MATH 321

Homework 7 (due 12/07)

NAME:

(3pts) 1. Prove the following identity for all natural numbers $n \geq 1$.

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n} = 2 - \frac{1}{2^n} \tag{1}$$

(3pts)	2.	(V 6.1.4) Find a formula for $1+3+5+\cdots+(2n-1)$, for $n \ge 1$, and prove that your formula is correct. (<i>Hint:</i> First try some particular values of n and look for a pattern.)

(3pts)	3.	Use "strong" induction (i.e., the 2nd Principle of Induction) to prove that any amount of postage greater than or equal to 12 cents can be obtained using only 4-cent and 5-cent stamps.

Score for this page: _____ out of 3

(3pts)	4.	In any group of k people, $k \ge 1$, each person is to shake hands with every other person. Find a formula for the number of handshakes, and prove the formula by induction.

Score for this page: _____ out of 3

(3pts)	5.	(6.2.3) Suppose R is a total order on a set A . $B \subseteq A$ has an R -smallest element.	Prove that every	finite, nonempty set

6. The sequence $1, 1, 2, 3, 5, 8, 13, \ldots$ of *Fibonacci numbers* is defined recursively as follows:

$$F(0) = 1, \quad F(1) = 1,$$

 $F(n) = F(n-1) + F(n-2), \quad n \ge 2.$

(2pts) (a) Prove the following property of the Fibonacci numbers directly (i.e., without using induction): $(\forall n \geq 6)$ (F(n) = 5F(n-4) + 3F(n-5)).

(2pts) (b) Prove the following property of the Fibonacci numbers using the 2nd Principle of Induction: $(\forall n \geq 1) \ (F(n) < 2^n)$.

- (3pts) 7. Solve the recurrence relation. That is, give a closed form (i.e., non-recursive) expression defining F(n).
 - (i) F(1) = 2.
 - (ii) $F(n) = 2F(n-1) + 2^n$ for $n \ge 2$.

(3pts) 8. (6.2.15) What's wrong with the following proof that if $A \subseteq \mathbb{N}$ and $0 \in A$ then $A = \mathbb{N}$?

Proof. We will prove by induction that $(\forall n \in \mathbb{N})(n \in A)$.

Base case: If n = 0, then $n \in A$ by assumption.

Induction step: Let $n \in \mathbb{N}$ be arbitrary, and suppose that $n \in A$. Since n was arbitrary, it follows that every natural number is an element of A, and therefore in particular $n+1 \in A$.

Question:	1	2	3	4	5	6	7	8	Total
Points:	3	3	3	3	3	4	3	3	25
Score:									