3.2.2. Резонанс напряжений.

Фитэль Алёна, Попеску Полина Б06-103 $15 \ {\rm сентябр} \ 2024 \ {\rm г}.$

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

1 Описание работы

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рисунке. Синусоидальный сигнал от генератора GFG8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке – последовательном колебательном контуре, изображенном на рисунке в виде эквивалентной схемы.

2 Ход работы

- 1. Подготавливаем установку к работе и включаем приборы.
- 2. Выставляем на входе контура напряжение $E=100~{\rm MB},$ в течении всей работы поддерживая его постоянным.
- 3. Добиваемся получения двух отцентрованных синусоид на осциллографе. Убеждаемся, что одна из синусоид при изменении частоты f генератора меняет амплитуду относительно начала координа, в то время как амплитуда другой не меняется с погрешностью не более 1%.
- 4. Для контуров с семью различными ёмкостями, меняя их с помощью переключателя на блоке, измеряем резонансные частоты f_{0n} и напряжения $U_C(f_{0n})$. Регистрируйем также напряжения $E(f_{0n})$, игнорируя отклонения в пределах относительной погрешности 1

5. Для контуров ёмкостями $C_1=25$ нФ и $C_1=57.2$ нФ снимаем амплитудно-частотные характеристики $U_C(f)$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E.

$C_1 = 25, 0 \; { m H}\Phi$						$C_4=57,2$ н Φ						
\overline{n}	f , к Γ ц	σ_f , к Γ ц	A, B	σ_A , B	n	f, кГц	σ_f , к Γ ц	A, B	σ_A , B			
1	29,8	0,1	0,40	0,01	1	17	0,1	0,13	0,01			
2	27,3	0,1	0,20	0,01	2	17,6	0,1	0,18	0,01			
3	28	0,1	0,22	0,01	3	18,4	0,1	0,22	0,01			
4	28,5	0,1	0,25	0,01	4	18,7	0,1	0,24	0,01			
5	29	0,1	0,28	0,01	5	19	0,1	0,26	0,01			
6	29,5	0,1	0,32	0,01	6	19,3	0,1	0,30	0,01			
7	30,5	0,1	0,48	0,01	7	19,5	0,1	0,32	0,01			
8	30,9	0,1	0,60	0,01	8	19,7	0,1	0,34	0,01			
9	31,3	0,1	0,90	0,01	9	20	0,1	0,4	0,01			
10	31,5	0,1	1,00	0,01	10	20,2	0,1	0,48	0,01			
11	31,7	0,1	1,10	0,01	11	20,3	0,1	0,52	0,01			
12	31,9	0,1	1,30	0,01	12	20,5	0,1	0,6	0,01			
13	32	0,1	1,40	0,01	13	20,7	0,1	0,78	0,01			
14	32,2	0,1	1,35	0,01	14	20,8	0,1	0,83	0,01			
15	32,4	0,1	$1,\!25$	0,01	15	21,1	0,1	1,00	0,01			
16	32,8	0,1	0,90	0,01	16	21,2	0,1	1,00	0,01			
17	33,1	0,1	0,75	0,01	17	21,4	0,1	1,00	0,01			
18	33,6	0,1	0,60	0,01	18	21,6	0,1	0,80	0,01			
19	34,1	0,1	0,40	0,01	19	21,8	0,1	0,72	0,01			
20	34,6	0,1	$0,\!35$	0,01	20	21,9	0,1	0,64	0,01			
21	35,1	0,1	$0,\!24$	0,01	21	22,1	0,1	0,54	0,01			
22	35,4	0,1	0,24	0,01	22	22,6	0,1	0,4	0,01			
23	36,6	0,1	0,18	0,01	23	22,9	0,1	0,32	0,01			
24	37,3	0,1	0,16	0,01	24	23,2	0,1	0,28	0,01			
25	32,5	0,1	1,30	0,01	25	23,6	0,1	0,24	0,01			
26	32,9	0,1	0,85	0,01	26	23,8	0,1	0,22	0,01			
27	33	0,1	0,80	0,01	27	24,3	0,1	0,18	0,01			
					28	24,6	0,1	0,16	0,01			
					29	24,9	0,1	0,15	0,01			

6. Для тех же двух контуров снимите фазово-частотные характеристики $\varphi_C(f)$ (16-17 точек в сумме по обе стороны от резонанса) при том же напряжении E.

($C_1 = 25, 0$	Фн ($C_4 = 57, 2$ н Φ				
\overline{n}	f , к Γ ц	$-\varphi/\pi$	n	f , к Γ ц	$-\varphi/\pi$		
1	29,6	0,03	1	18,8	0,06		
2	29,8	0,04	2	19	0,08		
3	30	0,05	3	19,5	0,08		
4	30,4	0,05	4	19,6	0,11		
5	30,8	0,1	5	19,8	0,15		
6	31,2	0,14	6	20,1	0,17		
7	31,5	0,21	7	20,3	0,2		
8	31,6	0,29	8	20,5	0,22		
9	31,9	0,4	9	20,7	0,27		
10	32	0,49	10	20,8	0,36		
11	32,3	0,6	11	21	0,41		
12	32,5	0,71	12	21,1	0,45		
13	32,8	0,8	13	21,2	0,48		
14	33	0,86	14	21,3	0,57		
15	33,2	0,87	15	21,5	0,71		
16	33,5	0,88	16	21,7	0,81		
17	33,8	0,94	17	22	0,86		
18	34	0,98	18	22,3	0,93		
19	34,4	1	19	22,4	1		
20	32,6	0,74	20	22,6	1,11		
21	32,4	0,66	21	22,8	1		
			22	23,1	0,98		

3 Обработка данных

1. Результаты измерений представим в таблице.

n	C_n , н Φ	$f_{0n},$ к Γ ц	U_C , B	<i>E</i> , B	L , мк Γ н	Q	ρ, Οм	R_{Σ} , Om	$R_{S_{\max}},$ Om	R_L , OM	I, MA
1	25,0	32,0	2,57	0,1	991,43	25.2	199,14	12,55	0,20	8,90	0,0080
2	33,2	28,0	2,14	0,1	975,10	22.5	171,38	10,80	0,17	7,18	0,0093
3	47,5	23,3	1,98	0,1	984,23	19.6	143,95	9,07	0,14	5,47	0,0110
4	57,2	21,2	1,83	0,1	987,27	17.8	131,38	8,28	0,13	4,70	0,0121
5	67,4	19,6	1,70	0,1	980,24	16.9	120,60	7,60	0,12	4,03	0,0132
6	82,1	17,7	1,57	0,1	986,77	15.6	109,63	6,91	0,11	3,35	0,0145
7	99,6	16,2	1,44	0,1	970,99	14.3	98,74	6,22	0,10	2,67	0,0161
Среднее значение				982,29	_				5,18	_	
Среднеквадратичная погрешность среднего значения				2,74	_				0,83	_	
Коэффициент Стьюденса											
t_{nlpha} для				2,34			_		2,34	_	
$n = 7, \ \alpha = 0,95$											

2. По данным из пункта 5 построим на одном графике амплитудо-частотные характеристики в координатах $f, U_C(f)$.

3. По тем же данным построим на одном графике амплитудо-частотные характеристики в безразмерных координатах $x=f/f_{0n}, y=U_C(x)/U_C(1)$. По ширине резонансных кривых на уровне 0.707 определим добротности Q соответствующих контуров: $Q_1=25.4\pm0.3$ и $Q_2=18.1\pm0.4$.

4. По данным пункта 6 построим на одном графике фазово-частотные характеристики в координатах $x=f/f_{0n}, y=\varphi/\pi$ для выбранных контуров. По этим характеристикам определим добротности контуров одним из двух способов: по расстоянию между точками по оси x, в которых y меняется от -0.25 до -0.75, равному 1/Q, или по формуле Q=0.5 $d\varphi_C(x)/dx$ при x=0: $Q_1=25\pm 1$ и $Q_2=17\pm 2$.

5. По данным таблицы построим зависимость $R_L(f_{0n})$, на график нанесём прямую $\langle R_L \rangle$.

4 Вывод

Проведено исследование колебаний напряжения в последовательном контуре. Несколькими методами была определена добротность контуров. Результаты в пределах погрешностей согласуются. Построен график $R_L(f_0)$. Видно, что сопротивление меняется практически линейно. Можно предположить, что изменения связаны с потерями на перемагничивание сердечника катушки.