Fall 2025 Introduction to Algebra (I)

Preview Note

 $\label{eq:continuous} \mbox{Department: Atmospheric Sciences} \quad \mbox{Name: Guan-Hao, Chen} \quad \mbox{Student ID: B11209022}$

Contents

0 Preliminaries

0.1 Basics

The subset of a given set A is

$$B = \{a \in A \mid \dots \text{ (conditions on a)} \dots \}$$

The order (or cardinality) of a set A will be denoted by |A|. If A is a finite set, the order of A is simply the number of elements of A.

The Cartesian product of two sets A and B is the collation $A \times B = \{(a, b) \mid a \in A, b \in B\}$, of ordered pairs of elements from A and B.

The following notation for some common sets of numbers

- 1. Integers: $\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\}$.
- 2. Rational numbers: $\mathbb{Q} = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}.$
- 3. **Real numbers**: $\mathbb{R} = \{\text{all decimal expansions} \pm d_1 d_2 \dots d_n . a_1 a_2 a_3 \dots \}.$
- 4. Complex numbers: $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i^2 = -1\}.$
- 5. \mathbb{Z}^+ , \mathbb{Q}^+ and \mathbb{R}^+ will denote the positive (nonzero) elements in \mathbb{Z} , \mathbb{Q} and \mathbb{R} , respectively.

The notation $f: A \to B$ or $A \xrightarrow{f} B$ to denote a function (or map) f from A to B, and the value of f at a is denoted by f(a). The set A is called the domain of f and B is called the codomain of f. The notation $f: a \mapsto b$ or $a \mapsto b$ if f is understood indicates that f(a) = b, i.e., the function is being specified on elements. If the function f is not specified on elements, it is important in general to check that f is well defined, i.e., is unambiguously determined.

The set

$$f(A) = \{b \in B \mid b = f(a), \text{ for some } a \in A\}$$

is a subset of B, called the range or image of f (or the image of A under f). For each subset C of B, the set

$$f^{-1}(C) = \{ a \in A \mid f(a) \in C \}$$

consisting of the elements of A mapping into C under f is called the *preimage* or *inverse image* of C under f. For each $b \in B$, the preimage of $\{b\}$ under f is called the *fiber* of f over b. Note that f^{-1} is not in general a function and that the fibers of f generally contain many elements since there may be many elements of A mapping to the element b.

If $f: A \to B$ and $g: B \to C$, then the composite map $g \circ f: A \to C$ is defined by

$$(g \circ f)(a) = g(f(a))$$

Definition 0.1-1 Let $f: A \rightarrow B$

- 1. f is injective or is an injection if whenever $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$.
- 2. f is surjective or is a surjection if for all $b \in B$, there is some $a \in A$ such that f(a) = b.
- 3. f is bijective or is a bijection if it is both injective and surjective. If such a bijection f exists from A to B, we say A and B are in bijective correspondence.
- 4. f has a left inverse if there is a function $g: B \to A$ such that $g \circ f: A \to A$ is the identity map on A, i.e., $(g \circ f)(a) = a$ for all $a \in A$.
- 5. f has a right inverse if there is a function $h: B \to A$ such that $f \circ h: B \to B$ is the identity map on B, i.e., $(f \circ h)(b) = b$ for all $b \in B$.

Proposition 0.1-1 Let $f: A \rightarrow B$

- 1. The map f is injective if and only if f has a left inverse.
- 2. The map f is surjective if and only if f has a right inverse.
- 3. The map f is a bijection if and only if there exists $g: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.
- 4. If A and B are finite sets with the same number of elements (i.e., |A| = |B|), then $f: A \to B$ is bijective if and only if f is injective if and only if f is surjective.

Proof.

1. (\Rightarrow) Suppose f is injective. Notice that if $b \in f(A)$ then there is a unique $a \in A$ such that f(a) = b. Choose any $a_0 \in A$, and define $g : B \to A$ by

$$g(b) = \begin{cases} a & \text{if } b \in f(A) \\ a_0 & \text{if } b \notin f(A) \end{cases}$$

Then $(g \circ f)(a) = a$ for all $a \in A$, so g is a left inverse of f.

- (\Leftarrow) Suppose f has a left inverse g, and that f(a) = f(b). Then g(f(a)) = g(f(b)), and since $g \circ f : A \to A$, we have a = b, which shows f is injective.
- 2. (\Rightarrow) Suppose f is surjective. Then every $b \in B$ is in the image of f, so for each $b \in B$ pick an element $g(b) \in A$ such that f(g(b)) = b. Then g is a right inverse of f.
 - (\Leftarrow) Suppose f has a right inverse g and let $b \in B$. Then f(g(b)) = b as $f \circ g : B \to B$. This shows $b \in f(A)$, so f(A) = B and f is surjective.
- 3. (\Rightarrow) Suppose f is a bijection, then f is injective and surjective by definition. By part 1. there exists a left inverse $g: B \to A$ such that $g \circ f: A \to A$, and by part 2. there exists a right inverse $g: B \to A$ such that $f \circ g: B \to B$.
 - (\Leftarrow) Suppose there exists $g: B \to A$ such that $f \circ g: B \to B$ and $g \circ f: A \to A$. Then by part 1., f is surjective, and by part 2., f is injective. Then f is a bijection.

4. Claim:

- (1) If $f: A \to B$ is injective, then $|A| \le |B|$.
- (2) If $f: A \to B$ is surjective, then $|A| \ge |B|$.
- (3) If $f: A \to B$ is a bijection, then |A| = |B|.

proof. Let $A = \{a_1, a_2, \dots, a_m\}$ has m elements.

- (1) $\{f(a_1), f(a_2), \dots, f(a_m)\}\$ is a subset of B, because f is injective, $|A| = m \leq |B|$.
- (2) $\{f(a_1), f(a_2), \dots, f(a_m)\} = B$ has at most m different elements because f is surjective, $|A| = m \ge |B|$.
- (3) This follows from (1) and (2), since $|A| \leq |B|$ and $|A| \geq |B|$, we have |A| = |B|.

The situation of part 3. of **Proposition 0.1-1**, the map g is necessarily unique and we shall say g is the 2-sided inverse (or inverse) of f.

A permutation of a set A is simply a bijection from A to itself.

If $A \subseteq B$ and $f: B \to C$, we denote the restriction of f to A by $f|_A$.

If $A \subseteq B$ and $g: A \to C$ and there is a function $f: B \to C$ such that $f|_A = g$, we shall say f is an extension of g to B.

Definition 0.1-2 Let A be a nonempty set.

- 1. A binary relation on a set A is a subset R of $A \times A$ and we write $a \sim b$ if $(a, b) \in R$.
- 2. The relation \sim on A is said to be:
 - (a) reflexive if $a \sim a$, for all $a \in A$
 - (b) symmetric if $a \sim b$ implies $b \sim a$ for all $a, b \in A$
 - (c) transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$ for all $a, b, c \in A$

A relation is an equivalence relation if it is reflexive, symmetric and transitive.

- 3. If \sim defines an equivalence relation on A, then the equivalence class of $a \in A$ is defined to be $\{x \in A \mid x \sim a\}$. Elements of the equivalence class of a are said to be equivalent to a. If C is an equivalence class, any element of C is called a representative of the class C.
- 4. A partition of A is any collection $\{A_i \mid i \in I\}$ of nonempty subsets of A (I some indexing set) such that
 - (a) $A = \bigcup_{i \in I} A_i$
 - (b) $A_i \cap A_j = \emptyset$ for all $i, j \in I$ with $i \neq j$, i.e., A is the disjoint union of the sets in the partition.

Proposition 0.1-2 Let A be a nonempty set.

- 1. If \sim defines an equivalence relation on A, then the set of equivalence classes of \sim form a partition of A.
- 2. If $\{A_i \mid i \in I\}$ is a partition of A, then there is an equivalence relation on A whose equivalence classes are precisely the sets A_i , $i \in I$.

Proof. Link

0.2 Properties of the integers

0.2.1 Well Ordering of $\mathbb Z$

If A is any nonempty subset of \mathbb{Z}^+ , there is some element $m \in A$ such that $m \leq a$, for all $a \in A$ (m is call a minimal element of A).

0.2.2 Divides

If $a, b \in \mathbb{Z}$ with $a \neq 0$, we say a divides b if there is an element $c \in \mathbb{Z}$ such that b = ac. In this case, we write $a \mid b$; if a does not divide b, we write $a \nmid b$.

0.2.3 Greatest Common Divisor (g.c.d.)

If $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer d, called the greatest common divisor of a and b (or g.c.d. of a and b), satisfying:

- (1) $d \mid a$ and $d \mid b$ (d is a common divisor of a and b)
- (2) If $e \mid a$ and $e \mid b$, then $e \leq d$ (d is the greatest such divisor)

The g.c.d. of a and b will be denoted by (a, b) (or gcd(a, b)). If (a, b) = 1, we say that a and b are relatively prime.

0.2.4 Least Common Multiple (l.c.m.)

If $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer l, called the *least common multiple* of a and b (or l.c.m. of a and b), satisfying:

- (1) $a \mid l$ and $b \mid l$ (l is a common multiple of a and b)
- (2) If $a \mid m$ and $b \mid m$, then $l \leq m$ (l is the least such multiple)

The l.c.m. of a and b will be denoted by [a,b] (or lcm(a,b)). The connection between the g.c.d. d and the l.c.m. l of two integers a and b is given by dl = ab.

0.2.5 The Division Algorithm

If $a, b \in \mathbb{Z} \setminus \{0\}$, then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = qb + r$$
 and $0 \le r < |b|$

where q is the quotient and r is the remainder.

0.2.6 The Euclidean Algorithm

If $a, b \in \mathbb{Z} \setminus \{0\}$, then we obtain a sequence of quotients and remainders

$$a = q_0 b + r_0 \tag{0}$$

$$b = q_1 r_0 + r_1 \tag{1}$$

$$r_0 = q_2 r_1 + r_2 (2)$$

$$r_1 = q_3 r_2 + r_3 \tag{3}$$

:

$$r_{n-2} = q_n r_{n-1} + r_n (n)$$

$$r_{n-1} = q_{n+1}r_n (n+1)$$

where r_n is the last nonzero reminder. Such an r_n exists since $|b| > |r_0| > |r_1| > \cdots > |r_n|$ is a decreasing sequence of strictly positive integers if the reminders are nonzero and such a sequence cannot continue indefinitely. Then r_n is the g.c.d. (a, b) of a and b.

Example 0.2.6-1 Find the g.c.d. of a = 57970 and b = 10353.

Sol. Applying the Euclidean algorithm, we have

$$57970 = (5)10353 + 6205$$

$$10353 = (1)6205 + 4148$$

$$6205 = (1)4148 + 2057$$

$$4148 = (2)2057 + 34$$

$$2057 = (60)34 + 17$$

34 = (2)17

Thus, the g.c.d. of 57970 and 10353 is (57970, 10353) = 17.

0.2.7 \mathbb{Z} -linear Combinations

One consequence of the Euclidean Algorithm which we shall use regularly is the following: if $a, b \in \mathbb{Z} \setminus \{0\}$, then there exist $x, y \in \mathbb{Z}$ such that

$$(a,b) = ax + by$$

that is, the g.c.d. of a and b is a \mathbb{Z} -linear combination of a and b. This follows by recursively writing the element r_n in the Euclidean Algorithm in terms of the previous remainders (namely, use equation (n) above to solve for $r_n = r_{n-2} - q_n r_{n-1}$ in terms of the remainders r_{n-1} and r_{n-2} , then use equation (n-1) to write r_n in terms of the remainders r_{n-2} and r_{n-3} , etc., eventually writing r_n in terms of a and b).

Example 0.2.7-1 Use the Euclidean Algorithm to find integers x, y such that

$$(57970, 10353) = 57970x + 10353y$$

Sol. Based on **Example 0.2.6-1** we know that (57970, 10353) = 17. Start from the fifth equation in the Euclidean Algorithm,

$$17 = 2057 - 60 \cdot 34$$

$$= 2057 - 60 \cdot (4148 - (2)2057) = 121 \cdot 2057 - 60 \cdot 4148$$

$$= 121 \cdot (6205 - (1)4148) - 60 \cdot 4148 = 121 \cdot 6205 - 181 \cdot 4148$$

$$= 121 \cdot 6205 - 181 \cdot (10353 - (1)6205) = 302 \cdot 6205 - 181 \cdot 10353$$

$$= 302 \cdot (57970 - (5)10353) - 181 \cdot 10353$$

$$= 302 \cdot 57970 + (-1691) \cdot 10353$$

Thus, x = 302 and y = -1691 is a solution of (57970, 10353) = 57970x + 10353y.

0.2.8 Prime and Composite Numbers

An element p of \mathbb{Z}^+ is called a *prime* if p > 1 and the only positive divisors of p are 1 and p. An integer n > 1 which is not prime is called *composite*.

0.2.9 The Fundamental Theorem of Arithmetic

If $n \in \mathbb{Z}$, n > 1, then n can be factored uniquely into the product of primes, i.e., there are distinct primes p_1, p_2, \ldots, p_s and positive integers $\alpha_1, \alpha_2, \ldots, \alpha_s$ such that

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$$

This factorization is unique in the sense that if q_1, q_2, \ldots, q_t are any distinct primes and positive integers $\beta_1, \beta_2, \ldots, \beta_t$ such that

$$n = q_1^{\beta_1} q_2^{\beta_2} \dots q_t^{\beta_t}$$

then s=t and if we arrange the two sets of primes in increasing order, then $q_i=p_i$ and $\alpha_i=\beta_i$ $1 \le i \le s$.

Suppose the positive integers a and b are expressed as products of prime powers:

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s} \qquad b = p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s}$$

where p_1, p_2, \ldots, p_s are distinct and the exponents are ≥ 0 (we allow the exponents to be 0 here, so that the products are taken over the same set of primes – the exponent will be 0 if that prime is not actually a divisor). Then the g.c.d. of a and b is

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \dots p_s^{\min\{\alpha_s,\beta_s\}}$$

and the l.c.m. of a and b is

$$[a,b] = p_1^{\max\{\alpha_1,\beta_1\}} p_2^{\max\{\alpha_2,\beta_2\}} \dots p_s^{\max\{\alpha_s,\beta_s\}}$$

0.2.10 Euler φ -function

For $n \in \mathbb{Z}^+$, let $\varphi(n)$ be the number of positive integers $a \leq n$ with a relatively prime to n, i.e., (a,n)=1. For example, $\varphi(12)=4$ since the positive integers 1,5,7,11 are the only positive integers less than or equal to 12 which have no factors in common with 12. For prime $p, \varphi(p)=p-1$, and more generally, for all $a \geq 1$ we have the formula

$$\varphi(p^a) = p^a - p^{a-1} = p^{a-1}(p-1)$$

The function φ is multiplicative in the sense that

$$\varphi(ab) = \varphi(a)\varphi(b)$$
 if $(a,b) = 1$

(note that it is important here that a and b be relatively prime). Together with the formula above this gives a general formula for the values of φ : if $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$, then

$$\varphi(n) = \varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2})\dots\varphi(p_s^{\alpha_s})$$

= $p_1^{\alpha_1-1}(p_1-1)p_2^{\alpha_2-1}(p_2-1)\dots p_s^{\alpha_s-1}(p_s-1)$

Example 0.2.10-1 Find the value of $\varphi(36)$.

Sol. The prime factorization of 36 is $36 = 2^2 \cdot 3^2$, therefore

$$\varphi(36) = \varphi(2^2)\varphi(3^2)$$

$$= 2^{2-1}(2-1)3^{2-1}(3-1)$$

$$= 2 \cdot 1 \cdot 3 \cdot 2 = 12$$

0.3 $\mathbb{Z}/n\mathbb{Z}$: The integers modulo n

Let n be a fixed positive integer. Define a relation on \mathbb{Z} by

$$a \sim b$$
 if and only if $n \mid (a - b)$

Clearly $a \sim a$, and $a \sim b$ implies $b \sim a$ for any integers a and b, so this relation is trivially reflexive and symmetric. If $a \sim b$ and $b \sim c$, then n divides a - b and n divides b - c, so n also divides the sum of these two integers, i.e., n divides (a - b) + (b - c) = a - c, so $a \sim c$ and the relation is transitive. Hence, this is an equivalence relation. Write $a \equiv b \pmod{n}$ (read: a is congruent to $b \pmod{n}$ if $a \sim b$. For any $k \in \mathbb{Z}$ we shall denote the equivalence class of a by \overline{a} – this is called the congruent class or residue class of $a \pmod{n}$ and consists of the integers which differ from a by an integral multiple of n, i.e.,

$$\overline{a} = \{a + kn \mid k \in \mathbb{Z}\}\$$
$$= \{a, a \pm n, a \pm 2n, a \pm 3n, \dots\}$$

There are precisely n distinct equivalence classes mod n, namely

$$\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}$$

determined by the possible remainders after division by n, and this residue classes partition the integers \mathbb{Z} . the set of equivalence classes under this equivalence relation will be denoted by $\mathbb{Z}/n\mathbb{Z}$, and called the *integers modulo* n (or the *integers mod* n).

The process of finding the equivalence class mod n of some integer a is often referred to as reducing a mod n. This terminology also frequently refers to finding the smallest nonnegative integer congruent to a mod n (the least residue of a mod n).

Definition 0.3-1 We can define an addition and a multiplication for the elements of $\mathbb{Z}/n\mathbb{Z}$, defining modular arithmetic as follows: for $\overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$, define their sum and product by

$$\overline{a} + \overline{b} = \overline{a+b}$$
 and $\overline{a} \cdot \overline{b} = \overline{ab}$

Given any two elements \overline{a} and \overline{b} in $\mathbb{Z}/n\mathbb{Z}$, to compute their sum (respectively, their product) take any representative integer a in the class \overline{a} and any representative integer b in the class \overline{b} , and add (respectively, multiply) the integers a and b as usual in \mathbb{Z} , and then take the equivalence class containing the result.

Theorem 0.3-1 The operations of addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$ defined in **Definition 0.3-1** are both well defined, that is, they do not depend on the choices of representatives for the classes involved. More precisely, if $a_1, a_2 \in \mathbb{Z}$ and $b_1, b_2 \in \mathbb{Z}$ with $\overline{a_1} = \overline{b_1}$ and $\overline{a_2} = \overline{b_2}$, then $\overline{a_1 + a_2} = \overline{b_1 + b_2}$ and $\overline{a_1 a_2} = \overline{b_1 b_2}$, i.e., if

$$a_1 \equiv b_1 \pmod{n}$$
 and $a_2 \equiv b_2 \pmod{n}$

then

$$a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$$
 and $a_1 a_2 \equiv b_1 b_2 \pmod{n}$

Proof. Suppose $a_1 \equiv b_1 \pmod{n}$, i.e., $a_1 - b_1$ is divisible by n. Then $a_1 = b_1 + sn$ for some integer s. Similarly, $a_2 \equiv b_2 \pmod{n}$ means $a_2 = b_2 + tn$ for some integer t. Then $a_1 + a_2 = (b_1 + b_2) + (s + t)n$, so $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, which shows that the sum of the residue classes is independent of the representatives chosen.

Similarly, $a_1a_2 = (b_1 + sn)(b_2 + tn) = b_1b_2 + (b_1t + b_2s + stn)n$, so $a_1a_2 \equiv b_1b_2 \pmod{n}$, and so the product of the residue classes is also independent of the representatives chosen.

Example 0.3-1 Find the last two digits in the number 2^{1000} .

Sol. First observe that the last two digits give the remainder of 2^{1000} after we divided by 100, so we are interested in the residue class mod 100 containing 2^{1000} . We compute $2^{10} = 1024 \equiv 24 \pmod{100}$, so then $2^{20} = (2^{10})^2 \equiv 24^2 = 576 \equiv 76 \pmod{100}$. Then $2^{40} = (2^{20})^2 \equiv 76^2 = 5776 \equiv 76 \pmod{100}$. Similarly, $2^{80} \equiv 2^{160} \equiv 2^{320} \equiv 2^{640} \equiv 76 \pmod{100}$. Finally, $2^{1000} = 2^{640} \cdot 2^{320} \cdot 2^{40} \equiv 76 \cdot 76 \cdot 76 \equiv 76 \pmod{100}$. Thus, the last two digits of 2^{1000} are 76.

An important subset of $\mathbb{Z}/n\mathbb{Z}$ consists of the collection of residue classes which have a multiplicative inverse in $\mathbb{Z}/n\mathbb{Z}$:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \text{there exists } \overline{c} \in \mathbb{Z}/n\mathbb{Z} \text{ with } \overline{a} \cdot \overline{c} = \overline{1} \}$$

Proposition 0.3-1

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid (a, n) = 1 \}$$

Proof. It is easy to see that if any representative of \overline{a} is relatively prime to n, then all representatives are relatively prime to n, so that the set on the right in the proposition is well defined.

If a is an integer relatively prime to n, then the Euclidean Algorithm produces integers x and y satisfying ax + ny = 1, hence $ax \equiv 1 \pmod{n}$, so that \overline{x} is the multiplicative inverse of \overline{a} in $\mathbb{Z}/n\mathbb{Z}$. This gives an efficient method for computing multiplicative inverses in $\mathbb{Z}/n\mathbb{Z}$.

Example 0.3-2 Find the multiplicative inverse of $\overline{17}$ in $\mathbb{Z}/60\mathbb{Z}$.

Sol. Suppose n = 60 and a = 17. Applying the Euclidean Algorithm, we obtain

$$60 = (3)17 + 9$$
$$17 = (1)9 + 8$$
$$9 = (1)8 + 1$$
$$8 = (8)1$$

so that a and n are relatively prime, and $(-7)17+2\cdot 60=1$. Hence, $\overline{-7}=\overline{53}$ is the multiplicative inverse of $\overline{17}$ in $\mathbb{Z}/60\mathbb{Z}$.

Part I

Group Theory

1 Introduction to Groups

1.1 Basic Axioms and Examples

Definition 1.1-1

- 1. A binary operation \star on a set G is a function $\star: G \times G \to G$. For any $a, b \in G$, we shall write $a \star b$ for $\star(a, b)$.
- 2. A binary operation \star on a set G is associative if for all $a, b, c \in G$, we have $a\star(b\star c)=(a\star b)\star c$.
- 3. If \star is a binary operation on a set G, we say elements a and b of G commute if $a \star b = b \star a$. We say \star (or G) is commutative if for all $a, b \in G$, we have $a \star b = b \star a$.

Example 1.1-1

- 1. + (usual addition) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , \mathbb{C} respectively).
- 2. \times (usual multiplication) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , \mathbb{C} respectively).
- 3. (usual subtraction) is noncommutative binary operation on \mathbb{Z} , where -(a,b)=a-b. It is not a binary operation on \mathbb{Z}^+ (nor \mathbb{Q}^+ , \mathbb{R}^+) (e.g. $-(1,2)=1-2=-1\notin\mathbb{Z}^+$).
- 4. Taking the vector cross-product of two vectors in \mathbb{R}^3 is a binary operation which is not associative and not commutative. For example,
 - (1) $\mathbf{u} = (1, 2, 3), \mathbf{v} = (4, 5, 6) \in \mathbb{R}^3, \mathbf{u} \times \mathbf{v} = (-3, 6, -3)$ $\Rightarrow \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$
 - (2) $\mathbf{u} = (1, 2, 3), \mathbf{v} = (4, 5, 6) \in \mathbb{R}^3, \mathbf{u} \times \mathbf{v} = (-3, 6, -3), \mathbf{v} \times \mathbf{u} = (3, -6, 3)$ \Rightarrow it is not commutative.
 - (3) $\mathbf{u} = (1, 2, 3), \mathbf{v} = (4, 5, 6), \mathbf{w} = (7, 8, 9) \in \mathbb{R}^3,$ $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (-3, 6, -3) \times (7, 8, 9) = (78, 6, -66)$ $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (1, 2, 3) \times (-3, 6, -3) = (-24, -6, 12)$

Suppose that \star is a binary operation on a set G, and H is a subset of G. If the restriction of \star to H is a binary operation on H ($\forall a, b \in H, a \star b \in H$), we say that H is closed under \star .

Observe that if \star is an associative (respectively, commutative) binary operation on a set G, and \star restricted to some subset H of G is a binary operation on H, then \star is automatically associative (respectively, commutative) on H as well.

Definition 1.1-2

- 1. A group is an ordered pair (G, \star) where G is a set and \star is a binary operation on G satisfying the following axioms:
 - (i) Associative: $(a \star b) \star c = a \star (b \star c)$, for all $a, b, c \in G$.
 - (ii) **Identity**: There exists an element $e \in G$ such that $e \star a = a \star e = a$ for all $a \in G$.
 - (iii) **Inverses**: For each $a \in G$, there exists $a^{-1} \in G$ such that $a \star a^{-1} = a^{-1} \star a = e$.
- 2. The group (G, \star) is called abelian (or commutative) if $a \star b = b \star a$ for all $a, b \in G$.

We say G is a finite group if in addition G is a finite set.

Note that the axiom (ii) ensures that a group is always nonempty.

Example 1.1-2

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are groups under + with e = 0 and $a^{-1} = -a$ for all a.
- 2. $\mathbb{Q}\setminus\{0\}, \mathbb{R}\setminus\{0\}, \mathbb{C}\setminus\{0\}, \mathbb{Q}^+, \mathbb{R}^+$ are groups under \times with e=1 and $a^{-1}=\frac{1}{a}$.
- 3. The axioms for a vector space V which specify that (V, +) is an abelian group.
- 4. For $n \in \mathbb{Z}^+$, $\mathbb{Z}/n\mathbb{Z}$ is an abelian group under the operation + with the identity element $\overline{0}$ and the inverse of \overline{a} is $\overline{-a}$.
- 5. For $n \in \mathbb{Z}^+$, the set $(\mathbb{Z}/n\mathbb{Z})^{\times}$ of equivalence classes \overline{a} which have multiplicative inverses mod n is an abelian group under multiplication with the identity element $\overline{1}$.

If (A, \star) and (B, \diamond) are groups, we can find a new group $A \times B$, called the *direct product*, whose elements are those in the Cartesian product

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

and whose operation is defined componentwise:

$$(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \diamond b_2)$$

Proposition 1.1-1 If G is a group under the operation \star , then

- 1. The identity of G is unique.
- 2. For each $a \in G$, a^{-1} is uniquely determined.
- 3. $(a^{-1})^{-1} = a$ for all $a \in G$.
- 4. $(a \star b)^{-1} = (b)^{-1} \star (a)^{-1}$
- 5. Generalized Associative Law: For any $a_1, a_2, \ldots, a_n \in G$, the value of $a_1 \star a_2 \star \cdots \star a_n$ is independent of how the expression is bracketed.

Proof.

1. If f and g are both identities, then by axiom (ii) of the **Definition 1.1-2**, we have $f \star g = f$ and $g \star f = g$. Thus f = g, and the identity is unique.

2. Assume b and c are both inverses of a, and let e be the identity of G. By axiom (iii) of the **Definition 1.1-2**, $a \star b = e$ and $c \star a = e$. Thus

$$c = c \star e$$
 (Axiom (ii))
 $= c \star (a \star b)$ (Since $e = a \star b$)
 $= (c \star a) \star b$ (Axiom (i))
 $= e \star b$ (Since $e = c \star a$)
 $= b$ (Axiom (ii))

- 3. The inverse of a is a^{-1} , and the inverse of a^{-1} is $(a^{-1})^{-1}$, by part 2., we know $a = (a^{-1})^{-1}$.
- 4. Let $c = (a \star b)^{-1}$, so by definition of c, $(a \star b) \star c = e$. By the associative law, we have

$$a \star (b \star c) = e$$

Multiply both sides on the left by a^{-1} to get

$$a^{-1} \star (a \star (b \star c)) = a^{-1} \star e$$

The associative law on the LHS and the definition of e on the RHS give

$$(a^{-1} \star a) \star (b \star c) = a^{-1}$$
$$e \star (b \star c) = a^{-1}$$
$$b \star c = a^{-1}$$

Now, multiply both sides on the left by b^{-1} to get

$$b^{-1} \star (b \star c) = b^{-1} \star a^{-1}$$
$$(b^{-1} \star b) \star c = b^{-1} \star a^{-1}$$
$$e \star c = b^{-1} \star a^{-1}$$
$$c = b^{-1} \star a^{-1}$$

Thus $(a \star b)^{-1} = b^{-1} \star a^{-1}$.

5. First show the result is true for n=1,2 and 3. Next, assume for any k < n that any braketing of a product of k elements, $b_1 \star b_2 \star \cdots \star b_k$ can be reduced (without altering the value of the product) to an expression of the form

$$b_1 \star (b_2 \star (b_3 \star (\cdots \star b_k)) \dots)$$

Now argue that an bracketing of the product $a_1 \star a_2 \star \cdots \star a_n$ must break into 2 subproducts, say $(a_1 \star a_2 \star \cdots \star a_k) \star (a_{k+1} \star a_{k+2} \star \cdots \star a_n)$, where each subproduct is bracketed in some fashion. Apply the induction assumption to each of these two subproducts and finally reduce the result to the form $a_1 \star (a_2 \star (a_3 \star (\cdots \star a_n)) \ldots)$ to complete the induction.

For any group G (operation · implied) and $x \in G$ and $n \in \mathbb{Z}^+$ since the product $xx \dots x$ (n terms) does not depend on how it is bracketed, we shall denote it by x^n . Denote $x^{-1}x^{-1} \dots x^{-1}$ (n terms) by x^{-n} . Let $x^0 = 1$, the identity of G.

When we are dealing with specific groups, we shall use the natural (given) operation. For example, when the operation is +, the identity will be denoted by 0 and for any element a, the inverse a^{-1} will be written -a, and $a + a + \cdots + a$ (n > 0 terms) will be written na; $-a - a - \cdots - a$ (n terms) will be written -na, and 0a = 0.

Proposition 1.1-2 Let G be a group and let $a, b \in G$. The equations ax = b and ya = b have unique solutions for $x, y \in G$. In particular, the left and right cancellation laws hold in G, i.e.,

- 1. If au = av, then u = v.
- 2. If ub = vb, then u = v.

Proof. We can solve ax = b by multiplying both sides on the left by a^{-1} and simplifying to get $x = a^{-1}b$. The uniqueness of x follows because a^{-1} is unique. Similarly, we can solve ya = b by multiplying both sides on the right by b^{-1} and simplifying to get $y = ba^{-1}$. The uniqueness of y follows because b^{-1} is unique.

If au = av, multiply both sides on the left by a^{-1} , and simplify to get u = v. Similarly, if ub = vb, multiply both sides on the right by b^{-1} , and simplify to get u = v.

Definition 1.1-3 For G a group and $x \in G$ define the *order* of x to be the smallest positive integer n such that $x^n = 1$, and denote this integer by |x|. In this case x is said to be of order n. If no positive power of x is the identity, the order of x is defined to be infinity and x is said to be of infinite order.

Example 1.1-3

- 1. An element of a group has order 1 if and only if it is the identity.
- 2. In the additive groups \mathbb{Z} , \mathbb{Q} , \mathbb{R} or \mathbb{C} every nonzero element has infinite order.
- 3. In the multiplicative groups $\mathbb{R} \setminus \{0\}$ or $\mathbb{Q} \setminus \{0\}$ the element -1 has order 2 and all other nonidentity elements have infinite order.
- 4. In the additive group $\mathbb{Z}/9\mathbb{Z}$, the element $\overline{6}$ has order 3 since $\overline{6} \neq \overline{0}$, $\overline{6} + \overline{6} = \overline{12} = \overline{3} \neq \overline{0}$, but $\overline{6} + \overline{6} = \overline{18} = \overline{0}$, the identity in this group.
- 5. In the multiplicative group $(\mathbb{Z}/7\mathbb{Z})^{\times}$, the element $\overline{2}$ has order 3 since $\overline{2} \neq \overline{1}$, $\overline{2} \times \overline{2} = \overline{4} \neq \overline{1}$, but $\overline{2} \times \overline{2} \times \overline{2} = \overline{8} = \overline{1}$, the identity in this group.

Definition 1.1-4 Let $G = \{g_1, g_2, \dots, g_n\}$ be a finite group with $g_1 = 1$. The multiplication table or group table of G is the $n \times n$ matrix whose i, j entry is the group element $g_i g_j$.

More about the group table:

- 1. Group Multiplication Tables | Cayley Tables (Abstract Algebra)
- 2. Group Theory Step-by-Step: 1 7

1.2 Dihedral Groups

For each $n \in \mathbb{Z}^+$, $n \geq 3$ let D_{2n} be the set of symmetries of a regular n-gon, where a symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the n-gon, moving this copy in any fashion in 3-space, and then placing the copy back on the original n-gon so it exactly covers it.

Each symmetry s can be described uniquely by the corresponding permutation σ of $\{1, 2, 3, ..., n\}$ where if the symmetry s puts vertex i in the place where vertex j was originally, then σ is the permutation sending i to j.

The identity og D_{2n} is the identity symmetry (which leaves all vertices fixed), denoted by 1, and the inverse of $s \in D_{2n}$ is the symmetry which reverses all rigid motions of s (so if s effects permutation σ , then the inverse of s effects the permutation σ^{-1}).

Proposition 1.2-1 The order of the dihedral group

$$|D_{2n}| = 2n$$

Proof.

- 1.3 Symmetric Groups
- 1.4 Matrix Groups
- 1.5 The Quaternion Group
- 1.6 Homomorphisms and Isomorphisms
- 1.7 Group Actions
- 2 Subgroups