Indian Institute of Technology Kharagpur Department of Mathematics Course: Linear Algebra Autumn Semester 2018 Problem Set 1

July 6, 2018

Notation:

V is a vector space over an arbitrary filed \mathbb{F} .

 \mathbb{R} denotes the field of real numbers.

 $M_{m\times n}(\mathbb{F})$ denotes the vector space of all matrices of size $m\times n$ with entries from the field \mathbb{F} .

 $\mathcal{C}(\mathbb{R},\mathbb{R})$ denotes the real vector space of all continuous functions from \mathbb{R} to \mathbb{R} .

 $P_n(\mathbb{R})$ denotes the real vector space of all polynomials upto degree n.

 $P(\mathbb{R})$ denotes the real vector space of all polynomials

1. In $M_{3\times 2}(\mathbb{R})$ prove that the set

$$\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

is linearly dependent.

- **2.** Let $S = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$ be a subset of vector space over \mathbb{F}^3 .
 - (a) Prove that S is linearly independent if $\mathbb{F} = \mathbb{R}$.
 - (b) Prove that S is linearly dependent if $\mathbb{F} = \mathbb{F}_2 = \{0, 1\}$, the binary field.
- 3 Show that the set $\{1, x, x^2, \ldots\}$ is linearly independent set in $P(\mathbb{R})$, the real vector space of all polynomials.
- **4.** Let u and v be two non-zero distinct vectors in a vector space V over field \mathbb{F} . Then u and v are linearly dependent if and only if u is a linear multiple of v.
- 5. Give an example of three linearly dependent vectors in \mathbb{R}^3 where none of the three is a mutiple of another.
- **6.** Let u_1, u_2, \ldots, u_n be linearly independent vectors in a vector space V over finite field $\mathbb{F}_2 = \{0, 1\}$. Is the set span $\{u_1, u_2, \ldots, u_n\}$ finite? If yes, how many elements are there?

- 7. Let $f, g \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ be the functions defined as $f = e^{rt}$ and $g = e^{st}$ for some real constants s and r such that $r \neq s$. Prove that the functions f and g are linearly independent in $\mathcal{C}(\mathbb{R}, \mathbb{R})$.
- **8.** Let $S_{n\times n}(\mathbb{R}) \subset M_{n\times n}(\mathbb{R})$ be a subset of all symmetric matrices.
 - (a) Prove that the set $S_{n\times n}(\mathbb{R})$ is a subspace of $M_{n\times n}(\mathbb{R})$.
 - (b) Write down the basis of $M_{n\times n}(\mathbb{R})$ and hence find the dimension of $M_{n\times n}(\mathbb{R})$.
 - (c) Write down the basis of $M_{n\times n}(\mathbb{R})$ and hence find the dimension of $M_{n\times n}(\mathbb{R})$.
- **9.** Given three different bases for \mathbb{F}^2 and $M_{2\times 2}(\mathbb{F})$.
- 10. Let u and v be non-zero vectors in \mathbb{R}^2 . Then prove u and v are independent if and only if u + v and u v are independent.
- 11. Prove that the set of the all skew-symmetric matrices in $M_{n\times n}(\mathbb{R})$ is a finite dimensional subspace. Write down a basis and hence calculate the dimension of this subspace.
- 12. Prove that the set of the all lower triangular matrices in $M_{n\times n}(\mathbb{R})$ is a finite dimensional subspace. Write down a basis and hence calculate the dimension of this subspace.
- 13. Prove that of W_1 and W_2 are finite dimensional vector space over a field \mathbb{F} , then $W_1 + W_2$ is finite dimensional. Also

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

- **14.** For a fixed $a \in \mathbb{R}$, determine the dimension of the subspace of $P_n(\mathbb{R})$ defined as $\{f \in P_n(\mathbb{R}) \mid f(a) = 0\}.$
- **15.** Let $V = M_{2\times 2}(\mathbb{R})$, $W_1 = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$, and $W_2 = \left\{ \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$. Prove that W_1 and W_2 are subspaces of V and compute the dimensions of W_1 , W_2 and $W_1 + W_2$.
- **16.** Prove that if $\{A_1, A_2, \ldots, A_k\}$ is a linearly independent set of $M_{n \times n}(\mathbb{R})$, then $\{A_1^T, A_2^T, \ldots, A_k^T\}$ is also linearly independent.
- 17. Let S be a set of nonzero polynomials in $P(\mathbb{R})$ such that no two polynomials are of same degree. Prove that the set is linearly independent. Is the converse true? In other words, can a set with more than one polynomial of same degree be linearly independent?