Standard Model Electroweak Precision Measurements with two Z bosons and two jets in ATLAS.

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences Brandeis University

Department of Physics

Professor Gabriella Sciolla, Advisor

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

by Prajita Bhattarai

May 2023

This dissertation, directed and approved by Prajita Bhattarai's Committee, has been accepted and approved by the Faculty of Brandeis University in partial fulfillment of the requirements for the degree of:

DOCTOR OF PHILOSOPHY

Wendy Cadge, Dean Graduate School of Arts and Sciences

Dissertation Committee: Professor Gabriella Sciolla, Department of Physics, Brandeis University Professor Aram Apyan, Department of Physics, Brandeis University Dr. Alessandro Tricoli, Brookhaven National Laboratory

Copyright by Prajita Bhattarai

2023

${\bf ABSTRACT}$

Standard Model Electroweak Precision Measurements with two Z bosons and two jets in ATLAS.

A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University Waltham, Massachusetts

By Prajita Bhattarai

Table of Contents

A	cknowledgements	iv
A	bstract	iv
L	ist of Tables	viii
L	ist of Figures	Х
L	ist of Abbreviations	xvi
Ι]	Introduction	1
II	Theory	2
1	The Standard Model	3
	1.1 Symmetries	3
	1.2 Particles and Fields	5
	1.3 Theoretical Formulation of the Standard Model	7
2	Limitations of the Standard Model	18
3	Phenomenology of Proton-Proton Collisions	19
4	Electroweak Diboson Physics	23
III	Experimental Setup	27
5	The Large Hadron Collider	28
6	ATLAS Detector	31
	6.1 ATLAS Coordinate System	31
	6.2 Inner Detector	33
	6.3 Calorimeters	34
	6.4 Muon Spectrometer	36
7	Physics Object Reconstruction	39

	7.1 Trigger	40
	7.2 Tracks and Vertices Reconstruction	40
	7.3 Electron Reconstruction	44
	7.4 Muon Reconstruction	46
	7.5 Jet Reconstruction	48
8	Future Upgrades	52
	8.1 High Luminosity LHC	52
	8.2 ATLAS Upgrades	53
IV .	Analysis Overview	55
9	Goals	55
10	Phase Space Definition	56
	10.1 Fiducial Volume	56
	10.2 Signal Region	58
11	Reconstruction Selection	59
	11.1 Electrons	59
	11.2 Muons	59
	11.3 Jets	60
	11.4 Overlap Removal	61
12	Trigger	62
13	Event Selection	65
14	Datasets and Monte Carlo Simulation	68
	14.1 LHC Dataset	68
	14.2 Monte Carlo Samples	69
	14.3 Event Weights	73
15	Definition of Manageral Observables	75

\mathbf{V}	Analysis Strategy	77
16	Background Estimation	77
	16.1 Data Driven Estimate of Fake Background	77
17	Unfolding	100
	17.1 Method Overview	100
	17.2 Binning for Unfolding	103
	17.3 Method Validation	103
	17.4 Bias and Optimization	107
18	Uncertainties on the Measurement	110
	18.1 Theoretical Uncertainties	110
	18.2 Experimental Uncertainties	112
	18.3 Unfolding Uncertainties	115
	18.4 Background Uncertainties	115
	18.5 Breakdown of the Systematic Uncertainties	116
	18.6 Statistical Uncertainties	118
m VI	Results	120
19	Differential Cross-sections	120
20	Effective Field Theory ReInterpretation	120
VII	Conclusion	121
Refe	rences	122
$\mathbf{App}\mathbf{e}$	endices	128
A	Personal Contribution	129
В	Additional Study on Unfolding Bias	129