Подалгебры, порождающие элементы, вложения

Определение 1.1 (Подалгебра). Подалгебра - алгебра $\mathcal{B}=(B,J)$ является подалдгеброй $\mathcal{A}=(A,I),$ если $B\subseteq A$ и J(f) - ограничение I(f) на B для всякого f

Определение 1.2 (Ограничение операции). Ограничение операции - n-местная операция g на B является ограничением операции f множеством B если

$$g(b_1, ..., b_n) = f(b_1, ..., b_n)$$

для любых $b_1,...,b_n$ из B

Пример 1.3 (Пример ограничения операции).

Пример 1.4 (Пример подалгебры). Пример подалгебры:

$$(\mathbb{C},+,\cdot)\supseteq(\mathbb{R},+,\cdot)\supseteq(\mathbb{Q},+,\cdot)$$

Доказательство.

Следствие 1.5. Отношение "является подалгеброй" транзитивно

$$A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$$

Доказательство.

Теорема 1.6. Если $\mathcal{A}=(A,I)$ - алгебра, то B ($B\subseteq A; B\neq\emptyset$) является носителем некоторой подалгебры тогда и только тогда, когда B замкнута относительно сигнатурной операции в алгебре \mathcal{A}

Доказательство. 1. \Rightarrow

B - носитель некоторой подалгебры $\mathcal{B}=(B,J)$ и $B\subseteq A,$ тогда

$$f^{\mathcal{A}}(b_1, ..., b_n) = f^{\mathcal{B}}(b_1, ..., b_n) \in B$$

B замкнута относительно сигнатурной операции в алгебре ${\mathcal A}$

2. $\Leftarrow B$ замкнута относительно сигнатурной операции в алгебре $\mathcal{A},$ тогда

J(f) - функция на B

$$J(f)(b_1,...,b_n) = f^{\mathcal{A}}(b_1,...,b_n) \in B$$

J(f) - ограниение $f^{\mathcal{A}}$ на B

следовательно $\mathcal{B}=(B,J)$ - подалгебра и B - её носитель

Пример 1.7 (Пример на 1.6).

Теорема 1.8. Пусть $\mathcal{A}=(A,I)$ - алгебра, \mathcal{B}_k - подалгебры, такие что $\bigcap_k \mathcal{B}_k \neq \emptyset$, тогда $\bigcap_k \mathcal{B}_k$ - носитель подалгебры

Доказательство. Пусть $f^{(n)} \in \Sigma, b_1, ..., b_n \in \bigcap_k \mathcal{B}_k$, тогда

$$\Rightarrow$$
 по определению пересечения $b_1,...,b_n \in \mathcal{B}$ для всех k

$$\Rightarrow$$
 по 1.6 $f^{\mathcal{A}}(b_1,...,b_n) \in \mathcal{B}$ для всех k

$$\Rightarrow$$
 по определению пересечения $f^{\mathcal{A}}(b_1,...,b_n) \in \bigcap_k \mathcal{B}_k$

Определение 1.9 (Порождённая подалгебра). Пусть $\mathcal{A} = (A, I), x \subseteq A, X \neq \emptyset, \mathcal{B}_k$ - всевозможные подалгебры, включающие X, тогда $\bigcap \mathcal{B}_k$ - подалгебра, порождённая X.

Теорема 1.10. \mathcal{A} - алгебра, $X \subseteq A$, $X \neq \emptyset$, \mathcal{B} - подалгебра, порождённвя X тогда и только тогда, когда \mathcal{B} состоит из всевозможных $t^{\mathcal{A}}(x_1,...,x_n)$ для $x_1,...,x_n \in X$

ДОКАЗАТЕЛЬСТВО. Достаточность (\Leftarrow). Пусть \mathcal{B} состоит из всевозможных $t^{\mathcal{A}}(x_1,...,x_n)$ для $x_1,...,x_n \in X$. Пусть $B_k \in \mathcal{A}$ - подалгебры такие что $X \subseteq B_k$, тогда

$$x_1, ..., x_n \in B_k$$

$$t^{\mathcal{A}}(x_1, ..., x_n) \in B_k$$

$$t^{\mathcal{A}}(x_1, ..., x_n) \in \bigcap_X B_k$$

$$t^{\mathcal{A}}(x_1, ..., x_n) \in \mathcal{B}$$

Необходимость(\Rightarrow). Предположим, что найдётся $b \in \mathcal{B}$, что $b \neq t^{\mathcal{A}}(x_1,...,x_n)$ для любых t и $x_1,...,x_n \in X$, Пусть $C = \{t^{\mathcal{A}}(x_1,...,x_n) : t$ — терм, $x_1,...,x_n \in X\}$, следовательно $b \notin C$, $x_i \in C$ и $X \subseteq C$.

C является подалгеброй: пусть $c_1,...,c_m \in C$ и

$$c_1 = t_1^{\mathcal{A}}(x_1, ..., x_n)$$

$$c_m = t_m^{\mathcal{A}}(x_1, ..., x_n)$$

$$f^{\mathcal{A}}(c_1, ..., c_m) = f^{\mathcal{A}}(t_1^{\mathcal{A}}(x_1, ..., x_n), ..., t_m^{\mathcal{A}}(x_1, ..., x_n))$$

По определению терма $f^{\mathcal{A}}(t_1^{\mathcal{A}}(x_1,...,x_n),...,t_m^{\mathcal{A}}(x_1,...,x_n))$ тоже является термом, содержащий переменные $x_1,...,x_n$, следовательно C замкнуто по сигнатурной операции A и по 1.6 является подалгеброй.

 $C=\mathcal{B}_k$ ждя некоторого $k,\ \mathcal{B}=\bigcap_k\mathcal{B}_k$. Так как $b\not\in C$, то $b\not\in \mathcal{B}$, что является противоречием.

Определение 1.11 (Разнозначное отображение). f - разнозначное, если $f(x) \neq f(y)$ при $x \neq y$

Определение 1.12 (Вложение). $h:\mathcal{A}\to\mathcal{B}$ - вложение \mathcal{A} в \mathcal{B} , если h - разнозначное отображение и

$$h(f^{\mathcal{A}}(a_1,...,a_n)) = f^{\mathcal{B}}(h(a_1),...,h(a_n))$$

говорят " \mathcal{A} вкладывается в \mathcal{B} "

Теорема 1.13. $h: A \to B$ - вложение A в B, тогда

- 1. образ h C, подалгебра в \mathcal{B}
- 2. $h: \mathcal{A} \simeq \mathcal{C}$

Доказательство. 1. Пусть $c_1,...,c_n\in \operatorname{rng} h,$ тогда $c_1=h(a_1),...,c_n=h(a_n)$ и

$$h(f^{\mathcal{A}}(a_1,...,a_n)) = f^{\mathcal{B}}(h(a_1),...,h(a_n)) = f^{\mathcal{B}}(c_1,...,c_n) \in \operatorname{rng} h$$

Элементы образа h замкнуты относительно сигнатурных операций $\mathcal B$

2. $\mathcal{C} = \operatorname{rng} h, \, h : A \leftrightarrow C, \, \Rightarrow h$ - изоморфизм