Project Management

Project Planning

INTRODUCTION

- Why plan?
 - To eliminate or reduce uncertainty
 - To improve efficiency of the operation
 - To obtain a better understanding of the objectives
 - To provide a basis for monitoring and controlling work

Consequences of poor planning

- premature project initiation
- disappointment
- Victimization of the innocent
- promotion of the non-participants
- Poor definition of requirements

PLANNING COMPONENTS

- Objectives -a goal, target or quota to be achieved
- Programme -strategy and major action to achieve objectives
- Schedule -a plan to show when milestones will be reached
- Budget -planned expenditure for the project

Planning components

- Forecast/prediction-a projection of what may happen
- Organisation-the projects management and personnel structure
- Policy-a general guide to decision making and individual actions
- Procedures-a detailed method for carrying out policy/activity...
- Standards-performance defined as adequate

PLANNING STEPS

- Step 0: Select a Project
- Step 1: Identify project scope and objectives
 - Identify objectives and measures of effectiveness in meeting them
 - Establish a project authority for unity of purpose
 - Identify stakeholders and their interests-
 - Modify objectives in line with stakeholder's requirements and expectations
 - Establish communication methods

- Step 2: Identify project infrastructure
 - Establish relationships between project and strategic planning
 - Identify installation standards and procedures
 - Identify project team organisation with project leader at the top

- Step 3: Analyse project characteristics
 - Distinguish the project as either objective or product-driven
 - Identify high level project risk: Operational, technical, environmental, type of product.
 - Take into account user requirements concerning implementation
 - Select development and life-cycle approach
 - Review overall resource estimates

- Step 4: Identify project products and activities
 - Identify and describe project products (or deliverables)
 - Document generic product flows
 - Recognise product instances
 - Produce ideal activity network
 - Modify ideal to take into account need for stages and checkpoints

- Step 5: Estimate effort for each activity
 - Carry out bottom-up estimates
 - Revise plans to create controllable activities
- Step 6: Identify activity risk
 - Identify and quantify activity-based risks
 - Plan risk reduction and contingency measures where appropriate
 - Adjust plans and estimates to take account of risk

- Step 7: Allocate resources
 - Identify and allocate all resources: use Gantt
 - Revise plans and estimates to account for resource constraints
- Step 8: Review/publicise plan
 - Review quality aspects of project plan
 - Document plans and obtain agreement

 Step 9: Execute plan- Once underway, put up evaluation, monitoring and control mechanisms

 Step 10: Lower levels of planning: such as integration tests for system modules, Training, handover

ACTIVITY PLANNING

- Activity Planning will help to:
 - ensure that the appropriate resources will be available precisely when required
 - avoid different activities competing for the same resource at the same time
 - produce a detailed schedule showing which staff carry out each activity
 - Produce a detailed plan against which actual achievement may be measured
 - produce a timed forecast
 - re-plan the project during its life to correct drift from a target

Activity Planning

- In activity planning we identify activities and create:
 - Work breakdown structure (WBS)
 - Product breakdown Structure (PBS)
 - Precedence analysis
 - Gantt Charts
 - Network diagrams On Arrow Networks and Precedence Networks

1. Work Breakdown Structure

- WBS is the decomposition of work into progressively smaller and smaller chunks of work.
- The logical conclusion is when work cannot be usefully broken down any further for the tasks being undertaken
- A WBS is often shown as a task-oriented family tree of activities, similar to an organizational chart.

Work Breakdown Structure

 A project team often organizes the WBS around project products, project phases, or using the project management process groups e.g. design of a website

Detailed WBS

2. Product Breakdown Structure

 Product Breakdown Structure (PBS) is similar to WBS

 PBS is the break down of a product into it's discrete components.

a PBS can be included as part of a WBS

Product Breakdown Structure

WBS and PBS

- WBS, PBS and system modelling will assist in understanding of the project
- WBS and PBS must be done to allow Precedence analysis to take place
- WBS and PBS do not necessarily set precedence of a project
- Precedence (scheduling activities) within a project should be based on what is best for the timely and economic completion of the project

3. Precedence Analysis

- Must be done before an activity plan can be produced
- Reviews the activities that are to be carried out
- Decides what activities must be carried out before particular activity can start

4. Gantt Charts

- Gantt charts are easy to use and produce
- They are very useful for use on less complex projects
- Commonly used due to there simplicity
- Gantt charts are easily understood and easy to read

Gantt Charts

	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
Task 1						
Task 2						
Task 3						
Task 4						
Task 5						
Task 6						

Gantt Charts

Draw the following Gantt chart

Tasks	Precedence	Time	
a	-	5 days	
b	-	4 days	
С	a	6 days	
d	b	2 days	
е	b	5 days	
f	c,d	8 days	

Gantt Charts

NETWORK DIAGRAMMING

Introduction

- In the late 1950s, the Program Evaluation and Review Technique (PERT) and the Critical Path Method (CPM) were independently developed.
- When they were developed, PERT used probabilistic (or uncertain) estimates of activity durations while CPM used deterministic (or certain) estimates but included both time and cost estimates to allow time/cost trade offs to be used.

Network Models: PERT

 The Program Evaluation and Review Technique (PERT) was Developed by the US Navy, BOOZ-Allen Hamilton (a business consulting firm) and Lockheed Aircraft (Now Lockheed Martins)

Network models: CPM

- Critical Path Method (CPM) is also known as Critical Path Analysis (CPA)
- CPM was Developed by Dupont De Nemours in the Late fifties early sixties to facilitate building of complex processing plant

PERT and CPM

 Both methods employed networks to schedule and display task sequences. They also identified a *critical path* of tasks that could not be delayed without delaying the project.

Network planning models

 A simple activity-on-arrow (AOA) network diagram associated with PERT

Network Model Concepts

- Activity- A specific task, uses resources takes time to complete
- Event
 - The result of completing an activity
 - Events use no resources
 - They are instances in time, points on the network, conditions of a system that can be recognised

Network Model Concepts

- Network The combination or all activities (often drawn as lines) and events (often drawn as nodes at the beginning and end of each line).
- This defines the project and the activity precedence relationship.
 - Arrow heads placed on the lines indicate direction of flow. Before and an event can be realised all the activities that immediately precede it must be completed

Network Model Concepts

- Path The series of connected activities between any two events in a network
- A critical path is a set of activities from start to end, if delayed, delays project completion date.
- Critical time The time required to complete all activities on the critical path.
- Milestones Identifiable and noteworthy events marking significant progress on the project.

Network syntax

- Time moves from left to right
- Nodes are numbered sequentially
- A network may not contain loops
- A network may not contain dangles
- Precedents are the immediate preceding activities
- Dummy activities can be used to indicate a particular precedence

- Time moves from left to right
- Nodes are numbered sequentially

A network may not contain loops

This is not allowed

A network may not contain dangles

Precedents are the immediate preceding activities

 Dummy activities can be used to indicate a particular precedence

Draw the following as on arrow network

Tasks	Precedence	Time
a	-	5 days
b	-	4 days
С	a	6 days
d	b	2 days
е	b	5 days
f	c,d	8 days

How to start

What not to do

• A better way

• It is less confusing that c & d go to the same event ... but what about e & f?

• The completed on arrow network

Another on arrow network to draw

Tasks	Precedence	Time
a	-	6 weeks
b	-	4 weeks
С	a	3 weeks
d	b	4 weeks
е	b	3 weeks
f	-	10 weeks
g	e,f	3 weeks
h	c,d	2 weeks

The network with activity times added

- Precedence network also known as Activity on Node
- Becoming more common as it is used by many project planning software packages
- Often preferred by project managers

- Syntax the same as for On Arrow networks
 - **Except** there are no dummy activities

 Precedence networks must start with a start node and end with a end node

• A simple precedence network

 This is the same network drawn as an On Arrow network

• A simple precedence network

 Draw the following as Precedence network

Tasks	Precedence	Time
a	-	5 days
b	-	4 days
C	a	6 days
d	b	2 days
e	b	5 days
f	c,d	8 days

The completed Precedence Network

 The same network drawn as an On Arrow Network

The completed Precedence Network

Another on precedence network to draw

Tasks	Precedence	Time
a	-	6 weeks
b	-	4 weeks
C	a	3 weeks
d	b	4 weeks
е	b	3 weeks
f	-	10 weeks
g	e,f	3 weeks
h	c,d	2 weeks

The completed Precedence Network

 This is the same network drawn as an On Arrow network

The completed Precedence Network

