Island Model

Aula 6 – 1^ª Parte

Introduction

- The Islands Model (SCED, 2003) is an endogenous growth model where bounded-rational, heterogeneous firms interact locally
- The model allows to study under which conditions self-sustained growth does emerge
- The model is able to deliver empirically plausible output time series
- The models is also employed to study the tradeoff between individual rationality and macroeconomics performance

Bird's eye view of the model

Economic characteristic	Model representation
Technological space	notionally unbounded sea
Technology	island (mine)
Output	homogeneous good
Agents	stylized entrepreneurs
Production	mining/extracting the good
Technological search	exploration of the sea
Technological diffusion	spreading knowledge from islands
Innovation	discovering a new island
Imitation	traveling between discovered islands
Technological difference	distance between islands

World structure

- Discrete time t = 0,1,2,...,T
- Finite, constant population of stylized firms i = 1, 2, ..., N
- Homogeneous good
- Notionally endless, discrete set of technologies (islands)
- Islands:
 - stochastically distributed on a bi-dimensional lattice
 - each node of the lattice can be an "island" with probability π
 - each island (x, y) is characterized by a productivity coefficient

$$s(x,y) = |x| + |y|$$

Example: 3 islands, 10 firms

Production

- Set L_0 of initially **known islands** (exploited technologies)
- All N firms mining on them (randomly allocated)
- Each firm i working in island (x_j, y_j) produces an **output** $s(x_i, y_i)$ each period
- Each island (x_i, y_i) has a **total output** of

$$Q_t(x_j, y_j) = s(x_j, y_j) m_t(x_j, y_j)^{\alpha}$$

- $-m_t(x_j,y_j)$ number of firms currently working on (x_i,y_i)
- $-\alpha > 1$ is an increasing returns-to-scale coefficient

Exploration

- In each t, a "miner" becomes "explorer" with probability ϵ (constant willingness to explore)
- Explorers move around randomly in each period

Innovation

- In each exploration period, explorers find a **new** island with a probability π
- The productivity of the newly discovered island is

$$s^* = s(x^*, y^*)$$

= $(1 + W)(|x^*| + |y^*| + \varphi q_{i,t} + \xi)$

- W: Poisson random variable (low probability, high jumps)
- $-|x^*|+|y^*|$: distance from the origin
- $-\varphi q_{i,t}$: cumulative learning effect
- $-\xi$: zero-mean random variable (high probability low jumps)

Example: exploration + innovation

Expanded technological space

Imitation

- In each t, every currently exploited island $(m(x_j, y_j) > 0)$ send a **signal** about its productivity $s(x_j, y_j)$
- Any miner on island (x_k, y_k) follows the signal from (x_j, y_j) with a probability proportional to

$$Q_t(x_j, y_j) e^{-\rho d((x_j, y_j), miner)}$$

- the current output $Q_t(x_j, y_j)$ of the island the signal comes from
- the distance between island (x_j, y_j) and miner
- The higher (smaller) ρ the more **global** (local) is information and knowledge diffusion
- Imitators move toward the imitated island following the shortest path leading to it (one step per period)

Example: imitation

Example: imitation

Example: imitation

Agent's states

Timeline and aggregation

Focus on:

- aggregate output (sum of firms' output) and growth rates
- number of explorers, imitators, miners

Parameters

Parameter	Meaning
ρ	globality of information diffusion
$oldsymbol{arphi}$	path-dependency in learning
λ	likelihood of radical innovations
π	baseline opportunity conditions
α	increasing returns to scale in exploitation
ϵ	willingness to explore
N	population size
T	time horizon

Analyzing results

Generate Montecarlo
Distribution for each
Statistics in **S**= {s₁, s₂, ...}

Studying how Montecarlo Distributions of Statistics in **S**= {s₁, s₂, ...} behave as initial conditions, micro and macro parameters change

Statistical Tests for difference between moments

Five questions

- 1. Under which general conditions is the economy able to generate self-sustaining growth as the outcome of the joint processes of exploitation and exploration?
- 2. In self-sustaining growth regime, do log(GNP) timeseries display empirically observed statistical properties?
- 3. In self-sustaining growth regime, what are the roles played by system parameters (i.e. by the sources of growth)?
- 4. Does the self-sustaining growth process lead to explosive growth patterns? Does the variability of growth rates increase over time and tends to infinity?
- 5. What happens in we inject in the economy more rational firms?

Closed economy without exploration

Shutting down exploration and innovation:

- a given initial set of islands (e.g., only 2)
- firms initially mining on them (50%, 50%)
- they can only exchange information among the 2 existing technologies (initial set of islands cannot be expanded)

• **Diffusion** of information drives growth:

- in this case the model is analytically solvable!
- whenever an island manages to capture all agents the growth process stops (growth rates are zero)
- the process is path-dependent and possibly inefficient (convergence toward an inefficient level of output is a non-zero probability event)

Closed economy without exploration

- Growth is always a transitory phenomenon
- Lock-in may occur on the ex-ante less efficient island

Closed economy with exploration

- Allowing for exploration in a closed box:
 - initial set of islands cannot be expanded (no innovation)
 - explorers are allowed to search only inside initial box
 - imitation still occurs as before
- **Diffusion** of information still drives growth:
 - process driven by information diffusion
 - steady states can be destabilized by "irrational" agents who
 - decide to leave their island even if everyone is there

Closed economy with exploration

 Absorbing states become basins of attraction: growth is a transitory phenomenon, but fluctuations can arise

Open-ended economy

In the full-fledged model self-sustaining growth can arise

Five questions

- 1. Under which general conditions is the economy able to generate self-sustaining growth as the outcome of the joint processes of exploitation and exploration?
- 2. In self-sustaining growth regime, do log(GNP) timeseries display **empirically-observed** statistical properties?
- 3. In self-sustaining growth regime, what are the roles played by system parameters (i.e. by the sources of growth)?
- 4. Does the self-sustaining growth process lead to explosive growth patterns? Does the variability of growth rates increase over time and tends to infinity?
- 5. What happens in we inject in the economy more rational firms?

Empirical validation

- Yes, if self-sustaining growth does emerge:
 - log(GNP) time series are I(1), i.e. difference-stationary
 - growth rates are positively correlated over short horizons
 - persistence of shocks are in line with empirical evidence
- Scale-effects are not present
 - as in reality, unlike in many endogenous growth models!

Empirical validation

- log(GNP) time-series is I(1) if:
 - increasing returns to scale, opportunities, path-dependency and globality of information are strong enough
 - and if the exploitation-exploration trade-off is solved

Five questions

- 1. Under which general conditions is the economy able to generate self-sustaining growth as the outcome of the joint processes of exploitation and exploration?
- 2. In self-sustaining growth regime, do log(GNP) timeseries display empirically observed statistical properties?
- 3. In self-sustaining growth regime, what are the roles played by system parameters (i.e. by the sources of growth)?
- 4. Does the self-sustaining growth process lead to explosive growth patterns? Does the variability of growth rates increase over time and tends to infinity?
- 5. What happens in we inject in the economy more rational firms?

Sensitivity analysis

- Average growth rates (AGRs) increasing in:
 - path-dependency in knowledge accumulation
 - globality of information diffusion
 - returns-to-scale strength and opportunities

Sensitivity analysis

- AGRs are maximized only if there is a balance between
 - resources devoted to exploration and resources devoted to
 - exploitation

Five questions

- 1. Under which general conditions is the economy able to generate self-sustaining growth as the outcome of the joint processes of exploitation and exploration?
- 2. In self-sustaining growth regime, do log(GNP) timeseries display empirically observed statistical properties?
- 3. In self-sustaining growth regime, what are the roles played by system parameters (i.e. by the sources of growth)?
- 4. Does the self-sustaining growth process lead to **explosive growth** patterns? Does the variability of growth rates increase over time and tends to infinity?
- 5. What happens in we inject in the economy more rational firms?

Time dynamics

- Higher growth is always associated to smaller growth-rate variability
 - self-sustained growth is a self-organized process leading to ordered growth patterns

Five questions

- 1. Under which general conditions is the economy able to generate self-sustaining growth as the outcome of the joint processes of exploitation and exploration?
- 2. In self-sustaining growth regime, do log(GNP) timeseries display empirically observed statistical properties?
- 3. In self-sustaining growth regime, what are the roles played by system parameters (i.e. by the sources of growth)?
- 4. Does the self-sustaining growth process lead to explosive growth patterns? Does the variability of growth rates increase over time and tends to infinity?
- 5. What happens in we inject in the economy more rational firms?

Rational agent coordination failure

- Simple setup:
 - CRTS, no info diffusion, no path-dependency
 - injecting in the economy a representative rational firm (RRF) who decides whether to exploit or explore by maximizing expected returns
 - RRF knows the structure of the economy and the direction where best islands are (but not where they are)

ISLAND MODEL IN LSD

Island Model in LSD

- What is it?
 - A full version of Fagiolo & Dosi 2003 available to be run inside the LSD environment and analyzed in R
- How was it done?
 - It's a full recode, using all LSD advanced resources like objects, networks and lattices
- Is it really the same model?
 - Model outputs were not carefully compared with the original version (bugs may still exist!)

Why LSD?

- Why Island Model in LSD would be better?
 - Multiple parallel "seas/countries" for free
 - Easy interface (configuration, output data, graphs)
 - Transparently run in Windows/Mac/Linux
 - More productivity: all simulation tasks done in a single graphic interface (no command line!)
 - Enhanced tools: configuration sets mgmt.,
 exception mgmt., quick graphic data analysis,
 sensitivity analysis, statistical packages interface

Exploring the Island Model

- Inside LSD folder structure, look for the folder containing the Island Model in the 'Examples/SantAnna' folder
 - The folder contains the main file 'fun_Island.cpp'
- The code is organized in sections, associated to the respective object types:
 - Sea: single object instance representing one sea
 - Island: one instance per island (known/unknown)
 - Knowlsland: one instance per known island
 - Miner: one dummy instance per agent mining on island
 - Agent: one instance per agent

Exploring the Island Model

- Inside LSD folder structure, look for the folder containing the Island Model in the 'Examples/SantAnna' folder
 - The folder contains the main file 'fun_Island.cpp'
- The code is organized in sections, associated to the respective object types:
 - Sea: single object instance representing one sea
 - Island: one instance per island (known/unknown)
 - Knowlsland: one instance per known island
 - Miner: one dummy instance per agent mining on island
 - Agent: one instance per agent

Object Sea

- Init: initializes the model, run once
 - Create the lattice, if appropriate
 - Create the random initial islands (known/unknown)
 - Draw the initially known islands
 - Allocate agents in known islands randomly
- **Step**: forces agents to decide **what to do** first
- I: counts the known islands
- m: counts the number of miners
- Q: accumulates the sea's production (GDP)
- J: expands and counts the islands set
 - Expand each frontier as required (N, S, W, E)

Object KnownIsland

- _m: counts the miners in the island
 - Ignore "inactive" Miner object instances
 - Adjust island color on the lattice (empty/colonized)
- Qisland: accumulates the island production
- _c: compute the island productivity

Object Miner

- _Qminer: compute miner production
- _cBest: the best signal productivity received
 - Evaluates all signals received on the island

Object Agent

- _a: define the state of the agent
 - If an Explorer, navigate to a new random position
 - If an Imitator, navigate the shortest path to target
 - If navigator, update position on the lattice
 - If arrive in an island, become a Miner
 - If a Miner decide if become Explorer or Imitator

Data structure (1)

- Object Root: technical flags & parameters
 - latticeOpen, showSea, simSpeed, sizeLattice
- Object Sea:
 - Parameters: N, alpha, epsilon, phi, lambda, pi, rho,
 l0radius, minSgnPrb
 - Flags: seaShown,
 - State parameters: xxxxFrontier
 - Technical variables: Init, Step
 - Variables: I, m, J, Q

Data structure (2)

- Object Island:
 - Flag: _known
 - State parameters: _idIsland, _xIsland, _yIsland
- Object Knowlsland:
 - State parameters: _idKnown, _s
 - Variables: _c, _m, _Qisland
- Object Miner:
 - Flag: _active
 - State parameters: _agentId, _xBest, _yBest
 - Variables: _cBest, _Qminer

Data structure (3)

Object Agent:

- State parameters: _idAgent, _knownId, _xAgent, _yAgent, _xTarget, _yTarget, _Qlast
- Variable: _a

The lattice

- Can be turned off for speed: showSea
- Can show the entire sea or just the central area: sizeLattice
 - Sea size = 2 * total time steps + 1
- Reduce simulation speed: simSpeed

Topology configuration

- Set the maximum radius for initial known islands: I0radius
- Define the minimum signal probability to consider (speed-up): minSgnPrb

'hook' pointers

- LSD 'hook' pointers connect all the objects to maximize performance:
 - KnowIsland -> Island
 - Miner -> Agent
 - Agent -> Miner

Diffusion network

- Each KnownIsland instance is the hub of a star network to all other relevant known islands
 - Link creation depends on the signal intensiti threshold defined by MinSgnPrb
 - All links are bidirectional
 - Link weight is defined by the exponential decay factor between the two islands

Bibliografia

• FAGIOLO, G.; DOSI, G. Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents. *Structural Change and Economic Dynamics*, v. 14, p. 237-273, 2003.