1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
120	6.5999999999999	6.6
130	16.6	16.6
92	-21.4	21.4
95	-18.4	18.4
130	16.6	16.6
======	=======	=======
$\sum x = 567$		$\sum x - \bar{x} = 79.6$
$\bar{x} = 113.4$		

We are ready for the formula.

$$s = \frac{\sum |x - \tilde{x}|}{n}$$

$$=\frac{79.6}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
169	-1.5	2.25
175	4.5	20.25
169	-1.5	2.25
169	-1.5	2.25
======	=======	======
$\sum x = 682$		$\sum (x - \bar{x})^2 = 27$
$\bar{x} = 170.5$		

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{27}{4 - 1}}$$
$$= \sqrt{9}$$
$$= \boxed{3}$$