间求算法设计与实践08

哈希

Hash Functions

将对象从原空间映射到一个'小空间'中(维度低,值域范围小)

- 计算快
- 冲突少(函数设计,散列表设计)

Hash Functions

- 哈希对象
 - 数字
 - 字符串
 - 树, 图
 - 文件

•

Hash Functions

```
• F(x)=x \mod P;
```

• $F(x)=x^10 \mod P$;

• ...

问题来了...

- 维护一个数据集
- 每次可能插入一个新的数字
- 每次可能查询数字x是否在集合内

排序+二分

- 插入O(NlogN)
- 查询O(logN)

平衡二叉树

- 插入O(logN)
- 查询O(logN)

Hash Table!

- 插入O(1)
- 查询O(1)

字符串哈希

Sample Input

```
[expelliarmus] the disarming charm
[rictusempra] send a jet of silver light to hit the enemy
[tarantallegra] control the movement of one's legs
[serpensortia] shoot a snake out of the end of one's wand
[lumos] light the wand
[obliviate] the memory charm
[expecto patronum] send a Patronus to the dementors
[accio] the summoning charm
@END@
4
[lumos]
the summoning charm
[arha]
take me to the sky
```

Sample Output

```
light the wand accio what? what?
```

字符串哈希算法

BKDRHash, APHash, DJBHash, JSHash,
 RSHash, SDBMHash, PJWHash, ELFHash...

https://www.byvoid.com/blog/string-hash-compare/

BKDRHash

- 对于字符串S='acb'
- $H(S)='a'*31^2+'c'*31+'b'$

BKDRHash

- 递推计算
- for i=0:len-1
 - H=H*31+S[i];

BKDRHash

- 如果有两个串的hash值相同,我们'几乎'可以说他们就是同一个串!
- 实际做题中,合适的选取seed,基本可以全对
- 实际应用中,可能还是会有一些反例

Rabin-Karp Algorithm

- 给定字符串A,B
- 问B是否是A的子串

- 暴力 O(length(A)*length(B))
- KMP O(length(A)+length(B))
- RK 平均O(length(A)+length(B))

预处理

- 给定一个字符串A
- 给定多个查询 (B,i,j), 表示B是否与Ai...Aj为相同的字符串

• 怎么在O(1)时间内求出H(Ai...Aj)?

前缀和trick

- Pre[i]=H(A1...Ai)
- Pre[i]=Pre[i-1]*31+Ai

• H(Ai...Aj)=?

前缀和trick

- Pre[i]=H(A1...Ai)
- Pre[i]=Pre[i-1]*31+Ai

H(Ai...Aj)=Pre[j]-Pre[i-1]*31^(j-i+1)

溢出int?

- 用unsigned longlong
- 天然的模系统
- 加减乘法都满足模的性质

Problem B

- 给定一个字符串
- 找出至少出现M次的最长子串

Problem B

- 用前缀和预处理好哈希值
- 二分长度len
- 找出所有长度为len的哈希值 (O(N)个)
- 将哈希值排序,看是否有至少M个相同的哈希值(或者用一个哈希表来判断)
- 复杂度O(NloglogN)或O(NlogN)

BNUOJ 34490 Justice String

- 给定两个串A, B
- 问A中是否有一个子串,与B长度相等,且最多只有2个字母不一样

BNUOJ 34490 Justice String

- 完全一样
 - KMP, RK
- 一个字母不一样
 - 在A中枚举起点
 - 二分一个最远的距离使得匹配
 - 看后半段是否匹配

BNUOJ 34490 Justice String

- 两个个字母不一样
 - 在A中枚举起点 O(N)
 - 二分一个最远的距离使得匹配 O(logN)
 - 以匹配点后一个点为起点
 - 二分一个最远的距离使得匹配 O(logN)
 - 看最后一段是否匹配 O(1)
- O(NlogN)

Similarity-Preserving Hashing

- 当我们不仅仅考虑如何避免冲突
- 由于哈希函数一般是映射到一个海明空间
- 我们希望相似的对象,拥有'相似'的哈希值(海明距离更近)

Nearest Neighbor (NN) Search

Given a database $X = \{x_1, x_2...\}$ $x_i \in \mathbb{R}^D$ and a query $q \in \mathbb{R}^D$. Return a point y which $y = \arg\min_{y \in X} dist(y, q)$.

There are lots of methods proposed to fast NN search (i.e K-D tree), but they fail in the large scale or high-dimensional cases.

Approximate Nearest Neighbor (ANN) Search

A point z is the approximate nearest neighbor to q , if $dist(z,q) \leq (1+\epsilon)dist(y,q)$

The most famous method of ANN is Locality Sensitive Hashing (LSH), which is based on hashing.

Hashing Technique

Hash function map a object to a limited space i.e $f:\mathbb{R} \to \{0,1,...255\}$

Unlike traditional hashing methods which try to reduce colliding, hashing methods of ANN try to preserve distance in origin space.

Use low-dimensional hamming distance to approximate euclidian distance in origin space.

pros constant or sub-linear retrieve time

low storage cost

cons and to optimize a discrete problem

Supervised Version

For real complex application images, videos...

- Object may have semantic information
- Two images are semantically similar cannot fully depend on the distance in feature (GIST,SIFT...) space
- There are tags or other supervised information could be utilized

In the setting of Supervised version, we are given the ground-truth of similarity between any two training samples.

Locality-Sensitive Hashing

- Bit Sampling
- Random Projection

•

Learning to Hash

- Generating Hashing Functions from data, rather than being independent of data
- Recent research indicates that Learning to Hash can achieve the same accuracy with much smaller codes length!
- Gong, Yunchao, and Svetlana Lazebnik. "Iterative quantization: A procrustean approach to learning binary codes." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

LFH(Zhang et al. 2014)

COSDISH(Kang et al. 2016)

MAP

Method	CIFAR-10 (60K)			
	8-bits	16-bits	32-bits	64-bits
COSDISH	0.4986	0.5768	0.6191	0.6371
SDH	0.2642	0.3994	0.4145	0.4346
LFH	0.2908	0.4098	0.5446	0.6182
TSH	0.2365	0.3080	0.3455	0.3663
KSH	0.2334	0.2662	0.2923	0.3128
SPLH	0.1588	0.1635	0.1701	0.1730
COSDISH_BT	0.5856	0.6681	0.7079	0.7346
FastH	0.4230	0.5216	0.5970	0.6446

DPSH(Li et al. 2015)

http://arxiv.org/abs/1511.03855

DPSH(Li et al. 2015)

Figure 3. Retrieval results (top 15 returned images) for ten query images from CIFAR-10 using Hamming ranking on 48-bits hash code. Red rectangles indicate mistakes.