

SCM2114AL 1024 x 4 Static CMOS RAM

Preliminary

Features

- Fast Access Time Selection: 100ns/120ns/150ns/200ns
- Direct Replacement for NMOS 2114 RAMs
- 883 Qualified Version: 883/2114ALM
- Three-State Outputs
- True TTL Compatibility
- Single 5V ± 10% Supply
- Fully Static Asychronous Operation
- Three-State Outputs
- Common Data I/O Bus

Description

The SCM2114AL is a static silicon-gate CMOS RAM, a direct replacement for the NMOS 2114 4K RAM. The device is fully static and requires no clocks.

The Common Data lines (I/O) aflow for simple interfacing with most microprocessors. A Chip Select input (\overline{CS}) is provided for memory expansion. The I/O lines are in a high impedance state when the chip is not selected ($\overline{CS}=1$). The Write Enable (\overline{WE}) is used to select either the read ($\overline{WE}=1$) or write ($\overline{WE}=0$) mode.

The SCM2114AL is fully socket and spec compatible with NMOS 2114 RAMS. For applications where $\overline{\text{CS}}$ and address access timing can be coincident, even lower power can be achieved using the SCM21C14 which features a standby current of 50 μA max.

The SCM2114AL is available in industry standard 18 pin packages. The different versions of the SCM2114AL are outlined below.

Operating Characteristics Summary

Туре	Access Time t _A (max.)	Operating Current I _{CC} (max.)		
SCM2114AL-1	100ns	40mA		
SCM2114AL-2	120ns	40mA		
SCM2114AL-3	150ns	40mA		
SCM2114AL-4	200ns	40mA		
SCM2114ALM	200ns	50mA		
883/2114ALM	200ns	50mA		

Pin Configuration

Block Diagram

Absolute Maximum Limits

DC Supply Voltage (V_{CC}):

-0.5 to +6.0 V

Storage Temperature (T_S):

 -65° to $+150^{\circ}$ C

Input Voltage (VIN):

 $(V_{SS} - 0.3V) \le V_{IN} \le (V_{CC} + 0.3V)$

Recommended Operating Conditions

Parameter	Limits				
DC Supply Voltage (V _{CC}) Operating Temperature (T _A)	5V ± 10%				
2114AL-1/-2/-3/-4 2114ALM	0° to +70°C -55° to +125°C				

Pin Description

 $\frac{A_{0\cdot 9}}{CS}$ Address Inputs Chip Select

WE

Write Enable I/O₁₋₄ Data In/Out

Truth Table

cs	WE	I/O ₁₋₄	Mode		
1	×	High Z	Not Selected		
0	1	Outputs	Read		
0	0	Inputs	Write		

D. C. Characteristics $(V_{CC} = 5V \pm 10\%)$

Symbol	Parameter	Min.	Typ.(1)	Max.	Units	Test Conditions
l _{Li}	Input Current			1.0	μА	
ILO	Output Leakage Current			1.0	μΑ	
VIL	Input Low Voltage			0.8	ĺv	
VIH	Input High Voltage	2.0			l v	
VOL	Output Low Voltage			0.4	l v	$I_{OL} = 3.2 \text{mA}$
V _{OH}	Output High Voltage	2.4			l v	$I_{OH} = -1.0 \text{mA}$
Icc	Operating Current 2114AL		25	40	mA	$V_{IH}/V_{IL} = 2.0/0.8V$
lcc	Operating Current 2114ALM		25	50	mA	$V_{IH}/V_{IL} = 2.0/0.8V$

A. C. Characteristics (2) $(v_{CC} = 5V \pm 10\%)$

Symbol	Parameter	211 Min.	4AL·1 Max.	2114 Min.	AL-2 Max.	2114 Min.	IAL-3 Max.	2114/ Min.	AL-4/M Max.	Units
Read Cyc	le									
t _{RC}	Read Cycle	100		120		150		200		ns
tA	Access from Address		100		120		150	1	200	ns
tco	Chip Select to Output Valid		50		70		70		70	ns
t _{CX}	Chip Select to Output Active	5		5		5		5		ns
t _{OTD}	Chip Select to Output Float		30	į	35		40		50	ns
t _{OHA}	Output Hold from Address Change	5		5		5		5		ns
Write Cyc	ele						•			
twc	Write Cycle	100		120		150		200		ns
tw	Write Pulse Width	50		70		90		120		ns
t _{DW}	Data Setup	50		70		90		120		ns
t _{DH}	Data Hold	0		0		0		0		ns
totw	Write to Output Float		30		35		40		50	ns
t _{WR}	Write Recovery	0		0		0		0		ns

Read Cycle (3)

Write Cycle

Input Pulse Levels: Input Rise/Fall Times: Time Measurement Reference Level:

Output Load:

0.8 to 2.4V ≤ 10ns

1 TTL Load and C_L = 100 pF

^{1.} $T_A = 25$ °C; $V_{CC} = 5.0V$

^{2.} A.C. TEST CONDITIONS

^{3.} WE is high for a read cycle.

^{4.} t_W is measured from the latter of \overline{CS} or \overline{WE} going low to the earlier of \overline{CS} or \overline{WE} going high. \overline{WE} must be high during address transitions.