1.	A policy is a function which maps to	1 point
	Actions to probability distributions over values.	
	O States to actions.	
	O States to values.	
	O States to probability distributions over actions.	
	Actions to probabilities.	
2.	The term "backup" most closely resembles the term in meaning.	1 point
	○ Value	
	○ Update	
	O Diagram	
3.	At least one deterministic optimal policy exists in every Markov decision process.	1 point
	○ True	
	○ False	

4.	The optimal state-value function:	1 point
	O Is not guaranteed to be unique, even in finite Markov decision processes.	
	O Is unique in every finite Markov decision process.	
5.	Does adding a constant to all rewards change the set of optimal policies in episodic tasks?	1 point
	Yes, adding a constant to all rewards changes the set of optimal policies.	
	No, as long as the relative differences between rewards remain the same, the set of optimal policies is the same.	
6.	Does adding a constant to all rewards change the set of optimal policies in continuing tasks?	1 point
	Yes, adding a constant to all rewards changes the set of optimal policies.	
	O No, as long as the relative differences between rewards remain the same, the set of optimal policies is the same.	

7. Select the equation that correctly relates v_* to q_* . Assume π is the uniform random policy.

$$igcup v_*(s) = \sum_{a,r,s'} \pi(a|s) p(s',r|s,a) [r + \gamma q_*(s')]$$

$$igcirc v_*(s) = max_a q_*(s,a)$$

$$igcup v_*(s) = \sum_{a,r,s'} \pi(a|s) p(s',r|s,a) q_*(s')$$

$$igcup v_*(s) = \sum_{a,r,s'} \pi(a|s) p(s',r|s,a) [r+q_*(s')]$$

8. Select the equation that correctly relates q_* to v_* using four-argument function p.

1 point

$$igcup_{q_*}(s,a) = \sum_{s',r} p(s',r|a,s)[r+v_*(s')]$$

$$igcirc$$
 $q_*(s,a) = \sum_{s',r} p(s',r|a,s) \gamma[r+v_*(s')]$

$$igcirc$$
 $q_*(s,a) = \sum_{s',r} p(s',r|a,s)[r + \gamma v_*(s')]$

9. Write a policy π_* in terms of q_* .

$$igcap \pi_*(a|s) = q_*(s,a)$$

$$igcap \pi_*(a|s) = \max_{a'} q_*(s,a')$$

$$\bigcap \pi_*(a|s) = 1 \text{ if } a = \operatorname{argmax}_{a'} q_*(s, a'), \text{ else } 0$$

10. Give an equation for some π_* in terms of v_* and the four-argument p.

$$igcup_{\pi_*(a|s) = \max_{a'} \sum_{s',r} p(s',r|s,a')[r + \gamma v_*(s')]}$$

$$igcap \pi_*(a|s) = 1 ext{ if } v_*(s) = \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')], ext{ else } 0$$

$$igcap \pi_*(a|s) = 1 ext{ if } v_*(s) = \max_{a'} \sum_{s',r} p(s',r|s,a')[r + \gamma v_*(s')], ext{ else } 0$$

$$igcap \pi_*(a|s) = \sum_{s',r} p(s',r|s,a) [r + \gamma v_*(s')]$$

1 point