

EBR Systems, Inc.

IPG Model 4100 (ICTx)
FCC 95I:2017
MedRadio

Report # EBRS0020

NVLAP Lab Code: 200676-0

CERTIFICATE OF TEST

EBR Systems, Inc.
Model: IPG Model 4100 (ICTx)

Radio Equipment Testing

Standards

Specification	Method
	ANSI/TIA/EIA-603-D-2010
FCC 95I:2017	FCC 95.633(e)(3)
	FCC 95.635(d)(4-5)

Results

Noodio					
Method Clause	Test Description	Applied	Results	Comments	
FCC 95.633(e)(3)	Emission Bandwidth	Yes	Pass		
FCC 95.635(d)(4-5)	Emission Mask	Yes	Pass		
TIA-603 2.2.1	Output Power	Yes	Pass		
TIA-603 2.2.2	Frequency Stability	Yes	Pass		
TIA-603 2.2.12	Spurious Radiated Emissions	Yes	Pass		
TIA-603 2.2.13	Spurious Conducted Emissions	Yes	Pass		
TIA-603 2.2.17.2	Radiated Power (EIRP)	Yes	Pass		

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

Report No. EBRS0020 2/39

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. EBRS0020 3/39

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Validated by the European Commission as a Notified Body under the R&TTE Directive. Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

Report No. EBRS0020 4/39

FACILITIES

California
Labs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600	
	NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innov	ation, Science and Eco	nomic Development Car	ada		
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
	BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
		VC	CI			
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

Report No. EBRS0020 5/39

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

<u>Test</u>	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. EBRS0020 6/39

Test Setup Block Diagrams

Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. EBRS0020 7/39

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	EBR Systems, Inc.	
Address:	480 Oakmead Parkway	
City, State, Zip:	Sunnyvale, CA 94085	
Test Requested By:	Tom Holly	
Model:	IPG Model 4100 (ICTx)	
First Date of Test:	April 20, 2017	
Last Date of Test:	May 5, 2017	
Receipt Date of Samples:	April 20, 2017	
Equipment Design Stage:	Production	
Equipment Condition:	No Damage	
Purchase Authorization:	Verified	

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The IPG Model 4100 (ICTx) is a Class III medical device. Specifically it is an implantable ultrasound transmitter, which is part of a cardiac pacing system for treatment of heart failure. It senses using electrodes on the enclosure, and then when it is time to pace the heart it issues ultrasound transmissions to a small separate component of our system (the receiver electrode) which is embedded into the heart muscle, and which puts out the pacing stimulation signal to the tissue. The IPG Model 4100 (ICTx) has a cable which connects to a separate battery module. The IPG Model 4100 (ICTx) communicates to a Programmer using the MICS radio band.

Testing Objective:

Seeking FCC authorization for the MedRadio transmitter to FCC Part 951.

Report No. EBRS0020 8/39

CONFIGURATIONS

Configuration EBRS0020-1

Software/Firmware Running during test	
Description	Version
ICTx Firmware	22988

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
IPG (ICTx) Direct Connect	EBR Systems, Inc.	4100	4021186115

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Adapter Board	EBR Systems, Inc.	2015 Rev 1	3	
Base Station Module	EBR Systems, Inc.	BSM100 Rev E	0462	
Base Station Module Antenna	Generic	None	None	

Remote Equipment Outside of Test Setup Boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Laptop	Dell	PP19S	CN-0P374N-12961-07M-0051-AOO		
Laptop Power Supply (Wall Wart)	Dell	WA-30B19U	PK10000H6A0-A01-10AQ-03722		
DC Power Supply	TekPower	TP6005E	187890		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	1.8m	No	AC Mains	DC Power Supply
DC Cable	No	5.0m	No	Adapter Board	DC Power Supply
Ribbon Cable	No	0.25m	No	Adapter Board	IPG (ICTx) Direct Connect
DC Cable (Wall Wart)	No	2.0m	No	AC Mains	Laptop
USB Cable	No	2.5m	No	Base Station Module	Laptop
DC Cable	No	0.25m	No	IPG (ICTx) Sealed	IPG Battery

Report No. EBRS0020 9/39

CONFIGURATIONS

Configuration EBRS0020- 4

Software/Firmware Running during test		
Description	Version	
ICTx Firmware	23125	

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
IPG (ICTx) Sealed	EBR Systems, Inc.	4100	T0102F
IPG Battery	EBR Systems, Inc.	3000	T00317

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	0.25m	No	IPG (ICTx) Sealed	IPG Battery

Report No. EBRS0020 10/39

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	4/20/2017	Conducted	delivered to	devices were added or	Element following
		Emissions	Test Station.	modified during this test.	the test.
		Emission	Tested as	No EMI suppression	EUT remained at
2	5/5/2017	Bandwidth	delivered to	devices were added or	Element following
·		Danuwidin	Test Station.	modified during this test.	the test.
		Emission	Tested as	No EMI suppression	EUT remained at
3	5/5/2017	Mask	delivered to	devices were added or	Element following
-		IVIASK	Test Station.	modified during this test.	the test.
		Output Power	Tested as	No EMI suppression	EUT remained at
4	5/5/2017		delivered to	devices were added or	Element following
		1 OWEI	Test Station.	modified during this test.	the test.
		Frequency	Tested as	No EMI suppression	EUT remained at
5	5/5/2017	Stability	delivered to	devices were added or	Element following
-		Stability	Test Station.	modified during this test.	the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
6	5/5/2017	Radiated	delivered to	devices were added or	Element following
-		Emissions	Test Station.	modified during this test.	the test.
		Radiated	Tested as	No EMI suppression	Scheduled testing
7	5/5/2017	Power	delivered to	devices were added or	was completed.
		(EIRP)	Test Station.	modified during this test.	was completed.

Report No. EBRS0020 11/39

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	79 III	MMD	2/11/2016	2/11/2019
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	1/5/2017	1/5/2018
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.633(e)(3), the emission bandwidth was determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 20 dB down relative to the maximum level of the modulated carrier. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.

Report No. EBRS0020 12/39

						TbtTx 2017.01.27	XMit 2017.02.08
EUT: IPG	Model 4100 (ICTx)				Work Orde	r: EBRS0020	
Serial Number: T01	02F				Dat	9: 05/05/17	
Customer: EBR	R Systems, Inc.				Temperatur	21.9 °C	
Attendees: Non	ne				Humidit	/: 49.3% RH	
Project: None				Barometric Pres	.: 1015 mbar		
Tested by: Mar	Tested by: Mark Baytan Power: Battery			Job Sit	: OC12		
TEST SPECIFICATIONS	3						
FCC 95I:2017				FCC 95.633(e)(3)			
				,			
COMMENTS							
DEVIATIONS FROM TES	ST STANDARD						
None							
Configuration #	1	Signature	MARE	3,+			
	-	-				Limit	
					Value (kHz)	(≤) kHz	Result
Low Channel 0, 402.15 M	ИНz				Value (kHz) 235.775	(≤) kHz 300	Result Pass
Low Channel 0, 402.15 M Mid Channel 4, 403.35 M							
	lHz				235.775	300	Pass

Report No. EBRS0020 13/39

Low Channel 0, 402.15 MHz

Limit

Value (kHz) (≤) kHz Result

235.775 300 Pass

Mid Channel 4, 403.35 MHz							
Limit							
				Value (kHz)	(≤) kHz	Result	
				225.593	300	Pass	

Report No. EBRS0020 14/39

High Channel 9, 404.85 MHz

Limit

Value (kHz) (≤) kHz Result

236.440 300 Pass

Report No. EBRS0020 15/39

EMISSIONS MASK

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	79 III	MMD	2/11/2016	2/11/2019
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	1/5/2017	1/5/2018
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per 47 CFR 95.635(d)(4) the emission mask was measured. Emissions more than 150 kHz away from the center frequency must be attenuated below the transmitter output power by at least 20 dB. This was evaluated by the Occupied Bandwidth measurement according to 47 CFR 95.633(e)(1). In addition, emissions 250 kHz or less above and below the MICS band (402-405 MHz) must be attenuated below the maximum permitted output power by at least 20 dB.

A spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT. However, various plots were made using different frequency spans and resolution bandwidths in an attempt to not only satisfy the measurement criteria, but to also show that all emissions outside of the occupied band are greatly attenuated.

Report No. EBRS0020 16/39

EMISSIONS MASK

						TbtTx 2017.01.27	XMit 2017.02.08		
	IPG Model 4100 (ICTx)				Work Order:	EBRS0020			
Serial Number:	T0102F				Date:	05/05/17			
Customer:	EBR Systems, Inc.		Temperature:	21.9 °C					
Attendees:	None				Humidity:	Humidity: 49.3% RH			
Project:					Barometric Pres.:	1015 mbar			
Tested by:	Mark Baytan		Power:	Battery	Job Site:	OC12			
TEST SPECIFICATI	ONS			Test Method					
FCC 95I:2017				FCC 95.635(d)(4-5)					
COMMENTS									
Connected to Batte	ry Model 3000, SN T00317.	. Reference level offset (DC Block + :	20dB Attenuator +	Direct Connect Cable) = 21.3 dB					
DEVIATIONS FROM	I TEST STANDARD								
None									
Configuration #	1	Signature	MARE	3,1-					
	•				Value (dBc)	Limit ≤ (dBc)	Result		
Low Channel 0, 402.					-23.44	-20	Pass		
High Channel 9, 404	.85 MHz				-23.85	-20	Pass		

Report No. EBRS0020 17/39

EMISSIONS MASK

Low Channel 0, 402.15 MHz

Value Limit
(dBc) ≤ (dBc) Result

-23.44 -20 Pass

High Channel 9, 404.85 MHz							
Value Limit							
				(dBc)	≤ (dBc)	Result	
				-23.85	-20	Pass	l

Report No. EBRS0020 18/39

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	79 III	MMD	2/11/2016	2/11/2019
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	1/5/2017	1/5/2018
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1046, RSS-GEN, the output power shall be measured at the RF terminal. The peak output power was measured with the EUT configured in the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 and RSS-243 have no conducted output power limit. It is a requirement to characterize this information and that data is contained within this datasheet.

Report No. EBRS0020 19/39

				TbtTx 2017.01.27			
EUT:	IPG Model 4100 (ICTx)		Work Order:	EBRS0020			
Serial Number:	T0102F		Date:	05/05/17			
Customer:	EBR Systems, Inc.		Temperature:	21.9 °C			
Attendees:	None		Humidity:	49.3% RH			
Project:	None		Barometric Pres.:	1015 mbar			
Tested by:	Mark Baytan	Power: Battery	Job Site:	Job Site: OC12			
TEST SPECIFICATI	ONS	Test Method					
FCC 95I:2017		ANSI/TIA/EIA-603-D-2010					
COMMENTS							
Connected to Battery Model 3000, SN T00317. Reference level offset (DC Block + 20dB Attenuator + Direct Connect Cable) = 21.3 dB							
DEVIATIONS EDON	A TEST STANDARD						
	I TEST STANDARD						
DEVIATIONS FROM None	M TEST STANDARD						
		146,4					
None Configuration #	1 Signature	14-6,+-	Value (uW)	Limit	Result		
None Configuration # Low Channel 0, 402.	1 Signature	14 G+-	521.195	N/A	N/A		
None Configuration #	1 Signature .15 MHz 35 MHz	14 GH					

Report No. EBRS0020 20/39

Low Channel 0, 402.15 MHz

| Value (uW) | Limit | Result |
| 521.195 | N/A | N/A |

Report No. EBRS0020 21/39

High Channel 9, 404.85 MHz

Value (uW) Limit Result

447.507 N/A N/A

Report No. EBRS0020 22/39

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Thermometer	Omega Engineering, Inc.	HH311	DUC	10/3/2014	10/3/2017
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	NCR	NCR
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	1/5/2017	1/5/2018
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spectrum analyzer is configured with a precision frequency reference that exceeds the stability requirement of the transmitter. The EUT was placed inside a temperature / humidity chamber.

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of the nominal voltage. A DC lab supply was used to vary the supply voltage.

Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (+25°, 35°C and +45° C).

Report No. EBRS0020 23/39

								TbtTx 2017.01.27	XMit 2017.02.0
	IPG Model 4100 (ICTx)						Work Order:		
Serial Number:								05/05/17	
	EBR Systems, Inc.						Temperature:		
Attendees:								49.3% RH	
Project:							Barometric Pres.:		
	Mark Baytan		Power:				Job Site:	OC12	
TEST SPECIFICATION	ONS			Test Method					
FCC 95I:2017				ANSI/TIA/EIA-603-D-2010					
COMMENTS									
Connected to Batte	ery Model 3000, SN T00317	. Reference level offset (DC Block +	20dB Attenuator + I	Direct Connect Cable) = 21	1.3 dB				
DEVIATIONS FROM	M TEST STANDARD								
None									
INOTIC									
Configuration #	1	Signature	MALE	3,1-					
					easured	Assigned	Error	Limit	
I		.		Me	easured ue (MHz)	Assigned Value (MHz)	Error (ppm)	Limit (ppm)	Results
Normal Voltage				Me					Results
	Mid Channel, 403.35 MHz			Me Valu					Results Pass
Extreme Voltage +15	5%			Me Valu	ue (MHz)	Value (MHz)	(ppm)	(ppm)	
Extreme Voltage +15	5% Mid Channel, 403.35 MHz	·		Me Valu 403	ue (MHz)	Value (MHz)	(ppm)	(ppm)	
Extreme Voltage +15	5% Mid Channel, 403.35 MHz			Me Valu 403 403	3.354577 3.354545	Value (MHz) 403.35 403.35	(ppm) 11.4 11.3	(ppm) 100 100	Pass Pass
Extreme Voltage +15	5% Mid Channel, 403.35 MHz % Mid Channel, 403.35 MHz			Me Valu 403 403	ue (MHz) 3.354577	Value (MHz) 403.35	(ppm) 11.4	(ppm)	Pass
Extreme Voltage +15 Extreme Voltage -15 Extreme Temperatur	5% Mid Channel, 403.35 MHz % Mid Channel, 403.35 MHz re +45°C			Me Valu 403 403	3.354577 3.354545 3.354545	Value (MHz) 403.35 403.35 403.35	(ppm) 11.4 11.3 11.2	(ppm) 100 100 100	Pass Pass Pass
Extreme Voltage +15 Extreme Voltage -15 Extreme Temperatur	5% Mid Channel, 403.35 MHz % Mid Channel, 403.35 MHz re +45°C Mid Channel, 403.35 MHz			Me Valu 403 403	3.354577 3.354545	Value (MHz) 403.35 403.35	(ppm) 11.4 11.3	(ppm) 100 100	Pass Pass
Extreme Voltage +15 Extreme Temperatur Extreme Temperatur	5% Mid Channel, 403.35 MHz % Mid Channel, 403.35 MHz re +45°C Mid Channel, 403.35 MHz re +35°C			Me Valu 403 403 403 403	3.354577 3.354545 3.354545 3.354511 3.348899	Value (MHz) 403.35 403.35 403.35 403.35	(ppm) 11.4 11.3 11.2 2.7	(ppm) 100 100 100 100	Pass Pass Pass Pass
Extreme Voltage +15 Extreme Voltage -15 Extreme Temperatur Extreme Temperatur	5% Mid Channel, 403.35 MHz % Mid Channel, 403.35 MHz re +45°C Mid Channel, 403.35 MHz re +35°C Mid Channel, 403.35 MHz			Me Valu 403 403 403 403	3.354577 3.354545 3.354545	Value (MHz) 403.35 403.35 403.35	(ppm) 11.4 11.3 11.2	(ppm) 100 100 100	Pass Pass Pass
Extreme Voltage +15 Extreme Voltage -15 Extreme Temperatur Extreme Temperatur Extreme Temperatur	5% Mid Channel, 403.35 MHz % Mid Channel, 403.35 MHz re +45°C Mid Channel, 403.35 MHz re +35°C Mid Channel, 403.35 MHz			403 403 403 403 403	3.354577 3.354545 3.354545 3.354511 3.348899	Value (MHz) 403.35 403.35 403.35 403.35	(ppm) 11.4 11.3 11.2 2.7	(ppm) 100 100 100 100	Pass Pass Pass Pass

Report No. EBRS0020 24/39

TbtTx 2017.01.27

| Normal Voltage, Mid Channel, 403.35 MHz
| Measured Assigned Error Limit
| Value (MHz) Value (MHz) (ppm) (ppm) Results
| 403.354577 403.35 11.4 100 Pass

	Extreme Voltage	+15%, Mid Char	nel, 403.35 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	403.354545	403.35	11.3	100	Pass

Report No. EBRS0020 25/39

TbtTx 2017.01.27

	Extreme Voltage	e -15%, Mid Chan	nel, 403.35 MHz		
	Measured	Assigned	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	403.354511	403.35	11.2	100	Pass

	Ex	treme Temperatu	re +45°C, Mid Cl	nannel, 403.35 M	Hz	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		403.348899	403.35	2.7	100	Pass

Report No. EBRS0020 26/39

TbtTx 2017.01.27

	Ex	treme Temperatu	ure +25°C, Mid Cl	hannel, 403.35 M	Hz	
		Measured	Assigned	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		403.354644	403.35	11.5	100	Pass

Report No. EBRS0020 27/39

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Power	Hewlett Packard	E4418A	SPA	1/26/2017	1/26/2018
Power Sensor	Agilent	E4412A	SQE	1/26/2017	1/26/2018
Antenna - Dipole	EMCO	3121C-DB1,DB2,DB3,DB4	ADC	NCR	NCR
Generator - Signal	Keysight	N5182B	TFX	4/16/2015	4/16/2018
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	8/4/2016	8/4/2017
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	8/9/2016	8/9/2017
Antenna - Biconilog	EMCO	3142	AXB	11/6/2015	11/6/2017
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	8/10/2016	8/10/2017
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	8/4/2016	8/4/2017
Antenna - Double Ridge	EMCO	3115	AHB	3/21/2016	3/21/2018
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	1/28/2017	1/28/2018

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was operated in three orthogonal axis in transmit mode. The EUT was transmitting with a CW signal. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization. The amplitude and frequency of the highest emissions were noted. The EUT was then replaced with a ½ wave dipole that was successively tuned to each of the highest emissions. A signal generator was connected to the dipole antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the cable loss to the dipole antenna and its gain (dBi); the effective radiated power for the fundamental emission was determined.

Report No. EBRS0020 28/39

SPURIOUS RADIATED EMISSIONS

												PSA-ESCI 2017.01
Wo	rk Order:	EBRS	30020		Date:	05/0			11		-	
	Project:		ne		nperature:	23.1					7/-	
	Job Site:		C10		Humidity:	47%						
Serial	Number:		02F		tric Pres.:	1013	mbar	•	Tested by:	Mark Bayta	n	
		IPG Model	4100 (ICT)	()								
	iguration:											
С	ustomer:	EBR Syste	ms, Inc.									
Α	ttendees:	None										
EU	IT Power:	Battery										
Onoroti	ng Mode:	Transmittir	ng MICS: Lo	w Channel	0 (402.15	MHz), Mid (Channel 4	403.35 MH	z), High Ch	annel 9 (404	4.85 MHz)
Operati	ng wode:											
D	eviations:	None										
D	eviations:											
Co	omments:		I to Battery	Model 3000), SN T003 [,]	17						
Test Speci	fications						Test Meth	od				
FCC 951:20								EIA-603-D-:	2010			
. "!								4. ()				
Run#	8	l est Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass
0 T												
-10 +												
-20												
-30												
Ε												
떨 -40												
•												
-50												
				━┛┃┞━	J 🖳							
-60												
								-				
70												
-70												
-80												
-80 ± 10)			100				1000				10000
10	,			100		RALI.		1000				10000
						MHz				■ PK	◆ AV	QP
				Dele 't /								
				Polarity/ Transducer					Compared to			
	Freq	Antenna Height	Azimuth	Туре	Detector	ERP	ERP	Spec. Limit	Spec.		Comments	
	(MHz)	(meters)	(degrees)			(Watts)	(dBm)	(dBm)	(dB)			
	004.450	10	250.0	11	00	4.405.40	00.0	F4.0	45.0	Low Ch O Ell	T \/c=t	
	804.150 809.657	1.0 1.0	350.0 240.0	Horz Horz	QP QP	1.10E-10 1.10E-10	-69.6 -69.6	-54.0 -54.0	-15.6 -15.6	Low Ch 0, EU High Ch 9, EU		
	809.985	1.0	48.0	Vert	QP QP	1.10E-10 1.10E-10	-69.6 -69.6	-54.0 -54.0	-15.6 -15.6	High Ch 9, Et		
	804.153	1.0	230.0	Vert	QP	1.08E-10	-69.7	-54.0	-15.7	Low Ch 0, EU		
	806.592	1.0	202.0	Vert	QP	1.08E-10	-69.7	-54.0	-15.7	Mid Ch 4, EU	I Horz	

Report No. EBRS0020 29/39

Freq (MHz)	Antenna Height (meters)	Azimuth (degrees)	Polarity/ Transducer Type	Detector	ERP (Watts)	ERP (dBm)	Spec. Limit (dBm)	Compared to Spec. (dB)	Comments
804.522	1.0	272.0	Horz	QP	1.05E-10	-69.8	-54.0	-15.8	Low Ch 0, EUT Horz
804.298	2.1	176.0	Horz	QP	1.05E-10	-69.8	-54.0	-15.8	Low Ch 0, EUT on Side
804.052	1.0	182.0	Vert	QP	1.05E-10	-69.8	-54.0	-15.8	Low Ch 0, EUT on Side
806.480	1.0	247.0	Horz	QP	1.05E-10	-69.8	-54.0	-15.8	Mid Ch 4, EUT Vert
804.518	1.0	59.0	Vert	QP	1.03E-10	-69.9	-54.0	-15.9	Low Ch 0, EUT Vert
2011.170	1.1	186.0	Horz	PK	1.49E-09	-58.3	-30.0	-28.3	Low Ch 0, EUT Vert
2010.240	1.0	17.0	Vert	PK	1.42E-09	-58.5	-30.0	-28.5	Low Ch 0, EUT Horz
2023.125	1.0	313.0	Vert	PK	1.29E-09	-58.9	-30.0	-28.9	High Ch 9, EUT Horz
2024.450	4.0	118.0	Horz	PK	1.24E-09	-59.1	-30.0	-29.1	High Ch 9, EUT Vert
2015.450	1.0	0.0	Vert	PK	1.18E-09	-59.3	-30.0	-29.3	Mid Ch 4, EUT Horz
2017.520	1.0	22.0	Horz	PK	1.15E-09	-59.4	-30.0	-29.4	Mid Ch 4, EUT Vert
1607.455	1.0	313.0	Vert	PK	7.62E-10	-61.2	-30.0	-31.2	Low Ch 0, EUT Horz
1617.915	1.0	183.0	Horz	PK	7.45E-10	-61.3	-30.0	-31.3	High Ch 9, EUT Vert
1613.490	2.9	1.0	Horz	PK	7.28E-10	-61.4	-30.0	-31.4	Mid Ch 4, EUT Vert
1613.290	1.0	241.0	Vert	PK	7.28E-10	-61.4	-30.0	-31.4	Mid Ch 4, EUT Horz
1609.540	1.0	329.0	Horz	PK	7.11E-10	-61.5	-30.0	-31.5	Low Ch 0, EUT Vert
1618.675	1.0	176.0	Vert	PK	6.95E-10	-61.6	-30.0	-31.6	High Ch 9, EUT Horz
1213.305	1.0	166.0	Horz	PK	6.05E-10	-62.2	-30.0	-32.2	High Ch 9, EUT Vert
1215.475	2.0	174.0	Vert	PK	6.05E-10	-62.2	-30.0	-32.2	High Ch 9, EUT Horz
1205.370	1.0	262.0	Horz	PK	5.78E-10	-62.4	-30.0	-32.4	Low Ch 0, EUT Vert
1205.440	2.5	108.0	Vert	PK	5.78E-10	-62.4	-30.0	-32.4	Low Ch 0, EUT Horz
1211.390	1.0	127.0	Horz	PK	5.52E-10	-62.6	-30.0	-32.6	Mid Ch 4, EUT Vert
1210.660	1.0	335.0	Vert	PK	5.27E-10	-62.8	-30.0	-32.8	Mid Ch 4, EUT Horz

Report No. EBRS0020 30/39

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Multimeter	Fluke	79 III	MMD	2/11/2016	2/11/2019
Generator - Signal	Agilent	E8257D	TGU	2/5/2015	2/5/2018
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Attenuator	Fairview Microwave	SA18H-20	TKR	1/5/2017	1/5/2018
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. Per FCC Part 2.1051, RSS-GEN, the spurious emissions shall be measured at the RF terminal. The peak spurious emissions were measured with the EUT configured to the modes listed in the datasheet. The EUT was transmitting at its maximum data rate.

FCC Part 95 and RSS-243 have no conducted spurious emissions limit. It is a requirement to characterize this information and that data is contained within this datasheet.

Report No. EBRS0020 31/39

						TbtTx 2017.01.27	XMit 2017.02.08
	G Model 4100 (ICTx)				Work Order:	EBRS0020	
Serial Number: N						04/20/17	
Customer: El	BR Systems, Inc.				Temperature:	22.3 °C	
Attendees: N						48.1% RH	
Project: N	one				Barometric Pres.:	1020 mbar	
	ohnny Candelas			2.8 VDC	Job Site:	OC03	
TEST SPECIFICATION	NS			Test Method			
FCC 95I:2017				ANSI/TIA/EIA-603-D-2010			
COMMENTS							
DC Block + 20dB Atte	enuator + Coax Cable =	21.33dB Total Offset		<u> </u>	_		
DEVIATIONS FROM T	EST STANDARD						
None							
			fe d.				
Configuration #	1		The second	Later			
		Signature	9				
				Frequency	Max Value	Limit	
				Range	(dBc)	A (dBc)	Result
Low Channel 0, 402.15				9 kHz - 150 kHz	-29.19		N/A
Low Channel 0, 402.15				150 kHz - 30 MHz	-12.65		N/A
Low Channel 0, 402.15	MHz			30 MHz - 5 GHz	25.1		N/A
Mid Channel 4, 403.35	MHz			9 kHz - 150 kHz	-28.98		N/A
Mid Channel 4, 403.35	MHz			150 kHz - 30 MHz	-15.77		N/A
Mid Channel 4, 403.35	MHz			30 MHz - 5 GHz	24.23		N/A
High Channel 9, 404.85	5 MHz			9 kHz - 150 kHz	-28.91		N/A
High Channel 9, 404.85	- NALL-			150 kHz - 30 MHz	-12.69		N/A
riigii Chaillei 3, 404.00	NIHZ			150 KHZ - 30 MHZ	-12.09		IN/A
High Channel 9, 404.85				30 MHz - 5 GHz	-12.69		N/A

Report No. EBRS0020 32/39

TbtTx 2017.01.27

Low	Channel 0, 402.1	5 MHz		
Frequency		Max Value	Limit	
Range		(dBc)	A (dBc)	Result
150 kHz - 30 MHz		-12.65		N/A

Report No. EBRS0020 33/39

TbtTx 2017.01.27

Mid Channel	4, 403.35 MHz	
Frequency	Max Value Lim	it
Range	(dBc) A (dl	3c) Result
9 kHz - 150 kHz	-28.98	N/A

Report No. EBRS0020 34/39

TbtTx 2017.01.27

Mid Channel 4, 403.35 MHz

Frequency Max Value Limit

Range (dBc) A (dBc) Result

150 kHz - 30 MHz - 15.77 N/A

Mid Channel	4, 403.35 MHz	
Frequency	Max Value Li	mit
Range	(dBc) A (dBc) Result
30 MHz - 5 GHz	24.23	N/A

Report No. EBRS0020 35/39

TbtTx 2017.01.27

High	Channel 9, 404.8	5 MHz		
Frequency		Max Value	Limit	
Range		(dBc)	A (dBc)	Result
150 kHz - 30 MHz		-12.69		N/A

Report No. EBRS0020 36/39

High Channel 9, 404.85 MHz

Frequency Max Value Limit

Range (dBc) A (dBc) Result

30 MHz - 5 GHz -19.14 N/A

Report No. EBRS0020 37/39

RADIATED POWER (EIRP)

XMit 2017 02 08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Meter - Power	Hewlett Packard	E4418A	SPA	1/26/2017	1/26/2018
Power Sensor	Agilent	E4412A	SQE	1/26/2017	1/26/2018
Antenna - Dipole	EMCO	3121C-DB1,DB2,DB3,DB4	ADC	NCR	NCR
Generator - Signal	Keysight	N5182B	TFX	4/16/2015	4/16/2018
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	8/9/2016	8/9/2017
Antenna - Biconilog	EMCO	3142	AXB	11/6/2015	11/6/2017
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	1/28/2017	1/28/2018

TEST DESCRIPTION

Per 95.627(g)(3), the maximum radiated field strength for a MICS transmitter is 25uW EIRP. The Field Strength of the Fundamental data was converted to EIRP with the formula based upon the Friis transmission equation with 6 dB removed due to reflections from the ground plane: EIRP = $((E/2)*d)^2/30$ where E is V/m and d = distance = 3m, and EIRP = W.

The Field Strength of the Fundamental was measured in the far-field at an FCC Listed Semi-anechoic Chamber. Spectrum analyzer and linearly polarized antennas were used to measure the radiated field strength of the fundamental.

The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The turntable azimuth was varied to maximize the level of radiated emissions. The height of the measurement antenna was also varied from 1 to 4 meters. The amplitude and frequency of the emissions were noted.

The EUT was configured to transmit in a fixture that simulates the human torso. The dimensions of the test fixture and the characteristics of the tissue substitute material met the requirements 95.627(i) and FCC KDB 617965. The height of the transmitter was 1.5-meter above the reference ground plane.

Report No. EBRS0020 38/39

RADIATED POWER (EIRP)

																							EmiR5	2017.01.	25			PSA-ES	CI 2017	
W	_	Order		EBR							Date:				5/17					1	1					-				
		oject						T		pera				23.1			4	-		-	(1	<		\leq	> -	/		_	
		Site			C10					lumi		_		17%																
Seria	ı Nu		: IPG I		102			Baror	net	ric P	res.:		1(J13	mbar					ıest	ed b	y: [i\	ıark	вау	τan					
Conf	fiaur	ation		vioue	3141	00 (IC	, I X)																		—					
			EBR	Syst	ems	Inc																								
			None			,																								
			Batte																						_					
Operat	ina	Mada	Trans	smitti	ing I	MICS:	Low	Chanr	nel ((40	2.15	MH:	z), M	id C	hanr	el 4	(40	3.35	MH:	z), H	igh C	har	nel	9 (4	04.8	85 N	1Hz)			
Operat	iiig	wioue	•																											
D)evia	tions	None	9																										
						Б		1.100		011	T 000	47																		
_		nents		necte	a to	Batte	ry IVIO	del 30	00,	SN	1003	17																		
C	OIIIII	ileilla	•																											
			_																											
est Spec		tions												_	Test					<u> </u>										
CC 951:20	017														ANS	I/TIA	/EI/	A-60	3-D-	2010)									
Run#		5	Te	est D	ista	nce (r	m)	3		Ant	enn	а Не	eight	(s)			1	to 4	(m)				Re	sult	s		Р	Pass		
0 т									_						_					_					_	_	_		٦ -	
-10 -																\dashv										+	+		1	
20																													Ī	
-20 -																										T			1	
-30																														
00												-																		
_																														
표 -40 -																													-	
₩ `																														
-50 -									_																-	+-	+		-	
-60																													1	
-70																														
-70																														
-80																													_	
402	2.0			402	2.5			40	3.0				403	3.5				40	4.0				40	4.5				40)5.0	
													MI	Ηz										PK		• 1	٩V	•	QP	
							_																			- '		_		
			Ante	enna			T	Polarity/ ransduce	r											Com	pared 1	0								
		req	He	ight		Azimuth		Туре		Dete	ctor		EIRP			RP	5	Spec. L		5	Spec.				C	Comn	nents			
	(1	MHz)	(me	ters)	(degrees	,						(Watts	'	(dE	Bm)		(dBn	1)		(dB)									
		3.358		.0		182.0		Horz		Р			61E-0			5.8		-16			-9.8					Horz				
		2.158		.0		178.0		Horz		P			50E-0			6.0		-16			10.0					on S				
		2.158 3.360		.0 .0		182.0 285.0		Horz Vert		Pi Pi			50E-0			6.0 6.3		-16. -16.			10.0			h 0, I h 4, E		Horz Vert	<u> </u>			
		2.158		.0		287.0		Vert Vert		P			22E-(6.5		-16			10.5					Vert				
	4.857	1.9 31.0			Horz		Р	K	2.	22E-(06	-2	6.5		-16	0	-	10.5					T Ver							
		4.857	1.0 153.0			Vert		P			22E-(6.5		-16			10.5					T Ver						
		4.857 4.855		.0 .6		179.0 22.0		Horz Horz		Pi Pi			22E-(17E-(6.5 6.6		-16. -16.			10.5 10.6					T Hor T on S				
		4.855 4.857		.0 .0		0.0		Vert		P			.17E-(.85E-(o.o 7.3		-16			11.3					T on S				
	40	3.357	1	.4		76.0		Vert		Р	K	1.	47E-0	06	-2	8.3		-16	0	-	12.3	N	lid C	h 4, E	UT	Horz				
		2.157		.5		75.0		Vert		P			37E-0			8.6		-16			12.6					Horz				
		3.357 3.358		.3 .3		59.0 59.0		Horz Vert		Pi Pi			28E-0			8.9 8.9		-16. -16.			12.9 12.9					on S on S				
		3.358 4.857		.3 .4		59.0 66.0		Vert		P			28E-0			8.9 8.9		-16. -16.			12.9					on S T Hor				
				.4		68.0		Vert		Р	K	1.	22E-(06	-2	9.1		-16	0	-	13.1	L	ow C	h 0, I	EUT	on S	Side			
	402.158 1.0 173.0 Horz PK 1.02E-06			-29.9 -16.0						13.9		Low Ch 0, EUT Vert Mid Ch 4, EUT Vert																		
	40	3.360	1	.0		176.0		Horz		Р	ĸ	9.	49E-0)/	-3	0.2		-16	U	-	14.2	IV	ııa C	n 4, E	:01	vert				

Report No. EBRS0020 39/39