Lecture 16 Numerical Approximations for IVP MA 322: Scientific Computing

by BHUPEN DEKA DEPARTMENT OF MATHEMATICS IIT GUWAHATI, ASSAM

1 Convergence of Euler Method

Our IVP

$$y' = f(x, y), \ y(x_0) = y_0.$$
 (1)

1.1 Example

Like earlier, let us discuss Euler method for a numerical example.

Example: Consider the IVP

$$y' = \frac{1}{1+x^2} - 2y^2, \ y(0) = 0.$$
 (2)

The true solution is given by

$$y(x) = \frac{x}{1+x^2} \tag{3}$$

and the numerical solutions at different points for different h are presented in the following table (Source: An Introduction to Numerical Analysis, by Atkinson) using the Euler scheme

$$y_{n+1} = y_n + hf(x_n, y_n), \quad y_0 = 0 \quad \& \quad x_{n+1} = x_n + h, \quad x_0 = 0.$$
 (4)

	Euler's method			
	х	$y_h(x)$	y(x)	$y(x)-y_h(x)$
h = .2	0.00	0.0	0.0	0.0
	.40	.37631	.34483	03148
	.80	.54228	.48780	05448
	1.20	.52709	.49180	03529
	1.60	.46632	.44944	01689
	2.00	.40682	.40000	00682
h = .1	.40	.36085	.34483	01603
	.80	.51371	.48780	02590
	1.20	.50961	.49180	01781
	1.60	.45872	.44944	00928
	2.00	.40419	.40000	00419
h = .05	.40	.35287	.34483	00804
	.80	.50049	.48780	01268
	1.20	.50073	.49180	00892
	1.60	.45425	.44944	00481
	2.00	.40227	.40000	00227

In order to assess the accuracy of the numerical method (4), we define the error, e_n , by

$$e_n = y(x_n) - y_n. (5)$$

Now, we wish to show that, for Euler method, the error at each grid point decreases to zero as h decreases to 0. The associated theory is called convergence theory. In developing convergence theory, we will require some preliminary results.

Lemma 1.1 If the numbers $|E_i|$, i = 0, 1, 2, 3, ..., n, satisfy

$$|E_{i+1}| \le A|E_i| + B, \quad i = 0, 1, 2, 3, \dots, n-1$$
 (6)

where A and B are nonnegative constants and $A \neq 1$, then

$$|E_i| \le A^i |E_0| + \frac{A^i - 1}{A - 1} B, \ i = 1, 2, 3, \dots, n.$$
 (7)

Proof. For i = 0, (6) yields

$$|E_1| \le A|E_0| + B = A|E_0| + \frac{A-1}{A-1}B,$$

so that (7) is valid for i = 1. The proof is now completed by induction. Assume that for fixed i, (7) is valid, that is

$$|E_i| \le A^i |E_0| + \frac{A^i - 1}{A - 1} B.$$
 (8)

Then we must prove that

$$|E_{i+1}| \le A^{i+1}|E_0| + \frac{A^{i+1} - 1}{A - 1}B.$$
 (9)

Using (8) in (6), we obtain

$$|E_{i+1}| \le A \left[A^i |E_0| + \frac{A^i - 1}{A - 1} B \right] + B = A^{i+1} |E_0| + \frac{A^{i+1} - 1}{A - 1} B$$

and the proof is completed.

Remark: The value of Lemma 1.1 is as follows:

• If each term of a sequence $\{|E_i|: i=0, 1, 2, \ldots\}$ is related to the previous term by (6), then Lemma 1.1 enables one to relate each term directly to $|E_0|$ only, that is, to the very first term of the sequence.

Now, we are in a position to discuss the main result of this lecture.

Theorem 1.1 Suppose y is an unique solution for the IVP

$$y' = f(x, y), \ y(0) = \alpha$$
 (10)

in I = [0, L], L > 0. Assume that y' and y'' are continuous and that there exist positive constants M, N such that

$$|y''(x)| \le N \& \left| \frac{\partial f}{\partial y} \right| \le M, \quad 0 \le x \le L, \quad -\infty < y < \infty.$$
 (11)

Next, let I be subdivided into n equal parts by the grid points $x_0 < x_1 < x_2 < \ldots < x_n$, where $x_0 = 0$ and $x_n = L$. The grid size is given by $h = \frac{L}{n}$. Let y_k be the numerical solution of (10) by Euler's method on the grid point x_k , so that

$$y_{k+1} = y_k + h f(x_k, y_k), \quad y_0 = \alpha, \quad k = 0, 1, 2, \dots, n-1.$$
 (12)

Finally, define the error e_k at each grid point x_k by

$$e_k = y(x_k) - y_k \quad k = 0, 1, 2, \dots, n.$$
 (13)

Then

$$|e_k| \le \frac{\left[(1+Mh)^k - 1 \right] Nh}{2M}, \quad k = 0, 1, 2, \dots, n.$$
 (14)

Proof. First observe that

$$|e_{k+1}| = |y(x_{k+1}) - y_{k+1}| = |y(x_k + h) - y_{k+1}|.$$

Introducing Taylor expansion for $y(x_k + h)$ implies

$$|e_{k+1}| = |y(x_k + h) - y_{k+1}| = |y(x_k) + hy'(x_k) + \frac{h^2}{2}y''(\xi_k) - (y_k + hf(x_k, y_k))|$$

$$= |(y(x_k) - y_k) + h(y'(x_k) - f(x_k, y_k)) + \frac{h^2}{2}y''(\xi_k)|$$

$$= |e_k + h(f(x_k, y(x_k)) - f(x_k, y_k)) + \frac{h^2}{2}y''(\xi_k)|$$

$$= |e_k + h(f(x_k, Y_k) - f(x_k, y_k)) + \frac{h^2}{2}y''(\xi_k)|, Y_k = y(x_k).$$
(15)

Now, by the MVT for a function of two variables, we obtain

$$f(x_k, Y_k) - f(x_k, y_k) = (Y_k - y_k) \frac{\partial f}{\partial y}(x_k, \eta_k) = e_k \frac{\partial f}{\partial y}(x_k, \eta_k), \tag{16}$$

where η_k is areal number between $Y_k = y(x_k)$ and y_k . Using above identity in (15), we arrive at

$$|e_{k+1}| = \left| e_k + he_k \frac{\partial f}{\partial y}(x_k, \eta_k) + \frac{h^2}{2} y''(\xi_k) \right|$$

$$\leq |e_k| + h|e_k|M + \frac{h^2}{2} N. \tag{17}$$

Here, we have used (11). Therefore, we arrive at

$$|e_{k+1}| \le |e_k|(1+Mh) + \frac{h^2}{2}N$$
 (18)

which together with Lemma 1.1, for A=(1+Mh) and $B=\frac{h^2}{2}N,$ we obtain

$$|e_k| \le (1+Mh)^k |e_0| + \frac{(1+Mh)^k - 1}{(1+Mh) - 1} \left(\frac{h^2}{2}N\right).$$
 (19)

However, since $e_0 = y(x_0) - y_0 = \alpha - \alpha = 0$, estimate (20) simplifies to

$$|e_k| \le \frac{(1+Mh)^k - 1}{Mh} \left(\frac{h^2}{2}N\right)$$

$$= \frac{\left[(1+Mh)^k - 1\right]Nh}{2M}.$$
(20)

This completes the rest of the proof.

Corollary 1.1 Now, for $x \ge -1$, use the fact that

$$0 < (1+x)^m < e^{mx}$$

 $to \ have$

$$|e_k| \le \frac{\left(e^{Mhk} - 1\right)Nh}{2M} = \frac{\left(e^{Mx_k} - 1\right)Nh}{2M}, \quad x_k = x_0 + kh = kh$$

$$\le \frac{\left(e^{Mx_n} - 1\right)Nh}{2M} = \frac{\left(e^{ML} - 1\right)Nh}{2M}, \quad L = x_n. \tag{21}$$

Thus, there exists a positive constant C independent of the mesh parameter h such that

$$|e_k| \le Ch, \quad C = \frac{\left(e^{ML} - 1\right)N}{2M}, \quad k = 0, 1, 2, \dots, n.$$
 (22)

In particular, we obtain

$$|e_n| < Ch \to 0 \quad as \quad h \to 0. \tag{23}$$

Remark 1.2 At each grid point, roughly, we obtain

 $|\text{error}| \approx Ch$, where C is independent of h.

Therefore, when h is halved, we obtain

$$|\text{new error}| \approx C \frac{h}{2},$$

so that

$$\frac{|\text{new error}|}{|\text{error}|} \approx \frac{1}{2}.$$

Hence, the error at each point grid point decreases by about half when h is halved.