

IN THE UNAITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS

Minoru Mukaida

SERIAL NO.

09/740,345

FILED

December 18, 2000

FOR

ENERGY CONSUMPTION EFFICINCY IMPROVING

AGENT AND METHOD, AND ARTICLE HAVING

IMPROVED ENERGY CONSUMPTION EFFICINCY

ART UNIT

1773

EXAMINER

Rickman, Holly C.

Supplemental Declaration under Rule 1.132

I, the undersigned declarant, hereby state as follows:

I am one of the named inventors in above-referenced application.

I am a Japanese citizen residing at Shinagawa-ku, Japan.

I conducted the experiments set forth in detail in the following description, and I submit this declaration in support of the above-referenced application.

ADDITIONAL EXPERIMENTS

(Improving Effect of Fuel Consumption by the thickness of the film)

The inventor has conducted an experiment, which shows the fact that when a thin film having a low viscosity is attached to the ground contact surface of a tire, the increase of the ground contact frictional force against a load surface is changed into an energy transmitting force (a force used for rolling the tire), which improves the energy consumption of vehicles; while the critical point, where the increase of the rolling resistance (the increasing of hysteresis loss or adhesion) due to the thickness of the film, which makes the energy consumption worse, exceeds the rate of the increase of the friction, is 10µ m.

I. Difference of the ground contact frictional force due to the thickness of the film attached on the surface tire (A model vehicle was used for the experiment).

						Thicknes	s of Film	Thickness of Film on the Driving Tires	iving Tire	S				
	0													
	μm	0.01	0.2	0.5		ഹ	6	50	30	40	20	75	100	105
	(without	шn	шĦ	μm	шπ	mπ	μm	mπ	# III	# H	mπ	m #	m #	2 2
	film)													
Ground Contact														
Frictional	120g	160g	152g	150g	1498	145g	140g	134g	127g	121g	115,8	104g	928	ğ06
Force : F		,							,)	•		?	9
Ground Contact														
Frictional	0.65	0.85	0.82	0.81	0.81	0.78	0.75	0.72	0.69	0.65	0.62	0.56	0.50	0.48
Constant: μ														
Increasing rate														
of Frictional												-		
Force	-	33.3%	27.0%	25.0%	23.8%	20.8%	16.7%	11.5%	6.2%	1.0%	4.2%	13.2%	23.7%	25.0%
(Comparison to		increased	increased	increased	increased	increased	increased	increased	increased	increased	decreased	decreased	decreased	decreased
the tire without														
film)														

II. Difference of the rolling resistance due to the thickness of the film attached on the surface of tire (A model vehicle was used for the experiment).

						Thi	ckness of	Thickness of Film on Tires	es					
	0													
	шĦ	0.01	0.2	0.5	-	ഹ	5	20	30	40	20	75	100	105
	(without	шĦ	μm	μm	μm	щπ	шĦ	шĦ	ΉH	μm	mπ	mπ	# H	E H
	film)													
Rolling Distance:	4280	4076	3920	3873	3837	3754	6998	3510	3334	3170	3024	2767	2585	2550
0	æ	æ	E	E	E	æ	mm	mm	шш	E E	E	E	E	E
Rolling	0.0126	0.0132	0,0138	0.0139	0.0141	0.0144	0.0147	0.0154	0.0162	0.0170	0.0178	0.0195	0.0209	0.0212
Resistance : R	kgf	kgf	kgf	kgf	kgf	kgf	kgf	kgf	kgf	kgf	kgf	kgf	ksf	κ 94
Mean	50.4	52.9	55.1	55.7	56.3	57.5	58.8	61.5	64.7	68.1	71.3	78.0	83.5	84.7
deceleration : b	mm/s ²	mm/s²	mm/s ²	mm/s²	mm/s²	mm/s²	mm/s ²	mm/s²	mm/s²	mm/s ²	mm/s ²	mm/s ²	mm/s ₂	mm/s ²
Increasing rate of														
Rolling Resistance		5 0%	8 6	10 27 28	11 7%	14 1%	16.7%	% C C C	%/ ac	35 1%	41 F.V	90	AE 79	760
(Comparison to	ſ	,	2000	2	2	P	ę .	v) ;	e t C	e : : :	6 5	04.0 ·	e	e
the tire without		ווכן פקאפת	ווכו מפפח	nci eased	nece eased	ncreased	Increased	increased	ncreased	increased	increased	increased	Increased	Increased
film)														

Solid Line Curve of Figs.1, 2 II. Improving Rate of Fuel Consumption (Experimental Result I+II)

Fig.1 Relation between Improving Rate of Energy Consumption and Film Thickness

Fig.2 Relation between Improving Rate of Energy Consumption and Film Thickness

2007/007

The thin film used in the experiment was prepared and applied to the tire surface in accordance with presently amended claim 28, as follows:

The film had a viscosity of 100,000 cp or less, and contained antislipping agents, the antislipping agents consisting of fine particles of an average particle diameter of 10µm or less. The film comprised a polymer binder selected from the group consisting of polyethylene; a methyl, phenyl, chloro, hydroxy, acetoxy, or cyano derivative of polyethylene; polybutadiene; a methyl or chloro derivative of polybutadiene; a copolymer of said polyethylene derivative and said butadiene derivative; silicone; polysulfide; polyurethane; modified silicone; modified epoxy resin; and modified acrylic resin.

I declare further that all statements made herein of may own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Date: September 15, 2005

Minoru Mukaida