Semantica e tautologie

Tabella dei contenuti

Valutazione														
Valutazione atomica														
Lemma														
Tautologia														
Contromodello														
Tavola di verità														
Soddisfacibilità														

Valutazione

Una proposizione può assumere solamente due valori: vero o falso, l'azione di determinare il valore di una proposizione viene chiamata *valutazione*. Una valutazione è del tipo:

$$\mathcal{V}: PROP \rightarrow \{0,1\}$$

e **deve** assumere come valori:

- 1. $V(\bot) = 0$
- 2. $\mathcal{V}(\varphi \wedge \psi) = 1 \iff \mathcal{V}(\varphi) = 1 \text{ and } \mathcal{V}(\psi) = 1$
- 3. $V(\varphi \lor \psi) = 1 \iff V(\varphi) = 1 \text{ or } V(\psi) = 1$
- 4. $\mathcal{V}(\varphi) = 1 \iff \mathcal{V}(\neg \varphi) = 0$
- 5. $\mathcal{V}(\varphi \to \psi) = 1 \iff \mathcal{V}(\varphi) = 0 \text{ or } \mathcal{V}(\psi) = 1$

Valutazione atomica

Una funzione v è detta valutazione atomica se $v: AT \to \{0,1\}$ e se $v(\bot) = 0$.

Data una valutazione atomica v, esiste ed è unica una valutazione $[\![\cdot]\!]_v: PROP \to \{0,1\}$ tale che $[\![\varphi]\!]_v = v(\varphi)$ per $\varphi \in AT$.

 $Nota\ bene$

Il valore di una proposizione è univocamente identificato dal valore dei suoi atomi.

Infatti:

$$\llbracket \alpha \vee \beta \rrbracket_v = 1 \iff \llbracket \alpha \rrbracket_v = 1 \text{ or } \llbracket \beta \rrbracket_v = 1$$

Lemma

Sia φ una proposizione e sia $\varphi^{at} = \{p \mid p \in AT, \ p \in \operatorname{Sub}(\varphi)\}$, siano v_1 e v_2 due valutazioni atomiche tali che $\forall p \in \varphi^{at}v_1(p) = v_2(p)$, allora possiamo affermare che: $\llbracket \varphi \rrbracket_{v_1} = \llbracket \varphi \rrbracket_{v_2}$.

Tautologia

La proposizione α viene chiamata tautologia se e solamente se $\forall v \llbracket \alpha \rrbracket_v = 1$, per cui scriviamo:

$$\models \alpha \iff \forall v \llbracket \alpha \rrbracket_v = 1 \tag{1}$$

Esempio Vogliamo dimostrare che $\models \alpha \to \alpha$, e cioè che $\forall v \llbracket \alpha \to \alpha \rrbracket_v = 1$, quindi:

$$\forall v \llbracket \alpha \to \alpha \rrbracket_v = 1 \iff \llbracket \alpha \rrbracket_v = 0 \text{ or } \llbracket \alpha \rrbracket = 1$$
$$\implies Vero \qquad \Box$$

Esercizio Vogliamo dimostrare che $\vDash \alpha \rightarrow (\beta \rightarrow \alpha)$, quindi:

$$\forall v \llbracket \alpha \to (\beta \to \alpha) \rrbracket_v = 1 \iff \llbracket \alpha \rrbracket_v = 0 \text{ or } \llbracket \beta \to \alpha \rrbracket = 1$$

$$\iff \underline{\llbracket \alpha \rrbracket_v = 0} \text{ or } \llbracket \beta \rrbracket_v = 0 \text{ or } \underline{\llbracket \alpha \rrbracket_v = 1}$$

$$\implies Vero$$

Contromodello

Per dimostrare che una proposizione **non** è una tautologia occorre ricercare un'istanza di φ e una valutazione tali per cui:

$$\exists v, \llbracket \varphi \rrbracket_v = 0$$

Esempio Data la proposizione $p_0 \to (p_0 \land p_1)$, devono esistere delle istanze di p_0, p_1 e una valutazione v tale per cui $[\![p_0 \to (p_0 \land p_1)]\!]_v = 0$.

Ipotizzando $\llbracket p_0 \rrbracket_v = 1, \llbracket p_1 \rrbracket_v = 0$ si ottiene:

$$[\![p_0 \to (p_0 \land p_1)]\!]_v = 0 \iff [\![p_0]\!]_v = 1 \text{ and } [\![p_0 \land p_1]\!]_v = 0$$

$$\iff [\![p_0]\!]_v = 1 \text{ and } ([\![p_0]\!]_v = 0 \text{ or } [\![p_1]\!]_v = 0)$$

$$\iff [\![p_0]\!]_v = 1 \text{ and } [\![p_1]\!]_v = 0)$$

$$\implies Vero$$

In altre parole, esiste una valutazione v che grazie al valore che assume sugli atomi, fa risultare l'intera proposizione zero.

Tavola di verità

Un altro modo per esprimere questo concetto è la tavola di verità:

Tabella 1: tavola di verità.

p_0	p_1	$p_0 \wedge p_1$	$p_0 \to p_0 \land p_1$
0	0	0	1
0	1	0	1
1	0	0	0
1	1	1	1

 $Nota\ bene$

Le dimensioni di una tavola di verità aumentano al crescere del rango della proposizione che si sta esaminando, quindi in presenza di una proposizione troppo complessa, si dice che il problema è intrattabile.

Soddisfacibilità

La proposizione α è detta soddisfacibile quando:

$$\exists v \llbracket \alpha \rrbracket_v = 1 \tag{2}$$

Quindi α non è una tautologia, ma è vera per almeno una valutazione.

 $Nota\ bene$

Gli unici algoritmi noti per determinare se una proposizione è soddisfacibile sono esponenziali al numero dei simboli.