Primitives et équations différentielles Synthèse page 312

Si F est une primitive de f sur I, toutes les primitives de f sur I sont de la forme $x \mapsto F(x) + C$, où C est une constante.

Toute fonction continue sur I admet des primitives sur I.

Primitive d'une fonction f sur I: fonction F telle que F'(x) = f(x) opour tout x de I.

Équations différentielles

Primitives

d'une fonction

- L'équation y' = f a pour solutions les fonctions $x \mapsto F(x) + C$, où F est une primitive de f et C une constante.
- L'équation y' = ay a pour solutions les fonctions $x \mapsto ke^{ax}$, où $k \in \mathbb{R}$.
- L'équation y'=ay+b ($a\neq 0$) a pour solutions les fonctions $x\mapsto k\mathrm{e}^{ax}+f_0(x)$, où $k\in\mathbb{R}$ et f_0 est la solution constante de cette équation.
- L'équation (E) y' = ay + f a pour solutions les fonctions $x \mapsto ke^{ax} + p(x)$, où $k \in \mathbb{R}$ et p est une solution particulière de (E).

Primitives des fonctions de référence

Fonction f	Primitive F
f(x) = a	F(x) = ax
$f(x)=x^n$ pour $n \in \mathbb{Z} \setminus \{-1; 0\}$	$F(x) = \frac{1}{n+1}x^{n+1}$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x}$
$f(x) = \frac{1}{x}$	$F(x) = \ln(x)$
$f(x) = e^x$	$F(x) = e^x$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$
$f(x) = \cos(x)$	$F(x) = \sin(x)$
$f(x) = \sin(x)$	$F(x) = -\cos(x)$

Primitives des fonctions composées

Fonction	Primitive
u'e ^u	eu
$u'u^n$ où $n \in \mathbb{Z} \setminus \{-1; 0\}$	$\frac{1}{n+1}u^{n+1}$
$\frac{u'}{u}$ (u>0)	ln(u)
$\frac{u'}{\sqrt{u}}$ (u>0)	2√ <i>u</i>
u'cos(u)	sin(u)
u'sin(u)	-cos(u)