

University of Dhaka

DU_NE

Emon Khan, Himel Roy, Syed Waki As Sami

L	Contest	1	9 Strings	19
2	Mathematics 2.1 Equations 2.2 Recurrences 2.3 Trigonometry 2.4 Geometry 2.5 Derivatives/Integrals 2.6 Sums 2.7 Series 2.8 Probability theory	1 1 2 2 2 2 2 2 2 2 2	10 Various 10.1 Intervals	20 20 21 21 21 21 21 21
3	Data structures	3	template.cpp	7 lines
1	Numerical 4.1 Polynomials and recurrences 4.2 Optimization 4.3 Matrices 4.4 Fourier transforms	6 6 6 7 9	<pre>#include <bits stdc++.h=""> using namespace std; #define rep(i, a, b) for(int i = a; i<(b); ++i) #define all(x) begin(x), end(x) #define sz(x) (int)(x).size() typedef long long ll; typedef pair<int, int=""> pii; typedef vector<int> vi;</int></int,></bits></pre>	
5	Number theory 5.1 Modular arithmetic 5.2 Primality 5.3 Divisibility 5.4 Fractions 5.5 Pythagorean Triples 5.6 Primes 5.7 Fibonacchi 5.8 Estimates 5.9 Mobius Function	10 10 11 11 11 11 11 11 11	alias c='g++ -Wall -Wconversion -Wfatal-errors -g -std=c++1 -fsanitize=undefined,address'	
3	Combinatorial	11	<pre>xmodmap -e 'clear lock' -e 'keycode 66=less greater' #caps .vimrc</pre>	6 lines
	6.1 Permutations	11 12 12	set cin aw ai is ts=4 sw=4 tm=50 nu noeb bg=dark ru cul sy on im jk <esc> im kj <esc> no;: " Select region and then type :Hash to hash your selection. " Useful for verifying that there aren't mistypes. ca Hash w !cpp -dD -P -fpreprocessed \ tr -d'[:space:]' \</esc></esc>	
7	Graph 7.1 Fundamentals	12 12	\ md5sum \ cut -c-6	
	7.2 Network flow	13 13 13 15 15	# Hashes a file, ignoring all whitespace and comments. Use # verifying that code was correctly typed. cpp -dD -P -fpreprocessed tr -d '[:space:]' md5sum cut	
	7.7 Trees	15 17	#!/bin/bash ["\$#" -ne 3] && echo "Usage: \$0 test_file brute_file mycode_file" && exit 1	
3	Geometry 8.1 Geometric primitives	17 17 18 18	<pre>mycode_iffe</pre>	

interactiveStress.py

19 lines

```
import subprocess, random
def generate_permutation(n): return random.sample(range(1, n +
    1), n)
def handle_queries(hidden, n, max_q=6666):
    process = subprocess.Popen(["./solve"], stdin=subprocess.
        PIPE, stdout=subprocess.PIPE, text=True)
    process.stdin.write(f"{n}\n"); process.stdin.flush()
    for _ in range(max_q):
        query = process.stdout.readline().strip().split()
        if query[0] == "1":
            print("Correct!" if list(map(int, query[1:])) ==
                hidden else "Wrong!")
        matches = sum(p == h for p, h in zip(map(int, query
            [1:]), hidden))
        process.stdin.write(f"{matches}\n"); process.stdin.
            flush()
    else: print("Query limit exceeded!")
    process.terminate()
n = 1000
hidden_permutation = generate_permutation(n)
print("Hidden permutation:", hidden_permutation)
handle_queries(hidden_permutation, n)
```

makefile

10 lines

Mathematics (2)

2.1 Equations

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f \Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A_i' is A with the i'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n.$

2.3 Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(2y, x)$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_{x} (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have

a probability density function $f_X(x)$ and the sums above will

instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions

2.8.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and band 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\operatorname{Exp}(\lambda), \lambda > 0.$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

Data structures (3)

OrderStatisticTree.h

Description: ...

Time: $\mathcal{O}(\log N)$

```
<ext/pb_ds/assoc_container.hpp>, <ext/pb_ds/tree_policy.hpp>
                                                       d41d8c, 14 lines
using namespace __gnu_pbds;
#define ordered_set tree<int, null_type, less<int>, rb_tree_tag
    , tree_order_statistics_node_update>
#define ordered_pair_set tree<pair<int, int>, null_type, less<</pre>
    pair<int, int>>, rb_tree_tag,
    tree_order_statistics_node_update>
ordered set os;
// Example using ordered_set
os.insert(5); os.insert(1); os.insert(10); os.insert(3);
cout << "2nd smallest element: " << *os.find_by_order(2) <<</pre>
    endl; // Output: 5
cout << "Elements less than 6: " << os.order_of_key(6) << endl;</pre>
       // Output: 3
// Example using ordered_pair_set
ordered_pair_set ops;
ops.insert({1, 100});ops.insert({2, 200});ops.insert({1, 150});
    ops.insert({3, 250});
cout << "1st smallest pair: (" << ops.find_by_order(0)->first
    << ", " << ops.find_by_order(0) -> second << ") " << endl;
    // Output: (1, 100)
cout << "Pairs less than (2, 150): " << ops.order_of_key({2,</pre>
    150}) << endl; // Output: 2
```

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
<br/>
<br/>
dits/extc++.h>
                                                          d41d8c, 6 lines
struct chash {
    const uint64_t C = uint64_t (4e18 * acos(0)) | 71;
    11 operator()(11 x) const { return __builtin_bswap64(x * C)
__gnu_pbds::gp_hash_table<ll, int, chash> h;
```

SegmentTree.h

ll merge(ll x, ll y) {

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit. Time: $\mathcal{O}(\log N)$

```
struct Segtree {
    // 0 base indexing
   int n;
   vector<ll> tree;
```

```
return x + v;
    void build(vector<ll> &a, int node, int 1, int r) {
        if(1 == r) {
            tree[node] = a[1];
            return;
        int mid = 1 + ((r - 1) >> 1);
        build(a, (node << 1)+1, 1, mid);
        build(a, (node << 1)+2, mid+1, r);
        tree[node] = merge(tree[(node << 1)+1], tree[(node <<</pre>
    void update(int i, ll value, int node, int l, int r) {
        if(l == i && r == i) {
            tree[node] = value;
            return;
        int mid = 1 + ((r-1) >> 1);
        if (i <= mid) update(i, value, (node << 1) +1, 1, mid);</pre>
        else update(i, value, (node << 1) +2, mid+1, r);</pre>
        tree[node] = merge(tree[(node << 1)+1], tree[(node <<</pre>
             1)+21);
    void update(int i, int value) {
        update(i, value, 0, 0, n-1);
    11 query(int i, int j, int node, int l, int r) {
        if(1 > j || r < i) return 0;
        if(l >= i && r <= j)return tree[node];</pre>
        int mid = 1 + ((r - 1) >> 1);
        return merge(query(i, j, (node << 1)+1, 1, mid), query(</pre>
             i, j, (node << 1)+2, mid+1, r));
    11 query(int i, int j) {
        return query(i, j, 0, 0, n-1);
    void init(vector<ll> &a, int _n) {
        n = n;
        int size = 1;
        while(size < n) size = size << 1;</pre>
        tree.resize((size << 1)-1);
        build(a, 0, 0, n-1);
} st;
struct Segtree {
    // 0 base indexing
    vector<ll> tree, lazy;
    11 merge(11 x, 11 y) {
        return x + y;
    void push(int node, int 1, int r) {
        int a = (node << 1)+1, b = (node << 1)+2;
        int mid = 1 + ((r-1) >> 1);
        tree[a] += (mid-l+1) * lazy[node], tree[b] += (r-(mid+1)+1) *
             lazv[node];
        lazy[a]+=lazy[node], lazy[b]+=lazy[node];
        lazy[node] = 0;
    void build(vector<ll> &a, int node, int 1, int r) {
        if(1 == r) {
            tree[node] = a[1];
            return;
        int mid = 1 + ((r-1) >> 1);
        build(a, (node << 1)+1, 1, mid);
        build(a, (node << 1)+2, mid+1, r);
```

```
tree[node] = merge(tree[(node << 1)+1], tree[(node <<</pre>
             1)+21);
    void build(vector<11> &a) {
        build(a, 0, 0, n-1);
    void update(int i, int j, ll value, int node, int l, int r)
        if(1 > j || r < i)return;
        if(1 >= i && r <= j) {
            lazy[node] +=value;
            tree [node] += (r-l+1) * value;
            return:
        if(lazy[node])push(node, 1, r);
        int mid = 1 + ((r-1) >> 1);
        update(i, j, value, (node << 1)+1, 1, mid);
        update(i, j, value, (node << 1)+2, mid+1, r);
        tree[node] = merge(tree[(node << 1)+1], tree[(node <<</pre>
             1)+2]);
    void update(int i, int j, ll value) {
        update(i, j, value, 0, 0, n-1);
    11 query(int i, int j, int node, int l, int r) {
        if(1 > j || r < i)
            return 0;
        if(1 >= i && r <= j)
            return tree[node];
        if(lazy[node]) push(node, 1, r);
        int mid = 1 + ((r-1) >> 1);
        return merge(query(i, j, (node << 1)+1, 1, mid), query(</pre>
             i, j, (node << 1)+2, mid+1, r));
    11 query(int i, int j) {
        return query(i, j, 0, 0, n-1);
    void init(vector<ll> &a, int n) {
        n = _n;
        int size = 1;
        while(size < n) size = size << 1;</pre>
        tree.resize((size << 1)-1);
        lazy.assign((size \ll 1)-1, 0);
        build(a, 0, 0, n-1);
} st;
LazySegmentTree.h
```

Description: Segment tree with lazy propagation Usage: update(1, 0, n - 1, ql, qr, val), query(1, 0, n - 1, ql, Time: $\mathcal{O}(\log N)$ d41d8c, 66 lines

```
struct Segtree {
    // 0 base indexing
    int n;
    vector<ll> tree, lazy;
    11 \text{ merge}(11 \text{ x, } 11 \text{ y})  {
         return x + y;
    void push(int node, int 1, int r) {
        int a = (node << 1) +1, b = (node << 1) +2;
        int mid = 1 + ((r-1) >> 1);
        tree[a] += (mid-l+1) * lazy[node], tree[b] += (r-(mid+1)+1) *
              lazy[node];
        lazy[a] +=lazy[node], lazy[b] +=lazy[node];
        lazy[node] = 0;
```

```
void build(vector<ll> &a, int node, int l, int r) {
       if(1 == r) {
           tree[node] = a[1];
            return;
        int mid = 1 + ((r-1) >> 1);
       build(a, (node << 1)+1, 1, mid);
       build(a, (node << 1)+2, mid+1, r);
        tree[node] = merge(tree[(node << 1)+1], tree[(node <<</pre>
             1)+2]);
    void build(vector<11> &a) {
       build(a, 0, 0, n-1);
    void update(int i, int j, ll value, int node, int l, int r)
        if(1 > j || r < i)return;
        if(1 >= i && r <= j) {
            lazy[node] +=value;
            tree[node] += (r-l+1) * value;
            return;
        if(lazy[node])push(node, 1, r);
        int mid = 1 + ((r-1) >> 1);
        update(i, j, value, (node << 1)+1, 1, mid);
        update(i, j, value, (node << 1)+2, mid+1, r);
        tree[node] = merge(tree[(node << 1)+1], tree[(node <<</pre>
             1)+2]);
    void update(int i, int j, ll value) {
        update(i, j, value, 0, 0, n-1);
    11 query(int i, int j, int node, int l, int r) {
        if(1 > j | | r < i)
           return 0;
        if(1 >= i && r <= j)
            return tree[node];
        if(lazy[node]) push(node, 1, r);
        int mid = 1 + ((r-1) >> 1);
        return merge(query(i, j, (node << 1)+1, 1, mid), query(</pre>
             i, j, (node << 1)+2, mid+1, r));
    11 query(int i, int j) {
        return query(i, j, 0, 0, n-1);
    void init(vector<ll> &a, int _n) {
       n = n;
        int size = 1;
        while(size < n) size = size << 1;
       tree.resize((size << 1)-1);
       lazy.assign((size << 1)-1, 0);
        build(a, 0, 0, n-1);
} st:
```

PersistentSegtree.h

Description: PresistentSegment Tree

d41d8c, 76 lines

```
struct persistentSegtree {
   // 0 base indexing
   ll data;
   persistentSegtree *left, *right;

   ll merge(ll x, ll y) {
      return x + y;
   }
   void build(vector<ll> &a, int l, int r) {
```

```
if(1 == r) {
            data = a[1];
            return;
        int mid = 1 + ((r - 1) >> 1);
        left = new persistentSegtree();
        right = new persistentSegtree();
        left->build(a, 1, mid);
        right->build(a, mid+1, r);
        data = merge(left->data, right->data);
    persistentSegtree* update(int i, ll value, int l, int r) {
        if(1 > i \mid \mid r < i) return this;
        if(1 == i && r == i) {
            persistentSegtree *rslt = new persistentSegtree();
            rslt->data = value;
            return rslt;
        int mid = 1 + ((r-1) >> 1);
        persistentSegtree *rslt = new persistentSegtree();
        rslt->left = left->update(i, value, 1, mid);
        rslt->right = right->update(i, value, mid+1, r);
        rslt->data = merge(rslt->left->data, rslt->right->data)
        return rslt;
    ll query(int i, int j, int l, int r) {
        if(1 > j || r < i) return 0;
        if (1 >= i \&\& r <= j) return data;
        int mid = 1 + ((r - 1) >> 1);
        return merge (left->query (i, j, l, mid), right->query (i,
} *roots[N];
int main() {// Idea from Mahmudul Yeamim
   int tt = 1:
    while(tt--) {
        int n, q, k = 0;
        cin >> n >> q;
        vector<ll> a(n);
        for (int i = 0; i < n; i++) {
            cin >> a[i];
        roots[0] = new persistentSegtree();
        roots[k++] \rightarrow build(a, 0, n-1);
        while (q--) {
            int type;
            cin >> type;
            if(type == 1) {
                int _k, i;
                11 x:
                cin >> k >> i >> x;
                roots[\_k] = roots[\_k] -> update(--i, x, 0, n-1);
            }else if(type == 2) {
                int _k, i, j;
                cin >> _k >> i >> j;
                cout << roots[--_k] -> query(--i, --j, 0, n-1) <<
                      "\n";
            }else {
                int _k;
                cin >> _k;
                roots[k++] = roots[--_k];
    return 0;
```

```
UnionFind.h
```

Description: Disjoint-set data structure.

Time: $\mathcal{O}(\alpha(N))$ void make_set(int v) {
 parent[v] = v;
 Size[v] = 1;
}

int find_set(int v) {
 if (v == parent[v]) return v;
 return parent[v] = find_set(parent[v]);
}

void union_sets(int a, int b) {
 a = find_set(a);
 b = find_set(b);
 if (a != b) {
 if(Size[a] < Size[b]) swap(a, b);
 parent[b] = a;
 Size[a] +=Size[b];

UnionFindRollback.h

Description: 2D prefix with update

u][1];

2DPrefix.h

Description: 2D prefix with update
Usage: SubMatrix<int> m(matrix);
m.sum(0, 0, 2, 2); // top left 4 elements

```
Time: \mathcal{O}(N^2+Q)
                                                     d41d8c, 34 lines
void update(vector<vector<ll>>% grid, int x1, int y1, int x2,
    int y2, int val) {
    grid[x1][v1] += val;
    if (x2 + 1 < n) grid[x2 + 1][y1] = val;
    if (y2 + 1 < m) grid[x1][y2 + 1] -= val;
    if (x2 + 1 < n \&\& y2 + 1 < m) grid[x2 + 1][y2 + 1] += val;
vector<vector<ll>> calculate(vector<vector<ll>> &grid) {
    vector<vector<11>> ans(n, vector<11>(m, 0));
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            ans[i][j] = grid[i][j];
            if(i > 0) ans[i][j] += ans[i - 1][j];
            if(j > 0) ans[i][j] += ans[i][j - 1];
            if(i > 0 \&\& j > 0) ans[i][j] = ans[i - 1][j - 1];
    return ans;
template<class T> struct SubMatrix {
    vector<vector<T>> p;
    SubMatrix(const vector<vector<T>>& v) {
        int R = v.size(), C = v[0].size();
        p.assign(R + 1, vector < T > (C + 1, 0));
        for (int r = 0; r < R; ++r) {
            for (int c = 0; c < C; ++c) {
                p[r + 1][c + 1] = v[r][c] + p[r][c + 1] + p[r +
                      1][c] - p[r][c];
    T sum(int u, int 1, int d, int r) {
        return p[d + 1][r + 1] - p[u][r + 1] - p[d + 1][l] + p[
```

};

Matrix CHT Treap FenwickTree FenwickTree2d RMQ

```
Matrix.h
Description: Basic operations on square matrices.
Usage: Matrix<int, 3, 3> A;
A.d = \{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};
vector < int > vec = \{1, 2, 3\};
vec = (A^N) * vec;
                                                      d41d8c, 34 lines
template<class T, int N, int M> struct Matrix {
    typedef Matrix Mx;
    array<array<T, M>, N> d{};
    // Matrix multiplication
    template<int P>
   Matrix<T, N, P> operator*(const Matrix<T, M, P>& m) const {
        Matrix<T, N, P> a;
        for (int i = 0; i < N; i++)
            for (int j = 0; j < P; j++)
                for (int k = 0; k < M; k++)
                    a.d[i][j] += d[i][k] * m.d[k][j];
        return a:
    // Matrix-vector multiplication
    vector<T> operator*(const vector<T>& vec) const {
        vector<T> ret(N, 0);
        for (int i = 0; i < N; i++)
            for (int j = 0; j < M; j++)
                ret[i] += d[i][j] * vec[j];
        return ret;
    // Matrix exponentiation
   Matrix<T, N, N> operator^(ll p) const {
        static_assert(N == M);assert(p >= 0);
        Matrix<T, N, N> a, b(*this);
        for (int i = 0; i < N; i++) a.d[i][i] = 1; // Identity
             matrix
        while (p) {
            if (p \& 1) a = a * b;
            b = b * b;
            p >>= 1;
        return a:
};
```

CHT.h

Description: Container where you can add lines of the form kx+m, and query minimum values at points x. Useful for dynamic programming ("convex hull trick").

Time: $\mathcal{O}(\log N)$

d41d8c, 38 lines

```
struct Line {
    // m = slope, c = intercept
    ll m, c;
    Line(ll a, ll b) : m(a), c(b) {}
};
struct CHT {
    // SayeefMahmud
    vector<Line> lines;

bool bad(Line ll, Line l2, Line l3) {
        __intl28 a = (__intl28)(l2.c - l1.c) * (l2.m - l3.m);
        __intl28 b = (__intl28)(l3.c - l2.c) * (l1.m - l2.m);
        return a >= b;
}
void add(Line line) {
        lines.push_back(line);
        int sz = lines.size();
}
```

```
while (sz \ge 3 \&\& bad(lines[sz - 3], lines[sz - 2],
            lines[sz - 1])) {
            lines.erase(lines.end() - 2);
            sz--;
    ll query(ll x) {
        int 1 = 0, r = lines.size() - 1;
        11 ans = LLONG MAX;
        while (1 \le r) {
            int mid1 = 1 + (r - 1) / 3;
            int mid2 = r - (r - 1) / 3;
            ans = min(ans, min(lines[mid1].m * x + lines[mid1].
                 c, lines[mid2].m * x + lines[mid2].c));
            if (lines[mid1].m * x + lines[mid1].c <= lines[mid2</pre>
                ].m * x + lines[mid2].c) {
                r = mid2 - 1;
            } else {
                1 = mid1 + 1;
       return ans;
};
```

Treap.h

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. **Time:** $\mathcal{O}(\log N)$

FenwickTree.h

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new value

```
struct FenwickTree {
   // 0 base indexing
   vector<int> bit;
   FenwickTree(int n) {
       this->n = n;
       bit.assign(n, 0);
   FenwickTree(vector<int> const &a) : FenwickTree(a.size()) {
       for (size_t i = 0; i < a.size(); i++)</pre>
           add(i, a[i]);
   int sum(int r) {
       int ret = 0:
       for (; r \ge 0; r = (r \& (r + 1)) - 1)
           ret += bit[r];
       return ret;
   int sum(int 1, int r) {
       return sum(r) - sum(1 - 1);
   void add(int idx, int delta) {
       for (; idx < n; idx = idx | (idx + 1))
           bit[idx] += delta;
```

FenwickTree2d.h

```
struct FenwickTree2D {
```

```
// 0 base indexing
vector<vector<int>> bit;
int n, m;
FenwickTree2D(int n, int m) {
    this \rightarrow n = n;
    this->m = m;
    bit.assign(n, vector<int>(m, 0));
FenwickTree2D(vector<vector<int>>& matrix) : FenwickTree2D(
    matrix.size(), matrix[0].size()) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            add(i, j, matrix[i][j]);
int sum(int x, int y) {
   int ret = 0;
    for (int i = x; i >= 0; i = (i & (i + 1)) - 1) {
        for (int j = y; j \ge 0; j = (j \& (j + 1)) - 1) {
            ret += bit[i][j];
    }
    return ret;
int sum(int x1, int y1, int x2, int y2) {
    return sum(x2, y2) - sum(x2, y1 - 1) - sum(x1 - 1, y2)
        + sum(x1 - 1, y1 - 1);
void add(int x, int y, int delta) {
    for (int i = x; i < n; i = i | (i + 1)) {
        for (int j = y; j < m; j = j | (j + 1)) {
            bit[i][j] += delta;
```

RMQ.h

```
Description: Range Minimum Queries on an array. Returns min(V[a], V[a+1], ... V[b-1]) in constant time. 
Usage: RMQ rmq(values);
```

rmq.query(inclusive, exclusive);

Time: $\mathcal{O}\left(|V|\log|V|+Q\right)$ d41d8c, 26 lines

```
struct RMQ {
    // 0-base indexing
 int n, logN;
 vector<vector<int>> st;
 vector<int> lg;
 void init(const vector<int>& array) {
   n = array.size();
   logN = ceil(log2(n));
   st.resize(logN, vector<int>(n));
   lg.resize(n + 1);
   lg[1] = 0;
    for (int i = 2; i <= n; i++)
     lq[i] = lq[i / 2] + 1;
    copy(array.begin(), array.end(), st[0].begin());
    for (int i = 1; i < logN; i++) {
     for (int j = 0; j + (1 << i) <= n; j++) {
       st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1)[j]))
            1))1);
 int query(int L, int R) {
   int i = lg[R - L + 1];
```

```
return min(st[i][L], st[i][R - (1 << i) + 1]);
} ST;
MoQueries.h
Description: ...
                                                     d41d8c, 48 lines
// 0-base indexing
void add(int x) {
    if(!freq[x]) distinct++;
    freq[x]++;
void remove(int x) {
    freq[x]--;
    if(!freq[x]) distinct--;
void adjust(int &curr_l, int &curr_r, int L, int R) {
    while(curr 1 > L) {
        curr 1--:
        add(a[curr_l]);
    while(curr_r < R) {</pre>
        curr r++;
        add(a[curr_r]);
    while(curr_l < L) {
        remove(a[curr_1]);
        curr_l++;
    while(curr_r > R) {
        remove(a[curr_r]);
        curr r--;
void solve(vector<array<int, 3>> &queries) {
    // const int BLOCK_SIZE = sqrt(queries.size()) + 1;
    const int BLOCK SIZE = 555;
    sort(queries.begin(), queries.end(), [&](const array<int,</pre>
         3>& a, const array<int, 3>& b) {
        int blockA = a[0] / BLOCK_SIZE;
        int blockB = b[0] / BLOCK_SIZE;
        if (blockA != blockB)
            return blockA < blockB;
        return a[1] < b[1];
    auto[L, R, id] = queries[0];
    int curr_l = L, curr_r = L;
    distinct = 1;
    freq[a[curr_l]]++;
    vector<int> ans(queries.size());
    for(auto [L, R, id] : gueries) {
        adjust(curr_l, curr_r, L, R);
        ans[id] = distinct;
```

Numerical (4)

4.1 Polynomials and recurrences

for(auto x : ans) cout << x << "\n";

Polynomial.h

d41d8c, 17 lines

```
struct Poly {
  vector<double> a;
  double operator() (double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
```

```
return val;
 void diff() {
    rep(i,1,sz(a)) a[i-1] = i*a[i];
    a.pop_back();
 void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for (int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots(\{\{2, -3, 1\}\}, -1e9, 1e9\}) // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
 vector<double> ret;
 Poly der = p;
 der.diff();
 auto dr = polyRoots(der, xmin, xmax);
 dr.push_back(xmin-1);
  dr.push back(xmax+1);
  sort (all (dr));
 rep(i, 0, sz(dr) -1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^ (p(h) > 0)) {
      rep(it,0,60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f <= 0) ^ sign) 1 = m;
        else h = m;
      ret.push back((1 + h) / 2);
 return ret;
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}\left(n^2\right)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

BerlekampMassev.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
```

```
Time: \mathcal{O}(N^2)
"../number-theory/ModPow.h"
                                                      d41d8c, 18 lines
vector<1l> berlekampMassey(vector<1l> s) {
 int n = sz(s), L = 0, m = 0;
 vector<11> C(n), B(n), T;
 C[0] = B[0] = 1;
 11 b = 1;
 rep(i,0,n) { ++m;
   11 d = s[i] % mod;
    rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;
    if (!d) continue;
    T = C; 11 coef = d * modpow(b, mod-2) % mod;
    rep(j, m, n) C[j] = (C[j] - coef * B[j - m]) % mod;
    if (2 * L > i) continue;
    L = i + 1 - L; B = T; b = d; m = 0;
 C.resize(L + 1); C.erase(C.begin());
  for (11& x : C) x = (mod - x) % mod;
```

LinearRecurrence.h

return C;

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp–Massey.

Usage: linearRec($\{0, 1\}, \{1, 1\}, k\}$) // k'th Fibonacci number Time: $\mathcal{O}(n^2 \log k)$

```
typedef vector<ll> Poly;
ll linearRec(Polv S, Polv tr, ll k) {
 int n = sz(tr);
 auto combine = [&](Poly a, Poly b) {
   Poly res(n \star 2 + 1);
    rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
  for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
    e = combine(e, e);
 11 \text{ res} = 0;
  rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
  return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum and no local maximum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See Ternary-Search.h in the Various chapter for a discrete version.

Usage: double func(double x) { return 4+x+.3*x*x; }

```
double gss(double a, double b, double (*f)(double)) {
  double r = (sqrt(5)-1)/2, eps = 1e-7;
  double x1 = b - r*(b-a), x2 = a + r*(b-a);
  double f1 = f(x1), f2 = f(x2);
  while (b-a > eps)
  if (f1 < f2) { //change to > to find maximum
```

```
b = x2; x2 = x1; f2 = f1;
x1 = b - r*(b-a); f1 = f(x1);
} else {
  a = x1; x1 = x2; f1 = f2;
  x2 = a + r*(b-a); f2 = f(x2);
}
return a;
```

HillClimbing.h

Description: Poor man's optimization for unimodal functions_{d41d8c, 14 lines}

```
typedef array<double, 2> P;

template<class F> pair<double, P> hillClimb(P start, F f) {
  pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
        P p = cur.second;
        p[0] += dx*jmp;
        p[1] += dy*jmp;
        cur = min(cur, make_pair(f(p), p));
    }
  }
  return cur;
}
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon changes.

```
template<class F>
double quad(double a, double b, F f, const int n = 1000) {
  double h = (b - a) / 2 / n, v = f(a) + f(b);
  rep(i,1,n*2)
  v += f(a + i*h) * (i&1 ? 4 : 2);
  return v * h / 3;
}
```

IntegrateAdaptive.h **Description:** Fast integration using an adaptive Simpson's rule. Usage: double sphereVolume = quad(-1, 1, [](double x) { return quad(-1, 1, [&] (double y) { return quad(-1, 1, [&] (double z) return $x*x + y*y + z*z < 1; {);});});$ d41d8c, 15 lines typedef double d; #define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6 template <class F> d rec(F& f, da, db, deps, dS) { dc = (a + b) / 2;d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;if $(abs(T - S) \le 15 * eps | | b - a < 1e-10)$ return T + (T - S) / 15; return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2); template<class F> d quad(d a, d b, F f, d eps = 1e-8) { return rec(f, a, b, eps, S(a, b));

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\}; vd b = \{1,1,-4\}, c = \{-1,-1\}, x; T val = LPSolver(A, b, c).solve(x);
```

Time: $\mathcal{O}(NM * \#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
\mathcal{O}(2^n) in the general case.
typedef double T; // long double, Rational, double + mokP>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 \mid \mid MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
 int m, n;
 vi N, B;
 LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i, 0, m) \{ B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; \}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
 void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
   rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
   rep(j, 0, n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] \star = -inv;
   D[r][s] = inv;
   swap(B[r], N[s]);
 bool simplex(int phase) {
   int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
       if (D[i][s] <= eps) continue;</pre>
        if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
     pivot(r, s);
 T solve(vd &x) {
   int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
   if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i, 0, m) if (B[i] == -1) {
       int s = 0;
       rep(j,1,n+1) ltj(D[i]);
       pivot(i, s);
```

```
bool ok = simplex(1); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
return ok ? D[m][n+1] : inf;
}</pre>
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. **Time:** $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>% a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
   int b = i;
  rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
  if (i != b) swap(a[i], a[b]), res *= -1;
  res *= a[i][i];
  if (res == 0) return 0;
  rep(j,i+1,n) {
    double v = a[j][i] / a[i][i];
    if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
  }
}
return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}\left(N^3\right)$

d41d8c, 18 lines

```
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
  int n = sz(a); 11 ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
    while (a[j][i] != 0) { // gcd step
        ll t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
            a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
    }
    }
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
}
return (ans + mod) % mod;
}
```

SolveLinear.h

if (bv <= eps) {

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef vector<double> vd;
const double eps = le-12;

int solveLinear(vector<vd> A, vd& b, vd& x) {
  int n = sz(A), m = sz(x), rank = 0, br, bc;
  if (n) assert(sz(A[0]) == m);
  vi col(m); iota(all(col), 0);
  rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
    if ((v = fabs(A[r][c])) > bv)
        br = r, bc = c, bv = v;
```

```
rep(j,i,n) if (fabs(b[j]) > eps) return -1;
   break;
 swap(A[i], A[br]);
 swap(b[i], b[br]);
 swap(col[i], col[bc]);
 rep(j,0,n) swap(A[j][i], A[j][bc]);
 bv = 1/A[i][i];
 rep(j,i+1,n) {
   double fac = A[j][i] * bv;
   b[j] = fac * b[i];
   rep(k,i+1,m) A[j][k] -= fac*A[i][k];
 rank++;
x.assign(m, 0);
for (int i = rank; i--;) {
 b[i] /= A[i][i];
 x[col[i]] = b[i];
 rep(j, 0, i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. **Time:** $\mathcal{O}(n^2m)$

d41d8c, 33 lines

```
typedef bitset<1000> bs;
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
  assert(m \le sz(x));
 vi col(m); iota(all(col), 0);
  rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
     break;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j, 0, n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
    rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[j] ^= A[i];
    rank++;
  for (int i = rank; i--;) {
   if (!b[i]) continue;
```

```
x[col[i]] = 1;
rep(j,0,i) b[j] ^= A[j][i];
}
return rank; // (multiple solutions if rank < m)</pre>
```

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
                                                     d41d8c, 32 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
   int r = i, c = i;
   rep(j,i,n) rep(k,i,n)
     if (fabs(A[j][k]) > fabs(A[r][c]))
       r = j, c = k;
   if (fabs(A[r][c]) < 1e-12) return i;
   A[i].swap(A[r]); tmp[i].swap(tmp[r]);
   rep(j,0,n)
     swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
     double f = A[j][i] / v;
     A[j][i] = 0;
     rep(k,i+1,n) A[j][k] -= f*A[i][k];
     rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
   rep(j,i+1,n) A[i][j] /= v;
   rep(j,0,n) tmp[i][j] /= v;
   A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j,0,i) {
   double v = A[j][i];
   rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
 rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
 return n;
```

MatrixExpo.h

Description: Matrix Exponentiation

```
d41d8c, 33 lines
using row = vector<int>;
using matrix = vector<row>;
matrix unit_mat(int n) {
 matrix I(n, row(n));
 for (int i = 0; i < n; ++i) {
   I[i][i] = 1;
 return I;
matrix mat mul(matrix a, matrix b) {
 int m = a.size(), n = a[0].size();
 int p = b.size(), q = b[0].size();
  // assert(n = p);
  matrix res(m, row(q));
  for (int i = 0; i < m; ++i) {
   for (int j = 0; j < q; ++j) {
      for (int k = 0; k < n; ++k) {
        res[i][j] = (res[i][j] + a[i][k]*b[k][j]) % mod;
```

```
}
return res;
}
matrix mat_exp(matrix a, int p) {
  int m = a.size(), n = a[0].size(); // assert(m=n);
  matrix res = unit_mat(m);
  while (p) {
    if (p&1) res = mat_mul(a, res);
    a = mat_mul(a, a);
    p >>= 1;
}
return res;
}
```

Gauss.h

```
Description: Gauss
                                                     d41d8c, 60 lines
11 bigMod (ll a, ll e, ll mod) {
  if (e == -1) e = mod - 2;
  ll ret = 1;
    if (e & 1) ret = ret * a % mod;
    a = a * a % mod, e >>= 1;
  return ret;
pair <int, ld> gaussJordan (int n, int m, ld eq[N][N], ld res[N
  1d det = 1;
  vector <int> pos(m, -1);
  for (int i = 0, j = 0; i < n and j < m; ++j) {
    for (int k = i; k < n; ++k) if (fabs(eq[k][j]) > fabs(eq[
         piv][j])) piv = k;
    if (fabs(eq[piv][j]) < EPS) continue; pos[j] = i;</pre>
    for (int k = j; k \le m; ++k) swap(eq[piv][k], eq[i][k]);
    if (piv ^ i) det = -det; det *= eq[i][j];
    for (int k = 0; k < n; ++k) if (k ^ i) {
      ld x = eq[k][j] / eq[i][j];
      for (int l = j; l \le m; ++1) eq[k][1] -= x * eq[i][1];
    } ++i;
  int free_var = 0;
  for (int i = 0; i < m; ++i) {
    pos[i] == -1 ? ++free\_var, res[i] = det = 0 : res[i] = eq[
        pos[i]][m] / eq[pos[i]][i];
  for (int i = 0; i < n; ++i) {
    ld cur = -eq[i][m];
    for (int j = 0; j < m; ++j) cur += eq[i][j] * res[j];
    if (fabs(cur) > EPS) return make_pair(-1, det);
  return make_pair(free_var, det);
pair <int, int> gaussJordanModulo (int n, int m, int eq[N][N],
    int res[N], int mod) {
  int det = 1;
  vector <int> pos(m, -1);
  const 11 mod_sq = (11) \mod * mod;
  for (int i = 0, j = 0; i < n and j < m; ++j) {
    int piv = i;
    for (int k = i; k < n; ++k) if (eq[k][j] > eq[piv][j]) piv
    if (!eq[piv][j]) continue; pos[j] = i;
    for (int k = j; k \le m; ++k) swap(eq[piv][k], eq[i][k]);
    if (piv ^ i) det = det ? MOD - det : 0; det = (11) det * eq
         [i][j] % MOD;
    for (int k = 0; k < n; ++k) if (k ^ i and eq[k][j]) {
      11 \times = eq[k][j] * bigMod(eq[i][j], -1, mod) % mod;
```

```
for (int 1 = j; 1 \le m; ++1) if (eq[i][1]) eq[k][1] = (eq
        [k][1] + mod_sq - x * eq[i][1]) % mod;
 } ++i;
int free_var = 0;
for (int i = 0; i < m; ++i) {
 pos[i] == -1? ++free var, res[i] = det = 0: res[i] = eq[
      pos[i]][m] * bigMod(eq[pos[i]][i], -1, mod) % mod;
for (int i = 0; i < n; ++i) {
 ll cur = -eq[i][m];
 for (int j = 0; j < m; ++j) cur += (l1) eq[i][j] * res[j],
      cur %= mod;
 if (cur) return make_pair(-1, det);
return make_pair(free_var, det);
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

$$\begin{pmatrix} & b_0 \\ & b_1 \\ & b_2 \\ & b_3 \\ & \vdots \\ & b_{n-1} \end{pmatrix} = \begin{pmatrix} d_0 & p_0 & 0 & 0 & \cdots & 0 \\ q_0 & d_1 & p_1 & 0 & \cdots & 0 \\ 0 & q_1 & d_2 & p_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & q_{n-3} & d_{n-2} & p_{n-2} \\ 0 & 0 & \cdots & 0 & q_{n-2} & d_{n-1} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

This is useful for solving problems on the type

$$a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,$$

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

$$\{a_i\}$$
 = tridiagonal($\{1, -1, -1, ..., -1, 1\}, \{0, c_1, c_2, ..., c_n\}, \{b_1, b_2, ..., b_n, 0\}, \{a_0, d_1, d_2, ..., d_n, a_{n+1}\}$).

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time: $\mathcal{O}(N)$

d41d8c, 26 lines

```
typedef double T:
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
   const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
  rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
     b[i+1] -= b[i] * diag[i+1] / super[i];
     if (i+2 < n) b[i+2] = b[i] * sub[i+1] / super[i];
     diag[i+1] = sub[i]; tr[++i] = 1;
    } else {
     diag[i+1] -= super[i]*sub[i]/diag[i];
     b[i+1] -= b[i] * sub[i] / diag[i];
  for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
     diag[i-1] = diag[i];
     b[i] /= super[i-1];
    } else {
     b[i] /= diag[i];
     if (i) b[i-1] -= b[i] * super[i-1];
 return b;
```

```
Xorbasis.h
```

```
Description: Xor basis
                                                      d41d8c, 13 lines
int basis[d] = {0};
int sz = 0;
void insertVector(int mask) {
 for (int i = 0; i < d; i++) {
    if ((mask & (1 << i)) == 0) continue;
    if (!basis[i]) {
      basis[i] = mask;
      return;
    mask ^= basis[i];
```

4.4 Fourier transforms

FastFourierTransform.h

struct base {

const double PI = acos(-1);

Description: Returns coefficient of multiplication of two polynomials lines

```
double a, b;
 base (double a = 0, double b = 0) : a(a), b(b) {}
 const base operator + (const base &c) const
   { return base(a + c.a, b + c.b); }
 const base operator - (const base &c) const
   { return base(a - c.a, b - c.b); }
 const base operator * (const base &c) const
   { return base(a * c.a - b * c.b, a * c.b + b * c.a); }
void fft(vector<base> &p, bool inv = 0) {
 int n = p.size(), i = 0;
 for (int j = 1; j < n - 1; ++j) {
   for (int k = n >> 1; k > (i ^= k); k >>= 1);
   if(j < i) swap(p[i], p[j]);
 for (int 1 = 1, m; (m = 1 << 1) <= n; 1 <<= 1) {
   double ang = 2 * PI / m;
   base wn = base(cos(ang), (inv ? 1. : -1.) * sin(ang)), w;
    for (int i = 0, j, k; i < n; i += m) {
     for (w = base(1, 0), j = i, k = i + 1; j < k; ++j, w = w *
       base t = w * p[j + 1];
       p[j + 1] = p[j] - t;
       p[j] = p[j] + t;
 if (inv) for (int i = 0; i < n; ++i) p[i].a /= n, p[i].b /= n;
vector<long long> multiply(vector<ll> &a, vector<ll> &b) {
 int n = a.size(), m = b.size(), t = n + m - 1, sz = 1;
 while(sz < t) sz <<= 1;
 vector<base> x(sz), y(sz), z(sz);
 for (int i = 0; i < sz; ++i) {
   x[i] = i < (int)a.size() ? base(a[i], 0) : base(0, 0);
   y[i] = i < (int)b.size() ? base(b[i], 0) : base(0, 0);
 fft(x), fft(y);
 for(int i = 0; i < sz; ++i) z[i] = x[i] * y[i];
 fft(z, 1);
 vector<long long> ret(sz);
 for (int i = 0; i < sz; ++i) ret[i] = (long long) round(z[i].a
 while((int)ret.size() > 1 && ret.back() == 0) ret.pop_back();
 return ret;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod). **Time:** $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT)

"FastFourierTransform.h" typedef vector<ll> vl; template<int M> vl convMod(const vl &a, const vl &b) { if (a.empty() || b.empty()) return {}; vl res(sz(a) + sz(b) - 1);int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre> vector < C > L(n), R(n), outs(n), outl(n);rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut); rep(i, 0, sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);fft(L), fft(R); rep(i,0,n) { int j = -i & (n - 1);outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;fft(outl), fft(outs); rep(i, 0, sz(res)) { 11 av = 11(real(out1[i])+.5), cv = 11(imag(outs[i])+.5); 11 bv = 11(imag(out1[i])+.5) + 11(real(outs[i])+.5); res[i] = ((av % M * cut + bv) % M * cut + cv) % M; return res;

NumberTheoreticTransform.h

L.resize(n), R.resize(n);

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \sum_{x} a[x]g^{xk}$ $root^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most $2^{\hat{a}}$. For arbitrary modulo, see FFTMod. conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<11> v1;
void ntt(vl &a) {
  int n = sz(a), L = 31 - \underline{builtin_clz(n)};
  static vl rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
    rt.resize(n);
    ll z[] = \{1, modpow(root, mod >> s)\};
    rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i \& 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
      11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
      a[i + j + k] = ai - z + (z > ai ? mod : 0);
      ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
  if (a.emptv() || b.emptv()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s),
      n = 1 << B;
  int inv = modpow(n, mod - 2);
  vl L(a), R(b), out(n);
```

```
ntt(L), ntt(R);
rep(i,0,n)
 out[-i \& (n-1)] = (l1)L[i] * R[i] % mod * inv % mod;
return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{x=x\oplus y} a[x] \cdot b[y]$, where \oplus is one of AND, OR, XOR. The size of a must be a power of two.

Time: $\mathcal{O}(N \log N)$

d41d8c, 16 lines

```
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {
     int &u = a[j], &v = a[j + step]; tie(u, v) =
       inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
       pii(u + v, u - v);
  if (inv) for (int& x : a) x \neq sz(a); // XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
  rep(i, 0, sz(a)) a[i] *= b[i];
 FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

ModPow.h

d41d8c, 11 lines

```
int bigPow(ll base, ll power, const int mod) {
   int ans = 1 % mod:
   base %= mod;
   if (base < 0) base += mod;
   while (power) {
       if (power & 1) ans = (11) ans * base % mod;
       base = (11) base * base % mod;
       power >>= 1;
   return ans;
```

MatrixExpo.h

```
<br/>
<br/>
dits/stdc++.h>
                                                        d41d8c, 52 lines
// https://codeforces.com/gym/102644/problem/C
using namespace std;
#define 11 long long
const int M = 1e9 + 7;
struct Matrix {
    int a[2][2] = \{\{0, 0\}, \{0, 0\}\};
    Matrix operator *(const Matrix& other) {
        Matrix product;
        for (int i = 0; i < 2; i++) {
             for (int j = 0; j < 2; j++) {
                 for (int k = 0; k < 2; k++) {
                     product.a[i][k] = (product.a[i][k] + (ll) a
                           [i][j] * other.a[j][k]) % M;
```

```
return product;
};
Matrix expo_power(Matrix a, ll k) {
    Matrix product;
    for (int i = 0; i < 2; i++) {
        product.a[i][i] = 1;
    while (k > 0) {
        if (k % 2) {
            product = product * a;
        a = a * a:
       k /= 2;
    return product;
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int tt;
   tt = 1;
    // cin >> tt;
    while(tt--) {
       11 k;
        cin >> k;
       Matrix M;
       M.a[0][0] = 1;
       M.a[0][1] = 1;
       M.a[1][0] = 1;
       M.a[1][1] = 0;
        cout << expo_power(M, k).a[1][0] << "\n";
    return 0:
```

SumProductCountOfDivisors.h

```
<br/>
<br/>
stdc++.h>
                                                      d41d8c, 57 lines
Problem Link: https://cses.fi/problemset/task/2182/
using namespace std;
const int M = 1e9 + 7:
#define 11 long long
int bigPow(ll base, ll power, const int mod) {
    int ans = 1 % mod;
    base %= mod;
    if (base < 0) base += mod;</pre>
    while (power) {
        if (power & 1) ans = (11) ans * base % mod;
        base = (11) base * base % mod;
        power >>= 1;
    return ans;
// S_n = a(1-r^n)/(1-r)
int geometricSeriesSum(int r, int n) {
    int nu = bigPow(r, n, M) - 1; // Numerator
    int de = r - 1; // Denominator
    de = bigPow(de, M-2, M);
    return nu*1LL*de % M;
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int tt;
    tt = 1;
```

```
// cin >> tt;
    while(tt--) {
        int n;
        cin >> n:
        11 cnt = 1, sum = 1, prod = 1, num1 = 1, num2 = 1, pw =
             1;
        bool ok = true;
        for (int i = 0; i < n; i++) {
            int x, k;
            cin >> x >> k;
            cnt = cnt * (k + 1) % M;
            sum = sum * geometricSeriesSum(x, k+1) % M;
            num1 = num1 * bigPow(x, k, M) % M;
            num2 = num2 * bigPow(x, k/2, M) % M;
            if(k % 2 != 0 && ok) {
                pw = (pw * (k+1)/2) % (M-1);
                ok = false;
            }else {
                pw = (pw * (k+1)) % (M-1);
        // Product of divisors = (Num)^{(d(Num)/2)}
        if(!ok)prod = bigPow(num1, pw, M);
        else prod = bigPow(num2, pw, M);
        cout << cnt << " " << sum << " " << prod << "\n";
   return 0;
<br/>
<br/>
dits/stdc++.h>
                                                     d41d8c, 105 lines
```

Sieve.h

```
using namespace std;
#define 11 long long
const int N = 100000;
vector<bool> is prime(N+1, true);
// O(Nlog(N))
void divisors() {
    vector<vector<int>> d(N+1);
    for(int i = 1; i <= N; i++) {
        for(int j = i; j <= N; j+=i) {
            d[j].push_back(i);
// O(sqrt(N))
vector<ll> divisor(ll a) {
    vector<ll> divisors;
    for (ll i = 1; i*i <= a; ++i) {
        if(a % i == 0) {
            if(a / i == i)divisors.push back(i);
                divisors.push_back(i);
                divisors.push_back(a/i);
    return divisors;
// O(Nlog(log(N)))
void sieve() {
    is_prime[0] = is_prime[1] = false;
    for (int i = 2; i * i <= N; i++) {
        if (is prime[i]) {
            for (int j = i * i; j \le N; j += i)
```

is_prime[j] = false;

// O(sqrt(N))vector<ll> prime_factorization(ll n) { vector<ll> factorization; while $(n % 2 == 0) {$ factorization.push_back(2); for (11 d = 3; $d * d \le n$; d += 2) { while $(n % d == 0) {$ factorization.push_back(d); n /= d;if (n > 1) factorization.push back(n); return factorization; // O(sqrt(N))int phi(int n) { int result = n; for (int i = 2; i * i <= n; i++) { $if (n % i == 0) {$ while (n % i == 0)n /= i;result -= result / i; if (n > 1)result -= result / n; return result; // O(Nloglog(N))void phi_1_to_n(int n) { vector<int> phi(n + 1); for (int i = 0; $i \le n$; i++) phi[i] = i;for (int i = 2; i <= n; i++) { if (phi[i] == i) { for (int j = i; $j \le n$; j += i) phi[j] -= phi[j] / i; // O(Nloglog(N))void phi_1_to_n_(int n) { vector<int> phi(n + 1); phi[0] = 0;phi[1] = 1;for (int i = 2; $i \le n$; i++) phi[i] = i - 1;for (int i = 2; $i \le n$; i++) for (int $j = 2 * i; j \le n; j += i$) phi[j] -= phi[i]; int main() { ios::sync_with_stdio(false); cin.tie(0); int tt: tt = 1;// cin >> tt;while(tt--) { int n; cin >> n;

return 0;

.2 Primality

5.3 Divisibility

5.3.1 Chinese Remainder Theorem

Let $m = m_1 \cdot m_2 \cdot \cdots \cdot m_k$, where m_i are pairwise coprime. In addition to m_i , we are also given a system of congruences

$$\begin{cases}
 a \equiv a_1 \pmod{m_1} \\
 a \equiv a_2 \pmod{m_2} \\
 \vdots \\
 a \equiv a_k \pmod{m_k}
\end{cases}$$

where a_i are some given constants. CRT will give the unique solution modulo m.

5.3.2 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

5.4 Fractions

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000$.

Primitive roots exist modulo any prime power p^a , except for p = 2, a > 2, and there are $\phi(\phi(p^a))$ many. For p = 2, a > 2, the group $\mathbb{Z}_{>a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2a-2}$.

5.7 Fibonacchi

Fibonacci numbers are defined by

$$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$$
. Again, $F_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}} \approx \frac{\phi^n}{\sqrt{5}}$, where $\phi = \frac{1+\sqrt{5}}{2}$ and $\hat{\phi} = \frac{1-\sqrt{5}}{2}$. Some important properties of Fibonacci numbers:

$$F_{n-1}F_{n+1} - F_n^2 = (-1)^n \qquad F_{n+k} = F_{k-1}F_n + F_kF_{n+1}$$

$$F_{2n} = F_n(F_{n-1} + F_{n+1}) \qquad F_{2n+1} = F_n^2 + F_{n+1}^2$$

$$n|m \Leftrightarrow F_n|F_m \qquad \gcd(F_m, F_n) = F_{\gcd(m,n)}$$

Fibonacchi.h

Description: nthFibonacci

 $\frac{\mathbf{Time:} \ \mathcal{O}\left(\log n\right)}{\text{ll f (ll n) }}$

d41d8c, 8 lines

5.8 Estimates

 $\sum_{d|n} d = O(n \log \log n)$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.9 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

```
\begin{split} & \sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ & g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ & g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \end{split}
```

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table. **Time:** $\mathcal{O}(n)$

```
int permToInt(vi& v) {
  int use = 0, i = 0, r = 0;
  for(int x:v) r = r * ++i + builtin popcount(use & -(1<<x)),</pre>
```

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g(g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n=n_kp^k+\ldots+n_1p+n_0$ and $m=m_kp^k+\ldots+m_1p+m_0$. Then $\binom{n}{m}\equiv\prod_{i=0}^k\binom{n_i}{m_i}\pmod{p}$.

6.2.3 Binomials

multinomial.h

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_k}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n,2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- \bullet strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$. Time: $\mathcal{O}(VE)$

```
void BellmanFord(int st, int n) {
    vector<ll> dist(n+1, INF);
    vector<int> parent(n+1, -1);
    dist[st] = 0;
    for (int i = 0; i < n-1; i++) {
        bool any = false;
        for (auto[u, v, cost] : edges)
            if (dist[u] < INF)</pre>
                if (dist[v] > dist[u] + cost) {
                    dist[v] = dist[u] + cost;
                    parent[v] = u;
                    any = true;
        if (!any)
            break;
    if (dist[n] == INF
        cout << "-1\n";
        vector<int> path;
        for (int cur = n; cur != -1; cur = parent[cur])
            path.push_back(cur);
        reverse(path.begin(), path.end());
```

```
for (int u : path)
            cout << u << ' ';
void BellmanFord(int s, int n) {
    vector<11> dist(n+1, 0);// No need to init INF here because
          there can be a negative cycle where you can't reach
         from node 1
                        // and the Graph is not necessarily
                             connected
                         // Our concern is about to find
                             negetive cycle not shortest
                             distance
    vector<int> parent(n+1, -1);
    dist[s] = 0;
    int flag;
    for (int i = 0; i < n; i++) {
        flag = -1;
        for (auto[u, v, cost] : edges) {
            if (dist[u] + cost < dist[v]) {</pre>
                    dist[v] = dist[u] + cost;
                    parent[v] = u;
                    flag = v;
    if (flag == -1)
        cout << "NO\n";
    else {
        int y = flag;
        for (int i = 0; i < n; ++i)
            y = parent[y];
        vector<int> path;
        for (int cur = y;; cur = parent[cur]) {
            path.push_back(cur);
            if (cur == y && path.size() > 1)
        reverse(path.begin(), path.end());
        cout << "YES\n";
        for (int u : path)
            cout << u << ' ';
```

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf$ if i and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

d[i][j] = min(d[i][j], d[i][k] + d[k][j]);

```
}
}
Dijkstra.h
```

```
Description: Dijstra
                                                     d41d8c, 22 lines
vector<1l> dijkstra(int s, int n, vector<vector<pair<int, 1l>>>
    vector<ll> dist(n+1, INF);
    dist[s] = 0;
   priority_queue<pair<11, int>, vector<pair<11, int>>,
         greater<pair<11, int>>> pq;
    pq.push({0, s});
   bool vis[n+1];
   memset(vis, false, sizeof(vis));
   while(!pq.empty()) {
       auto [d, u] = pq.top();
       pq.pop();
       if (vis[u]) continue;
       vis[u] = true;
        for(auto [v, wt] : adj[u]) {
            11 _d = d + wt;
            if(_d < dist[v]) {</pre>
                dist[v] = _d;
                pq.push({_d, v});
   }
    return dist;
```

7.2 Network flow

MinCostMaxFlow.h

Description: Min-cost max-flow. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: $\mathcal{O}\left(FE\log(V)\right)$ where F is max flow. $\mathcal{O}\left(VE\right)$ for setpi. d41d8c, 76 lines

```
const int N = 500;
vector<int> adj[N+1];
int capacity[N+1][N+1];
int bfs(int s, int d, int n, vector<int> &parent) {
    parent.assign(n+1, -1);
   parent[s] = 0;
    queue<pair<int, int>> q;
    q.push({s, INT_MAX});
    while(!q.empty()) {
        int u = q.front().first;
        int f = q.front().second;
        for(auto v : adj[u]) {
            if(parent[v] == -1 && capacity[u][v]) {
                parent[v] = u;
                int n_f = min(f, capacity[u][v]);
                if(v == d)return n_f;
                q.push({v, n_f});
    return 0;
int max_flow(int s, int d, int n) {
    int mx flow = 0;
    vector<int> parent;
    int flow;
```

```
while(flow = bfs(s, d, n, parent)) {
        mx flow+=flow;
        int now = d;
        while(now != s) {
            int prev = parent[now];
            capacity[prev][now] -= flow;
            capacity[now][prev] += flow;
            now = prev;
    return mx_flow;
bool visited[N+1];
void dfs(int u) {
    visited[u] = true;
    for(auto v : adj[u])if(!visited[v] && capacity[u][v])dfs(v)
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int tt;
    tt = 1;
    // cin >> tt;
    while(tt--) {
        int n, m;
        cin >> n >> m;
        for (int i = 0; i < m; i++) {
            int u, v;
            cin >> u >> v;
            adj[u].push_back(v);
            adj[v].push_back(u);
            capacity[u][v] += 1;
            capacity[v][u] += 1;
        cout << max_flow(1, n, n) << "\n";
        dfs(1);
        for (int u = 1; u \le n; u++) {
            if(visited[u]) {
                for(auto v : adj[u]) {
                    if(!visited[v]) {
                        cout << u << " " << v << "\n";
    return 0;
```

7.3 Matching

7.4 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa.

```
struct SCC {
    // 1-base indexing
    int n;
    vector<vector<int>> adj, radj;
    vector<int> todo, comps, id;
    vector<bool> vis;
```

ArticulationPoint Bridge 2sat EulerWalk

```
void init(int _n) {
       n = _n;
        adj.resize(n+1), radj.resize(n+1), id.assign(n+1, -1),
             vis.resize(n+1);
    void build(int x, int y) { adj[x].push_back(y), radj[y].
        push_back(x); }
    void dfs(int x) {
       vis[x] = 1;
        for(auto y : adj[x]) if (!vis[y]) dfs(y);
        todo.push_back(x);
    void dfs2(int x, int v) {
       id[x] = v;
        for (auto y : radj[x]) if (id[y] == -1) dfs2(y, v);
    void gen() {
        for(int i = 1; i <= n; i++) if (!vis[i]) dfs(i);</pre>
        reverse(todo.begin(), todo.end());
        for(auto x : todo) if (id[x] == -1) {
            dfs2(x, x);
            comps.push_back(x);
} scc;
```

ArticulationPoint.h

Description: Finding articulation points in a graph.

d41d8c, 22 lines

```
vector<int> adj[N];
int t = 0;
vector<int> tin(N, -1), low(N), ap;
void dfs(int u, int p) {
  tin[u] = low[u] = t++;
  int is_ap = 0, child = 0;
  for (int v : adj[u]) {
   if (v != p) {
     if (tin[v] != -1) {
       low[u] = min(low[u], tin[v]);
      } else {
       child++;
       dfs(v, u);
       if (tin[u] <= low[v]) is_ap = 1;</pre>
       low[u] = min(low[u], low[v]);
  if ((p != -1 or child > 1) and is ap)
    ap.push_back(u);
dfs(0, -1);
```

Bridge.h

Description: Finds all the bridges in a graph.

d41d8c, 19 lines

} _2sat;

```
void dfs(int v, int p = -1) {
  visited[v] = true;
  tin[v] = low[v] = timer++;
  bool parent_skipped = false;
  for (int to : adj[v]) {
    if (to == p && !parent_skipped) {
      parent_skipped = true;
      continue;
    }
  if (visited[to]) {
      low[v] = min(low[v], tin[to]);
    } else {
      dfs(to, v);
      low[v] = min(low[v], low[to]);
}
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a||b)&&(!a||c)&&(d||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (\sim x).

Usage: TwoSat ts(number of boolean variables); ts.either(0, ~3); // Var 0 is true or var 3 is false ts.setValue(2); // Var 2 is true ts.atMostOne($\{0, \sim 1, 2\}$); // <= 1 of vars 0, ~1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct 2SAT {
    // 0-base indexing
   int n;
   vector<vector<int>> adj, radj;
   vector<int> todo, comps, id;
   vector<bool> vis, assignment;
   void init(int _n) {
       adj.resize(n), radj.resize(n), id.assign(n, -1), vis.
            resize(n);
       assignment.assign(n/2, false);
   void build(int x, int y) { adj[x].push_back(y), radj[y].
        push back(x);}
   void dfs1(int x) {
       vis[x] = 1;
       for(auto y : adj[x]) if (!vis[y]) dfs1(y);
       todo.push_back(x);
   void dfs2(int x, int v) {
       id[x] = v;
       for (auto y : radj[x]) if (id[y] == -1) dfs2(y, v);
   bool solve_2SAT() {
       for(int i = 0; i < n; i++) if (!vis[i]) dfs1(i);</pre>
       reverse(todo.begin(), todo.end());
       int j = 0;
       for(auto x : todo) if (id[x] == -1) {
           dfs2(x, j++);
            // comps.push\_back(x);
       for (int i = 0; i < n; i += 2) {
           if (id[i] == id[i + 1]) {
               return false;
           assignment[i / 2] = id[i] > id[i + 1];
       return true;
   void add_disjunction(int a, bool na, int b, bool nb) {
       // na and nb signify whether a and b are to be negated
       a = 2 * a ^ na;
       b = 2 * b ^ nb;
       int neg_a = a ^ 1;
       int neg_b = b ^ 1;
       build(neg_a, b);
       build(neg_b, a);
```

```
int main() {
    ios::sync with stdio(false);
    cin.tie(0);
    int tt;
    tt = 1;
    // cin >> tt;
    while(tt--) {
        int n, m;
        cin >> n >> m;
        _2sat.init(m*2);
        for (int i = 0; i < n; i++) {
          int a, b;
          char _na, _nb;
          cin >> _na >> a >> _nb >> b;
          bool na, nb;
          --a, --b;
          if(_na == '+')na = false;
          else na = true;
          if (\_nb == '+') nb = false;
          else nb = true;
          _2sat.add_disjunction(a, na, b, nb);
        bool possible = _2sat.solve_2SAT();
        if(possible) {
          for (int i = 0; i < m; i++) {
            if(_2sat.assignment[i])cout <<"+";</pre>
            else cout << "- ";
        }else cout << "IMPOSSIBLE";</pre>
    return 0;
```

EulerWalk.h

tt = 1;

// cin >> tt;

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

```
Time: \mathcal{O}(V+E)
<bits/stdc++.h>, <bits/stdc++.h>
Problem Link: https://cses.fi/problemset/task/1691/
Idea: Euler Circuit in undirected graph Hierholzer Algorithm
using namespace std;
const int N = 100000;
vector<pair<int, int>> adj[N+1];
int degree[N+1];
bool visited[2*N+1]; // total edge size
vector<int> euler_path;
void dfs(int u) {
    while(!adj[u].empty()) {
        auto [v, idx] = adj[u].back();
        adj[u].pop_back();
        if(visited[idx])continue;
        visited[idx] = true;
        dfs(v);
    euler_path.push_back(u);
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int tt;
```

BinaryLifting LCA DsuOnTree

```
while(tt--) {
       int n, m;
       cin >> n >> m;
        for (int i = 0; i < m; i++) {
            int u, v;
            cin >> u >> v;
            adj[u].push_back({v, i});
            adj[v].push_back({u, i});
            degree[u]++, degree[v]++;
        /*
        Undirected Graphs:
        Euler Circuit: All vertices must have even degree.
        Euler Path: Exactly zero or two vertices can have odd
        for(int i = 1; i <= n; i++) {
            if(degree[i] % 2 != 0) {
                cout << "IMPOSSIBLE\n";
                return 0;
        dfs(1);
       if(euler_path.size() != m+1) {
            cout << "IMPOSSIBLE\n";</pre>
            return 0;
        for(auto x : euler_path) {cout << x << " ";}</pre>
    return 0;
Problem Link: https://cses.fi/problemset/task/1693/
Idea: Euler Path in Directed graph Hierholzer Algorithm
using namespace std;
const int N = 100000;
vector<int> adj[N+1];
int in[N+1], out[N+1];
vector<int> euler_path;
void dfs(int u) {
    while(!adj[u].empty()) {
       int v = adj[u].back();
       adj[u].pop_back();
       dfs(v);
    euler_path.push_back(u);
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
   int tt;
   tt = 1;
    // cin >> tt;
    while(tt--) {
       int n, m;
       cin >> n >> m;
        for (int i = 0; i < m; i++) {
            int u, v;
            cin >> u >> v;
            adj[u].push_back(v);
            out[u]++, in[v]++;
        Directed Graphs:
        Euler Circuit: All vertices must have equal in-degree
            and out-degree.
```

```
Euler Path: Exactly two vertices can have a difference
         of one between their in-degree and out-degree.
    for(int i = 1; i <= n; i++) {
        if((i == 1 && out[1]-in[1] != 1) ||
            (i == n \&\& in[n]-out[n] != 1) ||
            (i > 1 \&\& i < n \&\& out[i] != in[i])) {
            cout << "IMPOSSIBLE\n";
            return 0;
    dfs(1);
    reverse(euler_path.begin(), euler_path.end());
    if(euler path.size() - 1 != m || euler path.back() !=
        cout << "IMPOSSIBLE\n";
        return 0;
    for(auto x : euler_path) {cout << x << " ";}</pre>
return 0;
```

7.5 Coloring

7.6 Heuristics

Trees

BinaryLifting.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

```
Time: construction \mathcal{O}(N \log N), queries \mathcal{O}(\log N)
                                                        d41d8c, 39 lines
const int N = 2e5 + 1;
const int LOG = 18; //LOG = ceil(log2(N))
vector<int> adj[N+1];
int up[N+5][LOG], depth[N+5]; // up[v][j] is the 2^j-th
     Anchestor of node v
void ancestor(int u) {
    for(auto v : adj[u]) {
        depth[v] = depth[u] + 1;
        up[v][0] = u;
        for (int j = 1; j < LOG; j++)up[v][j] = up[up[v][j-1]][j
             -11;
        ancestor(v);
int get_lca(int a, int b) {
    if (depth[a] < depth[b]) swap(a, b);</pre>
    int k = depth[a] - depth[b];
    for(int i = LOG-1; i >= 0; i--)
        if(k & (1 << i))
             a = up[a][i];
    if(a == b)
        return a;
    for (int i = LOG-1; i >= 0; i--) {
        if (up[a][i] != up[b][i]) {
            a = up[a][i];
            b = up[b][i];
    return up[a][0];
int getKthAncestor(int a, int k) {
    for(int \ i = LOG - 1; \ i >= 0; \ i ---)
```

```
if(k \& (1 << i))
            a = up/a/(i);
    return a;
*/
```

LCA.h

Description: Data structure for computing lowest common ancestors in a tree (with 0 as root). C should be an adjacency list of the tree, either directed or undirected.

Time: $\mathcal{O}(N \log N + Q)$

```
"../data-structures/RMQ.h"
                                                      d41d8c, 20 lines
struct LCA {
 int T = 0;
 vi time, path, ret;
 RMO<int> rmg;
  LCA(vector < vi > \& C) : time(sz(C)), rmq((dfs(C, 0, -1), ret)) {}
  void dfs(vector<vi>& C, int v, int par) {
    time[v] = T++;
    for (int y : C[v]) if (y != par) {
      path.push_back(v), ret.push_back(time[v]);
      dfs(C, y, v);
 int lca(int a, int b) {
    if (a == b) return a;
    tie(a, b) = minmax(time[a], time[b]);
    return path[rmq.query(a, b)];
 //dist(a,b) {return depth[a] + depth[b] - 2*depth[lca(a,b)];}
```

DsuOnTree.h Description: Dsu on tree

```
<br/>dits/stdc++.h>
                                                       d41d8c, 88 lines
using namespace std:
const int N = 2e5 + 1;
int color[N+1];
vector<int> adj[N+1];
int idx = 0, euler[N+1], pos[N+1], sz[N+1], H_C[N+1];
void dfs(int u, int p) {
    pos[u] = idx;
    euler[idx++] = u;
    H_C[u] = -1, sz[u] = 1;
    for(auto v: adj[u]) {
        if (v == p) continue;
        dfs(v, u);
        sz[u] += sz[v];
        if(H_C[u] == -1 \mid \mid sz[v] > sz[H_C[u]])  {
             H_C[u] = v;
int freq[N+1], cur distinct = 0, distinct[N+1];
void add(int u) {
    freq[color[u]]++;
    if(freq[color[u]] == 1)cur_distinct++;
void remove(int u) {
    freq[color[u]]--;
    if(freq[color[u]] == 0)cur_distinct--;
```

```
void dsu(int u, int p, int keep) {
    for(auto v : adj[u]) {
       if(v == p || v == H_C[u]) continue;
        dsu(v, u, 0);
    if(H_C[u] != -1) {
        dsu(H_C[u], u, 1);
    for(auto v : adj[u]) {
       if(v == p || v == H_C[u]) continue;
        for (int i = pos[v]; i < pos[v] + sz[v]; i++) {
            add(euler[i]);
    add(u);
    distinct[u] = cur_distinct;
    if(!keep) {
        for(int i = pos[u]; i < pos[u] + sz[u]; i++) {
            remove(euler[i]);
}
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int tt;
    tt = 1;
    // cin >> tt;
    while(tt--) {
        int n;
        cin >> n:
        map<int, int> compress;
        int id = 1;
        for(int i = 1; i <= n; i++) {
            cin >> color[i];
            if(compress[color[i]]) color[i] = compress[color[i
                 11;
                compress[color[i]] = id++;
                color[i] = compress[color[i]];
        for (int i = 0; i < n-1; i++) {
          int u, v;
          cin >> u >> v;;
          adj[u].push_back(v);
          adj[v].push_back(u);
        dfs(1, -1);
        dsu(1, -1, 1);
        for(int i = 1; i <= n; i++)cout << distinct[i] << " ";
    return 0:
```

HLD b

Description: Heavy Light Decomposition

```
// 0 Base indexing
struct Segtree {
    int size;
   vector<int> tree;
    int merge(int x, int y) {
       return max(x, y);
    void build(vector<int> &a, int node, int 1, int r) {
       if(1 == r) {
            tree[node] = a[1];
            return:
        int mid = 1 + (r - 1)/2;
       build(a, node*2+1, 1, mid);
       build(a, node*2+2, mid+1, r);
       tree[node] = merge(tree[node*2+1], tree[node*2+2]);
    void update(int i, int value, int node, int l, int r) {
       if(1 == i && r == i) {
            tree[node] = value;
            return;
        int mid = 1 + (r-1)/2;
       if(i <= mid)update(i, value, node*2+1, 1, mid);</pre>
       else update(i, value, node*2+2, mid+1, r);
       tree[node] = merge(tree[node*2+1], tree[node*2+2]);
    void update(int i, int value) {
        update(i, value, 0, 0, size-1);
    int query(int i, int j, int node, int l, int r) {
       if(l > j || r < i) return INT_MIN;</pre>
        if(l >= i && r <= j)return tree[node];</pre>
        int mid = 1 + (r - 1)/2;
        return merge (query (i, j, node *2+1, 1, mid), query (i, j,
              node * 2+2, mid+1, r));
    int query(int i, int j) {
        return query(i, j, 0, 0, size-1);
    int sz(int n) {
        int size = 1;
        while(size < n) size = size << 1;
        return 2*size-1;
    void init(vector<int> &a, int n) {
       while(size < n) size = size << 1;
       tree.resize(2*size-1);
       build(a, 0, 0, size-1);
} st;
void dfs(int u, int p) {
 subtree[u] = 1;
 int mx = 0;
 for(auto v : adj[u]) {
   if(v == p)continue;
    parent[v] = u;
    depth[v] = depth[u]+1;
    dfs(v, u);
    subtree[v]+=subtree[u];
    if(subtree[v] > mx) {
     mx = subtree[v];
     heavy[u] = v;
```

```
int idx = 0:
void HLD(int u, int h) {
 head[u] = h;
 id[u] = idx++;
 if (heavy[u]) HLD (heavy[u], h);
 for(auto v : adj[u]) {
   if(v != parent[u] && v != heavy[u]) {
      HLD(v, v);
int path(int x, int y) {
 int ans = 0;
 while(head[x] != head[y]) {
    if(depth[head[x]] > depth[head[y]]) swap(x, y);
    ans = max(ans, st.query(id[head[y]], id[y]));
    y = parent[head[y]];
 if (depth[x] > depth[y])swap(x, y);
  ans = max(ans, st.query(id[x], id[y]));
 return ans;
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    tt = 1;
    // cin >> tt;
    while(tt--) {
        int n, q;
        cin >> n >> q;
        for(int i = 0; i < n; i++)cin >> values[i];
        for (int i = 0; i < n-1; i++) {
          int u, v;
          cin >> u >> v;
          adj[u].push_back(v);
          adj[v].push_back(u);
        dfs(1, -1);
        HLD(1, 1);
        vector<int> a(n);
        for(int i = 0; i < n; i++)a[id[i+1]] = values[i];</pre>
        st.init(a, n);
        while(q--) {
          int type;
          cin >> type;
          if(type == 1)
            int s, x;
            cin >> s >> x;
            st.update(id[s], x);
          }else {
            int a, b;
            cin >> a >> b:
            cout << path(a, b) << " ";
    return 0:
```

CentroidDecomp.h

```
const int N = 50001;
vector<int> adj[N];
int n, k;
int subtree[N], cnt[N], mx_depth, all_cnt[N];
```

```
bool visited[N];
// ll ans:
vector<bool> is_prime(N, true);
set<int> primes;
// O(Nlog(log(N)))
void sieve() {
    is_prime[0] = is_prime[1] = false;
    for (int i = 2; i * i <= N; i++) {
       if (is_prime[i]) {
            for (int j = i * i; j <= N; j += i)
                is_prime[j] = false;
int getSubtree(int u, int p) {
    subtree[u] = 1;
    for(auto v : adj[u]) {
        if(!visited[v] && v != p) {
            getSubtree(v, u);
            subtree[u]+=subtree[v];
    return subtree[u];
int getCentroid(int u, int p, int desired) {
    for(auto v : adj[u])
        if(!visited[v] && v != p && subtree[v] > desired)
            return getCentroid(v, u, desired);
void compute(int u, int p, bool filling, int depth) {
    if(depth > k)return;
    mx_depth = max(mx_depth, depth);
   if(filling) {
        cnt[depth]++;
        all_cnt[depth]++;
        // ans+=cnt/k - depth/*1LL;
        for(int i = 1; i <= mx_depth; i++) {</pre>
            if(cnt[i])all_cnt[i + depth]+=cnt[i];
    for(auto v : adj[u])if(!visited[v] && v != p)compute(v, u,
         filling, depth+1);
void centroidDecomposition(int u) {
    int centroid = getCentroid(u, -1, getSubtree(u, -1) >> 1);
    visited[centroid] = true;
    mx depth = 0;
    for(auto v : adj[centroid]) {
       if(!visited[v]) {
            compute(v, centroid, false, 1);
            compute(v, centroid, true, 1);
    for(int i = 1; i <= mx_depth; i++)cnt[i] = 0;</pre>
    for(auto v : adj[centroid])if(!visited[v])
        centroidDecomposition(v);
int main() {
    int tt;
    sieve();
    tt = 1;
    // cin >> tt;
    while(tt--) {
       cin >> n;
        for (int i = 2; i \le n-1; i++) {
            if(is_prime[i]) {
```

```
primes.insert(i);
    for (int i = 0; i < n-1; i++) {
        int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
        adj[v].push_back(u);
    // \ ans = 0;
    cnt[0] = 1;
    k = *primes.rbegin();
    centroidDecomposition(1);
    11 p path = 0;
    for(auto x : primes) {
        p_path+=all_cnt[x];
    11 \text{ total} = n*1LL*(n-1)/2;
    cout << fixed << setprecision(6) << (p_path*1.0)/(total</pre>
         *1.0) << "\n";
return 0;
                                                   d41d8c, 64 lines
```

```
DPOnTree.h
Description: DPonTree
const int N = 100000;
int n, mod;
vector<int> adi[N];
//up[i] = total ways to paint all the ancestors of node i
// if the parent of node i is painted black.
vector<11> up(N, 1);
// down[i] = total ways to paint the subtree of node i
// if the node i is painted black or white.
ll down[N];
void dfs1(int u, int parent) {
 down[u] = 1;
 for(auto v : adj[u]) {
   if (v == parent) continue;
   dfs1(v, u);
    down[u] = (down[u] * down[v]) % mod;
 down[u] = (down[u] + 1) % mod;
void dfs2(int u, int parent) {
  int pref = 1;
 for(auto v : adj[u]) {
   if(v == parent)continue;
   up[v] = pref % mod;
   pref = pref*down[v] % mod;
 reverse(adj[u].begin(), adj[u].end());
 int suff = 1;
 for(auto v : adj[u]) {
   if(v == parent)continue;
   up[v] = up[v] * suff % mod;
    suff = suff*down[v] % mod;
 for(auto v : adj[u]) {
   if(v == parent)continue;
   up[v] = up[u] * up[v] % mod;
   up[v] = (up[v] + 1) % mod;
    dfs2(v, u);
int main() {
```

```
ios::sync with stdio(false);
cin.tie(0);
int tt;
tt = 1;
// cin >> tt;
while(tt--) {
  cin >> n >> mod;
  for (int i = 0; i < n-1; i++) {
    int u, v;
    cin >> u >> v:
    --v, --u;
    adj[u].push_back(v);
    adj[v].push_back(u);
  dfs1(0, -1);
  dfs2(0, -1);
  for(int i = 0; i < n; i++) {
    cout << up[i] * (down[i] - 1 + mod) % mod << "\n";
return 0;
```

Math 7.8

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the *i*th row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.8.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \geq \cdots \geq d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.) d41d8c, 172 lines

```
using ftype = 11;
const double eps = 1e-9;
const double PI = acos((double)-1.0);
int sign(double x) { return (x > eps) - (x < -eps);}</pre>
struct P {
    ftype x, y;
    P() {}
    P(ftype x, ftype y): x(x), y(y) {}
    void read() {
        cin >> x >> y;
    P& operator+=(const P &t) {
        x += t.x;
        y += t.y;
```

```
return *this;
    P& operator = (const P &t) {
       x \rightarrow t.x;
       y -= t.y;
        return *this;
    P& operator *= (ftype t) {
       x *= t;
       y *= t;
        return *this;
    P& operator/=(ftype t) {
       x /= t;
       y /= t;
        return *this;
    P operator+(const P &t) const {return P(*this) += t;}
    P operator-(const P &t) const {return P(*this) -= t;}
    P operator*(ftype t) const {return P(*this) *= t;}
    P operator/(ftype t) const {return P(*this) /= t;}
    bool operator == (P \ a) const { return sign(a.x - x) == 0 &&
          sign(a.y - y) == 0; }
    bool operator != (P a) const { return !(*this == a); }
    bool operator < (P \ a) const { return sign(a.x - x) == 0 ? y
          < a.y : x < a.x; }
    bool operator > (P a) const { return sign(a.x - x) == 0 ? y
         > a.v : x > a.x; }
    P perp() const {
        return P(y, -x); // Or P(y, -x) depending on the
             desired direction.
P operator*(ftype a, P b) {return b * a;}
inline ftype dot(P a, P b) {return a.x * b.x + a.y * b.y;}
inline ftype cross(P a, P b) {return a.x * b.y - a.y * b.x;}
ftype norm(P a) {return dot(a, a);}
double abs(P a) {return sgrt(norm(a));}
double proj(P a, P b) {return dot(a, b) / abs(b);}
double angle(P a, P b) {return acos(dot(a, b) / abs(a) / abs(b)
P intersect(P al, P dl, P a2, P d2) {return al + cross(a2 - al,
     d2) / cross(d1, d2) * d1;}
bool LineSegmentIntersection(P pl, P p2, P p3, P p4) {
    // Check if they are parallel
    if(cross(p1-p2, p3-p4) == 0) {
        // If they are not collinear
        if(cross(p2-p1, p3-p1) != 0) {
            return false;
        // Check if they are collinear and do not intersect
        for (int it = 0; it < 2; it++) {
            if(max(p1.x, p2.x) < min(p3.x, p4.x) | |
                max(p1.y, p2.y) < min(p3.y, p4.y)) {
                return false:
            swap(p1, p3), swap(p2, p4);
        return true;
    // Check one segment totally on the left or right side of
         other seament
    for(int it = 0; it < 2; it++) {
       ll sign1 = cross(p2-p1, p3-p1);
        11 \text{ sign2} = \text{cross}(p2-p1, p4-p1);
        if((sign1 < 0 && sign2 < 0) || (sign1 > 0 && sign2 > 0)
             ) {
```

```
return false;
        swap(p1, p3), swap(p2, p4);
    // For all other case return true
    return true:
// here return value is area*2
ftype PolygonArea(vector<P> &polygon, int n) {
    11 area = 0;
    for(int i = 0; i < n; i++) {
        int j = (i+1) % n;
        area+=cross(polygon[i], polygon[j]);
    return abs(area);
string PointInPolygon(vector<P> &polygon, int n, P &p) {
    int cnt = 0;
    for (int i = 0; i < n; i++) {
        int j = (i+1) % n;
        if(LineSegmentIntersection(polygon[i], polygon[j], p, p
            return "BOUNDARY";
        Imagine a vertically infinite line from point p to
            positive infinity.
        Check if a line from the polygon is totally on the left
              or right side of the infinite line and makes a
             positive cross product or positive triangle.
        Here, "right" means to the right or equal.
        if((polygon[i].x >= p.x && polygon[j].x < p.x && cross(</pre>
            polygon[i]-p, polygon[j]-p) > 0) ||
           (polygon[i].x < p.x && polygon[j].x >= p.x && cross(
               polygon[j]-p, polygon[i]-p) > 0))
            cnt++;
    if (cnt & 1) return "INSIDE";
    return "OUTSIDE";
void ConvexHull(vector<P> &points, int n) {
    vector<P> hull:
    sort(points.begin(), points.end());
    for(int rep = 0; rep < 2; rep++) {
        const int h = (int)hull.size();
        for(auto C : points) {
            while ((int) hull.size() - h >= 2) {
                P A = hull[(int)hull.size()-2];
                P B = hull[(int)hull.size()-1];
                if (cross (B-A, C-A) <= 0) {
                    break;
                hull.pop_back();
            hull.push_back(C);
       hull.pop_back();
        reverse (points.begin(), points.end());
    cout << hull.size() << "\n";
    for(auto p : hull) {
        cout << p.x << " " << p.y << "\n";
```

```
bool circleInter(P a, P b, double r1, double r2, pair<P, P>*
     out) {
    P \text{ vec} = b - a;
    double d2 = norm(vec);
    double d = sqrt(d2);
    if (d > r1 + r2 || d < fabs(r1 - r2)) {
        return false;
    double p = (d2 + r1 * r1 - r2 * r2) / (2 * d);
    double h2 = r1 * r1 - p * p;
    if (h2 < 0) h2 = 0;
    P \text{ mid} = a + \text{vec} * (p / d);
    P per = vec.perp() * (sqrt(h2) / d);
    *out = {mid + per, mid - per};
    return true;
int main() {
    ios::sync_with_stdio(false);
    cin.tie(0);
    int tt;
    tt = 1;
    // cin >> tt;
    while(tt--) {
        int n:
        cin >> n;
        vector<P> points;
        for (int i = 0; i < n; i++) {
            P p;
            p.read();
            points.push_back(p);
        ConvexHull (points, n);
    return 0;
```

8.2 Circles

8.3 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

Time: $\mathcal{O}(n \log n)$

141 10 - 64 1:---

18

```
d41d8c, 64 lines
#define pii pair<11, 11>
#define ff first
#define ss second
bool comparex(pii a, pii b) { return a.first < b.first; }</pre>
bool comparey(pii a, pii b) { return a.second < b.second; }</pre>
ll dist(pii x, pii y) { return (x.ff - y.ff) * (x.ff - y.ff) +
     (x.ss - y.ss) * (x.ss - y.ss); }
pair<pii, pii> closestAmongThree(pii a, pii b, pii c) {
    11 d1 = dist(a, b);
    11 d2 = dist(b, c);
    11 d3 = dist(a, c);
    11 \text{ mn} = \min(\{d1, d2, d3\});
    if (mn == d1) return { a, b };
    else if (mn == d2) return { b, c };
    else return { a, c };
pair<pii, pii> closest(vector<pii>& points, ll st, ll en) {
    if (st + 1 == en) return { points[st], points[en] };
    if (st + 2 == en) return closestAmongThree(points[st],
         points[st + 1], points[en]);
    11 \text{ mid} = \text{st} + (\text{en} - \text{st}) / 2;
    pair<pii, pii> left = closest(points, st, mid);
    pair<pii, pii> right = closest(points, mid + 1, en);
```

```
11 left_d = dist(left.ff, left.ss);
    11 right_d = dist(right.ff, right.ss);
    11 d = min(left_d, right_d);
   pair<pii, pii> ans = (d == left_d) ? left : right;
    vector<pii> middle;
    for (int i = st; i <= en; i++)
        if (abs(points[i].ff - points[mid].ff) < d)</pre>
            middle.push_back(points[i]);
    sort(middle.begin(), middle.end(), comparey);
    for (int i = 0; i < (int)middle.size(); i++) {</pre>
        for (int j = i + 1; j < (int)middle.size() and (middle[</pre>
             j].ss - middle[i].ss) * (middle[j].ss - middle[i].
             ss) < d; j++) {
            11 dst = dist(middle[i], middle[j]);
            if (dst < d) {
                ans = { middle[i], middle[j] };
                d = dst;
        }
    middle.clear();
    return ans;
int main() {
    int tt;
    tt = 1;
    while (tt--) {
        int n;
        cin >> n;
        vector<pii> points(n);
        for (int i = 0; i < n; i++) {
            cin >> points[i].first >> points[i].second;
        sort(points.begin(), points.end(), comparex);
        pair<pii, pii> ans = closest(points, 0, n - 1);
        cout << dist(ans.ff, ans.ss) << '\n';</pre>
    return 0;
```

SweepLine.h

Description: Returns any intersecting segments, or -1, -1 if none exist. Time: $O(N \log N)$

Strings (9)

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: $\mathcal{O}(n)$ d41d8c, 15 lines

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g \&\& s[i] != s[g]) g = p[g-1];
   p[i] = q + (s[i] == s[q]);
  return p;
vi match(const string& s, const string& pat) {
 vi p = pi(pat + ' \setminus 0' + s), res;
  rep(i, sz(p)-sz(s), sz(p))
```

```
if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
return res:
```

Zfunc.h

Time: $\mathcal{O}(n)$

Description: z[i] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301)

```
d41d8c, 12 lines
vi Z(const string& S) {
 vi z(sz(S));
 int 1 = -1, r = -1;
 rep(i,1,sz(S)) {
   z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
   while (i + z[i] < sz(S) \&\& S[i + z[i]] == S[z[i]])
     z[i]++;
   if (i + z[i] > r)
     1 = i, r = i + z[i];
 return z:
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded

```
Time: \mathcal{O}(N)
                                                       d41d8c, 13 lines
array<vi, 2> manacher(const string& s) {
 int n = sz(s);
  array < vi, 2 > p = {vi(n+1), vi(n)};
  rep(z,0,2) for (int i=0,1=0,r=0; i < n; i++) {
    int t = r-i+!z;
    if (i < r) p[z][i] = min(t, p[z][l+t]);
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 \&\& R+1< n \&\& s[L-1] == s[R+1])
      p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
 return p;
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: $\mathcal{O}(N)$ d41d8c, 8 lines

```
int minRotation(string s) {
 int a=0, N=sz(s); s += s;
 rep(b, 0, N) rep(k, 0, N) {
   if (a+k == b \mid | s[a+k] < s[b+k]) {b += max(0, k-1); break;}
   if (s[a+k] > s[b+k]) { a = b; break; }
 return a;
```

SuffixArray.h

Description: Suffix Array

```
d41d8c, 44 lines
void count_sort(vector<pli> &b, int bits) {
 int mask = (1 << bits) - 1;
 rep(it, 0, 2) {
   int shift = it * bits;
   vi q(1 \ll bits), w(sz(q) + 1);
   rep(i, 0, sz(b)) q[(b[i].first >> shift) & mask]++;
   partial_sum(q.begin(), q.end(), w.begin() + 1);
   vector<pli> res(sz(b));
    rep(i, 0, sz(b)) res[w[(b[i].first >> shift) & mask]++] = b
        [i];
```

```
swap(b, res);
struct SuffixArray {
 vi a; string s;
 SuffixArray(const string &str) : s(str + '\0') {
    int N = sz(s), q = 8;
    while ((1 << q) < N) q++;
    vector<pli> b(N);
    a.resize(N);
    rep(i, 0, N) b[i] = {s[i], i};
    for (int moc = 0;; moc++) {
      count_sort(b, q);
      rep(i, 0, N) \ a[b[i].second] = (i \&\& b[i].first == b[i -
          1].first) ? a[b[i - 1].second] : i;
      if ((1 << moc) >= N) break;
      rep(i, 0, N) {
       b[i] = {(11)a[i] << q, i + (1 << moc) < N ? a[i + (1 <<
              moc)] : 0;
        b[i].second = i;
    rep(i, 0, N) a[i] = b[i].second;
 vi lcp() {
    int n = sz(a), h = 0;
    vi inv(n), res(n);
    rep(i, 0, n) inv[a[i]] = i;
    rep(i, 0, n) if (inv[i]) {
     int p0 = a[inv[i] - 1];
      while (s[i + h] == s[p0 + h]) h++;
      res[inv[i]] = h;
      if (h) h--;
    return res;
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l, r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has l = -1, r = 0), non-existent children are -1. To get a complete tree, append a dummy symbol - otherwise it may contain an incomplete path (still useful for substring matching, though).

Time: $\mathcal{O}(26N)$ d41d8c, 47 lines

```
struct SuffixTree {
 enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; // v = cur \ node, \ q = cur \ position
 int t[N][ALPHA], 1[N], r[N], p[N], s[N], v=0, q=0, m=2;
 void ukkadd(int i, int c) { suff:
   if (r[v] \le q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=1[v];
    if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
      p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
      while (q < r[m]) \{ v = t[v][toi(a[q])]; q + = r[v] - l[v]; \}
     if (q==r[m]) s[m]=v; else s[m]=m+2;
      q=r[v]-(q-r[m]); m+=2; goto suff;
 SuffixTree(string a) : a(a) {
```

Hashing AhoCorasick IntervalContainer IntervalCover ConstantIntervals

```
fill(r,r+N,sz(a));
    memset(s, 0, sizeof s);
    memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
    s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
    rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  pii best;
  int lcs(int node, int i1, int i2, int olen) {
   if (1[node] <= i1 && i1 < r[node]) return 1;</pre>
    if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - 1[node]) : 0;
    rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask:
  static pii LCS(string s, string t) {
    SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
```

Hashing.h

Description: Self-explanatory methods for string hashing. (Arithmetic mod $2^{64} - 1$. 2x slower than mod 2^{64} and more code, but works on evil test data (e.g. Thue-Morse, where ABBA... and BAAB... of length 2^{10} hash the same mod 2^{64}). "typedef ull H;" instead if you think test data is random, or work mod $10^9 + 7$ if the Birthday paradox is not a problem.)

```
typedef uint64_t ull;
struct H {
  ull x; H(ull x=0) : x(x) {}
  H operator+(H o) { return x + o.x + (x + o.x < x); }
  H operator-(H o) { return *this + ~o.x; }
  H 	ext{ operator} * (H 	ext{ o}) { auto } m = (\underline{\quad} uint128\_t) x * o.x;
   return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random also ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
   pw[0] = 1;
    rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval(int a, int b) { // hash [a, b)
    return ha[b] - ha[a] * pw[b - a];
vector<H> getHashes(string& str, int length) {
 if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push_back(h = h * C + str[i] - pw * str[i-length]);
  return ret;
H hashString(string& s){H h{}; for(char c:s) h=h*C+c; return h;}
```

```
AhoCorasick.h
```

Description: Aho Corasick

141d8c, 56 lines

```
struct AC {
 int N, P;
 const int A = 26;
 vector <vector <int>> next;
 vector <int> link, out_link;
 vector <vector <int>> out;
 AC(): N(0), P(0) \{node();\}
 int node() {
   next.emplace back(A, 0);
   link.emplace_back(0);
   out_link.emplace_back(0);
   out.emplace back(0);
   return N++;
 inline int get (char c) {
   return c - 'a';
 int add_pattern (const string T) {
   int u = 0;
   for (auto c : T) {
     if (!next[u][get(c)]) next[u][get(c)] = node();
     u = next[u][get(c)];
   out[u].push_back(P);
   return P++;
 void compute() {
   queue <int> q;
   for (q.push(0); !q.empty();) {
     int u = q.front(); q.pop();
     for (int c = 0; c < A; ++c) {
       int v = next[u][c];
       if (!v) next[u][c] = next[link[u]][c];
         link[v] = u ? next[link[u]][c] : 0;
         out_link[v] = out[link[v]].empty() ? out_link[link[v
              ]] : link[v];
         q.push(v);
 int advance (int u, char c) {
   while (u && !next[u][get(c)]) u = link[u];
   u = next[u][qet(c)];
   return u;
 void match (const string S) {
   int u = 0;
   for (auto c : S) {
    u = advance(u, c);
     for (int v = u; v; v = out_link[v]) {
       for (auto p : out[v]) cout << "match " << p << endl;
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive). **Time:** $\mathcal{O}(\log N)$

```
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
 auto it = is.lower_bound({L, R}), before = it;
 while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
 auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L:
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add $\mid \mid$ R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$

```
template < class T >
vi cover(pair < T, T > G, vector < pair < T, T > I) {
    vi S(sz(I)), R;
    iota(all(S), 0);
    sort(all(S), [&] (int a, int b) { return I[a] < I[b]; });
    T cur = G.first;
    int at = 0;
    while (cur < G.second) { // (A)
        pair < T, int > mx = make_pair(cur, -1);
        while (at < sz(I) && I[S[at]].first <= cur) {
            mx = max(mx, make_pair(I[S[at]].second, S[at]));
            at++;
        }
        if (mx.second == -1) return {};
        cur = mx.first;
        R.push_back(mx.second);
    }
    return R;
}</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...});

Time: $\mathcal{O}(k \log \frac{n}{k})$

```
template < class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
   if (p == q) return;
   if (from == to) {
      g(i, to, p);
   }
}
```

```
i = to; p = q;
} else {
   int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
   rec(mid+1, to, f, g, i, p, q);
}
}
template<class F, class G>
void constantIntervals(int from, int to, F f, G g) {
   if (to <= from) return;
   int i = from; auto p = f(i), q = f(to-1);
   rec(from, to-1, f, g, i, p, q);
   g(i, to, q);
}</pre>
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];}); Time: $\mathcal{O}(\log(b-a))$

```
template < class F >
int ternSearch(int a, int b, F f) {
   assert(a <= b);
   while (b - a >= 5) {
      int mid = (a + b) / 2;
      if (f(mid) < f(mid+1)) a = mid; // (A)
      else b = mid+1;
   }
   rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
   return a;
}</pre>
```

LIS.h

Description: Compute indices for the longest increasing subsequence. **Time:** $\mathcal{O}(N \log N)$

```
d41d8c, 17 lines
template<class I> vi lis(const vector<I>& S) {
 if (S.empty()) return {};
 vi prev(sz(S));
  typedef pair<I, int> p;
  vector res;
  rep(i, 0, sz(S)) {
    // change 0 \Rightarrow i for longest non-decreasing subsequence
   auto it = lower bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it = res.end()-1;
   *it = {S[i], i};
   prev[i] = it == res.begin() ? 0 : (it-1) -> second;
  int L = sz(res), cur = res.back().second;
 vi ans(L);
  while (L--) ans[L] = cur, cur = prev[cur];
  return ans;
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum $S \le t$ such that S is the sum of some subset of the weights.

Time: $\mathcal{O}(N \max(w_i))$

d41d8c, 16 lines

```
int knapsack(vi w, int t) {
  int a = 0, b = 0, x;
  while (b < sz(w) && a + w[b] <= t) a += w[b++];
  if (b == sz(w)) return a;
  int m = *max_element(all(w));</pre>
```

```
vi u, v(2*m, -1);
v[a+m-t] = b;
rep(i,b,sz(w)) {
    u = v;
    rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
    for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
        v[x-w[j]] = max(v[x-w[j]], j);
}
for (a = t; v[a+m-t] < 0; a--);
return a;</pre>
```

10.3 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1. **Time:** $\mathcal{O}((N + (hi - lo)) \log N)$

```
d41d8c, 18 lines
struct DP { // Modify at will:
 int lo(int ind) { return 0; }
 int hi(int ind) { return ind; }
 11 f(int ind, int k) { return dp[ind][k]; }
 void store(int ind, int k, ll v) { res[ind] = pii(k, v); }
 void rec(int L, int R, int LO, int HI) {
   if (L >= R) return;
   int mid = (L + R) \gg 1;
   pair<11, int> best(LLONG_MAX, LO);
   rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
     best = min(best, make_pair(f(mid, k), k));
   store(mid, best.second, best.first);
   rec(L, mid, LO, best.second+1);
   rec(mid+1, R, best.second, HI);
 void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

10.4 Debugging tricks

- signal (SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a\pmod{b}$ in the range [0,2b).

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a % b + (0 or b)
    return a - (ull)((_uint128_t(m) * a) >> 64) * b;
  }
};
```

10.6 Miscellaneous

SOSDP.h

Description: SOS DP

vector<vector<int>> dp(1 << n, vector<int>(n));
vector<int> sos(1 << n);
for (int mask = 0; mask < (1 << n); mask++) {
 dp[mask][-1] = a[mask];
 for (int x = 0; x < n; x++) {
 dp[mask][x] = dp[mask][x - 1];
 if (mask & (1 << x)) { dp[mask][x] += dp[mask - (1 << x)][x - 1]; }
 }
 sos[mask] = dp[mask][n - 1];</pre>

submaskiterate.h

Description: Submask iterate

d41d8c, 3 lines

d41d8c, 10 lines

```
for (int m=0; m<(1<<n); ++m)
    for (int s=m; s; s=(s-1)&m)
... s and m ...</pre>
```

nCrNotP.h

Description: Finds nCr modulo a number that is not necessarily prime. Its good when m is small and not fixed.

```
Time: \mathcal{O}\left(m\log m\right)
```

```
"../number-theory/CRT.h", "../number-theory/ModPow.h"
                                                     d41d8c, 32 lines
int F[1000002] = {1}, p, e, pe;
11 lg(ll n, int p) {
 11 r = 0;
  while (n) n \neq p, r += n;
 return r;
ll f(ll n) {
 if (!n) return 1;
  return modpow(F[pe], n / pe, pe) * (F[n % pe] * f(n / p) % pe
      ) % pe;
ll ncr(ll n, ll r) {
 11 c;
  if ((c = \lg(n, p) - \lg(r, p) - \lg(n - r, p)) >= e)
   return 0;
  for (int i = 1; i <= pe; i++)
   F[i] = F[i - 1] * (i % p == 0 ? 1 : i) % pe;
  return (f(n) * modpow(p, c, pe) % pe) *
   modpow(f(r) * f(n - r), pe - (pe / p) - 1, pe) % pe;
ll ncr(ll n, ll r, ll m) {
 11 \ a0 = 0, \ m0 = 1;
  for (p = 2; m != 1; p++) {
   e = 0, pe = 1;
    while (m % p == 0)
     m /= p, e++, pe *= p;
     a0 = crt(a0, m0, ncr(n, r), pe);
     m0 = m0 * pe;
  return a0;
```