Genome Assembly

Objective

 To learn the basics of genome assembly

Bioinformatics Central Dogma Map or Reads Assembly

AKA Bioinformatics Central Dogma*

*There is no such thing I made it up!

Viral sequencing review

Processing amplicon sequencing data

_

Genome assembly from NGS data

Contig 2

De novo

Contig 1

- Latin for "from the new"
- NO Reference sequence used
- Results in contigs (contiguous sequences)
- Requires a scaffold to put contigs into order across repetitive regions
- Mostly used for metagenomics and assembling genomes that have no reference

Reference-based

- Individual reads are mapped directly to the position of the reference genome that they align the best
- Disadvantage is that pathogens that evolve rapidly and are highly variable may not assemble if a close enough relative sequence is not used as the reference

Genome assembly

De novo

- Latin for "from the new"
- NO Reference sequence used
- Results in contigs (contiguous sequences)
- Requires a scaffold to put contigs into order across repetitive regions
- Mostly used for metagenomics and assembling genomes that have no reference

De novo assembly

AR IS AWESOME AMMAR IS S AWESD ESOME

AMMAR IS

AR IS AWESOME

S AWESD

ESOME

AMMAR IS AWESOME

Coverage depth vs breadth

Sequencing depth, read depth, depth of coverage – number of times a specific position in a genome is sequenced e.g. 50x depth coverage means that each base in the genome has been sequenced 50 times on average Breadth of coverage – proportion of the genome that has been sequenced e.g. 95% coverage means 95% of the length of the genome has been sequenced

Read mapping

Read mapping is the process of aligning reads to a reference genome

https://training.galaxyproject.org/training-material/topics/sequence-analysis/images/mapping/mapping.png

Read mapping Algorithms and Tools

Minimizers – collects unique kmers that are used as seeds to search for longer matches. eg: minimap2

Position	1	2	3	4	5	6	7	1	2	3	4	5	6	7	8	9	10	11	12
Sequence	2	3	1	0	3	4	3	4	2	6	4	7	2	8	1	4	7	5	1
k-mers	2	3	1					4	2	6	4	7	2	8					
with		3	1	0					2	6	4	7	2	8	1				
minimizer			1	0	3					6	4	7	2	8	1	4			
in				0	3	4					4	7	2	8	1	4	7		
bold					3	4	3					7	2	8	1	4	7	5	
	(a)							(b)					2	8	1	4	7	5	1

Read mapping Algorithms and Tools

Burrows-Wheeler Transformation (BWT)
- maps genomic sequences using a
data compression technique that
rearranges characters in a string to
group identical ones together, facilitating
efficient indexing and alignment

e.g. bwa or Bowtie2

Burrows-Wheeler Transform

Text transform that is useful for compression & search.

banana

Janana		
banana\$		\$banana
anana\$b		a\$banan
nana\$ba	sort	ana\$ban
ana\$ban	→	anana\$b
na\$bana		banana\$
a\$banan		nana\$b <mark>a</mark>
\$banana		na\$ban <mark>a</mark>

BWT(banana) = annb\$aa

Tends to put runs of the same character together.

Makes compression work well.

"bzip" is based on this.

Read mapping tools

A. Short read to k-mers (k=4)

B. Eulerian de Bruijn graph

C. Hamiltonian de Bruijn graph

Sequence Alignment/Map (SAM)

SAM is a file format used to store information about the alignment of reads to a sequencing genome

Human-readable text files consist of tab-separated columns, with each line representing a single read alignment and each column providing specific information the alignment

SAM file format

https://www.samformat.info/sam-format-flag

Binary Alignment/Map (BAM)

- same as SAM but encoded in binary (e.g. 10110)
- more compact and efficient in terms of storage and processing