Álgebra lineal

Taller 10

Bases y dimensión.

1 pts.

2 pts.

2 pts.

Fecha de entrega: 10 de abril de 2025

0. Recuerda escribir el número del grupo y los nombres de todos los integrantes bien visible y legible en la primera hoja de la entrega e indicar claramente si un integrante no aportó a la elaboración de la solución. Si estos datos faltan, el taller no será calificado y tendrá la nota 0.

1. (a) ¿Los vectores $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 2 \\ -2 \\ 5 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$ son linealmente independientes en \mathbb{R}^3 ?

(b) ¿Los vectores $\vec{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$ son linealmente independientes en \mathbb{R}^3 ?

(c) ¿Los vectores $A_1 = \begin{pmatrix} 1 & 3 & 1 \\ -2 & 2 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 7 & 3 \\ 2 & -1 & 2 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & -1 & 0 \\ 5 & 2 & 8 \end{pmatrix}$ son linealmente independientes en $M(2 \times 3)$?

(d) ¿Los vectores $p_1 = X^2 - X + 2$, $p_2 = X + 3$, $p_3 = X^2 - 1$ son linealmente independientes en P_2 ? ¿Son linealmente independientes en P_n para $n \ge 3$?

2. (a) Sean $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 4 \\ 2 \\ 5 \end{pmatrix}$, $\vec{v}_4 = \begin{pmatrix} 2 \\ 8 \\ 3 \end{pmatrix}$, $\vec{v}_5 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Determine silector westeren general expectation \mathbb{P}^3 . Si la bagan essa in una bagan.

Determine si estos vectoren generan el espacio \mathbb{R}^3 . Si lo hacen, escoja una base de \mathbb{R}^3 de los vectores dados.

(b) Sean $p_1 = x^2 + 7$, $p_2 = x + 1$, $p_3 = 3x^3 + 7x$. Determine si los polinomios p_1, p_2, p_3 son linealmente independientes. Si lo son, complételos a una base en P_3 ,

 $\fbox{3 pts.}$ 3. Sea V un espacio vectorial. Falso o verdadero? Justifique su respuesta.

- (a) Suponga $v_1, \ldots, v_k, u, z \in V$ tal que z es combinación lineal de los v_1, \ldots, v_k . Entonces z es combinación lineal de v_1, \ldots, v_k, u .
- (b) Si u es combinación lineal de $v_1, \ldots, v_k \in V$, entonces v_1, \ldots, v_k, u es un sistema de vectores linealmente dependientes.
- (c) Si $v_1, \ldots, v_k \in V$ es un sistema de vectores linealmente dependientes, entonces v_1 es combinación lineal de los v_2, \ldots, v_k .
- 4. Determine si los siguientes conjuntos de vectores son bases del espacio vectorial indicado.

(a) $\vec{v_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \vec{v_2} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}; \mathbb{R}^2.$

(b) $A = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 3 \\ 1 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}$, $D = \begin{pmatrix} 2 & 1 \\ 5 & 0 \end{pmatrix}$; $M(2 \times 2)$.

(c) $p_1 = 1 + x$, $p_2 = x + x^2$, $p_3 = x^2 + x^3$, $p_4 = 1 + x + x^2 + x^3$; P_3 .

3 pts. Sea $F := \{(x_1, x_2, x_3, x_4)^t : 2x_1 - x_2 + 4x_3 + x_4 = 0\}.$

- (a) Demuestre que F es un subespacio de \mathbb{R}^4
- (b) Encuentre una base para F y calcule dim F.
- (c) Complete la base encontrada en (ii) a una base de \mathbb{R}^4 .

Ejercicios voluntarios¹

- 6. Sea *F* el plano dado por F : 2x 5y + 3z = 0.
 - (a) Demuestre que F es subespacio de \mathbb{R}^3 y encuentre vectores \vec{u} y $\vec{w} \in \mathbb{R}^3$ tal que $F = \text{gen}\{\vec{u}, \vec{w}\}$.
 - (b) Encuentre un vector $\vec{z} \in \mathbb{R}^3$, distinto de \vec{u} y \vec{w} , tal que gen $\{\vec{u}, \vec{w}, \vec{z}\} = F$.
 - (c) Encuentre un vector $\vec{v} \in \mathbb{R}^3$ tal que gen $\{\vec{u}, \vec{w}, \vec{v}\} = \mathbb{R}^3$.
- 7. (a) (I) Encuentre una base para el plano E: x-2y+3z=0 in \mathbb{R}^3 .
 - (II) Complete la base encontrado en (i) a una base de \mathbb{R}^3 .
 - (b) Sea $F := \{(x_1, x_2, x_3, x_4)^t : 2x_1 x_2 + 4x_3 + x_4 = 0\}.$
 - (I) Demuestre que F es un subespacio de \mathbb{R}^4
 - (II) Encuentre una base para F y calcule dim F.
 - (III) Complete la base encontrada en (ii) a una base de \mathbb{R}^4 .
 - (c) Sea $G := \{(x_1, x_2, x_3, x_4)^t : 2x_1 x_2 + 4x_3 + x_4 = 0, x_1 x_2 + x_3 + 2x_4 = 0\}.$
 - (I) Demuestre que G es un subespacio de \mathbb{R}^4
 - (II) Encuentre una base para G y calcule dim G.
 - (III) Complete la base encontrada en (ii) a una base de \mathbb{R}^4 .

8. (a) Sean
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 4 \\ 2 \\ 5 \end{pmatrix}$, $\vec{v}_4 = \begin{pmatrix} 2 \\ 8 \\ 3 \end{pmatrix}$, $\vec{v}_5 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Determine si estos vectoren generan el espacio \mathbb{R}^3 . Si lo hacen, escoja una base de \mathbb{R}^3 de los vectores dados.

(b) Sean
$$C_1 = \begin{pmatrix} 6 & 0 \\ 0 & 7 \end{pmatrix}$$
, $C_2 = \begin{pmatrix} 6 & 3 \\ 0 & 12 \end{pmatrix}$, $C_3 = \begin{pmatrix} 6 & -3 \\ 0 & 2 \end{pmatrix}$, $C_4 = \begin{pmatrix} 12 & -9 \\ 0 & -1 \end{pmatrix}$.

Determine si estas matrices generan el espacio de las matrices triangulares superiores 2×2 . Si lo hacen, escoja una base de las matrices dadas.

- (c) Sean $p_1 = x^2 + 7$, $p_2 = x + 1$, $p_3 = 3x^3 + 7x$. Determine si los polinomios p_1, p_2, p_3 son linealmente independientes. Si lo son, complételos a una base en P_3 .
- 9. Determine si gen $\{\vec{a}_1,\vec{a}_2,\vec{a}_3,\vec{a}_4\}=\mathrm{gen}\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}$ para

$$\vec{a}_1 = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}, \ \vec{a}_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \ \vec{a}_3 = \begin{pmatrix} 1 \\ 2 \\ 13 \end{pmatrix}, \ \vec{a}_4 = \begin{pmatrix} 2 \\ 1 \\ 11 \end{pmatrix}, \ \vec{v}_1 = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 8 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}.$$

10. Para los siguientes sistemas de vectores en el espacio vectorial V, determine la dimensión del espacio vectorial generado por ellos y escoja un subsistema de ellos que es base del espacio vectorial generado por los vectores dados. Complete este subsistema a una base de V.

(a)
$$V = \mathbb{R}^3$$
, $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.

(b)
$$V = P_4$$
, $p_1 = x^3 + x$, $p_2 = x^3 - x^2 + 3x$, $p_3 = x^2 + 2x - 5$, $p_4 = x^3 + 3x + 2$.

$$\text{(c) } V = M(2 \times 2), \ A = \begin{pmatrix} 1 & 4 \\ -2 & 5 \end{pmatrix}, \ B = \begin{pmatrix} 3 & 0 \\ 1 & 4 \end{pmatrix}, \ C = \begin{pmatrix} 0 & 12 \\ -7 & 11 \end{pmatrix}, \ D = \begin{pmatrix} 9 & -12 \\ 10 & 1 \end{pmatrix}.$$

- 11. Sea $n \in \mathbb{N}$. Encuentre uan base y la dimensión para los siguientes subespacio de $M(n \times n)$.
 - (a) $V_1 = \{ A \in M(n \times n) : A \text{ es simétrica} \},$
 - (b) $V_2 = \{A \in M(n \times n) : A \text{ es antisimétrica}\},\$
 - (c) $V_3 = \{A \in M(n \times n) : A \text{ es triangular superior}\},$
 - (d) $V_4 = \{A \in M(n \times n) : A \text{ es triangular inferior}\},$
 - (e) $V_5 = \{A \in M(n \times n) : A \text{ es diagonal}\}.$