Cryptography Quiz 7

1. (4 points) Let S_1 and S_2 be the standard Vigenére and Permutation ciphers, respectively, with $\mathcal{P}=(\mathbb{Z}_{26})^5$ (so the block length of each is m=5). Consider the product cipher $S_1\times S_2$. Consider the keycode $k_1=1$ atex in Vigenére Cipher, and the key k_2 in Permutation Cipher given by

1	2	3	4	5
4	5	2	1	3

Find the decryption $d_{(k_1,k_2)}(\text{IEAEDURMZXALZTM})$ in $S_1 \times S_2$. Write your plaintext with spaces.

- 2. (3 points) Find a Vigenére keycode k_1' such that $d_{(k_2,k_1')}$ (IEAEDURMZXALZTM) in $S_2 \times S_1$ is the same plaintext you obtained in previous problem.
- 3. (4 points) Let M be the Multiplicative Cipher and S be the Shift Cipher. For the encryption rule $e_{(9,15)}(x)$ in $M \times S$, find the corresponding encryption rule $e_{(c,d)}(x)$ in $S \times M$. In other words, find the value of c and d such that $e_{(c,d)}(x)$ in $S \times M$ is equal to $e_{(9,15)}(x)$ in $M \times S$
- 4. (9 points) Find the solution for problem 4 of the problem set 5. You should also write the intermediate results (i.e., the rows A, B, D, E, F, G, H, and J from Figure 1).

4. Consider a very simple substitution permutation network shown in Figure 1 on the next page at the end of this homework problems set. Assume that the S-box is as given below:

Find the encryption of the plaintext "100101", using the key

$$(K1, K2, K3, K4) = (010101, 001011, 111000, 111110).$$

You should also show the intermediate results (i.e., the rows A, B, D, E, F, G, H, and J from Figure 1).

Emil Pulickel.

K046-

Plaintext: TAKE NOME QUIZTWO

=> take home quiz two

T

MEQU

$$k_1 = latex$$
 $k_2 = 12345$
 45

- K! = EXALT: exalt.

-) k2(LATEX): EXALT

Q3.
$$e_{(q,15)}(x)$$
 in $M \times S$. $equals \Rightarrow$
 $e_{(q,15)}(n)$ in $S \times M$
 $e_{(q,15)}^{M \times S}(x) = e_{15}^{S}(e_{q}^{M}(x)) = e_{15}^{S}(qx) = \frac{qx+15 \mod 26}{qx+15 \mod 26}$
 $e_{(c,a)}^{S \times M}(x) = e_{a}^{M}(e_{c}^{S}(x)) = e_{a}^{M}(x+c) = \frac{(x+c)\cdot d \mod 26}{qx+15}$
 $e_{(c,a)}^{M \times S}(x) = e_{a}^{M}(e_{c}^{S}(x)) = e_{a}^{M}(x+c) = \frac{(x+c)\cdot d \mod 26}{qx+15}$
 $e_{(c,a)}^{M \times S}(x) = e_{a}^{M}(e_{c}^{S}(x)) = e_{a}^{M}(x+c) = \frac{(x+c)\cdot d \mod 26}{qx+15}$
 $e_{(c,a)}^{M \times S}(x) = e_{a}^{M}(e_{c}^{S}(x)) = e_{a}^{M}(x+c) = \frac{(x+c)\cdot d \mod 26}{qx+15}$
 $e_{(c,a)}^{M \times S}(x) = e_{a}^{M}(e_{c}^{S}(x)) = e_{a}^{M}(x+c) = \frac{(x+c)\cdot d \mod 26}{qx+15}$
 $e_{(c,a)}^{M \times S}(x) = e_{a}^{M \times S}(e_{c}^{M \times S}(x)) = e_{a}^{M \times S}(x+c) = \frac{(x+c)\cdot d \mod 26}{qx+15}$

$$3id=9$$
 $9c=15 \text{ (mod 26)}$

$$4 \times 19 = 171 = 15 \pmod{26}$$

 $1 \cdot c = 19$ $d = 9$

Qq. S box:

						I II D	111
119.000	00	010	00	·lob	100	110	111
9P 110	101	001	000	०।।	010	111	(00)

$$W'=1|1|10 \longrightarrow 0.$$

$$K_{1}^{2} = 001011$$

$$u^2 = 110101 \longrightarrow E$$

$$V^2 = 111000 \longrightarrow F$$

$$u^3 = 010110 \longrightarrow N$$