

Predicting Volatility in US Electricity Prices

Miles Franklin, David Harper, Adam Goldstein, Himanshu Ghritalhre

Project Overview

Target

 The goal of this project is to produce a model predicting the price volatility of electricity for a given year. We measure the volatility using the Coefficient of Variation, to normalize the data and facilitate state to state comparisons.

Coefficient of Variation =
$$\frac{Standard Deviation}{Mean}$$

Features

- O Distribution of fuel sources in a state (i.e. what percent of production is from coal, solar, etc.)
- Whether or not the state is a net producer or consumer of electricity
 - Are the imports greater than the exports?
 - Is the state's consumption of electricity greater than its production of electricity?
- What effect do weather patterns have on price stability?
 - Do these effects felt impact renewable sources just
- Can activity in the Futures Contract Market help predict price action?

Understanding the Target Variable

Understanding the Target Variable Con't

Futures Data

- Prices and Volume for Contracts
 - o BZ Brent Crude Oil
 - NG Natural Gas
 - CL Light Sweet Crude Oil
 - o HO Heating Oil
 - More will probably be added
- Hypothesis: In times of energy price volatility, people may be buying or selling more futures contracts to lock in their price before big moves

Weather Data

- Monthly Average Temperature at 6m above ground
 - All of the United States gridded at 60km X 60km
 - Hypothesis: Temperature impacts price volatility because during hot and cold spells, residents
 are using a higher than average amount of electricity
 - Plan: Define a metric that determines how far above average summer temperatures were for per year by state. Define another metric that measure how below average winter temperatures were.
 - Possible Hurdles: Heat waves or cold spells that impact a particular region may not get detected when calculating metrics for an entire state

Weather Data (contd)

- Palmer Drought Severity Index
 - All of the Lower United States gridded at 60km X 60km
 - **Hypothesis:** Droughts impact price volatility in regions that rely on hydroelectric power.
 - Plan: Calculate how many standard deviations above average a state is in terms of their drought index for all years of interest

$$kWh_{percapita} = \frac{kWh}{electric\ accounts}$$

Sectors include - Residential (RES), Commericial (COM), Transporation (TRA), Industrial (IND), and Other (OTH)

 $kWh_percapita = \frac{kWh}{electric_accounts}$

date

$$kWh_percapita = \frac{kWh}{electric_accounts}$$

Sectors include - Residential (RES), Commericial (COM), Transporation (TRA), Industrial (IND), and Other (OTH)

$$kWh_percapita = \frac{kWh}{electric_accounts}$$

Sectors include - Residential (RES), Commercial (COM), Transporation (TRA), Industrial (IND), and Other (OTH)

$$kWh_percapita = \frac{kWh}{electric_accounts}$$

Sectors include - Residential (RES), Commericial (COM), Transporation (TRA), Industrial (IND), and Other (OTH)

Plant Data

- PrimSource=biomass
- PrimSource=petroleum
- PrimSource=other
- PrimSource=batteries
- PrimSource=hydroelectric
- PrimSource=nuclear
- PrimSource=wind
- PrimSource=coal
- PrimSource=natural gas
- PrimSource=geothermal
- PrimSource=pumped storage
- PrimSource=solar

Similar Projects

- Forecasting Electricity Price Time Series Data in Python using a VAR Model
- http://dannychua.github.io/Electricity-Price-Predictor/
- http://www.energyonline.com/reports/files/lcg_volatility.pdf

Next Steps

- Additional data
 - Look into transportation sector (TRA) for why there are gaps in the monthly consumption data
 - Per Capita Calculation Add United States population to compare with electric accounts
 - Emissions allowance market

Modeling

- Combine data sources into one table of features to begin modeling
- Start with regression models and simplify into classification models if needed
- Evaluate what features are the strongest for our model