Similarity-Based Text Retrieval

From Basics to Vector Spaces

Bala Priya C 29th May, 2025

What We'll Cover Today

- What is text similarity?
- Vector space model basics
- Text representation methods (Count, TF-IDF, Word2Vec)
- Distance and similarity measures
- Visual examples and simple math

The Big Picture

What is Text Similarity?

Goal: Find how "similar" two pieces of text are

Examples:

- ullet "The cat sat on the mat" vs "A cat sits on a mat" o High similarity
- ullet "Machine learning algorithms" vs "Cooking pasta recipes" o Low similarity

Applications:

- Search engines
- Recommendation systems
- Duplicate detection
- Document clustering

Vector Space Model - The Core Idea

Key Insight: Represent text as vectors in high-dimensional space

Closer points = More similar documents

Method 1: Simple Word Count

Idea: Count how many times each word appears

Example:

- Doc 1: "The cat sat on the mat"
- Doc 2: "The dog sat on the floor"

Doc 1	Doc 2
2	2
1	0
0	1
1	1
1	1
1	0
0	1
	2 1 0 1 1

Vectors: Doc1 = [2,1,0,1,1,1,0], Doc2 = [2,0,1,1,1,0,1]

Problem with Simple Counts

Issue: Common words dominate

Solution: Use TF-IDF to balance frequency with rarity!

Method 2: TF-IDF

$\mathsf{TF}\mathsf{-}\mathsf{IDF} = \mathsf{Term}\ \mathsf{Frequency}\ \times\ \mathsf{Inverse}\ \mathsf{Document}\ \mathsf{Frequency}$

Term Frequency (TF):

$$TF(t, d) = \frac{\text{count of term } t \text{ in document } d}{\text{total terms in document } d}$$

Inverse Document Frequency (IDF):

$$IDF(t) = \log \left(\frac{\text{total documents}}{\text{documents containing term } t} \right)$$

TF-IDF Score:

$$\mathsf{TF}\text{-}\mathsf{IDF}(t,d) = \mathit{TF}(t,d) \times \mathit{IDF}(t)$$

Intuition: Rare words get higher scores, common words get lower scores

TF-IDF Example

3 Documents:

- Doc 1: "cat sat mat"
- Doc 2: "dog sat floor"
- Doc 3: "cat dog animal"

For word "cat":

- TF in Doc 1: $\frac{1}{3} = 0.33$
- IDF: $\log \left(\frac{3}{2}\right) = 0.18$ (appears in 2 out of 3 docs)
- TF-IDF: $0.33 \times 0.18 = 0.06$

For word "sat":

- TF in Doc 1: $\frac{1}{3} = 0.33$
- IDF: $\log(\frac{3}{2}) = 0.18$
- TF-IDF: $0.33 \times 0.18 = 0.06$

Method 3: Word2Vec

Problem: "cat" and "kitten" should be similar, but TF-IDF treats them as completely different

Word2Vec Solution: Learn word meanings from context

```
Animal words cluster together

puppy
dog • 
cat • kitten

Action words cluster together

jog • 
walk

jog • 
Dimension 1
```

Word2Vec: How It Works

Training Process:

Key Idea: Words that appear in similar contexts get similar vectors

Result: Document vector = average of all word vectors in the document

Similarity Measures - The Math

Once we have vectors, how do we measure similarity?

Three main approaches:

- 1. Cosine Similarity Angle between vectors
- 2. Euclidean Distance Straight-line distance
- 3. Jaccard Similarity Set overlap

Cosine Similarity

Measures the angle between two vectors

Formula:

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| \times |\mathbf{B}|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Example:

- Vector A = [1, 2, 3]
- Vector B = [2, 4, 6]

$$\cos(\theta) = \frac{1 \times 2 + 2 \times 4 + 3 \times 6}{\sqrt{1^2 + 2^2 + 3^2} \times \sqrt{2^2 + 4^2 + 6^2}} = \frac{26}{\sqrt{14} \times \sqrt{56}} = 1.0$$

Range: [-1, 1] where 1 = identical direction, 0 = perpendicular, -1 = opposite

Cosine Similarity Visualization

Key Insight: Cosine similarity ignores magnitude, only cares about direction

Euclidean Distance

Measures straight-line distance between points

Formula:

$$d(\mathbf{A},\mathbf{B}) = \sqrt{\sum_{i=1}^{n} (A_i - B_i)^2}$$

Example:

- Vector A = [1, 2]
- $\bullet \ \ \mathsf{Vector} \ \mathsf{B} = [\mathsf{4,\,6}]$

$$d(A, B) = \sqrt{(1-4)^2 + (2-6)^2} = \sqrt{9+16} = \sqrt{25} = 5$$

To convert to similarity:

$$Similarity = \frac{1}{1 + distance}$$

Euclidean Distance Visualization

Key Insight: Euclidean distance considers both direction and magnitude

Jaccard Similarity

Measures overlap between sets (good for binary features)

Formula:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{\text{intersection}}{\text{union}}$$

Example:

- Doc A words: {cat, sat, mat}
- Doc B words: {cat, dog, mat}
- Intersection: $\{cat, mat\} \rightarrow size = 2$
- Union: $\{\text{cat, sat, mat, dog}\} \rightarrow \text{size} = 4$
- Jaccard = $\frac{2}{4}$ = 0.5

Range: [0, 1] where 0 = no overlap, 1 = identical sets

Jaccard Similarity Visualization

Intersection: {mat, dog}

Union: {cat, sat, mat, dog, run, jump}

 $\mathsf{Jaccard} = 2/6 = 0.33$

Putting It All Together: Complete Example

Most common in text retrieval: Cosine similarity with TF-IDF or Word2Vec **Documents:**

- Doc 1: "machine learning algorithms"
- Doc 2: "deep learning neural networks"
- Doc 3: "cooking pasta recipes"

Step 1: Convert to TF-IDF vectors

- Doc 1: [0.7, 0.5, 0.3, 0, 0, 0, 0, 0]
- Doc 2: [0, 0.6, 0, 0.8, 0.4, 0, 0, 0]
- Doc 3: [0, 0, 0, 0, 0, 0.9, 0.6, 0.8]

Step 2: Calculate cosine similarities

- Sim(Doc1, Doc2) = 0.3 (some similarity both about learning)
- Sim(Doc1, Doc3) = 0.0 (no similarity)
- Sim(Doc2, Doc3) = 0.0 (no similarity)

Real-World Performance Tips

Making it work in practice:

- Preprocessing: Remove stopwords, lowercase, stemming
- Dimensionality: Use 50-300 dimensions for Word2Vec
- Speed: Use approximate nearest neighbor search for large datasets
- Evaluation: Test with human judgments of similarity

Tools to try:

- Python: scikit-learn, gensim, sentence-transformers
- Libraries: Elasticsearch, Faiss, Annoy

Document Retrieval in Practice

The Search Process

Steps

- 1. Convert query to vector
- 2. Calculate similarity with all documents
- 3. Rank by similarity score
- 4. Return top documents

Key Takeaways

- 1. **Text** → **Vectors:** Convert documents to numerical representations
- 2. Three main methods:
 - Count vectors (simple but limited)
 - TF-IDF (balances frequency and rarity)
 - Word2Vec (captures semantic meaning)
- 3. Three similarity measures:
 - Cosine (direction-based, most popular)
 - Euclidean (distance-based)
 - Jaccard (set-based)
- 4. **Document retrieval:** Query \to Vector \to Compare \to Rank \to Return top results
- 5. Choose based on your use case and data characteristics

Questions?