# **Link Prediction on Future Research Topics**

- Science4cast competition 2021

Ying Ding Aprajita Arora Zeliang Liu Abhimanyu Soni



### **AGENDA**



### Introduction



In the field of AI&ML, the number of papers grows exponentially and doubles approximately every 23 months.



Researchers have to specialize in narrow sub-disciplines, making it challenging to uncover scientific concepts and connections beyond their own area of research.



To explore beyond the specialized areas, research ideas need to transcend the individual focus bubbles.



A tool that could offer such meaningful, personalized scientific ideas would open new avenues of research.



# Science4cast Dataset (2021 IEEE BigData Cup Challenges)

# 64,719

The dataset has a network of 64719 Al concepts (nodes) and we need to predict future research topics.

### 7,652,945

By the end of 2017, there are 7,652,945 edges. If two nodes are connected means these two AI topics are researched together.



### 1994- 2017

The datasets has the timestamp between 1994 and 2017. It will be used as training datasets. Later, it is used to predict the topics for 2020.

## **Data exploration**



Decrease in the number of Isolated Nodes
Exponential Increase in Node degree

**Incomplete Training Data (2014-2017)** 



Isolated vertices vs highest degree

**Visulisation of network** 

### **Feature Engineering**

#### **01** Degree Based Feature

For nodes (v1, v2), we compute individual degrees, sum and difference of degrees

#### **02** Common Neighbor

Common Neighbors is defined as the number of vertices that are among the intersection of their one-hop neighborhood

### **03** Average Neighborhood Degree

Average Neighbor Degree of vertex u is defined as the average of vertex degrees of neighbors of u



#### **04** Jaccard Similarity

Jacard similarity is a measure to show how two vertices in the graph are similar

#### **05** Page Rank

Assigns a score to each vertex based on its link. The score can be considered as a measure of importance in the network

#### **06** Shortest Path

Shortest path is the minimum distance between two vertices in a graph.

### **Model Evaluations**





### **Model Evaluations**





## **Model Comparisons**



#### **Best performance**

Random forest has the highest AUC\_ROC score of 0.89



#### **Worst Performer**

Catboost perform the worst among all the models



# **Neural Network vs Gradient Boosting**

The average score of neural networks is 0.849, higher than 0.7415 of gradient boosting methods

| Models        | Accuracy | AUC_ROC |
|---------------|----------|---------|
| Random Forest | 0.9931   | 0.890   |
| Catboost      | 0.9942   | 0.703   |
| LightGBM      | 0.9926   | 0.780   |
| FNN           | 0.8244   | 0.839   |
| GNN           | 0.7987   | 0.859   |

### Conclusion



#### **Data**

The challenge is to make predictions of future research paper topics using link predictio.



#### **Models**

Total 5 models has been implemented and compared with the evaluation metrics of AUC\_ROC





#### **Features**

A variety of features have been calculated including Jaccard and Page Rank



#### **Improvements**

Increase the training iterations, add more features and model layers

#### References

Science4Cast Challenge: https://www.iarai.ac.at/science4cast/

- [1] Joao P. Moutinho, Bruno Coutinho, Lorenzo Buffoni 2022. Network-Based link prediction of scientific concepts. DOI: https://doi.org/10.48550/arXiv.2201.07978
- [2] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6):1150–1170, 2011.
- [3] Muhan Zhang, Yixin Chen, Link Prediction Based on Graph Neural Networks. DOI:https://arxiv.org/abs/1802.09691
- [4] Gamal Crichton, Yufan Guo, Sampo Pyysalo, Anna Korhonen, Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches, BMC Bioinformatics, 2018. DOI:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2163-9
- [5] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, "An end-to-end deep learning architecture for graph classification," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/11782