| - 1 |  |  |  |  |  |  |
|-----|--|--|--|--|--|--|
| - 1 |  |  |  |  |  |  |
| - 1 |  |  |  |  |  |  |
| - 1 |  |  |  |  |  |  |
| - 1 |  |  |  |  |  |  |
| - 1 |  |  |  |  |  |  |
| - 1 |  |  |  |  |  |  |

## DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI

## DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING MODEL EXAMINATION-III CS8602- COMPILER DESIGN

Year : III Date : 19-05-23 Semester: VI Duration : 3 hrs Maximum Marks : 100

## PART - A $(10 \times 2 = 20 \text{ marks})$ Answer ALL the questions

|                                                     | Answer ALL the questions                                                                                                                                       |    |     |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|--|
| 1. \                                                | What is sentinel? What is its purpose?                                                                                                                         | U  | CO1 |  |  |
|                                                     | Why is buffering used in lexical analysis? what are the commonly used buffering methods.                                                                       |    |     |  |  |
| 3. I                                                | Draw NFA for a*/b*                                                                                                                                             |    |     |  |  |
|                                                     | Eliminate left recursion from the following grammar<br>A->Ac/Aad/bd/c                                                                                          |    |     |  |  |
|                                                     | <ul><li>5. Write a CF grammar to represent palindrome.</li><li>6. Define Role of Parser.</li></ul>                                                             |    |     |  |  |
|                                                     |                                                                                                                                                                | K  | CO3 |  |  |
| 7. I                                                | 7. Mention the two rules for type checking                                                                                                                     |    |     |  |  |
| 8. (                                                | Give syntax directed translation scheme for case statement                                                                                                     | Α  | CO4 |  |  |
| 9. Draw the DAG for the statement a=(a*b+c)-(a*b+c) |                                                                                                                                                                |    |     |  |  |
| 10.I                                                | Define Dead Code Elimination.                                                                                                                                  | Α  | CO5 |  |  |
|                                                     | PART B -(5 x 13 = 65)                                                                                                                                          |    |     |  |  |
| 11                                                  | .a. Explain phases of compiler for the following expression position= initial + rate*60. (13).                                                                 | U  | CO1 |  |  |
|                                                     | (or)                                                                                                                                                           | 17 | 001 |  |  |
| ľ                                                   | construct NFA to DFA using subset construction algorithm for the regular expression (a/b)*a and minimize it.                                                   | K  | CO1 |  |  |
| 12                                                  | <sup>2.a.</sup> Explain Role of Parser in Detail.                                                                                                              | U  | CO2 |  |  |
|                                                     | (or)                                                                                                                                                           |    |     |  |  |
| ŀ                                                   | <ul><li>i)Explain Error Handling and recovery in syntax analysis phase(10)</li><li>ii) Explain left recursion and left factoring with an example.(3)</li></ul> | U  | CO2 |  |  |
| 13                                                  | B.a. Construct a predictive parsing table for the following two grammars E->E+T E->T T->T*F                                                                    | Α  | CO3 |  |  |



|        | T->F                                                             |         |     |  |  |  |  |  |  |
|--------|------------------------------------------------------------------|---------|-----|--|--|--|--|--|--|
|        | F->(E)   id                                                      |         | 000 |  |  |  |  |  |  |
| 10 h   | (or)                                                             | Α       | CO3 |  |  |  |  |  |  |
| 13 b   | Consider the following grammar S->ASIb                           |         |     |  |  |  |  |  |  |
|        | A->SAIb                                                          |         |     |  |  |  |  |  |  |
|        | Construct the LR and SLR parse table for the grammar.            |         |     |  |  |  |  |  |  |
|        | Show the actions of the parser for the input string "abab".      |         |     |  |  |  |  |  |  |
| 14.a.  | Explain Construction of Syntax Tree with an example.             | U       | CO4 |  |  |  |  |  |  |
|        | (or)                                                             |         |     |  |  |  |  |  |  |
| b.     | Write a simple code generator algorithm. With an example code ho | w the U | CO4 |  |  |  |  |  |  |
|        | algorithm generate code.                                         |         |     |  |  |  |  |  |  |
| 15.a.  | Explain Principles of source optimization in detail.             |         |     |  |  |  |  |  |  |
| ı J.a. | (or)                                                             | Α       | CO5 |  |  |  |  |  |  |
| b.     | Explain Peephole Optimization in Details                         |         |     |  |  |  |  |  |  |
|        |                                                                  |         |     |  |  |  |  |  |  |
|        | PART - C (1x15=15)                                               |         |     |  |  |  |  |  |  |
| 16.a.  | Discuss the various issues in design of Code generator           | А       | CO3 |  |  |  |  |  |  |
| 10.a.  | Discuss the various issues in design of Code generator (or)      | A       | 003 |  |  |  |  |  |  |
| b.     | Explain in detail about specification of type checking.          | Α       | C04 |  |  |  |  |  |  |
|        |                                                                  | , ,     |     |  |  |  |  |  |  |
|        |                                                                  |         |     |  |  |  |  |  |  |
| Prepa  | Verified by Approved by                                          |         |     |  |  |  |  |  |  |
| red by |                                                                  |         |     |  |  |  |  |  |  |

