LE TRAITEMENT D'IMAGES

- FILTRAGE -

Jonathan Fabrizio
http://jo.fabrizio.free.fr

Filtrage

Domaines spatial et fréquentiel Lissage, élimination du bruit Détection de bords/coins

Plan du cours

- Quelques filtres classiques pour
 - le lissage/élimination du bruit
 - la détection de bords
 - la détection de points d'intérêts
 - l'amélioration de la netteté
- Passage dans le domaine fréquentiel
 - Transformée de Fourier
 - Convolution

Filtrage

Quelques filtres classiques

Filtrage

- On s 'appuie souvent sur le produit de convolution
- On va recalculer la valeur d'un pixel en fonction de son voisinage

Filtres classiques : Lissage, débruitage

Filtres classiques : moyenne Lissage

- Filtre moyenneur
 - Objectif : lisser l'image
 - Fonctionnement : on remplace la valeur d'un pixel par la moyenne des valeurs des pixels du voisinage
 - Noyau de convolution :

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Comment choisir la taille/la forme du voisinage?

Filtres classiques : moyenne Lissage

• Filtre moyenneur, résultat :

Filtres classiques : moyenne Impact de la taille du voisinage

Filtre moyenneur, résultats :

Filtres classiques

- Implémentation
 - Comment implémenter un tel filtre ?
 - Que faire sur la bordure ?
- Amélioration ?
 - ?

Filtres classiques

- Implémentation
 - Comment implémenter un tel filtre ?
 - Que faire sur la bordure ?
- Amélioration ?
 - Au lieu de faire contribuer tous les pixels également, on peut privilégier les pixels proches du centre
 - Filtre gaussien

- Filtre Gaussien
 - Objectif: lisser l'image
 - Fonctionnement : on remplace la valeur d'un pixel par la moyenne pondérée des valeurs des pixels du voisinage
 - Noyau de convolution : gaussienne
 - Paramètre / Taille du Noyau ?

- Filtre Gaussien résultat
 - Comparaison avec le filtre moyenneur
 - Avantages/Inconvénients?

Filtres classiques : Médian Lissage

- Filtre médian
 - Objectif : débruitage
 - Fonctionnement : trier l'ensemble des valeurs des intensités des pixels sur un voisinage puis remplacer la valeur du pixel considéré par la valeur médiane sur le voisinage

Filtres classiques : Médian Lissage

- Filtre médian résultat
 - Supprime facilement le bruit impulsionnel
 - Préserve l'information de contour
 - Est un peu lourd (tri)

- Lissage (gaussien, moyenne...)
 - Dégrade les frontières
 - Solutions?

- Lissage (gaussien, moyenne...)
 - Dégrade les frontières
 - Solutions?
 - Faire contribuer principalement les pixels qui ont une couleur proche de la couleur du pixel considéré ou pondérer leur apport en fonction de leur couleur
 - Filtre de Nagao

- ...

• Filtre gaussien, résultats :

Original

Gaussien

Gaussien sélectif

Filtres classiques : Nagao Lissage

- Filtre de Nagao
 - Tenir compte des régions ?

Filtres classiques : Nagao Lissage

- Filtre de Nagao
 - Faire un médian mais dans la région de variance faible

Filtres classiques : Nagao Lissage

• Filtre de Nagao (pas un traiteur d'images), résultats

Originaux

- Détection de bords
 - Comment se caractérise un contour ?
 - Comment trouver les contours?
 - Pourquoi trouver les contours?

- Définir la notion de bord / contour
 - Transition brutale (échelon)

- Définir la notion de bord / contour
 - Transition brutale (échelon)

- Définir la notion de bord / contour
 - Quelle opération réaliser pour détecter ce type de motifs ?

Détection de bord : calcul de la dérivée ?

$$\frac{\partial f(x,y)}{\partial y}$$

- Détection de bord : calcul de la dérivée :
 - $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

Profil:

Dérivée :

Recherche de maxima locaux ?

Calcul de la dérivée en 1 point x

• En continu :
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

Dans notre cas (discret) :

-
$$f'(x) = (f(x+1) - f(x))$$
 ou $\frac{1}{2} * (f(x+1) - f(x-1))$

- Masques:

Attention signal 2D

Filtres classiques : Roberts Détection de bords

Filtre de Roberts

$$r(x,y) = sqrt((i(x,y)-i(x-1,y-1))^2 + (i(x,y-1)-i(x-1,y)^2)$$

$$r(x,y) = |i(x,y)-i(x-1,y-1)| + |i(x,y-1)-i(x-1,y)|$$

Contours pas forcement nets

Sobel

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

Prewitt

-1	0	1
-1	0	1
-1	0	1

Pourquoi ces coefficients?

Sobel

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

Prewitt

-1	0	1
-1	0	1
-1	0	1

Inclusion du lissage...

Sobel

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

Prewitt

-1	0	1
-1	0	1
-1	0	1

$$\frac{\partial f(x,y)}{\partial x} \setminus \frac{\partial f(x,y)}{\partial y}$$

Sobel

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

Prewitt

-1	0	1
-1	0	1
-1	0	1

 Comment récupérer les contours à partir de l'image du gradient ?

 Comment récupérer les contours à partir de l'image du gradient ?

Le vecteur gradient est orthogonal aux lignes de niveaux

plus sa norme est grande plus la transition est forte

On cherche une transition maximale

Comment récupérer les contours à partir de l'image

du gradient?

- Différentes stratégies :
 - Seuillage
 - Seuillage par hystérésis
 - Recherche de lignes de crête
- Problème :
 - Contour fermé/contour ouvert ?

Filtres classiques : Kirsch, Robinson Détection de bords

Kirsch and Robinson Compass Masks:

-3	-3	5	-3	5	5	5	5	5
-3	0	5	-3	0	5	-3	0	-3
-3	-3	5	-3	-3	-3	-3	-3	-3

-1	0	1	0	1	2	1	2	1
-2	0	2	-1	0	1	0	0	0
-1	0	1	-2	-1	0	-1	-2	-1

Filtres classiques : Kirsch, Robinson Détection de bords

Kirsch and Robinson Compass Masks:

-3	-3	5	-3	5	5	5	5	5
-3	0	5	-3	0	5	-3	0	-3
-3	-3	5	-3	-3	-3	-3	-3	-3

-1	0	1	0	1	2	1	2	1
-2	0	2	-1	0	1	0	0	0
-1	0	1	-2	-1	0	-1	-2	-1

0

1 2/////////

L'amplitude est donnée par la plus forte réponse

L'orientation est déduite du masque qui a donné la plus forte réponse

« Sobel que l'on fait tourner... »

Filtres classiques : Frei-Chen Détection de bords

Frei-Chen

edge

line

 1
 1

 1/3
 1

 1
 1

 1
 1

 1
 1

9 masques qui forme une base.

Filtres classiques : Frei-Chen Détection de bords

- Frei-Chen
 - La détection se fait seulement avec :

1/(2/2)
$$0 0 0$$
 +rotations à 90°
-1 $\sqrt{2}$ -1 +rotations à 90°
 $theta = \arccos \sqrt{\frac{\sum_{k=1}^{4} (W_k * I)^2}{\sum_{k=1}^{9} (W_k * I)^2}}$

- Plus theta est grand, moins la bordure est marquée (theta est entre 0 et Pi).
- Avantage :
 - Plus robuste à différents niveaux d'illumination
 - Plus robuste car élimine les motifs/lignes, points... de la détection
 - Peut être utilisé pour détecter les lignes en utilisant les masques 5 à 8 à la place des masques 1 à 4.

Filtres classiques : Le laplacien Détection de bords

- Utilisation de la dérivée seconde
 - Un point de contour est un passage à zéro de la dérivée seconde

Filtres classiques : Le laplacien Détection de bords

• Dérivée seconde :

Filtres classiques : Le laplacien Détection de bords

Calcul du laplacien

•
$$f'(x) = f(x+1) - f(x)$$

•
$$f''(x) = f'(x+1) - f'(x)$$

•
$$f''(x) = f(x+2) - f(x+1) - f(x+1) + f(x)$$

•
$$f''(X) = f(X+1) - 2 * f(X) + f(X-1)$$