MIT OpenCourseWare http://ocw.mit.edu

18.01 Single Variable Calculus Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.01 Practice Questions for Exam 1

Solutions will be posted on the 18.01 website

Problem 1. Evaluate each of the following:

a)
$$\frac{d}{dx} \left. \frac{\sqrt{x}}{1+2x} \right|_{x=1}$$

b)
$$\frac{d}{du}(u \ln 2u)$$
 (simplify your answer)

Problem 2. a) Evaluate $\frac{d}{dt}\sqrt{1-k\cos^2 t}$, where k is constant.

b) Check your answer to part (a) by showing that if k = 1, your answer agrees with the derivative calculated by a simpler method.

Problem 3. Derive the formula for $\frac{d}{dx}\left(\frac{1}{x^2}\right)$ directly from the definition of derivative.

(You will need to transform the difference quotient algebraically before taking the limit.)

Problem 4. Derive the formula for $\frac{d}{dx}\sin^{-1}x$ by solving $y = \sin^{-1}x$ for x and using implicit differentiation.

(You may use the known values of $D \sin x$ and $D \cos x$ in your derivation. Your answer must be expressed in terms of x.)

Problem 5. Find all values of the constants a and b for which the function defined by

$$f(x) = \begin{cases} ax + b, & x > 1\\ x^2 - 3x + 2, & x \le 1 \end{cases}$$

will be differentiable. differentiable and continuous differentiable.

Problem 6. Evaluate the following, with enough indications to show you are not just guessing:

a)
$$\lim_{u \to 0} \frac{\tan 2u}{u}$$

b)
$$\lim_{h\to 0} \frac{e^h - 1}{h}$$
 (relate it to the value of a derivative)

Problem 7 A hawk is <u>pursuing</u> a mouse. We choose a coordinate system so the mouse runs along the x-axis in the negative direction, and the hawk is flying over the x-axis, swooping down along the exponential curve $y = e^{kx}$, for some positive constant k. The hawk in flight is <u>always aimed directly at the mouse</u>. It is noon at the <u>equator</u>, and the sun is directly overhead.

When the hawk's shadow on the ground is at the point x_0 , where is the mouse?