Corrigé du Devoir d'Optimisation n°2 (07-05-2019)

1. [4 points]

a) $\|X - \frac{\operatorname{tr} X}{n} I_n\|^2 = \|X\|^2 - 2\frac{\operatorname{tr} X}{n} \langle X, I_n \rangle + \frac{(\operatorname{tr} X)^2}{n^2} \|I_n\|^2$ avec $\langle X, I_n \rangle = \operatorname{tr} X$ et $\|I_n\|^2 = \operatorname{tr} I_n = n$ d'où $f(X) = \frac{1}{n} \|X - \frac{\operatorname{tr} X}{n} I_n\|^2$ [1pt]. L'application $\Phi: X \mapsto X - \frac{\operatorname{tr} X}{n} I_n$ étant linéaire sur $\mathcal{S}_n(\mathbb{R}), U \mapsto \|U\|$ convexe de $\mathcal{S}_n(\mathbb{R})$ sur \mathbb{R}_+ et $h_2: t \mapsto t^2$ convexe croissante sur \mathbb{R}_+ , on a

$$f(\alpha X + (1 - \alpha)Y) = \frac{1}{n} h_2 (\|\Phi(\alpha X + (1 - \alpha)Y)\|) = \frac{1}{n} h_2 (\|\alpha \Phi(X) + (1 - \alpha)\Phi(Y)\|)$$

$$\leq \frac{1}{n} h_2 (\alpha \|\Phi(X)\| + (1 - \alpha)\|\Phi(Y)\|)$$

$$\leq \frac{1}{n} (\alpha h_2(\|\Phi(X)\|) + (1 - \alpha)h_2(\|\Phi(Y)\|)) = \alpha f(X) + (1 - \alpha)f(Y)$$

donc | f est bien convexe | [1pt].

b) $f^*(S) = -\inf_{X \in E} \theta_S(X)$ où $\theta_S : X \mapsto f(X) - \langle S, X \rangle$ est convexe. Donc θ_S admet un minimum en \bar{X} si et seulement si $\nabla_{\bar{X}}\theta_S=0$. Il faut donc déterminer $\nabla_X\theta_S$ et pour cela, on calcule $\theta_S(X+H) - \theta_S(X) = f(X+H) - f(X) - \langle S, H \rangle$. Or

$$f(X+H) = \frac{1}{n}(\operatorname{tr}(X+H)^{2}) - \frac{1}{n^{2}}(\operatorname{tr}(X+H))^{2}$$

$$= \frac{1}{n}(\operatorname{tr}(X^{2}) + 2\operatorname{tr}(XH) + \operatorname{tr}(H^{2})) - \frac{1}{n^{2}}((\operatorname{tr}X)^{2} + 2(\operatorname{tr}X)(\operatorname{tr}H) + (\operatorname{tr}H)^{2})$$

$$= f(X) + \frac{2}{n}\langle X, H \rangle - \frac{2\operatorname{tr}X}{n^{2}}\langle I_{n}, H \rangle + f(H)$$

et comme $|f(H)| \le \frac{1}{n} ||H||^2 + \frac{1}{n^2} |\text{tr}H|^2$ avec $|\text{tr}H| = |\langle H, I_n \rangle| \le ||H|| ||I_n||$, on a bien $f(H) = ||H||^2 + \frac{1}{n^2} ||H||^2 + \frac{1}{n^2}$ $||H||\varepsilon(H)$ et finalement :

$$\nabla_X \theta_S = \frac{2}{n} \left(X - \frac{\operatorname{tr} X}{n} I_n \right) - S.$$

On a donc $\bar{X} - \frac{\text{tr}\bar{X}}{n}I_n = \frac{n}{2}S$ et, en prenant la trace des 2 membres, une condition nécessaire est que tr S = 0.

Réciproquement, si $\operatorname{tr} S = 0$, pour $X = \gamma I_n + \frac{n}{2} S$ $(\gamma \in \mathbb{R})$, $\operatorname{tr} X = n \gamma$ et $\nabla_X \theta_S = 0$. Ainsi, $\overline{\operatorname{Argmin}_{E}\theta_{S} = \{\gamma I_{n} + \frac{n}{2}S \; ; \; \gamma \in \mathbb{R}\}} \text{ et } \theta_{S}\left(\frac{n}{2}S\right) = f\left(\frac{n}{2}S\right) - \frac{n}{2}\|S\|^{2} = \frac{1}{n}\frac{n^{2}}{4}\|S\|^{2} - \frac{n}{2}\|S\|^{2} \text{ d'où }$ $f^*(S) = \overline{-\theta_S\left(\frac{n}{2}S\right) = \frac{n}{4}||S||^2 \text{ si } \text{tr}S = 0}$ [2pts].

2. a) [5 points] On a $C = \bigcap_{i=1}^{3} \varphi_i^{-1}(]-\infty,0])$ avec $\varphi_1(x,y) = -y, \ \varphi_2(x,y) = x-y$ et

 $\varphi_3(x,y)=x^2+y^2-1$. Ces fonctions contraintes sont donc de classe C^1 comme f. On a donc C fermé comme intersection de fermés (l'image réciproque d'un fermé par une application continue étant un fermé). C'est aussi un ensemble borné (inclus dans $B_F((0,0),1)$), donc C est un fermé borné et on a bien l'existence d'extrémums sur C. Les 2 premières contraintes sont linéaires, la troisième convexe, donc elles sont qualifiées en tout point et les extrémums u=(x,y) vérifient les conditions du théorème de Kuhn-Tucker : il existe λ_i , $1 \le i \le 3$ tels que

$$\begin{cases} \nabla_u f + \sum_{i=1}^3 \lambda_i \nabla_u \varphi_i = 0\\ \lambda_i \varphi_i(u) = 0 \text{ pour } 1 \le i \le 3\\ \varphi_i(u) \le 0 \text{ pour } 1 \le i \le 3 \end{cases}$$
 avec

$$\nabla_u f = \begin{pmatrix} 2x + y \\ x \end{pmatrix}, \nabla_u \varphi_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \nabla_u \varphi_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \nabla_u \varphi_3 = \begin{pmatrix} 2x \\ 2y \end{pmatrix} \quad [2pts].$$

- Si aucune contrainte n'est saturée, on a $\nabla_u f = 0$ qui donne x = y = 0 impossible car en ce point les contraintes φ_1 et φ_2 sont saturées.
 - Si une seule contrainte est saturée,
 - \rightarrow pour φ_1 , y = 0 et $f(x, 0) = x^2 \in]0, 1[$ pour $x \in]-1, 0[$.

$$\Rightarrow \text{ pour } \varphi_1, \ y = 0 \text{ et } f(x,0) = x \text{ } \in]0,1[\text{ pour } x \in]-1,0[.$$

$$\Rightarrow \text{ pour } \varphi_2, \ x = y \text{ et } f(x,x) = 2x^2 \in]0,1[\text{ pour } x \in]0,1/\sqrt{2}[.$$

$$\Rightarrow \text{ pour } \varphi_3, \ x^2 + y^2 = 1 \text{ et } \begin{cases} 2x + y = -2\lambda x \\ x = -2\lambda y \end{cases} \text{ donc } (-4\lambda(1+\lambda) + 1)y = 0 \text{ avec } y \neq 0,$$

$$\text{soit } 4\lambda^2 + 4\lambda - 1 = 0 \text{ et } \lambda = \frac{-4+\varepsilon\sqrt{32}}{8} = \frac{-1+\varepsilon\sqrt{2}}{2}. \text{ On a alors } y^2(4\lambda^2 + 1) = 1 \text{ et } x = -2\lambda y < y,$$

$$\text{soit } 2\lambda + 1 = \varepsilon\sqrt{2} > 0 \text{ et } \varepsilon = 1. \text{ Alors } f(x,y) = (4\lambda^2 - 2\lambda)y^2 = \frac{4\lambda^2 - 2\lambda}{4\lambda^2 + 1} = \frac{4-3\sqrt{2}}{4-2\sqrt{2}}.$$

- Si 2 contraintes exactement sont saturées,
 - $\rightarrow \varphi_1$ et φ_2 donne (0,0) et f(0,0)=0;

 - $\rightarrow \varphi_1$ et φ_3 donne dans C $\overline{(-1,0)}$, avec $\underline{f(-1,0)} = 1$; $\rightarrow \varphi_2$ et φ_3 donne dans C $(1/\sqrt{2}, 1/\sqrt{2})$, avec $\underline{f(1/\sqrt{2}, 1/\sqrt{2})} = 1$.

Il n'y a pas d'autres cas possibles car les 3 contraintes ne peuvent pas être saturées en même

b) [4 points] C est ici la boule unité fermée de \mathbb{R}^3 qui est bien compacte et f continue admet donc des extrémums sur C. La contrainte est convexe, donc elle est qualifiée en tout point et les extrémums u=(x,y,z) vérifient les conditions du théorème de Kuhn-Tucker. Il existe donc λ tel que :

$$\nabla_u f + \lambda \nabla_u \varphi = 0 \text{ avec } \nabla_u f = \begin{pmatrix} 2x - 2y - z \\ y - 2x \\ z - x \end{pmatrix} \text{ et } \nabla_u \varphi = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix} [1pt].$$

- Si la contrainte n'est pas saturée, on a $\nabla_u f = 0$ qui donne z = x, y = 2x et -3x = 0, soit (0,0,0) avec f(0,0,0)=0.
 - Si la contrainte est saturée, on a alors $\begin{cases} 2x 2y z = -2\lambda x \\ y 2x = -2\lambda y \\ z x = -2\lambda z \end{cases}$, soit déjà $x = (2\lambda + 1)z$.

 \rightarrow Si $\lambda = -1/2$, alors x = 0, z = -2y et $x^2 + y^2 + z^2 = 1$ donne $5y^2 = 1$, soit les points $\pm (0, 1/\sqrt{5}, -2/\sqrt{5})$ en lesquels f vaut $\frac{1}{2}$.

 \rightarrow Si $\lambda \neq -1/2$, on obtient $y(1+2\lambda)=2x$ donc y=2z et $z(2(1+\lambda)(1+2\lambda)-5)=0$. Comme $z \neq 0$ (sinon, x = y = 0 impossible), on a $4\lambda^2 + 6\lambda - 3 = 0$, soit $\lambda = \frac{-3 + \varepsilon \sqrt{21}}{4}$, puis $z^2((2\lambda + 1)^2 + 5) = z^2(4\lambda^2 + 4\lambda + 6) = 1$, soit $z^2 = \frac{1}{9 - 2\lambda} = \frac{2}{21 - \varepsilon \sqrt{21}}$. On a alors $f(x,y,z) = z^2 \left[(2\lambda + 1)^2 + \frac{5}{2} - 5(2\lambda + 1) \right] = z^2 \left(4\lambda^2 - 6\lambda - \frac{3}{2} \right) = z^2 \left(\frac{3}{2} - 12\lambda \right) = \frac{\sqrt{21} - 6\varepsilon}{\sqrt{21} - \varepsilon}$. Pour $\varepsilon = 1, \frac{\sqrt{21} - 6}{\sqrt{21} - 1} \approx -0,396 \text{ et pour } \varepsilon = -1, \frac{\sqrt{21} + 6}{\sqrt{21} + 1} \approx 1,896 \text{ donc } \boxed{\min_{C} f = \frac{\sqrt{21} - 6}{\sqrt{21} - 1}} \text{ et } \boxed{\max_{C} f = \frac{\sqrt{21} + 6}{\sqrt{21} + 1}}$ $\text{avec argmin}_{C} f = \left\{ \pm \frac{(-1 + \sqrt{21}, 4, 2)}{\sqrt{42 - 2\sqrt{21}}} \right\} \text{ et argmax}_{C} f = \left\{ \pm \frac{(-1 - \sqrt{21}, 4, 2)}{\sqrt{42 + 2\sqrt{21}}} \right\} [3pts].$

3. a) [5 points] Si M(x,y) alors $d^2(A,M) = \|\overrightarrow{AM}\|^2 = (x - \frac{9}{4})^2 + (y-2)^2$. On pose donc $f(x,y) = \left(x - \frac{9}{4}\right)^2 + (y-2)^2$ et on est amené à déterminer $\min_{x} f$. On a $X = \bigcap_{i=1}^{4} \varphi_i^{-1}(] - \infty, 0]$ avec $\varphi_1(x,y) = -x$, $\varphi_2(x,y) = -y$, $\varphi_3(x,y) = x + y - 6$ et $\varphi_4(x,y) = x^2 - y$. Ces fonctions contraintes sont donc de classe C^1 comme f. On a donc X fermé comme intersection de fermés (l'image réciproque d'un fermé par une application continue étant un fermé). C'est aussi un ensemble borné (inclus dans $[0,6] \times [0,6]$), donc X est un fermé borné et on a bien l'existence d'extrémums sur X. Les 3 premières contraintes sont linéaires, la quatrième convexe, donc elles sont qualifiées en tout point et les extrémums u=(x,y) vérifient les conditions du théorème de Kuhn-Tucker: il existe λ_i , $1 \le i \le 4$ tels que

$$\begin{cases} \nabla_u f + \sum_{i=1}^4 \lambda_i \nabla_u \varphi_i = 0 \\ \lambda_i \varphi_i(u) = 0 \text{ pour } 1 \le i \le 4 \\ \varphi_i(u) \le 0 \text{ pour } 1 \le i \le 4 \end{cases}$$

avec
$$\nabla_u f = \begin{pmatrix} 2\left(x - \frac{9}{4}\right) \\ 2(y - 2) \end{pmatrix}$$
, $\nabla_u \varphi_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $\nabla_u \varphi_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\nabla_u \varphi_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $\nabla_u \varphi_4 = \begin{pmatrix} 2x \\ -1 \end{pmatrix}$ [2pts].

- Si aucune contrainte n'est saturée, on a $\nabla_u f = 0$ qui donne $x = \frac{9}{4}$ et y = 2, soit M = A, ce qui est impossible car $A \notin X \left(\left(\frac{9}{4} \right)^2 > 2 \right)$.
 - Si une seule contrainte est satu

$$f\left(\frac{3}{2}, \frac{9}{4}\right) = \left(\frac{3}{2} - \frac{9}{4}\right)^2 + \left(\frac{9}{4} - 2\right)^2 = \frac{9}{16} + \frac{1}{16} = \frac{10}{16}.$$

- Si 2 contraintes exactement sont saturées,
 - $\rightarrow \varphi_1 \text{ et } \varphi_3 \text{ donne } (0,6) \in X \text{ et } f(0,6) = \frac{81}{16} + 16 ;$
 - $\rightarrow \varphi_2$ et φ_3 donne $(6,0) \notin X$;
- $\rightarrow \varphi_4 \text{ et } \varphi_3 \text{ donne } x + y = 6 \text{ et } y = x^2, \text{ d'où } x^2 + x 6 = 0 = (x 2)(x + 3) : (-3, 9) \notin X$ et $(2,4) \in X$, avec $f(2,4) = \frac{1}{16} + 4$

Il n'y a pas d'autres cas possibles car 2 des contraintes φ_1 , φ_2 ou φ_4 saturées entraînent que la troisième contrainte est également saturée.

- Si 3 contraintes exactement sont saturées,
 - $\rightarrow \varphi_1, \ \varphi_2 \ \text{et} \ \varphi_4 \ \text{donne} \ x=0 \ \text{et} \ y=0, \ \text{avec} \ f(0,0)=\frac{81}{16}+4$

Il n'y a pas d'autres cas possibles puisque si 2 des contraintes φ_1 , φ_2 ou φ_4 sont saturées, x = y = 0 et φ_3 ne peut pas l'être. Ainsi, on ne peut pas non plus avoir les 4 contraintes

Il reste donc à comparer $f(0,2) = \left(\frac{9}{4}\right)^2$, $f(0,6) = \frac{81}{16} + 16$, $f\left(\frac{3}{2}, \frac{9}{4}\right) = \frac{10}{16}$, $f(2,4) = \frac{1}{16} + 4$, et $f(0,0) = \frac{81}{16} + 4$ pour trouver le minimum. On a clairement $\min_{X} f = \frac{10}{16}$ et donc $d(A,X) = \frac{\sqrt{10}}{4}$ réalisée au point $M\left(\frac{3}{2}, \frac{9}{4}\right)$.

On peut vérifier que les résultats obtenus sont compatibles avec le graphique. De même, le graphique peut permettre de visualiser immédiatement les contraintes saturées aux différents

points de X [3pts].

b) $C = \{(x,y,z) \in \mathbb{R}^3 \; ; \; z \geq \sqrt{x^2 + y^2}\} = \{(x,y,z) \in \mathbb{R}^3 \; ; \; z \geq 0 \text{ et } x^2 + y^2 - z^2 \leq 0\}.$ Si M(x,y,z) et u = (x,y,z), on considère ici $f : u \mapsto \|\overrightarrow{PM}\|^2 = (x-a)^2 + (y-b)^2 + (z-c)^2$ et $\varphi : u \mapsto x^2 + y^2 - z^2$. On a ici :

 $\to C$ fermé car $C = \left(\mathbb{R}^2 \times \mathbb{R}_+\right) \cap \varphi^{-1}(]-\infty,0])$

$$\rightarrow f \text{ coercive car } f(u) = \|\overrightarrow{PM}\|^2 \ge \left(\|\overrightarrow{OM}\| - \|\overrightarrow{OP}\|\right)^2 \xrightarrow{\|u\| \to +\infty} +\infty$$

 $\rightarrow f$ et φ sont continues (et même C^{∞}).

On a donc prouvé l'existence d'un minimum sur C.

- Si z=0, alors nécessairement x=y=0 puisque $\varphi(u)\leq 0$ et $f(0)=a^2+b^2+c^2$.
- Si $z\neq 0$, seule la contraine φ peut être saturée. Elle est qualifiée puisque $\nabla_u\varphi=\begin{pmatrix}2x\\2y\\-2z\end{pmatrix}\neq 0$ et, d'après le théorème de Kuhn-Tucker, il existe $\lambda\geq 0$ tel que

$$\begin{cases} \nabla_u f + \lambda \nabla_u \varphi = 0 \\ \lambda \varphi(u) = 0 \\ \varphi(u) \le 0 \end{cases} \text{ soit } \begin{cases} 2(x-a) + 2\lambda x = 0 \\ 2(y-b) + 2\lambda y = 0 \\ 2(z-c) - 2\lambda z = 0 \\ \lambda (x^2 + y^2 - z^2) = 0 \\ x^2 + y^2 - z^2 \le 0 \end{cases} [2pts].$$

- Si $\lambda=0$, alors M=P, possible uniquement si $P\in C$, c'est-à-dire si $c\geq \sqrt{a^2+b^2}$, et on a alors, bien évidemment d(P,C)=0.
 - Si $\lambda = 1$ (possible que si c = 0), on a alors $x = \frac{a}{2}$, $y = \frac{b}{2}$ et $z = \sqrt{\frac{a^2 + b^2}{4}}$, donc

$$f(u) = (x-a)^2 + (y-b)^2 + z^2 = \frac{a^2}{4} + \frac{b^2}{4} + \frac{a^2+b^2}{4} = \frac{a^2+b^2}{2}.$$

• Si $\lambda \notin \{0,1\}$, $x = \frac{a}{1+\lambda}$, $y = \frac{b}{1+\lambda}$ et $z = \frac{c}{1-\lambda} > 0$ avec $\sqrt{\frac{a^2}{(1+\lambda)^2} + \frac{b^2}{(1+\lambda)^2}} = \frac{c}{1-\lambda}$, soit, compte-tenu de $\lambda > 0$, $(1-\lambda)\sqrt{a^2+b^2} = c(1+\lambda)$ et $\lambda = \frac{\sqrt{a^2+b^2}-c}{\sqrt{a^2+b^2}+c}$, qui est bien strictement positif si $P \notin C$. On a alors

$$f(u) = a^{2} \left(\frac{1}{1+\lambda} - 1\right)^{2} + b^{2} \left(\frac{1}{1+\lambda} - 1\right)^{2} + c^{2} \left(\frac{1}{1-\lambda} - 1\right)^{2}$$
$$= (a^{2} + b^{2}) \frac{\lambda^{2}}{(1+\lambda)^{2}} + c^{2} \frac{\lambda^{2}}{(1-\lambda)^{2}},$$

puis, en posant $\delta = \sqrt{a^2 + b^2}$, on a $\lambda = \frac{\delta - c}{\delta + c}$, $1 + \lambda = \frac{2\delta}{\delta + c}$, $1 - \lambda = \frac{2c}{\delta + c}$ et $a^2 + b^2 = \delta^2$, donc $f(u) = \delta^2 \frac{(\delta - c)^2}{4\delta^2} + c^2 \frac{(\delta - c)^2}{4c^2} = \frac{(\delta - c)^2}{2}$ (pour c = 0, on retrouve le même résultat).

Il ne reste plus qu'à comparer $f(u) = \frac{(\delta - c)^2}{2}$ à $f(0) = \delta^2 + c^2$:

$$f(0) - f(u) = \frac{1}{2} \left(2\delta^2 + 2c^2 - (\delta^2 + c^2 - 2\delta c) \right) = \frac{1}{2} (\delta^2 + c^2 + 2\delta c) = \frac{1}{2} (\delta + c)^2 \ge 0.$$

Finalement, on a:

si
$$c \ge \sqrt{a^2 + b^2}$$
, alors $d(P, C) = 0$ et si $c < \sqrt{a^2 + b^2}$, alors $d(P, C) = \frac{\sqrt{a^2 + b^2} - c}{\sqrt{2}}$ [3pts]

4. [5 points]

a) Le problème est, de minimiser $x \mapsto \|x - u\|$, (plutôt $x \mapsto \|x - u\|^2$ pour des calculs plus faciles) sur C avec $C = \{x \in \mathbb{R}^n : x_i \ge 0 \text{ et } \sum_{i=1}^n x_i = 1\}$ [1 pt].

On pose $f(x) = \|x - u\|^2$, $\varphi_i(x) = -x_i$ et $\psi(x) = \sum_{i=1}^n x_i - 1$, on a alors $C = \bigcap_{i=1}^n \varphi_i^{-1}(] - \infty, 0]) \cap \psi^{-1}(\{0\})$. C est donc fermé comme intersection de fermés (images réciproques de fermés par des applications continues). De plus, C est borné, car $C \subset [0,1]^n$. Ainsi, C est compact et f qui est continue y admet bien des extrémums.

Les contraintes sont linéaires ou affines donc qualifiées. Toutes les fonctions sont de classe \mathcal{C}^1 avec $\nabla f(x) = 2(x-u), \ \nabla \varphi_i = -e_i$ et $\nabla \psi = \sum_{i=1}^n e_i$. Les relations de Kuhn-Tucker s'écrivent donc :

$$\begin{cases} 2x_{i} - 2u_{i} + \lambda_{i} + \mu = 0 ; 1 \leq i \leq n \\ \lambda_{i}x_{i} = 0 ; -x_{i} \leq 0 \\ \sum_{i=1}^{n} x_{i} = 1 \end{cases}$$
 [1pt].

En multipliant la ligne i par x_i on a, compte-tenu de $\lambda_i x_i = 0$: $2x_i^2 - 2x_i u_i + \mu x_i = 0$, donc $x_i = 0$ ou bien $x_i = u_i - \mu/2$. Ainsi, les x_i sont, soit nul, soit égaux à $u_i - \mu/2$.

- b) Pour l'application, supposons que k des x_i sont non nuls $(k \ge 1 \text{ car } \sum_i x_i = 1)$.
- Pour k = 3, on a $x_1 = 5 \mu/2$, $x_2 = 1 \mu/2$, $x_3 = 4 \mu/2$ et, en faisant la somme, $10 3\mu/2 = 1$, soit $\mu/2 = 3$. On a alors le candidant (2, -2, 1) qui n'est pas dans C car $x_2 < 0$.
- Pour k=2, si $x_1=0$, on a $5-2\mu/2=1$, soit $\mu/2=2$ et on obtient le candidat $(0,-1,2) \notin C$; si $x_2=0$, on a $9-2\mu/2=1$, soit $\mu/2=4$ et x=(1,0,0) impossible dans ce cas; si $x_3=0$, on a $6-2\mu/2=1$ et $(5/2,-3/2,0) \notin C$.
- Pour k = 1, on a f(1,0,0) = 16 + 1 + 16 = 33, f(0,1,0) = 25 + 16 = 41 et f(0,0,1) = 25 + 1 + 9 = 35.

Donc finalement, le point de C le plus proche de M(5,1,4) est le point (1,0,0) [3 pts].