Introduction to Data Structures

Kurt Schmid

Intro

Vectors
Resizing, 0

Lists

Searching 8

Binary Search

Dictionary BST

Introduction to Data Structures

Kurt Schmidt

Dept. of Computer Science, Drexel University

May 3, 2017

Introduction to Data Structures

Intro

Intro

Algorithms and Data Structures

Introduction to Data Structures

ırt Schmid

Intro

Vectors Resizing, (

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary BST Hash Table

Objectives:

- Review the fundamental algorithms and data structures that are commonly used in programs
- To see how to use and implement these algorithms and data structures in different languages and to see what language and library support exists for them

Topics

Introduction to Data Structures

Kurt Schmi

Intro

Vectors
Resizing, C

List

Searching & Sorting

Binary Search Quick Sort

Dictionary BST Hash Table Arrays and Vectors

- Lists
- Linear/Binary Search
- Quicksort
- Dictionaries

Introduction to Data Structures

Kurt Schmidt

Intro

Vectors

Resizing, C

Lists

Searching 8

Binary Search

Binary Search
Quick Sort

Dictionary

BST

Vectors

Vectors (Arrays)

Introduction to Data Structures

Kurt Schmid

. . .

Vectors Resizing, 0

List

Searching & Sorting
Binary Search
Ouick Sort

Dictionary

BST
Hach Table

Sequence of items

- Indexable
 - Same time to access any element
- (Conceptually) contiguous chunks of memory
- In CS, array and vector are interchangeable enough

0	1	2	თ	4	5	6
α	β	γ	δ	m	ζ	ր

Time, Operations on Vectors

Introduction to Data Structures

urt Schmid

Intro

Vectors

Resizing (

Lists

Sorting
Binary Search

Quick Sort

Dictionary

BST

Hash Table

■ Access: constant time $(\Theta(1))$

- Searching:
 - Sorted array $-\Theta(\log n)$
 - Unsorted $\Theta(n)$
- Inserting, removing items:
 - Unordered $-\Theta(1)$
 - Add to end
 - Replace deleted item w/last guy
 - Ordered $-\Theta(n)$
 - Need to make (or fill in) a hole
 - Move n/2 items, on average, to maintain relative order

Resizing Arrays

Introduction to Data Structures

urt Schmid

Intro

Vectors Resizing, C

List

Searching & Sorting
Binary Search
Outlok Sort

Dictionary BST Hash Table

- Many languages have arrays which manage themselves
 - Awk, Python¹, Perl¹, etc.
- Other languages have smart arrays in their library:

C++ vector in the STL

Java ArrayList

- This doesn't mean the operations are free
 - What goes on underneath the hood may be important
- We shall create our own machinery in C

Some C Memory Management Functions

```
Introduction to
           void* malloc(int n) allocates n contiguous bytes from
  Data
Structures
                        heap, returns address of first byte (NULL upon
                        failure)
           void free(void *p) returns to the heap memory
                        addressed by p. Does nothing to p itself
Resizina, C
           void* memmove(void* d, void* s, size t n) moves n
                        bytes from s to (possibly overlapping) region
                        starting at d
           void* memcpy(void* d, void* s, size_t n) copies n
                        bytes from s to (non-overlapping) region
                        starting at d
           int sizeof() actually an operator, returns size, in bytes, of
                        given object or type
           void* realloc(void* src, int n) attempts to resize
                        array in place, or a bigger section elsewhere,
                        copies contents for you. Returns pointer to
```

Growing Arrays in C

Introduction to Data Structures

ırt Schmidt

Intro

Vectors Resizing, C

Lists

Sorting
Binary Search

Dictionary

enum { INIT SIZE=1, GROW FACTOR=2 } ; int curr size = INIT SIZE : int nr elems = 0; /* # of useful elements */ int *a = (int*)malloc(INIT SIZE * sizeof(int)) ; ... /* some stuff here */ /* attempt to insert 24 */ if(nr_elems >= curr_size) { /* need to grow */ int *t = realloc(a, curr size*GROW FACTOR*sizeof(int)) if(t != NULL) { /* success! */ curr size *= GROW FACTOR : a = t; a[nr elems++] = 24; else /* FATI.URE! */

Introduction to Data Structures

Lists

Lists

Lists

Introduction to Data Structures

Ruft Schillio

....

Vectors Resizing, C

Lists

Searching & Sorting

Binary Search Quick Sort

Dictionary

BST

A sequence of elements

- Not indexable (immediately)
 - To access 5th element, must visit the preceding 4
- Space is allocated for each new element
- Consecutive elements are linked together with a pointer
- Middle can be modified in constant time

Lists as Ordered Pairs

Introduction to Data Structures

Kurt Schmid

Intro

Vectors Resizing, C

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary

BST

Hash Table

- For languages w/out explicit pointers, such as Bash,
 Maple, Python, and Java, it might be helpful to consider a list as an ordered pair
 - 1 The item (payload)
 - 2 The rest of the list

$$(\alpha, (\beta, (\gamma, (\delta, ()))))$$

- Where () is the empty list
- We might use a class
- Or, simply, nested arrays, of size 2 (or, empty)
 - This is a very LISP notion

Time, Operations on Lists

Introduction to Data Structures

Kurt Schn

Intro

Vectors
Resizing, C

Lists

Sorting
Binary Search

- Access (same as searching) linear time $(\Theta(n))$
- Modifying anywhere constant time $(\Theta(1))$
- Inserting
 - At front $\Theta(1)$
 - Append $-\Theta(n)$, unless pointer to last element kept

Lists in Python

Introduction to Data Structures

t Schmidt

Intro

Vectors
Resizing, (

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary BST Hash Table

- Python's list is really an array
 - Really? How might we tell?
 - In any case, elements are accessed in constant time
- We'll use Python's list to hold our duples
 - We'll call them *cells*, or *nodes*
- Let the empty list, [], be an empty list
- Remember, everything in Python is a reference (pointer)

"Linked" Lists in Python

```
Introduction to
Data
Structures
```

Kurt Schmi

Intro

Vectors
Resizing, C

Lists

Sorting
Binary Search

Binary Search Quick Sort

BST Hash Table

```
L = []
    # add 24 to front
L = [ 24, L ]
print L
    # add 3 to the front
L = [ 3, L ]
print L
```

Would output:

```
[ 24, [] ]
[ 3, [ 24, [] ]]
```

Append to end of List

Introduction to Data Structures

urt Schmidt

Intro

Vectors
Resizing, C

Lists

Searching & Sorting

Binary Search Quick Sort

```
def append( L, e ) :
    '''Append item e to end of L
    Note, reference L doesn't change'''

t = L  # start at beginning

while t != [] :
    t = t[1] # move to next cell

# We have our hands on the last cell (empty list)

# Make it a pair, w/a new end-of-list
    t.extend( [ e, [] ] )
```

Searching a List in Python

Introduction to Data Structures

Kurt Schmi

Intro

Vectors
Resizing, C

Lists

Searching 8 Sorting

Binary Search Quick Sort

Dictionary BST def search(L, t) :
 '''Return cell of L that contains t,
 None if not found'''

while L != [] :
 if L[0] == t :
 return L
 L = L[1] # move to next cell

return None # didn't find it

Map – Apply Function to a List

```
Introduction to
Data
Structures
```

Kurt Schmid

Intr

Vectors
Resizing, C

Lists

Searching Sorting

Binary Search Quick Sort

Dictionary
BST
Hash Table

```
def apply( L, fn ) :
    while L != [] :
        fn( L )
        L = L[1] # move to next cell
```

fn is any function that takes a single cell, modifies it. E.g.:

```
def square( c ) :
    c[0] *= c[0]
```

Examples of Apply

Introduction to Data Structures

urt Schmidt

Intro

Vectors
Resizing, (

Lists

Sorting

Binary Search Quick Sort

Dictionary BST Hash Table

Given:

```
L = [1, [2, [3, []]]]
```

Print the list:

```
def printCell( cell ) :
    print cell[0]
apply( L, printCell )
```

1 2 3

```
apply( L, square )
apply( L, printCell )
```

1 4 9

Lists in C

Introduction to Data Structures

urt Schmi

Intro

Vectors
Resizing, C

Lists

Sorting

Binary Search

Quick Sort

Dictionary BST Hash Table

```
typedef struct sNode sNode ;
struct sNode { /* a node (cell) in a singly-link list */
  int data; /* the payload */
  sNode* next :
} ;
/* Wrap an item in a node (cell) */
sNode* newNode( int d ) {
  sNode *newp ;
  newp = (sNode*) malloc( sizeof( sNode )) ;
  if( newp != NULL ) {
     newp->data = d;
     newp->next = NULL ;
  return newp ;
typedef sNode* List;
```

Insert at Front of C List

```
Introduction to
Data
Structures
```

ırt Schmidt

Intro

Vectors

Lists

Searching & Sorting
Binary Search

Binary Search
Quick Sort

BST Hash Table

List would be (5 12 13)

Append to End of C List

Introduction to Data Structures

ırt Schmidt

Intro

Vectors
Resizing, C

Lists

Searching

Binary Search Quick Sort

Dictionary BST

```
/* append: add newp to end of listp *
 * return ptr to new list
sNode* append( sNode* listp, sNode* newp )
  sNode *p ;
  if( listp == NULL )
     return newp ;
  for( p=listp; p->next!=NULL; p=p->next )
     : /* Find last node */
  p->next = newp ;
  return listp ;
list = append( list, newNode( 42 ));
```

List would be (5 12 13 42)

Search a List in C

Introduction to Data Structures

Kurt Schmi

Intro

Vectors
Resizing, C

Lists

Sorting

Binary Search

Ouick Sort

```
/* lookup: linear search for t in listp *
 * return ptr to node containing t, or NULL */
sNode* lookup( sNode *listp, int t )
{
  for(; listp != NULL; listp = listp->next )
    if( listp->data == t )
      return listp;

return NULL; /* no match */
}
```

Map/Apply on List in C

Introduction to Data Structures

urt Schmidt

Intro

Vectors Resizing, C

Lists

Searching & Sorting
Binary Search
Quick Sort

Dictionary BST Hash Table

- The 2nd argument is a function pointer
 - void return type
 - It takes 2 arguments
 - 1 List
 - 2 Generic pointer, to be used by function, as needed

Use Map to Square Elements in List

```
Introduction to
Data
Structures
```

Kurt Sohmir

Intro

Vectors
Resizing, C

Lists

Sorting

Binary Search Quick Sort

```
void squareVal( sNode *p, void *arg )
{
   /* note, arg is unused */
   p->data *= p->data ;
}
apply( list, squareVal, NULL ) ;
```

Use Map to Print

Introduction to Data Structures

Kurt Schm

Intro

Vectors
Resizing, C

Lists

Searching & Sorting
Binary Search

```
/* printVal: print value, using arg as format string */
void printVal( sNode *p, void *arg )
{
   char* fmt = (char*) arg ;
   printf( fmt, p->data ) ;
}
apply( list, prntVal, "%d" ) ;
```

Use Map to Compute Size

Introduction to Data Structures

Kurt Schmi

Intro

Vectors
Resizing, C

Lists

Sorting
Binary Search

```
/* incCounter: increment counter in arg */
void incCounter( sNode *p, void *arg )
{
   /* NOTE: p is unused. We were called, there's a node. */
   int* ip = (int*) arg;
   (*ip)++;
}
int size = 0;
apply( list, incCounter, &size );
printf( "%d elements in list\n", size );
```

Freeing Nodes in a List

```
Introduction to
Data
Structures
```

ırt Schmidt

Intro

Vectors
Resizing, C

Lists

Searching & Sorting
Binary Search

Dictionary

```
/* freeall: free all elements of listp */
void freeall( sNode *listp )
{
    sNode *t;
    for (; listp != NULL; listp = t ) {
        t = listp->next;
        free(listp);
    }
}
```

What's the problem with the following?

```
for ( ; listp != NULL; listp = listp->next)
  free( listp ) ;
```

Removing Element from List

Introduction to Data Structures

ırt Schmidt

Intro

Vectors
Resizing, 0

Lists

Searching a Sorting

Binary Search Quick Sort

```
/* delitem: delete first t from listp */
sNode *delitem( sNode *listp, int t ) {
  sNode *p, *prev = NULL;
  for( p=listp; p!=NULL; p=p->next ) {
     if( p->data == t ) {
        if( prev == NULL ) /* front of list */
          listp = p->next ;
        else
          prev->next = p->next;
       free( p );
        break :
     prev = p ;
  return listp ;
```

Introduction to Data Structures

urt Schmidt

Intro

Vectors
Resizing. (

Liete

Searching & Sorting

Binary Search

Dictionary

Hash Table

Searching & Sorting

Linear Search

Introduction to Data Structures

Kurt Schn

.....

Vectors
Resizing, (

Lists

Searching & Sorting

Binary Search Quick Sort

- Exhaustively examine each element
- Examine each element, until you find what you seek, or you've examined every element
 - Note that order of examination doesn't matter
- The only search for a linked-list
- Need $\Theta(n)$ comparisons, worst and average

Linear Search on Array in C

Introduction to Data Structures

Kurt Schmid

Intro

Vectors
Resizing, 0

List

Searching & Sorting

Binary Search Quick Sort

```
/* return index of first find, -1 otherwise */
int linSearch( int *a, int size, int t )
{
   int i ;
   for( i=0; i<size; ++i )
        if( a[i] == t )
        return i ;
}
int test[ 12 ] = { ... } ;
int l = linSearch( test, 12, 17 ) ;</pre>
```

Binary Search

Introduction to Data Structures

rt Schmidt

Intro

Vectors
Resizing, C

Lists

Searching & Sorting

Binary Search Quick Sort

Dictionary BST Hash Table Only works on sorted collections

 Only efficient on collections with random (direct) access (vectors)

Find it?

Start in the middle:

Find it?

Less than? Look in lower $\frac{1}{2}$

■ Greater than? Look in upper $\frac{1}{2}$

■ Cut search space in $\frac{1}{2}$

■ Need $\Theta(\log n)$ time, worst and avg.

Binary Search in C

Introduction to Data Structures

Kurt Schmid

Intro

Vectors
Resizing, 0

Lists

Sorting Binary Search

```
/* Search integer array
      Return index of target, or -1 */
int binSearch( int* arr, int size, int target )
  int low = 0,
      high = size-1;
  int mid:
  while( low <= high )</pre>
  {
     mid = (low+high) / 2;
     if( arr[mid] == target )
        return mid ;
     if( target < arr[mid] )</pre>
        high = mid-1;
     else
        low = mid+1:
  }
  return( -1 ) ;
```

Quick Sort

Introduction to Data Structures

Kurt Schmid

Intro

Vectors
Resizing, C

List

Searching & Sorting
Binary Search

Binary Search Quick Sort

Dictionary BST Hash Table

- Choose one element of the array (the *pivot*)
- Partition the other elements into two groups:
 - those less than the pivot
 - those greater than or equal to the pivot
- Pivot is now in the right place
- Recursively sort each (strictly smaller) group
- Can be done in place

Quick Sort - Run Time

Introduction to Data Structures

t Schmidt

Intro

Vectors Resizing, C

Lists

Searching Sorting Binary Search Quick Sort

- **Each** partition requires $\Theta(n)$ comparisons, moves
- Best case $-\Theta(n \log n)$
 - Each partition splits collection in half
 - Can do that about n times
- Worst case $-\Theta(n^2)$
 - Each partition gets pivot in place
 - Leaves n-1 elements in one partition to sort
 - Looks like a Selection Sort
- On random data, average run time is $\Theta(n \log n)$

Quick Sort – Description

Introduction to Data Structures

Kurt Schmidt

Intro

Vectors

Resizing.

Lists

Searching 8 Sorting

Quick Sort

Dictionary BST

Recursive Quicksort in C

Introduction to Data Structures

irt Schmidt

Intro

Vectors Resizing, C

List

Searching & Sorting
Binary Search
Quick Sort

Dictionary BST

Quicksort – Partition

Introduction to Data Structures

urt Schmidt

Intr

Vectors
Resizing, C

l ist

Searching & Sorting

Binary Search Quick Sort

```
/* partition, return index of pivot */
int partition( int *v, int n )
{
   int i, last=0;
   swap( v,0,rand() % n ); /* move pivot element to v[0] */

   for ( i = 1; i < n; i++ ) /* partition */
      if ( v[i] < v[0] )
        swap( v, ++last, i );
   swap( v, 0, last ); /* restore pivot */

   return last;
}</pre>
```

Library Sorts for Some Languages

```
Introduction to
    Data
 Structures
```

Quick Sort

```
C qsort (in stdlib.h)
  C++ STL sort (in algorithm)
  Java java.util.Collections.sort)
  Perl sort
Python list.sort, sorted
```

qsort - C Standard Library

Introduction to Data Structures

Intro

Vectors Resizing, C

Lists

Searching & Sorting Binary Search Quick Sort

- Sorts the first n elements of array a
- Each element is s bytes
- cmp is a function you must provide
 - Compares 2 single elements, *a and *b
 - qsort must pass void pointers, since it doesn't know the type
 - cmp does, since you provide it
 - Returns integer -1 if a<b, 0 if a==b, and 1 if a>b

qsort Example for Integers

Introduction to Data Structures

rt Schmidt

Intro

Vectors
Resizing. (

Lists

Sorting
Binary Search

Binary Search Quick Sort

```
/* icmp: integer compare of *p1 and *p2 */
int icmp( void *p1, void *p2 )
  int v1 = *((int*) p1);
  int v2 = *((int*) p2);
  if( v1 < v2 )
     return -1;
  else if( v1 == v2 )
     return 0 ;
  else
     return 1 ;
int arr[N] ;
qsort( arr, N, sizeof(arr[0]), icmp );
```

qsort Example for Strings

Introduction to Data Structures

Curt Schmidt

Intro

Vectors
Resizing, C

lists

Sorting
Binary Search

Binary Search

Quick Sort

```
/* scmp: string compare of *p1 and *p2. p1 is a ptr to a
   * string, ptr to a char*, so is a ptr to a ptr, or a char**
int scmp( void *p1, void *p2 )
  char *v1, *v2;
  v1 = *((char**) p1) ;
  v2 = *((char**) p2) ;
  return strcmp( v1, v2 );
char *str[N] ;
gsort(str, N, sizeof(str[0]), scmp);
```

Introduction to Data Structures

urt Schmidt

Intro

Vectors

Liete

Searching 8

Binary Search

Dictionary

Hash Table

Dictionary

Dictionary (Map)

Introduction to Data Structures

rt Schmidt

Intro

Vectors Resizing, 0

List

Searching & Sorting Binary Search Quick Sort

Dictionary BST A set of (key, value) pairs

- Allows us to associate satellite data w/a key
- E.g., phone book (sorta), student record, given an ID, an error string (given an error number)
- Keys are unique
- Operations:
 - Lookup (find)
 - Insert
 - Remove

Times – Simple Dictionaries

Introduction to Data Structures

rart ochinic

Intro

Vectors Resizing,

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary

Unordered Vector

- Lookup $-\Theta(n)$
- Insertion $-\Theta(1)$ (given a find)
- Removal $\Theta(1)$ (given a find)

Ordered Vector

- Lookup $\Theta(\log n)$
- Insertion $-\Theta(n)$ (given a find)
- Removal $\Theta(n)$ (given a find)

Some Other Dictionaries

Introduction to Data Structures

urt Schmi

Intro

Vectors Resizing, 0

Lists

Searching & Sorting
Binary Search

Dictionary

Hash Tabl

Binary Search Tree¹

- Lookup $\Theta(\log n)$
- Insertion $\Theta(\log n)$
- Removal $\Theta(\log n)$

Hash Table

- Lookup $-\Theta(1)$
- Insertion $-\Theta(1)$
- Removal $-\Theta(1)$

¹Balanced; random data

Binary Search Tree

Introduction to Data Structures

t Schmidt

Intro

Vectors Resizing, 0

Lists

Searching & Sorting Binary Search Quick Sort

- A binary tree is either:
 - The empty tree, or
 - contains a key/value pair, and a left and right subtree, themselves trees
- A binary search tree (BST) has the sibling order property
 - The key of a node is greater than all keys in the left subtree
 - The key of a node is less than all keys in the right subtree
- Note, every subtree of a BST is a BST
- O(log n) expected search and insertion time
 - If the tree is balanced
- In-order traversal yeilds keys in sorted order

BST Example

Introduction to Data Structures

t Schmidt

Intro

Vectors Resizing, C

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary BST Hash Table In the following examples each node stores a key/value pair:

- key String, name of the character
- value Hexadecimal integer, Unicode encoding
- A reference (pointer) to each of the 2 subtrees

BST in Python

Introduction to Data Structures

rt Schmidt

Intro

Vectors
Resizing, C

List

Searching & Sorting Binary Search Quick Sort

Dictionary BST Hash Table Let an empty tree be the empty list

- Use a list of size 3:
 - The key/value pair (another list)
 - 2 The left subtree
 - 3 The right subtree
- The following is a tree w/one node:

```
T = [ ['smiley', 0x263A], [], [] ]
```

BST Lookup – Python

Introduction to Data Structures

ırt Schmidt

Intro

Vectors
Resizing, 0

List

Sorting

Binary Search

Quick Sort

```
def lookup( T, name ) :
    '''lookup: look up name in tree T, return the
    cell, None if not found'''

if T == [] : # T is the empty tree
    return None
if T[0][0] == name :
    return T
elif name < T[0][0] : # look in left subtree
    return lookup( T[1], name ) ;
else : # look in right subtree
    return lookup( T[2], name ) ;</pre>
```

BST in C

Introduction to Data Structures

Ruit Sciiiilo

Intro

Vectors
Resizing, C

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary BST Hash Table We will use a struct to hold the key, value and pointers to the subtrees.

```
typedef struct bNode bNode ;
struct bNode {
  char *name ;
  int value ;
  bNode *left ;
  bNode *right ;
};
```

BST in C

Introduction to Data Structures

Kurt Schmid

Intro

Vectors
Resizing, C

List

Sorting
Binary Search

Binary Search Quick Sort

BST

```
/* lookup: look up name in tree treep *
     Return pointer to node, NULL if not found */
bNode* lookup( bNode *treep, char *name )
  int cmp ;
  if( treep == NULL )
     return NULL; /* Didn't find it */
  cmp = strcmp( name, treep->name ) ;
  if(cmp == 0)
     return treep ;
  else if( cmp < 0 )</pre>
     return lookup( treep->left, name );
  else
     return lookup( treep->right, name );
```

Hash Table (Open)

Introduction to Data Structures

urt Schmid

Vectors
Resizing, (

Lists

Searching & Sorting Binary Search Quick Sort

Dictionary BST Hash Table Provides key lookup and insertion with constant expected cost

- At the heart is a vector with m slots, where it is not usually possible to reserve a slot for each possible element
- Hash function maps key to index (should evenly distribute keys)
 - $H(k,m) \to [0,m-1]$
 - Two keys might have the same has value *collision*
- Duplicates stored in a chain (list) other strategies exist

Hash Table (Open)

Introduction to Data Structures

Kurt Schmid

Intro

Vectors Resizing, C

Lists

Searching & Sorting

Binary Search
Quick Sort

Dictionary

BST

Hash Table

```
typedef struct sNode sNode ;
   /* An entry */
struct sNode {
   char* name ;
   int value ;
   sNode* next ; /* in chain */
} ;
   /* The table (array) */
sNode* symtab[NHASH] ;
```


In this example, key1 and key3 have the same hash value, 1

A Simple Hash Function in C

Introduction to Data Structures

Intro

Vectors
Resizing, C

Lioto

Sorting

Binary Search Quick Sort

BST Hash Table

```
int MULTIPLIER = 31 ;
  /* hash: compute hash value of string */
unsigned int hash( char* str )
  unsigned int h;
  unsigned char *p;
  h = 0:
  for( p=(unsigned char*) str; *p!='\0'; ++p )
     h = h*MULTIPLIER + *p;
     h %= NHASH ;
  return h :
```

Hash Table Lookup/Insert in C

Introduction to Data Structures

Kurt Schmidt

Intro

Vectors
Resizing, C

Lists

Sorting
Binary Search

```
/* lookup: find name in symtab, with optional create */
sNode* lookup( char* name, int create, int value )
  sNode* svm :
  int h = hash(name) ;
  for( sym=symtab[h]; sym != NULL; sym=sym->next)
     if( strcmp( name, sym->name ) == 0 )
        return sym ;
  if( create ) {
     sym = (sNode*) malloc( sizeof( sNode )) ;
     sym->name = name ; /* assumed allocated elsewhere */
     svm->value = value :
     sym->next = symtab[h] ; /* insert at front */
     symtab[h] = sym ;
  return sym ;
```