Chi Square EDP 613

Week 12

A Note About The Slides

Currently the equations do not show up properly in Firefox. Other browsers such as Chrome and Safari do work.

Independence

Two variables that have no association with each other are statistically independent.

Frequencies

• expected frequencies

- \circ written f_e
- is what you would *expect* in a bivariate table if two variables were statistically independent.
- o calculated by assuming the null hypothesis is true.

observed frequencies

- \circ written f_o
- o is what you would *observe* in a bivariate table given what you have.
- o you know this already.

Chi-Square Test

- Written χ^2 .
- Is an inferential test to find significant relationships between two variables.
- Calculated by

$$\chi^2 = \sum rac{(f_o - f_e)^2}{f_e}$$

• with

$$df = (r-1)(c-1)$$

Assumptions

Only that the data is derived from random sampling.

Example

Fake scenario: From 2 political parties and 1 other group (Democrats, Republicans, and Independent), you take a poll from a sample of US citizens asking which category they support (i.e., their likely vote). You might wonder whether the people's likely votes are equally distributed between the 3 political parties (your H_0).

Samples

Democrats: 587Republicans: 552Independents: 480

Total

587 + 552 + 480 = 1619.

Proportions

• Democrats: $587/1619 \approx 0.3626$ • Republicans: $552/1619 \approx 0.3410$ • Independents: $480/1619 \approx 0.2965$

Expected Frequencies

- We have three categories
- ullet H_0 : voters are equally distributed across the categories
- ullet Expected value is found by dividing the total by 1/3pprox 0.3333. So

 $1619 \cdot 0.3333 \approx 539.7$

Туре	Democrats	Republicans	Independents
Observed	587	552	480
Expected	539.67	539.67	539.67

So

$$\chi^2 = rac{(587 - 539.67)^2}{539.67} + rac{(552 - 539.67)^2}{539.67} + rac{(480 - 539.67)^2}{539.67}
onumber \ pprox 11.03$$

with

$$df=(2-1)\cdot(3-1) \ =2$$

Now let's try this in R!

```
votes = c(D=587, R=552, I=480); votes
```

D R I ## 587 552 480

Calculate observed proportions

Determine expected frequencies

```
prop = 1/3; prop

## [1] 0.3333333

f_e = N * prop; f_e

## [1] 539.6667
```

Туре	Democrats	Republicans	Independents
Observed	587	552	480
Expected	539.67	539.67	539.67

chisq_rs = (587 - 539.67)^2/539.67 + (552-539.67)^2/539.67 + (480 - 539 chisq_rs

[1] **11.**0302

with

[1] 2

Significance

```
p_val = pchisq(chisq_rs, df = 2, lower.tail = FALSE)
p_val
```

[1] 0.00402553

I lied. This is not the easiest way!

You can actually do this in one line.

```
not_a_lie = chisq.test(votes); not_a_lie

##

## Chi-squared test for given probabilities
##

## data: votes
## X-squared = 11.03, df = 2, p-value = 0.004025
```

That's it. Take a break before our real R session!