Recall Definition 2.3: the residue class of a modulo n is $[a]_n = a + n\mathbb{Z} = \{a, a \pm n, a \pm 2n, ...\} \subseteq \mathbb{Z}$

Note: $a = b \mod n \iff [a]_n = [b]_n \iff n \mid (a-b)$

Example: 19=14=9=4=-1 mod 5

$$20[19]_{5} = \cdots = [4]_{5} = [-1]_{5} = {..., -1, 4, 9, 14, 19, ...} = 4 + 5 $\mathbb{Z} \subseteq \mathbb{Z}$$$

Note: Since $[a]_n = [b]_n$ where $0 \le n \le n$ the remainder after division by n, any residue class mod n coincides with exactly one of the following:

 $\begin{bmatrix} 0 \end{bmatrix}^{\nu}, \begin{bmatrix} 1 \end{bmatrix}^{\nu}, \dots, \begin{bmatrix} \nu - 1 \end{bmatrix}^{\nu} \qquad (\begin{bmatrix} 0 \end{bmatrix}^{\nu} = \begin{bmatrix} \nu \end{bmatrix}^{\nu})$

(just n distinct revidue classes!)

Definition 2.4: The ring of integers modulo n is $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \{[0]_n,[1]_n,...,[n-1]_n\}$ (finite set together with addition and multiplication defined as

$$[a]_n + [b]_n = [a+b]_n$$
 and $[a]_n \times [b]_n = [ab]_n$.

Note: To find $[a]_n + [b]_n$, we find a+b, take its remainder π , then $[a]_n + [b]_n = [a+b]_n = [\pi]_n$. the same for $[a]_n \times [b]_n = \cdots$

Example: $\mathbb{Z}_{S} = \{ [0]_{S}, [1]_{S}, [2]_{S}, [3]_{S}, [4]_{S} \};$ $[1]_{S} + [2]_{S} = [1+2]_{S} = [3]_{S}$ $[3]_{S} + [4]_{S} = [3+4]_{S} = [7]_{S} = [2]_{S}$

Remark: To simplify notation, we will wish $\mathbb{Z}_n = \{0,1,2,...,n-1\}$ (i.e. write a instead of $[a]_n$) with addition and multiplication mod n, e.g. in \mathbb{Z}_5 :

$$2+3=0$$
 (as $2+3=0$ med 5 to $[2+3]_5=[0]_5$)

Thus, at b=c in \mathbb{Z}_n means at b=c mod n or equiv.

Example 2.6:
$$n=2$$
. Then $\mathbb{Z}_{2} = \{[0]_{2}, [1]_{2}\}$ (or simply $\mathbb{Z}_{2} = \{0,1\}$)

Here $[0]_{2} = 0+2\mathbb{Z} = \{\text{all even integers}\}$
 $[1]_{2} = 1+2\mathbb{Z} = \{\text{all odd integers}\};$
 $0+0=0$, $0+1=1$, $1+0=1$, $1+1=0$, so

 $\frac{+|0|}{0}\frac{1}{0}\frac{\times |0|}{0}\frac{\times |0|}{0}\frac{\text{Cayley Yables}}{0}$

Esecumple: n=4. $\mathbb{Z}_4 = \{0,1,2,3\}$

(alsy Table for x in
$$\mathbb{Z}_4$$
: $\frac{x}{0}$ | $\frac{2}{3}$ | $\frac{3}{2}$ | $\frac{2}{3}$ | $\frac{3}{2}$ | $\frac{3}{2}$

<u>Definition 2.8:</u> $a \in \mathbb{Z}_n$ is <u>invertible</u> if $\exists b \in \mathbb{Z}_n$ s.t. ab = 1 ([a]_n·[b]_n = [1]_n). In that case b is is <u>the inverse</u> of a, within as $b = a^{-1}$.

Remark 2.9: (1) 1 = In is invertible as 1.1=1

(2) we can find invertible elements by looking for 1 in the Cayley table, e.g. for \mathbb{Z}_4 , $1^{-1} = 1$, $3^{-1} = 3$

Lemma 2.13: Let $a,b,c \in \mathbb{Z}_n$. Suppose a is invertible. Then the equation as +b=c has a unique solution in \mathbb{Z}_n .

Proof: $ax+b=c \Rightarrow ax=c-b \Rightarrow a^{-1}(ax)=a^{-1}(c-b)$ $\Rightarrow x=a^{-1}(c-b)$ a unique solution. (equivalent $[a]_n[x]_n+[b]_n=[c]_n$

Example 2.14: 3x+2=1 in \mathbb{Z}_5 ; x=? Note $3^{-1}=2$ as $3x2=1 \mod 5$. So $3x+2=1 \Rightarrow 3x=1-2=-1=4 \Rightarrow x=3^{-1}x4=2x4=8=3 \mod 5$. Thus x=3