# DSC511: Statistical Foundations for Data Science

**Basic Concepts** 



Bakkyaraj T Indian Institute of Information Technology Kottayam Email:bakkyaraj@iiitkottayam.ac.in

## What is Probability Theory?

- Randomness and uncertainty exist in our daily lives and in science, engineering and technology.
- ► We require a mathematical framework that allows us to analyze random phenomena.
- **Probability theory** provides us such a framework.
- ▶ But what do we mean by **random phenomena** and **probability**? How can we express **randomness**?

#### Randomness

- ► We define **random phenomena** as events and experiments whose outcomes we cannot predict with certainty.
- ► For example: Think about flipping a fair coin. We cannot predict whether the outcome would be heads or tails.

# Application in a Communication System

- Communication systems transfer information from one place to another as a sequence of 1's and 0's called bits.
- ➤ This transmission is often affected by noise, and the information corrupted.
- ➤ The figure shows that the transmitted and received bits are different.



Figure: Transmission of data from a cell phone to a cell tower.

# Application in a Communication System

- Such errors affect the quality of our transmission and need to be minimized.
- Noise is a random phenomena and we do not know which bits will be affected before transmission.
- Probability theory is used extensively in the design of communication systems to
  - a. Understand the behavior of noise.
  - b. Take measures in the system to correct errors.

## Set Theory

- ▶ A set is a well defined collection of objects/things called elements.
- A set is denoted in capital letters and defined by simply listing its elements in curly brackets. Example:  $A = \{b, c\}$ .
- ▶ Can also be defined as  $A = \{x:x \text{ satisfies some property}\}.$
- Ordering does not matter in sets. Thus  $\{1, 2, 3, 4\}$  and  $\{3, 2, 1, 4\}$  are the same set.
- ▶  $b \in A$  read as b belongs to A where  $\in$  means belongs to.
- ▶ And  $d \notin A$ , where  $\notin$  means does not belong.

## Important Sets

- ▶ The set of natural numbers,  $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$
- ▶ The set of integers,  $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- The set of rational numbers Q.
- ightharpoonup The set of real numbers  $\mathbb R$  and the set of complex numbers  $\mathbb C$ .
- Closed intervals on the real line. Example: [2,3] is set of real numbers such that  $2 \le x \le 3$ .
- ▶ Open intervals on the real line. Example: (1,2) is the set of real numbers such that 1 < x < 2.

#### More on Sets

- ▶ Set A is a **subset** of set B if every member of A is also a member of B. We write  $A \subset B$ , where  $\subset$  indicates subset.
- ▶ Equivalently B is the **superset** of A,  $B \supset A$ .
- ▶ Two sets are **equal** A = B, if they contain the same elements, that is  $A \subset B$  and  $B \subset A$
- The **universal set** S or  $\Omega$  is the set of all things that we could possibly consider in the context we are studying.
- The universal set in probability is also called the sample space.
- ► The set with no elements is called the **empty** or **null set**  $\emptyset = \{\}.$

## Venn Diagrams

- ▶ Venn Diagrams are very useful in visualizing relations between sets.
- In Venn Diagrams, a set is depicted by a closed region.



Figure: Venn Diagram

# Venn Diagrams

- ▶ The figure below shows two sets, A and B, where  $B \subset A$ .
- ▶ Both A and B are subsets of the universal set S.



Figure: Venn Diagram for two sets A and B, where  $B \subset A$ .

## Set Operations: Union

- ► The union of two sets is a set containing all elements that are in A or in B.
- ▶ Example:  $\{1,2\} \cup \{2,3\} = \{1,2,3\}$ .
- ▶ In general the union of n sets  $A_1, A_2, ..., A_n$  is represented as  $\bigcup_{i=1}^n A_i$ .



Figure: The shaded area shows the set  $B \cup A$ .

## Set Operations: Intersection

- ► The intersection of two sets A and B is a set containing all elements that are in A and B.
- ► Example:  $\{1,2\} \cap \{2,3\} = \{2\}$ .
- ▶ In general, the intersection of n sets  $\bigcap_{i=1}^{n} A_i$  is the set consisting of elements that are in all n sets.



Figure: The shaded area shows the set  $B \cap A$ .



Figure: The shaded area shows the set  $A \cap B \cap C$ .

# Set Operations: Complement

► The complement of a set *A* is the set of all elements that are in the universal set *S* but not in *A*.



Figure: The shaded area shows the set  $\bar{A} = A^c$ .

# Mutually Exclusive or Disjoint Sets

- ▶ Sets *A* and *B* are mutually exclusive or disjoint if they do not have any shared elements.
- ► The intersection of two sets that are disjoint is the empty set i.e.  $A \cap B = \emptyset$ .
- In general, several sets are disjoint if they are pairwise disjoint.



Figure: Sets A, B, and C are disjoint.

#### Partition of Sets

A collection of non-empty set  $A_1, A_2, ...$  is a **partition** of A if they are disjoint and their union is A.



Figure: The collection of sets  $A_1$ ,  $A_2$ ,  $A_3$  and  $A_4$  is a partition of S.

## Important Theorems

▶ De Morgan's Law:

For any two sets  $A_1, A_2$ , we have:

- $(A_1 \cup A_2)^c = A_1^c \cap A_2^c$
- $(A_1 \cap A_2)^c = A_1^c \cup A_2^c$
- Distributive Law

For any sets

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

# Cardinality in Finite sets

- **Cardinality** is basically the size of the set.
- ▶ If set *A* only has a finite number of elements, its cardinality is simply the number of elements in *A*.
- ► For example, if  $A = \{2, 4, 6, 8, 10\}$ , then |A| = 5.

## Inclusion-Exclusion Principle

- ► The inclusion-exclusion principle states that for two finite sets A, B and C.
  - ►  $|A \cup B| = |A| + |B| |A \cap B|$ ,
  - $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|.$

# Cardinality in Infinite Sets

- There are two kinds of infinite sets: countable sets and uncountable sets.
- ▶ The difference between the two is that you can list elements in a countable set, so  $A = \{a_1, a_2, ...\}$ , but you cannot list elements in an uncountable set.
- The set  $\mathbb{R}$  is uncountable and much *larger* than countably infinite sets  $\mathbb{N}$  and  $\mathbb{Z}$ .

#### Countable vs. Uncountable Sets

- ▶ A more rigorous definition of a countable set A is
  - ▶ if it is a finite set,  $|A| < \infty$ ; or
  - it can be put in one-to-one correspondence with natural numbers  $\mathbb{N}$ , in which case the set is said to be countably infinite.
- $ightharpoonup \mathbb{N}, \mathbb{Z}, \mathbb{Q}$  and any of their subsets are countable.
- Any set containing an interval on the real line such as [a,b],(a,b],[a,b) and (a,b), where a < b is uncountable.

#### **Functions**

- A function maps elements from the domain set to elements in another set called the co-domain.
- Each input in the domain is mapped to exactly one output in the co-domain.
- ▶ It is denoted as  $f: A \rightarrow B$ .
- ► The range of a function is the set of all possible values of f(x) and is a subset of the co-domain.



Figure: Function  $f: A \rightarrow B$ , the range is always a subset of the co-domain.

## Random Experiments

- ► A **random experiment** is the process of observing something uncertain. For example: rolling a die.
- An **outcome** is a result of a random experiment.
- ► The set of all possible outcomes is called the **sample space** and in this context the universal set.
- ▶ When we repeat a random experiment several times, we call each one a trial.
- An event is a subset of the sample space.

# Probability

- ▶ We assign a probability measure P(A) to an event A.
- ► This is a value set between 0 and 1 that shows how likely the event is and is such that
  - ▶ If P(A) is close to 0, the event A is very unlikely to occur.
  - ▶ If P(A) is close to 1, the event A is very likely to occur.
- Probability theory is based on the following axioms that act as the foundation for the theory.

## Axioms of Probability

- ▶ **Axiom 1**: For any event  $A, P(A) \ge 0$
- ▶ **Axiom 2**: Probability of the sample space S is P(S) = 1
- ▶ **Axiom 3**: If  $A_1, A_2, A_3 ...$  are disjoint events, then  $P(A_1 \cup A_2 \cup A_3 ...) = P(A_1) + P(A_2) + P(A_3) + ...$
- ▶ It is important to note that union means or and intersection means and.
  - a.  $P(A \cap B) = P(A \text{ and } B) = P(A, B)$ .
  - b.  $P(A \cup B) = P(A \text{ or } B)$ .

## Finding Probabilities

- ➤ To find the probability of an event, we usually follow these two steps
  - a. We use the specific information that we have about the random experiment.
  - b. We then use the probability axioms seen in the previous slide.
- We shall employ these steps in discrete and continuous probability models.

# Inclusion Exclusion Principle and Other Useful Results

► Inclusion-Exclusion Principle

$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$$

- $P(A^C) = 1 P(A).$
- ▶ Probability of the empty set is zero  $P(\phi) = 0$ .
- For any event  $P(A) \leq 1$ .

## Discrete Probability Models

- Consider a sample space S. If S is a countable set, this refers to a discrete probability model. Since S is countable, we can list all the elements in S as  $S = \{s_1, s_2, \ldots\}$ .
- ▶ If  $A \subset S$  is an event, then A is also countable, and by the 3rd axiom of probability, we can say that

$$P(A) = P(\bigcup_{s_i \in A} \{s_i\}) = \sum_{s_i \in A} P(s_i)$$

We sum the probability of individual elements in that set to find the probability of an event.

# Finite Sample Space with Equally Likely Outcomes

- A special case of discrete probability model is a finite sample space where each outcome is equally likely that is  $S = \{s_1, s_2, \dots, s_N\}$  where  $P(s_i) = P(s_j)$  for all  $i, j \in \{1, 2, \dots, N\}$ .
- Since all outcomes are equally likely we have  $P(s_i) = \frac{1}{N}$  for all  $i \in \{1, 2, ..., N\}$ .
- ▶ If A is an event with cardinality |A| = M, we have

$$P(A) = \sum_{s_j \in A} P(s_j) = \sum_{s_j \in A} \frac{1}{N} = \frac{M}{N} = \frac{|A|}{|S|}.$$

Finding probability of A reduces to a *counting* problem.

# Conditional Probability

- How should you update probabilities of events given more information?
- For example, say we know the probability of the event R, rain in a certain city on a random day is 23%. Thus P(R) = 0.23.
- Suppose I pick a random day, but also say that it is cloudy on that given day. Now what is the probability that it rains given that it is cloudy?
- If we call the event cloudy as C, we want the conditional probability P(R|C) i.e. probability of R given that C has already happened.
- ▶ We see that P(R|C) will be greater than P(R), which is called the **prior** probability.

# Calculation of Conditional Probability

If A and B are events in the sample space S, the conditional probability of A given B, when P(B) > 0 is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- ► The intuition behind the formula is that once we know B has occurred, *our sample space reduces to the set B*.
- ▶ P(A|B) is undefined when P(B) = 0.



Figure: Venn diagram for conditional probability, P(A|B).

## Axioms of Probability Revisited

- Conditional probability is a probability measure and must satisfy probability axioms
  - Axiom 1: For any event A,  $P(A|B) \ge 0$ .
  - Axiom 2: Conditional probability of B given B is 1, i.e. P(B|B) = 1.
  - Axiom 3: If  $A_1, A_2, A_3, \cdots$  are disjoint events, then  $P(A_1 \cup A_2 \cup A_3 \cdots | B) = P(A_1|B) + P(A_2|B) + P(A_3|B) + \cdots$ .

# Useful Results for Conditional Probability

- ▶  $P(A^{C}|C) = 1 P(A|C)$
- ▶  $P(\phi|C) = 0$ .
- ►  $P(A \cup B|C) = P(A|C) + P(B|C) P(A \cap B|C)$ .
- ▶ When A and B are disjoint, P(A|B) = 0.
- ▶ When B is a subset of A, P(A|B) = 1.
- ▶ When A is a subset of B,  $P(A|B) = \frac{P(A)}{P(B)}$ .

# Chain Rule for Conditional Probability

► The chain rule is given as

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

- Useful in situations when we know the conditional probability, but we are interested in the probability of the intersection.
- ▶ A generalization:  $P(A_1 \cap A_2 \cap A_3 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_2,A_1)...P(A_n|A_{n-1},A_{n-2},...,A_1)$

## Independence

Events A and B are independent if

$$P(A \cap B) = P(A)P(B).$$

- Independence is often confused with disjointness, but they are not the same thing, i.e.  $P(A \cap B) = 0 \neq P(A)P(B)$ .
- Three events A, B and C are independent if all of the following hold

$$P(A \cap B) = P(A)P(B),$$

$$P(A \cap C) = P(A)P(C),$$

$$P(B \cap C) = P(B)P(C),$$

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$

# Differences between Disjointedness and Independence

| Concept     | Meaning                | Formulas               |
|-------------|------------------------|------------------------|
| Disjoint    | A and $B$ cannot occur | $A \cap B = \emptyset$ |
|             | at the same time       |                        |
| Independent | A gives no             | P(A B) = P(A),         |
|             | information about $B$  | P(B A) = P(B)          |

## Useful Results for Independent Events

- ► If A and B are independent then
  - $\triangleright$  A and  $B^C$  are independent.
  - $\triangleright$   $A^C$  and B are independent.
  - $\triangleright$   $A^C$  and  $B^C$  are independent.
- ▶ If  $A_1, A_2, ..., A_n$  are independent, then  $P(A_1 \cup A_2 \cup ... \cup A_n) = 1 (1 P(A_1))(1 P(A_2))...(1 P(A_n)).$

# Law of Total Probability

▶ If  $B_1, B_2, B_3...$  is a partition of sample space S, for any event A, we have

$$P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(A|B_i)P(B_i)$$



Figure: Law of total probability

## Bayes Rule

- ▶ This rule allows us to calculate P(B|A) from P(A|B).
- For two events A and B, we have

$$P(B|A)P(A) = P(A \cap B) = P(A|B)P(B).$$

▶ Dividing by P(A) gives Bayes rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

▶ If  $B_1, B_2, B_3,...$  form a partition of the sample space S, and A is any event with  $P(A) \neq 0$ , we have

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_i P(A|B_i)P(B_i)}$$