Formulario A.A 2023/2024

7 gennaio 2025

1 Esercizio 1

- Anagrammi: $A = \frac{\text{totale lettere!}}{\text{lettere uguali!} \cdot \text{altre lettere uguali!}}$
- Combinazione senza duplicati: $C = n \cdot (n-1) \cdot \ldots \cdot (n-k)$
- Combinazione con duplicati: C = n!
- Gruppi di amici: $G = \frac{\text{totale!}}{\text{cardinalit\'{a} gruppo!} \cdot (\text{totale-cardinalit\'{a} gruppo)}}$

2 Esercizio 2

- Valore atteso: $\mathbb{E}[g(X)] = \sum_{i=1}^{n} g(x_i) \cdot p_i$
- Valore atteso con la variabile che fa parte di una congiunta: $\mathbb{E}[g(X)] = \sum_y \sum_x = g(X=x) \cdot p(x,y)$
- Probabilità condizionata: $P(X|Y) = \frac{P(X,Y)}{P(Y)}$
- Trovare probabilità (marginali) di una variabile che fa parte di una congiunta: $P(X) = \sum_y P(X,y)$
- Varianza: $Var(X) = \mathbb{E}[X]^2 \mathbb{E}[X^2]$

3 Esercizio 3

3.1 Funzione densità di probabilità (pdf)

$$f(x) = \begin{cases} a & \text{se } x \in [y, z] \cup [w, k] \\ 0 & \text{altrimenti} \end{cases}$$
$$a = \int_{y}^{z} a \, dx + \int_{w}^{k} a \, dx = 1$$

3.2 Funzione di distribuzione cumulativa (cdf)

$$F(X) = \begin{cases} 0 & \text{se } x < y \\ \int_{y}^{x} a \, dx & \text{se } x \in [y, z] \\ \int_{w}^{x} a \, dx & \text{se } x \in [w, k] \\ 1 & \text{se } x > k \end{cases}$$

4 Esercizio 4

Domanda teorica

5 Esercizio 5

- Bit di guadagno se equiprobabili: $\log_2(\#possibilit\grave{a}) \log_2(\#tentativi)$
- Bit di guadagno se non equiprobabili: $\log_2(\frac{1}{\frac{1}{\#\text{possibilit}\grave{a}}}) \log_2(\frac{1}{\frac{\#\text{tentativi}}{\#\text{possibilit}\grave{a}}})$
- Entropia condizionata: H(X|Y) = H(X,Y) H(Y), H(Y|X) = H(X,Y) H(X). Se X e Y sono indipendenti, H(X|Y) = H(X) altrimenti 0.
- Entropia congiunta: H(X,Y) = H(Y) + H(X|Y) = H(X) + H(Y|X)

6 Esercizio 6

- Trovare codifica convoluzionale per x[k] date le equazioni di parità $y_i[n]$: sostituisci n con k e risolvi le operazioni eseguendo poi il modulo 2.
- Entropia già spiegata nell'es 5

7 Esercizio 7

- \bullet Determinare se è codifica di Huffman/istantanea: $\sum_{x \in \text{alfabeto}} 2^{-L_C(x)} \leq 1$
- Lunghezza attesa: $H(X) = \sum_{i=1}^{|\text{alfabeto}|} p_i \log_2 \frac{1}{p_i}$
- Determinare se è ottimale:
 - 1. Calcolo lunghezza attesa
 - 2. $L(C, \text{alfabeto}) = \sum_{i=1}^{|\text{alfabeto}|} p_i \cdot L_C(x_i)$
 - 3. Se L(C, alfabeto) = H(X) allora è ottimale, $\leq H(X)$ c'è spreco, > H(X) c'è inefficienza.

2

8 Esercizio 8

- Codifica aritmetica
- Codifica di Huffman a blocchi:
 - 1. Determinare tutti i possibili blocchi
 - 2. Calcolarne la probabilità moltiplicando le probabilità dei singoli simboli tra di loro
 - 3. Applicare Huffman

9 Esercizio 9/10

- Cassetto di monete:
 - 1. Determino probabilità di ottenere le monete $P(M_k)$
 - 2. Determino probabilità di ottenere testa/croce con le monete $P(x|M_k)$
 - 3. Calcolare probabilità di ottenere testa/croce pescando a caso: $P(x) = \sum_k P(M_k) \cdot P(x|M_k)$
 - 4. Calcolare probabilità di ottenere testa/croce usando la stessa moneta:
 - (a) Probabilità condizionata per una moneta: $P(xx|M_k) = P(M_k)P(x|M_k)P(x|M_k)$
 - (b) Probabilità congiunta $P(xx) = P(M_k)P(xx|M_k) + P(M_z)P(xx|M_z)$
 - (c) Probabilità condizionata per moneta pescata a caso: $P(x|x) = \frac{P(xx)}{P(x)}$
- Verosomiglianza di una sequenza: $L(x|\theta) = \Pi_i p_i$
- Verosomiglianza distribuita uniformemente: $L(x|S) = \begin{cases} \frac{1}{S^n} & \text{se } S \geq x_{max} \\ 0 & \text{se } S < x_{max} \end{cases}$, nel caso dei taxi x_{max} è il numero massimo delle licenze di conseguenza metteremo che $S = x_{max}$ se non vengono fornite le ipotesi altrimenti S saranno le ipotesi e n è il numero di taxi osservati.

10 Esercizio 11

- Conferma che sia matrice di transizione: la somma delle righe deve essere 1
- \bullet Conferma che sia regolare: esiste un passo ttale che $P_{rc}^t>0$
- Distribuzione stazionaria:
 - 1. $\pi = \pi \cdot P$ con π_i somma degli elementi della colonna
 - 2. Condizione: $\sum_{i} \pi_{i} = 1$
 - 3. Isolo una delle π_i e risolvo il sistema
 - $4. \ \pi = \begin{pmatrix} \pi_1 & \pi_2 & \dots & \pi_n \end{pmatrix}$
- Distribuzione limite: $\lim_{t\to\infty} P^t = \lambda_j$ esiste se P^t converge alla matrice con tutte le righe uguali a λ_j , non può esistere se la matrice non è regolare. Se la matrice è irriducibile e aperiodica, la distribuzione limite esiste e coincide con la distribuzione stazionaria.