

Abschlusspräsentation 21.10.2014

Team FAISE:

- Berthe Ongnomo,
- Chancelle Merveille Tematio Ymele
- Nagihan Aydin
- Michael Goldenstein
- · Raschid Alkhatib
- Matthias Aden
- Christopher Schwarz
- Simon Jakubowski
- Jannik Flessner
- Malte Falk
- Jan-Gerd Meß
- Jan Paul Vox

Universität Oldenburg Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften Abteilung Wirtschaftsinformatik Systemanalyse und -Optimierung Ammerländer Heerstr. 114-118 26129 Oldenburg Tel. (0441) 798-4480 Fax (0441) 798-4472

www.wi-ol.de

- Probleme mit statischen Materialflusssystemen
 - Schlechte Skalierbarkeit
 - Schlechte Erweiterbarkeit
 - Schlechtes Anpassungsverhalten
 - Single-Point-Of-Failure
- Flexible fahrerlose Transportsysteme
 - Gute Skalierbarkeit
 - Robustheit durch Redundanz
 - Hohe Reaktivität durch dezentrale Steuerung

- Simulation einer dezentralen, agentenbasierten Logistikhalle
- Aufbau einer physischen Einheit zur Darstellung eines Teilsystems der Simulation
 - AGVs (Transportroboter)
 - Schwarmverhalten
 - Lagerrampen (Zwischenlagerung)
 - Stetigförderer (Ein-Ausgänge)
- Selbständige Kommunikation zwischen verschiedenen Agenten auf den Komponenten sollen autonomes Verhalten ermöglichen

Stand der Technik

HHLA und Gottwald

Ziel Projektgruppe FAISE

- Realisierung eines
 Materialflusssystems auf Agentenbasis
- Simulation eines dynamisch skalierbaren Umschlaglagers mit Einsatz von AGVs
 - Schwerpunkt auf Pathfinding und Agentenkommunikation
- Realisierung einer physischen Zelle bestehend aus min. einer Rampe und einem AGV für den Transport
 - Materialflusssystem auf Mikrocontrollerbasis (Micaz)
- Autonom agierende AGVs
 - Selbständige Navigation und Lokalisation
 - Paketübergabe
 - Statusrückmeldung an Materialflusssystem

Uni Oldenburg

Agenda

1. Einleitung

2. Systembeschreibung

- Komponenten
- Ablaufszenario
- Agentenbeschreibung
- Teilgruppen
- 3. Teilgruppen Simulation / Flow / Drive
- 4. Zusammenfassung

Systembeschreibung - Komponenten

Automatic Guide Vehicle (Volksbot)

- Zentrale Steuereinheit
- Hubeinheit
- Fördereinheit
- Fahreinheit
- Laserscanner

FIFO-Lager

Stationärer Lagerplatz (Rampe)

- Lichtschranken
- Bolzen

Im nächsten Schritt:

- Steigförderer
- STASH-Controller

Ablaufszenario (Simulation)

Bsp. Konfiguration:

- 2 Eingangsrampen
- 3 Zwischenlagerrampen
- 2 Ausgangsrampen
- 2 Volksbots

Basiszustand: System wartet auf Auftrag, Volksbots parken + laden

Ablauf:

- Paket wird am Eingang verarbeitet
- Volksbot berechnet Energieaufwand
- 3. Volksbot lädt Paket auf
- Paket wird am Ausgang/ Ziel abgeladen

Eingang

Uni Oldenburg

Systembeschreibung - Multiagentensystem

- sehr differenzierte Aufgaben für jede einzelne Komponente
- Ziel: Einfache Erweiterbarkeit, kosten- und energieeffiziente Hardware
- Lösung: Repräsentation der Ablauflogik mithilfe von Agenten
- Probleme
 - beschränkte Ressourcen
 - Vielzahl an Agenten / Agententypen

Systembeschreibung - Agenten

Routing Agent

- findet Wege (Hops) durch das System
- führt Auktionen zwischen Eingangsrampe und Zwischenlagerrampen und Rampen und Volksbots durch

Plattform Agent

- Abhängig vom Modul (Rampe, Stetigförder, AGV)
- steuert Aktorik und Sensorik

Order Agent

- Verteilter Materialflussrechner
- Distribution von Aufträgen

Paket Agent

- repräsentiert physisches Paket
- kennt sein Ziel

Systembeschreibung - Agenten

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni 10

Agenda

- 1. Einleitung
- 2. Systembeschreibung

3. Teilgruppen Simulation / Flow / Drive

- Anforderungen
- Konzeption
- Demo
- Herausforderungen
- Ausblick
- 4. Zusammenfassung

Team Simulation:

- Nagihan Aydin
- Raschid Alkhatib
- · Matthias Aden
- Christopher Schwarz
- Simon Jakubowski

Anforderungen – Lastenheft

- Konzeption und Implementierung der / des
 - Agenten
 - Ablaufkonzepts
 - Agentenkommunikation
- Verhalten der Virtuelle Akteure analog zu den physischen Akteuren
- Simulation soll skalierbar sein
- Generierung von Aufträgen
- Statistiken

Simula	tion Auft	tragsliste St	tatistik
Zeit	Paket	Ziel	Aktion
1	1	Eingang	-
8	1	Ausgang	•
2	2	Eingang	-
12	2	Ausgang	
4	3	Eingang	-
11	3	Ausgang	-
6	4	Eingang	-
10	4	Ausgang	
7	5	Eingang	
20	5	Ausgang	•
4 4 Aufträge	1-10 of 100	hinzufügen	
	Mod	ellelemente	
		Rampe Fahrzeug	
	1	Wand	

Technologieüberblick

Interaktion der Komponenten

8. Liefert Visualisierungsdaten

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni Oldenburg 14

Agententypen

15

- Jede Rampe besitzt einen
 - Paket- , Order-, Routing- und Plattformagenten
- Jedes Fahrzeug besitzt einen
 - Paket- , Routing- und Plattformagenten
- Plattform und Routingagenten sind unterschiedlich je nach Akteur
- JobAgent zur Verteilung der Aufträge
 - Eingehender Auftrag → Eingangsrampe
 - Ausgehender Auftrag → Ausgangsrampe
- StatistikAgent zur Auswertung von Simulationsläufen

Demo Pathfinding

Live Demo der Simulation

Herausforderungen / Schwierigkeiten

- Komplexität der Kommunikation und der Vielzahl an Agenten
- Debugging-Probleme
- Entwicklung der Agenten mit mehreren Personen

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni Oldenburg 18

- Dynamisches Hinzufügen von Bots und Aufträgen zur Simulationslaufzeit
- Kollisionsvermeidung der Fahrzeuge
- Genauere Zeitplanung für die Aufträge
- erweitertes Schwarmverhalten
- Migration von JADE auf JASON (Scheduler)

Agenda

- 1. Einleitung
- 2. Systembeschreibung

3. Teilgruppen Simulation / Flow / Drive

- Anforderungen
- Konzeption
- Herausforderungen
- Ausblick
- 4. Zusammenfassung

Team Flow:

- Chancelle Merveille Tematio Ymele
- Malte Falk
- · Jan-Gerd Meß

Anforderungen

Hardware

- MICAz-Module mit Contiki OS
- Korrekte Ansteuerung der Bolzen und Lichtschranken
- Kommunikation mit den Volksbots

Multiagentensystem auf Mikrocontroller

- Vollständiges MAS
- Agenten kommunizieren plattformübergreifend

Reduzierter Test-Aufbau

- eine Rampe, ein Volksbot
- vollständige Kommunikation über Agentennachrichten

Konzeption I - Rampen

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni Oldenburg 22

Konzeption II - Volksbots

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni Oldenburg 23

Kommunikationsstack

FAISE Radio Driver

FAISE Network Flooding:

- Source- und Message-ID
- Time-To-Live
- Broadcast

Agenten-Nachrichten

25

Dest	Source	Priority	Туре	AgentType
2	2	1	2	2

Conversation-ID	Message-ID	Data Length	Data
3	2	1	0-23

Paket-Übergabe

- Nachricht mit Paket-ID und Ziel
- Terminierung & erneute Initialisierung

Herausforderungen & Ausblick

Herausforderungen

- geringer Arbeitsspeicher (2KB)
- zu geringe Sendeleistung
- Debugging in verteilten Systemen

Ausblick

- Auktionen für Zwischenlager-Rampen
- Erweitertes Routing
 - Zeitslots & Reservierung
 - Dynamische Routenanpassung
- Schutz vor bösartigen Agenten
- Allg. Robustheit

Agenda

- 1. Einleitung
- 2. Systembeschreibung

3. Teilgruppen Simulation / Flow / Drive

- Anforderungen
- Konzeption
- Herausforderungen
- Ausblick
- Demo
- 4. Zusammenfassung

Team Drive:

- Berthe Ongnomo,
- Michael Goldenstein
- Jannik Flessner
- Jan Paul Vox

Anforderungen

Volksbot

- Linux mit ROS
- Laserscanner Sick LSM100, Fahreinheit, Fördereinheit
- Kommunikation mit Materialfluss (MICAz)

Auftragsverwaltung

- Aufträge annehmen und in Ziel umsetzen
- Födereinheit für Paketabgabe übergabe vorbereiten

Navigation

- Verwendung von Umgebungskarte
- Routenplanung mit Dijkstra-Algorithmus
- Echtzeit Lokalisation mit AMCL (Adaptiv Monte Carlo Lokalisation) Odometrie + Laserscan

28

Konzeption I

Konzeption II

Herausforderung/ Ausblick

Herausforderung

- Fehleranfälligkeit
 Odometrieberechnung
 - Abhilfe durch AMCL
- Initialisierung der Maxon Controller
 - Minimale Abweichungen führen zu Systemabstürzen
- Parametrisierung
 - Balance zwischen
 Geschwindigkeit und
 Genauigkeit
- Programmierung mit Hinblick auf CPU-Auslaustung
 - Multithreading

Ausblick

- Lokalisationsgenauigkeit
 - Parametrisierung
- Bahnplanung
- Energiemanagement
 - Automatisches Laden
- Kostenberechnung
- Schwarmverhalten

Ablauf

- Volksbot wird lokalisiert und wartet auf Auftrag.
- Registrierung der Pakete im System (Gateway).
- 3. Volksbot fährt Rampe A an und nimmt Paket auf.
- 4. Volksbot fährt Rampe B an und gibt Paket ab.
- 5. Volksbot fährt Rampe B an und nimmt Paket auf.
- 6. Volksbot fährt Rampe A an und gibt Paket ab.

Agenda

- 1. Einleitung
- 2. Systembeschreibung
- 3. Teilgruppen Simulation / Flow / Drive

4. Zusammenfassung

- Fazit
- Ausblick (FAISE II)

Zusammenfassung / Fazit

 Wertvolle Kenntnisse und Erfahrungen Projektmanagement und SE

Weekly Scrums

Disjunkte Aufgabenstellung

 Simulation und Abbildung in physischer Zelle wurde realisiert

Zusammenfassung / Ausblick

Entwicklung eines Hybridmodus

Zusammenfassung / Ausblick

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni Oldenburg 36

Zeit für Fragen!

Quellen von Abbildungen

[ROT] roterfaden-design.de, Roter Faden, 2014.

http://www.roterfaden-design.de/bilder/logo2.gif, (Zugriff am: 26.05.2014)

[RA] adapttechit.com, ACD, 2014.

http://www.adapttechit.com/uploads/2/7/7/9/27796063/7505215.jpg?433, (Zugriff am: 20.10.2014)

jade.tilab.com, Jade, 2014 [JAD]

http://jade.tilab.com/, (Zugriff am: 20.10.2014)

[MIC] cmt-gmbh.de, MICAz, 2014.

http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/Images/MICAz_gross.jpg,

(Zugriff am 20.10.2014)

[KOM] reel-gmbh.de, Bild Navigation, 2014.

http://www.reel-gmbh.de/assets/images/Bild-NavigationNEU.jpg, (Zugriff am: 20.10.2014)

[BUG] blogspot.com, Debugging, 2014.

http://2.bp.blogspot.com/-bnnb1cJVe1Y/U3-

8IYYUsoI/AAAAAAAAGTI/khJ1Qm1pysY/s1600/400px-Logic_Debugging.png,

(Zugriff am: 21.10.2014)

[ROS] ros.org, Logo, 2014.

http://www.ros.org/, (Zugriff am 21.10.2014)

ANHANG

Projektgruppe FAISE 21.10.2014 Abschlusspräsentation Uni Oldenburg 39

1. Einleitung

- Motivation
- Problemstellung
- Vision

2. Systembeschreibung

- Komponenten
- Ablaufszenario
- Agentenbeschreibung
- Teilgruppen

3. Teilgruppen Simulation / Flow / Drive

- Anforderungen
- Konzeption
- Demo
- Herausforderungen
- Ausblick

4. Zusammenfassung

- Ausblick FAISE II
- Fazit

Anforderungen Simulation

- Realisierung einer Software, die eine Simulation analog zum physisch vorhandenen System ermöglicht
- Simulation soll dynamisch skalierbar sein
 - Anzahl Bots
 - Pathfinding-Algorithmen
- Anpassbare Simulationsgeschwindigkeit
- AGV soll bei der Erstellung eines Angebots seine Reichweite miteinbeziehen
- Festhalten von Simulationswerten in Statistiken
 - Durchlaufzeit für einen Satz von Aufträgen
 - Auslastung der AGV

Anforderungen Simulation (Forts.)

- Zwei Modi
 - Rein virtueller Modus
 - Selbstkonfigurierbare Simulation
 - Hybrider Modus
 - Visualisierung der physikalischen Zelle in einem Teilbereich
- Software soll als Client-Server realisiert werden, weil
 - Plattformunabhängige Entwicklung
 - Einfache, großflächige Verteilung möglich
 - Einheitliche Wartung
 - Alle Nutzer haben einheitliche Version
 - Bereitstellung von Statistiken und Szenarien für mehrere Benutzer
 - Kapselung der Kommunikation mit der physischen Zelle

Weg- / Netzplanung

44

- Wege Streckennetz
- Koordinatensystem
- Potentialfeld

S	*	11	10	9	8	7	6	5
	11	10	Ø	ω	1	£	5	4
	10	9	8	7	6	15	4	თ
	9	8	/ H	6	5	4	3	2
	ω	7	G	5	4	3	2	+

#	11	10	9	2000	uituu	∞	5
11	10	9	œ		Н,	8	4
10	00	00	00			∞	3
9	00	H		5	4	3	2
8	7	6	5	4	3	2	+

S

Suchalgorithmen

- Testläufe mit Breiten / Tiefensuche
- A* Suchalgorithmus
 - Verfeinerung → Theta* Suchalgorithmus
- Probleme:
 - Deadlocks
 - Neuplanung
 - Sackgassen
 - Energieeffizienz
- Kollisionsvermeidung
 - Bahnreservierung
 - Laserscann zur Erkennung dynamischer Objekte
 - Vorfahrts- / Prioritätenregelung

