```
Decision Trees & Random Forest: Predict Gan approval
    Using a banking dataset
   impost handas as pd
   from sklearn. model - selection import train - test - shlit
    from sklearn tree import Decision Tree Classifies, plot-tree
    from sklewn ensemble import Random Forest Classifier
    from sklean metrics import classification - report, confusion - matrix
    , accuracy - score
     from Sklearn. preprocessing import Label Encoder
     import mathlatlib. hyplat as plt
     import Seaborn as sos - , and y tet x and x
                          _ site = 0.3 sondom _ stote =
    #1 Load the dotaset
    # Example: Assuming 'loan-data csv' Where Loan-Status' is
     the tagget (Y= Approved, N= Not Approved)
     df = pd. read_csv ('loan_data.csv')
   # Preview the dataset John tosof monog 1th
print (" Data set Preview:")
    print (df. head ())
    #2. Handle missing values (simple fill as doop)
     df = df. doopna() # 0x you can use of- filling (method = 'fill')
                          depending on your data
    #3. Encode alegorical variables
```

identify categorical columns
cat_cols = df. select_ dtypes (include = object). Columns

```
Decision Traces & Random Forest
#label Encoding
                                testing a booking dataset
  le = Label Encoder()
                                   infrost pandas as po
   for col is cot-cols:
       d[col] = le · fit _transform (d[col])
 #4. Prepare features and labels
                                    from Steems. ensemble
  X = df - drop ("Loan_status", axis=1) # Features
  y = df [[Loan_Status'] # Target (1 = Approved, 0=Not Approved
                            after encoding)
             From Sklesza preprocessing impost Label Encoder
  #5 Split the data
    X _train, X_test, y_train, y_test = train_test_split(X, y,
    test_size = 0.3, random_state = 42)
  #6_ Decisión Tree Model_ and poinness : signas #
     dtree = Decision Tree Classifies (random_state = 42)
     dtree ofit (x_train, y_train)
  #7 Random Fosest Model togatal with will the
   sporest = Rondom Forest classifier (n_estimoloss = 100, random - state =
   42)
   8 forest . fit (x-train, y-train)
                                80 # Ont (000 . 10 =
  #8 . Predictions
    dtree-preds = dtree · predict (x-test)
    oforest-preds = sporest predict (x-test)
```

```
#9 Evaluation
print ("In-- Décision Tree Performance -_ ")
 print ("Confusion Motrix: \", confusion - matrix (y-test, direc -
  hoeds))
 print (" classification Report: \n", classification - report (y-test,
  dtree-preds))
print ("Accuracy Score: ", accuracy _ score (y-test, otree - preds))
print (" \n -- Random Forest Performance --- ") sode off
print ("Confusion Matrix : \n", confusion - motorx (y-test, xforest
 preds ))
print ("classification Report: \n", classification - report (y-test)
  xforest - preds))
 print ("Accuracy Score", accuracy - score (y-test, xforest-preds)
# 10 Visulization of Decision Tree
  plt. ligure (ligsize = (20,10))
 plot -tree (dtree, begtwe - names = X. columns, class - names = [Not
   Approved', Capproved'], filled = True)
   hlt title ('Decision Tree visualization')
  pH. Show()
 #11. Feature Importance (Random Forest)
   impostances = ofosest. feature - iropostances - features = x.columns
  peature - impostonce - of = pd. Data Frame ( & Feature): features
```

Impostance : importances ?)

Legture - inpostance - of feature - impostance - of sost - Values (by = gmpostance), ascending= Folse)- U) xiston - noisulasion - motorx (y-(selon) the Wit . liquoe (ligsize=(12,6)) (Caboah ps-bomplot (x= 'Impostance'; data = feature_impostance_df) It title (Feature Impostance from Random Forest') It. show() -- Rendom Forest Perloomance test, ylose

Conditions

Condit

Ht. Hele (Decision Tree Visualization)

Owode - Hi

11. Teoluxe Amportance (Rapdom Forest)

(hiportances = xlorest. fection - inclustrices - teoluse = X.

Dataset Preview:

Loan_ID Gender Married Dependents Education Self_Employed \

-				_		_
0	LP001002	Male	No	0	Graduate	No
1	LP001003	Male	Yes	1	Graduate	No
2	LP001005	Male	Yes	0	Graduate	Yes
3	LP001006	Male	Yes	0 1	Not Graduate	No
4	LP001008	Male	No	0	Graduate	No

ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term \

0	5849	0.0	NaN	360.0
1	4583	1508.0	128.0	360.0
2	3000	0.0	66.0	360.0
3	2583	2358.0	120.0	360.0
4	6000	0.0	141.0	360.0

Credit_History Property_Area Loan_Status

0	1.0	Urban	Y
1	1.0	Rural	N
2	1.0	Urban	Y
3	1.0	Urban	Y
4	1.0	Urban	Y

--- Decision Tree Performance --- Confusion

Matrix:

[[21 23]

[15 85]]

Classification Report:

precision recall f1-score support

0	0.58	0.48	0.53	44
1	0.79	0.85	0.82	100

accuracy 0.74 144 macro avg 0.69 0.66 0.67 144 weighted avg 0.72 0.74 0.73 144

Accuracy Score: 0.7361111111111112

--- Random Forest Performance --- Confusion

Matrix:

[[19 25]

[3 97]]

Classification Report:

precision recall f1-score support

accuracy 0.81 144 macro avg 0.83 0.70 0.72 144 weighted avg 0.82 0.81 0.78 144

Accuracy Score: 0.805555555555556