Covid Time Series

Cleaning the data set (which it desperately needs)

```
cnd <- read.csv("United_States_COVID-19_Cases_and_Deaths_by_State_over_Time.csv", header = T)</pre>
clt <- read.csv("United_States_COVID-19_County_Level_of_Community_Transmission_as_Originally_Posted.csv</pre>
names(clt)[1] <- "state_name"</pre>
# Check for duplicated observations
sum(duplicated(cnd))
## [1] 0
sum(duplicated(clt))
## [1] 0
# Check for empty rows
sum(apply(cnd, 1, function(x) all(is.na(x))))
## [1] 0
sum(apply(clt, 1, function(x) all(is.na(x))))
## [1] 0
# Dimensions of Data Sets
dim(cnd) # Dim of cases and deaths by states
## [1] 53400
                15
dim(clt) # Dim of county level transmission
## [1] 1021114
                      7
# Summary statistics of data sets
summary(cnd)
```

```
## "...submission_date
                         state
                                          tot cases
                                                             conf cases
## Length:53400
                      Length:53400
                                         Length: 53400
                                                           Length: 53400
## Class :character
                                         Class : character
                                                            Class : character
                      Class : character
## Mode :character Mode :character
                                         Mode :character
                                                           Mode :character
    prob_cases
                        new case
                                          pnew case
                                                             tot death
## Length:53400
                      Length:53400
                                         Length:53400
                                                           Length: 53400
## Class :character
                      Class : character
                                         Class : character
                                                            Class : character
## Mode :character
                      Mode :character
                                         Mode :character
                                                           Mode :character
##
   conf death
                       prob_death
                                          new death
                                                            pnew_death
## Length:53400
                      Length:53400
                                         Length:53400
                                                            Length: 53400
## Class :character
                      Class :character
                                         Class :character
                                                            Class :character
## Mode :character
                      Mode :character
                                         Mode :character
                                                            Mode :character
                                         consent deaths
   created at
                      consent cases
## Length:53400
                      Length:53400
                                         Length: 53400
## Class :character
                      Class : character
                                         Class : character
                                         Mode :character
## Mode :character
                      Mode :character
```

summary(clt)

```
county_name
                                           fips_code
                                                         report_date
##
    state name
##
  Length: 1021114
                      Length: 1021114
                                         Min. : 1001
                                                         Length: 1021114
  Class :character
                      Class : character
                                         1st Qu.:19031
                                                         Class : character
## Mode :character
                      Mode : character
                                         Median :30023
                                                         Mode :character
##
                                         Mean
                                                :31383
##
                                         3rd Qu.:46105
##
                                         Max.
                                                :72153
##
##
  cases_per_100K_7_day_count_change
  Length: 1021114
  Class :character
##
   Mode :character
##
##
##
##
##
   percent_test_results_reported_positive_last_7_days
  Min. : 0.00
##
  1st Qu.: 4.84
## Median: 10.26
## Mean : 13.11
## 3rd Qu.: 17.92
## Max.
          :100.00
## NA's
          :125582
## community_transmission_level
## Length:1021114
## Class :character
##
  Mode : character
##
##
##
##
```

```
# Something is wrong. Despite the majority of variables in cnd being numerical by inspecting
# them, they are labeled as character variables. I'll change that quickly.
cnd[, c(3:12)] <- sapply(cnd[, c(3:12)], function(x) as.numeric(gsub(",","",x)))

# Similarly, clt seems to have an issue with one of the variables being primarily being numeric
# but being counted as a character variable due to "suppressed" being a recurring element.
# So, I'll change the instances of "suppressed" to be -1 instead.
clt[, 5] <- gsub("suppressed", -1, clt[, 5])
clt[, 5] <- as.numeric(gsub(",", "", clt[, 5]))

# Finally, we just need the dates to register as the date class
cnd$i..submission_date <- as.Date(cnd$i..submission_date, format = "%m/%d/%Y")
clt$report_date <- as.Date(clt$report_date, format = "%Y/%m/%d")</pre>
```

EDA

I primarily wanted to do this with Los Angeles and California in mind but I saw the amount of counties in the county transmission data set (clt) with "suppressed" in their cases variable and thought I would do a generalized exploratory data analysis just to see what is going on there. Then it's back to what I was originally going to do.

```
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.3
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.1.3
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
```

```
suppressed <- clt %>%
  select(state_name, county_name, community_transmission_level,
         cases_per_100K_7_day_count_change) %>%
  filter(cases_per_100K_7_day_count_change == -1)
head(suppressed, 10)
##
                         county_name community_transmission_level
        state_name
## 1
          Michigan Ontonagon County
                                                        substantial
## 2
                                                        substantial
         Minnesota
                         Lake County
## 3
           Montana
                    Chouteau County
                                                        substantial
## 4
                       Monona County
                                                        substantial
              Iowa
## 5
           Montana Big Horn County
                                                           moderate
## 6
      North Dakota
                      Oliver County
                                                               high
## 7
      North Dakota
                        Burke County
                                                           moderate
                      Crowley County
## 8
          Colorado
                                                           moderate
## 9
           Montana
                       Wibaux County
                                                               high
## 10
          Oklahoma
                        Grant County
                                                               high
##
      cases_per_100K_7_day_count_change
## 1
## 2
                                       -1
## 3
                                       -1
## 4
                                       -1
## 5
## 6
                                       -1
## 7
                                       -1
## 8
## 9
                                       -1
## 10
                                       -1
d <- which(duplicated(suppressed[, c(1, 2)]) == T)</pre>
suppressed <- suppressed[-d, ]</pre>
paste(dim(suppressed)[1], "unique counties that have chosen to suppress their own case counts.")
## [1] "2545 unique counties that have chosen to suppress their own case counts."
table_states <- sort(table(suppressed$state_name), decreasing = T) # Amount of counties suppressing dat
table states
##
##
            Texas
                      Puerto Rico
                                          Georgia
                                                         Kentucky
                                                                         Missouri
                              141
##
              217
                                              136
                                                                              104
                                                              119
##
         Virginia
                           Kansas
                                             Iowa
                                                         Nebraska
                                                                        Tennessee
##
                              102
              104
                                               90
                                                               90
                                                                               78
##
          Indiana
                      Mississippi North Carolina
                                                         Illinois
                                                                         Oklahoma
##
               76
                               76
                                               76
                                                               70
##
                     South Dakota
                                        Minnesota
         Arkansas
                                                          Alabama
                                                                         Michigan
##
               68
                                                                               56
##
             Ohio
                        Louisiana
                                          Montana
                                                                         Colorado
                                                    North Dakota
##
               56
                               55
                                                                               49
                                                                          Florida
##
    West Virginia
                            Idaho
                                        Wisconsin South Carolina
##
                               42
                                               41
                                                                               31
##
                                    Pennsylvania
       California
                       New Mexico
                                                      Washington
                                                                          Wyoming
```

```
##
                 26
                                  25
                                                   25
                                                                    25
                                                                                     22
                                                                              Maryland
##
            Alaska
                             Oregon
                                                Utah
                                                               Nevada
##
                 21
                                  21
                                                   16
                                                                    14
                                                                                     10
                                                                                 Maine
##
          New York
                            Arizona
                                      New Hampshire
                                                              Vermont
##
                  7
                                                                                      3
##
            Hawaii
                     Massachusetts
                                          New Jersey
##
                  2
                                   2
```

barplot(head(table_states, 10), col = "red", las = 2, cex.main = 0.75, cex.lab = 0.75, cex.axis = 0.75, main = "Top 10 States with the Highest Amounts of Counties that Suppressed Data", ylab = "Total

Top 10 States with the Highest Amounts of Counties that Suppressed Data

table_tlevel <- prop.table(table(suppressed\$community_transmission_level)[-1])
table_tlevel <- table_tlevel[c(2, 3, 1, 4)]
table_tlevel</pre>

```
##
## low moderate high substantial
## 0.09162407 0.44907589 0.27133307 0.18796697
```

Transmission Level Percentage within Counties that Suppressed Da

Transmission Levels

```
# Now we move onto the actual work
cali clt <- clt %>%
  filter(state_name == "California")
cali_cnd <- cnd %>%
  filter(state == "CA")
cali_cnd[, 6] <- gsub("-", "", cali_cnd[, 6])</pre>
cali_cnd <- cali_cnd %>% arrange(i..submission_date)
head(cali_cnd, 10)
##
      i..submission_date state tot_cases conf_cases prob_cases new_case pnew_case
## 1
              2020-01-22
                                         0
## 2
              2020-01-23
                                         0
                                                     0
                                                                 0
                                                                           0
                                                                                     0
                              CA
                                                                 0
## 3
              2020-01-24
                              CA
                                         0
                                                     0
                                                                           0
                                                                                     0
## 4
              2020-01-25
                              CA
                                         0
                                                     0
                                                                 0
                                                                           0
                                                                                     0
## 5
              2020-01-26
                              CA
                                         0
                                                     0
                                                                 0
                                                                           0
                                                                                     0
                                         0
                                                                 0
## 6
              2020-01-27
                              CA
                                                     0
                                                                           0
                                                                                     0
                                         0
                                                     0
                                                                 0
                                                                           0
                                                                                     0
## 7
              2020-01-28
                              CA
                                         0
                                                     0
                                                                 0
## 8
              2020-01-29
                              CA
                                                                           0
                                                                                     0
## 9
               2020-01-30
                              CA
                                         0
                                                     0
                                                                 0
                                                                           0
                                                                                     0
## 10
              2020-01-31
                                         0
                                                     0
                              CA
      tot_death conf_death prob_death new_death pnew_death
                                                                            created_at
## 1
                         NA
                                                             0 01/24/2020 12:00:00 AM
                                     NA
                                                 0
## 2
              0
                         NA
                                     NA
                                                 0
                                                             0 01/25/2020 12:00:00 AM
## 3
              0
                         NA
                                     NA
                                                 0
                                                            0 01/26/2020 12:00:00 AM
## 4
              0
                         NA
                                     NA
                                                 0
                                                             0 01/27/2020 12:00:00 AM
```

NA

0

0 01/28/2020 12:00:00 AM

0

NA

5

```
## 7
               0
                         NΑ
                                     NΑ
                                                 0
                                                            0 01/30/2020 12:00:00 AM
## 8
                                                            0 01/31/2020 12:00:00 AM
               0
                         NA
                                     NA
                                                 0
## 9
               0
                                                 0
                                                            0 02/01/2020 12:00:00 AM
                         NA
                                     NA
## 10
               0
                         NA
                                                 0
                                                            0 02/02/2020 12:00:00 AM
##
      consent_cases consent_deaths
## 1
              Agree
                          Not agree
## 2
               Agree
                          Not agree
## 3
                          Not agree
              Agree
## 4
               Agree
                          Not agree
## 5
                          Not agree
               Agree
## 6
               Agree
                          Not agree
## 7
                          Not agree
               Agree
## 8
               Agree
                          Not agree
## 9
               Agree
                          Not agree
## 10
               Agree
                          Not agree
cali_clt <- cali_clt[-which(cali_clt$cases_per_100K_7_day_count_change <= 0), ]</pre>
cali_clt <- cali_clt %>% arrange(report_date)
head(cali_clt, 10)
##
                             county_name fips_code report_date
      state_name
      California
## 1
                            Kings County
                                               6031
                                                     2021-08-16
## 2
      California
                        Del Norte County
                                                      2021-08-16
                                                6015
## 3
                                                      2021-08-16
      California
                            Butte County
                                                6007
## 4
     California
                                                6053
                         Monterey County
                                                      2021-08-16
## 5
      California
                         Humboldt County
                                                6023
                                                      2021-08-16
## 6
      California
                          Ventura County
                                                6111
                                                      2021-08-16
      California
## 7
                                                6109
                                                      2021-08-16
                         Tuolumne County
      California San Luis Obispo County
                                                6079
                                                      2021-08-16
## 9
      California
                             Inyo County
                                               6027
                                                      2021-08-16
## 10 California
                           Shasta County
                                                6089
                                                      2021-08-16
##
      cases_per_100K_7_day_count_change
## 1
                                   419.77
## 2
                                   798.22
## 3
                                   218.08
## 4
                                   105.05
## 5
                                   359.99
## 6
                                   158.04
## 7
                                   433.20
## 8
                                   275.51
## 9
                                    60.98
                                   239.34
## 10
##
      percent_test_results_reported_positive_last_7_days
## 1
                                                       8.36
## 2
                                                         NA
## 3
                                                      10.05
## 4
                                                       4.83
## 5
                                                      11.19
## 6
                                                       6.96
## 7
                                                       8.52
## 8
                                                       7.79
## 9
                                                         NA
## 10
                                                       8.45
```

6

0

NA

NA

0

0 01/29/2020 12:00:00 AM

```
##
      community_transmission_level
## 1
                              high
## 2
                              high
## 3
                              high
## 4
                              high
## 5
                              high
## 6
                              high
## 7
                              high
## 8
                              high
## 9
                       substantial
## 10
                              high
# Due to the strangeness of cali_clt's variable, particularly with
# cases_per_100k_7_day_count_change, we'll only be using this data set to see
# the community transmission levels of counties in California that have recorded their
# cases and see how that looks like.
t_clt <- table(cali_clt$community_transmission_level)[c(2, 3, 1, 4)]
barplot(t_clt, col = c("green", "yellow", "orange", "red"),
        xlab = "Transmission Levels", ylab = "Percentage",
       main = "Transmission Levels in California Counties since Aug. 16, 2021")
```

Transmission Levels in California Counties since Aug. 16, 2021

The Forecast

California Weekly Case Counts since Jan. 2020


```
## Series: ts_weekly_cases
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
##
           ar1
                     ar2
                            ma1
                                    ma2
                                             mean
##
         1.1786 -0.4057 0.3842 0.4145 74065.31
## s.e. 0.1419 0.1331 0.1404 0.0980 26832.47
##
## sigma^2 = 1.582e+09: log likelihood = -1536.34
## AIC=3084.68 AICc=3085.37 BIC=3101.79
## Training set error measures:
                    ME
                            RMSE
                                     MAE MPE MAPE
                                                       MASE
                                                                   ACF1
## Training set 247.139 38985.66 18747.92 -Inf Inf 0.261641 0.007890735
# Forecast the number of points required
data_forecast <- forecast(arima_model, 10)</pre>
print(data_forecast)
            Point Forecast
                                         Hi 80
                                                    Lo 95
                               Lo 80
                                                             Hi 95
## 2022.511
                 33311.130 -17656.38 84278.64 -44636.95 111259.2
## 2022.530
                 4174.278 -90389.62 98738.18 -140448.73 148797.3
## 2022.549
                 8223.508 -125346.81 141793.83 -196054.67 212501.7
                 24815.750 -130301.61 179933.11 -212415.79 262047.3
## 2022.568
## 2022.588
                 42728.914 -121746.77 207204.60 -208814.94 294272.8
## 2022.607
                 57110.681 -110537.91 224759.27 -199285.71 313507.1
                 66794.457 -101623.05 235211.97 -190777.90 324366.8
## 2022.626
## 2022.645
                 72373.690 -96142.89 240890.27 -185350.18 330097.6
## 2022.665
                75021.072 -93495.75 243537.90 -182703.17 332745.3
## 2022.684
                75878.011 -92650.73 244406.75 -181864.46 333620.5
# Plot the forecast data.
plot(data_forecast, xlab = 'Week', ylab = 'Cases', ylim = c(0, 8e+05))
```

Forecasts from ARIMA(2,0,2) with non-zero mean


```
# Looks like there will be a bit more cases in the near future
# So is our forecast accurate? Not really, no forecast is 100% accurate, but we want
# to see if ARIMA can at least capture a trend, and to do that, we'll see if it
# predicts the peak around December 2021 and January 2022.
cw <- county_weekly[-c((dim(county_weekly[1]) - 24):dim(county_weekly)[1]), ]</pre>
## Warning in (dim(county_weekly[1]) - 24):dim(county_weekly)[1]: numerical
## expression has 2 elements: only the first used
ts_weekly_cases2 <- ts(cw[,2], start = decimal_date(ymd('2020-01-19')),</pre>
                      frequency = 52)
arima_model2 <- auto.arima(ts_weekly_cases2)</pre>
summary(arima_model2)
## Series: ts_weekly_cases2
## ARIMA(0,0,5) with non-zero mean
##
## Coefficients:
##
            ma1
                    ma2
                            ma3
                                    ma4
                                             ma5
                                                      mean
         1.8773 2.1871 1.6453 0.9026 0.2411
                                                  70769.80
## s.e. 0.1083 0.1957 0.2290 0.2077 0.1069
                                                 20632.93
## sigma^2 = 781573086: log likelihood = -1199.75
```

Forecasts from ARIMA(0,0,5) with non-zero mean

While the values aren't the same, the pattern is correct for the trend we
see in rising covid cases in January 2022. Like previously mentioned, you
can never have a model that 100% accurately predict the future but it can sure
try to pick up the patterns at the very least.