高中 數學 科考試卷 年 班 座號: 姓名:

一、單選題(每題6分,共30分)

)1. ABCDE 為正五邊形,以 $A \times B \times C \times D \times E$ 為始點所決定之相異向量(含零向量)共有幾個? (A)10 (B)15 (C)20 (D)21 (E)25

答案:(D)

解析:5×4+1=21(個)

)2. 附圖為正六邊形 ABCDEF,以圖中的六個頂點之一為始點,另一個頂點為終點所產生的"有 向線段"有多少個?

(A)6 (B)15 (C)30 (D)42 (E)60

答案:(C)

解析:始點-終點 $\Rightarrow P_2^6 = 30$

)3. 平行四邊形 ABCD 中,E,F,G,H 分別為 \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} 之中點,而 $\overline{GB} = r\overline{AB}$ + $s\overrightarrow{BC}$ (r, s 為實數),則r+s=

$$(A) - \frac{3}{2}$$
 $(B) - \frac{1}{2}$ $(C) \frac{1}{2}$ $(D) \frac{3}{2}$ (E) 以上皆非

答案:(B)

解析: $\overrightarrow{GB} = \overrightarrow{GC} + \overrightarrow{CB} = \frac{1}{2} \overrightarrow{AB} - \overrightarrow{BC}$

$$\therefore r = \frac{1}{2} , s = -1 \Rightarrow r + s = -\frac{1}{2} ,$$

)4. 如附圖,在四邊形 ABCD 中,設 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$, $\overrightarrow{BC} = \overrightarrow{c}$,則 $\overrightarrow{DC} = \overrightarrow{c}$

$$C$$
 (B) \overline{b} $-(\overline{a} + \overline{c})$ (C) $\overline{a} + \overline{b} + \overline{c}$ (D) $\overline{b} - \overline{a} + \overline{c}$

答案:(A)

解析: $\overrightarrow{DC} = \overrightarrow{AC} - \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AD} = \overrightarrow{a} + \overrightarrow{c} - \overrightarrow{b}$

∴選(A)

)5. 如附圖,傳說船駛達百慕達三角洲時,須遵循下列兩個怪異磁場 $\frac{1}{a}$, $\frac{1}{b}$ 的方向;否則 (會神奇失蹤。今一艘救援艇已開到此海域 A 處,準備前往 B 處尋找一艘載滿黃金的船。

若欲完成任務,它應遵循圖示 \overline{a} , \overline{b} 的方向,走了 $x\overline{a}+x\overline{b}$,x,y是實數,則

$$(A)x=2$$
, $y=-1$ $(B)x=-2$, $y=1$ $(C)x=-2$, $y=0$ $(D)x=-1$, $y=1$ $(E)x=-1$, $y=-2$

答案:(E)

解析: $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} = (-2)\overrightarrow{b} + (-1)\overrightarrow{a}$

 $\therefore x = -1$, y = -2,

故選(E)。

二、非選擇題—填充題(每格10分,共70分)

1. 化簡 $\overrightarrow{AB} + \overrightarrow{DA} + \overrightarrow{BD} - \overrightarrow{BC} - \overrightarrow{CA} =$ _ \circ

答案: \overrightarrow{AB}

解析: $\overrightarrow{AB} + \overrightarrow{DA} + \overrightarrow{BD} - \overrightarrow{BC} - \overrightarrow{CA}$

 $=(\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DA})+\overrightarrow{CB}-\overrightarrow{CA}$

 $= \overrightarrow{0} + \overrightarrow{AB}$

 $= \overrightarrow{AB}$

2. 正六邊形 ABCDEF 中, $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$,試以 \overrightarrow{a} , \overrightarrow{b} 表示 $\overrightarrow{DB} =$

答案:3 $\frac{1}{a}$ -2 $\frac{1}{b}$

解析: $\overrightarrow{DB} = \overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{AB} - 2\overrightarrow{AO}$

$$=\overrightarrow{AB}-2\overrightarrow{BC}=\overrightarrow{AB}-2(\overrightarrow{AC}-\overrightarrow{AB})$$

$$=$$
3 \overrightarrow{a} $-$ 2 \overrightarrow{b} \circ

3. 在 $\triangle ABC$ 中,若 $x(\overline{AB}+\overline{AC})+(y+3)\overline{CB}+4\overline{AC}=\overline{0}$,則實數對 $(x,y)=_-$ 。

答案:(-2,-1)

解析: $x(\overrightarrow{AB} + \overrightarrow{AC}) + (y+3)(\overrightarrow{AB} - \overrightarrow{AC}) + 4\overrightarrow{AC} = 0$

(x+y+3) $\overrightarrow{AB} + (x-y+1)$ $\overrightarrow{AC} = \overrightarrow{0}$

x+y+3=0, $\exists x-y+1=0$

 $\therefore x = -2, y = -1$

4. 在正六邊形 ABCDEF中,令 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{CD} = \overrightarrow{b}$,若 $\overrightarrow{AD} = x \overrightarrow{a} + y \overrightarrow{b}$,求 $x = \underline{\hspace{1cm}}$, $y = \underline{\hspace{1cm}}$

答案:2,2

解析: $\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$

 $\nabla \overrightarrow{BC} = \overline{a} + \overline{b}$

 $\overrightarrow{AD} = 2 \overrightarrow{a} + 2 \overrightarrow{b}$

如附圖所示,正六邊形 ABCDEF 中, $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$,則

- (1) $\overrightarrow{AF} = \underline{} \circ$ (2) $\overrightarrow{DF} + \overrightarrow{AE} = \underline{} \circ ($ (試以 \overrightarrow{a} , \overrightarrow{b} 表示之) 答案:(1) $\overrightarrow{b} \overrightarrow{a}$;(2) $\overrightarrow{b} 2$ \overrightarrow{a}

解析:(1) $\overrightarrow{AF} = \frac{1}{2} \overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{BC}$

$$=-\overrightarrow{a}+\overrightarrow{b}$$
 •

(2)
$$\overrightarrow{DF} + \overrightarrow{AE} = \overrightarrow{CA} + \overrightarrow{AE} = \overrightarrow{CE}$$

$$= \overrightarrow{BE} - \overrightarrow{BC}$$

$$= 2 (\overrightarrow{BA} + \overrightarrow{BC}) - \overrightarrow{BC}$$

$$= -2 \overrightarrow{a} + \overrightarrow{b} \circ$$