Sistemas de Inteligencia Artificial

Trabajo Práctico 2

Sistemas de Inteligencia Artificial Algoritmos Genéticos

Julian Neuss, Davor Vindis y Reurison Silva

Contenido

- 1. Introducción
- 2. Procedimiento
- 3. Selección
- 4. Operadores Genéticos
- 5. Implementación
- 6. Criterios de corte
- 7. Configuración
- 8. Resultados
- 9. Análisis de resultados

Introducción

Introducción - Juego de Rol

- Objetivo : Lograr la mejor configuración de altura y equipamiento para optimizar el desempeño de un personaje del juego.
- Un problema de optimización es el problema de encontrar la mejor solución entre todas las soluciones factibles.

 Para esto vamos a utilizar los algoritmos genéticos para maximizar el desempeño del personaje.

Introducción - Personajes

El juego es compuesto por 4 tipos distintos de personajes

- 1. Guerrero
- 2. Arquero
- 3. Defensor
- 4. Infiltrado

Procedimiento

Procedimiento - Estructura del Personaje

Procedimiento - Problema

1. Un problema de optimización es el problema de encontrar la mejor solución entre todas las soluciones factibles.

 Objetivo : Lograr la mejor configuración de altura y equipamiento para optimizar el desempeño de un personaje del juego.

3. Para esto vamos a utilizar los algoritmos genéticos para maximizar el desempeño del personaje.

Procedimiento - Exploración y Explotación

 Explotación: dada una solución razonable, el algoritmo seguirá refinando esa solución hasta que alcance un óptimo local.

 Exploración: El algoritmo intenta lograr una buena cobertura del espacio de búsqueda, de modo que eventualmente no encontrará un óptimo local, sino un óptimo local bueno, idealmente uno cercano al óptimo global.

Procedimiento - Convergencia Prematura

Selección

Selección de padres

Elite

Se toman K individuos del conjunto ordenado según fitness. Se puede elegir cada uno varias veces

Ruleta

Idea: Los mejores individuos tienen más posibilidades de reproducirse (de manera proporcional a su fitness).

Universal

mejores tienen más posibilidades de reproducirse.

Selección de padres

Ranking

Se ordena la población de acuerdo a su fitness y las probabilidades de selección se basan en el ranking

Boltzmann

Se define una pseudo aptitud.

Una vez definida es similar a ruleta

Selección de padres

Torneo Determinístico

De una cierta población se elige una cantidad de individuos. De esos individuos se elige el mejor y esto se repite las veces necesarias

Torneo Probabilístico

Se elige un threshold. Y, luego de la población se eligen 2 al azar. Se toma un valor R al azar y si el valor es menor que el threshold se selecciona el más apto. Esto se repite varias veces

Operadores Genéticos

Operadores Genéticos

Cruce

1punto o 2puntos

Se indexan los genes de los padres y se toman los N genes continuos, segun el input

Anular

input (P, L)

Se intercambia el segmento de longitud L a partir de P

Operadores Genéticos

Cruce uniforme

Se produce un intercambio de alelos en cada gen con una probabilidad. En nuestro caso 0,5

Mutación

Mutación

De Gen

Se altera un solo gen al azar con una probabilidad Pm

Multigen Limitada

Se selecciona una cantidad de genes a mutar con probabilidad Pm

Mutación

Multigen Uniforme

Cada gen tiene una probabilidad Pm de ser mutado

Completa

Se mutan todos los genes del individuo con probabilidad de mutación Pm

Implementación

Implementación

Fill-All

La nueva gen se forma seleccionando N individuos del conjunto total.

Este conjunto está formado por la generación actual más los hijos

Fill-Parent

En este escenario se contemplan dos situaciones

Se pueden seleccionar sólo N de los K hijos o se pueden seleccionar los k hijos generados + n-k individuos tomados de la generación actual

Criterios de corte

Criterios de corte

Tiempo

Se cuenta el tiempo solicitado

Generaciones

Se cuenta la cantidad de generaciones

Aceptable

El mejor fitness supera un tamaño indicado

Criterios de corte

Estructura

Una gran parte de la población no cambia a medida que se evoluciona

Contenido

El mejor fitness no cambia en una cantidad de generaciones

Configuraciones

Configuraciones

```
"cruce" : "2p",
"variables_cruce": [2,4],
"mutacion": "limitada",
"variables_mutacion": [1],
"seleccion_1": "ruleta",
"variables_selection_1": [],
"seleccion_2": "universal",
"variables_selection_2": [],
"seleccion_3": "elite",
"variables_seleccion_3": [],
"seleccion_4": "boltzmann",
"variables_selection_4": [],
"implementacion": "fill-all",
"corte": "generaciones",
"variables_corte": ["150"],
"corte_threshold":["0.001"],
"k_individuos":["5"],
"N": 35,
"K": 10,
"A": 0.6,
"B": 0.4
```

Resultados

Warrior

Archer

Defender

Infiltrator

Análisis de resultados

Mejores fitness - Personaje

- 1. Guerrero: 21.4535
- 2. Arquero : 32.15687
- 3. Defensor: 29.7934
- 4. Infiltrado: 27.6451

Conclusiones finales

- 1. Los resultados obtenidos con el uso de los mismos algoritmos tanto para la etapa de selección cuanto para el reemplazo no lograron un buen resultado.
- 2. Los mejores algoritmos fueron aquellos que tienen un buen equilibrio entre la etapa de exploración y explotación.
- 3. La solución de problemas de optimización no lineales son dependientes del punto de partida de los individuos y su capacidad de explorar el espacio de soluciones, así que con un población mayor se puede mejorar la búsqueda de la solución óptima.
- 4. Los métodos de selección estocásticos que combinan aptitud con azar fueron los que más rápidamente lograron llegar a un buen fitness.
- 5. La implementación con fill-parent permite una mayor diversidad genética que fill-all.

Muchas Gracias!

Julian Neuss, Davor Vindis y Reurison Silva