

Veri Madenciliği

Öğr. Gör. Zeki ÇIPLAK

Büyük Veri Nedir?

Büyük Veri (Big Data) Nedir?

Klasik yöntemlerle işlenemeyecek kadar büyük olan verilerdir.

- Büyük verileri, geleneksel yöntemlerle (örneğin ilişkisel veri tabanlarında) saklamak, organize etmek zordur. Bu yüzden büyük verilere özel yeni yazılımlar geliştirilmiştir. (Spark, Hadoop vb. gibi)
- **Büyük verilerin 5 temel özelliği** vardır. Büyük veride <u>bu beş</u> özelliğin hepsinin olması gerekmez. Önemli olan, ancak yeni yöntemlerle işlenebiliyor olmasıdır.

Büyük Verinin 5V'si

Büyük Verinin 5V'si

- 1. Volume (Hacim): Büyük verinin hacmi, <u>geleneksel yöntemlerle</u> <u>işlenemeyecek boyutta</u> olmalıdır.
- 2. Velocity (Hız): Büyük verinin <u>üretilmesi çok hızlı</u>dır. Özellikle sosyal medyada, anlık olarak terabaytlarca veri üretilir.
- 3. **Verification** (Doğrulama): Büyük veri, güvenli ve doğrulanabilir olmalıdır. <u>Doğru bilgiler içermeli</u>dir.
- 4. Variety (Çeşitlilik): Büyük veri, <u>çok çeşitli</u>dir. Her farklı teknoloji, farklı tipte <u>yapılandırılmış veya yapılandırılmamış</u> veri üretir.
- **5. Value** (DEĞER): Büyük veri, en nihayetinde geleceğe dönük tahminlerde bulunabileceğimiz, <u>karar vermeye destek</u> olacak nitelikte değerli olmalıdır.

Bulut Bilişim Nedir?

Bulut Bilişim Nedir?

- Klasik yöntemlerle işlenemeyecek olan büyük verini;
 yönetilebilmesi, analiz edilebilmesi ve faydalı hale getirilebilmesi için gerekli olan ortamı sağlayan özel teknolojilerdir.
- Bulut bilişim sistemini kullanarak, **anlık veri analizi** yapan şirketler, satışlarında büyük başarılar elde etmişlerdir.
- Bu şirketlerden olan Amerikalı market zinciri Walmart, sattığı tüm ürünlere ait geçmiş satış verilerini kullanarak, gelecek satış tahminleri yapmış ve büyük karlar elde etmiştir.
- Anlık veri analizleri, anlık ve kişiye özel kampanyalar gibi özel uygulamalar, ancak büyük verinin hızlı ve sağlıklı işlenebilmesi ile mümkün olmuştur. Bu açıdan Bulut Bilişim'in önemi büyüktür.

Bilgi Keşfi

Bilgi Keşfi

 Veri Madenciliği, pratikte Bilgi Keşfi kavramı ile aynı anlamda kullanılabiliyor olsa da, aslında Bilgi Keşfinin aşamalarından biridir.

Bilgi Keşfi

 Bilgi Keşfi, veriden faydalı bilginin keşfedilmesi <u>sürecinin</u> tamamıdır.

• Bilgi Keşfinin en büyük bölümünü; verinin hazırlanması, dönüştürülmesi, vb. gibi <u>ön işleme</u> safhaları oluşturur.

- Bilgi Keşfinin bölümlerini;
 - 1. Veri Madenciliği öncesi,
 - 2. Veri Madenciliği aşaması ve
- 3. Veri Madenciliğinden sonraki süreçler olarak üçe ayırabiliriz.

Bilgi Keşfinin Aşamaları

Bilgi Keşfinin Aşamaları

- 1. Amaç Tanımlama
- 2. Veri Üzerinde Yapılan <u>Önişlemler</u>
- 3. <u>Model Kurma</u> ve Değerlendirme
- 4. Modeli <u>Yorumlama</u>
- 5. Modelin <u>İzlenme</u>si

1. Amaç Tanımlama

- Veri Madenciliğine temel olan araştırma konusu ile ilgili temel bilgilerin yer aldığı safhadır.
- Çalışmanın neden yapıldığıyla ilgili açıklamalar ve <u>hangi</u> problemi çözmeye yönelik olduğu açıkça ifade edilmelidir.
- Ayrıca sonuçların ne kadar başarılı olduğunun, <u>hangi</u> metriklere göre ölçüleceği de açıklanabilir.
- Ek olarak, proje sonunda yapılacak olan tahminlerin veya veriden çıkarılan bilgilerin doğru/yanlış olması durumlarında meydana gelecek kazanım/maliyet'e ilişkin açıklamalar da yer alabilmektedir.

2. Veri Üzerinde Yapılan Önişlemler

- Veri Madenciliği projesinin, en önemli safhasıdır.
- Veri Madenciliği projelerinde kullanılacak veriler, çoğu zaman kullanılmaya hazır durumda olmazlar. Bu yüzden bazı ön işlemlerden geçirilmesi gerekir.
- Veri Madenciliği sonucu elde edilen yeni bilgi, ancak kaliteli verilerle çalışıldığı zaman, yararlı olabilir. Düzgün yapılandırılmamış veri setleri, projeden istenilen sonucun alınamamasına sebep olabilir.
- Önişlemler aşamasında **gereken titizlik gösterilmezse**, bu durumda modelin kurulması aşamasında problemler çıkabilmektedir.

2. Veri Üzerinde Yapılan Önişlemler

- Önişlemler aşaması;
 - 1. Verilerin toplanması ve birleştirilmesi,
 - 2. Verilerin temizlenmesi,
- 3. Verilerin dönüştürülmesi ve yeniden yapılandırılması şeklinde bölümlere ayrılabilir.

 Yukarıda sayılan bölümler de, her birinin içerisinde yapılan farklı işlemlere göre, alt bölümlerde değerlendirilebilirler.

2. Veri Üzerinde Önişlemler

Verilerin Toplanması ve Birleştirilmesi

- Önceki aşamada belirlenmiş amaca uygun olan veriler, çok çeşitli kaynaklardan toplanabilir ve bir araya getirilebilirler.
- Veri kaynakları, şirketin kendi iç verileri olabildiği gibi, veri pazarlayan veya ücretsiz erişime açılmış çeşitli kurumlara ait veriler de olabilmektedir.
- Kullanılacak olan verilerin, hangi kaynaklardan toplandığı ve doğruluk/güvenilirlik derecelerinin ne olduğu konusu, Veri Madenciliği projesinin ulaşacağı başarıyı doğrudan etkilemektedir.

Verilerin Temizlenmesi

ID	Ad/Soyad	Doğum Tarihi	Boy	Kilo
1	Ali Öztürk	4.10.2001	174	78
2	Ebru Yılmaz	9.05.1998	168	60
3	Irmak Ece Aygün	7.03.1999	N/A	56
4	Orhan Uzun	NULL	173	80
5	Okan Eren	6.06.2000	179	0
6	Umut Ali Akan	17.08.2002	185	90
7	Kemal Sarı	23.01.2003	N/A	89
8	Beren Yumak	16.02.2000	170	59
9	Yasemin Keser	NULL	166	60
10	Rabia Esin Acar	1997	1,59	

Elde edilen verilerdeki kayıtların bir kısmı <u>eksik</u>
doldurulmuş olabilir. Bazı veriler <u>hatalı ve anlamsızlık</u>
<u>oluşturacak</u> şekilde de girilmiş olabilir. Bu tip verilere
Kayıp Veri denir.

Verilerin Temizlenmesi

- Bazı veriler de doğru olmayacak kadar uç değerler içeriyor olabilir. (Bir insanın boyunun 5 metre olması gibi) Bu tip değerlere de Aykırı Veriler denir.
- Kayıp ve Aykırı verilerin tümüne Gürültülü Veri denir.
- Gürültü Verinin oluşma sebepleri;
 - Birçok veri setinin bir araya getirilmiş olması,
 - Veri girişi yapan personellerin hataları,
 - Özniteliklerin birimlerine dikkat edilmemesi,
 - Sistemsel hatalar,
 - Yanlış yöntemlerle veri toplanması

vb. gibi sebeplerdir.

Kayıp Veri Problemini Çözmek

Kayıp veri içeren kaydı/satırı veri setinden silmek:

Kayıp veri sayısı çok az ise ve çalışma sonucunu çok etkilemeyeceği düşünülüyorsa bu yöntem kullanılabilir.

Kayıp verileri, <u>tek tek doldurmak</u>:

Veri seti çok büyük değilse ve kayıp verilere ulaşabilmek mümkünse bu yöntem uygulanabilir.

Kayıp verilerin <u>hepsi için aynı veriy</u>i girmek:

Veri setinde kayıp olmayan veriler birbirlerine çok yakın değerlerde ise, kayıp olan veriler için tek bir değer belirlenip, o değer kayıp veri yerine kullanılabilir.

Kayıp Veri Problemini Çözmek

ID	Kira Bedeli	Semt
1	4350	Kurtköy
2	4150	Kurtköy
3	5500	Yenişehir
4	4500	Sülüntepe
5	6200	Yenişehir
6	6350	Yenişehir
7	4650	Sülüntepe
8		Kurtköy

Kayıp veri yerine, <u>diğer verilerin ortalaması</u>nı girmek:

Diğer verilerin ortalaması girilirken, ya tüm verilerin ya da benzer kategoride olan verilerin ortalaması alınır.

Kayıp Veri Problemini Çözmek

Kayıp verileri, <u>diğer verileri kullanarak tahmin</u> etmek:

Tahmine dayalı istatistiksel veya makine öğrenmesi algoritmaları (regresyon, karar ağacı, sınıflandırma veya zaman serisi analizi vb.) ile kayıp veriler tahmin edilerek doldurulabilir.

Verilerin Yeniden Yapılandırılması

- Veri Madenciliği algoritmaları, ancak veri setindeki sayısal değerleri kullanabilir. Bu amaçla kategorik değişkenler varsa, <u>sayısal değerlere dönüştürülebilir</u> (one hot encoding gibi) veya alınacak bir kararla ilgili öznitelikler veri setinden tamamen de çıkartılabilir. (Araştırınız)
- Veriler arasındaki ölçekler, birbirinden çok farklı olabilir.
 Örneğin, bazı özniteliklerin sayısal aralığı 0-100 iken, bazı özniteliklerin sayısal aralığı 0-10000 olabilmektedir.
- Tüm özniteliklerin aynı ölçekte olması, bulunacak katsayıların doğru değerlendirilebilmesi ve algoritmaların doğru çalışması açısından çok önemlidir. Bu amaçla normalizasyon ve standardizasyon işlemleri yapılabilir.

Verilerin Yeniden Yapılandırılması

 Normalizasyon işlemi, verilerin belli bir aralığa çekilmesi işlemidir. Bu aralık 0-1 veya 0-100 gibi belirlenen bir aralık olarak seçilebilmektedir.

$$x_{\text{norm}} = \frac{x - \min(x)}{\max(x) - \min(x)}$$

 Standardizasyon işlemi ise, ortalama ve standart sapmaya göre verileri yeni bir ölçeğe çekme işlemidir. Standardizasyona, Z-Skor Normalizasyon da denmektedir.

$$x_{\text{stand}} = \frac{x - \text{mean}(x)}{\text{standard deviation }(x)}$$

3. Model Kurma ve Değerlendirme

- Son hale gelen verinin, bir modele dönüştüğü aşamadır.
- Bu aşamada hangi algoritmanın kullanılacağı belirlenir ve model denendikten sonra (bir sonraki aşamada), kurulan modelin en başta belirlenen amaca uygun olup olmadığı sorgulanır.
- Farklı algoritmalarla farklı modeller oluşturulabilir ve en iyi olduğu düşünülen model bulunana kadar bazı aşamalar tekrarlanabilir.
- Veri setinin önişleme aşaması titizlikle ele alınmazsa, bu aşamada çokça model denemesi olur ve bir türlü istenen sonuca ulaşılamayabilir.

4. Modeli Yorumlama

- Bu aşamada model seçilmiş ve uygulamaya konmuştur.
 Modelin çalıştırılmasıyla birlikte elde edilen bilgiler yorumlanmaya başlanır.
- Kazanılan bilgi, verilecek kararlara destek olacak şekilde kullanılır.

5. Modelin İzlenmesi

 Kurulan model <u>ne kadar iyi olursa olsun</u>, zaman içerisinde ihtiyaca cevap veremeyecek hale gelebilmektedir. Bu yüzden sürekli izlenmesi ve değişiklik/düzenleme gerekiyorsa, modele müdahale edilmesi gerekir.