Algoritmos bio-inspirados e neuroevolução

por Diogo Trentini

Sumário

- Problemas de otimização
 - Otimização contínua
 - Otimização combinatorial
- Algoritmos bio-inspirados
 - Ant Colony Optimization
 - Algoritmos evolucionários
 - Exemplo (GA)
- Neuroevolução (EA + ML)

Problemas de otimização

- Objetivo: Achar a melhor solução dentre todas as soluções possíveis.
- Duas categorias:
 - \circ **Problemas de otimização contínua**: procura-se uma solução definida no domínio dos números reais (\mathbb{R}).
 - Problemas de otimização combinatorial: procura-se uma solução representada por um número inteiro (I), grafo ou qualquer representação de um conjunto finito.

Otimização contínua

• Definido por:

$$egin{array}{ll} ext{minimizar}_{ec{x}} & f(x) \ ext{sujeito a} & g_i(ec{x}) \leq 0, i=1,...,l \ & h_j(ec{x}) = 0, j=1,...,m \ ext{onde} & f(x): \mathbb{R}^n \!
ightarrow \mathbb{R} \end{array}$$

Otimização contínua

• Exemplo: despacho econômico de energia elétrica.

$$\operatorname{minimizar}_x \sum_{i=1}^6 f(x_i) \qquad ext{sujeito a} \sum_{i=1}^6 x_i = 1263$$

$$egin{aligned} f(x_1) &= 0.007x_1^2 + 7x_1 + 240, & 100 \leq x_1 \leq 500 \ f(x_2) &= 0.0095x_2^2 + 10x_2 + 200, & 50 \leq x_2 \leq 200 \ f(x_3) &= 0.009x_3^2 + 8.5x_3 + 220, & 80 \leq x_3 \leq 300 \ f(x_4) &= 0.009x_4^2 + 11x_4 + 200, & 50 \leq x_4 \leq 150 \ f(x_5) &= 0.008x_5^2 + 10.5x_5 + 220, & 50 \leq x_5 \leq 200 \ f(x_6) &= 0.0075x_6^2 + 12x_6 + 190, & 50 \leq x_6 \leq 120 \end{aligned}$$

Otimização combinatorial

- Definido por (I,f,m,g), onde:
 - $\circ I$ é um conjunto de instâncias x ($x \in I$).
 - $\circ f(x)$ é o conjunto de soluções possíveis.
 - \circ Dado uma instância x com uma solução y, m(x,y) é a medida de y (normalmente $\in \mathbb{R}$).
 - $\circ g$ é a função objetivo (min/max) onde devemos encontrar, para x, uma solução y com:

$$m(x,y) = g\{m(x,y') \mid y' \in f(x)\}, \ x \in I$$

Otimização combinatorial

• Exemplo: problema do caixeiro-viajante. Dado a lista de cidades abaixo (com as distâncias entre cada par de cidades), qual é a menor rota onde o caixeiro visita cada cidade exatamente uma vez e volta ao local de origem (no caso, cidade A)?

Algoritmos bio-inspirados

- Algoritmos que simulam comportamentos inteligentes da natureza para resolverem problemas (normalmente de otimização).
- Normalmente não garantem encontrar a melhor solução, mas encontram boas soluções com menor custo computacional (se comparado a outros métodos).

Algoritmos bio-inspirados

- Duas principais categorias:
 - Inteligência de enxame:
 - ACO (Ant Colony Optimization)
 - PSO (Particle Swarm Optimization)
 - Evolução:
 - GA (Genetic Algorithm)
 - DE (Differential Evolution)

Ant Colony Optimization

Ant Colony Optimization

1 2

Algoritmos evolucionários

- Algoritmos baseados no processo evolutivo.
- Alguns tipos:
 - Algoritmo genético
 - Evolução diferencial
 - Estratégia evolutiva
 - Programação genética
 - Neuroevolução

Algoritmos evolucionários

• Pseudo-código (algoritmo genético):

```
Generate initial population randomly
Evaluate each individual's fitness
while (termination condition not met) do
  Select individuals (usually the best-fit) for \
    reproduction
  Generate new individuals with crossover and mutation \
    operations
  Evaluate each individual's fitness
  Replace population (usually the least-fit) with new \
    individuals
end
```

$$ext{minimizar}_x \quad f(x) = x^2 - 2x, \ -30 \le x \le 30$$

População inicial:

ID	Gene	Solução (x)	Fitness
A	010011	19	$19^2 - 2 * 19 = 323$
В	000111	7	$7^2 - 2*7 = 35$
С	001100	24	$24^2 - 2 * 24 = 528$
D	011000	12	$\boxed{12^2 - 2*12 = 120}$

- Reprodução: B (fitness 35) e D (fitness 120).
- Crossover:

Pais	Gene	Filhos	Gene
В	000111	Е	000000
D	011000	F	011111

Mutação (apenas F):

Pais	Gene	Filhos	Gene
F	011111	F'	001111

• Cálculo do fitness:

ID	Gene	Solução (x)	Fitness
Е	000000	0	$0^2 - 2 * 0 = 0$
F	001111	15	$\boxed{15^2 - 2*15 = 195}$

• Seleção natural (substituindo mais fracos):

ID	Gene	Solução (x)	Fitness
Е	000000	0	$0^2 - 2 * 0 = 0$
В	000111	7	$7^2 - 2*7 = 35$
F	001111	15	$15^2 - 2 * 15 = 195$
D	011000	12	$\boxed{12^2 - 2*12 = 120}$

Média do fitness da população anterior: 251.5 Média do fitness da população atual: 87.5

Neuroevolução

- Método que utilizada algoritmos evolucionários para evoluir/treinar redes neurais.
- Podem ser utilizadas para:
 - Evoluir os pesos das conexões de uma rede.
 - Evoluir a estrutura de uma rede.
- Podem evoluir as redes e parâmetros:
 - Simultaneamente (com algoritmos evolucionários normais)
 - Separadamente (com algoritmos meméticos)

Neuroevolução

- Podem possuir diferentes tipos de codificação:
 - Direta: o genótipo (genes do algoritmos evolucionários) mapeia diretamente o fenótipo (topologia/parâmetros da rede neural). Ou seja, cada neurônio e conexão é definida no gene.
 - Indireta: o genótipo mapeia indiretamente o fenótipo. Ou seja, precisamos processar o genótipo para gerarmos o fenótipo.
 - Temos como vantagens a compressão do fenótipo (i.e., menor espaço de busca) e modularização da rede, por exemplo.

Neuroevolução

• Exemplos:

Método	Codificação	Algoritmo	Aspectos
NEAT	Direta	GA	Estrutura e parâmetros
HyperNEAT	Indireta (com CPPN)	GA	Parâmetros
HyperNEAT	Indireta (com DPPN)	GA + MA (M emetic A lgorithm)	Estrutura e parâmetros

EXEMPLOS

- Flexible Muscle-Based Locomotion for Bipedal Creatures
- MarI/O Machine Learning for Video Games
- Inteligência Artificial com Dinossauro da Google