

Ciencias con datos

Ciencias formales

Ciencias con datos

Ciencias formales

Todas las ciencias con datos desarrollan **teorías causales** para comprender el mundo

Industrias con datos

Hype Cycle for Artificial Intelligence, 2025

La ventaja de las teorías causales

Tasa de predicción en órdenes de magnitud $-\overline{\log \lim_{T \to \infty} P(\mathsf{Datos}_T | \mathsf{Modelo\ Causal})^{1/T}}$

$$\underbrace{P(c,s,r|\text{Realidad Causal})}_{\text{Probabilidad de que}} \cdot \underbrace{\left(-\log P(c,s,r|\text{Modelo Causal})\right)}_{\text{Información en ordenes de magnitud}}$$

Entropía cruzada

$$\begin{array}{c} \text{Tasa de predicción en} \\ \text{ ordenes de magnitud} \\ -\log \lim_{T \to \infty} P(\mathsf{Datos}_T | \mathsf{Modelo\ Causal})^{1/T} \\ = \\ \sum_{c,s,r} \underbrace{P(c,s,r | \mathsf{Realidad\ Causal}) \cdot \left(-\log P(c,s,r | \mathsf{Modelo\ Causal})\right)}_{\mathsf{Probabilidad\ de\ que}} \\ \text{ Entropía\ cruzada} \end{array}$$

No hay mejor predicción que la del modelo causal que se corresponde con la realidad causal subyacente

P(p) $P(a_t|p)$ $P(r_t)$ $P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

Algoritmo para calcular cualquier marginal mediante pasaje de mensajes entre nodos

P(p) $P(a_t|p)$ $P(r_t)$ $P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

Algoritmo para calcular cualquier marginal mediante pasaje de mensajes entre nodos

 $m_{x\to f}(x)$: Mensaje de variable x a factor f $m_{f\to x}(x)$: Mensaje de factor f a variable x

Flujo de inferencia

sum-product algorithm

Algoritmo para calcular cualquier marginal mediante pasaje de mensajes entre nodos

v(n) : Vecinos del nodo n

 $m_{x \to f}(x)$: Mensaje de variable x a factor f

 $m_{f \to x}(x)$: Mensaje de factor f a variable x

$\blacksquare P(p)$ $P(a_t|p)$ $P(c_t)$ $P(r_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n) : Vecinos del nodo n

 $m_{x \rightarrow f}(x)$: Mensaje de variable x a factor f

 $m_{f \to x}(x)$: Mensaje de factor f a variable x

$\blacksquare P(p)$ $P(a_t|p)$ $P(r_t)$ $P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n) : Vecinos del nodo n

 $m_{x \to f}(x)$: Mensaje de variable x a factor f $m_{f \to x}(x)$: Mensaje de factor f a variable x

$$m_{x \to f}(x) = \prod_{h \in v(x) \setminus \{f\}} m_{h \to x}(x)$$

$\blacksquare P(p)$ $P(a_t|p)$ $P(r_t)$ $P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n) : Vecinos del nodo n

 $m_{x\to f}(x)$: Mensaje de variable x a factor f $m_{f\to x}(x)$: Mensaje de factor f a variable x

$$m_{x \to f}(x) = \prod_{h \in v(x) \setminus \{f\}} m_{h \to x}(x)$$

$\blacksquare P(p)$ $P(a_t|p)$ $P(r_t)$ $\blacksquare P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n) : Vecinos del nodo n

 $m_{x\to f}(x)$: Mensaje de variable x a factor f

 $m_{f\rightarrow x}(x)$: Mensaje de factor f a variable x

$$m_{x \to f}(x) = \prod_{h \in v(x) \setminus \{f\}} m_{h \to x}(x)$$

$$m_{f \to x}(x) = \int f(\boldsymbol{h}, x) \prod_{h \in v(f) \setminus \{x\}} m_{h \to f}(h)$$

$\blacksquare P(p)$ $P(a_t|p)$ $\blacksquare P(c_t)$ $P(r_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n) : Vecinos del nodo n

 $m_{x \to f}(x)$: Mensaje de variable x a factor f

 $m_{f
ightarrow x}(x)$: Mensaje de factor f a variable x

$$m_{x \to f}(x) = \prod_{h \in v(x) \setminus \{f\}} m_{h \to x}(x)$$

$$m_{f \to x}(x) = \sum_{\mathbf{h}} \left(f(\mathbf{h}, x) \prod_{h \in v(f) \setminus \{x\}} m_{h \to f}(h) \right)$$

$\blacksquare P(p)$ $P(a_t|p)$ $\blacksquare P(c_t)$ $P(r_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n): Vecinos del nodo n

 $m_{x \to f}(x)$: Mensaje de variable x a factor f

 $m_{f\rightarrow x}(x)$: Mensaje de factor f a variable x

$$m_{x \to f}(x) = \prod_{h \in v(x) \setminus \{f\}} m_{h \to x}(x)$$

$$m_{f \to x}(x) = \sum_{\mathbf{h}} \left(f(\mathbf{h}, x) \prod_{h \in v(f) \setminus \{x\}} m_{h \to f}(h) \right)$$

Flujo de inferencia

sum-product algorithm

$$P(x) = \prod_{f \in v(x)} m_{f \to x}(x)$$

v(n) : Vecinos del nodo n

 $m_{x
ightarrow f}(x)$: Mensaje de variable x a factor f

 $m_{f\to x}(x)$: Mensaje de factor f a variable x

$$m_{x \to f}(x) = \prod_{h \in v(x) \setminus \{f\}} m_{h \to x}(x)$$

$$m_{f \to x}(x) = \sum_{\mathbf{h}} \left(f(\mathbf{h}, x) \prod_{h \in v(f) \setminus \{x\}} m_{h \to f}(h) \right)$$

P(p) $P(a_t|p)$ $P(r_t)$ $P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia sum-product algorithm

¿Cuál es el posterior de p?

$$P(p|\underbrace{r_1,c_1,s_1,\ldots}_{\mathsf{Datos}})$$

P(p) $P(a_t|p)$ $P(r_t)$ $\square P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

$$P(p|\underbrace{r_1, c_1, s_1, \dots}_{\mathsf{Datos}}) \propto P(p, r_1, c_1, s_1, \dots)$$

$$= \sum_{a_1, \dots, a_T} P(p, r_1, c_1, s_1, a_1 \dots)$$

$\blacksquare P(p)$ $P(a_t|p)$ $P(r_t)$ $P(c_t)$ $P(s_t|r_t,c_t,a_t)$ $t \in \{0, \dots, T-1\}$

Flujo de inferencia sum-product algorithm

$$P(p|\underbrace{r_1, c_1, s_1, \dots}) \propto P(p, r_1, c_1, s_1, \dots)$$

$$= \sum_{a_1, \dots, a_T} P(p, r_1, c_1, s_1, a_1 \dots)$$

Son T sumatorias anidadas! (las combinaciones crecen como 2^T)

$$m_{f_r \to r}(r) =$$

$$m_{f_p \to p}(p) =$$

$$m_{f_c \to c}(c) =$$

$$m_{f_r \to r}(r) = P(r)$$

$$m_{f_p \to p}(p) = P(p)$$

$$m_{f_c \to c}(c) = P(c)$$

$$m_{f_s \to a}(a) =$$

$$m_{f_s \rightarrow a}(a) = P(r)P(c)P(s|r)^{\mathbb{I}(a=0)}P(s|r,c)^{\mathbb{I}(a=1)}$$

$$m_{f_s \to a}(a) = P(r)P(c)P(s|r)^{\mathbb{I}(a=0)}P(s|r,c)^{\mathbb{I}(a=1)} = P(r,c,s|a)$$

$$m_{f_a \to p}(p) =$$

$$m_{f_a \to p}(p) = \sum_{a} P(r, c, s|a) P(a|p)$$

$$m_{f_a \to p}(p) = \sum P(r, c, s|a)P(a|p) = P(r, c, s|p)$$

$$P(p1, \overbrace{r_1, \dots, s_3}^{\mathsf{Datos}}) = P(p) \prod_{i=1}^T P(r_i, c_i, s_i | p)$$

Predecir el impacto de las acciones a partir de datos observados

P(Y|X)

Predecir el impacto de las acciones a partir de datos observados

$$P(Y|X) \hspace{1cm} \neq \hspace{1cm} P(Y|\operatorname{do}(X))$$

Predecir el impacto de las acciones a partir de datos observados

Observaciones

 $P(Y|\mathsf{do}(X))$

Predecir el impacto de las acciones

a partir de datos observados

Predecir el impacto de las acciones a partir de datos observados

Entrenamos

In-sample

Predecir el impacto de las acciones a partir de datos observados

Entrenamos

In-sample

Observaciones

A C_i X_i X_i

i: Individuos

Predecimos

Out-of-sample

Predecir el impacto de las acciones a partir de datos observados

Entrenamos

In-sample

Predecimos

Out-of-sample

P(Y|X)

#

 $\Pr(Y|\mathsf{do}(X))$

Para predecir el impacto de las acciones necesitamos eliminar el flujo no causal

Flujo de inferencia Estructuras básicas

Flujo de inferencia Estructuras básicas

Pipe: $e \rightarrow a \rightarrow l$

Flujo de inferencia Estructuras básicas

Entradera: Terremoto:

Pipe: $e \to a \to l$ $P(l) \stackrel{?}{=} P(l|e)$

Pipe:
$$e \rightarrow a \rightarrow l$$
 $P(l) \stackrel{?}{=} P(l|e)$ $P(l|a) \stackrel{?}{=} P(l|e,a)$

Estructuras básicas

	Intermedio no observable	Intermedio observable
	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	$P(l a) \stackrel{?}{=} P(l e,a)$ $P(r t) \stackrel{?}{=} P(r t,a)$

Flujo de inferencia $x \longrightarrow z \longrightarrow y$

Flujo de inferencia Pipe $x \longrightarrow z \longrightarrow y$ $\mathbb{I}(z=(x>0))$

 $\mathcal{N}(y|z,1)$

Flujo de inferencia Pipe $\mathcal{N}(x|0,1)$ 2.0 -1.5 - $\mathbb{I}(z=(x>0))$ 1.0 0.5 - $\mathcal{N}(y|z,1)$ 0.0 --0.5 $X\not\perp\!\!\!\!\perp Y|\emptyset$ -1.0 --2 -6

Flujo de inferencia Pipe Z=0 2.0 -Z=11.5 -1.0 - \succ 0.5 -0.0 --0.5 -1.0 --2 -6

 $\mathcal{N}(x|0,1)$

 $\mathbb{I}(z=(x>0))\,\mathbf{I}$

 $\mathcal{N}(y|z,1)$

$$P(x, y|z) = \frac{P(x)P(z|x)P(y|z)}{P(z)} = \frac{P(x)P(z|x)}{P(z)}P(y|z) = P(x|z)P(y|z)$$

$$E\not\perp\!\!\!\perp L|\emptyset$$

Estructuras básicas

$$P(l) \neq P(l|e)$$
 $P(l|a) = R$
 $P(r) \stackrel{?}{=} P(r|a)$ $P(r|t) \stackrel{?}{=} R$
 $P(t) \stackrel{?}{=} P(t|e)$ $P(t|a) \stackrel{?}{=} R$

$$E \not\perp\!\!\!\perp L|\emptyset$$
 $E \perp\!\!\!\perp L|A$

Intermedio

observable

 $x \longleftarrow z \longrightarrow y$

Flujo de inferencia Fork $x \longleftarrow z \longrightarrow y$

$$X \perp \!\!\!\perp Y|Z \iff P(x,y|z) = P(x|z)P(y|z)$$

P(x, y|z) =

$$P(x,y|z) = \frac{P(x,y,z)}{P(z)}$$

$$P(x,y|z) = \frac{P(x|z)P(y|z)P(z)}{P(z)}$$

$$P(x,y|z) = \frac{P(x|z)P(y|z)P(z)}{P(z)}$$

$$P(x,y|z) = \frac{P(x|z)P(y|z)P(z)}{P(z)} = P(x|z)P(y|z)$$

Estructuras básicas

 $A \not\perp\!\!\!\perp R |\emptyset$

Estructuras das

$$A \perp\!\!\!\!\perp R |\emptyset \qquad \qquad A \perp\!\!\!\!\perp R |T$$

 $x \longrightarrow z \longleftarrow y$

$$x \longrightarrow z \longleftarrow y$$

 $X \perp\!\!\!\perp Y | \emptyset$

$$P(x) \qquad P(y)$$

$$x \qquad y$$

$$P(z|x,y)$$

$$z$$

$$P(x,y) = \sum_{z} P(x,y,z)$$

 $X \perp \!\!\! \perp Y | \emptyset$

$$P(x) \qquad P(y) \qquad P(x,y) = \sum_{z} P(x)P(y)P(z|x,y)$$

 $X \perp \!\!\!\perp Y | \emptyset$

$$P(x,y) = \sum_{z} P(x)P(y)P(z|x,y) = P(x)P(y)\sum_{z} P(z|x,y)$$

 $X \perp \!\!\!\perp Y | \emptyset$

$$P(x,y) = \sum_{z} P(x)P(y)P(z|x,y) = P(x)P(y)\sum_{z} P(z|x,y)$$

 $X \perp \!\!\!\perp Y | \emptyset$

$$P(x) \qquad P(y)$$

$$x \qquad y$$

$$P(z|x,y)$$

$$z$$

$$P(x,y) = \sum_{z} P(x)P(y)P(z|x,y) = P(x)P(y)$$

$$X \perp \!\!\! \perp Y | \emptyset$$

$$T \perp \!\!\! \perp E | \emptyset$$

$$T \perp\!\!\!\perp E | \emptyset$$
 $T \not\perp\!\!\!\perp E | A$

Flujo de inferencia Estructuras básicas

Entradera: Terremoto:

Alarma: a Redes: r

Llamada: l

		Intermedio no observable	Intermedio observable
Pipe:	$e \rightarrow a \rightarrow l$	$P(l) \neq P(l e)$	P(l a) = P(l e, a)
Fork:	$a \leftarrow t \rightarrow r$	$P(r) \neq P(r a)$	P(r t) = P(r t, a)
Collider:	$e \rightarrow a \leftarrow t$	P(t) = P(t e)	$P(t a) \neq P(t e,a)$
	Ĭ		$P(t l) \neq P(t e,l)$

$$T \perp\!\!\!\perp E |\emptyset \hspace{1cm} T \not\perp\!\!\!\perp E |L$$

Hay flujo de inferencia entre los extremos de una cadena si: (camino *d-conectado*)

- Todas las consecuencias comunes (o sus descendientes) son observables
- Ninguna otra variable es observable

Hay flujo de inferencia entre los extremos de una cadena si: (camino *d-conectado*)

- Todas las consecuencias comunes (o sus descendientes) son observables
- Ninguna otra variable es observable

Se cierra el flujo si está <u>no d-conectado</u> d-separado

Flujo de inferencia Variables de control

Backdoor criterion

Dado un conjunto de variable Q tal que:

- 1. Q cierra todos los caminos traseros de T a Y
- 2. Q no contiene ningún descendiente de T

Controles buenos

Controles buenos

Controles buenos

Controles buenos

Controles buenos

Controles buenos

Controles malos Sesgo de selección

Controles malos Sesgo de selección

Caso borde Y = Z.

$$\mathbb{E}[Y|T,Z] = \mathbb{E}[Y|T,Y]$$

Sesgo de selección

Caso borde Y = Z. T se hace independiente de Y.

$$\mathbb{E}[Y|T,Z] = \mathbb{E}[Y|T,Y] = \mathbb{E}[Y|Y] = Y$$

Sesgo de selección

Caso borde M=Z. T se hace independiente de Y.

$$\mathbb{E}[Y|T,Z] = \mathbb{E}[Y|T,M]$$

Controles neutrales Mejoran precisión

Controles neutrales Mejoran precisión

Efectos causales heterogéneos Distintos en función de las características de las personas

Controles neutrales Mejoran precisión

Efectos causales heterogéneos Distintos en función de las características de las personas

Controles Reducen precisión

Los modelos causales son buenos para predecir porque se adaptan al contexto

En los experimentos *aleatorizados* (y en las intervenciones determinísticas) el tratamiento se asigna independientemente de sus causas naturales.

$$do(X_i)$$

La intervención modifica el mecanismo causal de X: $P(do(X_i = x)) = \mathbb{I}(X_i = x)$

$$\underbrace{P(y_i|\mathsf{do}(x_i),M)}_{\text{El impacto de la intervención}} = \underbrace{P(y_i|x_i,M_x)}_{\text{la distribución condicional en el modelo intervenido}}$$

$$P(y_i|\mathsf{do}(x_i)) = P_{M_x}(y_i|x_i)$$
 otra notación común

$$P(y_i|\mathsf{do}(x_i)) = P_{M_x}(y_i|x_i)$$

el operador do() modifica la realidad causal subyacente

$$P(y_i|\mathsf{do}(x_i)) = P_{M_x}(y_i|x_i)$$

en el modelo intervenido toda la asociación es causal (no hay asociación espuria)

¿Cómo predecir el impacto causal a partir de datos observados sin intervenciones?

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \mathsf{B} \mathsf{ásico} \ (0), \ \mathsf{Especial} \ (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

¿El Tratamiento es efectivo para mejorar el estado del paciente?

con datos observados sin intervenciones

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \, \text{Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0			
T=1			

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	$P(E_1 = 1 T = 0, E_0 = 0)$		
T=1	$P(E_1 = 1 T = 1, E_0 = 0)$		

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	$P(E_1 = 1 T = 0, E_0 = 0)$		
T=1	$P(E_1 = 1 T = 1, E_0 = 0)$		
	$P(E_1=1 T=0,E_0=0) - P(E_1=1 T=1,E_0=0)$		

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	$P(E_1 = 1 T = 0, E_0 = 0)$	$P(E_1 = 1 T = 0, E_0 = 1)$	
T=1	$P(E_1 = 1 T = 1, E_0 = 0)$	$P(E_1 = 1 T = 1, E_0 = 1)$	
	$P(E_1=1 T=0,E_0=0) \ -P(E_1=1 T=1,E_0=0)$		

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \, \text{Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	$P(E_1 = 1 T = 0, E_0 = 0)$	$P(E_1 = 1 T = 0, E_0 = 1)$	
T=1	$P(E_1 = 1 T = 1, E_0 = 0)$	$P(E_1 = 1 T = 1, E_0 = 1)$	
	$P(E_1=1 T=0,E_0=0) \ -P(E_1=1 T=1,E_0=0)$	$P(E_1=1 T=0,E_0=1) - P(E_1=1 T=1,E_0=1)$	

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \, \text{Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	$P(E_1 = 1 T = 0, E_0 = 0)$	$P(E_1 = 1 T = 0, E_0 = 1)$	$P(E_1 = 1 T = 0)$
T=1	$P(E_1 = 1 T = 1, E_0 = 0)$	$P(E_1 = 1 T = 1, E_0 = 1)$	$P(E_1 = 1 T = 1)$
	$P(E_1=1 T=0,E_0=0) - P(E_1=1 T=1,E_0=0)$	$P(E_1=1 T=0,E_0=1) - P(E_1=1 T=1,E_0=1)$	

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \, \text{Severo } (1) \}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	$P(E_1 = 1 T = 0, E_0 = 0)$	$P(E_1 = 1 T = 0, E_0 = 1)$	$P(E_1 = 1 T = 0)$
T=1	$P(E_1 = 1 T = 1, E_0 = 0)$	$P(E_1 = 1 T = 1, E_0 = 1)$	$P(E_1 = 1 T = 1)$
	$P(E_1=1 T=0,E_0=0) - P(E_1=1 T=1,E_0=0)$	$P(E_1=1 T=0,E_0=1) - P(E_1=1 T=1,E_0=1)$	$P(E_1=1 T=0) -P(E_1=1 T=1)$

Predicción/estimación de impacto causal

con datos observados sin intervenciones

• Estado inicial: $E_0 \in \{\text{Leve }(0), \text{ Severo }(1)\}$ • Tratamiento: $T \in \{\text{Básico }(0), \text{ Especial }(1)\}$ • Estado final: $E_1 \in \{\text{Leve }(0), \text{ Severo }(1)\}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	15%	30%	16%
I = 0	210/1400	30/100	240/1500
T=1	10%	20%	19%
I = 1	5/50	100/500	105/550
	-5%	-10%	+4%

Predicción/estimación de impacto causal con datos observados sin intervenciones

Predicción/estimación de impacto causal con datos observados sin intervenciones

Para predecir el impacto causal de las acciones

necesitamos conocer la estructura causal subyacente

Modelo causal (M)

- Estado inicial: $E_0 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$
- Tratamiento: $T \in \{ \text{Básico } (0), \text{ Especial } (1) \}$
- Estado final: $E_1 \in \{ \text{Leve } (0), \text{ Severo } (1) \}$

Estimación de efecto causal Modelo causal (M)

Modelo causal (M)

	$E_0 = 0$	$E_0 = 1$	
T = 0	15%	30%	16%
	210/1400	30/100	240/1500
T=1	10%	20%	19%
	5/50	100/500	105/550

Modelo causal (M)

 $\begin{array}{c|c}
P(E_0) \\
E_0 = 0 & E_0 = 1 \\
\hline
1450/2050 & 600/2050
\end{array}$

	$E_0 = 0$	$E_0 = 1$	
T = 0	15%	30%	16%
T = 0	210/1400	30/100	240/1500
T=1	10%	20%	19%
1 — 1	5/50	100/500	105/550

Modelo causal (M)

	$E_0 = 0$	$E_0 = 1$				
145	1450/2050 600/2050					
	_					
	$P(T E_0$)	T –			
	T = 0	T=1	. 1			
$E_0 = 0$	1400/145					
$E_0 = 1$	100/600) 500/60	00			

	$E_0 = 0$	$E_0 = 1$	
T=0	15%	30%	16%
	210/1400	30/100	240/1500
T=1	10%	20%	19%
1 – 1	5/50	100/500	105/550

 $\mathsf{Modelo}\ \mathsf{causal}\ (M)$

$P(E_0)$				
	$E_0 = 0$		$ _{0} = 1$	
1450/2050		600	0/2050	
$P(T E_0)$				
	T=0)	T = 1	
$E_0 = 0$	1400/14	1 50	50/1450	
$E_0 = 1$	100/60	00	500/600	
	'		'	

E_0	F	$P(E_1 T,E_0)$	n)
	$(E_0 = 0)$	$E_1=0$	$E_1 = 1$
* *	T = 0	0.85	0.15
$T \longrightarrow E_1$	T = 1	0.90	0.10
	$(E_0 = 1)$	$E_1=0$	$E_1 = 1$
	T = 0	0.70	0.30
	T = 1	0.80	0.20

$T=0$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$E_0 = 0$	$E_0 = 1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T = 0	15%	30%	16%
T = 1		210/1400	30/100	240/1500
5/50 100/500 105/550	T-1	10%	20%	19%
	I = 1	5/50	100/500	105/550

Modelo causal (M)

 $\begin{array}{c|c|c} P(E_0) \\ \hline & E_0 = 0 & E_0 = 1 \\ \hline & 1450/2050 & 600/2050 \\ \hline & P(T|E_0) \\ \hline & T = 0 & T = 1 \\ \hline & E_0 = 0 & 1400/1450 & 50/1450 \\ E_0 = 1 & 100/600 & 500/600 \\ \hline \end{array}$

$P(E_1 T, E_0)$				
$(E_0=0)$	$E_1 = 0$	$E_1 = 1$		
T = 0	0.85	0.15		
T = 1	0.90	0.10		
$(E_0 = 1)$	$E_1=0$	$E_1 = 1$		
T = 0	0.70	0.30		
T = 1	0.80	0.20		

 $P(E_1|T,E_0)$ es una predicción sin asociación espuria un efecto causal *heterogéneo*, específico a cada estado inicial E_0

Modelo causal (M)

 $\begin{array}{c|c|c} P(E_0) \\ \hline & E_0 = 0 & E_0 = 1 \\ \hline & 1450/2050 & 600/2050 \\ \hline & P(T|E_0) \\ \hline & T = 0 & T = 1 \\ \hline E_0 = 0 & 1400/1450 & 50/1450 \\ \hline \end{array}$

100/600

 $E_0 = 1$

500/600

$P(E_1 T,E_0)$			
$(E_0=0)$	$E_1=0$	$E_1 = 1$	
T = 0	0.85	0.15	
T = 1	0.90	0.10	
$(E_0 = 1)$	$E_1=0$	$E_1 = 1$	
T = 0	0.70	0.30	
T = 1	0.80	0.20	

$$P(E_1|\mathsf{do}(T))$$
?

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$T$$

ESTIMACION de efecto causal Modelo causal intervenido
$$(M_T)$$

Modelo causal intervenido (M_T)

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow T$$

 $P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t)$

$$E_0$$

Estimación de efecto causal Modelo causal intervenido (M_T)

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow I$$

$$P_{M_T}(e_1,t)$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)}$$

$$\label{eq:modelo causal intervenido} \mbox{Modelo causal intervenido } (M_T)$$

$$P_{M_T}(T) = \mbox{Bern}(0.5)$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow E_1$$

$$P(E_0)$$

$$P(E_1|T, E_0)$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0,t,e_1)}{P_{M_T}(t)}$$

Modelo causal intervenido (M_T)

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow I$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$

$$T \longrightarrow T$$

$$T \longrightarrow I$$

 $P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)}$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow F$$

$$T \longrightarrow E$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) \underline{P_{M_T}(t)} P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{\underline{P_{M_T}(t)}}$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$
 $P_{M_T}(E_0) = P(E_0)$
 $E_1|T,E_0) = P(E_1|T,E_0)$
 $T \longrightarrow E_1$

$$\begin{split} P_{M_T}(E_1|T,E_0) &= P(E_1|T,E_0) \\ P_{M_T}(E_1|T,E_0) &= P(E_1|T,E_0) \\ P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \sum_{e0} P_{M_T}(e_0) P_{M_T}(e_1|t,e_0) \end{split}$$

Modelo causal intervenido (M_T)

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(T) = \text{Bern}(0.5)$$
 $P_{M_T}(E_0) = P(E_0)$
 $P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$
 $T \longrightarrow E$

 $= \sum_{e=0}^{n} P(e_0)P(e_1|t,e_0)$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T, E_0) = P(E_1|T, E_0)$$

$$T \longrightarrow E_1$$

$$P(e_1|\mathsf{do}(t)) = P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1, t)}{P_{M_T}(t)} = \frac{\sum_{e_0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t, e_0)}{P_{M_T}(t)}$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow E$$

$$E_0$$

$$T \longrightarrow E$$

$$e_1, t) \qquad \sum_{t \in P_M} P_{tM}$$

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \underbrace{\sum_{e0} P(e_0) P(e_1|t,e_0)}_{\text{Distribuciones observadas!}} \end{split}$$

Modelo causal intervenido (M_T)

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow T$$

Distribuciones

observadas!

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) P_{M_T}(t) P_{M_T}(e_1|t,e_0)}{P_{M_T}(t)} \\ &= \sum_{e0} P(e_0) P(e_1|t,e_0) \end{split}$$

$$e_0)$$

• Encontramos los efectos causales en cada subgrupo $P(e_1|t,e_0)$

• Y los ponderamos por el tamaño de cada subgrupo $P(e_0)$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow E_1$$

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) \underbrace{P_{M_T}(t)} P_{M_T}(e_1|t,e_0)}{\underbrace{P_{M_T}(t)}} \\ &= \sum_{e0} P(e_0) P(e_1|t,e_0) \end{split}$$

$$\underbrace{P(E_1 = 1|\mathsf{do}(T=1)) - P(E_1 = 1|\mathsf{do}(T=0))}_{\mathsf{Efecto\ causal\ general}}$$

$$P_{M_T}(T) = \mathsf{Bern}(0.5)$$

$$P_{M_T}(E_0) = P(E_0)$$

$$P_{M_T}(E_1|T,E_0) = P(E_1|T,E_0)$$

$$T \longrightarrow E_1$$

$$\begin{split} P(e_1|\mathsf{do}(t)) &= P_{M_T}(e_1|t) = \frac{P_{M_T}(e_1,t)}{P_{M_T}(t)} = \frac{\sum_{e0} P_{M_T}(e_0) \underbrace{P_{M_T}(t)} P_{M_T}(e_1|t,e_0)}{\underbrace{P_{M_T}(t)}} \\ &= \sum_{e0} P(e_0) P(e_1|t,e_0) \end{split}$$

$$\underbrace{P(E_1 = 1|\mathsf{do}(T=1)) - P(E_1 = 1|\mathsf{do}(T=0))}_{\mathsf{Efecto\ causal\ general}} = -0.0646$$

1. Especificar la estructura causal subyacente.

- 1. Especificar la estructura causal subvacente.
- 2. Definir el estimando (variables de control y modelo)

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Especificar la estructura causal subyacente

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1 + 2m^2,1)$$

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Los 4 pasos de la estimación de efecto causales Definir el estimando (variables de control y modelo)

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Los 4 pasos de la estimación de efecto causales Definir el estimando (variables de control y modelo)

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1 + 2m^2,1)$$

Los 4 pasos de la estimación de efecto causales Definir el estimando (variables de control y modelo)

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

¿Qué polinomio debemos usar para modelar la regresión lineal? Siempre podemos evaluar modelos alternativos en base a la evidencia

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

¿Qué polinomio debemos usar para modelar la regresión lineal?

Pero acá conocemos la función.

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$\mathbb{E}[y|m] = -1 + 2m^2$$

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$\mathbb{E}[y|m] = -1 + 2m^2 = -1 + 2(2z^2 + 10x)^2$$

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$\mathbb{E}[y|m] = -1 + 2m^2 = -1 + 2(2z^2 + 10x)^2$$
$$= -1 + 200x^2 + 80xz^2 + 8z^4 = \mathbb{E}[y|x, z]$$

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$y \sim x^2 + xz^2 + z^4$$

Los 4 pasos de la estimación de efecto causales

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Los 4 pasos de la estimación de efecto causales Computar las estimaciones de impacto causal

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Los 4 pasos de la estimación de efecto causales Computar las estimaciones de impacto causal

Los 4 pasos de la estimación de efecto causales Computar las estimaciones de impacto causal

Los 4 pasos de la estimación de efecto causales Validar los resultados

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Los 4 pasos de la estimación de efecto causales Validar los resultados

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Estimamos correctamente los efectos causales heterogéneos P(y|x,z)

Los 4 pasos de la estimación de efecto causales Validar los resultados

- 1. Especificar la estructura causal subyacente.
- 2. Definir el estimando (variables de control y modelo)
- 3. Computar las estimaciones de impacto causal
- 4. Validar los resultados

Estimamos correctamente los efectos causales heterogéneos

pero todavía no estimamos el efecto causal general

$$P(y|\mathsf{do}(x)) = P_{M_x}(y|x)$$

Los 4 pasos de la estimación de efecto causales

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(x|z) = \mathcal{N}(x|z^2,1)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1 + 2m^2,1)$$

Los 4 pasos de la estimación de efecto causales

$$P(z) = \mathcal{N}(z|0,1)$$

$$P(\operatorname{do}(x)) = \mathbb{I}(X=x)$$

$$P(m|x,z) = \mathcal{N}(m|2z^2 + 10x,1)$$

$$P(y|m) = \mathcal{N}(y|-1+2m^2,1)$$

$$P(y|\mathsf{do}(x)) = P_{M_x}(y|x) ?$$

Adjustment formula

Adjustment formula

$$P(Y = y | do(X = x)) = P_{M_x}(Y = y | X = x)$$

Adjustment formula

$$P(Y = y | \mathsf{do}(X = x)) = P_{M_x}(Y = y | X = x)$$
$$= \sum_{x} P_{M_x}(Y = y, Q = q | X = x)$$

Adjustment formula

$$\begin{split} P(Y = y | \mathsf{do}(X = x)) &= P_{M_x}(Y = y | X = x) \\ &= \sum_q P_{M_x}(Y = y, Q = q | X = x) \\ &= \sum_q P_{M_x}(Q = q | X = x) P_{M_x}(Y = y | X = x, Q = q) \end{split}$$

Adjustment formula

$$\begin{split} P(Y = y | \mathsf{do}(X = x)) &= P_{M_x}(Y = y | X = x) \\ &= \sum_q P_{M_x}(Y = y, Q = q | X = x) \\ &= \sum_q P_{M_x}(Q = q | X = x) P_{M_x}(Y = y | X = x, Q = q) \\ &\stackrel{*}{=} \sum_q P(Q = q) \, P(Y = y | X = x, Q = q) \end{split}$$

Adjustment formula

$$\begin{split} P(Y=y|\mathsf{do}(X=x)) &= P_{M_x}(Y=y|X=x) \\ &= \sum_q P_{M_x}(Y=y,Q=q|X=x) \\ &= \sum_q P_{M_x}(Q=q|X=x) P_{M_x}(Y=y|X=x,Q=q) \\ &\stackrel{*}{=} \sum_q P(Q=q) \underbrace{P(Y=y|X=x,Q=q)}_{\text{Estimación del efecto causal específico a } q \end{split}$$

Adjustment formula

$$\begin{split} P(Y=y|\mathsf{do}(X=x)) &= P_{M_x}(Y=y|X=x) \\ &= \sum_q P_{M_x}(Y=y,Q=q|X=x) \\ &= \sum_q P_{M_x}(Q=q|X=x) P_{M_x}(Y=y|X=x,Q=q) \\ &\stackrel{*}{=} \sum_q \underbrace{P(Q=q)}_{\text{Peso de }q} \underbrace{P(Y=y|X=x,Q=q)}_{\text{Estimación del efecto causal específico a }q \end{split}$$

Demostración

Parte 1. $P_{M_x}(Y = y | X = x, Q = q) \stackrel{?}{=} P(Y = y | X = x, Q = q)$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) \stackrel{?}{=} P(Y = y | X = x, Q = q)$$

Parte 2.
$$P_{M_x}(Q = q | X = x) \stackrel{?}{=} P(Q = q)$$

Demostración

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) \stackrel{?}{=} P(Y = y | X = x, Q = q)$$

1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) \stackrel{?}{=} P(Y = y | X = x, Q = q)$$

- $1.a~{
 m Del}$ lado izquierdo toda la asociación es causal porque X no recibe flechas.
- $1.b\ {
 m Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Demostración

Parte 1. $P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$

- $1.a\ {
 m Del}\ {
 m lado}\ {
 m izquierdo}\ {
 m toda}\ {
 m la}\ {
 m asociación}\ {
 m es}\ {
 m causal}\ {
 m porque}\ X\ {
 m no}\ {
 m recibe}\ {
 m flechas}.$
- $1.b\ {
 m Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

- Parte 1. $P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$
 - 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
 - $1.b\ {\sf Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) \stackrel{?}{=} P(Q = q)$$

- Parte 1. $P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$
 - 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
 - $1.b\ {
 m Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.
- Parte 2. $P_{M_x}(Q=q|X=x) \stackrel{?}{=} P(Q=q)$
- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos.

Demostración

- Parte 1. $P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$
 - 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
 - $1.b\ {\sf Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) \stackrel{?}{=} P(Q = q)$$

2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$

Demostración

- Parte 1. $P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$
 - 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
 - $1.b\ {\sf Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$

- Parte 1. $P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$
 - 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
 - $1.b\ \mathsf{Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X).

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = \sum_{W, Y, Y} P(Q, W, X, Y)$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = \sum_{W \mid X \mid Y} P(Q)P(W, X, Y|Q)$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum_{W, Y, Y} P(W, X, Y|Q)$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \underbrace{\sum_{W,X,Y} P(W,X,Y|Q)}_{1}$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum_{W,Y,Y} P(W,Y|Q)P(X|Q,W,Y)$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum_{WY} P(W, Y|Q) \sum_{X} P(X|Q, W, Y)$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- $1.b\ \mathsf{Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum_{W,Y} P(W,Y|Q) \underbrace{\sum_{X} P(X|Q,W,Y)}_{1}$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum_{WY} P(W, Y|Q)$$

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- 1.b Del lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) \stackrel{?}{=} P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum P(W,Y|Q)$$
 la condicional de X no afecta la marginal

Parte 1.
$$P_{M_x}(Y = y | X = x, Q = q) = P(Y = y | X = x, Q = q)$$

- 1.a Del lado izquierdo toda la asociación es causal porque X no recibe flechas.
- $1.b\ \mathsf{Del}$ lado derecho toda la asociación es causal porque Q corta el flujo trasero.

Parte 2.
$$P_{M_x}(Q = q | X = x) = P_{M_x}(Q = q) = P(Q = q)$$

- 2.a En el lado izquierdo X no recibe flechas, se conecta con Q solo por caminos con collider ocultos. Luego, $P_{M_x}(Q=q|X=x)=P_{M_x}(Q=q)$
- 2.b Ambas marginales se obtienen integrando sus conjuntas respectivas (la única diferencia es la condicional de X). Sea W el resto de las variables.

$$P(Q) = P(Q) \sum P(W,Y|Q)$$
 la condicional de X no afecta la marginal

Adjustment formula

Si un conjunto de variables Q cumple con el criterio backdoor de X a Y, entonces el efecto causal de X en Y es estimable (identificable) a través de la siguiente fórmula:

$$\underbrace{P(y|\mathsf{do}(x)) = P_{M_x}(y|x)}_{\substack{\text{Realidad} \\ \text{intervenida}}} = \sum_{q} \underbrace{\underbrace{P(q)}_{\substack{\text{Peso del efecto} \\ \text{efecto}}}_{\substack{\text{heterogéneo} \\ \text{heterogéneo}}}_{\substack{\text{Realidad sin} \\ \text{intervenir}}}$$

Efecto

Estimación de efecto causal general Modelo polinomial

```
def p_Y_doX(y,x):
   res = 0
   for z in z_grilla:
     pz = normal(0,1).pdf(z)
     mu_y_xz = regression(y,x,z)
     py_xz = norm(loc=mu_y_xz, scale=sigma).pdf(y)
     res += (pz*py_xz)*dz
   return res
```

Estimación de efecto causal general Modelo polinomial

La disputa contra la industria del tabaco

 $F:\mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

La disputa contra la industria del tabaco

 $F: \mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

No podemos eliminar la asociación espuria entre F y C!

La disputa contra la industria del tabaco

 $F:\mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

La disputa contra la industria del tabaco

 $F:\mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

La disputa contra la industria del tabaco

 $F:\mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

La disputa contra la industria del tabaco

 $F:\mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

Casos especiales La disputa contra la industria del tabaco

F : Fumar

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

 $D: \mathsf{Dep\'ositos} \ \mathsf{en} \ \mathsf{pulmones}$

Ajuste frontdoor.

La disputa contra la industria del tabaco

F : Fumar

C: Cancer

 $U: \mathsf{Otras} \ \mathsf{variables}$

 $D: \mathsf{Dep\'ositos}\ \mathsf{en}\ \mathsf{pulmones}$

Ajuste frontdoor.

$$P(c|\mathsf{do}(f)) = \sum_{d} P(c|\mathsf{do}(d))P(d|\mathsf{do}(f))$$

Casos especiales La disputa contra la industria del tabaco

 $F:\mathsf{Fumar}$

 $C:\mathsf{Cancer}$

 $U: \mathsf{Otras} \ \mathsf{variables}$

 $D: \mathsf{Dep\'ositos}$ en pulmones

Ajuste frontdoor.

Condición: hay una sola variable mediadora.

 ${\cal A}$: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

Y: Objetivo

A: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

 $Y: \mathsf{Objetivo}$

No podemos eliminar la asociación espuria entre T e Y!

 ${\cal A}$: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

Y: Objetivo

 ${\cal A}$: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

 $Y: \mathsf{Objetivo}$

A: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

Y: Objetivo

 ${\cal A}$: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

Y: Objetivo

 ${\cal A}$: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

Y: Objetivo

Instrumental variable

$$\mathbb{E}[t|\mathsf{do}(a)] = \alpha \, a$$

 ${\cal A}$: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

 $Y: \mathsf{Objetivo}$

Instrumental variable

$$\mathbb{E}[t|\mathsf{do}(a)] = \alpha \, a$$

$$\mathbb{E}[y|\mathsf{do}(a)] = \alpha \,\beta \,a$$

 ${\cal A}$: Asignación aleatoria

 $T:\mathsf{Tratamiento}$

U: Otras variables Y: Objetivo

Instrumental variable

$$\mathbb{E}[t|\mathsf{do}(a)] = \alpha \, a$$

$$\mathbb{E}[y|\mathsf{do}(a)] = \alpha \,\beta \,a$$

$$\mathbb{E}[y|\mathsf{do}(x)] = \mathbb{E}[y|\mathsf{do}(a)]/\mathbb{E}[t|\mathsf{do}(a)]$$

A: Asignación aleatoria

 $T: \mathsf{Tratamiento}$

 $U: \mathsf{Otras}\ \mathsf{variables}$

 $Y: \mathsf{Objetivo}$

Instrumental variable

Condición: T es la única variable mediadora.

El ecosistema causal de Python DoWhy, EconML, PyTorch y más

Causal Inference and Discovery in Python

Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Los niveles del razonamiento causal

1. **Asociacional**: $P(y \mid x, \text{ Modelo Causal})$ y $P(\text{Modelo Causal} \mid x)$ Permite evaluar el efecto y el modelo causal sólo si se cumplen ciertas condiciones

Los niveles del razonamiento causal

1. **Asociacional**: $P(y \mid x, \text{ Modelo Causal})$ y $P(\text{Modelo Causal} \mid x)$ Permite evaluar el efecto y el modelo causal sólo si se cumplen ciertas condiciones

2. Intervencional: $P(y \mid do(x), Modelo Causal)$ y $P(Modelo Causal \mid y, do(x))$ Permite evaluar tanto el efecto causal y el modelo causal

Los niveles del razonamiento causal

1. **Asociacional**: $P(y \mid x, \text{ Modelo Causal})$ y $P(\text{Modelo Causal} \mid x)$ Permite evaluar el efecto y el modelo causal sólo si se cumplen ciertas condiciones

2. **Intervencional**: $P(y \mid do(x), Modelo Causal)$ y $P(Modelo Causal \mid y, do(x))$ Permite evaluar tanto el efecto causal y el modelo causal

3. **Contrafactual**: $P(y \mid do(x), y', do(x'), Modelo Causal)$ Permite predecir el contrafactual (dado un modelo causal completo)

Estos niveles surgen naturalmente del proceso generativo de lo datos

Monty Hall Causal Los **niveles** del razonamiento causal

Monty Hall Causal Asociación

Asociación

	r1	r2	r3
s1	0	1/6	1/6
s2	1/6	0	1/6
s3	1/6	1/6	0

Monty Hall Causal

Intervención

$$P(r, s|\mathsf{do}(c=1))$$

	r1	r2	r3
s1	0	0	0
s2	1/6	0	1/3
s3	1/6	1/3	0

Factual

$$P(r|\mathsf{do}(c=1), s=2)$$

$$\begin{array}{c|c|c} r1 & r2 & r3 \\ \hline 1/3 & 0 & 2/3 \end{array}$$

Monty Hall Causal Los niveles del razonamiento causal

Asociación

P(r,s)

	r1	r2	r3
s1	0	1/6	1/6
s2	1/6	0	1/6
s3	1/6	1/6	0

Monty Hall Causal
Los niveles del razonamiento causal

Asociación			Intervención					
P(r,s)					P(r,s do(c=1))			
	r1	r2	r3			r1	r2	r3
s1	0	1/6	1/6		s1	0	0	0
s2	1/6	0	1/6		s2	1/6	0	1/3
s3	1/6	1/6	0		s3	1/6	1/3	0

Monty Hall Causal

Los **niveles** del razonamiento causal

Asociación	Intervención			
P(r,s)	P(r,s do(c=1))			
$\mid r1 \mid r2 \mid r3 \mid$	$\mid r1 \mid r2 \mid r3$			

P(s', r do(c'=2), do(c=1), s=2)						
		r1	r2	$\begin{array}{ c c } \hline r3 \\ \hline 2/3 \\ \hline \end{array}$		
	s'1	0	0	2/3		
	s'2	0	0	0		

0

0

1/3

Contra factual

r3
1/6
1/6
0

1/6

s1

s2

1/6

1/6

	r1	r2	r3
s1	0	0	0
s2	1/6	0	1/3
s3	1/6	1/3	0

p=5

Laboratorios de Métodos Bayesianos