R401: Statistical and Mathematical Foundations

Lecture 14: Unconstrained Optimization. Static Optimization with Equality Constraints. Lagrange Multipliers

Andrey Vassilev

2016/2017

General Principles and Caveats for the Optimization Module

- Emphasis on practicality over rigour
- Consequently, algorithmic approach and "recipes" rather than proofs
- Also, existence and relevant properties of various objects are often implicitly assumed
- Pathologies and mathematical peculiarities discussed only in special cases

Lecture Contents

1) Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

 $oxed{2}$ Unconstrained Optimization in \mathbb{R}^n

Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

Fact 1

For a function $f: \mathbb{R} \to \mathbb{R}$ differentiable at a point x, a necessary condition for a local extreme point (i.e. a maximum or a minimum) at x is

$$f'(x) = 0.$$

Example 1

If $f(x) = ax^2 + bx + c$, then f'(x) = 2ax + b and the condition f'(x) = 0 yields the familiar $x = -\frac{b}{2a}$ (recall your high-school days). Depending on the sign of a, this is a maximum or a minimum (What is the relationship?).

Example 2

If $f(x) = x^3$, then $f'(x) = 3x^2$ and $f'(x) = 0 \Rightarrow x = 0$. Does the function attain a maximum or a minimum at x = 0?

Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

Warm-up: Basic Unconstrained Optimization in \mathbb{R}^1

Example 2 (cont.)

The answer is "neither"! The point x=0 is not a local extreme point of $f(x)=x^3$.

This illustrates the pitfalls of using necessary conditions – they supply only candidates that need to be checked further.

The above examples generalize in the following manner:

Fact 2

Let a function f be n times differentiable at a point x and

$$f'(x) = f''(x) = \dots = f^{(n-1)}(x) = 0, \qquad f^{(n)} \neq 0.$$

- ① If n is odd, the point x is not an extreme point of f(x).
- ② If *n* is even and $f^{(n)}(x) > 0$, the point *x* is a minimum.
- If *n* is even and $f^{(n)}(x) < 0$, the point *x* is a maximum.

Necessary conditions

Fact 3

For a function $f: S \to \mathbb{R}$, $S \subseteq \mathbb{R}^n$, differentiable at an interior point x, a necessary condition for x to be a local extreme point is

$$f'(\mathbf{x})=\mathbf{0},$$

where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \ \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \text{ and } f'(\mathbf{x}) = \begin{pmatrix} \frac{\partial f(x_1, \dots, x_n)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x_1, \dots, x_n)}{\partial x_n} \end{pmatrix}$$

Note: A point where the gradient of a function f vanishes is called a *critical point* or a *stationary point*. This also applies to functions on \mathbb{R}^1 ,

Example 3

$$f(x,y) = x^2 + 2y^2 - 3x + xy$$

$$\frac{\partial f}{\partial x} = 2x - 3 + y = 0 \quad \Rightarrow \quad x = \frac{3 - y}{2}$$

$$\frac{\partial f}{\partial y} = 4y + x = 0 \quad \Rightarrow \quad y = -\frac{x}{4}$$

$$x = \frac{12}{7}, \ y = -\frac{3}{7}$$

The necessity of the condition $f'(\mathbf{x}) = \mathbf{0}$ has implications that are similar to the univariate case:

Example 4

Consider the function $f(x,y)=x^2-y^2$. The NCs yield the following candidate:

$$\frac{\partial f}{\partial x} = 2x = 0 \quad \Rightarrow \quad x = 0,$$

$$\frac{\partial f}{\partial y} = -2y = 0 \quad \Rightarrow \quad y = 0.$$

Let's look at the graph of the function in a neighbourhood of the point (0,0)'.

Example 4 (cont.)

The critical point $\mathbf{x} = (0,0)'$ is an example of a *saddle point*. The function f (obviously) does not attain an extremum at \mathbf{x} .

Example 4 illustrates the need to develop a counterpart of Fact 2 in the n-dimensional case. To this end, we have to review several concepts.

A symmetric matrix A is called *positive semidefinite* if, for any vector \mathbf{x} , we have

$$\mathbf{x}'A\mathbf{x} \geq 0.$$

If the inequality is strict for any non-zero vector \mathbf{x} , the matrix is called *positive* definite.

Similarly, a symmetric matrix A is called *negative semidefinite* if, for any vector \mathbf{x} , we have $\mathbf{x}'A\mathbf{x} \leq 0$, and *negative definite* in case of strict inequality for $\mathbf{x} \neq \mathbf{0}$.

Quadratic forms ? Principal minors, leading principal minors Sylvester's criterion Hessians

Fact 4

Let a function $f: S \to \mathbb{R}$, $S \subseteq \mathbb{R}^n$ have a critical point at \mathbf{x} .