1. Consider the following graph:

Figure 1: Question 1

- (a) Write the vertex set and the edge set, and give a table showing the edgeendpoint function.
- (b) Find all edges that are incident on v_1 , all vertices that are adjacent to v_1 , all edges that are adjacent to e_1 , all loops, all parallel edges, all vertices that are adjacent to themselves, and all isolated vertices.
- 2. Draw the graph specified as follows (maybe more than one):

vertex set =
$$\{v_1, v_2, v_3, v_4\}$$

edge set = $\{e_1, e_2, e_3, e_4\}$
edge-endpoint function:

Edge	Endpoints
e_1	$\{v_1, v_3\}$
e_2	$\{v_2, v_4\}$
e_3	$\{v_2, v_4\}$
e_4	$\{v_3\}$

3. Find the degree of each vertex of the graph G shown below. Then find the total degree of G.

Figure 2: Question 3

- 4. Draw a graph with the specified properties or show that no such graph exists.
 - (a) A graph with four vertices of degrees 1, 1, 2, and 3.
 - (b) A graph with four vertices of degrees 1, 1, 3, and 3.
 - (c) A simple graph with four vertices of degrees 1, 1, 3, and 3.
- 5. In the graph below, determine which of the following walks are trails, paths, circuits, or simple circuits.
 - a. $v_1e_1v_2e_3v_3e_4v_3e_5v_4$
- b. $e_1e_3e_5e_5e_6$
- c. $v_2v_3v_4v_5v_3v_6v_2$

- d. $v_2v_3v_4v_5v_6v_2$
- e. $v_1e_1v_2e_1v_1$
- f. v_1

Figure 3: Question 5

- 6. Which of the following graphs are connected?
- 7. Find all connected components of the following graph G.

Figure 4: Question 6

Figure 5: Question 7

Figure 6: Question 8

- 8. Show that the following two graphs are isomorphic.
- 9. Give an example of a graph with five vertices and four edges that is not a tree.
- 10. (a) Prove that a tree with more than one vertex has at least two vertices of degree 1.
 - (b) Find all nonisomorphic trees with four vertices.