Big-O Notation

Recap

- We want to analyse the runtime and performance of our code
- Logarithmic, linear, quadratic, qubic and exponential times

Objectives

- To understand why algorithm analysis is important.
- To be able to use "Big-O" to describe execution time.
- To understand the "Big-O" execution time of common operations on Python lists and dictionaries.
- To understand how the implementation of Python data impacts algorithm analysis.
- To understand how to benchmark simple Python programs.

General Scope

- In general, we are interested in the performance of the programs that we write
 - That is, how many seconds/minutes/hours/days is the code going to run?
- This is very dependent on the computer we run the program on
 - Can we find something more independent of the actual computer?U

Finding the position of the smallest number in a list

Let's solve the following problem:

We want to find a certain element in a list and return it's position.

- Input: Given a list of numbers in ascending order.
- That is, write a function find_element_in_a_list(data, element) with the following behavior:

```
>>> find_element_in_a_list([1, 3, 5], 3)
1
>>> find_element_in_a_list([2 * x for x in range(1000)], 550)
275
```

Defining the data

```
In [1]:

1   data_list = list(range(1000))
2   element_to_find = 999

In [2]:

1   def find element in a ligh(data light element);
```

```
def find_element_in_a_list(data_list, element):
    for idx, el in enumerate(data_list):
        if el == element:
            return idx
```

```
In [3]:
```

```
% time find_element_in_a_list(data_list, element_to_find) 
CPU times: user 30 \mus, sys: 4 \mus, total: 34 \mus 
Wall time: 35.8 \mus
```

Out[3]:

999

How much is a microsecond?

1
$$\mu s = 0.000001 \ s = \frac{\frac{1s}{1000}}{1000} = \frac{1s}{1000^2}$$

Big-O Notation

Describes the the limiting behaviour of a function (Wikipedia)

Big-O ignores everything except the **limiting** part of a piece of code. Examples from math:

$$f(x) = 2x (x)$$

$$f(x) = x^{1000} + 100000000 (x^{1000})$$

$$f(x) = x^4 + \frac{x}{9} + 2005 * \frac{x^9}{1000} (\frac{x^9}{1000} \approx x^9)$$

Big-O in code

What is the running time of this?

statement 1

```
• 1 (constant!)

• O(1)
```

What is the running time of this?

```
if (cond):
    block 1 #sequence of statements
else:
    block 2 #sequence of statements
```

- 1 (constant!)
 - **■** *O*(1)
- What is the running time of this?

```
statement 1
statement 2
...
statement n
```

```
total_time = statement 1 + statement 2 + ... + statement n
```

- 1 (constant!)
 - It does not depend on the input size. The amount of statements is constant
 - **■** *O*(1)
- What is the running time of this?

```
for x in range(0, n):
    block 1
```

- Linear
 - The runtime depends on exactly the input (once for each element)
 - \bullet O(n)

```
    What is the running time of this?
```

```
for x in range(0, n):
    for y in range(0, n):
        block 1
```

- Quadratic
 - Everytime we have one n we need to go through all other n
 - $O(n^2)$ or (n*n)
- What is the running time of this?

```
for x in range(0, n):
    for y in range(0, m):
        block 1
```

- Quadratic
 - But no longer only depending on n
 - O(n*m)

```
• Is the runtime complexity of find_element_in_a_list and find_element_double_loop
different?

def find_element_in_a_list(data_list, element):
    for idx, el in enumerate(data_list):
        if el == element:
            return idx

def find_element_double_loop(data_list, element):
    for idx, el in enumerate(data_list):
        if el == element:
            first_result_idx = idx
            break
    for idx, el in enumerate(data_list):
        if el == element and idx == first_result_idx:
            return idx, el
```

```
Why do we not say O(2n)?
```

- Because only n matters when the size grows very big in 2n, the 2 does not matter anymore:
 - **■** 10 ≈ 20
 - $1'000'000 \approx 2'000'000$

Let's say one elementary operation takes 10 nanoseconds, then we get

		n							
	$t_{\mathcal{A}}(n)$	10	100	1000	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
	$\log n$	33ns	66ns	0.1μ s	0.1μ s	0.2μ s	0.2μ s	0.2μ s	0.3μ s
	\sqrt{n}	32ns	0.1μ s	0.3μ s	1μ s	3.1μ s	10μ s	31μ s	0.1ms
	n	100ns	1μ s	10μ s	$0.1 \mathrm{ms}$	1ms	10 ms	0.1s	1s
	$n \log n$	0.3μ s	6.6μ s	$0.1 \mathrm{ms}$	$1.3 \mathrm{ms}$	$16 \mathrm{ms}$	0.2s	2.3s	27s
	$n^{3/2}$	0.3μ s	10μ s	$0.3 \mathrm{ms}$	10 ms	0.3s	10s	5.2m	2.7h
	n^2	1μ s	0.1 ms	10 ms	1s	1.7m	2.8h	11 d	3.2y
	n^3	$10\mu s$	10 ms	10 s	2.8h	115 d	317y	$3.2{\cdot}10^5$ y	
	1.1^{n}	26ns	$0.1 \mathrm{ms}$	$7.8 {\cdot} 10^{25} \mathrm{y}$					
	2^n	10μ s	$4.0 \cdot 10^{14} \mathrm{y}$		•				
	n!	36ms	$3.0 {\cdot} 10^{142} \mathrm{y}$						
	n^n	1.7m	$3.2 \cdot 10^{184} \mathrm{y}$						

Big-O as an approximation

Describes the the limiting behaviour of a function (Wikipedia)

Big-O ignores everything except the **limiting** part of a piece of code.

Can be used to know the complexity of your code without running it!

What is the worst-case runtime of this?

```
def find_element_in_a_list(data_list, element):
    for idx, el in enumerate(data_list):
        if el == element:
            return idx, el
```

How often do we iterate over the elements of the list in the worst case?

What is the worst-case runtime of this?

```
def find_element_double_loop(data_list, element):
    for idx, el in enumerate(data_list):
        if el == element:
            first_result_idx = idx
            break
    for idx, el in enumerate(data_list):
        if el == element and idx == first_result_idx:
            return idx, el
```

How often do we iterate over the elements of the list in the worst case?

How often do we iterate over the elements of the list in the worst case?

What is the worst-case runtime of this?

```
def find_element_nested_loop(data_list, element):
    for idx, el in enumerate(data_list):
        for idx2, el2 in enumerate(data_list):
            if el == el2 == element and idx == idx2:
                 return idx, el
```

How often do we iterate over the elements of the list in the worst case?

What is the worst-case runtime of this?

```
def find_element_recursive(data_list, element):
    half_idx = len(data_list) // 2

if element == data_list[half_idx]:
    return half_idx

elif element < data_list[half_idx]:
    lower_half_list = list(data_list[:half_idx])
    return find_element_recursive(lower_half_list, element)

elif element > data_list[half_idx]:
    upper_half_list = list(data_list[half_idx:])
    return find_element_recursive(upper_half_list, element)
```

How often do we iterate over the elements of the list in the worst case?

How to count and not count...

When asked 'count the number of occurrences of all words in a list'. Assuming we have a list of words in words, here are two solutions:

In [4]:

```
words = ['seldom', 'heard', 'him', 'mention', 'her', 'under', 'any',
 1
              'other', 'name', 'In', 'his', 'eyes', 'she', 'eclipses',
2
              'and', 'predominates', 'the', 'whole', 'of', 'her', 'sex',
 3
              'It', 'was', 'not', 'that', 'he', 'felt', 'any', 'emotion', 'akin', 'to', 'love', 'for', 'Irene', 'Adler', 'All',
 4
 5
              'emotions', 'and', 'that', 'one', 'particularly', 'were',
 6
              'abhorrent', 'to', 'his', 'cold', 'precise', 'but',
7
              'admirably', 'balanced', 'mind', 'He', 'was', 'I', 'take',
 8
              'it', 'the', 'most', 'perfect', 'reasoning', 'and',
9
              'observing', 'machine', 'that', 'the', 'world', 'has',
10
              'seen', 'but', 'as', 'a', 'lover', 'he', 'would', 'have',
11
              'placed', 'himself', 'in', 'a', 'false', 'position', 'He',
12
              'never', 'spoke', 'of', 'the', 'softer', 'passions', 'save',
13
              'with', 'a', 'gibe', 'and', 'a', 'sneer']
14
```

How to count and not count...

When asked 'count the number of occurrences of all words in a list'. Assuming we have a list of words in words, here are two solutions:

```
In [ ]:
```

```
word_counts = {}
for word in words:
    word_counts.setdefault(word, 0)
    word_counts[word] += 1
print(word_counts)
```

```
In [ ]:
```

```
word_counts = {}
for word in words:
    counts = words.count(word)
    word_counts[word] = counts
print(word_counts)
```

- What is the running time complexity of each solution?
- Which one is thus preferable?