Wiyninger, Caleb

MATH 3503: Tashfeen's Discrete Mathematics

September 5, 2025

Homework 2

Question 1. Please read chapter 2 of Chartrand et al. and write a couple sentences about a topic/example/concept that you found difficult or interesting and why?

I like how the book put the concepts of the different types of number in terms of sets such as $\mathbb{N} \subset \mathbb{Z}$. This made some concepts easier to understand.

Question 2. How many elements are in $\mathcal{P}(A)$ if $A = \{n \in \mathbb{Z} : |n| \leq 5\}$?

11 integers

2¹¹ elements

Question 3. Let $A = \{0, \{0\}, \{0, \{0\}\}\}\$.

- (a) Determine which of the following are elements of $A: 0, \{0\}, \{\{0\}\}.$ 0, $\{0\}$
- (b) Determine |A|
- (c) Determine which of the following are subsets of $A: 0, \{0\}, \{\{0\}\}\}$.

 For $\{d\}$ (i) determine the indicated sets
 - For (d)-(i), determine the indicated sets.
- (d) $\{0\} \cap A$. $\{0\}$
- (e) $\{\{0\}\} \cap A$. $\{\{0\}\}$
- (f) $\{\{\{0\}\}\}\} \cap A$. empty
- (g) $\{0\} \cup A$. $\{0, \{0\}, \{0, \{0\}\}\}$
- (h) $\{\{0\}\} \cup A$. $\{0, \{0\}, \{0, \{0\}\}\}$
- (i) $\{\{\{0\}\}\}\} \cup A$. $\{0, \{0\}, \{0, \{0\}\}, \{\{0\}\}\}\}$

Question 4. For two sets A and B of real numbers, the set $A \cdot B$ is defined by,

$$A \cdot B = \{ab : a \in A, b \in B\}.$$

Determine each of the following sets.

- 1) $A \cdot B$ for $A = \{\frac{1}{2}, 1, \sqrt{2}\}$ and $B = \{\sqrt{2}, 2, 4\}$. $\{\frac{\sqrt{2}}{2}, 1, 2, \sqrt{2}, 4, 2\sqrt{2}, 4\sqrt{2}\}$
- 2) $\mathbb{R} \cdot \mathbb{R}$.
- 3) $\mathbb{R} \cdot C$ where $C \subseteq \mathbb{R}$ with |C| = 2.

Question 5. For $A = \{1, 2\}, B = \{-1, 0, 1\}$ and the universal set $U = \{-2, -1, 0, 1, 2\}$, determine

- (a) $A \cup B$.
 - $\{-1, 0, 1, 2\}$
- (b) $A \cap B$.
 - {1}
- (c) A B. $\{2\}$

```
(d) \overline{B}.

{-2, 2}

(e) A \times B.

{(1,-1), (1,0), (1,1), (2,-1), (2,0), (2,1)}
```

Question 6. Give examples of three sets A, B and C such that

```
(a) A \subseteq B \not\subset C.

A = \{1\}

B = \{1, 2\}

C = \{3\}

(b) A \subseteq B, B \in C \text{ and } A \cap C = \emptyset.

A = \{1\}

B = \{1,2\}

C = \{\{1,2\}, 3\}

(c) A \in B, A \subset B \text{ and } A \not\subseteq C.

A = \{1\}

B = \{\{1\}, 1, 2\}

C = \{3\}
```

(d) $A \in B, A \not\subseteq B$ and $B \in C$. $A = \{1\}$ $B = \{\{1\}, 2\}$ $C = \{\{\{1\}, 2\}, 1\}$

COMPUTER SCIENCE, PETREE COLLEGE OF ARTS & SCIENCES, OKLAHOMA CITY UNIVERSITY