

- Home
- <u>Lectures</u>
- Material

ECE ILLINOIS

Department of Electrical and Computer Engineering

CS446/ECE449: Machine Learning (Spring 2022)

Course Information

The goal of Machine Learning is to find structure in data. In this course we will cover three main areas, (1) discriminative models, (2) generative models, and (3) reinforcement learning models. In particular we will cover the following: linear regression, logistic regression, support vector machines, deep nets, structured methods, learning theory, kMeans, Gaussian mixtures, expectation maximization, VAEs, GANs, Markov decision processes, Q-learning and Reinforce.

Pre-requisites: Probability, linear algebra, and proficiency in Python.

Recommended Text: (1) Machine Learning: A Probabilistic Perspective by Kevin Murphy, (2) Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville, (3) Pattern Recognition and Machine Learning by Christopher Bishop, (4) Graphical Models by Nir Friedman and Daphne Koller, (5) Reinforcement Learning by Richard Sutton and Andrew Barto, (6) Understanding Machine Learning by Shai Shalev-Shwartz and Shai Ben-David

Course Deliverables:

- (1) Homework due at noon, see below for dates (no late submission accepted)
- (2) Midterm
- (3) Midterm 2

Grading:

3 credit: 60% homework (drop 1 homework), 20% midterm, 20% midterm 2

4 credit: 60% homework (drop 0 homework), 20% midterm, 20% midterm 2

Grading policy is subject to change.

TA/Office Hours:

Please see calendar on this [link]

Midterm 2: May 03 2022 during regular class time (attendance mandatory)

Instructor & TAs

Matus Telgarsky

Instructor Email: mjt[at]illinois.edu Website: [link]

Alexander Schwing

Instructor
Email: aschwing[at]illinois.edu
Website: [link]

Jing Liu Senior Teaching Assistant Email: jil292[at]illinois.edu

Website: [link]

Justin Li

Teaching Assistant
Email: jdli3[at]illinois.edu
Website: [link]

Jinglin Chen

Teaching Assistant Email: jinglinc[at]illinois.edu Website: [link]

Huichen Li

Teaching Assistant
Email: huichenli[at]gmail.com
Website: [link]

Yuan-Ting Hu

Teaching Assistant Email: ythu2[at]illinois.edu

Zhongzheng Ren

Teaching Assistant Email: zr5[at]illinois.edu Website: [link]

Xiaoming Zhao

Teaching Assistant Email: xz23[at]illinois.edu Website: [link]

Class Time & Location

Class Time: Tuesday, Thursday 12:30PM-1:45PM (hybrid/online; see campuswire for link)

Discussion & Homework submission

Campuswire: [link] (code in class email) Gradescope: [link] (code: RWP5E2)

Material & Info

Material: [link]

Lectures

The syllabus is subject to change.

Event	Date	Description	Slides	Recording M	aterial	Format
Lecture 1	01/18/2022 Over	view; start of linear regression	[Slides] [Slides Split] [Slides Annot]	[Rec]		online
Lecture 2	01/20/2022 Linea	ar Regression	[Slides] [Slides Split] [Slides Annot]	[Rec]		online
Lecture 3	01/25/2022 Logis	stic Regression	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 4	01/27/2022 Linea	ar prediction: features, overfitting, and losses	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 5	02/01/2022 Com	vex optimization	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 6	02/03/2022 Supp	oort Vector Machines 1	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 7	02/08/2022 Supp	oort Vector Machines 2	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
HW	02/08/2022 Hom	nework 1 (due at noon)		<u>[H</u>	[W]	online
Lecture 8	02/10/2022 Deep	Nets 1	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 9	02/15/2022 Pyto:	rch Tutorial	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 10	02/17/2022 Deep	Nets 2	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 11	02/22/2022 Near	rest Neighbors and decision trees	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
HW	02/22/2022 Hom	nework 2 (due at noon)		<u>[H</u>	[W]	online
Lecture 12	02/24/2022 Ense	mble methods	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 13	03/01/2022 Lear	ning theory	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
Lecture 14	03/03/2022 Revi	ew	[Slides] [Slides Split] [Slides Annot]	[Rec]]	hybrid
HW	03/03/2022 Hom	nework 3 (due at noon)		<u>[H</u>	[W]	online
Midterm	03/08/2022 Midt	erm				online
Lecture 15	03/10/2022 PCA		[Slides] [Slides Split] [Slides Annot]	[Rec]		online
Break	03/15/2022 Brea	k				online
Break	03/17/2022 Brea	k				online
Lecture 16	03/22/2022 k-M	eans	[Slides] [Slides Split] [Slides Annot]	[Rec]		online
Break Break	03/15/2022 Brea 03/17/2022 Brea	k k			,	online online

Lecture 17 03/24/2022 Gaussian Mixture Models	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 18 03/29/2022 Expectation Maximization	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 19 03/31/2022 Variational Auto-Encoders	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 20 04/05/2022 Generative Adversarial Nets	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
HW 04/05/2022 Homework 4 (due at noon)		[HW]	online	
Lecture 21 04/07/2022 Autoregressive Methods	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 22 04/12/2022 Transformers	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
HW 04/14/2022 Homework 5 (due at noon)		[HW]	online	
Lecture 23 04/14/2022 Graph Neural Nets	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 24 04/19/2022 MDP	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 25 04/21/2022 Q-Learning	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Lecture 26 04/26/2022 Actor-Critic & Policy Gradient	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
HW 04/26/2022 Homework 6 (due at noon)		[HW]	online	
Lecture 27 04/28/2022 Review	[Slides] [Slides Split] [Slides Annot] [Rec]		online	
Midterm 2 05/03/2022 Midterm 2				