Order Formula and its Applications

Günthner

Winter 2024

Contents

1	Introduction	1
	Proving the Order Formula 2.1 Applications to the formula	1 3
3	Appendix	4
	3.1 Proof of Lemma 3	4
	3.2 Unused proof	4

1 Introduction

In this paper we will be examining the following order formula:

$$\operatorname{ord}(n) = \operatorname{ord}(n) \cdot p^{\max(0, k - k_p(n))} {(\mathbb{Z}/p^k \mathbb{Z})^{\times}}$$

for p and odd prime, k a natural number and $k_p(n)$ a special function.

2 Proving the Order Formula

This first proof only targets $p \neq 2$. We will see a modified proof later which will clarify the situation for p = 2.

Before we tackle the formula directly, we should start by understanding $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$.

We know from Gauss' work that the group $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ is cyclic [1], meaning that

$$\left(\mathbb{Z}/p^k\mathbb{Z}\right)^{\times} \cong \mathbb{Z}/\varphi(p^k)\mathbb{Z}$$

with $\varphi(p^k)$ the Euler- φ -Function which counts the number of coprime integers smaller than the number. The value is $\varphi(p^k) = (p-1)p^k$ and we get:

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)p^{k-1}\mathbb{Z}$$

Next we would like to simplify $\mathbb{Z}/(p-1)p^{k-1}\mathbb{Z}$ for which we can use the Chinese Remainder Theorem which tells us that for two coprime integers a, b we get

$$\mathbb{Z}/ab\mathbb{Z} \cong \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/b\mathbb{Z}$$

Now we can write

$$\left(\mathbb{Z}/p^k\mathbb{Z}\right)^{\times} \cong \mathbb{Z}/(p-1)p^{k-1}\mathbb{Z} \cong \left(\mathbb{Z}/(p-1)\mathbb{Z}\right) \oplus \left(\mathbb{Z}/p^{k-1}\mathbb{Z}\right) \tag{1}$$

This is still quite abstract so let's find subgroups of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ that correspond to the summands. Define the projection onto $(\mathbb{Z}/p\mathbb{Z})^{\times}$:

$$\pi_k: \left(\mathbb{Z}/p^k\mathbb{Z}\right)^{\times} \to \left(\mathbb{Z}/p\mathbb{Z}\right)^{\times}$$

with

$$\pi_k(n) = n \bmod p$$

One of the interesting subgroups is

$$\ker(\pi_k) = \{ n \in (\mathbb{Z}/p^k\mathbb{Z})^{\times} : \text{ The last digit of n is } 1 \}$$

The order of this group is $\#\ker(\pi_k) = p^{k-1}$. Now since equation (1) $\ker(\pi_k)$ must lie entirely inside $\mathbb{Z}/p^{k-1}\mathbb{Z}$, because its order is coprime to that of $\mathbb{Z}/(p-1)\mathbb{Z}$. Now since

$$\#\ker(\pi_k) = \#\mathbb{Z}/p^{k-1}\mathbb{Z}$$

and one of the groups is contained in the other, the groups are equal and we can rephrase equation (1):

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z} \oplus \ker(\pi_k)$$

Substituting $(\mathbb{Z}/p\mathbb{Z})^{\times}$ for $\mathbb{Z}/(p-1)\mathbb{Z}$ gives us

Lemma 1. Decomposition of $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$

$$(\mathbb{Z}/p^k\mathbb{Z})^{\times} \cong (\mathbb{Z}/p\mathbb{Z})^{\times} \oplus \ker(\pi_k)$$

2.1 Applications to the formula

What can we learn from Lemma 1?

Lemma 2. Multiplicativity of ord

Which we will prove using the more general

Lemma 3. Let A, B be arbitrary finite groups and $(a, b) \in A \oplus B$

$$\operatorname{ord}_{A \oplus B}(a, b) = \operatorname{lcm}\left(\operatorname{ord}_{A}(a), \operatorname{ord}_{B}(b)\right)$$

The proof of which will be deferred to the Appendix in Proof of Lemma 3.

Well we know that

$$\operatorname{ord}(n)$$
 and $\operatorname{ord}(n)$ coprime $(\mathbb{Z}/p\mathbb{Z})^{\times}$ $\ker(\pi_k)$

since the orders of their respective groups is coprime. This simplifies the lcm to a product and proves Lemma 2. (a, b) coprime integers implies that lcm(a, b) = ab

Now all that is open is $\operatorname{ord}(n)$, for this we will need the following definition: $\ker(\pi_k)$

Definition 1. For p prime and $n \in \ker(\pi_k)$, meaning that $n \equiv 1 \pmod{p}$

$$k_n(n) := \max \{ i \in \mathbb{N} : n \equiv 1 \pmod{p^i} \}$$

This is almost the function from section 1, but with a reduced domain. Now we can prove

Lemma 4. For p prime and $n \in \ker(\pi_k)$

$$\operatorname{ord}(n) = p^{\max(0, k - k_p(n))}$$
$$\ker(\pi_k)$$

Let us rewrite that using $(a)_{+} := \max(0, a)$:

$$\operatorname{ord}(n) = p^{(k-k_p(n))_+}$$
$$\ker(\pi_k)$$

Proof by induction over k.

For $1 \le k \le k_p(n)$: $p^{k-k_p(n)} = 1$. And since $n \equiv 1 \pmod{p^{k_p(n)}}$: $\operatorname{ord}(n) = 1$.

For the induction it will be helpful to define the following map:

$$\psi: \ker(\pi_{k+1}) \quad \to \quad \ker(\pi_k)$$

$$l \quad \mapsto \quad l \bmod p^k$$

Now assume that $k \geq k_p(n)$ and $\operatorname{ord}(n) = p^{\left(k-k_p(n)\right)_+}$. Now let us show the following relation:

$$\operatorname{ord}(n) = p \cdot \operatorname{ord}(n)$$

$$\ker(\pi_{k+1}) \quad \ker(\pi_k)$$

$$\Lambda_k := \mathbb{Z}/p^k \mathbb{Z}$$

$$\lambda_k : \quad \Lambda_k \quad \to \ker(\pi_k)$$

$$l \quad \mapsto \quad g^l$$

$$\operatorname{ord}(n) = p^{k+1-\nu_p(n)} = p \cdot p^{k-\nu_p(n)} = \operatorname{ord}(n)$$

$$\ker(\pi_{k+1}) \quad \ker(\pi_k)$$

3 Appendix

3.1 Proof of Lemma 3

Lemma 3. Let A, B be arbitrary finite groups and $(a, b) \in A \oplus B$

$$\operatorname{ord}_{A \oplus B}(a, b) = \operatorname{lcm}\left(\operatorname{ord}_{A}(a), \operatorname{ord}_{B}(b)\right)$$

Proof.

Let o_a, o_b denote $\operatorname{ord}(a), \operatorname{ord}(b)$ respectively and let o_{ab} denote $\operatorname{ord}(a, b)$. $o_a \mid o_{ab}, \text{ since } n^{o_{ab}} = e \text{ (Same for } o_b).$ This gives us $\operatorname{lcm}(o_a, o_b) \mid o_{ab}.$ $o_{ab} \mid \operatorname{lcm}(o_a, o_b), \text{ since } (a, b)^{\operatorname{lcm}(o_a, o_b)} = (a^{\operatorname{lcm}(o_a, o_b)}, b^{\operatorname{lcm}(o_a, o_b)}) = (e, e)$

3.2 Unused proof

To prove Lemma 4 we will first show the easier inequality

$$\operatorname{ord}(n) \le p^{\left(k - k_p(n)\right)_+}$$

$$\ker(\pi)$$

Proof. Let $n \equiv 1 \pmod{p^{k_p(n)}}$

 $\operatorname{ord}(n)$ in $\ker(\pi)$ is the number of distinct elements in the subgroup generated

by n, well but how many elements can be generated by n? Well for all $\eta = n^l$ we know that $\eta \equiv 1 \pmod{p^{k_p(n)}}$. However we also have

References

[1] Carl Gauss. Disquisitiones Arithmeticae.