## Administrative Details

- · HW 3 is posted
  - · Due on March 4
  - · Available until March 6
- · MidTerm on March 6
  - · Syllabus:
    - · Everything covered in class up to Feb 28
  - · Cheat Sheet:
    - · One page written on both sides

## **Decision Tree**

# Supervised Learning: find f

- Given: Training set  $\{(x_i, y_i) \mid i = 1 \dots n \}$
- Find: A good approximation to  $f: X \rightarrow Y$

# Supervised Learning: find f

- Given: Training set  $\{(x_i, y_i) \mid i = 1 \dots n \}$
- Find: A good approximation to  $f: X \rightarrow Y$ 
  - Examples: what are *X* and *Y*?
    - · Spam Detection
      - Map email to {Spam,Ham}
    - · Digit recognition
      - Map pixels to  $\{0,1,2,3,4,5,6,7,8,9\}$
    - · Stock Prediction
      - Map new, historic prices, etc. to  $\mathbb{R}$  (the real numbers)

## A Supervised Learning Problem

- Consider a simple, Boolean dataset:
  - $f: X \rightarrow Y$  $X = \{0,1\}^4$

 $- Y = \{0,1\}$ 

- Question 1: How should we pick the *hypothesis space*, the set of possible functions *f*?
- Question 2: How do we find the best *f* in the hypothesis space?

#### Dataset:

| Example | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|---------|-------|-------|-------|-------|---|
| 1       | 0     | 0     | 1     | 0     | 0 |
| 2       | 0     | 1     | 0     | 0     | 0 |
| 3       | 0     | 0     | 1     | 1     | 1 |
| 4       | 1     | 0     | 0     | 1     | 1 |
| 5       | 0     | 1     | 1     | 0     | 0 |
| 6       | 1     | 1     | 0     | 0     | 0 |
| 7       | 0     | 1     | 0     | 1     | 0 |

# Most General Hypothesis Space

Consider all possible boolean functions over four input features!

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|-------|-------|-------|-------|---|
| 0     | 0     | 0     | 0     | ? |
| 0     | 0     | 0     | 1     | ? |
| 0     | 0     | 1     | 0     | 0 |
| 0     | 0     | 1     | 1     | 1 |
| 0     | 1     | 0     | 0     | 0 |
| 0     | 1     | 0     | 1     | 0 |
| 0     | 1     | 1     | 0     | 0 |
| 0     | 1     | 1     | 1     | ? |
| 1     | 0     | 0     | 0     | ? |
| 1     | 0     | 0     | 1     | 1 |
| 1     | 0     | 1     | 0     | ? |
| 1     | 0     | 1     | 1     | ? |
| 1     | 1     | 0     | 0     | 0 |
| 1     | 1     | 0     | 1     | ? |
| 1     | 1     | 1     | 0     | ? |
| 1     | 1     | 1     | 1     | ? |

# Most General Hypothesis Space

Consider all possible boolean functions over four input features!

- · 2<sup>16</sup> possible hypotheses
- · 2<sup>9</sup> are consistent with our dataset
- · How do we choose the best one?

#### Dataset:

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|-------|-------|-------|-------|---|
| 0     | 0     | 0     | 0     | ? |
| 0     | 0     | 0     | 1     | ? |
| 0     | 0     | 1     | 0     | 0 |
| 0     | 0     | 1     | 1     | 1 |
| 0     | 1     | 0     | 0     | 0 |
| 0     | 1     | 0     | 1     | 0 |
| 0     | 1     | 1     | 0     | 0 |
| 0     | 1     | 1     | 1     | ? |
| 1     | 0     | 0     | 0     | ? |
| 1     | 0     | 0     | 1     | 1 |
| 1     | 0     | 1     | 0     | ? |
| 1     | 0     | 1     | 1     | ? |
| 1     | 1     | 0     | 0     | 0 |
| 1     | 1     | 0     | 1     | ? |
| 1     | 1     | 1     | 0     | ? |
| 1     | 1     | 1     | 1     | ? |
|       |       |       |       |   |

# Most General Hypothesis Space

Consider all possible boolean functions over four input features!

Dotocate

- · 2<sup>16</sup> possible hypotheses
- · 2<sup>9</sup> are consistent with our dataset
- · How do we choose the best one?

| Da    |       |       |       |   |  |
|-------|-------|-------|-------|---|--|
| $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |  |
| 0     | 0     | 0     | 0     | ? |  |
| 0     | 0     | 0     | 1     | ? |  |
| 0     | 0     | 1     | 0     | 0 |  |
| 0     | 0     | 1     | 1     | 1 |  |
| 0     | 1     | 0     | 0     | 0 |  |
| 0     | 1     | 0     | 1     | 0 |  |
| 0     | 1     | 1     | 0     | 0 |  |
| 0     | 1     | 1     | 1     | ? |  |
| 1     | 0     | 0     | 0     | ? |  |
| 1     | 0     | 0     | 1     | 1 |  |
| 1     | 0     | 1     | 0     | ? |  |
| 1     | 0     | 1     | 1     | ? |  |
| 1     | 1     | 0     | 0     | 0 |  |
| 1     | 1     | 0     | 1     | ? |  |
| 1     | 1     | 1     | 0     | ? |  |
| 1     | 1     | 1     | 1     | ? |  |

| Example | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|---------|-------|-------|-------|-------|---|
| 1       | 0     | 0     | 1     | 0     | 0 |
| 2       | 0     | 1     | 0     | 0     | 0 |
| 3       | 0     | 0     | 1     | 1     | 1 |
| 4       | 1     | 0     | 0     | 1     | 1 |
| 5       | 0     | 1     | 1     | 0     | 0 |
| 6       | 1     | 1     | 0     | 0     | 0 |
| 7       | 0     | 1     | 0     | 1     | 0 |

## A Restricted Hypothesis Space

Consider all conjunctive boolean functions.

- · 16 possible hypotheses
- · None are consistent with our dataset
- · How do we choose the best one?

#### Dataset:

| Rule                                                 | Counterexample |
|------------------------------------------------------|----------------|
| $\Rightarrow y$                                      | 1              |
| $x_1 \Rightarrow y$                                  | 3              |
| $x_2 \Rightarrow y$                                  | 2              |
| $x_3 \Rightarrow y$                                  | 1              |
| $x_4 \Rightarrow y$                                  | 7              |
| $x_1 \wedge x_2 \Rightarrow y$                       | 3              |
| $x_1 \wedge x_3 \Rightarrow y$                       | 3              |
| $x_1 \wedge x_4 \Rightarrow y$                       | 3              |
| $x_2 \wedge x_3 \Rightarrow y$                       | 3              |
| $x_2 \wedge x_4 \Rightarrow y$                       | 3              |
| $x_3 \wedge x_4 \Rightarrow y$                       | 4              |
| $x_1 \wedge x_2 \wedge x_3 \Rightarrow y$            | 3              |
| $x_1 \wedge x_2 \wedge x_4 \Rightarrow y$            | 3              |
| $x_1 \wedge x_3 \wedge x_4 \Rightarrow y$            | 3              |
| $x_2 \wedge x_3 \wedge x_4 \Rightarrow y$            | 3              |
| $x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$ | 3              |

| Example | $x_1$ | $x_2$ | $x_3$ | $x_4$ | y |
|---------|-------|-------|-------|-------|---|
| 1       | 0     | 0     | 1     | 0     | 0 |
| 2       | 0     | 1     | 0     | 0     | 0 |
| 3       | 0     | 0     | 1     | 1     | 1 |
| 4       | 1     | 0     | 0     | 1     | 1 |
| 5       | 0     | 1     | 1     | 0     | 0 |
| 6       | 1     | 1     | 0     | 0     | 0 |
| 7       | 0     | 1     | 0     | 1     | 0 |

## Simple Training Data Set

### Day Outlook Temperature Humidity Wind PlayTennis?

| D1  | Sunny    | Hot  | High                  | Weak   | No  |
|-----|----------|------|-----------------------|--------|-----|
| D2  | Sunny    | Hot  | High                  | Strong | No  |
| D3  | Overcast | Hot  | High                  | Weak   | Yes |
| D4  | Rain     | Mild | High                  | Weak   | Yes |
| D5  | Rain     | Cool | Normal                | Weak   | Yes |
| D6  | Rain     | Cool | Normal                | Strong | No  |
| D7  | Overcast | Cool | Normal                | Strong | Yes |
| D8  | Sunny    | Mild | High                  | Weak   | No  |
| D9  | Sunny    | Cool | Normal                | Weak   | Yes |
| D10 | Rain     | Mild | Normal                | Weak   | Yes |
| D11 | Sunny    | Mild | Normal                | Strong | Yes |
| D12 | Overcast | Mild | High                  | Strong | Yes |
| D13 | Overcast | Hot  | Normal                | Weak   | Yes |
| D14 | Rain     | Mild | $\operatorname{High}$ | Strong | No  |

### A Decision tree for

f: <Outlook, Temperature, Humidity, Wind> → PlayTennis?



Each internal node: test one discrete-valued attribute Xi

Each branch from a node: selects one value for X<sub>i</sub>

Each leaf node: predict Y (or  $P(Y|X \in leaf)$ )

### A Decision tree for

f: <Outlook, Temperature, Humidity, Wind> → PlayTennis?



# **Decision Tree Learning**

## Problem Setting:

- Set of possible instances X
  - each instance x in X is a feature vector
  - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- Unknown target function  $f: X \rightarrow Y$ 
  - Y=1 if we play tennis on this day, else 0
- Set of function hypotheses H={ h | h : X→Y }
  - each hypothesis h is a decision tree
  - trees sorts x to leaf, which assigns y



# **Decision Tree Learning**

## Problem Setting:

- Set of possible instances X
  - each instance x in X is a feature vector  $x = \langle x_1, x_2 \dots x_n \rangle$
- Unknown target function f: X→Y
  - Y is discrete-valued
- Set of function hypotheses H={ h | h : X→Y }
  - each hypothesis h is a decision tree

## Input:

Training examples {<x(i),y(i)>} of unknown target function f

## Output:

Hypothesis h∈ H that best approximates target function f

| $x_1$ | $x_2$ | $x_3$ | y |
|-------|-------|-------|---|
| 0     | 0     | 0     | 1 |
| 0     | 0     | 1     | 0 |
| 0     | 1     | 0     | 1 |
| 0     | 1     | 1     | 1 |
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 0 |



|       |       |       | ľ |
|-------|-------|-------|---|
| $x_1$ | $x_2$ | $x_3$ | y |
| 0     | 0     | 0     | 1 |
| 0     | 0     | 1     | 0 |
| 0     | 1     | 0     | 1 |
| 0     | 1     | 1     | 1 |
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 0 |
|       |       |       |   |



| $x_1$ | $x_2$ | $x_3$ | y |
|-------|-------|-------|---|
| 0     | 0     | 0     | 1 |
| 0     | 0     | 1     | 0 |
| 0     | 1     | 0     | 1 |
| 0     | 1     | 1     | 1 |
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 0 |
|       |       |       |   |



|       |       |       | 1 |  |
|-------|-------|-------|---|--|
| $x_1$ | $x_2$ | $x_3$ | y |  |
| 0     | 0     | 0     | 1 |  |
| 0     | 0     | 1     | 0 |  |
| 0     | 1     | 0     | 1 |  |
| 0     | 1     | 1     | 1 |  |
| 1     | 0     | 0     | 0 |  |
| 1     | 0     | 1     | 1 |  |
| 1     | 1     | 0     | 0 |  |
| 1     | 1     | 1     | 0 |  |
|       |       |       |   |  |



|       |       |       | I. |  |
|-------|-------|-------|----|--|
| $x_1$ | $x_2$ | $x_3$ | y  |  |
| 0     | 0     | 0     | 1  |  |
| 0     | 0     | 1     | 0  |  |
| 0     | 1     | 0     | 1  |  |
| 0     | 1     | 1     | 1  |  |
| 1     | 0     | 0     | 0  |  |
| 1     | 0     | 1     | 1  |  |
| 1     | 1     | 0     | 0  |  |
| 1     | 1     | 1     | 0  |  |
|       |       |       |    |  |



### Choosing the Best Attribute (3)

Unfortunately, this measure does not always work well, because it does not detect cases where we are making "progress" toward a good tree.



### A Better Heuristic From Information Theory

Let V be a random variable with the following probability distribution:

$$P(V = 0)$$
  $P(V = 1)$  0.8

The *surprise*, S(V = v) of each value of V is defined to be

$$S(V = v) = -\lg P(V = v).$$

An event with probability 1 gives us zero surprise.

An event with probability 0 gives us infinite surprise!

### A Better Heuristic From Information Theory

Let V be a random variable with the following probability distribution:

$$P(V = 0)$$
  $P(V = 1)$  0.8

The surprise, S(V = v) of each value of V is defined to be

$$S(V = v) = -\lg P(V = v).$$

An event with probability 1 gives us zero surprise.

An event with probability 0 gives us infinite surprise!

It turns out that the surprise is equal to the number of bits of information that need to be transmitted to a recipient who knows the probabilities of the results.

#### A Better Heuristic From Information Theory

Let V be a random variable with the following probability distribution:

$$P(V = 0)$$
  $P(V = 1)$  0.8

The surprise, S(V = v) of each value of V is defined to be

$$S(V = v) = -\lg P(V = v).$$

An event with probability 1 gives us zero surprise.

An event with probability 0 gives us infinite surprise!

It turns out that the surprise is equal to the number of bits of information that need to be transmitted to a recipient who knows the probabilities of the results.

This is also called the description length of V = v.

Fractional bits only make sense if they are part of a longer message (e.g., describe a whole sequence of coin tosses).

#### Entropy

The *entropy* of V, denoted H(V) is defined as follows:

$$H(V) = \sum_{v=0}^{1} -P(H=v) \lg P(H=v).$$

This is the average surprise of describing the result of one "trial" of V (one coin toss).



Entropy can be viewed as a measure of uncertainty.