Algoritmi e Strutture Dati

a.a. 2011/12

Compito del 29/05/2012

Cognome:	Nome:
Matricola:	E-mail:

Parte I

(30 minuti; ogni esercizio vale 2 punti)

- 1. Discutere qual è il caso ottimo di Quicksort e determinarne la complessità. Scrivere esplicitamente la ricorrenza.
- 2. Per un certo problema sono stati trovati due algoritmi risolutivi $(A_1 \ e \ A_2)$ con i seguenti tempi di esecuzione:

 A_1 : $T(n) = 5 T(n/6) + 2n^2$

 A_2 : T(n) = 7 T(n/6) + n

Si dica, giustificando tecnicamente la risposta, quale dei due algoritmi è preferibile per input di dimensione sufficientemente grande.

3. Si definisca formalmente la relazione di riducibilità polinomiale tra problemi decisionali (\leq_P) e si spieghi (tecnicamente) perché se fosse simmetrica si avrebbe P = NP.

Algoritmi e Strutture Dati a.a. 2011/12

Compito del 29/05/2012

Cognon	ne: Nome:
Matrico	la: E-mail:
	Parte II (2.5 ore; ogni esercizio vale 6 punti)
1.	Sia T un albero generico i cui nodi hanno chiavi intere e campi: key , left-child , right-sib . Scrivere un algoritmo che calcoli l'altezza di tale albero.
	Discutere brevemente la complessità della soluzione trovata.
2.	Dato un array di n interi, progettare un algoritmo efficiente che costruisca un albero binario di ricerca di altezza $\Theta(\log n)$ che contenga gli interi dell'array come chiavi, e analizzarne la complessità.
	Devono essere definite esplicitamente eventuali funzioni/procedure ausiliarie. Si consideri la rappresentazione dell'albero binario che utilizza i campi left , right e key .
3.	Si stabilisca se le seguenti affermazioni sono vere o false, fornendo una dimostrazione nel primo caso e un controesempio nel secondo:
	a) « Sia $G = (V, E, w)$ un grafo orientato e pesato, e sia $G' = (V, E, w')$ il grafo pesato ottenuto da G aggiungendo una costante k ai pesi (in altri termini, G' ha gli stessi vertici e gli stessi archi di G , e $w'(u,v) = k + w(u,v)$, per ogni arco (u,v) di $E'=E$). Allora, $p = \langle x_0,, x_q \rangle$ è un cammino minimo in G se e solo se p è un cammino minimo in G' . »
	b) « Sia $G = (V, E, w)$ un grafo connesso non orientato e pesato, e sia $G' = (V, E, w')$ il grafo pesato ottenuto da G aggiungendo una costante k ai pesi (in altri termini, G' ha gli stessi vertici e gli stessi archi di G , e $w'(u,v) = k + w(u,v)$, per ogni arco (u,v) di $E' = E$). Allora, T è un albero di copertura minimo di G se e solo se T è un albero di copertura minimo di G' . »
4.	Si scriva l'algoritmo di Floyd-Warshall, si dimostri la sua correttezza, si fornisca la sua complessità computazionale e si simuli accuratamente la sua esecuzione sulla seguente matrice:

$$W = \begin{bmatrix} 0 & 2 & 4 & \infty & 3 \\ 2 & 0 & 8 & \infty & 1 \\ 6 & 2 & 0 & 4 & 3 \\ 1 & \infty & \infty & 0 & 5 \\ \infty & \infty & \infty & 1 & 0 \end{bmatrix}$$