目 次

内容

1	Section1_入力層~中間層	2
2		3
	Section3_出力層	

1 Section1_入力層~中間層

ニューラルネットワークの構造(2層)は以下のようになる。

入力層 中間層 出力層

入力層 X0,X1,X2 として、中間層へは W00・X0、W01・X1、W02・X2 を渡す。

入力総和 Z0=W00·X0+W01·X1+W02·X2

入力総和 Z1=W10・X0+W11・X1+W12・X2

入力総和 Z2=W20・X0+W21・X1+W22・X2

行列式より

$$\begin{bmatrix} W00 & W01 & W02 \\ W10 & W11 & W12 \\ W20 & W21 & W22 \end{bmatrix} \begin{bmatrix} X0 \\ X1 \\ X2 \end{bmatrix} = \begin{bmatrix} Z0 \\ Z1 \\ Z2 \end{bmatrix}$$

2 Section2_活性化関数

ニューラルネットワークにおける活性化関数とは、あるニューロンから次のニューロンへと出力する際に、あらゆる入力値を別の数値に変換して出力する関数である。

1) ReLU

関数への入力値が0以下の場合は、出力値が常に0、入力値が0より大きい場合は、出力値が入力値と同じになる。

2) Mish

関数への入力値が0以下の場合は、出力値がほぼ0、入力値が0より大きい場合は、出力値が入力値と同じになる。

3)活性化関数一覧

No	活性化関数	概要		
1	ステップ関数	Y=1(x>0)		
		$0(\mathbf{x} \leq 0)$		
2	恒等関数	Y=x (順伝播)		
		δy/δx=1 (逆伝播)		
3	Bent Idenntity	$y = 1/2(\sqrt{x^2+1-1})+x$		
4	HardShirink	$Y=x(x<-\lambda \text{ or } \lambda < x)$		
		0		
5 SoftShrink $Y=x+\lambda (x<-\lambda)$		Y=x+λ(x<-λ) (順伝播)		
		$x-\lambda (\lambda > x)$		
		0		
		δy/δx=1 (逆伝播)		
		0		
6	Threshold	Y=x (順伝播)		
		0		
		Y=1 (逆伝播)		
		0		
7	シグモイド関数	Y=1/(1+e-x) (順伝播)		
		δ y / δ x = y(1-y) (逆伝播)		
8	HardSigmoid	Y=1		
		0.2x+0.5		
		0		
		$\delta y / \delta x = 0.2$		
		0		
9	logSigmoid	Y = log(1/(1+e-x))		
		$\delta y / \delta x = 1/(1+ex)$		
10 Tanh		Y=tanh(x)=(ex-e-x)/(ex+e-x)		
$\delta y / \delta x = \operatorname{sech} 2(x) = 1$		$\delta y / \delta x = \operatorname{sech} 2(x) = 1/\cosh 2(x) = 4/(ex + e^{-x})2$		
11 tanhSirink Y=x-tanh(x)		Y=x-tanh(x)		
		$\delta y / \delta x = \tanh 2(x)$		

12	Hardtanh	Y=1		
		-1		
		X		
		$\delta y / \delta x = 0$		
		1		
13	ReLU 関数	Y=x(x>0)		
		$0(\mathbf{x} \leq 0)$		
		$\delta y / \delta x = 1(x > 0)$		
		0(x≤0)		
14	ReLU6	$Y=0(x\leq 0)$		
		6(x≥6)		
		X		
		$\delta y / \delta x = 0((x \le 0) \text{ or } (x \ge 6))$		
		1		
15	Leak-ReLU	Y=x(x>0)		
		$0.01x(x \le 0)$		
		$\delta y / \delta x = 1(x > 0)$		
		$0.01(x \le 0)$		
16	ELU	$Y=x \qquad (x \ge 0)$		
		$\alpha \text{ (ex-1) (x<0)}$		
		$\delta y/\delta x=1$		
		α ex		
17	SELU	$Y=\lambda x$		
		$\lambda \alpha \text{ (ex-1)}$		
		$\delta y / \delta x = \lambda$		
		$\lambda \alpha ex$		
18	CELU	Y=x		
		$\alpha \left(\mathbf{e}(\mathbf{x}/\alpha) - 1 \right)$		
		$\delta y/\delta x=1$		
		e(x/α)		
19	ソフトマックス関数	Yi=exi/Σexk		
		$\delta y / \delta x = yi(1-yi) \Sigma yiyj = \Sigma yi(\delta ij-yj)$		
20 Softmin Yi=e-xi/Σe-xk		Yi=e-xi/Σe-xk		
		$\delta y / \delta x = yi(1-yi) + \Sigma yiyj = \Sigma yi(\delta ij-yj)$		
21 Logsoftmax $Yi=log(exi/\Sigma exk)$		$Yi = log(exi/ \Sigma exk)$		
		$\delta y / \delta x = \Sigma (\delta ij - eyj)$		
22 Softplus Y=log(1+ex)=ln(1+ex)		Y = log(1+ex) = ln(1+ex)		
		$\delta y / \delta x = ex/(1+ex) = 1/(1+e-x)$		
23	Softsign	Y=x/(1+ x)		
		$\delta y / \delta x = 1/(1+ x)2$		

24	Swish	$Y=x/(1+e^{-\beta}x)$		
		$\delta y / \delta x = \beta y + (1 - \beta y) / (1 + e - \beta x)$		
25	hardSwish	Y=0		
		X(x+3)/6		
		X		
		$\delta y / \delta x = 0$		
		(2x+3)/6		
		1		
26	ACON			
27	Mish			
28	tanhExp	Y=xtanh(ex)		
		$\delta y / \delta x = \tanh(ex) - xex(\tanh 2(ex) - 1)$		

3 Section3_出力層

出力層では、活性化関数を使用して非線形変換を行う。 出力層の設計

- 1) ニューラルネットワークは分類、回帰の両方に用いられる。
- 2) どちらの問題を解決するかで、活性化関数を変更する必要がある。
- 3)回帰問題では恒等関数を、分類問題ではソフトマックス関数を用いる。
- 4) クラス分類では、出力層のニューロンの数はクラス数

4 Section4_勾配降下法

モデルに対してコストが最小になるようにパラメータを少しづつ変化させて、トレーニングに適合したパラメータを算出するアルゴリズムである。

 $x = x - \eta$ (d f (x) /d x)

1)連鎖律

手法	利用データ	計算時間	メリット	デメリット
バッチ勾配	全てのデータ	大	・解への到達が早い	・メモリの使用量が多い
降下法			・結果が安定	・局所解にはまりやすい
SGD	1つのデータ	小	・メモリの使用量が少ない	・解への到達が遅いことがある
			・オンライン学習が可能	・はづれ値の影響を大きく受け
			・局所解を回避する可能性が	る
			ある	
ミニバッチ勾配	一部のデータ	中	・バッチ勾配降下法と SGD	それぞれのデメリットがある
降下法			のそれぞれのメリットがある	

5 Section5_誤差逆伝播法