Lista 10, Geometria Riemanniana

Diego N. Guajardo

31 de maio de 2021

Sempre M é uma variedade Riemanniana, pode-se sempre assumir conexa se for necessario e ∇ indica a conexão de Levi Civita. Alguns exercicios são do Lee, do Do Carmo e do Petersen e das listas do professor e de um trabalho de Wolfgang Meyer

- 1. Suponha M completa com curvatura $K \leq k$, onde k > 0 é uma constante. Seja $p \in M$, mostrar que:
 - (a) $\exp_p: B\left(0, \frac{\pi}{\sqrt{k}}\right) \subseteq T_pM \to M$ não tem pontos críticos.
 - (b) Conclua que:

$$\operatorname{inj}(p) \ge \min\left\{\frac{\pi}{\sqrt{k}}, \frac{1}{2} (\text{comprimento do loop geodésico menor com base em } p)\right\}$$

(c) Conclua que o raio de injetividade satisfaz

$$\operatorname{inj}(M) \ge \min \left\{ \frac{\pi}{\sqrt{k}}, \frac{1}{2} (\text{comprimento do loop geodésico menor em } M) \right\}$$

- 2. (Paso importante do teorema de Toponogov) Seja p com curvatura $K \ge k$ e defina r(x) = d(p, x) definida no dominio que seja suave e $\gamma(t)$ uma geodésica unitária radial saindo de p. Provar que:
 - (a)

$$\operatorname{Hess}_{\gamma(t)}r(X,Y) = \langle A_{\gamma(t)}X, Y \rangle$$

Para X, Y tangentes à esfera de raio t centrada em p, zero em outro caso.

(b) Pelo resultado do exercicio 9 da lista 7, $\operatorname{Hess}_{\gamma(t)} \leq \operatorname{ct}_k(t)\operatorname{Id}$, mas só nas direções perpendiculares a $\gamma(t)$, na prova de Toponogov aparece um truque para obter uma cota uniforme em todas as direções. Seja $f \in C^{\infty}(M)$ e $m \in C^{\infty}(\mathbb{R})$ uma função real, mostrar que:

$$\operatorname{Hess}(m \circ f)(X) = m'(f)\operatorname{Hess} f(X) + m''(f)\langle \operatorname{grad}(f), X\rangle \operatorname{grad}(f)$$

(c) Defina $\mathrm{md}_k(t) = \int_0^t \mathrm{sn}_k(r) dr \in C^{\infty}(\mathbb{R})$, mostrar que:

$$\operatorname{Hess}(\operatorname{md}_k \circ r) < (\operatorname{cs}_k \circ r)\operatorname{Id}$$

em todas as direções.

Comentário: lembrar que $\operatorname{Hess} g(X) = \nabla_X \operatorname{grad}(g)$ para qualquer função $g \in C^{\infty}(M)$

- 3. Prove que:
 - (a) Sejam $v, w \in T_pM$ e $\gamma_v(t) = \exp_p(tv), \gamma_w(t) = \exp_p(tw), f(t) = d(\gamma_v(t), \gamma_w(t))^2$, usando um teorema de Taylor em t = 0 conclua que $f(t) = t^2 ||v w||^2 + O(t^3)$ conclua que $d(\gamma_v(t), \gamma_w(t)) = t ||v w||$.

Dica em (a): defina $\gamma(s,t) = \exp_{\gamma_v(t)}(s \exp_{\gamma_v(t)}^{-1}(\gamma_w(t)))$, interprete geometricamente, relacione com f e note que suas derivadas são geodésicas ou campos de Jacobi.

Comentário: em (a) dá para continuar o Taylor para provar que

$$f(t) = t^{2} \|v - w\|^{2} - \frac{t^{4}}{3} R(v, w, w, v) + O(t^{5})$$

o que já permitiria mostrar uma versão local do teorema de Toponogov (em bolas suficientemente pequenas).

4. (Teorema de Calabi Yau) Seja M completa não compacta com Ric ≥ 0 e $p \in M$, então existe uma constante $C = C_p > 0$ e $r_0 > 0$ tal que:

$$Vol(B_r(p)) \ge Cr$$

para $r > r_0$. Com um exemplo, se convença que o comportamento linear nao pode ser melhorado.

Dica: pegue um raio $\gamma(t)$ tal que $\gamma(0) = p$, notar que:

$$B_{r_0}(p) \cup B_t(\gamma(t+r_0)) \subset B_{t+2r_0}(\gamma(t+r_0))$$

utilizar Bishop Gromov e que $B_{t+2r_0}(\gamma(t+r_0)) \subseteq B_{3t}(p)$ para t suficientemente grande.

5. (Métrica de Hausdorff) Dados um espaço métrico (X,d), e $A,B\subseteq X$ definimos a distancia de Hausdorff como:

$$d_H(A, B) = \inf\{R : B \subseteq B_R(A) \in A \subseteq B_R(B)\}$$

onde $B_R(A)$ é a união das bolas abertas de raio R com centros nos pontos de A, análogo para $B_R(B)$.

- (a) Mostrar que, salvo o fato de que d_H pode ser infinito, d_H definde uma métrica nos subespacos fechados de X.
- (b) Seja $r_i \to r > 0$ uma sequencia de numeros positivos, mostrar que se $X = \mathbb{R}^{n+1}$ com a métrica euclideana, temos que $\mathbb{S}^n(r_i) \to \mathbb{S}^n(r)$ na métrica de Hausdorff.
- 6. (Métrica de Hausdorff-Gromov) Sejam $(X, d_X), (Y, d_Y), (Z_{dZ})$ espaços métricos, dizemos que $i: X \to Z$ é um mergulho isométrico se $d_Z(i(x_1), i(x_2)) = d_X(x_1, x_2)$ para todos os pontos $x_1, x_2 \in X$. Definimos a métrica de Hausdorff-Gromov como:

$$d_{HG}(X,Y) = \inf\{d_H(i(X),j(Y)): (Z,d_Z), i: X \to Z, j: Y \to Z \text{ mergulhos isométricos}\}$$

Definimos (\mathcal{M}, d_{HG}) como o espaço dos espaços métricos compactos.

Mostrar que $\mathbb{S}^n(r_i) \to \mathbb{S}^n(r)$ na métrica de Hausdorff-Gromov, em particular a curva $r \in \mathbb{R} \to \mathbb{S}^n(r) \in (M, d_{HG})$ é contínua.

Comentário: Dá para mostrar que $d_{HG}(X,Y) = 0$ se, e somente se, X e Y são isométricos. E salvo isometrias, o espaço (\mathcal{M}, d_{HG}) é completo e separável, para uma referencia veja o Peter Petersen. Também da para provar que se duas variedades riemannianas são isométricas como espaços métricos, então são isométricas como variedades riemannianas. O que mostra que esta distancia se comporta bem com as variedades riemannianas.

7. Seja G um grupo e $\Gamma \subseteq G$ um subconjunto finito de G. Dizemos que G é gerado por Γ se todo elemento de G pode ser escrito como produto de um numero finito de elementos de Γ ou seus inversos, neste caso definimos o função de crescimento de G respeito Γ como o cardinal do conjunto $N_G^{\Gamma}(k) = \#\Gamma^k$ onde:

$$\Gamma^k = \{g \in G | \exists m \leq k, g_{i_1}, \dots, g_{i_m} \in \Gamma \text{ tal que } g = g_{i_1}^{\pm 1} \cdot \dots \cdot g_{i_m}^{\pm 1} \}$$

Por exemplo, $G = \mathbb{Z}$, $\Gamma = \{1\}$, neste caso N(k) = 2k + 1. Suponha que G é gerado por Γ , dizemos que G tem crescimento polinomial (menor ou igual que n) se existem $c \in \mathbb{R}$ e $n \in \mathbb{N}$ tal que $N_G^{\Gamma}(k) \leq ck^n$.

- (a) Mostrar que \mathbb{Z}^n tem crescimento polinomial para algum conjunto finito de geradores (Dica: usar um argumento por bolas, um grande centrada na origem conten no maximo cuantas bolas pequenas centradas nos elementos do grupo, isto pode dar uma ideia de como resolver a parte (b))
- (b) (Milnor) Seja M^n uma variedade completa com Ric ≥ 0 e $G \subseteq \pi_1(M)$ um subgrupo finitamente gerado. Então G tem crescimento polinomial menor ou igual do que n.
- (c) Se convença de que a superficie compacta orientada de genero 2 não possui uma métrica com Ric > 0.

Dica para (b): Considere o recobrimento universal \hat{M} e um ponto $\hat{p} \in \hat{M}$, defina como $l = \max\{d(\hat{p}, g\hat{p}) : g \in \Gamma\}$ e tente concluir como no teorema de Gromov.

Comentário 1: lembrar que \mathbb{Z}^n é o grupo fundamental do toro, que admite uma métrica plana.

Comentário 2: o crescimento de um grupo finitamente gerado nao depende do conjunto de geradores, e de fato é um invariante do grupo.

Comentário 3: Pelo teorema de Gromov, se $K \ge 0$, $\pi_1(M)$ é finitamente gerado e por este exercicício, tem crescimento polinomial. Não se sabe se Ric ≥ 0 implica que $\pi_1(M)$ é finitamente gerado.