MATH 310.1002: Homework 1

Dillan Marroquin

September 2, 2020

- 1. For any t > 0 denote $A_t = (-t, 2 + t)$.
 - (a) Determine $A_3 \setminus A_1$.

Answer:

$$A_3 \setminus A_1 = (-3,5) \setminus (-1,3) = (-3,-1] \cup [3,5)$$

(b) Determine

$$\bigcap_{n=1}^{10} A_{1/n}$$

Answer:

$$\begin{split} \bigcap_{n=1}^{10} A_{1/n} &= (-1,3) \cap (-\frac{1}{2},2\frac{1}{2}) \cap (-\frac{1}{3},2\frac{1}{3}) \cdots \cap (-\frac{1}{10},2\frac{1}{10}) \\ &= (-\frac{1}{10},2\frac{1}{10}) \end{split}$$

(c) Prove that

$$\bigcap_{t>0} A_t = [0,2]$$

Proof. To prove this, we must prove that each set is a subset of the other.

We will begin by showing $\bigcap_{t>0} A_t \subset [0,2]$. Let's assume that $x \in \mathbb{R}$ and that $x \notin [0,2]$, so for example, we'll choose x>2. Now let $t_0=\frac{x-2}{2}$. We now have $x\in (-t_0,2+t_0)$, which is a contradiction, so $\bigcap_{t>0} A_t \subset [0,2]$.

Now we will show that $[0,2] \subset \bigcap_{t>0} A_t$. Let $y \in [0,2]$. Then $y \in (-t,2+t)$ for all t>0, so $y \in \bigcap_{t>0} A_t$.

- 2. Let $f: A \to B$ and $g: B \to C$ be functions. Prove
 - (a) If $q \circ f$ is onto, then q is onto.

Proof. We will denote $g \circ f$ as h. Suppose h is surjective. We wish to prove that g is also surjective, or in other words, that there exists a $b \in B$ such that g(b) = c. By definition of h, there exists some $a \in A$ such that h(a) = c. This means that h(f(a)) = c. If we take b = f(a), then $b \in B$ and g(b) = c, thus g is surjective.

(b) If $g \circ f$ is one-to-one, then f is one-to-one.

Proof. We will denote $g \circ f$ as h. Suppose h is injective. To prove that f is also injective, we will show that for all $a, a' \in A$, f(a) = f(a') implies a = a'. By definition of h, we know that for all $d, d' \in h$, h(d) = h(d') implies d = d'.

- 3. Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ and the sets X = (-1, 4), Y = [1, 4].
 - (a) Determine $f^{-1}(X)$ and $f^{-1}(Y)$.

Answer:

$$f^{-1}(X) = \emptyset$$
$$f^{-1}(Y) = [-2, 0) \cup (0, 2]$$

(b) Determine $f(f^{-1}(X))$ and $f(f^{-1}(Y))$.

Answer:

$$f(f^{-1}(X) = f(\varnothing) = \varnothing$$

$$f(f^{-1}(Y) = f([-2, 0) \cup (0, 2]) = [1, 4]$$

4. Prove that the function $f: D \to C$ is onto if and only if for every subset $X \subset C$ we have $f(f^{-1}(X)) = X$.

Proof. Let us first prove that if f is surjective, then $f(f^{-1}(X)) = X$ for every subset $X \subset C$.

Let $y \in f(f^{-1}(X))$. Then y = f(x) for some $x \in f^{-1}(X)$. So by definition we have that $x \in f^{-1}(X)$ if and only if $f(x) \in X$. Now let $x \in X$. Then since f is surjective, x = f(d) for some $d \in D$ and by definition, $d \in f^{-1}(X)$. So $d \in f(f^{-1}(X))$.

Now we will prove that if $f(f^{-1}(X)) = X$ for every subset $X \subset C$, then f is surjective.

Assume that $c \in C$ and consider the set $X = \{c\}$. Knowing that $f(f^{-1}(X)) = X$, then there must be some $a \in f^{-1}(X)$ such that f(a) = c. Thus f is surjective.

5. Prove that for all $n \in \mathbb{N}$,

$$1 + 3 + \dots + (2n - 1) = n^2$$
.

Proof. We will prove by induction. First, observe that we can write $1+3+\cdots+(2n-1)$ as $\sum_{i=1}^{n}2n-1$. For the base case, let n=1. Then $1=1^2$ and the base case holds. Now let's assume that $\sum_{i=1}^{n}2n-1=n^2$ for $n\in\mathbb{N}$. Then,

$$\left(\sum_{i=1}^{n} 2n - 1\right) + 2n - 1 = (n+1)^{2}.$$

Substituting n^2 in for $\sum_{i=1}^n 2n - 1 = n^2$ gives $n^2 + 2n + 1 = (n+1)^2$ which is of course true.

6. Let x_1, x_2, x_3, \ldots be a sequence of numbers defined recursively by

$$x_1 = 0$$
 and $x_{n+1} = \frac{1+x_n}{2}$.

Prove that $x_n < x_{n+1}$ for all $n \in \mathbb{N}$. Can you find a formula for x_n ?

Proof. For our base case, let us choose n=1. Then, $x_2=\frac{1+x_1}{2}=\frac{1+0}{2}=\frac{1}{2}$. Observe that $0<\frac{1}{2}$, so the base case holds. Now we may assume that $x_n< x_{n+1}$ for all $n\in\mathbb{N}$. We wish to prove that $x_{n+1}< x_{n+2}$ Notice that we can write x_{n+2} recursively in terms of x_{n+1} and ultimately achieve $x_{n+2}=\frac{1+x_{n+1}}{2}$.

We can now use our previous assumption that $x_n < x_{n+1}$ to safely assume that

$$\frac{1+x_n}{2} < \frac{1+x_{n+1}}{2}$$
$$x_{n+1} < x_{n+2}$$

which thus ends our proof.

7. **Bonus problem.** Consider the sequence defined by $a_1 = 1$ and $a_{n+1} = 2a_n + \sqrt{3a_n^2 - 2}$, for any $n \in \mathbb{N}$. Prove that all the terms of the sequence are positive integers.

Proof. To prove this, we will first rewrite the equation and solve for -2:

$$a_{n+1} - 2a_n = \sqrt{3a_n^2 - 2}$$

$$(a_{n+1} - 2a_n)^2 = 3a_n^2 - 2$$

$$a_{n+1}^2 - 4a_{n+1}a_n + 4a_n^2 = 3a_n^2 - 2$$

$$a_{n+1}^2 - 4a_{n+1}a_n + a_n^2 = -2$$

(Unsure where to proceed from here)):