Travaux Dirigés de Calcul Diffrentiel dans \mathbb{R}^n

1. Les fonctions suivantes sont-elles des distances sur \mathbb{R} ?

a)
$$f(x, y) = |x^2 - y^2|$$
; b) $f(x, y) = |x^3 - y^3|$; c) $f(x, y) = |x - y|$; $f(x, y) = exp\left(\frac{1}{|x - y|}\right)$

- 2. Soit (E, d) un espace métrique. Montrer que:
 - i) si $e(x, y) = \min\{1, d(x, y)\}$ alors (E, e) est un espace métrique.
 - ii) si $f(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ alors (E, f) est un espace métrique
 - iii) les deux distances e et f sont bornées.
- 3. Soit $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$ et soit $f : \overline{\mathbb{R}} \longrightarrow [-1, +1]$ avec $f(x) = \frac{x}{1 + |x|}$ si $x \in \mathbb{R}$, $f(-\infty) = -1$, $f(+\infty) = 1$. Montrer que d(x, y) = |f(x) f(y)| est une distance sur $\overline{\mathbb{R}}$.
- 4. Soit $(a, b) \in \mathbb{R}^2$ avec $a \leq b$, et soit $E = \mathcal{C}([a, b], \mathbb{R})$ l'ensemble des fonctions réelles continues définies sur [a, b]. Montrer l'application d suivante est une distance sur E.

$$d: (f, g) \mapsto \sup_{x \in [a, b]} |f(x) - g(x)|$$

5. Soit ϕ une fonction réelle strictement croissante, définie sur \mathbb{R}_+ telle que $\phi(0)=0$ et vérifiant la relation $\phi(x+y) \leq \phi(x) + \phi(y)$. Montrer que si d est une distance sur un ensemble E alors $\phi \circ d$ est également une distance sur E.

Application: Montrer que si d est une distance sur un ensemble E alors les applications $d_1 = \frac{d}{1+d}$ et $d_2 = \ln(1+d)$ sont également des distances sur E.

6. Sur $E = \mathbb{R}^n$, pour $x = (x_1, \dots, x_n) \in E$, $y = (y_1, \dots, y_n) \in E$ les applications d_i , $1 \leq i \leq 3$, de $E \times E \to \mathbb{R}_+$ suivantes définissent des distances.

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i| \; ; \; d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2} \; ; \; d_3(x,y) = \sup_{1 \le i \le n} |x_i - y_i|.$$

(a) Représenter graphiquement, dans le cas n=2 la boule unité fermée

$$B = \left\{ x \in \mathbb{R}^2 / d(0, x) \leqslant 1 \right\},\,$$

où d représente chacune des distances d_1 , d_2 , d_3 .

(b) Démontrer les inégalités suivantes :

i.
$$d_3(x,y) \leq d_1(x,y) \leq nd_3(x,y)$$
.

ii.
$$d_3(x,y) \le d_2(x,y) \le \sqrt{n}d_3(x,y)$$
.

iii.
$$d_2(x,y) \le d_1(x,y) \le \sqrt{n} d_2(x,y)$$
.

- 7. Soient (E, d) un espace métrique, \mathcal{O} l'ensemble de ses ouverts, F l'ensemble de ses fermés, on note V(a) l'ensemble des voisinages d'un point a de E.
 - Soit $A \subset E$, la restriction d' de d à A^2 est une distance sur A qui en fait un espace métrique. On note \mathcal{O}' , F',V'(a) les ouverts, fermés, voisinages d'un point a de A dans (A, d'); \mathcal{O}' est dite topologie induite par \mathcal{O} .
 - α) Prouver que les ouvert de A sont les traces des ouverts de E sur A (i.e. si $w' \subset A$, on a $w' \in \mathcal{O}' \iff \exists w \in \mathcal{O} \quad w' = w \cap A$). Donner des critères analogues pour les fermés et les voisinages.
 - β) Prouver que les ouverts de E inclus dans A sont des ouverts de A mais que la réciproque est fausse, sauf une condition que l'on déterminera. Etablir des résultats analogues pour les fermés.
 - γ) Etablir pour $a \in A$, l'équivalence $\Big(a \text{ est un point isolé de } A, \text{ considéré comme partie de } E\Big) \Longleftrightarrow \{a\}$ est un ouvert de A.
- 8. (a) Soient A et B deux parties fermées non vides disjointes $(A \cap B = \emptyset)$ d'un espace métrique (E, d). On pose:

$$U_A = \{u \in E / d(u, A) < d(u, B)\}; \quad U_B = \{u \in E / d(u, A) > d(u, B)\};$$

 $I = \{u \in E / d(u, A) = d(u, B)\}$

- i. Montrer que $U_A \cap U_B = \emptyset$
- ii. Définir $V_A = E \setminus U_A$ et $V_B = E \setminus U_B$
- iii. Soient $(x_n)_n$ une suite convergente d'éléments de V_A de limite x. Montrer que $x \in V_A$ et en déduire que U_A est ouvert contenant A.
- iv. Soient $(y_n)_n$ une suite convergente d'éléments de V_B de limite y. Montrer que $y \in V_B$ et en déduire que U_B est ouvert contenant B.
- v. Montrer que I est fermé
- (b) Soient E et F deux ensembles, d une distance sur F et $f:E\longrightarrow f$ une application injective. Montrer que l'application $\delta:E\times E\longrightarrow \mathbb{R}_+$ définie par:

$$\delta(u, v) = d\left(f(u), f(v)\right)$$

est une distance sur E.