Calcolabilità e complessità Modelli di computazione

Informazioni generali sul corso

Docente: Giovanni Pani

Laboratorio: Graziella De Martino

giovanni.pani@uniba.it

Ricevimento: Giovedì 11.30

o per appuntamento

Libro 1: Introduzione alla teoria della computazione

Michael Sipser

Libro 2: Linguaggi modelli Ausiello, d'Amore, complessità Gambosi,

Lunedi pomeriggio Laboratorio, portare personal.

Esonero: 8 Aprile, su tutta la parte fatta.

Ada di.uniba.it

http://informatica2.di.uniba.it/

Psw CC-INF1920

Contenuto del corso

Calcolo

Esempio:
$$f(x) = x^3$$

$$f(x) = x^3$$

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

 $f(x) = z * 2 = 8$

r-2

output

input

x=2

Program memory

compute X * X

CPU

compute $x^2 * x$

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

 $f(x) = z * 2 = 8$

CPU

input

$$x = 2$$

Program memory

$$f(x) = 8$$

output

compute $x^2 * x$

compute X * X

Automa

Automa

Automata

Automata si distinguono secondo il tipo di memoria

· Finite Automata: nessuna memoria

· Pushdown Automata: stack

• Turing Machines: random access memory

Finite Automata

Esempio: ascensori, macchine per il caffe (piccolo potere di computazione)

Pushdown Automata

Esempio:

Compilatori per linguaggi di programmazione

(medio potere di calcolo)

Turing Machine

Esempio: qualsiasi algoritmo

(il più alto potere di calcolo)

Power of Automata

Semplici problemi

Problemi più complessi

Problemi complicati
Hardest problems

Finite
Automata

Pushdown Automata

Turing

Machine

Meno potere

Più potere

Risolvere più

problemi di calcolo

Turing Machine è il modello di calcolo più potente che è stato definito

Domanda: Esistono problemi di calcolo che non possono essere risolti?

Risposta: Si (problemi irrisolvibili)

Complessità temporale dei problemi di calcolo:

NP-complete problems

<u>Si crede</u> che occorre un tempo esponenziale per calcolarli

P problems

Risolti in tempo polinomiale

Preliminari matematici

Preliminari matematici

- · Insiemi
- Funzioni
- · Relazioni
- · Grafi
- · Tecniche di dimostrazioni

SETS

A insieme è una collezione di elementi

$$A = \{1, 2, 3\}$$

$$B = \{train, bus, bicycle, airplane\}$$

Scriveremo:

$$1 \in A$$

$$ship \notin B$$

Rappresentazione degli insiemi

$$C = \{a, b, c, d, e, f, g, h, i, j, k\}$$

$$C = \{a, b, ..., k\} \longrightarrow Insieme finito$$

$$S = \{j: j > 0, e j = 2k per qualchek>0\}$$

$$S = \{ j : j \in \text{non negativo e pari} \}$$

$$A = \{1, 2, 3, 4, 5\}$$

Insieme universale: tutti gli elementi possibili

Operazione sugli insiemi

$$A = \{1, 2, 3\}$$

$$B = \{ 2, 3, 4, 5 \}$$

· Unione

· Intersezione

$$A \cap B = \{2, 3\}$$

· Differenza

$$A - B = \{ 1 \}$$

$$B - A = \{4, 5\}$$

Venn diagrams

Complemento

Insieme universale= {1, ..., 7}

$$A = \{1, 2, 3\}$$
 $\overline{A} = \{4, 5, 6, 7\}$

{ interi pari} = { interi dispari}

interi

Leggi di DeMorgan

$$\overline{A \cup B} = \overline{A \cap B}$$

$$\overline{A \cap B} = \overline{A \cup B}$$

Vuoto, insieme nullo: Ø

$$\emptyset = \{\}$$

$$SUØ = S$$

$$S \cap \emptyset = \emptyset$$

$$S - \emptyset = S$$

$$\emptyset - S = \emptyset$$

$$\overline{\emptyset}$$
 = Universal Set

Sottoinsieme

$$A = \{1, 2, 3\}$$
 $B = \{1, 2, 3, 4, 5\}$
 $A \subseteq B$

Sottoinsieme proprio: $A \subseteq B$

Insieme disgiunti

$$A = \{1, 2, 3\}$$
 $B = \{5, 6\}$

$$A \cap B = \emptyset$$

Cardinalità

· per gli insiemi finiti

$$A = \{ 2, 5, 7 \}$$

$$|A| = 3$$

(dimensione dell'insieme)

Insieme potenza

Un insieme potenza è un insieme di insiemi

$$S = \{ a, b, c \}$$

Potenza di S = l'insieme di tutti I sottoinsiemi di S

$$2^{5} = { \emptyset, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }$$

Osservazione:
$$|2^{5}| = 2^{|5|}$$
 (8 = 2³)

Prodotto Cartesiano

$$A = \{ 2, 4 \}$$

$$B = \{ 2, 3, 5 \}$$

$$A \times B = \{ (2, 2), (2, 3), (2, 5), (4, 2), (4, 3), (4, 5) \}$$

$$|A \times B| = |A| |B|$$

Possiamo generalizzarlo a più insiemi

AXBX...XZ

Funzioni

 $f:A \rightarrow B$

Se A = dominio

allora f è una funzione totale

altrimenti f è una funzione parziale

Relazioni

$$R = \{(x_1, y_1), (x_2, y_2), (x_3, y_3), ...\}$$

$$x_i R y_i$$

per esempio. se R = '>': 2 > 1, 3 > 2, 3 > 1

Relazioni di equivalenza

- Riflessiva: x R x
- Simmetrica: $x R y \longrightarrow y R x$
- Transitiva: x R y and $y R z \longrightarrow x R z$

Esempio: R = '='

- x = x
- $\cdot x = y$ y = x
- $\cdot x = y e y = z$ x = z

Classi di equivalenza

Data la relazione di equivalenza R

la classe di equivalenza per
$$x = \{y : x R y\}$$

Esempio:

$$R = \{ (1, 1), (2, 2), (1, 2), (2, 1), (3, 3), (4, 4), (3, 4), (4, 3) \}$$

classe di equivalenza per 1 = {1, 2} classe di equivalenza per 3 = {3, 4}

Grafi

Grafo diretto

Nodi (Vertici)

$$V = \{ a, b, c, d, e \}$$

· Archi

 $E = \{ (a,b), (b,c), (b,e), (c,a), (c,e), (d,c), (e,b), (e,d) \}$

Grafo con etichette

Cammino

Un cammino è una sequenza di archi adiacenti (e, d), (d, c), (c, a)

Path

Path è un cammino in cui nessun arco è ripetuto

Simple path : nessun nodo è ripetuto

Ciclo

Ciclo: un cammino da un nodo(base) a se stesso

Ciclo semplice: solo la base è ripetuta

Euler Tour

Un ciclo che contiene ogni arco una sola volta

Ciclo Hamiltonian

Un ciclo semplice che contiene tutti i nodi

Trovare tutti I path semplici

(c, a) (c, e)

(c, a)

(c, a), (a, b)

(c, e)

(c, e), (e, b)

(c, e), (e, d)

(c, a)

(c, a), (a, b)

(c, a), (a, b), (b, e)

(c, e)

(c, e), (e, b)

(c,e), (e, d) 03/04/2021

Alberi binari

Tecniche di dimostrazione

· dimostrazione per induzione

· dimostrazione per assurdo

Induzione

Abbiamo una serie di affermazioni ordinate

Se sappiamo

- per qualche b that P₁, P₂, ..., P_b sono vere
- per ogni k >= b che

$$P_1, P_2, ..., P_k$$
 implica P_{k+1}

Then

allora P_i è vera

Dimostrazione per induzione

· Base induttiva

trovare P₁, P₂, ..., P_b che sono vere

Ipotesi induttiva

Asssumiamo che P_1 , P_2 , ..., P_k sono vere, Per ogni $k \ge b$

Passo induttivo

Dimostrare che P_{k+1} è vera

Esempio

Theorem: Un albero binario di altezza n ha al massimo 2ⁿ foglie.

Proof by induction:

Sia L(i) il massimo numero di foglie

di ogni sottoalbero di altezza i

Vogliamo dimostrare che: L(i) <= 2i

· Base induttiva

$$\cdot$$
L(0) = 1 (nodo radice)

- Ipotesi induttiva
- •Assumiamo che L(i) \leftarrow 2ⁱ for all i = 0, 1, ..., k

- Step induttivo
- ·Dobbiamo dimostrare che L(k + 1) <= 2k+1

Step induttivo

Per ipotesi induttiva: $L(k) \leftarrow 2^k$

Step induttivo

$$L(k+1) \leftarrow 2 * L(k) \leftarrow 2 * 2^{k} = 2^{k+1}$$

(possiamo addizionare al massimo due nodi per ogni

Foglia di livello k)

Remark

La ricorsione è un altra cosa

Esempio di funzione ricorsiva:

$$f(n) = f(n-1) + f(n-2)$$

$$f(0) = 1, f(1) = 1$$

Dimostrazione per assurdo

Vogliamo provare che Pè vero

- · Assumiamo che P è falso
- arriviamo ad una conclusione sbagliata
- · quindi, P deve essere vero.

Esempio

Teorema:

$$\sqrt{2}$$

 $\sqrt{2}$ non è razionale

Dimostrazione:

Assumiamo per assurdo che sia razionale

$$\sqrt{2} = n/m$$

n e m non devono avere fattori comuni

Proviamo che questa affermazione è impossibile

$$\sqrt{2} = n/m$$
 $2 m^2 = n^2$

quindi, n² è pari quindi n è pari (quadrato di dispari è dispari)

$$2 m^2 = 4k^2 \qquad m^2 = 2k^2 \qquad m \approx pari$$

$$m = 2 p$$

Allora, m e n hanno come fattore comune 2

Contradizione!

Linguaggi

Linguaggio: un insieme di stringhe

Stringa: una sequenza di simboli da un alfabeto

Esempio:

Stringhe: gatto, cane, casa

Linguaggio: {gatto, cane, casa}

Alfabeto: $\Sigma = \{a, b, c, \dots, z\}$

Linguaggi sono usati per descrivere problemi di calcolo:

$$PRIMI = \{2,3,5,7,11,13,17,...\}$$

$$Pari = \{0, 2, 4, 6, ...\}$$

Alfabeto:
$$\Sigma = \{0,1,2,...,9\}$$

Alfabeti e Stringe

Un alfabeto è un insieme di simboli

Esempio Alfabeto:
$$\Sigma = \{a, b\}$$

Una stringa è una sequenza di simboli da un alfabeto

ab abba aaabbbaabab

$$u = ab$$
 $v = bbbaaa$
 $w = abba$

Alfabeto dei numeri decimali

$$\Sigma = \{0,1,2,\ldots,9\}$$

102345

567463386

Alfabeto dei numeri binari $\Sigma = \{0,1\}$

$$\Sigma = \{0,1\}$$

100010001

101101111

Alfabeto dei numeri unari $\Sigma = \{1\}$

Numeri unari: 11 111 1111 11111

Numeri decimali: 1 2 3 4

Zero?

Operazioni su stringhe

$$w = a_1 a_2 \cdots a_n$$

abba

$$v = b_1 b_2 \cdots b_m$$

bbbaaa

Concatenazione

$$wv = a_1 a_2 \cdots a_n b_1 b_2 \cdots b_m$$

abbabbbaaa

$$w = a_1 a_2 \cdots a_n$$

ababaaabbb

Inverso

$$w^R = a_n \cdots a_2 a_1$$

bbbaaababa

Lunghezza di una stringa

$$w = a_1 a_2 \cdots a_n$$

Lunghezza:
$$|w| = n$$

$$|abba| = 4$$

$$|aa|=2$$

$$|a|=1$$

Lunghezza della concatenazine

$$|uv| = |u| + |v|$$

Esempio:
$$u = aab$$
, $|u| = 3$
 $v = abaab$, $|v| = 5$

$$|uv| = |aababaab| = 8$$

 $|uv| = |u| + |v| = 3 + 5 = 8$

Stringa vuota

Una stringa con nessuna lettera è denotata:

Osservaziones:

$$|\lambda| = 0$$

$$\lambda w = w\lambda = w$$

 $\lambda abba = abba\lambda = ab\lambda ba = abba$

Sottostringa

Sottostringa di una stringa:

Una sequenza consecutiva di caratteri:

Stringa	Sottostringa
<u>ab</u> bab	ab
<u>abba</u> b	abba
$ab\underline{b}ab$	b
abbab	bbab

Prefisso e Suffisso

abbab

Prefisso Suffisso

abbab

a bbab

ab bab

abb ab

abba b

abbab

Altre operazioni

$$w^n = \underbrace{ww\cdots w}_n$$

Esempio: $(abba)^2 = abbaabba$

Definizione:
$$w^0 = \lambda$$

$$(abba)^0 = \lambda$$

L'operazione *

 Σ^* : L'insieme di tutte le possibili stringe che è possibile generare a partire dall'alfabeto

$$\sum$$

$$\Sigma = \{a, b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

L'operazione +

 Σ^+ : L'insieme di tutte le possibili stringe che è possibile generare a partire dall'alfabeto Σ eccetto λ

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

$$\Sigma^+ = \Sigma * - \lambda$$

$$\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$$

Linguaggi. estensionali

Un linguaggio su un alfabeto Σ

È un qualsiasi sottoinsieme di $\sum *$

Esempio:

$$\Sigma = \{a,b\}$$

$$\Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, \ldots\}$$

linguaggio : $\{\lambda\}$

linguaggio: $\{a,aa,aab\}$

linguaggio: $\{\lambda, abba, baba, aa, ab, aaaaaa\}$

Esempi di linguaggi

Alfabeto
$$\Sigma = \{a, b\}$$

Un linguaggio infinito
$$L = \{a^n b^n : n \ge 0\}$$

 $\left. \begin{array}{c} \lambda \\ ab \\ aabb \end{array} \right. \in L \qquad abb
otin L \\ aaaaaabbbbb \end{array}$

Numeri primi

alfabeto
$$\Sigma = \{0,1,2,\ldots,9\}$$

Linguaggio:

$$PRIMES = \{x : x \in \Sigma^* \text{ and } x \text{ is prime}\}$$

$$PRIMES = \{2,3,5,7,11,13,17,...\}$$

Numeri pari e dispari

alfabeto
$$\Sigma = \{0,1,2,\ldots,9\}$$

$$EVEN = \{x : x \in \Sigma^* \text{ e } x \text{ è pari}\}$$

$$EVEN = \{0,2,4,6,...\}$$

$$ODD = \{x : x \in \Sigma^* \text{ e } x \text{ è dispari}\}\$$

 $ODD = \{1,3,5,7,...\}$

Somma unaria

alfabeto:
$$\Sigma = \{1,+,=\}$$

Linguaggio:

ADDITION =
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

$$11 + 111 = 111111 \in ADDITION$$

$$111 + 111 = 111 \notin ADDITION$$

Radici

Alfabeto:
$$\Sigma = \{1, \#\}$$

Linguaggio:

$$SQUARES = \{x \# y : x = 1^n, y = 1^m, m = n^2\}$$

11#1111 ∈ SQUARES 111#1111 ∉ SQUARES

Nota che:

Insieme vuoto
$$\emptyset = \{\} \neq \{\lambda\}$$
 Dimensione insiemi

$$\left|\{\,\}\right| = \left|\varnothing\right| = 0 \qquad \left|\{\lambda\}\right| = 1$$

Lunghezza di una stringa

$$|\lambda| = 0$$

Operazioni sui linguaggi

Le stesse degli insiemi

$${a,ab,aaaa} \cup {bb,ab} = {a,ab,bb,aaaa}$$

 ${a,ab,aaaa} \cap {bb,ab} = {ab}$
 ${a,ab,aaaa} - {bb,ab} = {a,aaaa}$

Complemento:
$$\overline{L} = \Sigma * -L$$

$$\overline{\{a,ba\}} = \{\lambda,b,aa,ab,bb,aaa,\ldots\}$$

Inverso

Definizione:
$$L^R = \{w^R : w \in L\}$$

Esempio:
$$\{ab, aab, baba\}^R = \{ba, baa, abab\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^R = \{b^n a^n : n \ge 0\}$$

Concatenazione

Definizione:
$$L_1L_2 = \{xy : x \in L_1, y \in L_2\}$$

Esempio: $\{a,ab,ba\}\{b,aa\}$

 $= \{ab, aaa, abb, abaa, bab, baaa\}$

Altre operazioni

Definizione:
$$L^n = \underbrace{LL \cdots L}_n$$

$${a,b}^3 = {a,b}{a,b}{a,b} =$$

 ${aaa,aab,aba,abb,baa,bab,bba,bbb}$

Casi speciale:
$$L^0 = \{\lambda\}$$

$$\{a,bba,aaa\}^0 = \{\lambda\}$$

$$L = \{a^n b^n : n \ge 0\}$$

$$L^{2} = \{a^{n}b^{n}a^{m}b^{m} : n, m \ge 0\}$$

 $aabbaaabbb \in L^2$

28

Star-Closure-intensione (Kleene *)

Tutte le stringhe che possono essere costruite da

$$L^* = L^0 \cup L^1 \cup L^2 \cdots$$

Definizione:

Chiusure

Definizione:
$$L^+ = L^1 \cup L^2 \cup \cdots$$

Lo stesso come L^* without the λ

$$\{a,bb\}^{+} = \begin{cases} a,bb, \\ aa,abb,bba,bbb, \\ aaa,aabb,abba,abbb, \dots \end{cases}$$

Deterministic Finite Automata

E linguaggi regolari Simulatore http://www.jflap.org/

Deterministic Finite Automaton (DFA)

testa

Configurazione iniziale

Input Tape

a b b a

Stato iniziale

Analizzare l'Input

Input finito

accettato

Un caso rigettato

Input finito

Un altro caso rigettato

Linguaggio accettato: $L = \{abba\}$

Per accettare una stringa:

Devono essere esaminati tutti i caratteri di Input e l'ultimo stato è uno stato finale

Per rigettare una stringa:

Tutti i caratteri di input sono stati esaminati E non si è raggiunto uno stato finale

Un altro esempio

Language Accepted: $L = \{a^nb : n \ge 0\}$

Un altro esempio

Alfabeto:
$$\Sigma = \{1\}$$

Linguaggio accettato:

$$EVEN = \{x : x \in \Sigma^* \text{ and } x \text{ is even}\}$$

= $\{\lambda, 11, 1111, 111111, ...\}$

Definizione formale

un automa deterministico formale(DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

: insieme degli stati

 Σ : alfabeto di input $\lambda \notin \Sigma$

 δ : funzione di transizione

 q_0 : state iniziale

F: insieme degli stati di accettazione (finale)

18

Insieme degli stati Q

esempio

$$Q = \{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\}$$

$$a, b$$

$$a, d$$

Alfabeto di input Σ

 $\lambda \notin \Sigma$: l'alfabeto di input non contene λ

Stato iniziale q_0

esempio

Insieme stati finali

$$F\subseteq Q$$

esempio

Funzione di transizione

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q, x) = q'$$

Descrive il risultato della Transizione dallo stato 9 Con simbolo x

esempio:

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Tavola di transizione per

symbols

states	δ	а	Ь
	q_0	q_1	q ₅
	q_1	9 5	<i>q</i> ₂
	q_2	q_5	<i>q</i> ₃
	q_3	<i>q</i> ₄	q ₅
	q_4	q ₅	q ₅
	<i>q</i> ₅	q ₅	q ₅
sta	q ₄	q ₅	q ₅

Funzione estesa di transizione

$$\delta^*: \mathbf{Q} \times \Sigma^* \to \mathbf{Q}$$

$$\delta^*(q,w)=q'$$

Descrive lo stato che risulta dopo aver Esaminata la stringa W a partire dallo stato \mathcal{G}

esempio:
$$\delta^*(q_0,ab) = q_2$$

$$\delta^*(q_0,abbbaa) = q_5$$

$$\delta^*(q_1,bba)=q_4$$

Caso speciale:

Per ogni stato q

$$\delta^*(q,\lambda)=q$$

$$\delta^*(q,w)=q'$$

Implica che vi è un cammino di transizione

$$W = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$Q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} \xrightarrow{\sigma_k} Q'$$

Alcuni stati possono essere ripeturi

Complessità costante sull'input

Deterministic Finite Automaton (DFA)

U(automa, input)=automa(input)

symbols

states	δ	а	Ь
	q_0	q_1	q ₅
	q_1	9 5	<i>q</i> ₂
	<i>q</i> ₂	q_5	<i>q</i> ₃
	q_3	<i>q</i> ₄	q ₅
	q_4	q ₅	q ₅
	<i>q</i> ₅	q ₅	9 5

U(automa, input)=automa(input)

Linguaggio accettato da un DFA

```
Linguaggio di un DFA: M
È denotato come L(M)
E contiene tutte le stringhe
```

Accettate da M

Un linguaggio L' È accettato (o riconosciuto) Da un DFA M se L(M) = L'

Per un DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Il linguaggio accettato da M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0 \qquad \qquad q' \in F$$

Linguaggio rifiutato da M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \delta^*(q_0, w) \notin F \}$$

DFA esempi

$$\Sigma = \{a,b\}$$

$$L(M) = \{ \}$$

Linguaggio vuoto

$$L(M) = \Sigma^*$$

Tutte le stringhe

$$\Sigma = \{a,b\}$$

$$L(M) = \{\lambda\}$$

Linguaggio che riconosce le Stringa vuota L(M) = { tutte le stringhe binarie che contengono la sottostringa 001}

$L(M) = \{ \text{ tutte le stringhe binarie che non } Contengono 001 \}$

$$L(M) = \left\{awa : w \in \left\{a, b\right\}^*\right\}$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow a$$

$$\downarrow b$$

$$\downarrow a$$

Linguaggi regolari

Definizione:

Un linguaggio L è regolare se esiste un DFA M che lo accetta (L(M) = L)

I linguaggi accettati da tutti i DFA formano la famiglia dei linguaggi regolari

Esempi di linguaggi regolari:

```
\{abba\} \{\lambda, ab, abba\}
\{a^n b : n \ge 0\} \{awa : w \in \{a,b\}^*\}
{ tutte stringhe \{a,b\}^* con prefisso ab}
{ all binary strings without substring 001}
\{x:x\in\{1\}^* \text{ and } x \text{ is even}\}
\{\} \{\lambda\} \{a,b\}^*
```

Abbiamo visto in precedenza gli automi regolari che li definiscono

Esitono linguaggi che non sono regolari:

$$L=\{a^nb^n:n\geq 0\}$$

ADDITION =
$$\{x + y = z : x = 1^n, y = 1^m, z = 1^k, n + m = k\}$$

Non esiste nessun DFA che accetta Questo linguaggio (vedremo più avanti)

Non-Deterministic Finite Automata

Automa finito deterministico calcolo finito e deterministico sequenziale, un segmento di Ing dell'input

Automi non deterministici (NFA)

alfabeto =
$$\{a\}$$

alfabeto = $\{a\}$

alfabeto =
$$\{a\}$$

Prima delle due scelte

Prima scelta

Prima scelta

Abbiamo consumato tutto l'input

Seconda scelta

Seconda scelta

Input non può essere tutto usato

un NFA accetta una stringa: Se esiste una computazione che accetta la stringa

Tutta la stringa di input è stata letta e l'automa Si trova in uno stato finale

aa È accettato dal NFA:

"accettato"

Perchè la
Computazione
accetta aa

Questa computazione è ignorata

Esempio computazione che rigettà

a

Prima scelta

Seconda scelta

Seconda scelta

Un altro esempio

Prima scelta

First Choice

Input cannot be consumed

Second Choice

Second Choice

Input non viene tutto consumato

An NFA rejects a string:

Se non vi è una computazione del NFA che accetta la stringa.

Per ogni computazione:

- · tutto l'input è consumato e l'automa
- · non ha raggiunto uno stato finale

O

· L'input non è stato tutto consumato

aaa È rigettato dal NFA:

Tutte le possibili computazioni non raggiungono uno stato finale

Linguaggio accettato: $L = \{aa\}$

Lambda transizione

La testina dell'input non si muove

Tutto l'input è esaminato

"accettato"

stringa aa è accettata

a a a

(la testina non si muove)

Input non viene analizato tutto

Automa si ferma

"rigettato"

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

stringa aaa è rigettata

Linguaggio accettato: $L = \{aa\}$

Esiste una computazione si Per ogni computazione no

Un altro NFA

Un altra stringa

Linguaggio accettato

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

NFA esempio

Remarks:

- ·Il simbolo λ non appare mai
- ·sul nastro di input
- ·Semplici automata:

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$ $\lambda \notin \Sigma$

 δ : Transition function

 q_0 : Initial state

F: Accepting states

Funzione di transizione δ

$$\delta(q,x) = \{q_1,q_2,\ldots,q_k\}$$

Stati risultanti con una transizione con simbolo x

$$\mathcal{S}(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda)=\{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Funzione di transizione estesa δ $\hat{}$

La stessa cosa δ ma applicata a stringhe

$$\delta^*(q_0,a)=\{q_1\}$$

$$\delta^*(q_0,aa) = \{q_4,q_5\}$$

$$\delta^*(q_0,ab) = \{q_2,q_3,q_0\}$$

In generale

 $q_j \in \delta^*(q_i, w)$: vi è un cammino da q_i a q_j con label w

Grado di non determinismo di un nodo per ogni nodo il numero di archi con la stessa label.

Grado di non determinismo di un automa, il grado massimo di non determinismo di tutti

The Language of an NFA M

Il linguaggio accettato daM è:

$$L(M) = \{w_1, w_2, ..., w_n\}$$

dove
$$\delta^*(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

E vi è un

$$q_k \in F$$
 (state finale)

 $w_m \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0,aa) = \{q_4,q_5\} \qquad aa \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \longrightarrow ab \in L(M)$$

$$\delta^*(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \longrightarrow F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$\lambda$$

$$q_3$$

$$\delta^*(q_0, abaa) = \{q_4, \underline{q_5}\} \longrightarrow aaba \in L(M)$$

$$= F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$a$$

$$q_1$$

$$b$$

$$q_2$$

$$\lambda$$

$$\lambda$$

$$\delta^*(q_0,aba) = \{q_1\} \implies aba \notin L(M)$$

$$\notin F$$

$$L(M) = \{ab\}^* \cup \{ab\}^* \{aa\}$$

```
δ*(stato, cW)=
{
delta_*(q,W)
con q elemento dell'insieme {delta(stato, c)}
}
```

 $q \in \delta^*(q,\lambda)$ Per ogni stato

```
1 \delta *(stato, cW)=
    \delta^*(q,W)
    con q \in \{\delta (stato, c)\}
     q \in \delta^*(q,\lambda) Per ogni stato
```

NFA accettano i linguaggi regolari

Equivalenza tra macchine

Definizione:

macchina M_1 è equivalente alla macchina M_2

se
$$L(M_1) = L(M_2)$$

Esempio di macchine equivalenti

$$L(M_1) = \{10\} *$$

Teorema:

NFA e DFA hanno lo stesso potere di computazione, Accettano gli stessi inguaggi.

dimostrazione: mostreremo

Linguaggi a Accettati da NFA Linguaggi regolari AND Linguaggi a Accettati da NFA

Parte prima

ogni DFA è banalmente un NFA

Ogni linguaggio Laccettato da un DFA È anche accettato da un NFA

Parte seconda

Ogni nfa può essere tradotto in un nfa

Ogni linguaggio L accettato da un NFA È anche accettato da un DFA

Conversione da NFA a DFA

$$\delta^*(q_0,a) = \{q_1,q_2\}$$

$\delta^*(q_0,b) = \emptyset$ Insieme vuoto

Fine della costruzione

Procedura generale

Input: NFA M

Output: un equivalente DFA M' con L(M) = L(M')

NFA ha gli stati

$$q_0, q_1, q_2, \dots$$

DFA ha gli stati definiti dall'insieme delle parti

$$\emptyset$$
, $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$, $\{q_1,q_2,q_3\}$,

Step della procedura

step

1. Stato iniziale NFA: q_0

stato iniziale del DFA: $\{q_0\}$

esempio

2. per ogni stato DFA

$$\{q_i,q_j,...,q_m\}$$

calcolo nel NFA

$$\begin{array}{c}
\delta^*(q_i,a) \\
\cup \delta^*(q_j,a)
\end{array} = \begin{cases}
q'_k, q'_1, \dots, q'_n \end{cases}$$

$$\cdots$$

$$\cup \delta^*(q_m,a)$$
unione
$$= \{q'_k, q'_1, \dots, q'_n \}$$

addiziona questa nuova transizione al DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_k,q'_1,...,q'_n\}$$

esempio
$$\delta^*(q_0, a) = \{q_1, q_2\}$$

NFA M

DFA M'

$$\delta(\{q_0\},a) = \{q_1,q_2\}$$

3. Ripeti lo step 2 per ogni stato nel DFA e simboli nell'alfabeto finchè non vi sono più stati che possono essere addizionati al DFA

esempio

4.

$$\{q_i,q_j,...,q_m\}$$

Per ogni stato DFA

```
Se qualche q_j è uno stato di accettazione del NFA Allora \{q_i,q_j,...,q_m\} è uno stato di accettazione del DFA
```

Example

Step della procedura

step

1. Stato iniziale NFA: q_0

stato iniziale del DFA: $\{q_0\}$

2. per ogni stato DFA

$$\{q_i,q_j,...,q_m\}$$

calcolo nel NFA

$$\begin{array}{c}
\delta^*(q_i,a) \\
\cup \delta^*(q_j,a)
\end{array} = \begin{cases}
q'_k, q'_1, \dots, q'_n \end{cases}$$

$$\cdots \\
\cup \delta^*(q_m,a)$$
unione
$$q'_k, q'_1, \dots, q'_n \end{cases}$$

addiziona questa nuova transizione al DFA

$$\delta(\{q_i,q_j,...,q_m\}, a) = \{q'_k,q'_1,...,q'_n\}$$

3. Ripeti lo step 2 per ogni stato nel DFA e simboli nell'alfabeto finchè non vi sono più stati che possono essere addizionati al DFA

4. Per ogni stato del DFA $\{q_i,q_j,...,q_m\}$

se è presente uno stato q_j finale, accettante, del NFA

allora, $\{q_i, q_j, ..., q_m\}$ è uno stato accettante del DFA

Lemma:

Se traduciamo un NFA M in un DFA M' Allora i due automata sono equivalenti:

$$L(M) = L(M')$$

dimostrazione:

Dobbiamo dimostrare che: $L(M) \subseteq L(M')$

$$L(M) \supseteq L(M')$$

Mostriamo che:
$$L(M) \subseteq L(M')$$

NFA contenuto in DFA

Dobbiamo provare che:

$$w \in L(M)$$
 $w \in L(M')$

considera $w \in L(M)$ NFA

ricordiamo

Simboli, lng 1

Denota un sotto cammino tale che

simboli

Mostriamo che se

$$w \in L(M)$$

$$\begin{array}{c} \mathsf{DFA} \ M' : \longrightarrow \stackrel{\sigma_1}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma$$

In modo piu generale, mostreremo che se in ${\cal M}$:

(stringa arbitraria) $v = a_1 a_2 \cdots a_n$

NFA
$$M: -q_0 q_i q_i q_j q_j q_m$$

allora

DFA
$$M'$$
: $\xrightarrow{a_1}$ $\xrightarrow{a_2}$ $\xrightarrow{a_2}$ $\underbrace{\{q_1,\ldots\}}$ $\underbrace{\{q_l,\ldots\}}$ $\underbrace{\{q_m,\ldots\}}$

Dimostrazione per induzione su |v|

Base induzione:
$$|v|=1$$
 $v=a_1$

NFA
$$M: -q_0 q_i$$

DFA
$$M'$$
: q_0 q_i ...

[vero per come costruito M']

$$1 \le |v| \le k$$

$$v = a_1 a_2 \cdots a_k$$

Supponiamo valga

NFA
$$M: -q_0 q_i q_i q_j q_j q_j q_d$$

$$\mathsf{DFA}\ M': \longrightarrow \underbrace{ a_1 }_{\{q_0\}} \underbrace{ a_2 }_{\{q_i,\ldots\}} \underbrace{ a_2 }_{\{q_j,\ldots\}} \underbrace{ a_k }_{\{q_c,\ldots\}} \underbrace{ a_k }_{\{q_d,\ldots\}}$$

Step induttivo:
$$|v| = k + 1$$

$$v = \underbrace{a_1 a_2 \cdots a_k}_{v'} a_{k+1} = v' a_{k+1}$$

Vero per costruzione di M'

NFA
$$M: q_0 \stackrel{a_1}{\longrightarrow} q_i \stackrel{a_2}{\longrightarrow} q_j \stackrel{a_2}{\longrightarrow} q_c \stackrel{a_k}{\longrightarrow} q_d \stackrel{a_{k+1}}{\longrightarrow} q_e$$

$$w \in L(M)$$

$$\begin{array}{c} \mathsf{DFA} \ M' : \longrightarrow \stackrel{\sigma_1}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_2}{\longrightarrow} \stackrel{\sigma_k}{\longrightarrow} \stackrel{\sigma_k}{\longrightarrow} \\ w \in L(M') \end{array}$$

allora:
$$L(M) \subseteq L(M')$$
 dimostrato
$$L(M) \supseteq L(M') \quad \text{banale}$$

quindi:
$$L(M) = L(M')$$

Fine lemma

Espressioni regolari

Ricordo: un linguaggio è regolare se è riconosciuto da un NFA (=DFA)

Definizione sintattica

L'espressioni regolari di base : \emptyset , λ , α

Date le espressioi regolari r_1 e r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 r_1^*
 (r_1)

Sono espressioni regolari

Una semantica: Linguaggi associati alle espressioni regolari

Per le espressioni regolari di base:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

passo

per le espressioni regolari
$$r_1$$
 e r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Linguaggi associati alle espressioni regolari

L(r): linguaggio associato all'espressione $\,r\,$

esempio

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Espressioni regolari definiscono solo e soltanto i linguaggi regolari?

proprietà dei linguaggi regolari e automi

per linguaggi regolari L_1 e L_2 dimostreremo che:

Unione: $L_1 \cup L_2$

Concatenatione: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complemento: L_1

Intersezione: $L_1 \cap L_2$

sono linguaggi regolari

diremo: linguaggi regolari sono chiusi sotto

Unione: $L_1 \cup L_2$

Concatenatione: L_1L_2

Star: L_1 *

Reversal: L_1^R

Complemento: $\overline{L_1}$

Intersezione: $L_1 \cap L_2$

Useremo nfa con un solo stato finale

2 stati di accettazione

Equivalente

In Generale

NFA

Equivalent NFA

Un solo
Stato di
accettazione

11

Caso estremo

NFA senza stato di accettazione

Addizioniamo
Uno stato di
Accettazione
Senza transizione

Prendiamo due linguaggi

Linguaggio regolare L_1 linguaggio regolare L_2

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M_2

Un solo stato di accettazione Un solo stato di accettazione

Esempio

<u>Unione</u>

NFA per $L_1 \cup L_2$

Esempio

NFA per
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Evitiamo le transizioni con le lambda transizioni.

Mostriamo che a partire da due automi (N_1,N_2), si può costruire l'automa unione dei due linguaggi definiti dagli automi precedenti.

Gli stati del nuovo automa sono l'unione degli stati precedenti, K_1 e K_2, più un nuovo stato iniziale q'_0.

Funzione transizione dell'automa unione, N, a partire dalle delta di N_1 e N_2.

$$\begin{split} &\mathcal{E}_{\mathcal{N}}(q,a) = \mathcal{E}_{\mathcal{N}_{1}}(q,a), q \in K_{1}, a \in \Sigma_{1} \\ &\mathcal{E}_{\mathcal{N}}(q,a) = \mathcal{E}_{\mathcal{N}_{2}}(q,a), q \in K_{2}, a \in \Sigma_{2} \\ &\mathcal{E}_{\mathcal{N}}(q^{+}_{0},a) = \mathcal{E}_{\mathcal{N}_{1}}(q_{0_{1}},a) \bigcup \mathcal{E}_{\mathcal{N}_{2}}(q_{0_{2}},a), a \in \Sigma \end{split}$$

Provare che la definizione precedente definisce l'unione di due automi.

Concatenazione

NFA per L_1L_2

esempio

NFA per
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

Star

NFA per L_1*

 $w = w_1 w_2 \cdots w_k$

esempio

NFA per
$$L_1^* = \{a^n b\}^*$$

Reverse

- 1. Reverse tutte le transizioni
- 2. Stato iniziale quello finale, quello finale stato iniziale

esempio

$$L_1^R = \{ba^n\}$$

Complemento

prendiamo il DFA che accetta L_1

1. Stati non finale diventano finale, e vice-versa, resta lo stato iniziale.

esempio

Intersezione

leggi DeMorgan: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$

$$L_1$$
, L_2 regolari

 $\overline{L_1}$, $\overline{L_2}$ regolari

 $\overline{L_1} \cup \overline{L_2}$ regolari

 $\overline{L_1} \cup \overline{L_2}$ regolari

 $L_1 \cap L_2$ regolari

esempio

$$L_1 = \{a^nb\} \quad \text{regolari} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regolari} \\ \\ \text{regolari}$$

esempio:

Useremo nfa con un solo stato finale

2 stati di accettazione

Equivalente

In Generale

NFA

Equivalent NFA

Un solo
Stato di
accettazione

Complemento

1 prendiamo il DFA che accetta $\,L_{1}\,$

2. Stati non finale diventano finale, e vice-versa

Chiusura rispetto intersezione

macchina M_1

DFA per L_1

macchina ${\cal M}_2$

DFA per L_2

Costruiamo un DFA M che accetta $L_1\cap L_2$

M Simula in parallelo M_1 e M_2

Stati in M

DFA M_2

stato iniziale

stato iniziale

DFAM

nuovo stato iniziale

transizione

$\mathsf{DFA}\ M$

DFA M_2

accettazione stati

 $\mathsf{DFA}\ M$

nuovo accettazione stati

esempio:

$$L_1 = \{a^n b\}$$

Intersezione automata

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

Se appariene ad entrambi

Sia la stringa di lunghezza n Esistono due cammini di lunghezza n, uno per ogni automa. Dallo stato iniziale a quello finale. Se Ing 1 vero, dimostrare vero per n+1. Ultimo tratto da n a n+1 arco nei due automa e arco automa costruito. Considera stringa n e considera come stato finale quello prima dello stato finale, vedi arco che riconosce il carattere n, simula i due automi. Continua ad andare indietro fino a raggiungere lo stato iniziale.

Nell'automa costruito esiste un cammino di Ing n che li simula

$$\,M\,$$
 Simula in parallelo $\,M_1\,$ e $\,M_2\,$

$$M$$
 accettazione stringa $\ w$ Se e solo se:

$$M_1$$
 accetta w string M_2 accetta W string

$$L(M) = L(M_1) \cap L(M_2)$$

Espressioni regolari e linguaggi regolari

Teorema

Linguaggi
Generati da
Espressioni regolari

Linguaggi
regolari

Dimostrazione - Parte 1

Linguaggi
Generati da
Espressioni regolari

Linguaggi
regolari

per ogni espressione regolare r il linguaggio L(r) è regolare

Dimostrazione per induzione sulla lunghezza

1

Base induzione

Espressioni regolari di base: \emptyset , λ , α corrispondente

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = \{\lambda\} = L(\lambda)$$

Linguaggi regolari

$$L(M_3) = \{a\} = L(a)$$

Ipotesi induttiva

supponi

Per le espressioni regolari r_1 e r_2 , $L(r_1)$ e $L(r_2)$ sono linguaggi regolari.

Esistono due automi uno per ogni linguaggio

Passo induttivo

Proviamo che:

$$L(r_1+r_2)$$

$$L(r_1 \cdot r_2)$$

$$L(r_1 *)$$

$$L((r_1))$$

Sono linguaggi regolari

Ricorda che, per def. di espressione regolare

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Per ipotesi induttiva:

$$L(r_1)$$
 e $L(r_2)$ sono linguaggi regolari

Inoltre sappiamo, slides precedenti:

I linguaggi regolari sono chiusi rispetto:

$$L(r_1) \cup L(r_2)$$

$$L(r_1)L(r_2)$$

Star

$$(L(r_1))*$$

Usando la chiusura dele operazioni Possiamo costruire un NFAM tale che:

$$L(M) = L(r)$$

esempio: $r = r_1 + r_2$

$$L(M_1) = L(r_1)$$

$$L(M_2) = L(r_2)$$

Stella e puntino.

esercizio

Stella: torna indietro con lambda.

Puntino: collega i finali del primo con l'iniziale con un lambda.

dim - Part 2

Per ogni linguaggio regolare L esiste una espressione regolare r con L(r)=L

Convertiremo un NFA che accetta LIn una espressione regolare

Poichè L è regolare , allora esiste un NFA M che lo accettà

$$L(M) = L$$

Prendiamo l'automa con un solo stato finale

da M costruiamo l'equivalente Generalized Transition Graph

Nel quale i caratteri di transizione, transition labels, sono espressioni regolari

Un altro esempio:

Transition labels
Sono espressioni
regolari
_

Ridurre gli stati:

Transition labels sono espressioni regolari

Espressione regolare che si ottiene:

$$r = (bb * a) * bb * (a + b)b *$$

$$L(r) = L(M) = L$$

- Stato iniziale solo archi uscenti, nessuno rientrante
- Solo uno finale tutti entranti e nessun uscente.
- Per gli altri stati sono presenti archi uscenti per tutti gli altri stati ed entranti da tutti gli altri stati e su se stesso. Se non esiste un arco da q_i a q_j creiamo un arco con label insieme vuoto ϕ

Se k=2 slide precedente

```
Altimenti
prendiamo lo stato da eliminare q
Per ogni q_i e q_j collegati via q
\delta^*(q \ 1, q \ j) = (R \ 1)(R \ 2)^*(R \ 3) \cup (R \ 4)
     vai da q_i a q, R_1
     gira su q, (R_2)*
     vai da q a q_j, R_3
     direttamente da q_i a q_j, R_4
```

In generale

Rimuovere uno stato: d q_{j} q_i qa ae^*d *ce***b* ce*d q_{j} q_i ae*b

Per ogni q_i e q_j collegati via q

64

vai da q_i a q, R_1 gira su q, (R_2)* via da q a q_j, R_3 direttamente da q_i a q_j, R_4

$$\delta^*(q_1,q_j) = (R_1)(R_2)*(R_3) \cup (R_4)$$

vai da q_i a q, R_1 gira su q, (R_2)* vai da q a q_j, R_3 direttamente da q_i a q_j, R_4

 $(a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*((ba \cup a)(aa \cup b)^* \cup \varepsilon) \cup a(aa \cup b)^*$

Algoritmo: Eliminare uno stato alla volta fino a che restano 2 stati.

Dimostrazione algoritmo funziona ovvero l'automa iniziale G e G', meno uno stato, accettano lo stesso linguaggio G' con due stati allora otteniamo espressione regolare.

Vero per k-1 provare per k+1.

- Prendiamo una stringa che viene accettata, esiste un cammino che accetta la stringa se non usa lo stato da eliminare bene G e G' accettano la stringa. In slang:
- «Se G non usa lo stato da eliminare: bene G'
 «si fa lo stesso giro» »;
- Se G usa lo stato da eliminare allora in G' lo stato in oggetto non esiste ma nei nuovi archi tutte le sottostringhe che venivano riconosciute tramite lo stato eliminato sono descritte dalle espressioni regolari sugli archi

Presentazione standard di un linguaggio regolare

esercizi slide successive

esempio

Epressione regolare: $(a+b)\cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Linguaggi associati alle espressioni regolari

L(r): linguaggio associato all'espressione $\,r\,$

esempio

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Esempio

Espressione regolare r = (a+b)*(a+bb)

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

esempio

Espressione regolare
$$r = (aa)*(bb)*b$$

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

esempio

Espressione regolare
$$r = (0+1)*00(0+1)*$$

$$L(r)$$
 = { tutte le stringhe che contengono 00 }

esempio

Espressione regolare
$$r = (1+01)*(0+\lambda)$$

= { tutte le stringhe senza sottostringhe 00 }

Ripetere il processo finchè Due stati restano il grafo risultante sarà il seguente

L'espressione regolare risultante:

$$r = r_1 * r_2 (r_4 + r_3 r_1 * r_2) *$$

 $L(r) = L(M) = L$

Definizione formale

Grammatica:

$$G = (V, T, S, P)$$

Insieme delle variabili

Insieme simboli terminali Start variabile Insieme delle produzioni

$$G = (V, T, S, P)$$

Tutte le produzioni *P* sono della forma:

$$A \rightarrow S$$

Stringhe di Variabili e non terminali

Linguaggio di una grammatica:

Per una grammatica G con start S

$$L(G) = \{ w : S \Rightarrow w, w \in T^* \}$$

Stringhe di terminali o λ

terminali

Grammatica lineare

Le grammatiche con al massimo una variabile sul lato destro della produzione

Esempio:

$$S \to aSb$$
 $S \to Ab$ $S \to \lambda$ $A \to aAb$

 $A \rightarrow \lambda$

Grammatica non lineare

Grammatica
$$G: S o SS$$
 $S o \lambda$ $S o aSb$ $S o bSa$

$$L(G) = \{w: n_a(w) = n_b(w)\}$$

Numeri di α nella stringa w

Grammatica lineare

Grammatica
$$G: S \to A$$

$$A \to aB \mid \lambda$$

$$B \to Ab$$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Grammatica lineare a destra

Tutte le produzioni hanno la forma

$$A \rightarrow xB$$

$$A \rightarrow x$$

esempio:

$$S \rightarrow abS$$

$$S \rightarrow a$$

Stringa di terminali

Grammatiche lineare sinistra

Tutte le produzioni hanno la forma:

$$A \rightarrow Bx$$

0

$$A \rightarrow x$$

Esempio:

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

Stringhe di terminali

Grammatica regolare

Grammatiche regolari

Una grammatica regolare è qualsiasi grammatica lineare a destra o a sinistra

Esempio:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

I linguaggi generati da una grammatica regolare è un linguaggio regolare

Examples:

$$G_1$$

$$S \rightarrow abS$$

$$S \rightarrow a$$

$$L(G_1) = (ab) * a$$

$$G_2$$

$$S \rightarrow Aab$$

$$A \rightarrow Aab \mid B$$

$$B \rightarrow a$$

$$L(G_2) = aab(ab) *$$

Grammatiche regolari generano linguaggi regolari

Teorema

Linguaggi
Generati da
grammatiche
regolari

Teorema - Part 1

Linguaggi
Generati da
grammatiche
regolari

Linguaggi
regolari

Ogni grammatica regolare Genera un liguaggio generale

Teorema - Part 2

 Linguaggi

 Generati da

 grammatiche

 regolari

 Linguaggi

 regolari

Ogni linguaggio regolare È generato da una grammatica regolare

Proof - Part 1

Linguaggi
Generati da
grammatiche
regolari
Linguaggi
regolari

Il linguaggio L(G) generato da Una grammatica regolare G è regolare

Il caso della Grammatica

sia G una right-linear grammatica

proveremo: L(G) è regolare

idea: costruiamo una NFA M con L(M) = L(G)

Grammatica G è right-linear

Esempio:
$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow b B \mid a$$

Construiamo NFA M tale che ogni stato è una variabile della grammatica :

Addizioniamo un arco per ogni produzione:

 $S \rightarrow aA$

 $S \rightarrow aA \mid B$

$$S \rightarrow aA \mid B$$
 $A \rightarrow aa \mid B$

 $S \Rightarrow aA \Rightarrow aaaB \Rightarrow aaabB \Rightarrow aaaba$

25

NFA M

Grammatica

G

$$S \rightarrow aA \mid B$$

$$A \rightarrow aa B$$

$$B \rightarrow bB \mid a$$

L(M) = L(G) = aaab*a + b*a

In Generale

una right-linear grammatica G

Ha le variabili:
$$V_0, V_1, V_2, \dots$$

E le produzioni:
$$V_i \rightarrow a_1 a_2 \cdots a_m V_j$$

or

$$V_i \rightarrow a_1 a_2 \cdots a_m$$

Costruiamo un NFA $_{M}$ tale che:

Ogni variabile V_i corrisponde ad un nodo:

stato finale

per ogni produzione: $V_i \rightarrow a_1 a_2 \cdots a_m V_j$

Addizioniamo transizioni e nodi intermedi

$$V_i$$
 a_1 a_2 a_2 a_m V_j

per ogni produzione: $V_i \rightarrow a_1 a_2 \cdots a_m$

Addizioniamo transizioni e nodi intermedi

otteniamo NFAM come questo:

Vale che:

$$L(G) = L(M)$$

Il caso di una Left-Linear grammatica

Fate voi

dimostrazione - Part 2

Linguaggi
Generati da
grammatiche
regolari
Linguaggi
regolari

ogni linguaggio regolare L è generato da qualche grammatica regolare \sim

qualsiasi linguaggio regolare $\ L$ è generato da una grammatica regolare $\ G$

idea:

$$sia$$
 M NFA con

$$L = L(M)$$
.

costruiamo da
$$M$$
 una grammatica G regolare tale che $L(M) = L(G)$

Poichè L è regolare è un NFA M tale che L=L(M)

Esempio:

L = ab*ab(b*ab)*

$$L = L(M)$$

convertiamo M in una right-linear grammatica b

$$L(G) = L(M) = L$$

G $q_1 \rightarrow bq_1$ $q_1 \rightarrow aq_2$ $q_2 \rightarrow bq_3$ $q_3 \rightarrow q_1$

In Generale

per qualsiasi transizione:

addizioniamo la produzione:

per qualsiasi stato finale: (q_f)

Addizioniamo la produzione:

$$q_f \to \lambda$$

Since G è right-linear grammatica

G è grammatica regolare

con

$$L(G) = L(M) = L$$

linguaggi Non-regolari

(Pumping Lemma)

linguaggi Non-regolari

$$\{a^nb^n: n\geq 0\}$$

$$\{vv^R: v \in \{a,b\}^*\}$$

linguaggi regolari

$$b*c+a$$

$$b+c(a+b)*$$

etc...

Come possiamo provare che un linguaggio I non è regolare?

Dobbiamo provare che non vi è Nessun DFa or NFa or RE che lo accetta

Difficulty: non è facile da provare (perchè vi sono infiniti dfa, nfa e re)

Solution: usare il Pumping Lemma !!!

il Pigeonhole Principle

Capelli. Persone.

4 pigeons

3 pigeonholes

a pigeonhole deve Contenere due pigeons

n pigeons

m pigeonholes

• • • • • • • • • •

il Pigeonhole Principle

n pigeons

m pigeonholes

n > m

a pigeonhole deve Contenere minimo due pigeons

il Pigeonhole Principle

ei

DFa

considera un DFa con 4 stati

considera il cammino di una "stringa lunga": (lunghezza almeno 4) aaaab

uno stato è ripetuto nel cammino di aaaab

il stato è ripetuto da a, risultato del pigeonhole principle

considera il cammino di a "long" stringa: aabb (lunghezza almeno 4)

Dal pigeonhole principle: uno stato è ripetuto nel cammino di *aabb*

il stato è ripetuto come risultato del pigeonhole principle

In Generale: $se|w| \ge \#states$ of DFA Per il pigeonhole principle, uno stato è ripetuto nel cammino W

cammino di $w = \sigma_1 \sigma_2 \cdots \sigma_k$

$|w| \ge \#$ states of DFA = m

il Pumping Lemma

prendi un linguaggio regolare infinito L (contiene un numero infinito di stringhe)

Sia un DFa che accetta \boldsymbol{m} stati

prendiamo una stringa $w \in L$ con $|w| \ge m$

(numero di stati del DFa)

Almeno uno stato è ripetuto nel cammino di w

Ci saranno molti stati ripetuti

prendiamo il primo stato ripetuto

A

In una dimensione il cammino di: W

prima seconda occorrenza occorrenza $\sigma_{j} = \sigma_{j+1} \cdots \sigma_{k}$ occorrenza $\sigma_{j} = \sigma_{j+1} \cdots \sigma_{k}$ unico stato

Possiamo scrivere w = xyz

Una dimensione del cammino di :
$$w$$

prima seconda

occorrenza

occorrenza

 $x = \sigma_1 \cdots \sigma_i$
 $y = \sigma_{i+1} \cdots \sigma_j$
 $z = \sigma_{j+1} \cdots \sigma_k$

Nel DFa: w = x y z

osservazione: lunghezza $|xy| \le m$ numero di stati del DFa

osservazione: lunghezza $|y| \ge 1$

Vi è almeno un loop

Non badiamo alla forma della stringa

 \overline{Z}

z può avere pezzi di cammino di x and y

stringa addizionale: la stringa xz è accettata

Non fa il loop

stringa addizionale: la stringa x y y z è accettata

addizionale stringa: la stringa x y y y z è accettata

In Generale: la stringa $x y^i z$ è accettata i = 0, 1, 2, ...

quindi:

$$x y^i z \in L$$

$$i = 0, 1, 2, \dots$$

linguaggio accettato dal DFa

il Pumping Lemma:

- \cdot dato un linguaggio regolare infinito L
- esiste an intero m (lunghezza critica)
- per ogni stringa $w \in L$ con lunghezza $|w| \ge m$
- possiamo scrivere w = x y z
- $|xy| \le m e |y| \ge 1$
- tale che: $x y^{i} z \in L$ i = 0, 1, 2, ...

nel libro sipster:

lunghezza Critica = m lunghezza Pumping p

applicazioni applicazioni

del Pumping Lemma

osservazione:

ogni linguaggio di dimensione finita è regolare

(possiamo facilmente costruire an NFa che accetta ogni stringa nel linguaggio)

quindi, ogni linguaggio non-regolare è di dimensione infinita (contiene an infinito numero di stringhe)

supponiamo vogliamo provare che Un linguaggio infinito L non è regolare

- 1. assumiamo l'opposto: L è regolare
- 2. il pumping lemma deve valere per I
- 3. usiamo il pumping lemma per ottenere una contradizione
 - 4. quindi, L non è regolare

Spiegazione Step 3: come avere una contradizione

- 1. Let m sia la lunghezza critica for L
- 2. Scegliamo una stringa particolare $w \in L$ che soddisfa la condizione di lunghezza $|w| \ge m$
 - 3. scrivere w = xyz
- 4. mostriamo che $w' = xy^iz \notin L$ Per qualche $i \neq 1$
- 5. Questo ci dà una contradizione, poichè dal pumping lemma $w' = xy^iz \in L$

Note:

È sufficiente mostrare che solo una stringa $w \in L$ genera una contradizione

Non dobbiamo ottenere contradizioni per ogni $w \in L$

Esempi di applicazioni del Pumping Lemma

teorema: il linguaggio
$$L = \{a^nb^n : n \ge 0\}$$
 non è regolare

dim: Usa il Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

assumiamo per contradizione che Lè un linguaggio regolare

Since L è infinito Possiamo applicare il Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

sia m la lunghezza critica per L

Prendiamo a stringa
$$w$$
 such che: $w \in L$ e lunghezza $|w| \ge m$

prendiamo
$$w = a^m b^m$$

Dal Pumping Lemma:

possiamoscrivere
$$W = a^m b^m = x y z$$

Con lunghezza
$$|x y| \le m, |y| \ge 1$$

$$\mathbf{w} = xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{\mathbf{x}}$$

allora:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^m b^m$$

$$y = a^k$$
, $1 \le k \le m$

dal Pumping Lemma:

$$x y^{l} z \in L$$

$$i = 0, 1, 2, \dots$$

allora:
$$x y^2 z \in L$$

$$x y z = a^m b^m$$
 $y = a^k$, $1 \le k \le m$

$$x y^2 z \in L$$

$$xy^{2}z = \underbrace{a...aa...aa...aa...ab...b}_{m+k} \in L$$

allora:
$$a^{m+k}b^m \in L$$

aaabbb =xyz
1 caso x=aa y=a z=bbb
aa aa bbb

2 caso x=aaab y=b z=b aaab bb b

3 caso
x=aa y=ab z=bb
aa ababab bb

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

MA:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

contradizione!!!

quindi:

l'assunzione che $\,L\,$ è un linguaggio regolare non è vera

Conclusione: L non è un linguaggio regolare

END dim

linguaggio Non-regolare $\{a^nb^n: n \ge 0\}$

a*b*
aayabybb=xyz y=a
aa aa a bbb
aaa bbbbb
y=ab
aaabbbb

23922 - ROMA - Part. del frammento di bassorillevo, rappres. le Stagioni - Museo Vaticano Ripr. int. - Andersc

Precisazioni unioni e intersezione automi

Per studenti 2020

Chiusura rispetto intersezione

automa M_1 automa M_2 DFA per L_1

«Automi completi»

Costruiamo un DFA M che accetta $L_1 \cap L_2$

M Simula in parallelo M_1 e M_2

Stati in M

DFA M_2

DFA M

nuovo stato iniziale

DFA M_2

DFAM

Nuova transizione

DFA M_1

DFA M_2

accettazione stato

accettazione stati

 $\mathsf{DFA}\ M$

nuovo accettazione stati

<u>Unione</u>

 $L_1 \cup L_2$

• NFA per

Esempio

NFA per
$$L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$$

Potremmo definire l'unione in un altro modo. dati due automi «completi»

 M_1 M_2

Stati in M

DFA M_2

DFA M

nuovo stato iniziale

DFA M_2

DFAM

Nuova transizione

DFA M_1

DFA M_2

accettazione stato

accettazione stato

DFA M

nuovi stati di accettazione

Con p uno stato qualsiasi di M_2

Con q uno stato qualsiasi di M_1

Provare che la definizione precedente definisce l'unione di due automi. Parliamo come.