

21631-76 ujuer 1, 2,3

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛИСТЫ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ

технические условия ГОСТ 21631—76

Издание официальное

E

B3 7-92

ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛИСТЫ ИЗ АЛЮМИНИЯ И АЛЮМИНИЕВЫХ СПЛАВОВ

Технические условия.

ГОСТ 21631—76

Sheets of aluminium and aluminium alloys.

Specifications

OKII 18 1111

Дата введения 01.07.77

Настоящий стандарт распространяется на листы из алюминия и алюминиевых сплавов, предназначенные для нужд народного хозяйства и экспорта.

(Измененная редакция, Изм. № 3).

1. КЛАССИФИКАЦИЯ

1.1. Листы подразделяются:

а) по способу изготовления:

неплакированные — без дополнительного обозначения;

плакированные — с технологической плакировкой — Б,

с нормальной плакировкой — А, с утолщенной плакировкой — У;

б) по состоянию материала:

без термической обработки — без дополнительного обозначения.

 Π р и м е ч а н и е. Листы, изготовляемые без термической обработки, кроме листов из сплава марки $B \Pi^{1}$, допускается подвергать отжигу;

отожженные — М;

Примечание. Отожженные листы допускается изготовлять без термической обработки, если они удовлетворяют требованиям, предъявляемым к отожженным листам по механическим свойствам, качеству поверхности и неплоскостности. Такие листы маркируются буквой М в скобках — (М);

Издание официальное

Перепечатка воспрещена

X

 \circ

С Издательство стандартов, 1976

© Издательство стандартов, 1993 Переиздание с изменениями полунагартованные — Н2, нагартованные — Н,

закаленные и естественно состаренные — Т, закаленные и искусственно состаренные — Т1,

нагартованные после закалки и естественного старения — ТН;

в) по качеству отделки поверхности:

высокой отделки — В,

повышенной отделки — П,

обычной отделки — без обозначения.

Примечания:

1. Листы высокой отделки изготовляют толщиной до 4,0 мм.

2. Обозначение качества отделки поверхности В и П ставится после пос-

ледних двух цифр года утверждения стандарта.

3. Листы с высокой отделкой поверхности изготовляют из алюминия марок A7, A6, A5, A0, AД00, AД0, AД1, АД и алюминиевых сплавов марок АМц, АМг2, а листы с повышенной и обычной отделкой поверхности изготовляют из всех марок алюминия и алюминиевых сплавов;

г) по точности изготовления:

повышенной точности по толщине, ширине, длине, или одному или двум из указанных параметров — Π ;

нормальной точности по толщине, ширине, длине — без допол-

нительного обозначения.

(Измененная редакция, Изм. № 1, 2, 3).

2. COPTAMENT

2.1. Толщина листов, предельные отклонения в зависимости от толщины и ширины листов и точности их изготовления должны соответствовать указанным в табл. 1.

Примечания:

1. Предельные отклонения листов отожженных и без термической обработки толщиной 5 мм и более из сплавов марок AMr3, AMr5 и AMr6 устанавливаются ±5% от номинальной толщины.

2. При изготовлении листов с промежуточными размерами по толщине предельные отклонения по толщине листа для этих размеров принимаются, как

для ближайшего меньшего размера.

3. Теоретическая масса $(M_{\text{теор.}})$ одного погонного метра листа, кг, вычисляется по формуле:

 $M_{\text{reop.}} = \frac{H_{\text{Makc.}} + H_{\text{Muh.}}}{2} \cdot \frac{B_{\text{Makc.}} + B_{\text{Muh.}}}{2} \cdot \gamma \cdot 10^{-3},$

где $H_{\text{макс.}}$ и $B_{\text{макс.}}$ — наибольшие предельные размеры по толщине и ширине, мм; $H_{\text{мин.}}$ — наименьшие предельные размеры по толщине и ширине, мм; γ — плотность алюминиевого сплава, г/см³.

Теоретическая масса одного погонного метра листа приведена в обязательном приложении 2 (табл. 1—3) и вычислена при плотности 2,85 г/см³, что соответст-

вует плотности алюминиевых сплавов марок В95, В95—1, В95—2.

Для вычисления теоретической массы листов из других алюминиевых сплавов следует пользоваться переводными коэффициентами, указанными в справочном приложении 3.

				оелеление о	Препедкные отклонения по толшине при пирине пися	то топине	ниции исп	E HOLE				
<u> </u>	9	009	008	800, 900	10	0001	1200		1400,	1425. 1600	180	1800, 2000
	Товышен - ной Рочности	Повышен- Нормаль- ной точности: точности	Повышен- ной точности	Нормаль- ной гочности	Повышен- ной точности	Нормаль- ной точности	Повышен- ной точности	Нор- маль- ной точно- сти	Повы- шенной точ- ности	Нор- маль- ной точ- ности	Повы- шенной точ- ности	Нормаль- ной точности
[-0,04	2010-	90'0-	80;0—		-0,110						
- 1	-0,04	-0,05	90'0-	8010-	80,0—	10,110	-0,10	-0,12				
	40,04	-0,05	90'0-	80,0—	80,0—	-0,10	-0,10	-0,12	01,0	-0,12		
	-0,05	90:0-	80,0—	-0,10	-0,10	-0,12	0,10	-0,12	-0,11	-0,13		
L L	-0,05	90,0	80,0—	-10,10	-0,10	-0,12	0,10	-0,12	-0,11	-0,13		
- 1	90,0—	80,0—	-0,10	-0,12	-0,10	-0,12	-0.12	-0,13	-0,12	-0,14	-0,14	-0,16
	90,0—	80,0—	-0,10	-0,12	-0,10	-0.12	-0.12	-0,13	-0,12	-0,14	-0,14	-0,16
	80,0—	-0.10	-0,12	-0,15	-0,12	-0,15	-0,14	-0,16	-0,15	-0,17	-0,16	-0,18
ı	-0,08	-0,10	-0,12	-0,15	0,12	:0:15	-0,14	0,16	-0,15	-0,17	-0,18	-0,20
	-0,10	-0,15	-0,14	-0,20	-0,14	-10,20	-0,18	-0,22	-0,20	-0,25	-0,24	-10,26
	-0,10	-0,15	-0,14	0,20	-0,14	-10,20	-0,18	-0,22	-0,22	-0,25	-0,24	-0,26
	-0,10	-0,15	-0,16	-0.20	-0,16	-10,20	0,20	-0,22	-0,22	-0,25	-0,24	-10,26
	-0,10	-0,15	0,16	-0.20	-0,16	-10,20	0,20	-0,22	-0,22	-0,25	-0,24	-0,26
	-0,10	-0,15	-0.16	-0,20	-0.16	-13,20	-0,20	-0,24	-0,24	0,26	0,25	-0.27
	-0,12	0,20	-0,18	_0,25	-0.18	-0,25	-0,22	-0,28	-0,28 -0,26 -0,29 -0,28	-0,29	-0,28	08,0
												ı

			qu	оедельные о	Предельные отклонения по толщине при ширине листа	то толщине	при ширин	е листа				
6T3	99	009	800,	800, 900	01	1000	1200		1400,	14 00 , 1425, 1500, 1600	180	1800, 2000
яп внишпоТ	Повышен- ной точности	Нормаль- ной течности	Повышен- ной точности	Нормаль- ной точности	Повышен- ной точности	Нормаль- ной точности	Повышен- ной точности	Нор- маль- ной точ- ности	Повы- шен- ной точ- ности	Нор- маль- ной точ- ности	Повы- шен- ной точ- ности	Нормаль- ной точности
3,0	0.14	-0.25	-0,20	0,30	0.20	0,30	-10,26	0,30	-0,28	-0,34	-0,33	-0,35
3,5	-0,16	-0,25	-0.22	-0,30	0,22	-0,30	-0,28	-0,32	0,30	-0,35	-0,34	-0,36
4,0	-0,18	-0,25	-0.24	-0.30	-0,24	-0,30	0,32	-0,35	-0,34	0,36	-0,35	-0,37
4,5	-0,20	-0.25	-0,26	-0.30	-0,26	-0,30	-0,34	-0,35	0,34	-0,36	-0,35	0,37
5,0	-0.24	0,30	-10,30	-0,35	0,30	-0,35	-0,34	-0,36	-0,35	-0,37	-0,36	-0,38
5,5	-0.24	0,30	-10,30	0.35	-0,32	-0,35	-0,34	98,0—	-0,35	-0,37	-0,36	-0,38
6,0	-0,28	0,30	-0,35	-0.40	-0,38	-0.40	-0.38	-0,41	-0,40	-0,42	0,41	-0,43
6,5	-0,28	0,30	0.35	-0,40	-0,38	-0.40	-0,38	-0,41	0,40	-0.42	-0,41	-0,43
7,0	0,28	0,30	-0,35	-0,40	-0.38	-0.40	-10,40	-0,42	0,41	-0,43	-0,42	-0,44
7,5	-0,28	0,30	-0,35	-0,40	-0,38	-0.40	10,40	-0.42	-0,41	-0,43	-0,42	-0,44
8,0	-0,33	-0,35	-0.40	-0,45	-0,45	-0,45	-0,44	-0,46	-0,45	-0.47	-0,46	10,48
8,5	-0.33	-0,35	-0.40	-0.45	-0,45	-0,45	10,44	-0,46	-0,45	-0,47	-0,46	-10,48
0,6	-0,33	-0,35	-0.40	-0,45	-0.45	-0,45	-0,45	-0,47	-0 46	1,1	<u>၅၂</u>	- 11
9,5	-0,33	35	-0.40	-0.45	-0,45	-0,45	-0,45	-0.47	9	위	1 -	'
10,01	-0.38	-0,40	-0,45	05,0—	-0.48	-0,50	-0,48	0,50	-0,48			- 1
10,5	-0,38	0,40	-0,45	09,0	-0,48	0,50	-0,48	05,0—	<u>0,48</u>	<u>0</u> , 20	0,48	0,50

(Измененная редакция, Изм. № 2).

2.2. Листы в зависимости от марки сплава, плакировки и состояния материала изготовляют следующих размеров, указанных в табл. 2.

Таблица 2

	ММ			
Состояние материала листов	Марка алюминия и алюми- ниевого сплава и плаки- ровка	Толщина листа	Ширина листа	Длина листа
	A7, A6, A5, A0	ar.	600, 800, 900	2000
	АДО, АД1, АДОО, АД		600, 800 900	2000
Без термической обработки	А7, А6, А5, А0, АД0, АД1, АД00, АД, АМц, АМцС, АМг2, АМг3, АМг5, АМг6, АМг6Б, АВ, Д1А, Д16А, В95—1А, В95—1, В95— —2А, ВД1А, ВД1Б, ВД1, АКМА	Ют 5,0 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7000
	B95A		1000, 1200, 1425, 1500, 2000	От 2000 до 7000
	1915		1200, 1500, 2000	От 2000 до 7000
, .	А7, А6, А5, А0, АД0, АД1, АД00, АД	От 0,3 до 10,5	600, 800 900, 1000	2000
	А7, А6, А5, А0, АД0,	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	От 2000 до 4000
	АД1, АД000, АД, АМи, АМиС, АВ, АМг2	Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7000
Отожженн ые	AMr3, AMr5, AMr6,	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	От 2000 до 7000
	AMr65 -	Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7000
	АМг6У	Св. 2,0 до 5,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7000
	Д12	От 9,5 до 4,0	1200, 1500	От 3000 до 4000

	MM			
Состояние материала листов	Марка алюминия и алюми- ниевого сплава и плаки- ровка	Толщина листа	Ширина листа	Длина л и ста
		От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	От 2000 до 4000
	Д1А, Д16Б, Д16, Д16А	Св. 10,7 до 4,0	1000 1200, 1400, 1500,	От 2000 до 7000
		Св. 4,0 до 10,5	1600, 1800, 2000	От 2000 до 7000
-	Д16У	От 0,5 до 0,7	1 20 0, 1500	От 2000 до 4000
		Св. 0,7 до 4,0		От 2000 до 7000
Отожженные	:	От 0,5 до 0,7	1000, 1200, 1425, 1500	От 2000 до 4000
	Б95А	Св. 0,7 до 4,0	1:000, 1200, 1425, 1500,	От 2000 до 7000
		Св. 4,0 до 1 0,5	2000	От 2000 до 7000
	B95—2A, B95—2Б, B95—1A, АҚМБ, АҚМА, АҚМ	От 1,0 до 10,5	1200, 14 0 0, 1500	От 2000 до 7000
	вдіа, вді, вдіб	Ют 0,8 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7000
	1915	0,8 От 1,0 до 4,5	1200, 1200, 1500	От 2000 до 5000
	А7, А6, А5, А0, АД0, АД1, АД00, АД	От 0,8 до 4,5	1000, 1200, 1400, 1500	От 2000 до 4000
Поличенения	Ами. Амис. Амгг.	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	- От 2000
Полунагарто- ванные	AMr3	Св. 0,7 до 4,0	1000, 1200, 1400, 1500, 1600, 1800, 2000	до 7000
S (Д12	От 0,5 до 4,0	1200, 1500	От 3000 От 4000

	MM			
Состояние материала листов	Марка адюминия и адюми- ниевого сплава и плаки- ровка	Толщина листа	Ширина листа	Длина листа
	А7, А6, А5, А0, АД0, АД1, АД00, АД	Ют 0,3 до 10,5	600, 800 900, 1000	2000
	А7, А6, А5, А0, АД0,	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	От 2000
	АДІ, АДоо, АД	Св. 0,7 до 4,0	1000, 1200, 1400, 1500, 1600, 1800, 2000	до 7000
Нагартованные	MM	От 1,0 до 4,5	1000, 1200, 1400, 1500	От 2000 до 4000
	АМц, АМцС, АМг2	От 0,5 до 0,7	1000, 1200 1400, 1500, 1600	От 2000
		.Св. 0,7 до 4,0	1000, 1200, 1400, 1500, 1600, 1800, 2000	до 7000
	ВД1Б, ВД1А, ВД1, <u>АК</u> МА	От 0,8 до 4, 0	1000, 1200, 1500	От 2000 до 7000
	АВ, Д1А, Д16Б, Д16,	От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	От 2000 до 5000
	Д16А	Св. 10,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7200
	Д16У	От 0,5 до 4,0	1200, 1500	От 2000 до 7200
Закаленные и естественно соста- ренные	В95—2А, ВД1А, ВД1, ВД1Б, В95—1А, АКМА	От 0,8 до 10,5	1000, 1200, 1500, 1600, 1800, 2000	От 2000 до 7000
		От 1,0 до 4,5	1200, 1500	От 2000 до 5000
	1915	Св. 4,5 до 10,5	1200, ±1500, 2000	От 2000 до 7000
· .	ŀ		-	1

Состояние материала листов	Марка алюминия и алюминиевого сплава и плакировка	Толщина листа	Ширина листа	Длина листа
		От 0,5 до 0,7	1000, 1200, 1400, 1500, 1600	От 2000 до 5000
Закаленные и	АВ	Св. 0,7 до 10,5	1000, 1200, 1400, 1500, 1600, 1800, 2000	От 2000 до 7000
искусственно состаренные		От 0,5 до 10,7	1000, 1200, 1425, 1500	От 2000 до 5000
	B95A	Св. 0,7 до 4,0	1000, 1200, 1425, 1500, 2000	От 2000 до 7200
		Св. 4,0 до 10,5	1000, 1200, 1425, 1500, 2000	От 2000 до 7000
Нагартованные после закалки и естественного старения	Д16Б, Д16, Д16А	От 1,5 до 7,5	1000, 1200, 1400, 1500	От 2000 до 7200

(Измененная редакция, Изм. № 1, 2, 3).

2.3. Предельные отклонения по ширине листов в зависимости от их толщины должны соответствовать значениям, указанным в табл. 3.

Таблица 3

	٠.	

		Предельные откло не б	
Толщина листа	Ширина листа	повышенной точности	нормальной точ н ости
До 5,0 включ.	До 1000 включ. Св. 1000	+6,0	+8,0 +10
Св. 5,0	До 1000 включ. Св. 1000	+10	+12 +15

Примечание. Допускаются листы длиной свыше $4000~\rm MM$ без обрезки кромок уширенными по сравнению с номинальными размерами: при толщине до $4,0~\rm MM$ — не более $25~\rm MM$, при толщине свыше $4,5~\rm MM$ — $40~\rm MM$, из алю-

миния всех марок и алюминиевых сплавов марок АМп, АМп2 длиной свыше 2000 мм при толщине свыше 5.0 мм — 60 мм.

(Измененная редакция, Изм. № 1, 3).

2.4. Листы поставляют мерной длины или кратной мерной в пределах длин, установленных в табл. 2, с интервалом 500 мм.

Предельные отклонения по длине листов, в зависимости от их толщины, должны соответствовать значениям, указанным в табл. 4.

Таблица 4

	M·M		
Толщина листа		Предельные откл не б	онения по длине, олее
томщина листа	Длина листа	цовышенной точности	н ормал ьной точности
От 0,3 до 3,5 включ. Св. 3,5 » 10,5 »	От 2000 до 7200	+8,0	+20 +25

Примечание. Предельные отклонения по длине повышенной точности листов толщиной свыше 3,5 мм устанавливают по согласованию изготовителя с потребителем.

(Измененная редакция, Изм. № 3).

2.5. Допускается в партии $10\,\%$ листов, имеющих минусовые отклонения от номинальных размеров по ширине и длине не более $10\,\%$.

По требованию потребителей не допускается изготовление листов с минусовыми отклонениями от номинальных размеров.

(Измененная редакция, Изм. № 1).

2.6. (Исключен, Изм. № 1).

Примеры условных обозначений:

Лист из алюминиевого сплава марки AMr2 в отожженном состоянии, толщиной 0,7 мм, шириной 1200 мм, длиной 2000 мм, повышенной точности изготовления, высокой отделки поверхности:

Лист АМг2.М 0,7П×1200П×2000П ГОСТ 21631—76. В

Лист из алюминия марки АД1, без термической обработки, толщиной 5 мм, шириной 1000 мм, длиной 2000 мм, нормальной точности изготовления, обычной отделки поверхности:

Лист АД1 5×1000×2000 ГОСТ 21631—76

То же, полунагартованный, повышенной точности изготовления по толщине и ширине:

Лист $A\Pi I.H2 \ 5\Pi \times 1000\Pi \times 2000 \ \Gamma OCT \ 21631-76. \ \Pi$

Лист из алюминиевого сплава марки Д16 с технологической плакировкой, нагартованный после закалки и естественного старения, толщиной 2 мм, шириной 1200 мм, длиной 2000 мм, нормальной точности изготовления, повышенной отделки поверхности: $\mathit{Лист}\ \mathit{Д16.5.TH}\ 2{\times}1200{\times}2000\ \mathit{ГОСT}\ 21631{--76}.\ \mathit{\Pi}$

Лист Д16.Б.ТН 2×1200×2000 ГОСТ 21631—76. П То же, повышенной точности изготовления по толщине: Лист Д16.Б.ТН 2П×1200×2000 ГОСТ 21631—76. П (Измененная редакция, Изм. № 1, 3).

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

3.1. Листы изготовляют в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Измененная редакция, Изм. № 1).

- 3.1.1. Листы изготовляют из алюминия марок A7, A6, A5, A0 с химическим составом по ГОСТ 11069—74; листы из алюминия марок АД00, АД0, АД1, АД и всех алюминиевых сплавов с химическим составом по ГОСТ 4784—74; листы из алюминиевых сплавов марок В95—1, АКМ, В95—2 и ВД1 с химическим составом по ГОСТ 1131—76.
- 3.2. Для плажировки листов, в зависимости от марки сплава, применяют алюминий с химическим составом, указанным в табл. 5.
- 3.3. Толщина плакирующего слоя на каждой стороне листа в зависимости от толщины листа должна соответствовать значениям, указанным в табл. 6.

3.1.1—3.3. (Измененная редакция, Изм. № 2).

3.4. Механические свойства листов должны соответствовать требованиям, указанным в табл. 7.

(Измененная редакция, Изм. № 1, 2).

- 3.5. Механические свойства отожженных листов, подвергнутых закалке и старению, а также закаленных и состаренных листов, прошедших перезакалку и старение у потребителя, должны удовлетворять требованиям, указанным в табл. 8.
- 3.6. Листы должны быть обрезаны по торцам под прямым углом. Косина реза не должна выводить листы за предельные отклонения по ширине и длине. На кромках обрезанных листов не допускаются заусенцы и расслоения, надрывы и трещины. У листов, изготавливаемых уширенными в соответствии с примечанием к табл. 3, допускаются надрывы и трещины на кромках, если они не выводят лист за пределы номинальной ширины.
 - 3.5—3.6. (Измененная редакция, Изм. № 1).

Таблица 5

		Хими	чески	й сос	тав п	лакирук				. %		
Марка	Легир компо	ующие нен ты		1		Прі	име с и	, не (более	Проч	ие	<u>.</u>
плакируе- мого сплава	Алюминий	Цинк	Железо	Кремний	Медь	Марғанец	Цинк	Титан	Магний	Каждая в отдель- ности	Сумма	Сумма допусти мых примесей
Д1А, Д16А, Д16Б, Д16У, АМг6Б, АМг6У, ВД1А, ВД1Б, АКМБ, АКМА	Не ме- нее 99,30		0,30	0,30	0,02	0,025	0,1	0,15	0,05	0,02		0,70
B95A, B95—2A B95—2B, B95—1A	Основ- ной ком- понент	0,9—1,3	0,3	0,3	_	0,025	_	0,15		0,05	0,1	_

Таблица 6

<u>.</u>	Толщина плакирую фактической то	щего слоя на каждой олинны листа в % пр	t сторэне листа от ои плакировке
Толщина листа, мм	технологической	нормальной	утолщенной
·	не более	не м	енее
От 0,5 до 1,9 Св. 1,9 » 4,0 Св. 4,0 » 10,5	1,5 1,5	4.0 2.0	8,0 4,0
CB. 4,0 » 10,5	1,5	2.0	<u> </u>

 Π р и м е ч а н и е. Толщина утолщенной плакировки для листов из сплава марки AMr6 должна составлять на каждой стороне листа не менее 4,0% от фактической толщины листа.

3.7. Поверхность листов всех групп отделки должна быть глянцевая или матовая, без трещин, рванин, расслоений, пузырей пережога, налета селитры, пятен коррозионного происхождения, диффузионных пятен (на листах толщиной более 0,6 мм с нормальной и утолщенной плакировкой), шлаковых включений, обнаженных от плакировки участков (на листах с нормальной и утолщенной плакировкой), а также размытых беловатых пятен, образовав-

7	
ಥ	i
1	
×	
5	
Ø	
æ	1
€	

Обозначение Состоянне сплава и состояние образцов материала
А7М, А 6М , А 5М, Отожженные А0М, АД0М, АД0М, АД0М, АД0М, АД0М,
А7Н2, А6Н2, А5Н2, А0Н2, АДОН2, АДІН2 АДООН2, АДН2
А7Н, А6Н, А5Н, Нагартован- АД00Н, АДИН ные
А7, А6, А5, А0, Без термиче- АД0, АД1, АД00, ской обработки АД
АМиМ, АМиСМ Отожженные
АМиН2, Полунагар- АМиСН2 гованные
АМиН, АМиСН Нагартован- ные

Продолжение табл. 7

					Мэханическі	Мэханические свойства при рас- тяжении	при рас-
ал юмарка ал юминия и ал юми - ниевого сплава и плаки - ровка	Состояние материала листов	Обозначение сплава и состояние материала	Состояние испытываемых образнов	Толщина листа, мм	Временное сопротивление ^{ов} . МПа (кгс/мм²)	Предел текучести О _{0,2} , МПа (кгс/мм²)	Относи- тельное удлинение при I= =11,3 VF
	·				14	Не менее	
AiMu,	Нагартован- ные	АМцН, АМцСН	Нагартов ан - ные	Св. 0,8 до 1,2 » 1,2 до 4,0	185 (19,0) 185 (19,0)	-	3,0 4,0
AMUC	Без термиче- ской обработки	АМи, АМиС	Без тер миче - ской обработки	От 5,0 до 10,5	100 (100)	1	10,0
WW	Нагартован- ные	НЖМ	Нагарт ован - ные	От 1,0 до 4,5	Не и	Не испытываются	ж
6111	Отожженные	Д12М	Отожженные	От 0,5 до 4.0	155 (16,0)	-	14,0
	Полунагар- тованные	Д12Н2	Полунагар- гованные	От 0,5 до 4,0	220 (22,5)	1 .	3,0
	Отожженные	AMr2M	Отожженные	От 0,5 до 1,0 Св. 1,0 до 10,5	165 (17,0) 165 (17,0)	1 1	16,0 18,0
AMr2	Полунагар- тованные	AMr2H2	Полунаг ар- тованные	От 0,5 до 1,0 Св. 1,0 до 4,0	235—314 (24,0—32,0) 235—314 (24,0—32,0)	145 (15,0) 145 (15,0)	5,0
	Нагартован- ные	AMr2H	Нагартов а н- ные	От 0,5 до 1,0 Св. 1,0 » 4,0	265 (27,0) 265 (27,0)	215 (22,0) 215 (22,0)	3,0 4,0
•	Без термиче- ской обработки	AMr2	Без термиче-	От 5,0 до 10,5	175 (18,0)		0,2

Продолжение табл. 7

						a commence of		
					Механические свойства при растя- жении	свойства п жении	ри растя-	
Марка алюминия и алюми- виевого сплава и плаки- ровка	Состояние мате- риала листов	Обозначение сплава и состояние материала	Состояние испытываемых образцов	Толщина листа,	Временное сопротивление ов, кгс/мм*)	Предел текучести оо.2° МПа (кгс/мм²)	Относи- тельное удливение при 1= =11,3 УF	
					田	Не менее		
	Отожженные	A.Mr.3.M	Отожженные	От 10.5 до 0,6 Св. 0,6 » 4,5 » 4,5 » 10,5	195 (20,0) 195 (20,0) 185 (19,0)	90 (9,0) 100 (10,0) 80(8,0)	15.0 15.0 15.0 15.0	
AMr3	Полунагар- тованные	AMr3H2	Полунагар- тованные	От 0,5 до 1,0 Св. 1,0 * 4,0	245 (25,0) 245 (25,0)	195 (20,0) 195 (20,0)	7,0	
	Без термиче-	AMr3	Без термиче- ской обработки	От 5,0 до 6,0 Св. 6,0 » 10,5	185 (19,0) 185 (19,0)	80(8,0) 80(8,0)	12,0 15,0	
A. M.	Отожженные	AMr5M	Отожженные	От 0,5 до 0,6 Св. 0,6 » 4,5 Св. 4,5 до 10,5	275 (28,0) 275 (28,0) 275 (28,0)	135(14,0) 145(15,0) 130(13,0)	15,0 15,0 15,0	
	Без термиче-	AMr5	Без термиче-	От 5,0 до 6,0 Св. 6,0 » 10,5	275 (28,0) 275 (28,0)	130(13,0)	12,0 15,0	
A:Mr.6F	Отожженные	AMr6BM, AMr6M	Отожженные	От 0,5 до 0,6 Св. 0,6 » 10,5	305 (31,0) 315 (32,0)	145(15,0) 155(16,0)	15,0 15,0	
AMr6	Без термиче- ской обработки	AMr6B, AMr6	Без термиче-	От 5,0 до 10,5	315 (32,0)	155(16,0)	15,0	
AMr6y	Отожженные	AMr6VM	Отожженные	От 2,0 до 5,5	275 (28,0)	130(13,0)	15,0	
								

						المممممي	
•					Механические свойства при растя- жении	з свойства п жении	ри растя-
Марка алюминия и алюми- ниевого сплава и плаки- ровка	Состояние материала листов	Обозначение сплава и состояние матернала	Состояние испытываемых образцов	Толщина листа,	Временное conportubne- ние о _в , MПa (кгс/мм²)	Ipegen Tekyuecru °0,2' MIa (krc/mm²)	Относи- тельное удлинение при [===11,3 VF]
					H	Не менее	
	Отожженные	ABM	Отожженные	От 0,5 до 5,0 Св. 5,0 » 10,5	Не более 145 (15,0) Не более	. 1	20,0
						ı	15,0
	Закаленные и естественно	ABT	Закаленные и естественно	Or 0,5 до 0,6 Cs. 0.6 » 3.0	195 (20,0) 195 (20,0)	1 1	18.0 20.0
AB			состаренные		195 (20,0) 175 (18,0)	11	18,0 16,0
	Закаленные	ABTI	Закаленные	Ħ	295 (30,0)	ſ	110,0
	и искусственно		и искусственно состаренные	CB. 5,0 » 10,5	295 (30,0)	1	0; 8
			Закаленные	От 5,0 до 10,5	175 (18,0)	1	14,0
	Без термиче-		и естественно состаленные				
	ской обработки	AB	Закаленные	От 5.0 до 10.5	295 (30,0)	1	7,0
-			и искусственно состаренные				
Í	Отожженные	ДІАМ	Отожженные		145—225		
		-		CB. 1,9 » 10,5	(15,0—23,0)	1	12,0
ДПА				,	1 1	1	12,0
	Закаленные и естественно	ДІАТ	9 o	От 0.5 до 1,9 Св. 1,9 » 10,5	365 (37,0) 375 (38,0)	185(19,0) 195(20,0)	15,0 15,0
	состаренные	,	состаренные		_		,

Продолжение табл. 7

			-			T pooling	
					Механиче ск ие свойства при растя- жении	свойства п жении	ри растя-
Марка алюминия и алюми- ниевого сплава и плаки- ровка	Состояние материала листов	Обозначение сплава и состояние матернала	Состояние испытываемых образцов	Толщин а листа, мм	Временное сопротивление ов, МПа (кгс/мм*)	Предел текучести 00,2' МПа (кгс/мм²)	Относи- тельное удлинение при $l = 11,3 VF$
					T	Не менее	
Д1А	Без термиче- ской обработки	Д1А	Закаленные и естественно	От 5,0 до 10,5	355 (36,0)	185(19,0)	12,0
	Отожженные	Д16БМ, Д16М	Отожженные	От 5,0 до 10,5	145—235 (15,0—24,0)	1	10,0
Д16Б,	Закаленные и естественно	дібБт, дібт	Закаленные и естественно состаренные	От 0,5 до 1,5 Св. 1,5 » 6,0 » 6:01 » 10,5	440 (45,0) 440 (45,0) 440 (45,0)	290 (29,5) 290 (29,5) 290 (29,5)	13,0
Д16	- H - G- CT G G G G G G-	д16БТН, Д1 6Т Н	Нагартован- ные после за- калки и естест- венного старе-	От 1,5 до 3,0 Св. 3,0 » 7,5	475 (48,5) 475 (48,5)	360 (36,5) 360 (36,5)	10,0 8,0
	ния		жин	От 0,5 до 1,9	1.45—225		10,0
	Отожженные	Д16АМ	Отожженные	CB. 1,9 » 10,5	(15,0-23,0) $145-235$ $(15,0-24,0)$	1	10,0
Д16А	Закаленные и естественно	Д16АТ	Закаленные и естественно состаренные	От 0,5 до 1,9 Св. 1,9 » 6,0 » 6,0 » 10,5	405 (41,5) 425 (43,5) 425 (43,5)	270(27,5) 275(28,0) 275(28,0)	13,0 1110 1010
	Без термиче-	Д16А	Закаленные и естественно состаренные	От 5,0 до 10,5	415 (42,0)	255(26,0)	10.10

Продолжение табл. 7

					Моханические свойства при растя- жении	свойства пј жении	и растя-
Марка алюминия н алюми- ниевого сплава и плаки- ровка	Состояние материялистов	Обозначение сплава и столяние материала	Соэтояние испытываемых образцов	Толщина листа, мм	Временное сопротивление ^{ов} ь*	Предел текучести бо,2' МПа (кгс/мм²)	Относи- тельное удлинение при I= =11,3 УF
				·	He	не менее	
Д16А	Нагартован- ные после за- калки и естест- венного старе- ния	Д16АТН	Нагартован- ные после за- калки и естест- венного старе- ния	От 1,5 до 1,9 Св. 1,9 » 7,5	425 (43,5) 455 (46,5)	335 (34,0) 345 (35,0)	8,0
Д16У	Отожженные	ДІбУМ	Отожженные	От 0,5 до 1,9 Св 1,9 » 4,0	130—225 (13,0—23,0) 130—235 (13,0—24,0)	1 1	10,0
	Закалени ые и естественно состаренные	Д16УТ	Закаленные и естественно состаленные	От 10,5 до 1,9 Св. 1,9 » 4,0	365 (37,0) 405 (41,5)	230(23,5) 270(27,5)	13.0
	Отожженные	B95AM	Отожженные	От 0,5 до 10,5	Не более 245 (25,0)	ı	1.0,10
B95A	Закаленные и искусственно состаренные	B95AT1	Закаленные и искусственно состаренные	От 0,5 до 1,9 Св. 1,9 » 6,0 » 6,0 » 10,5	480 (49,0) 490 (50,0) 490 (50,0)	400 (41,0) 410 (42,0) 410 (42,0)	0,7 0,0 0,0
	Без термиче- ской обработки	B95A	Закаленные и искусственно состаренные	От 5,0 до 10,5	490 (50,0)	410(42½)	6,0
			-	/	,		

Продолжение табл. 7

						7.7	poor moon		
						Механические свойства при растя- жении	: свойства пр жении	и растя-	
Марка алюминия и алюми- пиевого сплава и плаки- ровка	Состояние мате- риала листов	Обозначение сплава и состояние материала	Состояние испытываемых образцов	Толщина ляста, мм	нста,	Временное сопротивле- ние ов, МПа (кгс/мм²)	Предел текучести оо.2. МПа (кгс/мм²)	Относи- тельное удлинение при [===11,3 УF]	
						H	Не менее		
B95—2A B95—2B, B95—1A, B95—1, AKMB, AKMA,	Отожженные	B95—2AM, B95—2BM, B95—1AM, B95—1AM, AKMBM, AKMAM,	Отожженные	От 1,0 до 10,5	10,5	Не более 245 (25,0)	.	10,0	
R05 20	Нагартован- ные	АҚМАН	Нагартован- ные	От 0,8 до	4,0	Не ис	Не испытываются	В,	
B95—2A, B95—1A, B95—1A, B95—1,	Закаленные и естественно состаренные	B95—2AT, B95—1AT, AKMAT	Закаленные и естественно состаренные	От 1,0 до 10,5	10,5	315 (32,0)	1	10,0	
AKMB, AKMA, AKM	Без термиче- ской обработки	B95—2A B95—1A,	Без термиче- ской обработки	От 5,0 до 10,5	10,5	315 (32,0) He ис	22,0) Не испытываются	1010 R	
	Отожженные	1915M	Отожженные	От 1,00 до	4,5	Не более 245 (25,0)		110	
1915	Закаленные и естественно состаренные	.1915T	Закаленные и естественно состаренные в течение 30—35 суток	От 1,0 до 10,5	10,5	315 (32,0)	195 (20,0)	10	

Продолжение табл. 7

-					III	прообжение таба.	e Imon.
					Механические свойства при растя- жении	свойства п жении	ри растя-
ပိ ံ	Состояние материялистов	. Обоеначение сплава и состояние материала	Состояние испытываемых образцов	Толщина листа, мм	Временное сопротивление св,	Предел текучест °0,2' МП (кгс/мм²)	Относи- тельное удлинение при <i>l</i> = =11,3 VF
					H	Не менее	
6CT	Закаленные и естественно со- старенные	1915T	Закаленные и естественно состаренные в течение 2—4 суток	От 1,0 до 10,5	275 (28,0)	165(17,0)	110
CKC	Без термиче- ской обработки	1915	Закаленные и естественно состаренные в течение 30—35 суток	От 5,0 до 10,5	315 (32,0)	195(20,0)	10
CK	Без термиче- ской обработки	1915	Закаленные естественно со- старенные в те- чение 2-4	От 5,0 до 10,5	265 (27,0) 165(17,0)	165 (17,0)	10
	Отожженные	ВДІАМ, ВДІМ, ВДІБМ	Отожженные	От 0,8 до 10,5	Не более. 245 (25,0)	ı	10,0
- H S	Закаленные и естественно состаренные	ВДІАТ, ВЛІТ, ВДІБТ	Закален ные и естественно состаренные	От 0,8 до 10,5	335 (34,0)	1	12,0

три растя-	Относи- тельное удлинение при l= =11,3 VF		CA	12,0
: свойства 1 жении	Предел текучести Oo,2' MIa (кгс/мм²)	Не менее	Не испытываются	1
Механические свойства при растя- жении	Временное сопротивле- $0,2$; МПа (кгс/мм²) (кгс/мм²) = $0,2$; $0,2$; $0,2$; $0,3$;	H	Не ис	335 (34,0)
	cra,		4,0	10,5
	Толщина листа, мм		8 до	0 до
	Толщ		O. TC	Or 5,
	Состояние испытываемых образцов		Нагартован- ные	Без термиче- ской обработки
Обозначение сплава и состояние материала		ВДІН, ВДІ АН, Нагартован- От 0,8 до 4,0 ВДІБН	ВД1, ВД1А, ВД1Б	
,	Состояние мате- риала листов		Нагартован . ные	Без термиче- ской обработки ВД1Б
e y u e M	алюння и алюми- ниевого сплава и плаки- ровка		ВД1А ВД1Б, ВД1	

с временным сопротивле-1. По требованию потребителя отожженные листы из алюминия изготовляются нием не более 110 МПа (14 кгс/мм²). Примечания:

2. Листы из сплава марки АМцтолщиной от 1,0 до 4,0 мм в полунагартованном состоянии по требова-потребителя изготовляют с временным сопротивлением от 147 МПа (15,0 кгс/мм²) до 196 МПа нию потребителя изготовляют с временным (20,0 Krc/MM2). шихся при закалке, и неметаллических включений металлургического происхождения, если они не удаляются при контрольном травлении в 5—6%-ном растворе NaOH при 50°C в течение 1—3 мин с последующим осветлением в 30%-ном растворе HNO₃. На листах из сплава марки АМц не допускается величина зерна, определяемая шероховатостью поверхности образцов, подвергаемых растяжению, превышающая величину, указанную в обязательном приложении 1.

Таблица 8

			Мехадически	е свойства при	растяжении
Марка сплава	Состояние испытываемых образцов	Толщина листа, мм	Временное сопротивле- ние _в , МПа (кгс/мм²)	Предел теку- че ст и ^о 0,2' М Па (кгс/мм²)	Огносительное удлинение при $l=11,3 \ \sqrt{F}$ $\delta, \%$
•		•		не менее	
Д1 A	Закаленные и естественно состапенные	От 0,5 до 1,9 Св. 1,9 » 10,5	355 (36,0) 355 (36,0)	185 (19,0) 195 (20,0)	15,0 15,0
Д16Б	Закаленные и естественно состаренные	От 0,5 до 1,5 Св. 1,5 » .6,0 » 6,0 » 10,5	425 (43,5) 425 (43,5) 425 (43,5)	275 (28,0) 275 (28,0) 275 (28,0)	.13,0 11,0 10.0
Д16A	Закаленные и естественно состаренные	От 0,5 до 1,9 Св. 1,9 » 10,5	390 (40,0) 410 (42,0)	255 (26,0) 265 (27,0)	15,0 12,0
Д16У	Закаленные и естественно состаренные	От 0,5 до 1,9 Св. 1,9 » 4,0	350 (35,5) 390 (40,0)	220 (22,5) 255 (26,0)	13,0 13,0
B95A	Закаленные и искусственно состаренные	От 10,5 до 1,0 Св. 1,0 » 6,0 » 6,0 » 10,5	470 (48,0) 480 (49,0) 480 (49,0)	390(40,0) 400(41,0) 400(41,0)	7,0 7,0 6,0
	Закаленные и естественно состаренные	От 0,5 до 0,6 Св. 0,6 » 3,0 » 3,0 » 5,0 » 5,0 » 10,5	175 (18,0) 175 (18,0) 175 (18,0) 155 (16,0)		18,0 20,0 18,0 16,0
AB	Закаленные и искусственно состаренные	От 0,5 до 5,0 Св. 5,0 » 10,5	275 (28,0) 275 (28,0)	=	10,0 8,0

3.8. На лицевой стороне листов высокой отделки поверхности не допускаются: пятна и полосы от пригоревшей смазки, отпечатки от валков в виде светлых и темных полос и надрывы.

Параметр шероховатости поверхности листа должен быть не более Ra = 1,25 мкм по ГОСТ 2789—73.

(Измененная редакция, Изм. № 1, 3).

3.8.1. На лицевой стороне листов высокой отделки допускаются:

- а) металлические мелкие закаты общей площадью не более $20~{\rm mm^2}$ на $1~{\rm m^2}$ поверхности листов шириной до $1200~{\rm mm}$ включительно и не более $50~{\rm mm^2}$ на $1~{\rm m^2}$ поверхности листов шириной свыше $1200~{\rm mm}$;
 - б) гнезда от выкрашивания закатов;

в) пузыри общей площадью не более 20 мм² на 1 м² поверхно-

сти листа с размерами каждого пузыря не более 5 мм²;

- г) единичные и групповые мелкие царапины глубиной не более 0,02 мм на листах шириной до 1200 мм и не более 0,05 мм на листах шириной свыше 1200 мм. В одной группе не более пяти царапин, которые укладываются в квадрате 200×200 мм;
 - д) насечка, имеющая длину отдельного штриха не более 4 мм;

е) отпечатки в виде мелких вмятин и выпуклостей;

- ж) единичные изломы от изгибов отожженных листов толщиной 0,5—0,8 мм, шириной 1000 мм и более при длине более 4000 мм и шириной 1500 мм и более при длине 4000 мм;
- з) легкая потертость общей площадью не более 1 % поверхности листа:
- и) отпечатки от валков в виде отдельных «языков» (заалюминивание) длиной не более $50\,$ мм и шириной не более $5\,$ мм, общей площадью не более $1\,\%$ поверхности листа;
 - к) цвета побежалости.
- 3.8.2. Поверхность, противоположная лицевой стороне листов высокой отделки, должна соответствовать требованиям к лицевой стороне листов повышенной отделки.

3.8.1; 3.8.2. (Измененная редакция, Изм. № 1).

3.9. На лицевой и противоположной лицевой стороне листов повышенной отделки во всех состояниях, кроме отожженных и полунагартованных, не допускаются пятна и полосы от пригоревшей смазки.

Параметр шероховатости поверхности листа должен быть не более $Ra=2,5\,$ мкм по ГОСТ 2789—73.

(Измененная редакция, Изм. № 1, 3).

- 3.9.1. На лицевой стороне листов повышенной отделки допускаются:
- а) металлические мелкие закаты общей площадью не более
 50 мм² на 1 м² поверхности листа для алюминия и алюминиевых сплавов всех марок, за исключением алюминиевых сплавов марок

АМг3, АМг5, АМг6, где закаты допускаются общей площадью не более 80 мм² на 1 м² поверхности листа:

б) гнезда от выкрашивания закатов:

в) пузыри общей площадью не более 40 мм² на 1 м² поверхности листа с размером каждого пузыря не более 10 мм²;

г) подпланшетные пузыри, диффузионные пятна и обнаженные от плакировки участки без трещин на листах с технологической плакировкой;

- д) единичные и групповые мелкие царапины глубиной не более 0,05 мм. В одной групе не более 8 царапин, которые укладываются в квадрате 200×200 мм;
- е) насечка и заалюминивание виде штрихов, имеющих длину не более 5 мм;

ж) отпечатки в виде мелких вмятин и выпуклостей;

- з) единичные изломы от изгибов у отожженных и закаленных листов толщиной 0,5-0,8 мм, шириной 1000 мм и более при длине более 4000 мм и шириной 1500 мм и более при длине до 4000 мм;
- и) поперечная волнистость глубиной до 0,2 мм, получающаяся от вибрации на листах нагартованных и на листах из сплавов марок АМг5 и АМг6, изготовляемых без плакировки;

к) легкая потертость общей площадью не более 2 % поверхнос-

ти листа:

- л) отпечатки от валков в виде отдельных «языков» (заалюминивание) длиной не более 50 мм, шириной не более 5 мм, общей площадью не более 3% поверхности листа;
- м) световые следы коробления листов от закалки (жеванность), не ощутимые рукой у закаленных листов толщиной 0,5-0,8 мм;

н) цвета побежалости:

- о) отпечатки от валков «елочка» на листах из алюминия и алюминиевого сплава марки АМц общей площадью не более 5% поверхности листа:
- п) отпечатки от валков в виде светлых и темных полос (без надрывов), идущие вдоль прокатки;
- р) пятна и полосы от эмульсии общей площадью не более 3% поверхности листа;
- с) поперечная полосчатость у закаленных листов, получающаяся при закалке листов в печи с циркуляцией воздуха, и слабо выраженные разводы.

(Измененная редакция, Изм. № 1).

3.9.2. Поверхность, противоположная лицевой стороне листов повышенной отделки, должна соответствовать требованиям пункта 3.9.1, при этом допускаются:

металлические мелкие закаты общей площадью не более 100 мм^2 на 1 м^2 поверхности листа;

единичные и групповые мелкие царапины глубиной не более

0,05 мм (без ограничения групп);

легкая потертость общей площадью не более 5% поверхности листа:

пятна и полосы от эмульсии общей площадью не более 5% поверхности листа.

(Измененная редакция, Изм. № 2).

3.10. На лицевой и противоположной лицевой стороне листов обычной отделки во всех состояниях материала, кроме отожженных и полунагартованных, не допускаются пятна и полосы пригоревшей смазки.

Параметр шероховатости поверхности листа доджен быть не

более Ra = 2.5 мкм по ГОСТ 2789—73.

(Измененная редакция, Изм. № 3).

3.10.1. На лицевой и противоположной лицевой стороне листов обычной отделки поверхности допускаются: закаты, гнезда от выкрашивания закатов, пузыри, единичные и групповые царапины, мелкая насечка и заалюминивание и другие дефекты, обусловленные способом производства, общей плошадью не более 5% поверхности листа.

3.11. Глубина залегания всех перечисленных в пп. 3.8.1; 3.9.1; 3.10.1 допустимых дефектов не должна превышать половину предельных отклонений на толщину листа и не нарушать плакирующий слой на листах с утолщенной и нормальной плакировкой. 3.10.1; 3.11. (Измененная редакция, Изм. № 1, 2).

3.11.1. На листах из алюминия и алюминиевых сплавов марок АМи, АМиС, Д1, Д16, В95, 1915, АВ, АМг2, АМг3, АМг5, АМг6 высокой и повышенной отделки поверхности допускаемые дефекты, перечисленные в пп. 3.8.1 и 3.9.1, не должны выводить лист за предельные отклонения по толщине листов. (Измененная редакция, Изм. № 1).

3.12. На листах высокой и повышенной отделки поверхности допускаются отдельные зачищенные участки общей площадью не более 0,5% поверхности листа, а на листах обычной отделки 1% поверхности листа, зачищенные шлифовальной шкуркой на бумажной основе зернистостью не крупнее 6 по ГОСТ 6456—82 или шлифовальной шкуркой на тканевой основе зернистостью не крупнее 6 по ГОСТ 5009—82 на глубину не более половины толщины плакирующего слоя, а для неплакированных листов — на глубину не более половины предельного отклонения на толщину листа.

(Измененная редакция, Изм. № 1, 2).

- 3.13. Листы без термической обработки изготовляют по качеству поверхности повышенной отделки и обычной отделки поверхности.
- 3.14. Допускается устанавливать эталоны качества поверхности листов, согласованные между изготовителем и потребителем.

(Измененная редакция, Изм. № 1).

3.15. Отклонение от плоскостности листов из алюминиевых сплавов марок AB, Д1, В95, Д16, 1915, В95—1, В95—2, АКМ, ВД1, изготовляемых в отожженном, закаленном и состаренном состояниях, должно соответствовать требованиям, указанным в табл. 9.

MM

Таблица 9

		MI NI		
		. •	ности при укладке ли стороной)	е от плоскост- и свободной иста (каждой на плоскость не более
Толщина листа	Ши р нн а л иста	Длина листа	по всей по- верхности листа (включая длинные стор ны)	по коротким сторонам (включая длинные стороны до 300 мм от углов листа)
От 0,5 до 1,5	До 1200 Св. 1200 до 1600	До 7200	14 16	2/0 2/0
Св. 1,5 до 4,0	До 1 20 0 Св. 1 20 0 до 1 6 00	До 7200	18 18	30 30
Св. 4,0 до 10,5	До 1200 Св. 1200 до 1600	До 7200	20 22	40 40
От 0,8 до 2,0	Св. 16000 до 20000	До 4000 Св. 4000 до 7200	20 23	40 45
Св. 2,0 до 10,5	Св. 1600 до 2000	До 4000 Св. 4000 до 720 0	24 25	50 50

3.15.1. Отклонение от плоскостности листов из алюминия всех марок и алюминиевых сплавов в полунагартованном и нагартованном состояниях, а также листов в отожженном состоянии из алюминия всех марок и алюминиевых сплавов (кроме перечисленных в п. 3.15) должно соответствовать требованиям табл. 10.

		MM	ности при укладке л сторон й)	я от плоскост- и свободнэй иста (каждой на плоскость не более
Толщина листа	Ширина листа	Длина листа	по всей поверхно- сти листа (включая длинные сторовы)	по коротким сторонам (включам длиные сто- роны до 300 мм от углов листа)
От 0,3 до 3,0 Св. 3,0 » 6,0 » 6,0 » 10,5	До 1000	До 20000	14 18 23	14 18 23
От 0.5 до 1.0	Св. 1000 до 1200 » 1200 » 1600	До 4000	15 16	210 25
01 0,5 40 1,0	До 1200 Св. 1200 до 1600	Св. 4000 до 7000	20 35	25 45
Св. 1,0 » 1,5	От 1000 до 1200 Св. 1200 » 1600	До 4000	20 25	25 30
Св. 1,0 // 1,0	До 1200 Св. 1200 до 1600	Св. 4000 до 7000	25 30	30 45
Св. 4,5 » 3,0	От 1000 до 1200 Св. 1200 » 1600	До 4000	25 25	30 35
CB, 11,0 % 3,0	До 1200 Св. 1200 до 1600	Св. 4000 до 7000	25 25	30 40
Св. 3,0 », 4,0	От 1000 до 1200 Св. 1200 » 1600	До 4000	25 25	40 40
CB_ 5,0 %, 4,0	До 1200 Св. 1200 до 1600	Св. 4000 до 7000	25 30	40 45
Св. 4,0 > 6,0	От 1:0000 до 1200 Св. 1200 » 1600	До 4000	25 30	40 40
Св. 4,0 » 6,0	До 1200 Св. 1200 до 1600	Св. 4000 до 7000	25 30	40 45
C- 60 10 F	От 1000 до 1200 Св. 1200 » 1600	До 4000	25 30	410 410
Св. 6,0 » 10,5	До 1200 Св. 1200 до 1600	Св. 4000 до 7000	25 30	4/0 45
От 0,8 до 10,5	Св. 1600 до 2000	До 4000 Св. 4000 до 7000	35	50 55

3.15; 3.15.1. (Измененная редакция, Изм. № 1, 2, 3).

3.15.2. Отклонение от плоскостности листов из алюминия и алюминиевых сплавов в отожженном состоянии толщиной свыше 4,0 мм, изготовляемых способом горячей прокатки, а также без термической обработки, должно соответствовать указанному в табл. 11.

Таблица 11

		MM		
			при свободно (каждой сто	от плоскостности ой укладке листа ороной) на плос- иты, не более
Толщина листа	Ширина листа	Длина листа	по всей по- верхности листа, вклю- чая длинные стороны	по кэротким сторолам, включая длинные стороны до 300 мм от углов листа
От 5,0 до 10,5	До 1200 Св. 1200 до 1600	До 7000	25 30	45 45
	Св. 1600 до 2000	,	40	55

Примечание. Отклонение от плоскостности листов из алюминиевых сплавов марок АМг3, АМг5, АМг6, АМг6Б, поставляемых без термической обработки, должно удовлетворять следующим требованиям: отклонение от плоскостности при свободной укладке листа каждой стороной на плоскость плиты может быть на 200 мм больше норм, указанных в табл. 161.

(Измененная редакция, Изм. № 1, 2).

3.16. Микроструктура листов, прошедших закалку, не должна иметь пережога.

(Введен дополнительно, Изм. № 2).

4. ПРАВИЛА ПРИЕМКИ

4.1. Листы предъявляют к приемке партиями. Партия должна состоять из листов одной марки алюминия или алюминиевого сплава, одного состояния материала и одного размера и сопровождаться документом о качестве, содержащим:

товарный знак или товарный знак и наименование предприятия-изготовителя;

наименование предприятия-потребителя:

условное обозначение;

номер партии;

массу нетто партии;

результаты испытаний (для механических свойств указывать только максимальные и минимальные значения);

дату отгрузки;

обозначение настоящего стандарта.

По требованию потребителя высылают копии протоколов химического анализа.

Масса партии не ограничивается.

Примечание Если партия состоит из листов разных садок термообработки, то каждая садка должна быть проконтролирована на соответствие требованиям настоящего стандарта.

4.2. Химический состав определяют на двух листах от партии. Прочие примеси не контролируются.

Допускается изготовителю определять легирующиие компоненты

и основные примеси на каждой плавке.

4.3. Контролю размеров подвергают каждый десятый лист.

4.1—4.3. (Измененная редакция, Изм. № 1).

4.4. Качество поверхности и отклонение от плоскостности листов проверяют на каждом листе.

Контроль шероховатости поверхности изготовитель проводит

периодически по требованию потребителя.

Примечание. Предприятию-изготовителю разрешается не производить полистный контроль листов повышенной отделки и обычной отделки.

(Измененная редакция, Изм. № 1, 3).

4.5. Контролю механических свойств при растяжении (временного сопротивления, предела текучести и относительного удлинения) в зависимости от марки алюминиевого сплава и состояния материала подвергают количество листов, указанное в табл. 12, но не менее чем по одному листу от каждой предъявляемой к сда-

че партии.

4.6. Механические свойства листов без термической обработки, отожженных (кроме листов из алюминиевых сплавов марок АМг3, АМг5, АМг6), нагартованных из алюминия всех марок и алюминиевых сплавов (кроме листов из сплава марки Д16 в состоянии нагартованном после закалки и естественного старения), а также закаленных и естественно состаренных листов из алюминиевых сплавов марок Д1, ВД1, В95—2, В95—1, АКМ предприятием-изготовителем не контролируются, а обеспечиваются технологией изготовления.

Проверку механических свойств листов из сплава марки 1915 в закаленном и состаренном состоянии изготовитель проводит после 2—4 сут естественного старения, а потребитель — после 30—

35 сут естественного старения.

4.7. Допускается испытание на механические свойства листов, прошедших термообработку в ленте, проводить на трех образцах от каждого рулона (начало, середина и конец рулона).

Manua		Количество и листов от не б	спытываемых партии, %,
Марка алюминия и алюми- ниевого сплава и плаки- ровка	Состояние материала	Временное сопротивление и относительное удлинение при растяжении	Предел те- кучести при растяжении
АМг3, АМг5, АМг6, АМг6У, АМг6Б	Отожженные	10	5
А7, А6, А5, А0 АД0, АД1, АД, АД00, АМц, АМцС, Д12	Полунагартованные	5	
АМг2, АМг3		5	2
АМц, АМцС	Нагартованные	5	
АМг2		5	5
AB	Закаленные и соста-	5	
Д16А, Д16Б, Д16У, Д16, 1915, В95А	ренные по режимам Т и	10	5
Д16А, Д16Б, Д16	Нагартованные после закалки и естественного старения	10	5

4.5—4.7. (Измененная редакция, Изм. № 2).

4.8. Для проверки листов на отсутствие пережога предприятие-изготовитель отбирает один лист от каждой садки термообработки.

Проверку на отсутствие пережога листов, прошедших закалку в ленте, проводят на двух образцах от каждого рулона (начало и конец рулона).

Проверке на отсутствие пережога листов, прошедших закалку полистно, подвергают каждый сотый лист, но не менее одного листа от партии.

(Введен дополнительно, Изм. № 2).

4.9. (Исключен, Изм. № 1).

4.10. Листы, термическая обработка которых проводилась в селитровых ваннах, контролируют на наличие селитры на поверхности.

Для контроля отбирается 1% листов от партии, но не менее одного листа.

4.11. При получении неудовлетворительных результатов испытания механических свойств хотя бы по одному из показателей

по нему проводят повторные испытания на удвоенном количестве образцов, вырезанных из тех же листов. При неудовлетворительных результатах повторных испытаний допускается поштучное испытание, результат которого является окончательным.

(Измененная редакция, Изм. № 1, 3).

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Осмотр поверхности листов и выявление расслоений прово-

дят без применения увеличительных приборов.

Глубину залегания дефектов измеряют профилометром по ГОСТ 19300—86 или глубиномером индикаторным (специальным) по нормативно-технической документации.

Контроль шероховатости проводят профилометром-профило-

графом по ГОСТ 19300-86.

(Измененная редакция, Изм. № 1, 3).

5.2. Измерение размеров производят мерительным инструментом, обеспечивающим необходимую точность измерения.

Измерение толщины листов производят на расстоянии не менее

115 мм от углов и не менее 25 мм от кромок листа.

Измерение толщины листов проводят микрометром по ГОСТ 6507—90. Измерение ширины и длины листов проводят измерительной металлической рулеткой по ГОСТ 7502—89.

Косину реза измеряют в соответствии с ГОСТ 26877—91 измерительной линейкой по ГОСТ 427—75 и угольником по ГОСТ

3749—77 или угломером по ГОСТ 5378—88.

(Измененная редакция, Изм. № 2, 3).

5.3. Отбор и подготовку проб для определения химического состава листов проводят по ГОСТ 24231—80. Определение химического состава алюминия проводят по ГОСТ 25086—87, ГОСТ 12697.1-77—ГОСТ 12697.12-77 или спектральным методом по ГОСТ 3221—85, алюминиевых сплавов— по ГОСТ 11739.1—90, ГОСТ 11739.2—90, ГОСТ 11739.3—82, ГОСТ 11739.4—90, ГОСТ 11739.5—90, ГОСТ 11739.6—82, ГОСТ 11739.7—82, ГОСТ 11739.8-90—ГОСТ 11739.10-90, ГОСТ 11739.11-82—ГОСТ 11739.15-82, ГОСТ 11739.16-90—ГОСТ 11739.19-90, ГОСТ 11739.20—82, ГОСТ 11739.21—90, ГОСТ 11739.22—90, ГОСТ 11739.23—82, ГОСТ 11739.24—82 или спектральным методом по ГОСТ 7727—81.

5.4. Отбор образцов для механических испытаний проводят по ГОСТ 24047—80.

Испытание на растяжение листов толщиной свыше 0,8 до 2,5 мм проводят по ГОСТ 11701—84 на пропорциональных плоских об-

разцах типов I или II с $b_0\!=\!20$ мм, а листов толщиной от 3,0 до 10,5 мм проводят по ГОСТ 1497—84 на пропорциональных плоских образцах типов I или II.

Расчетную длину образца (l_0) в миллиметрах вычисляют

формуле $l_0=11,3$ $\sqrt[3]{F_0}$, где F_0 — расчетная площадь образца, мм². Форма и размеры образцов, вырезанных для испытания на растяжение из листов толщиной от 0,3 до 0,8 мм, должны соответствовать указанным на чертеже.

Для испытания на растяжение от каждого контролируемого

листа вырезают один образец поперек направления прокатки. 5.3; 5.4. (Измененная редакция, Изм. № 2). 5.4.1. Выявление крупнокристаллической структуры (величина зерна) на листах из сплава марки АМц проводится на одном образце, подвергающемся испытанию на растяжение, отобранном от каждого рулона.

При растяжении образца на его поверхности появляется шероховатость, допустимость которой определяется эталоном, приведенным в приложении 1 или согласованным между потребителем и изготовителем.

(Введен дополнительно, Изм. № 1). 5.5. Измерение отклонения от плоскостности листов проводят на контрольной плите по НТД.

Отклонение от плоскостности (волнистость и прогиб) определяют наибольшим расстоянием между плоскостью расположения листа и прилегающей плоскостью контрольной плиты. Измерения проводят одним из способов, указанных в ГОСТ 26877—91 с помощью металлических линеек по ГОСТ 8026—92 и ГОСТ 427—75.

Выпуклость листа (высоту и длину хлопуна) определяют методике предприятия-изготовителя.

(Измененная редакция, Изм. № 2).

5.6. Для контроля наличия селитры на поверхность листа на-носят каплю раствора 0,5 %-ного дифениламина в концентрирован-

ной серной кислоте (к навеске 0.5 г дифениламина приливают $10~{\rm cm}^3$ дистиллированной воды и $25~{\rm cm}^3$ серной кислоты, плотность $1.84~{\rm r/cm}^3$).

После растворения дифениламина объем раствора доводят до

100 см³ прибавлением серной кислоты.

Интенсивное посинение капли раствора через 10—15 с указы-

вает на присутствие в данном месте селитры.

После испытания каплю удаляют фильтровальной бумагой, а испытуемый участок тщательно промывают водой и насухо вытирают.

При обнаружении следов селитры партии листов подлежат повторной промывке и повторному контролю на наличие селитры на

поверхности листов.

5.7. Микроструктуру листов проверяют металлографическим методом на одном образце или вихретоковым методом по методике предприятия-изготовителя.

В арбитражных случаях испытания проводят металлографи-

ческим методом.

(Введен дополнительно, Изм. № 2).

6. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. На одной из сторон на расстоянии не более 30 мм от кромки по ширине или от кромки короткой стороны листа должны быть выбиты или нанесены краской: марка алюминия или алюминиевого сплава, плакировка, состояние материала, толщина листа, номер партии и штамп технического контроля.

По требованию потребителя допускается поставка листов без

клеймения.

Допускается маркировать только верхний лист стопы или пачки при транспортировании листов толщиной менее 1,0 мм.

(Измененная редакция, Изм. № 1, 3).

6.1.1. Маркировку листов, предназначенных на экспорт, проводят в соответствии с заказом-нарядом внешнеторгового объединения.

(Введен дополнительно, Изм. № 3).

6.2. По согласованию между изготовителем и потребителем на одной стороне поверхности листов вместо клеймения наносят строчечную маркировку с указанием марки алюминия или алюминиевого сплава, плакировки, состояния материала и толщины листа с интервалами между строчками не более 1500 мм. Для маркировки листов применяют быстросохнущие краски по НТД.

6.3. Временная противокоррозионная защита, упаковка, тран-

спортирование и хранение — по ГОСТ 9.011—79. Транспортная маркировка грузовых мест — по ГОСТ 14192—77 с нанесением дополнительных надписей: наименования полуфабрикатов, марки сплава, состояния материала, размеров листов, номера партии.

(Измененная редакция, Изм. № 2).

6.4. (Исключен, Изм. № 1).

Допускаемая крупнокристаллическая структура листов из алюминиевого сплава марки АМц (типы 1, 2, 3)

аблица 1

⊣ 1			1
а олица		8000	
пирине		0081	24,324 27,048
ишине и		8 9	2,447 2,905 3,339 3,339 3,339 3,339 3,339 4,185 10,772 112,945 117,185
тения по то		1500	1,887 2,295 2,724 3,131 3,600 3,925 4,783 6,327 7,184 7,613 8,021 10,101 12,139 14,262 16,385 18,530 20,653 22,835 22,835 27,024 27,024 29,151
ја с Теоретическая масса I м листа, кг. новмальной топчости изготовления по томшине и шивине	M	1425	2.588 2.588 2.588 2.588 3.729 4.544 5.604 7.621 9.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534 11.534
ьной точное	Ширина листа, мм	1400	2.543 2.543 2.543 2.543 3.524 3.664 4.665 5.506 6.707 7,108 7,488 9,430 11,332 11,332 11,332 11,296 17,298 19,290 23,226 23,226 27,217
кг. нормал	Пири	1200	1,168 1,168 1,168 2,198 2,198 3,160 3,846 4,774 4,774 6,147 6,147 6,147 11,136
1 M JINCTS		1000	0,715 1,001 1,545 1,545 1,831 2,117 2,117 2,117 2,117 3,219 4,006 4,292 4,292 4,292 4,292 4,292 4,292 4,292 1,101 5,437 6,796 8,155 9,586 11,016 11,0
еская масса		006	0,670 0,928 1,185 1,417 1,675 1,907 2,383 2,989 3,607 4,380 4,638 4,895 6,119 7,343 7,343 11,207 11,207 11,243 11,750 14,976 14,976 17,558
Теоретич		008	0,596 0,825 0,825 1,260 1,260 1,260 1,325 2,120 2,578 3,208 3,208 3,308 4,354 4,354 6,530 1,056 11,056 12,232 13,323 13,323 14,472 15,610
		009	0,473 0,646 0,646 0,981 1,153 1,153 1,963 1,963 1,963 1,963 1,963 1,010 1,010 1,0967 1,0967 1,0967 1,0967
	Толщина	MM	\$

Продолжение табл. 1

		Теоретич	еская масса	1 м листа,	кг, нормал	Георетическая масса 1 м листа, кг, нормальной точности изготовления по толщине и шкрине	ти изготов	ления по то	лшине и	шкрине	
Толщина					Шяря	Пирина листа, мм	iM.	-			<i>y</i>
MM MM	009	008	006	1000	1200	1400	1425	1500	1600	1800	2000
7.5	19 694	16.769	18.849	90.930	25.088	99,993	99.749	31.299	33,375		41.652
, œ	13,515	17,860	20.076	22.292	26,739	31,148	31,702	33,361	35,574 39	39,975	44,398
œ ro	14,378	19,009	21,367	23,725	28,460	33,154	33,743	35,510			47,259
0.6	15,242	10,157	22,658	25,159	30,164	35,140	35,764	37,636	40,133		50,091
9,5	16,1105	21,306	23,949	26,592	3.1,884	37,145	37,805	39,784			52,951
10,0	16,926	22,397	25,175	27,954	33,553	39,111	39,806	41,890	44,668	50,226	55,783
10,5	17,789	23,545	26,467	29,388	35,274	41,117	41,847	44,038	46,959		58,644
	_	_			_	_	_		_	_	

(Измененная редакция, Изм. № 3).

	Теоретичес	Теоретическая масса 1	м листа, кг,		повышенной точности изготовления по толшине и нопмальной точности по шильно	и изготовле	ния по тол	иине и нору	т дониой т	OUHOCTU	TO INVIDES
листа,					Шири	Ширина листа, мм	M				
	009	800	006	1000	1200	1 400	1425	1500	1600	1800	2000
6,0	0,482	0,619	969'0	0.758		ı			1		
0,4	0.654	0,848	0,953	1,030	1.202				Ī	1	İ
<u>ර</u> ගැ	0,826	1,077	1,211	1,316	1,545	1,802	1.834	1.930	2,058	1	
9	0,990	1,283	1.433	1,574	1,889	2,182	2.221	2,338	2,493	[
0,7	1,162	1,512	1,700	1,860	2,232	2,583	2,629	2,767	2,950	1	
∞ ⊙	1,325	1,719	1,932	2,146	2,541	2,963	3.016	3,174	3,385	3.755	4 171
o.	1,498	1.948	2,190	2,432	2,885	3,364	3,423	3,603	3,842	4.270	4 743
o, 1	1,653	2,154	2,422	2,690	3,194	2,704	3.770	3 968	4,231	4.733	5,957
1,2	1,997	2,612	2,937	3,262	3,881	4,505	4.585	4.825	5,146	5.710	6.343
3,5	2,496	3,277	3,684	4,092	4.842	5,606	5,706	6,005	6.404	7,099	7,010
9,1	2,668	3,506	3,942	4,378	5.186	5.966	6,072	6.301	6.816	7,613	0,000
8,1	3,012	3,94,1	4,431	4,922	5,838	6,767	6888	7.949	7,730	8,642	0,450 POP POP POP POP POP POP POP POP POP PO
0, I.	3,185	4,170	4,689	5.208	6,182	7,168	7 295	7,578	88	9,157	10.00
2,0	3,357	4,399	4.947	5.494	6.525	7,528	7,669	8,064	8,600	9,645	10.714
2,2	4,200	5,522	6,200	968.9	8,208	9,490	9,659	10,166	10.841	19,140	13,496
3,0	5,044	6,645	7,472	8,298	9.856	11,452	11,656	19.967	13,082	14.584	10,400
3,5	5,887	7,768	8,734	9,700	11,539	13,414	13,653	14.369	15,324	17,130	10,200
4,0	6,731	8,891	966,6	11.102	13,188	15,336	15,609	16.428	17,519	19.677	91.857
4,5	7,574	10,013	11,259	12,504	14,870	17,338	17.647	18,572	19.807	22	94.714
اري ان	8,400	11,113	12,496	13,878	16,587	19,321	19,664	20,696	22.071	2	97,543
5,5	9,292	12,289	13,814	15,310	18,343	21,361	21,740	22.878	24,396	7	30,438
٠, د د	10,121	13,381	15,041	16,658	19,994	23,266	23,679	24.919	26,572	29,852	33 155
6,5	10,984	14,529	16,332	18,091	21,715	25,272	25,721	27.067	28,863 32,	32,428	36.016
Ö, İ	11,848	15,678	17,623	19,525	23,40.1	27,257	27.741	99,194	31,13034	34,978	38.848
7,5	12,711	16,826	18,914	20,959	25,122	29,263	29.783	31,342	33,421	37.554	41 709
<u>%</u>	13,532	17,917	20,140	22,335	26,744	31,188	31.742	33.404	35,62040	40.026	44.455
8	14,395	19,066	21,431	23.768	28,495	33,194	33,784	35,553	37,911		47.316
<u>Q</u>	15,259	20,214	22,722	25,202	30,198	35,180	35,805	37,679	179	45,152	50.148
9,5	16,122	21,363	24,014	26,635	31,919	37,185	37,846	39,827	٠.		53,009
10,0	16,943	22,454	25.240	27,983	33,588	39,151	39,846	41.933	٠.	50,277	55.841
10,5	17,806	23,603	26,531	29,416	35,309	41,157	41,888	44.081	005	52,853	78 701
(Mame	Hennau ne	И поиние	Waw No 9	6				·	•		101,00

(Измененная редакция, Изм. № 2, 3),

Таблица 2а

		Теоретич	еская масса	Теоретическ ая масса 1 м листа, кг, повышенной точности изготовления по толщине и ширине	г, повышен	ной точност	и изготовле	ния по т	олщине	и ширине	
Толщина					Щири	Ширина листа, мм	M				
листа, мм	009	008	006	1000	1200	1 400	1425	1500	1600	1800	2000
			000	L L							
0,3	0,481	0,618	0,695	0,758	1	1				1	1
0.4	0,653	0,847	0,952	1,029	1,200	1	1	18	2	[ı
, r.	0.825	1,076	1,210	1,315	1,543	1,799	1,831	1,928	2000 2000 2000 2000 2000 2000 2000 200	1	1
900	886	1.282	1,441	1,572	1,886	2,179	2,218	2,335	2,490	f	1
2,0	1,000	1212	1,699	1,858	2,229	2,579	2,625	2,763	2,947	1	1
, œ	1393	1,716	1,930	2.144	2,537	2,959	3,012	3,170	3,381	3,751	4,167
0,0	1,020	1,945	9,188	2,430	2,880	3,359	3,419	3,598	3,838	4,265	4,738
, c	1,130	121.6	2,419	2,687	3,189	3,699	3,765	3,962	4,226	4,727	5,252
- 5 c	1,000	2,609	2.934	3.259	3,874	4,498	4,579	4,819	[5,140]	5,704	6,336
јп	9,499	3 9 7 3	3,680	4,088	4,834	5,598	5,698	5,997	968,9	7.091	7,878
ء <u>۔</u> ک م	2,152	, c.	3,938	4.374	5,177	5,958	6,064	6,382	6,807		8,449
. <u>~</u>	3,007	3,936	4.427	4,917	5,829	6,758	6,878	7,239	7,721	8,633	9,590
0,0	3,179	4.165	4,684	5,203	6,171	7,157	7,285	7,668	8/1/8		10,161
0,6	3.351	4,394	4,941	5,488	6,514	7,517	7,651	8,053	200		10,704
200	4,193	5,515	6,202	6,889	8,194	9,477	9,645		10,827		13,472
i c	5,035	6,637	7,463	8,290	9,840	11,436	11,640	12,25	000,5		16,184
, co	5,877	7,758	8,724	069'6	1.1,520	13,395	13,634	14,350	300° 6	17,111	19,009
0.4	6,720	8,880	9,985	11,091	13,166	15,314	15,587	10,400	17,498		21,835
4.5	7.562	10001	11,246	12,492	14,846	17,314	17,622	18,548	19,782		24,689
0.0	8,387	11,099	12,482	13,864	16,560	19,293	19,637	200,02	22,043	24,768	27,515
rc rc	9.276	12,274	13,799	15,295	1	1	1		1	-	
0.9	10,104	13,364	15,024	16,641	1	1	1	ł	١	Ţ	١
, c	10,966	14,511	16,314	18,073	1	1		i	1	1	1
7.0	11,828	15,658	17,603	19,506	1	1.	1	1	i	1	!
7,5	12,690	16,805	18,893	20,938	1	1	Ì	1	i	1	1
-											
_						_	_	_	_		

		Теоретич	еская масса	Теоретическая масса 1 м листа, кг, повышенной точности изготовления по толщине и ширине	г, повышена	юй точности	4 изготовле,	ния по т	олщине	и ширине	
Толщина					идиШ	Ширина листа, мм	M				
MM	009	00 8	006	1000	1200	1400	1425	1500	1600	1800	2000
0,8	13,509	17,895	20,118	22,313	1	1	1	1	l	١	ſ
യ വ	14,372	19,042	21,408	23,745	1		İ	Ī	1	1	İ
0:6	15,234	20,189	22,697	25,177		1	1		1	1	1
9,5	16,096	21,337	23,987	26,609	i	1	1	j	1		1
10,0	16,915	22,426	25,212	27,955	1	1	1	1	1	1	1
10,5	17,777	23,573	26,502	29,387	1	1	1	1	1	1	!
									<u></u>		

Таблица 20

	Теоретическ	ая масса 1	еоретитеская масса 1 м листа, кг, нормальчой точности изготовления по толшине и повышенной точности по ширине	, нормальчо	й точности	и зг от ов лен	ия по толщ	ине и пов	ышенног	1 точности	по ширине
Толщина					Щириня	Пирина диста, мм					
MM MM	009	008	006	1000	1200	1400	1425	1500	1 600	1800	2000
0,00,00 0,00,00 0,00 8,00	0,473 0,644 0,816 0,980 1,151 1,306	0,595 0,824 1,053 1,259 1,694	0,669 0,926 1,184 1,415 1,673 1,904	0,715 1,006 1,286 1,544 1,829 2,115	1,166 1,509 1,851 2,194 2,520	1,759 2,139 2,539 2,919	2,177 2,177 2,584 2,971	1,885 2,292 2,720 3,127	2,010 2,444 3,335	3,700	4.1.10

	Теоретичес	Теоретическая масса I м листа, кг, нормапьной точности изготовления по толщине и повышенной точности по ширине	м листа, кг,	нормально	й точности 1	изготовлен	ия по толщи	не и повь	шеннош	точности п	о ширине
Толинна	İ				Ширина	Ширина листа, мм		-			
MW.	009	008	006	1000	1200	1400	1425	1500	1 600	1800	2000
Ç	1 470	1 000	9 169	9.401	9.863	3 319	3,378	3,555		4.214	4,681
ر ان ان	0,4/0	1,322	2,102	2,0	2000	2,00	3,794	3,919		4,676	5,195
0,1	1,033	2,117	2,001	2,044	4.00	0,000	177,0	4,776	7,00	7,679	6,526
1,2	1,976	2,575	2,895	3,210	3,840	4,408	4,000	ָרָ בְּי		200	100
rc.	2,449	3.204	3,603	4,002	4,766	5,498	5,596	0,030		040,7	1,021
9	9,621	3.433	3,860	4,288	5,100	5,898	6,003	5,318	0	7,554	8,392
000	9 964	3,891	4.375	4.860	5,794	6.698	6,817	7,175	7	8,581	9,533
0,0	3,736	4 1 19	4,632	5.145	6.137	7.007	7.224	7,603		9,095	10,104
, c	3,208	4.348	4 890	5 431	6.446	7,477	7,611	8,010	œ	9,583	10,646
Ďi.	2,000	7,7	6,119	780	α Φ	9,417	9,584	10,088		12,076	13,415
2,5	4,120	25.0	7,00	2,0	777	11.216	11,518	19,192	12,929	14.516	16.127
တွ	4,941	0,522	655,7	0,147	7,7	10,010	2,010	14 943	15,190	17:050	18,959
ຕິ	20.800	7,667	8,621	0/0'6	164,11	13,290	10,00	044	17,12	2004	10,00
4.0	6,659	8,811	9,908	11,005	13,114	,15,274	15,547		7:		21,770
4.5	7.919	9,955	11,195	12,435	14,828	17,274	17,582		2:2	22,173	24,032
G	8,335	11,042	12,417	13,793	16,526	19,253	19,296	20,02	21,998	24,716	17,458
ຸດ	9,925	12,217	13.735	15,252	.	1	!	1	1	1	I
, G	10.087	1.3,307	14,960	16,613	1	1	1	1	İ	1	1
ຸ້	10.949	14.454	16,249	18,045	1	1	1	}	!	†	1
200	11811	15,601	17,539	19,477	1	{	1	١	1	1	1
, r	19,673	16,748	18,829	906,06	1		[1	Ì	1	1
, o	13,409	17,838	90.054	92,970	1	1	!	1	ļ	ı	1
Э u	17,104	18,085	91.343	23,702	-	1	1	1	1	1	1
, c	15,501	90,139	55,633	95 134	1	١	!	١	i	ľ	1
⊃່ເ	12,01	201.02	00000	56,56				ļ	1	ļ	1
c, b	10,079	21,213	076,07	2000	1	1	•	1	1		
10.0	16,898	22,369	25,148	27,920		1	ſ			ļ	•
10.5	17,760	23,516	26,437	29,329	1	1	!		1	ı	1
							_	_			
	•			:							

Табл. 2а, 26. (Введены дополнительно, Изм. № 3).

Теоретическая масса I м листа, в кг, отожженного и без термической обработки из сплава марок AMrS, AMr6	800 900 1000 1200 1400 1425 1500 1600 2000	11,457 12,882 14,307 17,171 20,021 20,378 21,446 22,871 27,721 28,571 12,634 14,202 15,769 18,928 22,063 22,454 23,630 25,198 28,333 31,468 13,783 16,784 18,636 22,369 26,074 26,537 27,926 29,779 33,484 37,189 16,080 18,076 22,6369 26,074 26,537 27,926 29,779 34,360 40,050 17,228 19,366 21,503 25,810 30,085 30,620 32,223 34,360 40,050 18,377 20,657 22,937 27,531 32,091 32,661 34,371 36,65141,211 45,771 19,525 21,948 24,370 29,252 34,097 36,102 38,744 38,371 36,65141,211 48,632 20,674 22,237 27,324 38,108 38,744 38,674 42,964 45,814514 57,14 22,971 28,671 </th
Теоретическая масся		
Толщина	MM 600	5,0 5,5 6,0 11,226 7,5 11,226 7,5 12,953 8,0 13,817 8,5 14,680 9,0 17,544 9,0 17,544 1

Переводные коэффициенты для вычисления теоретической массы 1 м листа из алюминия и алюминиевых сплавов

Марка сплава	Переводной коэффициент	Марка сплава	Пе ревод ной коэффициент
Алюминий всех марок	0,950	Алюминиевые сплавы марок:	
		Д12	0,954
Алюминиевые сплавы марок:		Амц, АмцС, мм	0,958
AMr6	0.926	AKM	0,970
АМг5	0,930	1915	0,972
AMr3	0.937	Д16	0,976
АМг2	0,940	Д1, ВД1	0,982
AB	0,947		

(Введено дополнительно, Изм. № 2).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 12.03.76 № 607
- 2. ВЗАМЕН ГОСТ 12592 67, кроме пп. 5.3—5.9; ГОСТ 13722 68, кроме пп. 5.3—5.11
- 3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 9.011—79 ГОСТ 427—75	6.3 5.2; 5. 5
FOCT 1931—76	3.1.1
FOCT 1497—84	5.4
FOCT 2789—73	3.8; 3.9; 3.10
ГОСТ 3221—85	5.3
ГОСТ 3/749—77	5.2
ΓΟCT 4784—74	3.1.1
FOCT 5009—82	3.12 5.2
FOCT 5378—88	3.12
FOCT 6456—82 FOCT 6507—90	5.2
FOCT 7502—89	5.2
FOCT 7727—81	5.3
ГОСТ 8026—92	5.5
POCT 11069-74	3.1.1
ΓΟCT 11701—84	5.4
ΓΟCT 11739.1—90	5.3
ГОСТ 11739.2—90	5.3 5.3
FOCT 11739.3—82	5.3 5.3
FOCT 11739.4—90	5.3
ГОСТ 11739.5—90 ГОСТ 11739.6—82	5.3
FOCT 11739.7—82	5.3
FOCT 11739.8-90 — FOCT 11739.10-90	5.3
ΓΟCT 11739.11-82 — ΓΟCT 1:1739.15 -82	5.3
ΓΟCT 11739.16-90 — ΓΟCT 11739.19-90	5.3
ГОСТ 11739.20—82	5,3
ГОСТ '11739.21—90	5.3 5.3
FOCT 11739.22—90	5.3
FOCT 11739.23—82	5.3
ΓΟCT 11739,24—82	

Обозначение НТД, на который дана ссылка	Номер пункта	
ΓΟCT 12697.1-77 — ΓΟCT 12697.12-77	5.3	
ΓΟCT 14192—77	6,3	
ΓΟCT 19300—86	5.1	
ΓΟCT 24047—80	5.4	
ΓΟCT 24231—80	5.3	
ΓΟCT 25086—87	5.3	
ΓΟCT 26877—91	5.2; 5.5	

- 4. Ограничение срока действия снято по решению Межгосударственного совета по стандартизации, метрологии и сертификации (протокол 3—93 от 17.02.93)
- 5. ПЕРЕИЗДАНИЕ (апрель 1993 г.) с Изменениями № 1, 2, 3, утвержденными в мае 1982 г., январе 1987 г., июне 1988 г. (ИУС 9 82, 4 87, 11 88).

Редактор Л. А. Афанасенко Технический редактор В. Н. Прусакова Корректор Т. А. Васильева

Сдано в набор 25.05.93. Подп., в печ. 15.07.93. Усл. печ. л. 2,79. Усл. кр.-отт 2,79-Уч. над., л. 2,72. Тир. 2833 экз. С 361.

Ордена «Знак Почета» Издательство стандартов, 107076. Москва, Колодезный пер., 14. Калужская типография стандартов, ул. Московская, 256. Зак. 1129