Lecture 14: Network Layer – Data Plane I

Sejong University Spring 2019: Computer Networks

2019. 4. 29.

Cheol Jeong

This material can only be used for students that signed up for this class at Sejong University and must not be distributed outside of the class. The contents are mainly based on the text book, "Computer Networking: A Top-Down Approach" by J. F. Kurose and K. W. Ross (7th Edition).

Contents of Chapter 4

- Overview of network layer
- What's inside a router?
- ♦ The internet protocol (IP): IPv4, addressing, IPv6, and more
- Generalized forwarding and SDN

Contents of Chapter 4

- Overview of network layer
 - Forwarding and routing: The network data and control planes
 - Network service models
- What's inside a router?
- ♦ The internet protocol (IP): IPv4, addressing, IPv6, and more
- Generalized forwarding and SDN

Overview of Network Layer

Network layer

- Move packets from a sending host to a receiving host
- Everywhere in the network
- Provide a best-effort service
 - E.g., no guarantee on reliable data transfer, bounded delay, in-order delivery
- Two interacting parts
 - Data plane
 - Control plane

Overview of Network Layer

Data plane

- Forwarding
 - Router-local action of transferring a packet from an input link interface to the appropriate output link interface
 - Typically a few nanoseconds and typically implemented in hardware
 - Forwarding table: Contain information indicating appropriate output link

Control plane

- Routing
 - Network-wide process that determines the end-to-end paths that packets take from source to destination
 - Typically milliseconds or seconds and often implemented in software
 - Routing algorithm: Determine values in forwarding tables

Control Plane: The Traditional Approach

Routing algorithms determine values in forwarding tables.

Control Plane: The SDN Approach

 A remote controller determines and distributes values in forwarding tables: Software-defined networking (SDN)

Contents of Chapter 4

- Overview of network layer
- What's inside a router?
 - Input port processing and destination-based forwarding
 - Switching
 - Output port processing
 - Where does queuing occur?
 - Packet scheduling
- ♦ The internet protocol (IP): IPv4, addressing, IPv6, and more
- Generalized forwarding and SDN

Router Architecture

A high-level view of a generic router architecture

Input port processing

 Use the forwarding table to look up the output port to which an arriving packet will be forwarded via the switching fabric

Forwarding

- Destination-based forwarding
 - Based on the packet's destination address
- Generalized forwarding
 - Based on a generalized set of packet header fields

Switching

Packets are switched from an input port to an output port.

Output port processing

 Take packets that have been stored in the output port's memory and transmits them over the output link

Where Does Queuing Occur?

Input queuing

- Head-of-the-line (HOL) blocking
 - A queued packet in an input queue must wait for transfer through the fabric because it is blocked by another packet at the head of the line.

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later: green packet experiences HOL blocking

Where Does Queuing Occur?

Output queuing

- Buffering required when datagram arrive from fabric faster than the transmission rate
- Scheduling needed

Packet scheduling

 Determining the order in which queued packets are transmitted over an outgoing link

Scheduling policies

- First-in-first-out (FIFO)
- Priority queuing
- Round robin queuing
- Weighted fair queuing (WFQ)

- First-in-first-out (FIFO) (or first-come-first-served, FCFS)
 - Select packets for link transmission in the same order in which they arrived at the output link queue

Priority queueing

- Packets arriving at the output link are classified into priority classes.
- Transmit a packet from the highest priority class

Round robin queuing

 Packets are sorted into classes and transmit a packet alternatively among the classes.

Weighted fair queuing (WFQ)

- As in round robin scheduling, arriving packets are classified and queued.
- Each class i is assigned a weight w_i .
- Class i receive a fraction of service equal to $\frac{W_i}{\sum W_j}$

