class08 mini project

Nashed A16631132

wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>

	diagnosis ra	adius_mean	texture_mean pe	erimeter_mean	area_mean		
842302	M	17.99	10.38	122.80	1001.0		
842517	M	20.57	17.77	132.90	1326.0		
84300903	M	19.69	21.25	130.00	1203.0		
84348301	M	11.42	20.38	77.58	386.1		
84358402	M	20.29	14.34	135.10	1297.0		
843786	M	12.45	15.70	82.57	477.1		
	smoothness_r	mean compa	ctness_mean cond	cavity_mean co	oncave.poi	nts_mean	
842302	0.1	1840	0.27760	0.3001		0.14710	
842517	0.08	8474	0.07864	0.0869		0.07017	
84300903	0.10	0960	0.15990	0.1974		0.12790	
84348301	0.14	4250	0.28390	0.2414		0.10520	
84358402	0.10	0.10030		0.13280 0.1980		0.10430	
843786	0.12	2780	0.17000	0.1578		0.08089	
	symmetry_mea	an fractal	_dimension_mean	radius_se tex	ture_se pe	erimeter_se	
842302	0.24	19	0.07871	1.0950	0.9053	8.589	
842517	0.1812		0.05667	0.5435	0.7339	3.398	
84300903	0.20	0.2069		0.7456	0.7869	4.585	
84348301	0.259	97	0.09744	0.4956	1.1560	3.445	
84358402	0.180	09	0.05883	0.7572	0.7813	5.438	
843786	0.208	87	0.07613	0.3345	0.8902	2.217	
	area_se smoo	othness_se	${\tt compactness_se}$	• –	concave.po	oints_se	
842302	153.40	0.006399	0.04904	0.05373		0.01587	
842517	74.08	0.005225	0.01308	0.01860		0.01340	
84300903	94.03	0.006150	0.04006	0.03832		0.02058	
84348301	27.23	0.009110	0.07458	0.05661		0.01867	
84358402	94.44	0.011490	0.02461	0.05688		0.01885	
843786	27.19	0.007510	0.03345	0.03672		0.01137	

```
symmetry_se fractal_dimension_se radius_worst texture_worst
842302
             0.03003
                                   0.006193
                                                    25.38
                                                                   17.33
             0.01389
                                   0.003532
842517
                                                    24.99
                                                                   23.41
84300903
             0.02250
                                   0.004571
                                                    23.57
                                                                   25.53
84348301
             0.05963
                                   0.009208
                                                    14.91
                                                                   26.50
84358402
             0.01756
                                   0.005115
                                                    22.54
                                                                   16.67
843786
             0.02165
                                   0.005082
                                                    15.47
                                                                   23.75
         perimeter_worst area_worst smoothness_worst compactness_worst
842302
                   184.60
                               2019.0
                                                 0.1622
                                                                    0.6656
                   158.80
                                                 0.1238
842517
                               1956.0
                                                                    0.1866
84300903
                   152.50
                               1709.0
                                                 0.1444
                                                                    0.4245
84348301
                                                 0.2098
                    98.87
                               567.7
                                                                    0.8663
84358402
                   152.20
                               1575.0
                                                 0.1374
                                                                    0.2050
843786
                                                 0.1791
                                                                    0.5249
                   103.40
                                741.6
         concavity_worst concave.points_worst symmetry_worst
842302
                   0.7119
                                         0.2654
                                                         0.4601
842517
                   0.2416
                                         0.1860
                                                         0.2750
84300903
                   0.4504
                                         0.2430
                                                         0.3613
84348301
                   0.6869
                                         0.2575
                                                         0.6638
84358402
                   0.4000
                                         0.1625
                                                         0.2364
843786
                   0.5355
                                         0.1741
                                                         0.3985
         fractal_dimension_worst
842302
                          0.11890
842517
                          0.08902
84300903
                          0.08758
84348301
                          0.17300
84358402
                          0.07678
843786
                          0.12440
```

```
diagnosis <- as.factor(wisc.df$diagnosis)
wisc.data <- wisc.df[,-1]</pre>
```

Q1. How many observations are in this dataset? There are 569 observations (rows) in this dataset.

```
nrow(wisc.df)
```

[1] 569

Q2. How many of the observations have a malignant diagnosis? There are 212 Malignant diagnosis.

```
table(wisc.df$diagnosis)
 В
      М
357 212
  sum(wisc.df$diagnosis == "M")
[1] 212
     Q3. How many variables/features in the data are suffixed with _mean? There are
     10 variables in the data suffixed with mean.
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius mean"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
 [7] "compactness_mean"
                                 "concavity_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
[15] "area_se"
                                 "smoothness_se"
[17] "compactness_se"
                                 "concavity_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
[23] "texture_worst"
                                 "perimeter_worst"
[25] "area_worst"
                                 "smoothness_worst"
[27] "compactness_worst"
                                 "concavity_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
  grep("mean", colnames(wisc.df), value=TRUE)
 [1] "radius_mean"
                                "texture_mean"
                                                          "perimeter_mean"
 [4] "area_mean"
                               "smoothness_mean"
                                                          "compactness_mean"
 [7] "concavity_mean"
                                "concave.points_mean"
                                                          "symmetry_mean"
[10] "fractal_dimension_mean"
```

```
x <- colnames(wisc.df)
length( grep("mean", x))</pre>
```

[1] 10

#Principal Component Analysis

We need to scale our input data before PCA as some of the ecolumns are measured in terms of very different units with different means and different variances. The upshot here is we set scale=TRUE argument to prcomp().

```
wisc.pr <- prcomp( wisc.data, scale=T )
summary(wisc.pr)</pre>
```

Importance of components:

```
PC2
                                          PC3
                                                  PC4
                                                          PC5
                          PC1
                                                                  PC6
                                                                           PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                          PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                          PC14
Standard deviation
                       0.69037 \ 0.6457 \ 0.59219 \ 0.5421 \ 0.51104 \ 0.49128 \ 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                           PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                           PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                          PC24
                                                  PC25
                                                          PC26
                                                                  PC27
                                                                           PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```


Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)? PC1 account for 44.27% of total variance or .4427. Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data? PC1,PC2,PC3 Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data? PC1,PC2, PC3, PC4, PC5, PC6, PC7

biplot(wisc.pr)

Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why? This plot is very difficult to read and the variable names are overlapping and the color are also very overlapping it does not display meaningful information.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots? This plot shows how PC1 captures a better variance between M and B tumors and the first plot is cleaner and shows the separate clusters more.


```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```



```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

library(factoextra)

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

```
wisc.pr$rotation[, 1]["concave.points_mean"]
```

concave.points_mean -0.2608538

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data? PC1, PC2, PC3, PC4, PC5

##3 Hierarchical Clustering

```
data.scaled <- scale(wisc.data)

data.dist <- dist(data.scaled)

wisc.hclust <- hclust(data.dist, method = "complete" )</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=19, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

```
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

- Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10? 4 is the better cluster because it has the best number of clusters and gives the best/clear separation of B and M tumors.
- Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning. My favorite is ward.D2 because it helps reduce the variance, and the clusters are made even, and groups data points that are alike.

##5 Combining Methods.

This approach will take not original data but our PCA results and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method= "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

Generate 2 cluster groups from this helust object.

```
grps <- cutree(wisc.pr.hclust, k=2)
grps</pre>
```

842302	842517	84300903	84348301	84358402	843786	844359	84458202
1	1	1	1	1	1	1	1
844981	84501001	845636	84610002	846226	846381	84667401	84799002
1	1	2	1	1	2	1	1
848406	84862001	849014	8510426	8510653	8510824	8511133	851509
2	1	1	2	2	2	1	1
852552	852631	852763	852781	852973	853201	853401	853612
1	1	1	1	1	2	1	1
85382601	854002	854039	854253	854268	854941	855133	855138

1	1	1	1	1	2	2	1
855167	855563	855625	856106	85638502	857010	85713702	85715
2	1	1	1	2	1	2	1
857155	857156	857343	857373	857374	857392	857438	85759902
2	2	2	2	2	1	2	2
857637	857793	857810	858477	858970	858981	858986	859196
1	1	2	2	2	2	1	2
85922302	859283	859464	859465	859471	859487	859575	859711
1	1	2	2	1	2	1	1
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
1	2	2	2	2	1	1	2
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
2	1	1	1	2	1	2	1
861597	861598	861648	861799	861853	862009	862028	86208
2	1	2	2	2	2	1	1
86211	862261	862485	862548	862717	862722	862965	862980
2	2	2	1	2	2	2	2
862989	863030	863031	863270	86355	864018	864033	86408
2	1	2	2	1	2	2	2
86409	864292	864496	864685	864726	864729	864877	865128
1	2	2	2	2	1	1	2
865137	86517	865423	865432	865468	86561	866083	866203
2	1	1	2	2	2	2	1
866458	866674	866714	8670	86730502	867387	867739	868202
1	1	2	1	1	2	1	2
868223	868682	868826	868871	868999	869104	869218	869224
2	2	1	2	2	2	2	2
869254	869476	869691	86973701	86973702	869931	871001501	871001502
2	2	1	2	2	2	2	1
8710441	87106	8711002	8711003	8711202	8711216	871122	871149
1	2	2	2	1	2	2	2
8711561	8711803	871201	8712064	8712289	8712291	87127	8712729
2	1	1	2	1	2	2	2
8712766	8712853	87139402	87163	87164	871641	871642	872113
1	2	2	2	1	2	2	2
872608	87281702	873357	873586	873592	873593	873701	873843
1			2				
873885	874158	874217	874373	874662	874839	874858	875093
2	2	2	2	2	2	1	2
875099	875263	87556202	875878	875938	877159	877486	877500
2	1	1	2	1	1	1	1
877501	877989	878796	87880	87930	879523	879804	879830
2	1	1	1	2	2	2	2

8810158 1	8810436 2	881046502 1					
8811523		8811842					_
2	2				2		
_		88147101					
	00143502		08147102				
2	_					1	_
		882488					
2	1	_	_	1		_	_
		883852					
2	2			1			
		884948					
2	2				1		
88649001	886776	887181					
1	1		1				
889719	88995002			8910506	8910720		
1	1	_		2			
8910988	8910996	8911163	8911164	8911230	8911670		
1	2	2	2	2	2	2	2
8912049	8912055	89122	8912280	8912284	8912521	8912909	
1	2	1	1	2	2	2	2
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	2	1	2	2	2	2	2
891936	892189	892214	892399	892438	892604	89263202	892657
2	2	2	2	1	2	1	2
89296	893061	89344	89346	893526	893548	893783	89382601
2	2	2	2	2	2	2	2
89382602	893988	894047	894089	894090	894326	894329	894335
2	2	2	2	2	1	1	2
894604	894618	894855	895100	89511501	89511502	89524	895299
2	1		1		2		2
8953902	895633	896839	896864	897132	897137	897374	89742801
1	1		2	2		2	
897604	897630	897880	89812	89813	898143	89827	898431
2	1	2	1	1	2	2	1
	898677	898678					
2	2		2	2			
-	_	901011			901028		901034301
1	1		2	2			
901034302					901088		
2	2		2	2			
_		9012315		_	901288		901303
9011971			9012300				2
_		9013594					
901313	3013319	3013334	9013030	301049	901030	30230	90231

1	2	2	1	2	2	2	2
_	90291						
2		2		2			2
903507	903516	903554	903811	90401601	90401602	904302	904357
1	1	2	2	2	2	2	2
90439701	904647	904689	9047	904969	904971	905189	905190
1	2	2	2	2	2	2	2
90524101	905501	905502	905520	905539	905557	905680	905686
1	-				2		
905978					906564		
2		2				2	2
907145	907367						
2					2		
	908445						
1							
	909445						
	1						
	911157302						
	1			2			2
	9112367						
2		2			1		2
	9113239	9113455	9113514				
2 911384					911673		
911304					911073		
	91227						913505
912193		912519					
913512					914101		
2					2		
	914580						
1		1		2			
915186	915276						
1	1	2	2	2	1	2	2
915691	915940	91594602	916221	916799	916838	917062	917080
1	2	2	2	1	1	2	2
917092	91762702	91789	917896	917897	91805	91813701	91813702
2	1	2	2	2	2	2	2
918192	918465	91858	91903901	91903902	91930402	919537	919555
2	2	2	2	2	1	2	1
91979701	919812	921092			921386	921644	922296
1		2					2
922297	922576	922577	922840	923169	923465	923748	
2	2	2	2	2	2	2	2

924084	924342	924632	924934	924964	925236	925277	925291
2	2	2	2	2	2	2	2
925292	925311	925622	926125	926424	926682	926954	927241
2	2	1	1	1	1	2	1
92751							
2							

plot(wisc.pr\$x[,1], wisc.pr\$x[,2], col=grps)


```
table(grps)
```

grps 1 2 203 366

table(diagnosis)

diagnosis B M 357 212

```
table(diagnosis, grps)
```

```
grps
diagnosis 1 2
B 24 333
M 179 33
```

plot(wisc.pr\$x[,1:2], col=grps)

plot(wisc.pr\$x[,1:2], col=diagnosis)


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```



```
wisc.pr.hclust <- hclust(dist(wisc.pr$x[,1:7]), method="ward.D2")
y <- wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)</pre>
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses? It separates them out very well and it is organized and clear.

table(y, diagnosis)

diagnosis y B M 1 28 188 2 329 24