Cantor-Bendixson rank and Morley rank

Advanced model theory

May 5–7, 2022

Reference in the book: Section 17.3. (But the first two sections are copied from last class, and are based on Section 15.2.)

1 Independent sequences

Definition 1.1. A family $(A_i : i \in I)$ is independent over B if $A_i \downarrow_B A_{\neq i}$ for each $i \in I$, where $A_{\neq i} = \{A_j : j \neq i\}$.

Example 1.2. A_1, A_2 are independent over B if $A_1 \downarrow_B A_2$ and $A_2 \downarrow_B A_1$. By symmetry, this just means $A_1 \downarrow_B A_2$.

Fact 1.3. In the theory of \mathbb{R} -vector spaces, if v_1, \ldots, v_n are non-zero vectors, then v_1, \ldots, v_n is independent over \emptyset iff v_1, \ldots, v_n are linearly independent (in the sense of linear algebra), meaning that

$$x_1v_1+\cdots+x_nv_n\neq 0.$$

for non-zero $\bar{x} \in \mathbb{R}^n$.

Proposition 1.4. $(A_i : i \in I)$ is independent over B iff $(A_i : i \in I_0)$ is independent over B for every finite $I_0 \subseteq I$.

Proof. Monotonicity and finite character.

Lemma 1.5. Let $(A_i : i \leq \alpha)$ be a sequence. Suppose $(A_i : i < \alpha)$ is independent over B and $A_{\alpha} \downarrow_B A_{<\alpha}$ where $A_{<\alpha} = \{A_i : i < \alpha\}$. Then $(A_i : i \leq \alpha)$ is independent over B.

Proof. We must show $A_i \downarrow_B \{A_j : j \leq \alpha, j \neq i\}$ for each $i \leq \alpha$. When $i = \alpha$, this is assumed. Suppose $i < \alpha$. Let $C_i = \{A_j : j < \alpha, j \neq i\}$. We want to show $A_i \downarrow_B C_i A_\alpha$. We know $A_i \downarrow_B C_i$ because $(A_i : i < \alpha)$ is independent. We know $A_\alpha \downarrow_B A_i C_i$ by assumption. By base monotonicity, $A_\alpha \downarrow_{BC_i} A_i$. By symmetry, $A_i \downarrow_{BC_i} A_\alpha$. By transitivity, the known facts $A_i \downarrow_B C_i$ and $A_i \downarrow_{BC_i} A_\alpha$ imply $A_i \downarrow_B C_i A_\alpha$, as desired.

Proposition 1.6. If $(A_i : i < \alpha)$ is a sequence and $A_i \downarrow_B A_{< i}$ for each $i < \alpha$, where $A_{< i} = \{A_j : j < i\}$, then $(A_i : i < \alpha)$ is independent over B.

Proof. By induction on α using Lemma 1.5.

Example 1.7. If $\bar{a}_1, \bar{a}_2, \bar{a}_3, \ldots$ is a Morley sequence over B, then $\bar{a}_1, \bar{a}_2, \ldots$ is independent over B, because $\operatorname{tp}(\bar{a}_i/B\bar{a}_{< i})$ has a B-definable global extension, implying it doesn't fork over B, implying $\bar{a}_i \downarrow_B \bar{a}_{< i}$.

More generally, if p_1, \ldots, p_n are *B*-invariant types and $(\bar{a}_1, \ldots, \bar{a}_n)$ realizes $(p_1 \otimes \cdots \otimes p_n) \upharpoonright B$, then $\bar{a}_1, \ldots, \bar{a}_n$ is independent over *B*.

2 Bases in strongly minimal theories

Suppose T is strongly minimal for this section. If $A \subseteq \mathbb{M}$, then there is a unique type $p \in S_1(A)$ such that $b \models p \iff b \notin \operatorname{acl}(A)$. If such a type did not exist, there would be two $b, b' \notin \operatorname{acl}(A)$ with $\operatorname{tp}(b/A) \neq \operatorname{tp}(b'/A)$. Then there is an A-definable set $D \subseteq \mathbb{M}$ with $b \in D$, $b' \in \mathbb{M} \setminus D$. By strong minimality, D or $\mathbb{M} \setminus D$ is finite. Then b or b' is algebraic.

This type is called the transcendental type over A. If $p \in S_1(\mathbb{M})$ is the global transcendental type, then $p \upharpoonright A$ is the transcendental type over A, because if $N \succeq \mathbb{M}$ and $b \in N \setminus \operatorname{acl}(\mathbb{M})$, then $b \notin \operatorname{acl}(A)$ and so $\operatorname{tp}(b/\mathbb{M}) \upharpoonright A = \operatorname{tp}(b/A)$ is the transcendental type over A.

The transcendental type over A has a global \varnothing -definable extension, so it is stationary (Lemma 6.1 in the April 21–28 notes). Say that $b \in \mathbb{M}$ is transcendental if $b \notin acl(\varnothing)$.

Lemma 2.1. If b is transcendental, then $b \downarrow_{\varnothing} C$ iff $b \notin acl(C)$.

Proof. Let p be the global transcendental type. By Lemma 6.3 in the April 21–28 notes, $\operatorname{tp}(b/C) \supseteq \operatorname{tp}(b/\varnothing)$ holds iff $\operatorname{tp}(b/C) = p \upharpoonright C$, which just means that $b \notin \operatorname{acl}(C)$.

Proposition 2.2. A sequence of transcendentals $(b_i : i < \alpha)$ is independent over \emptyset iff $b_i \notin \operatorname{acl}(\{b_i : j < i\})$ for each i.

Proof. Proposition 1.6. \Box

Remark 2.3. Let p be the global transcendental type. A finite sequence of transcendentals (b_1, \ldots, b_n) is independent iff $b_i \notin \operatorname{acl}(b_1, \ldots, b_{i-1})$ for each i, iff $b_i \models p \upharpoonright b_1 b_2 \cdots b_{i-1}$ iff $(b_1, \ldots, b_n) \models p^{\otimes n} \upharpoonright \varnothing$. Independent sequences of transcendentals are just Morley sequences of p.

Lemma 2.4. Let I_1, I_2 be two independent sets. Let $f: I_1 \to I_2$ be a bijection. Then f is a partial elementary map.

Proof. Suppose $b_1, \ldots, b_n \in I_1$ map to $c_1, \ldots, c_n \in I_2$. Then $\operatorname{tp}(b_1, \ldots, b_n) = p^{\otimes n} \upharpoonright \emptyset = \operatorname{tp}(c_1, \ldots, c_n)$.

Definition 2.5. Suppose $M \leq M$. A basis of M is a maximal independent set of transcendentals in M.

Every $M \leq M$ has a basis by Zorn's lemma and Proposition 1.4.

Proposition 2.6. Let B be a basis of $M \leq M$. Then M = acl(B).

Proof. Otherwise, take $c \in M \setminus \operatorname{acl}(B)$. Then $c \downarrow_{\varnothing} B$ by Lemma 2.1, so Lemma 1.5 shows $B \cup \{c\}$ is independent, contradicting maximality.

Theorem 2.7. The strongly minimal theory T is κ -categorical for all $\kappa > |L|$.

Proof. Suppose $M_1, M_2 \leq \mathbb{M}$ have $|M_1| = |M_2| = \kappa > |L|$. Take a basis $B_i \subseteq M_i$ for i = 1, 2. Then $|B_i| \leq |M_i| = \kappa$. If $|B_i| < \kappa$, then $|M_i| = |\operatorname{acl}(B_i)| \leq |B_i| + |L| < \kappa$, a contradiction. Therefore $|B_1| = |B_2| = \kappa$. Take a bijection $f : B_1 \to B_2$. By Lemma 2.4, f is a partial elementary map, and so it extends to an automorphism $\sigma \in \operatorname{Aut}(\mathbb{M})$. Then $\sigma(M_1) = \sigma(\operatorname{acl}(B_1)) = \operatorname{acl}(\sigma(B_1)) = \operatorname{acl}(B_2) = M_2$. Therefore $M_1 \cong M_2$.

Later, we will use *ranks* to see the following:

- If B, B' are bases of a model M, then |B| = |B'|. The dimension of M is defined to be |B| for any basis M.
- M is determined up to isomorphism by its dimension.

(The argument above handles the case where the dimension is > |L|.)

3 More topology on type spaces

Note: (This section builds off notes-13.pdf and homework-12.pdf from *last semester's* lesson on the omitting types theorem, around December 16, 2021.)

Fix a set of parameters A and consider the type space $S_n(A)$. If $\varphi(x_1, \ldots, x_n) \in L(A)$, then $[\varphi] := \{ p \in S_n(A) : p(\bar{x}) \vdash \varphi(\bar{x}) \}$. If $D \subseteq \mathbb{M}^n$ is A-definable, then $[D] = [\varphi]$ for φ defining D. Sets of the form $[\varphi]$ are called *clopen sets*. Note

$$[D_1 \cap D_2] = [D_1] \cap [D_2]$$
$$[D_1 \cup D_2] = [D_1] \cup [D_2]$$
$$[\mathbb{M}^n \setminus D] = S_n(A) \setminus [D_1],$$

so $D \mapsto [D]$ is an isomorphism of boolean algebras from A-definable subsets of \mathbb{M}^n to clopen sets in $S_n(A)$.

Fact 3.1 (Compactness). Let \mathcal{F} be a collection of clopen sets in $S_n(A)$. If \mathcal{F} has the finite intersection property, then $\bigcap \mathcal{F} \neq \emptyset$.

Fact 3.2 (Compactness, dual form). Let \mathcal{F} be a collection of clopen sets in $S_n(A)$. If $\bigcup \mathcal{F} = S_n(A)$, then there is finite $\mathcal{F}_0 \subseteq \mathcal{F}$ with $\bigcup \mathcal{F}_0 = S_n(A)$.

Facts 3.1, 3.2 are Lemmas 4, 5 in last semester's notes-13.pdf.

Definition 3.3. $X \subseteq S_n(A)$ is open (resp. closed) if X is a possibly-infinite union (resp. intersection) of clopen sets.

Remark 3.4. If $\Sigma(\bar{x})$ is a set of L(A)-formulas in the variables \bar{x} , then

$$\bigcap_{\varphi \in \Sigma} [\varphi] = \{ p \in S_n(A) : \forall \varphi \in \Sigma \ (p(\bar{x}) \vdash \varphi(\bar{x})) \} = \{ p \in S_n(A) : p \supseteq \Sigma \} = \{ \operatorname{tp}(\bar{b}/A) : \bar{b} \models \Sigma \}.$$

Thus, closed sets in $S_n(A)$ correspond to partial types over A.

The following three facts are (essentially¹) Problems 1-3 on last semester's homework-12.pdf.

Fact 3.5. Singletons $\{p\}$ are closed.

Fact 3.6. X is clopen iff X is closed and open.

Fact 3.7. Let \mathcal{F} be a collection of closed sets in $S_n(A)$. If \mathcal{F} has the FIP, then $\bigcap \mathcal{F} \neq \emptyset$.

Corollary 3.8. Let \mathcal{F} be a non-empty collection of non-empty closed sets in $S_n(A)$. Suppose one of the following holds:

- 1. \mathcal{F} is linearly ordered: $\forall X, Y \in \mathcal{F}, X \subseteq Y$ or $Y \subseteq X$.
- 2. \mathcal{F} is filtered: $\forall X, Y \in \mathcal{F} \exists Z \in \mathcal{F}$ such that $Z \subseteq X \cap Y$.

Then \mathcal{F} has the FIP, so $\bigcap \mathcal{F} \neq \emptyset$.

Proposition 3.9 (Total separation). If $p, q \in S_n(A)$ and $p \neq q$, then there is a clopen set $U \subseteq S_n(A)$ with $p \in U$ and $q \notin U$.

Proof. Take $\varphi \in p$ with $\varphi \notin q$. Then $p \in [\varphi]$ but $q \notin [\varphi]$.

Proposition 3.10. Suppose $C \subseteq S_n(A)$ is closed and $p \in C$. Then one of two things happens:

- 1. There is a clopen set $U \ni p$ such that $U \cap C = \{p\}$.
- 2. For every clopen set $U \ni p$, the intersection $U \cap C$ is infinite.

Proof. Suppose $U \cap C$ is finite for some clopen set U. Let $\{p, q_1, \ldots, q_m\}$ enumerate $U \cap C$. By total separation, there are clopen sets V_i with $p \in V_i$, $q_i \notin V_i$. Let U' be the clopen set $U \cap \bigcap_{i=1}^n V_i$. Then $p \in U'$ but $q_i \notin U'$, so $U' \cap C = \{p\}$.

Definition 3.11. Suppose C is closed and $p \in C$.

- 1. p is an isolated point of C if case (1) holds in Proposition 3.10.
- 2. p is an accumulation point of C if case (2) holds in Proposition 3.10.

¹Fact 3.7 is dual to Problem 3 on homework-12.pdf. To prove Fact 3.7 from Problem 3, consider the family of complements $\mathcal{F}' = \{S_n(A) \setminus C : C \in \mathcal{F}\}$. If $\bigcap \mathcal{F} = \emptyset$, then \mathcal{F}' is a cover of $S_n(A)$, and Problem 3 gives a finite subcover, which implies that \mathcal{F} doesn't have the FIP.

3. The derived set C' is the set of accumulation points.

Proposition 3.12. If C is a closed set, then C' is a closed set.

Proof. For each isolated point $p \in C$, take a clopen set U_p with $U_p \cap C = \{p\}$. Then C' is the complement of the open set $(S_n(A) \setminus C) \cup \bigcup_{p \in C \setminus C'} U_p$.

Proposition 3.13. If C is an infinite closed set, then $C' \neq \emptyset$.

Proof. Otherwise, for any $p \in S_n(A)$ there is a clopen set $U_p \ni p$ such that $U_p \cap C'$ is finite. (If $p \notin C$, then there is clopen U_p with $p \in U_p \subseteq S_n(A) \setminus C$, meaning $U_p \cap C = \emptyset$. If $p \in C$, then U_p exists by definition of "isolated point.") By Fact 3.2, $S_n(A)$ is a finite union $\bigcup_{i=1}^m U_{p_i}$ for some $p_1, \ldots, p_m \in S_n(A)$. Then $C = C \cap S_n(A) = \bigcup_{i=1}^m (C \cap U_{p_i})$ is finite.

Definition 3.14. A perfect set is a closed set $C \subseteq S_n(A)$ with C = C'. $S_n(A)$ is scattered if there are no non-empty perfect subsets of $S_n(A)$.

4 Cantor-Bendixson rank

Consider $S_n(A)$ for some $n < \omega$, $A \subseteq M$. Define a descending chain of closed sets $E_\alpha \subseteq S_n(A)$ for ordinals α as follows:

- $E_0 = S_n(A)$.
- $E_{\alpha+1}$ is the derived set E'_{α} .
- If α is a limit ordinal, $E_{\alpha} = \bigcap_{\beta < \alpha} E_{\beta}$.

The chain can only decrease $2^{|S_n(A)|}$ times, so it stops decreasing at some point. Let E_{∞} be E_{α} for sufficiently large α . Note E_{∞} is perfect (but possibly empty).

Remark 4.1. " ∞ " is a formal symbol greater than all ordinals. Be careful: $\alpha < \infty$ means " α is an ordinal", not " α is finite".

Definition 4.2. The Cantor-Bendixson rank R(p) of $p \in S_n(A)$ is the maximum α such that $p \in E_{\alpha}$. If $C \subseteq S_n(A)$ is closed set, then the Cantor-Bendixson rank R(C) is the maximum α such that $C \cap E_{\alpha} \neq \emptyset$.

The maximum exists because if α is a limit ordinal and $E_{\beta} \cap C \neq \emptyset$ for all $\beta < \alpha$, then $E_{\alpha} \cap C = \bigcap_{\beta < \alpha} (E_{\beta} \cap C) \neq \emptyset$ by Corollary 3.8. Note $E_{\alpha} = \{p \in S_n(A) : R(p) \geq \alpha\}$.

Remark 4.3. R(p) is characterized by the fact that

 $R(p) \ge \alpha + 1$ iff p is an accumulation point of types with rank $\ge \alpha$.

Remark 4.4. $R(C) = \max\{R(p) : p \in C\}.$

²If $C = \emptyset$, we set $R(C) = -\infty$, where $-\infty$ is a formal symbol less than all ordinals.

Definition 4.5. Then Cantor-Bendixson rank of a formula or partial type over A is the Cantor-Bendixson rank of the associated closed set in $S_n(A)$. The Cantor-Bendixson rank of an A-definable or A-type-definable set is the Cantor-Bendixson rank of the formula or partial type that defines it.

Proposition 4.6. Suppose $C_1, C_2 \subseteq S_n(A)$ are closed.

- 1. If $C_1 \subseteq C_2$, then $R(C_1) \leq R(C_2)$.
- 2. $R(C_1 \cup C_2) = \max(R(C_1), R(C_2))$.
- 3. If $\Sigma(\bar{x}), \Phi(\bar{x})$ are partial types and $\Sigma(\bar{x}) \vdash \Phi(\bar{x})$, then $R(\Sigma) \leq R(\Phi)$.
- 4. $R(\varphi \vee \psi) = \max(R(\varphi), R(\psi))$.

Proof. (1) and (2) are clear from Remark 4.4. (3) and (4) are direct consequences of (1) and (2). \Box

Proposition 4.7. 1. If $C \subseteq S_n(A)$ is closed, then $R(C) = \min\{R(U) : U \supseteq C, U \text{ is clopen}\}$.

2. If $\Sigma(\bar{x})$ is a set of L(A)-formulas, then $R(\Sigma) = \min\{R(\varphi) : \Sigma(\bar{x}) \vdash \varphi(\bar{x})\}$.

Proof. Note (1) \iff (2). We prove (1). Certainly R(C) is \leq the minimum. We must show that R(C) is \geq the minimum. If $R(C) = \infty$ there is nothing to show. Suppose $R(C) = \alpha < \infty$. Then $C \cap E_{\alpha+1} = \emptyset$. As C is a filtered intersection $\bigcap \{U : U \supseteq C, U \text{ is clopen}\}$, we have

$$\emptyset = C \cap E_{\alpha+1} = \bigcap \{ U \cap E_{\alpha+1} : U \supseteq C, \ U \text{ is clopen} \}$$

By Corollary 3.8, some $U \cap E_{\alpha+1} = \emptyset$. Then $\alpha+1 > \mathrm{R}(U) \ge \mathrm{R}(C) = \alpha$, so $\mathrm{R}(U) = \mathrm{R}(C)$. \square

Proposition 4.8. If $C \subseteq S_n(A)$ is closed and $-\infty < R(C) < \infty$, then there are finitely many $p \in C$ with R(p) = R(C).

Proof. Otherwise, $\{p \in C : R(p) = R(C)\} = C \cap E_{R(C)}$ would have an accumulation point q by Proposition 3.13, and then $q \in C$, $q \in E_{R(C)+1}$, and $R(C) \geq R(q) \geq R(C)+1$, absurd. \square

Lemma 4.9. Suppose $U \subseteq S_n(A)$ is clopen and $R(U) \ge \alpha + 1$. Then U is a disjoint union $U_1 \sqcup U_2$ of two clopen sets U_1, U_2 such that $R(U_1) \ge \alpha + 1$ and $R(U_2) \ge \alpha$.

Proof. Take $p \in U \cap E_{\alpha+1}$. Then p is an accumulation point of E_{α} so $U \cap E_{\alpha}$ is infinite. Take $q \in U \cap E_{\alpha}$ with $q \neq p$. By Proposition 3.9 there is a clopen set V with $p \in V$, $q \notin V$. Let $U_1 = U \cap V$ and $U_2 = U \setminus V$. Then $p \in U_1$ and $q \in U_2$, so $R(U_1) \geq R(p) \geq \alpha + 1$ and $R(U_2) \geq R(q) \geq \alpha$.

If X, Y are sets, let $X\Delta Y$ denote $(X \setminus Y) \cup (Y \setminus X)$.

Proposition 4.10. If $U \subseteq S_n(A)$ is clopen and α is an ordinal, the following are equivalent:

1.
$$R(U) \ge \alpha + 1$$
.

- 2. There are pairwise disjoint clopen sets $U_1, U_2, \ldots \subseteq U$ with $R(U_i) \geq \alpha$ for each α .
- 3. There are clopen sets $U_1, U_2, \ldots \subseteq U$ with $R(U_i \Delta U_i) \geq \alpha$ for $i \neq j$.

Proof. (1) \Longrightarrow (2): by Lemma 4.9 we can find a clopen set $U_1 \subseteq U$ with $R(U_1) \geq \alpha$ and $R(U \setminus U_1) \geq \alpha + 1$. Applying Lemma 4.9 to $U \setminus U_1$ we can find a clopen set $U_2 \subseteq U \setminus U_1$ with $R(U_2) \geq \alpha$ and $R(U \setminus (U_1 \cup U_2)) \geq \alpha + 1$, etc.

- (2) \Longrightarrow (3): if the U_i are disjoint, then $R(U_i \Delta U_j) = R(U_i \cup U_j) \ge R(U_i) \ge \alpha$.
- (3) \Longrightarrow (1): suppose (3) holds but $R(U) \leq \alpha$. Then $U \cap E_{\alpha}$ is finite, possibly empty. The map

$$\omega \to Pow(U \cap E_{\alpha})$$
$$i \mapsto U_i \cap (U \cap E_{\alpha}) = U_i \cap E_{\alpha}$$

is not injective (since the range is finite), so there are $i \neq j$ with

$$U_i \cap E_\alpha = U_j \cap E_\alpha$$

or equivalently, $(U_i \Delta U_j) \cap E_\alpha = \emptyset$. Then $R(U_i \Delta U_j) < \alpha$, a contradiction.

Proposition 4.10(2) gives an alternate definition of R(U) for clopen U, and then Proposition 4.7 determines R(C) for closed C (including points). Rephrasing in terms of A-definable sets, we get the following definition. Suppose D is an A-definable set.

- $R(D) \ge 0$ iff D is non-empty.
- If α is a limit ordinal, then $R(D) \ge \alpha$ iff $R(D) \ge \beta$ for all $\beta \le \alpha$.
- $R(D) \ge \alpha + 1$ iff there are pairwise disjoint A-definable subsets $D_1, D_2, \ldots \subseteq D$ with $R(D_i) \ge \alpha$ for all i.

If φ is an L(A)-formula, then $R(\varphi) = R(\varphi(\mathbb{M}^n))$, and if Σ is a type over A then $R(\Sigma) = \min\{R(\varphi) : \Sigma \vdash \varphi\}$ as in Proposition 4.7.

Definition 4.11. A family \mathcal{F} of sets is k-inconsistent if $\bigcap_{i=1}^k D_i = \emptyset$ for any distinct $D_1, \ldots, D_k \in \mathcal{F}$.

Lemma 4.12. Let D be A-definable. Let D_1, D_2, \ldots be distinct A-definable subsets of D, with $R(D_i) \geq \alpha$. Suppose $\{D_1, D_2, \ldots\}$ is k-inconsistent. Then $R(D) \geq \alpha + 1$.

Proof. Suppose not. Let $U_i \subseteq S_n(A)$ correspond to D_i . As in the proof of Proposition 4.10, the map

$$\omega \to Pow(U \cap E_{\alpha})$$
$$i \mapsto U_i \cap (U \cap E_{\alpha}) = U_i \cap E_{\alpha}$$

is non-injective, and in fact some fiber is infinite. Passing to a subsequence, we may assume $U_i \cap E_\alpha = U_j \cap E_\alpha$ for all i, j. Then $\bigcap_{i=1}^k U_i \supseteq \bigcap_{i=1}^k (U_i \cap E_\alpha) = U_1 \cap E_\alpha \neq \emptyset$, as $R(U_1) \ge \alpha$. So the family is not actually k-inconsistent.

5 Whether $S_n(A)$ is scattered

Proposition 5.1. $R(S_n(A)) < \infty$ iff $S_n(A)$ is scattered (i.e., has no non-empty perfect set).

Proof. $R(S_n(A)) < \infty$ means $E_{\infty} = \emptyset$. If $E_{\infty} \neq \emptyset$ then E_{∞} is a non-empty perfect set. Conversely, suppose $K \subseteq S_n(A)$ is non-empty and perfect. Then $K \subseteq E_{\alpha}$ for all α by induction on α , so $K \subseteq E_{\infty}$ and $E_{\infty} \neq \emptyset$.

Lemma 5.2. If $U \subseteq S_n(A)$ is clopen and $R(U) = \infty$, then U is a disjoint union $U = U_1 \sqcup U_2$ of two clopen sets U_1, U_2 with $R(U_1) = R(U_2) = \infty$.

Proof. Like Lemma 4.9.

Lemma 5.3. 1. $R(S_n(A)) = \infty$ if and only if there is a tree of non-empty clopen sets $(U_{\sigma}: \sigma \in 2^{<\omega})$ such that U_{σ} is a disjoint union $U_{\sigma 0} \sqcup U_{\sigma 1}$ for each $\sigma \in 2^{<\omega}$.

- 2. If $R(S_n(A)) = \infty$, then $|S_n(A)| \ge 2^{\aleph_0}$.
- 3. If $R(S_n(A)) < \infty$, then $|S_n(A)| \le |L(A)|$.

Proof. 1. Suppose $R(S_n(A)) = \infty$. Take $U = S_n(A)$. By Lemma 5.2, $U = U_0 \sqcup U_1$ where U_0, U_1 are clopen sets with $R(U_0) = R(U_1) = \infty$. By Lemma 5.2 we can split U_0 into two clopen sets U_{00}, U_{01} , we can split U_1 into two clopen sets U_{10}, U_{11} , etc.

Conversely, suppose a tree (U_{σ}) exists. We claim by induction on α that $R(U_{\sigma}) \geq \alpha$ for all σ . The base case $\alpha = 0$ holds as the $U_{\sigma} \neq \emptyset$. The limit ordinal case is immediate. For successor ordinals $\alpha + 1$, suppose $R(U_{\sigma}) \geq \alpha$ for all σ . Then $U_{\sigma 1}, U_{\sigma 001}, U_{\sigma 001}, \ldots$ are disjoint clopen subsets of U_{σ} with rank $\geq \alpha$, so $R(U_{\sigma}) \geq \alpha + 1$.

Therefore $R(U_{\sigma}) = \infty$ for all σ , which implies $R(S_n(A)) = \infty$.

- 2. Take a tree $(U_{\sigma}: \sigma \in 2^{<\omega})$ as in (1). For $\tau \in 2^{\omega}$ let $C_{\tau} = \bigcap_{n=0}^{\infty} U_{\tau \upharpoonright n}$. Then C_{τ} is a non-empty closed set by Corollary 3.8. Take $p_{\tau} \in C_{\tau}$. The p_{τ} are distinct, since if $\tau \neq \tau'$ then $\tau \upharpoonright n \neq \tau' \upharpoonright n$ for some $n < \omega$, and then $p_{\tau} \in U_{\tau \upharpoonright n}$, $p_{\tau'} \in U_{\tau' \upharpoonright n}$, $U_{\tau \upharpoonright n} \cap U_{\tau' \upharpoonright n} = \emptyset$. So we get at least 2^{\aleph_0} -many points.
- 3. Suppose $R(S_n(A)) < \infty$. For each $p \in S_n(A)$, let $\alpha_p = R(p)$. Then p is isolated in E_{α_p} , so there is a clopen set $U_p \ni p$ with $U_p \cap E_{\alpha_p} = \{p\}$. Then p is the unique type in U_p of maximal rank. Therefore $p \mapsto U_p$ is injective. But $|\{U_p : p \in S_n(A)\}| \le |L(A)|$ since each U_p is defined by an L(A)-formula.

Remark 5.4. The tree in Lemma 5.3(1) corresponds to a tree of non-empty A-definable sets $(D_{\sigma}: \sigma \in 2^{<\omega})$ with $D_{\sigma} \subseteq \mathbb{M}^n$, such that D_{σ} is a disjoint union $D_{\sigma 0} \sqcup D_{\sigma 1}$.

Theorem 5.5. If L is countable and T is stable, then $\lambda_0(T)$ (the smallest λ such that T is λ -stable) is either \aleph_0 or 2^{\aleph_0} .

Proof. By the proof of Lemma 1 in the March 10 notes, T is λ -stable for $\lambda = 2^{|L|} = 2^{\aleph_0}$. So $\lambda_0(T) \leq 2^{\aleph_0}$. Suppose $\aleph_0 < \lambda_0 < 2^{\aleph_0}$. Then T is not \aleph_0 -stable. Take countable $A \subseteq \mathbb{M}$ with $|S_1(A)| > \aleph_0$. By Lemma 5.3(2,3), either $|S_1(A)| \leq |L(A)| = \aleph_0$ (no) or $|S_1(A)| \geq 2^{\aleph_0}$ (yes). Then $|A| \leq \aleph_0 \leq \lambda_0$ but $|S_1(A)| \geq 2^{\aleph_0} > \lambda_0$, so λ_0 -stability fails, a contradiction.

6 Morley rank

Definition 6.1. Morley rank RM(-) means Cantor-Bendixson rank in $S_n(M)$.

The choice of the monster model doesn't matter:

Lemma 6.2. Let $M \leq M$ be \aleph_0 -saturated. Let $\Sigma(\bar{x})$ be a partial type over M. Then $RM(\Sigma(\bar{x}))$ agrees with the Cantor-Bendixson rank of $\Sigma(\bar{x})$ in $S_n(M)$.

Proof. Let R(-) denote Cantor-Bendixson rank in $S_n(M)$.

Claim. If D is M-definable, and α is an ordinal, then $R(D) \geq \alpha \iff RM(D) \geq \alpha$.

Proof. By induction on α . When $\alpha = 0$, both sides say $D \neq \emptyset$. The case of limit ordinals is easy. Suppose $\alpha = \beta + 1$. By Proposition 4.10(2), the left and right sides say

- 1. There are disjoint M-definable sets $D_1, D_2, \ldots \subseteq D$ with $R(D_i) \geq \beta$.
- 2. There are disjoint M-definable sets $D_1, D_2, \ldots \subseteq D$ with $RM(D_i) \ge \beta$.

Then $(1) \Longrightarrow (2)$ by induction. Suppose (2) holds. Let $D = \psi(\mathbb{M}, \bar{b})$, with $\bar{b} \in M$, and let $D_i = \varphi_i(\mathbb{M}, \bar{c}_i)$ for $i < \omega$, with $\bar{c}_i \in \mathbb{M}$. By \aleph_0 -saturation we can realize $\operatorname{tp}(\bar{c}_0, \bar{c}_1, \ldots / \bar{b})$ in M. Moving the \bar{c}_i and D_i by $\sigma \in \operatorname{Aut}(\mathbb{M}/\bar{b})$, we may assume the \bar{c}_i are in M. Then the D_i are M-definable, and $(2) \Longrightarrow (1)$ by induction.

The Claim shows R(D) = RM(D) for M-definable D, i.e., $R(\varphi) = RM(\varphi)$ for $\varphi(\bar{x}) \in L(M)$. By Proposition 4.7(2), we are done.

Example 6.3. Let D be definable.

- 1. $RM(D) \ge 0$ iff $D \ne \emptyset$.
- 2. $RM(D) \ge 1$ iff there are disjoint non-empty definable sets $D_1, D_2, \ldots \subseteq D$. So $RM(D) \ge 1$ iff D is infinite.
- 3. $RM(D) \ge 2$ iff there are disjoint infinite definable sets $D_1, D_2, \ldots \subseteq D$.
- 4. If T is strongly minimal, then $RM(\mathbb{M}) = 1$, because there are not disjoint infinite definable sets $D_1, D_2 \subseteq \mathbb{M}$.

Proposition 6.4. Let $f: X \to Y$ be a definable function.

- 1. If f is surjective, then $RM(X) \ge RM(Y)$.
- 2. If f is a bijection, then RM(X) = RM(Y).
- 3. If f is an injection, then $RM(X) \leq RM(Y)$.

- Proof. 1. We prove by induction on α that if $f: X \to Y$ is a surjection and $RM(Y) \ge \alpha$, then $RM(X) \ge \alpha$. When $\alpha = 0$, this says $Y \ne \emptyset \implies X \ne \emptyset$, which is true by surjectivity. Limit ordinals are trivial. Suppose $RM(Y) \ge \alpha + 1$. Take disjoint definable $D_1, D_2, \ldots \subseteq Y$ with $RM(D_i) \ge \alpha$. Let $D_i' = f^{-1}(D_i) \subseteq X$. Then $f: D_i' \to D_i$ is surjective, so $RM(D_i') \ge \alpha$ by induction. The D_i' are disjoint, so $RM(X) \ge \alpha + 1$. This proves the claim, then shows $RM(X) \ge RM(Y)$ (taking $\alpha = RM(Y)$).
 - 2. Apply (1) to f and f^{-1} .
 - 3. f is a bijection from X to the image f(X), so $RM(X) = RM(f(X)) \le RM(Y)$.

Example 6.5. Suppose M is infinite. Take $a_1, a_2, ... \in M$ distinct. By Proposition 6.4, $RM(\mathbb{M}^n) = RM(\mathbb{M}^n \times \{a_i\})$ because of the definable bijection. The sets $\mathbb{M}^n \times \{a_1\}, \mathbb{M}^n \times \{a_2\},...$ are disjoint definable subsets of \mathbb{M}^{n+1} . Therefore $RM(\mathbb{M}^{n+1}) \geq RM(\mathbb{M}^n) + 1$. By induction on n, $RM(\mathbb{M}^n) \geq n$.

Lemma 6.6. Let $f: X \to Y$ be a definable function with finite fibers. Then $RM(X) \le RM(Y)$.

Proof. We prove $\alpha \leq \text{RM}(X) \implies \alpha \leq \text{RM}(Y)$ by induction on α . The zero and limit cases are easy. Suppose $\text{RM}(X) \geq \alpha + 1$. Take disjoint definable sets $D_1, D_2, \ldots \subseteq X$ with $\text{RM}(D_i) \geq \alpha$. The map $D_i \to f(D_i)$ has finite fibers. By induction, $\text{RM}(D_i) \geq \alpha \implies \text{RM}(f(D_i)) \geq \alpha$. Let k bound the fibers of f. Then $\{f(D_1), f(D_2), \ldots\}$ is (k+1)-inconsistent. By Lemma 4.12, $\text{RM}(Y) \geq \alpha + 1$.

Example 6.7. In ACF, the set $D = \{(x, y) : x^2 + y^2 = 1\}$ has Morley rank 1, because it is infinite and the map

$$D \to \mathbb{M}^1$$
$$(x,y) \mapsto x$$

has finite fibers.

Definition 6.8. For $\bar{a} \in \mathbb{M}^n$ and $B \subseteq \mathbb{M}$, $RM(\bar{a}/B) = RM(tp(\bar{a}/B))$.

Proposition 6.9. $Fix B \subseteq M$.

- 1. If $\bar{a} \in \mathbb{M}^n$, then $RM(\bar{a}/B) = \min\{RM(X) : \bar{a} \in X, X \text{ is } B\text{-definable}\}.$
- 2. If X is B-definable, then $RM(X) = \max\{RM(\bar{a}/B) : \bar{a} \in X\}$.

Proof. 1. Proposition $4.7.^3$

³Actually we're using a slightly stronger version of Proposition 4.7: if $C \subseteq S_n(A)$ is a filtered intersection $\bigcup_{i \in I} U_i$ of clopen sets U_i , then $R(C) = \min_{i \in I} R(U_i)$.

2. If $\bar{a} \in X$ then $[\operatorname{tp}(\bar{a}/B)] \subseteq [X] \subseteq S_n(\mathbb{M})$ so $\operatorname{RM}(\bar{a}/B) \leq \operatorname{RM}(X)$. Take $p \in [X] \subseteq S_n(\mathbb{M})$ with $\operatorname{RM}(p)$ maximal, so $\operatorname{RM}(p) = \operatorname{RM}(X)$. Let $q = p \upharpoonright B$. Let \bar{a} realize q. Then $\bar{a} \in X$, and $\operatorname{RM}(p) \leq \operatorname{RM}(q) \leq \operatorname{RM}(X) = \operatorname{RM}(p)$, so $\operatorname{RM}(\bar{a}/B) = \operatorname{RM}(q) = \operatorname{RM}(X)$.

Lemma 6.10. If $\bar{b} \in \operatorname{acl}(\bar{a}C)$, then $\operatorname{RM}(\bar{b}/C) \leq \operatorname{RM}(\bar{a}/C)$.

Proof. Let π_1, π_2 be the coordinate projections $\pi_1(\bar{x}, \bar{y}) = \bar{x}, \pi_2(\bar{x}, \bar{y}) = \bar{y}$. If D is a small enough C-definable set containing (\bar{a}, \bar{b}) , then...

- $RM(\pi_1(D)) = RM(\bar{a}/C)$, by Proposition 6.9.
- $RM(\pi_2(D)) = RM(\bar{b}/C)$, by Proposition 6.9.
- The fibers of $D \to \pi_1(D)$ are finite⁴, because $\bar{b} \in \operatorname{acl}(\bar{a}C)$.

By Proposition 6.4 and Lemma 6.6,

$$\operatorname{RM}(\bar{b}/C) = \operatorname{RM}(\pi_2(D)) < \operatorname{RM}(D) < \operatorname{RM}(\pi_1(D)) = \operatorname{RM}(\bar{a}/C).$$

Theorem 6.11. Suppose T is strongly minimal. Let p be the global transcendental type. Let $p^{\otimes n} = \underbrace{p \otimes \cdots \otimes p}$. Let C be a set of parameters and \bar{a} be an n-tuple.

- 1. If \bar{a} doesn't realize $p^{\otimes n} \upharpoonright C$, then $RM(\bar{a}/C) < n$.
- 2. $RM(\mathbb{M}^n) = n$.
- 3. If \bar{a} realizes $p^{\otimes n} \upharpoonright C$, then $RM(\bar{a}/C) = n$.

Proof. We prove (1)–(3) together, by induction on n.

1. It can't happen that $a_i \notin \operatorname{acl}(Ca_1, \ldots, a_{i-1})$ for all $i \leq n$, as this would mean \bar{a} realizes $p^{\otimes n}$. Therefore there is some i such that $a_i \in \operatorname{acl}(Ca_1, \ldots, a_{i-1})$. Then $\bar{a} \in \operatorname{acl}(Ca_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$. By Lemma 6.10 and induction,

$$RM(\bar{a}/C) \le RM(a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n/C) \le RM(\mathbb{M}^{n-1}) \le n - 1.$$

- 2. By Example 6.5, we know $RM(\mathbb{M}^n) \geq n$. Take \aleph_0 -saturated $M \leq \mathbb{M}$. For types over M, Morley rank agrees with Cantor-Bendixson rank in $S_n(M)$, by Lemma 6.2. Applying part (1) to C = M, we see that all types in $S_n(M)$ have rank < n, with at most one exception. Then the set $E_n \subseteq S_n(M)$ is finite or empty, so $E_{n+1} = \emptyset$, and $R(S_n(M)) \leq n$, which means $RM(\mathbb{M}^n) \leq n$.
- 3. By Proposition 6.9, $RM(\mathbb{M}^n) = \max\{RM(p) : p \in S_n(C)\}$. By part (2), there is some $q \in S_n(C)$ with RM(q) = n. By part (1), $q = p^{\otimes n} \upharpoonright C$, because all the other possibilities have rank < n.

⁴In other words, for any \bar{a}' , there are only finitely many \bar{b}' with $(\bar{a}', \bar{b}') \in D$

Recall that if T is strongly minimal and $M \models T$, a basis for M is a maximal independent set $B \subseteq M$. M has at least one basis, and if B is a basis, then $M = \operatorname{acl}(B)$. (See Section 2 above.)

Theorem 6.12. Suppose T is strongly minimal and $M \models T$. Let B_1, B_2 be two bases. Then $|B_1| = |B_2|$.

Proof. Suppose not. Without loss of generality, $|B_1| < |B_2|$. There are two cases:

- B_2 is infinite. For each $a \in B_1 \subseteq M = \operatorname{acl}(B_2)$, take a finite set $S_a \subseteq B_2$ with $a \in \operatorname{acl}(S_a)$. This is possible because the formula showing $a \in \operatorname{acl}(B_2)$ uses only finitely many parameters from B_2 . Let $I = \bigcup_{a \in S_a} \subseteq B_2$. Then $|I| < |B_2|$: if B_1 is infinite then $|I| \leq |B_1|$, and if B_1 is finite then I is finite. Note $B_2 \subseteq \operatorname{acl}(I)$, so $M = \operatorname{acl}(B_2) \subseteq \operatorname{acl}(\operatorname{acl}(I)) = \operatorname{acl}(I) \subseteq M$. Therefore $M = \operatorname{acl}(I)$. As $|I| < |B_2|$ there is $e \in B_2 \setminus I$. Then $e \in M = \operatorname{acl}(I)$. Also $I \subseteq B_2 \setminus \{e\}$. Therefore $e \in M = \operatorname{acl}(I) \subseteq \operatorname{acl}(B_2 \setminus \{e\})$, and B_2 is not independent.
- B_2 is finite, and so B_1 is finite as well. Let $B_1 = \{a_1, \ldots, a_n\}$ and $B_2 = \{c_1, \ldots, c_m\}$ where $n = |B_1| < m = |B_2|$. Let p be the global transcendental type. Recall that independent sets are Morley sequences of p over \varnothing . By Theorem 6.11(3), $RM(\bar{a}/\varnothing) = n$ and $RM(\bar{c}/\varnothing) = m$. In particular, $RM(\bar{a}/\varnothing) < RM(\bar{c}/\varnothing)$. But $\bar{c} \in acl(\bar{a})$, so this contradicts Lemma 6.10.

The dimension of a strongly minimal model M is the cardinality of any basis of M. By the proof of Theorem 2.7 plus Theorem 6.12, the dimension is a complete isomorphism invariant of models of T—two models are isomorphic iff they have the same dimension.

7 Totally transcendental theories

If $L_0 \subseteq L$, let $S_n^{L_0}(A)$ denote the set of *n*-types over A in the reduct $\mathbb{M} \upharpoonright L_0$. Recall $S_n(A)$ is scattered iff $\mathbb{R}(S_n(A)) < \infty$ (Proposition 5.1).

Lemma 7.1. For fixed $n < \infty$, the following are equivalent:

- 1. $S_n(\mathbb{M})$ is scattered.
- 2. $S_n(A)$ is scattered for all $A \subseteq M$.
- 3. $S_n(A)$ is scattered for all countable $A \subseteq M$.
- 4. $S_n^{L_0}(A)$ is scattered for countable $L_0 \subseteq L$ and countable $A \subseteq M$.

Proof. By Lemma 5.3, all these conditions say that there's no tree $(D_{\sigma}: \sigma \in 2^{<\omega})$ with $D_{\sigma} \subseteq \mathbb{M}^n$ definable and $D_{\sigma} = D_{\sigma 0} \sqcup D_{\sigma 1}$. (If such a tree exists, it's defined using only countably many parameters and countably many symbols in the language.)

Theorem 7.2. If L is countable, the following are equivalent:

- 1. $RM(\Sigma(\bar{x})) < \infty$ for any partial type $\Sigma(x_1, \ldots, x_n)$.
- 2. $RM(x = x) < \infty$. (That is, $RM(\mathbb{M}^1) < \infty$.)
- 3. T is ω -stable.

Proof. $(1) \Longrightarrow (2)$: clear

- (2) \Longrightarrow (3): (2) says $R(S_1(\mathbb{M})) < \infty$, i.e., $S_1(\mathbb{M})$ is scattered. By Lemma 7.1, $S_1(A)$ is scattered for countable A. By Lemma 5.3(3), $S_1(A)$ is countable for countable A, which is ω -stability.
- (3) \Longrightarrow (1): By ω -stability, $S_n(A)$ is countable for countable A. By Lemma 5.3(2), $S_n(A)$ is scattered for countable A. By Lemma 7.1, $S_n(\mathbb{M})$ is scattered, which implies $R(C) < \infty$ for any closed set $C \subseteq S_n(\mathbb{M})$. This is (1).

Theorem 7.3. The following are equivalent for any theory T:

- 1. $RM(\Sigma(\bar{x})) < \infty$ for any partial type $\Sigma(x_1, \ldots, x_n)$.
- 2. $RM(x = x) < \infty$.
- 3. For every countable $L_0 \subseteq L$, the reduct $T \upharpoonright L_0$ is ω -stable.

Proof. Similar to Theorem 7.2, but using the fourth condition of Lemma 7.1. \Box

Definition 7.4. T is totally transcendental if the equivalent conditions hold:

- $RM(x = x) < \infty$.
- $RM(\Sigma(\bar{x})) < \infty$ for any partial type $\Sigma(\bar{x})$.

In countable languages, "totally transcendental" is equivalent to " ω -stable."

Example 7.5. Strongly minimal theories are λ -stable for $\lambda \geq |L|$. Strongly minimal theories in countable languages are ω -stable, hence totally transcendental. If T is strongly minimal, so is any reduct. Therefore, strongly minimal theories are totally transcendental. (Or see Theorem 6.11.)

Theorem 7.6. If T is totally transcendental, then T is λ -stable for any $\lambda \geq |L|$. In particular, T is superstable.

Proof. Since $R(S_n(\mathbb{M})) < \infty$, $S_n(\mathbb{M})$ is scattered, and so $S_n(A)$ is scattered for any A, by Lemma 7.1. If $|A|, |L| \leq \lambda$, then

$$|S_n(A)| \le |L(A)| \le \lambda$$

by Lemma 5.3(3).

8 Morley rank and forking

Suppose T is totally transcendental.

Lemma 8.1. Suppose $p \in S_n(A)$.

- 1. If $q \in S_n(\mathbb{M})$ extends p, then $RM(q) \leq RM(p)$.
- 2. There is $r \in S_n(\mathbb{M})$ with $r \supseteq p$, RM(r) = RM(p).
- 3. If $q \in S_n(\mathbb{M})$ extends p and RM(q) = RM(p), then $q \supseteq p$.
- 4. If $q \in S_n(\mathbb{M})$ extends p and $q \supseteq p$, then RM(q) = RM(p).

Proof. The first two points hold because RM(p) is defined to be $\{\max RM(q) : q \in S_n(\mathbb{M}), q \supseteq p\}$.

- 3. By Proposition 4.8, there are finitely many such q. Then $\{\sigma(q) : \sigma \in \operatorname{Aut}(\mathbb{M}/A)\}$ is finite, so q is almost A-definable and $q \supseteq p$ by Proposition 5.6 in the April 21 notes.
- 4. Take r as in (2). By (3), $r \supseteq p$. Then r, q are non-forking extensions of p. By Proposition 4.5 in the April 21, notes, there is $\sigma \in \operatorname{Aut}(\mathbb{M}/A)$ with $\sigma(r) = p$. Then $\operatorname{RM}(q) = \operatorname{RM}(r) = \operatorname{RM}(p)$.

Proposition 8.2. If $p \in S_n(A)$ and $q \in S_n(B)$ is an extension.

- 1. $RM(q) \leq RM(p)$.
- 2. RM(q) = RM(p) iff $q \supseteq p$.

Proof. 1. Clear.

2. Take r a global non-forking extension of q. Then RM(r) = RM(q). By full transitivity of \supseteq and by Lemma 8.1(3,4), we see $q \supseteq p \iff r \supseteq p \iff RM(r) = RM(p) \iff RM(q) = RM(p)$.

Note the parallel between RM(p) and the bound bd(p):

- If q is a forking extension of p, then RM(q) < RM(p) and bd(q) < bd(p).
- If q is a nonforking extension of p, then RM(q) = RM(p) and bd(q) = bd(p).

This gives another proof of superstability: if $\beta_1 > \beta_2 > \cdots$ is a descending chain in the fundamental order, we can get a forking chain

$$p_1 \subseteq p_2 \subseteq p_3 \subseteq \cdots$$
$$p_1 \not\sqsubseteq p_2 \not\sqsubseteq p_3 \not\sqsubseteq \cdots$$
$$\mathrm{bd}(p_i) = \beta_i,$$

as in Proposition 12.1 in the April 28 notes. Then

$$RM(p_1) > RM(p_2) > RM(p_3) > \cdots$$

which is impossible—the ordinals are well-ordered and there are no descending chains.