Universidade de São Paulo

Instituto de Ciências Matemáticas e Computação de São Carlos

SSC117 – Introdução à Lógica Digital

Relatório de desenvolvimento da sub prática 14

Docente: Onofre Trindade Junior

Discentes: Gustavo Mazzo 7238940 A Wesley Tiozzo 8077925 A

1. Definição do Problema

Foi iniciado o desenvolvimento de uma ULA de 4 bits com somador, subtrator e complemento de 1 de 4 bits.

2. Descrição das Soluções

Tabela verdade para o somador

SOMADOR					
A		В	CIN	S	COUT
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

Mapa de Karnaugh do somador com saída

SOMADOR	S						
	A'	A'		Α		Α	
CIN'		0	1		0		1
CIN		1	0		1		0
	B'	В		В		B'	

Mapa de Karnaugh para o somador com a saída e o carry out

COUT			
A'	A'	A	A
0	0	1	0
0	1	1	1
B'	В	В	B'
	0	0 0 0 1	0 0 1 0 1 1

Equação do circuito do somador com saída

```
Resultado = A*B'*Carry_In' + A'*B*Carry_In' + A'*B'*Carry_In +
A*B*Carry_In;
```

Equação do circuito do somador com saída e carry out

Resto = B Carry_In + A Carry_In + A B;

Tabela verdade para o subtrator

CLIDEDATOR		-		
SUBTRATOR				
A	В	CIN	S	COUT
)	0	0 (0
		0	1 1	. 1
)	1	0 1	. 1
)	1	1 (1
:	L	0	0 1	. 0
:	L	0	1 (0
:	L	1	0 0	0
	L	1	1 1	. 1

Mapa de Karnaugh do subtrator com saída

SUBTRATOR	S						
	A'		A'		A	Α	
CIN'		0		1	0		1
CIN		1		0	1		0
	B'		В		В	B'	

Mapa de Karnaugh para o subtrator com a saída e o carry out

SUBTRATOR	COUT			
	A'	A'	A	A
CIN'	0	1	1	1
CIN	0	0	1	0
	B'	В	В	B'

Equação do circuito do subtrator com saída

```
Resultado = A'*B'*Carry_In + A'*B* Carry_In ' + A*B'*Carry_In ' + A*
B*Carry_In;
```

Equação do circuito do subtrator com saída e carry out

```
Resto = A'*B'* Carry_In + A'*B* Carry_In ' + A'*B* Carry_In + A*B*
Carry_In;
```

3. Circuitos Implementados

Meio Somador

Como a tabela da porta XOR é similar a porta de soma, 0 e 0 resulta em 0, 0 e 1 resulta em 1, 1 e 0 resulta em 1, e 1 e 1 resulta em 0. No caso de 1 e 1, é necessário uma porta AND para assim então a saída ser equivalente a 0 e o Carry out equivalente a 1.

Somador Completo

O circuito do somador completo seria uma soma de dois meio somadores, desse modo o resto da entrada ou carry in também será somado na operação.

Somador de 4 bits

O Somador de 4 bits une 4 somadores completos usando barramento de entrada e saída.

Meio Subtrator

Com o uso da porta XOR, os valores para a subtração 0-0=0, 1-0=0, 1-1=1 e 0-1=1. Nesse caso se A for 1, a porta NOT resultará em 0, e se B for 1, o carry out será 1,

Subtrator Completo

O subtrator completo representa um meio subtrator e mais um outro meio subtrator. Esse, subtrai-se os números e posteriormente subtrai o resultado com o carry in, então o carry out é calculado com as possíveis combinações de A, B e o carry in, caso do 0 -1 que retorna 1.

Subtrator de 4 bits

O Subtrator de 4 bits une 4 subtratores completos usando barramento de entrada e saída.

Complemento de 1

Com o uso da porta NOT, se A for 0, a saída será 1, caso contrário, a saída será 0.

Complemento de 1 de 4 bits

Para o complemento de 1 com 4 bits, utiliza-se a porta NOT quatro vezes.

ULA de 4 bits com somador, subtrator, complemento de 1, OR, AND, deslocamento a direita, deslocamento a esquerda e comparador.

Operação AND

A operação da porta AND resulta em, 1 se A e B forem 1, e 0 nos demais casos que seguem sua tabela verdade.

Circuito da operação AND com 4 bits

O circuito da operação AND com 4 bits segue o mesmo padrão de um circuito da operação AND para 1 bit, porém esse tem barramento para 4 bits.

Operação OR

O circuito da operação OR segue o padrão de sua respectiva tabela verdade, 1 caso alguma entrada seja verdadeira, e 0 caso as duas entradas forem falsa.

Deslocamento de bits a direita

Desloca todos os bits para a direita preenchendo os novos com $\boldsymbol{0}$

Deslocamento de bits a esquerda

Desloca todos os bits para a esquerda preenchendo os novos com 0

Comparador de bits

O circuito acima representa um comparador de 4 bits

Através da subtração, podemos obter a comparação de 2 números nos seguintes casos:

A = B

A >= B

A < B

No caso de A for igual a B, é feita uma subtração para análise da equivalência dos termos.

Se A for maior ou igual a B, a subtração retorna um carry out igual a 0 e é feita uma inversão do mesmo a fim de setar a saída.

Para A menor do que B, a subtração retorna um carry out igual a 1.

4. Simulação das condições de teste

Chave de Seleção: F[0], F[1], e F[2]:

000: deslocamento de bits para a esquerda 001: deslocamento de bits para a direita

010: AND 011: OR

100: complemento de 1

101: somador 110: subtrator

Comparador sem chave de seleção

Valores:

A[0] = 0, A[1] = 0, A[2] = 1, A[3] = 0 : 0100B[0] = 0, B[1] = 1, B[2] = 0, B[3] = 0 : 0010

Saídas:

AND: 0010 e 0100 = 0000 OR: 0010 ou 0100 = 0110

Complemento de 1: 0010 = 1101 Soma: 0010 + 0100 = 0110 Subtração: 0100 - 0010 = 0010

Deslocamento de bit para a direita: 0100 = 0010 Deslocamento de bit para a esquerda: 0100 = 1000

Simulações do comparador

5. Conclusões

Através da implementação do somador, subtrator, complemento de 1, operações OR, AND, deslocamento de bits para direita e esquerda e comparador de 4 bits, foi possível iniciar o desenvolvimento de uma ULA de 4 bits com as respectivas operações.