Exercise

Use famous iris flower dataset from sklearn.datasets to predict flower species using random forest classifier.

- 1. Measure prediction score using default n_estimators (100)
- 2. Now tune your model by changing number of trees in your classifer and tell me what best score you can get using how many trees

```
In [1]: from sklearn.datasets import load_iris
    iris = load_iris()
    dir(iris)

Out[1]: ['DESCR',
         'data',
         'feature_names',
         'filename',
         'target',
         'target_names']
```

```
In [2]: import pandas as pd
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df.head()
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
In [3]: df['target'] = iris.target
df.head()
```

Out[3]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

train test split

```
In [4]: X = df.drop(['target'],axis='columns')
y = iris.target
```

```
In [5]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
```

```
In [6]: from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
model.fit(X_train, y_train)
```

Out[6]: RandomForestClassifier()

```
In [7]: model.score(X_test,y_test)
```

Out[7]: 0.9

```
In [21]: model = RandomForestClassifier(n_estimators=40)
model.fit(X_train, y_train)
model.score(X_test,y_test)
```

Out[21]: 0.9

Date Author

2021-09-19 Ehsan Zia