COC473 - Lista 1

Pedro Maciel Xavier 116023847

25 de setembro de $2020\,$

Questão 1.:

Abaixo, o passo-a-passo da resolução do sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$. Ao lado de cada etapa, a matriz de combinação de linhas \mathbf{M} .

$$[\mathbf{A}|\mathbf{b}]^{(0)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ -4 & 6 & -4 & 1 & | & 2 \\ 1 & -4 & 6 & -4 & | & 1 \\ 0 & 1 & -4 & 5 & | & 3 \end{bmatrix} \mathbf{M}^{(1)} = \begin{bmatrix} 1 & & & & & \\ \frac{4}{5} & 1 & & & \\ -\frac{1}{5} & & & 1 & & \\ & & & & & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 & | & \frac{6}{5} \\ 0 & -\frac{16}{5} & \frac{29}{5} & -4 & | & \frac{6}{5} \\ 0 & 1 & -4 & 5 & | & 3 \end{bmatrix} \mathbf{M}^{(2)} = \begin{bmatrix} 1 & & & & & \\ & 1 & & & \\ & \frac{8}{7} & 1 & & \\ & & -\frac{5}{14} & & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(2)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 & | & \frac{6}{5} \\ 0 & 0 & \frac{15}{7} & -\frac{20}{7} & | & \frac{18}{7} \\ 0 & 0 & -\frac{20}{7} & \frac{65}{14} & | & \frac{18}{7} \end{bmatrix} \mathbf{M}^{(3)} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \frac{4}{3} & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(3)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 & | & \frac{6}{5} \\ 0 & 0 & \frac{15}{7} & -\frac{20}{7} & | & \frac{18}{7} \\ 0 & 0 & 0 & \frac{5}{6} & | & 6 \end{bmatrix}$$

Por substituição, chegamos ao resultado

$$\mathbf{x} = \frac{1}{5} \begin{bmatrix} 29\\51\\54\\36 \end{bmatrix}$$

Questão 2.:

a) Decomposição LU e de Cholesky

Segue a baixo a definição das funções que realizam, respectivamente, a decomposição LU e a de *Cholesky*. Funções auxiliares se encontram no código completo, disponível no apêndice.

```
1
            function LU_decomp(A, L, U, n) result (ok)
2
                 implicit none
3
                integer :: n
4
                double precision :: A(n, n), L(n, n), U(n,n), M(n, n)
5
6
7
                logical :: ok
8
9
                integer :: i, j, k
10
11
                Results Matrix
12
                M(:, :) = A(:, :)
13
                if (.NOT. LU_cond(A, n)) then
14
15
                     call ill_cond()
                     ok = .FALSE.
16
17
                     return
18
                end if
19
20
                do k = 1, n-1
21
                     do i = k+1, n
22
                         M(i, k) = M(i, k) / M(k, k)
23
                     end do
24
25
                     do j = k+1, n
26
                         do i = k+1, n
27
                             M(i, j) = M(i, j) - M(i, k) * M(k, j)
28
                         end do
29
                     end do
30
                 end do
31
32
                Splits M into L & U
33
                call LU_matrix(M, L, U, n)
34
35
                ok = .TRUE.
36
                return
37
38
            end function
39
            function Cholesky_decomp(A, L, n) result (ok)
40
41
                implicit none
42
43
                integer :: n
44
                double precision :: A(n, n), L(n, n)
45
46
                logical :: ok
```

```
47
48
                integer :: i, j
49
50
                if (.NOT. Cholesky_cond(A, n)) then
                     call ill_cond()
51
52
                     ok = .FALSE.
53
                     return
54
                end if
55
56
                do i = 1, n
57
                    L(i, i) = sqrt(A(i, i) - sum(L(i, :i-1) * L(i, :i-1)))
58
                     do j = 1 + 1, n
                         L(j, i) = (A(i, j) - sum(L(i, :i-1) * L(j, :i-1)))
59
                             / L(i, i)
60
                     end do
61
                end do
62
63
                ok = .TRUE.
64
                return
65
            end function
```

b) Resolução de um sistema Ax = b

A partir do resultado da decomposição LU temos um par de rotinas para resolver o sistema linear relacionado:

```
1
            subroutine LU_backsub(L, U, x, y, b, n)
2
                implicit none
3
4
                integer :: n
5
                double precision :: L(n, n), U(n, n)
6
7
                double precision :: b(n), x(n), y(n)
8
9
                integer :: i
10
11
                Ly = b (Forward Substitution)
12
                do i = 1, n
                    y(i) = (b(i) - SUM(L(i, 1:i-1) * y(1:i-1))) / L(i, i)
13
                end do
14
15
16
                Ux = y (Backsubstitution)
17
                do i = n, 1, -1
                    x(i) = (y(i) - SUM(U(i,i+1:n) * x(i+1:n))) / U(i, i)
18
19
20
21
            end subroutine
22
23
            function LU_solve(A, x, y, b, n) result (ok)
24
                implicit none
25
26
                integer :: n
27
```

```
28
                double precision :: A(n, n), L(n, n), U(n, n)
29
                double precision :: b(n), x(n), y(n)
30
31
                logical :: ok
32
33
                ok = LU_decomp(A, L, U, n)
34
35
                if (.NOT. ok) then
36
                     return
37
                end if
38
39
                call LU_backsub(L, U, x, y, b, n)
40
41
                return
42
            end function
```

c) Cálculo do determinante det (A)

Aqui estão apresentadas duas rotinas para o cálculo do determinante. Uma através do algoritmo recursivo usual (Teorema de *Laplace*) e outra a partir da decomposição LU.

```
1
            recursive function det(A, n) result (d)
2
                implicit none
3
4
                integer :: n
5
                double precision :: A(n, n)
6
                double precision :: X(n-1, n-1)
 7
8
                integer :: i
9
                double precision :: d, s
10
11
                if (n == 1) then
12
                    d = A(1, 1)
13
                    return
                elseif (n == 2) then
14
                    d = A(1, 1) * A(2, 2) - A(1, 2) * A(2, 1)
15
16
                     return
17
                else
18
                    d = 0.0D0
19
                    s = 1.0D0
20
                    do i = 1, n
21
                         Compute submatrix X
22
                         X(:, :i-1) = A(2:,
                                                 :i-1)
23
                         X(:, i:) = A(2:, i+1:
24
                         d = s * det(X, n-1) * A(1, i) + d
25
26
27
                     end do
28
                end if
29
                return
30
            end function
31
32
            function LU_det(A, n) result (d)
```

```
33
                 implicit none
34
35
                 integer :: n
36
                 integer :: i
37
                 double precision :: A(n, n), L(n, n), U(n, n)
38
                 \  \  \, \textit{double precision} \, :: \, \, d
39
40
                 d = 0.0D0
41
                 if (.NOT. LU_decomp(A, L, U, n)) then
42
43
                      call ill_cond()
44
                      return
45
                 end if
46
47
                 do i = 1, n
                      d = d * L(i, i) * U(i, i)
48
49
                 end do
50
51
                 return
52
             end function
```

Questão 3.:

1 .: Jacobi

Segue o algoritmo iterativo de *Jacobi* para solução de sistemas lineares, com os respectivos sinais relacionados à convergência do método.

```
1
            function Jacobi_cond(A, n) result (ok)
2
                 implicit none
3
4
                integer :: n
5
6
                double precision :: A(n, n)
7
8
                logical :: ok
9
10
                if (.NOT. spectral_radius(A, n) < 1.0D0) then</pre>
11
                     ok = .FALSE.
12
                     call ill_cond()
13
                     return
14
                 else
                     ok = .TRUE.
15
16
                     return
17
                 end if
18
            end function
19
20
            function Jacobi(A, x, b, e, n) result (ok)
21
                 implicit none
22
23
                integer :: n
24
25
                double precision :: A(n, n)
26
                double precision :: b(n), x(n), x0(n)
27
                double precision :: e
28
29
                logical :: ok
30
31
                integer :: i, k
32
33
                x0 = rand_vector(n)
34
35
                ok = Jacobi_cond(A, n)
36
37
                 if (.NOT. ok) then
38
                     return
39
                end if
40
41
                do k = 1, KMAX
                     do i = 1, n
42
43
                         x(i) = (b(i) - dot_product(A(i, :), x0)) / A(i, i)
44
                     end do
                     x0(:) = x(:)
45
46
                     e = vector_norm(matmul(A, x) - b, n)
```

```
47
                     if (e < TOL) then
48
                          return
                     end if
49
50
                 end do
51
                 call error ('Erro: Esse método não convergiu.')
52
                 ok = .FALSE.
53
                 return
54
            end function
```

2 .: Gauss-Seidel

Agora, a implementação da variante de *Gauss-Seidel*, assim como os respectivos avisos quanto à convergência do método.

```
function Gauss_Seidel_cond(A, n) result (ok)
1
 2
                 implicit none
3
 4
                 integer :: n
 5
 6
                 double precision :: A(n, n)
 7
 8
                 logical :: ok
9
10
                 integer :: i
11
12
                 do i = 1, n
13
                      if (A(i, i) == 0.0D0) then
                          ok = .FALSE.
14
15
                          call ill_cond()
16
                          return
17
                      end if
18
                 end do
19
                 if (symmetrical(A, n) . AND. positive_definite(A, n)) then
20
21
                      ok = .TRUE.
22
                      return
23
                 else
24
                      call warn('Aviso: Esse método pode não convergir.')
25
                      return
26
                 end if
27
             end function
28
29
             function Gauss_Seidel(A, x, b, e, n) result (ok)
30
                 implicit none
31
32
                 integer :: n
33
34
                 double precision :: A(n, n)
35
                 double precision :: b(n), x(n)
36
                 \  \  \, \textit{double precision} \ :: \ \texttt{e, s}
37
38
                 logical :: ok
39
                 integer :: i, j, k
```

```
40
41
                ok = Gauss_Seidel_cond(A, n)
42
                if (.NOT. ok) then
43
44
                    return
45
                end if
46
                do k = 1, KMAX
47
48
                    do i = 1, n
49
                         s = 0.0D0
50
                         do j = 1, n
51
                             if (i /= j) then
52
                                 s = s + A(i, j) * x(j)
53
                             end if
54
                         end do
55
                         x(i) = (b(i) - s) / A(i, i)
56
                     end do
57
                    e = vector_norm(matmul(A, x) - b, n)
58
                     if (e < TOL) then</pre>
59
                         return
60
                     end if
61
                end do
62
                call error('Erro: Esse método não convergiu.')
63
                ok = .FALSE.
64
                return
65
            end function
```

Questão 4.:

a) Resolveremos agora o sistema linear Ax = b dado por:

$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 1 & 0 \\ -4 & 6 & -4 & 1 \\ 1 & -4 & 6 & -4 \\ 0 & 1 & -4 & 5 \end{bmatrix} \ \mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 3 \end{bmatrix}$$

-Eliminação Gaussiana

Vamos fazer de maneira semelhante a questão 1, mas dessa vez queremos que os coeficientes da diagonal principal sejam todos iguais a 1.

$$[\mathbf{A}|\mathbf{b}]^{(0)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ -4 & 6 & -4 & 1 & | & 2 \\ 1 & -4 & 6 & -4 & | & 1 \\ 0 & 1 & -4 & 5 & | & 3 \end{bmatrix} \mathbf{M}^{(1)} = \begin{bmatrix} 1 & & & & & \\ \frac{4}{5} & 1 & & & \\ -\frac{1}{5} & & & 1 & & \\ & & & & & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 & | & \frac{6}{5} \\ 0 & -\frac{16}{5} & \frac{29}{5} & -4 & | & \frac{6}{5} \\ 0 & 1 & -4 & 5 & | & 3 \end{bmatrix} \mathbf{M}^{(2)} = \begin{bmatrix} 1 & & & & \\ & 1 & & \\ & \frac{8}{7} & 1 & \\ & & -\frac{5}{14} & & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(2)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 & | & \frac{6}{5} \\ 0 & 0 & \frac{15}{7} & -\frac{20}{7} & | & \frac{18}{7} \\ 0 & 0 & -\frac{20}{7} & \frac{65}{14} & | & \frac{18}{7} \end{bmatrix} \mathbf{M}^{(3)} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \frac{4}{3} & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(3)} = \begin{bmatrix} 5 & -4 & 1 & 0 & | & -1 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 & | & \frac{6}{5} \\ 0 & 0 & \frac{15}{7} & -\frac{20}{7} & | & \frac{18}{7} \\ 0 & 0 & 0 & \frac{5}{6} & | & 6 \end{bmatrix} \mathbf{M}^{(4)} = \begin{bmatrix} \frac{1}{5} & & & & \\ & \frac{5}{14} & & & \\ & & \frac{7}{15} & & \\ & & & & \frac{6}{5} \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(4)} = \begin{bmatrix} 1 & -\frac{4}{5} & \frac{1}{5} & 0 & -\frac{1}{5} \\ 0 & 1 & -\frac{8}{7} & \frac{5}{14} & \frac{3}{7} \\ 0 & 0 & 1 & -\frac{4}{3} & \frac{6}{5} \\ 0 & 0 & 0 & 1 & \frac{36}{5} \end{bmatrix}$$

Substituindo sucessivamente os valores para \mathbf{x}_i obtemos:

$$\mathbf{x} = \frac{1}{5} \begin{bmatrix} 29 \\ 51 \\ 54 \\ 36 \end{bmatrix}$$

-Eliminação de Gauss-Jordan

Continuando de onde parou a eliminação Gaussiana seguimos com:

$$[\mathbf{A}|\mathbf{b}]^{(4)} = \begin{bmatrix} 1 & -\frac{4}{5} & \frac{1}{5} & 0 & | & -\frac{1}{5} \\ 0 & 1 & -\frac{8}{7} & \frac{5}{14} & | & \frac{3}{7} \\ 0 & 0 & 1 & -\frac{4}{3} & | & \frac{6}{5} \\ 0 & 0 & 0 & 1 & | & \frac{36}{5} \end{bmatrix} \mathbf{M}^{(5)} = \begin{bmatrix} 1 & & & & & \\ & 1 & & & -\frac{5}{14} \\ & & & 1 & | & \frac{4}{3} \\ & & & & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(5)} = \begin{bmatrix} 1 & -\frac{4}{5} & \frac{1}{5} & 0 & -\frac{1}{5} \\ 0 & 1 & -\frac{8}{7} & 0 & -\frac{15}{7} \\ 0 & 0 & 1 & 0 & \frac{54}{5} \\ 0 & 0 & 0 & 1 & \frac{36}{5} \end{bmatrix} \mathbf{M}^{(6)} = \begin{bmatrix} 1 & & -\frac{1}{5} & \\ & 1 & \frac{8}{7} & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

$$[\mathbf{A}|\mathbf{b}]^{(7)} = \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{29}{5} \\ 0 & 1 & 0 & 0 & \frac{51}{5} \\ 0 & 0 & 1 & 0 & \frac{54}{5} \\ 0 & 0 & 0 & 1 & \frac{36}{5} \end{bmatrix}$$

Daqui, obtemos o resultado imediatamente:

$$\mathbf{x} = \frac{1}{5} \begin{bmatrix} 29\\51\\54\\36 \end{bmatrix}$$

-Decomposição A = LU

O Resultado da decomposição LU da matriz A é:

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -\frac{4}{5} & 1 & 0 & 0 \\ \frac{1}{5} & -\frac{8}{7} & 1 & 0 \\ 0 & \frac{5}{14} & -\frac{4}{3} & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 5 & -4 & 1 & 0 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 \\ 0 & 0 & \frac{15}{7} & -\frac{20}{7} \\ 0 & 0 & 0 & \frac{5}{6} \end{bmatrix}$$

Resolvendo primeiro $\mathbf{L}\mathbf{y} = \mathbf{b}$ obtemos:

$$\mathbf{y} = \begin{bmatrix} -1\\ \frac{6}{5}\\ \frac{18}{7}\\ 6 \end{bmatrix}$$

Por fim, resolvendo $\mathbf{U}\mathbf{x} = \mathbf{y}$:

$$\mathbf{x} = \frac{1}{5} \begin{bmatrix} 29\\51\\54\\36 \end{bmatrix}$$

-Decomposição de Cholesky $\mathbf{A} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$

Pela fórmula temos:

$$\mathbf{L} = \begin{bmatrix} \sqrt{5} & 0 & 0 & 0\\ \frac{-4}{\sqrt{5}} & \sqrt{\frac{14}{5}} & 0 & 0\\ \frac{1}{\sqrt{5}} & -\frac{16}{\sqrt{70}} & \sqrt{\frac{15}{7}} & 0\\ 0 & \sqrt{\frac{5}{14}} & -\frac{20}{\sqrt{105}} & \sqrt{\frac{5}{6}} \end{bmatrix}$$

Resolvendo Ly = b obtemos:

$$\mathbf{y} = \begin{bmatrix} -\frac{1}{\sqrt{5}} \\ \frac{18}{35} \\ \frac{108}{35} \\ \frac{216}{5} \end{bmatrix}$$

Em seguida, para $\mathbf{L}^{\mathbf{T}}\mathbf{x} = \mathbf{y}$ encontramos:

$$\mathbf{x} = \frac{1}{5} \begin{bmatrix} 29\\51\\54\\36 \end{bmatrix}$$

-Método Iterativo Jacobi

Podemos compreender os métodos iterativos e o seu comportamento de convergência separando a matriz \mathbf{A} em duas matrizes \mathbf{S} e \mathbf{T} tais que $\mathbf{A} = \mathbf{S} - \mathbf{T}$. Assim, construímos o processo iterativo de modo que $\mathbf{S}\mathbf{x}^{(k+1)} = \mathbf{T}\mathbf{x}^{(k)} + \mathbf{b}$. No caso do método de Jacobi, \mathbf{S} é a matriz composta pela diagonal principal de \mathbf{A} .

Um critério de convergência que surge dessa perspectiva depende do raio espectral da matriz $S^{-1}T$. O raio espectral é dado pelo maior autovalor de uma matriz, ou seja,

$$\rho\left(\mathbf{A}\right) = \max_{i} |\lambda_{i}|$$

Em geral, um método iterativo é dito convergente se e somente se $\rho(\mathbf{S}^{-1}\mathbf{T}) < 1$.

Neste caso, temos

$$\mathbf{S}^{-1}\mathbf{T} = \begin{bmatrix} \frac{1}{5} & 0 & 0 & 0 \\ 0 & \frac{1}{6} & 0 & 0 \\ 0 & 0 & \frac{1}{6} & 0 \\ 0 & 0 & 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 0 & -4 & 1 & 0 \\ -4 & 0 & -4 & 1 \\ 1 & -4 & 0 & -4 \\ 0 & 1 & -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \frac{-4}{5} & \frac{1}{5} & 0 \\ \frac{-4}{6} & 0 & \frac{-4}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{-4}{6} & 0 & \frac{-4}{6} \\ 0 & \frac{1}{5} & \frac{-4}{5} & 0 \end{bmatrix}$$

O autovalor de maior módulo é $\lambda_{\max} = \frac{2+\sqrt{34}}{6} \approx 1.30516$, portanto o método de Jacobi não irá convergir neste caso, já que $\rho\left(\mathbf{S}^{-1}\mathbf{T}\right) \geq 1$.

-Método Iterativo Gauss-Seidel

Já no método de *Gauss-Seidel*, o simples fato da matriz ser **positiva definida** e **simétrica** nos garante a convergência do método.

De maneira similar ao que foi feito no exercício anterior, vamos representar o algoritmo através de duas matrizes, \mathbf{S} e \mathbf{T} tais que $\mathbf{A} = \mathbf{S} - \mathbf{T}$. No entanto, para o algoritmo de *Gauss-Seidel*, a matriz \mathbf{S} é dada pela porção triangular inferior de \mathbf{A} , ou seja:

$$\mathbf{S} = \begin{bmatrix} 5 & 0 & 0 & 0 \\ -4 & 6 & 0 & 0 \\ 1 & -4 & 6 & 0 \\ 0 & 1 & -4 & 5 \end{bmatrix} \mathbf{T} = \begin{bmatrix} 0 & 4 & -1 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Uma iteração do algoritmo pode, portanto, ser representada pela expressão $\mathbf{x}^{(k+1)} = \mathbf{S}^{-1} \left(\mathbf{T} \mathbf{x}^{(k)} + \mathbf{b} \right)$:

$$\begin{bmatrix} \mathbf{x}_1^{(k+1)} \\ \mathbf{x}_2^{(k+1)} \\ \mathbf{x}_3^{(k+1)} \\ \mathbf{x}_4^{(k+1)} \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & 0 & 0 & 0 \\ \frac{2}{15} & \frac{1}{6} & 0 & 0 \\ \frac{1}{18} & \frac{1}{9} & \frac{1}{6} & 0 \\ \frac{4}{225} & \frac{1}{18} & \frac{2}{15} & \frac{1}{5} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 0 & 4 & -1 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^{(k)} \\ \mathbf{x}_2^{(k)} \\ \mathbf{x}_3^{(k)} \\ \mathbf{x}_4^{(k)} \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \\ 1 \\ 3 \end{bmatrix} \end{bmatrix}$$

Tomando o limite de $\mathbf{x}^{(k)}$ quando $k \to \infty$, amparados pela garantia da convergência, temos que $\mathbf{x}^{(k)}, \mathbf{x}^{(k+1)} \to \mathbf{x}$. Assim, obtemos as relações:

$$\mathbf{x}_1 = \frac{1}{5}(4\mathbf{x}_2 - \mathbf{x}_3 - 1)$$

$$\begin{aligned} \mathbf{x}_2 &= \frac{2}{15} (4\mathbf{x}_2 - \mathbf{x}_3 - 1) + \frac{1}{6} (4\mathbf{x}_3 - \mathbf{x}_4 + 2) \\ \mathbf{x}_3 &= \frac{1}{18} (4\mathbf{x}_2 - \mathbf{x}_3 - 1) + \frac{1}{9} (4\mathbf{x}_3 - \mathbf{x}_4 + 2) + \frac{1}{6} (4\mathbf{x}_4 + 1) \\ \mathbf{x}_4 &= \frac{3}{5} + \frac{4}{225} (-1 + 4\mathbf{x}_2 - \mathbf{x}_3) + \frac{1}{18} (2 + 4\mathbf{x}_3 - \mathbf{x}_4) + \frac{2}{15} (1 + 4\mathbf{x}_4) \end{aligned}$$

Resolvendo temos

$$\mathbf{x}_{1} = \frac{1}{185} (120\mathbf{x}_{2} - 151)$$

$$\mathbf{x}_{2} = \frac{51}{5}$$

$$\mathbf{x}_{3} = \frac{2}{37} (14\mathbf{x}_{2} + 57)$$

$$\mathbf{x}_{4} = \frac{4}{235} (8\mathbf{x}_{2} + 23\mathbf{x}_{3} + 93)$$

e, por fim, obtemos

$$\mathbf{x} = \begin{bmatrix} \frac{29}{5} \\ \frac{51}{5} \\ \frac{54}{5} \\ \frac{36}{5} \end{bmatrix}$$

De fato, se tomamos $\mathbf{x}_0 = \mathbf{x}$ e inicializamos o algoritmo, temos:

$$\begin{split} \mathbf{x}_{1}^{(1)} &= \frac{1}{5} (-1 + 4 \mathbf{x}_{2}^{(0)} - \mathbf{x}_{3}^{(0)}) = \frac{1}{5} (-1 + \frac{204}{5} - \frac{54}{5}) = \frac{29}{5} \\ \mathbf{x}_{2}^{(1)} &= \frac{1}{6} (2 + 4 \mathbf{x}_{1}^{(1)} + 4 \mathbf{x}_{3}^{(0)} - \mathbf{x}_{4}^{(0)}) = \frac{1}{6} (2 + \frac{116}{5} + \frac{216}{5} - \frac{36}{5}) = \frac{51}{5} \\ \mathbf{x}_{3}^{(1)} &= \frac{1}{6} (1 - \mathbf{x}_{1}^{(1)} + 4 \mathbf{x}_{2}^{(1)} + 4 \mathbf{x}_{4}^{(0)}) = \frac{1}{6} (1 - \frac{29}{5} + \frac{204}{5} + \frac{144}{5}) = \frac{54}{5} \\ \mathbf{x}_{4}^{(1)} &= \frac{1}{5} (3 - \mathbf{x}_{2}^{(1)} + 4 \mathbf{x}_{3}^{(1)}) = \frac{1}{5} (3 - \frac{51}{5} + \frac{162}{5}) = \frac{36}{5} \end{split}$$

e, portanto,

$$R = \frac{||\mathbf{x}^{(1)} - \mathbf{x}^{(0)}||}{||\mathbf{x}^{(1)}||} = 0$$

e o algoritmo termina.

1 .: Inversa de A

Multiplicando todas as matrizes de combinação de linhas $\mathbf{M}^{(i)}$ obtidas durante a eliminação de Gauss-Jordan obtemos

$$\mathbf{A}^{-1} = \prod_{i}^{7} \mathbf{M}^{(i)} = \frac{1}{5} \begin{bmatrix} 6 & 8 & 7 & 4 \\ 8 & 13 & 12 & 7 \\ 7 & 12 & 13 & 8 \\ 4 & 7 & 8 & 6 \end{bmatrix}$$

2 .: Determinante de A

Uma vez que $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$ para quaisquer matrizes \mathbf{A}, \mathbf{B} , podemos calcular o determinante de \mathbf{A} a partir de sua fatoração LU. Além disso, matrizes triangulares tem a propriedade

de que seu determinante é o produto dos elementos na diagonal principal. Assim, sendo $\mathbf{A} = \mathbf{L}\mathbf{U},$ det $(\mathbf{L}) = 1$ e

$$\det\left(\mathbf{A}\right) = \prod_{i=1}^{4} \mathbf{U}_{i,i} = 5 \cdot \frac{14}{5} \cdot \frac{15}{7} \cdot \frac{5}{6} = 25$$

Questão 5.: Questão 6.:

Algoritmo 1.: Saída do programa.

. 1						
1 ::	Decomposi	ção PLU (com	n pivoteame:	nto) ::		
2 P:						
3 1	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	0.0000	0.00000	0.00000	0.00000		
4 1	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000
	0.0000	0.00000	0.00000	0.00000		
5 I	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000
	0.0000	0.00000	0.00000	0.00000		
6 1	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000
	0.0000	0.00000	0.0000	0.00001		
7 1	0.00000	0.00000	0.00000	0.00000	1.00000	0.0000
	0.0000	0.00000	0.00000	0.000001		
8 1	0.00000	0.00000	0.00000	0.00000	0.00000	1.00000
	0.0000	0.00000	0.00000	0.000001		
9 1	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
	1.00000	0.00000	0.00000	0.000001		
10	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
	0.00000	1.00000	0.00000	0.000001		
11	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
	0.00000	0.00000	1.00000	0.000001	0 00000	0.0000
12	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
	0.0000	0.0000	0.0000	1.00000		
13 L:	1 00000	0 00000	0.00000	0 00000	0 00000	0.00000
14	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	0.56250	1.00000	0.00000	0.00000	0.00000	0.00000
1 '	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
16	0.50000	0.37696	1.00000	0.00000	0.00000	0.00000
1 '	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
17 1	0.43750	0.34031	0.32255	1.00000	0.00000	0.00000
1 '	0.00000	0.00000	0.00000	0.00000	0.0000	0.0000
18	0.37500	0.30366	0.29532	0.29901	1.00000	0.00000
	0.00000	0.00000	0.00000	0.000001	1.00000	0.0000
19	0.31250	0.26702	0.26809	0.27600	0.32992	1.00000
	0.00000	0.00000	0.00000	0.000001	0.02002	
20	0.25000	0.23037	0.24085	0.25298	0.30556	0.35667
	1.00000	0.00000	0.00000	0.00000		
21	0.18750	0.19372	0.21362	0.22997	0.28119	0.33049
	0.38325	1.00000	0.00000	0.00000		
22	0.12500	0.15707	0.18638	0.20695	0.25683	0.30431
	0.35453	0.41274	1.00000	0.00000		
23	0.06250	0.12042	0.15915	0.18393	0.23247	0.27813
	0.32580	0.38049	0.44836	1.00000		
24 U:						
25 1 1	16.00000	9.00000	8.00000	7.00000	6.00000	5.00000
4	4.00000	3.00000	2.00000	1.00000		
26	0.0000	11.93750	4.50000	4.06250	3.62500	3.18750
	2.75000	2.31250	1.87500	1.43750		
27	0.0000	0.00000	12.30366	3.96859	3.63351	3.29843

	I	2.96335	2.62827	0 00210	1 050101			ı
28	1	0.00000	0.00000	2.29319 0.00000	1.95812 13.27489	3.96936	3.66383	
20	'	3.35830	3.05277	2.74723	2.44170	3.90930	3.00303	
29	1	0.00000	0.00000	0.00000	0.00000	12.38928	4.08745	
25	'	3.78561	3.48378	3.18195	2.88011	12.00020	4.00740	
30	ı	0.00000	0.00000	0.00000	0.00000	0.00000	11.34240	
90	'	4.04545	3.74851	3.45156	3.15462	0.00000	11.01210	
31	ı	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
01	'	10.20359	3.91051	3.61743	3.32435	0.00000	0.00000	
32	ı	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
02	'	0.00000	9.00891	3.71834	3.42776	0.0000	0.0000	
33	ı	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
33	'	0.00000	0.00000	7.77482	3.48594			
34	ı	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	
		0.0000	0.00000	0.00000	6.50648			
35	y:				•			
36	Ĭ	4.00000						
37	1	-2.25000						
38	1	6.84817						
39	1	-3.19319						
40	1	10.11566						
41	1	-4.94113						
42	1	5.34820						
43	1	-4.30386						
44	1	2.02376						
45		-2.47118						
46	x:							
47		0.16240						
48	1	-0.43991						
49		0.49837						
50		-0.43889						
51		0.90442						
52		-0.53865						
53		0.69105						
54		-0.51094						
55	1	0.43059						
56		-0.37980						
57	DE:							
58	20:	385044096.0	00000					

Appendices

Código

```
1
       Matrix Module
2
3
       module Matrix
4
           implicit none
           integer :: NMAX = 1000
5
6
           integer :: KMAX = 1000
7
8
           integer :: MAX_ITER = 1000
9
10
           double precision :: TOL = 1.0D-8
11
       contains
12
           13
           subroutine error(text)
14
               Red Text
15
                implicit none
16
                character(len=*) :: text
                write (*, *) ''//achar(27)//'[31m'//text//''//achar(27)//'
17
18
           end subroutine
19
20
           subroutine warn(text)
21
                Yellow Text
22
                implicit none
23
                character(len=*) :: text
                write (*, *) ''//achar(27)//'[93m'//text//''//achar(27)//'
24
                   [Om'
25
           end subroutine
26
27
           subroutine info(text)
28
                Green Text
29
                implicit none
30
                character(len=*) :: text
                write (*, *) ''//achar(27)//'[32m'//text//''//achar(27)//'
31
                   [Om'
32
           end subroutine
33
34
           subroutine ill_cond()
35
                Prompts the user with an ill-conditioning warning.
36
                implicit none
37
                call error('Matriz mal-condicionada: este método não irá
                   convergir.')
38
           end subroutine
39
40
           subroutine print_matrix(A, m, n)
41
                implicit none
42
43
                integer :: m, n
```

```
44
                double precision :: A(m, n)
45
46
                integer :: i, j
47
                format(' /', F10.5, ' ')
48
   20
49
   21
                format(F10.5, '/')
50
                format(F10.5, ' ')
   22
51
52
                do i = 1, m
                    do j = 1, n
53
54
                         if (j == 1) then
55
                             write(*, 20, advance='no') A(i, j)
56
                         elseif (j == n) then
57
                             write(*, 21, advance='yes') A(i, j)
58
                         else
59
                             write(*, 22, advance='no') A(i, j)
60
                         end if
61
                     end do
62
                end do
63
            end subroutine
64
65
            subroutine read_matrix(fname, A, m, n)
66
                implicit none
67
                character(len=*) :: fname
68
                integer :: m, n
69
                double precision, allocatable :: A(:, :)
70
71
                integer :: i
72
73
                open(unit=33, file=fname, status='old', action='read')
74
                read(33, *) m
75
                read(33, *) n
76
                allocate(A(m, n))
77
78
                do i = 1, m
79
                    read(33,*) A(i,:)
80
                end do
81
82
                close(33)
83
            end subroutine
84
85
            subroutine print_vector(x, n)
86
                implicit none
87
88
                integer :: n
89
                double precision :: x(n)
90
91
                integer :: i
92
                format(' | ', F10.5, '|')
93
   30
94
95
                do i = 1, n
96
                    write(*, 30) x(i)
```

```
97
                 end do
98
             end subroutine
99
100
             subroutine read_vector(fname, b, t)
101
                 implicit none
102
                 character(len=*) :: fname
103
                 integer :: t
104
                 double precision, allocatable :: b(:)
105
106
                 open(unit=33, file=fname, status='old', action='read')
107
                 read(33, *) t
108
                 allocate(b(t))
109
110
                 read(33,*) b(:)
111
112
                 close(33)
113
             end subroutine
114
115
             ======= Matrix Methods ========
116
             function rand_vector(n) result (x)
117
                 implicit none
118
                 integer :: n
119
                 double precision :: x (n)
120
121
                 integer :: i
122
123
                 do i = 1, n
124
                     x(i) = 2 * ran(0) - 1
125
                 end do
126
                 return
127
             end function
128
129
             function rand_matrix(m, n) result (A)
130
                 implicit none
131
                 integer :: m, n
132
                 double precision :: A(m, n)
133
134
                 integer :: i
135
136
                 do i = 1, m
137
                     A(i, :) = rand_vector(n)
138
                 end do
139
                 return
140
             end function
141
142
             function id_matrix(n) result (A)
143
                 implicit none
144
145
                 integer :: n
146
                 double precision :: A(n, n)
147
148
                 integer :: j
149
```

```
150
                 A(:, :) = 0.0D0
151
152
                 do j = 1, n
153
                      A(j, j) = 1.0D0
154
                 end do
155
                 return
156
             end function
157
158
             function given_matrix(A, n, i, j) result (G)
159
                 implicit none
160
161
                 integer :: n, i, j
162
                 double precision :: A(n, n), G(n, n)
163
                 double precision :: t, c, s
164
165
                 G(:, :) = id_matrix(n)
166
167
                 t = 0.5D0 * DATAN2(2.0D0 * A(i, j), A(i, i) - A(j, j))
168
                 s = DSIN(t)
169
                 c = DCOS(t)
170
171
                 G(i, i) = c
172
                 G(j, j) = c
173
                 G(i, j) = -s
174
                 G(j, i) = s
175
176
                 return
177
             end function
178
179
180
             function diagonally_dominant(A, n) result (ok)
181
                 implicit none
182
183
                 integer :: n
184
                 double precision :: A(n, n)
185
186
                 logical :: ok
187
                 integer :: i
188
189
                 do i = 1, n
190
                      if (DABS(A(i, i)) < SUM(DABS(A(i, :i-1))) + SUM(DABS(A(i, :i-1)))
                         i, i+1:)))) then
191
                          ok = .FALSE.
192
                          return
193
                      end if
194
                 end do
                 ok = .TRUE.
195
196
                 return
197
             end function
198
199
             recursive function positive_definite(A, n) result (ok)
200
            Checks wether a matrix is positive definite
             according to Sylvester's criterion.
201 | !
```

```
202
                  implicit none
203
                  integer :: n
204
205
                  double precision A(n, n)
206
207
                  logical :: ok
208
209
                  if (n == 1) then
210
                      ok = (A(1, 1) > 0)
211
                      return
212
                  else
                      ok = positive_definite(A(:n-1, :n-1), n-1) . AND. (det(A
213
                          , n) > 0)
214
                      return
215
                  end if
216
             end function
217
218
             function symmetrical(A, n) result (ok)
219
                 Check if the Matrix is symmetrical
220
                  integer :: n
221
                  double precision :: A(n, n)
222
223
224
                  integer :: i, j
225
                  logical :: ok
226
227
                  do i = 1, n
228
                      do j = 1, i-1
                           if (A(i, j) /= A(j, i)) then
229
230
                               ok = .FALSE.
231
                               return
232
                           end if
233
                      end do
234
                  end do
235
                  ok = .TRUE.
236
                  return
237
             end function
238
239
             subroutine swap_rows(A, i, j, n)
240
                  implicit none
241
                  {\tt integer} \; :: \; {\tt n}
242
                  integer :: i, j
243
244
                  double precision A(n, n)
245
                  double precision temp(n)
246
                  temp(:) = A(i, :)
247
248
                  A(i, :) = A(j, :)
249
                  A(j, :) = temp(:)
250
             end subroutine
251
252
             function row_max(A, j, n) result(k)
253
                  implicit none
```

```
254
255
                 integer :: n
256
                 double precision A(n, n)
257
258
                 integer :: i, j, k
259
                 double precision :: s
260
                 s = 0.0D0
261
262
                 do i = j, n
                     if (A(i, j) > s) then
263
264
                          s = A(i, j)
265
                          k = i
266
                      end if
267
                 end do
268
                 return
269
             end function
270
271
             function pivot_matrix(A, n) result (P)
272
                 implicit none
273
274
                 integer :: n
275
                 double precision :: A(n, n)
276
277
                 double precision :: P(n, n)
278
279
                 integer :: j, k
280
281
                 P = id_matrix(n)
282
283
                 do j = 1, n
284
                     k = row_max(A, j, n)
285
                     if (j /= k) then
286
                          call swap_rows(P, j, k, n)
287
                     end if
288
                 end do
289
                 return
290
             end function
291
292
             function vector_norm(x, n) result (s)
293
                 implicit none
294
295
                 integer :: n
296
                 double precision :: x(n)
297
298
                 double precision :: s
299
300
                 s = sqrt(dot_product(x, x))
301
                 return
302
             end function
303
304
             function matrix_norm(A, n) result (s)
305
                 Frobenius norm
306
                 implicit none
```

```
307
                  {\it integer} \ :: \ n
308
                  double precision :: A(n, n)
                  \  \, \textit{double precision} \, :: \, \, \textbf{s}
309
310
311
                  s = DSQRT(SUM(A * A))
312
                  return
313
             end function
314
315
             function spectral_radius(A, n) result (r)
316
                  implicit none
317
318
                  integer :: n
319
                  double precision :: A(n, n), x(n)
320
                  double precision :: r, l
321
322
                  logical :: ok
323
324
                 ok = power_method(A, n, x, 1)
325
326
                  r = DABS(1)
327
                  return
328
             end function
329
330
             recursive function det(A, n) result (d)
331
                  implicit none
332
333
                  integer :: n
334
                  double precision :: A(n, n)
335
                  double precision :: X(n-1, n-1)
336
337
                  integer :: i
338
                  double precision :: d, s
339
340
                  if (n == 1) then
                      d = A(1, 1)
341
342
                      return
343
                  elseif (n == 2) then
344
                      d = A(1, 1) * A(2, 2) - A(1, 2) * A(2, 1)
345
                      return
346
                  else
347
                      d = 0.0D0
348
                      s = 1.0D0
349
                      do i = 1, n
350
                           Compute submatrix X
351
                           X(:, :i-1) = A(2:,
                                                   :i-1)
352
                           X(:, i:) = A(2:, i+1:
353
354
                           d = s * det(X, n-1) * A(1, i) + d
355
                           s = -s
356
                      end do
357
                  end if
358
                  return
359
             end function
```

```
360
361
             function LU_det(A, n) result (d)
362
                 implicit none
363
364
                 integer :: n
365
                 integer :: i
366
                 double precision :: A(n, n), L(n, n), U(n, n)
367
                 double precision :: d
368
369
                 d = 0.0D0
370
371
                 if (.NOT. LU_decomp(A, L, U, n)) then
372
                     call ill_cond()
373
                     return
374
                 end if
375
376
                 do i = 1, n
377
                     d = d * L(i, i) * U(i, i)
378
379
380
                 return
381
             end function
382
383
             subroutine LU_matrix(A, L, U, n)
384
                 Splits Matrix in Lower and Upper-Triangular
385
                 implicit none
386
387
                 integer :: n
388
                 double precision :: A(n, n), L(n, n), U(n, n)
389
390
                 integer :: i
391
392
                 L(:, :) = 0.0D0
393
                 U(:, :) = 0.0D0
394
                 do i = 1, n
395
                     L(i, i) = 1.0D0
396
397
                     L(i, :i-1) = A(i, :i-1)
398
                     U(i, i:
                              ) = A(i, i: )
399
                 end do
400
             end subroutine
401
402
             === Matrix Factorization Conditions ===
403
             function Cholesky_cond(A, n) result (ok)
404
                 implicit none
405
406
                 integer :: n
407
                 double precision :: A(n, n)
408
409
                 logical :: ok
410
411
                 ok = symmetrical(A, n) . AND. positive_definite(A, n)
412
                 return
```

```
413
414
           end function
415
416
           function PLU_cond(A, n) result (ok)
417
              implicit none
418
419
              integer :: n
420
              double precision A(n, n)
421
422
              integer :: i, j
423
              double precision :: s
424
425
              logical :: ok
426
427
              do j = 1, n
428
                  s = 0.0D0
429
                  do i = 1, j
430
                     if (A(i, j) > s) then
431
                         s = A(i, j)
432
                      end if
433
                  end do
434
              end do
435
              ok = (s < 0.01D0)
436
437
438
              return
439
           end function
440
441
           function LU_cond(A, n) result (ok)
442
              implicit none
443
444
              integer :: n
445
              double precision A(n, n)
446
447
              logical :: ok
448
449
              ok = positive_definite(A, n)
450
451
              return
452
           end function
                453
454
455
           1 1
456
           457
           458
           _____
459
460
461
           ====== Matrix Factorization Methods =======
462
           function PLU_decomp(A, P, L, U, n) result (ok)
463
              implicit none
464
465
              integer :: n
```

```
466
                 double precision :: A(n,n), P(n,n), L(n,n), U(n,n)
467
468
                 logical :: ok
469
470
                 Permutation Matrix
471
                 P = pivot_matrix(A, n)
472
473
                 Decomposition over Row-Swapped Matrix
474
                 ok = LU_decomp(matmul(P, A), L, U, n)
475
                 return
476
             end function
477
478
             function LU_decomp(A, L, U, n) result (ok)
479
                 implicit none
480
481
                 integer :: n
482
                 double precision :: A(n, n), L(n, n), U(n,n), M(n, n)
483
484
                 logical :: ok
485
486
                 integer :: i, j, k
487
488
                 Results Matrix
489
                 M(:, :) = A(:, :)
490
491
                 if (.NOT. LU_cond(A, n)) then
492
                     call ill_cond()
                     ok = .FALSE.
493
494
                     return
495
                 end if
496
497
                 do k = 1, n-1
498
                     do i = k+1, n
499
                         M(i, k) = M(i, k) / M(k, k)
500
                     end do
501
                     do j = k+1, n
502
503
                          do i = k+1, n
504
                              M(i, j) = M(i, j) - M(i, k) * M(k, j)
505
506
                      end do
507
                 end do
508
509
                 Splits M into L & U
510
                 call LU_matrix(M, L, U, n)
511
                 ok = .TRUE.
512
513
                 return
514
             end function
515
516
517
             function Cholesky_decomp(A, L, n) result (ok)
518
                 implicit none
```

```
519
520
                 integer :: n
521
                 double precision :: A(n, n), L(n, n)
522
523
                 logical :: ok
524
525
                 integer :: i, j
526
527
                 if (.NOT. Cholesky_cond(A, n)) then
528
                     call ill_cond()
529
                     ok = .FALSE.
530
                     return
531
                 end if
532
533
                 do i = 1, n
534
                     L(i, i) = sqrt(A(i, i) - sum(L(i, :i-1) * L(i, :i-1)))
535
                     do j = 1 + 1, n
                          L(j, i) = (A(i, j) - sum(L(i, :i-1) * L(j, :i-1)))
536
                             / L(i, i)
537
                     end do
538
                 end do
539
540
                 ok = .TRUE.
541
                 return
542
             end function
543
544
             function Jacobi_cond(A, n) result (ok)
545
                 implicit none
546
547
                 integer :: n
548
549
                 double precision :: A(n, n)
550
551
                 logical :: ok
552
553
                 if (.NOT. spectral_radius(A, n) < 1.0D0) then</pre>
554
                     ok = .FALSE.
555
                     call ill_cond()
556
                     return
557
                 else
                     ok = .TRUE.
558
559
                     return
560
                 end if
561
             end function
562
563
             function Jacobi(A, x, b, e, n) result (ok)
564
                 implicit none
565
566
                 integer :: n
567
568
                 double precision :: A(n, n)
569
                 double precision :: b(n), x(n), x0(n)
570
                 double precision :: e
```

```
571
572
                 logical :: ok
573
574
                 integer :: i, k
575
576
                 x0 = rand_vector(n)
577
578
                 ok = Jacobi_cond(A, n)
579
580
                 if (.NOT. ok) then
581
                     return
582
                 end if
583
584
                 do k = 1, KMAX
585
                     do i = 1, n
586
                         x(i) = (b(i) - dot_product(A(i, :), x0)) / A(i, i)
587
                     end do
588
                     x0(:) = x(:)
                     e = vector_norm(matmul(A, x) - b, n)
589
590
                     if (e < TOL) then
591
                          return
592
                     end if
593
594
                 call error ('Erro: Esse método não convergiu.')
595
                 ok = .FALSE.
596
                 return
597
             end function
598
599
             function Gauss_Seidel_cond(A, n) result (ok)
600
                 implicit none
601
602
                 integer :: n
603
604
                 double precision :: A(n, n)
605
606
                 logical :: ok
607
608
                 integer :: i
609
                 do i = 1, n
610
611
                     if (A(i, i) == 0.0D0) then
612
                          ok = .FALSE.
613
                          call ill_cond()
614
                          return
615
                      end if
616
                 end do
617
618
                 if (symmetrical(A, n) .AND. positive_definite(A, n)) then
619
                     ok = .TRUE.
620
                     return
621
                 else
622
                     call warn('Aviso: Esse método pode não convergir.')
623
                     return
```

```
624
                 end if
625
             end function
626
627
             function Gauss_Seidel(A, x, b, e, n) result (ok)
628
                 implicit none
629
630
                 integer :: n
631
632
                 double precision :: A(n, n)
633
                 double precision :: b(n), x(n)
634
                 double precision :: e, s
635
636
                 logical :: ok
637
                 integer :: i, j, k
638
639
                 ok = Gauss_Seidel_cond(A, n)
640
                 if (.NOT. ok) then
641
642
                     return
643
                 end if
644
645
                 do k = 1, KMAX
646
                      do i = 1, n
647
                          s = 0.0D0
648
                          do j = 1, n
649
                              if (i /= j) then
650
                                   s = s + A(i, j) * x(j)
651
                              end if
652
                          end do
                          x(i) = (b(i) - s) / A(i, i)
653
654
                      end do
655
                      e = vector_norm(matmul(A, x) - b, n)
656
                      if (e < TOL) then</pre>
657
                          return
658
                      end if
659
                 end do
660
                 call error ('Erro: Esse método não convergiu.')
661
                 ok = .FALSE.
662
                 return
663
             end function
664
665
             Decomposição LU e afins
666
667
             subroutine LU_backsub(L, U, x, y, b, n)
668
                 implicit none
669
670
                 integer :: n
671
672
                 double precision :: L(n, n), U(n, n)
673
                 double precision :: b(n), x(n), y(n)
674
675
                 integer :: i
676
```

```
677
                 Ly = b (Forward Substitution)
678
                 do i = 1, n
679
                     y(i) = (b(i) - SUM(L(i, 1:i-1) * y(1:i-1))) / L(i, i)
680
                 end do
681
682
                 Ux = y (Backsubstitution)
683
                 do i = n, 1, -1
684
                     x(i) = (y(i) - SUM(U(i,i+1:n) * x(i+1:n))) / U(i, i)
685
                 end do
686
687
             end subroutine
688
689
             function LU_solve(A, x, y, b, n) result (ok)
690
                 implicit none
691
692
                 integer :: n
693
694
                 double precision :: A(n, n), L(n, n), U(n, n)
695
                 double precision :: b(n), x(n), y(n)
696
697
                 logical :: ok
698
699
                 ok = LU_decomp(A, L, U, n)
700
701
                 if (.NOT. ok) then
702
                     return
703
                 end if
704
705
                 call LU_backsub(L, U, x, y, b, n)
706
707
                 return
708
             end function
709
             function PLU_solve(A, x, y, b, n) result (ok)
710
711
                 implicit none
712
713
                 integer :: n
714
715
                 double precision :: A(n, n), P(n,n), L(n, n), U(n, n)
716
                 double precision :: b(n), x(n), y(n)
717
718
                 logical :: ok
719
720
                 ok = PLU_decomp(A, P, L, U, n)
721
                 if (.NOT. ok) then
722
723
                     return
724
                 end if
725
726
                 call LU_backsub(L, U, x, y, matmul(P, b), n)
727
728
                 x(:) = matmul(P, x)
729
```

```
730
              return
731
           end function
732
733
           function Cholesky_solve(A, x, y, b, n) result (ok)
734
               implicit none
735
736
              integer :: n
737
738
              double precision :: A(n, n), L(n, n), U(n, n)
739
              double precision :: b(n), x(n), y(n)
740
741
              logical :: ok
742
743
              ok = Cholesky_decomp(A, L, n)
744
745
              if (.NOT. ok) then
746
                  return
747
              end if
748
749
              U = transpose(L)
750
              call LU_backsub(L, U, x, y, b, n)
751
752
753
              return
754
           end function
755
756
                757
                                          ) |
758
759
           | | | ____ | | | / /__
760 !
           761
762
   !
           _____
763
           ======= Power Method =======
764
           function power_method(A, n, x, 1) result (ok)
765
766
              implicit none
767
              integer :: n
768
              integer :: k = 0
769
770
              double precision :: A(n, n)
771
              double precision :: x(n)
772
              double precision :: 1, 11
773
774
              logical :: ok
775
776
              Begin with random normal vector and set 1st component to
      zero
777
              x(:) = rand_vector(n)
              x(1) = 1.0D0
778
779
780 !
              Initialize Eigenvalues
781
              1 = 0.0D0
```

```
782
783
                 Checks if error tolerance was reached
784
                 do while (k < MAX_ITER)</pre>
785
                     11 = 1
786
787
                     x(:) = matmul(A, x)
788
789
                     Retrieve Eigenvalue
790
                     1 = x(1)
791
792
                     Retrieve Eigenvector
793
                     x(:) = x(:) / 1
794
795
                     if (dabs((1-11) / 1) < TOL) then
796
                          ok = .TRUE.
797
                          return
798
                      else
799
                          k = k + 1
800
                          continue
801
                      end if
802
                 end do
803
                 ok = .FALSE.
804
                 return
805
             end function
806
807
             function Jacobi_eigen(A, n, L, X) result (ok)
808
                 implicit none
809
                 integer :: n, i, j, u, v
810
                 integer :: k = 0
811
812
                 double precision :: A(n, n), L(n, n), X(n, n), P(n, n)
813
                 double precision :: y, z
814
815
                 logical :: ok
816
817
                 X(:, :) = id_matrix(n)
818
                 L(:, :) = A(:, :)
819
820
                 do while (k < MAX_ITER)</pre>
821
                     z = 0.0D0
                     do i = 1, n
822
823
                          do j = 1, i - 1
824
                              y = DABS(L(i, j))
825
826
                              Found new maximum absolute value
827
                              if (y > z) then
                                  u = i
828
829
                                   v = j
830
                                   z = y
831
                              end if
832
                          end do
833
                      end do
834
```

```
if (z \ge TOL) then
835
                         P(:, :) = given_matrix(L, n, u, v)
836
837
                         L(:, :) = matmul(matmul(transpose(P), L), P)
838
                         X(:, :) = matmul(X, P)
839
                         k = k + 1
840
                     else
                         ok = .TRUE.
841
842
                         return
843
                     end if
844
                 end do
                 ok = .FALSE.
845
846
                 return
847
             end function
848
849
                   |____|/
| | | (___ | | | / \
| | \___ \ | | | //\
850
851
                                                  /_ \
852
             | | ____ | | _ ___ \
853
             854
855
856
857
            function least_squares(x, y, s, n) result (ok)
858
                 implicit none
                 {\tt integer} \; :: \; {\tt n}
859
860
861
                 logical :: ok
862
863
                 double precision :: A(2,2), b(2), s(2), r(2), x(n), y(n)
864
865
                 A(1, 1) = n
                 A(1, 2) = SUM(x)
866
867
                 A(2, 1) = SUM(x)
868
                 A(2, 2) = dot_product(x, x)
869
                 b(1) = SUM(y)
870
871
                 b(2) = dot_product(x, y)
872
873
                 ok = Cholesky_solve(A, s, r, b, n)
874
                 return
875
             end function
876
877
        end module Matrix
```