

# Al & ML – Why, What, How & Beyond

*August 2018* 



# What is this talk about? (and what it is not!)

### What is this talk about:

- Broad Framework to think about AI & its techniques
- Highlight relationship between AI, ML & Deep Learning
- Articulate the impact of AI & ML in Business Decision Making

### What this talk is not:

- Does not deal with cost-benefit analysis of AI & ML
- Does not cover moral, ethical dimensions of AI & ML
- Does not cover any math behind the techniques

How delivered: I am going to put myself in your shoes, ask & answer key questions that you might have in your mind as you embark on this course!

Q1: Artificial Intelligence brings images of Terminator,
Robots, Enthiran etc. What is the simplest way to
understand AI?



# What is Artificial Intelligence?

Artificial Intelligence refers to the theory and development of computer systems & machines with the ability to perform tasks normally requiring <a href="https://www.human.intelligence">human intelligence</a>

1956 Dartmouth Conference: The Founding Fathers of AI



John McCarthy



Marvin Minsky



Claude Shannon



Ray Solomonoff

Alan Newell



**Herbert Simon** 



Arthur Samuel



And three others...
Oliver Selfridge
(Pandemonium theory)
Nathaniel Rochester
(IBM, designed 701)
Trenchard More
(Natural Deduction)



# What constitutes Human Intelligence?



- 1. <u>Perceive</u> the world, detect signals and collect data
- Make sense of the world using data (Insights, Inference, Predictions etc.)
- 3. <u>Decide</u> on the next course of action
- 4. Act in the Real World

Q2: Ok. I kinda understand what constitutes Human Intelligence. How is it relevant for enterprises?



# Business Decision Making is complex but worth it...



# Al Techniques in Enterprises – Parallels to Human Intelligence



Descriptive, Diagnostic & Predictive Analytics

**Prescriptive Analytics** 

# 3 Categories of Al in Enterprises

# Assisted Intelligence



- Assisted intelligence amplifies the value of existing activity
- Assisted intelligence tends to involve clearly defined, rules-based, repeatable tasks. Ex: Robotic Process Automation (RPA)

# Augmented Intelligence



- Augmented Intelligence fundamentally alters the nature of the task, and business models change accordingly.
- They involve advanced forms of machine learning and NLP, plus specialized interfaces tailored to your company and industry. Ex. Netflix using ML to build a recommendation engine.

## Autonomous Intelligence



- Systems that make decisions without direct human involvement or oversight
- They will do so only after the human decision maker starts trusting the machine or becomes a liability for fast transactions. Ex. Autonomous cars, robots that dispose of bombs

Q3: What is the relationship between AI, ML & DL?



# Al in relation to ML & Deep Learning



# ML & DL - Making Sense of the World (using Data)



Q4: Enough of gyan on frameworks / high-level details.

Practically, what skills do I need to acquire to solve
problems? And can you show real-world examples?



# What skills are required to deliver 'Actionable Insights'?



# Case Study 1: Famous Automobile Manufacturer

<u>Starting Point:</u> 3 Years of vehicle sensor data collected across 108 countries along with data on warranty claims

# Case Study 1: Customer Behavior Modeling



### **Salient Points from Analytics perspective:**

- Business: Warranty costs were high & rising. Urgent need to control costs & increase customer satisfaction
- Data: Sensor (semi-structured) data collected from cars running in 100+ countries
- Math: Clustering done on data to identify driving styles which is then correlated with warranty claims to predict defects
- **Technology:** Spark on the Cloud platform called Databricks, User Interface for self-service

# Case 2: Large Consumer Durables Company

<u>Starting Point:</u> Purchase drivers were determined by post-facto analysis of POS data at stores and survey data resulting in delays of up to eight months to get consumer feedback on product features.

# Case Study 2: Social Data to Drive Innovation







### **Salient Points from Analytics perspective:**

- Business: Can we identify opportunities for Innovation using external data?
- Data: Reviews & Social Interactions captured across the globe. Unstructured data in the form of text
- Math: Sophisticated Natural Language Processing Techniques to extract insights from unstructured data
- **Technology:** Automated data pipeline to ingest & analyze data. Visualization using Tableau

# Case 3: World's Largest Food Distribution Company

Starting Point: Customer & transactional data related to sales of food products to over 500,000 customer locations including restaurants, healthcare & educational facilities and other food service customers. They wanted to drive high margin product sales through effective cross-sell & upsell

# Case Study 3: Recommendation Engine to Increase Sales



Promotion on Additional Spend

### **Salient Points from Analytics perspective:**

- Business: Can we identify opportunities for cross-sell / up-sell to sell more of high margin products?
- Data: Customer, Product, Transactions and Promotions
- Math: Clustering followed by Collaborative Filtering (Recommendation Engine)
- **Technology:** Automated pipeline that generates recommendations for every sales person

Q5: Business, Data, Math, Technology...hmm...that's easy...so why should it take time & effort to acquire this knowledge?



# Dimensions of Analytics

Use Case **Interpret Analytics** Domain Business Formulation Output **Expertise** Acquisition & Data Visualization & Signals from data Data (subtract noise) Wrangling **Story Telling** Math / **Statistical Modeling** Select the right Evaluating the techniques & code output of algos vs ML Quant Tech / Data Engineering / Understand the IT Software Ecosystem **Pipelines** Engineering / SDLC Software

# My Analytics Mindmap

**Global Trends in Society** 

Macro-economy

**Business Fundamentals** 

**Specific Industry Domain** 

**Analytical use cases** 



Analytical
Platforms &
Techniques

**Data Management** 

**Reporting & Self-service** 

**Quantitative Techniques** 

**Performance Mgmt** 

**Insight Delivery** 

Analytics for Business Value <a href="http://bit.ly/31KArT8">http://bit.ly/31KArT8</a>

**Scan for New Products** 

**Evaluate Maturity** 



**Monitor Ecosystem** 

**Leverage Resources** 

Q6: There could be many techniques and it is not possible to learn everything in a short timeframe? Any tips on how to keep track of them and learn as you go along?



# Data Science Techniques – There are a lot of them!



# Develop your own personal map



# Example: Category 1

### Is the focus on data **Navigation** or on the process **Data** Type of Data **Structured Not Webscale** Volume of data Is it a time-series? Has Label / DV? No Yes Category 1: Supervised ML on Structured Data DV - Continuous or Categorical? **Continuous Categorical** Regression Classification

### **Details**

- Exploratory Data Analysis (EDA)
- > Data Pre-processing Outliers, Missing data, Variable Transformations
- Feature Selection & Dimensionality Reduction
- Feature Engineering
- Algorithms Standalone vs Ensembles
- Algorithms Parametric vs Non-Parametric
- Algorithms Linear vs Non-linear
- Cross validation
- Hyper-parameter Tuning
- Predict on Test set

Q7: What are the useful components in the data science toolbox?



# **Data Science Toolbox**

- ➤ Maths / Stats orientation (Not a tool but...)
- > Atleast 1 programming language Python (Jupyter notebooks), R
- > Atleast 1 GUI based ML platform H2o, Azure ML, BigML
- ➤ 1 Cloud based platform (Nice to have) AWS, Databricks
- > Github
- > Kaggle (Competition & Kernels), Analytics Vidhya
- Database / SQL knowledge (preferable)

Q8: Other than the analytical techniques themselves, what are the top 2 skills that needs to be developed?



# Business Orientation is the cornerstone of Analytics



**Business Decision Making Pipeline** 



Data Science Pipeline

# Think Technology Landscape

- > Cloud
- Big Data
- Mobility
- Web Technologies
- Embedded Analytics in Applications
- Legacy Systems

Q9: What are the typical roles in the analytics space and entry possibilities for different experience levels?



# Typical Roles in Analytics

**Business Business Analyst Functional Expert Domain Expert** Visualization Data **Data Analyst experts** Math / **Data Scientist Statisticians** Quant (Junior to Senior Level) AI / ML Engineer Tech / Tech Leads / **Project / Delivery Data Engineer Architects** Managers Software (Cloud, Big Data etc.)

Typically one will need all skills in different proportions

# How to make the transition? – Fresher / Developer

|                               | Can Aspire to be | Skills to Acquire                                                                                                                           | How to Acquire                                                                                                     |
|-------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Fresher /<br>Junior Developer | Business Analyst | <ul><li>Business Orientation</li><li>Functional Knowledge</li><li>(in 1 or 2 areas)</li></ul>                                               | <ul><li>Domain / Functional</li><li>Certifications</li><li>MBA</li></ul>                                           |
|                               | Data Analyst     | <ul> <li>SQL Skills / DB knowledge</li> <li>Translate business requirements         to data needs</li> <li>Basic Stats knowledge</li> </ul> | <ul> <li>Specialized courses</li> <li>Online Tutorials</li> <li>Technical certifications</li> <li>MOOCs</li> </ul> |
|                               | Data Engineer    | <ul> <li>SQL Skills</li> <li>Hands-on coding expertise in Big         Data tools     </li> <li>Cloud Platform knowledge</li> </ul>          | <ul> <li>Focused Big Data &amp; Cloud</li> <li>Courses</li> <li>Online Courses</li> <li>MOOCs</li> </ul>           |

# How to make the transition? – Experienced Techie (6-12 years)

|                  | Can Aspire to be               | Skills to Acquire                                                                                                                                                     | How to Acquire                                                                                                                                                         |
|------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lead / Architect | Data Engineer                  | <ul> <li>Strong SQL &amp; Programming skills in Java, Scala, etc.</li> <li>Design data pipelines for analytics</li> </ul>                                             | <ul> <li>Technical certifications</li> <li>Online Tutorials</li> <li>Focused Courses</li> </ul>                                                                        |
|                  | Big Data / Cloud<br>Specialist | <ul> <li>Design Big Data Systems</li> <li>Expertise in using databases / cloud platforms in the Big Data context</li> </ul>                                           | > Technical certifications in areas of specialization                                                                                                                  |
|                  | Mid-Level<br>Data Scientist    | <ul> <li>Good Stats / Math knowledge</li> <li>Intuitive understanding of algorithms</li> <li>Hands-on coding expertise in ML/Data Science (R, Python etc.)</li> </ul> | <ul> <li>Specialized Analytics Programs</li> <li>MOOCs</li> <li>Build a portfolio of ML projects</li> <li>Online competitions (Ex: Kaggle, AnalyticsVidhya)</li> </ul> |

# How to make the transition? – Senior Professionals

Can Aspire to be Skills to Acquire How to Acquire **Strong Functional / Domain Executive MBA programs** Delivery Manager / **Functional / Domain** Knowledge **Specialized Analytics Expert Business Head Conceptual Knowledge of Analytics** programs (Online / Offline) On the job SDLC as applicable to analytics / **Project / Delivery MOOCs (Case study** big data projects Manager Conceptual knowledge of based approach) **Business + Data + Math Good Stats / Math knowledge Specialized Analytics Programs** Intuitive understanding of **MOOCs** Mid-Level **Data Scientist** algorithms **Build a portfolio of ML projects** Hands-on coding expertise in Online competitions (Ex: Kaggle, ML/Data Science (R, Python etc.) AnalyticsVidhya)

Q10: How are you sure that AI & ML techniques are for the long-term and is not just a fad?



# Digital Shift – Fundamental, Irreversible Change



# Data Science & ML can have great impact on industries

MCKINSEY GLOBAL INSTITUTE

THE AGE OF ANALYTICS:
COMPETING IN A
DATA-DRIVEN WORLD

DECEMBER 2016



SOURCE: McKinsey Global Institute analysis

# More stories for inspiration...

- **Predictive Policing:** https://en.wikipedia.org/wiki/Predictive\_policing
- Genome Sequencing: https://www.techemergence.com/machine-learning-in-genomics-applications/
- Self-correcting Machines: https://www.ge.com/reports/ge-takes-predix-cloud-edge/
- AlphaZero: https://www.extremetech.com/extreme/260215-alphazero-new-chess-champion-harbinger-brave-new-world-ai
- Self-Driving Cars: <a href="https://en.wikipedia.org/wiki/Autonomous car">https://en.wikipedia.org/wiki/Autonomous car</a>









**Strong Motivation** – Data Science is a journey

**Curiosity** – Ask yourself, others & internet the right questions

**Connecting the Dots** – Learn & Assimilate

**Skill** - Should enjoy working with numbers

# Q&A



- Karthikeyan Sankaran, Director, LatentView Analytics
- Email ID <u>Karthikeyan.Sankaran@latentview.com</u>
- Mindmap <u>bit.ly/31KArT8</u>
- LinkedIn <a href="http://in.linkedin.com/in/karthikeyansankaran">http://in.linkedin.com/in/karthikeyansankaran</a>
- Tapchief <u>www.tapchief.com/karthik</u>