COMP9414: Artificial Intelligence

Lecture 4b: Automated Reasoning

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW © W. Wobcke et al. 2019

COMP9414 Automated Reasoning

This Lecture

- Proof systems
 - ► Soundness, completeness, decidability
- Resolution and Refutation
- Horn clauses and SLD resolution
- Prolog
- Tableau method

COMP9414 Automated Reasoning 2

Summary So Far

- Propositional Logic
 - \triangleright Syntax: Formal language built from \land , \lor , \neg , \rightarrow
 - ▶ Semantics: Definition of truth table for every formula
 - \triangleright S \models P if whenever all formulae in S are True, P is True
- Proof System
 - ► System of axioms and rules for deduction
 - ► Enables computation of proofs of *P* from *S*
- Basic Questions
 - ► Are the proofs that are computed always correct? (soundness)
 - ▶ If $S \models P$, is there always a proof of P from S (completeness)

UNSW

© W. Wobcke et al. 2019

COMP9414 Automated Reasoning 3

Mechanizing Proof

- A proof of a formula *P* from a set of premises *S* is a sequence of lines in which any line in the proof is
 - 1. An axiom of logic or premise from *S*, or
 - 2. A formula deduced from previous lines of the proof using a rule of inference

and the last line of the proof is the formula P

- Formally captures the notion of mathematical proof
- S proves $P(S \vdash P)$ if there is a proof of P from S; alternatively, P follows from S
- Example: Natural Deduction proof

5

Soundness and Completeness

- A proof system is sound if (intuitively) it preserves truth
 - \triangleright Whenever $S \vdash P$, if every formula in S is True, P is also True

Automated Reasoning

- ▶ Whenever $S \vdash P$, $S \models P$
- ▶ If you start with true assumptions, any conclusions must be true
- A proof system is complete if it is capable of proving all consequences of any set of premises (including infinite sets)
 - ▶ Whenever *P* is entailed by *S*, there is a proof of *P* from *S*
 - \blacktriangleright Whenever $S \models P, S \vdash P$
- A proof system is decidable if there is a mechanical procedure (computer program) which when asked whether $S \vdash P$, can always answer 'yes' or 'no' correctly

UNSW

© W. Wobcke et al. 2019

COMP9414

Automated Reasoning

d Reasoning

Resolution

- Another type of proof system based on refutation
- Better suited to computer implementation than systems of axioms and rules (can give correct 'no' answers)
- Decidable in the case of Propositional Logic
- Generalizes to First-Order Logic (see later in term)
- Needs all formulae to be converted to clausal form

Normal Forms

- A literal ℓ is a propositional variable or the negation of a propositional variable $(P \text{ or } \neg P)$
- A clause is a disjunction of literals $\ell_1 \lor \ell_2 \lor \cdots \lor \ell_n$
- Conjunctive Normal Form (CNF) a conjunction of clauses, e.g. $(P \lor Q \lor \neg R) \land (\neg S \lor \neg R)$ or just one clause, e.g. $P \lor Q$
- Disjunctive Normal Form (DNF) a disjunction of conjunctions of literals, e.g. $(P \land Q \land \neg R) \lor (\neg S \land \neg R)$ or just one conjunction, e.g. $P \land Q$
- Every Propositional Logic formula can be converted to CNF and DNF
- Every Propositional Logic formula is equivalent to its CNF and DNF

UNSW

© W. Wobcke et al. 2019

7

COMP9414

Automated Reasoning

Conversion to Conjunctive Normal Form

- Eliminate \leftrightarrow rewriting $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$
- Eliminate \rightarrow rewriting $P \rightarrow Q$ as $\neg P \lor Q$
- Use De Morgan's laws to push ¬ inwards (repeatedly)
 - ▶ Rewrite $\neg (P \land Q)$ as $\neg P \lor \neg Q$
 - ightharpoonup Rewrite $\neg (P \lor Q)$ as $\neg P \land \neg Q$
- Eliminate double negations: rewrite $\neg \neg P$ as P
- Use the distributive laws to get CNF [or DNF] if necessary
 - ▶ Rewrite $(P \land Q) \lor R$ as $(P \lor R) \land (Q \lor R)$ [for CNF]
 - ▶ Rewrite $(P \lor Q) \land R$ as $(P \land R) \lor (Q \land R)$ [for DNF]

Example Clausal Form

Clausal Form = set of clauses in the CNF

- $\neg (P \rightarrow (Q \land R))$
- $\neg (\neg P \lor (Q \land R))$
- $\neg \neg P \land \neg (Q \land R)$
- $\neg \neg P \land (\neg Q \lor \neg R)$
- $P \wedge (\neg Q \vee \neg R)$
- Clausal Form: $\{P, \neg Q \lor \neg R\}$

UNSW

© W. Wobcke et al. 2019

COMP9414

Automated Reasoning

9

Resolution Rule of Inference

where B is a propositional variable and A_i and C_j are literals

- \blacksquare B and $\neg B$ are complementary literals
- $A_1 \lor \cdots \lor A_m \lor C_1 \lor \cdots \lor C_n$ is the resolvent of the two clauses
- Special case: If no A_i and C_j , resolvent is empty clause, denoted \Box

Resolution Rule: Key Idea

- Consider $A_1 \vee \cdots \vee A_m \vee B$ and $\neg B \vee C_1 \vee \cdots \vee C_n$
 - ► Suppose both are True
 - ▶ If *B* is True, $\neg B$ is False and $C_1 \lor \cdots \lor C_n$ is True
 - ▶ If *B* is False, $A_1 \lor \cdots \lor A_m$ is True
 - ► Hence $A_1 \lor \cdots \lor A_m \lor C_1 \lor \cdots \lor C_n$ is True

Hence the resolution rule is sound

Starting with true premises, any conclusion made using resolution must be true

UNSW

© W. Wobcke et al. 2019

© W. Wobcke et al. 2019

11

COMP9414

Automated Reasoning

Applying Resolution: Naive Method

- Convert knowledge base into clausal form
- Repeatedly apply resolution rule to the resulting clauses
- *P* follows from the knowledge base if and only if each clause in the CNF of *P* can be derived using resolution from the clauses of the knowledge base (or subsumption)
- Example

UNSW

- $ightharpoonup \{P o Q, Q o R\} \vdash P o R$
- ► Clauses $\neg P \lor Q$, $\neg Q \lor R$, show $\neg P \lor R$
- ► Follows from one resolution step

Automated Reasoning

Refutation Systems

To show that *P* follows from *S* (i.e. $S \vdash P$) using refutation, start with *S* and $\neg P$ in clausal form and derive a contradiction using resolution

Automated Reasoning

- A contradiction is the "empty clause" (a clause with no literals)
- \blacksquare The empty clause \square is unsatisfiable (always False)
- So if the empty clause

 is derived using resolution, the original set of clauses is unsatisfiable (never all True together)
- That is, if we can derive \square from the clausal forms of S and $\neg P$, these clauses can never be all True together
- Hence whenever the clauses of S are all True, at least one clause from $\neg P$ must be False, i.e. $\neg P$ must be False and P must be True
- By definition, $S \models P$ (so P can correctly be concluded from S)

UNSW

© W. Wobcke et al. 2019

Resolution: Example 1

 $(G \lor H) \to (\neg J \land \neg K), G \vdash \neg J$

Clausal form of $(G \lor H) \to (\neg J \land \neg K)$ is

$$\{\neg G \lor \neg J, \ \neg H \lor \neg J, \ \neg G \lor \neg K, \ \neg H \lor \neg K\}$$

- 1. $\neg G \lor \neg J$ [Premise]
- 2. $\neg H \lor \neg J$ [Premise]
- 3. $\neg G \lor \neg K$ [Premise]
- 4. $\neg H \lor \neg K$ [Premise]
- 5. *G* [Premise]
- 6. J [¬ Query]
- 7. $\neg G$ [1, 6 Resolution]
- 8. □ [5, 7 Resolution]

HNSW

COMP9414

© W. Wobcke et al. 2019

15

COMP9414 Automated Reasoning 13

Applying Resolution Refutation

- Negate query to be proven (resolution is a refutation system)
- Convert knowledge base and negated query into CNF
- Repeatedly apply resolution until either the empty clause (contradiction) is derived or no more clauses can be derived
- If the empty clause is derived, answer 'yes' (query follows from knowledge base), otherwise answer 'no' (query does not follow from knowledge base)

Resolution: Example 2

$$P \rightarrow \neg Q, \ \neg Q \rightarrow R \ \vdash P \rightarrow R$$

Recall $P \to R \Leftrightarrow \neg P \lor R$

Clausal form of $\neg(\neg P \lor R)$ is $\{P, \neg R\}$

- 1. $\neg P \lor \neg Q$ [Premise]
- 2. $Q \vee R$ [Premise]
- 3. *P* [¬ Query]
- 4. $\neg R$ [\neg Query]
- 5. $\neg Q$ [1, 3 Resolution]
- 6. *R* [2, 5 Resolution]
- 7. □ [4, 6 Resolution]

Resolution: Example 3

 $\vdash ((P \lor O) \land \neg P) \rightarrow O$

Clausal form of $\neg(((P \lor Q) \land \neg P) \to Q)$ is $\{P \lor Q, \neg P, \neg Q\}$

- [¬ Query] 1. $P \lor O$
- $2. \neg P$ [¬ Query]
- $3. \neg O$ [¬ Query]
- 4. Q [1, 2 Resolution]
- 5. □ [3, 4 Resolution]

UNSW

© W. Wobcke et al. 2019

17

COMP9414

Automated Reasoning

Soundness and Completeness Again

For Propositional Logic

- Resolution refutation is sound, i.e. it preserves truth (if a set of premises are all true, any conclusion drawn from those premises must also be true)
- Resolution refutation is complete, i.e. it is capable of proving all consequences of any knowledge base (not shown here!)
- Resolution refutation is decidable, i.e. there is an algorithm implementing resolution which when asked whether $S \vdash P$, can always answer 'yes' or 'no' (correctly)

Heuristics in Applying Resolution

- Clause elimination can disregard certain types of clauses
 - \triangleright Pure clauses: contain literal L where $\neg L$ doesn't appear elsewhere
 - ▶ Tautologies: clauses containing both L and $\neg L$
 - Subsumed clauses: another clause is a subset of the literals
- Ordering strategies
 - ▶ Resolve unit clauses (only one literal) first
 - Start with query clauses
 - Aim to shorten clauses

IINSW

© W. Wobcke et al. 2019

19

COMP9414

Automated Reasoning

Horn Clauses

Idea: Use less expressive language

- Review
 - ▶ literal proposition variable or negation of proposition variable
 - clause disjunction of literals
- Definite Clause exactly one positive literal
 - \triangleright e.g. $B \vee \neg A_1 \vee \ldots \vee \neg A_n$, i.e. $B \leftarrow A_1 \wedge \ldots \wedge A_n$
- Negative Clause no positive literals
 - ightharpoonup e.g. $\neg Q_1 \lor \neg Q_2$ (negation of a query)
- Horn Clause clause with at most one positive literal

SLD Resolution – \vdash_{SLD}

- Selected literals Linear form Definite clauses resolution
- SLD refutation of a clause C from a set of clauses KB is a sequence

Automated Reasoning

- 1. First clause of sequence is C
- 2. Each intermediate clause C_i is derived by resolving the previous clause C_{i-1} and a clause from KB
- 3. The last clause in the sequence is \Box

Theorem. For a definite KB and negative clause query Q: $KB \cup Q \vdash \Box$ if and only if $KB \cup Q \vdash_{SLD} \square$

UNSW

© W. Wobcke et al. 2019

COMP9414

Automated Reasoning

21

COMP9414

UNSW

UNSW

Automated Reasoning

23

© W. Wobcke et al. 2019

Prolog

- Horn clauses in First-Order Logic (see later in term)
- SLD resolution
- Depth-first search strategy with backtracking
- User control
 - ▶ Ordering of clauses in Prolog database (facts and rules)
 - ▶ Ordering of subgoals in body of a rule
- Prolog is a programming language based on resolution refutation relying on the programmer to exploit search control rules

Prolog Example

```
# facts
r.
u.
v.
                  # rules
q := r, u.
s :- v.
p := q, r, s.
?- p.
                   # query
yes
```

Prolog Interpreter

```
Input: A query Q and a logic program KB
Output: 'yes' if Q follows from KB, 'no' otherwise
      Initialize current goal set to \{Q\}
      while the current goal set is not empty do
            Choose G from the current goal set; (first in goal set)
            Choose a copy G': B_1, \ldots, B_n of a clause from KB (try all in KB)
            (if no such rule, try alternative rules)
            Replace G by B_1, \ldots, B_n in current goal set
      if current goal set is empty
            output 'yes'
      else output 'no'
 ■ Depth-first, left-right with backtracking
```

Alpha Rules:

$$\neg \neg$$
-Elimination:

$$\begin{array}{c|cc} A \land B & \neg (A \lor B) & \neg (A \to B) \\ \hline A & \neg A & A \\ B & \neg B & \neg B \end{array}$$

$$\frac{\neg \neg A}{A}$$

Beta Rules:

Branch Closure:

$$\begin{array}{c|c}
A \lor B \\
\hline
A & B
\end{array} \qquad
\begin{array}{c|c}
A \to B \\
\hline
\neg A & B
\end{array} \qquad
\begin{array}{c|c}
\neg (A \land B) \\
\hline
\neg A & \neg B
\end{array}$$

$$\frac{A}{\neg A}$$

UNSW © W. Wobcke et al. 2019

COMP9414 Automated Reasoning 25

Tableau Method Example

UNSW ©W. Wobcke et al. 2019

Conclusion: Propositional Logic

- Propositions built from \land , \lor , \neg , \rightarrow
- Sound, complete and decidable proof systems (inference procedures)

Automated Reasoning

- ► Natural deduction
- ► Resolution refutation
- ▶ Prolog for special case of definite clauses
- ► Tableau method
- Limited expressive power
 - ► Cannot express ontologies, e.g. AfPak Ontology
- First-Order Logic can express knowledge about objects, properties and relationships between objects

UNSW © W. Wobcke et al. 2019