

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»		
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»		

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ по курсу «Моделирование»

«Моделирование системы»

Студент:	<u>ИУ7-73Б</u> (группа)	(подпись, дата)	М. Д. Маслова (И. О. Фамилия)
Преподаватель:		(подпись, дата)	<u>И.В.Рудаков</u> (И.О.Фамилия)

СОДЕРЖАНИЕ

1	Зада	ание .				
2	Teo	ретиче	еская часть			
	2.1	Испол	льзуемые распределения			
		2.1.1	Равномерное распределение			
		2.1.2	Нормальное распределение			
	2.2	Описа	Описание принципов			
		2.2.1	Пошаговый принцип	(
		2.2.2	Событийный принцип	(
3	Пра	ктичес	еская часть			
	3.1	Текст	г программы			
	3 2	Попуц	ченный п езультат	,		

1 Задание

Разработать программное обеспечение, предоставляющее возможность промоделировать систему, состоящую из генератора, буферной памяти и обслуживающего аппарата, пошаговым и событийным принципами. Генератор выдает сообщения по равномерному закону, обслуживающий аппарат обрабатывает их по нормальному закону. С определенной долей вероятности часть обработанных сообщений снова поступают в очередь. Определить размер буферной памяти, при котором не будет потерь сообщений.

2 Теоретическая часть

2.1 Используемые распределения

2.1.1 Равномерное распределение

Случайная величина X имеет *равномерное распределение* на отрезке [a, b], если ее плотность распределения f(x) равна:

$$p(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (2.1)

При этом функция распределения F(x) равна:

$$F(x) = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b; \\ 1, & x > b. \end{cases}$$
 (2.2)

Обозначение: $X \sim R[a, b]$.

2.1.2 Нормальное распределение

Случайная величина X имеет *нормальное распределение* с параметрами m и σ , если ее плотность распределения f(x) равна:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad x \in \mathbb{R}, \sigma > 0.$$
 (2.3)

При этом функция распределения F(x) равна:

$$F(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt.$$
 (2.4)

Обозначение: $X \sim N(m, \sigma^2)$.

2.2 Описание принципов

2.2.1 Пошаговый принцип

Пошаговый принцип или принцип Δt заключается в последовательном анализе состояний всех блоков в момент времени $t+\Delta t$ по заданному состоянию блоков в момент времени t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов. В результате этого анализа принимается решение о том, какие общесистемные события должны имитироваться программой на данный момент времени.

Основной недостаток принципа Δt заключается в значительных затратах вычислительных ресурсов, а при недостаточно малом Δt появляется опасность пропуска отдельных событий в системе, исключающая возможность получения правильных результатов при моделировании.

2.2.2 Событийный принцип

Состояния отдельных устройств изменяется в дискретные моменты времени, совпадающие с моментами поступления сообщений в систему, окончания реализации задания, поэтому моделирование и продвижение текущего времени в системе удобно проводить, используя событийных принцип.

При использовании данного принципа состояние всех блоков имитационной модели анализируется лишь в момент появления какого-либо события. Момент наступления следующего события определяется минимальными значениями из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояний каждого из блока системы.

- 3 Практическая часть
- 3.1 Текст программы
- 3.2 Полученный результат