Flot maximum stable dans un réseau de transport multi-agent à capacités contrôlables

Nadia Chaabane Fakhfakh

LAAS -CNRS

- Sous la direction -M. Cyril BRIAND Mme. Marie José HUGUET

09 Juillet 2013

Plan de la présentation

- Introduction
- Réseau de transport multi-agent à capacités contrôlables
 - Définition du problème
 - Exemple
- Analyse du Problème
 - Caractérisation d'un équilibre de Nash
 - Complexité temporelle
 - Formulation MILP
- 4 Conclusion et perspectives

Plan de la présentation

- Introduction
- Réseau de transport multi-agent à capacités contrôlables
 - Définition du problème
 - Exemple
- 3 Analyse du Problème
 - Caractérisation d'un équilibre de Nash
 - Complexité temporelle
 - Formulation MILP
- 4 Conclusion et perspectives

Introduction

Optimization multi-agent

- Intervention de plusieurs entités autonomes (agents) dans différentes étapes du processus d'optimisation.
- Chaque agent contrôle ses propres variables de décision avec ses propres préférences et contraintes.
- Chaque agent a son propre objectif qui dépend des décisions de tous les agents.
 - ⇒ Quelle stratégie choisir dans un système de prise de décision où les agents doivent satisfaire un objectif global tout en satisfaisant leurs propres objectifs ?

Optimization multi-objectif

$$\mathsf{opt}\, F(x) = (f_1(x), f_2(x), \dots, f_m(x)) \,\mathsf{s.c.}\, x \in \omega$$

Avec

- $A = \{A_1, \ldots, A_m\}$ ensemble d'agents
- $x = (x_1, \dots, x_m)$ Vecteur des stratégies des agents
- $f_u(x)$ profit de l'agent A_u

Introduction

Optimization multi-agent

- Intervention de plusieurs entités autonomes (agents) dans différentes étapes du processus d'optimisation.
- Chaque agent contrôle ses propres variables de décision avec ses propres préférences et contraintes.
- Chaque agent a son propre objectif qui dépend des décisions de tous les agents.
 - ⇒ Quelle stratégie choisir dans un système de prise de décision où les agents doivent satisfaire un objectif global tout en satisfaisant leurs propres objectifs?

Optimization multi-objectif

opt
$$F(x) = (f_1(x), f_2(x), ..., f_m(x))$$
 s.c. $x ∈ ω$

Avec

- $A = \{A_1, \dots, A_m\}$ ensemble d'agents
- $x = (x_1, \dots, x_m)$ Vecteur des stratégies des agents
- $f_{\mu}(x)$ profit de l'agent A_{μ}

Qualificatifs d'une stratégie

Efficacité

- Une stratégie est efficace s'il n'existe pas une autre stratégie qui donne un meilleur profit pour tous les agents
- Optimisation multi-objectif : Oprtimum de Pareto.

Stabilité

- Une stratégie est stable si aucun agent ne peut changer localement sa stratégie pour améliorer son profit au dépend des profits des autres agents
- Théorie des jeux : Équilibre de Nash

Prix de la coopération

- Fonction objectif globale (FOG)
 - ▶ Prix de l'anarchie : $PA = (\text{valeur de FOG pour le pire EN})/(OPT)^a$
 - ▶ Prix de la stabilité : $PS = (\text{valeur de FOG pour le meilleur EN})/(OPT)^b$
- a. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. 1999.
- b. Angel E, Bampis E, Pascual F. The price of approximate stability for a scheduling game problem. 2006

Applications

Problème de transport et distribution multi-agent

- L'agent est une compagnie de transport
- Optimiser un coût de transport ou une quantité de produits à transporter -J. Adler and V. Blue. A cooperative multi-agent transportation management and route guidance system. 2002

Problème d'emploi du temps ou d'organisation d'activités

- L'agent est un participant à l'événement
- Préférences des agents pour participer à un événement
- Contraintes de participation -A. Darmann, E. Elkind, J. Lang, S. Kurz, J.
 Schauer and G. Woeginger. Group Activity Selection Problem. 2012

Applications

Problème de transport et distribution multi-agent

- L'agent est une compagnie de transport
- Optimiser un coût de transport ou une quantité de produits à transporter -J. Adler and V. Blue. A cooperative multi-agent transportation management and route guidance system. 2002

Problème d'emploi du temps ou d'organisation d'activités

- L'agent est un participant à l'événement
- Préférences des agents pour participer à un événement
- Contraintes de participation -A. Darmann, E. Elkind, J. Lang, S. Kurz, J. Schauer and G. Woeginger. Group Activity Selection Problem. 2012

Applications

Ordonnancement de projet multi-agent

- Les ressources et les tâches sont distribuées entre les agents :
 - Chaque agent peut contrôler la durée de sa tâche Objectif : les agents maximisent leurs propres objectifs et collaborent pour mener à terme le projet (objectif global pour satisfaire un client final)
 - C.Briand, A. Agnetis and J.C. Billaud. The multi-agent scheduling problem : complexity of finding an optimal Nash Equilibrium. 2012
 - Coordination entre des groupes d'agents rationnels pour ordonnancer leurs tâches sur des ressources communes.
 J. Cohen, D. Cordeiroy, D. Trystramzy, and F. Wagner, Coordination
 - J. Cohen, D. Cordeiroy, D. Trystramzx and F. Wagner. Coordination Mechanisms for Selfish Multi-Organization Scheduling. 2011

Plan de la présentation

- Introduction
- Réseau de transport multi-agent à capacités contrôlables
 - Définition du problème
 - Exemple
- Analyse du Problème
 - Caractérisation d'un équilibre de Nash
 - Complexité temporelle
 - Formulation MILP
- Conclusion et perspectives

Définition

Réseau de transport multi-agent $< G, A, Q, \overline{Q}, C, \pi, W >$:

- G = (V, E) est un réseau de transport :
 - ensemble de noeuds V avec $s, t \in V$ les noeuds source et puits ;
 - ensemble d'arcs *E* chacun ayant une capacité et recevant un flot.
- $A = \{A_1, \dots, A_u, \dots, A_m\}$ un ensemble de m agents;
 - Chaque arc (i,j) appartient exactement à un seul agent;
 - Eu ensemble d'arcs gérés par l'agent Au;
- $\underline{Q} = \{\underline{q}_{i,j}\}_{(i,j) \in E}$ et $\overline{Q} = \{\overline{q}_{i,j}\}_{(i,j) \in E}$ sont les vecteurs des capacités normales et maximales des arcs.
 - $q_{i,j} \in [\underline{q}_{i,j}, \overline{q}_{i,j}]$ est la capacité d'un arc (i,j).

Définition (suite)

- $C = \{c_{i,j}\}$ le vecteur des coût
 - où $c_{i,j}$ est le coût unitaire d'augmentation de $q_{i,j}$ par une unité sur l'arc (i,j) ;
 - Coût total d'augmentation de capacité pour un agent A_u est $\sum_{(i,j)\in E_u} c_{i,j}(q_{i,j}-\underline{q}_{i,j})$
- ullet π récompense par unité de flot circulant dans le réseau
- $W = \{w_u\}$ vecteur de pondération entre agents pour le partage de la récompense
 - w_u part de la récompense pour l'agent A_u .
 - Récompense totale d'un agent A_u est $w_u \times \pi \times F$
- F flot circulant dans le réseau
 - $f_{i,j}$ flot sur l'arc (i,j) vérifie $f_{i,j} \leq q_{i,j}$ où $q_{i,j} \in [q_{i,j},\overline{q}_{i,j}]$

Programme linèaire multi-objectif

$$Max \quad (Z_1(S), Z_2(S), \dots, Z_m(S))$$

s.c.

$$(i)$$
 $f_{i,i} \leq q_{i,i}, \forall (i,j) \in E$

(ii)
$$\sum_{(i,j)\in E} f_{i,j} = \sum_{(i,j)\in E} f_{ji}, \forall j \in V\{s,t\}$$

(iii)
$$\underline{q}_{i,j} \le q_{i,j} \le \overline{q}_{i,j}, \ \forall (i,j) \in E$$

 $f_{i,j} \ge 0, \ \forall (i,j) \in E$

où
$$Z_u(S) = w_u \; \pi \; (F(S) - \underline{F}) - \sum_{(i,j) \in E_u} c_{i,j} (q_{i,j} - \underline{q}_{i,j})$$

 Jeu non coopératif entre les agents où chacun veut maximiser son profit.

Stratégies des agents

 La stratégie d'un agent est de choisir la capacité des arcs qu'il gère de manière à maximiser son profit.

Stratégie du client

 Le client souhaite maximiser le flot et récompense pour cela les agents.

Exemple

Exemple de problème de flot multi-agent

- ullet Réseau de transport G(V,U) à capacités contrôlables
- Deux agents : Blue (A_B) et Green (A_G)
- Récompense et partage : $\pi = 120$ et $w_B = w_G = \frac{1}{2}$

FIGURE : Exemple de problème de flot multi-agent

Augmenter le flot

Trouver un chemin augmentant Γ dans le graphe d'écart tel que $cost_u(\Gamma) < w_u \times \pi$ pour tous les agents A_u .

• où
$$cost_u(\Gamma) = \sum_{(i,j) \in \Gamma^+ \cap E_u} c_{i,j} - \sum_{(i,j) \in \Gamma^- \cap E_u} c_{i,j}$$

FIGURE : Exemple de problème de flot multi-agent

Diminuer le flot

Trouver un chemin décroissant Γ dans le graphe d'écart tel que $profit_u(\Gamma) > w_u \times \pi$ pour tous les agents A_u .

• où
$$profit_u(\Gamma) = \sum_{(i,j) \in \Gamma^- \cap E_u} c_{i,j} - \sum_{(i,j) \in \Gamma^+ \cap E_u} c_{i,j}$$

FIGURE : Exemple de problème de flot multi-agent

Stratégie	Flot	Récompense	$cost_G$	$cost_B$	Z_G	Z_B
S_0	0	0	0	0	0	0

FIGURE : Stratégie S₀

Stratégie	Flot	Récompense	$cost_G$	$cost_B$	Z_G	Z_B
S_0	0	0	0	0	0	0
S_1	1	120	30	30	30	30

FIGURE : Stratégie S₁

Stratégie	Flot	Récompense	$cost_G$	cost _B	Z_G	Z_B
S_0	0	0	0	0	0	0
S_1	1	120	30	30	30	30
S_2	2	240	80	80	40	40

FIGURE: Stratégie S2

Illustration de la dualité Optimalité-Stabilité

Stratégie	Flot	Récompense	$cost_G$	cost _B	Z_G	Z_B
S_0	0	0	0	0	0	0
S_1	1	120	30	30	30	30
S_2	2	240	80	80	40	40

Optimalité-Stabilité

- S₂ maximise le flot circulant dans le réseau.
- S₂ est-elle stable au sens de Nash?

Stratégie S2

FIGURE : Stratégie S2

Stratégie	Flot	Récompense	$cost_G$	$cost_B$	Z_G	Z_B
S_0	0	0	0	0	0	0
S_1	1	120	30	30	30	30
S_2	2	240	80	80	40	40

FIGURE : Graphe d'écart correspondant à la stratégie S2

Stratégie	Flot	Récompense	$cost_G$	$cost_B$	Z_G	Z_B
S_0	0	0	0	0	0	0
S_1	1	120	30	30	30	30
S_2	2	240	80	80	40	40

FIGURE : Chemin décroissant profitable pour l'agent AG

Illustration de la dualité Optimalité-Stabilité

Stratégie	Flot	Récompense	$cost_G$	$cost_B$	Z_G	Z_B
S_0	0	0	0	0	0	0
S_1	1	120	30	30	30	30
S_2	2	240	80	80	40	40

Agent A_G peut améliorer son profit en modifiant sa stratégie

Stratégie	Flot	Récompense	$cost_G$	cost _B	Z_G	Z_B
S_2'	1	120	10	80	50	-20

FIGURE : Stratégie S'₂

Dualité Optimalité-Stabilité

- La stratégie S₂ est Pareto Optimale mais n'est pas un équilibre de Nash
- La stratégie S₁ est un équilibre de Nash qui n'est pas un optimum de Pareto

Objectif

■ Trouver une stratégie maximisant le flot qui soit un EN.

Plan de la présentation

- Introduction
- Réseau de transport multi-agent à capacités contrôlables
 - Définition du problème
 - Exemple
- Analyse du Problème
 - Caractérisation d'un équilibre de Nash
 - Complexité temporelle
 - Formulation MILP
- 4 Conclusion et perspectives

Caractérisation d'un équilibre de Nash

Equilibre de Nash

- Une stratégie non-pauvre S est un équilibre de Nash si et seulement s'il n'existe aucun chemin profitable Γ tels que :
 - ▶ Γ est un chemin augmentant et il existe un agent A_u tel que $cost_u(\Gamma_{aug}) < w_u \ \pi$ (i.e., il est profitable pour l'agent A_u d'augmenter le flot)
 - ▶ Γ est un chemin décroissant et il existe un agent A_u tel que $profit_u(\Gamma_{dec}) \ge w_u \ \pi$ (i.e., il est profitable pour l'agent A_u de diminuer le flot)

Complexité temporelle

Existe-t-il une stratégie profitable ayant un flot strictement supérieur à une valeur ϕ ?

NP-complet au sens fort

Réduction à partir d'un problème 3-partition

- Considérons un ensemble $\zeta = \{a_1, \dots, a_K\}$ de K = 3k entiers, tels que :
 - chaque entier $a_i \in]B/4, B/2]$, pour tout i = 1, ..., K
 - $\bullet \sum_{i=1}^{K} a_i = k \times B$
- Existe-t-il une partition en k sous-ensembles tel que la somme des entiers dans chaque sous-ensemble est égale à B^a?

a. Garey, M.R. and Johnson, D.S. (1979). Computers and Intracability: A guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York, USA.

Complexité temporelle

Réduction à partir d'un problème 3-partition

- Réduire une instance du problème 3-partition à une instance du problème Flot maximum Multi-agent stable.
- Construire un réseau de transport à partir de l'instance du problème 3-partition avec K = 9, k = 3, B = 24 et $\zeta = \{7, 8, 7, 7, 7, 8, 9, 10, 9\}$.
 - Réseau de transport multi-agent avec k = 3 agents
 - chaque agent gère K = 9 arcs
 - chaque entier a_i est représenté par 3 arcs parallèles ayant une capacité $q_{i,j} \in [0,1]$ et un coût $c_{i,j} = a_i$
 - flot = 0
 - Récompense de l'agent A_u : $w_u \times \pi = B + \epsilon$ où ϵ est une petite valeur positive.
- Existe-t-il un équilibre de Nash tel que le flot > 0?

Complexité temporelle

Eléments de preuve (suite)

- Construire le réseau de transport multi-agent à partir d'une instance 3-partitions
- Chercher un chemin profitable tel que le coût pour chaque agent ne dépasse pas sa récompense B=24

FIGURE : Réduction à partir d'un problème 3-partition avec k = 3

Complexité du problème

Le problème de flot à coût minimum multi-agent où les agents ont des profits non négatifs $(Z_u(S) \ge 0)$ et des capacités q_i ayant un flot $F(S) \ge \phi$ est NP-complet.

Formulation mathématique

Trouver un EN qui maximise le flot

S.C.

(i)
$$f_{i,j} \leq q_{i,j}, \forall (i,j) \in E$$

(iii)
$$\underline{q}_{i,j} \leq q_{i,j} \leq \overline{q}_{i,j}, \forall (i,j) \in E$$

(iv)
$$profit_u(\Gamma_{dec}) < w_u \pi, \forall A_u \in \mathcal{A}$$

 $f_{i,j} \geq 0, \forall (i,j) \in E$

Travail en cours

Formuler les contraintes de stabilité au sens de Nash comme des contraintes d'un programme linéaire en nombres entiers.

• Reformulation des contraintes basée sur l'identification des chemins Γ_{dec} ayant le profit maximum $profit_u(\Gamma_{dec})$

Plan de la présentation

- Introduction
- Réseau de transport multi-agent à capacités contrôlables
 - Définition du problème
 - Exemple
- Analyse du Problème
 - Caractérisation d'un équilibre de Nash
 - Complexité temporelle
 - Formulation MILP
- 4 Conclusion et perspectives

Flot max de coût min multi-agent

Probléme de flots dans les réseaux à coût minimum multi-agent avec des capacités contrôlables.

- Notions de stabilité et d'efficacité.
- Problème d'optimisation : trouver un équilibre de Nash qui maximise le flot à coût minimum
 - NP-difficile au sens fort.

- Résolution centralisée
 - Modélisation mathématique en programmation linéaire: résolution exacte pour trouver le meilleur équilibre de Nash qui qui maximise le flot.
 - Autres approches.

Flot max de coût min multi-agent

Probléme de flots dans les réseaux à coût minimum multi-agent avec des capacités contrôlables.

- Notions de stabilité et d'efficacité.
- Problème d'optimisation : trouver un équilibre de Nash qui maximise le flot à coût minimum
 - NP-difficile au sens fort.

- Résolution centralisée
 - Modélisation mathématique en programmation linéaire: résolution exacte pour trouver le meilleur équilibre de Nash qui qui maximise le flot.
 - Autres approches.

- Résolution distribuée
 - proposer des approches distribuées pour chercher des stratégies efficaces et qui soient stables au sens de Nash.
 - se baser sur les principes des méthodes distribuées recensées dans la littérature des DCOP et DisCSP.
- Autres problèmes d'optimisation de réseau
 - Arbre couvrant, affectation, transbordement, etc.
 - Généralisation des méthodes distribuées spécifiques pour des problèmes de réseau

- Résolution distribuée
 - proposer des approches distribuées pour chercher des stratégies efficaces et qui soient stables au sens de Nash.
 - se baser sur les principes des méthodes distribuées recensées dans la littérature des DCOP et DisCSP.
- Autres problèmes d'optimisation de réseau
 - Arbre couvrant, affectation, transbordement, etc.
 - Généralisation des méthodes distribuées spécifiques pour des problèmes de réseau

Merci pour votre attention!