W12 - Red Black Tree Functions

Due 2 Apr at 23:59

Points 20

Questions 9

Available 27 Mar at 9:00 - 2 Apr at 23:59

Time limit None

Allowed attempts Unlimited

Take the quiz again

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	2 minutes	20 out of 20

(!) Correct answers are hidden.

Score for this attempt: 20 out of 20

Submitted 2 Apr at 12:49

This attempt took 2 minutes.

A Red-Black Tree stores just one bit of extra information compared to a normal BST. True False

Question 2 2 / 2 pts

Which of the three properties does this Red-Black tree violate? (values omitted)

Question 3 3 / 3 pts

Which of the operation will be performed after adding 12 to this Red-Black tree?

- Restructuring
- Rotation
- Recoloring
- No such operation

Question 4

2 / 2 pts

What will be the black depth of the Red Black Tree after **add(7.5)** is performed on it?

- 3
- 4
- 2
- 0 1

Question 5

2 / 2 pts

The **remove** operation could increase the black depth of the red-black tree.

- True
- False

Question 8 2 / 2 pts

The purpose of adding colours to Red-Black trees is to ensure that there are:

O(logn) restructurings for each delete.
O(1) recolorings and O(h) restructurings.
O(h) recolorings and O(1) restructurings.
O(logn) restructurings for each insert.

Why do we need Red-Black trees when we already have self-balancing AVL trees? Red-Black trees are shallower than AVL trees. The height of red-black tree is shorter than that of AVL tree. Red-Black trees require fewer restructurings than AVL trees. Red-Black trees are more rigidly balanced than AVL trees.

Quiz score: 20 out of 20