ROC Analysis

Sahir Bhatnagar, PhD
Assistant Professor
Department of Diagnostic Radiology
Department of Epidemiology, Biostatistics and Occupational Health
sahir.bhatnagar@mcgill.ca

Sensitivity
Specificity
Positive Predictive Value
Negative Predictive Value

Characteristics of a Good Screening Test

- Inexpensive
- Easy to administer
- Minimal discomfort
- Sensitive --> correctly identifies true disease cases
- Specific --> correctly identifies true **non-disease** cases

- Ois a well person
-is a person with a disease
-is a negative test result
-is a positive test result

and therefore....

-is a well person who tests negative (a true negative)
-is a person with a disease who tests positive (a true positive)
-is a well person who tests positive (a false positive)
-is a person with a disease who tests negative (a false negative)

Hypothetical Population

Results of diagnostic test on hypothetical population

Sensitivity of a Test

Specificity of a Test

Test with 100% sensitivity

Perfect Test

Positive Predicted Value

Negative Predicted Value

Results of testing population with disease prevalence of 10%

2 x 2 table for diagnostic test results

	Disease present (+)	Disease absent (-)	Totals
Test result positive (+)	a	b	a + b
Test result negative (-)	С	d	c + d
Totals	a + c	b + d	_

Sensitivity (True Positive Rate, Recall):

"I know my patient has the disease. What is the chance the test will show that my patient has it?"

	Disease present (+)	Disease absent (-)	Totals
Test result positive (+)	a	b	a + b
Test result negative (-)	c	d	c + d
Totals	a + c	b + d	_

$$Sensitivity = \frac{a}{a+c}$$

Specificity (True Negative Rate):

"I know my patient **doesn't have the disease**. What is the chance the test will show that my patient doesn't have it?"

	Disease present (Totals
Test result positive (+)	a	b	a + b
Test result negative (-)	c	d	c + d
Totals	a + c	b + d	_

$$Specificity = \frac{d}{b+d}$$

Negative Predicted Value (PPV):

"I just got a **negative test result** back on my patient. What is the chance that my patient actually doesn't have the disease?"

	Disease present (+)	Disease absent (-)	Totals
Test result positive (+)	a	b	a + b
Test result negative (-)	c	d	c + d
Totals	a + c	b + d	_

$$NPV = \frac{d}{c+d}$$

Positive Predicted Value (PPV):

"I just got a **positive test result** back on my patient. What is the chance that my patient actually has the disease?"

	Disease present (+)	Disease absent (-)	Totals
Test result positive (+)	a	b	a + b
Test result negative (-)	c	d	c + d
Totals	a + c	b + d	_

$$PPV = \frac{a}{a+b}$$

Example: Screening test for breast cancer

	Diseased	Not Diseased	Total
Test Positive	132	983	1,115
Test Negative	45	63,650	63,695
Column Totals	177	64,633	64,810

Questions to consider

- What is the prevalence of disease?
- Is there a gold-standard test to definitively determine disease status?
- How reliable (stable) is the screening test?
- How was the criterion for a positive or negative screen determined?

Test value used to distinguish positive and negative cases

Sensitivity - Specificity Tradeoff

Criterion of Positivity	Sensitivity (True Positive Rate)	Specificity	False Positive Rate (1- Specificity)
2	0.94	0.65	0.35
4	0.80	0.80	0.20
6	0.50	0.97	0.03

Number of Subjects with a Given Test Result

Receiver Operating Characteristic (ROC) Curves

Criterion of Positivity	Sensitivity (True Positive Rate)	Specificity	False Positive Rate (1- Specificity)
2	0.94	0.65	0.35
4	0.80	0.80	0.20
6	0.50	0.97	0.03

ROC Plots

- 1. The ROC plot shows the tradeoff between specificity and sensitivity
- 2. In ROC plots, classifiers with random performance show a straight diagonal line
- 3. A ROC curve provides a single performance measure called the Area under the ROC curve (AUC) score
- 4. AUC is 0.5 for random and 1.0 for perfect classifiers
- 5. AUC scores are convenient to compare the performances of multiple classifiers
- 6. It is model-wide because it shows pairs of specificity and sensitivity values calculated at all possible threshold

Limitations of ROC with class imbalance

Balanced

<u>Imbalanced</u>

Truth

	Disease Present (+)	Disease Absent (-)	
Test Positive (+)	6	4	
Test Negative (-)	4	6	

Truth

	11 0/011		
	Disease Present (+)	Disease Absent (-)	
Test Positive (+)	3	6	
Test Negative (-)	2	9	

Measure	Balanced	Imbalanced
Precision (PPV)	6 / (6+4) = 0.60	3 / (3 + 6) = 0.33
Sensitivity	6 / (6 + 4) = 0.60	3 / (3+2) = 0.60
False Positive Rate	4 / (4 + 6) = 0.40	6 / (6+9) = 0.40
Accuracy	(6+6) / (20) = 0.60	(3 + 9) / 20 = 0.60

With Class Imbalance, Use Precision-Recall (PRC) instead

1. While the baseline is fixed with ROC, the baseline of PRC is determined by the ratio of positives (P) and negatives (N) as

$$y = P/(P + N)$$

2. For instance, we have y = 0.5 for a balanced class distribution, but y = 0.09 for an imbalanced class distribution in which the ratio of P:N is 1:10

Example: ClinVar variants for a variety of eye disease

	Disease Present: Pathogenic (+)	Disease Absent: Not Pathogenic (-)
Sample Size	186	8246

Example: ClinVar variants for a variety of eye disease

BGLM (AUC 0.97) Truth

	Disease Present (+)	Disease Absent (-)
Test Positive (+)	43	35
Test Negative (-)	50	4088

Random Forest (AUC 0.99) Truth

Test Negative

(-)

	Disease Present (+)	Disease Absent (-)	
Test Positive (+)	58	18	

35

4105

Cadd (AUC 0.78)

	Truth		
	Disease Present (+)	Disease Absent (-)	
Test Positive (+)	10	3	
Test Negative (-)	83	4120	

- TPR for BGLM = 43/93 = 46%
- But the AUC looked great!
- TPR for RF = 62%
- TPR for Cadd = 11%

Area Under Precision Recall Curve (pro: do not take into account negative class)

	Disease Present: Pathogenic (+)	Disease Absent: Not Pathogenic (-)
Sample Size	186	8246

