

Grundlagen der Energietechnik Teil 3: Grundlagen der Leistungselektronik

Vorlesung (4)

Prof. Dr.-Ing. Regine Mallwitz Institut für Elektrischen Maschinen, Antriebe und Bahnen - IMAB

Was machen wir heute?

- 1. Einführung in die Leistungselektronik
 - 1.1. Aufgaben und Komponenten der Leistungselektronik
- 2. Leistungshalbleiter
 - 2.1. Bipolare Leistungshalbleiter: PN-Übergang, pn-Diode, Bipolartransistor, Thyristor, GTO
 - 2.2. Feldgesteuerte Leistungshalbleiter: MOSFET, IGBT
- 3. Netzgeführte Stromrichter (Stromrichterschaltungen mit Dioden und Thyristoren)
 - 3.1. Gleichrichter ungesteuert
 - 3.1.1 Mittelpunktschaltungen: M1U, M2U, M3U
 - 3.1.2. Brückenschaltungen: B2U, B6U
 - 3.2. Gleichrichter gesteuert
 - **3.2.1. M1C, M2C, M3C,** B2C, B6C
- 4. Selbstgeführte Stromrichter (Stromrichterschaltungen mit MOSFET und IGBT)
 - 4.1. Gleichstromsteller
 - 4.1.1. Tiefsetzsteller
 - 4.1.2. Hochsetzsteller
 - 4.1.3. Zweiquadrantensteller
 - 4.1.4. Vierquadrantensteller (Vollbrücke)
 - 4.2. Umrichter
 - 4.2.1. Umrichter mit Gleichspannungs-Zwischenkreis (ein- und dreiphasig)

M1C – Schaltung mit ohmscher Last

- Zündwinkel (auch: Steuerwinkel): α
- Stromflusswinkel:

M1C – Schaltung mit ohmscher Last

mittlere Gleichspannung:

$$\overline{U}_d = \frac{\hat{E}_I}{2\pi} (1 + \cos\alpha)$$

mittlerer Gleichstrom:

$$\bar{I}_d = \frac{\overline{U}_d}{R_1}$$

Wirkleistung:

$$P = \frac{E^2}{\pi \cdot R1} \left(\frac{\pi - \alpha}{2} + \frac{1}{4} \sin 2\alpha \right)$$

$$\frac{P}{P_{\text{max}}} = \frac{P}{\frac{E^2}{R1}} = \frac{1}{\pi} \left(\frac{\pi - \alpha}{2} + \frac{1}{4} \sin 2\alpha \right)$$

M1C – Schaltung mit ohmscher Last

$$\frac{P}{P_{\text{max}}} = \frac{P}{\frac{E^2}{R1}} = \frac{1}{\pi} \left(\frac{\pi - \alpha}{2} + \frac{1}{4} \sin 2\alpha \right)$$

M1C mit induktiver Last

M1C mit induktiver Last

• Drosselstrom:
$$i_{L1}(t) = \frac{\hat{e}_1}{\omega L 1} \cdot (\cos(\alpha) - \cos(\omega t))$$

Mittelwert des Drosselstroms:

> Stellkennlinie für L-Last:

$$I_{d_{-}\varpi L} = \frac{\sqrt{2}E_{1}}{\omega L1} \cdot \frac{1}{2\pi} \left(\left(2\pi - 2\alpha \right) \cdot \cos\left(\alpha\right) - \sin(2\pi - \alpha) + \sin(\alpha) \right)$$

Zum Vergleich Stellkennlinie bei R-Last:

$$I_{d_{-R}} = \frac{\sqrt{2}E_1}{R} \cdot \frac{1}{2\pi} \left(1 - \cos(\alpha) \right)$$

M1C mit induktiver Last

Stromverläufe für verschiedene Zündwinkel

M1C – Schaltung mit ohmsch-induktiver Last

M1C – Schaltung mit ohmsch-induktiver Last

M1C – Schaltung mit ohmsch-induktiver Last und Freilaufdiode

$$U_{di\alpha} = \frac{1}{2\pi} \cdot \int_{\alpha}^{\pi} \sqrt{2}E_1 \sin(\alpha t) d(\alpha t)$$
$$= \frac{\sqrt{2}E_1}{2\pi} \cdot (-\cos(\alpha t)]_{\alpha}^{\pi}$$
$$= \frac{\sqrt{2}E_1}{2\pi} \cdot (1 + \cos\alpha)$$

M1C – Schaltung mit ohmsch-induktiver Last und Freilaufdiode

$$U_{di\alpha} = \frac{\sqrt{2}E_1}{2\pi} \cdot (1 + \cos\alpha)$$

$$\frac{U_{di\alpha}}{U_{di0}} = \frac{1 + \cos \alpha}{2}$$

→ normierte Steuerkennlinie für Gleichrichter mit Freilauf:

M1C – Schaltung: Zusammenfassung

Aufbau und Funktionsweise (Spannungsverläufe) für

- ohmsche Last
- induktive Last
- ohmsch-induktive Last
- ohmsch-induktive Last mit Freilaufdiode

M2C – Schaltung mit ohmscher Last

gesteuerte 2-Puls-Mittelpunktschaltung

-651.1

20.00m

30.00m

40.00m

50.00m

60.00m

M2C - Schaltung

$$U_{di\alpha} = \frac{1}{\pi} \cdot \int_{\alpha}^{\alpha + \pi} \sqrt{2}E \sin(\omega t) d(\omega t)$$

$$U_{di\alpha} = \frac{\sqrt{2}E}{\pi} \left(-\cos(\omega t)\right]_{\alpha}^{\alpha+\pi}$$

$$U_{di\alpha} = \frac{\sqrt{2}E}{\pi} \cdot 2\cos\alpha$$

$$\frac{U_{_{di\alpha}}}{U_{_{di0}}} = \cos\alpha$$

→ für alle vollgesteuerten Schaltungen

winkel a

M2C – Schaltung mit induktiver Last

Zündwinkel α= 90°el

$$\cos 90^{\circ} = 0 \rightarrow U_{di90^{\circ}} = 0$$

Folie 18 | VL04 – GENT -Leistungselektronik

M2C - Schaltung mit induktiver Last

350.0

166.7

0

 $\alpha = 90^{\circ} el$

→ reine Blindleistung!

i_TH1 [A]

I TH2 [A]

E1 [V]

M2C – Schaltung mit induktiver Last

Zündwinkel >90°el

- → Ausgangsspannung <0!
- → Wechselrichterbetrieb
- → Netzeinspeisung!

Folie 20 | VL04 – GENT -Leistungselektronik

Ströme bei $\alpha > 90^{\circ}$ el

Steuerkennlinie M2C mit L→∞ und Gegenspannungslast

M3C – Schaltung mit ohmsch-induktiver Last

M3C – Schaltung mit ohmsch-induktiver Last

Mittelwerte für

(a) Vollausteuerung, d.h. $\alpha = 0$:

- Mittelwert der Gleichspannung
- Mittelwert des Gleichstromes

(b) Teillausteuerung, d.h. $\alpha > 0$:

- Mittelwert der Gleichspannung
- Mittelwert des Gleichstromes

M3C - Schaltung mit ohmsch-induktiver Last

Steuerkennlinie:

$$\frac{U_{di\alpha}}{U_{di0}} = \cos \alpha$$

Ideelle Leerlauspannung M3 (E ist die nichtverkettete Spannung)

$$\frac{U_{di0}}{E} = \frac{p\sqrt{2}}{\pi} \sin\frac{\pi}{p}$$

Was haben wir heute gemacht?

- Gesteuerte Gleichrichter
 - M1C, M2C und M3C

Was kommt in der nächsten Vorlesung?

- Gleichstromsteller
 - Tiefsetzsteller
 - Hochsetzsteller

Leistungselektronik @ Institut für Elektrische Maschinen, Antriebe und Bahnen

Prof. Dr.-Ing. Regine Mallwitz (Leistungselektronik)

M: r.mallwitz@tu-braunschweig.de

T.: + 49 (0)531 3913901

M.Sc. Cengiz Uzlu

M: c.uzlu@tu-braunschweig.de

T.: + 49 (0)531 3913917

M.Sc. Robert Rohn

M: r.rohn@tu-braunschweig.de

T.: +49 (0)531 3918165

www.imab.de

