

Comparative Model Analysis For Diabetes

Our Team

Comparative Model Analysis of Diabetes Prediction

Kapil Soni, DSBA, kapilsoni@iisc.ac.in
Mahendra Mahajan, DSBA, mmahendra@iisc.ac.in
Malu Jayachandran, DSBA, maluj@iisc.ac.in
Tanzimur Rahman, DSBA, tanzimrahman@iisc.ac.in

Sc	ien	ce	Car

Business Case & Value Added

Which business case should be

analyzed and what added value

Enhancing patient outcomes

through early detection and

personalized care, optimising

costs. By adopting predictive

contributing to a healthier

healthcare resources, and reducing

models, healthcare providers can

transform diabetes management,

population and more sustainable

healthcare system. This approach

aligns with broader public health

goals and provides significant value

to patients, providers, and society.

does it generate?

ivas

Data

Problem Statement

Project:

Team:

Skills

Comparative Model Analysis for Diabetes Prediction

17

Execution & Evaluation Model Evaluation Data Storytelling **Data Selection & Cleansing** Which indicators require quality control and What requirements does the target group What skills are needed to provide validation and how should they be have for the presentation of the results and interpreted? Is real-time monitoring how do I effectively communicate this data? cleaned up? necessary? To effectively communicate the **Statistical Knowledge** To ensure the reliability and results of a diabetes prediction **Machine Learning and Model** effectiveness of a diabetes model to the target group, prediction model, key indicators clarity and simplicity are **Programming Skills** such as accuracy, F1 score, paramount, ensuring that data is precision, recall, ROC AUC, and presented in an easily **Domain Knowledge in** log loss require quality control understandable manner without **Healthcare/Diabetes** and validation. Accuracy technical jargon. Relevance is **Ethical and Regulatory** measures overall correctness but key, focusing on insights that should be evaluated alongside directly impact decision-making, **Problem-Solving and Critical** other metrics, especially in such as risk factors and imbalanced datasets. The F1 predictive accuracy. data cleaning and pre proceeing score balances precision and Interpretability is crucial, recall, indicating the model's providing context and ability to manage false positives explanations for the model's and negatives. Precision focuses predictions to ensure the on minimizing false positives, audience understands their while recall assesses the model's implications. Visual effectiveness in capturing true representation through charts positive cases. A high ROC AUC and graphs can help convey data

trends and patterns quickly and effectively. It's important to present actionable insights, offering recommendations based on the data to guide decisionmaking. Credibility is essential, so sharing information about data sources and validation

processes can build trust in the

storytelling techniques and real-

world examples can engage the

audience, making the data

narrative compelling and

impactful.

findings. Finally, using

Which of the available data is relevant? Do the data have to be

Data Collection & Preparation

Data Collection

data to fulfil?

In developing a diabetes prediction model, relevant data includes BMI information age, blood pressure, BMI, lifestyle factors are important. This data is crucial for identifying risk factors and patterns associated with diabetes onset. Dataset available was pretty clean without much requirements for No Additional dataset needs to be collected at this point.

How and with which methods should

collected? What properties has this

additionally required data be

Data Landscape

Which data is required for this and which is already available? Which additional data has to be collected?

Almost all essential data is available through CDC and related health databases,like BMI, other comorbidilities, general health related data etc. However, additional data collection, particularly concerning lifestyle, family history, and genetic markers, can significantly enhance the predictive model's accuracy and utility.

considered on the basis of the specific data landscape and the business case? **Logistic Regression, Random**

Which analysis methods can be

Model Selection

Forest, and XGBoost are strong candidates due to their balance of performance, interpretability, and flexibility. These models align well with the goal of predicting diabetes for early intervention and prevention, offering insights that are actionable in clinical settings.

Which model requirements must be complied with in order to obtain a

Model Requirements

valid model? **Ensure high-quality data through**

thorough preprocessing, addressing missing values, and ensuring feature relevance. The model must be interpretable, allowing healthcare professionals to understand and trust the predictions made, which is crucial in clinical decision-making. Robustness and generalization need to be prioritized by validating the model's performance on unseen data through techniques like cross-validation. Additionally, the model must comply with ethical standards, safeguarding patient privacy and adhering to regulations to maintain trust and integrity in its application.

Software & Libraries Which software should be used? Is

Pvthon

there already a standard solution?

- **Jupyter Notebooks**
- Matplotlib
- Seaborn
- ydata profiling
- SciPy

the data and model development?

Development Data Visualization Understanding Thinking

Data Analysis and Manipulation

suggests strong class discrimination, reflecting the model's ability to differentiate between classes. Log loss evaluates probability calibration with lower values indicating predictions that closely match actual outcomes. Real-time monitoring can be necessary, especially in clinical settings, to ensure consistent performance

and timely predictions, allowing

for adjustments as needed to

maintain model efficacy.

Data Integration

In which system should the data from different sources be migrated?

Not much applicability of data intergration with this dataset and model development.

1. Target Feature of the Data is

Explorative Data Analysis

Are there outliers or structures to be

considered? Creation of descriptive

key figures for the first assessment

2. dataset has 15 Discrete type

of the data.

Diabetes binary.

- and 7 continuous type feature variables.
- 3. Dataset dose not have missing values(null values).

4. major feature variables for Diabetes are: HIghBP, HighChol , BMI, Physical Activity , GenHlth , MentHith , PhysHith , Age , Eduation and Income.

Pandas

Which libraries are used?

- Numpy
- scikit-learn
- Plotly

Background Of The Problem

Background of the problem

Early detection of diabetes and management are crucial for preventing many complications and improving the quality of life for individuals with diabetes.

There are many datasets which includes various health metrics and lifestyle factors that can potentially indicate the onset of diabetes.

We can develop predictive models to identify at-risk individuals by analysing these indicators, enabling early intervention and proactive management.

Why is it important?

Health Impact: Early detection of diabetes can prevent or delay complications associated with the disease, thereby improving patient outcomes and quality of life.

Economic Impact: Diabetes management and complications contribute to significant healthcare costs. Early diagnosis and intervention can reduce these costs by minimizing the need for extensive medical treatment.

Public Health: Identifying at-risk populations can help in designing targeted public health strategies and campaigns to promote healthier lifestyles and reduce the prevalence of diabetes.

Personalized Medicine: Predictive models can enable personalized healthcare plans, tailored to an individual's risk profile, thereby enhancing the effectiveness of interventions.

Project Objective

- Predict the probability of Diabetes diagnosis from the given data
- To help in quick diagnosis and preventive measures by early prediction
- Compare the performance of different Machine Learning models and find the best model for the objective

Data Collection and Preparation

Data source(s) (where it's from, how it was collected)

1. CDC Diabetes Health Indicators Dataset

Source: UCI Machine Learning Repository

URL: CDC Diabetes Health Indicators

Collection Method:

This dataset is derived from the Behavioural Risk Factor Surveillance System

(BRFSS) survey

conducted by the Center for Disease Control and Prevention(CDC).

The data were collected via telephone surveys.

Description of the data (features, size, format)

The Diabetes Health Indicators Dataset contains healthcare statistics and lifestyle survey information about people in general and their diabetes diagnoses.

Features – 21 Instances – 253680 Format – CSV

Exploratory Data Analysis

Variable Name	Role	Туре	Description	Missing Values
ID	ID	Integer	Patient ID	no
Diabetes_binary	Target	Binary	0 = no diabetes 1 = prediabetes or diabetes	no
HighBP	Feature	Binary	0 = no high BP 1 = high BP	no
HighChol	Feature	Binary	0 = no high cholesterol 1 = high cholesterol	no
CholCheck	Feature	Binary	0 = no cholesterol check in 5 years 1 = yes cholesterol check in 5 years	no
ВМІ	Feature	Integer	Body Mass Index	no
Smoker	Feature	Binary	Have you smoked at least 100 cigarettes in your entire life? [Note: 5 packs = 100 cigarettes] 0 = no 1 = yes	no
Stroke	Feature	Binary	(Ever told) you had a stroke. 0 = no 1 = yes	no
HeartDiseaseorAttack	Feature	Binary	coronary heart disease (CHD) or myocardial infarction (MI) 0 = no 1 = yes	no
PhysActivity	Feature	Binary	physical activity in past 30 days - not including job 0 = no 1 = yes	no
AnyHealthcare	Feature	Binary	Have any kind of health care coverage, including health insurance, prepaid plans such as HMO, etc 0 = no 1 = yes	no
NoDocbcCost	Feature	Binary	Was there a time in the past 12 months when you needed to see a doctor but could not because of cost? 0 = no 1 = yes	no
GenHlth	Feature	Integer	Would you say that in general your health is: scale 1-5 1 = excellent 2 = very good 3 = good 4 = fair 5 = poor	no
MentHlth	Feature	Integer	Now thinking about your mental health, which includes stress, depression, and problems with emotions, for how many days during the past 30 days was your mental health not good? scale 1-30 days	no
PhysHlth	Feature	Integer	Now thinking about your physical health, which includes physical illness and injury, for how many days during the past 30 days was your physical health not good? scale 1-30 days	no
DiffWalk	Feature	Binary	Do you have serious difficulty walking or climbing stairs? 0 = no 1 = yes	no
Sex	Feature	Binary	Sex 0 = female 1 = male	no
Fruits	Feature	Binary	Consume Fruit 1 or more times per day 0 = no 1 = yes	no
Veggies	Feature	Binary	Consume Vegetables 1 or more times per day 0 = no 1 = yes	no
HvyAlcoholConsump	Feature	Binary	Heavy drinkers (adult men having more than 14 drinks per week and adult women having more than 7 drinks per week) 0 = no 1 = yes	no
Age	Feature	Integer	Age 13-level age category (_AGEG5YR see codebook) 1 = 18-24 9 = 60-64 13 = 80 or older	no
Education	Feature	Integer	Education Level Education level (EDUCA see codebook) scale 1-6 1 = Never attended school or only kindergarten 2 = Grades 1 through 8 (Elementary) 3 = Grades 9 through 11 (Some high school) 4 = Grade 12 or GED (High school graduate) 5 = College 1 year to 3 years (Some college or technical school) 6 = College 4 years or more (College graduate)	no
Income	Feature	Integer	Income scale (INCOME2 see codebook) scale 1-8 1 = less than $10,0005=less than$ 35,000 8 = \$75,000 or more	no

Exploratory Data Analysis

Steps Taken:

- No missing data, no duplicate data
- No outliers Detected
- Univariate and Multivariate analysis to identify the relationships
- Plotted the distribution of variables and relations
- Correlation analysis: Examine and discuss correlations between features and target variables

Exploratory Data Analysis

Conclusions From EDA

- 1. Target Feature of the Data is Diabetes_binary.
- 2. dataset has 15 Discrete type and 7 continuous type feature variables.
- 3. Dataset dose not have missing values(null values).
- 4. major feature variables for Diabetes are: HIghBP, HighChol, BMI, PhysicalActivity, GenHlth, MentHlth, PhysHlth, Age, Eduation and Income.
- 5. Feature variables which increases the risk of Diabetes togather are: Smoking and HvyAlcoholConsump, Stroke and HeartDiseaseorAttack, HighBP and HighChol.
- 6. Feature variable Which is least effective on Diabetes, but they can help in decreasing the risk Diabetes are: Fruits, Veggies, AnyHealthcare, CholChek.

Feature Engineering

Steps Taken:

- Correlation Analysis
- Feature Importance Analysis from Initial Iterations of the Models
- From the analysis, we have selected 13/21 Features for model training which seems to have the most impact
- Selected Features

'HighBP', 'HighChol', 'BMI', 'PhysActivity',''GenHlth', 'MentHlth', 'PhysHlth', 'DiffWalk', 'Age', 'Education', 'Income', 'Stroke', 'HeartDiseaseorAttack'

Considerations

- Target Variable: Diabetes Binary: 0 = no diabetes 1 = prediabetes or diabetes
- Modelling As: Classification Problem
- Machine Learning Algorithms Considered
- 1. Logistic Regression
- 2. Decision Tree
- 3. Gradient Boosting Machines (GBM)
- 4. Random Forest
- 5. K Nearest Neighbours (KNN)
- 6. XGBoost

First Iteration: Without any Optimizations

First Iteration: Without any Optimizations

- Logistic Regression (LR), Random Forest (RF), and XGBoost (XGB) have been selected for further iterations due to their strong performance metrics and suitability for healthcare prediction tasks.
- LR is valued for its balanced precision and recall, crucial for early detection, and well-calibrated probabilities.
- RF is chosen for its robustness and ability to model complex interactions, while XGB stands out for its high accuracy, efficiency, and scalability, making it ideal for real-time clinical applications.
- Decision Tree (DT) and K-Nearest Neighbors (KNN) were excluded due to lower performance metrics, and although GBM's results are comparable to XGB, XGB's faster training times and slightly better log loss make it preferable.

Selected Models for Further Iterations: LR, RF, XGB

Considerations: Further Iterations

- Major Issues Noticed After First Iterations
 - Class Imbalance: The disparity between high accuracy and low F1 score, recall, and RO-AUC suggests class imbalance.
 - The model is likely biased towards predicting the majority class.
 - Model Calibration and Discrimination:
 - The high Log Loss and low RO-AUC indicate that the model's probability estimates are poorly calibrated and it struggles to discriminate between classes.

Considerations: Further Iterations

- 1. StratifiedKFold for cross-validation
- 2. SMOTE (Synthetic Minority Over-sampling Technique)
- 3. Model specific tuning for class balance eg: LogisticRegression model with class_weight='balanced'
- 4. HyperParameter Tuning With GridSearchCV

LR Model Metrics through iterations

Model Development: Results

Model Metrics after final iteration

Conclusion

Best Model Selection

• Best model in terms of accuracy and probability calibration, making it a robust choice for general prediction tasks.

Best Model For Diabetes Prediction – Logistic Regression

- High Recall and ROC AUC Metric
- Crucial in healthcare settings to ensure that all potential diabetes cases are flagged for further testing, minimising the risk of false negatives.
- Ensure that fewer cases of diabetes are missed, which is vital for effective intervention and management.

Learnings and Future Scope

Learnings

- Real life data is mostly imbalanced, cannot be solved by data collection methods
- Evaluating the model across all metrics is very important
- Select the metric which is closer to the problem domain needs

Future Scope

- Have more complete dataset which have more relevant features, like genetic disposition, hormonal imbalances etc that may affect Diabetes Prediction
- Use Ensemble methods to achieve better performance by combining multiple algorithms and its strengths.
- Use probability calibration techniques like Platt Scaling or isotonic regression.

