Supervised vs Unsupervised Learning

By Francisco Mendoza

mentofran@gmail.com

Type of problems, data types

Unsupervised

ID	x_1	 x_n	Category		ID	ID (
1	3.532	Α	Catx		1	1
2	7.234	Н	Caty	2		
:	:	i i	:	:		

Supervised Vs Unsupervised learning

Unsupervised learning

- Clustering
 - K-means
 - DBSCAN
 - Hierarchical Cluster Analysis

- Visualization and dimensionality reduction
 - Principal Component Analysis (PCA)
 - Locally-Linear Embedding (LLE)
 - \circ t-distributed Stochastic Neighbor Embedding (t-SNE)

K-means

K-means

Assumptions

- *K* –clusters
- *n* instances

1.
$$C_1 \cup C_2 \cup \cdots \cup C_K = \{1, ..., n\}$$

2.
$$C_i \cap C_j = \emptyset \ \forall \ i \neq j$$

Requirements

Similarity or Dissimilarity (Distance) measure

Similarity vs Dissimilarity

- The **similarity** between two objects is a numeral measure of the degree to which the two objects are alike. Consequently, similarities are higher for pairs of objects that are more alike. Similarities are usually non-negative and are often between 0 (no similarity) and 1(complete similarity).
- The **dissimilarity** between two objects is the numerical measure of the degree to which the two objects are different. Dissimilarity is lower for more similar pairs of objects.
- Frequently, the term **distance** is used as a synonym for dissimilarity. Dissimilarities sometimes fall in the interval [0,1], but it is also common for them to range from 0 to ∞.

Exercise

Data

	\boldsymbol{x}	y
a	1	1
b	3	2
С	7	1

Initial Centroids

	x	y
c_1	5	3
c_2	5	1

>_ Code

Homework assignment

• Generate a bivariate dataset with K=3 groups and then use sklearn.cluster.KMeans() to get clusters of the dataset.

Plot the scatterplot identifying each cluster with a different color.

Choosing K. Silhouette coefficient/score

Choosing K. Silhouette coefficient/score

https://visibledata.wordpress.com/visible-data/cluster-analysis/

Cohesion and Separation

- Cluster cohesion
 - How tightly packed is a cluster
 - More cohesive clusters is more better
- Cluster separation
 - Distance between clusters
 - The more separation, the better
- Can we measure these things?
 - Yes

Cohesion (intra-cluster)

• For a data point x_i in the cluster C_i

$$a(i) = \frac{1}{|C_i| - 1} \sum_{j \in C_i, i \neq j} d(i, j)$$

Separation (inter-cluster)

Distance d from a point x to a set C is defined as := d(x, C)

Separation (inter-cluster)

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{j \in C_k} d(i, j)$$

Separation (inter-cluster)

K = 3

Silhouette Coefficient

- Essentially, combines cohesion and separation into a single number
- Let C_i be cluster of point x_i
 - Let a be average of $d(x_i, y)$ for all y in C_i
 - For $C_i \neq C_j$, let b_j be avg $d(x_i, y)$ for y in C_j
 - Let b be minimum of b_i
- Then, $S(x_i) = \frac{b-a}{\max(a,b)}$
- if $|C_i| > 1$, else $S(x_i) = 0$

Silhouette Coefficient

• The idea...

Exercise

• Compute the Silhouette coefficient for

Homework assignment

• Using Scikit learn, find the Silhouette coefficient for of the dataset in the previous homework assignment K = 2, 3, 4, 5, 6. Plot the Silhoute coefficient as function of K.

K-Nearest Neighbors

Just estimate the desired instance by using the k- nearest neighbors. For regression, use (maybe distance weighted) average, for classification use voting

ID	Height	Age	Weight
1	5	45	77
2	5.11	26	47
3	5.6	30	55
4	5.9	34	59
5	4.8	40	72
6	5.8	36	60
7	5.3	19	40
8	5.8	28	60
9	5.5	23	45
10	5.6	32	58
11	5.5	38	?

