11 Veröffentlichungsnummer:

0 329 012 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 89102209.7

2 Anmeldetag: 09.02.89

(a) Int. Ci.4: CO7D 471/04 , A01N 43/90 , //(C07D471/04,221:00,221:00), (C07D471/04,239:00,221:00), (C07D471/04,241:00,221:00)

Priorität: 18.02.88 DE 3804990

Veröffentlichungstag der Anmeldung: 23.08.89 Patentblatt 89/34

Benannte Vertragsstaaten:
CH DE FR GB IT LI

71 Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen(DE)

© Erfinder: Saupe, Thomas, Dr. Kiesgrabenweg 23
D-6919 Bammental(DE)
Erfinder: Klebe, Gerhard, Dr. Roemerstrasse 23
D-6900 Heidelberg(DE)
Erfinder: Schirmer, Ulrich, Dr.

D-6900 Heidelberg(DE)

Erfinder: Paul, Gerhard, Dr.

Berner Weg 34

D-6700 Ludwigshafen(DE)

Erfinder: Kober, Reiner, Dr.

Im Schlittweg 20

D-6701 Fussgoenheim(DE)

Erfinder: Wuerzer, Bruno, Dr.

Ruedigerstrasse 13

D-6701 Otterstadt(DE)

Erfinder: Berghaus, Rainer, Dr.

Dahlienstrasse 24 D-6704 Mutterstadt(DE) Erfinder: Meyer, Norbert, Dr. Dossenheimer Weg 22

D-6802 Ladenburg(DE)
Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 D-6720 Speyer(DE)

Sulfonamide.

Berghalde 79

Sulfonamide der allgemeinen Formel I

$$A-(-CH2)-SO2-N-N-W-X$$
I,

in der A, n, R¹, R², R³, W, X, Y und Z die in Beschreibung und Ansprüchen angegebene Bedeutung haben, deren Salze und N-Oxide sowie deren Verwendung als herbizide Mittel.

Sulfonamide

Die vorliegende Erfindung betrifft Sulfonamide der allgemeinen Formei I

A-(CH₂)-SO₂-N-N-W-X

in der die Substituenten und Indices folgendes Bedeutung haben:

R1 Wasserstoff, Cyano,

5

eine C_1 - C_8 -Alkylgruppe, welche durch einen der folgenden Reste substituiert sein kann: C_1 - C_2 -Alkoxy, C_1 - C_2 -Alkylthio, Aryl, Aryloxy, Arylthio, Heteroaryl, Heteroaryloxy oder Heteroarylthio, eine C_2 - C_5 -Alkenylgruppe,

15 eine C₂-C₄-Alkinylgruppe,

ein Rest COR 4 , worin R 4 C $_1$ -C $_4$ -Alkyl, C $_1$ -C $_4$ -Alkoxy, C $_1$ -C $_4$ -Alkylthio, Aryl, Aryloxy, Arylthio, Aryl-C $_1$ -C $_4$ -alkoxy, Heteroaryloxy, Heteroaryloxy, Heteroarylthio oder Heteroaryl-C $_1$ -C $_4$ -alkoxy bedeutet,

ein Rest CONR⁵R⁶, worin R⁵ und R⁶ unabhängig voneiander folgende Bedeutung haben: Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Cycloaíkyl, C₂-C₅-Alkenyl, Aryl, Heteroaryl, Aryl-C₁-C₄-alkyl, Heteroaryl-C₁-C₄-alkyl, C₁-C₄-Alkylcarbonyl oder gemeinsam eine C₂-C₆-Alkylenkette,

oder ein Rest SO_mR⁴, worin m den Wert 1 oder 2 hat und R⁴ die vorstehend gegebene Bedeutung besitzt; R², R³ unabhängig voneinander Nitro, Hydroxy, Carboxy, Mercapto, Halogen,

 C_1 - C_4 -Alkyl, welches einfach durch Hydroxy, Mercapto, Amino, Aryloxy oder Heteroaryloxy und/oder einbis dreifach durch Halogen substituiert sein kann,

25 C₃-C₅-Cycloalkyl, welches ein- bis dreifach durch Halogen, Hydroxy, Mercapto und/oder C₁-C₄-Alkyl substituiert sein kann,

C3-C6-Cycloalkoxy,

C3-C6-Cycloalkylthio,

C2-C5-Halogenalkenyl,

30 C2-C4-Halogenalkinyi,

C₁-C₄-Alkoxy, welches ein- bis dreifach durch Halogen und/oder einfach durch Aryl oder Heteroaryl substituiert sein kann,

C₁-C₄-Alkylthio, welches ein- bis dreifach durch Halogen und/oder einfach durch Aryl oder Heteroaryl substituiert sein kann,

35 C2-C5-Alkenyloxy,

C2-C4-Alkinyloxy,

ein Rest -NR⁵R⁶ worin R⁵ und R⁶ die vorstehend gegebene Bedeutung besitzen oder eine der unter R¹ genannten Gruppen,

W, X, Y, Z unabhängig voneinander Stickstoff oder

40 eine Gruppe

C-R7

45

worin R7 Hydrazino oder eine der unter R2 genannten Gruppen bedeutet,

wobei X, Y, Z und W nicht gleichzeitig Stickstoff bedeuten,

n den Wert 0 oder 1 und

A eine Aryl- oder Heteroarylgruppe, wobei diese Gruppen ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen können:

-SO₂R⁸, worin R⁸ Hydroxy, C₁-C₄-Alkoxy, Aryl-C₁-C₄-alkoxy, Aryloxy, Heteroaryloxy, Heteroaryl-C₁-C₄-alkoxy oder -NR⁵R⁶ bedeutet, wobei R⁵ und R⁶ die vorstehend gegebene Bedeutung besitzen und/oder die unter R² genannten Gruppen

sowie deren Salze und N-Oxide, ausgenommen die Verbindungen der Formel I, in der A die Bedeutung 4-

Aminophenyl hat, n=0 ist, R¹, R² und R³ die Bedeutung Wasserstoff, W die Bedeutung Stickstoff, X, Y und Z die Bedeutung Kohlenstoff hat und R⁴ an X und Z Methyl und im übrigen Wasserstoff ist, sowie deren 4-Aminophenyl-Umsetzungsprodukte.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung dieser Verbindungen sowie ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses und ihre Verwendung zur Beeinflussung des Pflanzenwachstums.

In der EP-A-7 687 und später erschienenen Druckschriften werden Sulfonylharnstoffe beschrieben, die eine herbizide Wirkung haben können. Sie befriedigen jedoch nicht alle Anforderungen, z.B. nach Selektivität und spezifischer Wirkung.

Der Erfindung lag daher die Aufgabe zugrunde, Substanzen mit befriedigenden Eigenschaften zu finden und zu synthetisieren.

Entsprechend dieser Aufgabe wurden die eingangs definierten Sulfonamide I gefunden, die eine vielseitige Wirkung als Herbizide und Wachstumsregulatoren haben. Die Erfindung umfaßt auch einfache Umsetzungsprodukte dieser Sulfonamide wie Salze oder N-Oxide.

Zur Erfindung gehören auch Verfahren zur Herstellung dieser Verbindungen (I), Herbizide und Mittel zur Beeinflussung des Pflanzenwachstums, die die neuen Verbindungen als Wirkstoffe enthalten, sowie ein Verfahren zur Beeinflussung und Bekämpfung von Pflanzenwuchs mit diesen Verbindungen.

Die Synthese von Verbindungen der allgemeinen Formel I kann in konvergenter Weise, entsprechend dem Schema 1 durchgeführt werden, indem man ein heterocyclisches Amin der Formel II, in der W, X, Y, Z, R¹, R², R³ die oben genannte Bedeutung haben, mit ungefähr stöchimetrischen Mengen eines Sulfochlorids der Formel III, in der A und n die oben genannte Bedeutung haben, unter basischen Bedingungen gegebenenfalls in einem organischen Lösungsmittel bei einer für organische Reaktionen üblichen Temperatur umsetzt.

Schema 1

10

15

25

Zweckmäßigerweise verwendet man für die dem Schema 1 entsprechenden Umsetzungen übliche Lösungs- oder Verdünnungsmittel. Als solche Lösungsmittel können Halogenkohlenwasserstoffe, insbesondere Chlorkohlenwasserstoffe dienen; z.B. sind Tetrachlorethan, Methylenchlorid, Chloroform, Dichlorethan, Chlorbenzol geeignet. Ether, z.B. Diethylether, Tetrahydrofuran, Dioxan; dipolare aprotische Lösungsmittel, insbesondere Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon; Aromaten, z.B. Benzol, Toluol, Pyridin, Chinolin; Ketone, z.B. Aceton, Methylethylketon; Alkohole, z.B. Methanol, iso-Propanol, t-Butanol, und entsprechende Gemische können ebenfalls verwendet werden.

Die dem Schema 1 entsprechenden Umsetzungen können bei Temperaturen von Raumtemperatur bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Als katalytisch wirksame Basen können für die dem Schema 1 entsprechenden Umsetzungen aromatische Stickstoffbasen, wie z.B. Pyridin, 4-Dimethylaminopyridin oder Chinolin, tertiäre aliphatische Amine, wie z.B. Triethylamin oder N-Methylmorpholin, bi- und tricyclische Amine, wie z.B. Diazabicycloundecen (DBU) oder Diazabicyclooctan (DABCO) sowie die Hydroxide, Hydride, Alkoxide, Carbonate und Hydrogencarbonate der Alkali- und Erdalkalimetalle, insbesondere NaOH, KOH, NaH, KH, CaH₂, LiH, NaOMe, NaOEt, KOtBu, Na₂CO₃, K₂CO₃, NaHCO₃, KHCO₃ verwendet werden. Mitunter ist es auch nützlich, Kombinationen der oben angeführten Basen zu verwenden.

Die molaren Verhältnisse, in denen die benötigten Ausgangsverbindungen im Sinne des Reaktionsschemas 1 miteinander umgesetzt werden, betragen im allgemeinen 1:1 bis 1:3 für das Verhältnis von heterocyclischen Amin II zu Sulfonylchlorid III und 1:1 bis 1:5 für das Verhältnis von heterocyclischen Amin II zu katalytisch wirksamer Base. Die Sulfonylchloride III sowie die reaktionsbeschleunigend wirkenden Basen können aber auch jeweils in weniger als stöchiometrischer Menge eingesetzt werden.

Die Reaktionskonzentration für die dem Schema 1 entsprechenden Umsetzungen liegt im allgemeinen im Bereich von 0,1 bis 5 molar, bevorzugt im Bereich von 0,2 bis 2 molar.

Im bestimmten Fällen kann die Verwendung von Pyridin als Lösungsmittel für die dem Schema 1

entsprechenden Umsetzungen besonders nützlich und bequem sein, da Pyridin sowohl als Lösungsmittel als auch als reaktionsbeschleunigend wirkende Base fungieren kann.

Die Sulfochloride der allgemeinen Formel III, die für die dem Schema 1 entsprechenden Umsetzungen benötigt werden, sind in vielen Fällen handelsüblich. Neue Sulfochloride der Formel III lassen sich im allgemeinen nach bekannten Methoden herstellen. Zu solchen allgemein bekannten Methoden zur Herstellung von Sulfochloriden gehören die Sulfochlorierung von geeignet substituierten Aromaten, wie dies z.B. von H.T. Clarke et al. in Org. Synth. Coll. Vol. I. 2. Aufl., 1941, auf S. 85 ff beschrieben wird, die Diazotierung von geeignet substituierten Anilinen oder heterocyclischen Aminen und nachfolgender Reaktion des resultierenden Diazoniumsalzes mit SO₂ in Gegenwart von Kupfer(II)chlorid, wie dies z.B. von R.V. Hoffmann in Org. Synth., Vol. 60 auf Seite 121 ff beschrieben wird, oder auch die Behandlung von aromatischen Alkylthio- bzw. Benzylthiogruppen mit Cl₂ in wäßrig-saurem Medium.

Die heterocyclischen Amine der allgemeinen Formel II, die für die dem Schema 1 entsprechenden Umsetzungen benötigt werden, können nach bekannten Methoden hergestellt werden, wie sie z.B. von P.-A. Lowe in Comprehensive Heterocyclic Chem. (The Structure, Reactions, Synthesis and Uses of Heterocyclic Compounds), Vol. 2, 1st ed. (1984), Kap. 2.11, von E. Lunt und C.G. Newton in Comprehensive Heterocyclic Chem., Vol. 3, 1st ed. (1984), Kap. 2.15 und von G.W.H. Cheeseman und R.F. Cookson in The Chemistry of Heterocyclic Compounds, Vol. 35, 1979, Kap. XXVIII angegeben sind.

Heterocyclische Amine der allgemeinen Formel II, die nach bekannten Methoden der oben angeführten und dort zitierten Quellen hergestellt werden können und deren heterocyclisches Gerüst z.B. durch eine oder mehrere OH-Gruppen substituiert ist (nachstehend als IIa bezeichnet), können weitere, dem Schema 2 entsprechende Umsetzungen eingehen und so in neue heterocyclische Amine der Formel IIb überführt werden. Z.B. lassen sich solche heteroaromatischen OH-Gruppen mit POCl₃ gegen CI austauschen; diese Reaktion wird im allgemeinen in reinem POCl₃ bei Rückflußtemperatur durchgeführt. Das so in Verbindungen der Formel IIb eingeführte heteroaromatische CI läßt sich seinerseits gegen Nukleophile (Nu) wie Alkoholate, Thiolate, Amine, Amide, Grignard-Verbindungen etc. austauschen (IIc).

Schema 2

Sulfonamide der vorliegenden Erfindung, die der allgemeinen Formel I gemäß Anspruch 1 unter Ausnahme der Bedeutung von R¹ = H entsprechen, können z.B. ausgehend von Sulfonamiden der allgemeinen Formel I gemäß Anspruch 1 mit der Bedeutung von R¹ = H hergestellt werden, indem man entsprechend dem Schema 3 eine Verbindung der Formel I, in der R¹ Wasserstoff bedeutet, mit ungefähr stöchiometrischen Mengen eines Elektrophils der Formel IV, in der R¹ nicht Wasserstoff ist, und B eine geeignete Abgangsgruppe wie z.B. Halogen, insbesondere CI, bedeutet, unter basischen Bedingungen gegebenenfalls in einem Lösungsmittel bei einer für organische Reaktionen üblichen Temperatur umsetzt.

Schema 3

30

35

40

50

$$R^{1}-B + A-(-CH_{2}-)-S-N-N-W-X$$

$$IV$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}-Z-Y$$

$$L\ddot{o}sungs-$$

$$mittel$$

$$A-(-CH_{2}-)-S-N-N-W-X$$

$$mittel$$

$$I$$

Zweckmäßigerweise verwendet man für die dem Schema 3 entsprechenden Umsetzungen unter den jeweiligen Reaktionsbedingungen inerte Lösungs- oder Verdünnungsmittel. Als solche können prinzipell die gleichen Lösungsmittel und entsprechende Gemische verwendet werden, wie sie bereits bei den dem Schema 1 entsprechenden Umsetzungen aufgeführt worden sind.

Die dem Schema 3 entsprechenden Umsetzungen können bei Temperaturen von Raumtemperatur bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Als reaktionsbeschleunigend wirkende Basen können für die dem Schema 3 entsprechenden Umsetzungen prinzipiell die gleichen Basen verwendet werden, wie sie bereits bei den dem Schema 1 entsprechenden Umsetzungen aufgeführt worden sind. Mitunter kann es auch nützlich sein, bestimmte Kombinationen dieser bereits aufgeführten Basen zu verwenden.

In bestimmten Fällen kann die Verwendung von Pyridin als Lösungsmittel für die dem Schema 3 entsprechenden Umsetzungen besonders nützlich und bequem sein, da Pyridin sowohl als Lösungsmittel als auch als reaktionsbeschleunigend wirkende Base fungieren kann.

Die molaren Verhältnisse, in denen die benötigten Ausgangsverbindungen im Sinne des Reaktionsschemas 3 miteinander umgesetzt werden, betragen im allgemeinen 1:1 bis 1:3 für das Verhältnis von Verbindung I mit der Bedeutung R¹ = H zu Elektrophil IV mit der Bedeutung R¹ ≠ H und 1:1 bis 1:5 für das Verhältnis von Verbindung I mit der Bedeutung R¹ = H zu katalytisch wirksamer Base.

Die Reaktionskonzentration für die dem Schema 3 entsprechenden Umsetzungen liegt im allgemeinen im Bereich von 0,1 bis 5 molar, bevorzugt im Bereich von 0, 2 bis 2 molar.

Als geeignete elektrophile Reagenzien der allgemeinen Formel IV, die für die dem Schema 3 entsprechenden Umsetzungen benötigt werden, kommen Alkylhalogenide, Dialkylsulfate, Arylalkylhalogenide wie z.B. Benzyl chlorid, Acylchloride, aliphatische, aromatische und araliphatische Chlorameisensäureester, Chlorameisensäureamide (Carbamoylchloride), Alkylsulfonylchloride, Arylsulfonylchloride, Aralkylsulfonylchloride sowie aliphatische, aromatische und araliphatische Chlorthioameisensäureester in Betracht. Solche elektrophilen Reagenzien sind im allgemeinen kommerziell erhältlich bzw. können in einfacher und allgemein bekannter Art und Weise aus leicht erhältlichen Vorprodukten leicht hergestellt werden.

Die für die dem Schema 3 entsprechenden Umsetzungen benötigten Sulfonamide der allgemeinen Formel I gemäß Anspruch 1 mit der Bedeutung von R¹ = H sind nach dem bereits geschilderten allgemeinen Verfahren erhältlich, das den dem Schema 1 gemäßen Umsetzungen entspricht.

N-Oxide (V) der Sulfonamide der allgemeinen Formel I können entsprechend dem Schema 4 ausgehend von den entsprechenden nicht-oxidierten Sulfonamiden hergestellt werden, indem man diese mit einem üblichen Oxidationsmittel umsetzt. Wenn W, X, Y oder Z Stickstoff ist, können natürlich auch diese N-Atome N-Oxide bilden.

Schema 4

35

45

$$A-(-CH_2-)-SO_2-N-N-W-X$$

$$I$$

$$R^3$$

$$C \times Y$$

$$C \times I$$

Zweckmäßigerweise verwendet man auch für die dem Schema 4 entsprechenden Umsetzungen unter den jeweiligen Reaktionsbedingungen inerte Lösungs- oder Verdünnungsmittel. Als solche können Wasser, Essigsäure und prinzipiell die gleichen organischen Lösungsmittel sowie entsprechende Gemische verwendet werden, wie sie bereits bei den dem Schema 1 entsprechenden Umsetzungen aufgeführt worden sind.

Die dem Schema 4 entsprechenden Umsetzungen können bei Temperaturen von Raumtemperatur bis zur Rückflußtemperatur des jeweiligen Lösungsmittels bzw. -gemisches durchgeführt werden.

Im allgemeinen wird die dem Schema 4 entsprechende Ausgangsverbindung der allgemeinen Formel I gemäß Anspruch 1 mit einem bis fünf Äquivalenten an Oxidationsmittel Ox umgesetzt.

Die Reaktionskonzentration für die dem Schema 4 entsprechenden Umsetzungen liegt im allgemeinen im Bereich von 0,1 bis 5 molar, bevorzugt im Bereich von 0,2 bis 2 molar.

Als Oxidationsmittel Ox können für die dem Schema 4 entsprechenden Umsetzungen H_2O_2 , organische Peroxysäuren wie z.B. Peressigsäure, Perbenzoesäure und substituierte Perbenzoesäuren, organische Peroxide wie z.B. tert.-Butylhydroperoxid und anorganische Peroxide wie z.B. NaWO $_4$ eingesetzt werden. Solche Oxidationsmittel Ox sind im allgemeinen handelsüblich.

Im Hinblick auf die bestimmungsgemäße Verwendung der Verbindungen I kommen als Initiatoren bevorzugt folgende Reste in Betracht:

R1 Wasserstoff, Cyano

C₁-C₈-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert.-Butyl, geradkettiges oder verzweigtkettiges C₅- bis C₈-Alkyl, insbesondere Methyl, Ethyl, Propyl und iso-Propyl, wobei diese Gruppe durch einen der folgenden Reste substituiert sein kann:

Alkoxy wie Methoxy und Ethoxy, Alkylthio wie Methylthio und Ethylthio, Aryl- bzw. Heteroaryl wie Phenyl, Naphthyl, sechsgliedrige Heterocyclen mit einem oder mehreren Heteroatomen wie Pyridyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, 1.3.5-Triazinyl, 1.2.4-Triazinyl, 1.2.3-Triazinyl, Tetrazinyl, fünfgliedrige Heterocyclen mit einem oder mehreren Heteroatomen wie Pyrryl, Furyl, Thienyl, Pyrazolyl, Imidazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Isothiazolyl, 1.2.3-Triazolyl, 1.2.4-Triazolyl, Tetrazolyl, Thiadlazolyl, annellierte und benzokondensierte Heteroaromaten, wie Indolyl, Isoindolyl, Thionaphthyl, Chinolyl, Isochinolyl, Cinnolyl, Phthalazinyl, Chinazolyl, Chinoxalyl, Indazolyl, Naphthyridinyl, Benzthiazolyl, Benzofuryl, Benzoxazolyl und Benztriazolyl, oder einen entsprechenden Aryloxy- oder -thiorest bzw. Hetaryloxy- oder -thiorest,

¹⁵ C₂-C₅-Alkenyl, insbesondere Vinyl, Allyl, 1-Propenyl und Butenyl, C₂-C₄-Alkinyl, insbesondere Ethinyl, Propinyl und Butinyl, ein Rest -COR⁴ wobei

R⁴ C₁-C₄-Alkyl wie oben genannt, insbesondere Methyl, Ethyl und iso-Propyl,

C₁-C₄-Alkoxy, insbesondere Methoxy, Ethoxy, Propoxy und Butoxy, welches durch einen der vorstehend genannten Aryl- oder Heteroarylreste substituiert sein kann, C₁-C₄-Alkylthio, insbesondere Methylthio, Ethylthio, Propylthio und Butylthio oder Aryl, Heteroaryl, Aryloxy, Heteroaryloxy, Arylthio und Heteroarylthio wie vorstehend genannt

bedeutet.

ein Rest -CONR⁵R⁶ wobei

R⁵, R⁶ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl wie unter R⁴ genannt, welches durch einen der vorstehend genannten Aryl- oder Heteroarylreste substituiert sein kann,

C₃-C₆-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl,

C₂-C₅-Alkenyl, Aryl und Heteroaryl wie vorstehend genannt, C₁-C₄-Alkylcarbonyl wie Methylcarbonyl, Ethylcarbonyl, Propylcarbonyl, iso-Propylcarbonyl, Butylcarbonyl, iso-Butylcarbonyl, sek.-Butylcarbonyl und tert.-Butylcarbonyl, insbesondere Methylcarbonyl, Ethylcarbonyl und Propylcarbonyl,

30 oder gemeinsam eine C2-C6-Alkylenkette wie Ethylen, Propylen, Butylen, Pentylen und Hexylen,

bedeutet, oder

ein Rest -SO_mR4 worin

m den Wert 1 oder 2 hat und

R4 die vorstehend gegebene Bedeutung besitzt,

R², R³ unabhängig voneinander Nitro, Hydroxy, Carboxy, Mercapto, Halogen, insbesondere Fluor, Chlor und Brom,

 C_1 - C_4 -Akyl wie unter R^1 genannt, insbesondere Methyl, Ethyl und iso-Propyl, welches ein- bis dreifach durch Halogenatome wie Fluor und Chlor und/oder einfach durch Hydroxy, Mercapto, Amino, Aryloxy oder Heteroaryloxy wie vorstehend genannt substituiert sein kann, C_3 - C_6 -Cycloalkyl wie unter R^5 genannt, welches ein- bis dreifach durch Halogen wie Fluor und Chlor, Hydroxy, Mercapto und/oder die oben

genannten C_1 - C_4 -Alkylgruppen substituiert sein kann,

 C_3 - C_5 -Cycloalkoxy, insbesondere Cyclopropyloxy, Cyclopentyloxy und Cyclohexyloxy bzw. die entsprechenden Cycloalkylthioreste, C_2 - C_5 -Halogenalkenyl, insbesondere durch Fluor oder Chlor, ein- bis dreifach substituiertes Allyl, But-2-enyl und But-3-enyl,

C₂-C₄-Halogenalkinyl, insbesondere durch Fluor oder Chlor, ein- bis dreifach substituiertes Prop-2-inyl, But-2-inyl und But-3-inyl,

 C_1 - C_4 -Alkoxy wie unter R^4 genannt, insbesondere Methoxy, Ethoxy und iso-Propyloxy, wobei dieser Rest ein- bis dreifach durch Halogen wie Fluor und Chlor und/oder einfach durch Aryl oder Heteroaryl wie unter R^1 genannt substituiert sein kann,

50 C₂-C₅-Alkenyloxy, insbesondere Allyloxy, But-2-enyloxy und But-3-enyloxy,

C2-C4-Alkinyloxy, insbesondere Prop-2-inyloxy, But-2-inyloxy und But-3-inyloxy,

ein Rest -NR 5 R 6 worin R 5 und R 6 die vorstehend gegebene Bedeutung besitzen oder eine der unter R 1 genannten Gruppen,

W, X, Y und Z unabhängig voneinander Stickstoff oder eine Gruppe

5 worin

R⁷ Hydrazino oder eine der unter R² genannten Gruppen bedeutet, wobei W, X, Y und Z nicht gleichzeitig Stickstoff bedeuten,

n den Wert 0 oder 1 und

A eine der unter R¹ genannten Aryl- bzw. Heteroarylgruppen, wobei diese Gruppen ein bis fünf Halogenatome wie Fluor, Chlor und Brom und/oder ein bis drei der folgenden Substituenten tragen können:

- SO₂R⁸, woring

R⁸ Hydroxy, C₁-C₄-Alkoxy wie unter R⁴ genannt, welches durch einen der vorstehend genannten Aryl- oder Heteroarylreste substituiert sein kann, ein Aryloxy- oder Heteroaryloxyrest wie vorstehend genannt oder eine Gruppe -NR⁵R⁶ worin R⁵ und R⁶ die vorstehend gegebene Bedeutung besitzen,

bedeutet, oder

die unter R2 genannten Gruppen.

Ausgenommen sind die Verbindungen der Formel I, in der A die Bedeutung 4-Aminophenyl hat, n=0 ist, R^1 , R^2 und R^3 die Bedeutung Wasserstoff, W die Bedeutung Stickstoff, X, Y und Z die Bedeutung Kohlenstoff hat und R^4 an X und Z Methyl und im übrigen Wasserstoff ist, sowie deren 4-Aminophenyl-Umsetzungsprodukte.

Besonders bevorzugte Verbindungen sind Sulfonamide der allgemeinen Formei la

25

45

50

in der die Substituenten und Indices folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₄-Alkylcarbonylgruppe, welche im Alkylteil ein bis drei der folgenden Reste tragen kann: Halogenatome, C₁-C₄-Alkoxygruppen und/oder C₁-C₄-Alyklthiogruppen,

oder eine C_1 - C_4 -Alkylgruppe, welche ein bis drei der folgenden Reste tragen kann: Halogenatome, C_1 - C_4 -Alkylthiogruppen,

R² Wasserstoff, eine Cyanogruppe oder ein Halogenatom,

R3 eine C1-C4-Alkylgruppe oder ein Halogenatom,

R⁴ R⁴ und R⁴ unabhängig voneinander Wasserstoff, eine Methylgruppe, eine Trifluormethylgruppe, eine Methoxygruppe, eine Dimethylaminogruppe, eine Methylthiogruppe, ein Phenyl- oder Phenoxyrest, eine Hydrazinogruppe oder ein Halogenatom wie Fluor, Chlor und Brom,

n 0 oder 1 und

A ein Phenylrest, ein Naphthylrest, ein Thienylrest oder ein Chinolinylrest, wobei diese aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Halogen, C_1 - C_8 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_2 -Alkoxy- C_1 - C_4 -Alkoxycarbonyl,

sowie deren Salze und N-Oxide.

Des weiteren sind die Verbindungen Ib bevorzugt,

in der die Substituenten und Indices folgende Bedeutung haben:

R1 Wasserstoff oder eine Methylgruppe,

R² Wasserstoff, eine Cyanogruppe, eine Methoxycarbonylgruppe, eine Methylsulfonylgruppe, ein Phenylrest oder ein Halogenatom wie Chlor oder Brom,

R³ insbesondere Wasserstoff,

R⁴ und R⁴ die unter la hierfür gegebene Bedeutung und

A ein Phenylrest oder ein Thienylrest, wobei diese aromatischen Reste insbesondere ein oder zwei der folgenden Reste tragen können:

Halogenatom wie Fluor, Chlor und Brom, Methyl, Methoxy, Methoxycarbonyl und/oder Cyclopentyl, sowie deren Salze und N-Oxide.

Bevorzugte Verbindungen sind auch Sulfonamide der allgemeinen Formel Ic

in der A, X, Z, n und R¹ die vorstehend angegebene Bedeutung haben, sowie deren Salze und N-Oxide.

Weiterhin bevorzugte Verbindungen sind Sulfonamide der allgemeinen Formel Id

in der A, n, R¹ und R⁴, R⁴ und R⁴ die vorstehend angegebene Bedeutung haben, sowie deren Salze und N-Oxide.

Beispiele für sehr aktive Verbindungen der Formeln la, lb, lc und ld sind in den nachstehenden Tabellen I, II, III und IV aufgeführt.

3**0**

10

15

20

25

40

45

50

Tabelle I

5	-			R ²	Ia			
	A-(CH ₂) _n -SO ₂ -N-N-N-R ⁴ ''							
				" k1				
10	A	n	R1	R ²	R4	R4"		
		0	н	н	CH₃	CH ₃		
15		1	н	н	CH ₃	CH ₃		
		0	CH ₃	н	CH ₃	CH ₃		
20		1	CH ₃	н	CH₃	CH ₃		
25		0	сосн 3	н	CH ₃	СН3		
	○	1	COCH ₃	Н	CH ₃	CH ₃		
30		o	Н	Cl	CH ₃	CH ₃		
	~	1	н	Cl	CH ₃	CH ₃		
35	_	0	CH ₃	Cl	CH ₃	CH ₃		
		1	CH ₃	Cl	· CH ₃	CH3		
40		o	COCH ₃	C1	CH ₃	CH ₃		
45	_	1	COCH 3	Cl	CH ₃	CH ₃		
70		0	н	CN	CH ₃	CH ₃		
50		1	н	CN	CH ₃	CH ₃		
	<u></u>	0	CH ₃	CN	CH ₃	CH ₃		
55		1	CH ₃	CN	CH ₃	CH ₃		

	Tabelle I -	Forts.				
5	A	n	R1	R2	R4	R4''
•	<u></u>	0	COCH ₃	CN	CH ₃	CH ₃
10		1	COCH ₃	CN	CH ₃	CH ₃
		0	н	Н	CH ₃	C1
15	<u> </u>	1	н	Н	CH ₃	cı
		0	CH ₃	Н	CH ₃	cı
20	<u> </u>	1	CH ₃	Н	CH ₃	C1
25		0	COCH ₃	Н	CH ₃	C1
		1	COCH ₃	Н	CH ₃	Cl
3 0		0	н	C1	CH ₃	C1 .
	<u> </u>	1	Н	Cl	CH ₃	Cl
35		0	CH ₃	Cl	CH ₃	Cl
	<u> </u>	1	CH ₃	Cl	CH ₃	Cl
40		0	COCH ₃	Cl	CH₃	C1
45		1	COCH ₃	C1	CH ₃	Cl
70		0	н	CN	CH₃	Cl
50		1	н	CN	CH ₃	C1 .
	<u></u>	0	CH ₃	CN	CH ₃	ct
55		1	CH ₃	CN	CH ₃	Cl

	Tabelle I -	Forts.				
5	A	n	R1	R2	R4	R4"
		0	COCH ₃	CN	CH ₃	Cl
10	_	1	COCH ₃	CN	CH ₃	cı
		0	н	Н	CH ₃	CF ₃
15	<u>_</u> >	1	н	Н	CH ₃	CF ₃
	_	0	CH ₃	Н	CH ₃	CF ₃
20		1	CH ₃	н	CH ₃	CF ₃
25		0	COCH ₃	Н	CH ₃	CF ₃
		1	COCH ₃	н	CH ₃	CF ₃
30		0	н .	C1	CH ₃	CF ₃
		1	Н	Cl	CH ₃	CF ₃
35		0	CH ₃	C1	CH₃	CF ₃
	<u> </u>	1	CH ₃	C1	CH ₃	CF ₃
40		0	COCH ₃	C1	CH₃	CF ₃
45		1	COCH ₃	C1	CH ₃	CF ₃
	<u>_</u>	0	н	CN	CH ₃	CF ₃
50		1	н	CN	CH ₃	CF ₃
	_	0	CH ₃	CN	CH ₃	CF ₃
55		1	CH ₃	CN	CH ₃	CF ₃

	Tabelle I -	Forts.				
5	A	n	R1	R ²	R4	R4''
5	<u></u>	0	COCH ₃	CN	CH ₃	CF ₃
10		1	COCH ₃	CN	CH ₃	CF ₃
		0	н	н	CH ₃	OCH ₃
15		1	н	н	CH ₃	OCH ₃
		0	CH ₃	Н	CH ₃	OCH ₃
20		1	CH ₃	Н	CH ₃	OCH ₃
25		0	COCH ₃	Н	CH ₃	осн ₃
		1	COCH ₃	Н	CH ₃	OCH ₃
30		0	н	C1	CH ₃	OCH ₃
		1	н	C1	CH ₃	OCH ₃
35		ο .	CH ₃	C1 .	CH ₃	OCH ₃
		1	CH ₃	· c1	CH ₃	OCH ₃
40		0	COCH ₃	Cl	CH ₃	осн3
45	\bigcirc	1	COCH ₃	C1	CH ₃	OCH ₃
•		0	н	CN	CH ₃	OCH ₃
50		1	Н	CN	CH ₃	OCH ₃
		0	CH ₃	CN	CH ₃	OCH ₃
55		1	CH ₃	CN	CH ₃	OCH ₃

	Tabelle I -	Forts.				
5	· A	n	R1	R ²	R4	R4''
5	○	0	COCH ₃	CN	CH 3	OCH 3
10		1	COCH ₃	CN	CH ₃	OCH ₃
		0	н	н	CF ₃	CH ₃
15		1	н	н	CF ₃	CH ₃
		0	CH ₃	Н	CF ₃	CH ₃
20		1	CH ₃	Н	CF ₃	CH ₃
25		0	OCH ₃	Н .	CF ₃	CH ₃
20		1	OCH ₃	н	CF ₃	CH ₃
30	<u></u>	0	н	C1	CF ₃	CH ₃
	<u>_</u>	1	н	C1	CF ₃	CH ₃
35		0	CH ₃	cı	CF ₃	CH ₃
	<u></u>	1	CH ₃	cı	CF ₃	CH ₃
40		0	COCH ₃	сı	CF ₃	CH ₃
45		1	COCH ₃	Cl	CF ₃	CH ₃
40		0	Н	CN	CF ₃	CH ₃
50		1 .	н	CN	CF ₃	CH ₃
	_	0	CH ₃	CN	CF ₃	CH ₃
55	<u> </u>	1	CH ₃	CN	CF ₃	CH ₃

	Tabelle I -	Forts.	ı			
	. A	n	R1	R ²	R4	R4''
5	\bigcirc	0	сосн 3	CN	CF ₃	CH ₃
10		1	COCH ₃	CN	CF ₃	CH ₃
		0	н	н	CF ₃	CF ₃
15		1	н	н	CF ₃	CF ₃
	<u></u>	0	CH ₃	н	CF ₃	CF ₃
20	~	1	CH ₃	H	CF ₃	CF ₃
		0	COCH ₃	н	CF ₃	CF ₃
25		1	COCH ₃	н	CF ₃	CF ₃
3 0		o	н	C1	CF ₃	CF ₃
		1	. н	Cl	CF ₃	CF ₃
35		0	CH ₃	сı	CF ₃	CF ₃
		1	CH ₃	Cl	CF ₃	CF ₃
40	<u></u>	0	COCH 3	Cl	CF ₃	CF ₃
		1	COCH ₃	Cl	CF ₃	CF ₃
45		0	н	CN	CF ₃	CF ₃
5 0		1	н .	CN	CF ₃	CF ₃
		o	CH ₃	CN	CF ₃	CF ₃
55		1	CH ₃	CN	CF ₃	CF ₃

	Tabelle I -	Forts.			•	
5	. A	n	R1	R2	R4	R4''
	◯	0	COCH ₃	CN	CF ₃	CF ₃
10		0	сосн 3	CN	CF ₃	CF ₃
15	CO 2CH	0	Н	н	CH ₃	CH ₃
20	CO 2CH	1	н	н	СН 3	CH ₃
20	CO 2CH	0	СН₃	н .	CH ₃	CH ₃
25	CO 2CH	1	СН₃	н	СН3	CH ₃
30	CO 2CH	0	COCH ₃	н	CH ₃	CH ₃
35	CO 2CH	1 1 ₃	COCH ₃	н	CH ₃	CH ₃
40	CO 2CH	0 1 ₃	н	Cl	CH ₃	CH ₃
45	CO₂CH	1 i ₃	н	Cl	CH₃	CH ₃
50	CO 2CH	0	CH ₃	cı	CH ₃	CH ₃
Ju	CO 2CH	1	CH ₃	cı	CH ₃	CH ₃

	Tabelle I - Forts				
=	A n	RI	R 2	R4	R4"
5	CO ₂ CH ₃	COCH ₃	Cl	CH ₃	CH ₃
10	CO ₂ CH ₃	COCH3	C 1	CH ₃	CH ₃
15	CO ₂ CH ₃	н	CN	CH ₃	CH ₃
20	CO ₂ CH ₃	н	CN	CH ₃	CH 3
25	CO₂CH₃	CH ₃	CN	CH ₃	CH 3
30	CO ₂ CH ₃	CH ₃	CN	CH ₃	СН ₃
	CO ₂ CH ₃	сосн ₃	CN	CH ₃	CH ₃
35	CO ₂ CH ₃	сосн3	CN	CH ₃	CH ₃
40	Co₂cH₃	н	н	CH ₃	Cl
45	€ 1 CO 2CH 3	н	н	CH ₃	Cl
50	CO₂CH3	CH₃	н	СН ₃	Cl
55	€ то 2 сн 3 то	CH₃	н	CH₃	cı

Tabe	11e	1 -	Forts.

	A	n	R1	R2	R4	R4''
5	CO 2CH 3	0	сосн3	н	CH ₃	cı
· 10	CO ₂ CH ₃	1	сосн ₃	н	CH ₃	C1
15	CO ₂ CH ₃	0	н	C1	CH ₃	Cl
20	CO₂CH3	1	н	cı	CH ₃	Cl
25	CO ₂ CH ₃	0	CH ₃	cı	CH ₃	Cl
30	CO ₂ CH ₃	1	CH ₃	C1	CH ₃	Cl
	CO ₂ CH ₃	0	COCH ₃	C1	CH ₃	cı
35	CO₂CH;	1 3	сосн3	c1	CH ₃	c 1
40	CO₂CH;	0	н	CN	CH ₃	c 1
45	CO 2CH	1	н	CN	CH ₃	CI
50	CO ₂ CH ₃	0	CH ₃	CN	CH ₃	C1
55	CO 2CH	1	CH ₃	CN	CH ₃	C1

A	- Forts.	R1	R 2	R ⁴	R4'
CO 20	O CH ₃	COCH3	CN	CH₃	Cl
CO 2	1 CH ₃	COCH ₃	CN	CH₃	Cl
CO 2	0 CH ₃	н	н	CH ₃	CF ₃
CO 2	1 CH ₃	н	н	CH ₃	CF ₃
CO ₂	0 CH ₃	CH ₃	н	CH ₃	CF ₃
CO 2	1 CH ₃	CH ₃	н	CH₃	CF ₃
CO ₂	О СН ₃	COCH ₃	Н .	CH ₃	CF ₃
CO ₂	1 CH ₃	COCH ₃	Н	CH₃	CF ₃
CO ₂	О СН ₃	Н	Cl	CH ₃	CF ₃
CO ₂	1 CH ₃	н	Cl	CH₃	CF ₃
CO ₂	О СН ₃	CH ₃	C1	CH₃	CF ₃
CO ₂	1 CH ₃	CH ₃	C1	CH ₃	CF ₃

	Tabelle I -	- Forts.				
	· A	n	R1	R 2	R4	R4''
5	F CO ₂ CH	0	COCH ₃	ci	CH ₃	CF ₃
10	CO 2CH	1	COCH ₃	Cl	CH ₃	CF ₃
15	CO 2CH	o ¹ 3	Н	CN	CH₃	CF ₃
20	CO 2CH	1	Н	CN	CH ₃	CF ₃
. 25	CO 2CH	0 †3	СН₃	CN	CH ₃	CF ₃
30	CO 2CH	1	CH ₃	CN	CH ₃	CF ₃
35	CO 2CH	0 .	COCH ₃	CN	CH ₃	CF ₃
	CO 2CH	1 1 ₃	COCH ₃	CN .	CH ₃	CF ₃
40	CO 2CH	0	н	н	CH ₃	och₃
45	CO 2CH	1	н	н	CH ₃	OCH ₃
50	Co 2CH	0	CH ₃	н	CH ₃	OCH ₃
55	CO 2CH	1	CH ₃	н	CH ₃	OCH ₃

	- Forts		-3	_ ,	_ , , ,
Α	n	R1	R2	R ⁴	R4'
Co₂ci	0 H ₃	COCH3	н	CH ₃	осн
Co₂ci	1 H ₃	COCH ₃	н	CH ₃	осн
CO 2CI	o	н	C1	CH ₃	осн
CO ₂ CI	1	н	Cl	CH₃	осн
CO ₂ C	0	CH ₃	сı	CH ₃	осн
€ Co₂C	1 H ₃	CH ₃	Cl	CH ₃	осн
€ co₂c	О Н ₃	COCH ₃	C 1	CH ₃	осн
Co₂c	1 H ₃	COCH ₃	Cl	CH ₃	ОСН
CO 2C	0 H ₃	н	CN	CH ₃	осн
Co₂c	1	н	CN	CH ₃	осн
€ co₂c	0	CH ₃	CN	CH ₃	осн

CH₃ CN CH₃

OCH₃

<u>A</u>	n	R1 .	R ²	R4	R4'
CC CC	- 0 0 ₂ CH ₃	COCH ₃	CN	CH ₃	осн
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	- 1 0 ₂ CH ₃	COCH ₃	CN	CH₃	осн
<u></u>	- o) ₂ CH ₃	H ·	н	CF ₃	СН₃
<u></u>	- 1 D ₂ CH ₃	н	н	CF ₃	CH ₃
CC F	- o 0 ₂ CH ₃	СНз	н	CF ₃	CH₃
C.	- 1 D ₂ CH ₃	CH ₃	н	CF ₃	CH ₃
CC CC	- 0 Э ₂ Сн ₃	COCH ₃	н	CF ₃	CH ₃
CC CC	- 1 D ₂ CH ₃	COCH ₃	н	CF ₃	CH₃
<u></u>	- О О ₂ СН ₃	Н	сı	CF ₃	CH ₃

O CH₃ C1 CF₃ CH₃

CO₂CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CF₃

CH₃

н с1

	Tabelle I -	Forts.				
	A	n	R1	R 2	R4	R4"
5	CO 2CH	0	COCH ₃	Cl	CF ₃	CH ₃
10	CO 2CH	1	COCH ₃	Cl	CF ₃	CH ₃
15	CO 2CH	0	н	CN	CF ₃	СН₃
20	CO 2CH	Ĭ 3	н	CN	CF ₃	СН3
25	CO ₂ CH	0	CH ₃	CN	CF ₃	СН₃
30	CO 2CH	1	CH ₃	CN	CF ₃	CH ₃
35	CO 2CH	O 3	COCH ₃	CN	CF ₃	CH ₃
	CO 2CH	1	COCH ₃	CN	CF ₃	CH ₃
40 _.	CO 2CH	O 3	H	н	CF ₃	CF ₃
45	CO 2CH	1	Н	н	CF ₃	CF ₃
50	СО ₂ СН	0	CH ₃	н	CF ₃	CF ₃
55	CO 2CH	1	CH ₃	н	CF ₃	CF ₃

	Tabelle I -	Forts.				
	A	n	R1	R2	R4	R4′′
5	F CO 2CH	0	COCH ₃	н	CF ₃	CF ₃
10	CO 2CH	1	COCH ₃	H .	CF ₃	CF ₃
15	CO 2CH	0	Н	C1	CF ₃	CF ₃
20	CO 2CH	1	H	c 1	CF ₃	CF ₃
25	CO 2CH	0	CH ₃	C1	CF ₃	CF ₃
30	CO 2CH	1	CH ₃	Cl	CF ₃	CF ₃
	CO 2CH	0	COCH ₃	C1	CF ₃	CF ₃
35	CO 2CH	1	сосн 3	Cl	CF ₃	CF ₃
40	CO 2CH	0	н	CN	CF ₃	CF ₃
45	F CO 2CH	1	н	CN	CF ₃	CF ₃
50	CO 2CH	0	CH ₃	CN	CF ₃	CF ₃
55	F CO 2CH	1	CH ₃	CN	CF ₃	CF ₃

	Tabelle I - Fo	orts.			
	A n	R1	R2	R4	R4''
5	CO ₂ CH ₃	сосн 3	CŃ	CF ₃	CF ₃
. 10	CO ₂ CH ₃	COCH ₃	CN	CF ₃	CF ₃
15	CO 2CH 3) Н	н	CH ₃	CH ₃
	CO ₂ CH ₃	Н	н	CH ₃	CH ₃
20	S CO 2CH 3	CH ₃	н	CH ₃	CH ₃
	CO 2CH 3	CH ₃	н	CH ₃	CH ₃
25	S CO 2CH 3	COCH ₃	н	CH ₃	CH ₃
30	CO 2CH 3	COCH ₃	Н	CH ₃	CH ₃
	CO 2CH 3) . H	Cl	CH ₃	CH ₃
35	CO 2CH 3	. H	C1	CH ₃	CH ₃
	CO 2CH 3) CH ₃	Cl	CH ₃	CH ₃
40	CO 2CH	CH ₃	Cl	CH ₃	CH ₃
45	S CO 2CH 3		Cl	' CH3	CH ₃
45	S CO 2CH 3		Cl	CH ₃	CH ₃
50	CO 2CH 3		CN	CH ₃	CH ₃
	CO 2CH		CN	CH ₃	CH ₃
55	S CO 2CH	CH ₃	CN	CH ₃	CH ₃

•	Tabelle I - Forts.				
5	A n	R1	R2	R4	R4''
	CO ₂ CH ₃	CH ₃	CN.	CH ₃	CH ₃
10	S CO ₂ CH ₃	сосн3	CN .	CH ₃	CH ₃
	CO ₂ CH ₃	сосн3	CN	CH ₃	CH ₃
15	CO ₂ CH ₃	н	н	CH ₃	C1
20	CO ₂ CH ₃	Н	н	CH ₃	C1
20	CO ₂ CH ₃	CH ₃	Н	CH ₃	C1
25	CO ₂ CH ₃	CH ₃	Н	CH ₃	C1
	CO ₂ CH ₃	COCH ₃	Н	CH ₃	Cl
30	S CO ₂ CH ₃	COCH ₃	н	CH₃	C1
	S CO 2CH3	н	Cl	CH ₃	C1
35	S CO ₂ CH ₃	н	C1	CH ₃	C1
40	CO ₂ CH ₃	CH ₃	Cl	CH ₃	Cl
	CO ₂ CH ₃	CH ₃	Cl	CH ₃	Cl
45	CO ₂ CH ₃	COCH ₃	Cl	CH ₃	C1
	CO ₂ CH ₃	COCH ₃	Cl	CH ₃	C1
50	CO ₂ CH ₃		CN	CH ₃	C1
	S CO ₂ CH ₃	Н	CN	CH ₃	Cl

	Tabelle I -	Forts.				
	A	n	R1	R ²	R4	R4''
5	co ₂ c	0 H ₃	CH ₃	CN	СН 3	CI
	co ₂ c	1 H ₃	CH ₃	CN	CH ₃	Cl
10	S CO ₂ C	0 H ₃	COCH ₃	CN	CH ₃	Cl
15	CO ₂ C		COCH ₃	CN	CH ₃	Cl
	S CO₂C	0 H ₃	н	Н	CH ₃	CF ₃
20	S CO₂C		Н	Н	CH ₃	CF ₃
	CO₂C		CH ₃	н	CH ₃	CF ₃
25	S CO₂C		CH ₃	н	CH ₃	CF ₃
30	s co 2c		COCH ₃	н	CH ₃	CF ₃
	S CO 2C		н	C1	CH ₃	CF ₃
35	S CO 2C		н	c 1	CH ₃	CF ₃
40	S CO 20	O :H 3	CH ₃	C1	CH ₃	CF ₃
	S CO 20	1 :H ₃	CH ₃	Cl	CH ₃	CF ₃
45	S CO 20		COCH ₃	Cl	CH ₃	CF ₃
	S CO 20	1 :H ₃	COCH ₃	Cl	CH ₃	CF ₃

50

55

Tabell	le I	- F	ort	S	•
--------	------	-----	-----	---	---

	labelle 1 - Forts	•			
	A n	R1	R 2	R4	R4''
5	CO 2CH 3	н	CN	CH ₃	CF ₃
	CO ₂ CH ₃	н	CN	. СН 3	CF ₃
10	CO ₂ CH ₃	CH ₃	CN	CH ₃	CF ₃
15	CO ₂ CH ₃	CH ₃	CN	CH ₃	CF ₃
	CO ₂ CH ₃	COCH ₃	CN	CH ₃	CF ₃
20	CO ₂ CH ₃	COCH ₃	CN	CH ₃	CF ₃
	CO ₂ CH ₃	н	н	CH ₃	OCH ₃
25 .	CO ₂ CH ₃	н	н	CH ₃	OCH ₃
	CO ₂ CH ₃	СНЗ	н	CH ₃	OCH ₃
30	CO ₂ CH ₃	CH ₃	н	CH ₃	OCH ₃
35	CO ₂ CH ₃	сосн 3	н	CH ₃	OCH 3
	CO ₂ CH ₃	COCH ₃	н	CH ₃	OCH ₃
40	CO ₂ CH ₃	н	cı	CH ₃	OCH ₃
	CO ₂ CH ₃	н	Cl	CH ₃	OCH ₃
45	CO ₂ CH ₃	CH ₃	Cl	CH ₃	OCH ₃
	CO ₂ CH ₃	CH ₃	C1	CH ₃	OCH ₃

	Tabelle I - Forts.				
	A n	R1	R 2	R4	R4"
5	S CO 2CH3	COCH 3	Cl	CH ₃	OCH ₃
	CO ₂ CH ₃	OCH ₃	Cl	CH ₃	OCH ₃
10	CO ₂ CH ₃	н	CN	CH ₃	осн 3
15	CO ₂ CH ₃	H	CN	CH ₃	OCH ₃
	CO 2CH3	CH ₃	CN	CH ₃	OCH ₃
20	CO ₂ CH ₃	CH ₃	CN	CH ₃	OCH ₃
	CO 2CH3	COCH ₃	CN	CH ₃	OCH 3
25	CO ₂ CH ₃	COCH ₃	CN	CH ₃	OCH ₃
	CO ₂ CH ₃	Н	Н	CF ₃	CH ₃
30	CO ₂ CH ₃	н	Н	CF ₃	CH ₃
35	S CO 2CH3	CH ₃	Н	CF ₃	CH ₃
	CO ₂ CH ₃	CH ₃	Н	CF ₃	CH ₃
40	CO ₂ CH ₃	COCH ₃	Н	CF ₃	CH ₃
	CO ₂ CH ₃	COCH ₃	н	CF ₃	CH ₃
45	CO ₂ CH ₃	н	Cl	CF ₃	CH ₃
	CO ₂ CH ₃	Н	CI	CF ₃	CH ₃

	Tabelle I - Fort	s.			
	A n	R1	R2	R4	R4′′
5	S CO ₂ CH ₃	CH ₃	C1	CF ₃	CH ₃
	CO ₂ CH ₃	CH ₃	C1	CF ₃	CH ₃
10	S CO 2CH3	COCH ₃	c1	CF ₃	CH ₃
15	S CO ₂ CH ₃	COCH ₃	C1	CF ₃	CH ₃
	S CO ₂ CH ₃	Н	CN	CF ₃	CH ₃
20	S CO ₂ CH ₃	н	CN	CF ₃	CH ₃
	CO ₂ CH ₃	СНЗ	CN	CF ₃	CH ₃
25	CO ₂ CH ₃	CH ₃	CN	CF₃	CH ₃
30 ´	CO ₂ CH ₃	COCH ₃	CN	CF ₃	CH ₃
	S CO ₂ CH ₃	. COCH ₃	CN	CF ₃	сн ₃
35	S CO 2CH ₃	H	н	CF ₃	CF ₃
	CO 2CH3	" CH₃	н	CF ₃	CF 3
40	_	CH ₃	н	CF ₃	CF ₃
45	CO 2CH3	COCH ₃	н	CF ₃	CF ₃
	CO ₂ CH ₃	COCH ₃	н	CF ₃	CF ₃

	Tabelle I - Fo	orts.			
	An	R ¹	R2	R ⁴	R4''
5	S CO 2CH 3) н	Cl	CF ₃	CF ₃
	S CO ₂ CH ₃	В	Cl	CF ₃	CF ₃
10	CO 2CH 3	CH ₃	сı	CF ₃	CF ₃
15	CO ₂ CH ₃	CH ₃	сı	CF ₃	CF ₃
	CO ₂ CH ₃	COCH ₃	Cl	CF ₃	CF ₃
20	S CO ₂ CH ₃	COCH ₃	Cl	CF ₃	CF ₃
	CO ₂ CH ₃) н	CN	CF ₃	CF ₃
25	S CO ₂ CH ₃	. H 3	CN	CF ₃	CF ₃
	CO ₂ CH ₃) CH ₃	CN	CF ₃	CF ₃
30	CO ₂ CH ₃	CH ₃	CN	CF ₃	CF ₃
35	S CO ₂ CH ₃	COCH ₃	CN	CF ₃	CF ₃
	CO ₂ CH ₃	COCH ₃	CN	CF ₃	CF ₃
40		э н	Н	CH ₃	CH ₃
			н	CH ₃	CH ₃
45) CH ₃	н	CH ₃	CH ₃
50		. CH ₃	Н	CH ₃	CH ₃

_	Tabelle I - Forts.				
5	A n	R1	R2	R4	R4"
		COCH ₃	н.	CH ₃	CH ₃
10	1	COCH ₃	н	CH ₃	CH ₃
15		н	Cl	CH ₃	CH ₃
20	1	Н	Cl	CH ₃	CH ₃
		CH ₃	° c1	СН ₃	CH ₃
25		CH ₃	C1	CH ₃	CH₃
30		COCH ₃	Cl	CH ₃	CH ₃
05	1	COCH ₃	Cl	CH ₃	CH ₃
35		н	CN	CH ₃	CH ₃
40	1	H	CN	CH ₃	CH ₃
45		CH ₃	CN	CH ₃	CH ₃
	1	CH ₃	CN	CH ₃	CH ₃
50	•	COCH ₃	CN	CH ₃	CH ₃
55	1	COCH ₃	СИ	CH ₃	CH ₃

	Tabelle I - Forts.				
5	A n	R1	R2	R4	R4''
		Н	H-	CH ₃	Cl
10	1	Н	н .	CH ₃	cı
15		CH ₃	н	CH ₃	Cl
	1	CH ₃	н	CH ₃	cı
20		COCH ₃	н	CH ₃	C1
25	1	COCH ₃	Н	СН₃	C1
30		н	cı	СН 3	C1
	1	н	cı	CH ₃	сı
35	· .	CH3	cı	CH ₃	Cl
40	1	CH ₃	c 1 .	CH ₃	C1
		COCH ₃	cı	CH ₃	C1
45		COCH ₃	Cl	CH ₃	C1
50		н	CN	CH ₃	Cl
55	1	н	CN	CH ₃	Cl

Tabe	1	le	Ι	-	F	0	r	ts	
------	---	----	---	---	---	---	---	----	--

	A n	R1	R 2	R4	R4''
5		CH ₃	CN	CH ₃	Cl
10	1	CH ₃	CN	CH ₃	C1
		COCH ₃	CN	CH ₃	Cl
15	1	сосн 3	CN	CH ₃	Cl
20	•	Н	н	CH ₃	CF ₃
	1	н	н	CH₃	CF ₃
25	•	CH ₃	н	СН3	CF _{3.}
30	1	CH₃	н	CH ₃	CF ₃
35		COCH ₃	н	CH ₃	CF ₃
	1	COCH ₃	н .	CH₃	CF ₃
40	•	Н	C1	CH ₃	CF-3
45	1	Н	cı	CH ₃	CF ₃
		CH ₃	Cl	СН₃	CF ₃
50	1	CH ₃	C1	CH ₃	CF ₃

Tabe	lle :	t - :	Forts.
------	-------	-------	--------

	A	n	R1	R 2	R ⁴	R4''
5		0	COCH ₃	Cl	CH ₃	CF ₃
7 0		1	COCH ₃	cl	CH ₃	CF ₃
		0	Н	CN	CH ₃	CF ₃
1 5		1	Н	CN	СН₃	CF ₃
20		0	CH ₃	CN	СН ₃	CF ₃
		1	CH ₃	CN	CH ₃	CF ₃
25		0,	COCH ₃	CN	CH ₃	CF ₃
30		1 .	COCH ₃	CN	СН3	CF ₃
35		0	Н	н	CH ₃	OCH ₃
		1	н	н .	CH ₃	OCH ₃
40		0	CH ₃	н	СН₃	OCH ₃
45		1	CH ₃	н	CH ₃	OCH ₃
-		0	COCH ₃	н	CH ₃	OCH ₃
50		. 1	COCH ₃	н	CH ₃	OCH ₃

_	Tabelle I - Fo	rts.			
5	<u>A</u> n		R2	R4	R4′′
		Н	C1	CH ₃	OCH ₃
10	1	н	Cl	CH ₃	OCH 3
15		CH ₃	C1	CH 3	OCH ₃
20	1	CH ₃	C1	CH ₃	OCH ₃
		COCH ₃	C1	CH ₃	OCH 3
25	1	COCH ₃	C1	CH ₃	OCH ₃
30		н	CN	CH ₃	OCH ₃
	1	н	CN	CH ₃	OCH 3
35		CH ₃	CN	CH ₃	OCH ₃
40	1	CH 3	CN	CH ₃	OCH ₃
45		сосн3	CN	CH ₃	och ₃
		сосн3	CN	СН₃	0CH ₃
50		н	н	CF ₃	CH ₃
55		Н	н	CF ₃	CH ₃

	Tabelle I - Forts.				
5	A n	R1	R 2	R4	R4''
		CH ₃	н.	CF ₃	CH ₃
10	1	CH ₃	н	CF ₃	CH ₃
15		COCH ₃	н	CF ₃	CH ₃
20		coch ₃	н	CF ₃	CH ₃
		н	Cl	CF ₃	CH ₃
25	1	н	Cl	CF ₃	CH ₃
30		CH ₃	Cl	CF ₃	CH ₃
	1	CH ₃	C1	CF ₃	CH ₃
35		COCH ₃	C1	CF ₃	CH ₃
40	1	COCH ₃	C1	CF ₃	CH ₃
45	•	Н	CN	CF ₃	CH ₃
	1	Н	CN	CF ₃	CH ₃
59		CH ₃	CN	CF ₃	CH ₃
55	.1	CH ₃	CN	CF ₃	CH ₃

	Tabelle I -	Forts.				
5.	· A	n	R1	R2	R4	R4''
		0	COCH ₃	CN	CF ₃	CH ₃
10		1	COCH ₃	CN	CF ₃	CH ₃
15		0	Н	H	CF ₃	CF ₃
20		1	. H	Н	CF ₃	CF ₃
		0	CH ₃	н	CF ₃	CF ₃
25		1	CH ₃	н	CF ₃	CF ₃
30		0	COCH ₃	н	CF ₃	CF ₃
		. 1	COCH ₃	н	CF ₃	CF ₃
35		· o '	Н	Cl	CF ₃	CF ₃
40		. 1	н	C1	CF ₃	CF ₃
45		0	CH ₃	Cl	CF ₃	CF ₃
45		- 1	CH ₃	Cl	CF ₃	CF ₃

EP 0 329 012 A2

Tabelle I - Forts.

	A	n	R1	R2	R4	R4''
5		– o	COCH ₃	C1	CF ₃	CF ₃
10		- 1	COCH ₃	C1	CF ₃	CF ₃
		- 0	Н	CN	CF ₃	CF ₃
15		- 1	Н	CN .	CF ₃	CF ₃
20		— о	CH ₃	CN	CF ₃	CF ₃
		– 1	CH ₃	CN	CF ₃	CF ₃
25		- 0	COCH ₃	CN	CF ₃	CF ₃
30		– 1	COCH ₃	CN	CF ₃	CF ₃

Tabelle II

5			A-(CH ₂)	R ² N N N N N N N N N N N N N N N N N N N	R4'' Ib	
1 0	A	n	R1	R2	R4	R4''
		0	н	н	CH ₃	CH ₃
15		1	н	н .	CH ₃	CH ₃
		0	CH ₃	н	CH ₃	CH ₃
20		1	CH ₃	Н	CH ₃	CH ₃
25		0	COCH ₃	н	СН 3	CH ₃
20		1	COCH ₃	Н	СН 3	CH ₃
30 '		0	н	C1	CH ₃	CH ₃
		1	н	C1	CH 3	CH ₃
35		0	CH ₃	Cl	CH₃	CH ₃
		1	CH ₃	c 1	CH ₃	CH 3
40		0	COCH ₃	c 1	CH ₃	CH ₃
45		1	COCH ₃	C1	CH ₃	CH ₃
40		0	н	CN	CH ₃	CH ₃
50		1	н	CN	CH ₃	СН3 .
		o	CH ₃	CN ,	СН 3	CH ₃
55		1	CH ₃	CN	CH ₃	CH ₃

	Tabelle II	- Forts	5.			
5	<u>A</u>	n	R1	R2	R 4	R4''
		0	COCH ₃	CN	CH ₃	CH ₃
10		1	COCH ₃	CN	CH ₃	CH ₃
		0	Н	н	CH ₃	Cl
15	<u> </u>	1	Н	н	CH ₃	Cl
		0	CH ₃	н	CH 3	Cl
20		1	CH ₃	н	CH ₃	Cl
or.		0	COCH ₃	н	. СН3	Cl
25		1	COCH ₃	н	CH ₃	Cl
30	<u> </u>	0	н	Cl	CH ₃	cı
	<u></u>	1	н	Cl	CH ₃	Cl
35	~	0	CH ₃	cı	CH ₃	Cl
		1	CH ₃	Cl	CH ₃	cı
40		0	сосн3	Cl	CH ₃	C1
	<u></u>	1	COCH ₃	C1	CH ₃	C1
45		o	н	CN	CH ₃	C1
50	<u></u>	1	н	CN	CH ₃	C1
	<u>_</u>	0	CH ₃	CN	CH ₃	C1
55	<u>_</u>	1	CH ₃	CN	CH ₃	C1

	Tabelle II -	- Forts.	i			
5	· A	n	R1	R2	R4	R4''
J	◯	0	COCH ₃	CN	CH ₃	Cl
10		1	соснз	CN	СН3	cı
	<u></u>	0	н	н	CH ₃	CF ₃
15	_	1	н	н	CH ₃	CF ₃
		0	CH ₃	н :	CH ₃	CF ₃
20		1	CH ₃	н	CH ₃	CF ₃
25		0	сосн3	н	CH ₃	CF ₃
		1	COCH ₃	н	CH ₃	CF ₃
30		0	н	C1	CH ₃	CF ₃
		1	н	C1	CH ₃	CF ₃
35		0	CH ₃	C1	CH ₃	CF ₃
		1	CH 3	C1	CH ₃	CF ₃
40		0	COCH3	Cl	CH ₃	CF ₃
45		1	COCH ₃	Cl	CH ₃	CF ₃
40		0	н .	CN	CH ₃	CF ₃
50		1	Н	CN	CH ₃	CF ₃
	<u>_</u>	0	CH ₃	CN .	СН₃	CF ₃
55		1	CH ₃	CN	CH ₃	CF ₃

	Tabelle II	- Forts	•			
_	A	n	R1	R 2	R4	R4''
5	<u>_</u>	0	COCH ₃	CN	CH ₃	CF ₃
70	_	1	сосн 3	CN	CH ₃	CF ₃
		0	Н	Н	CH ₃	OCH ₃
15	_ >	1	н	н	CH ₃	OCH ₃
	<u>_</u>	0	CH ₃	н .	CH ₃	OCH ₃
20		1	CH ₃	Н	CH ₃	OCH ₃
25	<u>_</u>	0	COCH ₃	н `	CH ₃	OCH ₃
25		1	соснз	Н	CH ₃	OCH ₃
30		0	н	CI	CH ₃	OCH ₃
		1	н	C1	CH ₃	OCH ₃
35	<u> </u>	ο,	CH ₃	C1	CH ₃	OCH ₃
	<u> </u>	1	CH ₃	C1	CH ₃	OCH ₃
40		0	COCH ₃	C1	CH ₃	OCH ₃
45		1	COCH ₃	Cl	CH ₃	OCH ₃
45		0	н	CN	CH ₃	OCH ₃
50	<u></u>	1	н	CN	CH ₃	OCH ₃
		0	CH ₃	CN	CH ₃	OCH ₃
55		1	CH ₃	CN	CH ₃	OCH ₃

,	Tabelle II	- Forts	.			
	Α	n	R1	R2	R4	R4"
		0	COCH ₃	CN	CH ₃	OCH ₃
	_	1	COCH ₃	CN	. снз	OCH ₃
		0	Н	Н	CF ₃	CH ₃
		1	Н	Н	CF ₃	CH ₃
		o	CH ₃	H .	CF ₃	CH ₃
		1	CH ₃	н	CF ₃	CH ₃
		0	COCH ₃	н	CF ₃	CH ₃
		1	COCH ₃	н	CF ₃	CH ₃
		0	н	CT	CF ₃	CH ₃
		1	н	C1	CF ₃	CH ₃
		0	CH ₃	C1	CF ₃	CH ₃
		1	CH ₃	Cl	CF ₃	CH ₃
	<u>_</u>	0	COCH ₃	cı	CF ₃	CH ₃
		1	COCH ₃	Cl	CF ₃	CH ₃
	<u>_</u>	0	Н	CN	CF ₃	CH ₃
		1	н	CN	CF ₃	CH ₃
		0	CH ₃	CN	CF ₃	CH ₃

CF₃

CN

CH₃

CH₃

	Tabelle II	- Forts	.			
5	Α	n	R1	R ²	R4	R4''
Ů		0	COCH ₃	CN	CF ₃ .	CH ₃
10	_	1	COCH ₃	CN	CF ₃	CH ₃
		0	Н	н	CF ₃	CF ₃
15		1	Н	н	CF ₃	CF ₃
		0	CH ₃	н	CF ₃	CF ₃
20		1	CH ₃	н	CF ₃	CF ₃
25		0	COCH ₃	H	CF ₃	CF ₃
20		1	COCH ₃	н	CF ₃	CF ₃
30		0	н	cı	CF ₃	CF ₃
	<u> </u>	1 .	н	cı	CF ₃	CF ₃
35		0	CH ₃	C1	CF ₃	CF ₃
		1	CH ₃	C1	CF ₃	CF ₃
40		0	COCH ₃	cı	CF ₃	CF ₃
4 5		1	COCH ₃	cı	CF ₃	CF ₃
70	<u> </u>	0	н	СИ	CF ₃	CF ₃
50		1	н	CN	CF ₃	CF ₃
		0	СН 3	CN	CF ₃	CF ₃
55		1	CH ₃	CN	CF ₃	CF ₃

	Tabelle II	- Forts	•			
5	А	n	R1	R2	R4	R4''
		0	COCH 3	CN	CF ₃	CF ₃
10		0	COCH 3	CN	CF ₃	CF ₃
15	CO 2CH	0	Н	Н	CH ₃	CH ₃
20	CO 2CH	1	н	н ,	CH ₃	CH ₃
	CO 2CH	0	СН ₃	Н	CH ₃	CH ₃
25	CO 2CH	1	CH ₃	н	CH₃	СН₃
3 <u>0</u>	CO 2CH	ð Ó	сосн 3	н	CH ₃	CH ₃
35	CO 2CH	1	СОСН₃	н	CH ₃	CH ₃
40	CO 2CH	0	н	C1	CH₃	CH₃
45	CO ₂ CH	1	н	Cl	CH ₃	CH₃
50	CO 2CH	0	CH ₃	C1	CH ₃	CH₃
<i>5</i> 0	CO₂CH	1	CH ₃	C1	CH ₃	СН₃
c -	-	-				

Ta	be	1	1	9 I	Ι	_	F	or	ts	
----	----	---	---	-----	---	---	---	----	----	--

	A	n	R1	R2	R4	R4"
5	F CO 2Ci	0 H ₃	сосн₃	C1	CH ₃	CH ₃
10 .	CO 2CI	1	сосн 3	C1	CH ₃	CH ₃
15	€ co₂ci	0 H ₃	н	CN .	CH ₃	CH ₃
20	CO 2CI	1 H ₃	н	CN	CH ₃	CH ₃
25	€ co₂ci	0 H ₃	CH ₃	CN	CH₃	CH₃
30	Ço₂c	1 H ₃	CH ₃	CN	CH₃	CH ₃
	Ço₂c	0 H ₃	COCH ₃	CN	CH₃	CH ₃
35	Co₂c	1 H ₃	сосн ₃	CN	СН₃	CH ₃
40	Co₂c	О Нз	н	н	CH₃	Cl
45	Ç _{co₂} c	1 H ₃	Н	н	СН₃	C1 _.
5 <i>0</i>	Ç _{co₂} c	0 H ₃	CH ₃	н	· CH ₃	c 1
55	CO 20	1	CH ₃	н	CH ₃	Cl

Tabelle II - Fo	or	٠ts.	
-----------------	----	------	--

	Tabelle II -	· Forts.				
	· A	n	R1	R2	R4	R4"
5	CO ₂ CH ₃	0	COCH ₃	Н	CH ₃	Cl
10	CO ₂ CH ₃	1	сосн3	н	CH ₃	cı
15	CO₂CH:	0	Н	c1 .	CH ₃	C1
20	CO₂CH:	1	н	Cl	CH ₃	C1
25	CO 2CH	0	СН3	C1	СН₃	Cl
30	CO 2CH	1	CH ₃	C1	СН₃	Cl
	CO 2CH	0	COCH ₃	C1	CH ₃	Cl
35	CO₂CH	1 3	сосн 3	C1	CH ₃	C1
40	CO₂CH	O 3	н	CN	CH ₃	сі
45	CO₂CH	1	н	CN	CH ₃	C1
50	CO 2CH	0	CH₃	CN	CH ₃	Cl
55	F CO 2CH	1	CH ₃	CN	CH 3	C1

TADELLE IL - FOLES	belle II	[- Forts.
--------------------	----------	------------

	A	n	R1	R2	R ⁴	R4′′
5	CO 2C	0 H ₃	сосн₃	CN	CH ₃	cı
10	CO ₂ C	1 H ₃	сосн 3	CN	CH ₃	Cl
15	€ CO 2C	0 H ₃	н	H .	CH ₃	CF ₃
20	Co₂c	1 H ₃	н	н	CH ₃	CF ₃
25	Ç _{co₂c}	0 H ₃	CH ₃	н	CH ₃	CF ₃
30	Ç _{co₂} c	1 H ₃	CH ₃	Н	CH ₃	CF ₃
	Co₂c	0 :H ₃	COCH ₃	н	CH ₃	CF ₃
35	Co₂c	1 CH ₃	COCH ₃	н	CH 3	CF ₃
40	Co 20	O CH ₃	Н	Cl	СН₃	CF ₃
45	CO 2C	1 CH ₃	н	Cl	СН₃	CF ₃
50	CO 20	O .	CH ₃	сı	CH₃	CF ₃
55	CO 20	1 CH ₃	CH₃	Cl	CH ₃	'CF ₃

Tabe 1	1e	II -	Forts.
--------	----	------	--------

	. Y	n	R1	R 2	R4	R4''
5	CO ₂ CH ₃	0	COCH ₃	cı	CH ₃	CF ₃
10	CO ₂ CH ₃	1	сосн3	Cl	CH ₃	CF ₃
15	CO ₂ CH ₃	o	н	CN .	CH ₃	CF ₃
20	CO ₂ CH ₃	1	н	CN	CH ₃	CF ₃
25	CO ₂ CH ₃	0	СН₃	CN	CH ₃	CF ₃
30	CO ₂ CH ₃	1	CH ₃	CN	CH ₃	CF ₃
	CO 2CH3	o ·	сосн3	CN	CH ₃	CF ₃
35	CO 2CH 3	1	COCH ₃	CN .	CH ₃	CF ₃
40	CO 2CH3	0	н	н	CH ₃	осн 3
45	CO 2CH3	1	Н	н -	CH ₃	OCH ₃
50	CO ₂ CH ₃	0	CH ₃	н	CH ₃	осн ₃
55	CO 2CH 3	1	CH ₃	н	CH ₃	осн ₃

Tabelle II - Forts

	A A	n	R1	R 2	R4	R4''
5	F CO ₂ CH ₃	0	соснз	н	CH ₃	осн 3
70	CO 2CH 3	1	COCH ₃	н	CH ₃	ОСН ₃
15	CO 2CH 3	0	Н	CI	CH ₃	OCH ₃
, 20	CO ₂ CH ₃	1	н	Cl	CH ₃	OCH 3
25	CO₂CH ₃	0	CH ₃	Cl	CH ₃	осн ₃
30	CO ₂ CH ₃	1	CH ₃	cı	CH ₃	OCH ₃
	CO₂CH ₃	0	COCH ₃	C1	CH ₃	OCH ₃
35	CO ₂ CH ₃	1	COCH ₃	c1	CH ₃	OCH 3
40	CO ₂ CH ₃	0	н	CN	CH ₃	OCH ₃
45	CO₂CH3	1	н	CN	CH ₃	осн ₃
50	CO 2CH 3	0	CH ₃	CN	CH ₃	осн ₃
55	CO ₂ CH ₃	1	CH ₃	СИ	CH ₃	осн ₃

	Tabelle II -	Forts.				
_	A	n	R1	R2	R4	R4''
5	CO ₂ CH ₃	0	COCH ₃	CN	CH ₃	OCH ₃
10	CO₂CH ₃	1	COCH ₃	CN	CH ₃	OCH ₃
15	CO₂CH ₃	o	н	н	CF ₃	CH ₃
20	CO₂CH ₃	1	н	н	CF ₃	CH ₃
25	CO₂CH ₃	0	CH ₃	н	CF ₃	CH ₃
30	CO ₂ CH ₃	1	CH ₃	н	CF ₃	CH ₃
	€ CO ₂ CH ₃	o .	сосн3	н	CF ₃	CH ₃
35	CO ₂ CH ₃	1	сосн3	н	CF ₃	CH ₃
40	CO ₂ CH ₃	0	Н	C1	CF ₃	CH ₃
45	CO ₂ CH ₃	1	Н	c1 ,	°CF3	CH ₃
50	€ CO ₂ CH ₃	0	СН3	cı	CF ₃	CH ₃
55	CO₂CH₃	1	CH ₃	C1	CF ₃	CH ₃

Tabelle II -	F٥	or	ts	
--------------	----	----	----	--

	A A	n	R1	R2	R4	R4''
5	CO ₂ CH ₃	0	COCH ₃	Ċl	CF ₃	CH ₃
10	CO 2CH 3	1	COCH ₃	cı	CF ₃	CH ₃
15	CO 2CH 3	0	Н	CN	CF ₃	CH ₃
20	CO 2CH 3	1	н	CN	CF ₃	CH ₃
25	CO 2CH 3	0	CH ₃	CN	CF ₃	CH ₃
22	CO₂CH3	1	CH ₃	CN	CF ₃	CH ₃
30	CO₂CH ₃	0	COCH ₃	CN	CF ₃	CH ₃
35	CO ₂ CH ₃	1	сосн ₃	CN	CF ₃	CH ₃
40	CO ₂ CH ₃	0	н	н	CF ₃	CF ₃
45	CO ₂ CH ₂		н	н	CF ₃	CF ₃
50	CO ₂ CH	0	CH ₃	н	CF ₃	CF ₃
55	CO 2CH	1	CH ₃	н	CF ₃	CF ₃

Tabelle II - Fo

	· A n	. R1	R2	R4	R4′′
5	CO ₂ CH ₃	COCH ₃	Н	CF ₃	CF ₃
10	CO ₂ CH ₃	COCH ₃	н	CF ₃	CF ₃
15	CO ₂ CH ₃	Н	Cl	CF ₃	CF ₃
20	CO ₂ CH ₃	н	Cl	CF ₃	CF ₃
25	CO ₂ CH ₃	CH₃	Cl	CF ₃	CF ₃
30	CO ₂ CH ₃	CH₃	C1	CF ₃	CF ₃
	CO ₂ CH ₃	сосн3	C1	CF ₃	CF ₃
35	CO ₂ CH ₃	COCH ₃	cı	CF ₃	CF ₃
40	CO ₂ CH ₃	н	CN	CF ₃	CF ₃
45	F 1 CO 2CH 3	Н	CN	CF ₃	CF ₃
50	CO ₂ CH ₃	_ СН3	CN	CF ₃	CF ₃
55	CO ₂ CH ₃	CH ₃	CN	CF ₃	CF ₃

7	Tabelle II -	- Forts.				
	<u> </u>	n	R1	R ²	R4	R4''
5	CO 2CH	0	соснз	CN	CF ₃	CF ₃
10	CO 2CH	1	соснз	CN	CF ₃	CF ₃
15	CO ₂ C	O CH ₃	н	н	CH ₃	CH ₃
	S CO 20	1 CH ₃	Н	н	CH ₃	CH ₃
20	CO ₂ C	O CH ₃	CH ₃	н	CH ₃	CH ₃
	S CO 20	1 CH ₃	CH ₃	н	CH ₃	CH ₃
25	CO ₂ C	0 CH ₃	COCH ₃	н	CH ₃	CH ₃
30	S CO 20	1 CH ₃	COCH ₃	Н	CH ₃	CH ₃
55	S CO 2	0 CH ₃	н	Cl	CH ₃	CH ₃
35	S CO 2	1 CH ₃	н	Cl	CH ₃	CH ₃
	S CO 2	О СН ₃	CH ₃	Cl	CH ₃	CH ₃
40	S CO 2	1 Сн ₃	CH ₃	Cl	CH ₃	CH ₃
	S CO 2	О СН ₃	COCH ₃	Cl	CH ₃	CH ₃
45	CO 2		COCH ₃	C 1	CH ₃	CH ₃
50	S CO 2		н	CN	CH ₃	CH ₃
50	CO 2		н	CN	CH ₃	CH ₃
55	S CO 2	О СН 3	CH ₃	CN	CH ₃	CH ₃

	Tabelle II - Forts	•			
5	. A n	R1	R 2	R4	R4''
	CO ₂ CH ₃	CH ₃	CN	CH ₃	CH ₃
10	CO ₂ CH ₃	COCH ₃	CN	CH ₃	CH ₃
	CO ₂ CH ₃	COCH ₃	CN	CH ₃	CH ₃
15	CO ₂ CH ₃	Н	Н	CH ₃	Cl .
20 ´	CO ₂ CH ₃	н	н	CH ₃	C1
	CO 2CH3	CH ₃	Н	CH ₃	C1
25	CO ₂ CH ₃	CH ₃	н	CH ₃	C1
	CO 2CH3	COCH ₃	н	CH ₃	cı
30	CO ₂ CH ₃	COCH ₃	Н	CH ₃	Cl
	CO 2CH3	н	Cl	CH ₃	C1
35	S CO 2CH3	Н	Cl.	CH ₃	Cl
40	CO 2CH3	CH ₃	Cl	CH ₃	Cl
	S CO ₂ CH ₃	CH ₃	C1	CH₃	c 1
45	CO 2CH3	COCH ₃	Cl	CH ₃	Cl
	CO ₂ CH ₃	COCH ₃	Cl	CH ₃	Cl
50	CO ₂ CH ₃	н	CN	CH ₃	Cl
	CO ₂ CH ₃	н	CN	CH ₃	Cl

	Tabelle II -	Forts.			
	A	n R1	R2	R4	R4′′
5	CO 2CH	O CH ₃	CN	CH ₃	Cl
	CO 2CH	1 CH ₃	CN	CH ₃	C1
10	CO 2CH	O COCH ₃	CN	CH ₃	cı
15	S CO₂CH	1 COCH ₃	CN	CH ₃	Cl
	S CO₂CH	O H	Н	CH ₃	CF ₃
20	S CO₂CH	1 н ³ 3	Н	CH ₃	CF ₃
	Us CO₂CH	O CH ₃	Н	CH ₃	CF ₃
25	CO₂CH		Н	CH ₃	CF₃
30	S CO₂CH		Н	CH₃	CF ₃
	S CO 2CH		Н	CH ₃	CF ₃
35	S CO 2CH	_	Cl	CH ₃	CF ₃
	LS CO₂CH		Cl	CH ₃	CF ₃
40	U _S U _{CO₂CH}		C1 C1	CH₃	CF ₃
45	CO ₂ CH	1 CH ₃ 0 COCH ₃		СН ₃ СН ₃	CF ₃
45	S CO 2CH			CH ₃	CF ₃
	^L S∕LCO 2CH	13	0.	oi. 3	O1 3

	Tabelle II	- Forts	5.			
	Α	n	R1	R ²	R4	R4''
5	S CO 2	0 CH 3	H	CN ·	CH ₃	CF ₃
	S CO 2	1 CH3	Н	CN	CH ₃	CF ₃
10	[s] co ₂	О СН ₃	CH ₃	CN	CH ₃	CF ₃
15	/	1 СН3	CH ₃	CN	CH ₃	CF ₃
	CO ₂	О СН ₃	COCH ₃	CN	CH ₃	CF ₃
20	CO ₂	1 CH ₃	COCH ₃	CN	CH ₃	CF ₃
	CO ₂	O CH ₃	H	н	CH ₃	OCH ₃
25	CO 2	1 CH ₃	н	Н	CH ₃	och ₃
	S CO	0 CH ₃	CH ₃	Н	CH ₃	OCH ₃
30	S CO	1 2CH 3	CH ₃	н	CH ₃	осн ₃
35	s co	0 2CH 3	COCH ₃	Н	CH ₃	OCH ₃
	S CO	1 2CH 3	COCH ₃	н	CH ₃	OCH ₃
40	S CO	0 2CH 3	н	Cl	CH ₃	OCH ₃
	Co.	I 2CH3	н	cı	CH ₃	OCH ₃
45	CO,		CH ₃	Cl	CH ₃	OCH 3
	[s] co	1 ₂ CH ₃	CH ₃	C1	CH ₃	OCH ₃

	Tabelle II - Forts				
	<u>A</u> n	R1	R2	R4	R4′′
5	CO 2CH3	COCH ₃	C.1	CH ₃	OCH ₃
	CO ₂ CH ₃	OCH ₃	cı	CH ₃	OCH ₃
10	CO 2CH3	н	CN	CH ₃	OCH ₃
15	CO ₂ CH ₃	н	CN	CH ₃	OCH ₃
	CO 2CH3	CH ₃	CN	CH ₃	OCH ₃
20	CO 2CH 3	CH₃	CN	CH ₃	OCH ₃
	CO 2CH3	COCH ₃	CN	CH ₃	OCH ₃
25	CO 2CH3	COCH ₃	CN	CH ₃	осн 3
	CO ₂ CH ₃	Н	н	CF ₃	CH ₃
30	CO ₂ CH ₃	н	н	CF ₃	CH ₃
35	CO ₂ CH ₃	CH ₃	н	CF ₃	CH ₃
	CO ₂ CH ₃	CH ₃	н	CF ₃	CH₃
40	CO ₂ CH ₃	COCH ₃	н	CF ₃	CH ₃
	CO ₂ CH ₃	COCH ₃	н	CF ₃	CH ₃
45	CO ₂ CH ₃	Н	C1	CF ₃	CH ₃
	CO ₂ CH ₃	н	C1	CF ₃	CH ₃

	Tabelle II - Forts	•			
	<u> </u>	R1	R ²	R4	R4"
5	S CO 2CH 3	CH ₃	C1	CF ₃	CH ₃
	CO ₂ CH ₃	CH ₃	C1	CF ₃	CH ₃
10	CO 2CH3	COCH ₃	c1	CF ₃	CH ₃
15	CO ₂ CH ₃	COCH ₃	Cl	CF ₃	CH ₃
	CO ₂ CH ₃	н	CN	CF ₃	CH ₃
20	CO ₂ CH ₃	Н	CN	CF ₃	CH ₃
	CO ₂ CH ₃	CH ₃	CN	CF ₃	CH ₃
25	CO ₂ CH ₃	CH ₃	CN	CF ₃	CH ₃
	CO 2CH 3	COCH 3	CN	CF ₃	CH ₃
30	CO ₂ CH ₃	COCH ₃	CN	CF ₃	CH 3
35	CO ₂ CH ₃	Н	н	CF ₃	CF ₃
	CO ₂ CH ₃	Н	н	CF ₃	CF ₃
40	CO ₂ CH ₃	CH ₃	Н	CF ₃	CF ₃
	S CO ₂ CH ₃	CH ₃	Н	CF ₃	CF ₃
45	CO 2CH 3	COCH ₃	Н	CF ₃	CF ₃
	CO ₂ CH ₃	COCH ₃	Н	CF ₃	CF ₃
50					

	Tabelle II - Forts	•			
	A n	R1	R2	R4	R4''
5	CO 2CH3	н	C1	CF ₃	CF ₃
	S CO 2CH3	н	Cl	CF ₃	CF ₃
10	CO 2CH3	CH ₃	Cl	CF ₃	CF ₃
15	CO ₂ CH ₃	CH ₃	C1	CF ₃	CF ₃
	CO 2CH3	COCH ₃	C1	CF ₃	CF ₃
20	CO 2CH3	COCH ₃	Cl	CF ₃	CF ₃
	CO 2CH3	Н	CN	CF ₃	CF ₃
25	CO 2CH3	Н	CN	CF ₃	CF ₃
30	CO 2CH3	CH ₃	CN	CF ₃	CF ₃
	CO 2CH3	CH ₃	CN	CF ₃	CF ₃
35	CO 2CH3	COCH ₃	CN	CF ₃	CF ₃
	CO ₂ CH ₃	COCH ₃	CN	CF ₃	CF ₃
40		Н	Н .	CH ₃	СН ₃
45	1	н	Н	CH ₃	CH ₃
		CH ₃	н	CH ₃	CH ₃
50	1	CH ₃	Н	CH ₃	CH ₃

5	Tabelle II -	- Forts.				
3	<u> </u>	n	R1	R2	R4	R4''
40		0	COCH ₃	н	CH ₃	CH ₃
10		1	COCH ₃	н	CH ₃	CH ₃
15		0	н	Cl	CH ₃	CH ₃
20		1	н	CI	CH ₃	CH ₃
		o	CH ₃	cı	CH ₃	CH ₃
25		1	CH ₃	C1	СН3	CH ₃
30		0	COCH ₃	c 1	CH ₃	CH ₃
95		1 .	COCH ₃	C1	CH ₃	CH ₃
35		0	Н	CN	CH ₃	CH ₃
40		1	H	CN :	CH₃	CH ₃
45		0	CH ₃	CN	CH ₃	CH ₃
		1	CH ₃	CN	CH ₃	CH ₃
50		0	COCH ₃	CN	CH ₃	CH ₃
55		1	COCH ₃	CN	CH ₃	СН₃

	Tabelle II - Forts	•			
5	A	R1	R2	R4	R4''
-		н	н	CH ₃	Cl
10	1	Н	н	CH ₃	cı
15		CH ₃	н	CH ₃	Cl
20	1	CH ₃	н	CH ₃	Cl
		COCH ₃	н	CH ₃	C1
25		COCH ₃	н	CH ₃	C1
30		н	cı	CH ₃	C1
	1	н	Cl	CH ₃	Cl
35	· ·	CH ₃	Cl	CH ₃	C1
40	1	CH ₃	cı	CH ₃	Cl
45	•	COCH ₃	C1	CH ₃	C1
		COCH ₃	Cl	CH ₃	C1
50		Н	CN	CH ₃	C1
55	1	Н	СИ	CH ₃	Сl

_	Tabelle II -	· Forts.				
5	· A	n	RI	R 2	R4	R4''
40		0	CH ₃	CN	CH ₃	C1
10		1	CH ₃	CN	CH ₃	Cl
15		0	COCH ₃	CN	CH ₃	C1 .
20		1	COCH ₃	CN .	CH ₃	C1
		o	`н	н	CH ₃	CF ₃
25		1	н	н	CH ₃	CF ₃
30		0	CH ₃	н	CH ₃	CF ₃
		1	CH ₃	н	CH ₃	CF ₃
35		0	COCH ₃	н	CH ₃	CF ₃
40		1	сосн3	н	СН3	CF ₃
45		o	Н	C1	СН3	CF ₃
		1	н	C1	CH ₃	CF ₃
50		0	CH ₃	c1	CH ₃	CF ₃
55		1	CH ₃	C1	CH ₃	CF ₃

	Tabelle II - F	orts.			
5	A n		R2	. R4	R4''
		COCH ₃	C.1	CH ₃	CF ₃
10		COCH ₃	C1	CH ₃	CF ₃
15		н	CN	CH ₃	CF ₃
20		н	CN	CH ₃	CF ₃
		CH ₃	CN	CH ₃	CF ₃
25		. CH ₃	CN	CH ₃	CF ₃
30		COCH ₃	CN .	CH ₃	CF ₃
		COCH ₃	CN	CH ₃	CF ₃
35) н	Н	CH ₃	OCH ₃
40		L н	н	, CH 3	OCH ₃
<i>4</i> 5		О СН3	н	CH ₃	OCH ₃
		1 CH ₃	н	CH₃	OCH ₃
50		о соснз	н	CH₃	OCH ₃
55		1 COCH ₃	н	СН₃	OCH₃

Tabe	lle II -	Forts.				
	١	n	R1	R 2	R4	R4"
(0	н	C1	CH ₃	OCH ₃
<u>(</u>		1	н	cı	CH ₃	OCH ₃
€.	-	0	CH ₃	cı	CH ₃	OCH ₃
	>	1	CH ₃	C1 .	CH ₃	OCH 3
<u>(</u>		0	сосн3	C1	CH ₃	OCH 3
€.	>	1	сосн 3	Cl	CH ₃	OCH ₃
	>	0	н	CN	СН3	OCH 3
		1	Н	CN	СН₃	осн3
(>	0	CH ₃	CN	CH ₃	OCH ₃
(→	1	CH ₃	CN .	CH ₃	OCH ₃
(0	сосн 3	CN	CH ₃	OCH 3
<	<u></u>	1	сосн3	CN	CH ₃	осн 3
(<u>_</u>	0	н	н	CF ₃	CH ₃
(<u>-</u> / 	1	н	н	CF ₃	CH ₃

	Tabelle II	- Forts.				
5	Α	n	R1	R 2	R4	R4''
		. 0	CH ₃	Н.	CF ₃	CH ₃
10		1	CH ₃	Н	CF ₃	CH ₃
15		. 0	соснз	н	CF ₃	CH ₃
20		· 1	COCH ₃	н	CF ₃	CH ₃
		0	Н	Cl	CF ₃	CH ₃
25		- 1	Н	C1	CF ₃	CH ₃
30		- 0	CH ₃	Cl	CF ₃	СН3
		- 1	CH ₃	Cl	CF ₃	CH ₃
35		- 0	COCH ₃	Cl	CF ₃	CH ₃
40		- 1	COCH ₃	Cl	CF ₃	CH ₃
4 5		- 0	н	CN	CF ₃	CH ₃
		- 1	н	CN	CF ₃	CH ₃
50		- 0	CH ₃	CN	CF ₃	CH ₃
55		- 1	CH ₃	CN	CF ₃	CH ₃

	Tabelle II - F	orts.			
5	<u> </u>		R2	R4	R4''
		сосн 3	CN	. CF ₃	CH ₃
10		COCH ₃	CN	CF ₃	CH ₃
15) н	н	CF ₃	CF ₃
20		l н	н	CF ₃	CF ₃
) СН ₃	н	CF ₃	CF ₃
25		L CH ₃	. H	CF ₃	CF ₃
30		COCH ₃	н	CF ₃	CF ₃
35		COCH ₃	Н	CF ₃	CF ₃
		Э Н	Cl	CF ₃	CF ₃
40		1 н	C1	CF ₃	CF ₃
45		0 СН₃	Cl	CF ₃	CF ₃
		1 CH ₃	C1	CF ₃	CF ₃

Tabelle II - Fort

	A	п	R1	R2	R4	R4''
5		. 0	COCH ₃	cı	CF ₃	CF ₃
10		- 1	COCH ₃	Cl	CF ₃	CF ₃
		- 0	Н	CN	CF ₃	CF ₃
15		- 1	Н	CN	CF ₃	CF ₃
20		- 0	CH ₃	CN	CF ₃	CF ₃
		- 1	CH ₃	CN	CF ₃	CF ₃
25		- 0	COCH ₃	CN	CF ₃	CF ₃
30		- 1 .	COCH ₃	CN	CF ₃	CF ₃

Tabelle III

5			A-(CH ₂)	R ² n-SO ₂ -N n R ₁	R ⁴	4', Ia
10	Α	n	R1	R2	R4	R4''
	<u> </u>	0	н	н	CH ₃	OCH ₃
15	<	1	Н	н	CH ₃	OCH ₃
	<	0	CH ₃	н	CH ₃	OCH ₃
20	<u>~</u> >	1	CH ₃	Н	CH ₃	OCH ₃
25	~ <u>~</u>	0	н	CN	CH ₃	OCH ₃
	~ <u>~</u> ~	1	Н	CN	CH ₃	OCH ₃
30	<u></u>	0	CH ₃	CN	CH ₃	OCH ₃
	<u> </u>	1	CH ₃	CN	CH ₃	осн ₃
35	<u></u>	0	Н	н	CF ₃	OCH ₃
40	<u></u>	1	Н	Н	CF ₃	OCH ₃
		0	CH ₃	н	CF ₃	OCH ₃
45		1	CH ₃	н	CF ₃	OCH ₃
	<u>_</u> N	0	н	CN	CF ₃	OCH ₃
50	< <u>_N</u>	1	н	CN	CF ₃	OCH ₃

Tabelle III	- Forts.
-------------	----------

	labelle III	- Fort				
	A	n	- R1	R ²	R4	R4"
5	~ <u>N</u>	0	CH ₃	CN.	CF ₃	OCH ₃
	~ <u>`</u>	1	СНз	CN	CF ₃	OCH ₃
10		0	н	н	CH ₃	CF ₃
15	N	1	н	н	CH ₃	CF ₃
	N	0	CH ₃	н	CH ₃	CF ₃
20	N	1	CH ₃	н	CH ₃	CF ₃
		0	н	CN	СН3	CF ₃
25	N	1	н	CN	CH ₃	CF ₃
30		0	CH ₃	CN	CH ₃	CF ₃
		1	CH ₃	CN	CH ₃	CF ₃
35		0	Н	H	CH ₃	OCH ₃
		1	н	н -	CH ₃	OCH ₃
40		0	CH ₃	Н	CH ₃	OCH ₃
45		1	CH ₃	н	CH ₃	OCH ₃
90		0	Н	CN	CH ₃	осн ₃
50		1	н	CN	CH ₃	OCH ₃

Tabelle III - Forts.

	labelle III	- Fort	s.				
	A	n	R1	R ²	R4	R4''	
5		0	CH ₃	CN.	CH ₃	OCH 3	
		1	CH ₃	CN	CH ₃	OCH ₃	
10	S	0 .	Н	н	CF ₃	OCH ₃	
15	S	1	Н	н	CF ₃	och ₃	
	S	0	CH ₃	н	CF ₃	OCH ₃	
20	S	1	CH ₃	Н	CF ₃	OCH ₃	
	S	0	н	CN	CF ₃	OCH ₃	
25	S	1	Н	CN	CF ₃	OCH ₃	
30	S	0	CH ₃	CŃ	CF ₃	OCH ₃	
	S	1 .	CH ₃	CN	CF ₃	OCH ₃	
35	H	0	н	Н	CH ₃	CF ₃	
	H	1	,H	н	CH ₃	CF ₃	
40	H	0	CH ₃	н	CH ₃	CF ₃	
45	H	1	CH ₃	н	CH ₃	CF ₃	
	H	0	н	CN	CH ₃	CF ₃	•
50	H	1	н	CN	CH ₃	CF ₃	

EP 0 329 012 A2

Tabelle III - Forts.

	A A	n	R1	R 2	R4	R4''
5	T H	0	CH ₃	CN.	CH ₃	CF ₃
	T N	1	CH ₃	CN	CH ₃	CF ₃
10		0	Н	н	CH ₃	OCH ₃
15		1	н	н	CH ₃	oćH₃
		0	CH ₃	н	CH ₃	OCH ₃
20		1	CH ₃	н	CH ₃	OCH ₃
25	N	0	Н	CN	CH ₃	OCH ₃
29	N	1	н	CN	CH ₃	OCH ₃
30	N TO TO	0	CH ₃	CN	CH ₃	OCH ₃
		1	CH ₃	CN	CH ₃	OCH ₃
35	NO	. 0	н	н	CF ₃	OCH ₃
40	NO	1	Н	н	CF ₃	OCH ₃ .
.•	NO	0	CH ₃	н	CF ₃	OCH ₃
45	NO	1	CH ₃	Н	CF ₃	OCH ₃
	NO	0	н	CN	CF ₃	OCH ₃
50	NO	1	н	CN	CF ₃	OCH ₃

Tabe	1	le	III	- F	orts.
------	---	----	-----	-----	-------

	Tabelle III			n 1	n 4	R4''
	· A	n	R1	R2	R4	K*
5	NO	0	CH ₃	CN	CF ₃	OCH 3
	NO	0	CH ₃	CN	CF ₃	OCH ₃
10	NH H	0	н	н	CH ₃	CF ₃
15	NH H	1	Н	н	CH ₃	CF ₃
		0	CH ₃	Н	CH ₃	CF ₃
20	H	1	CH ₃	н	CH ₃	CF ₃
	T _N H	0	н	CN	CH ₃	CF ₃
25		1	н	CN	CH ₃	CF ₃
30	THE PROPERTY OF THE PROPERTY O	0	CH ₃	CN	CH ₃	CF ₃
	₩.	1	CH ₃	CN	CH ₃	CF ₃
35		0	Н	н	CH ₃	OCH ₃
		. 1	Н	н	CH ₃	OCH ₃
40		. 0	CH ₃	н	CH ₃	OCH ₃
45		. 1	CH ₃	H	CH ₃	OCH ₃
		. 0	н	CN	CH ₃	OCH 3
50		1	н	CN	CH ₃	осн ₃

Tabe	11	e Il	[Fo	rts.
------	----	------	---	----	------

	A A	n	R1	R 2	R4	R4''
5		0	CH ₃	CN.	CH ₃	OCH ₃
		1	CH ₃	CN	СН3	OCH ₃
10		0	н	н	CF ₃	OCH 3
15		1	Н	н	CF ₃	OCH ₃
		0	CH ₃	Н	CF ₃	OCH ₃
20		1	CH ₃	н	CF ₃	OCH ₃
		0	н	CN	CF ₃	OCH ₃
25		1	Н	CN	CF ₃	OCH ₃
3 0		0	CH ₃	CN	CF ₃	OCH ₃
		0	CH ₃	CN	CF ₃	OCH ₃
35	H	0	н	Н	CH ₃	CF ₃
	NH NH	1	Н	Н	CH ₃	CF ₃
40	H	0	CH ₃	н	CH ₃	CF ₃
45	H	1	CH ₃	н	CH ₃	CF ₃
	H	0	Н	CN	CH ₃	CF ₃
50	H	1	н	CN	CH ₃	CF ₃

Tabelle III - Forts.

· A	n	R1	R ²	R4	R4''
N H	0	CH ₃	CN	CH ₃	CF ₃
H N	1	CH ₃	CN	CH ₃	CF ₃

Tabelle IV

5	•			R4 		
5		A	SO ₂ -NN	IN R	4''	
			R ₁	.,		
10	<u>A</u>	R ¹	R ²	R4	R4''	Y
		Н	H	CH ₃	OCH ₃	N
15		CH ₃	Н	CH ₃	OCH ₃	N
		н	CN	CH ₃	OCH ₃	c-cı
00		CH ₃	CN	CH ₃	OCH ₃	c-cı
20	N	н	Н	CH ₃	CF ₃	N
	N	CH ₃	Н	CH ₃	CF ₃	N
25	N	н	CN	CH ₃	CF ₃	c-cı
	N	CH ₃	CN	CH ₃	CF ₃	c-c1
30	N_N	н	н	CF ₃	CH ₃	N
	N_N	CH 3	Н	CF ₃	CH ₃	N
35 -	N_N	Н	CN	CF ₃	CH ₃	C-C1
	N	CH ₃	CN	CF ₃	CH ₃	C-C1
40		н	Н	CH ₃	C1 .	N
40		CH ₃	Н	CH ₃	Cl	N
		н	CN	CH ₃	Cl	C-C1
45	N	CH ₃	CN	CH ₃	Cl	c-c1 .
	S	н	Н	CF ₃	CF ₃	N
50	S	CH ₃	н	CF ₃	CF ₃	N
,	s	Н	CN	CF ₃	CF ₃	C-C1
55	S	CH ₃	CN	CF ₃	CF ₃	c-cl

	Tabelle IV -	Forts.					
5	<u>.</u> А	R1	R ²	R ⁴	R4''	Y	
		Н	Н	CH ₃	CH ₃	N	
10		CH ₃	н	CH ₃	CH ₃	N	
		Н	CN	CH ₃	CH ₃	c-c1	
		CH ₃	CN	CH ₃	CH ₃	c-c1	
15	N H	н	н	CH ₃	CH ₃	N	
20	N H	CH ₃	н	CH ₃	OCH ₃	N	
	N H	н	CN	CH ₃	OCH ₃	c-c1	
25	N H	CH ₃	CN	CH ₃	OCH ₃	c-c1	
		н	Н	CH ₃	CF ₃	N	
30		CH ₃	Н	CH ₃	CF ₃	N	
		Н	CN	CH ₃	CF ₃	C-C1	
35		CH ₃	CN	CH ₃	CF ₃	C-C1	
	S	H	Н	CF ₃	CH ₃	N	
40	s	CH ₃	Н	CF ₃	CH ₃	N	
	SN	Н	CN	CF ₃	CH ₃	C-C1	
	s	CH ₃	CN	CF ₃	CH ₃	c-c1	
45	No	Н	н	CH ₃	Cl	N	
	N O	CH ₃	Н	CH ₃	Cl	N	
50	N O	н	CN	CH ₃	C1	C-Cl	
	NO	CH ₃	CN	CH ₃	Cl	c-cl	
5 5	N-S	Н	Н	CF ₃	CF ₃	N	

A R1 R2 R4 R4" Y CH3 H CF3 CF3 N TO CH3 CH3 CH3 CF3 C-C1 CH3 CN CF3 CF3 C-C1 H H CN CH3 CH3 N TO CH3 H CH3 CH3 N TO CH3 H CH3 CH3 N TO CH3 CN CH3 CH3 C-C1 TO CH3 H CH3 OCH3 N TO CH3 H CH3 OCH3 N TO CH3 CN CH3 OCH3 N TO CH3 CN CH3 OCH3 C-C1 TO CH3 CN CH3 CF3 N TO CH3 CN CH3 CF3 N TO CH3 CH3 CF3 N TO CH3 CH3 CF3 N TO CH3 CH3 CF3 C-C1 TO CH3 CN CH3 CF3 C-C1		Tabelle IV - i	Forts.				
H CN CF3 CF3 C-C1 NS	5	Α	R1	R2	R4	R4''	Y
70 NSS		N-S	CH ₃	н	CF ₃	CF ₃	N
H H H CH3 CH3 N 20 115 116 117 117 118 119 119 119 119 119	10	N-S	н	CN	CF ₃	CF ₃	C-C1
15 N		N S	CH ₃	CN	CF ₃	CF ₃	C-C1
20 H	15		Н	Н	CH ₃	CH ₃	N
25 CH ₃ CH ₃ CN CH ₃ C		N-N-H	CH ₃	н	CH ₃	CH ₃	N
CH ₃ CN CH ₃ CH ₃ C-C1 H H H CH ₃ OCH ₃ N CH ₃ H CH ₃ OCH ₃ N CH ₃ H CH ₃ OCH ₃ N CH ₃ CN CH ₃ OCH ₃ C-C1 CH ₃ CN CH ₃ OCH ₃ C-C1 H H CH ₃ CF ₃ N CH ₃ CH ₃ CN CH ₃ CF ₃ N CH ₄ CH ₃ CH ₃ CF ₃ C-C1 CH ₃ CH ₃ CN CH ₃ CF ₃ C-C1 CH ₄ CH ₃ CH ₃ CF ₃ C-C1 CH ₃ CH ₃ CH ₃ CH ₃ N CH ₄ CH ₃ CH ₃ CH ₃ N	20	N H	н	CN	CH ₃	CH ₃	
H H CH ₃ OCH ₃ N CH ₃ H CH ₃ OCH ₃ N H CN CH ₃ OCH ₃ C-C1 CH ₃ CN CH ₃ OCH ₃ C-C1 H H CH ₃ CF ₃ N CH ₃ H CH ₃ CF ₃ N CH ₃ CN CH ₃ CF ₃ N CH ₃ CN CH ₃ CF ₃ N CH ₃ CH ₃ CN CH ₃ CF ₃ C-C1 CH ₄ CH ₃ CH ₃ CH ₃ CF ₃ C-C1 CH ₅ CH ₃ CH ₃ H CF ₃ CH ₃ N		N N	CH ₃	CN	CH ₃	CH ₃	C-C1
H CN CH ₃ OCH ₃ C-C1 CH ₃ CN CH ₃ OCH ₃ C-C1 H H CH ₃ CF ₃ N CH ₃ CH ₃ CH ₃ CF ₃ N CH ₃ CH ₃ CH ₃ CF ₃ C-C1 CH ₄ CH ₃ CF ₃ C-C1 CH ₃ CH ₃ CH ₃ CF ₃ C-C1 CH ₃ CH ₃ CH ₃ CF ₃ C-C1	25		н	Н	CH₃	OCH ₃	N
H CN CH ₃ CC-C1 CH ₃ CN CH ₃ CC-C1 H H H CH ₃ CF ₃ N CH ₃ H CH ₃ CF ₃ N CH ₃ CH ₃ CH ₃ CF ₃ CC-C1 CH ₃ H CH ₃ CF ₃ CC-C1 CH ₃ CH ₃ CH ₃ CF ₃ CC-C1 CH ₃ CH ₃ CH ₃ CF ₃ CC-C1 CH ₃ CH ₃ CH ₃ CH ₃ N CH ₃ CH ₃ CH ₃ N	00	(IN)	CH ₃	Н	CH ₃	OCH ₃	N
H H CH ₃ CF ₃ N CH ₃ H CH ₃ CF ₃ N H CN CH ₃ CF ₃ C-C1 CH ₃ CN CH ₃ CF ₃ C-C1 N H H CF ₃ CH ₃ N CH ₃ CH ₃ N	30		Н	CN	CH ₃	OCH ₃	c-cı
40 CH ₃ H CH ₃ CF ₃ N H CN CH ₃ CF ₃ C-C1 45 CH ₃ CN CH ₃ CF ₃ C-C1 N H H CF ₃ CH ₃ N CH ₃ CH ₃ N	35		CH ₃	CN	CH ₃	OCH ₃	c-c1
H CN CH ₃ CF ₃ C-C1 CH ₃ CN CH ₃ CF ₃ C-C1 CH ₃ CN CH ₃ CF ₃ C-C1 N H H CF ₃ CH ₃ N CH ₃ CH ₃ N		(IN)	н	н	CH ₃	CF ₃	N
CH ₃ CN CH ₃ CF ₃ C-Cl N H H CF ₃ CH ₃ N CH ₃ H CF ₃ CH ₃ N	40		CH ₃	н	CH ₃	CF ₃	N
CH ₃ CN CH ₃ CF ₃ C-Cl N H H CF ₃ CH ₃ N CH ₃ N			н	CN	CH ₃	CF ₃	C-C1
SO CH ₃ H CF ₃ CH ₃ N	<i>4</i> 5		CH ₃	CN	CH ₃	CF ₃	c-c1
	50	S	н	н	CF ₃	CH ₃	N
		N	CH ₃	н	CF ₃	CH ₃	

	Tabelle IV - 1	Forts.				
	A	R1	R2	R4	R4''	Y
5	CI _s I	Н	CN	CF ₃	CH ₃	C-C1
	SI.	CH ₃	CN	CF ₃	CH ₃	C-C1
10		н	н	CH ₃	Cl	N
15		CH ₃	н	CH ₃	Cl	N
		н	CN	CH ₃	Cl	c-c1
20		CH ₃	CN	CH3	C1	C-Cl
	H N	н	Н	CF ₃	CF ₃	N
25		CH ₃	н	CF ₃	CF ₃	N
30		н	CN	CF ₃	CF ₃	c-cl
	TH N	CH ₃	CN	CF ₃	CF ₃	c-cl
35	IN N	н	н	CH ₃	CH ₃	N
40	TN N	CH ₃	н	CH ₃	CH ₃	N
40	N N	н .	CN	CH ₃	CH ₃	c-c1
45	IN N	CH ₃	CN	CH ₃	CH ₃	c-c1

Die substituierten Sulfonamide I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon,

Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin-und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht. Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kieselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff.

Beispiele für Formulierungen sind:

- I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 1.047 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.
- II. 20 Gewichtsteile der Verbindung Nr. 1.011 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0.02 Gew.% des Wirkstoffs enthält.
- III. 20 Gewichtsteile der Verbindung Nr. 3.008 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- IV. 20 Gewichtsteile des Wirkstoffs Nr. 3.012 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.% des Wirkstoffs enthält.
- V. 20 Gewichtsteile des Wirkstoffs Nr. 2.023 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.
- VI. 3 Gewichtsteile des Wirkstoffs Nr. 1.092 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.% des Wirkstoffs enthält.
- VII. 30 Gewichtsteile des Wirkstoffs Nr. 3.039 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

VIII. 20 Gewichtsteile des Wirkstoffs Nr. 1.037 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

Die Applikation kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lav-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0,001 bis 5,0 kg/ha, vorzugsweise 0,01 bis 1,0 kg/ha.

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturplfanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

	Botanischer Name	Deutscher Name
	Ananas comosus	Ananas
	Arachis hypogaea	Erdnuß
5	Asparagus officinalis	Spargel
	Brassica napus var. napus	Raps
	Brassica napus var. napobrassica	Kohlrübe
	Brassica napus var. rapa	Weiße Rübe
10	Brassica rapa var. silvestris	Rüben
	Camellia sinensis	Teestrauch
	Carthamus tinctorius	Saflor - Färberdistel
	Carya illinoinensis	Pekannuβbaum
15	Citrus limon	Zitrone
	Citrus maxima	Pampelmuse
	Citrus reticulata	Mandarine
	Citrus sinensis	Apfelsine, Orange
20	Coffea arabica (Coffea canephora, Coffea liberica)	Kaffee
	Cynodon dactylon	Bermudagras
	Elaeis guineensis	Ölpalme
25	Fragaria vesca	Erdbeere
	Glycine max	Sojabohne
	Gossypium hirsutum (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifoliu	Baumwolle m)
30	Hevea brasiliensis	Parakautschukbaum
	Hordeum vulgare	Gerste
	Humulus lupulus	Hopfen
	Ipomoea batatas	Süβkartoffeln
35	Juglans regia	Walnuβbaum
	Lactuca sativa	Kopfsalat
	Linum usitatissimum	Faserlein
	Lycopersicon lycopersicum	Tomate
40	Malus spp.	Apfel

	Botanischer Name	Deutscher Name
	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
5	Mentha piperita	Pfefferminze
	Musa spp.	Obst- und Mehlbanane
	Nicotiana tabacum (N. rustica)	Tabak
	Olea europaea	Ölbaum
10	Oryza sativa ′	Reis
	Panicum miliaceum	Rispenhirse
	Phaseolus lunatus	Mondbohne
	Phaseolus mungo	Erdbohne
15	Phaseolus vulgaris	Buschbohnen
	Pennisetum glaucum	Perl- oder Rohrkolbenhirse
	Petroselinum crispum spp. tuberosum	Wurzelpetersilie
	Picea abies	Rotfichte
20	Abies alba	Weiβtanne
	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
	Prunus avium	Süβkirsche
25	Prunus domestica	Pflaume
	Prunus dulcis	Mandelbaum
	Prunus persica	Pfirsich
	Pyrus communis	Birne
30	Ribes sylvestre	Rote Johannisbeere
	Ribes uva-crispa	Stachelbeere
	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
35	Secale cereale	Roggen
	Sesamum indicum	Sesam
	Solanum tuberosum	Kartoffel
	Sorghum bicolor (s. vulgare)	Mohrenhirse
40	Sorghum dochna	Zuckerhirse
	Spinacia oleracea	Spinat
	Theobroma cacao	Kakaobaum
	Trifolium pratense	Rotklee
<i>4</i> 5	Triticum aestivum	Weizen
	Triticum durum	Hartweizen
	Vaccinium corymbosum	Kulturheidelbeere
	Vaccinium vitis-idaea	Preißelbeere
50	Vicia faba	Pferdebohnen
	Vigna sinensis (V. unguiculata)	Kuhbohne
	Vitis vinifera	Weinrebe
	Zea mays	Mais
	-	

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte kö nnen die Sulfonamide der Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3, 1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Imidazolinone, Sulfonylharnstoffe, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Phenyloxy- bzw. Heteroaryloxyphenylpropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die neuen Verbindungen der Formel I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungsund Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Die in den nachstehenden Synthesebeispielen wiedergegebenen Arbeitsvorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Herstellung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in den Tabellen 1, 1a, 2 und 3 mit physikalischen Angaben aufgeführt.

20 Beispiel 1

2-Chlor-N-(5,7-dimethyl-1,8-naphthyridin-2-yl)benzolsulfonamid

25

35

Zu einer Suspension von 4,1 g (23,6 mmol) an kommerziell erhältlichem 2-Amino-5,7-dimethyl-1,8-naphthyridin in 100 ml trockenem Pyridin wurden bei einer Innentemperatur von 40 bis 50° C 7,5 g (35,5 mmol) 2-Chlorbenzolsulfonsäurechlorid unter Rühren langsam zugetropft.

Anschließend wurde das Reaktionsgemisch eine Stunde lang bei 75°C gerührt und danach weitere 1,5 Stunden am Rückfluß gekocht. Nach dem Abkühlen wurde bis zur Trockne eingeengt und der Rückstand einer Säulenchromatographie an Kieselgel zuerst mit Methylenchlorid und dann mit Essigester als Laufmittel unterzogen. Das Rohprodukt wurde durch Umkristallisation aus Methanol weiter gereinigt. Man erhielt 0,75 g (9 %) des gewünschten Produktes, das ¹H-NMR- und IR-spektroskopisch charakterisiert wurde und einen Schmelzpunkt von 200 bis 202°C hat.

¹H-NMR-Spektrum (250 MHz, CDCl₃):

 δ [ppm] = 2,55 (s; 3H), 2,60 (s; 3H), 6,92 (d, J = 9,5 HZ; 1H), 7,05 (s; 1H), 7,35-7,50 (m; 3H), 8,03 (d, J = 9,5 Hz; 1H), 8,28 (d, J = 7 Hz; 1H), 12,0 (br, s; 1H).

o Beispiel 2

C1 H₃CSO₂ NH CH₃

50

45

a) Eine Suspension von 38,4 g (0,25 mol) 4-Amino-2,6-dienethylpyrimidin-5-carbaldehyd in 600 ml Methanol wurde bei 25°C nacheinander mit 30,3 g (0,25 mol) Methylsulfonylacetonitril und 45,8 g (0,25 mol) einer 30 %igen Natriummethylatlösung in Methanol versetzt. Unter leichter Erwärmung bildete sich zunächst eine klare Lösung, aus der sich dann ein voluminöser Niederschlag abschied. Nach 2 Stunden Rühren bei Siedetemperatur wurde auf 0°C abgekühlt, der Niederschlag isoliert, mit Methanol gewaschen und getrocknet. Man erhielt so 47 % an 7-Amino-2,4-dimethyl-6-methylsulfonylpyrido[2,3-d]-pyrimidin. ¹H-NMR (250 MHz, d⁶ DMSO, vs, TMS):

δ [ppm]: 8,70 (s, 1H), 7,43 (br, 2H), 3,34 (s, 3H), 2,71 (s, 3H), 2,61 (s, 3H).

b) Eine Suspension von 1,05 g NaH (44 mmol) in 80 ml THF wurde bei Raumtemperatur mit 5,0 g (20 mmol) des Amins a versetzt, und bis zum Ende der Gasentwicklung auf Rückflußtemperatur erhitzt.

Nach dem Abkühlen auf ca. 40° C wurde mit 5,4 g (22 mmol) 2,6-Dichlorbenzolsulfonsäurechlorid in 20 ml THF versetzt und 5 h bei Rückflußtemperatur gerührt. Der gebildete Niederschlag wurde abgesaugt und in einem Gemisch von Methylenchlorid und 3 n Salzsäure aufgenommen. Die organische Phase wurde isoliert, mit Wasser gewaschen, getrocknet und bei vermindertem Druck getrocknet. Man erhielt so 81 % des gewünschten Sulfonamids vom Fp. > 230° C (Wirkstoffbeispiel 3.008).

Tabelle 1

=	
J	

		Ř1				•	
10	Verbindung	A	n	R1	R ⁴	R4'	Fp [°C]
	1.001		0	н	CH ₃	CH ₃	182-184
15	1.002	CO ₂ CH ₃	0	н	CH ₃	CH ₃	178-180
20	1.003	CCO ₂ CH ₃	0	Н	CH ₃	C1	174-179
25	1.004	CO ₂ CH ₃	0	н	CH ₃	CF ₃	161-164
	1.004 · N(n-C ₄ H ₉) ₃	CO ₂ CH ₃	0	Н	CH ₃	CF ₃	63-68
30	1.005	CO ₂ CH ₃	0	н	CF ₃	CH ₃	153-156
35	1.006	CO ₂ CH ₃	0	н	CH ₃	OCH ₃	179-183
40	1.006 - нсі	CCO ₂ CH ₃	0	н	CH ₃	OCH ₃	169-171
70	1.007	CO ₂ CH ₃	0	ĸ	CF ₃	CF ₃	265-268
45	1.008	CCI	0	н	CH ₃	CH ₃	200-202
50	1.009	CF ₃	0	н	CH₃	CH ₃	128-132
55	1.010	C1 C1	0	н	CH ₃	CH ₃	230-233

Tabelle 1 - Forts.

5	Verbindung	Α	n	R1	R4	R4"	Fp [°C]
10	1.011	Ç1 C1	0	н	CH ₃	CI	225-229
	1.011 · N(n-C ₄ H ₉) ₃	Ç1 C1	0	Н	CH ₃	C1	96-98
15	1.012	Ç1 C1	0	Н	CH ₃	CF ₃	181-184
20	1.013	C1 C1	0	н	CF ₃	CH ₃	232-235
25	1.014	C1 C1	0	н	CH ₃	OCH ₃	215-221
30	1.015	C1 C1	0	н	ĊF ₃	CF ₃	215-219
35	1.016	CO ₂ CH ₃	0	Na	CH ₃	OCH ₃	208-214
	1.017	CH ₃	0	н	CH ₃	CH ₃	229-232
40	1.017 - нс1	CH ₃	0	н	CH ₃	CH ₃	241-249
45	1.018	C1 CH ₃	0	н	СН3	Cl	200-203
50	1.019	CH ₃	0	н	CF ₃	CH ₃	186-189

Tabe1	le 1	1	FOI	rts	
-------	------	---	-----	-----	--

5	Tabelle 1 - F	orts.					
Ŭ	Verbindung	Α	n	R1	R4	R4'	Fp [°C]
10	1.020	CH ₃	0	н	CH ₃	CF ₃	187-189
15	1.021	CO ₂ CH ₃	0	Н	CH ₃	CH ₃	210-215
	1.022	CCH ₃	0	н	CH ₃	CH ₃	218-222
20	1.023	CCH ₃	0	Na	CH ₃	CH ₃	236-239
25	1.024	CCH ₃	0	Н	CH ₃	C1	232-238
00	1.025	CCH ₃	0	Н	CH ₃	OCH ₃	192-196
30	1.026	SCO ₂ CH ₃	0	н	CH ₃	CH ₃	207-211
35	1.026 · HC1	CO 2CH 3	0	н	CH ₃	CH ₃	204-209
40	1.027	CO ₂ CH ₃	0	н	CH ₃	Cl	218-220
	1.028	CO ₂ CH ₃	0	Н	CF ₃	CH ₃	192-195
45	1.029	CO ₂ CH ₃	0	н	CH ₃	CF ₃	198-200
50	1.030	CO ₂ CH ₃ C1 CO ₂ CH ₃	0	н	CH ₃	CH ₃	244-228
55	1.031	CH ₃	0	н	CH ₃	CH ₃	188-192

Tabelle 1 - Forts.

5	Verbindung	Α .	n	R1	R4	R4'	Fp [°C]
10	1.032	CO ₂ CH ₃ CH ₃ CO ₂ CH ₃	0	н	CH ₃	Cl	169-170
	1.033	CH ₃	0	н	CH ₃	OCH ₃	172-176
15	1.034	CLc1	1	Н	CH ₃	CH ₃	204-207
20	1.035	CC1	1	н	CH ₃	сı	215-218
25	1.036	NO ₂	0	н	CH ₃	CH ₃	165 (Zers.)
30	1.037	C1	0	н	CH ₃	СН 3	229-233
35	1.038		0	Н	CH ₃	Cl	224-227
40	1.039	OCH ₃	0	Н	CH3	CH ₃	179-183
45	1.040	OCH ₃	0	Na	CH ₃	CH ₃	193 (Zers.)
50	1.041	OCH ₃	0	н	CH₃	c 1	200-205

Tabelle 1 - Forts.

	Verbindung	Α	n	R1	R4	R4'	Fp [°C]
5	1.042	CF ₃	0	Na	CH ₃	CH₃	172-180
10	1.043	[s]	0	н	CH ₃	CH ₃	199-202
	1.044	CO 2C 2H5	1	н	-CH ₃	CH ₃	175-179
15	1.045	CO ₂ CH ₃	0	Н	CH ₃	CH ₃	207-210
20	1.046		0	н	CH ₃	CH ₃	187-190
25	1.047		0	Н	СН 3	CH ₃	224-226
	1.048	CH ₃	0	н	CF ₃	CF ₃	165-168
30	1.049	осн 3	0	Н	CF ₃	CF ₃	172-182
35	1.050	cı cı	0	Н	CF ₃	CF ₃	172-177
40	1.051	CO ₂ CH ₃	0	н	CF ₃	CF ₃	151-157
	1.052	C1 0 2N	0	н	СН₃	CH ₃	259-263
<i>4</i> 5	1.053		0	н	CH ₃	CH ₃	249-255
50	1.054	·	0	н	CH ₃	cı	173-175

Tabelle 1 - Forts.

	Verbindung	A	n	R1	R4	R4'	Fp [°C]
5	1.055	C1	0	H	CH3	N(CH ₃) ₂	286-288
10	1.056	CO ₂ CH ₃	0	н	CH ₃	N(CH ₃) ₂	240-243
	1.057		0	н	CH ₃	CH ₃	209-210
15	1.058	CN	. 0	н	CH ₃	CH ₃	259-261
	1.059	cıs	0	Н	CH ₃	CH ₃	161-162
20	1.060	F—()	0	н	CH ₃	CH ₃	200-202
25	1.061	H ₃ C————————————————————————————————————	0	н	CH ₃	, CH ₃	184-188
30	1.062	F	0	н	CH₃	CH ₃	210-215
	1.063	F—	0	н	CH ₃	Cl	160-170
35	1.064		0	н	CH ₃	C1	194-200
40	1.065	F CO ₂ CH ₃	0	н	CH ₃	сı	185–186
45	1.066	F	0	Н	CH ₃	Cl	200-203
	1.067	Ę.	0	н	CH ₃	OCH 3	220-225

Tabelle 1 - Forts.

	Verbindung	A	n	R1	R4	R4'	Fp [°C]
5	1.068	cı C1	0	н	CH ₃	OCH ₃	217-221
10	1.069	CO 2CH3	0	н	CH ₃	OCH ₃	240-241
	1.070		0	н	CH ₃	OCH ₃	240
15	1.071	○	0	Н	CH ₃	OCH ₃	215-126
20	1.072	CH ₃	0	H .	CH ₃	OCH ₃	238-240
25	1.073	C1	0	н	CH3	N(CH ₃) ₂	252-255
	1.074	\	0	н	CH ₃	N(CH ₃) ₂	> 280
30	1.075	<u></u>	0	н	СНз	SCH ₃	166-168
35	1.076	C1	0	н	CH ₃	SCH ₃	226-268
	1.077		0	н	CH ₃	SCH ₃	261-268
40	1.078	C1 CO ₂ CH ₃	0	н	CH ₃	SCH ₃	208-216
	1.079	CO 2CH3	0	Н	CH ₃	SCH ₃	204-206
45	1.080	c1 c1	0	н	CH ₃	SCH ₃	226-230

50

Tabelle la

_				R ²	R4			
5		A-(-CH ₂) –so		N R	4'		
	Nr.	A	n	Ř1 R1	R2	R ⁴	R4'	Fp [°C]
10	1.081	OCH ₃	0	н	H	CH ₃	SCH ₃	210-215
15	1.082	F	0	н	Н	СН ₃	SCH ₃	230-233
20	1.083	CO 2CH 3	0	н	н	CH ₃	SCH ₃	231-235
	1.084	C1 CH ₃	0	н	н	CH ₃	SCH ₃	225-227
25	1.085	C1 C1	0	н	н	, СН3	SCH ₃	225-228
30	1.086	<u> </u>	0	н	CN	н	н	200-208
35	1.087	CH ₃	0	Н	CN	н	н	182-186
	1.088	S	0	н	н		CH ₃	> 300
40	1.089	F ₃ C	0	н	н	<u></u>	CH ₃	184-188
45	1.090		0	н	н	<u>_</u>	CH ₃	269-270
50	1.091	c1	0	н	Н	~	CH ₃	265-266

Tabelle la - Forts.

	Nr.	A	n	R1	R2	R4	R4'	Fp [°C]
5	1.092	OCH 3	0	н	Н	<u></u>	CH ₃	283-284
10	1.093	CH ₃	0	н	Н	\bigcirc	CH ₃	278-280
15	1.094	CO ₂ CH ₃	0	н	Н	<u></u>	CH ₃	221-225
	1.095	F F F F F F F F F F F F F F F F F F F	0 .	н	Н	<u></u>	CH ₃	263
20	1.096	C1 C1	0	н	н	◯ -	CH ₃	265-267
25	1.097	F. CO ₂ CH ₃	0	н	н	CH ₃		210-214
30	1.098		0	н	н	CH ₃		239-243
-	1.099	C1 C1	0	н	н	CH ₃		248-251
35	1.100	C1 C1	0	Н	н	CH ₃		250-256
40	1.101	OCH ₃	0	н	н	CH ₃	◯	273-275
45	1.102	CH ₃	0	н	н	CH ₃	\bigcirc	282-283
50	1.103	CO ₂ CH ₃	0	н	н	CH ₃		220-228

_	Tabelle	1a -	Forts.

N	r.	A	n	R1	R2	R ⁴	R4'	Fp [°C]
1	.104	C1	0	н	н	CH ₃	<u></u>	276-277
1	.105	OCH 3	0	н .	Н	CH ₃	<u> </u>	272-273
1	.106		0	Н	н	CH ₃	~ ~	71-79
1	.107	C1	0	н	н	CH ₃	<u>_</u>	149-155
1	.108	CO 2CH	0 3	н	н	CH ₃	<u> </u>	179-181
1	.109	C1 CH ₃	0	Н	н	CH ₃	<u> </u>	233-236
1	.110	C1 C1	0	н	н	СН 3	<u>_</u>	259-263
1	.111	c1	0	Н	Н	Н	CH ₃	182-190
1	.112	C1	0	н	н	Н	CH₃	229-233
1	.113	F -	0	Н	Н	Cl	cı	193-203
1	.114	<u> </u>	0	н	н	OCH ₃	OCH ₃	240-242
1	.115	CO ₂ CH ₃	0	н	н	н	CH ₃	194-196
1	.116	C1 CH ₃	0 -s	C1 O2————————————————————————————————————	н	н	CH ₃	218-225

Tabelle la - Forts.

5	Nr.	A	n	R1	R2	R4	R4'	Fp [°C]
	1.117		0 - s	50 ₂ —	Н	н	CH ₃	199-201
10	1.118	C1	0	Н	н	CH ₃	CH ₃	185-190
15	1.119	$F \xrightarrow{F} F$	0	н	н	CH ₃	CH ₃	195 (Zers)
	1.120	F CONH ₂	0	Н	н	CH ₃	CH ₃	275 (Zers)
20	1.121	C1 C0 2CH 3	0	Н	н		CH ₃	260-263
25	1.122	C1	0	н	Н	CH ₃	C1	280-285
30	1.123	F F	0	н	н	CH ₃	сі	151-157
55	1.124	C1 C1	0	CH ₃	н	CH ₃	C1	171-180
35	1.125	C1 C1	0	н	CN	н	н	214-218
40	1.126	F	0	Н	CN	H	н	220-224
45	1.127	CONH ₂	0	н	н	CH ₃		145 (Zers)
50	1.128	CO ₂H	0	н	н	CH ₃	<u> </u>	138 (Zers)
	1.129	F CO ₂ CH ₃	0	к	н	CH ₃		260-267

Tabelle la - Forts.

	Nr.	A	n	R1	R2	R4	R4'	Fp [°C]
5	1.130	F—	0 -	-so ₂	·FН	CH ₃	CH ₃	263-264
10	1.131	F	0 -	-so ₂	Н	СН3	осн _з	203–206
15	1.132	C1 CO 2CH3	0	C1 -so ₂ ————————————————————————————————————	н	CH ₃	SCH ₃	248-250
	1.133			-so ₂		CH ₃	SCH ₃	243-250
20	1.134	C1	0	-so ₂ >	н	ОН	он	211-213
25	1.135		0	н	н		CH ₃	> 280
30	1.136	C1 C1	0	н	н	CH ₃	н	170-175
	1.137	F CO₂H .	0	н	Н	CH ₃	<u> </u>	208-210
35	1.138	H ₃ C——CH ₃	0	н	н	CH ₃	cı	233–236
40	1.139	C1 C1	0	-so ₂ >	н	н	C1	244-249
45	1.140	CH ₃	0	CH ₃	н	OCH ₃	OCH ₃	222
	1.141		0	-so ₂ s	н	CH ₃	OCH ₃	222-230

5**5**

Tabelle 1a - Forts.

	Nr.	Α	n	R1	R2	R4	R4'	Fp [°C]
5	1.142	C1 C1	0	н	н	н	он	> 280
10	1.143	C1	0	н	H .	OCH ₃	OCH ₃	265-268
15	1.144	C1 C1	0	н	н	CH ₃	Br	245-250
20	1.145	S		so ₂	J H	CH ₃	Cl	215-217
	1.146	CO 2CH CO 2CH	0	н	н	CH ₃	CH ₃	182
25	1.147		0	н	н	CH ₃	NH-NH ₂	> 300

5

Tabelle 2

5	A-SO ₂ -NH-NN-R4"						
	Nr.	A	Z	R4'	R4''	Fp [°C]	
10	2.001	C1 C1	C-CH3	CH ₃	CH ₃	210-211	
15	2.002	C1 C1	C-CH ₃	CH ₃	CH ₃	202-204	
	2.003		С-СН3	СН₃	CH ₃	188-190	
20	2.004	F	C-CH ₃	CH ₃	CH ₃	181-182	
25	2.005	C1 CH ₃	С-СH ₃	CH ₃	CH ₃	204-205	
30	2.006		C-CH 3	CH ₃	Cl	198-199	
35	2.007	F	C-CH ₃	CH ₃	C1	215-217	
35	2.008	C1	C-CH ₃	CH ₃	Cl	199-201	
40	2.009	c1	C-CH ₃	CH ₃	cı	222-224	
45	2.010	CH ₃	C-CH ₃	CH ₃	cl	218-220	
50	2.011	CH ₃	С-СН ₃	CH(CH ₃) ₂	c1 ·	205-208	

Tabelle 2 - Forts.

	Nr.	A	z	R4"	R4"	Fp [°C]
5	2.012	C1 C1	С-СН ₃	CH(CH ₃) ₂	C1	198-201
10	2.013	C1 C1	с-он	СНЗ	ОН	> 250
15	2.014	C1 C1	С-СH ₃	Br	CH ₃	232-235
20	2.015	cı C1	C-CH ₃	Br	CH ₃	221-223
25	2.016	€ F	C-CH ₃	8r	CH ₃	188-190
	2.017		C-CH ₃	Br	CH ₃	243
30	2.018	C1 C1	C-CH ₃	Cl	CH ₃	121-122
35	2.019	C1 CH ₃	C-CH ₃	C1	CH ₃	111-113
40	2.020		C-CH ₃	Cl	CH ₃	220-222
<i>4</i> 5	2.021	C1	с-сн ₃	C1	CH ₃	238-240
	2.022		с-сн ₃	C1	CH ₃	196–199

50

Tabelle 2 - Forts.

_	Nr.	А	Z	R4'	R4''	Fp [°C]
5	2.023	C1 C1	С-СН ₃	CH ₃	OCH ₃	235–236
10	2.024	F	C-CH ₃	CH ₃	OCH ₃	224-226
15	2.025	C1 C1	С-СН ₃	СН3	←	240
20	2.026	C1 C1	С-сн ₃	CH ₃	s—()	219-220
25	2.027	C1 C1	С-СН ₃	СН 3	s—()	224-225
30	2.028	F	C-CH ₃	CH ₃	s—()	213-215
	2.029	F	c-c1	CH ₃	C1	190
35	2.030	C1 CH ₃	/c-c1	CH ₃	C1	210
40	2.031	c1	/c-c1	n-C ₄ Hg	C1	166-168
45	2.032			n-C4Hg	C1	70-72
50	2.033	C1 C1	c-c1 c-c1	n-C ₄ H ₉	Cl	207-209

Tabelle 2 - Forts.

	Nr.	A	Z	R4'	R4''	Fp [°C]
5	2.034	C1 CH ₃	/c-c1	n—C ₄ H ₉	Cl	185-186
10	2.035	-		n—C ₄ Hg	Cl	132-134
15	2.036	C1 C1		CH(CH ₃) ₂	Cl	207–209
20	2.037	₹	cc1	CH (CH ₃) ₂	C1 .	> 70 (Zers.)
25	2.038	C1 C1	N	CH ₃	CH ₃	> 260

Tabelle 3

R²
N
A-SO₂-NH
N
R⁴
''

	Nr.	A	R2	R4	R4''	Fp [°C]
10	3.001	C1	CN	CH ₃	CH ₃	> 230
15	3.002	<u></u>	CN	CH ₃	CH ₃	210-212
20	3.003	CO 2CI	1 ₃ CN	CH ₃	CH ₃	220-222
	3.004	C1 C1	CN	CH ₃	CH ₃	> 230
25	3.005	C1 CH ₃	CN	CH ₃	CH ₃	233-235
30	3.006	C1	CN	CH ₃	CH ₃	> 230
35	3.007	C1	SO ₂ CH ₃	CH ₃	CH ₃	> 230
40	3.008	C1 C1	so₂ch₃	CH ₃	CH₃	> 230
	3.009	C1 C1	SO ₂ CH ₃	CH ₃	CH ₃	> 230
45	3.010		SO ₂ CH ₃	CH ₃	CH ₃	107-109
50	3.011	CO 20	CH ₃ SO₂CH ₃	CH ₃	CH ₃	220-222

Tabelle 3 - Forts.

	Nr.	A	R ²	R4	R4''	Fp [°C]
5	3.012	C1	SO ₂ CH ₃	CH ₃	СН₃	> 215
10						
	3.013	CH 3	Н	CH ₃	CH ₃	> 215
15	3.014	CO 2CH ₃	н	СН3	CH 3	171-173
20	3.015	C1 C1	н	CH ₃	CH ₃	> 230
25	3.016	C1	CN	осн 3	осн ₃	199-201
30	3.017	<u></u>	CN	OCH ₃	осн ₃	153-156
	3.018	<u></u>	~	OCH ₂ CH ₃	OCH ₂ CH ₃	198
35	3.019	C1	~	OCH 2CH 3	OCH ₂ CH ₃	169-173
40	3.020	C1	~>	OCH 3	OCH ₃	226 – 228
<i>4</i> 5	3.021		~	OCH 3	осн ₃	198-199
73	3.022	C1 C1	~	OCH ₃	OCH ₃	> 230
50	3.023	CO 2CH 3	-	OCH ₃	осн ₃	108-111

Tabelle 3 - Forts.

	Nr.	A	R2	R4	R4''	Fp [°C]
5	3.024	C1 C1	CN	OCH ₃	OCH ₃	218-220
10	3.025	CO ₂ CH ₃	CN	OCH ₃	OCH 3	211-213
15	3.026	C1	SO ₂ CH ₃	OCH ₃	осн 3	> 215
20	3.027	CO ₂ CH ₃	SO ₂ CH ₃	OCH ₃	OCH ₃	> 230
20	3.028	F	SO ₂ CH ₃	OCH ₃	OCH ₃	155-157
25	3.029	C1	SO ₂ CH ₃	OCH ₃	осн ₃	213-214
30	3.030	C1 C1	SO ₂ CH ₃	OCH ₃	осн3	172-175
35	3.031	C1	SO ₂ CH ₃	OCH ₃	OCH ₃	228-229
40	3.032	CH ₃	SO ₂ CH ₃	OCH ₃	OCH ₃	226–227
45	3.033 H	OCH 3	SO ₂ CH ₃	OCH ₃	0СН ₃	128
	3.034	CO 2CH 3	CN	CH ₃	OCH ₃	200

Tabelle 3 - Forts.

	Nr.	A	R2	R4	R4''	Fp [°C]
5	3.035	F	CN	СН ₃	осн 3	· 90 – 95
10	3.036	C1 C1	CN	СН₃	OCH ₃	225-227
15	3.037	C1 CH ₃	CN	CH ₃	OCH ₃	213-215
20	3.038	c1 C1	CN	CH₃	осн з	224-227
	3.039	F—	CN	CH ₃	OCH ₃	205-208
25	3.040	C1	CN	CH ₃	OCH ₃	209

Anwendungsbeispiele

Die herbizide Wirkung der Sulfonamide der Formel I auf das Wachstum der Testpflanzen wird durch folgende Gewächshausversuche gezeigt.

Zur Anzucht der Testpflanzen dienten Plastikblumentöpfe mit 300 cm³ Inhalt und lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Zum Zweck der Nachauflaufbehandlung wurden entweder direkt gesäte oder in den gleichen Gefäßen aufgewachsene Pflanzen ausgewählt oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt.

Je nach Wuchsform wurden die Testpflanzen bei einer Wuchshöhe von 3 - 15 cm dann mit den in Wasser als Verteilungsmittel suspendierten oder emulgierten Wirkstoffen, die durch fein verteilende Düsen gespritzt wurden, behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 2,0 bzw. 3,0 kg/ha aktive Substanz.

Die Versuchsgefäße wurden im Gewächshaus aufgestellt, wobei für wärmeliebende Arten wärmere Bereiche (20 bis 35°C) und für solche gemäßigter Klimate 10 bis 20°C bevorzugt wurden. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

In den Gewächshausversuchen wurden Pflanzen der folgenden Arten verwendet:

55

Pflanzenliste					
Lateinischer Name	Deutscher Name				
Amaranthus retroflexus Centaurea cyanus Chenopodium album Cyperus iria Ipomoea spp.	Zurückgekrümmter Fuchsschwanz Kornblume Weißer Gänsefuß - Prunkwindearten				

5

Mit 2,0 bzw. 3,0 kg/ha a.S. im Nachauflaufverfahren eingesetzt, ließen sich mit den Beispielen 1.066 und 1.043 unerwünschte Pflanzen sehr gut bekämpfen.

15 Ansprüche

1. Sulfonamide der allgemeinen Formel I,

20

25

in der die Substituenten und Indices folgende Bedeutung haben:

R1 Wasserstoff, Cyano,

eine C_1 - C_8 -Alkylgruppe, welche durch einen der folgenden Reste substituiert sein kann: C_1 - C_2 -Alkoxy, C_1 - C_2 -Alkylthio, Aryl, Aryloxy, Arylthio, Heteroaryl, Heteroaryloxy oder Heteroarylthio,

30 eine C2-C5-Alkenylgruppe,

eine C2-C4-Alkinylgruppe,

ein Rest COR⁴, worin R⁴ C₁-C₄-Alkyi, C₁-C₄-Alkoxy, C₁-C₄-Alkyithio, Aryl, Aryloxy, Arylthio, Aryl-C₁-C₄-alkoxy, Heteroaryl, Heteroaryloxy, Heteroarylthio oder Heteroaryl-C₁-C₄-alkoxy bedeutet,

ein Rest CONR⁵R⁶, worin R⁵ und R⁶ unabhängig voneiander folgende Bedeutung haben: Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₂-C₅-Alkenyl, Aryl, Heteroaryl, Aryl-C₁-C₄-alkyl, Heteroaryl-C₁-C₄-alkyl, C₁-C₄-Alkylcarbonyl oder gemeinsam eine C₂-C₅-Alkylenkette,

oder ein Rest SO_mR⁴, worin m den Wert 1 oder 2 hat und R⁴ die vorstehend gegebene Bedeutung besitzt; R², R³ unabhängig voneinander Nitro, Hydroxy, Carboxy, Mercapto, Halogen,

C₁-C₄-Alkyl, welches einfach durch Hydroxy, Mercapto, Amino, Aryloxy oder Heteroaryloxy und/oder einbis dreifach durch Halogen substituiert sein kann,

C₃-C₆-Cycloalkyl, welches ein- bis dreifach durch Halogen, Hydroxy, Mercapto und/oder C₁-C₄-Alkyl substituiert sein kann,

C3-C6-Cycloalkoxy,

C₃-C₆-Cycloalkylthio,

45 C2-C5-Halogenalkenyl,

C2-C4-Halogenalkinyl,

C₁-C₄-Alkoxy, welches ein- bis dreifach durch Halogen und/oder einfach durch Aryl oder Heteroaryl substituiert sein kann,

C₁-C₄-Alkylthio, welches ein- bis dreifach durch Halogen und/oder einfach durch Aryl oder Heteroaryl substituiert sein kann,

C₂-C₅-Alkenyloxy,

C₂-C₄-Alkinyloxy,

ein Rest -NR⁵R⁶ worin R⁵ und R⁶ die vorstehend gegebene Bedeutung besitzen oder eine der unter R¹ genannten Gruppen,

55 W,X,Y,Z unabhängig voneinander Stickstoff oder eine Gruppe

worin R7 Hydrazino oder eine der unter R2 genannten Gruppen bedeutet,

wobei X, Y, Z und W nicht gleichzeitig Stickstoff bedeuten,

n den Wert 0 oder 1 und

A eine Aryl- oder Heteroarylgruppe, wobei diese Gruppen ein bis fünf Halogenatome und/oder ein bis drei der folgenden Substituenten tragen können:

-SO₂R⁸, worin R⁸ Hydroxy, C₁-C₄-Alkoxy, Aryl-C₁-C₄-alkoxy, Aryloxy, Heteroaryloxy, Heteroaryl-C₁-C₄-alkoxy oder -NR⁵R⁶ bedeutet, wobei R⁵ und R⁶ die vorstehend gegebene Bedeutung besitzen und/oder die unter R² genannten Gruppen

sowie deren Salze und N-Oxide, ausgenommen die Verbindungen der Formel I, in der A die Bedeutung 4-Aminophenyl hat, n=0 ist, R¹, R² und R³ die Bedeutung Wasserstoff, W die Bedeutung Stickstoff, X, Y und Z die Bedeutung Kohlenstoff hat und R⁴ an X und Z Methyl und im übrigen Wasserstoff ist, sowie deren 4-Aminophenyl-Umsetzungsprodukte.

2. Sulfonamide der allgemeinen Formel la,

25

20

in der die Substituenten und Indices folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₄ Alkylcarbonylgruppe, welche im Alkylteil ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkylthio,

oder eine C₁-C₄-Alkylgruppe, welche ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkylthio,

R² Wasserstoff, eine Cyanogruppe oder ein Halogenatom,

R3 Wasserstoff, eine C1-C4-Alkylgruppe oder ein Halogenatom,

R⁴, R⁴ und R⁴ unabhängig voneinander Wasserstoff, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Methoxy, Ethoxy, Dimethylamino, Diethylamino, Methylthio, Ethylthio, Phenyl, Phenoxy, Hydrazino, oder Halogenatom.

n 0 oder 1 und

A ein Phenylrest, ein Naphthylrest, ein Thienylrest oder ein Chinolinylrest, wobei diese aromatischen Reste ein bis drei der folgenden Gruppen tragen können: C_1 - C_8 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_2 -Alkoxy- C_1 - C_4 -Alkoxy- C_1

3. Sulfonamide der allgemeinen Formel Ib,

50

45

in der die Substituenten und Indices folgende Bedeutung haben:

R¹ Wasserstoff, eine C₁-C₄-Alkylcarbonylgruppe, welche im Alkylteil ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkylthio

oder eine C₁-C₄-Alkylgruppe, welche ein bis drei der folgenden Reste tragen kann: Halogen, C₁-C₄-Alkoxy und/oder C₁-C₄-Alkylthio,

 R^2 Wasserstoff, eine Cyanogruppe, ein Halogenatom, eine C_1 - C_4 -Alkoxycarbonylgruppe, eine C_1 - C_4 -Alkyisulfonylgruppe oder ein Phenylrest,

R3 Wasserstoff, eine C1-C4-Alkylgruppe oder ein Halogenatom,

R⁺, R⁺ und R⁺ unabhängig voneinander Wasserstoff, Methyl, Ethyl, Trilfuormethyl, Difluormethyl, Methoxy, Ethoxy, Dimethylamino, Diethylamino, Methylthio, Ethylthio, Phenyl, Phenoxy, Hydrazino oder Halogenatom, n 0 oder 1 und

A ein Phenylrest, ein Naphthylrest, ein Thienylrest oder ein Chinolinylrest, wobei diese aromatischen Reste ein bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₈-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Alkoxy-C₁-C₄-alkyl oder C₁-C₄-Alkoxycarbonyl

sowie deren Salze und N-Oxide.

4. Sulfonamide der allgemeinen Formel Ic,

in der

A, X, Z, n und R¹ die in Anspruch 1 angegebene Bedeutung haben sowie deren Salze und N-Oxide.

5. Sulfonamide der allgemeinen Formel Id,

25

10

15

20

in der A, n, R^1 und R^4 , $R^{4'}$ und $R^{4''}$ die in Anspruch 1 angegebene Bedeutung haben, sowie deren Salze und N-Oxide.

6. Verfahren zur Herstellung von Sulfonamiden der allgemeinen Formel I, gemäß Anspruch 1, dadurch gekennzeichnet, daß man ein entsprechendes heterocyclisches Amin der allgemeinen Formel II,

35

40

mit einem entsprechenden Sulfochlorid der allgemeinen Formel III,

A-(-CH₂)_n-SO₂Cl III

in Gegenwart einer Base umsetzt.

7. Verfahren zur Herstellung von Sulfonamiden der allgemeinen Formel I, gemäß Anspruch 1, in der R^1 nicht Wasserstoff bedeutet, dadurch gekennzeichnet, daß man ein Sulfonamid der allgemeinen Formel I, gemäß Anspruch 1, mit der Bedeutung von R^1 = H in Gegenwart einer Base mit einem elektrophilen Reagens der allgemeinen Formel IV,

R1-B IV

in der R¹ die unter Anspruch 1 angegebene Bedeutung mit Ausnahme von Wasserstoff hat, und B eine geeignete Abgangsgruppe wie z.B. Halogen, insbesondere Cl, ist, umsetzt.

- 8. Herbizides Mittel, enthaltend ein Sulfonamid der allgemeinen Formel I, gemäß Anspruch 1, dessen Salz oder N-Oxid sowie übliche Formulierungshilfsmittel.
- 9. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man ein Sulfonamid der Formel I gemäß Anspruch 1, dessen Salz oder N-Oxid auf die Pflanzen und/oder ihren Lebensraum einwirken läßt.
- 10. Mittel zur Beeinflussung des Pflanzenwuchses, enthaltend ein Sulfonamid der Formel I gemäß Anspruch 1, dessen Salz oder N-Oxid sowie übliche Formulierungshilfsmittel.

	Sulfonam	/erfahren : id der For um einwirke	mei I gem	lussung des äß Anspruch	Pflanzenwa 1, dessen	achstums, Salz oder	dadurch N-Oxid	gekeni auf die	nzeichnet, Pflanzen	daß mar und/oder	n ein ihren
5											
10											
15											
20			٠								
25											
30											
35								,			
40											
45											
50											
55											