CSC 665: Artificial Intelligence

Games: Uncertainty

Instructor: Pooyan Fazli San Francisco State University

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes: the outcome is uncertain (opponent or environment)
 - Calculate their expected utilities: take weighted average (expectation) of children

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

```
def value(state):
    if the state is a terminal state: return the state's utility
    if the next agent is MAX: return max-value(state)
    if the next agent is CHANCE: return exp-value(state)
```

def max-value(state):

initialize v = -∞
for each successor of state:
 v = max(v, value(successor))
return v

def exp-value(state):

initialize v = 0
for each successor of state:
 p = probability(successor)
 v += p * value(successor)
return v

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

What Values to Use?

- For worst-case minimax reasoning, evaluation ful no scale doesn't no
 - We just want better states to have higher evaluations (get the or ling right)
 - Minimax decisions are invariant with respect to monotonic ty Asformations on values
- Expectimax decisions are invariant with respect to positive affine transformations

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

- The expected value of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?

35 min

What Probabilities to Use?

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it's not likely

Assumptions vs. Reality

Assumption

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Reality

Results from playing 5 games

Assumptions vs. Reality

Pacman

Assumption

	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 493
Expectimax	Won 1/5	Won 5/5

Avg. Score: -303

Reality

Results from playing 5 games

Avg. Score: 503

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Assumptions vs. Reality

Expectimax

Pacman

Assumption

	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 493

Won 1/5

Avg. Score: -303

Reality

Results from playing 5 games

Won 5/5

Avg. Score: 503

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

Assumptions vs. Reality

Assumption

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Reality

Results from playing 5 games

Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Assumptions vs. Reality

Assumption

	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 483	Won 5/5 Avg. Score: 493
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503

Reality

Results from playing 5 games

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Rolling dice is an extra "random agent" player that moves after each min/max agent
 - Each node
 computes the
 appropriate
 combination of its
 children

Quiz: Mixed Layers Game

Consider the mixed layers game below, which has a maximizer playing first, followed by a chance node (assume each outcome at a chance node is equally likely), followed by a minimizer.

Which action is optimal for the maximizer? Righ

Multi-Agent Utilities

What if the game is not zero-sum, or has multiple players?

Reading

■ Chapter 5.1-5.3, 5.5 in the AIMA textbook