

Natural Language Processing

Introduction to NLP

Yulia Tsvetkov

yuliats@cs.washington.edu

Symbolic and Probabilistic NLP

Logic-based/Rule-based NLP

Statistical NLP

Probabilistic and Connectionist NLP

weights $argmax_e P(f|e)P(e)$

Engineered Features/Representations

Translation Model source phrase target phrase features Language Model Language Model Translation Model Reranking Model feature

Learned Features/Representations

Large Language Models

Timeline of recent years large language models. Source: https://www.nextbigfuture.com/2023/04/timeline-of-open-and-proprietary-large-language-models.html

Linguistic Background

What does it mean to "know" a language?

What do we need to "tell" a computer program so that it knows more English than wc or a dictionary, maybe even as much as a three-year-old, for example?

What does an NLP system need to 'know'?

Language consists of many levels of structure

Humans fluently integrate all of these in producing/understanding language

Ideally, so would a computer!

Levels of linguistic knowledge

Speech, phonetics, phonology

This is a simple sentence . / ðis iz ə 'simpl 'sɛntəns /.

Orthography

هذه جملة بسيطة

đây là một câu đơn giản

यह एक साधारण वाक्य है

This is a simple sentence. .

/ ŏıs ız ə 'sımpl 'sɛntəns /.

Words, morphology

- Morphological analysis
- Tokenization
- Lemmatization

Tokens This is a simple sentence.

Morphology 3sg

present

Syntax

Part-of-speech tagging

Parts of speech DT VBZ DT JJ NN PUNC

Tokens This is a simple sentence .

Morphology 3sg
present

Syntax

- Part-of-speech tagging
- Syntactic parsing

Semantics

- Named entity recognition
- Word sense disambiguation
- Semantic role labelling

Discourse

Why is language interpretation hard?

- 1. Ambiguity
- Variation
- 3. Sparsity
- 4. Expressivity
- Unmodeled variables
- 6. Unknown representation $\mathcal R$

Ambiguity: word sense disambiguation

Ambiguity

- Ambiguity at multiple levels:
 - Word senses: bank (finance or river?)
 - Part of speech: chair (noun or verb?)
 - Syntactic structure: I can see a man with a telescope
 - Multiple: I saw her duck

Dealing with ambiguity

- How can we model ambiguity and choose the correct analysis in context?
 - o non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible analyses.
 - probabilistic models (HMMs for part-of-speech tagging, PCFGs for syntax) and algorithms (Viterbi, probabilistic CKY) return the best possible analysis, i.e., the most probable one according to the model
 - Neural networks, pretrained language models now provide end-to-end solutions

But the "best" analysis is only good if our probabilities are accurate. Where do they come from?

Corpora

- A corpus is a collection of text
 - Often annotated in some way
 - Sometimes just lots of text
- Examples
 - Penn Treebank: 1M words of parsed WSJ
 - Canadian Hansards: 10M+ words of aligned French / English sentences
 - Yelp reviews
 - The Web: billions of words of who knows what

Why is language interpretation hard?

- 1. Ambiguity
- Variation
- 3. Sparsity
- 4. Expressivity
- Unmodeled variables
- 6. Unknown representation ${\mathcal R}$

Variation

- ~7K languages
- Thousands of language varieties

Englishes

Africa is a continent with a very high linguistic diversity: there are an estimated 1.5-2K African languages from 6 language families. 1.33 billion people

NLP beyond English

- ~7,000 languages
- thousands of language varieties

Scottish English

Hinglish

Yulia Tsvetkov 24 Undergrad NLP 2024

American English

Most of the world today is multilingual

Source: US Census Bureau

Source: Ethnologue

Semantic analysis

- Every language sees the world in a different way
 - For example, it could depend on cultural or historical conditions

- Russian has very few words for colors, Japanese has hundreds
- Multiword expressions, e.g. happy as a clam, it's raining cats and dogs or wake up and metaphors, e.g.
 love is a journey are very different across languages

Tokenization

这是一个简单的句子

WORDS This is a simple sentence

זה משפט פשוט

Tokenization + disambiguation

in tea her daughter

בתה

· most of the vowels unspecified

in tea בתה in the tea בהתה that in tea שבתה that in the tea שבהתה and that in the tea

ושבתה

and her saturday ו+שבת+ה and that in tea ו+ש+ב+תה and that her daughter ו+ש+בת+ה

- · most of the vowels unspecified
- particles, prepositions, the definite article, conjunctions attach to the words which follow them
- · tokenization is highly ambiguous

Tokenization + morphological analysis

Quechua

Much'ananayakapushasqakupuniñataqsunamá

Much'a -na -naya -ka -pu -sha -sqa -ku -puni -ña -taq -suna -má

"So they really always have been kissing each other then"

```
Much'a
       to kiss
       expresses obligation, lost in translation
-na
       expresses desire
-naya
-ka
       diminutive
       reflexive (kiss *eachother*)
-pu
       progressive (kiss*ing*)
-sha
       declaring something the speaker has not personally witnessed
-sga
       3rd person plural (they kiss)
-ku
       definitive (really*)
-puni
       always
-ña
-tag
       statement of contrast (...then)
       expressing uncertainty (So...)
-suna
       expressing that the speaker is surprised
-má
```


Tokenization + morphological analysis

German

Infektionsschutzmaßnahmenverordnung

NLP Technologies/Applications

Linguistic variation

Non-standard language, emojis, hashtags, names

chowdownwithchan #crab and #pork #xiaolongbao at @dintaifungusa... where else? A Note the cute little crab indicator in the 2nd pic **

Variation

Suppose we train a part of speech tagger or a parser on the Wall Street Journal

What will happen if we try to use this tagger/parser for social media??

@_rkpntrnte hindi ko alam babe eh, absent ako kanina I'm sick rn hahaha 😌 🙌

Why is language interpretation hard?

- 1. Ambiguity
- 2. Scale
- 3. Variation
- 4. Sparsity
- 5. Expressivity
- Unmodeled variables
- 7. Unknown representation \mathcal{R}

Sparsity

Sparse data due to Zipf's Law

- To illustrate, let's look at the frequencies of different words in a large text corpus
- Assume "word" is a string of letters separated by spaces

Word Counts

Most frequent words in the English Europarl corpus (out of 24m word tokens)

any word		nouns	
Frequency	Token	Frequency	Token
1,698,599	the	 124,598	European
849,256	of	104,325	Mr
793,731	to	92,195	Commission
640,257	and	66,781	President
508,560	in	62,867	Parliament
407,638	that	57,804	Union
400,467	is	53,683	report
394,778	a	53,547	Council
263,040	I	45,842	States

Word Counts

But also, out of 93,638 distinct words (word types), 36,231 occur only once.

Examples:

- cornflakes, mathematicians, fuzziness, jumbling
- pseudo-rapporteur, lobby-ridden, perfunctorily,
- Lycketoft, UNCITRAL, H-0695
- policyfor, Commissioneris, 145.95, 27a

Plotting word frequencies

Order words by frequency. What is the frequency of nth ranked word?

Zipf's Law

Implications

- Regardless of how large our corpus is, there will be a lot of infrequent (and zero-frequency!) words
- This means we need to find clever ways to estimate probabilities for things we have rarely or never seen

Why is language interpretation hard?

- **Ambiguity**
- Scale
- Variation
- Sparsity
- **Expressivity**
- Unmodeled variables
- Unknown representation \mathcal{R}

Expressivity

Not only can one form have different meanings (ambiguity) but the same meaning can be expressed with different forms:

She gave the book to Tom vs. She gave Tom the book

Some kids popped by vs. A few children visited

Is that window still open? vs. Please close the window

Why is language interpretation hard?

- 1. Ambiguity
- 2. Scale
- 3. Variation
- 4. Sparsity
- 5. Expressivity
- 6. Unmodeled variables
- 7. Unknown representation \mathcal{R}

Unmodeled variables

"Drink this milk"

World knowledge

- I dropped the glass on the floor and it broke
- I dropped the hammer on the glass and it broke

Why is language interpretation hard?

- 1. Ambiguity
- 2. Scale
- 3. Variation
- 4. Sparsity
- 5. Expressivity
- Unmodeled variables
- 7. Unknown representation $\mathcal R$

Unknown representation

- Very difficult to capture what is \mathcal{R} , since we don't even know how to represent the knowledge a human has/needs:
 - What is the "meaning" of a word or sentence?

 - Other general knowledge?

Desiderata for NLP models

- Sensitivity to a wide range of phenomena and constraints in human language
- Generality across languages, modalities, genres, styles
- Strong formal guarantees (e.g., convergence, statistical efficiency, consistency)
- High accuracy when judged against expert annotations or test data
- Ethical

NLP Machine Learning

- To be successful, a machine learner needs bias/assumptions; for NLP, that might be linguistic theory/representations.
- Symbolic, probabilistic, and connectionist ML have all seen NLP as a source of inspiring applications.

What is nearby NLP?

Computational Linguistics

- Using computational methods to learn more about how language wor
- We end up doing this and using it

Cognitive Science

- Figuring out how the human brain works
- Includes the bits that do language
- Humans: the only working NLP prototype!

Speech Processing

- Mapping audio signals to text
- Traditionally separate from NLP, converging?
- Two components: acoustic models and language models
- Language models in the domain of stat NLP

Next class

Classification

Questions?