

Writing Files with open File1 = open ("/resour/dala/Eaghr2.txt". "w") with open (" ","w") as file!

file!...write ("this's lim A ")

this creates file film!...write ("this lim B") Exaplez . txt inthe Livelry. Cines = ["This lim A w", "This lim B w", This lime \vi", this lime wi with open (Englise test", "w") as files for l in Lines file 1. write (L) if we use append "a" inted of "w" it will not went the test file, but It will overide excisting file

Copy file

```
with open("Example1.txt", "r") as readfile:

with open("Example3.txt", "w") as writefile:

for line in readfile:

writefile.write(line)

This is line A

This is line B

This is line C

Example1.txt

Example3.txt

Example3.txt
```

```
- Appending out P "ing
Now lets revisit a+
with open('Example2.txt', 'a+') as testwritefile:
    print("Initial Location: {}".format(testwritefile.tell()))
    # my modification
    testwritefile.write("This is by Dulitha\n")
    data = testwritefile.read()
    if (not data): #empty strings return false in python
           print('Read nothing')
    else:_
           print(testwritefile.read())
    testwritefile.seek(0,0) # move 0 bytes from beginning.
   print("\nNew Location : {}".format(testwritefile.tell()))
    data = testwritefile.read()
    if (not data):__
           print('Read nothing')
    else:_
           print(data)
    print("Location after read: {}".format(testwritefile.tell())_)
Initial Location: 153
Read nothing
New Location: 0
Overwrite
This is line C
This is line D
This is line E
This is by Dulitha
This is by Dulitha
This is by Dulitha
```

Coading Data with Pandas
import pandas as pd
(SV_palh='filest.csv'
If = pairdos. read_ csv (csv_pulls)
DulaFrame
df = pl. read_csv(csv_poth)
df. heal() -> Shows first five vous ofdate
XISX_polh='fils1.xlsx' If = pl.vead_excel(xlsx_polh)
Songs = { Allm': [], Relosed': [],
Songs from = pd. Dala Fram (Songs)

Dataframes

songs = { 'Album' : ['Thriller', 'Back in Black', 'The Dark Side of the Moon', \

'The Bodyguard', 'Bat Out of Hell'],

'Released': [1982,1980,1973,1992,1977],

Length':['00:42:19','00:42:11','00:42:49','00:57:44','00:46:33']}

	Album	Length	Released
0	Thriller	00:42:19	1982
1	Back in Black	00:42:11	1980
2	The Dark Side of the Moon	00:42:49	1973
3	The Bodyguard	00:57:44	1992
4	Bat Out of Hell	00:46:33	1977

IRM Daveloper

SKILLS NETWORK

new dala forance

nzdf[['Lougth]

y = If [Artist, Leyth, Grewa']

Second video Dist unique values It (Relased). Unique(): All of the unique elects in Released If [Pelaged] >= 1980: Set of Soolian satisfy inequality. If = If [If [Relased] >= 1980]

Reach album come after 1980 JAI. to_CSV (Inew_Songs. CSV')

**Sove 08 CSV . IBM Cloud Account Laliba vij Ogmail can Dulitu 26

Numpy in Python One D Numpy up array Similer to List each elent is sam type import numpy as up a = np. amay ([0, 1, 2, 3]) a: array ([0,1,2,3]) type (a): numpy.ndarray a.dtype: dtype ('int 641) a. Size 35 a.udim: 1 9. Shaye: (5,) Indep & Slicing C=Np. array ((20,1,2,3,4)) ([0] = [ve)(: array ([100,1,2,3,4]) d=c[1:4]

J: arry ([1,2,3])

Verlors

$$\mathcal{V} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$V = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

U = up. array(1,0)V=upo array ([o, Ū)

Z= UtV Z: array((,])

Z=u-V Z° array[1-1])

multiplication

 $y = up \cdot array([1,2])$ $Z = 2^*y$ $Z \cdot array([2,4))$

Hadamla product

$$Z = U \circ V = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$U = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$U = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$V = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

$$Z = U \circ V = \begin{bmatrix} 1 \times 2 \\ 2 \times 3 \end{bmatrix}$$

Adding constat. (Irodiosting) u= up. array ([1,2,3,4]) Z= UH 2: array ([2,3,4,5]) Universal for fuherons aprotes on ndarray $\alpha = Np. \alpha ray((1,-1,1,-1))$ mean a = a. mean () : 0 $Max_{a} = a. max()$ of Up.p? : T 22 Up. array [[0, 4. Pi/2, 4. p.pi]): [0, I] y = up. Sin(n): Sin(T(2), Sin(T(2), Sin(T(2))

nz up. linspale (-2,2, num=5) n° [-2,1,0,1,2]
Plating Funties
\mathcal{O}
n=up.linspace(0,2*np.pi,cou)
y = wp.sin(n)
import matphallis, pyplat as plt
import matplotlis. pyplat as plt % matplotlis inline & Jupiter natebook plt. plat (n,y) display the plat
pro-pro-crig

	Tas din Naupy
	, 0
List->	$\mathcal{A} = \left[\left[1, 12, 13 \right], \left[21, 22, 23 \right], \left[31, 23, 33 \right] \right]$
	A = up. array (a)
	A: 11 12 13 7 21 22 23 31 32 39
	(123) A (456)
	A. Ndim & 2 & Matrix (2,3)
	A. Shape : (3,3) = 3 x3 matrix
	A. Size eq 4 Told number of Ments
	A: [[A[0][0], A[0][1], A[0][2]], [A[1][0], A[1][1], A[1][2]][A[2][0], A[2][1], A[2][2]]]
	$ \begin{bmatrix} A[0][0] & A[0][1] & A[0][2] \\ A[1][0] & A[1][1] & A[1][2] \end{bmatrix} $
	A-[1][2] 623

