Langage mathématique, logique et ensembles

1. Rudiments de logique mathématique

1.1. Propositions

a) $\underline{\text{D\'efinition}}$: une **proposition mathématique** P, ou **assertion**, est une "phrase", qui, même écrite en langage symbolique, doit comporter un sujet et un $\underline{\text{verbe}}$, et qui peut recevoir la valeur $\overline{\text{vrai}}$ (V) ou la valeur $\overline{\text{faux}}$ (F), exclusivement.

Exemple : P: "le produit de deux réels négatifs est positif" est une proposition vraie $Q:\pi=3.14$ est une proposition fausse.

Remarque 1: "on suppose P" signifie: "on suppose P vraie".

Remarque 2 : en informatique, on parle d'expression booléenne (référence au logicien George Boole)

b) Négation : si P est une proposition, \overline{P} (ou non P) désigne sa négation ou proposition contraire.

Exemple: si x est un réel, la proposition $P: x \ge 0$ a pour négation $\overline{P}: x < 0$.

Remarque: lorsque deux propositions P et Q ont même tableau de vérité, ont dit qu'elles sont équivalentes, et on note parfois $P \equiv Q$. Par exemple, on a pour une proposition P: non(nonP) $\equiv P$

1.2. Quantificateurs

a) $\underline{\mathbf{Pr\'edicats}}$: une proposition $P\left(x\right)$ dépendant d'un élément x d'un ensemble E s'appelle $\mathbf{pr\'edicat}$.

Par exemple $P(x): x^2 - x - 1 \ge 0$ dépend du réel x. P(2) est une proposition vraie, P(1) est fausse.

Attention: $x^2 - x - 1$ n'est pas une proposition! (c'est une expression).

b) Quantificateur universel: $\forall x \in E, \ P(x) \text{ signifie "quel que soit } x \text{ dans } E, P(x) \text{ est vraie"}$

Exemple: "f est positive sur l'intervalle I" se traduit par: $\forall x \in I$, $f(x) \ge 0$.

Remarque : la proposition $\forall x \in E$, P(x) ne dépend pas de x. La lettre x est **muette** de sorte que $(\forall x \in E, P(x)) \equiv (\forall t \in E, P(t))$

c) Quantificateur existentiel: $\exists x \in E / P(x)$ signifie "il existe x dans E tel que P(x) est vraie"

Remarque: "il existe" sous-entend "il existe au moins"; on notera ∃! pour "il existe un seul".

Exemple 1: $\exists x \in \mathbb{R} / x^2 - x - 1 = 0$ se lit: "il existe un réel x tel que $x^2 - x - 1 = 0$ ".

Exemple 2 : le quantificateur \exists s'utilise pour exprimer des phrases du type "...est de la forme..., où...est...". Par exemple $P\left(n\right)$: "n est un entier impair" se traduit par : "n est de la forme 2k+1, où k est un entier" $P\left(n\right)$ s'écrit "mathématiquement" : $\exists k \in \mathbb{N} \ / \ n=2k+1$

Remarque: 1'ordre des quantificateurs \forall et \exists est important :

Si une proposition commence par $\forall x \in E, \exists y \in F / \dots, y$ est conditionné par x, c'est à dire dépend de x. En revanche, dans $\exists y \in F / \forall x \in E, \dots, y$ est indépendant de x.

1

PCSI Logique, ensembles

Exemple: " $(u_n)_{n\in\mathbb{N}}$ est majorée" s'écrit: $\exists M\in\mathbb{R}\ /\ \forall n\in\mathbb{N},\ u_n\leqslant M.$

En revanche, $\forall n \in \mathbb{N}, \ \exists M \in \mathbb{R} \ / \ u_n \leqslant M$ est une banalité : il suffit de prendre $M = u_n!!$

d) Négations : la négation de $\forall x \in E, \ P(x)$ est $\exists x \in E \ / \ \overline{P}(x)$

Exemple 1: $P: \forall x \in \mathbb{R}, \ f(x) \geqslant 0$ a pour négation $\overline{P}:$

Exemple 2 : Q : " $(u_n)_{n\in\mathbb{N}}$ est majorée" a pour négation : \bar{Q} :

1.3. Connecteurs logiques

Soient P et Q deux propositions.

a) Conjonction, disjonction:

- (i) P et Q, notée aussi $P \wedge Q$, est la proposition qui n'est vraie que lorsque les deux propositions sont vraies.
- (ii) P ou Q, notée aussi $P \lor Q$, est la proposition qui n'est vraie que lorsqu'au moins une proposition est vraie.

Exercice: établir les tableaux de vérité de $P \wedge Q$ et $P \vee Q$.

Remarque : le "ou" mathématique est inclusif.

(iii) Négations : la négation de P et Q est \overline{P} ou \overline{Q} (soit $\overline{P \wedge Q} \equiv \overline{P} \vee \overline{Q}$)

Exemple: si $x \in \mathbb{R}$, alors $P: -1 \le x \le 1$ a pour négation:

Remarque: P ou (Q et $R) \equiv (P$ ou Q) et (P ou R) P et (Q ou $R) \equiv (P$ et Q) ou (P et R).

b) Implication:

(i) $P \Longrightarrow Q$ (P implique Q) est la proposition qui signifie : si P est vraie, alors Q aussi

Autrement dit la proposition $P\Longrightarrow Q$ n'est fausse que si P est vraie et Q est fausse.

Le tableau de vérité de $P \Longrightarrow Q$ montre que $(P \Longrightarrow Q) \equiv (\overline{P} \text{ ou } Q)$

Exemple: $2 = 3 \Longrightarrow 1 = 4$ est une proposition vraie.

(ii) Réciproque : $Q \Longrightarrow P$ est appelée **réciproque** de $P \Longrightarrow Q$, et n'est pas toujours vraie si $P \Longrightarrow Q$ l'est.

Exemple: $x \ge 2 \Longrightarrow x^2 \ge 4$ est vraie, mais la réciproque $x^2 \ge 4 \Longrightarrow x \ge 2$ est fausse.

(iii) $\underline{\text{N\'egation}}$: la négation de $P \Longrightarrow Q$ est P et \overline{Q} (soit $\overline{P} \Longrightarrow \overline{Q} \equiv P \wedge \overline{Q}$)

Exemple: $\forall x \in \mathbb{R}, (x \ge 0 \Longrightarrow f(x) \ge 0)$ a pour négation :

Remarque: pour infirmer une implication, on trouve donc un cas qui valide l'hypothèse et infirme la conclusion. Ceci est utilisé dans les raisonnements par l'absurde.

(iv) Contraposée : la proposition $\overline{Q} \Rightarrow \overline{P}$ est appelée **contraposée** de $P \Rightarrow Q$.

Elle est logiquement équivalente à $P \Rightarrow Q$, donc vraie si et seulement si $P \Rightarrow Q$ l'est :

$$\overline{\left(\overline{Q} \Rightarrow \overline{P}\right) \equiv (P \Rightarrow Q)}$$

PCSI Logique, ensembles

Attention : ne pas confondre avec la réciproque, qui elle n'est pas forcément vraie si $P \Rightarrow Q$ l'est. Par exemple, "n est multiple de $4 \Rightarrow n$ est pair" a pour contraposée : et pour réciproque :

c) Equivalence:

 $P \Longleftrightarrow Q$ ("P est équivalente à Q") est la proposition qui signifie "P est vraie si et seulement si Q est vraie"

On a alors

$$(P \Longleftrightarrow Q) \equiv (P \Longrightarrow Q \quad \mathbf{et} \quad Q \Longrightarrow P)$$

Lorsque deux propositions P et Q sont équivalentes, on peut remplacer l'une par l'autre "sans perdre d'information".

Exercice: établir la table de vérité de $P \iff Q$

Exemple 1 : l'équivalence est utilisée comme lien logique lors des routines élémentaires.

Par exemple dans la résolution des équations : $2x + 3 = 0 \iff 2x = -3 \iff x = -\frac{3}{2}$

Exemple 2 : elle est aussi utilisée dans les **définitions** : ABC est isocèle en A si et seulement si AB = AC

Exemple 3 : elle permet aussi la caractérisation d'une propriété :

$$ABC$$
 est rectangle en $A \iff AB^2 + AC^2 = BC^2$ (Pythagore)

Remarque 1: les relations \Longrightarrow et \Longleftrightarrow sont **transitives**: si $P \Rightarrow Q$ et $Q \Rightarrow R$, alors $P \Rightarrow R$

Cela permet les "chaines" d'équivalences et/ou d'implications

Remarque 2 : conditions nécessaires et suffisantes

 $P \Longrightarrow Q$ se lit aussi : "pour que P soit vraie, il **faut** que Q soit vraie" (la condition Q est **nécessaire**),

 $Q \Longrightarrow P$ se lit aussi : "pour que P soit vraie, il **suffit** que Q soit vraie" (la condition Q est **suffisante**).

Si $P \Longleftrightarrow Q$, on dit que Q est une **condition nécessaire et suffisante** (CNS) pour que P soit vraie

Remarque 3: on a la tautologie (proposition toujours vraie): $[P \text{ et } (P \Rightarrow Q)] \Rightarrow Q$.

Il s'agit du syllogisme classique : "Si P est vraie alors Q est vraie . Or P est vraie; donc Q est vraie".

2. Ensembles

2.1. Notations des ensembles

a) <u>Généralités</u>: les ensembles s'écrivent en général entre accolades.

Appartenance : $x \in A$ signifie que x est élément de A (x appartient à A).

Inclusion : $A \subset B$ signifie que l'ensemble A est **inclus** dans l'ensemble B : tout élément de A est dans B

Autrement dit l'inclusion $A \subset B$ s'exprime par l'**implication** : $(x \in A) \Rightarrow (x \in B)$

Exemples: * L'ensemble vide est noté \varnothing .

- * Un ensemble à un seul élément $E=\{a\}$ est appelé **singleton**.
- * Un ensemble à deux éléments <u>distincts</u> $E = \{a, b\}$ est appelé **paire**.
- * L'ensemble des chiffres est $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} = [[1, 9]]$

Ensemble des parties : si E est un ensemble, on note $\mathcal{P}(E)$ l'ensemble de ses **parties**, ou **sous ensembles**

Exemple: si $E = \{a, b, c\}$, alors $\mathcal{P}(E) =$

b) Ensembles définis "en compréhension":

 $A = \{x \in E \mid P(x)\}$ se lit "ensemble A des éléments x de E qui vérifient la proposition P(x)".

Les éléments de A sont donc caractérisés par : $x \in A \iff P(x)$ est vraie

Exemple 1: décrire en compréhension et en extension l'ensemble S des solutions de $x^2 - 3x + 2 = 0$

Exemple 2: intervalles de \mathbb{R} . Pour $a \leq b$ réels, décrire en compréhension les huit types d'intervalles :

$$[a,b]$$
, $[a,b[$, $[a,b[$, $[a,b[$, $[a,+\infty[$, $[a,+\infty[$, $]-\infty,a[$, $]-\infty,a[$

Exemple 3: équation d'un ensemble de points: la droite D d'équation 2x + 3y - 1 = 0 s'écrit D = 0

c) Ensembles "indexés" (ou "paramétrés"): si $a(x) \in E$ est une expression dépendant de x, l'ensemble A des éléments de la forme a(x) où x parcourt l'ensemble I s'écrit :

$$A = \left\{ a\left(x\right), \underbrace{x \in I}_{"x \text{ parcourant }I"} \right\}$$

Les éléments de A sont donc caractérisés par : $y \in A \iff \exists x \in I \ / \ y = a(x)$ (écrire A en compréhension)

Exemple 1: paramétrer l'ensemble S des solutions de l'équation $\cos x = 0$

Exemple 2 : paramétrer l'ensemble Q

2.2. Opérations sur les ensembles

a) **Réunion-Intersection :** si A et B sont deux parties (ou sous-ensembles) d'un ensemble E, on note :

$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\} \qquad \text{(intersection de } A \text{ et } B)$$

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\} \qquad \text{(réunion de } A \text{ et } B)$$

$$\mathbb{C}_E A = \{x \in E \mid x \notin A\} \qquad \text{(complémentaire de } A, \text{ aussi noté } \overline{A})$$

$$A \setminus B = \{x \in A \mid x \notin B\} = A \cap \overline{B} \qquad \text{(différence)}$$

Exemple 1 : $\mathbb{C}_{\mathbb{R}}$]-1; 1[=

Exemple 2: si p,q sont entiers, on note $[p,q] = [p,q] \cap \mathbb{Z}$

PCSI Logique, ensembles

Distributivité:
$$\forall (A, B, C) \in \mathcal{P}(E)^3$$
, $\bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 $\bullet A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Lois de Morgan: $\forall (A, B) \in \mathcal{P}(E)^2$, $\bullet \mathcal{C}_E(A \cup B) = \mathcal{C}_E A \cap \mathcal{C}_E B$
 $\bullet \mathcal{C}_E(A \cap B) = \mathcal{C}_E A \cup \mathcal{C}_E B$

Remarque 1: $\mathcal{C}_E(\mathcal{C}_E A) = A$

Lois de Morgan:
$$\forall (A, B) \in \mathcal{P}(E)^2$$
, $\bullet C_E(A \cup B) = C_E A \cap C_E B$
 $\bullet C_E(A \cap B) = C_E A \cup C_E B$

Remarque 2: $si A \subset B$, alors $C_E B \subset C_E A$ et inversement

b) <u>Généralisation</u>: si $A_1, ..., A_n$ sont des sousensembles de E, on note :

$$\bigcap_{k=1}^{n} A_k = A_1 \cap \cdots \cap A_n \quad \text{et} \quad \bigcup_{k=1}^{n} A_k = A_1 \cap \cdots \cap A_n$$

Plus généralement si les $(A_i)_{i\in I}$ sont des sous ensembles indexés sur l'ensemble I, on note :

$$\bigcup_{i \in I} A_i$$
 la réunion de tous les A_i et $\bigcap_{i \in I} A_i$ l'intersection de tous les A_i

Plus précisément :

$$\boxed{x \in \bigcup_{i \in I} A_i \Longleftrightarrow \exists i \in I \ / \ x \in A_i} \quad \text{et} \quad \boxed{x \in \bigcap_{i \in I} A_i \Longleftrightarrow \forall i \in I, \ x \in A_i}$$

Exemple: écrire l'ensemble de définition \mathcal{D} de la tangente de plus de quatre façons différentes.

Partitions: on dit que $A_1,...,A_n$ forment une partition de E lorsque:

les A_i sont non vides, disjoints et leur réunion est E

Ce qui s'écrit:

$$\begin{cases} \text{ (i) } \forall i \in \llbracket 1, n \rrbracket \text{ , } A_i \neq \varnothing \\ \text{ (ii) } \bigcup_{i \in I} A_i = E \\ \text{ (iii) } \forall \, (i, j) \in \llbracket 1, n \rrbracket^2 \text{ , } i \neq j \Rightarrow A_i \cap A_j = \varnothing \end{cases}$$

Produit cartésien : le produit cartésien de deux ensembles A et B, noté $A \times B$ (lire A "**croix**" B) est l'ensemble des **couples** (a, b), où a est élément de A, et b élément de B:

$$A \times B = \{(a,b) , a \in A , b \in B\}$$

Attention: ne pas confondre **couple** (a, b) et **paire** $\{a, b\}$: $\{a, b\} = \{b, a\}$ mais $(a, b) \neq (b, a)$.

Exemple: on peut écrire: $\forall (x,n) \in \mathbb{R} \times \mathbb{Z}$, $\sin(x+n\pi) = (-1)^n \sin(x)$

Généralisation 1: on note de même $A \times B \times C$ l'ensemble des **triplets** $(a, b, c), a \in A, b \in B, c \in C$

Généralisation 2 : l'ensemble des *n*-uplets $(a_{1,...}, a_{n})$ d'éléments de A se note A^{n} :

$$A^n = \underbrace{A \times A \times \cdots \times A}_{\text{n exemplaires}}$$

Exemple: on identifiera l'ensemble $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ des couples de réels à un plan muni d'un système de coordonnées dans un repère orthonormé (O, \vec{i}, \vec{j}) .

De la même manière, l'ensemble \mathbb{R}^3 des triplets de réels sera identifié à l'espace.

Exercice: Si $a \le b$ et $c \le d$, comment s'interprète graphiquement l'ensemble $R = [a, b] \times [c, d]$?