Lecture 35, Nov. 14

35.1 Theorem (Linear Congruence Theorem). Let $n \in \mathbb{Z}^+$, let $a, b \in \mathbb{Z}$, let d = gcd(a, n). Consider the equation

$$ax = b \mod n$$

- 1. The equation $ax = b \mod n$ has a solution $x \in \mathbb{Z}$ if and only if $d \mid b$
- 2. If x = u is a solution (so that $au = b \mod n$), then the general solution is

$$x = u + k \frac{n}{d}$$
 for $k \in \mathbb{Z}$.

35.2 Theorem (Chinese Remainder Theorem). Let $n, m \in \mathbb{Z}^+$ and let $a, b \in \mathbb{Z}$. Then the pair of congruences

$$x = a \mod n$$

$$x = b \mod m$$

has a solution $x \in \mathbb{Z}$ if and only if $d \mid (b-a)$ where d = gcd(m, n), and if x = u is one solution to the pair of congruences then the general solution is $x = u \mod l$ where l = lcm(n, m).

Proof. Suppose the pair of congruences has a solution. Choose a solution $x \in \mathbb{Z}$ (so we have $x = a \mod n$ and $x = b \mod m$). Since $x = a \mod n$, we can choose s so that x = a + ns, and since $x = b \mod m$, we can choose t so that x = b + mt. Then a + ns = b + mt, so ns - mt = b - a. By the Linear Diophantine Equation Theorem, for $d = \gcd(m, n)$, we have $d \mid (b - a)$.

Conversely, suppose that $d \mid (b-a)$. By the Linear Diophantine Equation Theorem we can choose $s, t \in \mathbb{Z}$ so that ns - mt = b - a. Then a + ns = b + mt. Let x = a + ns (so x = b + mt). Then since x = a + ns we have $x = a \mod n$. Since x = b + mt we have $x = b \mod m$.

Suppose that x = u is a solution to the pair of congruences. So we have $u = a \mod n$ and $u = b \mod m$. Let $k \in \mathbb{Z}$. Let x = u + kI where l = lcm(m, n). Since l = lcm(m, n), choose $s, t \in \mathbb{Z}$ so that l = ns = mt. Since x = u + kI = u + kns, we have $x = u \mod n$ so $x = a \mod n$. Similarly we have $x = b \mod m$. Thus x = u + kI is a solution to the pair of congruences.

Conversely, let x be any solution to the pair of congruences. So we have $x = a \mod n$ and $x = b \mod m$. Since $x = a \mod n$ and $u = a \mod n$, we have $x - u = 0 \mod n$, thus $n \mid x - u$. Since $x = b \mod m$ and $u = b \mod m$, we have $x = u = 0 \mod m$, so $m \mid x - u$. Since $n \mid (x - u)$ and $m \mid (x - u)$, it follows from the following lemma that $l \mid (x - u)$ since l = lcm(m, n). Since $l \mid (x - u)$ we have $x = u \mod l$ as required. \square

35.3 Lemma. Let $n, m \in \mathbb{Z}^+$ and let l = lcm(m, n). For every $k \in \mathbb{Z}$, if $n \mid k$ and $m \mid k$ then $l \mid k$.

Proof. Let $k \in \mathbb{Z}^+$ with $n \mid k$ and $m \mid k$. Write $k = \prod_{i=1}^q p_i^{m_i}$ where $q \in \mathbb{Z}^+$, the p_i are distinct primes and each $m_i \in \mathbb{Z}^+$. Since $n \mid k$, every prime factor p of n is also a factor of k, so we can write $n = \prod_{i=1}^q p_i^{k_i}$ with each $j_i \in \mathbb{N}$. Similarly, we can write $m = \prod_{i=1}^q p_i^{k_i}$ with each $k_i \in \mathbb{N}$.

Since $n \mid k$ we have $j_i \leq m_i$ for all indices i. Since $m \mid k$, we have $k_i \leq m_i$ for all indices i. Since $m_i \geq j_i$ and $m_i \geq k_i$, we have $m_i \geq \max(j_i, k_i)$. Thus

$$\prod_{i=1}^{q} p_i^{\max(j_i,k_i)} \mid \prod_{i=1}^{q} p_i^{m_i}$$

that is

$$Icm(m, n) \mid k$$

35.4 Theorem. For

$$n = \prod_{i=1}^{q} p_i^{k_i}$$

where $q \in \mathbb{Z}^+$, the p_i are distinct primes, and each $k_i \in \mathbb{Z}^+$, we have

$$\varphi(n) = \prod_{i=1}^{q} \varphi(p_i^{k_i}) = \prod_{i=1}^{q} p_i^{k_i} - p_i^{k_i-1}$$

Proof. By induction, it suffices to show that for all $I, m \in \mathbb{Z}^+$ with gcd(I, m) = 1, we have $\varphi(Im) = \varphi(I)\varphi(m)$. We shall prove that $|U_{Im}| = |U_I \cdot U_m|$.

Define $F: \mathbb{Z}_{lm} \to \mathbb{Z}_l \times \mathbb{Z}_m$ by F(x) = (x, x) for $x \in \mathbb{Z}$ (that is $F(x \mod lm) = (x \mod l, x \mod m)$). Note that F is well-defined, which means that for all $x, y \in \mathbb{Z}$ if $x = y \mod lm$ then $x = y \mod k$ and $x = y \mod m$ (if $x = y \mod lm$, say x = y + tlm then x = y + (tl)m so $x = y \mod m$)

Note that F is bijective by the (RT indeed F is surjective (onto) because given $a, b \in \mathbb{Z}$ we can solve $x = a \mod l$ and $x = b \mod m$ and then $F(x) = (x \mod l, x \mod m) = (a, b)$ and F is injective by the Chinese Remainder Theorem.

Finally, it remains to show that F restricts to a bijective map

$$F: U_{lm} \rightarrow U_{l} \times U_{m}$$

that is for all $x \in \mathbb{Z}$, if gcd(x, lm) = 1 then gcd(x, l) = 1 and gcd(x, m) = 1, and if gcd(x, l) = 1 and gcd(x, m) = 1, then gcd(x, lm) = 1.