Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» кафедра теоретических основ электротехники

ОТЧЕТ по лабораторной работе № 2

«ИССЛЕДОВАНИЕ ЛИНЕЙНЫХ РЕЗИСТИВНЫХ ЦЕПЕЙ»

Авторы: Стукен В.А., Зиновьев М.Д

Γpynna: 2307

 Φ акультет: ФКТИ

Преподаватель: Зубарев А.В

Санкт-Петербург, 2024 І₄ТЕХ

Экспериментальные исследования

Опыт №1 Исследование цепи при питании ее от двух источников

Рис. 2.1

U, V	U_1	U_2	U_3	U_4	I, mA	I_1	I_2	I_3	I_4
2	0.37	0.44	1.62	2.06	1.03	0.26	0.29	0.56	0.72

$$U = U_1 + U_3 = 0,37 + 1,62 = 1,99$$
$$I = I_2 + I_4 = 0,29 + 0,72 = 1,01$$
$$U_4 = U_2 + U_3 = 0,44 + 1,62 = 2,06$$
$$I_3 = I_1 + I_2 = 0,26 + 0,29 = 0,55$$

Опыт №2 Определение тока в цепи методом наложения

Рис. 2.2

	I_1, mA	I_2	I_3	I_4
U	0.61	0.24	0.36	0.25
I	0.36	0.55	0.18	0.48
I,U	0.25	0.31	0.54	0.73

$$I_1 = I_1^a - I_1^b I_2 = I_2^b - I_2^a I_3 = I_3^a + I_3^b I_4 = I_4^a + I_4^b$$

Полученные значения сравнимы с теми, которые были получены при работе обоих источников.

Опыт №3 Определение тока в ветви с сопротивлением R3 методом эквивалентного источника напряжения

Рис. 2.3

Запишем уравнения МКТ:

$$\begin{cases} i_1^k = I = 0.00103 \\ (R1 + R2 + R4) \cdot i_2^k - R_4 i_1^k = -U \end{cases}$$

$$\begin{cases} i_1^k = 0.00103 \\ i_2^k = 0.000181 \end{cases}$$

$$i_{R1} = -i_2^k = -0.000181$$

$$U = U_{xx} + U_{R1}$$

$$2 = U_{xx} - 0.000181 \cdot 1500$$

$$U_{xx} = 2.27$$

Найдем Рэкв

$$R_{ekv} = \frac{R_1(R_2 + R_4)}{R_1 + R_2 + R_4} = 1.125 \, k\Omega$$

Найдем ток i_{R3}

$$i_{R3} = \frac{U_{xx}}{R_{ekv} + R_3} = \frac{2.27}{1125 + 3000} = 0.55 \, mA$$

Опыт №4 Экспериментальная проверка принципа взаимности

Рис. 2.4

По МКТ:

$$\begin{cases} 4.5i_1^k + 3i_2^k = 2 \\ 3 * i_1^k + 7.5i_2^k = 0 \end{cases}$$
$$\begin{cases} i_1^k = 0.6 \\ i_2^k = -0.24 \end{cases}$$

Токи в цепях а $I_3=0.36\,mA$ и б $I_3=0,36\,mA$ равны, это подтверждает принцип взаимности.

Ответы на вопросы

- Вопрос №1: Каковы результаты контроля данных в 2.2.1?
 Проверили полученные значения по законам Кирхгофа, они сошлись с учетом измерительной погрешности.
- Вопрос №2: Изменятся ли токи ветвей, если одновременно изменить полярность напряжения ИН и направление тока ИТ на противоположные?

Изменится знак токов на противоположные, модули останутся такими же.

• Вопрос №3: Чему равно напряжение между узлами «С» и «D» цепи?

$$U_{CD} = U_1 - U_2 = 0.37 - 0.44 = -0.07$$

• Вопрос №4: Как изменить напряжение ИН, чтобы ток I_1 стал равен нулю?

Из метода наложения выполняется $I_1=I_1^a-I_1^b$, тогда $I_1^a=I_1^b=0,36$ $U=I_{need}/I_{real}\cdot U=0,36/0,61\cdot 2=1,23$

• Вопрос №5: Почему рис. 2.4, б при $U = U_0$ реализует схему метода эквивалентного источника напряжения (рис. 2.3, а)?

Так как $R_0 = \frac{R_1(R_2+R_4)}{R_1+R_2+R_4}$, то есть схемы 2.46 и 2.3а одинаковые.

• Вопрос N6: Чему будет равен ток I_1 , если ИН поместить в ветвь 4, а ИТ отключить?

Используя принцип взаимности, $I_1 = 0.36$

• Вопрос №7: **Как проконтролировать результаты экспериментов в 2.2.2**, **2.2.3 и 2.2.4**?

Сравнивая полученные в первом пункте значения каждого элемента.

Вывод

В данной экспериментальной работе мы провели анализ резистивной цепи, состоящей из источников постоянного тока и напряжения. Мы измерили токи и напряжения в цепи и проверили их согласованность с уравнениями Киргофа. При расчетах применили различные методики, включая метод наложения, использование эквивалентного источника и принцип взаимности. Интересное наблюдение: если единственный источник напряжения действует в одной ветви линейной электрической цепи и вызывает ток в другой ветви, то после его перемещения во вторую ветвь он вызовет в первой ветви такой же ток.