TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2019

Exponential Softmax

Distributions on Exponentially Large Sets

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{(x,y) \sim \operatorname{Pop}} - \ln P(y|x)$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}} - \ln P(y)$$

The structured case: $y \in \mathcal{Y}$ where \mathcal{Y} is discrete but iteration over $\hat{y} \in \mathcal{Y}$ is infeasible.

Semantic Segmentation

We want to assign each pixel to one of C semantic classes.

For example "person", "car", "building", "sky" or "other".

Constructing a Graph

We construct a graph whose nodes are the pixels and where there is an edges between each pixel and its four nearest neighboring pixels.

$$j(i, \operatorname{up})$$
 $j(i, \operatorname{left})$
 i
 $j(i, \operatorname{right})$
 $j(i, \operatorname{down})$

Labeling the Nodes of the Graph

 \hat{y} assigns a semantic class $\hat{y}[i]$ to each node (pixel) i.

We assign a score to \hat{y} by assigning a score to each node and each edge of the graph.

$$s(\hat{y}) = \sum_{i \in \text{Nodes}} s_n[i, \hat{y}[i]] + \sum_{\langle i, j \rangle \in \text{Edges}} s_e[\langle i, j \rangle, \hat{y}[i], \hat{y}[j]]$$
Node Scores

Edge Scores

Computing the Node and Edge Tensors

For input x we use a network to compute the score tensors.

$$s_n[I,C] = f_{\Phi}^n(x)$$

$$s_e[E, C, C] = f_{\Phi}^e(x)$$

Exponential Softmax

for
$$\hat{y}$$
 $s(\hat{y}) = \sum_{i} s_n[i, \hat{y}[i]] + \sum_{\langle i, j \rangle \in \text{Edges}} s_e[\langle i, j \rangle, \hat{y}[i], \hat{y}[j]]$

for
$$\hat{y} P_s(\hat{y}) = \operatorname{softmax}_{\hat{y}} s(\hat{y})$$
 all possible \hat{y}

$$\mathcal{L} = -\ln P_s(y)$$
 gold label (training label) y

Exponential Softmax is Typically Intractable

 \hat{y} assigns a label $\hat{y}[i]$ to each node i.

 $s(\hat{y})$ is defined by a sum over node and edge tensor scores.

 $P_s(\hat{y})$ is defined by an exponential softmax over $s(\hat{y})$.

Computing Z in general is #P hard (there is an easy direct reduction from SAT).

Compactly Representing Scores on Exponentially Many Labels

The tensor $s_n[I, C]$ holds IC scores.

The tensor $s_e[E, C, C]$ holds EC^2 scores where e ranges over edges $\langle i, j \rangle \in \text{Edges}$.

Back-Propagation Through Exponential Softmax

$$s_n[I, C] = f_{\Phi}^n(x)$$

$$s_e[E, C, C] = f_{\Phi}^e(x)$$

$$\frac{s(\hat{y})}{s} = \sum_{i} s_n[i, \hat{y}[i]] + \sum_{\langle i, j \rangle \in \text{Edges}} s_e[\langle i, j \rangle, \hat{y}[i], \hat{y}[j]]$$

$$P_s(\hat{y}) = \underset{\hat{y}}{\operatorname{softmax}} s(\hat{y}) \text{ all possible } \hat{y}$$

$$\mathcal{L} = -\ln P_s(y)$$
 gold label y

We want the gradients $s_n.\operatorname{grad}[I,C]$ and $s_e.\operatorname{grad}[E,C,C]$.

\mathbf{END}