Class: XII Chemistry Marking Scheme 2018-19

Time allowed: 3 Hours Maximum Marks: 70

Q No	SECTION A	Marks
1.	On heating ZnO, it loses oxygen and there is excess of Zn ²⁺ ions in the crystal.	1
	OR	
	When silicon is doped with phosphorous (group 15 element), the increase in conductivity is due to the delocalised negatively charged electrons.	1
2.	Associated colloids	1
3.	$t_{2g}^3e_g^3$	1
	OR	
	The orbital splitting energies, Δ_t are not sufficiently large for forcing pairing of electrons in the tetrahedral coordination entity formation.	1
4.	В	1
5.	Poly β – hydroxybutyrate – co – β – hydroxy v exate	1
	SECTION B	
6.	$HBr \rightarrow H^{+} + Br^{-}$ $i=1-\alpha+n\alpha$ $n=2$	
	$i=1+\alpha$	1.
	$\Delta T_f = iK_f m$	1/2 1/2
	$\Delta T_f = (1 + \alpha)1.86 \times \frac{8.1}{31} \times \frac{1000}{100}$ $\Delta T_f = 3.53$	1/2
	$T_{0}^{0} = 0^{0}C$	1/2
	$T_f^0 = 0^0 C$ $\Delta T_f = T_f^0 - T_f^0$	1/2
	$\begin{array}{c} \Delta I_f = I_f - I_f \\ T_f = -3.534^{\circ} C \end{array}$	1/2
	OR	
	Mole fraction of water, $\chi_{H_2O} = 0.88$	
	Mole fraction of ethanol, $\chi_{C_2H_5OH} = 1-0.88$ = 0.12	1/2
	$\chi_{C_2H_5OH} = \frac{n_2}{n_1 + n_2} \qquad(1)$	

	n_2 = number of moles of ethanol.	
	n_1 = number of moles of water. Molality of ethanol means the number of	
	moles of ethanol present in	
	1000 g of water.	
	$n_1 = \frac{1000}{18} = 55.5 moles$	
	$n_1 = \frac{18}{18} = 33.3 moles$	1/2
	Substituting the value of n_1 in equation (1)	
	Substituting the value of iii in equation (1)	
		1/2
	$\frac{n_2}{n_2} = 0.12$	/2
	$\frac{n_2}{55.5 + n_2} = 0.12$	1/
		1/2
	n -7 57 moles	
	$n_2 = 7.57 \text{ moles}$	
	Molality of ethanol (C_2H_5OH) = 7.57 m	
	Alternatively,	
		1/2
	Molality of ethanol (C_2H_5OH) = 7.57 m Alternatively, Mole fraction of water = 0.88	
	Mole fraction of ethanol = $1-0.88 = 0.12$	
	Therefore 0.12 moles of ethanol are present in 0.88 moles of water.	
	Mass of water = $0.88 \times 18 = 15.84 \text{ g of water}$.	
	Molality = number of moles of solute (ethanol) present in 1000 g of	1/
	solvent (water)	1/2
	$= 12 \times 1000 / 15.84$	
	= 7.57 m	
	Molality of ethanol (C_2H_5OH) = 7.57 in	
	(7)	
7.(a)	Reaction: Hell-Volhard-Zelinsky reaction.	1/2
	IUPAC : 2-Bromopropanoic acid	1/2
(b)	Reaction: Rosenmund reduction reaction.	1/2
	IUPAC : Benzaldehyde.	1/2
	Terrie i Benzalden jud.	/2
	OR	
	OR .	1/2
	i) 2 Mala laut 2 and	72
	i) 2-Methylbut-2-enal	
	CH ₃	1,
	J 13	1/2
	CH ₃ -CH=CH-CHO	
	3113 311-311 3113	1/2
	ii) Pent-2-enal	
	/	1/2
	CH ₃ -CH ₂ -CH=CH-CHO	
8.(a)	Tert-butyl peroxide acts as a free radical generating initiator(catalyst)	1
(b)	$CH_2 = CH - CH = CH_2$	1/2
(0)	$C_{6}H_{5} - CH = CH_{2}$	1/2
	$C_{6}\Pi_{5} - C\Pi - C\Pi_{2}$	72
1		

9.	Step 1 : Formation of protonated alcohol.	1/2
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Step 2 : Formation of carbocation.	1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$H - \begin{matrix} H & H \\ & \\ -C - C^{+} \\ & \\ H & H \end{matrix} \longrightarrow \begin{matrix} H \\ Ethene \end{matrix} \longrightarrow \begin{matrix} H \\ + & H^{+} \end{matrix}$	1/2
10.	(i) Zero order reaction (ii) Slope represents $-k$; Intercept represents $[R]_0$ (iii) $mol L^{-1} s^{-1}$	1/ ₂ 1/ ₂ +1/ ₂ 1/ ₂
11.(a)		1
(b)	XeO ₃ O NOTE: The second of	1
12.(i)	Since Ti ⁴⁺ /Ti ³⁺ has lower reduction potential than Fe ³⁺ /Fe ²⁺ , it cannot be reduced in comparison with Fe ³⁺ /Fe ²⁺ ions.	1
	Hence Ti ⁴⁺ cannot oxidise Fe ²⁺ to Fe ³⁺ .	1/2
(ii)	As the value of reduction potential increases the stability of +2 oxidation increases. Therefore correct order of stability is $Cr^{3+}/Cr^{2+} < Fe^{3+}/Fe^{2+} < Mn^{3+}/Mn^{2+}$	1 1/2

	SECTION C	
13.	$r = \frac{\sqrt{3}}{4}a$	1/2
	$143.1 = \frac{\sqrt{3}}{4}a$	
	$a = 330.4 \text{ pm}$ $\rho = \frac{zM}{a^3 N_A}$	1/ ₂ 1/ ₂
	$\rho = \frac{2\mathbf{x} 93}{(330.4 \mathbf{x} 10^{-10})^3 \mathbf{x} 6.023 \mathbf{x} 10^{23}}$	1/2
	$\rho=8.58 \ g/cm^3$	1/2 + 1/2
14.(a)	Molecules of benzoic acid dimerise in benzene, the number of particles are reduced.	1
(b)	The intermolecular interactions between ethanol and acetone are weaker/ the escaping tendency of ethanol and acetone molecules increases on mixing / the	1
(c)	vapour pressure increases. Due to osmosis, a bacterium on fruit loses water, shrivels and dies.	1
15.	CH ₃ A: CH ₃ -CH-CH ₂ -OH CH ₃	1
	B: CH ₃ -CH-COOH	1/2
	CH_3 $C: CH_3-CH = CH_2$ CH_3	1/2
	CH ₃ D : CH ₃ - CH- CH ₃ OH	1/2
		1/2
	A and D are position isomers.	

16.	C_6H_5 CH ₂ Cl will undergo S_N 1 reaction faster. The carbocation formed by C_6H_5 CH ₂ Cl gets stabilized through resonance.	1/ ₂ 1/ ₂
	Greater the stability of carbocation, greater will be its ease of formation from the	
	respective halide.	1
	⊕ сн ₂ сн ₂ сн ₂ сн ₂	
		1
	(i) ¹ (ii) (iii) (iv)	
	CH ₂ CH ₂ T⊕	
	● ■	
	(v) (vi)	
	OR	_
	CI	1/
	CH ₃ -CH-CH ₂ CI	1/2
	0.13 0.1 0.120	1/2
	CH ₂ Cl-CH ₂ -CH ₂ Cl	1/2
	CH ₂ CI-CH ₂ -CH ₂ CI CH ₃ -CH ₂ -CHCl ₂	
	çı	1/2
		1/2
	CH ₃ -C-CH ₃	1/2
	The following isomer will exhibit enantiomerism:	
	The following is their will exhibit enalitiomerism.	
	CH ₃ -CM-CH ₂ CI	
45 : :	IUPAC name: 1,2-Dichloropropane.	
17.(a)	N-OH	1
	HOOC - CH ₂ - CH ₂ - CH ₂ - CH ₂ - COOH	1
(b)		1

(c)	C	1
	C NH	
	O O	
18.(i)	It is unstable at cooking temperature.	1
(ii)	Excessive hydrogenearbonate can make the stomach alkaline and trigger the production of even more acid. Metal hydroxides being insoluble do not increase the pH above neutrality.	1
(iii)	Aspirin has anti blood clotting action.	1
19.(a) (b)	Amylopectin. C- 2	1 1
(c)	Two peptide linkages.	1
	OR	
	(1) Glucose does not give 2,4- DNP test.	1
	(2) Glucose does not give Schiff's test.	1
	(3) The pentaacetate of glucose does not react with by crexylamine.	1
	(4) Glucose does not form the hydrogensulphite acdition product with NaHSO ₃ .	
	(Any three points)	
20.	$2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$	
	At $t = 0$ 0.5 atm 0 atm 3 atm	
	At time t $0.5-2x$ atm $2x$ atm	
	$p_t = p_{N_2O_5} + p_{N_2O_4} + p_{O_2}$	
	= (0.5 - 2x) + 2x + x = 0.5 + x	1/2
	$x = p_t - 0.5$ $p_{N_2O_5} = 0.5 - 2x$ $= 0.5 - 2(p_t - 0.5)$ $= 1.5 - 2p_t$ At t = 100 s; p _t = 0.512 atm	
	$p_{N_2O_5} = 0.5 - 2x$	1/
	=0.5-2(p-0.5)	1/2
	-1.5-2n	
	$At t = 100 \text{ s} \cdot \text{p} = 0.512 \text{ atm}$	
	$p_{N_2O_5} = 1.5 - 2 \times 0.512 = 0.476 atm$	
	$p_{N_2O_5} = 1.12 \times 0.312 = 0.470 \text{ atm}$	1/2
	$k = \frac{2.353}{t} \log \frac{p_i}{p_A}$	72
		1/2
	$k = \frac{2.303}{100s} \log \frac{0.5 atm}{0.476 atm}$, -
	$\frac{\kappa - 100s}{100s} = \frac{10s}{0.476 atm}$	
	$k = \frac{2.303}{100s} \times 0.0216 = 4.98 \times 10^{-4} \text{s}^{-1}$	1
	OR	1
	The Arrhenius equation: $k = Ae^{-Ea/RT}$	
	Taking log on both sides: $\log k = \log A - \frac{E_a}{2.303RT}$	
L		

	For reaction (i) $\log k_1 = \log A - \frac{E_a(1)}{2.303RT}$	1
		1
	For reaction (ii) $\log k_2 = \log A - \frac{E_a(2)}{2.303RT}$	
	Subtracting (i) from (ii) $k = E(1) - E(2)$	1
	$\log \frac{k_1}{k_2} = \frac{E_a(1) - E_a(2)}{2.303RT}$	
	$= \log \frac{k_1}{k_2} = \frac{24.9 \times 1000}{2.303 \times 8.3 \times 300} = 4.342$	
	$\frac{k_1}{k_2} = anti \log(4.342) = 2.198 \times 10^4$	
21. (a)	Negative charge is developed on the sol.	1/2
(4)	Sol is represented as AgI/I^-	1/2
(b)		
(0)	Adsorption of reactants on the solid surface of the catalysts increases the rate of reaction.	1
(c)		1/2
(0)	Na ₃ PO ₄ Hardy-Schulze rule	1/2
22.	The state is a state i	
(a)	Leached gold complex is treated with Zinc and gold is recovered by displacement	
	method	1/2
	$2Au[(CN)_2]^-(aq) + Zn(s) \to 2Au(s) + [Zn(CN)_4]^{2-}(aq)$	1/2
(b)	Zirconium iodide is decomposed on a tangsten filament; electrically heated to 1800 K. Pure Zr metal is deposited on the rilament.	1/ ₂ 1/ ₂
	$ZrI_4 \rightarrow Zr + I_2$	
(c)	Silica is added to the ore an neated. It helps to slag off iron oxide as iron silicate	1/2
(0)	$FeO + SiO_2 \rightarrow FeSiO_3(slag)$	1/2
	OR	
(a)	NaCN is used as depressants to separate two sulphide ores (ZnS and PbS) in Froth Floatation Method.	(1)
(b)	Carbon monoxide forms a volatile complex of nickel, nickel tetracarbonyl.	(1)
(c)	Coke is used as a reducing agent to reduce zinc oxide to zinc.	(1)
23. (a)	Co ²⁺ : [Ar]3d ⁷ Sc ³⁺ : [Ar]3d ⁰ Cr ³⁺ : [Ar]3d ³ Co ²⁺ and Cr ³⁺ have unpaired electrons. Thus, they are coloured in aqueous solution.Sc ³⁺ has no unpaired electron. Thus it is colourless.	1
(b)	Metal copper has high enthalpy of atomisation and enthalpy of ionisation. Therefore the high energy required to convert Cu(s) to Cu ²⁺ (aq) is not balanced by its hydration enthalpy.	1

(c)	Due to lanthanoid contraction the size of lanthanoid ion decreases regularly with increase in atomic size. Thus covalent character between lanthanoid ion and OH increases from La ³⁺ to Lu ³⁺ . Thus the basic character of hydroxides decreases from La(OH) ₃ to Lu(OH) ₃			
24. (a) (b) (c)	Isomer A: [Cr(NH ₃) ₄ BrCl]Cl Isomer B: [Cr (NH ₃) ₄ Cl ₂]Br Hybridisation of Cr in isomer A and B is d ² sp ³ . Number of unpaired electrons in Cr ³⁺ (3d ³) is 3			
	Magnetic moment = $\sqrt{n(n+2)}$ = $\sqrt{3(3+2)}$ = 3.87 B (deduct half mark for wrong unit/unit not wr		1	
25.(a)	$A = AgNO_2$ $CH_2 - NH_2$	il.	1/2	
	B =	ogilon.	1/2	
	CH ₂ - C - NH ₂			
	C = (
	$D = CHCl_3 + KOH$, Yeat.			
(b) (i)	Experiment Aniline Azo dye test: Dissolve the anine in HCl, cool wind then dye is observed.	Benzylamine red No dye is formed.	1	
	add cold aqueous solution of NaNO ₂ and then solution of β - naphthol			
(ii)	Experiment Methylamine	Dimethylamine		
	Carbylamine test: To the organic compound add chloroform and ethanolic potassium hydroxide and heat	No reaction.	1	
	(or any other suitable test)			

(c)	$A = CH_3CH_2CH_2NH_2$	1/2
	$B = CH_3CH_2CH_2OH$	1/2
	OR	
(a)(i)	In strongly acidic medium, aniline is protonated to form the anilium ion which is meta directing.	1
(ii)	Aryl halides do not undergo nucleophilc substitution with the anion formed by phthalimide.	1
	CH_3 - COOH $\xrightarrow{NH_3, \Delta}$ CH_3 -CO-NH ₂ $\xrightarrow{NaOH + Br_2}$ CH_3NH_2	1
(b)(i)	NUCCOU.	
(ii)	NH ₂ (CH ₃ CO) ₂ O pyridine NHCOCH ₃ OH' or H Br Br ST	1
(c)	p- Nitroaniline < Aniline < p- Toludine.	1
26.(a) (b)	E_{cell} decreases. Anode: $Cl_2 \uparrow$ Cathode: $H_2 \uparrow$	1 1/2 1/2
(c)	$Cu^{2+}(aq.) + Ni(s) \rightarrow Ni^{2+}(aq.) + Cu(s)$ $E^{0}_{cell} = E^{0}_{cello} - E^{0}_{anoto}$	1/2
	$E^{0}_{cell} = E^{0}_{cathode} - E^{0}_{anode}$ $E^{0}_{cell} = 0.34 - (-0.25)$ $E^{0}_{cell} = 0.59V$	1/2
	$E_{cell} = E_{veli}^{0} - \frac{2.303RT}{nF} \log \frac{[Ni^{2+}]}{[Cu^{2+}]}$	1/2
	$E_{cell} = 0.59 - \frac{0.059}{2} \log \frac{[0.01]}{[0.1]}$	1/2
	$E_{cell} = 0.6195V$ [0.1]	1/2 +1/2
	OR	
(a)	$\Lambda^0_{m(CaCl_2)} = \lambda^0_{Ca^{2+}} + 2\lambda^0_{Cl^-}$	1
(b)	Conductivity of NaCl decreases on dilution as the number of ions per unit volume decreases.	1

	Whereas molar conductivity of NaCl increases on dilution as on dilution the interionic interactions are overcome and ions are free to move.	1
(c)	$G^* = \kappa R$ $\kappa = \frac{1.29}{100} = 0.0129 \ S \ cm^{-1}$	1/2
	$\Lambda_m = \frac{1000 \ \kappa}{C}$	1/2
	$\Lambda_m = \frac{1000 \times 0.0129}{0.1}$ $\Lambda_m = 129 S cm^2 mol^{-1}$	1/2
27. (a)	(i)S atom in SF_4 is not sterically protected as it is surrounded by only four F aloms, so attack of water molecules can take place easily. In contrast, S atom in SF_6 is protected by six F aoms. Thus attack by water molecules cannot take place easily.	1
	(ii) Chlorine water produces nascent oxygen (causes oxidation) which is responsible for bleaching action. $Cl_2 + H_2O \rightarrow 2HCl + [O]$	1
	(iii) Due to inert pair effect Bi(V) can accept a pair of electrons to form more stable Bi (III). (+3 oxidation state of Bi is more stable than its +5 oxidation state).	1
(b)	(i)Phosphorus undergoes disproportionation reaction to form phosphine gas. $P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NcH_2PO_2$	1
	(ii)On partial hydrolysis, XeF ₆ gives oxyfluoride XeOF ₄ and HF. $XeF_6 + H_2O \rightarrow XeOF_4 + 2H.F$	1
(0)	OR N Postlett first property and compound O *DtE * He then realized that the first	1
(a)	N.Bartlett first prepared a red compound $O_2^+PtF_6^-$. He then realised that the first ionisation enthalpy of molecular oxygen was almost identical with Xenon. So he carried out reaction between Xe and PtF_6 .	1
(b)	(i) $I_2 < F_2 < br_2 < Cl_2$ (ii) $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$	1
(c)	(i) $2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$	1
	(ii)	1
	$2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$	
