

Euler's Method

Interactive Computer Graphics
Professor Eric Shaffer

Flow Fields and Differential Equations

A vector field can be thought of as a field of velocities

Each vector describes velocity at a point...velocity is first derivative of position

Flow of a vector field tells us where a particle ends up

- after a certain time
- given a particular starting point

Requires the solution of an ordinary differential equation (ODE)

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_0^t \vec{v}(\mathbf{x}(u)) du$$

Analytical solution generally does not exist...need to use a numerical method

Euler's Method

- Simple
- Fast
- Inaccurate
- Unstable

But beloved in computer graphics where things just need to look good...in visualization they should probably be accurate as well.

Understanding Error

Two sources of error

$\mathbf{x}_{n+1} = \mathbf{x}_n + h\vec{v}(\mathbf{x}_n, t_n) + O(h^2)$

- 1. Rounding error
 - due to the finite precision of floating-point arithmetic
- 2. Truncation error (or discretization error)
 - e.g. approximating an infinite process with a finite number of steps
- For ODEs truncation error is usually dominant
- The two types error are not independent
- Reducing the step-size will typically reduce truncation error but may increase rounding error

Truncation Error

At kth step

• Global error is the cumulative overall error $e_k = y_k - y(t_k)$

Local error is the error in one step

$$\boldsymbol{\ell}_k = \boldsymbol{y}_k - \boldsymbol{u}_{k-1}(t_k)$$

Truncation Error for Euler's method

• Global error O(h)

• Local error is $O(h^2)$

This is called *first order accurate* of h pth order accurate when $\ell_k = \mathcal{O}(h_k^{p+1})$

1D Example: Euler's Method

Illustration of numerical integration for the equation y'=y, y(0)=1.

y_{n+1}	$=y_n$	+	hf	$(t_n,$	$y_n)$
	_			•	,

n	y_n	t_n	$f(t_n,y_n)$	h	Δy	y_{n+1}
0	1	0	1	1	1	2
1	2	1	2	1	2	4_
2	4	2	4	1	4	8
3	8	3	8	1	8	16

Euler's Method in History

Euler's Method scene in Hidden Figures (2016) https://youtu.be/v-pbGAts_Fg

Used to calculate trajectories by NASA for Project Mercury...apparently

