```
void ComputeWait() {
                             start = 0, slots = 1
       start = 0, slots = 1;
       for (i=0; i \le MAXPV; i++) { i = 0
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 2</pre>
            j = 1 wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                               ((0+1)\%1, 0)
               start = (start + ProcPerPC[i]) % slots;
               start = 2 * start;
               slots = 2 * slots;
```

wait:

p0.0 = 0

p0.1 = 0

```
wait:
void ComputeWait() {
                                                                  0 = 0.0q
                            start = 0, slots = 1
       start = 0, slots = 1;
                                                                  p0.1 = 0
       for (i=0; i \le MAXPV; i++) { i = 0
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 2</pre>
                      wait[i][j] = Rev.Bin.((start+j)%slots, i);
              start = (start + ProcPerPC[i]) % slots; = (0 + 1) % 1 = 0
              start = 2 * start; = 2 * 0 = 0
              slots = 2 * slots; = 2 * 1 = 2
```

```
[0]
                                                                1 [1]
                                                                pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
       for (i=0; i \le MAXPV; i++) { i=1
                                                                  wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 5</pre>
                     wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                  p1.0 = 0
                                                                  p1.1 = 1
              start = (start + ProcPerPC[i]) % slots;
                                                                  p1.2 = 0
              start = 2 * start;
                                                                  p1.3 = 1
              slots = 2 * slots;
                                                                  p1.4 = 0
```

```
[0]
                                                                0
                                                                1 [1]
                                                               pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
       for (i=0; i \le MAXPV; i++) { i=1
                                                                 wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 5</pre>
            i = 0 wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                 p1.0 = 0
                                             ((0+0)\%2, 1)
                                                                 p1.1 = 1
              start = (start + ProcPerPC[i]) % slots;
                                                                 p1.2 = 0
              start = 2 * start;
                                                                 p1.3 = 1
              slots = 2 * slots;
                                                                 p1.4 = 0
```

```
[0]
                                                               0
                                                               1 [1]
                                                              pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
                                                             for(i=0; i<=MAXPV; i++) {
                                                                wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 5</pre>
            i = 1     wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                p1.0 = 0
                                            ((0+1)\%2, 1)
                                                                p1.1 = 1
              start = (start + ProcPerPC[i]) % slots;
                                                                p1.2 = 0
              start = 2 * start;
                                                                p1.3 = 1
              slots = 2 * slots;
                                                                p1.4 = 0
```

```
[0]
                  0
                                                              1 [1]
                                                             pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
                                                             for(i=0; i<=MAXPV; i++) {
                                                               wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 5</pre>
            i = 2 wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                               p1.0 = 0
                                            ((0+2)\%2, 1)
                                                               p1.1 = 1
              start = (start + ProcPerPC[i]) % slots;
                                                               p1.2 = 0
              start = 2 * start;
                                                               p1.3 = 1
              slots = 2 * slots;
                                                               p1.4 = 0
```

```
[0]
                                                              0
                                                              1 [1]
                                                              pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
                                                             for(i=0; i<=MAXPV; i++) {
                                                               wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 5</pre>
            i = 3 wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                               p1.0 = 0
                                            ((0+3)\%2, 1)
                                                               p1.1 = 1
              start = (start + ProcPerPC[i]) % slots;
                                                               p1.2 = 0
              start = 2 * start;
                                                               p1.3 = 1
              slots = 2 * slots;
                                                               p1.4 = 0
```

```
[0]
                       0
                                                                1 [1]
                                                               pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
       for(i=0; i<=MAXPV; i++) {
                                                                 wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 5</pre>
            i = 4 wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                 p1.0 = 0
                                             ((0+4)\%2, 1)
                                                                 p1.1 = 1
              start = (start + ProcPerPC[i]) % slots;
                                                                 p1.2 = 0
              start = 2 * start;
                                                                 p1.3 = 1
              slots = 2 * slots;
                                                                 p1.4 = 0
```

```
[0]
                        1 [1]
                                                                  pv = 1:
void ComputeWait() {
       start = 0, slots = 1; start = 0, slots = 2
                                                                 ProcPerPC = 5
       for(i=0; i<=MAXPV; i++) {
                                                                   wait:
              for(j=0; j<ProcPerPC[i]; j++){</pre>
                      wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                   p1.0 = 0
              start = ( 0 + 5 ) % 2 = 1
start = (start + ProcPerPC[i]) % slots;
                                                                   p1.1 = 1
                                                                   p1.2 = 0
               start = 2 * start; = 2 * 1 = 2
                                                                   p1.3 = 1
               slots = 2 * slots; = 2 * 2 = 4
                                                                   p1.4 = 0
```

```
[0]
                                                               00
                       [2]
                                                               10
                                                                   [1]
                                                               01
                                                                   [3]
                                                               11
void ComputeWait() {
                                                             pv = 2:
       start = 0, slots = 1; start = 2, slots = 4
       for (i=0; i \le MAXPV; i++) { i=2
                                                                   wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 1</pre>
                      wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                   p2.0 = 1
               start = (start + ProcPerPC[i]) % slots;
              start = 2 * start;
              slots = 2 * slots;
```

```
[0]
                                                               00
                       [2]
                                                               10
                                                                   [1]
                                                               01
                                                                   [3]
                                                               11
void ComputeWait() {
                                                              pv = 2: ※
       start = 0, slots = 1; start = 2, slots = 4
       for (i=0; i \le MAXPV; i++) { i=2
                                                                   wait:
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 1</pre>
                     wait[i][j] = Rev.Bin.((start+j)%slots, i);
             i = 0
                                                                   p2.0 = 1
                                               ((2+0)\%4, 2)
               start = (start + ProcPerPC[i]) % slots;
               start = 2 * start;
              slots = 2 * slots;
```

```
00
                                                                         [0]
                         [2]
                                                                    10
                                                                         [1]
                                                                         [3]
                                                                    11
void ComputeWait() {
                                                                   pv = 2: ▼
        start = 0, slots = 1;
                                                                 ProcPerPC = 1
        for(i=0; i<=MAXPV; i++) {
                                                                         wait:
                for(j=0; j<ProcPerPC[i]; j++){</pre>
                        wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                                                         p2.0 = 1
                start = ( 2 + 1 ) % 4 = 3
start = (start + ProcPerPC[i]) % slots;
                start = 2 * start; = 2 * 3 = 6
                slots = 2 * slots; = 2 * 4 = 8
```

```
000
                                                        [0]
                                                 100
                                                       [4]
                                                 010
                                                       [6]
                                                 110
                                                 001
5
                                                 101
                                                        [5]
6
             [3]
                                                 011
                                                 111
                                                       [7]
```

```
000
                                                       [0]
                                                 100
                                                       [4]
                                                 010
                                                       [2]
3
                [6]
                                                 110
                                                 001
5
                                                 101
                                                       [5]
6
             011
                                                       [3]
                                                 111
                                                       [7]
```

```
000
                                                                 [0]
                                                          100
                                                                 [4]
                                                          010
                   \bigcirc
                                                                 [6]
                                                          110
                                                          001
5
                                                          101
                                                                 [5]
6
                   [3]
                                                          011
                                                          111
                                                                 [7]
```

```
pv = 3: ●
void ComputeWait() {
                                                                  wait:
       start = 0, slots = 1; start = 14, slots = 16
       for (i=0; i \le MAXPV; i++) { i=4 (MAXPV=4)
                                                                  p3.0 = 7
              for(j=0; j<ProcPerPC[i]; j++){ ProcPerPC = 1</pre>
            j = 0 wait[i][j] = Rev.Bin.((start+j)%slots, i);
                                             ((14+0)\%16, 4)
              start = (start + ProcPerPC[i]) % slots;
              start = 2 * start;
              slots = 2 * slots;
```

0				0000	[0]
1		\bigcirc		1000	[8]
2				0100	[4]
3				1100	[12]
4				0010	[2]
5		\bigcirc		1010	[10]
6				0110	[6]
7		$\overline{}$		1110	[14]
8			<u> </u>	0001	[1]
9		\bigcirc		1001	[9]
10				0101	[5]
11		\bigcirc	0	1101	[13]
12				0011	[3]
13		\bigcirc		1011	[11]
14				0111	[7]
15		\bigcirc		1111	[15]

wait: ... p4.0 = 7

pv = 4: ●

0				0000	[0]
1		\bigcirc		1000	[8]
2				0100	[4]
3		\bigcirc	0	1100	[12]
4				0010	[2]
5		\bigcirc		1010	[10]
6				0110	[6]
7		\bigcirc		1110	[14]
8				0001	[1]
9		$\overline{}$		1001	[9]
10				0101	[5]
11		\bigcirc	\bigcirc	1101	[13]
12				0011	[3]
13		\bigcirc		1011	[11]
14				0111	[7]
15		0		1111	[15]

wait: ... **p4.0** = **7**

pv = 4: **∞**

B-Scheduling

- perfect execution
 - no idle-time
- optimal frequency
 - provable upper and lower bound for period
- efficiently computable
 - linear in the number of processes
- compact representation
 - two variables per process (wait & priority)

workload WL

number of all process executions in a schedule

$$WL = \sum_{0 \le i \le \text{maxpv}} \#PC_i \cdot 2^{\text{maxpv}-i}$$

- priority class PC_i: all processes with priority i
- maxpv: maximum priority

number of minor cycles n_{mic} :

$$n_{mic} = 2^{\text{maxpv}}$$

average #processes per minor cycle av:

$$av = \frac{WL}{n_{mic}}$$

- av is not necessarily an integer
- perfect / dirty minor cycles

$$perfect = \lceil av \rceil$$
$$dirty = |av|$$

$$av = \frac{15 \cdot 5 + 1 \cdot 4}{16} = \frac{79}{16} = 4.9375$$

$$perfect = \lceil 4.9375 \rceil = 5$$
$$dirty = \lfloor 4.9375 \rfloor = 4$$

B-schedule S

- S time-optimal (no "waste of time" through idle processes)
- · major cycle consists only of perfect and dirty cycles
- p_i always executed in the same slot in a minor cycle
- p_i exec. in minor cycle c+2^{pv[pi]} iff p_i exec. in minor cycle c

therefore:

$$balance(S) = \min_{p_i} \frac{\min_{x} dist(p_i, x)}{\max_{y} dist(p_i, y)} = \frac{dirty}{perfect}$$
$$= 1 \text{ for } av \to \infty \text{ , resp. } n \to \infty$$

Rate Monotic Scheduling

Rate Monotonic Scheduling

priorities

- assigned by the rate monotonic principle
- i.e., processes with shorter periods get higher priorities
- note: if two periods are equal, choose an arbitrary one to get a higher priority
- highest priority process p that is up is executed
 - i.e., if end of period (= deadline) of p is reached
 - currently running process p' is interrupted (preemption)
 - and p is executed
 - iff prio(p) > prio(p')

Utilization

- processes p_i
 - periods T_i
 - resource (computation) requirements C_i
- utilization
 - per process U_i
 - overall U

$$U_i = \frac{C_i}{T_i}$$

$$U = \sum_{i=0}^{n-1} U_i$$

Rate Monotonic Scheduling Theorem

pre-conditions

- no overhead for context switch
- preemptive
 - highest priority with deadline up
 - gets immediately executed

Rate Monotonic Scheduling Theorem

example

	p0	p1	p2
Ti (msec)	6	8	12
Ci (msec)	1	2	4
priority	3	2	1
Ui	0.17	0.25	0.33

							INT						IN	JT				
executed process		p0	р1	р1	p2	p2	p2	p0	p2	p1	p1	p2	p2	p0	p2	р1	p1	•••
time (msec)		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	р0	Х	5	4	3	2	1	Х	5	4	3	2	1	Х	5	4	3	•••
	p1	7	X	Х	7	6	5	4	3	X	X	7	6	5	4	X	Х	•••
	p2	11	10	9	Х	Х	Х	ı	Х	11	10	X	X	-	Х	11	11	•••

Rate Monotonic Scheduling Theorem

theorem: processes can be scheduled if

$$U \le U_{RMS} = n(2^{1/n} - 1)$$

Conrete Values for U_{RMS}

\overline{n}	1	2	3	4	5	6	7	8	9	10
U_{rms} (in %)	100	82.84	77.98	75.68	74.35	73.48	72.86	72.41	72.05	71.77
\overline{n}	10	20	30	40	50	60	70	80	90	100
U_{rms}	71.77	70.53	70.12	69.91	69.78	69.72	69.66	69.62	69.58	69.56

$$\lim_{n \to \infty} U_{RMS} = \lim_{n \to \infty} n(2^{1/n} - 1) = \ln 2 \approx 0.693$$

U_{RMS} is an upper bound

example

- $U_{RMS} = 75.68$ (for n=4)
- $U = 90.83\% > U_{RMS}$
- but scheduling works

	p0	p1	p2	р3
T _i (msec)	3	8	8	10
C _i (msec)	1	1	2	2
priority	4	3	2	1
Ui	0.33	0.13	0.25	0.2

				IN	JT		IN	JT											IN	IT		
executed prod	cess	p0	p1	p2	p0	p2	р3	p0	р3	p1	p0	p2	p2	p1	p1	р3	p0	p1	р3	p0	р3	
time (m	sec)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	р0	Х	2	1	Х	2	1	X	2	1	Х	2	1	Х	2	1	Х	2	1	Х	2	
	p1	7	Х	7	6	5	4	3	2	X	7	6	5	4	3	2	1	Х	7	6	5	
	p2	7	6	Х	ı	X	7	6	5	4	3	X	X	7	6	5	4	3	Х	1	Х	
	р3	9	8	7	6	5	Х	-	Х	9	8	7	6	5	Х	Х	9	8	7	6	5	