Computational Systems Biology Deep Learning in the Life Sciences

6.802 6.874 20.390 20.490 HST.506

David Gifford Lecture 10 March 12, 2019

Histone Marks Chromatin 3D Structure

http://mit6874.github.io

Goals for today

- Chromatin marks and their models
 - Hidden Markov Model (HMM)
 - Deep learning model (DeepSEA)
- Three-dimensional chromatin structure
 - Inferring it
 - Predicting it

1. Chromatin marks and biological state

Chromatin and Nucleosome Organization

Green -H3, yellow - H4, red - H2A, pink - H2B. Dark and light blue - DNA

Nucleosome

<u>DNA</u> - 146 base pairs, wrapped 1.7 times in a left-handed superhelix

Proteins - two copies of each Histones H2A, H2B, H3 and H4. Higher organisms have linker H1 histone

Histone variants

H3 variants: H3.3 - transcribed

CENP-A - centromeres

H2A variants: H2A.X - DNA damage

macroH2A - X chromosome H2A.Z - transcribed regions

Chromatin organization has multiple structural layers and organizes chromatin into "domains"

Both DNA methylation and chromatin marks contain important functional information

Histone Tail Modifications

Sims III et al., 2003

We can observe chromatin marks and other genome associated proteins using ChIP-seq

Detection of Class I (active) and Class II (poised) enhancers. a) b) hESC ChIP-seq read density profiles were generated for the indicated histone modifications centered on p300-bound regions in the top 1000 Class I and Class II enhancers, respectively. c) hESC Nanog ChIP-seq shows that Nanog binds at the three

Nature Reviews | Genetics

2. Learning chromatin states

Can we find latent state to explain observed marks?

Hidden Markov Models

Hidden state x in [1 .. m] For example, m can 15

Emitted symbol y can be multi dimensional For example, histone and accessibility data at genomic locus t

One node every 200bp down genome Parameters are $P(x_{t+1} \mid x_t)$, $P(y_t \mid x_t)$

Hidden Markov Models can be used to create latent states that generate chromatin marks

Hidden Markov Model (ChromHMM)

Divide genome into 200bp windows

Hidden state for a 200bp window models what histone marks are present in the window

Unsupervised – resulting states must be interpreted with independent data

The number of states is fixed and is a modeling decision

ChromHMM Model Parameter Visualization.

Emission parameters

234567 State (user order) 8 9 12 13

 $P(y_t \mid x_t)$ Mark

Transition parameters

State to (user order)

$$P(X_{t+1} \mid X_t)$$

ChromHMM segment based chromatin states

Tissues and cell types profiled in the Roadmap Epigenomics Consortium.

3. Predicting chromatin state from sequence

DeepSea learns TF binding, accessibility, and chromatin marks

125 DNase features, 690 TF features, 104 histone features

three convolution layers with 320, 480 and 960 kernels 1000 bp window

17% of genome 690 TF binding profiles for 160 different TFs, 125 DHS profiles and 104 histone-mark profiles Chr 8 and 9 excluded

DeepSea can predict differentially accessible regions based upon SNP value

An ensemble logistic regression classifier based on DeepSea output can identify regulatory variants

4. Three-dimensional interactions

HiC, HiChip, and ChIA-PET data reveal distal genome interactions

Enhancers regulate distal target genes by genome looping

in situ HiC identifies proximal genomic contacts

Cell. 2014 Dec 18; 159(7): 1665-1680.

in situ HiC reveals interactions at 1 – 5 KB resolution

Observed interchromosomal interaction distances fall off exponentially

ChIA-PET identifies protein mediated interactions and improves resolution for those events

ChIA-PET data are consistent with HiC data

ChIA-PET discovered enhancer linkages

Issues with ChIA-PET

- High false negative rate. Libraries produced are not complex enough to permit further discovery by additional sequencing.
 - 2. Specific to a protein (RNA Polymerase II in our example)
 - 3. Hi-C and derivatives may solve these problems eventually

HiChIP identifies protein mediated interactions

HiChIP is more sensitive than ChIA-PET

b

HiChIP and ChIA-PET interactions compared Smc1a antibody (part of cohesion complex)

XIST promoter interactions show more support from HiChIP than Hi-C

HiChIP (Smc1a) is more sensitive than HiC

5a. Discovering interactions: Anchor-based

Method 1: Discover anchors using ChIP-seq methods Given anchors, what is the chance of observing an interaction by chance?

What is the chance of observing an interaction by chance?

Estimating total events from overlap

Imagine we perform two biological replicates of an experiment and obtain 1000 events in each, of which 900 are identical.

We can use a hypergeometric model to infer how many possible events exist (N) given two sample sizes (m and n) and an overlap (k):

$$\hat{N} = \underset{N}{\operatorname{argmax}} [P(X = k; N, m, n)]$$

Using this model, we predict ~1100 total events

Approximate closed form solution for total number of events

The ML estimate of N is approximately:

$$\hat{N}(m, n, k) = \frac{mn}{k}$$

One way to see this is by using the normal approximation of the binomial approximation to the hypergeometric distribution:

$$\begin{split} &P(X=k;N,m,n) \approx \text{Binomial}\left(X=k;n=n,p=\frac{m}{N}\right) \\ &\approx \text{Normal}\left(X=k;\mu=\frac{mn}{N},\sigma^2=\frac{mn}{N}(1-\frac{m}{N})\right) \end{split}$$

5b. Discovering interactions: Density-based

Method 2: CID uses density-based clustering to discover chromatin interactions

Nucleic Acids Research, 14 February 2019, gkz051, https://doi.org/10.1093/nar/gkz051

•Figure 1. CID uses density-based clustering to discover chromatin interactions. (A) ChIA-PET interactions can be discovered as groups of dense arcs connecting two genomic regions. Each arc is a PET. (B) The PETs plotted on a two-dimensional map using the genomic coordinates of the two reads. Each point is a PET. The colors represent the density values, defined as the number of PETs in the neighborhood. The red dashed square represents the size of the neighborhood. (C) The clustering decision graph. Each point is a PET. The points with high density and high delta values are selected as cluster centers. For simplicity, only large clusters are labelled. (D) The read pairs are assigned to the nearest cluster centers. The clusters are labeled as in (C). (E) The clusters are visualized as arcs. The clusters are labeled as in (C) and (D).

Method 2: Density cluster interaction origins

Distance
$$(PET_i, PET_j) = max(|C_{i,L} - C_{j,L}|, |C_{i,R} - C_{j,R}|)$$

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/g

We use a three-component mixture model to describe conditional distribution of PET-count from all the PET clusters. One component represents true interaction PET cluster (TiPC), and the other two for random collision PET cluster (RcPC) and random ligation PET cluster (RIPC), respectively.

TiPC and RcPC models include d_{a,b} distance between clusters https://academic.oup.com/bioinformatics/article/31/23/3

Cluster interaction origins

Jaccard coefficient – measure of set similarity

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}=rac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

$$0 \le J(A, B) \le 1.$$

CID is more reproducible and sensitive

6. Predicting enhancer-promoter interactions

TargetFinder uses multiple data types to predict HiC interactions

TargetFinder Training Data

Cell Line	Promoters	Enhancers	Interacting Pairs	Non-Interacting Pairs
K562	8196	82806	1977	39500
GM12878	8453	100036	2113	42200
HeLa-S3	7794	103460	1740	34800
HUVEC	8180	65358	1524	30400
IMR90	5253	108996	1254	25000
NHEK	5254	144302	1291	25600

TargetFinder – Ratio of the CTCF and RAD21 ChIP-seq signals occurring within interacting enhancers and non-interacting enhancers

TargetFinder – Enrichment of signals at transcription start sites (TSS)

Dark - interacting; Light - non-interacting

TargetFinder – Performance

Features for enhancers and promoters only (E/P), extended enhancers and promoters (EE/P), and enhancers and promoters plus the windows be-

Deep learning network for predicting enhancer-promoter interactions

Sequence and chromatin anchor networks outputs are concatenated

Sequence -2kb sequence windows

Chromatin – 10 kb / 200 bp bins DNase-seq, H3K4me1, H3K4me2, H3K27ac, H3K27me3, H3K36me3, and H3K9me3

Enhancer promoter prediction performance with varying feature sets

