

Studienbereich Wirtschaft

Studienrichtungsbeschreibung

Wirtschaftsinformatik - Data Science

Stand 20.04.2018

Studienrichtung Data Science

Halbjahr	1. Stud	ienjahr	2. Stu	dienjahr	3. Stu	dienjahr
Modul- bereiche	1. Semester	2. Semester	3. Semester	4. Semester	5. Semester	6. Semester
	5 CP [60]		15 C	P [165]	10 CP [100]	
	Data Science Fundamentals (5)		Big Data (5)		Data Management (5)	
	Introduction to Data Science [30]	Data Visualization [30]	Big Data Programming [28]	Big Data Storage [27]	Data Management Fundamentals [25]	Advanced Data Management [25]
Studien- richtungs- kernmodule				ng Fundamentals (5)		chine Learning (5)
(30) [325]			Applied Machine Learning Fundamentals [28]	Data Exploration Project [27]	Advanced Applied Machine Learning [25]	Machine Learning Project [25]
				and Optimization (5)		
			Social Network Analysis [28]	Applied Optimization Techniques [27]		
Studienrich- tungswahl-					Forschungsseminar Informatik (5)	
fach I (5) [50]					Forschungs- seminar I [25]	Forschungs- seminar II [25]
Studienrich- tungswahl-						Engineering (5)
fach II (5) [50]					Software Enginee- ring I [25]	Software Enginee- ring II [25]

Baden-Württemberg Studienbereich Wirtschaft

Data Science Fundamentals (W3WI_DS301)

Formale Angaben zum Modul				
Studiengang	Studienrichtung	Vertiefung		
-	Data Science	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Science Fundamentals	Deutsch/Englisch	W3WI_DS301	1	Pfisterer, Prof. Dr. Dennis; Mannheim

Verortung des Moduls im Studienverlauf					
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
1. Stj.		Studienrichtungskernmodul	2		

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Seminar, Übung		
Lehrmethoden	-		

Prüfungsleistung	Prüfungsumfang (in min)			
Portfolio	•			
Bestandteile Kombinierte Prüfungsleistung				
-				

Workload und ECTS					
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte		
150,0	60,0	90,0	5		

	Qualifikationsziele und Kompetenzen					
Fachkompetenz	Data Scientists besitzen Ihre Kernkompetenz in der Analyse von Daten und deren Nutzbarmachung im Unternehmenskontext zur Entwicklung neuer oder zur Verbesserung bestehender Geschäftsmodelle. Dabei benötigen sie fundierte Kenntnisse im Bereich der Softwareentwicklung mit einem Fokus auf Big Data, Visualisierung, Datenmanagement sowie in der Anwendung von Algorithmen zum maschinellen Lernen und der Optimierung. Sie analysieren die verfügbaren Daten und definieren geeignete IT-Konzepte zu deren effizienten Verarbeitung und sicheren Speicherung in den entsprechenden Informationssystemen. Die Studierenden lernen dieses komplexe und vielschichtige Thema aus verschiedenen Blickwinkeln kennen und entwickeln ein Verständnis für datengetriebene Geschäftsmodelle und die Möglichkeiten, die aus digitalen Massendaten entstehen. Des Weiteren sind sie in der Lage, rohe und verarbeitete Daten auf verschiedene Arten zu visualisieren und ansprechend darzustellen.					
Methodenkompetenz	Die Studierenden sind in der Lage die spezifischen Eigenschaften von Data Science zu benennen und in der Praxis insofern anzuwenden als sie die Möglichkeiten und Potenziale zur Anwendung dieses Gebiets auf existierende Geschäftsmodelle und Systeme erkennen können. Des Weiteren sind sie in der Lage die Visualisierung von Daten zielgruppengerecht und zielorientiert maßzuschneidern.					
Personale und Soziale Kompetenz	Die Studierenden haben den sozialen Charakter ihrer Vermittlerrolle als Wirtschaftsinformatiker und Data Scientists verstanden und können dies in ersten Ansätzen umsetzen. Sie können selbständig nicht zu komplexe Teilaufgaben in der bearbeiten und können die notwendigen Kommunikationstechniken einsetzen, z. B. um Losungen mit anderen Personen zu diskutieren. Sie sind in der Lage, verschiedene soziale Perspektiven auf Problemstellungen zu erkennen und zu berücksichtigen.					
Übergreifende Handlungskompetenz	Die Studierenden können ihre Kenntnisse auf praxisorientierte Fragestellungen im Rahmen von Systemanalyse und -entwurf anwenden, selbständig Problemlösungen erarbeiten und diese im sozialen Prozess erläutern und abstimmen.					

Lerneinheiten und Inhalte					
Lehr- und Lerneinheiten	Präsenz	Selbststudium			
Introduction to Data Science	30,0	45,0			
 Grundlagen der Fachrichtung Data Science Kennenlernen der fundamentalen Eigenschaften und Kompetenzen eines Data Scientists Abgrenzung zu klassischer Informatik und Anwendungsentwicklung Vorstellung von Use Cases und Fallstudien aus dem Bereich Data Science 					
Data Visualization	30,0	45,0			
 Grundlagen der visuellen Kommunikation und der Visualisierung von Daten Einsatz verschiedener aktueller Werkzeuge, um Datensätze zu filtern und zu visualisieren Nutzung von programmiersprachlichen Konstrukten zur Datenvisualisierung 					

Voraussetzungen

_

Literatur

- Cielen, D.; Meysman, Arno D. B.: Introducing Data Science, Manning,
- Grus, J.: Data Science from Scratch, O'Reilly and Associates
- Haider, M.: Getting Started with Data Science: Making Sense of Data with Analytics, IBM Press
- Nussbaumer Knaflic, C.: Storytelling with Data: A Data Visualization Guide for Business Professionals, John Wiley & Sons
- Evergreen, S. D. H.: Effective Data Visualization: The Right Chart for the Right Data

Weitere Literatur in der Veranstaltung.

Baden-Württemberg Studienbereich Wirtschaft

Big Data (W3WI_DS302)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	Data Science	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Big Data	Deutsch/Englisch	W3WI_DS302	1	Pfisterer, Prof. Dr. Dennis; Mannheim

Verortung des Moduls im Studienverlauf					
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer		
2. Stj.		Studienrichtungskernmodul	2		

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Seminar, Übung, Case Study
Lehrmethoden	-

Prüfungsleistung	Prüfungsumfang (in min)
Klausur oder Portfolio	-
Bestandteile Kombinierte Prüfungsleistung	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	55,0	95,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen verschiedene Vorgehensweisen, Technologien und Architekturen zur Analyse, Nutzung, Sammlung, Verwertung und Vermarktung digitaler Massendaten. Sie erlangen Kompetenz in der Analyse von Daten und deren Nutzbarmachung im Unternehmenskontext zur Entwicklung neuer oder zur Verbesserung bestehender Geschäftsmodelle. Sie lernen vor allem aktuelle Trends und Technologien kennen, um diese Daten zu verarbeiten (z. B. mittels Batch- und Stream-Verarbeitung im Big Data-Kontext) und zu speichern (z.B. via NoSQL-Datenbanken oder verteilte Dateisysteme). Dabei werden vor allem horizontal skalierende Systeme vorgestellt und angewendet.	
Methodenkompetenz	Die Studierenden können – bezogen auf berufliche Aufgabenstellungen – die Relevanz bestimmter Technologien in Bezug auf deren Eignung zur Lösung einer Problemstellung einschätzen und die Grenzen bestimmter Ansätze beurteilen. Sie sind in der Lage, betriebliche Aufgabenstellungen unter Nutzung existierender Frameworks aus dem Big Data-Umfeld zu lösen, zu implementieren und in Betrieb zu nehmen. Dabei sind sie in der Lage, das komplexe Zusammenspiel zu verstehen und zu abstrahieren. Aufbauend auf dieser Abstraktionsfähigkeit können Sie eine betriebliche und betriebswirtschaftlich getriebene Problemstellung in eine informationstechnische Architektur überführen, diese schrittweise verfeinern, die in Frage kommenden Alternativen bewerten und schließlich auch prototypisch implementieren.	
Personale und Soziale Kompetenz	Die Studierenden sollen selbständig und eigenverantwortlich eine Fragestellung bearbeiten, sich dazu eigenständig in neue Themengebiete einarbeiten und dabei autonom Recherchearbeit leisten. Im Falle einer gemeinsamen Erarbeitung eines Themas werden zusätzlich Teamfähigkeit, Konfliktfähigkeit und Kommunikations-fähigkeit gefördert.	
Übergreifende Handlungskompetenz	Die Studierenden können ihre Kenntnisse auf praxisorientierte Fragestellungen im Rahmen von Big Data-Problemstellungen anwenden, selbständig Problemlösungen erarbeiten und diese im sozialen Prozess erläutern und abstimmen.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Big Data Programming	28,0	47,0
 Einführung in das Themengebiet Big Data-Programmierung Erläuterung der horizontalen Skalierung von Systemen bei der Verarbeitung digitaler Massendaten Darstellung von Eigenschaften sowie Vor- und Nachteilen horizontaler Skalierung Einführung in die verteilte Verarbeitung digitaler Massendaten 		

- Einführung in Batch- und Stromverarbeitung
- Vorstellung aktueller Frameworks, Bibliotheken, Programmiersprachen, etc.
- Umsetzung von Praxisbeispielen
- Thematisierung aktueller Entwicklungen

Big Data Storage 27,0 48,0

- Einführung in das Themengebiet Big Data-Storage
- Erläuterung der horizontalen Skalierung von Systemen bei der Speicherung digitaler Massendaten
- Darstellung von Eigenschaften sowie Vor- und Nachteilen horizontaler Skalierung und Abgrenzung zu traditionellen Vorgehensweisen
- Einführung in die Speicherung digitaler Massendaten unter Nutzung verschiedener Speicher- und Zugriffsarten (Dateisysteme, Datenbanken, etc.)
- Vorstellung aktueller Frameworks, Bibliotheken, Programmier- und Abfragesprachen, etc.
- Umsetzung von Praxisbeispielen
- Thematisierung aktueller Entwicklungen

Besonderheiten und Voraussetzungen Besonderheiten -

Voraussetzungen

-

Literatur

- Marz, N.; Warren, J.: Big Data: Principles and best practices of scalable realtime data systems, Manning
- Provost, F.; Fawcett, T.: Data Science for Business: What you need to know about data mining and data-analytic thinking, O'Reilly and Associates
- Mayer-Schönberger, V.: Big Data: A Revolution That Will Transform How We Live, Work and Think, Hodder and Stoughton Ltd.
- Marr, B.: Big Data: Using Smart Big Data, Analytics and Metrics To Make Better Decisions and Improve Performance, John Wiley & Sons

Weitere Literatur in der Veranstaltung.

Baden-Württemberg Studienbereich Wirtschaft

Data Management (W3WI_DS303)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	Data Science	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Management	Deutsch/Englisch	W3WI_DS303	1	Martin, Prof. Dr. Clemens; Mannheim

	Verortung des Moduls im S	tudienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungskernmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Case Study
Lehrmethoden	

Prüfungsleistung	Prüfungsumfang (in min)
Klausur oder Portfolio	•
Bestandteile Kombinierte Prüfungsleistung	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	50,0	100,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden sind in der Lage, Grundlagen der Datenqualität, Datensicherheit und Informationssicherheit und deren Konzepte zu diskutieren. Sie können Grundlagenkonzepte des Datenschutzes und der Datensicherheit erläutern. Die Studierenden kennen die gängigen Verfahren zum Datenschutz und zu Datensicherheit und können ein für eine Aufgabenstellung geeignetes Verfahren auswählen. Sie können Integritätsverletzungen mit Methoden der IT-Forensik analysieren und sind in der Lage, aus Governance-Richtlinien Maßnahmen abzuleiten und einfache Maßnahmen umzusetzen. Die Studierenden können Wirtschaftlichkeitsbetrachtungen für Maßnahmen der Datenqualität und des Datenschutzes nachvollziehen und in einfachen Szenarien selbständig erstellen. Sie verstehen die Bedeutung des Data Managements im Rahmen der Unternehmensstrategie und können auf die Unternehmensziele abgestimmte Sicherheitsrichtlinien analysieren und entwerfen.	
Methodenkompetenz	Studierende kennen Methoden und Verfahren zur Datenqualitätssicherung, Datensicherheit und Datenschutz. Sie können einfache Data Governance-Richtlininen konzipieren und Maßnahmen umsetzen.	
Personale und Soziale Kompetenz	Die Studierenden, wissen um die Sensibilität von personenbezogenen Daten und um die Wichtigkeit betrieblicher Daten. Sie können mit ihnen anvertrauten Daten verantwortungsvoll umgehen.	
Übergreifende Handlungskompetenz	In spezifischen Anwendungsszenarien können die Studierenden geeignete Methoden zur Problemlösung abgrenzen und auswählen sowie konkrete Vorschläge für Richtlinien zu Daten Qualität, Datenschutz und -sicherheit innerhalb des Unternehmens entwickeln.	

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Data Management Fundamentals	25,0	50,0		
Datenqualität, Integrität, Ownership, Data Cleaning, Data Governance, Rechtlicher Rahmen, einschlägige Vorschriften und Standards, Compliance and Policies, Assessment and Auditing, Kostenmodelle, Datenqualität und Genauigkeit bei Big Data				
Advanced Data Management	25,0	50,0		
Datenschutz, Datensicherheit, Grundlagen IT Sicherheit, Confidentiality, Integrity, Availibility, Grundlagen der Kryptographie, symmetrische und asymmetrische Verschlüsselung, Public Key Verfahren, digitale Signaturen, Grundlagen der IT-Forensik				

Voraussetzungen

|-

Literatur

- Bishop, M.: Computer Security, Art and Science. Boston (Mass.)
- BSI: IT-Grundschutz-Standards. www.bsi.bund.de, https://www.bsi.bund.de/cln_165/DE/Themen/ITGrundschutz/itgrundschutz_node.html[23.01.2010].
- BSI, Leitfaden Informationssicherheit. www.bsi.bund.de, https://www.bsi.bund.de/cln_165/DE/Themen/ITGrundschutz/itgrundschutz_node.html[23.01.2010].
- Dykstra, T.; Rogers, R., Miles, G. et al.: Security Assessment: Case Studies for Implementing the NSA IAM, Syngress Media.
- Geschonneck A.: Computer-Forensik Computerstraftaten erkennen, ermitteln, aufklären, dpunkt

Ladley, J.; Data Governance: How to Design, Deploy and Sustain an Effective Data Governance Program (The Morgan Kaufmann Series on Business Intelligence), Morgan Kaufmann

- Scheuch, R. Gansor, T., Ziller C.: Master Data Management: Strategie, Organisation, Architektur, tdwi

Weitere Literatur in der Veranstaltung.

Baden-Württemberg Studienbereich Wirtschaft

Machine Learning Fundamentals (W3WI_DS304)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	Data Science	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Machine Learning Fundamentals	Deutsch/Englisch	W3WI_DS304	1	Schnattinger, Prof. Dr. Klemens; Lörrach

Verortung des Moduls im Studienverlauf				
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer	
2. Stj.		Studienrichtungskernmodul	2	

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Vorlesung, Übung, Laborübung, Case Study		
Lehrmethoden	-		

Prüfungsleistung Prüfungsumfang (in min)	
Kombinierte Modulprüfung	-
Bestandteile Kombinierte Prüfungsleistung	
Klausur, Projektbericht (mit Präsentation)	

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	55,0	95,0	5	

Qualifikationsziele und Kompetenzen			
Fachkompetenz	Die Studierenden kennen Anwendungsgebiete des Maschinellen Lernens und kennen übliche Verfahren und Methoden des Maschinellen Lernens.		
Methodenkompetenz	Die Studierenden können Methoden des Maschinellen Lernens nach ihrer Güte beurteilen.		
Personale und Soziale Kompetenz			
Übergreifende Handlungskompetenz	Die Studierenden können für bestimmte Anwendungsszenarien geeignete Verfahren des Maschinellen Lernens auswählen und erfolgreich einsetzen.		

erroigreich einsetzen.				
Lerneinheiten und Inha	alte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Applied Machine Learning Fundamentals	28,0	47,0		
Auszug aus den unten genannten Methoden und Verfahren:				

- Beispiele für Anwendungen des Machine Learnings
- Supvervised Learning Verfahren (z.B. Backpropagation, Neuronale Netze, Perceptron)
- Bayes'sche Entscheidungstheorie
- Unsupervised Learning-Verfahren (z.B. Propagation, Boltzmann Maschine, Bayes'sche Statistik)
- Classification vs. Clustering

Dabei soll der Fokus auf den Eigenschaften und Anwendungen der Algorithmen liegen.

Data Exploration Project 27,0 48,0

Anwendung von Methoden und Verfahren des Maschinellen Lernens auf eine vorgegebene Datenbasis unter Laborbedingungen. Verwendung von üblichen Repositorien wie Hadoop/Spark/Flink/Mahout, Python-RASBT, R, etc. Ein besonderer Fokus soll auf einer ganzheitlichen wirtschaftsinformatischen Betrachtung liegen. Es soll dabei neben der informatischen Betrachtung auch der betriebswirtschaftliche Nutzen, z.B. anhand eines Use Cases, betrachtet werden.

Voraussetzungen

-

Literatur

- Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press
- Bell, J.: Machine Learning: Hands-On for Developers and Technical Professionals, John Wiley & Sons
- Guido, S.; Mueller, A.: Introduction to Machine Learning with Python, O'Reilly Media, Inc
- Kellehe, J.; Mac Namee, B.; D'Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, MIT Press
- Lantz, B.: Machine Learning with R, Packt Publishing
- Mueller, J.; Massaron, L.: Machine Learning For Dummies, John Wiley & Sons
- $Shalev-Shwartz, S.; Ben-David, S.: Understanding \ Machine \ Learning: From \ Theory \ to \ Algorithms, \ Cambridge \ University \ Press$
- Witten, I.; Frank, E.; Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann

Baden-Württemberg Studienbereich Wirtschaft

Advanced Machine Learning (W3WI_DS305)

Formale Angaben zum Modul				
Studiengang Studienrichtung Vertiefung				
-	Data Science	-		

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Advanced Machine Learning	Deutsch/Englisch	W3WI_DS305	1	Schnattinger, Prof. Dr. Klemens; Lörrach

Verortung des Moduls im Studienverlauf					
Semester	Semester Voraussetzungen für die Teilnahme Modulart Moduldaue				
3. Stj.		Studienrichtungskernmodul	2		

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Laborübung, Case Study
Lehrmethoden	-

Prüfungsleistung	Prüfungsumfang (in min)
Kombinierte Modulprüfung	-
Bestandteile Kombinierte Prüfungsleistung	
Klausur, Projektbericht (mit Präsentation)	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	50,0	100,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden haben sich weiter in die Anwendungsgebiete des Maschinellen Lernens vertieft und kennen weiterführende Verfahren und Methoden des Maschinellen Lernens.	
Methodenkompetenz	Die Studierenden können Methoden des Maschinellen Lernens vergleichen und einschätzen für welche themengebiete sie verwendet werden können.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden können für viele Anwendungsszenarien geeignete Verfahren des Maschinellen Lernens auswählen und erfolgreich zur Problemlösung im Unternehmen einsetzen.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Advanced Applied Machine Learning	25,0	50,0
Themen, die im Modul Machine Learning Fundamentals nicht besprochen wurden, wie z.B.:		

- Entscheidungsbäume

- Hidden Markov Modelle

- Reinforcement Learning

- Support Vektor Machine

Dabei soll der Fokus auf den Eigenschaften und Anwendungen der Algorithmen liegen.

Machine Learning Project 25,0 50,0

Anwendung von Methoden und Verfahren, die nicht in der Lehrveranstaltung Data Exploration Project verwendeten wurde, auf eine vorgegebene Datenbasis unter Laborbedingungen. Verwendung von üblichen Repositorien wie Hadoop/Spark/Flink/Mahout, Python-RASBT, R, etc. Ein besonderer Fokus soll auf einer ganzheitlichen wirtschaftsinformatischen Betrachtung liegen. Es soll dabei neben der informatischen Betrachtung auch der betriebswirtschaftliche Nutzen, z.B. anhand eines Use Cases, betrachtet werden.

Voraussetzungen

-

Literatur

- Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning), MIT Press
- Bell, J.: Machine Learning: Hands-On for Developers and Technical Professionals, John Wiley & Sons
- Guido, S.; Mueller, A.: Introduction to Machine Learning with Python, O'Reilly Media, Inc
- Kellehe, J.; Mac Namee, B.; D'Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies, MIT Press
- Lantz, B.: Machine Learning with R, Packt Publishing
- Mueller, J.; Massaron, L.: Machine Learning For Dummies, John Wiley & Sons
- Shalev-Shwartz, S.; Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press
- Witten, I.; Frank, E.; Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann

Software-Quellen:

- http://mahout.apache.org/
- http://www.kdnuggets.com/2014/11/r-hadoop-make-machine-learning-possible-everyone.html
- http://www.kdnuggets.com/2015/06/top-20-r-machine-learning-packages.html

Baden-Württemberg Studienbereich Wirtschaft

Data Analysis and Optimization (W3WI_DS306)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	Data Science	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Analysis and Optimization	Deutsch/Englisch	W3WI_DS306	1	Reichwald, Prof. Dr. Julian; Mannheim

	Verortung des Moduls im S	tudienverlauf	
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
2. Stj.		Studienrichtungskernmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung
Lehrmethoden	-

Prüfungsleistung	Prüfungsumfang (in min)
Klausur oder Portfolio	•
Bestandteile Kombinierte Prüfungsleistung	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	55,0	95,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden können Nutzen und Mehrwert der Integration von Analyseergebnissen sozialer Graphen, Stromdaten sowie unterschiedlichen ggf. simulationsbasierten Optimierungsszenarien und betrieblichen Daten einschätzen und kennen die dafür notwendigen Softwarearchitekturen und -komponenten.	
Methodenkompetenz	Die Studierenden kennen Methoden und Verfahren der Netzwerk- und Stromdatenanalyse, der Verarbeitung komplexer Ereignisse sowie direkte Suchverfahren zur Optimumsuche incl. der dafür notwendigen Infrastrukturen.	
Personale und Soziale Kompetenz	Die Studierenden sollen sachgemäß und verantwortungsbewusst mit allgemein zugänglichen Daten aus sozialen Netzwerken umgehen.	
Übergreifende Handlungskompetenz	In konkreten Anwendungsszenarien können die Studierenden geeignete Methoden zur Problemlösung abgrenzen und auswählen sowie konkrete Architekturvorschläge und Umsetzungsstrategien innerhalb des Unternehmens entwickeln.	

Lerneinheiten und Inhalte			
ehr- und Lerneinheiten Präsenz Selbststudium			
Social Network Analysis	28,0	47,0	
Repräsentation sozialer Netzwerke und Eigenschaften von sozialen Netzwerken: Graphen und Matrizen, Tiefen- und Breitensuche, Dijkstra-, Floyd-Warshall- und A*-Algorithmus. Besonderheiten sozialer Graphen und deren Eigenschaften. Implementierung von beispielhaften Analyseszenarien auf Basis vorgegebener oder simulierter Daten.			
Applied Optimization Techniques	27,0	48,0	
Grundlagen der Optimierung Grundlagen der linearen Programmierung Grundlagen der simulationsbasierten/numerischen Optimierung: Definition, Arten von Zielfunktionen und Nebenbedingungen, Lösungsmethoden. Direkte Suchverfahren: Nelder-Mead-Simplex, Complex-Box			

Dabei soll der Fokus auf den Eigenschaften und Anwendungen der Algorithmen liegen.

Metaheuristiken: Evolutionäre Algorithmen, Simulated Annealing, Partikelschwarmoptimierung, Scatter Search.

Besonderheiten und Voraussetzungen

Besonderheiten

Voraussetzungen

Programmieren I, Programmieren II, Mathematik I

Literatur

- Carrington, P.J.; Scott, J.; Wasserman, S.: Models and Methods in Social Network Analysis Cambridge University Press, 2005 Easley, D.: Networks, crowds, and markets. Reasoning about a highly connected world. University Press, New York, 2010
- Newman, M.: Networks. An Introduction. Oxford University Press, 2010
- Papageorgiou, M.; Leibold, M.; Buss, M.: Optimierung Statische, dynamische, stochastische Verfahren für die Anwendung, Springer, 2015 Weitere Literatur in der Veranstaltung.

Baden-Württemberg Studienbereich Wirtschaft

Data Science-Methodik (W3WI_DS402)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	Data Science	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Data Science-Methodik	Deutsch/Englisch	W3WI_DS402	1	Pfisterer, Prof. Dr. Dennis; Mannheim

	Verortung des Moduls im Studienverlauf		
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungswahlmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung, Case Study	
Lehrmethoden	-

Prüfungsleistung	Prüfungsumfang (in min)
Portfolio	-
Bestandteile Kombinierte Prüfungsleistung	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	50,0	100,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen den State-of-the-Art einer Auswahl von aktuellen Themen, Konzepten und Entwicklungen im Bereich Data Science.	
Methodenkompetenz	Aufbauend auf den Grundlagen der beiden ersten Studienjahre können die Studierenden die für die behandelten aktuellen Themen relevanten Methoden beurteilen, einordnen und anwenden.	
Personale und Soziale Kompetenz	Die Studierenden können sich selbständig in ein neues Thema einarbeiten und ihr neu erworbenes Wissen stichhaltig und sachangemessen vermitteln. Sie sind in der Lage, über Chancen und Risiken neuer Konzepte zu argumentieren und Vorteile oder gar visionäre Veränderungen, aber auch Bedenken nachvollziehbar gegenüber anderen zu begründen.	
Übergreifende Handlungskompetenz	Die Studierenden können ein aktuelles Thema in seiner jetzigen oder zukünftigen Relevanz für ihre Tätigkeit im Unternehmen beurteilen. Sie können die vermittelten neuen Konzepte im Rahmen von Fallstudien einsetzen und anwenden.	

Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Einführung in Data Science-Methoden	25,0	50,0
In diesem Modul sollen aktuelle einführende Themen aus allen Bereichen die das Gebiet Data Science tangieren aufgegriffen und den Studierenden vermittelt werden. Es sollen Lehrveranstaltungen nach ihrer aktuellen Bedeutung (auch für die Partnerunternehmen) ausgewählt werden.		
Fortgeschrittene Data Science-Methoden 25,0 50,0		
In diesem Modul sollen aktuelle fortgeschrittene Themen aus allen Bereichen die das Gebiet Data Science tangieren aufgegriffen und den Studierenden vermittelt werden. Es sollen Lehrveranstaltungen nach ihrer aktuellen Bedeutung (auch für die Partnerunternehmen) ausgewählt werden.		

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen
-

	Literatur
Literatur je nach gewählter Vertiefung wird im Unterricht bekannt gegeben.	

Baden-Württemberg Studienbereich Wirtschaft

Software Engineering (W3WI_DS405)

	Formale Angaben zum Modul	
Studiengang	Studienrichtung	Vertiefung
-	Data Science	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Software Engineering	Deutsch/Englisch	W3WI_DS405	1	Pfisterer, Prof. Dr. Dennis; Mannheim

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungswahlmodul	2

Eingesetzte Lehr- und Prüfungsformen	
Lehrformen	Vorlesung, Übung, Case Study
Lehrmethoden	-

Prüfungsleistung	Prüfungsumfang (in min)
Portfolio	-
Bestandteile Kombinierte Prüfungsleistung	
-	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	50,0	100,0	5

Qualifikationsziele und Kompetenzen				
Fachkompetenz	Die Studierenden kennen die phasenspezifischen Ansätze und Methoden des Software-Lebenszyklus, die Aufgaben von Software-Architekten und die Charakteristika von modernen Software-Architekturen.			
Methodenkompetenz	Die Studierenden können die Relevanz der Methoden und Techniken im Software-Lebenszyklus einschätzen und abwägen wann diese eingesetzt werden sollten. Sie können gängige Entwurfsmuster und aktuelle Frameworks einsetzen.			
Personale und Soziale Kompetenz	Die Studierenden können in Fallbeispielen angemessene Architekturen sowie Lösungswege im Software-Lebenszyklus eigenständig erarbeiten und nachvollziehbar begründen.			
Übergreifende Handlungskompetenz	Die Studierenden verstehen übergreifende Zusammenhänge von Prozessschritten und Architekturmodellen in der Softwareentwicklung und können dieses Verständnis in praktischen Projekten und weiterführenden Vorlesungen erfolgreich einbringen.			

einbringen.		
Lerneinheiten und Inhalte		
Lehr- und Lerneinheiten	Präsenz	Selbststudium
Grundlagen des Software Engineering	25,0	50,0

Software-Ergonomie und Usability: Grundlagen, allgemeine Entwurfsprozesse und Entwurfsprinzipien für Benutzungsoberflächen, Interaktionsgestaltung, psychologische Aspekte, Navigation, praktische Umsetzung an Beispielen.

Software-Lebenszyklus: Agile Vorgehensmodelle und Prozessmodelle.

Requirements-Engineering: Anforderungen, Software-Qualität, Sicherheit, Verlässlichkeit.

Fortgeschrittenes Software Engineering 25.0 50.0

Entwurf und Implementierung: Entwurfskonzepte, Entwurfsmuster, Werkzeuge, Entwicklungsumgebungen, Versionsmanagement und Konfigurationskontrolle.

Testen: Blackbox-, Whitebox-, Control-Flow-, Data-Flow, Usability- und Teststufen und Testarten.

Wartung und Weiterentwicklung: Regressions-Tests, Reverse Engineering, Reengineering.

Management: Einführung und Integration von Software, Qualitätsmanagement, Software-Metriken, Konfigurationsmanagement, Risikomanagement,

Änderungsmanagement.

Voraussetzungen

-

Literatur

- Balzert, H.: Lehrbuch der Softwaretechnik, Spektrum Akademischer Verlag, Heidelberg.
- Bien, A.: Enterprise Architekturen: Leitfaden für effiziente Software-Entwicklung, Entwickler.Press, Frankfurt.
- Cohn, M.: Agile Softwareentwicklung: Mit Scrum zum Erfolg!, Addison-Wesley, München.
- Gamma, E., Helm, R., Johnson, R. und Vlissides, J.: Entwurfsmuster: Elemente wiederverwendbarer objektorientierter Software, Addison-Wesley, München.
- Kleuker, S.: Grundkurs Software-Engineering mit UML, Vieweg & Teubner Verlag, Wiesbaden.
- Ludewig, J.; Lichter, H.: Software Engineering: Grundlagen, Menschen, Prozesse, Techniken, dpunkt. Verlag, Heidelberg.
- Sommerville, I.: Software Engineering, Pearson Studium, München.
- Spillner, A. und Linz, T.: Basiswissen Softwaretest, dpunkt.verlag, Heidelberg.
- Starke, G.: Effektive Software-Architekturen: Ein praktischer Leitfaden, Hanser, München.
- Wolf, H. und Bleek, W.-G.: Agile Softwareentwicklung, dpunkt. Verlag, Heidelberg.

Weitere Literatur wird in der Veranstaltung bekanntgegeben.

Baden-Württemberg Studienbereich Wirtschaft

Artificial Intelligence (W3WI_DS406)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	Data Science	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Artificial Intelligence	Deutsch/Englisch	W3WI_DS406	1	Schnattinger, Prof. Dr. Klemens; Lörrach Behrends, Prof. Dr. Erik; Lörrach

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungswahlmodul	2

	Eingesetzte Lehr- und Prüfungsformen	
Lehrformen Vorlesung, Übung, Case Study		Vorlesung, Übung, Case Study
	Lehrmethoden	-

Prüfungsleistung	Prüfungsumfang (in min)	
	-	
Bestandteile Kombinierte Prüfungsleistung		
Klausur, Assignment		

Workload und ECTS				
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150,0	50,0	100,0	5	

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die wesentlichen Themengebiete der Künstlichen Intelligenz und können diese Einordnung in den Kontakt der sonstigen Themengebiete der Informatik	
Methodenkompetenz	Die Studierenden kennen die wesentlichen Methoden der Künstlichen Intelligenz und können diese auf Probleme anwenden.	
Personale und Soziale Kompetenz	Die Studierenden kennen die gesellschaftlichen Probleme, die durch den Einsatz Künstlicher Intelligenz auf die Gesellschaft wirken können	
Übergreifende Handlungskompetenz	Die Studierenden können die Inhalte und Methoden der Künstlichen Intelligenz auf betriebliche Problemstellungen anwenden und geeignete Steinläuse zur Lösung der Probleme ergreifen	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Grundlagen der Künstlichen Intelligenz	25,0	50,0	
 Intelligente Agenten Wissen, Schließen und Planen Aussagenlogik, Prädikatenlogik 1. Stufe und Logikprogrammierung Unsicheres Wissen und Schließen Schlussfolgerungen Neuronale Netze Bayes-Netze 			
Weiterführende Aspekte der Künstlichen Intelligenz	25,0	50,0	
 Problemlösen und Hirnforschung Robotik (Sensorik, Bewegung, Lokalisierung in Karten und Kartierung, Navigation) aus Sicht der Informatik Evolutionäre Algorithmen Fuzzy-Systeme Kommunizieren, Wahrnehmen und Handeln (in der Robotik) 			

Besonderheiten und Voraussetzungen

Besonderheiten

Dieses Modul ist inhaltlich identisch mit dem Modul W3WI_AM406.

Voraussetzungen

Literatur

- Alpaydin, E.: Introduction to Machine Learning, Second Edition, The MIT Press
- Ankam, V.: Big Data Analytics, PacktLiB, PacktPublishing
- Ertel, W.: Grundkurs Künstliche Intelligenz: Eine praxisorientierte Einführung, Springer Vieweg
- Hertzberg, J.: Mobile Roboter: Eine Einführung aus Sicht der Informatik, Springer Verlag.
- Kruse, R./Borgelt, C.: Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Vieweg+Teubner Verlag
 - Russel, S./Norvig, P.: Künstliche Intelligenz, Pearson Studium

Weiterführende Literatur je nach gewählter Vertiefung wird im Unterricht bekannt gegeben

Baden-Württemberg Studienbereich Wirtschaft

Aktuelle Data Science-Entwicklungen (W3WI_DS412)

Formale Angaben zum Modul			
Studiengang	Studienrichtung	Vertiefung	
-	Data Science	-	

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Aktuelle Data Science-Entwicklungen	Deutsch/Englisch	W3WI_DS412	1	Pfisterer, Prof. Dr. Dennis; Mannheim

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungswahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Case Study	
Lehrmethoden		

Prüfungsleistung	Prüfungsumfang (in min)	
Portfolio	•	
Bestandteile Kombinierte Prüfungsleistung		
-		

Workload und ECTS					
Workload insgesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte					
150,0	50,0	100,0	5		

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen den State-of-the-Art einer Auswahl von aktuellen Themen, Konzepten und Entwicklungen im Bereich Data Science.	
Methodenkompetenz	Aufbauend auf den Grundlagen der beiden ersten Studienjahre können die Studierenden die für die behandelten aktuellen Themen relevanten Methoden beurteilen, einordnen und anwenden.	
Personale und Soziale Kompetenz	Die Studierenden können sich selbständig in ein neues Thema einarbeiten und ihr neu erworbenes Wissen stichhaltig und sachangemessen vermitteln. Sie sind in der Lage, über Chancen und Risiken neuer Konzepte zu argumentieren und Vorteile oder gar visionäre Veränderungen, aber auch Bedenken nachvollziehbar gegenüber anderen zu begründen.	
Übergreifende Handlungskompetenz	Die Studierenden können ein aktuelles Thema in seiner jetzigen oder zukünftigen Relevanz für ihre Tätigkeit im Unternehmen beurteilen. Sie können die vermittelten neuen Konzepte im Rahmen von Fallstudien einsetzen und anwenden.	

Lerneinheiten und Inhalte			
Lehr- und Lerneinheiten	Präsenz	Selbststudium	
Aktuelle Data Science-Entwicklungen I	25,0	50,0	
In diesem Modul sollen aktuelle Themen aus allen Bereichen die das Gebiet Data Science tangieren aufgegriffen und den Studierenden vermittelt werden. Es sollen Lehrveranstaltungen nach ihrer aktuellen Bedeutung (auch für die Partnerunternehmen) werden.			
Aktuelle Data Science-Entwicklungen II	25,0	50,0	
In diesem Modul sollen aktuelle Themen aus allen Bereichen die das Gebiet Data Science tangieren aufge Lehrveranstaltungen nach ihrer aktuellen Bedeutung (auch für die Partnerunternehmen) werden.	egriffen und den Studierenden ve	ermittelt werden. Es sollen	

	Besonderheiten und Voraussetzungen
Besonderheiten	
-	

Voraussetzungen
-

	Literatur
Literatur je nach gewählter Vertiefung wird im Unterricht bekannt gegeben.	

Baden-Württemberg Studienbereich Wirtschaft

Intelligent Text Analysis (W3WI_DS413)

Formale Angaben zum Modul		
Studiengang	Studienrichtung	Vertiefung
-	Data Science	-

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Intelligent Text Analysis	Deutsch/Englisch	W3WI_DS413	1	Schnattinger, Prof. Dr. Klemens; Lörrach

	Verortung des Moduls im Studienverlauf		
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
3. Stj.		Studienrichtungswahlmodul	2

Eingesetzte Lehr- und Prüfungsformen		
Lehrformen	Vorlesung, Übung, Case Study	
Lehrmethoden	-	

Prüfungsleistung	Prüfungsumfang (in min)
	-
Bestandteile Kombinierte Prüfungsleistung	
Klausur, Assignment	

Workload und ECTS			
Workload insgesamt (in h)	davon Präsenzzeit (in h)	davon Selbststudium (in h)	ECTS-Punkte
150,0	50,0	100,0	5

Qualifikationsziele und Kompetenzen		
Fachkompetenz	Die Studierenden kennen die wesentlichen Artefakte der Computerlinguistik und können diese einsetzen für eine Analyse mithilfe von Computern/Software.	
Methodenkompetenz	Die Studierenden kennen grundlegende Analysemethoden aus der Computerlinguistik und sind in der Lage diese in eine Anwendung zu programmieren.	
Personale und Soziale Kompetenz		
Übergreifende Handlungskompetenz	Die Studierenden können Computerlinguistische Verfahren und Methoden zur Lösung von Problemstellungen aus den Bereichen Text Mining, Web Mining und Big Data. Sie sind in der Lage, diese in praxisrelevanten Anwendungen einzusetzen.	

Lerneinheiten und Inhalte

Lehr- und Lerneinheiten	Präsenz	Selbststudium
Natural Language Processing	25,0	50,0
 - Linguistische Grundlagen (Wörter und Texte, Morphologie, Lexikalische Strukturen, Phrasenstruktur, Semantik & Pra-Tokenization - Normalisierung (Kleinschreibung, Stopp-Wörter, Stemming, Lemmatization) - Satzerkennung (der SBD-Prozess) - Namenserkennung (NER) - Wortart-Erkennung (der Tagging Prozess) - Klassifikation von Texten und Dokumenten (Sentimental Analysis) - Parser zur Extraktion von Beziehungstypen 	agmatik)	
Practical Natural Language Processing	25,0	50,0
Praktikum mit Anwendungen zu Themen aus Lehrveranstaltung 1		

Voraussetzungen

Literatur

- Barrière, C.: Natural Language Understanding in a Semantic Web Context, Springer
 Bird, S.; Klein, E.; Loper, E.: Natural Language Processing with Python, O'Reilly
 Chopra, D,; Joshi, N.; Mathur, I.: Mastering Natural Language Processing with Python, Packt Publishing
- Jurafsky, D.; Martin, J.: Speech and Language Processing, Prentice Hall
- Pfister, B.; Kaufmann, T.: Sprachverarbeitung: Grundlagen und Methoden der Sprachsynthese und Spracherkennung, Springer
- Reese, R.: Natural Language Processing with Java, Packt Publishing

Wahlfach II (w3wi_DS_411) – Forschungsseminar Informatik

Formale Angaben zum Modul	
Studiengang	Studienrichtung
Wirtschaftsinformatik	Data Science

Modulbezeichnung	Sprache	Nummer	Version	Modulverantwortlicher
Forschungsseminar Informatik	Deutsch/Englisch	W3WI_DS_411	31.10.2016	Prof. Dr. Klemens
				Schnattinger, LÖ
				Prof. Dr. Jan Olaf, LÖ

Verortung des Moduls im Studienverlauf			
Semester	Voraussetzungen für die Teilnahme	Modulart	Moduldauer
5 oder 6		Modul im Wahlfach II	1 oder 2 Semester

Eingesetzte Lehr- und Prüfungsformen			
Lehrformen	Seminar		
Lehrmethoden	Selbststudium, Proseminar, Diskussion, Präsentation		

Prüfungsleistung	Benotung	Prüfungsumfang (in min)
Seminararbeit / Portfolio	Standardnoten	Siehe Prüfungsordnung

Workload und ECTS				
Workload gesamt (in h) davon Präsenzzeit (in h) davon Selbststudium (in h) ECTS-Punkte				
150	50	100	5	

Qualifikationsziele und Kompetenzen				
Sachkompetenz	Die Studierenden kennen aktuelle anwendungsorientierte Forschungsthemen der Informatik, können diese selbstständig unter Coaching erarbeiten und in den Kontext der Informatik einordnen			
Methodenkompetenz	Die Studierenden kennen Methoden der ausgewählten Forschungsgebiete der Informatik			
Personale und soziale Kompetenz	Die Studierenden können die erarbeiteten Themengebiete anderen Studierenden in der seminaristischen Lehrveranstaltung aufbereiten und verständlich kommunizieren. Ferner können sie miteinander über diese Themen diskutieren und durch die Diskussion über die Themen kritisch reflektieren			
Übergreifende Handlungskompetenz	Die Studierenden sind in der Lage, neue anwendungsorientierte Forschungsergebnisse im Kontext des eigenen Unternehmens einzuordnen und zu argumentieren, ob und wie ein Fortschritt für das Unternehmen mit den neuen Ergebnissen der Forschung erzielt werden kann.			

Lerneinheiten und Inhalte				
Lehr- und Lerneinheiten	Präsenz	Selbststudium		
Ausgewählte Forschungsthemen der Informatik I	25	50		
Ausgewählte Forschungsthemen der Informatik II	25	50		

Inhalte

Ziel des Seminars ist es, dass Studentinnen/Studenten aktuelle, wissenschaftliche Themen der Informatik (anwendungsforschungsnah) durch Coaching der Dozentin/des Dozenten erarbeiten, vortragen und im Seminar zu den unterschiedlichen Themen Stellung beziehen können

Besonderheiten und Voraussetzungen
Besonderheiten
Modul ist identisch mit W3WI_AM_411 bzw. W3WI_SE_411 - Forschungsseminar Informatik der Studienrichtung
Application Management bzw. Software Engineering

Duale Hochschule Baden-Württemberg Studienbereich Wirtschaft

Vor	ำลน:	sse	ŤΖι	าทย	zen

Literatur

Hängt vom Thema ab und wird im Unterricht bekannt gegeben