

36 LOGICAL CHANNEL SYMBOLS	639 LOGICAL CHANNEL SYMBOLS	311 LOGICAL CHANNEL SYMBOLS	151 LOGICAL CHANNEL SYMBOLS	75 LOGICAL CHANNEL SYMBOLS	35 LOGICAL CHANNEL SYMBOLS	15 LOGICAL CHANNEL SYMBOLS
PILOT SYMBOLS	ps 811 PILOT TPC SYMBOL	SYMBOLS SYMBOLS	PILOT TPC SYMBOL SYMBOLS	DS TO THE SYMBOL SYMBOLS	PILOT TPC SYMBOL SYMBOLS	PILOT TPC SYMBOLS SYMBOL
(f) FORWARD COMMON CONTROL PHYSICAL 64ksps	(g) DEDICATED PHYSICAL CHANNEL 1024ksps PI	(h) DEDICATED PHYSICAL STANNEL PI SYN SYN	(i)DEDICATED PHYSICAL CHANNEL 256ksps PI PI SYN	(j) DEDICATED PHYSICAL CHANNEL 128ksps PI	(k) dedicated physical channel channel	(1) DEDICATED PHYSICAL 32ksps HIG.4B

FIG.5

FIG.6

FIG.7A

FIG.7B

FIG.8

FIG.10

FIG.12

FIG.13A

	#64	SNOI	#32
	#63	32 DIVISIONS	ACCH UNIT #32
	#62	32 DIVISIONS	ACCH UNIT #31
	#61	DIVI	DNIT
	*		•
	8#	32 DIVISIONS	ACCH UNIT #4
	L #	DIVIE	UNIT
	9#	32 DIVISIONS	ACCH UNIT #3
	#2	DIVI	DNI
	#4	32 DIVISIONS	ACCH UNIT #2
	#3	DIVI	AC
AME AME	#2	SIONS	CH F #1
RADIO FRAME	#1	37 DIVIS	ACCH

SUPER FRAME (64 RADIO FRAMES)

TTC 1011

MAPPING INTO 128ksps DEDICATED PHYSICAL CHANNEL

	#64	16 DIVI- SIONS	UNIT #64 ACCH
	#63	16 DIVI- SIONS	UNIT #63 ACCH
	#62	16 DIVI- SIONS	UNIT #62 ACCH
	#61	16 DIVI- SIONS	UNIT #61
			•
	& #	16 DIVI- SIONS	UNIT #8 ACCH
	L #	16 DIVI- SIONS	UNIT #7
	9#	16 DIVI- SIONS	UNIT #6 ACCH
	9#	16 DIVI- SIONS	UNIT #5
	#4	16 DIVI- SIONS	UNIT #4 ACCH
	#3	16 DIVI- SIONS	UNIT #3
AME	#2	16 DIVI- SIONS	UNIT #2 ACCH
RADIO FRAME	#1	16 DIVI- SIONS	UNIT #1
₹			

SUPER FRAME (64 RADIO FRAMES)

MAPPING INTO 256ksps DEDICATED PHYSICAL CHANNEL

FIG.13C

FIG.14

FIG.15A

ENCODING RATE = 1/3 CONSTRAINT LENGTH = 9

FIG.15B

,			
17	BCCH2 SFN = 16		
15	BC	•	
15	BCCH2 FN = 14		•
14	BCCH2 SFN = 14		
E	BCCH2 FN = 12		
10 11 12 13 14 15 16	01		
되	BCCH1 SFN = 10		
2	BCCH1 SFN = 1(
ი	BCCH2 SFN = 8		16
∞	BCCH2 SFN = 8		FIG.16
7	:H2 = 6		区
2 9	BCCH2 SFN = 6	:	
5	BCCH2 SFN = 4	menerale e e e e e	
4	BCCH2 SFN = 4		
က	H2 = 2	UNIT	
7	BCCH2 SFN = 3	BCCH UNIT	
← 4	BCCH1 SFN = 0		
SFN VALUE = 0 1	BCC	RADIO FRAME	
ii Bi	NEL	H	
AV NE	CHAN		
S	PERCH CHANNEL		
	М		

FIG.18

FIG.16

FIG.22

FIG.24

FIG.26

OLSTIME SLOT (0.625ms)		D- SPREADING CODE 1	D- SPREADING CODE 2	SPREADING CODE 3	SPREADING CODE 4
TPC SYMBOLS		SPREAD- ING CODE 1	SPREAD- ING CODE 1	SPREAD- ING CODE 1	SPREAD- ING CODE 1
PILOT SYMBOLS	TRANASMISSION TIMING	DEDICATED PHYSICAL CHANNEL 1	DEDICATED PHYSICAL CHANNEL 2	DEDICATED PHYSICAL CHANNEL 3	DEDICATED PHYSICAL CHANNEL 4
			SPREADING	4 0 0	

FIG.27

FIG.28B

-TRANSMISSION OF FERF AND LOC -PERFORMANCE REPORTING

FIG.29B

PULSE AMPLITUDE

COORDINATES OF INTERSECTION POINTS

78		/ ^	2 21	_			
		(0,	•	F	:	(0,	1.7)
В	:	(2.4,	2.3)	G	:	(0.4,	1.7)
C	:	(2.4,	1.0)			(1.6,	•
D	:	(3.2,	0.3)			(1.6,	•
		(4 n		_	•	,	,

		MCC
	CHANNEL NUMBER VCI=A: CONTROL SIGNAL VC BETWEEN BTS AND MCC VCI=64: TIMING CELL VC	
	VCI=B : PAGING VC	
	VCI=C ₁ ,C ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CID=0~255 : FOR USERS	
BTS		BSC-SW
-	CHANNEL NUMBER VCI=E ₁ ,E ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	EHANNEL NUMBER VCI=G ₁ ,G ₂ ··: CONTROL SIGNAL VC BETWEEN MS AND MCC	
	CHANNEL NUMBER VCI=I ₁ , I ₂ · · : CONTROL SIGNAL VC BETWEEN MS AND MCC	·

FIG.31

BIT	8 0	
OCT 1	00H	
OCT 2	00н	
OCT 3	00н	CELL HEADER
OCT 4	01H	HEADER
OCT 5	52н	
OCT 6	бан	
·		
OCT 1	бан	

FIG.32

• START FIELD (1 OCTET) OSF:OFFSET FIELD

FIG.35

FIG.36

PAD AND CPCS-PDU TRAILER ARE ADDED TO THE LAST CELL

FIG.37

FIG.38A	F1G.30B	ATM HEADER	-						
	IdA	-	HEC TLA	MESSAGE ID	NUMBER OF TIMES OF CORRECTIONS (1 OCTET)	CORRECTION RANGE (1 OCTET)	TRANSMISSION DELAY (2 OCTET)	SF TIME INFORMATION (RECEPTION) (MASTER SIDE) (2 OCTETS)	SF TIME INFORMATION (TRANSMISSION) (MASTER SIDE) (2 OCTETS)

FIG.38A

SF TIME INFORMATION (RECEPTION) (SLAVE SIDE) (2 OCTETS)	SF TIME INFORMATION (TRANSMISSION) (SLAVE SIDE) (2 OCTETS)	SF PHASE SHIFT VALUE (2 OCTETS)	LC COUNTER INFORMATION (RECEPTION) (MASTER SIDE) (3 OCTETS)	LC COUNTER INFORMATION (TRANSMISSION) (MASTER SIDE) (3 OCTETS)	LC COUNTER INFORMATION (RECEPTION) (SLAVE SIDE) (3 OCTETS)	LC COUNTER INFORMATION (TRANSMISSION) (SLAVE SIDE) (3 OCTETS)	LC COUNTER SHIFT VALUE (3 OCTETS)	UNUSED (6A (h))	000000	CRC-10
---	---	---------------------------------	--	---	--	---	-----------------------------------	-----------------	--------	--------

FIG.38B

;

47/134

REVERSE CHANNEL

P(MS) • • REVERSE TRANSMISSION POWER

Pmax(MS) . . MAXIMUM REVERSE TRANSMISSION POWER

P(BS) • • • FORWARD TRANSMISSION POWER

FIG.41A

FORWARD CHANNEL BASE MOBILE STATION STATION **FORWARD** COMMUNICATION SIGNAL **MEASURE** RECEIVED SIR COMPARE MEASURED RECEIVED SIR WITH REFERENCE VALUE OF RECEIVED SIR OF CORRECTION OF REFERENCE VALUE BY OUTER LOOP MOBILE STATION DECIDE TPC BIT REVERSE COMMUNICATION SIGNAL (INCLUDING TPC BIT) CONTROL TRANSMISSION POWER IN THE RANGE OF Pmin(BS) ≤P(BS) ≤Pmax(BS) **FORWARD** COMMUNICATION SIGNAL

FIG.41B

 $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$

RECEIVE TPC BITS FROM MULTIPLE BASE
STATIONS INDEPENDENTLY
MEASURE RELIABILITY OF TPC BITS OF
EACH BASE STATION
DECIDE REVERSE TRANSMISSION POWER
FROM TPC BITS OF EACH BASE STATION, AND CONTROL IT

FIG.46B

TRANSMIT TRANSMISSION INFORMATION WHEN IT IS PRESENT

4......

DETECT NORMAL FORWARD TRANSNISSION

START USING OF FORWARD RECEIVED

INFORMATION

• TRANSFER, TO CONTROLLER OR TERMINAL INTERFACE, RECEIVED

START MONITORING OF REVERSE
TRANSMISSION MODE
DECIDE WHETHER RATIO OF AVERAGE
AND TPC SYMBOLS TO AVERAGE
RECEIVED POWER OF LOGICAL
CHANNEL SYMBOLS IS EQUAL TO OR
GREATER THAN PDIX dB, OR WHETHER
CRC IS CORRECT

TRANSMISSION DETECT NORMAL REVERSE

START USING OF REVERSE RECEIVED INFORMATION

PREDETERMINED CONDITIONS SUCH AS TRANSFER, TO CONTROLLER OR TERMINAL INTERFACE, RECEIVED INFORMATION SATISFYING

CRC IS OK.

START NORMAL FORWARD TRANSMISSION

STOP TRANSMISSION OF IDLE
PATTERN

STOP TRANSMISSION OF LOGICAL
CHANNEL SYMBOLS WHEN NO
TRANSMISSION INFORMATION IS
PRESENT

POWER OF LOGICAL CHANNEL SYMBOLS IS EQUAL TO OR GREATER THAN PDTX dB, OR WHETHER CRC IS CORRECT

TRANSMISSION MODE

• DECIDE WHETHER RATIO OF AVERAGE

RECEIVED POWER OF PILOT AND TPC

SYMBOLS TO AVERAGE RECEIVED

START MONITORING OF FORWARD

AS CRC IS OK

INFORMATION SATISFYING PREDETERMINED CONDITIONS SUCH

START NORMAL REVERSE TRANSMISSION • STOP TARNSMISSION OF IDLE

STOP TARNSMISSION OF LOGICAL CHANNEL SYMBOLS WHEN NO TRANSMISSION INFORMATION IS PATTERN

PRESENT

INFORMATION WHEN IT IS PRESENT TRANSMIT TRANSMISSION

REVERSE DEDICATED PHYSICAL CHANNEL (UPCH) FIG.48

FORWARD DEDICATED PHYSICAL CHANNEL (UPCH)

REVERSE COMMON CONTROL PHYSICAL CHANNEL (RACH)

FORWARD COMMON CONTROL PHYSICAL CHANNEL (FACH)

BSC

1

FROM COMMON CONTROL PHYSICAL CHANNEL TO DEDICATED PHYSICAL CHANNEL

BSC

FIG.53

FIG.54

FIG.56

FIG.57

66/134

ATM CELL TRANSMISSION SEQUENCE TABLE

TRANSMISSION ORDER (ABOUT 256 AT MAXIMUM)

PRIORITY

E	F	A	E	F	В	E	F	С	E	•	•	•
F	A	В	F	A	C	F	A	D	F	•	•	•
A	В	С	A	В	D	A	В	E	A	•	•	•
В	С	D	В	С	E	В	С	F	В	•	•	•
C	D	E	С	ם	F	C	D	A	C	•	•	•
D	E	F	D	E	A	D	E	В	ם	•	•	•

FIG.58A

SHORT CELL TRANSMISSION SEQUENCE TABLE (QUALITY CLASS (6))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY

E1	E1	E1	E2	E1	E1	E1	E3	•	•	•
E 2	E 2	E2	E 3	E2	E2	E2	E4	•	•	•
E 3	E3	E 3	E4	E 3	E 3	E3	E1	•	•	•
E4	E4	E4	E1	E4	E4	E4	E2	•	•	•

FIG.58B

SHORT CELL TRANSMISSION SEQUENCE TABLE (QUALITY CLASS (7))

TRANSMISSION ORDER (ABOUT 128 AT MAXIMUM)

PRIORITY

F1	F1	F2	F1	F1	F3	F1	F1	•	•	•
F2	F2	F3	F2	F2	F4	F2	F2	•	•	•
F3	F3	F4	F3	F3	F1	F3	F3	٠	•	•
F4	F4	F1	F4	F4	F2	F4	F4	•	•	•

FIG.58C

- CARRY OUT CELL EXTRACTION PROCESSING IN ACCORDANCE WITH TRANSMISSION SEQUENCE DETERMINED FOR EACH OUTPUT TIMING.
- IF NO CELL IS PRESENT IN HIGHER PRIORITY QUALITY CLASS, A CELL IN THE NEXT PRIORITY IS EXTRACTED.

FIG.59

FIG.60

FIG.62

72/134 : DUMNY : BCCH IDENTIFICATION INFORMATION BCCH1, 1 : BCCH2 DESIGNATED BY MACRO ONLY
AT INITIAL SETTING, AND
CONTINUOUSLY TRANSMITTED AUTOMATICALLY
BY HARDWARE AFTER THE SETTING ᇤ 16BITS 8BITS CRC / TA SBITS 16BITS GR // 130CT PAD LENGTH 104BITS 320BIT 2BITS INTERFERING AMOUNT ---- 130CT CPS SDU 16BITS SFIN TRANSNISSION POWER 130CT 6BITS BIT 1BIT DIVIDE INTO INTERNAL ENCODING UNITS CONVOLUTIONAL ENCODING R = 1/2 K = 9 ii O ADD W BITS AND TAIL BITS LAYER 3 INFORMATION CPS PDU BTS HARDWARE BTS AP

FIG.64A

FIG.64A

FIG.64B

FIG.64B

•

FIG.66B

FIG.68A

FIG.68B

FIG.69B

FIG.70B

86/134 DETECT W BITS, AND DISCARD TAIL BITS **FIG.71A** FIG.71B COMBINE INTERNAL ENCODING UNITS LAYER 2 CPS PDU BBITS 16BITS D : DUMMY 27BITS PAD /LENGTH / CRC W ZBITS 14BITS 8BITS CPS SDU 216BITS 270CT DIVIDE INTO INTERNAL ENCODING UNITS ADD W BITS AND TAIL BITS LAYER 2 **FIG.71A** CPS PDU MCC HARDWARE BTS HARDWARE TRANSMISSION PATH MCC AP

FIG.71

FIG.71B

FIG.72B

FIG.74B

PILOT SYMBOLS + TPC SYMBOL (9 SYMBOLS/SLOT)

 $\overline{\cdot}$

94/134 DETECT W BITS, CARRY OUT CRC CHECKING AND DISCARD TAIL BITS FIG.75B SELECTION COMBINING COMBINE SELECTION COMBINING UNITS USER INFO. FIG.75A SBITS Æ 88BITS 110CT 110CT CRC 1 DIVIDE INTO SELECTION COMBINING UNITS ADD CRC AND TAIL BITS DISTRIBUTION USER INFO. BTS HARDWARE CODEC.etc ATM TRANSMISSION PATH DHT

FIG.75

FIG.75A

96/134 DETECT W BITS, CARRY OUT CRC CHECKING AND DISCARD TAIL BITS FIG.76A FIG.76B SELECTION COMBINING COMBINE SELECTION COMBINING UNITS USER INFO. **FIG.76A** 8BITS TA 320BITS 400CT 400CT CRC 13BITS DIVIDE INTO SELECTION COMBINING UNITS ADD CRC AND TAIL BITS DISTRIBUTION USER INFO. BTS HARDWARE CODEC. etc TRANSMISSION PATH DHI

(T) ---

FIG.76B

FIG.80C

FIG.81B

FIG.83B

FIG.84B

FIG.85

	•		•		•			•			· · · · · · · · · · · · · · · · · · ·			•		
	FN = 2		FN = 2		RAME RACH RADIO FRAME	0 65		FRAME RACH RADIO FRAME	40959 0		RACH RADIO FRAME RACH RADIO FRAME	40959 0		AME RACH RADIO FRAME	0	
	FN = 1	DELLAY	N = 1		E RACH RADIO FRAME	0 40959		ME RACH RADIO	0		Ш	650	-1-	RACH RADIO FRAME	0 40959	
	FN = 0	TRANSMISSION DELAY	FN = 0		RACH RADIO FRAME	_ 0 40959	10240chip	E RACH RADIO FRAME	65604 0	20480chip	RAME RACH RADIO FRAME	0 40959	30720chip	RACH RADIO FRAME	65607 0	70 713
10msec	FN = 216-1	↑	FN = 216-1		RACH RADIO, FRAME	0 40959	Gito	RACH RADIO FRAME	-0 40959-	chip	RACH RADIO FRAME	0 40959	chip	RACH RADIO FRAME	0 40959	
	MITTED RADIO S OF BIS ON	KOL PRISLOM	old No si	ROL PHYSICAL	RADIO FRAMES	LONG CODE	PHASE	RADIO FRAMES	TONG CODE	PHASE	RADIO FRAMES	LONG CODE	PHASE	RADIO FRAMES		LONG CODE PHASE
	TRANSMITTED FRAMES OF BI COMMON CONTR CHANNEL RECEIVED RAI		CHANNEL RECEIVED RADIO FRAMES OF MS ON COMMON CONTROL PHYSICAL CHANNEL			RACH TRANSMISSION TIMING 0			RACH TRANSMISSION TIMING 1			RACH TRANSMISSION TRANSMISSION			RACH TRANSMISSION	C SNTWIL

FIG.86

FIG.87A FIG.87B

FIG.87A

									-	
	1	:	í	: l	1	FN = 2 · · ·	1		•	
		SFN = 2		FN = 2		N.E.	81920			FN = 0
				FN = 1		FN = 1			*	FN = 0
		SFN = 1	r (chips)	·	3125msec		40960	on delay	AY X2chip	
	ON DELAY	0	Trrame + Tslor (chips)	FN = 0	1280chip = 0.3125msec	FN = 0		TRANSMISSION DELAY	ission del	FN = 0
	TRANSMISSION DELAY	SFN = 0	¥_		†			1	Terame + Tslot + 1280 + TRANSMISSION DELAY X 2chip	216-1
-		SFN = 216-1		$FN = 2^{16} - 1$		FN = 216+1	(2 ¹⁶ -1)		Ts.or + 128	FN = 2 ¹⁶ -1
	••	SFIN	447			= 216-1	40960X(2 ¹⁶ -1)	dia	Terane +	1 = 216-1
	OF CE			 	DICATED	RAMES FIN	! }	 ↑	OIQ	STS ON FINANCIA
		FRAMES OF	PERCH CHAN	FRAMES OF	FORWARD DE PHYSICAL C	RADIO FRAMES	י באליו סי מאליו	PHASE	RECEIVED R	FRAMES OF REVERSE DEL
							SE DEDICATE CAL CHANNEL MISSION	ર્જા સં ગ		
							PHYS1			

FIG.87B

FIG.88

FIG.88A

FIG.88A

	12	22/13	4							
	•		•		•		•		•	
	SFN = 2		SFN = 2		SFN = 2		FN = 2		FN = 2	MS FRAME TIME DIFFERENCE MEASURED VALUE = TDHO
	S						FN = 1		FN = 1	ASURE
							E		E	贸
	1		SFN = 1		SFN = 1			:	Ш	FEREN
	SFN = 1	(;	SF		SS			8		E DIF
		chips		- X	-		EN = 0	+	FN = 0	
		OFFSET FOR EACH SECTOR = TSECT (chips)	0	TRANSMISSION DELAY	0		1	1280chip + β	1	FRAM
	SFN = 0	% = 7	SFN = 0	ISSIO	SEN =					¥
	SES	SECT	01	TANSIA			_	†	16-1	-
•		를. 		<u>(</u>	-		$FN = 2^{16} - 1$		$FN = 2^{16}-1$	
		T FOR	1-91		16-1		E		124	
10msec	N = 216-1	OFFSE	$SFN = 2^{16} - 1$		SFN = 216-1		-		-2	en compa
9	SFIN		SF	·	1		216-2		= 216-2	
↓	L					†	1		E	
	DHO DESTINATION	NSMITTED R	CHANNEL OF DHO		-~~-	PERCH CHANNEL RECEIVED RADIO	DHO ORIGINATING		TRANSMITTED RADIO FRAMES OF MS ON	REVERSE DEDICATED PHYSICAL CHANNEL

FIG.88B

7IC 80

FIG.90A FIG.90B

FIG.90A

FIG.90B

32 KSPS DEDICATED PHYSICAL CHANNEL (DTX CONTROL)

FIG.94

