CUHK(SZ) Supercomputing Group Introduction

Vito Wu

The Chinese University of Hong Kong, Shenzhen

October 11, 2020

Agenda

- What is Supercomputing Challenge
- Ice Breaking
- How We Conduct Our Research/Study
- Miscellaneous FAQ

Definition

- A supercomputer is a computer with a high level of performance as compared to a general-purpose computer.
- The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS).
- Since 2017, there are supercomputers which can perform over 10¹⁷ FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS).

- Sunway Taihulight (2016-2018)
 - DEC Alpha 64 Architecture (RISC)
 - 40960 Sunway Processor (260 cores on each die, 10649600 cores in total)
 - R_{Peak}: 125.4359 PFlops
 - R: 93.0146 PFlops

- **Summit** (2018-2020)
 - CPU (POWER9) + GPU (NVLink)
 - 4608 Computation nodes
 - 9216 POWER9 CPU (22 cores on each die)
 - 27648 NVIDIA Tesla V100 GPU
 - R: 200 PFlops

- Fugaku (2020-)
 - ARM Architecture (A64 SoC)
 - 158976 computation nodes
 - R_{Peak}: 1000 PFlops
 - R: 415 PFlops

- The Grand Challenges in Computing
 - Physical Simulations
 - N-body Simulation
 - Weather Forecasting
 - Quantum Simulation
 - Molecular Model
 -
 - Machine Learning and Deep Learning Tasks
 - Cryptography and Cryptoanalysis
 -
- Criteria: Performance and Power

- Main Challenge: How to accomplish computation tasks as fast as possible
 - Level 1: Implementation level improvement
 - ▶ Reduce the computation complexity, e.g. $\mathcal{O}(n^2)$ to $\mathcal{O}(n \log n)$
 - ▶ Improve data locality (Register, L1/L2/L3 Cache, Memory, Disk, etc.)
 - Exploit advanced hardware APIs

- Main Challenge: How to accomplish computation tasks as fast as possible
 - Level 1: Implementation level improvement
 - ▶ Reduce the computation complexity, e.g. $\mathcal{O}(n^2)$ to $\mathcal{O}(n \log n)$
 - ▶ Improve data locality (Register, L1/L2/L3 Cache, Memory, Disk, etc.)
 - Exploit advanced hardware APIs
 - Level 2: System level improvement
 - ▷ Compiler (improve how the compiler compiles high level codes into low level)
 - ▷ Operating System (improve how the OS manages memory and processes)
 - ▶ Architectural Design (improve the implementation of ISA)

- Main Challenge: How to accomplish computation tasks as fast as possible
 - Level 1: Implementation level improvement
 - ▶ Reduce the computation complexity, e.g. $\mathcal{O}(n^2)$ to $\mathcal{O}(n \log n)$
 - ▶ Improve data locality (Register, L1/L2/L3 Cache, Memory, Disk, etc.)
 - Exploit advanced hardware APIs
 - Level 2: System level improvement
 - ▷ Compiler (improve how the compiler compiles high level codes into low level)
 - Departing System (improve how the OS manages memory and processes)
 - ▶ Architectural Design (improve the implementation of ISA)
 - Level 3: Hardware level improvement
 - More CPU Cores, more GPU cards, use InfiniBand, etc.
 - ▶ Equip better cooling system
 - ▶ Tuning on BIOS
 - **>**

- Main Challenge: How to accomplish computation tasks as fast as possible
 - Level 1: Implementation level improvement
 - ▶ Reduce the computation complexity, e.g. $\mathcal{O}(n^2)$ to $\mathcal{O}(n \log n)$
 - ▶ Improve data locality (Register, L1/L2/L3 Cache, Memory, Disk, etc.)
 - Exploit advanced hardware APIs
 - Level 2: System level improvement
 - ▷ Compiler (improve how the compiler compiles high level codes into low level)
 - ▷ Operating System (improve how the OS manages memory and processes)
 - ▶ Architectural Design (improve the implementation of ISA)
 - Level 3: Hardware level improvement
 - More CPU Cores, more GPU cards, use InfiniBand, etc.
 - Equip better cooling system
 - ▶ Tuning on BIOS
 - ▶
 - Level 4: Regression (Perf and restart from Level 1)

- Rune Knowledge in HPC
 - Being familiar with C/C++ programming(CSC3002)
 - Being familiar with Hardware API / Libraries (Assembly, SIMD, CUDA, ...)
 - Basic Knowledge on Data Structures and Algorithms(CSC3100)
 - Solid Knowledge on Computer Arch(CSC3050), OS(CSC3150), Principles of Compilation(CSC????)
 - Parallel Algorithms Design(CSC4005)
 - Computer Networks
 - Experience in basic configuration and tools on Linux
 - other domain knowledge

Ice Breaking

Team Introduction

- Director: Prof. Yeh-Ching CHUNG
- UG: 3 Senior, 5 Junior, 3 Sophomore (most of us are CSE major)

Prof. Yeh-Ching Chung

Dr. Yong-Gang Li

Wei-Dong Gao

Xuan-Chen Wu

Ze-Yin Zhang Hao-Tian Xie Jie-Kun Yang Su-Pei Yang

How We Conduct Our Research/Study

Objective:

- Participate in Top-tier Student Cluster Competitions
- Study on state-of-the-art HPC knowledge (HW/SW APIs, parallel programming paradigms, optimization techniques, etc.)
- Learn how to assemble and configure a cluster system
- (extra) Share valuable ideas and conduct research work

How We Conduct Our Research/Study

Target Competitions

 ASC Student Supercomputer Challenge (East Asia, year-round, 1-5, has hardware support)

http://www.asc-events.org/

 ISC Student Cluster Competition (Europe, year-round, 6-9, no hardware support)

https://www.isc-hpc.com/student-cluster-competition.html

 SC Student Cluster Competition (US, year-round, 11-12, no hardware support)

https://sc20.supercomputing.org/

General Procedure of Supercomputing Competition

- Setup a cluster (Configure CPU, GPU, memory, disk, network, OS, etc)
- 2 Run 2-3 widely-used benchmarks (HPCC, HPCG, HPL, etc)
- Run and optimize 2-6 HPC applications
- Obtain a score according to given criteria

How We Conduct Our Research/Study

Seminars

- Hosts: Supercomputing Group Members, Researchers in Campus
- Time: Sunday Afternoon (if no other errands)
- Topics:
 - 1 Tutorial (introduce PL, APIs, etc)
 - Case Study (on specific problem or the state-of-the-art implementation)
 - Research Panel (relates to HPC and computer system)
- Incoming Seminars
 - 1 Use SIMD to Accelerate Programs (10.11)
 - ② Optimizing on the Cache Performance (10.18)
 - GPU Architecture and GPU Programming (10.25)
 - QUEST Quantum Computer Simulator (11.1)
 - **⑤**

Misc FAQ

What we could offer:

- Complementary CS/CE stack knowledge. (computer arch, computer network, parallel programming on heterogeneous systems,)
- Architectural thinking to leverage problem solving and system design.
- Rich opportunity to access state-of-the-art implementations on diverse and active research domains.
 (include but not limit to, mathematics, physics, aerospace engineering,
- quantum computer science, cryptography and cryptoanalysis,)

 Friends and peers who are able to establish collaborative connections.