```
    Statistical Data Analysis Problem sheet 3

     1. Exercise 1
 [37] 1 #importing all the libraries
        2 import pandas as pd
        3 import numpy as np
 [38] 1 #getting the X values as a dataframe
        2 dfx = pd.read_csv('/content/drive/MyDrive/1-DS/X.txt', sep=",", header=None)
  [39] 1 #getting the Y values as a dataframe
        2 dfy = pd.read_csv('/content/drive/MyDrive/1-DS/Y.txt', header= None)
  Now we need to convert them into matrix
        2 x = dfx.to_numpy()
        3 y = dfy.to_numpy()
  [41] 1 #adding an identity column to the x to equalize the full rank p + 1
        2 x = np.insert(x, 0, 1.0, axis=1)
  As the LS estimator is equivalent to the ML estimator based on the maximization of the log likelihood, we can estimate the beta hat from it.
  [42] 1 #beta hat estimating
        2 xt = np.transpose(x)
        3 xtx = xt.dot(x)
        5 beta = np.linalg.inv(xtx).dot(xt).dot(y)
        6 beta
```

```
1 #now we can get the sigma hat square in the multiple linear regression model
       2 sgms = (np.transpose(y-x.dot(beta))*(y-x.dot(beta))) / 201
       3 sgms
     array([[ 1.43756944e-04, -2.60179376e-04, 4.88288715e-05, ...,
              -8.27929177e-04, -5.93215518e-04, -6.80968604e-04],
             [-2.60179376e-04, 4.70887219e-04, -8.83732288e-05, ...,
               1.49843263e-03, 1.07363470e-03, 1.23245515e-03],
             [ 4.88288715e-05, -8.83732288e-05, 1.65853462e-05, ...,
              -2.81216658e-04, -2.01493183e-04, -2.31299633e-04],
             [-8.27929177e-04, 1.49843263e-03, -2.81216658e-04, ...,
               4.76823381e-03, 3.41646407e-03, 3.92185420e-03],
             [-5.93215518e-04, 1.07363470e-03, -2.01493183e-04, ...,
             3.41646407e-03, 2.44791410e-03, 2.81002872e-03],
[-6.80968604e-04, 1.23245515e-03, -2.31299633e-04, ...,
               3.92185420e-03, 2.81002872e-03, 3.22571018e-03]])
       1 #now we can also get the adjusted estimator of the variance hat
[44]
       2 sgad = ((np.transpose(y).dot(y)) - (np.transpose(beta).dot(xt).dot(y))) / (201 - <math>\beta - 1)
```

3 sgad

array([[0.97422819]])

Sol sun mon the wed that fit (2) (1) Here, Least sequences extirmed by $\hat{B} = (X^TX)^TX^TT^T$ and REML extirmed by $\hat{B} = (X^TX)^TX^TT^TT^TT^TT^TT^TT^TT^TT^TT^TT^TT^TT^$				5	tatint	ical	Da	ta An	alysia	3	problem	Shut.	3
and REML extirmator $\sigma_{xx} = \frac{1}{n-p-1} \hat{\mathcal{E}}^{\dagger}\hat{\mathcal{E}}$ Now, Cov (3) = $\operatorname{Cov}((x^{\dagger}x)^{\top}x^{\dagger}y)$ [plugging B value] We know, $\operatorname{Cov}(x^{\dagger}y) = E[xy - E[xy]](xy - E[xy])$ $= E[x(y - E[y])(xy - E[xy])[xy - E[xy]]$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])[xy - E[xy])$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X[(y - E[xy])(xy - E[xy])[xy - E[xy])[xy - E[xy]]$ $= X[(y - E[xy])(xy - E[xy])[xy - E[xy]]$	4	sat su	in mon	tue	wed O	hu f	ri O		ett pp.	W-C-815-	1	1	Tab
and REML extirmator $\sigma_{xx} = \frac{1}{n-p-1} \hat{\mathcal{E}}^{\dagger}\hat{\mathcal{E}}$ Now, Cov (3) = $\operatorname{Cov}((x^{\dagger}x)^{\top}x^{\dagger}y)$ [plugging B value] We know, $\operatorname{Cov}(x^{\dagger}y) = E[xy - E[xy]](xy - E[xy])$ $= E[x(y - E[y])(xy - E[xy])[xy - E[xy]]$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])[xy - E[xy])$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X[(y - E[xy])(xy - E[xy])[xy - E[xy])[xy - E[xy]]$ $= X[(y - E[xy])(xy - E[xy])[xy - E[xy]]$	(2)	_											
and REML extirmator $\sigma_{xx} = \frac{1}{n-p-1} \hat{\mathcal{E}}^{\dagger}\hat{\mathcal{E}}$ Now, Cov (3) = $\operatorname{Cov}((x^{\dagger}x)^{\top}x^{\dagger}y)$ [plugging B value] We know, $\operatorname{Cov}(x^{\dagger}y) = E[xy - E[xy]](xy - E[xy])$ $= E[x(y - E[y])(xy - E[xy])[xy - E[xy]]$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])[xy - E[xy])$ $= X[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X[(y - E[xy])(xy - E[xy])[xy - E[xy])[xy - E[xy]]$ $= X[(y - E[xy])(xy - E[xy])[xy - E[xy]]$	4	(1)	Here,				DE		15/18		gright		
Now, $Cov(\hat{\beta}) = Cov((x^*x)^{-1}x^{-1}y^{-1})$ [Phyping $\hat{\beta}$ value] We know, $Cov(xy) = E[xy - E[xy]](xy - E[xy])$ $= E[x(x - E[x]) - (x - E[x])^{-1}x^{-1}$ $= X E[(x - E[x]) - (x - E[x])^{-1$		Lear	f say	uar	10 27	film	ador	B	=(X	(x' <u>,</u>	X'X		4 15
Now, $Cov(\hat{\beta}) = Cov((x^*x)^{-1}x^{-1}y^{-1})$ [Phyping $\hat{\beta}$ value] We know, $Cov(xy) = E[xy - E[xy]](xy - E[xy])$ $= E[x(x - E[x]) - (x - E[x])^{-1}x^{-1}$ $= X E[(x - E[x]) - (x - E[x])^{-1$	(2)	1691	nd f	REN	1L es	fime	dog	र्ठेट्सं .	= -n-	1- -p-1	ÊTÉ		
We know, $\operatorname{Cov}(xy) = E[xy](xy - E[xy])(xy - E[xy])$ $= E[x(y - E[y])(xy - E[xy])(xy - E[xy])$ $= X E[(y - E[y])(y - E[y])[x]$ $= X E[(y - E[y])(y - E[y])[x]$ $= X E[(y - E[y])(xy - E[xy])[xy]$ $= X E[(y - E[y])(xy - E[xy])[xy - E[xy])$ $= X E[(y - E[y])(xy - E[xy])[xy]$ $= X E[xy](xy - E[xy])[xy - E[xy]]$ $= X E[(y - E[y])(xy - E[xy])[xy]$ $= (xy - xy)(xy - E[xy])[xy - E[xy]$ $= (xy - xy)(xy - E[xy])[xy - E[xy]$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= (xy - xy)(xy - xy)(xy - xy)(xy - xy)$ $= $										1)	-4.7		alui
$= \mathbb{E} \left[x(\mathbf{X} - \mathbb{E}[\mathbf{X}]) - (\mathbf{Z} - \mathbb{E}[\mathbf{X}])^{T} \right] \times^{T}$ $= X \operatorname{E} \left[(\mathbf{X} - \mathbb{E}[\mathbf{X}]) \cdot (\mathbf{Z} - \mathbb{E}[\mathbf{X}])^{T} \right] \times^{T}$ $= X \operatorname{Cov}(\mathbf{X}) \times^{T} \left[\operatorname{pultiply} \operatorname{volume} of \operatorname{cev}(\mathbf{X}) \right] \text{ (ii)}$ $= \operatorname{Cov}(\mathbf{X}) = \left(x^{T} \times \right)^{T} \times^{T} \operatorname{cov}(\mathbf{X}) \times \left[(x^{T} \times)^{T} \right]^{T}$ $= \left(x^{T} \times \right)^{T} \times^{T} \times \left[(x^{T} \times)^{T} \right]^{T} \operatorname{Cov}(\mathbf{X})$ $= \left(x^{T} \times \right)^{T} \times^{T} \times \left[(x^{T} \times)^{T} \right]^{T} \operatorname{cov}(\mathbf{X})$ $= \left(x^{T} \times \right)^{T} \times^{T} \times \left[(x^{T} \times)^{T} \right]^{T} \operatorname{cov}(\mathbf{X})$ $= \left(x^{T} \times \right)^{T} \times^{T} \times^{T$												125	1
$= \chi \operatorname{cov}(\chi) \chi^{T} \left[\operatorname{puliting radius of cov}(\chi) \right] $ $= \chi \operatorname{cov}(\chi) \left[\chi^{T} \chi \right] \chi^{T} \operatorname{cov}(\chi) \left[\chi^{T} \chi \right] \chi^{T} \right] $ $= \left(\chi^{T} \chi \right)^{T} \chi^{T} \operatorname{cov}(\chi) \chi^{T} \chi^{T} \left[\chi^{T} \chi \right]^{T} \left[\chi^{T} \chi \right]^$												-	
By writing (ii) im (i), we get, $env(3) = (x^{T}x)^{T}x^{T}env(3)[(x^{T}x)^{T}]x^{T}$ $= (x^{T}x)^{T}x^{T}env(3)x[(x^{T}x)^{T}]^{T}$ $= (x^{T}x)^{T}x^{T}x[(x^{T}x)^{T}]^{T}env(3)$ $= (x^{T}x)^{T}(x^{T}x)(x^{T}x)^{T}(env(3))$ $= (x^{T}x)^{T}(env(3))$					F . 71		-X#	E.[(g-	E [ð.](7-	-E[3	f]) ^T];	X
$cov(\beta) = (x^{T}x)^{T}x^{T}cov(x)[(x^{T}x)^{T}]x^{T}$ $= (x^{T}x)^{T}x^{T}cov(x)x[(x^{T}x)^{T}]^{T}$ $= (x^{T}x)^{T}x^{T}x[(x^{T}x)^{T}]^{T}cov(x)$ $= (x^{T}x)^{T}(x^{T}x)(x^{T}x)^{T}(cov(x))$ $= (x^{T}x)^{T}(cov(x))$	Poly	2 m	20.00		מא ק	(8)) ² ç.	4.5-1	218/25/4	owlth co	(A) ~a	he of	}—
$= (x^{T}x)^{-1}x^{T}\cos (x^{T}x)^{-1}x^{T}$ $= (x^{T}x)^{-1}x^{T}x[(x^{T}x)^{T}]^{-1}\cos(x^{T}x)$ $= (x^{T}x)^{-1}(x^{T}x)(x^{T}x)^{-1}\cos(x^{T}x)$ $= (x^{T}x)^{-1}\cos(x^{T}x)$		By	wnv	7	(1)	אן (מ	1),	we o	ur,				
$= (x^{T}x)^{-1}x^{T}x[(x^{T}x)^{T}]^{-1}G_{V}(y)$ $= (x^{T}x)^{-1}(x^{T}x)(x^{T}x)^{-1}G_{V}(y)$ $= (x^{T}x)^{-1}G_{V}(y)$ $= (x^{T}x)^{-1}G_{V}(y)$ $= G_{V}(x^{T}x^{-1})[G_{V}(y)=G_{V}(y)]$ (phowed)	1.3		Ay.	Con	v (B)	2	(X	(x)'	rt con	(a)[(x x))')×	*
$= (x^{T}x)^{-1}(x^{T}x)(x^{T}x)^{-1} \otimes v(y)$ $= (x^{T}x)^{-1}(x^{T}x$			Mary	× 1 /-			(X^T)	x) 1 x 1	cov (x(B	[(x x)]]	
$= (x^{T}x)^{-1} \text{ (av (y))}$ $= (x^{T}x)^{-1} \text{ (av (y))} \text{ (av (y))} \text{ (bhowed)}$							(x	(× [†] (×	< ^τ ×[(XX)']	(A))
(cov(3) = 5 x (x x -1) [cov(x) = 5 1]							- (x	1-(41)	$(\times^{\tau} \times)$)(×	ור (אל	(9 v((R)
(phowed)					10.		= (
(showed)			· <u> </u>	Co	N (B)	:	= 0	-~ (·	XTX	-')	Con	(y) 25	2 I
	กเบบมูเล	2					3 80 300			(0	house	1	

sat sun mon tue wed thu fri	Date : / /
Now, plugging the	rature of M.
$\mathbb{E}\left[\hat{\epsilon}^{\dagger}\hat{\epsilon}\right] = 0^{\gamma}$	$\pi\left(\mathcal{I}_{N}-X(X^{T}X)^{-1}X^{T}\right)$
=01.	$\operatorname{In}\left(\mathbb{T}_{X}^{-1}(X^{T}X)^{-1}X^{T}\right)$
((((((((((((((((((((n-p-1) [uning str. (A+B)]
50 E [O] = E [4	-P-I ÊÊ
= E[n-p-1. 0 (n-p-1) [wshy 0]
	(slowed)
(3) The courseponding	a statistical model
in the Handy	Weinberg model.
JA in wied to	comparu gene frequencies
Ame. According	ton over a period of
at equilibrium of	he gene or the allele
Inequencios within	or promation will be
pame m each	net five rules to be
of alleles must n	net five rules to be
considered in	equilibrium":
1) No occurances	of anow charges
1) No migration	my must occur.
3 Random mati	ng must occur,
_ 0 × Jr. (297)	

sat sun mon tue wed thu fri Date: / /
Now, the Welchood of Pin:
L(P)= = 1! (P) x [2p(1-p)]y. [(1-p)]2
he natural log likelihood of E(E) P is
((p) > ln(n!)-ln(x!)-ln(y!)-ln(2!)+ln(p2x)
+ ln2pd + ln(1-p) d+ ln(1-p)22
= $ln(n!) - ln(x!) - ln(y!) - ln(z!) + 2x ln(p)$
+ ln(2)+ yln(p)+ yln(1-p)+22 ln(1-p)
_ · · · · · · · · · · · · · · · · · · ·
Now, we will take a derivative respect to P
i de l(p) -d[2x(m(p)] + d [4m(p)]+ d[4/m(1-p)
+ dp [22/m (1-p)]
= 24p + 4p - 4(1-p) - 27/(1-p)
$= \frac{2x+y}{2x+y} - \frac{2x+y}{2x+y}$
Combanda de la combana de la c
The estimates p, the derivative = 0.
The state of the seal of the s
11 100

sat O	sun mor	tue wed	thu fri	y we	Date:	1 1
	.'.	2xty	28+1	0 = 0		
•	#	or, 2x+	4 = 8	2+7		
	ه	(1-P)	(2x+y)	= 2 2 p	+ PJ	
			•	•	y = 22p	
				-2) = 2		
	,	07, P	$=\frac{2000}{2(2)}$	(+y+2)	-: 24%	+2=4
: 1	Martim				or for pz	
			· ·			
				-		
			•		u*	
	14					
	7					