

RFM64 ISM TRANSCEIVER MODULE V1.2

General Description

The RFM64 is a low cost transceiver module operating in the 433MHz frequency bands. The RFM64 is optimized for very low power consumption (3mA in receiver mode). It incorporates a baseband modem with data rates up to 150 kb/s. Data handling features include a sixty-four byte FIFO, packet handling, automatic CRC generation and data whitening. All major RF communication parameters are programmable and most of them may be dynamically set. It complies with European (ETSI EN 300-220 V2.1.1) and North American(FCC part15.247 and 15.249) regulatory standards.

In order to better use RFM64 modules, this specification also involves a large number of the parameters and functions of its core chip RF64's, including those IC pins which are not leaded out. All of these can help customers gain a better understanding of the performance of RFM64 modules, and enhance the application skills.

Features

- Low Rx power consumption: 3mA
- Low Tx power consumption: 25 mA @ +10 dBm
- Good reception sensitivity: down to -104 dBm at 25 kb/s in FSK. -110 dBm at 2kb/s in OOK
- Programmable RF output power: up to +12 dBm in 8 steps
- Packet handling feature with data whitening and automatic CRC generation
- RSSI (Received Signal Strength Indicator)
- Bit rates up to 150 kb/s, NRZ coding
- On-module frequency synthesizer
- FSK and OOK modulation
- Incoming sync word recognition
- Built-in Bit-Synchronizer for incoming data and clock synchronization and recovery
- Module size:19.7X16mm
- Optimized Circuit Configuration for Low-cost applications

Applications

- Wireless alarm and security systems
- Wireless sensor networks
- Automated Meter Reading
- Home and building automation
- Industrial monitoring and control
- Remote Wireless Control
- Active RFID PHY

Table of Contents

1. General Description	5
1.1. Simplified Block Diagram	. 5
1.2. Pin Diagram	6
1.3. Pin Description	7
2. Electrical Characteristics	
2.1. ESD Notice	
2.2. Absolute Maximum Ratings	٥
2.3. Operating Range	ö
2.4.1. Power Consumption	o გ
2.4.2. Frequency Synthesis	o
2.4.3. Transmitter	J
2.4.4. Receiver	
2.4.5. Digital Specification	
Architecture Description	
3.1. Power Supply Strategy	12
3.2. Frequency Synthesis Description	.13
3.2.1. Reference Oscillator	13
3.2.2. CLKOUT Output	. 13
3.2.3. PLL Architecture	
3.2.4. PLL Tradeoffs	
3.2.5. Voltage Controlled Oscillator	15
3.2.6. PLL Loop Filter	. 16
3.2.7. PLL Lock Detection Indicator	16
3.2.8. Frequency Calculation	16
3.3. Transmitter Description	18
3.3.1. Architecture Description	18
3.3.2. Bit Rate Setting	
3.3.3. Alternative Settings	
3.3.4. Fdev Setting in FSK Mode	19
3.3.5. Fdev Setting in OOK Mode	19
3.3.6. Interpolation Filter	20
3.3.7. Power Amplifier	. 20
3.3.8. Common Input and Output Front-End	22
3.4. Receiver Description	
3.4.1. Architecture	
3.4.2. LNA and First Mixer	24
3.4.3. IF Gain and Second I/Q Mixer	24
3.4.4. Channel Filters Folk Made	24
3.4.5. Channel Filters Setting in FSK Mode	.25
3.4.7. RSSI	.20
3.4.8. Fdev Setting in Receive Mode	20
3.4.9. FSK Demodulator	
3.4.10. OOK Demodulator	
3.4.11. Bit Synchronizer	
3.4.12. Alternative Settings	32
3.4.13. Data Output	
4. Operating Modes	
4.1. Modes of Operation	33
4.2. Digital Pin Configuration vs. Chip Mode	33
5. Data Processing	34
5.1. Overview	
5.1.1. Block Diagram	
5.1.2. Data Operation Modes	
5.2. Control Block Description	
5.2.1. SPI Interface	
5.2.2. FIFO	
5.2.3. Sync Word Recognition	39
5.2.4. Packet Handler	

	5.2.5. Control	
	5.3. Continuous Mode	
	5.3.1. General Description	
	5.3.2. Tx Processing	41
	5.3.3. Rx Processing	42
	5.3.4. Interrupt Signals Mapping	42
	5.3.5. uC Connections	43
	5.3.6. Continuous Mode Example	43
	5.4. Buffered Mode	
	5.4.1. General Description	
	5.4.2. Tx Processing	
	5.4.3. Rx Processing	
	5.4.4. Interrupt Signals Mapping	
	5.4.5. uC Connections	47
	5.4.6. Buffered Mode Example	47
	5.5. Packet Mode	
	5.5.1. General Description	
	5.5.2. Packet Format	
	5.5.3. Tx Processing	49 51
	5.5.4. Rx Processing	
	5.5.5. Packet Filtering	51
	5.5.6. DC-Free Data Mechanisms	
	5.5.7. Interrupt Signal Mapping	54
	5.5.8. uC Connections	
	5.5.9. Packet Mode Example	56
	5.5.10. Additional Information	56
6.	Configuration and Status Registers	58
	6.1. General Description	58
	6.2. Main Configuration Register - MCParam	58
	6.3. Interrupt Configuration Parameters - IRQParam	60
	6.4. Receiver Configuration parameters - RXParam	62
	6.5. Sync Word Parameters - SYNCParam	63
	6.6. Transmitter Parameters - TXParam	
	6.7. Oscillator Parameters - OSCParam	
	6.8. Packet Handling Parameters – PKTParam	
7.	Application Information	66
	7.1. Crystal Resonator Specification	66
	7.2. Software for Frequency Calculation	66
	7.2.1. GUI	
	7.2.2dll for Automatic Production Bench	66
	7.3. Switching Times and Procedures	
	7.3.1. Optimized Receive Cycle	67
	7.3.2. Optimized Transmit Cycle	68
	7.3.3. Transmitter Frequency Hop Optimized Cycle	69
	7.3.4. Receiver Frequency Hop Optimized Cycle	
	7.3.5. Rx=>Tx and Tx=>Rx Jump Cycles	
	7.4. Reset of the Chip	72
	7.4.1. POR	
	7.4.1. POR	
	7.5. Reference Design	/3
0	Packaging Information	13
	Packaging Information	
У.	Ordering Information	/5

Index of Figures

Figure 1: RFM64 Simplified Block Diagram	5
Figure 2: RFM64 Pin Diagram	
Figure 3: RFM64 Detailed Block Diagram	
Figure 4: Power Supply Breakdown	
Figure 5: Frequency Synthesizer Description	14
Figure 6: LO Generator	
Figure 7: Loop Filter	16
Figure 8: Transmitter Architecture	18
Figure 9: I(t), Q(t) Overview	18
Figure 10: PA Control	
Figure 11: Optimal Load Impedance Chart	21
Figure 12: Recommended PA Biasing and Output Matching	22
Figure 13: Front-end Description	22
Figure 14: Receiver Architecture	
Figure 15: FSK Receiver Setting	23
Figure 16: OOK Receiver Setting	
Figure 17: Active Channel Filter Description	24
Figure 18: Butterworth Filter's Actual BW	26
Figure 19: Polyphase Filter's Actual BW	26
Figure 20: RSSI Dynamic Range	27
Figure 21: RSSI IRQ Timings	28
Figure 22: OOK Demodulator Description	29
Figure 23: Floor Threshold Optimization	30
Figure 24: BitSync Description	31
Figure 25: RFM64's Data Processing Conceptual View	34
Figure 26: SPI Interface Overview and uC Connections	35
Figure 27: Write Register Sequence	36
Figure 28: Read Register Sequence	
Figure 29: Write Bytes Sequence (ex: 2 bytes)	37
Figure 30: Read Bytes Sequence (ex: 2 bytes)	38
Figure 31: FIFO and Shift Register (SR)	38
Figure 32: FIFO Threshold IRQ Source Behavior	39

Figure 33: Sync Word Recognition	40
Figure 34: Continuous Mode Conceptual View	41
Figure 35: Tx Processing in Continuous Mode	41
Figure 36: Rx Processing in Continuous Mode	42
Figure 37: uC Connections in Continuous Mode	43
Figure 38: Buffered Mode Conceptual View	44
Figure 39: Tx processing in Buffered Mode (FIFO size = 16,	
Tx_start_irq_0=0)	45
Figure 40: Rx Processing in Buffered Mode (FIFO size=16,	
Fifo_fill_method=0)	46
Figure 41: uC Connections in Buffered Mode	4
Figure 42: Packet Mode Conceptual View	49
Figure 43: Fixed Length Packet Format	
Figure 44: Variable Length Packet Format	
Figure 45: CRC Implementation	53
Figure 46: Manchester Encoding/Decoding	
Figure 47: Data Whitening	5
Figure 48: uC Connections in Packet Mode	55
Figure 49: Optimized Rx Cycle	
Figure 50: Optimized Tx Cycle	68
Figure 51: Tx Hop Cycle	69
Figure 52: Rx Hop Cycle	70
Figure 53: Rx => Tx => Rx Cycle	
Figure 54: POR Timing Diagram	
Figure 55: Manual Reset Timing Diagram	
Figure 56: Application Schematic	
Figure 57: Packaging Dimensions	74

Index of Tables

Table 1: Ordering Information	
Table 2: RFM64 Pinouts	7
Table 3: Absolute Maximum Ratings	
Table 4: Operating Range	8
Table 5: Power Consumption Specification	
Table 6: Frequency Synthesizer Specification	9
Table 7: Transmitter Specification	9
Table 8: Receiver Specification	10
Table 9: Digital Specification	11
Table 10: MCParam_Freq_band Setting	15
Table 11: PA Rise/Fall Times	20
Table 12: Operating Modes	33
Table 13: Pin Configuration vs. Module Mode	33
Table 14: Data Operation Mode Selection	3
Table 15: Config vs. Data SPI Interface Selection	36
Table 16: Status of FIFO when Switching Between Different	
Modes of the Chip	39
Table 17: Interrupt Mapping in Continuous Rx Mode	42
Table 18: Interrupt Mapping in Continuous Tx Mode	42

Table 19: Relevant Configuration Registers in Continuous Mode	٤
(data processing related only)	43
Table 20: Interrupt Mapping in Buffered Rx and Stby Modes	46
Table 21: Interrupt Mapping in Tx Buffered Mode	46
Table 22: Relevant Configuration Registers in Buffered Mode (d	ata
processing related only)	47
Table 23: Interrupt Mapping in Rx and Stby in Packet Mode	55
Table 24: Interrupt Mapping in Tx Packet Mode	55
Table 25: Relevant Configuration Registers in Packet Mode (date	ta
processing related only)	56
Table 26: Registers List	
Table 27: MCParam Register Description	58
Table 28: IRQParam Register Description	60
Table 29: RXParam Register Description	62
Table 30: SYNCParam Register Description	63
Table 31: TXParam Register Description	64
Table 32: OSCParam Register Description	64
Table 33: PKTParam Register Description	65
Table 34: Crystal Resonator Specification	66
Table 35: Reference Design BOM	74

Acronyms

Dill Of Materials
Bill Of Materials
Bit Rate
Bandwidth
Comité Consultatif International Téléphonique et Télégraphique - ITU
Charge Pump
Cyclic Redundancy Check
Digital to Analog Converter
Direct Digital Synthesis
Dynamically Linked Library
Equivalent Radiated Power
European Telecommunications Standards Institute
Federal Communications Commission
Frequency Deviation
First In First Out
Frequency Synthesizer
Frequency Shift Keying
Graphical User Interface
Integrated Circuit
IDentificator
Intermediate Frequency
Interrupt ReQuest
International Telecommunication Union
Linear Feedback Shift Register
Low Noise Amplifier

LO	Local Oscillator
LSB	Least Significant Bit
MSB	Most Significant Bit
NRZ	Non Return to Zero
NZIF	Near Zero Intermediate Frequency
OOK	On Off Keying
PA	Power Amplifier
PCB	Printed Circuit Board
PFD	Phase Frequency Detector
PLL	Phase-Locked Loop
POR	Power On Reset
RBW	Resolution BandWidth
RF	Radio Frequency
RSSI	Received Signal Strength Indicator
Rx	Receiver
SAW	Surface Acoustic Wave
SPI	Serial Peripheral Interface
SR	Shift Register
Stby	Standby
Tx	Transmitter
uC	Microcontroller
VCO	Voltage Controlled Oscillator
XO	Crystal Oscillator
XOR	eXclusive OR

This product datasheet contains a detailed description of the RFM64 performance and functionality.

1. General Description

The RFM64 is a s FSK and OOK transceiver module capable of operation in the 433MHz license free ISM frequency bands. It complies with both the relevant European and North American standards, EN 300-220 V2.1.1 (June 2006 release) and FCC Part 15 (10-1-2006 edition). A unique feature of this circuit is its extremely low current consumption in receiver mode of only 3mA (typ).

1.1. Simplified Block Diagram

Figure 1: RFM64 Simplified Block Diagram

1.2. Pin Diagram

The following diagram shows the pins arrangement of the package, top view.

Figure 2: RFM64 Pin Diagram

Page 6 of 75

1.3. Pin Description

Table 2: RFM64 Pinouts

Number	Name	Туре	Description	
1	POR	I/O	POR. Do not connect if unused	
2	NSS_CONFIG	I	SPI CONFIG enable	
3	NSS_DATA	I	SPI DATA enable	
4	MISO	0	SPI data output	
5	MOSI	I	SPI data input	
6	SCK	I	SPI clock input	
7	CLKOUT	0	Clock output	
8	3.3V	I	Supply voltage	
9	GND	I	Exposed ground pad	
10	GND	I	Exposed ground pad	
11	ANA	I/O	RF input/output	
12	GND	I	Exposed ground pad	
13	DATA	I/O	NRZ data input and output (Continuous mode)	
14	PLL_LOCK	0	PLL lock detection output	
15	IRQ_1	0	Interrupt output	
16	IRQ_0	0	Interrupt output	

2. Electrical Characteristics

2.1. ESD Notice

The RFM64 is a high performance radio frequency device. It satisfies:

- Class 2 of the JEDEC standard JESD22-A114-B (Human Body Model).
- Class III of the JEDEC standard JESD22-C101C (Charged Device Model) on all pins. It should thus be handled with all the necessary ESD precautions to avoid any permanent damage.

2.2. Absolute Maximum Ratings

Stresses above the values listed below may cause permanent device failure. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Table 3: Absolute Maximum Ratings

Symbol	Description	Min	Max	Unit
VDDmr	Supply voltage	-0.3	3.7	V
Tmr	Storage temperature	-55	125	°C
Pmr	Input level	-	0	dBm

2.3. Operating Range

Table 4: Operating Range

Symbol	Description	Min	Max	Unit
VDDop	Supply Voltage	2.1	3.6	V
Trop	Temperature	-40	+85	°C
ML	Input Level	-	0	dBm

2.4. Module Specification

Conditions: Temp = 25 °C, VDD = 3.3 V, unless otherwise specified.

2.4.1. Power Consumption

Table 5: Power Consumption Specification

Symbol	Description	Conditions	Min	Тур	Max	Unit
IDDSL	Supply current in sleep mode		-	0.1	2	μΑ
IDDST	Supply current in standby mode, CLKOUT disabled	Crystal oscillator running	-	65	85	μΑ
IDDFS	Supply current in FS mode	Frequency synthesizer running	-	1.3	1.7	mA
IDDR	Supply current in receiver mode		-	3.0	3.5	mA
IDDT	Supply current in	Output power = +10 dBm Output power = 1dBm ⁽¹⁾	-	25	30	mA
(1) -	transmitter mode	Output power = 1dBm ⁽¹⁾	-	16	21	mA

⁽¹⁾ Guaranteed by design and characterization

Page 8 of 75

2.4.2. Frequency Synthesis

Table 6: Frequency Synthesizer Specification

Symbol	Description	Conditions	Min	Тур	Max	Unit
FR	Frequency ranges	433MHz module	432		436	MHz
BR_F	Bit rate (FSK)	NRZ 0.78 - 150		Kb/s		
BR_O	Bit rate (OOK)	NRZ	0.78 - 32		Kb/s	
FDA	Frequency deviation (FSK)		33	50	200	kHz
XTAL	Crystal oscillator frequency	For All Module	12.8		MHz	
FSTEP	Frequency synthesizer step	Variable, depending on the frequency.			kHz	
TS_OSC	Oscillator wake-up time	From Sleep mode ⁽¹⁾	-	1.5	5	ms
TS_FS	Frequency synthesizer wake-up time at most 10 kHz away from the target	From Stby mode	1	500	800	μs
		200 kHz step		-	μs	
TS_HOP	Frequency synthesizer hop time at most 10 kHz away from the target	1 MHz step	-	200	-	μs
		5 MHz step	-	250	-	μs
		7 MHz step	-	260	-	μs
		12 MHz step	-	290	-	μs
		20 MHz step	-	320	-	μs
		27 MHz step	-	340	-	μs

⁽¹⁾ Guaranteed by design and characterization

2.4.3. Transmitter

Table 7: Transmitter Specification

Symbol	Description	Conditions	Min	Тур	Max	Unit
RFOP	RF output power, programmable with 8 steps	Maximum power setting	-	+12	-	dBm
RFOF	of typ. 3dB	Minimum power setting	-	-8	-	dBm
PN	Phase noise	Measured with a 600 kHz offset, at the transmitter output.	-	-112	-	dBc/Hz
SPT	Transmitted spurious	At any offset between 200 kHz and 600 kHz, unmodulated carrier, Fdev = 50 kHz.	-	ı	-47	dBc
TS_TR ⁽¹⁾	Transmitter wake-up time	From FS to Tx ready.	-	120	500	μs
TS_TR2 ⁽¹⁾	Transmitter wake-up time	From Stby to Tx ready.	-	600	900	μs

⁽¹⁾ Guaranteed by design and characterization

2.4.4. Receiver

On the following table, fc and fo describe the bandwidth of the active channel filters as described in section 3.4.4.2. All sensitivities are measured receiving a PN15 sequence, for a BER of 0.1.%

Table 8: Receiver Specification

Symbol	Description	Conditions	Min	Тур	Max	Unit
RFS_F	Sensitivity (FSK)	434 MHz, BR=25 kb/s, Fdev =50 kHz, fc=100 kHz	-	-104	-	dBm
			-	-	-	
			-	-	-	
			-	-	-	
		434 MHz, 2kb/s NRZ fc-fo=50 kHz, fo=50 kHz	-	-110	-	dBm
RFS_O	Sensitivity (OOK)		-	-	-	
			-	-	-	
			-	-	-	
CCR	Co-channel rejection	Modulation as wanted signal	-	-12	-	dBc
	Adjacent channel	Offset = 300 kHz	-	-	-	dB
ACR	rejection	Offset = 600 kHz	-	42	-	dB
ACR	rejection	Offset = 1.2 MHz	-	53	-	dB
	Blocking immunity	Offset = 1 MHz, unmodulated	-	53	-	dBc
ВІ		Offset = 2 MHz, unmodulated, no SAW	-	-	-	
		Offset = 10 MHz, unmodulated, no SAW	-	-	-	
RXBW_F ^(1,2)	Receiver bandwidth in FSK mode	Single side BW Polyphase Off	50	-	250	kHz
RXBW_O ^(1,2)	Receiver bandwidth in OOK mode	Single side BW Polyphase On	50	-	400	kHz
IIP3	Input 3 rd order intercept point	Interferers at 1MHz and 1.950 MHz offset	-	-28	-	dBm
TS RE ⁽¹⁾	Receiver wake-up time	From FS to Rx ready	-	280	500	μs
TS RE2 ⁽¹⁾	Receiver wake-up time	From Stby to Rx ready	-	600	900	μs
_	Receiver hop time from Rx ready to Rx ready with a frequency hop	200 kHz step	-	400	-	μs
TS_RE_HOP		1MHz step	-	400	-	μs
		5MHz step	-	460	-	μs
		7MHz step	-	480	-	μs
		12MHz step	-	520	-	μs
		20MHz step	-	550	-	μs
		27MHz step	-	600	-	μs
TS RSSI	RSSI sampling time	From Rx ready	_	-	1/Fdev	S
DR RSSI	RSSI dynamic Range	Ranging from sensitivity	-	70	-	dB

⁽¹⁾ Information from design and characterization (2) This reflects the whole receiver bandwidth, as described in sections 3.4.4.1 and 3.4.4.2

2.4.5. Digital Specification

Conditions: Temp = 25 $^{\circ}$ C, VDD = 3.3 V, unless otherwise specified.

Table 9: Digital Specification

Symbol	Description	Conditions	Min	Тур	Max	Unit
VIH	Digital input level high		0.8*VDD	-	-	V
VIL	Digital input level low		-	-	0.2*VDD	V
VOH	Digital output level high	Imax=1mA	0.9*VDD	-	-	V
VOL	Digital output level low	Imax=-1mA	-	-	0.1*VDD	V
SCK_CONFIG	SPI Config. clock frequency		-	-	6	MHz
SCK_DATA	SPI data clock frequency		-	-	1	MHz
T_DATA	DATA hold and setup time		2	-	-	μs
T_MOSI_C	MOSI setup time for SPI Config.		250	-	-	ns
T_MOSI_D	MOSI setup time for SPI Data.		312	-	-	ns
T_NSSC_L	NSS_CONFIG low to SCK rising edge. SCK falling edge to NSS_CONFIG high.		500	-	-	ns
T_NSSD_L	NSS_DATA low to SCK rising edge. SCK falling edge to NSS_DATA high.		625	-	-	ns
T_NSSC_H	NSS_CONFIG rising to falling edge.		500	-	-	ns
T_NSSD_H	NSS_DATA rising to falling edge.		625	-	-	ns

3. Architecture Description

This section describes in depth the architecture of this ultra low-power transceiver:

Figure 3: RFM64 Detailed Block Diagram

3.1. Power Supply Strategy

To provide stable sensitivity and linearity characteristics over a wide supply range, the RFM64 is internally regulated. This internal regulated power supply structure is described below:

Page 12 of 75

Figure 4: Power Supply Breakdown

To ensure correct operation of the regulator circuit, the decoupling capacitor connection shown in Figure 4 is required. These decoupling components are recommended for any design.

3.2. Frequency Synthesis Description

The frequency synthesizer of the RFM64 is a fully integrated integer-N type PLL. The PLL circuit requires only five external components for the PLL loop filter and the VCO tank circuit.

3.2.1. Reference Oscillator

The RFM64 embeds a crystal oscillator, which provides the reference frequency for the PLL. The recommended crystal specification is given in section 7.1.

3.2.2. CLKOUT Output

The reference frequency, or a sub-multiple of it, can be provided on CLKOUT by activating the bit OSCParam_Clkout_on. The division ratio is programmed through bits OSCParam_Clkout_freq. The two applications of the CLKOUT output are:

- To provide a clock output for a companion uC, thus saving the cost of an additional oscillator. CLKOUT can be made available in any operation mode, except Sleep mode, and is automatically enabled at power-up.
- To provide an oscillator reference output. Measurement of the CLKOUT signal enables simple software trimming of the initial crystal tolerance.

Note: To minimize the current consumption of the RFM64, ensure that the CLKOUT signal is disabled when unused.

Page 13 of 75

3.2.3. PLL Architecture

The crystal oscillator (XO) forms the reference oscillator of an Integer-N Phase Locked Loop (PLL), whose operation is discussed in the following section. Figure 5 shows a block schematic of the RFM64 PLL. Here the crystal reference frequency and the software controlled dividers R, P and S determine the output frequency of the PLL.

Figure 5: Frequency Synthesizer Description

The VCO tank inductors are connected on an external differential input. Similarly, the loop filter is also located externally. However, there is an internal 8pF capacitance at VCO input that should be subtracted from the desired loop filter capacitance.

The output signal of the VCO is used as the input to the local oscillator (LO) generator stage, illustrated in Figure 6. The VCO frequency is subdivided and used in a series of up (down) conversions for transmission (reception).

Figure 6: LO Generator

3.2.4. PLL Tradeoffs

With an integer-N PLL architecture, the following criterion must be met to ensure correct operation:

■ The comparison frequency, Fcomp, of the Phase Frequency Detector (PFD) input must remain higher than six times the PLL bandwidth (PLLBW) to guarantee loop stability and to reject harmonics of the comparison frequency Fcomp. This is expressed in the inequality:

$$PLLBW \leqslant \frac{Fcomp}{6}$$

- However the PLLBW has to be sufficiently high to allow adequate PLL lock times
- Because the divider ration R determines Fcomp, it should be set close to 119, leading to Fcomp≈100 kHz which will ensure suitable PLL stability and speed.

Page 14 of 75

With the recommended of the reference design of section 7.5.3, the PLL prototype is the following:

- 64 ≤ R ≤ 169
- S < P+1
- LLBW = 15 kHz nominal
- Startup times and reference frequency spurs as specified.

3.2.5. Voltage Controlled Oscillator

The integrated VCO requires only two external tank circuit inductors. As the input is differential, the two inductors should have the same nominal value. The performance of these components is important for both the phase noise and the power consumption of the PLL. It is recommended that a pair of high Q factor inductors is selected. These should be mounted orthogonally to other inductors (in particular the PA choke) to reduce spurious coupling between the PA and VCO. In addition, such measures may reduce radiated pulling effects and undesirable transient behavior, thus minimizing spectral occupancy. Note that ensuring a symmetrical layout of the VCO inductors will further improve PLL spectral purity.

For best performance wound type inductors, with tight tolerance, should be used as described in section 7.5.3.

3.2.5.1. SW Settings of the VCO

To guarantee the optimum operation of the VCO over the RF64's frequency and temperature ranges, the following settings should be programmed into the RFM64:

Target channel (MHz)	300-	320-	350-	390-	430-	470-
	330	350	390	430	470	510
Freq_band	000	001	010	011	100	101

Table 10: MCParam_Freq_band Setting

3.2.5.2. Trimming the VCO Tank by Hardware and Software

To ensure that the frequency band of operation may be accurately addressed by the R, P and S dividers of the synthesizer, it is necessary to ensure that the VCO is correctly centered. Note that for the reference design (see section 7.5) no centering is necessary. However, any deviation from the reference design may require the optimization procedure, outlined below, to be implemented. This procedure is simplified thanks to the built-in VCO trimming feature which is controlled over the SPI interface. This tuning does not require any RF test equipment, and can be achieved by simply measuring Vtune, the voltage between pins LFM and LFP.

The VCO is centered if the voltage is within the range:

$$100 \leq Vtune(mV) \leq 200$$

Note that this measurement should be conducted when in transmit mode at the center frequency of the desired band (for example ~315 MHz in the 300-330 MHz band), with the appropriate MCParam_Freq_band setting.

If this inequality is not satisfied then adjust the MCParam_VCO_trim bits from 00 whilst monitoring Vtune. This allows the VCO voltage to be trimmed in + 60 mV increments. Should the desired voltage range be inaccessible, the voltage may be adjusted further by changing the tank circuit inductance value. Note that an increase in inductance will result in an increase Vtune.

Page 15 of 75

Note for mass production: The VCO capacitance is piece to piece dependant. As such, the optimization proposed above should be verified on several prototypes, to ensure that the population is centered on 150 mV.

3.2.6. PLL Loop Filter

To adequately reject spurious components arising from the comparison frequency Fcomp, an external 2nd order loop filter is employed.

Figure 7: Loop Filter

Following the recommendations made in section 3.2.4, the loop filter proposed in the reference design's bill of material on section 7.5.3 should be used. The loop filter settings are frequency band independent and are hence relevant to all implementations of the RFM64.

3.2.7. PLL Lock Detection Indicator

The RFM64 also features a PLL lock detect indicator. This is useful for optimizing power consumption, by adjusting the synthesizer wake up time (TS_FS), since the PLL startup time is lower than specified under nominal conditions. The lock status can be read on bit IRQParam_PLL_lock, and must be cleared by writing a "1" to this same register. In addition, the lock status can be reflected in pin PLL LOCK, by setting the bit IRQParam_Enable lock detect.

3.2.8. Frequency Calculation

As shown in Figure 5 the PLL structure comprises three different dividers, R, P and S, which set the output frequency through the LO. A second set of dividers is also available to allow rapid switching between a pair of frequencies: R1/P1/S1 and R2/P2/S2. These six dividers are programmed by six bytes of the register MCParam from addresses 6 to 11.

3.2.8.1. FSK Mode

The following formula gives the relationship between the local oscillator, and R, P and S values, when using FSK modulation.

$$Frf, fsk = \frac{9}{8}Flo$$

$$Frf, fsk = \frac{9}{8} \frac{Fxtal}{R+1} [75(P+1) + S)]$$

3.2.8.2. OOK Mode

Due to the manner in which the baseband OOK symbols are generated, the signal is always offset by the FSK frequency deviation (Fdev - as programmed in MCParam_Freq_dev). Hence, the center of the transmitted OOK signal is:

Page 16 of 75

$$Frf, ook, tx = \frac{9}{8}Flo - Fdev$$

$$Frf, ook, tx = \frac{9}{8}\frac{Fxtal}{R+1}[75(P+1) + S)] - Fdev$$

Consequently, in receive mode, due to the low intermediate frequency (Low-IF) architecture of the RFM64 the frequency should be configured so as to ensure the correct low-IF receiver baseband center frequency, IF2.

$$Frf,ook,rx = \frac{9}{8}Flo - IF2$$

$$Frf,ook,rx = \frac{9}{8}\frac{Fxtal}{R+1}[75(P+1)+S)] - IF2$$

Note that from Section 3.4.4, it is recommended that IF2 be set to 100 kHz.

