# Corso di laurea triennale in Fisica

Corso di Metodi Matematici per la Fisica - Intro

Prova scritta del 25 gennaio 2023

# Esercizio 1

Sia dato l'integrale

$$I(a,n) = \int_{-\pi}^{\pi} d\phi \int_{-\pi}^{\pi} d\theta \, \delta(2\phi - 2\theta) \, \frac{3 \cos(\theta) \, e^{i\theta}}{e^{2in\phi} - a}, \tag{1}$$

con  $a \in \mathbb{R}$ ,  $n \in \mathbb{N}$ ,  $a \neq 0$ ,  $n \neq 0$ .

- (a) Ricondursi ad un integrale trigonometrico risolvendo la delta di Dirac.
- (b) Determinare per quali valori dei parametri a e n l'integrale esista.
- (c) Calcolare I(1/2, 1), I(1/3, 2).
- (d) Calcolare I(-2,2).

## Soluzione

(a) Riscriviamo I(a, n) risolvendo la delta di Dirac in  $\phi$ :

$$\delta(2\phi - 2\theta) = \frac{1}{2}\delta(\phi - \theta). \tag{2}$$

Si ha

$$I(a,n) = \frac{3}{2} \int_{-\pi}^{\pi} d\theta \, \frac{\cos(\theta) \, e^{i\theta}}{e^{i2n\theta} - a} \,. \tag{3}$$

(b) L'integrale esiste per ogni valore di a e n per cui il denominatore non si annulli. Operando il cambio di variabile  $z = e^{i\theta}$ , con  $dz = iz d\theta$ , si ottiene

$$I(a,n) = \frac{3}{4} \oint_C \frac{dz}{iz} \frac{1+z^2}{z^{2n}-a},$$
 (4)

dove C è una circonferenza di raggio unitario percorsa in senso antiorario. Di conseguenza, l'integrale è definito per tutti i valori di a ed n per i quali non vi sia una singolarità su C. In particolare, il denominatore  $z^{2n} - a$  ha 2n zeri

semplici in  $z_k = |a|^{1/(2n)}e^{ik\pi/n}$ , se a > 0 e in  $z_k = |a|^{1/(2n)}e^{i(k+1/2)\pi/n}$ , se a < 0, con k = 1, ..., 2n. Se  $|a| \neq 1$  le radici  $z_k$  non giacciono su C e l'integrale è definito  $\forall n$ . Se a = 1 vi sono singolarità su  $C \forall n$ , e l'integrale non è definito. Se a = -1 l'integrando è regolare su tutto C solo se n = 1 (perché in quel caso numeratore e denominatore sono identici e si elidono).

Riassumendo, l'integrale I(a, n) esiste se  $|a| \neq 1$ ,  $\forall n$  e se a = -1, n = 1.

(c) Nel caso in cui sia |a| < 1 contribuiscono al valore dell'integrale il polo semplice dell'integrando in z = 0 e i 2n poli semplici in  $z = z_k$ , quindi conviene ottenere il risultato calcolando il residuo all'infinito (ricorrendo al cambio di variabile z = 1/t):

$$|a| < 1: \quad I(a,n) = -2\pi i \operatorname{Res} \left[ \frac{3}{4} \frac{1}{iz} \frac{1+z^2}{z^{2n}-a} \right]_{z=\infty}$$
 (5)

$$= -2\pi i \operatorname{Res} \left[ -t^{2n-3} \frac{3}{4i} \frac{1+t^2}{1-at^{2n}} \right]_{t=0}$$
 (6)

$$= \frac{3}{2}\pi \,\delta_{n1} \,. \tag{7}$$

Pertanto  $I(1/2, 1) = \frac{3}{2}\pi$ , mentre I(1/3, 2) = 0.

(d) Se |a| > 1, l'unico polo nella regione interna a C è in z = 0, pertanto l'integrale vale

$$|a| > 1: \quad I(a,n) = 2\pi i \operatorname{Res} \left[ \frac{3}{4} \frac{1}{iz} \frac{1+z^2}{z^{2n}-a} \right]_{z=0}$$
 (8)

$$= \frac{3}{2}\pi \lim_{z \to 0} \frac{1+z^2}{z^{2n}-a} \tag{9}$$

$$= -\frac{3\pi}{2a},\tag{10}$$

da cui  $I(-2,2) = \frac{3}{4}\pi$ .

Notiamo che, compatibilmente con lo studio dei parametri effettuato al punto (b), i due risultati coincidono per a = -1, n = 1.

# Esercizio 2

Si consideri l'equazione differenziale

$$4z^{3}(z+a)^{2}u''(z) + 4(z-2)(z+b)^{c}u'(z) + (z-d)z^{3}u(z) = 0,$$

con  $c \in \mathbb{N} = \{0, 1, 2, \ldots\} \in a, b, d \in \mathbb{R}, a \neq 0.$ 

- (a) Quali condizioni devono essere soddisfatte dalle costanti a, b, c, d affinché l'equazione abbia solo singolarità fuchsiane?
- (b) Per la soluzione intorno a  $z_0 = 0$ , determinare l'equazione indiciale e le sue soluzioni  $\rho_1, \rho_2$  per tutti i valori permessi per a, b, c, d.
- (c) Scrivere la soluzione  $u_1(z)$  dell'equazione differenziale con i parametri

$$a = -2$$
,  $b = 0$ ,  $c = 2$ ,  $d = 2$ ,

con  $u_1(z)$  corrispondente alla soluzione dell'equazione indiciale  $\rho_1 \geq \rho_2$ . Trovare la relazione che determina il coefficiente  $c_1$  e la relazione di ricorrenza per i coefficienti  $c_i$  con  $i \geq 2$ .

(d) Scrivere la forma della seconda soluzione  $u_2(z)$  intorno a  $z_0 = 0$  senza calcolarne i coefficienti.

#### Soluzione

(a) La forma standard dell'equazione differenziale è

$$u''(z) + \underbrace{\frac{(z-2)(z+b)^c}{z^3(z+a)^2}}_{P(z)} u'(z) + \underbrace{\frac{z-d}{4(z+a)^2}}_{Q(z)} u(z) = 0.$$

Siccome  $c \ge 0$ , le uniche singolarità potenziali sono a z = 0, z = -a. L'ordine di questi poli dipende dai parametri. Dall'esistenza di  $\lim_{z\to z_0} P(z)(z-z_0)$  per  $z_0 = 0, -a \ (\ne 0)$  segue

$$a = -2; \quad b = 0; \quad c \ge 2.$$

La relazione analoga per Q(z) non risulta in un'altra condizione, siccome Q(z) ha comunque al massimo un polo doppio. Quindi il parametro d non viene vincolato.

(b) Abbiamo

$$p_0 = \lim_{z \to 0} z P(z) = \lim_{z \to 0} \frac{z^{c-2}}{z - 2} = \begin{cases} -\frac{1}{2} & \text{per } c = 2, \\ 0 & \text{per } c \ge 3, \end{cases}$$

$$q_0 = \lim_{z \to 0} z^2 Q(z) = 0,$$

da cui segue l'equazione indiciale

$$\rho^2 + (p_0 - 1)\rho + q_0 = \begin{cases} \rho^2 - \frac{3}{2}\rho = 0, & \text{per } c = 2, \\ \rho^2 - \rho = 0, & \text{per } c \ge 3. \end{cases}$$

Le due soluzioni di queste equazioni sono

$$\rho_1 = \begin{cases} \frac{3}{2} & \text{per} \quad c = 2, \\ 1 & \text{per} \quad c \ge 3, \end{cases} \qquad \rho_2 = 0 \quad \forall c.$$

(c) Per  $a=-2\,,\ b=0\,,\ c=2\,,\ d=2$ abbiamo  $\rho_1=\frac{3}{2}$ e quindi

$$u_1(z) = z^{3/2} \sum_{n=0}^{\infty} c_n z^n = \sum_{n=0}^{\infty} c_n z^{n+3/2}, \quad c_0 \neq 0,$$

$$u'_1(z) = \sum_{n=0}^{\infty} \left( n + \frac{3}{2} \right) c_n z^{n+1/2},$$

$$u''_1(z) = \sum_{n=0}^{\infty} \left( n + \frac{3}{2} \right) \left( n + \frac{1}{2} \right) c_n z^{n-1/2}.$$

L'equazione differenziale diventa

$$z^{2}(z-2)\left[4z(z-2)u''(z)+4u'(z)+zu(z)\right]=0\,,$$

$$\Leftrightarrow 4z(z-2)\sum_{n=0}^{\infty}\left(n+\frac{3}{2}\right)\left(n+\frac{1}{2}\right)c_{n}z^{n-1/2}+4\sum_{n=0}^{\infty}\left(n+\frac{3}{2}\right)c_{n}z^{n+1/2}$$

$$+z\sum_{n=0}^{\infty}c_{n}z^{n+3/2}=0\,,$$

$$\Leftrightarrow \sum_{n=0}^{\infty}\left(2n+3\right)\left(2n+1\right)c_{n}z^{n+3/2}-2\sum_{n=0}^{\infty}\left(2n+3\right)\left(2n+1\right)c_{n}z^{n+1/2}+\sum_{n=0}^{\infty}\left(4n+6\right)c_{n}z^{n+1/2}+\sum_{n=0}^{\infty}c_{n}z^{n+5/2}=0\,.$$

Per avere le serie con la stessa potenza di z, nella prima serie facciamo la sostituzione n'=n+1, mentre nell'ultima serie n'=n+2. Rinominando poi  $n'\to n$  otteniamo:

$$z^{1/2} \left\{ \sum_{n=1}^{\infty} (2n+1)(2n-1)c_{n-1}z^n + \sum_{n=0}^{\infty} (-8n^2 - 12n)c_nz^n + \sum_{n=2}^{\infty} c_{n-2}z^n \right\} = 0.$$

Ora, isolando le potenze  $z^0$  e  $z^1$  dalle prime due serie, otteniamo

$$0 + (3c_0 - 20c_1)z + \sum_{n=2}^{\infty} \left[ c_{n-2} + (2n+1)(2n-1)c_{n-1} - 4n(2n+3)c_n \right] z^n = 0.$$

Poiché il coefficiente di ogni potenza di z deve essere nullo separatamente, per il termine con potenza  $z^1$  otteniamo

$$3c_0 - 20c_1 = 0 \quad \Rightarrow \quad c_1 = \frac{3}{20}c_0$$

mentre per i termini con potenza  $z^n$  ( $n \ge 2$ ) abbiamo la relazione di ricorrenza

$$c_n = \frac{c_{n-2} + (2n+1)(2n-1)c_{n-1}}{4n(2n+3)} \qquad \forall n \ge 2.$$

(d) Essendo  $\rho_1 - \rho_2 = 3/2 \not \in \mathbb{N}$ , la soluzione  $u_2(z)$  sarà del tipo

$$u_2(z) = z^{\rho_2} \sum_{n=0}^{\infty} d_n z^n = \sum_{n=0}^{\infty} d_n z^n$$
, con  $d_0 \neq 0$ .

# Esercizio 3

Data la funzione

$$f(x) = \sqrt{\frac{8}{\pi}} \frac{\sin^m(x) \cos^n(x)}{x^p}, \quad m, n, p \in \mathbb{Z}^+ = \{1, 2, \dots\}$$

- (a) Determinare i valori di m, n, p per cui la trasfomata di Fourier di f(x) esiste ed è derivabile.
- (b) Per m = p = 1, n = 2, calcolare la trasformata di Fourier di f(x) per
  - (1) |k| > 3.
  - (2) 1 < |k| < 3.
  - (3) |k| < 1.
  - (4)  $k = \pm 1, \pm 3.$

### Soluzione

- (a) La trasformata di Fourier di f(x) esiste ed è una funzione derivabile se entrambe f(x) e xf(x) sono sommabili. Per dimostrate la sommbilità di una funzione dobbiamo controlare che (i) al finito abbia al massimo singolarità integrabili e che (ii) nel limite  $x \to \pm \infty$  vada a zero più velocemente di 1/x.
  - (i) Al finito, l'unico punto che potrebbe essere singolare è x=0, per entrambe f(x) e xf(x). Il comportamento delle funzioni per  $x\to 0$  è

$$f(x) \sim x^{m-p}$$
,  $xf(x) \sim x^{m-p+1}$ .

Il punto x = 0 è una singolarità non integrabile di f(x) se m < p, quindi deve essere  $m \ge p$ . Con questa condizione, x = 0 è uno zero di xf(x) e quindi non ci sono ulteriori condizioni.

(ii) Per essere una funzione sommabile, f(x) deve soddisfare

$$\lim_{x \to \pm \infty} x f(x) = \lim_{x \to \pm \infty} \frac{\sin^m(x) \cos^n(x)}{x^{p-1}} \stackrel{?}{=} 0.$$

Il limite si annulla per  $p \geq 2$ . Invece per la sommabiltà di xf(x) serve che sia

$$\lim_{x^2 \to \pm \infty} x f(x) = \lim_{x \to \pm \infty} \frac{\sin^m(x) \cos^n(x)}{x^{p-2}} \stackrel{?}{=} 0.$$

Questo limite si annulla per  $p \geq 3$ .

Quindi, richiedendo che entrambe f(x) e xf(x) siano sommabile si arriva alla condizione  $p \geq 3$ .

In entrambi i casi (i) e (ii), le condizioni sono soddisfatte indipendentemente dal valore di n. Mettendo tutto insieme abbiamo che

$$m, n, p \in \mathbb{N}, m \geq p, p \geq 3 \implies \mathcal{F}_k\{f(x)\}$$
 esiste ed è derivabile.

(b) Calcolo della trasformata di Fourier per  $m=p=1,\,n=2.$ 

Possiamo prima portare l'integrale della trasformata di Fourier nel piano complesso, scrivendo le funzione trigonometriche di f in termini di funzioni esponenziali

$$F(k) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{8}{\pi}} \int_{-\infty}^{\infty} dx \ e^{-ix \, k} \frac{\sin(x) \cos^2(x)}{x}$$

$$= \frac{2}{\pi} \int_{-\infty}^{\infty} dx \ e^{-ix \, k} \frac{1}{x} \frac{e^{ix} - e^{-ix}}{2i} \left( \frac{e^{ix} + e^{-ix}}{2} \right)^2$$

$$= \frac{2}{\pi} \int_{-\infty}^{\infty} dx \ \frac{e^{-ix \, k}}{x} \frac{e^{ix} - e^{-ix}}{2i} \left( \frac{e^{i2x} + e^{-i2x} + 2}{4} \right)$$

$$= \frac{1}{4i\pi} \int_{-\infty}^{\infty} dx \ \frac{e^{-ix \, k}}{x} \left( e^{i3x} - e^{ix} + e^{-ix} - e^{-i3x} + 2e^{ix} - 2e^{-ix} \right)$$

$$= \frac{1}{4i\pi} \int_{-\infty}^{\infty} dx \ \left( \frac{e^{i3x}}{x} + \frac{e^{ix}}{x} - \frac{e^{-ix}}{x} - \frac{e^{-i3x}}{x} \right)$$

$$= \frac{1}{4i\pi} \int_{-\infty}^{\infty} dx \ \left( \frac{e^{ix(3-k)}}{x} + \frac{e^{ix(1-k)}}{x} - \frac{e^{ix(-1-k)}}{x} - \frac{e^{ix(-3-k)}}{x} \right)$$

$$= \frac{1}{4i\pi} \int_{\sigma}^{\infty} dx \ \left( \frac{e^{iz(3-k)}}{z} + \frac{e^{iz(1-k)}}{z} - \frac{e^{iz(-1-k)}}{z} - \frac{e^{iz(-3-k)}}{z} \right),$$

dove nell'ultimo passaggio abbiamo portato l'integrale nel piano complesso, e  $\sigma$  è il cammino di integrazione sulla retta reale, da  $-\infty$  a  $\infty$ . Per risolvere l'integrale spezzandolo nei vari termini, dobbiamo prima deformare il cammino  $\sigma$ , per evitare così di passare per il punto z=0 (che è punto regolare dell'integrando di partenza, ma costituisce una singolarità dei vari termini presi separatamente). Chiamando con  $\bar{\sigma}$  un cammino omotopicamente equivalente a  $\sigma$  che non passa per il punto z=0, possiamo scrivere

$$F(k) = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \left( \frac{e^{iz(3-k)}}{z} + \frac{e^{iz(1-k)}}{z} - \frac{e^{iz(-1-k)}}{z} - \frac{e^{iz(-3-k)}}{z} \right)$$

$$= \underbrace{\frac{1}{4i\pi} \int_{\bar{\sigma}} dz \frac{e^{iz(3-k)}}{z}}_{I_3} + \underbrace{\frac{1}{4i\pi} \int_{\bar{\sigma}} dz \frac{e^{iz(1-k)}}{z}}_{I_4}$$

$$- \underbrace{\frac{1}{4i\pi} \int_{\bar{\sigma}} dz \frac{e^{iz(-1-k)}}{z}}_{I_3} - \underbrace{\frac{1}{4i\pi} \int_{\bar{\sigma}} dz \frac{e^{iz(-3-k)}}{z}}_{I_4}.$$

L'ultimo passaggio non può essere svolto prima del cambio di cammino  $\sigma \to \bar{\sigma}$ . Facciamo notare che  $\bar{\sigma}$  può essere scelto in modo che passi sia sopra che sotto il punto z=0, basta che non passi per z=0 e che gli integrali  $I_1,I_2,I_3$  e  $I_4$  abbiano tutti lo stesso cammino di integrazione  $\bar{\sigma}$ . Tutti gli integrali sopra hanno la forma

$$I_i = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \ e^{iz \,\alpha_i(k)} \, g(z) \qquad \text{con } \lim_{z \to \infty} g(z) = 0$$

e quindi si possono risolvere utilizando il lemma di Jordan, basta controllare per ogni caso se il cammino di integrazione si deve chiudere sopra  $(\alpha_i(k) > 0)$  oppure sotto  $(\alpha_i(k) < 0)$ . Noi abbiamo

$$\alpha_1(k) = 3 - k$$
,  $\alpha_2(k) = 1 - k$ ,  $\alpha_3(k) = -1 - k$ ,  $\alpha_4(k) = -3 - k$ . (11)

Per k > 3,  $\alpha_i < 0$  in tutti i casi, quindi il cammino si deve chiudere sotto per tutti gli integrali  $I_i$ . Scegliendo  $\bar{\sigma}$  in modo che passi sotto il punto z = 0, abbiamo  $I_1 = I_2 = I_3 = I_4 = 0$ , perchè non ci sono delle singolarità nella regione interna al cammino chiuso. Quindi F(k) = 0 per k > 3.

Per calcolare il caso k < -3, notiamo che la partità di f implica che F(k) deve essere una funzione pari, quindi F(k) per k < -3 è uguale a F(k) per k > 3. Pertanto abbiamo

$$F(k) = 0, \qquad |k| > 3.$$

(2) 
$$1 < |k| < 3$$

Dalla simmetria di f, ci serve solo determinare la trasformata di Fourier

per 1 < k < 3 e il risultato vale anche per -3 < k < -1. Per 1 < k < 3,  $\alpha_1$  è positiva (chiusura sopra), mentre che  $\alpha_2$ ,  $\alpha_3$ ,  $\alpha_4$  sono negative (chiusura sotto). Quindi, scegliendo  $\bar{\sigma}$  che passa sotto la singolarità z = 0, si trova che  $I_2 = I_3 = I_4 = 0$ , mentre

$$I_1 = \frac{1}{4\pi i} \cdot 2\pi i \left\{ \text{Res } \frac{e^{iz(3-k)}}{z} \right\}_{z=0} = \frac{1}{2}$$

Pertanto

$$F(k) = \frac{1}{2}, \qquad 1 < |k| < 3.$$

### (3) |k| < 1

Possiamo controllare direttamente la regione -1 < k < 1. Come prima, partiamo dalle Eq. (11). Per -1 < k < 1,  $\alpha_1$  e  $\alpha_2$  sono entrambe positive (chiusura sopra), mentre che  $\alpha_3$  e  $\alpha_4$  sono negative (chiusura sotto). Scegliendo  $\bar{\sigma}$  passando sotto la singolarità z=0, si trova che  $I_3=I_4=0$ , mentre che  $I_1$  e  $I_2$  hanno un valore diverso da zero. Nella parte (c) avevamo già trovato  $I_1=1/2$ . Basta solo calcolare il contributo di  $I_2$  alla trasformata di Fourier:

$$I_2 = \frac{1}{4\pi i} \cdot 2\pi i \left\{ \text{Res } \frac{e^{iz(1-k)}}{z} \right\}_{z=0} = \frac{1}{2},$$

Pertanto

$$F(k) = I_1 + I_2 = 1,$$
  $|k| < 1.$ 

### (4) $k = \pm 1, \pm 3$

#### METODO I: Dirichlet

Il teorema di Dirichlet per la serie di Fourier vale anche in questo caso:

$$F(k_0) = \frac{1}{2} \left( F(k_0^+) + F(k_0^-) \right),\,$$

con  $F(k_0^+)$  e  $F(k_0^-)$  i limiti di F(k) per  $k \to k_0$  da destra e da sinistra, rispettivamente. Dai nostri risultati per (1),(2) e (3) abbiamo

$$F(k) = \begin{cases} 1, & |k| < 1\\ \frac{1}{2}, & 1 < |k| < 3, \\ 0, & |k| > 3 \end{cases}$$

da cui è facile ottenere il risultato richiesto facendo la media aritmetica tra i limiti da destra e sinistra. Per  $k_0 = \pm 3$  viene F(k) = 1/4, mentre che per  $k_0 = \pm 1$  si ha F(k) = 3/4. Quindi

$$F(k) = \begin{cases} 1, & |k| < 1\\ \frac{3}{4}, & |k| = 1\\ \frac{1}{2}, & 1 < |k| < 3.\\ \frac{1}{4}, & |k| = 3\\ 0, & |k| > 3 \end{cases}$$
 (12)

METODO II: Risolvendo gli integrali  $I_1$ ,  $I_2$ ,  $I_3$ ,  $I_4$ .

Per k = 3 abbiamo

$$I_{1} = \frac{1}{4i\pi} \int_{\bar{\sigma}} \frac{dz}{z}, \qquad I_{2} = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \, \frac{e^{-2iz}}{z}$$
$$I_{3} = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \, \frac{e^{-4iz}}{z}, \qquad I_{4} = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \, \frac{e^{-6iz}}{z}.$$

In questo caso il lemma di Jordan si può utilizzare solo per  $I_2$ ,  $I_3$  e  $I_4$ . In questi casi la chiusura viene sempre fatta sotto. Scegliendo  $\bar{\sigma}$  passando sotto z=0, si trova che  $I_2=I_3=I_4=0$ . Per  $I_1$ , dobbiamo calcolare l'integrale direttamente. Possiamo dividere il cammino di integrazione in tre parti  $\bar{\sigma}_1$ ,  $\bar{\sigma}_2$  e  $\bar{\sigma}_r$  come si mostra nella figura:



Quindi  $I_1$  si può scrivere

$$\begin{split} I_1 &= \frac{1}{4i\pi} \int_{\bar{\sigma}_1} \frac{dz}{z} + \frac{1}{4i\pi} \int_{\bar{\sigma}_2} \frac{dz}{z} + \frac{1}{4i\pi} \int_{\bar{\sigma}_r} \frac{dz}{z} \\ &= \lim_{R \to \infty} \left( \frac{1}{4i\pi} \int_{-R}^{-r} \frac{dx}{x} + \frac{1}{4i\pi} \int_{r}^{R} \frac{dx}{x} \right) + \frac{1}{4i\pi} \int_{\bar{\sigma}_r} \frac{dz}{z} \\ &= \frac{1}{4i\pi} \int_{\bar{\sigma}_r} \frac{dz}{z}, \end{split}$$

dove nell'ultimo passaggio abbiamo usato il fatto che l'integrando 1/x è una funzione dispari. L'integrale di 1/z su un camino di integrazione che gira intorno a z=0 di un angolo  $\phi$  (in senso antiorario) viene  $+i\phi$ . Nel nostro caso

$$\int_{\bar{\sigma}_r} \frac{dz}{z} = \int_{-\pi}^0 \frac{i \, r \, e^{i\theta} d\theta}{r \, e^{\theta}} = i \int_{-\pi}^0 d\theta = i\pi \,. \tag{13}$$

Perciò

$$F(k=3) = I_1 = \frac{1}{4\pi i} i\pi = \frac{1}{4}.$$

Dalla simmetria della F(k) abbiamo quindi

$$F(k) = \frac{1}{4}, \qquad k = \pm 3.$$

Per k = 1 abbiamo

$$I_{1} = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \, \frac{e^{2iz}}{z}, \qquad I_{2} = \frac{1}{4i\pi} \int_{\bar{\sigma}} \frac{dz}{z}$$

$$I_{3} = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \, \frac{e^{-2iz}}{z}, \qquad I_{4} = \frac{1}{4i\pi} \int_{\bar{\sigma}} dz \, \frac{e^{-4iz}}{z}.$$

Solo  $I_1$ ,  $I_3$  e  $I_4$  si possono risolvere con il lemma di Jordan, chiudendo sopra per  $I_1$  e sotto per  $I_3$  e  $I_4$ . Scelgliendo  $\bar{\sigma}$  come prima, passando sotto la singolartà z=0,  $I_3=I_4=0$ . Invece per  $I_1$  e  $I_2$ 

$$I_1 = \frac{1}{4\pi i} 2\pi i \left\{ \text{Res } \frac{e^{2iz}}{z} \right\}_{z=0} = \frac{1}{2}, \qquad I_2 = \frac{1}{4\pi i} \int_{\bar{\sigma}} \frac{dz}{z} = \frac{1}{4\pi i} \int_{\bar{\sigma}_r} \frac{dz}{z} = \frac{1}{4},$$

dove abbiamo usato per  $I_2$  quanto calcolato in Eq. (13). Perciò

$$F(k=1) = I_1 + I_2 = \frac{3}{4},$$

Dalla simmetria di F(k) abbiamo quindi

$$F(k) = \frac{3}{4}, \qquad k = \pm 1.$$

Abbiamo perciò confermato esplicitamente il risultato finale per la trasformata di Fourier mostrato nella Eq. (12)