PHIT Physik für Informatik	Auftrag 1 Simulation eines Zweikörperproblems	Zürcher Hochschule für Angewandte Wissenschaften
Autoren	Marcel Derrer, Rémi Georgiou	School of
Datum	25. Oktober 2014	Engineering
		avv

Simulation eines Zweikörperproblems

Ausgangssituation

Die Mondumlaufbahn gleicht einer Ellipse und die Grosse Halbachse der Mondumlaufbahn um die Erde entspricht $384.4\cdot 10^6$ Metern.

Abbildung 1: Zweikörpersystem Erde und Mond, nicht massstabsgetreu

Anfangsbedingungen

S : Baryzentrum	
(Massenmittelpunkt des Erde-Mond-Systems)	v = const = 0
Nullpunkt des Koordinatensystems für die Simulation	
$r_{ m 0}$: mittlere Distanz zwischen Baryzentrum S und	$384.4 \cdot 10^6 \ m$
Mondschwerpunkt (= grosse Halbachse)	304.4 · 10 · III
$r_{\!\scriptscriptstyle 1}$: Distanz zwischen Baryzentrum und Erdschwerpunkt $^{\scriptscriptstyle 1}$	$4.671 \cdot 10^6 m$
$r_{\!\scriptscriptstyle E}$: Erdradius im Mittel	$6.371 \cdot 10^6 m$
m_E : Masse der Erde	$5.974 \cdot 10^{24} kg$
m_{M} : Masse des Mondes	$7.349 \cdot 10^{22} kg$
γ : Gravitationskonstante	$6.67384 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$

 $^{^{\}rm 1}$ Wir nehmen an, dass das Baryzentrum 1700 km unterhalb der Erdoberfläche liegt.

PHIT Physik für Informatik	Auftrag 1 Simulation eines Zweikörperproblems	Zürcher Ho für Angewa
Autoren	Marcel Derrer, Rémi Georgiou	5
Datum	25. Oktober 2014	

A. Systemgleichungen

Die Anziehungskraft zwischen der Erde und dem Mond lässt sich mit dem newtonschen Gravitationsgesetz bestimmen:

$$F_{Erde-Mond} = -\gamma \frac{m_{Erde} \cdot m_{Mond}}{|r_0|^2} \cdot \frac{r_0}{|r_0|} = -1.987 \cdot 10^{20} \, N$$

Es gilt: $F_{Erde-Mond} = -F_{Mond-Erde}$

$$F_{Erde-Mond} = m_{Erde} \cdot \begin{pmatrix} \ddot{x}_{Erde} \\ \ddot{y}_{Erde} \end{pmatrix}$$

Distanz zwischen Erde und Mond zum Zeitpunkt t

$$|r_d| = \sqrt{(x(t)_{Erde} - x(t)_{Mond})^2 + (y(t)_{Erde} - y(t)_{Mond})^2}$$

Beschleunigungen:

$$a_{y_{Erde}} = \frac{\gamma \cdot m_{Mond}}{|r_d|^3} \cdot (y_{Mond} - y_{Erde})$$

$$a_{y_{Mond}} = \frac{\gamma \cdot m_{Erde}}{|r_d|^3} \cdot (y_{Erde} - y_{Mond})$$

Die Formeln für die Beschleunigungen in x-Richtung sind analog.

Winkelgeschwindigkeit:

Die Formel für die Winkelgeschwindigkeit eines Objekts ist $\omega = \frac{2\pi}{T}$, wobei T die Periode ist.

Für den Mond wird eine Umlaufzeit von 28 Tagen angenommen, was 2'419'200 Sekunden entspricht.

$$\omega_{Mond} = \omega_{Erde} = \frac{2\pi}{2419200s} = 2.59 \cdot 10^{-6} s^{-1}$$

Wir überprüfen unsere bisherigen Ergebnisse unter der Annahme, dass $\vec{a} = -\omega^2 \cdot \overrightarrow{r_0}$ gilt.

Der Gravitationskraft wirkt eine Zentripetalkraft entgegen, sonst würden sich beide Himmelskörper immer mehr annähern.

$$F_{z Mond} = -m_{Mond} \cdot \omega_{Mond}^{2} \cdot \overrightarrow{r_0} = 1.9 \cdot 10^{20} N$$

PHIT Physik für Informatik	Auftrag 1 Simulation eines Zweikörperproblems	Zürcher Hochschule für Angewandte Wissenschaften
Autoren	Marcel Derrer, Rémi Georgiou	School of
Datum	25. Oktober 2014	Engineering
		avv

Mit der Winkelgeschwindigkeit des Mondes lässt sich seine mittlere Bahngeschwindigkeit um den Erde-Mond-Schwerpunkt (Baryzentrum) berechnen.

$$v_{0_Mond} = \omega_{Mond} \cdot r_0 = 998,37 \text{ m/s}$$

Aus dem Energieerhaltungssatz leiten wir die mittlere Bahngeschwindigkeit der Erde ab.

$$\frac{1}{2} m_{Mond} \cdot v_{o_{Mond}} = \frac{1}{2} m_{Erde} \cdot v_{0_Erde}$$

$$v_{0_Erde} = \omega_{Erde} \cdot r_1 = 12,13 \text{ m/s}$$

Mondumlaufbahn um das Baryzentrum bei einem $1/r^2$ -Gesetz

Abbildung 2: Mondumlaufbahn bei 1/r²-Gesetz

PHIT Physik für Informatik	Auftrag 1 Simulation eines Zweikörperproblems
Autoren	Marcel Derrer, Rémi Georgiou
Datum	25. Oktober 2014

B. Ergebnisse aus Berkeley Madonna-Simulation

Abbildung 3: Simulationsmodell in Berkeley Madonna

Abbildung 4: Koordinaten der Erde im Verlauf der Zeit

PHIT Physik für Informatik	Auftrag 1 Simulation eines Zweikörperproblems
Autoren	Marcel Derrer, Rémi Georgiou
Datum	25. Oktober 2014

Abbildung 5:Koordinaten des Mondes im Verlauf der Zeit

C. Zeitschritte und Verfahren

Bei Versuchen ab Zeitschritten dt=200 erkennen wir Ungenauigkeiten mit dem Euler-Verfahren.

Die RK2 ist schon bedeutend genauer, erst ab einem Zeitschritt von dt=10'000 lässt sich ein Unterschied zur RK4-Methode erkennen.

D. Versuche mit verändertem Exponenten

Abbildung 6: elliptische Mondumlaufbahn bei $1/r^2$

PHIT Physik für Informatik	Auftrag 1 Simulation eines Zweikörperproblems	
Autoren	Marcel Derrer, Rémi Georgiou	
Datum	25. Oktober 2014	

Abbildung 7: elliptische Mondumlaufbahn bei $1/r^{2.01}$

Schon bei sehr kleinen Erhöhungen des Exponenten wird die grosse Halbachse der Ellipse stark vergrössert.