Sistemas Inmunes Artificiales y Modelos de Redes Neuronales Profundas para la Detección de Anomalías

Adán González Rodríguez Sara Porto Álvarez

Dataset Utilizado

Hemos utilizado el Dataset: NAB, concretamente el

./archive/artificialWithAnomaly/artificialWithAnomaly/art_daily_flatmiddle.csv

artificialWithAnomaly contiene datos generados artificialmente con diversos tipos de anomalías, en este caso se trata de un timeseries con una meseta. Lo usaremos para tratar de detectar anomalías.

Algoritmo de Selección Clonal (CSA) con ventana temporal

Código: Link al código de CSA

- **Imports** de las librerías necesarias
- Método generate_single_timeseries_with_anomalies
- Método load_timeseries_from_csv
- Método plot_timeseries_with_windows
- Clase ClonalSelectionAlS
 - Método init
 - Método _init_population
 - Método affinity
 - Método _evaluate_pop
 - Método _clone_and_mutate
 - Método fit
 - Método _compute_threshold
 - Método predict
 - Método _plot_iteration
 - Método main1
 - Método main2

Algoritmo de Selección Negativa

(NSA) con ventana temporal

Código: Link al código de NSA

- **Imports** de las librerías necesarias
- Método generate_single_timeseries_with_anomalies
- Método load_timeseries_from_csv
- Método plot_timeseries_with_windows
- Clase NegativeSelectionVectors
 - Método init
 - Método _init_detectors
 - Método filter self reactive
 - Método fit
 - Método predict
 - Método _plot_generation
 - Método main1
 - Método main2

Red Neuronal Profunda (DNN) (o con Autoencoder en Keras)

Código: Link al código de DNN

- Imports de las librerías necesarias
- Método generate_single_timeseries_with_anomalies
- Método load_timeseries_from_csv
- Método plot_timeseries_with_windows
- Clase DNNAnomalyDetector
 - Método init
 - Método forward
 - Método fit
 - Método evaluate_accuracy
 - Método predict
 - Método main1
 - Método main2

Problema con los resultados con el dataset

Resultados → **Demás pruebas con dataset sintético**

DNN: CAS: NSA:

Confusion Matrix (Test): [[55 5] [0 0]]				
Classificatio	n Report (Te	est):		
	precision		f1-score	support
Normal	1.00	0.92	0.96	60
Anomaly	0.00	0.00	0.00	0
S.20				
accuracy			0.92	60
macro avg	0.50	0.46	0.48	60
weighted avg	1.00	0.92	0.96	60
	"	,	"	"

[[61]]				
Classification p	Report: recision	recall	f1-score	support
Normal	1.00	1.00	1.00	61
Anomaly	0.00	0.00	0.00	0
accuracy			1.00	61
macro avg	0.50	0.50	0.50	61
weighted avg	1.00	1.00	1.00	61

[[61]]					
Classification Report:					
	precision	recall	f1-score	support	
Normal	1.00	1.00	1.00	61	
Anomaly	0.00	0.00	0.00	0	
accuracy			1.00	61	
macro avg	0.50	0.50	0.50	61	
weighted avg	1.00	1.00	1.00	61	

Comparación entre algoritmos (con el dataset sintético)

```
generate_single_timeseries_with_anomalies(
n points=400.
anomaly_intervals=[(100, 120), (250, 270)],
window size=20.
step=20.
random seed=42
np.random.seed(random seed)
# 1) Build base normal wave
t_axis = np.linspace(0, 4*np.pi, n_points)
base amp = 1.0
wave = base_amp * np.sin(t_axis)
noise = 0.1 * np.random.randn(n points)
T = wave + noise
# 2) Insert anomalies
for (start_idx, end_idx) in anomaly_intervals:
    # triple amplitude + bigger noise
    T[start_idx:end_idx] = 3.0 * base_amp * np.sin(t_axis[start_idx:end_idx])
    T[start idx:end idx] += 0.3 * np.random.randn(end idx - start idx)
# 3) Slice into windows
window_starts = range(0, n_points - window_size + 1, step)
X, y = [], []
for ws in window_starts:
    we = ws + window size
    window_data = T[ws:we]
    # label=1 if overlaps any anomaly interval
    for (a_start, a_end) in anomaly_intervals:
        if not (we <= a start or ws >= a end):
             label = 1
            break
    X.append(window_data)
    y.append(label)
X = np.arrav(X)
y = np.array(y, dtype=int)
return T, X, y, list(window_starts)
```

Métricas de evaluación utilizadas

Matriz de confusión

- Cómo se comportó el modelo al clasificar las instancias
- o TP, FN, FP, TN

Reporte de clasificación

- Precision: De todas las veces que el modelo predijo una clase (Normal o Anomaly), ¿cuántas fueron correctas?
- Recall: De todas las veces que realmente había una clase (Normal o Anomaly), ¿cuántas veces el modelo la detectó correctamente?
- o **F1-Score**: Promedio equilibrado entre Precisión y Recall (útil cuando las clases están desbalanceadas)
- Support: Número de ejemplos reales en cada clase
- Accuracy: Proporción total de predicciones correctas sobre todas las muestras.

Evaluación CAS: Link a más pruebas con CAS

Evaluación NSA: Link a más pruebas con NSA

Confusion Mat [[1 0] [4 0]]	irix (lest):			
Classificatio	n Report:			
	precision	recall	f1-score	support
Normal	0.20	1.00	0.33	1
Anomaly	0.00	0.00	0.00	4
accuracy			0.20	5
macro avg	0.10	0.50	0.17	5
weighted avg	0.04	0.20	0.07	5

Evaluación DNN: Link a más pruebas con DNN


```
Epoch 40/40, Train Loss: 0.0012, Val Acc: 0.2000
Confusion Matrix (Test):
[[0 1]
[3 1]]
Classification Report (Test):
             precision
                         recall f1-score support
     Normal
                  0.00
                            0.00
                                     0.00
    Anomaly
                  0.50
                            0.25
                                     0.33
   accuracy
                                     0.20
  macro avg
                  0.25
                           0.12
                                     0.17
weighted avg
                  0.40
                            0.20
                                     0.27
```

Comparativa final

Limitaciones, problemas de escalabilidad y ventajas

	Principal Limitación	Principal Ventaja	Escalabilidad
CSA	Sensible a la parametrización	Capacidad de adaptación y mejora con el tiempo	Limitada (alto costo computacional con más datos)
NSA	Alta tasa de falsos positivos si no se ajusta bien	No requiere datos etiquetados para entrenar	Limitada (crecimiento exponencial de detectores)
DNN	Necesita grandes volúmenes de datos y poder computacional	Captura patrones complejos y tiene alta precisión	Alta (escalable con paralelización)

Fin