

IIT Madras ONLINE DEGREE

Mathematics for Data Science 2 Professor Sarang S. Sane Department of Mathematics Indian Institute of Technology Madras Week-6 Tutorial 2

(Refer Slide Time: 00:14)

Second example of a subspace
$$\frac{V = R^3}{W = \left\{ (x_1 y_1 z) \middle| \begin{array}{c} x_2 + 4y + 2z = 0 \\ y_1 y_2 + y_3 y_4 \end{array} \right\} } \frac{x_4 + 4y + 2z = 0}{(x_1 y_1 z)} , \quad \frac{x_1 y_2 + z_3 y_4 + z_4 y_4 + z_5 y_5 }{(x_1 y_2 z)}$$

$$W = \left\{ (x_1 y_1 z) \middle| \begin{array}{c} (x_1 y_2 z) \middle| \begin{array}{c} x_1 y_2 z \\ y_3 y_4 \end{array} \right\} } \frac{x_4 + 4y + 2z_4 = 0}{(x_1 + x_2) + (x_1 + x_2) + (x_1 + x_2) + (x_2 + x_2) + (x_1 + x_2) + (x_2 + x_2) + (x_$$

Now let us discuss another example of a subspace. So, suppose given vector spaces \mathbb{R}^3 , we know that \mathbb{R}^3 is a form of vector space over \mathbb{R}^1 and we let W is a subset which having the coordinate x, y, z and with the condition x - 4y + 2z = 0 and these x, y, z are taken from R.

So, now, we need to check is this W follow those three criteria, which we discussed earlier to check that W is a subspace or not. So, we know that 0 belongs to \mathbb{R}^1 . So, if you take 0, 0, 0 so this is an element of W, because this is follow the condition. Now, this is this element is 0 element of W, so let us take an element x, y, z and we add with 0 this 0 element, this element. So, we will get the same coordinate while addition will happen.

So, because as we discussed the addition and scalar, that operation which we which will be in \mathbb{R}^3 follow a W. So, it means coordinate y addition will happen so it will again x, y, z, so it means 0, 0, 0 is a 0 element of W. So, it means first test passed by W. Now, we need to check the second criteria, the second criteria is W should be closed under addition.

So, it means suppose W1 is an element of W, which is $x_1y_1z_1$ and W₂ is another element of W which is $x_2y_2z_2$. Now W1 is element of W it means it would follow the condition this it means $x_1 - 4y_1 + 2z_1 = 0$ and this will also follow the condition it means $x_2 - 4y_2 + 2z_2 = 0$.

Now, adding this $W_1 + W_2$ this will become $x_1, y_1, z_1 + x_2, y_2, z_2$ the coordinate as addition will happen. So, it will become the $x_1 + x_2, y_1 + y_2, z_1 + z_2$. Now, let us check is these three coordinates follows this condition or not. Then if this follow, if these recordings follow this condition, then we will say W is closed under addition. So, let us check $x_1 + x_2 - 4(y_1 + y_2) + 2(z_1 + z_2)$.

Now, if we arrange this term, because we can swap because these elements are from \mathbb{R}^3 and \mathbb{R}^3 having those things and we can arrange $x_1 - 4y_1 + 2z_1$ and the second one we can arrange as $x_2 - 4y_2 + 2z_2$ and this is 0 from here and second one is 0 from here it means these three coordinates make 0 with some scalar multiplication means follows this condition. So, it means $W_1 + W_2$ is element of W, it means W is closed under addition.

(Refer Slide Time: 04:35)

(ii)
$$C \in \mathbb{R}$$
, $\omega_1 = (x_1, y_1, z_1)$

$$C = (x_1, y_1, z_1)$$

$$C = (x_1 - 4y_1 + 2z_1)$$

$$= 0$$

$$C = 0$$

$$C =$$

Now, we need to check the third criteria. The third criteria is, taking any event from real number and an element from W_1 , from W which is let us say W_1 , x_1 , y_1 , z_1 and this scalar multiplication $C \times W$. If this is belongs to W, then W will follow \mathbb{R}^3 criteria and W become a subspace. So, let us C time W_1 let us check, then it will become C times x_1 , y_1 , z_1 and the coordinate wise multiplication will happen because these elements are from \mathbb{R}^3 and \mathbb{R}^3 is a vector space. So, $C \times x_1$, $C \times y_1$, $C \times z_1$.

Now, $C \times x_1 - 4 \times Cy_1 + 2$ time, $C z_1$ which is actually you can write C we can take common. So, $C \times x_1 - 4 \times Cy_1 + 2 \times z_1$, time and actually W_1, x_1, y_1, z_1 is element of W so it will follow these, it means this is, this will happen with W_1 , so it means this is 0, so it will become 0 it means this scalar multiplication is element of W. So it means, W follows all three criteria. So, W is a subspace of \mathbb{R}^3 over \mathbb{R}^1 .

(Refer Slide Time: 06:35)

Now, let us see it geometrically. So, geometrically \mathbb{R}^3 vector space \mathbb{R}^3 over \mathbb{R}^1 means, x axis y axis and z axis. So, this red line is actually x axis, this green line is y axis and this blue line is z axis. So, this is we can say this is a vector space whole \mathbb{R}^3 .

Now our subspace is given x, y, z coordinate with condition x - 4y + 2z = 0, x, y z is from \mathbb{R}^1 . So, actually, x - 4y + 2z is actually a plane, which we can see it here. This is the actually, this in \mathbb{R}^3 this is the subspace, this is the W, which having condition x - 4y + 2z = 0. So actually, this is representing in \mathbb{R}^3 a plane, which passes through origin. So, this plane is actually passes through origin, we can see it here.

