Cross-group Σ -protocols

Yevhen Hrubiian

May 2, 2025

Distributed Lab

Introduction

Schnorr identification protocol

Suppose \mathbb{G} is a cyclic group of order q with a generator G. Then, the relation and language being considered are:

$$\mathcal{R} = \{(Q, x) \in \mathbb{G} \times \mathbb{Z}_q : Q = [x]P\}, \ \mathcal{L}_{\mathcal{R}} = \{Q \in \mathbb{G} : \exists x \in \mathbb{Z}_q : Q = [x]P\}$$

Problem #1

 \mathcal{P} wants to convince \mathcal{V} that it knows the discrete log of $Q \in \mathcal{L}_{\mathcal{R}}$. That is, he knows *witness* x such that $(Q, x) \in \mathcal{R}$.

Problem #2

We want to obtain the following properties:

- Completeness: $\forall (Q, x) \in \mathcal{R}$ verifier outputs true
- **Soundness**: $\forall (Q, x) \notin \mathcal{R}$ verifier outputs **true** with negligible probability.
- Zero-knowledge: Interaction between Prover and Verifier gives no new information about witness.

1

Protocol Flow

Figure 1: Prover convinces Verifier that he knows x : Q = [x]P

Properties of Protocol

Schnorr identification protocol has the following properties

- Completeness: $\forall (Q, x) \in \mathcal{R}$ verifier outputs **true**
- Special(knowledge) Soundness: There exist efficient extractor algorithm $\mathcal E$ such that given statement Q and two accepting conversations $(R,c,s),(R,c',s'),c\neq c'$ $\mathcal E$ can extract witness x such that $(Q,x)\in \mathcal R$ except with probability ϵ
- Honest verifier zero-knowledge: There exists an efficient simulator algorithm Sim, which on input Q and a challenge $c \in C$, outputs transcripts of the form (R,c,s) whose distribution is indistinguishable from accepting protocol transcripts generated by real protocol runs on public input Q and with challenge c
- Schnorr identification protocol is a member of a larger class of interactive protocols called Σ-protocols

Note:

Honest verifier zero-knowledge is not **zero-knowledge**! Malicious verifier has ability to extract the witness from transcript.

Σ-protocols

Definition

Let $\mathcal R$ be a binary relation and let $(Y,w)\in \mathcal R$. An interactive two-party protocol specified by algorithms (P_1,P_2,V) is called a Σ -**protocol** for $\mathcal R$ with challenge set $\mathcal C$, public input Y, and private input w, if and only if it satisfies the following conditions:

- **3-move form**: The protocol is of the following form:
 - 1. The prover computes $(R, r) \leftarrow P_1(w, Y)$ and sends R to the verifier, while keeping st secret.
 - 2. The verifier draws $c \stackrel{R}{\leftarrow} C$ and returns it to the prover.
 - 3. The prover computes $s \leftarrow P_2(w, Y, c, r)$ and sends s to the verifier.
 - 4. The verifier accepts the protocol run, if and only if V(Y, R, c, s) = true, otherwise it rejects.
- Has Correctness, Special Soundness, Honest verifier zero-knowledge

Σ -protocol for knowledge of preimage of homomorphism

 Σ -protocols could prove much larger class of binary relations, more specifically they could prove knowledge of preimage of arbitrary homomorphism $\phi: \mathbb{Z}_q^m \to \mathbb{G}^n$:

$$\mathcal{R} = \{(\mathsf{Y}, \mathsf{w}) \in \mathbb{G}^n \times \mathbb{Z}_q^m : \mathsf{Y} = \phi(\mathsf{w})\}, \mathsf{Y} = (\mathsf{Y}_1, \dots, \mathsf{Y}_n), \mathsf{w} = (\mathsf{w}_1, \dots, \mathsf{w}_m)$$

Protocol algorithms:

- $P_1(w, Y)$ samples $r = (r_1, ..., r_m) \stackrel{R}{\leftarrow} Z_q^m$, computes $R = \phi(r)$, outputs (R, r)
- $P_2(w, Y, c, r)$ outputs $s = w + c \cdot r \ (\forall i = 1..m : s_i = w_i + cr_i)$
- V(Y, R, c, r) checks R + cY = (s)

 Σ -protocols could be made non-interactive using Fiat-Shamir heuristic: $c=\mathcal{H}(\mathcal{D},\mathsf{Y},\mathsf{R})$ where \mathcal{D} - domain separator, \mathcal{H} - random oracle modeled with collision-resistant hash function. Zero-knowledge property holds for non-interactive Σ -proofs

Σ-protocols standardization

There is two main types of non-interactive Σ -proofs:

- Batchable proof: $\pi = (R, s)$
- Compact proof: $\pi = (c, s)$

Σ-protocols currently are being under standardization process: https://sigma.zkproof.org

Most common notation for Σ -protocols is Camenisch-Stadler notation. For example Chaum-Pedersen protocol for DH-triplets:

```
DLEQ(A, B, G, H) = \{
(x): A = (x * G), B = (x * H) \}
```

Moreover, we can prove knowledge of witness for arbitrary arithmetic circuit(possibly encoded in R1CS) with Σ -protocol, however proof size is O(n+m), where n-number of constraints, m-number of variables

Cross-group Σ protocols

Cross-group protocols

Often, it is useful to prove knowledge of the same witness across different groups:

- In credential linking: anonymous credentials(KVAC) issued to the same user in different cryptographic groups, Signal group system uses KVAC.
- Proof of assets between different chains: often privacy-based solutions use Pedersen commitments so proving that committed value is equal would be useful. Also linking on-chain pairing-unfriendly cryptography to some pairing-friendly group is useful when proving on-chain statements with pairing-based SNARKs.
- Linking committed value to native scalar in proving systems like bulletproofs. It's very useful when proving consistency of update of Assymetric Ratchet Tree

Proving equality of committed witness

Suppose that one want to prove relation with witness-committed schemes as *bulletproofs or halo*:

$$\mathcal{R}_{R1CS} = \{(A,B,C,V;z) | (Az) \circ (Bz) = (Cz)\}$$

where $V=[x]G+r[H]\in \mathbb{G}_1$ - committed witness in proving system group, z=(x,w) - extended witness, suppose that x should also satisfy $Q=[x]G_2\in \mathbb{G}_2$ where \mathbb{G}_2 - some proving-native elliptic curve group(e.g. defined over F_n where $n=|\mathbb{G}_1|$). So we have to prove

$$\mathcal{R}_{comeq} = \{((Q, V); (x, s)) | Q = [x]G_1, V = [x]G_2 + [s]H_2\}$$

Where $x \in \mathbb{Z}, s \in \mathbb{Z}_q, G_1 \in \mathbb{G}_1, G_2, H_2 \in \mathbb{G}_2$

Cross-group Σ-protocols

Let us formalize our cross-group protocol. Briefly, idea of the protocol came from https://eprint.iacr.org/2022/1593.pdf.

Cross-group relation

Let \mathbb{G}_1 , \mathbb{G}_2 - cryptographic groups of prime orders respectively p,q and $\phi: \mathbb{Z}_p^{n_1} \to \mathbb{G}_1^{m_1}, \psi: \mathbb{Z}_q^{n_2} \to \mathbb{G}_2^{m_2}$ - homomorphisms. Denote $\iota_p: \mathbb{Z} \to \mathbb{Z}_p, \iota_p(a) = a \pmod{p}$.

Assume prover wants to convince verifier that he knows preimage of each homomorhism given some elements of each preimage might be equal: $w_1=(\iota_p(x),r_1),w_2=(\iota_q(x),r_2) \text{ where } x\text{ - common part of witness in both groups. We build proving system } \Pi_{cross} \text{ for the following relation:}$

$$\begin{split} \mathcal{R}_{cross} &= \{ ((\mathsf{Y}_1, \mathsf{Y}_2), (\mathsf{w}_1, \mathsf{w}_2)) \in (\mathbb{G}_1^{n_1} \times \mathbb{G}_2^{n_2}) \times (\mathbb{Z}_p^{m_1} \times \mathbb{Z}_q^{m_2}) : \\ & \mathsf{Y}_1 = \phi(\mathsf{w}_1), \mathsf{Y}_2 = \psi(\mathsf{w}_2) \} \end{split}$$

9

Parametrization

The construction of our protocol is based on combination of Σ -protocols with aborts and range-proofs(we implemented it with *bulletproofs*). Intuitively, it will abort if prover «leak» any information about the witness, if so, the parties begin protocol from scratch.

Let $B_g = \lceil \log_2(\min(p,q)) \rceil$ - bitlength of minimal prime. Our protocol is parametrized by B_x, B_c, B_f so that $B_x + B_c + B_f < B_g$ (no modular reduction occurs in $\mathbb{Z}_p, \mathbb{Z}_q$ during proving!). Here B_x - maximum bitlength of cross-group scalar, B_c - bitlength of challenge which controls the soundness error ϵ , B_f - value that defines the probability of abort: $Pr[\mathcal{P} \text{ aborts}] = 1/B_f$.

For example, convenient choice for parameters when $B_g \approx 256$ (elliptic curve groups for 128bit security level) is:

$$B_x = 64, B_c = 128, B_f = 56$$

Π_{cross} protocol

Completeness

Theorem (completeness)

Protocol Π_{cross} is 2^{-B_f} -complete for relation \mathcal{R}_{cross} .

Proof idea: each response σ_i is uniformly distributed in $Z_0 = \{cw_i, cw_i + 1 \dots, cw_i + 2^{B_c + B_x + B_f} - 1\}$ so the probability of non-aborting is $Pr[\mathcal{P} \text{ not aborts}] = \frac{|\{2^{B_c + B_x}, \dots, 2^{B_c + B_x + B_f} - 1\}|}{|Z_0|} = 1 - \frac{1}{2^{B_f}}$ and $Pr[\mathcal{P} \text{ aborts}] = 1/|2^{B_f}|$

If prover does not abort all verification equations pass since $0 \le c < 2^{B_c}$, so that protocol Π_{cross} has completeness error $1/2^{B_f}$

Soundness

Here we give a scetch of a soundness proof for a little weaker class of Σ -cross protocols, but we believe that it is possible to prove it for all.

Theorem (soundness)

Protocol Π_{cross} is $(2^{-B_c'+1} + \epsilon_{range} + \epsilon_{DL})$ -computationally special sound for relation \mathcal{R}_{cross} where ϵ_{range} is the knowledge error of π_{range} , $\epsilon_{DL} = n_1 \cdot \epsilon_{DL_{\mathbb{G}_1}} + n_2 \cdot \epsilon_{DL_{\mathbb{G}_2}}$ is adversary advantage in solving discrete logs in both groups if for each Y_i every cross-group witness variable x_j in preimage is bound by the Pedersen vector commitment Y_i .

Proof idea: proving soundness implies building the knowledge extractor, so it's not hard to check that knowledge error of each part of Π_{cross} is 2^{-B_c} by building witness extractor separately for w_1 and w_2 in both groups, so summing them up gives knowledge error 2^{-B_c+1} . Adding knowledge error of rangeproofs: $2^{-B_c+1} + \epsilon_{range}$. Finally, we must check that cross-group witness variables x is consistent among all Pedersen commitments openings which gives us additionally error ϵ_{DL} :

$$(2^{-B_c+1} + \epsilon_{range} + \epsilon_{DL})$$

Zero knowledge

Theorem (sHVZK)

Protocol Π_{cross} is special honest verifier zero knowledge for relation \mathcal{R}_{cross} .

Proof idea: similar to proof of completeness if prover does not abort we build the simulator for Π_{cross} producing full transcripts from both domains $\mathbb{G}_1, \mathbb{G}_2$: $(R', S', c, \sigma_1, \sigma_2)$, if prover aborts with probability $1/2^{B_f}$ we build truncated simulated transcript (R', S', c, \bot)

Using Fiat-Shamir transform we can convert Π_{cross} to non-interactive protocol preserving described properties.

Implementation

Reference implementation

We have implemented a non-interactive variant of Π_{cross} in Rust: https://github.com/juja256/zkp. This implementation is a fork of https://github.com/zkcrypto/zkp with a little bit modified Camenisch-Stadler DSL as Rust macro.

Crate supports arbitrary elliptic curve groups from ark-ec crate which orders doesn't exceed 256bit. For range proofs (for 64bit values) we use the fastest bulletproofs crate which enabled if the second group is ark_ed25519 (we also implemented a bridge between dalek_curve25519::RistrettoPoint and ark_ed25519::EdwardsAffine)

Proving \mathcal{R}_{comeq} with Π_{cross}

Recall our example relation describing the equality of discrete log and committed value in different groups:

$$\mathcal{R}_{comeq} = \{((Q, V); (x, r)) | Q = [x]G_1 \in \mathbb{G}_1, V = [x]G_2 + [s]H_2 \in \mathbb{G}_2\}$$

In our instance \mathbb{G}_1 is secp256k1 group and \mathbb{G}_2 is curve25519 group. To prove it with Π_{cross} we use the following strategy:

- Set parameters $B_x = 64, B_c = 128, B_f = 56$
- Draw $r_i \stackrel{R}{\leftarrow} F_p^*$ for i = 0..3 and write x, s in base 2^{B_x} representation: $x = \sum_{i=0}^3 2^{i \cdot B_x} x_i, s = \sum_{i=0}^3 2^{i \cdot B_x} s_i.$
- Commit to each x_i using Pedersen commitments in both groups: $A_i = [x_i]G_1 + [r_i]H_1 \in \mathbb{G}_1, B_i = [x_i]G_2 + [s_i]H_2 \in \mathbb{G}_2$
- Add constraints for each A_i, B_i and contrain public key as a sum: $Q = \sum_{i=0}^{3} [2^{i \cdot B_x} G_1] x_i \in \mathbb{G}_1$
- Draw appropriate homomorphisms ϕ, ψ and use Π_{cross} to prove the relation.

Proving \mathcal{R}_{comeq} with Π_{cross}

So we've got the following equivalent relation:

$$\mathcal{R}'_{comeq} = \{ ((A_1, A_2, A_3, A_4, Q), (B_1, B_2, B_3, B_4)); \\ ((x_0, x_1, x_2, x_3, r_0, r_1, r_2, r_3), (x_0, x_1, x_2, x_3, s_0, s_1, s_2, s_3)) | \\ A_0 = [x_0]G_1 + [r_0]H_1, A_1 = [x_1]G_1 + [r_1]H_1, \\ A_2 = [x_2]G_1 + [r_2]H_1, A_3 = [x_3]G_1 + [r_3]H_1, \\ Q = [x_0]G_1 + [x_1]([2^{B_x}]G_1) + [x_2]([2^{2 \cdot B_x}]G_1) + [x_3]([2^{3 \cdot B_x}]G_1), \\ B_0 = [x_0]G_2 + [s_0]H_2, B_1 = [x_1]G_2 + [s_1]H_2, \\ B_2 = [x_2]G_2 + [s_2]H_2, B_3 = [x_3]G_2 + [s_3]H_2 \}$$

Where $\textit{G}_{1},\textit{H}_{1}\in\mathbb{G}_{1},\textit{G}_{2},\textit{H}_{2}\in\mathbb{G}_{2}$ - generators

\mathcal{R}_{comeg} definition in DSL

```
define_cross_proof! {
    comeq,
    "\{(Q, Com(x), G_1, G_2, H_2); (x, s) \mid
    Q = [x]G_1 \in G1 \& Com(x) = [x]G_2 + [s]H_2 \in G2",
    (x0, x1, x2, x3), (r0, r1, r2, r3), (s0, s1, s2, s3),
    (AO, A1, A2, A3, Q), (Com_x0, Com_x1, Com_x2, Com_x3),
    (G_1, G_{11}, G_{12}, G_{13}, H_1), (G_2, H_2) :
    A0 = (x0 * G_1 + r0 * H_1),
    Com_x0 = (x0 * G_2 + s0 * H_2),
    A1 = (x1 * G 1 + r1 * H 1).
    Com_x1 = (x1 * G_2 + s1 * H_2),
    A2 = (x2 * G 1 + r2 * H 1).
    Com_x2 = (x2 * G_2 + s2 * H_2),
    A3 = (x3 * G_1 + r3 * H_1),
    Com_x3 = (x3 * G_2 + s3 * H_2),
    Q = (x0 * G_1 + x1 * G_1_1 + x2 * G_1_2 + x3 * G_1_3)
```

Application: Proving Diffie-Hellman on ART

One intriguing application of cross-group Σ -protocols is proving the correctness of update of Assymetric Ratchet Tree(ART) - a novel approach to large group e2e encryption.

Suppose Alice \mathcal{A} wants to convince other group members that she correctly updated her path in ART, e.g. correctly calculated all the shared DH secrets λ' . Thus she wants to prove the following relation for the every level of ART:

$$\mathcal{R}_{\mathcal{A}\mathcal{R}\mathcal{T}} = \{ (Q'_{\mathcal{A}}, Q_{\mathcal{B}}, Q'_{\mathcal{A}\mathcal{B}}; \lambda'_{\mathcal{A}\mathcal{B}}, \lambda'_{\mathcal{A}}) |$$

$$Q'_{\mathcal{A}} = [\lambda'_{\mathcal{A}}]P, \lambda'_{\mathcal{A}\mathcal{B}} = \iota([\lambda'_{\mathcal{A}}]Q_{\mathcal{B}}), Q'_{\mathcal{A}\mathcal{B}} = [\lambda'_{\mathcal{A}\mathcal{B}}]P \}$$

Where $P \in \mathbb{G}_1$, $\operatorname{ord}(P) = q, \lambda_{\mathcal{A}}' \in \mathbb{Z}_q$, $\iota : \mathbb{G}_1 \to \mathbb{Z}_q$ - group to integer mapping, for example $\iota(Q) = x(Q) \mod q$ when \mathbb{G}_1 is elliptic curve group.

Proving \mathcal{R}_{ART} with bulletproofs

One may notice that proving the knowledge of preimage of ι is extremely complicated using classic Σ -protocols. Thus we have proposed to prove $\mathcal{R}_{\mathcal{ART}}$ using bulletproofs proving system. Here comes the power of cross-group protocols. Suppose \mathbb{G}_2 - curve-25519 (or Ristretto) group using in the fastest bulletproofs implementation \mathbb{G}_1 - elliptic curve group defined over \mathbb{F}_q where q is the prime order of \mathbb{G}_1 .

So we introduce the following strategy:

- 1. Prove that committed λ -value $Com(\lambda, s) = [\lambda]G_2 + [s]H_2, \in \mathbb{G}_2$ is equal to the λ in $Q = [\lambda]P \in \mathbb{G}_1$ using Π_{cross} (this is our \mathcal{R}_{comeq})
- 2. Prove the correctness of ι computation using *bulletproofs**.
- 3. Combining described protocols using the same transcript in non-interactive fashion we get the proving system for $\mathcal{R}_{\mathcal{ART}}$

^{*} https://github.com/distributed-lab/project-m/tree/main/src/zk

Performance & future considerations

We achieved the following performance for \mathcal{R}'_{comeq} :

- In crate we use batchable range proofs and compressed Σ -proofs so the overall proof size is 1248 bytes.
- Prove-and-verify roundtrip takes only 7ms on Ryzen 7840HS

Future work:

- Formalize the soundness proof and extend the potential class of provable relations
- Extend the protocol to arbitrary number of groups
- Find new potential usages of Π_{cross} protocol, which we believe, there is a plenty of.