1

2

5

Personality Traits and Scientific Reasoning

Moin Syed¹ & Imaginary Friend^{1,2}

- $^{\rm 1}$ University of Minnesota
- ² University of Darache

Author Note

- We thanks everyone for everything. We received all of the funding, but have no conflicts of interest.
- The authors made the following contributions. Moin Syed: Conceptualization,
- Writing Original Draft Preparation, Writing Review & Editing; Imaginary Friend:
- Writing Review & Editing, Supervision.
- 11 Correspondence concerning this article should be addressed to Moin Syed,
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN
- 13 55455, USA. E-mail: moin@umn.edu

Abstract

- 15 Personality traits have been shown to be related to many aspects of life. But what about
- scientific reasoning? We don't really know how these are related. The current study
- consists of an analysis of 199 U.S. college students enrolled in STEM majors who
- completed measures of personality traits and scientific reasoning. The results indicated a
- 19 lot of variability in scientific reasoning.
- 20 Keywords: personality, traits, scientific reasoning, truth
- Word count: X

22

Personality Traits and Scientific Reasoning

Personality traits have been shown to be related to many aspects of life (Ozer & Benet-Martinez, 2006). But what about scientific reasoning? We don't really know how these are related, but it seems like finding out would be worthwhile. This is not just because we don't know—there are many questions for which we have no answers, and that is probably for a good reason. Not all questions are good or useful! Good to keep in mind.

But here I think we are dealing with a good question. Personality traits correspond
to relatively stable patterns of individual differences in thoughts, emotions, and behaviors.
Variations in these individual differences have been linked to many life outcomes, including
academic achievement. Scientific reasoning is important not only for those participating in
science, but also for society at large. Knowing more about how personality traits are
related to scientific reasoning could help us better understand who tends to excel in this
area, and thus could help align people's careers with their personalities, but also would
open up new possibilities for how to tailor our approach to teaching scientific reasoning.

36 The Present Study

The purpose of the present study was to examine how personality traits are related to scientific reasoning. This was an exploratory correlational study with no *a priori* hypotheses.

40 Method

The current study was **NOT** preregistered. Data and code are available at https://github.com/syeducation/traits-reasoning. You can also access the data and code by clicking on this text here.

44 Participants and Procedure

The total sample in the current study consists of 199 students enrolled in one of the three STEM-focused colleges at a large public university in the U.S. Midwest (M age = 19, SD = 2.13). Participants were recruited from a list of all first-year students in the three colleges who identified as racial/ethnic minorities. Eligible students were sent a survey link via email and compensated \$25 for their participation.

50 Measures

- Personality Traits. Participants completed the 100-item Big Five Aspect Scale (DeYoung et al., 2007), which assesses the big five traits as well as ten aspects. We collected these, but we aren't using them in the current study (despite the title of the project).
- Scientific Reasoning. Participants completed an 11-item assessment of scientific reasoning (Drummond & Fischhoff, 2017), in which they were asked to read a description of a scientific activity and then answer True or False to a question about that activity (Cronbach's alpha = 0.64).

58 Data analysis

We used R (Version 4.5.0; R Core Team, 2024) and the R-packages dplyr (Version 1.1.4; Wickham, François, Henry, Müller, & Vaughan, 2023), ggplot2 (Version 3.5.2; Wickham, 2016), groundhog (Version 3.2.3; Simonsohn & Gruson, 2025), knitr (Version 1.50; Xie, 2015), labelled (Version 2.16.0; Larmarange, 2025), papaja (Version 0.1.4; Aust & Barth, 2025), psych (Version 2.5.6; William Revelle, 2025), and tinylabels (Version 0.2.5; Barth, 2025) for all our analyses.

65 Results

Overall, participant did well on the scientific reasoning task, averaging more correct than incorrect answers, M correct = 0.65, (SD = 0.22). However, these results are best examined via tables and figures, so let's look at some.

Here is a table of each item and its rate of success:
Table 1

(#tab:descriptive table)Descriptives for SRS scale

Item	Mean	SD
SRS Item 1	0.57	0.50
SRS Item 2	0.59	0.49
SRS Item 3	0.81	0.39
SRS Item 4	0.60	0.49
SRS Item 5	0.78	0.42
SRS Item 6	0.69	0.46
SRS Item 7	0.71	0.45
SRS Item 8	0.61	0.49
SRS Item 9	0.69	0.46
SRS Item 10	0.58	0.49
SRS Item 11	0.49	0.50

It looks like item 11 was the most difficult:

70

71

72

73

74

Two researchers are developing a survey to measure consumers' feelings about customer service. Researcher A wants customers to rate their agreement with the statement "I am satisfied with customer service" on a 5-point scale, where 1 = strongly agree and 5 = strongly disagree. Researcher B wants customers to

rate customer service on a 5-point scale, where 1 = not dissatisfied at all and 5
= highly dissatisfied. True or False? These questions are equally good for
measuring how consumers feel about customer service.

On average, people did pretty well, but from the standard deviation for the scale as
well as the means and standard deviations of the individual items you can see there is quite
a bit of variability. It is always important to plot your data, so let's take a look at the
distribution!

Discussion

82

86

The purpose of the present study was to examine how personality traits are related to scientific reasoning.

Overall, it seems that people reason about science, but maybe not as much as we

- would have hope.
- We don; t actually know how personality traits are related to scientific reasoning,
- because we did not assess that. That is a limitation of the study that should guide future
- 90 work.
- In sum, this was a very mediocre study. We will try better in the future.

92 References

- 93 Aust, F., & Barth, M. (2025). papaja: Prepare reproducible APA journal articles with R
- 94 Markdown. https://doi.org/10.32614/CRAN.package.papaja
- 95 Barth, M. (2025). tinylabels: Lightweight variable labels.
- https://doi.org/10.32614/CRAN.package.tinylabels
- ⁹⁷ Larmarange, J. (2025). Labelled: Manipulating labelled data. Retrieved from
- https://CRAN.R-project.org/package=labelled
- ⁹⁹ R Core Team. (2024). R: A language and environment for statistical computing. Vienna,
- Austria: R Foundation for Statistical Computing. Retrieved from
- https://www.R-project.org/
- Simonsohn, U., & Gruson, H. (2025). Groundhog: Version-control for CRAN, GitHub, and
- 103 GitLab packages. Retrieved from https://CRAN.R-project.org/package=groundhog
- Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New
- York. Retrieved from https://ggplot2.tidyverse.org
- Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A
- grammar of data manipulation. Retrieved from
- https://CRAN.R-project.org/package=dplyr
- William Revelle. (2025). Psych: Procedures for psychological, psychometric, and
- personality research. Evanston, Illinois: Northwestern University. Retrieved from
- https://CRAN.R-project.org/package=psych
- 112 Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Boca Raton, Florida:
- 113 Chapman; Hall/CRC. Retrieved from https://yihui.org/knitr/