suspension, phone, ride problem, shift, gears tires, dunlops, nav

Topic summaries are NOT perfect.

UTOPIAN allows user interactions for improving them.

seats, mileage, passengers

TVCG'13

UTOPIAN Demo

http://tinyurl.com/UTOPIAN2013

InfoVis-VAST Paper Data

Before interaction

After topic splitting (triangle) and topic merging (circle)

TVCG'13

UTOPIAN Demo

http://tinyurl.com/UTOPIAN2013

Supervised t-SNE: Visualizing documents

Original t-SNE

 Documents do not have clear topic clusters.

Supervised t-SNE

• $d(x_i, x_j) \leftarrow \boldsymbol{\alpha} \cdot d(x_i, x_j)$ if x_i and x_j belong to the same topic. (e.g., $\boldsymbol{\alpha} = 0.3$)

DMKD'14

Weakly Supervised NMF: Supporting user interactions

Weakly supervised NMF

$$\min_{W>=0,\ H>=0} ||A-WH||_F^2 + \alpha ||(W-W_r)M_W||_F^2 + \beta ||M_H(H-D_HH_r)||_F^2$$

 W_r , H_r : reference matrices for W and H (user-input)

 M_W , M_H : diagonal matrices for weighting/masking columns and rows of W and H

Algorithm: block-coordinate descent framework

PIVE: (Per-Iteration Visualization Environment)

https://youtu.be/zURFA9P5E_s

Motivation

Many algorithms are iterative methods.

PIVE

Integration methodology of iterative methods for Real-Time interactive visualization

Standard approach

PIVE approach

AAAI'17

PIVE Demo

TopicLens: Efficient Multi-Level Visual Topic Exploration

TVCG'17

TopicLens: Efficient Multi-Level Visual Topic Exploration

Key aspects of backend topic modeling and dimension reduction methods

- Real-time response
 - How can we ensure real-time response against highly-dynamic user interactions such as lens?
- Continuity and consistency with previous results
 - How can we allow users to maintain the continuity and consistency between the previous and the new results?

TVCG'17

TopicLens Demo

Compare and Contrast: Joint Topic Discovery

Formulation

min
$$1/n_1 || A_1 - W_1 H_1 ||_F^2 + 1/n_2 || A_2 - W_2 H_2 ||_F^2 + W_{>=0, H>=0}$$
 $\alpha || W_{1,c} - W_{2,c} ||_F^2 + \beta || W_{1,d}^T W_{2,d} ||_F^2$ where $W_i = [W_{i,c} W_{i,d}]$

Geospatio-Temporal Topic Modeling

http://aperture.xdataonline.com/#/

con los barcekike1	music video offici window	crazi free hey 1armaun	Q suck
guillo_torero inquieto_bsc	seat	guy	
birthday parti dinner club	theatr broadway amaz	make thing dont thought	die bed end final song
catch	birthday make	eat	
hall houston drink beer ipa	hotel room ace yorker lobbi	elmhurst mall hospit grill chipotl	school high law bring readi
galleri art studio milk	starbuck coffe shop drink	boom saturday perform	thing thought happen find forget
technolog	free	laboom parti	
downtown manhattan room marriott live	find tho black hard thought	phone dont die care text	job song care money stay
knickstapecouch lissy_cordero eyes_leex3 supremegee35 tvega961	brooklyn museum flea bushwick bam	mta subway ave j/z broadway	tryna breath plz bottl listen
park hall batteri esplanad	pic studio take coffe	word y'all trouble_mind	girl watch thing movi
photo	brunch	bro feel	phone
bro yea moesafa	die music favorit song end	relationship perfect feel	intern airport john jfk

Perception- and Screen Space-Driven Integration Framework

Motivation

Humans and computer screens do not require high precision.

Approach

Approximate computing

New Computing Paradigms for Visual Analytics

Adaptive hierarchical refinement

Leveraging ideas from other literatures, e.g., wavelet

Images src: http://www.cse.lehigh.edu/~spletzer/rip_f06/lectures/lec013_Pyramids.pdf

PixelSNE: Pixel-Aligned t-SNE

PixelSNE: Pixel-Aligned t-SNE

ReVACNN: Real-Time Visual Analytics for CNN

[KDD'16 IDEA Workshop, NIPS'16 FILM Workshop]

ReVACNN: Real-Time Visual Analytics for CNN

[KDD'16 IDEA Workshop, NIPS'16 FILM Workshop]

2D embedding of first-layer filters

Improperly trained pattern, showing clear clusters

Properly trained pattern, showing no clusters

ReVACNN: Real-Time Visual Analytics for CNN

Epoch

On-Going and Future Work

- Scalable visual analytics for deep networks
 - Tracking activations on residual deep network
- Fast, low-powered deep network on mobile devices
 - Personalized predictive keywords
- End-to-end learning integrated with handcrafted features
 - Automatic debugging on programs
- Semantic word embedding
 - Nonnegative matrix factorization + word embedding
- Direction-agnostic deep networks

Thank you! Jaegul Choo jchoo@korea.ac.kr Collaborators from academia, industry, and the government

A. Endert, A. Gray, A. White, B. Drake, B. Dilkina, B. Kwon, C. Görg, C. Reddy, C. Lee, C. Stolper, D. Lee, E. Clarkson, E. Fujimoto, F. Li, G. Nakamura, H. Park, H. Pileggi, H. Lee, H. Zha, H. Kim, J. Eisenstein, J. Shim, J. Park, J. Kihm, J. Yi, J. Ye, J. Kang, J. Stasko, J. Turgeson, K. Joo, M. Hu, P. Walteros, P. Chau, R. Sadana, R. Decuir, R. Boyd, S. Yang, S. Bohn, S. Muthiah, T. Liu, W. Zhuo, Y. Han, Z. Liu, ...

Selected Papers

- ▶ PIVE: Per-Iteration Visualization Environment for Real-time Interactive Visualizations, **AAAI**, 2017
- AxiSketcher: Interactive Nonlinear Axis Mapping through Users' Drawing on Visualization, **TVCG**, 2017
- ► TopicLens: Efficient Multi-Level Visual Topic Exploration of Large-Scale Document Collections, **TVCG**, 2017
- L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization, ICDM, 2016
- PixelSNE: Visualizing Fast with Just Enough Precision via Pixel-Aligned Stochastic Neighbor Embedding, arXiv, 2016
- InterAxis: Observation-level Interactive Axis Steering for Scatterplots of Multi-Dimensional Data Visualization, **TVCG**, 2015
- ▶ VisOHC: Designing Visual Analytics for Online Health Communities, **TVCG**, 2015
- Simultaneous Discovery of Common and Discriminative Topics via Joint Nonnegative Matrix Factorization, KDD, 2015
- ► To Gather Together for a Better World: Understanding and Leveraging Communities in Micro-lending Recommendation, **WWW**, 2014
- ▶ Understanding and Promoting Micro-finance Activities in Kiva.org, **WSDM**, 2014
- Weakly Supervised Nonnegative Matrix Factorization for User-Driven Clustering, **DMKD**, 2014
- Document Topic Modeling and Discovery in Visual Analytics via Nonnegative Matrix Factorization, TVCG, 2013
- Screen space- and Perception-based Framework for Efficient Computational Algorithms in Large-scale Visual Analytics, CG&A, 2013
- Analytics, **CG&A**, 2013

 Heterogeneous Data Fusion via Space Alignment Using Nonmetric Multidimensional Scaling," **SDM**, 2012 30
- p-ISOMAP: An Efficient Parametric Update for ISOMAP for Visual Analytics, **SDM**, 2010