Introduction of Tensorflow 1.12

 $MokkeMeguru^1$

2020-02-12 Wed

¹meguru.mokke@gmail.com

Outline

- 1 Tensorflow 1.12 Tutorial
- 2 機械学習
- 3 機械学習に必要なもの
- 4 この授業で扱う内容
- 5 課題

Presentaion agenda

- 1 Tensorflow 1.12 Tutorial
- 2 機械学習
- 3 機械学習に必要なもの
- 4 この授業で扱う内容
- 5 課題

Tensorflow とその特徴

Tensorflow

Tensorflow ∈ 機械学習フレームワーク cf. PyTorch, MXNet, DeepLearning4j, etc.

Tensorflow の特徴

- そこそこ速い (vs PyTorch)
- JavaScript などでも使える
- 後方互換性はない
- ドキュメントもない
- fatal な Issue も放置

200

- 1 Tensorflow 1.12 Tutoria
- 2 機械学習
- 3 機械学習に必要なもの
- 4 この授業で扱う内容
- 5 課題

生成モデル (Generative Model)

何らかの <mark>生成過程</mark> を推定する ※ not. 画像やテキストを生成する formula.

$$P(Y), P(X|Y)$$

 $\rightarrow P(Y|X=x) = \frac{P(X|Y)P(Y)}{P(X)}$

分類モデル (Discriminative Model)

何らかの 条件付き確率 を推定する formula.

$$P(Y|X=x)$$

(□) (□) (□) (□) (□) (□) (□)

機械学習でできること

生成モデル (Generative Model)

- 教師なし分類 (データだけあげると分類して くれる)
- ■画像生成
- テキスト生成

分類モデル (Discriminative Model)

教師あり分類 (データと正解データからルールを導く)

Figure: Density Estimation Using RealNVP より引用

* RealNVP は画像生成を行うモデル ๑๑०

Figure: Tensorflow Tutorial: Basic Image Classification より引用

生成モデルと分類モデルの組み合わせ

テキストのスタイル変換

→ 特定著者の文へのスタイル変換

原文	変換結果
今日は晴れている。	晴れているね。
細君は、お勝手のカーテンから顔を出して笑った。	細君は、お勝手から顔を出して、笑ったの。
負けですよ!	だめですよ!
そこをジッと睨んで腕を組んだ。	腕を組んで、ジッと睨んだ。
これは残念だが仕方がない。	これはおしまいだが仕方がない。
―一すぐわたしが行って見てやります。	――わたしが行って見てやりますよ。

生成モデル: 文の生成

分類モデル: 文の分類 (今回は著者)

機械学習とルールベース

Question: どっちが良い?

→ 人的コスト / 計算コスト / 正確さ / 説明可能性 / 責任能力

Rough Image

Tensorflow 1.12 Tutorial

Figure: ルールーベース

Figure: キカイガクシュウ

- 1 Tensorflow 1.12 Tutoria
- 2 機械学習
- 3 機械学習に必要なもの
- 4 この授業で扱う内容
- 5 課題

機械学習に必要なもの

Data

Tensorflow 1.12 Tutorial

Model

Label

⇒ Tensorflow は Model を作るフレームワーク

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

データ (Data)

データ (重要度: ★★★)

問題設定とデータが論文を作る

機械学習は、

沢山の綺麗なデータと、ちょっとのモデルで出来ている。

e.g. 40,000,000,000 単語を含む対話文集合 ← 対話システム (Meena(Google))

cf. 一般的なラノベの新人賞: 30,000 単語くらい / 4ヶ月

モデル (重要度: ★☆☆)

f(x)

問題設定とデータが論文を作る

先行研究の積み重ねでモデルは作られる

文献調査して、再現実験して、そこからモデルを考える 今回はここに ニューラルネットワーク を用いる

e.g. CNN(Convolutional Neural Network) RNN etc.

教師 (Label, etc.)

教師 (重要度: ★★☆)

* データセット: データと教師

綺麗な教師はモデルより大事

モデルに どのようなものを求めてほしいのか がここで決まる。

- ⇒ やりたいことと教師が噛み合わないと研究にならない
- ⇒ 誤った教師 (犬の画像に猫と対応付ける) は性能を落とす

e.g. 画像 ↔ ラベル (犬 / 猫) の対応付け

- 1 Tensorflow 1.12 Tutoria
- 2 機械学習
- 3 機械学習に必要なもの
- 4 この授業で扱う内容
- 5 課題

扱う内容

Tensorflow 1.12 Tutorial

- 適切な問題設定 → 誤った研究の防止
- 良いデータ、良い教師 → まともな結果を出す近道
- 正しいフレームワークの使い方 → 高速な実装

扱わない内容

SOTA(最強) モデルの作り方

Presentaion agenda

- 1 Tensorflow 1.12 Tutoria
- 2 機械学習
- 3 機械学習に必要なもの
- 4 この授業で扱う内容
- 5 課題

課題1

- 「MNIST クラス分類」と検索し、データと教師を調べよ
- 2 Keras というフレームワークの MNIST データセットを調べ 次の問いに答えよ
 - データの量はどれくらいか 訓練 (train): [] 枚 テスト (test): [] 枚

課題2

- MNIST データセットにおける、悪い教師の例を提案せよ
- 2 カメラの写真からボールを検知する、という問題を考える

以下の問に答えよ (正解はないので自由に考えて良い)

- 1 データは何か
- 2 教師は何か
- 3 モデルは何から何を求めるか

