Contents

		3
		3 4
		7
		7
		7
		8
		8
		8
		9
		9
		9
		9
	Checking energy in circular orbits	0
		0
	Parabolic orbits: escape speeds	0
	Hohmann transfer orbit	1
	th-Moon Systen 1	1
	Motion of the moon	$\frac{1}{1}$
	Procession	1
		$\frac{1}{2}$
	4.3.1 Diff gravitational tidal forces	$\frac{1}{2}$
		$\frac{1}{2}$
	Earth Shape	2
	Roche Limit	3
	Hill radius	3
		3
	Tidal forces: earth vs moon $\ldots \ldots \ldots \ldots \ldots $	4
	lunar librations	4
	708	4
		4
		4
	Bohrs model	5
		5
	Kirchoff's Laws	6
		6
		6
		c

	Telescopes 16																
																	16
																	17
																	17
																	17
																	19
																	19
																	19
																	19
																	19
																	20
																	20
																	20
																	21
																	21
																	22

Astro Notes

Pierson Lipschultz

October 6, 2025

0 Class overview

Office hours tues and thurs 11-12 astro 237 ta office hours wed 3:30:530 astro 2367 hw due wed hw posted week before

- solar system
- steller evo
- compact objects
- galaxy quasi darkmatter
- cosmic web
- big bang

course goals

- apply pys to universe
- understand foundations of modern astro, astrophys, and cosmology $\,$
- conceptual understanding of the uni based on physical principles

1 Early Astronomy

1.0.1 Greek

- Aristotle
 - earth is spherical
 - partial lunar eclipses
 - some stars visible from southern locations but not northern and vice versa

- had ideas regarding perfect geo influenced by Pythagoras and Plato
- Aristarchus (310-230 BC):
 - unpreceded heliocentric framework
 - trig distances earth-moon-sun system
 - angular diameters $\theta_{sun} \approx \theta_{moon}$: $\frac{A}{C} = \frac{D_{moon}}{D_{moon}}$
 - diameters from lunar eclipses $D_{moon} < D_{earth}$
- Eratoshs (176-195 BC):
 - Determined radius of spherical earth R_E
 - Sun at zenith at noon on summer solstice at Aswan
 - But further north in Alexandria, Egypt, the sun is south of the zenith by angle α
- Hipparchus (190-120 BC):
 - Discover precession of the equinoxes from examination of star catalogs over centuries
 - established the magnitude system
- Copernicus (1473-1543):
 - heliocentric
 - earth rotates
 - still assumed uniform circular celestial motion
 - inferior planets: orbit smaller than earths
 - superior planets: orbits larger than earths

1.1 Emergence of modern Astro

Inferior planets

- B/C = $\sin \theta_E$
- B=C Sin θ_E
- C is AU
- Early astronomers didnt know C, so they could only infer rations of B/C. Ie. Orbital radii measured in AU

Superior Planets

- Measure time between opposition and eastern quadrature
- want angle θ between opp and east quad

- $\theta = (\omega_E \omega_p)$ and $C/B = cos\theta$
- measure τ and synodic period, calculate sidereal period and ω_p ; know ω_E and infer C/B

Galilean Revolution

- Galileo Galilei (1564 -1642)
- - improved and used a basic refracting telescoping
- def publication of early results 1610 "starry messenger"
- Moon is cratered; not a perfect Sphere
 - milkyway is made out of stars
 - Jupiter has moons (or as he thought, stars)
 - measured phases of Venus

Phases of Venus

- direct confrontation with Ptolemaic geocentric models
- in Ptolemaic models you only see crescent phases

Tycho Brahe (1546-1601)

- Denmark, later Prague
- Given island by king Fredrick (and staff)
- made a accurate and vast database of celestial motion
- had a lead nose?
- Threw giant ragers
- supernova named after him

Johannes Kepler (1571–1630, Prague)

- 'Inherited' (maybe stole) Brahe's data
- also has a SN
- Kepler fit a new empirical model of heliocentric orbits, abandoning perfect circles
 - "It was as if I awoke from sleep and saw a new light" (Kepler, New astronomy)

Kepler's Laws

First law

- The planets travel on elliptical orbits with the sun at one focus
- Semimajor axis, half the major axis
- eccentricity: how elliptical (stretched) an orbit is distance between foci divided by major axis.

second law

- A line drawn from the sun to a planet sweeps out equal areas in equal time intervals'
- perihelion: orbital point closet to the sun
- aphelion: furthest orbital point from the sun

third law

Def: The square of the sidereal orbital periods of the planets are prop to the cubes of the Semimajor axis of their orbits

$$p^2 = Ka^3$$

P = planets sidereal period a= length of semimajor axis K = constant

Consequences of heliocentric model

- retrograde motion of outer planets
- positions of outer and inner planets wrt sun
- annual parallax
- aberration of starlight
- Coriolis effect

Parallax

- annual parallax: change in the apparent position when seen from two diff locations due to earth revolving around the sun. First measured by Bessel in 1838

Aberration of starlight

- deflection of apparent stellar positions in the direction of the observers motion
- analog: running throw rain and getting wet in the front and not in the back
- detected (Picard, 1680); explained (Bradley, 1729)

- telescope is moving along orbital vector around the sun; translation along orbit cannot exceed transit time of light through telescope

Coriolis effect: evidence of earth rotation

- coriolis acceleration is perp to the direction of motion

$$\vec{a_{cor}} = s\vec{v} \times \vec{\omega}$$

- can be deduced from a pendulum
- and in hurricanes!

Orbital Mechanics I 2

2.1 Newtonian mechanics

Parametric vectors

Displacement $\vec{r}(t) = x(t)\hat{i}y(t)\hat{j} + z(t)\hat{k}$ distance: $r(t) = |\vec{r}(t)| = \sqrt{\vec{r} \cdot \vec{r}}$

2.2 Newtons laws

First law

- Isaac newton(1642-1727)
- an objects' velocity remains constant unless a net outside force acts upon
- $\vec{v}(t) = \vec{v_0} = const$

second law

- $\vec{F} = m\vec{a}(t)$
- $\vec{F} = \frac{d\vec{p}(t)}{dt}$
- $d\vec{v}/dt = \vec{f}/m$
- force changes velocity
- used a lot in computational math

third law

- forces come in pairs, equal in magnitude, and opposite in direction

Newtonian gravity

- a force, grav, exsits between any two objects having mass m and M, prop to the product of their masses mM and inversely proportinal to the square of the separtation distance r of their centers
- for coordinates centered on M:
- $ec{F}=-Grac{Mm}{|ec{r}|^2}\hat{r}$

2.3 Displacement vector and polar coordinates

- cartesian coordinates are often written a (x,y,z) in a coordinate system centered on mass M
- Axis orientations are chosen so that the planet orbits in the x-y plane
- Displacement $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$

velocity vector and polar coordinates

- unit vectors in polar coordinates vary with $\theta(t)$

$$\frac{d\hat{r}(t)}{dt} = \frac{d\hat{r}(t)}{d\theta} \frac{d\theta(t)}{dt} = \frac{d\theta(t)}{dt} \hat{\theta}(t)$$

- .

- .

- .

-

$$\vec{v}(t) = v_r \hat{r} + v_t \hat{\theta}$$

- two velocity components in polar coords
- 2.4 Kepler laws: angular momentum

2.5 keplers 2nd law = consv, angular momentum

$$d\vec{L}/dt = 0$$

 $ec{L} = ec{R} imes ec{p} = ec{r} imes m ec{v} = const$

$$\Rightarrow |\vec{v}| = L = mrv_1$$

2.6 Keplers Laws

2.6.1 Keplers First Law

$$- \frac{d\vec{v}}{dt} = -\frac{GM}{r_2}\hat{r}$$

-

$$\frac{L}{GMm}\frac{d\vec{v}}{dt} = \frac{d\hat{\theta}}{dt}$$

-

$$\frac{L}{GMm}\vec{v} = \hat{\theta} + e\hat{j}$$

- take dot product of both sides with unit vector $\hat{\theta}, using$

-
$$\hat{j} \cdot \hat{\theta} = \cos \theta$$

_

$$\vec{v} \cdot \hat{\theta} = v_t = \frac{L}{mr}$$

2.7 Kepler III

- we know that $\frac{dA}{dt} = \frac{l}{2m} = const$

- area of a ellipse $a = \pi ab$ of orb period p.

_

$$\therefore \frac{A}{P} = \frac{\pi ab}{P} = \frac{L}{2m}$$

- eclipse geo : $b^2 = a^2(1 - e^2)$

- also, $\frac{L^2}{m^2}GMa(1-e^2)$

-

$$P^2 = \frac{4\pi^2}{GM}a^3$$

3 Orbital energetics

- total energy e is conserved

- sum of K and U

-

$$E = K + U$$

-

$$=\frac{1}{2}mv^2 - \frac{GMm}{r}$$

- total E is conserved

 $E = \left(\frac{GMm}{L}\right)^2 \frac{m}{2} (e^2 - 1)$

- Hyperbolic orbit: $e>1, E>0, K>\left|U\right|$

- open orbit, unbound;, single perihelion passage at $\theta = 0$

- Parabolic orbit: e=1, E=0, K=|U|

- marginally unbound; velocity approach zero at infinite time

- elliptical orbit: e < 1, E < 0, K = |U|

- objects originating outside our solar system are easily identified by their total energy

- measure total energy (how far away it is, how fast is it moving)

3.1 Checking energy in circular orbits

- governing equation for circular orbits in scalar from

$$f = ma$$

$$\frac{GM}{r^2} = \frac{v^2}{r} = \omega^2 r$$

$$v = \sqrt{\frac{GM}{r}}$$

3.2 Negative total energy orbits

- bound orbits have E; 0

- must add energy to break "unbind" the orbits

3.3 Parabolic orbits: escape speeds

- Escape speed is the speed that will bring your total pot energy to 0

- velocity becomes zero at infinite distance

$$\frac{1}{2}mv^2 = \frac{GMm}{r}$$

 $v_{esc} = \sqrt{\frac{2GM}{r}}$

3.4 Hohmann transfer orbit

- Elliptical transfer orbit from earth to superior planet
 - earths orbit becomes the transfer orbits perihelion passage
 - inserted into superior planet orbit at aphelion. This constrains launch windows
 - theoretically requires only two burns: at launch and aphelion insertion point
- semimajor axis os transfer orbit

 $a_{to} = \frac{a + a_{sup}}{2}; Earth$

4 Earth-Moon Systen

4.1 Motion of the moon

- 27.3 sidereal orbit
- 29.5 synodic orbit
- rises in east and sets in west diurnally, but moves eastwards by about 12 deg per day rel to stars
- rises hour later per night

4.2 Precession

- earth is an oblate spheroid with equatorial bulge of .3% cause by separation
- sun, moon, and planets exert a torque τ on earth

 $\vec{\tau} = \vec{r} \times \vec{F}$

- results in precession of spin axis of earth around ecliptic pole
- NCP moves. Polaris will not always be at NCP
- moves through stars with $P \approx 28500yr$
- opening angle

 $47^{\circ} (= 2 \times 23.5^{\circ})$

4.3 Tidal Forces

- Moon exerts diff tidal forces on matter on earth
- esp noticeable on earths ocean surface as tides
- when sun and moon align (sun-earth-moon at $0^{\circ} and 180^{\circ})$ high-amp tides result, called spring tides
- when sun and moon are at 90° they sum destructively, producing neap tides

4.3.1 Diff gravitational tidal forces

- arise from the r^{-2} dependence of grav force
- Taylor expansion about center of earth r_0

$$\delta F = \frac{2GM_{moon}m}{r^3}(r - r_0)$$

- Sun exerts about half as strong as moon tidal forces

4.3.2 Rotation of tides

- tidal bulges produced on earths by the moon rotate at the same angular rate as the moons orbit around earth
- but the earth is rotating faster at once per sidereal day by 4 minutes. Drags the tides forward from where they would otherwise be by about 10° by friction
 - therefore high tides occur shortly after upper transit of moon
 - the misalignment drives angular momentum transfer between earth and Moon
 - moon pulls strongly on nearer tidal bulge than farther tidal bulge
 - net torque to slow earth rotation
 - but conversely the tidal bugle pulls more strongly on the moon, pulling it forward, increasing its angular momentum

4.4 Earth Shape

- moon stretches earth in a prolate deformation
- spin of the earth causes an oblate deformation
- oblate is much greater the prolate def

4.5 Roche Limit

- object get too close, forces on one side much greater then other, rip object apart
- approx a planet as two spheres 2m

 $\Delta F = \frac{dF}{dr} \Delta r = \frac{2GMm}{r^3} \Delta r$

- Is there a force holding 2m together? yes, self grav

 $F = -\frac{Gmm}{(\Delta r)^2}$

4.6 Hill radius

- Tidal forces of sun on earth-moon systems means that there is a maximum orbital distance for the moon, if it is to remain bound to the earth

4.7 Plane of lunar orbit

- Inclined by 5.1°
- the moon is near the cele equator so the moon is above the horizon about 50% of the time for most observers on earth
- moves north and south in the sky in addition to its motion around the earth. greatest dec is 23.5+5.1=28.6 and min is -23.5-5.1=-28.6
- causes eclipses to be retrograde

4.8 Tidal forces: earth vs moon

- earth exerts greater tidal forces on moon than the moon does on the earth.

 $\Delta g_{moon o earth} = rac{\Delta F}{m} \propto rac{M_{Moon} R_{Earth}}{r^3}$

$$\Delta g_{earth \to moon} = \propto \frac{M_{Earth} R_{Moon}}{r^3}$$

 $rac{\Delta g_{moon
ightarrow earth}}{\Delta g_{earth
ightarrow moon}}rac{M_{moon}R_{earth}}{M_{earth}r_{moon}}pproxrac{1}{20}$

4.9 lunar librations

- tidal locking is not perfect, so the libration happens in longitude
- because the rotation axis is inclined there is libration in lat

5 Waves

5.1 Spectra (How do we know what the universe if made out of?)

Multi-messenger astronomy

- Electromagnetic radiation
- cosmic rays
- meteorites
- neutrinos
- gravitational waves

5.2 Atoms and spectra

Hydrogen gas exhibits emission lines at discrete visible wavelengths, fit by empirical relation by Balmer in 1885

$$\frac{1}{\lambda} = R(1/4 - 1/n^2)$$

$$n = integer > 2$$

5.3 Bohrs model

Because orbital angular momentum is quantized, so is r_n and $E_n \to \text{discrete}$ orbital levels

5.4 Atomic transition processes

- Transitions to free unbounded states behave similarly, however, they have diff names
- ionization and recombination
- photoionization (electron is knocked free). photon knocks electron free
- collisional ionization (electron becomes free). any other particle knocks electron free
- a positively charged ion may combine with a free leectron, and atom emits radiation (photons) as the electrons drop to lower levels. called **recombination**

5.5 Kirchoff's Laws

- blackbody
- emission lines
- absorption lines

5.6 Tempature affects internal states of atoms and molecules

- temp of gas dermines the kinetic energies of the colliding particles
- and the incoming photons
- we observe outgoing photons

5.7 Temperature vs velocity

- Thermal motions: emitted or absorbed photos inherent their energy from the doppler velocites of the thermal motions of particles/atoms
- equilibrium distribution of particles speeds in an ideal gas is given by the Maxwell-Boltzmann distribution

5.8 mean free path and opt depth

- mean free path x_m . Distance which intensity decrease by a factor of 1/e
- optical depth $\tau = x/x_m$. Thickness of slab in units of mean free path x_m
- column density, N(x): total number of absorbing particle sin a column with cross-section area 1 m^2 and length x

6 Telescopes

6.1 photoeletric effect

- Photoemission emisison of a electron from a material in response to a incident photon
 - photoemissive material (underlying material)
 - work function (min energy requried to produce light)
 - photoeletric effect (photoemission from atoms in certain materials)
 - photoelectron (release electron)
- particle energy of EM radiation

6.2 Sun

6.2.1 Chromosphere

- Very sparse layer of gas above the photosphere
- very hot gas, emission spectra by Kirchhoff laws
- easily seen during total eclipse or with an $H\alpha$ filter

6.2.2 Corona

- Low density out layer of suns atmosphere. Most easily visible during total eclipse
- $T = 2 \times 10^6$
- Emission lines from highly ionized atoms
- x-ray emission from thermal Bremsstrahlung (not black body)
- Optical continuum is originally from photosphere
- scattered by free electrons in coronal plasma
- coronal streamers show how plasma follows magnetic field lines

6.2.3 Solar Wind

- Bunch of protons and other various particles ejected from the sun
- Speed of protons in the corona

 $V_{rms} = \frac{3kT}{m_p}^{1/2} \approx 160km/s$

- Escape speed as function of distance

 $rac{GM_{\odot}}{r}^{1/2}pprox 620 km/s$

- Sun produces a solar wind with v=400km/s, density $p 10^{-21} kgm^{-3}$ earth

 $\Delta M = (4\pi r^2 \Delta r)\rho$

- therefore mass flux through shell

 $\frac{dM}{dt} = 4\pi r^2 \frac{dr}{dt} \rho$

 $\dot{M} = 4\pi r^2 v \rho$

 $\dot{M} \sim 10^8 kg s^{-1}; t_m \sim 10^{14}$

- Maybe try this myself with various sizes of stars?? Seems easy to verify large stars ejecting large amounts of wind

6.2.4 Magnetic Fields

- Lorentz force $\vec{F} = q\vec{v} \times \vec{B}$
- Charged particles follow curved helical paths
- Magnetic field energy

 $P_B = \varepsilon_B = \frac{B^2}{2\mu_0}$

6.2.5 Sunspots

- Cooler than surroundings because the magnetic field is enhanced in the spot
- Pressure due to a magnetic field

 $P_B = 4 \times 10^5 Nm^{-2} (\frac{B}{1T})^2$

- pressure due to ideal gas

 $P_{gas} = nkT$

Pressure balance in sunspots

- gas and magnetic pressure inside sunspot must equal surrounding gas pressure

 $\boxed{\frac{\rho k T_s}{m_p} + \frac{B^2}{2\mu_0} = \frac{\rho k T_P}{m_p}}$

- $B \approx .1T$

Sunspot Cycle

- Star near 30° N/S, migrate towards solar equator
- more numerous every 11 years

10 The planets

10.1 Mecury

- always 30° from the sun
- strong tidal forces, permanent prolate tidal bulge
- sidereal rotation $P_{rot} = 58.65d$
- $P_{orb} = 87.97$
- Orbit is tidally locked at perihelion

10.2 Venus

- Retrograde Motion
- atmosphere
 - Clouds are sulfuric acid
 - $\sim 96.5~\text{co}2\%$ and $\sim 3.5\%~\text{N}2$
 - Very strong greenhouses
- Earths liquid water ocean dissolves co2
- runaway greenhouse

10.3 Earth

- Temperature and pressure on earth allow significant qualities of gas, liquid, and solid water. Not true for Venus or Mars

10.4 Mars

- $\alpha = 1.52 \mathrm{AU}$
- $\overline{P_{sidereal}} = 1.88$
- 24h40m
- Atmosphere
 - Pressure $\sim .006$ atm (earth)
 - $-95\% CO_2$
 - UV photodissociastes H_2O , the oxygen oxidizes iron in soil
- Seasons caused by obliquity
- polar caps of CO_2 form and melt in winter and summer

10.5 Jupiter and Saturn

- they are in hydrostatic equilibrium
- $\frac{dP}{dr} = -\frac{GM_r\phi}{r^2}$
- M_r is the mass within radius r assuming constant density ϕ
- $-\int_{P_c}^{0} dP = \frac{4\pi}{3}\phi^2 G \int_{0}^{R}$
- solving shows that there must be very high pressures in centers of Jovian planets
- Metallic hydrogen is a conductor
- convection + rotation in a conducting fluid produce magnetic dynamos and magnetic fields

10.5.1 energy deficit for jupiter

- Jupiter's luminosity is twice its rate of solar irradiation from the sun
- Consider gravitational potential energy of a shell of thickness
- extra energy comes from the radius shrinking

10.6 Fast rotation

- Polar diamter of jupiter is 6.5 shorter thne equatorial bulge
- saturn is 10% shorter than equatorial diam

10.7 rings

- all Jovian planets have rings; Saturn are the most prominent
- tidally disrupted satellite inside Roche limit
- internal structures caused by orbital resonances

12 Solar system in perspective

12.1 Solar system config

- Planetary orbits are coplanar
- suns equator close to orbit Plane
- nearly circular orbits
- planets all orbit in same direction
- most planets rotate in the same direction as their orbital motion

12.2 Porotstellar Neb

- Cloud of gas compressing and spinning

12.3 Compartive planetology

- Massive colder planets retain atmospheres
- planet masses and compositions were driven by the temperature gradient in the protoplanetary disk and its relation to the condensation Temperature profile

12.4 Origin of the solar system

- Giant jovian satellites are a mini version of the whole solar system
- rings are temporary and provide evidence for a dynamic, evolving planetary system
 - all Jovan planets have rings
 - produced by bodies that failed to form or were disrupted due to tidal forces
 - triton is scheduled to explode

12.5 Dynamic solar system

- our moon, large satellite of a small planet
- triton captured by Neptune
- retrograde rotation of Venus
- large impact craters

12.6 Detecting exoplanets

12.6.1 Transit

- can theoretically resolve some based on angular resolution, but very hard to separate from the star itself
- $L_{jup} = \left(\frac{L_{\odot}}{r\pi a^2}(\pi R_{jup}^2 A)\right)$
- if you look at infrared radiation it is "easier" to resolve to planet

12.6.2 Indirect

- Wobble due to the planet pulling on the star
- They orbit their COM

12.6.3 Doppler effect

- Measure redshift and blue shift on the star

13 Glossary

Synodic period

- time elapsed between success conjunctions or oppositions
- this is the period we observe from earth, which is moving

Sidereal Period

- elapsed time of full orbit relative to the fixed stars (inertial ref frame)
- This is the one we will want to put in Keplers laws