Assignment 1

Due on Monday, September 15, 2014

In this assignment:

- smooth structure = C^{∞} differentiable structure
- smooth map = C^{∞} map
- (1) (Stereographic projection) Let

$$S^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\} \subset \mathbb{R}^{n+1}$$

be equipped with the subset topology. Let $N=(0,\ldots,0,1)$ and $S=(0,\ldots,0,-1)$ be the north and south poles of S^n , respectively. Define $\pi_1:S^n-\{N\}\to\mathbb{R}^n$ (resp. $\pi_2:S^n-\{S\}\to\mathbb{R}^n$) such that $(\pi_1(p),0)$ (resp. $(\pi_2(p),0)$) is the point at which the line through N (resp. S) and p intersects the hyperplane $\{x_{n+1}=0\}$. (See do Carmo page 19 Example 4.6.)

- (a) Prove that $\Phi = \{(S^n \{N\}, \pi_1), (S^n \{S\}, \pi_2)\}$ is a C^{∞} atlas on S^n .
- (b) Prove that the inclusion map $i: S^n \to \mathbb{R}^{n+1}$ is a smooth embedding, where S^n is equipped with the smooth structure defined by the C^{∞} atlas Φ . Therefore the smooth structure defined by Φ coincides with the smooth structure on S^n as a submanifold of \mathbb{R}^{n+1} .
- (2) (Embedding of $P^2(\mathbb{R})$ in \mathbb{R}^4) Let $F: \mathbb{R}^3 \to \mathbb{R}^4$ be given by

$$F(x, y, z) = (x^2 - y^2, xy, zx, yz).$$

Let $S^2=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\}\subset\mathbb{R}^3$. Observe that $f=F|_{S^2}$ satisfies f(x,y,z)=f(-x,-y,-z), so that it descends to a map $\tilde{f}:P^2(\mathbb{R})=S^2/\{\pm 1\}\to\mathbb{R}^4$. Prove that \tilde{f} is a smooth embedding. [Hint: A bijective continuous map from a compact topological space to a Hausdorff topological space is a homeomorphism.]

(3) Let (x, y, z) be coordinates on \mathbb{R}^3 . Let Y_r be the set of points in \mathbb{R}^3 at distance r > 0 from the circle

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, z = 0\}.$$

- (a) Let $A = \{r \in (0, \infty) \mid Y_r \text{ is a smooth submanifold of } \mathbb{R}^3\}$. Find A.
- (b) Let S^1 be equipped with the smooth structure in (1), and let $S^1 \times S^1$ be the product manifold (see do Carmo page 31-32 Exercise 1). Prove that Y_r is C^{∞} diffeomorphic to $S^1 \times S^1$ for any $r \in A$.