Transformer-XL_[*]

研究背景

- Transformer
 - 自然言語における強力なモデル
 - CNNやRNNよりもsegment内での長期的な文脈を利用可能
- Transformerの限界
 - segmentの境界付近の 短期的な文脈が考慮不能
 - segmentを跨ぐ長期的な 文脈が考慮されない

研究目的:segment間の文脈の途切れを改善

^[*] Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems*. 2017.

概要

- 従来のTransformer
 - segmentごとの学習
 - segment長の 文脈で評価
- Transformer-XL
 - 前セグメントの情報も つかって学習
 - segment長を超える 文脈で評価
 - 評価時にsegmentごとの 再計算が不要 ⇒計算量が減少

図1 従来のtransformerにおける学習と評価[*]

図2 transformer-xlにおける学習と評価[*]

手法(1/3)

- Segmentレベルの回帰
 - 一つ前のsegmentの出力を、次のsegmentの計算時に利用

手法(2/3)

- Segmentレベルの回帰
 - 一つ前のsegmentの出力を、次のsegmentの計算時に利用

$$\begin{split} \widetilde{\mathbf{h}}_{\tau+1}^{n-1} &= \left[\mathbf{SG}(\mathbf{h}_{\tau}^{n-1}) \circ \mathbf{h}_{\tau+1}^{n-1} \right] \\ \mathbf{q}_{\tau+1}^{n}, \mathbf{k}_{\tau+1}^{n}, \mathbf{v}_{\tau+1}^{n} &= \mathbf{h}_{\tau+1}^{n-1} \mathbf{W}_{q}^{\top}, \widetilde{\mathbf{h}}_{\tau+1}^{n-1} \mathbf{W}_{k}^{\top}, \widetilde{\mathbf{h}}_{\tau+1}^{n-1} \mathbf{W}_{v}^{\top} \\ \mathbf{h}_{\tau+1}^{n} &= \text{Transformer-Layer}\left(\mathbf{q}_{\tau+1}^{n}, \mathbf{k}_{\tau+1}^{n}, \mathbf{v}_{\tau+1}^{n}\right) \end{split}$$

query. key valueについて 詳しくは従来の Transformerを 参照[*]

Transformer-layer : 従来のtransformerの働きをする層

 h_{τ}^{n} : τ 番目のsegmentに対するn層目の隠れ層の出力

 $ilde{h}^n_ au$ au : au番目の $ext{segment}$ に対する $ext{n}$ 層目の隠れ層の出力に、au-1番目の $ext{segment}$ の隠れ層を連結した出力

 $q_{ au}^n$: au番目のsegmentに対するn番目の query W_q : n層目のqueryを計算する全結合層の重み $k_{ au}^n$: au番目のsegmentに対するn番目の key W_k : n層目のkeyを計算する全結合層の重み $v_{ au}^n$: au番目のsegmentに対するn番目の value W_v : n層目のvalueを計算する全結合層の重み

^[*] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

手法(3/3)

- 従来のTransformer
 - 絶対位置符号化

[0,1,2,3,4,5,6,7,8], [0,1,2,3,4,5,6,7,8] segment1 segment2

segment1は、その前に 依存関係がないため省略

[0,1,2,3,4,5,6,7,8,0,1,2,3,4,5,6,7,8] segment2

対応するsegmentごとの位置の埋め込み表現

従来の位置の埋め込み表現をTransformer-XLに利用する場合

- Transformer-XL
 - 相対位置符号化
 - ある単語からの位置関係を埋め込み表現

実験(1/2)

• 長期の依存関係が必要となるデータセットでSoTA(論文作成時)

Model	#Param	PPL
Grave et al. (2016b) - LSTM	-	48.7
Bai et al. (2018) - TCN	-	45.2
Dauphin et al. (2016) - GCNN-8	-	44.9
Grave et al. (2016b) - LSTM + Neural cache	-	40.8
Dauphin et al. (2016) - GCNN-14	-	37.2
Merity et al. (2018) - QRNN	151M	33.0
Rae et al. (2018) - Hebbian + Cache	-	29.9
Ours - Transformer-XL Standard	151M	24.0
Baevski and Auli (2018) - Adaptive Input	247M	20.5
Ours - Transformer-XL Large	257M	18.3

Table 1: Comparison with state-of-the-art results on WikiText-103. * indicates contemporary work.

Model	#Param	bpc
Ha et al. (2016) - LN HyperNetworks	27M	1.34
Chung et al. (2016) - LN HM-LSTM	35M	1.32
Zilly et al. (2016) - RHN	46M	1.27
Mujika et al. (2017) - FS-LSTM-4	47M	1.25
Krause et al. (2016) - Large mLSTM	46M	1.24
Knol (2017) - cmix v13	-	1.23
Al-Rfou et al. (2018) - 12L Transformer	44M	1.11
Ours - 12L Transformer-XL	41M	1.06
Al-Rfou et al. (2018) - 64L Transformer	235M	1.06
Ours - 18L Transformer-XL	88M	1.03
Ours - 24L Transformer-XL	277M	0.99

Table 2: Comparison with state-of-the-art results on enwik8.

図1 WikiText-103におけるPPL, enwiki8におけるbpcの比較結果[*]

実験(2/2)

・短期の依存関係が必要となるデータセットでSoTA(論文作成時)

Model	#Param	PPL
Shazeer et al. (2014) - Sparse Non-Negative	33B	52.9
Chelba et al. (2013) - RNN-1024 + 9 Gram	20B	51.3
Kuchaiev and Ginsburg (2017) - G-LSTM-2	-	36.0
Dauphin et al. (2016) - GCNN-14 bottleneck	-	31.9
Jozefowicz et al. (2016) - LSTM	1.8B	30.6
Jozefowicz et al. (2016) - LSTM + CNN Input	1.04B	30.0
Shazeer et al. (2017) - Low-Budget MoE	~5B	34.1
Shazeer et al. (2017) - High-Budget MoE	\sim 5B	28.0
Shazeer et al. (2018) - Mesh Tensorflow	4.9B	24.0
Baevski and Auli (2018) - Adaptive Input [⋄]	0.46B	24.1
Baevski and Auli (2018) - Adaptive Input [⋄]	1.0B	23.7
Ours - Transformer-XL Base	0.46B	23.5
Ours - Transformer-XL Large	0.8B	21.8

Table 4: Comparison with state-of-the-art results on One Billion Word. ♦ indicates contemporary work.

図1 One Billion WordにおけるPPLの比較結果

まとめ

- 自然言語処理で強力なモデルであるtransformerを改良
- segmentを越えた長期の依存関係の学習が可能
- 文脈の断片化を解消して短期の依存関係でも性能向上
- 評価時の計算時間が減少