第11章 APB(クロック・リセット)制御

11.1 概要

NPPFAHBAPBPERIV20(以降、APB-SSと略します)は、AHBAPBブリッジ、APB周辺マクロを内蔵したサブシステムです。

11.1.1 特徴

APB-SS は以下のマクロを搭載しています。

- ・32 ビット精度 APB-SS タイマ (Interval Timer)
- ·UART
- · CSI
- <u>J2C</u>
- ・AHBAPB ブリッジ

11.1.2 準拠規格

- · AMBA3 AHB Lite
- · AMBA3 APB
- ・ I2C バスフォーマット(Philips 社 1995 年 4 月発行「The I2C-bus and how to use it」)。

書式変更: フォント : 太字

削除: コンペア・タイマ

(書式変更: フォント : 太字

削除: IIC

削除:1

削除: I²C-BUS SPECIFICATION 1995 Updata

削除: <#>I2S bus specification Philips Semiconductors (February 1986) .

11.2 レジスタ

11.2.1 レジスター覧

本 APB-SS のレジスタの一覧を示します。 R/W 欄の記号は以下の動作になります。

R/W:リード・ライト可能

R:リードのみ可能

W: ライトのみ可能(リードした場合は **0000_0000H** が読み出されます)

表 11-1 レジスター覧(1/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
APB-SS	EFFF_0200H	APB-SS クロック制御レジスタ	ACC	R/W	FFFF_FFFFH	32 ビット
クロック制御	EFFF_0204H	予約領域 <mark>生2</mark>	_	_	不定	_
	EFFF_0210H	APB-SS ソフトウエア・リセット・レジスタ	ASR	R/W	FFFF_FFFFH	32 ビット
APB-SS リセット	EFFF_0214H	予約領域 <mark>生2</mark>	_	_	不定	_
	EFFF_0220H EFFF_023FH	未使用領域 <mark>建</mark> 1		_	不定	_

注 1 未使用領域にアクセスした場合、ERRORレスポンスを返します。

注2 予約領域にアクセスした場合、OKAYレスポンスを返します。 この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値がOであることを期待した記述はしないで下さい。

削除:

書式変更: フォント : 太字, 上付き

削除:

書式変更: フォント: 太字, 上付き

書式変更: フォント: 太字, 上付き

表 11-2 レジスター覧(2/5)

<u> </u>	ノヘノ 見(4	101	,		-	
対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_1000H	APB-SS タイマ・カウント・レジスタ	TMD0	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1004H	コンペア・レジスタ	CMD0	R/W	0000_0000H	32 ビット
<u>₹</u> ₽	EFFF_1008H	コントロール・レジスタ	TMCD0	R/W	00H	8ビット
	EFFF_100CH	割り込みクリア・レジスタ	INTCLR0	W	0000_0000H	32 ビット
	EFFF_1010H	APB-SS タイマ・カウント・レジスタ	TMD1	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1014H	コンペア・レジスタ	CMD1	R/W	0000_0000H	32 ビット
₹.]	EFFF_1018H	コントロール・レジスタ	TMCD1	R/W	00H	8ビット
	EFFF_101CH	割り込みクリア・レジスタ	INTCLR1	W	0000_0000H	32 ビット
	EFFF_1020H	APB-SS タイマ・カウント・レジスタ	TMD2	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1024H	コンペア・レジスタ	CMD2	R/W	0000_0000H	32 ビット
₹.2	EFFF_1028H	コントロール・レジスタ	TMCD2	R/W	00H	8ビット
	EFFF_102CH	割り込みクリア・レジスタ	INTCLR2	W	0000_0000H	32 ビット
	EFFF_1030H	APB-SS タイマ・カウント・レジスタ	TMD3	R	0000_0000H	32 ビット
APB-SS タイ	EFFF_1034H	コンペア・レジスタ	CMD3	R/W	0000_0000H	32 ビット
₹,3	EFFF_1038H	コントロール・レジスタ	TMCD3	R/W	00H	8ビット
	EFFF_103CH	割り込みクリア・レジスタ	INTCLR3	W	0000_0000H	32 ビット

削除: オフセット・。	
削除: コンペア・タイマ	
削除: コンペア・タイマ	_
削除: コンペア・タイマ	_
削除: コンペア・タイマ	
削除: コンペア・タイマ	_
削除: コンペア・タイマ	
削除: コンペア・タイマ	_
削除: コンペア・タイマ	

注 1 未使用領域にアクセスした場合、ERROR レスポンスを返します。 注 2 アクセス・サイズに記載以外のアクセスは禁止です。

表 11-3 レジスター覧(3/5)

<u> </u>	レンハン 死(い)	71				
対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_4000H	CSI モード・コントロール・レジスタ	CSI_MODE0	R/W	0000_0000H	32 ビット
	EFFF_4004H	CSI クロック選択レジスタ	CSI_CLKSEL0	R/W	0000_FFFEH	32 ビット
	EFFF_4008H	CSIコントロール・レジスタ	CSI_CNT0	R/W	1000_0000H	32 ビット
	EFFF_400CH	CSI 割り込みステータス・レジスタ	CSINT0	R/W	0000_0000H	32 ビット
	EFFF_4010H	CSI 受信 FIFO レベル表示レジスタ	CSI_IFIFOL0	R/W	0000_0000H	32 ビット
CSI0	EFFF_4014H	CSI 送信 FIFO レベル表示レジスタ	CSI_OFIFOL0	R/W	0000_0000H	32 ビット
CSIO	EFFF_4018H	CSI 受信ウインドウ・レジスタ	CSI_IFIFO0	R	0000_0000H	32 ビット
	EFFF_401CH	CSI 送信ウインドウ・レジスタ	CSI_OFIFO0	W	0000_0000H	32 ビット
	EFFF_4020H	CSI FIFO トリガ・レベル・レジスタ	CSI_FIFOTRG0	R/W	0000_0000H	32 ビット
	EFFF_4024H					
		予約領域 ^{建2}	_	<u>_</u>	不定	_
	EFFF_403FH					

削除: オフセット・...

削除:

書式変更: フォント : 太字, 上付き

注 1 未使用領域にアクセスした場合、ERROR レスポンスを返します。

注2 予約領域にアクセスした場合、OKAYレスポンスを返します。 この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値がOであることを期待した記述はしないで下さい。 注3 アクセス・サイズに記載以外のアクセスは禁止です。

表 11-4 レジスター覧(4/5)

	対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ	削除: オフセット・.
· I		¥		RBRO	R	00H	0.121	13MV 3 2 C 2 L
		EFFF_4800H	UART シリアル受信データ・レジスタ				8ビット	
			UART シリアル送信データ・レジスタ	THR0	W	00H	8ビット	
			UART ボー・レート除数レジスタ(下位バイト)	DLL0	R/W	00H	8ビット	
		EFFF_4804H	UART ボー・レート除数レジスタ(上位バイト)	DLH0	R/W	00H	8 ビット	
			UART 割込み許可レジスタ	IER0	R/W	00H	8ビット	
		EFFF_4808H	UART 割込み確認レジスタ	IIR0	R	01H	8ビット	
			UART FIFO コントロール・レジスタ	FCR0	W	00H	8 ビット	
		EFFF_480CH	UART ラインコントロール・レジスタ	LCR0	R/W	00H	8ビット	
		EFFF_4810H	UART モデムコントロール・レジスタ	MCR0	R/W	00H	8ビット	
		EFFF_4814H	UART ラインステータス・レジスタ	LSRO	R	60H	8ビット	
		EFFF_4818H	UART モデムステータス・レジスタ	MSRO	R	00H	8 ビット	
	UARTO	EFFF_481CH	UART スクラッチパッド・レジスタ	SCR0	R/W	00H	8ビット	
		EFFF_4820H						削除: —
		1	予約領域	_	_	不定	アクセス禁止	11178
		EFFF_487BH						
		EFFF_487CH	UART ステータス・レジスタ	USRO	R	OB *bit7-1 は不定	8 ビット	
		EFFF_4880H						削除: —
		1	予約領域	_	_	不定	アクセス禁止	(IIIIII
		EFFF_48FFH						
		EFFF_4900H	UART DMA 転送要求コントロール・レジス タ	FDR0	R/W	00H	8 ビット	
		EFFF_4904H		•				
		1	予約領域 <mark>達1</mark>	_	_	不定	_	削除:
		EFFF_49FFH						書式変更: フォント : 太字, 上付き
								= 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

注1 予約領域にアクセスした場合、OKAYレスポンスを返します。 この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。 ソフトウエアで、この領域をリードした値が O であることを期待した記述はしないで下さい。 注2 アクセス・サイズに記載以外のアクセスは禁止です。

表 11-5 レジスター覧(5/5)

対応マクロ	アドレス	レジスタ名称	略号	R/W	初期値	アクセス・サイズ
	EFFF_5000H	<u>↓2C</u> 動作許可レジスタ	IICACT0	R/W	00H	8ビット
	EFFF_5004H	<u>↓2C</u> シフト・レジスタ	IIC0	R/W	00H	8ビット
	EFFF_5008H	<u>J2C</u> コントロール・レジスタ	IICC0	R/W	00H	8ビット
	EFFF_500CH	スレーブアドレス・レジスタ	SVA0	R/W (BitO のみ R)	00H	8ビット
	EFFF_5010H	↓ <mark>2C</mark> 転送クロック選択レジスタ	IICCL0	R/W	00H	8ビット
	EFFF_5014H	<mark>↓2C</mark> 機能拡張レジスタ	IICX0	R/W	00H	8ビット
12C	EFFF_5018H	<u>J2C</u> 状態レジスタ	IICS0	R	00H	8ビット
	EFFF_501CH	<u>J2C</u> 状態レジスタ(エミュレーション用リード専用レジスタ)	IICSE0	R	00H	8ビット
	EFFF_5020H	<mark>↓2C</mark> フラグ・レジスタ	IICF0	R/W	00H	8ビット
	EFFF_5024H					
	1	予約領域 <mark>達2</mark>	_	_	不定	
	EFFF_503FH					

削除: オフセット・。
削除: IIC
削除: IIC
削除: IIC
削除: IIC
削除:
書式変更 : フォント : 太字, 上付き

- 注1 未使用領域にアクセスした場合、ERROR レスポンスを返します。
 注2 予約領域にアクセスした場合、OKAYレスポンスを返します。
 この領域は今後の機能拡張で、初期値、リード・ライト属性が変わる場合があります。
 ソフトウエアで、この領域をリードした値が0であることを期待した記述はしないで下さい。
 注3 アクセス・サイズに記載以外のアクセスは禁止です。

11.3 割り込み

11.3.1 割り込み信号

本 APB-SS では、以下の割り込み信号を出力します。

表 11-6 割り込み信号一覧

<u>衣 II-6 </u>	167 見			
端子名	割り込み発生マクロ	アクティブ・ レベル	パルス/レベル	同期クロック
<u>INTTMQ</u>	APB-SS タイマ Q	ハイ	パルス/レベル出力*1	TIM_CLK
<u>INTTM1</u> ,	APB-SS タイマ l,	ハイ	パルス/レベル出力*1	TIM_CLK
INTTM2	APB-SS タイマ 2	ハイ	パルス/レベル出力*1	TIM_CLK,
INTTM3	APB-SS タイマ 3	ハイ	パルス/レベル出力*1	TIM_CLK
UART_INT,	APB-SS UART,	ハイ	レベル出力	PCLK
CSI_INT,	APB-SS CSIQ	ハイ	レベル出力	PCLK
IIC_INT,	APB-SS I2C	ハイ	レベル出力	IIC_CLK

^{*1} レジスタにより切り替え可能です。

TIM_CLK, APB-SS タイマ用カウント・クロック入力。 [備考]

> **HCLK** AHB バス・クロック入力 APB バス・クロック入力 **PCLK**

IIC_CLK J2C内部サンプリング・クロック入力

注意 INTTM0-3 はパルス設定時、TIM_CLK 同期で TIM_CLK の 1 クロック期間アクティブになります。割 り込みコントローラは立ち上がりエッジの設定でご使用ください。

- · パルス設定のJNTTM0-3と接続する割り込みコントローラの入力をパルス設定にし、かつ非同期の割 り込み信号を割り込みコントローラに入力する場合は、割り込みコントローラの動作クロックであ る HCLK の 2 クロック以上の長さが必要となります。この為、APB-SS タイマー・カウント・クロック である TIM_CLK Jには HCLK の 2 クロック以下の低い周波数のクロックを入力してください。
- ・ レベル設定の INTTM0-3_を使用し、割り込み要因のクリアにおいて連続アクセスを行う場合、パルス 割り込みと同様、TIM_CLK」には HCLK の 2 クロック以下の低い周波数のクロックを入力してくださ
- ・ IIC_INT」はレベル出力されますが、割り込みコントローラはパルス設定で使用してください。

削除: コンペア・タイマ 0 削除: TIM_INT[0] 削除: [0] 削除: コンペア・タイマ 1 **削除:** TIM_INT[1] 削除:[1] 削除: コンペア・タイマ 2 **削除:** TIM_INT[2] 削除: [2] 削除: コンペア・タイマ3 **削除:** TIM_INT[3] 削除: [3] 削除: [0] 削除: UARTO 削除: [0] **削除:** CSIO 削除: [0] **削除:**IIC0 削除: [0] 表の書式変更 削除: [3:0] 書式変更: 注意/注本文, 左揃え

削除: コンペア・タイマ

削除: コンフィギュレーションにより入 カしたクロックの分周が可能

削除:[0]

削除: .

削除: IIC

削除: TIM_INT[3:0]

削除: [3:0]

削除: [3:0]

削除: TIM_INT[3:0]

削除: コンペア・タイマ

削除: [3

削除:8

削除::0]

削除: TIM_INT[38:0]

削除: [3 削除:8

削除::0]

書式変更: 箇条書き + レベル : 1 + 整列 : 0 mm + タブ : 6.4 mm + インデント 0 mm + 6.4 mm

削除: [0]

削除: .

11.4 機能説明

11.4.1 AHBAPB ブリッジ

(1) AHB 対応レスポンス一覧

本 APB-SS が発行するレスポンス一覧を示します。

表 11-7 使用レスポンス一覧

SHRESP	発行	備考
ERROR	する	APB アクセスにて、未使用領域へのアクセス及び、スレーブからのエラー応答時に 発行します。
SPLIT	しない	SPLIT は発行しません。
RETRY	しない	RETRY は発行しません。

本 APB-SS がサポートする転送方式およびレスポンス一覧を示します。

表 11-8 サポート転送方式一覧

SHTRANS	SHSIZE	SHBURST	PSLVERR	応答	備考
BUSY			_	OKAY	IDLE 転送とみなします。
			0	OKAY	32 ビットのリード・ライトを正常に行ないます。
NONSEQ	注 1	all	1	ERROR	APB アドレス・デコーダが PSLVERR をアサート した場合、ERROR を発行します。
SEQ			0	OKAY	NONSEQ と同様に扱います。
SEQ			1	ERROR	いついろとのと同様にないます。

注1 本 APB-SS は32 ビット・アクセスを前提としておりますが、他のサイズでアクセスが来た場合でも OKAY レスポンスを返します。

(2) バイト・レーン

本ブリッジでは AHB、APB とも 32 ビット・データ・バスを想定しています。32 ビットよりも小さいバス幅の APB スレーブを接続する場合、APB スレーブが接続されているバイト・レーンに正しくアクセスできるよう、AHB マスタにて転送方式を選択してください。バイト/ハーフワード・アクセスは、ワード・アラインしたアドレスに対してアクセスして下さい。

11.4.2 <u>APB-SS タイマ</u>機能

削除: コンペア・タイマ

<u>APB-SS タイマ</u>の機能については**第 14 章 <u>Interval Timer</u>**を参照ください。

削除: インターパル・タイマ

11.4.3 CSI 機能

書式変更: フォント : 太字 **削除**: コンペア・タイマ

CSI についての詳細仕様は第13章 CSI を参照ください。

11.4.4 UART 機能

UART の詳細仕様は第 16 章 UART を参照ください。

11.4.5 <u>J2C</u>機能

削除: IIC

<u>J2C</u>の詳細仕様は**第 15 章 <u>J2C</u>**を参照ください。

削除: IIC 削除: IIC

11.5 クロック

APB-SS のクロック構成について説明します。

11.5.1 クロック制御レジスタ

本 APB-SS は、APB-SS クロック制御レジスタにアクセスすることで搭載する各 APB マクロに供給するクロックの制御が可能です。(対応マクロ: APB-SS タイマ、UART、CSI、J2C)

削除: コンペア・タイマ

削除: IIC

次のような APB インタフェースのクロック制御レジスタがあります。

(1) APB-SS クロック制御レジスタ(ACC)

アドレス(<u>EFFF_</u>0200H)

APB-SS に搭載する各 APB マクロへのクロック供給を制御します。初期状態では全てのクロックを供給します。クロックを停止する場合は手順に従ってください。

|削除: オフセット・

書式変更: フォント: 太字

<u>アドレ</u> ス		EFFF_0200H																														
ビット	3	3	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2	1 9	1 8	1 7	1	1 5	1	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0
レジスタ名称				Reserved				30 ⁻ 0011		Reserved		UARTO_CC		Reserved		CSIO_CC	Reserved					Reserved						CTM3_CC	CTM2_CC	CTM1_CC	CTM0_CC	Reserved

削除: オフセット

ビット位置	ビット名	R/W	初期値	機能
31:27	Reserved	R/W	11111B	Reserved
26	Reserved	R/W	1B	Reserved
25	Reserved	R/W	1B	Reserved
24	IIC0_CC	R/W	1B	APB-SS I2C へのクロック (PCLK,IIC_CLK) 供給を制御します。 0: クロック停止 1: クロック供給

削除: IIC0

削除: [0]

ビット位置	ビット名	R/W	初期値	機能
23	Reserved	R/W	1B	Reserved
22	Reserved	R/W	1B	Reserved
21	Reserved	R/W	1B	Reserved
20	UARTO_CC	R/W	1B	APB-SS UART へのクロック (PCLK,UART_CLK) 供給を制御します。 0: クロック停止 1: クロック供給
19	Reserved	R/W	1B	Reserved
18	Reserved	R/W	1B	Reserved
17	Reserved	R/W	1B	Reserved
16	CSI0_CC	R/W	1B	APB-SS CSI0 へのクロック (PCLK,CSI_CLK) 供給を制御します。 0: クロック停止 1: クロック供給
15	Reserved	R/W	1B	Reserved
14	Reserved	R/W	1B	Reserved
13	Reserved	R/W	1B	Reserved
12	Reserved	R/W	1B	Reserved
11	Reserved	R/W	1B	Reserved
10	Reserved	R/W	1B	Reserved
9	Reserved	R/W	1B	Reserved
8	Reserved	R/W	1B	Reserved
7	Reserved	R/W	1B	Reserved
6	Reserved	R/W	1B	Reserved
5	Reserved	R/W	1B	Reserved
4	CTM3_CC	R/W	1B	APB-SS タイマ 3 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
3	CTM2_CC	R/W	1B	APB-SS タイマ 2 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
2	CTM1_CC	R/W	1B	APB-SS タイマ 1 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
1	CTM0_CC	R/W	1B	APB-SS タイマ 0 (PCLK,TIM_CLK)へのクロック供給を制御します。 0: クロック停止 1: クロック供給
0	Reserved	R/W	1B	Reserved

削除: UARTO 削除: [0]

| 削除: [0]

削除: コンペア・タイマ 3 削除: [3] 削除: コンペア・タイマ 2 削除: [2]

削除: コンペア・タイマ 0

削除: [0]

削除:[1]

(2) APB-SS タイマ・クロック制御手順

APB-SS タイマのクロック制御手順を示します。

削除: コンペア・タイマ

削除: コンペア・タイマ

コンペア・タイマを使用しない 場合のクロック停止手順 APBSS起動 (ハードウエア・リセット) クロック停止 (n=0~~3)(ACC:CTMn_CCレジスタ=0B) クロック停止後、コンペア・タイマ のレジスタアクセスは禁止です。 終了

図 11-1 APB-SS タイマ・クロック停止手順(1/2)

図 11-2 APB-SS タイマ・クロック停止手順(2/2)

Page 209

(3) UART クロック制御手順

UART のクロック制御手順を示します。

図 11-3 UART クロック停止手順(1/2)

図 11-4 UART クロック停止手順(2/2)

(4) CSI クロック制御手順

CSIのクロック制御手順を示します。

図 11-5 CSI クロック停止手順(1/2)

図 11-6 CSI クロック停止手順(2/2)

Page 211

(5) <u>J2C</u>クロック制御手順

<mark>J2C</mark>のクロック制御手順を示します。

削除: IIC 削除: IIC

図 11-7 120 クロック停止手順(1/2)

削除: IIC

図 11-8 (2/2)

削除: IIC

11.6 リセット

本 APB-SS をリセットする方法は、外部端子よりリセットするハードウエア・リセットと、本 APB-SS 内部

11.6.1 ソフトウエア・リセット

次のようなソフトウエア・リセット用の APB インタフェースのレジスタがあります。

(1) APB_SS ソフトウエア・リセット・レジスタ(ASR)

アドレス(<u>EFFF_0</u>210H)

APB-SS に搭載する APB マクロをリセットします。

<u>アドレ</u> ス		EFFF_02 <mark>1Q</mark> H																														
ビット	3	3	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2	2	1 9	1 8	1 7	1 6	1 5	1	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0
レジスタ名称			Reserved			CC_SR	Reserved	IICO_SR		בונים אל היים א		UARTO_SR		Reserved		CSIO_SR						Reserved						CTM3_SR	CTM2_SR	CTM1_SR	CTM0_SR	Reserved

ビット位置	ビット名	R/W	初期値	機能
31:28	Reserved	R/W	1111B	Reserved
27	Reserved	R/W	1B	Reserved
26	CC_SR	R/W	1B	クロック制御レジスタへのリセット信号を生成します。 0:リセット(ロー・レベル) 1:リセット解除(ハイ・レベル)
25	Reserved	R/W	1B	Reserved
24	IICO_SR	R/W	1B	APB-SS I2C。へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
23	Reserved	R/W	1B	Reserved
22	Reserved	R/W	1B	Reserved
21	Reserved	R/W	1B	Reserved
20	UARTO_SR	R/W	1B	APB-SS UART へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)

削除:、

2本あります。.

削除: . <#>ハードウエア・リセット . 次のようなハードウエア・リセット信号が

···

表 11-9 リセット信号一覧.

削除: オフセット・

削除: 0

端子名

削除: オフセット

削除: 04

削除:IIC0

削除: UARTO

ビット位置	ビット名	R/W	初期値	機能
19	Reserved	R/W	1B	Reserved
18	Reserved	R/W	1B	Reserved
17	Reserved	R/W	1B	Reserved
16	CSIO_SR	R/W	1B	APB-SS CSIO。へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
15	Reserved	R/W	1B	Reserved
14	Reserved	R/W	1B	Reserved
13	Reserved	R/W	1B	Reserved
12	Reserved	R/W	1B	Reserved
11	Reserved	R/W	1B	Reserved
10	Reserved	R/W	1B	Reserved
9	Reserved	R/W	1B	Reserved
8	Reserved	R/W	1B	Reserved
7	Reserved	R/W	1B	Reserved
6	Reserved	R/W	1B	Reserved
5	Reserved	R/W	1B	Reserved
4	CTM3_SR	R/W	1B	APB-SS タイマ 3 へのリセット信号を生成します。 0: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
3	CTM2_SR	R/W	1B	APB-SS タイマ 2√へのリセット信号を生成します。 ○: リセット(ロー・レベル) 1: リセット解除
2	CTM1_SR	R/W	1B	APB-SS タイマ 1 へのリセット信号を生成します。 ○: リセット(ロー・レベル) 1: リセット解除(ハイ・レベル)
1	CTM0_SR	R/W	1B	APB-SS タイマ 0 へのリセット信号を生成します。 0:リセット(ロー・レベル) 1:リセット解除(ハイ・レベル)
0	Reserved	R/W	1B	Reserved

削除: CSI0

削除: コンペア・タイマ 3

削除: コンペア・タイマ 2

削除: コンペア・タイマ ↑

削除: コンペア・タイマ 0