Tesis de Licenciatura en Ciencias de la Computación

Números Muy Normales

Lucas Puterman

Directora: Verónica Becher Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 20 de Noviembre, 2019

Supongamos que tiramos una moneda infinitas veces y anotamos un 1 cada vez que sale cara y 0 cada vez que sale ceca ¿Cuáles de estas secuencias es creíble que sea el resultado de este experimento?

- ► 01001000100001000001000000100000001...

- ► 01001000100001000001000000100000001...
- ► 010101010101010101010101010101010101...

- ► 01001000100001000001000000100000001...
- ► 010101010101010101010101010101010101...
- ► 10000110001010001110010010110011010...

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Definición

Notamos $|u|_v$ a la cantidad de ocurrencias de la palabra v dentro de la palabra u.

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Definición

Notamos $|u|_v$ a la cantidad de ocurrencias de la palabra v dentro de la palabra u.

Además, notamos u[i,j] a la subsecuencia de u formada tomando todos los símbolos entre el i y el j inclusive.

Podemos pensar que en una secuencia aleatoria no hay ningún patrón de ℓ símbolos que sea más frecuente que otro.

Definición

Notamos $|u|_v$ a la cantidad de ocurrencias de la palabra v dentro de la palabra u.

Además, notamos u[i,j] a la subsecuencia de u formada tomando todos los símbolos entre el i y el j inclusive.

Nos gustaría que para un prefijo de una secuencia aleatoria suficientemente grande, la cantidad de ocurrencias de cada palabra de cierta longitud sea casi la misma.

Definición (Borel, 1909)

Dado un alfabeto A y alguna secuencia infinita $u \in A^\omega$, decimos que u es simplemente normal para la longitud ℓ si cada secuencia v de longitud ℓ verifica que

$$\lim_{n\to\infty}\frac{|u[1,\ell n]|_v}{n}=\frac{1}{|A|^\ell}.$$

Definición (Borel, 1909)

Dado un alfabeto A y alguna secuencia infinita $u \in A^\omega$, decimos que u es simplemente normal para la longitud ℓ si cada secuencia v de longitud ℓ verifica que

$$\lim_{n \to \infty} \frac{|u[1, \ell n]|_v}{n} = \frac{1}{|A|^{\ell}}.$$

Decimos que u es *normal* si es simplemente normal para toda longitud $\ell \in \mathbb{N}$.

Definición (Borel, 1909)

Dado un alfabeto A y alguna secuencia infinita $u \in A^\omega$, decimos que u es simplemente normal para la longitud ℓ si cada secuencia v de longitud ℓ verifica que

$$\lim_{n\to\infty}\frac{|u[1,\ell n]|_v}{n}=\frac{1}{|A|^\ell}.$$

Decimos que u es normal si es simplemente normal para toda longitud $\ell \in \mathbb{N}$.

Problema (Borel, 1909)

Encontrar ejemplos naturales de secuencias normales. Decidir si la representación en base b de π , e ó $\sqrt{2}$ es normal.

La secuencia de Champernowne

Problema

Encontrar algún ejemplo explícito de una secuencia normal.

La secuencia de Champernowne

Problema

Encontrar algún ejemplo explícito de una secuencia normal.

Teorema (Champernowne, 1933)

La secuencia

1234567891011121314151617181920...

es normal sobre el alfabeto $A = \{0, 1, \dots, 9\}$.

champ, La secuencia que usaremos

Teorema (Bugeaud, 2012)

Sea A un alfabeto. Llamamos X(n) a la concatenación de todas las palabras de lomgitud n formadas por símbolos de A en orden lexicográfico.

La palabra infinita $X(1)X(2)\dots$ es normal en el alfabeto A

champ, La secuencia que usaremos

Teorema (Bugeaud, 2012)

Sea A un alfabeto. Llamamos X(n) a la concatenación de todas las palabras de lomgitud n formadas por símbolos de A en orden lexicográfico.

La palabra infinita $X(1)X(2)\dots$ es normal en el alfabeto A

En particular, nosotros vamos a usar el alfabeto $A=\{0,1\}$ Entonces, por ejemplo:

$$X(2) = 00\ 01\ 10\ 11$$

champ, La secuencia que usaremos

Teorema (Bugeaud, 2012)

Sea A un alfabeto. Llamamos X(n) a la concatenación de todas las palabras de lomgitud n formadas por símbolos de A en orden lexicográfico.

La palabra infinita $X(1)X(2)\dots$ es normal en el alfabeto A

En particular, nosotros vamos a usar el alfabeto $A=\{0,1\}$ Entonces, por ejemplo:

$$X(2) = 00\ 01\ 10\ 11$$

Entonces, los primeros símbolos de la secuencia que llamamos *champ* son:

 $champ = 0\ 1\ 00\ 01\ 10\ 11\ 000\ 001\ 010\ 011\ 100\ 101\ 110\ 111\ 0000\ 0001\ \dots$

Supernormalidad

Sea x una secuencia binaria. Sea $A_{k,n}^\lambda(x)$ la frecuencia de ocurrencia de las palabras de longitud n que ocurren exactamente k veces comenzando en las primeras $\lfloor \lambda 2^n \rfloor$ posiciones de x. Es decir:

$$A_{k,n}^{\lambda}(x) = \frac{\#\{w : |w| = n, |x[1...\lfloor \lambda 2^n \rfloor]|_w = k\}}{2^n}$$

Supernormalidad

Sea x una secuencia binaria. Sea $A_{k,n}^\lambda(x)$ la frecuencia de ocurrencia de las palabras de longitud n que ocurren exactamente k veces comenzando en las primeras $\lfloor \lambda 2^n \rfloor$ posiciones de x. Es decir:

$$A_{k,n}^{\lambda}(x) = \frac{\#\{w : |w| = n, |x[1...\lfloor \lambda 2^n \rfloor]|_w = k\}}{2^n}$$

Definición

Sea λ un real mayor a cero. Decimos que la secuencia binaria x es λ -supernormal si para todo entero no negativo k sucede que

$$\lim_{n \to \infty} A_{k,n}^{\lambda}(x) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Decimos que x es supernormal si es λ -supernormal para todo λ .

Veamos como ejemplo de juguete si la secuencia finita x=10011110 es supernormal tomando n=3 y $\lambda=1.$

Veamos como ejemplo de juguete si la secuencia finita x=10011110 es supernormal tomando n=3 y $\lambda=1$. Las palabras de tamaño 3 que ocurren en x son:

100, 001, 011, 111, 111, 110

Veamos como ejemplo de juguete si la secuencia finita x=10011110 es supernormal tomando n=3 y $\lambda=1$. Las palabras de tamaño 3 que ocurren en x son:

Si contamos las cantidad de ocurrencias de cada palabra de tamaño 3 tenemos:

Word	Count
000	0
001	1
010	0
011	1
100	1
101	0
110	1
111	2

Ahora, veamos las cantidad, las frecuencias y el valor esperado para cada k posible si x fuera 1-supernormal.

Ahora, veamos las cantidad, las frecuencias y el valor esperado para cada k posible si x fuera 1-supernormal.

k	Count	Frequency	Expected Frequency
0	3	$\frac{3}{8}$	e^{-1}
1	4	$\frac{1}{2}$	e^{-1}
2	1	$\frac{1}{8}$	$\frac{e^{-1}}{2}$ $\frac{e^{-1}}{3!}$
3	0	0	$\frac{e^{-1}}{3!}$
4	0	0	$\frac{e^{-1}}{4!}$
5	0	0	$\frac{e^{-1}}{5!}$
6	0	0	$\frac{e^{-1}}{6!}$
7	0	0	$\frac{e^{-1}}{7!}$
8	0	0	$\frac{e^{-1}}{8!}$

El resultado de esta tesis

Teorema

La noción de supernormalidad es más fuerte que la noción de normalidad. Es decir, los siguientes enunciados son ciertos:

- 1. Sea x una secuencia infinita. Si x es normal, no necesariamente x es supernormal. (normal \Rightarrow supernormal)
- 2. Sea x una secuencia infinita. Si x es supernormal, entonces x es normal. (supernormal \Rightarrow normal)

La forma más simple de ver que una secuencia normal no es supernormal es encontrar un ejemplo, y que mejor ejemplo que champ.

Recordemos

X(n) es la concatenación de todas las palabras de longitud n sobre el alfabeto $A=\{0,1\}$ en order lexicográfico.

Llamamos champ a la concatenación de X(n) para $n=1,2,\ldots$

 $champ = 0\ 1\ 00\ 01\ 10\ 11\ 000\ 001\ 010\ 011\ 100\ 101\ 110\ 111\ 0000\ 0001\ \dots$

La forma más simple de ver que una secuencia normal no es supernormal es encontrar un ejemplo, y que mejor ejemplo que champ.

Recordemos

X(n) es la concatenación de todas las palabras de longitud n sobre el alfabeto $A=\{0,1\}$ en order lexicográfico.

Llamamos champ a la concatenación de X(n) para $n=1,2,\dots$

 $champ = 0\ 1\ 00\ 01\ 10\ 11\ 000\ 001\ 010\ 011\ 100\ 101\ 110\ 111\ 0000\ 0001\ \dots$

¿Qué sucede cuando contamos la cantidad de palabras de tamaño n en los primeros 2^n símbolos de champ?

Figura: Frecuencias observadas y esperadas en champ for n=16 y $\lambda=1$.

Figura: Frecuencias observadas y esperadas en champ for n=22 y $\lambda=1.$

▶ Sabemos que champ = X(1)X(2)X(3)...

- ► Sabemos que champ = X(1)X(2)X(3)...
- La idea va a ser encontrar un k tal que X(k) sea lo suficientemente grande y este completamente contenido en $champ[1\dots 2^n]$ y analizar cuales son las palabras distintas que aparecen.

- ► Sabemos que champ = X(1)X(2)X(3)...
- La idea va a ser encontrar un k tal que X(k) sea lo suficientemente grande y este completamente contenido en $champ[1\dots 2^n]$ y analizar cuales son las palabras distintas que aparecen.
- Si tomamos $n \ge d + k + 1$ con $k = 2^d$, sucede que X(k) está completamente contenido en $champ[1 \dots 2^n]$.

- Sabemos que champ = X(1)X(2)X(3)...
- La idea va a ser encontrar un k tal que X(k) sea lo suficientemente grande y este completamente contenido en $champ[1\dots 2^n]$ y analizar cuales son las palabras distintas que aparecen.
- Si tomamos $n \ge d+k+1$ con $k=2^d$, sucede que X(k) está completamente contenido en $champ[1\dots 2^n]$.
- Nos fijamos que pinta tienen las secuencias de longitud d+k+1 que aparecen adentro de X(k) y damos una cota para la cantidad de palabras distintas que pueden aparecer.

- ► Sabemos que champ = X(1)X(2)X(3)...
- La idea va a ser encontrar un k tal que X(k) sea lo suficientemente grande y este completamente contenido en $champ[1\dots 2^n]$ y analizar cuales son las palabras distintas que aparecen.
- Si tomamos $n \ge d+k+1$ con $k=2^d$, sucede que X(k) está completamente contenido en $champ[1\dots 2^n]$.
- Nos fijamos que pinta tienen las secuencias de longitud d+k+1 que aparecen adentro de X(k) y damos una cota para la cantidad de palabras distintas que pueden aparecer.
- ▶ Por último resta ver que la cantidad de palabras que aparecen es mucho menor de lo necesario para que *champ* sea supernormal.

Que hay adentro de X(k)

Recordemos que definimos $k=2^d.$ Veamos como son las palabras de tamaño d+k+1 que suceden adentro de X(k). Tomemos a modo de ejemplo k=8 y d=3.

Recordemos que definimos $k=2^d$. Veamos como son las palabras de tamaño d+k+1 que suceden adentro de X(k). Tomemos a modo de ejemplo k=8 y d=3.

00000000 00000001 00000010 00000011 00000100

Recordemos que definimos $k=2^d$. Veamos como son las palabras de tamaño d+k+1 que suceden adentro de X(k). Tomemos a modo de ejemplo k=8 y d=3.

Caso 3: $x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}$ con $n \in \{1, 2, \dots, k-d-2\}$.

Recordemos que definimos $k=2^d$. Veamos como son las palabras de tamaño d+k+1 que suceden adentro de X(k). Tomemos a modo de ejemplo k=8 y d=3.

Caso 3: $x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}$ con $n \in \{1, 2, \dots, k-d-2\}$.

Recordemos que definimos $k=2^d$. Veamos como son las palabras de tamaño d+k+1 que suceden adentro de X(k). Tomemos a modo de ejemplo k=8 y d=3.

Caso 3: $x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}$ con $n \in \{1, 2, \dots, k-d-2\}$.

con $n \in \{1, 2, \dots, k - d - 2\}.$

```
00000(000
                   00000001
                                     0)0000010
                                                        00000011
                                                                          00000100
Caso 1:
                         x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}
Caso 2:
                          x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k
► Caso 3:
                      x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}
   con n \in \{1, 2, \dots, k - d - 2\}.
Caso 4:
        x = u_{k-d-1+n}u_{k-d+n}\dots u_k \quad v_1v_2\dots v_k \quad w_1w_2\dots w_{d+1-n}
   con n \in \{1, 2, ..., d\}
```

```
000000(00
                   00000001
                                     00)000010
                                                        00000011
                                                                          00000100
Caso 1:
                         x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}
Caso 2:
                          x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k
► Caso 3:
                      x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}
   con n \in \{1, 2, \dots, k - d - 2\}.
Caso 4:
        x = u_{k-d-1+n}u_{k-d+n}\dots u_k \quad v_1v_2\dots v_k \quad w_1w_2\dots w_{d+1-n}
   con n \in \{1, 2, ..., d\}
```

```
00000000
                   00000001
                                     000)00010
                                                        00000011
                                                                          00000100
Caso 1:
                         x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}
Caso 2:
                          x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k
► Caso 3:
                      x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}
   con n \in \{1, 2, \dots, k - d - 2\}.
Caso 4:
        x = u_{k-d-1+n}u_{k-d+n}\dots u_k \quad v_1v_2\dots v_k \quad w_1w_2\dots w_{d+1-n}
   con n \in \{1, 2, ..., d\}
```

```
00000000
                  (00000001
                                   0000)0010
                                                       00000011
                                                                         00000100
Caso 1:
                         x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}
Caso 2:
                          x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k
Caso 3:
                     x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}
   con n \in \{1, 2, \dots, k - d - 2\}.
Caso 4:
        x = u_{k-d-1+n}u_{k-d+n}\dots u_k \quad v_1v_2\dots v_k \quad w_1w_2\dots w_{d+1-n}
   con n \in \{1, 2, ..., d\}
```

Recordemos que definimos $k=2^d$. Veamos como son las palabras de tamaño d+k+1 que suceden adentro de X(k). Tomemos a modo de ejemplo k=8 y d=3.

0

```
11111011
                 111111100
                                   111111101
                                                     11111(110
  Caso 1:
                           x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}
 Caso 2:
                            x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k
  Caso 3:
                        x = u_{n+1}u_{n+2}\dots u_k \quad v_1v_2\dots v_{d+n+1}
     con n \in \{1, 2, \dots, k - d - 2\}.
  Caso 4:
          x = u_{k-d-1+n}u_{k-d+n}\dots u_k \quad v_1v_2\dots v_k \quad w_1w_2\dots w_{d+1-n}
     con n \in \{1, 2, \dots, d\}
```

▶ Caso 5: Si x comienza al final de X(k) o cerca, se pueden llegar a necesitar palabras fuera de X(k) para completar d + k + 1.

La función next(w)

Definimos la siguiente función que nos va a ser útil.

Definición

La función $next(w):A^n\to A^n$ se define de la siguiente manera. Si w es la palabra de n 1s, next(w) es la palabra de n 0s. Si no, next(w) es la palabra siguiente en orden lexicográfico.

Por ejemplo,

$$next(0000) = 0001$$
 $next(0001) = 0010$
 \vdots
 $next(1110) = 1111$
 $next(1111) = 0000$

$$x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}$$

```
(00000000)
              0000) 0001
(00000001
              0000) 0010
(00000010
              0000) 0011
(00001110)
              0000) 1111
(00001111
              0001) 0000
(00010000
              0001) 0001
(111111110
              1111) 1111
```

```
x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}
```

```
(000000000
              0000) 0001
(00000001
             0000) 0010
(00000010
              0000) 0011
(00001110)
              0000) 1111
(000011111
             0001) 0000
(00010000
              0001) 0001
(111111110
              1111) 1111
```

$$x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}$$

```
(000000000
              0000) 0001
                                         d+1
(000000001
              0000) 0010
                                                           next(A)
              0000) 0011
(00000010
                                     d+1
              0000) 1111
(00001110)
(000011111
              0001) 0000
(00010000
              0001) 0001
(111111110
              1111) 1111
```

$$x = u_1 u_2 \dots u_k \quad v_1 v_2 \dots v_d v_{d+1}$$

\underline{A} \underline{B} A	<mark>0000</mark>) 0001	(00000000
d+1 $k-d-1$	0000) 0010	(00000001
$\underbrace{A}_{d+1} \qquad \underbrace{11\dots 1}_{k-d-1} \qquad next(A)$	0000) 0011	(00000010
Del primer esquema tenemos:	:	
$2^{d+1}(2^{k-d-1}-1) = 2^k - \frac{1}{2 \cdot 2^d}$	0000) 1111	(00001110
	0001) 0000	(00001111
Mientras que del segundo:	0001) 0001	(00010000
$2^{d+1}-1$:	
Juntos son menos que $2^k-2\cdot 2^d$	1111) 1111	(11111110

$$x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k$$

```
0000 (0000 00000001)
0000 ( 0001 00000010)
:
:
0000 (1111 10000000)
1000 (0000 10000001)
:
:
1111 (1110 11111111)
```

```
x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k
```

```
0000 (0000 00000001)
0000 ( 0001 00000010)
:
:
0000 (1111 100000000)
1000 (0000 10000001)
:
:
1111 (1110 11111111)
```

$$x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k$$

```
0000 \ (0000 \ 00000001)
0000 \ (0001 \ 00000010)
\vdots
0000 \ (1111 \ 10000000)
\vdots
1111 \ (1110 \ 11111111)
```

$$x = u_{k-d-1} \dots u_k \quad v_1 v_2 \dots v_k$$