计算方法

第3章 常微分方程的差分方法

胡敏

合肥工业大学 计算机与信息学院

jsjxhumin@hfut.edu.cn

第 3 章 常微分方程的差分方法

- 3.1 欧拉方程
- 3.2 改进的欧拉方程
- 3.3 龙格-库塔方法
- 3.4 亚当姆斯方法
- 3.5 收敛性与稳定性

第3章 常微分方程的差分方法

1. 教学内容:

龙格-库塔方法:龙格-库塔方法的设计思想、二阶龙格-库塔方法、三阶龙格-库塔方法、四阶龙格-库塔方法、 变步长的龙格-库塔方法;亚当姆斯方法:亚当姆斯格式、亚当姆斯预报-效正系统、误差分析。

2. 重点难点:

龙格-库塔方法的设计思想;各阶龙格-库塔方法系数的确定。

3. 教学目标:

理解龙格-库塔方法的设计思想,熟悉二阶龙格-库塔方法的推导,能利用龙格-库塔方法进行微分方程数值求解。了解亚当姆斯格式。

3 常微分方程的差分方法-龙格-库塔方法

1.龙格-库塔法的设计思想

分析Euler方法及其改进方法和梯形方法的几何解释,可知关键在于对平均斜率的估计。

根据微分中值定理,存在点 ξ , $x_n < \xi < x_{n+1}$ 使得

$$\frac{y(x_{n+1}) - y(x_n)}{h} = y'(\xi)$$

所以
$$y(x_{n+1}) = y(x_n) + hy'(\xi)$$

$$y(x_{n+1}) = y(x_n) + hf(\xi, y(\xi))$$
 (11)

我们称 $K^* = f(\xi, y(\xi))$ 为区间 $[x_n, x_{n+1}]$ 上的平均斜率

,这样只要对平均斜率 K^* 提供一种算法,相应地我们便导出一种计算格式。

Euler方法简单地取点 x_n 的斜率值 $K_1 = f(x_n, y_n)$ 作为平均斜率。

改进的Euler方法可写成

$$\begin{cases} y_{p} = y_{n} + hf(x_{n}, y_{n}) \\ y_{c} = y_{n} + hf(x_{n+1}, y_{p}) \end{cases} \begin{cases} y_{n+1} = y_{n} + h \cdot (K_{1} + K_{2})/2 \\ K_{1} = f(x_{n}, y_{n}) \\ K_{2} = f(x_{n+1}, y_{n} + hK_{1}) \end{cases}$$

改进的Euler公式可以这样理解,它用 x_n 与 x_{n+1} 两个点的斜率值 K_1 与 K_2 取算术平均作为平均斜率,而 x_{n+1} 处的斜率值 K_2 则通过已知信息 y_n 来预测。

3 常微分方程的差分方法-龙格-库塔方法

上述处理过程启示我们,如果设法在[x_n,x_{n+1}]内多预测几个点的斜率值,然后将它们加权平均作为平均斜率,则有可能构造出具有更高精度的计算公式。这就是龙格-库塔方法的基本思想。

$$\begin{aligned} & y_{i+1} = y_i + h[\lambda_1 K_1 + \lambda_2 K_2 + ... + \lambda_m K_m] \\ & K_1 = f(x_i, y_i) \\ & K_2 = f(x_i + \alpha_2 h, y_i + \beta_{21} h K_1) \\ & K_3 = f(x_i + \alpha_3 h, y_i + \beta_{31} h K_1 + \beta_{32} h K_2) \\ & \\ & K_m = f(x_i + \alpha_m h, y_i + \beta_{m1} h K_1 + \beta_{n2} h K_2 + ... + \beta_{m m1} h K_{m-1}) \end{aligned}$$

其中 λ_i (i = 1, ..., m), α_i (i = 2, ..., m) 和 β_{ij} (i = 2, ..., m; j = 1, ..., i-1) 均为待定系数,确定这些系数的步骤与前面相似。

3 常微分方程的差分方法-龙格-库塔方法

2.二阶龙格-库塔法(用两个点的斜率平均作为平均斜率)

在 $[x_n, x_{n+1}]$ 上取两点 x_n 和 $x_{n+p} = x_n + ph$,(0 ,以该两点处的斜率值<math>k1和k2的加权平均来求取平均斜率k*的近似

值
$$K$$
, 即 $K=(1-\lambda)k_1+\lambda k_2$

$$k_1 = f(x_n, y_n)$$
 $k_2 = f(x_{n+p}, y_{n+p})$

$$y_{n+p} = ?$$
 $y_{n+p} = y_n + phk_1$

$$k_2 = f(x_n + ph, y_n + phk_1)$$

于是我们就得到如下计算格式:

$$\begin{cases} y_{n+1} = y_n + h[(1-\lambda) \ K_1 + \lambda \ K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_{n+p}, y_n + phK_1) \end{cases}$$
(12)

其中有两个待定参数 λ ,p, 适当选取它们的值,就可使上述格式有较高的精度。

假定
$$y_n = y(x_n)$$
分别将 K_1 和 K_2 进行泰勒展开 $K_1 = f(x_n, y_n) = y'(x_n)$

研究差分公式阶的重要手段是Taylor展开式,一元函数和

二元函数的Taylor展开式为:

$$y(x_{n+1}) = y(x_n + h) = y(x_n) + y'(x_n)h + \frac{y''(x_n)}{2!}h^2 + \frac{y'''(x_n)}{3!}h^3 + \cdots$$

$$f(x_n + h, y_n + k) = f(x_n, y_n) + \frac{\partial f(x_n, y_n)}{\partial x} h + \frac{\partial f(x_n, y_n)}{\partial y} k$$

$$+ \frac{1}{2!} \left[\frac{\partial^2 f(x_n, y_n)}{\partial x^2} h^2 + \frac{\partial^2 f(x_n, y_n)}{\partial x \partial y} hk + \frac{\partial^2 f(x_n, y_n)}{\partial y^2} k^2 \right] + \cdots$$

另外, 在 $y_n = y(x_n)$ 的条件下, 考虑到y'(x) = f(x, y(x)), 则有

$$y'(x_n) = f(x_n, y(x_n)) = f(x_n, y_n) = f_n$$

$$y''(x_n) = f'(x_n, y(x_n)) = f'_x(x_n, y_n) + f'_y(x_n, y_n) f(x_n, y_n)$$

$$= \frac{\partial f_n}{\partial x} + \frac{\partial f_n}{\partial y} f_n$$

$$y'''(x_n) = \frac{\partial^2 f_n}{\partial x^2} + 2\frac{\partial^2 f_n}{\partial x \partial y} f_n + \frac{\partial^2 f_n}{\partial y^2} f_n^2 + \frac{\partial f_n}{\partial x} \frac{\partial f_n}{\partial y} + (\frac{\partial f_n}{\partial y})^2 f_n$$

2016年6月16日6时2分

计算方法---- 常微分方程的差分方法

3.9

2016年6月16日6时2分

可知欲使上式有二阶精度, 只要成立

$$\lambda p = \frac{1}{2} \tag{13}$$

该格式是二阶的 , 故统称满足这一条件的一族 格式为二阶龙格 - 库塔格式。

特别地, 当 $p=1, \lambda=\frac{1}{2}$ 时, 上述格式即为改进的 欧拉格式

$$\begin{cases} y_{n+1} = y_n + h \cdot (K_1 + K_2)/2 \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_{n+1}, y_n + hK_1) \end{cases}$$

如果取 $p = \frac{1}{2}, \lambda = 1$,则上述格式称为变形的欧拉

$$\begin{cases} y_{n+1} = y_n + h[(1-\lambda) \ K_1 + \lambda \ K_2) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_{n+p}, y_n + phK_1) \end{cases}$$

$$\begin{cases} K_2 = f(x_{n+p}, y_n + \frac{h}{2}K_1) \end{cases}$$

$$(14)$$

这里
$$\frac{x}{n+\frac{1}{2}}$$
是中点,

$$y_{n+\frac{1}{2}} = y_n + \frac{h}{2} K_1$$
 是欧拉方法预报的中点近似解

$$K_2 = f(x_{n+\frac{1}{2}}, y_n + \frac{h}{2}K_1)$$
 是中点斜率的近似值

3、三阶龙格-库塔方法(用三个点的斜率平均作为平均斜率)

为了进一步提高精度取

$$X_{n+p} \in [X_n, X_{n+1}]$$

$$x_{n+q} \in [x_n, x_{n+1}]$$

$$x_{n}$$
 x_{n+p} x_{n+q} x_{n+1}
 $x_{n+p} = x_{n} + ph, \quad 0$

$$x_{n+q} = x_n + qh, \quad p \le q \le 1$$

用三个点 X_n , X_{n+p} , X_{n+q} 的斜率作加权平均近似代替平均斜率。

$$K_1 = f(x_n, y_n)$$

$$K_2 = f(x_{n+p}, y_{n+p})$$

$$y_{n+p} = y_n + phK_1$$

$$K_3 = f(x_{n+q}, y_{n+q})$$

$$y_{n+q} = y_n + qh((1-\alpha)K_1 + \alpha K_2)$$

这时有计算格式

$$y_{n+1} = y_n + h[(1 - \lambda - \mu)K_1 + \lambda K_2 + \mu K_3]$$
 (15)

式中有待定系数 $\lambda, \mu, \alpha, p, q$

将 K_2 , K_3 , $y(x_n+h)$ 展开,比较 y_{n+1} 与 $y(x_n+h)$,可得上式中各待定系数所满足的关系。

$$\begin{cases} \lambda p + \mu q = 1/2 \\ \lambda p^2 + \mu q^2 = 1/3 \\ \mu p q \alpha = 1/6 \end{cases}$$

于是就可以构造所谓的三阶龙格-库塔格式

 \Rightarrow : p=1/2, q=1

代入上式, 解出其余的待定系数得

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 4K_2 + K_3) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 = f[x_n + h, y_n + h(-K_1 + 2K_2)] \end{cases}$$

就是三阶龙格-库塔格式的一种

$$f = f(x_n, y_n)$$

$$F = f_x + f_y f, G = f_{xx} + 2f f_{xy} + f^2 f_{yy}$$

$$k_2 = f(x_i + ph, y_i + phk_1)$$

$$= f + phF + \frac{1}{2} p^2 h^2 G + O(h^3)$$

$$q(1-a)k_1 + ak_2$$

$$= f + pahF + \frac{1}{2} p^2 ah^2 G + O(h^3)$$

$$k_{3} = f(x_{n+q}, y_{n} + qh[(1-a)k_{1} + ak_{2}])$$

$$= f + h\{f_{x} + [q(1-a)k_{1} + ak_{2}]f_{y}\}$$

$$+ \frac{1}{2}h^{2}\{f_{xx} + 2\{q(1-a)k_{1} + qk_{2}\}f_{xy}$$

$$+ [q(1-a)k_{1} + ak_{2}]^{2}f_{yy}\} + O(h^{3})$$

$$= f + hF + h^{2}(paFf_{y} + \frac{1}{2}G) + O(h^{3})$$

$$\therefore y_{n+1} = y_n + hf + (\lambda p + uq)h^2F + \frac{1}{2}h^3[2\mu pqaFf_y + (\lambda p^2 + \mu q^2)G] + O(h^4).$$

n 又由于

$$y(x_{i+1}) = y_i + hf + \frac{h^2}{2}F + \frac{h^3}{6}(G + f_yF) + O(h^4),$$

因此要使局部截断误差为 $O(h^4)$ 必须

$$\begin{cases} \lambda p + \mu q = \frac{1}{2} \\ \lambda p^2 + \mu q^2 = \frac{1}{3} \\ \mu p q a = \frac{1}{6} \end{cases}$$

4、四阶龙格-库塔公式(用四个点的斜率平均作为平均斜率)

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_2) \\ K_4 = f(x_n + h, y_n + hK_3) \end{cases}$$
(16)

值得注意的是, 龙格-库塔法的推导基于泰勒展 开法, 因而它要求解具有较好的光滑性。如果解的光 滑性差, 则该方法得到的解反而不好。

[阶龙格 库塔算法流程

例3 用四阶标准R-K方法求初值问题

$$\begin{cases} y' = y - 2x/y &, 0 \le x \le 1 \\ y(0) = 1 & \end{cases}$$

的数值解, 取步长h=0.2.

解 四阶标准R-K公式为

$$\begin{cases} y_{n+1} = y_n + \frac{1}{6}h(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = y_n - 2x_n / y_n \\ K_2 = y_n + \frac{1}{2}hK_1 - (2x_n + h)/(y_n + \frac{1}{2}hK_1) \\ K_3 = y_n + \frac{1}{2}hK_2 - (2x_n + h)/(y_n + \frac{1}{2}hK_2) \\ K_4 = y_n + hK_3 - 2(x_n + h)/(y_n + hK_3) \end{cases}$$

n	X _n	y _n	y(x _n)	n	X _n	y _n	y(x _n)
0	0.0	1.00	1.00	3	0.6	1.4833	1.4832
1	0.2	1.1832	1.1832	4	0.8	1.6125	1.6125
2	0.4	1.3417	1.3416	5	1.0	1.7321	1.7321

Xm	Euler	Improved	R-K(4)	精确解
		Euler		
0.0	1	1	1	1
0.1	1.2000	1.2210	1.2221	1.2221
0.2	1.4420	1.4948	1.4977	1.4977
0.3	1.7384	1.8375	1.8432	1.8432
0.4	2.1041	2.2685	2.2783	2.2783
0.5	2.5569	2.8118	2.8274	2.8274
0.6	3. 1183	3.4964	3.5201	3.5202
0.7	3.8139	4.3578	4.3927	4.3928
0.8	4.6747	5.4393	5.4894	5.4895
0.9	5.7377	6.7938	6.8643	6.8645
1.0	7.0472	8. 4856	8.5834	8.5836

例: 运用四阶经典龙格-库塔方法计算下式解在x=0.4处的近似值。

取步长h=0.2。
$$\begin{cases} y' = y - \frac{3x}{y} \\ y(0) = 1 \end{cases}$$

解: 四阶经典龙格-库塔公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) \\ K_1 = f(x_n, y_n) \\ K_2 = f(x_{n+\frac{1}{2}}, y_n + \frac{h}{2}K_1) \\ K_3 = f(x_{n+\frac{1}{2}}, y_n + \frac{h}{2}K_2) \\ K_4 = f(x_{n+1}, y_n + hK_3) \end{cases}$$

由于取步长h=0.2,所以:

$$y(0.2) = y_1, \quad y(0.4) = y_2$$

先计算 y_1

$$x_0 = 0$$
 $y_0 = 1$, 4 : $K_1 = f(x_0, y_0) = y_0 - \frac{3x_0}{y_0} = 1 - 0 = 1$ $x_{0+\frac{1}{2}} = 0.1$ $y_0 + \frac{h}{2}K_1 = 1.1$, 4 :

$$K_2 = f(x_{0+\frac{1}{2}}, y_0 + \frac{h}{2}K_1) = 1.1 - \frac{0.3}{1.1} = 0.8273$$

$$y_0 + \frac{h}{2}K_2 = 1.08273$$
 得:

$$K_3 = f(0.1, 1.08273) = 1.08273 - \frac{0.3}{1.08273} = 0.8057$$

$$x_{0+1} = 0.2$$
 , $y_0 + hK_3 = 1.16114$

$$K_4 = f(0.2, 1.16114) = 1.16114 - \frac{0.6}{1.16114} = 0.6444$$

所以:

$$y_1 = y_0 + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 1 + \frac{0.2}{6}(1 + 2 \times 0.8273 + 2 \times 0.8057 + 0.6444)$$
$$= 1.16368$$

再计算 y_2

$$x_1 = 0.2$$
 , $y_1 = 1.16368$ 得:

$$K_1 = f(0.2, 1.16368) = 1.16368 - \frac{0.6}{1.16368} = 0.6481$$

$$x_{1+\frac{1}{2}} = 0.3$$
 $y_1 + \frac{h}{2}K_1 = 1.2285$ **4:**

$$K_1 = f(0.2, 1.16368) = 1.16368 - \frac{0.6}{1.16368} = 0.6481$$

$$x_{1+\frac{1}{2}} = 0.3$$
 $y_1 + \frac{h}{2}K_1 = 1.2285$ **4:**

$$K_2 = f(0.3, 1.2285) = 1.2285 - \frac{0.9}{1.2285} = 0.4959$$

$$y_1 + \frac{h}{2}K_2 = 1.2133$$
 4:

$$K_3 = f(0.3, 1.2133) = 1.2133 - \frac{0.9}{1.2133} = 0.4715$$

$$x_{1+1} = 0.4$$
 $y_1 + hK_3 = 1.25798$ **4:**

$$K_4 = f(0.4, 1.25798) = 1.25798 - \frac{1.2}{1.25798} = 0.30407$$

所以:

$$y_2 = y_1 + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

$$= 1 + \frac{0.2}{6}(0.6481 + 2 \times 0.4959 + 2 \times 0.4715 + 0.30407)$$

$$= 1.2599$$

5、变步长龙格-库塔方法

- 考察经典的四阶Runge-Kutta格式,设从节点 x_n 出发
 - ,先以h为步长求出一个近似值 $y_{n+1}^{(h)}$,显然:

$$y(x_{n+1}) - y_{n+1}^{(h)} \approx Ch^5$$

将步长折半,取h/2为步长从 x_n 跨两步到 x_{n+1} ,再求得一个近似值 $y_{n+1}^{(\frac{h}{2})}$,从而有:

$$y(x_{n+1}) - y_{n+1}^{(\frac{h}{2})} \approx 2C(\frac{h}{2})^5$$

■ 故而:

$$\frac{y(x_{n+1}) - y_{n+1}^{(\frac{h}{2})}}{y(x_{n+1}) - y_{n+1}^{(h)}} \approx \frac{1}{16}$$

事后误差估计公式:

$$y(x_{n+1}) - y_{n+1}^{(\frac{h}{2})} \approx \frac{1}{15} (y_{n+1}^{(\frac{h}{2})} - y_{n+1}^{(h)})$$

■ 误差控制

同积分的数值计算一样, 微分方程的数值解法也 需要选择步长。同样, 我们可以采取步长加倍或折 半的办法选择步长, 即通过检查步长折半前后的两 种计算结果的偏差: $\delta = \left| y_{n+1}^{(h/2)} - y_{n+1}^{(h)} \right|$

来判断选取的步长是否合适,具体可以分为两种情 况来处理。

对于给定精度 ε , 若 $\delta > \varepsilon$. 则反复将步长折半进行计算直到 $\delta < \varepsilon$ 为止. 取步长折半后的"新值"作为结果;

相反的。若 δ < ε 反复将步长加倍直到 δ > ε 。

3.32

■ Exercises 习题3的第10、12题。

3.4 亚当姆斯方法

1. 亚当姆斯格式

亚当姆斯 (Adams)方法的设计思想是充分利用 计算 y_{n+1} 之前已得到一系列节点 x_n, x_{n-1}, \cdots 上的斜率 值来减少计算量。

利用 x_n, x_{n-1}, \dots, x_1 的信息,得到 n

阶的显式及隐式

$$y_{n+1} = y_n + h \sum_{i=0}^{n} \lambda_i y'_{n-i} , \quad y_{n+1} = y_n + h \sum_{i=-1}^{n} \lambda_i y'_{n-i}$$

$$y_{n+1} = y_n + h f(x_n, y_n)$$

$$y_{n+1} = y_n + h f(x_{n+1}, y_{n+1})$$

$$y_{n+1} = y_n + hf(x_n, y_n)$$

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

特别地, Euler 格式与隐式 Euler是一阶 Adams 方法.

3.4 亚当姆斯方法

二阶 Adams 格式

1)Adams 显示格式

设用 x_n, x_{n-1}两点的斜率值加权平均作为区间

 $[x_n, x_{n+1}]$ 上的平均斜率,有计算格式

$$\begin{cases} y_{n+1} = y_n + h[(1-\lambda)y'_n + \lambda y'_{n-1}] \\ y'_n = f(x_n, y_n) \\ y'_{n-1} = f(x_{n-1}, y_{n-1}) \end{cases}$$

选取参数λ, 使此格式具有二阶精度.

考察相应的近似关系式,仍设 $x_n = 0, h = 1$ 这时上述近似 关系式简化为

$$y(1) \approx y(0) + (1 - \lambda)y'(0) + \lambda y'(-1)$$

令它对于 $y(x) = x^2$ 准确成立,必有 $\lambda = -\frac{1}{2}$ 这样导出的计算格式

$$y_{n+1} = y_n + \frac{h}{2}(3y'_n - y'_{n-1})$$

称之为二阶 Adams 格式.

类似地可以导出三阶 Adams 格式:

$$y_{n+1} = y_n + \frac{h}{12} (23y'_n - 16y'_{n-1} + 5y'_{n-2})$$

四阶的 Adams 格式

$$y_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$

其中
$$y'_{n-k} = f(x_{n-k}, y_{n-k})$$

2) 隐式 Adams 格式

$$\int_{y_{n+1}} y_{n+1} = y_n + h [(1-\lambda)y'_{n+1} + \lambda y'_n]$$

$$y(x_{n+1}) \approx y(x_n) + h((1-\lambda)y'(x_{n+1}) + \lambda y'(x_n))$$

$$y(1) \approx y(0) + (1-\lambda)y'(1) + \lambda y'(0)$$

和四阶隐式Adams 格式

$$y_{n+1} = y_n + \frac{h}{24} (9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

其实是梯形格式. 类似可导出三阶隐式 Adams格式

$$y_{n+1} = y_n + \frac{h}{12} (5y'_{n+1} + 8y'_n - y'_{n-1})$$

2、二阶Adams 预报校正系统

预报
$$\overline{y}_{n+1} = y_n + \frac{h}{2}(3y'_n - y'_{n-1})$$
 $\overline{y'}_{n+1} = f(x_{n+1}, \overline{y}_{n+1})$

校正

$$y_{n+1} = y_n + \frac{h}{2} (\overline{y'}_{n+1} + y'_n)$$

$$y'_{n+1} = f(x_{n+1}, y_{n+1})$$

$$p_{n+1} = y_n + \frac{h}{2}(3y'_n - y'_{n-1})$$

$$c_{n+1} = y_n + \frac{h}{2}(y'_{n+1} + y'_n)$$

$$y_{n+1} = (1 - \omega)p_{n+1} + \omega c_{n+1}$$

考察其相应的近似关系式

$$y(x_{n+1}) \approx y(x_n) + (1-\omega)\frac{h}{2}(3y'(x_n) - y'(x_{n-1})) + \omega\frac{h}{2}(y'(x_{n+1}) + y'(x_n))$$

令它对于
$$y = x^3$$
准确成立,必有 $\omega = \frac{5}{6}$

$$y_{n+1} = \frac{1}{6} p_{n+1} + \frac{5}{6} c_{n+1}$$

则

$$y_{n+1} - p_{n+1} = -\frac{5}{6}(p_{n+1} - c_{n+1})$$

$$y_{n+1} - c_{n+1} = \frac{1}{6}(p_{n+1} - c_{n+1})$$
可以将 $p_{n+1} - \frac{5}{6}(p_{n+1} - c_{n+1})$ 和 $c_{n+1} + \frac{1}{6}(p_{n+1} - c_{n+1})$

分别作为 P_{n+1} 和 C_{n+1} 的改进值. 在校正值 C_{n+1}

尚未求出之前,可以用上一步的偏差 $p_n - c_n$

来代替进行计算,这样可以将 Adams 预报校正

系统进一步加工为下列计算格式

$$p_{n+1} = y_n + \frac{h}{2}(3y'_n - y'_{n-1})$$

改进

$$m_{n+1} = p_{n+1} - \frac{5}{6}(p_n - c_n)$$

$$m'_{n+1} = f(x_{n+1}, m_{n+1})$$

校正

$$c_{n+1} = y_n + \frac{h}{2}(m'_{n+1} + y'_n)$$

$$y_{n+1} = c_{n+1} + \frac{1}{6}(p_{n+1} - c_{n+1})$$

$$y'_{n+1} = f(x_{n+1}, y_{n+1})$$

改进的二阶 Adams 预报校正系统

常微分方程的差分方法-亚当姆斯方法

三、实用的四阶 Adams 预报一校正系统 四阶 Adams 显示与隐式格式

$$y_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$

$$y_{n+1} = y_n + \frac{h}{24} (9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

运用类似二阶处理方法,将两者匹配在一起,构成

下列四阶 Adams 预报校正系统
$$\overline{y}_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$

$$\overline{y}'_{n+1} = f(x_{n+1}, \overline{y}_{n+1})$$

$$y_{n+1} = y_n + \frac{h}{24} (9\overline{y}'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

$$y'_{n+1} = f(x_{n+1}, y_{n+1})$$

仿照二阶格式的处理方法,考察此预报校正系统中预报 与校正两种格式

$$p_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$

$$c_{n+1} = y_n + \frac{h}{24} (9y'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

均具有四阶精度,进一步将它们加工成具有五阶精度的计 算格式

$$y_{n+1} = (1 - \omega)p_{n+1} + \omega c_{n+1}$$

取
$$k = 0,1,2,3$$
 , 与精确值 y_{n+1} 差得, $\omega = \frac{251}{270}$ 从而有

从而有

比较, 取5阶截断误

$$y_{n+1} = \frac{19}{270} p_{n+1} + \frac{251}{270} c_{n+1}$$

得误差估计式
$$y_{n+1} - p_{n+1} = -\frac{251}{270}(p_{n+1} - c_{n+1})$$
$$y_{n+1} - c_{n+1} = \frac{19}{270}(p_{n+1} - c_{n+1})$$

因而可以用预报值与校正值两者的偏差来估计它们的 误差.同时利用误差作为计算结果的一种补偿有可能改善 精度,因而基于这种误差的事后估计可以进一步优化预

报校正系统。

改进的四阶Adams 预报校正系统

$$p_{n+1} = y_n + \frac{h}{24} (55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3})$$

改进

$$m_{n+1} = p_{n+1} - \frac{251}{270}(p_n - c_n)$$

$$m'_{n+1} = f(x_{n+1}, m_{n+1})$$

校正

$$c_{n+1} = y_n + \frac{h}{2\Delta} (9m'_{n+1} + 19y'_n - 5y'_{n-1} + y'_{n-2})$$

改进

$$y_{n+1} = c_{n+1} + \frac{19}{270} (p_{n+1} - c_{n+1})$$

$$y'_{n+1} = f(x_{n+1}, y_{n+1})$$

一、收敛性

在用差分格式求解微分方程时我们 我们称差分格式是收敛的,如果才 数值解 $y_n \stackrel{.}{=} h \rightarrow 0$ (同时 $n \rightarrow \infty$ 以下我们研究欧拉方法的收敛性。

函数f(x),若对任意定义 域中的x1,x2,存在L>0 使得|f(x1)f(x2)|<=L|x1-x2|

收敛性。 nh $y(x_n)$

其中 C,T 为常数。

若初始 y_0 是准确的, 即 $e_0 = 0$,则当 $h\to 0$ 时,有 $e_n\to 0$ 。 这说明欧拉方法是收敛的。

1. 定义:对于任何固定的 $x_n = x_0 + nh$, 当步长 $h \to 0$,

 $y_n \to y(x_n)$ 则称此方法收敛.

关于收敛性的讨论有个前提,即必须假定差分方法的每一步计算都是准确的。然而实际计算中往往由于有舍入误差等原因而产生扰动,而这些扰动有可能"淹没"真解,所以我们还要考虑稳定性问题

二、稳定性

如果一种差分方法在某节点 x_n 上的值 y_n 有大小为 δ 的扰动时,于其后的各节点 x_m (m > n)上的值 y_m 产生的偏差都不大于 δ ,则称这种方法是稳定的.

为简单起见,通常只针对模型方程

$$y' = \lambda y$$
 , $(\lambda < 0)$

来讨论.

先考察显式Euler格式的稳定性. 模型方程

$$y' = \lambda y$$

的Euler公式为

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + h(\lambda y_n)$$
$$= (1 + h\lambda)y_n$$

设节点值 y_n 上有大小为 ε_n 的扰动,此误差的传播使节点值 y_{n+1} 产生大小为 ε_{n+1} 的扰动值,若 Euler 格式的计算过程不再引进新的误差,则

即

$$y_{n+1} + \varepsilon_{n+1} = (1+h\lambda)(y_n + \varepsilon_n)$$
 误差方程
$$\varepsilon_{n+1} = (1+h\lambda)\varepsilon_n$$

所以要使

$$\left|\mathcal{E}_{n+1}\right| \leq \left|\mathcal{E}_{n}\right|$$
 必有

 $|1+h\lambda| \le 1$

此时 Eule方法是稳定的. 这表明 Eule方法是条件稳定的.

再考察用隐式Euler格式,对模型方程的计算公式为

$$y_{n+1} = y_n + h(\lambda y_{n+1})$$
 $y_{n+1} = \frac{1}{1 - h\lambda} y_n$

设节点值 y_n 上有大小为 ε_n 的扰动,此误差的传播使节点值 y_{n+1} 产生大小为 ε_{n+1} 的扰动值,若计算过程不再引进新的误差,则

$$y_{n+1} + \varepsilon_{n+1} = \frac{1}{1 - h\lambda} (y_n + \varepsilon_n) \qquad \mathbf{p} \qquad \varepsilon_{n+1} = \frac{1}{1 - h\lambda} \varepsilon_n$$

由于 $\lambda < 0$,则恒有 $\left| \frac{1}{1-h\lambda} \right| \le 1$,故恒有 $\left| \mathcal{E}_{n+1} \right| \le \left| \mathcal{E}_n \right|$

因此,隐式Euler格式是绝对稳定的(无条件稳

定的。(对任何h>0) 计算方法---- 常微分方程的差分方法

对初值问题
$$\begin{cases} y' + y = 0 \\ y(0) = 1 \end{cases}$$

证明用梯形公式求得的近似解为 $y_n = \left(\frac{2-h}{2+h}\right)^n$, $x_n = nh$

并证明当步长h \rightarrow 0时, y, 收敛于精确解 e^{-x_n}

证明:解初值问题的梯形公式为

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$

- f(x, y) = -y
- $y_{n+1} = y_n + \frac{h}{2} [-y_n y_{n+1}]$

整理成显式 $y_{n+1} = \left(\frac{2-h}{2+h}\right)y_n$ 反复迭代,得到

$$y_{n+1} = \left(\frac{2-h}{2+h}\right)y_n = \left(\frac{2-h}{2+h}\right)^2 y_{n-1} = \left(\frac{2-h}{2+h}\right)^3 y_{n-2} = \dots = \left(\frac{2-h}{2+h}\right)^{n+1} y_0$$

3.常微分方程的差分方法-稳定性问题

$$\lim_{h \to 0} y_n = \lim_{h \to 0} \left(\frac{2 - h}{2 + h} \right)^{\frac{x_n}{h}} = \lim_{h \to 0} \frac{\left(1 - \frac{h}{2} \right)^{\left(-\frac{2}{h} \right) \left(-\frac{x_n}{2} \right)}}{\left(1 + \frac{h}{2} \right)^{\left(\frac{2}{h} \right) \left(\frac{x_n}{2} \right)}} = \frac{e^{-\frac{x_n}{2}}}{e^{\frac{x_n}{2}}} = e^{-x_n}$$

$$\lim_{h\to 0} y_n = e^{-x_n}$$

证毕

本章小节

龙格-库塔方法是显式的自开始方法,而且精度较高,易于改变步长和编制程序,所以被广泛采用。但每一步需要多次计算函数f(x,y)的值,计算量大,并且要求函数具有较高的光滑性。对于光滑性较差的函数,应利用改进的欧拉方法。

亚当姆斯方法的计算量比龙格-库塔方法少, 却具有同样的精度, 但必须用其它方法提供开头几个函数值。

习题

P124 3, 7, 11, 12

常微分方程差分方法

- ■常微分方程初值问题
 - ➤ Euler法(显式Euler公式,隐式Euler公式, 梯形公式,改进Euler公式,变形Euler公式) 基本公式
 - ▶Runge-Kutta方法(四阶和二阶)
 - >线性多步法Adams预报校正系统
 - 〉收敛性和稳定性的定义
 - > 局部截断误差的定义, 计算及确定公式的阶
 - > 数值方法的稳定性区域

- ■一、对于给定数值方法求解常微分方程初 值问题
 - ▶对于显式单步方法,直接代入相应计算公式计算
 - ightharpoonup对于隐式方法,若f(x,y)关于y是线性的,可从隐式公式中解出 y_{n+1} ,使公式显式化,不需要迭代,否则,需要用迭代法计算
 - ▶对于多步方法,需要用同阶的单步法提供多步 法所需要的值

习题4,用
$$Euler$$
法求解初值问题
$$\begin{cases} y' = ax + b, \\ y(0) = 0 \end{cases}$$

$$y' = ax + b$$
$$\mathbf{v}(0) = 0$$

(1)导出近似解y,的显式表达式;

(2)证明整体截断误差为
$$y(x_n) - y_n = \frac{1}{2}anh^2$$

解:
$$f(x,y) = ax + b, x_n = nh, n = 1, 2, \cdots$$

则Euler公式为

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 $y_0 = y(0) = 0$

$$\therefore \sum_{i=0}^{n-1} y_{i+1} = \sum_{i=0}^{n-1} y_i + h \sum_{i=0}^{n-1} (ax_i + b)$$

$$y_n = ah \sum_{i=0}^{n-1} x_i + nbh = ah \sum_{i=0}^{n-1} ih + nbh$$

$$= ah^{2} \sum_{i=0}^{n-1} i + nhb$$

$$= \frac{1}{2}ah^{2}n(n-1) + nhb$$

$$= \frac{1}{2}a(x_{n})^{2} + bx_{n} - \frac{1}{2}anh^{2}$$

准确解:
$$y(x) = \frac{1}{2}ax^2 + bx$$

因此
$$y(x_n) - y_n = \frac{1}{2}anh^2$$

例题选讲

■ 龙格-库塔格式的精度分析

题1,证明下列格式对于任意参数t都是二阶的

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(K_2 + K_3), \\ K_1 = f(x_n, y_n), \\ K_2 = f(x_n + th, y_n + thK_1), \\ K_3 = f(x_n + (1-t)h, y_n + (1-t)hK_2), \end{cases}$$

证明:所给格式选用区间[x_n , x_{n+1}]内的两点 $x_n + th$, $x_n + (1-t)h$ 上的斜率值 K_2 , K_3 的算术平均代替平均斜率将 K_1 , K_2 , K_3 Taylor展开,有

$$\boldsymbol{K}_1 = f(\boldsymbol{x}_n, \boldsymbol{y}_n) = \boldsymbol{y}_n'$$

$$K_2 = f(x_n + th, y_n + thK_1) = f(x_n, y_n) + th\left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial x}\right)(x_n, y_n) + O(h^2)$$

$$= f_n + th \left(\frac{\partial f}{\partial x} + K_1 \frac{\partial f}{\partial y} \right)_n + O(h^2) = y'_n + thy''_n + O(h^2)$$

同理
$$K_3 = y'_n + (1-t) h y''_n + + O(h^2)$$

设
$$y(x_n) = y_n$$
则

$$\tilde{y}_{n+1} = y_n + hy'_n + \frac{1}{2}h^2y''_n + O(h^3)$$

 $y(x_{n+1})$ 的Taylor展开式为

$$y(x_{n+1}) - \tilde{y}_{n+1} = O(h^3)$$

因此为二阶方法

题2,证明隐式Euler格式是一阶方法

证明:

隐式Euler格式

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

因为
$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{h^2}{2}y''(x_n) + O(h^3)$$

$$\diamondsuit y(x_n) = y_n$$

$$y_{n+1} = y(x_n) + hy'_{n+1} = y(x_n) + h\left(y'_n + hy''_n + \frac{h^2}{2}y'''_n + O(h^3)\right)$$

因此有

$$y(x_{n+1}) - y_{n+1} = \frac{h^2}{2}y''(\xi)$$

因此为一阶方法

