ICT응용 기계학습을 이용한 새소리 분류 2011270314 컴퓨터정보학과 서인석

개요

- 목적 새의 소리를 기계학습을 이용하여 학습하여, 새의 종을 분류한다.
- 실험 환경 MATLAB
- 실험 과정
- 1. 새의 소리를 기반으로 MFCC특징 추출
- 2. 추출한 MFCC를 전처리 한다
- 3. 기계학습 알고리즘 중 K-NN(K-Nearest Neighbor) 알고리즘을 이 용하여 분류한다
- 4. 결과 분석

MFCC(Mel-frequency cepstral coefficient)

 입력된 소리 전체를 대상으로 하는 것이 아니라, 일정 구간 식 나누어, 이 구간에 대한 스펙트럼을 분석하여 특징을 추출하 는 기법이다.

○ 추출과정

- 1. 주어진 데이터를 프레이밍하기.
- 2. DFT를 이용하여 신호를 구한다.
- 3. 각 신호의 세기를 mel scale에 집어넣는다
- 4. 각 mel scale 세기의 log를 구한다
- 5. Mel log파워(log filterbank energe) 의 IDCT를 구한다

K-NN(K-NEAREST NEIGHBOR)

- o k-NN 알고리즘은 지도 학습의 한 종류이다.
- 레이블이 있는 데이터를 사용하여 분류 작업을 하는 알고리즘 이다.
- 알고리즘의 이름에서 볼 수 있듯이 데이터로부터 거리가 가까 운 k개의 다른 데이터의 레이블을 참조하여 분류하는 알고리 즘이다.
- 주로 거리를 측정할 때 유클리디안 계산법을 사용하여 거리를 측정한다.

Euclidian distances =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Train dataset

Acorn_Woodpecker_00001	Acorn Woodpecker (Mela	Eric Cannizzaro	xeno-canto
Acorn_Woodpecker_00002	Acorn Woodpecker (Mela	Eric Cannizzaro	xeno-canto
Acorn_Woodpecker_00003	Acorn Woodpecker (Mela	Juan Carlos P챕re	xeno-canto
Acorn_Woodpecker_00004	Acorn Woodpecker (Mela	David Vander Plu	xeno-canto
Allen_Hummingbird_00001	Allen's Hummingbird (Se	Thomas G. Graves	xeno-canto
Allen_Hummingbird_00002	Allen's Hummingbird (Se	Richard E. Webster	xeno-canto
Allen_Hummingbird_00003	Allen's Hummingbird (Se	Richard E. Webster	xeno-canto
Allen_Hummingbird_00004			
American_Avocet_00001			
American_Avocet_00002	American Avocet (Recurv	Tim Marquardt	xeno-canto
American_Avocet_00003	American Avocet (Recurv	Tim Marquardt	xeno-canto
American_Avocet_00004	American Avocet (Recurv	Richard E. Webster	xeno-canto
American_Black_Oystercatcher_00001	Black Oystercatcher (Hae	Ian Cruickshank	xeno-canto
American_Black_Oystercatcher_00002	Black Oystercatcher (Hae	Paul Marvin	xeno-canto
American_Black_Oystercatcher_00003	Black Oystercatcher (Hae	Paul Marvin	xeno-canto
American_Black_Oystercatcher_00004	Black Oystercatcher (Hae	Ian Cruickshank	xeno-canto
American_Rock_Wren_00001			
American_Rock_Wren_00002	Rock Wren (Salpinctes o	Elisa Yang	xeno-canto
American_Rock_Wren_00003	Rock Wren (Salpinctes o	Elisa Yang	xeno-canto
American_Rock_Wren_00004	Rock Wren (Salpinctes o	Patrick Turgeon	xeno-canto
Baird_Sandpiper_00001	Baird's Sandpiper (Calidri	Harry Lehto	xeno-canto
Baird_Sandpiper_00002	Baird's Sandpiper (Calidri	Andrew Spencer	xeno-canto
Baird_Sandpiper_00003	Baird's Sandpiper (Calidri	Andrew Spencer	xeno-canto

TEST DATASET

- Acorn_Woodpecker_00005
- Allen_Hummingbird_00005
- American_Avocet_00005
- American_Black_Oystercatcher_00005
- American_Rock_Wren_00005
- Baird_Sandpiper_00005
- Band-tailed_Pigeon_00005
- Black Phoebe 00005
- Black Skimmer 00005
- Black_Turnstone_00005
- Burrowing_Owl_00005
- Royal_Tern_00005
- Surfbird_00005

Acorn Woodpecker (Mela...
Allen's Hummingbird (Se...
American Avocet (Recurv...
Black Oystercatcher (Hae...
Rock Wren (Salpinctes o...
Baird's Sandpiper (Calidri...
Band-tailed Pigeon (Pata...
Black Phoebe (Sayornis n...
Black Skimmer (Rynchop...
Black Turnstone (Arenaria...
Burrowing Owl (Athene c...
Royal Tern (Thalasseus m...
Surfbird (Aphriza virgata)

Mario Trejo xeno-canto Eric DeFonso xeno-canto Micah Riegner xeno-canto Ian Cruickshank xeno-canto Patrick Turgeon xeno-canto Andrew Spencer xeno-canto Peter Boesman xeno-canto Juan Carlos P챕re... xeno-canto Aidan Place xeno-canto Elias Aristides Elias xeno-canto Jo찾o Ant척nio d... xeno-canto Paul Marvin xeno-canto Mike Nelson xeno-canto

MFCC

Train 데이터 셋을 기반으 로 MFCC특징을 추출

MFCC

50.0524	50.5748	50.6095	50.8970	50.8032	51.0252	50.6525	52.1894	51.0697	50.8952	51.1273	51.0719	49.0523	51.6005
-1.3783	-1.9266	-4.0167	-4.3001	-4.5507	-2.4320	-1.3690	-2.3460	-3.8964	-5.6343	-3.3083	-2.0793	-5.9597	-2.3962
-0.5758	1.7391	-1.2315	1.7337	4.7770	4.0540	4.2938	2.7542	2.4644	2.9196	3.3344	3.8553	3.9065	5.0899
2.7805	3.2256	3.2156	6.5301	4.6350	5.1773	2.7373	2.5404	1.3481	2.5670	4.3615	3.2134	3.6648	0.1864
6.2463	6.2847	4.3447	-0.0358	7.0334	4.2962	1.3789	4.2435	4.9537	1.9574	5.7416	6.5437	4.8052	-0.0199
3.6301	2.4057	0.8918	0.7541	4.5565	-1.6799	3.8243	-0.2422	1.3138	-1.3622	-0.7450	4.2629	5.9528	0.9300
1.9674	1.0184	-1.0559	-2.4657	-0.0175	-3.5023	8.5000	-0.9295	-1.4098	0.1586	1.9439	0.7224	3.2669	0.7465
-0.4655	3.3732	1.8542	-5.1753	-3.9109	-0.0379	-2.2053	1.0675	0.5408	-7.0062	-2.7606	0.9888	0.1582	-0.1496
0.3925	4.5618	-2.6653	-4.1886	0.0383	-0.7377	-2.1833	-2.5265	1.5028	-5.4235	-0.6131	2.6702	3.5956	-1.6905
-10.2438	-2.1341	-3.0367	-3.7731	3.5903	-0.4706	-1.2101	0.2592	-0.8600	2.2883	-5.6176	-10.2471	-4.2773	-2.6897
2.1280	1.2960	3.7403	5.0455	1.5345	-2.2471	-2.6699	4.3806	-0.0182	-1.8758	-5.1244	-6.7264	-13.2388	-5.5238
-2.9229	-0.2663	4.4730	5.0762	4.8970	-2.0082	1.0980	1.2590	6.5426	2.8554	0.5065	7.4345	6.0327	-1.3618
-3.1628	-2.0261	-0.1354	1.6529	-2.7379	1.1423	1.2462	-0.1932	-1.7117	-1.9602	0.3309	-2.3389	0.5790	-0.5073

Acorn_Woodpecker_00001 파일에서 추출된 MFCC (Cepstral 상수의 수는 13)

11.1322	19.0754	23.5692	51.8594	54.0435	54.6797	53.1201	51.8563	52.2784	51.9436	52.3953	52.8868	53.5231	54.1309
-2.6081	-1.8258	-1.1471	-0.2984	1.7252	5.1406	3.2421	2.9137	1.4601	-0.0013	3.7025	3.3646	4.3397	2.8867
3.3526	1.1231	1.9722	1.0892	3.8146	5.8204	8.1887	7.6649	4.1593	3.2775	4.3881	4.0392	5.9741	3.1499
-3.1863	-4.3046	-2.7885	-1.6501	-0.6753	-1.9980	-5.2579	-1.4779	-7.3935	-7.3855	-4.6968	-4.3445	-4.6910	-5.1364
-4.4645	-6.0273	1.5668	-2.9270	-4.6648	-6.5578	-6.5088	-3.9360	-5.5413	-4.0551	-5.4817	-7.4524	-2.5029	-2.8192
-2.9083	-4.0126	-0.8154	1.2452	-1.7834	-10.5321	-2.4209	-4.3216	-0.0075	1.4756	-2.5556	-2.3073	0.1224	-2.9591
5.3808	-1.5495	-0.5561	-1.4560	-3.8103	-2.8153	-1.2090	0.1283	2.7778	2.0703	2.0320	-1.6878	-0.3020	0.9534
1.8991	4.3636	-6.0536	-1.5684	0.3238	5.8509	2.2685	-2.6851	1.9097	3.2633	1.0518	2.0279	1.4424	-4.3483
-1.3325	0.7286	-1.1813	0.1784	-3.1148	-4.5807	-4.2566	-4.8118	0.0215	0.8180	0.8803	-6.7753	1.6996	-2.7422
-1.3144	2.0997	6.2196	-2.2412	-3.6715	-6.3259	-1.3750	-4.1278	0.2426	-1.9517	-1.0986	-1.9079	1.0581	-0.5095
-1.1800	6.4664	3.4928	-0.3930	-1.6936	-5.8853	-1.6772	4.9708	5.0862	-0.4675	1.2315	3.8901	8.3704	0.9532
-2.6943	-4.6195	0.9725	-6.1203	-4.4836	-5.6298	-1.0116	4.1656	5.6302	2.3262	4.7581	1.9744	2.3482	4.6784
0.6426	0.8916	-8.2450	1.9975	0.3359	1.2412	3.1076	5.0914	-1.8596	-0.7126	4.4767	-1.2421	-2.9352	-1.4520
								1					

American_Rock_Wren_00002 파일에서 추출된 MFCC (Cepstral 상수의 수는 13)

MFCC (Z_SCORE STANDARDIZATION)

3.1973	3.2697	3.2591	3.2072	3.2119	3.2649	3.2417	3.2892	3.2651	3.2362	3.2335	3.1310	3.0746	3.282
-0.3523	-0.5169	-0.5923	-0.5661	-0.7069	-0.4501	-0.4466	-0.4963	-0.6101	-0.5919	-0.4843	-0.4475	-0.7155	-0.394
-0.2970	-0.2525	-0.3959	-0.1536	-0.0465	6.5926e-04	-0.0451	-0.1423	-0.1616	-0.0126	-0.0306	-0.0479	-0.0358	0.115
-0.0653	-0.1453	-0.0824	0.1743	-0.0566	0.0787	-0.1555	-0.1571	-0.2403	-0.0365	0.0395	-0.0911	-0.0524	-0.218
0.1739	0.0753	-0.0027	-0.2746	0.1132	0.0175	-0.2518	-0.0389	0.0139	-0.0778	0.1338	0.1331	0.0261	-0.232
-0.0067	-0.2045	-0.2462	-0.2206	-0.0622	-0.3978	-0.0784	-0.3503	-0.2427	-0.3026	-0.3092	-0.0205	0.1052	-0.168
-0.1214	-0.3045	-0.3835	-0.4407	-0.3860	-0.5245	0.2531	-0.3980	-0.4348	-0.1996	-0.1256	-0.2588	-0.0799	-0.180
-0.2893	-0.1347	-0.1783	-0.6259	-0.6616	-0.2837	-0.5059	-0.2594	-0.2972	-0.6848	-0.4469	-0.2409	-0.2940	-0.241
-0.2301	-0.0489	-0.4970	-0.5585	-0.3820	-0.3323	-0.5043	-0.5089	-0.2294	-0.5776	-0.3002	-0.1277	-0.0572	-0.346
-0.9642	-0.5319	-0.5232	-0.5301	-0.1306	-0.3138	-0.4353	-0.3155	-0.3960	-0.0554	-0.6420	-0.9974	-0.5996	-0.414
-0.1103	-0.2845	-0.0454	0.0728	-0.2761	-0.4372	-0.5388	-0.0294	-0.3367	-0.3374	-0.6083	-0.7604	-1.2170	-0.607
-0.4590	-0.3972	0.0063	0.0749	-0.0381	-0.4206	-0.2717	-0.2461	0.1259	-0.0170	-0.2238	0.1931	0.1107	-0.324
-0.4755	-0.5241	-0.3186	-0.1591	-0.5786	-0.2017	-0.2612	-0.3469	-0.4560	-0.3431	-0.2358	-0.4650	-0.2650	-0.266

Acorn_Woodpecker_00001 파일에서 추출된 MFCC (Cepstral 상수의 수는 13)

3.2338	3.1714	3.2461	3.2475	3.2697	3.2707	3.2495	3.2167	3.2546	3.2467	3.2569	3.2879	3.2774	3.21
-0.2733	-0.2937	-0.2989	-0.1846	-0.1667	-0.2168	-0.2659	-0.3432	-0.2820	-0.3513	-0.2879	-0.3198	-0.2479	-0.287
-0.3519	-0.4153	-0.3731	-0.4407	-0.2239	-0.2024	-0.1672	-0.3419	-0.2947	-0.1024	-0.3564	-0.3084	-0.1916	-0.41(
-0.0249	-0.0510	-0.0135	-0.1533	-0.2858	-0.2912	0.0047	-0.1242	0.0114	-0.0661	-0.2749	-0.2949	-0.1933	-0.102
-0.1470	0.2685	0.2092	0.2207	-0.0575	-0.1139	-0.2704	-0.0785	0.0512	-0.0058	0.2342	-0.2035	0.1151	0.15(
-0.7590	-0.4722	-0.5379	-0.5512	-0.7069	-0.7141	-0.7652	-0.5453	-0.4882	-0.5818	-0.6618	-0.5907	-0.5318	-0.712
-0.4545	-0.0659	-0.4448	-0.1887	-0.2105	-0.2958	-0.1089	-0.4295	-0.1687	-0.2281	-0.1158	-0.1794	-0.2846	-0.252
0.0839	0.1470	-0.4194	-0.0850	-0.2438	0.0207	-0.2398	-0.3558	-0.4654	0.0409	-0.1691	-0.4100	-0.1778	-0.182
-0.0857	-0.2094	-0.2593	-0.5141	-0.0566	-0.2067	-0.6169	-0.5128	-0.7211	-0.4376	-0.4669	-0.3330	-0.6040	-0.342
-0.5787	-0.5477	-0.3533	-0.5035	-0.5448	-0.5466	-0.3329	-0.6896	-0.3591	-0.7215	-0.1795	-0.0751	-0.3450	-0.55
-0.2326	-0.9012	-0.0415	-0.2823	-0.4271	-0.3234	-0.0260	-0.0858	-0.1077	-0.2470	-0.2974	-0.0195	-0.2115	-0.598
-0.0450	-0.2661	-0.1580	-0.4400	-0.1845	-0.1791	-0.1427	0.1582	-0.2481	-0.3293	-0.3144	-0.1274	-0.2635	0.002
-0.3651	-0.3645	-0.5556	-0.1248	-0.1617	-0.2014	-0.3186	0.1317	-0.1822	-0.2167	-0.3669	-0.4262	-0.3415	0.08
								I					

American_Rock_Wren_00002 파일에서 추출된 MFCC (Cepstral 상수의 수는 13)

MFCC

-6.4051e-17	3.4161e-17	-7.6862e-17	-1.0675e-17	5.1241e-17	-2.1350e-17	-4.8038e-18	2.1350e-17	-4.2701e-17	-5.1241e-17	4.2701e-18	-7.2592e-17	-5.1241e-17	-1.0675e-17
5.9781e-17							-1.4945e-17						
NaN	NaN	-5.1241e-17	5.1241e-17	-1.0675e-17	4.2701e-18	-2.5621e-17	-8.5402e-17	-9.8212e-17	2.5621e-17	-8.5402e-18	3.5762e-17	8.5402e-18	-1.4945e-17
6.4051e-18	-4.4302e-17	-4.0566e-17	4.2701e-18	-1.1956e-16	-1.0248e-16	-5.7646e-17	4.2701e-18	-1.4945e-17	-1.7080e-17	-5.9781e-17	-1.6226e-16	5.1241e-17	1.6013e-17
2.1350e-17	2.9891e-17	3.2026e-17	-1.0675e-17	2.4153e-17	-8.5402e-18	1.2810e-17	-2.9891e-17	-4.2701e-18	-4.3768e-17	1.2810e-17	-8.5402e-18	6.5653e-17	1.1743e-17
-5.5511e-17	5.9781e-17	-8.8604e-17	2.1350e-18	-8.1132e-17	-2.9891e-17	-2.5621e-17	8.5402e-18	-4.1633e-17	-4.0566e-17	-1.9215e-17	6.4051e-17	8.5402e-18	-3.2026e-18
-2.9891e-17	-3.2026e-18	3.4161e-17	6.4051e-18	-1.8148e-17	-4.2701e-18	1.7080e-17	-1.7080e-17	-1.7080e-17	-3.4161e-17	-7.2592e-17	1.4812e-17	0	1.7080e-17
NaN	7.6862e-17	8.5402e-18	-2.9891e-17	2.1350e-18	4.2701e-18	6.8321e-17	-7.0456e-17	2.1350e-17	-1.2810e-17	1.3878e-17	-4.2701e-18	-3.3360e-17	-3.1492e-17
NaN	NaN	1.7080e-17	3.4161e-17	-8.5402e-17	3.4161e-17	-6.4051e-18	-2.1350e-17	3.2026e-18	2.1350e-18	-1.4945e-17	-1.8148e-17	-1.0141e-17	-4.2701e-18
-5.5511e-17	-1.4945e-17	2.5621e-17	-3.8431e-17	8.3267e-17	4.9106e-17	6.0315e-17	2.1350e-17	-8.5402e-18	-2.6688e-17	-9.3942e-17	-5.5511e-17	5.5511e-17	2.9891e-17
2.5621e-17	1.2810e-17	8.5402e-18	8.5402e-18	5.1241e-17	-2.7756e-17	1.2810e-17	-8.5402e-18	4.6971e-17	6.4051e-17	-2.9891e-17	2.6688e-17	5.1241e-17	1.2810e-16
NaN	-7.6862e-17	-1.7080e-17											
8.5402e-18	0	-3.2026e-17	-2.7756e-17	-9.6077e-18	-1.0248e-16	-3.2026e-18	-1.2810e-17	2.9891e-17	1.4945e-17	-2.3485e-17	4.9106e-17	-5.9781e-17	-1.1102e-16

전처리를 통해 13xN(각각 파일의 길이)의 행렬을 1xN으로 변경 후 변수에 저장

13x10000 double 1x13 struct 52x10000 double 1x52 struct

PLOT

 $A corn_Woodpecker_00001.mp3$

KNN 모델 구축

```
[num,train_Species] = xlsread('train_species.xlsx');
[num,test_Species] = xlsread('test_species.xlsx');

mdl = fitcknn(mfcc_Train,train_Species,'NumNeighbors',4);
disp('Model Construct');
```

1x1 ClassificationKNN	
속성 ▲	값
→ NumNeighbors	4
Distance	'euclidean'
□ DistParameter	[]
✓ IncludeTies	0
DistanceWeight	'equal'
BreakTies	'smallest'
NSMethod NSMethod	'exhaustive'
<u></u> Mu	[]
🖶 Sigma	[]
<u></u> γ	52x1 cell
<u></u> X	52x10000 double
<u></u> ₩	52x1 double
ModelParameters	1x1 KNNParams
MumObservations	52
PredictorNames	1x10000 cell
Categorical Predictors	[]
ResponseName	'Υ'
ClassNames	13x1 cell
Prior	1x13 double
Cost	13x13 double
ScoreTransform	'none'

TEST 데이터 셋 입력

Rate =

생각보다 낮은 적중률을 보인다!

성능향상

o Min_Max nomalize 사용

Rate =

7.6923

오히려 성능이 감소

○ 데이터의 길이 변경

Rate =

23.0769

데이터 길이 10000에서 7000으로 변 경했지만 성능은 동일

○ Cepstral 상수 크기 변경

Rate =

성능이 조금이나마 향상

30.7692

생각보다 낮은 적중률을 보인다. 이유는?

- ◆ 부족한 Train 데이터 셋
 - 기계학습이란 데이터를 이용하여 학습을 하는 것, 즉 데이터가 많을수록 높은 학습률을 보인다.
- ◆ 부적절한 전처리 과정
 - KNN알고리즘에 적용하기 위해 데이터의 길이를 임의로 선정 (7000)하여 길이만큼 자르거나, zero padding을 사용했다. 이 부분에서 데이터의 변형이 일어난다. 구한 또는 13xN의 mfcc 데이터를 1xN의 크기로 때, 산술평균(mean)이 아닌, 다른 수학적인 합당한 방법이 존재 할 수도 있다.
- ◆ 부적절한 알고리즘 선정
 - ₩소리의 분류라는 문제에 대한 해결방법으로 KNN알고리즘을 선정했지만, 보다 나은 기계학습 알고리즘이 존재 할 수도 있다.

Q & A