Construction of variable length hash function from fixed length hash function Merkle Damgard Transform

Theorem:

If (Gen, h) is a fixed length collision resistant hash function, then (Gen, H) is a collision resistant hash function

Let (Gen, h) be a fixed-length collision-resistant hash function for inputs of length 2l(n) and output length l(n). Construct a variable-length hash function (Gen, H) as flows:

- Gen: remains unchanged
- H: on input a key s and a string $x \in \{0.1\}^*$ of length $L < 2^{l(n)}$, do the following (set l = l(n) in what follows:
 - 1. Set $B \coloneqq \left[\frac{l}{l}\right]$ (i.e., the number of blocks in x). Pad x with zeroes so its length is a multiple of l. Parse the padded result as the sequence of l bit blocks x_1, x_2, \dots, x_B . Set $x_{B+1} \coloneqq L$, where L is encoded using exactly l bits.
 - 2. Set $z_0 := 0^l$.
 - 3. For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1}||x_i)$.
 - 4. Output z_{B+1} .

References

- [1] J. K. a. Y. Lindell, Introduction to Modern Cryptography.
- [2] B. Micali, "Hardcord bits," [Online]. Available: https://crypto.stanford.edu/pbc/notes/crypto/hardcore.html.
- [3] Lecture Slides