Ima205: Answer to theoratical questions

HAITHEM DAGHMOURA

March 2024

OLS

We know that OLS estimator is defined as $\hat{\beta}^* = (x^T x)^{-1} x^T y = Hy$. Let β Another linear unbiased estimator of β defined as $\tilde{\beta} = Cy$, where C is a matrix $d \times n$ and C = H + D, D being a non-zero matrix.

First let's calculate the expected value and variance of $\tilde{\beta}$:

- $E[\tilde{\beta}] = E[Cy] = (Id + Dx)\beta$, as $\tilde{\beta}$ is unbiased, it can be concluded that Dx must be equal to zero.
- $\operatorname{Var}(\tilde{\beta}) = \operatorname{Var}(Cy) = C\operatorname{Var}(y)C^T = \sigma^2CC^T$.

$$\begin{split} \sigma^2 C C^T &= \sigma^2 ((x^T x)^{-1} x^T + D) (x(x^T x)^{-1} + D^T) \\ \sigma^2 C C^T &= \sigma^2 (x^T x)^{-1} + \sigma^2 (x^T x)^{-1} (Dx)^T + \sigma^2 (Dx) (x^T x)^{-1} + \sigma^2 (DD^T) \end{split}$$

As proved in the expected value, Dx must be equal to 0 so the estimator is unbiased, this means that:

$$\operatorname{Var}(\tilde{\beta}) = \sigma^2(x^T x)^{-1} + \sigma^2(DD^T)$$

A matrix DD^T is always symmetric and semi-positive, meaning $DD^T \geq 0$. If it's equal to 0, it is equivalent to the OLS. To conclude:

$$\operatorname{Var}(\tilde{\beta}) = \operatorname{Var}(\hat{\beta}^*) + \sigma^2(DD^T)$$

As the second term is greater than 0, the variance of this new estimator is greater than the OLS.

Given the calculations above, the assumption that $\operatorname{Var}(\hat{\beta}^*) < \operatorname{Var}(\tilde{\beta})$ holds. This is assuming that x is deterministic and $E[\epsilon] = 0$ (normality assumption holds, $\epsilon \sim N(0, \sigma^2 I)$.

Ridge Regression

- The Ridge solution is given by: $\hat{\beta}_{\text{ridge}}^* = (x_c^T x_c + \lambda I)^{-1} x_c^T y_c$.
- So the expected value is given by: $E[\hat{\beta}_{\text{ridge}}^*] = E[(x_c^T x_c + \lambda I)^{-1} x_c^T y_c] = [(x_c^T x_c + \lambda I)^{-1} x_c^T] E[y_c]$
- Which is different from β unless $\lambda = 0$ (the OLS case), meaning it is a biased estimator.
- The SVD decomposition for the Ridge estimator can be written as:

$$\hat{\beta}_{\text{ridge}}^* = (x_c^T x_c + \lambda I)^{-1} x_c^T y_c = ([UDV^T]^T [UDV^T] + \lambda I)^{-1} (UDV^T)^T y_c$$

$$= (VD^T U^T UDV^T + \lambda I)^{-1} VD^T U^T y_c = (VD^T DV^T + \lambda I)^{-1} VD^T U^T y_c = V(D^T D + \lambda I)^{-1} V^T VD^T U^T y_c$$

$$\hat{\beta}_{\text{ridge}}^* = V(D^T D + \lambda I)^{-1} D^T U^T y_c$$

The manipulations to get the result above use that U and V are orthogonal matrices (the inverse is equal to the transpose). Using this transformation might be computationally useful because there is no need to invert a matrix, as $(D^TD + \lambda I)^{-1}D^T$ is equal to a diagonal matrix, where each element is equal to eigenvalue (eigenvalue² + λ).

• The variance of the Ridge estimator can be calculated as:

$$\operatorname{Var}(\hat{\beta}_{\mathrm{ridge}}^*) = \operatorname{Var}((x_c^T x_c + \lambda I)^{-1} x_c^T y_c)$$

$$\operatorname{Var}(\hat{\beta}_{\mathrm{ridge}}^*) = ((x_c^T x_c + \lambda I)^{-1} x_c^T y_c) \operatorname{Var}(y_c) ((x_c^T x_c + \lambda I)^{-1} x_c^T)^T$$

$$\operatorname{Var}(\hat{\beta}_{\mathrm{ridge}}^*) = \sigma^2 (x_c^T x_c + \lambda I)^{-1} x_c^T x_c (x_c^T x_c + \lambda I)^{-1}$$

For a positive λ , $(x_c^T x_c + \lambda I)$ will always be greater than $x_c^T x_c$, as a consequence $(x_c^T x_c + \lambda I)^{-1} x_c^T x c (x_c^T x_c + \lambda I)^{-1}$ will always be smaller than $(x_c^T x_c)^{-1}$, meaning that $\operatorname{Var}(\hat{\beta}_{\text{OLS}}^*) \geq \operatorname{Var}(\hat{\beta}_{\text{ridge}}^*)$.

- The Ridge estimator promotes a trade-off between Bias and Variance. As λ increases, the Bias becomes bigger, and the variance becomes smaller. This is logical given that if we take a λ really close to zero, the solution will tend to the OLS solution, with zero bias and high variance, and if λ is close to infinity, the solution will be all parameters equal to zero, meaning zero variance, but high bias.
- As: $\hat{\beta}_{\text{ridge}}^* = (x_c^T x_c + \lambda Id)^{-1} x_c^T y_c$. If $x_c^T x_c = Id$, Therefore $\hat{\beta}_{\text{ridge}}^* = (Id + \lambda Id)^{-1} x_c^T y_c = ((1 + \lambda)Id)^{-1} x_c^T y_c$. Remembering: $\hat{\beta}_{\text{OLS}}^* = (x_c^T x_c)^{-1} x_c^T y_c$, where too $x_c^T x_c = Id$, than $\hat{\beta}_{\text{OLS}}^* = x_c^T y_c$

Substituting, it's demonstrated that $\hat{\beta}_{\text{ridge}}^* = \frac{\hat{\beta}_{\text{OLS}}^*}{1+\lambda}$

Elastic Net

Rewriting equation 2 from the exercise list:

$$\hat{\beta}_{\text{EINet}}^* = \operatorname{argmin}_{\beta} (y_c - x_c \beta)^T (y_c - x_c \beta) + \lambda_2 ||\beta||_2^2 + \lambda_1 ||\beta||_1$$

As the function is strictly convex, the minimum can be obtained by equating the subgradient to zero according to Fermat's law $(\lambda_1||\beta||_1)$ is not differentiable at 0).

$$\frac{\partial f}{\partial \beta} = 2x_c^T (y_c - x_c \beta) + 2\lambda_2 \beta + \lambda_1 \begin{cases} -1 & \text{if } \beta < 0\\ 1 & \text{if } \beta > 0\\ [-1, 1] & \text{if } \beta = 0 \end{cases}$$

$$2x_c^T(y_c - x_c\beta) + 2\lambda_2\beta \pm \lambda_1 = 0$$

$$2x_c^T y_c - 2x_c^T x_c \beta + 2\lambda_2 \beta \pm \lambda_1 = 0$$

Remembering that $x_c^T x_c = I_d$, so $\hat{\beta}_{OLS}^* = x_c^T y_c$.

$$2\beta_{\text{OLS}}^* - 2\beta(1 - \lambda_2) \pm \lambda_1 = 0$$

$$\beta = \frac{\beta_{\text{OLS}}^* \pm \frac{\lambda_1}{2}}{(1 - \lambda_2)}$$

This gives the expected value proved by this demonstration.