Question 1
Correct
P Flag question

You are transporting some boxes through a tunnel, where each box is a parallelepiped, and is characterized by its length, width and height.

The height of the tunnel 41 feet and the width can be assumed to be infinite. A box can be carried through the tunnel only if its height is strictly less than the tunnel's height. Find the volume of each box that can be successfully transported to the other end of the tunnel. Note: Boxes cannot be rotated.

Input Format

The first line contains a single integer n, denoting the number of boxes.

n lines follow with three integers on each separated by single spaces - $length_i$, $width_i$ and $height_i$ which are length, width and height in feet of the i-th box.

Constraints

 $1 \le n \le 100$

1 ≤ length, width, height, ≤ 100

Output Format

For every box from the input which has a height lesser than 41 feet, print its volume in a separate line.

```
Answer: (penalty regime: 0 %)
```

```
#includecstdio.h>
truct nava{
    int lenght,widht,height;
};

int main(){
    int n,v,i=0;
    scanf("%d",%n);
    struct nava S[n];
    for(i=0;i<n;i++){
        scanf("%d %d %d %d",&S[i].lenght,&S[i].height);
    }

truct nava f(n);

for(i=0;i<n;i++){
    scanf("%d %d %d",&S[i].lenght,&S[i].height);
}

for(i=0;i<n;i++){
    if(s[i].height<41){
        v-S[i].lenght*S[i].widht*S[i].height;
        printf("%d\n",v);
}

return 0;
}

return 0;
}</pre>
```

	Input	Expected	Got	
~	4	125	125	~
	5 5 5	89	80	
	1 2 40			
	10 5 41			
	7 2 42			

Question 2

Correct

F Flag question

You are given n triangles, specifically, their sides a_l , b_l and c_l . Print them in the same style but sorted by their areas from the smallest one to the largest one. It is guaranteed that all the areas are different.

The best way to calculate a volume of the triangle with sides a, b and c is Heron's formula:

$$S = \ddot{O} p * (p - a) * (p - b) * (p - c)$$
 where $p = (a + b + c) / 2$.

Input Format

First line of each test file contains a single integer n. n lines follow with a_i , b_i and c_i on each separated by single spaces.

Constraints

 $1 \le n \le 100$ $1 \le a_b b_b c_l \le 70$ $a_l + b_l > c_b a_l + c_l > b_l$ and $b_l + c_l > a_l$

Output Format

Print exactly n lines. On each line print 3 integers separated by single spaces, which are a_l , b_l and c_l of the corresponding triangle.

Answer: (penalty regime: 0 %)

```
1 #includecstdio.h>
    #include(math.h>
 3 •
     struct nava{
         int a,b,c;
 4
 5 };
 6 - int main(){
         int n,i=0,j=0;
scanf("%d",&n);
 7
 8
 9
          struct nava S[n],temp[n];
10
          int p[n],s[n];
         for(i=0;i<n;i++){
scanf("%d %d %d",&S[i].a,&S[i].b,&S[i].c);
p[i]=(S[i].a+S[i].b+S[i].c)/2;
11 .
12
13
          s[i]=p[i]*(p[i]-S[i].a)*(p[i]-S[i].b)*(p[i]-S[i].c);
s[i]-sqrt(s[i]);
14
15
16
17 .
     for(i=0;i<n;i++){
          for(j=i+1;j<n;j++){
18 .
19 •
               if(s[i]>s[j]){
                   temp[i]=S[i];
S[i]=S[j];
20
21
                   S[j]=temp[i];
22
23
               }
24
          )
25
26
     for(i=0;i<n;i++)
    printf("%d %d %d\n",S[i].a,S[i].b,S[i].c);
27
28 return θ;
29 }
```

	Input	Expected	Got	
~	3	3 4 5	3 4 5	~
	7 24 25		5 12 13	
	5 12 13	7 24 25	7 24 25	
	3 4 5		200 - 5000 - 500	

Passed all tests! 🗸

Finish review