Esercizi sul simplesso

1) Risolvere il seguente problema di programmazione lineare.

Soluzione. Riscriviamo il problema in forma standard $(min\{c^Tx: Ax = b, x \ge 0\}).$

Aggiungiamo le variabili di slack, in questo caso x_4, x_5, x_6 per rendere le disuguaglianze delle uguaglianze. Ricordiamo inoltre che z diventa -z. Si ricordi inoltre di definire i domini di esistenza anche per le variabili di slack. Immaginiamo, a questo punto, la base di partenza sia proprio composta da $B = \{x_4, x_5, x_6\}$ e organizziamo i dati in forma di tableau.

Quando questo accade, trascriviamo le righe e il valore iniziale della variabile $z \ge -1$.

Siamo in forma canonica in quanto ci sono le colonne della matrice identità, sia vicine che volendo lontane

	x_1	x_2	x_3	x_4	x_5	x_6	z	$ar{b}$
-z	-3	-1	-3	0	0	0	-1	0
x_4	1 2	1	1	1	0	0	0	2
x_5	1	2	3	0	1	0	0	5
x_6	2	2	1	0	0	1	0	6

Mi pongo la serie di domande:

- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? No → Tutti i coefficienti di costo ridotto sono ≤ 0

Dobbiamo cambiare base e dobbiamo scegliere la variabile che entra nella nuova base.

Seguiamo la regola anticiclo di Bland, che mi dice di selezionare tra le variabili di costo ridotto, quella con valore minore; se ce ne sono diverse, scelgo la prima secondo l'ordine.

Quindi, in questo caso scelgo x_1 come variabile entrante in base.

Come in altri casi, per decidere la variabile uscente, prendo quella che ha rapporto minimo tra la posizione della variabile scelta come pivot e le variabili \overline{b}_i .

$$\min\left\{\frac{2}{2}, \frac{5}{1}, \frac{6}{2}\right\} = \frac{2}{2} = 1$$
 Tra le variabili, esce x_4

Ora, riportiamo il tableau in forma canonica ed eseguiamo le successive operazioni di pivoting:

Operazioni:
$$R_1 \leftarrow R_1/2$$
, $R_2 \leftarrow R_2 - R_1/2$, $R_3 \leftarrow R_3 - R_1$, $R_0 \leftarrow R_0 + 3/2R_1$.

A questo punto, abbiamo come base $B = \{x_1, x_5, x_6\}$ ed eseguiamo l'operazione di pivot rispetto all'elemento in prima riga e prima colonna (dato che abbiamo fatto uscire x_4 è l'unico elemento logicamente utile su cui operare in questo senso.

	x_1	x_2	x_3	x_4	x_5	x_6	z	$ar{b}$
-z	0	1/2	-3/2	3/2	0	0	-1	3
x_1	1	1/2	1/2	1/2	0	0	0	1
x_5	0	3/2	5/2	1/2 $-1/2$	1	0	0	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$
x_6	0	1	0	-1	0	1	0	4

- F.C.? Sì → Appaiono le colonne della matrice identità
- è ammissibile? Sì \rightarrow tutti i \overline{b}_i sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Non lo so → Esiste qualche coefficiente di costo ridotto < 0 (condizione sufficiente di ottimalità; se fossero <u>tutti</u> uguali a zero, allora sarebbe ottima)
- è illimitata? Non lo so → Vado a vedere se in corrispondenza di colonne con costi ridotti strettamente minori di 0 abbiamo sotto una colonna tutta negativa → Esiste almeno un valore strettamente positivo in corrispondenza di qualche valore negativo e quindi non possiamo concludere con certezza
- chi entra in base? \rightarrow Una qualsiasi variabile con costo ridotto negativo $\rightarrow x_3$
- chi esce dalla base? Calcoliamo l'argomento del minimo tra i rapporti di \bar{b} e gli $\overline{a_{lh}}$ per righe rispetto alla colonna dell'elemento del pivot $\rightarrow x_5$

$$\min\left\{\frac{1}{1/2}, \frac{4}{5/2}, \frac{4}{0}\right\} = \frac{4}{5/2} = \frac{8}{5}$$
, che corrisponde alla variabile x_5 e dunque x_5 esce di base.

Quindi ora la nuova base è $B=\{x_1,x_3,x_6\}$. Anche qui, apparirebbe un elemento simile alla matrice identità ma ora dobbiamo far entrare x_3 in base cambiando le righe (e quindi non avremmo più le colonne sparse per la matrice identità, come si vede per $[x_1,x_1]$, $[x_5,x_5]$, $[x_6,x_6]$

Abbiamo vari elementi, ma scegliamo l'elemento in riga 2 e colonna 3, come fatto dal prof, anche se in effetti potremmo scegliere quello della colonna precedente o della colonna successiva.

Operazioni: $R_2 \leftarrow R_2 \cdot 2/5, R_1 \leftarrow R_1 - R_2/5, R_0 \leftarrow R_0 + 3/5R_2.$

- F.C.? Sì → Appaiono le colonne della matrice identità
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Sì → Tutti i costi ridotti sono > 0

$$z_{MAX} = -z_{MIN} = 27/5$$
 $x_1 = 1/5$ $x_2 = 0$ $x_3 = 8/5$ $x_4 = 0$ $x_5 = 0$ $x_6 = 4$

Con x_4 , x_5 saturi (in quanto = 0) Con x_6 lasco (in quanto > 0)

Esercizio 10 Dispense Prof

Risolvere il seguente problema di programmazione lineare partendo dalla base $\{x_4, x_5, x_6\}$ oppure dalla base $\{x_1, x_5, x_6\}$.

Riscriviamo il problema in forma standard. Siccome $x_2 \le 0$, si introduce una nuova variabile $\widehat{x_2} = -x_2$ con $\widehat{x_2} > 0$. Attenzione che si inverte il segno della f.o. in quanto si passa da *max* a *min*.

Mettiamo sul tableau per vedere cosa succede, scegliendo come base tra le due $[x_4 x_5 x_6]$, che però risulta non ammissibile avendo x_4 negativo.

Ecco perché il prof dà varie basi di partenza, dato non tutte possono essere ammissibili; infatti, qui si parte da $B = [x_1 \ x_5 \ x_6]$, essendo l'altra non ammissibile. Segnalo le operazioni di pivoting:

Operazioni:
$$R_1 \leftarrow R_1/2, R_2 \leftarrow R_2 - R_1/2, R_3 \leftarrow R_3 + R_1/2.$$

Partiamo dalla prima iterazione, mettendo in forma canonica rispetto a *B*:

- 1) F.C? → Sì, ci sono le colonne della matrice identità
- 2) Ammissibile? \rightarrow Sì, le variabili della colonna di \bar{b} sono tutte ≥ 0
- 3) Illimitata? Non so → Esiste sempre almeno un coefficiente > 0 per i costi ridotti in corrispondenza di costi ridotti negativi e non posso concludere
- 4) Ottimo? Non so \rightarrow Esiste qualche costo ridotto < 0 e non posso concludere
- 5) Entra? \rightarrow Decido tra le variabili di costo ridotto negativo e decido tra x_3 e x_4 e scelgo x_3 (il motivo è spiegato formalmente dopo, ma accontentiamoci qui di dire $x_3 < x_4$)

6) Esce? Decido sulla base del rapporto minimo tra $\overline{b_i}$ e x_i , dove x_i è la posizione su cui si è fatti pivoting, quindi x_3 . Facendo i rapporti, il minimo è x_5 con gli altri due che sono negativi e sono scartati.

Andiamo all'iterazione 2, considerando come pivot l'elemento(3) di seconda riga e terza colonna, eseguendo le operazioni di pivoting che seguono:

Operazioni: $R_2 \leftarrow R_2/3$, $R_1 \leftarrow R_1 + R_2/3$, $R_3 \leftarrow R_3 + 2/3R_2$, $R_0 \leftarrow R_0 + R_2$.

- 1) È in forma canonica → Sì, ci sono le colonne della matrice identità
- 2) È ammissibile? Sì, le variabili della colonna di \bar{b} sono tutte ≥ 0
- 3) È illimitato → No → Non ci sono colonne con costi ridotti < 0, pertanto non mi pongo il problema se nella colonna sotto ci siano coefficienti negativi
- 4) È ottima? Sì → Tutti i costi ridotti sono >= 0

In merito ai vincoli:

- x_1 all'ottimo vale 1 (colonna di \overline{B})
- x₂ all'ottimo vale 0 (è fuori base)
- x_3 all'ottimo vale 1/2 (colonna di \overline{B})
- x₄ all'ottimo vale 0 (è fuori base)
- x₅ all'ottimo vale 0 (è fuori base)
- x_6 all'ottimo è 9/2 (colonna di $\overline{\rm B}$)

Leggendolo bene;

- $x_4 = 0$ è vincolo saturo, poiché ha valore zero
- $x_5 = 0$ è vincolo saturo poiché ha valore zero
- $x_6 = \frac{9}{2}$ è vincolo lasco, poiché ha valore maggiore di zero

Esistono metodi come quello delle *due fasi*, in cui si scrive un problema artificiale in cui la f.o. è somma di queste variabili artificiali.

- Se il valore della funzione obiettivo $\grave{e}>0$, si ha un problema inammissibile
- Se il valore della funzione obiettivo, allora y=0, metto tutte le y fuori base e ottengo x_B come soluzione del problema di partenza

In tal caso, risolvo il problema a partire dalla base ottenuta.

Simulazione Esame 2018-2019

2. Si risolva il seguente problema di programmazione lineare con il metodo del simplesso, a partire dalla base relativa alle variabili x1, x2, x3 e applicando la regola di Bland:

Passo alla forma standard:

- Funzione obiettivo di minimo: min -x₁ - 5x₂
- 2. vincoli di uguaglianza:

$$x_1$$
 $+x_4$ $=$ 5
 x_1 $+x_2$ $-x_5$ $=$ -1
 x_2 $+2x_3$ $=$ -2

3. variabili non negative: effettuo la sostituzione $\hat{x}_2=-x_2,\,\hat{x}_2\geq 0$ min $-x_1$ $+5\hat{x}_2$

s.t.
$$x_1 + 3x_2$$

 $x_1 - \hat{x}_2 + 2x_3$
 $x_1 + x_4 = 5$
 $x_1 - \hat{x}_2 - x_5 = -1$
 $x_1 + x_4 = 5$
 $x_1 - \hat{x}_2 + 2x_3 = -2$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 0$

4. termini noti non negativi

Attenzione che:

- la funzione obiettivo è di minimo e si cambia di segno
- Data $\widehat{x_2}$, si va a cambiare segno a x_2 quando la si introduce poi, avendo i termini noti non negativi, si va a cambiare segno alle variabili di slack (e, se ci fossero altre variabili oltre a quelle di slack, si cambia segno anche a quelle)

Imposto il tableau del simplesso:

Per il pivot, siccome non siamo in forma canonica, scelgo di volta in volta un elemento utile per le operazioni di Gauss-Jordan. Faccio entrare in base x_1 :

	\downarrow								\downarrow					
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$		x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	-1	5	0	0	0	0	-z	0	5	0	1	0	5	$R_0' \leftarrow R_0 + R_1'$
?		0	0	1	0	5	x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1$
?	-1	1	0	0	1	1	?	0	1	0	1	1	6	$R_2' \leftarrow R_2 + R_1'$
?	0	1	-2	0	0	2	?	0	1	-2	0	0	2	$R_3' \leftarrow R_3$

Faccio poi entrare in base $\widehat{x_2}$ (ho evidenziato in rosso gli elementi di pivoting):

			\downarrow				
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	0	0	0	-4	-5	-25	$R_0' \leftarrow R_0 - 5R_2'$
x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1$
\hat{x}_2	0	1	0	1	1	6	$R_2' \leftarrow R_2$
?	0	0	-2	-1	-1	-4	$R_3' \leftarrow R_3 - R_2'$

Si fa poi entrare in base x_3 facendo pivot sull'elemento in rosso, tale che otteniamo finalmente la forma canonica.

La base si compone sulle colonne dove appaiono i coefficienti della matrice identità, quindi $B = \{x_1, \widehat{x_2}, x_3\}$ Si nota che è ammissibile (avendo tutte le colonne di $\overline{b_i} > 0$). Non sappiamo se sia ottima (avendo costi ridotti negativi) ma non è illimitata (infatti, tutti i coefficienti sono positivi sotto colonne con costi ridotti negativi).

Partiamo con il simplesso e decidiamo la variabile che entra in base. Per la regola di Bland, scegliamo la prima variabile in ordine tra quelle con coefficienti di costo ridotto negativo (quindi, tra x_4 , x_5 scelgo x_4).

La variabile che esce dalla base si capisce rispetto al rapporto $\frac{\overline{b_t}}{\overline{a_t}}$ nella posizione della variabile che entra in base, quindi x_4 . Esce dalla base $\arg\min\left\{\frac{5}{1},\frac{6}{1},\frac{2}{1/2}\right\} = \arg\{4\} = x_3$

Per $B=\{x_1,\overline{x_2},x_4\}$ scegliamo come elemento di pivoting $\frac{1}{2}$ come visto nel tableau precedente.

					\downarrow		
	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	0	0	8	0	-1	-9	$R_0' \leftarrow R_0 + 4R_3'$
x_1	1	0	-2	0	-1	1	$R_1' \leftarrow R_1 - R_3'$
\hat{x}_2	0	1	-2	0	0	2	$R_2' \leftarrow R_2 - R_3'$
$\leftarrow x_4$	0	0	2	1	1	4	$R_3' \leftarrow 2R_3$

- F.C.? Sì
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Non lo so → Esiste qualche coefficiente di costo ridotto < 0 (condizione sufficiente di ottimalità; se fossero tutti uguali a zero, allora sarebbe ottima)
- è illimitata? Non lo so → Vado a vedere se in corrispondenza di colonne con costi ridotti strettamente minori di 0 abbiamo sotto una colonna tutta negativa → Esiste almeno un valore strettamente positivo in corrispondenza di qualche valore negativo e quindi non possiamo concludere con certezza
- chi entra in base? $\rightarrow x_5$
- chi esce dalla base \rightarrow $rg \min \left\{ X, X, \frac{4}{1} \right\} = rg \{ 4 \} = x_4$

 $B = \{x_1, \widehat{x_2}, x_5\}$ ed eseguo il pivoting rispetto all'elemento riquadrato poco fa.

	x_1	\hat{x}_2	x_3	x_4	x_5	$ar{b}$	
-z	0	0	10	1	0	-5	$R_0' \leftarrow R_0 + R_3'$
x_1	1	0	0	1	0	5	$R_1' \leftarrow R_1 + R_3'$
\hat{x}_2	0	1	-2	0	0	2	$R_2' \leftarrow R_2$
x_5	0	0	2	1	1	4	$R_3' \leftarrow R_3$

- F.C.? Sì
- è ammissibile? Sì \rightarrow tutti i $\overline{b_i}$ sono ≥ 0 (cioè, tutta l'ultima colonna di destra)
- è ottima? Si → Non esiste qualche coefficiente di costo ridotto < 0

La soluzione ottima del problema è $z_{MIN}=-z_{MAX}=-(-5)=5$ Inoltre, abbiamo $x_1=5, \hat{x}_2=2, x_5=4, x_3=x_4=0$

con vincoli x_4 saturo in quanto ha valore zero e x_5 lasco, per valore > 0 (si ricordi che lasco e saturo si va a dire sulle variabili di slack aggiunte).

Esercizio 5 Risolvere con il metodo del simplesso il seguente problema PL:

(ris.
$$z^* = -33$$
).

$$\begin{cases} 2x_1 + x_2 + S_1 & = 8 \\ x_1 + 2x_2 & + S_2 & = 9 \\ x_1 + x_2 & + S_3 = 5 \end{cases}$$

 $S_1 \ge 0, S_2 \ge 0, S_3 \ge 0$. The entered variables S_1, S_2, S_3 , are called slack variables.

Step No	21					
x ₁	x ₂	S ₁	S_2	S_3	const.	Θ
2	1	1	0	0	8	8:1=8
1	2	0	1	0	9	9 : 2 = <u>4,5</u>
1	1	0	0	1	5	5 : 1 = 5
-5	<u>-7</u>	0	0	0	F - 0	
2	1	1	0	0	8	
1/2	1	0	1/2	0	9/2	
1	1	0	0	1	5	_
-5	-7	0	0	0	F - 0	
3/2	0	1	-1/2	0	7/2	-
1/2	1	0	1/2	0	9/2	
1/2	0	0	-1/2	1	1/2	_
-3/2	0	0	7/2	0	F + 63/2	

Step №2

x ₁	x ₂	S ₁	S_2	S_3	const.	Θ
3/2	0	1	-1/2	0	7/2	7/2 : 3/2 ≈ 2,333
1/2	1	0	1/2	0	9/2	9/2 : 1/2 = 9
1/2	0	0	-1/2	1	1/2	1/2 : 1/2 = <u>1</u>
-3/2	0	0	7/2	0	F + 63/2	
3/2	0	1	-1/2	0	7/2	
1/2	1	0	1/2	0	9/2	
1	0	0	-1	2	1	
-3/2	0	0	7/2	0	F + 63/2	
0	0	1	1	-3	2	
0	1	0	1	-1	4	
1	0	0	-1	2	1	
0	0	0	2	3	F + 33	

Esercizio 6 Risolvere con il metodo del simplesso il seguente problema PL:

 $(ris.\ problema\ illimitato).$

$$\begin{cases} x_1 - 4x_2 + (S_1) &= 8 \\ -x_1 + x_2 &+ (S_2) &= 6 \\ -3x_1 + 2x_2 &+ (S_3) &= 5 \end{cases}$$

Step №1

отор						
x ₁	x ₂	S ₁	S_2	S_3	const.	Θ
1	-4	1	0	0	8	8 : 1 = <u>8</u>
-1	1	0	1	0	6	
-3	2	0	0	1	5	
2	5	0	0	0	F - 0	
1	-4	1	0	0	8	
0	-3	1	1	0	14	
0	-10	3	0	1	29	
0	13	-2	0	0	F - 16	

Problema illimitato

Soluzione: problema illimitato.

- 2	-7 1 1 1 0 0 0 1 1 0 AM	C-721
0	3 3 -2 11 0 1 0 9 10 10	TO THE SLOVED
	B= X3, Xu, X6 2 avenum	10 10 101
FC>51	-7 4 -4 0 0 1 0 =1 10 5	0 10 - ALAN
HUMMANO > 9	13-2101000000000000000000000000000000000	X 6 0 0 0
	1-2 -1 0 0 -1 1 0 0 10	3 = 123-02

Soluzione: problema illimitato.

x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	Z	\overline{b}
1	-2	-1	0	0	0	-1	0
3	1	-4	1	0	0	0	4
1	-1	-1	0	0	1	0	10
1	-2	6	0	0	1	0	9

Entra -> Tra
$$x_2$$
 e x_3 scelgo x_2 (Bland)
Esce $\Rightarrow argmin\left\{\frac{4}{1},\frac{10}{-1},\frac{9}{-2}\right\} = x_4$

Passaggi di pivoting \Rightarrow $R_0'=R_0+2R_1$, $R_1'=R_1$, $R_2'=R_2+R_1$, $R_3=R_3+2R_1$

x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	Z	\overline{b}
7	0	-9	2	0	0	-1	8
3	1	-4	1	0	0	0	4
4	0	-5	1	1	0	0	14
7	0	-2	2	0	1	0	17

F.C.? Sì

Ammissibile? Sì

Ottima? Non so

Illimitata? Sì → Colore azzurro per indicare la colonna dell'illimitato

Soluzione: problema illimitato.

Soluzione: $x^* = (22/3, 4/3) z^* = 26/3$.

$$\begin{cases} x_1 + 2x_2 + (S_1) &= 10 \\ 2x_1 + x_2 &+ (S_2) &= 16 \\ -x_1 + x_2 &+ (S_3) &= 3 \end{cases}$$

Step №1

X	1	x ₂	S ₁	S ₂	S ₃	const.	Θ
1		2	1	0	0	10	10 : 1 = 10
2		1	0	1	0	16	16 : 2 = <u>8</u>
-1	1	1	0	0	1	3	

F.C. -> Si Ammissibile -> Si Ottima -> Non so Illimitata -> Non so

Entra -> Tra x_1 e x_2 -> x_1 (Bland) Esce -> $\arg\min\{\frac{10}{1}, \frac{16}{2}, \frac{3}{-1}\}$ -> x_4

0	3/2	1	-1/2	0	2
1	1/2	0	1/2	0	8
0	3/2	0	1/2	1	11
0	1/2	0	-1/2	0	F - 8

F.C. -> Si

Ammissibile -> Si

Ottima -> Non so

Illimitata -> Non so

Entra -> x_2

Esce -> $\arg\min\{\frac{2}{\frac{3}{2}}, \frac{8}{1/2}, \frac{11}{3/2}\}$ -> x_3

0	1	2/3	-1/3	0	4/3
1	0	-1/3	2/3	0	22/3
0	0	-1	1	1	9
0	0	-1/3	-1/3	0	F - 26/3

$$x_2 = \frac{4}{3}$$
, $x_1 = \frac{22}{3}$, $z = \frac{26}{3}$ (vincoli laschi)

5) Risolvere il seguente problema di programmazione lineare partendo dalla base $B = \{x_4, x_5\}.$

Soluzione: $x^* = (1, 1, 0, 0, 0) z^* = 2$.

Does our system have a basis?

$$\begin{cases} 2x_1 + 4x_2 + x_3 + x_4 & = 6 \\ 2x_1 + x_2 + 2x_3 & + x_5 & = 3 \end{cases}$$

Step №1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 3
	= 3
2 1 2 0 1 3 3:2=	
	<u>1,5</u>
<u>-6</u> -4 -4 0 0 F - 12	
2 4 1 1 0 6	
1 1/2 1 0 1/2 3/2	
-6 -4 -4 0 0 F - 12	
0 3 -1 1 -1 3	
1 1/2 1 0 1/2 3/2	
0 -1 2 0 3 F-3	

х ₁	x ₂	х3	x ₄	x ₅	const.	Θ
0	3	-1	1	-1	3	3 : 3 = <u>1</u>
1	1/2	1	0	1/2	3/2	3/2 : 1/2 = 3
0	<u>-1</u>	2	0	3	F - 3	
0	1	-1/3	1/3	-1/3	1	
1	1/2	1	0	1/2	3/2	_
0	-1	2	0	3	F - 3	
0	1	-1/3	1/3	-1/3	1	
1	0	7/6	-1/6	2/3	1	_
0	0	5/3	1/3	8/3	F - 2	

Result:

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 0$ $x_4 = 0$ $x_5 = 0$
 $F_{min} = 2$

6) Risolvere il seguente problema di programmazione lineare partendo dalla base $B = \{x_4, x_5, x_6\}.$

Soluzione: $x^* = (1, 0, 0, 2, 0, 0) z^* = 3$.

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 & = 3 \\ 2x_1 - x_2 - 5x_3 & + x_5 & = 2 \\ x_1 + 2x_2 - x_3 & + x_6 = 1 \end{cases}$$

Step №1

X-	1	x ₂	х3	x_4	x ₅	x ₆	const.	Θ
1		2	3	1	0	0	3	3:1=3
(2		-1	-5	0	1	0	2	2 : 2 = <u>1</u>
1		2	-1	0	0	1	1	1:1=1
<u>-3</u>	3	-1	4	0	0	0	F - 6	
1		2	3	1	0	0	3	
1		-1/2	-5/2	0	1/2	0	1	
1		2	-1	0	0	1	1	
-3	3	-1	4	0	0	0	F - 6	
0	ı	5/2	11/2	1	-1/2	0	2	
(1		-1/2	-5/2	0	1/2	0	1	
0		5/2	3/2	0	-1/2	1	0	_
0)	-5/2	-7/2	0	3/2	0	F - 3	

Step №2

x ₁	x_2	х3	x_4	x ₅	x ₆	const.	Θ
0	5/2	11/2	1	-1/2	0	2	2 : 11/2 ≈ 0,364
1	-1/2	-5/2	0	1/2	0	1	
0	5/2	3/2	0	-1/2	1	0	0 : 3/2 = <u>0</u>
0	-5/2	<u>-7/2</u>	0	3/2	0	F - 3	
0	5/2	11/2	1	-1/2	0	2	
1	-1/2	-5/2	0	1/2	0	1	
0	5/3	1	0	-1/3	2/3	0	
0	-5/2	-7/2	0	3/2	0	F - 3	
0	-20/3	0	1	4/3	-11/3	2	
1	11/3	0	0	-1/3	5/3	1	
0	5/3	1	0	-1/3	2/3	0	_
0	10/3	0	0	1/3	7/3	F - 3	

Result

$$x_1 = 1$$
 $x_2 = 0$ $x_3 = 0$ $x_4 = 2$ $x_5 = 0$ $x_6 = 0$ $F_{min} = 3$

Tutorato 21/22

2. Si consideri il seguente problema di programmazione lineare:

max
$$x_2 - 4x_3$$

s.t. $x_1 - 2x_2 + x_3 \le 2$
 $x_1 - x_2 + 2x_3 \ge -2$
 $-2x_1 + x_2 - x_3 \le 0$
 $x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \le 0$

- a) lo si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland;
- b) possiamo dedurre qualche informazione sul corrispendente problema duale direttamente a partire dal risultato del punto precedente? in base a quale teorema?

Punto (a)

Punto (b)

In base al fatto che il problema primale è illimitato, il problema duale è inammissibile (teorema della dualità debole).

x_{1}	x ₂	x_3	x_4	X_5	x_6	x_7	Z	luigi degiovanni	i@ un i
0	-1	0	-31	0	- 2	0	-1	-7	
0	10	0	400	0	0	1	0	100	
1	- 33	0	15	- 2	1	0	0	330	
0	32	1	1	5	-1	0	0	320	

Senza operazioni di pivot e fornendo giustificazione teorica delle risposte:

- a) si può individuare una soluzione di base corrispondente? qual è? è ottima?
- b) su quali elementi sarebbe possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- c) considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland?
- d) Qual è il valore della funzione obiettivo dopo il cambio base del punto c)?
- e) La soluzione di base ottenuta in seguito al cambio base del punto c) è degenere oppure no?

a) $B = \{x_7, x_1, x_3\}$ e al momento non so se sia ottima; in teoria, però, dato che c'è un costo ridotto negativo e una soluzione corrente non degenere, si migliorerà sicuramente nel corso delle iterazioni, ma al momento non è ottima.

b) x_2 **x**₆ X_{Δ} Ó -1 (0) -31 0 **-** 2 Ó 10 400 0 0 0 0 1 1 - 33 0 0 15 **-**2 1 × 1 0 32 1 5 - 1

Senza operazioni di pivot e fornendo giustificazione teorica

- a) si può individuare una soluzione di base corrispondente?
- b) su quali elementi sarebbe possibile effettuare il pivot secc simplesso (indipendentemente dalle regole anticiclo)?

c)

5. Si consideri il seguente

Senza operazioni di pi

- a) si può individuare u
- b) su quali elementi sa simplesso (indipend
- c) considerando le var base secondo le reg

d) 2h = 2V + CG = 7 - (.10 = -3)

e) Sarà degenere perché c'è più di una variabile con rapporto minimo

• (*2) Si risolva il seguente problema di programmazione lineare con il metodo del simplesso, a partire dalla base relativa alle variabili x_1 , x_2 , x_3 e applicando la regola di Bland:

max
$$x_1 + 5x_2$$

s.t. $x_1 \le 5$
 $x_1 + x_2 \ge 1$
 $x_2 + 2x_3 = -2$
 $x_1 \ge 0$ $x_2 \le 0$ $x_3 \ge 0$

Domande varie:

- Come si riconoscono sul tableau del simplesso le condizioni di illimitatezza per un problema di minimo? Giustificare la risposta.
 - Le condizioni di illimitatezza sono date dall'avere un'intera colonna che posto un costo ridotto positivo costituita di soli coefficienti negativi
- Si enunci e si giustifichi la regola adottata dal metodo del simplesso per la selezione della variabile uscente nelle operazioni di cambio base.
 - Per la selezione della variabile uscente, normalmente all'interno della matrice aumentata su cui eseguiamo le operazioni (nel nostro caso, il tableau del simplesso) si sceglie come riga la variabile che entra e si esegue il rapporto minimo tra ogni coefficiente \overline{b}_i e tutti i coefficienti a_i
- Si discuta la complessità computazionale dell'algoritmo del simplesso.
 - Essendo un algoritmo iterativo che cambia base e vertice quando la base è degenere, tende a convergere in $O\binom{n}{m}$; quando si ha a che fare con basi degeneri, non vi è nessuna garanzia di convergenza. Grazie anche alla regola di Bland, la complessità si assesta numericamente a quanto descritto, diventando tuttavia più efficiente, ottenendo complessità media lineare/sublineare in casi più fortunati.
- Enunciare e giustificare le condizioni di ottimalità nel metodo del simplesso
 - Oll problema di PL deve essere in forma standard, quindi con funzione di minimo e una base ammissibile di partenza, cioè con $\overline{b_i}$ tutti positivi
 - Deve essere in forma canonica rispetto alla base corrente B, quindi avere le colonne anche sparse con coefficienti dalla matrice identità
 - La soluzione è ottima nel momento in cui tutti i costi ridotti delle variabili fuori base sono positivi o nulli; sarà anche tale se non vi sono colonne di costo ridotto della f.o. con tutti coefficienti negativi, in tal caso sarà illimitata
 - Fatte tutte queste premesse, viene definita ottima in quanto il valore della f.o. migliora (o, in altri casi, non peggiora)

Si consideri il seguente tableau del simplesso:

	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	b
- Z	0	1/2	0	1	0	9
x_3	0	1/2	1	2	0	0
x_5	0	0	0	-1	1	2
x_1		-1/2	0	1	0	1

Indicare, senza svolgere operazioni di pivot, 3 basi ottime (nei termini delle variabili che le compongono) del corrispondente problema di programmazione lineare.

Basi ottime:

- $[x_3, x_5, x_1] \rightarrow$ Data direttamente dal problema

Sfrutto il fatto che la base è degenere (con stessa soluzione ottima, ma la base è diversa) Con la regola del rapporto minimo, individuo basi alternative

$$B_2 = [x_2 \ x_5 \ x_1]$$

$$B_3 = [x_4 \ x_5 \ x_1]$$

	x_1	x_2	<i>x</i> ₃	<i>X</i> 4	<i>X</i> 5	b
- <u>z</u>	0	-1/3	0	-1	0	9
x_3	0	1/13	1	2	0	0
x_5	0	0	0	-1	1	4/3
x_1	1	1/17	0	1	0	0

Rispondere alle seguenti domande, GIUSTIFICARE TUTTE LE RISPOSTE:

- (a) Si può individuare una soluzione di base? Quale? È ottima?
- (b) Quali sono i possibili cambi base?
- (c) Quale sarà il cambio base usando la regola di Bland e ordinando le variabili secondo le colonne?
- (d) Stabilire, SENZA EFFETTUARE LE OPERAZIONI DI PIVOT, quale sarà il valore della funzione obiettivo alla fine della prossima iterazione del simplesso usando la reola di Bland?
- (e) Alla fine della prossima iterazione sarà cambiata la base corrente: sarà cambiato anche il vertice del poliedro associato alla nuova base?
- a) La possibile soluzione di base è $B=[x_3,x_5,x_1]$, dati gli 1 della matrice identità. Inoltre, non sappiamo al momento se sia ottima, in quanto esistono due costi ridotti non positivi; al momento, non si sa per certo se possa essere illimitata
- b) I possibili cambi base sono 2: x_2 ed x_4 , in quanto hanno due coefficienti negativi
- c) Seguendo la regola di Bland, il cambio di base sarà su x_2 e si andrà a fare il rapporto minimo tra \overline{b}_l e la colonna di x_1 , selezionando l'argomento minimo
- d) Usando la regola di Bland, andiamo a selezionare x_2 ; di fatto, la funzione obiettivo non migliora, in quanto il minimo rapporto è $\theta=0$, quindi la funzione obiettivo è $-\frac{1}{3}\theta=0$
- e) Anche se cambia la base corrente, non cambia il vertice del poliedro associato alla nuova base. Infatti, i nuovi valori delle variabili in base sono $x_3=0=\theta$, $x_5=\frac{4}{3}-0\theta=\frac{4}{3}$, $x_1=0-1\theta=0$

Si passa quindi dalla soluzione di base degenere: $x_3=0$, $x_4=\frac{4}{3}$, $x_1=0$ (con x_2 , $x_5=0$ e fuori base) alla soluzione di base sempre degenere (con x_2 entrante e x_3 uscente, visto il rapporto minimo precedente e sfruttando la regola di Bland), $x_2=0$, $x_5=\frac{4}{3}$, $x_1=0$, che rappresenta lo stesso vertice del poliedro ammissibile.

	x_1	x_2	<i>x</i> ₃	χ_4	X 5	b
-z	-12	0	0	0	-147	-239
x ₃ x ₄ x ₂	75 46 13	0	1	0	-12	0
<i>X</i> 4	46	0	0	1	1	4/3
x_2	13	1	0	0	0	0

Riportare il tableau sul foglio e rispondere (NON su questo foglio) alle seguenti domande:

- (a) Cerchiare i possibili elementi pivot e dire su quale elemento si farà pivot alla prossima iterazione del simplesso usando la regola di Bland?
- (b) Stabilire, SENZA EFFETTUARE LE OPERAZIONI DI PIVOT, quale sarà il valore della funzione obiettivo alla fine della prossima iterazione del simplesso. GIUSTIFICARE LA RISPOSTA!
- (c) Alla fine della prossima iterazione sarà cambiata la base corrente: sarà cambiato anche il vertice del poliedro associato alla nuova base? GIUSTIFICARE LA RISPOSTA!

a)

	x_1	x_2	x_3	χ_4	X5	b
-z	-12	0	0	0	-147	-239
x_3	73	0	1	0	-12	0
x_4 x_2	46	0	0	1	1	4/3
x_2	(13)	1	0	0	0	0

Per Bland, sceglieremo come variabile entrante x_1 . Poi, eseguiremo il pivot, sempre per Bland, sulle variabili che hanno rapporto minimo, quindi in questo caso specifico, su 75 e 13, in quanto hanno entrambe rapporto 0. Come tale, si evidenzia in tabella questa scelta.

b)

Di fatto, si ha un'iterazione degenere, in quanto il rapporto minimo è $\theta=0$, e quindi il miglioramento atteso sarebbe dato da $x_i*\theta=-12*\theta=0$

c)

Anche se cambia la base corrente, non cambia il vertice del poliedro associato alla nuova base. Infatti, i nuovi valori delle variabili in base sono $x_3=0-75\theta=0, x_4=\frac{4}{3}-46\theta=\frac{4}{3}, x_2=0-\theta 0=0$. Passiamo quindi dalla soluzione di base degenere $x_3=0, x_4=\frac{4}{3}, x_2=0$ (con $x_2, x_5=0$ e fuori base) alla soluzione di base sempre degenere $x_3=0, x_1=0$ (variabile questa che entra in base per la regola di Bland ma degenere come notato poco fa), $x_4=\frac{4}{3}$ (con $x_2, x_5=0$ e fuori base), che rappresenta lo stesso vertice del poliedro ammissibile.

2. Si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland, il seguente problema di programmazione lineare:

max
$$x_1 - 5 x_2 + 3 x_3$$

s.t. $x_1 - 3 x_2 + 3 x_3 \le 3$
 $x_1 - 2 x_2 + 2 x_3 \le 2$
 $-x_1 + 3 x_2 - x_3 \ge -2$
 $x_1 \ge 0$ $x_2 \le 0$ $x_3 \ge 0$

					x_5				
	0	0	-4	1	$ \begin{array}{c} -7 \\ \hline -6 \\ \hline 1 \\ 2 \end{array} $	0	-1	5	
İ	0	1	2	0	-6	0	0	8	Z2
	0	0	2	- 1	1	1	0	2	Xo
ĺ	1	0	3	4	2	0	0	3	X4

Si dica, senza svolgere calcoli e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Quale? Possiamo subito dire se è ottima?
- b. perché non è consentita l'operazione di pivot sull'elemento evidenziato nel cerchio (1)?
- su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Perché la soluzione di base ottenuta in seguito a questo cambio base è sicuramente degenere?
- a) Riusciamo ad individuare una soluzione di base in quanto nelle righe dei vincoli esiste la matrice identità. La base è formata in riga dalle colonne che posseggono i valori della matrice identità, cioè $B = [x_2, x_6, x_1]$ Non possiamo dire se sia ottima, essendoci alcuni costi ridotti negativi.

Ragionamento in più:

(Nel tableau, esiste un costo ridotto negativo e quindi potrei far entrare in base un costo ridotto negativo. Per esempio, con θ che è il minimo dei rapporti: $5 + \overline{c_h}\theta < 0$.

Dato che la soluzione di base corrente non è degenere ed esiste un costo ridotto strettamente negativo, otterrò una f.o. con valore più basso e quindi sicuramente la soluzione non è ottima).

- b) La regola del rapporto minimo individua, seguendo la logica $\frac{b}{x_i}$, come elemento minimo x_1 e non x_5
- c) I pivot ammissibili sono le coppie di variabili che entrano/escono; entrano x_3 o x_5 .

$$x_3$$
 in, x_6 out x_3 in, x_1 out x_5 in, x_1 out

d) Entra? x_5 (3 < 5) Esce? x_1 (1 < 6)

Attenzione: Se ci viene data una base da cui partire nell'esercizio del simplesso, ma risulta non ammissibile, occorre dirlo e motivarlo.

X1	X2	X3	X4	X5	χ_6	X7	Z	b
- 34	0	0	231	- 98	0	0	- 1	- 3
223	0	0	223	1432	1	18	0	223
(234)					0	1	0	235
	0	1	232	9732	0	0	0	200
	- 34 223 234	- 34 0 223 0 234 1	-34 0 0 223 0 0 234 1 0	-34 0 0 231 223 0 0 223 234 1 0 234	-34 0 0 231 -98 223 0 0 223 1432 234 1 0 234 1058	-34 0 0 231 -98 0 223 0 0 223 1432 1 234 1 0 234 1058 0	-34 0 0 231 -98 0 0 223 0 0 223 1432 1 18 234 1 0 234 1058 0 1	-34 0 0 231 -98 0 0 -1 223 0 0 223 1432 1 18 0 234 1 0 234 1058 0 1 0

Si dica, senza eseguire operazioni di pivot e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Quale? Perché non è ottima?
- b. perché non è consentita l'operazione di pivot sull'elemento evidenziato nel cerchio (123)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Qual è il valore della funzione obiettivo per la nuova base?
- e. possiamo affermare, con le informazioni di questo tableau, che il problema non è illimitato?
- a. Possiamo individuare $[x_6, x_7, x_3]$ oppure $[x_6, x_2, x_3]$ (come sempre, perché abbiamo i coefficienti della matrice identità). Non è ottima perché i costi ridotti non sono tutti strettamente positivi.
- b. L'operazione di pivot va realizzato scegliendo in colonna la variabile che entra e in riga quella che esce. Per quella che entra consideriamo quella che ha indice più basso tra quelle che hanno costo negativo, quindi x_1 . Per quella che esce consideriamo il rapporto minimo $\frac{b_i}{x_1}$, quindi $\arg\min\{\frac{223}{223},\frac{235}{234},\frac{200}{200}\}$. Abbiamo come si vede due valori ad 1. Assumiamo di scegliere come base $[x_6,x_7,x_3]$ e come variabile x_6 , scelta per regola di Bland. L'elemento considerato non rispetta le caratteristiche date e descritte.
- c. Indipendentemente dalle regole anticiclo, possiamo effettuare il pivot sull'elemento $[x_1, x_6]$ oppure $[x_1, x_3]$.
- d. Considerando questo ordine delle variabili, il cambio base sarà dato dal far entrare x_1 e far uscire x_6 , quindi $[x_1, x_2, x_3]$.

Per il valore della funzione obiettivo (considerando la variabile che esce), avremo $z_{new}=-(-z)+(-34)\frac{223}{223}=3+34=37$

e. Possiamo affermare con certezza, dato che tutte le colonne sotto i costi ridotti sono positivi, che il problema non è illimitato.

x_1	<i>x</i> ₂	<i>x</i> ₃	X4	X5	X6	X7	z	b
0	0	- 14	0	- 28	0	0	-1	5
0	1	(42)	0	21	0	0	0	21
0	0	35	1	67	1	1	0	67
1	0	73	0	- 1	159	0	0	0

Si dica, senza eseguire operazioni di pivot e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Quale? Perché non è ottima?
- b. perché non è consentita l'operazione di pivot sull'elemento evidenziato nel cerchio (42)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Qual è il valore della funzione obiettivo relativo alla nuova base?
- e. supponiamo di effettuare un cambio base in cui entra in base la variabile x5: perché la soluzione di base ottenuta in seguito a questo cambio base è sicuramente degenere?
- a. Possiamo individuare $[x_2, x_4, x_1]$, $[x_2, x_6, x_1]$ oppure $[x_2, x_7, x_1]$ (come sempre, perché abbiamo i coefficienti della matrice identità). Non è ottima perché i costi ridotti non sono tutti strettamente positivi.
- b. L'operazione di pivot va realizzato scegliendo in colonna la variabile che entra e in riga quella che esce. Per quella che entra consideriamo quella che ha indice più basso tra quelle che hanno costo negativo, quindi x_3 . Per quella che esce consideriamo il rapporto minimo $\frac{b_i}{x_1}$, quindi arg $\min\{\frac{21}{42},\frac{67}{35},\frac{0}{73}\}$. Abbiamo come si vede due valori ad 1. In questo caso, scegliamo ad esempio la base $[x_2,x_4,x_1]$. In tal caso, avremo come variabile che entra x_3 e come variabile che esce x_1 , quindi si farà pivot sull'elemento $[x_3,x_1]$ e non su quello dato prima.
- c. Secondo le regole del simplesso, possiamo applicare il pivot su $[x_3, x_1]$ e basta, non esistendo altri rapporti minimi, a prescindere dalle eventuali regole anticiclo in gioco.
- e. Anche se cambia la base corrente, non cambia il vertice del poliedro associato alla nuova base. Supponendo entri x_5 , la base diventerebbe $[x_2, x_4, x_5]$. In questo modo, comunque, il rapporto minimo rimane 0, quindi esce una variabile di base con valore 0 e ne entra un'altra sempre con valore 0. In questo modo, la funzione obiettivo sicuramente non migliora, rimanendo per l'appunto degenere.
- 2. Si consideri il seguente problema di programmazione lineare:

max
$$x_1 + 2 x_2 - 5 x_3$$

s.t. $x_1 + x_2 - 2 x_3 \le 1$
 $2 x_1 + x_2 + x_3 \le 2$
 $x_1 + x_2 + 2 x_3 \ge -4$
 $x_1 \ge 0$ $x_2 \ge 0$ $x_3 \le 0$

- a) lo si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland;
- b) cosa possiamo dire, direttamente a partire dal risultato del punto precedente, sulla soluzione ottima del corrispondente problema duale? in base a quale teorema è possibile determinarlo?

 $m \times x_1 + 2x_2 - 5x_3$ 0.4. $\lambda_1 + \lambda_2 - 2\lambda_3 \leq 1$ $2\lambda_1 + \lambda_2 - 2\lambda_3 \leq 2$ $\lambda_1 + \lambda_2 + 2\lambda_3 \geq 2$ $\lambda_1 + \lambda_2 + 2\lambda_3 \geq 4$ $2\lambda_1 + \lambda_2 - 2\lambda_2 + 5\lambda_3$ $2\lambda_1 + \lambda_2 - 2\lambda_3 + \lambda_4 = 1$ $2\lambda_1 + \lambda_2 - 2\lambda_3 + \lambda_4 = 1$ $2\lambda_1 + \lambda_2 + 2\lambda_3 + \lambda_5 = 2$ $2\lambda_$

$$\frac{-7}{3/2} \frac{4n}{3/2} \frac{4n}{3/2$$

	x_1	x_2	x_3	χ_4	<i>X</i> 5	x_6	z	b
	0	- 1	0	0	-9	0	- 1	0
Ket	0	7	0	1	42	1	0	21
X	1	8	0	0	(24)	1	0	24
K3	0	9	1	0	54	1	0	27

Si dica, senza eseguire operazioni di pivot e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Perché? Qual è? Perché non è ottima?
- b. perché la teoria del simplesso non consente l'operazione di pivot sull'elemento nel cerchio (24)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Qual è il relativo valore della funzione obiettivo?
- e. supponiamo di effettuare un cambio base in cui entra in base la variabile x_2 : perché la soluzione di base ottenuta in seguito a questo cambio base è sicuramente degenere?
- a) Il tableau è in forma canonica, individuando ad esempio x_4 , x_1 , x_3 , che valgono rispettivamente 21, 24, 27. La soluzione non è ottima avendo dei costi ridotti strettamente negativi. Vedendo inoltre dalla regola del rapporto minimo che la soluzione non è degenere, è possibile effettuare un'operazione di pivot che porterà in base una variabile a costo ridotto negativo con un valore strettamente positivo, provocando un decremento del valore della funzione obiettivo.
- b) Non è possibile effettuare pivot su quell'elemento, in quanto si avrebbe una soluzione di base non ammissibile. Per il pivot, avremo che x_1 andrà a 0 (in quanto si farà pivot u quella colonna).
- c) Noi potremmo fare il pivot su tutta la colonna di x_2 , quindi su 7, 8, 9 e su tutta la colonna di x_5 , quindi 42 e 54, essendo tutte queste a rapporto minimo
- d) Per la regola di Bland, entra x_2 in base al valore 3 ed esce x_1 . In questo modo, il costo ridotto sarà pari a -1, quindi sarà -1 * 3 = 3 e per il valore della f.o. avremo 0 (3) = -2
- e) In questo caso, avremmo tre righe corrispondenti al rapporto minimo, pertanto avremo che almeno una esce dalla base con valore 0, mentre le altre due assumeranno valore 0 rimanendo in base.

x_1	x_2	x_3	χ_4	x_5	x_6	\boldsymbol{z}	\boldsymbol{b}
0	- 1	0	0	-9	0		0
0	6	0	1	12	1	0	12
1	7	0	0	10	1	0	12 14 16
0	8	1	0	16	1	0	16

Si dica, senza eseguire operazioni di pivot e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Perché? Qual è? Perché non è ottima?
- b. perché la teoria del simplesso non consente l'operazione di pivot sull'elemento nel cerchio (10)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Qual è il relativo valore della funzione obiettivo?
- e. supponiamo di effettuare un cambio base in cui entra in base la variabile x_2 : perché la soluzione di base ottenuta in seguito a questo cambio base è sicuramente degenere?
- a) Individuiamo una soluzione in quanto il tableau è in forma canonica e avremo, per ordine di precedenza in riga, x_4, x_1, x_3 . Vedendo inoltre dalla regola del rapporto minimo che la soluzione non è degenere, è possibile effettuare un'operazione di pivot che porterà in base una variabile a costo ridotto negativo con un valore strettamente positivo, provocando un decremento del valore della funzione obiettivo.
- b) L'operazione non è consentita, in quanto quell'elemento non corrisponde al rapporto minimo, ma sarà possibile. Avremo quindi che x_1 , variabile di rapporto minimo selezionata per Bland, andrà a valore 0, mentre le altre due variabili, quindi x_4 ed x_3 a valori strettamente negativi.
- c) Per Bland, effettuiamo pivot su tutti gli elementi di rapporto minimo, quindi la colonna di x_2 , quindi 6,7,8 e tutta la colonna di x_5 escludendo 10 per il ragionamento di prima, quindi 12, 16.
- d) Il cambio di base è dato su x_2 che entra ed esce x_1 . In questo modo, avremo che il costo ridotto è dato da (-1)*2 e il valore della f.o. viene dato da 0-(2)=2
- e) In questo caso, avremmo tre righe corrispondenti al rapporto minimo, pertanto avremo che almeno una esce dalla base con valore 0, mentre le altre due assumeranno valore 0 rimanendo in base.
 - Consideriamo un problema di programmazione lineare: è possibile che più soluzioni di base rappresentino lo stesso vertice della regione ammissibile? Giustificate la risposta.
- Sì, è possibile che più soluzioni base rappresentino lo stesso vertice della regione ammissibile in un problema di programmazione lineare.

Nella programmazione lineare, la regione ammissibile è l'insieme dei punti che soddisfano tutti i vincoli del problema. Ogni vertice della regione ammissibile corrisponde a una soluzione fattibile di base, ovvero una soluzione in cui le variabili sono tutte variabili di base. Una variabile di base è una variabile associata a un unico vincolo e coinvolta nella determinazione della soluzione ottimale.

Più soluzioni di base possono rappresentare lo stesso vertice della regione ammissibile perché la soluzione ottimale di un problema di programmazione lineare non è unica. Questo perché possono esistere più insiemi di variabili di base che producono lo stesso valore obiettivo ottimale.

Ad esempio, si consideri il seguente problema di programmazione lineare:

maximize 3x + 4y

subject to

$$x + y <= 4$$

$$2x + y <= 6$$

$$x, y >= 0$$

Esistono due possibili soluzioni base che rappresentano lo stesso vertice della regione ammissibile: (x=2, y=2) e (x=0, y=4). Entrambe le soluzioni producono lo stesso valore obiettivo ottimale, pari a 14.

Pertanto, è possibile che più soluzioni base rappresentino lo stesso vertice della regione ammissibile in un problema di programmazione lineare.

6. Si consideri il seguente tableau del simplesso:

	x_1	x_2	x_3	x_4	x_5	b
-z	0	-1/3	0	-1	0	9
x_3	0	1/13	1	2	0	0
x_5	0	0	0	-1	1	4/3
x_1	1	1/17	0	1	0	0

Rispondere (NON su questo foglio) alle seguenti domande:

- a) Su quale elemento si farà pivot alla prossima iterazione del simplesso usando la regola di Bland?
- b) Stabilire, SENZA EFFETTUARE LE OPERAZIONI DI PIVOT, quale sarà il valore della funzione obiettivo alla fine della prossima iterazione del simplesso. GIUSTIFICARE LA RISPOSTA!
- c) Alla fine della prossima iterazione sarà cambiata la base corrente: sarà cambiato anche il vertice del poliedro associato alla nuova base? GIUSTIFICARE LA RISPOSTA!
- a) Secondo la regola di Bland, faremo pivot considerando:
- la variabile x_2 come variabile che entra (in quanto di costo ridotto negativo e con indice minore)
- la variabile x_1 come variabile che esce per la regola del rapporto minimo (notando che x_1 ed x_3 hanno rapporto pari a 0)
- b) Il valore della f.o. è dato dal prodotto della variabile con rapporto minimo * il costo ridotto sovrastante la sua colonna, dunque avremo $0 * \left(-\frac{1}{3}\right) = 0$ e il valore della f.o. è dato da 9 (0) = 9. Questo evidenzia che l'iterazione è degenere, dato che il costo della f.o. non migliora, ma si mantiene uguale non peggiorando.
- c) Anche se cambia la base corrente, non cambia il vertice del poliedro associato alla nuova base. Supponendo entri x_2 , la base diventerebbe $[x_3, x_5, x_2]$. In questo modo, comunque, il rapporto minimo rimane 0, quindi esce una variabile di base con valore 0 e ne entra un'altra sempre con valore 0. In questo modo, la funzione obiettivo sicuramente non migliora, rimanendo per l'appunto degenere.

Si consideri il seguente problema di programmazione lineare:

max
$$x_1 + 2 x_2 - 5 x_3$$

s.t. $x_1 + x_2 - 2 x_3 \le 1$
 $2 x_1 + x_2 + x_3 \le 2$
 $x_1 + x_2 + 2 x_3 \ge -4$
 $x_1 \ge 0$ $x_2 \ge 0$ $x_3 \le 0$

- a) lo si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland;
 b) cosa possiamo dire, direttamente a partire dal risultato del punto precedente, sulla soluzione ottima del corrispondente problema duale? in base a quale teorema è possibile determinarlo?

x_1	<i>x</i> ₂	<i>x</i> ₃	χ_4	X5	X6	X7	z	b
0	0	- 14	0	- 28	0	0	-1	5
0	1	(42)	0	21	0	0	0	21
0	0	35	1	67	1	1	0	67
1	0	73	0	- 1	159	0	0	0

Si dica, senza eseguire operazioni di pivot e fornendo una giustificazione teorica delle risposte:

- a. riusciamo a individuare una soluzione di base corrispondente? Quale? Perché non è ottima?
- b. perché non è consentita l'operazione di pivot sull'elemento evidenziato nel cerchio (42)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. considerando le variabili ordinate per indice crescente, quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Qual è il valore della funzione obiettivo relativo alla nuova base?
- e. supponiamo di effettuare un cambio base in cui entra in base la variabile x₅: perché la soluzione di base ottenuta in seguito a questo cambio base è sicuramente degenere?

2. Si risolva con il metodo del simplesso, applicando la regola anticiclo di Bland, il seguente problema di programmazione lineare:

max

2 x₁ + 3 x₂ + 3 x₃

s.t.

2 x₁ + 4 x₂ + 6 x₃ ≥ -4

- x₃ - x₃ ≥ 0

- x₁ - x₂ - 2 x₃ ≥ 0

x₁≥0 x₂≥0 x₃≤0

Secondo quale teorema della dualità il corrispondente problema duale non è ammissibile?

(Problema illimitato)

Essendo il corrispondente problema primale illimitato, il problema duale è inammissibile per definizione. Questo è dovuto al teorema dela dualità forte; volendo dimostrare che esista per assurdo una soluzione ammissibile duale, dovrebbe valere per la dualità debole, $c^Tx \geq u^Tb$ per ogni x ammissibile primale, dimostrando che z^* è limitato. Questo non accade.