PUNTO E V VERTICAL

PROBLEMA 3

$$A_y = 10 \text{ K} \uparrow = F_y$$

NODO A

$$\sum_{i=1}^{\infty} AB + 10 = 0$$

NODO D

NODO B

$$\frac{1}{\sqrt{2}}(14,142) - 10 - \frac{1}{2}BE = 0 \qquad \frac{1}{\sqrt{2}}(14,142) + BC = 0$$

EMF : 0

2 Fy = 0

nada an

nada d

noda b

$$\Sigma F_{v} = 0$$
 $\Sigma F_{v} = 0$
 $\Sigma F_{v} = 0$
 $\Sigma F_{v} = 0$
 $\Sigma F_{v} = 0$

$$\sum_{i} \frac{E_{i}}{\sqrt{2}} = 0$$

$$\frac{1}{\sqrt{2}} (0.471) - \frac{1}{\sqrt{2}} BE = 0$$

$$BE = 0.471 T$$

-0,666 -0,666 CF = -0,942 (C)

$$\Sigma f_{x} = 0$$
 $0.666 + 1 CF = 0$
 $CF = -0.942 (C)$

$$\Sigma F_{\gamma} = 0$$

$$-CE - \frac{1}{\sqrt{2}} (0.942) = 0$$

$$CE = 0.666 (T)$$

$$\Delta_c = \frac{\sum_{n} NL}{AE} = \frac{548,955 (12)}{0.5 (29000)} = 0.4543 \text{ pulg } V$$

0

548,955

PROBLEMA 1

$$\Sigma F_{y} = 0$$

7,5 + 0,5 P + $\frac{3}{5}$ AB = 0

$$\Sigma F_{y} = 0$$
 $7.5 + 0.5P + \frac{3}{5}AB = 0$
 $\frac{4}{5}(-12.5 - 0.633P) + AD = 0$
 $AB = 10 + 0.666P$

27,5+0,5P

	L	Ŧ	aF ap	Lt (9t/9b)
AB	5	-12,5-0,833P	-0,833	52,062
DA	4	10 +0,666 P	0,666	26,64
80	3	15	0	0
BC	4	10 0	0	0
BE	5	-12,5 -0,832P	-0,832	52
CE	3	27,5 +0,5 P	0,5	41,25
DE	4	10 + 0,666P	0,666	26,64
				198,592

AB = 198,592 KN.m V

Mailer Ma Gill Marier - Mr. Gigs

$$A_1 = \frac{250(10)}{2} = 1250$$
 $A_1 = 5m$

 $-100 (10) + 2 MB (10+10) = -\frac{3}{8} (50)(10)^{2} - \frac{1}{4} (10) (10)^{3}$ -1000 + 40 MB = -1875 - 2500 $M_{B} = -84.375 KN$

$$\Sigma f_{y} = 0$$

 $-120 - 50 - 10^{2} + A6,56 + 41,56 + B_{y} = 0$
 $B_{y} = 81,88 \times N \uparrow$