

PROCESSO DE EXPLORAÇÃO

Comportamentos exploratórios clássicos na aprendizagem por reforço

Assumem que o agente tem que explorar e aprender a pesar ações diferentes e a agir de forma otimizada.

O agente ignora o risco de ações, potencialmente terminando em estados perigosos. Explorações como a ε -greedy podem resultar em situações desastrosas.

Além disso, as políticas de exploração aleatória desperdiçam uma quantidade significativa de tempo explorando as regiões do estado e do espaço de ação onde a política ideal nunca será encontrada.

PROCESSO DE EXPLORAÇÃO

Comportamentos exploratórios clássicos na aprendizagem por reforço

É impossível evitar completamente situações indesejáveis em ambientes de risco sem conhecimento externo, porque o agente precisa visitar o estado perigoso pelo menos uma vez antes de rotulá-lo como "perigoso". Pode haver duas maneiras de modificar o processo de exploração: incorporar conhecimento externo ou exploração dirigida ao risco.

PROCESSO DE EXPLORAÇÃO

Incorporar conhecimento externo

Fornecer conhecimento inicial (pode ser considerado como um tipo de procedimento de inicialização) ou derivar uma política usando um conjunto finito de exemplos.

Exemplo: registrar um conjunto finito de demonstrações de um professor humano e fornecer a ele um algoritmo de regressão, para construir uma função Q parcial que pode ser usada para guiar ainda mais a exploração. Essas abordagens de inicialização não são suficientes para evitar situações perigosas que ocorrem na exploração.

Para derivar uma política de um conjunto de demonstrações, um professor, demonstra uma tarefa e as trajetórias de ações do estado são registradas.

Essas tarefas são usadas para derivar um modelo da dinâmica do sistema, e um algoritmo de aprendizagem por reforço encontra a política ótima nesse modelo.

PROCESSO DE EXPLORAÇÃO

Exploração dirigida ao risco

Uma das abordagens define uma métrica de risco sobre a noção de "controlabilidade".

Intuitivamente, se um estado particular (ou par de ação de estado) produzir muita variabilidade no sinal de erro de diferença temporal, ele será menos controlável. A controlabilidade do par de ação do estado é definida como:

$$C^{\pi}(s, a) = -\mathbf{E}_{\pi}[|\delta_t|| \ s_t = s, \ a_t = a]$$

$$C(s_t, a_t) \leftarrow C(s_t, a_t) - \alpha'(|\delta_t| + C(s_t, a_t))$$

Onde δ é o sinal de erro de diferença temporal. O algoritmo de exploração procura usar controlabilidade como uma heurística de exploração em vez de uma exploração geral de Boltzmann. O agente é encorajado a escolher regiões controláveis do ambiente.

Obrigada!

hulianeufrn@gmail.com

