Side-channel attacks on Ascon's S-box

Alexane Boldo

ENS Rennes

OCIF, IRISA

IMT Atlantique

May-July 2025

Supervisor: Hélène Le Bouder

Introduction

Side-Channel Attacks (SCA): observation of computation time, power consumption, electromagnetic radiation, ... to discover a secret

Goal: Study the leaks from the winner for lightweight cryptography Ascon to theorize a SCA attack

Table of Contents

- Ascon-AEAD
 - Presentation
 - Encryption and decryption phases
 - The permutation
 - An analysis of the S-box
- A side-channel attack
 - Hardware
 - Analysis
- Results
- Conclusion

What is Ascon-AEAD?

Authenticated Encryption with Associated Data (AEAD): encrypt, check authentication of content and associated data

Figure: AEAD algorithm from [1]

Ascon's State

byte 0	byte 1	byte 2	byte 3	byte 4	byte 5	byte 6	byte 7
IV							
first half of K, K ₀							
second half of K, K_1							
first half of N, N ₀							
second half of N, N ₁							

Encryption and decryption phases

4 phases: initialization, associated data process, plaintext/ciphertext process, finalization

Figure: Ascon-AEAD mode, from [1]

Ascon's permutation

$$p = p_{L} \circ \underbrace{p_{S}} \circ p_{C}$$

$$N \circ \underbrace{N} \circ p_{S} \circ p_{C}$$

$$N_{0} \circ \underbrace{N_{1} \circ p_{S}} \circ p_{C}$$

$$N_{1} \circ \underbrace{N_{1} \circ p_{S}} \circ p_{C}$$

$$N_{2} \circ p_{S} \circ p_{C}$$

$$N_{3} \circ p_{C} \circ p_{C}$$

$$N_{4} \circ p_{S} \circ p_{C}$$

$$N_{5} \circ p_{C} \circ p_{C}$$

$$N_{6} \circ p_{S} \circ p_{C}$$

$$N_{7} \circ p_{S} \circ p_{C}$$

$$N_{8} \circ p_{C} \circ p_{C}$$

$$N_{1} \circ p_{S} \circ p_{C}$$

$$N_{2} \circ p_{S} \circ p_{C}$$

$$N_{3} \circ p_{C} \circ p_{C}$$

$$N_{4} \circ p_{S} \circ p_{C}$$

$$N_{5} \circ p_{C} \circ p_{C}$$

$$N_{6} \circ p_{C} \circ p_{C}$$

$$N_{7} \circ p_{C} \circ p_{C}$$

$$N_{8} \circ p_{C} \circ p_{C}$$

$$N_{1} \circ p_{C} \circ p_{C}$$

$$N_{2} \circ p_{C} \circ p_{C}$$

$$N_{3} \circ p_{C} \circ p_{C}$$

$$N_{4} \circ p_{C} \circ p_{C}$$

$$N_{5} \circ p_{C} \circ p_{C}$$

$$N_{6} \circ p_{C} \circ p_{C}$$

$$N_{7} \circ p_{C} \circ p_{C}$$

$$N_{8} \circ p_{C} \circ p_{C}$$

$$N_{1} \circ p_{C} \circ p_{C}$$

$$N_{2} \circ p_{C} \circ p_{C}$$

$$N_{3} \circ p_{C} \circ p_{C}$$

$$N_{4} \circ p_{C} \circ p_{C}$$

$$N_{5} \circ p_{C} \circ p_{C}$$

$$N_{7} \circ p_{C} \circ p_{C}$$

$$N_{8} \circ p_{C} \circ p_{C}$$

$$N_{1} \circ p_{C} \circ p_{C}$$

$$N_{2} \circ p_{C} \circ p_{C}$$

$$N_{3} \circ p_{C} \circ p_{C}$$

$$N_{4} \circ p_{C} \circ p_{C}$$

$$N_{5} \circ p_{C} \circ p_{C}$$

$$N_{7} \circ p_{C} \circ p_{C}$$

$$N_{8} \circ p_{C} \circ p_{C$$

Figure: Circuit to compute the S-box, from [2], permutation of [1;31]

Figure: S-box computation for the first byte of each word

Table linking the output of the S-box and the key

(N_0^j, N_1^j, IV^j)	S_4^j
(0,0,0)	K_0^j
(0,0,1)	0
(0,1,0)	1
(0,1,1)	$1 \oplus K_0^j$
(1,0,0)	$1 \oplus K_0^j$
(1,0,1)	1
(1,1,0)	0
(1, 1, 1)	K_0^j

Figure: Link between K_0^j and S_4^j depending on IV and N, from [3]

ChipWhisperer-Lite

Figure: ChipWhisperer Lite board, from [4]

Analyses done

Figure: Power trace during Ascon's S-box

- Finding the best model
 - Vertical vs horizontal
 - HW vs value
- Attack: finding the vertical output and deduce the key

Results vertical vs horizontal and HW vs value

Figure: Mutual information for the horizontal and the vertical value

Figure: Mutual information between power consumption and HW or value

Results attack

Figure: Mutual information between the HW of the outputs and the power consumption, for each of the possible outputs for the first nonce

Conclusion

- Good leaks compared to random values
- Though apparent weaknesses, unsuccessful attempts
- Not enough randomness with false key hypotheses
- Leads to follow: belief propagation

L. B. H., T. G., and A. D., "Théorie de la cryptographie."

Tikz. [Online]. Available: https://extgit.isec.tugraz.at/meichlseder/tikz

S. M., "Side channel analysis against aead." [Online]. Available: https://theses.hal.science/tel-04816066v1

Chipwhisperer documentation. [Online]. Available: https://chipwhisperer.readthedocs.io/en/latest/getting-started.html

Permutation (1), p_C

Constant for the round i: $const_{16-nb_{rounds}+i}$

i	const;	i	$const_i$
0	0x000000000000003c	8	0x00000000000000b4
1	0x0000000000000002d	9	0x000000000000000a5
2	0x000000000000001e	10	0x00000000000000096
3	0x000000000000000000000000000000000000	11	0x0000000000000087
4	0x000000000000000000000000000000000000	12	0x0000000000000078
5	0x000000000000000001	13	0x00000000000000069
6	0x00000000000000d2	14	0x000000000000005a
_7	0x0000000000000001	15	0x000000000000004b

Figure: Constant-addition layer, constants

Permutation (2), p_C

Figure: Constant-addition layer, each box representing a byte of one of the 64-bit words

Permutation (3), p_S

X	0	1	2	3	4	5	6	7
S - box(x)	4	b	1f	14	1a	15	9	2
X	8	9	a	b	С	d	е	f
S - box(x)	1b	5	8	12	1d	3	6	1c
X	10	11	12	13	14	15	16	17
S - box(x)	1e	13	7	е	0	d	11	18
X	18	19	1a	1b	1c	1d	1e	1f
S - box(x)	10	С	1	19	16	а	f	17

Figure: Lookup table for the 5-bit S-box

Permutation (4), p_S

```
state [0] ^= state [4];
              state [4] ^= state [3];
             state [2] ^= state [1];
4
              uint64 t t0 = "state[0];
5
              uint64 t t1 = "state[1];
6
              uint64 t t2 = "state[2];
              uint64 t t3 = ^{\sim} state [3];
8
              uint64 t t4 =  state [4];
             t0 &= state[1];
             t1 &= state [2];
             t2 &= state [3];
             t3 &= state [4];
             t4 &= state [0];
14
              state[0] ^= t1
15
              ; state[1] ^= t2;
              state[2] ^= t3;
17
              state[3] ^= t4;
18
              state [4] ^= t0;
             state[1] ^= state[0];
              state [0] ^= state [4];
              state[3] ^= state[2];
              state[2] = state[2]:
```

Figure: Equations to compute the S-box

Permutation (5), p_L

Diffusion: $S_i \leftarrow \Sigma_i(S_i)$:

$$\Sigma_{0}(S_{0}) = S_{0} \oplus (S_{0} >>> 19) \oplus (S_{0} >>> 28)$$

$$\Sigma_{1}(S_{1}) = S_{1} \oplus (S_{1} >>> 61) \oplus (S_{1} >>> 39)$$

$$\Sigma_{2}(S_{2}) = S_{2} \oplus (S_{2} >>> 1) \oplus (S_{2} >>> 6)$$

$$\Sigma_{3}(S_{3}) = S_{3} \oplus (S_{3} >>> 10) \oplus (S_{3} >>> 17)$$

$$\Sigma_{4}(S_{4}) = S_{4} \oplus (S_{4} >>> 7) \oplus (S_{4} >>> 41)$$

Finding this table (1)

$$S_{4}^{j} = n_{o}^{j} \oplus n_{1}^{j} \oplus k_{0}^{j} \times \left(1 \oplus IV^{j} \oplus n_{1}^{j}\right)$$

$$S_{4}^{j} = \begin{cases} k_{0}^{j} \times \left(1 \oplus IV^{j}\right) & \text{if } \left(n_{0}^{j}, n_{1}^{j}\right) = (0, 0) \\ k_{0}^{j} \times IV^{j} & \text{if } \left(n_{0}^{j}, n_{1}^{j}\right) = (1, 1) \\ 1 \oplus k_{0}^{j} \times IV^{j} & \text{if } \left(n_{0}^{j}, n_{1}^{j}\right) = (0, 1) \\ 1 \oplus k_{0}^{j} \times \left(1 \oplus IV^{j}\right) & \text{if } \left(n_{0}^{j}, n_{1}^{j}\right) = (1, 0) \end{cases}$$

Finding this table (2)

Then if $IV^j = 0$:

$$S_4^j = \begin{cases} k_0^j & if \ (n_0^j, n_1^j) = (0, 0) \\ 0 & if \ (n_0^j, n_1^j) = (1, 1) \\ 1 & if \ (n_0^j, n_1^j) = (0, 1) \\ 1 \oplus k_0^j & if \ (n_0^j, n_1^j) = (1, 0) \end{cases}$$

Finding this table (3)

Otherwise, if $IV^j = 1$:

$$S_4^j = \left\{ \begin{array}{ll} 0 & if \ (n_0^j, n_1^j) = (0,0) \\ k_0^j & if \ (n_0^j, n_1^j) = (1,1) \\ 1 \oplus k_0^j & if \ (n_0^j, n_1^j) = (0,1) \\ 1 & if \ (n_0^j, n_1^j) = (1,0) \end{array} \right.$$

Complementary graph (1)

Figure: Mutual information between power consumption and Hamming weight of the concatenation of the first bit of each of the word of S and its value like 9 but for random nonces

Complementary graph (2)

Figure: Mutual information between power consumption and vertical HW or random possible HW