Problemes de Variable Complexa

FME, curs 2019-20

Tema 5: Aplicacions Conformes i Funcions harmòniques

1. Si f és analítica en $D_1(0)$, contínua en $\bar{D}_1(0)$ i $|f(z)| \leq 1$ per |z| < 1, llavors

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

2. Demostreu que les transformacions conformes del semi-plà $\pi^+ = \{z : \text{Im } z > 0\}$ en el disc unitat $D_1(0)$ són de la forma

$$w = e^{i\theta} \frac{z - z_0}{z - \bar{z}_0},$$

sent $z_0 \in \pi^+$ i $0 \le \theta < 2\pi$.

3. Si f analítica en π^+ compleix que Im $(z)>0 \implies$ Im $(f(z))\geq 0$, llavors és té:

$$\frac{|f(z)-f(z_0)|}{|f(z)-\overline{f(z_0)}|} \leq \frac{|z-z_0|}{|z-\overline{z}_0|}, \qquad \frac{|f(z)|}{\mathrm{Im}\ (f(z))} \leq \frac{1}{\mathrm{Im}\ (z)}.$$

- **4.** f holomorfa en $D_1(0)$ amb $||f||_{D_1(0)} = \sup_{z \in D_1(0)} |f(z)| \le 1$. Si existeixen $a, b \in D_1(0)$, $a \ne b$, tals que f(a) = a i f(b) = b, demostreu que f(z) = z, $\forall z \in D_1(0)$.
- 5. Demostreu que $f(z)=\left(\frac{1+z}{1-z}\right)^2$ aplica conformement $D_1(0)\cap\pi^+$ en π^+ . (Indicació: estudieu prèviament la transformació $w=\frac{1+z}{1-z}$.)
- 6. Trobeu transformacions conformes en π^+ dels oberts següents:
 - (i) $A_m = \{z : 0 < \arg z < \frac{\pi}{m}\}, m \ge 1.$
- (ii) $B_a = \{z : 0 < \text{Im } z < a\}, a > 0.$
- 7. Demostreu que $f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right)$ aplica conformement
 - (i) $D_1(0) \setminus \{0\}$ en $\mathbb{C} \setminus [-1, 1]$.
- (ii) $\pi^+ \setminus \bar{D}_1(0)$ en π^+ .
- 8. Demostreu que $\varphi(z) = \frac{(1+z)^2 \mathrm{i}(1-z)^2}{(1+z)^2 + \mathrm{i}(1-z)^2}$ és una transformació conforme del sector $\{z: 0 < \arg z < \pi\} \cap D_1(0)$ en $D_1(0)$.
- **9.** Trobeu una transformació conforme de $\mathbb{C} \setminus \{z : \text{Im } z = 0, (\text{Re } z)^2 \ge \frac{1}{4}\}$ en $D_1(0)$.

- **10.** Sigui $\Omega \subset \mathbb{C}$ un obert i $[a,b] \subset \Omega$ un segment. Si $f \in H(\Omega \setminus [a,b]) \cap C^0(\Omega)$, demostreu que $f \in H(\Omega)$.
- **11.** Sigui $f \in H(\pi^+) \cap C^0(\bar{\pi}^+)$ amb $f(x) \in \mathbb{R}$ si $x \in \mathbb{R}$. Definim $g(z) = \begin{cases} f(z), & z \in \bar{\pi}^+ \\ \hline f(\bar{z}), & z \in \mathbb{C} \setminus \bar{\pi}^+ \end{cases}$. Demostreu que $g \in H(\Omega)$.
- **12.** Suposem que u i v són funcions harmòniques i reals en un domini $\Omega \subset \mathbb{C}$ (obert i connex).
 - (i) Sota quines condicions és $u \cdot v$ harmònica en Ω ?
- (ii) Proveu que u^2 no és harmònica en Ω a menys que u sigui constant.
- (iii) Per a quines funcions holomorfes $f \in H(\Omega)$ es compleix que $|f^2|$ és harmònica?
- 13. Suposem que f és una funció complexa en un obert $\Omega \subset \mathbb{C}$ i que f i f^2 són harmòniques a Ω . Proveu que f ó \bar{f} són holomorfes a Ω .
- **14.** Sigui f = u + iv una funció analítica al disc $D_R(0)$ i contínua al disc tancat $\bar{D}_R(0)$. Proveu que $f(z) = \frac{1}{2\pi} \int_0^{2\pi} u(Re^{it}) \frac{Re^{it} + z}{Re^{it} z} dt + iv(0)$.
- **15.** Proveu que si f és una funció analítica a tot \mathbb{C} i $\lim_{z\to\infty}\frac{f(z)}{z}=0$, aleshores f és constant. (Indicació: Utilitzeu l'exercici anterior.)