電気情報工学セミナーⅡ

実験のためのPython & Git入門 (機械学習による関数の近似実験)

~ 研究課題について ~

池原研究室

研究課題の例

学習サンプルを増やしたときの効果・副作用

- $\sin(\pi x)$ を7次多項式でフィッティング
- 20回繰り返した際の平均をプロット

サンプル数を増やすと精度が上がる

■ $N = 2^n (n = 4, \dots, 24)$ で実験 $(N = 16, \dots, 166777216)$

パラメータ推定時間も増える

提案①:N=65536で打ち切る

例) 2^{24} 個のサンプルを 2^{16} 個だけ利用すれば計算コストは約1/256

提案②:小区間に分割し平均をとる

計算コストは $O\left(N_{\mathrm{split}}(2d^2+1)\right)+O(N)+区間分割コスト+逆行列の計算コスト$

結果

- ▶ サンプルが増えるほど精度は上がる
- ▶ 提案①②ともに精度は0.002程度で 頭打ちになる

- ▶ サンプルが増えるほど推定時間も長くなる
- ▶ 提案①によって推定時間に上限ができる
- ▶ 提案②は推定時間を半分程度に短縮する
- ▶ 提案②は提案①より精度が低く、時間もかかるため単体での使用は向かない

研究課題

要件

- ✓1人1つ以上自分でテーマを決めて取り組む
 - テーマ例から選んでも、完全にオリジナルでもOK
 - 好きなだけ取り組んでよいが1つで十分
- ✓1人5~30分程度の発表時間
 - 提案内容はシンプルに伝える
 - 質疑応答の時間も別途設ける
 - 動機付け→ (提案→) 実験の順で発表するとまとめやすい
- ✓自分で実験をおこなう
 - ■どういう比較・調査をするか実験をデザインする
 - ■プログラミングして実測する
 - 結果はグラフや表で示す
- ✓提案型の場合、提案内容がうまくいかなくてもOK
 - ■「バグでプログラムが動かなかった」というのはNG
 - ■うまくいかなかった理由を考える

テーマ例 (多項式フィッティング)

- $ightharpoonup sin(n\pi x)$ を近似するには何次多項式を使うのが良い?
- ▶さまざまな関数を多項式フィッティングしてみた(うまくいく例、いかない例)
- ▶高次の多項式を使えばうまくいくのか?
- $\triangleright x^p$ 以外を基底関数としてフィッティング

テーマ例 (ガウス過程回帰)

- $\triangleright G^{-1}$ を用いず、 $g^{\mathsf{T}}(x)$ を合計が1になるように正規化するとオリジナルと比べどうなる?
- \triangleright 最適な σ_x や σ_v の見つけ方はある?(特に少ないサンプル数で)
- ▶多項式フィッティングと比較してメリット・デメリットは?
- ▶多項式フィッティングの最適な次数dをガウス過程回帰で予測してみた
- ▶ニューラルネットワークの最適な学習率をガウス過程回帰で予測してみた
- ▶2変数関数でガウス過程回帰してみた

テーマ例 (ニューラルネットワーク)

- ▶層の数を増やすとどうなる?うまくいくorいかない理由・条件は?
- ▶中間層出力の値の個数を増やすとどうなる?
- ▶いくつかのサンプル(たとえば10サンプルずつ/全サンプルまとめて)から勾配計算
- ▶活性化関数による違いは?(たとえばsigmoid関数)
- ▶2変数関数の回帰