11 Unsupervised Learning

- Unsupervised learning is a type of machine learning where the algorithm is trained on unlabeled data, meaning that the model is given input data without corresponding output labels
- The goal of unsupervised learning is to find hidden patterns, structures, or relationships in the data

Types of Unsupervised Learning

1. Clustering

 Group similar data points into clusters or groups where data points within the same cluster are more similar to each other than to those in other clusters

K-Means Clustering

 Partitions the data into a predetermined number of clusters by minimizing the variance within each cluster

Hierarchical Clustering

 Builds a hierarchy of clusters either by starting with individual data points and merging them into larger clusters (agglomerative) or by starting with a single cluster and splitting it into smaller ones (divisive)

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

 Forms clusters based on the density of data points, which allows it to find clusters of arbitrary shapes and handle noise (outliers)

Gaussian Mixture Models (GMM):

- Assumes that the data is generated from a mixture of several Gaussian distributions
- Each cluster is represented by a Gaussian distribution, and the algorithm tries to find the parameters of these distributions
- GMM is more flexible than K-means because it allows clusters to have different shapes and sizes

2. Dimensionality Reduction

 Reduce the number of features or dimensions in the data while retaining as much of the important information as possible

Principal Component Analysis (PCA)

 Transforms the data into a new set of orthogonal axes (principal components) that capture the maximum variance in the data

t-Distributed Stochastic Neighbor Embedding (t-SNE)

 Reduces the dimensionality of data, particularly useful for visualizing high-dimensional data in 2 or 3 dimensions by preserving the local

structure of the data

Autoencoders

 Neural network models that learn to compress the input data into a lower-dimensional representation and then reconstruct it, useful for dimensionality reduction

3. Association

 Discover interesting relationships or associations between different variables in the dataset

Apriori Algorithm

 Finds frequent itemsets in transactional data and derives association rules, commonly used in market basket analysis

Eclat Algorithm

 Similar to Apriori but uses a depth-first search approach to find frequent itemsets

FP-Growth (Frequent Pattern Growth)

 An efficient algorithm that compresses the dataset using a structure called an FP-tree and finds frequent itemsets without candidate generation

4. Anomaly Detection

 Identify rare or unusual data points that do not conform to the general pattern of the data

Isolation Forest

 Detects anomalies by isolating data points in the feature space using random partitions

One-Class SVM

 A variant of Support Vector Machine that tries to separate normal data from anomalies by learning a decision boundary around the normal data

LOF (Local Outlier Factor)

 Identifies anomalies by comparing the local density of data points to that of their neighbors, where points with significantly lower density are considered anomalies

Applications of Unsupervised Learning

Market Basket Analysis

Association rules help in discovering product associations for cross-selling

Customer Segmentation

 Clustering techniques group customers based on purchasing behavior, enabling targeted marketing

Anomaly Detection

• Identifying fraudulent activities or system failures

Data Compression

• Dimensionality reduction methods reduce the complexity of data, useful in image compression and noise reduction

Recommendation Systems

• Uncovering patterns in user preferences to suggest relevant content