WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA 7. PARAMETRY ROZKŁADÓW DYSKRETNYCH

Twierdzenie. Dla dowolnych zmiennych losowych X_1, X_2, \ldots, X_n zachodzi:

$$\mathbb{E}(X_1 + X_2 + \ldots + X_n) = \mathbb{E}X_1 + \mathbb{E}X_2 + \ldots + \mathbb{E}X_n.$$

Twierdzenie. Niech X_1, X_2, \ldots, X_n będzie ciągiem zmiennych losowych. Jeśli dla każdego $i = 1, 2, \ldots, n$ istnieje $VarX_i$, wówczas

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} VarX_i + 2\sum_{1 \le i < j \le n} Cov(X_i, X_j).$$

W szczególności, jeśli zmienne losowe $X_1, X_2, ..., X_n$ są parami nieskorelowane, tzn. dla każdych $1 \le i < j \le n$ mamy $Cov(X_i, X_j) = \rho(X_i, X_j) = 0$, to

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} VarX_i.$$

Twierdzenie (Własności wariancji). Jeśli wariancja VarX zmiennej losowej X istnieje, to dla dowolnej stalej $a \in \mathbb{R}$ zachodzi

$$Var(aX) = a^2 VarX$$

oraz

$$Var(X + a) = VarX.$$

Przykład. Załóżmy, że zmienna losowa X przyjmuje wartości $0,1,\ldots,n$ i może zostać przedstawiona w postaci

$$X = X_1 + X_2 + \ldots + X_n,$$

gdzie każda ze zmiennych losowych X_i , $i=1,2,\ldots,n$, ma rozkład dwupunktowy o zbiorze atomów $\{0,1\}$ z $\mathbb{P}(X_i=1)=p_i$. Takie zmienne losowe X_i nazywamy **zmiennymi losowymi indykatorowymi**. Ponadto załóżmy, że zmienne te są **parami niezależne**, czyli dla każdego $1 \le i < j \le n$ zmienne losowe X_i i X_j są niezaeżne, co z kolei implikuje $Cov(X_i,X_j)=0$. Wówczas możemy wyznaczyć wartość oczekiwaną oraz wariancję zmiennej losowej X w prosty sposób odwołując się do rozkładów zmiennych indykatorowych X_i . Mianowicie:

$$\mathbb{E}X = \mathbb{E}X_1 + \mathbb{E}X_2 + \ldots + \mathbb{E}X_n = p_1 + p_2 + \ldots + p_n$$

oraz

$$VarX = VarX_1 + VarX_2 + \ldots + VarX_n = (p_1 - p_1^2) + (p_2 - p_2^2) + \ldots + (p_n - p_n^2).$$

Dodatek A. Zadania na ćwiczenia

Zadanie A.1. Wiedząc, że $\mathbb{E}X = 1$ i VarX = 5, znajdź $\mathbb{E}(2+X)^2$ oraz Var(4+3X).

Zadanie A.2. Roztargniona sekretarka włożyła losowo 10 zaadresowanych listów do 10 zaadresowanych kopert. Oblicz wartość oczekiwaną i wariancję liczby listów, które trafiły do swoich adresatów.

Zadanie A.3. Rzucamy 100 razy trzema kostkami. Wyznacz wartość oczekiwaną i wariancję sumy wyrzuconych oczek.

Zadanie A.4. Niech X będzie liczbą jedynek, a Y liczbą dwójek otrzymanych w wyniku n rzutów wyważoną kostką. Oblicz $\rho(X,Y)$.

Dodatek B. Zadania domowe

Zadanie B.1. Załóżmy, że zmienna losowa X ma rozkład dwumianowy Bin(100, 1/5). Ile wynosi wartość oczekiwana oraz wariancja zmiennej losowej Y = X/10 + 10?

Zadanie B.2. Wyznacz Cov(X,Y), jeśli VarX=3, VarY=2, a Var(X+2Y)=15. Czy można rozstrzygnąć, czy zmienne losowe X i Y są niezależne?

Zadanie B.3. Łucznik strzela do tarczy n razy. Za każdym razem trafia niezależnie za i punktów, $1 \le i \le 10$, z prawdopodobieństwem 1/10. Wyznacz wartość oczekiwaną i wariancję liczby punktów, które uzyska.

Zadanie B.4. W urnie jest 6 losów o wartościach: 1, 1, 1, 1, 2, 2. Losujemy z urny 2 losy jednocześnie. Niech X będzie największa z wylosowanych wartości, a Y suma wartości wylosowanych losów. Oblicz Cov(X, Y).

Zadanie B.5. Mamy do dyspozycji po 100 kul w kolorach: czerwony, zielony i niebieski. Wrzucamy losowo po 3 z tych kul do 100 urn tak, że wykorzystujemy wszystkie kule. Wyznacz wartość oczekiwaną liczby urn z kulami w trzech różnych kolorach.

Zadanie B.6. Rozkład hipergeometryczny dotyczy eksperymentu, w którym losujemy r-elementową próbkę z m-elementowej populacji, w której znajduje się n wyróżnionych elementów (np. w urnie znajduje się m kul, z czego dokładnie n jest białych, losujemy z urny r kul i interesuje nas ile z wylosowanych kul jest białych). Wówczas prawdopodobieństwo, że w r-elementowej próbce znajdzie się dokładnie k wyróżnionych elementów, gdzie $\max(0, n+r-m) \le k \le \min(n,r)$, wynosi

$$p_k = \frac{\binom{n}{k} \binom{m-n}{r-k}}{\binom{m}{r}}.$$

Niech X będzie zmienną losową o rozkładzie hipergeometrycznym z parametrami m, n, r. Wyznacz wartość oczekwianą zmiennej losowej X.

Zadanie B.7. Rzucono dwa razy kostką. Niech X będzie sumą, a Y różnicą liczb oczek otrzymanych za pierwszym i drugim razem. Bez wyznaczania rozkładów brzegowych zmiennych losowych X i Y, oblicz Cov(X,Y) oraz Var(X+Y).

Odpowiedzi

B.1
$$\mathbb{E}Y = 12, \text{Var}Y = 0.16$$

$$\mathrm{B.2}~\mathrm{Cov}(X,Y)=1,$$
nie są niezależne

$$\mathrm{B.3}$$
 Wartość oczekiwana: 5,5n; Wariancja $8,\!25n$

B.4
$$Cov(X, Y) = \frac{4}{15}$$

B.5
$$\frac{100^4}{\binom{300}{3}}$$

B.6
$$\mathbb{E}X = \frac{rn}{m}$$

B.7
$$Cov(X, Y) = 0, Var(X + Y) = 11\frac{2}{3}$$