### **SISU CS 149 HW5 SPRING 2020**

REMINDER: Each homework is individual. "Every single byte must come from you." Cut&paste from others is not allowed. Keep your answer and source code to yourself only - never post or share them to any site in any way.

[Type your answer. Hand-written answer is **not** acceptable.]

[Replace YourName and L3SID with your name and last three digit of your student ID, respectively.] [This assignment does not have programming question, except the optional extra credit question.]

- 1. (15 pts) Given resource type X with two instances, resource type Y with a single instance, and three threads. As illustrated in the resource allocation graph,
  - Thread 0 owns resource type Y's instance and is waiting for resource type X.
  - Thread 1 owns one instance of resource type X.
  - Thread 2 owns the other instance of resource type X and is waiting for resource type Y.
- a. (8 pts) Are Coffman conditions true in the current state represented by the resource allocation graph? must justify. b. (7 pts) Is there any deadlock in the <u>current</u> state represented by the resource allocation graph? Why or why not?



- 2. (15 pts) Both segment table and page table are used to translate from logical address to physical address. But the structures of these tables are different; Each entry in a segment table is {limit, base} while each entry in a page table is {frame#}.
- a. Why the differences?
- b. Can we record base in a page table (and if so why we do not do it)?
- c. Why there is no limit (or length) in a page table?
- 3. (30 pts) On a machine with 16 bytes page size, given the following page table for a process, and four of these 8 entries are mapped to page frames. Frame 0 starts at physical address 0. (All numbers given are in decimals.)

| Page number | Frame number       |
|-------------|--------------------|
| 0           | 2                  |
| 1           | 0                  |
| 2           | Not in main memory |
| 3           | 1                  |
| 4           | Not in main memory |
| 5           | Not in main memory |
| 6           | 3                  |
| 7           | Not in main memory |

- a. (15 pts) Make a list of all logical address ranges (in decimals, byte-level) that would cause page faults.
- b. (3 pts each) What are the corresponding physical addresses (in decimals, byte-level) of the following logical addresses (in decimals, byte-level)? If any address conversion is not possible, explain its reason.
  - 1
  - 50
  - 95
  - 96
  - 120

4. (40 pts) Consider the following page reference string: 7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5

Assuming demand paging with 3 frames, fill in the table to indicate pages in the frames, page fault if any, and total number of page faults, for the following page replacement algorithms.

a. (20 pts) FIFO

| Time              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|-------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| Reference         | 7 | 2 | 3 | 1 | 2 | 5 | 3 | 4 | 6 | 7  | 7  | 1  | 0  | 5  |
| Frame 0           | 7 | 7 | 7 |   |   |   |   |   |   |    |    |    |    |    |
| Frame 1           | Χ | 2 | 2 |   |   |   |   |   |   |    |    |    |    |    |
| Frame 2           | Х | Χ | 3 |   |   |   |   |   |   |    |    |    |    |    |
| Page fault? (Y/N) |   |   |   |   |   |   |   |   |   |    |    |    |    |    |

Total page faults =

#### b. (20 pts) LRU

| · · ·             |   |   |   |   |   |   |   |   |   |    |    |    |    |    |
|-------------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| Time              | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| Reference         | 7 | 2 | 3 | 1 | 2 | 5 | 3 | 4 | 6 | 7  | 7  | 1  | 0  | 5  |
| Frame 0           | 7 | 7 | 7 |   |   |   |   |   |   |    |    |    |    |    |
| Frame 1           | Χ | 2 | 2 |   |   |   |   |   |   |    |    |    |    |    |
| Frame 2           | Χ | Χ | 3 |   |   |   |   |   |   |    |    |    |    |    |
| Page fault? (Y/N) |   |   |   |   |   |   |   |   |   |    |    |    |    |    |

Total page faults =\_\_\_\_\_

#### Submit the following file:

• CS149 HW5 YourName L3SID (.pdf, .doc, or .docx), which includes answers to all questions.

The ISA and/or instructor leave feedback to your homework as comments and/or annotated comment. To access annotated comment, click "view feedback" button. For details, see the following URL::

https://guides.instructure.com/m/4212/l/352349-how-do-i-view-annotation-feedback-comments-from-my-instructor-directly-in-my-assignment-submission

# Optional - Extra credit (up to additional 15 points on top of 100 points)

5. Assume that a system has a 32-bit logical address with N-KB page size (where N >= 1, and 1KB = 1024 bytes). Write a C program that accepts two command line parameters, the first one being a logical address in decimal notation and the second one being the value of N (in decimal notation). The program outputs the logical address, the page size, the page number and offset for the given logical address. For example,

./logicaladdr 19985 4

## The program should output

Logical address translation by <YourName> <L3SID> logical address 19985, page size = 4096 => page number = 4, offset = 3601

Replace YourName and L3SID with your own name, and last 3 digits of your SID. Test your program with the following **four** runs

- ./logicaladdr 15991 1
- ./logicaladdr 15992 2
- ./logicaladdr 15994 4
- ./logicaladdr 15998 8

and capture screenshots of your program execution.

Submission:

- At the end of the regular report, include screenshots of those four runs. Note each screenshot must include "Logical address translation by ...".
- Your source code, named as logicaladdr\_<YourName>\_<L3SID>.c