三角比與三角函數

Author

2024年12月27日

目錄

第一章 三角	角比與三角函數	1
第一節	弧度與角度	1
第二節	廣義角	1
第三節	極坐標系(Polar Coordinate System)	1
第四節	三角測量	2
第五節	銳角三角比(Trigonometric Ratios)	2
第六節	廣義角三角比/三角函數幾何定義	3
	、 特殊角三角函數	5
<u> </u>	、 三角函數基本關係	6
三、	、 奇變偶不變,正負看象限	7
第七節	三角函數級數定義	7
第八節	三角函數微積分	8
第九節	反三角函數與相關函數	8
	、 反三角函數	8
= .	、 反正切二函數	8
≡、	· 輻角(Argument)	8
	(一) 輻角	8
т .	、「顧免主信	a

第一章 三角比與三角函數

第一節 弧度與角度

- 1. 弧度(radian):又稱弳、弳度。指圓周上一段弧長與其對應半徑的比值。物理上無因次。單位同其名或通常省略。
- 2. 角度(degree):一個完整的圓被平分為 360°。物理上無因次。

$$\frac{1\overline{\Im}}{1^{\circ}} = \frac{\pi}{180} \approx 57.3 \approx \frac{1}{0.0175}$$

第二節 廣義角

指將角從 [0, 2π) 的普通角擴展到任意實數。

同界角: $\alpha \setminus \beta$ 為同界角 $\iff \frac{\alpha - \beta}{2\pi} \in \mathbb{Z}$

第三節 極坐標系 (Polar Coordinate System)

一種二維坐標系,用於表示平面上的點,其位置由一對數值(距離 r 和角度 θ)來確定。與直角坐標系(Cartesian Coordinate System)不同。

- **1.** 距離 r: 從極點 (通常是坐標原點 O) 到點 P 的距離 $\circ r \ge 0$ \circ
- **2.** 角度 θ :從極軸(通常是水平的正 x 軸)逆時針旋轉到點 P 所在的射線的角度。角度可以用弧度或度數表示。
- 3. 點 P 的極坐標表示為 $[r, \theta]$ 。
- 4. 從極坐標到直角坐標的轉換:

$$x = r\cos\theta$$
$$y = r\sin\theta$$

5. 從直角坐標到極坐標的轉換:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{y}\right)$$

第四節 三角測量

1. 仰角:仰視目標時,視線與水平線的夾角。

2. 俯角:俯視目標時,視線與水平線的夾角。

3. 方位角(地理):以正北為 0°,順時針為正。

4. 象限角(地理):以東南西北某一方位(通常為正北或正南)為基準,加上向相鄰方位轉向的度數與該相鄰方位,如北 35° 西代表方位角 325°、南 30° 西代表方位角 210°。

第五節 銳角三角比(Trigonometric Ratios)

1. 正弦(Sine, sin):正弦值是對應角的對邊與斜邊之比,即:

$$\sin \theta = \frac{\text{對邊}}{\text{斜邊}}$$

2. 餘弦(Cosine, cos):餘弦值是對應角的鄰邊與斜邊之比,即:

3. 正切(Tangent,tan):正切值是對應角的對邊與鄰邊之比,即:

$$\tan \theta = \frac{\overline{3}}{\overline{3}}$$

4. 餘切(Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

5. 正割 (Secant, sec):

$$\sec\theta = \frac{1}{\cos\theta}$$

6. 餘割(Cosecant, csc):

$$\csc\theta = \frac{1}{\sin\theta}$$

第六節 廣義角三角比/三角函數幾何定義

在單位圓中,令角度的測量方式是從正 x 軸開始,逆時針方向為正角,順時針方向為負角,且角度數值可以是任何實數。任意角度的三角函數值可以表示為:

1. 正弦(**Sine**, sin):角 θ 的正弦值是單位圓上對應點的 y 坐標,即:

$$\sin \theta = y$$

。為奇函數,定義域 \mathbb{R} ,值域 [-1,1],週期 2π ,振幅 $\mathbf{1}$,線對稱於 $x=\left(n+\frac{1}{2}\right)\pi, n\in\mathbb{Z}$,點對稱於 $((n\pi,n\in\mathbb{Z}),0)$ 。

2. 餘弦 (Cosine, cos): 角 θ 的餘弦值是單位圓上對應點的 x 坐標,即:

$$\cos \theta = x$$

。為偶函數,定義域 \mathbb{R} ,值域 [-1,1],週期 2π ,振幅 $\mathbf{1}$,線對稱於 $x=n\pi, n\in\mathbb{Z}$,點對稱於 $\left(\left(\left(n+\frac{1}{2}\right)\pi, n\in\mathbb{Z}\right), 0\right)$, $\cos(x)=\sin\left(x+\frac{\pi}{2}\right)$ 。

3. 正切(**Tangent**,tan):角 θ 的正切值是正弦值與餘弦值的比,即:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$

。為奇函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right\}\right\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi,\,n\in\mathbb{Z}\right)\!,\,0\right)$ 。

4. 餘切 (Cotangent, cot):

$$\cot \theta = \frac{1}{\tan \theta}$$

。為奇函數,定義域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$,值域 \mathbb{R} ,週期 π ,點對稱於 $\left(\left(\frac{n}{2}\pi, n \in \mathbb{Z}\right), 0\right)$, $\cot(x) = -\tan\left(x + \frac{\pi}{2}\right)$ 。

5. 正割(Secant, sec):

$$\sec\theta = \frac{1}{\cos\theta}$$

。為偶函數,定義域 $\left\{x\in\mathbb{R}\left|\pi\nmid\left(x-\frac{\pi}{2}\right)\right\}\right\}$,值域 $\left\{y\in\mathbb{R}\left|-1\leq y\vee y\leq 1\right\}\right\}$,週期 π ,線對稱於 $((n\pi,\,n\in\mathbb{Z}),\,0)$,點對稱於 $x=\left(n+\frac{1}{2}\right)\!\pi,\,n\in\mathbb{Z}$ 。

6. 餘割(Cosecant, csc):

$$\csc\theta = \frac{1}{\sin\theta}$$

。為奇函數,定義域 $\{x \in \mathbb{R} \mid \pi \nmid x\}$,值域 $\{y \in \mathbb{R} \mid -1 \leq y \vee y \leq 1\}$,週期 π ,線對稱於 $x = \left(n + \frac{1}{2}\right)\pi, \, n \in \mathbb{Z}$,點對稱於 $((n\pi, \, n \in \mathbb{Z}), \, 0)$, $\csc(x) = \sec\left(x - \frac{\pi}{2}\right)$ 。

三角函數

一、 特殊角三角函數

Radian	sin	cos	tan
0	0	1	0
$\frac{\pi}{2}$	1	0	±∞
π	0	-1	0
$\frac{3\pi}{2}$	-1	0	±∞
$\frac{\pi}{2}$ π $\frac{3\pi}{2}$ $\frac{\pi}{4}$ $\frac{\pi}{4}$ $\frac{\pi}{6}$ $\frac{\pi}{3}$ $\frac{2\pi}{3}$ $\frac{2\pi}{3}$ $\frac{5\pi}{6}$ $\frac{\pi}{12}$ $\frac{5\pi}{12}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	$ \frac{\sqrt{2}}{2} $ $ -\frac{\sqrt{2}}{2} $ $ \frac{\sqrt{3}}{2} $	1
$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
$\frac{\pi}{6}$		$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{3}$	$ \frac{1}{2} $ $ \frac{\sqrt{3}}{2} $ $ \frac{\sqrt{3}}{2} $	1	$\sqrt{3}$
$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$ $-\frac{\sqrt{3}}{3}$
$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$2-\sqrt{3}$
$\frac{5\pi}{12}$	$ \frac{1}{2} $ $ \frac{\sqrt{6} - \sqrt{2}}{4} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$
$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$ \frac{\overline{2}}{-\frac{1}{2}} $ $ -\frac{\sqrt{3}}{2} $ $ \frac{\sqrt{6} + \sqrt{2}}{4} $ $ \frac{\sqrt{6} - \sqrt{2}}{4} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{4} $	$\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$
$\frac{2\pi}{10}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$ $\frac{\sqrt{10-2\sqrt{5}}}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{\sqrt{5}+1}$
$\frac{3\pi}{10}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10-2\sqrt{5}}}{4}$	$ \frac{\sqrt{5} - 1}{\sqrt{10 + 2\sqrt{5}}} $ $ \frac{\sqrt{10 - 2\sqrt{5}}}{\sqrt{5} + 1} $ $ \frac{\sqrt{5} + 1}{\sqrt{10 - 2\sqrt{5}}} $ $ \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{5} - 1} $
$\frac{4\pi}{10}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$

二、 三角函數基本關係

- 1. 名稱:左側三者為正;右側三者為餘;上面二者為弦;中間二者為切;下面二者為割。
- 2. 餘角關係:以鉛直軸為對稱軸,位於線對稱位置的三角比為餘角關系,即對於銳角 θ ,左 $(\theta)=$ 右 $(\frac{pi}{2}-\theta)$ 。
- 3. 倒數關係:三條通過中心點的連線為倒數關係,其兩端之三角比互為倒數,相乘為 **1**。
- 4. 商數關係:六邊形周上,連續三個頂點形成的連線,其兩端之三角比相乘等於中間之三角比。
- 平方關係:圖中有三個倒正三角形,其在上方兩頂點之二者之平方和等於在下方頂點者。

三、 奇變偶不變,正負看象限

今有函數 f,已知其為 $\sin \cdot \cos \cdot \tan \cdot \sec \cdot \csc \cdot \cot$ 之一,且已知 $f(\theta)$ 。欲求 $f(\phi)$,其中 $\phi = \pm \theta \pm n \frac{\pi}{2}$,其中 $n \in \mathbb{Z}$ 。

方法:奇變偶不變,正負看象限。

上句:奇偶指 n 之奇偶,變指倒數,即:若 n 為奇數則令 $g(\theta) = \frac{1}{f(\theta)}$,否則令 $g(\theta) = f(\theta)$,則 $|f(\phi)| = |g(\theta)|$ 。

下句:象限指假設 $[r,\,\theta]$ 在第一象限時, $[r,\,\phi]$ 之象限。令該象限中任意角度為 ω 。令 $k=\frac{f(\phi)}{g(\theta)}$ 。則 $k=\frac{f(\omega)}{|f((\omega)|}$,即:

象限	_	=	Ξ	四
sin	+	+	-	-
cos	+	-	-	+
tan	+	-	+	-
CSC	+	+	-	-
sec	+	-	-	+
cot	+	-	+	-

第七節 三角函數級數定義

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

第八節 三角函數微積分

f(x)	f'(x)	$\int f(x) dx$
$\sin x$	cos x	$-\cos x + C$
cos x	$-\sin x$	$\sin x + C$
tan x	$\sec^2 x$	$\ln \sec x + C$
csc x	$-\csc x \cot x$	$\ln \csc x - \cot x + C$
sec x	sec x tan x	$\ln \sec x + \tan x + C$
$\cot x$	$-\csc^2 x$	$\ln \sin x + C$

第九節 反三角函數與相關函數

一、 反三角函數

名稱	常用符號	定義	定義域	值域
反正弦	$y = \arcsin x$	$x = \sin y$	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
反餘弦	$y = \arccos x$	$x = \cos y$	[-1,1]	$[0,\pi]$
反正切	$y = \arctan x$	$x = \tan y$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
反餘切	$y = \operatorname{arccot} x$	$x = \cot y$	\mathbb{R}	$(0,\pi)$
反正割	$y = \operatorname{arcsec} x$	$x = \sec y$	$(-\infty,-1] \cup [1,+\infty)$	$\left[0,\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\pi\right]$
反餘割	$y = \operatorname{arccsc} x$	$x = \csc y$	$(-\infty, -1] \cup [1, +\infty)$	$[-\frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]$

Inverse Trigonometric Functions

二、 反正切二函數

 $\begin{array}{l} \operatorname{atan2}(y,\,x) \; \text{在} \; x > 0 \; \text{時返還} \; \tan(\theta) = \frac{y}{x} \; \text{在} \; (-\frac{\pi}{2},\,\frac{\pi}{2}) \; \text{中的解,在} \; x < 0 \, \text{`$y \geq 0$} \; \text{時返還} \; \tan(\theta) = \frac{y}{x} \; \text{在} \; (\frac{\pi}{2},\,\pi) \; \text{中的解,在} \; x < 0 \, \text{`$y < 0$} \; \text{時返還} \; \tan(\theta) = \frac{y}{x} \; \text{在} \; (-\pi,\,-\frac{\pi}{2}) \; \text{中的解,在} \; x = 0 \, \text{`$y \neq 0$} \; \text{時返還} \; \frac{y}{|y|} \frac{\pi}{2} \; \text{`$\text{c}} \; x = y = 0 \; \text{時返還值未定義} \; \end{array}$

三丶 輻角(Argument)

此處輻角用 arg(z) 代表 z 的輻角,用 Arg(z) 代表 z 的輻角主值,一些文獻反之。

(一) 輻角

設有非零複數 $z \in \mathbb{C} \setminus \{0\}$,記作 z = x + yi,其中的 x 和 y 為實數,那麼複數 z 的輻角 $\arg(z) = \varphi$ 指的是使下列等式:

$$z = x + yi = \sqrt{x^2 + y^2}(\cos\varphi + i\sin\varphi)$$

成立的任何實數 φ 。

四、輻角主值

設有非零複數 $z \in \mathbb{C} \setminus \{0\}$,記作 z = x + yi,其中的 x 和 y 為實數,那麼複數 z 的輻角主值 Arg(z) 指的是:

$$\operatorname{Arg} z = \operatorname{Arg} x + yi = \operatorname{atan2}(y, x)$$

$$\arg(z) = \{ \operatorname{Arg}(z) + 2k\pi \mid k \in \mathbb{Z} \}$$