Validation-cost Metric

Jonas Nick, Greg Sanders, Mark Friedenbach

Motivation

- Block size correlates with resource usage only in the typical case
- OP_CHECKSIG example
 - involves transaction hashing and signature verification
- Hard limits
 - o how to choose them?
 - other factors influence validation cost as well
 - ignores relationship between factors
- Instead: Use metric
 - function from block features to cost
 - example
 - cost(block) = $c_0*size + c_1*validation_cost + c_3*utxo_growth$
 - o new consensus rule: cost(block) < t</p>

Validation-cost Metric

 Validation-cost: how long it takes to validate a block on a reference machine

Estimate c i with linear regression

o validation_cost(block)

= connect_duration(block)

 $= c_0*h + c_1*v + ...$

o h: bytes hashed, v: verifications

Validation-cost Metric: Experiment

- Record
 - OP_CHECKSIG bytes hashed and number of verifications
 - OP_HASH bytes hashed
 - number of bytes written and removed from the stack
 - number of inputs
 - ConnectBlock duration on reference machine
- Reference machine: laptop from 2014, 2*3GHz i7, 8GB RAM
- data: mainchain, testchain, custom chains
- v0.11.2 with libsecp validation
 - -dbcache=3000

Validation-cost Metric: Results

- Each kbyte of hashing adds 0.005ms, each signature verification 0.1 ms
- Other factors do not have a big impact at the moment
- Absolute average error on test and mainnet: less than 4ms
- Example of hard-to-validate block predicted accurately
 - 130.4 vs. 131.7 seconds

Cost Metric

- Can pick another threshold for validation-cost
 - difficult: do not want to constrain use-cases, do not want worst-cases to sum up

Cost Metric

- Relate bandwidth requirements and validation cost then pick threshold
 -> cost metric
- How exactly do you convert bandwidth requirements and validationcost to total cost?

- Instead: fix max block size (given by various proposals)
 - and always allow "average blocks" for any block size
 - while enabling to trade-off block size with validation time
 - up to a hard limit

- Maintaining a utxo set is a significant cost
- Current situation: no incentive for positive effect on utxos
- With cost metric: Allow a greater validation costs when the block reduces the utxo set size.

Cost Metric

 Increase maximum and average block validation cost at same rate as block size.

Conclusion

- There are various resource requirements
 - block size proposals should consider
- Cost metric helps by exploring relationships
- Estimating validation cost function straightforward
- More complete cost function difficult to derive bottom-up
 - but can build on existing blocksize proposals
 - while still getting some of the advantages of a cost metric
 - confining worst-case without restricting current average case
 - allowing to trade-off individual block aspects
 - enables to set slight incentives

Links

- https://scalingbitcoin.org/montreal2015/presentations/Day2/11-Friedenbach-scaling-bitcoin.pdf
- Benchmark: https://github.com/instagibbs/bitcoin/tree/rt
- Discuss: http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-November/011662.html