Quelques petits exercices pour reprendre la main

Exercice 1

Le prix d'un objet augmente de 125 € à 150 €.

- 1) Déterminer la variation absolue du prix.
- 2) Déterminer la variation relative de ce prix et en déduire le pourcentage d'évolution de cet objet.
- 1) Calculons la variation absolue : $v_1 v_0 = 150 125 = 25$. La variation absolue est donc de 25.
- 2) Calculons la variation relative : $\frac{v_1 v_0}{v_0} = \frac{150 125}{125} = \frac{25}{125} = 0, 2$ $0, 2 \times 100 = 20\%$

La variation relative est donc de 20 %.

Exercice 2

Le prix du baril de pétrole coûte 105 dollars. Ce prix augmente de 5 %. Déterminer le prix du baril après l'augmentation.

Le coefficient multiplicateur relatif à une augmentation de 5 % est : $CM = 1 + \frac{5}{100} = 1,05$ et $v_1 = v_0 \times CM = 105 \times 1,05 = 110,25$ Le prix du baril après augmentation est donc de 110,25 dollars.

Exercice 3

Dans une entreprise, le nombre d'employés passe de 400 à 350 en un an. Déterminer le pourcentage d'évolution du nombre d'employés sur l'année.

Calculons le pourcentage d'évolution : $t=\frac{v_1-v_0}{v_0}\times 100=\frac{350-400}{400}\times 100=-12,5\%$ Le nombre d'employés a diminué de 12,5 % en un an.

Exercice 4

Si la population d'une ville augmente de 20 %, alors cette population a été multipliée par

Si la population d'une ville augmente de 20 %, alors cette population a été multipliée par $CM=1+\frac{20}{100}=1,2$.

Exercice 5

Si une population augmente de 20 % puis de 15 %, alors cette population augmente de . . . %.

Si une population augmente de 20 % puis de 15 %, alors $CM_{total} = CM_1 \times CM_2 = 1, 2 \times 1, 15 = 1, 38$.

Or, $t = (CM - 1) \times 10 = (1, 15 - 1) \times 100 = 38\%$ La population augmente donc de 38 % au total.

Exercice 6

 (u_n) et (v_n) sont les suites définies pour tout entier naturel n par $u_n = 3^n$ et $v_n = n^2 + 2n$.

- **1)** Calculer u_0 , u_1 , u_2 , u_3 , u_{10} .
- **2)** Calculer v_0 , v_1 , v_2 , v_3 , v_{10} .
- **3)** Exprimer v_{n+1} en fonction de n.

1)
$$u_0 = 3^0 = 1$$

 $u_1 = 3^1 = 3$
 $u_2 = 3^2 = 9$
 $u_3 = 3^3 = 27$
 $u_{10} = 3^{10} = 59049$

2)
$$v_0 = 0^2 + 2 \times 0 = 0$$

 $v_1 = 1^2 + 2 \times 1 = 3$
 $v_2 = 2^2 + 2 \times 2 = 8$
 $v_3 = 3^2 + 2 \times 3 = 15$
 $v_{10} = 10^2 + 2 \times 10 = 120$

3)
$$v_{n+1} = (n+1)^2 + 2(n+1)$$

1) $v_{n+1} = n^2 + 2n + 1 + 2n + 2$
 $v_{n+1} = n^2 + 4n + 3$

Exercice 7

 (u_n) est la suite définie par $u_0=2$ et pour tout entier naturel n, $u_{n+1}=3u_n+1$. Calculer u_1 , u_2 , u_3 .

La suite (u_n) est définie par récurrence :

$$u_1 = 3u_0 + 1 = 3 \times 2 + 1 = 7$$

$$u_2 = 3u_1 + 1 = 22$$

$$u_3 = 3u_0 + 1 = 67$$

Exercice 8

 (u_n) est la suite définie pour tout entier naturel n par $u_n = \frac{6}{n+2}$. Placer dans un repère les cinq premiers points de la représentation graphique de la suite (u_n) .

Pour commencer, nous allons calculer les 5 premiers termes de la suite :

$$u_0 = \frac{6}{0+2} = 3$$

$$u_1 = \frac{6}{1+2} = 2$$

$$u_2 = \frac{6}{2+2} = 1,5$$

$$u_3 = \frac{6}{3+2} = 1,2$$

$$u_4 = \frac{6}{4+2} = 1$$

Il suffit maintenant de placer les points de coordonnées $(n; u_n)$ dans un repère.

Chapitre 0: Quelques rappels . . . utiles

Exercice 9

 (u_n) est la suite définie pour tout entier naturel n par $u_n = 5n + 1$.

Montrer que la suite (u_n) est strictement croissante.

Calculons $u_{n+1} - u_n$:

Pour tout n entier naturel, $u_{n+1} - u_n = 5(n+1) + 1 - (5n+1)$

 $u_{n+1} - u_n = 5n + 5 + 1 - 5n - 1 = 5$

Or 5 > 0, par conséquent $u_{n+1} - u_n > 0$.

La suite (u_n) est donc strictement croissante.

Exercice 10

 (u_n) est la suite définie pour tout entier naturel n par $u_n = -n^2 + 4$.

Montrer que la suite est décroissante.

Calculons $u_{n+1} - u_n$:

Pour tout n entier naturel, $u_{n+1} - u_n = -(n+1)^2 + 4 - (-n^2 + 4)$

 $u_{n+1} - u_n = -n^2 - 2n - 1 + 4 + n^2 - 4 = -2n - 1$

Comme $n \ge 0$, on a : $-2n \le 0$ et $-2n-1 \le -1 < 0$ par conséquent $u_{n+1} - u_n < 0$.

La suite (u_n) est donc strictement décroissante.

Exercice 11

 (u_n) est une suite arithmétique de raison -3 et de premier terme $u_0 = 8$.

Calculer u_1 , u_2 , u_3 .

 (u_n) est une suite arithmétique de raison -3 et de premier terme $u_0 = 8$ donc $u_n = 8 - 3n$.

 $u_1 = 8 - 3 \times 1 = 5$

 $u_2 = 8 - 3 \times 2 = 2$

 $u_3 = 8 - 3 \times 3 = -1$

Exercice 12

 (u_n) est la suite arithmétique de raison 3 et de premier terme $u_0 = 5$.

- 1) Exprimer u_n en fonction de n.
- **2)** Calculer u_{50} .
- 1) (u_n) est une suite arithmétique de raison 3 et de premier terme $u_0 = 5$ donc $u_n = 5 + 3n$.
- **2)** Calculons u_{50} :

$$u_{50} = 5 + 3 \times 50 = 155$$

Exercice 13

 (u_n) est la suite arithmétique telle que $u_{15} = 9$ et r = 1,5.

- **1)** Calculer u_{32}
- **2)** Calculer u_0 .
- 1) Calculons u_{32} :

On sait que (u_n) est une suite arithmétique donc $u_n = u_p + (n-p) \times r$

 $u_{32} = u_{15} + (32 - 15) \times 1, 5 = 9 + 17 \times 1, 5 = 34, 5$

2) $u_0 = u_{15} + (0 - 15) \times 1, 5 = 9 - 15 \times 1, 5 = -13, 5$

Suite arithmétique ou suite géométrique?

Une personne loue une maison à partir du 1er janvier 2014.

Elle a le choix entre deux formules de contrat.

Dans les deux cas, le loyer annuel en 2014 est de 7200 euros et le locataire s'engage à occuper la maison pendant huit années complètes.

Contrat 1

Le locataire accepte une augmentation annuelle de 5 % du loyer de l'année précédente. On note $u_1 = 7200$.

1) Calculer le loyer u_2 payé lors de la 2ème année.

Augmenter un nombre de 5 % revient à le multiplier par le coefficient multiplicateur suivant :

$$CM = 1 + \frac{5}{100} = 1,05.$$
 Ainsi, $u_2 = u_1 \times 1,05 = 7560$

 $CM = 1 + \frac{5}{100} = 1$, 05. Ainsi, $u_2 = u_1 \times 1$, 05 = 7560 2) On note u_n le loyer lors de la n-ième année. Quelle est la nature de la suite (u_n) ? Exprimer (u_n) en fonction de n.

On remarque que $u_{n+1}=1$, $05u_n$, ainsi la suite (u_n) est une suite géométrique de raison q=1, 05et de premier terme $u_1 = 7200$.

Pour tout n entier naturel non nul, on a $u_n = u_1 \times q^{n-1}$ donc $u_n = 7200 \times 1,05^{n-1}$

3) Calculer le loyer u_8 payé lors de la 8ème année.

Pour tout n entier naturel non nul, on a $u_n = 7200 \times 1,05^{n-1}$

Donc
$$u_8 = 7200 \times 1,05^7 \approx 10131$$

4) Calculer la somme totale payée à l'issue des huit années de contrat.

Calculons la somme des loyers sur les 8 années :

$$S_n = u_1 \times \frac{1 - q^n}{1 - q}$$

 $S_8 = 7200 \times \frac{1 - 1,05^8}{1 - 1,05}$ $S_8 \approx 68753,6$

Avec le contrat 1, la somme des loyers des 8 années est d'environ 68 753 euros.

Contrat 2

Le locataire accepte une augmentation annuelle de 400 euros du loyer de l'année précédente. On note $v_1 = 7200$.

1) Calculer le loyer v_2 payé lors de la 2ème année.

 $v_2 = v_1 + 400 = 7200 + 400 = 7600$ Le loyer de la deuxième année est de 7 600 euros.

2) On note v_n le loyer lors de la n-ième année. Quelle est la nature de la suite (v_n) ? Exprimer v_n en fonction de n.

On remarque que $v_{n+1} = v_n + 400$, ainsi la suite (v_n) est une suite arihtmétique de raison r = 400et de premier terme $v_1 = 7200$.

Pour tout n entier naturel non nul, on a $v_n = u_1 \times 400(n-1)$ donc $v_n = 7200 + 400(n-1)$

3) Calculer le loyer v_8 payé lors de la 8ème année.

Pour tout n entier naturel non nul, on a $v_n = 7200 + 400(n-1)$

Donc,
$$v_8 = 7200 + 400 \times 7 = 10000$$

4) Calculer la somme totale payée à l'issue des huit années de contrat.

Calculons la somme des loyers sur les 8 années :
$$S_n = n \frac{u_1 + u_n}{2} \qquad S_8 = 8 \times \frac{7200 + 10000}{2} = 68800$$

Avec le contrat 2, la somme des loyers des 8 années est de 68 800 euros.

CONCLUSION: C'est le contrat 1 qui est le plus avantageux sur une durée de 8 ans.

Exercices - Suites arithmétiques et géométriques

Exercice 14

Pour prendre le train, Sofia achète un abonnement mensuel qui coûte 400 €. Avec cet abonnement, chaque billet de train qu'elle achète est au prix de 2 €.

1) Combien Sofia paiera-t-elle au total si elle achète 10 billets de train?

 $400 + 2 \times 10 = 420$ Les 10 billets de train lui coûteront $420 \in$.

- 2) On note u_n le prix que paye Sofia par mois pour l'abonnement et n billets de train.
 - (a) Exprimer u_n en fonction de n.

 $u_{n+1} = u_n + 2$ Donc la suite (u_n) est une suite arithmétique de raison r = 2 et de premier terme $u_0 = 400$. Ainsi, pour tout n entier naturel, $u_n = 400 + 2n$

(b) Sofia a payé 434 €. Combien de billets de train a-t-elle achetés?

Pour cela on résout l'équation suivante : $u_n = 434 \Leftrightarrow 400 + 2n = 434$

Soit n = 17, elle pourra donc acheter 17 billets de train pour 434 \in .

Exercice 15

Un téléphone est en vente à 400 €en 2019. Chaque année, son prix baisse de 10 % par rapport à l'année précédente.

On note u_n le prix du téléphone en 2019 + n.

1) Donner la valeur de u_0 et u_1 .

Calculons u_0 et u_1 :

 u_0 le prix du téléphone en 2019 + 0, soit en 2019. Donc $u_0 = 400$

 u_1 le prix du téléphone en 2019 + 1, soit en 2020.

Diminuer un nombre de 10~% revient à le multiplier par le coefficient multiplicateur suivant :

$$CM = 1 - \frac{10}{100} = 0$$
, 9. Ainsi, $u_1 = u_0 \times 0$, $9 = 360$

2) Exprimer u_{n+1} en fonction de (u_n) . En déduire la nature de la suite (u_n) .

 $\forall n \in \mathbb{N}$, on a $u_{n+1} = 0, 9 \times u_n$. (u_n) est donc une suite géométrique de raison q = 0, 9 et de premier terme $u_0 = 400$.

3) En déduire l'expression de u_n en fonction de n.

$$\forall n \in \mathbb{N}, u_n = u_0 \times q^n = 400 \times 0, 9^n$$

Exercice 16

Soit (u_n) une suite arithmétique de raison r telle que $u_4 = 3$ et $u_7 = 18$.

Déterminer la valeur de r.

 (u_n) est une suite arithmétique. On a $u_4 = 3$ et $u_7 = 18$.

$$u_n = u_p + (n - p) \times r$$
 Ainsi, $u_7 = u_4 + (7 - 4) \times r$

Soit $18 = 3 + 3r \Leftrightarrow r = 5$

Exercice 17

Soit (u_n) une suite géométrique de raison q > 0, telle que $u_4 = 3$ et $u_6 = 48$.

Déterminer la valeur de q.

 (u_n) est une suite géométrique. On a $u_4 = 3$ et $u_6 = 48$.

$$u_n = u_p + q^{n-p}$$
 Ainsi, $u_6 = u_4 + q^{6-4}$

Soit $48 = 3 \times q^2 \Leftrightarrow q^2 = 16 \Leftrightarrow q = -4$ ou q = 4.

La raison q étant positive, la solution est q = 4.

Exercice 18

Dans chacun des cas, étudier le sens de variation de la suite définie par :

(a)
$$u_n = n^2$$

Calculons $u_{n+1} - u_n$:

Pour tout n entier naturel, $u_{n+1} - u_n = (n+1)^2 - n^2$

$$u_{n+1} - u_n = n^2 + 2n + 1 - n^2 = 2n + 1$$

Comme $n \ge 0$, on a : $2n \ge 0 \Leftrightarrow -2n+1 \ge +1 > 0$ par conséquent $u_{n+1} - u_n > 0$.

La suite (u_n) est donc strictement croissante.

(b)
$$u_n = 1 + \frac{1}{n}$$

Calculons $u_{n+1} - u_n$:

Pour tout n entier naturel non nul, $u_{n+1} - u_n = 1 + \frac{1}{n+1} - 1 - \frac{1}{n}$

$$u_{n+1} - u_n = \frac{1}{n+1} - \frac{1}{n} = \frac{n - (n+1)}{n(n+1)} = \frac{-1}{n(n+1)}$$
Comme $n > 0$, on a: $n(n+1) > 0$ et $-1 < 0$ par conséquent $u_{n+1} - u_n < 0$.

La suite (u_n) est donc strictement décroissante.

(c)
$$u_n = 2n^2 - 1$$

Calculons $u_{n+1} - u_n$:

Pour tout n entier naturel,
$$u_{n+1} - u_n = 2(n+1)^2 - 1 - (2n^2 - 1)$$

 $u_{n+1} - u_n = 2(n^2 + 2n + 1) - 1 - 2n^2 + 1 = 2n^2 + 4n + 2 - 1 - 2n^2 + 1 = 4n + 2$

Comme $n \ge 0$, on a : $4n \ge 0 \Leftrightarrow 4n + 2 \ge 2 > 0$ par conséquent $u_{n+1} - u_n > 0$.

La suite (u_n) est donc strictement croissante.

(d)
$$u_n = \frac{5^n}{n}$$

Calculons $u_{n+1} - u_n$:

Pour tout n entier naturel non nul, $u_{n+1} - u_n = \frac{5^{n+1}}{n+1} - \frac{5^n}{n}$

$$u_{n+1} - u_n = 5^n \left(\frac{5}{n+1} - \frac{1}{n} \right)$$

$$u_{n+1} - u_n = 5^n \left(\frac{5n - n - 1}{n(n+1)} \right)$$

$$u_{n+1} - u_n = 5^n \left(\frac{4n - 1}{n(n+1)} \right)$$

Comme n > 0, on a : $5^n > 0$ et n(n + 1) > 0

Or, $n \ge 1 \Leftrightarrow 4n \ge 4 \Leftrightarrow 4n-1 \ge 3 > 0$ par conséquent $u_{n+1} - u_n > 0$.

La suite (u_n) est donc strictement croissante.

Exercice 19

1) $\forall n \in \mathbb{N}, u_n = 18 \times 2, 2^n.$

 $u_0 = 18 > 0$ donc la suite (u_n) varie dans le même sens que la suite (q^n) .

Comme q = 2, 2, q > 1, la suite (q^n) est strictement croissante.

La suite (u_n) est donc strictement croissante.

2) $\forall n \in \mathbb{N}, \ v_n = -5500 \times 0, 9^n.$

 $v_0 = -5500 < 0$ donc la suite (v_n) varie dans le sens contraire de la suite (q^n) .

Comme q = 0, 9, 0 < q < 1, la suite (q^n) est strictement décroissante.

La suite (v_n) est donc strictement croissante.

Chapitre 0 : Quelques rappels utiles

3) Soit (w_n) une suite géométrique définie par $w_0 = 400$ et $w_{n+1} = 1, 5w_n - 0, 6w_n$. Etudier le sens de variation de (w_n)

 $\forall n \in \mathbb{N}, \ w_n = 400 \times 0, 9^n.$

 $w_0 = 400 > 0$ donc la suite (w_n) varie dans le même sens que la suite (q^n) .

Comme q = 0, 9, 0 < q < 1, la suite (q^n) est strictement décroissante.

La suite (w_n) est donc strictement décroissante.

Exercice 20

Soit (v_n) la suite définie pour tout n entier naturel par : $v_n = 4 \times 2^n$

(a) Montrer que la suite (v_n) est une suite géométrique. En déduire l'expression de v_n en fonction de *n*.

 $\forall n \in \mathbb{N}, v_n = 4 \times 2^n$. On en déduit que $v_n \neq 0$. Nous pouvons donc calculer le quotient suivant : $\frac{v_{n+1}}{v_n} = \frac{4 \times 2^{n+1}}{4 \times 2^n} = \frac{2^{n+1}}{2^n} = 2$

$$\frac{v_{n+1}}{v_n} = \frac{4 \times 2^{n+1}}{4 \times 2^n} = \frac{2^{n+1}}{2^n} = 2$$

Ainsi $v_{n+1} = 2v_n$.

La suite (v_n) est donc une suite géométrique de raison q=2 et de premier terme $v_0=4\times 2^0=4$

(b) Quelles sont les variations de la suite (v_n) .

2 > 1 et $v_0 > 0$ donc la suite (v_n) est strictement croissante.

Exercice 21

Calculer la somme des 20 premiers termes de la suite géométrique de premier terme 3 et de raison 1,05.

$$\forall n \in \mathbb{N}, \ v_n = 3 \times 1,05^n$$

$$\forall n \in \mathbb{N}, \ v_n = 3 \times 1, 05^n$$

$$S_n = v_0 \times \frac{1 - q^{n+1}}{1 - q}$$

$$S_n = 3 \times \frac{1 - 1,05^{20}}{1 - 1,05}$$

$$S_n \approx 99$$

Exercice 22

Un étudiant loue un chambre pour 3 ans. On lui propose deux types de bail :

Premier contrat: un loyer de 200 €pour le premier mois, puis une augmentation de 5 €par mois jusqu'à la fin du bail;

Second contrat: un loyer de 200 €pour le premier mois, puis une augmentation de 2 % par mois jusqu'à la fin du bail.

Question: Quel est le contrat globalement le plus avantageux pour un bail de 3 ans?

Premier contrat:

Soit (u_n) la suite représentant le prix du contrat 1 par mois, pour tout n entier naturel non nul. Soit $u_1 = 200$ le premier terme de la suite.

 $u_2 = u_1 + 5 = 205$ Comme $u_{n+1} = u_n + 5$, on en conclut que la suite (u_n) est une suite arithmétique de raison r = 5 et de premier terme $u_1 = 200$.

La suite (u_n) est donc définie par : $u_n = 200 + 5(n-1) \ \forall n \in \mathbb{N}^*$

Calculons maintenant la somme des loyers sur 36 mois :

$$S_n = n \frac{u_1 + u_n}{2} \Leftrightarrow S_{36} = 36 \frac{u_1 + u_{36}}{2}$$

Or,
$$u_{36} = 200 + 5 \times 35 = 375$$

Ainsi,
$$S_{36} = 36 \frac{u_1 + u_{36}}{2} = 36 \times \frac{200 + 375}{2} = 10350$$

Deuxième contrat :

Soit (v_n) la suite représentant le prix du contrat 2 par mois, pour tout n entier naturel non nul. Soit $v_1 = 200$ le premier terme de la suite.

 $v_2 = v_1 \times (1 + \frac{2}{100}) = 204$ Comme $v_{n+1} = v_n \times 1,02$, on en conclut que la suite (v_n) est une suite géométrique de raison q = 1,02 et de premier terme $v_1 = 200$.

La suite (v_n) est donc définie par : $v_n = 200 \times 1,02^{n-1} \ \forall n \in \mathbb{N}^*$

Calculons maintenant la somme des loyers sur 36 mois :

$$S_n = v_1 \frac{1 - q^n}{1 - q} \Leftrightarrow S_{36} = 200 \frac{1 - q^{36}}{1 - q}$$

Ainsi,
$$S_{36} = 200 \times \frac{1 - 1,02^{36}}{1 - 1,02} \approx 10399$$

CONCLUSION:

On constate que 10350 < 10399.

C'est donc le contrat 1 qui est le plus avantageux sur une durée de 36 mois.