6.4 反三角函数

(Inverse Trigonometric Functions)

三角函数解决知道角求三角函数值的问题,例如 $\sin \frac{\pi}{6} = \frac{1}{2}$,

 $\cos \frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$,这类问题称作"知角求值"问题. 在科学研究和生产实践中还会遇到大量的知道三角函数值,需要求角的问题,例如知道 $\sin x = \frac{1}{2}$, $\cos x = -\frac{\sqrt{3}}{2}$,x 是什么?这类问题称作"知值求角"问题.

"知角求值"与"知值求角"关系十分密切,其本质是函数与反函数的问题。

若确定函数 y=f(x)的映射是一一映射,则 y=f(x)存在反函数.

因为三角函数都是周期函数,所以定义三角函数的映射不是一一对应的,从而三角函数不存在反函数. 造成了正弦函数 $y = \sin x$ 无法构成一一映射的决定因素是定义域!

我们要寻找这样的集合 A,使得对于每一个正弦值(落在区间[-1, 1]内),在集合 A 中有且只有唯一的弧度数为 x 的角与之对应.

满足条件的集合是
$$\left[k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right] (k \in \mathbf{Z}).$$

对于每一个整数 k,函数 $y = \sin x \left(x \in \left[k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right]\right)$ 都有反函数.

在三角问题的研究中使用频率最高的是锐角,因此我们在确定反正弦函数时,就锁定了函数 $y=\sin x, x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.

定义 把函数 $y = \sin x$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 的反函数叫做**反正弦函**

数 (inverse sine function), 记作 $y = \arcsin x, x \in [-1, 1]$.

对定义的理解:

(1) arcsin x 表示一个角:

(2)
$$\arcsin x$$
 是落在区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 内的角;

(3) $\arcsin x$ 的正弦值是x,即 $\sin(\arcsin x) = x$, $x \in [-1, 1]$.

总之 $\arcsin x$ 是一个落在区间 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 内正弦值是 x 的角.

求下列反正弦函数的值:

(1)
$$\arcsin \frac{1}{2}$$
;

(2)
$$\arcsin \frac{\sqrt{3}}{2}$$
;

(5)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right)$$
;

(6)
$$\arcsin(-1)$$
.

解 (1) $\arcsin \frac{1}{2} = \frac{\pi}{6}$.

(2)
$$\arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{3}$$
.

(3) $\arcsin 0 = 0$.

(4)
$$\arcsin 1 = \frac{\pi}{2}$$
.

(5)
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}$$
.

(6)
$$\arcsin(-1) = -\frac{\pi}{2}$$
.

反正弦函数的性质:

(1) $y = \arcsin x$ 在[-1, 1] 上单调增;

(2) $y = \arcsin x$ 是奇函数,即 $\arcsin(-x) = -\arcsin x, x \in [-1, 1]$.

证明 (1) 假设 $y = \arcsin x$ 在[-1, 1] 上不单调增,即存在 x_1, x_2 $\in [-1, 1], \exists x_1 < x_2, \langle \exists \arcsin x_1 \rangle = \arcsin x_2.$

因为 $\arcsin x_1$, $\arcsin x_2 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, 且 $y = \sin x$ 在

$$\left[-rac{\pi}{2},rac{\pi}{2}
ight]$$
上单调增,所以 $\sin(\arcsin x_1)\geqslant \sin(\arcsin x_2)$,即 $x_1\geqslant$

 x_2 ,与 $x_1 < x_2$ 矛盾.

所以 $y = \arcsin x$ 在[-1, 1] 上单调增.

(2)
$$\underline{\exists} x \in [-1, 1]$$
 $\underline{\forall}, -x \in [-1, 1].$

因为 $\arcsin (-x)$, $-\arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $y = \sin x$ 在

$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
上单调增,而
$$\sin\left[\arcsin\left(-x\right)\right] = -x, \sin\left(-\arcsin x\right)$$
$$= -\sin\left(\arcsin x\right)$$

所以
$$\arcsin(-x) = -\arcsin x$$
, $x \in \begin{bmatrix} -\frac{x}{2} \\ -1 \end{bmatrix}$, 即 $y = \arcsin x$ 是奇函数.

函数 $y = \arcsin x (x \in [-1, 1])$ 的图象与函数 $y = \sin x (x \in [-1, 1])$

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
) 的图象关于直线 $y=x$ 对称.

叨・大家谈

例 2 计算:

(1)
$$\sin\left(\arcsin\frac{3}{\pi}\right)$$
; (2) $\sin\left(\arcsin\frac{\pi}{3}\right)$.

$$\mathbf{A}\mathbf{F} \quad (1) \sin\left(\arcsin\frac{3}{\pi}\right) = \frac{3}{\pi}.$$

(2) 因为
$$\frac{\pi}{3} \notin [-1, 1]$$
,所以 $\sin\left(\arcsin\frac{\pi}{3}\right)$ 没有意义.

例3 用反正弦函数值的形式表示下列各式中的 x:

(1)
$$\sin x = \frac{3}{5}, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right];$$

(2)
$$\sin x = \frac{3}{5}, x \in [0, \pi];$$

(3)
$$\sin x = -\frac{3}{5}, x \in [\pi, 2\pi].$$

$$\mathbf{f} \qquad (1) \ x = \arcsin \frac{3}{5}.$$

(2)
$$x = \arcsin \frac{3}{5}$$
 $\Re x = \pi - \arcsin \frac{3}{5}$.

(3)
$$x = \pi + \arcsin \frac{3}{5}$$
 或 $x = 2\pi - \arcsin \frac{3}{5}$.

下面研究三角函数与反三角函数的混合运算.

例4 求 $\cos(\arcsin x)(x \in [-1, 1])$, $\tan(\arcsin x)(x \in (-1, 1])$.

解 设 $\alpha = \arcsin x$, $\sin \alpha = x$.

因为
$$x \in [-1, 1], \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
,所以

$$\cos(\arcsin x) = \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - x^2}.$$

因为
$$x \in (-1, 1), \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
,所以

$$\tan(\arcsin x) = \frac{\sin(\arcsin x)}{\cos(\arcsin x)} = \frac{x}{\sqrt{1 - x^2}}.$$

例 5 求值:

(1)
$$\cos\left(\arcsin\frac{4}{5}\right)$$
; (2) $\cos\left[\arcsin\left(-\frac{12}{13}\right)\right]$;

(3)
$$\tan\left(\arcsin\frac{15}{17}\right)$$
; (4) $\tan\left[\arcsin\left(-\frac{\sqrt{3}}{3}\right)\right]$.

解 (1)
$$\cos\left(\arcsin\frac{4}{5}\right) = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}$$
.

(2)
$$\cos \left[\arcsin\left(-\frac{12}{13}\right)\right] = \sqrt{1 - \left(-\frac{12}{13}\right)^2} = \frac{5}{13}$$
.

(3)
$$\tan\left(\arcsin\frac{15}{17}\right) = \frac{\frac{15}{17}}{\sqrt{1-\left(\frac{15}{17}\right)^2}} = \frac{15}{8}.$$

(4)
$$\tan \left[\arcsin\left(-\frac{\sqrt{3}}{3}\right)\right] = \frac{-\frac{\sqrt{3}}{3}}{\sqrt{1-\left(-\frac{\sqrt{3}}{3}\right)^2}} = -\frac{\sqrt{2}}{2}.$$

(1)
$$\arcsin\left(\sin\frac{\pi}{4}\right)$$
; (2) $\arcsin\left(\sin\frac{3\pi}{4}\right)$.

M (1)
$$\arcsin\left(\sin\frac{\pi}{4}\right) = \arcsin\frac{\sqrt{2}}{2} = \frac{\pi}{4}$$
.

(2)
$$\arcsin\left(\sin\frac{3\pi}{4}\right) = \arcsin\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
.

猜想:
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 时, $arcsin(sin x) = x$.

证明 当
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
时, $\arcsin(\sin x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

因为
$$y = \sin x$$
 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ 上单调增,且 $\sin \left[\arcsin \left(\sin x \right) \right] = \sin x$,所以 $\arcsin \left(\sin x \right) = x$.

例7 比较 arcsin(sin√2)与 arcsin(sin√3)的大小.

解 因为
$$\arcsin(\sin\sqrt{2}) = \sqrt{2} \approx 1.414$$
, $\arcsin(\sin\sqrt{3}) = \pi - \sqrt{3} \approx 1.410$, 所以 $\arcsin(\sin\sqrt{2}) > \arcsin(\sin\sqrt{3})$.

例8 研究函数 $f(x) = \arcsin(\sin x)$ 的性质.

解 函数 $f(x) = \arcsin(\sin x)$ 的定义域是 R.

因为 $f(x+2\pi) = \arcsin[\sin(x+2\pi)] = \arcsin(\sin x) = f(x)$,所以 $f(x) = \arcsin(\sin x)$ 是周期为 2π 的周期函数.

因为 $f(-x) = \arcsin\left[\sin\left(-x\right)\right] = \arcsin\left(-\sin x\right) = -\arcsin\left(\sin x\right) = -f(x)$, 所以 $f(x) = \arcsin\left(\sin x\right)$ 是奇函数.

当
$$x = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$$
 时, $f(x) = \arcsin(\sin x)$ 取得最大值 $\frac{\pi}{2}$;
当 $x = 2k\pi - \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $f(x) = \arcsin(\sin x)$ 取得最小值 $-\frac{\pi}{2}$.

か・自己学

参考关于反正弦函数的研究,撰写"关于反余弦函数的研究报告".

定义 正切函数 $y = \tan x$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 的反函

数叫做**反正切函数**,记作 $y = \arctan x, x \in \mathbf{R}$.

理解: (1) $\arctan x$ 表示落在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 内正切值为 x 的角;

- (2) $tan(arctan x) = x, x \in \mathbb{R};$
- (3) $\arctan(\tan x) = x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$

反正切函数的性质:

- (1) y=arctan x 在 R 上单调增;
- (2) $y=\arctan x$ 是奇函数,即 $\arctan(-x)=-\arctan x$, $x \in \mathbf{R}$. 反正切函数的图象:

$$\frac{\pi}{2}$$
 O
 x

例9 求值:

(1)
$$\sin\left(\arctan\frac{4}{3}\right)$$
; (2) $\tan\left[\arccos\left(-\frac{12}{13}\right)\right]$;

(3)
$$\cos\left(2\arctan\frac{3}{4}\right)$$
; (4) $\arcsin(\sin 6)$;

(5)
$$\arctan \frac{1}{7} + 2\arctan \frac{1}{3}$$
; (6) $\arctan \left(\tan \frac{4\pi}{5}\right)$;

(7)
$$\arctan x + \arctan \frac{1}{x}$$
; (8) $\arcsin (\sin \sqrt{10}) - \arccos (\cos \sqrt{10})$.

$$(1) \sin\left(\arctan\frac{4}{3}\right) = \sin\left(\arcsin\frac{4}{5}\right) = \frac{4}{5}.$$

(2)
$$\tan \left[\arccos\left(-\frac{12}{13}\right)\right] = \frac{\sin \left[\arccos\left(-\frac{12}{13}\right)\right]}{\cos \left[\arccos\left(-\frac{12}{13}\right)\right]} = \frac{\frac{5}{13}}{-\frac{12}{13}} = -\frac{5}{12}.$$

(3)
$$\cos\left(2\arctan\frac{3}{4}\right) = \cos\left(2\arccos\frac{4}{5}\right)$$

$$=2\cos^2\left(\arccos\frac{4}{5}\right)-1=\frac{7}{25}.$$

$$(4) \arcsin(\sin 6) = \arcsin[\sin(6-2\pi)] = 6-2\pi$$
.

(5)
$$\sum_{\alpha} = \arctan \frac{1}{7}, \beta = 2\arctan \frac{1}{3}, \sum_{\alpha} = \frac{1}{7}, \ \tan \beta = \frac{2 \times \frac{1}{3}}{1 - \frac{1}{2}} =$$

$$\frac{3}{4}$$
,所以 $\tan{(\alpha+\beta)} = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \frac{1}{1} \times \frac{3}{4}} = 1.$

又因为 α , $\beta \in \left(0, \frac{\pi}{2}\right)$,所以 $\arctan \frac{1}{7} + 2\arctan \frac{1}{3} = \frac{\pi}{4}$.

(6)
$$\arctan\left(\tan\frac{4\pi}{5}\right) = \arctan\left[\tan\left(\frac{4\pi}{5} - \pi\right)\right]$$

= $\arctan\left[\tan\left(-\frac{\pi}{5}\right)\right] = -\frac{\pi}{5}$.

(7) 设 $\alpha = \arctan x, \beta = \arctan \frac{1}{r}$,则 $\tan \alpha \tan \beta = 1$,所以角 $\alpha + \beta$ 的

终边在 y 轴上.

所以
$$\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2}, & x > 0, \\ -\frac{\pi}{2}, & x < 0. \end{cases}$$

(8)
$$\arcsin(\sin\sqrt{10}) - \arccos(\cos\sqrt{10})$$

$$= \arcsin\left[\sin\left(\pi - \sqrt{10}\right)\right] - \arccos\left[\cos\left(2\pi - \sqrt{10}\right)\right]$$

$$= \pi - \sqrt{10} - (2\pi - \sqrt{10}) = -\pi,$$

(1)
$$y = \arccos(\log_{\frac{1}{2}} x);$$
 (2) $y = \log_{\frac{1}{2}} (\arccos x);$

(3)
$$y = \arccos(\arcsin x);$$
 (4) $y = \arcsin(\arccos x).$

解 (1) 因为
$$-1 \leqslant \log_{\frac{1}{2}} x \leqslant 1$$
,即 $\frac{1}{2} \leqslant x \leqslant 2$,所以 $D = \left[\frac{1}{2}, 2\right]$.

因为 $u = \log_{\frac{1}{2}} x$ 在 $\left[\frac{1}{2}, 2\right]$ 上单调减, $y = \arccos u$ 在 $\left[-1, 1\right]$ 上单调

减, 所以
$$y = \arccos(\log_{\frac{1}{2}} x)$$
 在 $\left[\frac{1}{2}, 2\right]$ 上单调增,且 $A = [0, \pi]$.

(2) 因为 $0 < \arccos x \le \pi$,即 $-1 \le x < 1$,所以 D = [-1, 1). 因为 $u = \arccos x$ 在[-1, 1)上单调减, $y = \log_{\frac{1}{2}} u$ 在 $(0, \pi]$ 上单调 滅, 所以 $y = \log_{\frac{1}{2}}(\arccos x)$ 在[-1, 1) 上单调增, 且 $A = [\log_{\frac{1}{2}}\pi, +\infty)$.

(3) 因为 $-1 \leqslant \arcsin x \leqslant 1$,即 $-\sin 1 \leqslant x \leqslant \sin 1$ 所以 $D = [-\sin 1, \sin 1]$.

因为 $u = \arcsin x$ 在 $[-\sin 1, \sin 1]$ 上单调增, $y = \arccos u$ 在[-1, 1] 上单调减, 所以 $y = \arccos(\arcsin x)$ 在[-1, 1] 上单调减, 且 $A = [0, \pi]$.

(4) 因为 $0 \le \arccos x \le 1$,即 $\cos 1 \le x \le 1$,所以 $D = [\cos 1, 1]$. 因为 $u = \arccos x$ 在 $[\cos 1, 1]$ 上单调减, $y = \arcsin u$ 在[0, 1] 上单

调增, 所以 $y = \arcsin(\arccos x)$ 在 $[\cos 1, 1]$ 上单调减, $\mathbb{E} A = \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$.

例 11 用反正弦表示 $\arcsin \frac{3}{5} + \arcsin \frac{15}{17}$.

解 没 $\alpha = \arcsin \frac{3}{5}$, $\beta = \arcsin \frac{15}{17}$, 则 $\sin \alpha = \frac{3}{5}$, $\sin \beta = \frac{15}{17}$, 得 $\cos \alpha = \frac{4}{5}$, $\cos \beta = \frac{8}{17}$.

因为
$$\sin(\alpha+\beta) = \frac{3}{5} \times \frac{8}{17} + \frac{4}{5} \times \frac{15}{17} = \frac{84}{85},$$
 $\cos(\alpha+\beta) = \frac{4}{5} \times \frac{8}{17} - \frac{3}{5} \times \frac{15}{17} = -\frac{13}{85},$

所以
$$\arcsin \frac{3}{5} + \arcsin \frac{15}{17} = \pi - \arcsin \frac{84}{85}$$
.

例 12 比较 $\arcsin a = \arcsin a^2(|a| \le 1)$ 的大小.

解 当 a = 0 或 a = 1 时, $a = a^2$, 得 $\arcsin a = \arcsin a^2$;

当 $a \in [-1, 0)$ 时, $a < a^2$,得 $\arcsin a < \arcsin a^2$;

当 $a \in (0, 1)$ 时, $a > a^2$,得 $\arcsin a > \arcsin a^2$.

例 13 当 $x \in [-1, 1]$ 时,比较 $\arcsin x$ 与 $\arccos x$ 的大小.

解 因为 $y = \arcsin x$ 在[-1, 1] 上单调增, $y = \arccos x$ 在[-1, 1]

上单调减, 所以, 当 $x = \frac{\sqrt{2}}{2}$ 时, $\arcsin x = \arccos x = \frac{\pi}{4}$;

当 $x \in \left[-1, \frac{\sqrt{2}}{2}\right)$ 时, $\arcsin x < \arccos x$;

当
$$x \in \left(\frac{\sqrt{2}}{2}, 1\right]$$
时, $\arcsin x > \arccos x$.

例 14 日知 $\arcsin (\sin \alpha + \sin \beta) + \arcsin (\sin \alpha - \sin \beta) = \frac{\pi}{2}$, 求 $\sin^2 \alpha + \sin^2 \beta$ 的值.

解 由于
$$\arcsin (\sin \alpha + \sin \beta) + \arcsin (\sin \alpha - \sin \beta) = \frac{\pi}{2}$$
,

所以
$$\arcsin(\sin\alpha + \sin\beta) = \arcsin(\sin\alpha - \sin\beta)$$
 互余,

則
$$\sin[\arcsin(\sin\alpha+\sin\beta)] = \cos[\arcsin(\sin\alpha-\sin\beta)]$$
,

所以
$$\sin \alpha + \sin \beta = \sqrt{1 - (\sin \alpha - \sin \beta)^2}$$
,

化简,得
$$\sin^2\alpha + \sin^2\beta = \frac{1}{2}$$
.

1. 求值:

(1)
$$\sin\left(\arcsin\left(-\frac{1}{\pi}\right)\right)$$
; (2) $\cos\left(\arcsin\frac{\sqrt{2}}{2}\right)$;

- (3) $\tan\left(\arcsin\left(-\frac{\sqrt{3}}{2}\right)\right)$.
- 2. 求下列函数的反函数:

(1)
$$y = \sin x \left(x \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right] \right);$$

(2)
$$y = \sqrt{\sin x} \left(x \in \left[0, \frac{\pi}{2} \right] \right);$$

(3)
$$y = \lg(\sin x) \left(x \in \left(0, \frac{\pi}{2}\right]\right);$$

(4)
$$y = \lg(\arcsin x) (x \in (0, 1]).$$

- 3. 求函数 $y = \arcsin(x^2 x + 1)$ 的定义域、值域和单调区间.
- 4. 求值:

(1)
$$\arctan \frac{\sqrt{3}}{3}$$
;

(2)
$$\arctan(-\sqrt{3})$$
;

(3)
$$\arctan\left(2\sin\frac{4\pi}{3}\right)$$
;

(4)
$$\arctan\left(2\cos\frac{5\pi}{3}\right)$$
.

5. 用反正切函数值的形式表示下列各式中的 x:

(1)
$$\tan x = \frac{4}{3}, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right);$$

(2)
$$\tan x = \frac{12}{5}, x \in (\pi, \frac{3\pi}{2});$$

(3)
$$\tan x = -\frac{24}{7}$$
, $x \in (-2\pi, 0)$.

6. 求下列函数的定义域:

(1)
$$y = 2\arctan 2x$$
; (2) $y = \sqrt{\arctan x}$;

(3)
$$y = \lg(\arctan x)$$
.

7. 求值:

(1)
$$\sin[\arctan(-1)];$$
 (2) $\cos(\arctan(\frac{\sqrt{2}}{2});$

(3)
$$\tan \left[\arctan\left(-\frac{\sqrt{3}}{3}\right) + \arctan\sqrt{3}\right]$$
;

(4) $\arctan 1 + \arctan 2 + \arctan 3$.

(1)
$$y = \tan x \left(x \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \right);$$
 (2) $y = \sqrt{\tan x} \left(x \in \left[0, \frac{\pi}{2} \right) \right)$

(3)
$$y = \lg(\tan x) \left(x \in \left(0, \frac{\pi}{2}\right)\right);$$

(4)
$$y = \lg(\arctan x)(x \in (0, +\infty)).$$

9. 求下列函数的定义域和值域:

(1)
$$y = \arcsin \sqrt{x+1}$$
; (2) $y = \sqrt{\arcsin x + 1}$.

10. 求函数
$$y = \arctan(x^2 - 1)$$
 的定义域、值域和单调区间.

11. 求函数 $y = \sin x + \arcsin x$ 的值域.

12. 用反余弦表示 $\arccos \frac{3}{4} - \arcsin \frac{4}{5}$.

13. 求值: arcsin(sin2)+arccos(cos4).

14. 证明: $\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1, 1].$

6.4 反三角函数

14. 略

1. (1)
$$-\frac{1}{\pi}$$
 (2) $\frac{\sqrt{2}}{2}$ (3) $-\sqrt{3}$ 2. (1) $y = \pi - \arcsin x (x \in [-1, 1])$ (2) $y = \arcsin x^2 (x \in [0, 1])$ (3) $y = \arcsin 10^x (x \in (-\infty, 0])$ (4) $y = \sin 10^x (x \in (-\infty, \lg \frac{\pi}{\alpha}])$ 3. 定义域是 $[0, 1]$, 值域是 $\left[\arcsin \frac{3}{4}, \frac{\pi}{2}\right]$, 单调递增区间是 $\left[\frac{1}{2}, 1\right]$, 单调递减区间是 $\left[0, \frac{1}{2}\right]$ 4. (1) $\frac{\pi}{6}$ (2) $-\frac{\pi}{3}$ (3) $-\frac{\pi}{3}$ (4) $\frac{\pi}{4}$ 5. (1) $x = \arctan \frac{4}{3}$ (2) $x = \pi + \arctan \frac{12}{5}$ (3) $x = -\arctan \frac{24}{7}$ 或 $x = -\pi - \arctan \frac{24}{7}$ 6. (1) \mathbf{R} (2) $\left[0, +\infty\right)$ (3) \mathbf{R}^+ 7. (1) $-\frac{\sqrt{2}}{2}$ (2) $\frac{\sqrt{6}}{3}$ (3) $\frac{\sqrt{3}}{3}$ (4) π 8. (1) $y = \pi + \arctan x (x \in \mathbf{R})$ (2) $y = \arctan x^2$ ($x \in [0, +\infty)$) (3) $y = \arctan 10^x (x \in \mathbf{R})$ (4) $y = \tan 10^x (x \in (-\infty, \lg \frac{\pi}{2})^n)$ 9. (1) 定义域是 $\left[-1, 0\right]$, 值域是 $\left[0, \frac{\pi}{2}\right]$ (2) 定义域是 $\left[-\sin 1, 1\right]$, 值域是 $\left[0, \sqrt{\frac{\pi}{2}+1}\right]$ 10. 定义域是 $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$, 单调递增区间是 $\left[0, +\infty\right]$, 单调递域区间是 $\left[-\infty, 0\right]$ 11. $\left[-\sin 1 - \frac{\pi}{2}, \sin 1 + \frac{\pi}{2}\right]$ 12. $-\arccos \frac{9+4\sqrt{7}}{20}$ 13. $3\pi - 6$