Non-sterile immunity. How to model it?

Martin Treiber

November 6, 2021

1 Problem statement

In Spring 2021, we thought that the new vaccinations offer a nearly perfect protection $1-\alpha=95\%$ against infection, and even more against the more severe endpoints such as ICS or death). Moreover, we thought that the immunity is *sterile*, i.e., vaccinated people (even the infected ones) are not contagious. Then, the effective reproduction number $R_{\rm eff}$ in terms of the base reproduction number R_0 depends on the vaccination protection factor $1-\alpha$ and the percentage $p_{\rm vacc}$ of fully vaccinated people via

$$R_{\text{eff}} = R_0(1 - p_{\text{vacc}})$$

Particularly, at 100 % vaccination, we have $R_{\rm eff} = 0$ since, per assumption, no vaccinated person can infect others. If infected vaccinated persons can infect, we would have $R_{\rm eff} = R_0(1-p_{\rm vacc}) + R_0\alpha p_{\rm vacc}$ which, for $p_{\rm vacc} = 1$ would be ddeep in the herd-immunity range. Furthermore, if 50 % were vaccinated, we would have, among the infected, an odds ratio

#not vaccinated : #vaccinated =
$$1/\alpha$$
 : 1 = 20 : 1,

regardless whether infected vaccinated persons are sterile or not.

However, it turned out (as of November 2021) that this is not the case. In fact, we have four reproduction rates:

- R_{00} for the infection path not vaccinated \rightarrow not vaccinated
- R_{01} for the path not vaccinated \rightarrow vaccinated
- R_{10} for the path vaccinated \rightarrow not vaccinated
- R_{11} for the path vaccinated \rightarrow vaccinated

Here, R_{00} denotes the average number of people that an infected not vaccinated person would infect during his/her desease if nobody were vaccinated, while the same person would infect an averaged number R_{01} of vaccinated persons if all others were vaccinated.

In the old assumption of a sterile immunity, these would be the only reproduction numbers. If, however, the vaccinated persons are not sterile (with respect to contagions), an infected vaccinated person would infect (on average) R_{10} persons if everybody else were not vaccinated, and R_{11} persons if everybody else were vaccinated.

Hence, we have following problem statement:

- 1. What is the effective reproduction rate R_{eff} as a function of the four R values and the percentage p_{vacc} of vaccinated people?
- 2. What is the odds ratio #not vaccinated: #vaccinated among the infected people as a function of the R_{ij} and p_{vacc} ?

References

- [1] A. Einstein, Zur Elektrodynamik bewegter Körper, Annalen der Physik 17, 891-921 (1905).
- [2] A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, Annalen der Physik 18, 639-641 (1905).