Cuestionario, 5 preguntas

1 point	1.	For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.
		Given a set of news articles from many different news websites, find out what are the main topics covered.
		Given historical weather records, predict if tomorrow's weather will be sunny or rainy.
		Given many emails, you want to determine if they are Spam or Non-Spam emails.
		From the user usage patterns on a website, figure out what different groups of users exist.
1 point	2.	Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}3\\1\end{bmatrix}$. After a cluster assignment step,
		what will $c^{(i)}$ be? $c^{(i)}=1$
		$c^{(i)} = 1$ $c^{(i)} = 3$
		$c^{(i)}=2$
		$c^{(i)}$ is not assigned
1 point	3.	K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?
		Randomly initialize the cluster centroids.
		Test on the cross-validation set.
		$lacksquare$ Move the cluster centroids, where the centroids μ_k are updated.
1 point	4.	Suppose you have an unlabeled dataset $\{x^{(1)},\ldots,x^{(m)}\}$. You run K-means with 50 different random
		initializations, and obtain 50 different clusterings of the
		data. What is the recommended way for choosing which one of
		these 50 clusterings to use?
		Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
		The only way to do so is if we also have labels $y^{(i)}$ for our data.
		The answer is ambiguous, and there is no good way of choosing.
		For each of the clusterings, compute $\frac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c^{(i)}} ^2$, and pick the one that minimizes this.
1	5.	Which of the following statements are true? Select all that apply.
point		For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide.
		Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible.
		The standard way of initializing K-means is setting $\mu_1=\cdots=\mu_k$ to be equal to a vector of zeros.
		If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.
desactiv	ación d	nviar trabajo que no es mío resultará en la desaprobación permanente de este curso y la le mi cuenta de Coursera. rmación sobre el Código de Honor de Coursera
	3.102.03-02.00-0	nombre legal