- 1. 概述
- 2. 软件框架
- 3. Ubuntu的刷入、ROS的安装
- 4. ssh远程连接
 - 。 4.1 安装xshell
 - 通过 Xshell 连接 树莓派/RK3288/RK3399
 - Windows 通过 xshell 传输文件
- 5. 用户主机
- 6. 多机通讯
- 7. ROS驱动开发
 - 。 7.1 概述
 - 。 7.2 驱动开发及PID参数动态调整
 - 。 7.3 目录结构简介
 - 7.4 编译与测试
 - 配置
 - 树莓派/RK3288/RK3399
 - 控制PC
 - 编译
 - 测试
 - 初始化配置
 - 开始测试
- 8. 校准
 - 。无IMU校准
 - 。 IMU校准
- 9. ROS建图与导航
 - 。 9.1 概述
 - 。 9.2 建图
 - 两种建图方法
 - 保存地图
- 10 导航
 - 。 单点导航测试
 - 。多点导航
- 11. 模拟器
- 12. Android App
 - 。 12.1相关功能
 - 。 12.2 显示视频
- 13. IMU的相关包使用

1. 概述

采用 树莓派/RK3288/RK3399/X86工控机/TK1/TX1/TX2 作为上位 ROS 主控,基于 ROS 开发适配导航建图算法

2. 软件框架

系统**框架**

3. Ubuntu的刷入、ROS的安装

具体请参考树莓派(raspberry pi 3b)安装ROS Kinetic Kame与Firefly RK3288/3399固件刷新与ROS安装

tf卡启动的 nanopi(RK3399) 则同 树莓派 一样操作

4. ssh远程连接

windows 中推荐安装 xshell 远程连接

树莓派/ nanopi rk3399 默认开启了热点 ssid 和 password 均为 pibot_ap , 可以通过连接该热点连接树莓派/ nanopi rk3399 , 树莓派/ nanopi rk3399 的IP为 192.168.12.1

如需要关闭ap模式,改为连接wifi,只需要执行 rm ~/.pibot_ap 后重启如需要打开ap模式, 开启则执行 touch ~/.pibot_ap 后重启

4.1 安装xshell

网盘中下载 xshell 并安装

通过 Xshell 连接 树莓派/RK3288/RK3399

输入 IP 和用户名密码

- 树莓派3B/3B+ 为 pibot
- firefly RK3288、RK3399 为 firefly
- nanopi 3399 为 pi

新建会访属性 ? X

Windows 通过 xshell 传输文件

5. 用户主机

需要一个 PC 安装 ROS 环境,用来显示查看地图或者玩转模拟器等, PIBOT 提供了一个一键安装 ROS 的脚本 pibot install ros ,可以直接在 Ubuntu 下安装 ROS

用户主机 环境 Ubuntu 16.04 或者 Windows7/10+Vmvare+Ubuntu16.04 虚拟机 Ros kinetic 环境, 安装 ROS 参见Windows下安装Ubuntu虚拟机及ROS相关章节

6. 多机通讯

用户主机与 树莓派/RK3288/RK3399/TK1/TX1/TX2/X86主机 怎么建立 ROS 通讯的, PIBOT 提供了一键配置脚本 pibot_init_env 如需了解细节

请参考ROS多机的通讯配置,pibot_init_env介绍即可

7. ROS驱动开发

7.1 概述

下位机及通过串口与 树莓派/RK3288/RK3399/TK1/TX1/TX2/X86主机 通讯, PIBOT 提供了一个简单的协议, 通讯协议具体请参见ROS机器人底盘(3)-通讯协议,同时 PIBOT 提供两个一个 ROS 无关的串口控制接口具体可以参见PIBOT通讯协议的python解析实现

7.2 驱动开发及PID参数动态调整

PID 参数已在出厂时候配置,如需了解细节请参考ROS机器人底盘(10)-PIBOT的driver的实现及动态PID调节

7.3 目录结构简介

建议拷贝提供的压缩文件至目标设备(树莓派/RK3288/RK3399/X86工控机/TK1/TX1/TX2)上解压或者直接 git clone ,不然会遇到一些问题,具体问题见Q&A

PIBOT 的 ROS workspace 目录如下图

- src
 - arbotix_ros
 - ▶ pibot
 - pibot_bringup
 - pibot_description
 - pibot_navigation
 - pibot_simulator
 - ▶ rplidar_ros
 - ▶ ydlidar-1.2.1
 - arbotix_ros 模拟器
 - pibot 工具集
 - - CalibrateAngular.cfg
 - CalibrateLinear.cfg
 - - ! joystick-holonomic.config.yaml
 - ! joystick.config.yaml
 - launch
 - n joystick-holonomic.launch
 - n joystick.launch
 - keyboard_teleop.launch
 - usb_camera.launch
 - - ≡ pibot.rules
 - ≡ rplidar.rules
 - scripts
 - calibrate_angular.py
 - calibrate_linear.py
 - launch_demo.py
 - navigation_demo.py
 - setup.sh
 - teleop_twist_keyboard.py
 - transform_utils.py
 - pibot_bringup pibot驱动包

• pibot_description pibot urdf文件

- pibot_descriptionlaunchmeshes
 - apollo
 - base_link.stl
 - laser_link.stl
 - - base_link.stl
 - laser_link.stl
 - - apollo.urdf
 - ≡ zeus.urdf
- pibot_navigation 建图导航相关配置项

- pibot_navigation ■ launch ▶ include mapping.launch nav.launch nav.launch maps params ! costmap_common_params_apollo.yaml ! costmap_common_params_zeus.yaml ! dwa_local_planner_params_apollo.yaml ! dwa_local_planner_params_zeus.yaml ! global_costmap_params.yaml ! global_planner_params.yaml ! local_costmap_params.yaml ! move_base_params.yaml
- pibot_simulator pibot导航模拟器
 - pibot_simulator
 - launch
 - bringup.launch
 - nav.launch
 - maps
 - blank_map_with_obstacle.pgm
 - ! blank_map_with_obstacle.yaml
 - blank_map.pgm
 - ! blank_map.yaml
 - test_map.pgm
 - ! test_map.yaml
 - params
 - ! arbotix.yaml
 - ! costmap_common_params.yaml
 - ! dwa_local_planner_params.yaml
 - ! global_costmap_params.yaml
 - global_planner_params.yaml
 - ! local_costmap_params.yaml
 - ! move_base_params.yaml
 - M CMakeLists.txt
- rplidar_ros rplidar激光雷达驱动包
- ydlidar-1.2.1 eai激光雷达驱动包

7.4 编译与测试

配置

树莓派/RK3288/RK3399

控制PC

```
pibot@pibot-desktop:~/pibot_ros$ ./pibot_init_env.sh
please specify pibot model(\theta:apollo,1:apolloX,2:zeus,3:hera,4:hades,other for user defined):
please specify pibot driver board type(0:arduino(mega2560),1:stm32f103,2:stm32f407,other for user defined):-
please specify your pibot lidar(0:rplidar(a1,a2),1:rplidar(a3),2:eai(x4),3:eai(g4),4:xtion,5:astra,6:kinectV1,other for user defined):
please specify the current machine(ip:192.168.2.177) type(θ:onboard,other:remote):
plase specify the onboard machine ip for commnication:
192.168.2.231
                                                                                                 雷达类型(包括使用摄像头模拟)
              apollo
nodel:
              rplidar
lidar:
local_ip:
              192.168.2.177
                                                                          需要指定小车IP
onboard_ip:
              192.168.2.231
please execute source ~/.bashrc to make the configure effective
```

编译

```
cd ~/pibot_ros/ros_ws
catkin_make
```

测试

初始化配置

重新拔插USB口或者重启 树莓派/RK3288/RK3399

```
ls /dev/pibot -l
```

```
pibot@pibot-desktop:/$ ls /dev/pibot -l
lrwxrwxrwx 1 root root 7 12月 20 10:47 /dev/pibot -> ttyACM0
```

开始测试

- 在树莓派/RK3288/RK3399 运行 pibot_bringup 或 roslaunch pibot_bringup bringup.launch
- 在**用户主机**运行 pibot_configure 或 rosrun rqt_reconfigure rqt_reconfigure 可以查看和修改内置的配置信息,运行 pibot_control 或 roslaunch pibot keyboard_teleop.launch 即可通过键盘控制小车运动

同时支持小米等手柄的接入,运行 roslaunch pibot joystick.launch 即可

8. 校准

无IMU校准

参见ROS机器人底盘(11)-PIBOT的控制及校准

IMU校准

参见ROS机器人底盘(25)-PIBOT的IMU校准

9. ROS建图与导航

9.1 概述

ROS 驱动中提供了 cmd_vel 的订阅及 odom 的发布,至此再需要一个激光雷达就可以完成建图了

9.2 建图

在 树莓派/RK3288/RK3399 运行 pibot_gmapping 或 roslaunch pibot_navigation gmapping.launch 在**用户主机**运行 roslaunch pibot_navigation view_nav.launch 或者 pibot_view

两种建图方法

- 运行 roslaunch pibot keyboard_teleop.launch 或者 roslaunch pibot joystick.launch 即可通过键 盘或者遥控手柄开始建图
- 直接选择导航的点(2D Nav Goal)开始建图

保存地图

• 运行下列命令即可(xxx为自定义名称)

```
roslaunch pibot_navigation save_map.launch map_name:=xxx
```

或者

```
roscd pibot_navigation/maps/
rosrun map_server map_saver -f xxx`
```

```
pibot@pibot-desktop:~/pibot_ros/ros_ws/src/pibot_navigation/maps$ rosrun map_server map_saver -f my_home [ INFO] [1528035442.429381816]: Waiting for the map [ INFO] [1528035442.695666089]: Received a 608 X 576 map @ 0.050 m/pix [ INFO] [1528035442.695809892]: Writing map occupancy data to my_home.pgm [ INFO] [1528035442.733498745]: Writing map occupancy data to my_home.yaml [ INFO] [1528035442.734178644]: Done

pibot@pibot-desktop:~/pibot_ros/ros_ws/src/pibot_navigation/maps$ ls my_home* -l -rw-rw-r-- 1 pibot pibot 350264 6月 3 22:17 my_home.pgm -rw-rw-r-- 1 pibot pibot 135 6月 3 22:17 my_home.yaml pibot@pibot-desktop:~/pibot_ros/ros_ws/src/pibot_navigation/maps$
```

可以看到生成2个文件

10 导航

单点导航测试

在 树莓派/RK3288/RK3399 运行 roslaunch pibot_navigation nav.launch map_name:=xxx.yaml 在**用户主机**运行 pibot_view 或 roslaunch pibot_navigation view_nav.launch , 通过 RViz 提供的功能既可以完成导航测试(这里需要先指定初始位置)

如果直接运行 roslaunch pibot_navigation nav.launch 而不指定 map_name 参数则使用默认参数, nav.launch 文件中可以设置默认使用的地图文件

多点导航

可以通过修改 pibot/scripts 中的 navigation_demo.py 的 python 脚本完成单点和多点的导航 具体可以参考ROS机器人底盘(18)-如何在实际项目中应用ROS导航相关 (1)

11. 模拟器

PIBOT包内置了模拟器, 可以直接运行模拟导航

- 运行 roslaunch pibot_simulator nav.launch 或者 pibot_simulator
- 运行 roslaunch pibot_navigation view_nav.launch 这样无需小车也可以模拟导航了

12. Android App

12.1相关功能

保证手机跟跟 PC 或者 树莓派/RK3288/RK3399 连接同一个网络,保证手机能够访问到 roscore (export ROS_IP=XXX.XXX.XXX.XXX)具体参见ROS多机的通讯配置

修改 Master URI 选择 roscore 的 URI 点击 CONNECT 切换 Camera View 与 Map View

- Set Pose 在地图长按 相当于 Rviz 中的 2D Pose Estimate
- Set Goal 在地图长按 相当于 Rviz 中的 2D Nav Goal
- 左下角 Joystick 可以发出 cmd_vel topic 控制小车移动

12.2 显示视频

显示视频需要硬件摄像头支持同时在 PC 或者 树莓派/RK3288/RK3399 启动 roslaunch pibot usb_camera.launch

13. IMU的相关包使用

装有 IMU 的 PIBOT 系列小车,底层提供 IMU 的数据采集,上层提供了 IMU 的互补滤波以及融合里程计和 IMU 的扩展的卡尔曼滤波包 $robot_pose_ekf$

启动时只需相应的 with_imu 的 launch 文件,例如

roslaunch pibot_bringup bringup_with_imu.launch 或者 pibot_bringup_with_imu roslaunch pibot_navigation gammping_with_imu.launch 或者 pibot_gmapping_with_imu roslaunch pibot_navigation nav_with_imu.launch 或者 pibot_naviagtion_with_imu

具体可以参考ROS机器人底盘(22)-IMU和里程计融合

ROS机器人底盘(23)-IMU和里程计融合与单独编码器里程计的对比测试