Name: Jerry Jiang

1. How many terms are there in the arithmetic sequence $\frac{1}{3}, \frac{5}{3}, \dots, 31$?

$$\alpha = \frac{1}{3} d = \frac{4}{3}$$

$$31 = \frac{1}{3} + (n-1) \cdot \frac{4}{3}$$

$$3| = \frac{1}{3} + (n-1) \cdot \frac{3}{3}$$

 $|n-1| = \frac{92}{3} \cdot \frac{3}{4} = 23$

2. In an arithmetic sequence $u_5 = 83$ and $u_{16} = -16$. Find the first three terms of the arithmetic sequence.

$$\begin{cases} a + 4d = 83 \\ a + 15d = -16 \\ 11d = -99 \\ 6d = 9 \\ a = 119 \\ 1$$

3. Find the sum of the series $\sum_{n=1}^{4} n^n$.

$$\sum_{n=1}^{4} n^{n} = n + n + 1 + 2 + 3 + 4$$

$$= 1 + 4 + 27 + 256$$

$$= 288$$

4. A geometric sequence has second term -6 and fifth term 162. Find its general term.

$$\begin{cases} a \cdot r^{0} = -b \\ a \cdot r^{4} = 162 \\ r^{3} = -\frac{16r}{b} = -\frac{81}{3} = -27 \end{cases}$$

$$\begin{cases} r = -3 \\ a = 2 \end{cases}$$

$$V_{n} = 2 \cdot (-3)^{n-1}$$

5. If the population of a country increases by 3% each year, how many years will it take for population to double?

6. The sum of the first n positive integers is 4950. Find n.

7. Complete the following table of partial sums for the series of Fibonacci numbers. Make a conjecture about S_n .

n	1	2	3	4	5	6	7	8	9	10	
S_n	1	2	4	7	12	20	33	54	88	143	N
	C	Ü	2	3	2	8	13	21	34	22.	8
			•	(1-15)	_						
			•	. ,	_	$= \left[\left(\frac{\sqrt{s}}{2} \right)^{n} \right]$	-112	(+1) (4+2) -	(1-JE)	+2]-	
						ded po			C 2)	۱ ل	

8. Let x and y be two non-negative real numbers. The arithmetic mean and geometric mean of x and y are defined to be A = (x + y)/2 and $G = \sqrt{xy}$ respectively. Prove that $A \ge G$.

We have
$$x^2 - 2xy + y^2 = (x-y)^2 = 0$$

So $x^2 + y^2 = 2xy$

G= $\sqrt{x}y$

So $x^2 + 2xy + y^2 = (x-y)^2 = 0$
 $(x+y)^2 = xy$

if we take the root of the inequation.

 $x+y = 2\sqrt{x}y$

So we finally get

 $x+y = 7, \sqrt{x}y$,

which is $A = 6$

9. A sequence is said to be in harmonic progression if the reciprocals of the terms are in arithmetic progression. The eighth term of a harmonic progression is 3/26 and the twenty second term is 1/18. Find the hundredth term of this harmonic progression.

progression is to

so the lost term of the harmonic

$$U_{N} = \frac{12}{3} + \frac{2}{3}(N-1)$$

$$U_{100} = \frac{12}{3} + \frac{198}{3}$$

$$=\frac{210}{3}=70$$

10. The interior angles of a convex polygon, measured in degrees, form an arithmetic sequence. The smallest angle is 120° and the common difference is 5°. Find the number of sides of the polygon. 1200+ 1200+ 5 (N-1)N = 3 +00- 3 > 20 Sh2 -1250+ 120 - 3

the sum of the interior angles is 180° (n-1).

the biggest angle of the polygon is 120+5(n-1)

the sum of the interior angles can also be presented as {120+ [120+5(n-1)]} xn = 180(n-1)

12-15N+ 7=0

Solutions to HL1 Assignment #1

- 1. Let the number of terms be n. Then we have $31 = 1/3 + (n-1) \times 4/3$. Solving gives n = 24.
- 2. Here a + 4d = 83 and a + 15d = -16. Solving simultaneously gives a = 119 and d = -9. Hence the first three terms of the sequence are 119, 110, 101.
- 3. Let the sum of the series be S. We have $S = 1^1 + 2^2 + 3^3 + 4^4 = 288$.
- 4. Here ar = -6 and $ar^4 = 162$. Solving simultaneously gives a = 2 and r = -3. Hence $u_n = 2 \times (-3)^{n-1}$.
- 5. Let the initial population be P_0 and let n be the number of years for the population to double. We must solve $2P_0 = P_0(1.03)^n$, or equivalently $1.03^n = 2$. The solution is n = 23.4 (3 s.f.).
- 6. We must solve $1+2+3+\cdots+n=4950$, which is equivalent to n(n+1)=9900. So n=99.
- 7. The completed table is below. We conjecture $S_n = \sum_{k=1}^n f_k = f_{n+2} 1$.

n	1	2	3	4	5	6	7	8	9	10
S_n	1	2	4	7	12	20	33	54	88	143

- 8. Observe that $(\sqrt{x} \sqrt{y})^2 \ge 0$ for all $x, y \ge 0$. So $x + y \ge 2\sqrt{xy} \Leftrightarrow (x + y)/2 \ge \sqrt{xy}$. That is, $A \ge G$.
- 9. Let the general terms of the harmonic sequence and its associated arithmetic sequence be h_n and u_n respectively. We have $h_8 = 3/26$ and $h_{22} = 1/18$. So $u_8 = 26/3$ and $u_{22} = 18$. Hence a + 7d = 26/3 and a + 21d = 18. Solving simultaneously gives a = 4 and d = 2/3. Hence $u_{100} = 70$ and we conclude $h_{100} = 1/70$.
- 10. Let the number of sides of the polygon be n. We have

$$\frac{n}{2}[240 + 5(n-1)] = 180(n-2),$$

which is equivalent to $n^2 - 25n + 144 = 0$. So n = 9 or n = 16. However, n = 16 is inadmissible as a convex polygon has no angle of 180° or more. So the number of sides of the polygon is 9.