

LEAD SCORING CASE STUDY

SEYED JAVIDH

Problem statement

- > X Education is an education company that sells course. When people fill up a form providing their email address or phone number, they are classified to be a lead. Leads are acquired from various sources
- ➤ Lead conversion rate at X education is around 30%, which was poor.
- In order to identify the most potential or hot leads, we have to build a model and assign lead score.
- > So that the sales team can be more focused towards the most promising leads.
- > CEO's target of conversion is around 80%

Objective

- > Built a most efficient and simple model to identify the hot leads and assign lead score.
- > Deployment of the model for the future use.

DATA CLEANING & MANIPULATION

- ✓ Initial number of Records = 9240; Initial number of columns = 37
- ✓ No duplicates were found.
- ✓ All the columns with single unique value for all the records were dropped as it wont help in modeling.
- ✓ Replaced 'Select' with Nan.
- ✓ Columns with more than 45% were dropped.
- ✓ Columns like 'Prospect ID', 'Lead Number' with unique values for all the records were dropped.
- ✓ Columns with NAN were either replaced with mode value or named as new category 'unknown'.
- ✓ Based on value counts, categories with negligible values are grouped as 'others'.
- ✓ Dropping extreme outliers of numerical columns.
- ✓ Columns with imbalanced data were dropped.
- ✓ The values of 'Yes' & 'No' were converted to '1' & '0' respectively.

TOTAL VISITS

- ✓ If we observe the boxplot we can see that the there are definitely so me outliers in the range of 250. It show that people are visiting the p age for 250 times.
- ✓ It can also be observed from the h istogram that most of the visits ar e in the range of 0 to 25. There ar e very less leads who have visited the page for more than 25 times.

PAGE VIEWS PER VISIT

- From the boxplot we can definitel y see that there are outliers in the data.
- ✓ And on the other hand, from the h istogram we can see that the data is definitely skewed. With most of the data near the 0 to 10 bin.

TOTAL TIME SPENT ON WEBSITE

- Here, we can see from the boxplo t that the mostly people spend ab out 1000 seconds on the website.
- ✓ Also, we can see from the histogr am that it is skewed and most peo ple spend near about 500 second s on the website.

INFERENCE

- ✓ Here, we can see that Leads, who's origin is fro m the Add Form section, are more likely to get c onverted later on.
- ✓ The ratio of Leads converted from the Landing P
 age Submission and API looks okayish, however
 not as great as that of Lead Add Form.

- ✓ From the above graph we can see that Leads w
 ho come through refrence or from Wellingak we
 bsite, or any other sources are more likely to get
 converted.
- ✓ Leads from Google are also quite likely to get co nverted.

INFERENCE

- ✓ Here, we can notice that the Leads who's last ac tivity is sending SMS are really good to target, a s they are more likely to get converted.
- ✓ However, we should avoid leads who's last activi ties are- Olark Chat Conversation, Email Bounce d or already converted leads.

- ✓ From the graph we can understand that leads fr om Management, Business Administration, Bank ing investment and insurance are more likely to get converted.
- ✓ However, people who do not mention their specialization are less likely to be converted.

INFERENCE

- ✓ It can be observed from the plot above that Lead s who are tagged as "Will revert back after readi ng the email" are more likely to be converted foll owed by "Closed by Horizzon" and "Lost to EINS
- ✓ Leads who are still graduating, interested in othe r course or their phone ringing and not picking u p are less likely to get converted.

INFERENCE

✓ The result here is very similar to that of Last Activity performed by the Lead.

CORRELATION

- ✓ The heatmap clearly shows us that there is a strong correlation between "Page Views Per Visit" and "Total Visit" column.
- ✓ Similar positive correlations can be identified between "Total Time Spent on Website" against the "Converted" value.
- ✓ There is also a positive correlation between "Total
 Time Spent on Website" with both "Total Visit" and
 "Page Views Per Visit".

DATA TRANSFORMATION

- ✓ Dummy variables are created
- ✓ Standard scaler was used to standardize the numerical columns
- ✓ Number of rows after EDA = 8868
- ✓ Number of columns after EDA = 50

Model Building Process

Train Test Split

Using scikit learn

Splitting Train And Test Data

In The Ratio Of 70:30

For The Purpose Of

Evaluation

Recursive Feature Elimination

Using RFE (sklearn)

We Ran RFE To

Select Top 15

Predictor Variables

From Total 50 Variables

Logistic Regression Model Building

Using Stats Model

Removed Variables One By One

Which Has

P-value Grater Then 0.05

And VIF Above 5

Final Model

			-0000				
Generalized Linear N	Model Regression Re	sults					
Dep. Variable:	Converted	No. Observ	ations:	6204			
Model:	GLM	Df Res	iduals:	6189			
Model Family:	Binomial	Df	Model:	14			
Link Function:	logit		Scale:	1.0000			
Method:	IRLS	Log-Like	lihood:	-1196.3			
Date:	Mon, 12 Jul 2021	Dev	viance:	2392.6			
Time:	15:32:27	Pearso	n chi2:	8.50e+03			
No. Iterations:	8						
Covariance Type:	nonrobust						
		coef	std err	z	P> z	[0.025	0.975]
	cons	st -4.3841	0.218	-20.133	0.000	-4.811	-3.957
Total Ti	me Spent on Websit	e 1.1248	0.064	17.500	0.000	0.999	1.251
Lead O	rigin_Lead Add Forr	n 3.0066	0.459	6.550	0.000	2.107	3.906
Lea	d Source_Olark Cha	it 1.5997	0.154	10.357	0.000	1.297	1.902
Lead Sour	ce_Welingak Websit	e 2.6224	0.870	3.015	0.003	0.918	4.327
Last Ac	tivity_Email Bounce	d -1.7582	0.498	-3.531	0.000	-2.734	-0.782
Last Activity_Olark Chat Conversation		n -1.2890	0.232	-5.560	0.000	-1.743	-0.835
	Tags_Bus	y 3.1471	0.299	10.527	0.000	2.561	3.733
Tags	_Closed by Horizzo	n 9.1264	1.033	8.831	0.000	7.101	11.152
	Tags_Lost to EIN	s 8.6147	0.758	11.363	0.000	7.129	10.101
	Tags_Ringin	g -0.9941	0.309	-3.220	0.001	-1.599	-0.389
	Tags_Unknow	n 2.6034	0.210	12.390	0.000	2.192	3.015
Tags_Will revert a	fter reading the ema	il 6.9711	0.266	26.158	0.000	6.449	7.493
Last Nota	ble Activity_Modifie	d -0.7132	0.139	-5.135	0.000	-0.985	-0.441
Last Notab	le Activity_SMS Ser	t 2.2050	0.137	16.090	0.000	1.936	2.474

	Features	VIF
2	Lead Source_Olark Chat	1.85
1	Lead Origin_Lead Add Form	1.80
12	Last Notable Activity_Modified	1.77
11	Tags_Will revert after reading the email	1.72
10	Tags_Unknown	1.63
13	Last Notable Activity_SMS Sent	1.62
5	Last Activity_Olark Chat Conversation	1.57
0	Total Time Spent on Website	1.50
3	Lead Source_Welingak Website	1.30
7	Tags_Closed by Horizzon	1.24
9	Tags_Ringing	1.13
4	Last Activity_Email Bounced	1.10
8	Tags_Lost to EINS	1.07
6	Tags_Busy	1.05

Metrics – Train Dataset

Precision Recall 91%

Accuracy Sensitivity Specificity

92% 88% 96%

93% 93% 4%

ROC - Curve

- ✓ From the ROC curve, we can see that the area under the curve is very high (0.97).
- ✓ A high area under the curve indicates that the model is very good.

Optimal Cut-Off

- ✓ From the above graph, we can make out that the
 optimal cut-off for our model will be 0.28.
- ✓ This is the point where the sensitivity, accuracy and specificity co-exist.

Precision – Recall Trade Off

INFERENCE

✓ From the graph, we can see that there is a trade off between Precision and Recall and the meeting point is near to 0.4

Metrics – Test Dataset

Precision

88%

Recall

93%

Sensitivity

93%

Specificity

92%

Conclusions And Recommendations

- ✓ Tags_Closed by Horizzon has the highest coefficient of 9.1264, which means keeping other variable constant an unit increase in temp results in 9.1264 unit increase in Probability of conversion.
- ✓ Tags_Closed by Horizzon, Tags_Lost to EINS and Tags_Will revert after reading the email are the top 3 variables having strong coefficients.
- ✓ Last Activity_Olark Chat Conversation, Tags_Ringing and Last Notable Activity_Modified have negative coeeficient, which mea ns increase in values of these variables would result in decrease in value of Probability of conversion.
- ✓ Probability of conversion increases if Tags_Busy, Lead Origin_Lead Add Form, Lead Source_Welingak Website, Tags_Unknown, Last Notable Activity_SMS Sent, Lead Source_Olark Chat, Total Time Spent on Website increases as these variables have positive coefficients.
- ✓ Constant value when all other variables are zero the Probability of conversion value will still be -4.3841
- ✓ Comparing Precision, Recall and other metrics value for both train and test. Our model performs well on test set as well.

Conclusions continued....

- ✓ This model explains how exactly the Probability of conversion vary with different features. management can accordingly manipulate the business strategy to meet the conversion target and meet the business expectations.
- ✓ In business terms, this model can be deployed in the upcoming future to meet the X education's requirements.
- ✓ Focusing on the features of the model will increase their chances of contacting most of the potential buyer s for the course.
- The Marketing team and evaluate the leads based on the top 3 variables and make sound business decisions.
- The Marketing team can also chase after leads, who spend longer time on their website, originate from A dd form.
- The team can also come with interesting courses and offers that attract people with specialization in bank ing, investment and insurance.
- > They can also keep a close watch on Leads originating from Olark Chat.

Thank you