Epidemics

Introduction to Network Science Carlos Castillo Topic 26

Sources

- Barabási (2016): Network Science Ch. 10
- Easley and Kleinberg (2010): Networks, Crowds, and Markets Ch 21.

Examples: human epidemics

- Influenza, measles, STDs
- The "Black Death" [next slide]
- Smallpox and other diseases brought by Europeans to America since early 1500s

Population Collapse in Mexico

The "Black Death" (Bubonic plague) 1300s

Killed 30%-60% of the total population of Europe

1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353

SARS Outbreak (2003)

- February 21st: Chinese doctor who have been several treating "atypical pneumonia" cases check-ins into hotel in Hong Kong
 - Hospitalized on Feb 22nd
 - Died on March 4th
- March 1st: "Ms. E. M." returns to Singapore after visiting Hong Kong
 - Graph depicts 144 out of the first 206
 SARS patients in Singapore
 - Ms. E. M. lived, various of her family members died

COVID-19

Why this curve?

How can one make this kind of forecast?

Diffusion of ideas vs diseases

- Adopting a new idea, behavior, fashion, product, taste, may also spread from person to person: "social contagion"
- There is a certain agency of the receiver
- In diffusion of diseases, we assume there is no agency: each contagion is random

Simple model: branching process

Modeling epidemics

- There are many factors:
 - Contagiousness
 - Length of infectious period,
 - Severity
 - ...
- Structure of contacts in a population

Simple model: branching process

- Each person interacts with other k people
- Each interaction ends in infection with probability β

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

Example: k=3

Transmission rate or "Basic reproductive number" R

- Each person interacts with other k people
- Each interaction ends in infection with probability β

- What is the expected number of cases caused by a single individual, R_0 ?
- What do you think happens if $R_0 < 1$?
- What do you think happens if $R_0 > 1$?

Transmission rate or "Basic reproductive number" R_o

- Each person interacts with other k people
- Each interaction ends in infection with probability β

- What is the expected number of cases caused by a single individual? $R_0 = \beta k$
- What do you think happens if $R_0 < 1$?
 - The infection dies out
- What do you think happens if $R_0 > 1$?
 - The infection persists

Details: sec. 21.8 of EK'16

Disease	Transmission	R ₀
Measles	Airborne	12-18
Pertussis	Airborne droplet	12-17
Diptheria	Saliva	6-7
Smallpox	Social contact	5-7
Polio	Fecal-oral route	5-7
Rubella	Airborne droplet	5-7
Mumps	Airborne droplet	4-7
HIV/AIDS	Sexual contact	2-5
SARS	Airborne droplet	2-5
Influenza (1918 strain)	Airborne droplet	2-3

Changing $R_o = \beta k$

- Sanitary practices (reduce β)
- Quarantine (reduces k)

The SI model

The SI model

SUSCEPTIBLE (HEALTHY)

INFECTED (SICK)

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
 - It will stay sick forever

Notation

- Number of susceptible S(t)
 - Fraction of susceptible s(t) = S(t) / N
- Number of infected I(t)
 - Fraction of infected i(t) = I(t) / N
- s(t) + i(t) = 1

How many susceptible neighbors a node has?

$$\langle k \rangle \frac{S(t)}{N} = \langle k \rangle s(t)$$

How many new infections are produced?

(for every infected, iterate through its susceptible neighbors, infect with probability β)

Prove that $i(t) = \frac{i_0 e^{\beta \langle k \rangle t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle t}}$

Begin from: $\frac{di(t)}{dt} = i(t) \langle k \rangle (1 - i(t)) \beta$

First, place all terms with i(t) on the left side

Second, use
$$\frac{1}{x \cdot (1-x)} = \frac{1}{x} + \frac{1}{1-x}$$
 Upload to Nearpod Collaborate https://nearpod.com/student/Code to be given during class

Third, integrate from t = 0 to t and denote by $i_0 = i(t = 0)$

$$\int \frac{1}{x} dx = \log x + C \qquad \int \frac{1}{1-x} dx = -\log(1-x) + C$$

Infected per period of time

$$\frac{di(t)}{dt} = i(t) \langle k \rangle \beta (1 - i(t))$$

$$\left(\frac{1}{i(t)(1 - i(t))}\right) \frac{di(t)}{dt} = \langle k \rangle \beta$$

$$\left(\frac{1}{i(t)} + \frac{1}{1 - i(t)}\right) \frac{di(t)}{dt} = \langle k \rangle \beta$$

Now, integrate on both sides from t=0 to t=t ...

Infected per period of time

$$\frac{di(t)}{dt} = i(t) \langle k \rangle \beta (1 - i(t))$$

$$\left(\frac{1}{i(t)(1 - i(t))}\right) \frac{di(t)}{dt} = \langle k \rangle \beta$$

$$\left(\frac{1}{i(t)} + \frac{1}{1 - i(t)}\right) \frac{di(t)}{dt} = \langle k \rangle \beta$$

$$\int_{t=0}^{t} \frac{1}{i(t)} \frac{di(t)}{dt} dt + \int_{t=0}^{t} \frac{1}{1 - i(t)} \frac{di(t)}{dt} dt = \int_{t=0}^{t} \langle k \rangle \beta dt$$

Infected per period of time $(i(0) = i_0)$

$$\int_{t=0}^{t} \frac{1}{i(t)} \frac{di(t)}{dt} dt + \int_{t=0}^{t} \frac{1}{1 - i(t)} \frac{di(t)}{dt} dt = \int_{t=0}^{t} \langle k \rangle \beta dt$$

$$\log i(t) - \log i_0 - \log(1 - i(t)) + \log(1 - i_0) = \langle k \rangle \beta t$$

Now, exponentiate (apply ex) in both sides

Infected per period of time $(i(0) = i_0)$

Infected per period of time
$$(i(0) = i_0)$$

$$\int_{-t}^{t} 1 di(t) \mu \int_{-t}^{t} 1 di(t) \mu \int_{-t}^{t} di(t) \mu \int_{-t}^{t} dt dt dt$$

$$\int_{t=0}^{t} \frac{1}{i(t)} \frac{di(t)}{dt} dt + \int_{t=0}^{t} \frac{1}{1 - i(t)} \frac{di(t)}{dt} dt = \int_{t=0}^{t} \langle k \rangle \beta dt$$

$$\log i(t) - \log i_0 - \log(1 - i(t)) + \log(1 - i_0) = \langle k \rangle \beta t$$

$$\frac{e^{\log i(t)}e^{\log(1-i_0)}}{e^{\log i_0}e^{\log(1-i(t))}} = \frac{i(t)(1-i_0)}{(1-i(t))i_0} = e^{\langle k \rangle \beta t}$$

$$\frac{i(t)}{1-i(t)} = \frac{i_0 e^{\langle k \rangle \beta}}{1-i_0}$$

$$i(t) = \frac{i_0 e^{\langle k \rangle \beta t}}{1 - i_0 + i_0 e^{\langle k \rangle \beta t}}$$

Behavior in the limit $t \to \infty$

• What is the limit of $i(t)=\frac{i_0e^{\beta\langle k\rangle t}}{1-i_0+i_0e^{\beta\langle k\rangle t}}$ when $t\to\infty$?

• Hint: similar to $f(t) = \frac{e^t}{1 + e^t}$

Infected as a function of time (SI)

$$i(t) = \frac{i_0 e^{\beta \langle k \rangle t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle t}}$$

Characteristic time (to infect $1/e \approx 36\%$ of people):

$$\dot{\beta} = \frac{1}{\beta \langle k \rangle}$$

The SIS model

The SIS model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
 - After some time, it recovers ... but it becomes susceptible again

Infection dynamics

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - i(t)) - \mu i(t)$$

• μ is the recovery rate, i.e., the probability of becoming susceptible again in an unit of time

$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

C is a constant that depends on i₀

Behavior in the limit $t \to \infty$

• What is the limit of $i(t)=\left(1-\frac{\mu}{\beta\left\langle k\right\rangle}\right)\frac{Ce^{(\beta\left\langle k\right\rangle -\mu)t}}{1+Ce^{(\beta\left\langle k\right\rangle -\mu)t}}$ when $t\to\infty$?

• Hint: similar to $f(t) = \alpha \frac{e^t}{1 + e^t}$

Infected as a function of time (SIS)

$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

This is in the case $\,\mu < \beta \,\langle k
angle \,$

What happens if $\mu > \beta \langle k \rangle$?

• Remember: $\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1-i(t)) - \mu i(t)$

What happens if $\mu > \beta \langle k \rangle$?

• Remember: $\frac{di(t)}{dt} = \beta \left\langle k \right\rangle i(t)(1-i(t)) - \mu i(t)$ $= (\beta \left\langle k \right\rangle - \mu)i(t) - \beta \left\langle k \right\rangle (i(t))^2$ negative negative

The infection dies out

The SIR model

The SIR model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
- Removed:
 - The node no longer has the disease, and cannot catch it or propagate it again (could be dead, could be immune)

Infection dynamics in SIR

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$$

$$\frac{dr(t)}{dt} = \mu i(t)$$

$$\frac{ds(t)}{dt} = -\frac{di(t)}{dt} - \frac{dr(t)}{dt} = -\beta \langle k \rangle i(t)(1 - r(t) - i(t))$$

No closed form solution

Infection dynamics (SIR)

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$$

$$\frac{dr(t)}{dt} = \mu i(t)$$

$$\frac{ds(t)}{dt} = -\beta \langle k \rangle i(t)(1 - r(t) - i(t))$$

Comparison of i(t)

SIS

SIR

No closed solution

 $i(\infty) = 0$

 $R_0 = 1$

Exponential Regime: Number of infected individ- uals grows exponentially	$i = \frac{i_0 e^{\beta(k)t}}{1 - i_0 + i_0 e^{\beta(k)t}}$	$i = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$
Final Regime: Saturation at $t \rightarrow = \infty$	$i(\infty) = 1$	$i(\infty) = 1 - \frac{\mu}{\beta \langle k \rangle}$
Epidemic Threshold: Disease does not always spread	No threshold	$R_0 = 1$

SI

Things to remember

- SI, SIS, SIR models
- Which are the states in each process and which are the possible transitions
- Equations for number of nodes in each state
- Regimes under different parameters
- Practice executing by hand and write code if it helps you remember better each process

Practice on your own

Under the SIS model,
$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

- 1.When $\mu < \beta \langle k \rangle$ what is the limit of i(t)?
- 2. How is this state called?
- 3.What happens when $\mu > \beta \langle k \rangle$?
- 4.What conditions lead to large values of i(t)?

Practice on your own (cont.)

- In the **SIRS** epidemic model, there are three possible states for a node: susceptible, infected, and recovered. Susceptible nodes can become infected, infected nodes can become recovered, and recovered nodes can become susceptible again.
- During one unit of time, with probability β an infected node can infect one of its contacts, with probability μ , an infected node can recover, and with probability σ , a recovered node can become susceptible again.
- Let s(t) be the fraction of susceptible nodes, i(t) be the fraction of infected nodes, r(t) the fraction of recovered nodes, and <k> the average degree of the graph.
 Write the equations, simplifying them appropriately, for:

$$1.\frac{di(t)}{dt}$$
 $2.\frac{dr(t)}{dt}$ $3.\frac{ds(t)}{dt}$

4. Is $\sigma > \mu$ sufficient to say that the recovered will tend to zero in the long run?