09/369883 Att \$14

WEST Search History

DATE: Thursday, May 22, 2003

Set Name side by side	Query	Hit Count	Set Name result set
DB = USPT, PGPB	,JPAB,EPAB,DWPI; PLUR=YES; OP=ADJ		
L4	11 with L3	236	L4
L3	brij\$ or tween\$	40938	L3
L2	liposom\$ or lipofect\$	41594	L2
L1	liposom\$ or lipofect\$	41594	L1

END OF SEARCH HISTORY

Print Selection

Help Clear Cancel Print Print First Page

Select?	Document ID	Section(s)	Page(s)	# Pages to print	B Dotoboco
Ø	6451603	all	all	25	USPT,PGPB,JPAB,EPAB,DWPI
V	6559123	all	all	* 86	USPT,PGPB,JPAB,EPAB,DWPI
থ	6471956	all	all	* 153	USPT,PGPB,JPAB,EPAB,DWPI
Ø	6432917	all	all	47	USPT,PGPB,JPAB,EPAB,DWPI
V	5942237	all	all	9	USPT,PGPB,JPAB,EPAB,DWPI
9	5030442	all	all	27	USPT,PGPB,JPAB,EPAB,DWPI
Ø	WO009639121A1	all	all	N/A	USPT,PGPB,JPAB,EPAB,DWPI
Ø	4330534	all	all	4	USPT,PGPB,JPAB,EPAB,DWPI
Ø	4937078	all	all	7	USPT,PGPB,JPAB,EPAB,DWPI
Ø	5492924	all	all	10	USPT,PGPB,JPAB,EPAB,DWPI
V	4861597	all	all	14	USPT,PGPB,JPAB,EPAB,DWPI
V	5053217	all	all	9	USPT,PGPB,JPAB,EPAB,DWPI
Ø	US5820880A	all	all	14	USPT,PGPB,JPAB,EPAB,DWPI

Note: Print requests for more than 49 pages are denoted by '*' and are in red.

Building	Room	Printer	
cm1 ▼	11e14 ▼	gbldptr ▼	
Main	Menu Lo	gout	

09/369885 Ad#14

=> s brij? or tween?

33443 BRIJ? OR TWEEN?

=> s liposom?

122173 LIPOSOM?

=> s 11 and 12

L3 435 L1 AND L2

=> dup rem 13 PROCESSING COMPLETED FOR L3

255 DUP REM L3 (180 DUPLICATES REMOVED)

=> s l4 and pv<1997 2 FILES SEARCHED... 4 FILES SEARCHED... 132 L4 AND PY<1997

=> d 15 ibib abs 1-132

L5 ANSWER 1 OF 132 BIOSIS COPYRIGHT 2003 BIOLOGICAL

ABSTRACTS INC.

ACCESSION NUMBER: 1997:65259 BIOSIS DOCUMENT NUMBER: PREV199799364462

New cationic lipid formulations for gene transfer. AUTHOR(S): Liu, Feng; Yang, Jingping; Huang, Leaf; Liu, Dexi (1) CORPORATE SOURCE: (1) Dep. Pharm. Sci., Sch. Pharm., Univ. Pittsburgh,

Pittsburgh, PA 15261 USA

SOURCE:

Pharmaceutical Research (New York), (1996) Vol. 13,

No. 12,

pp. 1856-1860. ISSN: 0724-8741. DOCUMENT TYPE: Article

LANGUAGE: . English

AB Purpose: To develop appropriate dosage forms of DNA for gene delivery.

Methods: 3-beta(N-(N',N' dimethylaminoethane) carbamoyl) cholesterol (DC-Chol) was mixed either with ***Tween*** 80 alone, or with additional lipid components including castor oil and phosphatidylcholine (PC) or dioleoylphosphatidylethanolamine (DOPE) to make different lipid formulations. The particle size and the physical stability of the

formulations upon mixing with plasmid DNA containing the luciferase cDNA

were examined using laser light scattering measurement. The transfection activity of the DNA/lipid complexes was tested in presence or absence of serum using a cell culture system. Results: We demonstrated that many favorable properties as a gene carrier could be achieved by formulating DNA into new dosage forms using ***Tween*** 80 as the major emulsifier. Compared to the cationic ***liposomes*** , these new formulations transfected different cell lines with an equivalent or higher efficiency. Not only are they resistant to serum, but also form stable DNA complexes which could be stored for longer periods of time without losing transfection activity. Conclusions: Cationic lipids formulated into different lipid formulations using ***Tween*** 80 as a surfactant appeared to have more favorable physical and biological activities than traditional cationic ***liposomes*** as a carrier for gene delivery.

L5 ANSWER 2 OF 132 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1997:31549 BIOSIS DOCUMENT NUMBER: PREV199799337952

TITLE:

Lyophilized preliposomal formulation of the non-cross-resistant anthracycline annamycin: Effect of surfactant on ***liposome*** formation, stability and

AUTHOR(S): Zou, Yiyu (1); Priebe, Waldemar; Perez-Soler, Roman CORPORATE SOURCE: (1) Sect. Exp. Ther., Dep. Thoracic/Head Neck Med. Oncol.,

Univ. Texas M.D. Anderson Cancer Cent., 1515 Holcombe Blvd., Houston, TX 77030 USA

SOURCE: Cancer Chemotherapy and Pharmacology, (1996) Vol. 39, No.

> 1-2, pp. 103-108. ISSN: 0344-5704.

DOCUMENT TYPE: Article

LANGUAGE: English

AB We report a method of preparing a submicron and stable ***liposome***

formulation of the non-cross-resistant anthracycline annamycin. The lipids were dimyristoylphosphatidyl choline (DMPC) and

dimyristoylphosphatidyl

glycerol (DMPG) at a 7:3 molar ratio and the optimal lipid: drug ratio was 50:1 (w/w). The selected formulation was a preliposome lyophilized powder

that contained the phospholipids, annamycin, and ***Tween*** 20. The ***liposome*** suspension was obtained on the day of use by adding normal saline at 37 degree C (1 ml/mg annamycin) and hand shaking for 1 min. The presence of ***Tween*** 20 was essential in shortening the reconstitution step (from gt 2 h to 1 min), avoiding the early formation of free drug crystals, and reducing the median particle size by tenfold (from 1.5 mu-m to 0.15 mu-m) without destroying the ***liposome*** vesicles. At room temperature, the preliposome powder was chemically stable for gt 3 months, and the ***liposome*** suspension was chemically and physically stable for gt 24 h. The in vitro cytotoxicity of the formulation was equivalent to that of the same lipid composition prepared by the standard evaporation method. The results of the study indicate that small amounts of surfactant may be used to enhance the reconstitution step and reduce the size of ***liposome*** suspensions obtained from lyophilized preliposome powders. The formulation

is being used for ongoing clinical trials with ***liposomal*** annamycin.

L5 ANSWER 3 OF 132 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1996:465538 BIOSIS

DOCUMENT NUMBER: PREV199699187894 TITLE:

Intrathecal chemotherapy with 1,3-Bis(2-chloroethyl)-1nitrosourea encapsulated into hybrid ***liposomes** for meningeal gliomatosis: An experimental study.

AUTHOR(S): Kitamura, Isao (1); Kochi, Masato; Matsumoto, Yoko;

Ueoka,

Ryuichi; Kuratsu, Jun-Ichi; Ushio, Yukitaka

CORPORATE SOURCE: (1) Dep. Neurosurg., Kumamoto Univ. Med. Sch., 1-1-1 Honjo,

Kumamoto 860 Japan

SOURCE: Cancer Research, (1996) Vol. 56, No. 17, pp. 3986-3992. ISSN: 0008-5472.

DOCUMENT TYPE: Article LANGUAGE: English

AB 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), one of the chloroethyl nitrosoureas, is effective against malignant glioma. To develop its use in intrathecal chemotherapy, we encapsulated BCNU in hybrid *liposomes**

composed of dimyristoylphosphatidylcholine and micellar surfactants (***Tween*** 20) and dissolved it in artificial cerebrospinal fluid (lipo-BCNU). We then studied the toxicity of hybrid ***liposomes*** and cellular proliferation inhibition of lipo-BCNU in vitro. We found that 3 mM hybrid ***liposomes*** did not affect the viability of human endothelial cells and that lipo-BCNU inhibited the proliferation of human glioma cell lines U-105MG, U-251MG, and U-373MG, and rat glioma

C6 and 9L in a concentration-dependent fashion. Wistar rats that were administered lipoBCNU intracisternally showed no weight loss,

symptoms, or histological changes of the brain and spinal cord. A Wistar rat model of meningeal gliomatosis was established by intracisternal inoculation of 0.1 ml cell suspension containing 1 times 10-6 or 5 times 10-6 viable C6 glioma cells. Two days after inoculation, lipo-BCNU (BCNU,

2.5 mg/kg) was administered intracisternally. When 1 times 10-6 glioma cells were inoculated (experiments 1 and 2), the median survival times were 24.5 and 26 days in the control groups and 32 and 45 days in the lipo-BCNU-treated groups, respectively. When 5 times 10-6 glioma cells were inoculated (experiments 3-6), the median survival times were 17-29.5

days in the control groups and 23-44 days in the treated groups, respectively. Significantly prolonged survival was obtained in three of six experimental groups. After the administration of 1 ml lipo-BCNU (BCNU.

4.67 mM) or 1 ml BCNU solubilized with 5% dextrose/water (BCNU, 4.67 mM)

into the cisterna magna of dogs, the cisterna magna cerebrospinal fluid