Total No. of Questions: 6

Total No. of Printed Pages:3

## Enrollment No.....



## Faculty of Engineering End Sem Examination May-2024

## EC3CO18 Analog Communication

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. What is the purpose of modulation in a communication system?
  - (a) To reduce the bandwidth of the signal
  - (b) To increase the power of the signal
  - (c) To improve the efficiency of transmission
  - (d) To allow multiple signals to share the same channel
  - ii. Which of the following modulation techniques has suppressed 1 carrier?
    - (a) DSB-SC
- (b) SSB-SC

(c) VSB-SC

- (d) All of these
- iii. Which method of AM detection is based on synchronization with the carrier signal?
  - (a) Envelope detection
- (b) Asynchronous detection
- (c) Synchronous detection
- (d) Coherent detection
- v. What are the types of Angle Modulation?
  - (a) AM, FM, PM
- (b) NBFM, WBFM, PM
- (c) NBFM, WBFM, PPM
- (d) PAM, PWM, PPM
- v. Which method of FM generation involves varying the frequency of the carrier directly with the modulating signal?
  - (a) Direct method
- (b) Indirect method
- (c) Phase modulation
- (d) Frequency deviation
- vi. What is the advantage of FM over AM in terms of noise 1 performance?
  - (a) FM is less affected by noise
  - (b) FM has a wider bandwidth
  - (c) FM requires lower power
  - (d) FM provides better spectral efficiency

P.T.O.

1

1

[2]

|          | vii.  | Which type of receiver rejects unwanted signals before amplification? | 1 |  |  |  |
|----------|-------|-----------------------------------------------------------------------|---|--|--|--|
|          |       | (a) TRF receiver (b) Superheterodyne receiver                         |   |  |  |  |
|          |       | (c) FM receiver (d) AM receiver                                       |   |  |  |  |
|          | viii. | Which of the following is not a source of noise in communication      | 1 |  |  |  |
|          |       | systems?                                                              |   |  |  |  |
|          |       | (a) Thermal noise (b) Shot noise                                      |   |  |  |  |
|          |       | (c) Signal noise (d) Intermodulation noise                            |   |  |  |  |
|          | ix.   | What is the role of sampling in pulse modulation?                     |   |  |  |  |
|          |       | (a) To reduce the bandwidth of the modulated signal                   |   |  |  |  |
|          |       | (b) To convert the analog signal into a digital format                |   |  |  |  |
|          |       | (c) To increase the power efficiency of the modulated signal          |   |  |  |  |
|          |       | (d) To improve the signal-to-noise ratio of the modulated signal      |   |  |  |  |
|          | х.    | What is the purpose of pre-emphasis and de-emphasis in FM             | 1 |  |  |  |
|          |       | systems?                                                              |   |  |  |  |
|          |       | (a) To reduce noise in the received signal                            |   |  |  |  |
|          |       | (b) To increase the bandwidth of the transmitted signal               |   |  |  |  |
|          |       | (c) To improve the signal-to-noise ratio of the received signal       |   |  |  |  |
|          |       | (d) To increase the modulation index of the transmitted signal        |   |  |  |  |
| Q.2      | i.    | Explain why modulation is necessary in communication systems.         | 2 |  |  |  |
| <b>C</b> | ii.   | Compare and contrast the bandwidth, power requirement, and            | 3 |  |  |  |
|          |       | efficiency of each modulation technique.                              |   |  |  |  |
|          | iii.  | Define and explain DSB-SC, SSB-SC, and VSB-SC modulation              |   |  |  |  |
|          |       | techniques.                                                           |   |  |  |  |
| OR       | iv.   | •                                                                     | 5 |  |  |  |
|          |       | and detection method.                                                 |   |  |  |  |
|          |       |                                                                       |   |  |  |  |
| Q.3      | i.    | Compare and contrast frequency modulation (FM) and phase              | 4 |  |  |  |
|          |       | modulation (PM) techniques. Also describe the characteristics of      |   |  |  |  |
|          |       | NBFM and WBFM.                                                        |   |  |  |  |
|          | ii.   | Explain the direct and indirect methods of FM generation.             | 6 |  |  |  |
| OR       | iii.  | Describe the principle of operation of frequency discriminators and   | 6 |  |  |  |
|          |       | phase discriminators in FM demodulation.                              |   |  |  |  |
| Q.4      | i.    | Define TRF (Tuned Radio Frequency) receiver and explain its           | 4 |  |  |  |
|          |       | principle of operation.                                               |   |  |  |  |
|          | ii.   | Define image frequency and explain why it needs to be rejected in     | 6 |  |  |  |
|          |       | superheterodyne receivers.                                            |   |  |  |  |

[3]

- OR iii. Explain the concept of pre-emphasis and de-emphasis in FM 6 transmission.
- Q.5 i. Define correlation, energy spectral density, and power spectral 4 density in the context of noise.
  - ii. Explain how noise figure and noise temperature are related and their **6** significance in amplifier design.
- OR iii. Discuss how noise affects signal-to-noise ratio, sensitivity, and 6 overall receiver performance in both AM and FM systems.
- Q.6 Attempt any two
  - i. Explain the role of the sampling frequency in determining the 5 fidelity of the sampled signal.
  - ii. Define Pulse Amplitude Modulation (PAM), Pulse Width 5 Modulation (PWM), and Pulse Position Modulation (PPM).
  - iii. Discuss the demodulation methods employed to recover the original 5 message signal from each type of pulse modulation.

\*\*\*\*\*

## Marking Scheme Analog Communication (T) - EC3CO18 (T)

| Q.1 | <ul> <li>i)</li> <li>ii)</li> <li>iii)</li> <li>iv)</li> <li>v)</li> <li>vii)</li> <li>viii)</li> <li>viii)</li> <li>ix)</li> <li>x)</li> </ul> | <ul> <li>D) To allow multiple signals to share the same chare.</li> <li>D) All of the above.</li> <li>C) Synchronous detection, D) Coherent detection.</li> <li>B) NBFM, WBFM, PM.</li> <li>A) Direct method.</li> <li>A) FM is less affected by noise.</li> <li>B) Superheterodyne receiver.</li> <li>C) Signal noise.</li> <li>B) To convert the analog signal into a digital format.</li> <li>C) To improve the signal-to-noise ratio of the receiver.</li> </ul> | at                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------|
| Q.2 | i.<br>ii.<br>iii.                                                                                                                               | Modulation is necessarysystems.  Compare and contrast the bandwidth Power requirement, Ffficiency of each modulation technique. Define and explain DSB-SC, SSB-SC, VSB-SC modulation techniques.                                                                                                                                                                                                                                                                     | 2 Marks 1 Mark 1 Mark 1 Mark 2.5 Marks 2.5 Marks | 2<br>1+1+1<br>2.5+2.5                |
| OR  | iv.                                                                                                                                             | Advantages<br>Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5 Marks<br>2.5 Marks                           | 2.5+2.5                              |
| Q.3 | i.<br>ii.<br>                                                                                                                                   | Compare and contrast frequency techniques. Characteristics of NBFM and WBFM. Direct methods Indirect methods                                                                                                                                                                                                                                                                                                                                                         | 2 Marks<br>2 Marks<br>3 Marks<br>3 Marks         | 2+2<br>3+3                           |
| OR  | iii.                                                                                                                                            | The principle discriminators  Phase discriminators in FM demodulation.                                                                                                                                                                                                                                                                                                                                                                                               | 3 Marks<br>3 Marks                               | 3+3                                  |
| Q.4 | i.<br>ii.                                                                                                                                       | Define TRF (Tuned Radio Frequency) receiver<br>Explain its principle of operation.<br>Define image frequency                                                                                                                                                                                                                                                                                                                                                         | 2 Marks<br>2 Marks<br>2 Marks                    | 2+2<br>2+4                           |
| OR  | iii.                                                                                                                                            | It needs to be reject receivers.  The concept of pre-emphasis  De-emphasis in FM transmission.                                                                                                                                                                                                                                                                                                                                                                       | 4 Marks<br>3 Marks<br>3 Marks                    | 3+3                                  |
| Q.5 | i.                                                                                                                                              | Define correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Marks                                          | 2+1+1                                |

|     |      | energy spectral density                                     | 1 Mark<br>1 Mark |          |
|-----|------|-------------------------------------------------------------|------------------|----------|
|     | ii.  | Power spectral density of noise.<br>Explain how are related | 1 Marks          | 2+4      |
|     | 11.  | their significance in amplifier design.                     | 4 Marks          | <b>-</b> |
| OR  | iii. | Discuss sensitivity                                         | 3 Marks          | 3+3      |
|     |      | Overall AM and FM systems.                                  | 3 Marks          |          |
| Q.6 |      | Attempt any two                                             |                  |          |
|     | i.   | Explain the signal.                                         | 5 Marks          | 5        |
|     | ii.  | Define Pulse Amplitude Modulation (PAM)                     | 1 Mark           | 1+2+2    |
|     |      | Pulse Width Modulation (PWM),                               | 2 Marks          |          |
|     |      | Pulse Position Modulation (PPM).                            | 2 Marks          |          |
|     | iii. | Discuss the modulation.                                     | 5 Marks          | 5        |

\*\*\*\*\*

P.T.O.