Problem 1. Summary statistics show that variable w has sample mean 52 and sample variance 4. Provide the formula for a transformation of variable w that has sample mean 0 and sample variance 1.

Problem 2. Calculate $\sum_{i=1}^{3} (2+6/i)$. Show all of your work.

Problem 3. Consider the following Stata output.

. sum highmeaning, d

Fraction who say their work makes the world a better place

	Percentiles	Smallest		
1%	. 28	. 26		
5%	.41	. 28		
10%	.45	. 33	0bs	194
25%	. 54	. 34	Sum of Wgt.	194
50%	.68		Mean	.6662887
		Largest	Std. Dev.	.1602189
75%	. 8	.93		
90%	.88	.93	Variance	.0256701
95%	.91	. 95	skewness	1739289
99%	.95	.97	Kurtosis	2.164972

. sum major earlycareer midcareer highmeaning

Variable	Obs	Mean	Std. Dev.	Min	Max
major	0	56257 22	14525 76	26100	130000
earlycareer	194	56257.22	14535.76	36100	139000
midcareer	194	85715.46	22338.64	48100	173000
highmeaning	194	.6662887	.1602189	. 26	. 97

 $t_193, 0.005 = 2.6015$

 $t_193, 0.010 = 2.346$

 $t_193, 0.025 = 1.9723$

 $t_193, 0.050 = 1.6528$

 $t_193, 0.100 = 1.3062$

- (a) Does variable highmeaning appear to be symmetrically distributed? Explain.
- (b) If variable highmeaning war normally distributed, then what range of values would you expect 95% of observations to lie in? Explain.
- (c) Provide a 90 percent confidence interval for the population mean earnings for Masters graduates with 0-5 years of work experience. Show your work.

- (d) What Stata command would enable you to directly answer part (c)?
- (e) The claim is made that population mean earnings for Masters graduates with 0-5 years of work experience equals \$60,000. Test this claim at significance level 0.10. State clearly the null and alternative hypothesis and your conclusion.
- (f) Suppose we perform a test of a hypothesis and find that p = 0.06. Will we reject or not reject the null hypothesis at significance level 5%? Explain your answer.

Problem 4. For a sample of four thirty-year olds, the years of completed schooling are 12, 15, 13, and 12. Compute the sample mean, sample variance, and sample standard deviation. Is the data left- or right-skewed? Show all workings.

Problem 5. Suppose X = 10 with probability 0.6, X = 20 with probability 0.3, and X = 30 with probability 0.1. Compute the mean, variance, and standard deviation of X. Show your work.

Problem 6. Suppose for $X \sim (200, 10^2)$, we form 100 samples of size 25 and obtain 100 sample means \bar{x} . What approximately do you expect the average of the \bar{x} to equal? What about the standard deviation of \bar{x} ? Explain your answer.

Problem 7. Consider the following Stata output

. summarize growth, detail

Percentage annual growth in variable real

	Percentiles	Smallest		
1%	5972697	5972697		
5%	.4553079	.4553079		
10%	1.010702	1.010702	Obs	28
25%	2.056625	1.037691	Sum of Wgt.	28
50%	3.288075		Mean	4.155236
		Largest	Std. Dev.	2.974328
75%	5.993356	8.543264		
90%	8.990582	8.990582	Variance	8.846628
95%	10.00192	10.00192	Skewness	.6414501
99%	10.44776	10.44776	Kurtosis	2.458796

Calculate the interquartile range of variable growth.

Problem 8. Consider the following Stata output.

. sum diff, detail

diff				
	Percentiles	Smallest		
1%	-100.7092	-107.1325		
5%	-36.7719	-104.92		
10%	-20.9986	-100.7092	Obs	274
25%	-8.998913	-61.88319	Sum of Wgt.	274
50%	-2.2891		Mean	1.421385
		Largest	Std. Dev.	35.51708
75%	2.870001	162.9905		
90%	19.2143	175.58	Variance	1261.463
95%	70.69516	180	Skewness	2.505035
99%	175.58	215.399	Kurtosis	14.55209

Does variable diff appear to be normally distributed? Explain.

Problem 9. An estimator is the best among consistent estimators if

- (a) it is also unbiased,
- (b) it has the smallest variance,
- (c) it is normally distributed,
- (d) none of the above.