# Modul Praktikum Pemodelan Iklim

Dr. Akhmad Faqih, S.Si. Perdinan, S.Si., M.Nat.Res.Econ., Ph.D. Agung Baruna Setiawan Noor, S.Si., M.Si.

2023

# **Daftar Isi**

| Dyn | mical Downscaling: Model Weather Research Forecasting (WRF)                  |
|-----|------------------------------------------------------------------------------|
| 1.1 | Pendahuluan                                                                  |
| 1.2 | Dasar-dasar Pemrograman Bash                                                 |
| 1.3 | Instalasi WSL, Software Pengolahan Data, dan Model WRF                       |
|     | 1.3.1 Menjalankan $Windows$ $Subsystem$ for $Linux$ (WSL) di Windows $10/11$ |
|     | 1.3.2 Instalasi Software Pengolahan Data                                     |
|     | 1.3.3 Sebelum Mulai                                                          |
|     | 1.3.4 Data dan Software Pendukung                                            |
|     | 1.3.5 Instalasi Software Compiler                                            |
|     | 1.3.6 Instalasi Package                                                      |
|     | 1.3.7 Instalasi WRF                                                          |
|     | 1.3.8 Instalasi WRF Pre-Processing (WPS)                                     |
| 1.4 | Menjalankan Simulasi WRF-ARW                                                 |
|     | 1.4.1 Program WPS                                                            |
|     | 1.4.2 Program WRF                                                            |
| 1.5 | Visualisasi Luaran WRF                                                       |
|     | 1.5.1 Python                                                                 |
|     | 1.5.2 R                                                                      |
|     | 1.5.3 NCL                                                                    |
|     | 1.5.4 QGIS                                                                   |
|     | 1.5.5 Julia                                                                  |
| Mod | el Pendugaan Radiasi Matahari                                                |
| 2.1 | Pendahuluan                                                                  |
| 2.2 | Model Pendugaan Ball et al. (2004)                                           |
| 2.3 | Model Pendugaan Hunt et al. (1998)                                           |
| 2.4 | Pengolahan Data                                                              |
|     | 9.4.1 D                                                                      |

#### 1.1 Pendahuluan

Global Climate Model (GCM) adalah alat utama dan paling komprehensif yang digunakan dalam mensimulasikan keadaan iklim pada masa lalu, masa sekarang, maupun masa depan. GCM memiliki kemampuan dalam melakukan simulasi variabilitas iklim, sifat-sifat fisis, serta kimia di bumi dengan perhitungan secara matematis yang menggambarkan proses, interaksi, dan timbal balik pada atmosfer, lautan, dan biotik. Kelemahan dalam GCM adalah ketidakmampuan menangkap kejadian-kejadian iklim pada skala regional maupun lokal karena memiliki resolusi spasial kasar, sekitar >100 km. Ketidakmampuan GCM dalam menjelaskan keadaan iklim secara regional maupun lokal disebabkan oleh keterbatasan sumber daya komputer. Akan tetapi seiring dengan berkembangnya teknologi komputasi, beberapa instansi seperti Met Office Hadley Center, National Center for Atmospheric Research (NCAR), dan European Centre for Medium-Range Weather Forecasts (ECMWF) telah mengembangkan GCM yang mampu menjelaskan fenomena-fenomena cuaca pada skala regional dengan sumber daya komputer yang sangat tinggi. Contohnya, model prakiraan cuaca dari ECMWF, yaitu Integrated Forecasts System (IFS) memiliki resolusi spasial sekitar 9 km. Apakah dengan berkembangnya GCM yang sudah bisa menjelaskan fenomena regional telah menggantikan Regional Climate Model (RCM)? Tentu saja tidak. Peran RCM masih penting dalam proses downscaling resolusi spasial maupun temporal sampai pada skala lokal maupun mikro (mis. turbulensi).

Metode downscaling adalah cara mendapatkan informasi lebih spesifik dengan resolusi tinggi, baik spasial maupun temporal. Metode downscaling di dalam ilmu iklim umum digunakan pada kajian hidrologi [11], pertanian [3], dan iklim perkotaan [16]. Sebagai contoh pada kajian hidrologi, teknik downscaling digunakan untuk pemodelah debit sungai dan banjir [10]. Terdapat dua cara dalam melakukan metode ini, yaitu statistik dan dinamik. Wilby dan Wigley [20] mengelompokkan teknik downscaling menjadi 4 kategori, yaitu

#### 1. Regresi

Metode regresi merupakan metode downscaling paling awal yang telah digunakan pada kajian perubahan iklim. Hal ini dapat dibuktikan dari penelitian oleh Kim pada tahun 1984 [7]. Pendekatan ini secara umum membangun hubungan linier atau non-linier antara parameter titik lokasi dengan prediktor variabel dari resolusi kasar. Contoh dari metode ini adalah regresi linier sederhana, regresi linier berganda, Artificial Neural Network (ANN), regresi komponen utama (Principle Component Regression/PCR), dan lain sebagainya. Sudah banyak penelitian yang menerapkan metode ini untuk kajian perubahan iklim [9, 6, 4, 14].

#### 2. Pola cuaca

Metode ini dibangun dari hubungan statistik dari variabel cuaca di stasiun observasi atau rata-rata area dengan klasifikasi cuaca tertentu yang dapat diturunkan secara obyektif maupun subyektif. Metode ini secara obyektif dapat meliputi komponen utama, Canonical Correlation Analyses (CCA), aturan Fuzzy, dan Neural Networks. Contoh prosedur pengelompokkan pola cuaca, yaitu European Grosswetterlagen dan British Isles Lamb Weather Types.

#### 3. Stokastik

Model WGEN [13] merupakan contoh dari pendekatan ini. Model ini memiliki kemampuan dalam membangkitkan data curah hujan harian berdasarkan peluang kejadian hujan (hujan dan tidak hujan) dengan rantai Markov order satu. Model ini telah digunakan dalam kajian perubahan iklim dan analisis dampak. Model stokastik yang telah diperoleh dari data observasi deret waktu dapat divalidasi dengan GCM dan perlu dikalibrasi terlebih dahulu.

#### 4. Limited-area climate models (LAM)

Metode terakhir untuk melakukan downscaling terhadap GCM adalah dengan menyematkan model iklim dengan area terbatas. Sebenarnya, LAM pada saat ini dapat diistilahkan sebagai Regional Climate Model (RCM). RCM memiliki resolusi spasial kurang dari 100 km. RCM memerlukan sumber daya komputer yang hampir sama dengan menjalankan GCM. RCM memiliki kemampuan dalam mensimulasikan proses-proses atmosfer pada skala menengah, seperti curah hujan orografis dan konveksi awan atau skala tinggi, seperti turbulensi. Contoh dari RCM adalah Weather Research Forecasting (WRF) [15].

Teknik dynamical downscaling dapat menjalankan simulasi berbagai proses fisika (hukum termodinamika, hukum kekekalan energi, hukum gerak) untuk setiap skala piksel. Teknik ini membutuhkan kondisi batas menggunakan data GCM dan perlu menentukan pemilihan lokasi spesifik. Teknik ini merujuk pada penggunaan RCM untuk meningkatkan skala spasial dan temporal. Model iklim regional meliputi komponen dinamik, fisik, maupun kimia. Komponen dinamik atmosfer memperhitungkan komponen fisika atmosfer yang mencakup proses-proses fisik, seperti radiasi gelombang panjang dan pendek, presipitasi, dan proses pertukaran energi di permukaan bumi atau laut. Proses pada skala sub-piksel dimodelkan oleh berbagai skema parameterisasi yang tentunya dapat berasal dari perhitungan matematika (integral atau diferensial) serta statistik.

WRF merupakan salah satu teknik dynamical downscaling. Penggunaan model WRF semakin berkembang saat ini dengan tujuan riset dan operasional. WRF memiliki spesifikasi dalam berbagai aplikasi prediksi di dalam sistem bumi, seperti kimia atmosfer, hidrologi, kebakaran hutan, siklon, dan iklim regional. Selain pada skala regional, WRF telah mampu menjalankan simulasi fenomena cuaca mikro cukup akurat, seperti turbulensi [19] [21] [2]. Sebanyak lebih dari 36.000 pengguna WRF tersebar di 162 negara, termasuk Indonesia yang telah menggunakan WRF untuk kebutuhan operasional [12]. Ada dua jenis model WRF berdasarkan penyelesaian persamaan aliran fluida atmosfer, yaitu Advanced Research WRF (ARW) dan Nonhydrostatic Mesoscale Model (NMM). WRF-ARW dikembangkan oleh National Centre of Atmosphere Research (NCAR), sedangkan WRF-NMM dikembangkan oleh National Centre of Environmental Prediction (NCEP) [15]. Secara umum, WRF mampu melakukan simulasi beberapa komponen Numerical Weather Prediction (NWP) Gambar 1.1. Berdasarkan aplikasi tertentu, WRF memiliki beberapa turunan model, seperti WRF-Chem (kimia atmosfer), WRF-Hydro (hidrologi), dan WRF-Fire (kebakaran hutan dan lahan).



Gambar 1.1: Proses secara umum perlu diparameterisasi di dalam model iklim [17]

WRF, jenis bahasa pemrograman yang paling banyak digunakan adalah Fortran yang berisikan perhitungan fisik dan kimia. Model WRF dapat dijalankan pada personal komputer hingga super komputer. Sebenarnya, Anda dapat menjalankan WRF dengan 1 prosesor saja. Akan tetapi, waktu proses simulasi mungkin lama akibat dari resolusi spasial dan temporal yang tinggi, juga cakupan pemilihan wilayah simulasi. Proses perhitungan model dinamik maupun fisik akan lebih cepat apabila memakai banyak prosesor atau yang bisa disebut dengan **komputasi paralel**. Kerangka kerja perangkat lunak WRF mendukung komputasi paralel yang efisien pada berbagai platform komputasi. Model atmosfer membawa kumpulan komputasi yang sama di setiap piksel vertikal maupun horizontal Gambar 1.2. Kita mungkin telah mengenal jenis prosesor yang tersedia saat ini, seperti Intel dan AMD. Jenis prosesor yang mereka buat dapat mempengaruhi kecepatan proses perhitungan. Untuk perhitungan paralel, Anda dapat menggunakan tipe prosesor desktop, mobile (prosesor di laptop), maupun server, tetapi juga perlu memperhatikan banyaknya core maupun frekuensi yang tertera pada setiap tipe prosesor.



Gambar 1.2: Ilustrasi Model Iklim

Terkait dengan bahasa pemrograman yang digunakan di dalam WRF, yaitu bahasa Fortran dan C, kode skrip terlebih dahulu harus dikompilasi dengan program Compiler. Compiler ini bertujuan mengubah bahasa dari kode yang diketik menjadi bahasa mesin. Ada berbagai macam program Compiler yang tersedia secara gratis, salah satunya adalah GNU Compiler Collection (gcc). Selain GNU, perusahaan seperti Intel, AMD, maupun NVIDIA juga memiliki program Compiler yang dapat digunakan secara gratis serta mendukung komputasi paralel. Di dalam modul praktikum ini, Anda dapat memilih salah satu dari dua Compiler yang akan dijelaskan, yaitu GNU atau Intel. Perbedaan terhadap jenis Compiler ini dapat mempengaruhi waktu simulasi pada satu jenis prosesor yang sama Gambar 1.3.



About 10 times simulation have been done on a 90 x 90 grid with grid spacing of 15 km and 3 days 18 hours simulation time (1–3 January 2022) on two different machines

Gambar 1.3: Perbedaan waktu simulasi WRF pada tipe Compiler, Distro, dan Prosesor yang digunakan

# 1.2 Dasar-dasar Pemrograman Bash

Sebagai salah satu tool scripting populer pada UNIX, Bash sangatlah berguna bagi para user Linux atau SysAdmin. Nama Bash merupakan akronim dari Bourne Again Shell. Sebagian besar dalam menjalankan model iklim, Bash digunakan untuk menjalankan instalasi dan simulasi. Pengguna model-model iklim disarankan mempelajari dasar-dasar pemrograman ini agar memahami berbagai perintah dari cara kerja instalasi dan simulasi model tersebut, biasanya terdapat file bernama **README**. File ini berisi mengenai cara instalasi, simulasi, informasi file, dan berbagai aplikasi tambahan untuk menjalankan model iklim tersebut.

Bash merupakan terminal shell umum pada Linux. Anda bisa menjalankan shell lain, seperti ksh (Korn Shell), zsh, dan csh (C shell). Untuk menjalankan Bash, Anda bisa menekan Ctrl+Alt+T atau carilah aplikasi Terminal. Khusus Windows 10, Anda dapat mencari aplikasi "Ubuntu" atau "wsl.exe". Tampilan Bash seperti pada Gambar 1.4. Tulisan absen@absen-GL553VD menunjukkan nama user dan tanda ~ berarti menunjukkan lokasi folder saat ini.



Gambar 1.4: Bash pada Ubuntu

Jika Anda mengetik perintah pwd pada Bash, hasilnya adalah seperti di bawah ini atau bisa dilihat pada Gambar 1.5.

Perintah dasar lainnya yang sering digunakan oleh pengguna Linux adalah 1s atau 11 (Gambar 1.6). Perintah ini berfungsi untuk melihat nama folder dan file yang berada di direktori pada lokasi saat ini. Untuk berpindah lokasi folder, Anda dapat mengetik perintah cd dan pilih folder yang ingin dibuka, contohnya cd Documents/ atau cd Documents (Gambar 1.7). Anda dapat kembali ke folder sebelumnya dengan mengetik perintah cd ...

Anda dapat membuat folder baru dengan perintah mkdir, memindahkan folder atau file dengan mv, menghapus file dengan rm, menghapus folder dengan rmdir, membuat file baru dengan touch, dan menyalin folder atau file dengan cp. Contoh penggunaan beberapa perintah tersebut dapat dilihat sebagai berikut.

• Misalkan kita ingin membuat folder Tes-folder

```
absen@absen-GL553VD:-- Q = - - ×

absen@absen-GL553VD:--  pwd

/home/absen
absen@absen-GL553VD:--  |
```

Gambar 1.5: Perintah pwd pada terminal Bash

```
absen@absen-GL553VD:-$ pwd
/home/absen
absen@absen-GL553VD:-$ ls
aws knime_4.3.0.linux.gtk.x86_64 snap
muscliv2.2ip knime-workspace Templates
bin miniconda3 Videos
Desktop Music 'VirtualBox VMs'
Documents Netcdf_c_fortran Workshop-MetDay
Downloads Pictures
GLC2015 Public Zotero
hahay.py R
absen@absen-GL553VD:-$
```

Gambar 1.6: Perintah 1s pada terminal Bash

```
absen@absen-GL553VD:-$ pwd
//home/absen
absen@absen-GL553VD:-$ ls
aws knime_4.3.0.linux.gtk.x86_64 snap
mwieltvz.ath knime-workspace Templates
bin miniconda3 Videos
Desktop Music 'VirtualBox VMs'
Documents Netcdf_c_fortran Workshop-MetDay
Downloads Pictures
GLC2015 Public Zotero
Ahay.py R
absen@absen-GL553VD:-$ cd Documents/
absen@absen-GL553VD:-/Documents}
```

Gambar 1.7: Perintah cd pada terminal Bash

```
mkdir Tes-folder
```

Anda juga dapat membuat lebih dari 1 folder, misalnya Tes-folder-1 dan Tes-folder-2

```
mkdir Tes-folder-1 Tes-folder-2
```

Untuk memastikan ketiga folder tersebut telah dibuat, ketik perintah 1s

```
ls
```

• Misalkan kita ingin membuat file tes-file di dalam folder Tes-folder

```
cd Tes-folder
touch tes-file
ls
```

Kemudian, file tes-file kita pindahkan ke direktori sebelumnya dan ganti namanya dengan tes-file-pindah

```
mv tes-file ../tes-file-pindah
```

Kembali ke folder sebelumnya

```
cd ..
```

Ketik perintah 1s untuk memastikan file tes-file telah dipindahkan ke direktori sebelumnya dengan berubah nama menjadi tes-file-pindah

```
ls
```

• File tes-file-pindah dihapus menggunakan perintah rm

```
rm tes-file-pindah
ls
```

# 1.3 Instalasi WSL, Software Pengolahan Data, dan Model WRF

Kami menyarankan untuk menggunakan sistem operasi Linux dengan Distro Ubuntu versi 20.04 LTS. Jika Anda menggunakan Windows 10/11, Anda dapat memasang Windows Subsystem Linux (WSL) yang berisikan Distro Ubuntu. Saat kami menguji WRF di Ubuntu, proses instalasi serta simulasi tidak mengalami masalah. Anda dipersilahkan menggunakan distro yang lain, seperti Fedora, CentOS, Almalinux, atau Manjaro, tetapi kami tidak dapat menjamin keberhasilan instalasi dan simulasi pada distro tersebut. Untuk pengguna MacOS, Anda dapat menggunakan Virtual Machine (mis. Virtual Box, VMWare, QEMU) atau Docker.

# 1.3.1 Menjalankan Windows Subsystem for Linux (WSL) di Windows 10/11

Untuk menjalankan WRF, Anda memerlukan sistem operasi berbasis Linux dengan distribusi yang tersedia saat ini. Pada modul ini, distro Ubuntu dipilih untuk simulasi WRF. WSL dapat digunakan bagi pengguna Windows 10/11. WSL dapat dijalankan pada Windows 10/11 dan Windows Server 2019 dengan versi minimum 1803. Saat ini, WSL versi 2 (WSL-2) telah tersedia yang dapat berjalan pada Windows 10 versi 1903 ke atas. Kami merekomendasikan Anda untuk memasang WSL-2 daripada WSL-1 karena prosesnya lebih cepat. Untuk mengaktifkan WSL, Anda dapat mengikuti beberapa langkah berikut ini.

- 1. Unduh WSL-2 pada halaman ini dan Install.
- 2. Buka menu Control Panel dan cari Program and Features
- 3. Klik Turn Windows Features On or Off
- 4. Scroll ke paling bawah. Kemudian, aktifkan tanda centang pada Windows Subsystem for Linux dan Virtual Machine Platform
- 5. Tunggu proses update sampai selesai, kemudian klik **Restart Now** (pastikan simpan data-data pekerjaan dan tutup semua aplikasi)
- 6. Setelah proses restart selesai, carilah aplikasi dan unduh Ubuntu pada Microsoft Store
- 7. Buka aplikasi Ubuntu yang telah terunduh dan tunggu konfigurasi selesai

- 1 Dynamical Downscaling: Model Weather Research Forecasting (WRF)
  - 8. Masukkan Username dan Password (**Catatan**: kami sarankan sama dengan user dan pass Windows 10/11, tetapi boleh beda. Hasil ketikan password **tidak** muncul di terminal)
  - 9. Ketikkan pada terminal

```
sudo apt update
```

10. Anda juga dapat membuka terminal Ubuntu pada terminal Windows PowerShell atau Command Prompt dengan mengetik wsl atau wsl.exe

Selain WSL, Anda juga dapat menggunakan Cygwin atau MinGW, hanya saja Anda perlu memilih beberapa package tertentu yang akan digunakan dan tentu cara ini sangat rumit.

#### 1.3.2 Instalasi Software Pengolahan Data

#### NCAR Command Language (NCL) dan Python

NCL merupakan bahasa pemrograman interpreter yang dikembangkan oleh National Centre of Atmospheric Research (NCAR) dan memiliki kegunaan dalam proses analisis dan visualisasi data-data cuaca dan iklim. Aplikasi NCL dibutuhkan untuk memvisualisasikan lokasi kajian sebelum disimulasikan. Pengembang WRF telah menyediakan skrip NCL untuk memudahkan dalam ketepatan pemilihan lokasi sesuai dengan keinginan pengguna. Python merupakan bahasa pemrograman general yang memiliki banyak kegunaan, khususnya dalam analisis dan visualisasi data-data dengan tambahan modul (packages). Dalam menuliskan kode Python, Anda dapat menggunakan teks editor yang umum digunakan seperti Jupyter Notebook. Untuk modul yang akan dipakai dalam praktikum ini adalah wrf-python. Langkah-langkah pemasangan NCL dan Python sebagai berikut.

1. Untuk memasang NCL, Anda harus mengunduh aplikasi Miniconda untuk Linux pada website <a href="https://repo.anaconda.com/miniconda/Miniconda3-py39\_22.11.1-1-Linux-x86\_64.sh">https://repo.anaconda.com/miniconda/Miniconda3-py39\_22.11.1-1-Linux-x86\_64.sh</a> dengan perintah pada terminal Bash sebagai berikut.

```
wget

→ https://repo.anaconda.com/miniconda/Miniconda3-py39_22.11.1-1-Linux-x86_64.sh
```

Anda tidak dapat menggunakan NCL pada sistem operasi Windows, kecuali Anda memiliki Windows Subsystem Linux (WSL).

2. Kemudian, lakukan pemasangan Miniconda dengan perintah di bawah ini.

```
bash Miniconda3-py39_22.11.1-1-Linux-x86_64.sh
```

3. Selanjutnya tekan ENTER. Terminal akan menampilkan End-User License Agreement (EULA), tekan ENTER atau SPACE sampai muncul perintah seperti di bawah ini.

Do you accept the license terms? [yes|no] [no] >>>

- 4. Kemudian, ketikkan yes untuk melanjutkan proses instalasi dan tekan ENTER. Secara otomatis, Python sebenarnya telah terpasang di dalam Miniconda.
- 5. Tutup terminal Anda dan buka kembali. Perhatikan pada tulisan (base) di paling kiri nama user. Jika tulisan tersebut sudah muncul, proses pemasangan Miniconda telah berhasil.
- 6. Selanjutnya, lakukan pemasangan package mamba dengan perintah.

```
conda install mamba -n base -c conda-forge
```

#### Note

Package mamba memungkinkan dapat mempercepat pengunduhan dan pemasangan packagepackage di dalam Miniconda.

7. Lakukan proses pembuatan *environment* dengan nama ncl dan pemasangan NCL beserta package lainnya dengan perintah.

```
conda create -n ncl
conda activate ncl
mamba install -c conda-forge jupyter notebook xarray netcdf4 scipy pyngl
→ pynio matplotlib cartopy wrf-python ncl
```

8. Saat Anda ingin memulai menggunakan program NCL, aktifkan terlebih dahulu *environment* ncl dengan perintah di bawah ini. Kemudian, tulisan (base) menjadi (ncl) yang menandakan bahwa *environment* telah berhasil diaktifkan.

```
conda activate ncl
```

9. Untuk membuka **Jupyter Notebook**, gunakan perintah ini. Aplikasi akan muncul pada browser bawaan Anda (Google Chrome, Microsoft Edge, atau Safari).

```
jupyter notebook
```

Untuk menutup Jupyter Notebook, Anda dapat menekan tombol CTRL+C pada terminal.

10. Untuk keluar dari environment ncl, ketikkan perintah berikut.

```
conda deactivate
```

## Note

Environment ncl akan terus dipakai, mulai dari pemasangan WRF hingga analisis dan visualisasi luaran WRF. NCAR telah mengembangkan wrf-python secara khusus untuk analisis dan visualisasi luaran WRF.

#### R dan RStudio

Sama seperti Python dan NCL, R merupakan bahasa pemrograman interpreter, namun dibuat secara khusus untuk analisis dan visualisasi data-data statistik. Beberapa package R telah dikembangkan untuk memudahkan proses analisis data-data cuaca dan iklim, seperti ncdf4, raster, dan metR. RStudio umum digunakan dalam mengetik bahasa pemrograman R secara interaktif. Untuk mengunduh R dan RStudio Desktop, Anda dapat menggunakan halaman website di bawah ini sesuai dengan sistem operasi yang Anda gunakan. Bagi pengguna Windows, Anda diharuskan mengunduh aplikasi Rtools dalam memudahkan pemasangan dan kompilasi beberapa package tertentu. Ketiga package yang telah disebutkan tadi memerlukan Rtools saat proses pemasangan.

#### • R

- Windows 10/11: https://cran.r-project.org/bin/windows/base/R-4.2.2-win.exe
- MacOS (Intel): https://cran.r-project.org/bin/macosx/base/R-4.2.2.pkg
- MacOS (ARM, M1/M2): https://cran.r-project.org/bin/macosx/big-sur-arm64/base/R-4.2.2-arm64.pkg
- Ubuntu: ikuti perintah dan langkah-langkah di https://cran.r-project.org/bin/linux/ubuntu

#### RStudio

- $-\ Windows\ 10/11:\ https://download1.rstudio.org/electron/windows/RStudio-2022.12.0-353.exe$
- MacOS (Intel/ARM): https://download1.rstudio.org/electron/macos/RStudio-2022.12.0-353.dmg
- Ubuntu 22.04 LTS: https://download1.rstudio.org/electron/jammy/amd64/rstudio-2022.12.0-353-amd64.deb

#### 1.3.2.1 Julia

Bahasa pemrograman ini relatif baru dibandingkan dengan Python dan R. Sama seperti keduanya, Julia merupakan bahasa pemrograman interpreter dan tersedia gratis. Hanya saja, developer Julia mengatakan bahwa bahasa ini memiliki kecepatan eksekusi lebih singkat dibandingkan dengan Python maupun R. Anda dapat mengunduh Julia di julialang.org sesuai dengan sistem operasi yang Anda miliki. Untuk membaca data netcdf dari WRF, Anda dapat menggunakan package NetCDF.jl. Anda perlu memasang package tersebut pada terminal interaktif Julia. Untuk menuliskan skrip Julia, Anda dapat memanfaatkan Jupyter Notebook dan tentunya memerlukan package IJulia.jl. Berikut ini adalah langkahlangkahnya.

1. Buka terminal interaktif Julia (julia) dan ketikkan perintah berikut untuk memasang package NetCDF.jl dan IJulia.jl.

```
using Pkg
Pkg.add("NetCDF")
Pkg.add("IJulia")
```

2. Setelah berhasil memasang package, Anda dapat menuliskan skrip Julia pada Jupyter Notebook. Untuk membuka Jupyter Notebook, ketikkan perintah berikut pada terminal interaktif Julia.

```
using IJulia
notebook()
```

Skrip tersebut akan mengeksekusi instalasi miniconda di dalam Julia dengan disertai **Jupyter Notebook**. Jika instalasi berhasil, **Jupyter Notebook** akan terbuka di browser Anda (Google Chrome, Microsoft Edge, atau Safari). Untuk menutup Jupyter Notebook, Anda dapat menekan tombol CTRL+C pada terminal interaktif Julia.

#### 1.3.3 Sebelum Mulai

Anda perlu mencoba dasar pemrograman Bash sebelum memulai mengunduh data, memasang beberapa package, sampai menjalankan simulasi WRF. Silahkan Anda ikuti langkah-langkah di bawah ini agar memudahkan dalam mencoba praktikum ini.

- 1. Buka terminal Bash
  - Untuk Windows 10/11, buka aplikasi Windows Power Shell. Kemudian, ketikkan perintah seperti di bawah ini. Setelahnya, akan muncul terminal Bash.

```
wsl
```

- Untuk Ubuntu atau disto Linux lainnya, carilah program Terminal atau bisa menggunakan shortcut Ctrl+Alt+T
- 2. Saat Anda membuka terminal, pastikan lokasi folder/direktori saat ini adalah /home/<user\_name>, di mana user\_name adalah nama user pada laptop/komputer Anda masing-masing. Perhatikan kembali Gambar 1.5 bahwa untuk melihat lokasi direktori Anda sekarang bisa mengetik perintah pwd pada terminal atau dengan melihat simbol ~ yang terletak di sebelah kiri \$.
- 3. Buat folder kerja dengan nama WRF-Model untuk menampung data-data, package, serta source code WRF. Perintah pada terminal Bash adalah sebagai berikut.

```
mkdir WRF-Model
```

- 1 Dynamical Downscaling: Model Weather Research Forecasting (WRF)
  - 4. Kemudian, bukalah folder WRF-Model dengan perintah

```
cd WRF-Model
```

Sekarang, Anda berada di folder WRF-Model (Perhatikan ~ berubah menjadi ~/WRF-Model)

5. Di dalam WRF-Model, buatlah folder data guna untuk meletakkan data masukan WRF (data statik dan data cuaca).

Langkah-langkah di atas masih berlanjut pada subbab selanjutnya.

#### 1.3.4 Data dan Software Pendukung

#### **Software Pendukung**

Untuk memasang WRF, Anda perlu menyiapkan perangkat lunak pendukung serta data contoh untuk mensimulasikan WRF. Perangkat lunak tersebut dapat diunduh melalui halaman Github ini. Untuk mengunduh source code, pilih <> Code  $\rightarrow$  Download ZIP (Gambar 1.8). Anda dapat mengunduh secara manual atau menggunakan perintah git clone pada terminal.

```
sudo apt -y install git #Install program git jika belum ada
git clone https://www.github.com/agungbaruna/pyWRF-install
```



Gambar 1.8: Unduh source code

Setelah software pendukung telah diunduh, unduh source code WPS (WRF Pre-Processing) dan WRF pada halaman Github NCAR. Source code WRF berisikan algoritma perhitungan fisik dan dinamik atmosfer, sedangkan WPS berisikan algoritma persiapan data masukan atmosfer dari GCM dan pemilihan lokasi dan waktu.

- WRF Pre-Processing (WPS): https://www.github.com/wrf-model/WPS
- Model WRF: www.github.com/wrf-model/WRF

#### Data

Data-data masukan untuk WRF telah tersedia dan unduh pada halaman web https://s.id/wrf-data. Kami menyarankan untuk menggunakan Wi-Fi karena ukuran data cukup besar. Data yang telah diunduh Anda pindahkan ke folder data yang berada di dalam WRF-Model.

#### 1. Global Forecast System (GFS)

Untuk data masukan yang digunakan berasal dari NOAA yang bernama Global Forecasts System (GFS). GFS memiliki resolusi spasial  $0.25^o$  ( $\sim 25$  km),  $0.50^o$  ( $\sim 50$  km), dan  $1.00^o$  ( $\sim 100$  km) dengan temporal per 6 jam. GFS memiliki produk data prakiraan maupun analisis/histori cuaca secara global. Anda dapat mengunduh data ini pada salah satu halaman web berikut.

- AWS S3 Bucket: https://noaa-gfs-bdp-pds.s3.amazonaws.com
- Resarch Data Archive (RDA) NCAR: https://rda.ucar.edu/datasets/ds084.1
- NCEP Central Operations: https://nomads.ncep.noaa.gov/

Data GFS yang digunakan dalam praktikum ini memiliki waktu 1-3 Januari 2022 pada pukul 00:00, 06:00, 12:00, dan 18:00 UTC dengan resolusi spasial 1.00° yang telah diunduh pada halaman web AWS S3 Bucket. Produk GFS yang digunakan adalah analisis/historis.

#### 2. ERA5

Selain GFS, Anda dapat menggunakan data masukan dari institusi lain, seperti ECMWF pada produk ERA5. ERA5 merupakan data reanalisis sehingga hanya memiliki produk historis. Anda dapat mengunduhnya melalui Climate Data Store (CDS) pada halaman https://cds.climate.copernicus.eu. ERA5 memiliki resolusi spasial sebesar 0.25° dengan temporal per 1 jam. Data ERA5 memiliki dua tipe, yaitu data permukaan tanah (Single Levels) dan atmosfer untuk setiap ketinggian (Pressure Levels). Anda diharuskan mengunduh dua tipe data ini dengan variabel yang dipilih adalah sebagai berikut.

• ERA5 hourly data on Pressure Levels:

| geopotential | relative humidity | specific humidity |
|--------------|-------------------|-------------------|
| temperature  | u-component wind  | v-component wind  |

• ERA5 hourly data on Single Levels:

| 10m u-component of wind       | 10m v-component of wind       | 2m dewpoint temperature       |
|-------------------------------|-------------------------------|-------------------------------|
| 2m temperature                | land sea mask                 | mean sea level pressure       |
| sea ice cover                 | sea surface temperature       | skin temperature              |
| snow depth                    | soil temperature level 1      | soil temperature level 2      |
| soil temperature level 3      | soil temperature level 4      | surface pressure              |
| volumetric soil water layer 1 | volumetric soil water layer 2 | volumetric soil water layer 3 |
| volumetric soil water layer 4 |                               |                               |

Anda tidak diharuskan mengunduh semua jam karena CDS membatasi banyaknya permintaan data dari pengguna sehingga Anda tidak dapat mengunduh semua data sekaligus. Data ERA5 yang akan digunakan pada praktikum ini memiliki waktu yang sama dengan GFS.

#### 3. Data Statik WPS

Data statik ini wajib diunduh untuk menjalankan WRF. Data ini berisi seperti tipe permukaan lahan, nilai Leaf Area Index (LAI), tipe tanah, dan elevasi permukaan. Anda dapat mengunduhnya di https://www2.mmm.ucar.edu/wrf/src/wps\_files/geog\_high\_res\_mandatory.tar.gz. File dari data tersebut berukuran 2 GB dan setelah diekstrak dapat mencapai 30 GB. Data ini sudah tersedia di dalam link https://s.id/wrf-data. Untuk mengekstrak file ini, gunakan perintah berikut

```
cd data
gunzip geog_high_res_mandatory.tar.gz
tar -xf geog_high_res_mandatory.tar
cd .. # Kembali ke folder WRF-Model
```

Setelah itu, folder WPS\_GEOG akan muncul di dalam folder data/

#### 1.3.5 Instalasi Software Compiler

Instalasi ini meliputi cara melakukan kompilasi dengan dua Compiler berbeda, yaitu GNU dan Intel. Anda dipersilahkan memilih salah satu langkah. Proses kompilasi untuk semua package yang telah terunduh tidak dapat dilakukan pada Compiler yang berbeda.

#### **1. GNU**

Sebelum Anda memasuki tahapan instalasi package yang terdapat dalam folder pyWRF-install, pasang terlebih dahulu package dependencies dengan perintah di bawah ini.

```
sudo apt -y update && sudo apt -y upgrade
sudo apt -y install gfortran gcc make m4 csh
```

#### 2. Intel

Berbeda dengan GNU, tipe Compiler Intel memang agak rumit untuk memasangnya. Namun, Compiler ini sebenarnya lebih efisien dalam hal kecepatan saat mensimulasikan WRF. Kami sudah membandingkan waktu simulasi dengan Compiler tipe ini lebih cepat dibandingkan dengan GNU Gambar 1.3.

Anda dapat memperoleh software ini di halaman resmi Intel. Kami sudah menyediakan software tersebut di dalam halaman web s.id/wrf-intel-compiler. Terdapat tiga file instalasi Compiler, yaitu Fortran, C, dan MPI (untuk komputasi paralel). Jumlah ukuran tiga file tersebut cukup besar, sekitar 2,5 GB. Letakkan

ketiga file ini di dalam folder WRF-Model. Perhatikan langkah-langkah berikut ini untuk memasang ketiga file tersebut.

```
# 0. Package pendukung
sudo apt -y install make m4 csh
# 1. C Compiler
bash l_dpcpp-cpp-compiler_p_2023.0.0.25393_offline.sh -a -s --eula accept
# 2. Fortran Compiler
bash l_fortran-compiler_p_2023.0.0.25394_offline.sh -a -s --eula accept
# 3. MPI
bash l_mpi_oneapi_p_2021.8.0.25329_offline.sh -a -s --eula accept
```

Lokasi folder hasil instalasi terdapat di \$HOME/intel. Perintah untuk memanggil program Compiler Intel belum menjadi ENVIRONMENT VARIABLE. Untungnya, Intel menyediakan skrip untuk memanggil semua program Compiler secara default, yaitu terdapat di dalam \$HOME/intel/oneapi/setvars.sh. Ketika memanggil skrip tersebut, ENVINRONMENT VARIABLE milik Miniconda secara otomatis dinonaktifkan (tulisan <br/> >base> hilang). Perintah untuk memanggil skrip setvars.sh adalah sebagai berikut.

```
source $HOME/intel/oneapi/setvars.sh
```

#### 1.3.6 Instalasi Package

Instalasi beberapa package meliputi zlib, libpng, jasper, hdf5, netcdf-c, dan netcdf-fortran. Perlu diperhatikan dan lihat pada terminal bahwa Anda berada di folder ~/WRF-Model. Masukkan beberapa perintah ENVIRONMENT VARIABEL di bawah ini dengan perintah export.

```
export ODIR=$HOME/WRF-Model
export PATH=$ODIR/bin:$PATH
export LD_LIBRARY_PATH=$ODIR/lib:$LD_LIBRARY_PATH
export LDFLAGS=-L$ODIR/lib
export CPPFLAGS=-I$ODIR/include
export NETCDF=$ODIR
export HDF5=$ODIR
export JASPERLIB=$ODIR/lib
export JASPERINC=$ODIR/include
```

Langkah ini wajib dilakukan pada saat melakukan instalasi package, WRF, dan WPS. Pendefinisian **ENVIRONMENT VARIABLE** ini berlaku untuk GNU maupun Intel.

#### 1. GNU

Berikut ini langkah-langkah memasang package pada Compiler **GNU**. Buka terlebih dahulu folder pyWRF-install/libraries dengan mengetik perintah cd pyWRF-install/libraries.

#### 1. zlib

```
# 0. Buka folder libraries
cd $0DIR/pyWRF-install/libraries
# 1. Extract
tar -xf zlib-1.2.13.tar.gz
# 2. Buka folder hasil ekstrak
cd zlib-1.2.13
# 3. Konfigurasi
CC=gcc ./configure --prefix=$0DIR
# 4. Instalasi
make check install
```

#### 2. libpng

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf libpng-1.6.37.tar.gz
# 2. Buka folder hasil ekstrak
cd libpng-1.6.37
# 3. Konfigurasi
CC=gcc ./configure --prefix=$ODIR
# 4. Instalasi
make check install
```

#### 3. jasper

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf jasper-1.900.1.tar.gz
# 2. Buka folder hasil ekstrak
cd jasper-1.900.1
# 3. Konfigurasi
CC=gcc ./configure --prefix=$ODIR
# 4. Instalasi
make check install
```

#### 4. openMPI

Jika Anda tidak berencana menjalankan WRF dengan 1 prosesor, Anda dapat melewati langkah ini. Akan tetapi, kami menyarankan untuk memasang program ini untuk mempersingkat waktu dalam mensimulasikan WRF.

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf openmpi-4.1.4.tar.gz
# 2. Buka folder hasil ekstrak
cd openmpi-4.1.4
# 3. Konfigurasi
CC=gcc FC=gfortran ./configure --prefix=$ODIR
# 4. Instalasi
make check install
```

#### 5. hdf5

#### 6. netcdf-c

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf netcdf-c-4.7.4.tar.gz
# 2. Buka folder hasil ekstrak
cd netcdf-c-4.7.4
# 3. Konfigurasi
CC=gcc ./configure --prefix=$ODIR --disable-dap
# 4. Instalasi
make
```

```
make install
```

7. netcdf-fortran

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf netcdf-fortran-4.5.3.tar.gz
# 2. Buka folder hasil ekstrak
cd netcdf-fortran-4.5.3
# 3. Konfigurasi
CC=gcc FC=gfortran ./configure --prefix=$ODIR
# 4. Instalasi
make
make install
```

#### 2. Intel

Berikut ini langkah-langkah memasang package pada Compiler Intel. Buka terlebih dahulu folder pyWRF-install/libraries dengan mengetik perintah cd pyWRF-install/libraries. Untuk proses instalasi menggunakan Intel, sama saja dengan GNU. Hanya saja, perbedaannya adalah definisi dari variabel CC maupun FC. Untuk Intel, variabel CC=icc dan FC=ifort. Jangan lupa untuk mengaktifkan ENVIRONMENT VARIABLE dari Intel dengan mengetik perintah.

```
source ~/intel/oneapi/setvars.sh
```

1. zlib

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf zlib-1.2.13.tar.gz
# 2. Buka folder hasil ekstrak
cd zlib-1.2.13
# 3. Konfigurasi
CC=icc CFLAGS='-diag-disable=10441' ./configure --prefix=$ODIR
# 4. Instalasi
make check install
```

2. libpng

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf libpng-1.6.37.tar.gz
# 2. Buka folder hasil ekstrak
cd libpng-1.6.37
# 3. Konfigurasi
CC=icc CFLAGS='-diag-disable=10441' ./configure --prefix=$ODIR
# 4. Instalasi
make check install
```

### 3. jasper

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf jasper-1.900.1.tar.gz
# 2. Buka folder hasil ekstrak
cd jasper-1.900.1
# 3. Konfigurasi
CC=icc CFLAGS='-diag-disable=10441' ./configure --prefix=$ODIR
# 4. Instalasi
make check install
```

#### 4. hdf5

#### 5. netcdf-c

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
```

```
# 1. Extract
tar -xf netcdf-c-4.7.4.tar.gz
# 2. Buka folder hasil ekstrak
cd netcdf-c-4.7.4
# 3. Konfigurasi
CC=icc CFLAGS='-diag-disable=10441' ./configure --prefix=$ODIR --disable-dap
# 4. Instalasi
make
make install
```

6. netcdf-fortran

```
# 0. Buka folder libraries
cd $ODIR/pyWRF-install/libraries
# 1. Extract
tar -xf netcdf-fortran-4.5.3.tar.gz
# 2. Buka folder hasil ekstrak
cd netcdf-fortran-4.5.3
# 3. Konfigurasi
CC=icc FC=ifort CFLAGS='-diag-disable=10441' ./configure --prefix=$ODIR
# 4. Instalasi
make
make install
```

#### 1.3.7 Instalasi WRF

Proses instalasi WRF membutuhkan waktu agak lama, yaitu sekitar 30-60 menit. Tentunya, ini bergantung pada spesifikasi prosesor yang Anda gunakan, serta tipe Compiler. Ikuti langkah-langkah berikut.

1. Buka direktori WRF yang berada di dalam \$ODIR/WRF dengan perintah.

```
cd $ODIR/WRF
```

2. Jalankan file configure dengan perintah.

```
./configure
```

Anda akan disajikan beberapa teks di dalamnya. Anda disuruh untuk memilih opsi Compiler. Tipe Compiler tersebut selain GNU dan Intel, ada pula IBM, PGI, Fujitsu, Pathscale, dan CRAY. Jika Anda menggunakan Compiler tipe GNU, ketikkan angka **35**. Untuk Intel, ketik angka **16**. Setelah itu, tekan Enter.

```
L. yearliante

checking for perls... non

checking for perls... non / usr/bin/perl (perl)

Will use NGPS in dir: /home/absen/WRF-Model

WRF.

Please select from among the following Linux x86_64 options:

1. (serial) 2. (smpan) 3. (dmpan) 4. (dms-sa) PGI (pg/98/pgcl) 5GI MPT

3. (serial) 18. (smpan) 11. (dmpan) 22. (dms-sa) PGI (pg/98/pgcl) FGI accelerator

3. (serial) 3. (smpan) 3. (dmpan) 2. (dms-sa) NTREL (ifort/icc): Xeon Phi (MIC architecture)

18. (serial) 3. (smpan) 2. (dmpan) 21. (dms-sa) NTREL (ifort/icc): Xeon (SNB Wilth AVX mods)

3. (serial) 3. (smpan) 3. (dmpan) 35. (dms-sa) NTREL (ifort/icc): ISM PGE

3. (serial) 3. (smpan) 3. (dmpan) 35. (dms-sa) NTREL (ifort/icc): ISM PGE

WRMSCALE (path/99/pathcc)

WRF.

WRF.
```

Gambar 1.9: Konfigurasi WRF dengan Compiler GNU

```
L. /configure
checking for peris... no
checking for peris... no distribution of the peris of the perison of
```

Gambar 1.10: Konfigurasi WRF dengan Compiler GNU

- 1 Dynamical Downscaling: Model Weather Research Forecasting (WRF)
  - 3. Untuk melakukan instalasi, ketik perintah ini.

```
./compile em_real -j jumlah_prosesor
```

dimana jumlah\_prosesor adalah jumlah dari prosesor pada laptop/komputer Anda yang akan digunakan untuk proses instalasi dan kompilasi kode-kode WRF. Proses kompilasi akan memakan waktu yang sangat lama apabila Anda hanya menggunakan 1 prosesor. Pastikan berbagai program pada komputer/laptop Anda yang saat ini sedang dibuka, seperti Google Chrome atau Spotify harap ditutup terlebih dahulu karena ini membantu proses instalasi lebih stabil.

4. Untuk Compiler Intel, setelah langkah ke-2 dijalankan, buka file configure.wrf dengan perintah.

```
nano configure.wrf
```

Kemudian, scroll ke bawah dengan menekan tombol  $\downarrow$  pada keyboard dan ubahlah isinya sesuai aturan pada tabel di bawah ini.

Tabel 1.3: Pengubahan variabel DM\_FC dan DM\_CC

| Sebelum                                                | Sesudah                                                   |  |
|--------------------------------------------------------|-----------------------------------------------------------|--|
| DM_FC = mpif90 -f90=\$(SFC)  DM_CC = mpicc -cc=\$(SCC) | DM_FC = mpiifort -f90=\$(SFC)  DM_CC = mpiicc -cc=\$(SCC) |  |

Setelah selesai diubah, keluar dari editor nano dengan menekan tombol Ctrl + X

Proses instalasi WRF berhasil dilakukan apabila terdapat file yang berekstensi .exe: ndown.exe, tc.exe, real.exe, dan wrf.exe di dalam folder main. Anda bisa melihatnya dengan perintah

```
ls main/*.exe
```

main/ndown.exe main/real.exe main/tc.exe main/wrf.exe

## 1.3.8 Instalasi WRF Pre-Processing (WPS)

Program WPS digunakan untuk menyesuaikan data masukan dari berbagai sumber (ECMWF, GFS, NAM, ...) sebelum ke simulasi WRF. Terdapat 3 program utama: geogrid.exe, ungrib.exe, dan metgrid.exe. Berikut ini kegunaan dari ketiga program utama WPS.

• geogrid.exe: memilih lokasi yang akan dilakukan simulasi. Luaran program ini berupa file geo\_em\* yang berisi nilai-nilai dari variabel di dalam file hasil ekstrak geog\_high\_res\_mandatory.tar

- ungrib.exe: mengubah file berformat grib menjadi nc, serta memungkinkan dapat melakukan interpolasi (waktu dan lokasi)
- metgrid.exe: menggabungkan

Proses instalasi WPS tidak membutuhkan waktu yang lama, sekitar 2-5 menit. Untuk melakukan instalasi WPS, ikuti langkah-langkah berikut ini.

1. Saat ini, Anda berada di folder WRF. Buka folder WPS dengan perintah

```
cd $ODIR/WPS
```

2. Jalankan file configure dengan perintah

```
./configure
```

Ketik angka 3 untuk GNU atau angka 19 untuk Intel.

- 3. Setelah selesai, di folder WPS akan muncul file configure.wps. Beberapa baris dari isi file tersebut ada yang perlu ditambahkan dan diganti dengan ketentuan ini.
  - Untuk Intel, tambahkan flags -liomp5 setelah -lnetcdf pada bagian variabel WRF\_LIB = .... Kemudian, ubah pula DM\_FC dan DM\_CC seperti pada Tabel 1.3.
  - Untuk GNU, tambahkan flags -fopenmp setelah -lnetcdf pada bagian variabel WRF\_LIB = ....
- 4. Setelah diganti, lakukan kompilasi dengan mengetik perintah

```
./compile
```

Proses instalasi berhasil apabila terdapat 3 file .exe: geogrid.exe, ungrib.exe, dan metgrid.exe di folder WPS yang berupa shortcut. Anda dapat menggunakan perintah

```
ls *.exe
```

geogrid.exe metgrid.exe ungrib.exe

# 1.4 Menjalankan Simulasi WRF-ARW

Anda dapat melanjutkan ke tahapan ini apabila seluruh program telah berhasil terpasang. Bagi Anda yang belum berhasil, sabar :D dan ulangi kembali langkah-langkah di atas. Secara umum, diagram pada Gambar 1.11 menunjukkan proses menjalankan WRF dari tahapan memasukkan data hingga plot dan analisis akhir. Seperti yang telah dijelaskan pada subbab sebelumnya bahwa langkah awal dalam menjalankan WRF adalah menjalankan WPS terlebih dahulu. Anda perlu menyiapkan data masukan atmosfer maupun permukaan (data statik). Program geogrid.exe dijalankan pertama, kemudian diikuti dengan ungrib.exe dan terakhir metgrid.exe. Selanjutnya, Anda dapat melangkah ke program WRF, yaitu real.exe dan wrf.exe. Program real.exe digunakan sebagai pendefinisian kondisi awal dan kondisi batas berdasarkan informasi dari namelist.input yang berada dalam folder test/em\_real/. Kemudian, Anda dapat menggunakan perangkat lunak apapun (mis. NCAR Command Language (NCL), GrADS, R, Python, Julia, Matlab, ArcMAP, atau QGIS) untuk menganalisis serta visualisasi luaran WRF.

Untuk data masukan, Anda juga dapat menggunakan data observasi, tetapi harus berupa grid. Namun, ini merupakan program yang berbeda dari WRF-ARW, yaitu WRFDA (WRF Data Assimilation). Selain itu, terdapat pula data masukan dari emisi kimia, seperti emisi biogenik dan atropogenik. Akan tetapi, program ini merupakan turunan WRF-ARW, yaitu WRF-Chem. Penjelasan mengenai WRFDA dan WRF-Chem tidak disampaikan di dalam praktikum ini.



Gambar 1.11: Diagram WRF

#### 1.4.1 Program WPS

Untuk lebih mudah dalam memahami alur proses simulasi WRF pada modul ini, lokasi/domain yang dipilih untuk adalah Kota Surabaya dengan periode 1-3 Januari 2022 dengan data GFS dan ERA5. Interval waktu dari kedua data tersebut adalah 6 jam, yaitu pukul 00:00, 06:00, 12:00, dan 18:00 waktu Zulu (GMT+0). Langkah awal sebelum menjalankan WRF adalah menentukan lokasi dan waktu terlebih dahulu di dalam program WPS. Seperti yang telah dijelaskan sebelumnya, WPS memiliki 3 program utama, yaitu geogrid.exe, ungrib.exe, dan metgrid.exe.

Sesuai dengan kelanjutan dari subbab sebelumnya mengenai instalasi WRF, Anda saat ini berada di dalam folder WPS/. Jika lupa, Anda bisa mengetikkan kembali perintah ini.

```
cd $HOME/WRF-Model/WPS
```

Kemudian, Jika Anda menutup terminal bash atau mematikan laptop/komputer, definisikan kembali  $ENVIRONMENT\ VARIABLE$  seperti pada saat proses memasang WRF dan WPS, hanya LD\_LIBRARY\_PATH dan PATH.

```
export ODIR=$HOME/WRF-Model
export PATH=$ODIR/bin:$PATH
export LD_LIBRARY_PATH=$ODIR/lib:$LD_LIBRARY_PATH
```

Langkah-langkah menjalankan program WPS adalah sebagai berikut.

#### 1.4.1.1 Penentuan Lokasi dan Waktu Simulasi

Isi dari file namelist.wps pada saat awal instalasi seperti ini.

```
&share
wrf core = 'ARW',
max dom = 2,
start_date = '2019-09-04_12:00:00','2019-09-04_12:00:00',
            = '2019-09-06 00:00:00', '2019-09-04 12:00:00',
 interval_seconds = 10800
&geogrid
parent_id
                        1,
                              1,
parent_grid_ratio =
                        1,
                              3,
i_parent_start
                        1,
                             53,
j_parent_start
                             25,
                        1,
                       150, 220,
e_we
e sn
                   = 130, 214,
geog_data_res = 'default', 'default',
```

```
dx = 15000,
dy = 15000,
map_proj = 'lambert',
ref lat
           = 33.00,
ref_lon
           = -79.00,
 truelat1 = 30.0,
 truelat2 = 60.0,
 stand_lon = -79.0,
 geog_data_path = '/glade/work/wrfhelp/WPS_GEOG/'
&ungrib
 out format = 'WPS',
prefix = 'FILE',
&metgrid
fg_name = 'FILE'
/
```

Terdapat berbagai macam parameter di dalam &share, &geogrid, &ungrib, dan &metgrid. Anda perlu mengubah beberapa parameter tersebut yang dapat disesuaikan dengan simulasi. Tapi, Anda harus memperhatikan aturan atau template yang telah diberikan di dalam panduan pengguna. Untuk lebih rincinya, Anda bisa lihat di Panduan Pengguna WRF-ARW Bab 3. Di dalam tahapan ini, Anda perlu mengubah parameter-parameter yang ada di dalam &geogrid. Anda dapat mengubah file ini dengan membukanya menggunakan aplikasi apa saja (mis. Notepad, VS Code, Notepad++) atau dapat langsung dibuka di terminal dengan perintah nano namelist.wps. Pada contoh yang telah kami berikan, Anda perlu mengganti parameter pada bagian &share dan &geogrid. Penjelasan setiap variabel dapat dilihat pada Tabel 1.4. File yang telah berubah menjadi seperti di bawan ini.

```
&share
 wrf_core = 'ARW',
max_dom = 3,
start_year = 2022, 2022, 2022,
 start_month =
                  01,
                         01,
                               01,
 start_day
                  01,
                         01,
                               01,
 start_hour
                  00,
                         00,
                               00,
 end_year
              = 2022, 2022, 2022,
 end_month
                  01,
                         01,
                               01,
 end_day
                  03,
                         03,
                               03,
 end_hour
              =
                  18,
                         18,
                               18,
 interval seconds = 21600,
 io form geogrid = 2,
```

```
&geogrid
                          1,
parent_id
                     1,
                               1,
parent_grid_ratio =
                      1,
                          3,
                               9,
i_parent_start = 1, 11, 15,
j_parent_start
                 = 1, 11, 15,
e_we
                  = 33, 40, 46,
                  = 33, 40, 46,
e_sn
geog_data_res = 'default','default','default',
dx = 18000,
dy = 18000,
map_proj = 'mercator',
ref_lat = -7.328,
ref lon = 112.741,
truelat1 = -7.328,
geog_data_path = '/home/absen/WRF-Model/data/WPS_GEOG/'
&ungrib
out_format = 'WPS',
prefix = 'FILE',
&metgrid
fg_name = 'FILE'
io_form_metgrid = 2,
```

Tabel 1.4: Informasi beberapa variabel di dalam namelist.wps

| Variabel          | Keterangan                                                                                                                                      |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| wrf_core          | Tipe penyelesaian WRF, ARW atau NMM                                                                                                             |  |  |
| max_dom           | Jumlah domain, semakin banyak domain maka semakin tinggi resolusi spasialnya                                                                    |  |  |
| start_date        | Waktu mulai simulasi sesuai dengan data masukan. Format: YYYY-MM-DD_HH:mm:ss                                                                    |  |  |
| end_date          | Waktu akhir simulasi sesuai dengan data masukan. Format: YYYY-MM-DD_HH:mm:ss                                                                    |  |  |
| interval_seconds  | Interval waktu dari data masukan (dalam detik)                                                                                                  |  |  |
| io_from_geogrid   | Tipe format file luaran geogrid.exe $(1 = \text{binary}, 2 = \text{netcdf}, 3 = \text{GRIB1})$                                                  |  |  |
| parent_id         | Untuk domain paling kasar, nilainya 1. Domain selanjutnya juga bernilai 1 yang menandakan bahwa subdomain merupakan bagian dari domain utamanya |  |  |
| parent_grid_ratio | Rasio piksel dari dx dan dy pada domain ke-1. Domain paling kasar adalah 1 dan selanjutnya mengikuti rasio yang diinginkan.                     |  |  |

| Variabel       | Keterangan                                                                                                                              |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| i_parent_start | Nomor indeks acuan untuk koordinat X. Domain paling kasar bernilai 1, ditentukan dari kiri-bawah                                        |  |
| j_parent_start | Nomor indeks acuan untuk koordinat Y. Domain paling kasar bernilai 1, ditentukan dari kiri-bawah                                        |  |
| e_we           | Jumlah grid/piksel dari barat ke timur mengikuti rumus parent_grid_ratio * N + 1, dengan $N > 0$                                        |  |
| e_sn           | Jumlah grid/piksel dari selatan ke utara mengikuti rumus parent_grid_ratio * N + 1, dengan $N > 0$                                      |  |
| geog_data_res  | Pemilihan resolusi spasial dari data statik                                                                                             |  |
| dx             | Resolusi spasial pada koordinat X (dalam meter)                                                                                         |  |
| dy             | Resolusi spasial pada koordinat Y (dalam meter)                                                                                         |  |
| map_proj       | Sistem proyeksi peta (mercator, lambert, polar, lat-lon). Untuk simulasi di sekitar khatulistiwa, direkomendasikan menggunakan mercator |  |
| ref_lat        | Koordinat lintang titik tengah acuan dari domain paling kasar                                                                           |  |
| ref_lon        | Koordinat bujur titik tengah acuan dari domain paling kasar                                                                             |  |
| truelat1       | Koordinat lintang sebenarnya. Dibutuhkan untuk sistem proyeksi mercator, polar, dan lambert                                             |  |
| geog_data_path | Lokasi folder WPS_GEOG                                                                                                                  |  |

Pada parameter start\_date dan end\_date, Anda bisa menggunakan parameter lain dengan membagi masing-masing format tahun (start\_year; end\_year), bulan (start\_month; end\_month), tanggal (start\_day; end\_day), dan jam (start\_hour; end\_hour).

Berkaitan dengan skala resolusi spasial pada simulasi yang akan dijalankan dengan pemilihan lokasi di Kota Surabaya, skala tertingginya adalah 2 km. Anda perhatikan parameter  $parent_grid_ratio$ . Nilai 1, 3, dan 9 secara berturut-turut merupakan rasio terhadap dx atau dy untuk setiap domain. Nilai 1 berarti untuk domain terluar dengan skala 1/1\*18000 = 18000 meter, sedangkan nilai 3 untuk domain ke-2 dengan skala 1/3\*18000 = 6000 meter.

Pada bagian &geogrid, penentuan lokasi kajian ini cukup rumit. Anda bisa menggunakan halaman Github https://jiririchter.github.io/WRFDomainWizard untuk membuat file namelist.wps sesuai dengan lokasi yang Anda inginkan, setidaknya Anda dapat menyalin teks pada bagian &geogrid Gambar 1.12.

Untuk memverifikasi kesesuaian pemilihan lokasi yang telah dibuat, Anda dapat menggunakan skrip plotgrids\_new.ncl di dalam folder util/. Bukalah file tersebut. Cari dan ubahlah variabel type = x11 menjadi type = png untuk mengatur luaran file dalam bentuk gambar (format .png). Untuk menjalankan skrip ini, aktifkan terlebih dahulu environment ncl dengan perintah source activate ncl atau conda activate ncl. Kemudian, jalankan perintah berikut ini. File .png akan muncul di dalam folder WPS/ dengan nama wps\_show\_dom.png. Hasilnya seperti Gambar 1.13

```
cd $HOME/WRF-Model/WPS
ncl util/plotgrids_new.ncl
```



Gambar 1.12: WRF Domain Wizard oleh Jiririchter



Gambar 1.13: Konfigurasi domain WRF

#### 1.4.1.2 Menjalankan Program geogrid.exe

Selanjutnya, Anda dapat menjalankan program geogrid.exe dengan perintah di bawah ini. Hasilnya, terdapat 3 file dengan nama  $geo_em.d0x.nc$  (x = nomor domain; 1, 2, 3) karena pengaturan  $max_dom = 3$ .

```
./geogrid.exe

ls geo_em*
```

geo\_em.d01.nc geo\_em.d02.nc geo\_em.d03.nc

#### 1.4.1.3 Menyambungkan File Data Masukan dan Tabel Variabel

WPS menyediakan program link\_grib.csh untuk menyambungkan file data masukan ke dalam folder WPS/ dengan membuat shortcut yang bernama GRIBFILE.\* (GRIBFILE.AAA, GRIBFILE.AAB, ...). Perintahnya sebagai berikut.

Kemudian, buatlah shortcut dengan nama Vtable di dalam folder WPS/ dari file yang berada di dalam folder ungrib/Variable\_Tables. Untuk data GFS, nama file tersebut adalah Vtable.GFS, sedangkan ERA5 adalah Vtable.ERA-Interim.pl. Perintahnya sebagai berikut.

```
ln -sf ungrib/Variable_Tables/Vtable.GFS Vtable # GFS
ln -sf ungrib/Variable_Tables/Vtable.ERA-Interim.pl Vtable # ERA5
```

#### 1.4.1.4 Menjalankan Program ungrib.exe

Setelah menyambungkan data masukan serta tabel variabel, jalankan program ungrib.exe dengan perintah berikut.

```
./ungrib.exe
```

Luaran dari program ini adalah file dengan nama FILE: \* yang memiliki format .nc (netcdf).

#### 1.4.1.5 Menjalankan Program metgrid.exe

Jalankan program metgrid.exe dengan perintah berikut.

```
./metgrid.exe
```

Luaran dari program ini adalah file dengan nama met\_em\* yang memiliki format .nc. File-file ini nanti yang akan dipindahkan menuju folder WRF/test/em\_real atau Anda dapat juga membuat shortcut. Perintahnya sebagai berikut.

```
mv met_em* $ODIR/WRF/test/em_real
# atau
ln -sf met_em* $ODIR/WRF/test/em_real
```

#### 1.4.2 Program WRF

Pada bagian ini, program WRF yang digunakan hanya 2: real.exe dan wrf.exe. Sebelum itu, Anda diharuskan mengubah beberapa parameter pada file namelist.input seperti di dalam file namelist.wps. Parameter di dalam namelist.input sangat banyak karena terdapat bagian pemilihan lokasi dan waktu (disesuaikan dengan namelist.wps), pemilihan skema parameter fisik, dan parameter dinamik. Anda dapat membaca lebih lanjut di Panduan Pengguna WRF Bab 5.

#### 1.4.2.1 Mengubah isi namelist.input

Saat ini Anda masih berada di folder WPS/. Buka terlebih dahulu folder em\_real dengan perintah

```
cd $ODIR/WRF/test/em_real
```

Di dalam folder em\_real, terdapat 4 program, yaitu real.exe, ndown.exe, tc.exe, dan wrf.exe. Nilai max\_dom pada namelist.wps adalah 3. Jika pemilihan lokasi Anda memiliki >1 domain, WRF akan melakukan proses simulasi sampai pada domain tertinggi atau disebut dengan nesting. Proses ini juga dibagi lagi menjadi 2, yaitu nesting dua arah dan satu arah. Untuk nesting satu arah, program yang digunakan bisa atau tanpa dengan program ndown.exe. Penggunaan nesting satu arah biasanya pengguna hanya tertarik pada analisis domain tertinggi. Penggunaan ndown.exe juga sering digunakan pada turunan WRF, yaitu WRF-Chem jika terdapat >1 domain karena sampai modul ini dibuat, belum ada pembaruan terkait algoritma downscaling pada WRF-Chem dengan nesting dua arah.

Bukalah file namelist.input dengan cara sama seperti Anda membuka namelist.wps. Ketika pertama kali dibuka, file namelist.input seperti di bawah ini. Anda juga dapat melihat beberapa contoh/template lain (mis. namelist.input.4km, namelist.input.chem, namelist.input.volc, ...) sesuai dengan kebutuhan tertentu.

```
run_seconds
                                      = 0,
                                      = 2019, 2019,
start_year
start_month
                                      = 09,
                                               09,
start_day
                                      = 04,
                                               04,
start_hour
                                      = 12,
                                               12,
                                      = 2019, 2019,
end_year
                                      = 09,
                                               09,
end_month
end_day
                                      = 06,
                                               06,
end_hour
                                      = 00,
                                               00,
                                      = 10800
interval_seconds
input_from_file
                                      = .true.,.true.,
history_interval
                                      = 60, 60,
frames_per_outfile
                                      = 1, 1,
restart
                                      = .false.,
restart_interval
                                      = 7200,
io_form_history
                                      = 2
io_form_restart
io_form_input
                                      = 2
                                      = 2
io_form_boundary
&domains
                                      = 90,
time_step
time_step_fract_num
                                      = 0,
time_step_fract_den
                                      = 1,
\max_{dom}
                                      = 2,
                                      = 150,
                                                 220,
e_we
                                                 214,
                                      = 130,
e_sn
e_vert
                                      = 45,
                                                 45,
                                      = 1.1
dzstretch_s
                                      = 5000,
p_top_requested
num_metgrid_levels
                                      = 34,
num_metgrid_soil_levels
                                      = 4,
                                      = 15000,
dx
                                      = 15000,
dy
                                      = 1,
grid_id
                                                2,
parent_id
                                      = 0,
                                                1,
i_parent_start
                                      = 1,
                                                53,
                                      = 1,
                                                25,
j_parent_start
parent_grid_ratio
                                      = 1,
                                                3,
parent_time_step_ratio
                                      = 1,
                                                3,
feedback
                                      = 1,
smooth_option
                                      = 0
&physics
```

```
physics_suite
                                      = 'CONUS'
mp_physics
                                      = -1.
                                                -1,
cu_physics
                                      = -1,
                                                -1,
ra_lw_physics
                                      = -1,
                                                -1,
ra_sw_physics
                                      = -1,
                                                -1,
bl_pbl_physics
                                      = -1,
                                                -1,
sf_sfclay_physics
                                      = -1,
                                                -1,
sf_surface_physics
                                      = -1,
                                                -1,
radt
                                      = 15.
                                                15,
bldt
                                      = 0,
                                                Ο,
cudt
                                      = 0,
                                                0,
icloud
                                      = 1,
num land cat
                                      = 21,
sf_urban_physics
                                      = 0,
                                                0,
fractional_seaice
                                      = 1,
&fdda
/
&dynamics
hybrid_opt
                                      = 2,
                                      = 0,
w_damping
diff_opt
                                      = 2,
                                                 2,
                                      = 4,
                                                 4,
km_opt
diff_6th_opt
                                      = 0,
                                                 0,
diff_6th_factor
                                      = 0.12,
                                                 0.12,
                                      = 290.
base_temp
damp_opt
                                      = 3,
                                      = 5000.,
                                                 5000.,
zdamp
dampcoef
                                      = 0.2,
                                                 0.2,
khdif
                                      = 0,
                                                 0,
kvdif
                                      = 0,
                                                 Ο,
                                      = .true., .true.,
non_hydrostatic
moist_adv_opt
                                      = 1,
                                                 1,
scalar_adv_opt
                                      = 1,
                                                 1,
gwd_opt
                                      = 1,
                                                 0,
&bdy_control
spec_bdy_width
                                      = 5,
specified
                                      = .true.
&grib2
```

```
&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,
/
```

Pada file ini, samakan beberapa parameter seperti di file namelist.wps. Perhatikan Tabel 1.5. Anda cukup mencari parameter yang sama antara namelist.wps dengan namelist.input, tetapi tidak semuanya ada di dalam namelist.input. Untuk parameter lainnya, seperti parent\_time\_step\_ratio, time\_step, history\_interval, frame\_per\_outfile, dan seterusnya, Anda dapat membacanya lebih banyak di Panduan Pengguna WRF Bab 5 atau bisa dilihat pada file README.namelist di dalam folder test/em\_real untuk setiap penjelasan singkat berbagai parameter.

Bagian &time\_control berfungsi sebagai pengaturan waktu simulasi serta luaran yang akan dihasilkan. Sebagai informasi, file luaran WRF berformat NetCDF (.nc) dengan nama wrfout\_<domain>\_<yyyy>-<mm>-<dd>\_<HH>:<MM>:<SS>, dimana

- domain: identitas domain (d01, d02, ...)
- yyyy: tahun, dengan format 4 digit
- mm: bulan, dengan format 2 digit
- dd: tanggal, dengan format 2 digit
- HH: jam, dengan format 2 digit
- MM: menit, dengan format 2 digit
- SS: detik, dengan format 2 digit

Pada parameter run\_days, run\_hours, run\_minutes, dan run\_seconds, ini dapat dihitung dari selisih waktu akhir simulasi dengan awal simulasi. Pada simulasi yang akan dicoba dalam modul ini, yaitu 1 Januari 2022 pukul 00:00 UTC hingga 3 Januari 2022 18:00 UTC, nilai dari run\_days dan run\_hours secara berturut-turut adalah 2 dan 18. Anda juga dapat mengatur run\_days ini menjadi 0 setelah dikonversi menjadi jam (2 hari = 48 jam) dan tambahkan ke run\_hours, yaitu menjadi 66. Parameter history\_interval digunakan untuk meletakkan nilai pada file luaran WRF dalam format .nc dengan waktu tertentu (dalam menit). Misalkan diatur ke 60, berarti hasil perhitungan dari berbagai algoritma WRF dimasukkan ke file setiap 60 menit sekali. Anda bebas mengatur angka pada parameter ini. Dampaknya, ukuran file akan semakin besar jika Anda mengatur nilainya kecil. Tentu ini tidak akan menjadi masalah apabila ruang kosong penyimpanan internal/eksternal Anda masih banyak. Banyaknya file luaran dapat pula diatur jumlahnya, yaitu di dalam parameter frames\_per\_outfile. Jika parameter diatur pada frames\_per\_outfile = 1, history\_interval = 60, dan run\_hours = 66, berarti file luaran yang akan dibuat dan disimpan ke dalam penyimpanan adalah sebanyak 66 file. Agar lebih efektif saat akan melakukan analisis, kami menyarankan untuk mengatur frames\_per\_outfile = 1000.

Kemudian untuk bagian &domains, digunakan untuk mengatur kondisi dari domain agar dapat sesuai dengan data masukan (banyak grid horizontal dan vertikal, posisi, rasio grid, tipe interpolasi). Pada parameter feedback, Anda dapat mengatur tipe nesting dua arah (1) atau satu arah (0). Parameter num\_metgrid\_levels dan num\_metgrid\_soil\_levels harus diatur sesuai dengan yang ada di dalam salah satu file met\_em\*. Untuk melihatnya, gunakan perintah di bawah ini. Nilai kedua parameter num\_metgrid\_levels dapat berbeda sesuai dengan data masukan yang digunakan. Sebagai contoh, GFS memiliki num\_metgrid\_levels = 34, sedangkan ERA5 num\_metgrid\_levels = 38.

```
ncdump -h met_em.d01.2022-01-01_00:00:00.nc | grep num_metgrid_levels # = 34
ncdump -h met_em.d01.2022-01-01_00:00:00.nc | grep NUM_METGRID_SOIL_LEVELS # = 4
```

Di dalam bagian &physics, terdapat berbagai skema parameterisasi dalam penyelesaian perhitungan pembentukan awan, skemar radiasi, lapisan perbatas, serta proses-proses di permukaan tanah. Pada parameter physics\_suite, Anda bisa mengaturnya ke TROPICAL karena wilayah yang ingin disimulasikan berada di daerah tropis. Ketika Anda mendefinisikan physics\_suite = 'TROPICAL', Anda tidak perlu lagi menambahkan angka pada parameter di bawah ini.

```
mp_physics = 6: WSM6
cu_physics = 16: New-Tiedke
ra_lw_physics = 4: Rapid Radiative Model Transformation for GCM (RRTMG)
ra_sw_physics = 4: Rapid Radiative Model Transformation for GCM
bl_pbl_physics = 1: Yonsei University
sf_sfclay_physics = 91: MM5 Monin-Obukhov
sf_surface_physics = 2: Noah Land Surface Model
```

Anda hanya perlu menambahkan nilai -1 pada parameter-parameter tersebut, tentu saja sesuai dengan banyaknya domain. Anda juga dapat menghilangkan parameter physics\_suite dan mengganti parameter mp\_physics, cu\_physics, sf\_surface\_physics, sf\_sfclay\_physics, ra\_lw\_physics, ra\_sw\_physics, dan bl\_pbl\_physics ke opsi lain yang ada di dalam Panduan Pengguna WRF Bab 5. Anda harus berhati-hati dan memperhatikan pemilihan skema parameterisasi karena terdapat parameter yang harus ditambahkan di dalam bagian &physics, menambahkan bagian lain, atau kombinasi antar skema. Sebagai contoh untuk sf\_surface\_physics = 4 (Noah-MP Land Surface Model), perlu menambahkan bagian &noah\_mp; Ketika cu\_physics = 14 (Scale-aware SAS), perlu menambahkan parameter shcu\_physics = 4; Parameter bl\_pbl\_physics = 2 (Mellor-Yamada-Janjic, MYJ) nilai dari parameter sf\_sfclay\_physics = 2 (Eta Model). Untuk pengaturan nilai-nilai di dalam &physics, Anda harus menambahkannya sebanyak jumlah domain. Anda juga dapat menonaktifkan skema parameterisasi tertentu dengan mengubahnya ke 0, misalnya pada cu\_physics untuk domain <10 km.

Tabel 1.5: Informasi sebagian variabel di dalam namelist.input yang perlu disesuaikan dengan namelist.wps

| Parameter di namelist.wps                        | Parameter di namelist.input                      |
|--------------------------------------------------|--------------------------------------------------|
| start_year = 2022, 2022,                         | start_year = 2022, 2022, 2022,                   |
| 2022,<br>start_month = 01, 01, 01,               | start month = 01, 01, 01,                        |
| start_day = 01, 01, 01, start_day = 01, 01, 01,  | start_day = 01, 01, 01, start_day = 01, 01, 01,  |
| start_hour = 00, 00, 00,                         | start_hour = 00, 00, 00,                         |
| end_year = 2022, 2022, 2022,                     | end_year = 2022, 2022, 2022,                     |
| end_month = 01, 01, 01,<br>end_day = 03, 03, 03, | end_month = 01, 01, 01,<br>end_day = 03, 03, 03, |
| end_hour = 18, 18, 18,                           | end_hour = 18, 18, 18,                           |
| -                                                | run_days = 2,                                    |
| -                                                | <pre>run_hour = 18,</pre>                        |

```
Parameter di namelist.wps
                               Parameter di namelist.input
max_dom = 3,
                               max_dom = 3,
interval_seconds = 21600,
                               interval_seconds = 21600,
parent_id = 1, 1, 1,
                               parent_id = 1, 1, 1,
parent grid ratio =
                               parent grid ratio =
                      1,
                                                     1,
                                                          3,
                                                                9,
3,
dx = 15000,
                               dx = 15000,
dy = 15000,
                               dy = 15000,
i_parent_start = 1, 11,
                               i_parent_start = 1, 11,
                                                         15,
15,
j_parent_start = 1, 11,
                               j_parent_start = 1, 11,
                                                         15,
15,
                               e_{we} = 33, 40, 46,
e_we =
        33, 40,
                  46,
e_{sn} = 33, 40,
                  46,
                               e_{sn} = 33, 40,
                                                 46,
                               parent_time_step_ratio = 1,
                                                             3,
                                                                  9, (sama dengan
                               parent_grid_ratio)
                               time_step = 90, dengan rumus 6 * dx (dalam km)
```

Isi file namelist.input yang telah diubah sepenuhnya menjadi seperti ini.

```
&time_control
run_days
                                      = 2,
                                      = 18,
run_hours
run_minutes
                                      = 0,
run_seconds
                                      = 0,
                                      = 2022, 2022, 2022,
start year
start_month
                                      = 01,
                                              01, 01,
                                              01, 01,
start day
                                      = 01.
                                              00, 00,
start_hour
                                      = 00,
                                      = 2022, 2022, 2022,
end_year
end_month
                                      = 01,
                                              01, 01,
end_day
                                      = 03,
                                              03,
                                                   03,
end_hour
                                      = 18,
                                              18,
                                                    18,
                                      = 21600,
 interval_seconds
                                      = .true.,.true.,.true.,
input_from_file
                                      = 60, 60, 60,
history_interval
frames_per_outfile
                                      = 1000, 1000, 1000,
                                      = .false.,
restart
                                      = 7200,
restart_interval
io_form_history
                                      = 2
                                      = 2
io form restart
io_form_input
                                      = 2
 io form boundary
                                      = 2
```

```
&domains
time_step
                                      = 90,
                                      = 0,
time_step_fract_num
time_step_fract_den
                                      = 1,
                                      = 3,
max_dom
                                      = 33,
                                               40,
                                                    46,
e_we
                                      = 33,
                                               40, 46,
e_sn
                                                    44,
                                      = 44,
                                               44,
e_vert
                                     = 1.1
dzstretch_s
                                     = 5000,
p_top_requested
                                     = .false.,
use_surface
                                     = .true.,
sfcp to sfcp
num_metgrid_levels
                                     = 34,
num_metgrid_soil_levels
                                     = 4,
                                     = 18000,
dx
                                      = 18000,
dy
                                     = 1,
                                               2,
                                                    3,
grid_id
parent_id
                                      = 1,
                                               1,
                                                    1,
                                               11, 15,
i_parent_start
                                     = 1,
j_parent_start
                                      = 1,
                                               11, 15,
                                      = 1,
                                               3,
                                                    9,
parent_grid_ratio
parent_time_step_ratio
                                      = 1,
                                               3,
                                                    9,
feedback
                                      = 1,
smooth_option
                                      = 0
&physics
physics_suite
                                     = 'TROPICAL'
mp_physics
                                               -1.
                                                   -1.
                                      = -1,
cu_physics
                                                Ο,
                                                     Ο,
                                                   -1,
ra_lw_physics
                                      = -1,
                                               -1,
                                      = -1,
ra_sw_physics
                                               -1, -1,
bl_pbl_physics
                                      = -1,
                                               -1, -1,
sf_sfclay_physics
                                      = -1,
                                               -1, -1,
sf_surface_physics
                                      = -1,
                                               -1, -1,
radt
                                      = 18,
                                               18, 18,
bldt
                                      = 0,
                                               Ο,
                                                    0,
cudt
                                      = 0,
                                               Ο,
                                                    0,
icloud
                                      = 1,
num_land_cat
                                      = 21,
sf_urban_physics
                                     = 0,
                                               Ο,
                                                    0,
fractional_seaice
                                     = 1,
&fdda
```

```
/
&dynamics
hybrid_opt
                                    = 2,
                                    = 0,
w_damping
                                    = 2,
                                              2,
                                                   2,
diff_opt
                                              4,
                                    = 4,
                                                   4,
km_opt
diff_6th_opt
                                    = 0,
                                              0,
                                                   0,
                                              0.12, 0.12,
diff_6th_factor
                                    = 0.12,
                                    = 290.
base_temp
                                    = 3,
damp_opt
zdamp
                                    = 5000.,
                                              5000., 5000.,
dampcoef
                                    = 0.2,
                                              0.2,
                                                       0.2,
khdif
                                    = 0,
                                              Ο,
                                                    0,
                                    = 0,
kvdif
                                              0,
                                                    0,
                                    = .true., .true., .true.,
non_hydrostatic
moist_adv_opt
                                    = 1,
                                              1,
                                                    1,
scalar_adv_opt
                                    = 1,
                                              1,
                                                    1,
gwd_opt
                                    = 1,
                                              Ο,
                                                    0,
&bdy_control
spec_bdy_width
                                    = 5,
specified
                                    = .true.
&grib2
&namelist quilt
nio_tasks_per_group = 0,
nio_groups = 1,
/
```

#### 1.4.2.2 Menjalankan program real.exe dan wrf.exe

Program real.exe mengeluarkan file-file dalam format .nc, yaitu wrfbdy\_d01 dan wrfinput\_<domain>. Perintah menjalankan program ini adalah sebagai berikut.

```
./real.exe
```

Untuk melihat respon dari program ini, Anda dapat melihat file rsl.errror.0000 dengan perintah

```
tail rsl.error.0000 -n 1
```

Jika respon yang diberikan terdapat kalimat real\_em: SUCCESS COMPLETE REAL\_EM INIT, Anda bisa melanjutkan ke tahapan wrf.exe.

```
./wrf.exe
```

Simulasi WRF dari program wrf.exe telah berhasil selesai apabila terdapat kalimat wrf: SUCCESS COMPLETE WRF pada baris terakhir rsl.error.0000 dan terdapat file wrfout\_d0\*. Untuk simulasi ini, terdapat 3 file wrfout\_d0\*: wrfout\_d01\_2022-01-01\_00:00:00, wrfout\_d02\_2022-01-01\_00:00:00, dan wrfout\_d03\_2022-01-01\_00:00:00. Sejatinya, file-file tersebut berformat \*.nc walaupun tidak tertera pada nama file. File wrfout\_d0\* memiliki interval waktu per 1 jam, dari pukul 00:00 UTC 1 Januari -18:00 UTC 3 Januari 2022. Langkah selanjutnya, Anda dapat menganalisis luaran WRF dengan aplikasi apapun yang Anda bisa, selama mendukung format \*.nc. Hanya saja, Anda perlu mengubah bentuk dan nama variabel WRF untuk disesuaikan dengan CF-Convention dengan program NCL yang telah disediakan di https://sundowner.colorado.edu/wrfout\_to\_cf/wrfout\_to\_cf.ncl.

#### 1.5 Visualisasi Luaran WRF

Terdapat 3 file luaran WRF yang telah Anda jalankan dengan masing-masing memiliki resolusi spasial yang berbeda, yaitu 18 km, 6 km, dan 2 km dengan pemilihan lokasi titik tengah longitude dan latitude di Kota Surabaya. Selanjutnya, Anda dapat melihat hasil dari simulasi tersebut dengan berbagai macam perangkat lunak. Pada modul ini, kami menampilkan hasil simulasi dengan menggunakan aplikasi NCL, QGIS, Python, R, dan Julia.

### 1.5.1 Python

Untuk mengetikkan kode Python. Anda dapat menggunakan kode editor **Jupyter Notebook** atau aplikasi lainnya, seperti Visual Studio Code, Notepad++, atau Atom. Untuk langkah-langkah di bawah ini, kami lebih menjelaskan cara penulisan kode Python pada **Jupyter Notebook**. Kode editor ini dapat digunakan pada aplikasi Browser default Anda, misalnya Google Chrome, Mozilla Firefox, atau Microsoft Edge. Kami menyarankan Anda untuk menggunakan **Jupyter Notebook** agar hasil kode langsung bisa ditampilkan sehingga respons dari setiap sel yang berisikan kode-kode dapat diketahui langsung. Ikuti langkah-langkah berikut ini untuk membuka **Jupyter Notebook**.

- 1. Bukalah terminal Bash Anda. Saat ini, Anda berada di direktori \$HOME atau ~.
- 2. Bukalah direktori WRF-Model dengan mengetik perintah

```
cd WRF-Model
```

3. Aktifkan terlebih dahulu *Environment* ncl dengan perintah conda activate ncl.

- 1 Dynamical Downscaling: Model Weather Research Forecasting (WRF)
  - 4. Ketikkan perintah berikut ini untuk memulai pengetikan kode Python. Browser default Anda akan terbuka dengan menampilkan kode editor **Jupyter Notebook** (Gambar 1.14)



Gambar 1.14: Tampilan Jupyter Notebook

- 5. Klik New dan pilih Python 3 (ipykernel). Tampilan awal Jupyter Notebook seperti pada Gambar 1.15
- 6. Anda dapat langsung mendapatkan hasil dari kode yang ditulis pada sel (lihat In [1]) (Gambar 1.16)

Untuk pengolahan data WRF di Python, kami menggunakan package wrf-python [8]. Package ini dikembangkan oleh NCAR yang dikhususkan untuk *Post-Processing* luaran WRF. Package ini mendukung pembacaan file, perhitungan interpolasi, serta visualisasi WRF. Perhatikan langkah-langkah berikut cara penggunaannya mulai dari pembacaan file hingga pembuatan grafik. Package berikut ini dibutuhkan untuk melakukan langkah-langkah tersebut.

```
from netCDF4 import Dataset
import wrf
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
import cartopy.crs as crs
from cartopy.feature import NaturalEarthFeature
```



Gambar 1.15: Tampilan awal Jupyter Notebook



Gambar 1.16: Tampilan interaktif Jupyter Notebook

- 1 Dynamical Downscaling: Model Weather Research Forecasting (WRF)
  - 1. Buka salah satu file wrfout\_do\*, misalnya wrfout\_do3\_2022-01-01\_00:00:00 dan cetak variabel tersebut, misalkan variabel T2 (*Air Temperature at 2m*: suhu udara 2 meter dari permukaan tanah). Isinya adalah beberapa metadata. Anda dapat mengetahui variabel-variabel di dalamnya dengan menambahkan metode .variables. Anda dapat melihat penjelasan variabel-variabel pada panduan pengguna WRF-ARW.

```
# Lokasi folder luaran WRF
wrf_path = '/home/absen/WRF-Model/WRF/test/em_real'
# Membuka file wrfout
wrf_d03 = Dataset(f"{wrf_path}/wrfout_d03_2022-01-01_00:00:00")
# Melihat variabel
wrf_d03.variables
```

2. Anda dapat mengambil variabel dengan fungsi wrf.getvar() dengan menyertakan argumen dari nama variabel WRF. Untuk mengambil T2, gunakan perintah di bawah ini. Perhatikan hasil yang diperoleh merupakan tipe xarray.DataArray dan metode wrf.ALL\_TIMES pada argumen timeidx berguna untuk mengambil seluruh waktu, mulai dari awal hingga akhir simulasi. Anda dapat mengambil salah satu waktu dengan mencantumkan angka bulat (mis. 0, 1, 2, ...).

```
wrf_t2 = wrf.getvar(wrf_d03, "T2", timeidx=wrf.ALL_TIMES)
```

3. Untuk mendapatkan nilai koordinat latitude dan longitude dari variabel T2, Anda dapat memakai fungsi wrf.latlon coords(). Pastikan dalam satu baris terdapat 2 variabel.

```
lats, lons = wrf.latlon_coords(wrf_t2)
```

4. Untuk mendapatkan waktu, Anda dapat memanggil *Coordinates* Time yang telah tersedia di dalam wrf\_t2.

```
wrf_time = wrf_t2.Time
```

- 5. Anda juga dapat mengekstrak beberapa variabel yang tidak tersedia di dalam WRF, tentunya terbatas, seperti resultan kecepatan angin (wspd), arah angin (wdir), Convective Available Potential Energy (CAPE; cape3d\_only/mcape), atau kelembapan relatif (rh2). Anda dapat membaca lebih lanjut di https://wrf-python.readthedocs.io/en/latest/diagnostics.html.
- 6. Variabel curah hujan tidak ada di dalam WRF. Anda harus mengekstrak dan menjumlahkan variabel RAINC (Accumulated Total Cumulus Precipitation) dan RAINNC (Accumulated Total Grid Scale Cumulus Precipitation), maka diperoleh akumulasi curah hujan dari awal sampai akhir waktu simulasi. Anda perlu mengurangi curah hujan dari waktu ke t dengan t-1 dengan memanfaatkan program perulangan (looping).

```
# Ekstrak RAINC dan RAINNC
rainc = wrf.getvar(wrf_d03, "RAINC" , timeidx = wrf.ALL_TIMES)
rainnc = wrf.getvar(wrf_d03, "RAINNC", timeidx = wrf.ALL_TIMES)
# Menghitung Curah hujan akumulasi
rain = rainc + rainnc
rain_diff = rain.copy() # Metode .copy() agar var rain tidak ikut terubah
# Lakukan perulangan
length = len(wrf time.values)
for i in range(1, length):
  rain_diff[i, :, :] = rain[i, :, :] - rain[i-1, :, :]
# Copy Attribute (dari RAINC atau RAINNC)
rain_diff.attrs = rainc.attrs
# Tambahkan deskripsi
rain_diff.attrs["description"] = "Total Rainfall"
# Menghapus variabel rain untuk mengoptimalkan memori
del rain
```

Setelah berhasil mengekstrak variabel dari langkah sebelumnya, langkah-langkah berikut ini adalah pembuatan grafik spasial dari variabel T2. Untuk membuatnya, Anda membutuhkan tambahan package matplotlib dan cartopy.

- 1. Anda telah mendefinisikan lokasi (variabel lats dan lons) pada langkah sebelumnya. Kedua variabel tersebut digunakan dalam membuat grafik spasial.
- 2. Variabel suhu udara yang telah diekstrak pada langkah sebelumnya memiliki waktu dari awal hingga akhir simulasi. Anda hanya dapat memilih salah satu waktu dalam 1 grafik. Anda juga dapat membuat grafik untuk masing-masing waktu dalam satu grafik dalam bentuk panel plot. Untuk membuat grafik pada waktu tertentu, Anda perlu memilih waktu dan mengetahui letak indeksnya.

```
time = "2022-01-02 13:00:00"
time = np.array([time], dtype='datetime64[ns]')
time_idx = np.where(wrf_time.values == time)[0]
time_idx = int(time_idx)
```

3. Sebagai contoh skrip di bawah ini untuk membuat grafik spasial hanya satu waktu.

```
# Mengambil informasi sistem proyeksi peta (dalam data ini adalah mercator)
cart_proj = wrf.get_cartopy(wrf_t2, timeidx=time_idx)

# Membuat dan mengatur ukuran grafik
fig = plt.figure(figsize=(12, 10))
```

```
# Mengatur sistem proyeksi sesuai metadata WRF
ax = plt.axes(projection=cart_proj)
# Menambahkan garis pantai. Sumber data: www.naturalearthdata.com
ax.coastlines(linewidth=0.8)
# Menambahkan garis lintang dan bujur
gl = ax.gridlines(draw labels=True, linewidth=1, color='gray', alpha=0.5,
→ linestyle='--')
gl.top_labels = False  # Menghilangkan label bujur di atas
gl.right_labels = False # Menghilangkan label lintang di kanan
# Mengatur nilai untuk skala legenda
lvl = np.arange(290, 304, 2)
# Menambahkan garis kontur terisi
plt.contourf(lons, lats, smooth_t2[time_idx, :, :],
            levels=lvl,
            transform=crs.PlateCarree(),
            cmap='viridis')
# Menambahkan legenda warna
plt.colorbar(ax=ax, shrink=0.7)
# Menampilkan grafik
plt.show()
```



Gambar 1.17: Grafik suhu udara 2-meter di atas permukaan tanah pada 2022-01-02 13:00:00 UTC

Selain spasial, Anda dapat pula menampilkan grafik seri waktu untuk titik koordinat atau rata-rata grid tertentu.

1. Tentukan titik koordinat yang akan dibuat grafik seri waktu

```
lats_sel = -7.271372797667375
lons_sel = 112.73417496409039
```

2. Untuk menentukan indeks dari titik koordinat yang telah didefinisikan tersebut, gunakan fungsi wrf.ll\_to\_xy(). Nilai yang dikeluarkan adalah indeks dari lokasi terdekat.

```
latlon_idx = wrf.ll_to_xy(wrf_d03, lats_sel, lons_sel)
wrf_t2_sel = wrf_t2[:, latlon_idx[1], latlon_idx[0]]
```

3. Lakukan plot seri waktu

```
# Mengatur ukuran grafik
fig = plt.figure(figsize=(12, 5))
ax = plt.axes()

# Plot -> x: waktu, y: suhu udara (K)
ax.plot(wrf_time, wrf_t2_sel.values)

# Mengatur label dan judul
ax.set_xlabel('Waktu')
ax.set_ylabel('Suhu udara 2m (K)')
ax.set_title(f'Suhu udara di {lats_sel}$^\circ$, {lons_sel}$^\circ$')

# Tampilkan grafik
plt.show()
```

#### 1.5.2 R

Anda dapat menggunakan RStudio untuk menuliskan skrip R. RStudio mendukung penulisan skrip R maupun bahasa lainnya, seperti Markdown, C++, dan Python. Sebenarnya, Anda dapat menuliskan skrip Python pada RStudio dengan bantuan package reticulate. Untuk mengolah data WRF di R, Anda perlu memasang package ncdf4 dan raster terlebih dahulu. Untuk kebutuhan plot seri waktu, kami menggunakan package tidyverse.

- 1. Sebelum memulai pengetikan kode R, buatlah file skrip R dengan memilih menu **File > New File** > **R Script**.
- 2. Di console R pada RStudio, gunakan perintah berikut untuk memasang ncdf4 dan raster.



Gambar 1.18: Grafik seri waktu suhu udara 2-meter di atas permukaan tanah

```
install.packages(c('ncdf4', 'raster'))
```

Anda juga dapat menggunakan menu pada RStudio: **Tools** > **Install Packaages**. Kemudian, ketik "ncdf4, raster" (tanpa tanda petik) pada bagian *Packages* (separate multiple with space or comma). Setelah itu, klik *Install*.

3. Kami telah menyediakan fungsi skrip R untuk membuka file luaran WRF. Pada teks editor di RStudio, masukkan perintah berikut untuk mengimpor package ncdf4 dan raster beserta skrip wrf-raster.R.

```
library(ncdf4)
library(raster)
library(tidyverse)
source('wrf-raster.R')
```

Anda dapat menjalankan ketiga baris kode tersebut dengan memblok seluruh baris atau arahkan kursor pada akhir kode kemudian tekan tombol  $\mathbf{CTRL} + \mathbf{ENTER}$ .

- 4. Saat Anda menjalankan source('wrf-raster.R'), muncul Functions dengan nama wrf.raster pada jendela Environment di RStudio (letak jendela di sebelah kanan atas).
- 5. Untuk menggunakan fungsi wrf.raster(), Anda hanya membutuhkan argumen wrf.file (nama folder wrfout\_\*) dan var.name (nama variabel di dalam wrfout\_\*). Nilai kembalian setelah menjalankan fungsi ini berbentuk RasterBrick. Argumen nlev dapat dicantumkan dengan angka bilangan bulat (1, 2, 3, ...) khusus untuk variabel yang memiliki variasi terhadap ketinggian dan kedalaman, seperti suhu udara atau suhu tanah. Variabel lain yang tidak tercantum seperti curah hujan, sudah tersedia di dalam fungsi ini (var.name = rain).
- 6. Sebagai contoh mengambil variabel curah hujan.

```
rain <- wrf.raster(wrf.file =
    '/home/absen/WRF-Model/WRF/test/em_real/wrfout_d01_2022-01-01_00:00:00',
    var.name = 'rain')
rain</pre>
```

```
class
           : RasterBrick
dimensions: 32, 32, 1024, 67 (nrow, ncol, ncell, nlayers)
resolution: 0.1581326, 0.1567945 (x, y)
           : 110.2099, 115.2701, -9.821663, -4.804237 (xmin, xmax, ymin, ymax)
extent
crs
           : +proj=longlat +datum=WGS84 +no_defs
           : memory
source
               layer.1,
                          layer.2,
                                     layer.3,
                                                layer.4,
                                                           layer.5,
                                                                      layer.6,
names
min values :
                     0,
                                0,
                                           0,
max values: 0.000000, 2.944275, 2.439148, 6.013021, 14.848666, 47.531946,
           : 2022-01-01 00:00:00, 2022-01-03 18:00:00 (min, max)
```

Pada respons melalui console R, terdapat berbagai informasi seperti dimensions, resolution, crs, serta time. Anda dapat mudah memahami isi dari file wrfout\_d01\* tersebut.

7. Anda bisa langsung membuat grafik spasial dengan perintah 1 baris ini dan ditampilkan pada Gambar 1.19. Cukup sederhana.

```
plot(rain)
```

8. Untuk membuat grafik seri waktu pada lokasi tertentu, Anda dapat menggunakan fungsi extract() dan plot()

```
# Waktu
time_sel <- getZ(rain)

# Lokasi
lats_sel <- -7.271372797667375
lons_sel <- 112.73417496409039

# Ekstrak nilai curah hujan berdasarkan lokasi
rain_sel <- extract(rain, data.frame(x = lons_sel, y = lats_sel))

# Plot grafik seri waktu
ggplot() +
    geom_line(aes(x = time_sel, y = rain_sel[1,])) +
    scale_x_datetime("Waktu (UTC)", date_labels = "%Y-%m-%d %H:%M") +
    scale_y_continuous("Curah Hujan (mm/jam)")</pre>
```



Gambar 1.19: Plot curah hujan per 1 jam dari <br/>  ${\tt wrfout\_d01*}$ 



Gambar 1.20: Grafik seri waktu curah hujan per 1 jam

#### 1.5.3 NCL

NCAR telah menyediakan contoh skrip pengolahan data WRF dengan NCL. Anda dapat mengakses lebih banyak di https://www.ncl.ucar.edu/Applications/wrf.shtml. File netcdf luaran WRF pada dasarnya berbeda dengan file netcdf pada umumnya karena tidak mengikuti pedoman *Climate and Forecast Convention*. Alhasil, mengolah data WRF menggunakan aplikasi lain seperti ArcMap atau Matlab cukup rumit. Jika Anda ingin cukup mudah mengolahnya dengan aplikasi lainnya, skrip NCL untuk mengubah WRF menjadi CF-Convention dibuat oleh Mark Seefeldt dan telah tersedia di https://sundowner.colorado.edu/wrfout\_to\_cf/wrfout\_to\_cf.ncl. Berikut ini adalah cara penggunakan skrip wrfout\_to\_cf.ncl.

1. Aktifkan terlebih dahulu *environment* ncl pada terminal. Tulisan (base) menjadi (ncl) setelah perintah berhasil dipanggil.

```
conda activate ncl
```

- 2. Anda hanya perlu memasukkan variabel dir\_in (lokasi folder wrfout), dir\_out (lokasi folder wrfout setelah dikonversi), file\_in (nama file wrfout), dan file\_out (nama file wrfout setelah dikonversi).
- 3. Masukkan perintah berikut.

```
ncl 'dir_in="/home/absen/WRF-Model/WRF/test/em_real/"'

'file_in="wrfout_d01_2022-01-01_00:00:00"'

'file_out="wrfout_cf_d01_2022-01-01_00:00:00.nc"' wrfout_to_cf.ncl
```

4. Anda dapat mengolah data luaran WRF setelah dikonversi menjadi CF-Convention pada aplikasi apapun dengan mudah. Hanya saja, Anda perlu memperhatikan perubahan nama variabel dan sesuaikan dengan data WRF asli.

Selain mengubah menjadi CF-Convention, Anda dapat langsung menerapkan skrip NCL untuk analisis maupun visualisasi. Sebagai contoh skrip berikut ini untuk menampilkan suhu udara dekat permukaan dari luaran wrfout\_d01\*. Perlu diperhatikan bahwa simbol; adalah komentar di dalam NCL. Anda dapat mengganti format file dari luaran skrip ini (mis. png, pdf, atau x11).

```
;---Read temperature at first time step
tc = wrf_user_getvar(a, "tc", nt)
;---Open worksheet
wks = gsn_open_wks("png", "wrf_nogsn"); Format file luaran grafik, contoh png
;---Set up resource list
                       = True
res@gsnDraw
                       = False
res@gsnFrame
                      = False
res@tfDoNDCOverlay = True
;---Plotting options for air temperature
opts_r
                          = res
opts_r@cnFillOn
                          = True
opts_r@cnLevelSelectionMode = "ExplicitLevels"
opts_r@cnLevels = (/ 20, 22, 24, 26, 28, 30, 32 /)
opts_r@cnSmoothingOn = True
opts_r@cnSmoothingDistanceF = .005
;---Option for plt_res
plt_res = res
;---Option for plt_res
map_res = res
map_res@mpDataBaseVersion = "HighRes"
                                                     ; Jika memilih
→ "HighRes", Anda harus mengunduh semua file di
                          = "FinestResolution"
map_res@mpDataResolution
→ https://www.io-warnemuende.de/rangs-en.html
map_res@mpCenterLatF
                                 = cen_lat
                                                       ; dan letakkan di
map_res@mpCenterLonF
                                = cen_lon
map_res@mpGeophysicalLineColor = "black"
map_res@mpGeophysicalLineThicknessF = 2.0
                                = 1.0
map_res@mpGridSpacingF
map_res@mpGridLineColor
                                 = "black"
contour_tot = wrf_contour(a, wks, tc(0,:,:), opts_r)
plot = wrf_map_overlays(a, wks, (/contour_tot/), plt_res, map_res)
```

Init: 2022-01-01\_00:00:00



OUTPUT FROM WRF V4.4.2 MODEL WE = 33 ; SN = 33 ; Levels = 44 ; Dis = 18km ; Phys Opt = 6 ; PBL Opt = 1 ; Cu Opt = 16

Gambar 1.21: Plot suhu udara dekat permukaan pada 2022-01-02 06:00:00 UTC

#### 1.5.4 QGIS

Aplikasi QGIS dapat digunakan untuk mengolah data WRF. Untuk memudahkan pengolahan data WRF, Anda dapat mengubah data WRF menjadi CF-Convention dengan skrip NCL sebelumnya pada terminal Bash Linux. Setelah itu, Anda dapat mengimpor data WRF yang telah terkonversi dalam format NetCDF Classic ke QGIS. Berikut ini adalah langkah-langkahnya.

- 1. Pada menu QGIS, pilih Layer > Add Layer > Add Raster Layer (CTRL + SHIFT + R).
- 2. Pada bagian **Source**, klik ikon . . . dan pilih file **wrfout\_\*** yang telah dikonversi menjadi CF-Convention.



Gambar 1.22: Import data WRF ke QGIS

- 3. Pilih variabel yang ingin Anda tampilkan. Misalnya, Anda dapat memilih T\_2m untuk menampilkan suhu udara pada ketinggian 2 meter. Klik Add Layers, kemudian klik Add.
- 4. Klik kanan pada raster yang telah diimpor dan pilih Properties. Pada **Band Rendering** di bagian *Render type*, pilih Singleband Gray. Pada bagian *Gray band*, terdapat pilihan nomor *Band* yang berisikan waktu.
  - Nilai maksimum dan minimum suhu udara dapat terlihat di bawah layer.
- 5. Setelah berhasil mengimpor, data raster dari WRF belum terproyeksi ke koordinat. Default sistem proyeksi pada QGIS kami adalah EPSG:4326 (WGS 84). Untuk mengubah sistem proyeksi, klik menu Raster > Projections > Warp (Reproject). Bagian Input layer diisi dengan raster yang akan diubah sistem proyeksinya dan Target CRS diisi dengan EPSG:4326 WGS 84. Kemudian, klik Run.
  - Layer raster baru akan muncul dengan nama **Reprojected**. Klik kanan pada raster tersebut dan pilih **Zoom to Layer(s)**
- 6. Agar lebih meyakinkan, Anda dapat mengimpor file vector dari batas wilayah Indonesia. Untuk data ini, bisa Anda unduh di gadm.org. Pada contoh ini, kami menggunakan file \*.json. Untuk mengimpornya, klik menu Layer > Add Layer > Add Vector Layer (CTRL + SHIFT + V). Pada



Gambar 1.23: Layer properties



Gambar 1.24: Reproyeksi raster

bagian **Source**, klik ikon ... dan pilih file gadm41\_IDN\_1.json. Klik Add Layers, kemudian klik Add.



Gambar 1.25: Import data vector

#### 1.5.5 Julia

Selain R dan Python, bahasa pemrograman Julia juga dapat digunakan untuk mengolah data WRF. Hanya saja, package khusus untuk WRF masih belum tersedia. Julia dapat digunakan di sistem operasi apa saja. Untuk pengguna Windows 10/11, Anda bisa menggunakan WSL atau terminal Windows langsung. Untuk membaca data netcdf dari WRF, algoritma yang kami berikan cukup memerlukan logika sehingga tidak semudah mengolahnya seperti di R. Anda dapat menggunakan package NCDatasets.jl, sedangkan untuk membuat grafik menggunakan Plots.jl. Berikut ini adalah langkah-langkahnya.

- 1. Buka terminal interaktif Julia dengan mengetik julia.exe pada Command Prompt/PowerShell atau carilah program Julia pada Start Menu.
- 2. Buka Jupyter Notebook pada terminal interaktif Julia dengan perintah berikut ini.

```
using IJulia
notebook()
```

3. Aktifkan package NCDatasets.jl dan Plots.jl.

```
using NCDatasets
using Plots
```

4. Anda dapat menggunakan fungsi ncread() untuk membaca data WRF sekaligus menentukan variabel yang ingin diimpor. Berikut ini adalah contoh untuk mengimpor data suhu udara pada ketinggian 2 meter.

```
wrf_path = "C:\\Users\\taats\\Desktop\\";
wrf_file = joinpath(wrf_path, "wrfout_d01_2022-01-01_00");
ds = NCDataset(wrf_file, "r");
t2 = ds["T2"]
```

```
T2 (32 \times 32 \times 67)
  Datatype:
                Float32
  Dimensions:
                west_east × south_north × Time
  Attributes:
  FieldType
                         = 104
  MemoryOrder
                         = XY
  description
                         = TEMP at 2 M
  units
                         = K
  stagger
  coordinates
                         = XLONG XLAT XTIME
```

#### Note

Perhatikan tanda; pada akhir baris kode. Tanda ini digunakan untuk menghilangkan respons dari kode tersebut. Ini sama seperti sintaks pada Matlab.

Dimensi pada variabel t2 bervariasi terhadap longitude (west\_east), latitude (south\_north), dan waktu (Time) secara berturut-turut. Cara membaca dimensi ini sama seperti pada package ncdf4 di R. Hanya saja, ini sudah didefinisikan di dalam skrip wrf-raster.R.

3. Sebelum menampilkan data, Anda perlu mengambil lokasi (latitude dan longitude).

```
lat = ds["XLAT"][1, :, 1];
lon = ds["XLONG"][:, 1, 1];
```

4. Anda dapat menampilkan grafik spasial untuk 1 waktu dengan package Plots.jl dengan fungsi heatmap().

```
nt = 1 # Indeks waktu = "2022-01-01 00:00:00"
heatmap(lon, lat, transpose(t2[:, :, nt]))
ylabel!("latitude") # Menambahkan label sumbu y
xlabel!("longitude") # Menambahkan label sumbu x
```

Nilai pada setiap baris dari t2 bervariasi terhadap longitude, sedangkan pada kolom bervariasi terhadap latitude. Untuk menampilkan grafik dengan koordinat yang benar, Anda perlu membalikkan (baris ke kolom, dan sebaliknya) pada matriks t2 dengan fungsi transpose().



Gambar 1.26: Grafik grid/raster suhu udara 2m

5. Selain divisualisasikan dalam bentuk grid/raster, Anda juga dapat menampilkan dalam bentuk kontur terisi dengan fungsi contourf() dari package Plots.jl.

```
nt = 10 # Indeks waktu = "2022-01-01 09:00:00"
contourf(lon, lat, transpose(t2[:, :, nt]))
ylabel!("latitude") # Menambahkan label sumbu y
xlabel!("longitude") # Menambahkan label sumbu x
```

6. Untuk grafik seri waktu, Anda dapat menggunakan fungsi plot() dari package Plots.jl. Berikut ini adalah contoh untuk menampilkan grafik seri waktu suhu udara pada ketinggian 2 meter.

```
using Dates

# Mengambil variabel waktu
time = ds["XTIME"];
ticks = Dates.format.(time, "yyyy-mm-dd HH:MM");

# Pemilihan lokasi
```



Gambar 1.27: Grafik kontur terisi suhu udara 2m



Gambar 1.28: Grafik seri waktu suhu udara 2m dari dua grid

# 2 Model Pendugaan Radiasi Matahari

#### 2.1 Pendahuluan

Radiasi matahari merupakan sumber energi utama dan berperan penting dalam siklus iklim bumi. Besaran radiasi matahari yang datang kemudian mengalami proses pemantulan, pemancaran, dan penerusan baik secara langsung maupun tidak langsung ke dan dari permukaan bumi. Radiasi matahari yang datang tersebut berpengaruh terhadap pergerakan massa udara dan massa air di bumi, selanjutnya melalui proses evaporasi maupun transpirasi, uap air dilepaskan ke udara dan membentuk awan sehingga terjadi hujan.

Pengukuran radiasi matahari secara langsung masih terbilang sedikit dengan periode perekaman data historis yang pendek. Padahal pengamatan radiasi matahari sangat penting dalam menjelaskan variabilitas dan perubahan iklim. Pada pemodelan iklim yang terus berkembang untuk menjelaskan kondisi iklim di masa lalu, saat ini dan masa depan tak lepas dari input data radiasi matahari dan kondisi karbon di atmosfer. Untuk mengetahui besaran nilai penduga radiasi matahari di suatu wilayah dapat dilakukan melalui model berdasarkan data historis parameter iklim lainnya seperti curah hujan dan suhu udara. Pendekatan dapat dilakukan dengan menggunakan model empirik dan model mekanistik.

Aplikasi pengolahan data yang digunakan dalam praktikum ini adalah R dan Python (pilih salah satu). Data contoh yang digunakan adalah data cuaca di Bandara Laguardia, New York, Amerika Serikat.

### 2.2 Model Pendugaan Ball et al. (2004)

Ball et al. [1] membangun model empiris untuk menduga radiasi matahari di permukaan bumi dengan masukan suhu udara maksimum, suhu udara minimum, curah hujan, dan *julian days*. Persamaan yang digunakan berupa regresi linier berganda, yaitu

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_{12} X_{12}$$

di mana keterangan setiap variabel bebas dapat dilihat pada tabel berikut.

Tabel 2.1: Keterangan variabel bebas dari persamaan empirik [1]

| Prediktor        | Keterangan               |  |  |  |
|------------------|--------------------------|--|--|--|
| $\overline{X_1}$ | Curah hujan (mm)         |  |  |  |
| $X_2$            | Suhu udara maksimum (°C) |  |  |  |
| $X_3$            | Suhu udara minimum (°C)  |  |  |  |
| $X_4$            | Day of Year              |  |  |  |

| Prediktor        | Keterangan                               |  |  |  |
|------------------|------------------------------------------|--|--|--|
| $\overline{X_5}$ | (Curah hujan) <sup>2</sup>               |  |  |  |
| $X_6$            | (Suhu udara maksimum) <sup>2</sup>       |  |  |  |
| $X_7^{\circ}$    | (Suhu udara minimum) <sup>2</sup>        |  |  |  |
| $X_8$            | $(\text{Day of Year})^2$                 |  |  |  |
| $X_9$            | Curah hujan * Suhu udara minimum         |  |  |  |
| $X_{10}$         | Suhu udara maksimum * Suhu udara minimum |  |  |  |
| $X_{11}$         | Curah hujan * Suhu udara maksimum        |  |  |  |
| $X_{12}$         | Suhu udara maksimum * Day of Year        |  |  |  |

### 2.3 Model Pendugaan Hunt et al. (1998)

Model pendugaan radiasi matahari lain adalah oleh Hunt [5], yaitu gabungan model mekanistik dan empirik dengan masukan suhu udara maksimum, suhu udara minimum, dan curah hujan. Model mekanistik digunakan untuk menduga radiasi matahari yang berada di permukaan atmosfer (radiasi ekstraterestrial,  $S_0$ ). Model pendugaan Hunt (1998) adalah sebagai berikut.

$$R_s = a_0 S_0 (T_{max} - T_{min})^{0.5} + a_1 T_{max} + a_2 P + a_3 P^2 + a_4 P^2 + a_5 P^2 +$$

dimana  $R_s$  adalah radiasi matahari harian  $(MJ\ m^{-2}\ hari^{-1})$ ,  $S_0$  adalah radiasi matahari di puncak atmosfer  $(MJ\ m^{-2}\ hari^{-1})$ , P adalah curah hujan (mm),  $T_{max}$  adalah suhu udara maksimum  $(^oC)$ , dan  $T_{min}$  adalah suhu udara minimum  $(^oC)$ . Untuk mengestimasi nilai  $S_0$ , Hunt menggunakan persamaan mekanistik dalam Spitters [18], yaitu:

$$S_0 = S_{sc} \left[ 1 + 0.033 \cos \left( \frac{360~t_d}{365} \right) \right] sin(\beta)$$

dimana,  $S_0$  adalah irradiasi ekstra terestrial (J  $m^{-2}s^{-1}$ ),  $S_{sc}$  konstanta matahari (1370 J  $m^{-2}s^{-1}$ ), suku cos adalah jarak tahunan antara bumi dan matahari yang dinyatakan dalam derajat,  $t_d$  adalah julian day, dan  $sin(\beta)$  adalah sinus sudut elevasi matahari (satuan detik) yang didefinisikan pada persamaan:

$$sin(\beta) = 3600 \left[ D \ sin(\lambda) \ sin(\delta) + \frac{24}{\pi} \ cos(\lambda) \ cos(\delta) \ \sqrt{(1 - tan^2(\lambda) \ tan^2(\delta))} \right]$$

dimana,  $\lambda$  adalah letak lintang dari lokasi stasiun dan adalah sudut deklinasi matahari pada saat julian day dan dinyatakan dalam derajat dengan estimasi pada persamaan:

$$sin(\delta) = -sin(23.45) \ cos \left( \frac{360 \ (t_d + 10)}{365} \right)$$

dan D adalah panjang hari (jam) dengan persamaan:

$$D = 12 + \frac{24}{180} \arcsin(\tan(\lambda) \ \tan(\delta))$$

### 2.4 Pengolahan Data

Data yang akan diolah bernama LaguardiaAirport-NYC.xlsx yang terdiri dari tiga worksheet. Worksheet ke-3 (RawData) adalah data yang akan diolah dengan berisikan 7 kolom: DOY (Day of Year, 1 - 365/366), YEAR (tahun), PRCP (curah hujan, mm), TAVG (suhu udara rata-rata, °C), TMAX (suhu udara maksimum, °C), TMIN (suhu udara minimum, °C), dan SRAD (radiasi matahari langsung, W/m²). Data pada worksheet tersebut sudah dirapikan sehingga Anda dapat langsung mengolahnya. Periode data yang digunakan dibagi menjadi 2, yaitu untuk pembuatan dan validasi model dengan pemilihan tahun 1998-2018 dan 2019-2020, secara berturut-turut.

#### 2.4.1 1. R

Package yang digunakan dalam pengolahan data di R adalah tidyverse dan readxl. Jika Anda belum memasang package ini, gunakan perintah berikut.

```
install.packages(c("tidyverse", "readxl"))
```

Pengetikan kode R dapat dilakukan di aplikasi RStudio atau teks editor lainnya yang Anda kuasai.

#### Model Ball et al. (2004)

Langkah-langkah pengolahan data untuk model Ball et al. (2004) adalah sebagai berikut.

1. Impor data excel (LaguardiaAirport-NYC.xlsx) pada sheet RawData dengan perintah berikut.

```
# A tibble: 8,401 \times 7
    YEAR
            DOY
                 PRCP
                         TAVG
                                TMAX
                                       TMIN
                                              SRAD
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
    1998
               1
                         -5
                                -1.1
                                       -8.9 253.
               2
   1998
                   0
                          4.7
                                10
                                       -0.6 136.
 3
    1998
               3
                         12
                                15.6
                                        8.3 97.8
                   0
    1998
               4
 4
                   0
                         11.7
                                17.2
                                        6.1 122.
 5
    1998
              5
                   0
                          5.9
                                 6.7
                                        5
                                            129.
 6
    1998
               6
                   1
                         10.3
                                15
                                        5.6
                                             14.4
 7
              7
                          9.5
                                               2.6
    1998
                  28.7
                                13.9
                                        5
 8
    1998
              8
                         10.3
                   0.8
                                16.1
                                        4.4
                                              10.2
 9
              9
    1998
                   0
                         12
                                15
                                        8.9
                                              24.7
10
   1998
             10
                   0
                          7.8
                                10
                                        5.6 199.
```

```
# ... with 8,391 more rows
# Use `print(n = ...)` to see more rows
```

2. Pilih periode tahun untuk pembuatan dan validasi model dengan perintah berikut.

```
# Pembuatan model
data_train <- data %>% filter(YEAR <= 2018)

# Validasi model
data_test <- data %>% filter(YEAR >= 2019)
```

3. Lakukan perhitungan prediktor ke-5 sampai ke-12 sesuai dengan Tabel 2.1

```
data_train <- data_train %>%
  mutate(
      PRCP_sq = PRCP^2, TMAX_sq = TMAX^2,
      TMIN_sq = TMIN^2, DOY_sq = DOY^2,
     PRCP TMAX = PRCP * TMAX,
     PRCP_TMIN = PRCP * TMIN,
      TMAX_TMIN = TMAX * TMIN,
      TMAX DOY = TMAX * DOY
  )
data_test <- data_test %>%
  mutate(
      PRCP_sq = PRCP^2, TMAX_sq = TMAX^2,
      TMIN_sq = TMIN^2, DOY_sq = DOY^2,
      PRCP_TMAX = PRCP * TMAX,
      PRCP_TMIN = PRCP * TMIN,
     TMAX_TMIN = TMAX * TMIN,
      TMAX_DOY = TMAX * DOY
  )
```

4. Lakukan pembuatan model regresi linier berganda pada data data\_train sesuai dengan model Ball et al. (2004).

```
Call:
lm(formula = SRAD ~ PRCP + TMAX + TMIN + DOY + PRCP_sq + TMAX_sq +
```

```
TMIN_sq + DOY_sq + PRCP_TMAX + PRCP_TMIN + TMAX_TMIN + TMAX_DOY,
   data = data_train)
Residuals:
   Min
               Median
                            3Q
             1Q
                                   Max
-528.48 -76.07
                  0.39
                         76.62 405.14
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.466e+01 8.446e+00 -5.287 1.28e-07 ***
PRCP
           -5.623e+00 4.012e-01 -14.016 < 2e-16 ***
XAMT
            3.937e+01 1.790e+00 21.996 < 2e-16 ***
           -5.211e+01 1.705e+00 -30.566
TMIN
                                         < 2e-16 ***
DOY
             1.421e+00 8.335e-02 17.048 < 2e-16 ***
PRCP_sq
            4.851e-02 2.749e-03 17.648 < 2e-16 ***
TMAX_sq
           -1.842e+00 9.502e-02 -19.383 < 2e-16 ***
TMIN_sq
           -2.657e+00 1.083e-01 -24.535 < 2e-16 ***
DOY_sq
           -3.800e-03 2.136e-04 -17.788 < 2e-16 ***
PRCP TMAX
           -3.527e-01 4.081e-02 -8.643 < 2e-16 ***
PRCP_TMIN
            4.344e-01 4.295e-02 10.116 < 2e-16 ***
TMAX_TMIN
            4.606e+00 1.962e-01 23.478 < 2e-16 ***
TMAX_DOY
            5.286e-03 1.583e-03 3.340 0.000843 ***
               0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
Signif. codes:
Residual standard error: 98.17 on 7657 degrees of freedom
Multiple R-squared: 0.4214,
                               Adjusted R-squared: 0.4205
F-statistic: 464.8 on 12 and 7657 DF, p-value: < 2.2e-16
```

Bisa Anda lihat pada bagian Multiple R-squared untuk mengetahui nilai dari koefisien determinasi ( $R^2$ ). Walaupun masih di bawah 50%, namun semua prediktor yang digunakan untuk mengestimasi radiasi matahari sudah signifikan (p-value < 0.05).

5. Anda dapat melakukan estimasi nilai radiasi matahari pada model yang sudah dibangun dengan menggunakan data validasi (data\_test) dengan perintah berikut.

```
data_test <- data_test %>%
  mutate(
     SRAD_pred = predict(model, data_test)
)
```

6. Kemudian, lakukan perhitungan koefisien determinasi (R<sup>2</sup>) dan korelasi Pearson (r) pada data\_test dengan perintah berikut.

```
# korelasi Pearson (r)
r <- cor(data_test$SRAD, data_test$SRAD_pred)

# koefisien determinasi (R2)
R2 <- R^2

# Print
print(r); print(R2)</pre>
```

- [1] 0.6713033
- [1] 0.4506481

#### Model Hunt et al. (1998)

Langkah-langkah pembuatan model radiasi matahari dengan menggunakan model Hunt et al. (1998) adalah sebagai berikut.

- 1. Impor data Excel. Caranya sama seperti pada subbab sebelumnya.
- 2. Sebelum Anda melakukan pembuatan model regresi linier berganda, Anda harus melakukan perhitungan  $S_0$  terlebih dahulu. Kami menyediakan fungsi untuk menghitung nilai  $S_0$  seperti pada Section 2.3.

```
SO <- function(lat, doy){
    # Fungsi untuk menghitung sin (delta)
    sin_delta <- -sinpi(23.45 / 180) * cospi((360 * (doy + 10) / 365) /

180)
    asin_delt <- asin(sin_delta) * 180 / pi

# sin(lat) * sin(delta)
    s_lat_delt <- sinpi(lat / 180) * sinpi(asin_delt / 180)

# cos(lat) * cos(delta)
    c_lat_delt <- cospi(lat / 180) * cospi(asin_delt / 180)

# (sin(lat) * sin(delta)) / (cos(lat) * cos(delta))
    t_lat_delt <- s_lat_delt / c_lat_delt

# Fungi perhitungan panjang hari (D)
    D <- 12 + 24/180 * asin(t_lat_delt) * 180 / pi

# Fungsi perhitungan sudut elevasi matahari
    sin_beta <- 3600 * (D * s_lat_delt + 24/pi * c_lat_delt * sqrt(1 -

t_lat_delt^2))
```

```
# Fungsi radiasi matahari ekstra terestrial
S_0 <- 1370 * (1 + 0.033 * cospi(360 / 180 * doy / 365)) * sin_beta

# Konversi J m-2 ke MJ m-2
return(S_0 / 1000000)
}</pre>
```

3. aaa

## **Daftar Pustaka**

- [1] Rosalind A Ball, Larry C Purcell, and Sean K Carey. "Evaluation of solar radiation prediction models in North America". In: *Agronomy Journal* 96.2 (2004), pp. 391–397.
- [2] Jingyi Bao, Fotini Katopodes Chow, and Katherine A Lundquist. "Large-eddy simulation over complex terrain using an improved immersed boundary method in the Weather Research and Forecasting Model". In: *Monthly Weather Review* 146.9 (2018), pp. 2781–2797.
- [3] Michael Glotter et al. "Evaluating the utility of dynamical downscaling in agricultural impacts projections". In: *Proceedings of the National Academy of Sciences* 111.24 (2014), pp. 8776–8781.
- [4] Aneesh Goly, Ramesh SV Teegavarapu, and Arpita Mondal. "Development and evaluation of statistical downscaling models for monthly precipitation". In: *Earth Interactions* 18.18 (2014), pp. 1–28.
- [5] LA Hunt, L Kuchar, and CJ Swanton. "Estimation of solar radiation for use in crop modelling". In: Agricultural and Forest Meteorology 91.3-4 (1998), pp. 293–300.
- [6] R Huth and J Kyselỳ. "Constructing site-specific climate change scenarios on a monthly scale using statistical downscaling". In: *Theoretical and Applied Climatology* 66.1 (2000), pp. 13–27.
- [7] JW Kim et al. "The statistical problem of climate inversion: Determination of the relationship between local and large-scale climate". In: *Monthly weather review* 112.10 (1984), pp. 2069–2077.
- [8] W Ladwig. wrf-python Version 1.3.4. 2017. DOI: https://doi.org/10.5065/D6W094P1.
- [9] HA Pahlavan et al. "Improvement of multiple linear regression method for statistical downscaling of monthly precipitation". In: *International journal of environmental science and technology* 15.9 (2018), pp. 1897–1912.
- [10] C Piani, JO Haerter, and E Coppola. "Statistical bias correction for daily precipitation in regional climate models over Europe". In: *Theoretical and Applied Climatology* 99.1-2 (2010), pp. 187–192.
- [11] C Piani et al. "Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models". In: *Journal of Hydrology* 395.3-4 (2010), pp. 199–215.
- [12] Jordan G. Powers et al. "The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions". In: Bulletin of the American Meteorological Society 98.8 (2017), pp. 1717–1737. DOI: 10.1175/BAMS-D-15-00308.1. eprint: https://doi.org/10.1175/BAMS-D-15-00308.1. URL: https://doi.org/10.1175/BAMS-D-15-00308.1.
- [13] Clarence W Richardson. "Stochastic simulation of daily precipitation, temperature, and solar radiation". In: Water resources research 17.1 (1981), pp. 182–190.
- [14] DA Sachindra et al. "Statistical downscaling of general circulation model outputs to precipitation—part 1: calibration and validation". In: *International Journal of Climatology* 34.11 (2014), pp. 3264—3281.

#### Daftar Pustaka

- [15] William C Skamarock et al. A description of the advanced research WRF version 4. Tech. rep. National Center For Atmospheric Research Boulder Co Mesoscale and Microscale ..., 2019.
- [16] Marek Smid and Ana Cristina Costa. "Climate projections and downscaling techniques: a discussion for impact studies in urban systems". In: *International Journal of Urban Sciences* 22.3 (2018), pp. 277–307. DOI: 10.1080/12265934.2017.1409132. eprint: https://doi.org/10.1080/12265934.2017.1409132.
- [17] T Sonkaew et al. "Finding the Optimum Microphysics and Convective Parameterization Schemes for the WRF Model for LPRU, Thailand". In: ().
- [18] CJT Spitters, HAJM Toussaint, and J Goudriaan. "Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation". In: Agricultural and Forest Meteorology 38.1-3 (1986), pp. 217–229.
- [19] Charles Talbot, Elie Bou-Zeid, and Jim Smith. "Nested mesoscale large-eddy simulations with WRF: Performance in real test cases". In: *Journal of Hydrometeorology* 13.5 (2012), pp. 1421–1441.
- [20] Robert L Wilby and Thomas ML Wigley. "Downscaling general circulation model output: a review of methods and limitations". In: *Progress in physical geography* 21.4 (1997), pp. 530–548.
- [21] Hongxiong Xu et al. "Performance of WRF large eddy simulations in modeling the convective boundary layer over the Taklimakan desert, China". In: Journal of Meteorological Research 32.6 (2018), pp. 1011–1025.