An introduction to Bayesian Neural Network and uncertainty quantification in Deep Learning

Inverted CERN School of Computing 2023

Jacopo Talpini

University of Milano-Bicocca j.talpini@campus.unimib.it

Outline

Introduction

- 2 Bayesian methods meet Neural Networks
 - Predictive distribution
 - Variational Inference

3 Further topics

Introduction

- Many advances in Deep Learning, deployed in real-life settings
- Safety-Critical domains requires reliable uncertainty estimates

¹Jakob Gawlikowski et al. A survey of uncertainty in deep neural networks. 2021.

Plan

- Recap on Neural Network training from a probabilistic perspective
- Introduction to uncertainty
- Introduction to Bayesian Neural Network
- Introduction to Variational Inference
- Examples and other approaches to uncertainty quantification

Recap on Neural Network

- Given a dataset: $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ of input-output pairs
- We define a parametric function (aka a Neural Net) $\hat{y} \equiv f({m x}; {m w})$ for describing ${\cal D}$
- **Problem**: how to chose w so that $\hat{y}_i(x_i)$ is close to y_i for all input-output pairs of \mathcal{D} ?

Neural Networks Training

• Introduce a loss function $\mathcal{L}(y; \hat{y})$ and minimize it:

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \mathcal{L}(y; \hat{y}) \tag{1}$$

A common choice for regression is the sum of squared error:

$$\mathcal{L}(\boldsymbol{w}) = \sum_{i=1}^{N} (y_i - f(\boldsymbol{x}_i; \boldsymbol{w}))^2$$
 (2)

• To control over-fitting add a regularization term:

$$\hat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \left[\sum_{i=1}^{N} \mathcal{L}(y_i; \hat{y}_i) + \lambda |\boldsymbol{w}|_2^{\alpha} \right]$$
(3)

 \bullet Setting $\alpha=2$ leads to the L2 or Ridge regularization, $\alpha=1$ to L1

Neural Networks Training: Probabilistic perspective

ullet We may explicitly model the **aleatoric noise** ϵ inherent to the data

$$y(\mathbf{x}) = f(\mathbf{x}; \mathbf{w}) + \epsilon(\mathbf{x}) \tag{4}$$

- One common assumption is gaussian noise $\epsilon({m x}) = \mathcal{N}(0,\sigma^2)$
- The loss function is viewed as the negative log likelihood $p(\mathcal{D}|\boldsymbol{w},I)$:
- Under the assumption of i.i.d. additive gaussian noise the likelihood and the loss function are:

$$p(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{w}, \sigma^2) = \prod_{i=1}^{N} \mathcal{N}(y_i|f(\boldsymbol{x}_i; \boldsymbol{w}), \sigma^2)$$
 (5)

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - f(\boldsymbol{x}_i; \boldsymbol{w}))^2 + \text{const.}$$
 (6)

Neural Networks Training: Probabilistic perspective II

- Similarly, the regularizer is interpreted as a log-prior probability distribution over the models' parameters p(w|I).
- Using Bayes Theorem we obtain the posterior distribution over the parameters:

$$p(\boldsymbol{w}|\mathcal{D}, I) = \frac{p(\mathcal{D}|\boldsymbol{w}, I)p(\boldsymbol{w}|I)}{p(\mathcal{D})}$$
(7)

ullet The optimal \hat{w} is obtained by maximizing the log posterior :

$$\hat{\boldsymbol{w}}_{\mathsf{MAP}} = \arg\max_{\boldsymbol{w}} \left[\log(p(\mathcal{D}|\boldsymbol{w}, I)) + \log(p(\boldsymbol{w}|I)) + \mathsf{const.} \right] \tag{8}$$

• The adoption of a normal distribution as prior recovers the L2 regularization term, while a Laplace distribution recovers the L1.

Introduction to Bayesian Neural Networks

- $oldsymbol{\circ}$ At the end of the training we have a point estimate for the parameters $\hat{oldsymbol{w}}$
- ullet Goal: Quantifying uncertainty on the prediction of unseen inputs x^*
- Deep Neural Networks do not fully capture uncertainty^{2 3}
- ullet We have to take into account the <code>epistemic</code> or model uncertainty arising from the uncertainty associated to \hat{w}

When combined with probability theory NN can capture uncertainty in a principled way: Bayesian Neural Network

²Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. 2016.

³Andrew G Wilson and Pavel Izmailov. *Bayesian deep learning and a probabilistic perspective of generalization*. 2020.

Outline

Introduction

- 2 Bayesian methods meet Neural Networks
 - Predictive distribution
 - Variational Inference

3 Further topics

Predictive distribution

- Bayesian inference starts from a model $p(y|\boldsymbol{x}, \boldsymbol{w}, I)$ and the posterior $p(\boldsymbol{w}|\mathcal{D})$
- ullet The prediction for a new input x^* is given by the predictive distribution:

$$p(y|\boldsymbol{x}^*, \mathcal{D}, I) = \int p(y|\boldsymbol{x}^*, \boldsymbol{w}, I) p(\boldsymbol{w}|\mathcal{D}) d\boldsymbol{w}$$
 (9)

- It is a Bayesian model average of many models, weighted by their posterior probabilities
- The non Bayesian predictions are recovered if $p(\boldsymbol{w}|\mathcal{D}) \sim \delta(\boldsymbol{w} \hat{\boldsymbol{w}}_{\mathsf{MAP}})$

Predictive distribution II

- Eq. (9) is the core of Bayesian NN: marginalize over the posterior distribution of the weights rather than optimize it!
- Problem: It is highly non trivial to evaluate the predictive distribution
- Warning: We need to decouple the epistemic and aleatoric uncertainty in the predictive distribution
- Warning: Small uncertainties do not imply good predictive performance

To get some insights let's start from the simplest NN: Linear Regression

Interlude: Linear Regression

- Data : $y = 1 + x + x^2$ and noise $\mathcal{N}(0, \sigma^2 = 1)$
- Model: $y(x) = w_1 + w_2 x + w_3 x^2 = \boldsymbol{w}^T \boldsymbol{\phi}(x)$, homeschedastic gaussian noise, gaussian prior
- Log-posterior of the model:

$$\log(p(\boldsymbol{w}|\mathcal{D})) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \boldsymbol{w}^T \boldsymbol{\phi}(x_i))^2 + \frac{\lambda}{2} \boldsymbol{w}^T \boldsymbol{w}; \ \lambda = 0.001 \quad (10)$$

• It is possible to show that the predictive distribution is given by⁴:

$$p(y|x, \mathcal{D}, \sigma_{\mathsf{P}}^2) = \mathcal{N}(y|\hat{\boldsymbol{w}}_{\mathsf{MAP}}^T \boldsymbol{\phi}(x), \sigma_{\mathsf{P}}^2)$$
 (11)

$$\sigma_{\mathsf{P}}^2 = \underbrace{\sigma^2}_{\mathsf{Aleatoric}} + \underbrace{\phi(x)^T S \phi(x)}_{\mathsf{Epistemic}} \tag{12}$$

⁴C. Bishop. Pattern Recognition and Machine Learning. 2006.

Interlude: Linear Regression II

Evaluating the predictive distribution

$$P(y|\mathbf{x}^*, \mathcal{D}) = \int p(y|\mathbf{w}, \mathbf{x}^*) p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$$
 (13)

- Problem: It is highly non trivial to evaluate the predictive distribution
- Many possible approaches:
 - MCMC
 - Laplace approximation
 - Variational Inference
- Variational Inference: Approximate the posterior $p(w|\mathcal{D})$ with a tractable p.d.f. $q(w|\theta)$
- **Problem**: We need do adjust θ to get the best approximation

Variational Inference I

 The objective function for measuring the quality of the approximation may be derived from the Kullback-Leibler divergence:

$$\mathsf{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w}|\mathcal{D})\right] = \int q(\boldsymbol{w}|\boldsymbol{\theta}) \mathsf{log} \frac{q(\boldsymbol{w}|\boldsymbol{\theta})}{p(\boldsymbol{w}|\mathcal{D})} d\boldsymbol{w}$$

• Using Bayes' theorem $p(w|\mathcal{D})=(p(\mathcal{D}|w)p(w))/p(\mathcal{D})$ and re-arranging the terms we obtain:

$$\int q(\boldsymbol{w}|\boldsymbol{\theta}) \mathsf{log} p(\mathcal{D}|\boldsymbol{w}) d\boldsymbol{w} - \mathsf{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w})\right] = \mathsf{log}(p(\mathcal{D})) - \mathsf{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w}|\mathcal{D})\right]$$

Variational Inference II

$$\int q(\boldsymbol{w}|\boldsymbol{\theta}) \mathrm{log} p(\mathcal{D}|\boldsymbol{w}) d\boldsymbol{w} - \mathrm{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w})\right] = \mathrm{log}(p(\mathcal{D})) - \mathrm{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w}|\mathcal{D})\right]$$

• The last term is positive and $log(p(\mathcal{D}))$ is constant so:

$$\int q(\boldsymbol{w}|\boldsymbol{\theta}) \log p(\mathcal{D}|\boldsymbol{w}) d\boldsymbol{w} - \mathsf{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w})\right] \leq \log(p(\mathcal{D}))$$

• The left hand side term will be our objective function, known as variational free energy or ELBO :

$$\mathcal{F}(\boldsymbol{\theta}) = \mathsf{KL}\left[q(\boldsymbol{w}|\boldsymbol{\theta})||p(\boldsymbol{w})] - \mathbb{E}_{q(\boldsymbol{w}|\boldsymbol{\theta})}[\log(p(\mathcal{D}|\boldsymbol{w}))]$$
$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \mathcal{F}(\boldsymbol{\theta})$$

Variational Inference III

- Common choice is a diagonal gaussian distribution as approximant distribution (Mean Field Approximantion)
- Backpropagation-compatible algorithm⁵

ullet The predictive distribution for a given input x^* is approximate as:

$$p(y|\mathbf{x}^*) \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\mathbf{x}^*, \mathbf{w}_i); \quad \mathbf{w}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma})$$
 (14)

⁵Charles Blundell et al. Weight uncertainty in neural network. PMLR, 2015.

MC-Dropout

• Drop out each hidden unit by sampling from a Bernoulli distribution N times⁶ ⁷ :

Standard Neural Net (b) After applying dropout.

$$p(y|\boldsymbol{x}^*) \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\boldsymbol{x}^*, \boldsymbol{w}_i)$$
 (15)

Applicable also to Recurrent Neural Networks

⁷Yarin Gal, Jiri Hron, and Alex Kendall. *Concrete dropout*. 2017.

 $^{^6\}mbox{Gal}$ and Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning.

Interlude: NN for classification

Jacopo Talpini

1

Epistemic and Aleatoric decoupling: Regression

• Denoting the predictive distribution as $p(y|x, \mathcal{D})$ and the predictive variance as Var[y]:

$$\mathsf{Var}[y] = \underbrace{\mathsf{Var}_{p(\boldsymbol{w}|\mathcal{D})}[\mathbb{E}_{p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w})}[y]]}_{\mathsf{Epistemic}} + \underbrace{\mathbb{E}_{p(\boldsymbol{w}|\mathcal{D})}[\mathsf{Var}_{p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w})}[y]]}_{\mathsf{Aleatoric}} \tag{16}$$

• For instance, homoschedastic gaussian noise and MC-dropout:

$$\mathbb{E}[y] \approx \frac{1}{N} \sum_{i=1}^{N} f(\boldsymbol{x}, \boldsymbol{w}_i)$$
 (17)

$$\mathsf{Var}[y] \approx \frac{1}{N} \sum_{i=1}^{N} (f(\boldsymbol{x}, \boldsymbol{w}_i) - \mathbb{E}[y])^2 + \sigma^2$$
 (18)

Epistemic and Aleatoric decoupling: Classification

- ullet Typically a NN is trained to predictit the posterior distribution over K exclusive and exaustive classes, trough the softmax activation function
- The total uncertainty can be estimated trough the Shannon Entropy:

$$\mathbb{H}[\boldsymbol{y}] = \sum_{i} p(y_i) \ln(p(y_i)) \tag{19}$$

- Maximized in case of a flat distribution
- It can be decomposed as :

$$\mathbb{H}[p(\boldsymbol{y}|\boldsymbol{x},\mathcal{D})] = \underbrace{\mathbb{I}[\boldsymbol{y},\boldsymbol{w}|\boldsymbol{x},\mathcal{D}]}_{\text{Epistemic}} + \underbrace{\mathbb{E}_{p(\boldsymbol{w}|\mathcal{D})}[\mathbb{H}[p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{w})]]}_{\text{Aleatoric}}$$
(20)

where $\mathbb{I}[m{y}, m{w} | m{x}, \mathcal{D}]$ is the information gain about the model parameters

Epistemic and Aleatoric decoupling: Classification

Outline

Introduction

- Bayesian methods meet Neural Networks
 - Predictive distribution
 - Variational Inference

3 Further topics

Quality estimates

- Main idea: compute the predicted confidence interval, and count the percentage of ground-truth points that fall inside.
- For a calibrated model we expect, on average, X% of ground-truth points falling inside the predicted X% confidence intervals.
- For classification compare the predicted probabilities and the empirical frequency of correct labels.

⁸Gawlikowski et al., A survey of uncertainty in deep neural networks.

Interlude: Active Learning

- Deep learning often requires large amounts of labelled data
- Train a model by querying as few labelled data as possible
- Active Learning:

• Label only informative points: epistemic uncertainty (BALD)

Interlude: Active Learning II

Figure: Mean test accuracy and standard deviation on the two moon dataset as a function of the training size. Results are averaged over multiple training loops.

Further Topics

- Deep Ensamble⁹
- MultiSWAG¹⁰
- Evidential Regression and classification 11 12
- Conformal prediction¹³
 - distribution-free uncertainty quantification method
 - provides prediction sets with guaranteed frequentist coverage probability. Even with a completely misspecified models!
 - cannot distinguish between epistemic and aleatoric uncertainty

⁹Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. *Simple and scalable predictive uncertainty estimation using deep ensembles.* 2017.

¹⁰Wilson and Izmailov, Bayesian deep learning and a probabilistic perspective of generalization.

¹¹Alexander Amini et al. Deep evidential regression. 2020.

¹²Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification uncertainty. 2018.

¹³Anastasios N Angelopoulos and Stephen Bates. *A gentle introduction to conformal prediction and distribution-free uncertainty quantification*. 2021.

Further readings

Books:

- Information theory, inference and learning algorithms. MacKay, David JC. Cambridge university press, 2003.
- Pattern Recognition and Machine Learning. Christopher M. Bishop.
 Springer New York, 2006
- Probabilistic machine learning: an introduction. Kevin P. Murphy .MIT press, 2022.
- Probabilistic machine learning: Advanced topics. Kevin P. Murphy. MIT Press, 2023.
- High Energy Physics applications:
 - Chapter 18 Artificial Intelligence for High Energy Physics. P. Calafiura,
 D. Rousseau, K. Terao. WorldScientific 2022
 - Bollweg, Sven, et al. "Deep-learning jets with uncertainties and more."
 SciPost Physics 8.1 2020
 - Araz, Jack Y., and Michael Spannowsky. "Combine and conquer: event reconstruction with Bayesian ensemble neural networks." Journal of High Energy Physics 2021.4

Thank you for your attention!

Backup: Overconfident classification

 From "Probable Networks and Plausible Predictions - A Review of Practical Bayesian Methods for Supervised Neural Networks" by David MacKay, 1996

Backup: Regression

 From "Bayesian Deep Learning and a Probabilistic Perspective of Generalization" by Andrew Gordon Wilson Pavel Izmailov, 2022

Bayes by Backprop

• For applying back-propagation we have to replace the derivative of an expectation with the expectation of the derivative

Proposition 1

- ① Let ϵ a random variable with p.d.f. $q(\epsilon)$ and ${\pmb w}=t(\theta,\epsilon)$ where t is a deterministic function
- ② Assuming that $q(\boldsymbol{w}|\theta)$ is such that $q(\epsilon)d\epsilon = q(\boldsymbol{w}|\theta)d\boldsymbol{w}$
- **3** Then, for a function f with derivatives in w we have:

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(\boldsymbol{w}|\theta)}[f(\boldsymbol{w},\theta)] = \mathbb{E}_{q(\epsilon)} \left[\frac{\partial f(\boldsymbol{w},\theta)}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial \theta} + \frac{\partial f(\boldsymbol{w},\theta)}{\partial \theta} \right]$$

Basically, It is a generalization of the "Reparametrization Trick"

Gaussian Variational Posterior

- Variational posterior is a diagonal gaussian distribution
- Parametrization trick: a sample of ${\pmb w}$ is given by a deterministic function of a random variable: ${\pmb w}=t(\theta,\epsilon)=\mu+\log(1+\exp(\rho))\epsilon$ where: $\epsilon\in\mathcal{N}(0,I)$
- $\bullet \ \ \text{The objective function is:} \ \ f(\boldsymbol{w}, \boldsymbol{\theta}) = \log q(\boldsymbol{w}|\boldsymbol{\theta}) \log(P(\boldsymbol{w})P(\mathcal{D}|\boldsymbol{w}))$
- Update variational parameters: $\mu^* \leftarrow \mu \alpha \Delta_{\mu}$; $\rho^* \leftarrow \rho \alpha \Delta_{\rho}$

Backup: Reparametrization trick

 From "An Introduction to Variational Autoencoders" by Diederik P. Kingma and Max Welling, 2019

