A Family of Maximum Margin Criterion for Adaptive Learning

Miao Cheng

E-mail: mewcheng@gmail.com

ICONIP, 2018 DEC

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

Subspace Learning Methods

- Powerful for pattern analysis
- Benchmark for further development
- Linear Classifiers

Subspace Learning Methods

- Principle Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Maximum Margin Criterion (MMC)

General Problems

- Large sizes of data
- Efficient calculation

Solutions

- Pre-step
- Direct approaches

Bird200 Dataset

Deep learning used as a feature extraction method

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

MMC

Use substraction objective

$$J_{MMC} = w^{T} \left(S_{b} - \gamma S_{w} \right) w \tag{1}$$

Singularity problem of S_w (denominator in LDA) can be avoided

MMC

Use substraction objective

$$J_{MMC} = w^{T} \left(S_{b} - \gamma S_{w} \right) w \tag{2}$$

Singularity problem of S_w (denominator in LDA) can be avoided

Limitation

Efficient calculation is suspended

MMC

Comments

"Supposed that there is a PCA pre-step, and whole data energy is preserved. Then, there would be no lost discriminant power."

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

Direct MMC

The learned subspace is spanned by samples $X \in \mathbb{R}^{d \times n}$

$$J = w^{T} X^{T} (S_{b} - \gamma S_{w}) Xw$$

= $w^{T} K (L_{b} - \gamma L_{w}) Kw$ (3)

$$XE\Lambda^{-\frac{1}{2}} = USV^{T} \tag{4}$$

Direct MMC

The learned subspace is spanned by samples $X \in R^{d \times n}$

$$J = w^{T} X^{T} (S_{b} - \lambda S_{w}) Xw$$

= $w^{T} K (L_{b} - \gamma L_{w}) Kw$ (5)

$$XE\Lambda^{-\frac{1}{2}} = USV^{T} \tag{6}$$

Complexity

- The calculation complexity mainly depends on n, $O(n^3)$
- The n can be very large

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

Random MMC

Randomly select t samples
$$A = [x_{a1}, x_{a2}, \cdots, x_{at}]$$

$$J = M(L_b - \gamma L_w) M^T, \quad M = A^T X$$
 (7)

Random MMC

Randomly select t samples $A = [x_{a1}, x_{a2}, \cdots, x_{at}]$

$$J = M (L_b - \gamma L_w) M^T, \quad M = A^T X$$
 (8)

Complexity

The calculation complexity mainly depends on t

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

Layered MMC

Inspired by layered structures in extreme learning machine (ELM)

$$x \mapsto h(x), \quad R^d \mapsto R^g$$
 (9)

Layered MMC

$$x \mapsto h(x), \quad R^d \mapsto R^g$$

 $h(x) = Bx$ (10)

$$J = M(L_b - \lambda L_w) M^T, \quad M = A^T B X, \quad B = P P^T$$
 (11)

$2D^2MMC$

Efficient handling of 2D data

$$y = P^{T} \times Q, \quad x \in R^{d_{1} \times d_{2}}$$

$$S_{bl} = \sum_{i=1}^{c} n_{i} \left(m_{i}^{2} - m^{2} \right) \left(m_{i}^{2} - m^{2} \right)^{T}$$

$$S_{wl} = \sum_{i=1}^{c} \sum_{j=1}^{n_{i}} \left(x_{ij}^{2} - m_{i}^{2} \right) \left(x_{ij}^{2} - m_{i}^{2} \right)^{T}$$

$$S_{br} = \sum_{i=1}^{c} n_{i} \left(m_{i}^{2} - m^{2} \right)^{T} \left(m_{i}^{2} - m^{2} \right)$$

$$S_{wr} = \sum_{i=1}^{c} \sum_{j=1}^{n_{i}} \left(x_{ij}^{2} - m_{i}^{2} \right)^{T} \left(x_{ij}^{2} - m_{i}^{2} \right)$$

$$(13)$$

$2D^2MMC$

Efficient handling of 2D data

$$y = P^T x Q, \quad x \in R^{d_1 \times d_2} \tag{14}$$

$$J(p) = p^{T} (S_{bl} - \gamma S_{wl}) p$$

$$J(q) = q^{T} (S_{br} - \gamma S_{wr}) q.$$
(15)

MMC Network

- MMC development of LDA network proposed in PCANet (T. H. Chan, K. Jia)
- Pixel patches of each image

Example

LBP features

- 1 Introduction
 - Background
 - Maximum Margin Criterion
- 2 Modified MMC
 - Direct MMC
 - Random MMC
 - Extensions
- 3 Experiments
 - Experiments

Data sets

- SUN: 512 d VGG-16 features, 100 classes, half for training and testing
- MNIST: Simple sparse coding features, 10 classes, 2000 vs. 500
- STL-10: deep features of target coding, 2000 vs. 500

Experimental results

Fig. 1. The results of different methods on three data sets. (a) Experimental results on SUN database. (b) Experimental results on MNIST database. (c) Experimental results on STL-10 data set.

Data sets

- ALOI: 50 categories, 18 vs. 54 images in each class
- MNIST: 10 classes, 2000 vs. 500 for each class

Experimental results

Fig. 2. The results of different 2D methods on three data sets. (a) Experimental results on ALOI database. (b) Experimental results on MNIST database.

Data sets

- ALOI: 30 categories, size of 30*30
- MNIST: 10 classes, 100 vs. 100 for each class

Experimental results

Fig. 3. The results of different 2D methods on three data sets. (a) Experimental results on MNIST data set. (b) Experimental results on ALOI data set.

Thank you