Homework 3

Due: Monday, Nov 1 at 8:30 pm EST

Please give complete, well-written solutions to the following exercises and submit via Canvas.

- 1. (i). (5 points) Let $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + 2 \mathbf{b}^T \mathbf{x} + c$, where A is a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Show that the smallest Lipschitz constant of ∇f is 2||A||.
 - (ii). (5 points) Let $f \in C_L^{1,1}(\mathbb{R}^m)$, and let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Show that the function $g : \mathbb{R}^n \to \mathbb{R}$ defined by $g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$ satisfies $g \in C_{\tilde{L}}^{1,1}(\mathbb{R}^n)$, where $\tilde{L} = ||A||^2 L$.
- 2. (10 points) Consider the minimization problem

$$\min\{\mathbf{x}^T Q \mathbf{x} : \mathbf{x} \in \mathbb{R}^2\},\$$

where Q is a positive definite 2×2 matrix. Suppose we use the diagonal scaling matrix

$$\begin{pmatrix} Q_{11}^{-1} & 0 \\ 0 & Q_{22}^{-1} \end{pmatrix}.$$

Show that the above scaling matrix improves the condition number of Q in the sense that

$$\kappa(D^{1/2}QD^{1/2}) \le \kappa(Q).$$

3. (20 points) Consider the quadratic minimization problem

$$\min\{\mathbf{x}^T A \mathbf{x} : \mathbf{x} \in \mathbb{R}^5\},\$$

where A is 5×5 Hilbert matrix defined by

$$A_{i,j} = \frac{1}{i+j-1}, \quad i,j = 1,2,3,4,5.$$

Write codes to implement the following methods and compare the number of iterations required by each of the methods when the initial vectors is $\mathbf{x}_0 = (1, 2, 3, 4, 5)^T$ to obtain a solution \mathbf{x} with $\|\nabla f(\mathbf{x})\| \leq 10^{-4}$:

- (i). gradient method with backtracking stepsize rule and parameters $\alpha=0.5,\,\beta=0.5,\,s=1$:
- (ii). gradient method with backtracking stepsize rule and parameters $\alpha=0.1,\,\beta=0.5,\,s=1$;
- (iii). gradient method with exact line search;

- (iv). diagonally scaled gradient method with diagonal elements $D_{ii} = \frac{1}{A_{ii}}$, i = 1, 2, 3, 4, 5 and exact line search
- (iv). diagonally scaled gradient method with diagonal elements $D_{ii} = \frac{1}{A_{ii}}, i = 1, 2, 3, 4, 5$ and backtracking line search with parameters $\alpha = 0.1, \beta = 0.5, s = 1$.
- 4. (30 points) Consider the Freudenstein and Roth test function

$$f(\mathbf{x}) = f_1^2(\mathbf{x}) + f_2^2(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^2,$$

where

$$f_1(\mathbf{x}) = -13 + x_1 + ((5 - x_2)x_2 - 2)x_2,$$

and

$$f_2(\mathbf{x}) = -29 + x_1 + ((x_2 + 1)x_2 - 14)x_2.$$

- (i). Show that the function f has three stationary points. Find them and prove that one is a global minimizer, one is a strict local minimum and the third is a saddle point.
- (ii) Write codes to employ the following three methods on the problem of minimizing f:
 - 1. the gradient method with backtracking and parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$.
 - 2. the hybrid Newton's method with parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$.
 - 3. damped Gauss-Newton's method with a backtracking line search strategy with parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$.

All the algorithms should use the stopping criteria $\|\nabla f(\mathbf{x})\| \leq 10^{-5}$. Each algorithm should be employed four times on the following four starting points: $(-50,7)^T$, $(20,7)^T$, $(20,-18)^T$, $(5,-10)^T$. For each of the four starting points, compare the number of iterations and the points to which each method converged. If a method did not converge, explain why.

- 5. Write down the reference you are going to read and do a presentation for the final project.
- 6. Write down three available time slots (25 minutes = 20 minutes for presentation + 5 minutes for Q&A) from between. 13rd and Dec 23rd (Please use EST, I will be available from 8 am to 8 pm).