Dodécaèdre

Dans tout le problème \mathcal{E} désigne l'espace géométrique usuel rapporté à un repère orthonormé $\left(O;\vec{i},\vec{j},\vec{k}\right)$. On ne manquera pas, pour tout ce qui suit, de se rapporter, pour plus de commodité, au dessin fourni à la fin de l'énoncé.

- 1. On pose $a = \frac{-1 + \sqrt{5}}{2}$ et $b = \frac{1}{a}$.
- 1.a Montrer que a est solution d'une équation du second degré à coefficients dans $\mathbb Z$. Montrer qu'il en est de même pour b .
- 1.b Calculer b, ab, a+b, b-a et a^2+b^2 . (On mettra les résultats sous la forme $x+y=\sqrt{5}$ avec x,y rationnels.)
- 2. Etant donnée une droite \mathcal{D} de l'espace \mathcal{E} , on appelle demi-tour d'axe \mathcal{D} l'application qui a tout point M de l'espace associe l'unique point M' tel que le milieu du segment [M,M'] soit le projeté orthogonal de M sur \mathcal{D} .

On suppose que M a pour coordonnées (x,y,z). Exprimer les coordonnées des points M',M'',M''' images du points M par les demi-tours d'axes respectifs $(O;\vec{i})$, $(O;\vec{j})$ et $(O;\vec{k})$.

3. On définit les huit sommets ABCDA'B'C'D' d'un cube noté C_0 comme suit par leurs coordonnées :

$$A(1,1,1)$$
, $B(-1,1,1)$ $C(-1,-1,1)$, $D(1,-1,1)$

A', B', C', D' désignent leurs symétriques respectifs par rapport à O.

- 3.a Montrer l'existence d'un point unique J(a,0,b') avec b'>1 tel que JA=JD=2a et exprimer b' en fonction de b.
- 3.b I désigne le transformé de J dans le demi-tour d'axe $(O; \vec{k})$, I' et J' sont les transformés respectifs de I et J dans la symétrie par rapport à O. Déterminer les points I, I', J' par leurs coordonnées.
- 4. On définit de même K, L, M, N ainsi que leur symétriques respectifs K', L', M', N' par rapport à O par les conditions suivantes :
 - (i) $\overrightarrow{KL} = 2a\overrightarrow{j}$, KB' = KD = 2a, K et L se correspondent dans le demi-tour d'axe (O, \overrightarrow{i}) et la première coordonnée de K est supérieure à 1.
 - (ii) $\overrightarrow{MN}=2a\overrightarrow{k}$, NA=NB=2a, M et N se correspondent dans le demi-tour d'axe (O,\overrightarrow{j}) et la seconde coordonnée de N est supérieure à 1.

Préciser en fonction de a et b les coordonnées de ces huit nouveaux points.

5. L'ensemble des vingt points :

$$A, B, C, D, I, J, K, L, M, N, A', B', C', D', I', J', K', L', M', N'$$

ainsi définis déterminent un dodécaèdre qui sera considéré comme l'ensemble de ces vingt points. On appelle face du dodécaèdre l'un des douze sous-ensembles de sommets suivants :

$$AJDKL, LKB'I'C', ALC'MN, NMD'K'B, ANBIJ, MC'I'J'D'$$

ainsi que les six autres obtenus par symétrie par rapport à O.

- 5.a Montrer que les points AJDKL appartiennent à un même plan et donner une équation de ce plan.
- 5.b Donner aussi une équation de la face ANBIJ.
- 5.c Observer que les distances AJ,JD,DK,KL et LA sont égales. On pose d leur valeur commune.
- 6. On note Ω l'isobarycentre des points AJDKL.
- 6.a Déterminer les coordonnées du point Ω . (N.B. On laissera ces coordonnées sous la forme $x + y\sqrt{5}$ avec x et y rationnels).
- 6.b Observer que les distances $\Omega A, \Omega J, \Omega D, \Omega K, \Omega L$ sont égales. On pose r leur valeur commune.
- 6.c Vérifier que $d = \frac{r}{2}\sqrt{10-2\sqrt{5}}$.

Cette dernière relation permet d'assurer que AJDKL est un pentagone régulier, il en est de même des autres faces.

