Introduction to Machine Learning

Gaussian Processes Mean functions for GPs

Learning goals

 Trends can be modeled via specification of the mean function

ZERO-MEAN FUNCTIONS

• Previously: common assumption of zero-mean prior

$$m(\mathbf{x}) \equiv 0$$

- Prior knowledge + inference solely handled via $k(\cdot, \cdot)$
- Implication: $m(\cdot)$ not relevant for posterior process

$$\mathbf{m}_{\text{post}} = \mathbb{E}(\mathbf{f}_*|\mathbf{X}_*,\mathbf{X},\mathbf{y}_*) = \mathbf{K}_*\mathbf{K}_y^{-1}\mathbf{y}, \quad \mathbf{K}_{\text{post}} = \mathbf{K}_{**} - \mathbf{K}_*^T\mathbf{K}_y^{-1}\mathbf{K}_*$$

- Not necessarily drastic limitation: **posterior** mean generally $\neq 0$
- If data follow some trend m(X), we can always center them by subtracting $m(X) \Rightarrow \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$ applicable again

TREND VIA COVARIANCE STRUCTURE

- For zero-mean GPs with stationary kernels, posterior mean reverts to the prior further outside the training domain (no extrapolation)
- But trend-like behaviour could be directly encoded in $k(\cdot, \cdot)$:
 - Linear kernel: $k(\mathbf{x}, \mathbf{x}') = \sigma^2 \mathbf{x}^\top \mathbf{x}'$
 - Polynomial kernels for global polynomial trends
 - Composite kernels: $k = k_{long} + k_{short}$
- Produces non-reverting priors even with $m(\mathbf{x}) = 0$, but lower interpretability and kernel-dependent extrapolation
- Consider GP for DGP with linear trend:

WHY MODEL A TREND EXPLICITLY?

- Still: can make sense to model $m(\cdot)$ explicitly as potentially nonzero
 - **Efficiency:** kernel $k(\cdot, \cdot)$ need not mimic global structure via very long lengthscales
 - Extrapolation: outside data range, $\mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$ reverts to flat mean
 - \Rightarrow often unrealistic
 - Interpretability: clear separation between systematic trend and stochastic fluctuations
 - **Prior knowledge:** encode known effects (linear, seasonal, additive)
- Assuming $\mathcal{GP}(m(\cdot), k(\cdot, \cdot))$, posterior mean with $m(\cdot)$ becomes

$$\mathbf{m}_{\mathsf{post}}(\mathbf{X}_*) = m(\mathbf{X}_*) + \mathbf{K}_* \mathbf{K}_y^{-1} (\mathbf{y} - m(\mathbf{X}))$$

• Trend $m(\mathbf{X}_*)$ = interpretable global component; Correction = GP adjustment around this trend; Variance stays = $\mathbf{K}_{**} - \mathbf{K}_*^{\top} \mathbf{K}_{\nu}^{-1} \mathbf{K}_*$

NON-ZERO-MEAN FUNCTIONS

GPs with trend

SEMI-PARAMETRIC GP

- (Deterministic) mean functions $m(\cdot)$ often hard to specify
- Solution: semi-parametric GPs combining global (often linear) model + zero-mean GP for residuals

$$g(\mathbf{x}) = m_{\beta}(\mathbf{x}) + f(\mathbf{x}), \quad f \sim \mathcal{GP}(\mathbf{0}, k(\cdot, \cdot))$$

- In principle: **any model** $m(\cdot)$ can be used
 - Fixed parametric: $m_{\beta}(\mathbf{x}) = \beta_0 + \mathbf{x}^{\top} \boldsymbol{\beta}$
 - ullet Basis expansions: $m_{oldsymbol{eta}}(\mathbf{x}) = b(\mathbf{x})^{ op}oldsymbol{eta}$
 - Flexible ML models: GLMs, boosting, neural nets, ...

ESTIMATION APPROACHES • Rasmussen and Williams 2006

Log marginal likelihood:

$$\ell(\boldsymbol{\beta},\boldsymbol{\theta},\sigma^2) = -\tfrac{1}{2} \boldsymbol{r}^\top \mathbf{K}_y^{-1} \boldsymbol{r} - \tfrac{1}{2} \log |\mathbf{K}_y| - \tfrac{n}{2} \log(2\pi),$$
 with $\boldsymbol{r} = \mathbf{y} - m_{\boldsymbol{\beta}}(\mathbf{X})$

- ullet Joint estimation: maximize ℓ over all parameters
- Sequential: fit $m(\cdot)$ first, GP on residuals \Rightarrow ignores uncertainty from first stage, variance underestimated
- Fully Bayesian: priors on $(\beta, \theta, \sigma^2)$, posterior inference via MCMC or VI

$$p(\beta, \theta, \sigma^2 \mid \mathbf{y}, \mathbf{X}) \propto p(\mathbf{y} \mid \beta, \theta, \sigma^2, \mathbf{X}) p(\beta) p(\theta) p(\sigma^2)$$

• For complex $m(\cdot)$, estimation by full Bayesian inference or joint likelihood becomes computationally difficult

SEPARABILITY OF GRADIENTS

• Gradients of ℓ decompose neatly into:

$$\nabla_{\beta} \ell = \left(\frac{\partial m_{\beta}(\mathbf{X})}{\partial \beta}\right)^{\top} \mathbf{K}_{y}^{-1} \mathbf{r},$$

$$\nabla_{\theta} \ell = \frac{1}{2} \mathbf{r}^{\top} \mathbf{K}_{y}^{-1} \frac{\partial \mathbf{K}_{y}}{\partial \theta} \mathbf{K}_{y}^{-1} \mathbf{r} - \frac{1}{2} \operatorname{tr} \left(\mathbf{K}_{y}^{-1} \frac{\partial \mathbf{K}_{y}}{\partial \theta}\right)$$

- ullet Trend parameters eta enter only via $m{r}$ and the design/basis functions
- Kernel hyperparameters θ and noise σ^2 enter only via \mathbf{K}_y and its derivatives
- Consequence: updates are **decoupled in form**, though they interact through r and K_v^{-1}