56 Ships From Space?

Eliot Arntz, Alice Drozd, Eric Ha, Kenneth Lin

Problem Motivation

Security: Maritime Surveillance, Search and Rescue Operations

Environment: Environmental Monitoring, Humanitarian Efforts

Global Trade: Commerce and Supply Chain Analysis

Dataset

- San Francisco Bay or San Pedro Bay
- 4000 80x80 RGB images
- Labels
 - 1: Ship
 - o 2: No-Ship

San Pedro Bay

San Francisco Bay

Dataset

1: Ship

O: No Ship

Solution and Approach

Noise

Median Blur

Cloud Cover, Time of Day, Rotation

Image Augmentation

Edge
Detection,
Scale
Invariance

CNN instead of Random Forest

Original

Median Blur (Window Size = 3)

Solution and Approach

Original

Median Blur

Cloud Cover, Time of Day, Rotation

Image Augmentation

CNN instead of Random Forest

Augmented

Solution and Approach

Median Blur

Cloud Cover, Time of Day, Rotation

Image Augmentation

Scale invariance and edge detection

CNN instead of Random Forest

Class 1

Class 0

Experiments

Baseline: Random Forest

CNN for Edge Detection

CNN Architecture V1

Major Shift in Architecture

CNN Architecture V2

Hyperparameter Tuning

Final CNN

Layer (type)	Output Shape	Param #
conv_1 (Conv2D)	(None, 80, 80, 32)	2,432
pool_1 (MaxPooling2D)	(None, 40, 40, 32)	0
conv_2 (Conv2D)	(None, 40, 40, 64)	18,496
pool_2 (MaxPooling2D)	(None, 20, 20, 64)	0
flatten_3 (Flatten)	(None, 25600)	0
fc_1 (Dense)	(None, 512)	13,107,712
dropout_3 (Dropout)	(None, 512)	0
fc_2 (Dense)	(None, 1)	513

Total params: 13,129,153 (50.08 MB)
Trainable params: 13,129,153 (50.08 MB)

Non-trainable params: 0 (0.00 B)

Results and Conclusion

Ethical, Legal, and Personal Concerns

Privacy: Surveillance, Data Security

Algorithmic Bias: Biased Data Leads to Biased Results

Limitations: Geospatial Generalizability

NeurIPS Checklist

- For all authors...
 - Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? yes
 - Have you read the ethics review guidelines and ensured that your paper conforms to them? yes
 - Did you discuss any potential negative societal impacts of your work? yes
 - Did you describe the limitations of your work? yes
- If you are including theoretical results...
 - Did you state the full set of assumptions of all theoretical results? n/a
 - Did you include complete proofs of all theoretical results? n/a
- If you ran experiments...
 - Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? yes
 - Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? yes
 - Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? yes
 - Did you include the amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? yes

- If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - If your work uses existing assets, did you cite the creators? yes
 - Did you mention the license of the assets? yes
 - Did you include any new assets either in the supplemental material or as a URL? yes
 - Did you discuss whether and how consent was obtained from people whose data you're using/curating? yes
 - Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? yes
- If you used crowdsourcing or conducted research with human subjects...
 - Did you include the full text of instructions given to participants and screenshots, if applicable? n/a
 - Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? n/a
 - Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? n/a

Works Cited

- D. Scherer, A. Muller, and S. Behnke. Evaluation of pooling "operations in convolutional architectures for object recognition. In Artificial Neural Networks–ICANN 2010, pages 92–101. Springer, 2010.
- (ESA), European Space Agency. "Satellite Captures Incredible Detailed View of San Francisco Bay from Space." SciTechDaily, 19 Apr. 2023, scitechdaily.com/satellite-captures-incredible-detailed-view-of-san-francisco-bay-from-space/.
- Nedelina Teneva, UC Berkeley School of Information. DATASCI W207: Applied Machine Learning Assignment 10. Spring 2024.
- Shore, Leah. "5. Why We Have Two Major Seaports in San Pedro Bay." *USC Sea Grant*, 19 Dec. 2023, dornsife.usc.edu/uscseagrant/2020/08/31/5-why-we-have-two-major-seaports-in-san-pedro-bay/.

Privacy: Surveillance, Data Security

Algorithmic Bias: Biased Data Leads to Biased Results

Limitations: Geospatial Generalizability

Contributions

Alice: Problem Motivation, Ethical/Legal/Personal Concerns, NeurIPS Checklist, Reviewing Code, Initial Powerpoint Draft, Initial Report Draft of All Sections

Eliot: Trained a random forest baseline model and CNN. Experimented with three different learning rates (0.001, 0.0001, 0.00001) and the Adam optimization function. Trained the final model using 10 epochs

Eric: Dataset, Results & Conclusion, Model Architecture, Model Evaluation

Kenneth: EDA, Identified Experiments to Test, Implemented Experiments Image Preprocessing & Augmentation Experiments, Evaluated Model Performance

