CAPITOLO 14

Esercizi riguardanti principio di induzione e successioni definite per ricorrenza

14.1. Principio di induzione

Esercizio 14.1.1. Provare per induzione che per ogni $n \in \mathbb{N}$ si ha $3^n \geq \frac{n}{2}2^n$

Sia $P(n) = \{3^n \ge \frac{n}{2} 2^n\}$. Allora P(1) è vera, infatti $3^1 \ge \frac{1}{2} 2 = 1$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$3^{n+1} = 3^n 3 \stackrel{P(n)}{\ge} \frac{n}{2} 2^n 3 \stackrel{???}{\ge} \frac{n+1}{2} 2^{n+1}$$

Questo accade se e solo se

$$\frac{n}{2}3 \ge \frac{n+1}{2}2 \iff n \ge 2$$

Quindi per il principio di induzione, P(n) è vera per ogni n.

Si poteva anche procedere ponendo equivalentemente

$$P(n) = \left\{ \left(\frac{3}{2}\right)^n \ge \frac{n}{2} \right\}$$

Sia $P(n) = \{3^n \ge n \, 2^n\}$. Allora P(1) è vera, infatti $3^1 \ge 2$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$3^{n+1} = 3^n 3 \stackrel{P(n)}{\geq} n 2^n 3 \stackrel{???}{\geq} (n+1) 2^{n+1}$$

Questo accade se e solo se

$$3n \ge 2(n+1) \Leftrightarrow n \ge 2$$

Quindi per il principio di induzione, P(n) è vera per ogni n. Si poteva anche procedere ponendo equivalentemente

$$P(n) = \left\{ \left(\frac{3}{2}\right)^n \ge n \right\}$$

 \triangle Esercizio 14.1.3. Provare per induzione che per ogni $n \geq 2$ si ha $2^n + 4^n \leq 5^n$

Sia $P(n) = \{2^n + 4^n \le 5^n\}$. Allora P(2) è vera, infatti $2^2 + 4^2 = 20 \le 5^2 = 25$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$5^{n+1} = 5^n 5 \stackrel{P(n)}{\ge} 5(2^n + 4^n) \ge 2 2^n + 4 4^n = 2^{n+1} + 4^{n+1}$$

Quindi per il principio di induzione, P(n) è vera per ogni n.

 \triangle Esercizio 14.1.4. Provare per induzione che per ogni $n \geq 6$ si ha $n^n \geq 2^n n!$

Sia $P(n) = \{n^n \ge 2^n n!\}$. Allora P(6) è vera, infatti $6^6 = 46656 \ge 2^6 \cdot 6! = 64 \cdot 720 = 46080$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$(n+1)!2^{n+1} = n!2^n(n+1)2 \stackrel{P(n)}{\leq} n^n(n+1)2 \stackrel{???}{\leq} (n+1)^{n+1}$$

e questo è vero perché $(\frac{n+1}{n})^n \ge 2$ (si vede applicando la disuguaglianza di Bernoulli). Quindi per il principio di induzione, P(n) è vera per ogni n.

Esercizio 14.1.5. Provare che la proposizione $2^n \ge n^2$ è induttiva per $n \ge 3$; per quali valori di n la proposizione è vera?

Sia $P(n) = 2^n \ge n^2$ }. Dimostrare che P(n) è induttiva per $n \ge 3$ significa dimostrare che per $n \ge 3$, se è vera P(n) allora è anche vera P(n+1). Supponiamo allora che sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$2^{n+1} = 2^n 2 \stackrel{P(n)}{\geq} n^2 2 \stackrel{???}{\geq} (n+1)^2$$

e questo è vero perché $n^2 - 2n - 1 \ge 0$ per $n \ge 3$.

Con questo abbiamo provato solo che P(n) è induttiva per $n \geq 3$, NON che P(n) è VERA per $n \geq 3$. Infatti per n = 3 P(3) è falsa. P(n) è vera per $n \geq 4$, quindi il principio di induzione lo posso applicare per $n \geq 4$. Quindi per il principio di induzione, P(n) è vera per ogni $n \geq 4$.

Sia $P(n) = \{n! \ge 2^{n-1}\}$. Allora P(1) è vera, infatti $1! = 1 \ge 2^0 = 1$. P(2) è anche vera, infatti $2! = 2 \ge 2^1$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$(n+1)! = n!(n+1) \stackrel{P(n)}{\geq} 2^{n-1}(n+1) \stackrel{???}{\geq} 2^n$$

e questo è vero perché $n \geq 1$.

Quindi per il principio di induzione, P(n) è vera per ogni n.

Esercizio 14.1.7. Provare per induzione che per ogni $n \in \mathbb{N}$, per ogni $a \ge -1$ si ha $(1+a)^n \ge 1 + na$ (disuguaglianza di Bernoulli)

Sia $P(n) = \{(1+a)^n \ge 1 + na\}$. Allora P(1) è vera, infatti $1+a \ge 1 + a$. P(2) è anche vera, infatti $(1+a)^2 = 1 + a^2 + 2a \ge 1 + 2a$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$(1+a)^{n+1} = (1+a)^n (1+a) \stackrel{P(n)}{\geq} (1+na)(1+a) \stackrel{???}{\geq} (1+(n+1)a)$$

e questo è vero se e soltanto se $1 + a + na + na^2 \ge 1 + na + a$ e questo è sempre vero. Quindi per il principio di induzione, P(n) è vera per ogni n.

Sia $P(n) = \{e^n \ge n+1\}$. Allora P(1) è vera, infatti $e \ge 2$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$e^{n+1} = e^n e^{P(n)} (n+1)e^{\frac{???}{2}} (n+2)$$

e questo è vero se e soltanto se $ne+e-n-2 \geq 0$ e questo è sempre vero perché $ne-n \geq 0$ e $e-2 \geq 0$

Quindi per il principio di induzione, P(n) è vera per ogni n.

Esercizio 14.1.9. Provare per induzione che la somma dei cubi interi da 0 a n vale $S(n) = \frac{n^2(n+1)^2}{4}$

S(1) è banalmente vera. $S(2)=1+2^3=9=3^2$. Supponiamo sia vera S(n). Dimostriamo che è vera S(n+1). Allora

$$S(n+1) = S(n) + (n+1)^3 \overset{S(n)}{\geq} \frac{n^2(n+1)^2}{4} + (n+1)^3 = \frac{(n+1)^2}{4}[n^2 + 4n + 4] = \frac{(n+1)^2(n+2)^2}{4}$$

Quindi per il principio di induzione, S(n) è vera per ogni n.

S(1) è banalmente vera. $S(2)=1+2=3=\frac{23}{2}=3$. Supponiamo sia vera S(n). Dimostriamo che è vera S(n+1). Allora

$$S(n+1) = S(n) + (n+1) \stackrel{S(n)}{\geq} \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)}{2}[n+2] = \frac{(n+1)(n+2)}{2}$$

Quindi per il principio di induzione, S(n) è vera per ogni n.

 \angle Esercizio 14.1.11. Provare per induzione che per ogni $n \in \mathbb{N}$ si ha $n^n \geq n!$

Sia $P(n) = \{n^n \ge n!\}$. P(1) è banalmente vera. $P(2) = 2^2 = 4 \ge 2! = 2$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$(n+1)! = n!(n+1) \stackrel{P(n)}{\leq} n^n(n+1) \stackrel{???}{\leq} (n+1)^{n+1} = (n+1)^n(n+1)$$

e questo è vero visto che $n^n \leq (n+1)^n$.

Quindi per il principio di induzione, P(n) è vera per ogni n.

S(1) è banalmente vera. $S(2)=1+3=4=2^2$. Supponiamo sia vera S(n). Dimostriamo che è vera S(n+1). Allora

$$S(n+1) = S(n) + (2n+1) \stackrel{S(n)}{\geq} n^2 + 2n + 1 = (n+1)^2$$

Quindi per il principio di induzione, S(n) è vera per ogni n.

🖾 Esercizio 14.1.13. Provare per induzione la formula di Stirling

$$\forall n \qquad \frac{n^n}{e^n} \le n! \le \frac{n^n}{e^n} \, n \, e$$

Sia $P(n)=\{(\frac{n}{e})^n\leq n!\}$. P(1) è banalmente vera. $P(2)=(\frac{2}{e})^2=\frac{4}{e^2}\leq 2$. Supponiamo sia vera P(n). Dimostriamo che è vera P(n+1). Allora

$$(n+1)! = n!(n+1) \stackrel{P(n)}{\geq} \left(\frac{n}{e}\right)^n (n+1) \stackrel{???}{\geq} \left(\frac{n+1}{e}\right)^{n+1}$$

e questo è vero visto che $e \ge \left(\frac{n+1}{n}\right)^n$ (la successione a secondo membro è crescente e tende ad e che quindi è il suo estremo superiore.

Sia ora $Q(n) = \{(\frac{n}{e})^n ne \ge n!\}$. Q(1) è banalmente vera. $Q(2) = (\frac{2}{e})^2 2e = \frac{8}{e} \ge 2$. Supponiamo sia vera Q(n). Dimostriamo che è vera Q(n+1). Allora

$$(n+1)! = n!(n+1) \stackrel{Q(n)}{\leq} \left(\frac{n}{e}\right)^n (n+1) n e^{\frac{???}{\leq}} \left(\frac{n+1}{e}\right)^{n+1} (n+1) e^{\frac{n!}{2}}$$

e questo è vero visto che $e \leq \left(\frac{n+1}{n}\right)^{n+1}$ (la successione a secondo membro è decrescente e tende ad e che quindi è il suo estremo inferiore.

Quindi per il principio di induzione, la disuguaglianza di Stirling è vera per ogni n.

14.2. Successioni definite per ricorrenza

14.2.1. Esercizi con traccia della soluzione

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{a_n^3 + a_n}{2} \end{cases}$$

Hint della soluzione: occorre distinguere i casi:

CASO 1: $\alpha = 1$ o $\alpha = -1$. In tal caso la successione è costantemente uguale a 1 (o rispettivamente -1) per ogni n

CASO 2: $\alpha > 1$

- (1) La successione è ben definita
- (2) La successione è monotona crescente. Infatti occorre dimostrare che $a_{n+1} \geq a_n$ cioè

$$a_{n+1} = \frac{a_n^3 + a_n}{2} \ge a_n$$

che è vero se $a_n \in [-1,0] \cup [1,+\infty)$

- (3) Si dimostra per induzione che $a_n \geq \alpha$ per ogni $n \in \mathbb{N}$ (vero perché $\alpha > 1$)
- (4) Quindi dal passo (2), essendo la successione monotona crescente, si sa che esiste

$$\lim_{n\to\infty} a_n$$

finito o infinito.

(5) Passiamo al limite nella relazione di ricorrenza, si ha

$$\ell = \frac{\ell^3 + \ell}{2}$$

da cui i possibili limiti reali sono $\ell = 0$, $\ell = 1$ oppure $\ell = -1$. Sono però tutti e tre da escludere perché dal passo (3) abbiamo dimostrato che $a_n \ge \alpha > 1$. Quindi se $\alpha > 1$ si ha

$$\lim_{n \to \infty} a_n = +\infty$$

CASO 3: $\alpha < -1$. Analogamente a quanto visto ora, si deduce che

$$\lim_{n \to \infty} a_n = -\infty$$

CASO 4: $0 < \alpha < 1$.

- (1) La successione è ben definita
- (2) La successione è monotona decrescente. Infatti occorre dimostrare che $a_{n+1} \leq a_n$ cioè

$$a_{n+1} = \frac{a_n^3 + a_n}{2} \le a_n$$

che è vero se $a_n \in (-\infty, -1] \cup [0, 1]$

- (3) Si dimostra per induzione che $0 \le a_n \le \alpha$ per ogni $n \in \mathbb{N}$ (vero perché $0 < \alpha < 1$)
- (4) Quindi dal passo (2), essendo la successione monotona decrescente, si sa che esiste

$$\lim_{n\to\infty} a_n$$

finito o infinito.

(5) Passiamo al limite nella relazione di ricorrenza, si ha come prima che i possibili limiti reali sono $\ell = 0$, $\ell = 1$ oppure $\ell = -1$. Sono però da escludere $\ell = \pm 1$ perché dal passo (3) abbiamo dimostrato che $0 \le a_n \le \alpha < 1$. La stessa relazione ci permette di escludere anche i limiti infinit, quindi se $0 < \alpha < 1$ si ha

$$\lim_{n \to \infty} a_n = 0$$

CASO 5: $-1 < \alpha < 0$. Analogo al precedente.

🖾 Esercizio 14.2.2. Si studi il comportamento della successione definita per ricorrenza

$$\begin{cases} a_0 = 2012 \\ a_{n+1} = \frac{a_n}{n+1} \end{cases}$$

Hint della soluzione:

- (1) la successione è ben definita;
- (2) per induzione si prova che $a_n \geq 0$ per ogni $n \in \mathbb{N}$
- (3) la successione è monotona decrescente (si dimostra per induzione che $a_{n+1} \leq a_n$ per ogni $n \in \mathbb{N}$
- (4) dal punto (3) esiste $\lim_{n\to\infty} a_n = \ell \text{ con } \ell \geq 0$
- (5) passando al limite dentro la legge ricorsiva si ottiene che al secondo membro c'è ℓ diviso una quantità che tende all'infinito e che deve uguagliare ℓ per cui deve necessariamente essere $\ell=0$. Riassumendo

$$\lim_{n \to \infty} a_n = 0$$

🗷 Esercizio 14.2.3. Si studi il comportamento della successione definita per ricorrenza

$$\begin{cases} a_1 = 2012 \\ a_{n+1} = \sqrt[n]{a_n + 1} \end{cases}$$

Hint della soluzione:

- (1) la successione è ben definita;
- (2) per induzione si prova che $a_n > 1$ per ogni $n \in \mathbb{N}$
- (3) la successione è monotona decrescente ma è difficile dimostrare la monotonia attraverso la definizione: $a_{n+1} \leq a_n$ per ogni $n \in \mathbb{N}$ in quanto si dovrebbe dimostrare che $x+1 \leq x^n$ (difficile!). Aggirando l'ostacolo, si prova a dimostrare che $a_n \leq 2012 + n$ per induzione.
- (4) A questo punto dalla legge ricorsiva

$$a_n = \sqrt[n]{a_{n-1} + 1} \stackrel{(3)}{\leq} \sqrt[n]{2012 + (n-1) + 1} = \sqrt[n]{2012 + n}$$

quindi dal passo (2)

$$1 < a_n \le \sqrt[n]{2012 + n}$$

e quindi dal teorema del confronto si conclude che

$$\lim_{n \to \infty} a_n = 1$$

14.2.2. Esercizi proposti

🛎 Esercizio 14.2.4. Si studi il comportamento della successione definita per ricorrenza

$$\begin{cases} a_1 = 2012 \\ a_{n+1} = \frac{a_n}{2} + \frac{1}{n} \end{cases}$$

🛎 Esercizio 14.2.5. Si studi il comportamento della successione definita per ricorrenza

$$\begin{cases} a_1 = 2012 \\ a_{n+1} = \pi a_n + \frac{1}{n} \end{cases}$$