MTL101:: Tutorial-3:: Linear Algebra

Notation: $\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}, \mathcal{P}_n := \{ f \in F[x] : degf < n \}$

(1) Find a basis of the row space of the following matrices:

$$\left(\begin{array}{cccc} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array}\right), \quad \left(\begin{array}{cccc} 1 & 0 & 2 & 5 \\ 0 & 3 & 1 & 1 \\ 3 & 1 & 0 & 1 \end{array}\right)^t.$$

- (2) For $i \in \{1, 2, ..., n\}$, define $p_i : \mathbb{F}^n \to \mathbb{F}$ by $p_i(x_1, x_2, ..., x_n) = x_i$ (the i-th projection).
 - (a) Show that it is a linear transformation.
 - (b) If $T: \mathbb{F}^n \to \mathbb{F}$ is a linear transformation then it is an \mathbb{F} -linear combination of the projections, that is, $T = a_1p_1 + a_2p_2 \dots + a_np_n$ for $a_1, \dots a_n \in \mathbb{F}$.
 - (c) Further, show that $S: \mathbb{F}^m \to \mathbb{F}^n$ is a linear transformation if and only if for each $i \in \{1, 2, \dots n\}$, the composition $pi \circ S: \mathbb{F}^m \to \mathbb{F}$ is a linear transformation.
 - (d) If $S: \mathbb{F}^m \to \mathbb{F}^n$ is a linear transformation then $S(x_1, x_2, \dots x_m)$ = $(y_1, y_2, \dots y_n)$ where $y_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{im}x_m$ for $a_{ij} \in \mathbb{F}$ with $(1 \le i \le n, 1 \le j \le m)$.
- (3) Find the rank and nullity of the following linear transformations. Also write a basis of the range space in each case.
 - (a) $T: \mathbb{F}^3 \to \mathbb{F}^3$ defined by T(x, y, z) = (x + y + z, x y + z, x + z).
 - (b) Assume that $0 \le m \le n$. $T: \mathbb{F}^n \to \mathbb{F}^m$ defined by $T(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n)$.
- (4) Write the matrix representations of the linear operators with respect to the ordered basis B.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ where $T(x, y) = (x, y), \mathcal{B} = \{(1, 1), (1, -1)\}$
 - (b) $\mathcal{D}: \mathcal{P}_{n+1} \to \mathcal{P}_{n+1}$ such that $D(a_0 + a_1 x + \ldots + a_n x^n)$ = $a_1 + 2a_2 x + \ldots + na_n x^{n-1}, \mathcal{B} = \{1, x, \ldots, x^n\}.$

(c)
$$T: M_2(\mathcal{F}) \to M_2(\mathcal{F}), T\begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x+w & z \\ z+w & x \end{pmatrix},$$

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

- (5) Suppose dimV = dimW < 1 and $T: V \to W$ is a linear transformation. Show that the following statements are equivalent
 - (i) T is an isomorphism.
 - (ii) T is injective (i.e., one to one).
 - (iii) kerT = 0.
 - (iv) T is surjective (i.e., onto).
- (6) Suppose m > n. Justify the following statements:
 - (a) There is no one to one (injective) \mathbb{R} -linear transformation from \mathbb{R}^m to \mathbb{R}^n .
 - (b) There is no onto (surjective) \mathbb{R} -linear tranformation from \mathbb{R}^n to \mathbb{R}^m .
- (7) Find the eigenvalues, eigenvectors and dimension of eigen-spaces of the following operators.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ with T(x; y) = (x + y, x),
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ with T(x; y) = (y, x),
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ with T(x; y) = (y, -x)
 - (d) $T: \mathbb{C}^2(\mathbb{C}) \to \mathbb{C}^2(\mathbb{C})$ with T(x; y) = (y, -x).
 - (e) $T: \mathbb{C}^n \to \mathbb{C}^n$ with $T(x_1, x_2, \dots, x_n) = (x_n, x_1, \dots, x_{n-1})$.
 - (f) $T: \mathbb{C}^2 \to \mathbb{C}^2$ with $T(z_1, z_2) = (z_1 2z_2, z_1 + 2z_2)$.
- (8) Find a basis B such that $[T]_B$ is a diagonal matrix in case T is diagonalizable. Find P such that $[T]_B = P[T]_S P^{-1}$ where S is the standard basis in each case.
 - (a) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by T(x,y) = (y, -x).
 - (b) $T: \mathbb{C}^3 \to \mathbb{C}^3$ defined by T(x, y, z) = (5x 6y 6z, -x + 4y + 2z, 3x 6y 4z).

- (c) $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $T(x,y) = (x\cos\theta + y\sin\theta, -x\sin\theta + y\cos\theta)$.
- (9) Characteristic polynomial of a matrix is satisfied by the matrix(Cayley Hamilton). Use it to find(invertibility and) the inverse of the following operators.
 - (a) $(x, y, z) \to (x + y + z, x + z, -x + y)$.
 - (b) $(x, y, z) \to (x, x + 2y, x + 2y + 3z)$.
- (10) Which of the following is an inner product.
 - (a) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + y_1 y_2 + 3$ on \mathbb{R}^2 over \mathbb{R} .
 - (b) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 y_1 y_2 \text{ on } \mathbb{R}^2 \text{ over } \mathbb{R}.$
 - (c) $\langle (x_1, y_1), (x_2, y_2) \rangle = y_1(x_1 + 2x_2) + y_2(2x_1 + 5x_2)$ on \mathbb{R}^2 over \mathbb{R} .
 - (d) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 x_2 + y_1 y_2 \text{ on } \mathbb{C}^2 \text{ over } \mathbb{C}.$
 - (e) $\langle (x_1, y_1), (x_2, y_2) \rangle = x_1 \bar{x_2} y_1 \bar{y_2}$ on \mathbb{C}^2 over \mathbb{C} .
 - (f) If $A, B \in \mathbb{M}_n(C)$ define $\langle A, B \rangle = Trace(A\bar{B})$.
 - (g) Suppose C[0,1] is the space of continuous complex valued functions on the interval [0,1] and for $f,g\in C[0,1], \langle f,g\rangle:=\int_0^1 f(t)\overline{g(t)}\,dt$.
- (11) Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2(\mathbb{R})$ is such that a > 0 and $det(A) = ad b^2 > 0$. Show that $\langle X, Y \rangle = X^t A Y$ is an inner product on \mathbb{R}^2 .
- (12) Suppose V is an inner product space. Define $||v|| = \sqrt{\langle v, v \rangle}$. Show the following statements.
 - (a) ||v|| = 0 if and only if v = 0.
 - (b) For $a \in F$, ||av|| = |a|||v||.
 - (c) $||u + v|| \le ||u|| + ||v||$.
 - (d) $|||v|| ||w||| \le ||v w||$.
 - (e) $\langle u, v \rangle = 0$ then $||u + v||^2 = ||u||^2 + ||v||^2$.
- (13) Use standard inner product on \mathbb{R}^2 over \mathbb{R} to prove the following statement: "A parallelogram is a rhombus if and only if its diagonals are perpendicular to each other."

- (14) Find with respect to the standard inner product of \mathbb{R}^3 , an orthonormal basis containing (1, 1, 1).
- (15) Find an orthonormal basis of $\mathcal{P}_n = \{f(x) \in \mathbb{R}[x] : \deg f(x) < 3\}$ with respect to the inner product defined by $\langle f, g \rangle := \int_0^1 f(t)g(t) dt$.
- (16) Suppose W is a subspace of the finite dimensional inner product space. Define $W^{\perp} := \{v \in V : \langle w, v \rangle = 0 \text{ for all } w \in W\}$. Show the following statements.
 - (a) W^{\perp} is a subspace of V.
 - (b) $W \cap W^{\perp} = 0$.
 - (c) $V = W \bigoplus W^{\perp}$.
 - (d) $(W^{\perp})^{\perp} = W$.
- (17) Suppose $W = \{(x,y) \in \mathbb{R}^2 : x+y=0\}$. Find the shortest distance of $(a,b) \in \mathbb{R}^2$ from W with respect to (i) the standard inner product, (ii) the inner product defined by $\langle (x_1,y_1), (x_2,y_2) \rangle = 2x_1x_2 + y_1y_2$.