Ι-

I.A -

Soient $i \in \mathbb{N}^*$, $a \in \mathbb{Z}$, on a

$$H_i(a) = \begin{cases} \frac{a \times (a-1) \times \dots \times (a-i+1)}{i!} = \frac{a!}{i!(a-i)!} = \binom{a}{i} & a \ge 0 \\ (-1)^i \frac{(i-1-a) \times (i-2-a) \times \dots \times (-a)}{i!} = (-1)^i \frac{(i-1-a)!}{i!(-1-a)!} = (-1)^i \binom{(i-1-a)}{i} & a < 0 \end{cases}$$

et on a $H_0 = 1$. En tous cas, on a $H_i(a) \in \mathbb{Z}$, on en déduit que $\forall i \in \mathbb{N}, H_i(\mathbb{Z}) \subset \mathbb{Z}$

I.B -

soit $i \in \mathbb{N}^*$, on a

$$deg(H_i) = deg(\frac{a \times (a-1) \times \dots \times (a-i+1)}{i!}) = i$$

et $deg(H_0) = 0$

On a alors $\forall i \in \mathbb{N}$, $deg(H_i) = i$. D'après le cours, on a donc $(H_i)_{i \in \mathbb{N}}$ est une base de $\mathbb{K}[X]$

I.C -

Soient $(P,Q) \in (\mathbb{C}[X])^2$, $\lambda \in \mathbb{C}$, alors

$$\Delta(\lambda P + Q) = (\lambda P + Q)(X + 1) - (\lambda P + Q)(X)$$

$$= \lambda P(X + 1) + Q(X + 1) - \lambda P(X) - Q(X)$$

$$= \lambda (P(X + 1) - P(X)) + (Q(X + 1) - Q(X))$$

$$= \lambda \Delta(P) + \Delta(Q)$$

alors Δ est une application linéaire

I.D -

Soit $(n, i) \in \mathbb{N}^2$, montrer que

$$\Delta^{n}(H_{i}) = \begin{cases} 0 & i < n \\ 1 & i = n \\ \frac{X \times (X-1) \times \dots \times (X-i+(n+1))}{(i-n)!} & i > n \end{cases}$$

par récurrence sur n

- \blacktriangleright initialisation : soit n=0, c'est le même que la définition de H_i
- \blacktriangleright hérédité : supposons que le résultat est vrai au rang n, pour le rang n+1
 - Si i = n + 1, alors i > n, $\Delta^n(H_i) = \frac{X \times (X 1) \times \dots \times (X i + (n + 1))}{(i n)!} = X$, donc $\Delta^{n+1}(H_i) = \Delta(\Delta^n(H_i)) = (X + 1) X = 1$
 - Si i < n+1, alors $i \le n$, donc $\Delta^n(H_i)$ est un polynôme constant. On a $\Delta^{n+1}(H_i) = \Delta(\Delta^n(H_i)) = 0$

• Si i > n + 1, alors i > n, donc

$$\Delta^{n+1}(H_i) = \Delta(\Delta^n(H_i))$$

$$= \frac{(X+1) \times X \times \dots \times (X-i+(n+2))}{(i-n)!} - \frac{X \times (X-1) \times \dots \times (X-i+(n+1))}{(i-n)!}$$

$$= \frac{X \times \dots \times (X-i+(n+2))}{(i-n)!} ((X+1) - (X-i+(n+1)))$$

$$= \frac{X \times \dots \times (X-i+(n+2))}{(i-n-1)!}$$

Le résultat est encore vrai au rang n+1

On en déduit

$$\Delta^{n}(H_{i}) = \begin{cases} 0 & i < n \\ \frac{X \times (X-1) \times \dots \times (X-i+(n+1))}{(i-n)!} = \boxed{H_{i-n}} & i \ge n \end{cases}$$

Car la famille $(H_i)_{i\in\mathbb{N}}$ est une base de $\mathbb{C}[X]$, soit $P\in\mathbb{C}[X]$ de degré m>=0, il s'écrit comme $P=\sum_{k=0}^m a_k H_k$, avec les $a_i\in\mathbb{C}$.

On a $\forall n \in [0, m]$, $\Delta^n(P) = a_n + \sum_{k=n+1}^m a_k H_k$, donc $\Delta^n(P)(0) = a_n + \sum_{k=n+1}^m a_k H_k(0) = a_n$ On a donc les coordonnées de P dans cette base est $(P(0), \Delta(P)(0), \dots, \Delta^m(P)(0))$

I.E -

Supposons que $m \in \mathbb{N}, P = \sum_{i=0}^{m} a_i H_i$

- ▶ sens indirect : soient $(a_i)_{i \in \llbracket 0,m \rrbracket}$ entiers, soit $a \in \mathbb{Z}$, car $\forall i \in \llbracket 0,m \rrbracket$, $H_i(a) \in \mathbb{Z}$, donc $\forall i \in \llbracket 0,m \rrbracket$, $a_iH_i(a) \in \mathbb{Z}$, donc $P(a) \in \mathbb{Z}$. Donc $P(\mathbb{Z}) \subset \mathbb{Z}$
- ▶ sens direct : supposons que $\forall a \in \mathbb{Z}, P(a) \in \mathbb{Z}$ Montrer que $\forall m \in [0, m], (a_i)_{i \in [0, n]} \in \mathbb{Z}$ » par récurrence
 - $n = 0 : P(0) = \sum_{i=0}^{m} a_i H_i(0) = a_0 \in \mathbb{Z}$
 - Supposons que $(a_i)_{i \in \llbracket 0,n \rrbracket} \in \mathbb{Z}$, on a

$$P - \sum_{k=0}^{n} a_k H_k = \sum_{k=n+1}^{m} a_k H_k$$

Donc

$$\Delta^{n+1}\left(P - \sum_{k=0}^{n} a_k H_k\right) = \Delta^{n+1}\left(\sum_{k=n+1}^{m} a_k H_k\right)$$

Donc $a_{n+1} = \Delta^{n+1}(P)(0) \in \mathbb{Z}$

Finalement, on a $P(\mathbb{Z}) \in \mathbb{Z}$ si et seulement si les coordonnées sont entières

I.F -

On a $\Delta(X+1)=1=\Delta(X+2)$, donc Δ n'est pas injective Pour $P=\sum_{i=0}^{m+1}b_iX^i\in\mathbb{C}[X]$, on va chercher $Q=\sum_{i=0}^{m+1}a_iX^i\in\mathbb{C}[X]$ tel que Q=P(X+1)-P(X)

On a

$$P(X+1) - P(X) = \sum_{i=0}^{m+1} b_i (X+1)^i - \sum_{i=0}^{m+1} b_i X^i$$

$$= \sum_{i=0}^{m+1} b_i \sum_{j=0}^i \binom{i}{j} X^j - \sum_{i=0}^{m+1} b_i X^i$$

$$= \sum_{i=0}^{m+1} b_i \left(-X^i + \sum_{j=0}^i \binom{i}{j} X^j \right)$$

$$= \sum_{i=0}^{m+1} b_i \left(\sum_{j=0}^{i-1} \binom{i}{j} X^j \right)$$

$$= \sum_{i=0}^m b_{i+1} \left(\sum_{j=0}^i \binom{i+1}{j} X^j \right)$$

$$= \sum_{i=0}^m \left(\sum_{i=j+1}^{m+1} \binom{i}{j} b_i \right) X^j$$

en faisant une sommation des paquets (de somme finie a termes positifs) Alors pour tout $P = \sum_{i=0}^{m+1} b_i X^i \in \mathbb{C}[X]$, il existe $Q = \sum_{j=0}^m a_j X^j \in \mathbb{C}[X]$, avec $\forall j \in [0,m]$, $a_j = \sum_{i=j+1}^{m+1} {i \choose j} b_i$ tel que Q = P(X+1) - P(X), donc Δ est surjective