HomeworkN+2.md 2025-10-27

Homework: 存储2

本此作业统一以 $K = 10^3$, $M = 10^6$, $G = 10^9$ 为计量单位。以后如果遇到类似的题目请提前查看/询问/确定这件事。

请直接用 Markdown 题目源文件填充答案,最后统一提交 PDF 格式,比如使用 Typora 导出。

T2

下面的表给出了一些不同的高速缓存的参数。你的任务是填写出表中缺失的字段。其中 m 是物理地址的位数,C 是高速缓存大小(数据字节数),B 是以字节为单位的块大小,E 是相联度,S 是高速缓存组数,t 是标记位数,s 是组索引位数,而 b 是块偏移位数。

m	С	В	E	S	t	S	b
32		4	4		24	6	
32	1024	32	2				
32	2048			256	21	8	3

T3

假设我们有一个具有如下属性的系统:

- 内存是字节寻址的。
- 内存访问是对 1 字节字的(比如访问一个 char)。
- 地址宽 12 位。
- 高速缓存是两路组相联的(E=2), 块大小为 4 字节(B=4), 有 4 个组(S=4)。

高速缓存的内容如下,所有的地址、标记和值都以十六进制表示:

组索引	标记	有效位	字节1	字节2	字节3	字节4
0	00	1	40	41	42	43
	83	1	FE	97	CC	D0
1	00	1	44	45	46	47
	83	0	54	55	56	57
2	00	1	48	49	4A	4B
	40	0	21	22	23	24
3	FF	1	9A	D0	03	EE
	00	0	A1	A2	A3	A4

对于下面每个内存访问, 当他们顺序执行时, 指出高速缓存是否命中, 如果命中且操作前的数可从已有信息判断, 请给出。

HomeworkN+2.md 2025-10-27

操作	地址	命中	值(或未知)
读	0x834		
写	0x836		
读	0xFFF		

T4

仔细阅读下面的程序,根据条件回答下列各题:

- 地址宽度为 10
- 数组的起始地址为 0b0001000000 (即二进制表示)
- Block size = 4 Byte, Set = 4, 两路组相连(B = 4, S = 4, E = 2)
- 替换算法为 LRU (最近最少使用)

```
#define LENGTH 8
void clear44(char array[LENGTH][LENGTH]) {
   int i, j;
   for (i = 0; i < 4; i++)
        for (j = 0; j < 4; j++)
        array[i][j] = 0;
}</pre>
```

4.1.1

以上程序会发生几次缓存miss?

4.1.2

如果 LENGTH = 16, 那么会发生几次缓存miss?

4.1.3

如果 LENGTH = 17, 那么会发生几次缓存miss?

4.1.4

请画出在 LENGTH = 17 时,程序执行结束时 set0 和 set1 的高速缓存状态,假设一开始全空。

可以用 Array[0][0] ~ Array[0][3] 的形式表示 Data 段落,有效位为 0 的行留空,每个 Set 内的顺序无所谓

SetID	Tag	Data
0		
0		
1		

HomeworkN+2.md 2025-10-27

SetID Tag Data

1

4.2

修改条件为

- 地址宽度为 10
- 数组的起始地址为 0b0010000000 (即二进制表示)
- Cache 的容量为 16 Byte, Block size = 4 Byte, 全相联
- 替换算法为 LRU

4.2.0

Tag 的位数是多少?

4.2.1

原始程序会发生几次缓存miss?

4.2.2

如果 LENGTH = 16,那么会发生几次缓存miss?

4.2.3

如果 LENGTH = 17, 那么会发生几次缓存miss?

4.2.4

请画出在 LENGTH = 17 时,程序执行结束时的高速缓存状态,假设一开始全空。

可以用 Array[0][0] ~ Array[0][3] 的形式表示 Data 段落, 有效位为 0 的行留空

SetID	Tag	Data
0		
1		
2		
3		