Database Management System (DBMS) Lecture-36

Dharmendra Kumar November 26, 2020

Axioms for Multivalued dependency

(1) Replication rule:

$$X \rightarrow Y \Rightarrow X \rightarrow \rightarrow Y$$

(2) Reflexivity rule:

$$X \to \to X$$

(3) Augmentation rule:

$$X \rightarrow \rightarrow Y \Rightarrow XZ \rightarrow \rightarrow Y$$

(4) Union rule:

$$X \to \to Y$$
 and $X \to \to Z \Rightarrow X \to \to YZ$

(5) Complementation rule:

$$X \rightarrow \rightarrow Y \Rightarrow X \rightarrow \rightarrow (R - X - Y)$$

(6) Transitivity rule:

$$X \rightarrow \rightarrow Y$$
 and $Y \rightarrow \rightarrow Z \Rightarrow X \rightarrow \rightarrow (Z - Y)$

(7) Intersection rule:

$$X \to \to Y$$
 and $X \to \to Z \Rightarrow X \to \to (Y \cap Z)$

(8) Difference rule:

$$X o \to Y$$
 and $X o \to Z \Rightarrow X o \to (Y-Z)$ and $X o \to (Z-Y)$

(9) Pseudo transitivity rule:

$$X \rightarrow \rightarrow Y$$
 and $XY \rightarrow \rightarrow Z \Rightarrow X \rightarrow \rightarrow (Z - Y)$

(10) Coalescence rule:

Given that $W\subseteq Y$ and $Y\cap Z=\phi$, and if $X\to\to Y$ and $Z\to W$ then $X\to W$.

Closure under Multivalued dependency

Let D be the set of functional and multivalued dependencies.

The closure of D is the set of all functional and multivalued dependencies that are logically implied by D. It is denoted by D^+ .

Example: Consider R = (A, B, C, G, H, I) and F = $\{A \rightarrow B, B \rightarrow HI, CG \rightarrow H\}$

Find some members of D^+ .

Solution: Some members of D^+ are the following:-

- $A \rightarrow \rightarrow CGHI$, By complementation rule in $A \rightarrow \rightarrow B$
- $A \to \to HI$, By transitivity rule in $A \to \to B$ and $B \to \to HI$
- $B \to H$, By coalescence rule in $B \to \to HI$ and $CG \to H$
- $A \rightarrow \rightarrow CG$, By difference rule in $A \rightarrow \rightarrow CGHI$ and

Fourth Normal Form(4NF)

A relation schema R is in fourth normal form(4NF) with respect to a set D of functional and multivalued dependencies if, for all multivalued dependencies in D^+ of the form $\alpha \to \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \to \to \beta$ is a trivial multivalued dependency.
- α is a super key for schema R.

Note: Every 4NF schema is in BCNF.

Decomposition in to 4NF

Following algorithm is used to decompose schema R into 4NF.

```
Input: Relation schema R and set D
Output: R_1, R_2, ..., R_m
result \leftarrow R
done=false
Compute D^+
while not done do
    if (there is a schema R_i in result that is not in 4NF w.r.t. D_i)
      then
         let \alpha \to \beta be a nontrivial multivalued dependency that
           holds on R_i such that \alpha \to R_i is not in D_i, and \alpha \cap \beta = \phi
         result \leftarrow (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)
    end
    else
         done = true
    end
```

Example: Consider the following relation schema.

loan-number	customer-name	customer-street	customer-city
L-23	Smith	North	Rye
L-23	Smith	Main	Manchester
L-93	Curry	Lake	Horseneck

Find out this table is in 4NF or not. If not, then decompose it into 4NF.

Solution: In this table, multivalued dependency

customer-name $\rightarrow \rightarrow$ customer-street customer-city

holds.

Clearly, neither this multivalued dependency is trivial nor customer-name is super key. Therefore, this table is not in 4NF.

By using above algorithm, this table is decomposed as

 $R_1 =$ (customer-name, loan-number)

 R_2 = (customer-name, customer-street, customer-city)

Now, R_1 and R_2 are in 4NF.

Join dependency

Given a relation schema R. let R_1, R_2, \ldots, R_n are the projections of R. A relation r(R) satisfies the join dependency $*(R_1, R_2, \ldots, R_n)$, iff the join of the projection of r on R_i , $1 \le i \le n$, is equal to r. $r = \Pi_{R_1} \bowtie \Pi_{R_2} \bowtie \Pi_{R_3} \bowtie \ldots \bowtie \Pi_{R_n}$

Trivial join dependency

A join dependency is trivial if one of the projections of R is R itself.

Project join normal form(PJNF) or 5NF

Consider a relation schema R and D is the set of functional, multivalued and join dependencies.

The relation R is in Project join normal form with respect to D if for every join dependency $*(R_1, R_2,, R_n)$, either of the following holds:-

- (i) The join dependency is trivial.
- (ii) Every R_i is a super key of R.