算法设计与分析 Assignment 1

10185101210 陈俊潼

1

A	В	О	0	Ω	ω	Θ
$lg^k n$	n^{ϵ}	NO	NO	YES	YES	NO
n^k	c^n	NO	NO	YES	YES	NO
\sqrt{n}	$n^{\sin n}$	NO	NO	NO	NO	NO
2^n	$2^{n/2}$	YES	YES	NO	NO	YES
$n^{\lg c}$	$c^{\lg n}$	YES	NO	YES	NO	YES
$\lg(n!)$	$\lg(n^n)$	YES	NO	YES	NO	YES

2

Each line represents an equivalent class, and the growth rate increases as the line goes down.

$$n^{1/\lg n}$$
 1
 $lg(lg^*n), lg^*lg(n)$
 $\ln \ln n$
 $lg^2(n)$
 $lg^*n, \ln n$
 $lg^2 n$
 n
 $nlgn$
 n^2
 n^3
 $2^{\sqrt{2lgn}}$
 $\sqrt{2}^{\lg n}, 2^{\lg n}, 2^{lg^*n}$
 $4^{\lg n}$
 $(\lg n)!$
 $(\lg n)^{\lg n}, n^{\lg \lg n}$
 $(\frac{2}{3})^n$
 2^n
 $n \cdot 2^n$
 e^n
 $n!$
 $(n+1)!$
 2^{2^n}
 $2^{2^{n+1}}$

3

```
a. False. Because if \log n=O(n^2), but n^2 \neq O(\log n).
b. False. Because n^2+n=\Theta(n^2) \neq \Theta(min(n,n^2))
```

c. True.

Because
$$f(n) = O(g(n))$$
 then $\exists c, n_0. f(n_0) \leq cg(n)$

So
$$\lg(f(n_0)) \leq \lg(cg(n)) = \lg c + \lg g(n)$$

So
$$\lg f(n) = O(\lg(g(n)))$$
.

d. False.

Because
$$f(n) = O(g(n))$$
 then $\exists c, n_0. f(n_0) \leq cg(n_0)$

So
$$2^{f(n_0)} \leq 2^{cg(n_0)}$$

So
$$2^{f(n_0)}=O(2^{cg(n_0)})$$
 , in which case $c>0$, so $O(2^{cg(n_0)})
eq O(2^{g(n_0)})$

The pseudocode is as follows:

```
SELECTION-SORT-REVERSE(A, n)
2
 3
    current_pos := n - 1
   while current_pos >= 0
5
        greatest_pos = 0
        current_greatest = 0
 6
7
        for i := 0 to current_pos:
            if A[i] > current_greatest
9
                current_greatest := A[i]
        EXCHANGE_ELEMENT(greatest_pos, n - 1)
10
11
        current_pos := current_pos - 1
```

Loop invariant: The array[current_pos, n-1] is always a sorted array.

Best case: $\Theta(n^2)$

Worstcase: $\Theta(n^2)$