Definition 4.3.1

A *dynamic* on a set X means to keep track of elements under a function $f: X \to X$:

$$X \xrightarrow{f} X \xrightarrow{f} X \xrightarrow{f} \cdots$$

Example 4.3.2 (Collatz conjecture)

Consider the set $X = \mathbb{N}$ and the function

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ 3n+1 & \text{if } n \text{ is odd.} \end{cases}$$

It is conjectured that the dynamic of any $n \in \mathbb{N}$ under f eventually falls in repeating cycle $4 \to 2 \to 1 \to 4$.

Example 4.3.2 (Collatz conjecture)

Consider the set $X = \mathbb{N}$ and the function

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even,} \\ 3n+1 & \text{if } n \text{ is odd.} \end{cases}$$

It is conjectured that the dynamic of any $n \in \mathbb{N}$ under f eventually falls in repeating cycle $4 \to 2 \to 1 \to 4$.

Definition 4.3.3

An additive modular dynamic is a dynamic given by

$$+a \pmod{m}$$
: $\mathbb{Z}/m \longrightarrow \mathbb{Z}/m$
 $\overline{x} \longmapsto \overline{x+a}$

Definition 4.3.3

An additive modular dynamic is a dynamic given by

$$+a \pmod{m}$$
: $\mathbb{Z}/m \longrightarrow \mathbb{Z}/m$
 $\overline{x} \longmapsto \overline{x+a}$

Theorem 4.3.4

Let m be a modulus and a be an integer. Then the dynamic of $+a \pmod{m}$ consists of $\gcd(a, m)$ circles of the same length.

gcd(a.m)

Theorem 4.3.4

Let m be a modulus and a be an integer. Then the dynamic of $+a \pmod{m}$ consists of $\gcd(a,m)$ circles of the same length.

Proof. First note that the function $+a \pmod{m}$ is invertible. Hence, in this dynamic, any node must have exactly one input and one output. Therefore, the dynamic only consists of circles and lines. But the entire set \mathbb{Z}/m is finite. Hence, the dynamic cannot contain any lines. It remains to show each circle has the same length.

Let's look at the circle containing \overline{b} (for any $b \in \mathbb{Z}$):

$$\overline{b} \longmapsto \overline{b+a} \longmapsto \overline{b+2a} \longmapsto \cdots \longmapsto \overline{b+\ell a} = \overline{b} \longmapsto \cdots$$

Here ℓ is the length of the circle.

Let's look at the circle containing \overline{b} (for any $b \in \mathbb{Z}$):

$$\overline{b} \longmapsto \overline{b+a} \longmapsto \overline{b+2a} \longmapsto \cdots \longmapsto \overline{b+\ell a} = \overline{b} \longmapsto \cdots$$

Here ℓ is the length of the circle.

The identity $\overline{b+\ell a}=\overline{b}$ implies that $m\mid \ell a$. On the other hand, for any $0< k<\ell$, we must have $m\nmid ka$, otherwise the length of the circle will be at most k. Therefore, ℓa is the smallest common multiple of a and m, hence $\operatorname{lcm}(a,m)$.

Let's look at the circle containing \overline{b} (for any $b \in \mathbb{Z}$):

$$\overline{b} \longmapsto \overline{b+a} \longmapsto \overline{b+2a} \longmapsto \cdots \longmapsto \overline{b+\ell a} = \overline{b} \longmapsto \cdots$$

Here ℓ is the length of the circle.

The identity $\overline{b+\ell a}=\overline{b}$ implies that $m\mid \ell a$. On the other hand, for any $0< k<\ell$, we must have $m\nmid ka$, otherwise the length of the circle will be at most k. Therefore, ℓa is the smallest common multiple of a and m, hence $\operatorname{lcm}(a,m)$.

Since we start with an arbitrary $b \in \mathbb{Z}$, all circles have the same length. Then the number of circles is $m/\frac{\text{lcm}(a,m)}{a} = \gcd(a,m)$.