学籍番号				

点/100 点

- 注意

- (1) 解を導きだす経過をできるだけ丁寧に記述すること.説明が不十分な場合は減点する.
- (2) 字が粗暴な解答も減点の対象とする.
- (3) 最終的に導き出した答えを右側の四角の中に記入せよ.
- | 1 | 関数 f(x) の原始関数とは何か、説明しなさい。(7点)
- 2 次の不定積分を求めなさい. (各6点)

$$(1) \int (2x+1)dx$$

(2)
$$\int (x^2 - 3x + 2)dx$$

(3) $\int (2x^3 - 2x^2 + 5)dx$

(4) $\int (4x^5 + 2x - 3)dx$

(3)

(1)

(3)

(4)

(2)

 $(5) \int (-3) \, dx$

(6) $\int (x^3 + 2x^2 + 2x)dx$

(5)

)

(6)

(7) $\int (2x^3 - 2x^2 + 5x + 3)dx$

(7)

3 $f(x) = 2x^2 - 3x + 1$ の原始関数を F(x) とする。 y = F(x) の点 (2, F(2)) における接線の傾きは f(2) である。 <u>その理由を説明し</u>なさい。 (各 7 点)

最大値 最小値 ほか値 ほか値 ほか値 ほか値 ほか値 ほか値 ほか値 ほか値 はい に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。	4 関数 $f(x) = \frac{1}{3}x^3 + 2x^2 + 3x - 1$ に対し、以下の問に答えなさい。	
最大値 最小値 最小値 ほかん。 各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。	(2) $f(x)$ の極値を求めなさい(極値を与える x の値も明記しなさい)。 $(5$ 点)	(5 点)
最大値 最小値 最小値 ほかん。 各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。		
最大値 最小値 最小値 ほかん。 各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。		
最大値 最小値 最小値 ほかん。 各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。		
最大値 最小値 最小値 (1) $f(x)=x^3-x^2-2x+2$ とする。 $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (2) $f(x)=x^3+x^2-x+5$ とする。 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
最大値 最小値 最小値 ほかん。 各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。		
最大値 最小値 最小値 (1) $f(x)=x^3-x^2-2x+2$ とする。 $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (2) $f(x)=x^3+x^2-x+5$ とする。 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
最大値 最小値 最小値 は 次の関数 $f(x)$ に対し、各条件を満たす $f(x)$ の原始関数 $F(x)$ を求めなさい、(各 7 点) (1) $f(x)=x^3-x^2-2x+2$ とする、 $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (2) $f(x)=x^3+x^2-x+5$ とする、 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
最大値 最小値 最小値 は 次の関数 $f(x)$ に対し、各条件を満たす $f(x)$ の原始関数 $F(x)$ を求めなさい、(各 7 点) (1) $f(x)=x^3-x^2-2x+2$ とする、 $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (2) $f(x)=x^3+x^2-x+5$ とする、 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
最大値 最小値 最小値 は 次の関数 $f(x)$ に対し、各条件を満たす $f(x)$ の原始関数 $F(x)$ を求めなさい、(各 7 点) (1) $f(x)=x^3-x^2-2x+2$ とする、 $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (2) $f(x)=x^3+x^2-x+5$ とする、 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
最大値 最小値 最小値 (1) $f(x)=x^3-x^2-2x+2$ とする。 $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (2) $f(x)=x^3+x^2-x+5$ とする。 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
最大値 最小値 最小値 ほかん。 各条件を満たす $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (各 7 点) (1) $\underline{f(x)} = x^3 - x^2 - 2x + 2$ とする。 $\underline{y} = F(x)$ のグラフの \underline{y} 切片が (-1) のとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。 (1) $\underline{f(x)} = x^3 + x^2 - x + 5$ とする。 $\underline{y} = F(x)$ のグラフと \underline{x} 軸と $\underline{x} = 2$ で交わるとき、 $\underline{f(x)}$ の原始関数 $\underline{F(x)}$ を求めなさい。		
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $	5 関数 $f(x) = -4x^3 + 3x^2 + 6x + 3$ の $-1 \le x \le \frac{1}{2}$ における <u>最大値・最小値とそれを</u> 与	<u>与える x の値</u> を求めなさい _・ (10 点)
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $	-	
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $		
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $		
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $		
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $		
6 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点) $ (1) \ f(x) = x^3 - x^2 - 2x + 2 \ \text{とする}. \ y = F(x) \ \text{のグラフの} \ y \ \text{切片が} \ (-1) \ \text{のとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $ $ (1) \ f(x) = x^3 + x^2 - x + 5 \ \text{とする}. \ y = F(x) \ \text{のグラフと} \ x \ \text{軸} \ \text{と} \ x = 2 \ \text{で交わるとき}, \ f(x) \ \text{の原始関数} \ F(x) \ \text{を求めなさい}. $		
(1) $f(x) = x^3 - x^2 - 2x + 2$ とする。 $y = F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (1) $(2) f(x) = x^3 + x^2 - x + 5$ とする。 $y = F(x)$ のグラフと x 軸と $x = 2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。	最大値	最小值
(1) $f(x) = x^3 - x^2 - 2x + 2$ とする。 $y = F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。 (1) (2) $f(x) = x^3 + x^2 - x + 5$ とする。 $y = F(x)$ のグラフと x 軸と $x = 2$ で交わるとき、 $f(x)$ の原始関数 $F(x)$ を求めなさい。		
(2) $f(x)=x^3+x^2-x+5$ とする。 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき, $f(x)$ の原始関数 $F(x)$ を求めなさい.	$\boxed{6}$ 次の関数 $f(x)$ に対し、各条件を満たす $\underline{f(x)}$ の原始関数 $F(x)$ を求めなさい。(各 7 点)	
$(2) \ f(x) = x^3 + x^2 - x + 5 \ \texttt{とする}. \ y = F(x) \ \texttt{のグラフと} \ x 軸 \texttt{と} \ x = 2 \ \texttt{で交わるとき}, \ f(x) \ \texttt{の原始関数} \ F(x) \ \texttt{を求めなさい}.$	(1) $f(x)=x^3-x^2-2x+2$ とする. $y=F(x)$ のグラフの y 切片が (-1) のとき、 $f(x)$	の原始関数 $F(x)$ を求めなさい.
(2) $f(x)=x^3+x^2-x+5$ とする。 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき, $f(x)$ の原始関数 $F(x)$ を求めなさい.		
(2) $f(x)=x^3+x^2-x+5$ とする。 $y=F(x)$ のグラフと x 軸と $x=2$ で交わるとき, $f(x)$ の原始関数 $F(x)$ を求めなさい.		
		(1)
(2)	(2) $f(x) = x^3 + x^2 - x + 5$ とする. $y = F(x)$ のグラフと x 軸と $x = 2$ で交わるとき、 $f(x) = x^3 + x^2 - x + 5$ とする.	f(x) の原始関数 $F(x)$ を求めなさい.
(2)		
(2)		
		(2)