PLP - 25 TOPIC 25—MORE SET PROOFS

Demirbaş & Rechnitzer

CARTESIAN AND POWER SET PROOFS

A CARTESIAN EXAMPLE

PROPOSITION:

Let A,B,C be sets, then $A imes (B\cup C)=(A imes B)\cup (A imes C)$.

- ullet We'll start with $A imes (B\cup C)\supseteq (A imes B)\cup (A imes C)$
- Since cartesian product, assume $(x,y) \in \mathsf{RHS}$
- ullet So $(x,y)\in A imes B$ or $(x,y)\in A imes C$
 - \circ Case 1: When $(x,y) \in A imes B$, $x \in A$ and $y \in B$. Hence $y \in B \cup C$
 - \circ Case 2: When $(x,y) \in A imes C$, $x \in A$ and $y \in C$. Hence $y \in C \cup B$
- ullet In both cases, $x\in A$ and $y\in B\cup C$, so $(x,y)\in extsf{LHS}.$

CONTINUING CARTESIAN EXAMPLE

$$A imes (B \cup C) = (A imes B) \cup (A imes C)$$

Scratch work continued

- ullet No do $A imes (B\cup C)\subseteq (A imes B)\cup (A imes C)$
- Assume $(x,y) \in \mathsf{LHS}$
- ullet Then $x\in A$ and $y\in B\cup C$, so $y\in B$ or $y\in C$
 - \circ Case 1: When $y\in B$, we know that $(x,y)\in A imes B$, so $(x,y)\in (A imes B)\cup \overline{(A imes C)}$
 - \circ Case 2: When $y \in C$, we know that $(x,y) \in A imes C$, so $(x,y) \in (A imes C) \cup (A imes B)$
- In both cases, $(x,y) \in \mathsf{RHS}$

You can write this up nicely.

POWER SET WARM-UP

PROPOSITION:

$$X \subseteq A \implies X \subseteq A \cup B$$
 $X \subseteq A \cap B \implies X \subseteq A$
 $(X \subseteq A) \land (X \subseteq B) \iff X \subseteq A \cap B$

PROOF.

- Let $X\subseteq A$. Assume that $x\in X$, which implies that $x\in A$. Hence $x\in A\cup B$.
- Now let $X\subseteq A\cap B$ and assume $x\in X$. Hence $x\in A\cap B$ and so $x\in A$.
- Let $X\subseteq A$ and $X\subseteq B$, and assume $x\in X$. Then $x\in A$ and $x\in B$, so $x\in A\cap B$.
- Finally let $X\subseteq A\cap B$. Since $A\cap B\subseteq A$ we know $X\subseteq A$. Similar reasoning gives $X\subseteq B$.

A POWER SET EXAMPLE

PROPOSITION:

Let A,B be sets then $\mathcal{P}(A)\cup\mathcal{P}(B)\subseteq\mathcal{P}(A\cup B)$. The reverse inclusion does not hold.

- There are two things to prove here. Start with the inclusion.
- Is equivalent to $X \in \mathcal{P}\left(A\right) \cup \mathcal{P}\left(B\right) \implies X \in \mathcal{P}\left(A \cup B\right)$.
- So let $X\in\mathcal{P}\left(A
 ight)\cup\mathcal{P}\left(B
 ight)$. Means $X\subseteq A$ or $X\subseteq B$
- Now if $X\subseteq A$ then $X\subseteq A\cup B$ and so $X\in \mathcal{P}\left(A\cup B\right)$.
- ullet The case $X\subseteq B$ will be similar.

DISPROOF OF REVERSE INCLUSION

$$\mathcal{P}\left(A \cup B\right) \subseteq \mathcal{P}\left(A\right) \cup \mathcal{P}\left(B\right)$$

- ullet Since this is really "For all sets $A,B\ldots$ " so disproof can be counter-example
- Notice that $X \in RHS$ then $X \subseteq A$ or $X \subseteq B$.
- ullet While a set in LHS could could contain elements from both A,B
- ullet Try to construct very small A,B to illustrate this.
- ullet Let $A=\{1\}\,,B=\{2\}$, then $\{1,2\}\in LHS$ but not in RHS.

PROOF OF RESULT

PROOF.

We first prove the inclusion and then show the reverse inclusion does not hold.

- Let $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Hence $X \subseteq A$ or $X \subseteq B$. If $X \subseteq A$ then (as shown previously) $X \subseteq A \cup B$. Similarly if $X \subseteq B$ then $X \subseteq B \cup A$. This implies that $X \in \mathcal{P}(A \cup B)$ as required.
- We disprove the reverse inclusion with a counter example. Let $A=\{1\}$, $B=\{2\}$ and $X=\{1,2\}$. Then $X\in \mathcal{P}(A\cup B)$, however $X\not\in \mathcal{P}(A)\cup \mathcal{P}(B)$. Hence $\mathcal{P}(A\cup B)\not\subseteq \mathcal{P}(A)\cup \mathcal{P}(B)$.

ANOTHER POWER SET RESULT

PROPOSITION:

Let A,B be sets, then $\mathcal{P}\left(A
ight)\cap\mathcal{P}\left(B
ight)=\mathcal{P}\left(\overline{A\cap B}
ight)$.

- There are two inclusions to prove here.
- ullet Assume that $X\in LHS$, then $X\in \mathcal{P}\left(A
 ight)$ and $X\in \mathcal{P}\left(B
 ight)$.
- ullet Hence $X\subseteq A$ and $X\subseteq B$ and we showed this means $X\subseteq A\cap B$
- ullet Thus $X\in RHS$
- ullet Now let $Y\in RHS$, so $Y\subseteq A\cap B$ we showed this means $Y\subseteq A$ and $Y\subseteq B$
- ullet So $Y\in LHS$ as required.

WRITE IT UP NICELY

$$\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$$

PROOF.

We prove each inclusion in turn.

- Assume that $X\in LHS$. Then $X\in \mathcal{P}(A)$ and $X\in \mathcal{P}(B)$, and so $X\subseteq A$ and $X\subseteq B$. Hence $X\subseteq A\cap B$, and thus $X\in RHS$.
- Now assume that $Y\in RHS$. Then $Y\in \mathcal{P}\left(A\cap B\right)$ and so $Y\subseteq A\cap B$. This means that $Y\subseteq A$ and $Y\subseteq B$. Hence $Y\in \mathcal{P}\left(A\right)$ and $Y\in \mathcal{P}\left(B\right)$ and thus $Y\in LHS$.

A= < 13 P(A)= { {13, \$} B= {2} P(B) = { {23, \$} P(AnB) 2 & 0 3 ANB= D P(AUB) > { S13, 823, {1,23, \$ } A VB = {1,2} P(A) NP(B) = { \$ \$ P[Ang) = { 0'} ((AUC) XB) V ((AUC) XD) AXBUBXC V AXDUCXD