Zufalls varioble	Bernoulli - Yariable	Miskrete Variable	Sletige Variable
(Ausgaugn Variable; Variable der Grundgesamt- heit)	Yeyhilung: P(X=X;)={P X=1 q X=0 (Bernoulli-Yariable)	Vertalung: P(X=xi)=pi (i=1,2j-,6) (z.B. idealer oder realer Würfel)	Yesteilung Normalountulung N($p_x, \overline{s_x}$) $P(X \leq a) = \phi\left(\frac{a - \mu_x}{6 \cdot x}\right)$
	$\mu_{X} = p \qquad \sigma_{X}^{2} = pq \qquad \sigma_{X} = \sqrt{p \cdot q}$ $IndiryaltWS: \qquad P(a \le X \le b) = \mathbb{Z}p;$ $durch Addition der EinzeltWS$	Finkryall-WS: P(a=X=b)= Zipi	$ \frac{\mu_{X}}{M + \nu_{0} + \nu_{0}} = \frac{\sigma_{X}}{\sigma_{X}} + \frac{\sigma_{X}}{\sigma_{X}} = \frac{\sigma_{X}}{\sigma_{X}} + \frac{\sigma_{X}}{\sigma_{X}} $
(Summen variable) (X; mabhangia Kopien von X)	/ / y = mp; 5y=npq; 5y=1apq) <u>Vertilung</u> : Mich exakt an zwegeben. My = MMx; Gy = MGx; Gy = MGx Approximative Vertilung	MAAA
Morien Von X	$B_{\mu,p}(k) \approx \frac{1}{5} \varphi(\frac{k-\mu_0}{5y})$ $(n>\frac{9}{19})$	Normal yerkilung: M(hy;5y)= (zentraler Gronz- Werfsotz) M(mhx; msx) Jukrrall-WS:	Dukovall-Ws:
	der WS aus Tafel $\overline{\underline{II}}$. Mäherangsweise: $(M > 30)$ $P(a \le y \le b) \approx \phi(\frac{b + \frac{1}{2} - \mu_y}{\sigma_y})$	Mählymigs weise: $P(a \leq y \leq b) \approx \phi(\frac{b-\mu_{y}}{G_{y}})$	$\frac{e \times a M}{P(a \le y \le b)} = \phi \left(\frac{b - u_y}{6y}\right) - \phi \left(\frac{a - v_y}{6y}\right)$ $\frac{e \times a M}{P(a \le y \le b)} = \phi \left(\frac{b - u_y}{6y}\right) - \phi \left(\frac{a - v_y}{6y}\right)$
$\overline{\hat{X}} = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$	Verkalung: exakl angebbar (farms uninteressant)	- φ(a-My) Yirkilmig: exald schwierig sugabbar (firms minkvessaml)	Virtulung: exold: N(MZ, EZ)
(Stickproben unithlunv1)	$ \begin{array}{cccc} (u_{\overline{X}} = \mu_{X}) & \overline{\sigma}_{\overline{X}} = \frac{1}{m} \overline{\sigma}_{x} & \overline{\sigma}_{\overline{X}} = \frac{G_{X}}{\sqrt{m}} \\ & + p \text{proximative Vertailung} & = \sqrt{\frac{pq}{m}} \end{array} $	Approximative Yerkilung:	$M_{\overline{X}} = \mu_{X_{i}} \overline{S_{\overline{X}}} = \frac{1}{n} \overline{S_{X}}^{2} \overline{S_{\overline{X}}} = \frac{1}{\sqrt{n}} \overline{S_{X}}$ Approximative Verticity:
	$N(\mu_{\overline{x}}, \overline{5_{\overline{x}}}) = N(p; \overline{pq'})$ Muvvaltus: $\underline{exakt}:$	$N(\mu_{\overline{x}}; \overline{5}_{\overline{x}}) = N(\mu_{\overline{x}}; \overline{5}_{\overline{x}})$ Inhavall-WS exald:	Julervall-WS: exall: $dV_0 \le X \le h$ = $dV_0 - u_0 \ge h$ $d(q - u_0)$
	$P(a \stackrel{!}{=} \overline{X} \stackrel{!}{=} b) = \phi(b \stackrel{!}{=} \mu_{x}) - \phi(a - \mu_{x})$ $= \phi(b - \mu_{x}) - \phi(a - \mu_{x})$ $= \phi(b - \mu_{x}) - \phi(a - \mu_{x})$	Multinum s maise: $P(a \leq \overline{X} \leq b) = \phi(\frac{b - m_{\overline{X}}}{G_{\overline{X}}}) - \phi(\frac{a - m_{\overline{X}}}{G_{\overline{X}}})$ $= \phi(\frac{b - m_{\overline{X}}}{G_{\overline{X}}}) - \phi(\frac{b - m_{\overline{X}}}{G_{\overline{X}}})$	$\phi(a \leq \overline{X} \leq b) = \phi(\frac{b - \mu_{\overline{X}}}{G_{\overline{X}}}) - \phi(\frac{a - \mu_{\overline{X}}}{G_{\overline{X}}})$ $= \phi(\frac{b - \mu_{\overline{X}}}{G_{\overline{X}}}) - \phi(\frac{a - \mu_{\overline{X}}}{G_{\overline{X}}})$ Maherung wase