安徽大学 20 <u>20</u> — 20 <u>21</u> — 学年第 <u>2</u> 学期 《 大学物理 A (上) 》 期中考试试卷 (闭卷 时间 120 分钟)

考场登记表序号_____

总分

题 号	- =	三(16) 三	$\equiv (17)$	= (10)				
得分								
阅卷人			TRIE					
			HAI				得分	
一、选择题(每小题 2 分,共 量为 m 的质点,	20分)	-101	$\vec{x}(t) = Rt$	coswti +	Rsinotj ((SI制),则	川在
1. 平面内一质	量为 m 的质点,	其运动字人	7性/7	(6)			()
任意时刻该质/	点速度和受到的7 B. <i>wR</i>	7的大小分为	1)寸 1 _	$\alpha R/2$	$m\omega^2 R/2$	D.	$\omega R/2$, m	$\omega^2 R$
A. ωK , $m\omega K$	B. <i>OR</i> 跳水运动员自 10	, mw N2	. 4 47	一满 (沿	$\alpha = 9.8 \text{ t}$	n/s²), 入;	水后因受力	火 的
2. 运动会上一	跳水运动员自 10 1水面向下取坐标	m高的跳台	自由田田	·洛(以 b度为-k	k = 0).4m ⁻¹ . 则:	运动员在对	水面
		「抽 ひり,例1	于大川人	区/文/3 ル	<i>y</i> ,		()
	$v_y = \underline{\hspace{1cm}}.$						2	,
A. $14e^{0.4y^2}$ (S	I制) B. 14e ⁰	^{4y} (SI制)	C.	$14e^{-0.4y}$	SI制)	D. 14e ⁻⁰).4y² (SI 制	引)
	速率圆周运动,则						()
A. 动量变化,对		断变化	I	3. 速度大	小、方向	始终不变,	动量守恒	
	不变,动量守恒	· \	Ι	. 动量不	断变化,	但对圆心的	7角动量不	变
4. 一船子丁静。	上的水面中,船长7,则在此过程中	に为 L, 质量	为 m, ·	一个质量	为 m/2 的	力人从船尾	走到船头	. 不
			The same				()
A. 后退 L/3	B. 后:	退 L/2	C.	后退L		D. 7	不动	
5. 一灰里內 m	的质点做曲线运	切. 某时刻	则得该	质点的速	度大小为	リル, 対応	的曲率半	径为
	可知,但切向力						1)
	可知,但法向力		В,	合力大人	\为 mv2/	r, 但切向	力不可知	
			D,	合力大/	\为 mv2/	r,但法向	力不可知	
6. 一质量为 m l	的滑块,由静止; 圆弧半径为 R,	开始沿 1/4 [圆弧光	骨的木蛐	Mer -	· MIAIH	1)1,1,1,	
质量也为 m, 槽	的很好,田靜正 圆弧半径为 R, ,则滑块离开木	放在光滑的]水平#	而」	有下.木木	曹的 [7]	R	
重力加速度为 g	,则滑块离开木, B. (2gR)	槽时相对千	きるま	四上, 女	中图所示	. 设	4	
	B. (2 <i>gR</i>)		公面以	速度大小	为_	muninin)
(8*1)	D. (2gR)		C.	$(3gR)^{1/2}$		-	(
		第1页				D. 2(g	$(R)^{1/2}$	
Charles Constitution	A PROPERTY OF		共	4页		A BOUND		

姓段

为 超

年级

7. 已知一匀质细棒 A 可绕其一端 O 点在竖直平面内自由转动. 现将一球 B 固定在细棒上,									
7. 已知一匀质细棒A可绕兵 和 0 m 上 立									
12/7 D. 0.112 14									
A. J+m21/2 8. 一质量为 m 的质点绕 O 点做匀速率圆周运动,角速度大小为 ω, 对 O 点角动量为 L,则									
圆周运动的半径为()									
$C (L/m)^{1/2}$									
A. Limw									
9. 如图所示,一质量为 m 的小球从高为 H 处沿轨道由静止开始滑入环形									
轨道,轨道光滑.设 H 足够高,则小球在环最低点时环对它的作用力与在									
环最高点时环对它的作用力之差恰为小球重量的									
A. 8 B. 6 C. 4 D. 2									
10. 如图所示,水流冲击在静止的涡轮叶片上,水流冲击叶片前后的									
速率均为 v, 但方向相反. 每单位时间内冲向叶片的水的质量保持不									
变且等于 u,则水作用于叶片的力为 ()									
A. uv B. 4uv C. 3uv D. 2uv									
二、填空题(每小题 4 分,共 20 分)									
11. 一质点沿 x 轴运动,坐标与时间的变化关系为 $x(t) = 9t-2t^3$ (SI 制). 则其在 1s 末的速度									
=m/s, 3s 末的加速度 =m/s ² .									
12. 汽车在半径为 200 m 的圆弧形公路上刹车, 刹车开始阶段的运动学方程为 s(t) = 20t-2t ³									
(SI 制). 则汽车在 $t=1s$ 时的切向加速度 =m/s², 法向加速度 =m/s².									
13. 如图所示,一绳跨过一定滑轮,其两端分别拴有质量为 m ₁ 和 m ₂ 的物									
体 $(m_1 > m_2)$, m_1 静止在桌面上. 抬高 m_2 , 使绳处于松弛状态. 当 m_2 自由落									
下 h 后,绳子才被拉紧.则此时两物体的速度大小 v =									
下 h 后,绳子才被拉紧.则此时两物体的速度大小 v =									
m_1 能够上升的最大高度 $H=$ 14. 一刚体对某轴的转动惯量为 J_1 转动角速度为 J_2 转动角速度为 J_3 转动角速度为 J_4 形成 J_4 不同 J_4 不可 J_4 不同 J_4 不可 J_4									
m, 能够上升的最大高度 H=									

三、计算题(共45分)

得分

一根特殊的弹簧, 在伸长x时, 其弹性力之间的关系为 $F(x) = 8x+0.6x^2$ (SI 制), 求当将弹 簧从x=0.5m 拉长至x=1.0m 时,外力需要克服弹性力所做的功.

17. (本题 10 分)

得分

一质量为 m 的质点拴在细绳的一端,绳的另一端固定. 让该质点在粗糙的水平面上作半径 为 R 的圆周运动. 设质点初速率为 ν_0 , 当它运行 2 周后, 其速率变为原来的一半. 求滑动 摩擦系数 μ. (取重力加速度为 g)

18. (本题 25 分)

得分

如图所示,质量为M,倾角为 θ 的光滑斜面放置在光滑地面上,质量为m的滑块沿斜面 自由下滑,其下落高度为h时,斜面后退速度为u,设水平向左为x轴为正方向,竖直向

(1) 假设滑块相对斜面下滑的速度为水桶,根据绝对速度、相对速度和牵连速度之间的关系, 将滑块相对地面的水平速度 v_x 和竖直速度 v_y 用 θ 、 u 和 v_n 表达出来. (6分)

本数数 江 教 製

4

院/系

(2) 根据动量守恒将滑块相对地面的水平速度 v_x 和竖直速度 v_y 用 m、M、 θ 和 u 表达出来. (10 分)

(3) 根据机械能守恒求出 u 随 h 的关系. (9分)

四、证明题(本题15分)

得分

19. 当圆柱形容器内部盛上流体后,让流体绕其轴线旋转,可以看到液面由平面变为一抛物面. 在液面上取一个质元为 Δm ,分析其受力情况,选用如图所示的坐标系,通过牛顿力学证明: 盛在圆柱形容器内以角速度 ω 绕中心轴作匀速率旋转的流体,其表面为一旋转抛物面,即 $y=\frac{\omega}{2g}x^2$. (设重力加速度为g)

