```
In [81]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [219]: df=pd.read_csv(r"C:\USERS\user\Downloads\C8_loan-train - C8_loan-train.csv")

Out[219]:

		Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coap
	0	LP001002	Male	No	0	Graduate	No	5849	
	1	LP001003	Male	Yes	1	Graduate	No	4583	
	2	LP001005	Male	Yes	0	Graduate	Yes	3000	
	3	LP001006	Male	Yes	0	Not Graduate	No	2583	
	4	LP001008	Male	No	0	Graduate	No	6000	
6	09	LP002978	Female	No	0	Graduate	No	2900	
6	10	LP002979	Male	Yes	3+	Graduate	No	4106	
6	11	LP002983	Male	Yes	1	Graduate	No	8072	
6	12	LP002984	Male	Yes	2	Graduate	No	7583	
6	13	LP002990	Female	No	0	Graduate	Yes	4583	

614 rows × 13 columns

```
In [220]: La
```

1 of 5 02-08-2023, 17:19

In [230]: df=df.head(15)

Out[230]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapp
0	LP001002	Male	No	0	Graduate	No	5849	
1	LP001003	Male	Yes	1	Graduate	No	4583	
2	LP001005	Male	Yes	0	Graduate	Yes	3000	
3	LP001006	Male	Yes	0	Not Graduate	No	2583	
4	LP001008	Male	No	0	Graduate	No	6000	
5	LP001011	Male	Yes	2	Graduate	Yes	5417	
6	LP001013	Male	Yes	0	Not Graduate	No	2333	
7	LP001014	Male	Yes	3+	Graduate	No	3036	
8	LP001018	Male	Yes	2	Graduate	No	4006	
9	LP001020	Male	Yes	1	Graduate	No	12841	
10	LP001024	Male	Yes	2	Graduate	No	3200	
11	LP001027	Male	Yes	2	Graduate	NaN	2500	
12	LP001028	Male	Yes	2	Graduate	No	3073	
13	LP001029	Male	No	0	Graduate	No	1853	
14	LP001030	Male	Yes	2	Graduate	No	1299	

2 of 5

In [231]: a=df[['Property_Area', 'ApplicantIncome', 'CoapplicantIncome', 'Loan_Amount_Ter

Out[231]:

	Property_Area	ApplicantIncome	CoapplicantIncome	Loan_Amount_Term	Credit_History
0	Urban	5849	0.0	360.0	1.0
1	Rural	4583	1508.0	360.0	1.0
2	Urban	3000	0.0	360.0	1.0
3	Urban	2583	2358.0	360.0	1.0
4	Urban	6000	0.0	360.0	1.0
5	Urban	5417	4196.0	360.0	1.0
6	Urban	2333	1516.0	360.0	1.0
7	Semiurban	3036	2504.0	360.0	0.0
8	Urban	4006	1526.0	360.0	1.0
9	Semiurban	12841	10968.0	360.0	1.0
10	Urban	3200	700.0	360.0	1.0
11	Urban	2500	1840.0	360.0	1.0
12	Urban	3073	8106.0	360.0	1.0
13	Rural	1853	2840.0	360.0	1.0
14	Urban	1299	1086.0	120.0	1.0

In [232]:

Out[232]: Urban 11

Semiurban 2

Rural

Name: Property_Area, dtype: int64

In [210]: x=a.drop('Property_Area',axis=1)

3 of 5 02-08-2023, 17:19

```
In [233]: g1={"Property_Area":{'Urban':1,'Semiurban':2,'Rural':5}}
           a=a.replace(g1)
                                                 CoapplicantIncome
                                                                     Loan_Amount_Term \
               Property_Area
                               ApplicantIncome
           0
                            1
                                           5849
                                                                                 360.0
           1
                            5
                                           4583
                                                             1508.0
                                                                                 360.0
           2
                            1
                                           3000
                                                                0.0
                                                                                 360.0
           3
                            1
                                           2583
                                                             2358.0
                                                                                 360.0
           4
                            1
                                           6000
                                                                0.0
                                                                                 360.0
           5
                            1
                                           5417
                                                             4196.0
                                                                                 360.0
           6
                            1
                                           2333
                                                             1516.0
                                                                                 360.0
           7
                            2
                                           3036
                                                             2504.0
                                                                                 360.0
           8
                            1
                                           4006
                                                             1526.0
                                                                                 360.0
           9
                            2
                                          12841
                                                            10968.0
                                                                                 360.0
           10
                            1
                                           3200
                                                              700.0
                                                                                 360.0
           11
                            1
                                           2500
                                                             1840.0
                                                                                 360.0
           12
                            1
                                           3073
                                                             8106.0
                                                                                 360.0
           13
                            5
                                           1853
                                                             2840.0
                                                                                 360.0
           14
                            1
                                           1299
                                                             1086.0
                                                                                 120.0
               Credit_History
           0
                           1.0
           1
                           1.0
           2
                           1.0
           3
                           1.0
           4
                           1.0
           5
                           1.0
           6
                           1.0
           7
                           0.0
           8
                           1.0
           9
                           1.0
           10
                           1.0
           11
                           1.0
           12
                           1.0
           13
                           1.0
           14
                           1.0
In [234]: from sklearn.model_selection import train_test_split
In [235]: from sklearn.ensemble import RandomForestClassifier
           rfc=RandomForestClassifier()
Out[235]: RandomForestClassifier()
In [236]:
           parameters={'max_depth':[1,2,3,4,5],
                       'min_samples_leaf':[5,10,15,20,25],
```

4 of 5 02-08-2023, 17:19

```
In [237]: from sklearn.model_selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:
         666: UserWarning: The least populated class in y has only 1 members, which is
          less than n_splits=2.
           warnings.warn(("The least populated class in y has only %d"
Out[237]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                 'min_samples_leaf': [5, 10, 15, 20, 25],
                                 'n_estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [238]:
Out[238]: 0.9285714285714286
In [239]:
In [240]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
Out[240]: [Text(2232.0, 1087.2, 'gini = 0.133\nsamples = 9\nvalue = [1, 13]\nclass = No
```

gini = 0.133 samples = 9 value = [1, 13] class = No

```
In [ ]:
```

5 of 5 02-08-2023, 17:19