AR 13

SET-01

Code: 13BS1002

Time: 3 hours

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, APRIL-2014 ENGINEERING MATHEMATICS-II

(Common to CE, ME, CSE and IT)

Max.Marks:70

Answer all questions

PART-A

 $[10 \times 1 = 10M]$

- 1. a) Obtain an interval of unit length which contains a root of the equation $x\log_{10}x-1.2=0$.
 - b) Write the normal equations to fit the straight line y= mx +c to n observations.
 - c) Develop the relation between the Forward difference operator Δ and the differential operator D.
 - d) State convolution theorem in Laplace transforms.
 - e) Compute the first approximation of Picard's method for the initial value problem

$$\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1.$$

- f) Evaluate $\Delta^3[(1-x)(1-2x)(1+3x)]$ (interval of differencing being unity).
- g) Find the differential equation whose general solution is given by z(x, y) = f(x-iy)+g(x+iy) where f and g are arbitrary twice differentiable functions.
- h) If $f(t) = e^{-2t} \sin 4t$, then find L(f'(t)).
- i) Find the complete integral of $pqz = p^4 + p^2qx + q^4 + q^2py$.
- j) Write the one dimensional heat flow equation.

AR 13

SET-01

PART-B

Answer one question from each unit

 $[5 \times 12 = 60M]$

Unit-I

2 a) Use iteration method to find a real root of $f(x) = \cos x - 3x + 1 = 0$, near x = 1 correct to three decimal places.

b) Find a positive root of x^4 -x =10 using Newton-Raphson method.

(6M+6M)

(OR)

3 a) Find an approximate root of the equation $\sin x = 1/x$, that lies between x=1 and x=1.5 (measured in radians). Use bisection method and compute approximations up to 5^{th} stage.

b) Fit the curve of the form $y(x) = a b^x$ to the following data:

(6M+6M)

X	2	3	4	5	6	
у	144.0	172.8	207.4	248.8	298.5	

Unit-II

4 a) From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks:	30-40	40-50	50-60	60-70	70-80
No. of students:	31	42	51	35	31

b) The population of certain village in thousands is given in the following table. By using central forward difference formula, estimate the village population in the year 1936.

(6M+6M)

Year	1901	1911	1921	1931	1941	1951
Population	12	15	20	27	39	52

(OR)

5 a) Using Lagrange's interpolation, calculate the profit in the year 2000 from the following data:

Year:	1997	1999	2001	2002
Profit in lakhs(Rs):	43	65	159	248

b) The velocity v of a particle at distance s from a point on its linear path is given by the following table:

S:(m)	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
V:(m/sec)	16	19	21	22	20	17	13	11	9

Estimate the time taken by the particle to traverse the distance of 20 meters, using Simpson's 1/3 rule. (6M+6M)

Unit-III

- 6) a) Evaluate y(0.2) by Taylor's series method if y(x) satisfies dy/dx = xy+1, y(0)=1.
 - b) Using modified Euler's method, find an approximate value of y when x = 0.2 in steps of 0.1, given that dy/dx = x+y and y=1 when x=0. (6M+6M)

(OR)

7 Apply Runge-Kutta method to find an approximate value of y for x = 0.2 in steps of 0.1, if $dy/dx = x+y^2$, given that y=1, when x=0.

(12M)

Unit-IV

- 8 a) Find the Laplace transform of (cos at- cos bt)/t.
- b) Evaluate the integral by using Laplace transform $\int_{0}^{\infty} te^{-3t} \sin t \, dt.$ (6M+6M)

(OR)

- 9 a) Use convolution theorem, find the inverse Laplace transform of $s^2/(s^2+a^2)(s^2+b^2)$.
- b) Use transforms method to solve $\frac{d^2x}{dt^2} 2\frac{dx}{dt} + x = e^t$ with x = 2, $\frac{dx}{dt} = -1$ at t = 0. (6M+6M)

Unit-V

- 10 a) If $u = f(x^2 + 2yz, y^2 + 2zx)$, prove that $(y^2 zx)\frac{\partial u}{\partial x} + (x^2 yz)\frac{\partial u}{\partial y} + (z^2 xy)\frac{\partial u}{\partial z} = 0$.
 - b) Solve (y+z)p (z+x)q = x-y by Lagrange's multipliers method. (6M+6M)

 (OR)
- 11) a) Solve $z^2(p^2+q^2+1) = a^2$.
 - b) Solve by using method of separation of variables $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0, y) = 8 e^{-3y}$. (6M+6M)

Code: 13HS1003

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech. I Semester Supplementary Examinations, April-2014 ENVIRONMENTAL STUDIES (Common to ECE, EEE)

Time: 3 hours Max Marks: 70

PART - A

Answer all questions

[10X1 = 10M]

- 1. a) World Environment day
 - b) Wangari Maathai
 - c) Sere
 - d) Biomagnification
 - e) Cryo-preservation
 - f) Poaching
 - g) Minamata disease
 - h) Composting
 - i) Carbon footprint
 - j) Ecological pyramid

PART - B

Answer one question from each unit

[5X12 = 60M]

Unit - I

- 2. a) Explain in detail about scope and importance of environmental studies.
 - b) Discuss about sustainable agricultural methods with one example.

[6M + 6M]

(OR)

- 3. a) Write about advantages and disadvantages of dams.
 - b) Discuss any two conflicts over water.

[6M + 6M]

Unit – II

- 4. a) What are detrivores? Explain the function of river ecosystem.
 - b) Write a brief note on value of biodiversity.

[6M + 6M]

(OR)

5. a) Define energy flow and explain about Y-shaped energy flow.

b) Define hotspot and list out advantages and limitations of in-situ and ex-situ conservation of biodiversity. [6M + 6M]

Unit - III

6. a) Define primary pollutant and bring out the effects of air pollution.

b) Explain about control of thermal pollution.

[6M + 6M]

(OR)

7. a) What is C.O.D? Draw flow diagram of wastewater treatment plant.

b) Explain about any case study on nuclear hazards.

[6M + 6M]

Unit - IV

8. a) What is Green house effect? Explain about global warming.

b) Discuss about modern techniques of rain water harvesting.

[6M + 6M]

(OR)

9. a) Write a note on Forest conservation act.

b) What is pH of rain water? Discuss about the part of human being in climate change.

[6M + 6M]

Unit - V

10. a) Explain about the role of I.T. on human health.

b) Write a report on local polluted site.

[6M + 6M]

(OR)

11. a) Discuss about various effects and control of population growth.

b) Write your opinions, thoughts and ideas on "how to create awareness among people about environment and its conservation". [6M + 6M]
