Pflichtenheft

Conways's

Game of Life

"Eine universelle Software zur Simulation zellulärer Automaten"

Auftraggeber:

- Hochschule Bochum
- Ansprechpartner: Dipl.-Inform. Christian Düntgen
- Raum: D 3-30

Auftragnehmer:

- Die 5 Kranken Schwestern
- Weder krank noch Frauen
- Definitionsphasenmanager: Jörg Galilee Uwimana
- Architekt (Entwurfsbeauftragter): Felix Reinhardt
- Gruppenschuldiger, Spezifikationsbeauftragter: Alex Chojnatzki
 - Implementierungs-Beauftragter: Nicholas Schuran
- Kundenbetreuer, Außenminister, Abnahmebeauftrgter: Diaa El Bathich

Stand: 28.10.2021

Contents

1	Ziel	bestimmung	4
	1.1	Musskriterien	4
	1.2	Wunschkriterien	7
2	Pro	dukt-Einsatz	8
	2.1	Anwendungsbereich	8
	2.2	Zielgruppen	8
	2.3	Produktumgebung	8
		2.3.1 Softwareanforderungen	8
		2.3.2 Softwareanforderungen	8
		2.3.3 Hardwareanforderungen	8
	2.4	Betriebsbedingungen	8
3	Pro	duktfunktionen	10
	3.1	Funktionale Anforderungen	10
		3.1.1 Benutzeroberfläche	10
		3.1.2 Datenverarbeitung	10
		3.1.3 Datenspeicherung	10
	3.2	Nichtfunktionale Anforderungen	10
		3.2.1 Performance	10
		3.2.2 Zuverlässigkeit	10
4	Tes	tszenarien	11
	4.1	UI	11
	4.2	Verarbeitung	11
	4.3	Speichern	11
	4.4	Performance	11
	4.5	Benutzbarkeit (Schimpanse benötigt)	11
5	Ent	wicklungsumgebung	12
	5.1	Verwendete Software	12
	5.2	Verwendete Hardware	12

5.3	verwendete Organisation	 12

1 Zielbestimmung

1.1 Musskriterien

Das Programm soll dazu dienen, Zelluläre Automaten auf einem 2-D orthogonalen Spielfeld darstellen zu können. Dazu werden als Beispiel die Regeln für Conway's Game of Life verwendet. Hierzu sind unbedingt die folgenden Features erforderlich:

M0001	UI	Das Programm muss eine graphische Oberfläche haben.
M0002	Scope	• Es soll ein zellulärer Automat mit möglichst großer Freiheit definiert und simuliert werden können.
M0003	Darstellung Spielfeld	• Die Darstellung des Zellulären Automaten erfolgt über eine 2 Dimensionale Matrix aus Quadraten deren Farbe und Helligkeit den Zu- stand eines Feldes wiedergeben.
M0004	Transitionsregeleditor	Die Transitionsregeln sollen über eine definierte und im Handbuch dokumentierte Syntax (invers Polnische Notation, ggf. auch mathematische Schreibweise) formuliert werden können. Der neue Zustand einer Zelle darf dabei von der Zelle selbst, sowie von den umliegenden acht benachbarten Zellen abhängen. Ihr Status wird in Variablen bereitgestellt.
M0005	Spielfeldaufbau	Das Spielfeld soll als 2-D Array von Integerw- erten ausgeführt sein, welche den Zellzustand repräsentieren.
0006	Spielfeldgröße	Die Spielfeldgröße soll vor Simulationsstart vom Benutzer über (Text-)Eingabefelder fest-gelegt werden können.

		Spielfeldzustand und Transitionsregeln sollen
M0007	Speichern & Laden	seperat gespeichert und geladen werden
		können.
		Es sollen Figuren in das Spielfeld eingefügt
		werden können. Dies soll so geschehen,
M0008	Einfügen	dass Figuren als Spielstände mit kleinerer
		Feldgröße als ganzes geladen und eingefügt
		werden können.
M0000	Navigation	es soll möglich sein, das Spielfeld mit Zoom
M0009		und Pan verschieden zu betrachten.
	Spielfeldmanipulation	Der Zustand einer Zelle soll durch Mausklick
		darauf auf einen wählbaren Wert einstellbar
M0010		sein. Das Wählen des Werts soll durch ein
MINDELO		Texteingabefeld auf der Benutzeroberfläche
		erfolgen. Details in der Beschreibung der Be-
		nutzeroberfläche.
	Topologie	Das Randverhalten des Spielfelds soll
		zwischen begrenztem Rechteck und Torus
M0011		(Zellen an den Kanten sind mit den ihnen
		gegenüberliegen zellen benachbart) wählbar
		sein.
	Automatische Simula- tion	Die Simulationsgeschwindigkeit soll über einen
M0012		Slider einstellbar sein. Die Simulation soll über
WIOOIZ		einen Button gestartet und unterbrochen wer-
		den können.
M0013	Manuelle Simulation	Über einen Button soll die nächste Generation
IAIOOTO	Manuelle Simulation	berechnet und angezeigt werden können.

	Zufälliger Anfangszus- tand	Der Spielfeldzustand soll zufällig generier-
		bar sein. Dazu soll einem Zellzustand
M0013		eine Wahrscheinlichkeit zugewiesen werden
		können, mit dem Default-Zustand 0, sodass
		jede Zelle genau einen Zustand erhält.
	Anzeige	Die Anzeige des Spielfeldzustands soll durch
M0014		Farben erfolgen, wobe einem Zustand eine
		Farbe zugeordnet wird.
	Startbedingungen	Beim Programmstart soll ein 80x80 Zellen
MOO1E		großes Spielfeld präsentiert werden, auf
M0015		welches die Spielregeln für Conway's Game of
		Life verwendet werden.

1.2 Wunschkriterien

W0001	Undo	Es sollen Eingaben rückgängig gemacht wer-
VV0001		den können.
	Regeleditor	Eingabe der Regeln in für Menschen gut les-
W0002		barer Mathematischer Schreibweise, mit Grun-
		drechenarten und logischen Operationen
W0003	Performance	Multithreading parallelisierbarer Prozesse
W(0002	Farbanpassung	Wenn möglich soll die Farbe eines Zustands
W0003		durch den Benutzer einstellbar sein.

2 Produkt-Einsatz

2.1 Anwendungsbereich

Das Programm soll dazu dienen, Zelluläre Automaten mit recht großer Freiheit bauen zu können. Ob es sich dann um Game of Life, einen Waldbrandsimulator handelt, ist dann außen vor.

2.2 Zielgruppen

Die Verwendung dieses Programms für Conway's Game of life ist einfach, da die Spielregeln mitgeliefert werden. Dies kann von allen interessierten ausprobiert werden, da die Manipulation des Spielfelds zum ausprobieren einlädt.

Leider ist es nicht möglich, den Regeleditor intuitiv bedienbar zu gestalten, da es für eine effiziente Verarbeitung notwendig ist, den Zustand einer Zelle in der nächsten Generation als Mathematische Funktion der Zustönde der Nachbarzellen darzustellen. Aus diesem Grund gibt es zwar einen Leitfaden, um Mathematische Funktionen mit den Umliegenden Zellen als Ausgangsdaten zu erstellen, es ist jedoch nicht einfach, dies zu tun. Deal with it.

2.3 Produktumgebung

2.3.1 Softwareanforderungen

2.3.2 Softwareanforderungen

- Ein "Java Runtime Envrionment" der Version 1.8.x oder neuer. Ältere Versionen werden nicht getestet.
- Betriebssystem, was in der Lage ist, besagte JRE auszuführen.

2.3.3 Hardwareanforderungen

• Ein Computer aus diesem Jahrtausend mit einer Prozessorarchitektur für die eine JRE verfügbar ist. Dual-Core oder besser empfohlen, Dienstalter nicht über 1,6 Dekaden.

2.4 Betriebsbedingungen

Schreib- und Leserechte für die Speicherstände.

- verfügbarer Speicherplatz. (500 MB Festplattenspeicher großzügigerweise empfohlen)
- Arbeitsspeicher angepasst an die Feldgröße (128 MB sollten für die Standardkonfiguration ausreichen)

3 Produktfunktionen

3.1 Funktionale Anforderungen

3.1.1 Benutzeroberfläche

Nach dem Start soll folgende Oberfläche als Standard auftauchen. Im folgenden werden die (numerierten) UI-Elemente erläutert.

3.1.2 Datenverarbeitung

3.1.3 Datenspeicherung

3.2 Nichtfunktionale Anforderungen

3.2.1 Performance

• Lineare Laufzeit der Generationsberechnung pro Spielfeldgröße

3.2.2 Zuverlässigkeit

• This is bleeding edge technology. Report bugs to Jehova's Witnesses, Ortsgruppe Westfalen-Lippe.

Hinweis: Für die Sicherheit des Nutzers wird nicht garantiert.

4 Testszenarien

Alle Testszenarien werden auf die Spezifikationsphase verschoben.

- 4.1 UI
- 4.2 Verarbeitung
- 4.3 Speichern
- 4.4 Performance
- 4.5 Benutzbarkeit (Schimpanse benötigt)

5 Entwicklungsumgebung

5.1 Verwendete Software

Betriebssysteme:	MacOS X, Windoof X, Linux X
Bildbearbeitung & Diaagramme	GIMP, Photoshop, Modelio
Programmierung & Versionierung	Eclipse, Eclipse Window builder, GIT

5.2 Verwendete Hardware

Intelligente Frühstücksbrettchen mit abwaschbarer Benutzeroberfläche verschiedener Hubraumk-lassen.

5.3 verwendete Organisation

Haben Sie wirklich den Eindruck, dass hier irgendwas organisiert abläuft? Aber gut, ein Versuch: Wenn etwas schief geht, ist Alex schuld. Wenn jemand Ahnung hat, dann Nico. Wenn jemand Protokoll schreibt, dann Felix. Wenn jemand gute Laune hat, dann Jörg. Wenn jemand Photoshop macht, dann Diaa.