$$\begin{cases} x' = \sigma(y-x) & (L_1) \\ y' = \rho x - y - xz & (L_2) \\ z' = xy - \beta z & (L_3) \end{cases}$$
 (1)

On peut récrire ce systeme de la manière suivante.

$$\frac{\mathrm{d}\vec{u}}{\mathrm{d}t} = \Gamma(\vec{u}), \quad \Gamma : \vec{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mapsto \begin{pmatrix} \sigma(y-x) \\ \rho x - y - xz \\ xy - \beta z \end{pmatrix}$$
 (2)

Remarque : Γ est polynomiale, donc Γ est de classe C^{∞} en particulier elle est C^1 .

Proposition : Les solutions du système de Lorenz sont globales sur \mathbb{R}_+

Demonstration : Γ est C^1 donc elle est localement Lipschitzienne, de plus elle de depend pas directement du temps. D'après le théoreme de Cauchy-Lipschitz, l'équation (1) admet une unique solution maximale de classe C^1 que l'on notera (I,(x,y,z)) avec $I\subset \mathbb{R}_+$ avec $I=]0,T[,\ T\in]0,+\infty]$. Montrons que (I,(x,y,z)) est globale. Dans (1) on s'intéresse à la somme de la x fois première ligne avec y fois la seconde ligne et z fois la troisième ligne.

$$xx' + yy' + zz' = \sigma yx - \sigma x^2 + \rho xy - y^2 - xyz + xyz - \beta z^2$$

Posons $\mathcal{N}:(t)\in\mathbb{R}^3\mapsto x(t)^2+y(t)^2+z(t)^2$ (\mathcal{N} est la norme euclidienne au carré)

$$\Rightarrow \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{N}(t) = (\sigma + \rho)xy - \sigma x^2 - y^2 - \beta z^2$$

$$\leq (\sigma + \rho)xy + \min(1, \sigma, \beta)\mathcal{N}(t)$$

$$\leq (\frac{\sigma + \rho}{2})(x^2 + y^2) + \min(1, \sigma, \beta)\mathcal{N}(t) \qquad (Young)^{1}$$

$$\leq (\frac{\sigma + \rho}{2})(x^2 + y^2 + z^2) + \min(1, \sigma, \beta)\mathcal{N}(t)$$

$$\leq \left[\frac{\sigma + \rho}{2} + \min(1, \sigma, \beta)\right]\mathcal{N}(t)$$

Posons $\eta = \sigma + \rho - 2\min(1, \sigma, \beta)$). On a alors :

$$\forall t \in \mathbb{R}_+, \ \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{N}(t) \le \eta \ \mathcal{N}(t)$$

D'après le lemme de Grönwall il vient :

$$\forall t \in \mathbb{R}_+, \ \mathcal{N}(t) < \mathcal{N}_0 e^{\eta t}, \ \text{avec } \mathcal{N}_0 = \mathcal{N}(0)$$

Donc la norme du vecteur solution n'explose pas en temps fini.

1.
$$\forall p,q \in \mathbb{N}$$
 tels que $\frac{1}{p} + \frac{1}{q} = 1 \Rightarrow \forall a,b \in \mathbb{R}$ $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$

Proposition: Les solution de (1) sont C^{∞}

Demonstration: Par définition de (1) on a que $(x', y', z') = \Gamma(x, y, z)$, or par composition $\Gamma(x, y, z)$ est C^1 donc (x', y', z') l'est aussi ainsi (x, y, z) est C^2 . De la même manière on obtient par récurence immédiate que (x, y, z) est C^{∞}

On cherche maintenant les points stationnaire de (1).

On remarque que (0,0,0) est un point stationnaire, en effet $\Gamma(0,0,0) = 0_{\mathbb{R}^3} \equiv 0$ donc $(\mathbb{R}_+,0)$ est une solution de l'equation differentielle.

On resout alors $\Gamma(x,y,z)=0$ en supposant que $(x,y,z)\neq 0$, il vient :

$$\begin{cases}
\sigma(y-x) &= 0 & (L_1) \\
\rho x - y - xz &= 0 & (L_2) \\
xy - \beta z &= 0 & (L_3)
\end{cases}$$

de (L_1) on obtient que x = y. Dans (L_2) on remplace y par x, il vient alors :

$$(L_2) \Rightarrow \rho x - x - xz = 0 \Rightarrow x(\rho - 1 - z) = 0$$

 $(L_3) \Rightarrow x^2 - \beta z = 0 \Rightarrow z = \frac{x^2}{\beta}$

On obtient ainsi:

$$(L_2) \Rightarrow x(\rho - 1 - \frac{x^2}{\beta}) = 0 \text{ or } x \neq 0$$

 $\Rightarrow x^2 = \beta(1 - \rho)$
Si $\beta(-\rho) \ge 0 \Leftrightarrow \beta \ge 0, \rho \le 1 \text{ ou } \beta \le 0, \rho \ge 1 \text{ alors } :$
 $\Rightarrow x = \sqrt{\beta(1 - \beta)}$

De ces trois équation on obtient que :

$$\Gamma(x,y,z) = 0 \Rightarrow (x,y,z) = (\pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1)$$

On verifie aisément que cette relation est une équivalence, en ramplacant les valeurs obtenue de x,y et z dans $\Gamma(x,y,z)$

Remarque : Si $\rho = 0$ alors il n'y a qu'un seul équilibre

On se propose d'étudier la stabilité des points stationnaires. Pour cela on s'intéresse à la linéarisé de (1), donné par :

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \mathcal{D}_{\Gamma}(x_s, y_s, z_s) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

avec (x_s,y_s,z_s) les coordonnées des points stationnaire, $\mathcal{D}_{\Gamma}(x,y,z)$ la differentielle de Γ donné par :

$$\mathcal{D}_{\Gamma}(x,y,z) = \begin{pmatrix} \sigma & \sigma & 0\\ \rho - z & -1 & -x\\ y & x & -\beta \end{pmatrix}$$

On étudie premièrement l'équilibre autour de $0_{\mathbb{R}^3}$: L'équation ainsi obtnue est :

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -\sigma & \sigma & 0 \\ \rho & -1 & 0 \\ 0 & 0 & -\beta \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 (3)

Autrement dit on obtient :

$$\begin{cases} x' = \sigma(y - x) \\ y' = \rho x - y \\ z' = \beta z \end{cases}$$
 (4)

On se propose de caractériser l'équilibre $0_{\mathbb{R}^3}$.

Rappel: Théoreme:

Soient $f \in C^2(U; E)$ et $v \in U$ tel que f(v) = 0. Si $\max\{\Re(\lambda); \lambda \in \operatorname{Sp}(\mathcal{D}_f(v))\}$ est atteint pour une valeur propre de $\mathcal{D}_f(v)$ de partie réelle strictement positive. Alors v est un point d'équilibre instable pour l'équation u' = f(u)

Calculons le polynome caractéristique de la differentielle de Γ en $0_{\mathbb{R}^3}$, on notera se polynome χ .

$$\chi(\lambda) = \det(\lambda \operatorname{Id} - \mathcal{D}_{\Gamma}(0, 0, 0)) = (\lambda - \beta)(\lambda^2 + \lambda(\sigma + 1) + \sigma - \rho\sigma)$$

Remarque : β est toujours racine de χ

Posons $P: \lambda \in \mathbb{R} \mapsto \lambda^2 + \lambda(\sigma + 1) + \sigma - \rho\sigma$, donc $\chi(\lambda) = (\lambda - \beta)P(\lambda)$, on calcule le deteterminant de P:

$$\Delta = (\sigma+1)^2 - 4(\sigma-\sigma\rho)) = (\sigma-1)^2 + 4\sigma\rho$$

On obtient alors un autre polynome. On étudie son signe et on différencie les cas suivant :

Cas 1 : Si
$$(\rho, \sigma) = (0, 1)$$
 :

Alors $\chi_A(x) = (x - \beta)(x + 1)^2$, donc d'après le théoreme, si β est strictement positif 0 est un point d'équilibre instable pour (1)

Cas 2 : Si
$$(\rho, \sigma) = (1, -1)$$
 :

Alors $\chi_A(x) = (x - \beta)x^2$, donc d'après le théoreme, si β est strictement positif 0 est un point d'équilibre instable pour (1)

Cas 3 : Si
$$\rho \in]0,1[,\sigma \in \mathbb{R} :$$

 $\Delta > (\sigma - 1)^2 > 0$ donc P a deux racines réelles, que l'on note :

$$x_{\pm} = \frac{-(\sigma - 1) \pm \sqrt{(\sigma - 1)^2 + 4\sigma\rho}}{2}$$

Regardons le signe des racines. $x_+ < -(\sigma - 1) + \sqrt{(\sigma + 1)^2} \le 0$, de même pour x_- , on a, $x_- < -\sigma + 1 - |\sigma - 1| \le 0$. De plus si β est strictement négatif, toutes les racines sont strictement négative donc 0 est un point d'équilibre asymptotiquement stable pour (1).

Cas 4 : Si $\rho > 1$ et $\sigma \ge 0$:

Dans ce cas on a $\Delta > 0$, on retrouve la même expression des racines que précédemment x_{\pm} . On trouve que $2x_{+} > 1 - \sigma + |\sigma + 1| \ge 0$, donc $x_{+} > 0$, pour x_{-} on a, $2x_{-} < 1 - \sigma - |\sigma + 1| \le 0$, donc $x_{-} < 0$, dans ce cas 0 est un équilibre instable pour (1).

Cas 5 : Si $\rho < 0$ et $\sigma \le 0$:

Comme dans le cas précédent on trouve $\Delta > 0$ avec cette fois $x_+ < 0$ et $x_- > 0$. On le retrouve en majorant $2x_+$ et $2x_-$ par $\rho = 0$ on majore ainsi x_+ et minore x_- . Donc 0 est un équilbre instable pour (1).

Remarque : Les cas 1,3,4,5 sont des point d'équilibre hyperbolique de (1) en effet, $\overline{\mathrm{Sp}(A)} \cap \overline{\mathrm{Vect}}(i) = \emptyset$