

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-024431
 (43)Date of publication of application : 26.01.2001

(51)Int.Cl. H01Q 19/32
 H01Q 3/44
 H01Q 21/20

(21)Application number : 11-194487	(71)Applicant : ATR ADAPTIVE COMMUNICATIONS RES LAB
(22)Date of filing : 08.07.1999	(72)Inventor : OHIRA TAKASHI GYODA KOICHI

(54) ARRAY ANTENNA SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an array antenna capable of greatly reducing manufacturing costs, and also easily controlling directivity with a simpler constitution than that in a conventional technique.

SOLUTION: This array antenna device is constituted of a radiating element 6 to which a radio signal is fed and at least one non-exciting element 7 arranged so as to be separated from the radiating element 6 only in a prescribed interval d to which any radio signal is not fed, and a variable reactance element is connected with the non-exciting element 7. In this case, the reactance value of the variable reactance element is changed so that the directivity of the array antenna device can be changed. Also, the variable reactance element is obtained as, for example, a variable capacity diode D, and an inverse bias voltage 30 to be applied to the variable capacity diode D is changed so that the electrostatic capacity of the variable capacity diode D can be changed, and the directivity of the array antenna device can be changed.

LEGAL STATUS

[Date of request for examination] 17.01.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3672770

[Date of registration] 28.04.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's
decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-24431

(P2001-24431A)

(43)公開日 平成13年1月26日(2001.1.26)

(51)Int.Cl.⁷

H 0 1 Q 19/32
3/44
21/20

識別記号

F I

H 0 1 Q 19/32
3/44
21/20

テ-マコ-^{*}(参考)

5 J 0 2 0
5 J 0 2 1

審査請求 未請求 請求項の数3 O L (全 8 頁)

(21)出願番号

特願平11-194487

(22)出願日

平成11年7月8日(1999.7.8)

(71)出願人 396011680

株式会社エイ・ティ・アール環境適応通信
研究所
京都府相楽郡精華町光台二丁目2番地2

(72)発明者 大平 孝

京都府相楽郡精華町大字乾谷小字三平谷5
番地 株式会社エイ・ティ・アール環境適
応通信研究所内

(74)代理人 100062144

弁理士 青山 葵 (外2名)

最終頁に続く

(54)【発明の名称】 アレーアンテナ装置

(57)【要約】

【課題】 従来技術に比較して構成が簡単であって製造コストを大幅に軽減でき、しかも指向特性の制御が容易であるアレーアンテナ装置を提供することにある。

【解決手段】 アレーアンテナ装置において、無線信号が給電される放射素子6と、放射素子6から所定の間隔dだけ離れて設けられ、無線信号が給電されない少なくとも1個の非励振素子7とを備えて構成され、非励振素子7に可変リアクタンス素子23が接続される。ここで、可変リアクタンス素子23のリアクタンス値Xnを変化させることにより、アレーアンテナ装置の指向特性を変化させる。また、可変リアクタンス素子23は例えば可変容量ダイオードD1,D2に印加する逆バイアス電圧を変化することにより可変容量ダイオードD1,D2の静電容量を変化させてアレーアンテナ装置の指向特性を変化させる。

【特許請求の範囲】

【請求項1】 無線信号が給電される放射素子と、上記放射素子から所定の間隔だけ離れて設けられ、無線信号が給電されない少なくとも1個の非励振素子と、上記非励振素子に接続された可変リアクタンス素子とを備えたアーレーアンテナ装置であって、上記可変リアクタンス素子のリアクタンス値を変化させることにより、上記アーレーアンテナ装置の指向特性を変化させることを特徴とするアーレーアンテナ装置。

【請求項2】 請求項1記載のアーレーアンテナ装置において、

上記可変リアクタンス素子は可変容量ダイオードであり、

上記可変容量ダイオードに印加する逆バイアス電圧を変化させることにより上記可変容量ダイオードの静電容量を変化させて上記アーレーアンテナ装置の指向特性を変化させることを特徴とするアーレーアンテナ装置。

【請求項3】 請求項1又は2記載のアーレーアンテナ装置において、

上記非励振素子を複数個備え、上記複数個の非励振素子は、上記放射素子を中心とする円形状の位置に配置されたことを特徴とするアーレーアンテナ装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、複数のアンテナ素子からなる指向特性を変化させることができるアーレーアンテナ装置に関する。

【0002】

【従来の技術】図12は、従来技術のフェーズドアーレーアンテナ装置の構成を示すブロック図である。図12において、例えばリニアアレー100で並置された複数N個のアンテナ素子1-1乃至1-Nで受信された各無線信号は低雑音増幅器(LNA)2-1乃至2-N及び可変移相器3-1乃至3-Nを介して合成器4に入力され、合成器4は入力される移相後のN個の無線信号を合成して、合成後の合成無線信号を無線受信機5に出力する。無線受信機5は合成無線信号に対してより低い周波数への周波数変換(ダウンコンバージョン)及びデータ復調などの処理を行ってデータ信号を取り出して出力する。

【0003】フェーズドアーレーアンテナ装置は複数の放射素子を所定の相対位相関係で励振することにより所望の放射パターンを得る高機能なアンテナであり、図12に示すように、所望の励振位相関係を設定するための手段として、複数の可変移相器3-1乃至3-Nを用いている。

【0004】

【発明が解決しようとする課題】図12に示すように、従来技術のフェーズドアーレーアンテナ装置においては、例えば受信側では、複数の低雑音増幅器2-1乃至2-

N、複数の可変移相器3-1乃至3-N及び合成器4とを備える必要があるために、構成が複雑となり、製造コストが大幅に高くなり、アンテナ素子1-1乃至1-Nの数が多い場合に特にこの欠点は深刻なものとなる。

【0005】本発明の目的は以上の問題点を解決し、従来技術に比較して構成が簡単であって製造コストを大幅に軽減でき、しかも指向特性の制御が容易であるアーレーアンテナ装置を提供することにある。

【0006】

【課題を解決するための手段】本発明に係る請求項1記載のアーレーアンテナ装置は、無線信号が給電される放射素子と、上記放射素子から所定の間隔だけ離れて設けられ、無線信号が給電されない少なくとも1個の非励振素子と、上記非励振素子に接続された可変リアクタンス素子とを備えたアーレーアンテナ装置であって、上記可変リアクタンス素子のリアクタンス値を変化させることにより、上記アーレーアンテナ装置の指向特性を変化させることを特徴とする。

【0007】また、請求項2記載のアーレーアンテナ装置は、請求項1記載のアーレーアンテナ装置において、上記可変リアクタンス素子は可変容量ダイオードであり、上記可変容量ダイオードに印加する逆バイアス電圧を変化させることにより上記可変容量ダイオードの静電容量を変化させて上記アーレーアンテナ装置の指向特性を変化させることを特徴とする。

【0008】さらに、請求項3記載のアーレーアンテナ装置は、請求項1又は2記載のアーレーアンテナ装置において、上記非励振素子を複数個備え、上記複数個の非励振素子は、上記放射素子を中心とする円形状の位置に配置されたことを特徴とする。

【0009】

【発明の実施の形態】以下、図面を参照して本発明に係る実施形態について説明する。

【0010】図1は本発明に係る第1の実施形態であるアーレーアンテナ装置の構成を示す斜視図であり、図2は図1の給電アンテナ素子A0の構成を示す模式図であり、図3は図1の無給電可変リアクタンス素子A1乃至A6の構成を示す模式図である。

【0011】本実施形態においては、図1に示すように、それぞれモノポール素子である、給電アンテナ素子A0と、6本の無給電可変リアクタンス素子A1乃至A6とがそれぞれ、各素子A0乃至A6の長さ10, 1n(n=1, 2, ..., 6)に対して十分に大きい広さを有する導体板にてなる接地導体11から電気的に絶縁され、かつ給電アンテナ素子A0を中心とする例えば半径d=λ/4の円形状の位置に互いに同一の60度の間隔で無給電可変リアクタンス素子A1乃至A6が配置されるように設けられる。

【0012】図2において、給電アンテナ素子A0は、例えばλ/4の所定の長手方向の長さ10を有し接地導

体11とは電気的に絶縁された円柱形状の放射素子6を備え、無線機（図示せず。）から給電される無線信号を伝送する同軸ケーブル20の中心導体21は放射素子6の一端に接続され、その外部導体22は接地導体11に接続される。これにより、無線機から無線信号が同軸ケーブル20を介して給電アンテナ素子A0に給電されて放射される。

【0013】図3において、各無給電可変リアクタンス素子A1乃至A6はそれぞれ、例えば $\lambda/4$ の所定の長手方向の長さ1n（n=1, 2, …, 6）を有し接地導体11とは電気的に絶縁された円柱形状の非励振素子7と、リアクタンス値Xn（n=1, 2, …, 6）を有する可変リアクタンス素子23とを備えて同様の構造をして構成される。ここで、非励振素子7の一端は可変リアクタンス素子23を介して接地導体11に対して高周波的に接地される。例えば放射素子6と非励振素子7の長手方向の長さが実質的に同一であると仮定したとき、例えば、可変リアクタンス素子23がインダクタンス性（L性）を有するときは、可変リアクタンス素子23は延長コイルとなり、無給電可変リアクタンス素子A1乃至A6の電気長が給電アンテナ素子A0に比較して長くなり、反射器として働く。一方、例えば、可変リアクタンス素子23がキャパシタンス性（C性）を有するときは、可変リアクタンス素子23は短縮コンデンサとなり、無給電可変リアクタンス素子A1乃至A6の電気長が給電アンテナ素子A0に比較して短くなり、導波器として働く。

【0014】従って、図1のアーランテナ装置において、各無給電可変リアクタンス素子A1乃至A6に接続された可変リアクタンス素子のリアクタンス値を変化させることにより、アーランテナ装置の全体の平面指向性特性を変化させることができる。

【0015】図4は、図1のアーランテナ装置の詳細な構成を示す断面図であり、図4の好ましい実施形態では、可変リアクタンス素子23として可変容量ダイオードDを用いている。

【0016】図4において、例えばポリカーボネートなどの誘電体基板10の上面に接地導体11が形成され、放射素子6は、接地導体11から電気的に絶縁されつつ、誘電体基板10を厚さ方向に貫通して支持されており、無線機（図示せず。）から無線信号が給電される。また、非励振素子7は接地導体11から電気的に絶縁されつつ、誘電体基板10を厚さ方向に貫通して支持される。ここで、非励振素子7の一端は可変容量ダイオードD及び、誘電体基板10を厚さ方向に貫通して充填形成されてなるスルーホール導体12を介して接地導体11に高周波的に接続されるとともに、抵抗Rを介して端子Tに接続される。また、端子Tは高周波バイパス用キャパシタC及び、誘電体基板10を厚さ方向に貫通して充填形成されてなるスルーホール導体13を介して接地導

体11に高周波的に接続される。

【0017】端子Tには、アーランテナ装置の制御装置（図示せず。）により電圧制御される可変電圧直流電源30が接続され、これにより、可変容量ダイオードDに印加する逆バイアス電圧を変化させることにより、可変容量ダイオードDにおける静電容量値を変化させる。これにより、非励振素子7を備えた無給電可変リアクタンス素子A1の電気長を、給電アンテナ素子A0に比較して変化させ、当該アーランテナ装置の平面指向性特性を変化させることができる。さらに、他の非励振素子7を備えた無給電可変リアクタンス素子A2乃至A6も同様に構成されて同様の作用を有する。以上のように構成されたアーランテナ装置は電子制御導波器アーランテナ装置（Electronically Steerable Passive Array Radiator Antenna, ESPARアンテナ）と呼ぶことができる。

【0018】以上説明したように、図12の従来技術のアーランテナ装置に比較して、非常に簡単な構造を有し、例えば可変容量ダイオードDを用いれば、直流電圧で指向特性を電子的に制御可能なアーランテナ装置を実現できる。当該アーランテナ装置は、例えば、移動体通信端末用のアンテナとしてノートパソコンやPDAのような電子機器へ装着が容易であり、また、水平面のどの方向へ主ビームを走査した場合でも、すべての無給電可変リアクタンス素子A1乃至A6が導波器又は反射器として有効に機能し、指向特性の制御もきわめて容易である。

【0019】<第2の実施形態>図5は、本発明に係る第2の実施形態であるアーランテナ装置の構成を示す斜視図である。本実施形態のアーランテナ装置は、図1のアーランテナ装置におけるモノポールを、ダイポールに置き換えたものである。

【0020】図5において、当該アーランテナ装置の中心に設けられた給電アンテナ素子AA0は、互いに所定の間隔を置きかつ互いに1直線上に設けられた1対の放射素子6a, 6bを備えて構成され、放射素子6a, 6bの互いに対向する各一端はそれぞれ端子T11, T12に接続される。ここで、端子T11, T12は平衡型伝送ケーブルを介して無線機に接続され、無線機から無線信号が当該給電アンテナ素子AA0に給電される。

【0021】給電アンテナ素子AA0を中心とした円形形状の位置に互いに所定の角度間隔で設けられた各無給電可変リアクタンス素子AA1乃至AA6はそれぞれ、互いに所定の間隔を置きかつ互いに1直線上に設けられた1対の非励振素子7a, 7bを備え、非励振素子7a, 7bの互いに対向する各一端は可変容量ダイオードD1を介して接続され、可変容量ダイオードD1の一端は抵抗R1を介して端子T1に接続され、可変容量ダイオードD1の他端は抵抗R2を介して端子T2に接続される。ここで、端子T1及びT2の間に高周波バイパス

用キャパシタC1が接続される。また、端子T1及びT2には、図4の第1の実施形態と同様に、可変容量ダイオードD1に対して逆バイアス電圧を印加するための可変電圧直流電源(図示せず。)が接続される。

【0022】可変電圧直流電源により、各無給電可変リアクタンス素子AA1乃至AA6の可変容量ダイオードD1に印加する逆バイアス電圧を変化させることにより、可変容量ダイオードDにおける静電容量値を変化させる。これにより、非励振素子7a, 7bを備えた各無給電可変リアクタンス素子AA1乃至AA6の電気長を、給電アンテナ素子AA0に比較して変化させ、当該アーランテナ装置の平面指向性特性を変化させることができる。

【0023】以上説明したように、図12の従来技術のアーランテナ装置に比較して、非常に簡単な構造を有し、例えば可変容量ダイオードD1を用いれば、直流電圧で指向特性を電子的に制御可能なアーランテナ装置を実現できる。当該アーランテナ装置は、例えば、移動体通信端末用のアンテナとしてノートパソコンやPDAのような電子機器へ装着が容易であり、また、水平面のどの方向へ主ビームを走査した場合でも、すべての無給電可変リアクタンス素子AA1乃至AA6が導波器又は反射器として有効に機能し、指向特性の制御もきわめて容易である。

【0024】<変形例>以上の実施形態においては、送信用のアーランテナ装置について説明しているが、当該装置は非可逆回路を含まない可逆回路であるので、図12の従来技術の装置と同様に受信用に用いることができる。

【0025】以上の実施形態においては、6本の無給電可変リアクタンス素子A1乃至A6又はAA1乃至AA6を用いているが、その本数は少なくとも1本あれば、当該アーランテナ装置の指向特性を電子的に制御することができる。また、無給電可変リアクタンス素子A1乃至A6又はAA1乃至AA6の配置形状も上記の実施形態に限定されず、給電アンテナ素子AA0から所定の距離だけ離れていればよい。すなわち、各無給電可変リアクタンス素子A1乃至A6又はAA1乃至AA6に対する間隔dは一定でなくてもよい。

【0026】さらに、可変リアクタンス素子23は可変容量ダイオードD1に限定されず、リアクタンス値を制御可能な素子であればよい。可変容量ダイオードD1は一般に容量性の回路素子なので、リアクタン

ス値は常に負の値となる。なお、表1の数値例では、インピーダンスZとしてゼロや正の値を用いている。上記可変リアクタンス素子23のリアクタンス値は、正から負の値までの範囲の値をとってもよく、このためには、例えば可変容量ダイオードD1に直列に固定のインダクタを挿入するか、もしくは、非励振素子7の長さをより長くすることにより、正から負の値までにわたってリアクタンス値を変化させることができる。

【0027】

【実施例】本発明者は、以上の実施形態に係るアーランテナ装置の性能を検証するために以下のシミュレーションを行った。ここで、図6及び図7の解析モデルを用いる。本実施形態のアーランテナ装置の設計上で重要なパラメータは以下の通りである。

【0028】(1) 無給電可変リアクタンス素子AA1乃至AA6の本数N及び長さ1n(n=1, 2, ..., N): Nは実施形態では6であるが、これは一例である。また、長さ1nは360度走査を考慮し、好ましくは、すべての無給電可変リアクタンス素子AA1乃至AA6で同一の値とする。

(2) 給電アンテナ素子AA0と無給電可変リアクタンス素子AA0乃至AA6の間隔d。(3) 無給電可変リアクタンス素子AA nに装荷するリアクタンスの値Xn。

【0029】このうち、上記(1)及び(2)のパラメータは設計により決定したら動かせないパラメータであるのに対して、上記(3)のパラメータは上述の通り、可変容量ダイオードD1によりある程度の幅で電子的に制御可能なパラメータである。最適なパラメータ決定のための基礎データを得るため、本実施形態のESPAPRアンテナ装置のパラメータをある程度変化させた時の諸特性をモーメント法を用いて計算した。解析は接地導体11が無限大であると仮定し、自由空間中にダイポールアンテナが配置されたものとして行った。解析モデルを図6及び図7に示す。各パラメータのセットが次の表1に示す値をとる場合の、入力インピーダンスZin、利得Gain、電界が最大(Emax)又は最小(Emin)となる角度Deg(Emax), Deg(Emin)、並びに、電界の最大値と最小値の比Emin/Emaxの計算値を表2に示す。なお、表1において、Zn=Xnである。

【0030】

【表1】

解析に用いた各パラメータ値の各ケースのセット

ケース	N	l _o	l _n	d	Z _n					
					Z ₁	Z ₂	Z ₃	Z ₄	Z ₅	Z ₆
ケース1	6	$\lambda/4$	0.91c	$\lambda/4$	-j20Ω	j0Ω	-j20Ω	+j20Ω	j0Ω	+j20Ω
ケース2				$1.1\lambda/4$						
ケース3				$\lambda/4$	j5Ω	-j10Ω	j5Ω	-j20Ω	j20Ω	-j20Ω
ケース4				$1.1\lambda/4$						

【0031】

【表2】

各ケースのパラメータのセットを用いた場合の諸特性の計算結果

ケース	Zin(Ω)	Gain(dBi)	Deg(E _{max})(度)	Deg(E _{min})(度)	E _{min} /E _{max} (dB)
ケース1	26.55+j89.75	9.84	60	148及び332	-34.71
ケース2	29.77+j91.43	8.58	60	2及び118	-12.22
ケース3	25.00+j95.71	7.97	123及び357	204及び276	-13.32
ケース4	33.47+j88.97	7.61	121及び359	60	-28.42

【0032】また、水平面内遠方放射電界パターン（相対値）の計算結果を図8乃至図11に示す。表2に示す利得Gainの値及び図8乃至図11の指向特性のパターン形状より、リアクタンスの値Xnを適切に選ぶことにより、無給電可変リアクタンス素子AA1乃至AA6は導波器もしくは反射器として動作することが確認された。また、図8と図9及び図10と図11を比較すると、明らかなように、間隔dの値を少し変化させただけで、放射パターンの形状は大きく変化することがわかる。

【0033】

【発明の効果】以上詳述したように本発明に係るアーレーアンテナ装置によれば、無線信号が給電される放射素子と、上記放射素子から所定の間隔だけ離れて設けられ、無線信号が給電されない少なくとも1個の非励振素子と、上記非励振素子に接続された可変リアクタンス素子とを備えたアーレーアンテナ装置であって、上記可変リアクタンス素子のリアクタンス値を変化させることにより、上記アーレーアンテナ装置の指向特性を変化させる。従って、本発明によれば、図12の従来技術のアーレーアンテナ装置に比較して、非常に簡単な構造を有し、例えば可変容量ダイオードなどの可変リアクタンス素子を用いれば、直流電圧で指向特性を電子的に制御可能アーレーアンテナ装置を実現できる。当該アーレーアンテナ装置は、例えば、移動体通信端末用のアンテナとしてノートパソコンやPDAのような電子機器へ装着が容易であり、また、水平面のどの方向へ主ビームを走査した場合でも、すべての無給電可変リアクタンス素子が導波器又は反射器として有効に機能し、指向特性の制御もきわめて容易である。

【図面の簡単な説明】

【図1】 本発明に係る第1の実施形態であるアーレーアンテナ装置の構成を示す斜視図である。

【図2】 図1の給電アンテナ素子A0の構成を示す模式図である。

【図3】 図1の無給電可変リアクタンス素子A1乃至A6の構成を示す模式図である。

【図4】 図1のアーレーアンテナ装置の詳細な構成を示す断面図である。

【図5】 本発明に係る第2の実施形態であるアーレーアンテナ装置の構成を示す斜視図である。

【図6】 第2の実施形態のアーレーアンテナ装置の解析モデルを示す斜視図である。

【図7】 図6のアーレーアンテナ装置の平面配置を示す平面図である。

【図8】 図6及び図7のアーレーアンテナ装置におけるケース1の水平面指向特性を示すグラフである。

【図9】 図6及び図7のアーレーアンテナ装置におけるケース2の水平面指向特性を示すグラフである。

【図10】 図6及び図7のアーレーアンテナ装置におけるケース3の水平面指向特性を示すグラフである。

【図11】 図6及び図7のアーレーアンテナ装置におけるケース4の水平面指向特性を示すグラフである。

【図12】 従来技術のアーレーアンテナ装置の構成を示すブロック図である。

【符号の説明】

A0, AA0…給電アンテナ素子、
A1乃至A6, AA1乃至AA6…無給電可変リアクタンス素子、

C, C1…キャパシタ、

D, D1…可変容量ダイオード、
 R, R1, R2…抵抗、
 T, T1, T2…端子、
 6, 6a, 6b…放射素子、
 7, 7a, 7b…非励振素子、
 10…誘電体基板、
 11…接地導体、

12, 13…スルーホール導体、
 20…給電用同軸ケーブル、
 21…中心導体、
 22…外部導体、
 23…可変リアクタンス素子、
 30…可変電圧直流電源。

【図1】

【図2】

給電アンテナ素子AO

【図3】

【図4】

【図5】

【図7】

【図6】

【図8】

【図9】

【図10】

【図11】

【図12】

フロントページの続き

(72)発明者 行田 弘一
京都府相楽郡精華町大字乾谷小字三平谷5
番地 株式会社エイ・ティ・アール環境適
応通信研究所内

F ターム(参考) 5J020 AA03 BA02 BC09 CA04 CA05
DA03 DA04 DA10
5J021 AA01 AA05 AA09 AA13 AB03
CA01 DB03 FA03 FA11 GA02
HA05 HA10