

Desarrollo de Algoritmos Dirigido por Retos

Alejandro Marrero Díaz

Universidad de La Laguna

10 de julio de 2017

Escuela Superior de Ingeniería y Tecnología Universidad de La Laguna

Índice

- Introducción
- 2 Conceptos Previos
- 3 Algoritmos Desarrollados
 - Opposition-Based Learning
 - OBL Competitive Particle Swarm Optimization
 - Covariance Matrix Adaptation Evolutionary Strategy
 - Hybrid Simulated Annealing with Global Search
- Evaluación Experimental
 - Funciones Propuestas por GenOpt
 - Estudio de la Parametrización y Rendimiento
 - Comparativa de Rendimiento entre Algoritmos
 - Clasificación en el Concurso GenOpt
- Conclusions and Future Work
- 6 Bibliografía

Introducción

Motivación y Objetivos

- Iniciación en el mundo de la investigación.
- Investigación en el campo de las meta-heuristicas.
- Optimización Global Continua.
- Guiar el desarrollo de todo el TFG a través de la participación en una competición de optimización global continua.

Competiciones

- Congress on Evolutionary Computation (CEC)
- Genetic and Evolutionary Computation Conference (GECCO)
- Global Trajectory Optimisation Competition (GTOC)
- Generalization-Based Contest in Global Optimization (GenOpt)

Conceptos Previos

Optimización Global

Definición Formal

El objetivo de la optimización global, considerando un problema de minimización, es encontrar un vector $X* \in \Omega$ tal que $f(X*) \le f(X)$ para todo $X \in \Omega$.

Espacio de Búsqueda

El espacio de búsqueda Ω está definido por un límite inferior (a_i) y superior (b_i) para cada una de las variables de decisión de la función, es decir:

 $\Omega = \prod_{i=1}^{D} [a_i, b_i]$, siendo D el número de variables de decisión del problema a optimizar (Segredo et al., 2017)

Meta-heuristicas

Meta-heuristicas

Categorías

- Búsquedas Locales: Greedy Randomized Adaptive Search Procedure (GRASP) Díaz et al. (2017), Variable Neighborhood Search (VNS) Hansen et al. (2010).
- Heurísticas Voraces: Simulated Annealing (SA) Gerber and Bornn (2017a).
- Algoritmos Evolutivos: Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) Hajebi et al. (2016), Differential Evolution (DE) Zheng et al. (2017); Fu et al. (2017); Tian et al. (2017), Coevolutionary Algorithms (CEA) Atashpendar et al. (2016); Hajikolaei et al. (2016); Glorieux et al. (2016).

Meta-heuristicas

Criterios de Diseño

- Representación.
 - Permutaciones.
 - Cadena binaria.
 - Vector de valores naturales.
 - Vector de números reales.
- Condición de parada.
 - Iteraciones.
 - Factor de error.
 - Evaluaciones: 10⁶ evaluaciones establecidas por GenOpt.

Algoritmos Desarrollados

Opposition-Based Learning

Definición formal

Sea $x \in \Re$ un número real definido dentro de un cierto intervalo: $x \in [a, b]$. El número opuesto de x denotado como \overline{x} se define de la siguiente forma:

$$\overline{x} = a + b - x \tag{1}$$

Función D-Dimensional

Sea $P(x_1, x_2, ..., x_D)$ un punto dentro de un sistema de coordenadas D-dimensional con $x_1, ..., x_D \in \Re$ y además $x_i \in [a_i, bi]$. El opuesto del punto P se define como las coordenadas $\overline{x_1}, ... \overline{x_D}$ donde:

$$\overline{x_i} = a_i + b_i - x_i \quad i = 1, ..., D$$
 (2)

Búsqueda Global

Algorithm 1 Búsqueda global()

```
1: NumIndividuos = |S|;
                                         19:
                                                 while r_1 < k do
 OrdenarPoblacion(S);
                                                   r_1 = \text{rand}(0, |S|); (2)
                                         20:
 3: MarcarNoExplorados(S);
                                         21:
                                                 end while
                                                 Nuevolnd = ModificarIndivi-
 4: Centroide = CalcularCentroide():
                                         22.
 5: NumeroMejora = 0;
                                                 duo(k, a1, a2, a3, Centroide, r_1);
 NumeroExplorado = 0;
                                         23:
                                                 if NuevoInd < S[k] then
 7: while NumeroMejora >
                                        24:
                                                   Mejora = true;
   NumeroExplorado < |S| do
                                                S = S \cap Nuevolnd:
                                         25:
     k = 0:
                                         26.
                                                   NumeroMeiora = Numero-
     while S[k] = explorado y
                                                   Mejora + 1:
      NumeroExplorado < |S| do
                                                 else
                                         27.
        k = rand(0, |S|); (1)
10:
                                         28:
                                                   Mejora = false;
     end while
                                                 end if
11.
                                         29.
                                              end while
     S[k] = explorado;
                                         30:
12:
                                        31: end while
13.
     NumeroExplorado = NumeroEx-
      plorado + 1:
                                         32: OrdenarPoblacion(S):
     Mejora = true;
                                         33: S = ObtenerMejores(0, NumIndivi-
14:
     while Meiora = true do
                                            duos, S);
15:
16:
        while |a_1| + |a_2| + |a_3| \neq 1 do
                                         34: return |S| mejores individuos encon-
          GenerarRand(a1, a2, a3); (2)
17:
                                            trados
        end while
18:
```

OBL Competitive Particle Swarm Optimization (OBL-CPSO)

Algorithm 2 Particle Swarm Optimization()

```
1: while Condición de parada no satisfecha do
      for all p<sub>i</sub> en S do
 2:
         Evaluar p_i:
 3:
4:
         Actualizar mejor posición pb;
         Actualizar mejor global gb;
 5:
      end for
6.
7.
      for all p_i en S do
         for all d_i en D do
8:
            v_{i,d} = v_{i,d} + C_1 * Rnd(0,1) * [pb_{i,d} - x_{i,d}] + C_2 + Rnd(0,1) * [gb_d - x_{i,d}];
g.
            Rnd(0,1) devuelve un número generado aleatoriamente en el rango [0, 1]
            x_{i,d} = x_{i,d} + v_{i,d};
         end for
10.
      end for
11:
12. end while
13: return Mejor solución obtenida
```

OBL-CPSO

Diseño

El algoritmo Opposition-based Learning Competitive Particle Swarm Optimization (OBL-CPSO) Zhou et al. (2016) incluye dos modificaciones:

- Opposition-based Learning.
- Procedimiento de Competición.

Competición

Escogemos, aleatoriamente, tres partículas dentro del enjambre y las hacemos competir entre ellas mediante su valor de función objetivo. Para un enjambre de tamaño N, se realizarán un total de N/3 competiciones Zhou et al. (2016).

- Ganadora (w).
- Neutra (n).
- Perdedora (I).

OBL-CPSO

Algorithm 3 OBL Competitive Particle Swarm Optimization()

```
1: Inicializar();
2: while Condición de parada no satisfecha do
      Agitar():
3:
     for all k = 1 : N/3 do
4:
   r_1 = S(k);
5:
6: r_2 = S(k + N/3);
7:
   r_3 = S(k + 2N/3);
   (w, n, l) = competir(r_1, r_2, r_3);
8:
    Actualizar X_{ld}^{k}(t);
9:
        Actualizar X_{nd}^{k}(t);
10:
11:
        Actualizar los valores de fitness para N y L;
      end for
12.
      BusquedaGlobal();
13:
14 end while
15: return Mejor solución obtenida
```

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

Parámetros

- ullet λ : tamaño de la población.
- C: la matriz de covarianza C de dimensión C_{λ}^{D} .
- σ: índice de variacón entre generaciones.
- \circ μ : individuos seleccionados en la selección elitista.
- $m^g \in \Re^D$: Valor medio de la distribución en la generación g

CMA-ES

Algorithm 4 Covariance Matrix Adaptation Evolutionary Strategy ()

Require:

$$m \in \mathbb{R}^n, \sigma \in \mathbb{R}_+, \lambda$$

1: Inicialización

$$\begin{split} C &= I, p_c = 0, p_\sigma = 0 \\ c_c &\approx 4/n, c_\sigma \approx 4/n, c_1 \approx 2/n^2, c_\mu \approx \mu_w/n^2, c_1 + c_\mu \leq 1 \\ d_\sigma &\approx 1 + \sqrt{\frac{\mu_w}{n}}, w_i = 1...\lambda \quad \textit{tal} \quad \textit{que} \quad \mu_w = \frac{1}{\sum_{i=1}^\mu w_i^2} \approx 0.3\lambda \end{split}$$

- 2: while Condición de parada no satisfecha do
- 3: Muestreo
- 4: Actualizar el valor medio
- 5: Actualizar C
- 6: Actualizar σ
- 7: BusquedaGlobal();
- 8: if Reinicio necesario then
- 9: Reiniciar();
- 10: end if
- 11: end while
- 12: return Mejor solución obtenida

Hybrid Simulated Annealing with Global Search (HSAGS)

Simulated Annealing (SA)

Simulated Annealing (SA) Robini et al. (2017); Karagiannis et al. (2017); Gerber and Bornn (2017b) es una meta-heurística que está inspirada por el proceso de recocido en la metalurgia Du and Swamy (2016).

- Iniciamos con un valor T_0 muy elevado.
- Un único individuo en la población.

Pasos del Algoritmo

- Perturbación.
- Evaluación.
- Actualizar Temperatura.
- Búsqueda global para HSAGS.

HSAGS

Algorithm 5 Hybrid Simulated Annealing with Global Search()

```
    S = GenerarSolucionAleatoria();
    T = InicializarTemperatura();
    while Condición de parada no satisfecha do
    S' = AplicarPerturbacionAleatoria(S);
    Dif = EvaluarDiferencia(S, S');
    S = ActualizarSolucion(S, S', Dif);
    T = ActualizarTemperatura(T);
    S = BusquedaGlobalSA();
    end while
    return Mejor solución obtenida
```


Evaluación Experimental

Funciones propuestas por GenOpt

Caracteristicas

GenOpt ha propuesto un total de **18 funciones** de dimensiones D=10,30 a optimizar, realizando **cien ejecuciones independientes** para cada una de ellas.

Familias de Funciones

- Funciones GKLS.
- Funciones Clásicas Transformadas.
 - Rastrigin.
 - Rosenbrock.
 - Zakharov.
- Funciones Compuestas.
 - Goldstein-Price.
 - Hartmann.
 - Sphere.

Estudio de la Parametrización

Objetivos del Estudio

Determinar los mejores valores para los parámetros de cada algoritmo buscando obtener el máximo rendimiento de cada uno de ellos.

Poblaciones

- popsize = 20, 50, 75, 100 para OBL-CPSO y CMA-ES.
- popsize = 1 para HSAGS.

Rendimiento de OBL-CPSO

	C	BL-CPSO-20		OBL-CPSO-50			
	μ	\tilde{x}	σ	μ	\tilde{x}	σ	
f_0	4,361e - 01	2,041e-01	4,492e - 01	3,937e - 01	1,255e-01	4,193e - 01	
f_1	1,776e + 00	1,681e + 00	4,699e - 01	1,464e + 00	1,401e + 00	2,359e - 01	
f_2	7,417e - 01	1,002e + 00	4,173e - 01	7,657e - 01	1,002e + 00	3,618e - 01	
f_3	1,779e + 00	1,699e + 00	4,513e - 01	1,455e + 00	1,402e + 00	2,441e - 01	
f_4	7,822e - 01	1,003e + 00	4,026e - 01	7,764e - 01	1,003e + 00	3,803e - 01	
f_5	1,790e + 00	1,698e + 00	5,522e - 01	1,451e + 00	1,406e + 00	2,479e - 01	
f_6	9,041e - 01	3,609e - 01	1,297e + 00	5,852e - 01	3,130e - 01	7,651e - 01	
f_7	1,057e + 01	1,014e + 01	4,274e + 00	8,992e + 00	8,667e + 00	3,394e + 00	
f_8	5,837e - 01	3,580e - 01	6,216e - 01	3,908e - 01	2,501e - 01	4,752e - 01	
f_9	5,574e + 00	5,209e + 00	2,245e + 00	4,881e + 00	4,840e + 00	1,817e + 00	
f_{10}	6,175e - 03	4,830e - 03	5,254e - 03	4,564e - 03	3,010e - 03	3,711e - 03	
f_{11}	4,735e - 02	4,723e - 02	1,483e - 02	4,155e - 02	3,961e - 02	1,488e - 02	
f_{12}	4,103e - 02	2,806e - 02	4,074e - 02	2,463e - 02	1,685e - 02	2,296e-02	
f_{13}	8,880e - 02	8,295e - 02	3,394e - 02	8,708e - 02	8,431e - 02	2,912e-02	
f_{14}	1,026e - 01	3,233e - 02	1,907e - 01	3,723e - 02	2,042e-02	4,753e - 02	
f_{15}	1,317e - 01	1,180e - 01	5,010e - 02	1,198e - 01	1,121e - 01	3,953e - 02	
f_{16}	1,516e - 02	1,252e - 02	1,090e - 02	1,380e - 02	1,075e - 02	1,142e - 02	
f_{17}	2,666e - 01	2,286e - 01	1.587e - 01	2.049e - 01	1.744e - 01	1.091e - 01	

Rendimiento de OBL-CPSO

(OBL-CPSO-75		OBL-CPSO-100			
μ	\tilde{x}	σ	μ	\tilde{x}	σ	
4,095e - 01	1,364e - 01	4,224e - 01	1,228e + 00	1,218e + 00	2,404e-01	
$\mathbf{1,403e} + 00$	1,351e + 00	2,047e - 01	3,706e + 00	3,572e + 00	7,136e - 01	
7,968e - 01	1,004e + 00	3,407e - 01	1,250e + 00	1,227e + 00	1,530e - 01	
1,373e + 00	1,350e + 00	1,722e - 01	3,708e + 00	3,572e + 00	7,161e - 01	
8,439e - 01	1,004e + 00	3,219e - 01	1,248e + 00	1,216e + 00	1,645e - 01	
1,423e + 00	1,357e + 00	2,284e - 01	3,707e + 00	3,572e + 00	7,162e - 01	
4,691e - 01	2,570e - 01	4,897e - 01	3,368e + 00	2,636e + 00	2,445e + 00	
9,134e + 00	8,482e + 00	3,717e + 00	2,545e + 01	2,466e + 01	6,987e + 00	
3,449e - 01	2,537e - 01	3,115e - 01	2,202e + 00	1,999e + 00	1,283e + 00	
4,720e + 00	4,588e + 00	1,643e + 00	1,276e + 01	1,279e + 01	3,019e + 00	
3,874e - 03	2,688e - 03	3,495e - 03	1,661e - 02	1,440e - 02	1,151e - 02	
4,151e - 02	3,904e - 02	1,285e - 02	8,903e - 02	8,608e - 02	2,672e - 02	
3,093e - 02	2,092e - 02	3,662e - 02	4,394e - 01	3,230e - 01	3,904e - 01	
$\mathbf{8,200e-02}$	8,032e - 02	2,643e - 02	2,611e - 01	2,452e - 01	1,296e - 01	
3,049e-02	1,543e - 02	4,289e-02	1,381e + 00	1,147e + 00	1,006e + 00	
1,196e-01	1,115e - 01	4,406e-02	4,437e - 01	3,095e-01	4,113e - 01	
1,201e-02	1,052e - 02	8,260e - 03	4,439e - 02	3,137e-02	4,109e - 02	
1,845e-01	1,687e - 01	8,040e - 02	3,330e + 00	2,985e + 00	1,709e + 00	

Rendimiento de CMA-ES

	$CMA_ES-2-50$			$CMA_ES-0,3-50$			$CMA_ES-0.8 - 50$		
	μ	\tilde{x}	σ	μ	\tilde{x}	σ	μ	\tilde{x}	σ
f ₀	8,503e - 01	1,000e + 00	2,677e - 01	6,503e + 00	1,089e + 00	2,677e - 01	8,503e - 01	1,000e + 00	2,677e-01
f_1	1,145e + 00	1,121e + 00	9,401e-02	1,145e + 00	1,331e + 00	9,401e - 02	1,145e + 00	1,121e + 00	9,401e-02
2	9,650e - 01	1,000e + 00	1,102e-01	6,890e - 01	1,120e + 00	1,102e-01	9,650e - 01	1,000e + 00	1,102e-0
f ₃	1,145e + 00	1,127e + 00	9,699e - 02	1,175e + 00	1,197e + 00	9,699e - 02	1,145e + 00	1,127e + 00	9,699e - 02
4	9,568e - 01	1,000e + 00	1,375e - 01	7,544e - 01	1,000e + 00	1,375e - 01	9,568e - 01	1,000e + 00	1,375e-0
5	1,139e + 00	1,107e + 00	9,068e - 02	2,177e + 00	1,107e + 00	9,068e - 02	1,139e + 00	1,107e + 00	9,068e - 0
6	7,098e - 03	2,675e - 03	1,102e-02	6,068e - 03	2,895e - 03	1,102e-02	7,098e - 03	2,675e-03	1,102e-0
7	3,485e + 00	3,206e + 00	1,737e + 00	4,785e + 00	3,206e + 00	1,737e + 00	3,485e + 00	3,206e + 00	1,737e + 00
8	1,114e - 02	3,920e - 03	2,502e-02	1,184e - 02	3,500e - 03	2,502e-02	1,114e-02	3,920e - 03	2,502e-0
69	1,801e + 00	1,713e + 00	8,352e - 01	2,881e + 00	1,503e + 00	8,352e - 01	1,801e + 00	1,713e + 00	8,352e - 0
10	2,323e - 02	2,214e - 02	2,532e-02	1,393e - 02	2,124e-02	2,532e - 02	2,323e-02	2,214e-02	2,532e-0
f ₁₁	5,283e - 02	5,061e - 02	1,399e-02	3,883e - 02	5,031e - 02	1,399e-02	5,283e-02	5,061e - 02	1,399e-0.3
12	2,242e - 04	1,147e - 04	5,236e-04	4,442e - 04	1,147e - 04	5,236e-04	2,242e-04	1,147e-04	5,236e-0.6
13	3,018e - 02	2,998e - 02	7,994e - 03	2,018e-02	2,998e - 02	7,994e - 03	3,018e - 02	2,998e-02	7,994e-03
14	1,443e - 04	2,946e - 05	3,504e-04	1,443e - 04	2,946e-05	3,504e-04	1,443e - 04	2,946e-05	3,504e-0.6
15	4,870e - 02	4,838e - 02	1,111e-02	4,870e - 02	4,838e - 02	1,111e-02	4,870e - 02	4,838e - 02	1,111e-0
16		2,520e - 04							
17	3,485e - 02	3,375e - 02	9.540e - 03	3,485e - 02	3,375e-02	9.540e - 03	3,485e-02	3,375e-02	9.540e - 03

Rendimiento de HSAGS

	HSAGS-500		HSAGS-1000		HSAGS-10000
0	8,060e - 01	\leftrightarrow	9.338e-01	\leftrightarrow	7,384e - 01
$\frac{1}{2}$	0.000e + 00		9,732e - 01	\leftrightarrow	9,732e-01
2	9.241e - 01	\leftrightarrow	9,270e-01	\leftrightarrow	9.711e-01
3	0.000e + 00		0.000e + 00		0.000e + 00
4	7,369e - 01	\leftrightarrow	8.174e-01	\leftrightarrow	5.917e - 01
5 6	9,481e - 01	\leftrightarrow	9,460e - 01	\leftrightarrow	9.978e-01
6	9,961e - 01	\leftrightarrow	9.971e - 01	\leftrightarrow	9.990e-01
7	9.990e-01	\leftrightarrow	9.971e - 01	\leftrightarrow	9,981e - 01
8 9	0.000e + 00		1,000e + 00	\leftrightarrow	1,000e + 00
9	1,000e + 00	\leftrightarrow	1,000e + 00	\leftrightarrow	0.000e + 00
10	9.990e-01	\leftrightarrow	9,971e - 01	\leftrightarrow	9.981e - 01
11	9.942e - 01	\leftrightarrow	9.961e - 01	\leftrightarrow	9.990e-01
12	1.000e + 00	\leftrightarrow	1,000e + 00	\leftrightarrow	1,000e + 00
13	9.990e-01	\leftrightarrow	9,990e - 01	\leftrightarrow	1,000e + 00
14	1.000e + 00	\leftrightarrow	1,000e + 00	\leftrightarrow	1,000e + 00
5	$1.000 \mathrm{e}{+00}$	\leftrightarrow	1,000e + 00	\leftrightarrow	1,000e + 00
16	1,000e + 00	\leftrightarrow	9.990e-01	\leftrightarrow	9,990e - 01
17	1.000e + 00	\leftrightarrow	1,000e + 00	\leftrightarrow	1,000e + 00

Comparativa de Rendimiento entre Algoritmos

Objetivos del Estudio

Comparar el rendimiento de cada uno de los algoritmos a la hora de optimizar las funciones propuestas por GenOpt.

Comparativa de Rendimiento entre Algoritmos

	$CMA_ES-2-50$			OBL-CPSO-75			HSAGS-500		
	μ	\tilde{x}	σ	μ	\tilde{x}	σ	μ	\tilde{x}	σ
f_0	8,503e - 01	1,000e + 00	2,677e-01	4,095e-01	1,364e-01	4,224e-01	3,875e + 00	3,731e + 00	8,967e - 01
f_1	1,145e + 00	1,121e + 00	9,401e - 02	1,403e + 00	1,351e + 00	2,047e - 01	1,065e + 01	1,052e + 01	1,439e + 00
f_2	9,650e - 01	1,000e + 00	1,102e-01	7,968e - 01	1,004e + 00	3,407e - 01	3,878e + 00	3,731e + 00	8,982e - 01
f_3	1,145e + 00	1,127e + 00	9,699e - 02	1,373e + 00	1,350e + 00	1,722e-01	1,065e + 01	1,052e + 01	1,439e + 00
f_4	9,568e - 01	1,000e + 00	1,375e - 01	8,439e - 01	1,004e + 00	3,219e - 01	9,568e - 01	1,000e + 00	1,375e - 01
f_5	1,139e + 00	1,107e + 00	9,068e - 02	1,423e + 00	1,357e + 00	2,284e-01	1,064e + 01	1,050e + 01	1,435e + 00
f_6	7,098e - 03	2,675e - 03	1,102e-02	4,691e - 01	2,570e - 01	4,897e - 01	1,373e + 01	1,227e + 01	6,326e + 00
f_7	3,485e + 00	3,206e + 00	1,737e + 00	9,134e + 00	8,482e + 00	3,717e + 00	4,560e + 01	4,423e + 01	1,053e + 01
f_8	1,114e - 02	3,920e - 03	2,502e - 02	3,449e - 01	2,537e - 01	3,115e - 01	6,038e + 00	6,183e + 00	1,809e + 00
f_9	1,801e + 00	1,713e + 00	8,352e - 01	4,720e + 00	4,588e + 00	1,643e + 00	1,903e + 01	1,891e + 01	3,118e + 00
f_{10}	2,323e - 02	2,214e-02	2,532e - 02	3,874e - 03	2,688e - 03	3,495e - 03	1,270e - 01	5,255e-02	2,558e - 01
f_{11}	5,283e - 02	5,061e - 02	1,399e - 02	4,151e - 02	3,904e - 02	1,285e-02	4,264e + 00	1,808e - 01	2,459e + 01
f_{12}	2,242e - 04	1,147e - 04	5,236e-04	3,093e - 02	2,092e-02	3,662e - 02	5,330e + 00	5,016e + 00	2,499e + 00
f_{13}	3,018e - 02	2,998e - 02	7,994e - 03	8,200e - 02	8,032e - 02	2,643e - 02	2,689e + 00	2,567e + 00	1,265e + 00
f_{14}	1,443e - 04	2,946e - 05	3,504e - 04	3,049e - 02	1,543e - 02	4,289e - 02	8,964e + 00	8,338e + 00	4,235e + 00
f_{15}	4,870e - 02	4,838e - 02	$1,\!111e-02$	1,196e-01	1,115e-01	4,406e-02	1,009e + 01	8,802e + 00	5,327e + 00
f_{16}	9,820e - 04	2,520e - 04	5,633e - 03	1,201e-02	1,052e - 02	8,260e - 03	4,049e + 00	3,340e + 00	3,172e + 00
f_{17}	3,485e - 02	3,375e - 02	9.540e - 03	1.845e - 01	1.687e - 01	8,040e - 02	1.603e + 01	1.465e + 01	5,702e + 00

Clasificación en el Concurso GenOpt

Criterios de Clasificación de GenOpt

- High Jump: mejor valor obtenido en los puntos de control.
- Target Shooting: éxito a la hora de alcanzar el óptimo global de la función.
- Biathlon Score: media entre el High Jump y Target Shooting.

¹Manifesto del concurso GenOpt: http://www.genopt.org/genopt.pdf.

Clasificación en el Concurso GenOpt

Conclusions and Future Work

Conclusions

- High amount of parameters increases the complexity to evaluate the performance of the algorithms.
- The task of assessing a new modification was really difficult.
- CMA-ES algorithm accomplished the third place in the final leaderboard of the GenOpt contest considering the High Jump criterion.

Future Work

Improve the different tested algorithms.

¿Preguntas? Gracias por su atención.

Bibliografía

- Atashpendar, A., Dorronsoro, B., Danoy, G., and Bouvry, P. (2016). A parallel cooperative coevolutionary smpso algorithm for multi-objective optimization. pages 713–720.
- Du, K.-L. and Swamy, M. N. S. (2016). Search and Optimization by Metaheuristics.
- Díaz, J., Luna, D., Camacho-Vallejo, J.-F., and Casas-Ramírez, M.-S. (2017). Grasp and hybrid grasp-tabu heuristics to solve a maximal covering location problem with customer preference ordering. Expert Systems with Applications, 82:67–76.
- Fu, C., Jiang, C., Chen, G., and Liu, Q. (2017). An adaptive differential evolution algorithm with an aging leader and challengers mechanism. *Applied Soft Computing Journal*, 57:60–73.
- Gerber, M. and Bornn, L. (2017a). Improving simulated annealing through derandomization. *Journal of Global Optimization*, 68(1):189–217.
- Gerber, M. and Bornn, L. (2017b). Improving simulated annealing through derandomization. *Journal of Global Optimization*, 68(1):189–217.
- Glorieux, E., Svensson, B., Danielsson, F., and Lennartson, B. (2016). Improved constructive cooperative coevolutionary differential evolution for large-scale optimisation. pages 1703–1710.
- Hajebi, M., Hoorfar, A., and Bou-Daher, E. (2016). Inverse profiling of inhomogenous buried cylinders with arbitrary cross sections using cma-es. pages 863–864.
- Hajikolaei, K., Cheng, G., and Wang, G. (2016). Optimization on metamodeling-supported iterative decomposition. *Journal of Mechanical Design, Transactions of the ASME*, 138(2).

Bibliografía (cont.)

- Hansen, P., Mladenović, N., and Moreno Pérez, J. A. (2010). Variable neighbourhood search: methods and applications. *Annals of Operations Research*, 175(1):367–407.
- Karagiannis, G., Konomi, B., Lin, G., and Liang, F. (2017). Parallel and interacting stochastic approximation annealing algorithms for global optimisation. *Statistics and Computing*, 27(4):927–945.
- Robini, M., Ozon, M., Frindel, C., Yang, F., and Zhu, Y. (2017). Global diffusion tractography by simulated annealing. *IEEE Transactions on Biomedical Engineering*, 64(3):649–660.
- Segredo, E., Paechter, B., Segura, C., and González-Vila, C. I. (2017). On the comparison of initialisation strategies in differential evolution for large scale optimisation. *Optimization Letters*, pages 1–14.
- Tian, M., Gao, X., and Dai, C. (2017). Differential evolution with improved individual-based parameter setting and selection strategy. *Applied Soft Computing Journal*, 56:286–297.
- Zheng, L., Zhang, S., Tang, K., and Zheng, S. (2017). Differential evolution powered by collective information. *Information Sciences*, 399:13–29.
- Zhou, J., Fang, W., Wu, X., Sun, J., and Cheng, S. (2016). An Opposition-Based Learning Competitive Particle Swarm Optimizer. pages 515–521.

Desarrollo de Algoritmos Dirigido por Retos

Alejandro Marrero Díaz

Universidad de La Laguna

10 de julio de 2017

Escuela Superior de Ingeniería y Tecnología Universidad de La Laguna

