Les Petits Devoirs du Soir – DDS

Exercice 158 – Mouvement TR *

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \Re_0 .

Ce mécanisme présente deux degrés de liberté indépendants : $\lambda(t)$ et $\theta(t)$. Il est donc nécessaire d'écrire, dans le meilleur des cas, deux équations :

- ▶ une équation traduisant la mobilité de 2 par rapport à 1, soit TMD appliqué à 2 en \overrightarrow{B} en projection sur $\overrightarrow{k_0}$;
- ▶ une équation traduisant la mobilité de 2+1 par rapport à 0, soit TRD appliqué à 1+2 en projection sur $\overrightarrow{i_0}$.

Stratégie:

- ▶ On isole 2.
 - BAME:
 - * actions de la liaison pivot $\{\mathcal{T}(1 \to 2)\}$;
 - * action du moteur $\{\mathcal{T} (mot \rightarrow 2)\}$;
 - * action de la pesanteur $\{\mathcal{T} \text{ (pes } \rightarrow 2)\}.$
 - Théorème: on applique le théorème du moment dynamique en *B* au solide
 2 en projection sur k
 ₀: C_{mot} + M (B, pes → 2) · k
 ₀ = δ (B, 2/0) · k
 ₀.
 Calcul de la composante dynamique: considérons le cas où la matrice
 - Calcul de la composante dynamique : considérons le cas où la matrice d'inertie est donnée en C. On a donc $\overline{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(C,2/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[I_C(2) \overline{\Omega(2/0)} \right]_{\mathcal{R}_0}$. Par suite, $\overline{\delta(B,2/0)} = \overline{\delta(C,2/0)} + \overline{BC} \wedge \overline{R_d(2/0)}$ avec $\overline{R_d(2/0)} = m_2 \overline{\Gamma(C,2/0)}$.
- ► On isole 1+2.
 - BAME:
 - * actions de la liaison glissière $\{\mathcal{T}(0 \to 1)\}$;
 - * action de la pesanteur $\{\mathcal{T} (pes \to 1)\}$;
 - * action de la pesanteur $\{\mathcal{T} (pes \to 2)\}$;
 - * action du vérin $\{ \mathcal{T} (\text{ver} \to 1) \}$.
 - **Théorème**: on applique le théorème de la résultante dynamique à l'ensemble **1+2** en projection sur $\overrightarrow{i_0}$: \overrightarrow{R} (ver \rightarrow 1) $\cdot \overrightarrow{i_0} = \overrightarrow{R_d}$ (1+2/0) $\cdot \overrightarrow{i_0}$.
 - Calcul de la composante dynamique : $\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = m_1 \overrightarrow{\Gamma(G_1,1/0)} + m_2 \overrightarrow{\Gamma(G_2,2/0)}$.

