

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl & Patrick Moran 2022

• Teachers: Jeppe Druedahl and Patrick Moran

- Teachers: Jeppe Druedahl and Patrick Moran
- Central economic questions:
 - 1. What explains the level and dynamics of heterogeneity/inequality?
 - 2. What role does heterogeneity play for understanding consumption-saving dynamics in partial equilibrium?
 - 3. What role does heterogeneity play for understanding business-cycle fluctuations in general equilibrium?

- Teachers: Jeppe Druedahl and Patrick Moran
- Central economic questions:
 - 1. What explains the level and dynamics of heterogeneity/inequality?
 - 2. What role does heterogeneity play for understanding consumption-saving dynamics in partial equilibrium?
 - 3. What role does heterogeneity play for understanding business-cycle fluctuations in general equilibrium?
- Central technical method: Programming in Python

Prerequisite: Intro. to Programming and Numerical Analysis

Complicated: Close to the research frontier

- Teachers: Jeppe Druedahl and Patrick Moran
- Central economic questions:
 - 1. What explains the level and dynamics of heterogeneity/inequality?
 - 2. What role does heterogeneity play for understanding consumption-saving dynamics in partial equilibrium?
 - 3. What role does heterogeneity play for understanding business-cycle fluctuations in general equilibrium?
- Central technical method: Programming in Python
 Prerequisite: Intro. to Programming and Numerical Analysis
 Complicated: Close to the research frontier
- Plan for today:
 - 1. More about the course
 - 2. Dynamic programming theory
 - 3. Dynamic programming practice

Model components:

- 1. Optimizing individual agents (households + firms)
- 2. Idiosyncratic and aggregate risk
- 3. Information flows (who knows what when)
- 4. Market clearing (Walras vs. search-and-match)

Model components:

- 1. Optimizing individual agents (households + firms)
- 2. Idiosyncratic and aggregate risk
- 3. Information flows (who knows what when)
- 4. Market clearing (Walras vs. search-and-match)

Insurance:

 $Complete
ightarrow idiosyncratic risk insured away \sim representative agent Incomplete
ightarrow$ agents need to self-insure

Model components:

- 1. Optimizing individual agents (households + firms)
- 2. Idiosyncratic and aggregate risk
- 3. Information flows (who knows what when)
- 4. Market clearing (Walras vs. search-and-match)

Insurance:

 $Complete
ightarrow idiosyncratic risk insured away \sim representative agent Incomplete
ightarrow$ agents need to self-insure

Heterogeneity:

Ex ante in preferences, abilities etc.

Ex post after realization of idiosyncratic shocks

Model components:

- 1. Optimizing individual agents (households + firms)
- 2. Idiosyncratic and aggregate risk
- 3. Information flows (who knows what when)
- 4. Market clearing (Walras vs. search-and-match)

Insurance:

 $Complete
ightarrow idiosyncratic risk insured away \sim representative agent Incomplete
ightarrow$ agents need to self-insure

Heterogeneity:

Ex ante in preferences, abilities etc.

Ex post after realization of idiosyncratic shocks

• HANC: Heterogeneous Agent Neo-Classical model

Model components:

- 1. Optimizing individual agents (households + firms)
- 2. Idiosyncratic and aggregate risk
- 3. Information flows (who knows what when)
- 4. Market clearing (Walras vs. search-and-match)

Insurance:

 $Complete
ightarrow idiosyncratic risk insured away \sim representative agent Incomplete
ightarrow$ agents need to self-insure

Heterogeneity:

Ex ante in preferences, abilities etc.

Ex post after realization of idiosyncratic shocks

- HANC: Heterogeneous Agent Neo-Classical model
- HANK: Heterogeneous Agent New Keynesian model (i.e. include price and wage setting frictions)

- **Lectures:** Thursday 10-13
 - 2 hours of »normal« lecture
 - 1 hour of active problem solving (no exercise classes)

- Lectures: Thursday 10-13
 - 2 hours of »normal« lecture
 - 1 hour of active problem solving (no exercise classes)

Content:

- 1. Discussion of research papers
- Examples of code for central mechanisms (you should run the notebook code simultaneously)

- Lectures: Thursday 10-13
 - 2 hours of »normal« lecture
 - 1 hour of active problem solving (no exercise classes)

Content:

- 1. Discussion of research papers
- Examples of code for central mechanisms (you should run the notebook code simultaneously)

Material:

Web: sites.google.com/view/numeconcph-advmacrohet/ Git: github.com/numeconcopenhagen/adv-macro-het

- Lectures: Thursday 10-13
 - 2 hours of »normal« lecture
 - 1 hour of active problem solving (no exercise classes)

Content:

- 1. Discussion of research papers
- Examples of code for central mechanisms (you should run the notebook code simultaneously)

Material:

Web: sites.google.com/view/numeconcph-advmacrohet/ Git: github.com/numeconcopenhagen/adv-macro-het

Code:

- 1. We provide code you will build upon
- 2. Based on the GEModelTools package

• Individual assignments (hand-in on Absalon)

- Individual assignments (hand-in on Absalon)
 - Assignment based on a Aiygari-model)
 Deadline: 14th of October (must be approved before exam)

- Individual assignments (hand-in on Absalon)
 - 1. Assignment based on a Aiygari-model)
 - Deadline: 14th of October (must be approved before exam)
 - 2. Assignment based on a ${\sf HANK}$ -model
 - <u>Deadline</u>: 25th of November (*must be approved before exam*)

- Individual assignments (hand-in on Absalon)
 - 1. Assignment based on a Aiygari-model)

<u>Deadline</u>: 14th of October (must be approved before exam)

2. Assignment based on a **HANK** -model

<u>Deadline</u>: 25th of November (*must be approved before exam*)

3. **Free assignment** with essay on a relevant model extension of own choice and a simple implementation

Deadline for proposal: 9th of December

Deadline for peer feedback: 16th of December (exam requirement)

- Individual assignments (hand-in on Absalon)
 - 1. Assignment based on a Aiygari-model)

<u>Deadline</u>: 14th of October (must be approved before exam)

- 2. Assignment based on a HANK -model
 - <u>Deadline</u>: 25th of November (*must be approved before exam*)
- Free assignment with essay on a relevant model extension of own choice and a simple implementation

Deadline for proposal: 9th of December

Deadline for peer feedback: 16th of December (exam requirement)

All feedback can be used to improve assignments before the exam

- Individual assignments (hand-in on Absalon)
 - 1. Assignment based on a Aiygari-model)

Deadline: 14th of October (must be approved before exam)

2. Assignment based on a **HANK** -model

<u>Deadline</u>: 25th of November (*must be approved before exam*)

3. **Free assignment** with essay on a relevant model extension of own choice and a simple implementation

Deadline for proposal: 9th of December

Deadline for peer feedback: 16th of December (exam requirement)

- All feedback can be used to improve assignments before the exam
- Exam:
 - 1. Hand-in 3×assignments
 - 2. 48 hour take-home: Programming of new extension
 - + analysis of model + interpretation of results

Python

- 1. **Assumed knowledge:** From Introduction to Programming and Numerical Analysis you are assumed to know the basics of
 - 1.1 Python
 - 1.2 JupyterLab
 - 1.3 VSCode
 - 1.4 git
- 2. Updated Python: Install (or re-install) newest Anaconda
- 3. Packages:

```
pip install quantecon, EconModel, consav
pip install GEModelTools
```

Course plan

TBA

Knowledge

- 1. Account for, formulate and interpret precautionary saving models
- 2. Account for stochastic and non-stochastic simulation methods
- Account for, formulate and interpret general equilibrium models with ex ante and ex post heterogeneity, idiosyncratic and aggregate risk, and with and without pricing frictions
- 4. Discuss the difference between the stationary equilibrium, the transition path and the dynamic equilibrium
- Discuss the relationship between various equilibrium concepts and their solution methods
- Identify and account for methods for analyzing the dynamic distributional effects of long-run policy (e.g. taxation and social security) and short-run policy (e.g. monetary and fiscal policy)

Skills

- 1. Solve precautionary saving problems with dynamic programming and simulate behavior with stochastic and non-stochastic techniques
- 2. Solve general equilibrium models with ex ante and ex post heterogeneity, idiosyncratic and aggregate risk, and with and without pricing frictions (stationary equilibrium, transition path, dynamic equilibrium)
- 3. Analyze dynamics of income and wealth inequality
- 4. Analyze transitional and permanent structural changes (e.g. inequality trends and the long-run decline in the interest rate)
- Analyze the dynamic distributional effects of long-run policy (e.g. taxation and social security) and short-run policy (e.g. monetary and fiscal policy)

Competencies

- Independently formulate, discuss and assess research on both the causes and effects of heterogeneity and risk for both long-run and short-run outcomes
- 2. Discuss and assess the importance of how heterogeneity and risk is modeled for questions about both long-run and short-run dynamics

Dynamic Programming

■ Budget constraint for $t \in \{0, 1, ..., T-1\}$

$$\mathsf{assets}_t = (1 + \mathsf{return}\,\mathsf{rate}) \times \mathsf{assets}_{t-1} + \mathsf{wage} \times \mathsf{productivity}_t - \mathsf{consumption}_t$$

$$a_t = (1 + r)a_{t-1} + wz_t - c_t$$

■ Budget constraint for $t \in \{0, 1, ..., T-1\}$

$$\mathsf{assets}_t = (1 + \mathsf{return}\,\mathsf{rate}) \times \mathsf{assets}_{t-1} + \mathsf{wage} \times \mathsf{productivity}_t - \mathsf{consumption}_t$$

$$\mathsf{a}_t = (1 + r)\mathsf{a}_{t-1} + \mathsf{wz}_t - \mathsf{c}_t$$

• Borrowing constraint: $a_t \ge 0$

■ Budget constraint for $t \in \{0, 1, ..., T-1\}$

$$\mathsf{assets}_t = (1 + \mathsf{return}\,\mathsf{rate}) \times \mathsf{assets}_{t-1} + \mathsf{wage} \times \mathsf{productivity}_t - \mathsf{consumption}_t \\ a_t = (1 + r)a_{t-1} + wz_t - c_t$$

- Borrowing constraint: $a_t \ge 0$
- Static problem:
 - 1. **Information:** z_t is known for all t
 - 2. Target: Discounted utility, $\sum_{t=0}^{T-1} \beta^t u(c_t)$, $\beta > 0$
 - 3. **Behavior:** Choose $c_0, c_1, \ldots, c_{T-1}$ simultaneously
 - 4. **Solution:** Sequence of consumption *choices* $c_0, c_1, \ldots, c_{T-1}$

■ Budget constraint for $t \in \{0, 1, ..., T-1\}$

$$\mathsf{assets}_t = (1 + \mathsf{return}\,\mathsf{rate}) \times \mathsf{assets}_{t-1} + \mathsf{wage} \times \mathsf{productivity}_t - \mathsf{consumption}_t \\ a_t = (1 + r)a_{t-1} + wz_t - c_t$$

- Borrowing constraint: $a_t \ge 0$
- Static problem:
 - 1. **Information:** z_t is known for all t
 - 2. **Target:** Discounted utility, $\sum_{t=0}^{T-1} \beta^t u(c_t)$, $\beta > 0$
 - 3. **Behavior:** Choose $c_0, c_1, \ldots, c_{T-1}$ simultaneously
 - 4. **Solution:** Sequence of consumption *choices* $c_0, c_1, \ldots, c_{T-1}$
- Dynamic programming:
 - 1. **Information:** z_t is revealed period-by-period
 - 2. Target: Expected discounted utility, $\sum_{t=0}^{T-1} \beta^t \mathbb{E}_t[u(c_t)], \ \beta > 0$
 - 3. **Behavior:** Choose c_t sequentially as information is revealed
 - 4. **Solution:** Sequence of consumption functions, $c_t^{\star}(z_t, a_{t-1})$

Static solution: IBC

Substitution implies Intertemporal Budget Constraint (IBC)

$$a_{T-1} = (1+r)a_{T-2} + wz_{T-1} - c_{T-1}$$

$$= (1+r)^2 a_{T-3} + (1+r)wz_{T-2} - (1+r)c_{T-1} + wz_{T-1} - c_{T-1}$$

$$= (1+r)^T a_{-1} + \sum_{t=0}^{T-1} (1+r)^{T-1-t} (wz_t - c_t)$$

Static solution: IBC

Substitution implies Intertemporal Budget Constraint (IBC)

$$a_{T-1} = (1+r)a_{T-2} + wz_{T-1} - c_{T-1}$$

$$= (1+r)^2 a_{T-3} + (1+r)wz_{T-2} - (1+r)c_{T-1} + wz_{T-1} - c_{T-1}$$

$$= (1+r)^T a_{-1} + \sum_{t=0}^{T-1} (1+r)^{T-1-t} (wz_t - c_t)$$

• Use **terminal condition** $a_{T-1} = 0$ (equality due utility max.)

$$(1+r)^{-(T-1)}a_{T-1}=0 \Leftrightarrow b_0+h_0-\sum_{t=0}^{T-1}(1+r)^{-t}c_t=0$$

where
$$b_0 = (1+r)a_{-1}$$
 and $h_0 \equiv \sum_{t=0}^{T-1} (1+r)^{-t} w z_t$

Static solution: FOC and consumption function

$$\mathcal{L} = \sum_{t=0}^{T-1} \beta^t \frac{c_t^{1-\rho}}{1-\rho} + \lambda \left[\sum_{t=0}^{T-1} (1+r)^{-t} c_t - b_0 - h_0 \right]$$

First order conditions:

$$\forall t : 0 = \beta^t c_t^{-\rho} - \lambda (1+r)^{-t} \Leftrightarrow c_t^{-\rho} = \beta (1+r) c_{t+1}^{-\rho}$$

Static solution: FOC and consumption function

$$\mathcal{L} = \sum_{t=0}^{T-1} \beta^t \frac{c_t^{1-\rho}}{1-\rho} + \lambda \left[\sum_{t=0}^{T-1} (1+r)^{-t} c_t - b_0 - h_0 \right]$$

First order conditions:

$$\forall t : 0 = \beta^t c_t^{-\rho} - \lambda (1+r)^{-t} \Leftrightarrow c_t^{-\rho} = \beta (1+r) c_{t+1}^{-\rho}$$

Insert Euler into IBC to get consumption choice

$$\sum_{t=0}^{T-1} (1+r)^{-t} (\beta(1+r))^{t/\rho} c_0 = b_0 + h_0 \Leftrightarrow$$

$$c_0 = \frac{1 - (\beta(1+r))^{1/\rho}/(1+r)}{1 - ((\beta(1+r))/(1+r))^T} (b_0 + h_0)$$

Static solution: FOC and consumption function

$$\mathcal{L} = \sum_{t=0}^{T-1} \beta^t \frac{c_t^{1-\rho}}{1-\rho} + \lambda \left[\sum_{t=0}^{T-1} (1+r)^{-t} c_t - b_0 - h_0 \right]$$

First order conditions:

$$\forall t : 0 = \beta^t c_t^{-\rho} - \lambda (1+r)^{-t} \Leftrightarrow c_t^{-\rho} = \beta (1+r) c_{t+1}^{-\rho}$$

Insert Euler into IBC to get consumption choice

$$\sum_{t=0}^{T-1} (1+r)^{-t} (\beta(1+r))^{t/\rho} c_0 = b_0 + h_0 \Leftrightarrow$$

$$c_0 = \frac{1 - (\beta(1+r))^{1/\rho}/(1+r)}{1 - ((\beta(1+r))/(1+r))^T} (b_0 + h_0)$$

• Question: Is this the solution correct?

Dynamic solution: Bellman's Principle of Optimality

• In words: An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision. (See Bellman, 1957, Chap. III.3.)

Dynamic solution: Bellman's Principle of Optimality

- In words: An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision. (See Bellman, 1957, Chap. III.3.)
- In math:
 - 1. Value function, v_t : Defined recursively from

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge 0$

with $v_T(\bullet) = 0$.

2. Policy function, c_t^* : Is the same as

$$c_t^{\star}(z_t, a_{t-1}) = \arg\max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge 0$

Vocabulary

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge 0$

- 1. State variables: z_t and a_{t-1}
- 2. Control variable: c_t
- 3. Continuation value: $\beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$
- 4. **Parameters:** r, w, and stuff in $u(\bullet)$

Timing of shocks

 Realization of shocks: Happens first in the period before choices are made

Timing of shocks

- Realization of shocks: Happens first in the period before choices are made
- Beginning-of-period value function (before realization):

$$\underline{v}_t(z_{t-1}, a_{t-1}) = \mathbb{E}_{t-1}[v_t(z_t, a_{t-1})]$$

Timing of shocks

- Realization of shocks: Happens first in the period before choices are made
- Beginning-of-period value function (before realization):

$$\underline{v}_t(z_{t-1}, a_{t-1}) = \mathbb{E}_{t-1}[v_t(z_t, a_{t-1})]$$

End-of-period value function (after realization):

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \underline{v}_{t+1}(z_t, a_{t-1})$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge 0$

Numerical value function iteration - basics

 Discretization: All state variable belong to discrete monotonically increasing sets ≡ grids,

$$z_t \in \mathcal{G}_z = \{z^0, z^1, \dots, z^{\#z-1}\}$$

 $a_t \in \mathcal{G}_a = \{a^0, a^1, \dots, a^{\#_a-1}\}$

Numerical value function iteration - basics

$$z_t \in \mathcal{G}_z = \{z^0, z^1, \dots, z^{\#z-1}\}$$

 $a_t \in \mathcal{G}_a = \{a^0, a^1, \dots, a^{\#a-1}\}$

- Transition probabilities: $\pi_{i_z,i_z} = \Pr[z_t = z^{i_z} \,|\, z_t = z^{i_{z-}}]$

Numerical value function iteration - basics

 Discretization: All state variable belong to discrete monotonically increasing sets

 = grids,

$$z_t \in \mathcal{G}_z = \{z^0, z^1, \dots, z^{\#z-1}\}\$$

 $a_t \in \mathcal{G}_a = \{a^0, a^1, \dots, a^{\#a-1}\}\$

- Transition probabilities: $\pi_{i_z...,i_z} = \Pr[z_t = z^{i_z} \, | \, z_t = z^{i_{z-}}]$
- Linear interpolation (function approximation):
 - 1. Assume \underline{v}_{t+1} is known on $\mathcal{G}_z \times \mathcal{G}_a$ (tensor product)
 - 2. Evaluate $\underline{v}_{t+1}(z^{i_z}, a)$ for arbitrary a by

$$egin{aligned} & \underline{\check{\mathbf{v}}}_{t+1}(\mathbf{z}^{i_{\mathbf{z}}}, \mathbf{a}) = \underline{\mathbf{v}}_{t+1}(\mathbf{z}^{i_{\mathbf{z}}}, \mathbf{a}^{\iota}) + \omega_{i} \frac{\mathbf{a} - \mathbf{a}^{\iota}}{\mathbf{a}^{\iota+1} - \mathbf{a}^{\iota}} \\ & \omega_{i} \equiv \frac{\mathbf{v}_{t+1}(\mathbf{z}^{i_{\mathbf{z}}}, \mathbf{a}^{\iota+1}) - \mathbf{v}_{t+1}(\mathbf{z}^{\iota_{\mathbf{z}}}, \mathbf{a}^{\iota})}{\mathbf{a}^{\iota+1} - \mathbf{a}^{\iota}} \\ & \iota \equiv \operatorname{largest} \ i_{\mathbf{a}} \in \{0, 1, \dots, \#_{\mathbf{a}} - 2\} \ \operatorname{such that} \ \mathbf{a}^{i_{\mathbf{a}}} \leq \mathbf{a} \end{aligned}$$

Deriving transition probabilities

• **Specification:** Assume $\log z_t$ follows the AR(1) process

$$\log z_{t+1} = \rho_z \log z_t + \psi_{t+1}, \ \psi_{t+1} \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}^2)$$

where μ_{ψ} is used to ensure $\mathbb{E}[\mathsf{z}_t] = 1$

• Literature: Tauchen (1986), Tauchen and Hussey (1991) and Rouwenhorst (1995) develops method for deriving \mathcal{G}_z and π_{i_z,i_z} given ρ_z and σ_{ψ} , but we don't care about the details here

Numerical value function iteration - loops

Beginning-of-period value function:

$$\underline{v}_{t}(z^{i_{z-}}, a^{i_{a-}}) = \sum_{i_{z}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} v_{t}(z^{i_{z}}, a^{i_{a-}})$$

Numerical value function iteration - loops

Beginning-of-period value function:

$$\underline{v}_t(z^{i_{z-}}, a^{i_{s-}}) = \sum_{i_z=0}^{\#_z-1} \pi_{i_{z-}, i_z} v_t(z^{i_z}, a^{i_{s-}})$$

End-of-period value-of-choice:

$$v_t(z^{i_z}, a^{i_{s-}}|c_t) = u(c_t) + \beta \sum_{i_{z+}=0}^{\#_z-1} \pi_{i_z, i_{z+}} \check{v}_{t+1}(z^{i_{z+1}}, a_t)$$

$$a_t = (1+r)a^{i_{s-}} + wz^{i_z} - c_t$$

Numerical value function iteration - loops

Beginning-of-period value function:

$$\underline{v}_t(z^{i_{z-}}, a^{i_{s-}}) = \sum_{i_z=0}^{\#_z-1} \pi_{i_{z-}, i_z} v_t(z^{i_z}, a^{i_{s-}})$$

End-of-period value-of-choice:

$$v_t(z^{i_z}, a^{i_{s-}}|c_t) = u(c_t) + \beta \sum_{i_{z+}=0}^{\#_z-1} \pi_{i_z, i_{z+}} \breve{v}_{t+1}(z^{i_{z+1}}, a_t)$$
 $a_t = (1+r)a^{i_{s-}} + wz^{i_z} - c_t$

- Nested loops:
 - 1. **Outer loop:** Backwards in time from t = T 1 (note \underline{v}_T is known)
 - 2. **Inner loop:** For each grid point in $\mathcal{G}_z \times \mathcal{G}_a$ find $c_t^*(z_t, a_{t-1})$ and therefore $v_t^*(z_t, a_{t-1})$ with a numerical optimizer

Numerical Monte Carlo simulation

• Initial distribution: Draw $z_{i,-1}$ and $a_{i,-1}$ for $i \in \{0,1,\dots,N-1\}$

Numerical Monte Carlo simulation

- Initial distribution: Draw $z_{i,-1}$ and $a_{i,-1}$ for $i \in \{0,1,\ldots,N-1\}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Draw z_{it} given transition probabilities
 - 2. Use linear interpolation to evaluate

$$c_{it} = \breve{c}_t^*(z_{it}, a_{it-1})$$

 $a_{it} = (1+r)a_{it-1} + wz_{it} - c_{it}$

Numerical Monte Carlo simulation

- Initial distribution: Draw $z_{i,-1}$ and $a_{i,-1}$ for $i \in \{0,1,\ldots,N-1\}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Draw z_{it} given transition probabilities
 - 2. Use linear interpolation to evaluate

$$c_{it} = \breve{c}_{t}^{\star}(z_{it}, a_{it-1})$$

 $a_{it} = (1+r)a_{it-1} + wz_{it} - c_{it}$

- Review:
 - Pro: Simple to implement
 - Con: Computationally costly and introduces randomness

■ Initial distribution: Choose $\underline{D}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_z=0}^{\#_z-1} \pi_{i_z, i_z} \underline{D}_t(z^{i_z}, a^{i_{a-}})$$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\} \text{ such that } a^{i_a} \leq a_t^\star(z^{i_z},a^{i_{a-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\} \text{ such that } a^{i_a} \leq a_t^\star(z^{i_z},a^{i_a-})$
 - 3.2 Calculate $\omega=rac{a^{\iota+1}-a^*(z^{i_z},a^{\prime a-})}{a^{\iota+1}-a^{\iota}}\in[0,1]$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv$ largest $i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a_t^\star(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega=rac{a^{\iota+1}-a^*(z^{i_z},a^{i_{a^-}})}{a^{\iota+1}-a^{\iota}}\in[0,1]$
 - 3.3 Increment $\underline{m{D}}_{t+1}(z^{i_z},a^\iota)$ with $\omega m{D}_t(z^{i_z},a^{i_{\vartheta-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv$ largest $i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a_t^\star(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega=rac{a^{\iota+1}-a^*(z^{i_z},a^{i_{a^-}})}{a^{\iota+1}-a^{\iota}}\in[0,1]$
 - 3.3 Increment $\underline{\boldsymbol{D}}_{t+1}(\boldsymbol{z}^{i_z}, \boldsymbol{a}^{\iota})$ with $\omega \boldsymbol{D}_t(\boldsymbol{z}^{i_z}, \boldsymbol{a}^{i_{a-}})$
 - 3.4 Increment $\underline{\textbf{\textit{D}}}_{t+1}(z^{i_{\it{z}}},a^{\iota+1})$ with $(1-\omega)\textbf{\textit{D}}_t(z^{i_{\it{z}}},a^{i_{\it{a}-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_t(z^{i_z}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_z-1} \pi_{i_{z-}, i_z} \underline{D}_t(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_{z+} and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a_t^\star(z^{i_z},a^{i_{a-}})$

3.2 Calculate
$$\omega=rac{a^{\iota+1}-a^*(z^{j_z},a^{j_a-})}{a^{\iota+1}-a^{\iota}}\in[0,1]$$

- 3.3 Increment $\underline{\boldsymbol{D}}_{t+1}(z^{i_z},a^{\iota})$ with $\omega \boldsymbol{D}_t(z^{i_z},a^{i_{a-}})$
- 3.4 Increment $\underline{\boldsymbol{D}}_{t+1}(\boldsymbol{z}^{i_z}, \boldsymbol{a}^{\iota+1})$ with $(1-\omega)\boldsymbol{D}_t(\boldsymbol{z}^{i_z}, \boldsymbol{a}^{i_{\vartheta-}})$
- Review:
 - 1. Pro: Computationally efficient and no randomness
 - 2. Con: Introduces a non-continuous distribution

Side-note: Matrix formulation

• The histogram method can be written in **matrix form**:

$$oldsymbol{D}_t = \Pi_z' \underline{oldsymbol{D}}_t \ \underline{oldsymbol{D}}_{t+1} = \Lambda_t oldsymbol{D}_t$$

where

 $\underline{\textbf{\textit{D}}}_{t}$ is vector of length $\#_{z} \times \#_{a}$

 ${m D}_t$ is vector of length $\#_{\it z} imes \#_{\it a}$

 Π_z' is derived from the π_{i_z,i_z} 's

 Λ'_t is derived from the ι 's and ω 's

Note: Example showed in notebook.

Infinite horizon: $T \to \infty$?

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge 0$

- Contraction mapping result: If β is low enough (strong enough impatience) then the value and policy function converge to $v(z_t, a_{t-1})$ and $c^*(z_t, a_{t-1})$ for large enough T
- Maximum upper limit for β : $\frac{1}{1+r}$
- In practice: Solve backwards until value and policy functions does not change anymore (given some tolerance)

EGM

Euler-equation from variation argument

- Case I: If $c_t^{-\rho} > \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$: Increase c_t by $\Delta > 0$, and lower c_{t+1} by (1+r)
 - 1. **Feasible:** Yes, if $a_t > 0$
 - 2. Utility change: $\left(c_{t}^{-\rho}\right)+\beta\left(-(1+r)\right)\mathbb{E}_{t}\left[c_{t+1}^{-\rho}\right]>0$

Euler-equation from variation argument

- Case I: If $c_t^{-\rho} > \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$: Increase c_t by $\Delta > 0$, and lower c_{t+1} by (1+r)
 - 1. **Feasible:** Yes, if $a_t > 0$
 - 2. Utility change: $\left(c_{t}^{-\rho}\right)+\beta\left(-(1+r)\right)\mathbb{E}_{t}\left[c_{t+1}^{-\rho}\right]>0$
- Case II: If $c_t^{-\rho} < \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$: Lower c_t by $\Delta > 0$, and increase c_{t+1} by (1+r)
 - 1. Feasible: Yes (always)
 - 2. Utility change: $\left(-c_t^{-\rho}\right) + \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right] > 0$

Euler-equation from variation argument

- Case I: If $c_t^{-\rho} > \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$: Increase c_t by $\Delta > 0$, and lower c_{t+1} by (1+r)
 - 1. **Feasible:** Yes, if $a_t > 0$
 - 2. Utility change: $\left(c_{t}^{-\rho}\right)+\beta\left(-(1+r)\right)\mathbb{E}_{t}\left[c_{t+1}^{-\rho}\right]>0$
- Case II: If $c_t^{-\rho} < \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$: Lower c_t by $\Delta > 0$, and increase c_{t+1} by (1+r)
 - 1. Feasible: Yes (always)
 - 2. Utility change: $\left(-c_t^{-\rho}\right) + \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right] > 0$
- Conclusion: By contradiction
 - 1. Constrained: $a_t = 0$ and $c_t^{-\rho} \geq \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$, or
 - 2. Unconstrained: $a_t > 0$ and $c_t^{-\rho} = \beta(1+r)\mathbb{E}_t\left[c_{t+1}^{-\rho}\right]$

Alternative to value function iteration:

1. Calculate post-decision marginal value of cash:

$$q(z^{i_z}, a^{i_s}) = \sum_{i_{r+1}=0}^{\#_z-1} \pi_{i_z, i_{z+}} c_+ (z^{i_{z+}}, a^{i_s})^{-\sigma}$$

Alternative to value function iteration:

1. Calculate post-decision marginal value of cash:

$$q(z^{i_z}, a^{i_s}) = \sum_{i_{r+1}=0}^{\#_z-1} \pi_{i_z, i_{z+}} c_+ (z^{i_{z+}}, a^{i_s})^{-\sigma}$$

2. Invert Euler-equation:

$$c(z^{i_z}, a^{i_a}) = (\beta(1+r)q(z^{i_z}, a^{i_a}))^{-\frac{1}{\sigma}}$$

Alternative to value function iteration:

1. Calculate post-decision marginal value of cash:

$$q(z^{i_z},a^{i_s}) = \sum_{i_z+=0}^{\#_z-1} \pi_{i_z,i_{z+}} c_+(z^{i_{z+}},a^{i_s})^{-\sigma}$$

2. Invert Euler-equation:

$$c(z^{i_z}, a^{i_a}) = (\beta(1+r)q(z^{i_z}, a^{i_a}))^{-\frac{1}{\sigma}}$$

3. Endogenous cash-on-hand:

$$m(z^{i_z}, a^{i_a}) = a^{i_a} + c_+(z^{i_z}, a^{i_a})$$

Alternative to value function iteration:

1. Calculate post-decision marginal value of cash:

$$q(z^{i_z}, a^{i_a}) = \sum_{i_{z_+}=0}^{\#_z-1} \pi_{i_z, i_{z_+}} c_+ (z^{i_{z_+}}, a^{i_a})^{-\sigma}$$

2. Invert Euler-equation:

$$c(z^{i_z}, a^{i_a}) = (\beta(1+r)q(z^{i_z}, a^{i_a}))^{-\frac{1}{\sigma}}$$

3. Endogenous cash-on-hand:

$$m(z^{i_z}, a^{i_a}) = a^{i_a} + c_+(z^{i_z}, a^{i_a})$$

4. Consumption function: $c^*(z^{i_z}, a^{i_{z-1}}) = \text{interpolation of function}$ from $m(z^{i_z}, :)$ to $c(z^{i_z}, :)$ at $m = (1 + r)a^{i_{z-1}} + wz^{i_z}$

Exercises

Exercises: Model extensions

Three exercises for you to do:

- 1. Ensure the stationary distribution is found in the simulation
- 2. Make some borrowing allowed, b
- 3. Introduce transitory shock, ξ_t (hardest)

Full extended model:

$$\begin{aligned} v_t(z_t, a_{t-1}) &= \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)] \\ \text{s.t.} \\ a_t &= (1+r)a_{t-1} + wz_t - c_t + \xi_t \\ \log z_t &= \rho_z \log z_{t-1} + \psi_t, \ \mathbb{E}[z_t] = 1, \mathsf{Var}[\psi_t] = \sigma_\psi^2 \\ \xi_t &\sim \mathcal{N}(0, \sigma_\xi^2) \\ a_t &\geq -b \end{aligned}$$

Extra: Gauss-Hermite I

• General problem: How can we calculate

$$\mathbb{E}(f(x)) = \int f(x)g(x)dx$$

- $f: \mathbb{R} \to \mathbb{R}$ some function
- g(x) is the probability distribution function (PDF) for x and G(x) is the CDF

Extra: Gauss-Hermite I

General problem: How can we calculate

$$\mathbb{E}(f(x)) = \int f(x)g(x)dx$$

- $f: \mathbb{R} \to \mathbb{R}$ some function
- g(x) is the probability distribution function (PDF) for x and G(x) is the CDF
- General solution: Turn it into a discrete sum

$$\mathbb{E}(f(x)) \approx \sum_{i=1}^{S} \omega_i f(x_i)$$

Extra: Gauss-Hermite I

General problem: How can we calculate

$$\mathbb{E}(f(x)) = \int f(x)g(x)dx$$

- $f: \mathbb{R} \to \mathbb{R}$ some function
- g(x) is the probability distribution function (PDF) for x and G(x) is the CDF
- General solution: Turn it into a discrete sum

$$\mathbb{E}(f(x)) \approx \sum_{i=1}^{S} \omega_i f(x_i)$$

• How to choose S and the *nodes* (x_i) and *weights* (ω_i) ? Answer: Guassian quadrature

Extra: Gauss-Hermite II

• Gauss-Hermite quadrature uses that

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = \sum_{i=1}^{S} \omega_i f(x_i) + \frac{S!\sqrt{\pi}}{s^S(2S)!}f^{(2S)}(\epsilon)$$

for some ϵ and where the (x_i, ω_i) 's can be easily found

Extra: Gauss-Hermite II

Gauss-Hermite quadrature uses that

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = \sum_{i=1}^{S} \omega_i f(x_i) + \frac{S!\sqrt{\pi}}{s^S(2S)!}f^{(2S)}(\epsilon)$$

for some ϵ and where the (x_i, ω_i) 's can be easily found

• Well behaved function: For $S \to \infty$ we have

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx \approx \sum_{i=1}^{S} \omega_i f(x_i)$$

Extra: Gauss-Hermite II

Gauss-Hermite quadrature uses that

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx = \sum_{i=1}^{S} \omega_i f(x_i) + \frac{S!\sqrt{\pi}}{s^S(2S)!}f^{(2S)}(\epsilon)$$

for some ϵ and where the (x_i, ω_i) 's can be easily found

• Well behaved function: For $S \to \infty$ we have

$$\int_{-\infty}^{\infty} f(x)e^{-x^2}dx \approx \sum_{i=1}^{S} \omega_i f(x_i)$$

■ Example: Random normal variable: $Y \sim \mathcal{N}(\mu, \sigma^2)$ so that

$$\mathbb{E}[f(Y)] = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} f(y)e^{-\frac{(y-\mu)^2}{2\sigma^2}} dy$$
$$\approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^{S} \omega_i f(\sqrt{2}\sigma x_i + \mu)$$

Summary

Summary and next week

Today:

- 1. Introduction to course
- 2. Dynamic programming in theory
- 3. Dynamic programming in practice
- Next week: More on consumption-saving models and precautionary savings in partial equilibrium

Homework:

- 1. Work on completing the model extension exercise
- 2. Read TBA