Reg. No.	
Signature	

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY — MARCH, 2016

ENGINEERING MATHEMATICS - I

(Common to all branches except DCP and CABM)

[Time: 3 hours

(Maximum marks: 100)

PART-A

(Maximum marks: 10)

I Answer all questions. Each question carries 2 marks.

- 1. Evaluate $\sin \frac{\pi}{2} + \csc \frac{\pi}{6} + \cot \frac{\pi}{4}$
- 2. In \triangle ABC, show that abc = $4\triangle$ R, where \triangle is the area and R is the circum radius of the triangle.
- 3. Calculate $\lim_{x \to \infty} \frac{7-x}{3x+1}$
- 4. Find the derivative of $x^2 \sin x$.
- 5. Find the range of values of x for which $y = 2x^2 8x + 1$ is increasing. (5×2=10)

PART—B

(Maximum marks: 30)

- A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 meters away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and the width of the river.
- 3. Prove that $\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0$.
- 4. Solve \triangle ABC, given that a = 8 cm, b = 5 cm, \angle C = 30°.
- 5. If $x = a (\cos t + t \sin t)$, $y = a (\sin t t \cos t)$ show that $\frac{dy}{dx} = \tan t$.

4

4

- If $y = a \cos (\log x) + b \sin (\log x)$, show that $x^2y^{11} + xy^1 + y = 0$.
- Find the equation of tangent and normal to the curve $x^2 + y^2 = 25$ at (3,-4). Find also the points on this curve at which the tangent is parallel to the x-axis. $(5 \times 6 = 30)$

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 mark

UNIT-I

- III (a) Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$.
 - Simplify $\frac{\sin (90^{\circ}+\theta) \sec (-\theta) \cot (180^{\circ}-\theta)}{\cos (270^{\circ}+\theta) \csc (180^{\circ}+\theta) \tan (90^{\circ}-\theta)}.$ 4
 - Prove that $\sin (A + B) \sin (A B) = \sin^2 A \sin^2 A$
 - 3

- (d) If A and B are acute angles, $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{3}$ show that $A+B = \frac{\pi}{4}$.

 IV (a) Prove that $\sec^2 x + \csc^2 x = \sec^2 x + \csc^2 x$.

 (b) If $\sin A = \frac{-3}{5}$, $\sin A = \frac{12}{15}$. A lies in 3rd quadrant, B lies in second quadrant, find cos (A+B) and sin (A-B)
 - (c) Prove that $\frac{\cos A \sin A}{\cos A + \sin A} = \tan (45^{\circ}-A)$ 4
 - (d) If $\theta = 30^{\circ}$, verify that $\sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$ 3

- Prove that $\frac{1 + \cos 2A}{\sin 2 A} = \cot A$ and deduce the value of cot 15°. Prove that $\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ} = \frac{1}{16}$. 5
 - 5
 - (c) Solve $\triangle ABC$, given that a = 4cm, b = 5cm, c = 7cm. 5

OR

- VI (a) If $\sin A = \frac{3}{5}$, A is acute, find $\sin 2A$, $\cos 2A$, $\sin 3A$ and $\cos 3A$. 5
 - (b) Show that $\cos 55^{\circ} + \cos 65^{\circ} + \cos 175^{\circ} = 0$. 5
 - (c) Show that $a(b^2 + c^2)\cos A + b(c^2 + a^2)\cos B + C(a^2 + b^2)\cos C = 3abc$ 5

Marks