IGBT

What is IGBT?

IGBT stands for Insulated Gate Bipolar Transistor

It is a three-terminal semiconductor switching device that can be used for fast switching with high efficiency in many types of electronic devices. These devices are mostly used in amplifiers for switching/processing complex wave patters with pulse width modulation (PWM).

IGBT can be considered as a mix of BJT and MOSFET as it have the same input characteristics as the BJT and has the same output characteristics as the MOSFET which is very useful in a lot of applications

Construction:

IGBT has three terminals attached to three different metal layers, the metal layer of the gate terminal is insulated from the semiconductors by a layer of silicon dioxide (SIO2). IGBT is constructed with 4 layers of semiconductor sandwiched together. The layer closer to the collector is the **p+ substrate layer** above that is the **n- layer**, another p layer is kept closer to the emitter and inside the p layer, we have the **n+ layers**. The junction between the p+ layer and n- layer as seen in the following image

To understand the **working of the IGBT**, consider a voltage source V_G connected positively to the Gate terminal with respect to the Emitter. Consider other voltage source V_{CC} connected across The Emitter and the Collector, where Collector is kept positive with respect to the Emitter. Due to the voltage source V_{CC} the junction J1 will be forward-biased whereas the junction J2 will be reverse biased. Since J2 is in reverse bias there will not be any current flow inside the IGBT(from collector to emitter).

Types of IGBT:

The IGBT is classified as two types based on the n+ buffer layer, the IGBTs that are having the n+ buffer layer is called the **Punch through IGBT (PT-IGBT)**, the IGBTs that does not have an n+ buffer layer are called the **Non-Punch Through-IGBT (NPT-IGBT)**.

Operation regions:

cutoff region: when the gate voltage equal zero

active region: when the Vge is increased beyond the threshold voltage

saturation region: when Vge increased but still less than the threshold voltage this diagram shows the three regions better

