PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C07D 251/08, 251/10, A01N 43/64, C07D 401/04, 403/04, 417/04, 471/04, 405/04, 251/30, 409/04

A1

(11) International Publication Number:

WO 98/49150

(43) International Publication Date:

5 November 1998 (05.11.98)

(21) International Application Number:

PCT/JP98/01872

(22) International Filing Date:

23 April 1998 (23.04.98)

(30) Priority Data:

9/109941

25 April 1997 (25.04.97) JP

JP

(71) Applicant (for all designated States except US): TAKEDA CHEMICAL INDUSTRIES, LTD. [JP/JP]; 1-1, Doshomachi 4-chome, Chuo-ku, Osaka-shi, Osaka 541-0045 (JP).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ITOH, Shigeyuki [JP/JP]; 11–6–401, Takezono 2–chome, Tsukuba–shi, Ibaraki 305–0032 (JP). NAKAMURA, Satoko [JP/JP]; 11–16–606, Sengen 2–chome, Tsukuba–shi, Ibaraki 305–0047 (JP). TANAKA, Yasushi [JP/JP]; 14–1–501, Takezono 2–chome, Tsukuba–shi, Ibaraki 305–0032 (JP).
- (74) Agents: ASAHINA, Tadao et al.; Osaka Plant of Tadeka Chemical Industries, Ltd., 17–85, Jusohonmachi 2-chome, Yodogawa-ku, Osaka-shi, Osaka 532-0024 (JP).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, GW, HU, ID, IL, IS, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, US, UZ, VN, YU, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: TRIAZINE DERIVATIVES, THEIR PRODUCTION AND AGROCHEMICAL COMPOSITION

(57) Abstract

The present ivnention relates to a partially hydrogenated or completely hydrogenated 1,3,5-triazine derivative which has (i) a group of formula (a), wherein Q^I represents an aromatic ring group which may

$$R^1$$
 R^2 (a)

optionally be substituted; R^1 represents a hydrogen atom or a hydrocarbon group which may optionally be substituted; R^2 represents a hydrocarbon group which may optionally be substituted or R^1 and R^2 may form a ring together with the adjacent carbon atom wherein the ring may optionally be substituted, at the 1-position, and (ii) oxo groups or thioxo group at the 2-position, and (iii) which may have a substituent at each 3- to 6-position, provided that said triazine derivative does not have oxo group at both the 4- and 6-positions, or a salt thereof; a process for its production; and a composition. The compound or a salt thereof has potent herbicidal activity against a broad spectrum of weeds including paddy field weeds and plowed land weeds at low concentrations. Furthermore, it is less phytotoxic to crop plants such as rice, wheat, barley, soybean, and com plants, thus having very satisfactory selective herbicidal activity. Moreover, this selective herbicidal action lasts long. In addition, the compound or salt which does no substantial harm to mammalian animals, fishes and shellfishes, is free from the pollution problem, and can be used very safely as a herbicide in paddy fields, plowlands, orchards, and non-crop lands.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
\mathbf{CG}	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
$\mathbf{E}\mathbf{E}$	Estonia	LR	Liberia	\mathbf{SG}	Singapore		

WO 98/49150 PCT/JP98/01872

1

DESCRIPTION

Triazine Derivatives, Their Production and Agrochemical Composition

5

10

15

25

30

35

[Technical Field]

The present invention relates to a novel triazine derivative having excellent and selective herbicidal activity, a production method for the compound, and an agrochemical composition comprising the compound.

The triazine derivative of the invention is a novel compound having excellent herbicidal activity against paddy field and plow land weeds without inducing any material adverse responses in crop plants such as rice, wheat, barley, soybean, maize and other plants and finds application as a useful selective herbicide.

[Background Art]

As triazine derivatives, for example:

- 20 (1) JP-A 241047/1988 discloses a rubber composition comprising a triazine derivative. However, use as an agrochemical is not described.
 - (2) JP-A 133968/1991 reports a tri-substituted 1,3,5-triazine-2,4,6-trione. Though use for a bactericide or a fungicide is described, use for a herbicide is not described.
 - (3) JP-A 93539/1974, JP-A 47534/1974, WO91/01978, USP 3,505,323, USP 3,505,057 and JP-A 41542/1974 describe various triazine derivatives which can be used for an agrochemical or a herbicide. However, a triazine derivative of the present invention is not disclosed in this literature in addition to (1) and (2) as mentioned above.

The above-mentioned compounds are not fully satisfactory in herbicidal effect on weeds, potential of hazard to crop plants, toxicity to mammals, fishes

WO 98/49150 PCT/JP98/01872

2

and shellfishes, and risk of pollution, and the development of a more improved selective herbicide has been awaited in earnest.

[Disclosure of Invention]

5

10

35

With the aim to developing a selective herbicide having superior herbicidal activity and not injurious to crop plants, the inventors of the present invention did intensive research and, as a consequence, have found that a partially hydrogenated or completely hydrogenated 1,3,5-triazine derivative which has (i) a group of the formula:

wherein Q1 represents an aromatic ring group which may 15 optionally be substituted; R1 represents a hydrogen atom or a hydrocarbon group which may optionally be substituted; R² represents a hydrocarbon group which may optionally be substituted or R1 and R2 may form a 20 ring together with the adjacent carbon atom wherein the ring may optionally be substituted, at the 1-position, and (ii) oxo group or thioxo group at the 2-position, and (iii) which may have a substituent at each 3- to 6-position, provided that said triazine derivative does 25 not have oxo groups at both the 4- and 6-positions, or a salt thereof, has potent herbicidal activity with remarkably improved phytotoxic toward crop plants such as rice, wheat, barley, soybean, maize, and other plants, thus showing high specificity. They have made 30 further research with diligence and have perfected the present invention.

Namely, the present invention relates to: [1] a partially hydrogenated or completely hydrogenated 1,3,5-triazine derivative which has (i) a group of the formula:

$$R^1$$
 R^2

wherein Q¹ represents an aromatic ring group which may optionally be substituted; R¹ represents a hydrogen atom or a hydrocarbon group which may optionally be substituted; R² represents a hydrocarbon group which may optionally be substituted or R¹ and R² may form a ring together with the adjacent carbon atom wherein the ring may optionally be substituted, at the 1-position, and (ii) oxo group or thioxo group at the 2-position, and (iii) which may have a substituent at each 3- to 6-position, provided that said triazine derivative does not have oxo groups at both the 4- and 6-positions (hereinafter referred to as "compound (Ia)", or a salt thereof,

5

10

15

25

30

35

[2] the compound as described in [1] above, which is a compound of the formula:

20
$$Q^2 \stackrel{W}{\underset{N}{\bigvee}} \stackrel{R^2}{\underset{N}{\bigvee}} \stackrel{R^1}{\underset{N}{\bigvee}} Q^1 \stackrel{Q^2}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{R^2}{\underset{N}{\bigvee}} \stackrel{R^1}{\underset{N}{\bigvee}} Q^1 \stackrel{Q^2}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{R^2}{\underset{N}{\bigvee}} \stackrel{R^1}{\underset{N}{\bigvee}} \stackrel{Q^1}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{Q^1}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{R^2}{\underset{N}{\bigvee}} \stackrel{R^1}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{Q^1}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{R^2}{\underset{N}{\bigvee}} \stackrel{R^1}{\underset{N}{\bigvee}} \stackrel{W}{\underset{N}{\bigvee}} \stackrel{R^2}{\underset{N}{\bigvee}} \stackrel{R^1}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} \stackrel{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}}} \stackrel{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\longrightarrow}}} \stackrel{N}{\underset{N}} \stackrel{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{N}}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{N}{\underset{N}{N}{\underset$$

wherein Q¹ represents an aromatic ring group which may optionally be substituted; R¹ represents a hydrogen atom or a hydrocarbon group which may optionally be substituted; R² represents a hydrocarbon group which may optionally be substituted or R¹ and R² may form a ring together with the adjacent carbon atom wherein the ring may optionally be substituted; A represents an optionally substituted methylene group, carbonyl group or thiocarbonyl group; B represents an optionally substituted methylene group; Q², R³ and R⁴ are the same or different and each represents a hydrogen atom or a

10

group bonded through a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom; and W represents O or S,

- [3] the compound as described in [1] above, wherein Q^1 represents an optionally substituted C_{6-14} aryl group or an optionally substituted 5- or 6-membered aromatic heterocyclic group,
- [4] the compound as described in [1] above, wherein Q^1 represents an aromatic ring group selected from the group consisting of a C_{6-14} aryl group and a 5- or 6-membered aromatic heterocyclic group or a condensed ring group thereof with benzene ring or a 5- or 6-membered aromatic heterocyclic ring, wherein said C_{6-14} aryl group, 5- or 6-membered aromatic heterocyclic
- group or its condensed ring group may optionally be substituted with one to four substituents selected from the group consisting of hydroxy, amino, cyano, sulfamoyl, sulfamoyloxy, mercapto, nitro, halogen, sulfo and an organic residue selected from the group: consisting of
 - (1) a hydrocarbon group selected from the group consisting of a C_{1-6} alkyl group, a C_{3-14} cycloalkyl group, a C_{2-6} alkenyl group, a C_{3-14} cycloalkenyl group, a C_{2-6} alkynyl group, a C_{6-14} aryl group and a C_{7-19}
- aralkyl group,
 and when said hydrocarbon group is an alkyl group, a
 cycloalkyl group, an alkenyl group, a cycloalkenyl
 group or an alkynyl group, each of said groups may have
 one to three substituents selected from the group
- consisting of a C_{1-4} alkylthio group, halogen, a C_{1-6} alkoxy group, nitro, a C_{1-6} alkoxy-carbonyl group, a mono- or di- C_{1-6} alkylamino group, a C_{1-6} alkoxyimino group, hydroxyimino, a C_{1-6} alkylsulfonyl group, cyano, carboxyl, hydroxy, a C_{1-6} alkylcarbonyloxy group, a C_{1-7}
- 35 alkanoyl group or a C_{1-6} alkylimino group,

10

and when said hydrocarbon group is an aryl group or an aralkyl group, each of said groups may have one to five substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{2-6} alkenyl group, (iv) a C_{2-6} alkynyl group, (v) a C_{1-6} alkoxy group, (vi) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6} alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a C_{7-19} aralkyl-carbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (vii) nitro, (viii) amino, (ix) hydroxy, (x) cyano, (xi) sulfamoyl, (xii) mercapto, (xiii) halogen and (xiv) a C_{1-4} alkylthio group,

- (2) a 3- to 8-membered heterocyclic group or a condensed ring group thereof with benzene ring or a 3- to 8-membered heterocyclic ring, which may optionally be substituted with one to three substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{2-6} alkenyl group,
- 20 (iv) a C_{2-6} alkynyl group, (v) a C_{1-6} alkoxy group, (vi) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6} alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a C_{7-19} aralkyl-carbonyl group, and a C_{7-19}
- aralkyloxycarbonyl group, (vii) nitro, (viii) amino, (ix) hydroxy, (x) cyano, (xi) sulfamoyl, (xii) mercapto, (xiii) halogen and (xiv) a C₁₋₄ alkylthio group,
- (3) an acyl group selected from the group consisting of a C₁₋₇ alkanoyl group, a C₆₋₁₄ aryl-carbonyl group, a C₁₋₆ alkoxy-carbonyl group, a C₆₋₁₄ aryloxy-carbonyl group, a C₇₋₁₉ aralkyl-carbonyl group, a C₇₋₁₉ aralkyloxycarbonyl group, a 5- or 6- membered heterocyclic-carbonyl group and a 5- or 6- membered heterocyclic-acetyl group, and when the acyl group is an alkanoyl group or an

25

30

35

alkoxy-carbonyl group, each group may has one to three substituents selected from the group consisting of a C_{1-4} alkylthio group, halogen, a C_{1-6} alkoxy group, nitro, a C_{1-6} alkoxy-carbonyl group, a mono- or di- C_{1-6} alkylamino group, a C_{1-6} alkoxyimino group and hydroxyimino group, and when the acyl group is an aryl-carbonyl group, an

and when the acyl group is an aryl-carbonyl group, an aryloxy-carbonyl group, an aralkyl-carbonyl group, an aralkyloxycarbonyl group, 5- or 6-membered

heterocyclic-carbonyl group or a 5- or 6- membered heterocyclic-acetyl group, each of said groups may have one to five substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{2-6} alkenyl group, (iv) a C_{2-6}

alkynyl group, (v) a C_{1-6} alkoxy group, (vi) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6} alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a C_{7-19} aralkyl-carbonyl group, and a C_{7-19}

aralkyloxycarbonyl group, (vii) nitro, (viii) amino, (ix) hydroxy, (x) cyano, (xi) sulfamoyl, (xii) mercapto, (xiii) halogen and (xiv) a C₁₋₄ alkylthio group,

(4) a group of the formula: $-T-Q^0$ wherein Q^0 represents a hydrocarbon group as defined in above (1), a 3- to 8-membered heterocyclic group as defined in above (2), or an acyl group as defined in above (3); T represents 0, $(0)_k$ -S wherein k is 0, 1 or 2, or S-S,

(5) a group of the formula:

$$-N_{Q^4}$$

wherein Q^3 represents a hydrogen atom, a hydrocarbon group as defined in above (1) or an acyl group as

PCT/JP98/01872

defined in above (3); Q^4 represents a hydrocarbon group as defined in above (1) or an acyl group as defined in above (3), or Q^3 and Q^4 may form a ring together with the adjacent nitrogen atom,

5 (6) a group of the formula:

15

20

wherein Q^3 and Q^4 have the same meaning as defined above,

(7) a carbamoyl group which may optionally be substituted with 1 or 2 substituents selected from the group consisting of a hydrocarbon group as defined in

above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3),

(8) a carbamoyloxy group which may optionally be substituted with 1 or 2 substituents selected from the group consisting of a hydrocarbon group as defined in above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3),

(9) a ureido group which may optionally be substituted with 1 to 3 substituents selected from the group consisting of a hydrocarbon group as defined in above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3), (10) a thiocarbamoyl group which may optionally be

substituted with 1 or 2 substituents selected from the group consisting of a hydrocarbon group as defined in above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3),

35 (11) carboxyl group, and

(12) a group of the formula $-0-SO_2-Q^4$ wherein Q^4 has the

same meaning as defined above,

- [5] the compound as described in [1] above, wherein R^1 and R^2 are the same or different and each represents an optionally substituted C_{1-6} alkyl group,
- [6] the compound as described in [1] above, wherein R^1 and R^2 are the same or different and each represents a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl and halogen,
 - [7] the compound as described in [2] above, wherein A and B are the same or different and each represents an optionally substituted methylene group,
- [8] the compound as described in [2] above, wherein A and B are the same or different and each represents a group of the formula:

5

10

wherein R^5 and R^6 are the same or different and each 25 represents (1) hydrogen, (2) halogen, (3) a C₁₋₆ alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl and halogen, or (4) a C_{6-14} aryl group which 30 may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, halogen, a C_{1-6} alkyl group and a C_{1-6} alkoxy group, [9] the compound as described in [2] above, wherein Q^2 35 represents (1) hydroxy, (2) a C_{1-6} alkoxy group, (3) a C_{2-6} alkenyloxy group, (4) a C_{2-6} alkynyloxy group, (5) an optionally substituted cyclic group, (6) an

optionally substituted C_{1-6} alkyl group, (7) an optionally substituted C_{2-6} alkenyl group, (8) a C_{1-20} acyl group, (9) an optionally substituted carbamoyl group, (10) an optionally substituted amidino group, (11) a group of $-S(0)_nR^{20}$ wherein n is 0, 1 or 2 and R^{20} 5 represents a hydrogen atom, a C1-6 alkyl group, a C6-14 aryl group or an optionally substituted amino group, (12) a C_{3-6} cycloalkyloxy group, (13) a C_{1-6} alkylcarbonyloxy group, (14) a C_{6-14} arylcarbonyloxy group, (15) an optionally substituted carbamoyloxy 10 group, (16) an optionally substituted amino group, or (17) a group of $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the same or different and each represents a hydrogen atom or a C_{1-6} alkyl group, [10] the compound as described in [2] above, wherein Q^2 15 represents (1) hydroxy, (2) a C_{1-6} alkoxy group, (3) a C_{2-6} alkenyloxy group, (4) a C_{2-6} alkynyloxy group, (5) a cyclic group selected from the group consisting of (i) a C_{6-14} aryl group, (ii) a 5- or 6-membered heterocyclic 20 group bonded through a carbon atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iii) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or a condensed ring group thereof with benzene ring or a 5-25 or 6-membered heterocyclic ring, (iv) a C_{3-14} cycloalkyl group and (v) a C_{3-14} cycloalkenyl group wherein said cyclic group may have one to four substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen, a C1-6 30 alkyl group and a C_{1-6} alkoxy group, (6) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen and a C_{1-6} alkoxyimino group, (7) a

 C_{2-6} alkenyl group, (8) an acyl group selected from the

group consisting of a C_{1-6} alkyl-carbonyl group, a C_{6-14} arylcarbonyl group and a C_{1-6} alkoxycarbonyl group, (9) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups, (10) an amidino group which may optionally be substituted with one to three 5 C_{1-6} alkyl groups, (11) a group of $-S(0)_n R^{20}$ wherein n is 0, 1 or 2 and R^{20} represents a hydrogen atom, a C_{1-6} alkyl group, a C_{6-14} aryl group or an amino group which may optionally be substituted with one or two C1-6 alkyl 10 groups, (12) a C_{3-6} cycloalkyloxy group, (13) a C_{1-6} alkylcarbonyloxy group, (14) a C_{6-14} arylcarbonyloxy group, (15) a carbamoyloxy group which may optionally be substituted with one or two C_{1-6} alkyl groups, (16) an amino group which may optionally be substituted with one or two substituents selected from the group 15 consisting of a C_{1-6} alkyl group, a C_{1-6} alkyl-carbonyl group, a C₁₋₆ alkylsulfonyl group, and an aminocarbonyl group which may optionally be substituted with one or two C_{1-6} alkyl groups, or (17) a group of $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the same or different and each 20 represents a hydrogen atom, a C_{1-6} alkyl group, s C_{1-6} alkoxy group or s C1-6 alkylthio group, [11] the compound as described in [2] above, wherein Q^2 represents an optionally substituted cyclic group, 25 [12] the compound as described in [2] above, wherein Q2 represents a cyclic group selected from the group consisting of (i) a C_{6-14} aryl group, (ii) a 5- or 6-membered heterocyclic group bonded through a carbon atom or a condensed ring group thereof with benzene 30 ring or a 5- or 6-membered heterocyclic ring, (iii) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iv) a C_{3-14} cycloalkyl group and (v) a C_{3-14} cycloalkenyl 35 group wherein said cyclic group may have one to four

substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen, a C_{1-6} alkyl group and a C_{1-6} alkoxy group,

[13] the compound as described in [2] above, wherein R^3 and R^4 are the same or different, and each represents (1) a hydrogen atom, (2) hydroxy, (3) an optionally substituted C_{1-6} alkyl group, (4) an optionally substituted C_{3-14} cycloalkyl group, (5) an optionally

substituted C_{2-6} alkenyl group, (6) an optionally substituted C_{2-6} alkynyl group, (7) an optionally substituted C_{1-6} alkoxy group, (8) an optionally substituted C_{2-6} alkenyloxy group, (9) an optionally substituted C_{2-6} alkynyloxy group, (10) an optionally

substituted C_{6-14} aryl group, (11) a C_{7-19} aralkyl group, (12) an optionally substituted C_{6-14} aryloxy group, (13) an optionally substituted carbamoyloxy group, (14) a C_{1-20} acyl group, (15) an optionally substituted amino group, (16) an optionally substituted carbamoyl group,

(17) an optionally substituted thiocarbamoyl group, $(18) \text{ a group of } -S(0)_n - R^{23} \text{ wherein n is 0, 1 or 2 and } R^{23}$ represents a hydrogen atom, an optionally substituted $C_{1-6} \text{ alkyl group, a } C_{6-14} \text{ aryl group, an optionally }$ substituted amino group or a C_{1-20} acyl group, (19) a

C₁₋₆ alkylcarbonyloxy group, (20) a C_{1-6} alkylsulfonyloxy group, (21) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group, (22) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with

nitrogen atom or condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic group, or (23) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6} alkoxy group,

[14] the compound as described in [2] above, wherein R³

and R^4 are the same or different, and each represents (1) a hydrogen atom, (2) an optionally substituted C_{1-6} alkyl group, (3) an optionally substituted C_{1-6} alkoxy group, (4) an optionally substituted C_{6-14} aryl group,

- (5) a C_{7-19} aralkyl group, (6) an optionally substituted C_{6-14} aryloxy group, (7) an optionally substituted carbamoyloxy group, (8) a C_{1-20} acyl group, (9) a monoor di-substituted amino group, (10) a N-mono- or di-substituted carbamoyl group, (11) a group of
- $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2, and R^{23} represents a hydrogen atom, an optionally substituted C_{1-6} alkyl group, a C_{6-14} aryl group or a mono- or di-substituted amino group, (12) a C_{1-6} alkylcarbonyloxy group, (13) a C_{1-6} alkylsulfonyloxy group, (14) a group of $-N=CR^{24}R^{25}$
- wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom or a C_{1-6} alkyl group, or (15) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic
- 20 ring, $[15] \ \, \text{the compound as described in [2] above, wherein R}^3 \\ \ \, \text{and R}^4 \ \, \text{are the same or different, and each represents}$
 - (1) a hydrogen atom,
 - (2) hydroxy,
- 25 (3) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}
- alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl

- group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
- (4) a C_{3-14} cycloalkyl group which may optionally be substituted with one to three substituents selected
- from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14}
- arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
- 15 (5) a C_{2-6} alkenyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}
- alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl
- 25 group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (6) a C_{2-6} alkynyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii)
- 30 carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14}

- aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
- 5 (7) a C_{1-6} alkoxy group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}
- alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl
- 15 group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (8) a C_{2-6} alkenyloxy group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii)
- carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14}
- aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
- (9) a C_{2-6} alkynyloxy group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from

15

30

the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,

- alkylimino group, (10) a C_{6-14} aryl group which may optionally be
- substituted with one to five substituents selected from the group consisting of nitro, amino, hydroxy, cyano,
- sulfamoyl, mercapto, carboxyl, halogen, a C_{1-4} alkyl group and a C_{1-6} alkoxy group,
 - (11) a C_{7-19} aralkyl group,

group and a C_{1-6} alkoxy group,

aralkyloxycarbonyl group,

- (12) a C_{6-14} aryloxy group which may optionally be substituted with one to five substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen, a C_{1-4} alkyl
- (13) a carbamoyloxy group which may optionally be substituted with one or two substituents selected from
- the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv) a C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14} aryloxycarbonyl group, (viii) a C_{7-19} aralkylcarbonyl
- group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a C_{1-6} alkylsulfonyl group,
 - (14) an acyl group selected from the group consisting of (i) a C_{1-7} alkanoyl group which may optionally be substituted with one to three halogen atoms, (ii) a C_{6-14} arylcarbonyl group, (iii) a C_{1-6} alkoxycarbonyl group, (iv) a C_{6-14} aryloxycarbonyl group, (v) a C_{7-19} aralkylcarbonyl group and (vi) a C_{7-19}

- (15) an amino group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C7-19 aralkyl group, (iv) a
- C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, (vi) 5 a C₁₋₆ alkoxycarbonyl group, (vii) a C₆₋₁₄ aryloxycarbonyl group, (viii) a C₇₋₁₉ aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a
- C₁₋₆ alkylsulfonyl group, 10 (16) a carbamoyl group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv)
- a C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, 15 (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14} aryloxycarbonyl group, (viii) a C7-19 aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and $(x) \cdot a$ C₁₋₆ alkylsulfonyl group,
- (17) a thiocarbamoyl group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv)
- a C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, 25 (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14} aryloxycarbonyl group, (viii) a C₇₋₁₉ aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a 30 C₁₋₆ alkylsulfonyl group,
- (18) a group of $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2 and R^{23} represents
 - (i) a hydrogen atom,

20

(ii) a C_{1-6} alkyl group which may optionally be

30

substituted with one to three substituents selected from the group consisting of (a) hydroxy, (b) carboxyl, (c) cyano, (d) halogen, (e) a C_{1-6} alkoxy group, (f) a C_{1-6} alkylthio group, (g) a C_{1-6} alkylsulfonyl group, (h) 5 an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (i) a C₆₋₁₄ aryl group, (j) a C_{1-7} alkanoyloxy group and (k) a C_{1-6} alkylimino group, 10 (iii) a C_{6-14} aryl group, (iv) an amino group which may optionally be substituted with one or two substituents selected from the group consisting of (a) a C_{1-6} alkyl group, (b) a C_{3-6} 15 cycloalkyl group, (c) a C_{7-19} aralkyl group, (d) a C_{1-7} alkanoyl group, (e) a C_{6-14} arylcarbonyl group, (f) a C_{1-6} alkoxycarbonyl group, (g) a C_{6-14} aryloxycarbonyl group, (h) a C_{7-19} aralkylcarbonyl group, (i) a carbamoyl group which may optionally be substituted 20 with one or two C_{1-6} alkyl groups and (j) a C_{1-6} alkylsulfonyl group, or (v) an acyl group selected from the group consisting of (a) a C_{1-7} alkanoyl group which may optionally be substituted with one to three halogen atoms, (b) a C_{6-14} arylcarbonyl group, (c) a C_{1-6} alkoxycarbonyl group, (d) a C_{6-14} aryloxycarbonyl group, (e) a C_{7-19} aralkylcarbonyl group and (f) a C7-19 aralkyloxycarbonyl group, (19) a C_{1-6} alkylcarbonyloxy group, (20) a C_{1-6} alkylsulfonyloxy group, (21) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom,

a C_{1-6} alkyl group or a C_{1-6} alkoxy group, (22) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, or

- (23) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6} alkoxy group,
- [16] the compound as described in [2] above, wherein Q^1 represents (1) a C_{6-14} aryl group, (2) a pyridyl group, (3) a thienyl group or (4) a benzofuryl group, wherein each of said groups may optionally be substituted with
- each of said groups may optionally be substituted with one to three substituents selected from the group consisting of (i) halogen, (ii) hydroxy, (iii) a C_{1-6}
- consisting of (i) halogen, (ii) hydroxy, (iii) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of halogen, cyano, a C_{1-6} alkoxy group and a C_{1-6} alkylthio group, (iv) a C_{1-6} alkoxy group which may
- optionally be substituted with one to three substituents selected from the group consisting of cyano and halogen, (v) amino which may optionally be substituted with one or two C_{1-6} alkyl groups, (vi) benzyloxy, (vii) a C_{1-6} alkylthio group which may
- optionally be substituted with one to three substituents selected from the group consisting of cyano and halogen, (viii) a C_{1-6} alkylsulfinyl group, (ix) a C_{1-6} alkylsulfonyl group, (x) a C_{6-14} aryloxy group, (xi) a C_{1-6} alkylsulfonyloxy group and (xii) a C_{1-6}
- with the adjacent carbon atom; A represents (1) a methylene group which may optionally be substituted with one or two halogen atoms or C_{1-6} alkyl groups, (2) a carbonyl group or (3) a thiocarbonyl group;
- 35 B represents a methylene group which may optionally be

WO 98/49150 PCT/JP98/01872

substituted with one or two C_{1-6} alkyl groups; Q^2 represents (1) hydroxy,

- (2) a C_{1-6} alkoxy group,
- (3) (i) a C_{6-14} aryl group, (ii) a pyridyl group, (iii)
- a pyrrolyl group, (iv) a thiazolyl group, (v) a piperidyl group, (vi) a morpholinyl group, (vii) a imidazopyridyl group, (viii) a pyrrolidinyl group, (ix) a C_{3-14} cycloalkyl group, or (x) a C_{3-14} cycloalkenyl group, wherein each of said groups may optionally
- substituted with one to four halogen atoms,
 - (4) a C_{1-6} alkyl group which may optionally be substituted with one to three C_{1-6} alkoxyimino groups,
 - (5) a C_{2-6} alkenyl group,
- (6) an acyl group selected from the group consisting of a C_{1-6} alkyl-carbonyl group, a C_{6-14} arylcarbonyl group
 - and a C_{1-6} alkoxycarbonyl group,
 - (7) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (8) an amidino group which may optionally be
- 20 substituted with one to three C_{1-6} alkyl groups,
- (9) a group of $-S(0)_nR^{20}$ wherein n is 0, 1 or 2, and R^{20} represents a C_{1-6} alkyl group, a C_{6-14} aryl group or an amino group which may optionally be substituted with one or two C_{1-6} alkyl groups,
- 25 (10) a C₃₋₆ cycloalkyloxy group,
 - (11) a C₁₋₆ alkylcarbonyloxy group,
 - (12) a C_{6-14} arylcarbonyloxy group,
 - (13) a carbamoyloxy group which may optionally be substituted with one or two C_{1-6} alkyl groups,
- (14) amino which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{1-6} alkyl-carbonyl group, (iii) a C_{1-6} alkylsulfonyl group and (iv) aminocarbonyl which may optionally be substituted with

- one or two C_{1-6} alkyl groups, or
- (15) a group of $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group, or
- 5 (16) a C_{2-6} alkenyloxy group; $R^3 \ \text{and} \ R^4 \ \text{are the same or different, and each }$ represents
 - (1) a hydrogen atom,
 - (2) hydroxy,
- 10 (3) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) carboxyl, (ii) cyano, (iii) halogen, (iv) a C_{1-6} alkoxy group, (v) a C_{1-6} alkylthio group, (vi) a C_{1-6} alkylsulfonyl group, (vii)
- 15 a C_{1-7} alkanoyl group, (viii) a C_{1-6} alkoxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-6} alkylimino group, and (xi) hydroxy,
 - (4) a C_{3-14} cycloalkyl group,
 - (5) a C_{2-6} alkenyl group,
- 20 (6) a C_{2-6} alkynyl group,
 - (7) a C_{1-6} alkoxy group which may optionally be substituted with one to three C_{1-6} alkoxy groups,
 - (8) a C_{2-6} alkenyloxy group,
 - (9) a C_{2-6} alkynyloxy group,
- 25 (10) a C_{6-14} aryl group,
 - (11) a C_{7-19} aralkyl group,
 - (12) carbamoyloxy which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (13) an acyl group selected from the group consisting
- of (i) a C_{1-7} alkanoyl group which may optionally be substituted with one to three halogen atoms, (ii) a C_{1-6} alkoxycarbonyl group and (iii) a C_{7-19} aralkyloxycarbonyl group,
 - (14) amino which may optionally be substituted with one

or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{1-7} alkanoyl group, (iii) carbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups and (iv) a C_{1-6}

- 5 alkylsulfonyl group,
 - (15) carbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (16) thiocarbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups,
- (17) a group of $-S(O)_n R^{23}$ wherein n is 0, 1 or 2, and R^{23} represents (i) a C_{1-6} alkyl group which may optionally be substituted with one to three halogen atoms, (ii) a C_{6-14} aryl group, (iii) amino which may optionally be substituted with one or two substituents
- 15 selected from the group consisting of a C_{1-6} alkyl group and a C_{1-6} alkoxycarbonyl group, and (iv) a C_{1-6} alkoxycarbonyl group,
 - (18) a C₁₋₆ alkylcarbonyloxy group,
 - (19) a C₁₋₆ alkylsulfonyloxy group,
- 20 (20) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group,
 - (21) a pyrrolidinyl group or a morpholinyl group, or
 - (22) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6}
- 25 alkoxy group,

30

[17] the compound as described in [2] above, which is a compound represented by the formula:

wherein Q^1 represents a C_{6-10} aryl group which may optionally be substituted with one to three

35 substituents selected from the group consisting of (1)

halogen, (2) a C1-4 alkyl group which may optionally be substituted with one to five halogen atoms, (3) a C_{1-4} alkoxy group which may optionally be substituted with one to five halogen atoms, (4) a C_{1-4} alkylthio group which may optionally be substituted with one to five 5 halogen atoms and (5) an amino group which may optionally be substituted with one or two C_{1-4} alkyl groups; O² represents phenyl which may optionally be substituted with one to three halogen atoms; R^1 and R^2 are the same or different and each represents methyl 10 which may optionally be substituted with one to three halogen atoms; R^3 represents a C_{1-4} alkyl group, a C_{2-4} alkenyl group, a C_{2-4} alkynyl group or a C_{1-4} alkoxy group; A and B are the same or different and each 15 represents methylene which may optionally be substituted with one or two C_{1-4} alkyl groups which may optionally be substituted with one to three halogen atoms; and W represents O, [18] 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-methyl-20 3-phenyltetrahydro-1,3,5-triazine-2(1H)one or a salt thereof, [19] 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5methoxy-3-phenyltetrahydro-1,3,5-triazine-2(1H)one or a

25 [20] 1-[1-(3,5-dichloro-4-methoxyphenyl)-1methylethyl]-5-methyl-3-phenyltetrahydro-1,3,5triazine-2(1H)one or a salt thereof,
[21] a process for producing the compound of [1] above,
which comprises subjecting a urea or thiourea compound
30 having a group of the formula:

salt thereof,

wherein the respective symbols have the same meanings as defined in [1] above, on the ring-forming nitrogen

atoms, or a salt thereof, to a cyclization reaction, [22] a process for producing the compound of [2] above, which comprises

(1) reacting a compound of the formula:

5

$$Q^2 \xrightarrow{N} H \xrightarrow{R^2} R^1$$

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

$$R^5$$
 R^6

15

wherein R^5 and R^6 are the same or different and each represents a hydrogen atom or a hydrocarbon group which may optionally be substituted, or a salt thereof, a compound of the formula:

20

25

$$\mathbb{R}^7$$

wherein R⁷ and R⁸ are the same or different and each represents a hydrogen atom or a hydrocarbon group which may optionally be substituted, or a salt thereof, and a compound of the formula:

$$R^3-NH_2$$

wherein the respective symbols have the same meanings 30 as defined in [2] above or a salt thereof to provide a compound of the formula:

$$\begin{array}{c|c}
Q^2 & W & R^2 & R^1 \\
 & & N & R^7 & Q^1 \\
 & & & R^6 & R^3 & R^8
\end{array}$$

wherein R^5 , R^6 , R^7 and R^8 are as defined above; the other symbols have the same meanings as defined in [2] above or a salt thereof;

10

(2) reacting a compound of the formula:

$$Q^2$$
 N
 N
 N
 N
 Q^1

15

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

20

25

wherein X^1 and X^2 are the same or different and each represents a leaving group; the other symbols have the same meanings as defined in [2] above or a salt thereof to provide a compound of the formula:

30

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{R^{2}} \xrightarrow{R^{1}} Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{Q^{1}} Q^{1}$$

$$A \xrightarrow{N} \xrightarrow{B} \text{ or } \xrightarrow{R^{3}} \xrightarrow{R^{3}}$$

30

35

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof;

(3) reacting a compound of the formula:

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula X^1-A-X^2 wherein X^1 and X^2 are as defined above; A has the same meaning as defined in [2] above or a salt thereof to provide a compound of the formula:

$$Q^2 \xrightarrow{N} \overset{W}{\overset{H^2}{\overset{R^1}{\overset{Q^1}{\overset{}}}}}$$

15

10

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof;

(4) reacting a compound of the formula:

20

$$Q^2 \xrightarrow[H]{W} R^2 R^1$$

$$Q^1$$

$$R^4$$

25

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula X^1-A-X^2 wherein X^1 and X^2 are as defined above; A has the same meaning as defined in [2] above or a salt thereof to provide a compound of the formula:

$$Q^2$$
 N
 R^2
 R^1
 Q^1

35

30

wherein the respective symbols have the same meanings

20

25

35

as defined in [2] above or a salt thereof;

(5) reacting a compound of the formula:

$$Q^2 \underset{H}{ \searrow} \underset{H}{ \searrow} R^2 R^1$$

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with the compound of the formula:

 $\begin{array}{c} X^1 & X^2 \\ X^1 & A \end{array}$

wherein X¹ and X² are as defined above; A and R⁴ have 15 the same meaning as defined in [2] above or a salt thereof to provide a compound of the formula:

$$Q^{2} \xrightarrow{N} \overset{W}{\overset{R^{2}}{\overset{R^{1}}{\overset{}}}} Q^{1} \qquad Q^{2} \xrightarrow{N} \overset{W}{\overset{R^{2}}{\overset{}}\overset{R^{1}}{\overset{}}} Q^{1}$$

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof;

(6) reacting a compound of the formula:

$$Q^2 \xrightarrow[H]{W} \begin{array}{c} W \\ R^2 \\ N \\ Q^1 \\ B \\ X^1 \end{array}$$

wherein X¹ is as defined above; the other symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

$$X^2-A-NH-R^3$$

wherein X² is as defined above; A and R³ have the same meanings as defined in [2] above or a salt thereof to provide a compound of the formula:

$$Q^{2} \xrightarrow{N} \xrightarrow{R} \xrightarrow{R^{2} R^{1}} \xrightarrow{Q^{2}}$$

$$A \xrightarrow{N} \xrightarrow{B}$$

$$R^{3}$$

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof;

(7) reacting a compound of the formula:

10

5

$$Q^{2} \xrightarrow{N} \begin{array}{c} W & H^{2} & H^{1} \\ N & H & Q^{1} \end{array}$$

wherein X¹ is as defined above; the other symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

$$X^2-A-NH-R^3$$

wherein X^2 is as defined above; A and R^3 have the same meanings as defined in [2] above or a salt thereof to provide a compound of the formula:

25

30

20

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof,

(8) reacting a compound of the formula:

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

 $X^3 - B - X^4$

wherein X^3 and X^4 are the same or different and each represents a C_{1-6} alkoxy group, and B has the same meaning as defined in [2] above or a salt thereof to provide a compound of the formula:

15

$$Q^{2} \xrightarrow{N} \begin{array}{c} W \\ R^{2} \\ N \\ Q^{1} \\ Q^{1} \\ R^{3} \end{array}$$

20

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof;

(9) reacting a compound of the formula:

25

30

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

$$X^3 - B - X^4$$

wherein B has the same meaning as defined in [2] above, and the other symbols are as defined above or a salt thereof to provide a compound of the formula:

$$Q^{2} \xrightarrow{N} \begin{array}{c} W & R^{2} & R^{1} \\ N & N & Q^{1} \\ B & N & A \\ R^{3} & R^{3} \end{array}$$

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof;

(10) reacting a compound of the formula:

10

$$Q^{2} \xrightarrow{W} \begin{array}{c} R^{2} & R^{1} \\ N & N \\ N & Q^{1} \\ H & B \\ R^{3} \end{array}$$

15

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

$$X^1-A-X^2$$

20

wherein A has the same meaning as defined in [2] above, and the other symbols are as defined above or a salt thereof to provide a compound of the formula:

25

$$Q^{2} \xrightarrow{N} \begin{array}{c} W & R^{2} & R^{1} \\ N & N & Q^{1} \\ A & N & B \\ R^{3} & R^{3} \end{array}$$

30

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof; or

(11) reacting a compound of the formula:

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof with a compound of the formula:

$$10 X1-A-X2$$

wherein A has the same meaning as defined in [2] above, and the other symbols are as defined above or a salt thereof to provide a compound of the formula:

15

35

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{R^{2} R^{1}} Q^{1}$$

$$\xrightarrow{B} \xrightarrow{N} \xrightarrow{A}$$

wherein the respective symbols have the same meanings as defined in [2] above or a salt thereof,
[23] an agrochemical composition comprising the compound as described in [1] above and an agrochemically acceptable carrier,

25 [24] use of the compound as described in [1] above as a herbicide, and

[25] a method for weeding from a paddy field, plowland, orchard or non-crop land, which comprises scattering an effective amount of the compound as described in [1]

above on said paddy field, plowland, orchard or non-crop land.

[Best Mode for Carrying Out the Invention]

Referring to the above formula, Q^1 represents an aromatic ring group which may optionally be substituted. The aromatic ring group includes aryl, a

5- or 6-membered aromatic heterocyclic group which contains 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono-oxide or dioxide form) or a condensed ring group thereof with benzene ring or a 5- or 6-membered aromatic heterocyclic ring which contains 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono-oxide or dioxide form).

10 Specifically, said aryl group includes C_{6-14} aryl such as phenyl, naphthyl such as 1- or 2-naphthyl, anthranyl such as 1-, 2-, or 5-anthranyl, partially hydrogenated naphthyl such as 1,2,3,4-tetrahydro-5- or 6-naphthyl, etc. The 5- or 6-membered aromatic heterocyclic group or its condensed ring group includes 15 pyrrolyl (e.g. 1-, 2-, or 3-pyrrolyl), pyrazolyl (e.g. 1-, 3-, 4-, or 5-pyrazolyl), imidazolyl (e.g. 1-, 2-, 4-, or 5-imidazolyl), triazolyl (e.g. 1,2,3-triazol-4yl, 1,2,3-triazol-1-yl, 1,2,3-triazol-5-yl, 1,2,4-20 triazol-1-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-4-yl, 1,2,4-triazol-5-yl), tetrazolyl (e.g. tetrazol-1-, 2or 5-yl), furyl (e.g. 2- or 3-furyl), thienyl (e.g. 2or 3-thienyl), thienyl in which the sulfur atom is oxidized (e.g. 2- or 3-thienyl-1,1-dioxide), oxazolyl 25 (e.g. 2-, 4-, or 5-oxazolyl), isoxazolyl (e.g. 3-, 4-, or 5-isoxazolyl), oxadiazolyl (e.g. 1,2,3-oxadiazol-4or 5-yl, 1,2,4-oxadiazol-3- or 5-yl, 1,2,5-oxadiazol-3yl, 1, 3, 4-oxadiazol-2-yl), thiazolyl (e.g. 2-, 4-, or 5-thiazolyl), isothiazolyl (e.g. 3-, 4-, or 5-30 isothiazolyl), thiadiazolyl (e.g. 1,2,3-thiadiazol-4or 5-yl, 1,2,4-thiadiazol-3- or 5-yl, 1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-2-yl), pyridyl (e.g. 2-, 3-, or 4-pyridyl), pyridyl in which the nitrogen atom is oxidized (e.g. 2-, 3-, or 4-pyridyl-N-oxide), 35 pyridazinyl (e.g. 3- or 4-pyridazinyl), pyridazinyl in which one or both of the nitrogen atoms are oxidized

WO 98/49150

20

25

30

32

PCT/JP98/01872

(e.g. 3-, 4-, 5- or 6-pyridazinyl-N-oxide), pyrimidinyl (e.g. 2-, 4-, or 5-pyrimidinyl), pyrimidinyl in which one or both of the nitrogen atoms are oxidized (e.g. 2-, 4-, 5- or 6-pyrimidinyl-N-oxide), pyrazinyl,

- benzofuryl, indolyl (e.g. 3H-indol-2-, 3-, 4-, 5-, 6or 7-yl), quinolyl (e.g. 3-, 4-, 5-, 6-, 7-, or 8quinolyl), isoquinolyl, pyrido[2,3-d]pyrimidinyl (e.g. pyrido[2,3-d]pyrimidin-2-yl), naphthyridinyl such as 1,5-, 1,6-, 1,7-, 1,8-, 2,6-, or 2,7-naphthylidinyl
- (e.g. 1,5-naphthylidin-2- or 3-yl), thieno[2,3d]pyridyl (e.g. thieno[2,3-d]pyridin-3-yl),
 pyrazinoquinolyl (e.g. pyrazino[2,3-d]quinolin-2-yl),
 chromenyl (e.g. 2H-chromen-2- or 3-yl), imidazo[1,2a]pyridyl, imidazo[2,1-b]thiazolyl, imidazo[1,2-
- a)pyrimidinyl, imidazo[1,2-b)pyridazinyl, imidazo[1,2-a]imidazolyl, imidazo[2,1-b](1.3.4)thiadiazolyl, pyrazolo[1,5-a]pyrimidinyl, pyrazolo[5,1-b]thiazolyl, and pyrazolo[1,5-a]pyridyl.

The aromatic ring group may optionally be substituted by 1 to 4 substituents selected from the group consisting of hydroxy, amino, cyano, sulfamoyl, sulfamoyloxy, mercapto, nitro, halogen, organic residues, and sulfo.

Preferred among the above-mentioned substituent groups are cyano, nitro, halogen, and organic residues. Particularly preferred are halogen and organic residues.

The halogen as mentioned just above includes fluorine, chlorine, bromine, and iodine. The organic residue includes (1) a hydrocarbon group, (2) a heterocyclic group, (3) an acyl group, (4) a group of the formula -T-Q⁰ wherein Q⁰ represents a hydrocarbon group, a heterocyclic group, or an acyl group; T represents O,

20

25

30

35

(O)_k

or S-S; and k represents 0, 1, or 2, (5) a group of the formula:

$$-N$$
 Q^3 Q^4

wherein Q^3 represents a hydrogen atom, a hydrocarbon group, or an acyl group; Q^4 represents a hydrocarbon group or an acyl group or Q^3 and Q^4 may form a ring together with the adjacent nitrogen atom, (6) a group of the formula:

15 -SO₂N Q³

wherein the respective symbols have the same meanings as defined above, (7) an optionally substituted carbamoyl, (8) an optionally substituted carbamoyloxy, (9) an optionally substituted ureido, (10) an optionally substituted thiocarbamoyl, (11) carboxy, and (12) a group of the formula

$$-0-SO_2-Q^4$$

wherein Q^4 has the same meaning as defined above.

The hydrocarbon group, heterocyclic group, and acyl group for the above-mentioned organic residue, the hydrocarbon group, heterocyclic group, and acyl group for Q^0 , and the hydrocarbon group and acyl group for Q^4 will be described in detail hereinafter.

The above-mentioned carbamoyl, carbamoyloxy, ureido and thiocarbamoyl may respectively be substituted by 1 or 2 substituents selected from the group consisting of the hydrocarbon group, heterocyclic group, and acyl group which will be described in detail hereinafter.

The heterocyclic group for said organic residue

WO 98/49150 PCT/JP98/01872

34

and the heterocyclic group for Q^0 may optionally be substituted by 1 to 3 substituents selected from the group consisting of the hydrocarbon group, acyl group, and halogen which will be described in detail hereinafter.

5

10

15

20

25

30

35

The hydrocarbon group as used throughout this specification includes a straight-chain, branched, or cyclic aliphatic hydrocarbon group which may contain a double bond or a triple bond, an aryl group and an aralkyl group. Specifically said hydrocarbon group includes an alkyl group, an alkenyl group, an alkynyl group, an aryl group, and an aralkyl group. Particularly preferred are C_{1-19} hydrocarbon group.

The alkyl group mentioned above is preferably a straight-chain or branched alkyl group of 1 to 6 carbon atoms or cycloalkyl group of 3 to 14 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, neopentyl, cyclopentyl, n-hexyl, isohexyl, cyclohexyl, etc.

The alkenyl group mentioned above is preferably a straight-chain or branched alkenyl group of 2 to 6 carbon atoms or cycloalkenyl group of 3 to 14 carbon atoms including allyl, isopropenyl, isobutenyl, 1-methylallyl, 2-pentenyl, 2-hexenyl, 2-cyclohexenyl, etc.

The alkynyl group mentioned above is preferably an alkynyl group of 2 to 6 carbon atoms, such as propargyl, 2-butynyl, 3-butynyl, 3-pentynyl, 3-hexynyl, etc.

The aryl group mentioned above is preferably an aryl group of 6 to 14 carbon atoms, such as phenyl, naphthyl, anthryl, etc.

The aralkyl group mentioned above is preferably an aralkyl group of 7 to 19 carbon atoms, including phenyl- C_{1-4} alkyl such as benzyl, phenethyl,

35

PCT/JP98/01872

35

phenylpropyl; benzhydryl, and trityl.

When the hydrocarbon group is an alkyl group, cycloalkyl group, an alkenyl group, cycloalkenyl group or an alkynyl group, said hydrocarbon group may 5 optionally be substituted by 1 to 3 substituents selected from the group consisting of hydroxy, cyano, sulfamoyl, mercapto, carboxy, an alkylthio group (e.g. C₁₋₄ alkylthio such as methylthio, ethylthio, npropylthio, isobutylthio, etc.), halogen (e.g. fluorine, chlorine, bromine, iodine), an alkoxy group 10 (e.g. C_{1-6} alkoxy such as methoxy, ethoxy, n-propoxy, tert-butoxy, n-hexyloxy, etc.), nitro, an alkoxycarbonyl group (e.g. C_{1-6} alkoxy-carbonyl such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, 15 isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tertbutoxycarbonyl, etc.), amino, an alkylamino group [e.g. mono- or di-C₁₋₆ alkylamino such as methylamino, ethylamino, n-propylamino, n-butylamino, tert-20 butylamino, n-pentylamino, n-hexylamino, dimethylamino, diethylamino, methylethylamino, di-(n-propyl)amino, di-(n-butyl)amino, etc.], an alkoxyimino group (e.g. C_{1-6} alkoxyimino such as methoxyimino, ethoxyimino, npropoxyimino, tert-butoxyimino, n-hexyloxy-imino, etc.), hydroxyimino an alkylsulfonyl group (e.g. C₁₋₆ 25 alkylsulfonyl such as methylsulfonyl), cyano, carboxyl, hydroxy, an alkylcarbonyloxy group (e.g. C₁₋₆ alkylcarbonyloxy such as methylcarbonyloxy), an alkanoyl (e.g. C₁₋₇ alkanoyl such as formyl, acetyl), 30 and an alkylimino group (e.g. C1-6 alkylimino such as methylimino).

Also, when the hydrocarbon group is an aryl group or an aralkyl group, said hydrocarbon group may optionally be substituted by 1 to 5 (preferably 1 to 3) substituents selected from the group consisting of an

36

alkyl group (e.g. C_{1-6} alkyl such as methyl, ethyl, npropyl, isopropyl, n-butyl, isobutyl, sec-butyl, tertbutyl, n-pentyl, sec-pentyl, isopentyl, neopentyl, nhexyl, and isohexyl, C_{3-6} cycloalkyl such as cyclohexyl, etc.), an alkenyl group (e.g. C_{2-6} alkenyl such as 5 allyl, isopropenyl, isobutenyl, 1-methylallyl, 2pentenyl, 2-hexenyl, etc.), an alkynyl group (e.g. C2-6 alkynyl such as propargyl, 2-butynyl, 3-butynyl, 3pentynyl, 3-hexynyl, etc.), an alkoxy group (e.g. C₁₋₆ 10 alkoxy such as methoxy, ethoxy, n-propoxy, tert-butoxy, n-hexyloxy, etc.), an acyl group [e.g. C1-7 alkanoyl such as formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl, heptanoyl, etc.; C₆₋₁₄ arylcarbonyl such as benzoyl, naphthalenecarbonyl, etc.; 15 C₁₋₆ alkoxy-carbonyl such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, etc.; C_{6-14} aryloxy-carbonyl such as phenoxycarbonyl, etc.; C₇₋₁₉ aralkyl-carbonyl such as 20 phenyl-C₁₋₄ alkylcarbonyl (e.g. benzylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl, etc.); C₇₋₁₉ aralkyloxycarbonyl such as benzyloxycarbonyl, etc.], nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, halogen (e.g. fluorine, chlorine, bromine, iodine), and 25 an alkylthio group (e.g. C1-4 alkylthio group such as methylthio, ethylthio, n-propylthio, isobutylthio, etc.).

The heterocyclic group as used throughout this specification includes 3- to 8-membered heterocyclic group, preferably 5- or 6-membered heterocyclic group which contains 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form) or a condensed ring group thereof with benzene ring or a 3-to 8-membered heterocyclic ring, preferably 5- or 6-

30

35

5

membered heterocyclic ring which may contain 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form), preferably condensed ring group of such 5- or 6-membered heterocyclic ring with a 5- or 6-membered heterocyclic ring which may contain 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form).

10 Specifically, the heterocyclic group includes aziridinyl (e.g. 1- or 2-aziridinyl), azirinyl (e.g. 1or 2-azirinyl), azetyl (e.g. 2-, 3- or 4-azetyl), azetidinyl (e.g. 1-, 2-, or 3-azetidinyl), perhydroazepinyl (e.g. 1-, 2-, 3-, or 4-15 perhydroazepinyl), perhydroazocinyl (e.g. 1-, 2-, 3-, 4-, or 5-perhydroazocinyl), pyrrolyl (e.g. 1-, 2-, or 3-pyrrolyl), pyrazolyl (e.g. 1-, 3-, 4- or 5pyrazolyl), imidazolyl (e.g. 1-, 2-, 4-, or 5imidazolyl), triazolyl (e.g. 1,2,3-triazol-1-, 4- or 5yl, 1,2,4-triazol-1-, 3-, 4- or 5-yl), tetrazolyl (e.g. 20 tetrazol-1-, 2- or 5-yl), furyl (e.g. 2- or 3-furyl), thienyl (e.g. 2- or 3-thienyl), thienyl in which the sulfur atom is oxidized (e.g. 2- or 3-thienyl-1,1dioxide), oxazolyl (e.g. 2-, 4-, or 5-oxazolyl), 25 isoxazolyl (e.g. 3-, 4-, or 5-isoxazolyl), oxadiazolyl (e.g. 1,2,3-oxadiazol-4- or 5-yl, 1,2,4-oxadiazol-3- or 5-yl, 1,2,5-oxadiazol-3-yl, 1,3,4-oxadiazol-2-yl), thiazolyl (e.g. 2-, 4-, or 5-thiazolyl), isothiazolyl (e.g. 3-, 4-, or 5-isothiazolyl), thiadiazolyl (e.g.

1,2,3-thiadiazol-4- or 5-yl, 1,2,4-thiadiazol-3-, or 5-yl, 1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-2-yl), pyrrolidinyl (e.g. 1-, 2-, or 3-pyrrolidinyl), pyridyl (2-, 3-, or 4-pyridyl), pyridyl in which the nitrogen atom is oxidized (e.g. 2-, 3-, or 4-pyridyl-N-oxide),

pyridazinyl (e.g. 3- or 4-pyridazinyl), pyridazinyl in which one or both of the nitrogen atoms are oxidized

(e.g. 3-, 4-, 5- or 6-pyridazinyl-N-oxide), pyrimidinyl (e.g. 2-, 4-, or 5-pyrimidinyl), pyrimidinyl in which one or both of the nitrogen atoms are oxidized (e.g. 2-, 4-, 5- or 6-pyrimidinyl-N-oxide), pyrazinyl, 5 piperidinyl (e.g. 1-, 2-, 3-, or 4-piperidinyl), piperazinyl (e.g. 1- or 2-piperazinyl), indolyl (e.g. 3H-indol-2-, 3-, 4-, 5-, 6- or 7-yl), pyranyl (e.g. 2-, 3-, or 4-pyranyl), thiopyranyl (e.g. 2-, 3-, or 4thiopyranyl), thiopyranyl in which the sulfur atom is 10 oxidized (e.g. 2-, 3-, or 4-thiopyranyl-1,1-dioxide), morpholinyl (e.g. 2-, 3-, or 4-morpholinyl), thiomorpholinyl, quinolyl (e.g. 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolyl), isoquinolyl, pyrido[2,3-d]pyrimidinyl (e.g. pyrido[2,3-d]pyrimidin-2-yl), naphthyridinyl such 15 as 1,5-, 1,6-, 1,7-, 1,8-, 2,6-, or 2,7-naphthyridinyl (e.g. 1,5-naphthyridin-2- or 3-yl), thieno[2,3d)pyridyl (e.g. thieno[2,3-d)pyridin-3-yl), pyrazinoquinolyl (e.g. pyrazino[2,3-d]quinolin-2-yl), chromenyl (e.g. 2H-chromen-2- or 3-yl), etc. 20 The above-mentioned heterocyclic group may optionally be substituted by 1 to 3 substituents selected from the group consisting of an alkyl group (e.g. C_{1-6} alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, npentyl, sec-pentyl, isopentyl, neopentyl, n-hexyl, and 25 isohexyl, C_{3-6} cycloalkyl such as cyclohexyl, etc.), an alkenyl group (e.g. C2-6 alkenyl such as allyl, isopropenyl, isobutenyl, 1-methylallyl, 2-pentenyl, 2hexenyl, etc.), an alkynyl group (e.g. C₂₋₆ alkynyl such

as propargyl, 2-butynyl, 3-butynyl, 3-pentynyl, 3-hexynyl, etc.), an alkoxy group (e.g. C₁₋₆ alkoxy such as methoxy, ethoxy, n-propoxy, tert-butoxy, n-hexyloxy, etc.), an acyl group [e.g. C₁₋₇ alkanoyl such as formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl, heptanoyl, etc.; C₆₋₁₄ aryl-carbonyl such as

5

10

etc.).

benzoyl, naphthalenecarbonyl, etc.; C_{1-6} alkoxy-carbonyl such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, etc.; C_{6-14} aryloxy-carbonyl such as phenoxycarbonyl, etc.; C_{7-19} aralkyl-carbonyl such as phenyl- C_{1-4} alkylcarbonyl (e.g. benzylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl, etc.); C_{7-19} aralkyloxycarbonyl such as benzyloxycarbonyl, etc.], nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, halogen (e.g. fluorine, chlorine, bromine, iodine), and an alkylthio group (e.g. C_{1-4} alkylthio group such as methylthio, ethylthio, n-propylthio, isobutylthio,

15 The acyl group as used throughout this specification includes an acyl group of 1 to 20 carbon atoms, which is derived from any organic carboxylic Specifically, mention can be made of an alkanoyl group, preferably a C1-7 alkanoyl group (e.g. formyl, 20 acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl, heptanoyl, etc.), an arylcarbonyl group, preferably a C₆₋₁₄ aryl-carbonyl group (e.g. benzoyl, naphthalenecarbonyl, etc.), an alkoxycarbonyl group, preferably a C₁₋₆ alkoxy-carbonyl group (e.g. 25 methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, etc.), an aryloxycarbonyl group, preferably a C_{6-14} aryloxycarbonyl group (e.g phenoxycarbonyl etc.), an 30 aralkylcarbonyl group, preferably a C7-19 aralkylcarbonyl group (e.g. phenyl- C_{1-4} alkylcarbonyl such as benzylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl; benzhydrylcarbonyl; naphthyl-C1-4 alkylcarbonyl such as naphthylethylcarbonyl, etc.), an aralkyloxycarbonyl group, preferably a C₇₋₁₉ 35

aralkyloxycarbonyl (e.g. phenyl- C_{1-4} alkoxycarbonyl such as benzyloxycarbonyl, phenethyloxycarbonyl, phenylpropyloxycarbonyl, etc.), a 5- or 6-membered heterocyclic-carbonyl group having 1 to 4 hetero atoms 5 selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form) or condensed heterocycle-carbonyl thereof with benzene ring or a 5- or 6-membered heterocyclic ring which may contain 1 to 4 hetero atoms selected 10 from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form) (e.g. pyrrolylcarbonyl such as 2-, or 3pyrrolylcarbonyl; pyrazolylcarbonyl such as 3-, 4-, or 5-pyrazolylcarbonyl; imidazolylcarbonyl such as 2-, 4-, 15 or 5-imidazolylcarbonyl; triazolylcarbonyl such as 1,2,3-triazol-4-ylcarbonyl, and 1,2,4-triazol-3-ylcarbonyl; tetrazolylcarbonyl such as 1H- or 2Htetrazol-5-ylcarbonyl; furylcarbonyl such as 2- or 3furylcarbonyl; thienylcarbonyl such as 2- or 3-20 thienylcarbonyl; oxazolylcarbonyl such as 2-, 4-, or 5oxazolylcarbonyl; isoxazolylcarbonyl such as 3-, 4-, or 5-isoxazolylcarbonyl; oxadiazolylcarbonyl such as 1,2,3-oxadiazol-4- or 5-ylcarbonyl, 1,2,4-oxadiazol-3or 5-ylcarbonyl, 1,2,5-oxadiazol-3- or 4-ylcarbonyl, 25 and 1,3,4-oxadiazol-2-ylcarbonyl; thiazolylcarbonyl such as 2-, 4-, or 5-thiazolylcarbonyl; isothiazolylcarbonyl such as 3-, 4-, or 5isothiazolylcarbonyl; thiadiazolylcarbonyl such as 1,2,3-thiadiazol-4- or 5-ylcarbonyl, 1,2,4-thiadiazol-30 3- or 5-ylcarbonyl, 1,2,5-thiadiazol-3- or 4ylcarbonyl, and 1,3,4-thiadiazol-2-ylcarbonyl; pyrrolidinylcarbonyl such as 2- or 3pyrrolidinylcarbonyl; pyridylcarbonyl such as 2-, 3-, or 4-pyridylcarbonyl; pyridylcarbonyl in which the 35 nitrogen atom is oxidized such as 2-, 3-, or 4-pyridyl-N-oxidocarbonyl; pyridazinylcarbonyl such as 3- or 4-

pyridazinylcarbonyl; pyridazinylcarbonyl in which one or both of nitrogen atoms are oxdiazed such as 3-, 4-, 5- or 6-pyridazinyl-N-oxidocarbonyl; pyrimidinylcarbonyl such as 2-, 4-, or 5-5 pyrimidinylcarbonyl; pyrimidinylcarbonyl in which one or both of the nitrogen atoms are oxidized such as 2-, 4-, 5- or 6-pyrimidinyl-N-oxidocarbonyl; pyrazinylcarbonyl; piperidinylcarbonyl such as 2-, 3-, or 4-piperidinylcarbonyl; piperazinylcarbonyl; indolylcarbonyl such as 3H-indol-2- or 3-ylcarbonyl; 10 pyranylcarbonyl such as 2-, 3-, or 4-pyranylcarbonyl; thiopyranylcarbonyl such as 2-, 3-, or 4thiopyranylcarbonyl; quinolylcarbonyl such as 3-, 4-, 5-, 6-, 7-, or 8-quinolylcarbonyl; isoquinolylcarbonyl; pyrido[2,3-d]pyrimidinylcarbonyl such as pyrido[2,3-15 d]pyrimidin-2-ylcarbonyl; naphthyridinylcarbonyl such as 1,5-, 1,6-, 1,7-, 1,8-, 2,6-, or 2,7naphthyridinylcarbonyl (e.g. 1,5-naphthyridin-2- or 3ylcarbonyl); thieno[2,3-d]pyridylcarbonyl such as 20 thieno(2,3-d)pyridin-3-ylcarbonyl); pyrazinoquinolylcarbonyl such as pyrazino[2,3b]quinolin-2-ylcarbonyl; chromenylcarbonyl such as 2Hchromen-2- or 3-ylcarbonyl, etc.), and a 5- or 6membered heterocycle-acetyl group, such as 5- or 6membered heterocycle-acetyl which contains 1 to 4 25 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form) such as 2-pyrrolylacetyl, 3imidazolylacetyl, 5-isoxazolylacetyl, etc.

When the acyl group is an alkanoyl group or an alkoxy-carbonyl group, said acyl group may optionally be substituted by 1 to 3 substituents selected from the group consisting of hydroxy, cyano, sulfamoyl, mercapto, carboxy, an alkylthio group (e.g. C₁₋₄) alkylthio such as methylthio, ethylthio, n-propylthio, isopropylthio, isobutylthio, etc.), halogen (e.g.

5

10

15

fluorine, chlorine, bromine, iodine), an alkoxy group (e.g. C₁₋₆ alkoxy such as methoxy, ethoxy, n-propoxy, tert-butoxy, n-hexyloxy, etc.), nitro, an alkoxycarbonyl group (e.g. C_{1-6} alkoxy-carbonyl such as methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tertbutoxycarbonyl, etc.), amino, an alkylamino group [e.g. mono- or di-C₁₋₆ alkylamino such as methylamino, ethylamino, n-propylamino, n-butylamino, tertbutylamino, n-pentylamino, n-hexylamino, dimethylamino, diethylamino, methylethylamino, di-(n-propyl)amino, di-(n-butyl)amino, etc.], an alkoxyimino group (e.g. C₁₋₆ alkoxyimino such as methoxyimino, ethoxyimino, npropoxyimino, tert-butoxyimino, n-hexyloxy-imino, etc.), and hydroxyimino.

Also, when the acyl group is an aryl-carbonyl group, an aryloxy-carbonyl group, an aralkyl-carbonyl group, an aralkyloxycarbonyl group, a 5- or 6-membered 20 heterocycle-carbonyl group or a 5- or 6-membered heterocycle-acetyl group, said acyl group may optionally be substituted by 1 to 5 (preferably 1 to 3) substituents selected from the group consisting of an alkyl group (e.g. C₁₋₆ alkyl such as methyl, ethyl, npropyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-25 butyl, n-pentyl, sec-pentyl, isopentyl, neopentyl, nhexyl, and isohexyl, C_{3-6} cycloalkyl such as cyclohexyl, etc.), an alkenyl group (e.g. C_{2-6} alkenyl such as allyl, isopropenyl, isobutenyl, 1-methylallyl, 2-30 pentenyl, 2-hexenyl, etc.), an alkynyl group (e.g. C2-6 alkynyl such as propargyl, 2-butynyl, 3-butynyl, 3pentynyl, 3-hexynyl, etc.), an alkoxy group (e.g. C1-6 alkoxy such as methoxy, ethoxy, n-propoxy, tert-butoxy, n-hexyloxy, etc.), an acyl group [e.g. C_{1-7} alkanoyl 35 such as formyl, acetyl, propionyl, butyryl, isobutyryl,

15

20

25

pentanoyl, hexanoyl, heptanoyl, etc.; C₆₋₁₄ arylcarbonyl such as benzoyl, naphthalenecarbonyl, etc.; C₁₋₆ alkoxy-carbonyl such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, 5 tert-butoxycarbonyl, etc.; C_{6-14} aryloxy-carbonyl such as phenoxycarbonyl, etc.; C₇₋₁₉ aralkyl-carbonyl such as phenyl-C₁₋₄ alkylcarbonyl (e.g. benzylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl, etc.); C7-19 10 aralkyloxycarbonyl such as phenyl- C_{1-4} alkyloxycarbonyl (e.g. benzyloxycarbonyl, etc.)], nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, halogen (e.g. fluorine, chlorine, bromine, iodine), and an alkylthio group (e.g. C_{1-4} alkylthio group such as methylthio, ethylthio, n-propylthio, isobutylthio, etc.).

The group represented by the formula $-T-0^{\circ}$ specifically includes an alkyloxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, a heterocycle-oxy group, an acyloxy group, an alkylthio group, an alkenylthio group, an arylthio group, an aralkylthio group, a heterocycle-thio group, an acylthio group, an alkyldithio group, an aryldithio group, an aralkyldithio group, an alkylsulfinyl group, an alkenylsulfinyl group, an arylsulfinyl group, an aralkylsulfinyl group, a heterocycle-sulfinyl group, an alkylsulfonyl group, an alkenylsulfonyl group, an arylsulfonyl group, an aralkylsulfonyl group, and a heterocycle-sulfonyl group.

The alkyloxy mentioned above is preferably a 30 straight-chain, branched or cyclic alkyloxy group of 1 to 6 carbon atoms, e.g. C_{1-6} alkoxy or C_{3-6} cycloalkyloxy such as methoxy, ethoxy, n-propoxy, isopropoxy, nbutoxy, isobutoxy, sec-butoxy, tert-butoxy, npentyloxy, sec-pentyloxy, isopentyloxy, neopentyloxy, 35 cyclopentyloxy, n-hexyloxy, isohexyloxy, cyclohexyloxy,

44

etc.

5

10

15

20

25

30

35

The alkenyloxy group mentioned above is preferably a straight-chain, branched, or cyclic alkenyloxy group of 2 to 6 carbon atoms, e.g. C_{2-6} alkenyloxy such as allyloxy, isopropenyloxy, 1-butenyloxy, 2-pentenyloxy, or 2-hexenyloxy, C_{3-6} cycloalkenyloxy such as 2-cyclohexenyloxy, etc.

The aryloxy group mentioned above is preferably an aryloxy group of 6 to 14 carbon atoms, such as phenoxy, naphthyloxy, etc.

The aralkyloxy group mentioned above is preferably an aralkyloxy group of 7 to 19 carbon atoms, such as $phenyl-C_{1-4}$ alkyloxy, e.g. benzyloxy, phenethyloxy, phenylpropyloxy, etc.

The heterocycle-oxy group mentioned above is a group of the formula T'-O- wherein T' represents above-mentioned heterocyclic group, specifically including pyrrolyloxy such as 2- or 3-pyrrolyloxy; pyrazolyloxy such as 3-, 4-, or 5-pyrazolyloxy; imidazolyloxy such as 2-, 4-, or 5-imidazolyloxy; triazolyloxy such as 1,2,3-triazol-4-yloxy and 1,2,4-triazol-3-yloxy; tetrazolyloxy such as 1H- or 2H-tetrazol-5-yloxy; furyloxy such as 2- or 3-furyloxy; thienyloxy such as 2- or 3-thienyloxy; thienyloxy such as cor 3-thienyloxy; thienyloxy; thienyloxy; oxazolyloxy such as 2-, 4-, or 5-oxazolyloxy, etc.

The acyloxy group mentioned above is a group of the formula T"-0- wherein T" represents above-mentioned acyl, specifically including C_{1-6} alkyl-carbonyloxy such as acetoxy, propionyloxy, butyryloxy, pentanoyloxy, and hexanoyloxy; C_{7-19} aralkylcarbonyloxy such as phenyl- C_{1-4} alkylcarbonyloxy, (e.g. benzylcarbonyloxy, phenethylcarbonyloxy, etc.; C_{6-14} arylcarbonyloxy such as benzoyloxy and naphthoyloxy; heterocycle-carbonyloxy such as thienylcarbonyloxy and benzothienylcarbonyloxy, etc.

45

The alkylthio group mentioned above is preferably a straight-chain, branched, or cyclic C_{1-6} alkylthio group, e.g. C_{1-6} alkylthio and C_{3-6} cycloalkylthio such as methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio, tertbutylthio, n-pentylthio, sec-pentylthio, isopentylthio, neopentylthio, cyclopentylthio, n-hexylthio, isohexylthio, cyclohexylthio, etc.

5

10

15

20

25

30

35

The alkenylthio group mentioned above is preferably a straight-chain, branched, or cyclic C_{2-6} alkenylthio group, e.g. C_{2-6} alkenylthio and C_{3-6} cycloalkenylthio such as allylthio, isopropenylthio, 1-butenylthio, 2-pentenylthio, 2-hexenylthio, and cyclohexenylthio, etc.

The arylthic group mentioned above is preferably a $C_{6\text{--}14}$ arylthic group such as phenylthic, and naphthylthic, etc.

The aralkylthio group mentioned above is preferably a C_{7-19} aralkylthio group, e.g. phenyl- C_{1-4} alkylthio such as benzylthio, phenethylthio, and phenylpropylthio, etc.

The heterocyclethio group mentioned above is a group of the formula T'-S- wherein T' represents above-mentioned heterocyclic group, specifically including pyrrolylthio such as 2- or 3-pyrrolylthio; pyrazolylthio such as 3-, 4-, or 5-pyrazolylthio; imidazolylthio such as 2-, 4-, or 5-imidazolylthio; triazolylthio such as 1,2,3-triazol-4-ylthio and 1,2,4-triazol-5-ylthio; tetrazolylthio such as 1H- or 2H-tetrazol-5-ylthio; furylthio such as 2- or 3-furylthio; thienylthio such as 2- or 3-thienylthio; thienylthio in which the sulfur atom of the thienyl group is oxidized such as 2- or 3-thienyl-1,1-dioxide-thio; and oxazolylthio such as 2-, 4-, or 5-oxazolylthio, etc.

The acylthic group mentioned above is a group of the formula T"-S- wherein T" represents above-mentioned

46

acyl group, specifically including C_{1-6} alkyl-carbonylthio such as acetylthio, propionylthio, butyrylthio, pentanoylthio, and hexanoylthio; phenyl- C_{1-4} alkylcarbonylthio such as benzylcarbonylthio and phenethylcarbonylthio; C_{6-14} arylcarbonylthio such as benzoylthio, and naphthoylthio; heterocycle-carbonylthio such as thienylcarbonylthio and benzothienylcarbonylthio, etc.

5

10

15

20

25

30

35

The alkyldithio group mentioned above is preferably a straight-chain, branched, or cyclic C_{1-6} alkyldithio group, e.g. C_{1-6} alkyldithio or C_{3-6} cycloalkyldithio such as methyldithio, ethyldithio, n-propyldithio, cyclopentyldithio, etc.

The aryldithio group mentioned above is preferably a C_{6-14} aryldithio group such as phenyldithio, naphthyldithio, etc.

The aralkyldithio group mentioned above is preferably a C_{7-19} aralkyldithio group e.g. phenyl- C_{1-4} alkyldithio such as benzyldithio, phenethyldithio, etc.

The alkylsulfinyl group mentioned above is preferably a straight-chain, branched, or cyclic C_{1-6} alkylsulfinyl group, e.g. C_{1-6} alkylsulfinyl or C_{3-6} cycloalkylsulfinyl such as methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, isopropylsulfinyl, n-hexylsulfinyl, cyclohexylsulfinyl, etc.

The alkenylsulfinyl group mentioned above is preferably a straight-chain, branched, or cyclic C_{2-6} alkenylsulfinyl group, e.g. C_{2-6} alkenylsulfinyl or C_{3-6} cycloalkenylsulfinyl gorup such as allylsulfinyl.

The arylsulfinyl group mentioned above is preferably a C_{6-14} arylsulfinyl group such as phenylsulfinyl.

The aralkylsulfinyl group mentioned above is preferably a C_{7-19} aralkylsulfinyl group, e.g. phenyl- C_{1-4} alkylsulfinyl such as benzylsulfinyl.

5

10

15

20

25

30

35

PCT/JP98/01872

The heterocycle-sulfinyl group mentioned above is a group of the formula T'-SO- wherein T' represents above-mentioned heterocyclic group, specifically including pyrrolylsulfinyl such as 2- or 3-pyrrolylsulfinyl; pyrazolylsulfinyl such as 3-, 4- or 5-pyrazolylsulfinyl, etc.

The alkylsulfonyl group mentioned above is preferably a straight-chain, branched, or cyclic C_{1-6} alkylsulfonyl group, e.g. C_{1-6} alkylsulfonyl or C_{3-6} cycloalkylsulfonyl such as methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, cyclohexylsulfonyl, etc.

The alkenylsulfonyl group mentioned above is preferably a straight-chain, branched, or cyclic C_{2-6} alkenylsulfonyl group, e.g. C_{2-6} alkenylsulfonyl or C_{3-6} cycloalkenylsulfonyl gorup such as allylsulfonyl.

The arylsulfonyl group mentioned above is preferably a C_{6-14} arylsulfonyl group such as phenylsulfonyl, naphthylsulfonyl, etc.

The aralkylsulfonyl group mentioned above is preferably a C_{7-19} aralkylsulfonyl group, e.g. phenyl- C_{1-4} alkylsulfonyl such as benzylsulfonyl, phenylpropylsulfonyl, etc.

The heterocycle-sulfonyl group mentioned above is a group of the formula T'-SO₂- wherein T' represents above-mentioned heterocyclic group, specifically including pyrrolylsulfonyl such as 2- or 3-pyrrolylsulfonyl; pyrrazolylsulfonyl such as 3-, 4-, or 5-pyrazolylsulfonyl, etc.

The group of the formula:

$$-N$$
 Q^3 Q^4

specifically includes (1) an alkylamino group, preferably a mono- or $di-(C_{1-6}$ alkyl)amino group, e.g.

methylamino, ethylamino, n-propylamino, n-butylamino, tert-butylamino, n-pentylamino, n-hexylamino, dimethylamino, diethylamino, methylethylamino, di-(npropyl)amino, di-(n-butyl)amino, etc., (2) a 5 cycloalkylamino group, preferably a mono- or di-(C3-6 cycloalkyl) amino group, e.g. cyclopropylamino, cyclopentylamino, cyclohexylamino, dicyclohexylamino, etc., (3) an arylamino group, preferably a C_{6-14} arylamino group, e.g. anilino etc.; N-C₁₋₆ alkyl-N-C₆₋₁₄ arylamino, e.g. N-methylanilino, etc., (4) an 10 aralkylamino group, preferably a C₇₋₁₉ aralkylamino group, e.g. phenyl- C_{1-4} alkylamino such as benzylamino, 1-phenylethylamino, benzhydrylamino, tritylamino, etc., (5) an acylamino group, i.e. a group of the formula 15 T"T"'N- wherein T" represents above-mentioned acyl group; T"' represents hydrogen, a hydrocarbon group as mentioned above, or an acyl group as mentioned above; T" and T"' may form a ring together with the adjacent nitrogen atom; such as a C_{1-6} alkylcarbonylamino, a C_{6-14} 20 arylcarbonylamino group, and a heterocyclecarbonylamino group wherein the alkyl, aryl, and heterocyclic group of the heterocycle-carbonylamino are preferably those mentioned in the substituent of the aromatic ring group for Q1 thus specifically including acetamido, propionamido, butyrylamino, pentanoylamino, 25 hexanoylamino, 2-oxopyrrolidino, succinimido, benzylcarbonylamino, phenethylcarbonylamino, benzoylamino, naphthoylamino, phthalimido, thienylcarbonylamino, benzothienylcarbonylamino, etc., and (6) a cyclic amino group. Here, Q^3 and Q^4 may form a ring 30 together with the adjacent nitrogen atom, preferably a 3- to 7-membered ring, e.g. pyrrolidino, piperidino, morpholino, thiomorpholino, 1-piperazinyl, aziridino,

35 The group of the formula:

azetidino, etc.

49

specifically includes (1) a mono- or di-alkylsulfamoyl group, preferably a mono- or di(C₁₋₆ alkyl)sulfamoyl 5 group, e.g. methylsulfamoyl, ethylsulfamoyl, npropylsulfamoyl, n-hexylsulfamoyl, dimethylsulfamoyl, diethylsulfamoyl, methylethylsulfamoyl, di(nbutyl)sulfamoyl, etc., (2) a cycloalkylsulfamoyl group, preferably a C₃₋₆ cycloalkylsulfamoyl group, e.g. 10 cyclopropylsulfamoyl, cyclohexylsulfamoyl, etc., (3) an arylsulfamoyl group, preferably a C_{6-14} arylsulfamoyl group, e.g. phenylsulfamoyl etc., (4) an aralkylsulfamoyl group, preferably a C7-19 15 aralkylsulfamoyl group, e.g. phenyl-C₁₋₄ alkylsulfamoyl such as benzylsulfamoyl or phenylethylsulfamoyl; benzhydrylsulfamoyl, tritylsulfamoyl, etc., and (5) an acylsulfamoyl group, i.e. a group of the formula T"T"'NSO₂- wherein the respective symbols have the same 20 meanings as defined hereinbefore, e.g. C₁₋₆ alkylcarbonylsulfamoyl such as acetylsulfamoyl, phenyl-C₁₋₄ alkylcarbonylsulfamoyl such as benzylcarbonylsulfamoyl, heterocyclecarbonylsulfamoyl such as thienylcarbonylsulfamoyl, etc. Here, Q³ and Q⁴ may form a ring together with the adjacent nitrogen atom, 25 e.g. pyrrolidino, piperidino, morpholino, thiomorpholino, 1-piperadinyl, aziridino, azetidino, etc.

The group of the formula Q^4 -SO₂-O- specifically includes (1) an alkylsulfonyloxy group, preferably a C_{1-6} alkylsulfonyloxy group, e.g. methanesulfonyloxy, ethanesulfonyloxy, etc., (2) an arylsulfonyloxy group, preferably a C_{6-14} arylsulfonyloxy group, e.g. benzenesulfonyloxy, p-toluenesulfonyloxy, etc., (3) an aralkylsulfonyloxy group, preferably a C_{7-19}

50

aralkylsulfonyloxy group, e.g. phenyl- C_{1-4} alkylsulfonyloxy such as benzylsulfonyloxy, phenethylsulfonyloxy, etc., and (4) an acylsulfonyloxy group, e.g. C_{1-6} alkylcarbonylsulfonyloxy such as acetylsulfonyloxy, butyrylsulfonyloxy, etc.

5

10

15

20

25

30

35

 R^1 represents a hydrogen atom or a hydrocarbon group which may optionally be substituted. R^2 represents a hydrocarbon group which may optionally be substituted. Also, R^1 and R^2 may form a ring together with the adjacent carbon atom, wherein the ring may optionally be substituted. The hydrocarbon group and its substituent or substituents for R^1 or R^2 mentioned just above includes those mentioned hereinbefore.

The ring formed by R^1 and R^2 together with the adjacent carbon atom and which may optionally be substituted includes C_{4-7} cycloalkanes, e.g. cyclobutane, cyclopentane, cyclohexane, cycloheptane, etc. and C_{4-7} cycloalkenes, e.g. cyclobutene, cyclopentene, cyclohexene, cycloheptene, etc., each of which may optionally be substituted by the substituent or substituents as mentioned for the hydrocarbon group for R^1 and R^2 .

The substituent which may be present at 3- to 6position in the triazine derivative of the present
invention includes a group bonded through a carbon
atom, a nitrogen atom, an oxygen atom, a sulfur atom or
a phosphorus atom or halogen (e.g. fluorine, chlorine,
bromine, iodine).

The group bonded through a carbon atom is not particularly limited but can be any group which is bonded through a carbon atom. For example, a hydrocarbon group which may optionally be substituted, an acyl group which may optionally be substituted, cyano, a carbamoyl group which may optionally be substituted, a thiocarbamoyl group which may optionally

PCT/JP98/01872

be substituted, an amidino group which may optionally be substituted, or a heterocyclic group bonded through a carbon atom which may optionally be substituted, can be mentioned. The hydrocarbon group, its substituent or substituents, and the acyl group, its substituent or substituents may be the same groups as mentioned hereinbefore for substituents on Q¹. The carbamoyl group or thiocarbamoyl gorup may have 1 or 2 substituents, and the amidino group may have 1 to 3 substituents. The substituents for said carbamoyl, thiocarbamoyl and amidino may for example be the abovementioned hydrocarbon group, heterocyclic group or acyl group.

The above-mentioned heterocyclic group bonded through a carbon atom includes a 3- to 8-membered heterocyclic group which contains 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form) besides carbon and a condensed ring group thereof with benzene ring or a 3- to 8-membered heterocyclic ring which contains 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form).

Specifically, mention can be made of aziridinyl (e.g. 2-aziridinyl), azirinyl (e.g. 2-azirinyl), azetyl (e.g. 2- or 3-azetyl), azetidinyl (e.g. 2- or 3-azetidinyl), perhydroazepinyl (e.g. 2-, 3- or 4-perhydroazepinyl), perhydroazocinyl (e.g. 2-, 3-, 4- or 5-perhydroazocinyl), thienyl (e.g. 2- or 3-thienyl), furyl (e.g. 2- or 3-furyl), pyrrolidinyl (e.g. 2- or 3-pyrrolidinyl), pyrrolyl (e.g. 2- or 3-pyrrolyl), oxazolyl (e.g. 2-, 4-, or 5-oxazolyl), thiazolyl (e.g. 2-, 4-, or 5-thiazolyl), pyrazolyl (e.g. 3-, 4-, or 5-pyrazolyl), imidazolyl (e.g. 2-, 4-, or 5-imidazolyl), isoxazolyl (e.g. 3-, 4-, or 5-isoxazolyl), isothiazolyl

52

PCT/JP98/01872

(e.g. 3-, 4-, or 5-isothiazolyl), oxadiazolyl (e.g. 1,2,4-oxadiazol-3- or 5-yl), 1,3,4-oxadiazolyl), thiadiazolyl [e.g. 1,2,4-thiadiazol-3- or 5-yl), 1,3,4thiadiazolyl, 1,2,3-thiadiazol-4- or 5-yl), 1,2,5-5 thiadiazolyl, triazolyl (e.g. 1,2,3-triazolyl, 1,2,4triazol-3- or 5-yl), tetrazolyl (e.g. 1H- or 2Htetrazol-5-yl), pyridyl (e.g. 2-, 3-, or 4-pyridyl), pyridyl in which the nitrogen atom is oxidized (e.g. 2-, 3- or 4-pyridyl-N-oxido), pyrimidinyl (e.g. 2-, 4-, 10 or 5-pyrimidinyl), pyrimidinyl in which one or both of the nitrogen atoms are oxidized (e.g. 2-, 4-, 5- or 6pyrimidinyl-N-oxido), thiomorpholinyl (e.g. 2- or 3thiomorpholinyl), morpholinyl (e.g. 2- or 3morpholinyl), triazinyl (e.g. 1,2,4-triazin-3-, 5- or 15 6-yl), piperidinyl (e.g. 2- or 3-piperidinyl), pyranyl (e.g. 2- or 3-pyranyl), thiopyranyl (e.g. 2- or 3thiopyranyl), oxazinyl (e.g. 1,4-oxazin-2- or 3-yl), thiazinyl (e.g. 1,4-thiazin-2- or 3-yl, 1,3-thiazinyl), piperazinyl (e.g. 2- or 3-piperazinyl), pyridazinyl (e.g. 3- or 4-pyridazinyl), pyrazinyl, pyridazinyl in 20 which one or both of the nitrogen atoms are oxidized (e.g. 3-, 4-, 5- or 6-pyridazinyl-N-oxido), benzofuryl, benzothiazolyl, benzoxazolyl, tetrazolo[1,5b]pyridazinyl, triazolo[4,5-b]pyridazinyl, imidazo[1,2-25 a]pyridinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, indolidinyl, quinolidinyl, naphthyridinyl (e.g. 1,8naphthyridinyl), purinyl, pteridinyl, dibenzofuranyl, carbazolyl, acridinyl, phenanthridinyl, chromanyl, 30 benzoxazinyl, phenazinyl, phenothiazinyl, phenoxazinyl, etc.

The substituent for said heterocyclic group bonded through a carbon atom includes (1) nitro, (2) hydroxy, (3) oxo, (4) thioxo, (5) cyano, (6) carbamoyl, (7) 35 carboxy, (8) a C_{1-6} alkoxy-carbonyl group (e.g. methoxycarbonyl, ethoxycarbonyl, etc.), (9) sulfo, (10)

halogen (e.g. fluorine, chlorine, bromine, iodine), (11) a C_{1-6} alkoxy group (e.g. methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, s-butoxy, t-butoxy, etc.), (12) a C_{6-14} aryloxy group (e.g. phenoxy, 5 naphthyloxy, etc.), (13) a C_{6-14} aryloxy group which is halogenated by 1 to 3 halogens (e.g. halophenyloxy such as o-, m-, or p-chlorophenoxy, o-, m-, or pbromophenoxy, etc.), (14) a C_{1-6} alkylthio group (e.g. methylthio, ethylthio, n-propylthio, isopropylthio, n-10 butylthio, t-butylthio, etc.), (15) a C_{6-14} arylthio group (e.g. phenylthio etc.), (16) a C_{1-6} alkylsulfinyl group (e.g. methylsulfinyl, ethylsulfinyl, etc.), (17) a C_{1-6} alkylsulfonyl group (e.g. methylsulfonyl, ethylsulfonyl, etc.), (18) amino, (19) a C_{1-6} 15 alkylcarbonylamino group (e.g. acetylamino, propionylamino, etc.), (20) a mono- or di-C₁₋₆ alkylamino group (e.g. methylamino, ethylamino, npropylamino, isopropylamino, n-butylamino, dimethylamino, diethylamino, etc.), (21) imino, (22) a C_{1-5} alkylimino group (e.g. methylimino, ethylimino, 20 propylimino, butylimino, etc.), (23) hydroxyimino, (24) a C₁₋₆ alkoxyimino group (e.g. methoxyimino, ethoxyimino, n-propoxyimino, etc.), (25) hydrazono, (26) a mono- or di-C₁₋₄ alkylhydrazono group (e.g. 25 methylhydrazono, ethylhydrazono, dimethylhydrazono, etc.), (27) a C_{1-6} alkylcarbonyl group (e.g. formyl, acetyl, propionyl, etc.), (28) a C_{6-14} arylcarbonyl group (e.g. benzoyl), (29) a 5- or 6-membered heterocyclic group which contains 1 to 4 hetero atoms 30 selected from oxygen, sulfur, and nitrogen, besides carbon, and which may optionally be substituted by 1 to 4 substituents selected from the group consisting of (a) halogen (e.g. fluorine, chlorine, bromine, iodine), (b) a C₁₋₄ alkyl group (e.g. methyl, ethyl, propyl, isopropyl, etc.), and (c) halophenoxy (e.g. phenoxy 35

5

10

15

which is substituted by 1 to 3 halogens such as o-, m-, or p-chlorophenoxy, o-, m-, or p-bromophenoxy, etc.); for example, thienyl such as 2- or 3-thienyl, furyl such as 2- or 3-furyl, pyrazolyl such as 3-, 4-, or 5pyrazolyl, thiazolyl such as 2-, 4-, or 5-thiazolyl, isothiazolyl such as 3-, 4-, or 5-isothiazolyl, oxazolyl such as 2-, 4-, or 5-oxazolyl, isoxazolyl such as 3-, 4-, or 5-isoxazolyl, imidazolyl such as 2-, 4-, or 5-imidazolyl, triazolyl such as 1,2,3- or 1,2,4triazolyl, tetrazolyl such as 1H- or 2H-tetrazolyl, pyridyl such as 2-, 3-, or 4-pyridyl, pyrimidyl such as 2-, 4-, or 5-pyrimidyl, pyridazinyl such as 3- or 4pyridazinyl, quinolyl, isoquinolyl, indolyl, etc., and (30) a C_{1-6} alkyl which is halogenated by 1 to 5 halogens (e.g. difluoromethyl, trifluoromethyl, trifluoroethyl, trichloroethyl, etc.). The number of substituents may range from 1 to 5 within the limit of substitutable positions available and preferably 1 to 3.

20 The group bonded through a nitrogen atom is notparticularly limited but can be any group which is bonded through a nitrogen atom. For example, there can be used any of (1) nitro, (2) a group of the formula -NR9R10 wherein each of R9 and R10 represents hydrogen, a hydrocarbon group which may optionally be substituted, 25 an acyl group which may optionally be substituted, a carbamoyl group which may optionally be substituted, a heterocyclic group which may optionally be substituted, or a group of the formula $-SO_{D}R^{11}$ wherein R^{11} represents 30 hydrogen or a hydrocarbon group which may optionally be substituted; p represents 1 or 2, (3) a heterocyclic group bonded through a nitrogen atom which may optionally be substituted, and (4) a group of the formula $-N=C(R^{12})R^{13}$ wherein R^{12} and R^{13} are the same or different and each represents hydrogen, a hydrocarbon 35 group which may optionally be substituted, a

55

heterocyclic group which may optionally be substituted, a hydrocarbon-oxy group which may optionally be substituted, a hydrocarbon-thio group, or a group of the formula $-NR^{14}R^{15}$ wherein R^{14} and R^{15} each represents hydrogen or a hydrocarbon group which may optionally be substituted.

The hydrocarbon group which may optionally be substituted as mentioned for R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , or R^{15} includes the same hydrocarbon group which may optionally be substituted as mentioned above for the substituent of the aromatic ring group for Q^1 .

5

10

15

20

25

30

35

The optionally substituted hydrocarbon group of the hydrocarbon-oxy group which may optionally be substituted or the hydrocarbon-thio group which may optionally be substituted as mentioned for R^{12} or R^{13} includes the same hydrocarbon group which may optionally be substituted as mentioned above for the substituent of the aromatic ring group for Q^1 .

The acyl group which may optionally be substituted mentioned for R^9 or R^{10} includes the same acyl group which may optionally be substituted as mentioned above for the substituent of the aromatic ring group for Q^1 .

The carbamoyl group which may optionally be substituted mentioned for R^9 or R^{10} includes the same carbamoyl group which may optionally be substituted as mentioned above for the substituent of the aromatic ring group for Q^1 .

The heterocyclic group mentioned for R⁹, R¹⁰, R¹², or R¹³ includes the same 3- to 8-membered heterocyclic group which contains 1 to 4 hetero atoms selected from nitrogen (which may be in the oxide form), oxygen, sulfur (which may be in the mono- or dioxide form), besides carbon and its condensed ring group with benzene ring or a 3- to 8-membered heterocyclic ring which may contain 1 to 4 hetero atoms selected from

56

nitrogen (which may be in the oxide form), oxygen, and sulfur (which may be in the mono- or dioxide form) as mentioned above for the substituent of the aromatic ring group for Q^1 .

The substituent for this heterocyclic group includes the same substituent as those mentioned for the heterocyclic group bonded through a carbon atom.

5

10

15

20

25

30

35

The heterocyclic group bonded through a nitrogen atom includes a 3- to 8-membered heterocyclic group which contains 1 to 4 hetero atoms selected from nitrogen, oxygen, and sulfur besides carbon and a condensed ring group thereof with benzene ring or a 3-to 8-membered heterocyclic ring which may contains 1 to 4 hetero atoms selected from nitrogen, oxygen, and sulfur.

Specifically, there can be mentioned 1-aziridinyl, 1-azirinyl, 1-azetyl, 1-azetidinyl, 1-perhydroazepinyl, 1-perhydroazocinyl, 1-pyrrolidinyl, 1-pyrrolinyl, 1-pyrrolyl, 1-pyrazolyl, 1-imidazolyl, 1,2,3-triazol-1-or 2-yl, 1,2,4-triazol-1- or 4-yl, 1H-tetrazol-1-yl, 2H-tetrazol-2-yl, 1-piperidinyl, 4-thiomorpholinyl, 4-morpholinyl, 1-dihydropyridyl, 1-tetrahydropyridyl, 2-or 4-oxodihydropyridin-1-yl, 1-tetrahydropyrimidyl, 1-perhydropyrimidyl, 1-dihydrotriazinyl, 1-tetrahydrotriazinyl, 2-oxodihydrotriazin-1-yl, 1,4-

tetrahydrotriazinyl, 2-oxodihydrotriazin-1-yl, 1,4-oxazin-4-yl, 1,4-thiazin-4-yl, 1,3-thiazin-3-yl, 1-piperazinyl, 1-perhydropyridazinyl, indol-1-yl, indolin-1-yl, isoindol-2-yl, isoindolin-2-yl, 1H-indazol-1-yl, 2,3-dihydrobenzoxazol-3-yl, 2,3-dihydrobenzothiazol-3-yl, 7-purinyl, 9-carbazolyl, etc.

The substituent for this heterocyclic group bonded through a nitrogen atom includes the same substituent as those mentioned for the heterocyclic group bonded through a carbon atom.

The group bonded through an oxygen atom is not particularly limited but can be any group which is

57

bonded through an oxygen atom. For example, it may for example be a group of the formula $-\mathrm{OR}^{16}$ wherein R^{16} represents (1) hydrogen, (2) a hydrocarbon group which may optionally be substituted, (3) a heterocyclic group which may optionally be substituted, (4) an acyl group, (5) a carbamoyl group which may optionally be substituted, (6) $-\mathrm{SiR}^{17}_{3}$ wherein R^{17} represents a hydrocarbon group which may optionally be substituted, or (7) $-\mathrm{SO}_{\mathrm{p}}\mathrm{R}^{11}$ wherein p and R^{11} have the same meanings as mentioned above.

5

10

15

20

25

30

35

The hydrocarbon group which may optionally be substituted as mentioned for R^{16} or R^{17} includes the same hydrocarbon group which may optionally be substituted as those mentioned hereinbefore for the substituent of the aromatic ring group for Q^1 .

The heterocyclic group which may optionally be substituted as mentioned for R^{16} includes the same heterocyclic group which may optionally be substituted as mentioned above for R^9 or R^{10} .

The acyl group for R^{16} includes the same acyl group as mentioned for the substituent of the aromatic ring group for Q^1 .

The carbamoyl group which may optionally be substituted for R^{16} includes the same carbamoyl group which may optionally be substituted as mentioned for the substituent of the aromatic ring group for Q^1 .

The group bonded through a sulfur atom is not particularly limited but can be any group which is bonded through a sulfur atom. For example, there can be used any of (1) a group of the formula $-S(0)_n R^{18}$, wherein R^{18} represents (i) a hydrogen atom, (ii) a hydrocarbon group which may optionally be substituted, or (iii) a heterocyclic group which may optionally be substituted; n represents 0, 1 or 2, (2) a group of the formula $-SO_2NR^{18}R^{19}$ wherein R^{18} has the same meaning as

58

defined hereinbefore; R¹⁹ represents (i) a hydrogen atom, (ii) a hydrocarbon group which may optionally be substituted, or (iii) a heterocyclic group which may optionally be substituted, (3) a group of the formula -SCOOR³¹ wherein R³¹ represents (i) a hydrocarbon group which may optionally be substituted, or (ii) a heterocyclic group which may optionally be substituted, or (4) a group of the formula -SNR³²COOR³³ wherein R³² and R³³ are the same or different and each represents (i) a hydrocarbon group which may optionally be substituted, or (ii) a heterocyclic group which may optionally be substituted.

5

10

15

20

25

30

35

The hydrocarbon group which may optionally be substituted as mentioned for R^{18} , R^{19} , R^{31} , R^{32} or R^{33} includes the same hydrocarbon group which may optionally be substituted as mentioned above for the substituent of the aromatic ring group for Q^1 .

The heterocyclic group which may optionally be substituted as mentioned for R^{18} , R^{19} , R^{31} , R^{32} or R^{33} includes the same heterocyclic group which may optionally be substituted as mentioned for R^9 or R^{10} .

The group bonded through a phosphorous atom is not particularly limited but can be any group which is bonded through a phosphorous atom. For example, there can be used any of (1) a group of the formula $-PO(OR^{30})_2$ wherein R^{30} represents a hydrocarbon group which may optionally be substituted or a heterocyclic group which may optionally be substituted, or (2) a group of the formula $-PO(R^{34})$ OR^{35} wherein R^{34} and R^{35} are the same or different and each represents a hydrocarbon group which may optionally be substituted or a heterocyclic group which may optionally be substituted.

The hydrocarbon group which may optionally be substituted as mentioned for R^{30} , R^{34} or R^{35} includes the same hydrocarbon group which may optionally be

59

substituted as mentioned above for the substituent of the aromatic ring group for Q^1 .

The heterocyclic group which may optionally be substituted as mentioned for R^{30} , R^{34} or R^{35} includes the same heterocyclic group which may optionally be substituted as mentioned for R^9 or R^{10} .

5

10

15

20

25

30

35

The triazine derivative may preferably have an optionally substituted aromatic ring group, an optionally substituted aliphatic heterocyclic group or an optionally substituted aliphatic hydrocarbon group at the 3-position.

The optionally substituted aromatic ring group as mentioned above includes the same aromatic ring group which may optionally be substituted as mentioned for O^1 .

The aliphatic heterocyclic group of said optionally substituted aliphatic heterocyclic group as mentioned above includes 4- to 6-membered aliphatic heterocyclic group which contains 1 to 3 hetero atoms selected from nitrogen, oxygen, and sulfur, such as oxiranyl, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, tetrahydrofuryl, thiolanyl, piperidyl, tetrahydropyranyl, morpholinyl, thiomorpholinyl, piperazinyl, etc.

The aliphatic hydrocarbon group of the optionally substituted aliphatic hydrocarbon group as mentioned above includes a straight-chain or branched C_{1-6} hydrocarbon group and an alicyclic C_{3-14} hydrocarbon group.

The above-mentioned straight-chain or branched aliphatic hydrocarbon group includes a C_{1-6} alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, etc., a C_{2-6} alkenyl group such as allyl, isopropenyl, isobutenyl,

60

2-pentenyl, 2-hexenyl, etc., and a C_{2-6} alkynyl group such as propargyl, 2-butynyl, 3-butynyl, 3-pentynyl, 3-hexynyl, etc.

The above-mentioned alicyclic hydrocarbon group includes a C_{3-14} cycloalkyl group, preferably C_{3-7} cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, perhydronaphthyl, perhydro-anthranyl, bicyclo[2.2.1]heptyl, etc. and C_{3-14} cycloalkenyl group, preferably C_{3-7} cycloalkenyl group such as cyclopropenyl, cyclobuten-1- or 3-yl, cyclopenten-1-, 3-, or 4-yl, cyclohexen-1- or 3-yl, etc.

The aliphatic heterocyclic group and aliphatic hydrocarbon group may respectively have 1 to 4 substituents, selected from for example, hydroxy, amino, cyano, sulfamoyl, sulfamoyloxy, mercapto, nitro, halogen, organic residue, sulfo, oxo, and thioxo.

The above-mentioned halogen and organic residue have the same meaning as defined in substituent of the aromatic ring group for Q^1 as mentioned above.

Preferred, among the above-mentioned substituent, are cyano, nitro, halogen, organic residue, and oxo. Particularly preferred are halogen and organic residue.

The compound (Ia) is preferably a compound (I)-(IV) of the formula:

30

35

5

10

15

20

wherein Q^1 represents an aromatic ring group which may optionally be substituted; R^1 represents a hydrogen atom or a hydrocarbon group which may optionally be

substituted; R^2 represents a hydrocarbon group which may optionally be substituted or R^1 and R^2 may form a ring together with the adjacent carbon atom wherein the ring may optionally be substituted; A represents an optionally substituted methylene group, carbonyl group or thiocarbonyl group; B represents an optionally substituted methylene group; Q^2 , R^3 and R^4 are the same or different and each represents a hydrogen atom or a group bonded through a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom; and W represents O or S: or a salt thereof.

Among group as mentioned above, Q¹ is preferably phenyl which may optionally be substituted, naphthyl which may optionally be substituted, partially hydrogenated naphthyl (e.g. 1,2,3,4-tetrahydro-5- or 6-naphthyl), pyridyl (e.g. 2-, 3- or 4-pyridyl) which may optionally be substituted, thienyl (e.g. 2- or 3-thienyl) which may optionally be substituted or benzofuryl which may optionally be substituted. Especially, phenyl which may optionally be substituted is preferred.

The substituent for such phenyl, naphthyl, pyridyl, thienyl or benzofuryl group as mentioned above is preferably (1) hydroxy, (2) amino which may optionally be substituted with one or two C₁₋₆ alkyl groups (e.g. methyl, ethyl, propyl), (3) cyano, (4) sulfamoyl, (5) sulfamoyloxy, (6) mercapto, (7) nitro, (8) halogen (e.g. fluorine, chlorine, bromine, iodine), (9) sulfo, (10) a C₁₋₆ alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy, halogen (e.g. fluorine, chlorine, bromine, iodine), a C₁₋₆ alkoxy group (e.g. methoxy) and a C₁₋₆ alkylthio group (e.g. methylthio), wherein the alkyl group includes methyl,

5

10

15

20

25

30

35

ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, etc.), (11) a C₁₋₆ alkoxy group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino hydroxy, cyano, sulfamoyl, mercapto, carboxy and halogen (e.g. fluorine, chlorine, bromine, iodine), wherein the alkoxy group includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy), (12) a C_{7-19} aralkyloxy group (e.g. phenyl-C₁₋₄ alkyloxy such as benzyloxy, phenethyloxy, etc.), (13) a C_{1-6} alkylthio group which may optionally be substituted with one to three substituents selected from the group consisting of cyano and halogen (e.g. methylthio, cyanomethylthio, trifluoromethylthio, etc.), (14) a C_{1-6} alkylsulfinyl group (e.g. methylsulfinyl), (15) a C_{1-6} alkylsulfonyl group (e.g. methylsulfonyl), (16) a C_{6-14} aryloxy group (e.g. phenoxy), (17) a C_{1-6} alkylsulfonyloxy group (e.g. methylsulfonyloxy), or (18) a C_{1-6} alkoxycarbonyloxy group (e.g. methoxycarbonyloxy). Among them, preferred is halogen or a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy, halogen, a C1-6 alkoxy group and a C_{1-6} alkylthio group. Especially preferred is halogen or a C_{1-3} alkyl group which may optionally be substituted with one to three halogen atoms, wherein the alkyl group includes methyl, ethyl, n-propyl or isopropyl.

 R^1 is preferably hydrogen or a C_{1-6} alkyl group (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl) which may optionally be substituted. Preferred is a C_{1-3} alkyl group such as methyl, ethyl, n-propyl or isopropyl.

 R^2 is preferably a C_{1-6} alkyl group (e.g. methyl,

63

ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl) which may optionally be substituted. Preferred is a C_{1-3} alkyl group such as methyl, ethyl, n-propyl or isopropyl.

The C_{1-6} alkyl group for R^1 and R^2 as mentioned above may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy and halogen (e.g. fluorine, chlorine, bromine, iodine).

Both R^1 and R^2 may be preferably methyl.

The methylene which may optionally be substituted for A or B is represented for example a group of the formula:

15

10

5

20

wherein R^5 and R^6 are the same or different and each represents hydrogen or a hydrocarbon group which may optionally be substituted.

25

30

35

 R^5 or R^6 is preferably (1) hydrogen, (2) halogen such as fluorine, chlorine, bromine, iodine, (3) a C_{1-6} alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, in which the alkyl group may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy and halogen (e.g. fluorine, chlorine, bromine, iodine) or (4) a C_{6-14} aryl group such as phenyl, in which the aryl group may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy, halogen (e.g.

5

10

15

20

25

30

35

fluorine, chlorine, bromine, iodine), a C_{1-4} alkyl group (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl) and a C_{1-6} alkoxy group (e.g. methoxy, ethoxy). Among them mentioned above, R^5 or R^6 is preferably hydrogen or a C_{1-6} alkyl group. Especially preferred is hydrogen or a C_{1-3} alkyl group such as methyl, ethyl, n-propyl or isopropyl.

A group bonded through a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom for Q^2 has the same meaning as defined above.

 Q^2 is preferably (1) hydroxy, (2) a C_{1-6} alkoxy group, (2) a C_{2-6} alkenyloxy group, (4) a C_{2-6} alkynyloxy group, (5) an optionally substituted cyclic group, (6) an optionally substituted C_{1-6} alkyl group, (7) an optionally substituted C_{2-6} alkenyl group, (8) a C_{1-20} acyl group, (9) an optionally substituted carbamoyl group, (10) an optionally substituted amidino group, (11) a group of the formula $-S(0)_nR^{20}$ wherein n is 0, 1 or 2 and R^{20} represents a hydrogen atom, a C_{1-6} alkyl group, a C_{6-14} aryl group or an optionally substituted amino group, (12) a C_{3-6} cycloalkyloxy group, (13) a C_{1-6} alkylcarbonyloxy group, (14) a C_{6-14} arylcarbonyloxy group, (15) an optionally substituted carbamoyloxy group, (16) an optionally substituted amino group, or (17) a group of the formula $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the same or different and each represents a hydrogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group or a C₁₋₆ alkylthio group.

The alkoxy group as mentioned above includes methoxy, ethoxy, n-propoxy, or isopropoxy. The alkenyloxy group as mentioned above includes allyloxy, isopropenyloxy or isobutenyloxy. The alkynyloxy group as mentioned above includes propargyloxy, 2-butynyloxy, or 3-butynyloxy.

The cyclic group as mentioned above includes (i) a

10

 C_{6-14} aryl group, (ii) a 5- or 6-membered heterocyclic group bonded through a carbon atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iii) a 5- or 6-membered

heterocyclic group bonded through a nitrogen atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iv) a C_{3-14} cycloalkyl group or (v) a C_{3-14} cycloalkenyl group.

The C_{6-14} aryl group includes phenyl, 1-naphthyl or 2-naphthyl.

The 5- or 6-membered heterocyclic group bonded through a carbon atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring includes thienyl (e.g. 2- or 3-thienyl), furyl

- (e.g. 2- or 3-furyl), pyrrolidinyl (e.g. 2- or 3pyrrolidinyl), pyrrolyl (e.g. 2- or 3-pyrrolyl),
 oxazolyl (e.g. 2-, 4-, or 5-oxazolyl), thiazolyl (e.g.
 2-, 4-, or 5-thiazolyl), pyrazolyl (e.g. 3-, 4-, or 5pyrazolyl), imidazolyl (e.g. 2-, 4-, or 5-imidazolyl),
- isoxazolyl (e.g. 3-, 4-, or 5-isoxazolyl), isothiazolyl (e.g. 3-, 4-, or 5-isothiazolyl), oxadiazolyl [e.g. 3- or 5-(1,2,4-oxadiazolyl), 1,3,4-oxadiazolyl], thiadiazolyl [e.g. 3- or 5-(1,2,4-thiadiazolyl), 1,3,4-thiadiazolyl, 4- or 5-(1,2,3-thiadiazolyl), 1,2,5-
- thiadiazolyl], triazolyl (e.g. 1,2,3-triazolyl, 1,2,4-triazolyl), tetrazolyl (e.g. 1H- or 2H-tetrazolyl), pyridyl (e.g. 2-, 3-, or 4-pyridyl), pyridyl in which the nitrogen atom is oxidized (e.g. N-oxido-2-, 3- or 4-pyridyl), pyrimidinyl (e.g. 2-, 4-, or 5-
- pyrimidinyl), pyrimidinyl in which one or both of the nitrogen atoms are oxidized (e.g. N-oxido-2-, 4- or 5-pyrimidinyl), thiomorpholinyl (e.g. 2- or 3-thiomorpholinyl), morpholinyl (e.g. 2- or 3-morpholinyl), piperidinyl, pyranyl, thiopyranyl,
- oxazinyl (e.g. 1,4-oxazinyl), thiazinyl (e.g. 1,4-thiazinyl, 1,3-thiazinyl), piperazinyl (e.g. 2- or 3-

5

10

15

30

piperazinyl), triazinyl, pyridazinyl (e.g. 3- or 4-pyridazinyl), pyrazinyl, pyridazinyl in which one or both of the nitrogen atoms are oxidized (e.g. N-oxido-3- or 4-pyridazinyl), benzofuryl, benzothiazolyl, benzoxazolyl, tetrazolo[1,5-b]pyridazinyl,

benzoxazolyl, tetrazolo[1,5-b]pyridazinyl, triazolo[4,5-b]pyridazinyl, imidazo[1,2-a]pyridinyl, benzimidazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, indolidinyl, quinolidinyl, naphthyridinyl (e.g. 1,8-naphthyridinyl), purinyl, pteridinyl, dibenzofuranyl, carbazolyl, acridinyl, phenanthridinyl, chromanyl, benzoxazinyl,

phenazinyl, phenothiazinyl, phenoxazinyl, etc.

The 5- or 6-membered heterocyclic group bonded through a nitrogen atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring includes 1-pyrrolidinyl, 1-pyrrolinyl, 1-pyrrolyl, 1-pyrazolyl, 1-imidazolyl,

1,2,3-triazol-1- or 2-yl, 1,2,4-triazol-1- or 4-yl, 1H-tetrazol-1-yl, 2H-tetrazol-2-yl, 1-piperidinyl, 4-

thiomorpholinyl, 1-morpholinyl, 1-dihydropyridyl, 1-tetrahydropyridyl, 2- or 4-oxodihydropyridin-1-yl, 1-tetrahydropyrimidyl, 1-perhydropyrimidyl, 1-dihydrotriazinyl, 1-tetrahydrotriazinyl, 2-oxodihydrotriazin-1-yl, 1,4-oxazin-4-yl, 1,4-thiazin-4-

yl, 1,3-thiazin-3-yl, 1-piperazinyl, 1perhydropyridazinyl, indol-1-yl, indolin-1-yl,
isoindol-2-yl, isoindolin-2-yl, 1H-indazol-1-yl, 2,3dihydrobenzoxazol-3-yl, 2,3-dihydrobenzothiazol-3-yl,
7-purinyl, 9-carbazolyl, etc.

The C_{3-14} cycloalkyl group includes a C_{3-7} cycloalkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl.

The C_{3-14} cycloalkenyl group includes 2-cyclohexen-1-yl or 3-cyclohexen-1-yl.

The substituent for the cyclic group is preferably nitro, amino, hydroxy, cyano, sulfamoyl, mercapto,

67

carboxy, halogen (e.g. fluorine, chlorine, bromine, iodine), a C_{1-6} alkyl group (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl) and a C_{1-6} alkoxy group (e.g. methoxy, ethoxy). Especially preferred is halogen.

The number of the substituents for the cyclic group is 1 to 4, preferably 1 to 3, especially preferably 1 or 2.

5

20

25

The C₁₋₆ alkyl group for the optionally substitued

C₁₋₆ alkyl group includes methyl, ethyl, n-propyl,
isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl,
n-pentyl, sec-pentyl, isopentyl, neopentyl or n-hexyl.
The substituent for the C₁₋₆ alkyl group includes nitro,
amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy,
halogen (e.g. fluorine, chlorine, bromine, iodine), or
a C₁₋₆ alkoxyimino group (e.g. methoxyimino,
ethoxyimino). Especially preferred is a C₁₋₆
alkoxyimino group.

The number of the substituents for the alkyl group is 1 to 3.

The C_{2-6} alkenyl group includes allyl, isopropenyl, isobutenyl, 1-methylallyl, 2-pentenyl or 2-hexenyl.

The substituent for the C_{2-6} alkenyl group includes nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyx or halogen (e.g. fluorine, chlorine, bromine, iodine). The number of the substituents for the alkenyl group is 1 to 3.

The C₁₋₂₀ acyl group includes (1) a C₁₋₆
alkyl-carbonyl such as formyl, acetyl, propionyl,

butyryl, isobutyryl, pentanoyl or hexanoyl, (2) a C₆₋₁₄
arylcarbonyl group such as benzoyl or
naphthalenecarbonyl, or (3) a C₁₋₆ alkoxycarbonyl group
such as methoxycarbonyl, ethoxycarbonyl,
propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl,
isobutoxycarbonyl, sec-butoxycarbonyl or

5

10

15

20

30

35

tert-butoxycarbonyl.

The optionally substituted carbamoyl group includes carbamoyl or a mono- or $di-C_{1-6}$ alkylcarbamoyl group such as methylcarbamoyl or dimethylcarbamoyl.

The substituent for the optionally substituted amidino group includes a C_{1-6} alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, neopentyl or n-hexyl. The number of the substituents is 1 to 3.

The C_{1-6} alkyl group for R^{20} as mentioned above includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, neopentyl or n-hexyl. The C_{6-14} aryl group for R^{20} includes phenyl, 1-naphthyl or 2-naphthyl. The substituent for the amino group of R^{20} includes a C_{1-6} alkyl group as mentioned above. The number of the substituents is 1 to 2.

The C_{3-6} cycloalkyloxy group as mentioned above includes cyclopropyloxy, cyclobutyloxy, cyclopentyloxy or cyclohexyloxy.

The C_{1-6} alkylcarbonyloxy group includes acetyloxy, propionyloxy, butyryloxy, isobutyryloxy, pentanoyloxy or hexanoyloxy.

The C_{6-14} arylcarbonyloxy group includes phenylcarbonyloxy.

The substituent for the carbamoyloxy includes a C_{1-6} alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, neopentyl or n-hexyl. The number of the substituents for the carbamoyloxy is 1 or 2.

The substituent for the amino group includes (1) a C_{1-6} alkyl group (e.g. methyl, ethyl, propyl), (2) a C_{1-6} alkyl-carbonyl group (e.g. methylcarbonyl,

69

ethylcarbonyl), (3) a C_{1-6} alkylsulfonyl group (e.g. methylsurfonyl, ethylsulfonyl) or (4) aminocarbonyl which may optionally be substituted with one or two C_{1-6} alkyl groups, in which the alkyl group has the same meaning as mentioned for the substituent for the carbamoyloxy group. The number of the substituents is 1 to 2.

The C_{1-6} alkyl group for R^{21} or R^{22} has the same meaning as mentioned for the substituent for the carbamoyloxy group.

5

10

15

20

25

30

35

The C_{1-6} alkoxy group for R^{21} or R^{22} includes methoxy or ethoxy. The C_{1-6} alkylthio group for R^{21} or R^{22} includes methylthio or ethylthio.

Q² is preferably an optionally cyclic group.

Among them, (1) a C_{6-14} aryl group such as phenyl, 1-naphthyl or 2-naphthyl, in which the aryl group may optionally be substituted with one to five halogen atoms, (2) pyridyl such as 2-, 3- or 4-pyridyl, (3) pyrrolyl such as 1-pyrrolyl, (4) thiazolyl such as 2-, 4- or 5-thiazolyl, (5) piperidyl such as 1-piperidyl, (6) morphorinyl such as 4-morphorinyl, (7) imidazopyridyl, and (8) a C_{3-6} cycloalkyl group such as cyclohexyl are preferable. Especially preferable Q^2 is phenyl which may optionally be substituted with one to three halogen atoms.

The group bonded through a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom for R³ or R⁴ has the same meaning as defined above. Among them, hydroxy, amino, cyano, sulfamoyl, sulfamoyloxy, mercapto, nitro, halogen, an organic residue or sulfo group is preferable.

The halogen or the organic residue has the same meaning as defined for $\mathbf{Q}^{\mathbf{l}}$.

 R^3 or R^4 is preferably (1) a hydrogen atom, (2) hydroxy, (3) an optionally substituted C_{1-6} alkyl group

(e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, etc.), (4) an optionally substituted C3-14 cycloalkyl group (e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 5 etc.), (5) an optionally substituted C_{2-6} alkenyl group (e.g. allyl, isopropenyl, isobutenyl, 1-methylallyl, 2-pentenyl, 2-hexenyl, etc.), (6) an optionally substituted C_{2-6} alkynyl group (e.g. propargyl, 2-butynyl, 3-butynyl, 3-pentynyl, 3-hexynyl, etc.), (7) 10 an optionally substituted C_{1-6} alkoxy group (e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentyloxy, sec-pentyloxy, isopentyloxy, neopentyloxy, etc.), (8) an optionally substituted C_{2-6} alkenyloxy group (e.g. 15 allyloxy, isopropenyloxy, isobutenyloxy, etc.), (9) an optionally substituted C_{2-6} alkynyloxy group (e.g. propargyloxy, 2-butynyloxy, 3-butynyloxy, etc.), (10) an optionally substituted C_{6-14} aryl group (e.g. phenyl, 1-naphthyl, 2-naphthyl, etc.), (11) a C_{7-19} aralkyl 20 group (e.g. phenyl- C_{1-4} alkyl such as benzyl, phenethyl or phenylpropyl; benzhydryl; trityl, etc.), (12) an optionally substituted C_{6-14} aryloxy group (e.g. phenoxy, naphthyloxy, etc.), (13) an optionally substituted carbamoyloxy group, (14) a C₁₋₂₀ acyl group 25 (e.g. C₁₋₇ alkanoyl such as formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl or heptanoyl, which may optionally be substituted with one to three halogen atoms such as fluorine; C₆₋₁₄ arylcarbonyl such as benzoyl or naphthalenecarbonyl; C1-6 alkoxycarbonyl 30 such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, or tert-butoxycarbonyl; C_{6-14} aryloxycarbonyl such as phenoxycarbonyl; C₇₋₁₉ aralkylcarbonyl such as 35 phenyl-C₁₋₄ alkylcarbonyl, e.g. benzylcarbonyl,

35

phenethylcarbonyl, phenylpropylcarbonyl; C_{7-19} aralkyloxycarbonyl such as benzyloxycarbonyl, etc.), (15) an optionally substituted amino group, (16) an optionally substituted carbamoyl group, (17) an 5 optionally substituted thiocarbamoyl group, (18) a group of the formula $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2 and R²³ represents a hydrogen atom, an optionally substituted C_{1-6} alkyl group (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, 10 tert-butyl, n-pentyl, etc.), a C_{6-14} aryl group (e.g. phenyl, naphthyl), an optionally substituted amino group or a C_{1-20} acyl group (e.g. acyl group as mentioned above), (19) a C₁₋₆ alkylcarbonyloxy group (e.g. acetyloxy, propionyloxy, butyryloxy, 15 isobutyryloxy, pentanoyloxy, hexanoyloxy, etc.), (20) a C₁₋₆ alkylsulfonyloxy group (e.g. methylsulfonyloxy, etc.), (21) a group of the formula $-N=CR^{24}R^{25}$ wherein R^{24} and $\ensuremath{\text{R}^{25}}$ are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group (e.g. methyl, ethyl, 20 n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, etc.) or a C_{1-6} alkoxy group (e.g. methoxy, ethoxy, etc.), (22) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with benzene ring or a 5-25 or 6-membered heterocyclic ring (e.g. the 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring as defined for Q^2), or (23) a group of the formula $-PO(R^{26})_2$ wherein R^{26} 30 represents a C_{1-6} alkoxy group (e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentyloxy, sec-pentyloxy, isopentyloxy, neopentyloxy, etc.). The substituent of the C_{1-6} alkyl group for R^3 , R^4

or R^{23} , or the substituent of the C_{3-14} cycloalkyl group,

 C_{1-6} alkoxy group, C_{2-6} alkenyl group, C_{2-6} alkynyl group, C_{2-6} alkenyloxy group, or C_{2-6} alkynyloxy group for R^3 or R' includes hydroxy, carboxy, cyano, halogen (e.g. fluorine, chlorine, bromine, iodine), a C₁₋₆ alkoxy 5 group (e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentyloxy, sec-pentyloxy, isopentyloxy, neopentyloxy, etc.), a C_{1-6} alkylthio group (e.g. methylthio, ethylthio, propylthio, etc.), a C1-6 alkylsulfonyl group 10 (e.g. methylsulfonyl, ethylsulfonyl, propylsulfonyl, etc.), a C_{1-20} acyl group (e.g. C_{1-7} alkanoyl such as formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl or heptanoyl; C₆₋₁₄ arylcarbonyl such as benzoyl or naphthalenecarbonyl; C1-6 15 alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, or tert-butoxycarbonyl; C₆₋₁₄ aryloxycarbonyl such as phenoxycarbonyl; C7-19 aralkylcarbonyl such as 20 phenyl-C₁₋₄ alkylcarbonyl, e.g. benzylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl; C7-19 aralkyloxycarbonyl such as benzyloxycarbonyl, etc.), a C_{6-14} aryl group (e.g. phenyl, naphthyl, etc.), a C_{1-7} alkanoyloxy group (e.g. formyloxy, acetyloxy, 25 propionyloxy, butyryloxy, isobutyryloxy, pentanoyloxy, hexanoyloxy, heptanoyloxy, etc.), or a C_{1-6} alkylimino (e.g. methylimino, ethylimino, etc.). The number of the substituent is 1 to 3.

The substituent of the C_{6-14} aryl group, C_{6-14} aryloxy group or C_{3-14} cycloalkyl group for R^3 or R^4 is preferably nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxy, halogen (e.g. fluorine, chlorine, bromine, iodine), a C_{1-4} alkyl group (e.g. methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl etc.) or a C_{1-6} alkoxy group (e.g.

73

methoxy, ethoxy, etc.). The number of the substituent is 1 to 5, preferably 1 to 3.

5

10

15

20

25

30

35

The substituent of amino for R³, R⁴, or R²³, or the substituent of carbamoyl, thicarbamoyl or carbamoyloxy is preferably a C_{1-6} alkyl group (e.g. methyl, ethyl), a C_{3-6} cycloalkyl group (e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl), a C_{7-19} aralkyl group (e.g. phenyl- C_{1-4} alkyl such as benzyl), a C_{1-7} alkanoyl group (e.g. formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, hexanoyl, heptanoyl, etc.), a C₆₋₁₄ arylcarbonyl group (e.g. benzoyl, naphthalenecarbonyl, etc.), a C_{1-6} alkoxycarbonyl group (e.g. methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl, tert-butoxycarbonyl, etc.), a C₆₋₁₄ aryloxycarbonyl group (e.g. phenoxycarbonyl, etc.), a C_{7-19} aralkylcarbonyl group (e.g. phenyl- C_{1-4} alkylcarbonyl such as benzylcarbonyl, phenethylcarbonyl, phenylpropylcarbonyl, etc.), carbamoyl which may optionally be substituted one or two C_{1-6} alkyl groups (e.g. methyl, ethyl, propyl, etc.), or a C_{1-6} alkylsulfonyl group (e.g. methylsulfonyl, ethylsulfonyl, propylsulfonyl, etc.).

The number of such a substituent is one to two. R^3 or R^4 is preferably (1) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of hydroxy, carboxy, halogen, a C_{1-6} alkoxy group, a C_{1-6} alkoxycarbonyl group and a C_{1-7} alkanoyloxy group, (2) a C_{1-6} alkoxy group, (3) a C_{6-14} aryl group, (4) di- C_{1-6} alkylamino group, (5) a C_{1-7} alkanoyl group, (6) N-di- C_{1-6} alkylcarbamoyl group, or (7) a group of the formula $-SO_2-R^{24}$ wherein R^{24} represents a C_{1-6} alkyl group which may optionally be substituted with one to three halogen atoms.

W is preferably O.

Q² represents (1) hydroxy,

35

Among the compound as mentioned above, preferred is a compound (I), (II), (III) or (IV) wherein Q1 represents (1) a C_{6-14} aryl group, (2) a pyridyl group, 5 (3) a thienyl group or (4) a benzofuryl group, wherein each of said groups may optionally be substituted with one to three substituents selected from the group consisting of (i) halogen, (ii) hydroxy, (iii) a C_{1-6} alkyl group which may optionally be substituted with 10 one to three substituents selected from the group consisting of halogen , cyano, a C_{1-6} alkoxy group and a C_{1-6} alkylthio group, (iv) a C_{1-6} alkoxy group which may optionally be substituted with one to three substituents selected from the group consisting of 15 cyano and halogen, (v) amino which may optionally be substituted with one or two C_{1-6} alkyl groups, (vi) benzyloxy, (vii) a C₁₋₆ alkylthio group which may optionally be substituted with one to three substituents selected from the group consisting of 20 cyano and halogen, (viii) a C₁₋₆ alkylsulfinyl group, (ix) a C_{1-6} alkylsulfonyl group, (x) a C_{6-14} aryloxy group, (xi) a C_{1-6} alkylsulfonyloxy group and (xii) a C_{1-6} alkoxycarbonyloxy group; R^1 represents a hydrogen atom or a C_{1-3} alkyl group; 25 R² represents a C₁₋₃ alkyl group which may optionally be substituted with one to three halogen atoms; or R^1 and R^2 may form a C_{3-7} cycloalkane ring together with the adjacent carbon atom; A represents (1) a methylene group which may optionally 30 be substituted with one or two halogen atoms or C_{1-6} alkyl groups, (2) a carbonyl group or (3) a thiocarbonyl group; B represents a methylene group which may optionally be substituted with one or two C1-6 alkyl groups;

- (2) a C_{1-6} alkoxy group,
- (3) (i) a C_{6-14} aryl group, (ii) a pyridyl group, (iii) a pyrrolyl group, (iv) a thiazolyl group, (v) a piperidyl group, (vi) a morpholinyl group, (vii) a
- imidazopyridyl group, (viii) a pyrrolidinyl group, (ix) a C_{3-14} cycloalkyl group, or (x) a C_{3-14} cycloalkenyl group, wherein each of said groups may optionally substituted with one to four halogen atoms,
 - (4) a C_{1-6} alkyl group which may optionally be
- 10 substituted with one to three C_{1-6} alkoxyimino groups,
 - (5) a C_{2-6} alkenyl group,
 - (6) an acyl group selected from the group consisting of a C_{1-6} alkyl-carbonyl group, a C_{6-14} arylcarbonyl group and a C_{1-6} alkoxycarbonyl group,
- 15 (7) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (8) an amidino group which may optionally be substituted with one to three C_{1-6} alkyl groups,
 - (9) a group of $-S(0)_nR^{20}$ wherein n is 0, 1 or 2, and R^{20}
- 20 represents a C_{1-6} alkyl group, a C_{6-14} aryl group or an amino group which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (10) a C_{3-6} cycloalkyloxy group,
 - (11) a C_{1-6} alkylcarbonyloxy group,
- 25 (12) a C_{6-14} arylcarbonyloxy group,
 - (13) a carbamoyloxy group which may optionally be substituted with one or two $\ensuremath{\text{C}_{\text{1-6}}}$ alkyl groups,
 - (14) amino which may optionally be substituted with one or two substituents selected from the group consisting
- of (i) a C_{1-6} alkyl group, (ii) a C_{1-6} alkyl-carbonyl group, (iii) a C_{1-6} alkylsulfonyl group and (iv) aminocarbonyl which may optionally be substituted with one or two C_{1-6} alkyl groups, or
 - (15) a group of $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the
- 35 same or different, and each represents a hydrogen atom,

- a $C_{1\text{--}6}$ alkyl group or a $C_{1\text{--}6}$ alkoxy group; R^3 and R^4 are the same or different, and each represents
- (1) a hydrogen atom,
- 5 (2) hydroxy,
 - (3) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) carboxyl, (ii) cyano, (iii) halogen, (iv) a C_{1-6} alkoxy group, (v) a C_{1-6}
- alkylthio group, (vi) a C_{1-6} alkylsulfonyl group, (vii) a C_{1-7} alkanoyl group, (viii) a C_{1-6} alkoxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-6} alkylimino group, and (xi) hydroxy,
 - (4) a C_{3-14} cycloalkyl group,
- 15 (5) a C_{2-6} alkenyl group,
 - (6) a C_{2-6} alkynyl group,
 - (7) a C_{1-6} alkoxy group which may optionally be substituted with one to three C_{1-6} alkoxy groups,
 - (8) a C_{2-6} alkenyloxy group,
- 20 (9) a C_{2-6} alkynyloxy group,
 - (10) a C_{6-14} aryl group,
 - (11) a C_{7-19} aralkyl group,
 - (12) carbamoyloxy which may optionally be substituted with one or two C_{1-6} alkyl groups,
- (13) an acyl group selected from the group consisting of (i) a C_{1-7} alkanoyl group which may optionally be substituted with one to three halogen atoms, (ii) a C_{1-6} alkoxycarbonyl group and (iii) a C_{7-19} aralkyloxycarbonyl group,
- 30 (14) amino which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{1-7} alkanoyl group, (iii) carbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups and (iv) a C_{1-6}

5

alkylsulfonyl group,

- (15) carbamoyl which may optionally be substituted with one or two $C_{\text{1-6}}$ alkyl groups,
- (16) thiocarbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups,
- (17) a group of $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2, and R^{23} represents (i) a C_{1-6} alkyl group which may optionally be substituted with one to three halogen atoms, (ii) a C_{6-14} aryl group, (iii) amino which may
- optionally be substituted with one or two substituents selected from the group consisting of a C_{1-6} alkyl group and a C_{1-6} alkoxycarbonyl group, and (iv) a C_{1-6} alkoxycarbonyl group,
 - (18) a C_{1-6} alkylcarbonyloxy group,
- 15 (19) a C_{1-6} alkylsulfonyloxy group,
 - (20) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group,
 - (21) a pyrrolidinyl group or a morpholinyl group, or
- 20 (22) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6} alkoxy group.

Among the compounds (I)-(IV) as mentioned above, Compound (I) or (II) is especially preferable.

Especially preferred compound is a compound represented by the formula:

30

35

wherein Q^1 represents a C_{6-10} aryl group which may optionally be substituted with one to three substituents selected from the group consisting of (1) halogen, (2) a C_{1-4} alkyl group which may optionally be substituted with one to five halogen atoms, (3) a C_{1-4}

78

alkoxy group which may optionally be substituted with one to five halogen atoms, (4) a C_{1-4} alkylthic group which may optionally be substituted with one to five halogen atoms and (5) an amino group which may optionally be substituted with one or two C_{1-4} alkyl groups; Q² represents phenyl which may optionally be substituted with one to three halogen atoms: R1 and R2 are the same or different and each represents methyl which may optionally be substituted with one to three halogen atoms; R^3 represents a C_{1-4} alkyl group, a C_{2-4} alkenyl group, a C_{2-4} alkynyl group or a C_{1-4} alkoxy group; A and B are the same or different and each represents methylene which may optionally be substituted with one or two C₁₋₄ alkyl groups which may optionally be substituted with one to three halogen atoms; and W represents O.

5

10

15

20

25

30

35

When the compounds of the present invention contain acidic groups such as sulfo and carboxy in substituents, they may form agrochemically acceptable salts with bases such as inorganic or organic bases, and when the compounds contain the basic nitrogen atom and basic groups such as amino in substituents, they may form agrochemically acceptable acid addition salts with inorganic or organic acids.

The salt of compound (Ia) with an inorganic base includes salts with alkali metals (e.g. sodium, potassium, etc.), alkaline earth metals (e.g. calcium etc.), and ammonia, and the salt of compound (Ia) with an organic base includes salts with dimethylamine, triethylamine, piperazine, pyrrolidine, piperidine, 2-phenylethylamine, benzylamine, ethanolamine, or diethanolamine.

The inorganic acid addition salt of compound (Ia) includes salts with hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and phosphoric acid, and the organic acid addition salt of compound (Ia)

includes salts with p-toluenesulfonic acid, methanesulfonic acid, formic acid and trifluoroacetic acid.

The compound or a salt thereof of the present 5 invention can be used as a highly safe agrochemical typically herbicide. It is especially of value as a herbicide, since the compound or salt exhibits a broad spectrum against weeds, such as those listed below, at low concentrations substantially without doing any harm 10 to crop plants such as rice, wheat, barley, maize, soybean, and other useful plants, that is to say with high safety. The list of weeds which can be controlled includes paddy field weeds such as Echinochloa crusgalli var. oryzicola, Cyperus difformis Linnaeus, 15 Scirpus juncoides Roxburgh var. hotarui Ohwi, Monochoria vaginalis Presl, Sagittaria pygmaea Miquel, Eleocharis acicularis Römer et Schultes [Scirpus acicularis Linnaeus], Cyperus serotinus Rottboell [Junceus serotinus Clarke], Eleocharis kuroquwai Ohwi 20 [Eleocharis tuberosa Schultes var. kuroguwai Makino], Alisma canaliculatum A. Braun et Bouché, Sagittaria trifolia Linnaeus, Fimbristylis subbispicata, Lindernia pyxidaria Linnaeus, Rotala indica, Potamogeton distinctus A. Bennett, Jussiaea prostrata Léveillé 25 [Ludwigia prostrata Roxburgh], Elatine triandra Schkuhr [Elatine orientalis Makino], etc. and plow land weeds such as <u>Digitaria</u> <u>sanguinalis</u> Scopoli [<u>Digitaria</u> adscendens Henrard], Setaria viridis Beauvois, Amaranthus retroflexus Linnaeus, Indian mallow, 30 Chenopodium album var. centrorubrum, Polygonum blumei Meisner [Persicaria blumei Gross], Portulaca oleracea Linnaeus, America kingojiga, Datura alba, Ipomoea purpurea, Xanthium strumarium, Echinochloa crus-galli var. praticola, ohkusakibi, <u>Sorghum halepense</u>, <u>Cyperus</u> 35 rotundus Linnaeus, Avena fatua, black grass,

umanochahiki, Stellaria media Villars, mustard plant,

80

Cassia obtusifolia, Matricaria chamomilla, Commelina communis, etc. The compound or a salt thereof of the invention shows a high selectivity against crop-weeds in its action, and is least toxic to mammals, fishes and shellfishes and can be used very safely as a herbicide for the paddy field, plow land, orchard, and non-crop land without polluting the environment.

5

10

15

20

25

30

35

For application of the compound or a salt thereof of the present invention as an agrochemical, particularly a herbicide, it can be used in any application form that is known or available for agrochemicals in general. Thus, according to the intended mode of use, one or more species of the compound or a salt thereof of the present invention are dissolved or dispersed in a suitable liquid vehicle or admixed with, or adsorbed on, a suitable solid carrier for use as an emulsifiable liquids, an oil-soluble, a spray, wettable powders, dusts, driftless (DL) powders, granules, fine granules, fine granules F, flowables, dry flowables, jumbo granules, and tablets. Those application forms may be optionally supplemented with an emulsifier, dispersant, spreader, penetrating agent, wetting agent, mucilage, stabilizer, etc. and can be manufactured by the per se known production technique.

The liquid vehicle (solvent) that can be used includes water, alcohols (e.g. methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, etc.), ketones (e.g. acetone, methyl ethyl ketone, etc.), ethers (e.g. dioxane, tetrahydrofuran, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, etc.), aliphatic hydrocarbons (e.g. kerosene, fuel oil, machine oil, etc.), aromatic hydrocarbons (e.g. benzene, toluene, xylene, solvent naphtha, methylnaphthalene, etc.), halogenated hydrocarbons (e.g. dichloromethane, chloroform, carbon tetrachloride, etc.), acid amides (e.g. N,N-

5

10

15

20

25

30

35

81

dimethylformamide, N,N-dimethylacetamide, etc.), esters (e.g. ethyl acetate, butyl acetate, fatty acid glycerol esters, etc), and nitriles (e.g. acetonitrile, propionitrile, etc.). Those solvents can be used either singly or in combination.

The solid carrier (diluent/volume builder) includes vegetable powders (e.g. soybean meal, tobacco flour, wheat flour, sawdust, etc.), mineral powders (e.g. clays such as kaolin, bentonite, acid clay, and clay, and talcs such as talc powder, pyrophyllite (agalmatolite) powder, silicas such as diatomaceous earth, mica powder, etc.), alumina, sulfur powder, activated carbon, etc. Those materials can be used either singly or in combination.

The liquid vehicle or solid carrier is used in a proportion of generally about 1 to 99 weight % and preferably about 1 to 80 weight % based on the whole composition.

The surfactant which can be used as said emulsifier, spreader, penetrating agent, or dispersant as necessary are not limited but includes nonionic and anionic surfactans such as soaps, polyoxyethylene alkyl aryl ethers [e.g. Noigen™ and E•A142™ (TM stands for trademark and the same applies below; Dai-ichi Kogyo Seiyaku Co. Ltd.)], polyoxyethylene aryl esters (e.g. Nonal™; Toho Chemical), alkyl sulfates (e.g. Emal 10™, Emal 40™; Kao Corporation), alkylbenzenesulfonic acid salts (e.g. Neogen™, Neogen T™, Dai-ichi Kogyo Seiyaku Co. Ltd.; Neopelex™, Kao Corporation), polyethylene glycol ethers (e.g. Nonipol 85™, Nonipol 100™, Nonipol 160™; Sanyo Chemical Industries, Ltd.), and polyhydric alcohol esters (e.g. Tween 20™, Tween 80™; Kao Corporation).

The surfactant can be used in a proportion of generally about 0.1% to about 50% and preferably about

82

0.1% to about 25% with respect to the whole composition.

5

10

15

20

25

30

35

The preferred concentration of the compound or a salt thereof of the present invention in herbicidal compositions is about 1 to 90 weight % for emulsifiable liquids and wettable powders, about 0.01 to 10 weight % for oil-solubles, dusts, and DL powders, and about 0.05 to 10 weight % for fine granules F and granules, although the concentration may be adjusted according to the intended application. Emulsifiable liquids and wettable powders may be diluted (for example, 100-100,000-fold) with water or the like in advance in the field and applied.

The amount of the compound or salt of the present invention for use as a herbicide varies with the type of field, season, application method, weeds to be controlled, and crop plants under cultivation.

Generally, however, the proper amount in terms of the active ingredient, i.e. compound (Ia) or its salt is: about 0.05 to 50 g, preferably about 0.1 to 10 g, per are of paddy field, or about 0.05 to 50 g, preferably about 0.1 to 10 g, per are of plow land.

For the control of paddy field weeds, the compound or a salt thereof of the present invention can be used with advantage as a preemergence soil treatment or a leaf-stem-soil treatment. For example, the herbicidal composition of the present invention can be safely applied without harm to crop plants immediately after transplanting of rice seedlings or even 2-3 weeks after the transplanting, with a lasting herbicidal effect.

The agrochemical composition containing the compound or a salt thereof of the present invention can be supplemented, where necessary, with other herbicides, plant growth regulators, germicides (e.g. organochlorine fungicides, organosulfur fungicides, azole fungicides, antibiotics, etc.), insecticides

WO 98/49150

35

(e.g. pyrethroid insecticides, organophosphorus insecticides, carbamate insecticides, etc.), acaricides, nematocides, synergists, attractants, repellents, pigments, and fertilizers. As said other 5 herbicides, there can be mentioned (1) sulfonylurea herbicides [bensulfuron-methyl, pyrazosulfuron-ethyl, imazosulfuron, sulfosulfuron, cinosulfuron, azimsulfuron, halosulfuron, ethoxysulfuron, 1-(2cyclopropylcarbonylphenylsulfamoyl)-3-(4,6dimethoxypyrimidin-2-yl)urea, etc.], (2) pyrazole 10 herbicides [pyrazolate, pyrazoxyfen, benzofenap, etc.], (3) carbamate herbicides [benthiocarb, molinate, esprocarb, pyributycarb, dimepiperate, swep, etc.], (4) chloroacetanilide herbicides [butachlor, pretilachlor, 15 thenylchlor, etc.], (5) diphenyl ether herbicides [chloromethoxynil, bifenox, etc.], (6) triazine herbicides [simetryn, dimethametryn, etc.], (7) phenoxy acid herbicides [2,4-PA, MCP, MCPB, phenothiol, etc.], (8) acid amide or urea herbicides [mefenacet, 20 chlomeprop, naproanilide, bromobutide, dymron, cumylron, ethobenzanide, 3-(1-(3,5-dichlorophenyl)-1methylethyl)-2,3-dihydro-6-methyl-5-phenyl-4H-1,3oxazin-4-one, etc.], (9) organophosphorus herbicides [piperophos, butamifos, anilofos, etc.]. (10) As 25 herbicides in other series, there can be mentioned bentazon, benfuresate, oxadiazon, oxadiargyl, pentoxazon, cyhalohop butyl, cafenstrol, piriminovac methyl, bispyrivac sodium, 1-(2-chlorophenyl)-4-(Ncyclohexyl-N-ethylcarbamoyl)-5(4H)-tetrazolinone, 2-(2-30 (3-chlorophenyl)-2,3-epoxypropyl)-2-ethylindan-1,3dione, ACN, etc.

The compound or a salt thereof of the present invention can also be used as a pesticide or germicide in the same manner as above.

The compound (Ia) or a salt thereof of the present invention can be synthesized by a process in which a

urea or thiourea compound, or a salt thereof, which has a group of the formula:

$$R^1$$
 R^2

5

10

wherein the respective symbols have the same meanings, on the ring-forming nitrogen atoms is subjected to a cyclization reaction.

More specifically, said compound (Ia) or a salt thereof can be produced in accordance with the following reaction schemes 1 to 9. As regards salts of the following compounds, those of the same kinds as the salt of compound (Ia) described hereinbefore can be employed.

15 Reaction Scheme 1

$$Q^{2} \underset{\mathsf{H}}{\overset{\mathsf{W}}{\overset{\mathsf{R}^{2}}{\overset{\mathsf{R}^{1}}{\overset{\mathsf{R}^{5}}{\overset{\mathsf{N}}{\overset{\mathsf{R}^{5}}{\overset{\mathsf{N}^{2}}{\overset{\mathsf{R}^{1}}{\overset{\mathsf{N}^{5}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}^{5}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}^{5}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{\mathsf{N}}}}{\overset{$$

20

25

30

35

wherein R⁷ and R⁸ are the same or different and each represents hydrogen or an optionally substituted hydrocarbon group, and the other symbols have the same meanings as defined hereinbefore.

The optionally substituted hydrocarbon group for \mbox{R}^7 and \mbox{R}^8 has the same meanings as defined for \mbox{R}^5 and $\mbox{R}^6\,.$

This reaction is an addition-condensation reaction among compound (V), (VI), (VII) and (VIII).

For this reaction, relative to compound (V) or a salt thereof, generally about equimolar to a large excess of compound (VI), (VII) and (VIII) or a salt thereof is used. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent suitable for this reaction includes aromatic

hydrocarbons such as benzene, toluene, xylene, etc., halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, etc., ethers such as ethyl ether, isopropyl ether, dioxane, tetrahydrofuran (hereinafter briefly, THF), 1,2-dimethoxyethane, etc., nitriles such as acetonitrile, propionitrile, etc., ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., esters such as ethyl acetate, butyl acetate, etc., amides such as N,N-dimethylformamide (hereinafter briefly, DMF), N,N-dimethylacetamide, etc., dimethyl sulfoxide (briefly, DMSO), water, and mixtures of such solvents.

The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours and the completion of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Scheme 2

20

5

10

15

25

35

wherein X^1 and X^2 each represents a leaving group, and the other symbols have the same meanings as defined hereinbefore.

30

The leaving group represented by X^1 and X^2 includes halogen (e.g. fluorine, chlorine, bromine, etc.) and a group of the formula:

$$-O-Q^{0}$$
, $-S(O)_{k}-Q^{0}$, or $-O-SO_{2}-Q^{0}$

wherein Q⁰ and k have the same meanings as defined hereinbefore, e.g. methoxy, methylsulfonyloxy, trifluoromethylsulfonyloxy, p-toluenesulfonyloxy,

86

benzenesulfonyloxy, etc. Particularly preferred is halogen, with chlorine or bromine being most advantageous.

This reaction is a condensation reaction between compound (V) and compound (IX).

5

10

For this reaction, compound (V) or a salt thereof and compound (IX) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent thus may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding The base that can be used for this purpose 15 includes organic bases such as triethylamine, tri-npropylamine, N,N-dimethylaniline, pyridine, 1,8diazabicyclo[5.4.0.]-7-undecene (hereinafter briefly, DBU), 1,4-diazabicyclo[2.2.2]octane, 1,5diazabicyclo[4.3.0]non-5-ene, etc.; inorganic bases 20 such as sodium hydride, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydroxide, etc.; nbutyllithium, lithium diisopropylamide, etc. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (V) or a salt thereof. 25 The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completion of reaction can be ascertained by thin-layer chromatography or high-30 performance liquid chromatography. Reaction Scheme 3

87

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (X) and compound (XI).

For this reaction, compound (X) or a salt thereof and compound (XI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction, and the solvent that can be used includes the same solvents as those mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5 molar equivalents relative to one molar of compound (X). The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours and the completion of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Schema 4

5

10

15

20

25

30

35

$$Q^{2} \underset{\text{HN}}{\overset{\text{W}}{\underset{\text{R}^{4}}{\bigvee}}} R^{2} R^{1} + X^{1} - A - X^{2}$$

$$Q^{2} \underset{\text{HN}}{\overset{\text{W}}{\underset{\text{R}^{4}}{\bigvee}}} R^{2} R^{1}$$

$$XII \qquad XI \qquad IV$$

5

10

15

20

25

30

35

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XII) and compound (XI).

For this reaction, compound (XII) or a salt thereof and compound (XI) or a salt thereof are used generally in substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent which can be used includes the same solvents as those mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base which can be used for this purpose includes the same acids as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XII) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours and the completion of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Scheme 5

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (V) and compound (XIII).

For this reaction, compound (V) or a salt thereof and compound (XIII) or a salt thereof are used

89

generally in a substantially equimolar ratio. This reaction can be carried out in a solvent which does not interfere with the reaction. The solvent that can be used includes the same solvents as those mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 3. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (V) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10° to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours and the completion of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Scheme 6

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1} \xrightarrow{N} X^{2} \xrightarrow{A-NH-R^{3}} \xrightarrow{Q^{2}} \xrightarrow{N} \xrightarrow{N} \xrightarrow{R^{2}} XIV \qquad XV \qquad I$$

25

30

35

5

10

15

20

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XIV) and compound (XV).

For this reaction, compound (XIV) or a salt thereof and compound (XV) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 1. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XIV) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography. Reaction Scheme 7

5

10

25

30

35

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1} + X^{2} \xrightarrow{A-NH-R^{3}} Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1}$$

$$XVI \qquad XV \qquad III$$

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XVI) and compound (XV).

For this reaction, compound (XVI) or a salt thereof and compound (XV) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent which does not interfere with the reaction. The solvent that can be used includes the same solvents as those mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5

91

moles per mole of compound (XVI) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours and the completion of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

The compound (Ia) can also be produced according to the following Reaction Scheme 8-13 or analogous method thereof.

Reaction Scheme 8

5

10

15

20

25

30

35

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XVII) and compound (XVIII).

For this reaction, compound (XVII) or a salt thereof and compound (XVIII) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XVII) or a salt thereof. The reaction temperature is generally about -10°C to

92

150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or highperformance liquid chromatography.

Reaction Scheme 9

5

10

15

20

25

30

35

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XIX) and compound (XVIII).

For this reaction, compound (XIX) or a salt thereof and compound (XVIII) or a salt thereof are used generally in a substantially equimolar ratio. reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 3 moles per mole of compound (XIX) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or highperformance liquid chromatography.

93

Reaction Scheme 10

5

15

20

25

30

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XX) and compound (XXI).

For this reaction, compound (XX) or a salt thereof and compound (XXI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 3 moles per mole of compound (XX) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Scheme 11

94

5

10

15

20

25

30

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XXII) and compound (XXI).

For this reaction, compound (XXII) or a salt thereof and compound (XXI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 3 moles per mole of compound (XXII) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography. Reaction Scheme 12

95

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XXIII) and compound (XXI).

For this reaction, compound (XXIII) or a salt thereof and compound (XXI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XXIII) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

30 Reaction Scheme 13

5

10

15

20

25

96

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XXIV) and compound (XXI).

For this reaction, compound (XXIV) or a salt thereof and compound (XXI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent which does not interfere with the reaction. The solvent that can be used includes the same solvents as those mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 3 moles per mole of compound (XXIV) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours and the completion of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Scheme 14

5

10

15

20

25

30

97

5

10

15

20

25

30

35

wherein X^3 or X^4 represents a $C_{1\text{-}6}$ alkoxy group, and the other symbols have the same meanings as defined hereinbefore.

The alkoxy group mentioned for X^3 and X^4 includes methoxy, ethoxy, n-propoxy or isopropoxy.

This reaction is a condensation reaction between compound (XXII) and compound (XXIII).

For this reaction, compound (XXII) or a salt thereof and compound (XXIII) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding The acid that can be used for this purpose includes inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, etc.; organic acids such as formic acid, acetic acid, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, etc.; and Lewis acids such as trifluoroborane, titanium tetrachloride, zinc chloride etc. The acid can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XXII) or a salt thereof. reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

98

Reaction Scheme 15

5

10

15

20

25

30

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XXIV) and compound (XXIII).

For this reaction, compound (XXIV) or a salt thereof and compound (XXIII) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding an acid. The base that can be used for this purpose includes the same acids as those mentioned for the reaction according to Reaction Scheme 14. The acid can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XXIV) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography. Reaction Scheme 16

$$Q^{2} \xrightarrow{N} \begin{array}{c} W \\ R^{2} \\ N \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} Q^{2} \\ N \\ R^{3} \end{array} \xrightarrow{N} \begin{array}{c} W \\ R^{2} \\ N \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} Q^{2} \\ N \\ N \\ R^{3} \end{array} \xrightarrow{R^{3}} \begin{array}{c} W \\ R^{2} \\ N \\ R^{3} \end{array} \xrightarrow{R^{1}} \begin{array}{c} R^{1} \\ N \\ R^{3} \end{array} \xrightarrow{R^{3}} \begin{array}{c} R^{1} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{3}} \begin{array}{c} R^{1} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{3}} \begin{array}{c} R^{1} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \\ R^{3} \end{array} \xrightarrow{R^{3}} \begin{array}{c} R^{1} \\ R^{3} \\ R^{3$$

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XXV) and compound (XI).

For this reaction, compound (XXV) or a salt thereof and compound (XI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XXV) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

Reaction Scheme 17

5

10

15

20

25

30

35

100

wherein the respective symbols have the same meanings as defined hereinbefore.

This reaction is a condensation reaction between compound (XXVI) and compound (XI).

5

10

15

20

25

30

35

For this reaction, compound (XXVI) or a salt thereof and compound (XI) or a salt thereof are used generally in a substantially equimolar ratio. This reaction can be carried out in a solvent that does not interfere with the reaction. The solvent may be any of the solvents mentioned for the reaction according to Reaction Scheme 1.

This reaction can be generally promoted by adding a base. The base that can be used for this purpose includes the same bases as those mentioned for the reaction according to Reaction Scheme 2. The base can be used generally in a proportion of about 0.01 to 5 moles per mole of compound (XXVI) or a salt thereof. The reaction temperature is generally about -10°C to 150°C and preferably about 10°C to 100°C. The reaction goes to completion in about 30 minutes to about 20 hours, and the completing of reaction can be ascertained by thin-layer chromatography or high-performance liquid chromatography.

The structures of the compounds obtained by the Reaction Scheme 1-17 can be changed by objecting further reaction.

For example, compound in which R^3 is an alkyl group can be synthesized by using compound having carboxy on R^3 as a starting material according to the reaction described in J. Chem. Soc., Chem. Commun., p1298, 1984.

Also, compound in which R^3 is hydroxy can be synthesized by using compound having hydrogen at the 1-position of R^3 as a starting material according to the reaction described in J. Org. Chem., P6239, 1992.

Further, compound in which ${\boldsymbol{R}}^3$ is a group bonded

101

through an oxygen atom can be synthesized by using compound in which such R^3 is hydroxy as a starting material.

5

10

15

20

25

30

35

Compound in which R³ is amino can be synthesized by using compound in which R³ is hydrogen as a starting material according to the reaction described in Synth., P1, 1977. In addition, compound in which R³ is a group bonded through a nitrogen atom can be synthesized by using compound in which R³ is amino as a starting material. Compound (III) can be synthesized by using compound (XVII) and (XIX) as starting materials according to the reaction described in Bull. Chem. Soc. Jpn., P1297, 1974.

When the compound (Ia) obtained by the above reaction and (I)-(IV) contain an acidic group such as sulfo or carboxyl within its molecule, the reaction product may be in the form of a salt with a base used in the reaction. If such is the case, the salt can be converted to a free form of the compound by adding an acid such as the above-mentioned acid. When the compound (Ia) produced and (I)-(IV) are a free form of the compound, it can be converted to a base salt by adding the corresponding base such as the abovementioned base. When compound (Ia) and (I)-(IV) contain a basic group such as amino within its molecule, the above reaction conducted in the presence of an acid may yield a salt with an acid used. If such is the case, the salt can be converted to a free form of the compound by adding a base such as the abovementioned base. When the compound (Ia) and (I)-(IV) obtained as a free form of the compound, it can be converted to form an acid addition salt with the corresponding acid such as the above-mentioned acid.

The compound (Ia) or a salt thereof thus obtained can be isolated and purified by the per se known procedures such as concentration, concentration under

reduced pressure, extraction, redistribution, crystallization, recrystallization, and chromatography.

The starting compounds inclusive of their salts, which are used for producing the compound (Ia) are either known compounds or compounds which can be easily prepared from known compounds.

For example, compound (V) or a salt thereof can be produced by the process described in Chemical Review, 43, p203, 1948 or any process analogous thereto, e.g. in accordance with the following reaction scheme.

Reaction Scheme 18

wherein the respective symbols have the same meanings as defined hereinbefore.

In addition, it can be produced by the process described in JP-A 6943/1976 or any process analogous thereto, e.g. in accordance with the following reaction scheme.

25 Reaction Scheme 19

5

10

15

20

35

wherein Y represents a halogen atom, and the other symbols have the same meanings as defined hereinbefore.

Compound (VI) or (VII) or a salt thereof is for example formaldehyde, acetaldehyde or acetone, and is either a known compound or can be produced easily from known compound. Also, it is a carbonyl equivalent such as paraformaldehyde or dimethoxyethane, and is also

5

10

20

25

30

35

either a known compound or can be produced wasily from known compound.

Compound (VIII) or a salt thereof is for example amines such as ammonia, methylamine, aniline or O-methylhydroxylamine, and is either a known compound or can be produced wasily from known compound.

Compound (IX) or a salt thereof is for example bischloromethylmethylamine, and is either a known compound or can be produced easily from known compound.

Compound (X) or a salt thereof can be produced for example by the following reaction scheme. Reaction Scheme $20\,$

15
$$Q^2$$
 NH $+$ $W=C=N$ Q^1 Q^2 NH Q^1 Q^2 NH Q^1

wherein the respective symbols have the same meanings as defined hereinbefore.

Compounds (XI) or a salt thereof, such as dichloromethane, dibromomethane, methylchloroformate, etc., are either known compounds or compounds which can be easily produced from known compounds.

Compound (X) or a salt thereof can be produced, for example, by the following reaction scheme. Reaction Scheme 21

$$Q^{2} = C = W + HN + HN + R^{4} + HN + R^{4}$$

$$Q^{2} = W + HN + R^{4} + HN + R^{4}$$

wherein the respective symbols have the same meanings as defined hereinbefore.

Compound (XIII) or a salt thereof in for example chlorobenzylideneurethane, and such a compound is a known compound or can be produced from known compound

easily.

Compound (XIV) can be produced for example by the following reaction scheme.

Reaction Scheme 22

5

15

30

35

wherein the respective symbols have the same meanings as defined hereinbefore.

Compound (XV) or a salt thereof is for example N-methylurethane, and such a compound is a known compound or can be produced from known compound easily.

Compound (XVI) can also be produced for example by the following reaction scheme.

Reaction Scheme 23

wherein the respective symbols have the same meanings as defined hereinbefore.

Compound (XVIII) and compound (XVIII) or salts thereof are for example methyl iodide, acetyl chloride, N,N-dimethylcarbanoyl chloride, etc., and such a compound is known compound or can be produced from known compound easily.

Compound (XXI) or salts thereof are for example allyl iodide, benzoyl chloride, chloroethyl carbonate, N,N-dimethylcarbamoyl chloride, or methane sulfonyl chloride, etc., and such a compound is known compound or can be produced from known compound easily.

Compound (XXII) or salts thereof can be produced for example by the following reaction scheme.

5

10

15

25

30

35

$$Q^{2} \underset{H}{\overset{W}{\overset{}}} \underset{H}{\overset{Q^{2}}{\overset{}}} \underset{H}{\overset{W}{\overset{}}} \underset{Q^{1}}{\overset{}} + R^{3} - N = C = W \qquad \qquad \qquad \overset{Q^{2}}{\overset{}} \underset{H}{\overset{W}{\overset{}}} \underset{H}{\overset{}} \underset{H}{\overset{}} \underset{H}{\overset{}} \underset{Q^{1}}{\overset{}}$$

Compound (XXIII) or salts thereof are for example dimethoxymethane, etc., and such a compound is known compound or can be produced from known compound easily.

Compound (XXIV) or salts thereof can be produced for example by the following reaction scheme.

$$Q^{2} \underset{H}{\overset{W}{\underset{N}{\longrightarrow}}} \stackrel{R^{2}}{\underset{N}{\longrightarrow}} \stackrel{R^{1}}{\underset{N}{\longrightarrow}} Q^{1} + R^{3} - N = C = W \xrightarrow{\qquad \qquad } \stackrel{Q^{2}}{\underset{N}{\overset{W}{\underset{N}{\longrightarrow}}}} \stackrel{R^{2}}{\underset{N}{\longrightarrow}} \stackrel{R^{1}}{\underset{N}{\longrightarrow}} Q^{1}$$

Compound (XXV) or salts thereof can be produced for example by the following reaction scheme.

Compound (XXVI) or salts thereof can be produced for example by the following reaction scheme.

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1}$$

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1}$$

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1}$$

$$Q^{3} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1}$$

$$Q^{4} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} X$$

[Industrial Application]

The compound or a salt thereof of the present invention has potent herbicidal activity against a broad spectrum of weeds including paddy field weeds and plow land weeds at low concentrations. Furthermore, it

106

is least phytotoxic to crop plants such as rice, wheat, barley, soybean, and corn plants, thus having very satisfactory selective herbicidal activity. Moreover, this selective herbicidal action lasts long. In addition, the compound or a salt thereof of the present invention does no substantial harm to mammalian animals and fish, is free from the pollution problem, and can be used very safely as a herbicide in paddy fields, plow lands, orchards, and non-crop lands.

10

15

5

[Examples]

The following reference examples, working examples, formulation examples, and test examples are all intended to describe the present invention in further detail and should by no means be construed as limiting the scope of the invention.

In the reference examples and working examples, the term "room temperature" is generally used to mean a temperature within the range of about 10 to 30°C. 20 H-NMR stands for proton nuclear magnetic resonance The NMR spectra were recorded with Bruker spectrum. AC200P Spectrometer (200 MHz) using tetramethylsilane as internal standard and the chemical shifts (δ) were expressed in ppm. IR stands for infrared absorption The IR spectra were recorded with Shimadzu 25 spectrum. IR420 or IR435 Infrared Spectrophotometer and the absorption bands were expressed in wave-numbers (cm⁻¹). The other symbols used in the working examples have the following meanings. DMSO-d6: deuterated dimethyl 30 sulfoxide; s: singlet; d: doublet; t: triplet; q: quartet; dd: doublet doublet; ddd: doublet doublet doublet; dt: doublet triplet; td: triplet doublet; qd: quartet doublet; m: multiplet, br.: broad; J: coupling constant; %: weight percent; v/v: volume-to-volume 35 ratio; Me: methyl; Et: ethyl; n-Pr: n-propyl; i-Pr: isopropyl; n-Bu: n-butyl; dec.: decomposition; def.s:

107

defused singlet.

[Reference Example 1]

1-[1-(3,5-Dichloro-4-methoxyphenyl)-1-methylethyl]-3phenylurea

To a solution of 1-(3,5-dichloro-4-methoxyphenyl)1-methylethylamine 1.31 g (5.60 mmol) in 20 ml of
diethyl ether, phenyl isocyanate 0.60 ml (5.32 mmol)
was added at room temperature and the mixture was
stirred for 2 hours. The resulting crystals were
collected by filtration and washed with diethyl ether

collected by filtration and washed with diethyl ether to provide 1.88 g (5.32 mmol, 95%) of 1-[1-(3,5-dichloro-4-methoxyphenyl)-1-methylethyl]-3-phenylurea as white crystals.

mp: 208-210°C.

15 1 H-NMR(DMSO-d₆) δ ppm: 1.56 (6H, s), 3.81 (3H, s), 6.67 (1H, def.s), 6.87 (1H, t J=7.2Hz), 7.18 (2H, t J=7.9 Hz), 7.31 (2H, d J=8.8 Hz), 7.42 (2H, s), 8.42 (1H, def.s).

IR(Nujol) $v \text{ cm}^{-1}$: 3357, 1654, 1601, 1559, 1272, 1246,

20 994, 804, 753, 743, 694.

[Reference Example 2]

1-[1-Methyl-1-(1,2,3,4-tetrahydronaphthalen-6-yl)ethyl]-3-phenylurea

To a solution of 1-Methyl-1-(1,2,3,4-

- tetrahydronaphthalen-6-yl)ethyl isocyanate 1.31 g (5.60 mmol) in 20 ml of toluene, a solution of 1.0 ml (11 mmol) of aniline in 5 ml of toluene was added under ice cooling and the mixture was stirred for 11 days at room temperature. The resulting crystals were collected by
- filtration and washed with hexane to provide 1.1 g (3.7 mmol, 34%) of 1-[1-Methyl-1-(1,2,3,4-tetrahydronaphthalen-6-yl)ethyl]-3-phenylurea as white crystals.

mp: 171-172 °C.

35 ¹H-NMR (DMSO-d₆) δ ppm: 1.56 (6H, s), 1.70-1.80 (4H, m), 2.63-2.78 (4H, m), 6.52 (1H, s), 6.81-7.21 (6H, m),

```
7.30 (2H, dd, J = 1.2, 8.6 Hz), 8.38 (1H, s).
      IR (Nujol) ncm<sup>-1</sup>: 3356, 1652, 1597, 1554, 1443, 1313,
      1245, 1169
           The compounds which were synthesized by the same
 5
      procedures as Reference Example 1 and 2 are shown as
      follows.
      1-[1-(2,3-Dichlorophenyl)-1-methylethyl]-3-phenylurea;
      mp: 198-199 °C
10
      1-[1-(3,4-Dichlorophenyl)-1-methylethyl]-3-phenylurea;
      mp: 203 °C (decomp.)
      1-[1-(2,5-Dichlorophenyl)-1-methylethyl]-3-phenylurea;
15
      mp: 232-235 °C
      1-[1-(3-Chloro-4-methoxyphenyl)-1-methylethyl]-
      3-phenylurea;
      mp: 215-216 °C
20
      1-[1-(3-Chloro-4-methythiophenyl)-1-methylethyl]-
      3-phenylurea;
      mp: 209-210 °C
25
      1-[1-(3-Chloro-4-methylphenyl)-1-methylethyl]-
      3-phenylurea;
      mp: 195 °C
      1-[1-(3,5-Dichloro-4-dimethylaminophenyl)-1-methylethyl
30
      1-3-phenylurea;
      mp: 214-215 °C
      1-[1-(4-Benzyloxy-3,5-dichlorophenyl)-1-methylethyl]-3-
      phenylurea;
      mp: 185-189 °C
35
```

```
1-[1-(3,5-Dichloro-4-phenoxyphenyl)-1-methylethyl]-3-
      phenylurea;
      mp: 223-224 °C
 5
      1-[1-[3,5-Dichloro-4-(2,2,2-trifluoroethoxy)phenyl]-1-
      methylethyl]-3-phenylurea;
      mp: 202-203 °C
      1-[1-(3,5-Dichlorophenyl)-2-fluoro-1-methylethyl]-3-
10
      phenylurea;
      mp: 203-205 °C
      1-[1-(3,5-Dichlorophenyl)-1-methyl-2,2,2-trifluoroethyl
      ]-3-phenylurea;
15
      mp: 244-245 °C
      1-[1-(3,5-Dichlorophenyl)cyclobutyl]-3-phenylurea;
      mp: 236-238 °C
20
      1-[1-Methyl-1-(naphthalen-2-yl)ethyl]-3-phenylurea;
      mp: 129-130 °C
      1-[1-Methyl-1-(4-chloronaphthalen-2-yl)ethyl]-
      3-phenylurea;
25
      mp: 221-224 °C
      1-[1-Methyl-1-(benzofuran-5-yl)ethyl]-3-phenylurea;
      mp: 198-201 °C
30
      1-[1-Methyl-1-(7-chlorobenzofuran-5-yl)ethyl]-
      3-phenylurea;
     mp: 226-227°C
      1-Allyloxy-3-[1-(3,5-dichlorophenyl)-1-methylethyl]
35
     urea;
     mp: below 30°C.
```

110

 1 H-NMR(DMSO-d₆) δ ppm: 1.67 (6H, s), 3.81 (3H, s), 4.34(2H, dt J=6.5,1.0Hz), 5.37-5.48(2H, m), 5.92-6.12(2H, m), 6.90 (1H, br), 7.21-7.23 (1H, m), 7.25-7.27 (2H, m).

5

[Example 1]

Synthesis of ethyl 2-[3-[1-(3,5-dichloropheny)-1-methylethyl]-5-phenylhexahydro-4-oxo-1,3,5-triazin-1-yl]acetate

- To a mixture of ethyl glycinate hydrochloride (1.04 g, 7.43 mmol) and 37% formalin (6.0 ml, 80 mmol) was added triethylamine to make pH = 7. Then, 1-phenyl-3-[1-(3,5-dichlorophenyl)-1-methylethyl]urea (2.00 g, 6.19 mmol) and toluene (80 ml) were added, and
- the mixture was refluxed for 3 hours, whilst toluene was supplementally added and water was removed azeotropically. To a mixture of ethyl glycinate hydrochloride (1.04 g, 7.43 mmol) and 37% formalin (6.0 mol, 80 mmol) was added triethylamine to make pH = 7:.
- This mixture was added to the above reaction mixture on reflux and while toluene was supplementally added, the byproduct water was removed azeotropically. After 5.5 hours of refluxing, the solvent was distilled off and the residue was purified by preparative liquid
- chromatography (silica gel eluent = hexane:ethyl acetate = 5:3) to provide ethyl 2-[3-[1-(3,5-dichloropheny)-1-methylethyl]-5-phenylhexahydro-4-oxo-1,3,5-triazin-1-yl]acetate as colorless crystals (2.20 g, 4.88 mmol). Yield 79%
- ¹H-NMR (200MHz, CDCl₃) δ ppm: 1.32 (3H, t J=7.1Hz), 1.66 (6H, s), 3.77 (2H, s), 4.26 (2H, q J=7.1Hz), 4.64 (4H, s), 7.10-7.31 (8H, m) IR (nujol) ν cm⁻¹: 1736, 1670, 1430, 1296, 1239, 1207, 1165, 752
- 35 mp: 100-102°C [Example 2]

111

Synthesis of 2-[3-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-phenylhexahydro-4-oxo-1,3,5-triazin-1-yl]acetic acid

To an ice-cooling suspension of ethyl 2-[3-[1-(3,5-dichloropheny)-1-methylethyl]-5-phenylhexahydro-4-5 oxo-1,3,5-triazin-1-yl acetate (1.00 g, 2.22 mmol) in ethanol (50 ml) was added 0.1 N aqueous solution of sodium hydroxide (5 ml, NaOH 0.50 mmol). The mixture was stirred on an ice-water bath for 30 minutes, at the end of which time an aqueous solution of sodium 10 hydroxide (70 mg/ml, 1.75 mmol) was further added. The mixture was then stirred at room temperature for 2 The solvent was then distilled off and the hours. residue was diluted with ethyl acetate and water. Then, under ice-cooling, the mixture was acidified with 15 2 N hydrochloric acid. After phase separation, the aqueous layer was further extracted with ethyl acetate. The ethyl acetate layers were combined and dried over anhydrous magnesium sulfate, and the solvent was 20 distilled off. The resulting crystal crop was rinsed with diethyl ether and dried to provide 2-[3-[1-(3,5dichlorophenyl)-1-methylethyl]-5-phenylhexahydro-4-oxo-1,3,5-triazin-1-yllacetic acid as colorless crystals (0.84 g, 1.99 mmol). Yield 90% 25 1 H-NMR (200MHz, DMSO-d₆) 8 ppm: 1.56 (6H, s), 3.74 (2H, s), 4.61 (2H, s), 4.69 (2H, s), 7.07-7.31 (8H, m), 12.63 (1H, br) IR (nujol) $v \text{ cm}^{-1}$: 2740-2360, 1728, 1606, 1583, 1489, 1463, 1451, 1314, 1222, 798, 753 30 mp: 232°C (dec.) [Example 3] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-methyl-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one In tetrahydrofuran (THF, 5 ml) was suspended 2-[3-

[1-(3,5-dichlorophenyl)-1-methylethyl]-5-

phenylhexahydro-4-oxo-1,3,5-triazin-1-yl]acetic acid

(0.50 g, 1.18 mmol), and N-methylmorpholine (0.13 ml,This mixture was cooled to -40°C 1.18 mmol) was added. and a solution of isopropyl chlorocarbonate (0.15 q, 1.24 mmol) in tetrahydrofuran (THF, 5 ml) was added portionwise over 10 minutes. The mixture was then 5 stirred at -35°C to -40°C for 10 minutes. solution of 2-mercaptopyridine-N-oxide (0.15 g, 1.18 mmol) in THF (3 ml) was added dropwise and, then, a solution of triethylamine (0.16 ml, 1.18 mmol) in THF 10 (3 ml) was added portionwise. The mixture was stirred at -30°C for 20 minutes. Then, a solution of tbutylmercaptan (1.33 ml, 11.8 mmol) in THF (3 ml) was added dropwise. The ice-water bath was then removed and the reaction mixture was irradiated with a high-15 pressure mercury vapor lamp for 10 minutes (at ca 0°C). The solvent was then distilled off and the residue was diluted with water and extracted with chloroform. The chloroform layer was washed with saturated aqueous solution of sodium hydrogen carbonate and dried over-20 anhydrous magnesium sulfate and the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 3:2) to provide 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5methyl-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one as 25 colorless crystals (0.30 q, 0.793 mmol). Yield 67% 1 H-NMR (200MHz, DMSO-d₆) 8 ppm: 1.66 (s, 6H), 2.78 (s, 3H), 4.49 (s, 2H), 4.53 (s, 2H), 7.12-7.34 (m, 8H) IR (nujol) $v \text{ cm}^{-1}$: 1651, 1475, 1442, 1305, 1270, 848, 739, 748 30 mp: 101.5-102.5°C [Example 4] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-(2-hydroxyethyl)-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one 35 In THF (15 ml) was dissolved ethyl 2-[3-[1-(3,5-

dichlorophenyl)-1-methylethyl]-5-phenylhexahydro-4-oxo-

WO 98/49150

113

PCT/JP98/01872

1,3,5-triazin-1-yllacetate (1.14 g, 2.53 mmol) followed by addition of sodium borohydride (0.14 g, 3.7 mmol), 97% zinc chloride (0.36 g, 2.5 mmol), and N,Ndimethylaniline (0.31 g, 2.5 mmol), and the mixture was refluxed for 4 hours. To this reaction mixture was 5 added 5 ml of methanol, and after overnight stirring, the solvent was distilled off under reduced pressure. The residue was diluted with water and ethyl acetate and, after phase separation, the aqueous layer was 10 further extracted with ethyl acetate. The ethyl acetate layers were combined and dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (chloroform:acetone = 5:1) to provide 1-[1-(3,5-dichlorophenyl)-1-15 methylethyl]-5-(2-hydroxyethyl)-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one as colorless crystals (0.89 g, 2.2 mmol). Yield 86% 1 H-NMR (200MHz, CDCl₃) 8 ppm: 1.67 (6H, s), 2.18 (1H, t 20 J=5.6Hz), 3.14 (1H,t J=5.1Hz), 3.74-3.82 (2H, m), 4.58 (2H, s), 4.59 (2H, s), 7.10-7.34 (8H, m). IR (nujol) $v \text{ cm}^{-1}$: 3456, 1627, 1480, 1446, 1300, 763. mp: 105.5-106.0°C [Example 5] 25 Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-(2-bromoethyl)-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one A solution of 1-[1-(3,5-dichlorophenyl)-1methylethyl]-5-(2-hydroxyethyl)-3-phenyltetrahydro-

methylethyl]-5-(2-hydroxyethyl)-3-phenyltetrahydro
1,3,5-triazine-2(1H)-one (0.36 g, 0.88 mmol) in dichloroethane (5 ml) was cooled with ice and triphenylphosphine (0.25 g, 0.95 mmol) and carbon tetrabromide (0.32 g, 0.95 mmol) were added. The mixture was stirred for 2 hours. This reaction mixture was subjected to silica gel column chromatography (chloroform:acetone = 15:1) to provide 1-[1-(3,5-

114

dichlorophenyl)-1-methylethyl]-5-(2-bromoethyl)-3phenyltetrahydro-1,3,5-triazine-2(1H)-one (0.34 g, 0.72 mmol) as colorless crystals. Yield 82% 1 H-NMR (200MHz, CDCl₃) 8 ppm: 1.64 (6H, s), 3.29-3.51 (4H, m), 4.53 (2H, s), 4.55 (2H, s), 7.09-7.29 (8H, m). 5 IR (nujol) $v \text{ cm}^{-1}$: 1644, 1464, 1452, 1308, 1279, 795, 748. mp: 114-117°C [Example 6] 10 Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-ethyl-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one To a solution of 1-[1-(3,5-dichlorophenyl)-1methylethyl]-5-(2-bromoethyl)-3-phenyltetrahydro-1,3,5triazine-2(1H)-one (0.15 g, 0.32 mmol) in dimethyl sulfoxide (DMSO, 3 ml) was added sodium borohydride (36 15 mg, 0.95 mmol), and the reaction was carried out at 50°C for 1.5 hours. After spontaneous cooling, the reaction mixture was diluted with water and ethyl acetate and the aqueous layer was further extracted 20 The ethyl acetate layers were with ethyl acetate. combined and dried over anhydrous magnesium sulfate and the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 1:1) to provide 1-[1-(3,5-25 dichlorophenyl)-1-methylethyl]-5-ethyl-3phenyltetrahydro-1,3,5-triazine-2(1H)-one (80 mg, 0.20 mmol) as colorless crystals. Yield 63% 1 H-NMR (200MHz, CDCl₃) δ ppm: 1.21 (3H, t J=7.2Hz), 1.67 (6H, s), 3.01 (2H, q J=7.2Hz), 4.55 (2H, s), 4.58 30 (2H, s), 7.08-7.33 (6H, m), 7.21 (2H, d J=1.9Hz). IR (nujol) $v \text{ cm}^{-1}$: 1651, 1468, 1440, 1309, 1273, 1250, 749. mp: 79-83°C [Example 7] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-35 5-(2-methoxyethyl)-3-phenyltetrahydro-1,3,5-triazine2(1H)-one

A suspension of 60% sodium hydride/oil (18 mg, 0.45 mmol) in THF (3 ml) was cooled with ice and 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-(2-hydroxyethyl)-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one (0.15 g, 5 0.37 mmol) was added at a temperature of not over 5°C. The mixture was then stirred at room temperature for 30 minutes, at the end of which time methyl iodide (27 μ l, 0.43 mmol) was added. The mixture was further stirred 10 at room temperature for 30 minutes. Then, methyl iodide (27 μ l, 0.43 mmol) was further added and the mixture was stirred for another 30 minutes. dimethyl sulfate (42 μ l, 0.44 mmol) was added and the mixture was stirred at room temperature for 1 hour. 15 Thereafter, dimethyl sulfate (42 µl, 0.44 mmol) and 60% sodium hydride/oil (10 mg, 0.25 mmol) were further added and the mixture was stirred at room temperature overnight. The solvent was then distilled off under The residue was diluted with water reduced pressure. 20 and ethyl acetate and, after phase separation, the aqueous layer was further extracted with ethyl acetate. The ethyl acetate layers were combined and dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to provide 1-[1-25 (3,5-dichlorophenyl)-1-methylethyl]-5-(2-methoxyethyl)-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one as a colorless syrup (0.10 g, 0.24 mmol). Yield 65% 'H-NMR (200MHz, CDCl₃) δ ppm: 1.65 (6H, s), 3.16 (2H, t J=5.0Hz), 3.40 (3H, s), 3.62 (2H, t J=5.0Hz), 4.66 (2H, 30 s), 4.63 (2H, s), 7.08-7.32 (8H, m). IR (neat) $v \text{ cm}^{-1}$: 2924, 1657, 1652, 1646, 1439, 1303, 1248, 795. [Example 8] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-35 5-methyl-3-phenyltetrahydro-1,3,5-triazin-2(1H)-one

To a refluxing suspension of phosphorus

pentachloride (3.35 g, 16.1 mmol) in dichloromethane (25 ml) was added a solution of 1,3,5trimethylhexahydro-1,3,5-triazine (1.04 g, 8.05 mmol) in dichloromethane (25 ml) dropwise. The mixture was 5 further refluxed for 4.5 hours and then cooled to room temperature. A suspension of 1-[1-(3,5dichlorophenyl)-1-methylethyl]-3-phenylurea (2.00 g, 6.19 mmol) in dichloromethane (15 ml) was cooled with ice and the above reaction mixture was added thereto 10 Then, a solution of triethylamine (2.23 ml, dropwise. 16.1 mmol) in dichloromethane (15 ml) was added dropwise, and the whole mixture was stirred under ice-Then, 50 ml of a saturated cooling for 30 minutes. aqueous solution of sodium hydrogencarbonate was added. 15 After phase separation, the aqueous layer was further extracted with 30 ml of dichloromethane. dichloromethane layers were combined, washed with 30 ml of saturated sodium chloride solution (NaCl/H2O), and dried over anhydrous magnesium sulfate (MgSO4). 20 solvent was then distilled off, the residue was purified by silica gel column chromatography (chloroform:acetone = 15:1, hexane:ethyl acetate = 2:1), and the crystal crop was harvested from hexane to provide 1.89 g (5.00 mmol) of 1-[1-(3,5-25 dichlorophenyl)-1-methylethyl]-5-methyl-3phenyltetrahydro-1,3,5-triazine-2(1H)-one as colorless crystals. Yield 81%. $^{1}H-NMR$ (CDCl₃) 8 ppm: 1.66 (6H, s), 2.78 (3H, s), 4.49 (2H, s), 4.53 (2H, s), 7.12-7.34 (8H, m)IR (nujol) $v \text{ cm}^{-1}$: 1651, 1475, 1442, 1305, 1270, 848, 30 739, 748 mp: 101.5-102.5°C [Example 9] Synthesis of 5-benzyloxycarbonyl-1-[1-(3,5dichlorophenyl)-1-methylethyl]-3-phenyltetrahydro-35

1,3,5-triazine-2(1H)-one

A suspension of sodium hydride (60% in oil) (3.71 q, 92.8 mmol) in DMF (150 ml) was cooled with ice and a solution of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3phenylurea (15.00 g, 46.41 mmol) in DMF (50 ml) was added thereto dropwise. The mixture was stirred under 5 ice-cooling for 1 hour. Then, a solution of benzyl N, N-bis(chloromethyl)carbamate (11.51 g, 46.41 mmol) in THF (50 ml) was added dropwise over 20 minutes and the reaction was carried out at room temperature for 1 10 hour. A solution of benzyl N,Nbis(chloromethyl)carbamate (1.15 g, 4.64 mmol) in THF (5 ml) was further added and the reaction was further continued at room temperature for 2 hours. reaction mixture was diluted with 5 ml of water and the THF was distilled off. To the residue, 150 ml of water 15 and 150 ml of chloroform were added. After phase separation, the aqueous layer was further extracted with 100 ml of chloroform. The chloroform layers were combined, washed with 100 ml of water, and dried over 20 MgSO, and the solvent was distilled off. residue was added chloroform, followed by cooling, and the insoluble matter was filtered off. The crystal crop available on removal of the solvent was harvested from isopropyl ether to provide 18.37 g (36.86 mmol) of 25 5-benzyloxycarbonyl-1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazine-2(1H)one as colorless crystals. Yield 79%. 1 H-NMR (CDCl₃) 8 ppm: 1.68 (6H, bs), 5.02 (2H, bs), 5.13 (2H, s), 5.27 (2H, s), 7.14-7.37 (13H, m) IR (nujol) $v \text{ cm}^{-1}$: 1721, 1652, 1393, 1251, 1219, 1179 30 mp: 152-153°C [Example 10] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one To a suspension of 5-benzyloxycarbonyl-1-[1-(3,5-35 dichlorophenyl)-1-methylethyl]-3-phenyltetrahydro-

118

1,3,5-triazin-2(1H)-one in ethanol (200 ml) was added 250 mg of 10% palladium-on-carbon, and the mixture was stirred in a hydrogen atmosphere at room temperature Then, chloroform was added until the for 8 hours. crystals formed in the reaction mixture had dissolved 5 and the catalyst was then filtered off. The filtrate was purified by silica gel column chromatography (chloroform:acetone = 30:1) to provide 4.31 g (11.8 mmol) of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3phenyltetrahydro-1,3,5-triazine-2(1H)-one as colorless 10 crystals. Yield 85%. $^{1}H-NMR$ (CDCl₃) v ppm: 1.67 (6H, s), 2.57 (1H, brt), 4.54 (2H, s), 4.59 (2H, s), 7.08-7.33 (8H, m) IR (nujol) $v \text{ cm}^{-1}$: 3304, 1634, 1499, 1475, 1450, 1438, 1309, 1285, 751 15 mp: 198-200°C [Example 11] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-methylsulfonyl-3-phenyltetrahydro-1,3,5-triazine-20 2(1H)-one To a solution of 1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazine-2(1H)one (0.15 g, 0.41 mmol) in THF (5 ml) was added 68 μ l of triethylamine (0.49 mmol). Then, a solution of methanesulfonyl chloride (38 μ l, 0.49 μ l) in THF (3 25 ml) was added thereto dropwise under ice-cooling. After the mixture was stirred at room temperature for 2 hours, methanesulfonyl chloride (159 μ l, 2.06 mmol) and triethylamine (0.29 ml, 2.06 mmol) were further added 30 and the mixture was stirred at room temperature for 1 The solvent was then distilled off, and 30 ml of ethyl acetate and 20 ml of water were added to the residue. After phase separation, the organic layer was washed with 20 ml of water and dried over MgSO4, and the solvent was distilled off. The residue was 35 purified by silica gel column chromatography

5

10

15

20

25

30

35

WO 98/49150 PCT/JP98/01872

119

(hexane:ethyl acetate = 1:1) to provide 0.14 g (0.32 mmol) of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5methylsulfonyl-3-phenyltetrahydro-1,3,5-triazine-2(1H)one as colorless amorphous powders. Yield 77%. $^{1}H-NMR$ (CDCl₃) 8 ppm: 1.74 (6H, s), 3.15 (3H, s), 5.13 (2H, s), 5.13 (2H, s), 7.15-7.38 (8H, m) IR (neat) $v \text{ cm}^{-1}$: 1659, 1442, 1335, 1252, 1155 [Example 12] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-isopropyl-3-phenyltetrahydro-1,3,5-triazine-2(1H)-one To a refluxing solution of phosphorus pentaoxide (13.75 g, 66.02 mmol) in dichloromethane (100 ml) was added a solution of 1,3,5-triisopropylhexahydro-1,3,5triazine (7.04 g, 33.0 mmol) in dichloromethane (50 ml) dropwise. After 4 hours of refluxing, the reaction mixture was cooled to room temperature and added dropwise to a solution of 1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenylurea (9.70 g, 30.0 mmol) in dichloromethane (100 ml) under ice-cooling. solution of triethylamine (9.15 ml, 66.0 mmol) in dichloromethane (50 ml) was added dropwise and the mixture was stirred under ice-cooling for 30 minutes. This reaction mixture was added dropwise into 10% sodium hydroxide/water and stirred for 15 minutes under The dichloromethane layer was separated ice-cooling. and the aqueous layer was further extracted with $100\ \mathrm{ml}$ of dichloromethane. The dichloromethane layers are combined, washed with 300 ml of water twice, 0.1Nhydrochloric acid, and saturated NaCl/H2O in that order and dried over MgSO4. The solvent was then distilled off under reduced pressure and the residue was purified by silica gel column chromatography (chloroform:acetone = 15:1) to provide 10.61 g (26.11 mmol) of 1-[1-(3,5dichlorophenyl)-1-methylethyl]-5-isopropyl-3phenyltetrahydro-1,3,5-triazine-2(1H)-one as lightyellow crystals. Yield 87%.

```
^{1}H-NMR (CDCl<sub>3</sub>) 8 ppm: 1.22 (6H, d, J=6.3Hz), 1.68 (6H,
       s), 3.38 (1H, quint, J=6.3Hz), 4.64 (2H, s), 4.66 (2H,
       s), 7.12-7.29 (8H, m)
       IR (nujol) v cm<sup>-1</sup>: 1651, 1645, 1464, 1453, 1311, 1285,
 5
      798, 746, 695
      mp: 92-95°C
      [Example 13]
      Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-
      5-hydroxy-3-phenyltetrahydro-1,3,5-triazin-2(1H)-one
10
            To a solution of 1-[1-(3,5-dichlorophenyl)-1-
      methylethyl]-5-isopropyl-3-phenyltetrahydro-1,3,5-
      triazin-2(1H)-one (1.00 g, 2.46 mmol) in 1,2-
      dichloroethane (50 ml) was added 0.61 g (2.46 mmol) of
      m-chloroperbenzoic acid (70%) and the reaction was
15
      carried out at room temperature for 15 minutes.
      reaction mixture was washed with 50 ml of 5% sodium
      hydroxide/water twice and 50 ml of water once and dried
      over MgSO<sub>4</sub>. The desiccant was then filtered off.
      filtrate was refluxed for 1 hour and the solvent was
20
      then distilled off under reduced pressure.
      resulting crystal crop was harvested from isopropyl
      ether by filtration to provide 0.79 g (2.08 mmol) of 1-
      [1-(3,5-dichlorophenyl)-1-methylethyl]-5-hydroxy-3-
      phenyltetrahydro-1,3,5-triazin-2(1H)-one as colorless
25
      crystals.
                  Yield 84%.
      ^{1}H-NMR (DMSO-d_{6}) 8 ppm: 1.58 (6H, s), 1.59 (6H, s),
      4.38-4.96 (4H, m), 7.04-7.45 (8H, m), 8.93 (1H, s)
      IR (nujol) v \text{ cm}^{-1}: 3267, 1622, 1485, 1438, 1296, 760,
      693
30
      mp: 204-206°C
      [Example 14]
      Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-
      5-methoxy-3-phenyltetrahydro-1,3,5-triazin-2(1H)-one
           1-[1-(3,5-Dichlorophenyl)-1-methylethyl]-5-
35
      hydroxy-3-phenyltetrahydro-1,3,5-triazin-2(1H)-one
      (1.50 \text{ g}, 1.31 \text{ mmol}) and dimethyl sulfate (95\%) (144 \text{ µl},
```

1.45 mmol) were added to DMF (5 ml), followed by addition of sodium hydride (60% in oil) (58 mg, 1.45 The mixture was stirred at room temperature for 1.5 hours, after which it was diluted with 200 ml of 5 water and extracted with 100 ml of ethyl acetate. organic layer was washed with 100 ml of water and dried over MgSO₄ and the solvent was distilled off. The residue was purified by silica gel column chromatography (chloroform:acetone = 15:1) and the 10 crystal crop was harvested from hexane by filtration to provide 0.20 q (0.51 mmol) of 1-[1-(3,5dichlorophenyl)-1-methylethyl]-5-methoxy-3phenyltetrahydro-1,3,5-triazin-2(1H)-one as colorless crystals. Yield 39%. 15 $^{1}H-NMR$ (CDCl₃) 8 ppm: 1.68 (6H, s, C(CH₃)₂), 3.68 (3H, s, OCH₃), 4.55-4.83 (4H, m, NCH₂Nx2), 7.10-7.34 (8H, m, Ph) IR (nujol) $v \text{ cm}^{-1}$: 1653, 1471, 1283, 1250, 1041, 846 mp: 116-117°C 20 [Example 15] Synthesis of 5-amino-1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazin-2(1H)-one In 5 ml of dichloromethane was dissolved 0.20 g (0.50 mmol) of 1-[1-(3,5-dichlorophenyl)-1-25 methylethyl]-3-phenyltetrahydro-1,3,5-triazin-2(1H)-To this solution was added a solution of Omesitylenesulfonylhydroxylamine (0.14 g, 0.6 mmol) in dichloromethane (5 ml) dropwise at room temperature and the mixture was stirred for 0.5 hour. Then, 2 ml of 5% 30 sodium hydroxide/H2O was added. After phase separation, the organic layer was washed with water and dried over MgSO4, and the solvent was distilled off. The residue was purified by silica gel column chromatography (ethyl acetate) to provide 0.40 q (0.10 35 mmol) of 5-amino-1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazin-2(1H)-one

as colorless oil. Yield 21%. $^{1}H-NMR$ (CDCl₃) δ ppm: 1.66 (6H, s), 3.70-4.15 (2H, br), 4.63 (4H, s), 7.09-7.34 (8H, m) IR (neat) $v \text{ cm}^{-1}$: 3335, 3000-2700, 1650, 1471, 1434, 1247, 1176, 796, 758. 5 $EI-MS m/z: 378 (M)^{+}$. [Example 16] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-5-dimethylamino-3-phenyltetrahydro-1,3,5-triazin-2(1H)-10 one In 10 ml of acetonitrile was dissolved 0.17 g (0.45 mmol) of 5-amino-1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazin-2(1H)-To this solution was added 2 ml of formalin (37%) 15 at room temperature and the mixture was stirred for 5 Then, 60 mg (0.90 mmol) of sodium cyanoborohydride was added and the mixture was stirred for 0.5 hour. This reaction mixture was adjusted to pH 7 with acetic acid and the solvent was distilled off. 20 under reduced pressure. The residue was extracted with chloroform and water and the organic layer was dried over MgSO4. The solvent was then distilled off and the residue was purified by silica gel column chromatography (ethyl acetate:hexane = 1:1) to provide 25 80 mg (0.19 mmol) of 1-[1-(3,5-dichlorophenyl)-1methylethyl]-5-dimethylamino-3-phenyltetrahydro-1,3,5triazin-2(1H)-one as white crystals. Yield 42%. mp: 121°C (decomp) ¹H-NMR (CDCl₃) δ ppm: 1.69 (6H, s), 2.61 (6H, s), 4.71 30 (4H, s), 7.14-7.25 (8H, m)IR (neat) $v \text{ cm}^{-1}$: 1643(C=O), 1302, 1247, 1147, 791, 763, 721. EI-MS m/z: 406 $(M)^{+}$. [Example 17] 35 Synthesis of 5-benzyl-1-[1-(3,5-dichlorophenyl)-1-

methylethyl]-3-phenylbiuret

To a suspension of sodium hydride (66% in oil) (0.45 g, 12 mmol) in DMF (40 ml) was added a solution of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3phenylurea (2.00 q, 6.19 mmol) in DMF (40 ml) dropwise 5 over 22 minutes at 2-3°C and the mixture was stirred at the same temperature for 1 hour. Then, at 2-4°C, 0.92 ml (7.5 mmol) of benzyl isocyanate was added dropwise and the mixture was stirred at that temperature for 10 minutes and then at room temperature for 15.5 hours. 10 This reaction mixture was added in small portions to 100 ml of water under ice-cooling and extracted with 120 ml of ethyl acetate. After phase separation, the organic layer was washed 3 times with 50 ml each of saturated $NaCl/H_2O$ and dried over $MgSO_4$. The solvent 15 was then distilled off and the residue was purified by silica gel column chromatography (chloroform:ethyl acetate = 50:1) to provide 1.58 g (3.46 mmol) of 5benzyl-1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3phenylbiuret as white crystals. Yield 56%. 20 ¹HNMR (CDCl₃) δ ppm: 1.56(6H, s), 5.10(2H, s), 7.04(2H, d J=1.8Hz), 7.05-7.15(2H, m), 7.20(1H, t, J=1.8Hz), 7.23-7.50(8H, m), 9.58(1H, brs) IR (nujol) v cm⁻¹: 3433, 1691, 1596, 1549, 1523, 1462, 1447, 1218 mp: 161-165°C 25 [Example 18] Synthesis of 1-benzyl-5-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyldihydro-1,3,5-triazine-2,4(1H,3H)dione 30

5-Benzyl-1-[1-(3,5-dichlorophenyl)-1-methylethyl]3-phenylbiuret (0.50 g, 1.1 mmol) and boron
trifluoride-diethyl ether complex (46%) (0.30 ml, 1.1
mmol) were dissolved in dimethoxymethane (15 ml) and
the solution was refluxed for 15.5 hours [0.40 ml (1.5
mmol) of boron trifluoride-diethyl ether complex was
further added at 7.5 hours]. After spontaneous

cooling, the reaction mixture was added in small portions to 25 ml of saturated sodium hydrogencarbonate/H2O under ice-cooling and extracted with 30 ml of ethyl acetate. After phase separation, 5 the organic layer was washed with 25 ml of saturated NaCl/H2O and dried over MgSO4 and the solvent was distilled off. The residue was purified by silica gel column chromatography (hexane:ethyl acetate = 3:1) to provide 0.21 g (0.45 mmol) of 1-benzyl-5-[1-(3,5-10 dichlorophenyl)-1-methylethyl]-3-phenyldihydro-1,3,5triazine-2,4(1H,3H)-dione as colorless amorphous powder. Yield 40%. $^{1}H-NMR$ (CDCl₃) δ ppm: 1.73(6H, s), 4.81(2H, s), 4.97(2H, s), 7.15-7.45(13H, m)15 IR (nujol) $v \text{ cm}^{-1}$: 1720, 1681, 1589, 1566, 1495, 1437, 1216, 1185 EI-MS m/z: 467(M⁺)[Example 19] Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-20 3-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-one In 10 ml of dichloromethane was dissolved 0.15 g (0.41 mmol) of 1-[1-(3.5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazin-2(1H)one, followed by addition of 93 μ l (0.82 mmol) of t-25 butyl nitrite under ice-cooling. The mixture was stirred under ice-cooling for 30 minutes and at room temperature for 30 minutes. Then, 100 μ l (0.82 mmol) of triethylamine was added and the mixture was stirred at room temperature for 15 hours. This reaction 30 mixture was diluted with 30 ml of dichloromethane and 30 ml of water and, after phase separation, the aqueous layer was extracted with 20 ml of dichloromethane. organic layers were combined and dried over MgSO, and the solvent was distilled off. The residue was washed 35 with disopropyl ether and the resulting crystal crop was subjected to silica gel column chromatography

(diethyl ether) to provide 0.067 g (0.18 mmol) of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3-phenyl-3,4-dihydro-1,3,5-triazin-2(1H)-one as colorless crystals. Yield 45%.

- ¹H-NMR (CDCl₃) δ ppm: 1.72(6H, s), 5.02 (2H, s), 7.20-7.43(9H, m)

 IR (nujol) ν cm⁻¹: 1689, 1565, 1432, 1295, 1276, 1225, 795, 768

 CI-MS m/z: 362(M⁺)
- mp: 188-191°C
 [Example 20]
 Synthesis of 1-[1-(3,5-dichlorophenyl)-1-methylethyl] 3-phenyl-3,6-dihydro-1,3,5-triazin-2(1H)-one

In 15 ml of dichloromethane was dissolved 0.20 g

(0.55 mmol) of 1-[1-(3,5-dichlorophenyl)-1methylethyl]-3-phenyltetrahydro-1,3,5-triazine-2(1H)one, followed by addition of 0.13 ml (1.4 mmol) of tbutyl nitrite dropwise under ice-cooling, and the
mixture was stirred for 1 hour. This reaction mixture

- was concentrated under reduced pressure and 15 ml of dichloromethane was further added to the residue. To this solution was added a solution of piperidine (0.12 g, 1.4 mmol) in dichloromethane (10 ml) dropwise at room temperature, and the mixture was stirred for 14
- hours. This reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (hexane:ethyl acetate = 2:1) to provide 0.080 g (0.22 mmol) of 1-[1-(3,5-dichlorophenyl)-1-methylethyl]-3-phenyl-3,6-dihydro-
- 1,3,5-triazin-2(1H)-one as colorless crystals. Yield
 27%.

¹H-NMR (CDCl₃) 8 ppm: 1.84(6H, s), 5.12 (2H, s), 7.16-7.54(9H, m)

IR (nujol) v cm⁻¹: 2359, 1682, 1564, 1276, 1218, 853,

35 797, 753, 700 mp: 170-175°C

126

The compounds which were synthesized or can be synthesized in substantially the same manner as in Examples 1-20 are shown, together with the compounds of Examples 1-20, in Tables 1-21.

$$Q^{2} \bigvee_{\substack{N \\ N \\ B \\ N}} \bigoplus_{\substack{N \\ A \\ 1 \\ 3}} \bigoplus_{\substack{N \\ A \\ 1 \\ 3}} \bigoplus_{\substack{N \\ A \\ 1 \\ 3}} \bigoplus_{\substack{N \\ N \\ 1 \\ 3}} \bigoplus$$

Table 1

No.	Q ¹	Q ²	R ¹	R²	R ³	A	В	w	mp(℃)
I -1	CI		СН₃	СН₃	СН₃	-CH₂-	-CH ₂ -	0	101.5-102.5
I -2	CI	CI	СН₃	СН₃	сн₃	-CH ₂ -	-CH ₂ -	o	103-106
I -3	CI	CI	СНз	СН₃	сн₃	-CH ₂ -	CH ₂	0	101-112
I -4	CI	CI	СН₃	СН₃	СН₃	-CH ₂ -	-CH ₂ -	0	102-103
I -5	CI	F	CH3	СН3	CH ₃	-CH₂-	CH ₂	o	108.5-109
I -6	CI		СН₃	СН₃	СН₃	-CH ₂	CH ₂	0	119-122
I -7	CI	N	СН₃	СН₃	СН₃	-CH ₂ -	-CH₂-	0	
I -8	CI		CH3	СН3	CH ₃	-CH ₂	-CH ₂ -	0	
I -9	CI	N S	CH₃	СН3	СН₃	CH ₂	-CH₂-	0	147-150
I -10	CI	CH₂ CH₃	СН₃	СН3	СН₃	CH ₂ -	-CH₂-	0	
I-11	CI	\bigcirc	СН₃	СН3	СН₃	-CH ₂	-CH ₂ -	o	125.5-127.5
I -12	CI	$\langle N \rangle$	CH3	СН₃	СН₃	-CH ₂ -	-CH ₂ -	o	96.5-98
I -13	CI	N O	СН₃	СН₃	СН₃	-CH₂-	CH ₂	0	oii¹)
I -14	CI	O CH ₃	СН₃	СН₃	CH₃	CH ₂	CH₂	o	

^{1):} H-NMR (200MHz, CDCl₃) & ppm: 1.60 (6H, s), 2.63 (3H, s), 2.90-3.30 (4H, m), 3.60-3.70 (4H, m), 4.21 (2H, s), 4.25 (2H, s), 7.16 (3H, s).

128

Table 2

						*			
No.	Q ¹	Q ²	R ¹	R ²	R ³	А	В	w	mp(°C)
I -15	CI		СН₃	СН₃	сн₃	-CH₂-	-CH ₂ -	0	
I -16	CI	O →OC₂H₅	СН ₃	СН₃	СН₃	-CH ₂ -	-CH ₂ -	0	
I -16	CI	O N(CH ₃) ₂	СН₃	сн₃	СН₃	-CH ₂ -	CH ₂ -	0	
I -17	CI	NOCH³	СН₃	CH3	сн₃	-CH ₂ -	CH ₂	0	
I-18	CI	NCH₃ N(CH₃)₂	СН3	CH ₃	CH ₃	-CH ₂ -	CH ₂	0	
I -18	CI	O₂ ∕S.CH₃	СН₃	СН₃	CH₃	-CH₂-	CH ₂	o	
I -19	CI	0 ₂	СН₃	CH3	CH ₃	-CH ₂ -	-CH ₂ -	0	
I -20	CI	O ₂ >S. N(CH ₃) ₂	СН₃	СН3	CH³	-CH ₂ -	-CH ₂ -	0	
I -21	CI	,° ₩	СН₃	СН₃	CH ₃	-CH ₂	-СH ₂ -	0	
I -22	CI	_о_сн₃ о	СН₃	CH ₃	CH ₃	CH ₂	-CH ₂ -	o	
I -23	CI	_O _N(CH₃)₂ O	СН₃	СН3	CH3	-CH ₂ -	CH ₂	o	
I -24	CI	N(CH ₃) ₂	СН₃	CH₃	СН₃	-CH ₂ -	-CH ₂ -	0	
I -25	ė.				СН3				
I -26	CI	`и ¹ сн³	СН₃	СН3	СН₃	-CH ₂ -	CH ₂	o ·	
I -27	CI	H N N(CH ₃) ₂ O	СН₃	СН₃	СН₃	-CH ₂ -	-CH ₂ -	0	
I -28	CI	H N.S.CH ₃ O ₂	СН3	СН3	СН ₃ СН ₃	-CH ₂ -	CH ₂	0	

129

Table 3

No.	Q ¹	Q ²	R ¹	R ²	R ³	Α	В	w	mp(℃)
I -29	CI		CH ₃	СН₃	н	-CH ₂ -	-CH₂-	0	198-200
I-30	CI	\bigcirc	СН₃	СН₃	C₂H₅	CH ₂	-CH ₂ -	0	79-83
I -31	CI		СН₃	СН₃	С ₃ Н ₇	-CH ₂ -	-CH ₂ -	o	126-128
I -32	CI		сн₃	СН₃	—⟨CH³	-CH₂-	CH ₂	o	92-95
I -33	CI		CH ₃	CH ₃	C ₄ H ₉	-CH ₂ -	CH ₂	0	131-135
I -34	CI		СН₃	СН₃	СН₃ ——СН₃ СН₃	-CH ₂ -	CH ₂	0	114-115
I -35	CI		СН₃	CH ₃	→	CH ₂ -	-CH ₂	o	143-145
I -36	CI		СН₃	СН3		-CH ₂ -	-CH ₂ -	0	108-112
I -37	CI		СН₃	СН3	CH₂CN	CH ₂	-CH ₂ -	0	
I-38	CI		СН₃	СН3	сн₂осн₃	-CH ₂ -	−CH ₂ −	0	
I-39 .	CI		СН ₃	СН₃	сн₂ѕсн₃	CH ₂	-CH ₂ -	0	
I -40	CI		СН₃	CH ₃	CH₂SO₂CH₃	-CH₂-	-CH₂-	0	
I -41	CI	\bigcirc	СН₃	СН₃	сосн₃	-CH ₂ -	-CH ₂ -	o	124-125
I -42	CI	\bigcirc	СН₃	СН3	CO₂CH₃	-CH ₂ -	CH₂-	0	
I -43	CI		СН3	СН₃	CON(CH ₃) ₂	-CH ₂ -	-CH₂-	O	177-177.5

130

Table 4

No.	Q ¹	Q ²	R ¹	R ²	R ³	А	В	w	mp(°C)
I -44	CI	\bigcirc	СН₃	СН3	CH ₂ CO ₂ C ₂ H ₅	CH ₂ -	-CH ₂ -	0	100-102
I -45	CI	CI	СН3	СН₃	CH ₂ CO ₂ C ₂ H ₅	CH ₂ -	-CH ₂ -	o	oil ¹⁾
I -46	CI	CI	СН₃	СН₃	CH₂CO₂C₂H₅	-CH ₂ -	-CH ₂ -	o	85-86
I -47	CI	CI	СН₃	СН₃	CH₂CO₂C₂H₅	-CH ₂ -	-CH ₂ -	o	142.5-143
I -48	CI	F	СН₃	СН₃	CH₂CO₂C₂H₅	CH ₂	-CH ₂ -	0	86-88
I -49	CI	\bigcirc	СН₃	СН₃	CH·CO₂C₂H₅ CH₃	-CH₂-	-CH ₂ -	0	oil ²⁾
I-50	CI		СН₃	СН3	ÇH₃ ÇH∙CO₂C₂H₅ CH₃	CH₂	-CH ₂	o	96-100
I -51	CI		СН₃	СН₃	(CH ₂) ₃ CO ₂ C ₂ H ₅	−CH ₂ −	-CH₂-	0	oil ³⁾
I -52	CI		СН₃	СН₃	CH₂CO₂H	-CH ₂ -	-CH ₂ -	o	232(decomp)
I -53	CI	CI	СН₃	СН3	CH₂CO₂H	-CH ₂ -	-CH ₂ -	o	140(decomp)
I -54	CI	Ci	СН₃	СН₃	CH₂CO₂H	CH ₂ -	-CH ₂ -	o	209-211(decomp)
I -55	CI	CI	СН₃	СН3	CH₂CO₂H	-CH ₂ -	-CH ₂ -	o	202(decomp)
I -56	CI	F	СН3	СН₃	CH₂CO₂H	-CH₂-	-CH ₂ -	0	149-150(decomp)
I -57	CI		СН₃	СН₃	СН∙СО₂Н СН₃	-CH ₂ -	-CH ₂ -	0	215(decomp)

^{1): &}lt;sup>1</sup>H-NMR (200MHz, CDCl₃) ð ppm: 1.33 (3H, t J=7.1Hz), 1.63-1.69 (6H, m), 3.87 (1H, qAB JAB=17Hz), 3.91 (1H, qAB JAB=17Hz), 4.28 (2H, q J=7.1Hz), 4.35-4.78 (4H, m), 7.13-7.36 (7H, m)

^{2): 1}H-NMR (200MHz, CDCl₃) & ppm: 1.33 (3H, t J=7.1Hz), 1.66 (6H, s), 3.83 (2H, s), 4.27 (2H, q J=7.1Hz), 4.56 (2H, s), 4.67 (2H, s), 7.06-7.21 (7H, m)

^{3):}¹H-NMR (200MHz, CDCl₃) & ppm: 1.28 (3H, t J=7.1Hz), 1.67 (6H, s), 1.89 (2H, quintet J=7.1Hz), 2.43 (1H, t J=7.1Hz), 2.98 (2H, t J=6.9Hz), 4.14 (2H, q J=7.1Hz), 4.51 (2H, s,), 4.53 (2H, s), 7.08-7.33 8H, (8H, m)

Table 5

No.	Q ¹	Q²	R ¹	R²	R³	A	В	w	mp(°C)
I -58	CI		СН₃	СН3	СН ₃ С — СО₂Н СН₃	CH ₂	CH ₂	0	230(decomp)
I -59	CI		CH3	СН₃	(CH₂)₃CO₂H	-CH ₂ -	-CH ₂ -	0	178-180(decomp)
I -60	CI		CH ₃	СН₃	(CH₂)₂OH	-CH ₂ -	-CH ₂ -	o	105.5-106
I -61	CI		CH₃	СН₃	(CH ₂) ₂ OCH ₃	-CH ₂ -	-CH₂-	0	oil ¹⁾
I -62	CI		СН₃	СН₃	(CH₂)₄OH	-CH₂-	-CH ₂ -	0	168-169
I-63	CI	\bigcirc	СН₃	сн₃	(CH ₂)₄OCOCH ₃	-CH ₂ -	CH ₂	0	oil ²⁾
I -64	CI		СН₃	СН3	(CH ₂)₂Br	-CH ₂ -	-CH ₂ -	o	114-117
I -65	CI		СН₃	СН3	СН ₃ С—СН ₂ ОН СН ₃	–СН ₂ –	-CH ₂ -	o	oil ³⁾
I-66	CI		СН3	СН3	OCH ₃	-CH ₂ -	-CH ₂ -	o	oil ⁴⁾
I-67	CI	\bigcirc	CH3	СН3	_o	-CH ₂ -	-CH ₂	0	
I -68	CI		СН₃	СН3	, O. _S .CH₃ O₂	−CH ₂ −	CH ₂	0	
I-69	CI	\bigcirc	СН₃	СН3	_O	-CH ₂ -	-CH ₂ -	o	
I -70	CI	\bigcirc	СН3	СН₃	N(CH ₃) ₂	CH ₂	-CH₂-	0	121
I -71	CI	\bigcirc	сн₃	СН3	N≠CHCH3	-CH ₂ -	-CH ₂ -	o	amorphous ⁵⁾

^{1):} H-NMR (200MHz, CDCl₃) & ppm: 1.65 (6H, s), 3.16 (2H, t J=5.0Hz), 3.40 (3H, s), 3.62 (2H, t J=5.0Hz), 4.66 (2H, s), 4.63 (2H, s), 7.08-7.32 (8H, m)

^{2):&}lt;sup>1</sup>H-NMR (200MHz, CDCl₃) δ ppm: 1.67 (6H, s), 1.73-1.76 (2H, m), 2.04 (3H, s), 2.97 (1H, t J=6.9Hz), 4.12 (2H, t J=6.3Hz), 4.52 (2H, s), 4.55 (2H, s), 7.09-7.34 (8H, m)

^{3):&}lt;sup>1</sup>H-NMR (200MHz, CDCl₃) δ ppm: 1.29 (6H, s), 1.70 (6H, s,), 2.30 (1H, br), 3.42 (2H, br), 4.67 (2H, s), 4.69 (2H, s), 7.10-7.34 (8H, m)

^{4): 1}H-NMR (200MHz, CDCl₃) 8 ppm:1.68 (6H, s,), 3.68 (3H, s), 4.55-4.83 (4H, m), 7.10-7.34 (8H, m)

^{5):} H-NMR (200MHz, CDCl₃) & ppm: 1.89 (6H, s), 2.08 (3H, d J=4.0Hz), 4.95 (4H, s), 7.13-7.31 (9H, m).

132

Table 6

							- 1		
No.	Q ¹	Q ²	R ¹	R²	R³	A	В	w	mp(℃)
I -72	CI		CH3	СН₃	N CH³	-CH ₂	CH ₂	0	190-192
I -73	CI		СН3	СН₃	Ö	-CH ₂ -	−CH ₂ −	0	187-188
I -74	CI	\bigcirc	CH₃	CH3	H _N. _S .CH ₃ O ₂	-CH ₂ -	-CH ₂ -	0	75
I -75	CI			CH ₃	_	CH ₂	CH ₂	o	
I -76	CI		СН₃	СН₃	-N_O	-CH ₂ -	-CH ₂ -	0	
I -77	CI	\bigcirc	CH³	СН₃	S ^O 2	CH₂-	-CH ₂ -	0	
I -78	CI		СН₃	СН3	SO ₂ CF ₃	-CH ₂ -	-CH ₂ -	0	
I -79	CI	\bigcirc	СН₃	СН₃	O ₂ ,S.N(CH ₃) ₂	-CH ₂	-CH ₂ -	0	
I -80	CI	\bigcirc	CH ₃	СН3	CH ₃	—СН— С́Н³	—сн— с́н³	o	
I -81	CI	\bigcirc	СН₃	CH ₃	СН₃	CH ₃ — C−− CH ₃	CH₃ —Ç— CH₃	0	
I -82	CI	\bigcirc	CH₃	СН₃	СН₃	—СН— С́Н³	-CH ₂ -	0	
I -83	CI	\bigcirc	СН₃	СН₃	СН3	-CH ₂ -	—сн— с́н³	0	
I-84	CI		сн₃	СН₃	CH ₃	CH ₂	-CH ₂ -	0	
I -85	F ₃ C CF ₃	\bigcirc	СН₃	СН3	СН₃	-CH₂-	-CH ₂ -	0	
I -86	H ₃ C CH ₃	\bigcirc	сн₃	СН3	сн₃	-CH ₂ -	-CH ₂ -	0	oll ¹⁾
I -87	CI	\bigcirc	СН3	СН3	СН₃	-CH ₂ -	-CH ₂ -	0	

^{1): 1}H-NMR (200MHz, CDCl₃) 8 ppm: 176 (6H, s), 2.31 (6H, s), 2.69 (3H, s), 4.25 (2H, s), 4.50 (2H, s), 6.83 (1H, s), 7.00 (2H, s), 7.08-7.34 (5H, m).

133

Table 7

No.	Q ¹	Q ²	R ¹	R²	R ³	· A	В	w	mp(℃)
I -88	ci \s		СН₃	CH₃	СН₃	-CH ₂ -	-CH ₂ -	0	
I-89	CI	\bigcirc	СН₃	C₂H₅	СН3	-CH ₂ -	-CH ₂ -	o	
I -90	CI	\bigcirc	н	—⟨CH₃	СН3	-CH ₂ -	-CH ₂ -	0	
I -91	CI		-сн	₂ CH ₂ -	СН₃	CH₂	CH ₂	0	
I -92	CI	$ \binom{N}{N}$	СН₃	СН₃	СН₃	-CH₂-	CH ₂	0	
I-93	CI		СН3	C ₂ H ₅	СН3	-CH ₂ -	-CH ₂ -	s	
I-94	CI	\bigcirc	СН3	CH3	CH3	-CH ₂ -	CH ₂	o	79-82
I -95	CI	\bigcirc	СН₃	СН₃	сн₂со₂н	CH ₂	-CH ₂ -	0	136-138
I -96	CI	\bigcirc	СН3	СН₃	CH ₂ CO ₂ C ₂ H ₅	CH₂	-CH ₂	o	109-110
I -97	CI		СН₃	CH ₃	(СН₂)₃СНО	-CH ₂ -	-CH ₂ -	o	129-131
I-98	CI		CH3	СН₃	CO₂CH₃	CH ₂	CH ₂	0	160 .
I -99	CI		CH ₃	СН₃	CO ₂ C ₂ H ₅	-CH ₂ -	-CH ₂ -	o	124-125
I -100	CI		CH ₃	СН₃	SO₂CH₃	-CH ₂ -	CH ₂	o	amorphous ¹⁾
I -101	CI	\bigcirc	CH ₃	СН₃	CH ₃	-CH ₂ -	-CH ₂ -	0	116-117
I -102	CI	\bigcirc	СН₃	СН₃	сн₃	-CH ₂ -	-CH ₂ -	0	108-110

^{1): 1}H-NMR (200MHz, CDCl₃) 8 ppm: 1.74 (6H, s), 3.15 (3H, s), 5.13 (2H, s), 5.13 (2H, s), 7.15-7.38 (8H, m)

134

Table 8

No.	Q ¹	Q ²	R ¹	R ²	R ³	A	В	w	mp(℃)
I -103	CI	Cn.	СН3	СН3	СН₃	-CH₂-	-CH₂-	0	74-86
I -104	CI		СН₃	СН3	сн₃ ——сно сн₃	-CH ₂ -	CH ₂	o	105-106
I-105	CI		CH ₃	CH ₃	$\neg \triangleleft$	-CH ₂ -	-CH ₂ -	o	99-101
I -106	CI		СН₃	СН₃	CH₂CF₃	-CH ₂ -	-CH ₂ -	0	105-107
I-107	CI		CH ₃	CH ₃	CO ₂ CH ₂ -	-CH ₂ -	CH ₂	o	152-153
I-108	CI		СН₃	CH ₃	он	-CH ₂	-CH ₂ -	o	213-217
I-109	CI		СН₃	СН₃	COCF ₃	CH ₂	-CH ₂	o	209-210
I -110	CI		СН3	СН₃	сѕинсн₃	CH ₂	CH ₂	0	214-216
I -111	CI		CH3	CH3	сн₂с≘сн	-CH ₂ -	CH₂-	o	95-96
I -112	CI		CH ₃	СН3	CH₂CH=CH₂	-CH ₂ -	-CH₂-	0	90-91
I -113	CI		CH ₃	СН₃	sco₂cн₃	CH₂-	-CH ₂ -	0	171
I -114	CI	\bigcirc	СН₃	СН₃	соинсн₃	CH₂	-CH ₂ -	o	201-202
I -115	CI		СН₃	сн₃	H ₃ C CH ₃ S.N.CO ₂ C ₂ H ₅	-CH₂-	-CH₂-	o	oil ¹⁾
I-116	CI	\bigcirc	СН₃	сн₃	SCH ₃	−CH ₂ −	CH ₂	0	130-131

^{1):} H-NMR (200MHz, CDCl₃) & ppm: 1.23-1.33 (9H, m), 1.71 (6H, s), 4.20 (2H, q J=7.1Hz), 4.49 (1H, quint J=6.6Hz), 4.94 (2H, s), 4.96 (2H, s), 7.11-7.35 (8H, m).

135

Table 9

No.	Q ¹	Q²	R ¹	R²	R ³	А	В	w	mp(℃)
I -117	CI		CH₃	CH₃	CH₃	-cs-	CH ₂	0	amorphous ¹⁾
I -118	CI		СН3	СН3	OCH₂OCH₃	CH ₂ -	-CH ₂ -	o	oil ²⁾
I -119	MeO CI		СН3	СН₃	CH ₃	-CH ₂ -	-CH ₂ -	0	129-132
I -120	CI		CH ₃	СН₃	СН₃	-CH ₂ -	-CH ₂ -	0	122-123
I -121	CI		CH ₃	CH ₃	инсн₃	-CH ₂ -	CH ₂	0	amorphous ³⁾
I -122	CI		СН₃	СН₃	N=CH ₂	-CH₂-	-CH ₂ -	0	120-123
I -123	CI		СН3	СН₃	CH₃	-CH ₂ -	-CH ₂ -	o	150-152
I -124			СН3	CH3	CH ₂ —	-co-	-CH ₂ -	О	oil ⁴⁾
I -125	Me ₂ N CI		СН₃	CH3	СН3	-CH ₂	-CH ₂ -	0	139-141
I -126	CI		СН₃	СН₃	OC ₄ H ₉	-CH ₂ -	-CH ₂ -	0	125-125.5
I -127	CI		СН₃	сн₃	OC₃H ₇	CH₂	-CH ₂ -	0	89-89.5
I -128	CI		CH ₃	СН₃	OC₂H₅	CH ₂	-CH ₂ -	o	120-122

^{1): 1}H-NMR (200MHz, CDCl₃) 8 ppm: 1.74 (6H, s), 3.34 (3H, s), 4.47 (2H, s), 6.87 (2H, dd J=8.4, 1.2Hz), 7.12 (1H, t J=7.4Hz), 7.20-7.40 (5H, m)

^{2):} H-NMR (200MHz, CDCl₃) o ppm:1.58 (6H, d J=2.0Hz), 3.08-3.38 (5H, m), 4.48 (2H, q J=14Hz), 5.09 (2H, s), 7.07-7.33 (8H, m)

^{3): 1}H-NMR (200MHz, CDCl₃) & ppm: 1.87 (6H, s), 2.66 (3H, s), 4.66 (2H, s), 4.68 (2H, s), 7.10-7.34 (8H, m)

^{4): 1}H-NMR (200MHz, CDCl₃) & ppm:1.81 (6H, s), 4.68 (2H, s), 5.00 (2H, s), 7.05-7.50 (15H, m).

136

Table 10

No.	Q ¹	Q ²	R ¹	R ²	R ³	A	В	w	mp(℃)
I -129	CI		СН3	СН₃	CH ₂ -	-co-	-CH ₂ -	0	amorphous ¹⁾
I -130	CI		СН₃	CH₃	$N \stackrel{CH_3}{\leftarrow}$	-CH₂-	-CH ₂ -	o	94-97
I -131	CI		CH ₃	СН₃	N=CHOCH ₃	-CH ₂ -	CH ₂ -	0	amorphous ²⁾
I -132	PhCH ₂ O CI	\bigcirc	СН₃	СН₃	CH₃	-CH ₂ -	CH ₂	0	oil ³⁾
I-133	HOCI		СН₃	СН₃	СН₃	-CH ₂ -	-CH₂-	o	146-149
I -134	H ₅ C ₂ O CI		СН₃	СН₃	CH ₃	-CH ₂ -	-CH ₂ -	o	98-100
I-135	H ₇ C ₃ O CI		CH ₃	CH₃	CH ₃	-CH ₂ -	CH ₂	o	74-76.5
I -136	H ₉ C ₄ O CI		СН₃	CH ₃	CH₃	-CH ₂	-CH ₂ -	o	104-107
I -137	CI		CH ₃	CH3	CH ₃	CH ₂	-CH ₂ -	0	176-178
I -138	CI		СН₃	CH ₃	OCH ₂ CH=CH ₂	-CH ₂ -	-CH ₂ -	o	75-76
I-139	CI		CH ₃	СН₃	осн₂с≖сн	-CH₂-	_CH ₂ _	o	amorphous ⁴⁾
I -140	CI		CH ₃	СН₃	O- CH³	CH ₂	-CH ₂ -	0	116-117

^{1): 1}H-NMR (200MHz, CDCl₃) 8 ppm: 1.73 (6H, s), 4.81 (2H, s), 4.97 (2H, s), 7.15-7.45 (13H, m)

^{2):1}H-NMR (200MHz, CDCl₃) & ppm: 1.67 (6H, s), 3.90 (3H, s), 4.61 (2H, s), 4.67 (2H, s), 7.07-7.39 (8H, m), 8.13 (1H, s)

^{3):1}H-NMR (200MHz, CDCl₃) & ppm: 1.68 (6H, s), 2.78 (3H, s), 4.48 (2H, s), 4.53 (2H, s), 5.01 (2H, s), 7.13-7.59 (12H, m)

^{4):1}H-NMR (200MHz, CDCl₃) # ppm: 1.66 (6H, s), 2.46 (1H, t J=2.3Hz), 4.48 (2H, d J=2.3Hz), 4.58-4.89 (4H, m), 7.12-7.33 (8H, m)

137

Table 11

No.	Q ¹	Q²	R ¹	R²	R ³	Α	В	w	mp(°C)
I -141	CI		СН₃	СН₃	N(CH ₃)COCH ₃	-co-	−CH ₂ −	0	163.5-165
I -142			СН3	CH ₃	СН₃	-CH ₂ -	CH ₂	o	215-217
I -143	H ₃ CO		СН₃	CH₃	СН₃	CH ₂	CH ₂	0	oil ¹⁾
I -144	CI	ОН	CH ₃	CH ₃	CH ₃	-CH ₂ -	-CH ₂ -	o	134-135
I -145	CI	осн3	СН3	СН₃	СН₃	-CH ₂ -	CH ₂	o	oli ²⁾
I -146	CI	٥٩٥	СН₃	СН3	CH₃	-CH ₂ -	-CH ₂ -	o	oil ³⁾
I -147	CI	\bigcirc	СН3	CH ₃	PO(OC ₂ H ₅) ₂	-co-	-CH ₂ -	o	163.5-165
I -148	CI		CH ₃	СН3	сосн3	CH ₂	-CH ₂ -	0	140-141
I -149	H ₃ Cs		СН₃	CH ₃	CH ₃	CH ₂	-CH ₂ -	o	oil ⁴⁾
I -150	H ₃ CSO		CH ₃	CH ₃	CH ₃	-CH₂-	-CH ₂ -	o	
I -151	H ₃ CSO ₂		CH ₃	CH ₃	CH ₃	−CH ₂ −	-CH ₂ -	o	
I -152	H ₃ C		CH ₃	СН₃	CH ₃	-CH ₂ -	-CH ₂ -	0	138-140
I -153	CI (CH₃)₂CHO CI		СН₃	СН₃	СН₃	-CH ₂ -	-CH ₂ -	o	113-117
I -154	PhOCI		СН₃	СН₃	СН3	-CH ₂ -	−CH ₂ −	o	amorphous ⁵⁾
I -155	F ₃ CO CI	\bigcirc	СН3	СН3	СН₃	-CH ₂ -	-CH ₂ -	o	

^{1):1}H-NMR (200MHz, CDCl₃) & ppm: 1.73 (6H, s), 2.72 (3H, s), 3.87 (3H, s), 4.36 (2H, s), 4.50 (2H, s), 6.86 (1H, d J=8.6Hz), 7.05-7.35 (6H, m), 7.38 (1H, d J=2.4Hz)

^{2): 1}H-NMR (200MHz, CDCl₃) 3 ppm: 1.68 (6H, s), 2.72 (3H, s), 3.34 (3H, s), 4.25 (2H, s), 4.72 (2H, s), 7.24-7.29 (3H, m)

^{3): 1}H-NMR (200MHz, CDCl₃) 8 ppm: 1.89 (6H, s), 2.87 (3H, s), 4.37 (2H, s), 4.57 (2H, s), 7.17-8.07 (8H, m)

^{4): 1}H-NMR (200MHz, CDCl₃) & ppm: 1.71 (6H, s), 2.45 (3H, s), 2.74 (3H, s), 4.42 (2H, s), 4.52 (2H, s), 7.05-7.20 (4H, m), 7.20-7.40 (4H, m)

^{5):} H-NMR (200MHz, CDCl₃) 8 ppm: 1.71 (6H, s), 2.79 (3H, s), 4.51 (2H, s), 4.54 (2H, s), 6.83 (2H, d J=8.4 Hz), 6.99-7.37 (10H, m)

138

Table 12

No.	Q ¹	Q ²	R ¹	R ²	R ³	Α	В	w	mp(℃)-
I -156	CI	OCH₂CH=CH₂	CH₃	СН3	СН₃	-CH₂-	-CH ₂ -	0	oil ¹⁾
I -157			СН ₃	СН₃	СН₃	-CH₂-	-CH ₂	0	oil ²⁾
I -158	H³CO CI		СН₃	СН₃	осн ₃	CH ₂	-CH ₂ -	o	
I -159	CI		СН₃	CF ₃	СН ₃	-CH ₂ -	-CH ₂ -	0	oil ³⁾
I -160	CI		CH₃	CH₂F	CH ₃	-CH ₂ -	-CH₂-	0	oil ⁴⁾
I -161	CH ₃ SO ₃ CI		CH₃	СН₃	СН3	CH₂-	-CH ₂ -	0	164-166
I -162	CI		CH₃	CH ₃	CH ₃	-CH ₂	-CH ₂ -	o	145-150
I -163	CF ₃ CH ₂ O		СН3	СН3	CH ₃ ·	-CH ₂ -	-CH ₂	o	116.5-118
I -164	CI CI NCCH₂O CI		CH ₃	сн₃	CH ₃	-CH₂-	-CH ₂ -	0	
I -165 C	CH ₃ O ₂ C ^O O CI		СН3	СН3	сн₃	CH ₂ -	-CH ₂	0	
I -166	H ₃ C CI		СН₃	СН3	CH3	-CH ₂ -	-CH ₂ -	0	
I -167	CH ₃ SCH ₂ CI		СН3	CH³	CH₃	-CH₂-	−CH ₂ −	o	
I -168	CH ₃ OCH ₂ CI		СН3	СН₃	CH3	-CH₂-	CH₂	o	
I -169	CICH ₂ CI		CH3	CH ₃	CH ₃	-CH ₂ -	-CH ₂ -	o	
I -170	NCCH ₂		СН₃	сн3	СН₃	-CH ₂ -	-CH ₂ -	0	

^{1): 1+}NMR (200MHz, CDCl₃) & ppm: 1.84 (6H, s), 2.68 (3H, s), 4.21 (2H, s), 4.33-4.37 (4H, m), 5.22-5.35 (2H, m), 5.84-6.05 (1H, m),

^{7.18-7.22 (3}H, m)
2): H-NMR (200MHz, CDCl₃) & ppm: 1.76 (10H,ms). 2.68 (3H, s), 2.68-2.81 (4H,m), 4.26 (2H, s), 4.49 (2H, m), 6.97-7.34 (8H, m)
3): H-NMR (200MHz, CDCl₃) & ppm: 1.56 (3H, s), 2.80 (3H, s), 4.53 (2H, s), 4.55 (2H, s), 7.11-7.20 (3H, m), 7.24-7.35 (5H, m)
4): H-NMR (200MHz, CDCl₃) & ppm: 1.73 (3H, d J=2.2Hz), 2.77 (3H, s), 4.48 (2H, s), 4.53 (2H, s), 4.91, 5.14 (2H, dd J=9.4, 48Hz), 7.12-7.38 (5H, m)

139

Table 13

No.	Q ¹	Q ²	R ¹	R ²	R ³	A	В	w	mp(°C)
I -171	H ₃ CS CI		СН₃	СН3	СН₃	-CH ₂ -	-CH ₂ -	0	
I -172	H₃CSO CI		сн₃	сн₃	СН₃	CH ₂	-CH₂-	o	
I -173	H₃CSO ₂ CI		CH ₃	СН3	СН₃	-CH ₂ -	CH ₂	0	
I -174	CI F₃CS CI		CH ₃	CH ₃	CH3	-CH₂-	CH ₂	o	•
I -175	NCCH₂S CI		CH ₃	CH ₃	СН3	-CH ₂ -	-CH ₂ -	0	
I -176	CI		—CH₂C	H₂CH₂—	CH ₃	-CH₂-	-CH ₂ -	0	oil ¹⁾
I -177		\bigcirc	CH ₃	СН₃	СН3	-CH ₂ -	-CH ₂ -	o	105-108
I -178	CI	\bigcirc	СН₃	CH₃	∙ СН₃	-CH₂-	CH₂-	o	oil ²⁾

^{1): 1}H-NMR (200MHz, CDCl₃) & ppm: 1.50-1.75(1H, m), 1.75-1.95(1H, m), 2.54(3H, s), 2.60-2.75(4H, m), 4.19(2H, s), 4.45(2H, s), 7.10-7.45(6H, m), 7.57(2H, d, J=1.9Hz)
2): 1H-NMR (200MHz, CDCl₃) & ppm: 1.79(6H, s), 2.75(3H, s), 4.42(2H, s), 4.52(2H, s), 6.75(1H, d J=2.2Hz), 7.07-7.32(5H, m), 7.36(1H, d J=1.7Hz), 7.50(1H, d J=1.7Hz), 7.63(1H, d J=2.2Hz)

140

Table 14

No.	Q ¹	Q ²	R ¹	R²	R ⁴	A	w	mp(°C)
II -1	CI	\bigcirc	СН₃	сн₃	СН₃	CH ₂ -	0	
II -2	CI	CI	CH3	CH₃	сн₃	CH ₂	0	
П-3	CI	Ci	CH₃	СН₃	CH₃	CH ₂ -	o	
II -4	CI	CI	СН₃	CH3	СН3	-CH ₂ -	0	
II -5	CI	F	сн₃	СН3	CH ₃	-CH ₂ -	o	
П-6	CI		CH₃	CH3	CH ₃	-CH ₂ -	o	
II -7	CI	N	СН₃	СН3	CH ₃	-CH ₂ -	O	
II -8	CI		СН₃	CH ₃	CH₃	-CH ₂ -	0	
II -9	CI	N S	CH ₃	CH ₃	CH₃	-CH ₂ -	0	
II-10	CI	CH₂	сн₃	CH3	CH3	-CH ₂ -	0	
II -11	CI	\bigcirc	СН₃	CH3	CH3	-CH ₂ -	0	
II -12	CI	\bigcap_{N}	СН₃	сн₃	СН₃	-CH ₂ -	0	
II -13	CI	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	СН₃	СН₃	CH₃	-CH ₂ -	0	
∏ -14	CI	CH ³	сн₃	сн₃	сн₃	-CH ₂ -	0	

141

Table 15

No.	Q ¹	Q ²	R ¹	R ²	R ⁴	Α	w	mp(°C)
II -15	ÇI	ن	СН₃	СН₃	СН₃	-CH ₂ -	0	
II -16	CI	O →oc₂H₅	CH3	СН₃	CH ₃	-CH ₂ -	0	
Ⅱ- 17	ĊI	N(CH³)⁵	CH3	СН₃	сн₃	-CH ₂ -	0	
П-18	CI	NOCH₃ → CH₃	СН₃	СН₃	CH₃	CH ₂ -	0	
II -19	CI	NCH ₃	CH₃	СН₃	CH₃	-CH ₂ -	0	•
II _. -20	CI	O₂ ∕S.CH₃	СН₃	CH3	СН₃	-CH ₂ -	0	
II -21	CI	S	CH3	CH3	CH₃	-CH ₂ -	0	
II-22	CI	O ₂ >S. _{N(CH₃)₂}	СН3	CH ₃	СН₃	CH ₂	0	
II -23	CI	~° ℃	СН₃	CH3	СН₃	-CH ₂ -	0	
II -24	CI	_O_CH₃	CH₃	СН₃	CH ₃	-CH ₂ -	0	
II -25	Çı	O N(CH ₃)₂ O	СН3	СН₃	CH₃	-CH ₂ -	0	
II -26	CI	N(CH ₃) ₂	сн3	СН3	CH3	-CH₂-	0	
II -27	CI	N•CHCH3	СН₃	СН₃	CH₃	-CH₂-	0	
П-28	CI	N CH3	сн3	СН3	СН₃	-CH ₂ -	0	
II -29	CI	H N	СН3	СН3	СН₃	-CH ₂ -	0	
П-30	CI	H N S.CH ₃ O ₂	СН3	СН₃	сн₃ сн₃	-CH ₂ -	O 7	

142

Table 16

						······································		
No.	Q ¹	Q²	R ¹	R ²	R ⁴	Α	w	mp(℃)
II -30	CI	\bigcirc	CH ₃	СН₃	н	-CH₂-	0	170-175
II -31	CI		CH₃	СН₃	C₂H₅	CH₂	o	
II -32	CI		СН₃	СН₃	C₃H ₇	CH₂	o	
II -33	CI		СН3	СН3	←,CH3	-CH ₂ -	0	
II -34	CI		CH ₃	СН3	C₄H ₉	CH ₂	0	
II -35	CI	\bigcirc	СН3	СН₃	СН ₃ — СН ₃ СН ₃	−CH ₂ −	o	
П-36	CI		СН₃	СН₃	→	CH ₂	o	
II -37	CI		СН3	СН₃	CH ₂ —	-CH ₂ -	0	
II -38	CI		СН₃	СН3	CH₂CN	CH ₂	o	
II -39	CI		CH ₃	СН3	сосн₃	CH ₂	0	
II -40	CI		CH ₃	CH ₃	OCH3	-CH ₂ -	o	
II -41	CI		CH3	СН ₃	N(CH ₃) ₂	CH ₂	o	
II -42	CI		СН₃	СН3	-n	-CH ₂ -	0	
II -43	CI	\bigcirc	СН₃	СН3	SCH ₃	-CH ₂ -	0	
II -44	CI	\bigcirc	СН₃	СН3	сн3	СН -	o	
II -45	CI	\bigcirc	СН₃	СНэ	сн₃	сн₃ —-ċ— сн₃	o	

143

Table 17

No.	Q ¹	Q ²	R ¹	R ²	R ⁴	A	w	mp(°C)
II -46	CI	\bigcirc	СН₃	СН₃	СН₃	-CF ₂ -	0	
II -47	CI	\bigcirc	СН₃	СН₃	СН₃	co-	o	
∏-48	CI	\bigcirc	СН₃	сн₃	CH ₃	-CH ₂ -	0	
II -49	F ₃ C CF ₃		CH3	CH3	СН₃	CH ₂ -	O	
II -50	H ₃ C CH ₁		CH3	СН3	CH₃	CH₂	o	
II -51	CI_N		CH3	CH3	CH3	-CH ₂ -	0	
II -52	CI		CH3	CH₃	CH3	-CH ₂ -	0	
II-53	CI	\bigcirc	СН3	C ₂ H ₅	сн₃	-CH ₂ -	0	
II -54	CI		н	—⟨CH³	CH ₃	-CH ₂ -	0	
II -55	CI		- CH	₂ CH ₂ -	CH3	-CH ₂ -	o	
II -56	CI	$-\frac{N}{N}$	СН₃	сн₃	СН3	-CH ₂ -	0	
II -57	CI		CH3	CH₃	СН₃	-CH ₂ -	s	

144

Table 18

No.	Q ¹	Q ²		_2				
No.	CI	۵٠	R ¹	R ²	R ⁴	A	W	mp(°C)
Щ-1	CI	\bigcirc	СН₃	СН₃	CH3	CH ₂	0	
Щ-2	CI	CI	СН₃	CH3	CH₃	-CH ₂ -	0	
Щ-3	CI	CI	CH₃	CH₃	СН₃	-CH ₂ -	0	
Ⅲ - 4	CI	CI	сн₃	сн₃	СН₃	-CH₂-	0	
Щ-5	CI	F	CH3	CH₃	СН₃	-CH₂-	0	
Щ-6	CI	√ _N	СН3	сн3	сн₃	CH ₂	o	
Щ-7	CI	N	CH₃	СН3	СН3	-CH ₂ -	o	
Ш-8	CI	[N]	СН3	СН3	CH ₃	-CH ₂ -	0	
Щ-9	CI	N S	СН₃	СН3	CH₃	-CH ₂ -	0	
II -10	CI	CH ₂	СН₃	СН₃	сн3	-CH ₂ -	0	
Ⅲ-11	CI	\bigcirc	сн₃	СН₃	CH ₃	-CH ₂ -	0	
II -12	CI	\sqrt{N}	CH3	СН3	CH ₃	-CH ₂ -	0	
III -13	CI	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	СН₃	сн₃	СН3	CH ₂	0	
II-14	CI	CH ₃	СН₃	СН₃	сн₃	-CH ₂ -	0	

145

Table 19

No.	Q ¹	Q ²	R ¹	R ²	R ⁴	A	w	mp(°C)
III - 1 5	CI		CH₃	СН₃	СН₃	-CH ₂ -	0	
Щ-16	CI	OC2H2	сн₃	СН₃	сн₃	-CH ₂ -	0	
Щ-17	CI	N(CH ₃) ₂	СН₃	сн₃	CH3	-CH ₂ -	0	
Ш-18	CI	CH³	СН₃	СН₃	СН₃	CH ₂	0	
Ш-19	CI	NCH₃ N(CH₃)₂	CH3	CH₃	СН₃	-CH ₂ -	0	
Ш-20	CI	O₂ _S. _{CH₃}	СН₃	СН₃	сн₃	-CH ₂ -	0	
Ш-21	CI	, S	CH₃	CH ₃	CH ₃	-CH ₂ -	0	
II -22	CI	O ₂ >S. N(CH ₃) ₂	СН₃	CH₃	CH ₃	-CH ₂ -	O	
Ш-23	CI	,° ₩	CH₃	СН₃	CH ₃	-CH ₂ -	0	
Щ-24	CI	_о_сн₃ °	CH₃	СН₃	CH3	-CH ₂ -	0	
四-25	CI	O N(CH ³) ³	CH₃	CH₃	CH ₃	-CH ₂ -	0	
II -26	CI	N(CH ₃) ₂	CH ₃	CH₃	CH₃	-CH ₂ -	0	
II -27	CI	N•CHCH3	СН₃	CH3	СН₃	-CH ₂ -	0	
II -28	CI	N CH ³	сн₃	сн3	сн₃	-CH ₂ -	0	
Ш-29	CI	_и	СН₃	сн3	CH3	-CH ₂ -	0	
Ш-30	CI	H CH ₃) ₂ H N(CH ₃) ₂ O H CH ₃	сн₃	СН ₃	СН₃	-CH ₂ -	0	

146

Table 20

No.	Q ¹	Q ²	R ¹	R ²	R ⁴	A	w	mp(℃)
Ш-30	င်၊		сн₃	СН₃	н	-CH ₂ -	0	188-191
Ш-31	Ċι		СН3	СН₃	C₂H₅	CH ₂	0	
Ш-32	CI		СН3	СН3	C₃H ₇	CH ₂	0	
Ⅲ-33	င်၊		СН₃	СН₃	-√СН ₃	-CH ₂ -	0	
M-3 4	CI		CH₃	СН₃	C ₄ H ₉	-CH ₂ -	0	
Щ-35	CI		CH ₃	СН₃	CH ₃ 	-CH ₂ -	0	
II-3 6	CI		СН3	СН3	→	−CH ₂ −	0	
Ш-37	CI		CH3	CH3	CH ₂ —	-CH ₂ -	0	
Ш-38	CI		СН₃	СН3	CH₂CN	-CH ₂ -	0	
M-39	CI		CH₃	CH₃	сосн₃	-CH ₂ -	0	
Ⅲ-4 0	CI		СН₃	СН₃	ОСН₃	-CH ₂ -	0	
Щ-41	CI		СН₃	СН3	N(CH ₃) ₂	-CH ₂ -	0	
II -42	CI		СН₃	СН3	-N	-CH ₂ -	0	
Щ-43	CI		СН3	СН₃	sсн₃	-CH ₂ -	· 0	
Ⅲ-44	CI	\bigcirc	CH3	СН3	СН₃	—сн— сн³	o	
II - 4 5	CI	\bigcirc	СН3	СН₃	СН₃	CH₃ CH₃	0	

147

Table 21

No.	Q ¹	Q ²	R ¹	R²	R⁴	A	w	mp(°C)
Ш-46	CI	\bigcirc	CH3	СН₃	CH₃	-CF ₂ -	0	
Ш-47	CI	\bigcirc	CH3	СН3	СН₃	-co-	0	
∐-48	CI	\bigcirc	СН₃	сн₃	CH ³	-CH ₂ -	0	
Ш-49	F ₃ C CF ₃	\bigcirc	CH³	сн3	СН3	-CH ₂ -	0	
II -50	H ₃ C CH ₃	\bigcirc	CH3	CH3	СН3	-CH ₂ -	0	
Ш-51	CIN		СН ₃	CH ₃	сн₃	-CH ₂ -	0	
II-52	CI		CH3	CH3	CH3	-CH ₂ -	0	
II -53	CI		СН₃	C ₂ H ₅	CH3	-CH ₂ -	o	
Щ-54	CI		Н	—⟨сн³ сн³	СН₃	-CH ₂ -	0	
III -55	CI		-CH	I ₂ CH ₂ -	CH3	-CH ₂ -	o	
II -56	CI		CH3	СН3	СН₃	-CH₂-	o	
Ш-57	CI		СН₃	CH3	CH3	-сн ₂ -	s	

```
[Formulation Example 1]
      An emulsifiable liquids
         Compound I-1
                                                       20 weight %
        Xylene
                                                       57 weight %
 5
        N, N-dimethylformamide
                                                       18 weight %
        Polyethylene glycol ether (Nonipol 85<sup>TM</sup>)
                                                        5 weight %
      (To be diluted with water for use when necessary)
      [Formulation Example 2]
      Wettable powders
10
        Compound I-1
                                                       50 weight %
        Sodium ligninsulfonate
                                                        5 weight %
        Polyethylene glycol ether (Nonipol 85<sup>™</sup>)
                                                        5 weight %
        Clay
                                                       35 weight %
        White carbon
                                                        5 weight %
15
      (To be diluted with water for use when necessary)
      [Formulation Example 3]
      Granules
        Compound I-1
                                                      1.5 weight %
        Sodium ligninsulfonate
                                                        2 weight %
20
        Bentonite
                                                     56.5 weight %
        Talc
                                                       40 weight %
      The above components are kneaded with water and
      granulated to provide granules.
      [Formulation Example 4]
25
      Granules
        Compound I-1
                                                      1.5 weight %
        Sodium ligninsulfonate
                                                        5 weight %
        Bentonite
                                                     93.5 weight %
      The above components are kneaded with water and
30
      granulated to provide granules.
      [Formulation Example 5]
      Granules
        Compound I-1
                                                      3.0 weight %
        Sodium ligninsulfonate
                                                      6.0 weight %
35
        Bentonite
                                                     91.0 weight %
      The above components are kneaded with water and
```

149

granulated to provide granules.
[Formulation Example 6]
Granules

Compound I-1

Sodium ligninsulfonate

Bentonite

Clay

1.5 weight %

30.0 weight %

63.5 weight %

The above components are kneaded with water and granulated to provide granules.

10

15

20

25

30

5

[Test Example 1]
Paddy field postemergence treatment

Rectangular plastic pots with a capacity of 150 cm2 were filled in with paddy field soil, flooded with water, and tilled, and seeds of Echinochloa crus-galli var. oryzicola, Cyperus difformis, Scirpus juncoides, and Rotala indica were sown and cultivated at a submersion depth of 2 cm for a predetermined time. When the monocotyledons had grown to the one-leaf stage and Rotala _indica to the two-leaf stage, the depth of flooding water was increased to 3 cm and dilutions of compound (I) were dripped over the body of water in the pots at a predetermined dose (q/a). The dilutions mentioned above were prepared by dissolving 3.0 mg of compound (I) in 1 ml of acetone containing 2% of Tween 20, adding pure water to make 10 ml, and diluting it further with pure water to predetermined concentrations. After the treatment, the plants were grown in a greenhouse and after 3 weeks the herbicidal effect on each weed was evaluated according to the criteria shown in Table 22. The results are presented in Table 23.

150

[Table 22] Herbicidal effect

Index	Effect	<pre>Control rate (%) (killing rate)</pre>
0	None	0
1	Weak	0.1-50.0
2	Moderate	50.1-75.0
3	Strong	75.1-87.5
4	Very strong	87.6-99.9
5	Maximal (complete kill)	100
	Crop safety	

	Index	Injury	Injury rate (%)
20	0 1	None Slight	0.1-12.5
	2 3 4	Mild Moderate Severe	12.6-25.0 25.1-50.0 50.1-99.9
25	5	Very severe kill)	(complete 100

[Table 23]
Postemergence treatment

30

Com- pound No.	g/a	<u>Echinochloa</u> <u>crus-galli</u> var. <u>oryzicola</u>	Cyperus difformis	<u>Scirpus</u> juncoides	Rotala indica
I-1	10	4	4	4	5
I-2	10	4	4	4	2
I-3	10	4	4	4	4
I-5	10	5	5	4	5
I - 30	10	4	5	4	5
I - 46	10	5	5	4	5
I - 47	10	4	4	4	4
I - 50	10	4	5	4	5
I-56	10	4	4	4	4

It is clear from Table 23 that the compounds of the present invention have very satisfactory herbicidal activity.

50 [Test Example 2]
 Paddy field preemergence treatment

151

Rectangular plastic pots with a capacity of 150 cm² were filled in with paddy field soil, flooded with water. Seeds of Echinochloa crus-galli var. oryzicola and Scirpus juncoides were sown and one hill of rice seedlings was transplanted. Under 3 cm-deep flooding, dilutions of compound (Ia) were dripped over the body of water in the pots at a predetermined dose (g/a). The dilutions were prepared by the same procedure as described in Test Example 1. After the treatment, the plants were further grown in a greenhouse and at 3 weeks after treatment, the herbicidal effect on each weed and the possible crop injury on the rice plant were scored in accordance with the criteria shown in Table 22. The results are shown in Table 24.

15 [Table 24]

5

10

Preemergence treatment

Compound No.	g/a	Rice	Echinochloa crus-galli var. oryzicola	<u>Scirpus</u> juncoides
I-3	10	0	5	5
I-4	10	0	5	4
I-44	10	0	5	5
I-46	10	0	5	5
I-48	10	0	5	4
I-49	10	0	5	5
I-50	10	0	5	5
I-51	10	0	5	4
I-52	10	0	4	4
I-56	10	0	5	4
I-57	10	0	5	5

It is apparent from Table 24 that the compounds of the present invention exhibit very satisfactory herbicidal actions without adverse effects on crop plants.

10

15

20

25

30

35

CLAIMS

1. A partially hydrogenated or completely hydrogenated 1,3,5-triazine derivative which has (i) a group of the formula:

$$R^1$$
 R^2

wherein Q¹ represents an aromatic ring group which may optionally be substituted; R¹ represents a hydrogen atom or a hydrocarbon group which may optionally be substituted; R² represents a hydrocarbon group which may optionally be substituted or R¹ and R² may form a ring together with the adjacent carbon atom wherein the ring may optionally be substituted, at the 1-position, and (ii) oxo group or thioxo group at the 2-position, and (iii) which may have a substituent at each 3- to 6-position, provided that said triazine derivative does not have oxo groups at both the 4- and 6-positions, or a salt thereof.

2. The compound as claimed in Claim 1 which is a compound of the formula:

$$Q^{2} \xrightarrow{N} \xrightarrow{N} Q^{1} Q^{2} \xrightarrow{N} \xrightarrow{N} A Q^{1} Q^{2} \xrightarrow{N} \xrightarrow{N} A Q^{1} Q^{2} \xrightarrow{N} A Q^{1$$

wherein Q¹ represents an aromatic ring group which may optionally be substituted; R¹ represents a hydrogen atom or a hydrocarbon group which may optionally be substituted; R² represents a hydrocarbon group which may optionally be substituted or R¹ and R² may form a ring together with the adjacent carbon atom wherein the ring may optionally be substituted; A represents an

WO 98/49150

5

10

optionally substituted methylene group, carbonyl group or thiocarbonyl group; B represents an optionally substituted methylene group; Q^2 , R^3 and R^4 are the same or different and each represents a hydrogen atom or a group bonded through a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom or a phosphorus atom; and W represents O or S.

- 3. The compound as claimed in Claim 1 wherein Q^1 represents an optionally substituted C_{6-14} aryl group or an optionally substituted 5- or 6-membered aromatic heterocyclic group.
- 4. The compound as claimed in Claim 1 wherein Q^1 represents an aromatic ring group selected from the group consisting of a C_{6-14} aryl group and a 5- or
- 6-membered aromatic heterocyclic group or a condensed ring group thereof with benzene ring or a 5- or 6-membered aromatic heterocyclic ring, wherein said C_{6-14} aryl group, 5- or 6-membered aromatic heterocyclic group or its condensed ring group may optionally be
- substituted with one to four substituents selected from the group consisting of hydroxy, amino, cyano, sulfamoyl, sulfamoyloxy, mercapto, nitro, halogen, sulfo and an organic residue selected from the group consisting of
- (1) a hydrocarbon group selected from the group consisting of a C_{1-6} alkyl group, a C_{3-14} cycloalkyl group, a C_{2-6} alkenyl group, a C_{3-14} cycloalkenyl group, a C_{2-6} alkynyl group, a C_{6-14} aryl group and a C_{7-19} aralkyl group,
- and when said hydrocarbon group is an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group or an alkynyl group, each of said groups may have one to three substituents selected from the group consisting of hydroxy, cayno, sulfamoyl, mercapto,
- 35 carboxy, a C_{1-4} alkylthio group, halogen, a C_{1-6} alkoxy

group, nitro, a C_{1-6} alkoxy-carbonyl group, amino, a mono- or $di-C_{1-6}$ alkylamino group, a C_{1-6} alkoxyimino group, hydroxyimino, a C_{1-6} alkylsulfonyl group, cyano, carboxyl, hydroxy, a C_{1-6} alkylcarbonyloxy group, a C_{1-7} alkanoyl group or a C_{1-6} alkylimino group, and when said hydrocarbon group is an aryl group or an

and when said hydrocarbon group is an aryl group or an aralkyl group, each of said groups may have one to five substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a

10 C_{2-6} alkenyl group, (iv) a C_{2-6} alkynyl group, (v) a C_{1-6} alkoxy group, (vi) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6} alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a C_{7-19} aralkyl-carbonyl

group, and a C_{7-19} aralkyloxycarbonyl group, (vii) nitro, (viii) amino, (ix) hydroxy, (x) cyano, (xi) sulfamoyl, (xii) mercapto, (xiii) halogen and (xiv) a C_{1-4} alkylthio group,

(2) a 3- to 8-membered heterocyclic group or a condensed ring group thereof with benzene ring or a 3- to 8-membered heterocyclic ring, which may optionally be substituted with one to three substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{2-6} alkenyl group,

- (iv) a C_{2-6} alkynyl group, (v) a C_{1-6} alkoxy group, (vi) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6} alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a C_{7-19} aralkyl-carbonyl group, and a C_{7-19}
- aralkyloxycarbonyl group, (vii) nitro, (viii) amino, (ix) hydroxy, (x) cyano, (xi) sulfamoyl, (xii) mercapto, (xiii) halogen and (xiv) a C₁₋₄ alkylthio group,
- (3) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6}

alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a C_{7-19} aralkyl-carbonyl group, a C_{7-19} aralkyloxycarbonyl group, a 5- or 6- membered heterocyclic-carbonyl group and a 5- or 6- membered heterocyclic-acetyl group, 5 and when the acyl group is an alkanoyl group or an alkoxy-carbonyl group, each group may has one to three substituents selected from the group consisting of hydroxy cyano, sulfamoyl, mercapto, carboxy, a C1-4 alkylthio group, halogen, a C₁₋₆ alkoxy group, nitro, a 10 C_{1-6} alkoxy-carbonyl group, amino, a mono- or di- C_{1-6} alkylamino group, a C_{1-6} alkoxyimino group and hydroxyimino group, and when the acyl group is an aryl-carbonyl group, an aryloxy-carbonyl group, an aralkyl-carbonyl group, an aralkyloxycarbonyl group, 5- or 6-membered 15 heterocyclic-carbonyl group or a 5- or 6- membered heterocyclic-acetyl group, each of said groups may have one to five substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} 20 cycloalkyl group, (iii) a C2-6 alkenyl group, (iv) a C2-6 alkynyl group, (v) a C_{1-6} alkoxy group, (vi) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} aryl-carbonyl group, a C_{1-6} alkoxy-carbonyl group, a C_{6-14} aryloxy-carbonyl group, a 25 C_{7-19} aralkyl-carbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (vii) nitro, (viii) amino, (ix) hydroxy, (x) cyano, (xi) sulfamoyl, (xii) mercapto, (xiii) halogen and (xiv) a C1-4 alkylthio

- 30 (4) a group of the formula: $-T-Q^0$ wherein Q^0 represents a hydrocarbon group as defined in above (1), a 3- to 8-membered heterocyclic group as defined in above (2), or an acyl group as defined in above (3); T represents 0, $(0)_k$ -S wherein k is 0, 1 or 2, or S-S,
- 35 (5) a group of the formula:

group,

WO 98/49150

156

PCT/JP98/01872

$$-N$$
 Q^3

wherein Q³ represents a hydrogen atom, a hydrocarbon group as defined in above (1) or an acyl group as defined in above (3); Q⁴ represents a hydrocarbon group as defined in above (1) or an acyl group as defined in above (3), or Q³ and Q⁴ may form a ring together with the adjacent nitrogen atom,

(6) a group of the formula:

15

20

wherein \mathbf{Q}^3 and \mathbf{Q}^4 have the same meaning as defined above,

(7) a carbamoyl group which may optionally be substituted with 1 or 2 substituents selected from the group consisting of a hydrocarbon group as defined in above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3),

(8) a carbamoyloxy group which may optionally be
substituted with 1 or 2 substituents selected from the
group consisting of a hydrocarbon group as defined in
above (1), a 3- to 8- membered heterocyclic group as
defined in above (2) and an acyl group as defined in
above (3),

(9) a ureido group which may optionally be substituted with 1 to 3 substituents selected from the group consisting of a hydrocarbon group as defined in above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3), (10) a thiocarbamoyl group which may optionally be substituted with 1 or 2 substituents selected from the

WO 98/49150

10

group consisting of a hydrocarbon group as defined in above (1), a 3- to 8- membered heterocyclic group as defined in above (2) and an acyl group as defined in above (3),

- 5 (11) carboxyl group, and
 - (12) a group of the formula $-0-SO_2-Q^4$ wherein Q^4 has the same meaning as defined above.
 - 5. The compound as claimed in Claim 1 wherein R^1 and R^2 are the same or different and each represents an optionally substituted C_{1-6} alkyl group.
 - 6. The compound as claimed in Claim 1 wherein R^1 and R^2 are the same or different and each represents a $C_{1\text{-}6}$ alkyl group which may optionally be substituted with one to three substituents selected from the group
- 15 consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl and halogen.
 - 7. The compound as claimed in Claim 2 wherein A and B are the same or different and each represents an optionally substituted methylene group.
- 20 8. The compound as claimed in Claim 2 wherein A and B are the same or different and each represents a group of the formula:

wherein R^5 and R^6 are the same or different and each represents (1) hydrogen, (2) halogen, (3) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl and halogen, or (4) a C_{6-14} aryl group which may optionally be substituted with one to three substituents selected from the group consisting of

nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, halogen, a C_{1-6} alkyl group and a C_{1-6} alkoxy group. The compound as claimed in Claim 2 wherein Q2 represents (1) hydroxy, (2) a C_{1-6} alkoxy group, (3) a C_{2-6} alkenyloxy group, (4) a C_{2-6} alkynyloxy group, (5) 5 an optionally substituted cyclic group, (6) an optionally substituted C_{1-6} alkyl group, (7) an optionally substituted C_{2-6} alkenyl group, (8) a C_{1-20} acyl group, (9) an optionally substituted carbamoyl 10 group, (10) an optionally substituted amidino group, (11) a group of $-S(0)_nR^{20}$ wherein n is 0, 1 or 2 and R^{20} represents a hydrogen atom, a C₁₋₆ alkyl group, a C₆₋₁₄ aryl group or an optionally substituted amino group, (12) a C_{3-6} cycloalkyloxy group, (13) a C_{1-6} 15 alkylcarbonyloxy group, (14) a C_{6-14} arylcarbonyloxy group, (15) an optionally substituted carbamoyloxy group, (16) an optionally substituted amino group, or (17) a group of $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the same or different and each represents a hydrogen atom 20 or a C_{1-6} alkyl group. The compound as claimed in Claim 2 wherein Q2 represents (1) hydroxy, (2) a C_{1-6} alkoxy group, (3) a C_{2-6} alkenyloxy group, (4) a C_{2-6} alkynyloxy group, (5) a cyclic group selected from the group consisting of (i) a C_{6-14} aryl group, (ii) a 5- or 6-membered heterocyclic 25 group bonded through a carbon atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iii) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or a 30 condensed ring group thereof with benzene ring or a 5or 6-membered heterocyclic ring, (iv) a C_{3-14} cycloalkyl group and (v) a C_{3-14} cycloalkenyl group wherein said cyclic group may have one to four substituents selected from the group consisting of nitro, amino, hydroxy, 35 cyano, sulfamoyl, mercapto, carboxyl, halogen, a C1-6

WO 98/49150

alkyl group and a C_{1-6} alkoxy group, (6) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen and a C_{1-6} alkoxyimino group, (7) a 5 C_{2-6} alkenyl group, (8) an acyl group selected from the group consisting of a C_{1-6} alkyl-carbonyl group, a C_{6-14} arylcarbonyl group and a C_{1-6} alkoxycarbonyl group, (9) a carbamoyl group which may optionally be substituted 10 with one or two C_{1-6} alkyl groups, (10) an amidino group which may optionally be substituted with one to three C_{1-6} alkyl groups, (11) a group of $-S(0)_nR^{20}$ wherein n is 0, 1 or 2 and R^{20} represents a hydrogen atom, a C_{1-6} alkyl group, a C_{6-14} aryl group or an amino group which 15 may optionally be substituted with one or two C₁₋₆ alkyl groups, (12) a C_{3-6} cycloalkyloxy group, (13) a C_{1-6} alkylcarbonyloxy group, (14) a C_{6-14} arylcarbonyloxy group, (15) a carbamoyloxy group which may optionally be substituted with one or two C_{1-6} alkyl groups, (16) 20 an amino group which may optionally be substituted with one or two substituents selected from the group consisting of a C_{1-6} alkyl group, a C_{1-6} alkyl-carbonyl group, a C_{1-6} alkylsulfonyl group, and an aminocarbonyl group which may optionally be substituted with one or two C_{1-6} alkyl groups, or (17) a group of $-N=CR^{21}R^{22}$ 25 wherein R^{21} and R^{22} are the same or different and each represents a hydrogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group or a C1-6 alkylthio group. The compound as claimed in Claim 2 wherein Q2 represents an optionally substituted cyclic group. 30 The compound as claimed in Claim 2 wherein Q2 represents a cyclic group selected from the group consisting of (i) a C_{6-14} aryl group, (ii) a 5- or 6-membered heterocyclic group bonded through a carbon

10

15

20

25

30

35

atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iii) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or a condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, (iv) a C_{3-14} cycloalkyl group and (v) a C_{3-14} cycloalkenyl group wherein said cyclic group may have one to four substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen, a C_{1-6} alkyl group and a C_{1-6} alkoxy group. 13. The compound as claimed in Claim 2 wherein R³ and R4 are the same or different, and each represents (1) a hydrogen atom, (2) hydroxy, (3) an optionally substituted C_{1-6} alkyl group, (4) an optionally substituted C_{3-14} cycloalkyl group, (5) an optionally substituted C_{2-6} alkenyl group, (6) an optionally substituted C_{2-6} alkynyl group, (7) an optionally substituted C_{1-6} alkoxy group, (8) an optionally substituted C_{2-6} alkenyloxy group, (9) an optionally substituted C_{2-6} alkynyloxy group, (10) an optionally substituted C_{6-14} aryl group, (11) a C_{7-19} aralkyl group, (12) an optionally substituted C_{6-14} aryloxy group, (13) an optionally substituted carbamoyloxy group, (14) a C_{1-20} acyl group, (15) an optionally substituted amino group, (16) an optionally substituted carbamoyl group, (17) an optionally substituted thiocarbamoyl group, (18) a group of $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2 and R^{23} represents a hydrogen atom, an optionally substituted C_{1-6} alkyl group, a C_{6-14} aryl group, an optionally substituted amino group or a C_{1-20} acyl group, (19) a C_{1-6} alkylcarbonyloxy group, (20) a C_{1-6} alkylsulfonyloxy group, (21) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen

atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group, (22) a

5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic group, or (23) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6} alkoxy group.

- 14. The compound as claimed in Claim 2 wherein R^3 and R^4 are the same or different, and each represents (1) a hydrogen atom, (2) an optionally substituted C_{1-6} alkyl group, (3) an optionally substituted C_{1-6} alkoxy group,
- (4) an optionally substituted C_{6-14} aryl group, (5) a C_{7-19} aralkyl group, (6) an optionally substituted C_{6-14} aryloxy group, (7) an optionally substituted carbamoyloxy group, (8) a C_{1-20} acyl group, (9) a monoor di-substituted amino group, (10) a N-mono- or
- di-substituted carbamoyl group, (11) a group of $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2, and R^{23} represents a hydrogen atom, an optionally substituted C_{1-6} alkyl group, a C_{6-14} aryl group or a mono- or di-substituted amino group, (12) a C_{1-6} alkylcarbonyloxy group, (13) a
- C₁₋₆ alkylsulfonyloxy group, (14) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom or a C₁₋₆ alkyl group, or (15) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof
- with benzene ring or a 5- or 6-membered heterocyclic ring.
 - 15. The compound as claimed in Claim 2 wherein R^3 and R^4 are the same or different, and each represents
 - (1) a hydrogen atom,
- 30 (2) hydroxy,
 - (3) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy
- group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}

alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{7-19} aryl

- and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (4) a C_{3-14} cycloalkyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) bydroxy (ii)
- from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14}
- arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
- 20 (5) a C_{2-6} alkenyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}
- alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl
- group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (6) a C_{2-6} alkynyl group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii)

- carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14}
- arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
- 10 (7) a C_{1-6} alkoxy group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}
- alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl
- group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (8) a C_{2-6} alkenyloxy group which may optionally be substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii)
- carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6} alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14}
- aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (9) a C_{2-6} alkynyloxy group which may optionally be

25

30

substituted with one to three substituents selected from the group consisting of (i) hydroxy, (ii) carboxyl, (iii) cyano, (iv) halogen, (v) a C_{1-6} alkoxy group, (vi) a C_{1-6} alkylthio group, (vii) a C_{1-6}

- alkylsulfonyl group, (viii) an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19} aralkyloxycarbonyl group, (ix) a C_{6-14} aryl
- 10 group, (x) a C_{1-7} alkanoyloxy group and (xi) a C_{1-6} alkylimino group,
 - (10) a C_{6-14} aryl group which may optionally be substituted with one to five substituents selected from the group consisting of nitro, amino, hydroxy, cyano,
- 15 sulfamoyl, mercapto, carboxyl, halogen, a C_{1-4} alkyl group and a C_{1-6} alkoxy group,
 - (11) a C_{7-19} aralkyl group,

 C_{1-6} alkylsulfonyl group,

- (12) a C_{6-14} aryloxy group which may optionally be substituted with one to five substituents selected from the group consisting of nitro, amino, hydroxy, cyano, sulfamoyl, mercapto, carboxyl, halogen, a C_{1-4} alkyl group and a C_{1-6} alkoxy group,
 - (13) a carbamoyloxy group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv) a C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14}
- aryloxycarbonyl group, (viii) a C_{7-19} aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a
 - (14) an acyl group selected from the group consisting of (i) a C_{1-7} alkanovl group which may optionally be

substituted with one to three halogen atoms, (ii) a C_{6-14} arylcarbonyl group, (iii) a C_{1-6} alkoxycarbonyl group, (iv) a C_{6-14} aryloxycarbonyl group, (v) a C_{7-19} aralkylcarbonyl group and (vi) a C_{7-19}

- 5 aralkyloxycarbonyl group,
 - (15) an amino group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv) a
- 10 C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14} aryloxycarbonyl group, (viii) a C_{7-19} aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a
- 15 C_{1-6} alkylsulfonyl group,
 - (16) a carbamoyl group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv)
- a C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14} aryloxycarbonyl group, (viii) a C_{7-19} aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a
- C_{1-6} alkylsulfonyl group,
- (17) a thiocarbamoyl group which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{3-6} cycloalkyl group, (iii) a C_{7-19} aralkyl group, (iv)
- a C_{1-7} alkanoyl group, (v) a C_{6-14} arylcarbonyl group, (vi) a C_{1-6} alkoxycarbonyl group, (vii) a C_{6-14} aryloxycarbonyl group, (viii) a C_{7-19} aralkylcarbonyl group, (ix) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups and (x) a

WO 98/49150

 C_{1-6} alkylsulfonyl group,

- (18) a group of $-S(O)_n-R^{23}$ wherein n is 0, 1 or 2 and R^{23} represents
- (i) a hydrogen atom,
- 5 (ii) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of (a) hydroxy, (b) carboxyl, (c) cyano, (d) halogen, (e) a C_{1-6} alkoxy group, (f) a C_{1-6} alkylthio group, (g) a C_{1-6} alkylsulfonyl group, (h)
- an acyl group selected from the group consisting of a C_{1-7} alkanoyl group, a C_{6-14} arylcarbonyl group, a C_{1-6} alkoxycarbonyl group, a C_{6-14} aryloxycarbonyl group, a C_{7-19} aralkylcarbonyl group, and a C_{7-19}
- aralkyloxycarbonyl group, (i) a C_{6-14} aryl group, (j) a C_{1-7} alkanoyloxy group and (k) a C_{1-6} alkylimino group, (iii) a C_{6-14} aryl group,
 - (iv) an amino group which may optionally be substituted with one or two substituents selected from the group consisting of (a) a C_{1-6} alkyl group, (b) a C_{3-6}
- cycloalkyl group, (c) a C_{7-19} aralkyl group, (d) a C_{1-7} alkanoyl group, (e) a C_{6-14} arylcarbonyl group, (f) a C_{1-6} alkoxycarbonyl group, (g) a C_{6-14} aryloxycarbonyl group, (h) a C_{7-19} aralkylcarbonyl group, (i) a carbamoyl group which may optionally be substituted
- with one or two C_{1-6} alkyl groups and (j) a C_{1-6} alkylsulfonyl group, or
 - (v) an acyl group selected from the group consisting of
 - (a) a C_{1-7} alkanoyl group which may optionally be substituted with one to three halogen atoms, (b) a C_{6-14}
- arylcarbonyl group, (c) a C_{1-6} alkoxycarbonyl group, (d) a C_{6-14} aryloxycarbonyl group, (e) a C_{7-19} aralkylcarbonyl group and (f) a C_{7-19} aralkyloxycarbonyl group,
 - (19) a C₁₋₆ alkylcarbonyloxy group,
 - (20) a C₁₋₆ alkylsulfonyloxy group,

- (21) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group,
- (22) a 5- or 6-membered heterocyclic group bonded through a nitrogen atom or condensed ring group thereof with benzene ring or a 5- or 6-membered heterocyclic ring, or
 - (23) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6} alkoxy group.
- 10 16. The compound as claimed in Claim 2 wherein Q^1 represents (1) a C_{6-14} aryl group, (2) a pyridyl group, (3) a thienyl group, or (4) a benzofuryl group wherein each of said groups may optionally be substituted with one to three substituents selected from the group
- consisting of (i) halogen, (ii) hydroxy, (iii) a C_{1-6} alkyl group which may optionally be substituted with one to three substituents selected from the group consisting of halogen , cyano, a C_{1-6} alkoxy group and a C_{1-6} alkylthio group, (iv) a C_{1-6} alkoxy group which may
- optionally be substituted with one to three substituents selected from the group consisting of cyano and halogen, (v) amino which may optionally be substituted with one or two C_{1-6} alkyl groups, (vi) benzyloxy, (vii) a C_{1-6} alkylthio group which may
- optionally be substituted with one to three substituents selected from the group consisting of cyano and halogen, (viii) a C_{1-6} alkylsulfinyl group, (ix) a C_{1-6} alkylsulfonyl group, (x) a C_{6-14} aryloxy group, (xi) a C_{1-6} alkylsulfonyloxy group and (xii) a C_{1-6}
- 35 with the adjacent carbon atom;

- A represents (1) a methylene group which may optionally be substituted with one or two halogen atoms or C_{1-6} alkyl groups, (2) a carbonyl group or (3) a thiocarbonyl group;
- B represents a methylene group which may optionally be substituted with one or two C_{1-6} alkyl groups; Q^2 represents (1) hydroxy,
 - (2) a C_{1-6} alkoxy group,
 - (3) (i) a C_{6-14} aryl group, (ii) a pyridyl group, (iii)
- a pyrrolyl group, (iv) a thiazolyl group, (v) a piperidyl group, (vi) a morpholinyl group, (vii) a imidazopyridyl group, (viii) a pyrrolidinyl group, (ix) a C_{3-14} cycloalkyl group, or (x) a C_{3-14} cycloalkenyl group, wherein each of said groups may optionally
- substituted with one to four halogen atoms,
 - (4) a C_{1-6} alkyl group which may optionally be substituted with one to three C_{1-6} alkoxyimino groups,
 - (5) a C_{2-6} alkenyl group,
 - (6) an acyl group selected from the group consisting of a C_{1-6} alkyl-carbonyl group, a C_{6-14} arylcarbonyl group and a C_{1-6} alkoxycarbonyl group,
 - (7) a carbamoyl group which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (8) an amidino group which may optionally be
- substituted with one to three C_{1-6} alkyl groups, (9) a group of $-S(O)_nR^{20}$ wherein n is 0, 1 or 2, and R^{20} represents a C_{1-6} alkyl group, a C_{6-14} aryl group or an amino group which may optionally be substituted with
- 30 (10) a C_{3-6} cycloalkyloxy group,

one or two C_{1-6} alkyl groups,

- (11) a C_{1-6} alkylcarbonyloxy group,
- (12) a C_{6-14} arylcarbonyloxy group,
- (13) a carbamoyloxy group which may optionally be substituted with one or two C_{1-6} alkyl groups,
- 35 (14) amino which may optionally be substituted with one

or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{1-6} alkyl-carbonyl group, (iii) a C_{1-6} alkylsulfonyl group and (iv) aminocarbonyl which may optionally be substituted with one or two C_{1-6} alkyl groups, or

- (15) a group of $-N=CR^{21}R^{22}$ wherein R^{21} and R^{22} are the same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group, or (16) a C_{2-6} alkenyloxy group;
- 10 R^3 and R^4 are the same or different, and each represents
 - (1) a hydrogen atom,
 - (2) hydroxy,

5

- (3) a C_{1-6} alkyl group which may optionally be
- substituted with one to three substituents selected from the group consisting of (i) carboxyl, (ii) cyano, (iii) halogen, (iv) a C_{1-6} alkoxy group, (v) a C_{1-6} alkylthio group, (vi) a C_{1-6} alkylsulfonyl group, (vii) a C_{1-7} alkanoyl group, (viii) a C_{1-6} alkoxycarbonyl
- group, (ix) a C_{6-14} aryl group, (x) a C_{1-6} alkylimino group, and (xi) hydroxy,
 - (4) a C_{3-14} cycloalkyl group,
 - (5) a C_{2-6} alkenyl group,
 - (6) a C_{2-6} alkynyl group,
- 25 (7) a C_{1-6} alkoxy group which may optionally be substituted with one to three C_{1-6} alkoxy groups,
 - (8) a C_{2-6} alkenyloxy group,
 - (9) a C_{2-6} alkynyloxy group,
 - (10) a C_{6-14} aryl group,
- 30 (11) a C_{7-19} aralkyl group,
 - (12) carbamoyloxy which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (13) an acyl group selected from the group consisting of (i) a C_{1-7} alkanoyl group which may optionally be

WO 98/49150

substituted with one to three halogen atoms, (ii) a C_{1-6} alkoxycarbonyl group and (iii) a C_{7-19} aralkyloxycarbonyl group,

170

PCT/JP98/01872

- (14) amino which may optionally be substituted with one or two substituents selected from the group consisting of (i) a C_{1-6} alkyl group, (ii) a C_{1-7} alkanoyl group, (iii) carbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups and (iv) a C_{1-6} alkylsulfonyl group,
- 10 (15) carbamoyl which may optionally be substituted with one or two C_{1-6} alkyl groups,
 - (16) thiocarbamoyl which may optionally be substituted with one or two $C_{\text{1-6}}$ alkyl groups,
- (17) a group of $-S(0)_n-R^{23}$ wherein n is 0, 1 or 2, and R²³ represents (i) a C_{1-6} alkyl group which may optionally be substituted with one to three halogen atoms, (ii) a C_{6-14} aryl group, (iii) amino which may
 - optionally be substituted with one or two substituents selected from the group consisting of a C_{1-6} alkyl group
- and a C_{1-6} alkoxycarbonyl group, and (iv) a C_{1-6} alkoxycarbonyl group,
 - (18) a C_{1-6} alkylcarbonyloxy group,
 - (19) a C₁₋₆ alkylsulfonyloxy group,
 - (20) a group of $-N=CR^{24}R^{25}$ wherein R^{24} and R^{25} are the
- 25 same or different, and each represents a hydrogen atom, a C_{1-6} alkyl group or a C_{1-6} alkoxy group,
 - (21) a pyrrolidinyl group or a morpholinyl group, or
 - (22) a group of $-PO(R^{26})_2$ wherein R^{26} represents a C_{1-6} alkoxy group.
- 17. The compound as claimed in claim 2, which is a compound represented by the formula:

171

5

10

15

20

wherein Q^1 represents a C_{6-10} aryl group which may optionally be substituted with one to three substituents selected from the group consisting of (1) halogen, (2) a C₁₋₄ alkyl group which may optionally be substituted with one to five halogen atoms, (3) a C_{1-4} alkoxy group which may optionally be substituted with one to five halogen atoms, (4) a C₁₋₄ alkylthio group which may optionally be substituted with one to five halogen atoms and (5) an amino group which may optionally be substituted with one or two C_{1-4} alkyl groups; Q² represents phenyl which may optionally be substituted with one to three halogen atoms; R^1 and R^2 are the same or different and each represents methyl which may optionally be substituted with one to three halogen atoms; R^3 represents a C_{1-4} alkyl group, a C_{2-4} alkenyl group, a C_{2-4} alkynyl group or a C_{1-4} alkoxy group; A and B are the same or different and each represents methylene which may optionally be substituted with one or two C_{1-4} alkyl groups which may optionally be substituted with one to three halogen atoms; and W represents O.

optionally be substituted with one to three halogen atoms; and W represents O.

18. 1-[1-(3,5-Dichlorophenyl)-1-methylethyl]-5-methyl-3-phenyltetrahydro-1,3,5-triazine-2(1H)one or a salt thereof.

- 30 19. 1-[1-(3,5-Dichlorophenyl)-1-methylethyl]-5methoxy-3-phenyltetrahydro-1,3,5-triazine-2(1H)one or a
 salt thereof.
 - 20. 1-[1-(3,5-Dichloro-4-methoxyphenyl)-1-methylethyl]-5-methyl-3-phenyltetrahydro-1,3,5-
- 35 triazine-2(1H)one or a salt thereof.

35

21. A process for producing the compound of Claim 1 which comprises subjecting a urea or thiourea compound having a group of the formula:

$$\begin{array}{c}
R^1 \\
R^2
\end{array}$$

wherein the respective symbols have the same meanings as defined in Claim 1, on the ring-forming nitrogen atoms, or a salt thereof, to a cyclization reaction.

22. A process for producing the compound of Claim 2 which comprises

(1) reacting a compound of the formula:

$$Q^2 \underset{H}{\bigvee} \underset{H}{\bigvee} R^2 R^1$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

wherein R⁵ and R⁶ are the same or different and each
represents a hydrogen atom or a hydrocarbon group which
may optionally be substituted, or a salt thereof,
a compound of the formula:

wherein R^7 and R^8 are the same or different and each represents a hydrogen atom or a hydrocarbon group which may optionally be substituted, or a salt thereof, and a compound of the formula:

$$R^3 - NH_2$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof to provide a compound of the formula:

5

wherein R^5 , R^6 , R^7 and R^8 are as defined above; the other symbols have the same meanings as defined in Claim 2 or a salt thereof;

(2) reacting a compound of the formula:

15

20

$$Q^2$$
 N
 N
 N
 N
 Q^1

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

25

wherein X^1 and X^2 are the same or different and each represents a leaving group; the other symbols have the same meanings as defined in Claim 2 or a salt thereof to provide a compound of the formula:

30

35

25

30

35

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(3) reacting a compound of the formula:

$$Q^{2} \xrightarrow{N} \overset{W}{\underset{H}{\overset{R^{2}}{\underset{N}{\overset{R^{1}}{\underset{N}{\underset{N}}{\overset{N}{\underset{N}}{\overset{N}}{\underset{N}}{\overset{N}}}}}}} Q^{1}}$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula X^1-A-X^2 wherein X^1 and X^2 are as defined above; A has the same meaning as defined in Claim 2 or a salt thereof to provide a compound of the formula:

$$Q^2 \xrightarrow{N} \stackrel{M}{\stackrel{}{\bigwedge}} \stackrel{R^1}{\stackrel{}{\bigvee}} Q^1$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(4) reacting a compound of the formula:

$$Q^2$$
 H
 R^2
 R^1
 Q^1
 R^4

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula X^1-A-X^2 wherein X^1 and X^2 are as defined above; A has the same meaning as defined in Claim 2 or a salt thereof to provide a compound of the formula:

$$Q^2$$
 N
 R^2
 R^1
 Q^1
 R^4

25

30

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(5) reacting a compound of the formula:

$$Q^2 \xrightarrow{N} H \xrightarrow{H} H$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with the compound of the formula:

$$X^1$$
 X^2 X^4 X^4

wherein X^1 and X^2 are as defined above; A and R^4 have the same meaning as defined in Claim 2 or a salt thereof to provide a compound of the formula:

$$Q^{2} \xrightarrow{N} \overset{W}{\underset{N}{\bigwedge}} \overset{R^{2}}{\underset{N}{\bigwedge}} \overset{R^{1}}{\underset{N}{\bigwedge}} Q^{2} \xrightarrow{N} \overset{W}{\underset{N}{\bigwedge}} \overset{R^{2}}{\underset{N}{\bigwedge}} \overset{R^{1}}{\underset{N}{\bigwedge}} Q^{1}$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(6) reacting a compound of the formula:

$$Q^2 \xrightarrow{N} H \xrightarrow{B} X^1$$

wherein X^1 is as defined above; the other symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

$$X^2-A-NH-R^3$$

35 wherein X^2 is as defined above; A and R^3 have the same meanings as defined in Claim 2 or a salt thereof to

provide a compound of the formula:

$$Q^{2} \xrightarrow{N} \xrightarrow{R} \xrightarrow{R^{2} R^{1}} Q^{1}$$

$$A \xrightarrow{N} \xrightarrow{B}$$

$$R^{3}$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(7) reacting a compound of the formula:

$$Q^{2} \xrightarrow{N} H Q^{1}$$

$$X^{1} \xrightarrow{B} H$$

15

10

5

wherein X¹ is as defined above; the other symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

$$X^2-A-NH-R^3$$

wherein X^2 is as defined above; A and R^3 have the same meanings as defined in Claim 2 or a salt thereof to provide a compound of the formula:

$$Q^{2} \xrightarrow{N} \overset{W}{\underset{|Q^{1} \\ |}{N}} \overset{R^{2}}{\underset{|Q^{1} \\ |}{N}} \overset{R}{\underset{|Q^{1} \\ |}{N}}$$

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof,

(8) reacting a compound of the formula:

177

5

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

$$10 X^3 - B - X^4$$

wherein X^3 and X^4 are the same or different and each represents a C_{1-6} alkoxy group, and B has the same meaning as defined in Claim 2 or a salt thereof to provide a compound of the formula:

15

$$Q^{2} \xrightarrow{N} \begin{array}{c} W \\ R^{2} \\ N \\ Q^{1} \\ A \\ N \\ B \\ R^{3} \end{array}$$

20

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(9) reacting a compound of the formula:

25

30

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

$$X^3-B-X^4$$

wherein B has the same meaning as defined in Claim 2, and the other symbols are as defined above or a salt thereof to provide a compound of the formula:

178

$$Q^{2} \xrightarrow{N} \begin{array}{c} W & R^{2} & R^{1} \\ N & N & Q^{1} \\ B & N & A \\ R^{3} & R^{3} \end{array}$$

5

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof;

(10) reacting a compound of the formula:

10

15

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

$$X^1-A-X^2$$

20

wherein A has the same meaning as defined in Claim 2, and the other symbols are as defined above or a salt thereof to provide a compound of the formula:

25

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{R^{2}} \xrightarrow{R^{1}} Q^{1}$$

$$A \xrightarrow{N} \xrightarrow{B}$$

$$R^{3}$$

30

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof; or

(11) reacting a compound of the formula:

·

179

PCT/JP98/01872

5

WO 98/49150

wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof with a compound of the formula:

10 X¹-A-X²

wherein A has the same meaning as defined in Claim 2, and the other symbols are as defined above or a salt thereof to provide a compound of the formula:

15

$$Q^{2} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} \xrightarrow{N} Q^{1}$$

$$B \xrightarrow{N} \xrightarrow{A}$$

$$R^{3}$$

- wherein the respective symbols have the same meanings as defined in Claim 2 or a salt thereof.
 - 23. An agrochemical composition comprising the compound as claimed in Claim 1 and an agrochemically acceptable carrier.
- 25 24. Use of the compound as claimed in Claim 1 as a herbicide.
 - 25. A method for weeding from a paddy field, plowland, orchard or non-crop land, which comprises scattering an effective amount of the compound as claimed in Claim 1
- on said paddy field, plowland, orchard or non-crop land.

Int tional Application No PCT/JP 98/01872

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D251/08 C07D251/10 A01N43/64 C07D401/04 C07D403/04 C07D417/04 C07D471/04 C07D405/04 C07D251/30 C07D409/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6-C07D-A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

P 0 005 911 A (ICI LTD) 12 December 1979 ee compounds of formula II and III in hich Q is 1-phenylethyl ee page 23 - page 24; examples 39,40 OREL, GEORGES ET AL: "New imidoyl sothiocyanates. Chemical behavior in olar solvents. Reaction with sulfenyl	1-4, 8-10,16
hich Q is 1-phenylethyl ee page 23 - page 24; examples 39,40 OREL, GEORGES ET AL: "New imidoyl sothiocyanates. Chemical behavior in	
OREL, GEORGES ET AL: "New imidoyl sothiocyanates. Chemical behavior in	1,3,4
sothiocyanates. Chemical behavior in	1,3,4
hiocyanates: preparation of ,2-dihydro-2-thioxo-1,3,5-triazines and ,3,4,6,6a triazadithia'6aS(IV)! entalenes" . ORG. CHEM. (1986), 51(21), 4043-7 ,986, XP002072544	
	,2-dihydro-2-thioxo-1,3,5-triazines and ,3,4,6,6a triazadithia'6aS(IV)! entalenes" . ORG. CHEM. (1986), 51(21), 4043-7 , 986, XP002072544 ee compound 10j/

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed 	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of theinternational search 30 July 1998	Date of mailing of the international search report $12/08/1998$
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer De Jong, B

3

Int. tional Application No PCT/JP 98/01872

	Citation of document, with indication, where appropriate, of the relevant passages AL-TALIB, MAHMOUD ET AL: "2-Azaallenium salts from the reaction of 1-oxa-3-azabutatrienium salts with cyanamides and carbodiimides" CHEM. BER. (1985), 118(5), 1887-902,	Relevant to claim No.
	AL-TALIB, MAHMOUD ET AL: "2-Azaallenium salts from the reaction of 1-oxa-3-azabutatrienium salts with cyanamides and carbodiimides"	
X _	salts from the reaction of 1-oxa-3-azabutatrienium salts with cyanamides and carbodiimides"	1,3,4
	1985, XP002072545 see compounds 17a-17k	ů.
X	DE 32 41 114 A (BAYER AG) 10 May 1984 see example I-11 see page 7, line 1 - line 4	1,23-25
X	US 3 983 116 A (LIN KANG) 28 September 1976 see Table IX, 5th compound see claim 1	1,23-25
X	PATENT ABSTRACTS OF JAPAN vol. 005, no. 140 (C-070), 4 September 1981 -& JP 56 075407 A (UBE IND LTD), 22 June 1981 see abstract	1,23-25
x	EP 0 745 599 A (AMERICAN CYANAMID CO) 4 December 1996 see claim 1	1,23-25
Α	EP 0 003 061 A (BAYER AG) 25 July 1979 see page 12, line 19 - line 21; claim 1	1-25
A	EP 0 290 103 A (ARCADIAN CORP) 9 November 1988 see claim 1	21,22

Information on patent family members

Inte .ional Application No
PCT/JP 98/01872

1	ent document in search report		Publication date	Patent family member(s)		Publication date
EP (0005911	A	12-12-1979	AR AU AU CA CS DD DK FI JP US ZA	224507 A 698 T 529948 B 4694979 A 1108138 A 213377 B 213378 B 143906 A 213179 A 791670 A,B, 54154779 A 4254122 A 7902247 A	15-12-1981 15-03-1982 30-06-1983 29-11-1979 01-09-1981 09-04-1982 17-09-1980 27-11-1979 27-11-1979 06-12-1979 03-03-1981 28-05-1980
DE :	3241114	Α	10-05-1984	DE US	3333447 A 4524205 A	21-03-1985 18-06-1985
US :	3983116	A	28-09-1976	ART BGA CCS CCD DD DE CCS CCD DD DE FIRE GENERAL STATE OF THE CCS CCD DD DE FIRE CCS CCS CCS CCS CCS CCS CCS CCS CCS CC	213607 A 328788 B 22363 A 1040201 A 583506 A 191879 B 972 A 106938 A 112651 A 2326358 A 139911 B 10976 A 57940 B 2185625 A 1435585 A 31378 A 139019 A 984091 C 49061337 A 54018339 B 52007980 A 2845 A 67653 A	28-02-1979 12-04-1976 20-02-1977 10-10-1978 14-01-1977 31-07-1979 22-12-1978 12-07-1974 20-04-1975 06-12-1973 14-05-1979 30-09-1976 31-07-1980 04-01-1974 12-05-1976 30-06-1978 24-04-1976 22-01-1980 14-06-1974 06-07-1979 21-01-1977 30-06-1978 26-07-1973

Information on patent family members

Intc. :ional Application No PCT/JP 98/01872

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 3983116 A	-	NL 7307218 A,B, OA 4410 A SU 616994 A US 3902887 A	27-11-1973 29-02-1980 25-07-1978 02-09-1975
EP 0745599 A	04-12-1996	US 5616706 A US 5659031 A US 5610120 A US 5612481 A AU 5460396 A CA 2177876 A CN 1138580 A CZ 9601461 A HU 9601483 A JP 9025270 A SK 69396 A US 5726126 A	01-04-1997 19-08-1997 11-03-1997 18-03-1997 12-12-1996 03-12-1996 25-12-1996 14-05-1997 28-02-1997 28-01-1997 06-08-1997 10-03-1998
EP 0003061 A	25-07-1979	DE 2801029 A BR 7900153 A DK 11079 A JP 54100387 A US 4263296 A	12-07-1979 14-08-1979 12-07-1979 08-08-1979 21-04-1981
EP 0290103 A	09-11-1988	US 4778510 A AU 603967 B AU 1602188 A CA 1314886 A DK 251188 A JP 2716100 B JP 63287772 A	18-10-1988 29-11-1990 10-11-1988 23-03-1993 08-11-1988 18-02-1998 24-11-1988