

Sri Lanka Institute of Information Technology

Year 02 – Semester II – 2020

Probability and Statistics – IT2110

Tutorial 04 - Answers

1) Since,
$$\sum_{i=1}^{4} P(X = x_i) = 1$$

$$c + 4c + 9c + 16c = 1$$

$$30c = 1$$

$$\underline{C} = \frac{1/30}{2}$$

$$E(X) = \sum_{all \ x} x * P(X = x)$$

$$E(X) = (1*c) + (2*4c) + (3*9c) + (4*16c)$$

$$E(X) = 100c$$

$$E(X) = 100*(1/30)$$

$$\underline{E(X)} = 3.33$$

5) Let X - No of passengers in a car (X = 0,1,2,3,4)

a)
$$P(X \ge 2) = P(X=2) + P(X=3) + P(X=4)$$

 $P(X \ge 2) = 0.1 + 0.05 + 0.05$
 $P(X \ge 2) = 0.2$

b)

Х	0	1	2	3	4
P(X=x)	0.7	0.1	0.1	0.05	0.05
$F_X(x)$ / P(X \leq x) (c.d.f)	0.7	0.8 (0.7+0.1)	0.9(0.7+0.1+0.1)	0.95	1

No need to sketch the c.d.f. (cumulative distribution function)

c) i.
$$E(X) = \sum_{all \ x} x * P(X = x)$$
 $E(X) = (0*0.7) + (1*0.1) + (2*0.1) + (3*0.05) + (4*0.05)$ $E(X) = 0.65$

ii.
$$E(X^2) = \sum_{all \ x} x^2 * P(X = x)$$

 $E(X^2) = (0*0.7) + (1*0.1) + (4*0.1) + (9*0.05) + (16*0.05)$
 $E(X^2) = 1.75$

iii.
$$V(X) = E(X^2) - (E(X))^2$$

$$V(X) = 1.75 - 0.65^2$$

 $V(X) = 1.3275$

iv.
$$E(3X-2) = E(3X) - E(2)$$
 (Apply the properties of the expected value)

$$E(3X-2) = 3*E(X) - 2$$

$$E(3X-2) = 3*0.65 - 2$$

$$E(3X-2) = -0.05$$

v.
$$V(2X+6) = V(2x) + V(6)$$
 (Apply the properties of the variance. Note that covariance between a variable and a constant is zero)

$$V(2X+6) = 2^2 * V(x) + 0$$

$$V(2X+6) = 4 * 1.3275$$

$$V(2X+6) = 5.31$$

2) Given that X ~ Bin(100, 0.08).

Mean
$$(E(X)) = np = 100*0.08 = 8$$

Variance
$$(V(X)) = np(1-p) = 100*0.08*(1-0.08) = 7.36$$

When p 0.95,

$$X \sim Bin(n = 50, p' = 0.05)$$
 [where p' (Probability of being faulty) = 1 - p = 1 - 0.95 = 0.05]

Probability that there are fewer than 4 faulty components $[P(X<4)] = P(X\le3)$

$$P(X<4) = 1 - P(X\geq 4)$$

$$P(X<4)$$
 = 1 – 0.23959 (Get the value from binomial table)

$$P(X<4) = 0.76041$$

When p 0.75,

$$X \sim Bin(n = 50, p' = 0.25)$$
 [where p' (Probability of being faulty) = 1 - p = 1 - 0.75 = 0.25]

Probability that there are fewer than 10 faulty components $[P(X<10)] = P(X\le9)$

$$P(X<10) = 1 - P(X\ge10)$$

$$P(X<10)$$
 = 1 – 0.83632 (Get the value from binomial table)

$$P(X<10) = 0.16368$$

4) Given that X ~ Bin(400, 0.05)

Since n = 400 > 50 and p = 0.05 < 0.1, we can approximate X into a Poisson distribution.

Then,
$$X \sim Poisson (\lambda = 20) [\lambda = np = 400*0.05 = 20]$$

So,
$$P(X \ge 5) = 0.99998$$
 (Get the value from Poisson table)

6) Let X – No of surf rescues per day

Given that $X \sim Poisson (\lambda = 2)$ [Because as an average two surf rescues per day]

a)
$$P(X>2) = P(X\geq 3)$$

$$P(X>2) = 0.32332$$
 (Get the value from Poisson table)

b) For a 3 day period, $\lambda = 2*3 = 6$

Let Y - No of surf rescues for three days and Y
$$\sim$$
 Poisson ($\lambda = 6$)

Then,
$$P(Y=5) = P(Y \ge 5) - P(Y \ge 6)$$

$$P(Y=5) = 0.71494 - 0.55432$$
 (Get the values from Poisson table)

$$P(Y=5) = 0.16062$$

7) Let X – The demand for a particular item per day

Given that $X \sim Poisson (\lambda = 5)$ [Because as an average demand for the item is 5 per day]

- a) $P(X>5) = P(X\ge6) = 0.38404$ (Get the value from Poisson table)
- b) $P(X=0) = P(X \ge 0) P(X \ge 1) = 1 0.99326 = 0.00674$
- 8) Let X No of traffic accidents per month at a certain intersection

Given that $X \sim Poisson (\lambda = 3)$ [Because as an average 3 traffic accidents occur per month]

a)
$$P(X=5) = P(X \ge 5) - P(X \ge 6) = 0.18474 - 0.08392 = 0.10082$$

b)
$$P(X<3) = P(X\le2) = 1 - P(X\ge3) = 1 - 0.57681 = 0.42319$$

- c) $P(X \ge 2) = 0.80085$
- 9) Let X No of defective gear boxes out of 140 cars

Then
$$X \sim Bin(n = 140, p = 0.02)$$

Since n = 140 > 50 and p = 0.02 < 0.1, we can approximate X into a Poisson distribution [Or since np = 140*0.02 = 2.8 < 5, we can approximate X into a Poisson distribution].

Then,
$$Y \sim Poisson (\lambda = np = 2.8) [\lambda = np = 140*0.02 = 2.8]$$

- a) $P(X=2) = P(X \ge 2) P(X \ge 3) = 0.76892 0.53055 = 0.23837$ (Get the values from Poisson table)
- b) $P(X>5) = P(X \ge 6) = 0.06511$ (Get the value from Poisson table)
- c) $P(X<4) = P(X\le3) = 1 P(X\ge4) = 1 0.30806 = 0.69194$