Categorical and ordinal features

Categorical

Titanic dataset

	Passen	gerld	Survived	Pclass				Name
0		1	0	3		Braund, Mr. Owen Harris		
1		2	1	1	Cumings, Mrs.	Cumings, Mrs. John Bradley (Florence Briggs Th		
2		3	1	3		Heikkinen, Miss. Laina		
3		4	1	1	Futrelle, Mrs.	Jacques He	eath (Lil	y May Peel)
4		5	0	3		Aller	, Mr. W	illiam Henry
5		6	0	3		Moran, Mr. James		
6		7	0	1		McCarthy, Mr. Timothy J		
7		8	0	3	Pa	alsson, Mas	ster. Go:	sta Leonard
	Sex	A	ge SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.0000	00 1	0	A/5 21171	7.2500	NaN	S
1	female	38.0000	00 1	0	PC 17599	71.2833	C85	С
2	female	26.0000	00 0	0	STON/O2. 3101282	7.9250	NaN	s
3	female	35.0000	00 1	0	113803	53.1000	C123	S
4	male	35.0000	00 0	0	373450	8.0500	NaN	S
5	male	29.6991	18 0	0	330877	8.4583	NaN	Q
6	male	54.0000	00 0	0	17463	51.8625	E46	S

349909 21.0750

NaN

3

male

2.000000

Ordinal features

Ticket class: 1,2,3

Driver's license: A, B, C, D

Education: kindergarden, school, undergraduate,

bachelor, master, doctoral

pclass	1	2	3
target	1	0	1

pclass	1	2	3
target	1	0	1

pclass	1	2	3
target	1	0	1

K
embarked
S
С
S
S
S
Q
S
S
S
С
S
S

Alphabetical (sorted)
 [S,C,Q] -> [2, 1, 3]

sklearn.preprocessing.LabelEncoder

2. Order of appearance [S,C,Q] -> [1, 2, 3]

Pandas.factorize

Frequency encoding

K
embarked
S
C
S
S
S
Q
S
S
S
С
S
S

```
encoding = titanic grouphy('Embarked') size()
```

 $[S,C,Q] \rightarrow [0.5, 0.3, 0.2]$

```
encoding = titanic.groupby('Embarked').size()
encoding = encoding/len(titanic)
titanic['enc'] = titanic.Embarked.map(encoding)
```

Frequency encoding

K	
embarke	d
S	
C	
S	
S	
S	
Q	
S	
S	
S	
С	
S	
S	

```
[S,C,Q] -> [0.5, 0.3, 0.2]
encoding = titanic.groupby('Embarked').size()
encoding = encoding/len(titanic)
titanic['enc'] = titanic.Embarked.map(encoding)
```

from scipy.stats import rankdata

Categorical features

One-hot encoding

pclass	pclass==1	pclass==2	pclass==3
1	1		
2		1	
1	1		
3			1

pandas.get_dummies, sklearn.preprocessing.OneHotEncoder

Categorical features

pclass	sex	pclass_sex
3	male	3male
1	female	1female
3	female	3female
1	female	1female

Pclass_sex==							
1male	1female	2male	2female	3male	3female		
				1			
	1						
					1		
	1						

Categorical features

- Values in ordinal features are sorted in some meaningful order
- 2. Label encoding maps categories to numbers
- 3. Frequency encoding maps categories to their frequencies
- 4. Label and Frequency encodings are often used for treebased models
- 5. One-hot encoding is often used for non-tree-based models
- 6. Interactions of categorical features can help linear models and KNN