

进化多目标优化平台

用户手册 4.8

生物智能与知识发现 (BIMK) 研究所 2024年9月1日

非常感谢使用由安徽大学生物智能与知识发现(BIMK)研究所开发的进化多目标优化平台 PlatEMO。本平台是一个开源免费的代码库,仅供教学与科研使用,不得用于商业用途。本平台中的代码基于作者对论文的理解编写而成,作者不对用户因使用代码产生的任何后果负责。包含利用本平台产生的数据的论文应在正文中声明对 PlatEMO 的使用,并引用以下参考文献之一:

- [1] Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, "PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]," IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.
- [2] Ye Tian, Weijian Zhu, Xingyi Zhang, and Yaochu Jin, "A practical tutorial on solving optimization problems via PlatEMO," Neurocomputing, 2023, 518: 190-205.

如有任何意见或建议,欢迎联系 field910921@gmail.com (田野)。如想将您的代码添加进 PlatEMO 中并公开,也欢迎联系 field910921@gmail.com。您可以在 GitHub 上获取 PlatEMO 的最新版本。

目 录

	快速	∧ J1
_	通过	命令行使用 PlatEMO3
	1.	求解测试问题3
	2.	求解自定义问题5
	3.	获取运行结果9
Ξ	通过	图形界面使用 PlatEMO12
	1.	测试模块12
	2.	应用模块13
	3.	实验模块14
	4.	创造模块14
	5.	算法、问题和指标的标签15
四	扩展	PlatEMO18
	1.	算法类18
	2.	问题类20
	3.	个体类26
	4.	一次完整的运行过程27
	5.	指标函数28
五	算法	列表30
<u>\</u>	问题	列表40

一 快速入门

软件要求: MATLAB R2018a 或以上(不使用 PlatEMO 图形界面)或 MATLAB R2020b 或以上(使用 PlatEMO 图形界面)及 并行计算工具箱 和 统计与机器学习工具箱

PlatEMO 是一个用于求解优化问题的开源平台,它的输入是一个优化问题,输出是在该优化问题上得到的最优解。一个优化问题满足以下定义:

$$\min_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_M(\mathbf{x}))$$
s.t. $\mathbf{x} = (x_1, x_2, ... x_D) \in \Omega$

$$g_1(\mathbf{x}), g_2(\mathbf{x}), ..., g_K(\mathbf{x}) \le 0$$

其中 \mathbf{x} 表示该问题的一个解或决策向量,它由D个决策变量 \mathbf{x}_i 组成,其中每个决策变量可能被限制为实数、整数或二进制数等。 Ω 表示该问题的搜索空间,它由下界 $\mathbf{l}_1,\mathbf{l}_2,...\mathbf{l}_D$ 和上界 $\mathbf{u}_1,\mathbf{u}_2,...\mathbf{u}_D$ 构成,即任意决策变量始终满足 $\mathbf{l}_i \leq \mathbf{x}_i \leq \mathbf{u}_i$ 。 $f_1(\mathbf{x}),f_2(\mathbf{x}),...,f_M(\mathbf{x})$ 表示该解的M个目标函数值, $g_1(\mathbf{x}),g_2(\mathbf{x}),...,g_K(\mathbf{x})$ 表示该解的K个约束违反值。

为了定义一个优化问题,用户至少需要输入以下内容:

- · 每个决策变量的编码方式(实数、整数或二进制数等);
- · 决策变量的下界 $l_1, l_2, ... l_D$ 和上界 $u_1, u_2, ... u_D$;
- · 至少一个目标函数 $f_1(\mathbf{x})$ 。

为了更精准地定义问题,用户还能输入以下内容:

- · 多个目标函数 $f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_M(\mathbf{x})$;
- · 多个约束函数 $g_1(\mathbf{x}), g_2(\mathbf{x}), ..., g_K(\mathbf{x})$;
- · 解的初始化函数;
- · 无效解的修复函数;
- · 解的评价函数;
- · 目标和约束的梯度函数;

· 各函数计算中使用到的数据(一个任意类型的常量)。

以上函数均指的是代码函数而非数学函数,即它需要有符合规定的输入和输出,但不需要有显式的数学表达式。此外,用户还能定义与优化算法相关的内容,通过选择合适的算法和参数设置以提升优化效果。

在MATLAB中,用户可以用以下三种方式运行主函数文件platemo.m:

1) 带参数调用主函数:

```
platemo('problem',@SOP_F1,'algorithm',@GA);
```

可以利用指定的算法来求解指定的测试问题并设置参数,优化结果可以被显示在窗口中、保存在文件中或作为函数返回值(参阅求解测试问题章节)。

2) 带参数调用主函数:

```
f1 = @(x) sum(x);
g1 = @(x) 1-sum(x);
platemo('objFcn', f1, 'conFcn', g1, 'algorithm', @GA);
```

可以利用指定的算法来求解自定义的问题(参阅求解自定义问题章节)。

3) 不带参数调用主函数:

```
platemo();
```

可以弹出一个带有三个模块的图形界面,其中测试模块用于可视化地研究单个算法在单个问题上的性能(参阅测试模块章节),应用模块用于求解自定义问题(参阅应用模块章节),实验模块用于统计分析多个算法在多个问题上的性能(参阅实验模块章节)。

二 通过命令行使用 PlatEMO

1. 求解测试问题

用户可以以如下形式带参数调用主函数 platemo()来求解测试问题:

platemo('Name1', Value1, 'Name2', Value2, 'Name3', Value3,...);

其中所有可接受的参数列举如下:

参数名	数据类型	默认值	描述
'algorithm'	函数句柄或 单元数组	不定	要运行的算法类
'problem'	函数句柄或 单元数组	不定	要求解的问题类
'N'	正整数	100	种群大小
'M'	正整数	不定	问题的目标数
'D'	正整数	不定	问题的变量数
'maxFE'	正整数	10000	最大评价次数
'maxRuntime'	正数	inf	最大运行时间
'save'	整数	-10	保存的种群数
'run'	正整数	[]	当前运行的编号
'metName'	字符串或单元 数组	{}	要计算的指标名称
'outputFcn'	函数句柄	@DefaultOutput	每代开始前调用的函数 输入一: ALGORITHM 对象 输入二: PROBLEM 对象 输出: 无

· 'algorithm'表示待运行的算法,它的值可以是一个算法类的句柄,例如 @GA。它的值还可以是形如{@GA,p1,p2,...}的单元数组,其中 p1,p2,... 指 定了该算法中的参数值。例如以下代码用算法@GA 求解默认问题,并设置了该算法中的参数值:

platemo('algorithm', {@GA, 1, 30, 1, 30});

· 'problem'表示待求解的测试问题,它的值可以是一个问题类的句柄,例

如@SOP_F1。它的值还可以是形如{@SOP_F1,p1,p2,...}的单元数组,其中 p1,p2,... 指定了该问题中的参数值。例如以下代码用默认算法求解问题 @WFG1,并设置了该问题中的参数值:

```
platemo('problem', {@WFG1, 20});
```

• 'N'表示算法使用的种群的大小,它通常等于最终输出的解的个数。例如以下代码用算法@GA 求解问题@SOP F1,并设置种群大小为 50:

```
platemo('algorithm',@GA,'problem',@SOP F1,'N',50);
```

'M'表示问题的目标个数,它仅对一些多目标测试问题生效。例如以下代码用算法@NSGAII 求解具有 5 个目标的@DTLZ2 问题:

```
platemo('algorithm',@NSGAII,'problem',@DTLZ2,'M',5);
```

· 'D'表示问题的变量个数,它仅对一些测试问题生效。例如以下代码用算法 @GA 求解具有 100 个变量的@SOP F1 问题:

```
platemo('algorithm',@GA,'problem',@SOP F1,'D',100);
```

· 'maxFE'表示算法可用的最大评价次数,它通常等于种群大小乘以迭代次数。例如以下代码设置算法@GA的最大评价次数为20000:

```
platemo('algorithm',@GA,'problem',@SOP F1,'maxFE',20000);
```

· 'maxRuntime'表示算法可用的最大运行时间,单位为秒。当 'maxRuntime'等于默认值inf时,算法将在'maxFE'次评价次数后停止; 否则,算法将在'maxRuntime'秒后停止。例如以下代码设置算法@GA的最大运行时间为10秒:

```
platemo('algorithm', @GA, 'problem', @SOP F1, 'maxRuntime', 10);
```

- 'save'表示保存的种群数,该值大于零时优化结果将被保存在文件中,该值小于零时优化结果将被显示在窗口中(参阅获取运行结果章节)。
- 'run'表示当前运行的编号,它附加在保存文件名的末尾,使相同算法在相同问题上的多次运行结果对应的文件名不同(参阅获取运行结果章节)。
- 'metName'表示要计算的指标名称,它可以是一个字符串(单个指标)或一个单元数组(多个指标)。保存的种群会被计算指定的指标值,并保存在文件或显示在窗口中(参阅获取运行结果章节)。
- 'outputFcn'表示算法每代开始前调用的函数。该函数必须有两个输入和

零个输出,其中第一个输入是当前的 ALGORITHM 对象、第二个输入是当前的 PROBLEM 对象。默认的'outputFcn'会根据'save'的值来保存或显示优化结果。

注意以上每个参数均有一个默认值,用户可以在调用时省略任意参数。

2. 求解自定义问题

当不指定参数'problem'时,用户可以通过指定以下参数来自定义问题:

参数名	数据类型	默认值	描述
'objFcn'	函数句柄、矩 阵或单元数组	{}	问题的目标函数;所有目标函数均被最小化输入:一个决策向量输出:目标值(标量)
'encoding'	标量或行向量	1	每个变量的编码方式
'lower'	标量或行向量	0	每个变量的下界
'upper'	标量或行向量	1	每个变量的上界
'conFcn'	函数句柄、矩 阵或单元数组	{}	问题的约束函数;当且仅当约束违 反值小于等于零时,该约束被满足 输入:一个决策向量 输出:约束违反值(标量)
'decFcn'	函数句柄	{}	无效解修复函数 输入:一个决策向量 输出:修复后的决策向量
'evalFcn'	函数句柄	{}	解的评价函数 输入:一个决策向量 输出一:修复后的决策向量 输出二:所有目标值(向量) 输出三:所有约束违反值(向量)
'initFcn'	函数句柄	{}	种群初始化函数 输入:种群大小 输出:种群的决策向量构成的矩阵
'gradFcn'	函数句柄	{}	目标和约束的梯度函数 输入:一个决策向量 输出一:目标雅可比矩阵 输出二:约束雅可比矩阵
'data'	任意	{ }	问题的数据
'once'	逻辑	0	是否支持同时评价多个解

'objFcn'表示问题的目标函数,它的值可以是一个函数句柄(单目标)、矩阵(自动拟合出函数)或一个单元数组(多目标)。每个目标函数必须有一个输入和一个输出,其中输入是一个决策向量、输出是目标值。所有目标函数均被最小化。例如以下代码利用默认算法求解一个含有六个实数变量的双目标优化问题:

```
f1 = @(x)x(1) + sum(x(2:end));

f2 = @(x) sqrt(1-x(1)^2) + sum(x(2:end));

platemo('objFcn', {f1, f2}, 'D', 6);
```

其中第一个目标为 $x_1 + \sum_{i=2}^{D} x_i$ 、第二个目标为 $\sqrt{1-x_1^2} + \sum_{i=2}^{D} x_i$ 。若一个目标函数是矩阵,则高斯过程回归会利用该矩阵自动拟合出一个函数,其中矩阵的每行表示一个样本、每列表示一个变量(除最后一列)或函数值(最后一列)。例如以下代码求解相同的问题,但目标函数是根据矩阵自动拟合出来的:

```
x = rand(50,6);

y1 = x(:,1) + sum(x(:,2:end),2);

y2 = sqrt(1-x(:,1).^2) + sum(x(:,2:end),2);

platemo('objFcn', {[x,y1], [x,y2]}, 'D',6);
```

 'encoding'表示每个变量的编码方式,它的值可以是一个标量或行向量, 且每维的值可以为 1 (实数)、2 (整数)、3 (标签)、4 (二进制数) 或 5 (序 列编号)。算法针对不同的编码方式可能使用不同的算子来产生解。例如以 下代码指定三个实数变量、两个整数变量以及一个二进制变量:

```
f1 = @(x)x(1) + sum(x(2:end));

f2 = @(x) sqrt(1-x(1)^2) + sum(x(2:end));

platemo('objFcn', {f1, f2}, 'encoding', [1, 1, 1, 2, 2, 4]);
```

问题的变量数 D 将根据 'encoding'的长度自动确定。

· 'lower'和'upper'分别表示每个变量的下界和上界,它们的值可以是标量或行向量,且每维的值必须为实数。'lower'和'upper'的长度必须与'encoding'相同。例如以下代码指定搜索空间为[0,1]×[0,9]⁵:

```
f1 = @(x)x(1)+sum(x(2:end));
f2 = @(x)sqrt(1-x(1)^2)+sum(x(2:end));
platemo('objFcn', {f1, f2}, 'encoding', [1,1,1,2,2,4],...
'lower', 0, 'upper', [1,9,9,9,9]);
```

'conFcn'表示问题的约束函数,它的值可以是一个函数句柄(单约束)、矩阵(自动拟合出函数)或一个单元数组(多约束)。每个约束函数必须有一个输入和一个输出,其中输入是一个决策向量、输出是约束违反值。当且仅当约束违反值小于等于零时,该约束被满足。例如以下代码利用默认算法求解一个双目标优化问题:

```
f1 = @(x)x(1) + sum(x(2:end));
f2 = @(x) sqrt(1-x(1)^2) + sum(x(2:end));
g1 = @(x)1-sum(x(2:end));
platemo('objFcn', {f1, f2}, 'encoding', [1,1,1,2,2,4],...
'conFcn',g1,'lower',0,'upper',[1,9,9,9,9,9]);
```

并添加约束函数 $\sum_{i=2}^6 x_i \ge 1$ 。注意,等式约束必须转换为不等式约束来处理,详细方法可参阅该论文的 3.2 节。若一个约束函数是矩阵,则高斯过程回归会利用该矩阵自动拟合出一个函数,其中矩阵的每行表示一个样本、每列表示一个变量(除最后一列)或函数值(最后一列)。例如以下代码求解相同的问题,但约束函数是根据矩阵自动拟合出来的:

```
f1 = @(x)x(1)+sum(x(2:end));
f2 = @(x)sqrt(1-x(1)^2)+sum(x(2:end));
x = rand(50,6);
y = 1-sum(x(:,2:end),2);
platemo('objFcn', {f1,f2}, 'encoding', [1,1,1,2,2,4],...
'conFcn', [x,y], 'lower', 0, 'upper', [1,9,9,9,9,9]);
```

'decFcn'表示问题的无效解修复函数,它的值必须是一个函数句柄。该函数必须有一个输入和一个输出,其中输入是一个决策向量、输出是修复后的决策向量。默认的'decFcn'将所有解的范围限定在'lower'和'upper'之间,而以下代码定义了一个新的'decFcn'限制 x₁ 为 0.1 的倍数:

```
f1 = @(x)x(1) + sum(x(2:end));
f2 = @(x) sqrt(1-x(1)^2) + sum(x(2:end));
g1 = @(x)1-sum(x(2:end));
h = @(x) [round(x(1)/0.1)*0.1,x(2:end)];
platemo('objFcn', {f1, f2}, 'encoding', [1,1,1,2,2,4],...
'conFcn',g1,'decFcn',h,'lower',0,'upper',[1,9,9,9,9,9]);
```

'evalFcn'表示解的评价函数,它的值必须是一个函数句柄。该函数必须有一个输入和三个输出,其中输入是一个决策向量、第一个输出是修复后的决策向量、第二个输出是目标值向量、第三个输出是约束违反值向量。默认

的'evalFcn'通过依次调用'decFcn'、'objFcn'和'conFcn'来评价解,而以下代码定义了一个新的'evalFcn'来同时进行解的修复、目标计算和约束计算:

```
function [x,f,g] = Eval(x)
    x = [round(x(1)/0.1)*0.1,x(2:end)];
    x = max(0,min([1,9,9,9,9],x));
    f(1) = x(1)+sum(x(2:end));
    f(2) = sqrt(1-x(1)^2)+sum(x(2:end));
    g = 1-sum(x(2:end));
end
```

接着,以下代码通过仅指定评价函数定义了相同的问题:

```
platemo('evalFcn',@Eval,'encoding',[1,1,1,2,2,4],...
'lower',0,'upper',[1,9,9,9,9]);
```

'initFcn'表示种群初始化函数,它的值必须是一个函数句柄。该函数必须有一个输入和一个输出,其中输入是种群大小、输出是种群的决策向量构成的矩阵。默认的'initFcn'在整个搜索空间内随机产生初始解,而以下代码定义了一个新的'initFcn'以加速收敛:

```
q = @(N)rand(N,6);
platemo('evalFcn',@Eval,'encoding',[1,1,1,2,2,4],...
'initFcn',q,'lower',0,'upper',[1,9,9,9,9,9]);
```

'gradFcn'表示目标和约束的梯度函数,它的值必须是一个函数句柄。该函数必须有一个输入和两个输出,其中输入是一个决策向量、第一个输出是目标雅可比矩阵、第二个输出是约束雅可比矩阵。默认的梯度函数通过有限差分来估计梯度,而以下代码定义了一个新的'gradFcn'以加速收敛:

```
function [oGrad, cGrad] = Grad(x)
    oGrad = [0, x(2:end); 0, x(2:end)];
    cGrad = [0, x(2:end) -1/5];
end
```

接着,以下代码通过指定梯度函数来更好地求解问题:

```
platemo('evalFcn',@Eval,'encoding',[1,1,1,2,2,4],...
'gradFcn',@Grad,'lower',0,'upper',[1,9,9,9,9,9]);
```

注意仅有少量算法会使用梯度函数。

· 'data'表示问题的数据,它可以是任意类型的常量。当指定'data'后,以

上所有函数必须增加一个输入参数来接收'data'。例如以下代码求解一个旋转的单目标优化问题:

```
d = rand(RandStream('mlfg6331_64', 'Seed', 28), 10) *2-1;
[d,~] = qr(d);
f1 = @(x,d)sum((x*d-0.5).^2);
platemo('objFcn', f1, 'encoding', ones(1,10), 'data', d);
```

• 'once'表示是否可以同时评价多个解,它是默认值为零的逻辑变量。当指定'once'的值为1后,'evalFcn'、'decFcn'、'objFcn'和'conFcn'的输入可以为多个决策向量,即同时评价多个解。在函数中使用矩阵运算或并行计算来支持同时评价多个解,可以显著提升求解效率。例如以下代码将目标函数改写为矩阵运算:

```
d = rand(RandStream('mlfg6331_64', 'Seed', 28), 10) *2-1;
[d,~] = qr(d);
f1 = @(x,d)sum((x*d-0.5).^2,2);
platemo('objFcn', f1, 'encoding', ones(1,10), 'data', d, 'once', 1);
```

除以上定义问题的方式之外,用户还能创建一个自定义问题对象并创建算法对象予以求解。例如以下代码利用算法@GA和算法@DE求解相同的问题:

```
d = rand(RandStream('mlfg6331_64', 'Seed', 28), 10) *2-1;
[d,~] = qr(d);
f1 = @(x,d) sum((x*d-0.5).^2);
PRO = UserProblem('objFcn', f1, 'encoding', ones(1,10), 'data', d);
ALG1 = GA();
ALG2 = DE();
ALG1.Solve(PRO);
ALG2.Solve(PRO);
```

3. 获取运行结果

算法运行结束后得到的种群可以被显示在窗口中、保存在文件中或作为函数返回值。若按以下方式调用主函数:

```
[Dec,Obj,Con] = platemo(...);
```

则最终种群会被返回,其中 Dec 表示种群的决策向量构成的矩阵、Obj 表示种群的目标值构成的矩阵、Con 表示种群的约束违反值构成的矩阵。若按以下方式调用主函数:

```
platemo('save', Value, ...);
```

则当 Value 的值为负整数时(默认情况),得到的种群会被显示在窗口中,用户可以在窗口中的 Data source 菜单选择要显示的内容。当 Value 的值为正整数 时,得到的种群会被保存在名为 PlatEMO\Data\alg\alg_pro_M_D_run.mat的MAT文件中,其中alg表示算法名、pro表示问题名、M表示目标数、D表示变量数、run是一个自动确定的正整数以保证不和已有文件重名。同时,可按以下方式主动指定 run 的值:

```
parfor i = 1 : 100
    platemo('save', Value, 'run', i, ...);
end
```

则 run 的值会被指定为 1 到 100。在并行多次运行时,主动指定 run 的值可以避免文件编号混乱或缺失。

每个保存的数据文件存储一个单元数组 result 和一个结构体 metric, 其中 result 保存得到的种群、metric 保存指标值。算法的整个优化过程被等分为 Value 块,其中 result 的第一列存储每块最后一代时所消耗的评价次数、result 的第二列存储每块最后一代时的种群、metric 存储所有种群的指标值。

```
metric =

struct with fields:

runtime: 0.2267

IGD: [6×1 double]

HV: [6×1 double]
```

可以通过参数'metName'来指定要计算的指标,例如以下代码用算法@NSGAII 求解@DTLZ2 问题,并计算 IGD 和 HV 指标值保存在文件中:

```
platemo('algorithm',@NSGAII,'problem',@DTLZ2,...
'save',6,'metName',{'IGD','HV'});
```

其中'IGD'和'HV'为要计算的指标名(参阅指标函数章节)。特别地,IGD 和HV是多目标优化中最常用的性能指标,它们的适用范围和参考点定义方法参阅该论文的5.3节。以上操作均由默认的输出函数@DefaultOutput实现,用户可以通过指定'outputFcn'的值为其它函数来实现自定义的结果展示或保存方式。此外,可按以下方式计算单个种群的指标值:

```
% 在执行以下代码之前需先载入 result
pro = DTLZ2();
pro.CalMetric('IGD',result{end});
```

同时,图形界面的实验模块可以自动计算种群的指标值并存储到文件中。

三 通过图形界面使用 PlatEMO

1.测试模块

用户可以通过无参数调用主函数 platemo()来使用 PlatEMO 的图形界面:

platemo();

图形界面的测试模块会被首先显示,它用于可视化地研究单个算法在单个问题上的性能。

在该模块中,用户能用以下步骤研究单个算法在单个问题上的性能:

- 步骤 1: 选择多个标签确定问题类型(参阅算法、问题和指标的标签章节)。
- 步骤 2: 在列表中选择一个算法。
- 步骤 3: 在列表中选择一个问题。
- 步骤 4:设置算法和问题的参数。不同算法和问题可能有不同的参数,在参数上悬停可查看具体说明。
- 步骤 5: 开始、暂停、停止或回退算法的运行;保存当前结果到文件。当前结果可被保存为一个N行 D+M+K列的矩阵,N表示解的个数,D表示决策变量个数,M表示目标个数,K表示约束个数。
- 步骤 6: 选择要显示的数据,例如当前种群的目标值、变量值和各指标值。
- 步骤 7: 选择要显示的历史运行结果。

2. 应用模块

在该模块中,用户能用以下步骤求解自定义问题:

- 步骤 1: 定义一个问题,定义的内容与求解自定义问题相同,其中 Encoding scheme 对应'encoding', Decision space 对应'lower'和'upper', Data 对应'data', Initialization function 对应'initFcn', Repair function 对应'decFcn', Objective functions 对应'objFcn', Constraint functions 对应'conFcn', Evaluation function 对应'evalFcn'。
- 步骤 2: 保存或载入问题; 检测问题定义的合法性; 选择一个问题模板。保存的问题可在其它模块中打开并求解。
- 步骤 3:在列表中选择一个算法。标签会根据问题定义自动确定(参阅算法、问题和指标的标签章节)。
- 步骤 4:设置算法的参数。不同算法可能有不同的参数,在参数上悬停可查看具体说明。
- 步骤 5: 开始、暂停、停止或回退算法的运行;保存当前结果到文件。当前结果可被保存为一个N行 D+M+K列的矩阵,N表示解的个数,D表示决策变量个数,M表示目标个数,K表示约束个数。
- 步骤 6: 选择要显示的数据,例如种群的目标值、变量值和各指标值。

3. 实验模块

用户可以通过图形界面中的菜单切换至实验模块,它用于统计分析多个算法在多个问题上的性能。该模块中所有优化结果将被保存至 MAT 文件(参见获取运行结果章节),如文件存在则会直接读取而不运行算法。

在该模块中,用户能用以下步骤比较多个算法在多个问题上的性能:

- 步骤 1: 选择多个标签确定问题类型(参阅算法、问题和指标的标签章节)。
- 步骤 2: 在列表中选择多个算法。
- 步骤 3: 在列表中选择多个问题。
- 步骤 4:设置实验重复次数、每次保存的种群个数及保存的文件路径(参阅获取运行结果章节)。
- 步骤 5:设置算法和问题的参数。不同算法和问题可能有不同的参数,在参数上悬停可查看具体说明。此处问题的参数可以设置为向量,这使得同一个问题可以产生多个不同的测试实例。
- 步骤 6: 开始或停止实验的运行; 选择串行(单 CPU)或并行(多 CPU)运行实验。
- 步骤 7: 选择要显示的指标值;选择要执行的统计分析;保存表格到文件; 将选中的多个单元格的数据显示在图窗中。

4. 创造模块

用户可以通过图形界面中的菜单切换至创造模块,它用于创造全新的算法,并在指定问题上训练它。

在该模块中,用户能用以下步骤创造并训练算法:

- 步骤 1:通过点击按钮来添加模块,通过点击两个模块来添加连接,通过拖动模块和连接来改变布局。模块包含种群模块、算子模块和选择模块,每个模块有一些预设的超参数和一些待训练的参数;连接表示模块间解的传递方向和比例。一个算法视为一个以模块为节点、以连接为边的有权有向循环图,其中第一个节点必须为种群模块、算法至少包含一个算子模块节点、所有节点必须有前驱和后继节点、所有节点必须互相可达、所有环中必须包含至少一个种群模块节点。
- 步骤 2:保存或载入算法或模块;生成算法代码;改变显示样式;自动排列模块;检测算法的合法性;选择一个算法模板。算法训练完成后,可生成算法代码并在其它模块使用。
- 步骤 3:选择多个标签确定问题类型(参阅算法、问题和指标的标签章节);在列表中选择一个问题。
- 步骤 4:设置问题的参数。不同问题可能有不同的参数,在参数上悬停可查 看具体说明。
- 步骤 5: 在选择的问题上训练算法中所有模块的参数。这个过程可能较慢, 较大的模块数目、问题变量数目、种群大小和评价次数可能耗费数天。
- 步骤 6: 在选择的问题上测试训练后的算法的性能。

5. 算法、问题和指标的标签

每个算法、测试问题和指标需要被添加上标签,这些标签以注释的形式添加

在主函数代码的第二行。例如在 PSO.m 代码的开头部分:

classdef PSO < ALGORITHM</pre>

% <single> <real/integer> <large/none> <constrained/none>

通过多个标签指定了该算法可求解的问题类型。所有的标签列举如下:

标签	描述
<single></single>	单目标优化:问题含有一个目标函数
<multi></multi>	多目标优化:问题含有两或三个目标函数
<many></many>	超多目标优化: 问题含有三个以上目标函数
<real></real>	连续优化: 决策变量为实数
<integer></integer>	整数优化: 决策变量为整数
<label></label>	标签优化: 决策变量为标签
<binary></binary>	二进制优化: 决策变量为二进制数
<permutation></permutation>	序列优化: 决策变量构成一个全排列
<large></large>	大规模优化:问题含有 100 或更多的决策变量
<pre><constrained></constrained></pre>	约束优化:问题含有至少一个约束
<expensive></expensive>	昂贵优化:目标函数的计算非常耗时,即最大评价次数非常小
<multimodal></multimodal>	多模优化: 存在多个目标值接近但决策向量差异很大的最优解,
mar ermodar,	它们都需要被找到
<sparse></sparse>	稀疏优化: 最优解中大部分的决策变量均为零
<dynamic></dynamic>	动态优化: 目标函数和约束函数随时间变化
<multitask></multitask>	多任务优化:同时优化多个问题,每个问题可能含有多个目标函
And to to do his	数和约束函数
 bilevel>	双层优化: 旨在寻找上层问题的可行且最优的解, 一个解对于上
(8110101)	层问题是可行的当且仅当它是下层问题的最优解
<robust></robust>	鲁棒优化:目标函数和约束函数受噪声影响,旨在寻找受噪声影
(10205)	响尽可能小且尽可能优的解
<none></none>	空标签
<min></min>	(仅用于指标) 该指标值越小表示性能越好
<max></max>	(仅用于指标) 该指标值越大表示性能越好

每个算法可能含有多个标签集合,这些集合的笛卡尔积构成该算法可求解的所有的问题类型。例如当标签集合为<single> <real> <constrained/none> 时,表示该算法可求解带或不带约束的单目标连续优化问题;若标签集合为 <single> <real> <constrained>,表示该算法只能求解无约束问题;若标签集合为<<re> <real> <constrained>,表示该算法只能求解有约束问题;若标签集合为

<single> <real/binary>, 表示该算法可以求解连续或二进制优化问题。

每个算法、测试问题和指标都需要被添加至少一个标签,否则它将不会在图形界面的列表中出现。当用户在图形界面中选择多个标签后,仅有符合该标签组合的算法、测试问题和指标才会被显示供选择。标签过滤的具体原理可参阅这里。PlatEMO中所有算法和测试问题的标签分别参阅算法列表和问题列表章节。

四 扩展 PlatEMO

1. 算法类

每个算法需要被定义为 ALGORITHM 类的子类并保存在 PlatEMO\ Algorithms 文件夹中。算法类包含的属性与方法如下:

属性	赋值方式	描述
parameter	用户	算法的参数
save	用户	每次运行中保存的种群数
run	用户	当前运行的编号
metName	用户	要计算的指标名称
outputFcn	用户	在 NotTerminated () 中调用的函数
pro	Solve()	当前运行中求解的问题对象
result	NotTerminated()	当前运行中保存的种群
metric	NotTerminated()	当前保存的种群的指标值
starttime	NotTerminated()	用于记录当前运行用时
方法	是否可重定义	描述
ALGORITHM	不可	设定由用户指定的属性值 输入:形如 'Name',Value, 的参数设置 输出: ALGORITHM 对象
Solve	不可	利用算法求解一个问题 输入: PROBLEM 对象 输出: 无
main	必须	算法的主体部分 输入: PROBLEM 对象 输出: 无
NotTerminated	不可	main()中每次迭代前调用的函数 输入:SOLUTION对象数组,即种群 输出:是否达到终止条件(逻辑变量)
ParameterSet	不可	根据 parameter 设定算法参数 输入:默认的参数设置 输出:用户指定的参数设置

每个算法需要继承ALGORITHM类并重定义方法main()。例如GA.m的代码为:

- 1 classdef GA < ALGORITHM
- 3 % Genetic algorithm

```
4 % proC --- 1 --- Probability of crossover
5 % disC --- 20 --- Distribution index of crossover
6 % proM --- 1 --- Expectation of the number of mutated variables
7 % disM --- 20 --- Distribution index of mutation
9 %----- Reference -----
10 % J. H. Holland, Adaptation in Natural and Artificial
11 % Systems, MIT Press, 1992.
12
13
14
     methods
15
         function main(Alg, Pro)
             [proC, disC, proM, disM] = Alg. ParameterSet(1, 20, 1, 20);
16
             P = Pro.Initialization();
17
             while Alg.NotTerminated(P)
18
19
                 Q = TournamentSelection(2, Pro.N, FitnessSingle(P));
                 O = OperatorGA(P(Q), {proC, disC, proM, disM});
20
21
                 P = [P, 0];
22
                 [~,rank] = sort(FitnessSingle(P));
                P = P(rank(1:Pro.N));
23
24
             end
25
         end
26
      end
27 end
```

各行代码的功能如下:

第1行: 继承 ALGORITHM 类;

第2行: 为算法添加标签 (参阅算法、问题和指标的标签章节);

第 3 行: 算法的全称;

第 4-7 行: 参数名 --- 默认值 --- 参数描述,将会显示在图形界面的参数设置

列表中;

第 9-12 行: 算法的参考文献;

第 15 行: 重定义算法主体流程的方法;

第 16 行: 获取用户指定的参数设置,其中 1,20,1,20 分别表示参数 proC,

disC,proM,disM的默认值。

第 17 行: 调用 PROBLEM 类的方法获得一个初始种群;

第18行: 保存当前种群并检查是否达到终止条件;若达到终止条件则通过抛出

错误强行终止算法;

第 19 行: 调用公共函数实现基于二元联赛的交配池选择;

第20行: 调用公共函数产生子代种群;

第21行: 将父子代种群合并;

第22行: 调用公共函数计算种群中解的适应度,并依此对解进行排序;

第23行: 保留适应度较好的一半解进入下一代。

在以上代码中,函数 ParameterSet()和 NotTerminated()是 ALGORITHM 类的方法,函数 Initialization()是 PROBLEM 类的方法,而 函数 TournamentSelection()、FitnessSingle()和 OperatorGA()是 在 PlatEMO\Algorithms\Utility functions 文件夹中的公共函数。所 有可被算法调用的方法及公共函数列举如下,详细的调用方式参阅代码中的注释。此外,函数中用于提升算法效率的技术参阅这里。

函数名	描述
ALGORITHM. NotTerminated	算法每代前调用的函数,用于保存当前种群及判断是否终止
ALGORITHM. ParameterSet	根据用户的输入设定算法参数
PROBLEM. Initialization	初始化一个种群
PROBLEM. Evaluation	评价一个种群并产生 SOLUTION 对象数组
CrowdingDistance	计算解的拥挤距离 (仅用于多目标优化)
FitnessSingle	计算解的适应度 (仅用于单目标优化)
NDSort	非支配排序(仅用于多目标优化)
OperatorDE	差分进化算子
OperatorFEP	进化规划算子
OperatorGA	遗传算子
OperatorGAhalf	遗传算子(仅返回前一半的子代)
OperatorPSO	粒子群优化算子
RouletteWheel Selection	轮盘赌选择
Tournament Selection	联赛选择
UniformPoint	产生均匀分布的参考点

2. 问题类

每个问题需要被定义为 PROBLEM 类的子类并保存在 PlatEMO\ Problems 文件夹中。问题类包含的属性与方法如下:

属性	赋值方式	
N	用户	求解该问题的算法的种群大小
М	用户和 Setting()	问题的目标数
D	用户和 Setting()	问题的变量数
maxFE	用户	求解该问题可使用的最大评价次数
FE	Evaluation()	当前运行中已消耗的评价次数
maxRuntime	用户	求解该问题可使用的最大运行时间(秒)
encoding	Setting()	每个变量的编码方式
lower	Setting()	每个变量的下界
upper	Setting()	每个变量的上界
optimum	GetOptimum()	问题的最优值,例如目标函数的最小值(单目标优化)和前沿面上一组均匀参考点(多目标优化)
PF	GetPF()	问题的前沿面,例如 1 维曲线 (双目标优化)、2 维曲面 (三目标优化) 和可行区域 (约束优化)
parameter	用户	问题的参数
方法	是否可重定义	描述
PROBLEM	不可	设定由用户指定的属性值 输入:形如 'Name', Value, 的参数设置 输出: PROBLEM 对象
Setting	必须	设定默认的属性值 输入: 无 输出: 无
Initialization	可以	初始化一个种群 输入:种群大小 输出:SOLUTION对象数组,即种群
Evaluation	可以	评价一个种群并产生解对象 输入:种群的决策向量构成的矩阵 输出:SOLUTION对象数组,即种群
CalDec	可以	修复一个种群中的无效解 输入:种群的决策向量构成的矩阵 输出:修复后的决策向量构成的矩阵
CalObj	必须	计算一个种群中解的目标值;所有目标函数均被最小化输入:种群的决策向量构成的矩阵输出:种群的目标值构成的矩阵
CalCon	可以	计算一个种群中解的约束违反值; 当且仅当约束

		违反值小于等于零时,约束被满足输入:种群的决策向量构成的矩阵输出:种群的约束违反值构成的矩阵
CalGrad	可以	计算一个解在所有目标和约束上的梯度 输入:一个决策向量 输出一:目标雅可比矩阵 输出二:约束雅可比矩阵
GetOptimum	可以	产生问题的最优值并保存在 optimum 中 输入:最优值的个数 输出:最优值集合 (矩阵)
GetPF	可以	产生问题的前沿面并保存在 PF 中输入:无输出:用于绘制前沿面的数据(矩阵或单元数组)
CalMetric	可以	计算种群的指标值 输入一:指标名 输入二:SOLUTION对象数组,即种群 输出:指标值(标量)
DrawDec	可以	显示一个种群的决策向量 输入: SOLUTION 对象数组,即种群 输出: 无
DrawObj	可以	显示一个种群的目标向量 输入: SOLUTION 对象数组,即种群 输出:无
ParameterSet	不可	根据 parameter 设定问题参数输入:默认的参数设置输出:用户指定的参数设置

每个算法需要继承 PROBLEM 类并重定义方法 Setting()和 CalObj()。例如 SOP_F1.m 的代码为:

```
obj.M = 1;
13
             if isempty(obj.D); obj.D = 30; end
14
             obj.lower = zeros(1,obj.D) - 100;
15
             obj.upper = zeros(1,obj.D) + 100;
16
17
             obj.encoding = ones(1,obj.D);
18
          end
          function PopObj = CalObj(obj,PopDec)
19
              PopObj = sum(PopDec.^2, 2);
20
21
          end
22
      end
23 end
```

各行代码的功能如下:

第1行: 继承 PROBLEM 类;

第2行: 为问题添加标签 (参阅算法、问题和指标的标签章节);

第 3 行: 问题的全称;

第 5-9 行: 问题的参考文献;

第12行: 重定义设定默认属性值的方法;

第13行: 设置问题的目标数;

第14行: 设置问题的变量数 (若未被用户指定);

第15-16行:设置决策变量的上下界;

第17行: 设置决策变量的编码方式;

第19行: 重定义计算目标函数的方法;

第20行: 计算种群中解的目标值。

除以上代码外,默认的方法 Initialization()用于随机初始化一个种群,用户可以重定义该方法来指定特殊的种群初始化策略。例如 Sparse_NN.m 将初始化的种群中随机一半的决策变量置零:

```
function Population = Initialization(obj,N)
  if nargin < 2; N = obj.N; end
  PopDec = (rand(N,obj.D)-0.5)*2.*randi([0 1],N,obj.D);
  Population = obj.Evaluation(PopDec);
end</pre>
```

默认的方法 CalDec()将大于上界的决策变量设为上界值、将小于下界的决策变量设为下界值,用户可以重定义该方法来指定特殊的解修复策略。例如 MOKP.m 修复了超过背包容量限制的解,使得该问题无需添加约束函数:

```
function PopDec = CalDec(obj,PopDec)

C = sum(obj.W,2)/2;

[~,rank] = sort(max(obj.P./obj.W));

for i = 1 : size(PopDec,1)

   while any(obj.W*PopDec(i,:)'>C)

        k = find(PopDec(i,rank),1);

        PopDec(i,rank(k)) = 0;
   end
end
end
```

默认的方法 CalCon()返回零作为解的约束违反值(即解都是满足约束的),用户可以重定义该方法来指定问题的约束。例如 CF4.m 添加了一个约束:

```
function PopCon = CalCon(obj,X)
    t = X(:,2)-sin(6*pi*X(:,1)+2*pi/size(X,2))-0.5*X(:,1)+0.25;
    PopCon = -t./(1+exp(4*abs(t)));
end
```

利用 all (PopCon<=0,2)可确定每个解是否满足所有约束。注意等式约束必须转换为不等式约束来处理,详细方法可参阅该论文的 3.2 节。默认的方法 Evaluation()通过依次调用 CalDec()、CalObj()和 CalCon()来实例化 SOLUTION 对象,同时增加已消耗的评价次数 FE 的值。用户可以重定义该方法 在一个函数内完成种群的修复、目标计算和约束计算工作,此时 CalDec()、CalObj()和 CalCon()将不会被调用。例如 MW2.m 同时计算了种群的目标值 与约束违反值:

```
function Population = Evaluation(obj,varargin)
   X = varargin{1};
   X=max(min(X,repmat(obj.upper,size(X,1),1)),repmat(obj.lower,size(X,1),1));
   z=1-exp(-10*(X(:,obj.M:end)-(repmat(obj.M:obj.D,size(X,1),1)-1)/obj.D).^2);
   g = 1+sum((1.5+(0.1/obj.D)*z.^2-1.5*cos(2*pi*z)),2);
   PopObj(:,1) = X(:,1);
   PopObj(:,2) = g.*(1-PopObj(:,1)./g);
   L = sqrt(2)*PopObj(:,2)-sqrt(2)*PopObj(:,1);
   PopCon = sum(PopObj,2)-1-0.5*sin(3*pi*1).^8;
   Population = SOLUTION(X,PopObj,PopCon,varargin{2:end});
   obj.FE = obj.FE+length(Population);
end
```

默认的方法 CalGrad()通过有限差分来估计目标函数和约束函数的梯度,用户可以重定义该方法以更准确地计算梯度。用户可以重定义方法 GetOptimum()

来指定问题的最优值,最优值被用于指标值的计算。例如 SOP_F8.m 指定了目标函数的最小值:

```
function R = GetOptimum(obj,N)
    R = -418.9829*obj.D;
end
```

DTLZ2.m 生成了一组前沿面上均匀分布的参考点:

```
function R = GetOptimum(obj,N)

R = UniformPoint(N,obj.M);

R = R./repmat(sqrt(sum(R.^2,2)),1,obj.M);
end
```

在不同形状前沿面上的采点方法参阅这里。用户可以重定义方法 GetPF()来指定多目标优化问题的前沿面或可行区域,它们被用于 DrawObj()的可视化中。例如 DTLZ2.m 生成了 2 维和 3 维的前沿面数据:

```
function R = GetPF(obj)
  if obj.M == 2
    R = obj.GetOptimum(100);
  elseif obj.M == 3
    a = linspace(0,pi/2,10)';
    R = {sin(a)*cos(a'),sin(a)*sin(a'),cos(a)*ones(size(a'))};
  else
    R = [];
  end
end
```

MW1.m 生成了可行区域的数据:

```
function R = GetPF(obj)
  [x,y] = meshgrid(linspace(0,1,400),linspace(0,1.5,400));
  z = nan(size(x));
  fes = x+y-1-0.5*sin(2*pi*(sqrt(2)*y-sqrt(2)*x)).^8 <= 0;
  z(fes&0.85*x+y>=1) = 0;
  R = {x,y,z};
end
```

默认的方法 CalMetric()将一个种群与问题的最优值 optimum 传入指标函数中进行计算,用户可以重定义该方法来将不同的变量传入指标函数中。例如 SMMOP1.m 在计算 IGDX 指标时传入问题的最优解集而非前沿面上的参考点:

```
function score = CalMetric(obj,metName, Population)
```

```
switch metName
    case 'IGDX'
        score = feval(metName, Population, obj.POS);
    otherwise
        score = feval(metName, Population, obj.optimum);
    end
end
```

默认的方法 DrawDec()显示种群的决策向量(用于图形界面中),用户可以重定义该方法来指定特殊的显示方式。例如 TSP.m 显示了种群中最优解的路径:

```
function DrawDec(obj,P)
    [~,best] = min(P.objs);
    Draw(obj.R(P(best).dec([1:end,1]),:),'-k','LineWidth',1.5);
    Draw(obj.R);
end
```

默认的方法 DrawObj()显示种群的目标向量(用于图形界面中),用户可以重定义该方法来指定特殊的显示方式。例如 Sparse CD.m 添加了坐标轴的标签:

```
function DrawObj(obj,P)
    Draw(P.objs,{'Kernel k-means','Ratio cut',[]});
end
```

其中 Draw()用于显示数据,它位于 PlatEMO\GUI 文件夹中。

3.个体类

一个 SOLUTION 类的对象表示一个个体 (即一个解), 一组 SOLUTION 类的对象表示一个种群。个体类包含的属性与方法如下:

属性	赋值方式	描述		
dec	PROBLEM.	解的决策向量		
dec	Evaluation()	附切状束凹里		
oh i	PROBLEM.	解的目标值		
obj	Evaluation()	用作ロンロイルバ目		
con	PROBLEM.	解的约束违反值		
COII	Evaluation()	所のとり木足以自		
add	PROBLEM.	解的额外属性值(例如速度)		
auu	Evaluation()			
方法		描述		
SOLUTION	生成 SOLUTION 对象	象数组		

	输入一:多个解的决策向量构成的矩阵
	输入二:多个解的目标值构成的矩阵
	输入三:多个解的约束违反值构成的矩阵
	输入四: 多个解的额外属性值构成的矩阵
	输出: SOLUTION 对象数组
	获取多个解的决策向量
decs	输入: 无
	输出: 多个解的决策向量构成的矩阵
	获取多个解的目标值
objs	输入: 无
	输出: 多个解的目标值构成的矩阵
	获取多个解的约束违反值
cons	输入: 无
	输出: 多个解的约束违反值构成的矩阵
	设置并获取多个解的额外属性值
adds	输入: 默认的额外属性值
	输出: 多个解的额外属性值构成的矩阵
	获取种群中可行且最好的解(单目标优化)或可行且非支配的解(多
best.	目标优化)
nest	输入:无
	输出:种群中可行且最好的 SOLUTION 对象子数组

例如,以下代码产生一个具有十个解的种群,并获取其中最好的解的目标值矩阵:

```
Population = SOLUTION(rand(10,5), rand(10,1), zeros(10,1));
BestObjs = Population.best.objs
```

注意应只在 PROBLEM 类的 Evaluation () 方法内调用 SOLUTION ()。

4. 一次完整的运行过程

以下代码利用遗传算法求球面函数的最小值:

```
Alg = GA();
Pro = SOP_F1();
Alg.Solve(Pro);
```

其中代码 Alg. Solve (Pro) 执行时所涉及的函数调用过程如下图所示。

5. 指标函数

每个性能指标需要被定义为一个函数并保存在 PlatEMO\Metrics 文件夹中。例如 IGD.m 的代码为:

```
9 % Machines, 2005, 6(2): 163-190.
10
11
12
      PopObj = Population.best.objs;
      if size(PopObj,2) ~= size(optimum,2)
13
14
          score = nan;
15
      else
          score = mean(min(pdist2(optimum, PopObj), [], 2));
16
17
      end
18 end
```

各行代码的功能如下:

第1行: 函数声明,其中第一个输入为一个种群(即一个 SOLUTION 对象数组)、第二个输入为问题的最优值(即问题的 optimum 属性)、输出为种群的指标值;

第2行: 为指标添加标签 (参阅算法、问题和指标的标签章节);注意标签 <min>或<max>必须为第一个标签;

第3行: 指标的全称;

第 5-10 行:指标的参考文献;

第12行: 获取种群中最好的解(可行且非支配的解)的目标值矩阵;

第13-14行: 若种群不存在可行解则返回 nan;

第15-16行: 否则返回可行且非支配的解的指标值。

五 算法列表

	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
1	ABC	Artificial bee colony algorithm				$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$							
2	AB-SAEA	Adaptive Bayesian based surrogate-assisted evolutionary algorithm		V	\checkmark	$\sqrt{}$	$\sqrt{}$												
3	AC-MMEA	Adaptive merging and coordinated offspring generation based multi-modal multi-objective evolutionary algorithm		√		√	√				√			√	√				
4	ACO	Ant colony optimization	√							$\sqrt{}$	$\sqrt{}$								
5	Adam	Adaptive moment estimation	V			\checkmark					$\sqrt{}$								
6	AdaW	Evolutionary algorithm with adaptive weights			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
7	ADSAPSO	Adaptive dropout based surrogate-assisted particle swarm optimization		1	√	\checkmark	\checkmark												
8	AGE-II	Approximation-guided evolutionary multi- objective algorithm II		1		\checkmark	\checkmark	\checkmark		\checkmark									
9	AGE-MOEA	Adaptive geometry estimation-based many- objective evolutionary algorithm		V	√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				V							
10	AGE-MOEA-II	Adaptive geometry estimation-based many- objective evolutionary algorithm II		1	√	\checkmark	\checkmark	\checkmark		\checkmark		√							
11	AGSEA	Automated guiding vector selection-based evolutionary algorithm		V		\checkmark	\checkmark		\checkmark		V	\checkmark							
12	A-NSGA-III	Adaptive NSGA-III			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark							
13	AR-MOEA	Adaptive reference points based multi- objective evolutionary algorithm		V	√	\checkmark	\checkmark	\checkmark	\checkmark			√							
14	AVG-SAEA	Adaptive variable grouping based surrogate- assisted evolutionary algorithm		1		\checkmark	$\sqrt{}$				V								
15	BCE-IBEA	Bi-criterion evolution based IBEA		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									1
16	BCE-MOEA/D	Bi-criterion evolution based MOEA/D		$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$									
17	BFGS	A quasi-Newton method proposed by Broyden, Fletcher, Goldfarb, and Shanno	√			\checkmark					V								
18	BiCo	Bidirectional coevolution constrained multiobjective evolutionary algorithm		1		\checkmark	\checkmark	\checkmark		\checkmark		√							
19	BiGE	Bi-goal evolution			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark									
20	BLEAQII	Bilevel evolutionary algorithm based on quadratic approximations II		V		\checkmark						\checkmark						$\sqrt{}$	
21	BL-SAEA	Bi-level surrogate modelling based evolutionary algorithm		1		1						1						V	
22	BSPGA	Binary space partition tree based genetic algorithm									1	$\sqrt{}$							
23	C3M	Constraint, multiobjective, multi-stage, multi-constraint evolutionary algorithm		1			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
24	CAEAD	Dual-population evolutionary algorithm based on alternative evolution and degeneration		1		V	$\sqrt{}$	$\sqrt{}$	√	$\sqrt{}$		V							

							r		7	ion		peu	ve	dal	0	ic	sk	1	
	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
25	CA-MOEA	Clustering based adaptive multi-objective evolutionary algorithm		1		1	V	V	V	V									
26	CCGDE3	Cooperative coevolution GDE3		\checkmark		\checkmark	\checkmark				$\sqrt{}$								
27	ССМО	Coevolutionary constrained multi-objective optimization framework		1		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
28	c-DPEA	Constrained dual-population evolutionary algorithm		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$						1	
29	CLIA	Evolutionary algorithm with cascade clustering and reference point incremental learning		√	V	$\sqrt{}$	√	$\sqrt{}$	V	√									
30	CMaDPPs	Constrained many-objective optimization with determinantal point processes		1	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
31	CMA-ES	Covariance matrix adaptation evolution strategy	√				$\sqrt{}$				$\sqrt{}$	$\sqrt{}$						1	
32	CMEGL	Constrained evolutionary multitasking with global and local auxiliary tasks		1		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
33	CMME	Constrained many-objective evolutionary algorithm with enhanced mating and environmental selections		√		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
34	CMMO	Coevolutionary multi-modal multi-objective optimization framework		√		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				1					
35	CMOCSO	Competitive and cooperative swarm optimization constrained multi-objective optimization algorithm		√		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
36	C-MOEA/D	Constraint-MOEA/D							$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
37	CMOEA-MS	Constrained multiobjective evolutionary algorithm with multiple stages		1		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
38	CMOEMT	Constrained multi-objective optimization based on evolutionary multitasking optimization		√		√						V							
39	CMOES	Constrained multi-objective optimization based on even search		√		$\sqrt{}$	√	$\sqrt{}$	$\sqrt{}$	√		$\sqrt{}$							
40	CMOPSO	Competitive mechanism based multi- objective particle swarm optimizer		√		$\sqrt{}$	$\sqrt{}$												
41	CMOQLMT	Constrained multi-objective optimization based on Q-learning and multitasking		1		$\sqrt{}$						$\sqrt{}$							
42	CMOSMA	Constrained multi-objective evolutionary algorithm with self-organizing map		√		$\sqrt{}$	$\sqrt{}$					$\sqrt{}$							
43	CNSDE/DVC	Constrained nondominated sorting differential evolution based on decision variable classification		√		$\sqrt{}$	$\sqrt{}$												√
44	CoMMEA	Coevolutionary multimodal multi-objective evolutionary algorithm		√		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				1					
45	CPS-MOEA	Classification and Pareto domination based multi-objective evolutionary		√			$\sqrt{}$						√						
46	CSEA	Classification based surrogate-assisted evolutionary algorithm		√		$\sqrt{}$							√						
47	CSO	Competitive swarm optimizer				$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$						ı	
48	C-TAEA	Two-archive evolutionary algorithm for constrained MOPs		1	V	V	V	V	V	V		V							
49	C-TSEA	Constrained two-stage evolutionary algorithm				\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$						[
50	DAEA	Duplication analysis based evolutionary algorithm		√					$\sqrt{}$										
51	DCNSGA-III	Dynamic constrained NSGA-III		$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
52	DE	Differential evolution	1			$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$							

	答 法检定	海 汁入功	gle	multi	many	al	integer	label	binary	tation	large	ained	expensive	nodal	sparse	dynamic	multitask	bilevel	ust
	算法缩写	算法全称	single	nui	ma	real	inte	lab	bin	permutation	lar	constrained	expe	multimodal	spa	dyna	mult	bile	robust
53	DEA-GNG	Decomposition based evolutionary algorithm guided by growing neural gas		1	V	V	$\sqrt{}$	V	V	V									
54	DGEA	Direction guided evolutionary algorithm				\checkmark	~												
55	DMOEA-eC	Decomposition-based multi-objective evolutionary algorithm with the e-constraint framework		√		√	√	\checkmark	$\sqrt{}$	$\sqrt{}$									
56	dMOPSO	MOPSO based on decomposition					\checkmark												
57	DN-NSGA-II	Decision space based niching NSGA-II				$\sqrt{}$	\checkmark							$\sqrt{}$			ı		
58	DNSGA-II	Dynamic NSGA-II				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark			
59	DP-PPS	Tri-population based push and pull search		V								$\sqrt{}$							
60	DRLOS- EMCMO	EMCMO with deep reinforcement learning- assisted operator selection		1		V	$\sqrt{}$	$\sqrt{}$	V	V		V							
61	DSPCMDE	Dynamic selection preference-assisted constrained multiobjective differential evolution		1		V	\checkmark					V							
62	DWU	Dominance-weighted uniformity multi- objective evolutionary algorithm		1		\checkmark	~	\checkmark	\checkmark	\checkmark									
63	EAG-MOEA/D	External archive guided MOEA/D				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
64	ЕСРО	Electric charged particles optimization										$\sqrt{}$							
65	EDN-ARMOEA	Efficient dropout neural network based AR-MOEA				$\sqrt{}$													
66	EFR-RR	Ensemble fitness ranking with a ranking restriction scheme		1	V		\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
67	EGO	Efficient global optimization	√			\checkmark	\checkmark												
68	EIM-EGO	Expected improvement matrix based efficient global optimization		1		V	\checkmark						V						
69	EMCMO	Evolutionary multitasking-based constrained multiobjective optimization		1		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$							
70	EMMOEA	Expensive multi-/many-objective evolutionary algorithm		1		V	\checkmark												
71	e-MOEA	Epsilon multi-objective evolutionary algorithm				\checkmark	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$									
72	EMyO/C	Evolutionary many-objective optimization algorithm with clustering-based		1	V	$\sqrt{}$	\checkmark												
73	ENS-MOEA/D	Ensemble of different neighborhood sizes based MOEA/D		1	V	V	\checkmark												
74	ESBCEO	Bayesian co-evolutionary optimization based entropy search		1		V							V						
75	FDV	Fuzzy decision variable framework with various internal optimizers		1	V	V	V				√								
76	FEP	Fast evolutionary programming				\checkmark	\checkmark					\checkmark							
77	FLEA	Fast sampling based evolutionary algorithm		1	V	V					1								
78	FRCG	Fletcher-Reeves conjugate gradient				$\sqrt{}$					$\sqrt{}$								
79	FRCGM	Fletcher-Reeves conjugate gradient (for multi-objective optimization)		1	√	V					V	V							
80	FROFI	Feasibility rule with the incorporation of objective function information	1			V	√				V	$\sqrt{}$							
81	GA	Genetic algorithm	1			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$							
82	GDE3	Generalized differential evolution 3		√		$\sqrt{}$						$\sqrt{}$							

	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
83	GFM-MOEA	Generic front modeling based multi-objective evolutionary algorithm		1	V	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√									
84	GLMO	Grouped and linked mutation operator algorithm				\checkmark	\checkmark												
85	g-NSGA-II	g-dominance based NSGA-II				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
86	GPSO	Gradient based particle swarm optimization algorithm	V			$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
87	GPSOM	Gradient based particle swarm optimization algorithm (for multi-objective optimization)		1	√	\checkmark					$\sqrt{}$	$\sqrt{}$							
88	GrEA	Grid-based evolutionary algorithm				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$,		
89	HEA	Hyper-dominance based evolutionary algorithm		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$,		
90	HeE-MOEA	Multiobjective evolutionary algorithm with heterogeneous ensemble based infill criterion		1		$\sqrt{}$	\checkmark						√						
91	HHC-MMEA	Hybrid hierarchical clustering based multi- modal multi-objective evolutionary algorithm		1		$\sqrt{}$					V			√	$\sqrt{}$				
92	hpaEA	Hyperplane assisted evolutionary algorithm			\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark	$\sqrt{}$									
93	HREA	Hierarchy ranking based evolutionary algorithm				\checkmark	\checkmark												
94	НурЕ	Hypervolume estimation algorithm				$\sqrt{}$	\checkmark	\checkmark	\checkmark										
95	IBEA	Indicator-based evolutionary algorithm		√		\checkmark	\checkmark	\checkmark	\checkmark										
96	ICMA	Indicator based constrained multi-objective algorithm		1		V	$\sqrt{}$					V							
97	I-DBEA	Improved decomposition-based evolutionary algorithm		1	V	V	V	V	V	V		V							
98	IM-MOEA	Inverse modeling based multiobjective evolutionary algorithm		1		$\sqrt{}$	\checkmark				V								
99	IM-MOEA/D	Inverse modeling multiobjective evolutionary algorithm based on decomposition		1		$\sqrt{}$	\checkmark				$\sqrt{}$								
100	IMODE	Improved multi-operator differential evolution				\checkmark	\checkmark				$\sqrt{}$	$\sqrt{}$							
101	IMTCMO	Improved evolutionary multitasking-based CMOEA				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
102	IMTCMO_BS	Improved evolutionary multitasking-based CMOEA with bidirectional sampling		V	√	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$			V							
103	I-SIBEA	Interactive simple indicator-based evolutionary algorithm		1		$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$									
104	Izui	An aggregative gradient based multi- objective optimizer proposed by Izui et al.		1	√	V					√	$\sqrt{}$							
105	KnEA	Knee point driven evolutionary algorithm			√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
106	K-RVEA	Surrogate-assisted RVEA		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$,		
107	KTA2	Kriging-assisted Two_Arch2		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$,		
108	KTS	Kriging-assisted evolutionary algorithm with two search modes		1			~					\checkmark							
109	L2SMEA	Linear subspace surrogate modeling assisted evolutionary algorithm	V			$\sqrt{}$							$\sqrt{}$						
110	LCSA	Linear combination-based search algorithm		1							$\sqrt{}$								
111	LDS-AF	Low-dimensional surrogate aggregation function		V							$\sqrt{}$								
112	LERD	Large-scale evolutionary algorithm with		√		$\sqrt{}$					$\sqrt{}$								

	算法缩写	算法全称 reformulated decision variable analysis	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
	T. 100	Evolutionary algorithm for large-scale many-		1	1	1	1				1								
113	LMEA	objective optimization		V	√	√	√				√								
114	LMOCSO	Large-scale multi-objective competitive swarm optimization algorithm		√	√	$\sqrt{}$	$\sqrt{}$				√	V							
115	LMOEA-DS	Large-scale evolutionary multi-objective optimization assisted by directed sampling		V		$\sqrt{}$					V								
116	LMPFE	Evolutionary algorithm with local model based Pareto front estimation		1	√	$\sqrt{}$	√	√	$\sqrt{}$	$\sqrt{}$									
117	LRMOEA	Large-scale robust multi-objective evolutionary algorithm		1		$\sqrt{}$			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$
118	LSMOF	Large-scale multi-objective optimization framework with NSGA-II		1		$\sqrt{}$	√				$\sqrt{}$								
119	MaOEA-CSS	Many-objective evolutionary algorithms based on coordinated selection		1	V	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$									
120	MaOEA-DDFC	Many-objective evolutionary algorithm based on directional diversity and favorable convergence		√		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$							ı		
121	MaOEA/IGD	IGD based many-objective evolutionary algorithm			V	$\sqrt{}$		V	$\sqrt{}$	$\sqrt{}$									
122	MaOEA/IT	Many-objective evolutionary algorithms based on an independent two-stage		V	V	\checkmark													
123	MaOEA-R&D	Many-objective evolutionary algorithm based on objective space reduction			V	\checkmark		V	\checkmark	\checkmark									
124	МССМО	Multi-population coevolutionary constrained multi-objective optimization		1		$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$		V							
125	MCEA/D	Multiple classifiers-assisted evolutionary algorithm based on decomposition		1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						$\sqrt{}$						
126	MFEA	Multifactorial evolutionary algorithm	$\sqrt{}$			$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						$\sqrt{}$		
127	MFEA-II	Multifactorial evolutionary algorithm II				$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						$\sqrt{}$		
128	MFFS	Multiform feature selection		$\sqrt{}$					\checkmark										
129	MFO-SPEA2	Multiform optimization framework based on SPEA2				\checkmark	\checkmark		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
130	MGCEA	Multi-granularity clustering based evolutionary algorithm		1		\checkmark			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				
131	MGSAEA	Multigranularity surrogate-assisted constrained evolutionary algorithm		1		$\sqrt{}$						$\sqrt{}$	$\sqrt{}$						
132	MMEAPSL	Multimodal multi-objective evolutionary algorithm assisted by Pareto set learning		1		$\sqrt{}$	√	V	$\sqrt{}$	$\sqrt{}$				1					
133	MMEA-WI	Weighted indicator-based evolutionary algorithm for multimodal multi-objective optimization		1		V	\checkmark							V					
134	MMOPSO	MOPSO with multiple search strategies		$\sqrt{}$															
135	MO_Ring_ PSO_SCD	Multiobjective PSO using ring topology and special crowding distance		1		$\sqrt{}$	√							V					
136	MOBCA	Multi-objective besiege and conquer algorithm		√															
137	MOCell	Cellular genetic algorithm		1		$\sqrt{}$		V	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
138	MOCGDE	Multi-objective conjugate gradient and differential evolution algorithm		1	√	$\sqrt{}$					V	$\sqrt{}$							
139	MO-CMA	Multi-objective covariance matrix adaptation evolution strategy		V		$\sqrt{}$													

										_		_			1	1			\neg
	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
140	MOEA/CKF	Multi-objective evolutionary algorithm based on cross-scale knowledge fusion		1		√			V		√	√			√				
141	MOEA/D	Multiobjective evolutionary algorithm based on decomposition		√		$\sqrt{}$		V	$\sqrt{}$	$\sqrt{}$									
142	MOEA/D-2WA	MOEA/D with two-type weight vector adjustments		V				√		$\sqrt{}$									
143	MOEA/D-AWA	MOEA/D with adaptive weight adjustment						\checkmark	\checkmark	\checkmark									
144	MOEA/D-CMA	MOEA/D with covariance matrix adaptation evolution strategy		V	\checkmark	\checkmark	√												
145	MOEA/D-CMT	MOEA/D with competitive multitasking				\checkmark													
146	MOEA/DD	Many-objective evolutionary algorithm based on dominance and decomposition		1	\checkmark	\checkmark	√	√	$\sqrt{}$	$\sqrt{}$		√							
147	MOEA/D-DAE	MOEA/D with detect-and-escape strategy				~		\checkmark	~	\checkmark									
148	MOEA/D- DCWV	MOEA/D with distribution control of weight vector set		1	\checkmark	\checkmark	√	√	$\sqrt{}$										
149	MOEA/D-DE	MOEA/D based on differential evolution			\checkmark	\checkmark													
150	MOEA/D-DQN	MOEA/D based on deep Q-network			\checkmark	\checkmark													
151	MOEA/D-DRA	MOEA/D with dynamical resource allocation		V															
152	MOEA/D-DU	MOEA/D with a distance based updating strategy		V				√		$\sqrt{}$									
153	MOEA/D- DYTS	MOEA/D with dynamic Thompson sampling		1	√	√	√												
154	MOEA/D-EGO	MOEA/D with efficient global optimization				\checkmark													
155	MOEA/D- FRRMAB	MOEA/D with fitness-rate-rank-based multiarmed bandit		1	√	√	√												
156	MOEA/D- M2M	MOEA/D based on MOP to MOP		1		\checkmark	\checkmark												
157	MOEA/D- MRDL	MOEA/D with maximum relative diversity loss		1		\checkmark	√												
158	MOEA/D-PaS	MOEA/D with Pareto adaptive scalarizing approximation		1	\checkmark	\checkmark	\checkmark												
159	MOEA/D-PFE	MOEA/D with Pareto front estimation		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
160	MOEA/D-STM	MOEA/D with stable matching		$\sqrt{}$	$\sqrt{}$														
161	MOEA/D-UR	MOEA/D with update when required		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
162	MOEA/D- URAW	MOEA/D with uniform randomly adaptive weights		1	$\sqrt{}$	$\sqrt{}$	√	V	$\sqrt{}$	√									
163	MOEA/DVA	Multi-objective evolutionary algorithm based on decision variable		1		$\sqrt{}$	√				√								
164	MOEA/D-VOV	MOEA/D with virtual objective vectors		V						$\sqrt{}$									
165	MOEA/IGD- NS	Multi-objective evolutionary algorithm based on an enhanced IGD		1		\checkmark	$\sqrt{}$	√	\checkmark	$\sqrt{}$									
166	MOEA-NZD	Multi-objective evolutionary algorithm with nonzero detection		1	\checkmark	\checkmark					√	√			√				
167	MOEA-PC	Multiobjective evolutionary algorithm based on polar coordinates		1		$\sqrt{}$	\checkmark												
168	MOEA/PSL	Multi-objective evolutionary algorithm based on Pareto optimal subspace		√					$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				

										J		_						$\overline{}$	
	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
169	MOEA-RE	Multi-objective evolutionary algorithm with robustness enhancement		V		$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									√
170	MO-EGS	Multi-objective evolutionary gradient search		\checkmark		\checkmark													
171	MO-L2SMEA	Multi-objective linear subspace surrogate modeling assisted evolutionary algorithm		V		1					√		$\sqrt{}$						
172	MOMBI-II	Many objective metaheuristic based on the R2 indicator II		√	\checkmark	\checkmark	\checkmark		$\sqrt{}$	$\sqrt{}$									
173	MO-MFEA	Multi-objective multifactorial evolutionary algorithm		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					$\sqrt{}$		
174	MO-MFEA-II	Multi-objective multifactorial evolutionary algorithm II		V		V	\checkmark	$\sqrt{}$	$\sqrt{}$	V		\checkmark					V		
175	MOPSO	Multi-objective particle swarm optimization																	
176	MOPSO-CD	MOPSO with crowding distance		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$												
177	MOSD	Multiobjective steepest descent		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$	\checkmark							
178	M-PAES	Memetic algorithm with Pareto archived evolution strategy		√		V	V												
179	MP-MMEA	Multi-population multi-modal multi- objective evolutionary algorithm				$\sqrt{}$	\checkmark				V			$\sqrt{}$	V				
180	MPSO/D	Multi-objective particle swarm optimization algorithm based on decomposition		√	V	V	V												
181	MSCEA	Multi-stage constrained multi-objective evolutionary algorithm		√		$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
182	MSCMO	Multi-stage constrained multi-objective evolutionary algorithm		\checkmark		\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
183	MSEA	Multi-stage multi-objective evolutionary algorithm		$\sqrt{}$		$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$							ı		
184	MSKEA	Multi-stage knowledge-guided evolutionary algorithm		\checkmark			\checkmark		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
185	MSOPS-II	Multiple single objective Pareto sampling II		$\sqrt{}$	\checkmark	\checkmark	\checkmark					\checkmark					ı		
186	MTCMO	Multitasking constrained multi-objective optimization		√		V	V	V	V	V		V							
187	MTS	Multiple trajectory search		$\sqrt{}$		\checkmark	\checkmark										ı		
188	MultiObjective EGO	Multi-objective efficient global optimization		\checkmark		$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$						
189	MVPA	Most valuable player algorithm				$\sqrt{}$	\checkmark				$\sqrt{}$	\checkmark							
190	MyO-DEMR	Many-objective differential evolution with mutation restriction		√	\checkmark	$\sqrt{}$	\checkmark												
191	NBLEA	Nested bilevel evolutionary algorithm		$\sqrt{}$		$\sqrt{}$						\checkmark					ı	$\sqrt{}$	
192	NelderMead	The Nelder-Mead algorithm				$\sqrt{}$													
193	NMPSO	Novel multi-objective particle swarm optimization		\checkmark	\checkmark	\checkmark	\checkmark												
194	NNDREA-MO	Evolutionary algorithm with neural network-based dimensionality reduction (multi-objective)		√					V		V	$\sqrt{}$			V				
195	NNDREA-SO	Evolutionary algorithm with neural network-based dimensionality reduction (single-objective)	$\sqrt{}$						√		√	$\sqrt{}$			√				
196	NNIA	Nondominated neighbor immune algorithm				$\sqrt{}$			$\sqrt{}$	$\sqrt{}$									
197	NRV-MOEA	Adaptive normal reference vector-based multi- and many-objective evolutionary algorithm				$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									

									_	1				1	1	1		
算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
NSBiDiCo	Non-dominated sorting bidirectional differential coevolution algorithm		1		V	V	V	$\sqrt{}$	V		V							
NSGA-II	Nondominated sorting genetic algorithm II				\checkmark		\checkmark	\checkmark	$\sqrt{}$		$\sqrt{}$							
NSGA-II+ARSBX	NSGA-II with adaptive rotation based simulated binary crossover		V		$\sqrt{}$	$\sqrt{}$					$\sqrt{}$							
NSGA-II- conflict	NSGA-II with conflict-based partitioning strategy			V	V	V	V	V	V									
NSGA-II-DTI	NSGA-II of Deb's type I robust version				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							$\sqrt{}$
NSGA-III	Nondominated sorting genetic algorithm III																	
NSGA-II/SDR	NSGA-II with strengthened dominance relation				\checkmark	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$									
NSLS	Multiobjective optimization framework based on nondominated sorting and local search		V		V	V												
NUCEA	Non-uniform clustering based evolutionary algorithm				\checkmark			\checkmark		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				
OFA	Optimal foraging algorithm				\checkmark	\checkmark				$\sqrt{}$	$\sqrt{}$							
one-by-one EA	Many-objective evolutionary algorithm using a one-by-one selection		V	V	1	V	1	$\sqrt{}$	V									
OSP-NSDE	Non-dominated sorting differential evolution with prediction in the objective space		1		V	V												
ParEGO	Efficient global optimization for Pareto optimization				\checkmark	$\sqrt{}$						$\sqrt{}$						
PB-NSGA-III	NSGA-III based on Pareto based bi-indicator infill sampling criterion		V	V	$\sqrt{}$	$\sqrt{}$												
PB-RVEA	RVEA based on Pareto based bi-indicator infill sampling criterion		1	V	$\sqrt{}$	$\sqrt{}$												
PC-SAEA	Pairwise comparison based surrogate-assisted evolutionary algorithm		1	V								V						
PeEA	Pareto front shape estimation based evolutionary algorithm		V	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$									
PESA-II	Pareto envelope-based selection algorithm II		\checkmark		\checkmark	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$									
PICEA-g	Preference-inspired coevolutionary algorithm with goals		√	7		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$									
PM-MOEA	Pattern mining based multi-objective evolutionary algorithm		√			$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			V				
POCEA	Paired offspring generation based constrained evolutionary algorithm		√		$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$							
PPS	Push and pull search algorithm				\checkmark	$\sqrt{}$					$\sqrt{}$							
PRDH	Problem reformulation and duplication handling							\checkmark										
PREA	Promising-region based EMO algorithm				\checkmark		\checkmark	\checkmark										
PSO	Particle swarm optimization				\checkmark	\checkmark				$\sqrt{}$	$\sqrt{}$							
REMO	Expensive multiobjective optimization by relation learning and prediction		V	√	$\sqrt{}$							$\sqrt{}$						
RGA-M1-2	Real-coded genetic algorithm with framework M1-2		√		V						√	√						
RGA-M2-2	Real-coded genetic algorithm with framework M2-2		V		V						V	V						
RM-MEDA	Regularity model-based multiobjective				$\sqrt{}$	$\sqrt{}$												
	NSBiDiCo NSGA-II NSGA-II- NSGA-II-conflict NSGA-II-DTI NSGA-III) NSGA-III/SDR NSLS NUCEA OFA One-by-one EA OSP-NSDE ParEGO PB-NSGA-III PB-RVEA PC-SAEA PESA-II PICEA-g PM-MOEA POCEA PPS PRDH PREA PSO REMO RGA-M1-2 RGA-M2-2	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II Nondominated sorting genetic algorithm II NSGA-II- NSGA-II with adaptive rotation based simulated binary crossover NSGA-II- conflict NSGA-II with conflict-based partitioning strategy NSGA-II- DTI NSGA-II of Deb's type I robust version NSGA-III NSGA-III with strengthened dominance relation NSLS Multiobjective optimization framework based on nondominated sorting and local search NUCEA Non-uniform clustering based evolutionary algorithm OFA Optimal foraging algorithm using a one-by-one selection OSP-NSDE Many-objective evolutionary algorithm using a one-by-one selection WICEA PareGO Efficient global optimization for Pareto optimization with prediction in the objective space PareGO Efficient global optimization for Pareto optimization PB-NSGA-III Pareto and Pareto based bi-indicator infill sampling criterion PB-RVEA Pairwise comparison based surrogate-assisted evolutionary algorithm PESA-II Pareto envelope-based selection algorithm II PICEA-g Pareto front shape estimation based evolutionary algorithm PESA-II Pareto envelope-based selection algorithm II PICEA-g Paired offspring generation based constrained evolutionary algorithm POCEA Paired offspring generation based constrained evolutionary algorithm POCEA Paired offspring generation based constrained evolutionary algorithm PRDH Problem reformulation and duplication handling PREA Promising-region based EMO algorithm PRO Particle swarm optimization by relation learning and prediction REMO Expensive multiobjective optimization by relation learning and prediction Real-coded genetic algorithm with framework M1-2 Real-coded genetic algorithm with framework M2-2	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II NSGA-II Nondominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II-Conflict NSGA-II-Conflict NSGA-II NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-Conflict NSGA-II NSGA-II of Deb's type I robust version NSGA-III Nondominated sorting genetic algorithm III NSGA-III/SDR NSGA-II with strengthened dominance relation NSLS Multiobjective optimization framework based on nondominated sorting and local search NUCEA Non-uniform clustering based evolutionary algorithm OFA Optimal foraging algorithm OFA Optimal foraging algorithm wing a one-by-one selection OSP-NSDE Non-dominated sorting differential evolution with prediction in the objective space ParEGO Efficient global optimization for Pareto optimization PB-NSGA-III PB-RVEA Pairwise comparison based bi-indicator infill sampling criterion PC-SAEA PeEA Pareto front shape estimation based evolutionary algorithm PESA-II Pareto envelope-based selection algorithm II PICEA-g Pareto front shape estimation based evolutionary algorithm with goals PM-MOEA Pattern mining based multi-objective evolutionary algorithm PDCEA Paired offspring generation based constrained evolutionary algorithm PRDH Problem reformulation and duplication handling PREA Promising-region based EMO algorithm PSO Particle swarm optimization REMO Expensive multiobjective optimization by relation learning and prediction Real-coded genetic algorithm with framework M1-2 Real-coded genetic algorithm with framework M2-2	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II NSGA-II Nondominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-conflict NSGA-III NSGA-III NSGA-II with conflict-based partitioning strategy NSGA-III NSGA-IIII NSGA-III NSGA-IIII NSGA-IIII NSGA-IIII NSGA-IIII NSGA-IIII NSGA-IIII based on Pareto based bi-indicator infill sampling criterion PB-NSGA-III PB-RVEA Pairwise comparison based surrogate-assisted evolutionary algorithm PC-SAEA Pareto front shape estimation based evolutionary algorithm II PESA-II Pareto envelope-based selection algorithm II PICEA-g Paired offspring generation based constrained evolutionary algorithm PPS Pathen mining based multi-objective evolutionary algorithm PPS Push and pull search algorithm PRDH Problem reformulation and duplication handling PREA Promising-region based EMO algorithm PSO Particle swarm optimization REMO Real-coded genetic algorithm with framework M2-2 Real-coded genetic algorithm with framework M2-2	NSBiDiCo differential coevolution algorithm NSGA-II Nondominated sorting genetic algorithm II	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm II	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II Nondominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-Conflict NSGA-II-ARSBX NSGA-III with conflict-based partitioning strategy NSGA-III NSGA-III NSGA-III Nondominated sorting genetic algorithm III NSGA-III NSGA-III NSGA-III with conflict-based partitioning strategy NSGA-III NSGA-III NSGA-III Nondominated sorting genetic algorithm III NSGA-III NSGA-III NSGA-III with strengthened dominance relation NSLS Multiobjective optimization framework based on nondominated sorting and local search NUCEA Non-uniform clustering based evolutionary algorithm OFA Optimal foraging algorithm OFA Optimal foraging algorithm OFA Optimal foraging algorithm OFA Optimal foraging algorithm OSP-NSDE Many-objective evolutionary algorithm using a one-by-one selection Non-dominated sorting differential evolution with prediction in the objective space ParEGO Efficient global optimization for Pareto optimization NSGA-III NSGA-III based on Pareto based bi-indicator infill sampling criterion PB-NSGA-III PB-RVEA RVEA based on Pareto based bi-indicator infill sampling criterion PC-SAEA Pairwise comparison based surrogate-assisted evolutionary algorithm PESA-II Pareto envelope-based selection algorithm II PESA-II Pareto envelope-based selection algorithm II PICEA-g Peference-inspired coevolutionary algorithm PPS Pathem of pareto based bi-indicator inspired operation based evolutionary algorithm PPS Pathem of pareto based bi-indicator infill sampling criterion PRA-MOEA Pareto front shape estimation based evolutionary algorithm PESA-II Pareto envelope-based selection algorithm II V V V V V V V V V V V V V V	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II Nondominated sorting genetic algorithm II NSGA-III NSGA-III with adaptive rotation based simulated binary crossover NSGA-III-conflict NSGA-III with conflict-based partitioning strategy NSGA-III NSGA-III NSGA-II with conflict-based partitioning strategy NSGA-III NSGA-III NSGA-II of Deb's type I robust version NSGA-III NSGA-III Nondominated sorting genetic algorithm III NSGA-III NSGA-III with strengthened dominance relation NSLS Multiobjective optimization framework based on nondominated sorting and local search NUCEA Non-uniform clustering based evolutionary algorithm OFA Optimal foraging algorithm OSP-NSDE Non-dominated sorting differential evolution with prediction in the objective space ParEGO Efficient global optimization for Pareto optimization WINGA-III based on Pareto based bi-indicator infill sampling criterion PB-RVEA Pairwise comparison based surrogate-assisted evolutionary algorithm PESA-II Pareto front shape estimation based evolutionary algorithm PESA-II Pareto envelope-based selection algorithm II N N N N N N N N N N N N N N N N N N	NSBiDiCo Non-dominated sorting bidirectional differential ecovolution algorithm NSGA-II Nondominated sorting genetic algorithm II NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-ARSBX NSGA-II with conflict-based partitioning strategy NSGA-II-DTI NSGA-II of Deb's type I robust version NSGA-III-DTI NSGA-II of Deb's type I robust version NSGA-II of Non-oninated sorting algorithm of Non-oninated sorting and prodiction NSGA-II-DTI NSGA-II of Non-oninated s	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II Nondominated sorting genetic algorithm II	NSBidDico Non-dominated sorting bidirectional differential coevolution algorithm II NSGA-II Nondominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-DTI NSGA-II of Deb's type I robust version NSGA-III Nondominated sorting genetic algorithm III NSGA-II-DTI NSGA-II of Deb's type I robust version NSGA-III Nondominated sorting genetic algorithm III NSGA-II-DTI NSGA-II of Deb's type I robust version NSGA-III Nondominated sorting genetic algorithm III NSGA-II-DTI NSGA-II with strengthened dominance relation NSLS Multiobjective optimization framework based on nondominated sorting and local search NUCEA Non-uniform clustering based evolutionary algorithm OFA Optimal foraging algorithm OFA Optimal foraging algorithm OSP-NSDE Mon-dominated sorting differential evolution with prediction in the objective space ParEGO PEB-cient global optimization for Pareto optimization PB-NSGA-III NSGA-III based on Pareto based bi-indicator infill sampling criterion PB-NSGA-III PB-RVEA RVEA based on Pareto based bi-indicator infill sampling criterion PC-SAEA Pairwise comparison based surrogate-assisted evolutionary algorithm PESA-II Pareto emvelope-based selection algorithm II PESA-II Pareto emvelope-based selection algorithm II PPEA Pareto front shape estimation based evolutionary algorithm PPEA Pareto envelope-based selection algorithm II PPEA Pareto envelope-based selection algorithm II PPEA Pareto mining based multi-objective evolutionary algorithm PPEA Pareto envelope-based selection based constrained evolutionary algorithm PPS Push and pull search algorithm PPS Push and pull search algorithm PPS Pash and pull search algorithm PPS Pash and pull search algorithm PPS Pash and pull search algorithm With framework M1-2 REal-coded genetic algorithm with framework M2-2 Real-coded genetic algorithm with framework M2-2	NSGA-II Nondominated sorting bidirectional differential coevolution algorithm II	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II Nondominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II-With adaptive rotation based simulated binary crossover NSGA-II-NSGA-II-With adaptive rotation based simulated binary crossover NSGA-II-NSGA-II-NSGA-II-With conflict-based partitioning strategy NSGA-II-NSGA-II-NSGA-II with conflict-based partitioning strategy NSGA-II-NSGA-II-NSGA-II with conflict-based partitioning strategy NSGA-II-DTI NSGA-III Nondominated sorting genetic algorithm III NSGA-II-NSGA-II Nondominated sorting genetic algorithm NSGA-II-NSGA-II with strengthened dominance relation NSGA-II-NSGA-II-NSGA-II with strengthened domin	NSGA-II	NSBiDiCo Non-dominated sorting bidirectional differential coverolution algorithm NSGA-II Nondominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-Cronfliet NSGA-II with conflict-based partitioning strategy NSGA-II-DTI NSGA-II with conflict-based partitioning strategy NSGA-II-DTI NSGA-III with conflict-based partitioning strategy NSGA-III Nondominated sorting genetic algorithm III NSGA-II-DTI NSGA-III Nondominated sorting genetic algorithm III NSGA-II-DTI NSGA-III Nondominated sorting genetic algorithm III NSGA-II-DTI NSGA-III with strengthened dominance relation NSILS Multiobjective optimization framework based on mondominated sorting and local search NUCEA Non-uniform clustering based evolutionary algorithm using one-by-one selection OI/A Optimal foruging algorithm using one-by-one selection OSP-NSDE Non-dominated sorting differential evolution with prediction in the objective space Particol of pertico based bi-indicator infill sampling criterion PB-NSGA-III NSGA-III based on Pareto based bi-indicator infill sampling criterion PC-SAEA Pairwise comparison based surrogate-assisted evolutionary algorithm PE-SA-II Pareto envelope-based selection algorithm II PC-SAEA Paired offspring generation based evolutionary algorithm PPS Pauch and III sampling based multi-objective evolutionary algorithm PPS Pauch and III sampling based multi-objective evolutionary algorithm PPS Pauch and III sampling based multi-objective evolutionary algorithm PPS Pareto envelope-based selection algorithm II PPS Pareto envelope-based selection algorithm II PPS Pauch and III sampling based multi-objective evolutionary algorithm PPS Pauch and III sampling based multi-objective evolutionary algorithm PPS Pauch and III sampling envertation based constrained evolu	NSBiDiCo Non-dominated sorting bidirectional differential coevolution algorithm NSGA-II NON-dominated sorting genetic algorithm II NSGA-II-ARSBX NSGA-II with adaptive rotation based simulated binary crossover NSGA-II-DTI NSGA-II with conflict-based partitioning strategy NSGA-II-DTI NSGA-II with conflict-based partitioning strategy NSGA-II-DTI NSGA-II-DTI	NSBiDiCo Non-dominated sorting bidirectional differential ecoedution algorithm NSGA-II Nondominated sorting genetic algorithm II	NSBiDICO Non-dominated sorting bidirectional

			e	i.	y		er	1	ý	ıtion	t)	ined	ive	odal	se	nic	ask	el	st
	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
		estimation of distribution																	
227	RMOEA/DVA	Robust multi-objective evolutionary algorithm with decision variable assortment		1		V	\checkmark												√
228	RMSProp	Root mean square propagation																	
229	r-NSGA-II	r-dominance based NSGA-II				$\sqrt{}$			$\sqrt{}$										
230	RPD-NSGA-II	Reference point dominance-based NSGA-II		√	V	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
231	RPEA	Reference points-based evolutionary algorithm				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
232	RSEA	Radial space division based evolutionary algorithm		√	V	\checkmark	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$									
233	RVEA	Reference vector guided evolutionary algorithm		$\sqrt{}$		\checkmark	\checkmark	\checkmark		$\sqrt{}$									
234	RVEAa	RVEA embedded with the reference vector regeneration strategy			V	V	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
235	RVEA-iGNG	RVEA based on improved growing neural gas		V	V					$\sqrt{}$									
236	S3-CMA-ES	Scalable small subpopulations based covariance matrix adaptation		1	V	1	V				√								
237	SA	Simulated annealing	1			$\sqrt{}$	$\sqrt{}$				$\sqrt{}$								
238	SACC-EAM-II	Surrogate-assisted cooperative co- evolutionary algorithm of Minamo	V			1	V						V						
239	SACOSO	Surrogate-assisted cooperative swarm optimization				\checkmark	\checkmark												
240	SADE- Sammon	Sammon mapping assisted differential evolution	√			1	√						√						
241	SAMSO	Multiswarm-assisted expensive optimization				\checkmark	\checkmark												
242	S-CDAS	Self-controlling dominance area of solutions			V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
243	SCEA	Sparsity clustering basec evolutionary algorithm		V		$\sqrt{}$			$\sqrt{}$		V				$\sqrt{}$				
244	SD	Steepest descent	V			\checkmark					$\sqrt{}$								
245	S-ECSO	Enhanced competitive swarm optimizer for sparse optimization		1		V					√				V				
246	SFADE	Scalarization function approximation based differential evolution algorithm		1	V	1	V						V						
247	SGEA	Steady-state and generational evolutionary algorithm				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						$\sqrt{}$			
248	SGECF	Sparsity-guided elitism co-evolutionary framework		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$		$\sqrt{}$								
249	SHADE	Success-history based adaptive differential evolution	V			\checkmark	~				V								
250	SIBEA	Simple indicator-based evolutionary algorithm				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark									
251	SIBEA- kEMOSS	SIBEA with minimum objective subset of size k with minimum error			√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
252	SLMEA	Super-large-scale multi-objective evolutionary algorithm		1		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$		V				$\sqrt{}$				
253	SMEA	Self-organizing multiobjective evolutionary algorithm		1		√	$\sqrt{}$												
254	SMOA	Supervised multi-objective optimization algorithm																	
255	SMPSO	Speed-constrained multi-objective particle swarm optimization		1		√	√												
256	SMS-EGO	S metric selection based efficient global optimization				$\sqrt{}$													

				,															
	算法缩写	算法全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
257	SMS-EMOA	S metric selection based evolutionary multiobjective optimization		1		√	V	V	√	√									
258	S-NSGA-II	Sparse NSGA-II		V							$\sqrt{}$								
259	SparseEA	Evolutionary algorithm for sparse multi- objective optimization problems		1		\checkmark	\checkmark		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			V				
260	SparseEA2	Improved SparseEA		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				
261	SPEA2	Strength Pareto evolutionary algorithm 2		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$									
262	SPEA2+SDE	SPEA2 with shift-based density estimation				$\sqrt{}$			$\sqrt{}$	$\sqrt{}$									
263	SPEA/R	Strength Pareto evolutionary algorithm based on reference direction		1	√		√	√	$\sqrt{}$	$\sqrt{}$									
264	SQP	Sequential quadratic programming				$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
265	SRA	Stochastic ranking algorithm				$\sqrt{}$			$\sqrt{}$	$\sqrt{}$									
266	SSCEA	Subspace segmentation based co- evolutionary algorithm		1	√	\checkmark	\checkmark												
267	SSDE	Self-organized surrogate-assisted differential evolution		V	7	\checkmark	√						~						
268	t-DEA	theta-dominance based evolutionary algorithm				~			\checkmark	\checkmark									
269	tDEA-CPBI	Theta-dominance based evolutionary algorithm with CPBI		1	√	\checkmark	√	√	$\sqrt{}$	\checkmark									
270	TELSO	Two-layer encoding learning swarm optimizer				\checkmark			\checkmark		\checkmark	\checkmark			$\sqrt{}$				
271	TiGE-2	Tri-Goal Evolution Framework for CMaOPs			V			V	\checkmark										
272	ToP	Two-phase framework with NSGA-II				\checkmark						\checkmark							
273	TPCMaO	Three-population based constrained many- objective co-evolutionary algorithm			V	\checkmark		V				\checkmark							
274	TriMOEA- TA&R	Multi-modal MOEA using two-archive and recombination strategies		1		$\sqrt{}$	$\sqrt{}$							V					
275	TS-NSGA-II	Two stage NSGA-II		√	V			V	$\sqrt{}$										
276	TSTI	Two-stage evolutionary algorithm with three indicators		1		\checkmark	V	V	√	\checkmark		$\sqrt{}$							
277	Two_Arch2	Two-archive algorithm 2		√	V			V	$\sqrt{}$										
278	URCMO	Utilizing the relationship between constrained and unconstrained Pareto fronts for constrained multi-objective optimization		V		√	V					V							
279	VaEA	Vector angle based evolutionary algorithm							$\sqrt{}$	$\sqrt{}$									
280	WOF	Weighted optimization framework									$\sqrt{}$								
281	WV-MOEA-P	Weight vector based multi-objective optimization algorithm with preference		√															

六 问题列表

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
1	BT1	Benchmark MOP with bias feature		$\sqrt{}$		\checkmark					$\sqrt{}$								
2	BT2	Benchmark MOP with bias feature				7					$\sqrt{}$								
3	BT3	Benchmark MOP with bias feature				7					$\sqrt{}$								
4	BT4	Benchmark MOP with bias feature				\checkmark					$\sqrt{}$								
5	BT5	Benchmark MOP with bias feature				7					$\sqrt{}$								
6	BT6	Benchmark MOP with bias feature									\checkmark								
7	BT7	Benchmark MOP with bias feature		1							\checkmark								
8	BT8	Benchmark MOP with bias feature		V							$\sqrt{}$								
9	BT9	Benchmark MOP with bias feature									\checkmark								
10	C10MOP1	Neural architecture search on CIFAR-10		V							$\sqrt{}$								
11	C10MOP2	Neural architecture search on CIFAR-10		V		√					$\sqrt{}$								
12	C10MOP3	Neural architecture search on CIFAR-10		√							\checkmark								
13	C10MOP4	Neural architecture search on CIFAR-10		√							$\sqrt{}$								
14	C10MOP5	Neural architecture search on CIFAR-10									\checkmark								
15	C10MOP6	Neural architecture search on CIFAR-10		$\sqrt{}$		\checkmark					\checkmark								
16	C10MOP7	Neural architecture search on CIFAR-10				√					$\sqrt{}$								
17	C10MOP8	Neural architecture search on CIFAR-10				\checkmark					$\sqrt{}$								
18	C10MOP9	Neural architecture search on CIFAR-10				7					$\sqrt{}$								
19	CEC2008_F1	Shifted sphere function				√					$\sqrt{}$								
20	CEC2008_F2	Shifted Schwefel's function									$\sqrt{}$								
21	CEC2008_F3	Shifted Rosenbrock's function				$\sqrt{}$					$\sqrt{}$								
22	CEC2008_F4	Shifted Rastrign's function									$\sqrt{}$								
23	CEC2008_F5	Shifted Griewank's function									$\sqrt{}$								
24	CEC2008_F6	Shifted Ackley's function									$\sqrt{}$								
25	CEC2008_F7	FastFractal 'DoubleDip' function									$\sqrt{}$								
26	CEC2010_F1	CEC'2010 constrained optimization benchmark problem	\checkmark			√						$\sqrt{}$							
27	CEC2010_F2	CEC'2010 constrained optimization benchmark problem	V			V													
28	CEC2010_F3	CEC'2010 constrained optimization benchmark problem	V			V						V							
29	CEC2010_F4	CEC'2010 constrained optimization benchmark problem	V			V						V							
30	CEC2010_F5	CEC'2010 constrained optimization benchmark problem	V			V						V							

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
31	CEC2010_F6	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$													
32	CEC2010_F7	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$													
33	CEC2010_F8	CEC'2010 constrained optimization benchmark problem	1			\checkmark													
34	CEC2010_F9	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$						V							
35	CEC2010_F10	CEC'2010 constrained optimization benchmark problem	1																
36	CEC2010_F11	CEC'2010 constrained optimization benchmark problem	1																
37	CEC2010_F12	CEC'2010 constrained optimization benchmark problem	1			V						V							
38	CEC2010_F13	CEC'2010 constrained optimization benchmark problem	1			V						V							
39	CEC2010_F14	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$													
40	CEC2010_F15	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$													
41	CEC2010_F16	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$													
42	CEC2010_F17	CEC'2010 constrained optimization benchmark problem	1			$\sqrt{}$													
43	CEC2010_F18	CEC'2010 constrained optimization benchmark problem	1			\checkmark													
44	CEC2013_F1	Shifted elliptic function	$\sqrt{}$			$\sqrt{}$					$\sqrt{}$								
45	CEC2013_F2	Shifted Rastrigin's function	$\sqrt{}$			$\sqrt{}$					$\sqrt{}$								
46	CEC2013_F3	Shifted Ackley's function	$\sqrt{}$			\checkmark					$\sqrt{}$								
47	CEC2013_F4	7-nonseparable, 1-separable shifted and rotated elliptic function	1			\checkmark					$\sqrt{}$								
48	CEC2013_F5	7-nonseparable, 1-separable shifted and rotated Rastrigin's function	1			\checkmark					$\sqrt{}$								
49	CEC2013_F6	7-nonseparable, 1-separable shifted and rotated Ackley's function	1			\checkmark					$\sqrt{}$								
50	CEC2013_F7	7-nonseparable, 1-separable shifted and rotated Schwefel's function	1			$\sqrt{}$					√								
51	CEC2013_F8	20-nonseparable shifted and rotated elliptic function	1			$\sqrt{}$					√								
52	CEC2013_F9	20-nonseparable shifted and rotated Rastrigin's function	1			\checkmark					$\sqrt{}$								
53	CEC2013_F10	20-nonseparable shifted and rotated Rastrigin's function	1			V					V								
54	CEC2013_F11	20-nonseparable shifted and rotated Schwefel's function	1			V					1								
55	CEC2013_F12	Shifted Rosenbrock's function	1			$\sqrt{}$					1								
56	CEC2013_F13	Shifted Schwefel's function with conforming overlapping subcomponents	1			√					V								

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
57	CEC2013_F14	Shifted Schwefel's function with conflicting overlapping subcomponents	√			\checkmark					$\sqrt{}$								
58	CEC2013_F15	Shifted Schwefel's function				\checkmark					$\sqrt{}$								
59	CEC2017_F1	CEC'2017 constrained optimization benchmark problem	V			V						V							
60	CEC2017_F2	CEC'2017 constrained optimization benchmark problem	V			$\sqrt{}$						√							
61	CEC2017_F3	CEC'2017 constrained optimization benchmark problem	V			$\sqrt{}$						1							
62	CEC2017_F4	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
63	CEC2017_F5	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
64	CEC2017_F6	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
65	CEC2017_F7	CEC'2017 constrained optimization benchmark problem	√			√						√							
66	CEC2017_F8	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
67	CEC2017_F9	CEC'2017 constrained optimization benchmark problem	√			√						1							
68	CEC2017_F10	CEC'2017 constrained optimization benchmark problem	√			√						√							
69	CEC2017_F11	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
70	CEC2017_F12	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
71	CEC2017_F13	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
72	CEC2017_F14	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
73	CEC2017_F15	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
74	CEC2017_F16	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
75	CEC2017_F17	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
76	CEC2017_F18	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
77	CEC2017_F19	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						V							
78	CEC2017_F20	CEC'2017 constrained optimization benchmark problem	√			√						√							
79	CEC2017_F21	CEC'2017 constrained optimization benchmark problem	√			√						√							
80	CEC2017_F22	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							
81	CEC2017_F23	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$						√							

	>	N=07. A 4/	l'ile	lti	ıy	.1	ger	Te le	ry	ation	e,	ined	sive	nodal	se	mic	task	/el	ıst
	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
82	CEC2017_F24	CEC'2017 constrained optimization benchmark problem	1			$\sqrt{}$						V							
83	CEC2017_F25	CEC'2017 constrained optimization benchmark problem	1			$\sqrt{}$						V							
84	CEC2017_F26	CEC'2017 constrained optimization benchmark problem	1			$\sqrt{}$						√							
85	CEC2017_F27	CEC'2017 constrained optimization benchmark problem	1			$\sqrt{}$						√							
86	CEC2017_F28	CEC'2017 constrained optimization benchmark problem	1			$\sqrt{}$						√							
87	CEC2020_F1	Bent cigar function																	
88	CEC2020_F2	Shifted and rotated Schwefel's function				\checkmark											ı		
89	CEC2020_F3	Shifted and rotated Lunacek bi-Rastrigin function	1																
90	CEC2020_F4	Expanded Rosenbrock's plus Griewangk's function	1			$\sqrt{}$													
91	CEC2020_F5	Hybrid function 1				\checkmark											ı		
92	CEC2020_F6	Hybrid function 2	√			\checkmark													
93	CEC2020_F7	Hybrid function 3	√			\checkmark													
94	CEC2020_F8	Composition function 1				\checkmark													
95	CEC2020_F9	Composition function 2	√			\checkmark													
96	CEC2020_F10	Composition function 3	$\sqrt{}$			\checkmark													
97	CF1	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
98	CF2	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
99	CF3	Constrained benchmark MOP		$\sqrt{}$		\checkmark					$\sqrt{}$	$\sqrt{}$							
100	CF4	Constrained benchmark MOP									$\sqrt{}$	$\sqrt{}$							
101	CF5	Constrained benchmark MOP									$\sqrt{}$	$\sqrt{}$							
102	CF6	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
103	CF7	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
104	CF8	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
105	CF9	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
106	CF10	Constrained benchmark MOP		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
107	CI_HS	Multitasking problem (Griewank function + Rastrigin function)	1			$\sqrt{}$					V						V		
108	CI_LS	Multitasking problem (Ackley function + Schwefel function)	1			$\sqrt{}$					$\sqrt{}$						V		
109	CI_MS	Multitasking problem (Ackley function + Rastrigin function)	1			$\sqrt{}$					V						V		
110	CitySegMOP1	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					√								
111	CitySegMOP2	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					$\sqrt{}$								
112	CitySegMOP3	Neural architecture search on Cityscape		$\sqrt{}$							$\sqrt{}$								

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
		segmentation datasets Neural architecture search on Cityscape															\rightarrow	\dashv	
113	CitySegMOP4	segmentation datasets		√		$\sqrt{}$					$\sqrt{}$		√						
114	CitySegMOP5	Neural architecture search on Cityscape segmentation datasets		1		$\sqrt{}$					√								
115	CitySegMOP6	Neural architecture search on Cityscape segmentation datasets		1		$\sqrt{}$					√								
116	CitySegMOP7	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					V								
117	CitySegMOP8	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					V								
118	CitySegMOP9	Neural architecture search on Cityscape segmentation datasets		√		$\sqrt{}$					V								
119	CitySegMOP10	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					√								
120	CitySegMOP11	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					√								
121	CitySegMOP12	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					√								
122	CitySegMOP13	Neural architecture search on Cityscape segmentation datasets		1		$\sqrt{}$					√								
123	CitySegMOP14	Neural architecture search on Cityscape segmentation datasets		V		$\sqrt{}$					V								
124	CitySegMOP15	Neural architecture search on Cityscape segmentation datasets		1		$\sqrt{}$					√								
125	Community Detection	The community detection problem with label based encoding	√					V			√								
126	DAS-CMOP1	Difficulty-adjustable and scalable constrained benchmark MOP		1		$\sqrt{}$					√	$\sqrt{}$							
127	DAS-CMOP2	Difficulty-adjustable and scalable constrained benchmark MOP		V							√	$\sqrt{}$							
128	DAS-CMOP3	Difficulty-adjustable and scalable constrained benchmark MOP		√							V	$\sqrt{}$							
129	DAS-CMOP4	Difficulty-adjustable and scalable constrained benchmark MOP		√							V	$\sqrt{}$							
130	DAS-CMOP5	Difficulty-adjustable and scalable constrained benchmark MOP		√		$\sqrt{}$					V	$\sqrt{}$							
131	DAS-CMOP6	Difficulty-adjustable and scalable constrained benchmark MOP		V		$\sqrt{}$					V	$\sqrt{}$							
132	DAS-CMOP7	Difficulty-adjustable and scalable constrained benchmark MOP		1		$\sqrt{}$					√	$\sqrt{}$							
133	DAS-CMOP8	Difficulty-adjustable and scalable constrained benchmark MOP		√		√					V	$\sqrt{}$							
134	DAS-CMOP9	Difficulty-adjustable and scalable constrained benchmark MOP		1		$\sqrt{}$					V	$\sqrt{}$							
135	DOC1	Benchmark MOP with constraints in decision and objective spaces		1		V						V							
136	DOC2	Benchmark MOP with constraints in decision and objective spaces		√								$\sqrt{}$							

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
137	DOC3	Benchmark MOP with constraints in decision and objective spaces		√		$\sqrt{}$						$\sqrt{}$							
138	DOC4	Benchmark MOP with constraints in decision and objective spaces		V		$\sqrt{}$						V							
139	DOC5	Benchmark MOP with constraints in decision and objective spaces		V		$\sqrt{}$						$\sqrt{}$							
140	DOC6	Benchmark MOP with constraints in decision and objective spaces		1		$\sqrt{}$						$\sqrt{}$							
141	DOC7	Benchmark MOP with constraints in decision and objective spaces		V		$\sqrt{}$						$\sqrt{}$							
142	DOC8	Benchmark MOP with constraints in decision and objective spaces		√		\checkmark						$\sqrt{}$							
143	DOC9	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		\checkmark						$\sqrt{}$							
144	DTLZ1	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	\checkmark	\checkmark					√								
145	DTLZ2	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	\checkmark	\checkmark					√								
146	DTLZ3	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		V	$\sqrt{}$	\checkmark					$\sqrt{}$								
147	DTLZ4	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		1	$\sqrt{}$	$\sqrt{}$					V		$\sqrt{}$						
148	DTLZ5	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		1	$\sqrt{}$	$\sqrt{}$					V		$\sqrt{}$						
149	DTLZ6	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		$\sqrt{}$		\checkmark					$\sqrt{}$								
150	DTLZ7	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	$\sqrt{}$	$\sqrt{}$					V								
151	DTLZ8	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		V	$\sqrt{}$	$\sqrt{}$					V	$\sqrt{}$							
152	DTLZ9	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		V		$\sqrt{}$					V	$\sqrt{}$	$\sqrt{}$						
153	CDTLZ2	Convex DTLZ2		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$								
154	IDTLZ1	Inverted DTLZ1		$\sqrt{}$	$\sqrt{}$	\checkmark					$\sqrt{}$								
155	IDTLZ2	Inverted DTLZ2		\checkmark	\checkmark	\checkmark					$\sqrt{}$								
156	SDTLZ1	Scaled DTLZ1		\checkmark	\checkmark	\checkmark					$\sqrt{}$								
157	SDTLZ2	Scaled DTLZ2		\checkmark	\checkmark	\checkmark					\checkmark								
158	C1-DTLZ1	Constrained DTLZ1		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
159	C1-DTLZ3	Constrained DTLZ3		$\sqrt{}$		\checkmark					$\sqrt{}$	$\sqrt{}$							
160	C2-DTLZ2	Constrained DTLZ2		\checkmark		\checkmark					$\sqrt{}$	$\sqrt{}$							
161	C3-DTLZ4	Constrained DTLZ4		V		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
162	DC1-DTLZ1	DTLZ1 with constrains in decision space		V	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
163	DC1-DTLZ3	DTLZ3 with constrains in decision space		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							\square
164	DC2-DTLZ1	DTLZ1 with constrains in decision space		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							\square
165	DC2-DTLZ3	DTLZ3 with constrains in decision space			$\sqrt{}$						√	V							

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	nultimodal	sparse	dynamic	multitask	bilevel	robust
			S	I	I		ir		þ	perr		con	lxə	lum.	S	dy	ımı	q	ľ
166	DC3-DTLZ1	DTLZ1 with constrains in decision space			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
167	DC3-DTLZ3	DTLZ3 with constrains in decision space			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
168	FCP1	Benchmark constrained MOP proposed by Yuan				$\sqrt{}$						$\sqrt{}$							
169	FCP2	Benchmark constrained MOP proposed by Yuan				$\sqrt{}$						$\sqrt{}$							
170	FCP3	Benchmark constrained MOP proposed by Yuan		\checkmark		\checkmark						\checkmark							
171	FCP4	Benchmark constrained MOP proposed by Yuan				\checkmark						\checkmark							
172	FCP5	Benchmark constrained MOP proposed by Yuan				\checkmark						\checkmark							
173	FDA1	Benchmark dynamic MOP proposed by Farina, Deb, and Amato				V					V					√			
174	FDA2	Benchmark dynamic MOP proposed by Farina, Deb, and Amato		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$					$\sqrt{}$			
175	FDA3	Benchmark dynamic MOP proposed by Farina, Deb, and Amato		√		√					$\sqrt{}$					√			
176	FDA4	Benchmark dynamic MOP proposed by Farina, Deb, and Amato		√		√					$\sqrt{}$					$\sqrt{}$			
177	FDA5	Benchmark dynamic MOP proposed by Farina, Deb, and Amato		√		√					$\sqrt{}$					√			
178	GLSMOP1	General large-scale benchmark MOP				$\sqrt{}$					$\sqrt{}$								
179	GLSMOP2	General large-scale benchmark MOP		√		$\sqrt{}$					$\sqrt{}$								
180	GLSMOP3	General large-scale benchmark MOP				$\sqrt{}$					$\sqrt{}$								
181	GLSMOP4	General large-scale benchmark MOP				$\sqrt{}$					$\sqrt{}$								
182	GLSMOP5	General large-scale benchmark MOP				$\sqrt{}$					$\sqrt{}$								
183	GLSMOP6	General large-scale benchmark MOP			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$								
184	GLSMOP7	General large-scale benchmark MOP			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$								
185	GLSMOP8	General large-scale benchmark MOP			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$								
186	GLSMOP9	General large-scale benchmark MOP			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$								
187	IMMOEA_F1	Benchmark MOP for testing IM-MOEA				$\sqrt{}$					$\sqrt{}$								
188	IMMOEA_F2	Benchmark MOP for testing IM-MOEA		\checkmark		\checkmark					$\sqrt{}$							1	
189	IMMOEA_F3	Benchmark MOP for testing IM-MOEA				\checkmark													
190	IMMOEA_F4	Benchmark MOP for testing IM-MOEA				\checkmark													
191	IMMOEA_F5	Benchmark MOP for testing IM-MOEA		√		\checkmark					$\sqrt{}$								
192	IMMOEA_F6	Benchmark MOP for testing IM-MOEA				\checkmark													
193	IMMOEA_F7	Benchmark MOP for testing IM-MOEA				\checkmark					\checkmark								
194	IMMOEA_F8	Benchmark MOP for testing IM-MOEA		V		$\sqrt{}$													
195	IMMOEA_F9	Benchmark MOP for testing IM-MOEA				\checkmark					$\sqrt{}$								
196	IMMOEA_F10	Benchmark MOP for testing IM-MOEA				\checkmark					$\sqrt{}$								
197	IMOP1	Benchmark MOP with irregular Pareto front		V		V													
198	IMOP2	Benchmark MOP with irregular Pareto front																	
199	IMOP3	Benchmark MOP with irregular Pareto front																	
200	IMOP4	Benchmark MOP with irregular Pareto front		V		$\sqrt{}$													

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
201	IMOP5	Benchmark MOP with irregular Pareto front		$\sqrt{}$															
202	IMOP6	Benchmark MOP with irregular Pareto front		$\sqrt{}$															
203	IMOP7	Benchmark MOP with irregular Pareto front		$\sqrt{}$															
204	IMOP8	Benchmark MOP with irregular Pareto front		$\sqrt{}$															
205	IN1KMOP1	Neural architecture search on ImageNet 1K		$\sqrt{}$							$\sqrt{}$								
206	IN1KMOP2	Neural architecture search on ImageNet 1K				7													
207	IN1KMOP3	Neural architecture search on ImageNet 1K																	
208	IN1KMOP4	Neural architecture search on ImageNet 1K				\checkmark													
209	IN1KMOP5	Neural architecture search on ImageNet 1K																	
210	IN1KMOP6	Neural architecture search on ImageNet 1K																	
211	IN1KMOP7	Neural architecture search on ImageNet 1K		$\sqrt{}$															
212	IN1KMOP8	Neural architecture search on ImageNet 1K									$\sqrt{}$								
213	IN1KMOP9	Neural architecture search on ImageNet 1K		√							√								
214	Instance1	Multitasking multi-objective problem (ZDT4-R + ZDT4-G)		1							V						V		
215	Instance2	Multitasking multi-objective problem (ZDT4-RC + ZDT4-A)		1		V					V	V					V		
216	KP	The knapsack problem							$\sqrt{}$		√	$\sqrt{}$							
217	LIR-CMOP1	Constrained benchmark MOP with large infeasible regions		1							V	\checkmark							
218	LIR-CMOP2	Constrained benchmark MOP with large infeasible regions		1		\checkmark					√	$\sqrt{}$							
219	LIR-CMOP3	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					V	$\sqrt{}$							
220	LIR-CMOP4	Constrained benchmark MOP with large infeasible regions		1		√					√	$\sqrt{}$							
221	LIR-CMOP5	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
222	LIR-CMOP6	Constrained benchmark MOP with large infeasible regions		1		√					√	√							
223	LIR-CMOP7	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					√	$\sqrt{}$							
224	LIR-CMOP8	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					√	$\sqrt{}$							
225	LIR-CMOP9	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					√	$\sqrt{}$							
226	LIR-CMOP10	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					V	$\sqrt{}$							
227	LIR-CMOP11	Constrained benchmark MOP with large infeasible regions		1		$\sqrt{}$					√	√							
228	LIR-CMOP12	Constrained benchmark MOP with large infeasible regions		1							V	$\sqrt{}$							
229	LIR-CMOP13	Constrained benchmark MOP with large infeasible regions		√		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	nultimodal	sparse	dynamic	multitask	bilevel	robust
230	LIR-CMOP14	Constrained benchmark MOP with large infeasible regions		√		√				b	√	√ √		n					
231	LRMOP1	Large-scale robust multi-objective benchmark problem		V	$\sqrt{}$	$\sqrt{}$					1		$\sqrt{}$		$\sqrt{}$				√
232	LRMOP2	Large-scale robust multi-objective benchmark problem		√	V	V					V		V		V				V
233	LRMOP3	Large-scale robust multi-objective benchmark problem		V	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$		$\sqrt{}$		$\sqrt{}$				V
234	LRMOP4	Large-scale robust multi-objective benchmark problem		V	$\sqrt{}$	$\sqrt{}$					√		$\sqrt{}$		$\sqrt{}$				√
235	LRMOP5	Large-scale robust multi-objective benchmark problem		√	V	$\sqrt{}$					V		$\sqrt{}$		√				√
236	LRMOP6	Large-scale robust multi-objective benchmark problem		√	V	$\sqrt{}$					V		$\sqrt{}$		$\sqrt{}$				√
237	LSCM1	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	V							
238	LSCM2	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	√							
239	LSCM3	Large-scale constrained multiobjective benchmark problem		V		\checkmark					$\sqrt{}$	$\sqrt{}$							
240	LSCM4	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
241	LSCM5	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							
242	LSCM6	Large-scale constrained multiobjective benchmark problem		$\sqrt{}$		\checkmark					$\sqrt{}$	$\sqrt{}$							
243	LSCM7	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	√							
244	LSCM8	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	$\sqrt{}$							
245	LSCM9	Large-scale constrained multiobjective benchmark problem		V		$\sqrt{}$					V	$\sqrt{}$							
246	LSCM10	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	$\sqrt{}$							
247	LSCM11	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	$\sqrt{}$							
248	LSCM12	Large-scale constrained multiobjective benchmark problem		√		$\sqrt{}$					V	$\sqrt{}$							
249	LSMOP1	Large-scale benchmark MOP		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$							1	
250	LSMOP2	Large-scale benchmark MOP		\checkmark	\checkmark	\checkmark													
251	LSMOP3	Large-scale benchmark MOP		$\sqrt{}$	\checkmark	\checkmark													
252	LSMOP4	Large-scale benchmark MOP		\checkmark	$\sqrt{}$	\checkmark													
253	LSMOP5	Large-scale benchmark MOP		V	$\sqrt{}$	$\sqrt{}$					1								
254	LSMOP6	Large-scale benchmark MOP		$\sqrt{}$	$\sqrt{}$						$\sqrt{}$								
255	LSMOP7	Large-scale benchmark MOP		√	$\sqrt{}$	$\sqrt{}$					1								
256	LSMOP8	Large-scale benchmark MOP		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$								

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
257	LSMOP9	Large-scale benchmark MOP		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								
258	MaF1	Inverted DTLZ1		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								
259	MaF2	DTLZ2BZ		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								
260	MaF3	Convex DTLZ3		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								
261	MaF4	Inverted and scaled DTLZ3		\checkmark	\checkmark	\checkmark					$\sqrt{}$								
262	MaF5	Scaled DTLZ4		$\sqrt{}$		\checkmark					$\sqrt{}$								
263	MaF6	DTLZ5IM		\checkmark	\checkmark	\checkmark					$\sqrt{}$						ı		
264	MaF7	DTLZ7		~		~					\checkmark								
265	MaF8	MP-DMP				$\sqrt{}$													
266	MaF9	ML-DMP		~		~													
267	MaF10	WFG1		$\sqrt{}$		\checkmark					$\sqrt{}$								
268	MaF11	WFG2		\checkmark		\checkmark					\checkmark								
269	MaF12	WFG9		~		~					\checkmark								
270	MaF13	P7		$\sqrt{}$		\checkmark					$\sqrt{}$								
271	MaF14	LSMOP3		\checkmark	\checkmark	\checkmark													
272	MaF15	Inverted LSMOP8		$\overline{}$	\checkmark	\checkmark					\checkmark								
273	MaOPP_binary	Many-objective pathfinding problem based on binary encoding			\checkmark				V		\checkmark		\checkmark						
274	MaOPP_real	Many-objective pathfinding problem based on real encoding			√	\checkmark					$\sqrt{}$		√						
275	MaxCut	The max-cut problem	\checkmark						$\sqrt{}$		\checkmark								
276	MLDMP	The multi-line distance minimization problem		\checkmark	\checkmark	\checkmark											ı		
277	MMF1	Multi-modal multi-objective test function		\checkmark		\checkmark								√					
278	MMF2	Multi-modal multi-objective test function		\checkmark		\checkmark								\checkmark					
279	MMF3	Multi-modal multi-objective test function		$\sqrt{}$		$\sqrt{}$								$\sqrt{}$					
280	MMF4	Multi-modal multi-objective test function		$\sqrt{}$		$\sqrt{}$								$\sqrt{}$					
281	MMF5	Multi-modal multi-objective test function		$\sqrt{}$		$\sqrt{}$								$\sqrt{}$					
282	MMF6	Multi-modal multi-objective test function		$\sqrt{}$		$\sqrt{}$								$\sqrt{}$					
283	MMF7	Multi-modal multi-objective test function		$\sqrt{}$		$\sqrt{}$								$\sqrt{}$					
284	MMF8	Multi-modal multi-objective test function		$\sqrt{}$		$\sqrt{}$													
285	MMMOP1	Multi-modal multi-objective optimization problem		\checkmark	\checkmark	\checkmark								\checkmark			ı		
286	MMMOP2	Multi-modal multi-objective optimization problem		$\overline{}$	\checkmark	~								\checkmark					
287	MMMOP3	Multi-modal multi-objective optimization problem		~		~								\checkmark					
288	MMMOP4	Multi-modal multi-objective optimization problem		$\sqrt{}$		\checkmark													
289	MMMOP5	Multi-modal multi-objective optimization problem		\checkmark		\checkmark								\checkmark					
290	MMMOP6	Multi-modal multi-objective optimization problem																	
291	MOEADDE_F1	Benchmark MOP for testing MOEA/D-DE																	
292	MOEADDE_F2	Benchmark MOP for testing MOEA/D-DE				$\sqrt{}$					$\sqrt{}$								

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
293	MOEADDE_F3	Benchmark MOP for testing MOEA/D-DE				$\sqrt{}$					$\sqrt{}$								
294	MOEADDE_F4	Benchmark MOP for testing MOEA/D-DE				$\sqrt{}$					$\sqrt{}$								
295	MOEADDE_F5	Benchmark MOP for testing MOEA/D-DE				$\sqrt{}$					$\sqrt{}$								
296	MOEADDE_F6	Benchmark MOP for testing MOEA/D-DE				$\sqrt{}$					$\sqrt{}$								
297	MOEADDE_F7	Benchmark MOP for testing MOEA/D-DE		\checkmark		\checkmark					$\sqrt{}$								
298	MOEADDE_F8	Benchmark MOP for testing MOEA/D-DE				\checkmark					$\sqrt{}$								
299	MOEADDE_F9	Benchmark MOP for testing MOEA/D-DE				\checkmark					$\sqrt{}$								
300	MOEADM2M_F1	Benchmark MOP for testing MOEA/D-M2M				~					$\sqrt{}$								
301	MOEADM2M_F2	Benchmark MOP for testing MOEA/D-M2M				\checkmark					$\sqrt{}$								
302	MOEADM2M_F3	Benchmark MOP for testing MOEA/D-M2M				\checkmark					$\sqrt{}$								
303	MOEADM2M_F4	Benchmark MOP for testing MOEA/D-M2M				\checkmark					$\sqrt{}$								
304	MOEADM2M_F5	Benchmark MOP for testing MOEA/D-M2M				\checkmark					$\sqrt{}$								
305	MOEADM2M_F6	Benchmark MOP for testing MOEA/D-M2M				\checkmark					1								
306	MOEADM2M_F7	Benchmark MOP for testing MOEA/D-M2M				\checkmark					1								
307	MOKP	The multi-objective knapsack problem		1					√		1	$\sqrt{}$							
308	MONRP	The multi-objective next release problem							1		$\sqrt{}$								
309	MOTSP	The multi-objective traveling salesman problem			\checkmark					\checkmark	$\sqrt{}$								
310	MPDMP	The multi-point distance minimization problem			\checkmark	\checkmark													
311	mQAP	The multi-objective quadratic assignment problem		V	$\sqrt{}$						$\sqrt{}$								
312	MW1	Constrained benchmark MOP proposed by Ma and Wang		V		V					V	V							
313	MW2	Constrained benchmark MOP proposed by Ma and Wang		$\sqrt{}$		$\sqrt{}$					V	$\sqrt{}$							
314	MW3	Constrained benchmark MOP proposed by Ma and Wang		√		$\sqrt{}$					√	$\sqrt{}$							
315	MW4	Constrained benchmark MOP proposed by Ma and Wang		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					√	$\sqrt{}$							
316	MW5	Constrained benchmark MOP proposed by Ma and Wang		√		$\sqrt{}$					√	√							
317	MW6	Constrained benchmark MOP proposed by Ma and Wang		$\sqrt{}$		$\sqrt{}$					√	$\sqrt{}$							
318	MW7	Constrained benchmark MOP proposed by Ma and Wang		$\sqrt{}$		$\sqrt{}$					√	$\sqrt{}$							
319	MW8	Constrained benchmark MOP proposed by Ma and Wang			V	$\sqrt{}$					V	V							
320	MW9	Constrained benchmark MOP proposed by Ma and Wang		√		\checkmark					$\sqrt{}$	$\sqrt{}$							
321	MW10	Constrained benchmark MOP proposed by Ma and Wang		√		√					V	V							
322	MW11	Constrained benchmark MOP proposed by Ma and Wang		√		V					V	V							
323	MW12	Constrained benchmark MOP proposed by Ma and Wang		$\sqrt{}$		$\sqrt{}$					√	V							

MW13 Constrained benchmark MOP proposed by Ma and Wang Ma Ma Mang Ma Ma Ma Mang Ma Ma Ma Mang Ma Ma Ma Mang Ma Ma Ma Ma Mang Ma Ma Ma Ma Mang Ma Ma Ma Mang Ma		问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
325 MW14 Constrained benchmark MOP proposed by	324	MW13			√		√	ļ			per	√	,	ex	ıw		p	II		
NI_HS	325	MW14	Constrained benchmark MOP proposed by		√		√					√	√							
NI_MS	326	NI_HS	Multitasking problem (Rosenbrock function	1			V					√						V		
RMMEDA F2 Benchmark MOP for testing RM-MEDA	327	NI_MS		1								V						V		
330 RMMEDA_F3 Benchmark MOP for testing RM-MEDA √	328	RMMEDA_F1	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$							ı	
331 RMMEDA_F4 Benchmark MOP for testing RM-MEDA V V V V V V V V V	329	RMMEDA_F2	Benchmark MOP for testing RM-MEDA		\checkmark		\checkmark													
332 RMMEDA_F5 Benchmark MOP for testing RM-MEDA √ ✓ <td>330</td> <td>RMMEDA_F3</td> <td>Benchmark MOP for testing RM-MEDA</td> <td></td> <td>√</td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td></td> <td>$\sqrt{}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	330	RMMEDA_F3	Benchmark MOP for testing RM-MEDA		√		\checkmark					$\sqrt{}$								
333 RMMEDA_F6 Benchmark MOP for testing RM-MEDA √ ✓ <td>331</td> <td>RMMEDA_F4</td> <td>Benchmark MOP for testing RM-MEDA</td> <td></td> <td>$\sqrt{}$</td> <td></td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td></td> <td>$\sqrt{}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	331	RMMEDA_F4	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		\checkmark					$\sqrt{}$								
334 RMMEDA_F7 Benchmark MOP for testing RM-MEDA √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ ✓ <td>332</td> <td>RMMEDA_F5</td> <td>Benchmark MOP for testing RM-MEDA</td> <td></td> <td>$\sqrt{}$</td> <td></td> <td>\checkmark</td> <td></td>	332	RMMEDA_F5	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		\checkmark													
335 RMMEDA_F8 Benchmark MOP for testing RM-MEDA \(\) \(\	333	RMMEDA_F6	Benchmark MOP for testing RM-MEDA		$\sqrt{}$															
336 RMMEDA_F9 Benchmark MOP for testing RM-MEDA \(\) \(\	334	RMMEDA_F7	Benchmark MOP for testing RM-MEDA		√		$\sqrt{}$					$\sqrt{}$								
337 RMMEDA_FIO Benchmark MOP for testing RM-MEDA √ √ √ √ √ √ √ √ √ √ √ ✓ </td <td>335</td> <td>RMMEDA_F8</td> <td>Benchmark MOP for testing RM-MEDA</td> <td></td> <td>√</td> <td></td> <td>$\sqrt{}$</td> <td></td> <td></td> <td></td> <td></td> <td>$\sqrt{}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	335	RMMEDA_F8	Benchmark MOP for testing RM-MEDA		√		$\sqrt{}$					$\sqrt{}$								
RWMOP1	336	RMMEDA_F9	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								
RWMOP2	337	RMMEDA_F10	Benchmark MOP for testing RM-MEDA		$\sqrt{}$															
RWMOP3 Two bar truss design problem V V V V V V V V V	338	RWMOP1	Pressure vessal problem		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
341 RWMOP4 Weldan beam design problem √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ ✓ √ ✓	339	RWMOP2	Vibrating platform		$\sqrt{}$								$\sqrt{}$							
342 RWMOP5 Disc brake design problem √ √ √ √ √ √ √ √ ✓	340	RWMOP3	Two bar truss design problem		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
343 RWMOP6 Speed reducer design problem √ √ √ √ √ √ √ √ √ √ ✓	341	RWMOP4	Weldan beam design problem		$\sqrt{}$		$\sqrt{}$													
RWMOP7 Gear train design problem	342	RWMOP5	Disc brake design problem		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
RWMOP8 Car side impact design problem	343	RWMOP6	Speed reducer design problem		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
RWMOP9 Four bar plane truss	344	RWMOP7	Gear train design problem		√		$\sqrt{}$						$\sqrt{}$							
347 RWMOP10 Two bar plane truss $\sqrt{}$ <td>345</td> <td>RWMOP8</td> <td>Car side impact design problem</td> <td></td> <td>V</td> <td></td> <td>$\sqrt{}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\sqrt{}$</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	345	RWMOP8	Car side impact design problem		V		$\sqrt{}$						$\sqrt{}$							
RWMOP11 Water resource management problem 348 RWMOP12 Simply supported I-beam design 350 RWMOP13 Gear box design 351 RWMOP14 Multiple-disk clutch brake design problem 352 RWMOP15 Spring design problem 353 RWMOP16 Cantilever beam design problem 354 RWMOP17 Bulk carriers design problem 355 RWMOP18 Front rail design problem 356 RWMOP19 Multi-product batch plant 357 RWMOP20 Hydro-static thrust bearing design problem	346	RWMOP9	Four bar plane truss		√		$\sqrt{}$						$\sqrt{}$							
349 RWMOP12 Simply supported I-beam design $$	347	RWMOP10	Two bar plane truss		V		$\sqrt{}$						$\sqrt{}$							
350 RWMOP13 Gear box design $\sqrt{}$	348	RWMOP11	Water resource management problem		√		$\sqrt{}$						$\sqrt{}$							
RWMOP14 Multiple-disk clutch brake design problem	349	RWMOP12	Simply supported I-beam design		√		$\sqrt{}$						$\sqrt{}$							
352 RWMOP15 Spring design problem $$ <td< td=""><td>350</td><td>RWMOP13</td><td>Gear box design</td><td></td><td>$\sqrt{}$</td><td></td><td>$\sqrt{}$</td><td></td><td></td><td></td><td></td><td></td><td>$\sqrt{}$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	350	RWMOP13	Gear box design		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
353 RWMOP16 Cantilever beam design problem $\sqrt{}$	351	RWMOP14	Multiple-disk clutch brake design problem		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
354 RWMOP17 Bulk carriers design problem $\sqrt{}$ $$	352	RWMOP15	Spring design problem		√		$\sqrt{}$						$\sqrt{}$							
354 RWMOP17 Bulk carriers design problem $\sqrt{}$ $$	353	RWMOP16	Cantilever beam design problem		$\sqrt{}$								$\sqrt{}$							
RWMOP18 Front rail design problem $\sqrt{}$ $\sqrt{}$ 356 RWMOP19 Multi-product batch plant $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 357 RWMOP20 Hydro-static thrust bearing design problem $\sqrt{}$ $\sqrt{}$ $\sqrt{}$					V								$\sqrt{}$							
356 RWMOP19 Multi-product batch plant $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 357 RWMOP20 Hydro-static thrust bearing design problem $\sqrt{}$ $\sqrt{}$ $\sqrt{}$					√		√						√							
RWMOP20 Hydro-static thrust bearing design problem $\sqrt{}$					V								√							
													$\sqrt{}$							\exists
	358	RWMOP21	Crash energy management for high-speed train		√		√						√							

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
359	RWMOP22	Haverly's pooling problem		$\sqrt{}$								$\sqrt{}$							
360	RWMOP23	Reactor network design		$\sqrt{}$								$\sqrt{}$							
361	RWMOP24	Heat exchanger network design		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
362	RWMOP25	Process synthesis problem		\checkmark		\checkmark						$\sqrt{}$							
363	RWMOP26	Process sythesis and design problem		\checkmark		\checkmark						\checkmark							
364	RWMOP27	Process flow sheeting problem		\checkmark								\checkmark							
365	RWMOP28	Two reactor problem		\checkmark		\checkmark						$\sqrt{}$							
366	RWMOP29	Process synthesis problem		\checkmark		\checkmark						\checkmark							
367	RWMOP30	Synchronous pptimal pulse-width modulation of 3-level inverters		$\sqrt{}$		V						V							
368	RWMOP31	Synchronous pptimal pulse-width modulation of 5-level inverters		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
369	RWMOP32	Synchronous pptimal pulse-width modulation of 7-level inverters		V		$\sqrt{}$						√							
370	RWMOP33	Synchronous pptimal pulse-width modulation of 9-level inverters		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
371	RWMOP34	Synchronous pptimal pulse-width modulation of 11-level inverters		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
372	RWMOP35	Synchronous pptimal pulse-width modulation of 13-level inverters		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
373	RWMOP36	Optimal sizing of single phase distributed generation with reactive power support for phase balancing at main transformer/grid and active power loss		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
374	RWMOP37	Optimal Sizing of Single Phase Distributed Generation with reactive power support for Phase Balancing at Main Transformer/Grid and reactive Power loss		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
375	RWMOP38	Optimal sizing of single phase distributed generation with reactive power support for active and reactive power loss		√		V						V							
376	RWMOP39	Optimal sizing of single phase distributed generation with reactive power support for phase balancing at main transformer/grid and active and reactive power loss		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$							
377	RWMOP40	Optimal power flow for minimizing active and reactive power loss		V		V						V							
378	RWMOP41	Optimal power flow for minimizing voltage deviation, active and reactive power loss		V		√						V							
379	RWMOP42	Optimal power flow for minimizing voltage deviation, and active power loss				\checkmark						$\sqrt{}$							
380	RWMOP43	Optimal power flow for minimizing fuel cost, and active power loss		√								V							
381	RWMOP44	Optimal power flow for minimizing fuel cost, active and reactive power loss		V		√						$\sqrt{}$							
382	RWMOP45	Optimal power flow for minimizing fuel cost, voltage deviation, and active power loss		√		√						√							
383	RWMOP46	Optimal power flow for minimizing fuel cost, voltage deviation, active and reactive power loss		$\sqrt{}$		√						√							

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
384	RWMOP47	Optimal droop setting for minimizing active and reactive power loss		1		\checkmark						$\sqrt{}$							
385	RWMOP48	Optimal droop setting for minimizing voltage deviation and active power loss		1		\checkmark						$\sqrt{}$							
386	RWMOP49	Optimal droop setting for minimizing voltage deviation, active, and reactive power loss		1		$\sqrt{}$						$\sqrt{}$							
387	RWMOP50	Power distribution system planning		$\sqrt{}$								$\sqrt{}$							
388	SDC1	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
389	SDC2	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
390	SDC3	Scalable high-dimensional decicsion constraint benchamrk		1								V							
391	SDC4	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
392	SDC5	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
393	SDC6	Scalable high-dimensional decicsion constraint benchamrk		1		\checkmark						$\sqrt{}$							
394	SDC7	Scalable high-dimensional decicsion constraint benchamrk		1								\checkmark							
395	SDC8	Scalable high-dimensional decicsion constraint benchamrk		1								\checkmark							
396	SDC9	Scalable high-dimensional decicsion constraint benchamrk		1								\checkmark							
397	SDC10	Scalable high-dimensional decicsion constraint benchamrk		V		√						$\sqrt{}$							
398	SDC11	Scalable high-dimensional decicsion constraint benchamrk		1		\checkmark						$\sqrt{}$							
399	SDC12	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
400	SDC13	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
401	SDC14	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
402	SDC15	Scalable high-dimensional decicsion constraint benchamrk		1		$\sqrt{}$						$\sqrt{}$							
403	SMD1	Bilevel optimization problems proposed by Sinha, Malo, and Deb		1		\checkmark												$\sqrt{}$	
404	SMD2	Bilevel optimization problems proposed by Sinha, Malo, and Deb		1		\checkmark												\checkmark	
405	SMD3	Bilevel optimization problems proposed by Sinha, Malo, and Deb		1		\checkmark													
406	SMD4	Bilevel optimization problems proposed by Sinha, Malo, and Deb		1		√												V	
407	SMD5	Bilevel optimization problems proposed by Sinha, Malo, and Deb		1		$\sqrt{}$												V	
408	SMD6	Bilevel optimization problems proposed by Sinha, Malo, and Deb		√														$\sqrt{}$	

	题缩写	问题全称	single	lti	ly.		er	e]	ry	atio	4)	ne	ive	oqa	o	nic	ısk	-	٠ ـ ا
400			sin	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
409	SMD7	Bilevel optimization problems proposed by Sinha, Malo, and Deb		V		V												1	
410 S	SMD8	Bilevel optimization problems proposed by Sinha, Malo, and Deb		√		$\sqrt{}$												$\sqrt{}$	
411 S	SMD9	Bilevel optimization problems proposed by Sinha, Malo, and Deb		$\sqrt{}$		$\sqrt{}$						V						V	
412 S	SMD10	Bilevel optimization problems proposed by Sinha, Malo, and Deb		√		$\sqrt{}$						√						$\sqrt{}$	
413 S	SMD11	Bilevel optimization problems proposed by Sinha, Malo, and Deb		$\sqrt{}$		$\sqrt{}$						$\sqrt{}$						$\sqrt{}$	
414 S	SMD12	Bilevel optimization problems proposed by Sinha, Malo, and Deb		√		$\sqrt{}$						V						$\sqrt{}$	
415 SO_IS	SCSO_2016	International student competition in structural optimization	√				$\sqrt{}$				$\sqrt{}$	$\sqrt{}$							
416 SO_IS	SCSO_2017	International student competition in structural optimization	√				$\sqrt{}$				V	√							
417 SO_IS	SCSO_2018	International student competition in structural optimization	√				$\sqrt{}$				$\sqrt{}$	$\sqrt{}$							
418 SO_IS	SCSO_2019	International student competition in structural optimization	$\sqrt{}$				$\sqrt{}$				V	V							
419 SO_IS	SCSO_2021	International student competition in structural optimization	$\sqrt{}$				$\sqrt{}$				V	V							
420 SO_IS	SCSO_2022	International student competition in structural optimization	V				$\sqrt{}$				V	√							
421 Spa	arse_CD	The community detection problem		\checkmark					$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		$\sqrt{}$				
422 Spa	arse_CN	The critical node detection problem							$\sqrt{}$		$\sqrt{}$		\checkmark		$\sqrt{}$				
423 Spa	arse_FS	The feature selection problem							$\sqrt{}$		$\sqrt{}$		\checkmark						
424 Sp	arse_IS	The instance selection problem							$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		$\sqrt{}$				
425 Spa	arse_KP	The sparse multi-objective knapsack problem			\checkmark				$\sqrt{}$		$\sqrt{}$								
426 Spa	arse_NN	The neural network training problem				$\sqrt{}$					$\sqrt{}$		$\sqrt{}$						
427 Spa	arse_PM	The pattern mining problem							$\sqrt{}$		$\sqrt{}$		$\sqrt{}$		$\sqrt{}$				
428 Spa	arse_PO	The portfolio optimization problem									$\sqrt{}$		$\sqrt{}$		$\sqrt{}$				
429 Spa	arse_SR	The sparse signal reconstruction problem				$\sqrt{}$					$\sqrt{}$		$\sqrt{}$		$\sqrt{}$				
430 SM	MMOP1	Sparse multi-modal multi-objective optimization problem		V	V	V					V			V	V				
431 SM	ммор2	Sparse multi-modal multi-objective optimization problem			\checkmark	\checkmark					V			V	V				
432 SM	ммор3	Sparse multi-modal multi-objective optimization problem			\checkmark	\checkmark					V			V	V				
433 SM	MMOP4	Sparse multi-modal multi-objective optimization problem		√	V	V					V			$\sqrt{}$	V				
434 SM	ммор5	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	$\sqrt{}$	V					V			$\sqrt{}$	V				
435 SM	ммор6	Sparse multi-modal multi-objective optimization problem		V	V	V					V			V	V				
436 SM	ммор7	Sparse multi-modal multi-objective			$\sqrt{}$	$\sqrt{}$					$\sqrt{}$			$\sqrt{}$	$\sqrt{}$				

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
-		optimization problem																	
437	SMMOP8	Sparse multi-modal multi-objective optimization problem		√	√	√					√			√	$\sqrt{}$				
438	SMOP1	Benchmark MOP with sparse Pareto optimal solutions		1	$\sqrt{}$	$\sqrt{}$					V				$\sqrt{}$				
439	SMOP2	Benchmark MOP with sparse Pareto optimal solutions		1	V	$\sqrt{}$					$\sqrt{}$		V		$\sqrt{}$				
440	SMOP3	Benchmark MOP with sparse Pareto optimal solutions		1	√	\checkmark					$\sqrt{}$		√		$\sqrt{}$				
441	SMOP4	Benchmark MOP with sparse Pareto optimal solutions		1	√	√					$\sqrt{}$		√		$\sqrt{}$				
442	SMOP5	Benchmark MOP with sparse Pareto optimal solutions		1	V	$\sqrt{}$					$\sqrt{}$		√		$\sqrt{}$				
443	SMOP6	Benchmark MOP with sparse Pareto optimal solutions		1	V	$\sqrt{}$					V		$\sqrt{}$		$\sqrt{}$				
444	SMOP7	Benchmark MOP with sparse Pareto optimal solutions		1	√	$\sqrt{}$					V		$\sqrt{}$		V				
445	SMOP8	Benchmark MOP with sparse Pareto optimal solutions		1	√	$\sqrt{}$					V		$\sqrt{}$		√				
446	SOP_F1	Sphere function															ı		
447	SOP_F2	Schwefel's function 2.22	√																
448	SOP_F3	Schwefel's function 1.2																	
449	SOP_F4	Schwefel's function 2.21	V																
450	SOP_F5	Generalized Rosenbrock's function	V																
451	SOP_F6	Step function	V																
452	SOP_F7	Quartic function with noise	√																
453	SOP_F8	Generalized Schwefel's function 2.26	√																
454	SOP_F9	Generalized Rastrigin's function	1																
455	SOP_F10	Ackley's function	V																
456	SOP_F11	Generalized Griewank's function	1																
457	SOP_F12	Generalized penalized function	√																
458	SOP_F13	Generalized penalized function	√																
459	SOP_F14	Shekel's foxholes function	√																
460	SOP_F15	Kowalik's function																	
461	SOP_F16	Six-hump camel-back function	1																
462	SOP_F17	Branin function	V																
463	SOP_F18	Goldstein-price function																	
464	SOP_F19	Hartman's family	V																
465	SOP_F20	Hartman's family	V																
466	SOP_F21	Shekel's family	V			V							V						
467	SOP_F22	Shekel's family	V																
468	SOP_F23	Shekel's family	V			V							V						

	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
469	TP1	Test problem for robust multi-objective optimization		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								$\sqrt{}$
470	TP2	Test problem for robust multi-objective optimization		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$								$\sqrt{}$
471	TP3	Test problem for robust multi-objective optimization		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$,		$\sqrt{}$
472	TP4	Test problem for robust multi-objective optimization		$\sqrt{}$		$\sqrt{}$					$\sqrt{}$,		$\sqrt{}$
473	TP5	Test problem for robust multi-objective optimization				\checkmark					$\sqrt{}$								\checkmark
474	TP6	Test problem for robust multi-objective optimization		$\sqrt{}$		\checkmark					$\sqrt{}$								$\sqrt{}$
475	TP7	Test problem for robust multi-objective optimization		$\sqrt{}$		\checkmark					$\sqrt{}$								$\sqrt{}$
476	TP8	Test problem for robust multi-objective optimization		√		~													$\sqrt{}$
477	TP9	Test problem for robust multi-objective optimization				\checkmark					$\sqrt{}$								$\sqrt{}$
478	TP10	Test problem for robust multi-objective optimization		\checkmark		~													$\sqrt{}$
479	TREE1	The time-varying ratio error estimation problem				\checkmark							$\sqrt{}$						
480	TREE2	The time-varying ratio error estimation problem				\checkmark					$\sqrt{}$	$\sqrt{}$							
481	TREE3	The time-varying ratio error estimation problem				\checkmark					$\sqrt{}$								
482	TREE4	The time-varying ratio error estimation problem				\checkmark					$\sqrt{}$								
483	TREE5	The time-varying ratio error estimation problem				\checkmark					$\sqrt{}$	$\sqrt{}$							
484	TREE6	The time-varying ratio error estimation problem				\checkmark					$\sqrt{}$								
485	TSP	The traveling salesman problem								$\sqrt{}$	$\sqrt{}$								
486	UF1	Unconstrained benchmark MOP				\checkmark					$\sqrt{}$								
487	UF2	Unconstrained benchmark MOP				\checkmark													
488	UF3	Unconstrained benchmark MOP				\checkmark					$\sqrt{}$								
489	UF4	Unconstrained benchmark MOP		V							√								
490	UF5	Unconstrained benchmark MOP		$\sqrt{}$		\checkmark					\checkmark								
491	UF6	Unconstrained benchmark MOP		√		\checkmark					$\sqrt{}$								
492	UF7	Unconstrained benchmark MOP		V							√								
493	UF8	Unconstrained benchmark MOP		√		\checkmark					$\sqrt{}$								
494	UF9	Unconstrained benchmark MOP		V							√								
495	UF10	Unconstrained benchmark MOP		V							√								
496	VNT1	Benchmark MOP proposed by Viennet		\checkmark		\checkmark													
497	VNT2	Benchmark MOP proposed by Viennet				\checkmark													
498	VNT3	Benchmark MOP proposed by Viennet				\checkmark													
499	VNT4	Benchmark MOP proposed by Viennet				\checkmark						$\sqrt{}$							
500	WFG1	Benchmark MOP proposed by Walking Fish Group			V	\checkmark					$\sqrt{}$								
501	WFG2	Benchmark MOP proposed by Walking Fish Group		\checkmark		\checkmark							\checkmark						
502	WFG3	Benchmark MOP proposed by Walking Fish Group				\checkmark													
503	WFG4	Benchmark MOP proposed by Walking Fish Group									$\sqrt{}$		$\sqrt{}$						
504	WFG5	Benchmark MOP proposed by Walking Fish Group		1		√					$\sqrt{}$		$\sqrt{}$						
505	WFG6	Benchmark MOP proposed by Walking Fish Group		√		$\sqrt{}$					$\sqrt{}$		$\sqrt{}$						

			0				ī			ion		peu	ve	dal	0	ic	sk	17	t
	问题缩写	问题全称	single	multi	many	real	integer	label	binary	permutation	large	constrained	expensive	multimodal	sparse	dynamic	multitask	bilevel	robust
506	WFG7	Benchmark MOP proposed by Walking Fish Group		√	V	V					$\sqrt{}$		V						
507	WFG8	Benchmark MOP proposed by Walking Fish Group									$\sqrt{}$								
508	WFG9	Benchmark MOP proposed by Walking Fish Group									$\sqrt{}$								
509	ZDT1	Benchmark MOP proposed by Zitzler, Deb, and Thiele		1		√					$\sqrt{}$		V						
510	ZDT2	Benchmark MOP proposed by Zitzler, Deb, and Thiele		1		V					$\sqrt{}$		V						
511	ZDT3	Benchmark MOP proposed by Zitzler, Deb, and Thiele		1		√					$\sqrt{}$		V						
512	ZDT4	Benchmark MOP proposed by Zitzler, Deb, and Thiele		1		√					$\sqrt{}$		√						
513	ZDT5	Benchmark MOP proposed by Zitzler, Deb, and Thiele		1							$\sqrt{}$		√						
514	ZDT6	Benchmark MOP proposed by Zitzler, Deb, and Thiele		1		√					$\sqrt{}$		√						
515	ZXH_CF1	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$	$\sqrt{}$							
516	ZXH_CF2	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$	$\sqrt{}$							
517	ZXH_CF3	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$	$\sqrt{}$							
518	ZXH_CF4	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	V					$\sqrt{}$								
519	ZXH_CF5	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	V					$\sqrt{}$	$\sqrt{}$							
520	ZXH_CF6	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	V					$\sqrt{}$	$\sqrt{}$							
521	ZXH_CF7	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$	$\sqrt{}$							
522	ZXH_CF8	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$	$\sqrt{}$							
523	ZXH_CF9	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	$\sqrt{}$	√					$\sqrt{}$	$\sqrt{}$							
524	ZXH_CF10	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	V					$\sqrt{}$	$\sqrt{}$							
525	ZXH_CF11	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	V					$\sqrt{}$	$\sqrt{}$							
526	ZXH_CF12	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$								
527	ZXH_CF13	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1		√					$\sqrt{}$								
528	ZXH_CF14	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	√	√					$\sqrt{}$	$\sqrt{}$							
529	ZXH_CF15	Constrained benchmark MOP proposed by Zhou, Xiang, and He		1	V	√					$\sqrt{}$								
530	ZXH_CF16	Constrained benchmark MOP proposed by Zhou, Xiang, and He		√	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$							