	Briana Zhao U93987617 EC414
1	Loss = (y-Xw)T(y-Xw) + 2 w 2 HW2
disso	$\min_{\vec{w}} \left[(\mathbf{g} - \mathbf{X} \mathbf{w})^{T} (\mathbf{g} - \mathbf{X} \mathbf{w}) + \lambda \ \mathbf{w}\ _{2}^{2} \right]$
•	
	$\mathbf{O} \frac{\partial}{\partial \omega} \left[\lambda \mathbf{W}^{T} \omega \right] = 2 \lambda \mathbf{W}$
	Combining @ + B and setting to 0:
	$-2x^{T}(y-Xw)+2\lambda w=0$ $-2x^{T}y+2x^{T}xw+2\lambda w=0$
	XTXW+ZW = XTY
0	$\overline{\overline{W}} = (X^T X + \lambda I)^{-1} X^T Y$
[2]	$P(y x,w) = \frac{1}{6\sqrt{2\pi}} e^{\frac{x^2}{262}} \frac{(y_1 - x_1^2 w)^2}{262}$
	$P(\omega \mu,b) = \frac{1}{2b}e^{-\frac{ \omega-\mu _2}{b}} \rightarrow \frac{1}{2b}e^{-\frac{ \omega _2}{b}} \text{since mean is } 0$
	$\frac{1}{argmax} \frac{1}{oJz\pi} \frac{(9i - x_i T \omega)^2}{2o^2} \cdot \left(\frac{1}{2b} e^{- \omega - u _2}\right)$
	= argmax $\left[\ln \left(\frac{1}{\sqrt{z\pi}} \right)^n - \sum_{i=1}^n \frac{1}{2\delta^2} \left(9_i - x_i T \omega \right)^2 + \left(\ln \left(\frac{1}{2\delta} \right) - \frac{\ \psi - \mathcal{U} \ _1}{\delta} \right) \right]$
	= $\underset{\omega}{\operatorname{argmax}} \left[l_{n} \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^{n} + l_{n} \left(\frac{1}{2b} \right) - \sum_{i=1}^{n} \left(y_{i} - y_{i}^{T} \omega \right)^{2} - \frac{\ w - u \ _{1}}{b} \right]$
	not depedant on at
0	$= \underset{\tilde{\omega}}{\operatorname{argmax}} \left[-\sum_{i=1}^{n} (y_i - x_i T \omega)^2 - \frac{\ w\ _2}{b} \right]$
	= $argmin \left[\sum_{i=1}^{n} (y_i - X_i^T \omega)^2 - \frac{1}{b} \sum_{j=1}^{d} w_j \right]$

In lasso, we want to minimize & (y:-x;Tw)2 + > d(u) therefore, argmin ((4: Y; Tw) 2+ 1 5 | W;) derived from MAP with a laplace prior is the same formula as lasso linear Regression