El-Shorouk Academy	The Higher Institute of Engineering			
Biomedical and system engineering				
Third Year	Electromagnetic Waves			
first Semester 2021				

Sheet on antennas

Radiation pattern

- [1]For the attached radiation patterns in figures (1) and (2), do the following:
 - (i) What is the radiation pattern type?
 - (ii) What is the type of radiation pattern plot?
 - (iii) Give an example of antennas having this type of radiation pattern.
 - (iv) Mark the main components of the radiation pattern.
 - (v) Determine the half power beam width (HPBW).
 - (vi) Determine the first side lobe levels and directions (the angles at both sides).
 - (vii) Determine the second lobe levels and direction (the angles at both sides).
 - (viii) Calculate the first null beam width (FNBW).
 - (ix) Determine the level and direction of main lobe.

Directivity, gain and antenna efficiency

Approximate formula

- [2] Consider a directional antenna has radiation pattern which is identical in both E and H planes and has half power beam width (HPBW) = 60° .(i) Calculate the antenna directivity using the approximate formula.(ii) If the gain of antenna is 1.2, calculate the antenna efficiency.
- [3] Consider a horn has HPBW in the E plane is $=30^{\circ}$ and HPBW in the H plane is $=60^{\circ}$ (i) Calculate the antenna directivity using the approximate formula.(ii) Calculate the gain in dB, if the antenna efficiency =0.6.
- [4] If the directivity of a directional antenna is 20 dB using the approximate formula. The HPBW of it in the E and H are equal. (i) Calculate the HPBW of this antenna in degrees. (ii) Calculate the gain in dBi, if the antenna efficiency = 0.9.

Exact formula

[5] If the directional pattern of an antenna is given by $f(\theta,\phi) = 10 \sin^2(\theta)$ [mW/m²] (i) Calculate the directivity of the antenna D_o using the exact formula (ii) Calculate the gain in dBi, if the antenna efficiency $\eta = 0.6(iii)$ Draw the radiation pattern.

- [6] Calculate the directivity of the antenna if its directional radiation pattern is given by by $f(\theta,\phi) = 10\sin\left(\theta\right)$ per unit solid angle [mW/m²].(ii) Plot the radiation pattern in the θ plane (vertical plane). (ii) Calculate the gain in dB, if the antenna efficiency = 0.6.Assuming $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.
- [7] (i)Calculate the directivity of the antenna using the exact formula, if the directional radiation pattern of the antenna is given by $f(\theta,\phi) = 5\cos(\theta)$ [mW/m²]. (ii) Calculate the gain in dB, if the antenna efficiency = 0.6. Assuming $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.
- [8] If the directional radiation pattern of an antenna is given by $f(\theta,\phi) = 10\cos^2(\theta)$ [mW/m²] (i) Calculate the directivity of the antenna D_o (ii) Plot the radiation pattern in the θ plane (vertical plane).(iii) Calculate the gain in dB, if the antenna efficiency = 0.9. Assuming $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$.
- [9] If the directional pattern of an antenna is given by $f(\theta,\phi) = 10\sin(2\theta)$ [mW/m²](i) Calculate the directivity of the antenna D_0 (ii) Plot the radiation pattern in the θ plane (vertical plane). (iii) Calculate the gain in dB, if the antenna efficiency = 0.6. Assuming $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$. [10] (i)Calculate the directivity of the antenna if the directional radiation pattern of the antenna is given by by $f(\theta,\phi) = \sin(\theta)\sin(\phi)$ [mW/m²]. (ii) Calculate the gain in dB, if the antenna efficiency = 0.8. Assuming $0 \le \theta \le \pi$ and $0 \le \phi \le \pi$.

.....

Best wishes

Dr.Hamed EL-Shenawy

A430S15 Radiation Pattern E-Plane

Figure (1) antenna radiation pattern

Figure (2) antenna radiation pattern