=

Progress Report - I

Diode Temperature sensor with Digital display

Group - 8:

Karthik GVB (180070022) Vinit Awale (18D070067) Yash Bhavsar (180070067)

Final Circuit Diagram:

Final Analog part

ADC part

Improvement in design compared to proposal

A) We have changed our ADC and interfacing it with the display section. Initially we were using a parallel ADC and further converted it to 4 different BCD numbers using combination of a few 8-bit BCD converter and further used bcd to 7-segment decoder for each of the digits.

But after discussing with prof Joseph John, all of this is done by a single IC, which is **ICL7106**. This IC provides output as 21 bits which are basically 3 different 7-segment numbers which could directly be given to the 7-segment display. It takes a differential input voltage as well as differential reference voltage.

Here we need to give a dual voltage i.e. +ve and -ve as the supply to the IC. The connection for the ADC have been referred from: https://datasheets.maximintegrated.com/en/ds/ICL7106-ICL7107.pdf

B) Also, the V_{ref} which was found using calibration was pointed out to be dependent on the sensor's output voltage at a given temperature.

To remove this dependence we put a **buffer/voltage follower** taking input the middle pin of potentiometer and output was then given to the non-inverting pin through a resistor.

Bill Of Materials:

Component Name	Role in the circuit	Unit price (INR)	Quantity
2N2222 NPN BJT	Temperature sensor diode	15	1
1N4734A	Zener diode in constant current source	20	1
BC547 BJT Transistor	BJT for constant current source	38	1
LM324N	Op-amp in Differential amplifier circuit	300	1
ICL7106	ADC	220	1
LS022C	Displaying the temperature	150	1
Capacitors			
Resistors			
12 V / 7Amp Battery	Supply voltage = 12V	650	1
TOTAL		1393	

Simulation Results of Analog part of the final circuit:

Simulation 1: Simulating the sensor

Here, we have used an inbuilt constant current source(of 5mA) provided by ngspice and checked the sensor output corresponding to different temperatures.

The variation of diode voltage with temperature is linear as expected, for 2N2222 spice model the slope of the above plot is -1.75mV/°C. Range of diode voltage is 0.717-0.542V.

Simulation 2: Simulating constant current source

Here, inplace of DUT(diode sensor) a voltage source was used and the current corresponding to different voltages across DUT was observed.

The collector current of the BJT is constant near 5mA for different voltages at the collector.

Simulation 3: Simulating the differential amplifier

Here, we are observing the output of the differential amplifier for different input voltages in the range (550mV,700mV). The V_{ref} was fixed at the voltage which we got at 0°C, i.e. 0.717V.

A differential gain of 5 can be observed here, output voltage is $5(V_{ref}-V_D)$, V_D is varied from 0.717V to 0.542V.

FINAL CIRCUIT DIAGRAM

APPENDIX

Ngspice netlists for the above simulations: Simulation1:

*diode sensor

.include 2n2222.txt

q c b e Q2N2222A/ZTX i P c dc 5m VCC P gnd 12 v1 c b 0 v2 e gnd 0

.control

dc temp 0 100 0.1 plot v(c) ylabel 'Diode voltage' hardcopy temp_sensor.ps v(c) ylabel 'Diode voltage'

.end .endc

Simulation2:

*current source

.include bc547.txt .include zener_B.txt

q1 c b e bc547a VCC P gnd 12 RE e gnd 960 Invoking DI_1N4734A x gnd b DI_1N4734A RB P b 4000 VD P c 0

.control

dc vd 0.542 0.717 0.01
plot i(VD) xlabel 'Diode voltage-sweep' ylabel 'Diode current'
hardcopy current_source.ps i(VD) xlabel 'Diode voltage-sweep' ylabel 'Diode current'

```
.endc
.end
Simulation3:
*Differential amplifier using opamp
.include Im324.txt
invoking LM324
```

x NI I P N O LM324 R1 d I 1k R2 I O 5k R3 r NI 1k R4 NI gnd 5k Vref r gnd 0.717 VD d gnd 0 VCC P gnd 12 VEE N gnd 0

.control

dc VD 0.542 0.717 0.01
plot V(O) xlabel 'Diode voltage-sweep' ylabel 'Output voltage'
hardcopy Difference_amp.ps v(O) xlabel 'Diode voltage-sweep' ylabel 'Output voltage'

.endc .end