

CriptoTema2.pdf

onafolch

Criptografia i Seguretat

3º Grado en Ingeniería de Datos

Escuela de Ingeniería Universidad Autónoma de Barcelona

Entra en la red donde pescan las mejores empresas

Descubre la app donde las empresas top buscan talentos del mañana. Escanea y empieza tu vida profesional hoy

Escanea el QR y entra a nuestra red social para comenzar tu futuro profesional

SAMSUNG

Samsung Estudiantes

CRIPTOGRAFIA

FONAMENTS MATEMÀTICS DE LA CRIPTOGRAFIA

1. MATEMÀTICA DISCRETA

La congruència és la base en la que se sustenten les operacions de xifra en matemàtica discreta.

Si tenim dos nombres enters a i b, es diu que a és congruent amb b en el cos n (Zn) si i només si existeix algun enter que divideix de forma exacta la diferència (a-b).

 $a \equiv_n b$ $a \equiv b \mod n$

Exemple: Si estem treballant en Z5, els valors congruents amb l'1 serien el 6, 11, 16, 21,...

Propietats:

- **Reflexiva**: $a \equiv a \mod n$ $\forall a \in Z$
- **Simètrica**: $a \equiv b \mod n \rightarrow b \equiv a \mod n$ $\forall a, b \in Z$
- **Transitiva**: $si \ a \equiv b \ mod \ n \ i \ b \equiv c \ mod \ n \rightarrow a \equiv c \ mod \ n$ $\forall a, b, c \in Z$
- **Associativa**: $a + (b + c) \mod n \equiv (a + b) + c \mod n$
- **Commutativa**: $a + b \mod n \equiv b + a \mod n$ $i \quad a * b \mod n \equiv b * a \mod n$
- **Distributiva**: $a * (b + c) \mod n \equiv ((a * b) + (a * c)) \mod n$
- **Identitat:** $a+0 \bmod n=0+a \bmod n=a \bmod n=a$ i $a*1 \bmod n=1*a \bmod n=a \bmod n=a$
- **Inversos:** $a + (-a) \mod n = 0$ $i \quad a * (a^{-1}) \mod n = 1 (si \ a \neq 0)$
- **Reductibilitat:** $(a + b) \mod n = [(a \mod n) + (b \mod n)] \mod n$ *i* $(a*b) \bmod n = [(a \bmod n)*(b \bmod n)] \bmod n$

CCR (Conjunt complet de restos)

Per qualsevol enter positiu n, el CRR serà CRR = {0,1,2,...,n-1}.

Exemple: CRR $(11) = \{0,1,2,3,4,5,6,7,8,9,10\}$

Homorfisme dels enters

Ens permet treballar amb números molt grans, ja que $(a \ op \ b) \ mod \ n = [(a \ mod \ n) \ op \ (b \ mod \ n)] \ mod \ n$.

Exemple: fer 8.184 mod 13. Sabem que 8.184 és 88*93, aleshores:

 $[(88 \mod 13) * (93 \mod 13)] \mod 13 = (10 * 2) \mod 13 = 20 \mod 13 = 7$

2. ALGORITME D'EUCLIDES

Divisibilitat dels números: moltes vegades ens interessa trobar el màxim comú denominador mcd entre dos número a i b. Per l'existència d'inversos en un cos n, la base a i el mòdul n han de ser primers entre si, és a dir, mcd(a, n) = 1. Per saber-ho, ho podem fer amb l'**algoritme d'Euclides**:

Sabem que mcd(a, b) = mcd(b, r) on $a > b > r \ge 0$.

Exemple: Volem trobar el mcd entre 148 i 40. Anirem repetint l'expressió a = (b*k) + r.

148 = (3 * 40) + 28

Utilitzant la funció de l'algoritme d'Euclides, sabem que mcd(148,40) = mcd(40,28) = mcd(28,12) = mcd(12,4) = mcd(4,0).

40 = (1 * 28) + 1228 = (2 * 12) + 4

Un cop hem acabat, hem obtingut que mcd(148,40) = 4. En aquest cas no existeix inversa de 148 en el cos 40, ja que el mcd no és 1.

12 = (3 * 4) + 0

Ona Folch

3. INVERSOS EN Zn

Si a*x = 1, es diu que x és l'invers multiplicatiu d'a en Zn, i serà a^{-1} . No sempre existeix inversos d'un element en Zn. Exemple: si n = 6, no existeix l'invers de 2, ja que no hi ha cap valor x que 2*x = 1 mod 6.

Si n és un nombre primer, tots els elements de Zp menys el 0 tenen inversa. Exemple: si n = 5, l'invers d'1 és 1, l'invers de 2 és 3, l'invers de 3 és 2 i l'invers de 4 és 4.

- Existència del invers per primalitat: Si mcd(a,n) = 1, el resultat de a*i mod n (on i són els restos de n) seran valors diferents dintre del cos n.
- Inexistència de l'invers (no primalitat): Si mcd(a,n) no és 1, no existeix invers.

En la suma sempre existirà l'invers per qualsevol número en qualsevol cos, i el seu valor serà únic. En la multiplicació, si el número i el mòdul són primers entre sí, sempre en tindrà. Exemple: si n = 4, el valor 2 no tindrà invers multiplicatiu, mentre que el 3 sí.

CRR (Conjunt reduit de restos)

És el subconjunt de restos primers amb el cos n. Si n és primer, tots els restos seran primers amb ell. El zero no és una solució. Exemple: $CRR(8) = \{1,3,5,7\}$

4. FUNCIÓ D'EULER

La funció d'Euler $\phi(n)$ ens dirà el nombre d'elements del CRR.

• Si n és un nombre primer $\phi(n) = n - 1$

El resultat serà CCD menys el 0. Exemple: CRR(7) = {1,2,3,4,5,6}, per tant $\phi(7) = 6$

• Si n es representa com $n=p^k$, on p és primer i k un enter $\phi(n)=p^{k-1}(p-1)$

Exemple: CRR(16) = {1,3,5,7,9,11,13,15}, per tant $\phi(16) = 8$

• Si n és n = p * q, on p i q són primers $\phi(n) = (p-1)(q-1)$

Exemple: CRR(15) = $\{1,2,4,7,8,11,13,14\}$, per tant $\phi(15) = 8$

• Si n és un nombre qualsevol (forma genèrica) $\phi(n) = \prod_{i=1}^t p_i^{ei-1}(p_i-1)$

Exemple: CRR(20) = $\{1,3,7,9,11,13,17,19\}$, per tant $\phi(20) = 8$

$$\phi(20) = \phi(2^2 * 5) = 2^{2-1}(2-1) * 5^{1-1}(5-1) = 2 * 1 * 1 * 4 = 8$$

Teorema d'Euler

Ens permet calcular l'invers d'un nombre. Si mcd(a,n) = 1, sabem que $a^{\phi(n)}mod \ n = 1$. Si igualem les dues funcions, tenim que $x = a^{\phi(n)-1}mod \ n$, on x és l'invers d'a en el cos n.

Exemple: Invers de 4 en el cos 9, és a dir, inv(4,9). Com que mcd(4,9) = 1, sabem que té invers. Calculem $\phi(9)$ i ens dona 6. Si utilitzem la formula del teorema d'Euler, tenim que $x = 4^{6-1} mod 9 = 7$. Amb això diem que l'invers de 4 en el cos 9 és 7. inv(4,9) = 7 i inv(7,9) = 4.

Ona Folch

Algoritme estès d'Euclides

Si no coneixem el $\phi(n)$ o no volem utilitzar el teorema d'Euler, sempre podem trobar l'invers amb aquest algoritme, ja que és el mètode més ràpid i pràctic.

Exemple: Si volem trobar inv(9,25), fem el següent:

Amb aquests càlculs, tenim que inv(9,25) = $-11 \rightarrow -11 + 25 = 14$. Per tant, inv(9,25) = 14.

5. EXPONENCIACIÓ RÀPIDA

Ens serveix per quan tenim càlculs molt costosos. Es té $A^B \mod n$, on es representa l'exponent B en binari. Es calculen els productes A^{2^j} amb j=0 fins n-1, sent n el nombre de bits que representen el valor binari de B. Només es tenen en compte els productes en els que la posició j del valor B apareix un 1.

Exemple: Volem calcular $x = 12^{37} \mod 221 = 207$. 12^{37} és un número de 40 dígits. Primer de tot passem el 37 a binari:

 $B = 37_{10} = 100101_2$, i ens quedem només amb les j on tenim un 1.

Ara aplicarem l'operació A^{2^j} mod 221 per les j = 5,2,0, on A és 12.

$$12^{2^0} mod\ 221 = 12$$

$$12^{2^2} mod\ 221 = 183$$

$$12^{2^5} mod\ 221 = 1$$

I per obtenir el valor de x, multipliquem els valors resultants i fem mòdul 221.

$$x = 12 * 183 * 1 mod 221 = 207$$

6. NOMBRES PRIMERS

Pel teorema dels nombres primers, es té que la probabilitat de trobar nombres primers a mesura que aquests es van fent més grans és menor.

Test de primalitat de Fermat

Sigui p un nombre primer, aleshores $a^{p-1}mod p = 1$ per qualsevol valor tal que $1 \le a < p$. Probabilitat de que el número sigui primer amb aquest teorema: $1 - 0.5^k$, on k és el nombre de valors aleatoris que agafes.

Test de primalitat de Miller-Rabin

És un test que combina la condició del teorema petit de Fermat amb la particularitat dels residus quadràtics en aritmètica popular.

Ona Folch

