МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики

Кафедра Теории Вероятностей и Математической Статистики

П. С. Пересторонин

Введение в систему моделирования электронных схем Electronics Workbench

Отчет по лабораторной работе №1, вариант 17 («Физика компьютеров») студента 5-го курса 1-ой группы

Работа сдана	18 сентября 2012 г.	Преподаватель Горячкин В.В.
Работа зачтена		доцент кафедры технологий программирования
	2012 г.	
(1	подпись преподавателя)	

Задание 1- Емкость и индуктивность в цепях постоянного тока

Опыт с емкостью - 1

Опыт с емкостью - 2

Результаты серии опытов с емкостью в цепях постоянного напряжения

Результаты представлены в таблице 1.

Nº	E_1	c_1	R_1	I	U	Вывод
1	20B	4мкФ	330кОм	0A	OB	Ток в цепи отсутствует
2	5B	1500нФ	3МОм	0A	0B	Ток в цепи отсутствует

Таблица 1 – Серия опытов с емкостью в цепях постоянного напряжения

Опыт с индуктивностью - 1

Опыт с индуктивностью - 2

Результаты серии опытов с индуктивностью в цепях постоянного напряжения

Результаты представлены в таблице 2.

Nº	$\boldsymbol{E_1}$	L_1	R_1	I	U	Вывод
1	20B	120мГн	330кОм	80.61мкА	20B	Ток в цепи присутствует, падение напряжения на резисторе
						равно напряжению источника питания
2	5B	1200мГн	3МОм	6.667мкА	5B	Ток в цепи присутствует, падение напряжения на резисторе
						равно напряжению источника питания

Таблица 2 – Серия опытов с индуктивностью в цепях постоянного напряжения

Выводы

1. Сопротивление емкости по постоянному току равно бесконечности: $X_c = \frac{1}{2\pi f C} = \frac{1}{2\pi C \cdot 0} = \infty$.

- 2. Сопротивление индуктивности по постоянному току равно нулю: $X_L = 2\pi f L = 2\pi L \cdot 0 = 0$.
- 3. Падение напряжения на резисторе в цепи постоянного тока подчиняется закону Ома: U = IR.

Задание 2 - Конденсатор в цепях переменного напряжения

Серия 1 - Частота переменного тока фиксирована, меняется емкость конденсатора

Серия 2 – Емкость конденсатора фиксирована, меняется частота переменного тока

OCHIAR ROPPONANAL I
Осциллограммы

Выводы

1. При фиксированной частоте сопротивление конденсатора с увеличением его емкости уменьшается и в пределе становится нулевым: $\lim_{C \to \infty} X_c = \lim_{C \to \infty} \frac{1}{2\pi f C} = 0$. Этим объясняется равенство наблюдаемых величин тока в опытах 3 и 4 первой серии: при емкости конденсатора не менее 50мкФ его сопротивление по переменному току частоты 5кГц становится не более $\frac{1}{2\pi \cdot 5000 \cdot 50 \cdot 10^{-6}} \approx 0.64(\Omega)$, что пренебрежимо мало по сравнению с сопротивлением резистора (разница величин токов в этом случае не превосходит $\frac{220}{100} - \frac{220}{100+0.64} \approx 0.014(A)$, что сравнимо с погрешностью измерений).

2. При фиксированной емкости конденсатора его сопротивление уменьшается с ростом частоты переменного тока и в пределе становится нулевым: $\lim_{f \to \infty} X_c = \lim_{f \to \infty} \frac{1}{2\pi f c} = 0$. Это наблюдается в опыте 4 второй серии: сопротивление конденсатора очень мало по сравнению с сопротивлением резистора.

Задание 3- Свойства емкостей и индуктивностей в цепях с комбинированным источником питания

Для исследования свойств емкостей и индуктивностей в цепях с комбинированным источником питания собран аналог следующей схемы:

Результаты серии опытов представлены в следующей таблице.

Выводы

1. В цепи с конденсатором с увеличением частоты его сопротивление по переменному току уменьшается (это было показано в задании 1), благодаря чему на нагрузочном резисторе увеличивается падение напряжения переменной составляющей источника питания. Сопротивление же конденсатора по постоянному току равно бесконечности, поэтому в падении напряжения на нагрузочном резисторе отсутствует постоянная составляющая.

2. В цепи с индуктивностью напротив: ее сопротивление по постоянному току равно нулю, по переменному же с увеличением частоты стремится к бесконечности (показано в задании 1). Поэтому, с увеличением частоты переменной составляющей источника питания, ее величина на нагрузочном резисторе уменьшается до нуля; и на нагрузочном резисторе остается лишь постоянная составляющая источника питания.

Задание 4 - Делитель напряжения

Выводы

- 1. Ток в цепи равен: $I=\frac{U}{R_1+R_2}$. Амплитудное падение напряжения на резисторе R_2 равно: $U_{R_2}=IR_2=\frac{UR_2}{R_1+R_2}=\frac{50\cdot 90}{90+900}\approx 4.55$ (B), что согласуется с результатами эксперимента.
- 2. Вольтметр показывает эффективное напряжение в 3.2147В, что подтверждается теорией: $U_{9\varphi}=\frac{U}{\sqrt{2}}=\frac{4.55}{\sqrt{2}}\approx 3.2141(\mathrm{B}).$

Задание 5.1 - Последовательный колебательный контур

Резонансная частота контура:

$$f_r = rac{1}{2\pi\sqrt{LC}} = rac{1}{2\pi\sqrt{0.1\cdot 10^{-6}\cdot 250\cdot 10^{-3}}} pprox 1007$$
 (Гц) $\omega_r = 1/\sqrt{LC} pprox 6327$ (рад/с)

Характеристическое сопротивление контура:

$$\rho = \sqrt{L/C} = \sqrt{250 \cdot 10^{-3}/0.1 \cdot 10^{-6}} \approx 1581(0\text{M})$$

Добротность контура:

$$Q = \rho/R \approx 0.16$$

Коэффициент затухания:

$$d = 1/Q \approx 6.32$$

Верхнее и нижнее значения частот полосы пропускания:

$$\omega_{\scriptscriptstyle \mathrm{B}} = \omega_r (1 + \frac{1}{2} d) \approx 26320 (\mathrm{pag/c})$$

$$\omega_{\scriptscriptstyle ext{H}}=0$$
 так как $\omega_r\left(1-rac{1}{2}d
ight)<0.$

Полоса пропускания контура:

$$S = \omega_{\rm B} - \omega_{\rm H} = 26320$$
рад/с

Выберем малые отклонения равными $f(\Delta_{\omega_0})=100\Gamma$ ц, большие – $\Delta_f=10000\Gamma$ ц. Наблюдаемое поведение тока представлено в следующей таблице.

	$f_r - \Delta_f$	$f_r - f(\Delta_{\omega_0})$	f_r	$f_r + f(\Delta_{\omega_0})$	$f_r + \Delta_f$
U_l	-	3.50B	3.88B	4.26B	20.38B
U_c	_	4.19B	3.78B	3.44B	201mB
U_r	_	23.8B	24B	23.8B	12.6B
I_r	_	2.38mA	2.4MA	2.38mA	1.28mA

Выводы

На резонансной частоте падения напряжения на конденсаторе и индуктивности равны (с точностью до погрешности измерений), и сопротивление LC-участка цепи равно нулю, т.е. сила тока в цепи определяется лишь сопротивлением резистора, что и наблюдается: $\frac{24B}{10\kappa O_{\rm M}} = 2.4 {\rm mA}$. На частотах близких к резонансной сила тока в цепи уменьшается незначительно.

При больших отклонениях частоты от резонансной падения напряжения на конденсаторе и индуктивности значительно отличаются, ток в цепи значительно уменьшается.

На основании этих наблюдений можем сделать вывод, что данная RLC-цепь позволяет отфильтровывать из входного сигнала частоты, близкие к собственной резонансной частоте RLC-контура.

Задание 5.2 - Измеритель АЧХ

Для исследования была собрана следующая схема.

Однако показания прибора Bode Plotter не совпали с теоретически рассчитанными. На основании этого можно предположить, что потери на резисторе слишком велики (сопротивление не пренебрежимо мало), чтобы реальная резонансная частота совпадала с теоретической.

При уменьшении сопротивления до 10м в графике появляется четко выраженный пик амплитуды на резонансной частоте контура.

