and 14

CS 245 - Logic and Computation

Fall 2016

Lecture 13 and 14: October 25 - 27, 2016

Lecturer: Kevin Lanctot

Notes By: Harsh Mistry

13.1 Proofs in First-Order Logic using Natural Deduction

13.1.1 New Natural Deduction Rules

• $\forall -Elimination$: if $\sum \vdash \forall x \alpha$ then $\sum \vdash \alpha[t/x]$

$$\frac{\forall x\alpha}{\alpha[t/x]}$$

• $\exists -Introduction : \text{if } \sum \vdash \alpha[t/x] \text{ then } \sum \vdash \exists x \alpha(t/x) \text{ the$

$$\frac{\alpha[t/x]}{\exists x \alpha}$$

• $\forall -Introduction$: if $\sum \vdash \alpha[y/x]$ and y not free in \sum or α , then $\sum \vdash \forall x\alpha$

$$y$$
fresh \vdots $\alpha[y/x]$ $\forall x \alpha$

- A variable is fresh in a sub proof if it occurs nowhere outside the box of the subproof. (i.e not a
 free variable outside the subproof.
- \exists Elimination : if $\sum, \alpha[u/x] \vdash \beta$ with u fresh, then $\sum, \exists x\alpha \vdash \beta$

$$\exists x \alpha \qquad \vdots \\ \frac{\beta}{\beta}$$

13.1.2 Soundness of \forall Elimination and \exists Introduction

• For any formula φ , variable x and term t

$$\forall x \varphi \models \varphi[t/x] \text{ and } \varphi[t/x] \models \exists x \varphi$$

• For every formula φ , variable x and t

$$\varphi[t/x]^{(I,E)} = \varphi^{(I,E[x \to t^{(I,E)}])}$$

13.1.3 Defining Substitution

For a variable x and term t

- 1. If α is $(Qx\beta)$, then $\alpha[t/x]$ is α
- 2. If α is $(Qy\beta)$ for some other variable y, then
 - if y does not occur in t, then $\alpha[t/x]$ is $(Qy\beta[t/x])$
 - Otherwise, let z be a variable that occurs in neither α not t; then $\alpha[t/x]$ is $(Qz(\beta[z/y])[t/x])$

With this definition, we always get that, as required

$$(Qy\alpha)^{(I,E[x\to t^{(I,E)}])} = ((Qy\alpha)[t/x])^{(I,E)}$$

13.1.4 FOL with Equality

First order logic with equality is first order logic with the restriction that the symbol "=" must be interpreted as equality on the domain

$$(=)^I = \{ (d,d) \mid d \in dom(I) \}$$

There are two way to account for this restriction in our proofs.

- 1. Add deduction rules for symbol =
 - Introduction

$$\frac{1}{t=t}=i$$

• Elimination

$$\frac{t_1=t_2}{\alpha[t_2/x]}\frac{\alpha[t_1/x]}{}$$

- 2. Use axioms rather than deduction rules
 - (a) $\forall \alpha \alpha = \alpha$ is an axiom
 - (b) For Each formula α and variable $z: \forall \alpha \forall y (\alpha = y \to (\alpha[\alpha/z] \to \alpha[y/z]))$ is an axiom

These axioms imply

- Symmetry of $=: \vdash \forall x \forall y (x = y \rightarrow y = x)$
- Transitivity of $=: \vdash \forall w \forall x \forall y (x = y \rightarrow (y = w \rightarrow x = w))$

13.1.5 Derived rules for Equality

 \bullet EQtrans(k):

$$\frac{t_1 = t_2 \quad \dots \quad t_k = t_{k+1}}{t_1 = t_{k+1}}$$

 \bullet EQsubs(r):

$$\frac{t_1 = t_2}{r[t_1/z] = r[t_2/z]}$$