Section 1.7: Linear Independence:

Note: Here our Focus shifts from the unknown solutions of $A\vec{x} = \vec{0}$, to the vectors that appear in the vector equations.

Assum, the main issue is to determine whether the non-hivial solution is the only solution.

*Definitions:

(i) An indexed set of vectors {\vec{v}_1,\vec{v}_2,...,\vec{v}_p} in \(\mathbb{R}^n\) is said to be Linearly Independent if the vector equation

$$\chi_1 \vec{V}_1 + \chi_2 \vec{V}_2 + \cdots + \chi_p \vec{V}_p = \vec{0}$$

has only the trivial solution.

(ii) An indexed set of vectors {\vectors, \vectors, \vec

$$C_1\overrightarrow{V_1} + C_2\overrightarrow{V_2} + \cdots + C_p\overrightarrow{V_p} = \overrightarrow{O}$$

Note: The second def. I is called a 'linear dependent relation'

Recalling that the homogeneous eq. $4\vec{x} = \vec{o}$ has a non-hivial solution IFF the eq. has @ least One free variable IF free variable I, then set is linearly dependent:

Let
$$\vec{V}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{V}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, $4\vec{V}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

- (a) Determine if the set $\{\vec{v}_1, \vec{v}_2, \vec{V}_3\}$ is linearly independent.
- (b) If possible, find a linear dependent relation among V1, V2, & V3.

Answer:

Note: Here we must determine if a nontrivial solution TILE AX = 0 has a nontrivial solution => Linearly Dependent 11) IF $\pm x = 0$ has only the nentrivial sol. => Linearly Independent

*Use row reduction operations on the augmented matrix to check if the echelon form has a free variable:

$$[A;\vec{0}] = \begin{bmatrix} 1 & 4 & 2 & 1 & 0 \\ 2 & 5 & 1 & 1 & 0 \\ 3 & 6 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{3} R_{3} \begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 10 \\ 1 & 2 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c} -2R_{1} \\ + R_{2} \\ \hline NW R_{2} \end{array} \longrightarrow \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix} \xrightarrow{-1} \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 \end{bmatrix}$$

$$\frac{+R_{3}}{NWR_{3}} \longrightarrow \begin{bmatrix} 1 & 4 & 2 & 10 \\ 0 & 1 & 1 & 10 \\ 0 & -2 & -2 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 10 \\ 0 & 1 & 1 & 10 \\ 0 & 1 & 1 & 10 \end{bmatrix}$$

Example (Linearly Dependent/Indopendent Sets) Cont... (2

- Rz
+ R3

New R3

[1 4 2 10]

O 1 1 10

A nonthivial solution 3

For Ax = 0,

The set is Linearly Dependent

Ans.

Notes on Conclusion: Since $x_1 & x_2$ are Basic Variables & x_3 is a FreeVariable, each nonzero value of x_3 determines a nontrivial solution of $A\vec{x} = \vec{0}$ (same eq. as def. 1) $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are NOT linearly independent

* Part (b):

To find a linear dependence relation For $\nabla_1, \nabla_2, A \nabla_3$ ① Solve the aug. mahix to row-reduced echelen Form & write the new system:

-4R₂

$$\frac{+ R_1}{\text{new } R_1} \longrightarrow \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \iff \begin{cases} \chi_1 = 2 \chi_3 \\ \chi_2 = -\chi_3 \\ \chi_3 \text{ is free} \end{cases}$$
reduced - echelon form general solution

2) Choose any nonzero value For X3 & use the general solution to find the Bosic Variable values & thus a linear independence relation (infinitely many solutions)

Example (Linearly Dependent/Independent Sets) Cont... (3

• \$
$$\chi_3 = 17 \implies \chi_1 = 2(17) = 34$$

· Substitute these values into AX = 0 to obtain a Linear Dependence Relation among V., Vz, & V3:

Note: $A\vec{x} = \vec{0} \iff \chi_1\vec{V_1} + \chi_2\vec{V_2} + \chi_3\vec{V_3} = \vec{0}$

$$34\vec{v}_1 - 17\vec{v}_2 + 17\vec{v}_3 = \vec{0}$$

*Again, this is only ONE of infinitely many possible linear dependence relations amongst Vi, Vz, & Vs;

Example: Determine if the vectors are linearly independent.

Justify your answer:

[4],

[9],

[8]

[-24]

$$\begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 9 \\ 2 \\ -4 \end{bmatrix}, \begin{bmatrix} 8 \\ 8 \\ -24 \end{bmatrix}$$

Answer:

* Note: To determine if the vectors are linearly independent, solve the corresponding augmented matrix $4\vec{x} = \vec{0} \iff [A:0]$ to echelon form to see if a free variable(s) 3.

$$\begin{array}{c} -R_{2} \\ +R_{3} \\ \hline \\ \text{NEW } R_{3} \end{array} \longrightarrow \begin{bmatrix} 4 & 9 & 8 & 0 & 1 & 1 & 9/4 & 2 & 0 \\ 0 & 1 & 4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 & 1 & 2 & 2 & 0 \end{bmatrix} \begin{array}{c} 1 & 9/4 & 2 & 0 & 0 \\ 2 & R_{3} & 0 & 0 & 0 & 1 & 0 \\ \hline \end{array}$$

* Basic Variable 3 in each column.

Since NO free variable 7, the vectors are linearly independent.

Iow: The rector equation only has a trivial solution:

Example: Find the value(s) of h for which the vectors L' are linearly dependent. Justify your answer.

$$\begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ -6 \\ 7 \end{bmatrix}, \begin{bmatrix} -3 \\ 3 \\ k \end{bmatrix}$$

Answer:

Recall: A set of vectors is linearly dependent if $A\vec{x} = \vec{0}$ has a rentrivial solution.

Solve the corresponding aug matrix [+; +) to find h:

$$[A : 0] = \begin{bmatrix} 2 & 4 & -3 & | & 0 \\ -2 & -6 & & 3 & | & 0 \\ 4 & 7 & h & | & 0 \end{bmatrix}$$

$$\frac{R_{1}}{+R_{2}} \rightarrow \begin{bmatrix} 2 & 4 & -3 & 0 \\ 0 & -2 & 0 & 0 \\ 4 & 7 & h & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -3 & 0 \\ 0 & 1 & 0 & 0 \\ 4 & 7 & h & 0 \end{bmatrix}$$

Example Continued ...

Note: At = 0 must have (a least one free variable For a nontrivial solution to 3,

So,
$$6+h=0 \rightarrow h=-6$$

Conclusion: 6. h = -6 so that X3 is a

Free variable \Rightarrow Nontrivial Sel. \exists \Rightarrow Vectors are linearly

dependent

Ans

Example: Find the value(s) of h for which the vectors are linearly dependent. Justify your answer.

$$\begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix}, \begin{bmatrix} -4 \\ 9 \\ 8 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ k \end{bmatrix}$$

Answer:

*Solve the corresponding augmented matrix
$$\pm x = 0$$

to reduced echelon Form to find h-value(s) st a
nontrivial solution \exists (i.e. Free Variable(s) \exists v):

$$[A \mid \overrightarrow{o}] = \begin{bmatrix} 1 & -4 & 3 & 0 \\ -2 & 9 & 1 & 0 \\ -4 & 8 & h & 0 \end{bmatrix}$$

$$\stackrel{\cdot}{h} = -68$$

$$\stackrel{\cdot}{h} = -68$$

$$\begin{array}{c} \cdot h = -68 \text{ makes} \\ \times 3 & \text{a free variable} \\ \times 4 & \text{kence} \\ \times 4$$

$$\frac{2R_1}{+R_2} \rightarrow \begin{bmatrix} 1 & -4 & 3 & 0 \\ 0 & 1 & 7 & 10 \\ -4 & 8 & h & 10 \end{bmatrix}$$

Answer .

*Linear Independence of Matrix Columns *

If we begin with a matrix $A = [\vec{a}, \vec{a}, ..., \vec{a}, ..., \vec{a}]$.

We know that the matrix equation $A\vec{x} = \vec{o}$ can be written as the vector equation $x_1\vec{a}_1 + ... + x_n\vec{a}_n = \vec{o}$.

Important Condusion:

Since each linear dependent relation amongst the columns of A correspond to a nontrivial solution of

 $A\overrightarrow{x} = \overrightarrow{0}$:

The columns of A are linearly independent IFF the equation $A\vec{x} = \vec{\sigma}$ has <u>only</u> the trivial solution $(\vec{\sigma})$.

*To Determine if the matrix columns are linearly independent (Legain. ...)

Row reduce the augmented matrix to echelon Form

to check if a least one free variable exists:

Example (Linear Indepdence of Matrix Glumns):

Determine if the columns of the Following matrix

are linearly independent:

$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$

Answer:

*To check the matrix columns, row reduce the corresponding augmented matrix $4\vec{x} = \vec{0}$ to echelon

Form to see if a free variable(5) 3:

$$[A | O] = \begin{bmatrix} 0 & 1 & 4 & 6 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \end{bmatrix} \begin{bmatrix} \text{Inter-change} \\ \text{e.s.} & 2 \\ \text{c.s.} & 0 & 0 \end{bmatrix}$$

•
$$2R_2$$

+ R_3
New R_3 [0 0 13 0] \sim [0 0 1 0]

* echelon form has a Basic variable in each column

** Since NO free variables], the equation $A\vec{x} = \vec{0}$ has ONLY the trivial solution. \Rightarrow Columns are Linearly Independent

Example: Determine if the columns of the matrix form can linearly independent set. Justify your answer.

Answer:

*Note: To check if the columns Form a linearly independent set, solve the corresponding aug. matrix $(A\hat{x}=\hat{\sigma} \iff [A';\sigma])$ for echelen Form to see if a free variable \hat{J} .

$$[A \mid 0] = \begin{bmatrix} 0 & -3 & 9 & 0 \\ 2 & 1 & -7 & 0 \\ -1 & 4 & -7 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & -3 & 0 \\ 2 & 1 & -7 & 0 \\ -1 & 4 & -7 & 0 \end{bmatrix}$$

*interchanging
$$\rightarrow \begin{bmatrix} 1 & -4 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 2 & 1 & -7 & 0 \\ -1 & 4 & -7 & 10 \end{bmatrix}$$

$$\begin{array}{c} -2R_{1} \\ + R_{3} \\ \hline NEW R_{3} \end{array} \longrightarrow \begin{bmatrix} 1 - 4 - 2 & 10 \\ 0 & 1 - 3 & 0 \\ 0 & 9 - 3 & 0 \\ -1 & 4 - 7 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 - 4 - 2 & 0 \\ 0 & 1 - 3 & 0 \\ 0 & 3 & -1 & 0 \\ -1 & 4 - 7 & 0 \end{bmatrix}$$

$$\begin{array}{c} R_{1} \\ + R_{4} \\ - \end{array} \longrightarrow \begin{bmatrix} 1 - 4 - 2 & 0 \\ 0 & 1 - 3 & 0 \\ 0 & 3 & -1 & 0 \\ 0 & 0 - 9 & 0 \end{bmatrix} \begin{bmatrix} 1 - 4 - 2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 3 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Example Continued...

*Bosic Variable in each column -> NO free variables:

.. The reduced exhelon form of the augment matrix has NO Free variables ⇒ Only a trivial solution ∃.

=> Columns of the matrix are linearly independent.

Miswer-

Example: Determine if the columns of the matrix form a linearly independent set. Justify your answer.

Money:

Note: Solve the corresponding augment matrix to reduced echelon form to see if a free variable(s) J.

$$[A|0] = \begin{bmatrix} -4 & -3 & 0 & 0 & 0 \\ 0 & -1 & 5 & 0 \\ 1 & 1 & -5 & 0 \\ 2 & 1 & -10 & 0 \end{bmatrix} * -1R_2 \begin{bmatrix} 1 & 1 & -5 & 0 \\ 0 & 1 & -5 & 0 \\ -4 & -3 & 0 & 0 \\ 2 & 1 & -10 & 0 \end{bmatrix}$$

$$\frac{+ R4}{1000 R4} \rightarrow \begin{bmatrix} 1 & 1 & -5 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 1 & -20 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

- :. Since NO free variable I, the reduced echelon form of $A\vec{x} = \vec{o}$ indicates that only a trivial solution I.

 —) Columns of matrix are Linearly Independent.

*Sets of one -or- Two Vectors *

- Note: When considering sets of one or two vectors, row operations are unnecessary!
- => We can simply check For linear independence/dependence using 'visual inspection':
- (i) A set containing ONE vector {v3 is:
 - · Linearly Independent IFF V is NOT the zero vector
 - The vector eq. $\chi, \vec{v} = \vec{o}$ has only the mivial solution when $\vec{v} \neq \vec{o}$
 - The zero vector is Linearly Dependent b/c x, 0 = 0 has many nontrivial solutions.

(11) A set containing TWO vectors {v, ,v, } is:

- Linearly Dependent if a least one of the vectors is a scalar multiple of the other
 - Geometrically, 2 vectors are linearly dependent IFF they lie on the same line through the origin.
- <u>Linearly Independent</u> if neither vector is a multiple of the other.

Example: Determine if the Following Jets of vectors are

linearly independent: (a)
$$\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 d $\vec{v_2} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

(b)
$$\overrightarrow{V_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 $\forall \overrightarrow{V_2} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

Answer:

Note: While row operations work here, since each part ontains a set w/ 2 vectors, we will use visual inspection:

Part (a):

Since
$$\overline{V_2} = 2\overline{V}$$
, the vectors are linearly dependent.

* Algobraic Check:

$$\overrightarrow{V}_{1} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2\overrightarrow{V}_{1} /$$

Part (b):

NO scalar multiples exist blu V, & V2 => : Linearly Indendendent

* Geometric Check:

* Vectors are NCT on the same line. Example. Determine by inspection whether the vectors are linearly independent. Justify.

$$\begin{bmatrix} 8 \\ -16 \\ 4 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \\ 1 \end{bmatrix}$$

Ans.

The 2 vectors are Inearly independent b/c they are NOT scalar multiples.

* Sets of Two -or- More Vectors *

Theorem: (Characterization of Linearly Dependent Sets)

- # An indexed set $S = \{V_1, V_2, ..., V_p\}$ of 2 or more vectors is linearly dependent IFF @ least one of the vectors in S is a linear combination of the others.
- *IF S is linearly dependent & $\nabla_i \neq \vec{o}$, then some ∇_i (w/ j>1) is a linear combination of the proceeding vectors, V_1, V_2, \dots, V_{j-1} .

Caution: This does NOT say that every vector in a linear dependent set is a linear combo of the proceeding vectors!

The rector in a linear dependent set may fail to be a linear combination of the others.

Recall

Let vat be nonzero vectors in IR3.

- (i) The Span $\{ \vec{v} \}$ is the set of all scalar multiples of \vec{v} \Rightarrow The set of all points on the line in \mathbb{R}^3 through \vec{v} & $\vec{\sigma}$.
- (ii) If \$\times\$ is Not a multiple of \$\tilde{\tau}\$, then Span {\$\tilde{\tild

Example (Sets of 2 or more vectors):

Let
$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 & $\vec{v} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$

Describe the set spanned by $\vec{u} \notin \vec{V}$. $\chi_i^{\kappa} \xrightarrow{\kappa_i \kappa_2 \cdot plane}$ Explain why \vec{w} is in Span $\{\vec{u}, \vec{v}\}\$ IFF $\{\vec{u}, \vec{v}, \vec{w}\}\$ is linearly dependent.

Answer:

* It & V are nonzero vectors in R3.

* T & T are NOT scalar multiples => Linearly Independent!

Since \vec{u} is Not a multiple of \vec{v} , then $\underline{Span}\{\vec{u},\vec{v}\}$ is the plane in R^3 containing \vec{u},\vec{v},\vec{a} \vec{o} .

Note: The Span {ti, v3 is the x, x2-plane (in IR3):

* Explain: wis in Span{u,v3 IFF {u,v,w3 is linearly dependent

(i) IF w is in the Span { ti, v3:

Then w is a linear combo of ud v (1.3) Then {u,v, w} are linearly dependent

(ii) IF {以,以) are linearly dependent:

Then @ least one of the vectors is a linear combo. of the others. \Longrightarrow Since \overrightarrow{v} is NOT a multiple of \overrightarrow{u} & $\overrightarrow{u} \neq \overrightarrow{0}$, \overrightarrow{w} is a linear combo of \overrightarrow{u} & \overrightarrow{v} . .. \overrightarrow{w} is in Span[\overrightarrow{u} , \overrightarrow{v}]

*Generalization For Previous Example *	
Let {v,v,w} be any set in R3 st viel v a	re
linearly independent.	
The set SUVW3 will be linearly dependent IF	F
W is in the plane spanned by u & v.	_

*Special Cases of Linear Dependence *

Note: The Following theorems are special cases where linear dependence of a set is automatic :

ore V B T

Special) Theorem # 2 * This theorem will continue to be impertant in later chapters:

If a set contains more vectors than there are entires in each vector, then the set is linearly dependent.

→ IoN: Any set {V, √2,..., √p3 in R" is linearly dependent if p > n.

Proof: \$ A = [V, V2 ... Vp] in Rn. So, A is an nxp matrix.

Then $\pm \vec{x} = \vec{0}$ corresponds to the linear system with n-equations (nows) & p-unknowns (columns).

If the # of columns > the # of rows (i.e. p>n),

then at least one Gree variable Must exist.

If a free variable I, the AX = To has a nontrivial solution & thus is linearly dependent []

*Special Theorem #3:

IF a set $S = \{\vec{V_1}, ..., \vec{V_n}\}$ in \mathbb{R}^n contains the zero vector, then the set is linearly independent.

15 \$ 1 = 0.

Since
$$A\vec{\chi} = \vec{0}$$
 $\iff \chi_1 \vec{V_1} + \chi_2 \vec{V_2} + \cdots + \chi_p \vec{V_p} = \vec{0}$,
then: $1\vec{V_1} + 0\vec{V_2} + \cdots + 0\vec{V_p} = \vec{0}$ $\iff \vec{V_1} = \vec{0}$

=> So a nontrivial solution 3 & S is linearly dependent in

Example (Special Case Theorems): Determine (by inspection) if

the following sets are linearly dependent:

(a)
$$\begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$

(a) $\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix}$ (b) $\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 6 \\ -9 \\ 10 \end{bmatrix}$ 15

Answer:

*Part (b): Since the Set contains the zero vector $\vec{o} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ => Set is linearly dependent (Thm 3)

Since the 2 vectors are NOT scalar multiples :. Set is linearly independent

Example: Determine if the columns of the matrix form a linearly independent set. Justify your answer.

$$\begin{bmatrix} 1 & -2 & 3 & 2 \\ -2 & 4 & -6 & 2 \end{bmatrix}$$

Answer:

* Given a
$$2 \times 4$$
 matrix $= n = 2 \text{rows}$ (equations)
 $p = 4 \text{ columns}$ (unknowns)

Since 4unknowns > 2equations, $A\overrightarrow{x} = \overrightarrow{0}$ has (a) least one free variable.

*Uses 'special' theorem# 2 => matrix contains more vectors

than entries in each vector:

$$\overrightarrow{\nabla}_1 = \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix}, \ \overrightarrow{\nabla}_2 = \begin{bmatrix} -4 \\ 16 \\ -8 \end{bmatrix}, \ \overrightarrow{\nabla}_3 = \begin{bmatrix} 5 \\ 8 \\ h \end{bmatrix}$$

- (a) For what values of "h" is ∇_3 in the span $\{\nabla_1, \nabla_2\}$
- (b) For what values of "h" is \{\vec{V}_1, \vec{V}_2, \vec{V}_3\} linearly dependent?

Recall:
$$\vec{V}_3$$
 is in the span $\{\vec{V}_1, \vec{V}_2\}$ IFF \vec{J} a solution to $\vec{A}\vec{X} = \vec{V}_3 \leftrightarrow [\vec{A} \mid \vec{V}_3] = [\vec{V}_1 \vec{V}_2 \mid \vec{V}_3]$

Find the row-reduced echelen Form For the corresponding

$$\begin{bmatrix} 1 & -4 & | & 5 \\ -4 & | & 6 & | & 8 \\ -4 & | & 16 & | & 8 \\ 2 & -8 & | & h \end{bmatrix} = \begin{bmatrix} 1 & -4 & | & 5 \\ 1 & -4 & | & -2 \\ 2 & -8 & | & h \end{bmatrix} = \begin{bmatrix} 1 & -4 & | & 5 \\ 1 & -4 & | & -2 \\ 2 & -8 & | & h \end{bmatrix} = \begin{bmatrix} 1 & -4 & | & 5 \\ 1 & -4 & | & -2 \\ 2 & -8 & | & h \end{bmatrix} = \begin{bmatrix} 1 & -4 & | & 5 \\ 1 & -4 & | & -2 \\ 2 & -8 & | & h \end{bmatrix}$$

$$\frac{-R_1}{+R_2} \rightarrow \begin{cases} 1 - 4 & | 5 \\ 0 & 0 & | -7 \\ 1 & -4 & | 4 & | 5 \end{cases}$$
Rew Rz \quad \text{Contradiction!}

:. NO values of h are in the Span {vi, ,vi}

Part (b):

*Recall: For S= {V, Vz, Vz} to be linearly dependent,

@ least one cf the vectors must be a linear combination

$$\Rightarrow \chi_1 \overrightarrow{\nabla}_1 + \chi_2 \overrightarrow{\nabla}_2 + \chi_3 \overrightarrow{\nabla}_3 = \overrightarrow{O} \Leftrightarrow [\overrightarrow{\nabla}_1 \ \overrightarrow{\nabla}_2 \ \overrightarrow{\nabla}_3 \ \overrightarrow{O}]$$

must have a nontrivial solution (1.e. Free variable(s)])

*Solve the corresponding aug. matrix to echelon form to find the h-value(s) st a free variable(s) 3:

Example Continued...

6. ET, Tz, Tz) is linearly dependent

Y passible h-valuest

Example: Det	termine (by	inspection)	whether the	vectors
are linear	ly independ	ent. Justify	your ans	wer:
[5],[3 , [1]	1 [8]		
tuswer:			4	
*Sinco Xi	$\overrightarrow{V}_1 + \cdots + \chi_{\rho} \overrightarrow{V}_{\rho}$	$=\overrightarrow{0}$	$[\vec{V}, \cdots \vec{V}_{p}] \circ$	
⇒Tho corcos	chonding ma	hix is a	2×4	

					and the same of th			
Since	# of	unkro	wns '	> #	of eq	., @	leas	t one
fre	e varial	ole	1 8	Hhus	[Vi	Vp	[0]	has
a	nontrivi	al s	oluh	ch,				

Evectors are Linearly Dependent.

Example: For the Following matrix, observe that the 300 column is the sum of the first & second columns. Find a nontrivial solution of $A\vec{x} = \vec{0}$ w/o performing row operations. [**Hint: Write $A\vec{x} = \vec{a}$ as a vector eq.)

$$A = \begin{bmatrix} 2 & 1 & 3 \\ -7 & 1 & -6 \\ -3 & -2 & -5 \\ 1 & 0 & 1 \end{bmatrix}$$

Answer.

* Write
$$\pm \vec{x} = \vec{0}$$
 as a vector eq:

$$\vec{\chi}_{1} \begin{bmatrix} 2 \\ -7 \\ -3 \\ 1 \end{bmatrix} + \vec{\chi}_{2} \begin{bmatrix} 1 \\ 1 \\ -2 \\ 0 \end{bmatrix} + \vec{\chi}_{3} \begin{bmatrix} 3 \\ -6 \\ -5 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\overrightarrow{\chi}_{1} \begin{bmatrix} 2 \\ -7 \\ -3 \end{bmatrix} + \overrightarrow{\chi}_{2} \begin{bmatrix} 1 \\ 1 \\ -2 \\ 0 \end{bmatrix} = \overrightarrow{\chi}_{3} \begin{bmatrix} -3 \\ 6 \\ 5 \\ -1 \end{bmatrix}$$

$$\overrightarrow{\chi} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$