Exercise sheet 6

Chapter 4: Computability and Complexity

Exercise 1: Analysing Non-Deterministic Turing Machines

For each of the accepting words $w_1, ..., w_5$ below, write down the steps of the acepting runs and the contents of the tape after such a run on the Turing Machine M_{what} .

Since M_{what} is non-deterministic, multiple possibilities may occur for one given word! All of them need to be written down.

 $w_1 = xyyyxy$ $w_2 = xyxx$ $w_3 = yyy$ $w_4 = yx$ $w_5 = zxyz$

Here is the Turing Machine M_{what} :

 $8\ points$

Don't forget/ignore Exercise 2 on next page!

Exercise 2: Complexity classes

For all of the following questions below, give a short answer in your own words:

- 1. What does it mean if a problem is in \mathcal{P} and what can we say about the TM that solves it?
- 2. What does it mean if a problem is in \mathcal{NP} and what can we say about the TM that solves it?
- 3. What problems are in \mathcal{NP} -complete and why is this class useful?
- 4. Are these correct? Are they wrong? Explain shortly and correct the statement if necessary: (where \mathcal{NPC} denotes the set of all \mathcal{NP} -complete problems)

$$\begin{split} \mathcal{P} \subseteq \mathcal{NP} \\ \mathcal{NP} \neq \emptyset \\ \mathcal{NP} \subset \mathcal{NPC} \\ \mathcal{P} \cap \mathcal{NPC} \neq \emptyset \end{split}$$

5. What would need to be done to prove that $\mathcal{NP} = \mathcal{P}$ and what would this mean?

7 points