IEEE 802.11n WIFI 4

Pablo Brenner
BreezeCom Wireless Communications 1

Date 31 Mar 2025 Wonseok

Table of Contents

- Basic Operations
- PHY Layer

Basic Operations

Scanning, Joining

Authentication, Association

Power Saving

Timer Synchronization

Scanning

• Wired: easy; look for the cable or a jack on the wall

• Wireless: stations must identify a compatible network before joining it

Parameters

Scan Type

- active:
- passive: moves to each channel on the channel list and waits for Beacon frames

Scanning

Passive

- any Beacons received are buffered
- extract information about the BSS
- saves battery power for not transmitting

Active

- 1. Moves to a channel and wait for an incoming frame
- 2. sends a Probe Request frame and listens for response
- 3. Wait for the minimum channel time,
 - if the channel is never busy, move to the next channel
 - if the channel is busy, wait for response frame

Scanning

Joining

- choose which BSS to join before begin authentication
- synchronize local timer based on beacon frame
- examine MAC, PHY parameters (not adopt yet)
 - BSSID
 - Frequency Hopping pattern
 - DTIM period
 - data rates
 - Beacon interval
 - ...

Joining

Authentication

- a station establish its identity before sending frames
- functionally a handshake, not a real identity check

Algorithms

- Open-system (merely a handshake, 2 frames)
 - STA requests to join with its MAC address
 - AP returns response ("OK")
- WEP (shared key, 4 frames)
 - STA requests to join -> AP gives challenge text to STA
 - STA encrypts the challenge text -> AP decrypts it

Association Association

- a three-step exchange after authentication
 - Association Request -> Association Response -> Traffic
- AP issues AID(Association ID) to logically identify the STA
 - buffer frames and notify in power saving mode

Reassociation

- association to a new AP in ESS without authentication
- new AP verifies STA's status on the old AP
- buffered frames on the old AP may be transferred
- agree on parameters, capability
 - data rates, listen interval, security, ...

Power Saving

powering down the transceiver => PS mode/sleeping

Infrastructure Networks (AP)

- AP agrees on STA's beacon interval, and STA on DTIM period
- stations must wake up at every DTIM to check buffered frames
 - DTIM (Delivery Traffic Indication Map)
- buffered frames may be discarded if STA fails to check until listen interval

Power Saving

- Independent Networks (Ad Hoc)
 - All stations should listen for ATIM at fixed intervals (ATIM window)
 - ATIM (Announcement Traffic Indication Map)
 - during ATIM window, only Beacons, RTS, CTS and ACK are allowed
 - may transmit data after ATIM window is concluded

Timer Synchronization

- Infrastructure Networks (AP)
 - All stations have identical Timer Synchronization Function (TSF)
 - 1 Mhz clock and ticks in microseconds
 - All stations associated with AP simply adopt AP's TSF
 - maintains local TSF timer in case of occasional loss of beacons
 - Propagation/Processing delay is negligible
 - TSF granularity is in microseconds, so the delay is well within margin

Timer Synchronization

Independent Networks (Ad Hoc)

- All stations prepare to transmit a Beacon frame at a target time
 - At TBTT(Target Beacon Transmission Time) all stations start begin backoff timer
- The sender remains awake and reply to Probe Request
- synchronize the timer to the fastest running clock
 - do not update if TSF value of beacon is smaller than local TSF

Physical Layer

Architecture

FHSS

DSSS

OFDM

Architecture

- Physical Layer Convergence Procedure (PLCP)
 - adds PHY header to MAC frame

- Physical Medium Dependent (PMD)
 - transmits frames received from the PLCP
 - manages antena and carrier sensing

OSI Layer 2: Data Link	MAC	
OSI Layer 1: Physical	PLCP	
	PMD	

- Clear Channel Assessment function (CCA)
 - Energy Detection (is any signal present?)
 - Preamble Detection (is there a valid 802.11 frame?)

Architecture

Frequency Band (ISM Band)

- 2.4 GHz: 14 channels and 3 non-overlappings
- 5.0 GHz: up to 24 channels and 24 non-overlappings
 - 20/40/80/160 MHz channel width

Spread Spectrum

- spreads signal power over wide frequencies
- communicating stations should agree on spreading techniques
 - frequency hopping for hopping pattern
 - direct sequence for encoding/decoding function

Technique

- divides ISM band into a series of 1 MHz channels
 - at n bit per cycle, n Mbps is the maximum speed
- transmits based on hopping pattern
 - uses pre-defined orthogonal hop sequence set
 - agreed upon joining by examining beacon frame
- supports 1Mbps and 2Mbps (GFSK)

Gaussian Frequency Shift Keying (GFSK)

- assigns 1/0 bit on different center frequency
- 2 levels (2GFSK) / 4 levels (4GFSK) encoding

FH PLCP Layer

- preamble: a fixed pattern to serve
 - sync the signal indicating a frame is imminent
 - measure the frequency relative to its nominal value (+ correction)
- header: FHSS specific parameters
 - PSDU Length: the size of payload
 - PSF: data rates at which the PSDU(Mac Frame) is encoded
 - 000 for 1.0 Mbps, 010 for 2.0 Mbps

FH PMD Layer

Technique

- applies a chipping sequence to spread narrowband
 - the original signal is recovered with correlator
 - uses barker sequence(11 chips) to encode data
- tolerant to noise since the long spreading code
- supports 1Mbps and 2Mbps
 - 5.5Mbps and 11Mbps at 802.11b (1999)

Differential Phase Shift Keying (DPSK)

- bit representation by shifting the phase
- cannot be used in severe multipath interference

DSSS PLCP Layer

• preamble: same functionality as FHSS's, but scrambled

header: DSSS specific parameters

Signal: data rate of DPSK (1Mbps / 2Mbps)

Service: reserved for future use (all 0s)

DSSS

DSSS PMD Layer

- Orthogonal Frequency Division Multiplexing (OFDM)
- multiplexing technique for parallel transmission
 - slow subchannels are combined into large fast channel
- uses Inverse Fast Fourier Transform(IFFT) to create a composite waveform

OFDM

OFDM PLCP Layer

- preamble: composed of 12 OFDM symbols
 - 10 symbols: timing synchronization to lock on to the signal
 - 2 symbols: fine-tune the timing

header:

- rate: 4bits, 6Mbps to 54Mbps
- length: 12bits, the size of MAC frame
- tail: 6 zero bits, unwind the convolutional code

OFDM PMD Layer

Speed (Mbps)	Modulation and coding rate (R)	Coded bits per carrier ^[a]	Coded bits per symbol	Data bits per symbol ^[b]
6	BPSK, R=1/2	1	48	24
9	BPSK, R=3/4	1	48	36
12	QPSK, R=1/2	2	96	48
18	QPSK, R=3/4	2	96	72
24	16-QAM, R=1/2	4	192	96
36	16-QAM, R=3/4	4	192	144
48	64-QAM, R=2/3	6	288	192
54	64-QAM, R=3/4	6	288	216
72 ^[c]	64-QAM	6	288	288

