Lab Class 1

Math3101/5305

Term 2, 2023

In lectures, we discussed the two-point boundary-value problem

$$-u'' = f(x)$$
 for $0 < x < L$, with $u(0) = \gamma_0$ and $u(L) = \gamma_L$,

and how to use a finite difference method to compute an approximate solution

$$U_p \approx u(x_p)$$
 for $0 \le p \le P$, where $x_p = p \Delta x$ and $\Delta x = \frac{L}{P}$.

Recall that $U_1, U_2, \ldots, U_{P-1}$ are found by solving a $(P-1) \times (P-1)$ linear system, e.g., when P=6,

$$\frac{1}{\Delta x^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix} + \frac{1}{\Delta x^2} \begin{bmatrix} \gamma_0 \\ 0 \\ 0 \\ 0 \\ \gamma_L \end{bmatrix}.$$

1. Write a function

$$U, x = solve_bvp(L, f, gamma, P)$$

that computes the vectors $\boldsymbol{U} = [U_0, U_1, \dots, U_P]^T$ and $\boldsymbol{x} = [x_0, x_1, \dots, x_P]^T$. The argument \boldsymbol{f} is a function, and gamma is a vector of length 2 holding the values of γ_0 and γ_L .

2. Consider the example

$$L = 2$$
, $\gamma_0 = -1$, $\gamma_L = 2.5$, $f(x) = 5e^{-x}$,

in which case the exact solution is

$$u(x) = A + Bx - 5e^{-x},$$

where

$$A = \gamma_0 + 5$$
 and $B = \frac{1}{L}(\gamma_L - A + 5e^{-L}).$

Write a script that compares the exact solution and the numerical solution by plotting both on the same axes, like in Figure 1.

1

Figure 1: Comparison of the exact and numerical solutions.

3. Let $e_P = \max_{0 \le p \le P} |U_p - u(x_p)|$ denote the maximum error. Write a second script to investigate the behaviour of e_P as we repeatedly double the value of P. Hence estimate the exponent r such that $e_P \approx Ch^r$, using the fact that $e_{P/2}/e_P \approx 2^r$ and thus $r \approx \log_2(e_{P/2}/e_P)$. Print your output as a table of the form

$$P$$
 e_P estimated r
 8
 16
 32
 64
 128

Python notes: Use scipy.linalg.solve_banded to solve the linear system.

Matlab notes: Use spdiags to construct the coefficient matrix and solve the linear system with the \ operator.

Julia notes: Use a Linear Algebra. SymTridiagonal matrix and solve the linear system with the \setminus operator.