Contents

1 Exos a faire
1.1 TODO Exo 6 Serie 14 2014
1.2 TODO Exo2 Serie 16 2014
1 Exos a faire
1.1 TODO Exo 6 Serie 14 2014
Exercice 6. Soit $a \in \mathbb{R}$ fixé. On considère la matrice $A = \begin{pmatrix} -4a & -4 & -4a - 2 \\ -a & 1 & -a \\ 4a + 1 & 4 & 4a + 3 \end{pmatrix} \in M_3(\mathbb{R})$.
a) Déterminer $c_A(t)$.
b) Calculer la décomposition primaire de A et déterminer $m_A(t)$.
c) Triangulariser A en explicitant la formule de changement de base.
d) Ecrire $A = D + N$ avec D diagonalisable, N nilpotente et $DN = ND$.
e) Trouver la réduite de Jordan de A (sans effectuer un changement de base).
1.2 TODO Exo2 Serie 16 2014
Exercice 2. Soient V un K -espace vectoriel de dimension finie et $\alpha:V\to V$ une transformation linéaire.
a) Montrer que ${}^{t}(\mathrm{id}_{V})$ est l'application identité de V^{*} .
b) Montrer que, si α est inversible, alors ${}^t\alpha$ est inversible.

1 1 1

l'hypothèse que V est de dimension finie).

d) (Plus difficile) Montrer en toute généralité la réciproque de b) : si ${}^t\alpha$ est inversible, alors α est in-

c) Montrer que ${}^t\alpha$ est inversible si et seulement si α est inversible, en utilisant le déterminant (sous

[Indication : Si α n'est pas inversible, montrer (au choix) que ${}^t\alpha$ n'est pas injective en utilisant que α n'est pas surjective, ou que ${}^t\alpha$ n'est pas surjective en utilisant que α n'est pas injective.]