ADMM for Deterministic and Convex Optimization

Hailiang ZHAO @ ZJU-CS

http://hliangzhao.me

November 1, 2022

Outline

I The Vanilla ADMM

- I.A Building Blocks and Existence of Convergence
- **I.B** Sublinear Convergence Rate
- **I.C** Linear Convergence Rate

II The Linearized ADMM

- II.A Bregman ADMM, LADMM-1, and LADMM-2
- II.B Sublinear and Linear Convergence Rates

III The Accelerated Linearized ADMM

- III.A Acc-LADMM-1
- III.B Acc-LADMM-2
- III.C Acc-LADMM-3

References

Outline

I The Vanilla ADMM

- I.A Building Blocks and Existence of Convergence
- **I.B** Sublinear Convergence Rate
- **I.C** Linear Convergence Rate

II The Linearized ADMM

II.A Bregman ADMM, LADMM-1, and LADMM-2 **II.B** Sublinear and Linear Convergence Rates

III The Accelerated Linearized ADMN

III.A Acc-LADMM-1

III.B Acc-LADMM-2

III.C Acc-LADMM-3

References

Review the Vanilla ADMM

The vanilla version of ADMM is for solving the following problem:

$$\min_{\mathbf{x},\mathbf{y}} \quad f(\mathbf{x}) + g(\mathbf{y}), \quad \text{s.t.} \quad \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} = \mathbf{b}. \tag{1}$$

ADMM solves it with the following iterations:

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} L_{\beta}(\mathbf{x}, \mathbf{y}^{k}, \boldsymbol{\lambda})$$

$$\mathbf{y}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} L_{\beta}(\mathbf{x}^{k+1}, \mathbf{y}, \boldsymbol{\lambda})$$
(2)

$$\mathbf{y}^{k+1} = \operatorname*{argmin}_{\mathbf{y}} L_{\beta}(\mathbf{x}^{k+1}, \mathbf{y}, \boldsymbol{\lambda})$$
(3)

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \beta (\mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y}^{k+1} - \boldsymbol{b}). \tag{4}$$

Lemma I.1

Suppose that f(x) and g(y) are convex. Let (x^*, y^*, λ^*) be a KKT point of (1), then $\forall x, y$, we have

$$f(\mathbf{x}) + g(\mathbf{y}) - f(\mathbf{x}^*) - g(\mathbf{y}^*) + \langle \boldsymbol{\lambda}^*, \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} - \boldsymbol{b} \rangle \ge 0.$$
 (5)

Proof.

The result is immediate with Proposition B.10.1 (every KKT point is a saddle point of the Lagrangian function).

Lemma I.2

Suppose that f(x) and g(y) are convex. Let (x^*, y^*, λ^*) be a KKT point of (1). If

$$f(\mathbf{x}) + g(\mathbf{y}) - f(\mathbf{x}^*) - g(\mathbf{y}^*) + \langle \boldsymbol{\lambda}^*, \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} - \boldsymbol{b} \rangle \le \alpha_1 \quad (6)$$
$$\|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} - \boldsymbol{b}\| \le \alpha_2, \quad (7)$$

then we have

$$-\|\boldsymbol{\lambda}^*\|\alpha_2 \le f(\boldsymbol{x}) + g(\boldsymbol{y}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*) \le \|\boldsymbol{\lambda}^*\|\alpha_2 + \alpha_1.$$
(8)

Proof.

The result is immediate with Lemma I.1.

Lemma 1.3

For ADMM, we have

$$\mathbf{0} \in \partial f(\mathbf{x}^{k+1}) + \mathbf{A}^T \mathbf{\lambda}^k + \beta \mathbf{A}^T (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^k - \mathbf{b}), \tag{9}$$

$$\mathbf{0} \in \partial g(\mathbf{y}^{k+1}) + \mathbf{B}^T \boldsymbol{\lambda}^k + \beta \mathbf{B}^T (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k+1} - \boldsymbol{b}), \quad (10)$$

$$\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k = \beta (\mathbf{A} \boldsymbol{x}^{k+1} + \mathbf{B} \boldsymbol{y}^{k+1} - \boldsymbol{b}), \tag{11}$$

$$\mathbf{0} \in \partial f(\mathbf{x}^*) + \mathbf{A}^T \boldsymbol{\lambda}^*, \tag{12}$$

$$\mathbf{0} \in \partial g(\mathbf{v}^*) + \mathbf{B}^T \boldsymbol{\lambda}^*, \tag{13}$$

$$\mathbf{A}\mathbf{x}^* + \mathbf{B}\mathbf{y}^* = \mathbf{b}. \tag{14}$$

Proof.

(9) and (10) can be derived from the Proximal Point Method (formula (22) in the From Dual Descent to ADMM slide). (11) is from (4). (12) - (14) are the KKT conditions.

Based on Lemma I.3, we define two vectors:

$$\hat{\nabla}f(\mathbf{x}^{k+1}) = -\mathbf{A}^T \boldsymbol{\lambda}^k - \beta \mathbf{A}^T (\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y}^k - \boldsymbol{b}), \qquad (15)$$

$$\hat{\nabla}g(\mathbf{y}^{k+1}) = -\mathbf{B}^T \boldsymbol{\lambda}^k - \beta \mathbf{A}^T (\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y}^{k+1} - \boldsymbol{b})$$

$$= -\mathbf{B}^T \boldsymbol{\lambda}^{k+1}. \qquad (16)$$

Then we have

$$\hat{\nabla} f(\mathbf{x}^{k+1}) \in \partial f(\mathbf{x}^{k+1}), \tag{17}$$

$$\hat{\nabla}g(\mathbf{y}^{k+1}) \in \partial g(\mathbf{y}^{k+1}). \tag{18}$$

Lemma I.4

For ADMM, we have

$$\langle \hat{\nabla} g(\mathbf{y}^{k+1}), \mathbf{y}^{k+1} - \mathbf{y} \rangle = -\langle \boldsymbol{\lambda}^{k+1}, \mathbf{B} \mathbf{y}^{k+1} - \mathbf{B} \mathbf{y} \rangle, \forall \mathbf{y},$$
 (19)

and

$$\langle \hat{\nabla} f(\mathbf{x}^{k+1}), \mathbf{x}^{k+1} - \mathbf{x} \rangle + \langle \hat{\nabla} g(\mathbf{y}^{k+1}), \mathbf{y}^{k+1} - \mathbf{y} \rangle$$

$$= -\langle \boldsymbol{\lambda}^{k+1}, \mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k+1} - \mathbf{A} \mathbf{x} - \mathbf{B} \mathbf{y} \rangle$$

$$+ \beta \langle \mathbf{B} \mathbf{y}^{k+1} - \mathbf{B} \mathbf{y}^{k}, \mathbf{A} \mathbf{x}^{k+1} - \mathbf{A} \mathbf{x} \rangle, \quad \forall \mathbf{x}, \mathbf{y}.$$
(20)

Proof.

The results are immediate with (11), (15), and (16).

Lemma I.5

Suppose that $f(\mathbf{x})$ and $g(\mathbf{y})$ are convex. Then for ADMM, we have

$$\langle \hat{\nabla} f(\boldsymbol{x}^{k+1}), \boldsymbol{x}^{k+1} - \boldsymbol{x}^* \rangle + \langle \hat{\nabla} g(\boldsymbol{y}^{k+1}), \boldsymbol{y}^{k+1} - \boldsymbol{y}^* \rangle$$

$$+ \langle \boldsymbol{\lambda}^*, \mathbf{A} \boldsymbol{x}^{k+1} + \mathbf{B} \boldsymbol{y}^{k+1} - \boldsymbol{b} \rangle$$

$$\leq \frac{1}{2\beta} \|\boldsymbol{\lambda}^k - \boldsymbol{\lambda}^*\|^2 - \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^*\|^2$$

$$+ \frac{\beta}{2} \|\mathbf{B} \boldsymbol{y}^k - \mathbf{B} \boldsymbol{y}^*\|^2 - \frac{\beta}{2} \|\mathbf{B} \boldsymbol{y}^{k+1} - \mathbf{B} \boldsymbol{y}^*\|^2$$

$$- \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2 - \frac{\beta}{2} \|\mathbf{B} \boldsymbol{y}^{k+1} - \mathbf{B} \boldsymbol{y}^k\|^2.$$
 (21)

Proof.

Use above lemmas and the monotonicity of ∂g to prove it.

Lemma 1.6

Suppose that $f(\mathbf{x})$ and $g(\mathbf{y})$ are convex. Then for ADMM, we have

$$f(\boldsymbol{x}^{k+1}) + g(\boldsymbol{y}^{k+1}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*) + \langle \boldsymbol{\lambda}^*, \mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y}^{k+1} - \boldsymbol{b} \rangle$$

$$\leq \frac{1}{2\beta} \|\boldsymbol{\lambda}^k - \boldsymbol{\lambda}^*\|^2 - \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^*\|^2$$

$$+ \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^k - \mathbf{B}\boldsymbol{y}^*\|^2 - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^*\|^2$$

$$- \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2 - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^k\|^2. \tag{22}$$

Lemma I.6 (Cont'd)

If we further assume that $g(\mathbf{y})$ is μ -strongly convex, then we have

$$f(\boldsymbol{x}^{k+1}) + g(\boldsymbol{y}^{k+1}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*) + \langle \boldsymbol{\lambda}^*, \mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y}^{k+1} - \boldsymbol{b} \rangle$$

$$\leq \frac{1}{2\beta} \|\boldsymbol{\lambda}^k - \boldsymbol{\lambda}^*\|^2 - \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^*\|^2$$

$$+ \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^k - \mathbf{B}\boldsymbol{y}^*\|^2 - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^*\|^2$$

$$- \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2 - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^k\|^2$$

$$- \frac{\mu}{2} \|\boldsymbol{y}^{k+1} - \boldsymbol{y}^*\|^2.$$
(23)

Lemma I.6 (Cont'd)

If we further assume that g(y) is L-smooth convex, then we have

$$f(\boldsymbol{x}^{k+1}) + g(\boldsymbol{y}^{k+1}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*) + \langle \boldsymbol{\lambda}^*, \mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y}^{k+1} - \boldsymbol{b} \rangle$$

$$\leq \frac{1}{2\beta} \|\boldsymbol{\lambda}^k - \boldsymbol{\lambda}^*\|^2 - \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^*\|^2$$

$$+ \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^k - \mathbf{B}\boldsymbol{y}^*\|^2 - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^*\|^2$$

$$- \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k\|^2 - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^k\|^2$$

$$- \frac{1}{2L} \|\nabla g(\boldsymbol{y}^{k+1}) - \nabla g(\boldsymbol{y}^*)\|^2. \tag{24}$$

Proof Skecth of Lemma 1.6

- ▶ (22) is immediate with (17), (18), Lemma I.5, and the definition of subgradient of convex functions.
- (23) and (24) can be obtained based on (22) and Proposition B.2 and Proposition B.4, respectively. Each of them adds a special term to the LHS of (22).

When f(x) and g(y) are convex, the convergenece of ADMM exists.

Theorem I.1

Suppose that f(x) and g(y) are convex. Then for ADMM, we have

$$f(\mathbf{x}^{k+1}) - f(\mathbf{x}^*) + g(\mathbf{y}^{k+1}) - g(\mathbf{y}^*) \to 0,$$
(25)

$$\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y}^{k+1} - \mathbf{b} \to \mathbf{0}. \tag{26}$$

Proof Sketch of Theorem I.1

Combing Lemma I.1 and (22) we have

$$\frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}\|^{2} + \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^{k}\|^{2}$$

$$\leq \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{*}\|^{2} - \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{*}\|^{2}$$

$$+ \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k} - \mathbf{B}\boldsymbol{y}^{*}\|^{2} - \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^{*}\|^{2}.$$
(27)

Summing over $k = 0, ..., \infty$, we have

$$\sum_{k=0}^{\infty} \left(\frac{1}{2\beta} \| \boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^k \|^2 + \frac{\beta}{2} \| \mathbf{B} \boldsymbol{y}^{k+1} - \mathbf{B} \boldsymbol{y}^k \|^2 \right)$$

$$\leq \frac{1}{2\beta} \| \boldsymbol{\lambda}^0 - \boldsymbol{\lambda}^* \|^2 + \frac{\beta}{2} \| \mathbf{B} \boldsymbol{y}^0 - \mathbf{B} \boldsymbol{y}^* \|^2.$$

(28)

Proof Sketch of Theorem I.1

Note that the RHS of (28) is a constant, thus we have

$$\lambda^{k+1} - \lambda^k \to \mathbf{0}, \quad \mathbf{B} y^{k+1} - \mathbf{B} y^k \to 0.$$
 (29)

And, $\frac{1}{2\beta} \| \boldsymbol{\lambda}^k - \boldsymbol{\lambda}^* \|^2 + \frac{\beta}{2} \| \mathbf{B} \boldsymbol{y}^k - \mathbf{B} \boldsymbol{y}^* \|^2$ must be a non-increasing sequence. So $\| \boldsymbol{\lambda}^k - \boldsymbol{\lambda}^* \|^2$ and $\| \mathbf{B} \boldsymbol{y}^k - \mathbf{B} \boldsymbol{y}^* \|^2$ are bounded for all k. Then we have $\| \boldsymbol{\lambda}^k \|$ is bounded for all k. Since

$$\lambda^{k+1} - \lambda^k = \beta (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k+1} - \mathbf{b})$$

= $\beta (\mathbf{A} \mathbf{x}^{k+1} - \mathbf{A} \mathbf{x}^*) + \beta (\mathbf{B} \mathbf{y}^{k+1} - \mathbf{B} \mathbf{y}^*),$ (30)

We know that $\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y}^{k+1} - \mathbf{b}$ and $\mathbf{A}\mathbf{x}^{k+1} - \mathbf{A}\mathbf{x}^*$ are also bounded.

Proof Sketch of Theorem 1.1

From (17), (18), (20), and the definition of subgradient of convex functions, we have

$$f(\mathbf{x}^{k+1}) - f(\mathbf{x}^*) + g(\mathbf{y}^{k+1}) - g(\mathbf{y}^*)$$

$$\leq -\langle \boldsymbol{\lambda}^{k+1}, \mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y}^{k+1} - \boldsymbol{b}\rangle$$

$$+ \beta \langle \mathbf{B}\mathbf{y}^{k+1} - \mathbf{B}\mathbf{y}^k, \mathbf{A}\mathbf{x}^{k+1} - \mathbf{A}\mathbf{x}^*\rangle \to 0.$$
(31)

On the other hand, from (12), (13), (14), and the definition of subgradient of convex functions, we have

$$f(\mathbf{x}^{k+1}) - f(\mathbf{x}^*) + g(\mathbf{y}^{k+1}) - g(\mathbf{y}^*)$$

$$\geq \langle -\mathbf{A}^T \boldsymbol{\lambda}^*, \mathbf{x}^{k+1} - \mathbf{x}^* \rangle + \langle -\mathbf{B}^T \boldsymbol{\lambda}^*, \mathbf{y}^{k+1} - \mathbf{y}^* \rangle$$

$$= -\langle \boldsymbol{\lambda}^*, \mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k+1} - \mathbf{b} \rangle \to 0.$$
(32)

Then we have (25).

Convergence Rates of ADMM

The following several pages include:

- Sublinear Convergence Rate
 - (1) Non-ergodic convergence rate
 - (2) Ergodic convergence rate
- **▶** Linear Convergence Rate
 - (1) Under strong convexity and smoothness assumption
 - (2) Under error bound condition

Sublinear Non-Ergodic Convergence Rate

Lemma I.7

Suppose that f(x) and g(y) are convex, then for ADMM we have

$$\frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^{k}\|^{2} + \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^{k}\|^{2}$$

$$\leq \frac{1}{2\beta} \|\boldsymbol{\lambda}^{k} - \boldsymbol{\lambda}^{k-1}\|^{2} + \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k} - \mathbf{B}\boldsymbol{y}^{k-1}\|^{2}.$$
(33)

This lemma will be used for the following Theorem I.2 and Theorem I.3.

Sublinear Non-Ergodic Convergence Rate

Theorem I.2

Suppose that f(x) and g(y) are convex, then for ADMM we have

$$-\|\boldsymbol{\lambda}^*\|\sqrt{\frac{C}{\beta(K+1)}} \le f(\boldsymbol{x}^{K+1}) + g(\boldsymbol{y}^{K+1}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*)$$

$$\le \frac{C}{K+1} + \frac{2C}{\sqrt{K+1}} + \|\boldsymbol{\lambda}^*\|\sqrt{\frac{C}{\beta(K+1)}},$$
(34)

where

$$C := \frac{1}{\beta} \|\boldsymbol{\lambda}^0 - \boldsymbol{\lambda}^*\|^2 + \beta \|\mathbf{B}\boldsymbol{y}^0 - \mathbf{B}\boldsymbol{y}^*\|^2.$$
 (35)

Sublinear Ergodic Convergence Rate

Theorem I.3

Suppose that f(x) and g(y) are convex, then for ADMM we have

$$|f(\hat{\boldsymbol{x}}^{K+1}) + g(\hat{\boldsymbol{y}}^{K+1}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*)| \le \frac{C}{2(K+1)} + \frac{2\sqrt{C}\|\boldsymbol{\lambda}^*\|}{\sqrt{\beta}(K+1)}, \quad (36)$$

$$\|\mathbf{A}\hat{\mathbf{x}}^{K+1} + \mathbf{B}\hat{\mathbf{y}}^{K+1} - \mathbf{b}\| \le \frac{2\sqrt{C}}{\sqrt{\beta}(K+1)},\tag{37}$$

where

$$\hat{\mathbf{x}}^{K+1} = \frac{1}{K+1} \sum_{k=1}^{K+1} \mathbf{x}^k, \quad \hat{\mathbf{y}}^{K+1} = \frac{1}{K+1} \sum_{k=1}^{K+1} \mathbf{y}^k.$$
 (38)

Theorem I.4

Suppose that $f(\mathbf{x})$ is convex and $g(\mathbf{y})$ is μ -strongly convex and L-smooth. Assume that $\forall \boldsymbol{\lambda}, \|\mathbf{B}^T\boldsymbol{\lambda}\| \geq \sigma \|\boldsymbol{\lambda}\|$, where $\sigma > 0$. Let $\beta = \frac{\sqrt{\mu L}}{\sigma \|\mathbf{B}\|}$. Then we have

$$\frac{1}{2\beta} \|\boldsymbol{\lambda}^{k+1} - \boldsymbol{\lambda}^*\|^2 + \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^{k+1} - \mathbf{B}\boldsymbol{y}^*\|^2$$

$$\leq \left(1 + \frac{1}{2} \sqrt{\frac{\mu}{L}} \frac{\sigma}{\|\mathbf{B}\|}\right)^{-1} \left(\frac{1}{2\beta} \|\boldsymbol{\lambda}^k - \boldsymbol{\lambda}^*\|^2 + \frac{\beta}{2} \|\mathbf{B}\boldsymbol{y}^k - \mathbf{B}\boldsymbol{y}^*\|^2\right). \tag{39}$$

Now we demonstrate the linear convergence rate of ADMM under the error bound condition. Firstly, we define

$$\phi(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}) := \begin{pmatrix} \partial f(\mathbf{x}) + \mathbf{A}^T \boldsymbol{\lambda} \\ \partial g(\mathbf{y}) + \mathbf{B}^T \boldsymbol{\lambda} \\ \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} - \mathbf{b} \end{pmatrix}.$$
 (40)

Correspondingly,

$$\phi^{-1}(\mathbf{s}) = \{(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda}) \mid \mathbf{s} \in \phi(\mathbf{x}, \mathbf{y}, \boldsymbol{\lambda})\}. \tag{41}$$

Obviously, (x, y, λ) is a KKT point *iff* $0 \in \phi(x, y, \lambda)$.

Definition I.1 *

The set-value mapping $\phi(\mathbf{w})$ is called as satisfying the (global) error bound condition, if there exists constant $\kappa > 0$ such that

$$\operatorname{dist}_{\mathbf{H}}(\boldsymbol{w}, \phi^{-1}(\mathbf{0})) < \kappa \operatorname{dist}(\mathbf{0}, \phi(\boldsymbol{w})), \quad \forall \boldsymbol{w}, \tag{42}$$

where

$$\mathbf{H} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta \mathbf{B}^T \mathbf{B} & 0 \\ 0 & 0 & \frac{1}{\beta} \mathbf{I} \end{pmatrix}$$
(43)

and

$$\operatorname{dist}_{\mathbf{H}}(\boldsymbol{w}, \phi^{-1}(\mathbf{0})) = \min_{\boldsymbol{w}^* \in A^{-1}(\mathbf{0})} \|\boldsymbol{w} - \boldsymbol{w}^*\|_{\mathbf{H}}. \tag{44}$$

Note that $\|\boldsymbol{x}\|_{\mathbf{A}}^2 := \boldsymbol{x}^T \mathbf{A} \boldsymbol{x}$.

Theorem 1.5

Suppose that $f(\mathbf{x})$ and $g(\mathbf{y})$ are convex and $\phi(\mathbf{w})$ satisfies the error bound condition. Then for ADMM, we have

$$\operatorname{dist}_{\mathbf{H}}^{2}\left(\left(\boldsymbol{x}^{k+1},\boldsymbol{y}^{k+1},\boldsymbol{\lambda}^{k+1}\right),\phi^{-1}(\mathbf{0})\right)$$

$$\leq \left[1 + \frac{1}{\kappa^{2}(\beta\|\mathbf{A}\|_{2}^{2} + \frac{1}{\beta})}\right]^{-1}\operatorname{dist}_{\mathbf{H}}^{2}\left(\left(\boldsymbol{x}^{k},\boldsymbol{y}^{k},\boldsymbol{\lambda}^{k}\right),\phi^{-1}(\mathbf{0})\right). \quad (45)$$

Outline

I.A Building Blocks and Existence of Convergence **I.B** Sublinear Convergence Rate

I.C Linear Convergence Rate

II The Linearized ADMM

II.A Bregman ADMM, LADMM-1, and LADMM-2 **II.B** Sublinear and Linear Convergence Rates

III.A Acc-LADMM-1 III.B Acc-LADMM-2

III.C Acc-LADMM-3

Bregman ADMM

ADMM solves two time-consuming subproblems to update x and y. The Bregman ADMM uses the linearization technique to make the subproblems computationally efficient. It works with the following iterations:

$$\boldsymbol{x}^{k+1} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left(f(\boldsymbol{x}) + g(\boldsymbol{y}^{k}) + \langle \boldsymbol{\lambda}^{k}, \mathbf{A}\boldsymbol{x} + \mathbf{B}\boldsymbol{y}^{k} - \boldsymbol{b} \rangle \right)$$

$$+ \frac{\beta}{2} \|\mathbf{A}\boldsymbol{x} + \mathbf{B}\boldsymbol{y}^{k} - \boldsymbol{b}\|^{2} + D_{\phi}(\boldsymbol{x}, \boldsymbol{x}^{k}) \right), \qquad (46)$$

$$\boldsymbol{y}^{k+1} = \underset{\boldsymbol{y}}{\operatorname{argmin}} \left(f(\boldsymbol{x}^{k+1}) + g(\boldsymbol{y}) + \langle \boldsymbol{\lambda}^{k}, \mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y} - \boldsymbol{b} \rangle \right)$$

$$+ \frac{\beta}{2} \|\mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y} - \boldsymbol{b}\|^{2} + D_{\Psi}(\boldsymbol{y}, \boldsymbol{y}^{k}) \right), \qquad (47)$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^{k} + \beta \left(\mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y}^{k+1} - \boldsymbol{b} \right). \qquad (\text{unchanged}) \qquad (48)$$

 $D_f(\cdot,\cdot)$ is the Bregman distance w.r.t. f.

When

$$\phi(\mathbf{x}) = \frac{\beta \|\mathbf{A}\|_2^2}{2} \|\mathbf{x} - \mathbf{u}_1\|^2 - \frac{\beta}{2} \|\mathbf{A}\mathbf{x} - \mathbf{u}_2\|^2, \tag{49}$$

$$\Psi(\mathbf{y}) = \frac{\beta \|\mathbf{B}\|_{2}^{2}}{2} \|\mathbf{y} - \mathbf{v}_{1}\|^{2} - \frac{\beta}{2} \|\mathbf{B}\mathbf{y} - \mathbf{v}_{2}\|^{2},$$
 (50)

where u_i and v_i (i = 1, 2) are any constant vectors, we have

$$D_{\phi}(\mathbf{x}, \mathbf{x}') = \frac{\beta \|\mathbf{A}\|_{2}^{2}}{2} \|\mathbf{x} - \mathbf{x}'\|^{2} - \frac{\beta}{2} \|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|^{2},$$
 (51)

$$D_{\Psi}(\mathbf{y}, \mathbf{y}') = \frac{\beta \|\mathbf{B}\|_{2}^{2}}{2} \|\mathbf{y} - \mathbf{y}'\|^{2} - \frac{\beta}{2} \|\mathbf{B}(\mathbf{y} - \mathbf{y}')\|^{2},$$
 (52)

Based on (51) and (52), (46) is reduced to

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(f(\mathbf{x}) + g(\mathbf{y}^{k}) + \langle \mathbf{\lambda}^{k}, \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^{k} - \mathbf{b} \rangle \right)$$

$$+ \frac{\beta}{2} \|\mathbf{A}\mathbf{x}^{k} + \mathbf{B}\mathbf{y}^{k} - \mathbf{b}\|^{2} + \beta \langle \mathbf{A}^{T}(\mathbf{A}\mathbf{x}^{k} + \mathbf{B}\mathbf{y}^{k} - \mathbf{b}), \mathbf{x} - \mathbf{x}^{k} \rangle$$

$$+ \frac{\beta \|\mathbf{A}\|_{2}^{2}}{2} \|\mathbf{x} - \mathbf{x}^{k}\|^{2} \right), \tag{53}$$

which is equal to

$$\boldsymbol{x}^{k+1} = \operatorname{prox}_{(\beta \|\mathbf{A}\|_{2}^{2})^{-1} f} \left(\boldsymbol{x}^{k} - \frac{\mathbf{A}^{T}}{\beta \|\mathbf{A}\|_{2}^{2}} \tilde{\boldsymbol{\lambda}}_{1}^{k} \right), \tag{54}$$

where $\tilde{\boldsymbol{\lambda}}_1^k := \boldsymbol{\lambda}^k + \beta(\boldsymbol{A}\boldsymbol{x}^k + \boldsymbol{B}\boldsymbol{y}^k - \boldsymbol{b})$, and $\operatorname{prox}_{tf}(\boldsymbol{v}) := \operatorname{argmin}_{\boldsymbol{x}}(f(\boldsymbol{x}) + \frac{1}{2t}\|\boldsymbol{x} - \boldsymbol{v}\|^2)$ is the proximal operator.

Based on (51) and (52), (47) is reduced to

$$\mathbf{y}^{k+1} = \underset{\mathbf{y}}{\operatorname{argmin}} \left(f(\mathbf{x}^{k+1}) + g(\mathbf{y}) + \langle \boldsymbol{\lambda}^{k}, \mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y} - \boldsymbol{b} \rangle \right)$$

$$+ \frac{\beta}{2} \|\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b}\|^{2}$$

$$+ \beta \langle \mathbf{B}^{T} (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b}), \mathbf{y} - \mathbf{y}^{k} \rangle$$

$$+ \frac{\beta \|\mathbf{B}\|_{2}^{2}}{2} \|\mathbf{y} - \mathbf{y}^{k}\|^{2} \right), \tag{55}$$

which is equal to

$$\mathbf{y}^{k+1} = \operatorname{prox}_{(\beta \|\mathbf{B}\|_{2}^{2})^{-1} f} \left(\mathbf{y}^{k} - \frac{\mathbf{B}^{T}}{\beta \|\mathbf{B}\|_{2}^{2}} \tilde{\boldsymbol{\lambda}}_{2}^{k} \right), \tag{56}$$

where $\tilde{\boldsymbol{\lambda}}_2^k := \boldsymbol{\lambda}^k + \beta (\mathbf{A}\boldsymbol{x}^{k+1} + \mathbf{B}\boldsymbol{y}^k - \boldsymbol{b}).$

Note that

$$\frac{\beta}{2} \|\mathbf{A}\mathbf{x}^k + \mathbf{B}\mathbf{y}^k - \mathbf{b}\|^2 + \beta \langle \mathbf{A}^T (\mathbf{A}\mathbf{x}^k + \mathbf{B}\mathbf{y}^k - \mathbf{b}), \mathbf{x} - \mathbf{x}^k \rangle$$

is the linear approximations of $\frac{\beta}{2} ||\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^k - \mathbf{b}||^2$ at \mathbf{x}^k , and

$$\frac{\beta}{2}\|\mathbf{A}\boldsymbol{x}^{k+1}+\mathbf{B}\boldsymbol{y}^k-\boldsymbol{b}\|^2+\beta\langle\mathbf{B}^T(\mathbf{A}\boldsymbol{x}^{k+1}+\mathbf{B}\boldsymbol{y}^k-\boldsymbol{b}),\boldsymbol{y}-\boldsymbol{y}^k\rangle$$

is the linear approximations of $\frac{\beta}{2} \|\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y} - \mathbf{b}\|^2$ at \mathbf{y}^k . Thus we call (54), (56), and (48) *linearized ADMM* (LADMM-1).

In many cases, the proximal mappings of f and g are easily computable. For example, the proximal mappings of l_1 -norm, l_2 -norm, and matrix operator norm and nuclear norm all have closed-form solutions.

When the proximal mappings of f and g are not easily computable, but f and g are L_f -smooth and L_g -smooth, respectively, we may choose

$$\phi(\mathbf{x}) = \frac{L_f + \beta \|\mathbf{A}\|^2}{2} \|\mathbf{x} - \mathbf{u}_1\|^2 - f(\mathbf{x}) - \frac{\beta}{2} \|\mathbf{A}\mathbf{x} - \mathbf{u}_2\|^2$$
 (57)

$$\Psi(\mathbf{y}) = \frac{L_g + \beta \|\mathbf{B}\|^2}{2} \|\mathbf{y} - \mathbf{v}_1\|^2 - g(\mathbf{y}) - \frac{\beta}{2} \|\mathbf{B}\mathbf{y} - \mathbf{v}_2\|.$$
 (58)

Then we have

$$D_{\phi}(\mathbf{x}, \mathbf{x}') = \frac{L_f + \beta \|\mathbf{A}\|^2}{2} \|\mathbf{x} - \mathbf{x}'\|^2 - f(\mathbf{x}) + f(\mathbf{x}')$$

$$+ \langle \nabla f(\mathbf{x}'), \mathbf{x} - \mathbf{x}' \rangle - \frac{\beta}{2} \|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|^2, \qquad (59)$$

$$D_{\Psi}(\mathbf{y}, \mathbf{y}') = \frac{L_g + \beta \|\mathbf{B}\|^2}{2} \|\mathbf{y} - \mathbf{y}'\|^2 - g(\mathbf{y}) + g(\mathbf{y}')$$

$$+ \langle \nabla g(\mathbf{y}'), \mathbf{y} - \mathbf{y}' \rangle - \frac{\beta}{2} \|\mathbf{B}(\mathbf{y} - \mathbf{y}')\|^2, \qquad (60)$$

which are also independent of u_i and v_i (i = 1, 2).

Correspondingly, (46) is reduced to

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(f(\mathbf{x}^{k}) + \langle \nabla f(\mathbf{x}^{k}), \mathbf{x} - \mathbf{x}^{k} \rangle \right)$$

$$+ g(\mathbf{y}^{k}) + \langle \boldsymbol{\lambda}^{k}, \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^{k} - \boldsymbol{b} \rangle$$

$$+ \frac{\beta}{2} \|\mathbf{A}\mathbf{x}^{k} + \mathbf{B}\mathbf{y}^{k} - \boldsymbol{b}\|^{2} + \beta \langle \mathbf{A}^{T}(\mathbf{A}\mathbf{x}^{k} + \mathbf{B}\mathbf{y}^{k} - \boldsymbol{b}), \mathbf{x} - \mathbf{x}^{k} \rangle$$

$$+ \frac{L_{f} + \beta \|\mathbf{A}\|_{2}^{2}}{2} \|\mathbf{x} - \mathbf{x}^{k}\|^{2}$$

$$= \mathbf{x}^{k} - \left(L_{f} + \beta \|\mathbf{A}\|_{2}^{2} \right)^{-1} \left\{ \nabla f(\mathbf{x}^{k}) + \mathbf{A}^{T} \tilde{\boldsymbol{\lambda}}_{1}^{k} \right\}.$$
(61)

The purple part is the linear approximation at x^k of

$$f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^k - \mathbf{b}\|^2.$$

Correspondingly, (47) is reduced to

$$\mathbf{y}^{k+1} = \underset{\mathbf{y}}{\operatorname{argmin}} \left(f(\mathbf{x}^{k+1}) + g(\mathbf{y}^{k}) + \langle \nabla g(\mathbf{y}^{k}), \mathbf{y} - \mathbf{y}^{k} \rangle \right)$$

$$+ \langle \boldsymbol{\lambda}^{k}, \mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y} - \boldsymbol{b} \rangle + \frac{\beta}{2} \| \mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b} \|^{2}$$

$$+ \beta \langle \mathbf{B}^{T} (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b}), \mathbf{y} - \mathbf{y}^{k} \rangle$$

$$+ \frac{L_{g} + \beta \| \mathbf{B} \|_{2}^{2}}{2} \| \mathbf{y} - \mathbf{y}^{k} \|^{2}$$

$$= \mathbf{y}^{k} - (L_{g} + \beta \| \mathbf{B} \|_{2}^{2})^{-1} \{ \nabla g(\mathbf{y}^{k}) + \mathbf{B}^{T} \tilde{\boldsymbol{\lambda}}_{2}^{k} \}. \tag{62}$$

The purple part is the linear approximation at y^k of

$$g(\mathbf{y}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{y} - \mathbf{b}\|^2.$$

We call (61), (62), and (48) LADMM-2.

Sublinear Ergodic Convergence of Bregman ADMM

The ergodic convergence rate of Bregman ADMM —

Theorem II.1

Suppose that f(x) and g(y) are convex. Then for Bregman ADMM, we have

$$|f(\hat{\boldsymbol{x}}^{K}) + g(\hat{\boldsymbol{y}}^{K}) - f(\boldsymbol{x}^{*}) - g(\boldsymbol{y}^{*})| \leq \frac{D}{2(K)} + \frac{2\sqrt{D}||\boldsymbol{\lambda}^{*}||}{\sqrt{\beta}K}, \quad (63)$$

$$||\mathbf{A}\hat{\boldsymbol{x}}^{K} + \mathbf{B}\hat{\boldsymbol{y}}^{K} - \boldsymbol{b}|| \leq \frac{2\sqrt{D}}{\sqrt{\beta}K}, \quad (64)$$

where
$$\hat{x}^{K} = \frac{1}{K} \sum_{k=1}^{K} x^{k}$$
, $\hat{y}^{K} = \frac{1}{K} \sum_{k=1}^{K} y^{k}$, and

$$D = \frac{1}{\beta} \|\boldsymbol{\lambda}^0 - \boldsymbol{\lambda}^*\|^2 + \beta \|\mathbf{B}\boldsymbol{y}^0 - \mathbf{B}\boldsymbol{y}^*\|^2 + 2D_{\phi}(\boldsymbol{x}^*, \boldsymbol{x}^0) + 2D_{\Psi}(\boldsymbol{y}^*, \boldsymbol{y}^0).$$
 (65)

Sublinear Non-Ergodic Convergence of Bregman ADMM

The non-ergodic convergence rate of Bregman ADMM —

Theorem II.2

Suppose that f and g are both generally convex. Let $\Psi = 0$ and $D_{\phi}(\mathbf{x}, \mathbf{y}) = \frac{1}{2} ||\mathbf{x} - \mathbf{y}||_{\mathbf{M}}^2$ for some symmetric and positive semidefinite matrix \mathbf{M} . Then for Bregman ADMM we have

$$-\|\boldsymbol{\lambda}^*\|\sqrt{\frac{C}{\beta K}} \leq f(\boldsymbol{x}^K) + g(\boldsymbol{y}^K) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*)$$

$$\leq \frac{C}{K} + \frac{3C}{\sqrt{K}} + \|\boldsymbol{\lambda}^*\|\sqrt{\frac{C}{\beta K}}, \qquad (66)$$

$$\|\mathbf{A}\boldsymbol{x}^K + \mathbf{B}\boldsymbol{y}^K - \boldsymbol{b}\| \leq \sqrt{\frac{C}{\beta K}}, \qquad (67)$$

where

$$C = \frac{1}{\beta} \| \boldsymbol{\lambda}^0 - \boldsymbol{\lambda}^* \|^2 + \beta \| \mathbf{B} \boldsymbol{y}^0 - \mathbf{B} \boldsymbol{y}^* \|^2 + \| \boldsymbol{x}^0 - \boldsymbol{x}^* \|_{\mathbf{M}}^2.$$
 (68)

Linear Convergence of Bregman ADMM

We have two conclusions on the linear convergence of the Bregman ADMM. Note that the linear speed is achieved by adding more nice conditions.

- ▶ **Scenario** #1: g(y) is μ_g -strongly convex and L_g -smooth, while f(x) is only required to be convex (Theorem 3.8 of the ADMM book, p67)
- Scenario #2: g(y) is μ_g -strongly convex and L_g -smooth, and f(x) is μ_f -strongly convex (Theorem 3.9 of the ADMM book, p70)

The detailed theorems are omitted here. They have similar shapes to Theorem I.4 and Theorem I.5 above.

Complexity Comparisons

Complexity comparisons between ADMM and two variants of linearized ADMM:

Метнор	Rате	Linearization
ADMM	$\mathcal{O}(\sqrt{rac{L_{g}}{\mu_{g}}} rac{\ \mathbf{B}\ _2}{\sigma} \log rac{1}{\epsilon})$	None
LADMM-1	$\mathcal{O}((\sqrt{\frac{L_g}{\mu_g}} \frac{\ \mathbf{B}\ _2}{\sigma} + \frac{\ \mathbf{B}\ _2^2}{\sigma^2}) \log \frac{1}{\epsilon})$	On aug.
LADMM-2	$\mathcal{O}((\frac{\ \mathbf{B}\ _2^2}{\sigma^2} + \frac{L_g}{\mu_g})\log\frac{1}{\epsilon})$	On f , g and aug.

P69 of the ADMM book gives the proof on the complexity of LADMM-1. The other results can be obtained with a similar approach.

Outline

I The Vanilla ADMM

I.A Building Blocks and Existence of Convergence

I.B Sublinear Convergence Rate

I.C Linear Convergence Rate

II The Linearized ADMM

II.A Bregman ADMM, LADMM-1, and LADMM-2II.B Sublinear and Linear Convergence Rates

III The Accelerated Linearized ADMM

III.A Acc-LADMM-1

III.B Acc-LADMM-2

III.C Acc-LADMM-3

References

ADMM can be combined with Nesterov's acceleration techniques.

When both f and g are generally convex and g is L_g -smooth, we can linear g at the auxiliary variable v^k in the y update step:

$$\mathbf{v}^{k} = \theta_{k} \mathbf{y}^{k} + (1 - \theta_{k}) \tilde{\mathbf{y}}^{k},$$

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(f(\mathbf{x}) + \langle \boldsymbol{\lambda}^{k}, \mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b} \rangle \right)$$

$$+ \frac{\beta}{2} ||\mathbf{A} \mathbf{x} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b}||^{2},$$

$$(69)$$

When both f and g are generally convex and g is L_g -smooth, we can linear g at the auxiliary variable v^k in the y update step:

$$\mathbf{y}^{k+1} = \underset{\mathbf{y}}{\operatorname{argmin}} \left(g(\mathbf{v}^{k}) + \langle \nabla g(\mathbf{v}^{k}), \mathbf{y} - \mathbf{v}^{k} \rangle \right)$$

$$+ \langle \boldsymbol{\lambda}^{k}, \mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y} - \boldsymbol{b} \rangle$$

$$+ \beta \langle \mathbf{B}^{T} (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \boldsymbol{b}), \mathbf{y} - \mathbf{y}^{k} \rangle$$

$$+ \frac{L_{g} \theta_{k} + \beta ||\mathbf{B}||_{2}^{2}}{2} ||\mathbf{y} - \mathbf{y}^{k}||^{2} \right), \qquad (71)$$

$$\tilde{\mathbf{x}}^{k+1} = \theta_{k} \mathbf{x}^{k+1} + (1 - \theta_{k}) \tilde{\mathbf{x}}^{k}, \qquad (72)$$

$$\tilde{\mathbf{y}}^{k+1} = \theta_{k} \mathbf{y}^{k+1} + (1 - \theta_{k}) \tilde{\mathbf{y}}^{k}, \qquad (73)$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^{k} + \beta (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k+1} - \boldsymbol{b}) \qquad (74)$$

We call (69) \sim (74) *Acc-LADMM-1*.

Convergence Rate of Acc-LADMM-1

Acc-LADMM-1 has a convergence rate of $\mathcal{O}(\frac{1}{K} + \frac{L_g}{K^2})$, which is faster than LADMM-2. The result is as follows.

Theorem III.1

Suppose that f and g are generally convex and g is L_g -smooth.

Let
$$\theta_k \in (0,1], k \geq 0$$
, satisfy: $\forall k \geq 1 \left[\frac{1-\theta_k}{\theta_k^2} = \frac{1}{\theta_{k-1}^2}\right], \theta_0 = 1$, and

 $\theta_{-1} = \infty$. Assume that $\forall k, \| \boldsymbol{\lambda}^k - \boldsymbol{\lambda}^* \|^2 \le D_{\boldsymbol{\lambda}}$ and $\| \boldsymbol{y}^k - \boldsymbol{y}^* \|^2 \le D_{\boldsymbol{v}}$. Then for Acc-LADMM-1, we have

$$|f(\tilde{\boldsymbol{x}}^{K+1}) + g(\tilde{\boldsymbol{y}}^{K+1}) - f(\boldsymbol{x}^*) - g(\boldsymbol{y}^*)|$$

$$\leq \mathcal{O}\left(\frac{D_{\boldsymbol{y}} + D_{\boldsymbol{\lambda}} + \|\boldsymbol{\lambda}^*\| \sqrt{D_{\boldsymbol{\lambda}}}}{K} + \frac{L_g}{K^2}\right),$$
 (75)

$$\|\mathbf{A}\tilde{\mathbf{x}}^{K+1} + \mathbf{B}\tilde{\mathbf{y}}^{K+1} - \mathbf{b}\| \le \mathcal{O}\left(\frac{\sqrt{D_{\lambda}}}{K}\right). \tag{76}$$

Acc-LADMM-1 only linearizes the sec. subproblem. Now we introduce Acc-LADMM-2, which linearizes both subproblems and it can also solve composite problems, i.e.,

$$f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \text{ and } g(\mathbf{y}) = g_1(\mathbf{y}) + g_2(\mathbf{y}),$$
 (77)

with non-smooth f_1 and g_1 and smooth f_2 and g_2 .

The following iterations are called *Acc-LADMM-2*:

$$\mathbf{u}^{k} = \mathbf{x}^{k} + \frac{\theta_{k}(1 - \theta_{k-1})}{\theta_{k-1}}(\mathbf{x}^{k} - \mathbf{x}^{k-1}),$$
 (78)

$$\mathbf{v}^{k} = \mathbf{y}^{k} + \frac{\theta_{k}(1 - \theta_{k-1})}{\theta_{k-1}}(\mathbf{y}^{k} - \mathbf{y}^{k-1}),$$
 (79)

The following ierations are called *Acc-LADMM-2*:

$$\boldsymbol{x}^{k+1} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left(f_{1}(\boldsymbol{x}) + \langle \nabla f_{2}(\boldsymbol{u}^{k}), \boldsymbol{x} \rangle + \frac{L}{2} \| \boldsymbol{x} - \boldsymbol{u}^{k} \|^{2} \right)$$

$$+ \langle \boldsymbol{\lambda}^{k}, \mathbf{A} \boldsymbol{x} \rangle + \frac{\beta}{\theta_{k}} \langle \mathbf{A}^{T} (\mathbf{A} \boldsymbol{u}^{k} + \mathbf{B} \boldsymbol{v}^{k} - \boldsymbol{b}), \boldsymbol{x} \rangle$$

$$+ \frac{\beta \|\mathbf{A}\|_{2}^{2}}{2\theta_{k}} \|\boldsymbol{x} - \boldsymbol{u}^{k}\|^{2} \right). \tag{80}$$

$$\boldsymbol{y}^{k+1} = \underset{\boldsymbol{y}}{\operatorname{argmin}} \left(g_{1}(\boldsymbol{y}) + \langle \nabla g_{2}(\boldsymbol{v}^{k}), \boldsymbol{y} \rangle + \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{v}^{k}\|^{2} \right)$$

$$+ \langle \boldsymbol{\lambda}^{k}, \mathbf{B} \boldsymbol{y} \rangle + \frac{\beta}{\theta_{k}} \langle \mathbf{B}^{T} (\mathbf{A} \boldsymbol{x}^{k+1} + \mathbf{B} \boldsymbol{v}^{k} - \boldsymbol{b}), \boldsymbol{y} \rangle$$

$$+ \frac{\beta \|\mathbf{B}\|_{2}^{2}}{2\theta_{k}} \|\boldsymbol{y} - \boldsymbol{v}^{k}\|^{2} \right). \tag{81}$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^{k} + \beta \tau (\mathbf{A} \boldsymbol{x}^{k+1} + \mathbf{B} \boldsymbol{v}^{k+1} - \boldsymbol{b}). \tag{82}$$

Convergence Rate of Acc-LADMM-2

Acc-LADMM-2 has a better convergence rate than Acc-LADMM-1. The result is shown below in sketch:

Theorem III.2

With non-smooth f_1 and g_1 and smooth f_2 and g_2 , we have

$$-\frac{2C_{1}\|\boldsymbol{\lambda}^{*}\|}{1+K(1-\tau)} \leq f(\boldsymbol{x}^{K+1}) + g(\boldsymbol{y}^{K+1}) - f(\boldsymbol{x}^{*}) - g(\boldsymbol{y}^{*})$$

$$\leq \frac{2C_{1}\|\boldsymbol{\lambda}^{*}\|}{1+K(1-\tau)} + \frac{C}{1+K(1-\tau)}, \quad (83)$$

$$\|\mathbf{A}\boldsymbol{x}^{K+1} + \mathbf{B}\boldsymbol{y}^{K+1} - \boldsymbol{b}\| \leq \frac{2C_{1}}{1+K(1-\tau)}, \quad (84)$$

where C and C_1 are constants.

The details are in Theorem 3.11 (p89, the ADMM book).

Acc-LADMM-1 requires that f and g are generally convex and g is L_g -smooth. If we further assume that g is μ_g -strongly convex, then we further accelerate Acc-LADMM-1 with the following ierations:

$$\mathbf{w}^{k} = \theta \mathbf{y}^{k} + (1 - \theta) \tilde{\mathbf{y}}^{k},$$

$$\mathbf{x}^{k+1} = \underset{\mathbf{x}}{\operatorname{argmin}} \left(f(\mathbf{x}) + \langle \boldsymbol{\lambda}^{k}, \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^{k} - \boldsymbol{b} \rangle \right)$$

$$+ \frac{\beta \theta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^{k} - \boldsymbol{b}\|^{2}.$$
(86)

We further accelerate Acc-LADMM-1 with the following ierations (cont'd):

$$\mathbf{y}^{k+1} = \underset{\mathbf{y}}{\operatorname{argmin}} \left(\langle \nabla g(\mathbf{w}^{k}), \mathbf{y} \rangle + \langle \boldsymbol{\lambda}^{k}, \mathbf{B} \mathbf{y} \rangle \right. \\ + \beta \theta \langle \mathbf{B}^{T} (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \mathbf{b}), \mathbf{y} \rangle \\ + \frac{1}{2} \left(\frac{\theta}{\alpha} + \mu_{g} \right) \left\| \mathbf{y} - \frac{1}{\frac{\theta}{\alpha} + \mu_{g}} \left(\frac{\theta}{\alpha} \mathbf{y}^{k} + \mu_{g} \mathbf{w}^{k} \right) \right\|^{2} \right). \\ = \frac{1}{\frac{\theta}{\alpha} + \mu_{g}} \left\{ \mu_{g} \mathbf{w}^{k} + \frac{\theta}{\alpha} \mathbf{y}^{k} - \left[\nabla g(\mathbf{w}^{k}) + \mathbf{B}^{T} \boldsymbol{\lambda}^{k} \right. \\ + \beta \theta \mathbf{B}^{T} (\mathbf{A} \mathbf{x}^{k+1} + \mathbf{B} \mathbf{y}^{k} - \mathbf{b}) \right] \right\}.$$
(87)

We further accelerate Acc-LADMM-1 with the following ierations (cont'd):

$$\tilde{\boldsymbol{x}}^{k+1} = \theta \boldsymbol{x}^{k+1} + (1-\theta)\tilde{\boldsymbol{x}}^k, \tag{88}$$

$$\tilde{\boldsymbol{y}}^{k+1} = \theta \boldsymbol{y}^{k+1} + (1-\theta)\tilde{\boldsymbol{y}}^k, \tag{89}$$

$$\boldsymbol{\lambda}^{k+1} = \boldsymbol{\lambda}^k + \beta \theta (\mathbf{A} \boldsymbol{x}^{k+1} + \mathbf{B} \boldsymbol{y}^{k+1} - \boldsymbol{b})$$
 (90)

We call (85) \sim (90) *Acc-LADMM-3*.

Acc-LADMM-3 has a faster convergence rate than LADMM-2, but with smaller complexity —— the same as ADMM. Its convergence rate is concluded in Theorem 3.12 (p95 of the ADMM book).

Outline

I The Vanilla ADMM

I.A Building Blocks and Existence of Convergence

I.B Sublinear Convergence Rate

I.C Linear Convergence Rate

II The Linearized ADMM

II.A Bregman ADMM, LADMM-1, and LADMM-2 **II.B** Sublinear and Linear Convergence Rates

III The Accelerated Linearized ADMN

III.A Acc-LADMM-1

III.B Acc-LADMM-2

III.C Acc-LADMM-3

References

References

- Lin, Zhouchen, Huan Li, and Cong Fang. Alternating Direction Method of Multipliers for Machine Learning. Springer Nature, 2022.
- 2. Boyd, Stephen, Stephen P. Boyd, and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.