1 Deskripční logika

Příklad 1.1: Jsou dány koncepty Male, Female a role hasChild. Vytvořte v deskripční logice \mathcal{ALCN} (případně i v \mathcal{AL}) následující koncepty

Verze: 9. května 2013

- a) Person
- b) Mother, Father
- c) Parent
- d) Childless
- e) Grandmother, Grandfather
- f) ParentOfSons (rodič alespoň jednoho syna)
- g) ParentOfOnlySons
- h) MotherWithManyChildren (matka s více než třemi dětmi)
- i) GrandmotherOfOnlyGrandsons

Řešení 1.1:

- a) Person \equiv Male \sqcup Female (předpoklad: v doméně není nic kromě lidí, co patří do Male nebo Female) \mathcal{AL} : Person $\equiv \top$ (předpoklad: v doméně jsou jen lidé)
- b) Mother \equiv Female \sqcap \exists hasChild.Person Father \equiv Male \sqcap \exists hasChild.Person \mathcal{AL} : Mother \equiv Female \sqcap \exists hasChild. \top , Father \equiv Male \sqcap \exists hasChild. \top
- c) Parent \equiv Person \sqcap \exists hasChild.Person pro určitou strukturu domény stačí Parent \equiv \exists hasChild. \top
- d) $\begin{array}{l} \text{Childless} \equiv \operatorname{Person} \sqcap \neg (\exists \operatorname{hasChild.Person}) \\ \mathcal{AL} : \operatorname{Childless} \equiv \operatorname{Person} \sqcap \forall \operatorname{hasChild.} \bot \\ \end{array}$
- e) Grandmother \equiv Mother \sqcap \exists hasChild.Parent Grandfather \equiv Father \sqcap \exists hasChild.Parent \mathcal{AL} : nelze
- f) ParentOfSons \equiv Parent $\sqcap \exists$ hasChild.Male
- g) ParentOfOnlySons \equiv Parent $\sqcap \forall$ hasChild.Male
- $h) \ \ \texttt{MotherWithManyChildren} \equiv \texttt{Mother} \, \sqcap \geq 4 \, \texttt{hasChild}$
- i) $GrandmotherOfOnlyGrandsons \equiv Grandmother \sqcap \forall hasChild.(ParentOfOnlySons \sqcup Childless)$

Příklad 1.2: Jsou dány koncepty Male, Doctor, Rich, Famous a role has Child, has Friend. Vytvořte v deskripční logice \mathcal{ALC} oblíbený učebnicový koncept Happy Father s významem "otcové, jejichž všechny děti jsou doktoři a všechny mají bohaté nebo slavné přátele".

Verze: 9. května 2013

Řešení 1.2: HappyFather \equiv Male \sqcap (\exists hasChild.(\sqcap) \sqcap \forall hasChild.(Doctor \sqcap \exists hasFriend.(Rich \sqcup Famous)) \sqcap

Příklad 1.3: Pomocí tabel dokažte nebo vyvraťte v \mathcal{ALC} následující tvrzení

- $a) \ (\texttt{Person} \ \sqcap \ (\forall \texttt{hasChild.Male})) \sqsubseteq (\texttt{Person} \ \sqcap \ (\exists \texttt{hasChild.Male}))$
- b) $(Male \sqcap (\exists hasChild.Male) \sqcap (\forall hasChild.Male)) \sqsubseteq ((Male \sqcup Female) \sqcap (\exists hasChild.(Male \sqcup Female)))$

Řešení 1.3: Tvrzení typu $C \sqsubseteq D$ dokazujeme pomocí ekvivalentní nesplnitelnosti $C \sqcap \neg D$. Používáme metodu vyvracení, takže předpokládáme, že $C \sqcap \neg D$ je splnitelný koncept a obsahuje tedy alespoň jeden prvek. Kořen konstruovaného tabla je tedy $(C \sqcap \neg D)(a)$ převedený do negační normální formy. Používáme neohodnocená tabla (každý uzel je dle předpokladu pravdivý). Tvrzení a) neplatí (vytvořené tablo má nespornou větev), tvrzení b) platí (vytvořené tablo je kontradiktorické). □