

Implementation: Policy Improvement

In the last lesson, you learned that given an estimate Q of the action-value function q_{π} corresponding to a policy π , it is possible to construct an improved (or equivalent) policy π' , where $\pi' \geq \pi$.

For each state $s \in \mathcal{S}$, you need only select the action that maximizes the action-value function estimate. In other words,

$$\pi'(s) = rg \max_{a \in \mathcal{A}(s)} Q(s,a)$$
 for all $s \in \mathcal{S}$.

The full pseudocode for **policy improvement** can be found below.

Input: MDP, value function VOutput: policy π'

for
$$s \in \mathcal{S}$$
 do
$$| \begin{array}{c} \mathbf{for} \ a \in \mathcal{A}(s) \ \mathbf{do} \\ | \ Q(s,a) \leftarrow \sum_{s' \in \mathcal{S}, r \in \mathcal{R}} p(s',r|s,a)(r + \gamma V(s')) \\ \mathbf{end} \\ \pi'(s) \leftarrow \arg \max_{a \in \mathcal{A}(s)} Q(s,a) \end{array}$$

Policy Improvement

end return π'

In the event that there is some state $s \in \mathcal{S}$ for which $\arg\max_{a \in \mathcal{A}(s)} Q(s,a)$ is not unique, there is some flexibility in how the improved policy π' is constructed.

In fact, as long as the policy π' satisfies for each $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$:

$$\pi'(a|s) = 0$$
 if $a
ot\in rg \max_{a' \in \mathcal{A}(s)} Q(s,a')$,

it is an improved policy. In other words, any policy that (for each state) assigns zero probability to the actions that do not maximize the action-value function estimate (for that state) is an improved policy. Feel free to play around with this in your