

M.Tech DSE
Machine Learning
(DSECL ZG565)

Dr. Monali Mavani

Part - I Agenda

Bayesian learning

- Bayes Theorem (T1 book by Tom Mitchell 6.2)
- MAP Hypothesis (T1 book by Tom Mitchell 6.3)
- MLE Hypothesis (T1 book by Tom Mitchell 6.4)

Probability Distributions

- The outcomes for random variables and their associated probabilities can be organized in to distributions
- Two types of distributions based on types of Random variables: Discrete and Continuous
- Discrete:
 - Binomial, Poisson, Geometric distributions
- Continuous
 - Gaussian, exponential, t, F, chi-squared distributions

Describing distributions

- One way is to construct a graph and analyze the graph to make inferences
 - Discrete: Prob Mass Function (pmf), Cumulative density function
 - Continuous: prob density function (pdf), Cumulative density function
- Mean, variance and standard deviations to represent the entire distribution

JOINT Distributions

- Probability distribution of two random variables $X \{x_1, x_2, ..., x_n\}$ and $Y\{y_1, y_2, ..., y_k\}$
 - Occurrence of X=xi and Y=yi together
- Example:

-
$$P(X=1)$$

= $\sum_{y=0}^{2} P(X=1,Y)$
= $1/6 + 1/6 + 1/8$

	Υ						
		0	1	2			
Χ	0	1/4	1/6	1/8			
	1	1/6	1/6	1/8			

Estimate Probabilities from Data

For continuous attributes:

- Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (X_i,Y_i) pair
- For (Income, Class=No):
 - If Class=No
 - ◆ sample mean = 110
 - ◆ sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-\frac{(120-110)^2}{2(2975)}}{2(2975)}} = 0.0072$$

Parameters and Parametric Models

Distribution	Parameters	
Bernoulli(p)	$\theta = p$	
$Poisson(\lambda)$	$\theta = \lambda$	
Uniform(a,b)	$\theta = (a,b)$	
Normal(μ, σ^2)	$\theta = (\mu, \sigma^2)$	
Y = mX + b	$\theta = (m, b)$	

Usually refer to parameters of distribution as θ

Note that θ that can be a vector of parameters

Likelihood

- Consider IID random samples X₁,X₂,, X_n where X_i is a sample from the density function f (X_i| θ).
- we define the likelihood of our data given parameters θ :

$$L(\theta) = \prod_{i=1}^{n} f(X_i | \theta)$$

 Intuitively: what is probability of observed data using density function f(Xi | θ), for some choice of θ. The density of X depends on its parameters, θ

If X is discrete,

If X is continuous,

$$L(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} p_X(x_i \mid \theta)$$

$$L(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta)$$

Maximum Likelihood Estimation (MLE)

 MLE: to chose values of our parameters (θ) that maximizes the likelihood function i.e the best choice of values for our parameters. Formally,

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} L(\theta)$$

Log Likelihood

$$LL(\theta) = \log L(\theta)$$

- If the sample is large, MLE will yield an excellent estimator of θ.
- MLE answers the question: For which parameter value does the observed data have the biggest probability?

Bernoulli MLE Estimation

Consider IID random variables $X_1, X_2, ..., X_n$ where $X_i \sim \text{Ber(p)}$. PMF of a Bernoulli $p^{X_i}(1-p)^{1-X_i}$

Remember: Some terminology

 Likelihood function: $P(data \mid \theta)$

• Prior: $P(\theta)$

Posterior: P(θ | data)

innovate

Bayes Theorem

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) = probability of D given h

MAP Hypothesis

- **Machine learning** is interested in the best hypothesis *h* from some space H, given observed training data D
- best hypothesis \approx most probable hypothesis
- Bayes Theorem provides a direct method of calculating the probability of such a hypothesis based on its prior probability, the probabilities of observing various data given the hypothesis, and the observed data itself

MAP Hypothesis

- in many learning scenarios, the learner considers some set of candidate hypotheses H and is interested in finding the most probable hypothesis h ∈ H given the observing training data D
- any maximally probable hypothesis is called maximum a posteriori (MAP) hypotheses

$$h_{MAP} = \underset{h \in H}{argmax} P(h|D)$$

$$= \underset{h \in H}{argmax} \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{argmax} P(D|h)P(h)$$

• Note that P(D) can be dropped, because it is constant independent of h

ML Hypothesis

- When no prior information is available, all hypothesis are equally likely i.e. p(hi) = p(hj)
 - This is also true for a balanced class problem where all the classes are equally likely
 - This is known as Uniform prior
 - MAP hypothesis further simplifies to:

$$H_{ML} = argmax_{h \in H} P(D|h)$$

This is called Maximum Likelihood Hypothesis

$$h_{ML} = \arg\max_{h_i \in H} P(D|h_i)$$

Note that in this case P(h) can be dropped, because it is equal for every $h \in H$

Brute Force MAP Hypothesis

For each hypothesis h in H, calculate the posterior probability

$$P(h \mid D) = \frac{P(D \mid h)P(h)}{P(D)}$$

Output the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \operatorname*{argmax}_{h \in H} P(h|D)$$

ML setting

Bayesian Analysis

- start with some belief about the system, called a prior.
- Then we obtain some data and use it to update our belief.
- The outcome is called a posterior.
- Should we obtain even more data, the old posterior becomes a new prior and the cycle repeats.
- People often use likelihood for evaluation of models: a model that gives higher likelihood to real data is better

ML Setting

- P(h | D) a posterior determines the class label
- It's a probability distribution over model parameters obtained from prior beliefs and data.
- When one uses likelihood to get point estimates of model parameters, it's called Maximum Likelihood estimation or MLE.
- If one also takes the prior into account, then it's maximum a posteriori estimation (MAP).
- MLE and MAP are the same if the prior is uniform
- This forms the basis for Naïve Bayes classifier

Example MLE

Example 1: Suppose that X is a discrete random variable with the following probability mass function: where $0 \le \theta \le 1$ is a parameter. The following 10 independent observations

X	0	1	2	3
P(X)	$2\theta/3$	$\theta/3$	$2(1-\theta)/3$	$(1-\theta)/3$

were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). What is the maximum likelihood estimate of θ .

Example MAP

Example on MAP algorithm:

Let X be continuous random variable with probability density function P(X) given by:

$$f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & otherwise \end{cases}$$

Given another distribution $p(Y|X=x)=x(1-x)^{y-1}$ Find MAP estimate of X given Y=3

Least-Squared Error

- If *y* is continuous:
 - Sum-of-Squared-Differences (SSD) error between predicted and true y:

$$\mathbf{E} = \sum_{i=1}^{n} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

Bayesian justification to Least-Squared Error

nnovate achieve lead

• Problem: learning continuous-valued target functions

• Minimizing the sum of squared errors

- E.g linear regression, NN, Polynomial curve fitting
- under certain assumptions any learning algorithm that minimizes the squared error between the output hypothesis and the training data, will output a ML hypothesis

achieve

Learning A Real Valued Function

- Problem setting:
 - \checkmark ($\forall h \in H$) [$h: X \to \Re$] and training examples of the form $< x_i, d_i >$
 - ✓unknown target function $f: X \to \Re$
 - \checkmark Training examples $\langle x_i, d_i \rangle$, where d_i is noisy training value
 - $\checkmark d_i = f(x_i) + e_i$
 - \checkmark e_i is random variable (noise) drawn independently for each x_i according to some Gaussian distribution with mean=0

Learning A Real Valued Function: CASE of Linear Regression loss

Then the maximum likelihood hypothesis h_{ML} is the one that minimizes the sum of squared errors:

$$h_{ML} = \arg\min_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

leac

CASE of Linear Regression loss

$$h_{ML} = \underset{h \in H}{argmax} \ p(D|h)$$

- The training examples are assumed to be mutually independent given h $h_{ML} = \underset{h \in H}{argmax} \prod_{i=1}^m p(d_i|h)$
- Given the noise e_i obeys a Normal distribution with zero mean and unknown variance σ , each d_i must also obey a Normal distribution around the true target value $f(x_i)$
- Because we are writing the expression for d_i given that h is correct description of target function f. We will also substitute, $\mu = f(x_i) = h(x_i)$. Hence:

$$h_{ML} = \underset{h \in H}{\operatorname{argmax}} \ \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(d_i - h(x_i))^2}$$

Maximum Likelihood and Least-Squared Error

• It is common to maximize the less complicated logarithm, which is justified because of the monotonicity of this function

$$h_{ML} = \mathop{argmax}_{h \in H} \sum_{i=1}^m \ln rac{1}{\sqrt{2\pi\sigma^2}} - rac{1}{2\sigma^2} (d_i - h(x_i))^2$$

• The first term in this expression is a constant independent of h and can therefore be discarded m

$$h_{ML} = \mathop{argmax}_{h \in H} \sum_{i=1}^{m} -\frac{1}{2\sigma^2} (d_i - h(x_i))^2$$

 Maximizing this negative term is equivalent to minimizing the corresponding positive term

$$h_{ML} = \mathop{argmin}\limits_{h \in H} \ \sum_{i=1}^m rac{1}{2\sigma^2} (d_i - h(x_i))^2$$

Maximum Likelihood and Least-Squared Error

• Finally, all constants independent of h can be discarded

$$h_{ML} = \underset{h \in H}{argmin} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

• h_{ML} is one that minimizes the sum of the squared error

Characterizing Learning Algorithms by Equivalent MAP Learners

Equivalent Bayesian inference system

Some Additional References

https://web.stanford.edu/class/archive/cs/cs109/cs109.11 66//handouts/overview.html

https://www.cs.cmu.edu/~ninamf/courses/601sp15/lectures.shtml

Practice Problem

Example – use Bayes Rule

- Consider a medical diagnosis problem in which there are two alternative hypothesis
 - ✓ The patient has particular form of cancer
 - ✓ The patient does not
- The available data is from particular laboratory with two possible outcomes:
 - \bigoplus (positive) and \bigoplus (negative)

$$P(cancer) = .008$$
 $P(\neg cancer) = 0.992$ $P(\oplus | cancer) = .98$ $P(\ominus | cancer) = .02$ $P(\oplus | \neg cancer) = .03$ $P(\ominus | \neg cancer) = .97$

- Suppose a new patient is observed for whom the lab returns a positive (\bigoplus) result
- Should we diagnosis the patient as having a cancer or not?