TEC | Tecnológico de Costa Rica

Identificación y control de la grúa Grupo B

D.Castro G.Elizondo S.Gamboa

Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Laboratorio de Control Automático

4 de noviembre de 2021

Contenidos

- Introducción
 - Resumen
 - Objetivos Generales
 - Objetivos Específicos
- 2 Análisis de la Grúa
 - Planta Grúa
 - Diseño de Controladores
- 3 Conclusiones
 - Conclusiones
 - Recomendaciones
- 4 Bibliografía
 - Bibliografía

Resumen

Se diseñan 2 diferentes controladores para la planta llamada grúa la cual además contiene un péndulo doble. Dichos controladores se realizan con las herramientas de Matlab(Simulink y Sisotool). Por último se muestran los resultados obtenidos en la planta real.

Objetivos Generales

• Identificar y controlar la planta conocida como grúa con péndulo doble.

Objetivos Específicos

- Obtener la función de transferencia de grúa con péndulo empíricamente
- Diseñar 2 diferentes controladores que cumplan los requerimientos solicitados para la planta grúa.
- Analizar el correcto funcionamiento de los diferentes controladores tanto simulado como físicamente con base en los requerimientos de diseño.

Planta Grúa

Figura 1: Gráfica de datos experimentales del ángulo de la planta sin control

Planta Grúa

Figura 2: Gráfica de datos experimentales del posición de la planta sin control

Utilización IDENT (systemIdentification)

Figura 3: Comparación de la curva experimental y su función de transferencia ángulo, con un ajuste de $84{,}44\,\%$

Planta Grúa

Considerando la ecuación del Grúa obtenida luego de realizar el procedimiento para obtener los dos sistemas SISO:

$$Angulo(s) = \frac{-0.3808(s+2.694)}{(s^2+0.0342s+35.32)}$$
(1)

$$Posicion(s) = \frac{0.4342}{s(s+18.05)} \tag{2}$$

Descripción SIMO

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -18,05 & 0 \\ 0 & -35,32 & 0 & -0,0342 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ -0,3808 \\ 0,4342 \\ -1,013 \end{bmatrix}$$
(3)

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{4}$$

Ubicación de Polos:

Figura 4: Utilización de Sisotool para Realizar la ubicación de los polos

Se procedió a realizar la expansión de las matrices A y B:

$$A_{t} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -18,05 & 0 & 0 \\ 0 & -35,32 & 0 & -0,0342 & 0 \\ -1 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad B_{t} = \begin{bmatrix} 0 \\ -0,3808 \\ 0,4342 \\ -1,013 \\ 0 \end{bmatrix}$$
(5)

Utilizamos el comando place de Matlab:

$$Ks = place(A_t, B_t, P) \tag{6}$$

Donde P es un vector fila, con los polos.

Llegamos a obtener las siguientes constantes luego de aplicar el método place (ackerman):

- K = 34.2644 -15.5097 -4.3372 -1.4153
- Ki = 13.1983

Figura 5: Diagrama de Bloques de la Planta Controlada

Figura 6: Gráficas Grúa controlado con Ubicación de Polos Simulink

Figura 7: Gráficas Grúa controlado con Ubicación de Polos Experimental

- Error de Estado Estacionario: 0%
- Porcentaje de Sobre-impulso: 0%
- Tiempo de Estabilización: 5,565s
- Ángulo máximo: $0.031rad = 1.78^{\circ}$
- Ángulo mínimo: $-0.094rad = -5.39^{\circ}$

LQR

Función de la planta

$$A_{LQR} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & -18,05 & 0 & 0\\ 0 & -35,32 & 0 & -0,0342 & 0\\ -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (7

$$B_{LQR} = \begin{bmatrix} 0\\ -0.3808\\ 0.4342\\ -1.0130\\ 0 \end{bmatrix} \tag{8}$$

$$C_{LQR} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \qquad D_{LQR} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \tag{9}$$

Definimos matrices Q y R:

$$Q = \begin{bmatrix} 400 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 400 \end{bmatrix}$$
 (10)

$$R = \begin{bmatrix} 1 \end{bmatrix} \tag{11}$$

Control LQR

Realizando la descomposición de las constantes en forma de un PID, tenemos:

$$K = \begin{bmatrix} 49,0240 & -5,9160 & 2,6524 & -0,0811 \end{bmatrix}$$
 (12)

$$Ki = 20 (13)$$

Simulink LQR

Figura 8: Gráficas Grua controlado con LQR Simulink

Forma Experimental LQR

Figura 9: Gráficas Grúa controlado con LQR Experimental

Forma Experimental LQR

Figura 10: Gráficas del ángulo de Grúa controlado con LQR Experimental

Filtro de LQR

- ullet Error de Estado Estacionario: 0%
- ullet Porcentaje de Sobre-impulso: $0\,\%$
- Tiempo de Estabilización: 5,74s
- Ángulo máximo: $0.159rad = 9.11^{\circ}$

Conclusiones (1)

La realimentación de estado integral por el método de ubicación de los polos resultó ser de mayor precisión en cuanto a los requerimientos de diseño que se solicitan.

Conclusiones (2)

Para el controlador LQR, la matriz Q tiene más peso en los valores de posición y de error de estado estacionario.

Recomendaciones

 Evitar los valores muy altos en las constantes del controlador, ya que hacen que la planta no funcione aunque en la simulación si lo haga.

Bibiografía

- A. Ruiz. Instructivo Grúa. ITCR, Cartago, Costa Rica, 2021
- E. Interiano. Presentación Control por LQR y LQG. ITCR, Cartago, Costa Rica, 2021
- E. Interiano. Presentación Realimentación de estado integral. ITCR, Cartago, Costa Rica, 2021