8.B Decomposition of an Operator

Saturday 7 September 2024 16:11

On Complex Spices

theorem: TGL(V), pGP(F) then ker(p(T)) and im(p(T)) we invariant und T proof: let Ve ther(p(T)) then $p(T)_{V=0}$ $\Rightarrow (p(T))_{TV} = Tp(T)_{V=0} = (T, p(T))_{T=0}$ $\Rightarrow Tv \in ker(p(T))$ let $V \in im(p(T))$ then $\exists u \in V \text{ s.t. } p(T)_{V=V}$ $TV = p(T)_{TU} \Rightarrow Tv \in im(p(T))$

theorem: V(C), $T \in L(V)$, $(A_1, \dots, A_m) \in C^m$ are distint evalue of T then

(a) $V = G(A_1, T) \oplus \dots \oplus G(A_m, T)$ (b) $G(A_j, T)$ invariant under $T \neq j \in [1, m]$ (c) $(T - \lambda_j I)|_{G(A_j, T)}$ nilpotent $\forall j \in [1, m]$

proof [let n=din(V) $G(\lambda_j,T)=\ker((T-\lambda_jI)^n)=\ker(p(T))$ where $p(z)=(z-\lambda_j)^n$ $\Rightarrow (b) \Rightarrow (c)$ if n=1, (w)

assume n>1, (a) for U with din(U)< n V is over $C \Rightarrow \exists e \text{-value}$ of $T \Rightarrow m>1$, $V=G(\lambda_1,T) \oplus U$, where $U=\lim((T-\lambda_iI)^n)$ ench invariant under T, din(U) < n $\Rightarrow (w)$ for $U \Rightarrow U=G(\lambda_1,T|_U) \oplus \cdots \oplus G(\lambda_m,T|_U)$ let $\ker(I_2,mI) \Rightarrow G(\lambda_k,T|_U) \subset G(\lambda_k,T) \neq k$ let $V=G(\lambda_k,T) \Rightarrow V=V_1+U$ where $V_1\in G(\lambda_1,T)$, $V=V_2$ induction $v=V=V_1+v=V_2$ where $v=G(\lambda_1,T)$ we $v=V_2$ v=V=0 if v=V=0 v=V=0

corollary; let V(C), $T \in L(V)$ then $\exists basis of V with generalised e-vectors of <math>T$

Multiplicity of Eigenvalue

definition; let Te L(V), multiplicity of e-value & of T is dim(G(XT))= $dim(kel(T-XI)^{dim(V)})$

Corollary ?
$$V(0)$$
, $T \in L(V)$, $\{\lambda_i\} = e$ -values $\leq multiplicity of $\lambda_i = dim(V)$$

Block Dinjonal Marrices

A block diagonal matrix is a square matrix of the form

$$\left(\begin{array}{ccc}
A_1 & & 0 \\
& \ddots & \\
0 & & A_m
\end{array}\right),$$

where A_1, \ldots, A_m are square matrices lying along the diagonal and all the other entries of the matrix equal 0.

Herein:
$$V(C)$$
, $TeS(V)$, $\{\lambda_i\}=e$ -values, $\{d_i\}=multiplicities$
then \exists basis of V s.t.
 $M(T)=\begin{pmatrix}A_1&0\\0&A_m\end{pmatrix}$ where $A=\begin{pmatrix}\lambda_1&*\\0&\lambda_2\end{pmatrix}$ dyby by

s.t.
$$M((T-\lambda_j I)|_{G(\lambda_j,T)}) = \begin{pmatrix} 0, * \\ 0 & 0 \end{pmatrix}$$

$$\Rightarrow \mathcal{M}(\mathsf{Tl}_{\mathsf{G}(\lambda_{j},\mathsf{T})}) = \mathcal{M}(\mathsf{T}-\lambda_{j}\mathsf{I})\mathsf{l}_{\mathsf{G}(\lambda_{j},\mathsf{T})} + \mathcal{M}(\lambda_{j}\mathsf{I}\mathsf{l}_{\mathsf{G}(\lambda_{j},\mathsf{T})})$$

Syrare Roots

lemma: let $N \in L(V)$ is nilpotent. then I + N has a square voot $PPOOF: I+X = I + \stackrel{\text{def}}{\underset{i=1}{\mathbb{Z}}} a_i x^i$ $\exists m \in \mathbb{Z}_{70}$ s.t. $N^m = 0$ $ansatz: I+N = I + \stackrel{\text{def}}{\underset{i=1}{\mathbb{Z}}} a_i N^i$ $(I + \stackrel{\text{def}}{\underset{i=1}{\mathbb{Z}}} a_i N^i)^2 = I + 2a_i N + (2a_2 + a_1^2)N^2 + (2a_3 + 2a_1a_2)N^3$ $+ - - + (2a_{m-1} + - -)N^{m-1}$

IIIN => m-1 unknowns, m-1 equations

Comma : Let V(G), $T \in L(V)$ is invertible then,

Thus a square voot $Proof: \{\lambda_i\}$ distinct e-values of T $\exists \text{ Nilpotent } N_i \in L(G(\lambda_i, T)) \text{ s.t.}$ $T|_{G(X_i, T)} = \lambda_i I + N_i \quad \forall i$, $T \text{ invertible } \Rightarrow \lambda_i \neq 0 \quad \forall i$ $\Rightarrow T|_{G(X_i, T)} = \lambda_i \left(I + \frac{1}{\lambda_i} N_i\right)$

Heoremii let
$$k \in \mathbb{Z}_{>0}$$
, $V(r)$, $T \in L(V)$ invarible then

Thus k th voot Y k

Proof: $(I+N)^{\frac{1}{k}}$ exists $(taylor series)$
 $T|_{G(\lambda_i,T)} = \lambda_i (I+\frac{1}{k}N_i)$
 $\Rightarrow let R_i = (T|_{G(\lambda_i,T)}^{\frac{1}{k}})$

let $V \in V$
 $\Rightarrow V = \sum_i u_i$ where $u_i \in G(\lambda_i,T)$
 $\Rightarrow let R \in L(V)$
 $R_i = \sum_i u_i$