AALBORG UNIVERSITY

Optimal Control for Water Distribution

Electronic & IT: Control & Automation Group: CA-830

STUDENT REPORT

Fourth year of study

Electronic and IT Fredrik Bajers Vej 7 DK-9220 Aalborg East, Denmark http://www.es.aau.dk

AALBORG UNIVERSITY

STUDENT REPORT

	•		
-10	nı	C	۰
10	ν_{1}	U	۰

Optimal Control for Water Distribution

Project:

P8-project

Project time:

February 2017 - May 2017

Projectgroup:

17 gr 830

Participants:

Daniel Bähner Andersen Ignacio Trojaola Bolinaga Krisztian Mark Balla Nicolaj Vinkel Christensen Simon Krogh

Supervisors:

Tom Nørgaard Jensen Carsten Kallesøe

Circulation: x

Number of pages: xAppendix: x + CDCompleted xx-xx-2016

Synopsis:

Preface

This project comprises of implementing a function	onal controller system for
	Aalborg University, th of May 2017
$egin{aligned} ext{Daniel B\"{a}hner Andersen} \ dban 13@student. aau. dk \end{aligned}$	Ignacio Trojaola Bolinaga itroja16@student.aau.dk
asa. 12 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
Krisztian Mark Balla	Nicolaj Vinkel Christensen
kballa 16@student.aau.dk	nvch 13@student.aau.dk
$egin{array}{c} ext{Simon Kro} \ skrogh13@studer \end{array}$	
om ogm o estatuer	0.01.00.00.00.10010

Explanation of Notation

Acronyms

PMA	Pressure Management Area
CP	Critical Point
WT	Water Tower
MP	Minimization Problem
OD	Opening Degree
KVL	Kirchhoff´s Voltage Law
KCL	Kirchhoff´s Current Law
MPC	Model Predictive Control
GT	Graph Theory

Symbols

\mathbf{Symbol}	Description	Unit
\overline{A}	Cross sectional area	$[m^2]$
C_k	The k^{th} component of the distribution network	$[\cdot]$
C	Electric capacitance	[F]
C_H	Hydraulic capacitance	$[m^3/(N/m^2)]$
D	Diameter	[m]
f	Moody friction factor	$[\cdot]$
F	Force	[N]
g	Acceleration due to gravity	$[m/s^2]$
h_f	Pressure given in head	[m]
h_m	Form loss	[m]
J_k	Water inertia of the k^{th} component	$[kg/m^4]$
k_f	Form loss coefficient	$[\cdot]$
$\stackrel{\circ}{L}$	Length	[m]
m	Mass of body	[kg]
M	Linear momentum	[kgm/s]
n_i	The i^{th} node of the distribution network	$[\cdot]$
n_{gl}	Valve characteristic curve factor	$[\cdot]$
p_a	Atmospheric pressure	[bar]
Δp_k	The pressure drop across the i^{th} component	[bar]
q_k	Flow through the k^{th} component	$[m^3/h]$
Re	Reynolds Number	$[\cdot]$
T	Temperature	[°]
v	Velocity	[m/s]
V_t	Volume of the water in the water tower	$[m^3]$
$\alpha_k(.)$	The pressure boost given by the k^{th} pump	[bar]
ϵ	Average roughness	$[\cdot]$
ζ	Pressure drop from elevation difference across the k^{th} component	[bar]
$ heta_{max}$	Maximum angle of the opening degree	[°]
$ heta_{off}$	Minimum angle where the valve closes	[°]
$ heta_{OD}$	Angle of opening degree	[°]
$\lambda_k(.)$	Function of hydraulic resistance in the k^{th} pipe	[bar]
$\mu_k(.)$	Function of hydraulic resistance in the k^{th} valve	[bar]
ν	Kinematic viscosity	[kg/ms]
ho	Density	$[kg/m^3]$
ω_r	Impeller angular velocity	[rad/s]

Mathematical tools

vectorfields
time derivatives
vectors
matrices
derivative of vector fields
Jakobi matrix
chain rule in derivation
pseudo inverse

Mathematical notation

This section will explain how the mathematical notation of this report.

Upper and lower bounds

$$\underline{x} < x < \overline{x} \tag{1}$$

Where x is a variable and \overline{x} and \underline{x} are the upper and lower bounds.

Contents

E	kplan	ation of Notation	\mathbf{v}
1	Intr	roduction	1
Ι	Ana	alysis	3
2	Syst	tem Description	5
	2.1	System overview	5
3	\mathbf{Req}	uirements and Constraints	9
4	Mod	delling	11
_	4.1	Hydraulic modelling	
		4.1.1 Pipe model	
		4.1.1.1 Surface resistance (h_f)	
		4.1.1.2 Form resistance (h_m)	
		4.1.1.3 Complete pipe model	
		4.1.2 Valve model	
		4.1.2.1 Valve conductivity function $k_v(OD)$	
		4.1.2.2 Complete valve model	
		4.1.3 Pump model	
		4.1.4 Water Tower	
	4.2	Component model	
		4.2.1 Unit transformation	
	4.3	System description	
	4.4	Graph representation	
		4.4.1 Incidence matrix	
		4.4.2 Cycle matrix	23
		4.4.3 Kirchhoff's Law	
	4.5	Network model	
		4.5.1 Pressure drop across the nodes	27
	4.6	Parameter identification	28
	4.7	Nonlinear parameter identification	30
		4.7.1 NonLinear differential script	
		4.7.2 NonLinear grey box model	
	4.8	Linearization of the model	
		4.8.1 Taylor expansion on a simple example	33
		4.8.2 Linear system model	
		4.8.3 State space model	
	4.9	Linear parameter estimation	
		4.9.1 Measurements on the test set up	
	4.10	Linear model implementation	

Η	Control Design	41
5	Controller 5.1 Control Problem	43 43 44 45 46 46
6	Implementation of controller	47
II	I Conclusion and verification	49
7	Accepttest	51
8	Discussion	53
9	Conclusion	55
IV	$^{\prime}{ m Appendices}$	57
\mathbf{A}	Unit Conversion	59
В	Assumption List	61
C	System DescriptionC.1 Components of the SystemC.2 System TopologyC.3 System GraphC.4 Spanning TreeC.5 Incidence MatrixC.6 Cycle MatrixC.7 G mapping matrix	63 64 65 66 67 68 69
D	Linearization	73
Bi	bliography	75

Introduction

Water pressure management is a vital part of the water supply infrastructure all over the world. It ensures that a positive water pressure is present such that the consumers are supplied with water at all time. Maintaining a minimum pressure in the network is an important task as it ensures the end user a decent water pressure and also minimizes the risk of contamination in the water system[1].

In the U.S alone 4 % of the national energy consumption is used on moving and treating water/wastewater[2]. With an increasing focus on green energy, more and more renewable energy sources are added to the grid. Nevertheless, the intermittent behavior of renewable energy sources and time-dependent consumer preferences result in fluctuation in the available power. This means that the price for electric power also varies [3]. To minimize the cost of running a water distribution network, potential energy can be used to maintain a minimum pressure. When electric prices are low, water can be pumped to a higher altitude and stored in a water tower (WT), and thereby energy is stored for future use. The potential energy of the water stored in the WT can then be used to maintain a minimum pressure that is required at the end consumer. However when a WT is included in a water distribution network, the pressure in the system is defined by the water level and hight of the WT. This means that to control pressure, the water level of the WT should be controlled.

Maximum allowed pressure in water distribution networks should also be considered as the risk of water leakage increases when pressure is increased[4], thus increased water losses due to leakage will lead to a higher energy consumption. In [4] it is stated that the estimated world wide water loss is at 30 %, so the energy used on cleaning the water for filth, bacteria and pressurizing it is lost. Another problem that should be highlighted regarding high pressure is that a high pressure will increase the wear on the pipes in a system[5], this leads to higher maintenances costs as pipes and fittings have to be replaced more frequently. Additionally, maintenances is not always an easy task, since the pipes usually are placed under ground and need to be dug up. Thereby the expense of maintenance is increased, especially in a city, were the operation also can have a negative impact on significant infrastructures. Based on these facts, the maximum pressure in a water distribution network is a vital parameter of the systems profitability. In a system with a WT the maximum allowed pressure will likely be defined by the maximum allowed water level in the WT, as the WT in most situations will be able to provide a dominant pressure compared to the desired network pressure.

Some constraints regarding a solution that implements a WT are still necessary to be taken into account. One of them being the quality of the water in the tower. If stored for too long the quality of the water will start to decrease due to a decreasing oxygen level [6, 7], thus the water should not be stored for to long. The oxygen level of the water also depends on the water temperature and therefor the water should not be too warm. Furthermore it is undesirable that the water remains stagnant in the tower or pipe as it also effects the water quality.

Group 830 1. Introduction

This leads to the following problem statement:

• How can a water tower, implemented in a water distribution network, be controlled to minimize the cost of running a water distribution network without compromising the water quality.

Part I Analysis

System Description

2

This section will give an introduction to the available test system, including structure and components overview.

2.1 System overview

To develop and test different control methods for a water distribution system a test setup is required. Such a setup is available at Aalborg university which is based on a real water distribution system, though as a 1:20 downscaled version.

Figure 2.1. The available test setup used to represent a real water distribution system.

The test setup represents a real system, thus the same structure concerning piping, leveling and all the other components. To achieve different elevation levels between system parts, the setup is mounted on a wall. This also allows for a quick overview of the complete setup and eases access to the components. As the system is used for various test scenarios other equipment is also present in the test setup shown in Figure 2.1, enabling the test system to mimic a variety of different system types and scenarios. A simplified diagram representing the structure of the test setup that will be used in this project is shown in Figure 2.2.

Figure 2.2. Overview of the reduced system that fulfills the scenario of this project.

The system can be split up into different parts, where the main part is a water reservoir placed at ground level, used to supply the system. Two pumps are connected to the reservoir and they supply water to a main water ring formed around the PMA's. A water tower is also connected to the main water ring, and will act both as an additional water reservoir and pressurize the ring due to the elevation of the tower. The direction of water flow with respect to the tower will depend on the pressure in the main ring and the tower can thus be filled by pressurizing the ring or be used to pressurize and supply water to the ring instead of the pumps. From the water ring two PMA's are connected, each via their own pump. In each PMA a measuring point called the critical point (CP) is placed and the pressure at this point shall be kept to accommodate supply demands of the consumers. Furthermore two consumers are placed in each PMA, these are simulated by valves with a variable opening degree where the water flows back to the main reservoir.

As the test setup consist of different components as valves, pumps and pipes, a basic water distribution network is shown in *Figure 2.3* which will be used to illustrate and explain the individual components in the system and their functionality.

Symbol	Name
	Pump
\square	Manual valve
	Electronic valve
	Pipe segment
P	Pressure sensor
(P)	Differential pressure sensor
	Gnd

Figure 2.3. Basic water distribution network.

Table 2.1. Symbol and name for component in the water network.

In the system two different types of Grundfos pumps are used. For supplying the water ring two pumps of the type UPMXL GEO 25-125[8] are used. Whereas the pumps used in each PMA are of the type UPM2 25-60[9] which is a smaller pump and typically used at the end-user.

In order to close off parts of the system that will not be used for a specific scenario or to simulate faulty behavior, manual rotary ball valves are placed trough out the system. To simulate a consumer, an electronically controlled belimo valve is used. Thereby is it possible to vary the opening degree of the valve over time according to a specific consumer behavior.

For the pipes there are used two different material types. The pipes used in the main ring, the connections to both the reservoir and the water tower are made of polyethylene grade 80 called PE80[10]. The pipes used to connect the PMA's to the ring and the internal connections in the PMA's are made of polyethylene with cross-links called PEX. In addition to the pipes, fittings, bends, and elbows are also present and found in various metals as iron and brass.

The pressure measuring in each PMA is done with a Jumo pressure sensor. The pressure is measured relative to a reference called Gnd, for the test system Gnd is atmospheric pressure. Furthermore both the differential pressure over each pump and the absolute pressure at the pump is measured with a Grundfos direct sensor DPI v.1 and a Danfoss mbs32/33 pressure sensor, respectively.

The main reservoir has a volume of 1000 L and the WT a volume of 200 L. THe volume of the WT in this report is denoted as V_t . A system diagram of the entire test setup, including pipe dimensions, naming and so on, can be seen in *Appendix: C.2*.

Requirements and Constraints

Adding a WT to an existing water distribution network will introduce constrains and these need to be taken into account.

As mentioned in Section 1: Introduction, a minimum pressure must be maintained at the end user. Furthermore the pressure can not exceed a maximum level as this will both increase the possibility of water leakage and wear on the pipes in the system. The system described in Section 2.1: System overview, is designed to operate at a pressure around 0.1 bar, relative to the environment [11]. For the purpose of this project the interval for which the pressure should be within, is chosen to be between $0.08 < p_{cp} < 0.14$ [Bar], where p_{cp} is the pressure at a critical point.

Another important aspect when implementing a WT is water quality. If the water is stored, in the WT, for too long the quality will decrease due to decreasing oxygen level. Because of this a requirement for water quality has to be formulated. As described in Section 2.1: System overview, the WT has one combined input/output connection. Therefor a requirement only for flow is hard to formulate as the direction will change dependent on the usage. This could result in a flow based constraint being fulfilled by rapidly changing flow direction without actually replacing any significant water volume in the tower. Instead, a requirement for how often the content of the WT should be exchanged per time unit is proposed. For the purpose of this project the minimum requirement to volume exchange, is chosen to 30% of the maximum volume of the WT, V_T per day. This can be written as $\bar{q}_{wt} > 0.3 \cdot V_T \left[\frac{m^3}{day}\right]$. As stated in Section 2.1: System overview $V_T = 200 L$ so therefor $\bar{q}_{wt} > 0.06 \left[\frac{m^3}{day}\right]$.

This results in the following requirements:

- $\bullet~{\rm Pressure~at~CP},\, 0.08 < \textit{p_{cp}} < 0.14\, [{\rm bar}]$
- Minimum water exchange, $\bar{q}_{wt} > 0.06 \left[\frac{m^3}{day} \right]$
- Minimizing the total cost of running the system

4.1 Hydraulic modelling

Water distribution networks are designed to deliver water to consumers in terms of sufficient pressure and appropriate chemical composition. Distribution systems as such are generally consisting of four main components: pipes, pumps, valves and reservoirs. The common property is that they are all two-terminal components, therefore they can be characterized by the dynamic relationship between the pressure drop across the two endpoints and the flow through the element [12]. Equation: (C.2) shows the dual variables which describes one component.

All matrices should be bold font

We have to be consequent with the indexes i or k?

$$\begin{bmatrix} \Delta P \\ q \end{bmatrix} = \begin{bmatrix} P_{in} - P_{out} \\ q \end{bmatrix} \tag{4.1}$$

Where

$$\Delta p$$
 is the pressure drop across the two endpoints, and q is the flow through the element. [Pa]

In the following chapter the hydraulic model of the system is derived by control volume approach [13]. The relationship between the two variables are introduced for each component in the hydraulic network.

4.1.1 Pipe model

Pipes are important components of water distribution systems since they are used for carrying pressurized and treated fresh water. A detailed model of pipes has to be derived in order to describe the relationship of pressure and flow for each pipe component. The dynamic model of a pipe can be originated from Newton's second law. *Equation:* (4.2) describes the proportionality between the rate of change of the momentum of the water and the force acting on it.

$$\frac{d}{dt}M = \sum_{i} F_i \tag{4.2}$$

Where

$$M$$
 is the linear momentum of the water flow, and F_i is the set of forces acting on the water. $\left[\frac{\text{kgm}}{\text{s}}\right]$

The dynamic model of a pipe component is derived under the assumption that the flow of the fluid is uniformly distributed along the cross sectional area of the pipe. In other words, all pipes in the system are filled up fully with water all the time. Thus the density of water and the volume of the fluid is constant in time, as is the mass of the water.

Rewriting *Equation:* (4.2), because of the above-mentioned asumptions, the mass of the water can be taken out in front of the derivative.

$$\frac{d}{dt}M = \frac{d(m_w v)}{dt} = m_w \frac{dv}{dt} = \sum_i F_i \tag{4.3}$$

Where

$$m_w$$
 is the mass of the water, [kg] and v is the value of the velocity of the water at each point of the pipe.

The sum of the forces acting on the control volume can be seen as input forces, acting on the inlet of the pipe, output forces, acting on the outlet, resistance forces and gravitational force effect. These forces are expressed in terms of pressure in order to obtain the model of the pressure drop in the pipes. In *Figure 4.1* all forces acting on a pipe segment are shown:

Figure 4.1. Free-body diagram describing the forces acting on a segment of a pipe.

The pipe is assumed to have a cylindrical structure. Furthermore, the cross section of the pipe, A(x), is constant for every $x \in [0, L]$, where L is the length of the pipe:

$$A_{in} = A_{out} = \frac{1}{4}\pi D^2 \tag{4.4}$$

Where

$$A$$
 is the cross sectional area of a pipe, and D is the diameter of the pipe. $[m^2]$

Water flow, q, can be expressed in terms of velocity, v, and cross sectional area, A, resulting in:

$$q = A \cdot v \tag{4.5}$$

In Equation: (4.6) the forces acting on the pipe are included, the difference between F_{in} and F_{out} which indicates the pressure drop between two endpoints, the resistance forces F_{res} and the gravitational force effect due to change in elevation F_{elev} .

$$m_w \frac{dv}{dt} = F_{in} - F_{out} - F_{res} - F_{elev} \tag{4.6}$$

In order to obtain an equation consisting of only pressure variables, the relationship between forces and pressures is used.

$$AL\rho \frac{dv}{dt} = Ap_{in} - Ap_{out} - F_{res} - F_{elev}$$

$$\tag{4.7}$$

Where

Rewriting the velocity in terms of volumetric water flow and cross sectional area.

$$AL\rho \frac{d}{dt} \frac{q}{A} = Ap_{in} - Ap_{out} - F_{res} - F_{elev}$$

$$\tag{4.8}$$

By dividing the equation with the cross sectional area, A, it can be seen that the equation is dependent on the pressure difference between two endpoints.

$$\frac{L\rho}{A}\frac{dq}{dt} = p_{in} - p_{out} - \frac{F_{res}}{A} - \frac{F_{elev}}{A} \tag{4.9}$$

Thus the desired pressure drop between two endpoint is obtained. Equation: (4.10) differential equation describes the change in flow as a function of the pressure drops in the system.

$$\frac{L\rho}{A}\frac{dq}{dt} = \Delta p - \frac{F_{res}}{A} - \frac{F_{elev}}{A} \tag{4.10}$$

In Equation: (4.10) the term F_{res} is the resistance force acting on the pipe, which consists of two parts: surface resistance(h_f), the friction loss, and the form resistance(h_m) due to the fittings. F_{elev} is the force of gravity due to change in elevation, Δz .

4.1.1.1 Surface resistance (h_f)

The flow of a liquid through a pipe suffers resistance from the turbulence occurring along the internal walls of the pipe, caused by the roughness of the surface. This surface resistance is given by the Darcy-Weisbach equation [14].

$$h_f = \frac{fLv^2}{2gD} \tag{4.11}$$
 Where
$$f \qquad \text{is the Moody friction factor,} \qquad [\cdot] \qquad \text{tion then} \\ h_f \qquad \text{is the pressure given in head,} \qquad [m] \\ g \qquad \text{is acceleration due to gravity,} \qquad [\frac{m}{s^2}] \\ \text{and } D \qquad \text{is the diameter of the pipe.} \qquad [m]$$

Equation: (4.11) is under the assumption that v > 0. Assuming that the flow is not unidirectional and substituting the velocity by the volumetric flow and pipe area:

$$h_f = \frac{8fL}{\pi^2 g D^5} |q| q \tag{4.12}$$

The unknown parameter in 4.12 is the Moody friction factor which is non-dimensional and is a function of the Reynold's number. This friction factor depends on whether the flow is laminar, transient or turbulent, and the roughness of the pipe [15].

The Reynold's number can be used to determine the regime of the flow [15]. When $\mathbf{Re} < 2300$ as laminar, if $2300 < \mathbf{Re} < 4000$ as transient and if $\mathbf{Re} > 4000$ as turbulent.

$$\mathbf{Re} = \frac{vD}{\nu} \tag{4.13}$$

Where

$$u$$
 is the kinematic viscosity. $\left[\frac{\text{kg}}{\text{ms}}\right]$

The kinematic viscosity in [14] is given by:

$$\nu = 1.792 \cdot 10^{-6} \left[1 + \left(\frac{T}{25} \right)^{1.165} \right]^{-1} \tag{4.14}$$

Where

$$T$$
 is the water temperature. [$^{\circ}$ C]

In order to estimate the range of the Reynolds number in a common water distribution, typical values for the temperature, velocity and the radius of the pipes are considered [16].

- $\begin{array}{ll} \bullet & 0.5 \leq v \leq 1.5 & \frac{m}{s} \\ \bullet & 50 \leq D \leq 1500 & mm \end{array}$
- $10 \le T \le 20$ °C

These values result in a Reynold's number between 19000 and 225000, which yields to consider a turbulent fluid flow through the pipes. For turbulent flow the Moody friction factor is given by [14]:

$$f = 1.325 \left(ln \left(\frac{\epsilon}{3.7D} + \frac{5.74}{Re^{0.9}} \right) \right)^{-2}$$
 (4.15)

Where

$$\epsilon$$
 is the average roughness of the wall inside the pipe. [m]

4.1.1.2Form resistance (h_m)

Form resistance losses appear at any time the flow changes direction, due to elbows, bends, or due to enlargers and reducers. It is a particular frictional resistance due to the fittings of a pipe. Form loss can be expressed as:

$$h_m = k_f \frac{v^2}{2q} \tag{4.16}$$

Applying the definition of volumetric flow:

$$h_m = k_f \frac{8}{\pi^2 q D^4} |q| q \tag{4.17}$$

Where

$$k_f$$
 is the form-loss coefficient. [.]

The form-loss coefficient can be split into different losses depending on the fitting of the pipes.

Pipe bends are principally determined by the bend angle α and bend radius r, this is given by the following expression [14]:

this is not how we have writen intervals other places ex. v < [0.5, 1.5]

$$k_f = \left[0.0733 + 0.923 \left(\frac{D}{r}\right)^{3.5}\right] \alpha^{0.5} \tag{4.18}$$

Pipe elbows are also used to change the direction of the flow but providing sharp turns in pipelines. The coefficient for the losses in elbows is determined by the angle of an elbow α and is given by:

$$k_f = 0.442\alpha^{2.17} \tag{4.19}$$

4.1.1.3 Complete pipe model

In Equation: (4.12) and Equation: (4.17), the head loss of the friction losses are determined. These terms are introduced in Equation: (4.10) in terms of pressure. Thus, the friction factors are multiplied by the water density and gravity. Nevertheless, the head loss due to elevation has to be added in the model, yielding the final expression:

$$\frac{L\rho}{A}\frac{dq}{dt} = \Delta p - h_f \rho g - h_m \rho g - \Delta z \rho g \tag{4.20}$$

Substituting the terms h_f and h_m with their respective values:

$$\frac{L\rho}{A}\frac{dq}{dt} = \Delta p - \frac{8fL}{\pi^2 q D^5} \rho g|q|q - k_f \frac{8}{\pi^2 q D^4} \rho g|q|q - \Delta z \rho g \tag{4.21}$$

Equation: (4.21) describes the rate of flow in terms of pressure losses due to pressure change, frictions and elevation. A more compact form can be expressed for the kth component as such:

$$J_k \dot{q}_k = \Delta p_k - \lambda_k(q_k) - \zeta_k \tag{4.22}$$

Where

 J_k is an analogous parameter as inertia for the water,

 $\lambda_k(q_k)$ is the friction as a function of flow,

and ζ_k is the pressure drop due to the elevation.

As can be seen in *Equation:* (4.22), the flow dynamics of the kth pipe is described by J_k which is an analogous parameter as inertia in mechanical systems. Where J_k is a diagonal matrix with zeros for the diagonal elements not related to a pipe, $\mathbf{J} = diag(J_i)$.

However, it is assumed, prior to the tests carried out on the system, that the presence of the water tower in the system has a slow effect on the flow due to slow integration behavior. In other words it means that the water tower might have a relatively big time constant compared to the time constant of the pipe. Due to this consideration it would be a fair assumption that the parameter J_k does not influence the flow significantly in the system, therefore it could be neglected. However, the parameter is kept until this assumption is not verified by tests. The complete model of a pipe yields:

$$\Delta p_k = \lambda_k(q_k) + J_k \dot{q}_k + \zeta_k \tag{4.23}$$

4.1.2 Valve model

Valves in the water distribution system are modelled according to the assumption that the length of each valve, L, and the change in elevation, Δz , are zero. Therefore it is assumed that the length of the valve does not influence the flow and the pressure between the endpoints. This is due to the fact that the length of a valve is considerably smaller than the length of a pipe. Another fair assumption is that in case of a valve, elevation is not present.

In the given system, valves are considered as end-user components since they are placed only in the PMAs. These user valves have a variable Opening Degree(OD) which influences the pressure drop across the endpoints.

In case of valves, manufacturers provide a parameter which indicates the valve capacity. This coefficient is called the k_{v100} - factor that describes the conductivity of the valve at maximum OD. This parameter sets the relationship between the water flow through the valve in m^3 in one hour. The experiments were carried out with a pressure drop of $\Delta p = 1[bar]$ at a fully open state of the valve. According to [17], the properties of water fulfil the requirements which allows to write up the following expression for flow and pressure:

$$q = k_{v100} \sqrt{\Delta p} \tag{4.24}$$

Where

$$k_{v100}$$
 is the valve maximum capacity factor. $\left[\frac{\text{m}^3}{\text{h}}\right]$

Equation: (4.24) can be derived in detail using the law of continuity for each endpoint of the valve, however the exact derivations can be found in the datasheet [17]. In the further description and derivations, the coefficients and all the technical considerations are based on this datasheet.

4.1.2.1 Valve conductivity function $k_n(OD)$

Instead of k_{v100} , more generally $k_v(OD)$ can be used which is a function of the opening degree, where $OD \in [0,1]$. In case of user-operated valves, k_v does not remain constant, it ranges over a compact set of values as the opening degree varies. [12].

All valves in the system share the same characteristics, therefore the following characteristics of k_v are valid for all of them.

Figure 4.2. Valve characteristics - Valve conductivity in the function of OD.

According to [18], the following definition can be written up generally for the conductivity function, $k_v(OD)$:

$$k_v(OD) = \begin{cases} k_{v100} \frac{\theta_{OD}}{\theta_{max}} n_{gl} e^{(1-n_{gl})}, & \text{if } \frac{\theta_{OD}}{\theta_{max}} \le \frac{1}{n_{gl}}; \\ k_{v100} e^{(n_{gl} (\frac{\theta_{OD}}{\theta_{max}} - 1))}, & \text{if } \frac{\theta_{OD}}{\theta_{max}} \ge \frac{1}{n_{gl}} \end{cases}$$

$$(4.25)$$

Where

$$heta_{OD}$$
 is the opening degree,

$$\theta_{max}$$
 is the upper interval of the opening degree where the [°] conductivity does not change $\in [90^{\circ}, 100^{\circ}],$

and
$$n_{ql}$$
 is the valve characteristic curve factor. $[\cdot]$

A new parameter, θ_{max} , is introduced which describes the maximum angle where the actuator closes the valve. The same can be stated for a minimum angle. The valve is closed when the position of the actuator $\in [0^{\circ}, 15^{\circ}]$. As a consequence, there is an offset in the curve as it is shown in Figure 4.2. Introducing the following angle:

$$\gamma = \frac{\theta_{OD} - \theta_{off}}{\theta_{max} - \theta_{off}} \tag{4.26}$$

Where

$$\theta_{off}$$
 is the minimum angle where the valve opens. [°]

In case of the water distribution system Equation: (4.25) modifies to:

$$k_v(OD) = \begin{cases} k_{v100} \gamma \, n_{gl} \, e^{(1-n_{gl})}, & \text{if } \gamma \le \frac{1}{n_{gl}}; \\ k_{v100} \, e^{(n_{gl} \, \gamma)}, & \text{if } \gamma \ge \frac{1}{n_{gl}} \end{cases}$$
(4.27)

As it is shown, the conductivity function of the valve consists of two types of functions:

$$k_v(OD) = \begin{cases} k_v(\theta_{OD}) \sim linear(), & \text{if } \gamma \leq \frac{1}{n_{gl}}; \\ k_v(\theta_{OD}) \sim exponential(), & \text{if } \gamma \geq \frac{1}{n_{gl}} \end{cases}$$

$$(4.28)$$

Since exponential functions never cross the zero point, it is reasonable to use linear characteristics in the lower range. The transition from linear to exponential has to be continuously differentiable and predetermined by n_{gl} [12, 18]

4.1.2.2 Complete valve model

Using Equation: (4.24) with the conductivity function $k_v(OD)$ and expressing Δp yields:

$$\Delta p = \frac{1}{k_v(OD)^2}|q|q\tag{4.29}$$

Describing it in a compact form for the k^{th} valve in the network yields:

$$\Delta p_k = \mu_k(q_k, k_v(OD)) \tag{4.30}$$

4.1.3 Pump model

In order to move water from the reservoirs to the costumers, pumping is required. To guarantee that the water reaches every end-user with the appropriate pressure, different pumps can be used in the water distribution system.

Centrifugal pumps are ideal for this purpose. A model describing the pressure drop is derived which is presented in detail in [19]. The pressure provided by the pump is given

$$\underline{\text{by:}} \quad \Delta p = -a_{h2}q_i^2 + a_{h1}\omega_r q_i + a_{h0}\omega_r^2 \tag{4.31}$$

^JWhere

The list

bellow should

be with

units.

Hydraulic power and efficiency

To minimize the running cost of the plant, it is necessary to know the power comsumption of the pumps and thus describe how much energy these consume. This can be done by calculating the hydraulic power created by the pumps and taking the efficient of the pumps into account.

The hydraulic power created by a pump can be described by an equivalent to Joule's law, that is in terms of the pressure difference across the pump, multiplied with the flow through it, see Equation: (4.32).

$$P_h = \Delta p \cdot q \tag{4.32}$$

Where

$$P_h$$
 is the hydraulic power [W]

The energy used for running the pump can then be described through the relation between the hydraulic power and the efficiency, η . For simplicity η is assumed to be constant, however for this assumption to hold η must be chosen within the operating area of the pump. This can be seen in Equation: (4.33).

$$P_e = \frac{1}{\eta} \cdot \Delta p \cdot q \tag{4.33}$$

Where

$$P_e$$
 is the power consumption of the pump [W] η is the efficiency of the pump.

Equation: (4.33) will be used in a later section to minimize this cost of running the system.

4.1.4 Water Tower

Water towers are used to maintain the correct pressure level in the system, ensure reliability and to improve the optimality of the water supply. The WT plays a determinative role in the flow control, therefore its dynamic model must be derived.

Similarly to the modelling of the other components, the relation between the two dual variables, pressure difference and flow are derived. The structure of the WT is illustrated in *Figure 4.3*.

Figure 4.3. Sketch of the open water tower

In Figure 4.3, p_a represents the pressure on the surface of the water, therefore it is the atmospheric pressure at all time. p equals to the pressure value on the bottom of the tank. The rate of change of the fluid volume in the water tower is proportional to the volumetric flow at which water enters or leaves the tank.

$$q = \frac{dV_t}{dt} = A\frac{dh}{dt} \tag{4.34}$$

Where

The force on the bottom of the WT is due to the weight of water. According to Newton's second law:

$$F = mg = \rho g V_t \tag{4.35}$$

Where

$$ho$$
 is the density of water. $\left\lceil \frac{\mathrm{kg}}{\mathrm{m}^3} \right\rceil$

Equation: (4.35) can be rewritten in terms of pressure such as:

$$\frac{F}{A} = \rho g h = p - p_a = \Delta p \tag{4.36}$$

The total pressure on the bottom of the WT is a result of the pressure difference due to the fluid (p) and the atmospheric pressure (p_a) . However, the model is derived in such a way that the atmospheric pressure is set to zero. Therefore, if the water is assumed to be incompressible (density does not change with pressure), Equation: (4.34) can be written as:

$$q = \frac{dV}{dt} = \frac{A}{\rho g} \frac{d}{dt} \Delta p = C_H \Delta \dot{p} \tag{4.37}$$

Where

$$C_H$$
 is the hydraulic capacitance. $\left\lceil \frac{\mathrm{m}^3}{\mathrm{N/m}^2} \right\rceil$

This equation shows proportionality between pressure and the volume of water, which is exactly the defining characteristic of a fluid capacitor. When the fluid capacitance is large, corresponding to a tank with a large area, a large increase in volume is accompanied by a small increase in pressure.

An analogy can be made between an electronic circuit and the hydraulic system, where the WT acts as a capacitor. Deriving the relationship between the voltage and the charge of the capacitor:

$$I = C\frac{dU}{dt} \tag{4.38}$$

Where

In the Equation: (4.37) the volume flow rate, q, is equivalent to the current, I, in a circuit and the constant term, $\frac{A}{\rho g}$, is equivalent to the capacitance of a capacitor, C. The voltage drop is analogous to the pressure drop in the water system.

4.2 Component model

Gathering the pressure drops caused by each type of component in the system, a complete system model can be obtained. This model includes the pipe, valve, pump elements and the WT.

The model of the WT is described by a first order differential equation, consisting of the first time derivative of the pressure drop. The final expression is shown in *Equation:* (4.39):

$$\Delta \dot{p}_{WT;k} = \frac{1}{C_{H:k}} q_k \tag{4.39}$$

Although *Equation:* (4.39) includes indexing for the pressure drops across the WTs, it is worth mentioning that the water distribution system consists of only one WT.

The complete model consists of the pipe model, Equation: (4.30) the valve model, Equation: (4.31) the pump model and Equation: (4.39) the WT. For the pressure drop across the kth component the following expression can be written:

$$\Delta p_k = \underbrace{\lambda_k(q_k) + \zeta_k + J_k \dot{q}_k}_{\text{Pipe}} + \underbrace{\mu_k(q_k, k_v)}_{\text{Valve}} - \underbrace{\alpha_k(u_k)}_{\text{Pump}} + \underbrace{\Delta p_{WT;k}}_{\text{Water tank}}$$
(4.40)

The complete component model, Equation: (4.40) is used to represent the pressure contribution (or loss) across each component. In order to describe every part of the system by Equation: (4.40), the parameters and functions corresponding to the specific part of the system are selected. The remaining expressions are set to zero if the model does not match the specific part of the network. In other words, if the k^th element of the system is a pump, then only $\alpha_k(u_k)$ is taken into account and the rest of the expressions are set to zero. Table: 4.1 shows the parametrization of the system:

Component	J_k	λ_k	μ_k	α_k	ζ_k	$\Delta p_{WT;k}$
Pipe	J_k	λ_k	0	0	ζ_k	0
Valve	0	0	μ_k	0	0	0
Pump	0	0	0	α_k	0	0
Water tower	0	0	0	0	0	1

Table 4.1. Complete model parametrization.

4.2.1 Unit transformation

During the derivation of the dynamic model, the unit of the physical variables are considered as pascals and seconds. However, it is concluded in a later chapter that the flow is significantly small compared to the pressure if the SI-units are kept. Therefore a unit conversion is carried out from Pascal[Pa] to [bar]s and from seconds[s] to hours[h]. Another reason which makes this conversion reasonable is that the conductivity function, k_{v100} in Section 4.1.2.1: Valve conductivity function $k_v(OD)$, is derived under the condition that the pressure drop is one bar [18]. The time scaling is due to conventions. Among the research community in hydraulics, a convenient way to handle the volumetric flow is in $[m^3/h]$ instead of $[m^3/s]$.

The detailed derivation of the unit conversion can be found in *Appendix: A*. The result is stated here:

$$\frac{L\rho}{A\cdot 10^5}\frac{d}{dt}\frac{q}{3600} = \Delta\frac{p}{10^5} - \Big(\frac{8fL}{\pi^2qD^5\cdot 10^5} + k_f\frac{8}{\pi^2qD^4\cdot 10^5}\Big)\rho g\frac{|q|}{3600}\frac{q}{3600} - \frac{\Delta z\rho g}{10^5} \eqno(4.41)$$

4.3 System description

After deriving the dynamics of all elements in the network, the complete system can be drawn. In Appendix: C.2, the topology of the test system is described in detail. In the following section, all conclusions and notations are based in the system diagram placed in the appendix.

The way of modelling a hydraulic system is in some way analogous to an electric circuit. Most of the various hydraulic components can be represented as electronic equivalents and vice versa, however there are some differences too. It should be emphasized that in hydraulic networks there are not such phenomenon as magnetic flux.

In the block diagram of the system, nodes are introduced which represent different potential points in the system. This is equivalent to hydraulic pressures. Nodes represent points in the system where pressure might have different values due to the elements(pipes, valves, pumps) placed between them. These points represent interconnection between hydraulic components and take into account the fact that each individual component in the system

has an effect on the pressure drop on their two corresponding endpoints. Therefore nodes are present at all places where the pressure value is different due to the components of the network.

In the network, volumetric flow rate is equivalent to current and the quantity of water has similar representation as charge in an electric circuit. Again, it should be noted that e.g. the water quantity cannot be affected by magnetic fields, therefore the word: similar.

Although nodes can be placed across all the component endpoints, some simplifications are introduced in the network. These simplifications do not change the way how the system is described. There are two different types of simplification in the network.

Figure 4.4. Simplifications: The rotational speed of the pump, $\omega = 0$ and therefore this part is modelled differently.

The WT is connected to the rest of the system with three components, a pump, C_{32} , and a valve on each side. This is shown in Figure 4.3, where the components are shown between n_3 and n_{18} . The latter is the node where the WT connects to the system. In this particular case the pump is turned off, however contributes to the pressure drop due to its resistance. The same can be said for the valves, except that they are fully open at all time but they modify the flow. Extra nodes are not introduced between the valves and the pump, instead the series connection is seen as one component. This can be modelled by lumping the resistance of the valve, Equation: (4.29), into the model of the pump, Equation: (4.31), when the rotational speed is zero. Thus the following model yields for the case when $\omega = 0$:

$$\Delta p = \left(\frac{2}{k_{v100}^2} - a_{h2}\right)|q|q\tag{4.42}$$

For the case where $\omega \neq 0$, a model including the pump and both valves can also be made. This is done in the same manner:

$$\Delta p = \left(\frac{2}{k_{v100}^2} - a_{h2}\right) |q|q + a_{h1}\omega_r q + a_{h0}\omega_r^2$$
(4.43)

The case when $\omega = 0$ applies to one component between (n_3-n_{18}) . The case when $\omega \neq 0$ applies to the two main pumps and the pumps in the PMAs, between (n_1-n_2) , (n_1-n_7) and (n_4-n_8) , (n_5-n_{13}) . It should be mentioned however that all these subsystems inside this simplified model are modelled as described in Section 4.2: Component model.

Since the components influence the pressure between the endpoints, they behave similarly as electric components. Valves are considered as nonlinear resistors, since the pressure is the quadratic function of the flow and they have a resistance depending on the OD. The model of the pipes is equivalent to a series connection of a linear inductor and a non-linear resistor. The pumps provide pressure and therefore drive flow in the system. They can be seen as voltage generators. The WT is a capacitor, as it is described in Section 4.1.4: Water Tower. The equivalence between the hydraulic and electric system is summarized in Table: 4.2.

Hydraulic system	Electrical system		
Valve	Nonlinear resistor		
Pipe	Linear inductor with a nonlinear drift term		
WT	Capacitor		
Pressure	Voltage		
Flow	$\operatorname{Current}$		
Pumps	Voltage source		

Table 4.2. Equivalence of an electrical and hydraulic network.

4.4 Graph representation

A graph is a formal mathematical way for representing a network which can be applicable, among others, in engineering or scientific context such as in mechanical systems, in electrical circuits and in hydraulic networks [20].

The modelling of the water distribution network is done with the help of Graph Theory(GT). Each terminal of the network is associated with a node, and the components of the system correspond to edges [21].

4.4.1 Incidence matrix

The incidence matrix, \mathbf{H} , of a graph with n nodes and e edges is defined by $\mathbf{H} = [a_{ij}]$. Where the number of rows and columns are defined by the amount of nodes and edges respectively. Additionally, the particular node and edge is denoted with the indices i and j.

In case of a hydraulic network, the edges are directed in order to keep track of the direction of the flows in the system. It results in a directed incidence matrix as described below:

$$a_{ij} = \begin{cases} 1 & \text{if the } j^{th} \text{ edge is incident out of the } i^{th} \text{ node} \\ -1 & \text{if the } j^{th} \text{ edge is incident into the } i^{th} \text{ node} \\ 0 & \text{otherwise} \end{cases}$$

$$(4.44)$$

In Appendix: C.5 the corresponding incidence matrix of the system is shown.

4.4.2 Cycle matrix

A spanning tree, $T \in \mathcal{G}$ is a subgraph which contains all nodes of \mathcal{G} but has no cycles [22]. In order to obtain the spanning tree it is necessary to remove an edge from each cycle of the graph. The removed edges are called chords. The number of chords, l, are governed by the following expression:

$$l = e - n + 1 \tag{4.45}$$

By adding any additional chord to T, a new cycle is created which is called a fundamental cycle. A graph is conformed by as many fundamental cycles as many chords it has [22]. The set of fundamental cycles correspond to the fundamental cycle matrix \boldsymbol{B} , such as the number of rows and columns are defined by the amount of chords and edges, respectively.

The cycle matrix of a directed graph can be expressed with $\mathbf{B} = [b_{ij}]$ where i and j denote the chords and edges:

$$b_{ij} = \begin{cases} 1 & \text{if the edges } j^{th} \text{ is in the cycle } i^{th} \text{ and the directions match} \\ -1 & \text{if the edges } j^{th} \text{ is in the cycle } i^{th} \text{ and the directions are opposite} \\ 0 & \text{otherwise} \end{cases}$$
(4.46)

In Appendix: C.6 the corresponding cycle matrix of the system is shown.

4.4.3 Kirchhoff's Law

In the same way as it is described in Section 4.1: Hydraulic modelling, the graph of a hydraulic network assigns dual variables to every edge: the pressure, $\Delta p_k(t)$, and the flow, $q_k(t)$ in the function of time. These two variables are vectors containing the individual flows through the edges and the pressure drop across them:

$$\Delta p(t) = \begin{bmatrix} \Delta p_c \\ \Delta p_f \\ \vdots \\ \Delta p_e \end{bmatrix} \text{ and } q(t) = \begin{bmatrix} q_c \\ q_f \\ \vdots \\ q_e \end{bmatrix}$$

$$(4.47)$$

In order to derive a model for the hydraulic network, a set of independent flow variables are identified [23]. These flow variables have the property that their values can be set independently from other flows in the network, and they coincide with the flows through the chords. Therefore it is convenient to choose the column indexing of the \boldsymbol{H} and \boldsymbol{B} matrix, such as:

$$H = [H_c \quad H_f] \text{ and } B = [B_c \quad B_f] = [I \quad B_f]$$
 (4.48)

Where

 $egin{array}{lll} \pmb{H_c} & {
m and} & \pmb{B_c} & {
m are the matrices corresponding to the chords}, \ \pmb{H_f} & {
m and} & \pmb{B_f} & {
m are the matrices corresponding to the spanning tree}. \end{array}$

Since the edge variables are governed by elements interconnected in the network, they must obey the law of conservation of mass and pressure [22].

Kirchhoff's Current Law (KCL) states that the net sum of all the flows leaving and entering a node is zero. Formulating this statement in matrix form:

$$\boldsymbol{H} \cdot \boldsymbol{q(t)} = 0 \tag{4.49}$$

Furthermore, regarding Kirchhoff's Voltage Law (KVL) it is stated that at any time the net sum of the pressure drops in a cycle is zero. In terms of matrix form:

$$\mathbf{B} \cdot \Delta \mathbf{p}(t) = 0 \tag{4.50}$$

where the fundamental loops have a reference direction given by the direction of the chords.

4.5 Network model

Once the corresponding incidence and cycle matrices are identified and the analogy between hydraulic and electrical circuits is concluded, the whole hydraulic network can be described in a compact, generalized form as a set of differential equations describing the system. In this section an abstract and general form of the network model is derived using all the previously obtained expressions.

In Section C.5: Incidence Matrix, the form of the incidence matrix is shown. The last column of \boldsymbol{H} represents the edge that belongs to the WT. (In case of the network, the number of edges representing the WT is one and in the further model description is denoted

with w.)

Hence, the \boldsymbol{H} matrix can be written as

$$\boldsymbol{H} = [\boldsymbol{H_1} \quad \boldsymbol{H_0}] \tag{4.51}$$

Where

 H_1 \in is the H matrix without the edge corresponding to the WT, and H_0 \in $\mathbb{R}^{n \times w}$ is the H matrix with the column corresponding to the WT.

Similarly, the fundamental cycle matrix, B, is structured such as the last column agrees with the edge representing the WT.

$$\boldsymbol{B} = [\boldsymbol{B_1} \quad \boldsymbol{B_0}] \tag{4.52}$$

Where

 $B_1 \in \mathbb{R}^{l \times (e-w)}$ is the B matrix without the edge corresponding to the WT, and $B_0 \in \mathbb{R}^{l \times w}$

As mentioned above, \boldsymbol{q} is a vector containing all the individual flows, which can be structured as follows:

$$\boldsymbol{q} = \begin{bmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_0 \end{bmatrix} \tag{4.53}$$

Where

The vector containing the pressures at the nodes can be also structured as

$$\boldsymbol{p} = \begin{bmatrix} \boldsymbol{p_1} \\ \boldsymbol{p_0} \end{bmatrix} \tag{4.54}$$

Where

 $p_1 \in \mathbb{R}^{(n-w)\times 1}$ is the pressure at all nodes expect for the WT, is the pressure in the WT.

 $\mathbf{p_0} \in \mathbb{R}^{w \times 1}$

In Equation: (4.49) KCL is applied to \mathcal{G} , which states that the sum of all the flows entering into a node must be equal to the sum of all the flows leaving the node.

By choosing independent set of flows corresponding to the chords of a spanning tree, the flow through every edge of the hydraulic system can be expressed in terms of the flow through the chords, z [22]. The chord flows make it possible to deal with less variables, thus making the set of differential equations easier to handle. The elements of z are called the free flows of the system and are independent from each other, as mentioned previously [21].

$$q_i = B_i^T z \tag{4.55}$$

Where

 $\mathbf{z} \in \mathbb{R}^{(1 \times g)}$ is the chord flow vector and g is the number of elements.

As it is shown in *Equation*: (4.55), the i^{th} flow in the system is defined by the i^{th} column of the cycle matrix and the vector of chord flows, z.

Before writing up an expression that describes all parts, the component model in Equation: (4.40) needs to be modified because of the simplifications introduced in Section 4.3: System description. As it is mentioned in that section, there are four pumps in the system, two main and two PMA pumps, which provide pressure according to the input signals given to them. However there is one case between (n_3-n_{18}) , where the model of the pump is plugged into the model of the valves and considered as an additional resistance without the pump being turned on. In this case the corresponding edge does not act as an input but can be described by Equation: (4.42). Therefore Equation: (4.40) is structured in such a way that the edge corresponding to the connection between the WT and the system is represented respectively. The component-wise expression can be written as follows:

$$\Delta p_i = \underbrace{\lambda_i(q_i) + \zeta_i + J_i \dot{q}_i}_{\text{Pipe}} + \underbrace{\mu_i(q_i, k_{v;i})}_{\text{Valve}} - \underbrace{\tilde{\alpha}_i(u_i)}_{\text{Pump+valves}} + \underbrace{\Delta p_{WT;i}}_{\text{Water tank}} + \underbrace{\gamma_i(q_i)}_{\text{WT-connection}}$$
(4.56)

$$\tilde{f}_i(\mathbf{q_i}, \boldsymbol{\omega_i}, \mathbf{k_v}) = \lambda_i(\mathbf{q_i}) + \zeta_i + \mu_i(\mathbf{q_i}, \mathbf{k_v}) - \tilde{\alpha}_i(\boldsymbol{\omega_i}) + \gamma_i(\mathbf{q_i})$$
(4.57)

Where

$$\tilde{f}_i = -C_{pi}q_i|q_i|$$
 for $i = 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, 17, 18, 19, 21, 23$ (4.58)

$$\tilde{f}_i = -C_{vi}q_i|q_i|$$
 for $i = 13, 15, 20, 22$ (4.59)

$$\tilde{f}_i = \left(\frac{2}{k_{v100}^2} - a_{h2i}\right) |\mathbf{q_i}| + a_{h1i} \omega_i \mathbf{q_i} + a_{h0i} \omega_i^2 \qquad \text{for } i = 1, 8, 9, 16$$
(4.60)

$$\tilde{f}_i = \left(\frac{2}{k_{v100}^2} - a_{h2i}\right) |\mathbf{q_i}| \mathbf{q_i}$$
 for $i = 24$ (4.61)

$$\tilde{f}_i = \Delta p_{WT}$$
 for $i = 25$ (4.62)

The following hydraulic network model shows an overall model along with the above-mentioned considerations. Now recall that the inertia matrix, J, was defined in Section 4.1.1.3: Complete pipe model.

$$\Delta p_1 = J\dot{q}_1 + \tilde{f}(q_1, \boldsymbol{w}, \boldsymbol{k_v}) \tag{4.63}$$

In Equation: (4.63) the hydraulic network model is described in terms of the flow through all the nodes. In order to reduce the order of the model and hence, the amount of unknowns, the chord flows according to Equation: (4.55) are applied.

$$\Delta \mathbf{p_1} = \mathbf{J} \mathbf{B_1}^T \dot{\mathbf{z}} + f(\mathbf{B_1}^T \mathbf{z}, \mathbf{w}, \mathbf{k_v})$$
(4.64)

Making use of the identity shown in Equation: (4.50), the following is obtained

$$0 = \mathbf{B_1} \Delta \mathbf{p_1} = \mathbf{B_1} [\mathbf{J} \mathbf{B_1}^T \dot{\mathbf{z}} + f(\mathbf{B_1}^T \mathbf{z}, \mathbf{w}, \mathbf{k_v})]$$

$$(4.65)$$

Isolating the inertia matrix to the left side

$$-\boldsymbol{B_1} \boldsymbol{J} \boldsymbol{B_1}^T \boldsymbol{\dot{z}} = \boldsymbol{B_1} f(\boldsymbol{B_1}^T \boldsymbol{z}, \boldsymbol{w}, \boldsymbol{k_v})$$

$$(4.66)$$

It is desired to know the value of the flow through the chords, hence the equation above is solved for \dot{z} . In order to invert $(B_1JB_1^T)$ it has to be non-singular i.e. invertible.

Setting $\mathcal{J} = B_1 J B_1^T$, for \mathcal{J} to be positive-definite it has to be a square matrix and its determinant has to be non-zero. Note that \mathcal{J} is

$$\mathcal{J} = (\mathbf{I} \quad \mathbf{B_f}) \begin{pmatrix} \mathbf{J_c} & \mathbf{0} \\ \mathbf{0} & \mathbf{J_f} \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{B_f}^T \end{pmatrix} = \mathbf{J_c} + \mathbf{B_f} \mathbf{J_f} \mathbf{B_f}^T$$
(4.67)

Where

 $J_c \in \mathbb{R}^{l \times l}$ is the inertia in the chord components $J_f \in \mathbb{R}^{f \times f}$ is the inertia in the components of the spanning tree

 J_c is a diagonal inertia matrix containing the chord elements. Since all the components corresponding to a chord in \mathcal{G} are pipes, all the diagonal terms are positive. Thus, $J_c > 0$.

Nevertheless, if there is at least a chord corresponding to a non-pipe element, *Equation:* (4.67) would be positive-definite as long as it is possible to create a spanning tree containing all chords as pipe elements from \mathcal{G} [23].

For the remaining term $B_f J_f B_f^T$, J_f is a non-negative matrix as all its elements are zero or describe the inertia of a pipe. Multiplying $B_f J_f B_f^T$ by a non-zero vector column \mathbf{x} and its transpose \mathbf{x}^T

$$\boldsymbol{x}^T \boldsymbol{B_f} \boldsymbol{J_f} \boldsymbol{B_f}^T \boldsymbol{x} \tag{4.68}$$

Creating a new variable $\mathbf{y} = \mathbf{B_f}^T \mathbf{x}$ and applying the definition of positive semi-definiteness [24]

$$\mathbf{y}^T \mathbf{J}_{\mathbf{f}} \mathbf{y} \geqslant 0 \tag{4.69}$$

Thus, Equation: (4.67) is positive definite and it provides a sufficient condition for \mathcal{J} being invertible.

Therefore, the system can be described as follows

$$\dot{\boldsymbol{z}} = -(\boldsymbol{B_1} \boldsymbol{J} \boldsymbol{B_1}^T)^{-1} \boldsymbol{B_1} f(\boldsymbol{B_1}^T \boldsymbol{z}, \boldsymbol{w}, \boldsymbol{k_v})$$
(4.70)

4.5.1 Pressure drop across the nodes

For ease of reading, the complete component model in Equation: (4.63) is restated:

$$\Delta p_1 = J\dot{q}_1 + \tilde{f}(q_1, w, k_v) \tag{4.71}$$

This equation describes the system by the pressure of across each elements except the part including the water tower. The dynamics are determined by the inertia of the pipes, while the pressure relations are described by f vectorfield. The same equation can be however expressed with a reduced set of equation system with the help of chord flows:

$$\Delta p_1 = JB_1^T \dot{z} + f(B_1^T z, w, k_v)$$
(4.72)

The flow rate through the chords is found in Equation: (4.70), thus the expression for Δp_1 can be rewritten as

$$\Delta p_1 = J B_1^T [-(B_1 J B_1^T)^{-1} B_1 f(B_1^T z, w, k_v)] + f(B_1^T z, w, k_v)$$
(4.73)

Writing in short form:

$$\Delta p_1 = (-JB_1^T(B_1JB_1^T)^{-1}B_1 + \mathcal{I})f(B_1^Tz, w, k_v)$$
(4.74)

a general form of the network without the part corresponding to the WT (p_0 and q_0) is obtained. It should be noted however, that the same structure applies for the complete network which is extended with the WT. In the following sections this general model is used in a slightly different form that is suitable for the different estimation methods.

4.6 Parameter identification

The behavior of the complete water distribution system is governed by the previously derived model, however certain parameters of the system are either unknown or can vary significantly from the assumed design values. Furthermore, the obtained model of the system gives non-linear relations between flows and pressures in each individual components.

In case of the valves, the conductivity function is dependant on the OD, therefore the parameter of these elements are considered to be known. The centrifugal pumps are fully described by their models and by the coefficients provided by the manufacturer. The hydraulic capacity is also considered as known in case of the WT. However, certain parameters in the model of pipes are uncertain. Even though the necessary friction parameters can be found in the data sheet provided by the manufacturer, these values are only acceptable for new pipes, as over time material can build up on the inside of the pipes, since the laboratory set up to a large extent is built from PEX/PEM (plastic) pipes. On the other hand however, the physical parameters of the pipe volumes are assumed to be known to an accuracy where there is not any benefits from estimating it. Therefore the inertia matrix is known.

Consequently, the aim of the system identification in case of the water distribution system is to estimate the missing parameters which describe the frictions and form losses (which cause the major uncertainty in this case) in the pipes, therefore define the additional pressure losses. Due to these considerations, the importance of obtaining accurate parameters is essential in order to set up a simulation that represents the real test set up.

The parameter estimation is introduced for two different cases with different approaches. One being an estimation method with the model being kept non-linear, the other being a method where the model is linearized before the estimation.

The block diagram of a general parameter identification method is described in *Figure 4.5* below:

Figure 4.5. Parameter identification block diagram.

As it is shown in the figure, the measurements from the real life system are compared to the output of the simulation. In general, the inputs are the same for both systems, however some modifications have to be introduced in the case of the linearized model. (This is explained in detail in the section covering the linear parameter identification method.) In order to obtain measurements from the real life test set up, the system has to be excited by various input signals. In general, the inputs to the system are the input signals to the pumps, however in case of the parameter estimation the OD of the valves is also considered as an input. Therefore it is reasonable to reformulate the equation describing the network in Equation: (4.70) into such a form where the expressions for the inputs and states are isolated. Such an expression can be obtained for the whole network from the general model as follows:

$$BJB^{T}\dot{z} = Bg(B^{T}z) + Bu(\omega, k_{v}, B^{T}z)$$
(4.75)

where the vectorfield u(.) contains all the functions for the elements which are dependent on the inputs and the vectorfield g(.) describes the rest of the resistance terms which are responsible for the pressure drops in any part of the network. Although u(.) is a function of ω and k_v , in the simulation however the inputs to the pumps are specified as pressure differences, dp, because the value of these pressures are available on the test set up.

In the system, output are defined as differential pressures according to the available sensors on the test set up. From the system setup 8 different relative pressures can be measured. Following the notation of Figure C.2, sensors are placed in: n_2 n_4 n_5 n_7 n_{10} n_{11} n_{15} n_{16} . During the parameter identification, these measurements are compared to the output from the simulation and the parameters are varied until they fit.

It is important to point out that the estimation is applied for steady-state which is reasonable, since the unknown parameters are the resistances and form losses and the inertia and the capacitance only affect the dynamics, therefore have no influence on the steady-state. The inertia of the pipes, and the capacitance of the WT is considered as known parameters.

Taking the steady-state into account, the system equation for the parameter estimation can be rewritten as:

$$0 = \mathbf{B}g(\mathbf{B}^T \mathbf{z}) + \mathbf{B}u(\boldsymbol{\omega}, \mathbf{k_v}, \mathbf{B}^T \mathbf{z})$$
(4.76)

The aim of the parameter identification is therefore to obtain a minimum difference between the outputs by adjusting the parameters of the model. (The number of parameters are equal to the number of pipe elements in the network.) The general parameter estimation problem is the problem of the minimization of the following objective function over the variable z:

$$\min_{z} \sum_{i=1}^{n} \left(g(z_i) + B_i^T u_i \right)^T \left(g(z_i) + B_i^T u_i \right) + \left(y_{sys;i} - y(z_i) \right)^T \left(y_{sys;i} - y(z_i) \right) \tag{4.77}$$

Where		
n	is the number of edges in the graph-based network,	[-]
$g(z_i)$	is the vectorfield with all resistance terms(parameters),	[bar]
u	is the vectorfield with the inputs,	[bar]
$y_{sys;i}$	is the pressure measurement over the i^{th} edge on the system,	[bar]
$y_{sys}(z_i)$	is the i^{th} pressure in the output vector in the model .	[bar]

4.7 Nonlinear parameter identification

In order to carry out the parameter estimation of the water distribution, Matlab NonLinear Grey Box toolbox is used [25]. This toolbox estimates previously defined coefficients of nonlinear differential equations, to fit with the desired data. Thereby, a nonlinear model has to be designed to complete the simulation.

4.7.1 NonLinear differential script

The nonlinear differential script contains all the information about the system and how it is constructed. The model needs 8 different inputs(u): the opening degree of the 4 PMA valves and the differential pressure across the main and PMA pumps. This inputs are obtained from the lab and are inserted directly into the model. Furthermore, it has been decided to include the dynamics of the system so the model remains as a nonlinear differential system.

First, the states of the system are set. Previously in the report, the states have been defined as the chord flows and denoted as $z = [z_1 z_2 z_3 z_4 z_5 z_6 z_7]$. The value of the states will be dependent on time, which will be specified by the data obtained from the Water Wall Setup in the lab. In this way, using the relation stated in Equation: (4.55) the flow through the edges is obtained.

The pressure across the edges has been defined in Equation: (4.57), and in the same way has been done in Matlab.

- λ and ζ denote the pressure in the pipes due to the friction and the elevation respectively.
- ν represents the pressure across the valves.
- α represent the pressure across the pumps, which is obtained from the inputs to the model.

In the system in total there are 15 pipes, the pressure across them is obtained as:

$$\lambda = (C_p * abs(q) * q/(10^5 * 3600^2)) + ((Z) * g * 1000/10^5)$$
(4.78)

Where, C_p denotes the friction coefficient to be estimated by the NonLinear Grey Box and Z is the height of the pipes. An initial guess is done for the value of C_p to minimize the error as possible. Moreover, the unit conversion from Bar to Pas and seconds to hours is introduced.

$$Cp = f * ((8 * L * rho)/(pi^{2} * D^{5})) + k_{f} * ((8 * rho)/(pi^{2} * D^{4}))$$
(4.79)

The f and k_f values are obtained as described in Equation: (4.15) and Equation: (4.18) with the range of values considered in Section 4.1.1.2: Form resistance (h_m) .

In case of the valves the pressure across them is obtained as following

$$mu = (1/C_v^2) * abs(q) * q/3600^2;$$
 (4.80)

The value of C_v is obtained from the input data. When the valve is closed μ is set to 0.

For the pumps, the pressure across them is obtained from the lab and is set as α .

As pointed out earlier, the inertia of the pipes is taken into account in the model and is calculated as

$$J = diag((4 * L * rho)/(D^2 * pi * 10^5 * 3600)); \tag{4.81}$$

Where, L and D are the pipes length and diameters respectively. The unit conversion is also added.

A new matrix variable is defined containing the pressure across the edges.

$$F = \lambda + \mu - \alpha \tag{4.82}$$

The derivative of the chords can be obtained isolating \dot{z} in Equation: (4.66)

$$\dot{z} = -(B_1 J B_1^T)^{-1} B_1 F \tag{4.83}$$

Where, B_1 is the cycle matrix defined in Appendix: C.6.

Known the derivative of the chords, the derivative of the flow through the edges is obtained

$$\dot{q} = (B_1)^T * \dot{z} \tag{4.84}$$

Equation: (4.64) is now applied substituting \dot{q} with the relations set in Equation: (4.84) and Equation: (4.83), resulting in

$$\Delta P = [(J * (B_1)^T * (B_1 J B_1^T)^{-1} B_1 (-\mu - \lambda + \alpha)] + \mu + \lambda - \alpha$$
(4.85)

Now the pressure across the edges are calculated, nevertheless, from the data of the lab the relative pressure at the nodes are obtained. This implies to have to calculate the pressure in the nodes so the comparison is done correctly.

The pressure at each node can be found by applying

$$\Delta P = (H_1)^T p \tag{4.86}$$

 ΔP is known from Equation: (4.85), the vector of pressure in the nodes is split up as $p = [p_o \quad p_r]$ where p_o is the atmospheric pressure at node 1 and p_r the pressure in the remaining nodes. Splitting H_1 matrix also

$$\Delta P = \begin{bmatrix} H_o{}^T & H_r{}^T \end{bmatrix} \begin{bmatrix} p_o \\ p_r \end{bmatrix} \tag{4.87}$$

Isolating p_r from the equation the pressure at each node is obtained

$$p_r = H_r^{\dagger} (\Delta p - (H_o)^T p_o) \tag{4.88}$$

 H_r^{\dagger} being the pseude-inverse of matrix H_r^{T} .

The outputs are set as node 2, node 4, node 5, node 7, node 10, node 11, node 15 and node 16 (see *Appendix: C.2* for the notation). Which will be the ones that Matlab will try to fit to the data obtained from the setup.

4.7.2 NonLinear grey box model

The objective of using this toolbox is to obtain an estimation of the value of C_p given an initial guess. For this parameters a constraint to be positive is set.

The estimator compares the output.

Several test have been done, with different inputs and outputs from the lab.

Figure 4.6. Inputs to the parameter identification

Figure 4.7. Output pressure measurements

Together with the inputs from the lab and the nonlinear differential model the parameter estimation is done.

4.8 Linearization of the model

As it is shown in Equation: (4.97), both g(.) and u(.) are vector-valued non-linear functions of the flow. Since the flows, the ODs and the differential pressure inputs, dp, are all functions of time, it can be stated that the differential equation describing the system is a first-order non-linear systems of differential equations. The number of equations are defined by the number of free variables, therefore the number of states.

In this section it is shown how the model describing the network is linearized with the help of Taylor-series. [source]

4.8.1 Taylor expansion on a simple example

The method of linearization is introduced on a simple one-state, one-input variable system. The consideration behind the example is analogous to the method applied for the water distribution system. In Equation: (4.89) the system with one state variable and one input can be seen:

$$\frac{d}{dt}x = f(x, u) \tag{4.89}$$

Writing up f(x, u) with Taylor-series the following yields:

$$f(x,u) = f(\bar{x},\bar{u}) + \frac{\partial f}{\partial x_{|\bar{x},\bar{u}}}\hat{x} + \frac{\partial f}{\partial u_{|\bar{x},\bar{u}}}\hat{u} + higher\ order\ terms \tag{4.90}$$

Where

 \bar{x} and \bar{u} is the operating point,

 \hat{x} and \hat{u} is the deviation from the operating point.

The aim of the linearization is to describe the function f(x, u) around an operating point as a linear function. However, it should be noted that the approximation around this point is only valid for cases when the deviation from this point is small. Therefore the linearized version of a dynamic model is often called the small-signal model of the system.

In Equation: (4.90), the linearized term of f(x, u) can be expressed by neglecting the affine term in the operating point, $f(\bar{x}, \bar{u})$, and cancelling the higher order terms. Since the model is described by small-signals, quadratic and higher order terms result in very small values, therefore they are negligible.

The following expression in *Equation:* (4.91) gives the approximation of the function:

$$\frac{d}{dt}x = f(x,u) \approx \frac{\partial f}{\partial x_{|\bar{x},\bar{u}}}(x-\bar{x}) + \frac{\partial f}{\partial u_{|\bar{x},\bar{u}}}(u-\bar{u})$$
(4.91)

In case of a pipe or a valve component, the pressure drop across the element is described by a quadratic function of the flow if steady-state is considered and the dynamics are neglected. For the sake of illustration, Figure 4.8 describes a non-linear function, f(q), and its linearized interpretation for the operating values of pressure and flow.

Figure 4.8. Linearization of a non-linear function f(q).

As can be seen, the line inserted in the operating point, O, describes the model accurately only if the deviation is very small from this point, for example O'. Therefore the linearized model describes the system behavior in the new coordinate system $(\bar{q}, \Delta \bar{p})$. It is important to mention that in Figure 4.8 the function f(q) is an illustration of a non-linear function and not the exact same as for a pipe element.

4.8.2 Linear system model

As it is shown in Equation: (4.56), the vectorfield describing the pressure in the network consists of the pressure drops of each different elements, such as $\operatorname{pipes}(\lambda(q) + \zeta + J\dot{q})$, $\operatorname{valves}(\mu(q,OD))$, $\operatorname{pumps}(\alpha(\omega,q))$, the WT (Δp_{WT}) and the WT connection $(\gamma(q))$. Among these functions, the pipes, valves, the pumps and the edge describing the WT connection are non-linear functions, therefore they need to be linearized. The linearization is carried out according to Taylor-expansion [source].

The expression describing the pipes consists of three terms, one responsible for the resistances and form losses, one for the dynamics, and the last one for the elevation if there is any present. Since the elevation is not flow dependant and the dynamics are linear functions of the flow derivatives, only the model of the pipes should be linearized.

The expression describing the pipes can be approximated by its linear model as follows:

$$B_1 \lambda(B_1^T z) \approx B_1 \left[\frac{\partial \lambda(B_1^T z)}{\partial B_1^T z} \right]_{\bar{z}} B_1^T \hat{z}$$
 (4.92)

where the partial derivative is a Jacobian matrix which is the matrix of all first-order partial derivatives of the vectorfield, λ , in the operating point \bar{z} . Since the derivation is according to $B_1^T z$, due to the chain rule the derivative is multiplied by B_1^T .

In case of the valves, $\mu(B_1^T z, OD)$ is not only the function of the independent flows, but also the opening degree. The conductivity function, k_v is the function of OD, which can vary in time. Therefore the linearization has to be done according to the flow and the OD:

$$B_{1}\mu(B_{1}^{T}z,OD) \approx B_{1}\left[\frac{\partial\mu(B_{1}^{T}z,OD)}{\partial B_{1}^{T}z}\right]_{(\bar{z},\bar{OD})}B_{1}^{T}\hat{z} + B_{1}\left[\frac{\partial\mu(B_{1}^{T}z,OD)}{\partial OD}\right]_{(\bar{z},\bar{OD})}B_{1}^{T}\hat{OD} \quad (4.93)$$

The Taylor-expansion is carried out in the same manner as in Equation: (4.92), however the linearized valve model is in the function of two small-signal variables, the flows and the OD. Therefore the partial derivatives are calculated in the operating point defined by the operating value of z and OD.

For the water tower connection, the same can be concluded as for the pipe model.

$$B_1 \gamma(B_1^T z) \approx B_1 \left[\frac{\partial \gamma(B_1^T z)}{\partial B_1^T z} \right]_{\bar{z}} B_1^T \hat{z}$$
 (4.94)

The pumps are operating according to the model described in *Equation:* (4.43), where the valves around each pump are taken into account. Although this model is both dependant on the OD of the valves and the flow through the pumps, it is unnecessary to linearize it for the following reason, explained in *Figure 4.9* below:

Figure 4.9. Block representing the extended pump model.

As it is shown, there is a differential pressure sensor around everywhere where a pump is present in the system. Therefore it is unnecessary to use angular velocity as input, the pumps can be operated by the differential pressures as input, since it is known everywhere in the network.

The input vector furthermore is defined by the differential pressures to the pumps and the ODs of the end-user valves as follows:

$$\mathbf{u} = \begin{bmatrix} OD_{c13} \\ OD_{c15} \\ OD_{c20} \\ OD_{c22} \\ dP_{c01} \\ dP_{c08} \\ dP_{c09} \\ dP_{c16} \end{bmatrix}$$

$$(4.95)$$

Considering the input vector, the model of the pumps can be written up in the same manner as the linearized model of pipes and valves:

$$\mathbf{B_1}\alpha(DP) = \mathbf{B_1}\mathbf{G}\mathbf{u} \tag{4.96}$$

Where

 $G \in \mathbb{R}^{(e \times u)}$ is a matrix representing a linear mapping where u is the number of inputs and e is the number of edges without the WT.

G can be found in Appendix: C.7.

4.8.3 State space model

For the sake of clearance, the model describing the water distribution system in *Equation*: (4.97) is shown again:

$$BJB^{T}\dot{z} = Bg(B^{T}z) + Bu(\omega, k_{v}, B^{T}z)$$
(4.97)

The dynamics of the WT is described by the equation below:

$$\Delta \dot{p}_{WT} = \frac{1}{C_H} q_0 \tag{4.98}$$

These two differential equation systems give a full description of the pressures in the whole network, and describe the effect of the WT on the system. However, due to the linearization, the linear system is desired to formulate into the general state-space representation with inputs, outputs and states separated.

Before setting up the state-space form of the system, the following should be considered:

$$H_1q_1 + H_0q_0 = 0 (4.99)$$

In Equation: (4.99), the current law is shown for the WT and for the rest of the system. The two current laws sum up to zero taking into account the whole system. Expressing the flow in the WT yields:

$$q_0 = -\boldsymbol{H_0^{\dagger} H_1 q_1} \tag{4.100}$$

Inserting Equation: (4.100) into Equation: (4.98), the original model of the WT, the following yields:

$$\Delta \dot{p}_{WT} = -\frac{1}{C_H} \mathbf{H_0^{\dagger} H_1 q_1} = -\underbrace{\frac{1}{C_H} \mathbf{H_0^{\dagger} H_1 B_1^T} \mathbf{z}}_{\mathbf{H}}$$
(4.101)

Therefore the dynamics of the WT can be expressed with the incidence matrix for the whole system in terms of the independent chord flow variables as follows:

$$\Delta \dot{p}_{WT} = -\mathbf{H}\mathbf{z} \tag{4.102}$$

Getting back to the original system model described in Equation: (4.97), in order to formulate a state space representation, the linearized terms in vectorfields g(.) and u(.) should be separated according to the small signal values of the flows, the inputs and the pressure contribution from the WT. The representation is shown in Equation: (4.103) below:

$$BJB^{T}\dot{z} = A\hat{z} + B_{u}\hat{u} + B_{o}\Delta\hat{p}_{WT}$$

$$(4.103)$$

In Equation: (4.103), the **A** matrix consists of the following terms:

$$\boldsymbol{A} = \boldsymbol{B_1} \left[\frac{\partial \lambda(\boldsymbol{B_1^T z})}{\partial \boldsymbol{B_1^T z}} \right]_{\bar{z}} \boldsymbol{B_1^T} + \boldsymbol{B_1} \left[\frac{\partial \mu(\boldsymbol{B_1^T z}, \boldsymbol{OD})}{\partial \boldsymbol{B_1^T z}} \right]_{(\bar{z}, \bar{OD})} \boldsymbol{B_1^T} + \boldsymbol{B_1} \left[\frac{\partial \gamma(\boldsymbol{B_1^T z})}{\partial \boldsymbol{B_1^T z}} \right]_{\bar{z}} \boldsymbol{B_1^T} \quad (4.104)$$

And the B_u matrix consists of the following terms:

$$B_{u} = B_{1} \left[\frac{\partial \mu(B_{1}^{T}z, OD)}{\partial OD} \right]_{(\bar{z}, \bar{OD})} + B_{1}G$$
(4.105)

 B_o is the cycle matrix belonging to the WT. As can be seen, the linearized terms which are represented in the element-wise model description in *Equation:* (4.56), are separated based on if they are multiplied by the small signal values of flow(state) or input.

In order to find a good state space representation for the system extended with the WT, first the dynamics has to be considered. As it is discussed in a previous section, two kind of elements have dynamics, the pipes and the WT. The pipes, compared to the WT, assumed to have very fast response time, which means that their time constants are small, therefore the decay time is short. Considering the control and also the parameter estimation, it means that they reach steady-state condition very quick compared to the WT. According to [source], in cases like this, the dynamics with the small time constant does not take part in the dynamics effectively, therefore they can be neglected. Due to this consideration, Equation: (4.103) is rewritten in steady-state form, where the derivative of the states are set to zero:

$$0 = A\hat{z} + B_{u}\hat{u} + B_{o}\Delta\hat{p}_{WT} \tag{4.106}$$

The small signal value of the state vector can be expressed on the left side of the equation only if \mathbf{A} is invertible. In Equation: (4.104), the equation can be rewritten as follows:

$$\boldsymbol{A} = \boldsymbol{B_1} \left[\left[\frac{\partial \lambda(\boldsymbol{B_1^T z})}{\partial \boldsymbol{B_1^T z}} \right]_{\bar{z}} + \left[\frac{\partial \mu(\boldsymbol{B_1^T z}, \boldsymbol{OD})}{\partial \boldsymbol{B_1^T z}} \right]_{(\bar{z}, \bar{OD})} + \left[\frac{\partial \gamma(\boldsymbol{B_1^T z})}{\partial \boldsymbol{B_1^T z}} \right]_{\bar{z}} \right] \boldsymbol{B_1^T}$$
(4.107)

In Equation: (4.107), the **A** matrix is invertible for the same reason as it is described in Section 4.5: Network model, for the inertia matrix. The proof of this statement can be found in that section.

Expressing the state vector the following yields:

$$\hat{\boldsymbol{z}} = -(\boldsymbol{A}^{-1}\boldsymbol{B}_{\boldsymbol{u}})\hat{\boldsymbol{u}} - (\boldsymbol{A}^{-1}\boldsymbol{B}_{\boldsymbol{o}})\Delta\hat{p}_{WT}$$
(4.108)

Having the independent states expressed, Equation: (4.106) can be inserted in the previously-derived WT model with the \boldsymbol{H} matrix in Equation: (4.102).

$$\Delta \dot{p}_{WT} = \underbrace{(\boldsymbol{H}\boldsymbol{A}^{-1}\boldsymbol{B}_{\boldsymbol{o}})}_{\mathbf{M}} \Delta \hat{p}_{WT} + \underbrace{(\boldsymbol{H}\boldsymbol{A}^{-1}\boldsymbol{B}_{\boldsymbol{u}})}_{\mathbf{N}} \hat{\boldsymbol{u}}$$
(4.109)

Equation: (4.109) represents the linear system with the pressure drop across the water tank as a state and the input vector consisting of differential pressures from the pumps and OD values from the end-user valves. The general formulation of the state equation can be written as follows:

$$\Delta \dot{p}_{WT} = M \Delta \hat{p}_{WT} + N \hat{u} \tag{4.110}$$

Where

 $M \in \mathbb{R}^{(1 \times 1)}$ is the system matrix, which in this case is a scalar,

 $N \in \mathbb{R}^{(1 \times g)}$ is the input matrix.

An output equation is defined, which represents the pressure difference known from the system setup. In this way, the output equation can be compared to the data measured in the setup and proceed to estimate the unknown parameters.

$$\hat{\boldsymbol{y}} = \boldsymbol{C_1}\hat{\boldsymbol{z}} + \boldsymbol{C_2}\hat{\boldsymbol{u}} \tag{4.111}$$

As in Equation: (4.109), substituting the state vector, $\hat{\boldsymbol{z}}$, by the expression obtained in Equation: (4.108), the equation above results in

$$\hat{y} = C_1(-(A^{-1}B_u)\hat{u} - (A^{-1}B_o)\Delta\hat{p}_{WT}) + C_2\hat{u}$$
(4.112)

Reorganizing the terms

$$\hat{\boldsymbol{y}} = \underbrace{\boldsymbol{C_1}(-(\boldsymbol{A^{-1}B_o}))}_{\mathbf{C}} \Delta \hat{p}_{WT} + \underbrace{(\boldsymbol{C_1}(-(\boldsymbol{A^{-1}B_u})) + \boldsymbol{C_2})}_{\mathbf{D}} \hat{\boldsymbol{u}}$$
(4.113)

$$\hat{\boldsymbol{y}} = \boldsymbol{C}\Delta\hat{p}_{WT} + \boldsymbol{D}\hat{\boldsymbol{u}} \tag{4.114}$$

The equation above shows how the output equation includes a feedforward matrix, due to the outputs being affected directly by the inputs.

4.9 Linear parameter estimation

Figure 4.10. Parameter identification block diagram for the linear system.

4.9.1 Measurements on the test set up

From the system setup 8 different relative pressures can be measured, following Figure C.2 notation the sensors are placed in: n_2 n_4 n_5 n_7 n_{10} n_{11} n_{15} n_{16} .

The measurements obtained from the pressure sensors placed in these nodes, are relative to the atmospheric pressure. Thus, in order to compare the measurements from the system setup and the data obtained from the simulation in Matlab, an atmospheric pressure node, n_1 , is set as reference point.

Therefore, the relationship between pressures, where DpCXX describes the pressure difference for the XX component, can be defined as:

$$y_1 = DpC2 \tag{4.115}$$

Node 7

$$y_2 = DpC16 (4.116)$$

Node 4

$$y_3 = DpC18 + DpC19 + DpC23 + DpC24 (4.117)$$

Node 5

$$y_4 = DpC25 + DpC26 + DpC30 + DpC31 (4.118)$$

Node 10

$$y_5 = DpC20 + DpC21 (4.119)$$

Node 11

$$y_6 = DpC24 \tag{4.120}$$

<u>Node 15</u>

$$y_7 = DpC28 + DpC20 (4.121)$$

Node 15

$$y_8 = DpC31 \tag{4.122}$$

Here the plots from Matlab could be inserted with the input signals, output pressures. The process of the data could be explained, where are the measurements...

Daniel,
you have
the things
for this!

4.10 Linear model implementation

Unlike for the nonlinear model, in the linear model the WT is taken into consideration. Therefore, the state vector is augmented into a 9x1 vector, containing the 8 chord flows and the pressure across the WT. For the linear model a state-space system is designed.

The state matrix, A, is conformed by the linearized friction provided by the pipes, the linearized part of the valve function corresponding to the state and pressure contribution of the WT.

Pipes contribution:

$$\lambda_e = (2 * Cp * B_1^T abs(\hat{z})/(10^5 * 3600^2)) \tag{4.123}$$

Equation: (4.123) only affects to the 8 chords of the water distribution, lambda ends up being a 25x1 matrix. However, we will have a lambda expression for all pipes edges, resulting in a 25x25 adding 0 for those non-pipe edges.

Valve contribution:

$$\mu_{e} = e^{\frac{2\left(\theta_{off} - \bar{OD}\right) n_{gl}}{\theta_{max} - \theta_{off}} + 2\bar{z} |\bar{z}|} - 2e^{\frac{2\left(\theta_{off} - \bar{OD}\right) n_{gl}}{\theta_{max} - \theta_{off}} + 2} B_{1}^{T} abs(\hat{z}) |\bar{z}|$$

$$(4.124)$$

The above expression has been derived in *Appendix:* D, for the state matrix only the part corresponding to the states is taken. In the same way as in the pipe, the μ expression

for each edge is a 25x1 matrix. This extended to all the edges will end up into a 25x25 matrix, with 0 in the non-valve edges.

When augmenting the system with the WT, two new edges show up in the water distribution. This two new edges are the WT itself and a pump connected to the WT. The pump connected to the WT is running with 0 rotational speed, thus the mathematical model results in:

$$\Delta p = -a_{h2}q_i^2 \tag{4.125}$$

Along with the pump there are two pumps, gathering all the components expressions:

$$\Delta p = (\frac{2}{k_v^2 - a_{b2}})q_i^2 \tag{4.126}$$

The above equation needs to be linearized and consequently separate into the state and the input part. The contribution to the A matrix is as following:

$$\alpha = 2 * e^{\frac{2 (\theta_{off} - \bar{OD}) n_{gl}}{\theta_{max} - \theta_{off}} + 2} \bar{z} |\bar{z}| - 4 e^{\frac{2 (\theta_{off} - \bar{OD}) n_{gl}}{\theta_{max} - \theta_{off}} + 2} B_0^T abs(\hat{z}) |\bar{z}| - 2 * B_0^T abs(\hat{z}) * c. Ah22$$

$$(4.127)$$

The cycle matrix, B_0 corresponding to the augmented system is used with dimensions 8x2 but the state vector of the 8 flow chords. The α function results in a 2x2 matrix with 0 in the column corresponding to the non-pump edge.

In regards to the WT edge, the pressure across it is treated as a new state for the system, that is, the ninth state Δp_{WT} .

Once the terms conforming the A matrix are identified, the correct structure due to the linearization has to be applied as explained in Section $\ref{eq:conformal}$?? resulting in the following A matrix.

$$A = B_1 \lambda B_1^T + B_1 \mu B_1^T + B_0 \alpha B_0^T$$
(4.128)

The remain A matrix has the dimension 8x8 and the new state Δp_{WT} of the WT has to be included into the matrix in order to get an 9x9 A matrix.

The input matrix, B, is conformed by the input into the system. These are the opening degree of the valves and the pressure contribution of the main and PMA pumps.

Previously, for the A matrix the valve expression has been linearized, this time the input term of the linearized expression will be taken:

$$\mu_e = -2 \frac{e^{\frac{2(\theta_{off} - \bar{OD}) n_{gl}}{\theta_{max} - \theta_{off}} + 2} n_{gl} \hat{OD} \bar{q} |\bar{q}|}{\theta_{max} - \theta_{off}}$$

$$(4.129)$$

The pumps pressure contribution is also added into the input matrix.

Add the lineariza-

tion ex-

planation into the

 ${
m Appendix}$

Part II Control Design

Controller 5

In this chapter the design of the controller is explained. The control problem, including the structure of the controller and the minimization problem, is explained. The chosen control approach is then explained and this lead up to a section where the implementation is explained.

5.1 Control Problem

The water distribution system explained in Section 2.1: System overview is to be controlled according to the requirements described in Section 3: Requirements and Constraints. These can be summarized as:

- Pressure at CP, $0.08 < p_{cp} < 0.14 \text{ [bar]}$
- Minimum water exchange through the WT, $\bar{q}_{wt} > 0.06 \left[\frac{m^3}{day} \right]$
- Minimizing the total cost of running the system

The system consists of four pumps, two local PMA pumps and two main pumps. Because the focus of this project is to balance between the use of the mains pumps and the WT a simple controller is designed to keep a specific differential pressure over the PMA pumps. Thereby can the system be fully controlled by the main pumps as the PMA pumps only influence the operating point with a fixed pressure lift.

To ensure cost reducing control a more advanced controller, controlling the main pumps, is designed. This is done by using Model Predictive Control, MPC. The advantage of MPC, compared to eg. LQR is that the MPC can optimize a state by taking the expectation of the future electrical pricing into account.

The MPC could be used to control the main pumps directly, but to mimic a real world scenario it is chosen to let the MPC set differential pressure references to the main pumps. As a consequence of this structure a controller is required to ensures that the pumps deliver the, by the MPC, specified differential pressure. An advantage of this structure is that the pump controllers can be placed locally at each pump and in an event of failing communication between the main MPC and the pump controllers, the pumps will still be operational. This cascade structure is shown in Figure 5.1.

Figure 5.1. Cascade control structure with MPC and pump controller.

In the cascade control structure a local PI controller is used to control the differential pressure output of each main pump, a copy of the constructed PI controller will be used

Carsten comment: **Typically** the flow out of the pumping station is controlled. Here you use the pressure with has some obvious advantages: - In the case of a

system

Group 830 5. Controller

at each main pump as these are identical.

Then considering the total cost of running the system multiple things have to be taken into consideration. Both the model of the water distribution network, the electrical consumption of the pumps, the electrical pricing and the constrains of the system have to be taken into account. Furthermore a constrain securing that the WT do not run dry or overflow is included. By considering the total cost of running, C_T this can be seen as a minimization problem:

The output \mathbf{y} is the 8 pressure measurements, here also including p_{cp} and Δp_i so the notation here need to correct-

Question:
Which
things
depend
on time,

Where

and

 \bar{q}_{wt}

$$\min_{\mathbf{u}} C_T(\boldsymbol{\Delta p}, \boldsymbol{q}, \Gamma(k)) = \min_{\mathbf{u}} \sum_{k=1}^{P_H} \sum_{i=1}^{N} P_{e_i}(\Delta p_i, q_i) \cdot \Gamma(k)$$
(5.1)

$$s.t \quad \Delta \dot{p}_{wt} = M \Delta \hat{p}_{wt} + N \hat{u} \tag{5.2}$$

$$\mathbf{y} = \mathbf{C}\Delta\hat{p}_{wt} + \mathbf{D}\hat{\mathbf{u}} \tag{5.3}$$

$$p_{cp} < \mathbf{p_{cp}} < \overline{p_{cp}} \tag{5.4}$$

$$p_{wt} < p_{wt} < \overline{p_{wt}} \tag{5.5}$$

$$\bar{q}_{wt} > \bar{q}_{wt} \tag{5.6}$$

 $[m^3/day]$

$$C_T(\Delta p, q, \Gamma(k))$$
 is the cost of running the system, [DKK]
 $P_{e_i}(\Delta p_i, q_i)$ is the power consumption of the i^{th} pump, [W]

N is the number of pumps, [·]

 P_H is the prediction horizon, [·]

 $\Gamma(k)$ is the price of electricity at time k, [DKK/MW]

 p_{cp} is the pressure at a given CP, [Bar]

 p_{wt} is the pressure at the WT outlet, [Bar]

The dynamic model of the system is explained in Chapter 4: Modelling and linearized in Section 4.9: Linear parameter estimation. The electrical price, $\Gamma(k)$, is described in Section 5.2.1: Electrical price. From this the input vector \boldsymbol{u} should be obtained, so the cost of running the system, within the bounds of the constrains, is minimized.

is the average flow rate through the WT.

In the following sections the design of the descried control system is explained.

5.2 Model predictive control

Model predictive control (MPC) is an advance ontrol method that depends on a dynamic model of the plant. MPC allows to calculate an optimal control signal taking the future electrical pricing into account. The control structure of MPC is in general

Figure 5.2. The structure of the control with the MPC part specified [26].

And PC is an terative process that can be setup as follows:

- 1: A model predict he future outputs, \tilde{Y}^* .
- 2: The outputs are compared to references, CP_{ref} .
- 3: The errors are feed back to the optimizer that calculates he future inputs \tilde{u} .
- 4: u(k|k) is sent as the control signal for time k.
- 5: \tilde{u} are applied to the model, together with the old outputs.
- 6: Go back to step 1

5.2.1 Electrical price

To minimize the running cost of the system the power consumption of the pumps, P_e Cf. Section 4.31: Pump model, and the electrical price, $\Gamma(k)$, is needed. Predicting future prices is an extensive task that depends on many factors e.g user consumption and weather conditions. Due to the fact that the learning goals of this project is not to derive a high precision predictive model that describe future electrical prices, data gathered from [27] is used instead. The pricing can be seen on Figure 5.3.

Figure 5.3. $\Gamma(k)$, describing the electricity prices in Denmark from the 27-03-2017 to 02-04-2017.

As this is real data from a given period, it will most likely not fit the pricing in any other given week, as the pricing is fluctuating a lot from day to day. However, the data indicates the pricing is higher in the morning and evening which is applicable for any given week and thereby a general property of the time dependent pricing. This behavior can be seen as the periodicity of the data with two peaks a day. The chosen data will thus give a realistic idea of the improvement the controller can achieved in a real world scenario based on the week the data is recorded.

Group 830 Controller

5.2.2Constraints

When designing a MPC the constraints have to be setup so they represent actuator slew rates, actuator ranges and constraints for the control variables. These constraints are setup as matrices called E, F and G. The constraints matrices are given by:

$$\boldsymbol{E} \cdot [\Delta \tilde{u}(k|k), ..., \Delta \tilde{u}(k+H_u-1|k), 1]^T \le 0 \tag{5.7}$$

$$\mathbf{F} \cdot [\tilde{u}(k|k), ..., \tilde{u}(k+H_u-1|k), 1]^T \le 0$$
(5.8)

$$G \cdot [\tilde{y}(k+H_w|k), ..., \tilde{y}(k+H_p|k), 1]^T \le 0$$
 (5.9)

Where

is the input vector, $\tilde{u}(k|k)$

 $\Delta \tilde{u}(k|k)$ is the change of the input vector,

 H_u is the control horizon, is the window horizon, H_w

and $\tilde{y}(k+H_w|k)$ is the estimate of the controlled output to the time $k+H_w$ compared to current output.

The actuator slew rate constrain, matrix E, determents how fast the actuator can change per time unit. From this the physical limit of the pumps can be described. The actuator ranges describe how the control signal to the pumps should look. This is simply a way to describe 0 to 100 % performance. In the case of this project the pumps can be controlled with an input from 0 to 5. The constraints on the control variables is the constraints setup in Section 5.1: Control Problem.

To calculate the constraint matrices H_p , H_u and H_w need to be determent. In Section

5.2.1: Electrical price the electrical price is descried. From this it can be seen that the

price fluctuate a lot but some periodicity can be seen every 24 hours. Therefor both H_p

This part could properly be specified better.

Question

sould we

chose H_w

and H_u is set to 24.

Pressure Control 5.3

As described in Section 5.1: Control Problem the two PMA pumps should generate a constant differential pressure. Furthermore Section 5.1: Control Problem conclude that a simple PI controller, reaction to a reference calculated by the MPC, should be used to control the pressure generated by the main pumps.

For convenience the simple controller, that should be used for the PMA pumps, is also chosen as a PI controller. The two set of pumps are very similar, only deviating in a few parameters. Therefor only one of the controller will be explained in this section.

Implementation of controller

This chapter will explain how the controller designed in Chapter 5: Controller is implemented in MATLAB simulink.

Part III Conclusion and verification

Accepttest

Discussion 8

Conclusion 9

Part IV Appendices

Unit Conversion

Due to the large difference between the SI-units of flow, [m³/s], and pressure, [Pa], a conversion from seconds to hours and pascal to Bar is made.

The final pipe model from Equation: (4.21), is shown below.

$$\begin{split} \frac{L\rho}{A}\frac{dq}{dt} &= \Delta p - \frac{8fL}{\pi^2 g D^5} \rho g |q| q - k_f \frac{8}{\pi^2 g D^4} \rho g |q| q - \Delta z \rho g \\ &= \Delta p - (\frac{8fL}{\pi^2 g D^5} + k_f \frac{8}{\pi^2 g D^4}) \rho g |q| q - \Delta z \rho g \end{split} \tag{A.1}$$

 $1[bar] = 10^5[Pa]$. Therefore we can rewrite Equation: (A.1) to:

$$\begin{split} \frac{L\rho}{A\cdot 10^5} \frac{dq}{dt} &= \Delta \frac{p}{10^5} - (\frac{8fL}{\pi^2 g D^5 \cdot 10^5} + k_f \frac{8}{\pi^2 g D^4 \cdot 10^5}) \rho g |q| q - \frac{\Delta z \rho g}{10^5} \\ \frac{L\rho}{A\cdot 10^5} \frac{dq}{dt} &= \Delta p_{bar} - (\frac{8fL}{\pi^2 g D^5 \cdot 10^5} + k_f \frac{8}{\pi^2 g D^4 \cdot 10^5}) \rho g |q| q - \frac{\Delta z \rho g}{10^5} \end{split} \tag{A.2}$$

The conversion from $\left[\frac{m^3}{s}\right]$ to $\left[\frac{m^3}{h}\right]$ is $\frac{m^3}{s}3600 = \frac{m^3}{s}$. Equation: (A.1) can be written as:

$$\frac{L\rho}{A\cdot 10^5}\frac{d}{dt}\frac{q}{3600} = \Delta\frac{p}{10^5} - (\frac{8fL}{\pi^2qD^5\cdot 10^5} + k_f\frac{8}{\pi^2qD^4\cdot 10^5})\rho g\frac{|q|}{3600}\frac{q}{3600} - \frac{\Delta z\rho g}{10^5} \ \ (\text{A.3})$$

There is no need to apply the unit conversion to the final valve model from *Equation*: (4.29), due to the parameter k_v being designed for the water flow in m^3 through the valve in one hour and at a pressure drop across the valve of 1 Bar.

In the pump final model Equation: (4.31) the constants are scaled so the pump equation has the units in Bar and the flow has the units in m^3/h .

Assumption List B

Number	Assumptions	Section
		reference
1	The fluid in the network is water.	Section 4.1.1: Pipe model
	All pipes in the system are filled up fully	Section 4.1.1:
2	with water at all time.	Pipe model
3	The pipes have a cylindrical structure and the cross section, $A(x)$, is constant for every $x \in [0, L]$.	Section 4.1.1: Pipe model
4	The flow of water is uniformly distributed along the cross sectional area of the pipe and the flow is turbulent.	Section 4.1.1: Pipe model
5	Δz , the change in elevation only occurs in pipes.	Section 4.1.2: Valve model
6	The pumps in the network are centrifugal pumps.	Section 4.31: Pump model
7	The storage of the WT has a constant diameter. In other words, the walls of the WT are vertical.	Section 4.1.4: Water Tower
8	Valves in the water distribution system are modelled according to the assumption that the length, L , is zero.	Section 4.1.2: Valve model
9	${\cal G}$ is a connected graph.	Section 4.4: Graph representation
10	The pipe volume is assumed to be known to an accuracy where there is not any benefit from estimating it. Thereby the estimation problem is simplified.	Section 4.6: Parameter identification

 ${\it Table~B.1.}$ List of assumptions

System Description

C.1 Components of the System

Here all necessary data(from the datasheets) and notations should be listed about the components (pipes, pumps, valves.. etc)

C.2 System Topology

C.3 System Graph

C.4 Spanning Tree

C.5 Incidence Matrix

C.6 Cycle Matrix

C.7 G	$\lim_{\Gamma \to 0}$	ap	piı	ng	m	at.	rįx	Σ _	
	1								
G =	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	1	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	1	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	1 ^	_	_	_	_	_	_	_	

(C.3)

H =

18x2, n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n111 n112 n13 n14 n15 e^{e11} e^{12} e^{e13} e^{-16} e^{18} e^{-19} %20 -11 0 0 0 0 0 0 0 0 0 0

 $\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$ 0 0 0 0 0 0 0 0 0 $\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1 \\ 1 \\ \end{array}$ $\begin{array}{cccc} 0 & & & & \\ 1 & & & \\ & -1 & & \\ & & 0 & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$ $\begin{array}{ccc} 0 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 \parallel B

Linearization

Valve equation

The Kv value as a function of the opening degree is for a valve in the system given by:

$$Kv(OD) = kv_{100}e^{(n_{gl}\gamma)} \tag{D.1}$$

The pressure across the valve as a function of the flow is given by:

$$\mu(q) = \frac{1}{(Kv)^2} q|q| \tag{D.2}$$

Gathering the two previous equations allows to describe the pressure pressure across the valve as a combined function of both the flow and the opening degree.

$$M(q, OD) = \frac{1}{(kv_{100}e^{(n_{gl}\gamma)})^2}q|q|$$
(D.3)

The linerization of the function M(q, OD) by multi variable Taylor expansion in the operating points \bar{q} and OD is given by the form

$$\begin{split} M(q,OD) &\approx M(a,b) + \frac{\partial}{\partial x} (M(a,b))(x-a) + \frac{\partial}{\partial y} (M(a,b))(y-b) \\ &\approx e^{\frac{2(\theta_{off} - \bar{OD})n_{gl}}{\theta_{max} - \theta_{off}} + 2} \bar{q}|\bar{q}| - 2 \frac{e^{\frac{2(\theta_{off} - \bar{OD})n_{gl}}{\theta_{max} - \theta_{off}} + 2} n_{gl} \hat{OD}\bar{q}|\bar{q}|}{\theta_{max} - \theta_{off}} + 2 e^{\frac{2(\theta_{off} - \bar{OD})n_{gl}}{\theta_{max} - \theta_{off}} + 2} \hat{q}|\bar{q}| \end{split}$$

Where

$$a = \bar{q}$$

$$x = \bar{q} + \hat{q}$$

$$b = O\bar{D}$$
and
$$y = O\bar{D} + O\hat{D}$$

$$[^{\alpha}]_{s}$$

Pipe equation

The pressure across a pipe as a function of the flow is given by:

$$\mu(q) = C_p q|q| \tag{D.5}$$

The first order linear Taylor expansion in the operating point \bar{q} is given as:

$$\mu(x) \approx \mu(a) + \frac{\partial}{\partial x} \mu(a)(x - a)$$

$$\approx C_{p}\bar{q}|\bar{q}| + 2C_{p}\bar{q}\hat{q}$$
(D.6)

Group 830 D. Linearization

Pump equation

Concerning the pump that connects the WT with the remaining system the rotational speed is zero. Therefore will the pumps influence be described by a resistive term which is gives a differential pressure drop as a function of the flow.

$$\Delta p = (\frac{2}{kv_{100}^2} - a_{h2})q|q| \tag{D.7}$$

The first order linear Taylor expansion in the operating point \bar{q} is given as:

$$\Delta p(x) \approx \Delta p(a) + \frac{\partial}{\partial x} \Delta p(a)(x - a)$$

$$\approx \left(\frac{2}{kv_{100}^2} - a_{h2}\right)\bar{q}|\bar{q}| + 2\left(\frac{2}{kv_{100}^2} - a_{h2}\right)\bar{q}\hat{q}$$
(D.8)

- [1] N. R. Council et al., Public Water Supply Distribution Systems: Assessing and Reducing Risks-First Report. National Academies Press, 2005.
- [2] B. Appelbaum, "Water & sustainability (volume 4): Us electricity consumption for water supply & treatment—the next half century," 2002.
- [3] Y. X. J.N. Tsitsiklis, "Pricing of fluctuations in electricity markets," European Journal of Operational Research, 2015.
- [4] M. Feldman, "Aspects of energy efficiency in water supply systems," in *Proceedings* of the 5th IWA Water Loss Reduction Specialist Conference, South Africa, pp. 85–89, 2009.
- [5] Watts, "Water pressure regulators frequently asked questions." Last visited 14-02-2017, http://www.watts.com/pages/faq.asp?catId=64&faqId=7.
- [6] Lenntech, "Why oxygen dissolved in water is important." Last visited 14-02-2017, http://www.lenntech.com/why_the_oxygen_dissolved_is_important.htm.
- [7] S. Murphy, "General information on dissolved oxygen." Last visited 14-02-2017, http://bcn.boulder.co.us/basin/data/NEW/info/DO.html.
- [8] Grundfos, "Upml geo and upmxl geo oem." Last visited 02-03-2017, http://www.grundfos.com/products/find-product/upml-geo-upmxl-geo-oem. html#overview.
- [9] Grundfos, "Upm2, upm geo, upm2k." Last visited 02-03-2017, net.grundfos.com/ Appl/WebCAPS/Grundfosliterature-4927111.pdf.
- [10] PE100, "What meaning the of the designations pe80is and pe100." Last visited 02-03-2017, https://www.pe100plus. com/PE-Pipes/PE-technical-guidance/model/Materials/mrs/ What-is-the-meaning-of-the-designations-PE80-and-PE100-i254.html.
- [11] M. M\Odgaard and B. G. P\u00e9tursson, Energy Optimization of Water Distribution Networks. 2015. Master thesis, Aalborg University.
- [12] C. Kallesøe and C. Persis, "Pressure regulation in nonlinear hydraulic networks by positive controls," *Proceedings of the European Control Conference Budapest, Hungary*, 2009.
- [13] B. Hunt, Fluid Mechanics for Civil Engineers. University of Canterbury, 1995.
- [14] A. K. S. Prabhata K. Swamee, Design of Water Supply Pipi Networks. John Wiley & Sons, 2008.
- [15] Y. Nakayama, Introduction to Fluid Mechanics. Butterworth Heinemann, 1999.
- [16] N. Trifunovic, Introduction to uUrban Water Distribution. Balkema, 2006.
- [17] H. Boysen, $k_v: what, why, how, whence?$ Danfoss A/S, 2011.

Group 830 Bibliography

[18] U. Keller, Method for the Hydraulic Compensation and Control of a Heating or Cooling System and Compensation and Control Valve Therefor. BELIMO Holding AG, Hinwil(CH), 2009.

- [19] C. KallesØe, Fault Detetection and Isolation in Centrifugal Pumps. 2005. Ph.D. thesis, Aalborg University.
- [20] W. Borutzky, Bond Graph Methodology. Springer London, 2010.
- [21] C. D. Persis and C. S. Kallesøe, "Pressure regulation in nonlinear hydraulic networks by positive and quantized controls," *IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY*, vol. 19, November 2011.
- [22] N. Deo, Graph Theory with Applications to Engineering and Computer Science. 2004.
- [23] C. K. J. L. Maryamsadat Tahavori, Tom Nørgaard Jensen and R. Wisniewski, "Toward model-based control of non-linear hydraulic networks," July 2012.
- [24] M. S. P. Kaare Brandt Petersen, The Matrix Cookbook. 2012.
- [25] PE100, "Nonlinear grey-box models." Last visited 07-04-2017, https://se.mathworks.com/help/ident/nonlinear-grey-box-models.html.
- [26] E. F. Camacho and C. Bordons, *Generalized Predictive Control*, pp. 47–79. London: Springer London, 2007.
- [27] "Elspot prices." Last visited 19-04-2017, http://www.nordpoolspot.com/Market-data1/Elspot/Area-Prices/DK/Hourly/?dd=DK2&view=chart.

Todo list

All matrices should be bold font	11
We have to be consequent with the indexes - i or k?	11
Should we find another formulation then "pressure given in head"	13
this is not how we have writen intervals other places ex. $v < [0.5,1.5]$	14
The list bellow should be with units	18
Daniel, you have the things for this!	39
Add the linearization explanation into the Appendix	10
Carsten comment: Typically the flow out of the pumping station is controlled. Here you use the pressure with has some obvious advantages: - In the case of a system failure it is the pressure that is important. The flow will typically either lead to too high or too low pressure, or tank run over. This is an important change, which you should emphasize	43
The output \mathbf{y} is the 8 pressure measurements, here also including p_{cp} and Δp_i so the notation here need to correcting	14
Which things depend on time, k?	14
This part could properly be specified better	16
How sould we chose H_{a}	46