Conflict Analysis with Minimal Cuts

Nikita Gaevoy

Technion

April 7, 2024

The problem

- The goal is study how using different conflict analysis schemes affect the performance of a CDCL solver.
- The work is based on the paper: Lintao Zhang et al. "Efficient conflict driven learning in a Boolean satisfiability solver". In: IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281). 2001, pp. 279-285. DOI: 10.1109/ICCAD.2001.968634

The idea

- What is the conflict clause?
- It is a cut between the decisions and the contradiction.
- We want to have a dominator on the last decision level to propagate a unit-clause immediately (UIP).

The idea

- What is the conflict clause?
- It is a cut between the decisions and the contradiction.
- We want to have a dominator on the last decision level to propagate a unit-clause immediately (UIP).
- Among all suitable cuts, we should prioritize closest to the contradiction.

The idea

- What is the conflict clause?
- It is a cut between the decisions and the contradiction.
- We want to have a dominator on the last decision level to propagate a unit-clause immediately (UIP).
- Among all suitable cuts, we should prioritize closest to the contradiction.
- What about minimality?

Previous results

		Microprocessor Formal Verification[19]			Bounded Model Checking [18]			
Decision Strategy		fvp-unsat.1.0(4)	sss.1.0(48)	sss.1.0a(9)	barrel (8)	longmult(16)	queueinvar(10)	satplan(20)
	1uip	532.8	24.56	10.63	1012.62	2887.11	6.58	39.34
	2uip	746.87	27.32	16.96	641.64	2734.57	16.37	41.37
ဟ	3uip	2151.26	69.12	47.66	656.56	2946.73	19.44	57.16
11	alluip	0.68(3)	1746.27(2)	79.09	1081.57(1)	11160.25	18.07	71.86
	rel_sat	2034.09	193.93	82.51	292.33(1)	5719.73	14.4	96.61
၂ တ	mincut	1612.74(2)	2293.18	11.15	4119.34(1)	7321.69(5)	100.94	43.84
>	grasp	2224.44	94.64	33.99	654.54	6196.82	97.82	309.03
	decision*	0(4)	1022.57(17)	227.37(3)	541.96(2)	1421.35(4)	334.39(4)	193.36(3)
	1uip_f	11.36(3)	15307.13(3)	2997.37	281.48(1)	3141.8	817.07(5)	18(2)
	2uip_f	23.07(3)	18844.51(3)	2646.99	344.34(1)	4279.07	777.2(5)	29.51(2)
_	3uip_f	40.75(3)	3985.23(9)	4109.86	432.77(1)	4440.49	860.3(5)	37.62(2)
i	alluip_f	0(4)	4063.44(25)	0.28(8)	699.42(1)	11375.32	2025.08(5)	1136.44(2)
	relsat_f	80.94(3)	3114.83(16)	4261.25(4)	293.09(1)	4396.73	478.37(6)	3323.71(3)
-	mincut_f	0(4)	5619.4(15)	590.79(4)	3408.28(1)	5232.69(5)	3206.36(4)	373.78(2)
ш	grasp_f	22.51(3)	6497.99(8)	3382.47	326.46(1)	5597.1	792.12(5)	149.8(2)
	decision_f*	0(4)	415.76(42)	40.57(8)	479.61(1)	1006.58(6)	1.27(8)	600.87(10)

^{*} timeout set to 600s instead of 3600s

Table 1. Run time for different learning schemes

Previous results

		Microprocessor Formal Verification[19]			Bounded Model Checking [18]			
Decision Strategy		fvp-unsat.1.0(4)	sss.1.0(48)	sss.1.0a(9)	barrel (8)	longmult(16)	queueinvar(10)	satplan(20)
	1uip	532.8	24.56	10.63	1012.62	2887.11	6.58	39.34
	2uip	746.87	27.32	16.96	641.64	2734.57	16.37	41.37
S	3uip	2151.26	69.12	47.66	656.56	2946.73	19.44	57.16
٥	alluip	0.68(3)	1746.27(2)	79.09	1081.57(1)	11160.25	18.07	71.86
	rel_sat	2034.09	193.93	82.51	292.33(1)	5719.73	14.4	96.61
	mincut	1612.74(2)	2293.18	11.15	4119.34(1)	7321.69(5)	100.94	43.84
>	grasp	2224.44	94.64	33.99	654.54	6196.82	97.82	309.03
	decision*	0(4)	1022.57(17)	227.37(3)	541.96(2)	1421.35(4)	334.39(4)	193.36(3)
	1uip_f	11.36(3)	15307.13(3)	2997.37	281.48(1)	3141.8	817.07(5)	18(2)
	2uip_f	23.07(3)	18844.51(3)	2646.99	344.34(1)	4279.07	777.2(5)	29.51(2)
۵	3uip_f	40.75(3)	3985.23(9)	4109.86	432.77(1)	4440.49	860.3(5)	37.62(2)
ш	alluip_f	0(4)	4063.44(25)	0.28(8)	699.42(1)	11375.32	2025.08(5)	1136.44(2)
-	relsat_f	80.94(3)	3114.83(16)	4261.25(4)	293.09(1)	4396.73	478.37(6)	3323.71(3)
	mincut_f	0(4)	5619.4(15)	590.79(4)	3408.28(1)	5232.69(5)	3206.36(4)	373.78(2)
	grasp_f	22.51(3)	6497.99(8)	3382.47	326.46(1)	5597.1	792.12(5)	149.8(2)
	decision_f*	0(4)	415.76(42)	40.57(8)	479.61(1)	1006.58(6)	1.27(8)	600.87(10)

^{*} timeout set to 600s instead of 3600s

Table 1. Run time for different learning schemes

• Most learning schemes are well-defined in terms of maximum flow.

Previous results

		Microprocessor Formal Verification[19]			Bounded Model Checking [18]			
Decision Strategy		fvp-unsat.1.0(4)	sss.1.0(48)	sss.1.0a(9)	barrel (8)	longmult(16)	queueinvar(10)	satplan(20)
	1uip	532.8	24.56	10.63	1012.62	2887.11	6.58	39.34
	2uip	746.87	27.32	16.96	641.64	2734.57	16.37	41.37
ဟ	3uip	2151.26	69.12	47.66	656.56	2946.73	19.44	57.16
11	alluip	0.68(3)	1746.27(2)	79.09	1081.57(1)	11160.25	18.07	71.86
	rel_sat	2034.09	193.93	82.51	292.33(1)	5719.73	14.4	96.61
၂ တ	mincut	1612.74(2)	2293.18	11.15	4119.34(1)	7321.69(5)	100.94	43.84
>	grasp	2224.44	94.64	33.99	654.54	6196.82	97.82	309.03
	decision*	0(4)	1022.57(17)	227.37(3)	541.96(2)	1421.35(4)	334.39(4)	193.36(3)
	1uip_f	11.36(3)	15307.13(3)	2997.37	281.48(1)	3141.8	817.07(5)	18(2)
	2uip_f	23.07(3)	18844.51(3)	2646.99	344.34(1)	4279.07	777.2(5)	29.51(2)
_	3uip_f	40.75(3)	3985.23(9)	4109.86	432.77(1)	4440.49	860.3(5)	37.62(2)
ш	alluip_f	0(4)	4063.44(25)	0.28(8)	699.42(1)	11375.32	2025.08(5)	1136.44(2)
×	relsat_f	80.94(3)	3114.83(16)	4261.25(4)	293.09(1)	4396.73	478.37(6)	3323.71(3)
-	mincut_f	0(4)	5619.4(15)	590.79(4)	3408.28(1)	5232.69(5)	3206.36(4)	373.78(2)
ш	grasp_f	22.51(3)	6497.99(8)	3382.47	326.46(1)	5597.1	792.12(5)	149.8(2)
	decision_f*	0(4)	415.76(42)	40.57(8)	479.61(1)	1006.58(6)	1.27(8)	600.87(10)

^{*} timeout set to 600s instead of 3600s

Table 1. Run time for different learning schemes

- Most learning schemes are well-defined in terms of maximum flow.
- ullet The flow algorithm used in the paper is $\mathcal{O}(\mathit{VE}\log(\mathit{V}^2/\mathit{E}))$, which is probably suboptimal.

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).
- The algorithm works in phases.
- In each phase, we run bfs from the sink, traversing reversed unsaturated edges and push all the excess greedily to the lower layers. It works in $\mathcal{O}(E)$.

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).
- The algorithm works in phases.
- In each phase, we run bfs from the sink, traversing reversed unsaturated edges and push all the excess greedily to the lower layers. It works in $\mathcal{O}(E)$.
- Repeat while something happens.

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).
- The algorithm works in phases.
- In each phase, we run bfs from the sink, traversing reversed unsaturated edges and push all the excess greedily to the lower layers. It works in $\mathcal{O}(E)$.
- Repeat while something happens.
- The distance to the sink can only grow. Thus, there are at most $\mathcal{O}(V^2)$ phases.

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).
- The algorithm works in phases.
- In each phase, we run bfs from the sink, traversing reversed unsaturated edges and push all the excess greedily to the lower layers. It works in $\mathcal{O}(E)$.
- Repeat while something happens.
- The distance to the sink can only grow. Thus, there are at most $\mathcal{O}(V^2)$ phases.
- One phase could be optimized to $\mathcal{O}(V + \text{useful work})$.

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).
- The algorithm works in phases.
- In each phase, we run bfs from the sink, traversing reversed unsaturated edges and push all the excess greedily to the lower layers. It works in $\mathcal{O}(E)$.
- Repeat while something happens.
- The distance to the sink can only grow. Thus, there are at most $\mathcal{O}(V^2)$ phases.
- One phase could be optimized to $\mathcal{O}(V + \text{useful work})$.
- Performs well on practice. Although, the best* theoretical bound is $\mathcal{O}(V^3)$.

- Each vertex has an excess.
- The network has exactly one sink and no sources (simulated by infinite excess).
- The algorithm works in phases.
- In each phase, we run bfs from the sink, traversing reversed unsaturated edges and push all the excess greedily to the lower layers. It works in $\mathcal{O}(E)$.
- Repeat while something happens.
- The distance to the sink can only grow. Thus, there are at most $\mathcal{O}(V^2)$ phases.
- One phase could be optimized to $\mathcal{O}(V + \text{useful work})$.
- Performs well on practice. Although, the best* theoretical bound is $\mathcal{O}(V^3)$.
- Can reuse a part of the graph after backtracking*.

Our plan

- Implement a CDCL solver.
- ② Implement the flow algorithm. ✓
- Befriend them.
- Simulate all interesting conflict analysis schemes in terms of the flow.
- Run the benchmarks from the paper.
- Publish to the repository.