Disciplina de Processamento Digital de Sinais (PDS)

Lab. 7 - Aplicação da DFT - Síntese e Detecção DTMF

O objetivo deste experimento é demonstrar a síntese e detecção de tons DTMF (Dual-Tone Multifrequency) usando a DFT. Considere a definição da DFT com N pontos:

$$X(e^{j\omega}) \longrightarrow \text{DTFT}$$

$$X[k] = X(e^{j\omega})|_{w_k = \frac{2\pi k}{N}} \qquad k = 0, 1, \dots, N-1$$

$$X[k] = \sum_{n=0}^{N-1} x[n] \ W_N^{kn} \qquad k = 0, 1, \dots, N-1 \qquad W_N = e^{-j\frac{2\pi}{N}}$$

	N=205	$F_S = 8 \text{ kHz}$	
Tom de frequência (Hz)	Valor exato de k	Valor inteiro de k mais próximo	Erro absoluto em k
697	17,861	18	0,139
770	19,731	20	0,269
852	21,833	22	0,167
941	24,113	24	0,113
1209	30,981	31	0,019
1336	34,235	34	0,235
1477	37,848	38	0,152
1633	41,846	42	0,154

	N=205	$F_S = 8 \text{ kHz}$	
Segunda	Valor	Valor inteiro	Erro
harmônica	exato de k	de k mais	absoluto
(Hz)		próximo	em k
1394	35,024	35	0,024
1540	38,692	39	0,308
1704	42,813	43	0,187
1882	47,285	47	0,285
2418	60,752	61	0,248
2672	67,134	67	0,134
2954	74,219	74	0,219
3266	82,058	82	0,058

1 – No sistema DTMF são utilizadas duas frequências distintas para representar cada dígito. Implemente um programa no Matlab para calcular a DFT de cada frequência. Identifique o valor do índice k da DFT que corresponde ao maior valor no espectro (módulo). Monte uma tabela relacionando a frequência e o valor de k. Podemos observar que existe um espalhamento da energia em torno da frequência central. Este efeito é denominado de leakage.

$$F_k = \frac{k}{N} F_s$$
 $k = 0, 1, \dots, N - 1$

- 2 Implemente um programa no software Matlab para sintetizar, analisar e decodificar os tons de frequência de discagem. O programa deve solicitar o valor de um dígito (0-9). O tom gerado deve ser enviado para o conversor D/A para ser ouvido através da placa de som.
 - Roteiro Básico:
 - Ler o valor de um dígito (comando *input*).
 - Gerar a forma de onda correspondente da DTMF em tempo discreto.
 - Escutar o áudio do tom DTMF gerado.
 - Calcular o espectro usando a DFT.
 - Com base nos valores das amostras do espectro da DFT, decodificar o dígito inserido, mostrando o resultado da decodificação.
 - Repetir processo (loop de simulação).
- **3** O objetivo deste experimento é analisar o efeito do tamanho da DFT na análise espectral. Implemente um programa para analisar o seguinte sinal discreto no domínio da frequência:

$$x[n] = \frac{1}{2}\sin(2\pi f_1 n) + \sin(2\pi f_2 n), \quad 0 \le n \le N - 1$$
$$f_1 = 0, 22 \quad f_2 = 0, 34$$

Calcule a DFT do sinal x[n] para os seguintes tamanhos:

$$N = 16$$
 $N = 32$ $N = 64$ $N = 128$

Para cada valor de N, traçar os gráficos de resposta em módulo e fase, com simetria em torno do eixo x.