

Exercise 3

Linear Systems 2023/2024

Problem 1 Sampling a Sinc-Square

Consider the signal

$$x(t) = \operatorname{sinc}^2(t/2), \quad t \in \mathbb{R}$$

with samples

$$x[n] = x(nT_s), \quad n \in \mathbb{Z}.$$

- (a) How small must T_s be such that we can perfectly recover $x(\cdot)$ from $x[\cdot]$?
- (b) For $T_s = 1$, plot the Fourier transform of $x[\cdot]$. Is there aliasing?
- (c) For $T_s = 2$, plot the Fourier transform of $x[\cdot]$. Is there aliasing?

Problem 2 Sampling a Periodic Signal

Consider the periodic signal

$$x(t) = \frac{1}{2}\cos(3t) + 2\sin(4t), \quad t \in \mathbb{R}$$

with samples

$$x[n] = x(nT_s), \quad n \in \mathbb{Z}.$$

- (a) Determine the fundamental period T_0 of $x(\cdot)$. If we assume that $T_s = T_0/N$ for some odd integer N, what is the smallest value of N such that $x(\cdot)$ can be recovered perfectly from $x[\cdot]$?
- (b) For N = 11, plot the real and imaginary parts of the Fourier series coefficients of $x[\cdot]$. Is there aliasing?
- (c) For N=5, plot the real and imaginary parts of the Fourier series coefficients of $x[\cdot]$. If you reconstruct the continuous-time signal from these samples, what signal do you obtain?

Problem 3 Product of Two Bandlimited Signals

Let $x_1(\cdot)$ and $x_2(\cdot)$ be two bandlimited signals, the former with bandwidth W_1 and the latter with bandwidth W_2 . Determine the largest sampling period T_s such that

$$y(t) = x_1(t)x_2(t), \quad t \in \mathbb{R}$$

can be recovered perfectly from its samples $y[n] = y(nT_s), n \in \mathbb{Z}$.

Problem 4 Energy of Sampled Signal

Consider a signal $x(\cdot)$ of bandwidth W with samples $x[\cdot]$ that are spaced T_s seconds apart, i.e.,

$$x[n] = x(nT_s), \quad n \in \mathbb{Z}.$$

Assume that T_s satisfies the Nyquist criterion, i.e., $T_s \leq \frac{1}{2W}$. What is the relation between the energy of the samples

$$E_s = \sum_{n = -\infty}^{\infty} |x[n]|^2$$

and the energy of the signal

$$E_c = \int_{-\infty}^{\infty} |x(t)|^2 dt?$$

Problem 5 Upsampling

Consider two continuous-time signals $x_1(\cdot)$ and $x_2(\cdot)$ of bandwidth $W_1 = 3$ kHz and $W_2 = 5$ kHz, respectively. Let the discrete-time signals $x_i[\cdot]$, i = 1, 2 be obtained by sampling $x_i(\cdot)$ at sampling period $T_{s,i} = \frac{1}{2W_i}$. The discrete-time signals $x_1[\cdot]$ and $x_2[\cdot]$ are processed by a digital signal processor. To this end, both signals need to operate at the same sampling period.

- (a) By what factors need the two signals be upsampled such that both signals operate at the same sampling period?
- (b) Sketch the Fourier transforms of the continuous-time signals $x_i(\cdot)$, i = 1, 2, the corresponding discrete-time signals, and the upsampled signals.

Problem 6 Echo echo echo

Consider the continuous-time signal

$$x(t) = s(t) + \frac{1}{8}s(t - T_d), \quad t \in \mathbb{Z}$$

for some $T_d \in \mathbb{R}$ and a signal $s(\cdot)$ that is bandlimited to $\frac{1}{2T_s}$ for some T_s . Let $x[\cdot]$ denote the sampled discrete-time signal, i.e.,

$$x[n] = x(nT_s), \quad n \in \mathbb{Z}.$$

We wish to find the discrete-time filter $h[\cdot]$ such that

$$x[n] = \sum_{k=-\infty}^{\infty} s(kT_s)h[n-k], \quad n \in \mathbb{Z}.$$

- (a) Find $h[\cdot]$ when $T_d = T_s$.
- (b) Find $h[\cdot]$ when $T_d = \frac{T_s}{2}$.

Problem 7 Fourier Series Coefficients of Sampled Periodic Signal

Let the continuous-time signal $x(\cdot)$ be periodic with period $\frac{1}{10}$ seconds and Fourier series coefficients

$$a_k = \left(\frac{1}{2}\right)^{|k|}, \quad k \in \mathbb{Z}.$$

This signal is filtered by an ideal lowpass filter of cutoff frequency 105Hz, i.e.,

$$\hat{h}(f) = \begin{cases} 1, & |f| \le 105 \\ 0, & |f| > 105 \end{cases}$$

and then sampled at sampling period $T_s = \frac{1}{210}$ seconds.

- (a) Show that $x[n] = x(nT_s)$, $n \in \mathbb{Z}$ is a periodic sequence and determine its period.
- (b) Determine the Fourier series coefficients of $x[\cdot]$.

Hint: You may use that the Fourier series coefficients of the result of filtering $x(\cdot)$ with $h(\cdot)$ are given by

$$b_k = a_k \hat{h}\left(\frac{k}{T_0}\right), \quad k \in \mathbb{Z}.$$

Problem 8 Digital System That Processes a Continuous-Time Signal

Consider a system that processes continuous-time signals using a digital filter $h[\cdot]$. The digital filter is linear and causal, and its input $x[\cdot]$ and output $y[\cdot]$ satisfy

$$y[n] = \frac{1}{2}y[n-1] + x[n], \quad n \in \mathbb{Z}.$$

The continuous-time input signal $x(\cdot)$ is sampled at sampling period T_s , fed to the digital filter, and then lowpass-filtered to reconstruct the continuous-time output signal $y(\cdot)$. If $x(\cdot)$ is bandlimited to $\frac{1}{2T_s}$, then this system is equivalent to a continuous-time LTI system. Determine the frequency response $\hat{h}(\cdot)$ of the equivalent overall system with input $x(\cdot)$ and output $y(\cdot)$.

Problem 9 Analog System That Processes a Discrete-Time Signal

Consider a system that processes a discrete-time signal $x[\cdot]$ using a continuous-time filter $h(\cdot)$. Specifically, the filter input and output are related via the differential equation

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y(t) + 4\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 3y(t) = x(t), \quad t \in \mathbb{R}.$$

Out of the discrete-time signal $x[\cdot]$, a continuous-time signal $x(\cdot)$ of bandwidth $\frac{1}{2T_s}$ is created by means of the reconstruction formula

$$x(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t}{T_s} - n\right), \quad t \in \mathbb{R}.$$

This signal is then filtered by $h(\cdot)$, and the filter output $y(\cdot)$ is sampled at sampling period T_s to create the sequence of samples

$$y[n] = y(nT_s), \quad n \in \mathbb{Z}.$$

Determine the Fourier transform $\hat{h}(\cdot)$ of the equivalent overall system with input $x[\cdot]$ and output $y[\cdot]$.