Attorney Docket No.: 56232.94

AMENDMENTS TO THE CLAIMS

1. (Currently amended) A method of forming a toner image, comprising: electrically charging a photoreceptor containing an organic photosensitive material:

imagewise exposing the photoreceptor so that a latent image is formed on the photoreceptor;

developing the latent image with toner so that a toner image is formed on the photoreceptor by a reversal development; wherein

the photoreceptor comprises a charge generation layer containing an N-type charge generation material and a charge transportation layer containing a charge transportation material and has having a thickness of from 5 to 15 µm;

the toner contains colored particles comprising a resin and a colorant, and the colored particles have a ratio, Dv_{50}/Dp_{50} , of the 50% volume particle diameter Dv_{50} to the 50% number particle diameter Dp_{50} of from 1.0 to 1.15 and a ratio, Dv_{75}/Dp_{75} , of an accumulate of 75% volume average particle diameter from larger particle side to an accumulate of 75% number average particle diameter from larger particle side of from 1.0 to 1.20, and content of colored particles having a diameter of 0.7 x Dp_{50} is not more than 10 in number; and

the reversal development is performed under condition satisfying the following expression;

Expression 1 $50 \le |E| \le 100$

E: Electrical field intensity applied to the organic photoreceptor during development that is a quotient of potential V in an unexposed area of the photoreceptor at a time of development divided by layer thickness of organic photosensitive material of the photoreceptor in V/μm.

2. (Original) The image forming method of claim 1, wherein the charge generation layer further contains a P-type pigment in an amount of not more than 10% by weight of the N-type charge generating material.

Attorney Docket No.: 56232.94

3. (Original) The image forming method of claim 1, wherein the N-type charge generation material is a perylene compound pigment.

4. (Currently amended) The image forming method of claim 1, in which the perylene compound is a 3,4,9,10-tetracarboxylic acid imide derivative represented by the Formula 1, 2, 3a or 3b, or a mixture thereof,

Formula 1

$$R_1-N$$
 $N-R_2$

Formula 2

Formula 3a

Formula 3b

in the above formulas, R_1 and R_2 are each a hydrogen atom, or an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an alkylamino group, a dialkylamino group, a benzyl group, a phenethyl group or a heterocyclic group, and the above organic groups may be substituted or unsubstituted; when . When the compound is a polymer, R_1

Attorney Docket No.: 56232.94

and R_2 each may be a 1,4-phenylene group[[.]]; and Z is a group of atoms necessary to form a heterocyclic group.

5. (Currently amended) The image forming method of claim 1, in which the perylene compound is represented by one of the following Formulas,

$$R \xrightarrow{I} N \xrightarrow{I} R$$

$$R \xrightarrow{I} N \xrightarrow{N} R$$

wherein R is a hydrogen atom, a halogen atom, an alkyl group having from 1 - 10 carbon atoms, an aryl group, an alkoxy group or a heterocyclic group.

- 6. (Original) The image forming method of claim 2, wherein the P-type charge generating material is a titanyl phthalocyanine compound.
- 7. (Original) The image forming method of claim 1, wherein the static latent image is formed by exposure to a light beam having an exposing spot area of not more than $2 \times 10^{-9} \text{ m}^2$.
- 8. (New) The image forming method of claim 1, wherein thickness of the charge generation layer is from 0.3 to $2.0 \mu m$.
- 9. (New) The image forming method of claim 8, wherein thickness of the charge generation layer is from 0.3 to 1.5 μ m.