Unit 3. Section 6. Quadratic Equations.

Section 5 Review

Special factorizations of quadratic functions:

• Square of binomial

$$(ax + b)^2 = a^2x^2 + 2abx + b^2$$

$$(ax - b)^2 = a^2x^2 - 2abx + b^2$$

• Difference of squares

$$(ax - b)(ax + b) = a^2x^2 - b^2$$

Warm-up.

Question 1. Use the special factorizations to simplify the following

functions.

A)
$$(x + 3)^2$$

B)
$$(2x-1)^2$$

C)
$$(3x-1)(3x+1)$$

Question 2. Use the special factorizations to factor the following functions.

A)
$$x^2 + 2x + 1$$

B)
$$9x^2 + 6x + 1$$

C)
$$25x^2 - 16$$

The Quadratic Formula

An equation in the standard form, $ax^2 + bx + c = 0$ has solutions

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We call the expression

Practice 1. Use the quadratic formula to calculate the solutions of the following quadratic equation

$$x^2 - 8x + 15 = 0$$

Practice 2. Use the quadratic formula to calculate the solutions of the following quadratic equation

$$x^2 + x + 2 = 0$$

3.6. Quadratic Equations

Imaginary number *i*

The *imaginary number* i, is a number with the property $i^2 = -1$.

Practice 3. Simplify $\sqrt{-100}$.

Complex Numbers

A complex number is a pair of real numbers, a and b, written a + bi.

Examples: 2 + 3i, i, 7, 0, $\sqrt{2} + i\sqrt{3}$.

Practice 4. What are the real and imaginary parts of $\sqrt{2} + i\sqrt{3}$?

Complex Conjugates

Two complex numbers a + bi and a - bi are called complex conjugates.

Number and Type of Solutions

Discriminant	Number of distinct solutions	Type of solutions
$b^2 - 4ac < 0$	2	Complex Conjugates
$b^2 - 4ac = 0$	1	Real
$b^2 - 4ac > 0$	2	Real

Practice 4 Solve the quadratic equations using the indicated method.

Equation	Method	Solution
$x^2 - 8x + 15 = 0$	Graph	2 (3,0) (5,0) 0 2 4 6 8
$x^2 - 8x + 15 = 0$	Factor using guess and check.	
$x^2 - 8x + 15 = 0$	Factor using split the middle.	
$x^2 - 8x + 16 = 0$	Factor using special factorizations.	