$11a_{55} (K11a_{55})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{36} - 23u^{34} + \dots + b - 1, -u^{36} + u^{35} + \dots + a - 2, u^{37} - 2u^{36} + \dots + u + 1 \rangle$$

 $I_2^u = \langle b, a - u - 1, u^2 + u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 39 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{36} - 23u^{34} + \dots + b - 1, -u^{36} + u^{35} + \dots + a - 2, u^{37} - 2u^{36} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{36} - u^{35} + \dots - 7u + 2 \\ -u^{36} + 23u^{34} + \dots - 7u^{2} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{36} - u^{35} + \dots - 7u + 1 \\ -2u^{36} + 46u^{34} + \dots + u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{35} - u^{34} + \dots + 6u - 2 \\ -u^{26} + 16u^{24} + \dots - 5u^{2} + 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} + 2u \\ u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} + 2u \\ u^{7} - 3u^{5} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-8u^{36} + 11u^{35} + \cdots + 32u + 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{37} - 3u^{36} + \dots - 2u + 1$
c_2	$u^{37} + 19u^{36} + \dots + 4u + 1$
c_3, c_8	$u^{37} - u^{36} + \dots + 3u^2 + 4$
c_5, c_6, c_9 c_{10}, c_{11}	$u^{37} - 2u^{36} + \dots + u + 1$
	$u^{37} - 15u^{36} + \dots - 24u + 16$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{37} - 19y^{36} + \dots + 4y - 1$
c_2	$y^{37} + y^{36} + \dots - 44y - 1$
c_3, c_8	$y^{37} + 15y^{36} + \dots - 24y - 16$
c_5, c_6, c_9 c_{10}, c_{11}	$y^{37} - 48y^{36} + \dots + 25y - 1$
c_7	$y^{37} + 11y^{36} + \dots + 7712y - 256$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.957621 + 0.312318I		
a = 0.073185 - 0.193326I	3.73036 - 4.62550I	7.76738 + 4.90690I
b = -0.598010 + 0.868889I		
u = -0.957621 - 0.312318I		
a = 0.073185 + 0.193326I	3.73036 + 4.62550I	7.76738 - 4.90690I
b = -0.598010 - 0.868889I		
u = -0.949350 + 0.385280I		
a = -0.633743 + 1.188910I	1.18638 - 9.75247I	4.12651 + 8.53256I
b = -0.19879 - 2.12627I		
u = -0.949350 - 0.385280I		
a = -0.633743 - 1.188910I	1.18638 + 9.75247I	4.12651 - 8.53256I
b = -0.19879 + 2.12627I		
u = 0.883228 + 0.295441I		
a = -0.51817 - 1.46272I	-0.53133 + 3.88210I	2.57643 - 5.18911I
b = -0.41139 + 2.28971I		
u = 0.883228 - 0.295441I		
a = -0.51817 + 1.46272I	-0.53133 - 3.88210I	2.57643 + 5.18911I
b = -0.41139 - 2.28971I		
u = -1.092520 + 0.081336I		
a = -0.138007 + 0.822702I	6.20655 - 2.48097I	9.67939 + 3.72325I
b = -0.51460 - 1.46532I		
u = -1.092520 - 0.081336I		
a = -0.138007 - 0.822702I	6.20655 + 2.48097I	9.67939 - 3.72325I
b = -0.51460 + 1.46532I		
u = -0.821917 + 0.258796I		
a = 1.54271 - 0.10934I	-1.03449 - 1.41041I	2.89217 + 4.96755I
b = -0.128202 + 0.262204I		
u = -0.821917 - 0.258796I		
a = 1.54271 + 0.10934I	-1.03449 + 1.41041I	2.89217 - 4.96755I
b = -0.128202 - 0.262204I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.819155 + 0.099014I		
a = 0.507337 + 0.293800I	1.50853 + 0.14938I	6.45155 + 0.46456I
b = -0.977537 - 0.679950I		
u = 0.819155 - 0.099014I		
a = 0.507337 - 0.293800I	1.50853 - 0.14938I	6.45155 - 0.46456I
b = -0.977537 + 0.679950I		
u = 0.669935 + 0.434127I		
a = 1.373890 + 0.079928I	-0.46634 - 2.82395I	2.81248 + 2.07751I
b = 0.053060 - 0.300111I		
u = 0.669935 - 0.434127I		
a = 1.373890 - 0.079928I	-0.46634 + 2.82395I	2.81248 - 2.07751I
b = 0.053060 + 0.300111I		
u = 0.126557 + 0.616394I		
a = -0.649911 - 0.790815I	-2.10926 + 6.36685I	-0.76306 - 6.73734I
b = 0.194995 - 1.112060I		
u = 0.126557 - 0.616394I		
a = -0.649911 + 0.790815I	-2.10926 - 6.36685I	-0.76306 + 6.73734I
b = 0.194995 + 1.112060I		
u = 0.446224 + 0.376427I		
a = 0.324362 - 0.529872I	1.20413 + 1.03970I	6.27276 - 4.95197I
b = -0.123832 - 0.626016I		
u = 0.446224 - 0.376427I		
a = 0.324362 + 0.529872I	1.20413 - 1.03970I	6.27276 + 4.95197I
b = -0.123832 + 0.626016I		
u = 0.164699 + 0.507419I		
a = 1.129790 - 0.016387I	0.29596 + 1.82108I	2.47769 - 3.83748I
b = 0.171879 - 0.083354I		
u = 0.164699 - 0.507419I		
a = 1.129790 + 0.016387I	0.29596 - 1.82108I	2.47769 + 3.83748I
b = 0.171879 + 0.083354I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.041396 + 0.496138I		
a = -0.92411 + 1.21544I	-3.33947 - 1.17576I	-4.43128 + 1.03066I
b = 0.418405 + 1.058430I		
u = -0.041396 - 0.496138I		
a = -0.92411 - 1.21544I	-3.33947 + 1.17576I	-4.43128 - 1.03066I
b = 0.418405 - 1.058430I		
u = -1.59215 + 0.06066I		
a = -0.579041 - 0.150932I	7.10974 + 1.19498I	0
b = -0.047557 + 0.344022I		
u = -1.59215 - 0.06066I		
a = -0.579041 + 0.150932I	7.10974 - 1.19498I	0
b = -0.047557 - 0.344022I		
u = 1.67626 + 0.05941I		
a = -0.503100 + 0.060196I	7.80383 + 2.56815I	0
b = -0.271772 - 0.167857I		
u = 1.67626 - 0.05941I		
a = -0.503100 - 0.060196I	7.80383 - 2.56815I	0
b = -0.271772 + 0.167857I		
u = -1.68061 + 0.03427I		
a = -1.41650 + 1.55888I	10.43060 - 0.72718I	0
b = 1.66994 - 1.91855I		
u = -1.68061 - 0.03427I		
a = -1.41650 - 1.55888I	10.43060 + 0.72718I	0
b = 1.66994 + 1.91855I		
u = -1.68650 + 0.07280I		
a = 0.09784 - 3.23140I	8.52780 - 5.28278I	0
b = 0.52086 + 3.57531I		
u = -1.68650 - 0.07280I		
a = 0.09784 + 3.23140I	8.52780 + 5.28278I	0
b = 0.52086 - 3.57531I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.70104 + 0.10270I		
a = 0.45064 + 2.76832I	10.4876 + 11.6846I	0
b = 0.21974 - 3.16301I		
u = 1.70104 - 0.10270I		
a = 0.45064 - 2.76832I	10.4876 - 11.6846I	0
b = 0.21974 + 3.16301I		
u = 1.70490 + 0.08169I		
a = -0.92941 - 1.36566I	13.1327 + 6.1887I	0
b = 1.13242 + 1.88410I		
u = 1.70490 - 0.08169I		_
a = -0.92941 + 1.36566I	13.1327 - 6.1887I	0
b = 1.13242 - 1.88410I		
u = 1.73093 + 0.01518I	16.0000 + 0.00647	
a = -0.67256 + 2.24479I	16.2880 + 2.8364I	0
b = 1.13578 - 2.69126I $u = 1.73093 - 0.01518I$		
u = 1.75095 - 0.01518I a = -0.67256 - 2.24479I	16.2880 - 2.8364I	
	10.2000 - 2.03041	0
b = 1.13578 + 2.69126I $u = -0.201734$		
a = 0.201754 $a = 3.92958$	$\begin{bmatrix} -1.30402 \end{bmatrix}$	-9.26700
b = 0.509239	1.00402	0.20100
0 - 0.000200	<u> </u>	<u> </u>

II.
$$I_2^u = \langle b, \ a - u - 1, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 5

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^2$
c_2, c_4	$(u+1)^2$
c_3, c_7, c_8	u^2
c_5, c_6	$u^2 - u - 1$
c_9, c_{10}, c_{11}	$u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_7, c_8	y^2
c_5, c_6, c_9 c_{10}, c_{11}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 1.61803	-0.657974	5.00000
b = 0		
u = -1.61803		
a = -0.618034	7.23771	5.00000
b = 0		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^2)(u^{37} - 3u^{36} + \dots - 2u + 1)$
c_2	$((u+1)^2)(u^{37}+19u^{36}+\cdots+4u+1)$
c_3, c_8	$u^2(u^{37} - u^{36} + \dots + 3u^2 + 4)$
c_4	$((u+1)^2)(u^{37} - 3u^{36} + \dots - 2u + 1)$
c_5, c_6	$(u^2 - u - 1)(u^{37} - 2u^{36} + \dots + u + 1)$
c_7	$u^2(u^{37} - 15u^{36} + \dots - 24u + 16)$
c_9, c_{10}, c_{11}	$(u^2 + u - 1)(u^{37} - 2u^{36} + \dots + u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^2)(y^{37} - 19y^{36} + \dots + 4y - 1)$
c_2	$((y-1)^2)(y^{37} + y^{36} + \dots - 44y - 1)$
c_3,c_8	$y^2(y^{37} + 15y^{36} + \dots - 24y - 16)$
c_5, c_6, c_9 c_{10}, c_{11}	$(y^2 - 3y + 1)(y^{37} - 48y^{36} + \dots + 25y - 1)$
c_7	$y^2(y^{37} + 11y^{36} + \dots + 7712y - 256)$