Probabilidades Estadística Computacional

Juan Zamora Osorio juan.zamora@pucv.cl

Instituto de Estadística Pontificia Universidad Católica de Valparaíso

2024

Probabilidades

Pierre-Simon Laplace

La teoría de la probabilidades en el fondo nada más que sentido común reducido a cálculo; nos permite apreciar con exactitud aquello que las mentes rigurosas pueden sentir con una especie de instinto que a veces no pueden explicar; nos enseña a evitar las ilusiones que con frecuencia nos engañan, ... No hay ciencia más digna de nuestra contemplación, ni más útil para ser incluida en nuestro sistema de enseñanza pública.

Probabilidades

- Mecanismo con que podemos estudiar las ocurrencias aleatorias de un fenómeno.
- Necesitamos poder tomar decisiones basado en la información contenida en una muestra aleatoria.

Probabilidades

Típico ejemplo

► Moneda lanzada al aire.

Interpretación

Frecuentista

- Frecuencia relativa de un evento repetido infinitas veces.
- Esperamos que la moneda caiga la mitad de las veces cara.

Bayesiana / subjetiva

- Incertidumbre sobre un evento.
- Relacionada con la información.
- Creemos podría caer tanto cara como cruz.

Interpretación

Ejemplos: probabilidad de que...

- Un paciente tenga COVID-19.
- Alguien de 68 años muera de cáncer fumando dos cajetillas diarias por 50 años.
- Un acusado de ser el asesino de su esposa, dada la evidencia.
- Los poemas escritos por Pablo Neruda hayan sido escritos por otro/a.
- Un mensaje en aula haya sido enviado por el/la estudiante.

Bayesiana / subjetiva

- No se puede hacer inferencia sin supuestos.
- ¿Bondad o debilidad?

Recordar

Probabilidades

▶ ¿Dado un proceso que genera datos, cuáles son las propiedades que observaremos?

Inferencia estadística

▶ ¿Dadas las observaciones, qué podemos decir sobre el proceso que genera los datos?

Ejemplo: moneda

Espacio muestral

Espacio muestral (Ω)

Conjunto de todos los posibles resultados de un experimento aleatorio.

Ejemplos

- ► Un dado: {1,2,3,4,5,6}.
- ► Una moneda: {cara, sello}.
- ▶ Dos lanzamientos de una moneda: {cc, cs, sc, ss}.
- En una carrera entre tres personas, posiciones de llegada: $\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\}.$
- Ángulo en el que termina una ruleta $[0, 2\pi]$.

Evento

- ▶ Un subconjunto $A \subseteq \Omega$ del espacio muestral donde al final de un experimento podemos observar si el resultado $\omega \in \Omega$ está en A.
- ▶ $\{\omega\} \in \Omega$ evento simple o elemental.
- Más de un elemento: evento compuesto.
- Ω evento seguro.
- Ø evento imposible o nulo.

Ejemplo

Observar un número par al lanzar un dado:

$$A = \{2,4,6\} \subseteq \Omega = \{1,2,3,4,5,6\}$$

➤ Tiempo de vida de un componente electrónico sea menor que 5 años:

$$A = \{t \in \mathbb{R} \mid 0 < t < 5\} \subseteq \Omega = \{t \in \mathbb{R} \mid t > 0\}$$

Ejercicio

- Construya el espacio muestral para un experimento que consiste en lanzar un solo dado.
- ► Encuentre los eventos que corresponden a las frases 'Se obtiene un numero par' y 'Se obtiene un numero mayor a 2'.

Ejercicio

Un experimento aleatorio consiste en lanzar dos monedas al aire.

- Construya el espacio muestral para la situación en que las monedas son indistinguibles entre sí.
- Construya el espacio muestral para la situación en que las monedas sí son distinguibles, por ejemplo de dos denominaciones distintas.

Ejercicio

Construya el espacio muestral que describa las posibles familias de 3 hijxs en terminos de los generos de estos individuos.

Espacio de eventos (A)

- Conjunto de todos los eventos A.
- ► Si Ω es finito, generalmente $A = 2^{Ω}$.

σ -álgebra

- ightharpoonup Colección de subconjuntos de Ω
- ▶ Si $A \in \mathcal{A}$, entonces $A^c \in \mathcal{A}$.
- $ightharpoonup \Omega \in \mathcal{A}.$
- ▶ Si $\{A_i\}_{i\in I} = \{A_1, A_2, \dots, A_i, \dots\} \subseteq \mathcal{A}$ es una colección finita o numerable de eventos, entonces $\bigcup_{i\in I} A_i \in \mathcal{A}$.

Probabilidad (P)

- Función $P: A \to [0,1]$ que asocia un número a $A \in A$.
- ▶ Indica la probabilidad de obtener un resultado $\omega \in A$.
- Axiomas (Kolmogorov):
 - $\forall A \subseteq \mathcal{A}, P(A) \geq 0$
 - $P(\Omega) = 1.$
 - ▶ Si $\{A_i\}_{i\in I} = \{A_1, A_2, \dots, A_i, \dots\} \subseteq \mathcal{A}$ es una colección finita o numerable de eventos *disjuntos* $(\forall A_j, A_k \in \{A_i\}_{i\in I}, A_j \cap A_k = \emptyset)$, entonces $P(\bigcup_{i\in I} A_i) = \sum_{i\in I} P(A_i)$.

Ejemplos

Proposición

 $ightharpoonup P(\emptyset) = 0.$

Demostración

Axiomas 2 y 3:

$$1 = P(\Omega) = P(\Omega \cup \emptyset) = P(\Omega) + P(\emptyset) = 1 + P(\emptyset).$$

Proposición

 $P(A^c) = 1 - P(A).$

Demostración

Axiomas 2 y 3:

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c).$$

Ejemplos

Proposición

▶ $P(A) \le 1$.

Demostración

► Axiomas 1, 2 y 3:

$$1 = P(\Omega) = P(A \cup A^c) = P(A) + P(A^c) \ge P(A) + 0 = P(A).$$

Ejemplos

Proposición

 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

Demostración

Axioma 3:

$$P(A \cup B) = P(A \cup (B \cap A^c)) = P(A) + P(B \cap A^c),$$

$$P(B) = P((A \cap B) \cup (B \cap A^c)) = P(A \cap B) + P(B \cap A^c)$$

$$\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Probabilidad

Ejercicio

Un sistema compuesto por dos componentes A y B, se encuentra cableado de tal manera que pueda funcionar si cualquiera de los dos componentes también lo hace. Se sabe por experimentos anteriores que P(A) es 0.9, P(B) es 0.8 y P(A y B) es 0.72.

Determine la probabilidad de que el sistema falle (i.e. No funcione).

Relación teoría de conjuntos y teoría de probabilidades

	Conjuntos	Eventos
Ω	Universo	Espacio Muestral
$\mathcal{P}(\Omega)=2^{\Omega}$	Conjunto potencia	Espacio de eventos (*finito)
$A\subseteq \Omega$	A subconjunto de Ω	Evento A
$\omega \in \mathcal{A}$	Elemento ω	Resultado ω
Ø	Conjunto vacío	Evento imposible
Ω	Universo	Evento seguro
$A \cup B$	A unión B	Evento A o B
$A \cap B$	A intersección B	Evento A y B
A^c	Complemento de A	Evento no A , opuesto de A
$A\subseteq B$	A subconjunto de B	A implica B
$A \cap B = \emptyset$	A y B disjuntos	A y B mutuamente excluyentes

Preguntas

Propiedades básicas

Sean A y B eventos tales que $P(A) = \alpha$ y $P(B) = \beta$.

- 1. Acote $P(A \cap B)$ y $P(A \cup B)$ inferior y superiormente.
- 2. Si $P(A \cap B) = \gamma$, escriba las siguientes expresiones en función de α , β y γ :
 - 2.1 $P(A^C \cup B^C)$.
 - 2.2 $P(A^{C} \cap B)$.
 - 2.3 $P(A^C \cup B)$.
 - 2.4 $P(A^C \cap B^C)$.

¿Cómo se define el valor?

Eventos equiprobables (Laplace)

 \triangleright Si Ω es finito y cada evento es igual de probable:

$$1 = P(\Omega) = P\left(\bigcup_{i=1}^{n} \{\omega_i\}\right) = \sum_{i=1}^{n} P(\{\omega_i\}) = nP(\{\omega_1\}) = np$$
$$\Rightarrow p = P(\{\omega_i\}) = \frac{1}{n} = \frac{1}{|\Omega|}.$$

De la misma manera:

$$P(A) = P\left(\bigcup_{i=1}^{n_A} \{\omega_i\}\right) = \sum_{i=1}^{n_A} P(\{\omega_i\}) = n_A p = \frac{n_A}{n} = \frac{|A|}{|\Omega|}$$

Composición de una Escuela

El cuerpo de estudiantes de una escuela se compone según raza y etnia de la siguiente manera: 51 % blanca, 27 % negra, 11 % hispana, 6 % asiática y 5 % de otras. Se selecciona un estudiante al azar de esta escuela. Encuentre las probabilidades de los siguientes eventos:

- B : El/las estudiante es de raza negra.
- ► M: El/estudiante no es blanca (i.e. Es una minoría).
- ► N: El/la estudiante no es de raza negra.

Composición de una otra Escuela

El cuerpo de estudiantes de otra escuela está compuesto por 10 grupos según raza y etnia: 25 % de hombres de raza blanca, 26 % de mujeres de la misma raza, 12 % de hombres de raza negra, 15 % de mujeres de raza negra, 6 % de hombres hispanos, 5 % de mujeres hispanas, 3 % de hombres asiaticos, 3 % de mujeres asiaticas, 1 % de hombres de otras razas minoritarias, y 4 % de mujeres de estas mismas razas combinadas. Se selecciona un estudiante al azar de esta escuela. Encuentre las probabilidades de los siguientes eventos:

- ▶ B : La/el estudiante es de raza negra.
- ► MF: La estudiante es una mujer de una minoría.
- FN: La estudiante es una mujer y no es de raza negra.

Teorema fundamental del Conteo

Si una tarea consiste de k sub-tareas individuales, de las cuales la i-ésima puede ser realizada de n_i maneras ($i=1,\ldots,k$), entonces la tarea completa puede ser realizada de $n_1 \times n_2 \times \ldots n_k$ maneras distintas.

Ejemplo - Teorema fundamental del Conteo

En un concurso de lotería se dispone de 44 números $(1 \dots 44)$, de los cuales cada participante deberá escoger 6 (sin repetición). El billete ganador será generado finalmente escogiendo al azar 6 números.

Para poder calcular la probabilidad de tener el billete ganador, primero tendremos que calcular cuantos grupos de 6 números pueden ser escogidos.

Ejemplo - Teorema fundamental del Conteo

En un concurso de lotería se dispone de 44 números $(1 \dots 44)$, de los cuales cada participante deberá escoger 6 (sin repetición). El billete ganador será generado finalmente escogiendo al azar 6 números.

Para poder calcular la probabilidad de tener el billete ganador, primero tendremos que calcular cuantos grupos de 6 números pueden ser escogidos.

¿Como cambia el cálculo anterior si ahora escoger el mismo número varias veces?

En ocasiones al contar, debemos contar objetos en un orden particular y en otras este orden no es relevante.

- Existen 5 candidatos en una elección. Suponiendo que no hay empates, ¿de cuantas formas pueden ocuparse los primeros 3 lugares?
 - Es importante quien ocupa cada lugar.
- ▶ Un periodista visita un curso de 25 estudiantes para entrevistar a 4 ¿ De cuantas maneras se pueden escoger los 4 estudiantes?
 - A quien se entrevista primero no es relevante.

A los arreglos ordenados se les llama **permutaciones** y a los sin orden, **combinaciones**.

Sin Con reemplazo reemplazo
$$C/Orden = \frac{n!}{(n-k)!} = n^k$$
 $S/Orden = \binom{n}{k} = \binom{n+k-1}{k}$

Estos mecanismos de conteo son útiles cuando el espacio muestral es finito y todos sus resultados equiprobables.

Por lo tanto, para un espacio S con N resultados implica que $P(\{s_i\}) = \frac{1}{N}$

$$P(A) = \sum_{s_i \in A} P(\{s_i\}) = \sum_{s_i \in A} \frac{1}{N} = \frac{\# \text{ elementos en A}}{\# \text{ elementos en S}}$$

► Las estrategias de conteo pueden ser usadas para calcular tanto las expresiones del numerador como del denominador.

Problemas de conteo

Considere una mano de pocker de 5 cartas tomadas desde un deck standard de 52 cartas.

- ▶ No hay reemplazo y el orden no es relevante
- ¿Cual es el espacio muestral?
- ¿Cual es el total de manos de 5 cartas?
- ¿Cual es la probabilidad de tener una mano con 4 aces?

Problemas de conteo

Considere una mano de pocker de 5 cartas tomadas desde un deck standard de 52 cartas.

- Legion Cual es la probabilidad de obtener 4 cartas del mismo tipo?
- ▶ ¿...de tener exactamente un par?

Probabilidad condicional

Ejemplo: género de recién nacido/a

- ▶ Juan tiene dos hijos o hijas. La mayor es una chica, ¿Probabilidad de que ambas sean chicas?
- María tiene dos hijas o hijos. Una de ellas es chica. ¿Probabilidad de que ambas sean chicas?

Probabilidad condicional

Ejemplo: examen

- Probabilidad de examen positivo, si tiene enfermedad.
- Probabilidad de examen positivo, si no tiene enfermedad.

	Enfermedad	No Enfermedad
Examen Positivo	290	10000
Examen Negativo	10	200000

Probabilidad condicional

Ejemplo: examen

- Probabilidad de tener enfermedad, si examen es positivo.
- ▶ Probabilidad de tener enfermedad, si examen es negativo.

	Enfermedad	No Enfermedad
Examen Positivo	290	10000
Examen Negativo	10	200000

Probabilidad condicional

Independencia

Definición

- Sean A y B dos eventos. Son independientes si y solo si: $P(A \mid B) = P(A)$.
- Equivale a:

$$P(A, B) = P(A)P(B)$$
.

Interpretación

- Conocer parte de un resultado no nos dice nada del otro.
- Conocer B no tiene efecto en la probabilidad de A.

Independencia

Ejemplo: lanzamiento de dados

- Probabilidad de que el segundo dado sea par, si el primero es 3.
- Probabilidad de que el segundo dado sea par, si el primero es impar.

Ω	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4, 1)	(4, 2)	(4,3)	(4,4)	(4,5)	(4, 6)
5	(5,1)	(5, 2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6, 2)	(6,3)	(6,4)	(6,5)	(6, 6)

Independencia

Ejemplo: Obtener al menos un seis en 4 lanzamientos de un dado.

- Cada lanzamiento es independiente de los demás
- ► En cada lanzamiento la probabilidad de obtener un 6 es de $\frac{1}{6}$ y de no obtenerlo es $\frac{5}{6}$

$$P(A \mid B)$$

Regla del producto

Otra manera de escribir probabilidad condicional

Sean A y B dos eventos: $P(A,B) = P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A).$

► Sea
$$\{A_1, \ldots, A_i, \ldots, A_n\}$$
 familia de eventos:

$$P(A_{1},...,A_{n}) = P(A_{1} | A_{2},...,A_{n})P(A_{2},...,A_{n})$$

$$= P(A_{1} | A_{2},...,A_{n})P(A_{2} | A_{3},...,A_{n})P(A_{3},...,A_{n})$$

$$\vdots$$

$$n-1$$

$$=P(A_n)\prod_{i=1}^{n-1}P(A_i\mid A_{i+1},\ldots,A_n).$$

Ley de probabilidad total

Eventos disjuntos / partición

- ▶ $\{B_1, \ldots, B_n\}$ familia de eventos.
- ► Eventos disjuntos o mutuamente excluyentes: $\forall i, j, B_i \cap B_i = \emptyset$.
- ▶ Partición: disjuntos y $\bigcup_{i=1}^{n} B_i = \Omega$.

Ley de probabilidad total

► Sea $\{B_1, ..., B_n\}$ partición de Ω:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i).$$

Dos eventos

► Sean A y B dos eventos:

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}.$$

Eventos disjuntos

Sea A un evento y $\{B_1, \ldots, B_n\}$ partición de Ω :

$$\forall i, P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^n P(A \mid B_j)P(B_j)}.$$

Actualización de estado de creencia

$$\underbrace{P(B \mid A)}_{\text{posterior}} = \underbrace{\frac{P(A \mid B)}{P(A)} \underbrace{\frac{P(B)}{P(B)}}_{\text{evidencia}}^{\text{prior}}.$$

- \triangleright P(B) probabilidad a priori (*prior*).
- \triangleright $P(A \mid B)$ verosimilitud de B (*likelihood*).
- P(A) evidencia.
- ▶ $P(B \mid A)$ probabilidad a posteriori (posterior).

Ejemplo mensajes Morse

Considere la transmisión de mensajes codificados mediante secuencias de '.' y '__'. La ocurrencia de estos simbolos sucede en proporción de 3:4, por lo tanto:

$$P(\{.env\}) = \frac{3}{7} y P(\{_env\}) = \frac{4}{7}$$

Existen Interferencia. Un '.' es erroneamente recibido como '_' (y viceversa) con probabilidad $\frac{1}{8}$

¿? Al recibir un '.', ¿qué tan seguros podemos estar de que fue un '.' lo que se envió?

Eventos disjuntos

 $\begin{cases} B_1, \dots, B_n \end{cases} \text{ partición de } \Omega: \\ \forall i, P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{i=1}^n P(A \mid B_i)P(B_i)}.$

Ejemplo: examen

- ► $P(\text{examen positivo} \mid \text{enfermedad}) = \frac{290}{10+290} = \frac{29}{30} \approx 0.97.$
- ► $P(\text{examen negativo} \mid \text{enfermedad}) = \frac{10}{10+290} = \frac{1}{30} \approx 0.03.$
- ► $P(\text{examen positivo} \mid \text{no enfermedad}) = \frac{10000}{10000 + 200000} = \frac{1}{21} \approx 0.05.$
- ► $P(\text{examen negativo} \mid \text{no enfermedad}) = \frac{200000}{10000 + 200000} = \frac{20}{21} \approx 0.95.$

	Enfermedad	No Enfermedad
Examen Positivo	290	10000
Examen Negativo	10	200000

Pregunta

▶ ¿P(enfermedad | examen positivo)?

Ejemplo: examen

- ▶ $P(\text{examen positivo} \mid \text{enfermedad}) = 0.97.$
- ▶ $P(\text{examen negativo} \mid \text{enfermedad}) = 0.03.$
- ▶ $P(\text{examen positivo} \mid \text{no enfermedad}) = 0.05.$
- ▶ $P(\text{examen negativo} \mid \text{no enfermedad}) = 0.95.$

Pregunta

► ¿P(enfermedad | examen positivo)?

Ejemplo: alarma, parte 1

- Cristián maneja desde Valparaíso a San Felipe por trabajo.
- Mientras trabaja, recibe una llamada de sus vecinos que le dicen que está sonando la alarma de su casa.
- ¿Probabilidad de que haya entrado un ladrón en su casa?

Ejemplo: alarma, parte 2

- Mientras maneja de vuelta a su casa para ver qué sucedió, escucha en la radio que hubo un pequeño temblor cerca de su casa en Valparaíso.
- Se siente aliviado: "probablemente fue el temblor el que activó la alarma".
- ¿Probabilidad de que haya entrado un ladrón en su casa?

Supuestos

- Ladrón cada tres años: P(L) = 0.001.
- ▶ Terremoto cada tres años: P(T) = 0.001.
- ▶ Ladrón independiente de terremoto: P(L, T) = P(L)P(T).
- Alarma suena:
 - 99 % de las veces que hay un ladrón.
 - ▶ 1% de las veces que hay un terremoto.
 - Otros eventos disparan la alarma con frecuencia 0,001.
- ▶ Vecinos nunca llaman si la alarma no suena: $P(V \mid A^c) = 0$.
- Radio no anuncia terremotos que no ocurrieron: $P(R \mid T^c) = 0$.

Supuestos de alarma

- $P(A^c \mid L, T) = (1 0.001)(1 0.99)(1 0.01) = 0.0098901.$
- $P(A^c \mid L^c, T) = (1 0.001)(1 0.01) = 0.98901.$
- $P(A^c \mid L, T^c) = (1 0.001)(1 0.99) = 0.00999.$
- $P(A^c \mid L^c, T^c) = 1 0,001 = 0,999.$
- $P(A \mid L, T) = 1 (1 0,001)(1 0,99)(1 0,01) = 0,9901099.$
- $P(A \mid L^c, T) = 1 (1 0.001)(1 0.01) = 0.01099.$
- $P(A \mid L, T^c) = 1 (1 0.001)(1 0.99) = 0.99001.$
- $P(A \mid L^c, T^c) = 0.001.$

Posterior

- $P(L,T \mid A) = \frac{1}{P(A)}P(A \mid L,T)P(L)P(T).$
- $P(L^c, T \mid A) = \frac{1}{P(A)} P(A \mid L^c, T) P(L^c) P(T).$
- $P(L, T^c \mid A) = \frac{1}{P(A)} P(A \mid L, T^c) P(L) P(T^c).$
- $P(L^c, T^c \mid A) = \frac{1}{P(A)} P(A \mid L^c, T^c) P(L^c) P(T^c).$

Posterior - caso 1

- $P(L, T \mid A) = 0.9901099 \times 0.001 \times 0.001 \frac{1}{P(A)} = 9.9 \times 10^{-7} \frac{1}{P(A)}.$
- $P(L^c, T \mid A) = 0.01099 \times 0.999 \times 0.001 \frac{1}{P(A)} = 0.000010979 \frac{1}{P(A)}.$
- $P(L, T^c \mid A) = 0.99001 \times 0.001 \times 0.999 \frac{1}{P(A)} = 0.000989 \frac{1}{P(A)}.$
- $P(L^c, T^c \mid A) = 0.001 \times 0.999 \times 0.999 \frac{1}{P(A)} = 0.000998 \frac{1}{P(A)}.$
- P(A) = Suma = 0,002.

Ejemplo: alarma, parte 1

- Cristián maneja desde Valparaíso a San Felipe por trabajo.
- Mientras trabaja, recibe una llamada de sus vecinos que le dicen que está sonando la alarma de su casa.
- ¿Probabilidad de que haya entrado un ladrón en su casa?

Posterior - caso 1

- $P(L, T \mid A) = 0,0005.$
- $P(L^c, T \mid A) = 0,0055.$
- $P(L, T^c \mid A) = 0,4947.$
- $P(L^c, T^c \mid A) = 0.4993.$
- ▶ Respuesta: $P(L \mid A) = P(L, T \mid A) + P(L, T^c \mid A) \approx 0,495$.

Ejemplo: alarma, parte 2

- Mientras maneja de vuelta a su casa para ver qué sucedió, escucha en la radio que hubo un pequeño temblor cerca de su casa en Valparaíso.
- Se siente aliviado: "probablemente fue el temblor el que activó la alarma".
- ¿Probabilidad de que haya entrado un ladrón en su casa?

Posterior - caso 2

- $P(L, T \mid A) = 0,0005.$
- $P(L^c, T \mid A) = 0,0055.$
- $P(L, T^c \mid A) = 0.4947.$
- $P(L^c, T^c \mid A) = 0,4993.$
- Respuesta: $P(L \mid A, T) = \frac{P(L,T|A)}{P(T|A)} = \frac{P(L,T|A)}{P(L,T|A) + P(L^c,T|A)} = \frac{0,0005}{0.0005 + 0.0055} \approx 0,08.$

Regla / Teorema de Bayes – videos recomendados

Probabilidades y teorema de Bayes

- https://www.youtube.com/watch?v=HZGCoVF3YvM.
- https://www.youtube.com/watch?v=U_85TaXbeIo.

Paradoja del examen médico

https://www.youtube.com/watch?v=1G4VkPoG3ko.

Canal ruidoso

Probabilidad de cambiar un bit: f.

Código de repetición

- Si se quiere comunicar 1, se envía 111.
- ► Si se quiere comunicar 0, se envía 000.

Ejemplo

- Se recibe mensaje 000 001 111 000 010 111 000.
- ¿Cuál es el mensaje original?

Ejemplo

- Se recibe mensaje 000 001 111 000 010 111 000.
- ¿Cuál es el mensaje original?

Bayes

$$P(\text{bit} \mid r_1r_2r_3) = \frac{P(r_1r_2r_3 \mid \text{bit})P(\text{bit})}{P(r_1r_2r_3)}.$$

Ruido al comunicar un bit por el canal

- $P(0 \mid 0) = 1 f.$
- $P(1 \mid 0) = f.$
- P(0 | 1) = f.
- $P(1 \mid 1) = 1 f.$

Tres bits recibidos

- $P(000 \mid 0) = (1-f)^3.$
- $P(001 \mid 0) = (1-f)^2 f.$
- $P(011 \mid 0) = (1-f)f^2.$
- $P(111 \mid 0) = f^3$.

Recibido	Enviado	Original	
000	000	0	$P(000 \mid 0) = (1-f)^3$
000	111	1	$P(000 \mid 1) = f^3$
001	000	0	$P(001 \mid 0) = (1-f)^2 f$
001	111	1	$P(001 \mid 1) = (1 - f)f^2$
010	000	0	$P(010 \mid 0) = (1-f)^2 f$
010	111	1	$P(010 \mid 1) = (1 - f)f^2$
100	000	0	$P(100 \mid 0) = (1-f)^2 f$
100	111	1	$P(100 \mid 1) = (1 - f)f^2$
011	000	0	$P(011 \mid 0) = (1 - f)f^2$
011	111	1	$P(011 \mid 1) = (1 - f)^2 f$
101	000	0	$P(101 \mid 0) = (1 - f)f^2$
101	111	1	$P(101 \mid 1) = (1 - f)^2 f$
110	000	0	$P(110 \mid 0) = (1-f)f^2$
110	111	1	$P(110 \mid 1) = (1 - f)^2 f$
111	000	0	$P(111 \mid 0) = f^3$
111	111	1 60	$P(111 \mid 1) = (1 - f)^3$

Ejemplo

- Se recibe mensaje 000 001 111 000 010 111 000.
- ¿Cuál es el mensaje original?

Posterior

- Elegimos el bit con mayor posterior.
- ► Calculamos la razón entre bit 0 y 1:

$$\operatorname{raz\acute{o}n}(r_1r_2r_3) = \frac{P(0 \mid r_1r_2r_3)}{P(1 \mid r_1r_2r_3)} = \frac{\frac{P(r_1r_2r_3|0)P(0)}{P(r_1r_2r_3)}}{\frac{P(r_1r_2r_3|1)P(1)}{P(r_1r_2r_3)}} = \frac{P(r_1r_2r_3 \mid 0)P(0)}{P(r_1r_2r_3 \mid 1)P(1)}.$$

- \triangleright P(0) y P(1) no dependen del mensaje.
- Necesitamos solo la razón de la verosimilitud $\frac{P(r_1r_2r_3|0)}{P(r_1r_2r_3|1)}$.

► Ejemplo:

$$\mathsf{raz\'on}(000) = \frac{P(000\mid 0)}{P(000\mid 1)} \frac{P(0)}{P(1)} = \frac{(1-f)^3}{f^3} \frac{P(0)}{P(1)} = \gamma^3 \frac{P(0)}{P(1)}.$$

Ejemplo

- Se recibe mensaje 000 001 111 000 010 111 000.
- ► ¿Cuál es el mensaje original?

Bits recibidos	Razón de verosimilitud	Respuesta
000	γ^3	0
001	γ	0
010	γ	0
100	γ	0
011	γ^{-1}	1
101	γ^{-1}	1
110	γ^{-1} γ^{-3}	1
111	γ^{-3}	1

Respuesta

► Si P(0) = P(1), el mensaje recuperado es 0010010.

Problema de Monty Hall

Funcionamiento del juego

- ► Hay tres puertas, etiquetadas como 1, 2 y 3.
- Hay un premio, atrás de una sola de las puertas.
- Se selecciona una puerta donde se cree que se encuentra el premio.
- En vez de abrir esa puerta, el presentador abre una de las otras dos puertas, de manera de abrir una puerta que no tiene el premio.
- Se ofrece la alternativa de quedarse con la puerta seleccionada, o cambiarse a la otra que quedó cerrada.
- Finalmente, se abren todas las puertas y se recibe lo que haya detrás de la puerta seleccionada.

Monty Hall – Tres puertas, reglas normales

Pregunta de ejemplo

- Participante elige puerta 1 primero.
- Presentador abre puerta 3, mostrando que no hay nada en esa puerta.
- ► El participante debería:
 - Quedarse con la puerta 1.
 - Cambiar a la puerta 2.
 - No hay diferencia si elige puerta 1 o 2.

Monty Hall – Tres puertas, escenario temblor

Cambio en el juego

- Cuando el presentador se dispone a abrir una de las puertas, hay un temblor y se abre la misma puerta 3, que no tiene el premio.
- ► El presentador dice "ah, bueno, ahora que se abrió una puerta, sigamos adelante".
- Se ofrece la alternativa de quedarse con la puerta seleccionada, o cambiarse a la otra que quedó cerrada.
- Finalmente, se abren todas las puertas y se recibe lo que haya detrás de la puerta seleccionada.

El participante debería

- Quedarse con la puerta 1.
- Cambiar a la puerta 2.
- ▶ No hay diferencia si elige puerta 1 o 2.

Monty Hall – Ejercicio

Muchas puertas

- ► En vez de 3 puertas, hay un millón de ellas.
- ▶ Luego de seleccionar la primera puerta, el presentador abre 999998 puertas que no tienen el premio atrás, dejando solo dos puertas cerradas.
- Por ejemplo, participante eligió puerta 1 y luego quedan cerradas solo las puertas 1 y 234598.
- ¿Dónde cree que está el premio?

Regla general (Steve Gull)

Siempre escribir la probabilidad de todo.

Interpretación probabilidades – UK Met Office

- ➤ Supongamos que la oficina dice que la probabilidad de llover mañana en tu región es de 80 %. No están diciendo que lloverá en un 80 % del área de terreno de tu región, y no lloverá en el restante 20 %. Tampoco están diciendo que lloverá un 80 % del tiempo. Lo que están diciendo es que hay una posibilidad de un 80 % de que llueva en cualquier lugar de la región, como tu jardín.
- Un pronóstico de 80 % de posibilidad de lluvia en tu región debería significar más o menos que, en alrededor de un 80 % de los días en que las condiciones climáticas son como las de mañana, se experimentará lluvia donde estás.
- ➤ Si no llueve en tu jardín mañana, entonces el pronóstico de 80 % no está equivocado, porque no djo que la lluvia era segura. Pero si miras a lo largo de los días, en que la oficina dijo que la probabilidad de lluvia era un 80 %, deberías esperar que haya llovido en alrededor de un 80 % de ellos.

