Math 415 - Lecture 39

Review

Wednesday December 6th 2015

Final Information:

- Thursday December 17th, 8:00-11:00AM.
 - 101 Armory: AD3,ADG,ADU,ADW
 - 180 Bevier: ADH, ADP, ADQ, ADX
 - 100 Gregory: ADA,ADB,ADJ,ADK,ADV,ADY
 - 151 Loomis: AD4,AD7,AD8,ADI,ADR
 - 103 Mumford: AD9,ADE,ADF,ADN,ADO
 - 100 MSEB: AD1,AD2,ADS,ADT,ADZ
 - 135 THBH: ADC, ADD, ADL, ADM (THBH is Temple Hoyne Buell Hall)
- Conflict Tuesday, December 15th, 8:00-11:00AM.

Bring university ID, pencils and erasers, there will be a part multiple choice.

1 After Exam 3

After Exam 3

- Diagonalization,
- Discrete Dynamical Systems.
- Spectral Theorem and Quadratic forms: each symmetric matrix A gives a quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, and conversely. The eigenvalues of A (real!) determine if the quadratic form is always positive.
- Critical points of functions $f: \mathbb{R}^n \to \mathbb{R}$ are described by a quadratic form (Hessian) containing the second derivatives of f. Minima, maxima, saddle points. Constrained optimization.

- Singular Value Decomposition of A from spectral theorem for A^TA , and AA^T .
- ullet Approximation of a matrix A according to the singular values: image compression.

2 Big Topics

- Solving Systems $A\mathbf{x} = \mathbf{b}$
 - Augmented matrix.
 - Row Operations, Reduced Row echelon form.
 - Pivots, free variables, parametric form of general solution.
 - Inconsistent system, unique solution or infinitely many solutions.

• Vectors and Matrices

- Linear Combinations
- Matrix multiplication is linear combination
- Row/column calculation of matrix multiplication
- Transpose, symmetric matrices.
- Elementary row operations and elementary matrices.
- LU factorization, solving Ax = b by Lc = b, Ux = c.
- Inverse of a square matrix, Gauss-Jordan calculation of A^{-1} (Big Augmented Matrix).

• Vector Spaces.

- Linear combinations.
- Subspace.
- Spanning set, independence.
- Basis and dimension.
- Coordinates with respect to a basis.

• Linear Transformations

- Linear transformation determined by basis.

- Coordinate matrix with respect to input/output bases.

• Orthogonality

- Dot product=inner product.
- Length of vector.
- angle between vectors.
- Orthogonal complement W^{\perp} , dimensions add: $\dim(W) + \dim(W^{\perp}) = \dim(\mathbb{R}^n)$.
- Orthogonal and orthonormal basis.

• Fundamental thm of Linear Algebra.

- Four fundamental subspaces of A: Col(A), $Col(A^T)$, Nul(A), $Nul(A^T)$.
- Nul(A) and uniquess of solutions of Ax = b.
- Col(A) and existence of solutions of $A\mathbf{x} = \mathbf{b}$.
- 4 subspaces pairwise orthogonal.
- Dimensions of the subspaces and bases, from echelon form.
- Networks and fundamental subspaces.

• Projections

- Projection on a line.
- Orthogonal basis makes projection easy.
- Projection matrix.
- Orthogonal decomposition: x can be written as $x=x_W+x_{W^{\perp}}$ for $x_W\in W,\,x_{W^{\perp}}\in W^{\perp}.$

• Least Squares

- Approximate solutions of $A\mathbf{x} = \mathbf{b}$: make $\|\mathbf{A}\hat{\mathbf{x}} \mathbf{b}\|$ as small as possible.
- Least square solution is $\hat{\mathbf{x}}$ satisfying the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

- The projection of **b** on the subspace Col(A) is $A\hat{\mathbf{x}}$.
- Data Fitting

• Gram-Schmidt

- From arbitrary basis get orthonormal basis.
- -A = QR factorization.
- Orthogonal matrix Q: $Q^TQ = I$.

• Determinants

- Definition through elementary row operations.
- $\det(AB) = \det(A) \det(B), \det(A^T) = \det(A).$
- Cofactor expansion.

• Eigenvalues and eigenvectors: $Ax = \lambda x$

- Characteristic polynomial.
- Eigenspace.
- Eigenbasis and diagonalization.
- Sum and product of eigenvectors and trace and det of A.
- Powers of A.
- Discrete Dynamical systems: state vector \mathbf{x}_t evolves in time by $\mathbf{x}_{t+1} = A\mathbf{x}_t$.

• Symmetric matrices and spectral theorem.

- if $A = A^T$ then eigenvalues of A are real
- A has an orthonormal basis of eigenvectors.

3 Random Examples

Example 1. Let

$$a_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 4 \\ 4 \end{bmatrix}$$

Is b a linear combination of a_1, a_2, a_3 ? Explain!

Solution 2. We need to solve a system Ax = b, with augmented matrix $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 1 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \simeq$

 $\begin{bmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -3 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}. So b is/is not a linear combination?$

Example 3. Let $A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix}$.

- \bullet Find the LU factorization.
- Find two descriptions of the column space: Col(A) is the span of which vectors, and if $b \in Col(A)$ give equations for b.
- If $b \in \operatorname{Col}(A)$ is the general set of solutions $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ of Ax = b a point, a line, a plane or all of \mathbb{R}^3 ?

Solution 4.
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & 2 & 3 \\ 6 & 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. $So \operatorname{Col}(A) = \operatorname{Span}(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix})$.

This is the description by directions. We can also give equations for $b \in Col(A)$: such b is perpendicular to what space? What is $dim(Nul(A^T))$? So we need to find a single equation for b, for instance $5b_1 - b_2 - b_3 = 0$. (If you don't see this

find a single equation for b, for instance $5b_1 - b_2 - b_3 = 0$. (If you don't see this immediately, do row operations on $\begin{bmatrix} 2 & 1 & 1 & b_1 \\ 4 & 2 & 3 & b_2 \\ 6 & 3 & 2 & b_3 \end{bmatrix}$) If $b \in Col(A)$ how many

solutions of Ax = b, how many free variables? Get point, line, plane....?

Example 5. Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $v_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$ and let $V = \operatorname{Span}(v_1, v_2)$. If $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ we can write $x = x_V + x_{V^{\perp}}$.

- Explain why $x_V = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2$ is not correct.
- \bullet Find an orthonormal basis for V.

• Calculate $x_{V^{\perp}}$.

Solution 6. • The basis is not orthogonal, so we can not use the formula!

- Take $q_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\2\\0 \end{bmatrix}$. Now q_2 must be perpendicular to q_1 and belong to V.

 So $q_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$. (Gram-Schmidt.)[-.5cm]
- $\bullet \ \textit{Now write} \ x_{V} \ = \ \frac{\langle \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \rangle} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \frac{\langle \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \rangle}{\langle \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \rangle} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}. \ \textit{Hence}$ $x_{V^{\perp}} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$

Example 7. • Give an example of a 2×2 matrix A that is not invertible.

- Give an example of a 2×3 matrix A that has rank 0, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 1, but non of the entries are zero, or explain that that is not possible.
- Give an example of a 2×3 matrix A that has rank 2.
- Is the equation Ax = 0 always solvable?
- If A is the 2×3 zero matrix, then $Nul(A) = \{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \}$. True or false?

Example 8. Let $W = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \right\}$, subspace of \mathbb{R}^3 . If possible:

- Find 3 dependent vectors in W.
- Find 1 dependent vector in W.
- Find 2 independent vectors in W.
- Find 3 independent vectors in W.
- Find a spanning set of W containing 3 vectors.
- Find a spanning set of W containing 2 vectors.

- \bullet Find a spanning set of W containing 1 vectors.
- Find 2 bases for W.
- Find 2 independent vectors in W^{\perp} .