There are two types of people.

```
if (Condition)
{
Statements
/*
**/
}
```

```
if (Condition) {
    Statements
    /*
    */
}
```

Programmers will know.

Multiple Alternatives

AMOUNT OF TIME I'VE SPENT PARALYZED BY INDECISION OVER CHOOSING THE RIGHT...

Due this week

Homework 2

- Write solutions in VSCode and paste in Autograder, Homework 2 CodeRunner.
- Zip your .cpp files and submit on canvas Homework 2.
- Start going through the textbook readings and watch the videos
 - Take Quiz 3.
- Participation: 3-2-1
- Check the due date! No late submissions!!

Practicum 1

- Coming up in week 5: Sep 19th during lecture
- Covers material from weeks 1 3 and H3
 - .cpp programs
 - Variables, arithmetic, cin, cout
 - If-else, nested if-else, switch statements
- Chapters 1, 2 and 3 from the textbook (everything!)
- Paper exam bring writing utensils

Practicum – Format and Rules

Logistics:

- You may bring 1 sheet of handwritten notes
- Bring an ID to class
 - Student ID: BuffOne Card, Government ID
- You have 30 minutes to complete it (tentative)
 - Focus on your own solution
 - This is an individual assessment!
 - There is not enough time to help others

Practicum - Practice, practice, practice!

- Review all previous assignments quizzes, recitations and homeworks
- Review examples we did in class
- Practice Questions will be released on Monday, September 12th
- Time is short; prepare accordingly
 - Time yourself on practice problems

Tips for Timed Exam

- Read the Questions
 - read them not once, but **TWICE** before starting to code
- Create or Modify Code
 - know your C++ syntax
 - Know your data types, operators (arithmetic, relational, logical)
 - know how to create a condition
 - know how and when to use SWITCH and "break;"
- Spot and fix errors!

Today

- Nested if, nested if else
- switch statement

Comparing numbers and strings

Common Error – Exact Comparison of Floating-Point Numbers

Roundoff errors

- Floating-point numbers have only a limited precision.
- Calculations can introduce roundoff errors.
- *Given r=2,*

$$Does\left(\sqrt{r}\right)^2 = 2?$$

Let's see (by writing code, of course) ...

Exact Comparison of Floating-Point Yields Unexpected Value

This program displays:

```
sqrt(2) squared is not 2 but 2.0000000000000044
```

How to Compare Floating-Point Numbers

Roundoff errors – a solution

Close enough will do.

$$|x-y|<\varepsilon$$

 ε is the Greek letter epsilon, a letter used to denote a very small quantity

Comparison of Floating-Point Numbers: Tolerance

• It is common to set ε to 10^{-14} when comparing double numbers:

```
const double EPSILON = 1E-14;
double r = sqrt(2.0);
if (fabs(r * r - 2) < EPSILON)
{
    cout << "sqrt(2) squared is approximately ";
}</pre>
```

• Include the <cmath> header to use sqrt and the fabs function which gives the absolute value.

Let's implement it!

Nested Branches

Nested Branches – Taxes

Table 4 Federal Tax Rate Schedule			
If your status is Single and if the taxable income is	the tax is	of the amount over	
at most \$32,000	10%	\$0	
over \$32,000	\$3,200 + 25%	\$32,000	
If your status is Married and if the taxable income is	the tax is	of the amount over	
at most \$64,000	10%	\$0	
over \$64,000	\$6,400 + 25%	\$64,000	

In the United States different tax rates are used depending on the taxpayer's marital status – single rates are higher. Married taxpayers add their income together and pay taxes on the total. See the IRS table below from a recent year:

YO DOG, I HEARD YOU LIKED IF ELSE STATEMENTS

SOIPUTIFELSE STATEMENTS IN YOUR IF ELSE STATEMENTS

memegenerator.ne

Flowchart for Tax Table Decisions

Nested Branches – Taxes – Complete Code part 1

```
#include <iostream>
#include <string>
using namespace std;
int main()
   const double RATE1 = 0.10;
   const double RATE2 = 0.25;
   const double RATE1 SINGLE LIMIT = 32000;
   const double RATE1 MARRIED LIMIT = 64000;
   double tax1 = 0;
   double tax2 = 0;
   double income;
   cout << "Please enter your income: ";</pre>
   cin >> income;
   cout << "Please enter s for single, m for married: ";</pre>
   string marital status;
   cin >> marital status;
```

Nested Branches – Taxes – Complete Code part 2

```
if (marital status == "s")
      if (income <= RATE1 SINGLE LIMIT)</pre>
         tax1 = RATE1 * income;
      else
         tax1 = RATE1 * RATE1 SINGLE LIMIT;
         tax2 = RATE2 * (income - RATE1 SINGLE_LIMIT);
else
```

Nested Branches – Taxes – Complete Code part 2

```
if (income <= RATE1 MARRIED LIMIT)</pre>
      tax1 = RATE1 * income;
   else
      tax1 = RATE1 * RATE1 MARRIED LIMIT;
      tax2 = RATE2 * (income - RATE1 MARRIED LIMIT);
double total tax = tax1 + tax2;
cout << "The tax is $" << total tax << endl;</pre>
return 0;
```

Multiple Alternatives

Multiple Alternatives Need Multiple Nested if () Statements

- In the case of the Richter Scale for earthquake magnitude, there are five branches:
 - one each for the four descriptions of damage, and a "default" fifth one for no destruction (not shown).

Table 3 Richter Scale		
Value	Effect	
8	Most structures fall	
7	Many buildings destroyed	
6	Many buildings considerably damaged, some collapse	
4.5	Damage to poorly constructed buildings	

Flowchart for Richter Scale Code

Multiple Alternatives (Richter Scale Code)

```
if (richter \geq 8.0)
   cout << "Most structures fall";</pre>
else if (richter \geq 7.0)
   cout << "Many buildings destroyed";</pre>
else if (richter >= 6.0)
   cout << "Many buildings considerably damaged, some collapse";</pre>
else if (richter \geq 4.5)
   cout << "Damage to poorly constructed buildings";</pre>
else
   cout << "No destruction of buildings";</pre>
. . .
```

Multiple Alternatives – Order of Tests

 Because of this execution order, when using multiple if statements, pay attention to the order of the conditions.

Multiple Alternatives – Wrong Order of Tests

```
if (richter \geq 4.5) // Tests in wrong order
   cout << "Damage to poorly constructed buildings";</pre>
else if (richter >= 6.0)
   cout << "Many buildings considerably damaged, some collapse";
else if (richter >= 7.0)
   cout << "Many buildings destroyed";</pre>
else if (richter >= 8.0)
                                         Suppose the value of richter is 7.1. Because
                                         we tested small first with a >=, the first
   cout << "Most structures fall";</pre>
                                         statement is (wrongly) printed.
```

The switch Statement vs. the if statement

 Below is a complicated if() statement to choose a text string to assign based on the value of an int variable:

```
int digit;
... //digit variable gets set here by some code
if (digit == 1) { digit_name = "one"; }
else if (digit == 2) { digit_name = "two"; }
else if (digit == 3) { digit_name = "three"; }
else if (digit == 4) { digit_name = "four"; }
else if (digit == 5) { digit_name = "five"; }
else if (digit == 6) { digit_name = "six"; }
else if (digit == 7) { digit_name = "seven"; }
else if (digit == 8) { digit_name = "eight"; }
else if (digit == 9) { digit_name = "nine"; }
else { digit_name = ""; }
```

The switch Statement

• The switch statement is an alternative to nested if () else statements. But switch is at least as awkward to code as nested if () else:

```
int digit; //switch can only test int and char types
  //digit variable gets set here by some code
switch (digit)
   case 1: digit name = "one"; break;
   case 2: digit name = "two"; break;
   case 3: digit name = "three"; break;
   case 4: digit name = "four"; break;
   case 5: digit name = "five"; break;
   case 6: digit name = "six"; break;
   case 7: digit name = "seven"; break;
   case 8: digit name = "eight"; break;
   case 9: digit name = "nine"; break;
   default: digit name = ""; break; //taken if none of the above
```

break statements in the switch statement

- Every branch of the switch must be terminated by a break statement. And each branch must terminate with a semicolon.
- break tells the machine to skip down to the end of the switch statement, because a match was found.
- If the break is missing, execution falls through to the next branch, and so on, until finally a break or the end of the switch is reached.
- In practice, this fall-through behavior is rarely useful, and it is a common cause of errors.
- If you accidentally forget the break statement, your program compiles but executes unwanted code. Try it and see!

What it is	What people think it is
IF THEN	Computational Breakthrough
IF THEN ELSE	Artificial Intelligence
IF THEN ELSE IF ELSE	Real Artificial Intelligence
SWITCH	SINGULARITY