Основные определения и свойства компьютерных сетей

Локальные сети — система передачи данных, отличающаяся размещением её на ограниченной территории (например кампус), ограниченным числом обслуживаемых устройств (до 1024); вся сеть находится под контролем одной организации.

Основное назначение ЛВС:

- 1. Разделение или объединение ресурсов
- 2. Обмен данными между устройствами

Основные особенности ЛВС:

- 1. Размещение целиком на ограниченной территории
- 2. Соединение в ЛВС независимых устройств
- 3. Передача информации обычно в цифровой форме
- 4. Дешевые средства передачи и интерфейсные устройства
- 5. Возможность взаимодействия каждого устройства с любыми другими

Требования:

- 1. Выполнение функции по передачи данных
- 2. Соответствие существующим стандартам
- 3. Возможность подключения большого набора стандартных и специальных устройств
- 4. Доставка пакетов адресату с высокой достоверностью при обеспечении виртуальных соединений
- 5. Обеспечение непосредственной связи между устройствами без промежуточного накопления, не должно быть больших буферов между узлами
- 6. Простота монтажа, модификации и расширение сети Характеристики ЛВС:
 - 1. Скорость передачи данных
 - 2. Топология (шина, кольцо, звезда и т. п.)
 - 3. Передающая среда (витая пара, волоконно-оптический кабель, коаксиальный кабель, силовой кабель, радиоканал, инфракрасные и микроволны)
 - 4. Основные методы доступа: случайный с разделенной шиной, тактируемый доступ с цикл. очередностью для сетей с кольцевой структурой, передача маркера
 - 5. Управляющие узлы сети

Используемые канальные сети могут быть широкополосными и однополосными. Для широкополосных характерно использование аналоговой техники, при этом аналоговый сигнал несущей частоты расположен в высокочастотном радиодиапазоне до 400 МГц. Стоимость интерфейса ЛВС не должна превышать 10 – 20% от стоимости подключаемых устройств.

Семиуровневая модель OSI

OSI – Open System Interconnection. Эта модель стала основной архитектурой передачи межкомпьютерных сообщений. Модель разделяет процесс передачи информации между компьютерами на 7 уровней, каждый из них достаточно автономен и взаимодействует только с соседними. Большинство устройств сетей реализуют все 7 уровней, но некоторые реализации исключают (объединяют) несколько уровней. Два нижних уровня реализуются аппаратно и программно, остальные пять реализуются только программно.

Необходимость создания эталонной модели

- Проблема несовместимости устройств, использующих разные протоколы
- Необходимость в обобщении средств сетевого взаимодействия

Сетезависимые уровни: физический, канальный и сетевой. Сетенезависимые уровни: транспортный, сеансовый, представления, прикладной.

Физический уровень

Назначение: <u>определяет</u> электротехнические, механические, процедурные и функциональные <u>характеристики сети</u> (уровень напряжения, скорость передачи данных, синхронизация, физическое напряжения и т. д.).

Сетевое оборудование: повторители, концентраторы (хабы).

Протоколы: ARCNet, Ethernet, Token Ring.

Канальный уровень

Назначение: <u>обеспечивает надежную передачу</u>, обнаружение и коррекцию ошибок; согласование скоростей передатчика и приемника информации; <u>установление логического соединения</u> между взаимодействующими узлами.

Данный уровень условно разбит на два подуровня:

- MAC (Medium Access Control) управляет доступом к физической среде
- 2. LLC (Logical Link Control) управляет логическим каналом

Сетевое оборудование: мосты, сетевые карты и драйверы, коммутаторы **Протоколы**: 802.3, 802.5, X25

Сетевой уровень

Назначение: <u>образование единой транспортной системы</u>, объединяющей несколько сетей; маршрутизация пакетов между узлами, находящимися в различных сегментах сети.

Сетевое оборудование: маршрутизаторы

Протоколы: ІР, ІРХ

Транспортный уровень

Назначение: предоставляет <u>услуги по транспортировке данных;</u> обеспечивает механизмы для установки, поддержания, упорядочения, завершения работы <u>логических каналов</u>; обнаружение и устранение неисправностей.

Сетевое оборудование: нет **Протоколы**: TCP, UDP, SPX Сеансовый уровень

Назначение: устанавливает, управляет, поддерживает и завершает <u>сеансы взаимодействия между удаленными процессами</u>; предоставляет средства для отправки информации, услуг и уведомления о неисправностях на трех верхних уровнях. Часто объединяют с прикладным уровнем.

Уровень представления

Назначение: обеспечивает <u>представление передаваемой по сети</u> <u>информации</u>, не меняя при этом ее содержания (шифрование/перекодировка).

Прикладной уровень

Набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам (файлы, принтеры, вебстраницы), а также организуют свою совместную работу.

Протоколы: HTTP, FTP, SMTP, IMAP, SSH

Основные топологии ЛВС

Топология сети — конфигурация графа, вершинам которого соответствуют конечные узлы сети и коммуникационное оборудование, а ребрам — физические или информационные связи между вершинами.

Звезда – в центре данной сети расположен центральный узел - **концентратор** (хаб или свитч).

Достоинства:

- На разных радиальных направлениях могут использоваться разные каналы и скорости передачи.
- Каждое радиальное направление не зависит от остальных.
- Упрощены процедуры обнаружения и устранения неисправностей.
- Обеспечивается более высокий уровень защиты доступа к данным.

Недостатки:

- Зависимость от надежности центрального узла.
- Высокая стоимость сетевого оборудования.
- Количество узлов сети ограничено количество портов концентратора

Кольцо — элементы кабеля, соединенные в виде кольца, при этом кольцо состоит из нескольких повторителей (для ретрансляции кадра в сеть и для его усиления), соединенных средой передачи. Сети с такой типологией считаются активными из-за повторителей. Кадры чаще всего передаются в одном направлении (по или против часовой стрелки).

Достоинства:

- Отсутствие центрального узла
- Маршрутизация достаточно простая
- Легко организуется автоматическое подтверждение приема данных
- Доступ к кольцу (передающей среде) гарантирован, при этом пропускная способность сети пропорционально делиться между всеми пользователями.

Недостатки:

- Надежность сети зависит от всех кабелей и повторителей
- При модификации сети происходит прерывание её функционирование
- Повторители вносят задержку сигнала
- Трассировка кабеля может быть сложной

Шина — сегмент кабеля, не замкнутого в кольцо, который моет быть раскручен или быть в бухте. Информация в шину передается от одного узла и распространяется в обе стороны кабеля. Узлы подключаются с помощью врезки (монтажное «ИЛИ»). Подключение реализуется с помощью специального оборудования (коннекторов).

Достоинства:

- Среда полностью пассивна.
- Достаточно легко подключать новые устройства.
- Монтаж сети достаточно прост.

Недостатки:

- Общая длина сети ограничена.
- Нет автоматического подтверждения приема данных.
- Для связи со средой требуется интеллектуальные устройства (сетевая карта).
- Каждый имеющий соответствующее оборудование может прослушивать передачи, не обнаруживая себя.

Дерево — сеть, использующая несколько концентраторов, иерархически соединенных между собой звездообразными связями.

Стандарты комитета 802

В 1980 году в институте IEEE был организован комитет 802 по стандартизации технологий LAN. Этот комитет разрабатывал стандарты физического и канальных уровней для ЛВС. В начале было создано 12 подкомитетов. Службы и протоколы, указанные в IEEE 802 находятся на двух нижних уровнях (канальный уровень и физический) семиуровневой сетевой модели OSI.

Подкомитеты 802.х:

- 802.1. Общие определения локальный сетей, связь с моделью ISO/OSI, Bridging, QoS.
- 802.2. Логические процедуры передачи кадров и связь с сетевым уровнем.
- 802.3. Стандарт ЛВС с методом множественного доступа с прослушиванием несущей и обнаружением коллизий CSMA/CD (Carrier Sense Multiple Access with Collision Detection).
- 802.4. Стандарт ЛВС с методом передачи маркера (токена) по логическому кольцу с топологией «шина» TCB (Token Connection Bus).
- 802.5. Стандарт ЛВС с методом передачи маркера (токена) по логическому и физическому кольцу Token Ring.
- 802.6. Стандарт городских вычислительных сетей.
- 802.7. Широкополосная передачи данных (рабочая группа заморожена).

- 802.8. Стандарт связи для локальной сетевой коммуникации в волоконно-оптической среде.
- 802.9. Стандарты интегрированных сетей передачи голоса и данных.
- 802.10. Стандарты сетевой безопасности.
- 802.11. Стандарты беспроводных сетей.
- 802.12. Стандарт ЛВС с методом доступа по требованию с приоритетом.

Стандарт 802.3

Стандарт ЛВС с методом множественного доступа с прослушиванием несущей и обнаружением коллизий — CSMA/CD (Carrier Sense Multiple Access with Collision Detection).

Характеристики физического уровня:

- Передающая среда: коаксиальный кабель, витая пара, оптоволокно
- Длина сегмента: 500 м
- Повторители для соединения сегментов
- Максимальное количество сегментов: 5
- Скорость передачи: 10 Мбит/с
- Топология: шина или дерево

Функции канального уровня:

- Формирование кадров и адресов
- Управление доступом к среде
- Кодирование/декодирование данных с формированием сигналов синхронизации
- Доступ к каналу

Стандарт 802.4

Стандарт ЛВС с методом передачи маркера (токена) по логическому кольцу с топологией «шина» - TCB (Token Connection Bus).

Характеристики физического уровня:

- Передающая среда: коаксиальный кабель с волновым сопротивлением 75 Ом
- Скорость передачи: 10 Мбит/с
- Топология: логическое кольцо, физическая шина
- Метод доступа: Token Connection Bus

Функции канального уровня:

- Подключение или отключение новой станции
- Инициализация логического кольца
- Восстановление после ошибок

Стандарт 802.5

Стандарт ЛВС с методом передачи маркера (токена) по логическому и физическому кольцу – Token Ring.

Характеристики физического уровня:

- Передающая среда: витая пара с использованием манчестерского кодирования
- Скорость передачи: 1 и 4 Мбит/с
- Топология: кольцо
- Метод доступа: Token Ring

Функции канального уровня:

- Определение соседних станций
- Управление маркерами
- Очистка кольца
- Подключение или отключение новой станции
- Восстановление после ошибок

Базовые ЛВС Ethernet 10 Base. Правила 5-4-3 и 4 хабов Варианты стандарта:

- 10Base-5 коаксиальный кабель диаметром 0,5", называемый «толстым»
- 10Base-2 коаксиальный кабель диаметром 0,25", называемый «тонким»
- 10Base-T неэкранированная витая пара
- 10Base-F волоконно-оптический кабель

10 Base-T

- Топология: звезда
- Передающая среда: неэкранированная витая пара
- Оборудование: концентратор (многопортовый повторитель)
- Максимальная длина сегмента: 100 м, минимальная: 2 м
- Максимальное количество станций: 1024

Правило 4 хабов: между любыми двумя узлами сети может быть не более 4 концентраторов. В противном случае сеть не будет работать из-за поздних коллизий). Следовательно диаметр сети: 100 x 5 = 500 м.

10 Base-2

- Топология: шина
- Передающая среда: коаксиальный кабель 0,25"
- Оборудование: повторители
- Максимальная длина сегмента 185 м
- Максимальное количество узлов в сегменте: 30

Правило 5-4-3: максимальное число сегментов - 5 (4 повторителя), из которых 3 могут использоваться для подключения узлов, а 2 играют роль удлинителей сети.

10 Base-5

- Топология: шина
- Передающая среда: коаксиальный кабель 0,5"
- Оборудование: повторители
- Максимальная длина сегмента 500 м
- Максимальное количество узлов в сегменте: 100

Действует правило 5-4-3.

10 Base-F

- Топология: звезда
- Передающая среда: оптоволокно
- Оборудование: концентратор (многопортовый повторитель)
- Максимальная длина сегмента 2000 м
- Максимальное количество узлов в сегменте: 1024

Действует правило 4 хабов.

Методика расчета конфигурации сетей Ethernet Необходимость расчета конфигурации

- Сеть состоит из смешанной кабельной системы
- Необходимо рассчитать максимальное число повторителей и максимальный диаметр сети

Основные условия корректности работы ЛВС

- Кол-во станций в сети не больше 1024
- Максимальная длина сегмента не больше определенной для конкретной среды в стандарте
- Время двойного оборота (PDV) между двумя наиболее удаленными станциями не больше 575 бит-интервалов
- Сокращение межкадрового интервала (PVV) при прохождении последовательности кадров через все повторители не больше 49 бит-интервалов

Расчет времени двойного оборота

Тип	База левого	База	База	Задержка
сегмента	сегмента	промежуточного	правого	среды на 1
		сегмента	сегмента	M
10BASE 5	11.8	46.5	169.5	0.0866
10BASE 2	11.8	46.5	169.5	0.1026
10BASE T	15.3	42	165	0.113
10BASE FB	-	24	-	0.1
10BASE FL	12.3	33.5	156.5	0.1

- Левый сегмент тот, к которому подключен конечный узелпередатчик
- Правый сегмент тот, к которому подключен конечный узел приемник

- База сегмента суммарная задержка в повторителе, входном и выходном трансивере
- Если крайние сегменты имеют различную физическую среду, то производится 2 расчета (в одну и в другую сторону) и выбирается наибольшее значение

- 1. 15.3 + 100 x 0.113 = 26.6
- 2. $33.5 + 1000 \times 0.1 = 133.5$
- 3. $24 + 500 \times 0.1 = 74$
- 4. $25 + 500 \times 0.1 = 74$
- 5. $24 + 600 \times 0.1 = 84$
- 6. $165 + 100 \times 0.113 = 176.3$

PDV = 26.6 + 133.5 + 74 + 74 + 84 + 176.3 = 568.4 < 575

Расчет сокращения межкадрового интервала

Тип сегмента	Передающий сегмент	Промежуточный				
		сегмент				
10BASE 5	16	11				
10BASE 2	16	11				
10BASE T	10.5	8				
10BASE FB	-	2				
10BASE FL	10.5	8				

- 1. 10.5
- 2. 8
- 3. 2
- 4. 2
- 5. 2

PVV = 10.5 + 8 + 2 + 2 + 2 = 24.5 < 49

ЛВС 100 Base, основные характеристики и особенности Спецификации и элементы физического уровня 100-Base

Три варианта кабельных систем:

- Волоконно-оптический многомодовый кабель (два волокна)
- Витая пара категории 5 (две пары)
- Витая пара категории 3 (четыре пары)

Элементы физического уровня:

- Уровень согласования. Нужен для того, чтобы уровень МАС, рассчитанный на интерфейс AUI (Ethernet), мог работать с физическим уровнем через МІІ
- Независимый от среды интерфейс (MII). Независимый от физической среды способ обмена данными
- Устройство физического уровня:
 - Подуровень логического кодирования. Преобразует поступающие от уровня МАС байты в символы кода 4В/5В или 8В/6Т
 - Подуровень физического присоединения. Обеспечивают формирование сигналов в соответствии с методом физического кодирования (NRZI и т. д.)

- о Подуровень зависимости от физической среды
- Подуровень автопереговоров о скорости передачи. Подбор эффективного режима работы

Основные характеристики и особенности ЛВС 100 Base-TX, 100 Base-T4, 100 Base-FX

- Межкадровый интервал: 0.96 мкс
- Битовый интервал: 10 нс
- Топология: звезда
- Максимальный размер кадра: 1.5 Кбайт
- Признак того, что среда свободна: повторяющаяся передача запрещенного сигнала 1111 (IDLE)

100 Base-TX

- Двухпарный кабель на витой паре категории 5
- Максимальная длина сегмента: 100 м

100 Base-T4

- Четырехпарный кабель на витой паре категории 3, 4 или 5
- Максимальная длина сегмента: 100 м

100 Base-FX

- Оптоволокно с двумя кабелями
- Максимальная длина сегмента: 400 м (полудуплекс) и 2000 м (дуплекс)

Функция автопереговоров

Схема автопереговоров позволяет двум физически соединенным устройствам, которые поддерживают несколько стандартов физического уровня, отличающихся битовой скоростью и количеством витых пар, согласовать наиболее выгодный режим работы. Обычно процедура происходит при подсоединении сетевого адаптера, который может работать на скоростях 10 и 100 Мбит/с, к концентратору или коммутатору. Режимы работы:

- 10 Base-T (самый низкий приоритет)
- Дуплексный 10 Base-T
- 100 Base-TX
- 100 Base-T4
- Дуплексный 100 Base-TX (самый высокий приоритет)

Процедура запускается при включении устройства, также может быть запущена модулем управления устройства.

Устройство посылает партнеру пачку специальных пакетов, в которые закодированы режимы взаимодействия, начиная с самого приоритетного. Если приемник поддерживает функцию автопереговоров, то он указывает в ответе наиболее приоритетный поддерживаемый режим.

ЛВС FDDI, основные характеристики и особенности

FDDI – Fiber Distributed Data Interface

Основы технологии FDDI

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

• Повысить битовую скорость передачи данных до 100 Мб/с.

- Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.
- Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного трафиков.

Топология, метод доступа, физическая среда

Метод доступа: передача токена

Топология: двойное кольцо Физическая среда: оптоволокно

Режимы

7

Особенность

Особенность — основное достоинство — повышенная отказоустойчивость, достигается за счет двух колец. При этом, для того чтобы узлы использовали функции отказоустойчивости, они должны быть подключены к обеим кольцам. В нормальном режиме используется одно кольцо — первичное. Передача данных против часовой стрелки. В случае какоголибо вида отказа (обрыв первичного кольца) происходит автоматическое реконфигурация сети (сворачивание, свертывание колец). Первичное кольцо замыкается на вторичное с помощью оборудования (адаптеры, хабы FDDI), чтобы сворачивание колец выполнялось узел должен быть подключен к обеим кольцам. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой.

Сетевые адаптеры. Классификация, функции и характеристики

Сетевая плата – дополнительное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети.

Функции

Сетевой адаптер вместе с драйвером реализует канальный уровень OSI. Эта пара выполняет функции физического и МАС-уровня, а LLC-уровень реализуется модулем операционной системы.

Передача кадра из компьютера в кабель:

• Приём кадра данных LLC вместе с адресной информацией МАСуровня

- Оформление кадра данных МАС-уровня, в который инкапсулируется кадр LLC. Заполнение адресов назначения и источника, вычисление контрольной суммы
- Формирование символов кодов при использовании избыточных кодов
- Выдача сигналов в кабель в соответствии с принятым линейным кодом

Приём кадра из кабеля в компьютер:

- Приём из кабеля сигналов, кодирующих битовый поток
- Выделение сигналов на фоне шума
- Восстановление символов кода
- Проверка контрольной суммы кадра. Если она неверна, то кадр отбрасывается, а через межуровневый интерфейс наверх, протоколу LLC передается соответствующий код ошибки. Если контрольная сумма верна, то из МАС-кадра извлекается кадр LLC и передается через межуровневый интерфейс наверх, протоколу LLC.

Характеристики

- способ конфигурирования адаптера
- размер установленной на плате буферной памяти и режимы обмена с ней
- возможность установки на плату микросхемы постоянной памяти для удаленной загрузки (BootROM)
- возможность подключения адаптера к разным типам среды передачи (витая пара, тонкий и толстый коаксиальный кабель, оптоволоконный кабель)
- используемая адаптером скорость передачи по сети и наличие функции ее переключения
- возможность применения адаптером полнодуплексного режима обмена
- совместимость адаптера (точнее, драйвера адаптера) с используемыми сетевыми программными средствами

Классификация адаптеров

По среде передачи данных:

- Проводные (витая пара, коаксиальный кабель, оптоволокно)
- Беспроводные (инфракрасная связь, Bluetooth, WLAN)

По выполняемым функциям:

- Реализующие функции физического и канального уровней
- Реализующие функции первых четырех уровней. Эти адаптеры могут выполнять функции маршрутизации, ретрансляции данных, формирования пакетов из передаваемого сообщения (при передаче), сборки пакетов в сообщение (при приеме), согласования протоколов передачи данных различных сетей

По топологии ЛВС адаптеры разделяются на группы, поддерживающие различные топологии ЛВС:

Шинную

- Кольцевую
- Звездообразную
- Древовидную
- Комбинированную

По принадлежности к типу компьютера:

- адаптеры для клиентских компьютеров
- адаптеры для серверов

В адаптерах для клиентских компьютеров значительная часть работы по приему и передаче сообщений перекладывается на программу, выполняемую в ПК. Такой адаптер проще и дешевле, но он дополнительно загружает центральный процессор компьютера. Адаптеры для серверов снабжаются собственными процессорами, выполняющими всю нужную работу.

Классификация фирмы 3Com

- Первое поколение. Выполнены на дискретных микросхемах, буферная память на один кадр, задание конфигурации адаптера с помощью перемычек
- Второе поколение. Многокадровая буферизация. Выполнены на микросхемах с высокой степенью интеграции. Драйверы на стандартных спецификациях
- Третье поколение. Конвейерная обработка кадров. Выполнены на специализированный интегральных схемах (ASIC)
- Четвертое поколение. Наличие ASIC, выполняющая функции MACуровня. Большое количество высокоуровневых функций
- Пятое поколение

Концентраторы. Основные и дополнительные функции концентраторов. Конструктивное исполнение концентраторов

Основная функция концентраторов

Сетевой концентратор – устройство для объединения компьютеров в сеть Ethernet с применением кабельной инфраструктуры типа витая пара

Уровни OSI концентратора

Концентратор работает на физическом уровне сетевой модели OSI, ретранслируя входящий сигнал с одного из портов в сигнал на все

остальные (подключённые) порты, реализуя, таким образом, свойственную Ethernet топологию общая шина

Ситуации включения режима автосегментации концентратора

Если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным. Неисправности:

- Ошибки на уровне кадра. Если интенсивность кадров, содержащих ошибки и проходящих через порт, превышает заданный порог, то порт, соответственно, отключается. Среди наиболее часто встречающихся ошибок: неверная контрольная сумма, неверная длина кадра. Также ошибкой считается и неоформленный заголовок кадра
- Концентраторы также могут отключаться и в результате множественных коллизий, из-за затянувшейся передачи кадра через порт

Способ защиты от несанкционированного доступа при использовании концентратора

- Блокирование неиспользуемых портов
- Установка пароля на консольный порт
- Установка шифрования информации на каждом из портов (некоторые модели имеют эту возможность)

Концентратор с фиксированным количеством портов

Является наиболее простым и удобным конструктивным исполнением. Представляет собой <u>отдельный корпус, в котором предусмотрены все необходимые элементы</u> — порты, блоки питания, элементы индикации и управления. Важно заметить, что все эти элементы — незаменимы. Такие концентраторы могут иметь от 4 до 24 портов. Один порт может выделяться и предназначаться для подключения концентратора к магистрали сети. Этот порт может также использоваться для объединения нескольких концентраторов.

Модульный концентратор

Представляет собой отдельные модули с фиксированным количеством портов. Эти порты установлены на шасси. Такие концентраторы чаще всего являются многосегментными, и для них существуют различные типы модулей, отличающиеся друг от друга количеством портов.

Стековый концентратор

Представляет собой <u>отдельный корпус с фиксированным числом портов и</u> <u>элементами, которые не подлежат замене</u>. Они отличаются тем, что имеют специальные порты и кабели, предназначенные для объединения нескольких подобных корпусов в один повторитель.

Модульно-стековые концентраторы

Это модульные концентраторы, которые объединяются при помощи специальных связей в стек. Концентраторы такого типа имеют корпуса, рассчитанные на сравнительно небольшое количество модулей — примерно от одного до трех. Модульно — стековые концентраторы хороши тем, что практически идеально сочетают в себе все достоинства и модульных, и стековых концентраторов.

Мосты ЛВС. Структуризация сети с помощью мостов. Принцип работы мостов

Основная функция мостов

Сетевой мост — сетевое устройство <u>второго уровня модели OSI,</u> предназначенное для объединения сегментов (подсети) компьютерной сети (на разделяемой среде) в единую сеть.

Ограничения разделяемой среды можно преодолеть с помощью <u>логической структуризации сети</u>: сегментировать единую разделяемую среду на несколько и соединить полученные сегменты сети некоторым коммуникационным устройством (мостом), которое не передает кадры побитово, а буферизует их и затем передает в тот или иной сегмент в зависимости от адреса назначения кадра.

Преимущества использования мостов

- Возможность соединять локальные сети, использующие разные среды передачи
- Поддержка многозадачных протоколов
- Обработка полученных заданий в порядке очереди, если на порт одновременно приходит несколько сигналов
- Автоматическая фильтрация кадров, которые не соответствуют расчетам контрольных сумм (CRC) и стандартам

Таблица маршрутизации (продвижения)

В данном случае — таблица соответствия МАС-адресов портам моста. С помощью этой таблицы мост определяет (по адресу назначения в заголовке кадра) на какой порт отправить данный кадр.

Алгоритм прозрачного моста

Мост строит таблицу продвижения на основании пассивного наблюдения за трафиком. При этом мост учитывает адреса источников кадров данных, поступающих на его порты. По адресу источника мост определяет к какому сегменту относится узел-источник. Это соответствие заносится в таблицу.

При получении кадра мост просматривает таблицу, ища запись с адресом назначения

Если такая запись есть, то он сравнивает сегменты источника и получателя. Если они разные, то мост передает кадр в сегмент получателя (forwarding). В противном случае кадр удаляется из буфера (filtering)

Если такой записи нет, то мост отправляет кадр на все свои порты (broadcasting), кроме порта, откуда кадр пришел.

Записи в таблице могут быть статическими (с неограниченным временем жизни) и динамическими.

Алгоритм с маршрутизацией от источника

Алгоритм используется в сетях Token Ring и FDDI. Компьютер-отправитель помещает в кадр всю адресную информацию о промежуточных мостах и кольцах, которые кадр должен пройти на пути к компьютеру-адресату.

Первоначально компьютер-отправитель не имеет никакой информации о пути к компьютеру адресату. Кадр просто передается в кольцо, в надежде,

что адресат находится в одном кольце с отправителем. Если компьютерадресат в кольце отсутствует, то кадр сделает оборот по кольцу и вернется без установленного признака "кадр получен". В таком случае компьютерпошлет одномаршрутный широковещательный отправитель (SRBF, Brodcast Этот исследователь Single Route Frame). кадр распространяется по сети: мосты дублируют кадр на все свои порты, за исключением заблокированных администратором.

В конце-концов кадр-иследователь будет получен компьютеромадресатом, который немедленно отправит многомаршрутный широковещательный кадр-исследователь (ARBF, All Route Brodcast Frame). Этот кадр распространяется по сети, дублируясь мостами на все порты без исключения (кадр дважды на один порт не отправляется).

В конце-концов, до компьютера-отправителя дойдет множество кадров-ARBF, прошедших через все возможные маршруты от компьютераадресата до компьютера-исследователя. В поле RIF кадра записывается путь его прохождения. Полученная информация попадет компьютеруотправителю и в маршрутные таблицы моста, соединяющего кольцо компьютера-отправителя с остальной сетью. Впоследствии все компьютеры этого кольца могут воспользоваться информацией моста при отправке своих кадров.

Коммутаторы. Основные функции и принцип работы коммутатора. Производительность коммутаторов Основные функции и уровни OSI коммутаторов

Сетевой коммутатор — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети.

Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам.

Принцип работы коммутатора

Коммутатор хранит в памяти специальную таблицу (МАС-таблицу), в которой указывается соответствие МАС-адреса узла порту коммутатора. При включении switch эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом свитч анализирует пакеты данных, определяя МАС-адрес компьютера-отправителя, и заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит пакет, предназначенный для этого компьютера, этот пакет будет отправлен только на соответствующий порт. Если МАС-адрес компьютера-получателя еще не известен, то пакет будет продублирован на все интерфейсы. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.

Структурная схема коммутаторов

Коммутационная матрица

Способы конвейерной обработки кадра

- 1. Прием первых байтов кадра процессором входного порта, включая прием байтов адреса назначения
- 2. Поиск адреса назначения в адресной таблице коммутатора
- 3. Коммутация матрицы
- 4. Прием остальных байтов кадра процессором входного порта
- 5. Прием байтов кадра (включая первые) процессором выходного порта (через коммутационную матрицу)
- 6. Получение доступа к среде процессором выходного порта
- 7. Передача байтов кадра процессором выходного порта в сеть

Этапы 2 и 3 совместить во времени нельзя

13.10. Экономия времени при конвейерной обработке кадра: а — конвейерная обрабо б — обычная обработка с полной буферизацией

Расчет производительности коммутатора

Основные характеристики коммутатора, влияющие на производительность:

- Скорость фильтрации скорость выполнения этапов:
 - о Прием кадра в свой буфер
 - Просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра
 - Уничтожение кадра, так как его порт назначения совпадает с портом-источником
- Скорость маршрутизации:
 - Прием кадра в свой буфер
 - Просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра
 - Передача кадра в сеть через найденный по адресной таблице порт назначения
- Пропускная способность количество переданных за единицу времени через порты пользовательских данных
- Задержка передачи кадра время, прошедшее с момента прихода первого байта кадра на входной порт коммутатора до момента появления этого байта на выходном порту коммутатора
- Размер буфера (буферов) кадров
- Производительность внутренней шины
- Производительность процессора или процессоров
- Размер внутренней адресной таблицы

Коммутатор — это многопортовое устройство, поэтому для него принято все приведенные выше характеристики (кроме задержки передачи кадра) давать в двух вариантах. Первый вариант — суммарная производительность коммутатора при одновременной передаче трафика по всем его портам, второй вариант - производительность, приведенная в расчете на один порт.

Классы ІР-адресов

Назначение различных классов адресов

IP-адрес состоит из двух логических частей — номера сети и номера узла в сети.

Класс	Первые	Мин. номер	Макс. номер сети	Макс. число
	биты	сети		узлов в сети
Α	0	1.0.0.0	126.0.0.0	2 ²⁴
		(0 не исп-ся)	(127 – зарезерв-	
			но)	
В	10	128.0.0.0	191.255.0.0	2 ¹⁶
С	110	192.0.0.0	223.255.255.0	28
D	1110	224.0.0.0	239.255.255.255	Групповые
				адреса
E	11110	240.0.0.0	247.255.255.255	Зарезерв-но

Адреса классов A, B и C служат для идентификации отдельных сетевых интерфейсов, то есть являются индивидуальными адресами (unicast address), групповой адрес идентифицирует группу сетевых интерфейсов, которые в общем случае могут принадлежать разным сетям. Если при отправке пакета в качестве получателя указан групповой адрес, то такой пакет должен быть доставлен всем узлам, входящим в данную группу.

Для получения номера сети и номера узла из IP-адреса нужно после разделения адреса дополнить компоненты нулями до полных 4 байт.

Особые ІР-адреса

- Номер сети и номер узла не может состоять из одних нулей или единиц
- Адрес 0.0.0.0 неопределенный адрес. Обозначает того, кто сгенерировал пакет
- Адрес 255.255.255.255 ограниченный широковещательный. Пакет рассылается всем узлам сети, в которой находится источник пакета
- Если номер узла состоит из одних единиц, то такой пакет рассылается всем узлам сети, указанной в адресе назначения. Такой адрес называется широковещательным
- Адреса 127.*.*.* адреса обратной петли (loopback). Внутренний адрес стека протоколов

Диапазоны частных адресов

Эти адреса исключены из централизовано распределяемых:

- Класс А сеть 10.0.0.0
- Класс В сети 172.16.0.0-172.31.0.0
- Класс С сети 192.168.0.0-192.168.255.0

Маски

Маска — число, применяемое в паре с IP-адресом, двоичная запись которого содержит непрерывную последовательность единиц в тех разрядов, которые должны интерпретироваться как номер сети.

Пример

IP-адрес: 129.64.134.5 (10000001.01000000.10000110.00000101) Маска: 255.255.128.0 (111111111.1111111.10000000.00000000)

Номер сети: 129.64.128.0(10000001.01000000.1)Номер узла: 0.0.6.5(0000110.00000101)

Маски для стандартных классов сетей:

- A 255.0.0.0
- B 255.255.0.0
- C 255.255.255.0

Другой способ записи масок: 185.23.44.206/16 — под номер сети отведено 16 разрядов (маска: 255.255.0.0)

Методы кодирования информации

Цифровое кодирование — способ представления битов в физическом канале. Сначала логическое кодирование, затем физическое цифровое кодирование. Для цифрового кодирования используются потенциальные и импульсные коды. В потенциальных кодах перепады не принимаются, главное, какое значение в период такта имеет результирующий сигнал.

Потенциальный код NRZ (Non Return to Zero)

Самый простой 2-уровневый потенциальный код. 0 — нижний уровень, 1 — верхний. Переходы на границе битов. Когда выполняется передача длинной последовательности, есть проблемы с синхронизацией. Достоинство — простота и дешевизна. Используется внутри компьютеров, так могут работать на достаточно низких частотах, которые равны n/2, где n — скорость передачи данных.

Биполярное кодирование AMI

В этом методе применяются три уровня потенциала — отрицательный, нулевой, положительный. Для кодирования 0 используется нулевой потенциал. Единица кодируется либо положительным, либо отрицательным, при этом потенциал каждой новой единицы противоположен предыдущей.

Потенциальный код NRZ (Non Return to Zero with ones Inverted)

Используется 2 уровня сигнала. При передаче 0 он передает потенциал, который был установлен на предыдущем такте (не меняет его), а при передаче 1 потенциал инвертируется на противоположный.

Биполярный импульсный код

Единица представляется импульсом одной полярности, а ноль — другой. Каждый импульс длится половину такта.

Манчестерский код

Для кодирования используется перепад потенциала (фронт импульса). Каждый такт делится на две части. Информация кодируется перепадами потенциала, происходящими в середине каждого такта. Единица кодируется перепадом от низкого к высокому уровню, а ноль — обратным перепадом.

Потенциальный код 2B1Q

Используется 4 уровня сигнала. Каждые два бита передаются за один такт сигналом, имеющим четыре состояния:

• 00: -2.5 B

• 01: -0.833 B

10: 0.833

• 11: 2.5 B