## Assignment 1, Vingron Part, Complex Systems

• Paul Vogler, Mtr. Nr.:4979420

## Problem 2:

Consider two random variables X and Y from which we drew the following samples:

- x = (0.3, 0.98, 0.54, 0.49, 0.39, 0.14, 0.03, 0.81, 0.65, 0.18)
- y = (0.74, 0.09, 0.48, 0.15, 0.71, 0.8, 0.53, 0.95, 0.63, 0.88)

Therefore the first observation is (x = 0.3, y = 0.74) and so on (10 observations in total). First, bin the data by dividing the interval of [0, 1] into 4 equally wide sub-intervals. Provide the following calculations by hand.

- Bin-Edges: (0, 0.25, 0.5, 0.75, 1)
- Bins (y,x):  $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix}$
- A) Calculate the joint probability distribution  $p_{X,Y}(x,y)$  of the binned data and write it in the following table:

| Y X   | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $x_4$ |
|-------|-------|-------|-----------------------|-------|
| $y_1$ | 0     | 0.1   | 0                     | 0.1   |
| $y_2$ | 0     | 0     | 0.1                   | 0     |
| $y_3$ | 0.1   | 0.2   | 0.1                   | 0     |
| $y_4$ | 0.2   | 0     | 0                     | 0.1   |

- B) Calculate the marginal distributions  $p_X(x)$  and  $p_Y(y)$ 
  - a.  $p_X(x)$ : (0.3, 0.3, 0.2, 0.2)
  - b.  $p_Y(y)$ : (0.2, 0.1, 0.4, 0.3)
- C) Calculate the product of the two marginal distributions pY (y)  $T \times pX(x)$  (matrix multiplication!) and compare it with the joint distribution pX,Y (x, y). Are the variables X and Y stochastically independent? Justify your answer.

a. 
$$\begin{pmatrix} 0.2\\0.1\\0.4\\0.3 \end{pmatrix} * (0.3 \quad 0.3 \quad 0.2 \quad 0.2) = \begin{pmatrix} 0.06 & 0.06 & 0.04 & 0.04\\0.03 & 0.03 & 0.02 & 0.02\\0.12 & 0.12 & 0.08 & 0.08\\0.09 & 0.09 & 0.06 & 0.06 \end{pmatrix}$$

- b. For two independent variables, the joint density is the product of their marginals. This is not the case here. Therefore, the two variables should not be independent.
- D) Calculate the conditional distributions  $p_{X|Y}(x|y=y_3)$  and  $p_{Y|X}(y|x=x_4)$

a. 
$$p_{X|Y}(x|y=y_3) = \frac{p_{X,Y}(x, y=y_3)}{p_Y(y=y_3)} = \frac{(0.1 \ 0.2 \ 0.1 \ 0)}{0.4} = (0.25 \ 0.5 \ 0.25 \ 0)$$
  
b.  $p_{Y|X}(y|x=x_4) = \frac{p_{X,Y}(x=x_4, y)}{p_X(x=x_4)} = \frac{(0.1 \ 0 \ 0 \ 0.1)}{0.2} = (0.5 \ 0 \ 0.5)$ 

b. 
$$p_{Y|X}(y|x=x_4) = \frac{p_{X,Y}(x=x_4, y)}{p_{Y|X}(x=x_4)} = \frac{(0.1 \ 0 \ 0.1)}{0.2} = (0.5 \ 0 \ 0.5)$$

- E) Calculate the joint entropy H(X, Y) and the marginal entropies H(X) and H(Y)
  - a.  $H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) * \log_2 p(x,y) = -(6 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * (0.1 * \log_2 0.1) + 2 * (0.2 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 * (0.1 *$  $\log_2 0.2)$   $\approx -(6 * -0.332 + 2 * -0.464) = -(-1.992 + (-0.928)) = 2.92$

b. 
$$H(X) = -\sum p(x_i) * \log_2 p(x_i) = -(2 * (0.3 * \log_2 0.3) + 2 * (0.2 * \log_2 0.2)) \approx -(2 * -0.521 + 2 * -0.464) = -(-1.042 + (-0.928)) = 1.97$$

c. 
$$H(Y) = -\sum p(y_i) * \log_2 p(y_i) = -(0.1 * \log_2 0.1 + 0.2 * \log_2 0.2 + 0.3 * \log_2 0.3 + 0.4 * \log_2 0.4) \approx -(-0.332 + (-0.464) + (-0.521) + (-0.529)) = 1.846$$

- F) Calculate the conditional entropies H(X|Y) and H(Y|X) using the chain rule.
  - a. H(X|Y) = H(X,Y) H(Y) = 2.92 1.846 = 1.074
  - b. H(Y|X) = H(X,Y) H(X) = 2.92 1.97 = 0.95
- G) Calculate the mutual information I(X, Y) using both, the definition and the relation to entropy. Are both results equal? Why?

a. 
$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * \log_2 \frac{p(x,y)}{p(x)p(y)} = 0.1 * \log_2 \frac{0.1}{0.3*0.4} + 0.2 *$$

$$\log_2 \frac{0.2}{0.3*0.3} + 0.1 * \log_2 \frac{0.1}{0.3*0.2} + 0.2 * \log_2 \frac{0.2}{0.3*0.4} + 0.1 * \log_2 \frac{0.1}{0.2*0.1} + 0.1 *$$

$$\log_2 \frac{0.1}{0.2*0.4} + 0.1 * \log_2 \frac{0.1}{0.2*0.2} + 0.1 * \log_2 \frac{0.1}{0.2*0.3} = 0.895$$

- b. I(X,Y) = H(X) H(X|Y) = 1.97 1.074 = 0.896
- c. I(X,Y) = H(Y) H(Y|X) = 1.846 0.95 = 0.896
- d. Both results are basically equal, the difference just comes down to rounding precision.

## Problem 3:

B) Cytoscape visualization



b.
C) Escherichia coli interactome

| Summary Statistics         |     |
|----------------------------|-----|
| Number of nodes            | 25  |
| Number of edges            | 200 |
| Avg. number of neighbors   | 7,6 |
| Network diameter           |     |
| Network radius             |     |
| Characteristic path length | 4,3 |
| Clustering coefficient     | 0,1 |
| Network density            | 0,0 |
| Network heterogeneity      | 2,0 |
| Network centralization     | 0,0 |
| Connected components       |     |
| Analysis time (sec)        | 1,0 |
|                            |     |
|                            |     |

- a.
- b. After the filtering of nodes without the Taxonomy ID 83333 and Nodes that do not belong to the largest connected component, there are 25 nodes and 200 edges left.
- c. The left Graph shows the Degree Distribution of the E-Coli Network, while the right one shows the Degree Distribution of the Erdős-Rényi Model:



d. These two do not match, the first one is following a exponential decay distribution, while the Erdős-Rényi Model is looking like its degrees are normally distributed.