Vyšetřování průběhu funkce - přehled teorie

Věta o nabývání minima a maxima

Pokud je funkce f spojitá na uzavřeném intervalu [a, b], pak existují body $x_1, x_2 \in [a, b]$, ve kterých funkce dosahuje své největší a nejmenší hodnoty.

- V bodě x_1 funkce nabývá svého **maxima**: $f(x_1) = \max_{x \in [a,b]} f(x)$.
- V bodě x_2 funkce nabývá svého **minima**: $f(x_2) = \min_{x \in [a,b]} f(x)$.
- Tedy pro všechna $x \in [a, b]$ platí: $f(x_2) \le f(x) \le f(x_1)$.

Poznámka: Tato věta platí pouze pro funkce spojité na *uzavřeném intervalu*. Pokud by byl interval otevřený nebo by funkce nebyla spojitá, extrémy nemusí existovat.

Rostoucí a klesající funkce v bodě

- Funkce f je **rostoucí v bodě** x_0 , pokud existuje okolí tohoto bodu takové, že pro všechna $x < x_0$ platí $f(x) < f(x_0)$ a pro všechna $x > x_0$ platí $f(x) > f(x_0)$.
- Funkce je **klesající v bodě** x_0 , jestliže v nějakém okolí bodu x_0 platí pro všechna $x < x_0$, že $f(x) > f(x_0)$, a pro všechna $x > x_0$, že $f(x) < f(x_0)$.

Význam znaménka první derivace

- Pokud je $f'(x_0) > 0$, pak je funkce f rostoucí v bodě x_0 .
- Pokud je $f'(x_0) < 0$, pak je funkce f klesající v bodě x_0 .

l'Hospitalovo pravidlo

Jestliže platí

$$\lim f(x) = \lim g(x) = 0$$
 nebo $\lim |g(x)| = +\infty$.

a existuje vlastní nebo nevlastní limita

$$\lim \frac{f'(x)}{g'(x)},$$

pak existuje i limita

$$\lim \frac{f(x)}{g(x)}$$
 a platí $\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$

Symbol lim může znamenat: lim, $\lim_{x \to c^+}$, $\lim_{x \to c^+}$, $\lim_{x \to c^-}$, $\lim_{x \to +\infty}$, $\lim_{x \to -\infty}$.

Příklad 1:

$$\lim_{x \to 0} \frac{\sin x}{x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{\cos x}{1} = \cos 0 = 1.$$

Příklad 2:

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}\stackrel{\frac{0}{\overline{0}}}{=}\lim_{x\to 0}\frac{\sin x}{2x}\stackrel{\frac{0}{\overline{0}}}{=}\lim_{x\to 0}\frac{\cos x}{2}=\frac{1}{2}.$$

Konvexnost a konkávnost v intervalu

Máme přímku danou rovnicí: $y=y_0+k(x-x_0)$. Říkáme, že bod P=[x,y] leží **nad přímkou**, pokud platí

$$y > y_0 + k(x - x_0),$$

a že leží **pod přímkou**, pokud

$$y < y_0 + k(x - x_0)$$
.

Předpokládejme, že funkce f je definovaná v intervalu I a pro **každá tři čísla** $x_1 < x_2 < x_3$ z tohoto intervalu sestrojíme přímku procházející body $P_1 = [x_1, f(x_1)]$ a $P_3 = [x_3, f(x_3)]$.

- Pokud bod P_2 vždy leží **pod** přímkou spojující P_1 a P_3 nebo **na** ní, říkáme, že funkce je **konvexní** v intervalu I.
- Pokud bod P_2 vždy leží **nad** přímkou spojující P_1 a P_3 nebo **na** ní, říkáme, že funkce je **konkávní** v intervalu I.
- Pokud bod P_2 vždy leží **pod** přímkou spojující P_1 a P_3 , říkáme, že funkce je **ryze** konvexní v intervalu I.
- Pokud bod P_2 vždy leží **nad** přímkou spojující P_1 a P_3 , říkáme, že funkce je **ryze konkávní** v intervalu I.

Ryze konvexní a konkávní funkce v bodě

Máme funkci f, která má derivaci v bodě x_0 . Sestrojíme tečnu v bodě x_0 : $y = f(x_0) + f'(x_0)(x - x_0)$. Pokud existuje $\delta > 0$, tak že pro všechna x splňující $0 < |x - x_0| < \delta$ platí:

- $f(x) > f(x_0) + f'(x_0)(x x_0)$ řekneme, že funkce f je **ryze konvexní v bodě** x_0 tedy existuje okolí bodu x_0 , v němž všechny body grafu funkce leží **nad tečnou** ke grafu v bodě x_0 .
- $f(x) < f(x_0) + f'(x_0)(x x_0)$ řekneme, že funkce f je **ryze konkávní v bodě** x_0 tedy existuje okolí bodu x_0 , v němž všechny body grafu funkce leží **pod tečnou** ke grafu v bodě x_0 .

Znaménko druhé derivace a zakřivení grafu funkce

- Je-li $f''(x_0) > 0$, pak je funkce v tomto bodě ryze konvexní.
- Je-li $f''(x_0) < 0$, pak je funkce v tomto bodě ryze konkávní.

Lokální a absolutní (globální) extrémy funkce

Absolutní (globální) extrémy

• Funkce f má v bodě c absolutní maximum na intervalu M, pokud:

$$\forall x \in M: \quad f(x) \le f(c)$$

Hodnota f(c) je největší možná hodnota funkce na daném intervalu.

• Funkce f má v bodě c absolutní minimum na intervalu M, pokud:

$$\forall x \in M: \quad f(x) \ge f(c)$$

Hodnota f(c) je nejmenší možná hodnota funkce na daném intervalu.

Lokální extrémy

• Funkce f má v bodě c lokální maximum, pokud existuje $\delta > 0$, tak že:

$$\forall x \in (c - \delta, c + \delta) : f(x) \le f(c).$$

• Funkce f má v bodě c ostré lokální maximum, pokud existuje $\delta > 0$, tak že:

$$\forall x \in (c - \delta, c) \cup (c, c + \delta) : \quad f(x) < f(c).$$

• Funkce f má v bodě c lokální minimum, pokud existuje $\delta > 0$, tak že:

$$\forall x \in (c - \delta, c + \delta) : f(x) \ge f(c)$$

• Funkce f má v bodě c ostré lokální minimum, pokud existuje $\delta > 0$, tak že:

$$\forall x \in (c - \delta, c) \cup (c, c + \delta) : \quad f(x) > f(c).$$

Hledání absolutních extrémů

- Pokud má funkce f na intervalu I absolutní maximum v bodě $c \in I$, pak tento bod musí být buď krajním bodem intervalu I, nebo bodem, kde má funkce f lokální maximum.
- Stejně tak, pokud má funkce f na intervalu I absolutní minimum v bodě $d \in I$, pak tento bod je buď krajním bodem intervalu I, nebo bodem, kde má funkce f lokální minimum.

Chceme-li najít absolutní extrémy funkce na uzavřeném intervalu, stačí:

- 1. najít krajní body intervalu,
- 2. najít body, ve kterých je první derivace rovna nule nebo neexistuje,
- 3. porovnat funkční hodnoty v těchto bodech.

Chceme-li najít absolutní extrémy funkce na otevřeném intervalu (a, b), stačí:

- 1. v krajních bodech intervalu spočítat jednostranné limity $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$,
- 2. tyto limity porovnat s funkčními hodnotami v bodech, ve kterých je první derivace rovna nule nebo neexistuje,
- 3. pokud jsou limity větší (nebo menší) než všechny vnitřní hodnoty, pak funkce nenabývá absolutního maxima (nebo minima) pouze se k němu blíží.

Nutná podmínka existence lokálního extrému

Pokud $f'(x_0) \neq 0$, potom v bodě x_0 **není** lokální extrém. Rovnost $f'(x_0) = 0$ je **nutná**, ale **nestačí** k tomu, aby v bodě byl extrém.

Postačující podmínka existence lokálního extrému

Předpokládejme, že funkce f je spojitá v intervalu (a, b) a má derivaci ve všech bodech tohoto intervalu kromě bodu $x_0 \in (a, b)$. Dále předpokládejme existenci $\delta > 0$, tak že:

- Buď f'(x) > 0 pro $\forall x \in (x_0 \delta, x_0)$ a f'(x) < 0 pro $\forall x \in (x_0, x_0 + \delta)$, potom má funkce f v bodě x_0 ostré lokální maximum.
- Nebo f'(x) < 0 pro $\forall x \in (x_0 \delta, x_0)$ a f'(x) > 0 pro $\forall x \in (x_0, x_0 + \delta)$, potom má funkce f v bodě x_0 ostré lokální minimum.
- Nebo f'(x) > 0 pro $\forall x \in (x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, potom je funkce f v bodě x_0 **rostoucí**.
- Nebo f'(x) < 0 pro $\forall x \in (x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, potom je funkce f v bodě x_0 klesající.

Inflexní bod

Jestliže má funkce f v bodě x_0 derivaci, sestrojíme v tomto bodě **tečnu**: $y = f(x_0) + f'(x_0)(x - x_0)$. Pokud existuje číslo $\delta > 0$, pro které nastává jeden z následujících dvou případů:

- Buď bod [x, f(x)] leží pro $\forall x \in (x_0 \delta, x_0)$ pod tečnou a pro $\forall x \in (x_0, x_0 + \delta)$ nad tečnou,
- nebo bod [x, f(x)] leží pro $\forall x \in (x_0 \delta, x_0)$ nad tečnou a pro $\forall x \in (x_0, x_0 + \delta)$ pod tečnou.

Pak říkáme, že funkce f má v bodě x_0 inflexi nebo také, že graf funkce má v bodě $[x_0, f(x_0)]$ inflexní bod. V takovém bodě dochází ke změně zakřivení grafu: funkce se mění z konvexní na konkávní nebo naopak.

Nutná podmínka existence inflexního bodu

Pokud $f''(x_0) \neq 0$, pak funkce v bodě x_0 nemá inflexi. Tato podmínka je nutná, nikoliv postačující. Tedy i když $f''(x_0) = 0$, nemusí tam inflexe být.

Postačující podmínka existence inflexního bodu

Jestliže funkce f má spojitou první derivaci v intervalu (a, b), má druhou derivaci v každém bodě (a, b) kromě bodu $x_0 \in (a, b)$ a jestliže existuje $\delta > 0$ takové, že:

- Buď f''(x) < 0 pro $x \in (x_0 \delta, x_0)$ a f''(x) > 0 pro $x \in (x_0, x_0 + \delta)$, potom má funkce f v bodě x_0 inflexní bod.
- Nebo f''(x) > 0 pro $x \in (x_0 \delta, x_0)$ a f''(x) < 0 pro $x \in (x_0, x_0 + \delta)$, potom má funkce f v bodě x_0 inflexní bod.
- Nebo $f''(x) > 0 \quad \forall x \in (x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, potom je funkce v bodě x_0 ryze konvexní.
- Nebo $f''(x) < 0 \quad \forall x \in (x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$, potom je funkce v bodě x_0 ryze konkávní.

Asymptoty

Asymptota je přímka, ke které se graf funkce blíží, když se $x \to \pm \infty$ nebo když $f(x) \to \pm \infty$.

• Svislá asymptota: Funkce má v bodě x = c svislou asymptotu, pokud platí:

$$\lim_{x \to c^+} f(x) = \pm \infty \quad \text{nebo} \quad \lim_{x \to c^-} f(x) = \pm \infty.$$

• Šikmá nebo vodorovná asymptota: Pokud existují vlastní limity:

$$k = \lim_{x \to \infty} \frac{f(x)}{x}, \quad q = \lim_{x \to \infty} (f(x) - kx),$$

potom má funkce asymptotu y = kx + q. Pro k = 0 máme vodorovnou asymptotu.

• To stejné platí i pro $x \to -\infty$, takže šikmé asymptoty mohou být maximálně dvě.

Příklad: Vyšetření průběhu funkce

Zadaná funkce:

$$f(x) = \frac{x^2 - 1}{x - 2}$$

1. Definiční obor

Funkce není definována v bodě, kde je jmenovatel roven nule, tj. v bodě x=2.

$$\mathbb{D}_f = \mathbb{R} \setminus \{2\} = (-\infty, 2) \cup (2, +\infty)$$

2. Limity v krajních bodech definičního oboru

a) Limita pro $x \to 2^-$:

$$\lim_{x \to 2^{-}} \frac{x^{2} - 1}{x - 2} = \lim_{x \to 2^{-}} \frac{3}{x - 2} \stackrel{\text{typ } \frac{3}{0}}{=} -\infty$$

b) Limita pro $x \to 2^+$:

$$\lim_{x \to 2^+} \frac{x^2 - 1}{x - 2} = \lim_{x \to 2^+} \frac{3}{x - 2} \stackrel{\text{typ } \frac{3}{0}}{=} + \infty$$

 \Longrightarrow Funkce má svislou asymptotu: x=2a funkce nemá absolutní extrémy.

3. Chování v nekonečnu a šikmá asymptota

Zjednodušíme dělením:
$$\frac{x^2-1}{x-2} = \frac{(x^2-2x)+2x-1}{x-2} = x + \frac{(2x-4)+4-1}{x-2} = x + 2 + \frac{3}{x-2}$$

c) Limita pro $x \to +\infty$:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x + 2 + \frac{3}{x - 2} \right) = \infty + 2 - 0 = \infty$$

d) Limita pro $x \to -\infty$:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x + 2 + \frac{3}{x - 2} \right) = -\infty + 2 - 0 = -\infty$$

 \Longrightarrow Funkce má šikmou asymptotu: y=x+2, protože f(x)-x-2 jde k nule, když $x\to\pm\infty$.

4. Vyšetření první derivace

$$f(x) = x + 2 + \frac{3}{x - 2}$$
 \Rightarrow $f'(x) = \left(x + 2 + \frac{3}{x - 2}\right)' = 1 + 0 - \frac{3}{(x - 2)^2}$

Hledáme body, kde f'(x) = 0 nebo kde derivace neexistuje.

$$1 - \frac{3}{(x-2)^2} = \frac{(x-2)^2 - 3}{(x-2)^2} = 0 \quad \Leftrightarrow \quad (x-2)^2 = 3 \quad \Leftrightarrow \quad x - 2 = \pm\sqrt{3}$$

Dělení nulou v bodě x=2 není problém, protože tento bod zároveň není ani v definičním oboru funkce f.

Zkoumáme znaménko derivace $f'(x) = \frac{(x-2)^2 - 3}{(x-2)^2} = \frac{(x-2-\sqrt{3})(x-2+\sqrt{3})}{(x-2)^2}$. Poposí pulových bodů čitatela i improvatela rozdělíma definiční ober na jednotlivé intervaly

mocí nulových bodů čitatele i jmenovatele rozdělíme definiční obor na jednotlivé intervaly a určíme znaménko na každém intervalu:

- $\bullet\,$ V bodě $x=2-\sqrt{3}$ derivace mění znaménko z + na $-\Rightarrow$ lokální maximum
- $\bullet\,$ V bodě x=2 funkce není definovaná
- $\bullet\,$ V bodě $x=2+\sqrt{3}$ derivace mění znaménko z -na $+\Rightarrow$ lokální minimum

5. Vyšetření druhé derivace

Zkoumáme znaménko druhé derivace

$$f''(x) = \left(1 - \frac{3}{(x-2)^2}\right)' = 0 + \left(-3(x-2)^{-2}\right)' = 6(x-2)^{-3} = \frac{6}{(x-2)^3}$$

pomocí nulových bodů čitatele i jmenovatele rozdělíme definiční obor na jednotlivé intervaly a určíme znaménko na každém intervalu:

x	$(-\infty,2)$	2	$(2,\infty)$
f''(x)	_	nedefinována	+
Charakterizace	konkávní	není inflexní bod	konvexní

6. Graf funkce

Obrázek 1: Graf funkce $f(x) = \frac{x^2-1}{x-2}$