

# Détection des spam dans les emails

PRÉSENTÉ PAR MÉLODY, ZOHRA & IMEN

#### SOMMAIRE





- ANALYSE DES DONNÉES
- VISUALISATIONS
- DÉFINIR L'EMBEDDING
- DÉMONSTARTION DES DIFFÉRENTS MODÈLES
- INTERFACE UTILISATEUR
- CONCLUSION

#### Contexte

#### APERÇU DE L'ENCADREMENT DU PROJET

Nous travaillons dans l'équipe data d'une agence data spécialisée en natural language processing (NLP). Notre agence vient de gagner un appel d'offres avec 6 projets différents.

Pour répondre à cet appel d'offre, le chef data officer a créé 6 équipes avec un chef de projet. Notre équipe est composée d'un data analyst, un data scientist et un data engineer.

|                                                |                                                | Sinn x                                         | cosn x                                         | tann x                                         |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1.0000<br>1.1052<br>1.2214<br>1.3499<br>1.4918 | 1.0000<br>.90484<br>.81873<br>.74082<br>.67032 | .00000<br>.10017<br>.20134<br>.30452<br>.41075 | 1.0000<br>1.0050<br>1.0201<br>1.0453<br>1.0811 | .00000<br>.09967<br>.19738<br>.29131<br>.37995 |
| 1.6487<br>1.8221<br>2.0138<br>2.2255<br>2.4596 | .60653<br>.54881<br>.49659<br>.44933<br>.4065  | .52110<br>.63665<br>.75858                     | 1.1276<br>1.1855<br>1.2552<br>1.3374<br>1.4331 | .46212<br>.53705<br>.60437<br>.66404<br>.71630 |
| 2.7183<br>3.0042<br>3.3201<br>3.6693<br>4.0552 | 53<br>660                                      | 1.1752<br>1.3356<br>1.5095<br>1.6984<br>1.9043 | 1.9<br>2.15                                    | .76159<br>.80050<br>.83365<br>.86172<br>.88535 |
| 4.4817<br>4.9530<br>5.4739<br>6.0496<br>6.6859 | 2313<br>20190<br>8268<br>6530<br>4957          | 2.1293<br>2.3756<br>2.6456<br>2.9422<br>3.2682 | 2.352<br>2.577<br>2.828<br>3.107<br>3.41       | .90515<br>.92167<br>.93541<br>.94681<br>.95624 |
| 7.3891<br>8.1662<br>9.0250<br>9.9742<br>11.023 | 34                                             | 3.6269<br>4.0219<br>4.4571<br>4.0370           | 3.72<br>3.5569                                 | .96403<br>.97045<br>.97574<br>.98010<br>.98367 |
| 12.182<br>13.464<br>14.880<br>16.445<br>18,174 |                                                | 7.4063<br>8.1919<br>9.0596                     | 6.1323<br>6.7690<br>7.4735<br>8.2527<br>9.1146 | .98661<br>.98903<br>.99101<br>.99263<br>.99396 |
| 20.086<br>22.198<br>24.533                     |                                                | 10.018<br>11.076<br>12.246<br>13.538<br>14.965 | 10.068<br>11.122<br>12.287<br>13.575<br>14.999 | .99505<br>.99595<br>.99668<br>.99728<br>.99777 |
|                                                |                                                | 16.543<br>18.285<br>20.211<br>22.339<br>24.691 | 16.573<br>18.313<br>20.236<br>22.362<br>24.711 | .99818<br>.99851<br>.99878<br>.99900<br>.99918 |

## Analyse des données



5796 Lignes



3 Colonnes



0 Valeurs manquantes



0 Duplicates

### 67.3% de Ham 32.7% de Spam

RÉPARTITION DES DONNÉES



#### **NUAGES DE MOTS**





**SPAM** 

HAM

#### **BARPLOT**

Répartitions des 20 premiers mots sur chaques catégories



## Explication du fonctionnement de l'Embedding



#### Illustration









Shrek

Incredibles The Triplets of Belleville

Harry Potter

Star Wars

Bleu

The Dark Knight Rises

Memento





Arthouse



Signification des dimensions

#### Comparaisons selon les dimensions







Homme - Femme

Temps du verbe

Pays - Capitale



#### DÉFINIR CE QU'IL SE PASSE

| Exemple mots : | BOnjour | Monsieur | je       | vous         |                |         |      |     |      |   |
|----------------|---------|----------|----------|--------------|----------------|---------|------|-----|------|---|
|                | Hello   | dear     | monsieur | je           | vous           | contact | pour |     |      |   |
| Tokenizer :    |         |          |          |              |                |         |      |     |      |   |
| Monsieur       |         | 1        |          |              | 5 1            | 2       | 3    |     |      |   |
| Hello          |         | 4        |          |              |                |         |      |     |      |   |
| Bonjour        |         | 5        |          | 2            | 4 8            | 1       | 2    | 3   | 6    | 7 |
| dear           |         | 8        |          |              |                |         |      |     |      |   |
| je             |         | 2        |          |              |                |         |      |     |      |   |
| vous           |         | 3        |          |              |                |         |      |     |      |   |
| contact        |         | 6        |          |              |                |         |      |     |      |   |
| pour           |         | 7        |          | Changement d | le dimension : |         |      |     |      |   |
|                |         |          |          | Monsieur     | 0.3            | 0.1     | 0.4  | 0.3 | 0.9  |   |
|                |         |          |          | Hello        | -0.3           | 0.7     | 0.8  | 0.1 | 0.03 |   |
|                |         |          |          |              |                |         |      |     |      |   |

## Avant le changement de dimension les vecteurs ont la même shape

| Exemple mots: | BOnjour | Monsieur | je       | vous          |                |         |      |     |      |     |
|---------------|---------|----------|----------|---------------|----------------|---------|------|-----|------|-----|
|               | Hello   | dear     | monsieur | je            | vous           | contact | pour |     |      |     |
|               |         |          |          |               |                |         |      |     |      |     |
| Tokenizer :   |         |          |          |               |                |         |      |     |      |     |
| Monsieur      | 1       |          |          | í             | 5 1            | 2       | 3    |     | 0    | 0 0 |
| Hello         | 4       |          |          |               |                |         |      |     |      |     |
| Bonjour       | 5       |          |          | 4             | 4 8            | 1       | 2    |     | 3    | 6 7 |
| dear          | 8       |          |          |               |                |         |      |     |      |     |
| je            | 2       |          |          |               |                |         |      |     |      |     |
| vous          | 3       |          |          |               |                |         |      |     |      |     |
| contact       | 6       |          |          |               |                |         |      |     |      |     |
| pour          | 7       |          |          | Changement of | le dimension : |         |      |     |      |     |
|               |         |          |          | Monsieur      | 0.3            | 0.1     | 0.4  | 0.3 | 0.9  |     |
|               |         |          |          | Hello         | -0.3           | 0.7     | 0.8  | 0.1 | 0.03 |     |
|               |         |          |          |               |                |         |      |     |      |     |

#### Première itération modèle avec Embedding

#### COUCHES MODÈLE

```
inputs = tf.keras.Input(shape=(14804,))

embedding = tf.keras.layers.Embedding(
    input_dim=30000,
    output_dim=64
)(inputs)

flatten = tf.keras.layers.Flatten()(embedding)
  outputs = tf.keras.layers.Dense(1, activation='sigmoid')(flatten)
  model = tf.keras.Model(inputs=inputs, outputs=outputs)

#compile
model.compile(
    optimizer='adam',
    loss='binary_crossentropy',
    metrics=[
        'accuracy',
        tf.keras.metrics.AUC(name='auc')
    ]
)
```

#### MODÈLE SUMMARY

```
Model: "model"
                             Output Shape
 Layer (type)
                                                        Param #
 input 1 (InputLayer)
                              [(None, 14804)]
 embedding (Embedding)
                              (None, 14804, 64)
                                                        1920000
 flatten (Flatten)
                              (None, 947456)
 dense (Dense)
                             (None, 1)
                                                        947457
Total params: 2,867,457
Trainable params: 2,867,457
Non-trainable params: 0
None
```

#### Résultats :

Test Loss: 0.0222

Test Accuracy: 99.37%

Test AUC: 0.9989

#### Seconde itération modèle avec Embedding

#### COUCHES MODÈLE

```
model = Sequential()
#Convolution
model.add(Embedding(input dim = 30000,
                    output dim=64,
                    input shape=input_shape))
#Flatten
model.add(Flatten())
#Couches denses
model.add(Dense(16, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
#Modele compile
model.compile(optimizer='adam',
              loss='binary crossentropy',
              metrics=['accuracy', 'AUC'])
#Modele fit
history = model.fit(X train, y train,
                    validation split=0.2,
                    batch size=32,
                    epochs=30)
```

#### LEARNING CURVE



Résultats :

Test Loss: 0.0693

Test Accuracy: 99.10%

Test AUC: 0.9946

#### Modèle de Machine Learning avec LightGBMClassifier

|              | precision | nocoll | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              | precision | recall | 11-3core | support |
| 9            | 0.99      | 0.99   | 0.99     | 798     |
| 1            | 0.99      | 0.97   | 0.98     | 362     |
|              |           |        |          |         |
| accuracy     |           |        | 0.99     | 1160    |
| macro avg    | 0.99      | 0.98   | 0.99     | 1160    |
| weighted avg | 0.99      | 0.99   | 0.99     | 1160    |
|              |           |        |          |         |

#### STANDARDISER

NLTK

### WORDNETLEMM ATIZER()

TFIDFVECTORIZER
(NGRAM\_RANGE=1,3)

LIGHTGBM CLASSIFIER

## Démonstration de l'interface utilisateur





# CONCLUSION S

## Axes d'améliorations

#### PREMIER AXE

Réussir à améliorer l'application

#### DEUXIÈME AXE

Déploiement sur Streamlit en réglant le problème des "versions"

#### TROISIÈME AXE

Meilleur nettoyage des mots pour améliorer notre corpus