## **TEMĂ DE CASĂ**

## Oscilator de joasă frecvență RC cu tranzistor bipolar



Fig1a. Oscilator RC cu rețea de defazare



**Fig1b**. Formele de undă ale mărimilor VF1,VF2, V3, VF4 în domeniul timp (5ms/div).



**Fig1c**. Formele de undă ale mărimilor VF1,VF2, V3, VF4 în domeniul timp (10ms/div).

Formele de unda si caracteristicile amplificatorului in domeniu timp



Fig. 2a. Amplificatorul EC

Fig. 2a. Amplificatorul EC



Fig. 2b. Caracteristica de amplificare în domeniul frecvență. (VF1/VF2=A<sub>v</sub>)

Tabelul 1

| MĂRIME                          | Oscilator cu<br>rețea de<br>defazare RC | Etaj de amplificare<br>EC |
|---------------------------------|-----------------------------------------|---------------------------|
| f <sub>O</sub> (Hz)             | 92.4                                    | 100                       |
|                                 | T=10.82ms                               |                           |
| VF4 (V)                         | 1.34                                    | 1.14                      |
| VF3 (V)                         | 0.478                                   | 0.418                     |
| VF2 (V)                         | 0.182                                   | 0.167                     |
| VF1 (V)                         | 3.56                                    | 3.72                      |
| Δւಭ <sub>VF4-VF3</sub> ms(Grad) | 1.56(56.16)                             | 1.5                       |
| Δτμ <sub>VF2-VF1</sub> ms(Grad) | 6.01                                    | 6.16                      |
| Δτμν <sub>F4-VF1</sub> ms(Grad) | 9.77                                    | 9.37                      |
| Δτμ <sub>VF3-VF2</sub> ms(Grad) | 1.92                                    | 1.78                      |
| A <sub>v</sub>                  | -                                       | 3.26                      |

**Tabelul 1** va conține date extrase din formele de undă ale mărimilor VF1,VF2, VF3, VF4 (aferente **Fig. 1a** și **Fig. 2a**) în domeniul timp, cu ajutorul aplicației Tina-TI, **Osciloscop virtual.** 

Amplitudinea, forma și frecvența semnalului dat de generatorul AC din **Fig. 2a** vor fi setate astfel încât valorile aferente celor două coloane pentru mărimile VF1-4 să fie cât mai apropiate. (3 V; 95Hz)









## Întrebări:

- Identificați principalele subcircuite ale oscilatorului armonic prezentat.
- 1) Amplificatorul de baza

- 2) Reteau de reactie pozitiva (cele 3 celule RC)
  - De ce parametru al schemei prezentate în **Fig. 1a** depinde intrarea în oscilație liberă?
- 1) Faza totala (semnalul din reteaua de reactie pozitiva este in faza cu semnalul original de la intrarea amplificatorului; daca defazajele adunate rezulta un multiplu de 360 grade)
- 2)  $\underline{A} \cdot \underline{\beta} = 1$  Conditia Barkhausen de existenta a oscilatiilor in circuit (Amplificarea totala a buclei deschise)
  - De ce componente electronice ale schemei prezentate în **Fig. 1a** depinde valoarea frecvenței de oscilație și cărui subcircuit aparține?

$$f_{\rm c} = \frac{1}{2\pi RC}$$

- => Depinde de Rezistente si Condensatoarele din subcircuitul RRP
  - De ce componente electronice ale schemei prezentate în **Fig. 1a** depinde valoarea amplitudinii semnalului generat?



Vs, R7, C4, R2:

• De ce componente electronice ale schemei prezentate în **Fig. 1a** depinde forma de semnal si nivelul distorsiunilor armonice?

Tranzistorul (utilizat in clasa A pentru un coeficient mic de distorsiuni)

Cu C4, fara R7



• În **Fig. 1a,** identificați amplificatorul cu reactie. Precizați tipul rețelelor de reacție.

Singura retea de reactie este o retea cu reactie pozitiva care cuprinde 3 celule RC



• Ce parametri ai oscilatorului armonic pot fi modificați?

Frecventa de oscilatie (modific RC), forma semnalului, amplitudinea semnalului generat, nivelul distorsiunilor armonice.

• Ce funcție îndeplinește rețeaua RC și cu ce scop?

Mentinerea oscilatiilor, contribuie la RRP, schimbare de faza, controlul frecventei.

 Ce parametru al oscilatorului armonic se modifică odată cu PSF-ul tranzistorului amplificator?

Amplificarea tranzistorului.

Care este rezistența de sarcină în schemele prezentate?
R2 este RL.