MAE 143B Equation Sheet

P1.10 Galileo's Inclined Plane Problem

- h, fall height (ft)
- d, horizontal travel distance (in)*,
- l, length of inclined plane (ft),
- y, vertical distance*.

MATLAB commands:

Fitting linear model	f = fit(d, h, 'polyl').
Fitting quadratic model	f = fit(d, h, 'poly2'),
	for $h = lsin(\theta)$.
Estimating y :	
Conservation of energy	$\frac{1}{2}mv_x^2 = mgh,$
	$\Rightarrow v_x = \sqrt{2gh}$.

Vertical motion $y = \frac{1}{2}gt^2,$ $\Rightarrow t = \sqrt{2y/g}.$

Horizontal motion $d = v_x t,$ $d = \sqrt{2gh} \sqrt{2y/g},$

* units converted to feet.

P2.10 Elevator Problem

Wheels	$J_1\dot{\omega} + b_1\omega = \tau + (f_1 - f_2)r,$
	$J_2\dot{\omega} + b_2\omega = \tau + (f_4 - f_3)r.$
Forces from J_1	$f_1 + m_1 \dot{v_1} = m_1 g + f_3.$
Forces from J_2	$f_2 + m_2 \dot{v_2} = m_2 g + f_4.$
Angular velocity	$v_1 = r\omega, v_2 = -r\omega.$

$$(J_1+J_2+r^2(m_1+m_2))\dot{\omega}+(b_1+b_2)\omega = \tau+gr(m_1-m_2)$$
 (1)

ODE solution:

$$v_1(t) = \tilde{v_1}(1 - e^{\lambda t}) + v_1(0)e^{\lambda t},$$
 (2)

 $\Rightarrow d^2/4 = yh$.

Furthermore:

$$\bar{v_1} = v_1(t)_{t \to \infty}, TC = -\frac{1}{\lambda}.$$

Steady-state error	$e_{SS} = \bar{v_1} - v_{SS} = \bar{v_1} - \tilde{v_1}.$
Open-loop	$\lambda_{OL} = -\frac{b}{a}$
	$\bar{v_1} = \frac{r}{b} [\tau + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}}$.
Closed-loop	$ au(t) = K(\bar{v_1} - v_1(t)) \ controller$
	$\lambda_{CL} = -\frac{(b+Kr)}{a}$
	$\tilde{v}_1 = \frac{r}{b + Kr} [\tilde{K} \bar{v}_1 + gr(m_1 - m_2)],$
	$TC_{OL} = -\frac{1}{\lambda_{OL}}$
	$TC_{OL} = -\frac{1}{\lambda_{OL}},$ $K = \frac{a-5b}{5r}.$
	01

3.1 Laplace Transform

$$\begin{split} L[f](s) &= \int_0^\infty e^{-sx} f(x) dx \\ f(t) &= t^n, n \geq 0 & F(s) = \frac{n!}{s^{n+1}}, s > 0 \\ f(t) &= e^{at}, a \ constant & F(s) = \frac{1}{s-a}, s > a \\ f(t) &= \sin bt, b \ constant & F(s) = \frac{b}{s^2+b^2}, s > 0 \\ f(t) &= \cos bt, b \ constant & F(s) = \frac{s}{s^2+b^2}, s > 0 \\ f(t) &= t^{-1/2} & F(s) = \frac{s}{s^2+b^2}, s > 0 \\ f(t) &= \delta(t-a) & F(s) = e^{-as} \\ f' & L[f'] = sL[f] - f(0) \\ f'' & L[f''] = s^2L[f] - sf(0) - f'(0) \\ L[e^{at} f(t)] & L[f](s-a) \\ L[u_a(t) f(t-a)] & L[f]e^{-as} \end{split}$$

3.8 Frequency Response

Input	$u(t) = A\cos\omega t + \phi,$
Response	$y_{ss}(t) = A G(j\omega) cos(\omega t + \phi + \angle G(j\omega)).$
Phase angle	$\angle G(j\omega) = \arctan\left(\frac{\Im G(j\omega)}{\Re G(j\omega)}\right),$
	$\angle G(j\omega) = \angle N\{G(j\omega)\} - \angle D\{G(j\omega)\}.$

For a LTI system without poles on the imaginary axis, i.e., $G_0(s) = 0$.

4.1 Tracking, Sensitivity and Integral Control

Lemma 4.1 Asymptotic tracking

Let S(s) be the asymptotically stable transfer function S(0) = 0. The system asymptotic tracks a constant reference input if the product GK has a pole at the origin.

Lemma 4.3 Internal stability

The closed-loop system is internally stable if and only if S(s) is asymptotically stable and any pole-zero cancellations of the product GK satisfy $\Re\{z\} < 0$.

$Asymptotic\ stability$	If $G(s)$ converges and is boun-
	ded for all $\Re(s) \geq 0$, i.e., $G(s)$
	does not have poles on the ima-
	ginary axis or on the right-hand
	side of the complex plane.
Asymptotic tracking	If $S(s)$ has a zero at $s=0$ and
	the product GK has a pole at
	the origin.
Asymptotic	If $D(s)$ has a zero at $s = 0$,
disturbance rejection	or the controller $K(s)$ has a pole

at the origin.

4.4 Feedback with Disturbances

Sensitivity	i.e., from $\bar{v_1}$ to e
	$S = \frac{1}{1 + GK}$
Disturbance	i.e., from w to e
	$D = GS = \frac{G}{1 + GK}$
Complementary sensitivity	i.e., from $\bar{v_1}$ to v_1
	$H = GKS = \frac{GK}{1+GK}.$ $Q = KS = \frac{K}{1+GK}.$
Design	$Q = KS = \frac{K}{1 + GK}.$
Closed-loop $system$	For inputs
y = G(u+w),	$y = H\bar{y} - Hv + Dw,$
$u = K\tilde{e},$	$u = Q\bar{y} - Qv - Hw.$
$\tilde{e} = \tilde{y} - (y + v).$	with measurement noise
	v.
Tracking error	$e = \bar{y} - y = S\bar{y} + Hv -$
	Dw.

4.7 Pole-Zero Cancellations and Stability

Sensitivity	The poles of $S(s)$ are the zeros of the characteristic equation of $S(s)$.
	Furthermore, the zeros of $S(s)$ are the po-
	les of the product GK .
GK	$\tilde{G}\tilde{K} = \frac{N_{\tilde{G}}N_{\tilde{K}}}{D_{\tilde{G}}D_{\tilde{K}}}$ which have polynomial roots
	$N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}^{\tilde{K}}D_{\tilde{K}} = 0.$
S	If all the roots of $\tilde{G}\tilde{K}$ have negative real
	parts, then $S(s) = \frac{D_{\tilde{G}}D_{\tilde{K}}}{N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}}}$ and $H =$
	1-S are asymptotically stable.
SG and SK	$SG = \frac{(s-z)}{(s-p)} \frac{N_{\tilde{G}}N_{\tilde{K}}}{N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}}},$ $SK = \frac{(s-p)}{(s-z)} \frac{N_{\tilde{K}}D_{\tilde{G}}}{N_{\tilde{G}}N_{\tilde{K}} + D_{\tilde{G}}D_{\tilde{K}}}$
	$SK = \frac{(s-p)}{(s-z)} \frac{N_{\tilde{K}} D_{\tilde{G}}}{N_{\tilde{G}} N_{\tilde{V}} + D_{\tilde{G}} D_{\tilde{V}}}$
	are stable only if p and z are both negative.

5.2 State-Space Models

$State\mbox{-}space\ form$	$\dot{x} = Ax + Bu, y = Cx + Du.$
A	The state matrix of size $n \times n$, where
	n is the number of state variables.
B	The input matrix of size $n \times m$,
	where m is the number of outputs.
C	The output matrix of size $m \times n$.
\overline{D}	The transition matrix of size $m \times m$.
Equilibrium points	Set partial derivatives of system
	equations to zero, i.e., $\frac{\partial y}{\partial x_1} = 0$.

Characteristic $s^2 + 2\zeta\omega_n s + \omega_n^2$, $\omega_n > 0$. equation Canonical $(1 - \omega^2/\omega_n^2 + j2\zeta\omega/\omega_n)^k$, $ \zeta < 1$. form Poles $p = -\omega_n(\zeta \pm \sqrt{\zeta^2 - 1}), \Re\{p\} = -\omega_n$, $ p = \omega_n \left -\zeta \pm j\sqrt{1 - \zeta^2} \right $
$\begin{array}{ccc} form & & & & & \\ \hline Poles & p & = & -\omega_n(\zeta \pm \sqrt{\zeta^2 - 1}), \Re\{p\} & = & & \\ \end{array}$
Inverse Laplace $\mathscr{L}^{-1} = \left\{ \frac{k}{s + \zeta \omega_n - j\omega_d} + \frac{k^*}{s + \zeta \omega_n + j\omega_d} \right\}$ $Transform = 2 k e^{-\zeta \omega_n t} \cos(w_d t + \angle k)$
Parameters $\omega_d = \omega_n \sqrt{1 - \zeta^2}, 0 < \zeta < 1.$ $\phi_d = \arcsin \zeta = \arctan \left(\frac{\zeta \omega_n}{\omega_d}\right).$
Step response $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \omega_n > 0.$ $y(t) = L^{-1} \left\{ \frac{G(s)}{s} \right\},$ $= 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega_n t} \sin(\omega_d t + \pi/2 - \phi_d)$

where ζ is the damping ratio and ω_n is the natural frequency.

6.4 Root-Locus	
Characteristic	$1 + \alpha L(s), \alpha \ge 0,$
equation	L(s) = G(s)K(s)F(s).
Branches	Equal to the order of the charac-
	teristic equation, i.e., the deno-
	minator of the loop gain transfer
	function $L(s)$.
Asymptotes	N = n - m, asymptotes/closed-
	loop poles for n poles and m
	zeros in the loop-gain transfer
	function. The asymptotes inter-
	sect the real axis at the point
	$c = \frac{\sum_{k=1}^{n} p_k - \sum_{i=1}^{m} z_i}{n-m}$ with angle
	$\angle \phi_k = \frac{\pi + 2\pi k}{n - m}$ for $k = 0,, n -$
	m-1 if m > n+1.
Root-locus on R	A point s on the real axis will
	only be on the root-locus if it is
	to the left of an odd number of
	poles and zeros.
Break-away	CE + k = 0, k = -CE.
points	s is a break-away point if $\frac{dk}{ds} = 0$
	is real and positive.
Angle of departure	Root-locus leaves a complex
_	pole p_j at $\theta_d = 180^{\circ} + \sum \angle (p_j -$
	$(z_i) - \sum \angle p_j - p_i$.
Angle of arrival	Root-locus arrives at a complex
	zero z_j at $\theta_a = 180^{\circ} - \sum \angle(z_j -$
	$z_i) + \sum \angle z_i - p_i$.

7.1 Bode Plo	nt
$\frac{\text{Magnitude}}{\textit{Gain offset}}$	$\frac{20 \log_{10} G(j\omega) }{20 \log_{10} G(j\omega = 0) }$, in units of dB .
Gain margin	$GM = 0 - A_m dB$, The correspon-
Gain margin	ding point on the magnitude curve at
	the phase crossover frequency, i.e., the
	vertical axis intersection point where
	$\angle G(j\omega) = \pm 180^{\circ}.$
Poles	$(1+\frac{s}{\tau})^k \to -20\frac{dB}{dec} \times k$ at $\omega = \tau$ if stable, else $+20\frac{dB}{dec} \times k$. If at origin, $-20\frac{dB}{dec}$ that
	else $+20\frac{dB}{dca} \times k$. If at origin, $-20\frac{dB}{dca}$ that
	passes through $0dB$ at $\omega = 1$. If second-
	order, i.e., $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right) \rightarrow$
	$-40\frac{dB}{dec}$ at $\omega = \omega_n$, peak with amplitude
	$ H(j\omega_0) = -20log(2\zeta)$ at ω_0 if $\zeta < 0.5$.
Zeros	$(1+\frac{s}{\tau})^k \to +20\frac{dB}{dec} \times k \text{ at } \omega = \tau \text{ if stable,}$
	else $-20\frac{dB}{dec} \times k$. If at origin, $+20\frac{dB}{dec}$ that
	passes through $0dB$ at $\omega = 1$. If second-
	order, i.e., $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right) \rightarrow$
	$+40\frac{dB}{dec}$ at $\omega = \omega_n$, peak with amplitude
	$ H(j\omega_0) = +20log(2\zeta)$ at ω_0 if $\zeta < 0.5$.
Slope	Ends with $-20 \times (n-m) \frac{dB}{dec}$.
Unit gain	β , such that $\beta G(0) =1$, i.e., substitute
	$s = j\omega = 0$ for poles/zeros of $G(s)$ not at
	the origin, and $\beta G(j1) = 1$, i.e., $s = j1$
	for poles/zeros at the origin, then solve
	for the value of β that makes the expres-
	sion of magnitude $ G(j\omega) $ true.
Phase	$\angle G(j\omega)$, in units of degrees. +180° if $ G(j\omega = 0) $ is negative, -90°
Gain offset	$+180^{\circ}$ if $ G(j\omega=0) $ is negative, -90°
	for each pole, +90° zero at origin.
Phase margin	$PM = \phi_m - (-180^\circ)$, the corresponding point on the phase curve at the gain cros-
	sover frequency, i.e., the vertical axis in-
	tersection point where $ G(j\omega) = 0dB$.
Poles	$\frac{(1+\frac{s}{\tau})^k \to -45^{\circ}/dec \times k \text{ at } \omega = 0.1\tau}{(1+\frac{s}{\tau})^k \to -45^{\circ}/dec \times k \text{ at } \omega = 0.1\tau}$
1 0000	if stable, else $+45^{\circ}/dec \times k$. If second-
	order, i.e., $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right) \to$
	$(1+2\zeta/\omega_n)^{3\omega} + \omega_n^2(3\omega)$
	$-\tan^{-1}\left(\frac{\frac{2\zeta\omega}{\omega_n}}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right)/dec \text{ at } \omega = 0.1\omega_n.$ $(1+\frac{s}{\tau})^k = +45^\circ/dec \times k \text{ at } \omega = 0.1\tau$
\overline{Zeros}	$\frac{(\omega_n)}{(1+\frac{s}{2})^k} = +45^{\circ}/\text{dec} \times k \text{ at } \omega = 0.1\tau$
20.00	if stable, else $-45^{\circ}/dec \times k$. If second-
	order, i.e., $\left(\frac{1}{(1+2\zeta/\omega_n)}j\omega + \frac{1}{\omega_n^2}(j\omega)^2\right) \to$
	$+\tan^{-1}\left(\frac{\frac{2\zeta\omega}{\omega_n}}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right)/dec \text{ at } \omega = 0.1\omega_n.$ ends flat at $\angle 90^\circ \times (m + m_0 + n_+) - m_0$
\overline{Slope}	ends flat at $\angle 90^{\circ} \times (m_{-} + m_{0} + n_{+})$

 $90^{\circ} \times (m_{+} + n_{-} + n_{0}),$ where m_{+}/n_{+} are number of unstable poles/zeros, m_{-}/n_{-} stable poles/zeros, m_{0}/n_{0} poles/zeros on imaginary axis.

7.6 Nyquist Stability Criterion

The curve of $G(j\omega)$ parameterized by the value $\omega \in \Re$ describes the polar plot of the system, i.e., the phase and magnitude on the real and complex plane. The polar plot has a contour Γ covering the entire right-hand side of the complex plane from the limit $\rho \to \infty$.

Theorem 7.1 If a function f is analytical inside and on the the positively oriented simple closed contour C except at a finite number of poles inside C and f has no zeros on C then $\frac{1}{2\pi}\Delta_C^0 \arg f(s) = \frac{1}{2\pi j}\int_C \frac{f'(s)}{f(s)}ds = Z_C - P_c$, where Z_C is the number of zeros, P_C poles inside contour C counting their multiplicities.

Theorem 7.2 Assume that a transfer function L(s) has no poles on the imaginary axis. For any given $\alpha>0$ the loop transfer function in negative feedback with static gain controller α is asymptotically stable if and only if the number of counterclockwise encirclements of the image contour Γ around the point $-1/\alpha$ is equal to the number of poles of L(s) on the right-hand side of the complex plane.

 $\begin{array}{c|c} \hline Closed\text{-}loop & \text{The closed-loop system } L(s) \text{ is} \\ stability & \text{asymptotically stable if and only if} \\ \hline Z_{\Gamma} = P_{\Gamma} - \frac{1}{2\pi} \Delta_{\Gamma}^{-\frac{1}{\alpha}} \arg L(s) = 0. \\ \hline \text{where } Z_{\Gamma} \text{ is the number of closed-loop poles and } P_{\Gamma} \text{ the} \\ \hline \end{array}$

where Z_{Γ} is the number of closed-loop poles and P_{Γ} the number of open-loop poles of L(s) inside the contour Γ , i.e., on the RHP (excluding the imaginary axis).

Complex Numbers