

Report No. : FA291002

FCC SAR Test Report

APPLICANT : CT Asia

EQUIPMENT: Mobile phone

BRAND NAME : BLU

MODEL NAME : Dash3.5

FCC ID : YHLBLUDASH35

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC OET Bulletin 65 Supplement C (Edition 01-01)

The product was completely tested on Sep. 20, 2012. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full.

Reviewed by:

lac MRA

Jones Tsai / Manager

SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 1 of 39
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

Table of Contents

1. Statement of Compliance	
2. Administration Data	
2.1 Testing Laboratory	5
2.2 Applicant	5
2.3 Manufacturer	5
2.4 Application Details	5
3. General Information	6
3.1 Description of Equipment Under Test (EUT)	6
3.2 Product Photos	7
3.3 Applied Standard	7
3.4 Device Category and SAR Limits	
3.5 Test Conditions	
4. Specific Absorption Rate (SAR)	8
4.1 Introduction	8
4.2 SAR Definition	
5. SAR Measurement System	
5.1 E-Field Probe	
5.2 Data Acquisition Electronics (DAE)	
5.3 Robot	11
5.4 Measurement Server	
5.5 Phantom	
5.6 Device Holder	
5.7 Data Storage and Evaluation	13
5.8 Test Equipment List	
6. Tissue Simulating Liquids	
7. SAR Measurement Evaluation	
7.1 Purpose of System Performance check	
7.2 System Setup	
7.3 Validation Results	
8. EUT Testing Position	
8.1 Define two imaginary lines on the handset	19
8.2 Cheek Position	
8.3 Tilted Position	
8.4 Body Worn Position	
9. Measurement Procedures	
9.1 Spatial Peak SAR Evaluation	
9.2 Area & Zoom Scan Procedures	
9.3 Volume Scan Procedures	
9.4 SAR Averaged Methods	
9.5 Power Drift Monitoring	
10. SAR Test Configurations	
10.1 Exposure Positions Consideration	24
10.2 Conducted RF Output Power (Unit: dBm)	26
11. SAR Test Results	
11.1 Test Records for Head SAR Test	29
11.2 Test Records for Hotspot SAR Test	30
11.3 Test Records for Body-worn SAR Test	32
11.4 Simultaneous Multi-band Transmission Analysis	
12. Uncertainty Assessment	
13. References	
Appendix A. Plots of System Performance Check	
Appendix B. Plots of SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Product Photos	
Appendix E. Test Setup Photos	

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA291002	Rev. 01	Initial issue of report	Sep. 26, 2012

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 3 of 39
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

Report No. : FA291002

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **CT Asia, DUT: Mobile phone, Brand Name: BLU, Model Name: Dash3.5** are as follows.

<Standalone SAR>

Band	Position	SAR _{1g} (W/kg)	
GSM850	Head	0.355	
GSM1900	Head	0.334	
WCDMA Band V	Head	0.326	
WCDMA Band II	Head	0.641	
WLAN 2.4G	Head	0.078	
GSM850	Hotspot (1 cm Gap)	1.130	
GSM1900	Hotspot (1 cm Gap)	0.589	
WCDMA Band V	Hotspot (1 cm Gap)	1.170	
WCDMA Band II	Hotspot (1 cm Gap)	1.310	
WLAN 2.4G	Hotspot (1 cm Gap)	0.120	
GSM850	Body-worn (1 cm Gap)	1.130	
GSM1900	Body-worn (1 cm Gap)	0.710	
WCDMA Band V	Body-worn (1 cm Gap)	1.170	
WCDMA Band II	Body-worn (1 cm Gap)	1.310	
WLAN 2.4G	Body-worn (1 cm Gap)	0.120	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 4 of 39
Report Issued Date : Sep. 26, 2012

2. Administration Data

2.1 <u>Testing Laboratory</u>

Test Site	SPORTON INTERNATIONAL (KUNSHAN) INC.
Test Site Location	No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. TEL: +86-0512-5790-0158 FAX: +86-0512-5790-0958

2.2 Applicant

Company Name	CT Asia
	Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

2.3 Manufacturer

Company Name	Ragentek Technology Group			
	Building D10-D11, No. 58-60, Lane 3188, Xiupu Road, PuDong District, Shanghai, PRC			

2.4 Application Details

Date of Start during the Test	Sep. 18, 2012
Date of End during the Test	Sep. 20, 2012

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 5 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

3. General Information

3.1 Description of Equipment Under Test (EUT)

	Product Feature & Specification
EUT	Mobile phone
Brand Name	BLU
Model Name	Dash3.5
FCC ID	YHLBLUDASH35
IMEI Code	867066010000076
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WLAN2.4G: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Rx Frequency	GSM850: 869.2 MHz ~ 893.8 MHz GSM1900: 1930.2 MHz ~ 1989.8 MHz WCDMA Band V: 871.4 MHz ~ 891.6 MHz WCDMA Band II: 1932.4 MHz ~ 1987.6 MHz WLAN2.4G: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Maximum Average Output Power to Antenna	GSM850: 32.86 dBm GSM1900: 29.84 dBm WCDMA Band V: 22.40 dBm WCDMA Band II: 22.39 dBm 802.11b: 16.26 dBm 802.11g: 10.34 dBm 802.11n (BW 20MHz) (2.4GHz): 9.85 dBm Bluetooth: 4.55 dBm
Antenna Type	WWAN: Fixed Internal Antenna WLAN: PIFA Antenna Bluetooth: PIFA Antenna
HW Version	Q106 MAIN PCB V1.1
SW Version	Q106 BLU B1 V0.1.3. S0802
Uplink Modulation	GSM / GPRS: GMSK WCDMA (Rel 6): QPSK (Uplink) HSDPA (Rel 6, Cat 6): QPSK (Uplink) HSUPA (Rel 6, Cat 8): QPSK (Uplink) 802.11b: DSSS (BPSK / QPSK / CCK) 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) Bluetooth (1Mbps): GFSK Bluetooth EDR (2Mbps): π /4-DQPSK Bluetooth EDR (3Mbps): 8-DPSK
Dual Transfer Mode (DTM) Category	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Identical Prototype
Remark:	
 The above EUT's in 	nformation was declared by manufacturer. Please refer to the specifications or user's manual for

The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 6 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

3.2 Product Photos

Please refer to Appendix D.

3.3 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- FCC KDB 447498 D01 v04
- FCC KDB 648474 D01 v01r05
- FCC KDB 941225 D01 v02
- FCC KDB 941225 D03 v01
- FCC KDB 941225 D06 v01
- FCC KDB 248227 D01 v01r02

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 Test Conditions

3.5.1 Ambient Condition

Ambient Temperature	20 to 24 ℃
Humidity	< 60 %

3.5.2 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests.

For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

The maximum rated power of WWAN is listed in "Tune-Up Procedure" exhibit. The scaling factor is calculated according to the difference between measured output power and maximum tolerance power on this device.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 7 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA291002

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

Page Number

Report Version

: 8 of 39

: Rev. 01

Report Issued Date: Sep. 26, 2012

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

5. SAR Measurement System

Fig 5.1 SPEAG DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- \triangleright A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Component details are described in in the following sub-sections.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

: 9 of 39 Page Number

Report Issued Date: Sep. 26, 2012

Report Version : Rev. 01

5.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core		MGII
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to organic		4
	solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		*
Directivity	± 0.3 dB in HSL (rotation around probe axis)		1
	± 0.5 dB in tissue material (rotation normal to		9
	probe axis)		1
Dynamic Range	10 μW/g to 100 mW/g; Linearity: ± 0.2 dB		
	(noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm)	1	
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole		
	centers: 1 mm		- 1
		Fig 5.2	Photo of EX3DV4

5.1.2 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 10 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Report No. : FA291002

Fig 5.3 Photo of DAE

5.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability ±0.035 mm)
- > High reliability (industrial design)
- > Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Fig 5.4 Photo of DASY5

5.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Fig 5.5 Photo of Server for DASY5

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 11 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

Report No. : FA291002

5.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	The state of the s
Dimensions	Length: 1000 mm; Width: 500 mm;	
	Height: adjustable feet	<u> </u>
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
		4
		Fig. 5.0. Disease of OAM Disease
		Fig 5.6 Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

5.6 Device Holder

<Device Holder for SAM Twin Phantom>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig 5.7 **Device Holder**

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

: 12 of 39 Page Number Report Issued Date: Sep. 26, 2012

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

Device parameters:

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

 $\begin{array}{lll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{dcp}_i \\ \text{- Frequency} & \text{f} \end{array}$

- Crest factor cf

Media parameters: - Conductivity σ
- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan

visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 13 of 39

Report Issued Date : Sep. 26, 2012

Report No.: FA291002

The formula for each channel can be given as :

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Report No.: FA291002

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field Probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Page Number

Report Version

: 14 of 39

: Rev. 01

Report Issued Date: Sep. 26, 2012

5.8 Test Equipment List

Managartana	Name of Equipment	To o /84 o al o l	0	Calibration	
Manufacturer	Name of Equipment	Type/Model Serial Number		Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	4d091	Nov. 18, 2011	Nov. 17, 2012
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	Nov. 21, 2011	Nov. 20, 2012
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 25, 2011	Jul. 24, 2013
SPEAG	Data Acquisition Electronics	DAE4	1210	Nov. 18, 2011	Nov. 17, 2012
SPEAG	Dosimetric E-Field Probe	EX3DV4	3857	Jun.20,2012	Jun. 19, 2013
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1477	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1479	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Anritsu	Radio communication analyzer	MT8820C	6201074235	Nov. 30, 2011	Nov. 29, 2012
Agilent	Wireless Communication Test Set	E5515C	GB47050646	Aug. 18, 2012	Aug. 17, 2013
Agilent	Wireless Communication Test Set	E5515C	MY48367160	Oct. 26, 2011	Oct. 25, 2012
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	Apr. 13, 2012	Apr. 12, 2013
R&S	Signal Generator	SMR40	100455	Dec. 30, 2011	Dec. 29, 2012
Agilent	Power Meter	E4416A	MY45101555	Aug. 23, 2012	Aug. 22, 2013
Agilent	Power Sensor	E9327A	MY44421198	Aug. 23, 2012	Aug. 22, 2013
R&S	Spectrum Analyzer	FSP30	101399	Jun. 01, 2012	May 31, 2013

Table 5.1 Test Equipment List

Note:

- The calibration certificate of DASY can be referred to appendix C of this report.
- 2. Referring to KDB 450824 D02, the dipole calibration interval can be extended to 3 years with justification. The
- dipoles are also not physically damaged, or repaired during the interval. The justification data of dipole D2450V2, SN: 736, can be found in appendix C. The return loss is < -20dB, 3. within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

: 15 of 39 Page Number Report Issued Date: Sep. 26, 2012 Report Version : Rev. 01

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2.

Report No. : FA291002

Fig 6.1 Photo of Liquid Height for Head SAR

Fig 6.2 Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ε _r)	
For Head									
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5	
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0	
2450	55.0	0	0	0	0	45.0	1.80	39.2	
				For Body					
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2	
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3	
2450	68.6	0	0	0	0	31.4	1.95	52.7	

Table 6.1 Recipes of Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

The following table shows the measuring results for simulating liquid.

Freq. (MHz)	Liquid Type	Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Head	21.6	0.904	41.212	0.9	41.5	0.44	-0.69	±5	Sep. 19, 2012
1900	Head	21.4	1.417	39.706	1.4	40	1.21	-0.73	±5	Sep. 19, 2012
2450	Head	21.1	1.807	37.921	1.8	39.2	0.39	-3.26	±5	Sep. 20, 2012
835	Body	21.5	0.994	55.57	0.97	55.2	2.47	0.67	±5	Sep. 19, 2012
1900	Body	21.6	1.567	52.576	1.52	53.3	3.09	-1.36	±5	Sep. 18, 2012
2450	Body	21.3	1.992	54.311	1.95	52.7	2.15	3.06	±5	Sep. 20, 2012

Table 6.2 Measuring Results for Simulating Liquid

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 16 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

t Report No. : FA291002

7. SAR Measurement Evaluation

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

7.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

7.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Fig 7.1 System Setup for System Evaluation

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 17 of 39
Report Issued Date : Sep. 26, 2012

- Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected.

Report No.: FA291002

Fig 7.2 Photo of Dipole Setup

7.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 7.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Measurement Date	Frequency (MHz)	Liquid Type	Targeted SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (%)
Sep. 19, 2012	835	Head	9.4	2.43	9.72	3.40
Sep. 19, 2012	1900	Head	40.3	9.86	39.44	-2.13
Sep. 20, 2012	2450	Head	54.8	13.8	55.20	0.73
Sep. 19, 2012	835	Body	9.42	2.39	9.56	1.49
Sep. 18, 2012	1900	Body	41.8	10.5	42.00	0.48
Sep. 20, 2012	2450	Body	52.3	13.7	54.80	4.78

Table 7.1 Target and Measurement SAR after Normalized

 SPORTON INTERNATIONAL (KUNSHAN) INC.
 Page Number
 : 18 of 39

 TEL: 86-0512-5790-0158
 Report Issued Date
 : Sep. 26, 2012

 FAX: 86-0512-5790-0958
 Report Version
 : Rev. 01

FCC ID: YHLBLUDASH35

Report No. : FA291002

8. EUT Testing Position

This EUT was tested in nine different positions. They are right cheek, right tilted, left cheek, left tilted, Front of the EUT with phantom 1 cm gap, Back of the EUT with phantom 1 cm gap, Bottom Side of the EUT with phantom 1 cm gap, Right Side of the EUT with phantom 1 cm gap, and Left Side of the EUT with phantom 1 cm gap, as illustrated below:

8.1 Define two imaginary lines on the handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig 8.1 Illustration for Handset Vertical and Horizontal Reference Lines

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 19 of 39
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

8.2 Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.2).

Fig 8.2 Illustration for Cheek Position

8.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.3).

Fig 8.3 Illustration for Tilted Position

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 20 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

8.4 Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1 cm.

Fig 8.4 Illustration for Body Worn Position

<EUT Setup Photos>

Please refer to Appendix E for the test setup photos.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 21 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% EUTy factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Appendix E demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

SPORTON INTERNATIONAL (KUNSHAN) INC.
TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 22 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

9.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

9.5 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 23 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

Report No.: FA291002

10. SAR Test Configurations

10.1 Exposure Positions Consideration

Antennas	Wireless Interface				
WWAN Antenna (Tx / Rx)	GSM850, GSM1900				
www.Antenna(IX/KX)	WCDMA Band II, WCDMA Band V				
WLAN & Bluetooth Antenna (Tx / Rx)	WLAN 2.4GHz				
WLAN & Bluetooth Antenna (1x / kx)	Bluetooth				

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 24 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

Sides for SAR tests; Hotspot mode Test distance: 10 mm												
Antennas Back Front Top Bottom Right Left Side Side Side Side												
WWAN	WWAN YES YES NO YES YES YES											
WLAN & Bluetooth												

Note:

- 1. Head/Body-worn/Hotspot mode SAR assessments are required.
- 2. Referring to KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.
- 3. For WWAN antenna, SAR measurements at Top side are not required since the distance between WWAN transmitting antenna and surface or edge > 25mm.
- 4. For BT&WLAN antenna, SAR measurements Top/Right side are not required since the distance between BT&WLAN transmitting antenna and surface or edge > 25mm.

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 25 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

10.2 Conducted RF Output Power (Unit: dBm)

<GSM/GPRS >

	Burst Average Power											
Band		GSM850			GSM1900							
Channel	128	189	251	512	661	810						
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8						
GSM (1 Uplink)	32.85	32.76	32.73	29.80	29.76	<mark>29.84</mark>						
GPRS 8 (1 Uplink) – CS1	32.86	32.76	32.73	29.76	29.73	29.79						
GPRS 10 (2 Uplink) - CS1	29.32	29.25	29.23	27.84	27.81	27.89						
GPRS 11 (3 Uplink) - CS1	27.84	27.77	27.75	26.58	26.56	26.59						
GPRS 12 (4 Uplink) – CS1	26.33	26.27	26.23	25.25	25.24	25.27						

S	Source-Based Time-Averaged Power												
Band		GSM850			GSM1900								
Channel	128	189	251	512	661	810							
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8							
GSM (1 Uplink)	23.85	23.76	23.73	20.80	20.76	20.84							
GPRS 8 (1 Uplink) - CS1	23.86	23.76	23.73	20.76	20.73	20.79							
GPRS 10 (2 Uplink) - CS1	23.32	23.25	23.23	21.84	21.81	21.89							
GPRS 11 (3 Uplink) - CS1	23.58	23.51	23.49	22.32	22.30	22.33							
GPRS 12 (4 Uplink) – CS1	23.33	23.27	23.23	22.25	22.24	22.27							

Remark: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time averaged power = Maximum burst averaged power (1 Uplink) - 9 dB

Source based time averaged power = Maximum burst averaged power (2 Uplink) - 6 dB

Source based time averaged power = Maximum burst averaged power (3 Uplink) - 4.26 dB

Source based time averaged power = Maximum burst averaged power (4 Uplink) - 3 dB

Note:

- 1. For Head SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 8 for GSM850 and set in GPRS 11 for GSM1900 due to its highest source-based time-average power.
- 2. For Body SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 8 for GSM850 and set in GPRS 11 for GSM1900 due to its highest source-based time-average power.
- 3. Per KDB 447498, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. The EUT do not support DTM function.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

TEL: 86-0512-5790-0158

Page Number : 26 of 39
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

<WCDMA>

Band	V	VCDMA Band	V	V	VCDMA Band	II
Channel	4132	4182	4233	9262	9400	9538
Frequency (MHz)	826.4	836.4	846.6	1852.4	1880.0	1907.6
AMR	22.34	22.36	22.36	22.14	22.20	22.38
RMC 12.2K	22.36	22.40	22.37	22.18	22.24	22.39
HSDPA Subtest-1	22.30	22.39	22.37	22.13	22.22	22.37
HSDPA Subtest-2	22.14	22.23	22.27	22.02	22.10	22.33
HSDPA Subtest-3	21.78	21.82	21.87	21.67	21.70	21.99
HSDPA Subtest-4	21.76	21.81	21.77	21.56	21.62	21.94
HSUPA Subtest-1	21.56	21.59	21.74	22.10	22.16	22.20
HSUPA Subtest-2	20.58	20.81	20.24	20.50	20.61	20.77
HSUPA Subtest-3	20.74	20.98	20.78	20.77	20.25	20.11
HSUPA Subtest-4	20.80	20.75	20.92	20.82	20.56	21.15
HSUPA Subtest-5	22.25	22.38	22.36	22.11	22.21	22.38

Note:

- For Head SAR, per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 1/4 dB higher than RMC, SAR tests with AMR 12.2kbps can be excluded.
- 2. For Body SAR, Per KDB 941225 D01, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded.
- 3. By design, HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information is included in Tune-up Procure exhibit.
- 4. It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

TEL: 86-0512-5790-0158

Page Number : 27 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

	Fraguency		Average power (dBm)								
Mode	Channel	Frequency (MHz)		Data Rate (bps)							
		(1411 12)	1M	2M	5.5M	11M					
	CH 01	2412	<mark>16.26</mark>	16.19	16.22	16.23					
802.11b	CH 06	2437	16.14	16.11	16.22	16.20					
	CH 11	2462	15.99	15.95	15.96	15.93					

					A	verage po	ower (dBn	1)		
Mode	Channel	Frequency (MHz)								
		(2)	6M	9M	12M	18M	24M	36M	48M	54M
	CH 01	2412	8.48	8.89	8.91	9.01	<mark>10.34</mark>	10.15	10.26	10.32
802.11g	CH 06	2437	8.72	8.82	8.83	8.97	10.28	10.14	10.19	10.34
	CH 11	2462	8.80	8.78	8.78	8.93	10.26	10.11	10.14	8.63

		F			Δ	verage po	wer (dBm	1)		
I Mode Channel	Frequency (MHz)	Data Rate (bps)								
		(1411 12)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
000 115	CH 01	2412	7.36	7.63	7.49	9.61	9.74	9.70	9.77	9.64
802.11n 20M	CH 06	2437	7.66	7.95	7.78	9.57	9.71	9.69	9.73	9.74
20101	CH 11	2462	7.67	7.93	7.77	9.55	9.70	9.66	<mark>9.85</mark>	9.71

- 1. Per KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. Per KDB 248227, 11g and 11n output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded.
- For each frequency band, testing at higher data rates and higher order modulations is not required when the 3. maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate.

<Bluetooth>

	Channel		Average power (dBm)										
Mode		Frequency (MHz)	Data Rate										
		, ,	DH1	DH3	DH5	2DH1	2DH3	2DH5	3DH1	3DH3	3DH5		
	CH 00	2402 MHz	3.05	3.07	4.34	3.02	2.95	2.96	3.05	3.17	3.08		
Bluetooth	CH 39	2441 MHz	4.23	4.15	<mark>4.55</mark>	4.18	4.29	4.22	4.33	4.35	4.32		
	CH 78	2480 MHz	1.46	1.53	2.87	1.48	1.46	1.33	1.52	1.45	1.37		

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 28 of 39 Report Issued Date: Sep. 26, 2012

Report No.: FA291002

11. SAR Test Results

11.1 Test Records for Head SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	SAR _{1g} (W/kg)	Scaled SAR _{1q} (W/kg)
1	GSM850	GPRS8	Right Cheek	128	32.86	33	1.033	0.355	0.367
2	GSM850	GPRS8	Right Tilted	128	32.86	33	1.033	0.203	0.210
3	GSM850	GPRS8	Left Cheek	128	32.86	33	1.033	0.316	0.326
4	GSM850	GPRS8	Left Tilted	128	32.86	33	1.033	0.170	0.176
5	GSM1900	GPRS11	Right Cheek	810	26.59	27.5	1.233	0.154	0.190
6	GSM1900	GPRS11	Right Tilted	810	26.59	27.5	1.233	0.083	0.102
7	GSM1900	GPRS11	Left Cheek	810	26.59	27.5	1.233	0.334	0.412
8	GSM1900	GPRS11	Left Tilted	810	26.59	27.5	1.233	0.058	0.072

Note: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

<WCDMA>

Plot No.	Band	Mode	Test Position	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
9	WCDMA V	RMC12.2K	Right Cheek	4182	22.4	22.5	1.023	0.326	0.334
10	WCDMA V	RMC12.2K	Right Tilted	4182	22.4	22.5	1.023	0.183	0.187
11	WCDMA V	RMC12.2K	Left Cheek	4182	22.4	22.5	1.023	0.293	0.300
12	WCDMA V	RMC12.2K	Left Tilted	4182	22.4	22.5	1.023	0.161	0.165
13	WCDA II	RMC12.2K	Right Cheek	9538	22.39	22.5	1.026	0.315	0.323
14	WCDA II	RMC12.2K	Right Tilted	9538	22.39	22.5	1.026	0.132	0.135
15	WCDA II	RMC12.2K	Left Cheek	9538	22.39	22.5	1.026	0.641	0.657
16	WCDA II	RMC12.2K	Left Tilted	9538	22.39	22.5	1.026	0.118	0.121

Note: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

<WI AN>

-AAF	-711/								
Plot No.	Band	Mode	Test Position	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
17	WLAN 2.4G	802.11b	Right Cheek	1	16.26	16.5	1.057	0.032	0.034
18	WLAN 2.4G	802.11b	Right Tilted	1	16.26	16.5	1.057	0.030	0.032
19	WLAN 2.4G	802.11b	Left Cheek	1	16.26	16.5	1.057	<mark>0.078</mark>	0.082
20	WLAN 2.4G	802.11b	Left Tilted	1	16.26	16.5	1.057	0.026	0.027

Note: Per KDB 248227, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 29 of 39 Report Issued Date: Sep. 26, 2012

Report No.: FA291002

11.2 Test Records for Hotspot SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
21	GSM850	GPRS8	Front	1	128	32.86	33	1.033	0.466	0.481
22	GSM850	GPRS8	Back	1	128	32.86	33	1.033	1.130	1.167
23	GSM850	GPRS8	Left Side	1	128	32.86	33	1.033	0.297	0.307
24	GSM850	GPRS8	Right Side	1	128	32.86	33	1.033	0.410	0.423
25	GSM850	GPRS8	Bottom Side	1	128	32.86	33	1.033	0.106	0.109
26	GSM850	GPRS8	Back	1	189	32.76	33	1.057	1.030	1.089
27	GSM850	GPRS8	Back	1	251	32.73	33	1.064	0.914	0.973
31	GSM1900	GPRS11	Front	1	810	26.59	27.5	1.233	0.377	0.465
32	GSM1900	GPRS11	Back	1	810	26.59	27.5	1.233	<mark>0.589</mark>	0.726
33	GSM1900	GPRS11	Left Side	1	810	26.59	27.5	1.233	0.060	0.074
34	GSM1900	GPRS11	Right Side	1	810	26.59	27.5	1.233	0.064	0.079
35	GSM1900	GPRS11	Bottom Side	1	810	26.59	27.5	1.233	0.342	0.422

Note:

- 1. Per KDB 941225 D06, for EUT dimension ≥ 9cm*5cm, the test distance is 1cm. SAR must be measured for all surfaces and sides with a transmitting antenna located within 2.5cm from that surface or edge.
- 2. As in (1), SAR for Front/Back /Bottom Side/Left Side/Right Side is necessary.
- 3. Per KDB 447498 if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

<WCDMA>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
37	WCDMA V	RMC12.2K	Front	1	4182	22.4	22.5	1.023	0.403	0.412
38	WCDMA V	RMC12.2K	Back	1	4182	22.4	22.5	1.023	1.030	1.054
39	WCDMA V	RMC12.2K	Left Side	1	4182	22.4	22.5	1.023	0.322	0.330
40	WCDMA V	RMC12.2K	Right Side	1	4182	22.4	22.5	1.023	0.409	0.419
41	WCDMA V	RMC12.2K	Bottom Side	1	4182	22.4	22.5	1.023	0.091	0.093
42	WCDMA V	RMC12.2K	Back	1	4132	22.4	22.5	1.023	0.853	0.873
43	WCDMA V	RMC12.2K	Back	1	4233	22.36	22.5	1.033	1.170	1.208
45	WCDMA II	RMC12.2K	Front	1	9538	22.39	22.5	1.026	0.655	0.672
46	WCDMA II	RMC12.2K	Back	1	9538	22.39	22.5	1.026	1.290	1.323
47	WCDMA II	RMC12.2K	Left Side	1	9538	22.39	22.5	1.026	0.113	0.116
48	WCDMA II	RMC12.2K	Right Side	1	9538	22.39	22.5	1.026	0.125	0.128
49	WCDMA II	RMC12.2K	Bottom Side	1	9538	22.39	22.5	1.026	0.611	0.627
50	WCDMA II	RMC12.2K	Back	1	9262	22.18	22.5	1.076	1.310	1.410
51	WCDMA II	RMC12.2K	Back	1	9400	22.24	22.5	1.062	1.140	1.210

Note:

- 1. Per KDB 941225 D06, for EUT dimension ≥ 9cm*5cm, the test distance is 1cm. SAR must be measured for all surfaces and sides with a transmitting antenna located within 2.5cm from that surface or edge.
- 2. As in (1), SAR for Front/Back /Bottom Side/Left Side/Right Side is necessary.
- 3. Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 30 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

<WLAN>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
55	WLAN2.4G	802.11b	Front	1	1	16.26	16.5	1.057	0.021	0.022
56	WLAN2.4G	802.11b	Back	1	1	16.26	16.5	1.057	0.120	0.127
57	WLAN2.4G	802.11b	Left Side	1	1	16.26	16.5	1.057	0.074	0.078
58	WLAN2.4G	802.11b	Bottom Side	1	1	16.26	16.5	1.057	0.023	0.024

Note:

- 1. Per KDB 941225 D06, for EUT dimension ≥ 9cm*5cm, the test distance is 1cm. SAR must be measured for all surfaces and sides with a transmitting antenna located within 2.5cm from that surface or edge.
- 2. As in (1), SAR for Front / Back / Bottom Side / Left Side is necessary.
- 3. Per KDB 248227, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 31 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

11.3 Test Records for Body-worn SAR Test

<GSM>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Headset	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
21	GSM850	GPRS8	Front	1	128	32.86	33	1.033	-	0.466	0.481
22	GSM850	GPRS8	Back	1	128	32.86	33	1.033	-	1.130	1.167
26	GSM850	GPRS8	Back	1	189	32.76	33	1.057	-	1.030	1.089
27	GSM850	GPRS8	Back	1	251	32.73	33	1.064	-	0.914	0.973
28	GSM850	GPRS8	Back	1	128	32.86	33	1.033	V	0.822	0.849
29	GSM850	GPRS8	Back	1	189	32.76	33	1.057	V	0.858	0.907
30	GSM850	GPRS8	Back	1	251	32.73	33	1.064	V	0.724	0.770
31	GSM1900	GPRS11	Front	1	810	26.59	27.5	1.233	-	0.377	0.465
32	GSM1900	GPRS11	Back	1	810	26.59	27.5	1.233	-	0.589	0.726
36	GSM1900	GPRS11	Back	1	810	26.59	27.5	1.233	V	0.710	0.876

Note:

- Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.
- "V" in the headset column means the earphone is plugged during SAR testing. 2.

<WCDMA>

7111	WCDMA>											
Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Headset	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)	
37	WCDMA V	RMC12.2K	Front	1	4182	22.4	22.5	1.023	-	0.403	0.412	
38	WCDMA V	RMC12.2K	Back	1	4182	22.4	22.5	1.023	-	1.030	1.054	
42	WCDMA V	RMC12.2K	Back	1	4132	22.4	22.5	1.023	-	0.853	0.873	
43	WCDMA V	RMC12.2K	Back	1	4233	22.36	22.5	1.033	-	1.17	1.208	
44	WCDMA V	RMC12.2K	Back	1	4233	22.37	22.5	1.030	٧	0.718	0.740	
45	WCDMA II	RMC12.2K	Front	1	9538	22.39	22.5	1.026	-	0.655	0.672	
46	WCDMA II	RMC12.2K	Back	1	9538	22.39	22.5	1.026	-	1.290	1.323	
50	WCDMA II	RMC12.2K	Back	1	9262	22.18	22.5	1.076	-	1.31	1.410	
51	WCDMA II	RMC12.2K	Back	1	9400	22.24	22.5	1.062	-	1.140	1.210	
52	WCDMA II	RMC12.2K	Back	1	9262	22.18	22.5	1.076	V	1.310	1.410	
53	WCDMA II	RMC12.2K	Back	1	9400	22.24	22.5	1.062	٧	1.120	1.189	
54	WCDMA II	RMC12.2K	Back	1	9538	22.39	22.5	1.026	٧	1.280	1.313	

Note:

- Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR 1. tests are not necessary.
- 2. "V" in the headset column means the earphone is plugged during SAR testing.

<WI AN>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Output Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Headset	SAR1g (W/kg)	Scaled SAR _{1g} (W/kg)		
55	WLAN2.4G	802.11b	Front	1	1	16.26	16.5	1.057	-	0.021	0.022		
56	WLAN2.4G	802.11b	Back	1	1	16.26	16.5	1.057	-	0.120	0.127		
59	WLAN2.4G	802.11b	Back	1	1	16.26	16.5	1.057	V	0.104	0.110		

Note:

- Per KDB 248227, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR 1. tests are not necessary.
- 2. "V" in the headset column means the earphone is plugged during SAR testing.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

TEL: 86-0512-5790-0158

Page Number : 32 of 39 Report Issued Date: Sep. 26, 2012 Report Version : Rev. 01

11.4 Simultaneous Multi-band Transmission Analysis

No.	Applicable Simultaneous Transmission Combination
1	GSM + BT
2	WCDMA + BT
3	GSM + WLAN 2.4G
4	WCDMA + WLAN 2.4G

Note:

- WLAN and BT share the same antenna, and cannot transmit simultaneously.
- 2. GSM and WCDMA share the same antenna, and cannot transmit simultaneously.
- 3. EUT will choose either GSM or WCDMA according to the network signal condition, therefore, they will not transmit simultaneously.
- 4. Per KDB 648474 D01, Bluetooth output power (4.55 dBm) ≤ P_{ref} and the distance to other antennas < 2.5cm or each other antennas SAR is less than 1.2 W/kg, therefore stand-alone SAR is not required; the simultaneous transmission SAR for WWAN and Bluetooth were not required, because Bluetooth standalone SAR is not required and the maximum WWAN SAR (1.31 W/kg), so the SAR summation is less than 1.6 W/kg.</p>
- 5. According to KDB 648474 D01, the simultaneous transmission SAR for WWAN and WLAN was not required, because the max. SAR summation is less than 1.6 W/kg.

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

TEL: 86-0512-5790-0158

Page Number : 33 of 39
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

<Head SAR>

	S	cale WWAN		Sca	ale WLAN	
Position	WWAN Band	Plot No	Scaled WWAN (W/kg)	Plot No	Scaled WLAN (W/kg)	Scaled WWAN + Scaled WLAN
	GSM850	#01	0.367	#17	0.034	0.40
	GSM1900	#05	0.190	#17	0.034	0.22
Right Cheek	WCDMA Band V	#09	0.334	#17	0.034	0.37
	WCDMA Band II	#13	0.323	#17	0.034	0.36
	GSM850	#02	0.210	#18	0.032	0.24
	GSM1900	#06	0.102	#18	0.032	0.13
Right Tilted	WCDMA Band V	#10	0.187	#18	0.032	0.22
	WCDMA Band II	#14	0.135	#18	0.032	0.17
	GSM850	#03	0.326	#19	0.082	0.41
	GSM1900	#07	0.412	#19	0.082	0.49
Left Cheek	WCDMA Band V	#11	0.300	#19	0.082	0.38
	WCDMA Band II	#15	0.657	#19	0.082	0.74
	GSM850	#04	0.176	#20	0.027	0.20
	GSM1900	#08	0.072	#20	0.027	0.10
Left Tilted	WCDMA Band V	#12	0.165	#20	0.027	0.19
	WCDMA Band II	#16	0.121	#20	0.027	0.15

Note:

- 1. The maximum SAR summation is calculated based on the same configuration and test position.
- 2. When stand-alone 1-g SAR is not required for a transmitter or antenna, its SAR is considered zero in the 1-g SAR summing process to determine simultaneous transmission SAR evaluation requirements
- 3. If 1g-SAR scalar summation < 1.6W/kg, simultaneous SAR measurement is not necessary.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

: 34 of 39 Page Number Report Issued Date: Sep. 26, 2012

Report No.: FA291002

<Hotspot SAR>

Tiotspot OAI		Scale WWAN		Scale	WLAN	
Position	WWAN Band	Plot No	Scaled WWAN (W/kg)	Plot No	Scaled WLAN (W/kg)	Scaled WWAN + Scaled WLAN
	GSM850	#21	0.481	#55	0.022	0.50
	GSM1900	#31	0.465	#55	0.022	0.49
Front	WCDMA Band V	#37	0.412	#55	0.022	0.43
	WCDMA Band II	#45	0.672	#55	0.022	0.69
	GSM850	#22	1.167	#56	0.127	1.29
	GSM1900	#32	0.726	#56	0.127	0.85
Back	WCDMA Band V	#43	1.208	#56	0.127	1.34
	WCDMA Band II	#50	1.410	#56	0.127	1.54
	GSM850	#23	0.307	#57	0.078	0.39
	GSM1900	#33	0.074	#57	0.078	0.15
Left Side	WCDMA Band V	#39	0.330	#57	0.078	0.41
	WCDMA Band II	#47	0.116	#57	0.078	0.19
	GSM850	#25	0.109	#58	0.024	0.13
D. 44 0'. 1	GSM1900	#35	0.422	#58	0.024	0.45
Bottom Side	WCDMA Band V	#41	0.093	#58	0.024	0.12
	WCDMA Band II	#49	0.627	#58	0.024	0.65

Note:

- 1. The maximum SAR summation is calculated based on the same configuration and test position.
- 2. When stand-alone 1-g SAR is not required for a transmitter or antenna, its SAR is considered zero in the 1-g SAR summing process to determine simultaneous transmission SAR evaluation requirements
- 3. If 1g-SAR scalar summation < 1.6W/kg, simultaneous SAR measurement is not necessary.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 35 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

<Body-worn SAR>

Dody worm	Scale WWAN			Scale WLAN		
Position	WWAN Band	Plot No	Scaled WWAN (W/kg)	Plot No	Scaled WLAN (W/kg)	Scaled WWAN + Scaled WLAN
Front	GSM850	#21	0.481	#55	0.022	0.50
	GSM1900	#31	0.465	#55	0.022	0.49
	WCDMA Band V	#37	0.412	#55	0.022	0.43
	WCDMA Band II	#45	0.672	#55	0.022	0.69
Back	GSM850	#22	1.167	#56	0.127	1.29
	GSM1900	#32	0.726	#56	0.127	0.85
	WCDMA Band V	#43	1.208	#56	0.127	1.34
	WCDMA Band II	#50	1.410	#56	0.127	1.54
Back (w/ Headset)	GSM850	#29	0.907	#59	0.110	1.02
	GSM1900	#36	0.876	#59	0.110	0.99
	WCDMA Band V	#44	0.740	#59	0.110	0.85
	WCDMA Band II	#52	1.410	#59	0.110	1.52

Note:

- 1. The maximum SAR summation is calculated based on the same configuration and test position.
- 2. When stand-alone 1-g SAR is not required for a transmitter or antenna, its SAR is considered zero in the 1-g SAR summing process to determine simultaneous transmission SAR evaluation requirements
- 3. If 1g-SAR scalar summation < 1.6W/kg, simultaneous SAR measurement is not necessary.

Test Engineer: Fulu Hu

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 36 of 39
Report Issued Date : Sep. 26, 2012

Report No.: FA291002

12. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 12.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 12.1 Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : 37 of 39
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

Report No.: FA291002

CC SAR Test Report	Report No. : FA291002

	Uncertainty	Probability		Ci	Ci	Standard	Standard			
Error Description	Value	Distribution	Divisor	(1g)	(10g)	Uncertainty	Uncertainty			
	(±%)					(1g)	(10g)			
Measurement System										
Probe Calibration	6.0	Normal	1	1	1	± 6.0 %	± 6.0 %			
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %			
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %			
Boundary Effects	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %			
Linearity	4.7	Rectangular	√3	1	1	± 2.7 %	± 2.7 %			
System Detection Limits	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %			
Readout Electronics	0.3	Normal	1	1	1	± 0.3 %	± 0.3 %			
Response Time	0.8	Rectangular	√3	1	1	± 0.5 %	± 0.5 %			
Integration Time	2.6	Rectangular	√3	1	1	± 1.5 %	± 1.5 %			
RF Ambient Noise	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %			
RF Ambient Reflections	3.0	Rectangular	√3	1	1	± 1.7 %	± 1.7 %			
Probe Positioner	0.4	Rectangular	√3	1	1	± 0.2 %	± 0.2 %			
Probe Positioning	2.9	Rectangular	√3	1	1	± 1.7 %	± 1.7 %			
Max. SAR Eval.	1.0	Rectangular	√3	1	1	± 0.6 %	± 0.6 %			
Test Sample Related										
Device Positioning	2.9	Normal	1	1	1	± 2.9 %	± 2.9 %			
Device Holder	3.6	Normal	1	1	1	± 3.6 %	± 3.6 %			
Power Drift	5.0	Rectangular	√3	1	1	± 2.9 %	± 2.9 %			
Phantom and Setup	Phantom and Setup									
Phantom Uncertainty	4.0	Rectangular	√3	1	1	± 2.3 %	± 2.3 %			
Liquid Conductivity (Target)	5.0	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %			
Liquid Conductivity (Meas.)	2.5	Normal	1	0.64	0.43	± 1.6 %	± 1.1 %			
Liquid Permittivity (Target)	5.0	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %			
Liquid Permittivity (Meas.)	2.5	Normal	1	0.6	0.49	± 1.5 %	± 1.2 %			
Combined Standard Uncertainty					± 11.0 %	± 10.8 %				
Coverage Factor for 95 %					K=2					
Expanded Uncertainty					± 22.0 %	± 21.5 %				

Table 12.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

: 38 of 39 Page Number Report Issued Date: Sep. 26, 2012

Report Version : Rev. 01

FCC SAR Test Report

13. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007
- [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009
- [8] FCC KDB 648474 D01 v01r05, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", September 2008
- [9] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007
- [10] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008
- [11] FCC KDB 941225 D06 v01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", April 2011

SPORTON INTERNATIONAL (KUNSHAN) INC.

FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

TEL: 86-0512-5790-0158

Page Number : 39 of 39
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

Report Version : Rev. 01

FCC SAR Test Report

Appendix A. Plots of System Performance Check

The plots are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : A1 of A1
Report Issued Date : Sep. 26, 2012

Report No. : FA291002

Report Version : Rev. 01

System Check_Head_835MHz_120919

DUT: D835V2 - SN:4d091

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_835_120919 Medium parameters used: f = 835 MHz; $\sigma = 0.904$ mho/m; $\varepsilon_r = 41.212$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.606 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.170 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.559 W/kg SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.626 mW/g

System Check_Head_1900MHz_120919

DUT: D1900V2 - SN:5d118

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900_120919 Medium parameters used: f = 1900 MHz; $\sigma = 1.417$ mho/m; $\varepsilon_r =$

39.706; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.331 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.957 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 18.616 W/kg SAR(1 g) = 9.86 mW/g; SAR(10 g) = 5.15 mW/g Maximum value of SAR (measured) = 11.058 mW/g

System Check_Head_2450MHz_120920

DUT: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450_120920 Medium parameters used: f = 2450 MHz; $\sigma = 1.807$ mho/m; $\varepsilon_r =$

37.921; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.1 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.87, 6.87, 6.87); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.580 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.167 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 30.162 W/kg SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.27 mW/g Maximum value of SAR (measured) = 15.654 mW/g

System Check_Body_835MHz_120919

DUT: D835V2 - SN:4d091

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_835_120919 Medium parameters used: f = 835 MHz; $\sigma = 0.994$ mho/m; $\varepsilon_r = 55.57$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.547 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.760 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.445 W/kg SAR(1 g) = 2.39 mW/g; SAR(10 g) = 1.59 mW/g Maximum value of SAR (measured) = 2.571 mW/g

System Check_Body_1900MHz_120918

DUT: D1900V2 - SN:5d118

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900_120918 Medium parameters used: f = 1900.05 MHz; $\sigma = 1.567$ mho/m; $\varepsilon_r =$

52.576; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.956 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.888 V/m; Power Drift = 0.0089 dB Peak SAR (extrapolated) = 19.274 W/kg SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.39 mW/g Maximum value of SAR (measured) = 11.811 mW/g

System Check_Body_2450MHz_120920

DUT: D2450V2-SN:736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450_120920 Medium parameters used: f = 2450 MHz; $\sigma = 1.992$ mho/m; $\varepsilon_r =$

54.311; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.580 mW/g

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.342 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 28.718 W/kg SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.31 mW/g Maximum value of SAR (measured) = 15.748 mW/g

Appendix B. Plots of SAR Measurement

The plots are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35 Page Number : B1 of B1
Report Issued Date : Sep. 26, 2012
Report Version : Rev. 01

Report No. : FA291002

#01 GSM850 GPRS8 Right Cheek Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 850 120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r =$

41.309; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.387 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.563 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.496 W/kg SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.247 mW/g Maximum value of SAR (measured) = 0.376 mW/g

0 dB = 0.380 mW/g

#01 GSM850 GPRS8 Right Cheek Ch128 2D

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 850 120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r =$

41.309; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.387 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.563 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.496 W/kg SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.247 mW/g Maximum value of SAR (measured) = 0.376 mW/g

#02 GSM850 GPRS8 Right Tilted Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 850 120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r =$

41.309; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.6°C; Liquid Temperature: 21.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.213 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.005 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.241 W/kg SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.154 mW/g Maximum value of SAR (measured) = 0.212 mW/g

#03 GSM850 GPRS8 Left Cheek Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 850 120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r =$

41.309; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.352 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.369 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.316 mW/g; SAR(10 g) = 0.238 mW/g Maximum value of SAR (measured) = 0.330 mW/g

0 dB = 0.330 mW/g

#04 GSM850 GPRS8 Left Tilted Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL 850 120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.895$ mho/m; $\varepsilon_r =$

41.309; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.226 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.906 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.200 W/kg SAR(1 g) = 0.170 mW/g; SAR(10 g) = 0.131 mW/g Maximum value of SAR (measured) = 0.176 mW/g

#05 GSM1900 GPRS11 Right Cheek Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: HSL 1900 120919 Medium parameters used: f = 1910 MHz; $\sigma = 1.426$ mho/m; $\varepsilon_r =$

39.668; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.159 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.146 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.254 W/kg SAR(1 g) = 0.154 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.170 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.146 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.235 W/kg SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.086 mW/g Maximum value of SAR (measured) = 0.166 mW/g

#06 GSM1900 GPRS11 Right Tilted Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: HSL 1900_120919 Medium parameters used: f = 1910 MHz; $\sigma = 1.426$ mho/m; $\varepsilon_r =$

39.668; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.112 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.880 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.129 W/kg SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.048 mW/g Maximum value of SAR (measured) = 0.090 mW/g

#07 GSM1900 GPRS11 Left Cheek Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: HSL 1900 120919 Medium parameters used: f = 1910 MHz; $\sigma = 1.426$ mho/m; $\varepsilon_r =$

39.668; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.349 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.806 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.552 W/kg
SAR(1 g) = 0.334 mW/g; SAR(10 g) = 0.180 mW/g
Maximum value of SAR (measured) = 0.374 mW/g

#07 GSM1900 GPRS11 Left Cheek Ch810 2D

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: HSL 1900 120919 Medium parameters used: f = 1910 MHz; $\sigma = 1.426$ mho/m; $\varepsilon_r =$

39.668; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.349 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.806 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.552 W/kg SAR(1 g) = 0.334 mW/g; SAR(10 g) = 0.180 mW/g Maximum value of SAR (measured) = 0.374 mW/g

#08 GSM1900 GPRS11 Left Tilted Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: HSL 1900_120919 Medium parameters used: f = 1910 MHz; $\sigma = 1.426$ mho/m; $\varepsilon_r =$

39.668; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.070 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.889 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.090 W/kg SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.034 mW/g Maximum value of SAR (measured) = 0.064 mW/g

#09 WCDMA V RMC12.2K Right Cheek Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL_850_120919 Medium parameters used: f = 836.5 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r =$

41.197; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.356 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.278 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.455 W/kg SAR(1 g) = 0.326 mW/g; SAR(10 g) = 0.226 mW/g Maximum value of SAR (measured) = 0.346 mW/g

#09 WCDMA V RMC12.2K Right Cheek Ch4182 2D

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL 850 120919 Medium parameters used: f = 836.5 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r =$

41.197; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.356 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.278 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.455 W/kg SAR(1 g) = 0.326 mW/g; SAR(10 g) = 0.226 mW/g Maximum value of SAR (measured) = 0.346 mW/g

#10 WCDMA V RMC12.2K Right Tilted Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL 850 120919 Medium parameters used: f = 836.5 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r =$

41.197; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.191 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.535 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.216 W/kg SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.192 mW/g

#11 WCDMA V RMC12.2K Left Cheek Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL 850 120919 Medium parameters used: f = 836.5 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r =$

41.197; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.323 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.258 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.367 W/kg SAR(1 g) = 0.293 mW/g; SAR(10 g) = 0.220 mW/g Maximum value of SAR (measured) = 0.306 mW/g

#12 WCDMA V_RMC12.2K_Left Tilted_Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL 850 120919 Medium parameters used: f = 836.5 MHz; $\sigma = 0.905$ mho/m; $\varepsilon_r =$

41.197; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.6 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.74, 8.74, 8.74); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.169 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.203 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.188 W/kg SAR(1 g) = 0.161 mW/g; SAR(10 g) = 0.127 mW/g Maximum value of SAR (measured) = 0.167 mW/g

#13 WCDMA II RMC12.2K Right Cheek Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: HSL 1900 120919 Medium parameters used: f = 1908 MHz; $\sigma = 1.424$ mho/m; $\varepsilon_r =$

39.675; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.323 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.264 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.531 W/kg SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.178 mW/g Maximum value of SAR (measured) = 0.345 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.264 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.498 W/kg SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.180 mW/g

#14 WCDMA II_RMC12.2K_Right Tilted_Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: HSL_1900_120919 Medium parameters used: f = 1908 MHz; $\sigma = 1.424$ mho/m; $\varepsilon_r =$

39.675; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.162 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.690 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.214 W/kg SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.078 mW/g Maximum value of SAR (measured) = 0.145 mW/g

#15 WCDMA II_RMC12.2K_Left Cheek_Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: HSL_1900_120919 Medium parameters used: f = 1908 MHz; $\sigma = 1.424$ mho/m; $\varepsilon_r =$

39.675; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.703 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.673 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.069 W/kg SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.344 mW/g Maximum value of SAR (measured) = 0.713 mW/g

#15 WCDMA II_RMC12.2K_Left Cheek_Ch9538_2D

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: HSL_1900_120919 Medium parameters used: f = 1908 MHz; $\sigma = 1.424$ mho/m; $\varepsilon_r =$

39.675; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.703 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.673 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.069 W/kg SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.344 mW/g Maximum value of SAR (measured) = 0.713 mW/g

#16 WCDMA II RMC12.2K Left Tilted Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: HSL_1900_120919 Medium parameters used: f = 1908 MHz; $\sigma = 1.424$ mho/m; $\varepsilon_r =$

39.675; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.84, 7.84, 7.84); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.138 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.192 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.186 W/kg SAR(1 g) = 0.118 mW/g; SAR(10 g) = 0.068 mW/g Maximum value of SAR (measured) = 0.127 mW/g

#17 802.11b Right Cheek Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ mho/m; $\varepsilon_r =$

38.063; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.1 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.87, 6.87, 6.87); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.055 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.633 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.054 W/kg SAR(1 g) = 0.032 mW/g; SAR(10 g) = 0.016 mW/g Maximum value of SAR (measured) = 0.036 mW/g

#18 802.11b Right Tilted Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ mho/m; $\varepsilon_r =$

38.063; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.1 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.87, 6.87, 6.87); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.052 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.241 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.065 W/kg SAR(1 g) = 0.030 mW/g; SAR(10 g) = 0.013 mW/g Maximum value of SAR (measured) = 0.034 mW/g

#19 802.11b Left Cheek Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ mho/m; $\varepsilon_r =$

38.063; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.1 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.87, 6.87, 6.87); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.106 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.313 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.136 W/kg SAR(1 g) = 0.078 mW/g; SAR(10 g) = 0.038 mW/g Maximum value of SAR (measured) = 0.091 mW/g

0 dB = 0.090 mW/g

#19 802.11b Left Cheek Ch1 2D

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ mho/m; $\varepsilon_r =$

38.063; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.1 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.87, 6.87, 6.87); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.106 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.313 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.136 W/kg SAR(1 g) = 0.078 mW/g; SAR(10 g) = 0.038 mW/g Maximum value of SAR (measured) = 0.091 mW/g

#20 802.11b Left Tilted Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: HSL_2450_120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ mho/m; $\varepsilon_r =$

38.063; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.2 °C; Liquid Temperature: 21.1 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.87, 6.87, 6.87); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM2; Type: SAM; Serial: TP-1477
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.028 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.627 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.045 W/kg SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.012 mW/g Maximum value of SAR (measured) = 0.028 mW/g

#21 GSM850 GPRS8 Front 1cm Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.512 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.973 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.656 W/kg
SAR(1 g) = 0.466 mW/g; SAR(10 g) = 0.319 mW/g
Maximum value of SAR (measured) = 0.501 mW/g

#22 GSM850 GPRS8 Back 1cm Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.223 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.886 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.478 W/kg SAR(1 g) = 1.130 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.193 mW/g

#22 GSM850 GPRS8 Back 1cm Ch128 2D

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.223 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.886 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.478 W/kg SAR(1 g) = 1.130 mW/g; SAR(10 g) = 0.807 mW/g Maximum value of SAR (measured) = 1.193 mW/g

#23 GSM850 GPRS8 Left Side 1cm Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.319 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.887 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.398 W/kg SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.210 mW/g Maximum value of SAR (measured) = 0.317 mW/g

#24 GSM850_GPRS8_Right Side_1cm_Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.427 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.620 V/m; Power Drift = 0.0081 dB Peak SAR (extrapolated) = 0.573 W/kg SAR(1 g) = 0.410 mW/g; SAR(10 g) = 0.280 mW/g Maximum value of SAR (measured) = 0.440 mW/g

#25 GSM850_GPRS8_Bottom Side_1cm_Ch128

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (31x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.121 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.780 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.189 W/kg SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.060 mW/g Maximum value of SAR (measured) = 0.120 mW/g

#26 GSM850 GPRS8 Back 1cm Ch189

DUT: 291002

Communication System: General GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: MSL 835 120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch189/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.092 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.455 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.387 W/kg
SAR(1 g) = 1.030 mW/g; SAR(10 g) = 0.734 mW/g
Maximum value of SAR (measured) = 1.092 mW/g

#27 GSM850 GPRS8 Back 1cm Ch251

DUT: 291002

Communication System: General GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 849 MHz; $\sigma = 1.007$ mho/m; $\epsilon_r = 55.443$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch251/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.973 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.708 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.210 W/kg SAR(1 g) = 0.914 mW/g; SAR(10 g) = 0.653 mW/g Maximum value of SAR (measured) = 0.969 mW/g

#28 GSM850_GPRS8_Back_1cm_Ch128_Headset

DUT: 291002

Communication System: General GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 824.2 MHz; $\sigma = 0.984$ mho/m; $\varepsilon_r =$

55.661; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch128/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.877 mW/g

Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.215 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.102 W/kg SAR(1 g) = 0.822 mW/g; SAR(10 g) = 0.579 mW/g Maximum value of SAR (measured) = 0.875 mW/g

#29 GSM850_GPRS8_Back_1cm_Ch189_Headset

DUT: 291002

Communication System: General GSM; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: MSL 835 120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch189/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.914 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.467 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 1.154 W/kg SAR(1 g) = 0.858 mW/g; SAR(10 g) = 0.606 mW/g Maximum value of SAR (measured) = 0.915 mW/g

#30 GSM850 GPRS8 Back 1cm Ch251 Headset

DUT: 291002

Communication System: General GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium: MSL_835_120919 Medium parameters used: f = 849 MHz; $\sigma = 1.007$ mho/m; $\epsilon_r = 55.443$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch251/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.770 mW/g

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.528 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.985 W/kg
SAR(1 g) = 0.724 mW/g; SAR(10 g) = 0.512 mW/g
Maximum value of SAR (measured) = 0.773 mW/g

#31 GSM1900 GPRS11 Front 1cm Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL 1900 120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.390 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.552 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.649 W/kg SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.204 mW/g Maximum value of SAR (measured) = 0.422 mW/g

0 dB = 0.420 mW/g

#32 GSM1900 GPRS11 Back 1cm Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL 1900 120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.674 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.594 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.929 W/kg SAR(1 g) = 0.589 mW/g; SAR(10 g) = 0.322 mW/g Maximum value of SAR (measured) = 0.656 mW/g

0 dB = 0.660 mW/g

#33 GSM1900 GPRS11 Left Side 1cm Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL_1900_120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.061 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.874 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.097 W/kg SAR(1 g) = 0.060 mW/g; SAR(10 g) = 0.035 mW/g

Maximum value of SAR (measured) = 0.067 mW/g **Ch810/Zoom Scan (5x5x7)/Cube 1:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.874 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.078 W/kg

SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.028 mW/g Maximum value of SAR (measured) = 0.057 mW/g

#34 GSM1900_GPRS11_Right Side_1cm_Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL_1900_120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.074 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.816 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.101 W/kg SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.036 mW/g Maximum value of SAR (measured) = 0.068 mW/g

#35 GSM1900 GPRS11 Bottom Side 1cm Ch810

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL 1900 120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.371 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.441 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.550 W/kg SAR(1 g) = 0.342 mW/g; SAR(10 g) = 0.191 mW/g Maximum value of SAR (measured) = 0.387 mW/g

#36 GSM1900 GPRS11 Back 1cm Ch810 Headset

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL_1900_120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.772 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.637 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.193 W/kg SAR(1 g) = 0.710 mW/g; SAR(10 g) = 0.382 mW/g Maximum value of SAR (measured) = 0.783 mW/g

0 dB = 0.780 mW/g

#36 GSM1900 GPRS11 Back 1cm Ch810 Headset 2D

DUT: 291002

Communication System: GPRS/EDGE 11; Frequency: 1909.8 MHz; Duty Cycle: 1:3

Medium: MSL_1900_120918 Medium parameters used: f = 1910 MHz; $\sigma = 1.576$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch810/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.772 mW/g

Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.637 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.193 W/kg SAR(1 g) = 0.710 mW/g; SAR(10 g) = 0.382 mW/g Maximum value of SAR (measured) = 0.783 mW/g

#37 WCDMA V RMC12.2K Front 1cm Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.281 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.905 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.393 W/kg SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.188 mW/g Maximum value of SAR (measured) = 0.451 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.905 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.470 W/kg SAR(1 g) = 0.313 mW/g; SAR(10 g) = 0.177 mW/g Maximum value of SAR (measured) = 0.384 mW/g

#38 WCDMA V RMC12.2K Back 1cm Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.092 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.507 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.379 W/kg
SAR(1 g) = 1.030 mW/g; SAR(10 g) = 0.733 mW/g
Maximum value of SAR (measured) = 1.090 mW/g

0 dB = 1.090 mW/g

#39 WCDMA V RMC12.2K Left Side 1cm Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.342 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.345 V/m; Power Drift = -0.006 dB Peak SAR (extrapolated) = 0.436 W/kg SAR(1 g) = 0.322 mW/g; SAR(10 g) = 0.227 mW/g Maximum value of SAR (measured) = 0.344 mW/g

#40 WCDMA V RMC12.2K Right Side 1cm Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.427 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.259 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.567 W/kg
SAR(1 g) = 0.409 mW/g; SAR(10 g) = 0.281 mW/g
Maximum value of SAR (measured) = 0.438 mW/g

#41 WCDMA V RMC12.2K Bottom Side 1cm Ch4182

DUT: 291002

Communication System: UMTS; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_835_120919 Medium parameters used: f = 836.4 MHz; $\sigma = 0.995$ mho/m; $\varepsilon_r =$

55.56; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4182/Area Scan (31x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.101 mW/g

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.561 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.157 W/kg SAR(1 g) = 0.091 mW/g; SAR(10 g) = 0.052 mW/g Maximum value of SAR (measured) = 0.102 mW/g

#42 WCDMA V_RMC12.2K_Back_1cm_Ch4132

DUT: 291002

Communication System: UMTS; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 826.4 MHz; $\sigma = 0.986$ mho/m; $\varepsilon_r =$

55.641; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.3 °C; Liquid Temperature: 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4132/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.905 mW/g

Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.752 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.137 W/kg SAR(1 g) = 0.853 mW/g; SAR(10 g) = 0.608 mW/g Maximum value of SAR (measured) = 0.905 mW/g

#43 WCDMA V RMC12.2K Back 1cm Ch4233

DUT: 291002

Communication System: UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 847 MHz; $\sigma = 1.005$ mho/m; $\varepsilon_r = 55.463$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4233/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.241 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.472 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.556 W/kg SAR(1 g) = 1.170 mW/g; SAR(10 g) = 0.837 mW/g Maximum value of SAR (measured) = 1.243 mW/g

#43 WCDMA V_RMC12.2K_Back_1cm_Ch4233_2D

DUT: 291002

Communication System: UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL 835 120919 Medium parameters used: f = 847 MHz; $\sigma = 1.005$ mho/m; $\varepsilon_r = 55.463$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4233/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.241 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.472 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.556 W/kg SAR(1 g) = 1.170 mW/g; SAR(10 g) = 0.837 mW/g Maximum value of SAR (measured) = 1.243 mW/g

#44 WCDMA V RMC12.2K Back 1cm Ch4233 Headset

DUT: 291002

Communication System: UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: MSL_835_120919 Medium parameters used: f = 847 MHz; $\sigma = 1.005$ mho/m; $\epsilon_r = 55.463$;

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.3 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.98, 8.98, 8.98); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch4233/Area Scan (71x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.761 mW/g

Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.450 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.971 W/kg SAR(1 g) = 0.718 mW/g; SAR(10 g) = 0.510 mW/g Maximum value of SAR (measured) = 0.764 mW/g

#45 WCDMA II_RMC12.2K_Front_1cm_Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1908.01 MHz; $\sigma = 1.574$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.683 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.437 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.111 W/kg SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.365 mW/g Maximum value of SAR (measured) = 0.718 mW/g

0 dB = 0.720 mW/g

#46 WCDMA II_RMC12.2K_Back_1cm_Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1908.01 MHz; $\sigma = 1.574$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.389 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.125 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.116 W/kg SAR(1 g) = 1.290 mW/g; SAR(10 g) = 0.704 mW/g Maximum value of SAR (measured) = 1.424 mW/g

0 dB = 1.420 mW/g

#47 WCDMA II_RMC12.2K_Left Side_1cm_Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1908.01 MHz; $\sigma = 1.574$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.122 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.400 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.180 W/kg

SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.068 mW/g

Maximum value of SAR (measured) = 0.125 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.400 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.170 W/kg

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.065 mW/g

Maximum value of SAR (measured) = 0.121 mW/g

#48 WCDMA II RMC12.2K Right Side 1cm Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1908.01 MHz; $\sigma = 1.574$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.135 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.311 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.204 W/kg SAR(1 g) = 0.125 mW/g; SAR(10 g) = 0.072 mW/g Maximum value of SAR (measured) = 0.139 mW/g

#49 WCDMA II RMC12.2K Bottom Side 1cm Ch9538

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1908.01 MHz; $\sigma = 1.574$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (31x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.655 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.634 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.996 W/kg SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.344 mW/g Maximum value of SAR (measured) = 0.682 mW/g

#50 WCDMA II_RMC12.2K_Back_1cm_Ch9262

DUT: 291002

Communication System: UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.503$ mho/m; $\varepsilon_r =$

52.837; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9262/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.401 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.933 V/m; Power Drift = 0.0091 dB Peak SAR (extrapolated) = 2.130 W/kg SAR(1 g) = 1.310 mW/g; SAR(10 g) = 0.717 mW/g Maximum value of SAR (measured) = 1.449 mW/g

#50 WCDMA II RMC12.2K Back 1cm Ch9262 2D

DUT: 291002

Communication System: UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: MSL_1900_120918 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.503$ mho/m; $\varepsilon_r =$

52.837; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9262/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.401 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.933 V/m; Power Drift = 0.0091 dB Peak SAR (extrapolated) = 2.130 W/kg SAR(1 g) = 1.310 mW/g; SAR(10 g) = 0.717 mW/g Maximum value of SAR (measured) = 1.449 mW/g

#51 WCDMA II RMC12.2K Back 1cm Ch9400

DUT: 291002

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1880.15 MHz; $\sigma = 1.541$ mho/m; $\varepsilon_r =$

52.61; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9400/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.230 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.888 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 1.851 W/kg
SAR(1 g) = 1.140 mW/g; SAR(10 g) = 0.625 mW/g
Maximum value of SAR (measured) = 1.255 mW/g

0 dB = 1.260 mW/g

#52 WCDMA II RMC12.2K Back 1cm Ch9262 Headset

DUT: 291002

Communication System: UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.503$ mho/m; $\varepsilon_r =$

52.837; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9262/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.363 mW/g

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.128 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.151 W/kg
SAR(1 g) = 1.310 mW/g; SAR(10 g) = 0.712 mW/g
Maximum value of SAR (measured) = 1.472 mW/g

#53 WCDMA II RMC12.2K Back 1cm Ch9400 Headset

DUT: 291002

Communication System: UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL 1900 120918 Medium parameters used: f = 1880.15 MHz; $\sigma = 1.541$ mho/m; $\varepsilon_r =$

52.61; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5°C; Liquid Temperature: 21.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9400/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.243 mW/g

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.985 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.833 W/kg SAR(1 g) = 1.120 mW/g; SAR(10 g) = 0.610 mW/g Maximum value of SAR (measured) = 1.233 mW/g

0 dB = 1.230 mW/g

#54 WCDMA II RMC12.2K Back 1cm Ch9538 Headset

DUT: 291002

Communication System: UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: MSL_1900_120918 Medium parameters used: f = 1908.01 MHz; $\sigma = 1.574$ mho/m; $\varepsilon_r =$

52.574; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.5 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.35, 7.35, 7.35); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch9538/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.367 mW/g

Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.574 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.122 W/kg SAR(1 g) = 1.280 mW/g; SAR(10 g) = 0.688 mW/g Maximum value of SAR (measured) = 1.424 mW/g

0 dB = 1.420 mW/g

#55 802.11b Front 1cm Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r =$

54.35; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.050 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.209 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.051 W/kg SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.011 mW/g Maximum value of SAR (measured) = 0.024 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.209 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.052 W/kg SAR(1 g) = 0.018 mW/g; SAR(10 g) = 0.0074 mW/g Maximum value of SAR (measured) = 0.020 mW/g

0 dB = 0.020 mW/g

#56 802.11b Back 1cm Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r =$

54.35; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.124 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.528 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.197 W/kg SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.069 mW/g Maximum value of SAR (measured) = 0.128 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.528 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.199 W/kg SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.047 mW/g Maximum value of SAR (measured) = 0.120 mW/g

#56 802.11b_Back_1cm_Ch1_2D

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL_2450_120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r =$

54.35; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.124 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.528 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.197 W/kg SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.069 mW/g Maximum value of SAR (measured) = 0.128 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.528 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.199 W/kg SAR(1 g) = 0.100 mW/g; SAR(10 g) = 0.047 mW/g Maximum value of SAR (measured) = 0.120 mW/g

#57 802.11b Left Side 1cm Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r =$

54.35; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 23.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (31x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.085 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.726 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.127 W/kg SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.036 mW/g Maximum value of SAR (measured) = 0.089 mW/g

#58 802.11b_Bottom Side_1cm_Ch1

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r =$

54.35; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (41x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.051 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 3.311 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.078 W/kg SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.00862 mW/g Maximum value of SAR (measured) = 0.027 mW/g

#59 802.11b Back 1cm Ch1 Headset

DUT: 291002

Communication System: WIFI; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL 2450 120920 Medium parameters used: f = 2412 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r =$

54.35; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.1 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2011-11-18
- Phantom: SAM1; Type: SAM; Serial: TP-1479
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634)

Ch1/Area Scan (61x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.140 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.443 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.171 W/kg SAR(1 g) = 0.104 mW/g; SAR(10 g) = 0.056 mW/g Maximum value of SAR (measured) = 0.111 mW/g

Ch1/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.443 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.168 W/kg SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.041 mW/g Maximum value of SAR (measured) = 0.106 mW/g

0 dB = 0.110 mW/g

Appendix C. **DASY Calibration Certificate**

The DASY calibration certificates are shown as follows.

SPORTON INTERNATIONAL (KUNSHAN) INC.

TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: YHLBLUDASH35

: C1 of C1 Page Number Report Issued Date: Sep. 26, 2012

Report No. : FA291002

Report Version : Rev. 01