

La Trobe University Semester 1 Examination Period 2019 RESTRICTED USE

This paper MUST NOT BE REMOVED from the examination venue

Student ID:				Seat Number:
Subject code:	MAT4MDS			Paper number: 1 (of 1)
Reading time:	15			minutes
Writing time:	120			minutes
Number of pages:	20 (including 4	1 page Fact Sh	eet)	(including cover sheet)
Campus:				
☐ Albury-Wodonga	☐ Bendigo	⊠ Bundoora	☐ Cit	ty □ Mildura □ Shepparton
Allowable materials:				
Number:	Description:			
Instructions to candi	dates:			
1. This exam paper consists of 55 marks.				
2. Write your answers in the spaces provided using blue or black pen. If you need extra space, continue your answer on an `extra space' page.				
3. Attempt all questions. Show all of your working unless instructed otherwise.				
4. If you cannot do part of a question, you should still attempt later parts; information given in the question may enable you to answer them correctly.				
5. Calculators m	ay NOT be used	in the exam.		

Question 1. Total: 7 marks

Consider the matrix

$$M = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 64 & 0 & 4 \end{bmatrix}$$

(a) Find the eigenvalues of M.

(b) 3 marks

(i) Is M of full rank? Why or why not?

(ii) Is M invertible? Why or why not?

Question 2. Total: 10 marks

Four portfolios of similar stocks were observed in 2001 and 2002. Their percentage returns in both years are given in the following table – profits are positive, losses are negative. It is plausible that there is an underlying linear relationship between the returns given by $y = \alpha x + \beta$ where x is the return in 2001, and y is the return in 2002.

Return 2001 (%)	-2	-1	0	3
Return 2002 (%)	1	-3	5	9

(a) Fill in the entries in the matrix-vector equation AX = b which would correspond to a single line passing through all 4 points.

2 marks

(b) Explain why the equation AX = b does not have a solution.

1 mark

(c) Write out the modified 2×2 matrix-vector equation which uniquely determines the coefficients of the linear least squares line of best fit, $y = \alpha x + \beta$. 2 marks

(d) Solve the system you found in the previous part for α and β , and hence write down the linear least squares line of best fit.

1 mark

(e)	What is the best estimate of the return in 2002 of a similar portfolio of stocincreased by 2% in 2001.	cks which 1 mark
(f)	Briefly and carefully explain what is meant by linear least squares line of best fit: your answer with a sketch.	illustrate 2 marks
(g)	Suppose there is a portfolio of stocks which increased by 1% in 2002. Explain by the linear least squares regression line you obtained above is not appropriate estimate the return in 2001.	

Question 3. Total: 7 marks

Let

$$f(x) = \frac{e^x}{1 + e^x}$$

(a) The graph of f is shown on the axes below (solid line). Also indicated is the line y = x (dotted) and an asymptote of f (dashed).

On the same axes, sketch the graph of f^{-1} .

(b) Find the rule for the inverse function f^{-1} , where

$$f(x) = \frac{e^x}{1 + e^x}$$

(c) State the domain (allowed input values) of f^{-1} .

1 mark

Question 4. Total: 5 marks

(a) Using an appropriate substitution, find an antiderivative of $\frac{x}{x^2+1}$.

2 marks

(b) By an appropriate method, find an antiderivative of $\frac{x^2}{x+1}$

Question 5. Total: 15 marks

Consider the function f (which is a probability density function) with rule

$$f(y) = \begin{cases} \frac{\beta^{\alpha} y^{\alpha - 1} e^{-\beta y}}{\Gamma(\alpha)} & y > 0\\ 0 & \text{otherwise} \end{cases}$$

in which α and β are both positive parameters.

- (a) 3 marks
 - (i) Is α a shape parameter or a scale parameter? Explain.

(ii) Is β a shape parameter or a scale parameter? Explain.

(b) (i) Calculate 2 marks

$$\int_{-\infty}^{\infty} y f(y) dy$$

$$\int_{-\infty}^{\infty} y^2 f(y) dy$$

(iii) Using your answers to (i) and (ii), show that the variance associated with this probability distribution is $\frac{\alpha}{\beta^2}$.

Use this page if you need more space. Label your answers with the question number.

(c) It can be shown that

$$f'(y) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-2} e^{-\beta y} [\alpha - 1 - \beta y]$$

so that there is a stationary point at $y = \frac{\alpha - 1}{\beta}$.

(Note: This information is being given to you, and you do not have to show it.)

Using the extended product rule, and the second derivative test, show that this point is a maximum (for $\alpha > 1$).

5 marks

Question 6. Total: 11 marks

Consider the function of two variables

$$f(x,y) = xe^{-y^2} + x^2y.$$

(a) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$

 $2\ marks$

(b) Find $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial y \partial x}$

3 marks

(c) Hence find the second order Taylor polynomial for f(x,y) near (1,0).

(d) Find 2 marks

$$\int_0^6 f(x,y) \ dx$$

**** End of Questions ****

Use this page if you need more space. Label your answer	ers with the question number.

Matrices

- For each order $(m \times n)$, the matrix of ones $J_{m \times n}$ is the matrix in which every entry is 1. The square $(n \times n)$ matrix of ones is usually written as J_n .
- The centering matrix $C_n := I_n \frac{1}{n}J_n$
- When it exists, the inverse of an $n \times n$ matrix A is the unique matrix, denoted by A^{-1} , with the property

$$AA^{-1} = I_n,$$

where I_n is the $n \times n$ identity matrix.

- Multiplicative Property of Determinants: det(AB) = det(A) det(B).
- Associated with each eigenvalue λ of a square matrix A, there is an eigenvector X, which is a non-zero column vector such that $AX = \lambda X$.
- For a 2×2 matrix A, the characteristic equation of A is

$$\lambda^2 - \operatorname{trace}(A)\lambda + \det(A) = 0.$$

where trace(A) is the sum of the diagonal entries of A.

• The least squares solution to the system AX = b is given by the solution to $A^TAX = A^Tb$.

Calculus

function	f(x)	x^r	constant	e^x	$\log_e(x)$
		$(r \neq 0)$			
derivative	f'(x)	rx^{r-1}	0	e^x	$\frac{1}{x}$

• The constant rule

If
$$y = cu = cg(x)$$
 where $c \in \mathbb{R}$ then $\frac{dy}{dx} = c\frac{du}{dx} = cg'(x)$.

• The sum rule

If
$$y = u + v = g(x) + h(x)$$
 then
$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} = g'(x) + h'(x).$$

• The product rule

If
$$y = u \cdot v = g(x) \cdot h(x)$$
 then
$$\frac{dy}{dx} = \frac{du}{dx}v + u\frac{dv}{dx} = g'(x)h(x) + g(x)h'(x)$$

• The extended product rule

If
$$y = f(x) \cdot g(x) \cdot h(x)$$
 then
$$\frac{dy}{dx} = f'(x)g(x)h(x) + f(x)g'(x)h(x) + f(x)g(x)h'(x)$$

• The chain rule

If
$$y = f(u) = f(g(x))$$
 and $u = g(x)$ then
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = f'(g(x)) g'(x).$$

• The quotient rule

If
$$y = \frac{u}{v} = \frac{g(x)}{h(x)}$$
 where $h(x) \neq 0$ then $\frac{dy}{dx} = \frac{\frac{du}{dx}v - u\frac{dv}{dx}}{v^2} = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}$.

- The Second Derivative test Suppose that $f'(x_0) = 0$.
 - If $f''(x_0) > 0$, then x_0 is a local minimum point.
 - If $f''(x_0) < 0$, then x_0 is a local maximum point.
 - If $f''(x_0) = 0$, the test is inconclusive. (This point may be a local maximum, a local minimum or a point of inflection.)

• The *n*th **Taylor polynomial** to f about a is the function $T_n f : \mathbb{R} \to \mathbb{R}$ where

$$(T_n f)(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

where $f^{(n)}(x) = \frac{d^n}{dx^n}(f(x))$ is the n^{th} derivative of f. T_1f is a linear approximation to f.

• Taylor's Theorem. Let f be a function which has an $(n+1)^{th}$ derivative defined on an interval I containing 0. If there is a positive number M such that $-M \leq f^{(n+1)}(x) \leq M$ for all $x \in I$ then

$$\left| (E_n f)(x) \right| \leqslant \frac{M|x|^{n+1}}{(n+1)!}$$
 for $x \in I$.

Here $(E_n f)(x) = f(x) - (T_n f)(x)$ is the error which arises when $T_n f$ is used as an approximation to f.

18

Table of Common Antiderivatives.

f(x)	Anti-derivative $F(x)$	Comments		
x^k	$\frac{1}{k+1}x^{k+1}$	$k \neq -1, x > 0.$		
e^{ax}	$\frac{1}{a}e^{ax}$			
$\frac{1}{x}$	$\log_e(x)$	x > 0		
$\log_e(x)$	$x \log_e(x) - x$	x > 0		

- Sum/difference property: $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$
- Constant multiple property: $\alpha f(x) dx = \alpha \int f(x) dx$ for all $\alpha \in \mathbb{R}$.
- For all $a, b \in \mathbb{R}$ with $a \neq 0$: If $\int f(x) \ dx = F(x)$ then $\int f(ax+b) \ dx = \frac{1}{a}F(ax+b)$
- Substitution rule: For suitable functions f and g we have

$$\int_{a}^{b} f(u) \frac{du}{dx} dx = \int_{a(a)}^{g(b)} f(u) du$$

where u = g(x).

• Integration by Parts

$$\int_{a}^{b} u \frac{dv}{dx} \ dx = uv|_{a}^{b} - \int_{a}^{b} v \frac{du}{dx} \ dx$$

• The cumulative distribution function F is an anti-derivative of the probability density function f for continuous data. That is:

$$P(X \leqslant x) = F(x) = \int_{-\infty}^{x} f(t)dt$$

The **mean** value is given by

$$\int_{-\infty}^{\infty} x f(x) dx$$

• The trapezoidal rule: The integral on [a, b] of the function f can be approximated by

$$\frac{(b-a)}{2n} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}) + f(x_n) \right]$$

where $x_k = a + k \frac{(b-a)}{n}, \quad k = 0, 1, ... n$

Special functions and functions of two variables:

• The Gamma Function:

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$$

It has the properties:

$$\Gamma(x+1) = x\Gamma(x)$$
 $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$

Special values:

$$\Gamma(1) = 1$$
 $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

• The Beta Function

$$B(p,q) = \int_0^1 y^{p-1} (1-y)^{q-1} dy = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

• The second order Taylor polynomial of a function of two variables f(x, y) about (a, b):

$$\begin{split} T_{(a,b)}^2 f(x,y) = & f(a,b) + (x-a) \frac{\partial f}{\partial x}(a,b) + (y-b) \frac{\partial f}{\partial y}(a,b) \\ & + \frac{1}{2} \left\{ (x-a)^2 \frac{\partial^2 f}{\partial x^2}(a,b) + 2(x-a)(y-b) \frac{\partial^2 f}{\partial x \partial y}(a,b) + (y-b)^2 \frac{\partial^2 f}{\partial y^2}(a,b) \right\}. \end{split}$$