

Index

3D rendering, 207 scaled speedup, 71, 311 size of input data, 65 Academic Computer Center CYFRONET AGH, speedup, 63, 319 Kraków, Poland, xxvi tree traversal, 121 perfect shuffle, 202 Academic Computer Center, Gdańsk, Poland, xxvi PRAM model, 72 accelerator, 298 address array packing, 119 physical, 184, 310 finding minimum element, 73 finding sum of elements, 75, 76 translation lookaside buffer, 184 matrix-matrix multiplication, 85, 288 virtual, 183 address space, 5, 24, 182, 183, 305, 309 prefix computation, 81, 287 algorithm prefix computation with segmentation, 119 sorting, 83, 228 approximate, 217 network model, 92 randomized, 145, 155, 161 matrix-matrix multiplication, 94, 95 round-robin, 145, 153, 155, 161, 262 sequential, 1 matrix-vector multiplication, 93, 236 minimum graph bisection, 217 array packing, 119 prefix computation, 99 bubble sort, 122 reduction, 96 counting sort, 83, 103 Euclidean, 58, 285 sorting, 228 parallel, 63, 123, 125, 316 Horner's, 36, 39 absolute and relative speedup, 64 insertion sort, 113 matrix transpose, 119 array packing, 119 memory requirement, 39, 63, 307 coarse-grained, 142 Cole's sorting, 104 merge sort, 104 communication cost, 64, 85, 183 minimum graph bisection, 217 cost, 63, 66, 308 performance metric, 35, 38 efficiency, 63, 66, 157-159, 161, 310 prefix computation, 287 prefix computation with segmentation, 119 fine-grained, 134, 293 matrix transpose, 120 quicksort, 134 running time, 38, 39, 63, 307 matrix-matrix multiplication, 85, 288 memory requirement, 307 size of input data, 38 minimum graph bisection, 217 spatial modeling, 43 odd-even transposition sort, 113, 122, 210 Amdahl's law, see law: Amdahl's overhead, 65-67, 70-72, 139, 144 American National Aeronautics and Space parallel running time, 64, 100, 307 Administration (NASA), xxi performance metric, 64, 66, 77, 84, 85, 94, 97, Ames Research Center, xxii 317 Goddard Space Flight Center, 186 portability, 64 API, see application programming interface prefix computation, 80, 98, 118–120, 287 application programming interface, 243, 248, 262, 273, 275, 281 prefix computation with segmentation, 119 processor complexity, 74, 77, 81, 100, 318 approximation, 162 reduction, 121 arithmetic-logic unit, 177, 178, 321 scalability, 67, 123, 158-160 floating-point, 207, 208

343

batch mode, 24	point-to-point, 94, 206, 225
Bellman Richard Ernest, 170	shared memory, 3, 35
Beowulf, see cluster: Beowulf	shared variable, 3
bijection, 60	operation, 3
binary tree, see interconnection network: binary	synchronous, 11, 156, 221
tree	communication channel, 3, 41, 156, 198, 306, 312
bitonic sequence, 113	data transfer rate, 42, 198, 309
bitonic sorting network, <i>see</i> network: sorting:	latency, 94
	•
bitonic	transmission time, 94
blocking, see semaphor: blocked-queue or	communication complexity, see algorithm: parallel:
blocked-set	communication cost
Brent's theorem, 79	communication properties, see interconnection
broadcasting, see message broadcast, and	network: communication properties
interconnection network: cube: message	company
broadcast	AMD/ATI, 181, 207
buffer, 11	IBM, 207
cyclical, 13	Inmos, 214, 241
bus, see interconnection network: bus	Intel, 178, 181, 212
busy waiting, 27	Nvidia, 207
butterfly, see interconnection network: butterfly	Sony, 207
1	Sun, 207
characteristic vector, 128	Toshiba, 207
base sequence, 128	comparator, see network: comparator
checklist, 159–161	comparator network, see network: comparator
circuit	complex plane, 164
integrated, 207	complexity class, 100
logic, 56, 57, 58, 102, 103	L, 118
VLSI, 61, 196	NC, 100, 117, 315
cluster, 24, 183, 184, 207, 212, 215, 243, 306	subclasses NC^j , 100, 315
Beowulf, 186, 212, 306	NL, 118
computer, 185, 306	NP, 100
computing, 294, 310	NP-complete, 102, 144, 145, 147, 161, 216
constellation, 184, 306, 308	P, 100
data references, 185	P-complete, 65, 100–103, 124, 317
data transmission	compression and decompression, 207
latency, 141, 187, 312	computation
rate, 187	asynchronous, 3, 93, 181, 187, 191, 196, 216
load balancing, 188	synchronization operation, 216
massively parallel, 313	coarse-grained, 137, 142, 187, 311
multicore processor, 185, 299, 306	computer graphics, 43
node, 184, 306	dataflow, 189, 191, 196
packaging	distributed, 24, 187, 214
compact, 187	detecting termination of distributed
slack, 187	computation, 154
reliability, 188	fine-grained, 134, 137, 153, 155, 158, 186, 191, 207,
scalability, 186	309, 311
symmetric multiprocessor, 184, 306	flow, 194
coherence, see memory: cache: data consistency,	grain size, 137
and OpenMP: data consistency	granularity, 168, 173
collective communication, see MPI library:	linear algebra, 43
collective communication, and	loosely synchronous, 216
communication between processes:	message-passing, 243
collective	multithreaded, 208, 212
communication between processes, 2, 157,	parallel, 35, 42, 58, 64, 66, 70, 100, 117, 131,
158	135–137, 156, 189, 214, 309
asynchronous, 11, 156	GPUs. 207
blocking, 156, 223	overhead, 66, 140, 144, 159
buffered, 222	pipeline, 128, 175, 317
collective, 159	pipelining, 125, 128, 317
cost, 159, 160, 294	prefix, 80, 118, 120
global, 158	redundant, 140, 142, 158
local, 158	shared-memory, 243
message passing, 3, 35, 41, 184, 214, 215, 220, 306,	
	synchronous, 40, 94, 96, 180, 216
313	
313 message delivery time, 3	synchronous, 40, 94, 96, 180, 216

computational complexity	NEC Cenju-4, 209
memory, 38, 39, 63, 307	NYU Ultracomputer, 209
time, 38, 39, 63, 64, 100, 307	personal (PC), 5, 180, 186, 196
computer	Pleiades, xxii
Alpha 21364, 62	processor array, 180, 207, 212, 317
BBN Butterfly, 209	Quadrics Apemille, 207
Blue Gene/L, xxiv, 43, 62	Roadrunner, 298
Bull NovaScale, 209	SGI Altix, xxi, 209
C.mmp, 209	SGI Origin 2000, 209
Compaq ES40, xxiii	SIMD, 181, 207
Compaq GS160, xxiv	activity mask, 181
conventional, 175, 177, 195, 196	control processor, 180
Convex Exemplar, 209	diversification of computations, 181
Cosmic Cube, 61	execution of if-then-else instruction, 181
CPP DAP Gamma II, 207	image processing, 181
Cray T3D, 62	processing element, 180, 317
Cray T3E, 62	processing element, 166, 517 processor array, 317
Cray X1E, xxii	simulation of atmospheric phenomena, 181
· · · · · · · · · · · · · · · · · · ·	
Cray XT4, xxii, xxiii	SISD, 175, 311, 321
Cray XT5, xxiii	Solomon, 61
dataflow, 189, 213, 309	Sun Ultra HPC Server, 209
control flow, 189, 191	Sun V40z, 236
Cyberflow, 196	supercomputer, 186, 209, 296, 298, 319
data flow, 190	systolic, 198, 213, 320
DDP, 195	Warp and iWARP, 213
EDDN, 196	Thinking Machines CM-1, CM-2, CM-5, 207, 209
EM-5, 195	Tianhe-2, xxi, xxv, 209, 296
Manchester, 195, 213	unconventional architecture, 189
MIT, 195, 213	uniprocessor, 311, 321
Monsoon, 195, 213	vector, 177, 321
SIGMA-1, 195	computer architecture, 35, 175, 307
structure, 191	Cell Broadband Engine, 207
Earth Simulator, xxii	conventional, 177
EDVAC, 35	dataflow, 189, 212, 309
Fujitsu VPP 500, 209	MIMD, 182, 311
HP Superdome, 209	MISD, 198, 311
hybrid, 298	parallel, 212
IBM Bluefire, xxiii	processor array, 180
IBM eSerwer 325, 236	SIMD, 180, 181, 311
IBM p575, xxii	SISD, 175, 311
IBM p690, xxii	systolic, 196, 320
IBM RP3, 209	unconventional, 189
Illiac IV, 61, 207	uniprocessor, 212
Intel DELTA, 62	vector, 321
iPSC, 62	von Neumann, 35, 177, 212
J-machine, 62	computer game console, 180
K, xxiii	Sony PlayStation 3, 207
Kendall Square Research KSR1, 212	computer graphics, 207, 209
•	computer vision, 207
MasPar MP-1, 207	•
massively parallel, 313	computing node, see cluster: node
Meiko CS-2, 209	concurrent processes, 2, 3, 34, 308
MIMD, 182	contention, 7
distributed memory, 183, 314	creation
loosely coupled, 183	dynamic, 216
shared memory, 182, 209, 314	static, 216
symmetric multiprocessor, xxiii, 180, 182, 184,	critical section, 8–10, 12, 18, 27, 271, 308
200, 320	deadlock, 7, 10, 14–16, 34, 309
tightly coupled, 182	multithreaded, 5, 244
MISD, 198	mutual exclusion, 7, 10, 271, 315
multicomputer, 183	nonterminating, 6
multiprocessor, 27, 28, 160, 181, 183, 207, 212, 314	parallel execution, 3
distributed memory, 183, 314	priority, 5
loosely coupled, 183	pseudo-parallel execution, 4, 5, 142, 143, 314
shared memory, 182, 209, 281, 282, 314	starvation, 7, 10, 14, 15, 18, 24, 27, 30
tightly coupled, 182	synchronization, 3, 12, 15, 26, 34, 314
nCUBE, 62	condition (event), 13, 17

concurrent program, 1, 3, 24, 34, 307	of a program, 126, 247, 309
correctness, 6, 34	of an algorithm, 140
fairness, 7	depth of a network, see network: depth
fairness (weak, strong), 310	depth-first search, 90
liveness, 6, 7, 10, 15, 34, 312	design checklist, 158
safety, 6, 7, 10, 16, 34, 318	designing parallel algorithms, 125
condition synchronization, see concurrent	assigning tasks to processors, 140, 143, 145, 146
processes: synchronization: condition	150, 151, 155, 160, 161
(event)	block, 146
condition variable, see monitor: condition variable	block-cyclic, 146
conditional compilation, 248	cyclic, 146
constant of gravitation, 166	cost, 168, 173
constellation, see cluster: constellation	decomposition, 125, 158, 168, 173, 292, 317
contention	blockwise, 145
resource, 8, 27, 42, 152, 308	data, 126, 129, 131, 147, 158, 161
context switch, see operating system: context	exploratory, 135, 158
switch	fine-grained, 158
core, 179, 308	functional, 126, 127, 130, 150, 151, 158, 161
cost, see algorithm: parallel: cost	mixed (hybrid), 137, 158
criterion of cost	recursive, 133, 158
logarithmic, 39	speculative, 136, 158
uniform, 39 critical section, <i>see</i> concurrent processes: critical	load balancing, 143, 161, 173, 312 centralized, 151, 161
section, and problem: critical section	decentralized, 151, 161
crossbar switch, see interconnection network:	distributed, 152, 161
crossbar switch	dynamic, 151, 161
csh shell, 247	static, 145, 161
CSP notation, 214, 241	method, 125
cube, see interconnection network: cube	data parallelism, 147, 181
cube connected cycles, see interconnection	Foster's, 156
network: cube connected cycles	functional parallelism, 125–130, 137, 145,
CUDA environment	149–151, 154, 158, 161
device function (device), 208	master-worker, 155, 162, 217, 281
general-purpose GPU processing (GPGPU),	pipeline, 128, 155
209	producer and consumer, 155
grid, 209	task pool, 154
host function (host), 208	task dependency graph, 127–130, 151
kernel function (global), 208	determinism, 58, 103, 118
thread block, 209	differential equation, 166
thread index, 209	directed forest, 120
cycle, 102	distributed program, 3, 24, 310
Euler, 88	distributed shared memory, 183, 212, 310
4-4-	data transfer
data	latency, 184, 312
local, 156	message passing, 184, 310, 313
nonlocal, 156 redundant, 158	distribution
data consistency (coherence), see memory: cache:	data between memories, 183 matrix elements, 94
data consistency, and OpenMP: data	domain decomposition, see designing parallel
consistency	algorithms: decomposition: data
data dependency, 65, 176, 189, 247	argorithms. decomposition. data
data parallelism, see designing parallel algorithms:	effect
method: data parallelism, and designing	Amdahl, 65, 123, 305
parallel algorithms: decomposition: data	efficiency, see algorithm: parallel: efficiency
database, 8, 17, 33	efficiently parallelizable problem, see problem:
transaction, 17	efficiently parallelizable
dataflow computation model, see model of	embarrassingly parallel problem, see problem:
computation: parallel: dataflow	embarrassingly parallel
de Bruijn Nicolaas Govert, 61	embedding, see interconnection network:
deadlock, see concurrent processes: deadlock	embedding
decomposition, see designing parallel algorithms:	encapsulation, 19
decomposition	environment OpenCL, 208
degree of concurrency	equivalence of computation models, see model of
average, 126, 130, 139	computation: parallel: equivalence of
maximum, 126, 130	models
of a problem, 64, 65, 126, 149, 151, 294, 309	Eratosthenes of Cyrene, 126

Ethernet	averaging, 130
fast, 187	Gauss, 130
gigabit, 187	lp2, 130
Euclid, 58	filtering, 129
Euler Leonhard, 88, 167	pixel, 129, 164, 300, 303
Euler path, 91, 289	resolution, 165
event synchronization, see concurrent processes:	smoothing, 130
synchronization: condition (event)	induction, 54, 116
	Infiniband, see interconnection network: switch
fairness, see concurrent program: correctness:	Infiniband
fairness	injection, 50, 52, 54
fastest supercomputers, xxi, 181, 209, 296, 298	instruction
fat tree, see interconnection network: fat tree	atomic, 27
FIFO queue, 7, 10, 152, 156	compare-and-swap, 27
Flynn's taxonomy, 175, 206, 212, 311	empty, 27
data stream, 175	exchange, 27
instruction stream, 175	fetch-and-add, 27
fork-join parallelism, see OpenMP interface:	test-and-set, 26
model of computation: fork-join	vector, 177
parallelism	instruction list, see processor: instruction list
Foster's method, see designing parallel algorithms:	instruction pipelining, 317
method: Foster's	conditional branch, 176
fractal, 164	control hazard, 177
fractal geometry, 164	data dependency, 176
function	data hazard, 176
Boolean, 56, 102	integration
isoefficiency, 68, 123, 312	method
growth rate, 318	rectangles, 162, 241
functional parallelism, see designing parallel	trapezoids, 163, 164, 241, 281
algorithms: decomposition: functional, and	step, 162
designing parallel algorithms: method:	interconnection network, 41, 180, 182, 312
functional parallelism	binary tree, 59, 60
functional programming language, see	double-rooted, 60
programming language; functional	dynamic, 204, 206, 320
programming language. ranetional	static, 204, 206, 320
galaxy, 168	bisection bandwidth, 42, 305
game theory, 163	bisection width, 42, 48, 206, 216, 305
GNU, see project: GNU	bus, 182, 199, 305
granularity, 125, 134, 137, 138, 185, 311	access algorithm, 199
coarse, 137, 294	bandwidth, 199, 200
fine, 134, 138, 185, 293	cost, 199
grain size, 142, 311	data transmission latency, 199, 312
medium, 137	scaling, 200
graph	butterfly, 46, 48, 203, 206, 209, 306
directed, 88, 120	communication properties, 42, 43, 53, 59
Eulerian, 88	completely-connected, 42, 48, 216
loop, 120	contention
vertex adjacency lists, 89	communication resource, 42
graph bisection, see problem: minimum graph bisection	cost, 42, 48, 206 crossbar switch, 182, 184, 200, 206, 209, 308
Gray code, 54	
	cost, 200
greatest common divisor, see algorithm:	scaling, 200
sequential: Euclidean	cube, 44, 47, 48, 53, 59, 60, 96, 308
1 1	k-dimensional, 44, 48, 53, 55, 60
hazard	data transfer statement, 97
control, 177	four-dimensional, 285
data, 176	message broadcast, 49, 98, 121
Heron of Alexandria, 189	three-dimensional, 54, 55
Horner William George, 36	cube connected cycles, 46, 60, 309
hypercube, see interconnection network: cube	de Bruijn, 61
T/O	degree, 42, 48
I/O	diameter, 42, 48, 60, 205, 309
operation, 4, 24, 36, 142, 269	dynamic, 199
port, 156	evaluation parameters, 205, 206
image processing, 129, 207	latency, 206, 312
filter	edge connectivity 42, 48, 206

interconnection network (cont.)	law
embedding, 50, 310	Amdahl's, 69, 123, 305
congestion, 51, 52, 53	Gustafson–Barsis's, 70, 123, 311
dilation, 51, 52, 53	Moore's, 178, 212, 314
expansion, 52, 53	level of abstraction, 37, 38, 42, 58
load factor, 51, 52, 53	library
fat tree, 205, 299, 311, 320	BLAS, 208
local area network, 187	DirectX, 208
maximum degree vertex, 206	java.util.concurrent, 9
mesh, 48, 313	MPI, 214
<i>k</i> -dimensional, 43, 320	Pthreads, 9, 244, 282
multidimensional, 53–55	PVM, 187, 214, 241
one-dimensional, 43, 52, 53, 204, 320	linear algebra, 43
three-dimensional, 43, 60	link, see communication channel
two-dimensional, 43, 52–54, 55, 60,	list, 87, 120
285	Green 500, 298
mesh of trees, 313	Top 500, 181, 209, 296
two-dimensional, 43, 48	list structure, 87
message routing, 41, 199, 318	· · · · · · · · · · · · · · · · · · ·
	liveness, see concurrent program: correctness:
routing procedure, 41, 206, 318	liveness
multistage, 182, 201, 213, 314, 315	load balancing, see designing parallel algorithms:
node, 198, 312	load balancing
omega, 182, 201, 206, 209, 213, 315	local area network, see interconnection network:
cost, 203	local area network
data transmission time, 203	locality of data reference, 159, 312
message routing, 202, 318	spatial, 178
proprietary, 187	temporal, 178
resistance to damage, 42	logarithmic cost criterion, see criterion of cost:
scaling, 45, 199	logarithmic
sparse, 42, 43	logic circuit, see model of computation: parallel:
star, 185, 204, 320	logic circuit
static, 199	
evaluation parameters, 42	Mandelbrot Benoît B., 164
latency, 94	massively parallel processing system, see cluster:
switch, 198, 306, 312, 319	massively parallel
degree, 198	memory
Infiniband, 299	access
message broadcast, 199	random, 36
message buffering, 199	sequential, 36
ports, 199	cache, 27, 177, 179, 184, 200, 212, 273, 282, 306,
topology, 41, 47, 180, 199, 320	310
torus, 48, 59, 286, 320	ccNUMA, 185, 209
k-dimensional, 320	data consistency, 185, 249, 273, 282, 306
data transfer statement, 94	hit, 178, 306
doubly twisted, 59	line, 178, 306, 312
message broadcast, 121, 288	miss, 178, 306
one-dimensional, 43, 53, 54, 60, 93, 138, 185,	spatial locality, 199, 312
318	temporal locality, 178, 312
three-dimensional, 43	distributed, 34, 183, 309
two-dimensional, 44, 59, 94, 286	DRAM, 178
tree, 204, 320	global, 207
vertex connectivity, 42, 206	access time, 207
wide area network, 187	hierarchical, 141, 177, 184, 311
Interdisciplinary Centre for Mathematical and	local, 39, 93, 156, 181, 183, 184
Computational Modelling, University of	nonlocal, 142, 184
Warsaw, Poland, xxvi, 236	nonuniform memory access, xxiii, 141, 182, 184
interleaving, see operating system: interleaving	315
isoefficiency function, see function: isoefficiency	shared, 3, 6, 34, 39, 183–186, 207, 243, 244,
	319
Karp-Flatt metric, see sequential fraction of	access time, 207
parallel computation	bandwidth, 182, 313
	module, 182, 199
L, see complexity class: L	uniform memory access, 182, 184, 321
LAN, see interconnection network: local area	memory complexity, see algorithm: sequential:
network	memory requirement, and algorithm:
latency, 3, 94, 142, 206, 207, 312	parallel: memory requirement

Index 349

memory requirement, see algorithm: sequential: MPI_Barrier, 236 memory requirement, and algorithm: MPI Bcast, 224, 225, 241 MPI BOR, 227 parallel: memory requirement MPI_BXOR, 227 memory wall, see problem: memory wall MPI_BYTE, 221 mesh, see interconnection network: mesh message broadcast, 241 MPI_CHAR, 221 all-to-all, 121, 288 $MPI_COMM_WORLD, 220, 228, 230$ one-to-all, 98, 121 MPI_Comm, 221, 222, 225, 228, 230, 231, 234 message passing, see communication between MPI_Comm_free, 230 processes: message passing method MPI_Comm_rank, 220, 224 MPI_Comm_size, 220, 224 ${\tt MPI_Comm_split}, 228, 230$ divide and conquer, 170 ${\tt MPI_Datatype}, 221\text{--}223, 225, 230, 231, 234$ dynamic programming, 170 common subproblems property, 170 MPI_DOUBLE, 221 optimal substructure property, 170 MPI_DOUBLE_INT, 227 MPI_ERROR, 222 Eulerian cycle, 88 Monte Carlo, 162, 241, 281, 304 MPI_Exscan, 80 MPI_Finalize, 219, 224 MPI_FLOAT, 221, 300 convergence, 163 Newton's, 194 MPI_FLOAT_INT, 227 pointer jumping, 87, 120 Milky Way-2, see computer: Tianhe-2 MPI_Gather, 230, 231, 233, 234, 300 MIMD (MISD), see computer architecture: MPI_Gatherv, 234-236 MIMD (MISD), and computer: MIMD MPI_Get_address, 302 MPI_Get_count, 223 (MISD) MPI_Init, 219, 224 MPI_INT, 221, 300 model of computation, 35 parallel arbitrary CRCW PRAM, 48 MPI_Irecv, 143, 223 MPI_Isend, 143, 222, 223 BSP, 56 combining CRCW PRAM, 40, 120, 288 MPI_LAND, 227 common CRCW PRAM, 40, 48, 81 MPI_LONG, 221 MPI_LONG_DOUBLE, 221 comparator network, 112, 307 MPI_LONG_DOUBLE_INT, 227 MPI_LONG_INT, 227 comparison of network models, 50 comparison of PRAM models, 47 MPI_LOR, 227 conflicts in shared memory access, 40 CRCW PRAM, 40, 47, 82 MPI_LXOR, 227 CREW PRAM, 40, 47, 58, 83, 85, 228 MPI_MAX, 227 dataflow, 189 MPI_MAXLOC, 227 equivalence of models, 58 MPI_MIN, 227 EREW PRAM, 40, 47, 74 MPI_MINLOC, 227 LogGP, 56 MPI_0p, 225 logic circuit, 56, 58, 102, 313 MPI_PACKED, 221 MPI_PROD, 227 LogP, 56 MPI_Recv, 220, 222-225, 300 network model, 35, 41, 187, 315 PRAM, 35, 39, 316 MPI_Reduce, 79, 224, 225, 227, 229, 230, 241 priority CRCW PRAM, 48 MPI_Scan, 80 MPI_Scatter, 231 processor number, 40 MPI_Send, 220-222, 224, 225, 300 shared memory, 316 MPI_SHORT, 221 MPI_SHORT_INT, 227 sorting network, 56, 307 sequential RAM, 35, 58, 189, 318 MPI_SOURCE, 222 computational step, 36 random access memory, 36 MPI_Status, 222, 223 module, 19 MPI_SUCCESS, 220 MPI_SUM, 227 memory, 182, 199 TriBlade, 299 MPI_TAG, 222 MPI_Test, 143, 222, 223 MPI_Type_commit, 303 monitor, 18, 25, 314 condition variable, 19, 314 MPI_Type_create_struct, 302 operations wait and signal, 19 Moore Gordon E., 178 MPI_Wait, 143, 222, 223 MPI library, 79, 187, 224, 241, 243, 282, 299 MPI_Aint, 302 MPI_Wtime, 235, 236, 239 MPI_UNDEFINED, 228 MPI_Allgather, 231 MPI_UNSIGNED, 221 MPI_Allreduce, 227 MPI_UNSIGNED_CHAR, 221 MPI_UNSIGNED_LONG, 221 MPI_ANY_SOURCE, 223 MPI_ANY_TAG, 223 ${\tt MPI_UNSIGNED_SHORT}, 221$ MPI_2INT, 227 collective communication, 224, 225, 300 MPI_BAND, 227 communicator, 220, 225, 228, 230, 231, 236

MPI library (cont.)	if, 251, 259, 266
derived datatype, 221, 300	lastprivate, 253, 255, 257, 261
handle, 301	mergeable, 259
map, 301	nowait, 255, 257, 262, 269
signature, 301 history, 215	num_threads, 247, 251, 267
	ordered, 255
message broadcast, 225 model of computation, 215	private, 246, 251, 255, 257, 259, 260
MPI-1, 215, 241	reduction, 251, 255, 257, 264 schedule, 255, 262
MPI-2, 215, 241	shared, 246, 251, 259, 260
MPI-3, 215	untied, 259
program compilation and execution, 218	cOMPunity organization, 243, 281
mpicc command, 218	construct, 249
mpirun command, 218	atomic, 272
MPP, see cluster: massively parallel	barrier, 260, 270
multiprocessor, see computer: multiprocessor	critical, 260, 265, 271, 275, 276, 278, 304
multiprogramming, see operating system:	flush, 273
multiprogramming	master, 269
multitasking, see operating system: multitasking	ordered, 271
multithreading, 6, 34, 180, 207, 208, 282	parallel, 250, 254, 267
mutual exclusion, see concurrent processes:	sections, 252, 255
mutual exclusion	single, 252, 257, 268
NG L'A NG	taskwait, 270
NC, see complexity class: NC	task, 258, 259
network	loop, 252, 254, 255, 275, 304
Beneš, 210	worksharing, 252
comparator, 112, 307	critical section, 271, 272, 276, 304
de Bruijn, 61 depth, 113	data consistency, 245 directive, 243
merging, 115	threadprivate, 274
permutation, 210	environment variable, 243, 247
size, 113	OMP_NUM_THREADS, 247, 252, 267
sorting, 113, 307	ICVs, 247
Batcher's, 113, 116	library function, 243, 247, 248, 250, 251
bitonic, 113	omp_set_num_threads, 247
network model, see model of computation:	omp_get_num_threads, 247
parallel: network	$omp_get_thread_num, 247, 248, 251$
Newton Isaac, 166, 194	omp_get_wtick, 278
NL, see complexity class: NL	omp_get_wtime, 278
nondeterminism, 118, 144, 192, 196, 249, 251, 253,	omp_set_num_threads, 252, 267
257	memory
nonuniform memory access, see memory:	cache, 245, 249
nonuniform memory access	data consistency, 249
NP, see complexity class: NP	relaxed-consistency model, 244
NP-complete, see complexity class: NP-complete	shared, 244 thread's temporary view of memory, 244
NUMA, see memory: nonuniform memory access number	threadprivate, 245
complex, 164	model of computation, 244
composite, 126, 233	fork-join parallelism, 246
prime, 126	OpenMP versions 2.5, 3.0, 3.1, 4.0, 243
random, 162, 163, 263, 304	program compilation, 252
NYU Ultracomputer, see computer: NYU	command pgcc, 252
Ultracomputer	race condition, 249, 260
•	region, 250
Occam's (or Ockham's) razor, 214	active, 245
Ockham, see William of Ockham	inactive, 245
OpenMP interface, 208	parallel, 245, 246, 247, 250-252, 257, 258, 266
_OPENMP macro, 248	267, 270, 274
Architecture Review Board, 243	runtime system, 248, 258, 259, 263, 264, 270
clause, 246, 251, 255, 257, 259	structured block, 250, 251
collapse, 255	synchronization barrier, 251, 252, 254, 257, 260
copyin, 251, 268	268–270
copyprivate, 257, 268	task, 244, 256, 257
default, 251, 259, 261	child task, 258, 270
final, 259	explicit, 245, 250
firstprivate, 251, 255, 257, 259, 260	implicit, 245, 246, 250, 256, 258

region, 245, 246, 250	sum (Boolean), 80
scheduling point, 258, 270	swap, 38
tied, 245	switch, 193
team of threads, 247, 250	test-and-set, 3
thread, 244	vector, 207, 299
initial, 245	optimal binary search tree, 168, 169–171, 172, 173,
master, 245–247, 250, 251, 258, 269, 274	304
number, 247, 248	order
synchronization, 249, 251, 252, 254, 270	postorder, 121
unbalanced workloads, 257, 263	preorder, 121, 288
variable	topological, 102
nthreads-var, 247	overlapping communication and computation, 52,
private, 243, 244, 246, 253	142, 222, 315
shared, 243, 246, 249, 253, 260, 270, 273	
threadprivate, 274	P, see complexity class: P
operand, 189	P-complete, see complexity class: P-complete
operating system, 1, 4, 5, 34, 160, 236, 244, 247, 315	package, 19
concurrency of processes, 4, 34	parallel
context switch, 4, 207	computation thesis, 117, 118
interleaving, 2, 4, 8, 9, 25	execution
interrupt, 5	instruction, 175
priority, 5	loop, 260
Linux, 34, 186, 299	operations, 191, 207
load balancing, 5	tasks, 136, 160
multiprogramming, 24, 314	programming model, 156
multitasking, 314	Foster's, 156
process, 5, 34	slackness, 143, 208, 317
Solaris-2, 34	parallel execution of processes, see concurrent
task scheduling, 5	processes: parallel execution
shortest job next principle, 32	parallel overhead, see algorithm: parallel:
thread, 5, 34, 244	overhead
time-sharing, 4, 5, 142, 244	parallel program, 3, 24, 307
Unix, 34	correctness, 7, 249
Windows, 34	fine-grained, 185, 186
operation	scalability, 215
arithmetic, 38	SPMD method, 216, 242, 248
associative, 41, 79, 118	parallel running time, see algorithm: parallel:
atomic, 3, 9, 25, 26, 272	parallel running time
binary, 79, 118	parallel slackness, see parallel: slackness
combining, 50	parallel time complexity, see algorithm: parallel:
communication, 159	parallel running time
commutative, 80, 80	parallel work, see algorithm: parallel: cost
compare-and-swap, 3	performance metric, see algorithm: parallel:
comparison, 38	performance metric, and algorithm:
computational, 48, 79, 159	sequential: performance metric
concatenation, 80	pipelined execution of instructions, 175, 212, 317
control, 36	pointer, 87
copy, 119	stack, 5
data transfer, 196	pointer jumping, 87
dominant, 38	polylogarithmic complexity, 58, 100–102
exchange, 3	portability
fetch-and-add, 3	MPI library, 215
fixed-point, 144	parallel algorithm, 64, 159
floating-point, xxi, 186, 235, 293, 296, 299, 319	software, 186
gate, 192	POSIX interface, 244, 282
latency, 142	Poznań Supercomputing and Networking Center,
logical (Boolean), 36, 38, 40	Poland, xxvi
merge, 192, 192	PRAM, see model of computation: parallel:
nondeterministic, 192	PRAM
product (Boolean), 80	PRAM-on-chip, 61
relational, 192	prefix, 80, 98, 118, 120, 287
SAXPY, 208	prefix computation, see problem: prefix
scan, 80	computation, and algorithm: sequential:
select, 192	prefix computation, and algorithm: parallel
sink, 192	prefix computation
square, 194	preprocessor, 248

principle	matrix transpose, 119, 121
Occam's razor, 214	two-dimensional mesh, 121
optimality, 170	matrix–matrix multiplication, 94, 196
shortest job next, 32	combining CRCW PRAM, 120, 288
zero-one, 114–116, 123	CREW PRAM, 85, 120, 288
problem	cube, 288
<i>n</i> -body, 165	matrix–vector multiplication, 92, 196, 236
MPI program, 241	MPI program, 236
OpenMP program, 281	maximum cut of graph, 242
parallel program, 292	memory wall, 177, 212
sequential program, 167 NC \neq P?, 100, 124, 315	minimum cut, 216 minimum graph bisection, 216, 275
$P \neq NP?, 100$	MPI program, 217
array packing, 119 bin packing, 144	OpenMP program, 275
	NC, 100, 124, 315
cigarette smokers, 33	NP, 100
circuit value, 102, 124	NP-complete, 161, 216
unrestricted, 124	NP-hard, 163
computing approximation of π , 162, 210	one-lane bridge, 32
MPI program, 241	P, 100
OpenMP program, 281, 304	P-complete, 100–103, 124, 317
sequential program, 162	prefix computation, 98, 118, 120, 287
computing integral value, 161	segmentation, 118
MPI program, 240	sums, 123
OpenMP program, 281	producer and consumer, 11
sequential program, 162	readers and writers, 17, 30
computing Mandelbrot set, 164	reduction, 79, 123, 225, 264
MPI program, 241, 299	one-dimensional mesh, 121
OpenMP program, 281	two-dimensional mesh, 121
sequential program, 165	satisfiability of Boolean expressions, 102
computing number of descendants, 91	scheduling, 173
computing value of polynomial	shortest schedule, 144
Horner's algorithm, 36	size, 38, 64, 158, 160
RAM program, 36	sleeping barber, 33, 284
constructing optimal binary search tree, 168	sorting, 83, 100, 122, 174, 228, 276
OpenMP program, 304	MPI program, 228
parallel program, 168	OpenMP program, 276
constructing optimal binary search tree	transforming unrooted tree into rooted tree, 90
sequential program, 171	traveling salesman, 101
critical section, 8, 17, 26, 27	process
decision, 101, 124	multithreaded, 282
detecting termination of distributed	sequential, 1, 5, 319
computation, 154, 173	processing
dining philosophers, 14	element, 180, 181, 198, 317
ecoregion map, 146, 173	unit, 184
efficiently parallelizable, 58, 100, 173, 315	processor
embarrassingly parallel, 126, 173	AMD Opteron, 236
evaluation of multiple-choice test results,	AMD Opteron 2210, 298
126	array, 180
finding minimum element, 49, 61, 73, 100	ATI Radeon HD 4000/5000, 207
finding prime numbers, 242, 277	Cell, 207
MPI program, 232	dual-core, 179
network model, 128	extensions
OpenMP program, 277	MMX, 181
pipelining method, 128	SSE, 181
PRAM, 128	Fermi, 207
sieve of Eratosthenes, 126, 233, 277	GPU, 208
speedup, 127	graphics processing unit, 181, 207
finding roots of trees, 120	IBM POWER6, xxiii
functional, 101, 124	IMB PowerXCell 8i, 298
inherently sequential, 100	instruction list, 26, 37, 181
Königsberg bridges, 88	Intel 80-core, 212
knapsack, 173	Kepler, 207
leader election, 154, 174	Maxwell, 207
list ranking, 87	multicore, 6, 178, 185, 207, 294, 314
load balancing, 5	Pentium, 175
roug outditoning, o	1 Ontium, 175

program counter, 5, 6, 36, 181, 244	rank, 104
real, 2	cross, 104
scalar, 177	recursion, 80, 114, 116, 133, 134
streaming, 207	recursive doubling, 80
superscalar, 175	reduction, 101
Tesla, 207	complexity of reduction, 101
UltraSPARC T2, 207	NC, 101, 102
vector, 177, 212, 321	register, 5, 244
pipelined arithmetic-logic unit, 177	arithmetic, 4, 36, 40, 178, 181
virtual, 1, 2	control, 36
processor complexity, see algorithm: parallel:	program counter, 4
processor complexity	reliability, see cluster: reliability
program counter, see processor: program counter	replication
program parallelization	computation, 142, 159, 160
automatic, 247, 282	data, 141, 159, 160
incremental, 248	resistance to damage, 24
programming	resource, 5, 14, 244
concurrent, 8, 34	ring, see interconnection network: torus:
distributed, 34	one-dimensional
dynamic, 170	routing, 41, 42, 199, 202, 204, 206, 215,
multithreaded, 34, 244, 282	. 318
parallel, 34	rule
message-passing, 214	firing, 192
shared-memory, 243	thumb, 160
programming language	running time, see algorithm: sequential: running
Ada, 10, 25, 34	time
C, 208, 214, 215, 219, 221, 226, 227, 243, 246,	
252	safety, see concurrent program: correctness: safety
C++, 208, 215, 243, 246	scalability, 67, 123, 215, 318
C#, 25	scalability of parallel algorithm, see algorithm:
Concurrent Euclid, 25	parallel: scalability
Concurrent Pascal, 25	scheduling, see problem: scheduling
Fortran, 214, 243, 246	semantic, 249
90, 215	semaphore, 8, 24, 128, 318
2008, 215	binary, 15, 25
HPF, 244, 282	blocked-queue, 9, 25
functional, 195	blocked-set, 24
HASAL, 212	busy-wait, 24
Id, 212	general, 9, 13, 15
Java, 25, 34	operations wait and signal, 9
Lapse, 212	simulation of general semaphore, 30, 283
Mesa, 25	split, 14, 30
Modula 3, 25	strong, weak, 25
occam, 214, 241	waiting queue, 9
SISAL 1.2, 195, 212	sequential fraction of parallel computation, 71,
VAL,212	123, 312
project	sequential program, 160
GNU, 186	concurrency
Open MPI, 215, 241, 299	halting problem, 6
protocol	correctness, 6, 34
post-protocol, 11, 27, 30	assertion, 6
pre-protocol, 11, 27, 30	partial, 6
pseudo-parallel execution of processes, see	postcondition, 6
concurrent processes: pseudo-parallel	precondition, 6
execution	total, 6
pseudo-parallel execution of tasks, <i>see</i> concurrent	RAM, 36, 285
processes: pseudo-parallel execution	serial process, <i>see</i> process: sequential
Pthreads, see library: Pthreads	server, 180
PVM, see library: PVM	computing, 5, 188, 306
race condition see OpenMD interfered was	database, 188, 306
race condition, see OpenMP interface: race condition	www, 188, 306
RAM, see model of computation: sequential RAM	set Mandelbrot, 164, 241, 281, 299
RAM program, see sequential program: RAM	set image, 164
random number generator, 304	sieve of Eratosthenes, see problem: finding prime
random sample 162	numbers: sieve of Eratosthenes

SIMD (SISD), see computer architecture: SIMD	task, 1, 125, 156, 168, 244, 320
(SISD), and computer: SIMD (SISD)	agglomeration, 157–160
SIMT, 207	granularity, 154, 156
simulation	coarse, 152
atmospheric phenomena, 181	fine, 156
communication operation, 51	medium, 137
execution of algorithm, 51, 53, 66,	size, 145, 152, 157–159
79	task dependency graph, see designing parallel
general semaphore, 30, 283	algorithms: task dependency graph
motion of bodies, 165	thread, 5, 207, 244, 320
PRAM computation, 48, 49, 59	context switching, 207
processor computation, 53	queue, 207
simulation step, 165	states, 207
simultaneous reads and writes, 48,	throughput, see memory: shared: bandwidth
58	time complexity, see algorithm: sequential: running
weather phenomena, 149	time
size of a network, see network: size	time-sharing, see operating system: time-sharing
SMP, see computer: MIMD: symmetric	TLB, see address: translation lookaside buffer
multiprocessor, and cluster: symmetric	torus, see interconnection network: torus
multiprocessor	transputer, 214
software, 186	tree
free of charge, 186, 215	binary search, 168
open source, 186	rooted, 90, 120
sorting, see problem: sorting, and algorithm:	traversal, 121
parallel: sorting	unrooted, 88
sorting network, see network: sorting	Turing Alan Mathison, 36, 58
speedup, see algorithm: parallel: speedup	Turing machine, 36, 58, 103
spinning, 27	type
SPMD, see parallel program: SPMD	derived, 221, 301, 302
stack, 5, 6, 244	semaphore, 10
starvation, see concurrent processes: starvation	TD (1)
statement	UMA, see memory: uniform memory access
atomic, 272	unary notation, 58
data transfer, 94, 97, 121	uniform cost criterion, see criterion of cost:
parfor, 73	uniform
receive, 93, 121	uniform memory access, see memory: uniform
send, 93, 121	memory access
supercomputer, see computer: supercomputer	
surjection, 54	variable
switch, see interconnection network:	local, 74, 76, 81–83, 85, 93, 95, 97, 99, 105
switch	vector instruction, 177
symmetric multiprocessor, see computer: MIMD:	video game, 207
symmetric multiprocessor, and cluster:	virtual ring, 294
symmetric multiprocessor	von Neumann John, 35, 177, 212
synchronization, see concurrent processes:	W. H. T. I. 240
synchronization	Wallis John, 210
synchronization barrier, 27	WAN, see interconnection network: wide area
centralized, 28	network
dissemination, 29	wide area network, see interconnection network:
symmetrical, 29	wide area network
two-task, 28	William of Ockham, 214
system	worst-case time complexity, see algorithm: parallel
computer, 184, 306	worst-case time complexity
concurrent, 8	Wrocław Center for Networking and
distributed, 24, 34	Supercomputing, Poland, xxvi
parallel	
scalability, 123	zero-one principle, <i>see</i> principle: zero-one