Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. Given the Single Layer Perceptron described in the lectures:

1/1 point

1. Given the Single Layer Perceptron described in the lectures:

1/1 point

What should be replaced in the question mark?

- $\bigcirc w_1w_2 + x_1x_2 + b$
- $\bigcirc w_1x_1 + w_2x_2 + b_1 + b_2$
- $\bigcirc w_1x_2 + w_2x_1 + b$
 - ✓ Correct

Correct! In a single layer perceptron, we evaluate a (weighted) linear combination of the inputs plus a constant term, which represents the *bias*!

2. For a Regression using a Single Layer Perceptron, select all that apply:

1/1 point

- lacksquare The Loss Function used is $L(y,\hat{y}) = -y \ln(\hat{y}) (1-y) \ln(1-\hat{y})$.
- ightharpoonup The Loss Function used is $L(y,\hat{y})=rac{1}{2}(y-\hat{y})^2$.
- **⊘** Correct

Correct! This is the mean squared error, usually used as a loss function for regression.

- ightharpoonup To minimize the Loss Function, we consider $L(y,\hat{y})$ as a function of w_1,w_2 and b.
- ✓ Correct

Correct! We see the Loss Function as a function of w_1,w_2 and b so we can perform Gradient Descent to find the optimal parameters that minimize it!

- lacksquare To minimize the Loss Function, we consider $L(y,\hat{y})$ as a function of x_1 and x_2 .
- 3. Consider the problem of Classification using a Single Layer Perceptron as discussed in the lectures.

1/1 point

In the figure above, z and $\sigma(z)$ are, respectively:

$$\bigcirc \ z = w_1 x_1 + w_2 x_2 + b$$
 and $\sigma(z) = rac{1}{2} (z - \hat{z})^2$

$$\bigcirc \ z = rac{1}{1+e^{-z}}$$
 and $\sigma(z) = w_1x_1 + w_2x_2 + b$

$$\bigcirc \ z = x_1 + x_2 + b \ \operatorname{and} \sigma(z) = rac{1}{2}(z - \hat{z})^2$$

$$igotimes z = w_1x_1 + w_2x_2 + b$$
 and $\sigma(z) = rac{1}{1+e^{-z}}$

✓ Correct

Correct! In this case, z is a linear combination of the inputs and $\sigma(z)$ is the sigmoid function, so it maps the result to a value between 0 and 1, thus the output can be interpreted as a probability.

How many parameters must be tuned to minimize the Loss Function?

How many parameters must be tuned to minimize the Loss Function?

-	_	
	_	_
	٠,	-

 \bigcirc 3

 \bigcirc 6

9

Correct! We have 2 inputs, which will generate 2 constant terms (b_1 and b_2), since the next layer has 2 neurons, each input must have 2 parameters, therefore the first layer has 2 + 2*2 = 6 parameters. The hidden layer, therefore, has three more parameters since there are 2 neurons. We also must add another constant term c. In total there are 9 parameters.

5. About Backpropagation, check all that apply:

1/1 point

☐ It is a way to obtain the input values for a given output of a neural network.

It is a method to update the parameters of a neural network.

✓ Correct

Correct! This is the method which a neural network updates its parameters.

■ It is the same as gradient descent.

It is a method that starts in the output layer and finishes in the input layer.

✓ Correct

Correct! As the name suggests, the backpropagation method iteratively updates the neural network parameters from backwards.