Отчёт по лабораторной работе № 5

Информационная безопасность

Арбатова Варвара Петровна

Содержание

1	Цель работы	5
2	Теоретическое введение	ϵ
3	Выполнение лабораторной работы	8
4	Выводы	16
Сг	Список литературы	

Список таблиц

Список иллюстраций

3.1	Проверка
3.2	Создание файла
3.3	Текст файла
3.4	Работа с файлом
3.5	Текст файла
3.6	Работа с файлом
3.7	Изменение прав доступа
3.8	Сравнение выводов
3.9	Текст файла
3.10	Подготовка файла
3.11	Изменение прав
3.12	Попытка прочесть файл
3.13	Попытка прочесть файл
3.14	Попытка прочесть файл
	Чтение файлов
	Атрибут установлен
3.17	Изменение прав
3.18	Эксперименты
3.19	Снятие атрибута
	Проверка
	Эксперименты 2

1 Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID- и Sticky-битов. Получение практических навыков работы в кон- соли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

2 Теоретическое введение

Дополнительные атрибуты файлов Linux B Linux существует три основных вида прав — право на чтение (read), запись (write) и выполнение (execute), а также три категории пользователей, к которым они могут применяться — владелец файла (user), группа владельца (group) и все остальные (others). Но, кроме прав чтения, выполнения и записи, есть еще три дополнительных атрибута. [@u]

Sticky bit

Используется в основном для каталогов, чтобы защитить в них файлы. В такой каталог может писать любой пользователь. Но, из такой директории пользователь может удалить только те файлы, владельцем которых он является. Примером может служить директория /tmp, в которой запись открыта для всех пользователей, но нежелательно удаление чужих файлов.

SUID (Set User ID)

Атрибут исполняемого файла, позволяющий запустить его с правами владельца. В Linux приложение запускается с правами пользователя, запустившего указанное приложение. Это обеспечивает дополнительную безопасность т.к. процесс с правами пользователя не сможет получить доступ к важным системным файлам, которые принадлежат пользователю root.

SGID (Set Group ID)

Аналогичен suid, но относиться к группе. Если установить sgid для каталога, то все файлы созданные в нем, при запуске будут принимать идентификатор группы каталога, а не группы владельца, который создал файл в этом каталоге.

Обозначение атрибутов sticky, suid, sgid

Специальные права используются довольно редко, поэтому при выводе программы ls -l символ, обозначающий указанные атрибуты, закрывает символ стандартных прав доступа.

Пример: rwsrwsrwt

где первая s- это suid, вторая s- это sgid, а последняя t- это sticky bit

В приведенном примере не понятно, rwt — это rw- или rwx? Определить это просто. Если t маленькое, значит x установлен. Если T большое, значит x не установлен. То же самое правило распространяется и на s.

В числовом эквиваленте данные атрибуты определяются первым символом при четырехзначном обозначении (который часто опускается при назначении прав), например в правах 1777— символ 1 обозначает sticky bit. Остальные атрибуты имеют следующие числовое соответствие:

1 — установлен sticky bit 2 — установлен sgid 4 — установлен suid Компилятор GCC GCC - это свободно доступный оптимизирующий компилятор для языков C, C++. Собственно программа gcc это некоторая надстройка над группой компиляторов, которая способна анализировать имена файлов, передаваемые ей в качестве аргументов, и определять, какие действия необходимо выполнить. Файлы с расширением .cc или .C рассматриваются, как файлы на языке C++, файлы с расширением .c как программы на языке C, а файлы с расширением .о считаются объектными [@gcc].

3 Выполнение лабораторной работы

Для лабораторной работы необходимо проверить, установлен ли компилятор gcc, комнда gcc -v позволяет это сделать. Также осуществляется отключение системы запретом с помощью setenforce 0

```
[uparbatovaeyparbatova guest]s whereis gss
[gss] *(et/gss]
[uparbatovaeyparbatova guest]s whereis gsc
[uparbatovaeyparbatova guest]s gsc
[uparbatovaeyparbatova guest]s gcc
[uparbatovaeyparbatova guest]s gsc
[uparbatovaeyparbatova guest]s gcc
[uparbatovaeyparbatova guest]s
```

Рис. 3.1: Проверка

Создаю файл и открываю его в редакторе nano

```
[guest@vparbatova ~]$ touch simpled.c
[guest@vparbatova ~]$ nano simpled.c
```

Рис. 3.2: Создание файла

Текст файла

```
GNU nano 5.6.1 simpled.c Изменён

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
int
main ()
{
uid_t uid = geteuid ();
gid_t gid = getegid ();
printf ("uid=%d, gid=%d\n", uid, gid);
return 0;
}

^G Справка ^O Записать ^W Поиск ^K Вырезать ^T Выполнить ^C Позиция
^X Выход ^R Читфайл ^\ Замена ^U Вставить ^J Выровнять ^ К строке
```

Рис. 3.3: Текст файла

Компилирую файл, проверяю, запускаю, узнаю id

```
[guest@vparbatova ~]$ gcc simpled.c -o simpled
[guest@vparbatova ~]$ ls

dir_ simpled.c Документы Изображения Общедоступные Шаблоны
simpled Видео Загрузки Музыка 'Рабочий стол'
[guest@vparbatova ~]$ ./simpled
uid=1001, gid=1001
[guest@vparbatova ~]$ id
uid=1001(guest) gid=1001(guest) группы=1001(guest) контекст=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[guest@vparbatova ~]$
```

Рис. 3.4: Работа с файлом

Текст второго файла

```
GNU nano 5.6.1 simpled2.c Изменён
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
int
main ()
{
uid_t real_uid = getuid ();
gid_t real_gid = getgid ();
gid_t e_gid = getegid ();
grintf ("e_uid=%d, e_gid=%d\n", e_uid, e_gid);
printf ("real_uid=%d, real_gid=%d\n", real_uid,
real_gid); +>
return 0;
}

AG Справка ^O Записать ^W Поиск ^K Вырезать ^T Выполнить ^C Позиция
AX Выход ^R ЧитФайл ^\ Замена ^U Вставить ^D Выровнять ^_ К строке
```

Рис. 3.5: Текст файла

Повторяю операции со вторым файлом

```
[guest@vparbatova ~]$ nano simpled2.c

[guest@vparbatova ~]$ gcc simpled2.c -o simpled2

[guest@vparbatova ~]$ ./simpled2

e_uid=1001, e_gid=1001

real_uid=1001, real_gid=1001

[guest@vparbatova ~]$
```

Рис. 3.6: Работа с файлом

С помощью chown изменяю владельца файла на суперпользователя, с помощью chmod изменяю права доступа

```
[vparbatova@vparbatova guest]$ sudo chown root:guest /home/guest/simpled2
[vparbatova@vparbatova guest]$ chmod u+s /home/guest/simpled2
chmod: невозможно получить доступ к '/home/guest/simpled2': Отказано в доступе
[vparbatova@vparbatova guest]$ sudo chmod u+s /home/guest/simpled2
[vparbatova@vparbatova guest]$ sudo ls -l /home/guest/simpled2
-rwsr-xr-x. 1 root guest 17656 anp 16 18:11 /home/guest/simpled2
[vparbatova@vparbatova guest]$
```

Рис. 3.7: Изменение прав доступа

Сравниваю выводы, моя команда вывела меньше информации

```
[vparbatova@vparbatova guest]$ sudo /home/guest/simpled2
e_uid=0, e_gid=0
real_uid=0, real_gid=0
[vparbatova@vparbatova guest]$ id
uid=1000(vparbatova) gid=1000(vparbatova) группы=1000(vparbatova),10(wheel) конт
екст=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[vparbatova@vparbatova guest]$ sudo id
uid=0(root) gid=0(root) группы=0(root) контекст=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
```

Рис. 3.8: Сравнение выводов

Текст файла

```
GNU nano 5.6.1 readfile.c Изменён
int i;
int fd = open (argv[1], O_RDONLY);
do
{
bytes_read = read (fd, buffer, sizeof (buffer));
for (i =0; i < bytes_read; ++i) printf("%c", buffer[i]);
}
while (bytes_read == sizeof (buffer));
close (fd);
return 0;
}

^G Справка ^O Записать ^W Поиск ^K Вырезать ^T Выполнить ^C Позиция
^X Выход ^R ЧитФайл ^\ Замена ^U Вставить ^J Выровнять ^_ К строке
```

Рис. 3.9: Текст файла

Создаю файл, открываю его в редакторе, компилирую, проверяю

```
[guest@vparbatova ~]$ touch readfile.c
[guest@vparbatova ~]$ nano readfile.c
[guest@vparbatova ~]$ gcc readfile.c -o readfile
[guest@vparbatova ~]$ ls

dip! simpled simpled.c Загружи Общедоступные
readfile simpled2 Видео Изображения 'Рабочий стол'
readfile.c simpled2_c Документы Музыка Шаблоны
```

Рис. 3.10: Подготовка файла

Продолжаю изменять права от имени суперпользователя

```
[vparbatova@vparbatova guest]$ sudo chown root:guest /home/guest/readfile.c [vparbatova@vparbatova guest]$ chmod u+s /home/guest/readfile.c chmod: невозможно получить доступ к '/home/guest/readfile.c': Отказано в доступе [vparbatova@vparbatova guest]$ sudo chmod u+s /home/guest/readfile.c [vparbatova@vparbatova guest]$ sudo chmod 700 /home/guest/readfile.c [vparbatova@vparbatova guest]$ sudo chmod -r /home/guest/readfile.c [vparbatova@vparbatova guest]$ sudo chmod u+s /home/guest/readfile.c
```

Рис. 3.11: Изменение прав

Пытаюсь от имени пользователя guest прочитать файл, не получается

```
[guest@vparbatova ~]$ cat readfile.c
cat: readfile.c: Отказано в доступе
[guest@vparbatova ~]$
```

Рис. 3.12: Попытка прочесть файл

Пытаюсь прочесть файл с помощью нашего файла, получаю отказ в доступе

Рис. 3.13: Попытка прочесть файл

Пытаюсь прочесть другой файл

Рис. 3.14: Попытка прочесть файл

Пробуем прочесть эти же файлы от имени суперпользователя и чтение файлов проходит успешно

```
[vparbatova@vparbatova guest]$ sudo /home/guest/readfile /etc/shadow
root:$6$cE9w5PKT13nMdw0/$mqnvyxg5cKj15kIvn9MAFX2.HOCcZrXZo886eEfHi2kQ2LexRSdSruI
Zt08.84iBrg94PbBzrk3Qk3bDeEZH30::0:99999:7:::
bin:*:19820:0:99999:7:::
daemon:*:19820:0:99999:7:::
adm:*:19820:0:99999:7:::
lp:*:19820:0:99999:7:::
sync:*:19820:0:99999:7:::
shutdown:*:19820:0:99999:7:::
```

Рис. 3.15: Чтение файлов

Проверяем папку tmp на наличие атрибута Sticky, т.к. в выводе есть буква t, то атрибут установлен

```
[vparbatova@vparbatova guest]$ ls -l / | grep tmp
drwxrwxrwt. 15 root root 4096 anp 16 18:27 tmp
```

Рис. 3.16: Атрибут установлен

От имени пользователя guest создаю файл с текстом, добавляю права на чтение и запись для других пользователей

Рис. 3.17: Изменение прав

Вхожу в систему от имени пользователя guest2, от его имени могу прочитать файл file01.txt, но перезаписать информацию в нем не могу Также невозможно добавить в файл file01.txt новую информацию от имени пользователя guest2 Далее пробуем удалить файл, снова получаем отказ

```
[guest@vparbatova ~]$ su guest2
Пароль:
[guest2@vparbatova guest]$ cat /tmp/file01.txt
text
[guest2@vparbatova guest]$ echo "text2" >> /tmp/file01.txt
bash: /tmp/file01.txt: Отказано в доступе
[guest2@vparbatova guest]$ echo "text3" > /tmp/file01.txt
bash: /tmp/file01.txt: Отказано в доступе
[guest2@vparbatova guest]$ echo "text3" > /tmp/file01.txt
bash: /tmp/file01.txt: Отказано в доступе
[guest2@vparbatova guest]$ cat /tmp/file01.txt
text
[guest2@vparbatova guest]$ rm /tmp/file01.txt
rm: удалить защищённый от записи обычный файл '/tmp/file01.txt'? у
rm: невозможно удалить '/tmp/file01.txt': Операция не позволена
```

Рис. 3.18: Эксперименты

От имени суперпользователя снимаем с директории атрибут Sticky

```
[guest2@vparbatova guest]$ su -
Пароль:
[root@vparbatova ~]# chmod -t /tmp
[root@vparbatova ~]# exit
выход
```

Рис. 3.19: Снятие атрибута

Проверяем, что атрибут действительно снят

```
[guest2@vparbatova guest]$ ls -l / | grep tmp
drwxrwxrwx. 15 root root 4<u>0</u>96 anp 16 18:33 tmp
```

Рис. 3.20: Проверка

Далее был выполнен повтор предыдущих действий. По результатам без Sticky-бита запись в файл и дозапись в файл осталась невозможной, зато удаление файла прошло успешно

```
[guest2@vparbatova guest]$ cat /tmp/file01.txt
text
[guest2@vparbatova guest]$ echo "text2" >> /tmp/file01.txt
bash: /tmp/file01.txt: Отказано в доступе
[guest2@vparbatova guest]$ cat /tmp/file01.txt
text
[guest2@vparbatova guest]$ echo "text3" > /tmp/file01.txt
bash: /tmp/file01.txt: Отказано в доступе
[guest2@vparbatova guest]$ rm /tmp/file01.txt
rm: удалить защищённый от записи обычный файл '/tmp/file01.txt'? y
[guest2@vparbatova guest]$ ls -l / | grep tmp
drwxrwxrwx. 15 root root 4096 anp 16 18:35
[guest2@vparbatova guest]$ ls - l
ls: невозможно получить доступ к '-': Нет такого файла или каталога 〖
ls: невозможно получить доступ к 'l': Нет такого файла или каталога
[guest2@vparbatova guest]$ ls -l
итого 72
drwxrwxrwx. 2 guest guest 19 anp 2 17:03 dirl
-rwxr-xr-x. 1 guest guest 17600 anp 16 18:22 readfile
--ws-----. 1 root guest 402 anp 16 18:22 readfile.c
rwxr-xr-x. 1 guest guest 17552 anp 16 18:07 simpled
rwsr-xr-x. 1 root guest 17656 anp 16 18:11
rw-r--r--. 1 guest guest 303 anp 16 18:11 simpled2.c
rw-r--r--. 1 guest guest 175 anp 16 18:05 simpled.c
                               6 фев 19 16:19
6 фев 19 16:19
6 фев 19 16:19
drwxr-xr-x. 2 guest guest
drwxr-xr-x. 2 guest guest
drwxr-xr-x. 2 guest guest
                               6 фев 19 16:19 Загрузки
6 фев 19 16:19 Изображения
drwxr-xr-x. 2 guest guest
drwxr-xr-x. 2 guest guest
                                  6 фев 19 16:19
drwxr-xr-x. 2 guest guest
drwxr-xr-x. 2 guest guest
                                  6 фев 19 16:19
```

Рис. 3.21: Эксперименты 2

4 Выводы

Изучила механизм изменения идентификаторов, применила SetUID- и Stickyбиты. Получила практические навыки работы в кон- соли с дополнительными атрибутами. Рассмотрела работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

Список литературы