Exercise 1

1.1 Probability

For the modules of an electronic device, resistors of a certain resistance (Ω -value) are necessary. 10000 such resistors have been bought from three different manufacturers. 5000 pieces from manufacturer A₁ (1% of the resistors do not meet the specification), 3000 pieces from manufacturer A₂ (2% of the resistors do not meet the specification), 2000 pieces from manufacturer A₃ (5% of the resistors do not meet the specification). How is the probability of event B that an arbitrarily picked resistor is out of specification?

1.2 Probability

Let a radio transmission chain:

The following probabilities for the components breakdown within a time interval T are given:

Modulator (Mod) breakdown, event A_1 : P (A_1) = 0.4 Up-Converter (UC) breakdown, event A_2 : P (A_2) = 0.5 Power amplifier (HPA) breakdown, event A_3 : P (A_3) = 0.6 Transmission media break down, event A_4 : P (A_4) = 0.02 Low noise amplifier (LNA) breakdown, event A_5 : P (A_5) = 0.7 Down converter (DC) break down, event A_6 : P (A_6) = 0.5 Demodulator (DEM) breakdown, event A_7 : P (A_7) = 0.4

What is the probability that no interrupt occurs within a time interval T?

1.2 Probability density function (pdf) and cumulative distribution function (cdf)

Let the probability density function (pdf) of a random variable $x(\zeta)$:

$$f_x(x) = \begin{cases} \frac{k}{8}e^{-\frac{x}{k+2}} & x \ge 0\\ 0 & otherwise \end{cases}$$

- a) Calculate the constant k.
- b) Calculate the mean and the variance (m_x, σ_x^2) of the random variable x (ζ).
- c) Calculate the probability $P(\{-1 \le x(\zeta) < 2\})$.

1.3 Matlab: Sine function and rectangle function

- a) Create a sine signal named "sine1" within the timeframe 0 seconds until 5 seconds. The frequency of the sine signal shall be 4 Hz, the amplitude is 3. The sampling frequency is 30 Hz (i.e. 30 samples per second). Plot the signal.
- b) Let a rectangle signal x (t):

$$x(t) = \begin{cases} 3 & for -1 \le t \le 2 \\ 0 & otherwise \end{cases}$$

Plot x(t) in the range of $-3 \le t \le 4$.