

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 3410527 A1

⑯ Int. Cl. 3:
G 01 R 29/12

⑯ Aktenzeichen: P 34 10 527.1
⑯ Anmeldetag: 22. 3. 84
⑯ Offenlegungstag: 4. 10. 84

⑯ Innere Priorität: ⑯ ⑯ ⑯
02.04.83 DE 33121311 09.07.83 DE 33248109

⑯ Anmelder:
Leybold-Heraeus GmbH, 5000 Köln, DE

⑯ Erfinder:
Dirks, Heinrich, Dr., 5000 Köln, DE

⑯ Sonde für ein Gerät zur Messung des elektrischen Feldes

Bei einer Sonde für ein Gerät zur Messung des elektrischen Feldes findet als Kondensator mit sich verändernder Kapazität ein »Kammkondensator« (1) Verwendung. Dieser weist zwei kammartig ausgebildete Elektroden (2, 3) auf, die derart ausgebildet und angeordnet sind, daß sie in eine im Bereich der Zahnräihen einander durchdringende Relativbewegung versetzbare sind.

DE 3410527 A1

83.002

LEYBOLD-HERAEUS GMBH

5

Köln-Bayental

Sonde für ein Gerät zur Messung des elektrischen Feldes

ANSPRÜCHE

10

1. Sonde für ein Gerät zur Messung des elektrischen Feldes, durch gekennzeichnet, daß sie

zwei kammartig ausgebildete Elektroden (2, 3) aufweist,

die derart ausgebildet und angeordnet sind, daß sie in

15

eine periodische, im Bereich der Zahnreihen einander durchdringende Relativbewegung versetzbar sind.

2. Sonde nach Anspruch 1, dadurch gekenn-

zeichnet, daß die eine Elektrode (2) feststehend und die andere (3) in Schwingungen versetzbar ist.

3. Sonde nach Anspruch 2, dadurch gekenn-

zeichnet, daß die in Schwingungen versetzbare Elektrode (3) als bandabschnittsförmiges, auf ihrer den

25

Zähnen (7) abgewandten Seite fest eingespanntes Bauteil ausgebildet ist.

4. Sonde nach Anspruch 2 oder 3, dadurch

gekennzeichnet, daß zur Schwingungs-

30

anregung der Elektrode (3) ein Magnetantrieb (9) vorge- sehen ist.

5. Sonde nach Anspruch 2, 3 oder 4, dadurch

gekennzeichnet, daß die Meßfrequenz der Resonanzfrequenz der schwingenden Sonde (3) entspricht.

35

6. Sonde nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, daß eine

- der Elektroden als Doppelelektrode (27) ausgebildet
5 ist.
7. Sonde nach Anspruch 6, dadurch gekennzeichnet, daß die Doppelelektrode (27) aus einem Träger (28) aus Isoliermaterial besteht, der
10 beidseitig mit einer die Elektroden bildenden Metall-
schicht (29, 30) ausgerüstet ist.
8. Sonde nach Anspruch 6 oder 7 und einem der Ansprüche
15 2 bis 5, dadurch gekennzeichnet, daß die in Schwingungen versetzbare Elektrode die
Doppelelektrode (27) ist.
9. Sonde nach Anspruch 6, 7 oder 8, dadurch
20 gekennzeichnet, daß der Abstand der
beiden Elektroden (29, 30) etwa halb so groß ist wie
die Stärke der Gegenelektrode (5).
10. Gerät zur Messung des elektrischen Feldes mit einer
Sonde nach einem der vorhergehenden Ansprüche,
25 dadurch gekennzeichnet, daß die
Elektroden (2, 3) über einen Widerstand (16) mitein-
ander verbunden sind.
11. Gerät nach Anspruch 10, dadurch gekenn-
30 zzeichnet, daß zur Bildung eines der gemessenen
Feldstärke proportionalen Gleichspannungssignals ein
Gleichrichter (19) für die am Widerstand (16) abgenom-
menen Wechselspannungsimpulse vorgesehen ist.
- 35 12. Gerät nach Anspruch 11, dadurch gekenn-
zeichnet, daß zur phasenrichtigen Gleich-
richtung ein vom Oszillatator (12) für den Magnet-
antrieb (9) über einen Phasenschieber (23) ange-
steuerter Schmitt-Trigger (22) vorgesehen ist.

- 3 -

5 13. Kondensator mit zeitlich veränderlicher Kapazität,
dessen Elektroden relativ zueinander bewegbar sind,
d a d u r c h g e k e n n z e i c h n e t , daß
die Elektroden (2, 3) nach Art eines Kamms ausge-
10 bildete Zahnreihen (5, 7) aufweisen, welche derart
ausgebildet und einander zugeordnet sind, daß eine
im Bereich der Zahnreihen einander durchdringende
Relativbewegung möglich ist.

15

20

25

30

35

5

LEYBOLD-HERAEUS GMBH
Köln-Bayental

Sonde für ein Gerät zur Messung des elektrischen Feldes

10 Bei der Messung der Stärke elektrischer Felder wird die Tatsache ausgenutzt, daß das Feld auf der Oberfläche einer Elektrode Ladungen influenziert, deren Dichte von der jeweiligen Feldstärke abhängt. Bei einem bekannten E-Feldmeter ist eine feststehende Sektorfeld-Meßelektrode vorgesehen,
15 vor der ein auf Masse liegendes Flügelrad rotiert. Durch dieses Flügelrad wird der elektrische Fluß zur Meßelektrode mehr oder weniger abgeschirmt und schwankt deshalb periodisch zwischen einem Maximalwert und Null. Der Meßelektrode ist ein hochohmiger Arbeitswiderstand zugeordnet,
20 an dem periodische Spannungsimpulse erzeugt werden. Die Höhe dieser Impulse ist der zu messenden elektrischen Feldstärke proportional. Mittels bekannter elektronischer Schaltungen können diese Wechselspannungssignale in ein ebenfalls der zu messenden elektrischen Feldstärke proportionales Gleichspannungssignal umgewandelt werden.
25

Weitere ebenfalls mit Rotoren arbeitende Geräte zur Messung elektrischer Felder sind aus der DE-OS 26 37 713 und der US-PS 38 46 700 bekannt.

30 Nachteilig an den vorbekannten Sonden ist die Tatsache, daß rotierende Teile vorhanden sein müssen. Dadurch wird der Aufbau der Sonde relativ kompliziert und - wegen des Antriebsmotors - relativ groß, was nicht nur hinsichtlich der Herstellkosten, sondern auch hinsichtlich der Meßgenauigkeit bei in ihrer Ausdehnung begrenzten elektrischen Feldern nachteilig ist.
35

- 5 -

- Der vorliegenden Erfindung liegt die Aufgabe zugrunde,
5 eine Sonde für ein Gerät zur Messung des elektrischen
Feldes zu schaffen, die keine rotierenden Teile mehr
aufweist.
- Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die
10 Sonde zwei kammartig ausgebildete Bauteile aufweist,
welche derart ausgebildet und angeordnet sind, daß sie
in eine periodische, im Bereich der Zahnreihen einander
durchdringende Relativbewegung versetzbar sind.
- 15 Eine in dieser Weise ausgebildete Sonde ist kompakt und
weist keine rotierenden Teile auf. Eine exakte, potential-
freie Messung elektrischer Felder ist mit dieser Sonde
möglich. Sie beruht auf der Messung der Umladungsströme,
die beim Wechsel der Positionen der beiden Elektroden
20 des "Kammkondensators" fließen. Auch als Tangentialfeld-
Sonde ist sie einsetzbar.
- Weitere Vorteile und Einzelheiten der Erfindung sollen
anhand von in den Figuren 1 bis 4 dargestellten Ausführungs-
25 beispielen erläutert werden.
- Die Figuren 1 und 2 zeigen eine Draufsicht und eine Seiten-
ansicht der vorderen Bereiche der Elektroden 2 und 3
des erfindungsgemäßen "Kammkondensators" 1. Die Elektrode 2
30 ist auf einem Träger 4 fest gehalten. Sie weist eine von
den Zähnen 5 gebildete Zahnreihe auf. Die Lücken dieser
Zahnreihe sind mit 6 bezeichnet.
- Der Elektrode 2 zugeordnet ist die Elektrode 3 mit ihren
35 Zähnen 7 und Zahnlücken 8 derart zugeordnet, daß sie
einander auch dann nicht berühren, wenn die Zähne 5 und 7
einander durchdringen, d. h., wenn sich die Zähne 7 der
Elektrode 3 in der Ebene der Zähne 5 der Elektrode 2

befinden. Die Form der Zähne 5 bzw. 7 kann beliebig sein.
Es muß lediglich die Forderung erfüllt sein, daß sie
5 einander berührungslos durchdringen können.

Die Elektrode 3 ist zumindest in ihrem vorderen, mit den
Zähnen 7 ausgerüsteten Bereich senkrecht zur Ebene der
feststehenden Elektrode 2 bewegbar. Wie in Fig. 3 schema-
10 tisch dargestellt, kann das z. B. dadurch realisiert sein,
daß die Elektrode 3 als schwingfähiges, bandabschnitt-
förmiges, auf ihrer den Zähnen 7 abgewandten Seite fest
eingespanntes Bauteil ausgebildet ist, welches sich in
15 seiner Ruhelage in der Ebene der Elektrode 2 befindet. Mit
Hilfe eines Magnetantriebs 9 kann diese Elektrode 3 in
unterschiedliche Positionen gebracht oder derart in
Schwingungen versetzt werden, daß die beiden Kammbereiche
einander durchdringen. In Fig. 2 ist diese Bewegungs-
möglichkeit dadurch angedeutet, daß zwei Positionen der
20 Elektrode 3, die eine ausgezogen, die andere gestrichelt
dargestellt sind. Zwischen diesen beiden Positionen
schwingt die Elektrode 3 und durchdringt dabei in ihrer
Null-Stellung die Elektrode 2.

Fig. 3 zeigt den Einsatz des erfundungsgemäßen
25 "Kammkondensators" als Sonde für ein Gerät zur Messung des
elektrischen Feldes. Die Elektroden 2 und 3 befinden sich
gemeinsam mit dem Magnetantrieb 9 in einem Gehäuse 11
aus geeignetem Material. Die Elektrode 2 ist in einem
30 relativ schmalen Vorderteil des Gehäuses 11 fest angeordnet.
Die Elektrode 3 ist als schwingfähiges Bauteil ausgebildet
und auf der gegenüberliegenden Seite
des Gehäuses 11 fest eingespannt. Mit Hilfe des Magnet-
antriebs 9 ist die Elektrode 3 derart in Schwingungen
35 versetzbär, daß die auf den einander zugewandten Seiten
der Elektroden 2 und 3 befindlichen Zähne 5 und 7 einander
durchdringen. In diesem Bereich sollte das Gehäuse
möglichst schmal und lang ausgebildet sein, damit eine

- 7 -

5 kompakte Sonde entsteht und der Magnetantrieb 9 die Feldmessung nicht stört. Eine Länge der Elektrode 3 von ca. 150 mm und eine Schwingungsamplitude von ca. 15 mm haben sich als zweckmäßig erwiesen.

10 Um ein elektrisches Feld mit dieser Sonde messen zu können, wird die Elektrode 3 in Schwingungen versetzt, indem der Oszillator 12 über den Verstärker 13 den Magnetantrieb 9 mit periodischen Impulsen versorgt, und die Sonde in das zu messende elektrische Feld derart eingebbracht, daß die elektrischen Feldlinien etwa 15 senkrecht auf den Elektroden 2 und 3 stehen. Eine zweckmäßige Frequenz ist 70 bis 80 Hz. Besonders günstig ist es, wenn diese Meßfrequenz gleichzeitig die Resonanzfrequenz der Elektrode 3 ist, so daß lediglich eine Resonanzanregung erforderlich ist. Infolge ihres 20 ständigen Positionswechsels wird auf die Elektroden 2 und 3 eine ständig wechselnde Ladung influenziert. Über die aus dem Gehäuse 11 herausgeföhrten Leitungen 14 und 15 sind die Elektroden 2 und 3 durch einen Widerstand 16 miteinander verbunden, über den die influenzierten 25 Ladungen fließen. Dadurch können am Widerstand 16 in ihrer Richtung wechselnde Spannungsimpulse abgenommen und im Verstärker 17 verstärkt werden. An den Verstärker schließt sich ein Bandpaß 18 zur Eliminierung eines eventuellen Netzbrumms an. Im Baustein 19 erfolgt eine 30 Gleichrichtung des Wechselspannungssignals, so daß am Ausgang 21 ein der elektrischen Feldstärke des zu messenden elektrischen Feldes proportionales Gleichspannungs- signal abgenommen werden kann.

35 Mit einer allein aus den Bausteinen 12 bis 19 bestehenden Meßelektronik wäre es nicht ohne weiteres möglich, die Richtung des zu messenden elektrischen Feldes festzustellen. Deshalb ist im Baustein 19 eine phasenrichtige

- Gleichrichtung der Wechselspannungsimpulse notwendig.
- 5 Das geschieht mit Hilfe des Schmitt-Trippers 22, der ebenfalls vom Oszillator 12 über den Phasenschieber 23 angesteuert wird.
- Die gesamte Meßelektronik ist lediglich als Blockschaltbild
10 dargestellt. Sie ist an sich bekannt und unter dem Namen Lock-in-Verstärkung geläufig.

Fig. 4 zeigt eine Ausführung, bei der die (in Schwingungen versetzbare) Elektrode 7 durch eine Doppellektrode 27 ersetzt ist. Sie besteht aus einem Träger 28 aus elektrisch isolierendem Material, der auf seinen beiden Seiten mit Metallbeschichtungen 29 und 30 versehen ist, welche die Elektroden bilden. Jede Elektrode 29, 30 stellt zusammen mit der Gegenelektrode 5 einen separaten Kammkondensator dar, der jeweils an eine Meßelektronik gemäß Fig. 3 angeschlossen wird. Die Dicke der Elektrode 5 ist etwa doppelt so groß wie die Dicke der Doppellektrode 27. Mit der Doppelfeldsonde kann das elektrische Feld oberhalb und unterhalb der Sonde bestimmt werden.

Der für die Verwendung als Sonde eines Gerätes zur Messung des elektrischen Feldes vorgeschlagene und beschriebene "Kammkondensator" ist an sich neu und stellt praktisch einen Kondensator mit veränderlicher Kapazität dar. Er kann überall dort Verwendung finden, wo eine periodisch oder auch (bei entsprechender Steuerung der Relativbewegung der Kämme oder bei entsprechender Einstellung der Lage der Kämme zueinander) aperiodisch oder stufenweise veränderliche Kapazität benötigt wird. Als Beispiel soll hier nur das Schwingkondensatorelektrometer erwähnt werden (vgl. Kohlrausch "Praktische Physik", 20. Auflage 1956, Band 2, S.14), das mit einem erfindungsgemäßen "Kammkondensator" ausgerüstet werden kann. Bei dieser Anwendung

- 9 -

wird nicht ein elektrisches Feld gemessen, sondern es wird
5 an den Kondensator eine zu messende Spannung angelegt.
Durch die zeitlich veränderliche Kapazität fließt dann in
den Kondensatorzuleitungen ein Wechselstrom, ohne daß die
Meßspannung belastet wird.

10

15

20

25

30

35

- 10 -
- Leerseite -

Nachgericht

- 11 -

1 11 - 111 - 11

-1/1-

3410527

34 10 527

G 01 R 29/12

GOR 25/12
22. März 1984

22. März 1984
4. Oktober 1984

FIG. 1

FIG. 2

FIG.3

