

### Boom

Neem een **boom** bestaande uit N **knopen**, genummerd van 0 tot en met N-1. Knoop 0 wordt de **wortel** genoemd. Elke knoop, behalve de wortel, heeft één **ouder**. Voor elke i ( $1 \le i < N$ ) is de ouder van knoop i knoop P[i], waar P[i] < i. We nemen ook aan dat P[0] = -1.

Voor elke knoop i ( $0 \le i < N$ ), de **subboom** van i is de verzameling van de volgende knopen:

- *i*, en
- ullet elke knoop waarvan de ouder i is, en
- elke knoop waarvan de ouder van de ouder i is, en
- ullet elke knoop waarvan de ouder van de ouder i is, en
- enz.

De onderstaande afbeelding toont een voorbeeldboom bestaande uit N=6 knopen. Elke pijl verbindt een knoop met zijn ouder, behalve de wortel, die geen ouder heeft. De subboom van knoop 2 bevat knopen 2,3,4 en 5. De subboom van knoop 0 bevat alle 0 de knopen van de boom en de subboom van knoop 0 bevat alleen knoop 0.



Aan elke knoop wordt een niet-negatief integer **gewicht** gegeven. Het gewicht van knoop i ( $0 \le i < N$ ) is gegeven door W[i].

Jouw taak is om een programma te schrijven dat Q queries beantwoordt, elk bestaand uit twee positieve integers (L,R). Het antwoord op de query moet als volgt worden berekend.

Geef elke knoop in de boom een integer waarde, de **coëfficiënt**. Deze toewijzing wordt beschreven door de reeks  $C[0], \ldots, C[N-1]$ , waarbij C[i] ( $0 \le i < N$ ) de coëfficiënt is die aan knoop i is gegeven. Deze reeks noemen we de **coëfficiëntenreeks**. Let erop dat de elementen van de coëfficiëntenreeks negatief, 0 en positief kunnen zijn.

Voor een query (L,R) wordt een coëfficiëntenreeks **geldig** genoemd als voor elke knoop i ( $0 \le i < N$ ) geldt: de som van de coëfficiënten van de knopen in de subboom van knoop i is niet kleiner dan L en niet groter dan R.

Voor een gegeven coëfficiëntenreeks  $C[0],\ldots,C[N-1]$ , zijn de **kosten** van een knoop i  $|C[i]|\cdot W[i]$ , waarbij |C[i]| de absolute waarde van C[i] aangeeft. De **totale kosten** zijn de som van de kosten van alle knopen. Jouw taak is om voor elke query te berekenen: de **minimale totale kosten** die je kan krijgen met een geldige coëfficiëntenreeks.

Je kan bewijzen dat voor elke mogelijke query, er ten minste 1 geldige coëfficiëntenreeks bestaat.

## **Implementatie Details**

Je moet de volgende twee procedures implementeren:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arrays van integers met lengte N die de ouders en de gewichten beschrijven.
- Deze procedure wordt exact één keer aangeroepen In het begin van de interactie tussen de grader en jouw programma in elke test case.

```
long long query(int L, int R)
```

- L, R: integers die een query beschrijven.
- ullet Deze procedure wordt Q keer aangeroepen na init in elke test case.
- Deze procedure moet het antwoord van de gegeven guery returnen.

# Beperkingen

- 1 < N < 200000
- $1 \le Q \le 100000$
- P[0] = -1
- $0 \le P[i] < i$  voor elke i zodat  $1 \le i < N$
- $0 < W[i] < 1\,000\,000$  voor elke i zodat 0 < i < N
- $1 \le L \le R \le 1000000$  in elke query

#### Subtaken

| Subtaak | Score | Extra beperkingen                                                    |  |
|---------|-------|----------------------------------------------------------------------|--|
| 1       | 10    | $Q \leq 10$ ; $W[P[i]] \leq W[i]$ voor elke $i$ zodat $1 \leq i < N$ |  |
| 2       | 13    | $Q \leq 10$ ; $N \leq 2000$                                          |  |
| 3       | 18    | $Q \leq 10$ ; $N \leq 60000$                                         |  |
| 4       | 7     | $W[i] = 1$ voor elke $i$ zodat $0 \leq i < N$                        |  |
| 5       | 11    | $W[i] \leq 1$ voor elke $i$ zodat $0 \leq i < N$                     |  |
| 6       | 22    | L=1                                                                  |  |
| 7       | 19    | Geen extra beperkingen.                                              |  |

### Voorbeelden

Bekijk de volgende calls.

De boom bestaat uit 3 knopen, de wortel en zijn 2 kinderen. Alle knopen hebben gewicht 1.

In deze query L=R=1, wat betekent dat de som van de coëfficiënten in elke subboom gelijk moet zijn aan 1. Neem bijvoorbeeld de coëfficiëntenreeks [-1,1,1]. De boom en de bijbehorende coëfficiënten (in getinte rechthoeken) is hieronder getekend.



Voor elke knoop i ( $0 \le i < 3$ ) is de som van de coëfficiënten van alle knopen in de subboom van i gelijk aan 1. Deze coëfficiëntenreeks is dus geldig. De totale kosten worden als volgt berekend:

| Knoop | Gewicht | Coëfficiënt | Kosten            |
|-------|---------|-------------|-------------------|
| 0     | 1       | -1          | $ -1 \cdot 1=1$   |
| 1     | 1       | 1           | $ 1  \cdot 1 = 1$ |
| 2     | 1       | 1           | $ 1  \cdot 1 = 1$ |

De totale kosten zijn dus 3. Dit is de enige geldige coëfficiëntenreeks, daarom zou deze call 3 moeten returnen.

```
query(1, 2)
```

De minimale totale kosten voor deze query zijn 2. Deze kosten krijg je met de coëfficiëntenreeks [0,1,1].

# Voorbeeldgrader

Invoerformaat:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

waar L[j] en R[j] (voor  $0 \le j < Q$ ) de invoerargumenten zijn in de j-de aanroep van query. Let erop dat de tweede regel van de invoer **alleen** N-1 **integers** bevat, omdat de voorbeeldgrader de waarde van P[0] niet leest.

Uitvoerformaat:

```
A[0]
A[1]
...
A[Q-1]
```

waar A[j] (voor  $0 \leq j < Q$ ) de waarde is die wordt gereturnt door de j-de aanroep van query.