#### Pakiet IP:

|      | adres     |         |      |
|------|-----------|---------|------|
| pola | IP źródła | IP celu | dane |
|      |           |         |      |

- pakiet się nie zmienia podczas przekazywania od źródła do celu
- ważne jest pole adresu celu
- dopiero ostatni ruter wie, czy pakiet dotarł na miejsce. Dlatego potrzeba sposobu na powiadomienie nadawcy o błędzie



| misc   | 22244     | 22242     | 4.4. |
|--------|-----------|-----------|------|
| fields | 223.1.1.1 | 223.1.1.3 | аата |
| 1.0100 |           |           |      |

#### Wyślij pakiet IP od A do B:

- poszukaj adresu podobnego do B w tablicy rutingu
- w tablicy zapisano, że B jest w tej samej sieci co A
- warstwa łącza wyśle pakiet bezpośrednio do B w ramce protokołu warstwy łącza
  - B i A są połączone bezpośrednio



| misc   | 222111    | 223.1.2.3 | doto |
|--------|-----------|-----------|------|
| fields | 223.1.1.1 | 223.1.2.3 | uara |

#### Od A do E:

- poszukaj adresu podobnego do E w tablicy rutingu
- □ E jest w innej sieci
  - A, E nie są połączone bezpośrednio
- z tablicy rutingu: następny ruter w kierunku E to 223.1.1.4
- warstwa łącza wysyła pakiet do rutera 223.1.1.4 w ramce protokołu warstwy łącza
- pakiet jest odbierany przez223.1.1.4
- c.d.n....

tablica rutingu w A

| Sieć celu | nast. ruter | Odległość |
|-----------|-------------|-----------|
| 223.1.1   |             | 1         |
| 223.1.2   | 223.1.1.4   | 2         |
| 223.1.3   | 223.1.1.4   | 2         |



| misc<br>fields | 223.1.1.1 | 223.1.2.3 | data |
|----------------|-----------|-----------|------|
| 110103         |           |           |      |

# Pakiet doszedł do 223.1.4, przeznaczony do 223.1.2.2

- poszukaj adresu podobnego do E w tablicy rutingu rutera
- □ E jest w *tej samej* sieci co interfejs 223.1.2.9 **rutera** 
  - ruter i E są połączone bezpośrednio
- warstwa łącza wyśle pakiet do 223.1.2.2 w ramce protokołu warstwy łącza przez interfejs 223.1.2.9
- pakiet dociera do 223.1.2.2 (czyli tam, gdzie trzeba).



## Format pakietu IP

numer wersji protokołu IP długość nagłówka (w bajtach) "typ" danych

maksymalna ilość pozostałych kroków (zmniejszana przez każdy ruter na ścieżce)

protokół wyższej warstwy do którego należą dane

> <u>ile zajmuje nagłówek</u> <u>razem z TCP?</u>

- 20 bajtów TCP
- 20 bajtów IP
- = 40 bajtów + nagłówek w. aplikacji

32 bits dług. Type of długość nagł service" pozycja numer 16-bitowy flagi fragmentu "time to wyższa Internetowa live" warstwa <u>suma kontrolna</u> 32 bitowy adres IP źródła 32 bitowy adres IP celu Opcje (mogą być puste)

> dane (zmienna długość, zwykle segment TCP lub UDP)

długość całego pakietu (w bajtach)

w celu (de)fragmentacji

N.p. znacznik czasu, zapisz ścieżkę, określenie ruterów na ścieżce.

## Fragmentacja i defragmentacja IP

- łącza mają MTU (ang.
   maximum transfer size) największa możliwa wielkość
   ramki warstwy łącza.
  - różne typy łącz, różne MTU
- duże pakiety IP są dzielone ("fragmentowane") w sieci
  - jeden pakiet jest dzielony na wiele pakietów
  - "łączone" dopiero u celu
  - nagłówek IP używany do rozpoznania, uporządkowania powiązanych fragmentów



## Fragmentacja i defragmentacja *IP*

#### **Przykład**

- pakiet 4000 bajtów
- MTU = 1500 bajtów
- MTU: łącza czy ścieżki?
- fragmentacja może wyglądać inaczej w innych protokołach (lub warstwach)
  - łączenie nie zawsze jest na końcu
  - dzielenie nie zawsze następuje w warstwie wyższej

```
długość IDflaga Frag pozycja
=4000 =x =0 =0
```

Z jednego dużego pakietu tworzone są trzy mniejsze pakiety



| długość | ID | flagaFrag | pozycja |
|---------|----|-----------|---------|
| =1500   | =X | =1        | =1480   |



## ICMP: Internet Control Message Protocol

| używany przez hosty, rutery,<br>bramy do komunikacji     | <u>Typ</u><br>0 | Kod<br>0 | <u>Opis</u><br>odpowiedź echo (ping)         |
|----------------------------------------------------------|-----------------|----------|----------------------------------------------|
| informacji z warstwy sieci                               | 3               | 0        | sieć celu niedostępna                        |
| <ul><li>zgłaszanie błędów:</li></ul>                     | 3               | 1        | host celu niedostępny                        |
| niedostępny host, sieć,                                  | 3               | 2        | protokół celu niedostępny                    |
| port, protokół                                           | 3               | 3        | port celu niedostępny                        |
| <ul><li>żądanie/odpowiedź echo</li></ul>                 | 3               | 6        | sieć celu nieznana                           |
| (używane prze ping)                                      | 3               | 7        | host celu nieznany                           |
| podwarstwa sieci "nad" IP:                               | 4               | 0        | spowolnienie źródła                          |
| <ul><li>komunikaty ICMP</li><li>przekazywane</li></ul>   |                 |          | (kontrola przeciążenia-<br>nie jest używane) |
| w pakietach IP                                           | 8               | 0        | żądanie echo (ping)                          |
| •                                                        | 9               | 0        | ogłoszenie ścieżki                           |
| komunikat ICMP: typ, kod plus                            | 10              | 0        | poszukiwanie rutera                          |
| pierwszych 8 bajtów pakietu<br>IP, który spowodował błąd | 11              | 0        | wygasł TTL                                   |
| IF, KTOLY Spowodował Dida                                | 12              | 0        | zły nagłówek IP                              |

### Zastosowania ICMP: traceroute i ping

- □ Jak działa ping?
  - tyle razy, ile chciał użytkownik, wykonaj:
    - włącz zegar
    - wyślij pakiet ICMP, typ 8, kod 0 na adres odbiorcy
    - odbierz pakiet ICMP, typ 0, kod 0, od odbiorcy i zmierz czas RTT
    - Jeśli upłynęło za dużo czasu, zgłoś stratę i nie czekaj na odpowiedź (wykonuj dalej pętlę)
  - o podsumuj wyniki: częstość strat

### Zastosowania ICMP: traceroute i ping

- □ Jak działa traceroute?
  - on = 1
  - W pętli, aż nadejdzie pakiet ICMP typ 3, kod 3
    - Włącz zegar
    - Wyślij do odbiorcy 3 pakiety IP z TTL=n, zawierające segment UDP na dziwny port
    - Odbierz 3 pakiety ICMP, typ 11, kod 0
    - Jeśli dla któregoś pakietu zostanie przekroczony timeout, zgłoś stratę i nie czekaj na odpowiedź
    - Pokaż adres IP nadawcy pakietu ICMP (rutera na ścieżce do odbiorcy, o n kroków od nadawcy), czasy RTT lub informację o stratach
    - n = n + 1

## DHCP: Dynamic Host Configuration Protocol

<u>Cel:</u> pozwól hostom *dynamicznie* uzyskiwać adresy IP z serwera w chwili dołączania do sieci

Można też przedłużyć czas korzystania z adresu

Pozwala na wielokrotne wykorzystanie adresu (adres jest zajęty tylko, gdy host jest podłączony i włączony

Obsługa mobilnych użytkowników, chcących dołączyć się do sieci (więcej wkrótce)

#### Przegląd DHCP:

- host rozgłasza komunikat "DHCP discover"
- serwer DHCP odpowiada komunikatem "DHCP offer"
- o host żąda adresu IP: komunikat "DHCP request"
- serwer DHCP wysyła adres: komunikat "DHCP ack"

### Scenariusz z klientem i serwerem DHCP



## Scenariusz z klientem i serwerem DHCP





Wszystkie pakiety opuszczające sieć lokalną mają jednakowy adres IP źródła: 138.76.29.7, różne numery portów źródła Pakiety z źródłem i celem w tej sieci mają adres z puli 10.0.0/24 (jak zwykle)

- Uzasadnienie: lokalna sieć używa tylko jednego adresu IP z punktu widzenia świata zewnętrznego:
  - nie ma potrzeby przydzielać zakresu adresów przez DI: - tylko jeden adres IP jest używany przez wszystkie urządzenia
  - można zmieniać adresy urządzeń w sieci lokalnej bez zawiadamiania świata zewnętrznego
  - można zmienić DI bez zmiany adresów urządzeń w sieci lokalnej
  - urządzenia w sieci lokalnej nie są widoczne ze świata zewnętrznego, dopóki same nie wyślą pakietu (zwiększa bezpieczeństwo).

- Implementacja: Ruter NAT musi wykonać następujące czynności dla:
  - wychodzących pakietów: zastąp (adres IP źródła, numer portu) przez (adres IP NAT, nowy numer portu)
    - ... zdalne hosty będą odpowiadały na adres (adres IP NAT, nowy numer portu).
  - zapamiętaj (w tablicy translacji NAT) każdą parę:
     część 1: (adres IP źródła, numer portu) zastąpioną
     przez część 2: (adres IP NAT, nowy numer portu)
  - o przychodzących pakietów: zastąp (adres IP NAT, nowy numer portu) w polach celu przez odpowiednią część 1 pary: (adres IP źródła, numer portu) zapisaną w tablicy translacji NAT



- □ 16-bitowy numer portu:
  - 60,000 jednoczesnych połączeń z jednego adresu w sieci wewnętrznej!
  - ograniczenie wydajnościowe: rozmiar tablicy translacji
- □ NAT jest kontrowersyjny:
  - rutery powinny przetwarzać informację warstwy 3
  - o zasada koniec-koniec jest naruszona
    - możliwość użycia NAT musi być brana pod uwagę przez projektantów aplikacji, n.p., aplikacji P2P
  - o hosty w sieci wewnętrznej nie mogą uruchamiać usług
  - o braki adresów powinny być rozwiązane przez IPv6

## Mapa wykładu

- □ 4.1 Usługi warstwy sieci z komutacją pakietów
- 4.2 Zasady działania rutingu
- 4.3 Ruting hierarchiczny
- □ 4.4 Protokół Internetu (IP)
- □ 4.5 Ruting w Internecie
  - Ruting RIP i OSPF
  - Ruting BGP
- □ 4.6 Co jest w ruterze
- ☐ 4.7 IPv6
- □ 4.8 Ruting rozsiewczy (multicast)
- □ 4.9 Mobilność

## Ruting w Internecie

- □ Globalny Internet składa się z Systemów Autonomicznych (AS) połączonych ze sobą:
  - AS z jednym połączeniem: mała organizacja: jedno połączenie do innego systemu autonomicznego
  - AS z wieloma połączeniami: duża organizacja (bez tranzytu): wiele połączeń z innymi systemami autonomicznymi
  - AS tranzytowy: DI poziomu 1 lub 2, łączący wiele systemów autonomicznych
- Dwupoziomowy ruting:
  - Wewnętrzny: administrator wybiera algorytm rutingu wewnątrz systemu autonomicznego
  - Zewnętrzny: jeden standard rutingu pomiędzy systemami autonomicznymi: BGP

## Hierarchia AS w Internecie

Rutery pomiędzy AS (zewnętrzne bramy) C.b B.a A.a В b A.c a a C b Rutery wewnqtrz AS

## Ruting Wewnetrzny

- Interior Gateway Protocols (IGP)
- Najczęściej używane protokołu rutingu wewnętrznego:
  - RIP: Routing Information Protocol
  - OSPF: Open Shortest Path First
  - IGRP: Interior Gateway Routing Protocol (własny protokół firmy Cisco)

## RIP (Routing Information Protocol)

- Algorytm wektora odległości
- Był częścią dystrybucji BSD-UNIX w 1982 roku
- □ Miara odległości: ilość kroków (maksimum = 15 kroków)
  - O Czy potraficie zgadnąć, dlaczego?
- Wektory odległości: wymieniane przez sąsiadów co 30 sekund przez komunikat odpowiedzi (także nazywany ogłoszeniem)
- □ Każde ogłoszenie: lista najwyżej 25 sieci będących celami w jednym systemie autonomicznym

## RIP: Przykład\_



| Sieć Celu | Następny ruter | Ilość kroków do celu |
|-----------|----------------|----------------------|
| W         | A              | 2                    |
| y         | В              | 2                    |
| Z         | В              | 7                    |
| ×         |                | 1                    |
|           | ••••           | ••••                 |

Tablica rutingu w D

## RIP: Przykład\_



## RIP: Awaria łącza i jej naprawa

Jeśli nie ma ogłoszenia przez 180 sekund --> uznaje się, że łącze do sąsiada uległo awarii

- ścieżki przez sąsiada stają się nieważne
- wysyłane jest nowe ogłoszenie do sąsiadów
- o następnie, sąsiedzi wysyłają ogłoszenia do swoich sąsiadów (jeśli tablice rutingu uległy zmianie)
- o informacja o awarii łącza rozprzestrzenia się szybko w sieci
- zatruty powrót jest używany, żeby uniknąć nieskończonych pętli (odległość nieskończona = 16 kroków)

### RIP Przetwarzanie tabel

- □ Tablice rutingu RIP są zarządzane przez proces warstwy aplikacji nazywany route-d (demon)
- □ ogłoszenia posyłane są w pakietach UDP, okresowo powtarzanych



## Przykład tabeli RIP

Ruter: giroflee.eurocom.fr

| Cel         | Brama          | Flagi | Ref | Use    | Interfejs |
|-------------|----------------|-------|-----|--------|-----------|
|             |                |       |     |        |           |
| 127.0.0.1   | 127.0.0.1      | UH    | 0   | 26492  | 100       |
| 192.168.2.  | 192.168.2.5    | U     | 2   | 13     | fa0       |
| 193.55.114. | 193.55.114.6   | U     | 3   | 58503  | le0       |
| 192.168.3.  | 192.168.3.5    | U     | 2   | 25     | qaa0      |
| 224.0.0.0   | 193.55.114.6   | U     | 3   | 0      | le0       |
| default     | 193.55.114.129 | UG    | 0   | 143454 |           |

- Trzy podłączone sieci klasy C (sieci LAN)
- Ruter zna drogę tylko do dołączonych sieci
- W celu przesłania "w sieć", używana jest brama domyślna
- Adres multicast ścieżki: 224.0.0.0
- Interfejs loopback (dla testowania)

## OSPF (Open Shortest Path First)

- "open": otwarty, czyli dostępny dla wszystkich (nieodpłatny, o ogólnie znanej specyfikacji)
- Używa algorytmu stanu łącza
  - o rozsyła pakiety (ogłoszenia) SŁ
  - Mapa topologii w każdym węźle
  - Obliczanie ścieżek przy użyciu algorytmu Dijkstry
- Ogłoszenie OSPF ma jeden wpis dla każdego sąsiadującego rutera
- Ogłoszenia są rozsyłane do całego AS (przez zalew)
  - Wysyłane w komunikacie OSPF bezpośrednio przez IP (zamiast TCP lub UDP)

## "Zaawansowane" cechy OSPF (niedostępne w RIP)

- Ochrona informacji: każdy komunikat OSPF jest uwierzytelniany (żeby zapobiec złośliwym zmianom)
- Może istnieć wiele ścieżek o tym samym koszcie (w RIP mogła być tylko jedna) - ang. multipath
- Dla każdego łącza, wiele miar kosztu dla różnych rodzajów usług TOS (n.p., koszt łącza satelitarnego dla usług "best effort" jest "niski"; "wysoki" dla usługi czasu rzeczywistego)
- □ Zintegrowany ruting unicast i multicast:
  - Multicast OSPF (MOSPF) używa tej samej bazy danych o topologii sieci co OSPF
- ☐ Hierarchiczny OSPF w dużych sieciach.

## Hierarchiczny OSPF



## Hierarchiczny OSPF

- Dwupoziomowa hierarchia: obszar lokalny, szkielet.
  - Ogłoszenia stanu łącza tylko w obszarze lokalnym
  - każdy węzeł ma szczegółową topologię obszaru; zna tylko kierunek (najkrótszą ścieżkę) do sieci w innych obszarach.
- Rutery brzegowe obszarów: "podsumowują" odległości do sieci w swoim obszarze, ogłaszają tę informację innym ruterom brzegowym obszarów.
- Rutery szkieletowe: realizują ruting OSPF w sieci szkieletowej.
- □ Rutery brzegowe: łączą się z innymi AS.

## Ruting pomiędzy AS w Internecie: BGP



### Ruting pomiędzy AS w Internecie: BGP

- □ BGP (Border Gateway Protocol): standard de facto
- □ Protokół Wektora Ścieżek:
  - o podobny do protokołu Wektora Odległości
  - każda Brama Brzegowa (Border Gateway)
    rozsyła sąsiadom (partnerom) całą ścieżkę (czyli
    ciąg systemów autonomicznych) do celu
  - BGP rutuje do systemów autonomicznych (AS), a nie poszczególnych hostów
  - N.p., Brama X może wysłać ścieżkę do celu Z:

## Ruting pomiędzy AS w Internecie: BGP

Przypuśćmy: brama X wysyła ścieżkę do sąsiedniej bramy W

- W może, ale nie musi wybrać ścieżki oferowanej przez X
  - o z powodów kosztu, polityki (nie kierować ruchu przez AS konkurencji), w celu unikania pętli.
- Jeśli W wybierze ścieżkę ogłaszaną prze X, to: Ścieżka (W,Z) = w, Ścieżka(X,Z)
- Uwaga: X może sterować przychodzącym ruchem za pomocą ogłoszeń ścieżek wysyłanych do sąsiadów:
  - n.p., nie chcę kierować ruchu do Z -> nie ogłaszam żadnych ścieżek do Z

## BGP: jak kontrolować, kto do nas rutuje



- □ A,B,C są sieciami dostawców
- X,W,Y are sieciami klientów
- □ X jest podwójnie połączona: dołączona do 2 sieci
  - OX nie chce przekazywać ruchu z B do C
  - .. zatem X nie ogłosi B ścieżki do C

### BGP: jak kontrolować, kto do nas rutuje



- A ogłasza B ścieżkę AW
- 🗖 B ogłasza X ścieżkę BAW
- Czy B powinien ogłosić C ścieżkę BAW?
  - Na pewno nie! B nie uzyska "zapłaty" za ruting CBAW ponieważ ani W, ani C nie są klientami B
  - O B chce zmusić C do rutowania do w przez A
  - B chce rutować tylko do/od swoich klientów!

### Działanie BGP

#### Pytanie: co robi ruter BGP?

- Otrzymuje i filtruje ogłoszenia ścieżek od bezpośrednio podłączonych sąsiadów.
- Wybór ścieżek.
  - Żeby kierować ruch do celu X, jaka ścieżka (z wielu ogłoszonych) zostanie wybrana?
- Wysyłanie ogłoszeń ścieżek do sąsiadów.

# Komunikaty BGP

- □ BGP wysyła komunikaty przez TCP.
- ☐ Komunikaty BGP:
  - OPEN: otwiera połączenie TCP do sąsiada i uwierzytelnia nadawcę
  - UPDATE: ogłasza nową ścieżkę (lub usuwa starą)
  - KEEPALIVE utrzymuje otwarte połączenie w braku komunikatów UPDATE; także potwierdza komunikat OPEN
  - NOTIFICATION: zgłasza błędy w poprzednim komunikacie; także używane do zamknięcia połączenia

### Czemu ruting wewnętrzny i zewnętrzny się różnią?

### Polityka:

- □ Ruting zewnętrzny: administrator chce mieć kontrolę nad tym, kto kieruje ruch przez jego sieć.
- □ Ruting wewnętrzny: jeden administrator kontroluje całą sieć, więc zagadnienia polityczne są nieistotne

#### Skalowalność:

 ruting hierarchiczny zmniejsza rozmiar tablic oraz ruch w sieci komunikujący aktualizacje tablic

#### Wydajność:

- Ruting wewnętrzny: może się skupiać na wydajności
- Ruting zewnętrzny: polityka może być ważniejsza od wydajności

# Mapa wykładu

- □ 4.1 Usługi warstwy sieci z komutacją pakietów
- 4.2 Zasady działania rutingu
- ☐ 4.3 Ruting hierarchiczny
- □ 4.4 Protokół Internetu (IP)
- □ 4.5 Ruting w Internecie
- □ 4.6 Co jest w ruterze
- ☐ 4.7 IPv6
- □ 4.8 Ruting rozsiewczy (multicast)
- □ 4.9 Mobilność

### Przeglad architektury rutera

### Dwie główne funkcje rutera:

- □ algorytm rutingu (RIP, OSPF, BGP)
- przekazywanie pakietów z łącz wejściowych na wyjściowe



## Funkcje portu wejściowego



Warstwa łącza:

n.p., Ethernet (patrz nast. część wykładu)

### Zdecentralizówane przełączanie:

- znając odbiorcę pakietu, znajdź port wyjściowy używając tablicy rutingu w pamięci portu wejściowego
- cel: zakończyć obsługę w porcie wejściowym z szybkością łącza
- kolejkowanie: jeśli pakiety przybywają szybciej niż szybkość przekazywania do pola komutacyjnego

### Kolejkowanie w portach wejściowych

- Gdy pole komutacyjne wolniejsze niż połączony ruch z portów wejściowych -> mogą się pojawić kolejki w portach wejściowych
- blokowanie w kolejce: pakiet z przodu kolejki może uniemożliwić przekazanie dalej pakietów za nim
- opóźnienie i straty spowodowane przez przepełnienie buforów portów wejściowych!



## Trzy rodzaje pól komutacyjnych



## Przełączanie w pamięci

#### Pierwsza generacja ruterów:

- pakiet kopiowany przez (pojedynczy) procesor rutera
- □prędkość ograniczona przez przepustowość pamięci (2 przejścia przez magistralę dla każdego pakietu)



#### Nowoczesne rutery:

- procesor portu wejściowego zagląda do tablic rutingu, kopiuje pakiet do pamięci
- □Cisco Catalyst 8500

# Przełączanie za pomocą szyny



- pakiet przesyłany z pamięci portu szyna wejściowego do pamięci portu wyjściowego przez wspólną szynę
- konkurencja o szynę: szybkość ograniczona przez przepustowość szyny
- szyna 1 Gb/s, Cisco 1900: dostatecznie szybka dla ruterów dostępowych i ruterów małych organizacji (nie dla ruterów regionalnych i szkieletowych)

## Przełączanie za pomocą kraty

- przezwycięża ograniczenie przepustowości szyny
- sieci Banyan, inne sieci połączeń zaprojektowane początkowo do łączenia procesorów w superkomputerach
- Zaawansowana technologia: podział pakietu na komórki ustalonej wielkości, przełączanie komórek przez kratę.
- □ Cisco 12000: przełącza z szybkością Gb/s przez kratę

## Porty wyjściowe



- Kolejkowanie jest potrzebne, gdy pakiety przybywają z pola komutacyjnego szybciej, niż prędkość transmisji łącza
- Zarządzanie kolejnością wybiera pakiety z kolejki do transmisji

## Output port queueing



- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

# Mapa wykładu

- □ 4.1 Usługi warstwy sieci z komutacją pakietów
- 4.2 Zasady działania rutingu
- ☐ 4.3 Ruting hierarchiczny
- □ 4.4 Protokół Internetu (IP)
- □ 4.5 Ruting w Internecie
- □ 4.6 Co jest w ruterze
- ☐ 4.7 IPv6
- ☐ 4.8 Ruting rozsiewczy (multicast)
- 4.9 Mobilność