[2018 前期火 5] 統計遺伝学 I: 課題(4月10日)

Toru YOSHIYASU

2018年4月16日

単変量正規分布の確率密度関数は

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}), \quad x \in \mathbb{R}$$

で与えられる。ここに、 μ と σ は実定数。同様に、多変量正規分布の確率密度関数は

$$f(x) = \frac{1}{(\sqrt{2\pi})^n \sqrt{|\Sigma|}} \exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)), \quad x \in \mathbb{R}^n$$

で与えられる。ここに、 $\mu\in\mathbb{R}^n$ は定数ベクトル、 Σ はサイズ n の正定値実対称行列。また、記号 $|\cdot|$ は行列式、 \cdot^T は転置を表す。

これらの対応について説明する。まず、根号内の σ^2 については、辺の長さを 1 次元の面積と解釈して、n 次元の面積を与える行列式 $|\Sigma|$ に置き換える。次に、 \exp 内の積については、実数の積をベクトルの内積と見なし、

$$-\frac{(x-\mu)^2}{2\sigma^2} = -\frac{1}{2}(x-\mu)^T (\sigma^2)^{-1}(x-\mu)$$

と変形する。x と μ を n 次元のベクトル、正定数 σ^2 を正定値実対称行列 Σ に置き換えれば、多変量の式が得られる。