

Introduction to Raspberry Pi & Python Programming

# https://tinyurl.com/designWk2







## Session Details

- Date: 25 September 2019
- Instructor Names: Pei Yuan & Yuxuan & Jason
- Objectives:
  - Understand what is RPi
  - Exposure to the Linux command
  - Exposure to Python programming
  - Build a simple quiz program with Python





# Session Logistics

- What you need:
  - Pre-configured RPi
  - Laptop
    - Installed and working VNC viewer
    - Installed and working Python SDK and IDE





# Program outline for 3 weeks

- Raspberry Pi setup and connection
- Linux basic commands in Terminal
- Python programming
- Basic Google Firebase credentials setup
- Python codes to update Firebase data via cloud
- Python Flask web micro-framework [bonus]
- App development using MIT app inventor [bonus]





# Internet of things (IOT)

#### What is Internet of Things?



The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.

https://en.wikipedia.org/wiki/Internet\_of\_things



#### Picture Source:

http://www.tildatech.co.za/InternetOfThings.aspx

#### Internet of things (IOT) is everywhere!!!





#### Picture Source:

https://twitter.com/fi sher85m/status/926 360908900773889

#### **Evolution of Internet of Things**





Picture Source: https://en.wikipedia.org/wiki/Internet\_of\_things



The Raspberry Pi as a Single board computer with mutiple I/O to interface with external electronics components







# Supported OS on Raspberry Pi















































# Raspberry Projects















#### RPi 3 Model B+

The Raspberry Pi 3 Model B+ is the final revision in the Raspberry Pi 3 range.

- Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB LPDDR2 SDRAM
- 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BI F
- Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
- Extended 40-pin GPIO header
- Full-size HDMI
- 4 USB 2.0 ports
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- 4-pole stereo output and composite video port
- Micro SD port for loading your operating system and storing data
- 5V/2.5A DC power input
- Power-over-Ethernet (PoE) support (requires separate PoE HAT)

#### We will use the Raspberry Pi (RPi) 3 Model B+ for these 3 weeks





# RPi vs Arduino



| Raspberry Pi                                                                          | Arduino                                                   |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Microcomputer                                                                         | Microcontroller                                           |
| Needs an operating system                                                             | Does not need an operating system                         |
| Complicated                                                                           | Simple                                                    |
| Video out, Camera, Ethernet ports, Wifi, Bluetooth, USB, I2C, SPI, UART etc. on board | USB only for power and serial in/out, I2C, SPI, UART      |
| Best for general computer                                                             | Best for small tasks that constantly repeat               |
| Capable of performing a huge range of tasks                                           | Optimised for sensing and controlling the world around it |
| Best for more advanced makers                                                         | Best for beginners                                        |
| Programmed in many languages, including C/C++, Python, Ruby                           | Programmed in C/C++                                       |
| Relatively high power consumption                                                     | Relatively low power consumption                          |



## RPi vs Arduino



#### **Arduino Uno Rev3**

#### Raspberry Pi 3 Model B+

The Raspberry Pi 3 Model B+ is the final revision in the Raspberry Pi 3 range.

- Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB LPDDR2 SDRAM
- 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
- Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
- Extended 40-pin GPIO header
- Full-size HDMI
- 4 USB 2.0 ports
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- 4-pole stereo output and composite video port
- Micro SD port for loading your operating system and storing data
- 5V/2.5A DC power input
- Power-over-Ethernet (PoE) support (requires separate PoE HAT)

| Microcontroller             | ATmega328P                                            |
|-----------------------------|-------------------------------------------------------|
| Operating Voltage           | 5V                                                    |
| Input Voltage (recommended) | 7-12V                                                 |
| Input Voltage (limit)       | 6-20V                                                 |
| Digital I/O Pins            | 14 (of which 6 provide PWM output)                    |
| PWM Digital I/O Pins        | 6                                                     |
| Analog Input Pins           | 6                                                     |
| DC Current per I/O Pin      | 20 mA                                                 |
| DC Current for 3.3V Pin     | 50 mA                                                 |
| Flash Memory                | 32 KB (ATmega328P) of which 0.5 KB used by bootloader |
| SRAM                        | 2 KB (ATmega328P)                                     |
| EEPROM                      | 1 KB (ATmega328P)                                     |
| Clock Speed                 | 16 MHz                                                |
| LED_BUILTIN                 | 13                                                    |
| Length                      | 68.6 mm                                               |
| Width                       | 53.4 mm                                               |
| Weight                      | 25 g                                                  |
|                             |                                                       |

# RPi vs Samsung Galaxy S10

#### Raspberry Pi 3 Model B+

The Raspberry Pi 3 Model B+ is the final revision in the Raspberry Pi 3 range.

- Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB LPDDR2 SDRAM
- 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
- Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
- Extended 40-pin GPIO header
- Full-size HDMI
- 4 USB 2.0 ports
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- 4-pole stereo output and composite video port
- Micro SD port for loading your operating system and storing data
- 5V/2.5A DC power input
- Power-over-Ethernet (PoE) support (requires separate PoE HAT)

#### **Samsung Galaxy S10**

| NETWORK  | Technology | GSM / CDMA / HSPA / EVDO / LTE                                                             | EXPAND ▼  |
|----------|------------|--------------------------------------------------------------------------------------------|-----------|
| LAUNCH   | Announced  | 2019, February                                                                             |           |
|          | Status     | Available. Released 2019, March                                                            |           |
| BODY     | Dimensions | 149.9 x 70.4 x 7.8 mm (5.90 x 2.77 x 0.31 in)                                              |           |
|          | Weight     | 157 g (5.54 oz)                                                                            |           |
|          | Build      | Back glass (Gorilla Glass 5), aluminum frame                                               |           |
|          | SIM        | Single SIM (Nano-SIM) or Hybrid Dual SIM (Nano-SIM, dual stand-by)                         |           |
|          |            | Samsung Pay (Visa, MasterCard certified)                                                   |           |
|          |            | IP68 dust/water proof (up to 1.5m for 30 mins)                                             |           |
| DISPLAY  | Туре       | Dynamic AMOLED capacitive touchscreen, 16M colors                                          |           |
|          | Size       | 6.1 inches, 93.2 cm <sup>2</sup> (~88.3% screen-to-body ratio)                             |           |
|          | Resolution | 1440 x 3040 pixels, 19:9 ratio (~550 ppi density)                                          |           |
|          | Protection | Corning Gorilla Glass 6                                                                    |           |
|          |            | HDR10+                                                                                     |           |
|          |            | Always-on display                                                                          |           |
| PLATFORM | os         | Android 9.0 (Pie); One UI                                                                  |           |
|          | Chipset    | Exynos 9820 (8 nm) - EMEA/LATAM                                                            |           |
|          |            | Qualcomm SDM855 Snapdragon 855 (7 nm) - USA/China                                          |           |
|          | CPU        | Octa-core (2x2.73 GHz Mongoose M4 & 2x2.31 GHz Cortex-A75 & 4x1.9 Cortex-A55) - EMEA/LATAM | 5 GHz     |
|          |            | Octa-core (1x2.84 GHz Kryo 485 & 3x2.42 GHz Kryo 485 & 4x1.78 GHz - USA/China              | Kryo 485) |
|          | GPU        | Mali-G76 MP12 - EMEA/LATAM                                                                 |           |
|          |            | Adreno 640 - USA/China                                                                     |           |
| MEMORY   | Card slot  | microSD, up to 1 TB (uses shared SIM slot) - dual SIM model only                           |           |
|          | Internal   | 128GB 8GB RAM, 512GB 8GB RAM                                                               |           |











# Trival of the day

Raspberry Pi has better computing power than the Apollo 11's Apollo Guidance Computer (AGC)!

- 1) Clock speed 2Mhz
- 2) RAM 4KB

https://en.wikipedia.org/wiki/Apollo\_Guidance\_Computer





## Linux commands



The following slides are contributed by IEEE HKN previous workshop





## sudo

\$ sudo <command>

- super user do
- Elevated privilege



#### nano

\$ nano <file>

Text editor

ls

\$ Is [directory]

Lists down directories/files

#### grep

\$ grep <word> <file1> <file2> See also " | " Used to search for text in files. Similar to CTRL + F function cd

\$ cd <directory>

Changes directory

## mkdir/rmdir

\$ mkdir <name>

- Makes a directory
- Removes a directory

## touch

\$ touch <name>

- Creates a blank file

## man/help

\$ man < command>

\$ help <command>

• Difference:

help is for bash commands only

man is for a lot more others

## whereis

\$ whereis <namespace>

Used to find stuff

# pwd \$ pwd

Prints current working directory

## apt

\$ apt <command>

- Advanced Packaging Tool (APT)
- SUPER useful
- Also: pip, npm.

#### watch

\$ watch [options] [command]

 Execute a program periodically, showing output fullscreen



# Python Basics







## Useful resources:

- https://www.w3schools.com/python/
- https://docs.python.org/3/tutorial/
- https://open.kattis.com
- https://www.codingame.com/start
- ♦ https://repl.it





# Basic of Basics

# py1.py





# Anything stuck?

- ♦ Google is always there to help you :)
- Ask your peers
- Ask your prof
- Ask your seniors
- ♦ Ask us:) IEEE Family Telegram Group







## Mini Activities

Fun

Design a quiz system that evaluate user's answers and give a final grade.

Your system should contain:

- 1. Input field for user's name
- 2. 5 math questions and input fields for the questions
- 3. Start with 0 mark. Correct is +1 mark. Wrong is -1 mark. Invalid answer will show alert message and start over.





## Mini Activities



#### **Step One:**

Create a folder called "questions". We will put all the questions in there.

The objective is to create multiple functions that handle different parts of this system and in the end combine everything together.





#### Mini Activities



#### Task 1:

Create a python file in the folder, name it as "question1.py"

Define a function called question1(grade). It takes in an argument which is the current grade, and prompt user a summation question. It takes in user's input and evaluate the sum result. It returns the new grade.







#### Task 2:

Create a python file in the folder, name it as "question2.py"

Define a function called question2(grade). It takes in an argument which is the current grade, and prompt user a division question. It takes in user's input and evaluate the division result. It returns the new grade.







#### Task 2:

#### [BONUS]

Use try and except block to do error handling. If user input invalid character, program should print out the error and alert message and return the current grade.





Fun

Task 3:

Create a python file in the folder, name it as "question3.py"

Define a function called question3(grade). It takes in an argument which is the current grade, and prompt user this question: "What is the full name of SUTD?". The program should be able to run even if user does not enter a string. Use Try and Except to ensure the program does not crash when invalid input is entered and function will return the current grade as normal.

[Search on string methods: String.strip() and String.split()]







Create a python file in the folder, name it as "question4.py"

Define a function called question4(grade). It takes in an argument which is the current grade, and prompt user this question: "Give a list of 5 numbers separated by commas that add up to 21". The function will convert the input to a list and evaluate whether the summation of the 5 numbers equal to 21. Use Try and Except to ensure the program does not crash when invalid input is entered and function will return the current grade as normal.



for loop & String.split() is required for this question!



Task 5:



Create a python file in the folder, name it as "question5.py"

Define a function called question5(grade). It takes in an argument which is the current grade. For this exercise, you design whatever question you want.





Task 6:



Go outside of the "questions" folder, create a file called "quiz.py"

We will learn how to import modules that you have created from other folders. Please follow the demonstration!





Task 7: Handling repeat when invalid input is given



#### Use a combination of while loop and if-else:

set a status variable to be true while status:

new grade generated by new question function if new grade is different old grade:

old grade = new grade

change status to false to break out of the loop

else: (same as old grade)

do nothing, loop continue





#### **Bonus Task:**



Realize your code is very long-winded and the code blocks kind of follow a similar pattern?

Do you know function can actually have other function as argument?

You can create another function that handles this similar pattern, the function argument will be a **list** of question functions you created. Use **for loop** to loop through each question. Use **conditional statement** to decide whether to repeat the question or go on to the next one! You may want to use **List.index(element)** method to check whether you have reached the last question!







Example codes given in the "example" folder





## Next workshop:

- Write a python programme on RPi to control LED using GPIO pins.
- 2. Buttons as GPIO input and LEDs as GPIO output.
- 3. Mini-activity:
  - a. Manual Traffic light control mini project
  - b. Ultrasonic sensor with RPi: distance alert system



## End of workshop

Thank you all for coming!



## Maker Extravaganza

Date: 18 October 2019, Friday

**Location**: Singapore Science Centre **Time**: 1pm (Meet at campus centre)

We will be providing transport from school to the science centre

Registration link: <a href="http://bit.ly/makerfaire2019">http://bit.ly/makerfaire2019</a>

Find out more:

https://sciencecentresg.shinyapps.io/sgme2019/ https://makerfaire.com/makerfairehistory/





## Join IEEE Exco to go beyond your boundary!

Approach any of the exco members to find out more about what we do

# Want to become an IEEE member?

Approach any of the exco members to find out more!

@ieeesutd\_bot on Telegram is here to help you:)



# Join the AC-DC converter Project!

Talk to our Project Director Dhruv to find out more about this exciting project!



The End



# Raspberry Pi















