Introduction to SDEs, Spring 2021

Test 1

Apr 29th, 13:00-15:35

Name(Print):	
Student No:	
Signature:	
There are 10 problems, 10 points each, 100 points in total.	
Show details to get full credits. Make your justifications clear and direct.	

Leave the following table blank

Score Table				
Problem	Points	Score		
1	10			
2	10			
3	10			
4	10			
5	10			
6	10			
7	10			
8	10			
9	10			
10	10			
	Total score			

- 1. (1) Write down the definition that X is a random variable;
 - (2) Let X be a random variable with mean μ and variance σ^2 . Prove that for any positive number λ

$$P(\omega; X(\omega) \ge \lambda) \le \frac{E(e^{tX})}{e^{\lambda t}}, \forall t > 0.$$
 (1)

2.	2. (1) Write down the definition that X_t is a martingale or a sub-martingale; (2) Let X_t be a martingale and $\phi(\cdot)$ a smooth convex function. Prove that $\phi(X_t)$ is a sub-martingale.				

- 3. (1) Write down the definition that B_t is a Brownian Motion;
 - (2) Prove that the Geometric Brownian Motion $X_t = e^{W_t}$ is not a martingale, but $e^{-\frac{t}{2}}X_t$ is a martingale.

4. (1) Write down the definition that that $X_n \to X$ in probability; (2) Write down the definition that that $X_n \to X$ almost surely; (3) Write down the definition that that $X_n \to X$ in distribution; (4) What are the connections between these three convergence manners? No proof needed!

5. Consider the following integrated Brownian Motion

$$Z_t := \int_0^t W_s ds.$$

- (1) Write down the definition for this integral;
- (2) Find the distribution of Z_t .

6. Revisit the integrated Brownian motion by choosing a different sample point, say

$$\int_0^t W_s ds = m.s. - \lim_{N \to \infty} \sum_{i=1}^N W_{t_i^*} \Delta t,$$

under equidistant partition.

What is the limit $\lim_{N\to\infty} \sum_{i=1}^N W_{t_i^*} \Delta t$ if we choose any sample point $t_i^* \in (t_i, t_{i+1})$, or $t_i^* = \lambda t_i + (1-\lambda)t_{i+1}$, $\lambda \in (0,1)$, as $\max |\Delta t_i| \to 0^+$.

- 7. (1) Let X_t be a stochastic process. Write down the definition of the quadratic variation of X_t over [0, T];
 - (2) Find the quadratic variation for W_t over [0,T]. Proof of the claim is needed.

8. (1) Write down the definition of a stochastic integral with respect to Brownian Motion

$$I_T := \int_0^T F_t dW_t.$$

(2) Evaluate the integral $\int_0^T W_t dW_t$.

 \cdots continue here if necessary

9. Write down how to interpret the following differential identity

$$d(W_t^3) = 3W_t^2 dW_t + 3W_t dt.$$

No proof is needed at this stage.

10. (1) Write the definition of the Stratonovich integral

$$\int_0^T F_s \circ dW_t.$$

(2) Explain the differences between this integral and the corresponding Itô integral.