

План защиты

Цели проекта Что планировалось Что получилось Используемые технологии Схемы/архитектура Выводы

Цели проекта

Использование С++ версий библиотек компьютерного зрения

Pабота с предобученными моделями с точки зрения Software Engineer

Многопоточная и асинхронная обработка изображений и стримминг видео

С++ в компьютерном зрении

- Многие библиотеки компьютерного зрения имеют C++ API наряду с Python
- 2 C++ язык для performance critical приложений (на фоне оптимизаций нейросетей под CPU, GPU, TPU, VPU, NPU и т. п.)
- Непосредственное управление памятью (на фоне работы с большими изображениями и видео)
- Язык для системного программирования, работающий "близко к устройству" (на фоне широкого спектра устройств, пригодных для запуска нейросетей)
- При наличии предобученных моделей под многие стандартные задачи, остается достаточное количество инженерной работы

Что планировалось

Что планировалось

- Использование готовой оптимизированной модели на GPU
- Задача детектирование лиц
- 3 Стримминг видео в веб-интерфейс
- 4 Многопоточность, асинхронность и параллельность
- Банные на диске с возможностью добавления альтернативных источников

Что получилось

https://github.com/prickly-u/inference-server/tree/main/inference/ultraFaceOnnx

Используемые технологии

- TensorRT
- Ultraface ONNX
- 3 Motion JPEG
- Boost beast/boost asio
- 5 OpenCV

Выделение урой/маркеро м инфы

ние оса

TensorRT

NVIDIA TensorRT is an SDK for high-performance deep learning inference. It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications.

инфы

Поддержка форматов в TensorRT

ONNX - открытый формат моделей машинного обучения, позволяющий переносить их между разными фреймворками и инструментами

Caffe

UFF (for Tensorflow)

UltraFace ONNX

- Легковесная модель для детектирования лиц на переферийных устройствах
- ОNNX-формат
- Входной тензор: "input",
 batch_size x 3 channels x 320 width x 240 height
- Формат каналов: BGR
- Препроцессинг: (pixel 127.0) / 128.0
- Выходные тензоры:
 - scores: 4420 x 2 classes (face/background)
 - o boxes: 4420 x 4 coordinates

Non-maximum suppression

Algorithm 1 Non-Max Suppression

Motion JPEG over HTTP

Стриминг видео по НТТР

```
Content-Type: multipart/x-mixed-replace; boundary="frame"
```

```
--frame
```

Content-Type: image/jpeg

<jpeg bytes>

--frame

Content-Type: image/jpeg

<jpeg bytes>

... and so on ...

--frame--

Альтернативы Motion JPEG

RTPS-поток

GStreamer

FFMPEG

Boost beast/Boost asio

Многопоточный http-сервер

Асинхронные обработчики событий

Стриминг видео в M-JPEG

Показ кадров по steady_timer

Strands для обработки без блокировок

Выделение урой/маркеро м инфы

OpenCV

cv::imread

cv::resize

cv::rectangle

cv::imencode

UES KALITVIHUK

cv::Mat, cv::Point, cv::Scalar

Верхнеуровневая архитектура

Инференс модели на TensorRT

Параллельное выполнение контекстов

Async handlers

Подготовка кадров

Простейший routing в стиле REST

http://0.0.0.0:8080/filesystem/corridor?ext=jpg

Выводы и планы по развитию

Выводы:

- Компьютерное зрение достигло качества и доступности, достаточных для решения многих прикладных задач;
- На данный момент в области есть не только исследовательская, но и инженерная работа;

Возможные пути развития приложения:

- Замеры производительности, оптимизация, автоматическая адаптация под мощности сервера;
- Использование современных подходов к работе с видео (RTSP, GStreamer, FFMPEG и т.п.)
- Использование различных источников данных помимо диска (FTP, Amazon S3, Messaging и т.п.)

