Mathématiques appliquée à l'informatique

Enseignant : Mr Lerat Sébastien

Août-Septembre 2020

Table de Matières

1	Mat	rices Théories	4
	1.1	Les propriétés	4
	1.2	Calcul du déterminants 2*2	5
	1.3	Calcul du déterminants 4*4 ou n*n	5
	1.4		6
	1.5		7
2	Non	nbres Complexes	9
4	2.1	1	9
	$\frac{2.1}{2.2}$		
		Conversion Cartésienne - Polaire	
	2.3	Conversion cartésienne/polaire - exponentielle	
	2.4	Conversion exponentielle - polaire/cartésienne	
	2.5	Nombres Complexes addition	
	2.6	Nombres Complexes soustraction	
	2.7	Nombres Complexes multiplication	
	2.8	Nombres Complexes division	16
3	Logi	ique propositionnelle 1	.7
	3.1	Proposition	17
	3.2	L'implication	17
	3.3	L'équivalence	
	3.4	Vocabulaire	
	3.5	Tableau priorités logique	
	3.6	Tautologie	
	3.7	Changement de forme	
			_
4		orie naïve des ensembles 2	
	4.1	Définition	
	4.2	Relation d'inclusion	
	4.3	Propriété de l'inclusion	
	4.4	Relation d'égalité	21
	4.5		21
	4.6	Opération d'intersection (\cap)	21
	4.7	Ensemble vide	21
	4.8	Cardinalité	22
	4.9	Identité	22
	4.10	Commutativité	22
	4.11	Associativité	22
	4.12	Distributivité	22
	4.13	De Morgans	22
_	ът.		
5		rices Exercices 2	
	5.1		24
	5.2	Résolution des exercices	25
6	Non	nbres Complexes Exercices 3	3
	6.1	•	33
	6.2		35

	6.3	Trouver le conjugués	8
	6.4	Identifier $\mathbb{R} \mathbb{I}$	8
	6.5	Exprimer sous forme a+bi	8
	6.6	Exprimer sous forme polaire	:1
	6.7	Exprimer sous forme cartésienne	2
	6.8	Trouver la solution	4
	6.9	changement de forme (exp)	:6
	6.10	Recherche valeures (exponentielle)	:7
7	Logi	que propositionnelle exercices 4	8
	7.1	Enoncé Exercices	8
	7.2	Déterminer la véracité	8
	7.3	Construire la table de vérité	9
	7.4	Théorie naïve des ensembles Exercices	C
		7.4.1 Enoncé d'exercices	C
		7.4.2 Résolution	C
	7.5	Nombre Entiers Exercices	,4
		7.5.1 Exemple Modulo	,4
	7.6	Relation Binaire Exercices	5
		7.6.1 Exercices Examen	5
8	Forn	nules 5	8
	8.1	Tableau Trigonométrique	8
	8.2	NB Complex : Forme Polaire vers Cartésienne	9
	8.3	Addition de nombres complex (cartésien)	9
	8.4	Soustraction de nombres complex (cartésien)	9
	8.5	Multilication de nombres complex (cartésien)	9
	8.6	Division de nombres complex (cartésien)	9
	8.7	NB Complex : Forme cartésienne vers polaire	0
	8.8	Addition de nombres complex (Polaire)	C
	8.9	Soustraction de nombres complex (Polaire)	0
	8.10	Multilication de nombres complex (Polaire)	0
	8.11	Division de nombres complex (Polaire)	C
	8.12	Logique propositionnelle	1
	8.13	Algorithmique symbole	1

Mathématiques Théories

Chapitre 1: Matrices Théories

1.1 Les propriétés

A) Linéarité

si on multiplie une matrice par λ , le déterminant est multiplié par λ^n et toutes les lignes et colonnes sont multiplié par $\lambda = det(A) * \lambda^n$

$$det(A+B) \neq det(A) + det(B)$$
?

Exemple:

$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} B = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$$

$$det(A) = abetdet(B) = cd$$

Conclusion:

$$C = \begin{pmatrix} a+c & 0\\ 0 & b+d \end{pmatrix}$$

$$det(C) = (a+c)*(b+d)$$

 $\lambda^n \neq \text{lin\'eaire}$

 λ^n est exponentielle

B) Déterminant et transposée

Det(A) = det(A), les déterminants sont égaux, il y a juste la signature (le signe) qui est modifiée.

4

Démonstration:

$$det(A) = \sum_{o \in s} \varepsilon(o^{-1}), \dots$$

$$det(T_a) = \sum_{o \in s} \varepsilon(o^1), ...$$

C) Déterminant et produit

les déterminants sont compatible avec le produit det(AB) = det(A) * det(B)

$$\varphi_a(x_1, ..., x_n) = det(\varphi_c)(A * 1, ..., A * N))$$

D) Déterminant et matrice inversible

Une matrice est inversible uniquement si le déterminant est différents de 0.

$$det(A^{-1}) = \frac{1}{det(A)}$$

1.2 Calcul du déterminants 2*2

Le calcul du déterminants d'une matrice 2*2 est le résultat d'une soustraction entre la multiplications croisée des 2 ensembles

Il faut utiliser la ligne avec le plus de 0.

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$$

$$\det(A) = (1*3) - (2*4)$$

$$\det(A) = (3-8)$$

$$\det(A) = (-5)$$

$$S = -5$$

1.3 Calcul du déterminants 4*4 ou n*n

Le calcul du déterminants d'une matrice n*n est le résultat d'une série d'opération entre les sous matrices.

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

Inversion de L1 avec L2

$$A = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{-1} & \mathbf{-2} & \mathbf{-3} \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

Méthodes du pivot de Gauss

Mise à zero de L3
L3 -
$$(2*L1) = L3$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ \mathbf{2-(1*2)} & \mathbf{3-(2*2)} & \mathbf{0-(2*3)} & \mathbf{1-(2*0)} \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ (2-2) & 3-4 & (0-6) & 1-0) \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} \mathbf{1} & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

Mise à zero de L4 L4 - (3*L1) = L4

$$A = \begin{pmatrix} \mathbf{1} & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ \mathbf{3-(3*1)} & \mathbf{0-(3*2)} & \mathbf{1-(3*3)} & \mathbf{2-(3*0)} \end{pmatrix}$$

$$A = \begin{pmatrix} \mathbf{1} & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ \mathbf{3-3} & \mathbf{0-6} & \mathbf{1-9} & \mathbf{2-0} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{pmatrix}$$

A partir de ce moment-ci, nous pouvons utiliser la formule de sarus, liebniz, ...

1.4 Méthode Elimination de Gauss

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{pmatrix}$$

$$L3 = L3-1*L2$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & -6 & -8 & 2 \end{pmatrix}$$

$$L4 = L4-6*L2$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & \mathbf{0} & \mathbf{4} & \mathbf{20} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 4 & 20 \end{pmatrix}$$

$$L4-(-1)*L3$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{24} \end{pmatrix}$$

Fin de la triangulaire Suppérieures

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ \mathbf{0} & -1 & -2 & -3 \\ \mathbf{0} & \mathbf{0} & -4 & 4 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & 24 \end{pmatrix}$$

$$1*(-1)*(-4)*24 = \frac{96}{96}$$

S= det(A) = $\frac{96}{96}$

1.5 Autres Méthodes

Elimination en matrice 3*3

$$A = \begin{pmatrix} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} \\ \mathbf{0} & -1 & -2 & -3 \\ \mathbf{0} & -1 & -6 & 1 \\ \mathbf{0} & -6 & -8 & 2 \end{pmatrix}$$

$$A = 1 * \begin{pmatrix} -1 & -2 & -3 \\ -1 & -6 & 1 \\ -6 & -8 & 2 \end{pmatrix} \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \\ - & + & - \end{pmatrix}$$

Extraction Matrice 2*2

$$A = 1 * ((-1) * (\begin{pmatrix} 6 & 1 \\ 8 & 2 \end{pmatrix}) - (-2) * (\begin{pmatrix} 1 & 1 \\ 6 & 2 \end{pmatrix}) + 3 * (\begin{pmatrix} 1 & 6 \\ 6 & 8 \end{pmatrix}))$$

Mise en équation

$$A = 1 * ($$

$$+ (-1) * ((6 * 2) - (8 * 1))$$

$$- (-2) * ((1 * 2) - (6 * 1))$$

$$+ 3 * ((1 * 8) - (6 * 6))$$
)
$$A = 1 * ($$

$$+ (-1) * ((12) - (8))$$

$$- (-2) * ((2) - (6))$$

$$+ 3 * ((8) - (36))$$
)
$$A = 1 * ((-1 * 4)$$

$$(2 * (-4))$$

$$(3 * (-28))$$
)
$$4 - (-8) - (-84) = 96$$

$$S = det(A) = 96$$

Chapitre 2: Nombres Complexes

2.1 Conversion polaire - cartésienne

Définition du module

le module noté |Z| est la longueur du segment (rayon). Elle peut être mesurée grâce à la formule de pythagore $(\sqrt{a^2+b^2})$.

Représentation Géographique

Démonstration

$$\begin{split} |Z| &= \rho cos(\theta) + \rho sin(\theta) * i \\ |Z| &= \sqrt{(\rho^2 cos(\theta)^2 + \rho^2 sin(\theta)^2)} \\ |Z| &= \sqrt{(\rho^2 cos(\theta)^2 + sin(\theta))} * i \\ |Z| &= \sqrt{(\rho^2)} \\ |Z| &= \rho \end{split}$$

$$\rho$$
 est le module et θ est l'argument $Z = P(cos(\theta) + sin(\theta) * i)$ ou $Z = P(cis(\theta))$

2.2 Conversion Cartésienne - Polaire

$$\rho = \sqrt{x^2 + y^2}$$

Démonstration Géométriquement

Nous pouvons voir que θ est modifié en fonction de X et de Y que si nous dessinons un cercle, nous pouvons voir que le segment Y est une tangeante au cercle de rayon X.

$$X = \rho * cos(\theta) \ Y = \rho * sin(\theta)$$

Démonstration Algébriquement

$$\frac{Y}{X} = \frac{\rho*sin(\theta)}{\rho*cos(\theta)}$$
$$\frac{Y}{X} = \frac{sin(\theta)}{cos(\theta)}$$
$$\frac{Y}{X} = tg(\theta)$$

Conclusion

$$\begin{array}{l} \theta = arctg(\frac{Y}{X}) \\ tg(\theta) = \frac{Y}{X} \end{array}$$

2.3 Conversion cartésienne/polaire - exponentielle

tout nombre complexes peut s'écrire sous la formes : $\rho * e^{i\theta}$

Ecriture cartésienne

$$1 + \sqrt{3}i = x + yi$$

Etape 1 : Trouver ρ (calcul du module)

$$\rho = \sqrt{x^2 + y^2}$$

$$\rho = \sqrt{1^2 + \sqrt{3}^2}$$

$$\rho = \sqrt{1+3}$$

$$\rho = \sqrt{4} = 2^2$$

$$\rho = 2$$

Etape 2 : Trouver θ (calcul de l'argument)

$$\theta = artg(\frac{y}{x})$$

$$\theta = arctg(\frac{1}{\sqrt{3}})$$

$$tg(\theta) = \frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}$$

$$tg(\theta) = \frac{1\sqrt{3}}{\sqrt{3}^2}$$

$$tg(\theta) = \frac{\sqrt{3}}{3}$$
 ou $\frac{\pi}{6}$

$$tg(\theta) = \frac{\pi}{6}$$

Etape 3 : Ecriture sous le format exponentielle

$$2e^{\frac{\pi}{6}i}$$

2.4 Conversion exponentielle - polaire/cartésienne

Ecriture exponentielle

$$e^{1+\frac{\pi}{2}i}$$

Simplification

$$\begin{split} &e^{1+\frac{\pi}{2}i} \\ &e^{1} + e^{\frac{\pi}{2}i} \\ &e*cis(\frac{\pi}{2}) \\ &e*(cos(\frac{\pi}{2}) + i*sin(\frac{\pi}{2})) \\ &e*(cos(\frac{\pi}{2}) + i*sin(\frac{\pi}{2})) \\ &e*(0 + i*1) \\ &e*i \end{split}$$

2.5 Nombres Complexes addition

$$(4*cis(45^{\circ})) + (5*cis(\frac{\pi}{3}))$$

Calcul du module

$$\rho = \sqrt{\rho_1^2 + \rho_2^2 + \rho_1 \rho_2 cos(\theta_1 - \theta_2)}$$

$$\rho = \sqrt{4^2 + 5^2 + 2 * 4 * 5 cos(45^\circ - 60^\circ)}$$

$$\rho = \sqrt{41 + 40 * 0,96592582628}$$

$$\rho = \sqrt{79,6370330512}$$

$$\rho = 8,923958373457376$$

Calcul de l'argument

$$\theta = arctg(\frac{\rho_1 sin(\theta_1) + \rho_2 sin(\theta_2)}{\rho_1 cos(\theta_1) + \rho_2 cos(\theta_2)})$$

$$\theta = arctg(\tfrac{4sin(45^\circ) + 5sin(60^\circ)}{4cos(45^\circ) + 5cos(60^\circ)})$$

$$\theta = arctg(\frac{4\frac{\sqrt{2}}{2}) + 5\frac{\sqrt{3}}{2}}{4\frac{\sqrt{2}}{2}) + 5\frac{1}{2}})$$

$$\theta = arctg(1.3434647741399612)$$

$$\theta = arctg(53.3380661^{\circ})$$

$$|Z| = 8,923 cis(53.338^{\circ})$$

2.6 Nombres Complexes soustraction

$$(4*cis(45^{\circ})) - (5*cis(\frac{\pi}{3}))$$

Calcul du modules

$$\rho = \sqrt{\rho_1^2 + \rho_2^2 + 2 * \rho_1 * \rho_2 cos(\theta_1 - \theta_2)}$$

$$\rho = \sqrt{4^2 + 5^2 + 2 * 4 * 5 * \cos(45^\circ - \frac{\pi}{3})}$$

$$\rho = \sqrt{4^2 + 5^2 + 40 * \cos(45^\circ - 60^\circ)}$$

$$\rho = \sqrt{16 + 25 + 40 * 0,965925826}$$

$$\rho = \sqrt{79,637033052}$$

$$\rho = 8,923958374$$

Calcul de l'argument

$$\theta = arctg(\frac{\rho_1*sin(\theta_1) - \rho_2*sin(\theta_2)}{\rho_1*cos(\theta_1) - \rho_2*cos(\theta_2)})$$

$$\theta = arctg(\tfrac{4*sin(45^\circ) - 5*sin(\frac{\pi}{3})}{4*cos(45^\circ) - 5*cos(\frac{\pi}{3})})$$

$$tg(\theta) = \frac{4*sin(45^{\circ}) - 5*sin(60^{\circ})}{4*cos(45^{\circ}) - 5*cos(60^{\circ})}$$

$$tg(\theta) = \frac{4\frac{\sqrt{2}}{2} - 5\frac{\sqrt{3}}{2}}{4*\frac{1}{2} - 5*\frac{\sqrt{2}}{2}}$$

$$tg(\theta) = \frac{2\sqrt{2} - \frac{5\sqrt{3}}{2}}{2 - \frac{5\sqrt{2}}{2}}$$

$$tg(\theta) = \frac{\frac{4\sqrt{2} - 5\sqrt{3}}{2}}{\frac{4 - 5\sqrt{3}}{2}}$$

$$tg(\theta) = \frac{4\sqrt{2} - 5\sqrt{3}}{4 - 5\sqrt{3}}$$

$$tg(\theta) = -\frac{(4\sqrt{2} - 5\sqrt{3})*(4\sqrt{2} - 5\sqrt{3})}{59}$$

$$tg(\theta) = -\frac{(16\sqrt{2} + 20\sqrt{6} - 20\sqrt{3} - 75)}{59}$$

$$tg(\theta) = 0,644471$$

$$tg(\theta) = 36,93^{\circ}$$

$$|Z| = 8,923958374 * cis(36,93^{\circ})$$

2.7 Nombres Complexes multiplication

$$(4*cis(45^\circ))*(5*cis(\tfrac{\pi}{3}))$$

$$|Z| = \rho_1 \rho_2 (\cos(\theta_1 + \theta_2) + i * (\sin(\theta_1 + \theta_2)))$$

$$|Z| = (\rho_1 \rho_2) * cis(\theta_1 + \theta_2)$$

Calcul du modules

$$\rho = \rho_1 \rho_2$$

$$\rho = 4 * 5$$

$$\rho = 20$$

Calcul de l'argument

$$\theta = \theta_1 + \theta_2$$

$$\theta = 45^{\circ} + \frac{\pi}{3}$$

$$\theta = 45^{\circ} + 60^{\circ}$$

$$\theta=105^{\circ}$$

$$|Z| = 20 * cis(105^{\circ})$$

2.8 Nombres Complexes division

$$\tfrac{\left(4*cis(45^\circ)\right)}{\left(5*cis(\frac{\pi}{3})\right)}$$

$$|Z| = \left(\frac{\rho_1}{\rho_2}\right) * cis(\theta_1 - \theta_2)$$

Calcul du modules

$$\rho = \frac{4}{5}$$

Calcul de l'argument

$$\theta = 45^{\circ} - \frac{\pi}{3}$$

$$\theta = 45^{\circ} - 60^{\circ}$$

$$\theta = -15^{\circ}$$

$$|Z| = \frac{4}{5} * cis(-15^\circ)$$

Chapitre 3: Logique propositionnelle

Règles pour déterminer si c'est vrai ou faux

- 1) Principe d'identité : A=A
- 2) Non contradiction : On ne peut pas nier et affirmer la même chose ¬A et A
- 3) Tiers Exlus: Quelques chose existe ou dois ne pas exister A ou ¬A

3.1 Proposition

En logique propositionnelle les propositions, énoncés, phrases, ne peuvent qu'être vrai ou fausse

Exemple

2+2 => Vrai ou Faux

Le mur est blanc => Vrai ou Faux

3.2 L'implication

Si j'ai une proposition A alors B

Exemple

Une paire de chaussure (implique que "=>") j'ai 2 chaussures

une paire nécessite d'avoir 2 même chaussures, 2 chaussures peuvent être différentes

A => B : Faux

Si A est vrai alors B est vrai

Si B est vrai alors A n'est pas forcément vrai

3.3 L'équivalence

Il faut que je n'ai pas une paires de chaussures.

A=B: vrai

Si A est vrai alors B est vrai

si B est vrai alors A est vrai

3.4 Vocabulaire

Proposition Atomique : Vrai et Faux à la fois

Tautologie : toujours vrai

prédicats : Pour tout il existe

3.5 Tableau priorités logique

Opérateur	Logique	priorités	Associativités
<=>	Equalité	1	gauche
=>	Implications	2	droite
V	OU	3	gauche
\land	ET	4	gauche
_	NON	5	gauche

3.6 Tautologie

Р	¬P	PV¬P
Т	Т	
上	Γ	Τ

3.7 Changement de forme

Commutativité

$$pvq = qvp$$
$$p \land q = q \land p$$

Associativités

$$(pvq)vr = pv(qvr)$$

$$(p \land q) \land r = p \land (q \land r)$$

Distributivités

$$pv(q \land r) = (pvq) \land (pvr)$$
$$pv(qvr) = (p \land q)v(p \land r)$$

De Morgans

a v b=
$$\neg$$
a * \neg b
a*b= \neg a + \neg b
(p\lambda q) = \neg p v \neg q
(pvq) = \neg (\neg p \lambda \neg q)
 \neg (p\lambda q) = (p v q)
(A \lambda \neg B) V (\neg A V (C \lambda A)) = \neg (A \lambda \neg B) \lambda \neg (\neg A V (C \lambda A))

Forme disjonctive

$$(A \wedge B) \vee C$$

 $(A ET B) OU C$

Forme conjonctive

$$(A V B) \wedge C$$

 $(A OU B) ET C$

Transformation

$$\begin{array}{l} A{=}{>}B = \neg A \ v \ (A{\wedge}B) \\ A{<}{=}{>}B := (A{=}{>}B){\wedge}(B{=}{>}A) \\ (A{=}{>}B){\wedge}(B{=}{>}A) = (\neg A \ v \ (A{\wedge}B)) \ \wedge \ (\neg B \ v \ (B{\wedge}A)) \end{array}$$

Chapitre 4: Théorie naïve des ensembles

4.1 Définition

on appelle ensemble, une collection d'objets appellés éléments de cet ensemble. un objet particulier appartient (\in) ou n'appartient pas (\notin) à un ensemble donné.

Exemple d'ensemble : l'ensemble des voyelles : $V=\{a,e,i,o,u,y\}$

 $a \in V$: a appartient à l'ensemble V d $\notin V$: d appartient à l'ensemble V

4.2 Relation d'inclusion

Soient A et B sont deux ensembles, on dit que A est inclus dans B (Noté $A \subset B$), si tout les éléments de A sont des éléments de B. Autrement dit $(X \subset A)$ et que $(X \subset B)$.

On peut dire que {a,b,g} \in {a,b,d,e}

4.3 Propriété de l'inclusion

 \bullet a. Reflexivité : pour tout ensemble A (A<B)

• b. Anti-Symétrique : $(A \in B)$ et $(B \in A) => A = B$

4.4 Relation d'égalité

Soient A et B sont deux ensembles, on dit que A égale B (Noté A=B), si tout les éléments de A appartient à B. Autrement dit $(X \in A)$ et que $(X \in B)$.

4.5 Opération d'union (\cup)

1) L'union de 2 ensembles

$$A = \{a,e\} \text{ et } B = \{b,c,d\}$$

$$C = A \cup B = \{a,e,b,c,d\}$$

4.6 Opération d'intersection (∩)

Intersection de 2 ensembles

Soient A et B deux ensembles, on appelle $(A \cap B)$ le nouvel ensemble contenant les éléments se trouvant dans A et B.

$$A = \{a,b\} \text{ et } B = \{b,c,d\}$$

$$C = A \cap B = \{b\}$$

4.7 Ensemble vide

L'ensemble vide est une partie (un sous-ensemble) de n'importe quel ensembles. Il ne possède qu'un seul sous-ensemble : lui-même

$$C=A\cap B=\{b\}$$

4.8 Cardinalité

Soit A un ensemble, Si A possède exactement N éléments (n \in N), A est un ensemble fini de cardinalité N.

Noté
$$|A| = n$$

$$|1, 2, 3| = 3$$

$$| \oslash | = 0$$

$$|\{\emptyset\}|=1$$

4.9 Identité

$$A \cup A = A$$

$$A \cap A = A$$

4.10 Commutativité

$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

4.11 Associativité

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

4.12 Distributivité

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

4.13 De Morgans

$$\neg(A \cup B) = \neg A \cap \neg B)$$

$$\neg(A \cap B) = \neg A \cup \neg B)$$

Mathématiques Exercices

Chapitre 5: Matrices Exercices

5.1 Enoncés des exercices

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix} B = \begin{pmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1 \end{pmatrix} C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

- A) Calculer B*C
- B) Calculer la trace de A
- C) Calculer la transposée de B
- D) Calculer 2,5*C
- E) Calculer $B^t + C$
- F) Exercices supplémentaire (Déplacement 3D)
- G) Calculer le déterminants de A
- H) Exercices prépartion examen (déterminant)
- I) Exercices prépartion examen (déterminant)
- J) Exercices prépartion examen (déterminant)
- K) Exercices prépartion examen (déterminant)

5.2 Résolution des exercices

A) Calculer B*C

$$B*C = \begin{pmatrix} 1*1+4*4 & 1*2+4*3 & 1*3+4*2 & 1*4+4*1 \\ 2*1+3*4 & 2*2+3*3 & 2*3+3*2 & 2*4+3*1 \\ 3*1+2*4 & 3*2+2*3 & 3*3+2*2 & 3*4+2*1 \\ 4*1+1*4 & 4*2+1*3 & 4*3+1*2 & 4*4+1*1 \end{pmatrix} = \begin{pmatrix} 17 & 14 & 11 & 8 \\ 14 & 13 & 12 & 10 \\ 11 & 12 & 13 & 15 \\ 8 & 11 & 14 & 17 \end{pmatrix}$$

B) Calculer la trace de A

La trace d'une matrices est la somme de chaque éléments de sa diagonale. La trace de la matrice A=0+2+0+2=4

$$A = \begin{pmatrix} \mathbf{0} & 1 & 2 & 3 \\ 1 & \mathbf{2} & 3 & 0 \\ 2 & 3 & \mathbf{0} & 1 \\ 3 & 0 & 1 & \mathbf{2} \end{pmatrix}$$

C) Calculer la transposée de la matrice B La transposée de la matrice est d'intervertir les lignes/colonnes de la matrice originale.

25

$$B = \begin{pmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1 \end{pmatrix} B^t = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Notes : B^t est égale à C

$$B^t = C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

D) Calculer 2,5*C

$$2,5*C = \begin{pmatrix} 1*2,5 & 2*2,5 & 3*2,5 & 4*2,5 \\ 4*2,5 & 3*2,5 & 2*2,5 & 1*2,5 \end{pmatrix} = \begin{pmatrix} 2,5 & 5 & 7,5 & 10 \\ 10 & 7,5 & 5 & 2,5 \end{pmatrix}$$

E) Calculer $B^t + C$

$$B^t = C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$$

Notes: $B^t + C = 2*C = C + C$

$$S = 2 * C = \begin{pmatrix} 1 * 2 & 2 * 2 & 3 * 2 & 4 * 2 \\ 4 * 2 & 3 * 2 & 2 * 2 & 1 * 2 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 & 8 \\ 8 & 6 & 4 & 2 \end{pmatrix}$$

F) Déplacement 3D

R=10u H=300l où L=40cm + hauteur du casier P= $((\frac{3}{5})*R < R)$ $\theta = 0$ Z= $R + (\frac{B}{100}*R) = R + (\frac{2}{100})*R = 20cm$

Etape 0 : Coordonnées de la pince :

$$\begin{pmatrix} X_0 \\ Y_0 \\ Z_0 \end{pmatrix} = \begin{pmatrix} \frac{3}{5}R \\ 0 \\ 5l \end{pmatrix}$$

Etape 1 : Allongement de la pince :

$$\begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} = \begin{pmatrix} X_0 \\ Y_0 \\ Z_0 \end{pmatrix} + \begin{pmatrix} (\frac{3}{5}R + \frac{13}{110}) * R \\ 0 \\ 0 \end{pmatrix}$$

Etape 2 : Rétraction de la pince + marge :

$$\begin{pmatrix} X_2 \\ Y_2 \\ Z_2 \end{pmatrix} = \begin{pmatrix} X_1 \\ Y_1 \\ Z_1 \end{pmatrix} - \begin{pmatrix} (\frac{R}{2} + \frac{B}{100}) * R \\ 0 \\ 0 \end{pmatrix}$$

Etape 3 : Bras monté à 15l :

$$\begin{pmatrix} X_3 \\ Y_3 \\ Z_3 \end{pmatrix} = \begin{pmatrix} X_2 \\ Y_2 \\ Z_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 15l \end{pmatrix}$$

Etape 4 : Mouvement à 45°

$$\begin{pmatrix} X_4 \\ Y_4 \\ Z_4 \end{pmatrix} = \begin{pmatrix} X_3 \\ Y_3 \\ Z_3 \end{pmatrix} + \begin{pmatrix} (\cos(45) - \sin(45) & 0 \\ \sin(45) - \cos(45) & 0 \\ 0 & 1 \end{pmatrix}$$

Etape 5 : Allongement

$$\begin{pmatrix} X_5 \\ Y_5 \\ Z_5 \end{pmatrix} = \begin{pmatrix} X_4 \\ Y_4 \\ Z_4 \end{pmatrix} + \begin{pmatrix} (\frac{3}{5}R + \frac{13}{110}) * R \\ 0 \\ 0 \end{pmatrix}$$

Etape 6 : Rétraction + marge :

$$\begin{pmatrix} X_6 \\ Y_6 \\ Z_6 \end{pmatrix} = \begin{pmatrix} X_5 \\ Y_5 \\ Z_5 \end{pmatrix} + \begin{pmatrix} (\frac{R}{2} + \frac{B}{100}) * R \\ 0 \\ 0 \end{pmatrix}$$

G) Calcul du déterminant

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

Inversion de L1 avec L2

$$A = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

Méthodes du pivot de Gauss

Mise à zero de L3 L3 - (2*L1) = L3

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ \mathbf{2-(1*2)} & \mathbf{3-(2*2)} & \mathbf{0-(2*3)} & \mathbf{1-(2*0)} \\ 3 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ \mathbf{2-2} & \mathbf{3-4} & \mathbf{0-6} & \mathbf{1-0} \\ 3 & 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$$

Mise à zero de L4 L4 - (3*L1) = L4

$$A = \begin{pmatrix} \mathbf{1} & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ \mathbf{3-(3*1)} & \mathbf{0-(3*2)} & \mathbf{1-(3*3)} & \mathbf{2-(3*0)} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ \mathbf{3-3} & \mathbf{0-6} & \mathbf{1-9} & \mathbf{2-0} \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{pmatrix}$$

$$L3 = L3-1*L2$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & -6 & -8 & 2 \end{pmatrix}$$

$$L4 = L4-6*L2$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 4 & 20 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 4 & 20 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & -3 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 0 & 24 \end{pmatrix}$$

Fin de la triangulaire Suppérieures

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ \mathbf{0} & -1 & -2 & -3 \\ \mathbf{0} & \mathbf{0} & -4 & 4 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{24} \end{pmatrix}$$

$$S = det(A) = 96$$

H) Calcul du déterminant

$$A = \begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 2^0 - 1 & 1 - 2^3 2^{-3} & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix}$$

Simplification de la matrice

$$2^{0} - 1 = 1 - 1 = 0$$
 et $1 - 2^{3}2^{-3} = 1 - 2^{3-3} = 1 - 2^{0} = 1 - 1 = 0$

$$\begin{pmatrix}
1 & 5 & 6 & \mathbf{7} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{8} \\
9 & 9, 5 & -9, 5 & \mathbf{b} \\
4 & 8 & 16 & \mathbf{32}
\end{pmatrix}$$

Extraction Matrice 3*3

$$8 * \begin{pmatrix} 1 & 5 & 6 \\ 9 & 9, 5 & -9, 5 \\ 4 & 8 & 16 \end{pmatrix} \begin{pmatrix} + & + & - \\ - & - & + \\ + & + & - \end{pmatrix}$$

Extraction des matrices 2*2

$$8*(1*\begin{pmatrix} 9,5 & -9.5 \\ 8 & 16 \end{pmatrix}) - 5*\begin{pmatrix} 9 & -9.5 \\ 4 & 16 \end{pmatrix} + 6*\begin{pmatrix} 9 & 9.5 \\ 4 & 8 \end{pmatrix})$$

Calcul du déterminant des sous matrices

$$8*(1*((9,5*16)-(8*-9,5)))$$

 $-5*((9*16)-(4*-9,5))$
 $+6*((9*8)-(4*9,5)))$

Simplification des calculs

Mise en équation et résolution

$$\det(A) = -3824$$

I) Calcul du déterminant

$$a=3 b=10 c=5$$

$$\begin{pmatrix} a & 1337 \\ b & 42 \\ c & 8086 \end{pmatrix} + \begin{pmatrix} 2 & 5 & 6 \\ 4 & 0 & 4 \end{pmatrix}$$

Etape 1 : Calculer la multiplication

$$\begin{pmatrix} a*2+1337*4 & a*5+1337*0 & a*6+1337*4 \\ b*2+42*4 & b*5+42*0 & b*6+42*4 \\ c*2+8086*4 & c*5+8086*0 & c*6+8086*4 \end{pmatrix}$$

Etape 2 : Remplacement des valeurs

$$\begin{pmatrix} 3*2+1337*4 & 3*5 & 3*6+1337*4 \\ 10*2+42*4 & 10*5 & 10*6+42*4 \\ 5*2+8086*4 & 5*5 & 5*6+8086*4 \end{pmatrix}$$

$$\begin{pmatrix} 5354 & 15 & 5366 \\ 188 & 50 & 228 \\ 32354 & 25 & 32374 \end{pmatrix} \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

Etape 4: Extraction des matrices 2*2

$$+5354*\left(\begin{pmatrix}50&228\\25&32374\end{pmatrix}\right)-15*\left(\begin{pmatrix}188&228\\32354&32374\end{pmatrix}\right)+5366*\left(\begin{pmatrix}188&50\\32354&25\end{pmatrix}\right)$$

$$+5354*((50*32374) - (228*25))$$

$$8\ 636\ 002\ 000\ +\ 19\ 356\ 000\ -\ 8\ 655\ 358\ 000$$

$$8\ 655\ 358\ 000 - 8\ 655\ 358\ 000 = 0$$

J) Calcul du déterminant

$$a=3 b=10 c=5$$

$$\begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 2^0 - 1 & 2^3 2^{-3} & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix} - \begin{pmatrix} a & 40 & 0 & 1 \\ b & 80 & 1 & 2 \\ c & 62 & 2 & 0 \\ d & 0 & 1 & 2 \end{pmatrix}$$

Etape 1 : Calculer l'opération

$$\begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 2^{0} - 1 & 2^{3}2^{-3} & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix} + (-1) * \begin{pmatrix} a & 40 & 0 & 1 \\ b & 80 & 1 & 2 \\ c & 62 & 2 & 0 \\ d & 0 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 2^0 - 1 & 2^3 2^{-3} & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix} + \begin{pmatrix} -a & -40 & 0 & -1 \\ -b & -80 & -1 & -2 \\ -c & -62 & -2 & 0 \\ -d & 0 & -1 & -2 \end{pmatrix}$$

Etape 2 : Réalisation de l'opération

$$\begin{pmatrix} 1 & 5 & 6 & 7 \\ 0 & 2^0 - 1 & 2^3 2^{-3} & 8 \\ 9 & 9, 5 & -9, 5 & b \\ 4 & 8 & 16 & 32 \end{pmatrix} + \begin{pmatrix} 1 - a & 5 - 40 & 6 & 7 - 1 \\ -b & -80 & -1 & 8 - 2 \\ 9 - c & 9.5 - 62 & -9.5 - 2 & b \\ 4 - d & 8 & 16 - 1 & 32 - 2 \end{pmatrix} = \begin{pmatrix} -2 & -35 & 6 & 6 \\ -10 & -80 & -1 & 6 \\ 4 & -52.5 & -11.5 & 10 \\ 2 & 8 & 15 & 30 \end{pmatrix}$$

Etape 3 : Méthodes du pivot de Gauss

$$L2 = L2-(-5)*L1=(0 -255 -31 36)$$

 $L3 = L3-(-2)*L1=(0 -122.5 0.5 22)$
 $L4 = L4-(-1)*L1=(0 43 9 24)$

$$\begin{pmatrix} -2 & -35 & 6 & 6 \\ 0 & -255 & 29 & 36 \\ 0 & -122.5 & 0.5 & 22 \\ 0 & 43 & 9 & 24 \end{pmatrix} \begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix}$$

Etape 4: Extraction des sous matrice 2*2

$$-2*(+(-255)*\begin{pmatrix} 0.5 & 22 \\ 9 & 24 \end{pmatrix} (-29)*\begin{pmatrix} 122.5 & 22 \\ 43 & 24 \end{pmatrix} (36)*\begin{pmatrix} 122.5 & 0.5 \\ 43 & 9 \end{pmatrix})$$

-2 *(-255* (12-198) -29* ((-2940) - (946)) +36* ((-1102.5) - 21.5))
$$47430 + 112694 - 40464 = 119660$$

K) Calcul du déterminant

$$a=3 b=10 c=5$$

$$\begin{pmatrix} a & 2 & 0 \\ b & 5 & 1 \\ c & 6 & 2 \end{pmatrix} * \begin{pmatrix} 4 & 5 & 6 \\ 4 & 0 & 4 \\ a & b & c \end{pmatrix}$$

Etape 1 : Calculer l'addition

$$\begin{pmatrix} a+4 & 2+5 & 6 \\ b+4 & 5 & 1+4 \\ c+a & 6+b & 2+c \end{pmatrix}$$

Etape 2 : Remplacement des valeurs

$$\begin{pmatrix} 7 & 7 & 6 \\ 14 & 5 & 5 \\ 8 & 16 & 7 \end{pmatrix}$$

Etape 3 : Calcul du déterminant

$$\begin{pmatrix} 7 & 7 & 6 \\ 14 & 5 & 5 \\ 8 & 16 & 7 \end{pmatrix} \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$

$$+7*(\begin{pmatrix} 5 & 5 \\ 16 & 7 \end{pmatrix}) -7*(\begin{pmatrix} 14 & 5 \\ 8 & 7 \end{pmatrix}) +6*(\begin{pmatrix} 14 & 5 \\ 8 & 16 \end{pmatrix})$$

$$+7\ *(-45)\ -15\ *(58)\ +\ 6\ *(184)$$

$$1104-406-315 = 383$$

Chapitre 6: Nombres Complexes Exercices

6.1 Enoncés

1) Résoudre les équations suivantes

- a. $x^2+1=0$
- b. $3x^2+7=0$
- c. $\frac{x^2}{2} x = -2$
- d. $-x^2-3x=3$
- e. $x^3 + 7x^2 + 9x + 63 = 0$
- f. $x^4 + 15x^2 = 16$

2) Trouver le conjugués de

- a. -11-8i
- b. -0.3333i + 1
- c. $cos(\omega t) + sin(\omega t)i$

3) Identifier $\mathbb{R} \ \mathbb{I}$

- a. 0
- b. -6+i
- c. i²
- d. $\frac{1+i}{2}$

4) Exprimer sous forme a+bi

- a. (4-8i)-(3+2i)
- b. $\frac{3}{3+2i} + \frac{1}{5-i}$
- c. (7-2i)(5+6i)
- d. $\frac{4}{(3+i)^3}$
- e. $\frac{5+3i}{(2+2i)}$
- f. $\frac{3+6i}{(3-4i)}$

- g. $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$
- h. $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$
- \bullet i. Nombre de modules 2 et d'argument $\frac{\pi}{3}$
- $\bullet\,$ j. Nombre de modules 3 et d'argument $\frac{-\pi}{8}$

5) Exprimer sous forme Polaire

- a. $3-\sqrt{(3i)}$
- b. -1+1i

6) Exprimer sous forme cartésienne

- a. $4\cos(45) + \sin(45)i$
- b. $5cis(\frac{\pi}{3})$

7) Trouver la solution de

- a. $4\operatorname{cis}(45^\circ) + 5\operatorname{cis}(\frac{\pi}{3})$
- b. $4 \operatorname{cis}(45^{\circ}) * 5 \operatorname{cis}(\frac{\pi}{3})$

8) changer de formes

- a. $6*cis(30^\circ)$ en forme exp
- b. $e^{e^{1+\frac{\pi}{2}*i}}$
- c. $1 + \sqrt{3i}$ en forme exp

8) donner la valeure de

- $\bullet\,$ a. module de $3e^{\frac{\pi}{4}*i}$
- b. argument de $3e^{\frac{\pi}{4}*i}$
- c. $Re(2e^{-\pi * i})$
- c. $I(2e^{-\pi * i})$

Résoudre les équations suivantes 6.2

A.
$$x^2+1=0$$

$$x^2+1-1=0-1$$

$$x^2 = -1$$

$$x=\sqrt{-1}$$

$$S = x=i$$

B.
$$3x^2+7=0$$

$$3x^2+7-7=0-7$$

$$\frac{3x^2}{3} = \frac{-7}{3}$$

$$x^2 = \frac{-7}{2}$$

$$\sqrt{x^2} = \sqrt{\frac{7}{3} * -1}$$

$$\sqrt{x^2} = \sqrt{\frac{7}{3}} \sqrt{-1}$$

$$x^{2} = \frac{-7}{3}$$

$$\sqrt{x^{2}} = \sqrt{\frac{7}{3}} * -1$$

$$\sqrt{x^{2}} = \sqrt{\frac{7}{3}} \sqrt{-1}$$

$$S = \sqrt{x^{2}} = \sqrt{\frac{7}{3}} \sqrt{-1}$$

C.
$$\frac{x^2}{2}$$
 -x = -2

$$\frac{x^2}{2} - \frac{x}{1} = -\frac{2}{1}$$

$$\frac{x^2}{2} - \frac{2x}{2} = -\frac{4}{2}$$

$$\frac{x^2}{2} - \frac{2x}{2} = -\frac{4}{2}$$

$$x^2 - 2x = -4$$

$$x^{2} - 2x = -4$$

 $x^{2} - 2x + 4 = (-4) + 4$
 $x^{2} - 2x + 4 = 0$

$$x^2 - 2x + 4 = 0$$

$$\frac{-2+-\sqrt{(-2)^2-4*1*4}}{2*1}$$

$$\frac{-2+-\sqrt{4-16}}{2}$$

$$2$$
 $-2+-\sqrt{4*(-3)}$

$$-2+-\sqrt{(2)^2*(-3)}$$

$$S = -1 + 1 \sqrt{-3}$$

D. $-x^2-3x = 3$

$$-x^2-3x-3=3-3$$

$$-x^2-3x -3 = 0$$

$$\frac{-3+-\sqrt{(3)^2-4*1*3}}{2*1}$$

$$\frac{-3+-\sqrt{9-12}}{2}$$

$$\frac{-3+-\sqrt{-3}}{2}$$

$$\frac{-3 + -\sqrt{3*(-1)}}{2}$$

$$\frac{-3+-\sqrt{3}*\sqrt{-1}}{2}$$

$$\frac{-3 + -\sqrt{3}i}{2} = -\frac{3}{2} + -\sqrt{\frac{3}{2}i}$$

E. $x^3 + 7x^2 + 9x + 63 = 0$

$$x^2+(x+7)+9(x+7)=0$$

$$(x+7)*(x^2+9)=0$$

Poser les CE pour que (x+7) ou (x^2+9) vaut 0

Résoudre pour (x+7)=0

$$x=-7$$

$$(x^2+9)=0$$

$$x^2 = -9$$

$$\sqrt{x^2} = \sqrt{-3^2}$$

$$\sqrt{x^2} = \sqrt{3^2 * (-1)}$$

$$x = 3\sqrt{-1}$$

$$x = 3i$$

$$S = X \text{ vaut } -7;3i$$

F. $x^4 + 15x^2 = 16$

 $x^4 + 15x^2 - 16 = 0$

Poser $t = x^2$

 $t^2 + 15t - 16 = 0$

t*(t+16)-(t+16) = 0

(t+16)*(t-1)=0

CE : Les Possibilités que la solution vaut 0 quand :

+16=0

• t-1=0

(t+16) = 0

t = (-16)

Restituer $t=x^2$

 $x^2 = -16$

 $x = \sqrt{-16}$

 $x = \sqrt{16 * (-1)}$

 $x = \sqrt{4^2 * (-1)}$

 $x = 4\sqrt{-1}$

x=4i

t-1=0

t=1

Restituer $t=x^2$

 $x^2 = 1$

 $x = \sqrt{1}$

x=1

S = 1; 4i

6.3 Trouver le conjugués

- a. -11-8i = -11+8i
- b. -0.3333i + 1 = 1 + 0.3333i
- c. $cos(\omega t) + sin(\omega t)i = cos(\omega t) sin(\omega t)i$

6.4 Identifier \mathbb{R} \mathbb{I}

- a. $0 : \mathbb{R}=0 \mathbb{I}=0$
- b. $-6+i : \mathbb{R} = (-6) \mathbb{I} = 1$
- c. $i^2 : \mathbb{R} = (-1) \mathbb{I} = 0$
- d. $\frac{1+i}{2}$: $\mathbb{R} = (\frac{1}{2})$ $\mathbb{I} = (\frac{1}{2})$

6.5 Exprimer sous forme a+bi

- a. (4-8i)-(3+2i): 1-10i
- b. $\frac{3}{3+2i} + \frac{1}{5-i} : \frac{23-11i}{26}$
- c. (7-2i)(5+6i):47+32i
- d. $\frac{4}{(3+i)^3}$: $\frac{9-13i}{125}$
- e. $\frac{5+3i}{(2+2i)}$: $2-\frac{1}{2}i$

f.
$$\frac{3+6i}{(3-4i)}$$

Etape 1 : Binomes conjugués

$$\frac{3+6i}{(3-4i)} * \frac{3+4i}{(3+4i)} = \frac{9+12i+18i+24i^2}{9-16i^2}$$

Etape 2 : Par définition $i^2 = (-1)$

$$\frac{9+30i+(24*(-1))}{9-16*(-1)} = \frac{9+30i+(-24)}{9-(-16)}$$

$$\frac{9+(-24)+30i}{9+16} = \frac{-15+30i}{25}$$

Etape 3: Factoriser

$$\frac{5*(-3+6i)}{5*5} = \frac{(-3+6i)}{5}$$

Etape 4: Exprimer sous la forme a+bi

$$\frac{-3}{5} + \frac{6i}{5}$$

g.
$$(\frac{1+i}{2-i})^2 + \frac{3+6i}{3-4i}$$

Etape 1 : utilisation de $(a+b)^2 = a^2 + 2ab + b^2$

$$(\frac{1}{5} + \frac{3}{5} * i) - \frac{3}{5} + \frac{6}{5} * i$$

Etape 2 : Mise au même dénominateur

$$\left(\frac{1}{25} + \frac{6}{25} * i\right) - \frac{9}{25} * (-1) - \frac{3}{5} + \frac{6}{5}i$$

$$\left(\frac{-23}{25} + \frac{6}{25} * i\right) + \frac{6}{5}i$$

$$\frac{-23}{25} + \frac{36}{25}i$$

h.
$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$

Etape 1 : Réduire au même dénominateur (1-i)*(1+i)

$$\frac{(1\!+\!i)\!*\!(2\!+\!5i)\!+\!(1\!-\!i)\!*\!(2\!-\!5i)}{(1\!-\!i)\!*\!(1\!+\!i)}$$

Etape 2 : Distributivités

$$\tfrac{2+2i+5i+5i^2+2-2i-5i+5i^2}{1-i+i-i^2}$$

$$\tfrac{4+10i^2}{1-i^2}$$

Etape 3 : Par définition $i^2 = -1$

$$\frac{4 + (10 * (-1))}{1 - (1 * (-1))}$$

$$\frac{4-10}{2} = -\frac{6}{2} = -3$$

i. Nombre de modules 2 et d'argument $\frac{\pi}{3}$

$$|Z| = 2 * cis(\frac{\pi}{3})$$

$$\begin{array}{l} X = \rho * cos(\theta) => X = 2 * cos(\frac{\pi}{3}) \\ Y = \rho * sin(\theta) => Y = 2 * sin(\frac{\pi}{3}) \end{array}$$

$$X = 2 * \frac{1}{2} = 1$$

$$Y = 2\sqrt{\frac{3}{2}}$$

Exprimer sous la forme a+bi

$$S = 1 + \sqrt{\frac{6}{2}}i = 1 + \sqrt{3}i$$

j. Nombre de modules 3 et d'argument $\frac{-\pi}{8}$

DEMANDER EXPLICATION

6.6 Exprimer sous forme polaire

a.
$$3-\sqrt{3i}$$

Calcul de l'argument

$$\theta = arctg(\frac{-\sqrt{3}}{3})$$

$$\theta = -30^{\circ}$$

$$\theta = -30^{\circ} + 360^{\circ}$$

$$\theta = 330^{\circ}$$

Calcul du module

$$\begin{split} & \rho = \sqrt{3^2 + (-\sqrt{3})^2} \\ & \rho = \sqrt{9 + 3} \\ & \rho = \sqrt{12} > (12 = 4 * 3) \\ & \rho = \sqrt{2^2 * 3} \\ & \rho = 2\sqrt{3} \end{split}$$

$$Z = \rho * \cos(\theta) * \sin(\theta) * i => \rho * \cos(\theta)$$

$$Z = 2\sqrt{3} * \cos(330)^\circ$$

Calcul de l'argument

$$\theta = arctg(-\frac{1}{1})$$

$$\theta = -45^{\circ}$$

$$\theta = -45^{\circ} + 360^{\circ}$$

$$\theta = 315^{\circ}$$

Calcul du module

$$\begin{split} & \rho = \sqrt{-1^2 + 1^2} \\ & \rho = \sqrt{2} \end{split}$$

$$& \mathbf{Z} = \rho * \cos(\theta) * \sin(\theta) * i => \rho * \cos(\theta)$$

$$& \mathbf{Z} = \sqrt{2} * \cos(315^\circ) \end{split}$$

6.7 Exprimer sous forme cartésienne

a.
$$4\cos(45^{\circ}) + \sin(45^{\circ}) * i$$

Formules

$$\begin{array}{l} \rho = 4*cis(45^\circ) \\ \theta = arctg(\frac{Y}{X}) \\ |Z| = a+bi \end{array}$$

$$\frac{\frac{Y}{X}}{\frac{Y}{X}} = tg(45^\circ)$$

$$\frac{\frac{Y}{X}}{X} = 1$$

$$\rho = \sqrt{x^2 + y^2} = 4$$

$$\rho = \sqrt{(x^2 + y^2)^2} = 4^2$$

$$\rho = x^2 + y^2 = 16$$

Notes :
$$\frac{Y}{X} = 1 = \frac{1}{1}$$
 donc Y=X

$$\rho = 2x^2 = 16 \text{ ou } 2y^2 = 16$$

$$\rho = x^2 = \frac{16}{2}$$

$$\rho = x^2 = 8$$

$$\rho = \sqrt{x^2} = \sqrt{8 = (2*4)}$$

$$\rho = x = \sqrt{(2*2^2)}$$

$$\rho = x = 2\sqrt{2} \text{ et } y = 2\sqrt{2}$$

x=y donc
$$x = 2\sqrt{2}$$
 et $y = 2\sqrt{2i}$

Conclusion

$$S = 4 * cis(45^{\circ}) = 2\sqrt{2} + 2\sqrt{2i}$$

b.
$$5 * cis(\frac{\pi}{3})$$

Formules

$$\begin{aligned} & \rho = 5 \\ & \theta = arctg(\frac{Y}{X}) \\ & |Z| = a + bi \end{aligned}$$

$$\theta = tg(\frac{\pi}{3})$$
$$\theta = \sqrt{3}$$

$$\begin{array}{l} x = \rho * cos(\sqrt{3}) => cos(\sqrt{3}) = \frac{1}{2} \\ y = \rho * sin(\sqrt{3}) => sin(\sqrt{3}) = \frac{\sqrt{3}}{2} \end{array}$$

$$x = 5 * \frac{1}{2} = \frac{5}{2}$$
$$y = 5 * \frac{\sqrt{3}}{2}$$

Conclusion

$$Z=a+bi$$

$$S = Z = \frac{5}{2} + 5 * \frac{\sqrt{3i}}{2}$$

6.8 Trouver la solution

$$a.4*cis(45) + 5*cis(\tfrac{\pi}{3})$$

Calcul du module

$$\rho = \sqrt{\rho_1^2 + \rho_2^2 + 2 * \rho_1 * \rho_2 * \cos(\theta_1 - \theta_2))}$$

$$\rho = \sqrt{4^2 + 5^2 + 2 * 4 * 5 * \cos(45^\circ - 60^\circ))}$$

$$\rho = \sqrt{16 + 25 + 40 * cos(-15^\circ))}$$

$$\rho = \sqrt{41 + 40 * \cos(-15^{\circ})}$$

$$\rho = \sqrt{81 * 0.965}$$

$$\rho = \sqrt{79.637}$$

$$\rho = 8.9239$$

Calcul de l'argument

$$\theta = arctg(\frac{Y}{X})$$

$$\theta = arctg(\frac{\rho_1 * sin(\theta_1) + \rho_2 * sin(\theta_2)}{\rho_1 * cos(\theta_1) + \rho_2 * cos(\theta_2)})$$

$$\theta = arctg(\tfrac{4*sin(45^\circ) + 5*sin(60^\circ)}{4*cos(45^\circ) + 5*cos(60^\circ)})$$

$$\theta=arctg(\tfrac{4\frac{\sqrt{2}}{2}+5\frac{\sqrt{3}}{2}}{4\frac{\sqrt{2}}{2}+5\frac{1}{2})})$$

$$\theta = arctg(1, 343)$$

$$\theta = 53,338^{\circ}$$

$$S = 4*cis(45) + 5*cis(\tfrac{\pi}{3}) = 8.9239*cis(53.338^\circ)$$

$$b.4*cis(45)*5*cis(\tfrac{\pi}{3})$$

Calcul du module

$$\rho = \sqrt{\rho_1 * \rho_2(\cos(45^\circ + \theta_2) + i * \sin(45^\circ + \theta_2))}$$

$$\rho = \sqrt{4 * 5(\cos(45^\circ + 60^\circ) + i * \sin(45^\circ + 60^\circ))}$$

$$\rho = \sqrt{20(\frac{\sqrt{2}}{2} + \frac{1}{2}) + \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2}}$$

$$\rho = \sqrt{24, 1421 + 1, 5731}$$

$$\rho = \sqrt{25, 7152}$$

$$\rho = 5, 07$$

Calcul de l'argument

$$\begin{split} \theta &= arctg(\frac{Y}{X}) \\ \theta &= arctg(\frac{\rho_1 * sin(\theta_1) + \rho_2 * sin(\theta_2)}{\rho_1 * cos(\theta_1) + \rho_2 * cos(\theta_2)}) \\ \theta &= arctg(\frac{4 * sin(45^\circ) + 5 * sin(60^\circ)}{4 * cos(45^\circ) + 5 * cos(60^\circ)}) \\ \theta &= arctg(\frac{4 \frac{\sqrt{2}}{2} + 5 \frac{\sqrt{3}}{2}}{4 \frac{\sqrt{2}}{2} + 5 \frac{1}{2}}) \\ \theta &= arctg(1, 343) \\ \theta &= 53, 338^\circ \\ S &= 4 * cis(45) + 5 * cis(\frac{\pi}{3}) = 8.9239 * cis(53.338^\circ) \end{split}$$

6.9 changement de forme (exp)

a. $6*cis(30^\circ)$ en forme exp

$$\rho*cis(\theta) = \rho*e^{\theta i}$$

$$6cis(30^\circ) = 6e^{30^\circ i} = 6e^{\frac{\pi}{6}i}$$

$$S = 6e^{\frac{\pi}{6}i}$$

b.
$$e^{1+\frac{\pi}{2}i}$$

Mettre sous la forme a + bi

$$e^1 + e^{\frac{\pi}{2}i}$$

Calculer $e*cis(\frac{\pi}{2})$

$$e*(cos(\tfrac{\pi}{2})+i*sin(\tfrac{\pi}{2}))$$

$$e * (0 + 1i)$$

$$S = e * i$$

c. $1 + \sqrt{3i}$ en forme exp

Etape 1 : Trouver ρ (calcul du module)

$$\rho = \sqrt{x^2 + y^2} = \sqrt{1^2 + \sqrt{3}^2}$$

$$\rho = \sqrt{1+3} = \sqrt{2^2}$$

$$\rho = 2$$

Etape 2 : Trouver θ (calcul de l'argument)

$$tg(\theta) = arctg(\frac{1}{\sqrt{3}})$$

$$tg(\theta) = (\frac{1}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}) = \frac{1\sqrt{3}}{\sqrt{3}^2} = \frac{\sqrt{3}}{3}$$
 ou $\frac{\pi}{6}$

Etape 3 : Ecriture sous le format exponentielle

$$\rho * cis(\theta) = \rho * e^{i\theta} = 2e^{\frac{\pi}{6}i}$$

6.10 Recherche valeures (exponentielle)

a. module de $3e^{\frac{\pi}{4}*i}$

formule générique $\rho * e^{\theta i}$ et le module est ρ

$$\rho = 3$$

b. argument de $3e^{\frac{\pi}{4}*i}$

formule générique $\rho * e^{\theta i}$ et l'argument est θ

$$\theta = \frac{\pi}{4}$$

c. Re($2e^{-\pi * i}$)

Trouver la partie Réelle (x)

$$Re(2e^{-\pi * i}) = Re(-2cis(\pi))$$

$$Re(-2cis(\pi)) = Re(-2(cos(\pi) + i * sin(\pi)))$$

$$X = \rho * cos(\theta)$$

$$X = -2 * cos(\pi)$$

$$X = -2 * (-1) = 2$$

d. $I(2e^{-\pi * i})$

Trouver la partie Imaginaire (y)

$$I(2e^{-\pi * i}) = 2cis(-\pi)$$

$$Y = \rho * sin(\theta)$$

$$Y = 2 * sin(-\pi)$$

$$Y = 2*0 = 0$$

Chapitre 7: Logique propositionnelle exercices

7.1 Enoncé Exercices

1) Déterminer la véracité

```
P1 = 1+1=2

P2 = 1>5

P3 = 1+1=3
```

- $\bullet\,$ a. P_1 v P_3
- b. $P_2 => P_1$
- c. $P_3 => (p_1 \vee P_3)$
- 2) Construire la Table de vérité de $p_1 \ll P_2 = P_3$

7.2 Déterminer la véracité

```
a. P_1 \vee P_3 = \mathcal{T}
1 \text{ OU } 1 = 1
b. P_2 => P_1
\neg P_2 \vee (P_2 \wedge P_1)
\neg 0 \ v \ (0 \land 1)
1 \text{ v} (0)
1 \text{ OU } 0 = 1
S = P_2 => P_1 = T
c. P_3 = > (p_1 v p_3)
\neg P_3 \lor (p_3 \land (p_1 \lor p_3))
p_3 = 0
p_1 = 1 ou insertion
\neg 0 \ v \ (0 \land (1 \ v \ 0))
1 \text{ v} (1 \land 0)
1 \text{ v } 0 = T
1 \text{ OU } 0 = 1
S = P_3 = > (p_1 v p_3) = T
```

7.3 Construire la table de vérité

$$p_1 <=> P_2 => P_3$$

$$P_2 => P_3$$

 $\neg P_2 \lor (p_2 \land p_3)$
 $\neg 0 \lor (0 \land 0)$
 $1 \lor 0 = T$
 $1 \circlearrowleft 0 U \circlearrowleft 0 = 1$

P_1	P_2	P_3	$P_2 => P_3$
Т	L	L	Т

7.4 Théorie naïve des ensembles Exercices

7.4.1 Enoncé d'exercices

- \bullet a. Soit A={pi,2,e} et B={-1, 5} Calculer $|A\times B|$
- \bullet b. Soit P | A U B | A ={3,4,5} B={1,2,3}
- \bullet c. Soit A={ $\pi,$ 2, e} et B={-1,5} Calculer |AUB|

7.4.2 Résolution

A) Calculer $A \times B$

$$A*B = \{ (pi,-1),(pi,5), (2,-1),(2,5), (e,-1),(e,5) \}$$

- 2) Calculer la cardinalité de $|A \times B|$
- 1) Union des 2 ensembles a 1 membre

$$P(A) = \{\{\}, \{\pi\}, \{2\}, \{e\}, \{\text{-}1\}, \{5\}\}$$

Total des ensembles = 6

2) Union des 2 ensembles a 2 membres

$$P(A) = \{ \{\pi,2\}, \, \{2,e\}, \, \{e,\text{-}1\}, \, \{\text{-}1,5\}, \, \{5,\pi\} \}$$

Total des ensembles = 5

3) Union des 2 ensembles a 3 membres

$$P(A) = \{ \{\pi, 2, e\}, \{2, e, -1\}, \{e, -1, 5\}, \{-1, 5, \pi\}, \{5, \pi, 2\} \}$$

Total des ensembles = 5

3) Union des 2 ensembles a 4 membres

$$P(A) = \{ \{\pi, 2, e, -1\}, \; \{2, e, -1, 5\}, \; \{e, -1, 5, \pi\}, \; \{-1, 5, \pi, 2\}, \; \{5, \pi, 2, e\} \}$$

Total des ensembles = 5

4) Union des 2 ensembles a 5 membres

$$P(A) = \{ \{\pi, 2, e, -1, 5\} \}$$

Total des ensembles = 1

7) Calculer la cardinalité de ${\rm P}({\rm A})$:

La sommes de la cardinalité des sous ensembles = 6 + (3*5) +1 = 22

$$P\mid A\ U\ B\mid =22$$

$$S=22$$

B) Soit P | A U B | A = $\{3,4,5\}$ B= $\{1,2,3\}$

1) Union des 2 ensembles a 1 membre

$$P(A) = \{\{\}, \{3\}, \{4\}, \{5\}, \{1\}, \{2\}, \{3\}\}\}$$

Total des ensembles =7

2) Union des 2 ensembles a 2 membres

$$P(A) = \{ \{3,4\},\, \{4,5\},\, \{5,1\},\, \{1,2\},\, \{2,3\},\, \{3,3\} \}$$

Total des ensembles =6

3) Union des 2 ensembles a 3 membres

$$P(A) = \{\{3,4,5\}, \{4,5,1\}, \{5,1,2\}, \{1,2,3\}, \{2,3,3\}, \{3,3,4\}\}$$

Total des ensembles =6

3) Union des 2 ensembles a 4 membres

$$P(A) = \{ \{3,4,5,1\}, \{4,5,1,2\}, \{5,1,2,3\}, \{1,2,3,3\}, \{2,3,3,4\}, \{3,3,4,5\} \}$$

Total des ensembles =6

4) Union des 2 ensembles a 5 membres

$$P(A) = \{ \{3,4,5,1,2\}, \{4,5,1,2,3\}, \{5,1,2,3,3\}, \{1,2,3,3,4\}, \{2,3,3,4,5\}, \{3,3,4,5,1\} \}$$

Total des ensembles =6

6) Union des 2 ensembles a 6 membres

$$P(A) = \{\{3,4,5,1,2,3\}\}\$$

Total des ensembles =1

7) Calculer la cardinalité de P(A) :

La sommes de la cardinalité des sous ensembles = 7 + (4*6) +1 = 32

$$P \mid A \cup B \mid = 32$$

S = 32

- c) Soit A= $\{\pi, 2, e\}$ et B= $\{-1,5\}$ Calculer |AUB|
- 1) Union des 2 ensembles a 1 membre

$$P(A) = \{\{\}, \, \{\pi\}, \, \{2\}, \, \{e\}, \, \{\text{-}1\}, \, \{5\}\}$$

Total des ensembles = 6

2) Union des 2 ensembles a 2 membres

$$P(A) = \{ \{\pi, 2\}, \{2, e\}, \{e, -1\}, \{-1, 5\}, \{5, \pi\} \}$$

Total des ensembles = 5

3) Union des 2 ensembles a 3 membres

$$P(A) = \{ \{\pi, 2, e\}, \{2, e, -1\}, \{e, -1, 5\}, \{-1, 5, \pi\}, \{5, \pi, 2\} \}$$

Total des ensembles = 5

3) Union des 2 ensembles a 4 membres

$$P(A) = \{ \{\pi, 2, e, -1\}, \{2, e, -1, 5\}, \{e, -1, 5, \pi\}, \{-1, 5, \pi, 2\}, \{5, \pi, 2, e\} \}$$

Total des ensembles = 5

4) Union des 2 ensembles a 5 membres

$$P(A) = \{ \{\pi, 2, e, -1, 5\} \}$$

Total des ensembles = 1

7) Calculer la cardinalité de P(A) :

La sommes de la cardinalité des sous ensembles = 6 + (3*5) + 1 = 22

$$P \mid A \cup B \mid = 22$$

$$S = 22$$

7.5 Nombre Entiers Exercices

7.5.1 Exemple Modulo

Soient a,b et m des nombre naturels. Est-ce que $(a+b) \mod m = ((a \mod m)+(b \mod m)) \mod m$

Sélectionnez une réponse :

- \square a. Vrai
- \square b. Faux

 $(8+15) \mod 3 = ((8 \mod 3)+(15 \mod 3)) \mod 3$ $(23) \mod 3 = (2+0) \mod 3$ 2=2VRAI

7.6 Relation Binaire Exercices

```
• a. R = \{(a, b), a \in N, b \in N | \text{ a est un multiple de b } \}
```

- b. $R = \{(a, b), a \in N, b \in N | a \text{ est } > b \}$
- c. $R = \{(a, b), a \in N, b \in N | b \text{ est divisible a } \}$

7.6.1 Exercices Examen

```
Soit N est l'esemble des naturels sauf 0
R = \{(a, b), a \in N, b \in N | \text{ a est un multiple de b } \}
cochez ce qui est vrai concernant R:
  □ a. R est transitif
  \square b. Aucune réponse
  □ c. R est réflexif
  □ d. R est anti-symètrique
  □ e. R est symètrique
Test de la Réflexivité
a multiple de a = VRAI
b multiple de b = VRAI
R est réflexif
Test de la symétrie => Exemple (a=2 ou b=6)
a multiple de b= VRAI
b multiple de a = FAUX
R est n'est pas symétrique
Test de Anti-symétrie => (a=b) Exemple (a=3 ou b=3)
a multiple de b = VRAI
b multiple de a = VRAI
R est est anti-symétrique
Test de Transitivité => (a=b) Exemple (a=3 ou b=9 Z=18)
a multiple de b et b multiple de Z est-ce que A est multiple de Z?
a est dans la table de 18? => VRAI
R est transitif
```

Soit N est l'esemble des naturels sauf 0 $R = \{(a, b), a \in N, b \in N a \text{ est } > b \}$					
cochez ce qui est vrai concernant R :					
\square a. R est transitif					
\square b. Aucune réponse					
\square c. R est réflexif					
\Box d. R est anti-symètrique					
\square e. R est symètrique					
Test de la réfléxivité					
A est plus grand que $A => FAUX$ B est plus grand que $B => FAUX$ il faut que A et B soit vrai					
Test de la symétrie					
A est plus grand que $B => VRAI$ B est plus grand que $A => FAUX$ il faut que A et B soit vrai					
Test de l'anti-symétrie					
R n'est Symètrique pas car A=1 B=2 R est anti-symétrique $aest > b$ car a \neq b					
Test de la transitivité					
Si A est > B et que B est > Z est-ce que a > Z? R est transitif car A est > Z					
Soit N est l'esemble des naturels sauf 0 $R = \{(a,b), a \in N, b \in N \text{ b est divisible a } \}$					
cochez ce qui est vrai concernant R :					
\Box a. R est transitif					
\Box b. Aucune réponse					
\Box c. R est réflexif					

\Box d. R est anti-symètrique
\Box e. R est symètrique
Test de la réfléxivité

A est divisible par A => VRAI

 ${\bf B}$ est divisible par ${\bf B} => {\bf VRAI}$

R est réflexif

Test de la symétrie

A est divisible par B => VRAIB est divisible par A => FAUXil faut que A et B soit vrai R n'est pas symétrique

Test de l'anti-symétrie

R n'est Symètrique pas car A=1 B=2 R est anti-symétrique aest > b car a \neq b

Test de la transitivité

Si A est divisible par B et que B est divisible par Z est-ce que a divisible par Z? R est transitif car A est divisible par Z

Chapitre 8: Formules

8.1 Tableau Trigonométrique

Degree	0°	30°	45°	60°	90°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∄
cotan	∄	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

8.2 NB Complex : Forme Polaire vers Cartésienne

$$\begin{split} X &= \rho * cos(\theta) \\ Y &= \rho * sin(\theta) \\ Z &= x + yi \\ \text{Notes} : cis &= cos(\theta) * sin(\theta) * i \end{split}$$

8.3 Addition de nombres complex (cartésien)

Exemple:
$$(a+bi) + (a+di)$$

 $(a_1+a_2) + (b_1+b_2)$ *i

8.4 Soustraction de nombres complex (cartésien)

Exemple :
$$(a+bi) - (a+di)$$

 $(a_1-a_2) + (b_1-b_2) *i$

8.5 Multilication de nombres complex (cartésien)

Exemple : (a+bi) * (a+di)
$$(a_1*a_2) - (b_1*b_2) + ((a_1*b_2) + (b_1*a_2)) *i$$

8.6 Division de nombres complex (cartésien)

Exemple:
$$\frac{(a+bi)}{(a+di)}$$

$$\frac{(a_1*a_2)-(b_1*b_2)}{a_2^2+b_2^2} + \frac{(b_1*a_2)-(a_1*b_2)}{a_2^2+b_2^2} *i$$

8.7 NB Complex : Forme cartésienne vers polaire

$$\begin{array}{l} \rho = \sqrt{x^2 + y^2} \\ \theta = arctg(\frac{Y}{X}) \\ \frac{Y}{X} = tg(\theta) \end{array}$$

8.8 Addition de nombres complex (Polaire)

 $Exemple: 4*cis(45^{\circ}) + 5*cis(\frac{\pi}{3})$ $\rho = \sqrt{\rho_1^2 + \rho_2^2 + 2*\rho_1*\rho_2*cos(\theta_1 - \theta_2)}$ $\theta = arctg(\frac{\rho_1*sin(\theta_1) + \rho_2*sin(\theta_2)}{\rho_1*cos(\theta_1) + \rho_2*cos(\theta_2)})$

8.9 Soustraction de nombres complex (Polaire)

Exemple: $4 * cis(45^{\circ}) - 5 * cis(\frac{\pi}{3})$ $\rho = \sqrt{\rho_1^2 + \rho_2^2 + 2 * \rho_1 * \rho_2 * cos(\theta_1 - \theta_2))}$ $\theta = arctg(\frac{\rho_1 * sin(\theta_1) + \rho_2 * sin(\theta_2)}{\rho_1 * cos(\theta_1) + \rho_2 * cos(\theta_2)})$

8.10 Multilication de nombres complex (Polaire)

Exemple: $4 * cis(45^{\circ}) * 5 * cis(\frac{\pi}{3})$ $c1*c2 = \rho_1*\rho_2*(cos(\theta_1 + \theta_2) + i * sin(\theta_1 + \theta_2))$

8.11 Division de nombres complex (Polaire)

Exemple: $\frac{(a+bi)}{(c+di)}$ $\frac{c1}{c2} = \frac{r1}{r2} * cos(\theta_1 + \theta_2) + i * sin(\theta_1 - \theta_2)$

Notes : Selon l'énoncé et les préférences de chacun il est conseillé de transformer en forme polaire ou cartésien,

afin de pouvoir appliquer les formules ci-dessus.

8.12 Logique propositionnelle

```
De Morgans :  a \ v \ b = \neg a \ * \ \neg b   a*b = \neg a + \neg b   (p\land q) = \neg p \ v \ \neg q   (pvq) = \neg \ (\neg p \land \neg q)   \neg (p\land q) = (p \ v \ q)   (A \land \neg B) \ V \ (\neg A \ V \ (C \land A)) = \neg (A \land \neg B) \land \neg (\neg A \ V \ (C \land A))
```

Forme disjonctive $(A \wedge B) \vee C$ $(A \to B) \cap C$

Forme conjonctive (A V B) \wedge C (A OU B) ET C

Transformation:

$$A=>B=\neg A\ v\ (A\land B)$$

$$A<=>B=(A=>B)\land (B=>A)$$

$$(A=>B)\land (B=>A)=(\neg A\ v\ (A\land B))\land (\neg B\ v\ (B\land A))$$

8.13 Algorithmique symbole

o = meilleur des cas

O = Pire des cas

 $\theta = \text{Cas moyen}$

 Θ = Meilleur des cas, cas moyen, pire des cas