Fundamentals of Machine Learning:

Kernel Machines I: The Linear Support Vector Machine

Prof. Andrew D. Bagdanov (andrew.bagdanov AT unifi.it)

UNIVERSITÀ
DEGLI STUDI
FIRENZE
DINFO
DIPARTIMENTO DI INGEGNERIA

Outline

Introduction

The Margin

Maximum Margin Classifiers

The Soft Margin Classifier

Concluding Remarks

Introduction

Motivations

• Let's consider a simple, linearly-separable classification problem:

Motivations: a probabilistic approach

• We have tools for these problems, e.g. a generative linear discriminant:

Motivations: sensitivity to outliers

• A problem with many probabilistic approaches is sensitivity to outliers:

Motivations: sensitivity to outliers

• The effect on the separating hyperplane is more evident up close:

Motivations: some outliers are worse than others...

• Methods that treat all samples equally can quickly degrade:

Motivations: margin classifiers, some intuition

• Can we reformulate a classification objective in terms of only the margin?

Lecture objectives

After this lecture you will:

- Have gained a deeper understanding of the geometry of classification and how margin scaling is related to the linear discriminant parameter w.
- Understand the primal form of the Maximum Margin Classifier also known as the Support Vector Machine (SVM).
- Understand how the dual form of the Support Vector Machine is derived from the Lagrangian of the maximum margin formulation.
- Understand how slack variables can be introduced into the SVM formulation to account for datasets that are not linearly separable.
- Be able to interpret the dual variables and how they identify support vectors in the training set.

The Margin

Preliminaries: some linear algebra

Definition (Bilinear Map)

A function $\Omega: V \times V \to \mathbb{R}$ is a *bilinear map* from vector space V to \mathbb{R} iff:

$$\Omega(\lambda x + \psi y, z) = \lambda \Omega(x, z) + \psi \Omega(y, z)$$

$$\Omega(x, \lambda y + \psi z) = \lambda \Omega(x, y) + \psi \Omega(x, z)$$

for any $x, y, z \in V$.

- Ω is called symmetric if $\Omega(x,y) = \Omega(y,x)$ for all $x,y \in V$.
- Ω is called positive definite if:

$$\Omega(x,x) \ge 0$$
 for all x , and $\Omega(x,x) = 0$ iff $x = 0$

Preliminaries: some linear algebra

Definition (Inner Product and Inner Product Space)

Let V be any vector space and $\Omega: V \times V \to \mathbb{R}$ any bilinear map from V to \mathbb{R} . Then:

- If Ω is symmetric and positive definite, Ω is called an inner product on V. We usually write $\langle \mathbf{x}, \mathbf{y} \rangle$ instead of $\Omega(\mathbf{x}, \mathbf{y})$.
- The pair (V, Ω) (or $(V, \langle \cdot, \cdot \rangle)$) for inner product Ω is called an inner product space or vector space with inner product. If $\Omega(x, y) = x^T y$, (V, Ω) is called a Euclidean vector space.

Inner products allow us to formalize our geometrical intuitions about length, orthogonality, and distance.

Maximum Margin Classifiers

The (geometric) classification problem

- A useful way to think about classification is that we:
 - 1. Represent data in \mathbb{R}^D .
 - 2. Partition \mathbb{R}^D in such a way that samples with the same label (and no samples with different labels) fall into the same partition.
- We will consider a convenient partitioning that of separating \mathbb{R}^D into two halves using a *separating hyperplane*.
- Consider a function $f: \mathbb{R}^D \to \mathbb{R}$ defined as:

$$f(\mathbf{x}; \mathbf{w}, b) = \langle \mathbf{w}, \mathbf{x} \rangle + b.$$

• We define a hyperplane partitioning our space using *f* as:

$$H = \{ \mathbf{x} \mid f(\mathbf{x}; \mathbf{w}, b) = \langle \mathbf{w}, \mathbf{x} \rangle + b = 0 \}$$

The relationship between w and H

- The hyperplane defined by **w** and *b* is perpendicular to **w**.
- To see this, pick any x_1 and x_2 in H and consider:

$$f(\mathbf{x}_1) - f(\mathbf{x}_2) = \langle \mathbf{w}, \mathbf{x}_1 \rangle + b - \langle \mathbf{w}, \mathbf{x}_2 \rangle - b$$
$$= \langle \mathbf{w}, \mathbf{x}_1 - \mathbf{x}_2 \rangle$$

How we use w and b

• When we are presented with a test sample x, we will classify it according to which side of the hyperplane it lies:

class(x) =
$$\begin{cases} +1 & \text{if } f(x; w, b) \ge 0 \\ -1 & \text{if } f(x; w, b) < 0 \end{cases}$$

• When training on data $\{(\mathbf{x}_i, y_i) \mid i = 1, ..., N\}$, we are searching for \mathbf{w} and b such that all samples fall on the correct side of the hyperplane:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 0$$
 when $y_i = +1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b < 0$ when $y_i = -1$

• These conditions are often combined into the more compact:

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 0$$

The margin

- The margin is defined as the distance between a separating hyperplane and the closest point to it.
- Our goal is to maximize this distance, but what is it?

Maximizing the margin

• The perpendicular distance between any point \mathbf{x}_n and a hyperplane defined by $\langle \mathbf{w}, \mathbf{x} \rangle + b = 0$ is:

$$\frac{y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b)}{||\mathbf{w}||}$$

• We want to maximize the minimum such distance:

$$\arg \max_{\mathbf{w},b} \left\{ \frac{1}{||\mathbf{w}||} \min_{n} \left[y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b) \right] \right\}$$

subject to the constraints that $y_n(\langle \mathbf{w}, \mathbf{x} \rangle + b) \ge 0$.

 This is an inconvenient optimization problem due to the max/min and changing closest point.

Maximizing the margin

- Note, however, that we can freely scale w and b without changing the distance between points and the hyperplane.
- So, we can scale so that $\langle \mathbf{w}, \mathbf{x}_a \rangle + b = 1$ for the closest point \mathbf{x}_a .
- Let r be the orthogonal distance from \mathbf{x}_a to the hyperplane.
- Then, the orthogonal projection of \mathbf{x}_a onto the hyperplane is:

$$\mathbf{x}_a' = \mathbf{x}_a - r \frac{\mathbf{w}}{||\mathbf{w}||}$$

• Let's plug this into the fact that \mathbf{x}'_a lies on the hyperplane:

$$\langle \mathbf{w}, \mathbf{x}_a - r \frac{\mathbf{w}}{||\mathbf{w}||} \rangle + b = 0$$

Maximizing the margin

• Let's plug this into the fact that \mathbf{x}'_a lies on the hyperplane:

$$\langle \mathbf{w}, \mathbf{x}_a - r \frac{\mathbf{w}}{||\mathbf{w}||} \rangle + b = 0$$

• Now, exploiting bilinearity of the inner product:

$$\langle \mathbf{w}, \mathbf{x}_a \rangle + b - r \frac{\langle \mathbf{w}, \mathbf{w} \rangle}{||\mathbf{w}||} = 0$$

• Recalling that \mathbf{x}_a lies on the margin, we arrive at:

$$r = \frac{1}{||\mathbf{w}||}$$

The canonical form of the Hard Margin SVM

• Combining margin maximization with the constraints we have arrive at:

$$\max_{\mathbf{w},b} \frac{1}{||\mathbf{w}||}$$

subject to $y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b) \ge 1$ for all $n = 1, \dots, N$

• Or, the more common canonical representation of the Hard Margin SVM:

$$\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$$

subject to $y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b) \ge 1$ for all $n = 1, \dots, N$

Finding w and b

- We have a convex quadratic programming problem in D variables with linear constraints.
- To solve such a problem, we can form the Lagrangian function:

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} ||\mathbf{w}||^2 - \sum_{n=1}^{N} a_n \{ y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b) - 1 \}$$

• Setting $\frac{\partial}{\partial w}L = 0$ and $\frac{\partial}{\partial b}L = 0$ we obtain:

$$\mathbf{w} = \sum_{n=1}^{N} a_n y_n \mathbf{x}_n$$
$$0 = \sum_{n=1}^{N} a_n y_n$$

Finding w and b

• Substituting this value of **w** and the constraint on $\sum_n a_n y_n$ into the Lagrangian:

$$\max_{\mathbf{a}} \left\{ \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m y_n y_m \langle \mathbf{x}_n, \mathbf{x}_m \rangle \right\}$$
subject to
$$a_n \ge 0, \text{ for } n = 1, \dots, N$$

$$\sum_{n=1}^{N} a_n y_n = 0$$

- This is the dual representation of the Hard Margin SVM, again a quadratic programming problem, but in *N* variables
- The complexity of solving quadratic problems in N variables is $O(N^3)$.

Using the SVM: the "Support" in Support Vector Machines

• To use the classifier we again substitute our **w** into the decision function:

$$f(\mathbf{x}) = \sum_{n=1}^{N} a_n y_n \langle \mathbf{x}, \mathbf{x}_n \rangle + b$$

• The Karush-Kuhn-Tucker (KKT) conditions mean that the solution satisfies:

$$a_n \geq 0$$

$$y_n f(\mathbf{x}_n) - 1 \geq 0$$

$$a_n \{y_n f(\mathbf{x}_n) - 1\} = 0$$

- So, for all n either $a_n = 0$ or $y_n f(\mathbf{x_n}) = 1$.
- The \mathbf{x}_n for which $a_n > 0$ and $y_n f(\mathbf{x}_n) = 1$ are called support vectors.

Sparse Kernel Machines (aka SVMs)

• Note that only the support vectors contribute to classification:

$$f(\mathbf{x}) = \sum_{n=1}^{N} a_n y_n \langle \mathbf{x}, \mathbf{x}_n \rangle + b = \sum_{m \in SV} a_m y_m \langle \mathbf{x}, \mathbf{x}_m \rangle + b$$

- This is why SVMs are also more generally known as Sparse Kernel Machines.
- (We will see where the kernel comes from in the next lecture...)

SVMs and robust classification

• We have a linear classifier that is now robust to outliers:

The Soft Margin Classifier

Overlapping class distributions

- Until now we have assumed that our problem is linearly separable.
- This is, clearly, almost never the case.

Allowing for misclassifications of training samples

• To allow for the possibility of some training samples to be misclassified, we introduce slack variables ξ_n :

$$\xi_n = \begin{cases} 0 & \text{if } \mathbf{x}_n \text{ is on or on the correct side of margin} \\ |y_n - \langle \mathbf{w}, \mathbf{x}_n \rangle + b| & \text{otherwise} \end{cases}$$

The optimization problem with slack

• The new optimization problem becomes:

$$\min_{\mathbf{w},b} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^{N} \xi_n$$

subject to
$$y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b) \ge 1 - \xi_n \text{ for all } n = 1, \dots, N$$

• And after forming the Lagrangian and solving for the dual variables (Bishop pages 332-334):

$$\max_{\mathbf{a}} \left\{ \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m y_n y_m \langle \mathbf{x}_n, \mathbf{x}_m \rangle \right\}$$
subject to $0 \le a_n \le C$, for $n = 1, \dots, N$

$$\sum_{n=1}^{N} a_n y_n = 0$$

The Soft Margin solution

- The form of the result is nearly identical to the hard margin case.
- Note, however, that the support vectors now include misclassified samples.
- Since the penalty for misclassification scales linearly with ξ the soft margin SVM is not robust to outliers.

Concluding Remarks

The Support Vector Machine

- The linear SVM is a powerful classifier that is robust to outliers (in the hard margin case).
- It can be adapted to handle problems that are not linearly separable.
- But this comes at the cost of introducing a hyperparameter *C* that trades-off the cost of misclassification with maximizing the margin.
- The real advantage of the SVM is that it is a convex quadratic problem which has a unique solution and admits efficient algorithms.
- In the next lecture we will see how we can extend this theory to nonlinear decision boundaries.

Reading and Homework Assignments

Reading Assignment:

• Bishop: Chapter 7 (7.1), Chapter 6 (6.1, 6.2)

Homework:

- Show that $\Omega(x,y) = x^T y$ is an inner product.
- Show that, for $V = \mathbb{R}^2$, $\Omega(x, y) = x_1y_1 (x_1y_2 + x_2y_1) + 2x_2y_2$ is an inner product.
- Show that we can scale the margin be an arbitrary constant γ (i.e. $y_n(\langle \mathbf{w}, \mathbf{x_n} \rangle + b) \geq \gamma$) and the solution to the maximum margin hyperplane does not change.