ALGEBRAIC GEOMETRY

Beijing Institute of Technology, 2019

Exercises for chapter 3: Affine algebraic varieties

We use the notations from the course, i.e. \mathbb{K} is a field, $\overline{\mathbb{K}}$ its algebraic closure, and so on.

Exercise 1. In the following we will always look at the closure in the Zariski topology of the variety. Show the following statements

- (a) Let $\mathbb{C}^*_{fin} \subset \mathbb{C}^*$ be the elements of finite multiplicative order in \mathbb{C}^* . Show that the closure of \mathbb{C}^*_{fin} is \mathbb{C}^* .
- (b) Let $O_2(\mathbb{C}) = \{A \in Gl_2(\mathbb{C}) \mid A^T = A^{-1}\} \subset Gl_2(\mathbb{C})$ be the complex orthogonal matrices. Show that $O_2(\mathbb{C})$ is closed in $Gl_2(\mathbb{C})$.
- (c) Let $U_2(\mathbb{C}) = \{A \in Gl_2(\mathbb{C}) \mid \overline{A}^T = A^{-1}\} \subset Gl_2(\mathbb{C})$ be the complex hermitian matrices, where \overline{A}^T is the complex conjugate of the transpose of A. Show that the closure of $U_2(\mathbb{C})$ is $Gl_2(\mathbb{C})$.

Exercise 2. Assume $\mathbb{K} = \overline{\mathbb{K}}$ and $(X, \mathbb{K}[X])$ is an affine algebraic variety over \mathbb{K} .

- (a) Show that $\Delta_X = \{(x, x) \mid x \in X\}$ is closed in $(X \times X, \mathbb{K}[X] \otimes \mathbb{K}[X])$.
- (b) Assume that X is irreducible and let $f \in \mathbb{K}(X)$. Show that $\operatorname{Pol}(f)$, the subset of poles of f in X, is an affine variety.
- (c) Show that for $n \geq 2$, $\mathbb{K}^n \setminus \{(0, \dots, 0)\}$ is not an affine algebraic variety.

Exercise 3. Assume $\mathbb{K} = \overline{\mathbb{K}}$. Show the following

- (a) $\{A \in M_n(\mathbb{K}) \mid \text{rank}(A) \leq r\}$ for $0 \leq r \leq n$ is a closed subvariety of $M_n(\mathbb{K})$,
- (b) $\{A \in M_n(\mathbb{K}) \mid A \text{ nilpotent}\}\$ is a closed and irreducible subvariety of $M_n(\mathbb{K})$,
- (c) $\{A \in M_n(\mathbb{K}) \mid A \text{ diagonizable}\}\$ is an irreducible subset of $M_n(\mathbb{K})$.