COMPLEX VARIABLES: HOMEWORK DUE MONDAY 1/22/2018

- (1) Which of the following is true / false? Answer each one, but provide an explanation / proof for about a half. Please don't put too much time into the write-up ... just say or draw something that conveys understanding.
 - (a) $Re(3z_1 + 2z_2) = 3Re(z_1) + 2Re(z_2);$
 - (b) $Re(z_1z_2) = Re(z_1)Re(z_2);$
 - (c) $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$;
 - (d) $\overline{\alpha z_1 + \beta z_2} = \alpha \overline{z_1} + \beta \overline{z_2};$
 - (e) $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$;
 - (f) $\frac{1}{z} = \frac{1}{z}$;
 - (g) $\overline{z^n} = \overline{z}^n$;
 - (h) $\operatorname{Re}(z^n) = \operatorname{Re}(\overline{z}^n);$
 - (i) $\operatorname{Im}(z^n) = \operatorname{Im}(\overline{z}^n);$
 - (j) $(\cos(\theta) i\sin(\theta))^n = \cos(n\theta) i\sin(n\theta)$;
 - (k) $|e^{i\theta}| = 1$;
 - (1) $|e^{in\theta}| = n$;
 - (m) $|z_1 + z_2| = |z_1| + |z_2|$;
 - (n) $|z_1 z_2| = |z_1||z_2|$;
 - (o) $|z^n| = |z|^n$;
 - (p) $\arg(z_1 + z_2) = \arg(z_1) + \arg(z_2);$
 - (q) $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2);$
 - (r) $Arg(z_1z_2) = Arg(z_1) + Arg(z_2);$
 - (s) $arg(\bar{z}) = -arg(z)$;
 - (t) $Arg(\bar{z}) = -Arg(z)$.
- (2) Explain / show the following version of the Triangle Inequality:

$$||z_1| - |z_2|| \le |z_1 - z_2|.$$

- (3) Draw the following:
 - (a) Re(z-1) > 2;
 - (b) Im(z+1) < 3;
 - (c) $1 \le |z 1| \le 3$;
 - (d) |z+i|=3;
 - (e) |2z-3|>1;
 - (f) |(1+i)z+1| < 2.

- (4) Calculate the following. FAST. De Moivre's formula is your friend. And then some.
 - (a) $(1+i)^5$;
 - (b) $(1-i)^8$;
 - (c) $(1+i)^5(1-i)^8$;
 - (d) $\frac{(1+i)^5}{(1-i)^8}$;
 - (e) $(3+\sqrt{3}i)^5$;
 - (f) $(3 \sqrt{3}i)^5$.
- (5) Draw me pictures for the following. Minus points for computing these.
 - (a) 1+i, $(1+i)^2$, $(1+i)^3$, $(1+i)^4$, $(1+i)^5$,
 - (b) $\frac{1}{1+i}$, $(\frac{1}{1+i})^2$, $(\frac{1}{1+i})^3$, $(\frac{1}{1+i})^4$, $(\frac{1}{1+i})^5$,
 - (c) $\cos(\theta) + i\sin(\theta)$, $(\cos(\theta) + i\sin(\theta))^2$, $(\cos(\theta) + i\sin(\theta))^3$, $(\cos(\theta) + i\sin(\theta))^4$,
- (6) Compute and <u>picture</u> all the values of the following. (Note: if your pictures suck your homework goes straight to the chicken coop.)
 - (a) $1^{\frac{1}{6}}$;
 - (b) $(-1)^{\frac{1}{4}}$;
 - (c) $(1+i)^{\frac{1}{2}}$;
 - (d) $i^{\frac{1}{3}}$;
 - (e) $(1-i)^{\frac{1}{3}}$.
- (7) Use the identity $\cos(2\theta) + i\sin(2\theta) = (\cos(\theta) + i\sin(\theta))^2$, which is basically just the re-statement of $e^{2i\theta} = (e^{i\theta})^2$, to get a formula for $\cos(2\theta)$ and $\sin(2\theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$. Then do this off top of your head.
- (8) It is kind of useful to pause and think what would happen if the rules of complex number arithmetic were different. So here is an alternative multiplication; please keep addition the same. Also, keep conjugation the same.

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1x_2 + y_1y_2, x_1y_2 + x_2y_1).$$

- (a) Which, if any, of associative, commutative and distributive laws change? You don't need to prove much ... just say something intelligent.
- (b) What is the situation with $z \cdot \overline{z}$? In which ways does it behave differently from the corresponding quantity for "normal" complex numbers? (Draw me a picture.)
- (c) How would you perform division in this "new word"? Who do you get to divide by who?
- P.S. I know who was in abstract last semester. And you-who-were-in-abstract know what I am asking.