Package 'MLmetrics'

April 14, 2024

April 14, 2024
Type Package
Title Machine Learning Evaluation Metrics
Version 1.1.3
Description A collection of evaluation metrics, including loss, score and utility functions, that measure regression, classification and ranking performance.
<pre>URL https://github.com/yanyachen/MLmetrics</pre>
<pre>BugReports https://github.com/yanyachen/MLmetrics/issues</pre>
Depends R (>= 2.10)
Imports stats, utils, ROCR
Suggests e1071
License GPL-2
RoxygenNote 5.0.1
NeedsCompilation no
Author Yachen Yan [aut, cre]
Maintainer Yachen Yan <yanyachen21@gmail.com></yanyachen21@gmail.com>
Repository CRAN
Date/Publication 2024-04-13 23:50:05 UTC
R topics documented:
Accuracy
AUC
ConfusionMatrix
F1_Score
FBeta_Score
Gini
KS_Stat
LiftAUC

2 Accuracy

	LogLoss	9
	MAE	9
	MAPE	0
	MedianAE	1
	MedianAPE	1
	MLmetrics	2
	MSE	2
	MultiLogLoss	3
	NormalizedGini	3
	Poisson_LogLoss	4
	PRAUC	4
	Precision	5
	R2_Score	6
	RAE	6
	Recall	
	RMSE	
	RMSLE	8
	RMSPE	
	RRSE	
	Sensitivity	_
	Specificity	
	ZeroOneLoss	1
Index	2	3
		_

Accuracy

Accuracy

Description

Compute the accuracy classification score.

Usage

Accuracy(y_pred, y_true)

Arguments

y_pred Predicted labels vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

Accuracy

Area_Under_Curve 3

Examples

Area_Under_Curve

Calculate the Area Under the Curve

Description

Calculate the area under the curve.

Usage

```
Area_Under_Curve(x, y, method = c("trapezoid", "step", "spline"),
    na.rm = FALSE)
```

Arguments

X	the x-points of the curve
у	the y-points of the curve
method	can be "trapezoid" (default), "step" or "spline"
na.rm	a logical value indicating whether NA values should be stripped before the computation proceeds

Value

Area Under the Curve (AUC)

```
x <- seq(0, pi, length.out = 200)
plot(x = x, y = sin(x), type = "1")
Area_Under_Curve(x = x, y = sin(x), method = "trapezoid", na.rm = TRUE)</pre>
```

4 ConfusionMatrix

AUC

Area Under the Receiver Operating Characteristic Curve (ROC AUC)

Description

Compute the Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Usage

```
AUC(y_pred, y_true)
```

Arguments

y_pred Predicted probabilities vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

Area Under the ROC Curve (ROC AUC)

Examples

ConfusionMatrix

Confusion Matrix

Description

Compute confusion matrix to evaluate the accuracy of a classification.

Usage

```
ConfusionMatrix(y_pred, y_true)
```

Arguments

y_pred Predicted labels vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

a table of Confusion Matrix

F1_Score 5

Examples

F1_Score

F1 Score

Description

Compute the F1 Score.

Usage

```
F1_Score(y_true, y_pred, positive = NULL)
```

Arguments

y_true Ground truth (correct) 0-1 labels vector

y_pred Predicted labels vector, as returned by a classifier

positive An optional character string for the factor level that corresponds to a "positive" result

Value

F1 Score

6 GainAUC

FBeta_Score

F-Beta Score

Description

Compute the F-Beta Score

Usage

```
FBeta_Score(y_true, y_pred, positive = NULL, beta = 1)
```

Arguments

y_true Ground truth (correct) 0-1 labels vector

y_pred Predicted labels vector, as returned by a classifier

positive An optional character string for the factor level that corresponds to a "positive"

result

beta Weight of precision in harmonic mean

Value

F-Beta Score

Examples

GainAUC

Area Under the Gain Chart

Description

Compute the Area Under the Gain Chart from prediction scores.

Usage

```
GainAUC(y_pred, y_true)
```

Arguments

y_pred	Predicted	probabilities	vector.	as returned b	ov a classifier

y_true Ground truth (correct) 0-1 labels vector

Gini 7

Value

Area Under the Gain Chart

Examples

Gini

Gini Coefficient

Description

Compute the Gini Coefficient.

Usage

```
Gini(y_pred, y_true)
```

Arguments

y_pred Predicted probabilities vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

Gini Coefficient

8 LiftAUC

KS_Stat

Kolmogorov-Smirnov Statistic

Description

Compute the Kolmogorov-Smirnov statistic.

Usage

```
KS_Stat(y_pred, y_true)
```

Arguments

y_pred Predicted probabilities vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

Kolmogorov-Smirnov statistic

Examples

LiftAUC

Area Under the Lift Chart

Description

Compute the Area Under the Lift Chart from prediction scores.

Usage

```
LiftAUC(y_pred, y_true)
```

Arguments

y_pred Predicted probabilities vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

Area Under the Lift Chart

LogLoss 9

Examples

LogLoss

Log loss / Cross-Entropy Loss

Description

Compute the log loss/cross-entropy loss.

Usage

```
LogLoss(y_pred, y_true)
```

Arguments

y_pred Predicted probabilities vector, as returned by a classifier

y_true Ground truth (correct) 0-1 labels vector

Value

Log loss/Cross-Entropy Loss

Examples

MAE

Mean Absolute Error Loss

Description

Compute the mean absolute error regression loss.

Usage

```
MAE(y_pred, y_true)
```

10 MAPE

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Mean Absolute Error Loss

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MAE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

MAPE

Mean Absolute Percentage Error Loss

Description

Compute the mean absolute percentage error regression loss.

Usage

```
MAPE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Mean Absolute Percentage Error Loss

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MAPE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

MedianAE 11

MedianAE

Median Absolute Error Loss

Description

Compute the median absolute error regression loss.

Usage

```
MedianAE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Median Absolute Error Loss

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MedianAE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

MedianAPE

Median Absolute Percentage Error Loss

Description

Compute the Median absolute percentage error regression loss.

Usage

```
MedianAPE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Median Absolute Percentage Error Loss

12 MSE

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MedianAPE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

MLmetrics

MLmetrics: Machine Learning Evaluation Metrics

Description

A collection of evaluation metrics, including loss, score and utility functions, that measure regression and classification performance.

MSE

Mean Square Error Loss

Description

Compute the mean squared error regression loss.

Usage

```
MSE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Mean Square Error Loss

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
MSE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

MultiLogLoss 13

MultiLogLoss

Multi Class Log Loss

Description

Compute the multi class log loss.

Usage

```
MultiLogLoss(y_pred, y_true)
```

Arguments

y_pred Predicted probabilities matrix, as returned by a classifier

y_true Ground truth (correct) labels vector or a matrix of correct labels indicating by

0-1, same format as probabilities matrix

Value

Multi Class Log Loss

Examples

```
data(iris)
svm.model <- e1071::svm(Species~., data = iris, probability = TRUE)
pred <- predict(svm.model, iris, probability = TRUE)
MultiLogLoss(y_true = iris$Species, y_pred = attr(pred, "probabilities"))</pre>
```

NormalizedGini

Normalized Gini Coefficient

Description

Compute the Normalized Gini Coefficient.

Usage

```
NormalizedGini(y_pred, y_true)
```

Arguments

y_pred Predicted labels vector, as returned by a model

y_true Ground truth (correct) labels vector

Value

Normalized Gini Coefficient

14 PRAUC

Examples

Poisson_LogLoss

Poisson Log loss

Description

Compute the log loss/cross-entropy loss.

Usage

```
Poisson_LogLoss(y_pred, y_true)
```

Arguments

y_pred Predicted labels vector, as returned by a model

y_true Ground truth (correct) labels vector

Value

Log loss/Cross-Entropy Loss

Examples

PRAUC

Area Under the Precision-Recall Curve (PR AUC)

Description

Compute the Area Under the Precision-Recall Curve (PR AUC) from prediction scores.

Usage

```
PRAUC(y_pred, y_true)
```

Precision 15

Arguments

y_pred Predicted probabilities vector, as returned by a classifier y_true Ground truth (correct) 0-1 labels vector

Value

Area Under the PR Curve (PR AUC)

Examples

Precision

Precision

Description

Compute the precision score.

Usage

```
Precision(y_true, y_pred, positive = NULL)
```

Arguments

y_true Ground truth (correct) 0-1 labels vector
y_pred Predicted labels vector, as returned by a classifier
positive An optional character string for the factor level that corresponds to a "positive" result

Value

Precision

16 RAE

R2_Score

R-Squared (Coefficient of Determination) Regression Score

Description

Compute the R-Squared (Coefficient of Determination) Regression Score.

Usage

```
R2_Score(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

R^2 Score

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
R2_Score(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

RAE

Relative Absolute Error Loss

Description

Compute the relative absolute error regression loss.

Usage

```
RAE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Relative Absolute Error Loss

Recall 17

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RAE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

Recall

Recall

Description

Compute the recall score.

Usage

```
Recall(y_true, y_pred, positive = NULL)
```

Arguments

y_true	Ground truth (correct) 0-1 labels vector
y_pred	Predicted labels vector, as returned by a classifier
positive	An optional character string for the factor level that corresponds to a "positive" result

Value

Recall

18 RMSLE

RMSE

Root Mean Square Error Loss

Description

Compute the root mean squared error regression loss.

Usage

```
RMSE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Root Mean Square Error Loss

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RMSE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

RMSLE

Root Mean Squared Logarithmic Error Loss

Description

Compute the root mean squared logarithmic error regression loss.

Usage

```
RMSLE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Root Mean Squared Logarithmic Error Loss

RMSPE 19

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RMSLE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

RMSPE

Root Mean Square Percentage Error Loss

Description

Compute the root mean squared percentage error regression loss.

Usage

```
RMSPE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

Value

Root Mean Squared Percentage Error Loss

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RMSPE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

RRSE

Root Relative Squared Error Loss

Description

Compute the root relative squared error regression loss.

Usage

```
RRSE(y_pred, y_true)
```

Arguments

y_pred Estimated target values vector

y_true Ground truth (correct) target values vector

20 Sensitivity

Value

Root Relative Squared Error Loss

Examples

```
data(cars)
reg <- lm(log(dist) ~ log(speed), data = cars)
RRSE(y_pred = exp(reg$fitted.values), y_true = cars$dist)</pre>
```

Sensitivity

Sensitivity

Description

Compute the sensitivity score.

Usage

```
Sensitivity(y_true, y_pred, positive = NULL)
```

Arguments

y_true	Ground truth (correct) 0-1 labels vector
y_pred	Predicted labels vector, as returned by a classifier
positive	An optional character string for the factor level that corresponds to a "positive" result

Value

Sensitivity

Specificity 21

Specificity	Specificity
-------------	-------------

Description

Compute the specificity score.

Usage

```
Specificity(y_true, y_pred, positive = NULL)
```

Arguments

y_true Ground truth (correct) 0-1 labels vector

y_pred Predicted labels vector, as returned by a classifier

positive An optional character string for the factor level that corresponds to a "positive"

result

Value

Specificity

Examples

ZeroOneLoss

Normalized Zero-One Loss (Classification Error Loss)

Description

Compute the normalized zero-one classification loss.

Usage

```
ZeroOneLoss(y_pred, y_true)
```

Arguments

y_pred	Predicted	labels vect	or, as return	ed by a c	lassifier

y_true Ground truth (correct) 0-1 labels vector

ZeroOneLoss

Value

Zero-One Loss

Index

```
Accuracy, 2
Area_Under_Curve, 3
AUC, 4
ConfusionMatrix, 4
F1_Score, 5
FBeta_Score, 6
GainAUC, 6
Gini, 7
KS_Stat, 8
LiftAUC, 8
LogLoss, 9
MAE, 9
MAPE, 10
MedianAE, 11
MedianAPE, 11
MLmetrics, 12
MLmetrics-package (MLmetrics), 12
MSE, 12
MultiLogLoss, 13
NormalizedGini, 13
Poisson_LogLoss, 14
PRAUC, 14
Precision, 15
R2_Score, 16
RAE, 16
Recall, 17
RMSE, 18
RMSLE, 18
RMSPE, 19
RRSE, 19
Sensitivity, 20
Specificity, 21
ZeroOneLoss, 21
```