

MSc in Computer Science and Engineering

Learning and Decision Making 2016-2017

Homework 5. Reinforcement Learning

1.

(a)

 $X = \{00, 01, 02, 03, 04, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24\}$, where the 00 state is the top left square in figure 1 and 24 is the bottom right square in figure 1.

A = {Up, Down, Left, Right}

	U D L R	
	1.0, 1.0, 1.0, 1.0	#00
	1.0, 1.0, 1.0, 1.0	#01
	1.0, 1.0, 1.0, 1.0	#02
	1.0, 1.0, 1.0, 1.0	#03
	1.0, 0.0 , 1.0, 1.0	#04
	1.0, 1.0, 1.0, 1.0	#10
	1.0, 1.0, 1.0, 1.0	#11
C =	1.0, 1.0, 1.0, 1.0	#12
	1.0, 1.0, 1.0, 1.0	#13
	1.0, 1.0, 1.0, 1.0	#14
	1.0, 1.0, 1.0, 1.0	#20
	1.0, 1.0, 1.0, 1.0	#21
	1.0, 1.0, 1.0, 1.0	#22
	1.0, 1.0, 1.0, 0.0	#23
	0.0 , 1.0, 1.0, 1.0	#24

(b)

$$\gamma = 0.95$$

$$s_0 = 10$$

$$A_1 = A_2 = \text{Right}$$

Transition Information for $A_1 = \{s_0, A_1, 1.0, 11\}$ Transition Information for $A_2 = \{11, A_2, 1.0, 02\}$

(c)

Given the samples from exercise (b) and a Q_0 matrix with all-zeros, we compute Q with the following equation:

$$Q_{t+1}(x_t, a_t) = Q_t(x_t, a_t) + \alpha_t \left[c_t + \gamma \min_{a' \in \mathcal{A}} Q_t(x_{t+1}, a') - Q_t(x_t, a_t) \right]$$

Group 44: Ricardo Rei nº 78047 Miguel Carvalho nº 78052

which after the first update results in:

and after the second update results in: