ME400 CAPSTONE DESIGN 1

2ND PRESENTATION

Advisor: Prof. Junho Oh

Teaching Assistance: Kangkyu Lee

20140344 Yejun Yang

Bomi Lee

20140931

Simeneh S.Gulelat Jaeseong Lee Jeongsoo Park

20150027

Jiwon Kang

20150589

20150629

Haewoo Lee

20160259

all utopicking D/Achine

TABLE OF CONTENTS

- 1. Design Review
- 2. Goal Setting
- 3. Road Map

- 4. Tasks
 - Dynamixel Control with Xbox Controller
 - Autonomous Ball Tracking
 - Implementation of Pick-up Part

5. Discussion

DESIGN REVIEW

PICK-UP PART

- Moving up and down to pick up the ball
- Loosen and tighten the string to pick, hold and release the ball

EXTRA MOTORS

- Two more motors will be used in addition to four for each wheel
- One is for vertical translation of the picking part and the other is for adjusting the string tightness.

EXTRA CAMERA

Second camera will be used for delicate control when the car is close to the ball

COMMON GOAL

OUR GOAL!!

Control the mobile platform by Xbox controller

Ball detection and corresponding movement toward the ball

Implementation of the pick-up part

Separately!

ROAD MAP

Design Feedback

TEST 1: Control of omniwheel/dynmixel with configuration (1st presentation) xbox controller by Labview and soldering

Circuit

Integration of OpenCV and ROS

Transfer matrix and control code by ROS

Auto driving implementation by ROS, LabVIEW and OpenCV

Pick-up part prototype 1

Hardware prototype 1: ZARA

Hardware 3D printing: Pick-up

Pick-up part prototype refinement

OpenCV code revision

TEST 2: Control of the mobile platform powered by battery and controlled by xbox

Pick-up mechanism implementation by LabVIEW

Task 1

Dynamixel
Control with Xbox
Controller

Task 2

Autonomous Ball Tracking Task 3

Implementation of Pick-up Part

TASK 1: Dynamixel Control with Xbox Controller

HARDWARE PROTOTYPE 1: ZARA

30 x 30 aluminum profile Dynamixel x 4 Omniwheel x 4

Frame mass: 3.21kg

Frame size: $25 \times 35 \times 30$ (cm)

LABVIEW CODE

i) State==0 (Driving mode)

TCP/IP

motor

myRio

Moving Robot with 4 driving motors (receive w_0 , w_1 , w_2 , w_3 data from Ros client within 10ms)

TEST 1: DYNAMIXEL CONTROL WITH XBOX CONTROLLER

CIRCUIT CONFIGURATION AND SOLDERING

Dynamixel and MyRio (12V)

Power line
- Connected to
battery

TEST 2: CONTROL OF THE MOBILE PLATFORM POWRED BY BATTERY AND CONTROLLED BY XBOX

TASK 2: AUTONOUS BALL TRACKING

BALL TRACKING WITH ZARA

OPENCY CODE

Evaluating Points in 3D Using Camera Coordinates:

Camera Calibration Matrix:

$$d = \frac{D \times P}{P}$$

P: diameter of object in pixels

(distance from camera)

• In pixel coordinates:
$$u = (\frac{x - U_o}{F_x})$$
 $v = (\frac{y - V_o}{F_y})$

$$v = (\frac{y - V_0}{F_v})$$

• Distance along
$$Z_C$$
: $Z_C = \frac{(F_x * D)}{P}$

Reconstructed 3D coordinates: (using triangle similarity)

$$X_C = u * Z_C$$
, $Y_C = v * Z_C$, Z_C

TRANSFER MATRIX AND CONTROL CODE BY ROS

INTEGRATION OF OPENCY AND ROS

Camera screen and corresponding markers in Rviz

Integration of frames, markers and Rplidar output

FUTURE WORK

		1. Detection and Path Generation	2. Picking up the balls	3. Dropping off the balls
Oper	าcv	More accurate detection of balls' contours	Use the second webcam to detect ball under the pickup part	Detecting green ball on the basket
ROS	S	Make algorithm to avoid walls and red balls	Matching the position of pickup part and blue ball	Go back to the basket after picking up 3 blue balls

TASK 3: IMPLEMENTATION OF PICK-UP PART

PICK-UP PART

One subsystem Pick up the ball

Store the ball

Dump the ball

Loosen the string

Tighten the string

PICK-UP PART PRODUCTION

Pick-up body

3D printing material: ABS mass: 450g

STRING ADJUSTING MECHANISM

Loosen the string

Dynamixel - AX 12A

HARDWARE PROTOTYPE 2: NAMSAENG-2

Hardware prototype 2 NAMSAENG-2

Hardware prototype 1 ZARA

Frame mass : 3.21kg 30 x 30 aluminum profile

Frame mass: 1.29kg 20 x 20 aluminum profile

IMPLEMENTATION OF PICK-UP PART

Gear box CAD drawing

PICK-UP MECHANISM IMPLEMENTATION

ii) State==1 (Picking mode)

Stop Robot (set w_0 , w_1 , w_2 , $w_3 == 0$) Start Picking Operation ::

- myRio does not receive data until Picking Operation ends.
- Control 2 picking motors String motor with joint mode : θ_5 Pick-up motor with speed mode : w_4

iii) State==2 (Dumping mode)

Control string motor with joint mode : θ_5

PICKING UP MECHANISM

Ball positioned under the box

Xbox controller

Picking up

Dumping

DISCUSSION

Heat Release

ABOUT VIBRATION REDUCTION

Straight path

Curved path

Straight path

Curved path

ABOUT VIBRATION REDUCTION

ABOUT HEAT RELEASE

Using thermal camera

Before operating

18-05-01 7:36 PM **\$FLIR** After operating (~10min) 32°C 24°C Measure object: Matt (ε=0.95) Auto/Locked myRIO

ABOUT HEAT RELEASE

Using thermal camera after operating (~10min)

Battery (wire connection part)

myRIO Dynamixel

Thank you for your attention