MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 2 – NOVEMBER 2013 SOLUTION KEY

A) AC = 4, $AD = x \Rightarrow 8x = 4 \Rightarrow DC = \frac{7}{2}$, $BE = y \Rightarrow 12y = 3 \Rightarrow CE = \frac{11}{4}$ Thus, the required area is $\frac{1}{2} \cdot \frac{7}{2} \cdot \frac{11}{4} = \frac{77}{16}$ (or $4\frac{13}{16}$ or 4.8125).

B) Altitude \overline{BD} subdivides $\triangle ABC$ into two special triangles with sides 5-12-13 and 9-12-15 Thus, its area is $\frac{1}{2} \cdot 12 \cdot 14 = 84$ and, equating areas, we have

$$2x(x-1) = 84$$

$$\Rightarrow x^2 - x - 42 = 0$$

$$\Rightarrow (x-7)(x+6) = 0$$

$$\Rightarrow x = \underline{7}$$

C) Per = $5x + 3y + 11 = 152 \Rightarrow 5x = 141 - 3y$ In $\triangle BCF$, $x^2 + y^2 = (x+1)^2 \Rightarrow 2x = y^2 - 1$ Substituting, $\frac{5}{2}(y^2 - 1) = 141 - 3y \Rightarrow 5y^2 - 5 = 282 - 6y \Rightarrow 5y^2 + 6y - 287 = 0$ $\Rightarrow (5y + 41)(y - 7) = 0 \Rightarrow y = 7 \Rightarrow x = 24$ $\Rightarrow \text{Area(square } ABFE) = \underline{576}$.

