第五章: 假设检验

主讲:金百锁

第五章: 假设检验

5.2	一样本	和两样本总体参数检验	1
	5.2.1	一样本正态总体参数检验	1
	5.2.2	两样本正态总体的情形	13
	5.2.3	成对数据	18
	5.2.4	0-1 分布中未知参数 p 的假设检验	19
	5.2.5	置信区间和假设检验之间的关系	21

5.2 一样本和两样本总体参数检验

本节介绍最基本的假设检验问题:一样本和两样本正态总体的有 关均值和方差的检验,简单的大样本检验 (0-1 分布参数的假设检验).

5.2.1 一样本正态总体参数检验

一般地, 设总体 $X\sim N(\mu,\sigma^2), -\infty<\mu<\infty, \sigma^2>0; X_1,\cdots,X_n$ 是取自总体 X 的一个样本. 取显著性水平为 α . 则可能考虑的参数有均值 μ 和方差 σ^2 :

(1) 方差已知时均值的检验

先考虑双侧假设, 即要检验

$$H_0: \mu = \mu_0 \leftrightarrow H_1: \mu \neq \mu_0.$$

由于 μ 的极大似然估计为 \bar{X} , 取 "标准化" 后的检验统计量

$$Z = Z(X_1, \dots, X_n) = \sqrt{n} \frac{\bar{X} - \mu_0}{\sigma}$$

注意到当 H_0 成立时, $U \sim N(0,1)$, |Z| 应该较小, 反之当 |U| 的观测值 $z(x_1,\cdots,x_n)$ 较大时, 不利于零假设 H_0 应该拒绝之. 所以选拒绝域形如

$$\{|Z|>\tau\}.$$

要求显著性水平为 α , 即

$$P_{H_0}(|Z| > \tau) = \alpha,$$

解得 $\tau = z_{\alpha/2}$. 于是检验的拒绝域为

$$\{|Z| > u_{\alpha/2}\}.$$

即当观测值 (x_1, \cdots, x_n) 满足不等式

$$\sqrt{n} \frac{|\bar{x} - \mu_0|}{\sigma} > u_{\alpha/2}$$

时拒绝 H_0 .

类似地, 检验右侧假设

$$H_0: \mu = \mu_0 \leftrightarrow H_1: \mu > \mu_0$$
 或者 $H_0: \mu \leq \mu_0 \leftrightarrow H_1: \mu > \mu_0$ 仍然用统计量 Z , 由于 Z 大时不利于 H_0 , 取拒绝域为

$$\{Z>u_{\alpha}\}$$
.

而检验另一个左侧假设

$$\{Z<-u_{\alpha}\}$$
.

虽然我们取的临界值只考虑使检验在 $\mu=\mu_0$ 处的犯 I 类错误的概率 为 α , 从检验的拒绝域的形状上可直接看出来在零假设下 $\mu\leq\mu_0$ (或 $\mu\geq\mu_0$) 时犯第 I 类错误的概率恒小于或等于 α .

以上三个检验统称为Z检验.

随机地从一批铁钉中抽取 16 枚, 测得它们的长度 (单位: 厘米) 如下:

_ ↑Example

- 2.942371 2.988662 3.106234 3.109316 3.118427 3.132254 3.140042 3.170188 2.902562 3.128003 3.146441 2.978240
- 3.103600 3.003394 3.044384 2.849916

已知铁钉长度服从标准差为 0.1 的正态分布, 在显著性水平 $\alpha=0.01$ 下, 能否认为这批铁钉的平均长度为 3 厘米? 如显著性水平为 $\alpha=0.05$ 呢?

↓Example

 \mathbf{m} : 这是方差已知时关于均值 μ 的假设检验问题,

$$H_0: \mu = 3 \leftrightarrow H_1: \mu \neq 3$$

取检验统计量为 $Z = \sqrt{n}(\bar{X} - 3)/0.1$,检验的拒绝域为 $|Z| > u_{\alpha/2}$. 由样本算得检验统计量的值为 $z \approx 2.16$,如显著性水平为 0.01,则临界值为 $u_{0.005} \approx 2.58$,跟检验统计量的值比较发现不能拒绝零假设,即不能推翻铁钉平均长度为 3 厘米的假设;而如果显著性水平为 0.05时,临界值为 $u_{0.025} = 1.96$,此时可以拒绝零假设,认为铁钉平均长度不等于 3 厘米. 这个例子说明结论可能跟显著性水平的选择有关: 显著性水平越小,零假设被保护得越好从而更不容易被拒绝.

对正态总体 $N(\mu, \sigma^2)$ (其中 σ^2 已知) 下的假设检验问题 $H_0: \mu \ge \mu_0 \leftrightarrow H_1: \mu < \mu_0$,如果我们还要求"犯第二类错误的概率要小于指定的 $\beta > 0$ "该怎么办?

Example

↓Example

解:根据功效函数和两类错误的定义,知道等价的要求

$$\beta_{\phi}(\mu) \ge 1 - \beta, \quad \mu < \mu_0 \tag{5.1}$$

但是,当 $\mu < \mu_0$ 但 μ 接近 μ_0 时, $\beta_{\phi}(\mu) \approx \alpha$,而因为 α, β 一般都 很小,因此一般有 $\alpha < 1 - \beta$,这就看出要求 (5.1) 无法达到。我们只能放松一些,要求对某个指定的 $\mu_1 < \mu_0$,有

$$\beta_{\phi}(\mu) \ge 1 - \beta, \quad \mu < \mu_1 \tag{5.2}$$

因为 $\beta_{\phi}(\mu)$ 为 μ 的减函数,因此等价于要求

$$\beta_{\phi}(\mu_1) \ge 1 - \beta$$

此即

$$\Phi\left(\frac{\sqrt{n}(\mu_0 - \mu)}{\sigma} - u_\alpha\right) \ge 1 - \beta$$

等价的得到

$$n \ge \sigma^2 (u_{\alpha} + u_{\beta})^2 / (\mu_0 - \mu)^2$$

也即要满足题目中的要求,样本大小至少要达到上式右边那么大。□

(2) 方差未知时均值的检验

考虑检验

$$H_0: \mu = \mu_0 \leftrightarrow \mu \neq \mu_0,$$

由于方差未知, 可以在将 \bar{X} 标准化的过程中用样本方差 S^2 代替总体方差 σ^2 , 得检验统计量

$$T = \sqrt{n} \frac{\bar{X} - \mu_0}{S}.$$

由于在 H_0 下, $T \sim t_{n-1}$, 于是拒绝域取成

$$\{|T| > t_{n-1}(\alpha/2)\}$$
.

此检验称为t 检验.

类似地可以得到另外两个单侧假设的检验拒绝域, 见表 7.2.1 中.

(例5.2.1续) 设方差未知,则在水平 0.01 和 0.05 下能否认为铁钉平均长度为 3 厘米?

TExample

↓Example

解: 这是方差未知时关于均值 μ 的假设检验问题.

$$H_0: \mu = 3 \leftrightarrow H_1: \mu \neq 3$$

取检验统计量为 $T = \sqrt{n}(\bar{X} - 3)/S$, 检验的拒绝域为 $|T| > t_{n-1}(\alpha/2)$. 由样本算得检验统计量的值约为 2.21, 与显著性水平 0.01 对应临界值 $t_{15}(0.005) \approx 2.95$ 比较, 不能拒绝零假设, 而与显著性水平 0.05 对应临界值 $t_{15}(0.025) \approx 2.13$ 比较, 可以拒绝零假设, 即在显著性水平 0.01 下不能拒绝铁钉平均长度为 3 厘米的假定, 但在显著性水平 0.05下可以认为铁钉平均长度不等于 3 厘米, 此结论与方差已知情形一致.

(3) 方差的检验

考虑假设检验问题

$$H_0: \sigma^2 = \sigma_0^2 \leftrightarrow H_1: \sigma^2 \neq \sigma_0^2.$$

对**均值已知的情形**, 由 σ^2 的极大似然估计

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

可以构造检验统计量

$$\chi^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \mu)^2 = \frac{n\hat{\sigma}^2}{\sigma_0^2}.$$

在 H_0 下, $\chi^2 \sim \chi_n^2$, χ^2 的平均值为 n, 而在 H_1 下, $\chi^2 = \frac{\sigma^2}{\sigma_0^2} \frac{n \hat{\sigma}^2}{\sigma^2}$ 的均值为 $\frac{\sigma^2}{\sigma_0^2} n \neq n$, 因此当 χ^2 的值过于偏离 n 时应该拒绝 H_0 , 于是拒绝域取成

$$\{\chi^2 < \chi_n^2 (1 - \alpha/2)$$
 或者 $\chi^2 > \chi_n^2 (\alpha/2) \}$.

对均值未知的情形, 构造检验统计量

$$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2},$$

其中 S^2 为样本方差. 在 H_0 下, $\chi^2 \sim \chi^2_{n-1}$, 拒绝域取成

$$\left\{\chi^2 < \chi_{n-1}^2 (1 - \alpha/2)$$
 或者 $\chi^2 > \chi_{n-1}^2 (\alpha/2) \right\}$.

对于单侧假设, 可以类似得到检验的拒绝域, 参看下表 7.2.1. 上述检验称为 χ^2 检验.

表 7.2.1: 一样本正态总体 $N(\mu, \sigma^2)$.

	12.1.	1十十十二心	(μ, σ) .
检验对象	检验统计量	分布	拒绝域 [†]
$\mu \ (\sigma^2$ 已知)	$Z = \sqrt{n}(\bar{X} - \mu_0)/\sigma$	N(0,1)	$ \left\{ \begin{array}{l} Z > u_{\alpha/2} \\ Z > u_{\alpha} \\ Z < -u_{\alpha} \end{array} \right. $
μ (σ^2 未知)	$T = \sqrt{n}(\bar{X} - \mu_0)/S$	t_{n-1}	$\begin{cases} T > t_{n-1}(\alpha/2) \\ T > t_{n-1}(\alpha) \\ T < -t_{n-1}(\alpha) \end{cases}$
$\sigma^2 (\mu$ 已知)	$\chi^{2} = \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$	χ_n^2	$\begin{cases} \chi^2 > \chi_n^2(\alpha/2)$ 或者 $\chi^2 < \chi_n^2(1-\alpha/2) \\ \chi^2 > \chi_n^2(\alpha) \\ \chi^2 < \chi_n^2(1-\alpha) \end{cases}$
$\sigma^2 (\mu 未知)$	$\chi^{2} = \frac{1}{\sigma_{0}^{2}} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$	χ^2_{n-1}	$\begin{cases} \chi^2 > \chi_{n-1}^2(\alpha/2) \overrightarrow{w} + \chi^2 < \chi_{n-1}^2(1-\alpha/2) \\ \chi^2 > \chi_{n-1}^2(\alpha) \\ \chi^2 < \chi_{n-1}^2(1-\alpha) \end{cases}$

†有关均值的检验: 对立假设分别为 $\mu \neq \mu_0,\, \mu > \mu_0$ 和 $\mu < \mu_0.$ 有关方差的检验: 对立假设分别为 $\sigma^2 \neq \sigma_0^2,\, \sigma^2 > \sigma_0^2$ 和 $\sigma^2 < \sigma_0^2.$

解: 这是均值未知时关于方差 σ^2 的假设检验问题

$$H_0: \sigma^2 \le 0.1^2 \leftrightarrow H_1: \sigma^2 > 0.1^2.$$

取检验统计量为 $\chi^2 = \frac{(n-1)S^2}{0.12}$,检验的拒绝域为 $\{\chi^2 > \chi^2_{n-1}(\alpha)\}$. 由 样本算得检验统计量的值 $\chi^2 \approx 14.32$,与显著性水平 0.2 对应临界值 $\chi^2_{15}(0.1) \approx 22.31$ 比较,不能拒绝零假设,即在显著性水平 0.1 下可以 认为铁钉的标准差小于 0.1.

5.2.2 两样本正态总体的情形

设总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2), -\infty < \mu_1, \mu_2 < \infty, \sigma_1^2, \sigma_2^2 > 0; X_1, \cdots, X_n$ 是从总体 X 中抽取的一个样本, Y_1, \cdots, Y_n 是从总体 Y 中抽取的一个样本。设来自不同总体的样本相互独立。下面设考虑有关均值差 $\mu_1 - \mu_2$ 和方差比 σ_1^2/σ_2^2 的检验。取显著性水平为 α .

↑Example

甲乙两个农业试验区种植玉米,除了甲区施磷肥外,其他试验条件都相同,把两个试验区分别均分成 10 个和 9 个小区统计产量 (单位: 千克),得数据如下

甲区 62 57 65 60 63 58 57 60 60 58

乙区 50 59 56 57 58 57 56 55 57

假定甲乙两区中每小块的玉米产量分别服从 $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$, 其中 μ_1, μ_2, σ^2 未知. 试问在显著性水平 $\alpha=0.1$ 下磷肥对玉米的产量是否有效?

↓Example

解: 磷肥对玉米产量有效果等价于 $\mu_1 > \mu_2$, 故将其设为对立假设, 假设检验问题是

$$H_0: \mu_1 \le \mu_2 = 0 \leftrightarrow H_1: \mu_1 > \mu_2.$$

构造基于 $\mu_1 - \mu_2$ 的极大似然估计 $\bar{X} - \bar{Y}$ 的检验统计量

$$T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}}.$$

当 H_0 成立时, $T \sim t_{m+n-2}$, 于是拒绝域为

$$\{T > t_{m+n-2}(\alpha)\}.$$

由所得数据算得检验统计量 T 的观测值为

$$t = \frac{\bar{x} - \bar{y}}{s_w \sqrt{\frac{1}{m} + \frac{1}{n}}} = 3.23.$$

由 $\alpha=0.1$ 得临界值为 $t_{m+n-2}(\alpha/2)=t_{17}(0.1)\approx 1.33<3.23$,因此 拒绝 H_0 ,即可以在显著性水平 0.1 下认为磷肥对玉米的产量有显著性影响.

在例5.2.2中假定了两个正态总体的方差是相等的,即 $\sigma_1^2 = \sigma_2^2 = \sigma^2$. 现在我们根据样本来检验这个方差齐性的假设,即要检验

Example

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = 1 \leftrightarrow H_1: \frac{\sigma_1^2}{\sigma_2^2} \neq 1.$$

↓Example

解:因为 σ_1^2 和 σ_2^2 的极大似然估计分别是

$$\hat{\sigma}_1^2 = \frac{1}{m} \sum_{i=1}^m (X_i - \bar{X})^2, \hat{\sigma}_2^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

在 $\theta = \sigma_1^2/\sigma_2^2$ 的极大似然估计 $\hat{\theta} = \hat{\sigma}_1^2/\hat{\sigma}_2^2$ 的基础上可以构造检验统计量

$$F = \frac{S_1^2}{S_2^2} = \frac{(m-1)\hat{\sigma}_1^2/m}{(n-1)\hat{\sigma}_2^2/n}.$$

注意到 F 中的分子和分母分别是 X 和 Y 的样本方差. 当零假设成立时, $F \sim F_{m-1, m-1}$. 于是拒绝域为

$$\{F < F_{m-1,n-1}(\alpha/2) \mid \vec{x} \mid F > F_{m-1,n-1}(1-\alpha/2)\}.$$

由数据算得检验统计量 F 的观测值 f=1.19, 如果取显著性水平 $\alpha=0.2$, 那么临界值为 $F_{9,8}(0.1)=2.44$, $F_{9,8}(0.9)=1/F_{8,9}(0.1)=0.41$ (如果 $X\sim F_{m,n}$, 则 $1/X\sim F_{n,m}$). 易见 0.41<1.19<2.44, 因此不能拒绝 H_0 , 即在显著性水平 0.2 下可以认为上例中所作的方差齐性假定是合理的.

表 7.2.2: 两样本正态总体的假设检验

检验对象	检验统计量	分布	拒绝域†
型型列系	型型灯月里	20.40	10.00
均值(方差已知)	$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$	N(0,1)	$ \left\{ \begin{array}{l} Z > u(\alpha/2) \\ Z > u(\alpha) \\ Z < -u(\alpha) \end{array} \right. $
均值(方差未知)‡	$T = \frac{\bar{X} - \bar{Y}}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}}$	t_{m+n-2}	$ \begin{cases} T > t_{m+n-2}(\alpha/2) \\ T > t_{m+n-2}(\alpha) \\ T < -t_{m+n-2}(\alpha) \end{cases} $
方差(均值已知)	$F = \frac{\sum_{i=1}^{m} (X_i - \mu_1)^2 / m}{\sum_{i=1}^{n} (X_i - \mu_2)^2 / n}$		$\begin{cases} F > F_{m,n}(\alpha/2)\vec{\otimes}F < \frac{1}{F_{n,m}(\alpha/2)} \\ F > F_{m,n}(\alpha) \\ F < \frac{1}{F_{n,m}(\alpha)} \end{cases}$
方差(均值未知)	$F = \frac{S_1^2}{S_2^2}$	$F_{m-1,n-1}$	$\begin{cases} F > F_{m-1,n-1}(\alpha/2) \overrightarrow{\boxtimes} F < \frac{1}{F_{n-1,m-1}(\alpha/2)} \\ F > F_{m-1,n-1}(\alpha) \\ F < \frac{1}{F_{n-1,m-1}(\alpha)} \end{cases}$

†有关均值的检验: 对立假设分别为 $\mu_1 \neq \mu_2$, $\mu_1 > \mu_2$ 和 $\mu_1 < \mu_2$. 有关方差的检验: 对立假设分别为 $\sigma_1^2 \neq \sigma_2^2$, $\sigma_1^2 > \sigma_2^2$ 和 $\sigma_1^2 < \sigma_2^2$.

‡假定方差相等

5.2.3 成对数据

在上述两样本正态总体的假设检验中,要求两个样本是独立的, 但是没有要求样本量相等.有一类数据叫做成对数据

$$\{(X_1,Y_1),\cdots,(X_n,Y_n)\}$$

- 数据对之间通常可以认为是独立的
- 数据对内两个观测通常不独立

比如一个病人在用药前后测得的指标分别为 X 和 Y

当数据是**连续数据**时候,通常对数据对内取差,构造一个新的总体 Z = Y - X 及样本 $Z_1 = X_1 - Y_1, \dots, Z_n = X_n - Y_n$,通常假设 Z 服从正态,则相应的假设检验转为一样本正态检验问题!

5.2.4 0-1 分布中未知参数 p 的假设检验

产品验收时,需要检验不合格率是否小于某给定的一个数.

设 (X_1, \dots, X_n) 是取自总体 X 的一个样本, 该总体服从 0-1 分布, 取 1 的概率为 p. 常见的假设有三种:

- (1) $H_0: p = p_0 \leftrightarrow H_1: p \neq p_0;$
- (2) $H_0: p = p_0 \leftrightarrow H_1: p > p_0 \implies H_0: p \le p_0 \leftrightarrow H_1: p > p_0;$

假定样本量 n 较大, 取显著性水平为 α . 由于 p 的极大似然估计为 \bar{X} , 取 "标准化" 过的检验统计量

$$T = \sqrt{n} \frac{\bar{X} - p_0}{\sqrt{p_0(1 - p_0)}},$$

其中 p_0 和 $p_0(1-p_0)/n$ 分别为 \bar{X} 在零假设 $p=p_0$ 下的期望和方差,从而当 H_0 成立时,由中心极限定理近似地有 $T \sim N(0,1)$. 于是上述三种检验的拒绝域分别为

$$\{|T| > u_{\alpha/2}, \quad \{T > u_{\alpha}\} \quad \text{fill} \quad \{T < -u_{\alpha}\}$$

19

某厂产品不合格率通常为 0.5. 厂方希望知道原料产地的改变是否对产品的质量发生显著的影响. 现在随机地从原料产地改变后的产品中抽取了 80 个样品进行检验, 发现有 5 个是不合格品. 试问, 在显著性水平 0.1 下, 厂方由此可以得出什么结论?

_ ↑Example

l.Example

解: 总体 $X \sim B(1,p)$, 其中 p 未知. 在显著性水半 $\alpha = 0.1$ 下, 产品质量无变化等价于 p = 0.05, 故我们要检验

$$H_0: p = 0.05 \leftrightarrow H_1: p \neq 0.05.$$

由于 $\bar{x} = 5/80 = 0.0625$, 因此检验统计量 T 的观测值

$$t = \sqrt{n} \frac{\bar{x} - p_0}{\sqrt{p_0(1 - p_0)}} = 0.513$$

由 $\alpha = 0.10$ 得临界值 $u_{0.05} = 1.645$. 易见, |t| < 1.645, 因此不能拒

绝 H_0 ,即在近似显著性水平 0.10 下可以认为原料产地的改变对该厂产品的质量没有发生显著的影响.

5.2.5 置信区间和假设检验之间的关系

置信区间和假设检验之间有着明显的联系。我们首先考虑置信区间和双边检验之间的关系。设 X_1, \cdots, X_n 为从总体 $F(x;\theta)$ 中抽取的样本,参数 θ 的 $1-\alpha$ 置信区间为 $[\theta,\bar{\theta}]$, 即

$$P(\underline{\theta} \le \theta \le \bar{\theta}) \ge 1 - \alpha$$

而对假设 $H_0: \theta = \theta_0 \leftrightarrow H_1: \theta \neq \theta_0$, 在原假设之下, 有

$$P(\underline{\theta} \le \theta_0 \le \bar{\theta}) \ge 1 - \alpha$$

等价于

$$P(\theta_0 > \bar{\theta}) + P(\theta_0 < \underline{\theta}) \le \alpha$$

21

按显著性检验的定义,即得其检验为

$$\phi$$
: 当 $\underline{\theta} \le \theta_0 \le \overline{\theta}$ 时,接受 H_0 ,不然就拒绝

反过来讲, 如果假设 $H_0: \theta = \theta_0 \leftrightarrow H_1: \theta \neq \theta_0$ 检验的接受域有形式

$$\underline{\theta}(x_1, \cdots, x_n) \le \theta_0 \le \overline{\theta}(x_1, \cdots, x_n)$$

即有

$$P(\underline{\theta} \le \theta_0 \le \bar{\theta}) \ge 1 - \alpha$$

由 θ_0 的任意性, 知对任意的 θ , 有

$$P(\underline{\theta} \le \theta \le \bar{\theta}) \ge 1 - \alpha$$

即: 为求出参数 θ 的 $1-\alpha$ 置信区间,我们可以先找出 θ 的双边检验 $H_0: \theta=\theta_0 \leftrightarrow H_1: \theta\neq\theta_0$ 的检验函数,则其接受域就是参数 θ 的 $1-\alpha$ 置信区间。反过来,为求假设 $H_0: \theta=\theta_0 \leftrightarrow H_1: \theta\neq\theta_0$ 的检

验,我们可以先求出参数 θ 的 $1-\alpha$ 置信区间,则就是该假设的接受域。

类似地,置信水平为 $1-\alpha$ 的单侧置信区间 $(\underline{\theta},\infty)$ (或者 $(-\infty,\overline{\theta})$) 与显著性水平为 α 的右 (或者左) 边检验问题 $H_0: \theta \leq \theta_0 \leftrightarrow H_1: \theta < \theta_0$), 也有类似的对应关系。