

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Carbon-free Mn-doped LiFePO₄ cathode for highly transparent thin-film batteries

HyunSeok Lee ^{a,b}, Sangtae Kim ^a, Narendra Singh Parmar ^a, Jong-Han Song ^c, Kyung-yoon Chung ^d, Kwang-Bum Kim ^b, Ji-Won Choi ^{a,e,*}

- a Center for Electronic Materials, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14 Gil, Seongbuk-Gu, Seoul, 02792, South korea
- ^b Energy Conversion and Storage Materials Laboratory, Department of Material Science and Engineering, Yonsei University, 262 Seongsanno, Seodaemun-Gu, Seoul, 120-749, South korea
- c Advanced Analysis Center, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14 Gil, Seongbuk-Gu, Seoul, 02792, South korea
- d Center for Energy Convergence, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14 Gil, Seongbuk-Gu, Seoul, 02792, South korea
- ^e Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (KUST), 5, Hwarang-ro 14 Gil, Seongbuk-Gu, Seoul, 02792, South korea

HIGHLIGHTS

- Exploration of carbon-free transparent LiFe_{1-x}Mn_xPO₄ thin films by CCS.
- \bullet The capacity of carbon-free LiFe $_{0.77}Mn_{0.23}PO_4$ thin films is 45.7 $\mu A~h/cm^2 \cdot \mu m$.
- Transmittance of Carbon-free LiFe_{0.77}Mn_{0.23}PO₄ thin film exhibits 82%.
- ullet Carbon-free LiFe $_{0.77} Mn_{0.23} PO_4$ is suitable for transparent thin film batteries.

ARTICLE INFO

 $\label{eq:keywords:} \begin{tabular}{ll} \textit{Keywords:} \\ \textit{Lithium thin-film battery} \\ \textit{Transparent} \\ \textit{Olivine} \\ \textit{LiFe}_{1\cdot x}Mn_xPO_4 \end{tabular}$

ABSTRACT

The search for transparent battery cathodes primarily focuses on patterned electrodes with feature sizes below the optical absorption limit. This significantly limits the electrode capacity, as a large electrode area remains unused to maintain transparency. Herein, we report transparent olivine LiFe $_{0.77}$ Mn $_{0.23}$ PO $_{4}$ thin-film electrodes discovered through high-throughput continuous-composition-spread sputtering. After investigating six different Mn doping ratios, we found the optimal Mn-doped olivine composition with an enhanced discharge capacity of $45.7~\mu\text{A}~\text{h/cm}^2~\text{µm}$ without using excessive nanosized features or carbon coating. The thin-film electrode exhibits a clear redox activity for both $\text{Fe}^{3+/2+}$ and $\text{Mn}^{3+/2+}$, resulting in an enhanced average voltage over LiFePO4 composition. A 250-nm-thick film exhibits an optical transmittance of over 80% in the visible region. The results in this study demonstrates that transparent cathode thin films can be developed based on phospho-olivines via doping strategies with high-throughput continuous-composition-spread sputtering methods.

1. Introduction

Transparency enables unique applications in electronics. Recent research effort for transparent electronics has resulted in interest in transparent batteries, often considered the most difficult element to achieve transparency [1]. The successful fabrication of durable and transparent batteries may enable a new generation of portable electronics in which the entire device is transparent. Applications such as electronic contact lenses may be powered by an onboard battery while

ensuring the lens' transparency [2-5].

The development of transparent batteries often relies on patterning electrodes to feature sizes below optical absorption lengths [1]. Patterning nontransparent materials, however, results in reduced energy density, as a large portion of the electrode area becomes unutilized to achieve transparency. For patterned electrodes, 25% of active area per unit area can be used [1]. Similar strategies to fabricate transparent thin-film batteries have been reported by Oukassi et al. with non-transparent materials [6]. Oukassi et al. reported that 34% of active area

E-mail address: jwchoi@kist.re.kr (J.-W. Choi).

^{*} Corresponding author. Center for Electronic Materials, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14 Gil, Seongbuk-Gu, Seoul, 02792, South korea.