Examen¹ la Geometrie I, seria 10, 06.02.2023

Nume și prenume:	
Grupa:	

I. Decideți dacă următoarele afirmații sunt adevărate sau false, justificând pe scurt alegerea:

- 1. În planul \mathbb{R}^2 , dreptele $d_1: x = 5$ și $d_2 = \{(-1, 3 t) \mid t \in \mathbb{R}\}$ sunt paralele. (0,5p)
- 2. În planul \mathbb{R}^2 , dacă A = (2,1), B = (-4,0) și C = (0,3), atunci $\triangle ABC$ este ascuțitunghic. (0,5p)
- 3. Pentru orice puncte $A \neq B$ și orice dreaptă d din plan, există $C \in d$ astfel încât $\triangle ABC$ este dreptunghic. (0,5p)
- **4.** Dacă în spațiul real \mathbb{R}^3 avem $\pi: x-2y+z-3=0$ și $d_{\alpha}=\{(2+\alpha t, t-1, 2t+3)\mid t\in\mathbb{R}\}$, atunci există $\alpha\in\mathbb{R}$ astfel încât $d_{\alpha}\perp\pi$.
- 5. Dacă $f: \mathbb{R}^2 \to \mathbb{R}^2, f \neq id_{\mathbb{R}^2}$, este o izometrie și $f \circ f = id_{\mathbb{R}^2}$, atunci f este o simetrie (centrală sau axială). (0,5p)
- 6. Pentru două conice Γ_1 şi Γ_2 , există o izometrie a planului care duce Γ_1 în Γ_2 dacă şi numai dacă există două repere (ortonormale pozitiv orientate) \mathcal{R}_1 şi \mathcal{R}_2 astfel încât Γ_1 şi Γ_2 au aceeaşi ecuație în raport cu \mathcal{R}_1 , respectiv \mathcal{R}_2 . (0,5p)

II. Redactaţi rezolvările complete:

- 1. În planul euclidian \mathbb{R}^2 , fie dreptele $d_1: x+3y-2=0$ și $d_2: -2x+6y+16=0$.
- a) Demonstrați că d_1 și d_2 se intersectează și determinați punctul de intersecție. (0,25p)
- b) Demonstrați că $\angle (d_1, d_2) < 45^{\circ}$. (0,5p)
- c) Dați exemplu de izometrie $f: \mathbb{R}^2 \to \mathbb{R}^2$ astfel încât $f(d_1) = d_2$. Scrieți expresia lui f în coordonate. (0,5p)
- d) Dați exemplu de conică nedegenerată Γ tangentă simultan la d_1 și d_2 . (0,25p)
- **2.** În planul euclidian \mathbb{R}^2 , fie conica $\mathcal{H}: xy+3x-2y-2=0$ și dreapta d:x-y-9=0.
- a) Demonstrați că \mathcal{H} este o hiperbolă. (0,25p)
- b) Determinați centrul și axele de simetrie ale lui \mathcal{H} . (0,75p)
- c) Demonstrați că d este tangentă la \mathcal{H} și determinați punctul de tangență. (0,5p)
- d) Determinați ecuația conicei $S_d(\mathcal{H})$, unde S_d este simetria axială față de d. (0,5p)
- **3.** Fie triunghiurile nedegenerate $\triangle ABC$ şi $\triangle A'B'C'$ în planul euclidian \mathbb{R}^2 .
- a) Demonstrați că $\triangle ABC \sim \triangle A'B'C'$ (sunt asemenea) dacă și numai dacă există $f: \mathbb{R}^2 \to \mathbb{R}^2$, compunere dintroomotetie și o izometrie, care duce $\triangle ABC$ în $\triangle A'B'C'$ i.e. f(A) = A', f(B) = B' și f(C) = C'. (0,75p)
- b) Demonstrați că, dacă ipotezele punctului precedent sunt satisfăcute, funcția f cu proprietățile cerute este unică. (0,5p)
- c) Descrieți poziția relativă a triunghiurilor $\triangle ABC$ și $\triangle A'B'C'$ pentru care f din ipoteză este o omotetie. (0,25p)
- **4.** În planul euclidian \mathbb{R}^2 , fie elipsa în formă canonică $\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Pentru orice punct $P = (x_P, y_P) \neq (0, 0)$, considerăm dreapta $d_P: \frac{x_Px}{a^2} + \frac{y_Py}{b^2} = 1$.
- a) Demonstrați că asocierea $P \mapsto d_P$ este o funcție bijectivă între $\mathbb{R}^2 \setminus \{(0,0)\}$ și mulțimea dreptelor care nu trec prin origine. (0,2p)
- b) Demonstrați că dacă $P \in \text{Ext}(\mathcal{E})$, atunci d_P este dreapta determinată de punctele de tangență ale tangentelor din P la \mathcal{E} . (0,4p)
- c) Demonstrați că dacă $P \in Int(\mathcal{E})$, atunci d_P este o dreaptă exterioară elipsei, paralelă cu diametrul conjugat diametrului determinat de P. (0,4p)

¹Se acordă 1 punct din oficiu. Timp de lucru: 3 ore. Succes!