#### WEEK 3

# DATA VISUALIZATION BASICS

# TODAY'S TOPICS

- Why data visualization
- Visual encoding
- An introduction to ggplot2: grammar of graphics

#### WHAT IS DATA VISUALIZATION?

- Visual representation of information to help people make sense of complex phenomena through data.
- Designed to enable exploration, analysis, or communication.

# WHAT MAKES A VISUALIZATION EFFECTIVE?







# WHAT MAKES A VISUALIZATION MEMORABLE?

- Great data visualization tells a great story
  - Convince us of something, compel us to action, enlighten us with new information, or force us to question our own preconceptions
- Great data visualization reaches reaches people in a way that words or numbers can't

- Initial examination and exploratory analysis
  - Check data (distribution, outliers, impossible values)
  - See data in context
  - Find patterns
  - Discover new questions



#### 2. Answer questions & make decisions



- 3. Communicate meaning to others
  - Present argument, tell a story, inspire, archive



- 4. Improve understanding
  - Represent something more clearly, honestly, etc.







### 2020 ELECTION MAP

(3) = 250,000 VOTES



# WHY WE VISUALIZE DATA

#### WHY WE VISUALIZE DATA

- Information shaped as a graphic functions as a cognitive aid
- You can take something extremely complex, or something concealed in the data, and make it understandable and salient

#### CORE PRINCIPLES OF GOOD GRAPHICS

- They are honest representations of the data
- They show the right amount of data
- They attract readers' attention
- They don't frustrate readers

Some degree of subjectivity & judgement

Fig. 1.1 in Claus Wilke's Data Visualization



Fig. 1.1 in Claus Wilke's Data Visualization

#### Aesthetic problems or "bad taste"





Fig. 1.1 in Claus Wilke's Data Visualization

#### Aesthetic problems or "bad taste"







Fig. 1.1 in Claus Wilke's Data Visualization

#### Aesthetic problems or "bad taste"









# GGPLOT2





- Traditional plotting: you are a painter
  - Manually place/modify graphical elements





- Traditional plotting: you are a painter
  - Manually place/modify graphical elements



- ggplot2: you *employ* a painter
  - Describe conceptually how to visualize the data



- ggplot2: you employ a painter
  - Describe conceptually how to visualize the data





- ggplot2: you employ a painter
  - Describe conceptually how to visualize the data



#### YOUR TURN

ggplot2

 Let's create a plot in ggplot2 using the storms dataset that comes with tidyverse

| name | year | month | day | hour | lat  | long  | status              | category | wind | pressure | ts_diameter | hu_diameter |
|------|------|-------|-----|------|------|-------|---------------------|----------|------|----------|-------------|-------------|
| Amy  | 1975 | 6     | 27  | 0    | 27.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 6    | 28.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 12   | 29.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 18   | 30.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 28  | 0    | 31.5 | -78.8 | tropical depression | -1       | 25   | 1012     | NA          | NA          |
| Amy  | 1975 | 6     | 28  | 6    | 32.4 | -78.7 | tropical depression | -1       | 25   | 1012     | NA          | NA          |

- First, think about the variables:
  - What relationship do you expect between wind speed and pressure?
  - Is storm status determined by wind speed or air pressure? (no Googling!)



#### YOUR TURN



- Create a new R markdown and clear out the extra stuff
- Create a new R chunk and load the tidyverse package.
- Run this code to make a graph. Pay strict attention to spelling, capitalization, and parentheses!

```
ggplot(data = storms) +
  geom_point(mapping = aes(x = pressure, y = wind))
```







```
ggplot(data = storms) +
  geom_point(mapping = aes(x = pressure, y = wind))
```



- 1. "Initialize" a plot with ggplot()
- 2. Add layers with geom\_ functions

Important tip: always put the + at the end of a line, never at the start

```
ggplot(data = storms) +
  geom_point(mapping = aes(x = pressure, y = wind))
```





#### ATEMPLATE



```
ggplot(data = <DATA>) +
     <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

```
ggplot(data = storms) +
  geom_point(mapping = aes(x = pressure, y = wind))
```





# VISUAL ENCODING

# VISUAL ENCODING

- Every visualization can be described as a set of mappings:
  - From data items to visual marks.
  - From data variables to visual channels.



| name | year | month | day | hour | lat  | long  | status              | category | wind | pressure | ts_diameter | hu_diameter |
|------|------|-------|-----|------|------|-------|---------------------|----------|------|----------|-------------|-------------|
| Amy  | 1975 | 6     | 27  | 0    | 27.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 6    | 28.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 12   | 29.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 18   | 30.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 28  | 0    | 31.5 | -78.8 | tropical depression | -1       | 25   | 1012     | NA          | NA          |
| Amy  | 1975 | 6     | 28  | 6    | 32.4 | -78.7 | tropical depression | -1       | 25   | 1012     | NA          | NA          |

## Variables (attributes)





| name | year | month | day | hour | lat  | long  | status              | category | wind | pressure | ts_diameter | hu_diameter |
|------|------|-------|-----|------|------|-------|---------------------|----------|------|----------|-------------|-------------|
| Amy  | 1975 | 6     | 27  | 0    | 27.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 6    | 28.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 12   | 29.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 27  | 18   | 30.5 | -79.0 | tropical depression | -1       | 25   | 1013     | NA          | NA          |
| Amy  | 1975 | 6     | 28  | 0    | 31.5 | -78.8 | tropical depression | -1       | 25   | 1012     | NA          | NA          |
| Amy  | 1975 | 6     | 28  | 6    | 32.4 | -78.7 | tropical depression | -1       | 25   | 1012     | NA          | NA          |

- Marks are the basic visual objects/units that represent data objects visually.
- Visual channels are visual variables we can use to represent characteristics of these objects.

## Variables (attributes)



- Marks are the pasic visual objects/units that represent data objects visually.
- Visual channels are visual variables we can use to represent characteristics of these objects.

#### MARKS: BASIC GEOMETRIC ELEMENTS



These are "geoms" in ggplot2's jargon

#### CHANNELS: VISUAL VARIABLES



These are "aesthetics" in ggplot2's jargon









```
[template]
```

```
ggplot(data = <DATA>) +
     <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```



| mpg  | cyl | disp  | hp |
|------|-----|-------|----|
| 21.0 | 6   | 160.0 | 2  |
| 21.0 | 6   | 160.0 | 2  |
| 22.8 | 4   | 108.0 | 1  |
| 21.4 | 6   | 258.0 | 2  |
| 18.7 | 8   | 360.0 | 3  |
| 18.1 | 6   | 225.0 | 2  |
| 14.3 | 8   | 360.0 | 5  |
| 24.4 | 4   | 146.7 | 1  |
| 22.8 | 4   | 140.8 | 1  |
| 19.2 | 6   | 167.6 | 2  |
| 17.8 | 6   | 167.6 | 2  |
| 16.4 | 8   | 275.8 | 3  |
| 17.3 | 8   | 275.8 | 3  |
| 15.2 | 8   | 275.8 | 3  |
| 10.4 | 8   | 472.0 | 4  |
| 10.4 | 8   | 460.0 | 4  |
| 14.7 | 8   | 440.0 | 4  |
| 32.4 | 4   | 78.7  | 1  |
| 30.4 | 4   | 75.7  | 1  |
| 33.9 | 4   | 71.1  | 1  |
|      |     |       |    |

1. Pick a data set

data





1. Pick a data set

```
ggplot(data = <DATA>) +
      <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

2. Choose a **geom** to display cases

data geom



#### mappings



1. Pick a **data** set

<GEOM\_FUNCTION>(mapping = aes(<MAPPINGS>))

```
2. Choose a geomto display cases
```

 $ggplot(data = \langle DATA \rangle) +$ 

3. **Map** aesthetic properties to variables

data geom

#### YOUR TURN

- In your R script, experiment with different visual channels by mapping color, shape, size, and alpha to storm status.
- What happens when you map the same variable to multiple aesthetics?
  - Hint: color = status, shape = status.
- Try mapping color to the variable category rather than status.
   What changes and why?
- What happens if you map color to two different variables (both status and category)?

### TYPES OF CHANNELS



# MAPPING VS SETTING AESTHETIC PROPERTIES

## LET'S GO BACK TO THIS PLOT...



First, a time-saver...

```
ggplot(data = storms) +
  geom_point(mapping = aes(x = pressure, y = wind, color = status))
```



## LET'S GO BACK TO THIS PLOT...



...these can be omitted

```
ggplot(data = storms) +
  geom_point(mapping = aes(x = pressure, y = wind, color = status))
```



## LET'S GO BACK TO THIS PLOT...



```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind, color = status))
```



## HOW WOULD YOU MAKE THIS PLOT?







ggplot(storms) +
 geom\_point(aes(x = pressure, y = wind, color = status))



Inside of aes(): maps an aesthetic to a variable

#### status

- hurricane
- tropical depression
  - tropical storm



```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind), color = "blue")
                                                             Outside of aes(): sets
                                                             an aesthetic to a value
                 120 -
                 40 -
                                                          1000
                    880
                                          pressure
```



```
ggplot(storms) +
   geom_point(aes(x = pressure, y = wind, color = status))
                                                            120 -
                                            status

    tropical depression

    tropical storm

880
                                1000
                                                                                                            1000
                  pressure
```

```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind), color = "blue")
```



Watch out for this!

```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind, color = "blue"))
                                               120 -
                                                40 -
                              1000
                                                                                     1000
                 pressure
```

```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind), color = "blue")
```





• How are these plots similar?





Same: x variable, y variable → built with same data





• How are these plots different?





• Different: geometric object (point vs. line & ribbon)





• Different: statistical summarization (identity vs. smooth)





Remember our template:

```
ggplot(data = <DATA>) +
    <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```



## Each geom\_ function requires a mapping



#### Geoms - Use a geom to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

#### **One Variable** Continuous

a <- ggplot(mpg, aes(hwy))



geom\_area(stat = "bin") x, y, alpha, color, fill, linetype, size b + geom\_area(aes(y = ..density..), stat = "bin")



a + geom\_density(kernel = "gaussian") x, y, alpha, color, fill, linetype, size, weight b + geom\_density(aes(y = ..county..))



+ geom\_dotplot()





+ geom\_bar()





x, y, alpha, color, fill, linetype, size, weight b + geom\_histogram(aes(y = ..density..))

#### Discrete

b <- ggplot(mpg, aes(fl))



x, alpha, color, fill, linetype, size, weight

#### **Graphical Primitives**

map <- map\_data("state") c <- ggplot(map, aes(long, lat))



c + geom\_polygon(aes(group = group)) x, y, alpha, color, fill, linetype, size

#### d <- ggplot(economics, aes(date, unemploy))</pre>



+ geom\_path(lineend="butt". linejoin="round', linemitre=1) x, y, alpha, color, linetype, size



+ geom\_ribbon(aes(ymin=unemploy - 900, ymax=unemploy + 900)) x, ymax, ymin, alpha, color, fill, linetype, size

#### e <- ggplot(seals, aes(x = long, y = lat))



e + geom\_segment(aes( xend = long + delta\_long,

yend = lat + delta\_lat)) x, xend, y, yend, alpha, color, linetype, size



e + geom\_rect(aes(xmin = long, ymin = lat, xmax= long + delta long. ymax = lat + delta\_lat)) xmax, xmin, ymax, ymin, alpha, color, fill,

#### Continuous X, Continuous Y f <- ggplot(mpg, aes(cty, hwy))

+ geom\_blank() (Useful for expanding limits)



geom\_jitter()

x, y, alpha, color, fill, shape, size



geom point() x, y, alpha, color, fill, shape, size











x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

#### Discrete X, Continuous Y g <- ggplot(mpg, aes(class, hwy))



geom bar(stat = "identity")

x, y, alpha, color, fill, linetype, size, weight



+ geom\_boxplot() lower, middle, upper, x, ymax, ymin, alpha, color, fill, linetype, shape, size, weight



g + geom\_dotplot(binaxis = "y", stackdir = "center") x, y, alpha, color, fill

g + geom\_violin(scale = "area") x, y, alpha, color, fill, linetype, size, weight

#### Discrete X, Discrete Y

h <- ggplot(diamonds, aes(cut, color))



h + geom\_jitter()

x, y, alpha, color, fill, shape, size

#### Two Variables

#### **Continuous Bivariate Distribution**

i <- ggplot(movies, aes(year, rating)) + geom\_bin2d(binwidth = c(5, 0.5))



xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size, weigh



geom hex()

x, y, alpha, colour, fill size



#### **Continuous Function** j <- ggplot(economics, aes(date, unemploy))</pre>



x, y, alpha, color, fill, linetype, size



+ geom\_line()



+ geom\_step(direction = "hv") x, y, alpha, color, linetype, size

Visualizing error df < -data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)



+ geom\_crossbar(fatten = 2)



+ geom\_errorbar()



width (also geom\_errorbarh())





x, y, ymin, ymax, alpha, color, fill, linetype,

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) l <- ggplot(data, aes(fill = murder))</pre>

l + geom\_map(aes(map\_id = state), map = map) +



**Three Variables** 

expand\_limits(x = map\$long, y = map\$lat) map\_id, alpha, color, fill, linetype, size

#### seals\$z <- with(seals, sqrt(delta\_long^2 + delta\_lat^2))</pre>

m <- ggplot(seals, aes(long, lat)) m + geom\_contour(aes(z = z))



n + geom\_raster(aes(fill = z), hjust=0.5, vjust=0.5, interpolate=FALSE) x, y, alpha, fill (fast)

m + geom\_tile(aes(fill = z))

x, y, alpha, color, fill, linetype, size (slow)



x, y, z, alpha, colour, linetype, size, weight

#### YOUR TURN

Decide how to replace the scatterplot with boxplots.

Use the cheatsheet and try your best guess.



```
ggplot(storms) + geom_boxplot(aes(x = category, y = pressure))
```



#### YOUR TURN



Predict what this code will do, then run it.

```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind)) +
  geom_smooth(aes(x = pressure, y = wind))
```



```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind)) +
  geom_smooth(aes(x = pressure, y = wind))
```



```
ggplot(storms) +
  geom_point(aes(x = pressure, y = wind)) +
  geom_smooth(aes(x = pressure, y = wind))
```



## GLOBAL VS. LOCAL MAPPING







#### YOUR TURN



Predict what this code will do, then run it.





#### YOUR TURN



- Go to this week's assignments on the course website.
- Download the R Markdown file (save it in this week's folder in your class activities R project).
- Open the R Markdown file in R Studio.
- Follow the instructions to visualize a dataset about mammalian sleep.



## WHAT ELSE?



- Stats
- Position adjustments
- Coordinates
- Facets
- Scales
- Themes

```
Required
ggplot(data = <DATA>
  <GEOM_FUNCTION> (
    mapping = aes(<MAPPINGS>),
    stat =
            <STAT>
                                     Not
    position = <POSITION>
                                     required,
                                     sensible
                                     defaults
  <COORDINATE_FUNCTION>
                                     supplied
  <FACET_FUNCTION>
  <SCALE_FUNCTION>
  <THEME_FUNCTION>
```

Storms data Status is determined by maximum wind speed 160 120 Maximum wind speed (knots) hurricane tropical storm 80 tropical depression 40 880 920 960 1000 Air pressure (millibars)