Mapping ER Diagram to Relational Model

Supp Material A

Assumption

Binary relations are sufficient

Step 1: Strong Entities

- For each strong/regular entity (not weak entity) type E:
- Create a new relation R with
 - Attributes of R: all simple attributes (and simple components of composite attributes) of E
 - Key of R: key of E as the primary key for the relation

Step 1: Strong Entities

Employee

SSN Fname Lname Birdate

Department

<u>Name</u>	Location
-------------	----------

Project

<u>Pname</u> F	Pnumber
----------------	---------

Step 2: Weak Entities

- For each **weak entity type** W with the owner entity type E:
- Create a new relation R with
 - Attributes of R:
 - all simple attributes (and simple components of composite attributes) of W
 - primary key attributes of relation derived from E
 - Key of R: foreign key to E and partial key of W

Step 2: Weak Entities Phone Lname <u>SSN</u> Fname Works_For Location Name **Birdate** \mathbf{m} Mdate **Employee** Department Manager \mathbf{m} Family n Participation m **Project** Dependent Time **Pnumber** Pname Fname Relation Birdate Mryu, 26/9/2024

Step 2: Weak Entities

Step 3 – 1:1 Relationships

- For each **1:1** relationship type B. Let S and T be the participating entity types
- Steps
 - Choose one of S and T (let S be one that participates totally if there is one)
 - Add attributes from primary key of T to S as a foreign key
 - 2. Add all simple attributes (and simple components of composite attributes) of B as attributes of S

Step 3 – 1:1 Relationships

Step 3 – 1:1 Relationships

Step 4 – 1:M Relationships

- For each **1:N relationship type** B. Let S and T be the participating entity types, where S is on the 1 side and T on the N side
- Steps
 - Add to <u>relation belonging to entity T</u>
 - attributes from primary key of S as a foreign key
 - any simple attributes (or simple components of composite attributes) from relationship B

(This step doesn't add any new tuples, just attributes.)

Step 4 – 1:M Relationships

Step 4 – 1:M Relationships

Step 5 – M:N Relationships

- For each **N:M relationship type** B. Let S and T be the participating entity types
- Create a new relation R with
 - Attributes of R:
 - Attributes from key of S as foreign key
 - Attributes from key of T as foreign key
 - Simple attributes, and simple components of composite attributes of relation B
 - Key of R: All attributes from key of S and key of T

Step 5 – M:N Relationships

Step 5 – M:N Relationships

Step 6 – Multivalued Attributes

- For each *multivalued attribute* A, where A is an attribute of E, create a new relation R.
- If A is a multivalued simple attribute,
 - Attributes of R = Simple attribute A, and key of E as a foreign key.
- If A is a multivalued composite attribute,
 - Attributes of R = All simple components of A, and key of E as a foreign key.
- In both cases, the primary key of R is the set of all attributes in R.

Step 6 – Multivalued Attributes

Step 7: N-ary Relationships

- For each *n-ary relationship type* (n > 2)
- Create a new relation R with
 - Attributes : same for mapping M:N.
 - Key:
 - Same for mapping M:N, see exception below
 - The exception is that that if one of the participating entity types has participation ratio 1, its key can be used as a key for the new relation.
- (Advice: binary relationships simpler to model)

References

 Some slides are inspired by my own teaching materials in the past.