Задача №3а

(Решение двумерного однородного уравнения теплопроводности)

Постановка задачи.

Медная пластина с размерами Lx = Ly = 0.5 м. Горизонтальные границы являются адиабатическими, а на вертикальных границах поддерживаются постоянные температуры $u_l = 80$ °C и $u_r = 30$ °C. Начальная температура пластины $u_0 = 5$ °C.

Необходимо решить двумерное однородное уравнение теплопроводности вида

$$\rho c \frac{\partial u}{\partial t} = \lambda \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \quad 0 < x < Lx, \quad 0 < y < Ly,$$

где ρ =8960 кг/м³ – плотность меди, c = 380 Дж/(кг·°С) – теплоемкость меди, λ = 401 Вт/(м·°С) – коэффициент теплопроводности меди. Коэффициент температуропроводности $k = \lambda / (\rho c)$.

Для решения уравнения используется явная разностная схема с расщеплением по пространственным координатам:

$$\upsilon_{i,j} = u_i^n + \frac{k\tau}{h^2} \left(u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n \right)$$
 – промежуточное решение,

$$u_{i,j}^{n+1} = \upsilon_{i,j} + \frac{k\tau}{h^2} \left(\upsilon_{i,j+1} - 2\upsilon_{i,j} + \upsilon_{i,j-1}\right)$$
 – окончательное решение.

Начальное условие: $u(x, y, 0) = u_0$.

Граничные условия на вертикальных границах:

$$u(0,y, t) = u_l, u(Lx, y, t) = u_r.$$

Граничные условия на горизонтальных границах:

$$\frac{\partial u}{\partial y} = 0.$$

Задание:

- 1) Получить распределение температуры на поверхности пластины на момент времени $T=60\ c$, используя следующие параметры: h=0,01, dt=? (см. замечание 1). Построить график температуры вдоль оси Ох.
- 2) Сравнить график температуры с реперными точками (учесть, что координаты центра расчетных ячеек вычисляются согласно $i \cdot h h/2$):

X	U
0.005	80
0.025	70
0.045	60
0.065	50
0.085	40
0.115	30
0.15	20
0.1775	15
0.225	10
0.345	10
0.405	15
0.435	20
0.495	30

Должно получиться что-то вроде такого:

3) Построить график зависимость ускорения S от количества процессов p, где p=1,2,3,...,8-12 (см. замечание 2).

Замечания:

- 1) Подумать над значением шага по времени.
- 2) Если график не получается (нет прироста ускорения), подумать над мелкостью разбиения расчетной области и тем, как загрузить вычислительные ядра.
- 3) Подумать, каким образом следует организовать пересылку сообщений между процессами посредством блокирующих функций приема/передачи, чтобы суммарное время передачи в конце каждого шага по времени было O(1) (а не O(p)). Реализовать оба варианта. Сравнить графики ускорения в этих двух вариантах.