Assignment 1, HT2020 Ice on Mars

Assignment in partial fulfilment of the requirements for the course Optimisation 1TD184

Department of Information Technology

Marcello Pietro Vendruscolo

$$\min \|H(x) - H_{obs}(x)\|_2^2$$

Objective Function

Nonlinear relationship between the thickness and mass balance function on the surface

$$a(x) = -\frac{2A}{n+2} (\rho g)^n H(x)^{n+2} \left| \frac{\mathrm{d}h}{\mathrm{d}x} \right|^{n-1} \frac{\mathrm{d}h}{\mathrm{d}x}$$

$$= \left(-\frac{a(x)(n+2)}{2A(\rho g)^n \left| \frac{\mathrm{d}h}{\mathrm{d}x} \right|^{n-1} \frac{\mathrm{d}h}{\mathrm{d}x}} \right)^{\frac{1}{n+2}}$$

$$\exists Q. (II)$$

```
numerator = a[i]*(n+2)
denominator = 2*A*((rho*g)**n)*dhdx[i]*((abs(dhdx[i]))**(n-1))
h_theoretical[i] = (-(numerator/denominator))**(1/(n+2))
delta_h[i] = h_theoretical[i] - h_obs[i]
sum += delta_h[i]**2
```

Python Implementation

Python			Matlab	
Library		SciPy.org	Optimisation ToolBox	
Task 1		minimize Nelder-Mead	fminunc Quasi-Newton (BFGS)	

Nelder-Mead (downhill simplex):

- 1. Gradient-free optimisation algorithm
- 2. Simplex (polytope of n+1 vertices in n dimensions)
- 3. Reflecting the worst vertex or shrinking towards the best vertex

$$A = 1 * 10^{(-25)}$$

	Start point					
	n =	= 1	n = 2.5		n = 4	
	Python	Matlab	Python	Matlab	Python	Matlab
Iterations	26	7	19	5	24	5
Function Evaluations	52	22	38	18	48	29
Optimal n	2.4335	2.3977	2.4335	2.4335	2.4335	2.4335
Min. Function Value	13 * 10 ³	9.5 * 10 ⁵	13 * 10 ³	13 * 10 ³	$13*10^3$	$13*10^3$

Optimisation converged successfully

Local minimum found: size of gradient < value of optimality tolerance

		Python	Matlab	
Library		SciPy.org	Optimisation ToolBox	
Task 1		minimize Nelder-Mead	fminunc Quasi-Newton (BFGS)	
Task 2		least-squares Trust Region Reflective	Isqnonlin Trust Region Reflective	

$$A = 1 * 10^{(-25)}$$

	Start point				ı	
	n = 1		n = 2.5		n = 4	
	Python	Matlab	Python	Matlab	Python	Matlab
Iterations	26	34	11	15	16	20
Function Evaluations	36	70	19	32	25	42
Optimal n	2.4335	2.4335	2.4335	2.4335	2.4335	2.4335
Min. Function Value	13 * 10 ³					

Optimisation converged successfully

Local minimum found: size of gradient < value of optimality tolerance

- 1. Most converged to same optimum n = 2.4335
- 2. Most converged to same minimum function value = $13 * 10^3$
- 3. Differ in number of iterations and function evaluations depending on initial guess and algorithm chosen

Task 1: Quasi-Newton (BFGS) < Nelder-Mead

Convergence of BFGS depends on initial guess & value of optimality tolerance

Task 2: Python implementation < Matlab implementation for same initial guess

Overall: n = 2.5 < n = 4 < n = 1

		Python	Matlab
Library		SciPy.org	Optimisation ToolBox
Task 1		minimize Nelder-Mead	fminunc Quasi-Newton (BFGS)
Task 2		least-squares Trust Region Reflective	Isqnonlin Trust Region Reflective
Task 4		minimize Nelder-Mead	_

$$n = 3$$

Start point

	$A = 1*10^{(-25)}$	$A = 1*10^{(-28)}$	$A = 1*10^{(-31)}$
Iterations	36	14	31
Function Evaluations	72	28	62
Optimal A	1.16*10(-28)	1.16*10(-28)	1.16*10(-28)
Min. Function Value	$3.577*10^3$	$3.577*10^3$	$3.577*10^3$

Optimisation converged successfully

$$n = 3$$
 \rightarrow $A = 1.16*10^{(-28)}$

$$A = 1.16*10^{(-28)} \longrightarrow n = 3$$

		Python	Matlab
Library		SciPy.org	Optimisation ToolBox
Task 1		minimize Nelder-Mead	fminunc Quasi-Newton (BFGS)
Task 2		least-squares Trust Region Reflective	Isqnonlin Trust Region Reflective
Task 4		minimize Nelder-Mead	_
Task 5 & Task 6	Solver: Algorithm:	minimize Nelder-Mead	-

	Start point			
	$A = 1*10^{(-25)}$	$A = 1*10^{(-25)}$		
	n = 1	n = 3		
Iterations	200	200		
Function Evaluations	370	360		
Optimal A	5.2261*10(-27)	3.9370*10(-27)		
Optimal n	2.6807	2.7045		
Min. Function Value	$3.2959*10^3$	$2.8608*10^{3}$		

Maximum number of iterations has been exceeded Success: False

	Start point			
	$A = 1*10^{(-25)}$	$A = 1*10^{(-25)}$	$A = 1*10^{(-28)}$	
	n = 1	n = 3	n = 3	
Iterations	408	340	183	
Function Evaluations	754	618	338	
Optimal A	8.983*10(-28)	8.980*10(-28)	8.982*10(-28)	
Optimal n	2.8284	2.8284	2.8284	
Min. Function Value	$1.860*10^3$	$1.860*10^3$	$1.860*10^3$	

Optimisation converged successfully

Local Analysis

Thank you

