$C240424_2$

YOUSEF IBRAHIM GOMAA MAHMOUD MABROUK

2024-12-07

Exercise 2-1

- 1. a. Y (Response/Dependent): Attitude Toward Gun Control X (Explanatory/Independent): Gender, Mother's Education
 - b. Y (Response/Dependent): Heart DiseaseX (Explanatory/Independent): Blood Pressure, Cholesterol
 - c. Y (Response/Dependent): Vote for President X (Explanatory/Independent): Race, Religion, Annual Income
- 2. a. Nominal
 - b. Ordinal
 - c. Ordinal
 - d. Nominal
 - e. Nominal
 - f. Ordinal

Exercise 2-2

a. :
$$n=100, \ \pi=\frac{1}{4}, \ y=correct\ answer.$$
 : $Y\sim \text{binomial}(n=100, \ \pi=0.25)$ Probability Mass Function = $P(Y=y)=\frac{100!}{y!(100-y)!}(0.25)^y(1-0.25)^{100-y}$ b. Mean = $E(Y)=100*0.25=25$ Standard Deviation = $\sigma(Y)=\sqrt{100*0.25*(1-0.25)}=4.330127$

It is improbable for a student to randomly get at least 50 correct answers, as this outcome lies beyond the typical range of the binomial distribution centered around the mean of 25 with a standard deviation of 4.33, as shown in the graph below.(In the next page)

Binomial Probability Distribution

```
plot(x = 0:100, y = dbinom(0:100, 100, .25),
    main = "Binomial Probability Distribution", type = "h",
    xlab = "y", ylab = "P(y)", las = 1, xaxt = "n")

axis(side = 1, at = 0:100)
```

Binomial Probability Distribution

Exercise 2-3

a. $: n = 2, \ \pi = 0.5, \ y = support \ increase.$ $: Y \sim \text{binomial}(n = 2, \ \pi = 0.5)$ Probability Mass Function $= P(Y = y) = \frac{2!}{y!(2-y)!}(0.5)^y(1-0.5)^{2-y}$ Mean = E(Y) = 2*0.5 = 1Standard Deviation $= \sigma(Y) = \sqrt{2*0.5*(1-0.5)} = 0.7071068$

b.
$$P(y=1) = l(\pi|y) = \frac{2!}{1!(2-1)!}(\pi)^1(1-\pi)^{2-1} = 2(\pi)(1-\pi)$$
ML Estimate $= \hat{\pi} = \frac{y}{n} = \frac{1}{2} = 0.5$

That is because $\frac{d}{d\pi}log\ l(\pi|y) = 0$ yields $\pi = \frac{y}{n}$, which is the only candidate for Maximum Likelihood Estimation. In addition, its second derivative yields values less than 0 for $\pi \in [0,1]$.

The likelihood function sketched:

Likelihood Function

The English lecture 2 video has stopped until this point for the assignment report.