

Interrogación 2

 ${1\ de\ octubre\ de\ 2018}$ Profesores: Gabriel Diéguez - Fernando Suárez

Instrucciones

- Use lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta **completamente en blanco**, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada.

Problemas

Pregunta 1

Sea (A, \preceq) un orden parcial. Demuestre que si (A, \preceq) es superiormente completo, entonces es inferiormente completo.

Solución

Sabiendo que (A, \preceq) es superiormente completo, debemos demostrar que es inferiormente completo; es decir, que para todo $S \subseteq A$, si S está acotado inferiormente, entonces S tiene ínfimo.

Sea $S \subseteq A$, tal que S está acotado inferiormente, vale decir S tiene al menos una cota inferior. Tomemos el conjunto de todas las cotas inferiores de S:

$$S_{ci} = \{ a \in A \mid a \text{ es cota inferior de } S \}$$

Esto quiere decir que dado un $x \in S_{ci}$, se tiene que para todo $s \in S$ se cumple que $x \leq s$, por definición de cota inferior. Más aún, tenemos que todos los elementos de S son cotas superiores de S_{ci} , por lo que este está acotado superiormente.

Como (A, \preceq) es superiormente completo, se tiene que S_{ci} tiene supremo, denotado por $sup(S_{ci})$. Por definición de supremo, sabemos que $sup(S_{ci}) \preceq s'$ para toda cota superior s' de S_{ci} , y en particular para todo elemento $s \in S$, pues como ya mencionamos, todos son cotas superiores de S_{ci} . Por lo tanto, $sup(S_{ci})$ es una cota inferior de S, y luego $sup(S_{ci}) \in S_{ci}$. Por definición de supremo, $sup(S_{ci})$ es también cota superior de S_{ci} , y por lo tanto es la mayor cota inferior de S, y luego $sup(S_{ci}) = inf(S)$.

Con esto demostramos que si S está acotado inferiormente, tiene ínfimo, y entonces es inferiormente completo.

Pauta (6 pts.)

- 3 pts por construcción de S_{ci} y demostrar que está acotado superiormente.
- 3 pts por demostrar que $sup(S_{ci})$ es cota inferior de S y concluir demostración.

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Pregunta 2

Sea A un conjunto y R una relación sobre A. Dado un elemento $a \in A$, se define el siguiente conjunto:

$$\langle a \rangle_R = \{ b \in A \mid (a, b) \in R \}.$$

Considere ahora el siguiente conjunto:

$$\mathcal{S}_R = \{ \langle a \rangle_R \mid a \in A \}.$$

- a) Si R es refleja y \mathcal{S}_R es una partición de A, ¿es R una relación de equivalencia? Demuestre o dé un contraejemplo.
- b) Si R es simétrica y \mathcal{S}_R es una partición de A, ¿es R una relación de equivalencia? Demuestre o dé un contraejemplo.

Solución

a) R sí es una relación de equivalencia. Se demostrará directamente:

■ R es refleja

Se obtiene por enunciado

■ R es simétrica

Sean $a, b \in A$ tales que $(a, b) \in R$. Por definición, esto implica que $b \in \langle a \rangle_R$. Por otra parte, dado que R es refleja, se tiene que $(b, b) \in R$ y en consecuencia $b \in \langle b \rangle_R$. Dado que \mathcal{S}_R es partición, y que b pertenece tanto a $\langle a \rangle_R$ como $\langle b \rangle_R$, se tiene que $\langle a \rangle_R = \langle b \rangle_R$. De igual forma que con b, dado que R es refleja, se tiene que $(a, a) \in R$ y en consecuencia $a \in \langle a \rangle_R$, y por lo visto anteriormente, entonces $a \in \langle b \rangle_R$. Por definición, esto implica que $(b, a) \in R$, demostrando así que R es simétrica.

• R es transitiva

Sean $a, b, c \in A$ tales que (a, b) y $(b, c) \in R$. Por el mismo argumento de la parte anterior, dado que $(a, b) \in R$ y que $(b, b) \in R$, se tiene que $\langle a \rangle_R = \langle b \rangle_R$. Por otra parte, dado que $(b, c) \in R$, se cumple que $c \in \langle b \rangle_R$ y en consecuencia, que $c \in \langle a \rangle_R$. Por definición, esto implica que $(a, c) \in R$, demostrando así que R es transitiva.

Por lo tanto R es una relación de equivalencia

b) R no es una relación de equivalencia. Se demostrará por contraejemplo.

Tomemos el conjunto A y la relación R sobre A, definidos de la siguiente forma:

$$A = \{1, 2\}$$

 $R = \{(1, 2), (2, 1)\}$

Notemos que R es simétrica en A y que

$$\langle 1 \rangle_R = \{2\}$$
$$\langle 2 \rangle_R = \{1\}$$

Por lo tanto S_R es una partición de A.

Por último, notamos que R no es refleja, y que por lo tanto no es una relación de equivalencia.

Pauta (6 pts.)

- a) 1.5 puntos por demostrar que la relación es simétrica.
 - 1.5 puntos por demostrar que la relación es transitiva.
- b) 2 puntos por demostrar correctamente.
 - 1 punto por formalidad.

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Pregunta 3

Sean A y B conjuntos y una función $f:A\to B$. Para todo $X\subseteq A$ definimos el siguiente conjunto:

$$F(X) = \{ b \in B \mid \exists a \in X \text{ tal que } f(a) = b \}$$

Dada $S \subseteq \mathcal{P}(A)$ una colección de subconjuntos de A, demuestre que:

a)
$$F\left(\bigcup_{D\in\mathcal{S}}D\right) = \bigcup_{D\in\mathcal{S}}F(D).$$

b)
$$F\left(\bigcap_{D\in\mathcal{S}}D\right)\subseteq\bigcap_{D\in\mathcal{S}}F(D).$$

Solución

- a) Por definición de igualdad de conjuntos, demostraremos la contención hacia ambos lados:

Sea $b \in F\left(\bigcup_{D \in \mathcal{S}} D\right)$. Por definición, existe $a \in \bigcup_{D \in \mathcal{S}} D$ tal que f(a) = b. Como $a \in \bigcup_{D \in \mathcal{S}} D$ entonces existe un $D^* \in S$ tal que $a \in D^*$, y por lo tanto $b \in F(D^*)$,

lo que implica que $b \in \bigcup_{D \in \mathcal{S}} F(D)$. Se concluye que $F\left(\bigcup_{D \in \mathcal{S}} D\right) \subseteq \bigcup_{D \in \mathcal{S}} F(D)$.

 $\bullet \bigcup_{D \in \mathcal{S}} F(D) \subseteq F\Big(\bigcup_{D \in \mathcal{S}} D\Big).$

Sea $b \in \bigcup_{D \in \mathcal{S}} F(D)$. Por definición, existe $D^* \in S$ tal que $b \in F(D^*)$, y luego existe $a \in D^*$ tal que f(a) = b. Dado que $a \in D^*$, entonces $a \in \bigcup_{D \in \mathcal{S}} D$, y como f(a) = b esto implica que $b \in F\left(\bigcup_{D \in \mathcal{S}} D\right)$. Se concluye que $\bigcup_{D \in \mathcal{S}} F(D) \subseteq F\left(\bigcup_{D \in \mathcal{S}} D\right)$.

b) Sea $b \in F\left(\bigcap_{D \in \mathcal{S}} D\right)$. Por definición, existe $a \in \bigcap_{D \in \mathcal{S}} D$ tal que f(a) = b. Luego, $a \in D$ para todo $D \in S$ y por lo tanto $b \in F(D)$ para todo $D \in S$, lo que es equivalente a decir que $b \in \bigcap_{D \in \mathcal{S}} F(D)$. Se concluye que $F\left(\bigcap_{D \in \mathcal{S}} D\right) \subseteq \bigcap_{D \in \mathcal{S}} F(D)$.

Pauta (6 pts.)

- a) 1.5 ptos. por cada contención.
- b) 3 ptos.

Puntajes intermedios y soluciones alternativas a criterio del corrector.

Pregunta 4

Sea S el intervalo real $(0,1) \subseteq \mathbb{R}$. Demuestre que $S \times S \approx S$.

Solución

Para demostrar que ambos conjuntos son equinumerosos, encontraremos dos funciones invectivas

$$f: S \to S \times S$$
$$q: S \times S \to S$$

Para la primera función, basta con tomar f(x) = (x, x) cuya inyectividad resulta trivial.

Ahora consideremos el par $(x,y) \in (0,1)^2$. Podemos escribir $x \in y$ como:

$$x = 0.x_0x_1x_2x_3...$$
 $y = 0.y_0y_1y_2y_3...$

Luego definimos $g: S \times S \to S$ como:

$$g((x,y)) = 0.d_0d_1d_2d_3d_4d_5\dots$$

donde

$$d_i = \begin{cases} x_{\frac{i}{2}} & \text{si } i \text{ es par} \\ y_{\frac{i-1}{2}} & \text{si } i \text{ es impar} \end{cases}$$

Ahora debemos mostrar que g es inyectiva. Sean (u,v) y (w,z) elementos en $(0,1)^2$ tales que

$$g((u,v)) = g((w,z))$$

Podemos escribir u, v, w, z como:

$$u = 0.u_0u_1u_2u_3...$$
 $v = 0.v_0v_1v_2v_3...$ $w = 0.w_0w_1w_2w_3...$ $z = 0.z_0z_1z_2z_3...$

Por definición tenemos

$$g((u,v)) = g((w,z))$$

$$0.u_0v_0u_1v_1u_2v_2... = 0.w_0z_0w_1z_1w_2z_2...$$

En general

$$\forall n(u_n = w_n \land v_n = z_n)$$

$$\forall n(u_n = w_n) \land \forall n(v_n = z_n)$$

$$(u = w) \land (v = z)$$

$$(u, v) = (w, z)$$

y por lo tanto concluimos que g es inyectiva.

Pauta (6 pts.)

- 2 ptos. por dar función f.
- ullet 2 ptos. por dar función g.
- \bullet 2 ptos. por mostrar inyectividad de g.
- \blacksquare Si el estudiante sólo demuestra que $S \times S$ no es enumerable, la nota máxima de la pregunta es 4.

Puntajes intermedios a criterio del corrector.