Матанализ ФT-104

Исследование функций с помощью старших производных. Выпуклость функции. Асимптоты.

Теорема. Пусть $\exists f^{(n)}(x_0) \neq 0, n \geq 2$ и $\forall i \in (1, ..., n-1) f^{(n)} = 0$. Тогда

- Если п чётное:
 - (a) если $f^{(n)}(x_0) > 0 \Rightarrow x_0$ точка локального минимума
 - (b) если $f^{(n)}(x_0) < 0 \Rightarrow x_0$ точка локального максимума
- 2. Иначе экстремума нет, но:
 - (a) Если $f^{(n)}(x_0) > 0 \Rightarrow f$ строго возрастает
 - (b) Если $f^{(n)}(x_0) < 0 \Rightarrow f$ строго убывает

Доказательство.

Посмотрим на формулу Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$
(1)

Поскольку по условию $\forall i \in (1,...,n-1)$ $f^{(n)} = 0$, то $\sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k = \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ $f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + o((x-x_0)^n)$

Перенесём $f(x_0)$ влево и посмотрим на знак $f(x) - f(x_0)$: $f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n), x \to x_0$

1. *n* чётное:

 $(x-x_0)^n>0, n!>0\Rightarrow$ знак выражения $\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ определяет $f^{(n)}(x_0)$, при этом $o((x-x_0)^n)$ не влияет на знак, потому что это бесконечно малая величина.

Поэтому если $f^{(n)}(x_0) > 0$, то $\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n > 0 \Rightarrow f(x)-f(x_0) > 0$ - локальный минимум.

Аналогично если $f^{(n)}(x_0) < 0$, то $f(x) - f(x_0) < 0$ - локальный максимум.

2. n нечётное:

У
$$\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
 величина $\frac{f^{(n)}(x_0)}{n!} > 0$.

Если $x < x_0$, то $(x - x_0)^n < 0 \Rightarrow f(x) - f(x_0) < 0$. Если $x > x_0$, то $(x - x_0)^n > 0 \Rightarrow f(x) - f(x_0) > 0$. Следовательно если $f^{(n)}(x_0) > 0$, то f возрастает в x_0 , если $f^{(n)}(x_0) < 0$, то f убывает в x_0

Матанализ ФТ-104

Выпуклость функции на промежутке

Пусть f(x) определена на [a,b].Возьмём две точки $x_1,x_2 \in [a,b], x_1,x_2$ и обозначим за l(x) хорду, соединяющую $f(x_1)$ и $f(x_2)$.

Тогда f выпуклая на [a,b] если $\forall x_1, x_2 : a \le x_1 < x_2 \le b : \forall x \in (x_1,x_2) : f(x) \le l(x)$

Теорема. f выпукла на $[a,b] \Leftrightarrow$ надграфик $(\{(x,y): x \in [a,b] \text{ и } y \geq f(x)\})$ - выпуклое множество.

Доказательство.

Доказательство самостоятельно.

Давайте выведем уравнение прямой l(x).

l(x) имеет коэффициент, равный отношению $\frac{f(x_2)-f(x_1)}{x_2-x_1}$, а в точке x_1 имеет значение, равное $f(x_1)$. Тогда $l(x)=\frac{f(x_2)-f(x_1)}{x_2-x_1}x+f(x_1)$

Пусть f дважды дифференцируема на [a,b]. Тогда $f''(x) \ge 0, x \in [a,b] \Rightarrow f$ выпукла.

Хотим, чтобы
$$f(x)-l(x)\leq 0 \quad \forall x\in [a,b].$$

$$f(x)-\frac{f(x)(x-x_2)+f(x_2)(x_1-x)}{x_1-x_2}=\frac{f(x)(x_1-x_2)-f(x_1)(x-x_2)-f(x_2)(x_1-x)}{x_1-x_2}=$$

$$=\frac{f(x)((x_1-x)+(x-x_2))-f(x_1)(x-x_2)-f(x_2)(x_1-x)}{x_1-x_2}=$$

$$=\frac{(f(x)-f(x_1))(x-x_2)+(f(x)-f(x_2))(x_1-x)}{x_1-x_2}=$$

$$=\{\text{Используем теорему Лагранжа}\}=\frac{(x-x_2)f'(\xi)(x-x_1)-(x-x_1)f'(\eta)(x-x_2)}{x_1-x_2}$$

$$(\text{здесь }\xi\in[x_1,x],\eta\in[x,x_2],\text{ то есть }\xi<\eta)=\frac{(x-x_2)(x-x_1)f''(\tau)}{x_1-x_2},\tau\in[\xi,\eta]$$

$$\text{Теперь посмотрим на выражениe} \frac{(x-x_2)(x-x_1)f''(\tau)}{x_1-x_2}$$

$$(x-x_1)>0,(x-x_2)<0,x_1-x_2<0,f''(\tau)\leq 0,\xi-\eta<0\Rightarrow \text{всё выражениe}\leq 0.$$

Теорема (без доказательства).

Выпуклая функция непрерывна на (a, b).

Bo всех точках (a,b) есть f'_-, f'_+ .

Определение. Точка x_0 - точка перегиба у f, если в левой и правой окрестностях x_0 функция имеет разный характер выпуклости.

Пусть f дважды непрерывно дифференцируема (f'' непрерывна) на [a,b]. Тогда если $x_0 \in (a,b)$ - точка перегиба, то $f''(x_0) = 0$.

Матанализ ФТ-104

Доказательство. От противного.

Если $f''(x_0) > 0$ и f'' непрерывна, то в $O(x_0)$ сохраняется знка, то есть $f(x) > 0 \quad \forall x \in O(x_0) \Rightarrow f$ выпуклая вниз в $O(x_0)$, что противоречит тому, что x_0 - точка перегиба.

Аналогично доказываем от противного когда $f''(x_0) < 0$.

Асимптота

Определение. Говорят, что y(x)=kx+b асимптота для f(x) при $x\to\pm\infty$, если $\lim_{x\to\pm\infty}(f(x)-kx-b)=0$

Говорят, что y(x) = kx + b асимптота для f(x) при $x \to a$, если $f(x) \to \infty$ при $x \to a$.

How to найти асимптоту?

Получим необходимое условие на k.

$$\lim_{x\to +\infty}(f(x)-kx-b)=0 \Leftrightarrow \lim_{x\to +\infty}(f(x)-kx)=b \Rightarrow \lim_{x\to +\infty}\left(\frac{f(x)}{x}-k\right)=\frac{b}{\infty}=0$$

$$\lim_{x\to +\infty}\left(\frac{f(x)}{x}-k\right)=\frac{b}{\infty}=0 \Leftrightarrow \lim_{x\to +\infty}\frac{f(x)}{x}=k.$$
 Найдём $k.$ Затем найдём b из $\lim_{x\to +\infty}(f(x)-kx)=b.$