

Lecture 3: Analytic Geometry

Yi, Yung (이용)

Mathematics for Machine Learning https://yung-web.github.io/home/courses/mathml.html KAIST EE

April 4, 2021

- (1) Norms
- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- (8) Orthogonal Projections
- (9) Rotations

April 4, 2021 1 / 36

KAIST EE

April 4, 2021 2 / 36

(1) Norms

Roadmap

- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- (8) Orthogonal Projections
- (9) Rotations

Norm

- A notion of the length of vectors
- Definition. A norm on a vector space V is a function $\|\cdot\|:V\mapsto\mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ the following hold:
 - Absolutely homogeneous: $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$
 - Triangle inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$
 - Positive definite: $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| \Longleftrightarrow \mathbf{x} = 0$

• Manhattan Norm (also called ℓ_1 norm) For $\textbf{\textit{x}} = [x_1, \cdots, x_n] \in \mathbb{R}^n,$

$$\left\|\boldsymbol{x}\right\|_{1} :== \sum_{i=1}^{n} \left|x_{i}\right|$$

• Euclidean Norm (also called ℓ_2 norm) For $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_2 :== \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

April 4, 2021 5 / 36

- (1) Norms
- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- (8) Orthogonal Projections
- (9) Rotations

Formal Definition

L3(1) L3(1) April 4, 2021 6 / 36

Motivation KAIST EE

- Need to talk about the length of a vector and the angle or distance between two vectors, where vectors are defined in abstract vector spaces
- To this end, we define the notion of inner product in an abstract manner.
- Dot product: A kind of inner product in vector space \mathbb{R}^n . $\mathbf{x}^\mathsf{T}\mathbf{y} = \sum_{i=1}^n x_i y_i$
- Question. How can we generalize this and do a similar thing in some other vector spaces?

- An inner product is a mapping $\langle \cdot, \cdot \rangle : V \times V \mapsto \mathbb{R}$ that satisfies the following conditions for all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in V$ and all scalars $\lambda \in \mathbb{R}$:
- 1. $\langle \boldsymbol{u} + \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{u}, \boldsymbol{w} \rangle + \langle \boldsymbol{v}, \boldsymbol{w} \rangle$
- 2. $\langle \lambda \mathbf{v}, \mathbf{w} \rangle = \lambda \langle \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{v} \rangle$
- 4. $\langle \mathbf{v}, \mathbf{v} \rangle > 0$ and equal iff $\mathbf{v} = 0$
- The pair $(V, \langle \cdot, \cdot \rangle)$ is called an inner product space.

- Example. $V = \mathbb{R}^n$ and the dot product $\langle x, y \rangle := x^T y$
- Example. $V = \mathbb{R}^2$ and $\langle x, y \rangle := x_1y_1 (x_1y_2 + x_2y_1) + 2x_2y_2$
- Example. $V = \{\text{continuous functions in } \mathbb{R} \text{ over } [a,b]\}, \ \langle u,v \rangle := \int_a^b u(x)v(x)dx$

• A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ that satisfies the following is called symmetric, positive definite (or just positive definite):

$$\forall \mathbf{x} \in V \setminus \{0\} : \mathbf{x}^\mathsf{T} \mathbf{A} \mathbf{x} > 0.$$

If only \geq in the above holds, then **A** is called symmetric, positive semidefinite.

- $\mathbf{A}_1 = \begin{pmatrix} 9 & 6 \\ 6 & 5 \end{pmatrix}$ is positive definite.
- $\mathbf{A}_2 = \begin{pmatrix} 9 & 6 \\ 6 & 3 \end{pmatrix}$ is not positive definite.

L3(2)

April 4, 2021 9 / 36

L3(2)

April 4, 2021

Inner Product and Positive Definite Matrix (1)

Inner Product and Positive Definite Matrix (2)

- Consider an *n*-dimensional vector space V with an inner product $\langle \cdot, \cdot \rangle$ and an ordered basis $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ of V.
- Any $\mathbf{x}, \mathbf{y} \in V$ can be represented as: $\mathbf{x} = \sum_{i=1}^n \psi_i \mathbf{b}_i$ and $\mathbf{y} = \sum_{i=j}^n \lambda_j \mathbf{b}_j$ for some ψ_i and $\lambda_j, i, j = 1, \dots, n$.

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \left\langle \sum_{i=1}^{n} \psi_{i} \boldsymbol{b}_{i}, \sum_{i=j}^{n} \lambda_{j} \boldsymbol{b}_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{i} \left\langle \boldsymbol{b}_{i}, \boldsymbol{b}_{j} \right\rangle \lambda_{j} = \hat{\boldsymbol{x}}^{\mathsf{T}} \boldsymbol{A} \hat{\boldsymbol{y}},$$

where $\mathbf{A}_{ii} = \langle \mathbf{b}_i, \mathbf{b}_i \rangle$ and $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are the coordinates w.r.t. B.

- Then, if $\forall x \in V \setminus \{0\}$: $x^T A x > 0$ (i.e., A is symmetric, positive definite), $\hat{x}^T A \hat{y}$ legitimately defines an inner product (w.r.t. B)
- Properties
 - The kernel of **A** is only $\{0\}$, because $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq 0 \implies \mathbf{A} \mathbf{x} \neq 0$ if $\mathbf{x} \neq 0$.
 - The diagonal elements a_{ii} of **A** are all positive, because $a_{ii} = \mathbf{e}_i^{\mathsf{T}} \mathbf{A} \mathbf{e}_i > 0$.

- (1) Norms
- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- (8) Orthogonal Projections
- (9) Rotations

L3(3)

April 4, 2021 13 / 36

Not every norm is induced by an inner product

Inner product naturally induces a norm by defining:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}||$$

 $||x|| := \sqrt{\langle x, x \rangle}$

L3(3)

April 4, 2021 14 / 36

Distance

Angle, Orthogonal, and Orthonormal

• Now, we can introduce a notion of distance using a norm as:

Distance.
$$d(x, y) := ||x - y|| = \sqrt{\langle x - y, x - y \rangle}$$

- If the dot product is used as an inner product in \mathbb{R}^n , it is Euclidian distance.
- Note. The distance between two vectors does NOT necessarily require the notion of norm. Norm is just sufficient.
- Generally, if the following is satisfied, it is a suitable notion of distance, called metric.
 - Positive definite. $d(x, y) \ge 0$ for all x, y and $d(x, y) = 0 \iff x = y$
 - Symmetric. d(x, y) = d(y, x)
 - Triangle inequality. $d(x, z) \le d(x, y) + d(y, z)$

Using C-S inequality,

$$-1 \le \frac{\langle \boldsymbol{x}, \boldsymbol{y} \rangle}{\|\boldsymbol{x}\| \|\boldsymbol{y}\|} \le 1$$

• Then, there exists a unique $\omega \in [0, \pi]$ with

$$\cos \omega = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

- We define ω as the angle between ${\bf x}$ and ${\bf y}$.
- Definition. If $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, in other words their angle is $\pi/2$, we say that they are orthogonal, denoted by $\mathbf{x} \perp \mathbf{y}$. Additionally, if $\|\mathbf{x}\| = \|\mathbf{y}\| = 1$, they are orthonormal.

- Orthogonality is defined by a given inner product. Thus, different inner products may lead to different results about orthogonality.
- Example. Consider two vectors $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
- Using the dot product as the inner product, they are orthogonal.
- However, using $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^\mathsf{T} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \boldsymbol{y}$, they are not orthogonal.

$$\cos \omega = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} = -\frac{1}{3} \implies \omega \approx 1.91 \text{ rad } \approx 109.5^{\circ}$$

L3(4) April 4, 2021 17 / 36 • Definition. A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, iff its columns (or rows) are orthonormal so that

$$\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I} = \mathbf{A}^{\mathsf{T}}\mathbf{A}$$
, implying $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$.

- We can use $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$ for the definition of orthogonal matrices.
- Fact 1. $\boldsymbol{A}, \boldsymbol{B}$: orthogonal $\Longrightarrow \boldsymbol{AB}$: orthogonal
- Fact 2. **A**: orthogonal \implies det(**A**) = ± 1
- The linear mapping Φ by orthogonal matrices preserve length and angle (for the dot product)

$$\|\Phi(\mathbf{A})\| = \|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{x}) = \mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{x} = \|\mathbf{x}\|^2$$
$$\cos \omega = \frac{(\mathbf{A}\mathbf{x})^{\mathsf{T}}(\mathbf{A}\mathbf{y})}{\|\mathbf{A}\mathbf{x}\| \|\mathbf{A}\mathbf{y}\|} = \frac{\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{y}}{\sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{y}}} = \frac{\mathbf{x}^{\mathsf{T}}\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

L3(4) April 4, 2021 18 / 36

Roadmap

KAIST EE

Orthonormal Basis

lengths are 1.

- (1) Norms
- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- Orthogonal Projections
- (9) Rotations

- · Basis that is orthonormal, i.e., they are all orthogonal to each other and their
- Standard basis in \mathbb{R}^n , $\{e_1, \ldots, e_n\}$, is orthonormal.
- Question. How to obtain an orthonormal basis?
 - 1. Use Gaussian elimination to find a basis for a vector space spanned by a set
 - \circ Given a set $\{m{b}_1,\ldots,m{b}_n\}$ of unorthogonal and unnormalized basis vectors. Apply Gaussian elimination to the augmented matrix $(BB^T|B)$
 - 2. Constructive way: Gram-Schmidt process (we will cover this later)

- Consider D-dimensional vector space V and M-dimensional subspace $W \subset V$. The orthogonal complement U^{\perp} is a (D-M)-dimensional subspace of V and contains all vectors in V that are orthogonal to every vector in U.
- $U \cap U^{\perp} = 0$
- Any vector $x \in V$ can be uniquely decomposed into:

$$m{x} = \sum_{m=1}^{M} \lambda_m m{b}_m + \sum_{j=1}^{D-M} \psi_j m{b}_j^{\perp}, \quad \lambda_m, \psi_j \in \mathbb{R},$$

where $(\boldsymbol{b}_1\dots,\boldsymbol{b}_M)$ and $(\boldsymbol{b}_1^\perp,\dots,\boldsymbol{b}_{D-M}^\perp)$ are the bases of U and U^\perp , respectively.

- The vector \mathbf{w} with $\|\mathbf{w}\| = 1$, which is orthogonal to U, is the basis of U^{\perp} .
- Such w is called normal vector to U.
- For a linear mapping represented by a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the solution space of $\mathbf{A}\mathbf{x} = 0$ is $\operatorname{row}(\mathbf{A})^{\perp}$, where $\operatorname{row}(\mathbf{A})$ is the row space of \mathbf{A} (i.e., span of row vectors). In other words, $\operatorname{row}(\mathbf{A})^{\perp} = \ker(\mathbf{A})$

L3(6) April 4, 2021 21 / 36

L3(6)

April 4, 2021 22 / 36

Inner Product of Functions

Roadmap

• Remind: $V = \{\text{continuous functions in } \mathbb{R} \text{ over } [a, b]\}$, the following is a proper inner product.

$$\langle u, v \rangle := \int_a^b u(x) v(x) dx$$

• Example. Choose $u(x) = \sin(x)$ and $v(x) = \cos(x)$, where we select $a = -\pi$ and $b = \pi$. Then, since f(x) = u(x)v(x) is odd (i.e., f(-x) = -f(x)),

$$\int_{-\pi}^{\pi} u(x)v(x)dx = 0.$$

- Thus, u and v are orthogonal.
- Similarly, $\{1, \cos(x), \cos(2x), \cos(3x), \dots, \}$ is orthogonal over $[-\pi, \pi]$.

- (1) Norms
- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- (8) Orthogonal Projections
- (9) Rotations

- Big data: high dimensional
- However, most information is contained in a few dimensions
- Projection: A process of reducing the dimensions (hopefully) without loss of much information¹
- Example. Projection of 2D dataset onto 1D subspace

¹In L10, we will formally study this with the topic of PCA (Principal Component Analysis). 25 / 36

- Consider a 1D subspace $U \subset \mathbb{R}^n$ spanned by the basis **b**.
- For $\mathbf{x} \in \mathbb{R}^n$, what is its projection $\pi_U(\mathbf{x})$ onto U (assume the dot product)?

$$\begin{aligned} \langle \mathbf{x} - \pi_{U}(\mathbf{x}), \mathbf{b} \rangle &= 0 \stackrel{\pi_{U}(\mathbf{x}) = \lambda \mathbf{b}}{\longleftrightarrow} \langle \mathbf{x} - \lambda \mathbf{b}, \mathbf{b} \rangle = 0 \\ \implies \lambda &= \frac{\langle \mathbf{b}, \mathbf{x} \rangle}{\|\mathbf{b}\|^{2}} = \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|\mathbf{b}\|^{2}}, \text{ and } \pi_{U}(\mathbf{x}) = \lambda \mathbf{b} = \frac{\mathbf{b}^{\mathsf{T}} \mathbf{x}}{\|\mathbf{b}\|^{2}} \mathbf{b} \end{aligned}$$

• Projection matrix $P_{\pi} \in \mathbb{R}^{n \times n}$ in $\pi_{U}(\mathbf{x}) = P_{\pi}\mathbf{x}$

$$\pi_U(\mathbf{x}) = \lambda \mathbf{b} = \mathbf{b}\lambda = \frac{\mathbf{b}\mathbf{b}^\mathsf{T}}{\|\mathbf{b}\|^2}\mathbf{x}, \quad \mathbf{P}_{\pi} = \frac{\mathbf{b}\mathbf{b}^\mathsf{T}}{\|\mathbf{b}\|^2}$$

April 4, 2021

Inner Product and Projection

KAIST EE

Example

- We project \boldsymbol{x} onto \boldsymbol{b} , and let $\pi_{\boldsymbol{b}}(\boldsymbol{x})$ be the projected vector.
- Question. Understanding the inner project $\langle x, b \rangle$ from the projection perspective?

$$\langle \mathbf{x}, \mathbf{b} \rangle = \|\pi_{\mathbf{b}}(\mathbf{x})\| \times \|\mathbf{b}\|$$

• In other words, the inner product of x and **b** is the product of (length of the projection of x onto b) \times (length of b)

$$x$$

$$\pi_U(x)$$
(a) Projection of $x\in\mathbb{R}^2$ onto a subspace U

$$\mathbf{P}_{\pi} = \frac{\mathbf{b}\mathbf{b}^{\mathsf{T}}}{\|\mathbf{b}\|^{2}} = \frac{1}{9} \begin{pmatrix} 1\\2\\2 \end{pmatrix} (1 \ 2 \ 2) = \frac{1}{9} \begin{pmatrix} 1 \ 2 \ 2\\4 \ 4\\2 \ 4 \ 4 \end{pmatrix}$$

For
$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
,

L3(8)

$$\pi_U(\mathbf{x}) = \mathbf{P}_{\pi}\mathbf{x} = \frac{1}{9} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 5 \\ 10 \\ 10 \end{pmatrix} \in \mathsf{span}[\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}]$$

- $\mathbb{R}^n o 1$ -Dim
- A basis vector **b** in 1D subspace

$$\pi_{U}(\mathbf{x}) = \frac{\mathbf{b}\mathbf{b}^{\mathsf{T}}\mathbf{x}}{\mathbf{b}^{\mathsf{T}}\mathbf{b}}, \ \lambda = \frac{\mathbf{b}^{\mathsf{T}}\mathbf{x}}{\mathbf{b}^{\mathsf{T}}\mathbf{b}}$$
$$\mathbf{P}_{\pi} = \frac{\mathbf{b}\mathbf{b}^{\mathsf{T}}}{\mathbf{b}^{\mathsf{T}}\mathbf{b}}$$

- $\mathbb{R}^n \to m$ -Dim, (m < n)
- A basis matrix

$$B = (\boldsymbol{b}_1, \cdots, \boldsymbol{b}_m) \in \mathbb{R}^{n \times m}$$

$$\pi_U(\boldsymbol{x}) = \boldsymbol{B}(\boldsymbol{B}^{\mathsf{T}} \boldsymbol{B})^{-1} \boldsymbol{B}^{\mathsf{T}} \boldsymbol{x}, \ \lambda = (\boldsymbol{B}^{\mathsf{T}} \boldsymbol{B})^{-1} \boldsymbol{B}^{\mathsf{T}} \boldsymbol{x}$$

$$\boldsymbol{P}_{\pi} = \boldsymbol{B}(\boldsymbol{B}^{\mathsf{T}} \boldsymbol{B})^{-1} \boldsymbol{B}^{\mathsf{T}}$$

- $\lambda \in \mathbb{R}^1$ and $\lambda \in \mathbb{R}^m$ are the coordinates in the projected spaces, respectively.
- $(B^TB)^{-1}B^T$ is called pseudo-inverse.
- How to derive is analogous to the case of 1-D lines (see pp. 71).

•
$$U = \operatorname{span}\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \end{bmatrix} \subset \mathbb{R}^3$$
 and $\mathbf{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$. Check that $\{ \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^\mathsf{T}, \begin{pmatrix} 0 & 1 & 2 \end{pmatrix}^\mathsf{T} \}$ is a basis.

• Let
$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
. Then, $\mathbf{B}^\mathsf{T} \mathbf{B} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$

• Can see that $\mathbf{P}_{\pi} = \mathbf{B}(\mathbf{B}^{\mathsf{T}}\mathbf{B})^{-1}\mathbf{B}^{\mathsf{T}} = \frac{1}{6}\begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}$, and

$$\pi_U(\mathbf{x}) = rac{1}{6} \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$$

L3(8) April 4, 2021 29 / 36 L3(8) April 4, 2021 30 /

Gram-Schmidt Orthogonalization Method (G-S method)

Example: G-S method

- Constructively transform any basis $(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)$ of *n*-dimensional vector space V into an orthogonal/orthonormal basis $(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n)$ of V
- Iteratively construct as follows

$$u_1 := b_1
 u_k := b_k - \pi_{\text{span}[u_1,...,u_{k-1}]}(b_k), k = 2,..., n$$
(*)

- A basis $(\pmb{b}_1,\pmb{b}_2)\in\mathbb{R}^2,$ $\pmb{b}_1=egin{pmatrix}2\\0\end{pmatrix}$ and $\pmb{b}_2=egin{pmatrix}1\\1\end{pmatrix}$
- $u_1 = b_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ and

$$oldsymbol{u}_2 = oldsymbol{b}_2 - \pi_{\mathsf{span}[oldsymbol{u}_1]}(oldsymbol{b}_2) = rac{oldsymbol{u}_1 oldsymbol{u}_2^\mathsf{T}}{\|oldsymbol{u}_1\|} oldsymbol{b}_2 = egin{pmatrix} 1 \\ 1 \end{pmatrix} - egin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} egin{pmatrix} 1 \\ 1 \end{pmatrix} = egin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• u_1 and u_2 are orthogonal. If we want them to be orthonormal, then just normaliation would do the job.

Roadmap

- Affine space: $L = x_0 + U$
- Affine subspaces are not vector spaces
- Idea: (i) move x to a point in U, (ii) do the projection, (iii) move back to L

$$\pi_L(\mathbf{x}) = \mathbf{x}_0 + \pi_U(\mathbf{x} - \mathbf{x}_0)$$

(1) Norms

- (2) Inner Products
- (3) Lengths and Distances
- (4) Angles and Orthogonality
- (5) Orthonormal Basis
- (6) Orthogonal Complement
- (7) Inner Product of Functions
- (8) Orthogonal Projections
- (9) Rotations

L3(9)

L3(8) April 4, 2021 33 / 36

Rotation

KAIST EE

April 4, 2021

34 / 36

- Length and angle preservation: two properties of linear mappings with orthogonal matrices. Let's look at some of their special cases.
- A linear mapping that rotates the given coordinate system by an angle θ .
- Basis change

•
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
 and $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$

- Rotation matrix $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
- Properties
 - Preserves distance: $\|\mathbf{x} \mathbf{y}\| = \|\mathbf{R}_{\theta}(\mathbf{x}) \mathbf{R}_{\theta}(\mathbf{y})\|$
 - Preserves angle

Questions?

1)

L3(9) April 4, 2021 37 / 36