ΗΥ-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2010 - 2011

Λύσεις Προόδου

- 1. Για οποιεσδήποτε προτάσεις A και B και σύνολο προτάσεων S του προτασιακού λογισμού δείξτε με τυπικό τρόπο ότι:
- (a) $S \models A \leftrightarrow B$ an kai móng an $S \cup \{A\} \models B$ kai $S \cup \{B\} \models A$

An $S \models A \leftrightarrow B$, tote $S \models A \rightarrow B$ kai $S \models B \rightarrow A$.

Αν επεκτείνουμε το σύνολο S με την πρόταση A, τότε υπάρχουν δύο περιπτώσεις: είτε το νέο σύνολο είναι μη ικανοποιήσιμο (διότι η A αντικρούει κάποια από τις προτάσεις στο S) οπότε από ένα μη ικανοποιήσιμο σύνολο μπορούμε να συμπεράνουμε οποιαδήποτε πρόταση, ή παραμένει ικανοποιήσιμο, οπότε μπορούμε να συμπεράνουμε ό,τι μπορούσαμε και με το S και επιπλέον μπορούμε να συμπεράνουμε και την πρόταση A. Δηλαδή $SU\{A\} \models A \rightarrow B$ και $SU\{A\} \models A$, το οποίο ισοδυναμεί με $SU\{A\} \models A \land (A \rightarrow B)$, που τελικά δίνει $SU\{A\} \models B$.

Με τον ίδιο τρόπο αν επεκτείνουμε το σύνολο S με την πρόταση B, θα έχουμε $S \cup \{B\} \models B \rightarrow A$ και $S \cup \{B\} \models B$, το οποίο ισοδυναμεί με $S \cup \{B\} \models B \land (B \rightarrow A)$, που τελικά δίνει $S \cup \{B\} \models A$.

Για το αντίστροφο έχουμε τα εξής:

Αν SU{Α} |= Β, τότε έχουμε δύο περιπτώσεις

- Το Α είναι ψευδές. Αν Α ψευδές, τότε Α→Β αληθές. Άρα μπορούμε από το σύνολο S να συμπεράνουμε Α→Β, επομένως S |= A→B.
- Το Α είναι αληθές. Άρα από το S μπορούμε να συμπεράνουμε τόσο το A όσο και το B. Άρα μπορούμε να συμπεράνουμε και το A→B, επομένως S |= A→B.

Άρα και στις δύο περιπτώσεις καταλήγουμε στο $S \models A \rightarrow B$.

Με τον ίδιο τρόπο έχουμε ότι αν SU{B} |= Α, τότε έχουμε δύο περιπτώσεις

- Το B είναι ψευδές. Αν B ψευδές, τότε B→A αληθές. Άρα μπορούμε από το σύνολο S να συμπεράνουμε B→A, επομένως S |= B→A.
- Το B είναι αληθές. Άρα από το S μπορούμε να συμπεράνουμε τόσο το B όσο και το A. Άρα μπορούμε να συμπεράνουμε και το $B{\to}A$, επομένως $S\models B{\to}A$.

(β) $A \models \neg B$ αν και μόνο αν η πρόταση $A \land B$ είναι αντινομία.

Έστω ότι η πρόταση $A \land B$ δεν είναι αντινομία. Άρα θα υπάρχει ικανοποιήσιμο σύνολο προτάσεων S τέτοιο ώστε $S \models A \land B$. Άρα θα ισχύει ότι $S \models A$ και $S \models B$. Αφού $A \models \neg B$, τότε και $S \models \neg B$. Επομένως καταλήξαμε σε άτοπο (συμπεράναμε από το S και το S και το S αρα η υπόθεση είναι λανθασμένη, δηλαδή η S είναι αντινομία.

Για το αντίστροφο χρησιμοποιούμε πάλι την απαγωγή σε άτοπο. Έστω ότι δεν ισχύει ότι $A \models \neg B$. Τότε εξ' ορισμού ισχύει ότι $A \models B$. Οπότε αν γνωρίζω ότι το A ισχύει μπορώ να συμπεράνω ότι το B ισχύει (άρα και ότι το $A \land B$ ισχύει), άρα η $A \land B$ δεν είναι αντινομία. Καταλήγουμε σε άτοπο, οπότε η υπόθεση είναι λανθασμένη, άρα $A \models \neg B$.

2. Έστω η ακόλουθη πρόταση $(P \to ((Q \lor R) \to S)) \land (\neg P \lor Q \lor (R \to S))$. Μετατρέψτε τη σε Διαζευκτική και σε Συζευκτική Κανονική Μορφή. Δείξτε όλα τα βήματα της μετατροπής.

$$\left(P \to \left((Q \lor R) \to S\right)\right) \land \left(\neg P \lor Q \lor (R \to S)\right) \equiv \\
\left(P \to \left(\neg (Q \lor R) \lor S\right)\right) \land \left(\neg P \lor Q \lor \neg R \lor S\right) \equiv \\
\left(\neg P \lor \left((\neg Q \land \neg R) \lor S\right)\right) \land \left(\neg P \lor Q \lor \neg R \lor S\right) \\
\left(\neg P \lor \left(\neg Q \land \neg R\right) \lor S\right) \land \left(\neg P \lor Q \lor \neg R \lor S\right) \quad (1)$$

CNF

$$(\neg P \lor \neg Q \lor S) \land (\neg P \lor \neg R \lor \neg S) \land (\neg P \lor Q \lor \neg R \lor S) \equiv$$

$$(\neg P \lor \neg Q \lor S) \land (\neg P \lor \neg R \lor S).$$

Δεδομένης της σχετικά απλής μορφής της πρότασης σε CNF (μόνο 2 όροι σύζευξης) μας συμφέρει να μην επιστρέψουμε στην πρόταση (1), αλλά να κάνουμε απευθείας επιμερισμό, οπότε έχουμε:

$$(\neg P \land \neg P) \lor (\neg P \land \neg R) \lor (\neg P \land S) \lor (\neg Q \land \neg P) \lor (\neg Q \land \neg R) \lor (\neg Q \land S)$$
$$\lor (S \land \neg P) \lor (S \land \neg R) \lor (S \land S) \equiv$$
$$\neg P \lor (\neg P \land \neg R) \lor (\neg P \land S) \lor (\neg Q \land \neg P) \lor (\neg Q \land \neg R) \lor (\neg Q \land S) \lor (S \land \neg R) \lor S \equiv$$

$$\neg P \lor (\neg Q \land \neg R) \lor S$$
.

3. Χρησιμοποιείστε μορφολογική παραγωγή για να αποδείξετε τα ακόλουθα:

$$(\alpha)\{(S \rightarrow \neg P) \land (P \rightarrow Q), Q \rightarrow S, \neg R \rightarrow P\} \models R$$

- (1) $(S \rightarrow \neg P) \land (P \rightarrow Q)$
- (2) $Q \rightarrow S$
- (3) $\neg R \rightarrow P$
- (4) Υποπαραγωγή
 - (4.1) ¬R (υπόθεση υποπαραγωγής)
 - (4.2) P (από (4.1), (3) με απαλοιφή \rightarrow)
 - (4.3) $(S \rightarrow \neg P)$ (από (1) με απαλοιφή Λ)
 - (4.4) $(P \rightarrow Q)$ (από (1) με απαλοιφή Λ)
 - (4.5) Q (από (4.2), (4.4) με απαλοιφή \rightarrow)
 - (4.6) S (από (2), (4.5) με απαλοιφή \rightarrow)
 - (4.7) ¬P (από (4.6), (4.3) με απαλοιφή →)
- (5) $\neg \neg R$ (από (4) με εισαγωγή \neg)
- (6) *R* (από (5) με απαλοιφή ¬)

$(\beta)\{P,P\rightarrow Q,\neg Q\} \vDash R$

- (1) *P*
- (2) $P \rightarrow Q$
- $(3) \neg Q$
- (4) Υποπαραγωγή
 - (4.1) $\neg R$ (υπόθεση υποπαραγωγής)
 - (4.2) *P* (από(1))
 - (4.3) Q (από (1), (2) με απαλοιφή \rightarrow)
 - (4.4) $(P \rightarrow Q)$ (από (1) με απαλοιφή Λ)
 - (4.5) Q (από (4.2), (4.4) με απαλοιφή \rightarrow)
- (5) $\neg \neg R$ (από (3), (4) με εισαγωγή \neg)
- (6) *R* (από (5) με απαλοιφή ¬)

$$(\gamma) (Q \to R) \to ((P \to Q) \to (P \to R))$$

- (1) Υποπαραγωγή
 - (1.1) $(Q \rightarrow R)$ (υπόθεση υποπαραγωγής)
 - (1.2) Υποπαραγωγή

$$(1.2.1)$$
 $(P \rightarrow Q)$ (υπόθεση υποπαραγωγής)

(1.2.2) Υποπαραγωγή

(1.2.2.1) Ρ (υπόθεση υποπαραγωγής)

(1.2.2.2) Q (από (1.2.1) και απαλοιφή \rightarrow)

(1.2.3) $(P \rightarrow R)$ (από (1.2.2) και εισαγωγή \rightarrow)

(1.3) $(P \rightarrow Q) \rightarrow (P \rightarrow R)$ $(από (1.2) και εισαγωγή <math>\rightarrow)$

(2) $(Q \to R) \to ((P \to Q) \to (Q \to R))$ από (1) και εισαγωγή \to)