

## DESIGN AND ANALYSIS OF ALGORITHMS

## **Dynamic Programming**

#### Reetinder Sidhu

Department of Computer Science and Engineering



## DESIGN AND ANALYSIS OF ALGORITHMS

## **Dynamic Programming**

#### Reetinder Sidhu

Department of Computer Science and Engineering



## UNIT 5: Limitations of Algorithmic Power and Coping with the Limitations

SPES UNIVERSITY ONLINE

- Dynamic Programming
  - Computing a Binomial Coefficient
  - The Knapsack Problem
  - Memory Functions
  - Warshall's and Floyd's Algorithms
- Limitations of Algorithmic Power
  - Lower-Bound Arguments
  - Decision Trees
  - P, NP, and NP-Complete, NP-Hard Problems
- Coping with the Limitations
  - Backtracking
  - Branch-and-Bound

#### Concepts covered

- Dynamic Programming
  - Introduction
  - Fibonacci numbers
  - Binomial Coefficients

#### Introduction



**Dynamic Programming** is a general algorithm design technique for solving problems defined by recurrences with overlapping subproblems

- Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems and later assimilated by CS
- "Programming" here means "planning"
- Main idea:
  - set up a recurrence relating a solution to a larger instance to solutions of some smaller instances
  - solve smaller instances once
  - record solutions in a table
  - extract solution to the initial instance from that table

### **Example: Fibonacci Numbers**



Recall definition of Fibonacci numbers:

$$f(n) = f(n-1) + f(n-2)$$
  
 $f(0) = 0$   
 $f(1) = 1$ 

### **Example: Fibonacci Numbers**



Recall definition of Fibonacci numbers:

$$f(n) = f(n-1) + f(n-2)$$
  
 $f(0) = 0$   
 $f(1) = 1$ 

• Computing the  $n^{th}$  Fibonacci number recursively (top-down):



# **DYNAMIC PROGRAMMING Example: Fibonacci Numbers**



Computing the nth Fibonacci number using bottom-up iteration and recording results:

$$f(0) = 0$$
  
 $f(1) = 1$   
 $f(2) = 0 + 1 = 1$   
 $f(3) = 1 + 1 = 2$   
 $f(4) = 1 + 2 = 3$   
:

## **Example: Fibonacci Numbers**



Computing the nth Fibonacci number using bottom-up iteration and recording results:

$$f(0) = 0$$
  
 $f(1) = 1$   
 $f(2) = 0 + 1 = 1$   
 $f(3) = 1 + 1 = 2$   
 $f(4) = 1 + 2 = 3$ 

#### Efficiency:

- time:  $\Theta(n)$
- space:  $\Theta(n)$  or  $\Theta(1)$

# **DYNAMIC PROGRAMMING Algorithm Examples**



- Computing a binomial coefficient
- Warshall's algorithm for transitive closure
- Floyd's algorithm for all-pairs shortest paths
- Constructing an optimal binary search tree
- Some instances of difficult discrete optimization problems:
  - traveling salesman
  - knapsack

#### **Binomial Coefficient**



Binomial coefficients are coefficients of the binomial formula:

$$(a+b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^0$$

### **Binomial Coefficient**



Binomial coefficients are coefficients of the binomial formula:

$$(a+b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^0$$

Recurrence:

$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
 for  $n > k > 0$   
 $C(n,0) = 1, C(n,n) = 1$  for  $n \ge 0$ 

### **Binomial Coefficient**



Binomial coefficients are coefficients of the binomial formula:

$$(a+b)^n = C(n,0)a^nb^0 + \ldots + C(n,k)a^{n-k}b^k + \ldots + C(n,n)a^0b^0$$

Recurrence:

$$C(n,k) = C(n-1,k) + C(n-1,k-1)$$
 for  $n > k > 0$   
 $C(n,0) = 1, C(n,n) = 1$  for  $n \ge 0$ 

Value of C(n,k) can be computed by filling a

| table: |   |   |   |  |            |        |
|--------|---|---|---|--|------------|--------|
|        | 0 | 1 | 2 |  | k-1        | k      |
| 0      | 1 |   |   |  |            |        |
| 1      | 1 | 1 |   |  |            |        |
|        |   |   |   |  |            |        |
|        |   |   |   |  |            |        |
|        |   |   |   |  |            |        |
| n-1    |   |   |   |  | C(n-1,k-1) |        |
| n      |   |   |   |  |            | C(n,k) |

## **DYNAMIC PROGRAMMING Binomial Coefficient Algorithm**



#### Dynamic Programming Binomial Coefficient Algorithm

```
1: procedure BINOMIAL(n, k)
       \triangleright Input: Integers n > 0, k > 0
2:
       \triangleright Output: C(n, k)
3:
       for i \leftarrow 0 to n do
4:
            for j \leftarrow 0 to min(i, k) do
5:
                 if j=0 or j=i then
6:
                      C(i, j) \leftarrow 1
7:
                 else C[i, j] = C[i-1, j] + C[i-1, j-1]
8:
       return C[n, k]
9:
```

## DYNAMIC PROGRAMMING Binomial Coefficient Algorithm



#### Dynamic Programming Binomial Coefficient Algorithm

```
1: procedure BINOMIAL(n, k)
       \triangleright Input: Integers n > 0, k > 0
2:
       \triangleright Output: C(n, k)
3:
       for i \leftarrow 0 to n do
4:
            for i \leftarrow 0 to min(i, k) do
5:
                 if j=0 or j=i then
6:
                      C(i,j) \leftarrow 1
7:
                 else C[i, j] = C[i-1, j] + C[i-1, j-1]
8:
       return C[n, k]
9:
```

- Time:  $\Theta(nk)$
- Space:  $\Theta(nk)$



#### Think About It



• What does dynamic programming have in common with divide-and-conquer? What is a principal difference between them?

#### Think About It



- What does dynamic programming have in common with divide-and-conquer? What is a principal difference between them?
- The coin change problem does not have an optimal greedy solution in all cases (ex: coins 1,20,25 and amount 40). Is there a dynamic programming based algorithm that can solve all cases of the coin change problem?