ZAVRŠNI ISPIT IZ DIGITALNE LOGIKE

Grupa B

1	Potrebno je izgraditi asinkrono binarno brojilo koje se temelji na bistabilima T i koje broji u ciklusu s 5 stanja. Bistabili T na raspolaganju imaju dodatni asinkroni ulaz za postavljanje koji djeluje s logičkom nulom. U svrhu prekida ciklusa ulazi za postavljanje svih bistabila spojeni su zajedno i njima upravlja kombinacijski sklop koji tada mora ostvarivati koju Booleovu funkciju?					
	a) $Q_2 + Q_1 + \overline{Q}_0$		c) $\overline{Q}_2 + Q_1 + Q_0$		e) $Q_2 + \overline{Q_1} + Q_0$	
	b) $\overline{Q}_2 + \overline{Q}_1 +$	Q_0	d) $\overline{Q}_2 + Q$	$Q_1 + \overline{Q}_0$	f) ništ	a od navedenoga
2	Funkcija $f(A, B, C, D) = \sum m(2,4,6,8,9,11)$ realizirana je multipleksorom 2/1, pri čemu je na selekcijski ulaz dovedena varijabla A. Koja se funkcija tada dovodi na prvi podatkovni ulaz multipleksora (ulaz 0)?					
	a) $B\overline{C}D + \overline{B}$	C	c) $B+C$		e) <i>AB</i>	$BD + \overline{A}BC$
	b) $(B+C)\cdot \overline{B}$	<u>D</u>	d) $\overline{B} \overline{C}$ +	BC	f) ništ	a od navedenoga
3	Uporabom 4 potpuna zbrajala (FA) korisnik je namjeravao izgraditi 4-bitno zbrajalo. Međutim, pogreškom je na mjesto srednja dva potpuna zbrajala stavio potpuno oduzimala. Ako se na ulaze takvog sklopa dovedu "pribrojnici" 0001 i 1010, što će biti rezultat? Početni prijenos je 0. U navedenim pribrojnicima kao i u rezultatu prvi bit s lijeve strane predstavlja bit najveće težine.					
	a) 1100	b) 0000	c) 1110	d) 1010		f) ništa od navedenoga
4	Na izlaz trobitnog asinkronog binarnog brojila unatrag spojen je sklop koji dekodira stanje 3, tj. računa $\overline{Q}_2Q_1Q_0$. Koliko se kod takvog sklopa događa tranzijentnih pogrešaka dekodiranja u svakom ciklusu brojanja? a) 2 b) 6 c) 1 d) 3 e) 5 f) ništa od navedenoga					
5	,		Y:::1:	: 1 41	::	i) ilista ou naveuenoga
3	prijenos je:		-	_		erirajući član za izlazni
	a) $a + \overline{b}$	b) <i>a</i> ⊕ <i>b</i>	c) $\overline{a} \cdot b$	d) <i>a</i> · <i>b</i>	e) $\overline{a} + b$	f) ništa od navedenoga
6	Razmotrite građu brojećeg AD pretvornika. Pretpostavite da se radi o pretvorniku koji radi sa signalom takta frekvencije 10 kHz te koji koristi 8-bitno binarno brojilo. Neka pretvornik mjeri napone od 0V do 4V. Neka je na ulaz doveden neki napon U_1 čije vrijeme pretvorbe iznosi t_1 . Dobili ste zahtjev da povećate rezoluciju mjerenja ovog pretvornika pa ste odlučili umjesto 8-bitnog brojila koristiti 10-bitno brojilo uz prikladnu modifikaciju DA pretvornika (sve ostalo, uključujući i radnu frekvenciju niste mijenjali). Koliko će kod ovog novog pretvornika iznositi vrijeme pretvorbe napona U_1 ?					
	a) 4 t ₁	b) (10/8) t ₁	c) 10 <i>t</i> ₁	d) t ₁ +2	e) $(8/10) t_1$	f) ništa od navedenoga
7	Na raspolaganju je 10-bitni AD pretvornik sa sukcesivnom aproksimacijom koji radi s ulaznim naponima od 0V do 4V. Neka je kod tog pretvornika vrijeme pretvorbe napona 0.2V jednako 900 μs. Koliko će za taj isti pretvornik iznositi vrijeme pretvorbe devet puta većeg napona (tj. 1.8V)?					
0	a) 100 µs					
8	Dostupan je AB bistabil čija je jednadžba promjene stanja $Q_{n+1} = Q_n B + \overline{Q}_n \overline{A}$. Takvim bistabilom i minimalnim kombinacijskim sklopovljem potrebno je ostvariti bistabil T. Što je potrebno dovesti na ulaz A ?					
	a) $\overline{T} + Q_n$	b) $T + Q_n$	c) \overline{T}	d) $T \oplus Q_n$	e) Q_n	f) ništa od navedenoga

- Memoriju kapaciteta 2¹³ bita i organizacije 2D, pri čemu je fizička riječ duljine 8 bita, potrebno je presložiti u 2 ½ D organizaciju tako da se u svaku fizičku riječ pohrani po 16 logičkih riječi. Koliko će adresnih bitova pri takvoj organizaciji memorije imati adresni dekoder?
 - a) 6
- c) 11

- f) ništa od navedenoga
- Zadana je funkcija $f(A, B, C, D) = \sum m(0,1,4,6,9,10,11,13,15)$? Koliko ta funkcija ima primarnih 10 implikanata / bitnih primarnih implikanata?
 - a) 5 / 3

- b) 3 / 2 c) 5 / 2 d) 6 / 3 e) 4 / 3 f) ništa od navedenoga
- Sklopom PLA prikazanim na slici ostvarena je funkcija f. O kojoj se funkciji radi?

- a) $f(A, B, C) = \sum m(2,3,4,7)$
- b) $f(A, B, C) = \sum m(3,5,6,7)$
- c) $f(A, B, C) = \sum m(1,2,3,6)$
- d) $f(A, B, C) = \sum_{n=0}^{\infty} m(1, 2, 4, 6, 7)$
- e) $f(A,B,C) = \sum m(3,4,6,7)$
- f) ništa od navedenoga
- 12 Booleova funkcija od 4 varijable u kanonskom zapisu sume minterma sadrži 5 minterma. Koliko minterma, u istom zapisu, sadrži komplement te funkcije?
 - a) 5
- b) 11
- c) 8
- d) 10
- e) 6
- f) ništa od navedenoga
- Sekvencijski sklop izveden je kao Mooreov stroj s konačnim brojem stanja, čije stanje pohranjuju bistabili B₀, B₁ i B₂ (čiji su izlazi Q₀, Q₁ i Q₂), a ulazi su X i Y. Koja od sljedećih funkcija može predstavljati njegov izlaz Z? a) $Z = Q_1 \oplus Q_0 + Q_2$ c) Z = X + Y e) $Z = Y + Q_2$ b) $Z = (X + Y) \cdot Q_1$ d) $Z = X \cdot Q_0$ f) ništa od navedenoga

14 Na raspolaganju je sklop prikazan na slici.

Memorije R₁ i R₂ potrebno je programirati tako da se dobije brojilo koje broji u ciklusu: 14, 2, 11, 6, 4, 1, 8, 13, 7, 3, 0, 15, 5, 9, 12, 10 (prilikom očitavanja stanja izlaz Q_3 tretirati kao bit najveće težine).

Koji će sadržaj biti upisan na memorijsku lokaciju 4 memorija R₁ i R₂? U rješenjima je sadržaj zapisan kao heksadekadska znamenka, i to najprije za memoriju R_1 a potom za memoriju R_2 .

- a) 1, A b) 3, E c) E, 3 d) B, F e) 2, 4
 - f) ništa od navedenoga

- 15 Za stroj s konačnim brojem stanja prikazan na slici 1 utvrdite maksimalnu frekvenciju signala takta. Pri analizi zanemarite utjecaj signala S. Za bistabile su poznati sljedeći vremenski parametri: vrijeme postavljanja t_{setup} iznosi 15 ns, vrijeme zadržavanja t_{hold} iznosi 10 ns, vrijeme kašnjenja bistabila t_{db} iznosi 25 ns. Kašnjenje osnovnih logičkih sklopova t_{dls} iznosi 5 ns.
 - a) 15 MHz b) 10 MHz c) 13 MHz d) 50 MHz e) 20 MHz f) ništa od navedenoga

- 16 Pretpostavite da je stroj s konačnim brojem stanja prikazan na slici 1 nastao uporabom sljedeće tablice kodiranja stanja: $S_0=00$, $S_1=10$, $S_2=01$ (binarna kombinacija odgovara izlazima Q_1Q_0). Koristi se signal takta poluperiode 0,5 us pri čemu se prvi padajući brid pojavljuje u t=1 us. Pretpostavite da su po uključenju na napajanje oba bistabila otišla u stanje 0. Ulaz S u t=0ns postavlja se na vrijednost 0, u t=2,2µs prelazi u 1 i tako ostaje do t=4,2µs kada trajno prelazi u 0. U kojem će se stanju ovaj automat nalaziti u trenutku t=3,2μs a u kojem u trenutku t=5,2μs?
 - e) S0 pa S1 a) S1 pa S2 b) S2 pa S0 c) S0 pa S0 d) S2 pa S2 f) ništa od navedenoga
- 17 Za stroj s konačnim brojem stanja prikazan na slici 1 vrijedi:
 - a) to je sinkroni sekvencijski sustav i nema siguran start
 - b) to je asinkroni sekvencijski sustav i ima siguran start
 - c) to je sinkroni kombinacijski sustav i ima siguran start
 - d) to je sinkroni sekvencijski sustav i ima siguran start
 - e) to je asinkroni sekvencijski sustav i nema siguran start
 - f) ništa od navedenoga ne vrijedi ili vrijedi više od jednog odgovora a) do e)
- Za stroj s konačnim brojem stanja prikazan na slici 1 vrijedi: 18
 - a) to je Mealyjev automat, asinkrona promjena ulaza ne generira asinkronu promjenu izlaza
 - b) to je Mealviev automat, asinkrona promjena ulaza generira asinkronu promjenu izlaza
 - c) to je Mooreov automat, asinkrona promjena ulaza ne generira asinkronu promjenu izlaza
 - d) nije moguće utvrditi je li to Mooreov ili Mealyjev automat
 - e) to je Mooreov automat, asinkrona promjena ulaza generira asinkronu promjenu izlaza
 - f) ništa od navedenoga ne vrijedi ili vrijedi više od jednog odgovora a) do e)
- 19 Neki stroj s konačnim brojem stanja ostvaren je uporabom 2 bistabila D. Ulaz sklopa je S a izlaz O. Vrijedi: $D_1=Q_1\oplus Q_0\oplus S$, $D_0=\overline{Q}_0$ te $O=Q_1$. Prilikom projektiranja automata korišten je kôd koji stanje S_i kodira kao binarno zapisan broj i (npr. S_2 je bilo kodirano kao $Q_1Q_0=10$). Isti automat potrebno je ostvariti koristeći jednojedinični kôd i potreban broj bistabila. Kod jednojediničnog kôda u stanju S_i samo će Q_i biti postavljen na 1 dok će izlazi svih ostalih bistabila biti 0. U tako ostvarenom automatu, koja će Booleova funkcija opisivati izlaz O?

- a) $Q_1 \cdot Q_2 \cdot Q_3$ b) $Q_2 + Q_3$ c) $Q_1 \cdot \overline{Q_0}$ d) $Q_3 + \overline{Q_0}$ e) $Q_1 \oplus Q_0$ f) ništa od navedenoga

a) 10100110

b) 01100110

20 Uporabom troulaznih konfigurabilnih logičkih blokova sklopa FPGA koji su temeljeni na preglednoj tablici i bistabilu D potrebno je ostvariti brojilo koji broji u ciklusu 3, 5, 2, 7, 1, 4, 0, 6. Kako je potrebno konfigurirati CLB₁ ako su blokovi spojeni na na slici?

21 Stroj s konačnim brojem stanja zadan je slikom (desno). Njegova sklopovska implementacija koja se temelji na dvobitnom registru s paralelnim ulazima i paralelnim izlazima prikazana je na slici (lijevo). Stanje S_i kodira se kao binarna vrijednost od i (npr. za S_2 vrijedi $Q_1Q_0=10$). Utvrdite potreban sadržaj ispisne memorije!

Na lokacijama 3 i 5 bit će upisan podatak (veći indeks u adresi i podatku označava bit veće težine): b) 2, 1 c) 0, 0 d) 4, 0 e) 3, 4 f) ništa od navedenoga a) 3, 7

- Neki digitalni sustav radi s naponom napajanja od 5V, te na frekvenciji od 100 MHz. Za koliko se 22 posto najviše smije povećati frekvencija rada, ako se napon napajanja može smanjiti na 4V, a ukupna dinamička disipacija snage povećati za 10%?
 - a) za 10%

b) za 100%

c) približno 43%

d) približno 52%

e) približno 72%

- f) ništa od navedenoga
- 23 Razmotrite dvobitni paralelni AD pretvornik. Označimo s K_i izlaz i-tog komparatora pri čemu je K_0 komparator koji uspoređuje ulazni napon s najmanjim referentnim naponom. Na izlazu tog pretvornika nalazi se pretvornik koda koji dobiva sve K_i i generira dvobitni broj N_1N_0 koji govori o broju kvanata izmjerenog napona. Minimalna Booleova funkcija koja određuje bit N_1 glasi:
 - a) $K_1 + \overline{K}_0$

c) K_2K_0

e) $K_2 + \overline{K_1}K_0$

- b) K_1 d) $(K_2 \oplus K_1) + K_0$
- f) ništa od navedenoga