HM6117LFP-3, HM6117LFP-4

150ns/200ns max.

Preliminary

2048-word×8-bit High Speed Static CMOS RAM

FEATURES

- High Density Small-sized Packaged
- Projection Area Reduced to One-Thirds of Conventional DIP
- Thickness Reduced to a Half of Conventional DIP
- Single 5V Supply
- High Speed: Fast Access Time
- Low Power Standby and Low Power Operation;
 Standby: 10µW (typ.) Two Chip Enable Input for Battery Back up
 Operation: 180mW (typ.)
- Completely Static RAM: No clock nor Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time
- Capability of Battery Back up Operation

■FUNCTIONAL BLOCK DIAGRAM

■ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to GND	V_{τ}	*-0.5 to +7.0	V
Operating Temperature	Topr	0 to +70	°C
Storage Temperature	T,18	-55 to +125	°C
Temperature Under Bias	Toiss	-10 to +85	°C
Power Dissipation	P_{τ}	1.0	W

^{*} Pulse width 50ns: -1.0V

TRUTH TABLE

\overline{CE}_1	Œ2	WE	Mode	Vcc Current	I/O Pin
н	×	×	Not Selected	Iccli	High Z
	н	×	Not Selected	Iccii	High Z
	<u> </u>	Н	Read	Icc	Dout
_ <u>-</u>	1	1	Write	I_{cc}	Din

Note) The specifications of this device are subject to change without notice.

Please contact your nearest Hitachi's Sales Dept. regarding specifications.

PIN ARRANGEMENT

■RECOMMENDED DC OPERATING CONDITIONS (Ta=0°C to+70°C)

Item	Symbol	min	typ	max	Unit
	Vcc	4.5	5.0	5.5	V
Supply Voltage	GND	0	0	0	V
Input High (logic 1) Voltage	VIH	2.2	3.5	6.0	V
Input low (logic 0) Voltage	V11.	-1.0*		0.8	V

^{*} Pulse Width: 50ns, DC: Vilne = -0.3V.

■DC AND OPERATING CHARACTERISTICS ($Ta=0^{\circ}\text{C}$ to $+70^{\circ}\text{C}$, $V_{\text{CC}}=5\text{V}\pm10\%$, GND=0V)

Item	Symbol	Test Conditions	min	typ	max	Unit
Input Leakage Current		V_{IN} = GND to V_{CC}	_	_	2	μA
Output Leakage Current	ILO	$\overline{\text{CE}}_1 = V_{IH} \text{ or } \overline{\text{CE}}_2 = V_{IH}$ $V_{I=0} = \text{GND to } V_{CC}$	_	_	2	μA
Operating Power Supply Current: DC	Icc	$\overline{CE}_1 = \overline{CE}_2 = V_{IL}, I_{I=0} = 0 \text{mA}$	_	35	70	mA
Average Operating Current	Ice1	Min cycle, duty = 100% $\overline{\text{CE}}_1 = V_{IL}$, $\overline{\text{CE}}_2 = V_{IL}$	_	35	70	mA
Standby Power Supply Current (1): DC	Ice to	$ \overline{CE}_{1} \ge V_{CC} - 0.2V V_{tN} \ge V_{CC} - 0.2V \text{ or } V_{tN} \le 0.2V $	_	2	50	μA
Standby Power Supply Current (2): DC	Icc 12*	$\overline{\mathbf{CE}}_2 \geq V_{\mathcal{CC}} = 0 \cdot 2\mathbf{V}$	_	2	50	μΑ
Output low Voltage	Vol	$I_{OL} = 2.1 \text{mA}$		-	0.4	V
Output High Voltage	V _{OH}	$I_{OH} = -1.0 \text{mA}$	2.4			V

Notes: 1) Typical limits are at $V_{\rm CC} = 5.0 {
m V}$, $Ta = \pm 25 {
m C}$

ECAPACITANCE ($Ta=25^{\circ}\text{C}$, f=1.0MHz)

Item	Symbol	Test Conditions	typ	max	Unit
Input Capacitance	C_{IN}	$V_{IN} = 0 \text{ V}$	3	5	рF
Input/Output Capacitance	C1 0	$V_{I=0} = 0V$	5	7	pF

Note: 11 This parameter is sampled and not 100% tested.

TAC CHARACTERISTICS ($Ta=0^{\circ}C$ to $\pm 70^{\circ}C$, $V_{CC}=5V\pm 10\%$ unless otherwise noted)

• AC TEST CONDITIONS

• READ CYCLE

ltem	Symbol	HM6117LFP-3		HM6117LFP-4		Unit
	Symbol	min	max	min	max	Cint
Read Cycle Time	t _{RC}	150		200	_	ns
Address Access Time	taa		450		(200)	ns
Chip Enable (CE1) to Output	tcoi	_	150		200	ns
Chip Enable (CE ₂) to Output	1002	_	150		200	ns
Chip Enable (CE1) to Output in Low Z	t _{LZ1}	10		10		ns
Chip Enable (CE2) to Output in Low Z	t _{LZ2}	10		10		ns
Chip Disable (CE1) to Output in High Z	t _{HZ1}	0	70	0	80	ns
Chip Disable (CE2) to Output in High Z	1 H Z2	0	70	0	80	ns
Output Hold from Address Change	tон	15		15		ns

^{2) * :} $V_{time} = -0.3 \text{V}$

● TIMING WAVEFORM OF READ CYCLE (Notes 1, 2)

NOTES: 1. WE is High for Read Cycle.

 When CE₁ and CE₂ are low, the address input must be in the high impedance state.

WRITE CYCLE

Item	Symbol	HM6117LFP-3		HM6117LFP-4		Unit	
		min	max	min	max	Cnit	
Write Cycle Time	twc	150	_	200		ns	
Chip Enable (CE1) to End of Write	t _{CW1}	100	_	120	-	ns	
Chip Enable (CE2) to End of Write	tcw2	110	_	130		ns	
Address Set Up Time	LAS	20	_	20		ns	
Address Valid to End of Write	taw	130	— — — — — — — — — — — — — — — — — — —	150	_	ns	
Write Pulse Width	twp	100	_	120		ns	
Write Recovery Time	lws	15	_	15	_	ns	
Write to Output in High Z	I WHZ	0	60	0	70	ns	
Data to Write Time Overlap	t _D w	50	_	60		ns	
Data Hold from Write Time	t n H	20	T -	20		ns	
Output Active from End of Write	low	10	_	10		ns	

TIMING WAVEFORM OF WRITE CYCLE

- NOTES: 1 A write occurs during the overlap (t_{WP}) of low \overline{CE}_1 , \overline{CE}_2 and \overline{WE} .
 - t_{AS} is measured from the address changes to the biginning of the write.
 - 3. t_{WR} is measured from the earlier of \overline{CE}_1 , \overline{CE}_2 or \overline{WE} going high to the end/of write cycle.
- During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- If the CE₁ or CE₂ low transition occurs simultaneously with the WE low transitions or after the WE transitions, output remain in a high im-
- pedance state.
- 6. Dout is the same phase of write data of this write cycle.
- 7. Dout is the read data of next address.
- 8. If CE₁ and CE₂ are low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

BLOW Vcc DATA RETENTION CHARACTERISTICS ($Ta=0^{\circ}Cto +70^{\circ}C$)

Item	Symbol	Test Condition	min	typ	max	Unit
$V_{\mathcal{CC}}$ for Data Retention	V_{DR1}	$\overline{CE}_1 \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	2.0	_	_	v
V_{cc} for Data Retention	V_{DR2}	$\overline{CE}_2 \ge V_{CC} - 0.2V$	2.0			v
Data Retention Current	Iccor1	$V_{CC} = 3.0 \text{V}, \ \overline{\text{CE}_1} \ge 2.8 \text{V}, \ V_{IN} \ge 2.8 \text{V or} \ V_{IN} \le 0.2 \text{V}$		_	30*	μΑ
Data Retention Current	Iccor2	$V_{cc} = 3.0 \text{V}, \ \overline{\text{CE}}_2 \ge V_{cc} - 0.2 \text{V}$		_	30*	μA
Chip Deselect to Data Retention Time	toor	C D W . (0	<u> </u>		ns
Operation Recovery Time	t _R	See Retention Waveform	t RC**		_	ns

^{*} $10\,\mu\text{A}$ max at $Ta=0^{\circ}\text{C}$ to $+40^{\circ}\text{C}$, V_{tL} min=-0.3V

● LOW Vcc DATA RETENTION WAVEFORM

 $\begin{array}{lll} \text{NOTE:} & 1. & \overline{CE}_2 \text{ controls Address buffer, } \overline{WE} \text{ buffer, } \overline{CE}_1 \text{ buffer and } D_{IN} \\ & & & & & & & \\ & & & & & & \\ \hline WE, \overline{CE}_1, \ D_{I/O}) \text{ can be in the high impedance state. } \underline{If \ CE}_1 \text{ controls data retention mode, } V_{IN} \text{ level (address, } \overline{WE}, \overline{CE}_2, \ D_{I/O}) \\ & & & & & & \\ \hline \text{must be } V_{IN} \geqq V_{CC} - 0.2 V \text{ or } V_{IN} \leqq 0.2 V. \end{array}$

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

^{**} tau = Read Cycle Time

OUTPUT HIGH CURRENT vs. OUTPUT HIGH VOLTAGE

OUTPUT LOW CURRENT

STAND-BY CURRENT vs. AMBIENT TEMPERATURE

STAND-BY CURRENT vs.

STAND-BY CURRENT vs. INPUT VOLTAGE

STAND-BY CURRENT vs. INPUT VOLTAGE

146