

Informe N°5 Laboratorio de Máquinas

"Ensayo de un Compresor Recíproco"

Nombre: Mauricio Carrasco Cornejo

Curso: ICM557-3

Profesor: Cristóbal Galleguill

Resumen

En este ensayo se obtuvieron datos de un compresor reciproco de 2 etapas, el ensayo fue exitoso ya que los valores mayormente se encuentran dentro del rango de lo que se espera de estos tipos de compresores, aunque vario en algunos datos con los del fabricante, esto se asoció a las diferentes atmosferas de trabajo.

Índice

Resumen	2
Introducción	4
Objetivo	5
Trabajo de laboratorio.	6
Desarrollo	7
Gráficos	8
Graficar el rendimiento volumétrico real, convencional, convencional indicado y la capacidad función de la presión de descarga.	
¿La forma de las curvas es la correcta?	8
¿Cómo explica las diferencias entre el rendimiento volumétrico real y los otros rendimientos?	? 8
Graficar la temperatura de aspiración y descarga de cada cilindro, en función de la presión de descarga.	
¿La posición relativa de las curvas es la correcta? Si es necesario explique.	9
¿Los valores están en el rango que le corresponde?	9
Graficar la presión de aspiración y descarga de cada cilindro y la presión intermedia teórica, e función de la presión de descarga.	
¿La posición relativa de las curvas es la correcta? Si es necesario explique.	10
¿Los valores están en el rango que le corresponde?	10
Graficar la potencia indicada de cada cilindro y total; la potencia y la corriente eléctrica, en función de la presión de descarga.	11
¿La posición relativa de las curvas es la correcta? Si es necesario explique.	11
¿Los valores están en el rango que le corresponde?	11
Graficar la temperatura de entrada y salida del agua de refrigeración; el caudal de agua; el cal total de la refrigeración del compresor, en función de la presión de descarga	
¿La posición relativa de las curvas es la correcta? Si es necesario explique	13
¿Los valores están en el rango que le corresponde?	13
Graficar la relación de compresión de cada cilindro, en función de la presión de descarga	14
¿La posición relativa de las curvas es la correcta? Si es necesario explique	14
¿Los valores están en el rango que le corresponde?	14
Conclusión	15

Introducción

Un compresor es una máquina, cuyo trabajo consiste en incrementar la presión de un fluido. Al contrario que otro tipo de máquinas, el compresor eleva la presión de fluidos compresibles como el aire y todo tipo de gases.

En este ensayo se analizará el comportamiento de un compresor reciproco de 2 etapas. Se verán parámetros como la temperatura, la presión, la velocidad, la tensión, etc. Para asi calcular parámetros de operación como lo son la cilindrada y la capacidad del compresor, donde se analizarán las curvas de funcionamiento.

Objetivo

- Analizar el comportamiento del compresor recíproco sometido a distintas condiciones de operación

Trabajo de laboratorio.

- Instalar y preparar los instrumentos para medir: temperaturas, potencia indicada y eléctrica, tensión y corriente, flujos de aire y agua.
- Poner en marcha el compresor y esperar un tiempo para que se estabilice su operación.
- Con la presión manométrica de descarga nominal, 7 [kp/cm2], tome las siguientes mediciones:
- * Presión de descarga, [kp/cm2].
- * Velocidad del compresor, [rpm].
- * Temperatura de aspiración y de descarga de ambos cilindros, $[\Box C]$.
- * Diagramas indicados para cada cilindro.
- * Temperatura del estanque de baja presión, [□C].
- * Presión en el estanque de baja presión, [cmca].
- *Temperaturas de entrada y salida del agua de refrigeración, $[\Box C]$.
- *Tiempo en llenarse el recipiente de volumen conocido, [s].
- * Tensión y corriente eléctrica, [V] y [A] respectivamente.
- * Potencia eléctrica, método de los dos Wattmetros, [kW].
- Se repiten las mediciones para las presiones 6, 5, 4,...., hasta 1 [kp/cm2].

La presión atmosférica, [mmHg], se mide al inicio del ensayo.

Desarrollo

	DATOS MEDIDOS																	
	Compresor					Estanque de		Agua de refrigeración			Motor Eléctrico							
	Presión Velocid Temperatura					baja presión		Temperatura tiempo		Tensión	Corrientes Potencia			encia				
	Pd	n	tecbp	tsebp	tecap	tecap	tebp	ΔΡ	tea	tsa	10 l	V	I1	12	13	W1	W2	Patm.
	[kp/cm2]	[rpm]	[°C]	[°C]	[°C]	[°C]	[°C]	[mmca]	[°C]	[°C]	[s]	[V]	[A]	[A]	[A]	[kW]	[kW]	[mmHg]
1	7,0	499,3	23	48	27	89	39	514	18	26,5	78	375	17,2	15,9	16	6,53	3,28	760,1
2	6,0	498,7	23	49	27	87	40	544	18,5	26,5	75	375	16,5	15,3	15,4	6,53	3,06	760,1
3	4,9	500,8	23	49	27	77	41	532	18,5	26,5	77	376	15,2	13,9	13,8	5,73	2,7	760,1
4	3,9	503,0	23	50	27	67	40	552	18,5	26,5	76	376	14,1	13,2	13,1	5,33	2,6	760,1
5	2,8	503,4	24	56	27	56	39	562	18,5	26,5	76	376	13,2	12,6	12,1	5	2,4	760,1
6	1,8	505,2	24	56	27	42	37	576	18,5	26,5	74	376	11,9	11,4	11	4,69	2,12	760,1
7	1,0	507,0	23	54	27	31	39	584	18,5	26,5	77	376	10,4	9,9	9,5	4,1	1,64	760,1

Datos calculados

Pd	d CI DI		V	ηVR	ηVC	ηVCI	pmi CBP	pmi CAP
[kp/cm2]	[m3]	[m3/min]	[m3/h]	%	%	%	[kp/cm2]	[kp/cm2]
7,00	0,00295	1,47330	73,46575	83,10765	87,32883	87,86364	1,31061	2,81061
6,00	0,00295	1,47153	75,45846	85,46459	87,13079	85,77273	1,23914	2,58182
4,90	0,00295	1,47773	74,50264	84,02819	87,98003	88,78788	1,25101	2,25758
3,90	0,00295	1,48422	76,01128	85,35475	87,98003	87,71212	1,19268	1,87323
2,80	0,00295	1,48540	77,07903	86,48498	87,83193	87,74242	1,23561	1,34545
1,80	0,00295	1,49071	78,28450	87,52460	88,02956	87,24242	1,19848	0,71414
1,00	0,00295	1,49603	78,30866	87,24077	88,75218	88,16667	1,11237	0,25606
Adi CBP	Adi CAP	Ni CBP	Ni CAP	Ni	1	N elec	V agua	Q
[m2]	[m2]	[kW]	[kW]	[kW]	[A]	[kW]	[l/min]	[kcal/min]
0,000519	0,0005565	3,15598	2,83367	5,98965	16,36667	9,81000	7,69231	65.188,46154
0,0004907	0,0005112	2,98031	2,59988	5,58018	15,73333	9,59000	8,00000	63.808,00000
0,0004954	0,000447	3,02152	2,28294	5,30446	14,30000	8,43000	7,79221	62.150,64935
0,0004723	0,0003709	2,89329	1,90260	4,79589	13,46667	7,93000	7,89474	62.968,42105
0,0004893	0,0002664	2,99981	1,36764	4,36745	12,63333	7,40000	7,89474	62.968,42105
0,0004746	0,0001414	2,92009	0,72851	3,64860	11,43333	6,81000	8,10811	64.670,27027
0,0004405	0,0000507	2,71994	0,26214	2,98208	9,93333	5,74000	7,79221	62.150,64935

Graficar el rendimiento volumétrico real, convencional, convencional indicado y la capacidad, en función de la presión de descarga.

¿La forma de las curvas es la correcta?

Las curvas de rendimiento están dentro de los valores que podemos encontrar en internet sobre el rendimiento de un compresor, también si observamos las tendencias de la curva de rendimiento volumétrico real y la capacidad, estas son muy parecidas, esto es debido a que ambos son directamente proporcionales, esto es algo que podemos verificar en la fórmula de rendimiento real, basándonos en esto podríamos decir que las curvas son correctas.

¿Los valores del rendimiento volumétrico real están en el rango que le corresponde?

Asi es si verificamos en los apuntes entregados por el profesor Ramiro Mege, y también en los del profesor German Hoernig, que este da un rango más amplio de rendimiento de un compresor, que es de 70 a 90%, y estos datos están dentro del rango.

¿Cómo explica las diferencias entre el rendimiento volumétrico real y los otros rendimientos?

Debido a que el rendimiento convencional será ideal, y en rendimiento real es el que se calcula con elementos no ideales, considerando la presión del aire politrópica y no isoentrópica.

Graficar la temperatura de aspiración y descarga de cada cilindro, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique. La posición relativa de las curvas aparentemente es correcta, ya que las de entrada o admisión aparecen prácticamente constantes, y las temperaturas de descarga al ser mayores también tienen coherencia, si observamos la curva de salida del CAP, podemos ver que a medida que aumenta la presión aumenta su temperatura, este se relaciona a que al comprimirse un gas este aumentara su temperatura.

¿Los valores están en el rango que le corresponde?

Ya que las temperaturas son muy parecidas a la temperatura ambiente, y los valores dados de temperatura varían con la presión como debe ser para un gas, podemos decir que, si están en el rango correspondiente, aunque no tengamos datos de comparación.

Graficar la presión de aspiración y descarga de cada cilindro y la presión intermedia teórica, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique.

La posición según los datos entregados vendría siendo correctas, ya que los valores están dentro del rango en las que trabaja un compresor, pero de forma teórica sabemos que la presión de salida de CBP, es igual a la presión de entrada de CAP, pero en este grafico no se cumple esto, esto puede ser debido a muchas razones una de ellas que en la realidad debido a perdidas o por alguna fuga varié la presión.

¿Los valores están en el rango que le corresponde?

Están dentro del rango de trabajo de un compresor, pero son mayores a los indicados por el fabricante, esto se puede deber al uso del compresor o las condiciones en las que el fabricante las hizo que generalmente es un ambiente casi ideal.

Graficar la potencia indicada de cada cilindro y total; la potencia y la corriente eléctrica, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique.

La posición relativa es correcta, como se puede apreciar en el gráfico las curvas tanto la potencia como la intensidad tiene un comportamiento parecido, esto tiene sentido ya que ambas son directamente proporcionales.

¿Los valores están en el rango que le corresponde?

Los valores de potencia e intensidad, tienen sentido ya que ambos se ven afectados por el aumento de la carga y estos son directamente proporcional y las corrientes se encuentran en valores muy adecuados.

Graficar la temperatura de entrada y salida del agua de refrigeración; el caudal de agua; el calor total de la refrigeración del compresor, en función de la presión de descarga

¿La posición relativa de las curvas es la correcta? Si es necesario explique

Si, tiene lógica ya que el calor de refrigeración es afectado por la variación de caudal, y también se puede observar que la salida del agua de refrigeración es mayor que la entrada, lo que es un comportamiento normal en este proceso.

¿Los valores están en el rango que le corresponde?

Aunque no tengamos rango de comparación, se puede apreciar que los valores se mantienen bastante estable a lo largo del proceso, así que podemos decir que se encuentran dentro de los valores esperados.

Graficar la relación de compresión de cada cilindro, en función de la presión de descarga.

¿La posición relativa de las curvas es la correcta? Si es necesario explique

Por lo que observamos en la grafica podemos decir que el comportamiento de estas es muy lógico, ya que las presiones menores el CBP realiza el mayor trabajo, y cuando se necesita entrar a mayores presiones de descarga, el mayor trabajo lo hará el CAP.

¿Los valores están en el rango que le corresponde?

Si los comparamos con los rangos de presión que dice que las presiones altas alcanzan una relación de compresión de 4:1 y en presiones baja 2:1, podríamos decir que están dentro del rango.

Conclusión

En el ensayo pudimos observar comportamiento de un compresor reciproco de 2 etapas, en este se observó en los gráficos que el cilindro de baja presión siempre es mas estable en sus valores que el cilindro de alta presión, pero que los dos tiene un trabajo fundamental en el proceso de compresión, y aunque en los valores obtenidos, hubieron algunas diferencias con el fabricante, pero esto se puede asociar a las atmosferas de trabajo que no son siempre las mismas, pero aun así los resultados no se alejan de la realidad de un compresor de 2 etapas.