#### 1 Definition: Transition System

A transition system is a 6-tuple  $T = \langle S, L, c, T, s_0, S^{\star} \rangle$  where:

- S: finite set of states
- · L: finite set of transition labels
- $c: L \mapsto \mathbb{R}_0^+$ : label cost function
- $T \subseteq S \times L \times S$ : transition relation
- I ⊆ S × L × S: tran
   s<sub>0</sub> ∈ S: initial state
- $S^* \subseteq S$ : set of goal states

#### 1.1 Forms and Properties

#### 1.1.1 Heuristics

- Admissable:  $h(s) \le h^*(s)$
- Consistent:  $h(s) \le c(s, s') + h(s')$
- Goal aware:  $h(s \in S^*) = 0$
- Safe:  $h(s) = \infty \rightarrow h^*(s) = \infty$

#### 1.1.2 Task

- Positive normal form: All ops and goal are positive and flat
- o is positive if pre(o) and eff(o) are positive
- A logical proposition is positive if  $\neg$  doesn't appear (including  $\leftarrow$  and  $\leftrightarrow$
- o is flat, if  $\mathrm{eff}(o)$  is flat (i.e. contains only atomics or  $(x \triangleright y)$
- STRIPS: If all ops are STRIPS and goal follows:  $\bigwedge_{v \in V} v$
- o is STRIPS if pre(o) follows same form, and eff(o) is atomic.
- Algorithm is sound → plans are correct, and "unsolveable" answer is correct.

#### 1.2 On-Set and Dominating state

- The on-set is the set of propositional variables that are true in a interpretation.
- Domainiting interpretations for  $\operatorname{on}(s) \subseteq \operatorname{on}(s'), s, s' \in S$

#### 1.3 Complexit

- $P \subset NP \subset PSPACE = NPSPACE$
- (PlanEx)istance ≤ (B)ounded (C)ost PlanEx
- (PlanEx)istance ∈ PSPACE
- True for both optimal and satisfycing

#### 2 Satisfiability & Equivalenc

 $\varphi$  satisfiable iff  $\exists I: I \models \varphi$   $\varphi$  valid iff  $\forall I: I \models \varphi$  $\varphi \models \psi$  iff  $\forall I: I \models \varphi \rightarrow I \models \psi$ 

 $\varphi \equiv \psi \text{ iff } \varphi \models \psi \wedge \psi \models \varphi$ 

# 3 STRIPS Regression

Let  $\varphi=\varphi_1\wedge\ldots\wedge\varphi_n$  be a conjunction of atoms, and o's add effects be  $\{a_1,\ldots,a_k\}$ , and delete effects  $\{d_1,\ldots,d_l\}$ 

 $\operatorname{sregr}(\varphi,o) := \left\{ \begin{smallmatrix} \bot \text{ if } \exists (i,j)\varphi_i = d_j \\ \operatorname{pre}(o) \land (\{\varphi_1, \ldots, \varphi_n\}/\{a_1, \ldots, a_k\}) \text{ otherwise} \end{smallmatrix} \right.$ 

## 4 SAT Planning style-algorithm

# Algorithm 1: SAT Planning

$$\begin{array}{lll} \text{1:} & \textbf{procedure} & \textbf{SATPLAN}(\text{``Pi''}) \\ \text{2:} & \textbf{for} & \Pi & \{0,1,2,...\} & \textbf{do} \\ \text{3:} & \varphi \leftarrow \text{build}, \text{sat}, \text{formula}(\Pi,T) \\ \text{4:} & I \leftarrow \text{sat}, \text{solver}(\varphi) \\ \text{5:} & \text{if} & I = \text{none} & \textbf{then} \\ \text{6:} & \textbf{return} & \text{extract\_plan}(\Pi,T,I) \\ \text{7:} & \textbf{end} \\ \text{8:} & \textbf{end} \\ \text{9:} & \textbf{end} \\ \end{array}$$

# 4.1 SAT: Operator Selection Clauses

- o<sup>i</sup><sub>i</sub> (operator chosen at step i)
- $o_1^i \vee ... \vee o_n^i$  for  $1 \leq i \leq T$

- $\neg o_j^i \vee \neg o_k^i$  for  $1 \leq i \leq T, \, 1 \leq j < k \leq n$  (at most one operator per step)
- This is equal to ¬(o<sup>i</sup><sub>j</sub> ∧ o<sup>i</sup><sub>k</sub>)

#### 4.2 Transition Clauses

#### Precondition:

•  $\neg o^i \lor \operatorname{pre}(o)^{i-1}$  for  $1 \le i \le T$ ,  $o \in O$ 

#### Positive/Negative Effects Clauses:

- $\neg o^i \lor \neg \alpha^{i-1} \lor v^i$
- $\neg \alpha^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

# Positive/Negative Frame Clauses:

- $\neg o^i \lor \neg v^{i-1} \lor \delta^{i-1} \lor v^i$
- $\neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$

where  $\alpha = \operatorname{effcond}(v, \operatorname{eff}(o)) \delta = \operatorname{effcond}(\neg v, \operatorname{eff}(o))$ 

#### 5 BDD Complexit

|                          | Hash table      | Formula        | BDD           |
|--------------------------|-----------------|----------------|---------------|
| s ∈ S?                   | O(k)            | 0(  s  )       | O(k)          |
| $S := S \cup \{s\}$      | O(k)            | O(k)           | O(k)          |
| $S := S \setminus \{s\}$ | O(k)            | O(k)           | O(k)          |
| s∪s'                     | O(k S  + k S' ) | 0(1)           | 0(  s   s'  ) |
| s∩s'                     | O(k S  + k S' ) | 0(1)           | 0(  s   s'  ) |
| s\s'                     | O(k S  + k S' ) | 0(1)           | 0(  s   s'  ) |
| s `                      | $O(k2^k)$       | 0(1)           | 0(  s  )      |
| $\{s \mid s(v) = T\}$    | O(k2k)          | 0(1)           | 0(1)          |
| S = Ø?                   | 0(1)            | co-NP-complete | 0(1)          |
| S = S'?                  | O(k S )         | co-NP-complete | 0(1)          |
| S                        | 0(1)            | #P-complete    | 0(  5  )      |

# 6 BDD Operators

## 6.1 Conditioning

Conditioning variable v in formula  $\varphi$  to T or F:

- $\varphi\left[\frac{T}{v}\right]$  or  $\varphi\left[\frac{F}{v}\right]$ : restrict v to a given value
- Time:  $O(|\varphi|)$

## 6.2 Forgetting

Forgetting (existential abstraction): allow both v=T and v=F and eliminate v.

- On formulas:  $\exists v\varphi = \varphi\left[\frac{T}{v}\right] \vee \varphi\left[\frac{F}{v}\right]$
- On sets:  $\exists vS = S\left[\frac{T}{v}\right] \cup S\left[\frac{F}{v}\right]$
- Time:  $O(|\varphi|)$

# 6.3 Renaming

Renaming X to Y in formula  $\varphi$ , written  $\varphi[X \to Y]$ : replace all X by Y in  $\varphi$  (Y not present in  $\varphi$ ).

- Time:  $O(|\varphi|)$ 

# 7 BDD Transitions

## 7.1 Transition BDD

$$T_{V(O)} = \bigvee_{o \in O} t_{V(o)}$$

 ${}^{\star}t_{V(O)} = \operatorname{pre}(o) \wedge \bigwedge_{v = V} (\operatorname{effcond}(v, e) \vee (v \wedge \neg \operatorname{effcond}(\neg v, e)) \leftrightarrow v')$ 

# 7.2 Apply

## Algorithm 2: BDD Apply

$$\begin{array}{lll} \textbf{1:} & \textbf{procedure Apply}(\text{reached}, O) \\ \textbf{2:} & B \leftarrow T_{V(O)} \\ \textbf{3:} & B \leftarrow \text{bdd-intersection}(B, \text{reached}) \\ \textbf{4:} & \textbf{for } v \in V \textbf{do} \\ \textbf{5:} & B \leftarrow \text{bdd-forget}(B, v) \\ \textbf{6:} & \textbf{end} \\ \textbf{7:} & \textbf{for } v \in V \textbf{do} \\ \textbf{8:} & B \leftarrow \text{bdd-rename}(B, v', v) \\ \textbf{9:} & \textbf{end} \\ \textbf{10:} & \textbf{return B} \\ \textbf{11:} & \textbf{end} \\ \end{array}$$

By then taking the union of the out and the previous reached, you get the reached for the following timestep.

## 8 Relaxed Task Graph (RTG)

$$\begin{split} o_1 &= \langle c \vee (a \wedge b), c \wedge ((c \wedge d) \triangleright e), 1 \rangle \\ o_2 &= \langle \top, f, 2 \rangle \\ o_3 &= \langle f, g, 1 \rangle \\ o_4 &= \langle f, h, 1 \rangle \end{split}$$



# 8.1 $h^{\text{max}}$ & $h^{\text{add}}$

- $h^{\max} \le h^+ \le h^{\mathrm{FF}} \le h^{\mathrm{add}}$
- $h^{\max(s)} = \infty \leftrightarrow h^{+(s)} = \infty \leftrightarrow h^{FF(s)} = \infty \leftrightarrow h^{\text{add}(s)} = \infty$
- $h^{\max}$  and  $h^{\mathrm{add}} \rightarrow$  admissible and consistent
- $h^+$  and  $h^{\rm FF} o$  NOT admissible and consistent
- · All are safe and goal-aware.



Above, only nodes where  $h^{\rm max}$  (left) and  $h^{\rm add}$  (right) differ are recorded.

- +  $h^{\mathrm{max}}$ : Pick the max predecessor at AND node, and the min at OR
- h<sup>add</sup>: Add the predecessors at AND node, and pick the min at OR
- Both can be computed efficiently by expanding the minimum/ newest node that CAN be updated

# 8.2 h<sup>FF</sup> and Best Achiever Graphs (*G*)

 BAG can be achieved by removing all incoming edges into a OR node, except the minimum cost one

## best achievers for $h^{add}$ ; modified goal $e \lor (g \land h)$



- $h^{\rm FF}$  can be achieved by adding all operators participating in the  $G^{
  m add}$  for  $h^{
  m add}$
- + G are also useful for analysis when  $h^{
  m add}$  overapprox and when  $h^{
  m max}$  under approx.

## 9 Invariant/Mutex/FDR

- · Validating invariant is AS HARD as planning.
- Mutex group is a set of variables where AT MOST one can be true
   A Mutex cover is a set of mutex groups where each variable occurs in exactly one group

· A mutex group is positive if it contains no negations of variables

## 9.1 Mutex-based Reformulation of Propositional

Given a conflict-free propositional planning task  $\Pi$  w/ positive mutex cover  $\{G_1,...,G_N\}$ 

- In all condition where variable  $v \in G_i$  occurs, replace v with  $v_G := v$
- In all effects e where variable  $v \in G_i$  occurs,
- Replace all atomic add effects v with  $v_{G_i} \coloneqq v$
- Replace all atomic delete effects ¬v with:
- $-\left(v_{G_i}=v \land \neg \bigvee_{v' \in G_i \backslash \{v\}} \operatorname{effcond}(v',e)\right) \triangleright v_{G_i} \coloneqq \operatorname{none}$
- Practically, this means, if v<sub>G</sub> is being deleted AND IS NOT BEING SET TO ANOTHER VARIABLE, set it to none. This is keep it conflict-free.

The consistency condition consist(e) prohibits two simultaneous assignments to the same mutex group.

I.e.  $\neg(\text{effcond}(v := d, e) \land \text{effcond}(v := d', e))$ 

#### 9.2 SAS+

An operator of an FDR operator is a SAS+ operator if

- pre(o) is a satisfiable conjunction of atoms, and
- eff(o) is a conflict-free conjunction of atomic effects.

An FDR task is a SAS+ task if all operators are SAS+ and the goal is a satisfiable conjunction of atoms