Inteligência Artificial

Estratégias de Busca Parte 2

Prof. Jefferson Morais

Na Aula Anterior

- Tivemos na aula anterior uma introdução sobre buscas
- Aprendemos um pouco sobre desempenho
- E vimos os algoritmos de busca em profundidade e busca em largura
- Agora vamos ver outros algoritmos de busca, ainda na categoria da Busca Sem Informação

Sem Informação: Busca Em Profundidade Limitada

- Consiste em limitar a busca em profundidade até o nível l
- Nós na profundidade I são tratados como folhas
- A busca em profundidade é um caso especial onde I = ∞

function DEPTH-LIMITED-SEARCH(problem, limit) **returns** a solution, or failure/cutoff **return** RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) **returns** a solution, or failure/cutoff **if** problem.GOAL-TEST(node.STATE) **then return** SOLUTION(node)

else if limit = 0 then return cutoff else

 $cutoff_occurred? \leftarrow false$

for each action in problem.ACTIONS(node.STATE) do $child \leftarrow \text{CHILD-NODE}(problem, node, action)$ $result \leftarrow \text{RECURSIVE-DLS}(child, problem, limit - 1)$

if result = cutoff then $cutoff_occurred? \leftarrow true$

else if $result \neq failure$ then return result

if $cutoff_occurred$? then return cutoff else return failure

Dois tipos de falha:

- failure: nenhuma solução
- cutoff: nenhuma solução dentro do limite de profundidade

Sem Informação: Busca Em Profundidade Limitada

- Desempenho
 - Completa: pode ser incompleta, caso I < d
 - Ótima: não, com d < l recai na mesma situação da busca em profundidade. Lembrando que d é a profundidade da solução mais rasa.
 - Complexidade de tempo: O(b¹)
 - Complexidade de espaço: O(bl)

- É uma estratégia geral da busca em profundidade
- Esse algoritmo encontra o melhor limite de profundidade l automaticamente
- O algoritmo trabalha aumentando gradualmente o limite até encontrar um objetivo
- Observação: esta estratégia torna o algoritmo ótimo, pois o algoritmo garante sempre I = d

```
function Iterative-Deepening-Search(problem) returns a solution, or failure for depth = 0 to \infty do result \leftarrow Depth-Limited-Search(<math>problem, depth) if result \neq cutoff then return result
```


- Pode parecer desperdício, pois os estados são gerados várias vezes
- Custo não é muito alto, pois os nós do nível inferior (profundidade d) são gerados uma vez, os do penúltimo são gerados duas vezes, e assim por diante...
- O total de nós gerados é
 N(BPI) = (d)b + (d 1)b² + ... (2)b⁴-¹+ (1)b⁴ = O(b⁴)
 (mesma da busca em largura em termos assintóticos)
- Há um custo extra em gerar os níveis mais altos múltiplas vezes, mas não é grande
- Ex.: se b = 10 e d = 5, os números são
 - . N(BPI) = 50 + 400 + 3.000 + 20.000 + 100.000 = 123.450
 - N(BL) = 10 + 100 + 1.000 + 10.000 + 100.000 = 111.100

- Desempenho
 - Completo: sim, quando b é finito
 - Ótimo: sim, quando o custo de caminho é uma função não decrescente da profundidade do nó
 - Complexidade de tempo: O(b^d)
 - Complexidade de espaço: O(bd)
 - Em geral a BFI é o método de busca sem informação preferido quando o espaço de busca é grande e a profundidade da solução é desconhecida

- Em um grafo ponderado, a busca de custo uniforme é ótima para qualquer função de custo do passo
- Em vez de expandir o nó mais raso, a busca de custo uniforme expande o nó n com o custo de caminho g(n) mais baixo
- È utilizada uma fila com prioridade na borda

Início: Sibiu

Objetivo: Bucareste

g(n) = custo da raiz até o nó n.

- Sucessores de Sibiu: Vilcea (80) e
 Fagaras (99), nesta ordem expande
 - Vilcea → Pitesti

$$80 + 97 = 177$$

Fagaras → Bucareste

$$99 + 211 = 310$$

 Nó objetivo já na borda (Bucareste), mas a busca de custo uniforme se mantém Pitesti → Bucareste

$$80 + 97 + 101 = 278$$

 Esse custo é melhor que o antigo, portanto é a solução


```
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure
node \leftarrow a node with STATE = problem.INITIAL-STATE, PATH-COST = 0
frontier \leftarrow a priority queue ordered by PATH-COST, with node as the only element
explored \leftarrow an empty set
loop do
    if EMPTY?(frontier) then return failure
    node \leftarrow Pop(frontier) /* chooses the lowest-cost node in frontier */
    if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
    add node.State to explored
    for each action in problem.ACTIONS(node.STATE) do
        child \leftarrow \text{CHILD-NODE}(problem, node, action)
       if child. STATE is not in explored or frontier then
           frontier \leftarrow INSERT(child, frontier)
        else if child.STATE is in frontier with higher PATH-COST then
           replace that frontier node with child
```

Desempenho

- · Completa: sim
- Ótima: sim, quando um nó n é selecionado para expansão, o caminho ideal para esse nó foi encontrado, ou seja, o algoritmo expande os nós na ordem de seu custo de caminho ótimo
- Complexidade de tempo e espaço: é orientada por custos de caminhos em vez de profundidades com O(b¹+[C*/ε])
 - C*: custo de encontrar a solução ótima
 - ε: cada ação custa pelo menos ε
- Esse algoritmo não se importa com o número de passos que um caminho tem, mas apenas com o seu custo total

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yesa	$\mathrm{Yes}^{a,b}$	No	No	Yes^a
Time	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	$O(b^m)$	$O(b^\ell)$	$O(b^d)$
Space	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$	O(bm)	$O(b\ell)$	O(bd)
Optimal?	Yes^c	Yes	No	No	Yes^c

- **b** é o fator de ramificação
- . **d** é a profundidade da solução mais rasa
- . **m** é a profundidade máxima da árvore
- . i é o limite de profundidade
- . a completa se b é finito;
- . b completa se o custo do passo é positivo
- c ótima se os custos dos passos são todos idênticos

Próxima Aula:

Busca **Com** Informação