PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-204524

(43)Date of publication of application: 08.08.1995

(51)Int.CI.

BO1L 5/00 B01F 3/02

B01L 1/00 G01M 19/00

G01N 17/00

(21)Application number: 06-007896

(22)Date of filing:

27.01.1994

(71)Applicant: FUJITSU LTD

(72)Inventor: NAKAYAMA MASAO

FUKUSHIMA SHIGERU NAKAJIMA HIDEKAZU YAMAZAKI SHIORI ITABASHI MAYUMI

(54) ENVIRONMENT INSPECTING DEVICE AND GAS CONCENTRATION CONTROLLING METHOD

(57)Abstract:

PURPOSE: To reduce the number of control valves by devising the constitution of a dilute gas producing means regarding improvement of an environment inspecting device and stably and highly accurately control a gas concn. covering a wide range of a gas dilution ratio. CONSTITUTION: A moisture conditioned air generating means 11 producing the moisture conditioned air A2 of a specific flow rate by controlling and mixing an effluent amount of a dry air A0 and a moist air and a dilute gas producing means 12 generating the dilute dry air A02 of a specific flow rate by controlling the effluent specific amount of the dry air A0 or producing the primary corrosive dilute gas G1 of a flow rate by controlling and mixing the effluent amount of a corrosive gas G0 and the dry air A0 are provided. Moreover, a mixing means 13 mixing the moisture conditioned air A2 and the dilute dry air A02 and supplying a humidity environment air A to an inspecting vessel 14 or mixing the moisture conditioned air A2 and the primary corrosive dilute gas G1 and supplying a humidity gas environment air AG to the inspecting vessel 14 is provided.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-204524

(43)公開日 平成7年(1995)8月8日

(51) Int.CI. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
B01L 5/00				
B01F 3/02				
B01L 1/00	Z			
G 0 1 M 19/00	Z			
G01N 17/00				
			審査請求	未請求 請求項の数5 OL (全 11 頁)
(21)出願番号	特願平6-7896		(71)出願人	000005223
				富士通株式会社
(22)出顧日	平成6年(1994)1/	月27日		神奈川県川崎市中原区上小田中1015番地
			(72)発明者	中山 正夫
				神奈川県川崎市中原区上小田中1015番地
				富士通株式会社内
			(72)発明者	福島茂
				神奈川県川崎市中原区上小田中1015番地
				富士通株式会社内
			(72)発明者	中島英一
				神奈川県川崎市中原区上小田中1015番地
				富士通株式会社内
			(74)代理人	弁理士 岡本 啓三
				最終頁に続く

(54) 【発明の名称】 環境試験装置及びそのガス濃度調整方法

(57)【要約】

【目的】 環境試験装置の改善に関し、希釈ガス発生手段の構成を工夫して調整バルブ数を低減すること、及び、広範囲なガス希釈率に渡って、安定かつ高精度にガス濃度を調整する。

【構成】 乾燥空気A 0及び加湿空気A 1の流出量を調整混合して所定流量の調湿空気A 2を発生する調湿空気発生手段11と、乾燥空気A 0の流出量を調整して所定流量の希釈乾燥空気A 0の流出量を調整混合して所定流量の一次腐食性希釈ガスG 1を発生する希釈ガス発生手段12と、調湿空気A 2及び希釈乾燥空気A 02を混合して湿度環境空気A を試験槽14に供給し、又は、調湿空気A 2及び一次腐食性希釈ガスG 1を混合して湿度ガス環境空気A G を試験槽14に供給する混合手段13とを備える。

本発明の実施例に係る環境試験装置の全体構成図

【特許請求の範囲】

【請求項1】 乾燥空気(A0)及び加湿空気(A1) の流出量を調整混合して所定流量の調湿空気(A2)を 発生する調湿空気発生手段(11)と、

1

前記乾燥空気(A0)の流出量を調整して所定流量の希 釈乾燥空気(A02)を発生し、又は、腐食性ガス(G 0)及び前記乾燥空気(A0)の流出量を調整混合して 所定流量の一次腐食性希釈ガス(G1)を発生する希釈 ガス発生手段(12)と、

前記調湿空気(A2)及び希釈乾燥空気(A02)を混合 10 して湿度環境空気(A)を試験槽(14)に供給し、又は、前記調湿空気(A2)及び一次腐食性希釈ガス(G1)を混合して湿度ガス環境空気(AG)を試験槽(14)に供給する混合手段(13)とを備えることを特徴とする環境試験装置。

【請求項2】 前記希釈ガス発生手段(12)は、少なくとも、乾燥空気(A0)の流出量を調整する空気流出調整部(12A)と、

前記腐食性ガス(G0)の流出量を調整するガス流出調整部(12B)と、

前記空気流出調整部(12A)により調整された希釈乾燥空気(A03)及び前記ガス流出調整部(12B)により調整された希釈腐食性ガス(G01)を混合する混合手段(12C)と、

前記希釈乾燥空気(A 03)及び希釈腐食性ガス(G 01) を混合した一次腐食性希釈ガス(G 1)の流出量を調整 する希釈ガス流出調整部(12 D)とを有することを特徴 とする請求項 1 記載の環境試験装置。

【請求項3】 前記希釈ガス発生手段(12)は、前記 乾燥空気(A0)又は腐食性ガス(G0)のいずれか一 方を選択する切り換え部(P1)と、前記乾燥空気(A 0)の流入を阻止するストップバルブ(S5)と、前記 乾燥空気(A0)の流出量を検出する流量計を選択する 切り換え部(P2)と、前記腐食性ガス(G0)の流出 量を検出する流量計を選択する切り換え部(P3)とを 有することを特徴とする請求項1記載の環境試験装置。

【請求項4】 一方で、乾燥空気(A0)及び加湿空気(A1)を調整混合して所定流量の調湿空気(A2)を発生し、他方で、乾燥空気(A0)の流出量を調整して所定流量の第1の希釈乾燥空気(A02)を発生し、

前記調湿空気(A2)及び第1の希釈乾燥空気(A02) を混合した湿度環境空気(A)を試験槽に供給し、

その後、前記第1の希釈乾燥空気 (A 02) の供給のみを 停止し、

一方で、乾燥空気(A0)の流出量を調整して所定流量の第2の希釈乾燥空気(A03)を発生し、他方で、前記腐食性ガス(G0)の流出量を調整して所定流量の希釈腐食性ガス(G01)を発生し、

前記所定流量の第2の希釈乾燥空気(A03)と所定流量 の希釈腐食性ガス(Gon)と混合して一次腐食性希釈ガ 50 ス(G1)を発生し、

その後、前記供給が停止された第1の希釈乾燥空気(A02)に代えて前記一次腐食性希釈ガス(G1)を試験槽に供給することを特徴とする環境試験装置のガス濃度調整方法。

【請求項5】 前記第1の希釈乾燥空気 (A 02) に代えて試験槽に供給する前記一次腐食性希釈ガス (G 1) の流出量を、次式、

 $Q2 = Q1 \cdot N2 / N1$

〔但し、N1:現時点の試験槽内部のガス濃度,Q1: 現時点の一次腐食性希釈ガスの流出量,N2:希望する試験槽内部のガス濃度,Q2:変更後の一次腐食性希釈ガスの流出量である〕に従って再調整することを特徴とする請求項4記載の環境試験装置のガス濃度調整方法。【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、環境試験装置及びそのガス濃度調整方法に関するものであり、更に詳しく言えば、自然(腐食)環境を模擬的に作成して各種電子機器の環境試験をする装置及びその環境ガスを調整する方法の改善に関するものである。近年、コンピュータや画像処理装置等に代表される電子機器は、各種環境において使用されており、その中には、各種機器の金属材料が腐食を伴う環境で使用される場合がある。例えば、火山地帯の近傍に設置される通信機器は、硫化水素(H,S)の影響を受け易く、また、化学工場で使用される電子機器は、亜硫酸ガス(SO,)の影響を受ける場合がある。

【0002】さらに、交通の錯綜する地帯では二酸化窒素(NO。)の影響を受け、また、海岸地域の近傍では、塩素系ガスの影響を受けて電子機器が腐食障害を起こす場合がある。このことから、予想される自然環境における電子機器の部品や材料の腐食状態を把握する必要がある。これによれば、腐食環境を模擬的に作り出して電子機器の部品や材料を改善すべく、自然環境に耐え得るための環境試験が行われる。しかし、腐食環境ガスを発生する環境試験装置には、複数の乾燥空気の流出量を調整する調整バルブや腐食環境ガス等の流出量を調整する調整バルブが設けられる。

40 【0003】このため、試験槽内で目標ガス濃度を得ようとするためには、これらの複数の調整バルブを精度良く調整しなくてはならず、槽内のガス濃度が目標ガス濃度から大きくずれると、信頼性の良い環境試験を行う妨げとなる。そこで、希釈ガス発生部の構成を工夫して調整バルブ数を低減すること、及び、広範囲なガス希釈率に渡って、安定かつ高精度にガス濃度を調整することができる装置及び方法が望まれている。

[0004]

【従来の技術】図7は、従来例に係る環境試験装置の主要部の構成図を示している。例えば、本発明者らが先に

特許出願(特開昭63-287559号)をした環境試 験装置に見られるような装置は、図7に示すように、そ の主要部が調湿空気発生部1及び希釈ガス発生部2を備 える。調湿空気発生部1はストップバルブS1, S2, 調整バルブV1、V2、流量計F1、F2及び加湿器R を有する。希釈ガス発生部2はストップバルブS3~S 6, 調整バルブV3~V7, 流量計F3~F6及び混合 器2Aを有する。

【0005】なお、調整バルブV1,V2は調湿空気A 2を発生する際に、乾燥空気A0の流出量を調整するも 10 のであり、調整バルブV3, V4は、一次腐食性希釈ガ スG1を発生する際に、乾燥空気A0の流出量を調整す るものである。調整バルブV5は、一次腐食性希釈ガス G1を発生する際に、腐食性ガスG0の流出量を調整す るものであり、調整バルブV6は、希釈された腐食性ガ スGOの流出量を調整するものである。

【0006】ととで、当該環境試験装置のガス濃度の調 整方法を説明する。例えば、本発明者らが先に特許出願 (特開平5-045277号)をした環境試験装置のガ ス濃度の調整方法によれば、試験槽内のガス濃度を腐食 20 性ガスGOの希釈比で決めている。例えば、空気清浄装 置から調湿空気発生部1の加湿器Rに乾燥空気A0を導 入して加湿空気A1を作成する。それに乾燥空気A0を 混合して湿度調整空気(以下調湿空気という)A2を生

【0007】次に、空気清浄装置から希釈ガス発生部2 に乾燥空気AOと腐食性ガスGOを導入して一次腐食性 希釈ガスG1を生成する。また、調湿空気A2と一次腐 食性希釈ガスG1を混合器3により混合して、環境調整 空気AGを発生させ、それを試験槽内に導入する。との 30 際の希釈ガス発生部2 におけるガス希釈方法を説明す る。まず、腐食性ガスG0の希釈率が小さい場合には、 ストップバルブS5及びオーバーフロー調整バルブV7 を閉じ、ストップバルブS6を開ける。また、調整バル ブV6及びV3と調整して、腐食性ガスG0の希釈率を 調整し、混合器2Aで希釈乾燥空気と腐食性ガスとを混 合する。これにより、希釈率が小さい場合の一次腐食性 希釈ガスG1が得られる。

【0008】また、腐食性ガスG0の希釈率が大きい場 合には、ストップバルブS6を閉じ、ストップバルブS 4及びS5を開く。さらに、調整バルブV4及びV5を 調整して、一次腐食性希釈ガスを作成し、オーバーフロ ー調整バルブV7で余分の一次腐食性希釈ガスを放出す ると共に、調整バルブV6で一次腐食性希釈ガスの流出 量を調整する。これにより、希釈率が大きい場合の一次 腐食性希釈ガスG1が得られる。

[0009]

【発明が解決しようとする課題】ところで、従来例によ れば、調湿空気発生部1に乾燥空気A0の流出量を調整 釈ガス発生部2に乾燥空気A0,腐食性ガスG0及び-次腐食性希釈ガスG1の流出量を調整する4つの調整バ ルブV3~V6が設けられる。

【0010】このため、試験槽内で目標ガス濃度を得よ うとするためには、'希釈ガス発生部(以下希釈ガス発生 手段ともいう) 2の4箇所の調整バルブV3~V6に加 えて、調湿空気発生部1の調整バルブV1, V2の合計 6箇所を調整しなくてはならない。特に、腐食性ガスG 0の希釈率が大きい場合において、各流量調整の誤差が 腐食性ガスG0の希釈精度に悪影響を与える。例えば、 流量計F4、F5の指示誤差や流量計F3、F6の指示 誤差が一次腐食性希釈ガスG1の濃度に反映し、真の希 釈率からずれる。

【0011】これにより、最終的な試験槽内のガス濃度 が目標ガス濃度から大きくずれ、自然環境を模擬した信 頼性の良い環境試験を行う妨げとなるという問題があ る。本発明は、かかる従来例の問題点に鑑み創作された ものであり、希釈ガス発生手段の構成を工夫して調整バ ルブ数を低減すること、及び、広範囲なガス希釈率に渡 って、安定かつ高精度にガス濃度を調整することが可能 となる環境試験装置及びそのガス濃度調整方法の提供を 目的とする。

[0012]

40

【課題を解決するための手段】本発明の環境試験装置 は、その実施例を図1~6に示すように、乾燥空気A0 及び加湿空気A1の流出量を調整混合して所定流量の調 湿空気A2を発生する調湿空気発生手段11と、前記乾 燥空気AOの流出量を調整して所定流量の希釈乾燥空気 A02を発生し、又は、腐食性ガスG0及び前記乾燥空気 AOの流出量を調整混合して所定流量の一次腐食性希釈 ガスG1を発生する希釈ガス発生手段12と、前記調混 空気A2及び希釈乾燥空気A02を混合して湿度環境空気 Aを試験槽14に供給し、又は、前記調湿空気A2及び 一次腐食性希釈ガスG1を混合して湿度ガス環境空気A Gを試験槽14に供給する混合手段13とを備えること を特徴とする。

【0013】本発明の環境試験装置において、前記希釈 ガス発生手段12は、少なくとも、乾燥空気A0の流出 量を調整する空気流出調整部12Aと、前記腐食性ガスG 0の流出量を調整するガス流出調整部12Bと、前記空気 流出調整部12Aにより調整された希釈乾燥空気A 03及び 前記ガス流出調整部12日により調整された希釈腐食性ガ スG01を混合する混合手段12Cと、前記希釈乾燥空気A 03及び希釈腐食性ガスG01を混合した一次腐食性希釈ガ スG1の流出量を調整する希釈ガス流出調整部12Dとを 有することを特徴とする。

【0014】本発明の環境試験装置において、前記希釈 ガス発生手段12は、前記乾燥空気A0又は腐食性ガス GOのいずれか一方を選択する切り換え部P1と、前記 する2つの調整バルブV1, V2が設けられ、また、希 50 乾燥空気A0の流入を阻止するストップバルブS5と、

前記乾燥空気AOの流出量を検出する流量計を選択する 切り換え部P2と、前記腐食性ガスG0の流出量を検出 する流量計を選択する切り換え部P3とを有することを 特徴とする。

【0015】本発明の環境試験装置のガス濃度調整方法 は、一方で、乾燥空気A0及び加湿空気A1を調整混合 して所定流量の調湿空気A2を発生し、他方で、乾燥空 気A0の流出量を調整して所定流量の第1の希釈乾燥空 気A02を発生し、次に、前記調湿空気A2及び第1の希 釈乾燥空気A02を混合した湿度環境空気Aを試験槽に供 10 給し、その後、前記第1の希釈乾燥空気A02の供給のみ を停止し、一方で、乾燥空気AOの流出量を調整して所 定流量の第2の希釈乾燥空気A03を発生し、他方で、前 記腐食性ガスG0の流出量を調整して所定流量の希釈腐 食性ガスGOIを発生し、次に、前記所定流量の第2の希 釈乾燥空気A03と所定流量の希釈腐食性ガスG01と混合 して一次腐食性希釈ガスG1を発生し、その後、前記供 給が停止された第1の希釈乾燥空気A02に代えて前記一 次腐食性希釈ガスG1を試験槽に供給することを特徴と

【0016】本発明の環境試験装置のガス濃度調整方法 において、前記第1の希釈乾燥空気A02に代えて試験槽 に供給する前記一次腐食性希釈ガスG1の流出量を、次 式、すなわち、

$Q2 = Q1 \cdot N2 / N1$

〔但し、N1:現時点の試験槽内部のガス濃度、Q1: 現時点の一次腐食性希釈ガスの流出量、N2:希望する 試験槽内部のガス濃度、Q2:変更後の一次腐食性希釈 ガスの流出量である〕に従って再調整することを特徴と し、上記目的を達成する。

[0017]

【作用】本発明の環境試験装置によれば、その実施例を 図1に示すように、試験槽14内の湿度を調整する場合 には、一方で、調湿空気発生手段11を操作することに より乾燥空気AO及び加湿空気Alの流出量が調整混合 され、他方で、希釈ガス発生手段12を操作することに より乾燥空気AOの流出量が調整されて所定流量の希釈 乾燥空気A02が発生される。

【0018】この際に、予め、図2に示すような希釈ガ 乾燥空気側を選択し、腐食性ガスG0の流入を阻止す る。さらに、ストップバルブS5を操作して乾燥空気A 0を希釈ガス発生手段12に流入して置く。また、希釈 乾燥空気A02の所定流量は、同図に示すような希釈ガス 発生手段12の希釈ガス流出調整部12Dを調整すること により決定する。

【0019】このため、所定流量の調湿空気A2及び希 釈乾燥空気A02が混合手段13により混合されると、目 標とする湿度環境空気Aを試験槽14に容易に供給する ことが可能となる。また、試験槽14内のガス濃度を調 50 整する場合には、腐食性ガスGO及び乾燥空気AOの流 出量が希釈ガス発生手段12を操作することにより調整 混合されて所定流量の一次腐食性希釈ガスG1が発生さ れる。

【0020】との際に、先の切り換え部P1を操作する ことにより腐食性ガス側を選択し、乾燥空気A0の流入 を阻止する。また、ストップバルブS5を操作して、腐 食性ガスG0の流入パス経路を阻止する。すなわち、図 2に示すような希釈ガス発生手段12の空気流出調整部 12Aを操作することにより、乾燥空気A0の流出量が調 整され、ガス流出調整部12Bを操作することにより、腐 食性ガスG0の流出量が調整される。さらに、調整され た希釈乾燥空気 A 03及び希釈腐食性ガス G 01が混合手段 12Cにより混合される。

【0021】これにより、希釈乾燥空気A03及び希釈腐 食性ガスG01を混合した一次腐食性希釈ガスG1が先に 流量調整された希釈ガス流出調整部12Dを介して混合手 段13に供給される。このことで、希釈乾燥空気A02に 見合う流出量の一次腐食性希釈ガスG1が混合手段13 20 に供給され、混合手段13では希釈乾燥空気A02に代わ り、一次腐食性希釈ガスG1と調湿空気A2とが混合さ れる。

【0022】これにより、目標とする湿度ガス環境空気 AGを試験槽14に容易に供給することが可能となる。 なお、一次腐食性希釈ガスG1の流出量を再調整する場 合には、希釈ガス流出調整部12Dを調整することにより 容易に対処することが可能となる。また、必要に応じて 所定測定範囲の流量計を切り換え部P2, P3により選 択することにより、試験槽14内のガス濃度調整の際の 30 乾燥空気A0や腐食性ガスG0の流出量を簡易かつ精度 良く検出することが可能となる。

【0023】さらに、本発明の環境試験装置のガス濃度 調整方法によれば、試験槽14内の湿度を調整した際の 第1の希釈乾燥空気A02の供給のみを停止し、その後、 供給が停止された第1の希釈乾燥空気A02に代えて一次 腐食性希釈ガスG1を試験槽に供給している。とのた め、第1の希釈乾燥空気A02の流出量と同じ流出量の一 次腐食性希釈ガスGlを自動的に調湿空気A2に混合す ることが可能となる。このことから、従来例に比べて希 ス発生手段12の切り換え部P1を操作することにより 40 釈ガス発生手段12の調整バルブ数を低減すること、及 び、その調整箇所を低減することが可能となる。

> 【0024】なお、最終的な試験槽14内のガス濃度が 目標ガス濃度からずれた場合には、一次腐食性希釈ガス G1の変更後の流出量Q2を、次式、すなわち、

 $Q2 = Q1 \cdot N2/N1$

に従って、希釈ガス流出調整部12Dを再調整することに より、広範囲なガス希釈率に渡って、安定かつ髙精度に ガス濃度を調整することが可能となる。

[0025]

【実施例】次に、図を参照しながら本発明の実施例につ

いて説明をする。図1~6は、本発明の実施例に係る環 境試験装置及びそのガス濃度調整方法の説明図である。 図1は、その環境試験装置の全体構成図であり、図2 は、その主要部の構成図である。図3は、そのガス混合 器及びガス濃度測定部の構成図をそれぞれ示している。 【0026】例えば、湿度40%RH以上及び腐食性ガ スの濃度=ppbレベルの湿度ガス環境空気AGを試験 槽14に供給する環境試験装置は、図1に示すように、 空気清浄装置10,調湿空気発生手段11,希釈ガス発 生手段12, 混合手段13, 試験槽14, ガス濃度測定 10 部15及びガス供給部16を備える。すなわち、空気清 浄装置10は乾燥空気A0を調湿空気発生手段11及び 希釈ガス発生手段12に供給するものであり、フィルタ 及び送風機等を有する。調湿空気発生手段11は、乾燥 空気AO及び加湿空気Alの流出量を調整混合して所定 流量の調湿空気A2を発生する系統である。例えば、調 湿空気発生手段11は、図2に示すように、ストップバ ルブS1, S2, 調整バルブV1, V2, 流量計F1, F2及び加湿器Rから成る。ストップバルブS1は調整 バルブV1に供給する乾燥空気A0を開閉するものであ り、ストップバルブS2は調整バルブV2に供給する乾

【0027】調整バルブV1は加湿器Rに供給する乾燥空気A0の流出量を調整するものであり、流量計F1はそれを表示するものである。調整バルブV2は加湿空気A1を希釈する乾燥空気A0の流出量を調整するものである。流量計F2はそれを表示するものである。加湿器Rは所定流量の乾燥空気A0に純水を噴霧して加湿空気A1を発生する。

燥空気A0を開閉するものである。

【0028】希釈ガス発生手段12は、乾燥空気A0の流出量を調整して所定流量の希釈乾燥空気A0を発生し、又は、腐食性ガスG0及び乾燥空気A0の流出量を調整混合して所定流量の一次腐食性希釈ガスG1を発生する系統である。例えば、希釈ガス発生手段12は、図2に示すように、切り換え部P1、ストップバルブS5,空気流出調整部12A,ガス流出調整部12B,混合手段12C及び希釈ガス流出調整部12Dから成る。

【0029】切り換え部P1は乾燥空気A0又は腐食性ガスG0のいずれか一方を選択するものである。例えば、試験槽14内の湿度を調整する場合には、a側を選 40択し、そのガス濃度を調整する場合には、b側を選択する。なお、ストップバルブS5は、ガス濃度調整時に乾燥空気A0の流入を阻止するものである。空気流出調整部12Aは乾燥空気A0の流出量を調整する系統であり、ストップバルブS3,調整バルブV3,切り換え部P2,流量計F31,F32から成る。ストップバルブS3は調整バルブV3に供給する乾燥空気A0を開閉するものであり、調整バルブV3は混合器12Cに供給する乾燥空気A0の流出量を調整するものである。

【0030】切り換え部P2は流量計F31又はF32のい 50

ずれか一方を選択するものである。流量計F31又はF32は乾燥空気A0の流出量を表示するものである。本発明の実施例では、測定範囲が0~500cc/minの流量計F31を用い、予備として、測定範囲が0~1000cc/minの流量計F32を用いている。ガス流出調整部12Bは腐食性ガスG0の流出量を調整する系統であり、ストップバルブS4、調整バルブV4、切り換え部P3、流量計F41、F42から成る。ストップバルブS4は調整バルブV4に供給する腐食性ガスG0を開閉するものであり、調整バルブV4は混合器12Cに供給する腐食性ガスG0の流出量を調整するものである。

【0031】切り換え部P3は流量計F41又はF42のいずれか一方を選択するものである。流量計F41又はF42は腐食性ガスG0の流出量を表示するものである。本発明の実施例では、測定範囲が0~50cc/minの流量計F41を用い、予備として、測定範囲が0~100cc/minの流量計F42を用いている。混合手段12Cは、空気流出調整部12Aにより調整された希釈乾燥空気A03及びガス流出調整部12Bにより調整された希釈腐食性ガスG01を混合して、一次腐食性希釈ガスG1を発生するものである。例えば、混合手段12Cには、図3(A)に示すような背圧低減混合器を用いる。

【0032】希釈ガス流出調整部12Dは一次腐食性希釈ガスG1の流出量を調整する系統であり、調整バルブV5,オーバーフロー調整バルブV6及び流量計F5から成る。調整バルブV5は混合器13に供給する一次腐食性希釈ガスG1の流出量を調整するものである。調整バルブV6は、一次腐食性希釈ガスG1の変動を抑えるバルブである。流量計F5は一次腐食性希釈ガスG1の流出量を表示するものである。本発明の実施例では、測定範囲が0~20cc/minの流量計F5を用いる。

【0033】混合手段13は、調湿空気A2及び希釈乾 燥空気A02を混合して湿度環境空気Aを試験槽14に供 給し、又は、調湿空気A2及び一次腐食性希釈ガスG1 を混合して湿度ガス環境空気AGを試験槽14に供給す るものである。混合手段13は、混合手段12Cと同様に 図3(A) に示すような背圧低減混合器を用いる。試験 槽14は各種電子機器の環境試験をする容器であり、湿 度ガス環境空気AGが供給される。ガス濃度測定部15 は、図3(B)に示すように、濃度測定器15A及び記録 計15Bから成る。濃度測定器15Aのセンサ部分は試験槽 14に接続され、試験槽内部のガス濃度 Xagが検出さ れる。濃度測定器15Aには、H、Sガスに対してppb レベルの濃度想定ができるガス濃度測定器を用いる。本 発明の実施例では、金薄膜を用いた測定器を使用する。 記録計15日は、試験槽内部のガス濃度を記録するもので あり、濃度測定器15Aで検出された検出信号Sdに基づ いて記録する。記録計15Bには、ペン書きオシログラフ やデジタル記録計を用いる。

【0034】ガス供給部16は腐食性ガスG0を供給す

8

るものであり、本実施例では硫化水素(H,S)の標準 ガスを封入したボンベを用いる。また、腐食性ガスGO には、パーミェーションチューブ法等のガス濃度が公認 されているもの用いる。次に、本発明の実施例に係る環 境試験装置のガス濃度調整方法について説明をする。図 4は、その湿度調整時の流量及びバルブの状態図であ り、図5は、ガス濃度調整時の流量及びバルブの状態図 であり、図6は、ガス濃度比対流量比の関係特性図をそ れぞれ示している。

【0035】例えば、環境温度25°C, H, Sガスの 濃度50ppb,湿度70%RH及び雰囲気流量500 cc/min近傍の腐食環境雰囲気を試験槽14内に作 成する場合、まず、試験槽14内の湿度と温度を調整す る。これに先立ち、予め、純水を加湿容器Rに注入する とともに、切り換え部P1 をa側に切り換え、乾燥空気 A0を選択する。環境温度25°Cについては、室温と しても良く、強制的に試験槽14を加熱し恒温状態とし ても良い。

【0036】さらに、図4に示すように、バルブS1. S2及びS5を「開」にした状態で、調整バルブV1を 20 調整する。例えば、湿度100%RHの加湿空気A1が 140cc/minとなるようにバルブV1を調整す る。また、乾燥空気A0の流出量が350cc/min*

$$N2 = \frac{\alpha}{(\alpha + \beta)} \times \frac{\gamma}{(\varepsilon + \gamma)} \times N0 - \cdots (1)$$

【0041】但し、目標とする試験槽内部のガス濃度N 2を50ppb, 一次腐食性希釈ガスG1の流量値αを 10cc/min, 調湿空気A2の流量値βを490c c/min, 腐食性ガスGOの流量値γを10cc/m in及び標準ガス濃度NOを10000ppbとした 場合である。この結果、(2)式、すなわち、

[0042]

【数2】

$$0.025 = \frac{\gamma}{(\varepsilon + \gamma)} \qquad (2)$$

【0043】となり、腐食性ガスG0の流量値γと希釈 乾燥空気A03の流量値εと関係は0.025となる。と れにより、流出量=390cc/minの希釈乾燥空気 40 A03が混合器12Cに供給される。他方で、図5に示すよ うに、切り換え部P1をb側にして、腐食性ガスG0を 選択し、バルブS4を「開」にした状態で、調整バルブ V4を調整する。例えば、腐食性ガスG0の流出量が1 0 c c/minとなるように調整バルブV4を調整す る。これは、試験槽内の腐食環境雰囲気の安定性を考え ると、1本のボンベガスにより1000時間以上の環境 試験を継続することが望ましい。そこで、腐食性ガスG 0の流量は、より少ない状態が好ましいため、これを1 Occ/minとし、これを先の(2)式に代入し、希 50 部のガス濃度、Q1を現時点の一次腐食性希釈ガスの流

*となるように調整バルブV2を調整する。これにより、 乾燥空気AO及び加湿空気Alが調整混合された流出量 =490cc/minの調湿空気A2が発生する。 【0037】他方で、乾燥空気A0の流出量を調整して 所定流量の希釈乾燥空気A02を発生する。具体的には、 調整バルブV5を10cc/minに調整する。なお、 許容範囲は7~14cc/minである。これにより、 所定湿度の調湿空気A2と希釈乾燥空気A02とが混合器 13により混合される。これらを混合した湿度環境空気 Aが試験槽14に供給されると、湿度70%RH近傍の 湿度環境雰囲気が試験槽14内に作成される。

【0038】その後、試験槽14内のガス濃度を調整す べく、希釈乾燥空気A02の供給のみを停止する。具体的 には、調整バルブV5を10cc/minに調整された 状態で、バルブS5を「閉」にする。次いで、図5に示 すように、バルブS3を「開」にした状態で、調整バル ブV3を調整する。例えば、乾燥空気A0の流出量が3 90cc/minとなるように調整バルブV3を調整す

【0039】ととで、希釈乾燥空気A03の流量値(初期 値) ϵ は、(1)式により算出した。

[0040]

【数1】

釈乾燥空気A03の流量を390cc/minとした。 【0044】 これにより、流出量=10cc/minの 希釈腐食性ガスG01と流出量=390cc/minの希 釈乾燥空気A03とが混合器12Cで混合されると、一次腐 食性希釈ガスG1が発生する。との際に、オーバフロー 調整バルブV6を調整すると、先に供給が停止された希 釈乾燥空気A02に代わり、流出量=10cc/minの 一次腐食性希釈ガスG1が試験槽14に供給される。 【0045】なお、試験槽14内部のガス濃度を安定さ せるために、この状態を維持する。本発明の実施例では 試験槽14内部のガス濃度が約4時間後に安定した。次 に、4時間経過した後に、図3(B)に示したような濃 度測定器15A及び記録計15Bを作動させ、試験槽14内 部のガス濃度を測定し始める。その後、2時間程度の濃 度測定を継続したところ、ガス濃度が38ppb~45 ppbの間で安定した。本発明の実施例では、この平均 値43ppbを以て試験槽内部のガス濃度とした。 【0046】しかし、このガス濃度=43ppbは、目 的とする濃度=50ppbと相違する。このため、図5 に示した各調整バルブV3~V5の流出量を変更する。 この際の流出量の変更方法として、発明者は、(3)式

を経験的に導き出した。すなわち、変更後の一次腐食性

希釈ガスGOIの流出量Q2は、N1を現時点の試験槽内

出量及びN2を希望する試験槽内部のガス濃度とすると、(3)式。

11

 $Q2 = Q1 \cdot N2 / N1 \cdots (3)$

により求められる。との関係式は、図6に示すように、 縦軸にガス濃度比N1/N2を表示し、横軸に流量比Q1/Q2を表示した場合に、傾き θ =45°の一次関数が得られることから導き出した。

【0047】 これに従って各調整バルブV3~V5の流出量を再調整すると、変更後の一次腐食性希釈ガスG0の流出量は約12cc/minとなる。この結果を基づ10いて、調整バルブV5を再調整し、当該ガスG0の流出量=10cc/minから12cc/minに変更する。この結果、4時間経過後の試験槽内部のガス濃度は、51ppb(48~53ppb)が得られた。再度、(3)式に準じて、一次腐食性希釈ガスG0の流出量を求め、調整バルブV5を調整して流出量を12cc/minから11.5cc/minにした。この再度の調整により、4時間経過後の試験槽内部の濃度は、50ppb(49~51ppb)に収束した。

【0048】 Cれにより、環境温度25°C, H, Sガ スの濃度50ppb、湿度70%RH及び雰囲気流量5 00cc/min近傍の腐食環境雰囲気を試験槽14内 に作成することができた。このようにして、本発明の実 施例に係る環境試験装置によれば、空気流出調整部12 A, ガス流出調整部12B, 混合手段12C及び希釈ガス流 出調整部12Dを有する希釈ガス発生手段12を備える。 【0049】このため、試験槽14内の湿度を調整する 場合には、所定流量の調湿空気A2及び希釈乾燥空気A 02が混合手段13により混合されると、目標とする湿度 環境空気Aを試験槽l4に容易に供給することが可能と なる。また、試験槽14内のガス濃度を調整する場合に は、腐食性ガスG0及び乾燥空気A0の流出量が希釈ガー ス発生手段12を操作することにより調整混合されて所 定流量の一次腐食性希釈ガスG1が発生される。 これに より、希釈乾燥空気A03及び希釈腐食性ガスG01を混合 した一次腐食性希釈ガスG1が先に流量調整された希釈 ガス流出調整部12Dを介して混合手段13に供給され る。

【0050】とのため、希釈乾燥空気A02に見合う流出量の一次腐食性希釈ガスG1が混合手段13に供給され、混合手段13では希釈乾燥空気A02に代わり、一次腐食性希釈ガスG1と調湿空気A2とが混合される。とれにより、目標とする湿度ガス環境空気AGを試験槽14に容易に供給することが可能となる。なお、一次腐食性希釈ガスG1の流出量を再調整する場合には、希釈ガス流出調整部12Dを調整するととにより容易に対処することが可能となる。

【0051】さらに、本発明の環境試験装置のガス濃度 う流出量の一次腐食性希釈ガスが調整 調整方法によれば、試験槽14内の湿度を調整した際の る。このことで、目標とする湿度ガス 希釈乾燥空気A02の供給のみを停止し、その後、供給が 50 に容易に供給することが可能となる。

停止された希釈乾燥空気A02に代えて一次腐食性希釈ガスG1を試験槽に供給している。このため、希釈乾燥空気A02の流出量と同じ流出量の一次腐食性希釈ガスG1を自動的に調湿空気A2に混合することが可能となる。なお、従来例のような腐食性ガスの希釈比のみでガス濃度を調整する方法では、H、Sガスの濃度を50ppbに設定した場合、試験槽内部のガス濃度が39ppb(31~51ppb)と大幅な開きがあった。

[0052]また、最終的な試験槽14内のガス濃度が目標ガス濃度からずれた場合には、一次腐食性希釈ガスG1の変更後の流出量Q2を(3)式に従って、希釈ガス流出調整部12Dを再調整することにより、広範囲なガス希釈率に渡って、安定かつ高精度にガス濃度を調整することが可能となった。これにより、従来例に比べて希釈ガス発生手段12の調整バルブ数を1箇所減らすこと、及び、その調整箇所を6から5に低減することが可能となった。また、従来例に比べて、自然環境を模擬した信頼性の良い環境試験を行うことが可能となった。

【0053】さらに、必要に応じて所定測定範囲の流量計F31、F32、F41やF42を切り換え部P2、P3により選択することにより、試験槽14内のガス濃度調整の際の乾燥空気A0や腐食性ガスG0の流出量を簡易かつ精度良く検出することが可能となる。これにより、腐食性ガスG0の希釈率が大きい場合も小さい場合も、腐食性ガスG0の希釈精度を向上させることができ、試験槽14内で目標ガス濃度を容易に得ることが可能となった

【0054】また、本発明の実施例では、腐食性ガスG 0をH、Sガスに限定したが、他の腐食性ガス、例えば、亜硫酸ガス(SO,)、二酸化窒素(NO,)及び塩素系ガス(Cl,)等についても、応用することができる。

[0055]

40

【発明の効果】以上説明したように、本発明の環境試験 装置によれば、空気流出調整部、ガス流出調整部、混合 手段及び希釈ガス流出調整部を有する希釈ガス発生手段 を備える。このため、試験槽内の湿度を調整する場合に は、所定流量の調湿空気及び希釈ガス流出調整部により 流量調整した希釈乾燥空気が混合されることから、目標 とする湿度環境空気を試験槽に容易に供給することがで きる。

【0056】また、試験槽内のガス濃度を調整する場合には、空気流出調整部及びガス流出調整部を操作することにより、腐食性ガス及び希釈乾燥空気の流出量が調整され、この調整された希釈乾燥空気及び希釈腐食性ガスが混合手段により混合される。これにより、先に希釈ガス流出調整部により流量調整された希釈乾燥空気に見合う流出量の一次腐食性希釈ガスが調湿空気に混合される。このことで、目標とする湿度ガス環境空気を試験槽に容易に供給することが可能となる。

14

【0057】さらに、一次腐食性希釈ガスの流出量を再 調整する場合には、希釈ガス流出調整部を調整すること により容易に対処することが可能となる。また、本発明 の環境試験装置のガス濃度調整方法によれば、試験槽内 の湿度を調整した際の希釈乾燥空気の供給のみを停止 し、その後、希釈乾燥空気に代えて一次腐食性希釈ガス を試験槽に供給している。

【0058】とのため、腐食性ガスの希釈率が大きい場 合も小さい場合も、腐食性ガスの希釈精度に悪影響を与 えることなく、希釈乾燥空気の流出量と同じ流出量の一 10 12C, 13…混合手段、 次腐食性希釈ガスを自動的に調湿空気に混合することが 可能となる。このことから、従来例に比べて希釈ガス発 生手段の調整バルブ数を削減すること、及び、その調整 箇所を削減することが可能となる。また、試験槽内を容 易かつ正確に腐食環境雰囲気にすることが可能となる。

【0059】これにより、自然環境を模擬した信頼性の 良い環境試験を行うことが可能となる。また、取扱いが 容易で高信頼度の環境試験装置の提供に寄与するところ が大きい。

【図面の簡単な説明】

【図1】本発明の実施例に係る環境試験装置の全体構成 図である。

【図2】本発明の実施例に係る環境試験装置の主要部の 構成図である。

【図3】本発明の実施例に係るガス混合器及びガス濃度 測定部の構成図である。

【図4】本発明の実施例に係る湿度調整時の流量及びバ ルブの状態図である。

【図5】本発明の実施例に係るガス濃度調整時の流量及 びバルブの状態図である。 ***** 30

*【図6】本発明の実施例に係るガス濃度比対流量比の関 係特性図である。

【図7】従来例に係る環境試験装置の構成図である。 【符号の説明】

10…空気清浄装置。

11…調湿空気発生手段、

12…希釈ガス発生手段、

12A…空気流出調整部、

12日…ガス流出調整部、

12D…希釈ガス流出調整部、

14…試験槽、

15…環境測定部、

15A…濃度測定器、

15B…記録計、

16…ガス供給部、

P1~P3 …切り換え部、

S1~S5…ストップバルブ、

V1~V7…調整バルブ、

20 F1~F5, F31, F32, F41, F42…流量計、

A 0, A 01…乾燥空気、

A 02, A 03…希釈乾燥空気、

A 1 …加湿空気、

A 2 …調湿空気、

A…湿度環境空気、

G0 …腐食性ガス、

G01…希釈腐食性ガス、

G1…一次腐食性希釈ガス、

AG…湿度ガス環境空気。

【図6】

本発明の実施例に係るガス磯度比対流量比の関係特性図

【図1】

本発明の実施例に係る環境試験装置の全体構成図

【図2】

本発明の実施例に係る環境試験装置の主要部の構成図

【図3】

本発明の実施例に係るガス混合器及び ガス濃度測定部の構成関

[図4]

本発明の実施例に係る凝度調整時の流量及び ベルブの状態図

本発明の実施例に係るガス濃度調整時の流量及び バルブの状態図

【図5】

【図7】

従来例に係る環境試験装置の構成図

フロントページの続き

(72)発明者 山▲崎▼詩織

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内

(72)発明者 板橋 真由美

神奈川県川崎市中原区上小田中1015番地

富士通株式会社内