Chapter23. Minimum Spanning Tree(MST)

Spanning Trees, Spanning Forest

- Spanning Tree
 - A tree (i.e., connected, acyclic graph) which contains all the vertices of the graph
- Spanning forest
 - If a graph is not connected, then it is not possible to build a spanning tree. Instead, you can build a spanning forest: each connected component gets its own little spanning tree that spans just that component

Spanning Tree, Spanning Forest

Spanning Trees

Minimum Spanning Tree(MST)

- Given a connected, undirected graph G = (V, E), a spanning tree is an acyclic subset $T \subseteq E$ that connects all vertices in V
- If G is weighted, then T's weight is

$$w(T) = \sum_{(u,v) \in T} w(u,v)$$

- A minimum weight spanning tree (or minimum spanning tree, or MST) is a spanning tree of minimum weight
 - Not necessarily unique

Minimum Spanning Tree(MST)

• Minimum Spanning Tree Example

Applications of MST

- Find the least expensive way to connect a set of cities, terminals, computers, etc.

Minimum Spanning Trees

- A connected, undirected graph:
 - Vertices = houses, Edges = roads
- A weight w(u, v) on each edge $(u, v) \in E$

Find $T \subseteq E$ such that:

- 1. T connects all vertices
- 2. $w(T) = \sum_{(u,v) \in T} w(u, v)$ is minimized

Properties of Minimum Spanning Trees

• Minimum spanning tree is **not** unique

- MST has no cycles
 - We can take out an edge of a cycle, and still have the vertices connected while reducing the cost
- # of edges in a MST:
 - |V| 1

Examples of MST

Figure 1: Minimum spanning tree.

• Not only do the edges sum to the same value, but the same set o f edge weights appear in the two MSTs.

NOTE: An MST may not be unique.

MST

- Basic idea of computing ("growing") an MST:
 - construct the MST by successively select edges to include in the tree.
 - guarantee that after the inclusion of each new selected edge,
 it forms a subset of some MST.
- One of the most famous greedy algorithms, along with Huffman coding

MST

- Two basic properties:
 - 1. Optimal substructure: optimal tree contains optimal subtrees.

Let T be an MST of G = (V, E). Removing (u, v) of T partitions T into two trees T1 and T2. Then T1 is an MST of G1 = (V1, E1) and T2 is an MST of G2 = (V2, E2).

Proof. Note that w(T) = w(T1) + w(u, v) + w(T2). There cannot be a better subtree than T1 or T2, otherwise T would be suboptimal.

MST

2. Greedy-choice property:

Let T be an MST of G = (V, E), $A \subseteq T$ be a subtree of T, and (u, v) be min-weight edge in G connecting A and V - A. Then $(u, v) \subseteq T$.

Proof. If $(u, v) \not\equiv T$,

- $(u, v) \cup T$ forms a cycle,
- replace one of edges of T by (u, v) form a new tree T (this is contradiction to T is MST)

Prim's MST Algorithm

- Prim's algorithm
 - builds one tree, so that A is always a tree
 - starts from a root r
 - at each step, find the next lightest edge crossing cut (A, V A) and add this edge to A ("greedy choice")
- How to find the next lightest edge quickly? Answer: use a priority queue

MST_Prim(G,w,r)

```
1 A = \emptyset
 2 for each vertex v \in V do
        key[v] = \infty
      \pi[v] = NIL
 5 end
 6 key[r] = 0
 7 Q = V
 8 while Q \neq \emptyset do
        u = \text{Extract-Min}(Q)
      for each v \in Adj[u] do
10
             if v \in Q and w(u, v) < key[v] then
11
12
13
14
        end
15
16 end
```


$$0 \infty \infty \infty \infty \infty \infty \infty$$

$$Q = \{a, b, c, d, e, f, g, h, i\}$$

$$V_{\Delta} = \emptyset$$

Extract-MIN(Q) \Rightarrow a

key [b] = 4
$$\pi$$
 [b] = a
key [h] = 8 π [h] = a

$$4 \infty \infty \infty \infty \infty \times 8 \infty$$

Q = {b, c, d, e, f, g, h, i}
$$V_A = \{a\}$$

Extract-MIN(Q) \Longrightarrow b


```
key [c] = 8 \pi [c] = b
key [h] = 8 \pi [h] = a (unchanged)
      8 \infty \infty \infty \infty \times \infty
Q = \{c, d, e, f, g, h, i\} V_A = \{a, b\}
Extract-MIN(Q) \Rightarrow c
 key [d] = 7 	 \pi [d] = c
 key [f] = 4 \pi [f] = c
 key [i] = 2 \pi [i] = c
```

$$7 \propto 4 \propto 8 2$$

 $Q = \{d, e, f, g, h, i\} \ V_A = \{a, b, c\}$
Extract-MIN(Q) \Rightarrow i


```
key [h] = 7 \pi [h] = i
key [g] = 6 \pi [g] = i
7 \infty 468
Q = {d, e, f, g, h} V_A = {a, b, c, i}
Extract-MIN(Q) \Rightarrow f
```

key
$$[g] = 2$$
 $\pi [g] = f$
key $[d] = 7$ $\pi [d] = c$ (unchanged)
key $[e] = 10$ $\pi [e] = f$
7 10 2 8

Q = {d, e, g, h}
$$V_A$$
 = {a, b, c, i, f}
Extract-MIN(Q) \Rightarrow g

key [h] = 1
$$\pi$$
 [h] = g 7 10 1

Q = {d, e, h}
$$V_A$$
 = {a, b, c, i, f, g}
Extract-MIN(Q) \Rightarrow h

7 10

Q = {d, e}
$$V_A$$
 = {a, b, c, i, f, g, h}
Extract-MIN(Q) \Rightarrow d


```
key [e] = 9 \pi [e] = f

9

Q = \{e\} \ V_A = \{a, b, c, i, f, g, h, d\}

Extract-MIN(Q) \Rightarrow e

Q = \emptyset \ V_A = \{a, b, c, i, f, g, h, d, e\}
```

Analysis of Prim's Algorithm

- Building heap takes time O(|V|)
- Make |V| calls to Extract-Min, each taking time O(log|V|)
- For loop iterates O(|E|) times
 - In for loop, need constant time to check for queue membership and O(log|V|) time for decreasing v's key and updating heap
- yields total time of $O(|V|\log|V| + |E|\log|V|) = O(|E|\log|V|)$

Kruskal's MST Algorithm

- Kruskal Algorithm
 - scan edges in increasing of weight
 - put edge in if no loop created
- Why does this result in MST?
 Answer: min-weight edge is always in MST (the greedy-choice property).
- Implementation data structure: disjoint-set

Disjoint-Set

- Disjoint-Set maintains a collection of $S = \{S1, S2, ...Sk\}$ of disjoint dynamic sets. Each set is identified by a representative, which is some member of the set.
- A disjoint-set data structure supports the following operations:
 - Make-set(x): creates a new set whose only member (and thus representative) is x.
 - Union(x, y): unites the sets that contain x and y, say Sx and Sy, into a new set that is the union of these two sets: $Sx \cup Sy$. The representative is any member of $Sx \cup Sy$.
 - Find-set(x): returns (a pointer to) the representative of the (unique) set containing x.

Operations on Disjoint Data Sets

- MAKE-SET(u) creates a new set whose only member is u
- FIND-SET(u) returns a representative element from the set that contains u
 - Any of the elements of the set that has a particular property
 - E.g.: $S_u = \{r, s, t, u\}$, the property is that the element be the first one alphabetically

$$FIND-SET(u) = r$$
 $FIND-SET(s) = r$

- FIND-SET has to return the same value for a given set

Operations on Disjoint Data Sets

- UNION(u, v) unites the dynamic sets that contain u and v,
 say S_u and S_v
 - E.g.: $S_u = \{r, s, t, u\}, S_v = \{v, x, y\}$ UNION $(u, v) = \{r, s, t, u, v, x, y\}$
- Running time for FIND-SET and UNION depends on implementation.
- Can be shown to be $\alpha(n)=O(\log n)$ where $\alpha()$ is a very slowly growing function

MST-Kruskal(G, w)

```
A = \emptyset
<sup>2</sup> for each vertex v \in V do
3 MAKE-SET(v)
4 end
5 sort edges in E into nondecreasing order by weight w
6 for each edge (u, v) \in E, taken in nondecreasing order
  do
       if FIND-SET(u) \neq FIND-SET(v) then
          A = A \cup \{(u, v)\}
UNION(u, v)
10
11 end
12 return A
```


- 1: (h, g) 8: (a, h), (b, c)
- 2: (c, i), (g, f) 9: (d, e)
- 4: (a, b), (c, f) 10: (e, f)
- 11: (b, h) 6: (i, g)
- 14: (d, f) 7: (c, d), (i, h)
- $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}, \{i\}^{13}.$ Ignore $(b, h) \{g, h, f, c, i, d, a, b, e\}$

- $\{g,h\},\{a\},\{b\},\{c\},\{d\},\{e\},\{f\},\{i\}$ Add (h, g)
- Add (c, i) $\{g, h\}, \{c, i\}, \{a\}, \{b\}, \{d\}, \{e\}, \{f\}$
- Add(g, f) ${g, h, f}, {c, i}, {a}, {b}, {d}, {e}$
- Add (a, b) $\{g, h, f\}, \{c, i\}, \{a, b\}, \{d\}, \{e\}$
- Add (c, f) 5. ${g, h, f, c, i}, {a, b}, {d}, {e}$
- Ignore $(i, g) \{g, h, f, c, i\}, \{a, b\}, \{d\}, \{e\}$ 6.
- 7. Add (c, d) ${g, h, f, c, i, d}, {a, b}, {e}$
- 8. Ignore (i, h) {g, h, f, c, i, d}, {a, b}, {e}
- 9. Add (a, h) {g, h, f, c, i, d, a, b}, {e}
- Ignore $(b, c)\{g, h, f, c, i, d, a, b\}, \{e\}$
- Add (d, e) {g, h, f, c, i, d, a, b, e}
- Ignore $(e, f) \{g, h, f, c, i, d, a, b, e\}$
- 14. Ignore $(d, f) \{g, h, f, c, i, d, a, b, e\}$

Analysis of Kruskal's Algorithm

```
A = \emptyset
     2 for each vertex v \in V do
           Make-Set(v)
     4 end
     sort edges in E into nondecreasing order by weight w \leftarrow
                                                                    O(ElogE)
     6 for each edge (u, v) \in E, taken in nondecreasing order
        do
            if Find-Set(u) \neq Find-Set(v) then
               A = A \cup \{(u, v)\}
UNION(u, v)
     10
     11 end
     12 return A
Running time: O(V+ElogE+ElogV)=O(ElogE)
```

O(ElogV)

Since $E=O(V^2)$, we have logE=O(2logV)=O(logV)