线性代数习题课 2

2025.9.28

作业

• 自由变量的取值范围

$$eg. \ x_3=s, x_4=r \ s, r \in {f R}$$

- 证明子空间,无需单独考虑零子空间,只需交代子集非空即可
- 以后在 Gradescope 上提交作业,课程代码为 GVY2KN ,如有操作使用方面的问题 请联系助教

极大线性无关组

设 S 是一组向量, S_1 是 S 的子向量组。若 S_1 线性无关,且对任意向量 $a \in S \setminus S_1$, $S_1 \cup \{a\}$ 线性相关,则称 S_1 是 S 的**极大无关组**

这个定义比较重要: 当证明有关极大无关组的等价结论时,请从最原始的定义出发证明

向量组的秩

设向量 $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$,则有:

- 1. a_1, \ldots, a_m 线性无关,当且仅当 $rank(a_1, \ldots, a_m) = m$;
- 2. a_1, \ldots, a_m 线性相关,当且仅当 $rank(a_1, \ldots, a_m) < m$;
- 3. 若 $\{b_1, \ldots, b_n\}$ 可以用 $\{a_1, \ldots, a_m\}$ 线性表示,则 $\operatorname{rank}(b_1, \ldots, b_n) \leq \operatorname{rank}(a_1, \ldots, a_m)$;
- 4. 若 $\{b_1, \ldots, b_n\}$ 与 $\{a_1, \ldots, a_m\}$ 互相可以线性表示,则 $\operatorname{rank}(b_1, \ldots, b_n) = \operatorname{rank}(a_1, \ldots, a_m)$;
- 5. 向量 b 可表示成 $\{a_1,\ldots,a_m\}$ 的线性组合,当且仅当 $\operatorname{rank}(a_1,\ldots,a_m)=\operatorname{rank}(a_1,\ldots,a_m,b)$

矩阵的秩

矩阵 A 的行向量张成的线性子空间称为行空间,其维数称为 A 的行秩矩阵 B 的列向量张成的线性子空间称为列空间,其维数称为 B 的列秩

引理:初等行变换不改变矩阵的行秩/列秩

(2.14 引理的证明可能比较抽象,建议同学们多看看教材这一块内容,思路是初等行变换前后两个行向量组可以互相线性表示,列向量组的线性相关性不受改变)

矩阵的秩

定理: 矩阵 A 的行秩和列秩相等,这个数称为矩阵 A 的**秩**,记作 rank(A)

- 因此,矩阵阶梯形的非零行数/主元数目就是矩阵的秩,并且阶梯形的主元所在的列 构成列向量组的一个极大线性无关组
- 上一页的引理陈述便可改为:

定理:初等行变换不改变矩阵的秩

矩阵的秩

设 $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$ 为一组列向量, $A = (a_1, a_2, \ldots, a_m)$ 为以 a_1, a_2, \ldots, a_m 为 列构成的 $n \times m$ 阶矩阵。A 经一系列初等行变换变为矩阵 $B = (b_1, b_2, \ldots, b_m)$,则:

- 1. a_1, a_2, \ldots, a_m 线性相关(无关)当且仅当 b_1, b_2, \ldots, b_m 线性相关(无关)
- 2. $a_{i_1}, a_{i_2}, \ldots, a_{i_r}$ 为 a_1, a_2, \ldots, a_m 的极大无关组,当且仅当 $b_{i_1}, b_{i_2}, \ldots, b_{i_r}$ 为 b_1, b_2, \ldots, b_m 的极大无关组。其中 $1 \leq i_1 < \cdots < i_r \leq m$

子空间的若干结论

n 维欧氏空间 \mathbb{R}^n 中的下列结论成立

- 1. 设 $V \subset \mathbb{R}^n$ 为 r 维子空间,则 V 中任意 r+1 个向量线性相关
- 2. 设 V 为 r 维子空间,则 V 中任意 r 个线性无关的向量为 V 的一组基
- 3. 设 U 与 V 为 \mathbb{R}^n 的子空间,且 $U \subset V$,则 $\dim U < \dim V$
- 4. 设 U 与 V 为 \mathbb{R}^n 的子空间,且 $U \subset V$,若 $\dim U = \dim V$,则 U = V

子空间的和与直和

上节课我们知道,设 U,V 是 \mathbb{R}^n 的两个子空间,容易验证 $U\cap V$ 也是 \mathbb{R}^n 的子空间,但 $U\cup V$ 一般而言不是 \mathbb{R}^n 的子空间我们把 $U\cup V$ 张成的子空间称为 U 与 V 的**和**,记作 U+V,可以证明: $U+V=\{u+v\mid u\in U,v\in V\}$

• 定理: 设U和V是的 \mathbb{R}^n 的子空间,则 $\dim(U+V)=\dim U+\dim V-\dim U\cap V$

子空间的和与直和

可以证明, $U \cap V = \{\mathbf{0}\}$ 当且仅当对于任意的 $x \in U + V$,存在唯一的 $u \in U$ 和唯一的 $v \in V$ 使得 x = u + v. 这时称 U + V 为**直和**,记作 $U \oplus V$

- 定理: U+V 是直和当且仅当如果 $u+v=\mathbf{0}$, $u\in U$, $v\in V$, 则 $u=v=\mathbf{0}$ 因此,如果子空间 U 与 V 的和为直和,我们也称 U 与 V 线性无关
 - 定理: 如果 $U \cap V = \{\mathbf{0}\}$,则 $\dim(U + V) = \dim U + \dim V$

线性方程组的可解性准则

设 $A\in\mathbb{R}^{m\times n}$ 为 $m\times n$ 阶矩阵, $\mathbf{b}\in\mathbb{R}^m$ 为 m 维列向量,则一般线性方程组 $A\mathbf{x}=\mathbf{b}$ 有解的充要条件是 $\mathrm{rank}(A)=\mathrm{rank}(A,\mathbf{b})$,线性方程组有唯一解的充要条件是 $\mathrm{rank}(A)=\mathrm{rank}(A,\mathbf{b})=n$

齐次线性方程组 $A\mathbf{x} = \mathbf{0}$ 有非零解的充要条件是 $\mathrm{rank}(A) < n$

向量组等价

给定两个向量组 $S=\{a_1,\ldots,a_m\}$, $T=\{b_1,\ldots,b_r\}$,若 S 中的每个向量都可由 T 中的向量线性表示,则称 S 可以由 T 线性表示。如果两个向量组互相都可以线性表示,则称 S 与 T 等价,记为 $S\sim T$

- 容易验证,向量组的等价具有自反性,对称性,传递性
- 容易验证,两个向量组等价当且仅当它们张成的子空间相同

向量组等价

- 向量组与它的任何一个极大线性无关组等价
- 等价的线性无关向量组所含向量的个数相等
- 等价的向量组有相等的秩

设 $A \in S \times n$ 矩阵, $B \in I \times m$ 矩阵,证明:

$$\operatorname{rank}egin{pmatrix}A&0\0&B\end{pmatrix}=\operatorname{rank}(A)+\operatorname{rank}(B)$$

证明:

 $\mathrm{rank}(\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_r}, \mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_s}) \leq \mathrm{rank}(\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_r}) + \mathrm{rank}(\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_s})$

设向量组 $S = \{\alpha_1, \ldots, \alpha_s\}$ 线性无关,并且可以由向量组 $T = \{\beta_1, \ldots, \beta_t\}$ 线性表示。证明:可以用向量 $\alpha_1, \ldots, \alpha_s$ 替换向量 β_1, \ldots, β_t 中某 s 个向量 $\beta_{i_1}, \ldots, \beta_{i_s}$,使得到的向量组 $\{\alpha_1, \ldots, \alpha_s, \beta_{i_{s+1}}, \ldots, \beta_{i_t}\}$ 与 $\{\beta_1, \ldots, \beta_t\}$ 等价(其中 i_1, \ldots, i_t 为 $\{1, \ldots, t\}$ 的某个排列)

(教材 2.2 节 习题 4)

设 $m \times n$ 矩阵 $A = (a_{ij})$ 的行秩为r,列秩为s

取 A 的 r 个线性无关的行向量 $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$. 这 r 个行向量形成一个 $r \times n$ 矩阵 \widetilde{A} .

设 \widetilde{A} 的列秩为 t, \tilde{a}_{i_1} , \tilde{a}_{i_2} , ..., \tilde{a}_{i_t} 是 \widetilde{A} 的列向量的极大线性无关组。证明:

- 1. $t \leq r$
- 2. 矩阵 A 的任何一个列向量 a_j 都是列向量 $\tilde{a}_{j_1}, \tilde{a}_{j_2}, \ldots, \tilde{a}_{j_t}$ 的线性组合,从而 $s \leq t \leq r$,即列秩不超过行秩

提示:利用 A 的任一行向量都是 $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$ 的线性组合

3. 把 A 的行作为列,得到如下 $n \times m$ 矩阵,称为 A 的转置:

$${}^t\!A = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \ a_{12} & a_{22} & \cdots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix},$$
有 $r_c({}^t\!A) = r_r(A)$, $r_r({}^t\!A) = r_c(A)$.

结合 2 与 3 可知 $s \le r$ 且 $r \le s$,因此 r = s