LISTA 3 DE GEOMETRIA ANALÍTICA

1. Dados quatro pontos A, B, C e X tais que $\overrightarrow{AX} = \overrightarrow{mXB}$, exprima \overrightarrow{CX} em função de \overrightarrow{CA} e \overrightarrow{CB} (e m).

Sugestão. Na relação $\overrightarrow{AX} = m\overrightarrow{XB}$ faça aparecer C em ambos os membros.

Į.

ż

- 2. E dado um triângulo ABC e os pontos X, Y, Z tais que $\overrightarrow{AX} = m\overrightarrow{XB}$ $\overrightarrow{BY} = n\overrightarrow{YC}$ $\overrightarrow{CZ} = p\overrightarrow{ZA}$. Exprima \overrightarrow{CX} , \overrightarrow{AY} , \overrightarrow{BZ} em função de \overrightarrow{CA} e \overrightarrow{CB} (e m, n, p).
- Num triângulo ABC é dado X sobre AB tal que $\| \overrightarrow{AX} \| = 2 \| \overrightarrow{XB} \|$ e é dado Y sobre BC tal que $\| \overrightarrow{BY} \| = 3 \| \overrightarrow{YC} \|$. Mostre que as retas CX e AY se cortam.

Sugestão: Use o exercício anterior, achando qual deve ser m e qual deve ser n. Suponha $\overrightarrow{CX} = \lambda \overrightarrow{AY}$ e chegue a um absurdo.

- 4. Num triângulo ABC, sejam X a interseção do lado AB com a bissetriz interna do ângulo AĈB, e, supondo ∥ CA ∥ ≠ ∥ CB ∥, Y a interseção da reta AB com uma das bissetrizes externas do ângulo AĈB(*).
 - a) Os vetores $\frac{\overrightarrow{CA}}{\|\overrightarrow{CA}\|} + \frac{\overrightarrow{CB}}{\|\overrightarrow{CB}\|} e \frac{\overrightarrow{CA}}{\|\overrightarrow{CA}\|} \frac{\overrightarrow{CB}}{\|\overrightarrow{CB}\|}$ são respectivamente paralelos a \overrightarrow{CX} e \overrightarrow{CY} . Dê uma explicação geométrica para isso. No Capítulo 8 (Exercício 3) você dará uma prova analítica.

Prove que
$$\frac{\|\overrightarrow{CA}\|}{\|\overrightarrow{AX}\|} = \frac{\|\overrightarrow{CB}\|}{\|\overrightarrow{BX}\|} e^{\frac{\|\overrightarrow{CA}\|}{\|\overrightarrow{AY}\|}} = \frac{\|\overrightarrow{CB}\|}{\|\overrightarrow{BY}\|}$$

c) Exprima \overrightarrow{CX} , \overrightarrow{CY} , X e Y em função de A, \overrightarrow{CA} e \overrightarrow{CB} .

5. Sendo CX a altura do ΔABC relativa ao vértice C, exprima CX e X em função de A, CA e CB. Sugestão. Se e B não são retos, vale h = || AX || tg = || BX || tg B̂. Conclua daí que (tg Â) AX = (tg B̂) XB, quer e B̂ sejam agudos, quer um deles seja obtuso.

^(*) Existe Y se ||CA|| ≠ ||CB||.

6. Prove que as medianas de um triângulo se encontram num mesmo ponto, que divide cada uma na razão 2:1 a partir do vértice correspondente.

Segestão: Usando o Exercício Resolvido nº 7: seja G o ponto comum às retas AN e BP, e H o ponto comum às retas AN e CM. Existem λ , μ , α e β tais que $G = A + \lambda \overrightarrow{AN} = B + \mu \overrightarrow{BP}$ e $H = C + \alpha \overrightarrow{CM} = A + \beta \overrightarrow{AN}$. Calcule λ , μ , α e β .

- 7. Prove que as alturas de um triângulo se encontram num mesmo ponto. Idem para as bissetrizes internas.
- 8. Demonstre que o segmento que une os pontos médios dos lados não-paralelos de um trapézio é paralelo às bases, e sua medida é a semi-soma das medidas das bases. (Atenção: $não \ \dot{e} \ suficiente$ provar que $\overrightarrow{MN} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{DC})$, mas isso ajuda bastante.)

9. Demonstre que o segmento que une os pontos médios das diagonais de um trapézio é paralelo às bases, e sua medida é a semi-diferença das medidas das bases. (Atenção: não é suficiente provar que MN = 1/2 (AB - DC), mas isso ajuda bastante.)

10. Num triângulo ABC, sejam M, N, P, os pontos médios dos lados AB, BC e AC, respectivamente. Mostre que

$$\overrightarrow{AN} + \overrightarrow{BP} + \overrightarrow{CM} = \overrightarrow{0}$$
.

Sugestão: Exercício Resolvido nº 2.

Dado um triângulo qualquer, mostre que existe outro com lados paralelos e congruentes às medianas do primeiro.

Sugestão: Tome um ponto O qualquer e considere os pontos $X = O + \overrightarrow{AN}$, $Y = X + \overrightarrow{BP}$ e $Z = Y + \overrightarrow{CM}$. Mostre que Z = O e que O, X, Y não são colineares.

12. Sendo ABCDEF um hexágono regular de centro O, prove que

$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = 6 \overrightarrow{AO}$$
.

- Seja OABC um tetraedro, X o ponto da reta BC definido por $\overrightarrow{BX} = \overrightarrow{mBC}$. Exprima \overrightarrow{OX} e \overrightarrow{AX} em função de \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} .
- 14. Seja OABC um tetraedro, X o ponto de encontro das medianas do triângulo ABC (baricentro). Exprima OX em termos de OA, OB, OC.
- Sejam A, B, C, D pontos quaisquer, M o ponto médio de AC e N o de BD. Exprima \overrightarrow{x} em função de \overrightarrow{MN} , sendo $\overrightarrow{x} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$.
- Seja ABCD um quadrilátero, e O um ponto qualquer. Seja P o ponto médio do segmento que une os pontos médios das diagonais AC e BD. Prove que

$$P = O + \frac{1}{4} (\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD})$$

- 17. Dados O, A, B, C, ache G tal que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{O}$ em função de O, $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$, $\overrightarrow{c} = \overrightarrow{OC}$.
- § 18. Sejam A, B e C três pontos quaisquer, A ≠ B. Prove que:

X è um ponto da reta AB \iff $\overrightarrow{CX} = \alpha \overrightarrow{CA} + \beta \overrightarrow{CB}$, com $\alpha + \beta = 1$.

Sugestão: Exercício 1.

•

(19...) Nas condições do Exercício 18, prove que:

X é um ponto do segmento AB $\iff \overrightarrow{CX} = \alpha \overrightarrow{CA} + \beta \overrightarrow{CB}$, com $\alpha > 0$, $\beta > 0$, e $\alpha + \beta = 1$.

20. Sejam A, B e C vértices de um triângulo. Prove que: X é um ponto interior ao triângulo ABC se e somente se $\overrightarrow{CX} = \alpha \overrightarrow{CA} + \beta \overrightarrow{CB}$, com $\alpha > 0$, $\beta > 0$, e $\alpha + \beta < 1$ (um ponto é interior a um triângulo se for interior a alguma ceviana dele).

22. Considere o triângulo ABC, e sejam $\overrightarrow{CA} = \overrightarrow{u}$, $\overrightarrow{CB} = \overrightarrow{v}$, e $\overrightarrow{w} = \overrightarrow{u} - \overrightarrow{2v}$. Calcule α real para que o ponto $X = C + \alpha \overrightarrow{w}$ pertença à reta AB.

- 4-4 Prove que $(A + \vec{u}) \vec{u} = A$.
- **4-5** Prove que $(A \vec{u}) + \vec{v} = A (\vec{u} \vec{v})$.
- **4-6** Prove que $A + \vec{u} = B + \vec{v} \Rightarrow \vec{u} = \overrightarrow{AB} + \vec{v}$.
- **4-7** Determine \overrightarrow{BA} em função de \overrightarrow{u} , sabendo que $A \overrightarrow{u} = B + \overrightarrow{u}$.
- **4-8** Determine a relação entre \vec{u} e \vec{v} , sabendo que, para um dado ponto \vec{A} , $(\vec{A} + \vec{u}) + \vec{v} = \vec{A}$.
- **4-9** Prove que $[A + (\vec{u} + \vec{v})] + \vec{w} = (A + \vec{u}) + (\vec{v} + \vec{w}).$
- **4-10** Dados os pontos A, B e C, determine X, sabendo que $(A + \overrightarrow{AB}) + \overrightarrow{CX} = C + \overrightarrow{CB}$.
- **4-11** Prove que, se $B = A + \overrightarrow{DC}$, então $B = C + \overrightarrow{DA}$.
- 4-12 Dados os pontos distintos $A \in B$, seja $X = A + \alpha \overrightarrow{AB}$. Em cada um dos casos, descreva o conjunto dos valores que α deve tomar para que X percorra todo o conjunto especificado.
 - (a) O segmento AB.

- (b) A semi-reta de origem A que contém B.
- (c) A semi-reta de origem B que contém A.
- (d) A reta AB.
- (e) O segmento CB, que tem A como ponto médio.
- **4-13 Baricentro** dos pontos A_1 , A_2 , A_3 é, por definição, o ponto G que verifica $\overrightarrow{GA_1} + \overrightarrow{GA_2} + \overrightarrow{GA_3} = \overrightarrow{0}$. Prove que, dado um ponto O qualquer, $G = O + (\overrightarrow{OA_1} + \overrightarrow{OA_2} + \overrightarrow{OA_3})/3$. Estenda o conceito e o resultado para n pontos. Compare com o Exercício 3-17. Examine o caso particular de dois pontos.

j

- **6-1** Sejam $\vec{u} = \overrightarrow{PA}$, $\vec{v} = \overrightarrow{PB}$, $\vec{w} = \overrightarrow{PC}$. Prove:
 - (a) P, A, $B \in C$ são coplanares $\Leftrightarrow (\vec{u}, \vec{v}, \vec{w})$ é LD
- (b) P, $A \in B$ são colineares $\Leftrightarrow (\vec{u}, \vec{v}) \notin LD$
- 6-2 Prove que, se \vec{u} é um múltiplo escalar de \vec{v} ($\vec{u} = \lambda \vec{v}$), então qualquer seqüência que contém \vec{u} e \vec{v} é LD. Em particular, toda seqüência de vetores que contém o vetor nulo é LD.
- A seqüência $(\vec{u}, \vec{v}, \vec{w})$ é LD. Verifique se são verdadeiras ou falsas as afirmações seguintes (justifique sua resposta).
 - (a) Necessariamente, um dos vetores é nulo.
 - (b) Se $\vec{u} \neq \vec{0}$, então $\vec{v}//\vec{w}$.
 - (c) Se \vec{u} , \vec{v} e \vec{w} não são nulos, então dois deles são paralelos.
 - (d) Existem três planos paralelos e distintos, o primeiro contendo origem e extremidade de um representante de \vec{u} , o segundo contendo origem e extremidade de um representante de \vec{v} e o terceiro contendo origem e extremidade de um representante de \vec{w} .
 - 6-4 Prove que:

(a)
$$(\vec{u}, \vec{v})$$
 é LD $\Rightarrow (\vec{u}, \vec{v}, \vec{w})$ é LD

(b)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é LI $\Rightarrow (\vec{u}, \vec{v})$ é LI

(c)
$$(\vec{u}, \vec{v})$$
 é LD \Leftrightarrow $(\vec{u} + \vec{v}, \vec{u} - \vec{v})$ é LD

6-5 Verdadeiro ou falso? Justifique sua resposta.

(a)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é LD $\Rightarrow (\vec{u}, \vec{v})$ é LD

(b)
$$(\vec{u}, \vec{v})$$
 é LI \Rightarrow $(\vec{u}, \vec{v}, \vec{w})$ é LI

(c) Se
$$\vec{u}$$
, \vec{v} e \vec{w} não são nulos, então $(\vec{u}, \vec{v}, \vec{w})$ é LD \Rightarrow $(2\vec{u}, -\vec{v})$ é LD.

(d)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é Ll $\Rightarrow (\vec{u}, \vec{v})$ é LD

- (e) Se $(\vec{u},\vec{v},\vec{w})$ é LD, então (\vec{u},\vec{v}) tanto pode ser LD como LI.
- (f) Se (\vec{u}, \vec{v}) é LI, então $(\vec{u}, \vec{v}, \vec{w})$ tanto pode ser LD como LI.

Prove, utilizando a Proposição 6-5, que $(\vec{a}, \vec{b}, \vec{c})$ é LD, quaisquer que sejam \vec{u}, \vec{v} e \vec{w} .

$$(a) = 2\vec{u} + 4\vec{v} + \vec{w}$$

$$\vec{b} = -\vec{u} + \vec{v}/2 + 3\vec{w}/4$$

$$\vec{c} = \vec{v} + \vec{w}/2$$

(b)
$$\vec{a} = \vec{u} + 2\vec{v} - \vec{w}$$

$$\vec{b} = 2\vec{u} - 3\vec{v} + \vec{w}$$

$$\vec{c} = 7\vec{v} - 3\vec{w}$$

(c)
$$\vec{a} = \vec{u} - 2\vec{v} + \vec{w}$$

$$\vec{b} = 2\vec{u} + \vec{v} + 3\vec{w}$$

$$\vec{c} = \vec{u} + 8\vec{v} + 3\vec{w}$$

- 6-8 Prove: (\vec{u}, \vec{v}) é LI \Leftrightarrow $(\vec{u} + \vec{v}, \vec{u} \vec{v})$ é LI.
- **6-9** Prove

(a)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é LI \Leftrightarrow $(\vec{u} + \vec{v}, \vec{u} + \vec{w}, \vec{v} + \vec{w})$ é LI

(b)
$$(\vec{u}, \vec{v}, \vec{w})$$
 é LI \Leftrightarrow $(\vec{u} + \vec{v} + \vec{w}, \vec{u} - \vec{v}, \vec{3}\vec{v})$ é LI

- **6-12** Explique por que a proposição anterior é válida também para $n \ge 4$.
- 6-13 Em cada caso, é descrita uma alteração efetuada na tripla LI (u,v,w). Baseando-se na sua intuição, dê um palpite: a sequência obtida após a alteração é também LI? Em seguida, tente provar que seu palpite está correto.
 - (a) Multiplica-se cada um dos três vetores por um escalar lpha.
 - (b) Substitui-se cada um dos três vetores pela soma dos outros dois.
 - (c) Soma-se a cada um dos três vetores um mesmo vetor \vec{t} .
 - (d) Somam-se a \vec{u} , \vec{v} e \vec{w} , respectivamente, os vetores Li \vec{a} , \vec{b} e \vec{c} .
- 6-14 Suponha que $(\vec{u}, \vec{v}, \vec{w})$ seja Ll. Dado \vec{t} , existem $\alpha, \beta \in \gamma$ tais que $\vec{t} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$ (Proposição 6-8). Prove: $(\vec{u} + \vec{t}, \vec{v} + \vec{t}, \vec{w} + \vec{t})$ é Ll $\Leftrightarrow \alpha + \beta + \gamma + 1 \neq 0$.
- 6-15 Prove:
 - (a) $(2\vec{u} + \vec{w}, \vec{u} \vec{v}, \vec{v} + \vec{w})$ é LI \Leftrightarrow $(\vec{u} \vec{w}, \vec{u} + \vec{v}, \vec{u} + \vec{w})$ é LI.
 - (b) $(2\vec{u} + \vec{w}, \vec{u} \vec{v}, \vec{v} + \vec{w})$ é LD $\Leftrightarrow (\vec{u} \vec{w}, \vec{u} + \vec{v}, \vec{u} + \vec{w})$ é LD.

EXERCÍCIOS PROPOSTOS

- 1. Prove que se $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ é LI, então $(\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}, \overrightarrow{u} \overrightarrow{v}, 3\overrightarrow{v})$ também é LI, o mesmo sucedendo com $(\overrightarrow{u} + \overrightarrow{v}, \overrightarrow{u} + \overrightarrow{w}, \overrightarrow{v} + \overrightarrow{w})$.
- Seja $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ LI. Dado \overrightarrow{t} qualquer, sabemos que existem α, β, γ tais que $\overrightarrow{t} = \alpha \overrightarrow{u} + \beta \overrightarrow{v} + \gamma \overrightarrow{w}$ (por quê?). Prove que $(\overrightarrow{u} + \overrightarrow{t}, \overrightarrow{v} + \overrightarrow{t}, \overrightarrow{w} + \overrightarrow{t})$ é LI $\iff \alpha + \beta + \gamma + 1 \neq 0$.
- 3. Prove que (u, v) é LI ⇔ (u + v, u v) é LI. (A implicação ⇒ foi provada no Exercício Resolvido nº 3.)
- 4. Demonstre a Proposição 2 no caso n = 1. Pergunta: por que a demonstração feita no texto não serve neste caso?
- Prove que $(\overrightarrow{u} 2\overrightarrow{v} + \overrightarrow{w}, 2\overrightarrow{u} + \overrightarrow{v} + 3\overrightarrow{w}, \overrightarrow{u} + 8\overrightarrow{v} + 3\overrightarrow{w})$ é LD quaisquer que sejam os vetores $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$.