Course Code: ESC106A Course Title: Construction Materials and Engineering Mechanics

Lecture No. 47:
Block Friction and Related Problems

Delivered By: Mr. Shrihari K. Naik

Lecture Intended Learning Outcomes

At the end of this lecture, students will be able to:

- Draw Free Body diagrams of Blocks in the given problems
- Evaluate frictional forces or weight of the block or find tension in the string connecting the blocks by assuming impending state of the block

Contents

Numerical problems on block friction

Example: A 60N pulling force P1 acting at 30° w.r.t. the horizontal is required to the pull the 20kg block to the right. Hence find μ between the block and the surface.(μ =0.313)

The block in the previous problem is to be pushed to the left by a force P₂ as shown in the figure. All conditions are same as the previous problem. Find P₂

Weights are gradually increased in the pan suspended over a smooth pulley. If μ between the block A and the surface is 0.3, find the value of W at which motion would impend. The mass of the block A is 50kg.

Example: A small block of 1000N is placed on a 30' inclined with coefficient of friction of 0.25 as shown in Figure. Determine the horizontal force to be applied for

- 1. The impending motion down the plane and
- 2. The impending motion up the plane.

Example: What should be the value of angle $'\theta'$ so that motion of the block 200N impends down the plane take $\mu=0.3$ For all contact surface. Figure shown below.

Determine the range of mass 'm₀' so that 125kg block shown in the fig will neither start moving up the plane nor slip down the plane. Take μ_s =0.25.

Example: Determine the least value of the force P to cause motion to impend rightwards. Assume the co-efficient of friction under the blocks to be 0.2 and pulley to be frictionless.

 $\Theta = 11.31^{\circ}$ P=161.88N

Example: Two blocks A and B weighing W1 and W2 are connected as shown in figure. If W1=W2 And if μ is the coefficient of friction for all contact surfaces. Find the angle of inclination of Inclined plane α at which the motion of the system will impend

Summary

- Friction is the force resisting the relative motion of solid surfaces, fluid layers and material elements sliding against each other
- Based on the concept of friction, the sliding problems are solved

