Exploration Data Analysis (EDA) - Diagnostic Analysis

Product Analysis

Which product had the highest sales, and what factors do you believe contributed to its success?

1. Overview

In today's data-driven marketplace, identifying top-performing products is vital for shaping profitable business strategies. This project dives into Exploratory Data Analysis (EDA) with a focus on Product Analysis, aimed at uncovering which products are driving the most sales and the underlying factors contributing to their success. Leveraging purchase data, we aggregated and visualized product performance to provide actionable insights for inventory optimization, marketing alignment, and revenue growth.

2. Goal

- To analyze product-level sales data and identify the best-selling products.
- To visualize product performance for clearer insights into customer preferences.
- To explore possible factors contributing to the success of high-performing products.
- To support data-driven decisions in product management and marketing strategies.
- To uncover patterns and anomalies that may inform future forecasting and planning.

3. Business Challenge

- Difficulty in identifying which products are driving the highest customer demand.
- Lack of clarity on whether sales are concentrated among a few products or spread evenly.
- Uncertainty about the effectiveness of current marketing and inventory strategies.
- The need for visual and data-backed evidence to support product-related business decisions.

4. Methodology

 Perform Exploratory Data Analysis (EDA) on sales data, focusing on product-level performance.

- Aggregate units purchased by product using groupby to rank products by total sales volume.
- Use bar charts to visualize and compare product sales in a clear and digestible format.
- Investigate potential contributing factors such as pricing, availability, marketing, and customer preference.
- Present insights in a business-friendly format to guide product planning and strategic decisions.

Import necessary libraries

```
In [9]: import pandas as pd
import os
import glob
```

Combine the sales data from all months into a single consolidated CSV file

```
In [11]: folder_path = r"C:\Monthly_Sales"

# Retrieve all CSV files from the folder using glob
all_files = glob.glob(os.path.join(folder_path, "*.csv"))

# All CSV files combined as one DataFrame
all_data = pd.concat([pd.read_csv(file) for file in all_files], ignore_index=True)

# Merged DataFrame saved into a new CSV
output_file = os.path.join(folder_path, "all_data.csv")
all_data.to_csv(output_file, index=False)

print("All files integrated into:", output_file)
```

All files integrated into: C:\Monthly_Sales\all_data.csv

Load the updated DataFrame

```
In [13]: # Skip Blank Rows if present in the dataset

df = pd.read_csv(r'C:\Monthly_Sales\all_data.csv', skip_blank_lines=True)
    df.head()
```

Out[13]:	[13]: Order ID		Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
	0	175667	iPhone	1	700.0	04/24/24 19:12	135 Meadow St, Boston, MA 02215
	1	175668	AA Batteries (4- pack)	1	5.84	04/20/24 13:45	592 4th St, San Francisco, CA 94016
	2	175669	AA Batteries (4- pack)	1	5.84	04/28/24 09:17	632 Park St, Dallas, TX 75001
	3	175670	AA Batteries (4- pack)	2	5.84	04/23/24 14:06	131 Pine St, San Francisco, CA 94016
	4	175671	Samsung Odyssey Monitor	1	409.99	04/23/24 12:13	836 Forest St, Boston, MA 02215

```
In [14]: df.shape
```

Out[14]: (8799083, 6)

Data Cleaning Process

Thoroughly clean and standardize the data to eliminate errors, ensure consistency, and build a solid foundation for meaningful insights.

Find and remove rows with NaN values

```
In [17]: df.isna().sum()
Out[17]: Order ID
                              22848
                              22848
          Product Name
          Units Purchased
                              22850
         Unit Price
                              22850
         Order Date
                              22851
          Delivery Address
                              22852
          dtype: int64
In [18]: | # If Nan value is present in Order ID and Unit Purchased, it will be impossible to
         # Therefore, drop Nan values in Order ID and Units Purchased.
         df.dropna(subset=['Order ID', 'Units Purchased'], inplace=True)
In [19]: # Check if Nan value is present
         df.isna().sum()
```

```
Out[19]: Order ID 0
Product Name 0
Units Purchased 0
Unit Price 0
Order Date 1
Delivery Address 2
dtype: int64
```

In [20]: # Further check if any NaN values or blank rows are present
blank_rows_na = df[df.isnull().any(axis=1)]
blank_rows_na

Out[20]:

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
219522	8 Charging Cable	1	14.95	05/24/24 07:04	852 Hickory St, San Francisco, CA 94016	NaN
300150	6 150766	iPhone	1	7	NaN	NaN

Find and remove rows with duplicate values

```
In [22]: # Find duplicate values
         df.duplicated()
Out[22]: 0
                    False
                    False
         1
         2
                    False
         3
                    False
                    False
         8799078
                     True
         8799079
                    True
         8799080
                     True
         8799081
                     True
         8799082
                     True
         Length: 8776233, dtype: bool
In [23]: # Remove duplicated values
         df.drop_duplicates(inplace = True)
In [24]: # Check again for duplicated values
         df.duplicated()
```

```
Out[24]: 0
                     False
          1
                     False
          2
                     False
          3
                     False
                     False
                      . . .
          172530
                     False
          2195228
                     False
                     False
          3001506
          6370083
                     False
          6403571
                     False
          Length: 171546, dtype: bool
```

Verify and fix incorrect data types in the dataset

```
In [26]: # check for data types
         df.dtypes
Out[26]: Order ID
                             object
         Product Name
                             object
         Units Purchased
                             object
         Unit Price
                             object
         Order Date
                             object
                             object
         Delivery Address
         dtype: object
         Fix incorrect data types
In [28]:
         df['Order Date'] = pd.to_datetime(df['Order Date'], format='%m/%d/%y %H:%M', errors
         df['Units Purchased'] = pd. to_numeric(df['Units Purchased'], errors='coerce')
         df['Unit Price'] = pd. to_numeric(df['Unit Price'], errors='coerce')
In [29]: # Verify the presence of NaN values remaining in the columns as a result of using e
         df.isna().sum()
Out[29]: Order ID
                              0
         Product Name
         Units Purchased
                             1
         Unit Price
         Order Date
                             3
         Delivery Address
         dtype: int64
In [30]: df = df.dropna()
```

Change the data type to optimize memory usage (Optional)

```
In [32]: df['Order ID'] = pd.to_numeric(df['Order ID'], downcast='integer')
    df['Product Name'] = df['Product Name'].astype('category')
```

```
df['Units Purchased'] = df['Units Purchased']. astype('int8')
df['Unit Price'] = pd.to_numeric(df['Unit Price'], downcast='float')
df['Delivery Address'] = df['Delivery Address'].astype('category')
```

Expand the dataset with supplementary columns

Add month column

```
In [35]: df['Month'] = df['Order Date'].dt.month
df
```

Out[35]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4
	•••							
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10
	6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8

171543 rows × 7 columns

```
In [36]: df['Month Name'] = df['Order Date'].dt.strftime('%B')
df
```

Out[36]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ₁
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	
	•••								
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	Septer
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	Septer
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	Septer
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	Oct

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ₁
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	Αι

171543 rows × 8 columns

Add week day column

```
In [38]: df['Day of Week'] = df['Order Date'].dt.strftime('%a')
df
```

Out[38]:

t[38]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M. N
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	
	•••								
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	Septer
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	Septer
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	Septer
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	Oct

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M. N
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	Αι

171543 rows × 9 columns

Add hour column

```
In [40]: df['Hour'] = df['Order Date'].dt.hour
df
```

Out[40]:

9]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ^c N
_	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	
	•••	•••							
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	Septer
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	Septer
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	Septer
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	Oct

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	M ₁
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	Αι

171543 rows × 10 columns

Add city column

```
In [42]: def city(address):
    return address.split(",")[1].strip(" ")

def state_abbrev(address):
    return address.split(",")[2].split(" ")[1]

df['City'] = df['Delivery Address'].apply(lambda x: f"{city(x)} ({state_abbrev(x)})
    df.head()
```

Out[42]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Day of Week
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	April	Wed
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	April	Sat
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	April	Sun
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	April	Tue
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	April	Tue

Organize Data by Order Date Chronologically and Reindex

```
In [44]: df = df.sort_values(by = 'Order Date')
df
```

Out[44]:

•		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name
	78282	160155	Alienware Monitor	1	400.989990	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January
	68761	151041	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January
	64303	146765	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January
	63092	145617	Amana Washing Machine	1	600.000000	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January
	74502	156535	iPhone	1	700.000000	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January
	•••	•••			•••		•••		•••
	44457	297748	iPhone	1	700.000000	2025-01-01 02:37:00	258 Forest St, Los Angeles, CA 90001	1	January
	30663	284606	Bose SoundSport Headphones	1	99.989998	2025-01-01 02:50:00	211 Johnson St, Boston, MA 02215	1	January
	49246	302330	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:03:00	665 6th St, San Francisco, CA 94016	1	January
	30770	284711	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:19:00	250 8th St, San Francisco, CA 94016	1	January

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name
50619	303626	USB-C Charging Cable	3	11.950000	2025-01-01 04:43:00	651 Lakeview St, Dallas, TX 75001	1	January

171543 rows × 11 columns

Out[45]:

]:	Order Produc		Product Name	Units Purchased Unit Price		Order Date	Delivery Address	Month	Mont Nam
-	0	160155	Alienware Monitor	1	400.989990	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	Januar
	1	151041	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	Januar
	2	146765	AAA Batteries (4- pack)	1	4.990000	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	Januar
	3	145617	Amana Washing Machine	1	600.000000	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	Januar
	4	156535	iPhone	1	700.000000	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	Januar
	•••								
	171538	297748	iPhone	1	700.000000	2025-01-01 02:37:00	258 Forest St, Los Angeles, CA 90001	1	Januar
	171539	284606	Bose SoundSport Headphones	1	99.989998	2025-01-01 02:50:00	211 Johnson St, Boston, MA 02215	1	Januar
	171540	302330	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:03:00	665 6th St, San Francisco, CA 94016	1	Januar
	171541	284711	AA Batteries (4-pack)	1	5.840000	2025-01-01 03:19:00	250 8th St, San Francisco, CA 94016	1	Januar

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Mont Nam
171542	303626	USB-C Charging Cable	3	11.950000	2025-01-01 04:43:00	651 Lakeview St, Dallas, TX 75001	1	Januar

171543 rows × 11 columns

Add Total Sales column

```
In [47]: df['Total Sales'] = df['Units Purchased'] * df['Unit Price']
df.head()
```

Out[47]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Day of Week
	0	160155	Alienware Monitor	1	400.98999	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January	Mon
	1	151041	AAA Batteries (4-pack)	1	4.99000	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January	Mon
	2	146765	AAA Batteries (4-pack)	1	4.99000	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January	Mon
	3	145617	Amana Washing Machine	1	600.00000	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January	Mon
	4	156535	iPhone	1	700.00000	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January	Mon

Format Unit Price and Total Sales to 2 decimal places

```
In [49]: df['Unit Price'] = df['Unit Price'].apply(lambda x: "%.2f" % x)
```

Out

t[50]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Month Name	Day of Week	Нс
	0	160155	Alienware Monitor	1	400.99	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	January	Mon	
	1	151041	AAA Batteries (4-pack)	1	4.99	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	January	Mon	
	2	146765	AAA Batteries (4-pack)	1	4.99	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	January	Mon	
	3	145617	Amana Washing Machine	1	600.00	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	January	Mon	
	4	156535	iPhone	1	700.00	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	January	Mon	

Format Unit Price and Total Sales to numeric

```
In [52]: df['Unit Price'] = pd.to_numeric(df['Unit Price'])
df['Total Sales'] = pd.to_numeric(df['Total Sales'])
```

Sum of Units Purchased per Product

```
Out[54]: Product Name
          AAA Batteries (4-pack)
                                         23970
          AA Batteries (4-pack)
                                         22830
          USB-C Charging Cable
                                         21927
          Lightning Charging Cable
                                         21442
          Galaxy buds Headphones
                                         17384
          Apple Airpods Headphones
                                         14445
          Bose SoundSport Headphones
                                         12386
          LG UltraGear Monitor
                                          7096
          iPhone
                                          6294
          Dell UltraSharp Monitor
                                          5820
          Samsung Odyssey Monitor
                                          5741
          Google Phone
                                          5174
          Flatscreen TV
                                          4422
                                          4344
          Macbook Pro Laptop
          Alienware Monitor
                                          3861
          Dell Laptop
                                          3798
          Samsung Galaxy Phone
                                          1859
          Amana Dryer
                                           622
          Amana Washing Machine
                                           611
          Name: Units Purchased, dtype: int64
```

Plot Units Sold per Product

```
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

product_df = df.groupby('Product Name', observed=False)['Units Purchased'].sum()

product_df.plot(kind='bar', title="Units Sold per Product")

plt.xlabel('Product Name')
plt.ylabel('Unit Sold')
plt.ylabel('Unit Sold')
plt.xticks(rotation='vertical', size=8)
plt.grid(linewidth=0.1)

plt.savefig(r"C:/Users/DELL/OneDrive - COVENANT UNIVERSITY/Desktop/1/Product Analys
plt.show()
```


Dual Axis Plot of Units Purchased and Unit Price per Product

```
In [58]: product_df = df.groupby('Product Name', observed=False)['Units Purchased'].sum()
    price_df = df.groupby('Product Name', observed=False)['Unit Price'].mean()

# first axis and figure size
    fig, ax1 = plt.subplots(figsize=(10, 7))

# Bar chart and first y-axis for Units Purchased
    ax1.bar(product_df.index, product_df, color='lightblue', label='Units Purchased')
    ax1.set_xlabel('Product Name')
    ax1.set_ylabel('Units Purchased', color='b')
    ax1.tick_params(axis='x', rotation=90) # Rotate x-axis labels for better visibilit

# Line chart and the second y-axis for Unit Price
    ax2 = ax1.twinx()
```

```
ax2.plot(price_df.index, price_df, color='r', label='Unit Price', marker='o')
ax2.set_ylabel('Unit Price in USD ($)', color='r')

plt.grid(linewidth=0.1)
fig.suptitle('Units Purchased and Unit Price per Product', fontsize=13)

plt.tight_layout()
plt.savefig(r"C:/Users/DELL/OneDrive - COVENANT UNIVERSITY/Desktop/1/Product Analys
plt.show()
```


Key Insights

1. Top-Selling Product:

AAA Batteries (4-pack) lead the pack with 23,970 units sold, closely followed by AA Batteries (4-pack) and USB-C Charging Cables.

2. Accessory Dominance:

The top 5 products are all low-cost, high-demand accessories (batteries, cables, headphones) rather than high-ticket items like phones or laptops.

3. Price vs. Volume Trend:

Low-cost items significantly outperform premium electronics in volume sold. For example, AAA Batteries outsold the iPhone nearly 4x and the MacBook Pro 5.5x.

4. Brand Appeal in Audio:

In the headphone category, Galaxy Buds outperform Apple Airpods and Bose SoundSport, suggesting strong market preference or price-value advantage.

5. Low Sales in High-Value Appliances:

Items like Amana Dryers and Washing Machines had the lowest sales, indicating either limited demand, higher price sensitivity, or fewer purchase occasions.

Strategic Recommendations

- 1. Double Down on Fast-Moving Accessories: Increase marketing and shelf space for topperforming accessories like batteries and charging cables. Consider bundling them with other products for upselling.
- Leverage Volume Leaders for Cross-Selling: Use high-demand products (e.g., AAA/AA batteries) as entry points to recommend related items (e.g., remotes, toys, small electronics) during checkout.
- 3. Promote Mid-Tier Headphones More Aggressively: Galaxy Buds and Apple Airpods are clear leaders in the audio space. Offer discounts, bundles, or financing to push premium brands like Bose or increase sales further.
- 4. Review Pricing & Promotion of High-Ticket Items: Laptops, phones, and monitors show relatively lower sales. Reassess marketing efforts, financing options, or promotional campaigns to boost their visibility and affordability.
- 5. Investigate Appliance Sales Channels: The extremely low sales for dryers and washing machines may indicate channel mismatch (e.g., people buying these elsewhere), poor visibility, or low stock levels, worth further diagnostic analysis.