ความสัมพันธ์และฟังก์ชัน (Relation and Function)

ความสัมพันธ์และฟังก์ชัน มีความสำคัญในเกือบทุกแขนงวิชาที่เกี่ยวกับคณิตศาสตร์เพราะเป็นเครื่องมือทางใน การแปลงความของแขนงวิชานั้น ๆในรูปคณิตศาสตร์โดยมีรากฐานอยู่บนทฤษฎีเซต ความสัมพันธ์เป็นวลีที่แสดงการ เกี่ยวข้องกันของเซตสองเชต จะแสดงความสัมพันธ์ในรูปคู่อันดับของสมาชิกทั้งสองเซต

1. คู่อันดับ

ในชีวิตประจำวันมีความเกี่ยวข้องกับคู่อันดับอยู่สมอเช่น เมื่อเราไปซื้อของจะมีการจับคู่ของที่ซื้อกับราคา หรือ ในรายการอาหารที่จะเห็นว่าส่วนมากจะพิมพ์ชื่ออาหารคู่กับราคา สิ่งเหล่านี้ล้วนเป็นลักษณะของคู่อันดับถ้าเราจับคู่ ระหว่างพ่อกับลูกสาวแล้วเขียนในวงเล็บ เช่น (ดำ,มาลี), (แดง,สุดา), (ขาว,มีนา) สิ่งเหล่านี้คือคู่อันดับแต่ละคู่ ประกอบด้วยสมาชิกสองตัวคือสมาชิกตัวหน้าและสมาชิกตัวหลัง หรือสมาชิกตัวที่หนึ่งกับสมาชิกตัวที่สองการเป็น สมาชิกตัวหน้าและสมาชิกตัวหลังจะแสดงอันดับซึ่งมีความสำคัญมากดังจะเห็นได้จากคู่อันดับที่ยกตัวอย่างมา (ดำา ,มาลี) เราถือว่าสมาชิกตัวหน้าเป็นพ่อ และตัวหลังเป็นลูกสาว แต่ถ้าเราสลับ เป็น(มาลี,ดำ) สิ่งที่ได้มาจะผิดความหมาย จากที่เรากำหนดให้เดิม

ดังนั้นสิ่งสำคัญในการเป็นคู่อันดับก็คือ จะต้องเป็นคู่และมีอันดับคู่ลำดับ ประกอบด้วย โดยถือว่าตำแหน่ง หรืออันดับเป็นสำคัญถา้สลับที่ของตำแหน่งจะทำ ให้ความหมายเปลี่ยนไป ในทางคณิตศาสตร์มักเขียนคู่อันดับในรูป (a, b) โดยที่ a เป็นสมาชิกตัวหน้า และ b เป็นสมาชิกตัวหลัง (a,b) และ (b,a) จะไม่เท่ากัน นอกจาก a=b เท่านั้น หรือ (a,b) =(c,d) ก็ต่อเมื่อ a=c และ b=d

นิยาม คู่อันดับ (order pairs) คือ สิ่งที่มีสมาชิกสองตัว และอันดับของสมาชิกนั้นมีความหมาย เรา แทนคู่อันดับ **a,b**

ด้วยสัญลักษณ์ (a,b) เราจะเรียก a ว่า สมาชิกตัวแรกของคู่อันดับ

และเรียก **b** ว่า สมาชิกตัวหลังของคู่อันดับ

หมายเหตุ

- 1. เราใช้คู่อันดับเมื่อกล่าวถึงสิ่งที่เกี่ยวข้องกัน
- 2. (a, b) ≠ (b, a) เมื่อ a ≠ b
- 3. ในระบบพิกัดฉากเราแทน (x, y) ด้วยจุดหนึ่งจุดบนระนาบ xy ในทำนองเดียวกัน จุดหนึ่งจุดบนระนาบ xy จะแทนด้วย (x, y)

2. ผลคูณคาร์ทีเชียน

นิยาม ให้ A กับ B เป็นเซตใด ๆ ผลคูณคาร์ทีเซียนของเซต A กับ เซต B จะใช้สัญลักษณ์ A x B อ่านว่า A ครอส B คือเซตของคู่อันดับซึ่งสมาชิกตัวแรกเป็นสมาชิกของเซต A และสมาชิกตัวหลังเป็นสมาชิกของเซต B จะสามารถเขียน A x B ในรูปเซตแบบบอกเงื่อนไขได้ดังนี้ A×B ={(a,b) | a ∈ A และ b∈B)}

ข้อสังเกต

- 1. ถ้า A และ B เป็นเซตจำกัด จำนวนสมาชิกของเซต A x B เท่ากับ จำนวนสมาชิกของเซต A คุณกับ จำนวนสมาชิกของเซต B
- 2. บางครั้งเราอาจใช้ A^2 แทน $A \times A$

และ $A \times B$ คือผลคูณคาร์ที่เชียนของเซต A และเซต B

ตัวอย่าง A={1,3,5} และ B = {a,b}

 $AxB = \{(1,a),(1,b),(3,a),(3,b),(5,a),(5,b)\}$

 $BxA = \{(a,1),(a,3),(a,5),(b,1),(b,3),(b,5)\}$

 $A \times A = \{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)\}$

 $BxB = \{(a,a),(a,b),(b,a),(b,b)\}$

จากตัวอย่างจะเห็นว่า A x B ≠ B x A

3. ความสัมพันธ์ (Relations)

ความสัมพันธ์เกิดจากของสองสิ่งมาเกี่ยวข้องกันภายใต้กฎเกณฑ์อย่างใดอย่างหนึ่งและของทั้งสองสิ่งนั้น จะ เขียนในรูปของคู่อันดับได้เสมอ

1. ความสัมพันธ์คือเซตของคู่อันดับแทนด้วยสัญลักษณ์ r นิยาม

> 2. r เป็นความสัมพันธ์จาก เซต A ไปเซต B ก็ต่อเมื่อ r เป็นสับเซตของ A X B เขียนได้ว่า r เป็น ความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ r ⊂ A X B และ rไม่เป็นความสัมพันธ์จาก A ไป B ก็ ต่อเมื่อ r ⊄ A X B

ตัวอย่าง

R1 = {
$$(2,a),(2,c)$$
} R2 = { $(4,9),(6,d),(d,c)$ }

จงพิจารณาว่าความสัมพันธ์ R1, R2 เป็นความสัมพันธ์ จาก A ไป B หรือไม่ เพราะเหตุใด

R1 เป็นความสัมพันธ์จาก A ไป B เพราะเหตุว่า R1 \subset A X B

R2 ไม่เป็นความสัมพันธ์จาก A ไป B เพราะเหตุวา่ R2 ⊄ A X B

ในทำนองเดียวกัน

R เป็นความสัมพันธ์จาก A ไป B ก็ต่อเมื่อ R ⊂ B X A

R เป็นความสัมพันธ์จาก A ไป A ก็ต่อเมื่อ R \subset A X A

R เป็นความสัมพันธ์จาก B ไป B ก็ต่อเมื่อ R ⊂ B X B

ความสัมพันธ์บางครั้งอาจจะเขียนอยู่ในรูปเงื่อนไข เช่น R = {(x,y) \subset A X A | x+ y < 19} โดยที่ A ={5,9,13,17}

ดังนั้นเราจะแจกแจงสมาชิกได้เป็น R = {(5,5),(5,9),(5,13),(9,5),(9,9),(13,5)} ในที่นี้จะเห็นวา่ R จะต้องเลือกมาจากคู่อันดับใน A X A เท่านั้นและจะต้องมี ความสัมพันธ์ x + y < 19 เช่นเราได้ (5,5) ⊂ R เพราะ 5+5 = 10 < 19

ตัวอย่าง ถ้า A ={2 , 3 , 4} และ B = {5 , 6 , 8 , 9} ให้
$$r_1$$
 คือความสัมพันธ์ " หารลงตัว" จาก A ไป B จะได้ r_1 = { (2,6) , (2,8) , (3,6) , (3,9) , (4,8) } ให้ r_2 คือความสัมพันธ์ "เป็นรากที่สอง" จาก A ไป B จะได้ r_2 = { (3,9) } ให้ r_3 คือความสัมพันธ์ "มากกว่า " จาก A ไป B จะได้ r_3 = ϕ

ตัวอย่าง ให้ $A = \{x \mid x \text{ เป็นจำนวนเต็ม}\}$ $B = \{x \mid x \text{ เป็นจำนวนเต็มบวก}\}$ r1และ r2 ต่อไปนี้เป็นความสัมพันธ์จาก A ไป B $r1 = \{(x, y) \subset A \times B \mid y = x^2\}$ $r_2 = \{(x, y) \subset A \times B \mid y = x/2\}$ เขียน r_1 และ r_2 แบบแจกแจงสมาชิกจะได้ $r_1 = \{(1,1), (-1,1), (2,4), (-2,4),\}$ หรือ $r_1 = \{(x, y) \subset A \times B \text{ และ}y = x^2\}$

4. โดเมน (Domain) และเรนจ์ (Range) ของความสัมพันธ์

โดเมนของความสัมพันธ์ได้แก่ เซตของสมาชิกตัวหน้าของคู่อันดับทั้งหมดกล่าวคือ พิกัด \times ทั้งหมดที่ยอมรับได้ เขียนแทนด้วย D(r) หรือ D_r โดย $Dr = \{x \mid (x,y) \in r\}$

r² = {(2,1), (4,2), (6,3), (8,4),} หรือ r² ={(x, y) ⊂ A x B และy = x/2}

เรจน์ของความสัมพันธ์ได้แก่ เซตของสมาชิกตัวหลัวของคู่อันดับทั้งหมดกล่าวคือ พิกัด y ทั้งหมด ที่ยอมรับได้ เขียนแทนด้วย R(r) หรือ R_r โดย Rr = {y $\mid (x,y) \in r$ }

ตัวอย่าง
$$r = \{(1,2),(1,3),(2,2),(3,5)\}$$
 จงหาโดเมนและเรนจ์ของความสัมพันธ์ วิธีทำ $Dr = \{1,2,3\}$ $Rr = \{2,3,5\}$

ตัวอย่าง
$$r = \{(x,y) \in R \times R \mid y=2x-3\}$$
 จงหาโดเมนและเรนจ์ของความสัมพันธ์ วิธีทำ $Dr = \{x \mid x \in R\}$ $Rr = \{y \mid y \in R\}$

ตัวอย่าง ให้ $A = \{-3, -2, -1, 0, 1, 2, 3\}$ และกำหนดให้ความสัมพันธ์ r ใน A คือ $\{(x, y)|\ y = x^2\}$ จงหาโดเมน และเรนจ์ของความสัมพันธ์นี้

r เป็นความสัมพันธ์ใน A หมายถึง r ⊂ A x A r= {(-1,1),(0,0),(1,1)} ดังนั้น Dr = {-1,0,1} Rr = {0,1}

ตัวอย่าง กำหนดให้ $r = \{(x,y) \in |x| \mid y = x^2\}$ จงหาโดเมนและเรนจ์ของ r

เนื่องจาก r เป็นความสัมพันธ์ในเซตของจำนวนเต็มและจำนวนเต็มใด ๆ ไม่ว่าจะเป็นบวกหรือ ลบ หรือศูนย์ก็ ตาม สามารถนำมายกกำลังสองได้ทั้งสิ้น

ดังนั้น D_r ={x | x เป็นจำนวนเต็ม} จำนวนเต็ม ใด ๆ เมื่อนำมายกกำลังสองแล้วผลที่ ได้ออกมาจะเป็นจำนวน บวกเสมอ นอกจาก ศูนย์ซึ่งยกกำลังสองแล้วได้ศูนย์

ดังนั้น R_r ={y | y เป็นจำนวนเต็มบวกที่เป็นกำลังสองสมบูรณ์ หรือศูนย์}

ตัวอย่าง กำหนดให้ $r = \{(x,y) | y = \frac{1}{x-1} \}$ จงหาโดเมนและเรนจ์ของ r

การหาค่าของ $\frac{1}{x-1}$ เมื่อแทน x ด้วยจำนวนจริงใด ๆ ได้เสมอ นอกจาก เมื่อ x=1 เพราะ $\frac{1}{x-1}=\frac{1}{0}$ ไม่มี ความหมาย ดังนั้น $D_r=\{x\mid x\neq 1\}$

การพิจารณาหาเรนจ์ของ r เขียน x ให้อยู่ในรูปของ y ได้คือ $x=\frac{1}{y}+1$ จะเห็นได้ว่า y ต้อง ไม่เท่ากบัศูนย์ ดังนั้น $R_r=\{y\mid y\neq 0\}$

ตัวอย่าง กำหนดให้ $r = \{(x,y) | \ y = \sqrt{16-x^2} \}$ จงหาโดเมนและเรนจ์ของ r

พิจารณาโดเมนจะเห็นว่าจา นวนที่จะนา มาแทนค่า \times นั้นจะต้องไม่ทำ ให้ $16-x^2$ เป็นลบ เพราะรากที่ สองของจำนวนลบไม่เป็นจำนวนจริง เมื่อให้ $16-x^2 \ge 0$ จึงมีค่าได้ตั้งแต่ -4 ถึง 4 หรือ เขียนได้ในรูป [-4, 4] หรือ $|\mathbf{x}| \le 4$

ดังนั้น D_r ={x| -4 \leq x \leq 4} หรือ {x | |x| \leq 4} หรือ [-4, 4]

เนื่องจาก $\sqrt{16-x^2}$ จะต้องไม่เป็นจำนวนลบ และจะมากที่สุดเมื่อ x=0 ดังนั้น R_r ={y | 0 \leq y \leq 4} หรือ [0,4]

ตัวอย่าง กำหนดความสัมพันธ์ให้ต่อไปนี้จงหาโดเมนและเรนจ์ของความสัมพันธ์ที่กำหนดขึ้น

1.
$$r_1 = \{(x, y) \in R \times R \mid x - 2y - 2 = 0\}$$

2.
$$r_2 = \{(x, y) \in R \times R \mid y = 4 - x^2\}$$

3.
$$r_3 = \{(x, y) \in R \times R \mid y = |x - 2|\}$$

4.
$$r_4 = \{(x, y) \in R \times R \mid x^2 + y^2 = 4\}$$

5.
$$r_5 = \{(x, y) \in R \times R \mid y = \sqrt{x}\}$$

5. ฟังก์ชัน (Function)

นิยาม ถ้า f เป็นความสัมพันธ์ จะเรียก f ว่าเป็นฟังก์ชัน เมื่อแต่ละสมาชิกใน โคเมน (สมาชิกตัวหน้าของคู่อันคับ) จะ จับคู่หรือมีความสัมพันธ์กับสมาชิกในเรนจ์ (สมาชิกตัวหลังของคู่อันคับ) <u>ได้เพียงสมาชิกเดียว</u>

รูปที่ 1 และรูปที่ 2 เป็นลักษณะการจับคู่ที่ทำให้ความสัมพันธ์เป็นฟังก์ชั่น

รูปที่ 3 เป็นลักษณะการจับคู่ที่ทำให้ความสัมพันธ์ไม่เป็นพึงก์ชั่น

การตรวจสอบว่าความสัมพันธ์ใดเป็นฟังก์ชันหรือไม่

- 1. โดยใช้กราฟ วิธีการตรวจสอบคือ ให้ลากเส้นตรงขนานกับแกน y ตัดกราฟของความสัมพันธ์นั้น
 - ถ้าตัดกราฟเพียงจุดเดียว : แสดงว่า ความสัมพันธ์นั้นเป็นฟังก์ชัน
 - ถ้าตัดกราฟมากกว่า หนึ่งจุด : แสดงว่า ความสัมพันธ์นั้น ไม่เป็นฟังก์ชัน
- 2. โดยใช้หลักการพิจารณาที่ว่า ถา้ (a, b) ∈ r และ (a, c) ∈ r ถ้าสามารถสรุปได้ว่า b = c ก็แสดงว่า ความสัมพันธ์นั้นเป็นฟังก์ชัน

ตัวอย่าง จงพิจารณาว่า ความสัมพันธ์ต่อไปนี้เป็นฟังก์ชัน หรือไม่

1.
$$r_1 = \{(0,1), (1,0), (-1,1), (2,1)\}$$

2.
$$r_2 = \{(1,2), (2,3), (3,1), (1,4)\}$$

3.
$$r_3 = \{(x, y) \in R \times R \mid y = 2x + 1\}$$

4.
$$r_4 = \{(x, y) \in R \times R \mid x^2 + y^2 = 4\}$$

5.
$$r_5 = \{(x, y) \in R \times R \mid y^2 = 4x + 1\}$$

6.
$$r_6 = \{(x, y) \in R \times R \mid y = \sqrt{x+1}\}$$

หมายเหตุ ในกรณีที่ความสัมพันธ์ f เป็นฟังก์ชัน เราสามารถเขียน y = f(x) แทน $(x,y) \in f$ ได้ และ เรียก f(x) ว่า ฟังก์ชัน f ที่ x อ่านว่า เอฟที่เอ็กซ์หรือเอฟเอ็กซ์ จาก $(x,y) \in f$ เขียนแทนได้ด้วย $(x,f(x)) \in f$

6. โดเมนและเรนจ์ของฟังก์ชัน

เนื่องจากฟังก์ชันเป็นความสัมพันธ์ชนิดหนึ่ง ดังนั้นการหาโดเมนและเรนจ์ของฟังก์ชัน จึงกระทำได้ เช่นเดียวกับการหาโดเมนและเรนจข์องความสัมพันธ์

บทนิยาม ถ้า f เป็นฟังก์ชันจาก A ไป B โดเมนของ f คือเซตของสมาชิกตัวหน้าทุกตัวของคู่อันดับ f เขียนแทนด้วย $D_f = \{x \mid (x, y) \in f\}$ เรนจ์ของ f คือเซตของสมาชิกตัวหลังทุกตัวของคู่อันดับ f เขียนแทนด้วย $R_f = \{y \mid (x, y) \in f\}$ ตัวอย่าง จงหาโดเมนและเรนจNของฟังก์ชันต่อไปนี้

1.
$$f(x) = 3x - 1$$

2.
$$g(x) = \frac{1}{x+2}$$

3.
$$h(x) = \sqrt{x + 1}$$

4.
$$f(x) = |x| - 3$$