班级: 2022211301

姓名: 卢安来 **学号:** 2022212720

1、假设某计算机指令长度为 32 位, 具有双操作数、单操作数、 无操作数三类指令形式,指令系统共有70条指令,请设计满足要求 的指令格式。

解答:

操作码需 $[\log_2 70] = 7$ 位。故设计指令格式如下:

双操作数指令:

31	25	24 23		12 11		
	操作码	-	操作数1		操作数 2	
	单操	作数指令:				
31	25	24				0
	操作码			操作数 1		
	无操	作数指令:				
31	25	24				0
	操作码			-		

2、指令格式结构如下所示,试分析指令格式及寻址方式特点:

解答:

该指令为单字长双地址 RR 型指令。

操作码共 6 位, 可表示 $2^6 = 64$ 条指令。

两个操作数均在寄存器中, 寻址方式为寄存器寻址。

3、指令格式结构如下所示,试分析指令格式及寻址方式特点。

解答:

该指令为双字长双地址 RS 型指令。

操作码共 6 位,可表示 $2^6 = 64$ 条指令。

一个操作数在寄存器中,寻址方式为寄存器寻址,另一个操作数在主存中,寻址方式为变址寻址,偏移量有 16 位。

4、指令格式结构如下所示,试分析指令格式寻址方式特点。

解答:

该指令为单字长双地址 SS 型指令。

操作码共 4 位,可表示 $2^4 = 16$ 条指令。

寻址方式由指令中的寻址方式决定,寻址方式可有 $2^3 = 8$ 种。

5、一种单地址指令格式如下所示,其中 I 为间接特征,X 为寻址模式,D 为形式地址。I,X,D 组成该指令的操作数有效地址 E。设 R 为变址寄存器, R_1 为基址寄存器,PC 为程序计数器,请写出下表中各种寻址方式的名称。

OP I X D	OP	I	X	D
----------	----	---	---	---

寻址方式名称	I	X	有效地址E
0	0	00	E=D
2	0	01	E=(PC)+D
3	0	10	E=(R)+D
4	0	11	$E=(R_1)+D$
5	1	00	E=(D)
6	1	11	$E=((R_1)+D),D=0$

解答:

- (1). 直接寻址;
- (2). 相对寻址;
- (3). 变址寻址;
- (4). 基址寻址;
- (5). 间接寻址;
- (6). 基址间接寻址。

6、某计算机字长为32位,主存按字编址其容量为64MB,采用单字长单地址指令,共有40条指令。试采用直接、立即、基址和相对寻址四种方式设计指令格式。

解答:

操作码需 $\lceil \log_2 40 \rceil = 6$ 位。寻址模式需 $\lceil \log_2 4 \rceil = 2$ 位。主存按字编址,地址需 $\left\lceil \log_2 \frac{64 \times 2^{20}}{\frac{32}{8}} \right\rceil = 24$ 位。故可设计指令格式如下:

(I表示寻址模式, D表示形式地址)

31	26	25 24	23
	操作码	Ι	D

寻址模式设定如下:(R表示基址寄存器)

寻址模式名称	寻址模式 I	有效地址 E
直接寻址	00	E=D
立即寻址	01	(无)
基址寻址	10	E=(R)+D
相对寻址	11	E=(PC)+D

- 7、某机字长为 32 位, 主存容量为 1MB, 单字长指令, 有 50 种操作码, 采用寄存器寻址、寄存器间接寻址、立即、直接等寻址方式。CPU 中有 PC, IR, AR, DR 和 16 个通用寄存器。问:
 - (1) 指令格式如何安排?
 - (2) 能否增加其他寻址方式?

解答:

(1)

操作码需 $\lceil \log_2 50 \rceil = 6$ 位,寻址模式需 $\lceil \log_2 4 \rceil = 2$ 位,寄存器编址需 $\lceil \log_2 16 \rceil = 4$ 位。

故可以设计指令格式如下:

_	31	26	25 24	23)
	操作码		I	D	

寻址模式安排如下:

寻址模式名称	寻址模式 I	有效地址 E
寄存器寻址	00	E=R
寄存器间接寻址	01	E=(R)
立即寻址	10	(无)
直接寻址	11	D

(2)

可以通过修改指令格式增加其他寻址模式。例如,若修改指令格式如下:

_	31	26	25 23	22
	操作码		I	D

可将寻址模式安排如下:

寻址模式名称	寻址模式Ⅰ	有效地址 E
寄存器寻址	000	E=R
寄存器间接寻址	001	E=(R)
立即寻址	010	(无)
直接寻址	011	E=D
相对寻址 (新增)	100	E=(PC)+D
间接寻址 (新增)	101	E=(D)
基址寻址 (新增)	110	E=(B)+D
变址寻址 (新增)	111	E=(R)+D

8、设某机字长为 32 位, CPU 中有 16 个 32 位通用寄存器,设计一种能容纳 64 种操作的指令系统。如果采用通用寄存器作基址寄存器,则 RS 型指令的最大存储空间是多少?

解答:

操作码需 $\lceil \log_2 64 \rceil = 6$ 位,寄存器编址需 $\lceil \log_2 16 \rceil = 4$ 位。 故可知 RS 型指令的最大存储空间在单操作数时取得,此时指令 格式可能为

	31	262	25	22 21	0
Ī	操作码		R		D

其中 D 为偏移量, R 为寄存器地址,下面用(R)表示寄存器的值,从 而最大存储空间

$$M = ((\max\{(R)\} + \max\{D\}) - 0 + 1)$$
 Byte
= $((2^{32} - 1 + 2^{22} - 1) - 0 + 1)$ Byte
= $4 \text{ GiB} + 4 \text{ MiB} - 1$ Byte

9、将如下 MIPS R4000 汇编语言指令翻译成机器语言指令。

解答:

由可知三条指令依次为 I-format, R-format 和 I-format, 根据下表,可知

指令	格式	OP	rs	rt	rd	shamt	funct	说明
add (加)	R	0	reg	reg	reg	0	32	加法
sub (减)	R	0	reg	reg	reg	0	34	减法
加立即数	I	8	reg	reg	constant		常数	
lw (取字)	I	35	reg	reg		address		16位地址
sw (存字)	I	43	reg	reg	address		16位地址	
J (转跳)	J	2	address				26位地址	

第6页,共7页

从而该指令对应的机器语言为:

0x02 0x48 0x40 0x20

从而该指令对应的机器语言为:

0xad 0x28 0x04 0xb0

综上所述,答案为:

0x8d 0x28 0x04 0xb0 0x02 0x48 0x40 0x20 0xad 0x28 0x04 0xb0

经 mips-linux-gnu-gcc 验证上述答案无误。