Clustering Model Selection

Toby Dylan Hocking

Clustering framework

- Let $X = [x_1 \cdots x_n]^{\mathsf{T}} \in \mathbb{R}^{n \times p}$ be the data matrix (input for clustering), where $x_i \in \mathbb{R}^p$ is the input vector for observation i.
- **Example** iris n = 150 observations, p = 4 dimensions.
- Consider only one of those columns,

##		Petal.Length
##	[1,]	1.4
##	[2,]	1.4
##	[3,]	1.3
##	[4,]	1.5
##	[5,]	1.4
##	[6,]	1.7

One column can be visualized as a histogram

Simulation: three normal densities

Mixture density

Generate 20 random data from each density

Divide into train and validation

Overall log likelihood plot

Visualize iris data with labels

Visualize iris data without labels

- Let $X = [x_1 \cdots x_n]^{\mathsf{T}} \in \mathbb{R}^{n \times p}$ be the data matrix (input for clustering), where $x_i \in \mathbb{R}^p$ is the input vector for observation i.
- **Example** iris n = 150 observations, p = 2 dimensions.

##		Petal.Width	Petal.Length
##	[1,]	0.2	1.4
##	[2,]	0.2	1.4
##	[3,]	0.2	1.3
##	[4,]	0.2	1.5

Possible exam questions

► TODO