Reduced VNS - Sampling, Algorithm and Shaking

Purpose:

Fast exploration without local search refinement.

Algorithm

- ▶ Initialize: best = initial solution, k = 1
- ▶ While $k < k_{max}$:
 - candidate = shake(best, k)
 - If cost(candidate) < cost(best):</p>
 - best = candidate
 - k=1
 - $\blacktriangleright \quad \mathsf{Else}, \ k = k+1$
- Return best

Shaking Function (Random *m*-exchange)

- Select m customers and randomly reinsert elsewhere.
- ► S' = Shake(S, m) = RandomInsert(Select(S, m)).
- Accept if C(S') < C(S).

Why Random *m*-exchange Works

- Cheap to compute and always feasible.
- Explores new areas of the solution space.
- Degree of shake controlled by parameter m.

Basic VNS - Neighborhood Expansion, Algorithm, and 2-opt Local Search

Purpose: Avoid local minima by structured neighborhood enlargement.

Algorithm

- ▶ Initialize: best = initial solution, k = 1
- ▶ While $k \le k_{\text{max}}$:
 - shaken = shake(best, k)
 - local_opt =
 local_search(shaken)
 - If cost(local_opt) <
 cost(best):</pre>
 - best = local_opt
 - k=1
 - $\blacktriangleright \quad \mathsf{Else}, \ k = k + 1$
- Return best

2-opt Local Search

- Applied intra-route to break and reconnect edges to eliminate crossings.
- For route $r = (v_0, \dots, v_i, v_{i+1}, \dots, v_j, v_{j+1}, \dots, v_n),$ reversal gives:

$$r' = (v_0, \ldots, v_i, v_j, \ldots, v_{i+1}, v_{j+1}, \ldots, v_n)$$

Cost improvement:

$$\Delta C = d(v_i, v_j) + d(v_{i+1}, v_{j+1}) - d(v_i, v_{i+1}) - d(v_i, v_{i+1})$$

- Accept move if $\Delta C < 0$.
- Lightweight and effective local optimizer.

Skewed VNS - Cost and Algorithm

Problem: Reduced VNS and Basic VNS may stagnate in local minima.

Skewed Cost Function:

$$C_{\mathsf{skew}}(S') = C(S') + \alpha \cdot d(S', S_{\mathsf{best}})$$

where:

- C(S') is the cost of candidate solution S'.
- d(S', S_{best}) measures the distance between S' and the best solution found.
- α controls the tradeoff between cost and diversity.

Algorithm:

- ▶ Initialize: best = initial solution, k = 1
- ▶ While $k \le k_{\text{max}}$:
 - shaken = shake(best, k)
 - local_opt =
 local_search(shaken)
 - skewed_cost =
 cost(local_opt) + α×
 solution_distance(local_opt,
 best)
 - If skewed_cost |
 cost(best), then
 - best = local_opt
 - k=1
 - ightharpoonup Else, k = k + 1
- Return best

Skewed VNS Effectiveness and Solution Distance Function

Why Skewed VNS is Effective:

- Penalizes solutions too similar to current best.
- Promotes exploration of distant basins of attraction.

Why symmetric difference?

- Captures node assignment and position mismatch.
- Reflects structural route changes.
- Efficient to compute vs edit distance or embeddings.

Solution Distance Function:

$$d(S_1,S_2) = \left| \bigcup_{r \in S_1} \operatorname{PosPairs}(r) \bigtriangleup \ \bigcup_{r' \in S_2} \operatorname{PosPairs}(r') \right|$$

where

 $PosPairs(r) = \{(i, node) \mid node \text{ at position } i \text{ in route } r\}.$

Solution Distance Function - Python Pseudocode:

- Define pos_pairs(routes) as the set of (position, node) pairs for all routes.
- Compute symmetric difference:

 $d = |\mathsf{pos_pairs}(\mathit{routes}_1) \ \triangle \ \mathsf{pos_pairs}(\mathit{routes}_2)|$

VNS Comparative Summary and Insights

Comparative Analysis of VNS Variants

Feature	RVNS	BVNS	SVNS
Shake	Random <i>m</i> -exchange	Random <i>m</i> -exchange	Random <i>m</i> -exchange
Local Search	No	2-opt	2-opt
Neighborhood Control	Simple	Systematic	Systematic + Penalized
Exploration	Shake	Shake + Local	Shake + Local + Diversity
Acceptance Criterion	C(S') < C(S)	C(S') < C(S)	$C_{\sf skew} < C_{\sf best}$
Distance Function	No	No	Yes
Computational Cost	Low	Medium	Med-High
Effectiveness	Fast	Better	Best

Takeaways & Usage

- RVNS: Lightweight, stochastic.
 Use for real-time or quick heuristics.
- BVNS: Adds local improvement via 2-opt. Use for standard optimization routines.
- SVNS: Promotes exploration through diversity. Use for complex search spaces.

Future Directions

- Adaptive α tuning based on performance.
- Learnable and dynamic solution representations.
- Hybridization with deep reinforcement learning agents.
- Online adjustment of neighborhood structures.