Knowledge Sharing Session

070153709 Big Data | **Agoda x KMUTNB**

Agenda

- 1. Quick Introduction
- 2. Big Data in Agoda: Our Tech Stack 101
- 3. PySpark Workshop
 - a. Discussion Time!
- 4. Q&A + Closing Words

Slogan

See The World For Less

Purpose

Bridging the World Through Travel

Agoda, a digital travel platform, helps anyone **see the world for less** with its **great value deals** on a global network of 4.5M hotels and holiday properties worldwide, plus flights, activities, and more... Agoda is part of Booking Holdings (Nasdaq: **BKNG**) and employs more than 7,000 staff in 27 markets, dedicated to leveraging best-in-class technology to make travel even easier.

About Me

- Graduated from International School of Engineering (ISE),
 Chulalongkorn University
- Worked as a Data Analyst at Agoda for almost 2 years now under the **Pricing Optimization** team
- My 1st time giving a seminar!

Competitive marketplace and price comparison tools educate customers to search for best price

To make profit, Agoda must optimize price according to the market elasticity

Price	Profit per Room	Room Sold	Total Profits	
\$120	\$30	15	\$450	
\$100	\$10	50	\$500	
\$95	\$5	60	\$300	

An (Over)simplified Example of Optimization Function

Assume **Demand function** (Q) is linear in relation to price (P). Q(P) = a - bP where

- (a) is the intercept, representing demand when the price is zero.
- (b) is the slope, indicating how sensitive demand is to changes in price.

Assume Cost Function is also linear C(Q) = cQ + F where

- (c) is the variable cost per room sold.
- (F) is the fixed costs regardless of room sales.


```
Profit Function Pr = Revenue - Cost

= P*Q(P) - C(Q(P))

= P(a-bP) - (cQ(P) + F)

= P(a-bP) - c(a-bP) - F)

= aP - bP^2 - ca + cbP - F
```


To Optimize Pr w.r.t P,

$$dPr/dP = a - 2bP + cb = 0$$

P = (a + cb) / 2b

Hadoop and Spark are two open-source frameworks that you can use to manage and process large amounts of data.

Like many other companies, Agoda also uses Spark for our large-scale data processing

Fun Facts

- Agoda stores ~30+ PB (10^15) of data, with ~600 TB (10^12) of new data written daily.
- Our platform processes approximately ~2.8 trillion events through Kafka and runs around 100K Spark jobs every day to handle data processing at scale.

Although related, Hive and Impala are completely different Application Interface level tools

Hive:

- Uses MapReduce as an execution engine (batch query)
- Fault-tolerance based on MapReduce and YARN framework
- High runtime overhead

Impala:

- Uses process-to-process data exchange (ad-hoc query)
 - Multi Parallel Processing (MPP)
- No fault tolerance
- Low runtime overhead

We have various Big Data engines for different use-cases to democratize our data, ensuring everyone can make data-driven decisions

	Apache Hive	Apache Impala	Apache Spark SQL
Users	ETL Developers	Business Analysts	Data Engineers & Data Scientists
Strengths	 Built for very long running ETL, data processing or batch processing Supports custom file formats Handles massive ETL sorts with joins 	 Scales to high-concurrency Supports high-performance interactive SQL Compatible with BI tools & skills Hadoop integration and usability 	 Easily embed SQL into Java, Scala or Python applications Simple language for common operations Seamlessly mix SQL & Spark code within a single applications Automatic performance optimizations

Let's get your hands on Spark!

- 1. Prerequisite
 - a. Introducing PySpark, the Python API for Spark
 - b. Introducing the dataset
 - c. Example PySpark codes
- 2. Data Exploration time (40 mins)
- 3. Workshop Discussion (30 mins)

All the best for the rest of your academic journey & career!!!

JOIN US! :D

https://careersatagoda.com/vacancies/

