Understanding GPU performance

How to get peak FLOPS (GPU version)

Kenjiro Taura

Contents

Data Access Performance

Contents

Data Access Performance

Data access performance

• data access performance is important in GPU too

•

Memory organization

• Pascal (P100)

level	line size	capacity	associativity
L1	32B	$24 \mathrm{KB/SM}$?
L2	32B	4MB/device	?
Global Memory		12/16GB	N/A
Shared Memory		64KB (*)	N/A

• Volta (V100)

level	line size	capacity	associativity
L1	32B	32-128 KB/SM (*)	?
L2	32B	6MB/device	?
Global Memory		16GB	N/A
Shared Memory		≤96KB (*)	N/A

*: 128KB is split between L1 and Shared Memory (configurable)

source: https://arxiv.org/abs/1804.06826

Global vs. Shared Memory

- global memory and L1/L2 cache are the ordinary memory that make a hierarchy
 - cudaMalloc returns a global memory
 - accesses to global memory are transparently cached into L1/L2 caches
- shared memory is an explicitly-managed scratch memory
 - latency shorter than L1 (esp. on Pascal)
 - you explicitly move between global and shared memory
 - data shared only within a thread block
 - programming interface is covered shortly

Latency measurement

• the same pointer chasing experiment as we did on CPU

```
for (N times) {
   p = p->next;
}
next pointers
```


Data size vs. latency

Shared memory