

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer: **0 528 156 A1**

⑫

EUROPÄISCHE PATENTANMELDUNG

⑬ Anmeldenummer: **92111324.7**

⑮ Int. Cl. 5: **C07D 307/60, C07D 307/94,
C07D 307/68, C07D 409/12,
C07D 407/12, C07F 9/655,
A01N 43/08**

⑭ Anmeldetag: **03.07.92**

⑯ Priorität: **16.07.91 DE 4123532
21.05.92 DE 4216814**

W-5060 Bergisch Gladbach 2(DE)

Erfinder: **Bachmann, Jürgen, Dr.
Carl-Duisberg-Strasse 325**

⑰ Veröffentlichungstag der Anmeldung:
24.02.93 Patentblatt 93/08

W-5090 Leverkusen 1(DE)

Erfinder: **Erdelen, Christoph, Dr.
Unterbüscherhof 22**

⑲ Benannte Vertragsstaaten:
BE CH DE ES FR GB GR IT LI NL PT

W-5653 Leichlingen 1(DE)

Erfinder: **Wachendorff-Neumann, Ulrike, Dr.**

⑳ Anmelder: **BAYER AG**

Krischerstrasse 81

W-5090 Leverkusen 1 Bayerwerk(DE)

W-4019 Monheim(DE)

㉑ Erfinder: **Fischer, Reiner, Dr.**

Erfinder: **Santel, Hans-Joachim, Dr.
Grünstrasse 9a**

Nelly-Sachs-Strasse 23

W-5090 Leverkusen 1(DE)

W-4019 Monheim 2(DE)

Erfinder: **Lürssen, Klaus, Dr.**

Erfinder: **Bretschneider, Thomas, Dr.**

August-Klerspel-Strasse 145

Scheerengasse 7-9

W-5060 Bergisch Gladbach 2(DE)

W-5200 Siegburg(DE)

Erfinder: **Schmidt, Robert R., Dr.**

Erfinder: **Krüger, Bernd-Wieland, Dr.**

Im Waldwinkel 110

Unterboschbach 19

W-5060 Bergisch Gladbach 2(DE)

㉒ **3-Aryl-4-hydroxy-delta3-dihydrofuranon- und 3-Aryl-4-hydroxy-delta3-dihydrothiophenon-Derivate.**

㉓ Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy- Δ^3 -dihydro-furanon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide, Herbizide und Fungizide.

Die neuen 3-Aryl-4-hydroxy Δ^3 -dihydrofurano-und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate besitzen die allgemeine Formel I

in welcher

X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,

EP 0 528 156 A1

- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

bilden,
in welchem Y die oben angegebene Bedeutung hat,
G für Wasserstoff (a) oder für die Gruppen

steht,

- A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl stehen
- oder worin
 - A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,
 - D für Sauerstoff oder Schwefel steht,
 - E[⊕] für ein Metallionäquivalent oder ein Ammoniumion steht,
 - L und M für Sauerstoff und/oder Schwefel steht,
- und R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die im Anmeldungstext angegebene Bedeutung besitzen, mit Ausnahme folgender Verbindungen:
 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2.

Die vorliegende Erfindung betrifft neue 3-Aryl-4-hydroxy- Δ^3 -dihydro-furanon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate, mehrere Verfahren zu ihrer Herstellung und ihre Verwendung als Insektizide, Akarizide, Herbizide und Fungizide.

Es ist bekannt, daß bestimmte substituierte Δ^3 -Dihydrofuran-2-on-Derivate herbizide Eigenschaften besitzen (vgl. DE-A 4 014 420). Die Synthese der als Ausgangsverbindungen verwendeten Tetronsäurederivate (wie z.B. 3-(2-Methyl-phenyl)-4-hydroxy-5-(4-fluorphenyl)- Δ^3 -dihydrofuranon-(2) ist ebenfalls in DE-A 4 014 420 beschrieben. Ähnlich strukturierte Verbindungen ohne Angabe einer insektiziden und/oder akariziden Wirksamkeit sind aus der Publikation Campbell et al. J. Chem. Soc., Perkin Trans. 1 1985, (8) 1567-76 bekannt.

10 Es wurden nun neue 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der allgemeinen Formel (I)

15

20

gefunden,
in welcher

X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogen-alkyl steht,
25 Z für Alkyl, Halogen, Alkoxy steht,
n für eine Zahl von 0-3 steht, oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

30

35

bilden,
in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

40

45

50

steht,

55 A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl stehen

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

5 D für Sauerstoff oder Schwefel steht,
E^o für ein Metallionäquivalent oder ein Ammoniumion steht,
L und M für Sauerstoff und/oder Schwefel steht,
R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylothioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl oder substituiertes Hetaryloxyalkyl steht und

10 R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkylder gegebenenfalls substituiertes Phenyl oder Benzyl steht,
unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylothio, Alkenylthio, Alkinylthio, Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

15 R³, R⁴ und R⁵ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen
R⁶ und R⁷ zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkylenrest stehen,

20 oder wobei R⁶ und R⁷ mit Ausnahme folgender Verbindungen:

25 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

30 Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G der allgemeinen Formel (I) ergeben sich folgende hauptsächlichen Strukturen (Ia) bis (Ig):

35
worin
A, B, D, E, L, M, X, Y, Z_n, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen,
Weiterhin wurde gefunden, daß man 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (Ia)
40

50
in welcher
A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,
erhält, wenn man

(A)

55 Carbonsäureester der Formel (II)

10 in welcher
A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
und
R⁸ für Alkyl steht,
15 in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert.

(B)

Außerdem wurde gefunden, daß man Verbindungen der Formel (Ib)

30 in welcher
A, B, D, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben,
erhält, wenn man Verbindungen der Formel (Ia),

45 in welcher
A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,
a) mit Säurehalogeniden der allgemeinen Formel (III)

55 in welche,
R¹ die oben angegebene Bedeutung hat
und

Hal für Halogen, insbesondere Chlor und Brom steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

5 β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

in welcher

10 R^1 die oben angegebene Bedeutung hat,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,
umsetzt.

15 (C)

Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

20

25

30 in welcher
A, B, D, X, Y, Z, R² und n die oben angegebene Bedeutung haben,
L für Sauerstoff
und
M für Sauerstoff oder Schwefel steht,
35 erhält, wenn man Verbindungen der Formel (Ia)

40

in welcher

45 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
mit Chlorameisensäureester oder Chlorameisensäurethiolester der allgemeinen Formel (V)

50 in welcher

R^2 und M die oben angegebene Bedeutung haben,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.

55

D) Ferner wurde gefunden, daß man Verbindungen der Formel (Ic)

in welcher

A, B, D, R², X, Y, Z und n die oben angegebene Bedeutung haben,

15 L für Schwefel
und

M für Sauerstoff oder Schwefel steht,
erhält, wenn man Verbindungen der Formel (Ia)

20

in welcher

30 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

 a) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der allgemeinen Formel
(VI)

35

40

in welcher

 M und R² die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindermittels umsetzt,

45 oder

 β) mit Schwefelkohlenstoff und anschließend mit Alkyhalogeniden der allgemeinen Formel (VII)

R²-Hal (VII)

50 in welcher

 R² die oben angegebene Bedeutung hat

und

 Hal für Chlor, Brom, Jod
steht, umsetzt.

55

E) Außerdem wurde gefunden, daß man Verbindungen der Formel (Id)

10
in welcher
A, B, D, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,
erhält, wenn man Verbindungen der Formel (Ia)

in welcher
A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,
25 mit Sulfonsäurechloriden der allgemeinen Formel (VIII)

R³-SO₂-Cl (VIII)

in welcher

30 R³ die oben angegebene Bedeutung hat
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines
Säurebindemittels,
umsetzt.

35 F) Weiterhin wurde gefunden, daß man Verbindungen der Formel (Ie)

in welcher
A, B, D, L, X, Y, Z, R⁴, R⁵ und n die oben angegebene Bedeutung haben,
50 erhält, wenn man
Verbindungen der Formel (Ia)

in welcher
 10 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
 mit Phosphorverbindungen der allgemeinen Formel (IX)

20 in welcher
 L, R⁴ und R⁵ die oben angegebene Bedeutung haben
 und
 25 Hal für Halogen, insbesondere Chlor und Brom steht,
 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebin-
 demittels umsetzt.

G) Ferner wurde gefunden, daß man Verbindungen der Formel (If)

30

40 in welcher
 A, B, D, L, X, Y, Z, R⁶, R⁷ und n die oben angegebene Bedeutung haben,
 erhält, wenn man Verbindungen der Formel (Ia),

45

in welcher
 55 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
 α) mit Isocyanaten der allgemeinen Formel (X)

in welcher

R^6 die oben angegebene Bedeutung hat

5 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt,

oder

β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (XI)

10

15

in welcher

L, R^6 und R^7 die oben angegebene Bedeutung haben,

20 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,

umsetzt.

H) Weiterhin wurde gefunden, daß man Verbindungen der Formel (Ig)

25

35

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

und E^\oplus für ein Metallionäquivalent oder für ein Ammoniumion steht,
erhält, wenn man Verbindungen der Formel (Ia)

40

45

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

50 mit Metallhydroxiden oder Aminen der allgemeinen Formeln (XII) und (XIII)

55

in welchen

Me für ein- oder zweiwertige Metallionen
 s und t für die Zahl 1 oder 2 und
 5 R⁵, R⁶ und R⁷ unabhängig voneinander für Wasserstoff und Alkyl
 stehen,
 gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.
 Weiterhin wurde gefunden, daß sich die neuen 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) durch hervorragende akarizide, insektizide, herbizide
 10 und fungizide Wirkungen auszeichnen.

Bevorzugt sind Verbindungen der Formel (I)

in welcher

X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,
 Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,
 15 Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
 n für eine Zahl von 0 bis 3 steht,
 oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind,
 den Naphthalinrest der Formel

20

25

bilden,
 in welchem Y die oben angegebene Bedeutung hat,
 A und B gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen
 30 substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl,
 C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cy-
 cloalkyl mit 3 bis 8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein
 kann oder gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl-, C₁-C₆-Alkoxy-, C₁-
 C₆-Halogenalkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,
 35 oder worin
 A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder
 ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und
 gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₅-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halo-
 genalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Aryl substituierten 3- bis 8-
 40 gliedrigen Ring bilden,
 G für Wasserstoff (a) oder für die Gruppen

45

-CO-R¹, (b)

-SO₂-R³ (d)

50

(f) oder E[⊕] (g)

55

steht,

in welchen

E[⊕]

L und M

für ein Metallionäquivalent oder ein Ammoniumion steht,
 für Sauerstoff und/oder Schwefel steht,

R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxyl-C₂-C₈-alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,
5 für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl steht;
für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht,
10 für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes Hetaryl steht,
für gegebenenfalls durch Halogen und C₁-C₆-Alkyl-substituiertes Phenoxy-C₁-C₆-alkyl steht,
für gegebenenfalls durch Halogen, Amino und C₁-C₆-Alkyl-substituiertes Hetaryloxy-C₁-C₆-Alkyl steht,
R² für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,
15 für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,
R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C₂-C₅-Alkenylthio, C₂-C₅-Alkinylthio, C₃-C₇-Cycloalkylthio, für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
20 R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenenfalls durch Halogen, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₂₀-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl oder C₁-C₂₀-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C₂-C₆-Alkylenring stehen,
25 mit Ausnahme folgender Verbindungen:
3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
30 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
35 Besonders bevorzugt sind Verbindungen der Formel (I), in welcher
X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₂-Halogenalkyl steht,
Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₂-Halogenalkyl steht,
Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,
n für eine Zahl von 0 bis 3 steht,
40 oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind, den Naphthalinrest der Formel

50 bildend,
in welchem Y die oben angegebene Bedeutung hat,
A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradketiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkynyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylthio-C₂-C₆-alkyl, Cycloalkyl mit 3 bis 7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Halogen-, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl-, C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl stehen,

oder worin		
A und B	gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen und gegebenenfalls durch Halogen, C ₁ -C ₅ -Alkyl, C ₁ -C ₅ -Alkoxy, C ₁ -C ₃ -Halogenalkyl, C ₁ -C ₄ -Halogenalkoxy, C ₁ -C ₃ -Alkythio oder gegebenenfalls durch Halogen, Alkyl, Alkoxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,	
5 G	für Wasserstoff (a) oder für die Gruppen	
10		
	-CO-R ¹ , (b)	
	(c)	
	(d)	-SO ₂ -R ³
15		
		(e)
		(f) oder E [⊕] (g)
20		
		steht, in welchen
25 E [⊕]	für ein Metallionäquivalent oder ein Ammoniumion steht	
	L und M jeweils für Sauerstoff und/oder Schwefel steht,	
R ¹	für gegebenenfalls durch Halogen substituiertes C ₁ -C ₁₆ -Alkyl, C ₂ -C ₁₆ -Alkenyl, C ₁ -C ₆ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₁₆ -Alkythio-C ₂ -C ₆ -alkyl, C ₁ .C ₆ -Polyalkoxy-C ₂ -C ₆ -alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann steht,	
30	für gegebenenfalls durch Halogen-, Nitro, C ₁ -C ₄ -Alkyl-, C ₁ -C ₄ -Alkoxy-, C ₁ -C ₃ -Halogenalkyl-, C ₁ -C ₃ -Halogenalkoxy-substituiertes Phenyl steht,	
	für gegebenenfalls durch Halogen-, C ₁ -C ₄ -Alkyl-, C ₁ -C ₄ -Alkoxy-, C ₁ -C ₃ -Halogenalkyl-, C ₁ -C ₃ -Halogenalkoxy-substituiertes Phenyl-C ₁ -C ₄ -alkyl steht,	
35	für gegebenenfalls durch Halogen- und C ₁ -C ₆ -Alkyl-substituiertes Hetaryl steht,	
	für gegebenenfalls durch Halogen- und C ₁ -C ₄ -Alkyl-substituiertes Phenoxy-C ₁ -C ₅ -alkyl steht,	
	für gegebenenfalls durch Halogen, Amino und C ₁ -C ₄ -Alkyl substituiertes Hetaryloxy-C ₁ -C ₅ -alkyl steht,	
40 R ²	für gegebenenfalls durch Halogen substituiertes: C ₁ -C ₁₆ -Alkyl, C ₂ -C ₁₆ -Alkenyl, C ₁ -C ₁₆ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₆ -Polyalkoxy-C ₂ -C ₆ -alkyl steht,	
	für gegebenenfalls durch Halogen, Nitro-, C ₁ -C ₄ -Alkyl, C ₁ -C ₃ -Alkoxy-, C ₁ -C ₃ -Halogenalkyl-substituiertes Phenyl oder Benzyl steht,	
45 R ³ , R ⁴ und R ⁵	unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy, C ₁ -C ₆ -Alkylamino, Di-(C ₁ -C ₆)-Alkylamino, C ₁ -C ₆ -Alkythio, C ₃ -C ₄ -Alkenylthio, C ₂ -C ₄ -Alkinylthio, C ₃ -C ₆ -Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C ₁ -C ₃ -Alkoxy, C ₁ -C ₃ -Halogenalkoxy, C ₁ -C ₃ -Alkythio, C ₁ -C ₃ -Halogenalkylthio, C ₁ -C ₃ -Alkyl, C ₁ -C ₃ -Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,	
50 R ⁶ und R ⁷	unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C ₁ -C ₂₀ -Alkyl, C ₁ -C ₂₀ -Alkoxy, C ₂ -C ₈ -Alkenyl, C ₁ -C ₂₀ -Alkoxy-C ₁ -C ₂₀ -alkyl, frnr gegebenenfalls durch Halogen, C ₁ -C ₅ -Halogenalkyl, C ₁ -C ₅ -Alkyl oder C ₁ -C ₅ -Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C ₁ -C ₅ -Alkyl, C ₁ -C ₅ -Halogenalkyl oder C ₁ -C ₅ -Alkoxy substituiertes Benzyl steht,	
55	mit Ausnahme folgender Verbindungen: 3-(2-Methoxyphenyl)-4-hydroxy-Δ ³ -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy-Δ ³ -dihydrofuranon-2, 3-(2-Methoxyphenyl)-4-hydroxy-Δ ³ -dihydrofuranon-2,	

3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

Ganz besonders bevorzugt sind Verbindungen der Formel (I), in welcher

5 X Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,
 Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom,
 Methoxy, Ethoxy und Trifluormethyl steht,
 Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy
 steht,
 n für eine Zahl von 0 bis 3 steht,
 oder wobei die Reste X und Z gemeinsam mit dem Phenylrest an den sie gebunden sind,
 10 den Rest der Formel

20	bilden, in welchem Y die oben angegebene Bedeutung hat,
A und B	gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradketiges oder verzweigtes C ₁ -C ₈ -Alkyl, C ₃ -C ₄ -Alkenyl, C ₃ -C ₄ -Alkinyl, C ₁ -C ₆ -Alkoxy-C ₂ -C ₄ -alkyl, C ₁ -C ₄ -Polyalkoxy-C ₂ -C ₄ -alkyl, C ₁ -C ₆ -Alkylthio-C ₂ -C ₄ -alkyl, Cycloalkyl mit 3 bis 6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyridin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C ₁ -C ₃ -alkyl stehen,
25	oder worin
30	A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Fluor, Chlor, C ₁ -C ₄ -Alkyl, C ₁ -C ₄ -Alkoxy, Trifluormethyl, C ₁ -C ₂ -Alkylthio oder gegebenenfalls durch Fluor, Chlor, Methyl, Methoxy substituiertes Aryl einen substituierten 3- bis 8-gliedrigen Ring bilden,
35	G für Wasserstoff (a) oder für die Gruppen

50 in welchen	steht,
E*	für ein Metallionäquivalent oder ein Ammoniumion steht,
L und M	für Sauerstoff und/oder Schwefel steht,
R ¹	für gegebenenfalls durch Fluor oder Chlor substituiertes C ₁ -C ₁₄ -Alkyl, C ₂ -C ₁₄ -Alkenyl, C ₁ -C ₄ -Alkoxy-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Alkylthio-C ₂ -C ₆ -alkyl, C ₁ -C ₄ -Polyalkoxy-C ₂ -C ₄ -alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,
55	für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Nethoxy,

Ethoxy, Trifluormethyl, Trifluormethoxy, Nitro-substituiertes Phenyl steht,
 für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy,
 Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,
 für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl-substituiertes Pyridyl,
 Pyrimidyl, Thiazolyl und Pyrazolyl steht,
 für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl-substituiertes Phenoxy-C₁-C₄-
 alkyl steht,
 für gegebenenfalls durch Fluor, Chlor, Amino, Methyl-, Ethyl, substituiertes Pyridyloxy-
 C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,
 für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl,
 C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht,
 oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl,
 Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht,
 unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-
 C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-Alkyl)amino, C₁-C₄-Alkylthio, für
 gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₄-Fluoral-
 koxy, C₁-C₂-Chloralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio, C₁-C₂-Chloralkylthio,
 C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituiertes
 C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkoxy-(C₁-C₁₀)alkyl, für gegebenenfalls durch
 Fluor, Chlor, Brom, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₄-Alkoxy substituiertes
 Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Haloge-
 nalkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht,
 mit Ausnahme folgender Verbindungen:
 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 3-(2-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 3-(2-Fluorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
 Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy-Δ³-dihydrofuran-Derivate der Formel (Ia) genannt:

45

50

55

Tabelle 1

	A	B	D	X	Y	Z_n
5	H	H	0	-CH ₃	-CH ₃	6-CH ₃
10	-CH ₃	H	0	-CH ₃	-CH ₃	6-CH ₃
15		H	0	-CH ₃	-CH ₃	6-CH ₃
20	-C(CH ₃) ₃	H	0	-CH ₃	-CH ₃	6-CH ₃
25	-C ₁₀ H ₂₁	H	0	-CH ₃	-CH ₃	6-CH ₃
30	-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
35	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
40	-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
45	-CH ₂ -CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
50		-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
55	-CH ₂ -	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
60	-CH ₂ CH ₂ -	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃

Tabelle 1: Fortsetzung

A	B	D	X	Y	Z_n
-C ₂ H ₅	-C ₂ H ₅	0	-CH ₃	-CH ₃	6-CH ₃
-CH(CH ₃) ₂	-CH(CH ₃) ₂	0	-CH ₃	-CH ₃	6-CH ₃
	H	0	-CH ₃	-CH ₃	6-CH ₃
	H	0	-CH ₃	-CH ₃	6-CH ₃
-CH=CH ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃
-(CH ₂) ₂ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-(CH ₂) ₄ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-(CH ₂) ₅ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-(CH ₂) ₆ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-(CH ₂) ₇ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-C(CH ₃) ₂ -C(CH ₃) ₂ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-CH(CH ₃)-(CH ₂) ₄ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃
-(CH ₂) ₂ ⁻ CH(CH ₃)-(CH ₂) ₂ ⁻	0	0	-CH ₃	-CH ₃	6-CH ₃

5
10
15
20
25
30
35
40
45
50

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Z_n
-C(CH ₂) ₂ -CH-(CH ₂) ₂ -C(CH ₃) ₃	0		-CH ₃	-CH ₃		6-CH ₃
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0		-CH ₃	-CH ₃		6-CH ₃
-CH ₂ -C(CH ₃) ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	0		-CH ₃	-CH ₃		6-CH ₃
	0		-CH ₃	-CH ₃		6-CH ₃
-(CH ₂) ₂ -CH-(CH ₂) ₂ -C ₂ H ₅	0		-CH ₃	-CH ₃		6-CH ₃
-(CH ₂) ₂ -CH-(CH ₂) ₂ -i-C ₃ H ₇	0		-CH ₃	-CH ₃		6-CH ₃

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Z_n
5	-CH ₃	-CH ₃	0	C1	C1	H
10	-C ₂ H ₅	-CH ₃	0	C1	C1	H
15	-CH(CH ₃) ₂	-CH ₃	0	C1	C1	H
20	-CF ₃	-CH ₃	0	C1	C1	H
25		-	0	C1	C1	H
30		-	0	C1	C1	H
35		-	0	C1	C1	H
40		-	0	C1	C1	H
45		-	0	C1	C1	H
50		-	0	C1	C1	H
55		-	0	C1	C1	H
		i-C ₃ H ₇				

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Zn
5	-CH ₃	-CH ₃	0	C1	H	6-C1
10	-C ₂ H ₅	-CH ₃	0	C1	H	6-C1
15	-CH(CH ₃) ₂	-CH ₃	0	C1	H	6-C1
20	-CF ₃	-CH ₃	0	C1	H	6-C1
25				C1	H	6-C1
30				C1	H	6-C1
35				C1	H	6-C1
40				C1	H	6-C1
45				C1	H	6-C1
50				C1	H	6-C1
55				C1	H	6-C1
60				C1	H	6-C1
65				C1	H	6-C1
70				C1	H	6-C1
75				C1	H	6-C1
80				C1	H	6-C1
85				C1	H	6-C1
90				C1	H	6-C1
95				C1	H	6-C1

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Zn
5	-CH ₃	-CH ₃	0	C1	H	6-F
10	-C ₂ H ₅	-CH ₃	0	C1	H	6-F
15	-CH(CH ₃) ₂	-CH ₃	0	C1	H	6-F
20	-CF ₃	-CH ₃	0	C1	H	6-F
25		- (CH ₂) ₄ -	0	C1	H	6-F
30		- (CH ₂) ₅ -	0	C1	H	6-F
35		- (CH ₂) ₆ -	0	C1	H	6-F
40		-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	C1	H	6-F
45		- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	C1	H	6-F
50		- (CH ₂) ₂ -CH- C ₂ H ₅	0	C1	H	6-F
55		- (CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇	0	C1	H	6-F

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Z _n
5	-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	H
10	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	H
15	-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	H
20	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	H
25			0	-CH ₃	-CH ₃	H
30			0	-CH ₃	-CH ₃	H
35			0	-CH ₃	-CH ₃	H
40			0	-CH ₃	-CH ₃	H
45			0	-CH ₃	-CH ₃	H
50			0	-CH ₃	-CH ₃	H
55			0	-CH ₃	-CH ₃	H
			C ₂ H ₅			
			i-C ₃ H ₇			

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Zn
5	-CH ₃	-CH ₃	0	C1	F	H
10	-C ₂ H ₅	-CH ₃	0	C1	F	H
15	-CH(CH ₃) ₂	-CH ₃	0	C1	F	H
20	-CF ₃	-CH ₃	0	C1	F	H
25			0	C1	F	H
30			0	C1	F	H
35			0	C1	F	H
40			0	C1	F	H
45			0	C1	F	H
50			0	C1	F	H
55			0	C1	F	H

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Z _n
5	-CH ₃	-CH ₃	0	-C1	-CF ₃	6-C1
10	-C ₂ H ₅	-CH ₃	0	-C1	-CF ₃	6-C1
15	-CH(CH ₃) ₂	-CH ₃	0	-C1	-CF ₃	6-C1
20	-CF ₃	-CH ₃	0	-C1	-CF ₃	6-C1
25		-{(CH ₂) ₄ } ⁻	0	-C1	-CF ₃	6-C1
30		-{(CH ₂) ₅ } ⁻	0	-C1	-CF ₃	6-C1
35		-{(CH ₂) ₆ } ⁻	0	-C1	-CF ₃	6-C1
40		-CH ₂ -CH(CH ₃)-(CH ₂) ₃ ⁻	0	-C1	-CF ₃	6-C1
45		-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ ⁻	0	-C1	-CF ₃	6-C1
50		-(CH ₂) ₂ -CH-(CH ₂) ₂ ⁻	0	-C1	-CF ₃	6-C1
55	C ₂ H ₅			-C1	-CF ₃	6-C1
	-(CH ₂) ₂ -CH- i-C ₃ H ₇	0				

Tabelle 1: Fortsetzung

	A	B	D	X	Y	z_n
5	H	H	O	C1	C1	H
10	H	H	O	C1	H	6-C1
15	H	H	O	CH ₃	CH ₃	H
20	H	H	O	CH ₃	H	6-CH ₃
25	CH ₃	CH ₃	O	C1	C1	H
30	CH ₃	CH ₃	O	C1	H	6-C1
35	CH ₃	CH ₃	O	CH ₃	CH ₃	H
40	CH ₃	CH ₃	O	CH ₃	H	6-CH ₃
45						
50						
55						

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Z_n
5	<chem>CH3</chem>	H	O	C1	H	6-C1
10	<chem>CH3</chem>	H	O	<chem>CH3</chem>	<chem>CH3</chem>	H
15	<chem>CH3</chem>	H	O	<chem>CH3</chem>	H	6- <chem>CH3</chem>
20		H	O	C1	C1	H
25		H	O	C1	H	6-C1
30		H	O	<chem>CH3</chem>	<chem>CH3</chem>	H
35		H	O	<chem>CH3</chem>	H	6- <chem>CH3</chem>
40		H	S	C1	C1	H
45		H	S	C1	H	6-C1
50						
55						

5

10

15

20

25

30

35

40

45

50

55

Tabelle 1: Fortsetzung

	A	B	D	X	Y	Z _n
5	H	H	S	CH ₃	CH ₃	H
10	H	H	S	CH ₃	H	6-CH ₃
15	H	H	S	CH ₃	CH ₃	6-CH ₃
20	CH ₃	H	S	C1	C1	H
25	CH ₃	H	S	C1	H	6-C1
30	CH ₃	H	S	CH ₃	CH ₃	H
35	CH ₃	H	S	CH ₃	H	6-CH ₃
40	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ib) genannt:

Tabelle 2:

A	B	D	X	Y	Zn	R1
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	C ₂ H ₅
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C ₁
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ C ₁) ₂

5
10
15
20
25
30
35
40
45
50
55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Z _n	R ¹
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃) ₂
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
5	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃
10	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅
15	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇
20	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉
25	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂
30	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂
35	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃
40	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅
45	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂
50	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃
55	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉
							C ₂ H ₅
							CH ₃

5
10
15
20
25
30
35
40
45
50

55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Zn	R ¹
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃) ₂
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	

Tabelle 2: Fortsetzung

A	B	D	X	Y	Z _n	R ¹
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉
					C ₂ H ₅	
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C ₁
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ -C ₁) ₂

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45
50

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R1
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃	
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃) ₂	
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃		

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R1
5	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃
10	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅
15	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇
20	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉
25	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂
30	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂
35	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃
40	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅
45	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂
50	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃
55	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉
						C ₂ H ₅	
							-C(CH ₃) ₂ -CH ₂ C1
							-C(CH ₂ C1) ₂
							CH ₃

Table 2: Fortsetzung

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Z _n	R ¹
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	C ₂ H ₅		
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C ₁	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ C ₁) ₂	
					CH ₃	

5
10
15
20
25
30
35
40
45
50

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃	
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃) ₂	
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃		

55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Z _n	R ¹
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	C ₂ H ₅	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ Cl	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ Cl) ₂	

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z_n	R ¹
5	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$	$-C(CH_3)_2-CH_2-OCH_3$	
10	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$	$-C(CH_3)-(CH_2-OCH_3)_2$	
15	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$	$-CH=C(CH_3)_2$	
20	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
25	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
30	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
35	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
40	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
45	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
50	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		
55	- $(CH_2)_5-$	0	- CH_3	- CH_3	$6-CH_3$		

Tabelle 2: Fortsetzung

A	B	D	X	Y	Z _n	R ¹
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃	-CH ₃
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅	-C ₂ H ₅
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇	-C ₃ H ₇
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉	-C ₄ H ₉
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂	-CH(CH ₃) ₂
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂	-CH ₂ CH(CH ₃) ₂
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃	-C(CH ₃) ₃
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	-C(CH ₃) ₂ -C ₂ H ₅
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	-C(CH ₃) ₂ -CH(CH ₃) ₂
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃	-CH ₂ -C(CH ₃) ₃
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉	-CH-C ₄ H ₉
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	C ₂ H ₅	C ₂ H ₅
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C1	-C(CH ₃) ₂ -CH ₂ C1
- (CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ C1) ₂ CH ₃	-C(CH ₂ C1) ₂ CH ₃

5
10
15
20
25
30
35
40
45
50
55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Zn	R ¹
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃	
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃) ₂	
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	6-CH ₃		

Tabelle 2: Fortsetzung

A	B	D	X	Y	Z _n	R ¹
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉	C ₂ H ₅
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ Cl	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ Cl) ₂	CH ₃

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Zn	R ¹
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃) ₂	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	6-CH ₃		

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Zn	R ¹
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	C ₂ H ₅	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ Cl	
- (CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ Cl) ₂	

Table 2: Forecasting

A	B	D	X	Y	Z _n	R ¹
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃	- C(CH ₃) ₂ - CH ₂ OCH ₃	
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃	- C(CH ₃) - (CH ₂ - OCH ₃)	
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃	- CH = C(CH ₃) ₂	
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		
- (CH ₂) ₂ - CH(CH ₃) - (CH ₂) ₂ -	0	-CH ₃	-CH ₃	6 - CH ₃		

5
10
15
20
25
30
35
40
45
50

Tabelle 2: Fortsetzung

A	B	D	X	Y	Zn	R ¹
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-CH ₃
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	C ₂ H ₅
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C ₁
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2^-$	0		-CH ₃	-CH ₃	6-CH ₃	-C(CH ₂ C ₁) ₂

55

5
10
15
20
25
30
35
40
45
50

Tabelle 2: Fortsetzung

A	B	D	X	Y	z_n	R ¹
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃	
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃)	
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		
$-(CH_2)_2-CH(C_2H_5)-(CH_2)_2-$	0	-CH ₃	-CH ₃	6-CH ₃		

55

Tabelle 2: Fortsetzung

A	B	D	X	Y	Zn	R1
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₃	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C ₂ H ₅	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C ₃ H ₇	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C ₄ H ₉	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-CH(CH ₃) ₂	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ CH(CH ₃) ₂	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₃	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-CH ₂ C(CH ₃) ₃	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-CH-C ₄ H ₉	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	C ₂ H ₅	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C1	
$-(CH_2)_2-CH(i-C_3H_7)-(CH_2)_2^-$	0	-CH ₃	-CH ₃	6-CH ₃	-C(C ₂ H ₅ C1) ₂	

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
5	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ OCH ₃	
10	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-C(CH ₃)-(CH ₂ -OCH ₃)	
15	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	
20	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
25	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
30	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
35	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
40	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
45	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
50	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		
55	- (CH ₂) ₂ -CH(i-C ₃ H ₇)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃		

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R1
CH ₃	H	0	C1	C1	H	CH ₃ -	
CH ₃	H	0	C1	C1	H	(CH ₃) ₃ C-	
CH ₃	H	0	C1	H	6-C1	CH ₃ -	
CH ₃	H	0	C1	H	6-C1	(CH ₃) ₃ C-	
CH ₃	H	0	CH ₃	CH ₃	H	CH ₃	
CH ₃	H	0	CH ₃	CH ₃	H	(CH ₃) ₃ C-	
CH ₃	H	0	CH ₃	H	6-CH ₃	CH ₃ -	
CH ₃	H	0	CH ₃	H	6-CH ₃	(CH ₃) ₃ C-	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-	

5

10

15

20

25

30

35

40

45

50

55

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R ¹	Fp, °C
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃			

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R ¹
5							<chem>*c1ccc(cc1)C(=O)C</chem>
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							
	CH ₃	H	O	CH ₃	CH ₃	6-CH ₃	CH ₃ -
	CH ₃	H	S	C1	C1	H	CH ₃ -
	CH ₃	H	S	C1	C1	H	(CH ₃) ₃ C-
	CH ₃	H	S	C1	H	6-C1	CH ₃ -
	CH ₃	H	S	C1	H	6-C1	(CH ₃) ₃ C-
	CH ₃	H	S	CH ₃	CH ₃	H	CH ₃ -
	CH ₃	H	S	CH ₃	CH ₃	H	(CH ₃) ₃ C-
	CH ₃	H	O	CH ₃	H	6-CH ₃	CH ₃ -
	-(CH ₂) ₅ -	O	O	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	γ	Z_n	R^i
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	CH ₃ - $(CH_2)_3^-$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$C_2H_5-C(CH_3)_2$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$(CH_3)_3C-CH_2^-$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$(CH_3)_2CH-C(CH_3)_2$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$CH_2=CH-(CH_2)_8^-$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$C_1\overbrace{C}^{CH_3}-CH_3$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$H_3C\overbrace{C}^{CH_3}-CH_3$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$C_1\overbrace{C}^{CH_3}-CH_3$	
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	$H_3C-O\overbrace{C}^{CH_3}-CH_3$	

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
5	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃ - (CH ₂) ₃ -	
10	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅ -C(CH ₃) ₂	
15	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₃ C-CH ₂ -	
20	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂	
25	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	CH ₂ =CH- (CH ₂) ₈ -	
30	- (CH ₂) ₅	0	CH ₃	CH ₃	6-CH ₃	C ₁ — H ₃ C— C ₁	
35	CH ₃	H	S	CH ₃	H	6-CH ₃	(CH ₃) ₃ C-
40	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	CH ₃ -
45	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-
50	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₃ C-
55	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	CH ₃ - (CH ₂) ₃ -

45 40 35 30 25 20 15 10 5

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
-	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅ -C(CH ₃) ₃
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₃ C-CH ₂ -
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	CH ₂ =CH-(CH ₂) ₈ -
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	C1—C₂ H ₃ C—C₂ CH ₃
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	C1—C₂ H ₃ C—C₂ CH ₃
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	H ₃ C-O—C₂ H ₃ C—C₂ CH ₃
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	H ₃ C-O—C₂ H ₃ C—O—C₂ CH ₃

5

10

15

20

25

30

35

40

45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R1
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃		
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃		
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃		
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃		
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃		
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃		

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
45	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₂ =CH-(CH ₂) ₈ -
50	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	Cl-C(CH ₃) ₂ -
55	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	Cl-C(CH ₃) ₂ -
40	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	H ₃ C-O-C(CH ₃) ₂ -
30	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	H ₃ C-O-C(CH ₃) ₂ -
25	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	H ₃ C-O-C(CH ₃) ₂ -
20	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	H ₃ C-O-C(CH ₃) ₂ -
15							O-C(CH ₃) ₂ -
10							CH ₃
5							

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R ¹
5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	-(CH ₂) ₅ -	O	C1	C1	H	H	CH ₃ -
	-(CH ₂) ₅ -	O	C1	C1	H	H	(CH ₃) ₃ C-
	-C(H ₂) ₅ -	O	C1	H		6-C1	CH ₃ -

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	γ	Z_n	R ¹
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	H ₃ CO-	
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	CH ₃ -	
CH ₃	CH ₃	O	C1	C1	H	CH ₃ -	
CH ₃	CH ₃	O	C1	C1	H	(CH ₃) ₃ C-	
CH ₃	CH ₃	O	C1	H	6-C1	CH ₃ -	
CH ₃	CH ₃	O	C1	H	6-C1	(CH ₃) ₃ C-	
CH ₃	CH ₃	O	CH ₃	CH ₃	H	CH ₃ -	
CH ₃	CH ₃	O	CH ₃	CH ₃	H	(CH ₃) ₃ C-	
CH ₃	CH ₃	O	CH ₃	H	6-CH ₃	CH ₃ -	
CH ₃	CH ₃	O	CH ₃	H	6-CH ₃	(CH ₃) ₃ C-	
CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-	
CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	CH ₃ - (CH ₂) ₃ -	

Tabelle 2: Fortsetzung

$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	H ₃ C-S-CH ₂
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃	
$-\bullet$	0	C ₁	C ₁	H	CH ₃ -

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z_n	R^1
	H	O	C1	C1	H	$(CH_3)_3C^-$	
	H	O	C1	H	6-C1	CH_3^-	
	H	O	C1	H	6-C1	$(CH_3)_3C^-$	
	H	O	CH ₃	CH ₃	H	CH_3^-	
	H	O	CH ₃	CH ₃	H	$(CH_3)_3C^-$	
	H	O	CH ₃	CH ₃	H	CH_3^-	
	H	O	CH ₃	CH ₃	H	CH_3^-	
	H	O	CH ₃	CH ₃	H	CH_3^-	

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R ¹
5		H	0	CH ₃	CH ₃	6-CH ₃	CH ₃ ⁻
10		H	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH ⁻
15		H	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₃ C ⁻
20		H	0	CH ₃	CH ₃	6-CH ₃	CH ₃ -(CH ₂) ₃ ⁻
25		H	0	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅ -C(CH ₃) ₂
30		H	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₃ C-CH ₂ ⁻
35		H	0	CH ₃	CH ₃	6-CH ₃	(CH ₃) ₂ CH-C(CH ₃) ₂
40							
45							
50							
55							

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Zn	R ¹
-	$(CH_2)_5^-$	0	C1	H	6-C1	$(CH_3)_3C-$	
-	$(CH_2)_5^-$	0	CH ₃	CH ₃	H	CH ₃ -	
-	$(CH_2)_5^-$	0	CH ₃	CH ₃	H	$(CH_3)_3C-$	
-	$(CH_2)_5^-$	0	CH ₃	H	6-CH ₃	CH ₃ -	
-	$(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃		
-	$(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃		
-	$(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃		
-	$(CH_2)_5^-$	0	CH ₃	CH ₃	6-CH ₃		

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
		H	0	CH ₃	CH ₃	6-CH ₃	CH ₂ =CH-(CH ₂) ₈ -
		H	0	CH ₃	CH ₃	6-CH ₃	
		H	0	CH ₃	CH ₃	6-CH ₃	
		H	0	CH ₃	CH ₃	6-CH ₃	
		H	0	CH ₃	CH ₃	6-CH ₃	
		H	0	CH ₃	CH ₃	6-CH ₃	
		H	0	CH ₃	CH ₃	6-CH ₃	
		H	0	CH ₃	CH ₃	6-CH ₃	H ₃ C-S-CH ₂ -

Tabelle 2: Fortsetzung

	A	B	D	X	Y	Z _n	R ¹
5		H	0	CH ₃	CH ₃	6-CH ₃	
10		H	0	CH ₃	CH ₃	6-CH ₃	
15		H	0	CH ₃	CH ₃	6-CH ₃	
20		H	0	CH ₃	CH ₃	6-CH ₃	
25		H	0	CH ₃	CH ₃	6-CH ₃	
30		H	0	CH ₃	CH ₃	6-CH ₃	
35		H	0	CH ₃	CH ₃	6-CH ₃	
40		H	0	CH ₃	CH ₃	6-CH ₃	
45	Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ic) genannt:						

45 Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ic) genannt:

5

10

15

20

25

30

35

40

45

50

55

Tabelle 3:

	A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃
C ₂ H ₅	0	-CH ₃	-CH ₃	6-CH ₃	0	0	0	-CH ₃	
i-C ₃ H ₇									

5
10
15
20
25
30
35
40
45
50

Tabelle 3: Fortsetzung

A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
C ₂ H ₅		0	-CH ₃	-CH ₃	6-CH ₃	0	0	-C ₂ H ₅
i-C ₃ H ₇								

55

5
10
15
20
25
30
35
40
45
50

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0		-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-C ₂ H ₅	-CH ₃	0		-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-CH(CH ₃) ₂	-CH ₃	0		-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-CF ₃	-CH ₃	0		-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-(CH ₂) ₄ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-(CH ₂) ₅ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-(CH ₂) ₆ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
C ₂ H ₅									
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0			-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ²
i-C ₃ H ₇									

55

45 40 35 30 25 20 15 10 5

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Zn	L	M	R2
-CH3	-CH3	0	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-C2H5	-CH3	0	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-CH(CH3)2	-CH3	0	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-CF3	-CH3	0	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-(CH2)4-	0	-CH3	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-(CH2)5-	0	-CH3	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-(CH2)6-	0	-CH3	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-CH2-CH(CH3)-(CH2)3-	0	-CH3	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-(CH2)2-CH(CH3)-(CH2)2-	0	-CH3	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
-(CH2)2-CH-(CH2)2-	0	-CH3	-CH3	-CH3	6-CH3	0	0	0	-OCH2-CH(CH3)2
C2H5									
-(CH2)2-CH-(CH2)2-	0	-CH3	-CH3	6-CH3	0	0	0	0	-OCH2-CH(CH3)2
i-C3H7									

50

55

5
10
15
20
25
30
35
40
45

50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅	
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅	
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅	
-(CH ₂) ₄ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
-(CH ₂) ₅ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
-(CH ₂) ₆ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
-CH ₂ -CH(CH ₃) ¹ -(CH ₂) ₃ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
-(CH ₂) ₂ -CH(CH ₃) ¹ -(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
-(CH ₂) ₂ -CH ¹ -(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
C ₂ H ₅									
-(CH ₂) ₂ -CH ¹ -(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH(CH ₃) ¹ -C ₂ H ₅		
i-C ₃ H ₇									

5
10
15
20
25
30
35
40
45
50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Zn	L	M	R2
-CH3	-CH3	0	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-C2H5	-CH3	0	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-CH(CH3)2	-CH3	0	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-CF3	-CH3	0	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-(CH2)4-	0	-CH3	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-(CH2)5-	0	-CH3	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-(CH2)6-	0	-CH3	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-CH2-CH(CH3)-(CH2)3-	0	-CH3	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-(CH2)2-CH(CH3)-(CH2)2-	0	-CH3	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
-(CH2)2-CH-(CH2)2-	0	-CH3	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3	
C2H5									
-(CH2)2-CH-(CH2)2-	0	-CH3	-CH3	6-CH3	0	0	-CH2-C(CH3)3		
i-C3H7									

Tabelle 3: Fortsetzung

A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	0	-CH ₂ - Cyclohexyl

Tabelle 3: Fortsetzung

	A	B	D	X	γ	Z_n	L	M	R2
45									
50									
55									
60									
65									
70									
75									
80									
85									
90									
95									
100									
105									
110									
115									
120									
125									
130									
135									
140									
145									
150									
155									
160									
165									
170									
175									
180									
185									
190									
195									
200									
205									
210									
215									
220									
225									
230									
235									
240									
245									
250									
255									
260									
265									
270									
275									
280									
285									
290									
295									
300									
305									
310									
315									
320									
325									
330									
335									
340									
345									
350									
355									
360									
365									
370									
375									
380									
385									
390									
395									
400									
405									
410									
415									
420									
425									
430									
435									
440									
445									
450									
455									
460									
465									
470									
475									
480									
485									
490									
495									
500									
505									
510									
515									
520									
525									
530									
535									
540									
545									
550									
555									
560									
565									
570									
575									
580									
585									
590									
595									
600									
605									
610									
615									
620									
625									
630									
635									
640									
645									
650									
655									
660									
665									
670									
675									
680									
685									
690									
695									
700									
705									
710									
715									
720									
725									
730									
735									
740									
745									
750									
755									
760									
765									
770									
775									
780									
785									
790									
795									
800									
805									
810									
815									
820									
825									
830									
835									
840									
845									
850									
855									
860									
865									
870									
875									
880									
885									
890									
895									
900									
905									
910									
915									
920									
925									
930									
935									
940									
945									
950									
955									
960									
965									
970									
975									
980									
985									
990									
995									
1000									

Tabelle 3: Fortsetzung

A	B	D	X	Y	Zn	L	M	R2
-CH2-CH(CH3)-(CH2)3-	0	-CH3	-CH3	6-CH3	0	0	-CH2-CH_C_{2H5}_C_{4H9}	
-(CH2)2-CH(CH3)-(CH2)2-	0	-CH3	-CH3	6-CH3	0	0	-CH2-CH_C_{2H5}_C_{4H9}	
-(CH2)2-CH-(CH2)2- C_{2H5}	0	-CH3	-CH3	6-CH3	0	0	-CH2-CH_C_{2H5}_C_{4H9}	
-(CH2)2-CH-(CH2)2- i-C_{3H7}	0	-CH3	-CH3	6-CH3	0	0	-CH2-CH_C_{2H5}_C_{4H9}	
-CH3	-CH3	0	-CH3	6-CH3	0	0		
-C_{2H5}	-CH3	0	-CH3	6-CH3	0	0		
-CH(CH3)2	-CH3	0	-CH3	6-CH3	0	0		
-CF₃	-CH3	0	-CH3	6-CH3	0	0		

5

10

15

20

25

30

35

40

50

55

5
10
15
20
25
30
35
40
45

50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Z _n	L	M	R ²
- (CH ₂) ₄ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
- (CH ₂) ₅ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
- (CH ₂) ₆ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
C ₂ H ₅									
- (CH ₂) ₂ -CH-(CH ₂) ₂ -	0		-CH ₃	-CH ₃	6-CH ₃	0	0	0	
i-C ₃ H ₇									

Tabelle 3: Fortsetzung

	A	B	D	X	γ	Zn	L	M	R \bar{z}
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅	
C ₂ H ₅									
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-C ₂ H ₅		
i-C ₃ H ₇									

5

10

15

20

25

30

35

40

45

50

55

45 40 35 30 25 20 15 10 5

Tabelle 3: Fortsetzung

A	B	D	X	Y	Zn	L	M	R2
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-(CH ₂) ₄ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-(CH ₂) ₅ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-(CH ₂) ₆ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂
C ₂ H ₅								
-(CH ₂) ₂ -CH-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃) ₂	
i-C ₃ H ₇								

50

55

Tabelle 3: Fortsetzung

A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-(CH ₂) ₄ ⁻	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-(CH ₂) ₅ ⁻	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-(CH ₂) ₆ ⁻	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ ⁻	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
-(CH ₂) ₂ -CH-(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂
C ₂ H ₅								
-(CH ₂) ₂ -CH-(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -CH(CH ₃) ₂	
i-C ₃ H ₇								

5
10
15
20
25
30
35
40
45
50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Z _n	L	M	R ²
45	-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
46	-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
47	-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
48	-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
49	-CH ₂) ₄ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
50	-CH ₂) ₅ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
51	-CH ₂) ₆ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
52	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
53	-CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
54	-CH ₂) ₂ -CH-(CH ₂) ₂ - C ₂ H ₅	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃
55	-CH ₂) ₂ -CH-(CH ₂) ₂ - i-C ₃ H ₇	0	-CH ₃	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH ₂ -C(CH ₃) ₃

5
10
15
20
25
30
35
40
45
50

55

Tabelle 3: Fortsetzung

A	B	D	X	Y	Z _n	L	M	R ²
-CH ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅
-C ₂ H ₅	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅
-CH(CH ₃) ₂	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅
-CF ₃	-CH ₃	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅
-(CH ₂) ₄ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅	
-(CH ₂) ₅ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅	
-(CH ₂) ₆ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅	
-CH ₂ -CH(CH ₃)-(CH ₂) ₃ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅	
-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅	
-(CH ₂) ₂ -CH-(CH ₂) ₂ ⁻	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅	
C ₂ H ₅	i-C ₃ H ₇	0	-CH ₃	-CH ₃	6-CH ₃	0	S	-CH(CH ₃)-C ₂ H ₅

Tabelle 3: Fortsetzung

A	B	D	X	Y	Z _n	L	M	R ²
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃ -
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-CH ₂ -
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	C ₂ H ₅ -CH-CH ₃
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-CH ₂ -
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	cyclohexyl-H
CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	0	0	c ₂ H ₅ O-CH(CH ₃) ₂

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Z _n	L	M	R ²
CH ₃	H	0	C1	H	H	0	0	0	C ₂ H ₅ -CH- CH ₃
CH ₃	H	0	C1	H	6-C1	0	0	0	C ₂ H ₅ -CH- CH ₃
CH ₃	H	0	CH ₃	CH ₃	H	0	0	0	C ₂ H ₅ -CH- CH ₃
CH ₃	H	0	CH ₃	H	6-CH ₃	0	0	0	C ₂ H ₅ -CH- CH ₃

5

10

15

20

25

30

35

40

45

50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Zn	L	M	R2
CH3	H	O	CH3	CH3	6-CH3	0	0	C2H5O-	CH3
CH3	H	O	CH3	CH3	6-CH3	0	0		benzyl
CH3	H	O	CH3	CH3	6-CH3	0	S		
CH3	H	O	CH3	CH3	6-CH3	0	S	(CH3)2CH-	
CH3	H	O	CH3	CH3	6-CH3	0	S	(CH2)2-CH-	
CH3	H	O	CH3	CH3	6-CH3	0	S	C2H5-CH-	
CH3	H	S	C1	C1	H	0	0	C2H5-CH-	
CH3	H	S	C1	H	6-C1	0	0	C2H5-CH-	
									CH3

5
10
15
20
25
30
35
40
45

50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Zn	L	M	R2
CH ₃	H	S	CH ₃	CH ₃	H	0	0	0	C ₂ H ₅ -CH- CH ₃
CH ₃	H	S	CH ₃	H	6-CH ₃	0	0	0	C ₂ H ₅ -CH- CH ₃
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃ -
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-CH ₂ -
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	C ₂ H ₅ -CH- CH ₃
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-CH ₂
CH ₃	H	S	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Zn	L	M	R ²
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	0	C ₂ H ₅ O $\begin{array}{c} \diagup \\ \text{C}_2\text{H}_5 \\ \diagdown \end{array}$ CH ₃	
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	0	C ₂ H ₅ O $\begin{array}{c} \diagup \\ \text{C}_2\text{H}_5 \\ \diagdown \end{array}$ CH ₃	C ₂ H ₅
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	0		benzyl
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	S		
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	S	(CH ₃) ₂ CH-	
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	S	(CH ₃) ₂ CH-CH ₂ -	
CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	0	S	C ₂ H ₅ -CH-	
CH ₃	CH ₃	O	C ₁	C ₁	H	0	0	C ₂ H ₅ -CH-	
								CH ₃	CH ₃

Tabelle 3: Fortsetzung

	A	B	D	X	γ	Z_n	L	M	R^2
CH ₃	CH ₃	0	C1	H	6-C1	0	0	C_2H_5-CH- CH ₃	
CH ₃	CH ₃	0	CH ₃	CH ₃	H	0	0	C_2H_5-CH- CH ₃	
CH ₃	CH ₃	0	CH ₃	H	6-CH ₃	0	0	C_2H_5-CH- CH ₃	
CH ₃	CH ₃	0	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃ -
CH ₃	CH ₃	0	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	$(CH_3)_2CH-$
CH ₃	CH ₃	0	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	$(CH_3)_2CH-CH_2$
CH ₃	CH ₃	0	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	C_2H_5-CH- CH ₃
CH ₃	CH ₃	0	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	$(CH_3)_3C-$
CH ₃	CH ₃	0	CH ₃	CH ₃	CH ₃	6-CH ₃	0	0	$(CH_3)_3C-CH_2-$

Tabelle 3: Fortsetzung

	A	B	D	X	γ	Z_n	L	M	R ²
45	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	
46	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	
47	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	
48	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	
49	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	
50	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	
51	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	S	CH ₃ -
52	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	S	(CH ₃) ₂ CH-
53	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	S	(CH ₂) ₂ -CH-CH ₂
54	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	S	C ₂ H ₅ -CH- CH ₃

5
10
15
20
25
30
35
40
45
50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Z_n	L	M	R^2
-	$(CH_2)_5^-$	0	C1	C1	H	0	0	C_2H_5-CH- CH3	
-	$(CH_2)_5^-$	0	C1	H	$6-C1$	0	0	C_2H_5-CH- CH3	
-	$(CH_2)_5^-$	0	CH3	CH3	H	0	0	C_2H_5-CH- CH3	
-	$(CH_2)_5^-$	0	CH3	H	$6-CH_3$	0	0	C_2H_5-CH- CH3	
-	$(CH_2)_5^-$	0	CH3	CH3	CH3	$6-CH_3$	0	C_2H_5-CH- CH3	
-	$(CH_2)_5^-$	0	CH3	CH3	CH3	$6-CH_3$	0	C_2H_5-CH- CH3	
-	$(CH_2)_5^-$	0	CH3	CH3	CH3	$6-CH_3$	0	CH_3^-	
-	$(CH_2)_5^-$	0	CH3	CH3	CH3	$6-CH_3$	0	$(CH_3)_2CH-$	
-	$(CH_2)_5^-$	0	CH3	CH3	CH3	$6-CH_3$	0	$(CH_3)_2CH-CH_2^-$	
-	$(CH_2)_5^-$	0	CH3	CH3	CH3	$6-CH_3$	0	C_2H_5-CH- CH3	

5

10

15

20

25

30

35

40

45

50

55

Tabelle 3: Fortsetzung

	A	B	D	X	Y	Zn	L	M	R ²
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-	
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-CH ₂	
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0		
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0		
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0		
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0		
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-	
-	(CH ₂) ₅ ⁻	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-CH ₂ ⁻	

5 10 15 20 25 30 35 40 45 50

55

Tabelle 3: Fortsetzung

	A	B	D	X	γ	Z_n	L	M	R^2
5									
10									
15									
20									
25									
30									
35									
40									
45									
50									
	- $(CH_2)_5^-$	0	CH_3	CH_3	$6-CH_3$	0	S	C_2H_5-CH- CH_3	
		H	O	C1	C1	H	0	O	C_2H_5-CH- CH_3
		H	O	C1	H	$6-C1$	0	O	C_2H_5-CH- CH_3
		H	O	CH_3	CH_3	H	0	O	C_2H_5-CH- CH_3
		H	O	CH_3	CH_3	H	$6-CH_3$	0	C_2H_5-CH- CH_3
		H	O	CH_3	CH_3	$6-CH_3$	0	O	CH_3^-

Tabelle 3: Fortsetzung

A	B	D	X	Y	Zn	L	M	R ²
	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-
	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₂ CH-CH ₂
	H	0	CH ₃	CH ₃	6-CH ₃	0	0	C ₂ H ₅ -CH- CH ₃
	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-
	H	0	CH ₃	CH ₃	6-CH ₃	0	0	(CH ₃) ₃ C-CH ₂ -
	H	0	CH ₃	CH ₃	6-CH ₃	0	0	

	A	B	D	X	Y	Zn	L	M	R ²
5		H	0	CH ₃	CH ₃	6-CH ₃	0	0	
10		H	0	CH ₃	CH ₃	6-CH ₃	0	0	
15		H	0	CH ₃	CH ₃	6-CH ₃	0	0	
20		H	0	CH ₃	CH ₃	6-CH ₃	0	S	
25		H	0	CH ₃	CH ₃	6-CH ₃	0	S	
30		H	0	CH ₃	CH ₃	6-CH ₃	0	S	
35		H	0	CH ₃	CH ₃	6-CH ₃	0	S	
40		H	0	CH ₃	CH ₃	6-CH ₃	0	S	
45		H	0	CH ₃	CH ₃	6-CH ₃	0	S	

Tabelle 3: Fortsetzung

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Id) genannt:

10

Tabelle 4:

	A	B	D	X	Y	Zn	R ³
20	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
25	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
30	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	

35 Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy-Δ³-dihydrofuran-Derivate der Formel (Ie) genannt:

50

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle 5:

A	B	D	X	Y	Z _n	L	R ⁴	R ⁵
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	CF ₃ CH ₂ O-	CH ₃
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	CH ₃ -O-	C ₂ H ₅ -S-
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	CH ₃ -O-	(CH ₃) ₂ CH-S-
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	C ₂ H ₅ _CH-S-	CH ₃
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	CH ₃ -O-	C ₂ H ₅ -S-
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	C ₂ H ₅ O-	C ₂ H ₅ -S-
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	C ₂ H ₅ O-	(CH ₃) ₂ CH-S-
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	O	C ₂ H ₅ O-	C ₂ H ₅ _CH-S-

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (If) genannt:

Tabelle 6:

A	B	D	X	Y	Zn	L	R6	R7
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	CH ₃ ⁻	CH ₃ ⁻
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	CH ₃ ⁻	CH ₃ ⁻
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	CH ₂ =CHCH ₂ ⁻	CH ₂ =CH-CH ₂ ⁻
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	-(CH ₂) ₂ -O-(CH ₂) ₂ ⁻	
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-(CH ₂) ₅ ⁻	
CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S		C ₆ H ₅ ⁻

Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden 3-Aryl-4-hydroxy- Δ^3 -dihydrofuran-Derivate der Formel (Ig) genannt:

5

10

15

Tabelle 7:

	A	B	D	X	Y	Z _n	E [⊕]
	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	NH ₄
20	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	Na
	C ₂ H ₅	CH ₃	O	CH ₃	CH ₃	6-CH ₃	Na
	-CH(CH ₃) ₂	CH ₃	O	CH ₃	CH ₃	6-CH ₃	Na
25	CF ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	Na
	- (CH ₂) ₄ -	O	CH ₃	CH ₃	6-CH ₃	Na	
	- (CH ₂) ₅ -	O	CH ₃	CH ₃	6-CH ₃	Na	
30	- (CH ₂) ₆ -	O	CH ₃	CH ₃	6-CH ₃	Na	
	-CH ₂ -CH-(CH ₂) ₃ -	O	CH ₃	CH ₃	6-CH ₃	Na	
35	- (CH ₂) ₂ -CH-(CH ₂) ₂ -	O	CH ₃	CH ₃	6-CH ₃	Na	
	CH ₃						
40	- (CH ₂) ₂ -CH-(CH ₂) ₂ -	O	CH ₃	CH ₃	6-CH ₃	Na	
	C ₂ H ₅						
	- (CH ₂) ₂ -CH-(CH ₂) ₂ -	O	CH ₃	CH ₃	6-CH ₃	Na	
45	i-C ₃ H ₇						

45

50

55

Tabelle 7: Fortsetzung

	A	B	D	X	Y	Z _n	E [⊕]
5	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
10	C ₂ H ₅	CH ₃	O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
	-CH(CH ₃) ₂	CH ₃	O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
15	CF ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
	-(CH ₂) ₄ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
	-(CH ₂) ₅ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
20	-(CH ₂) ₆ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
	-CH ₂ -CH-(CH ₂) ₃ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
25		CH ₃					
	-(CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
		CH ₃					
30	-(CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
		C ₂ H ₅					
35	-(CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇ NH ₃
		i-C ₃ H ₇					

40

45

50

55

Tabelle 7: Fortsetzung

	A	B	D	X	Y	Z _n	E [⊕]
5	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
10	C ₂ H ₅	CH ₃	O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
	-CH(CH ₃) ₂	CH ₃	O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
15	CF ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
	- (CH ₂) ₄ -		O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
	- (CH ₂) ₅ -		O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
20		- (CH ₂) ₆ -	O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
	-CH ₂ -CH-(CH ₂) ₃ -		O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
25				CH ₃			
	- (CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
30				CH ₃			
	- (CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
35				C ₂ H ₅			
	- (CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	N(C ₄ H ₉ -t) ₄
				i-C ₃ H ₇			

40

45

50

55

Tabelle 7: Fortsetzung

	A	B	D	X	Y	Z _n	E [⊕]
5	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
10	C ₂ H ₅	CH ₃	O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
	-CH(CH ₃) ₂	CH ₃	O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
15	CF ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
	- (CH ₂) ₄ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
	- (CH ₂) ₅ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
20	- (CH ₂) ₆ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
	-CH ₂ -CH-(CH ₂) ₃ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
25		CH ₃					
	- (CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
		CH ₃					
30	- (CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
		C ₂ H ₅					
35	- (CH ₂) ₂ -CH-(CH ₂) ₂ -		O	CH ₃	CH ₃	6-CH ₃	NH ₂ (CH ₃) ₂
		i-C ₃ H ₇					

Verwendet man gemäß Verfahren (A) 0,2,6-Dichlorphenylacetyl-hydroxyessigsäureethylester, so kann
40 der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

50 Verwendet man gemäß Verfahren (B) (Variante α) 3-(2,4,6 Trimethylphenyl)-4-hydroxy-5,5-dimethyl-Δ³-dihydrofuran-2-on und Pivaloylchlorid als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren B (Variante β) 3-(2,4,5-Trimethylphenoxy)-4-hydroxy-5-phenyl- Δ^3 -dihydrofuran-2-on und Acetanhydrid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

Verwendet man gemäß Verfahren C 3-(2,4-Dichlorphenyl)-4-hydroxy-5-methyl- Δ^3 -dihydrofuran-2-on und
 50 Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßigen
 Verfahrens durch folgendes Reaktionsschema wiedergegeben werden.

20
25
Verwendet man gemäß Verfahren (D_a) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methyl-Δ³-dihydrothiophen-2-on und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

45
Verwendet man gemäß Verfahren (D_b) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-pentamethylen-Δ³-dihydrofuran-2-on, Schwefelkohlenstoff und Methyl jodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wiedergegeben werden:

50

55

Verwendet man gemäß Verfahren (E) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methylmercaptopmethyl- Δ^3 -dihydrofuran - 2-on und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (F) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydro-furan-2-on und Methanthio-phosphonsäurechlorid-(2,2,2-trifluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

Verwendet man gemäß Verfahren (G_a) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-tetramethylen-Δ³-dihydrofuran-2-on und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:

5

10

15

Verwendet man gemäß Verfahren (G_b) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5-methyl-Δ³-dihydrofuran-2-on und Dimethylcarbamidsäurechlorid als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:

20

25

30

35

40

45 Verwendet man gemäß Verfahren (H) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl-Δ³-dihydro-furan-2-on und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:

50

55

Die bei dem obigen Verfahren (A) als Ausgangsstoffe benötigten Verbindungen der Formel (II)

in welcher
A, B, D, X, Y, Z, n und R⁸ die oben angegebene Bedeutung haben sind bekannt oder lassen sich nach im
30 Prinzip bekannten Methoden in einfacher Weise herstellen. So erhält man z.B. O-Acyl- α -hydroxycarbonsäure-ester der Formel (II), wenn man
reester der Formel (II), wenn man
a) 2-Hydroxycarbonsäure-(ester) bzw. 2-Mercaptocarbonsäure-(ester) der Formel (XIV)

in welcher
R¹¹ für Wasserstoff (XIVa) oder Alkyl (XIVb) steht
und
45 A, B und D die oben angegebene Bedeutung haben,
mit Phenyllessigsäurehalogeniden der Formel (XV)

in welcher
X, Y, Z und n die oben angegebene Bedeutung haben und

Hal für Chlor oder Brom steht,
acycliert (Chem. Reviews 52 237-416 (1953));
oder wenn man Thio- bzw. Hydroxycarbonsäuren der Formel (IIa),

5

10

15

in welcher
A, B, D, X, Y und n die oben angegebene Bedeutung haben
und

R¹¹ für Wasserstoff steht,
verestert (Chem. Ind. (London) 1568 (1968)).

20

Verbindungen der Formel (IIa) sind beispielsweise aus den Phenylsäurehalogeniden der Formel (XV) und Thio- bzw. Hydroxycarbonsäuren der Formel XIVa) erhältlich (Chem. Reviews 52 237-416 (1953)).

Weiterhin erhält man Verbindungen der Formel (II), wenn man Phenylsäuren der Formel XVI

25

30

45

in welcher
X, Y, Z und n die oben angegebene Bedeutung haben mit α -Halogencarbonsäureestern der Formel XVII

40

50

in welcher
A und B die oben angegebene Bedeutung haben,
R¹¹ für Alkyl steht und
Hal für Chlor oder Brom steht
alkyliert.

Beispielhaft seien folgende Verbindungen der Formel (II) genannt:
 O-(2,4-Dichlorphenyl-acetyl)-hydroxyessigsäureethylester
 O-(2,6-Dichlorphenyl-acetyl)-hydroxyessigsäureethylester
 O-(2,4,6-Trichlorphenyl-acetyl)-hydroxyessigsäureethylester
 O-(2,4-Dimethylphenyl-acetyl)-hydroxyessigsäureethylester
 55 O-(2,6-Dimethylphenyl-acetyl)-hydroxyessigsäureethylester
 O-(2,4,6-Trimethylphenyl-acetyl)-hydroxyessigsäureethylester
 O-(2,4-Dichlorphenyl-acetyl)-milchsäureethylester
 O-(2,6-Dichlorphenyl-acetyl)-milchsäureethylester

O-(2,4,6-Trichlorphenyl-acetyl)-milchsäureethylester
 O-(2,4-Dimethylphenyl-acetyl)-milchsäureethylester
 O-(2,6-Dimethylphenyl-acetyl)-milchsäureethylester
 O-(2,4,6-Trimethylphenyl-acetyl)-milchsäureethylester
 5 O-(2,4-Dichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
 O-(2,6-Dichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
 O-(2,4,6-Trichlorphenyl-acetyl)-hydroxyisobuttersäureethylester
 O-(2,4-Dimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
 O-(2,6-Dimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
 10 O-(2,4,6-Trimethylphenyl-acetyl)-hydroxyisobuttersäureethylester
 O-(2,4-Dichlorphenyl-acetyl)-mandelsäureethylester
 O-(2,6-Dichlorphenyl-acetyl)-mandelsäureethylester
 O-(2,4,6-Trichlorphenyl-acetyl)-mandelsäureethylester
 O-(2,4-Dimethylphenyl-acetyl)-mandelsäureethylester
 15 O-(2,6-Dimethylphenyl-acetyl)-mandelsäureethylester
 O-(2,4,6-Trimethylphenyl-acetyl)-mandelsäureethylester
 O-(2,4-Dichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
 O-(2,6-Dichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
 O-(2,4,6-Trichlorphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
 20 O-(2,4-Dimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
 O-(2,6-Dimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
 O-(2,4,6-Trimethylphenyl-acetyl)-1-hydroxycyclohexancarbonsäureethylester
 O-(2,4-Dichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
 O-(2,6-Dichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
 25 O-(2,4,6-Trichlorphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
 O-(2,4-Dimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
 O-(2,6-Dimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
 O-(2,4,6-Trimethylphenyl-acetyl)-2-hydroxy-2-ethylbuttersäureethylester
 Beispielhaft seien folgende Verbindungen der Formel (II) genannt:
 30 S-(2,4-Dichlorphenyl-acetyl)-thioessigsäureethylester
 S-(2,6-Dichlorphenyl-acetyl)-thioessigsäureethylester
 S-(2,4,6-Trichlorphenyl-acetyl)-thioessigsäureethylester
 S-(2,4-Dimethylphenyl-acetyl)-thioessigsäureethylester
 S-(2,6-Dimethylphenyl-acetyl)-thioessigsäureethylester
 35 S-(2,4,6-Trimethylphenyl-acetyl)-thioessigsäureethylester
 S-(2,4-Dichlorphenyl-acetyl)-thiomilchsäureethylester
 S-(2,6-Dichlorphenyl-acetyl)-thiomilchsäureethylester
 S-(2,4,6-Trichlorphenyl-acetyl)-thiomilchsäureethylester
 S-(2,4-Dimethylphenyl-acetyl)-thiomilchsäureethylester
 40 S-(2,6-Dimethylphenyl-acetyl)-thiomilchsäureethylester
 S-(2,4,6-Trimethylphenyl-acetyl)-thiomilchsäureethylester
 S-(2,4-Dichlorphenyl-acetyl)-thioisobuttersäureethylester
 S-(2,6-Dichlorphenyl-acetyl)-thioisobuttersäureethylester
 S-(2,4,6-Trichlorphenyl-acetyl)-thioisobuttersäureethylester
 45 S-(2,4-Dimethylphenyl-acetyl)-thioisobuttersäureethylester
 S-(2,6-Dimethylphenyl-acetyl)-thioisobuttersäureethylester
 S-(2,4,6-Trimethylphenyl-acetyl)-thioisobuttersäureethylester

Das Verfahren (A) ist dadurch gekennzeichnet, daß Verbindungen der Formel (II) in welcher A, B, D, X, Y, Z, n und R⁸ die oben angegebene Bedeutung haben, in Gegenwart von Basen einer intramolekularen Kondensation unterwirft.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylool, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. 55 Weiterhin können Alkohole wie Methanol, Ethanol, Propanol, iso-Propanol, Butanol, Isobutanol, tert.-Butanol eingesetzt werden.

Als Basen (Deprotonierungsmittel) können bei der Durchführung des erfindungsgemäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und

Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z.B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 oder TDA 1 eingesetzt werden können. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetall-alkoholate, wie Natrium-methylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0 °C und 250 °C, vorzugsweise zwischen 50 °C und 150 °C.

Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reaktionskomponenten der Formeln (II) und die deprotonierenden Basen im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.

Adogen 464 = Methyltrialkyl(C_8-C_{10})ammoniumchlorid

TDA 1 = Tris-(methoxyethoxyethyl)-amin

Das Verfahren (B α) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehalogeniden der Formel (III) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (B α) bei Verwendung der Säurehalogenide alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.

Verwendet man die entsprechenden Carbonsäurehalogenide so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (B α) alle üblichen Säureakzeptoren in Betracht, vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecan (DBU), Diazabicyclononen (DBN), Hüning-Base und N,N-Dimethylanilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Die Reaktionstemperaturen können auch bei dem erfindungsgemäßen Verfahren (B α) auch bei der Verwendung von Carbonsäurehalogeniden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20 °C und +150 °C, vorzugsweise zwischen 0 °C und 100 °C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (B α) werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäurehalogenid der Formel (III) im allgemeinen in angenehrt äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Das Verfahren (B β) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Carbonsäurehydriden der Formel (IV) umsetzt.

Verwendet man bei dem erfindungsgemäßen Verfahren (B β) als Reaktionskomponente der Formel (IV) Carbonsäureanhydride, so können als Verdünnungsmittel vorzugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäurehydrid gleichzeitig als Verdünnungsmittel fungieren.

Die Reaktionstemperaturen können bei dem erfindungsgemäßen Verfahren (B β) auch bei der Verwendung von Carbonsäureanhydriden innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20 °C und +150 °C, vorzugsweise zwischen 0 °C und 100 °C.

Bei der Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe der Formel (Ia) und das Carbonsäureanhydrid der Formel (IV) im allgemeinen in angenehrt äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.

Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.

Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Chlorameisensäureestern oder Chlorameisensäurethioletern der Formel (V) umsetzt.

Verwendet man die entsprechenden Chlorameisensäureester bzw. Chlorameisensäurethiolester so kommen als Säurebindemittel bei der Umsetzung nach dem erfindungsgemäßen Verfahren (C) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBC, DBA, Hünig-Base und N,N-Dimethyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calcium-oxid, außerdem Alkali-und Erdalkalimetall-carbonate, wie Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat.

Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester alle gegenüber diesen Verbindungen inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylo und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylsulfoxid und Sulfolan.

Bei Verwendung der Chlorameisensäureester bzw. Chlorameisensäurethiolester als Carbonsäure-Derivate der Formel (V) können die Reaktionstemperaturen bei der Durchführung des erfindungsgemäßen Verfahrens (C) innerhalb eines größeren Bereiches variiert werden. Arbeitet man in Gegenwart eines Verdünnungsmittels und eines Säurebindemittels, so liegen die Reaktionstemperaturen im allgemeinen zwischen -20 °C und +100 °C, vorzugsweise zwischen 0 °C und 50 °C.

Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.

Bei der Durchführung des erfindungsgemäßen Verfahrens (C) werden die Ausgangsstoffe der Formel (Ia) und der entsprechende Chlorameisensäureester bzw. Chlorameisensäurethiolester der Formel (V) im allgemeinen in angenehrt äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt dann nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reaktionsgemisch durch Abziehen des Verdünnungsmittels einengt.

Beim Herstellungsverfahren D_a setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (VII) bei 0 bis 120 °C, vorzugsweise bei 20 bis 60 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln wie z.B.

Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindung Ia dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin, Triethylamin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Beim Herstellungsverfahren D_b setzt man pro Mol Ausgangsverbindung der Formel (II) die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50 °C und insbesondere bei 20 bis 30 °C.

Oft ist es zweckmäßig zunächst aus der Verbindung der Formel (II) durch Zusatz eines Deprotonierungsmittels (wie z.B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindung (II) solange mit Schwefelkohlenstoff um bis die Bildung der Zwischenverbindung abgeschlossen ist, z.B. nach mehrstündigem Rühren bei Raumtemperatur.

Die weitere Umsetzung mit dem Alkylhalogenid der Formel (VIII) erfolgt vorzugsweise bei 0 bis 70 °C und insbesondere bei 20 bis 50 °C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.

Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Beim Herstellungsverfahren E) setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Sulfonsäurechlorid (VIII) bei 0 bis 150 °C, vorzugsweise bei 20 bis 70 °C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung Ia dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

5 Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

10 Beim Herstellungsverfahren E kann gegebenenfalls unter Phasen-Transfer-Bedingungen gearbeitet werden (W.J. Spillane et. al.; J. Chem. Soc., Perkin Trans I, (3) 677-9 (1982)). In diesem Fall setzt man pro Mol Ausgangsverbindung der Formel a) 0,3 bis 1,5 mol Sulfonsäurechlorid VIII, bevorzugt 0,5 mol bei 0° bis 150°C, vorzugsweise bei 20 bis 70°C um.

15 Als Phasen-Transfer-Katalysatoren können alle quartären Ammoniumsalze verwendet werden, vorzugsweise Tetraoctylammoniumbromid und Benzyltriethylammoniumchlorid. Als organische Lösungsmittel können in diesem Fall alle unpolaren inerten Lösungsmittel dienen, bevorzugt werden Benzol und Toluol eingesetzt.

20 Beim Herstellungsverfahren F) setzt man zum Erhalt von Verbindungen der Struktur (Ie) auf 1 Mol der Verbindung (Ia), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (IX) bei Temperaturen zwischen -40°C und 150°C, vorzugsweise zwischen -10 und 110°C Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten, polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Alkohole, Sulfide, Sulfone, Sulfoxide etc.

25 Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

30 Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden der organischen Chemie. Die Reinigung der anfallenden Endprodukte geschieht vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d.h. Entfernung der flüchtigen Bestandteile im Vakuum.

35 Beim Herstellungsverfahren G_a setzt man pro Mol Ausgangsverbindung der Formel Ia ca. 1 Mol Isocyanat der Formel (X) bei 0 bis 100°C, vorzugsweise bei 20 bis 50°C um.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone, Sulfoxide.

40 Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z.B. Dibutylzinndilaurat eingesetzt werden. Es wird vorzugsweise bei Normaldruck gearbeitet.

45 Beim Herstellungsverfahren G_b setzt man pro Mol Ausgangsverbindung der Formel (Ia) ca. 1 Mol Carbamidsäurechlorid bzw. Thiocarbamidsäurechlorid der Formel (XI) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.

50 Als gegebenenfalls zugesetzte Verdünnungsmittel kommen aller inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Alkohole, Sulfone, Sulfoxide.

Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Dimethylsulfid eingesetzt.

Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z.B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindung Ia dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.

Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin aufgeführt.

55 Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung geschieht nach üblichen Methoden.

Das Verfahren (H) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (Ia) mit Metallhydroxiden (XII) oder Aminen (XIII) umsetzt.

Als Verdünnungsmittel können bei dem erfindungsgemäß Verfahren vorzugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäß Verfahren (H) wird im allgemeinen unter Normaldruck durchgeführt. Die Reaktionstemperaturen liegen im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (H) werden die Ausgangsstoffe der Formel (Ia) bzw. (XII) oder (XIII) im allgemeinen in angenähert äquimolaren Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Im allgemeinen geht man so vor, daß man das Reaktionsgemisch durch Abziehen des Verdünnungsmittel
5 einengt.

Herstellungsbeispiele

Beispiel Ia-1

10

15

20

11,8 g (0,105 Mol) Kaliumtertiärbutylat werden bei 40 °C in 100 ml tert. Butanol gelöst.

Anschließend läßt man 26 g 2,4,6-Trimethylphenylessigsäureethoxycarbonylmethylester, welcher in 50 ml tert. Butanol gelöst sind, bei 40 °C unter Rühren zutropfen.

Man röhrt in 600 ml Eiswasser ein, stellt mit 1N Salzsäure auf pH 2 ein, extrahiert mit Essigsäureethylester, wäscht zweimal mit Wasser, trocknet über Natriumsulfat und engt am Rotationsverdampfer ein.
25

Ausbeute: 6,82 g (30,3 % der Theorie) der Verbindung 3-(2,4,6-Tri-methylphenyl)-4-hydroxy-Δ³-dihydrofuranon-2.

Schmelzpunkt (nach dem Umkristallisieren aus Methylenechlorid/n-Hexan) 154 °C.

30

Beispiel Ia-2

35

40

2,16 g (90 mmol) Natriumhydrid (80 %ig) wurden in 50 ml absolutem Toluol vorgelegt. Man arbeitet unter Argon-Atmosphäre. Es wird auf Rückflußtemperatur erhitzt. Dann läßt man unter Rückfluß 17,5 g (60 mmol) in 70 ml absolutem Toluol gelöste Verbindung der Formel
45

50

55

zutropfen und erhitzt 3 Stunden lang unter Rückfluß.

Zum Zwecke der Aufarbeitung wird die Lösung einrotiert, der Rückstand in Wasser aufgenommen und die Lösung angesäuert. Der dabei ausfallende Niederschlag wird in Methylchlorid aufgenommen und die wässrige Mutterlauge noch mehrfach extrahiert. Anschließend wird über Natriumsulfat getrocknet und am Rotationsverdampfer eingeeengt.

5 Zur Reinigung suspendiert man heiß in 20 ml Chloroform, gibt unter Rückfluß 60 ml n-Hexan langsam zu, läßt langsam abkühlen, saugt ab und trocknet.

Ausbeute 4,66 g (= 32 % d. Th) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) vom Schmelzpunkt 254 °C.

In Analogie zu den Herstellungsmethoden der Beispiele Ia-1 und Ia-2 wurden die folgenden Herstellungsbeispiele synthetisiert:

Tabelle 8:

Bsp.-Nr.	A	B	D	Physikal. Konstanten			
				X	Y	Zn	
Ia-3	CH ₃	H	0	C1	C1	H	Fp: 179 °C
Ia-4	CH ₃	H	0	C1	H	H	Fp: 154 °C
Ia-5	CH ₃	H	0	CF ₃	H	H	Fp: 156 °C
Ia-6	CH ₃	H	0	OCH ₃	H	H	Fp: 110 °C
Ia-7	CH ₃	H	0	CH ₃	H	H	Fp: 124 °C
Ia-8	H	H	0	Br	H	H	Fp: 218 °C
Ia-9	H	H	0	F	H	6-F	Fp: 264 °C
Ia-10	H	H	0	-CH=CH-CH=CH-	H	H	Fp: 210 °C
Ia-11	H	H	0	CH ₃	H	H	Fp: 163 °C
Ia-12	H	H	0	F	H	H	Fp: 201 °C
Ia-13	- (CH ₂) ₅ -	0	0	CH ₃	CH ₃	6-CH ₃	Fp: 279 °C

Tabelle 8: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	Physikal. Konstanten
Ia-14		H	O	CH3	CH3	6-CH3	Fp: 212-214°C
Ia-15		CH3	O	CH3	CH3	6-CH3	Fp: 244-245°C
Ia-16	CH3	H	O	CH3	CH3	6-CH3	Fp: 208-210°C
Ia-17	CH3	H	O	C1	H	6-C1	Fp: 237°C
Ia-18		H	O	C1	H	6-C1	Fp: 211°C
Ia-19	CH3	CH3	O	C1	H	6-C1	Fp: >270°C
Ia-20		CH3	O	C1	H	6-C1	Fp: 225°C
Ia-21		H	O	C1	C1	H	Fp: 97°C
Ia-22	CH3	CH3	O	C1	C1	H	Fp: 191°C

5

10

15

20

25

30

35

40

45

50

55

Tabelle 8: (Fortsetzung)

Bsp. - Nr.	A	B	D	X	Y	Z_n	Physikal. Konstanten
Ia-23		CH ₃	0	C1	C1	H	Fp: 130° C
Ia-24	- (CH ₂) ₅ -		0	C1	H	6-C1	Fp: 126° C
Ia-25	- (CH ₂) ₅ -		0	C1	C1	H	Fp: 123° C
Ia-26	- (CH ₂) ₅ -		0	F	H	6-C1	Fp: 269° C
Ia-27	CH ₃	H	0	F	H	6-C1	Fp: 201° C
Ia-28		H	0	F	H	6-C1	Fp: 138° C
Ia-29	CH ₃	CH ₃	0	F	H	6-C1	Fp: 249° C
Ia-30		0	CH ₃	CH ₃	6-CH ₃		Fp: 270-275° C
Ia-31	-CH ₂ -CH ₂ -		0	CH ₃	CH ₃	6-CH ₃	Fp: 258-260° C
Ia-32	- (CH ₂) ₉ -CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	Fp: 98-99° C
Ia-33	- (CH ₂) ₄ -		0	CH ₃	CH ₃	6-CH ₃	Fp: 234-238° C

50 45 40 35 30 25 20 15 10 5

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 8: (Fortsetzung)

Bsp.-Nr.	A	B	D	x	y	z_n	Physikal. Konstanten
Ia-34	$-\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}}}-(\text{CH}_2)_3^-$	0	CH_3	CH_3	$6-\text{CH}_3$		Fp: 233-235°C
Ia-35	$-(\text{CH}_2)_6^-$	0	CH_3	CH_3	$6-\text{CH}_3$		Fp: 250°C
Ia-36	$-\text{CH}_2\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{t-C}_4\text{H}_9}{\text{CH}}}-(\text{CH}_2)_2^-$	0	CH_3	CH_3	$6-\text{CH}_3$		Fp: 210-245°C
Ia-37	C_2H_5	C_2H_5	0	CH_3	CH_3	$6-\text{CH}_3$	Fp: 216-228°C
Ia-38		H	0	CH_3	CH_3	$6-\text{CH}_3$	Fp: 192-197°C
Ia-39	$-\text{CH}_2-\text{CH}_2-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}}}-(\text{CH}_2)_2^-$	0	CH_3	CH_3	$6-\text{CH}_3$		Fp: 222°C
Ia-40	$-(\text{CH}_2)_7^-$	0	CH_3	CH_3	$6-\text{CH}_3$		Fp: 246-248°C
Ia-41	$-\overset{\text{CH}_3}{\underset{\text{CH}_3}{\text{CH}}}-(\text{CH}_2)_4^-$	0	CH_3	CH_3	$6-\text{CH}_3$		Fp: 223-231°C

55 45 40 35 30 25 20 15 10 5

Tabelle 8: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	Physikal. Konstanten
Ia-42	- (CH ₂) ₂ -CH- (CH ₂) ₂ - 	0	CH ₃	CH ₃	6-CH ₃		Fp: 257-260° C
Ia-43	C ₂ H ₅	CH ₃	0	CH ₃	CH ₃	6-CH ₃	Fp: 175-180° C
Ia-44	t-C ₄ H ₉	H	0	CH ₃	CH ₃	6-CH ₃	Fp: 180-185° C
Ia-45	-CH ₂ -C(CH ₃) ₂ -CH ₂ -CH-CH ₂ - 	0	CH ₃	CH ₃	6-CH ₃		Fp: 258-259° C
Ia-46	-CH=CH ₂	CH ₃	0	CH ₃	CH ₃	6-CH ₃	Fp: 233-235° C
Ia-47	CH ₃	CH ₃	0	CH ₃	CH ₃	H	Fp: 190-194° C
Ia-48		C ₄ H ₉ -t	H	0	F	H	6-Cl Fp: 197° C
Ia-49	CH ₃	CF ₃	0	CH ₃	CH ₃	6-CH ₃	Fp: 255-257° C
Ia-50	i-C ₄ H ₉	CH ₃	0	CH ₃	CH ₃	6-CH ₃	Fp: 208° C
Ia-51		0	CH ₃	CH ₃	6-CH ₃		Fp: 236-237° C

5
10
15
20
25
30
35
40
45
50

Tabelle 8: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	Physikal. Konstanten
Ia-52	i-C ₃ H ₇	CH ₃	0	CH ₃	CH ₃	6-CH ₃	Fp: 215-217°C
Ia-53	-C(CH ₃) ₂ -C(CH ₃) ₂ -	H	0	CH ₃	CH ₃	6-CH ₃	Fp: 212-213°C
Ia-54	i-C ₃ H ₇	H	0	CH ₃	CH ₃	6-CH ₃	Fp: 190-191°C
Ia-55	-(CH ₂) ₅ -		0	C1	C1	6-CF ₃	Fp: 266°C
Ia-56	-(CH ₂) ₅ -		0	F	CF ₃	6-C1	Fp: 221°C
Ia-57	H	H	0	C1	C1	H	Fp: 198°C
Ia-58		H	0	CH ₃	CH ₃	6-CH ₃	Fp: 118-127°C
Ia-59		CH ₃	0	CH ₃	CH ₃	6-CH ₃	Fp: 170°C
Ia-60			0	CH ₃	CH ₃	6-CH ₃	Fp: 204-206°C
Ia-61	-(CH ₂) ₅ -		0	CH ₃	CH ₃	3F,6CH ₃	Fp: 251-253°C
Ia-62			0	CH ₃	CH ₃	6-CH ₃	Fp: 217 (Zers.)

Beispiel Ib-1

55

10

1,23 g (5 mmol) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) werden in 20 ml absolutem Methylenechlorid vorgelegt. Dazu gibt man 0,61 g (6 mmol) Triethylamin, tropft bei 0-10°C eine Lösung von 0,72 g (6 mmol) Pivaloylchlorid in 5 ml abs. Methylenchlorid zu und röhrt 1 h bei Raumtemperatur nach.

Zur Aufarbeitung wird die Lösung mit wässriger Citronensäure und wässriger Natriumhydrogencarbonatlösung gewaschen, über Natriumsulfat getrocknet und einrotiert.

Ausbeute: 1,43 g (87 % d.Th.) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-pivaloyloxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) von Schmelzpunkt 82 °C.

20

Beispiel Ib-2

25

2,46 g (10 mmol) 3-(2,4,6-Trimethylphenyl)-4-hydroxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) werden in 40 ml absolutem Methylenechlorid vorgelegt. Man setzt 1,11 g (11 mmol) Triethylamin zu, tropft bei 0-10°C eine Lösung von 0,86 g (11 mmol) Acetylchlorid in 10 ml abs. Methylenchlorid zu und lässt noch 1 h bei Raumtemperatur röhren.

Die Aufarbeitung erfolgt analog zu Beispiel 3.

Ausbeute: 2,55 g (88 % d. Th.) der Verbindung 3-(2,4,6-Trimethylphenyl)-4-acetoxy-5,5-dimethyl- Δ^3 -dihydrofuranon-(2) vom Schmelzpunkt 160 °C.

In Analogie zu den Herstellungsmethoden der Beispiele Ib-1 bis Ib-2 wurden die folgenden Herstellungsbeispiele synthetisiert:

45

50

55

5
10
15
20
25
30
35
40
45
50

55

Tabelle 2:

Bsp.-Nr.	A	B	D	X	Y	Zn	R1	Physikal. Konstante
								O=C-R1
Ib-3		CH ₃	O	CH ₃	CH ₃	6-CH ₃	CH ₃	FP: 118-120°C
Ib-4	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	-C(CH ₃) ₂ -C ₂ H ₅	FP: 64°C
Ib-5	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH(CH ₃) ₂	FP: 67°C
Ib-6	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃	FP: 73°C
Ib-7	-(CH ₂) ₅ -	O	CH ₃	CH ₃	6-CH ₃	CH ₃		FP: 200°C
Ib-8	-(CH ₂) ₅ -	O	CH ₃	CH ₃	6-CH ₃	-C(CH ₃) ₃		FP: 117-119°C
Ib-9		CH ₃	O	CH ₃	CH ₃	6-CH ₃	-C(CH ₃) ₃	FP: 123-125°C
Ib-10	CH ₃	H	O	CH ₃	CH ₃	6-CH ₃	CH ₃	FP: 110-112°C

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-11	CH ₃	H	0	CH ₃	CH ₃	6-CH ₃	-C(CH ₃) ₃	Ø1
Ib-12	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃		Fp: 150-152°C
Ib-13	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 109-111°C
Ib-14		H	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Ø1
Ib-15	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	-CH=C(CH ₃) ₂	Fp: 88°C
Ib-16	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃		Ø1
Ib-17			0	CH ₃	CH ₃	6-CH ₃	-CH ₂ -	Fp: 170-172°C
Ib-18			0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp: 128-130°C
Ib-19	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅		Fp: 115-116

5
10
15
20
25
30
35
40
45
50
55

Tabelle 9: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-20	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	C ₃ -H ₇		Fp: 87-88°C
Ib-21	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-C(CH ₃) ₂ -CH ₂ C ₁		Fp: 138°C
Ib-22	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-(CH ₃) ₂ -CH ₂ -OCH ₃		Fp: 114-115°C
Ib-23	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-C(CH ₂ -OCH ₃) ₂		Fp: 92-98°C
						 CH ₂ -OCH ₃		
						CH ₃		
Ib-24	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-C(CH ₂ -OCH ₃) ₂		Fp: 140-142°C
						 CH ₂ -OCH ₃		
						CH ₂ -OCH ₃		
Ib-25	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-C(CH ₂ -OCH ₃) ₂		Fp: 121-122°C
						 CH ₂ -OCH ₃		
						C ₂ H ₅		
Ib-26	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-C(CH ₂ -OCH ₃) ₂		Fp: 110-112°C
						 CH ₂ -OCH ₃		
						i-C ₃ H ₇		

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-27	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-CH ₂ -C(CH ₃) ₃		Fp: 148-151°C
Ib-28	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-CH=C(CH ₃) ₂		Fp: 105-106°C
Ib-29	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			Fp: 102-103°C
Ib-30	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			Fp: 147-148°C
Ib-31	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			Fp: 146°C
Ib-32	CH ₃	H	0	C1	H	6-C1	t-C ₄ H ₉	Fp: 60°C
Ib-33	CH ₃	CH ₃	0	C1	H	6-C1	t-C ₄ H ₉	Fp: 121°C
Ib-34	H		0	C1	C1	H	t-C ₄ H ₉	Fp: 104°C
Ib-35	CH ₃	CH ₃	0	C1	C1	H	-CH ₃	Fp: 96°C
Ib-36	CH ₃	H	0	C1	C1	H	t-C ₄ H ₉	δ ₁

5
10
15
20
25
30
35
40
45
50
55

Tabelle 9: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-37	CH ₃		0	C1	H	6-Cl	t-C ₄ H ₉	Fp: 141°C
Ib-38		H	0	C1	H	6-Cl	t-C ₄ H ₉	Fp: 91°C
Ib-39	CH ₃		0	C1	C1	H	t-C ₄ H ₉	Fp: 197°C
Ib-40	-(CH ₂) ₅ -		0	C1	C1	H	t-C ₄ H ₉	Fp: 101-108°C
Ib-41	-(CH ₂) ₅ -		0	C1	H	6-Cl	t-C ₄ H ₉	Fp: 193°C
Ib-42	-(CH ₂) ₅ -		0	C1	H	6-F	t-C ₄ H ₉	Fp: 117°C
Ib-43	CH ₃	H	0	C1	H	6-F	t-C ₄ H ₉	Fp: 91°C
Ib-44			0	C1	H	6-F	t-C ₄ H ₉	Fp: 97°C
Ib-45	CH ₃	H	0	C1	H	6-Cl	-CH ₃	Fp: 100°C
Ib-46	CH ₃	H	0	C1	H	6-Cl	C ₂ H ₅	Fp: 77°C
Ib-47	CH ₃	CH ₃	0	C1	H	6-F	t-C ₄ H ₉	Fp: 87°C

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-48	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	-CH ₂ -		mp: 102-104°C
Ib-49	CH ₃	CF ₃	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	δ1
Ib-50	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			mp: 132°C
Ib-51	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			mp: 141°C
Ib-52	CH ₃	i-C ₄ H ₉	0	CH ₃	CH ₃	6-CH ₃	CH ₃	mp: 59-60°C
Ib-53	CH ₃	i-C ₄ H ₉	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	δ1
Ib-54		H	0	CH ₃	CH ₃	6-CH ₃	CH ₃	mp: 132-133°C
Ib-55		H	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	mp: 155-157°C

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R1	Physikal. Konstante
Ib-56	CH ₃	i-C ₃ H ₇	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 168°C
Ib-57	CH ₃	i-C ₃ H ₇	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Ø1
Ib-58			0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 154-156°C
Ib-59			0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp: 134-132°C
Ib-60	-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp: 114-117°C
Ib-61	-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp: 115-117°C
Ib-62	H	-(CH ₂) ₉ -CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	
Ib-63	H	-(CH ₂) ₉ -CH ₃	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Ø1
Ib-64	H	H	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp: 112°C
Ib-65	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	i-C ₃ H ₇	Ø1	
Ib-66	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			Fp: 134-136°C

5
10
15
20
25
30
35
40
45
50
55

Tabelle 9: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-67	-CH ₂ -CH-(CH ₂) ₃ - CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Ö1
Ib-68	-CH ₂ -CH-(CH ₂) ₃ - CH ₃	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉		Ö1
Ib-69	-(CH ₂) ₄ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp: 169-172° C
Ib-70	-(CH ₂) ₄ -	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉		Fp: 48-65° C
Ib-71	-CH ₂ -CH-(CH ₂) ₃ - t-C ₄ H ₉	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Ö1
Ib-72	-CH ₂ -CH-(CH ₂) ₃ - t-C ₄ H ₉	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉		Fp: 189-191° C
Ib-73	-(CH ₂) ₆ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp: 160-162° C
Ib-74	-(CH ₂) ₆ -	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉		Fp: 91-93° C

5
10
15
20
25
30
35
40
45
50

Tabelle 9: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	γ	Z_n	R ¹	Physikal. Konstante
Ib-75	C ₂ H ₅	C ₂ H ₅	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp:125° C
Ib-76	C ₂ H ₅	C ₂ H ₅	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp:77-79° C
Ib-77		H	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Ö1
Ib-78		H	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp:100-102° C
Ib-79	- (CH ₂) ₂ - CH - (CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp:135-136° C
Ib-80	- (CH ₂) ₂ - CH - (CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉		Fp:137-139° C
Ib-81	CH ₃							
Ib-82	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃			Ö1
Ib-83	-(CH ₂) ₇ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp:107-108° C
								Fp:127-128° C

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 2: (Fortsetzung)

Bsp.- Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-84	- (CH ₂) ₂ -CH- -(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp: 52°C
Ib-85	- (CH ₂) ₂ -CH- -(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉		Fp: 125-130°C
Ib-86	- (CH ₂) ₄ -CH-	0	CH ₃	CH ₃	6-CH ₃	CH ₃		Fp: 139-142°C
Ib-87	- (CH ₂) ₄ -CH-	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	δ1	
Ib-88	C ₂ H ₅	CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 140-144°C
Ib-89	C ₂ H ₅	CH ₃	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	δ1

5
10
15
20
25
30
35
40
45
50

Tabelle 9: (Fortsetzung)

Bsp. - Nr.	A	B	D	X	Y	Zn	R ¹	Physikal. Konstante
Ib-90	t-C ₄ H ₉	H	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 81-82° C
Ib-91	t-C ₄ H ₉	H	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp: 78-79° C
Ib-92	-CH ₂ -C(CH ₃) ₂ -CH ₂ -CH-	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Ø1	
Ib-93	-CH ₂ -C(CH ₃) ₂ -CH ₂ -CH-	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Ø1	
Ib-94	H ₂ C=CH-	CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 116° C
Ib-95	H ₂ C=CH-	CH ₃	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Ø1
Ib-96	-(CH ₂) ₅ -		0	C1	CF ₃	6-C1	CH ₃	Fp: 166-168° C
Ib-97	-(CH ₂) ₅ -		0	C1	CF ₃	6-C1	t-C ₄ H ₉	Fp: 185° C
Ib-98	-(CH ₂) ₅ -		0	C1	CF ₃	6-C1		Fp: 144-146° C
Ib-99	H	i-C ₃ H ₇	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 99-100° C
Ib-100	H	i-C ₃ H ₇	0	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Ø1
Ib-101	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	6-CH ₃	t-C ₄ H ₉	Fp: 112-113° C

45 40 35 30 25 20 15 10 5

50

55

Tabelle 9: (Fortsetzung)

Bsp. - Nr.	A	B	D	X	Y	Z _n	R ¹	Physikal. Konstante
Ib-102	- (CH ₂) ₅ -	0	C1	C1	H		Fp: 89°C	
Ib-103	- (CH ₂) ₅ -	0	C1	C1	H		Fp: 162°C	
Ib-104	- (CH ₂) ₅ -	0	C1	C1	H	-C ₇ H ₁₄ -CH=CH-C ₈ H ₁₇	δ1	
Ib-105	- (CH ₂) ₅ -	0	C1	C1	H	Adamantyl	Fp: 182°C	
Ib-106	- (CH ₂) ₅ -	0	C1	C1	H		Fp: 107-110°C	
Ib-107	- (CH ₂) ₅ -	0	C1	C1	H	C ₄ H ₉ sec	Fp: 105-106°C	
Ib-108	- (CH ₂) ₅ -	0	C1	C1	H	-CH ₂ -CH-C ₄ H _{9n} C ₂ H ₅	δ1	

5
10
15
20
25
30
35
40
45

50

55

Tabelle 2: (Fortsetzung)

Bspv.- Nr.	A	B	D	X	γ	Z_n	R^1	Physikal. Konstante
Ib-109		$-(CH_2)_5-$	0	CH ₃	CH ₃	6-CH ₃	$-CH-C_4H_9n$ C ₂ H ₅	Fp: 57-59°C
Ib-110		H	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 104°C
Ib-111		H	0	CH ₃	CH ₂	6-CH ₃	C ₄ H _{9t}	δ1
Ib-112		CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 88°C
Ib-113		CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 99°C
Ib-114		$-(CH_2)_5-$	0	CH ₃	CH ₃	3F, 6-CH ₃	CH ₃	Fp: 94°C
Ib-115		$-(CH_2)_5-$	0	CH ₃	CH ₃	3F, 6-CH ₃	C ₄ H _{9t}	Fp: 120-121°C
Ib-116		0	CH ₃	CH ₃	6CH ₃	CH ₃		Fp: 188-189°C

5
10
15
20
25
30
35
40
45
50

Tabelle 9: (Fortsetzung)

Bsp. - Nr.	A	B	D	X	Y	Zn	R1	Physikal. Konstante
Ib-117		0	CH3	CH3	6-CH3	C4H9t		Fp: 131°C
Ib-118		0	CH3	CH3	6-CH3	C4H9t		Fp: 141-143°C
Ib-119	- (CH2)5-	0	C1	C1	H	-C(CH3)2-C2H5		Fp: 85-87°C
Ib-120	- (CH2)5-	0	C1	C1	H	-C(CH3)2CH(CH3)2		Fp: 123-125°C
Ib-121	- (CH2)5-	0	C1	C1	H	-C(CH3)2-CH2C1		Fp: 110-112°C
Ib-122	- (CH2)5-	0	C1	C1	H			
Ib-123	- (CH2)5-	0	C1	CF3	6-F	-C(CH3)3		Fp: 132-135°C

55

5

10

15

20

25

30

35

40

45

50

55

Tabelle 10:

Bsp. - Nr.	Physikal. Konstante					
	A	B	D	X	Y	Zn
Ic-1	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃
Ic-2	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃
Ic-3	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃
Ic-4	CH ₃	H	0	CH ₃	CH ₃	6-CH ₃
Ic-5	CH ₃	H	0	CH ₃	CH ₃	6-CH ₃
Ic-6	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃

45 40 35 30 25 20 15 10 5

Tabelle 10: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	L	M	R ²	Physikal. Konstante	
										Fp: 92-94°C	
Ic-7	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	S	-CH ₂ C(CH ₃) ₃	Fp: 92-94°C	
Ic-8		H	0	CH ₃	CH ₃	6-CH ₃	0	O	C ₂ H ₅	Ø1	
Ic-9		H	0	CH ₃	CH ₃	6-CH ₃	0	O	i-C ₃ H ₇	Ø1	
Ic-10	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	O	CH ₃	Fp: 123-124°C	
Ic-11	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	O	t-C ₄ H ₉	Fp: 108°C	
Ic-12	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	O	CH ₃		Fp: 146-147°C	
Ic-13	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	O	CH ₂ -CH-C ₄ H ₉	Ø1		
							C ₂ H ₅				
Ic-14	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	O	i-C ₃ H ₇		Fp: 142-143°C	
Ic-15	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	O			Fp: 112-114°C	

50

55

5
10
15
20
25
30
35
40
45

50

55

Tabelle 10: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	L	M	R2	Physikal. Konstante
Ic-16	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	0	t-C ₄ H ₉	Fp: 128-132° C	
Ic-17	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	S	-CH ₂ C(CH ₃) ₃	Fp: 129-131° C	
Ic-18	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	S	i-C ₃ H ₇	Fp: 126-127° C	
Ic-19	- (CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	O	CH ₃	Fp: 121-122° C	
Ic-20	- (CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	O	i-C ₃ H ₇	δ1	
Ic-21	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	CH ₃	Fp: 91° C	
Ic-22	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	O	i-C ₄ H ₉	Fp: 96-97° C	
Ic-23	- (CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	0	O	s-C ₄ H ₉	Fp: 102-104° C	
Ic-24	-CH ₂ -CH-(CH ₂) ₃ -	0	CH ₃	CH ₃	6-CH ₃	0	O	CH ₃	δ1	
Ic-25	-CH ₂ -CH-(CH ₂) ₃ -	0	CH ₃	CH ₃	6-CH ₃	0	O	i-C ₃ H ₇	δ1	

5
10
15
20
25
30
35
40
45
50

Tabelle 10: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Z _n	L	M	R ²	Physikal. Konstante
Ic-26	-(CH ₂) ₄ -	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃		Fp: 117-119°C
Ic-27	-(CH ₂) ₄ -	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇		Fp: 120-122°C
Ic-28	-(CH ₂) ₂ -C-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Ø1	
	t-C ₄ H ₉									
Ic-29	-(CH ₂) ₂ -C-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Ø1	
	t-C ₄ H ₉									
Ic-30	-(CH ₂) ₆ -	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃		Fp: 99-104°C
Ic-31	-(CH ₂) ₆ -	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇		Fp: 43-47°C
Ic-32	C ₂ H ₅	C ₂ H ₅	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Fp: 101-102°C
Ic-33	C ₂ H ₅	C ₂ H ₅	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Ø1
Ic-34		H	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Ø1

55

5
10
15
20
25
30
35
40
45

50

55

Tabelle 10: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	L	M	R ²	Physikal. Konstante
Ic-35		H	0	CH ₃	CH ₃	6-CH ₃	0	O i-C ₃ H ₇	Ø1	
Ic-36	-(CH ₂) ₂ -C-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	O CH ₃			Fp: 100-102°C
Ic-37	-(CH ₂) ₂ -C-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	O i-C ₃ H ₇			Fp: 104°C
Ic-38	-(CH ₂) ₇ -	0	CH ₃	CH ₃	6-CH ₃	0	O CH ₃			Fp: 85-88°C
Ic-39	-(CH ₂) ₇ -	0	CH ₃	CH ₃	6-CH ₃	0	O i-C ₃ H ₇			Fp: 97°C
Ic-40	-(CH ₂) ₂ -C-(CH ₂) ₂ -	0	CH ₃	CH ₃	6-CH ₃	0	O CH ₃			Ø1

5
10
15
20
25
30
35
40
45
50

55

Tabelle 10: (Fortsetzung)

Bsp.- Nr.	A	B	D	X	Y	Zn	L	M	R ²	Physikal. Konstante	
										CH ₃	CH ₃
Ic-41	- (CH ₂) ₂ -C-(CH ₂) ₂ -O			CH ₃		CH ₃					
Ic-42	C ₂ H ₅	CH ₃	O	CH ₃	CH ₃	6-CH ₃	O	O CH ₃		Fp: 110-120° C	
Ic-43	C ₂ H ₅	CH ₃	O	CH ₃	CH ₃	6-CH ₃	O	O i-C ₃ H ₇		ö1	
Ic-44	-CH ₂ -C-CH ₂ -CH-CH ₂ -O	CH ₃		CH ₃	CH ₃	6-CH ₃	O	O CH ₃		ö1	
		CH ₃		CH ₃							
Ic-45	-CH ₂ -C-CH ₂ -CH-CH ₂ -O	CH ₃		CH ₃	CH ₃	6-CH ₃	O	O i-C ₃ H ₇		Fp: 141-145° C	
Ic-46	t-C ₄ H ₉	H	O	CH ₃	CH ₃	6-CH ₃	O	O CH ₃		Fp: 94-95° C	

5
10
15
20
25
30
35
40
45

50

55

Tabelle 10: (Fortsetzung)

Besv.-Nr.	A	B	D	X	Y	Zn	L	M	R ²	Physikal. Konstante
Ic-47	-CH=CH ₂	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Fp: 53-56° C
Ic-48	-CH=CH ₂	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Fp: 63-65° C
Ic-49	i-C ₄ H ₉	H	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Fp: 88-89° C
Ic-50		0	CH ₃	CH ₃	6-CH ₃	0	0	C ₂ H ₅		Fp: 136° C
Ic-51	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0		01
Ic-52	i-C ₄ H ₉	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	01
Ic-53	i-C ₄ H ₉	CH ₃	0	CH ₃	CH ₃	6-CH ₆	0	0	i-C ₃ H ₇	01
Ic-54		H	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Fp: 125-126° C
Ic-55		H	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Fp: 105-107° C

5
10
15
20
25
30
35
40
45
50
55

Tabelle 10: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Zn	L	M	R ²	Physikal. Konstante
Ic-56	i-C ₃ H ₇	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Fp: 118°C
Ic-57	i-C ₃ H ₇	CH ₃	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Fp: 130°C
Ic-58		0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃		Fp: 130-131°C
Ic-59		0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇		Fp: 135-136°C
Ic-60	-(CH ₂) ₅ -	0	C1	CF ₃	6-C1	0	0	CH ₃		Fp: 151°C
Ic-61	-(CH ₂) ₅ -	0	C1	CF ₃	6-C1	0	0	i-C ₃ H ₇		Fp: 162-163°C
Ic-62	i-C ₃ H ₇	H	0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	Fp: 103-104°C
Ic-63	i-C ₃ H ₇	H	0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	Fp: 65-67°C
Ic-64		0	CH ₃	CH ₃	6-CH ₃	0	0	CH ₃	δ1	
Ic-65		0	CH ₃	CH ₃	6-CH ₃	0	0	i-C ₃ H ₇	δ1	

5

10

15

20

25

30

35

40

45

50

55

Tabelle III:

Bsp.-Nr.	A	B	D	X	Y	Z _n	R ³	Physikal.
								Konstante
Id-1	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 158-160° C
Id-2	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃		Fp: 130-133° C
Id-3	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	-N(CH ₃) ₂	δ1
Id-4	-(CH ₂) ₅ -	0	CH ₃	CH ₃	CH ₃	6-CH ₃	CH ₃	Fp: 133-134° C
Id-5	-(CH ₂) ₅ -	0	CH ₃	CH ₃	CH ₃	6-CH ₃		Fp: 152° C
Id-6	-(CH ₂) ₅ -	0	CH ₃	CH ₃	CH ₃	6-CH ₃	-N(CH ₃) ₂	Fp: 100-104° C

5
10
15
20
25
30
35
40
45

50

55

Tabelle 12:

Bsp.-Nr.	A	B	D	X	Y	Zn	L	R4	R5	Physikal. Konstante	
										R1	R2
Ie-1	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-OC ₂ H ₅	-SC ₂ H ₅	Fp:60°C	
Ie-2	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-OC ₄ H ₉ -n	Fp:64°C	
Ie-3	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-SC ₄ H ₉ -n	n _D ²⁰ : 1.5425	
Ie-4	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-SC ₄ H ₉ -i	Fp:63°C	
Ie-5	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-OC ₂ H ₅	Fp:104°C	
Ie-6	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-OC ₂ H ₅	-OC ₂ H ₅	Fp:60°C	
Ie-7	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-OC ₂ H ₅	-NHCO ₄ H ₉ -s	Fp:108°C	
Ie-8	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-O-C ₆ H ₄ -C ₆ H ₄ -O-	Fp:150°C	

5
10
15
20
25
30
35
40
45
50

Tabelle 12: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Z _n	L	R ⁴	R ⁵	Physikal. Konstante	
										n β^o : 1.5550	n β^o : 1.5367
Ie-9	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-SC ₄ H ₉ -n	n β^o : 1.5550	n β^o : 1.5367	
Ie-10	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-OC ₄ H ₉ -s	n β^o : 1.5367	n β^o : 1.5367	
Ie-11	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-OC ₂ H ₅	Fp: 126° C	Fp: 126° C	
Ie-12	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-NHC ₄ H ₉ -s	Fp: 114° C	Fp: 114° C	
Ie-13	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-NH-CH ₃	Fp: 126° C	Fp: 126° C	
Ie-14	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-OC ₂ H ₅	Fp: 100° C	Fp: 100° C	
Ie-15	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-NH-C ₃ H ₇ -i			
Ie-16	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-NHC ₄ H ₉ -s	Fp: 122° C	Fp: 122° C	
Ie-17	CH ₃	CH ₃	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-SC ₄ H ₉	Fp: 68° C	
Ie-18	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-SC ₄ H ₉ -t	Fp: 46° C	Fp: 46° C	
Ie-19	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-SC ₃ H ₇ -n	n β^o : 1.5445	n β^o : 1.5445	
Ie-20	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S		-SC ₄ H ₉ -s			

5
10
15
20
25
30
35
40
45
50

Tabelle 12: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Z _n	L	R ⁴	R ⁵	Physikal. Konstante
Ie-21	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-SC ₃ H ₇ -i	n _D ⁰ : 1.5510	
Ie-22	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-SC ₂ H ₅	Fp: 90° C	
Ie-23	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-SC ₄ H ₉ -s	n _D ⁰ : 1.5175	
Ie-24	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-SC ₄ H ₉ -t	Fp: 151° C	
Ie-25	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-C ₄ H ₉ -s	n _D ⁰ : 1.5610	
Ie-26	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-OC ₄ H ₉ -i	n _D ⁰ : 1.4965	
Ie-27	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-OCH ₂ C(CH ₃) ₃	n _D ⁰ : 1.5300	
Ie-28	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-OC ₄ H ₉ -n	Fp: 103° C	
							CH ₃			
Ie-29	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-S(CH ₂) ₂ -CH ₃	Fp: 82° C	
Ie-30	-(CH ₂) ₅ -	0	CH ₃	CH ₃	6-CH ₃	S	-OC ₂ H ₅	-OC ₃ H ₇ -i	CH ₃	

55

5
10
15
20
25
30
35
40
45
50
55

Tabelle 12: (Fortsetzung)

Bsp.-Nr.	A	B	D	X	Y	Z _n	L	R ⁴	R ⁵	Physikal. Konstante
Ie-31	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-OC ₂ H ₅	-OC ₄ H ₉ -s	n _D ^o : 1.5357
Ie-32	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-CH ₃	-SC ₄ H ₉ -s	Fp: 98°C
Ie-33	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-C ₂ H ₅	-S(CH ₂) ₂ -CH ₃	Fp: 87°C
Ie-34	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-CH ₃		-SC ₅ H ₁₁ -n
Ie-35	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-CH ₃		-SC ₃ H ₇
Ie-36	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-CH ₃		-OC ₂ H ₅
Ie-37	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-CH ₃		-OC ₃ H ₇ -i
Ie-38	-(CH ₂) ₅ -	0		CH ₃	CH ₃	6-CH ₃	S	-OC ₂ H ₅		-OC ₂ H ₅
Ie-39	-(CH ₂) ₄ -	0		CH ₃	CH ₃	6-CH ₃	O	-C ₂ H ₅		-OC ₂ H ₅

5

10

15

20

25

30

35

40

45

50

55

Tabelle 13:

<u>Bsp. - Nr.</u>	<u>A</u>	<u>B</u>	<u>D</u>	<u>X</u>	<u>Y</u>	<u>Zn</u>	<u>E^{\oplus}</u>	<u>Physikal. Konstante</u>
Ig-1	$-(CH_2)_5^-$	0	CH_3	CH_3	$6-CH_3$	Na^{\oplus}	$Fp: >260^{\circ}C$	

Herstellung von Ausgangsverbindungen:

Beispiel 1A

13,2 g (0,1 Mol) 2-Hydroxyisobuttersäureethylester werden in 200 ml abs. Methylenchlorid vorgelegt,
15 12,14 g (0,12 Mol) Triethylamin zugegben und bei 0-10°C eine Lösung von 19,7 g (0,1 Mol) 2,4,6-Trimethylphenylessigsäurechlorid in 50 ml abs. Methylenchlorid zugetropft.

Nach 16 h Rühren bei Raumtemperatur wird die Lösung mit wäßriger Zitronensäure und wäßriger Natriumhydrogencarbonatlösung gewaschen, die organische Phase über Natriumsulfat getrocknet und einrotiert.

20 Ausbeute: 26,62 g (91 % d. Theorie) der Verbindung oben angegebener Formel. Die Verbindung fällt als Öl an.

Beispiel 2A

25

30

35 35,6 g (0,2 Mol) 2,4,6-Trimethylphenylessäure werden in 200 ml tert.- Butanol gelöst. Dazu werden 24,6 g (0,22 Mol) Kalium-tert.-butylat gegeben. Man lässt 15 Minuten röhren. Anschließend lässt man 34,9 g (0,2 mol) Bromessigsäureethylester zutropfen.

Nach dem Einrotieren wird mit Wasser/Methylenchlorid aufgenommen, extrahiert, über Natriumsulfat getrocknet und einrotiert.

40 Ausbeute: 38,8 g (74 % d.Theorie) der Verbindung O-(2,4,6-Trimethylphenylacetyl)-hydroxy-essigsäuremethylester vom Schmelzpunkt 154°C (umkristallisiert aus Methylenchlorid/n-Hexan-Gemisch).

45

50

55

5

10

15

20

25

30

35

In Analogie wurden hergestellt:

Bsp. Nr.	A	B	D	X	Y	Zn	R ⁸	Fp. °C	
								3A	CH ₃
4A	CH ₃	H	S	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	4A	CH ₃
5A	CH ₃	CH ₃	O	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	5A	CH ₃
6A	- (CH ₂) ₅ -		O	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	6A	
7A		H	O	CH ₃	CH ₃	6-CH ₃	C ₂ H ₅	7A	

Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblüttertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten und Spinnentieren die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygiene sektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

- Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.
- Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.
- Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spec.
- Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.
- Aus der Ordnung der Thysanura z.B. Lepisma saccharina.
- Aus der Ordnung der Collembola z.B. Onychiurus armatus.
- Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.
- Aus der Ordnung der Dermaptera z.B. Forficula auricularia.
- Aus der Ordnung der Isoptera z.B. Reticulitermes spp..
- Aus der Ordnung der Anoplura z.B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.
- Aus der Ordnung der Mallophaga z.B. Trichodectes spp., Damalinea spp.
- Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.
- Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephrotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus,

5 Nilaparvata lugens, Aonidiella aurantii, Aspidotus hederae, Pseudococcus spp. Psylla spp.

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocoptis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earis insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpcapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus,

15 Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor,

20 20 Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomya spp., Cuterebra spp., Gastrophilus spp., Hypnobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp..

Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans.

30 Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermayssus gallinae, Eriophyes ribis, Phyllocoptura oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonomus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp..

Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten und endoparasiten) wie Schildzecken, Lederzecken, Räubermilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge, Flöhe und endoparasitisch lebende Würmer.

35 Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

40 40 Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

45 Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca,

50 Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

55 55 Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können

die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölbaum-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

5 Die erfundungsgemäßen Wirkstoffe weisen auch eine starke fungizide Wirkung auf und können zur Bekämpfung von unerwünschten Schadorganismen praktisch eingesetzt werden. Die Wirkstoffe sind daher auch für den Gebrauch als Fungizide geeignet.
Fungizide Mittel im Pflanzenschutz werden eingesetzt zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.

10 Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Pythium-Arten, wie beispielsweise Pythium ultimum;
Phytophthora-Arten, wie beispielsweise Phytophthora infestans;
Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis;

15 Plasmopara-Arten, wie beispielsweise Plasmopara viticola;
Peronospora-Arten, wie beispielsweise Peronospora pisi oder Peronospora brassicae;
Erysiphe-Arten, wie beispielsweise Erysiphe graminis;
Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea;

20 Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha;
Venturia-Arten, wie beispielsweise Venturia inaequalis;
Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder Pyrenophora graminea (Konidienform: Drechslera, Synonym: Helminthosporium);
Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform: Drechslera, Synonym: Helminthosporium);

25 Uromyces-Arten, wie beispielsweise Uromyces appendiculatus;
Puccinia-Arten, wie beispielsweise Puccinia recondita;
Tilletia-Arten, wie beispielsweise Tilletia caries;
Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae;

30 Pellicularia-Arten, wie beispielsweise Pellicularia sasakii;
Pyricularia-Arten, wie beispielsweise Pyricularia oryzae;
Fusarium-Arten, wie beispielsweise Fusarium culmorum;
Botrytis-Arten, wie beispielsweise Botrytis cinerea;
Septoria-Arten, wie beispielsweise Septoria nodorum;

35 Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum;
Cercospora-Arten, wie beispielsweise Cercospora canescens;
Alternaria-Arten, wie beispielsweise Alternaria brassicae;
Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

40 Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut und des Bodens.

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, ferner in Formulierungen mit Brennsätzen, wie Räucherpatronen, -dosen, -spiralen u.ä., sowie ULV-Kalt- und Warmnebel-Formulierungen.

45 Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthalene, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylen oder Methylenechlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfractionen,

50 55 Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser: mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-

Treibgas, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid: als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate: als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnusschalen, Maiskolben und Tabakstengel; als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykol-Ether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate: als Dispergiertmittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurenährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Herbiziden oder Fungiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Die erfindungsgemäßen Wirkstoffe können ferner in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Als Vergleichsverbindung aus dem Stand der Technik wurden bei den nachfolgenden biologischen Beispielen die Verbindung der Formel

(bekannt aus US 3 954 998)
eingesetzt.

Beispiel A

Phaedon-Larven-Test

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

5 Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Merettichblattkäfer-Larven (*Phaedon cochleariae*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Käfer-Larven abgetötet wurden; 0 % bedeutet, daß keine Käfer-Larven abgetötet wurden.

10 Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4.

Beispiel B

Nephrotettix-Test

15 Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

20 Reiskeimlinge (*Oryza sativa*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Larven der Grünen Reiszikade (*Nephrotettix cincticeps*) besetzt, solange die Keimlinge noch feucht sind.

25 Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, daß alle Zikaden abgetötet wurden; 0 % bedeutet, daß keine Zikaden abgetötet wurden.

Bei diesem Test zeigen z.B. die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4.

Beispiel C

30 Tetranychus-Test (OP-resistant)

Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

35 Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angegebenen Menge Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Bohnenpflanzen (*Phaseolus vulgaris*), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (*Tetranychus urticae*) befallen sind, werden mit einer Wirkstoffzubereitung der gewünschten Konzentration tropfnäß gespritzt.

40 Nach der gewünschten Zeit wird die Wirkung in % bestimmt. Dabei bedeutet 100 %, daß alle Spinnmilben abgetötet wurden; 0 % bedeutet, daß keine Spinnmilben abgetötet wurden.

Bei diesem Test zeigen die folgenden Verbindungen der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: 2, 3, 4

45 Beispiel D

Pre-emergence-Test / Gewächshaus

50 Lösungsmittel: 5 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

55 Samen der Testpflanzen werden in normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in %

Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle. Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

Bei diesem Test zeigt die folgende Verbindung der Herstellungsbeispiele überlegene Wirksamkeit gegenüber dem Stand der Technik: Ib-7.

Als Stand der Technik diente hier Fluortamone ((\pm)-5-(Methylamino)-2-phenyl-4-[3-(trifluormethyl)-phenyl]-3-(2H)-furanon).

10

15

20

25

30

35

40

45

50

55

Tabelle D
Pre-emergence-Test / Gewächshaus

Wirkstoff	Wirkstoff aufwand g/ha	Soja	Digitaria	Echino-chloa	Lanum	Panicum	Poa	Setaria
Fluortamone bekannt Verbindung	500	50	80		20	80	0	20
Verbindung gemäß Beispiel Ib-7	500	0	95		100	100	90	95

Patentansprüche

1. 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der allgemeinen Formel (I)

5

10

15 in welcher

- X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,
- Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,
- Z für Alkyl, Halogen, Alkoxy steht,
- n für eine Zahl von 0-3 steht,

20 oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an dem sie gebunden sind, den Naphthalinrest der Formel

25

30 bilden,

in welchem

- Y die oben angegebene Bedeutung hat,
- G für Wasserstoff (a) oder für die Gruppen

35

40

45

steht,

50 A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Nitro substituiertes Aryl, Aralkyl oder Heteraryl stehen,

55 und worin

A und B

gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

D für Sauerstoff oder Schwefel steht,
 E^o für ein Metallionäquivalent oder ein Ammoniumion steht,
 L und M für Sauerstoff und/oder Schwefel steht,
 R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylthioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl oder substituiertes Hetarylalkyl steht und
 R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder gegebenenfalls substituiertes Phenyl oder Benzyl steht,
 R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio, Alkinylthio, Cycloalkylthio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 R⁶ und R⁷ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen Alkylenrest stehen,
 oder wobei R⁶ und R⁷ mit Ausnahme folgender Verbindungen;
 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).
 30 2. 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1, dadurch gekennzeichnet, daß es sich um eine der folgenden Strukturen (Ia) bis (Ig) handelt:

35

(Ia)

40

45

50

55

50

worin

A, B, D, E, L, M, X, Y, Z_n, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die in Anspruch 1 angegebenen Bedeutungen besitzen.

55

3. 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1,

in welcher

- X für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,
- Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,
- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,

5 n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

10

15

bilden,

in welchem Y die oben angegebene Bedeutung hat,

20 A und B gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkyl, C₁-C₁₀-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkoxy, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₆-alkyl steht,

25

oder worin

30

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

35

40

45

steht,

in welchen

50 E⁹ für ein Metallionäquivalent oder ein Ammoniumion steht,
 L und M für Sauerstoff und/oder Schwefel steht,
 R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Alkylthio-C₂-C₈-alkyl, C₁-C₈-Polyalkoxyl-C₂-C₈-alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefelatome unterbrochen sein kann, steht,

55

für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl steht;

für gegebenenfalls durch Halogen-, C₁-C₆-Alkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht,

5 für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl substituiertes Hetaryl steht,

für gegebenenfalls durch Halogen und/oder C₁-C₆-Alkyl-substituiertes Phenoxy-C₁-C₆-alkyl steht,

10 für gegebenenfalls durch Halogen, Amino und C₁-C₆-Alkyl-substituiertes Hetaryloxy-C₁-C₆-Alkyl steht,

R² für gegebenenfalls durch Halogen substituiertes: C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,

15 für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C₂-C₅-Alkenylthio, C₂-C₅-Alkinyllthio, C₃-C₇-Cycloalkylthio, für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

20 R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenenfalls durch Halogen, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₂₀-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl oder C₁-C₂₀-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen C₂-C₆-Alkylenring stehen,

25 30 mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

3-(2-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

3-(2-Methylphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

35 3-(2-Fluorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

40 4. 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel (I) gemäß Anspruch 1,

in welcher

X für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,

45 Z für C₁-C₄-Alkyl, Halogen, C₁-C₄-Alkoxy steht,

n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

50

55

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B gleich oder verschieden sind und für Wasserstoff oder gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl, C₁-C₈-Alkylothio-C₂-C₆-alkyl, Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff und/oder Schwefelatome unterbrochen sein kann und gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl-, C₁-C₄-Alkoxy-, Nitro substituiertes Aryl, Hetaryl oder Aryl-C₁-C₄-alkyl stehen,

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₃-Alkylothio oder gegebenenfalls durch Halogen, Alkyl, Alkoxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

G für Wasserstoff (a) oder für die Gruppen

30 steht,

in welchen
 E[⊖] für ein Metallionäquivalent oder ein Ammoniumion steht,
 L und M für Sauerstoff und/oder Schwefel steht,
 R¹ für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₁₆-Alkylothio-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl und Cycloalkyl mit 3-7 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,
 R² für gegebenenfalls durch Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy-substituiertes Phenyl steht,
 für gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy-substituiertes Phenyl-C₁-C₄-alkyl steht,
 für gegebenenfalls durch Halogen und C₁-C₆-Alkyl-substituiertes Hetaryl steht,
 für gegebenenfalls durch Halogen- und C₁-C₄-Alkyl-substituiertes Phenoxy-C₁-C₅-alkyl steht,
 für gegebenenfalls durch Halogen, Amino, C₁-C₄-Alkyl-substituiertes Hetaryloxy-C₁-C₅-alkyl steht,
 für gegebenenfalls durch Halogen substituiertes: C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₁₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,
 für gegebenenfalls durch Halogen, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆)-Alkylamino, C₁-C₆-Alkylthio, C₃-C₄-Alkenylthio, C₂-C₄-Alkinylthio, C₃-C₆-Cycloalkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkylthio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₁-C₂₀-Alkoxy, C₂-C₈-Alkenyl, C₁-C₂₀-Alkoxy-C₁-C₂₀-alkyl, für gegebenenfalls durch Halogen, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₅-Halogenalkyl oder C₁-C₅-Alkoxy substituiertes Benzyl steht,

mit Ausnahme folgender Verbindungen:

3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(3-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
15 3-(2-Methylphenyl)-4-hydroxy-Δ³-dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,

sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

5. 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivate der Formel
20 (I) gemäß Anspruch 1,

in welcher

X für Methyl, Ethyl, Propyl, i-Propyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,

25 Y für Wasserstoff, Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy, Ethoxy und Trifluormethyl steht,

Z für Methyl, Ethyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Fluor, Chlor, Brom, Methoxy und Ethoxy steht,

n für eine Zahl von 0-3 steht,

30 oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

35

bilden,

in welchem Y die oben angegebene Bedeutung hat,

A und B gleich oder verschieden sind und für Wasserstoff, gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₆-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl, C₁-C₆-Alkylthio-C₂-C₄-alkyl, Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff und/oder Schwefelatomen unterbrochen sein kann oder gegebenenfalls durch Fluor-, Chlor-, Brom-, Methyl-, Ethyl-, Propyl-, iso-Propyl-, Methoxy-, Ethoxy-, Trifluormethyl-, Nitro substituiertes Aryl, Pyrimidin, Imidazol, Pyrazol, Triazol, Indol, Thiazol oder Aryl-C₁-C₃-alkyl stehen,

50

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Fluor, Chlor, C₁-C₂-Alkyl, C₁-C₂-Alkoxy, Trifluormethyl, C₁-C₂-Alkylthio oder gegebenenfalls substituiertes Fluor, Chlor, Methyl, Methoxy substituiertes Aryl substituierten 3- bis 8-gliedrigen Ring bilden,

55

G für Wasserstoff (a) oder für die Gruppen

steht, in welchen

E^\bullet für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

R¹ für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Alkylthio-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₄-alkyl und Cycloalkyl mit 3-6 Ringatomen, das durch 1-2 Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Nitro-substituiertes Phenyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy-substituiertes Phenyl-C₁-C₃-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl-substituiertes Pyridyl, Pyrimidyl, Thiazolyl und Pyrazolyl steht,

für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl-substituiertes Phenoxy-C₁-C₄-alkyl steht,

für gegebenenfalls durch Fluor, Chlor, Amino, Methyl-, Ethyl-, substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl und Thiazolyloxy-C₁-C₄-alkyl steht,

für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl, C₁-C₄-Polyalkoxy-C₂-C₆-alkyl steht,

oder für gegebenenfalls durch Fluor, Chlor, Nitro, Methyl, Ethyl, Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl substituiertes Phenyl oder Benzyl steht,

R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-Alkyl)-amino, C₁-C₄-Alkylthio, für gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₄-Fluoralkoxy, C₁-C₂-Chloralkoxy, C₁-C₂-Alkylthio, C₁-C₂-Fluoralkylthio, C₁-C₂-Chloralkylthio, C₁-C₃-Alkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R⁶ und R⁷ unabhängig voneinander für gegebenenfalls durch Fluor, Chlor, Brom substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkoxy-(C₁-C₁₀)alkyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₂₀-Halogenalkyl, C₁-C₂₀-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht,

mit Ausnahme folgender Verbindungen:

55 3-(2-Methoxyphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Chlorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Methylphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2, 3-(2-Fluorphenyl)-4-hydroxy- Δ^3 -dihydrofuranon-2,
sowie die enantiomerenreinen Formen von Verbindungen der Formel (I).

6. Verfahren zur Herstellung von 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- und 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der allgemeinen Formel (I)

5

10

in welcher

X für Alkyl, Halogen, Alkoxy oder Halogenalkyl steht,

Y für Wasserstoff, Alkyl, Halogen, Alkoxy, Halogenalkyl steht,

Z für Alkyl, Halogen, Alkoxy steht,

n für eine Zahl von 0-3 steht,

oder wobei die Reste X und Z gemeinsam mit dem Phenylrest, an den sie gebunden sind, den Naphthalinrest der Formel

20

25

bilden,

30

in welchem Y die oben angegebene Bedeutung hat,

G für Wasserstoff (a) oder für die Gruppen

35

40

45

steht,

A und B gleich oder verschieden sein können und für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Alkylthioalkyl, gegebenenfalls durch Heteroatome unterbrochenes Cycloalkyl oder gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Nitro substituiertes Aryl, Aralkyl oder Hetaryl substituiertes Aryl, Aralkyl oder Hetaryl steht

50

oder worin

A und B gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Heteroatome unterbrochenen und gegebenenfalls substituierten Cyclus bilden,

55

D für Sauerstoff oder Schwefel steht,

E[⊕] für ein Metallionäquivalent oder ein Ammoniumion steht,

L und M für Sauerstoff und/oder Schwefel steht,

R¹ für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Alkylothioalkyl, Polyalkoxyalkyl oder Cycloalkyl, das durch Heteroatome unterbrochen sein kann, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Phenylalkyl, substituiertes Hetaryl, substituiertes Phenoxyalkyl oder substituiertes Hetarylalkyl steht und
 5 R² für gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder gegebenenfalls substituiertes Phenyl oder Benzyl steht,
 10 R³, R⁴ und R⁵ unabhängig voneinander für gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylothio, Alkenylothio, Alkinylothio, Cycloalkylothio und für gegebenenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
 15 R⁶ und R⁷ unabhängig voneinander für Wasserstoff, gegebenenfalls durch Halogen substituiertes Alkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für gegebenenfalls substituiertes Phenyl, für gegebenenfalls substituiertes Benzyl stehen
 oder wobei R⁶ und R⁷ zusammen für einen gegebenenfalls durch Sauerstoff unterbrochenen
 20 Alkenrest stehen,
 mit Ausnahme folgender Verbindungen:
 25 3-(2-Methoxyphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 3-(2-Chlorphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 3-(2-Methylphenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 3-(2-Fluorophenyl)-4-hydroxy-Δ³-dihydrofuranon-2,
 30 dadurch gekennzeichnet,
 daß man zum Erhalt von 3-Aryl-4-hydroxy-Δ³-dihydrofuranon- und 3-Aryl-4-hydroxy-Δ³-dihydrothiophenon-Derivaten der Formel (Ia)
 35

30
 35

in welcher
 40 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,
 entweder
 (A) Carbonsäureester der Formel (II)

45
 50

55 in welcher
 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

und

R⁸ für Alkyl steht,

5 in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,

oder

(B) zum Erhalt von Verbindungen der Formel (Ib)

10

15

20

in welcher

A, B, D, X, Y, Z, R¹ und n die oben angegebene Bedeutung haben,

25

Verbindungen der Formel (Ia),

30

35

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

α) mit Säurehalogeniden der allgemeinen Formel (III)

40

45

in welcher

R¹ die oben angegebene Bedeutung hat

und

Hal für Halogen, insbesondere Chlor und Brom steht,

50

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt

oder

β) mit Carbonsäureanhydriden der allgemeinen Formel (IV)

55

R¹-CO-O-CO-R¹ (IV)

in welcher

R¹ die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels,
umsetzt, oder daß man
(C) zum Erhalt von Verbindungen der Formel (Ic)

5

10

(Ic)

15

in welcher

A, B, D, X, Y, Z, R² und n die oben angegebene Bedeutung haben,
L für Sauerstoff

20

und

M für Sauerstoff oder Schwefel steht,
Verbindungen der Formel (Ia)

25

(Ia)

30

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

35

mit Chlorameisensäureester oder Chlorameisensäurethiolester der allgemeinen Formel (V)

R²-M-CO-Cl (V)

40

in welcher

R² und M die oben angegebene Bedeutung haben,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man
(D) zum Erhalt von Verbindungen der Formel (Ic)

45

50

(Ic)

55

in welcher

A, B, D, R², X, Y, Z und n die oben angegebene Bedeutung haben,

L für Schwefel
und
M für Sauerstoff oder Schwefel steht,
Verbindungen der Formel (Ia)

5

10

in welcher

15

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der allgemeinen
Formel (VI)

20

25

in welcher

30

M und R² die oben angegebene Bedeutung haben

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines

Säurebindemittels umsetzt,

oder

35

β) mit Schwefelkohlenstoff und anschließend mit Alkylhalogeniden der allgemeinen Formel (VII)

R²-Hal (VII)

in welcher

40

R² die oben angegebene Bedeutung hat

und

Hal für Chlor, Brom, Jod
steht, umsetzt,

45

oder daß man

(E) zum Erhalt von Verbindungen der Formel (Id)

50

55

in welcher

A, B, D, X, Y, Z, R³ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (Ia)

10
in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben,

15 mit Sulfonsäurechlorid(en) der allgemeinen Formel (VIII)

$R^3\text{-SO}_2\text{-Cl(VIII)}$

20 in welcher
 R^3 die oben angegebene Bedeutung hat

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart
eines Säurebindemittels,

umsetzt, oder daß man

25 (F) zum Erhalt von Verbindungen der Formel (Ie)

in welcher

40 A, B, D, L, X, Y, Z, R^4 , R^5 und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (Ia)

in welcher

A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben

55 mit Phosphorverbindungen der allgemeinen Formel (IX)

in welcher

10 L, R⁴ und R⁵ die oben angegebene Bedeutung haben

und

Hal für Halogen, insbesondere Chlor und Brom steht,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines
15 Säurebindemittels umsetzt, oder daß man
(G) zum Erhalt von Verbindungen der Formel (If)

in welcher

30 A, B, D, L, X, Y, Z, R⁶, R⁷ und n die oben angegebene Bedeutung haben,

Verbindungen der Formel (Ia),

35

in welcher

45 A, B, D, X, Y, Z und n die oben angegebene Bedeutung haben
a) mit Isocyanaten der allgemeinen Formel (X)

50

in welcher

55 R^6 die oben angegebene Bedeutung hat
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines
Katalysators umsetzt,
oder
β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der allgemeinen Formel (XI)

in welcher

10

L, R⁶ und R⁷ die oben angegebene Bedeutung haben,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder daß man

15

(H) zum Erhalt von Verbindungen der Formel (Ig)

25

in welcher

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

30

und E[⊕] für ein Metallionäquivalent oder für ein Ammoniumion steht,

Verbindungen der Formel (Ia)

35

40

in welcher

45

X, Y, Z, A, B, D und n die oben angegebene Bedeutung haben,

mit Metallhydroxiden oder Aminen der allgemeinen Formeln (XIII) und (XIII)

50

55

in welchen

Me
s und t

für ein- oder zweiwertige Metallionen
für die Zahl 1 oder 2 und

R⁵, R⁶ und R⁷ unabhängig voneinander für Wasserstoff und Alkyl stehen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.

5 7. Insektizide, akarizide, herbizide und fungizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- oder 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivat der Formel (I).

10 8. Verfahren zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern und/oder Pilzen, dadurch gekennzeichnet, daß man 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- oder 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (I) auf Insekten und/oder Spinnentiere und/oder Unkräuter und/oder Pilzen und/oder deren Lebensraum einwirken läßt.

15 9. Verwendung von 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- oder 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivaten der Formel (I) zur Bekämpfung von Insekten und/oder Spinnentieren und/oder Unkräutern und/oder Pilzen.

20 10. Verfahren zur Herstellung von insektiziden und/oder akariziden und/oder herbiziden und/oder fungiziden Mitteln, dadurch gekennzeichnet, daß man 3-Aryl-4-hydroxy- Δ^3 -dihydrofuranon- oder 3-Aryl-4-hydroxy- Δ^3 -dihydrothiophenon-Derivate der Formel (I) mit Streckmitteln und/oder oberflächenaktiven Mitteln vermischt.

25

30

35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 92 11 1324

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. CL.5)
Kategorie	Kenntzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrieb Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CL.5)
A	EP-A-0 299 694 (SCHERING AGROCHEMICALS LIMITED) * Seite 5, Zeile 35 - Zeile 49; Ansprüche 3-4; Beispiel 2 * ---	1,6,7-10	C07D307/60 C07D307/94 C07D307/68 C07D409/12 C07D407/12 C07F9/655 A01N43/08
A	CHEMICAL ABSTRACTS, vol. 69, no. 23, 2. Dezember 1968, Columbus, Ohio, US; abstract no. 94792j, K. SAKURAI ET AL. 'Antifungal studies on drugs. I. Antifungal activity of five-membered lactone derivatives.' Seite 8861 ; Spalte 2 ; * Zusammenfassung * & YAKUGAKU ZASSHI Bd. 88, Nr. 7, 1968, Seiten 919 - 924 ---	1,7	
A	FR-A-2 054 514 (ROUSSEL-UCLAF) * Anspruch 1; Seite 12, Schemata 1 und 2 * ---	1,7	
D,X	EP-A-0 423 482 (BAYER AKTIENGESELLSCHAFT) * Seite 2, Zeile 1 - Seite 3, Zeile 22 * * Seite 33, Zeile 49 - Seite 35, Zeile 8; Ansprüche 1,7,8-11 * * Seite 23, Tabelle 1, Beispiele 42, 46 * ---	1-4,6, 7-10	RECHERCHIERTE SACHGEBIETE (Int. CL.5)
D,A	JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1. Nr. 8, 1985, LETCHWORTH GB Seiten 1567 - 1576 A.C. CAMPBELL ET AL. 'Synthesis of (E)- and (Z)-Pulvinones' * das ganze Dokument und insbesondere RN [100074-47-3], [100074-44-0] und [100074-41-7] * -----	1-4,6	C07D C07F
D,A		1-6	
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Rechercheort DEN HAAG	Abschlußdatum der Recherche 21 OKTOBER 1992	Prüfer B. Paisdor	
KATEGORIE DER GENANNTEN DOKUMENTE		T : der Erfindung zugrunde liegenden Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst zu oder nach dem Anmeldeatum veröffentlicht worden ist D : in der Anmeldung angeführtes Dokument L : aus anderen Gründen angeführtes Dokument	
X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur		& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	