

Aprendizagem 2023

Lab 5: Linear Regression

 \mathbf{X}_1

 \mathbf{X}_2

X3

2

1

1

3

Practical exercises

- 1. Consider the following training data:
 - a) Find the closed form solution for a linear regression. minimizing the sum of squared errors
 - b) Predict the target value for $\mathbf{x}_{new} = [2 \ 3]^T$
 - c) Sketch the predicted three-dimensional hyperplane
 - d) Compute the MSE and MAE produced by the linear regression
 - e) Are there biases on the residuals against y1? And y2?
 - f) Compute the closed form solution considering Ridge regularization term with $\lambda = 0.2$.
 - g) Compare the hyperplanes obtained using ordinary least squares and Ridge regression.
 - h) Why is Lasso regression suggested for data spaces of higher dimensionality?
- **2.** Consider the following training data where *output* is an ordinal variable
 - a) Find a linear regression using the closed form solution
 - b) Assuming the output threshold θ =0.5, use the regression to classify $\mathbf{x}_{new} = [2 \ 2.5]^T$

	У1	У2	ουιραι
X 1	1	1	1
X 2	2	1	1
X 3	1	3	0
\mathbf{X}_4	3	3	0

output

0.5

2

2.5

3. Considering the following data to learn a model

$$z = w_1 x_1 + w_2 x_2 + \varepsilon$$
, where $\varepsilon \sim N(0.5)$

Compare:

$$egin{array}{c|ccccc} y_1 & y_2 & \text{output} \\ \hline x_1 & 3 & -1 & 2 \\ x_2 & 4 & 2 & 1 \\ x_3 & 2 & 2 & 1 \\ \hline \end{array}$$

- a) $\mathbf{w} = [w_1 \ w_2]^T$ using the maximum likelihood approach
- b) w using the Bayesian approach, assuming $p(w) = N\left(w \mid u = [0 \ 0], \sigma = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}\right)$
- **4.** Identify a transformation to aid the linearly modelling of the following data points.

Sketch the predicted surface.

У1	У2	output
-0.95	0.62	0
0.63	0.31	0
-0.12	-0.21	1
-0.24	-0.5	0
0.07	-0.42	1
0.03	0.91	0
0.05	0.09	1
-0.83	0.22	0
	0.63 -0.12 -0.24 0.07 0.03 0.05	-0.95

5. Consider logarithmic and quadratic transformations:

$$\varphi_1(x) = log(x), \qquad \varphi_2(x) = x^2$$

- a) Plot both of the closed form regressions.
- b) Which one minimizes the sum of squared errors on the original training data

input	output
3	1.5
4	9.3
6	23.4
10	45.8
12	60.1
	3 4 6 10

- **6.** Select the criteria that promotes a smoother regression model:
 - a) Applying Lasso and Ridge regularization to linear regression models
 - b) Increasing the depth of a decision tree regressor
 - c) Increasing the k of a kNN regressor
 - d) Parameterizing a kNN regressor with uniform weights instead of distance-based weights

Programming quest

- **7.** Consider the *housing* dataset available at https://web.ist.utl.pt/~rmch/dscience/data/housing.arff and the *Regression* notebook available at the course's webpage.
 - Compare the determination coefficients of the non-regularized, Lasso and Ridge linear regression.