NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2021/2022

MA1521 Calculus for Computing

Tutorial 7

1. Find the area of the region between the curve $y=3-x^2$ and the line y=-1 by integrating with respect to (a) x, (b) y.

(Thomas' Calculus (14th edition), p. 323, Problem 76)

2. Compute the volume of the solid generated by revolving the triangular region bounded by the lines 2y = x + 4, y = x, and x = 0 about (a) the x-axis using the washer method, (b) the y-axis using the cylindrical method.

(Thomas' Calculus (14th edition), p. 350, Problem 30 (a), (b))

- 3. Find the length of the curve $y=(1-x^{2/3})^{3/2}$ where $\sqrt{2}/4 \le x \le 1$. (Thomas' Calculus (14th edition), p. 355, Problem 24)
- 4. Find the area of the surface generated by revolving about the x-axis the portion of the astroid (the name of the curve) $x^{2/3} + y^{2/3} = 1$.

(Thomas' Calculus (14th edition), p. 361, Problem 32)

5. Solve the differential equation $\frac{dy}{dx} = 3x^2e^{-y}$

(Thomas' Calculus (14th edition), p. 423, Problem 12)

6. Which of the following sequences (a_n) converge and which diverge? Find the limit of each convergent sequence.

(a) $a_n = 1 + (-1)^n$

(Thomas' Calculus (14th edition), p. 540, Problem 39)

2

(b)
$$a_n = \frac{\ln n}{n^{1/n}}$$

(Thomas' Calculus (14th edition), p. 540, Problem 63)

- (c) $a_n = \ln n \ln(n+1)$ (Thomas' Calculus (14th edition), p. 540, Problem 64)
- (d) $a_n = \frac{n!}{n^n}$ (Thomas' Calculus (14th edition), p. 540, Problem 67)

(e)
$$a_n = \frac{1}{n} \int_1^n \frac{1}{t} dt$$
 (Thomas' Calculus (14th edition), p. 541, Problem 99)

7. Let

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \ x > 0.$$

- (a) Show that $\Gamma(1) = 1$.
- (b) Apply integration by parts to the integral for $\Gamma(x+1)$ to show that $\Gamma(x+1) = x\Gamma(x)$.
- (c) Show by induction that

$$\Gamma(n+1) = n!$$

for every nonnegative integer n.

(Thomas' Calculus (14th edition), p. 529, Problem 43)

- 8. Which of the following series converge, and which diverge? Give reasons for your answers. If a series converges, find its sum.
 - (a) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$

(Thomas' Calculus (14th edition), p. 551, Problem 66)

(b)
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{3^n + 4^n}$$

(Thomas' Calculus (14th edition), p. 551, Problem 68)

(c)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

(Thomas' Calculus (14th edition), p. 551, Problem 69)

(d)
$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

(Thomas' Calculus (14th edition), p. 551, Problem 71)

(e)
$$\sum_{n=1}^{\infty} \left(\cos \left(\frac{\pi}{n} \right) + \sin \left(\frac{\pi}{n} \right) \right)$$

(Thomas' Calculus (14th edition), p. 551, Problem 75)

1. Find the area of the region between the curve $y = 3 - x^2$ and the line $y = -1$ by integrating with respect to (a) x , (b) y .
y = -1 by integrating with respect to (a) x , (b) y . (Thomas' Calculus (14 th edition), p. 323, Problem 76)
(Thomas Calculus (14 th edition), p. 525, Problem 70)

region be	e the volume of the solid ge bunded by the lines $2y = x$ - sing the washer method, (Thomas' Calculus (14 th ec	+4, y = x, and $x = 0$ algebrased (b) the y-axis using the	pout (a) the e cylindrical		

3. Find the length of the curve $y = (1 - x^{2/3})^{3/2}$ where $\sqrt{2}/4 \le x \le 1$. (Thomas' Calculus (14 th edition), p. 355, Problem 24)						
	(Thomas' C	alculus (14 th edition	ı), p. 355, Problem	1 24)		

portion of t	ea of the surface generated by revolving about the x-axis the he astroid (the name of the curve) $x^{2/3} + y^{2/3} = 1$.	
	(Thomas' Calculus (14 th edition), p. 361, Problem 32)	

Ferential equation $\frac{d}{d}$ (Thomas' Calo	culus (14 th edition),	, p. 423, Problem	12)		
(Thomas care	aras (11 carrion),	, p. 126, 1 10010111			

_	T .
7.	Let

Let
$$\Gamma(x)=\int_0^\infty t^{x-1}e^{-t}\,dt,\ x>0.$$
 (a) Show that $\Gamma(1)=1.$

- (b) Apply integration by parts to the integral for $\Gamma(x+1)$ to show that $\Gamma(x+1) = x\Gamma(x).$
- (c) Show by induction that

$$\Gamma(n+1) = n!$$

for every nonnegative integer n.

(Thomas' Calculus (14th edition), p. 529, Problem 43)

0 3371 1 671 6			
for your answe	following series converge, and which diverge? Give reasons ers. If a series converges, find its sum.		
(a) $\sum_{n=0}^{\infty} \frac{n^n}{n!}$	ers. If a series converges, find its sum.		
$\sum_{n=1}^{\infty} n!$			
	(Thomas' Calculus (14 th edition), p. 551, Problem 66)		
$\sum_{n=1}^{\infty} 2^n + 4^n$	n		
(b) $\sum_{n=1}^{\infty} \frac{2^n + 4^n}{3^n + 4^n}$	\overline{n}		
	(Thomas' Calculus (14th edition), p. 551, Problem 68)		

∞ ·	×	
(c) $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$)	
	(Thomas' Calculus (14 th edition), p. 551, Problem 69)	
(d) $\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$		
$\sum_{n=1}^{\infty} (\pi)$	(Thomas' Calculus (14 th edition), p. 551, Problem 71)	
(e) $\sum_{n=1}^{\infty} \left(\cos \left(\frac{\pi}{n} \right) \right)$	$+\sin\left(\frac{n}{n}\right)$	
	(Thomas' Calculus (14 th edition), p. 551, Problem 75)	

NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2021/2022

MA1521 Calculus for Computing

Solutions to problems for Tutorial 7

Tutorial 7, Problem 1

Find the area of the region between the curve $y = 3 - x^2$ and the line y = -1 by integrating with respect to (a) x, (b) y.

$$y = 3 - x^{2}$$

$$x = \sqrt{3 - y}$$

$$x = \sqrt{3} - y$$
Area = $2 \int_{-1}^{3} \sqrt{3} - y$

$$= -2 \left(\frac{3 - y}{3/2} \right)_{-1}^{3/2}$$

$$= \frac{4}{3} \left(-0 + 4^{3/2} \right)$$

$$= \frac{4}{3} \cdot 8 = \frac{3^2}{3}$$

2

Tutorial 7, Problem 2

Compute the volume of the solid generated by revolving the triangular region bounded by the lines 2y = x + 4, y = x, and x = 0 about (a) the x-axis using the washer method, (b) the y-axis using the cylindrical method.

$$2x = x + 4$$

$$\Rightarrow x = 4$$

(a) Volume =
$$\int_{0}^{4} \pi \left(\left(\frac{\chi + 4}{2} \right)^{2} - \chi^{2} \right) d\chi$$

= $\frac{\pi}{4} \left(\int_{0}^{4} (\chi + 4)^{2} - \left(\frac{\chi + 4}{2} \right)^{2} - \chi^{2} \right) d\chi$
= $\frac{\pi}{4} \left(\left(\frac{\chi + 4}{3} \right)^{3} - \left(\frac{4\chi^{3}}{3} \right)^{4} \right)$
= $\frac{\pi}{12} \left(\left(\frac{\chi^{3} - 4 \cdot 4^{3} - 4^{3} \right)^{2} - \left(\frac{16\pi}{12} \right)^{2} \right)$

(b) Volume =
$$\int_{0}^{4} 2\pi \times (\frac{x+4-x}{2}) dx$$

= $2\pi \int_{0}^{4} \times (2-\frac{x}{2}) dx$
= $2\pi \left(x^{2}-\frac{x^{3}}{6}\right) \left|_{0}^{4}$
= $2\pi \left(4^{2}-\frac{4^{3}}{6}\right) = \boxed{32\pi}$

Find the length of the curve $y = (1 - x^{2/3})^{3/2}$ where $\sqrt{2}/4 \le x \le 1$.

Arc length =
$$\int_{\frac{7}{4}}^{1} \sqrt{1 + (y')^{2}} dx$$
.

$$y' = \frac{2}{2} \left(1 - x^{2/3}\right)^{1/2} \cdot \left(-\frac{2}{3}x^{-\frac{1}{3}}\right)$$

$$= -x^{-\frac{1}{3}} \left(1 - x^{2/3}\right)^{1/2} \cdot \left(1 - x^{2/3}\right)^$$

Find the area of the surface generated by revolving about the x-axis the portion of the astroid (the name of the curve) $x^{2/3} + y^{2/3} = 1$.

Surface aree
$$= 2 \int_0^1 (2\pi y) \sqrt{1+(y')^2} dx$$

$$\frac{2}{3}x^{\frac{1}{3}} + \frac{2}{3}y^{\frac{1}{3}}y' = 0 \qquad y' = -x^{\frac{1}{3}}y^{\frac{1}{3}}.$$

$$|+(y')^{2} = |+x^{\frac{1}{2}}y^{\frac{1}{3}} = |+x^{\frac{1}{2}}(|-x^{\frac{1}{3}})|$$

$$= |+x^{\frac{1}{3}}-|=x^{\frac{1}{3}}$$

$$|+(y')^{2} = |+x^{\frac{1}{3}}-|=x^{\frac{1}{3}}-|=x^{\frac{1}{3}}$$

$$|+(y')^{2} = |+x^{\frac{1}{3}}-|=x^{\frac{1}{3}}$$

$$\int (1-x^{\frac{1}{3}})^{\frac{2}{3}} x^{-\frac{1}{3}} dx = \frac{3}{2} \int (1-u)^{\frac{3}{4}} du = \frac{3}{2} \frac{(1-u)^{\frac{5}{4}}}{\frac{5}{2}} = \frac{3}{5} (1-u)^{\frac{5}{4}}$$

$$2\int_{0}^{1} 2\pi y \left[1+(y')^{2} dy = 4\pi \left(-\frac{3}{5}\right) \left(1-x^{\frac{2}{3}}\right)^{\frac{5}{2}}\right]_{0}^{1}$$

$$= -\frac{12\pi}{5} \left(0-1\right) = 12\pi$$

Solve the differential equation $\frac{dy}{dx} = 3x^2e^{-y}$

$$\frac{dy}{dx} = 3x^{2}e^{y} \implies e^{y}\frac{dy}{dx} = 3x^{2}$$

$$\int e^{y}dy = \int 3x^{2}dx$$

$$e^{y} = 3 \cdot \frac{x^{3}}{3} + k$$

$$e^{y} = x^{3} + k \cdot (\text{or } y = \ln(x^{3} + k))$$

6

Tutorial 7, Problem 6

Which of the following sequences (a_n) converge and which diverge? Find the limit of each convergent sequence.

(a) $a_n = 1 + (-1)^n$

(Thomas' Calculus (14th edition), p. 540, Problem 39)

(b) $a_n = \frac{\ln n}{n^{1/n}}$

(Thomas' Calculus (14th edition), p. 540, Problem 63)

(c) $a_n = \ln n - \ln(n+1)$

(Thomas' Calculus (14th edition), p. 540, Problem 64)

(d) $a_n = \frac{n!}{n^n}$

(Thomas' Calculus (14th edition), p. 540, Problem 67)

(e) $a_n = \frac{1}{n} \int_1^n \frac{1}{t} dt$

(Thomas' Calculus ($14^{\rm th}$ edition), p. 541, Problem 99)

(a)
$$\alpha_1 = 0$$
, $\alpha_2 = 2$, $\alpha_3 = 0$,...

 $(\alpha_n)_{n=1}^{\infty}$ diverges because $\lim_{n \to \infty} \alpha_{2n} = 2$ and $\lim_{n \to \infty} \alpha_{2n+1} = 0$.

An does not converge to a unique limit.

(b)
$$a_n = \frac{\ln n}{h^{\gamma_n}}$$
. Observe that $f(n) = \frac{\ln n}{h^{\gamma_n}} = a_n$

where
$$f(x) = \frac{\ln x}{x^{x}}$$

$$\lim_{x\to\infty} \frac{\ln x}{x^{1/x}} = \lim_{x\to\infty} \frac{\ln x}{(\ln x)/x}$$

Now,
$$\lim_{x \to \infty} \frac{\ln x}{x} = \lim_{x \to \infty} \frac{1}{1} = 0$$
 ($\lim_{x \to \infty} \ln x = \infty$)
L'Hôpital's Rule

$$\frac{1}{x^{2}} \frac{1}{p^{\ln x/x}} = \infty$$

(c)
$$\alpha_n = \ln n - \ln(nt) = \ln \frac{n}{(nt)}$$

$$\lim_{x\to\infty} \left| n \frac{x}{x+1} \right| = \lim_{x\to\infty} \left| n \frac{1}{1+x} \right| = \left| n \right| = 0.$$

$$(d) \quad 0 \leq \frac{\eta^n}{n!} = \frac{1}{n} \left(\frac{2}{n} \dots \frac{n-1}{n} \frac{n}{n} \right)$$

$$\leq \frac{1}{n} (1)(1) \dots (1) = \frac{1}{n} (1) = \frac{1}{n$$

$$\leq \frac{1}{n}(1)(1)...(1) = \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$
 if By Squeeze Theorem,
$$\frac{n!}{n^n} \to 0 \text{ as } n + \infty$$

The sequence
$$\left(\frac{n!}{n^n}\right)_{n=1}^{\infty}$$
 is convergent and

(e)
$$a_n = \frac{1}{n} \int_{1}^{n} \frac{1}{t} dt$$
. Let $f(x) = \frac{1}{x} \int_{1}^{x} \frac{1}{t} dt$.

$$\lim_{x \to \infty} \int_{1}^{x} \frac{1}{t} dt = \lim_{x \to \infty} \ln x = \infty$$

Let

$$\Gamma(x) \int_{0}^{\infty} t^{x-1} e^{-t} dt, \ x > 0.$$

- (a) Show that $\Gamma(1) = 1$.
- (b) Apply integration by parts to the integral for $\Gamma(x+1)$ to show that $\Gamma(x+1) = x\Gamma(x)$.
- (c) Show by induction that

$$\Gamma(n+1) = n!$$

for every nonnegative integer n.

(a)
$$T(i) = \int_{0}^{\infty} e^{-t} dt$$
, $\lim_{M \to \infty} \int_{0}^{M-t} e^{-t} dt = \lim_{M \to \infty} \frac{e^{-t}}{10} \int_{0}^{M-t} e^{-t} dt = \lim_{M \to \infty$

(b) let
$$m > 1$$
.
 $e^{-t}dt = du \Rightarrow u = -e^{-t}$
let $v = t^m$.
Then $\int t^m d(-e^{-t}) + \int -e^{-t} dt^m = -t^m e^{-t}$
 $\int t^m e^{-t} dt - \int e^{-t} m t^{m-1} dt = -t^m e^{-t}$

$$\int_{0}^{M} t^{m}e^{-t}dt = -t^{m}e^{-t}\Big|_{0}^{M} + m\int_{0}^{M}e^{-t}t^{m-1}dt$$

Let
$$M \rightarrow \infty$$
:
$$T(m+1) = \lim_{M \rightarrow \infty} \left(\frac{t^{M}}{e^{M}} + 0 \right) + mT(m)$$

(c).
$$T(2) = 1.T(1)$$
 by (b).

Suppore
$$\Gamma(n) = (n-1)!$$

Then
$$P(n+1) = nP(n)$$
 by (b) $= n(n-1)! = n!$

Which of the following series converge, and which diverge? Give reasons for your answers. If a series converges, find its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

(Thomas' Calculus (14th edition), p. 551, Problem 66)

(b)
$$\sum_{n=1}^{\infty} \frac{2^n + 4^n}{3^n + 4^n}$$

(Thomas' Calculus (14th edition), p. 551, Problem 68)

(c)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

(Thomas' Calculus (14th edition), p. 551, Problem 69)

(d)
$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

(Thomas' Calculus (14th edition), p. 551, Problem 71)

(e)
$$\sum_{n=1}^{\infty} \left(\cos \left(\frac{\pi}{n} \right) + \sin \left(\frac{\pi}{n} \right) \right)$$

(Thomas' Calculus ($14^{\rm th}$ edition), p. 551, Problem 75)

(a)
$$\frac{n^{2}}{n!} = \frac{n}{1} \cdot \frac{n}{2} = \frac{n}{n} \cdot \frac{n}{n} = \frac{n}{n!} \cdot \frac{n}{n!} + 0$$

By $n-4h$ from test, $\sum_{n=1}^{\infty} \frac{n^{2}}{n!}$ is divergent

(b)
$$\frac{2^{n}+4^{n}}{3^{n}+4^{n}} = \frac{\left(\frac{2}{4}\right)^{n}+1}{\left(\frac{3}{4}\right)^{n}+1} \rightarrow 1 \quad \text{as} \quad n \rightarrow \infty$$

$$1 - By \quad n-4h \quad \text{term} \quad \text{test}, \quad \sum_{n=1}^{\infty} \frac{2^{n}+4^{n}}{3^{n}+4^{n}} \quad \text{is} \quad \text{divergent}.$$

(c).
$$\sum_{j=1}^{n} |n(j+1)| = |n| - |n| + |n| +$$

(d)
$$e < \pi = 3.14$$
.

 $\frac{e}{\pi} < 1$
 $\frac{e}{\pi} < 1$

noise it is a geometric series with common ratio $\frac{e}{\pi} < 1$.

(e)
$$\cos \frac{\pi}{n} + \sin \frac{\pi}{n} \rightarrow \cos 0 + \sin 0 = 1$$
 as $n \rightarrow \infty$
By n -th term test, $\sum_{n=1}^{\infty} (\cos \frac{\pi}{n} + \sin \frac{\pi}{n})$ is divergent.