Project 2

Lila Balakrishnan, Andrew Cha, Connor Peace, Oren Romano, Qingran Shao

CSS 383: Bioinformatics

Dr. Zaneveld

Abstract

As antibiotics have become more easily accessible and have shown to be effective treatments, we have seen a rapid increase in antibiotic resistance. Antibiotic resistance to the quinolone class of antibiotics displays the threat that ARGs pose to the developing medical industry and well being of humans at a global scale. Quinolone antibiotics feature 5 different classes split up into several related subtypes. Of these subtypes, Ciprofloaxcin and Moxifloxacin are two commonly used antibiotics that are categorized under fluoroquinolones, which inhibit the enzymes DNA Gyrase and Topoisomerase IV. In this paper, we look at how different strains of bacteria respond to varying concentrations of the antibiotics Ciprofloxacin and Moxifloxacin.

Introduction

Ciprofloxacin and Moxifloxacin are antibiotics from the fluoroquinolone class of antibiotics that are commonly used to treat a large range of bacterial infections found throughout the body. These synthetic antibiotics work to defeat the infections by acting on essential enzymes the bacteria need to survive and grow. Without these enzymes functioning properly, it is likely that the DNA will break and cause an increase in mutations. Two of these essential enzymes include DNA gyrase and DNA topoisomerase IV which are involved in supercoiling and translocation that occurs throughout cell growth and division. Shortly after the discovery of these enzymes, it became evident that gyrase was targeted by quinolones. In a study that compared cell exposure to quinolones, wild-type cells with purified gyrase were not supercoiling as they normally would, while *gyrA* mutants seemed to resist the quinolone presence, thus proving that mutated gyrase (*gyrA*) alleles prevent any chromosome breakage when exposed to quinolone (antibiotic resistance).

Another gene that was observed to be quinolone-resistant was the *parC* gene. This gene is considered a subunit of DNA topoisomerase IV, and it was found that a mutation in the *parC* gene leads to a build-up of strong, interlocked molecules that prevent chromosome separation. Through these observations, it was clear that *parC* and *gyrA* were two gene mutations that correlated with antibiotic resistance to Ciprofloxacin and Moxifloxacin.

It is crucial to be able to identify these gene sequences in order to potentially predict resistant strains and apply this epidemiologically to antibiotic resistance. Over the years, the most common methods that have been used to detect similar gene sequences among antibiotic-resistant bacterial strains are PCR testing or microarrays. We are able to access a majority of this data from online databases that provide gene sequences for all or most of the known microbial species, as well as platforms, such as BLAST, that aid in pinpointing the specific *gyrA* and *parC* gene sequences in resistant bacteria.

Based on these findings, we decided to code a program that could assist in predicting antibiotic resistance in bacteria by identifying differences between *gyrA* and *parC* gene sequences of known resistant strains and various other bacterial gene sequences.

Our specific question: Can we predict antibiotic resistance based on the differences in gyrA and parC gene sequences of resistant strains in the regions affected by the antibiotic?

Materials and Methods

Measuring resistance

In order to determine antibiotic resistance, we first needed to calculate a weighted number that would serve as a relative rate of resistance to the antibiotic for each strain of bacteria. We were able to do so by looking at MIC data from the EUCAST website. This website provided us with the observed number of surviving bacteria at several different concentrations of Ciprofloxacin and Moxifloxacin; to calculate the relative determinant of antibiotic resistance, we applied this algorithm to each MIC distribution:

 Σ (# of surviving microorganisms recorded for the specific concentration * MIC) / the total number of microorganisms observed

 Table 1: MIC Distributions and Weighted Values for Ciprofloxacin Resistance

	0.002	0	0.01	0.016	0.03	0.06	0.13	0.25	0.5	1	2	4	8	16	32	64	128	256	512	Observat	Weighted Su	Weighted Value
Acinetobacter Iwoffii	0	0	0	3	12	59	73	47	21	8	11	3	1	0	15	9	0	0	0	262	1141.323	4.36E+00
Aerococcus urinae	0	0	0	0	0	0	0	6	13	6	0	5	0	0	0	0	0	0	0	30	34	1.13E+00
Alcaligenes faecalis	0	0	0	0	0	0	0	0	2	7	6	5	0	3	0	0	0	0	0	23	88	3.83E+00
Citrobacter braakii	0	0	2	3	2	3	0	0	0	0	0	0	0	0	2	0	0	0	0	12	64.304	5.36E+00
Citrobacter freundii	0	0	1	8	3	1	2	4	0	1	3	0	0	0	1	0	0	0	0	24	40.536	1.69E+00
Clostridium perfringens	0	0	0	0	0	1	2	12	4	2	1	1	0	0	0	0	0	0	0	23	13.31	5.79E-01
Enterobacter cloacae	236	423	330	434	419	207	89	96	80	60	26	36	28	25	33	7	10	2	3	2544	5823.863	2.29E+00
Enterococcus faecalis	0	0	0	2	9	3	34	231	3001	16971	6470	313	334	232	##	593	239	27	180	28980	217638	7.51E+00
Haemophilus influenzae	46	617	7962	7810	1419	59	32	11	11	11	9	15	6	3	5	0	0	0	0	18016	594.576	3.30E-02
Haemophilus parainfluenza	0	0	74	111	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	203	2.908	1.43E-02
Klebsiella oxytoca	0	0	192	553	389	156	106	50	47	45	37	56	27	22	25	12	1	1	0	1719	2943.664	1.71E+00
Klebsiella pneumoniae	0	4	227	767	1783	913	527	315	251	138	100	86	72	60	##	116	38	30	15	5591	35026.5	6.26E+00
Moraxella catarrhalis	0	0	24	938	6812	2060	261	17	21	5	3	3	0	0	0	0	0	0	0	10144	413.535	4.08E-02
Morganella morganii	0	15	78	182	45	9	6	1	2	9	8	4	4	2	4	3	0	3	0	375	1200.486	3.20E+00
Neisseria gonorrhoeae	3093	2012	871	311	150	73	101	158	206	261	568	683	711	366	##	46	6	39	0	10635	60919.18	5.73E+00
Neisseria meningitidis	68	1408	409	5	0	5	6	4	0	0	0	0	0	0	0	0	0	0	0	1905	11.17	5.86E-03
Serratia liquefaciens	0	0	0	3	3	2	4	0	0	0	0	0	0	0	0	1	0	0	0	13	64.758	4.98E+00
Serratia marcescens	0	0	6	8	67	221	302	57	52	85	82	49	25	7	8	7	2	0	0	978	1810.446	1.85E+00
Shigella flexneri	0	0	1	17	13	5	1	0	4	1	0	0	2	3	2	4	0	0	0	53	388.095	7.32E+00
Shigella sonnei	0	0	7	22	6	0	0	9	4	0	0	2	5	0	0	2	0	0	0	57	180.838	3.17E+00
Staphylococcus aureus	0	0	3	16	121	785	5424	####	####	2982	869	265	###	425	##	449	383	111	40	42369	174721	4.12E+00
Staphylococcus haemolyticu	0	0	3	0	1	19	142	214	58	12	28	13	285	117	17	34	26	96	0	1065	34997.44	3.29E+01
Staphylococcus hominis	0	0	1	0	2	31	170	75	36	34	30	42	182	0	2	1	0	0	0	606	1905.928	3.15E+00
Staphylococcus saprophytic	0	0	0	0	0	8	24	105	578	27	7	4	1	2	2	2	0	0	0	760	607.73	8.00E-01
Streptococcus agalactiae	0	0	2	0	0	4	30	106	1559	1511	279	14	2	9	2	0	0	0	193	3711	101975	2.75E+01
Streptococcus mitis	0	0	0	0	1	1	1	9	38	106	171	82	5	0	0	1	0	0	0	415	901.465	2.17E+00
Streptococcus pyogenes	0	0	0	2	3	4	54	3710	6962	967	855	75	7	1	5	0	0	0	234	12879	127432.6	9.89E+00
Streptococcus, viridans grou	0	0	0	0	0	0	5	13	110	147	194	129	39	14	5	3	3	4	0	666	3405.875	5.11E+00

Table 2: MIC Distributions and Weighted Values for Moxifloxacin Resistance

0.002	0.004	0.008	0.016	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512 Obse	ervations Weigh	hted Sum	Weighted Value
Bacteroides caccae							5	10	15	13	3	1	4	2					53	195.25	3.68396226
Bacteroides fragilis				2	47	142	544	786	287	133	113	104	42	19	19				2238	4882.63	2.18169347
Bacteroides thetaiotaomicron						4	4	46	200	66	13	9	16	6	3				367	1120.5	3.05313351
Bacteroides vulgatus					2	3	17	53	22	10	6	2	15	12	1				143	801.245	5.60311188
Citribacter freundii				21	80	52	21	33	10	5	8	76		1					307	725.68	2.36377850
Clostridium difficile							17	347	1186	1371	70	32	184	284	1732	2			5225 1	27777.75	24.4550717
Clostridium perfringens						4	49	56	5	2									116	49.75	0.42887931
Enterococcus cloacae				91	500	195	31	63	40	17	30	39	10	16	1	1			1034	1466.355	1.41813829
Enterococcus faecalis				3	44	250	2397	1647	143	88	66	1314	659	12				188	6811 1	19735.73	17.5797577
Enterococcus faecium					4	9	16	21	60	128	84	108	93	46	2				571	4619.865	8.090831874
Escherichia coli		9	78	932	1048	164	79	111	51	20	21	153	227	244	67	14	1		3219	19362.91	6.0151941
Haemophilus influenzae	47	662	7349	5043	855	147	33	13	8	11	7	1		1					14177	456.783	0.03222000
Haemophilus parainfluenzae		12	48	75	129	112	86	26	5	3	1								497	74.354	0.149605634
Klebsiella aerogenes				16	54	71	7	13	14	9	2	8	4	9					207	476.845	2.303599034
Klebsiella oxytoca				42	276	156	28	15	23	29	9	66	1	2					647	776.82	1.20064915
Klebsiella pneumoniae		1	1	219	1398	1240	278	347	301	117	93	116	63	73	8	2			4257	6435.474	1.511739253
Listeria monocytogenes					1	3	24	300	66										394	222.435	0.564555838
Moraxella catarrhalis		1	45	653	2827	586	80	7	4	1	2								4206	300.688	0.071490252
Morganella morganii			2	16	127	343	152	23	15	9	30	42	14	4	6	2			785	1581.507	2.014658599
Neisseria gonorrhoeae	128	100	223	396	282	42	15	13	9	32	47	81	144	43	3				1558	4830.18	3.100243902
Proteus mirabilis				12	89	487	1550	714	116	46	79	199	45	30	5	2			3374	5183.075	1.536181091
Proteus vulgaris				18	72	277	299	73	28	14	2	11	2	1		1			798	494.735	0.619968672
Pseudomonas aeruginosa			1	17	19	86	236	758	1924	976	620	671	208	180	182	443	8		6329 9:	1662.416	14.48292242
Staphylococcus aureus			144	5428	6123	1821	232	131	255	649	530	1171	4	2					16490 14	4052.649	0.852192177
Staphylococcus epidermidis				298	1750	1360	163	570	1600	1948	1049	557	181					218	9694 12	29269.69	13.33502063
Staphylococcus hominis				10	71	20	7	12	54	27	86	48							335	850.81	2.539731343
Staphylococcus lugdunensis							7	1											8	2.25	0.28125
Staphylococcus saprophyticus				1	22	67	23	6	16	19	12	5	5					243	419 124	4656.475	297.5094869
Staphylococcus warneri				2	41	86	4	1	1	6	6	6	8					251	412 17	28739.77	312.4751699
Streptococcus agalactiae		1		6	56	371	435	61	11		9							197	1147 10:	1100.173	88.1431325
Streptococcus intermedius				2	6	16	1												25	2.67	0.106
Streptococcus mitis				12	18	152	82	12	1		3	3							283	83.94	0.29660777
Streptococcus pneumoniae		1	12	167	3570	18150	4183	313	35	97	67	17	1					233	26846 12	23635.41	4.60535685
Streptococcus pyogenes			2	36	696	3518	1051	129	6	1	1		1					240			
Streptococcus, viridans group				1	42	145	64	8	3	3									266	49.675	0.18674812

Using these weighted numbers, we were then able to determine a comparable level of resistance among the strains.

Table 3: Condensed table of Weighted MIC Resistance for Moxifloxacin and Ciprofloxacin

Bacteria Name	Moxifloxacin Weighted MIC	Ciprofloxacin Weighted MIC
Acinetobacter Iwoffii		4.356194656
Aerococcus urinae		1.133333333
Alcaligenes faecalis		3.826086957
Citrobacter braakii		5.358666667
Bacteroides caccae	3.683962264	
Bacteroides fragilis	2.181693476	
Bacteroides thetaiotaomicron	3.053133515	
Bacteroides vulgatus	5.603111888	
Citrobacter freundii	2.363778502	1.689
Clostridium perfringens	0.42887931	0.578695652
Enterobacter cloacae		2.289254324
Enterococcus cloacae	1.418138298	
Enterococcus faecalis	17.57975774	7.509937267
Enterococcus faecium	8.090831874	
Escherichia coli	6.01519416	
Haemophilus influenzae	0.032220004	0.033002664
Haemophilus parainfluenzae	0.149605634	0.014325123
Klebsiella aerogenes	2.303599034	
Klebsiella oxytoca	1.20064915	1.712428156
Klebsiella pneumoniae	1.511739253	6.264800393
Listeria monocytogenes	0.564555838	
Moraxella catarrhalis	0.071490252	0.040766463
Morganella morganii	2.014658599	3.201296
Neisseria gonorrhoeae	3.100243902	5.728178937
Neisseria meningitidis		0.005863517
Proteus mirabilis	1.536181091	
Proteus vulgaris	0.619968672	
Pseudomonas aeruginosa	14.48292242	
Serratia liquefaciens		4.981384615
Serratia marcescens		1.851171779
Shigella flexneri		7.32254717
Shigella sonnei		3.172596491
Staphylococcus aureus	0.852192177	4.123793575
Staphylococcus epidermidis	13.33502063	
Staphylococcus haemolyticus		32.86144977
Staphylococcus hominis	2.539731343	3.14509571
Staphylococcus lugdunensis	0.28125	
Staphylococcus saprophyticus	297.5094869	0.799644737
Staphylococcus warneri	312.4751699	
Streptococcus agalactiae	88.14313252	27.47911776
Streptococcus intermedius	0.1068	
Streptococcus mitis	0.296607774	2.172204819
Streptococcus pneumoniae	4.60535685	
Streptococcus pyogenes	21.77748143	9.89460455
Streptococcus viridans	0.18674812	5.11393

Combining the gyrA and parC FASTA files

After downloading the gyrA and parC gene sequences as FASTA files from each of the bacteria strains found in **Table 1** and **2**, we needed to combine them into two FASTA files, one for all of the gyrA sequences and one for all of the parC sequences, so that we could perform two multiple sequence alignments. To do this, we wrote a python script that looped through each file in the folder containing each of the sequences and created two separate lists of file names, one for the gyrA sequences and one for the parC sequences. We printed the length of these lists as a manual check to ensure they were the same length. These lists allowed us to use a single *combine_fasta* method for both genes which accepted a list of filenames and an output file name and output a combined FASTA with the given name.

The method to create the combined FASTA was straightforward. First, we opened our output file with the given file name, throwing an exception if a file with that name already existed. Then, we first checked if the file existed that we were trying to read. If any files didn't exist, something that we did not expect to happen with our method of creating the file names, an error would print to the console. Next, we opened the file and read its contents into the combined FASTA file, including its identification line. This repeated for each file name until the end of the list of file names was reached, and we closed and saved the combined FASTA file.

The combined FASTA files were uploaded to our shared Google Drive folder with names that were agreed upon in advance so that our team could perform the multiple sequence alignments.

Multiple sequence alignment

As a pairwise sequence alignment will set two sequences into a 2D plane to compare, multiple sequence alignments will create an N-degree matrix to find the best alignment of the N sequences. The challenge is how two control the granularity or accuracy when comparing multiple data. In sequence alignment, it is easy to set the average weight of two pieces of sequences, but it is hard to tell which sequence is a priority when the number of sequences is above 3. To deal with this scenario, MUSCLE provides a good solution. The combined FASTA files created by our group were each inputted into the MUSCLE sequence alignment tool to provide an optimal sequence alignment.

Sequence processing for modeling

In order to create machine learning models to predict the MIC resistance levels of bacteria, we needed to develop a way to convert the DNA sequences into numerical equivalents. Initially, we used a percent identity matrix (PIM) comparing the gene sequence of all the species in our dataset to each other. The PIM was created using the ClustalW software. However, the result of this technique was that we ended up with an *nxn* matrix of percent comparisons for n species. Since we had no way to distill this information into the relevant comparison numbers for determining the MIC value of a single species, we determined that a more accurate means of

evaluating the sequences needed to be used. We then tested using a Transitive Consistency Score (TCS) for each gene of the different species as a predictive value. We generated these numbers using the aligned sequences from earlier and running them through the TCS software developed by TCoffee (Chang et al.). This provided a single value for each DNA sequence—since we were examining two genes for each species, this resulted in two numbers for each bacteria strain. This provided much more useful feature data to use in our machine learning models. In addition to this, we tested using k-merization and vectorization as a means to turn DNA sequences into a more comprehensive dataset. K-merization (the bag of words model), one hot encoding, and vectorization are tools that feature prominently in natural language processing (NLP) and deep learning. Based on the average sequence length of our data, we decided the best length of our "words" should be 6 letters long (hexamers). We initially examined the concept of one hot encoding to establish numerical equivalences for the hexamers. However, due to a large number of hexamers and the fact that each "word" would require six arrays, we rejected using this idea due to the excessive memory and time that would be required. As such, we decided to use the CountVectorization function in sklearn to implement the word-to-vector encoding and used this for further models.

Hidden Markov model

The Hidden Markov model is the most complex and esoteric model among shallow mechanical learning models. The basis of the hidden Markov model is the Bayesian principle and Bayesian changes. The problem that this model hopes to solve is to find a model between positive data and potential data, and predict the best model.

In this project, we hope to protect the antibiotic-resistant in MIC by obtaining new DNA. Therefore, we will get the second type of HMM suitable: machining learning problem by known DNA sequence, through model simulation to obtain better DNA prediction.

The algorithms are the Baum-Welch algorithm and Vibter algorithm. The Baum-Welch algorithm uses the largest application program to obtain the maximum likelihood estimation of hidden Markov model parameters given a set of model features. By finding the frequency of the DNA pair...

{AA,AG,AT,AC} {GA,GG,GT,GC} {TA,TG,TT,TC} {CA,CG,CT,CC}

... the model is able to get a transition matrix about DNA, and then after re-estimating the emission matrix (according to the occurrence of MIC, it can be divided into three states: low,

medium, and high). The algorithm will look for the biggest complaint until the complete DNA sequence is read.

The Vibiter algorithm uses this model. By feeding the new DNA sequence to the model and comparing the MIC returned to the actual MIC, the verification of the MIC comes from the synthesis of the model algorithm.

The following picture (HMM-01) shows the HMM in our project:

(HMM-01)

Discussion

Issue with overfitting

By using sequences we collected from the PATRIC database for ciprofloxacin and moxifloxacin we expected our accuracy for identifying resistance to increase proportionally with additional sequencing data. Using the MIC weighted values for antibiotic resistance as a comparative point, we established a model aligning similar sequences for each strain of bacteria to isolate possible antibiotic resistance genes. By using multiple sequence alignment for gyrA and parC genes, our model was able to recognize defined antibiotic resistance at a low accuracy with the first set of

ciprofloxacin data. The introduction of moxifloxacin data proved to be difficult as some strains of bacteria lacked parC gene features in complete genomes, leading to negative accuracy when run independently. As we combined the data sets together accuracy improved, so negative accuracy may be a result of too little data or inconsistencies between featured data sets.

Another potential feature of our project was the Hidden Markov Model. Due to a lack of time, a complete HMM was unable to come to fruition however it would have proved very useful in establishing a model for antibiotic resistance in bacteria with hidden states. The similarity of potential data is the scale of the data model by establishing a statement model relationship. However, since HMM is a model born based on Bayesian theory, the following assumptions are required to establish an HMM model.

- 1. The representational data are mutually independent, and the recessive number is (time) homogeneous
- 2. State: When a random process is in the present and all past states, its future state causes interruption only depends on the current state.

In other words, when the current state is given, it is related to the past state (that is, the historical path of the process). It is conditionally independent.

Due to these two prerequisites, HMM only appears in a small amount of data, and when the amount of data may increase, or it will cause the amount of data to increase simultaneously with HMM. In the specific direction of the DNA sequence, the possibility of each gene is implicitly related to the front and back of the gene, and this may be related to chemical reactions and chemical bonds. Deep learning will perform better than HMM. But it does not mean that HMM loses its meaning at this moment. The currently measured DNA sequence and MIC preparation support deep learning to establish an accurate model. When predicting the antibiotic resistance of new DNA, HMM will get a relatively more accurate estimate. This is the significance of MHH in the project.

Adding additional data and incorporating an HMM would greatly increase the accuracy of our project and allow us to properly identify sequences of antibiotic-resistant genes. An extension of this project would be applying this model to other animal genomes for identifying factors or sequences for diseases. In combination with CRISPR, gene mapping and therapy could reinforce the medical field by eliminating genetically-tied diseases.

Results

The initial stage of our experiment had very limited data (only 28 bacterial strains of which we could only train the data on 22 points). This led to our prediction accuracy being quite low, averaging at approximately 11% (Supplemental Data Fig. 1). However, our results did seem to show that the ML process could predict the lower resistance levels with higher accuracy (around 64% taking into account the error margin). The low number of data with extremely high resistance levels led to a few outliers that severely impacted our prediction accuracy.

Our low accuracy in our initial experiment led to us expanding our dataset to include other antibiotics in the fluoroquinolone family, specifically moxifloxacin. This added another 33 bacteria species to our dataset. Furthermore, while we expanded our data in terms of the number of strains, we also decided to further develop our method of analyzing the DNA sequences that we were using to predict resistance levels. We implemented the use of a single value similarity score distilled from the TCS. We also decided to test out other machine learning algorithms in order to determine if an alternate option may provide better results. We implemented the Support Vector Regression model, which increased the accuracy of our predictions from the initial state of 11% to 35% accuracy. We implemented the TCS scores as our ML features in the Random Forest Regression model we had been using. By doing so, we were able to increase the accuracy of our prediction model to 63%.

We tested another method of sequence analysis and evaluation in order to determine the impact this had on our models. Using the DNA sequence strings, we divided each into a set of overlapping hexamers ("words" six letters long). Using a word-to-vector technique, we were able to create numerical representations of each sequence, and use that as our features data for the machine learning models. This k-mer sequence representation was tested in our Random Forest Regression model and our Support Vector Regression model. Using this, our models gave us a 76% and 36% accuracy, respectively.

While this was not a significant improvement for the SVR model, there was a significant increase in accuracy using Random Forest. Our experimental model overall increased in accuracy from 11% to 76% over the course of our experiment.

We aimed to test some of these data combinations in a Hidden Markov Model, however, implementing it in our current timeframe was not feasible. In the future, we hope to be able to test out the HMM and further experiment in order to optimize our solution to this problem.

Figure 1: Comparing the Random Forest predictions (blue) and SVR predictions (red) to the actual MIC number (green).

```
[314]: print('Training Features Shape:', train_features.shape)
       print('Training Labels Shape:', train_labels.shape)
       print('Testing Features Shape:', test_features.shape)
       print('Testing Labels Shape:', test_labels.shape)
       Training Features Shape: (22, 28)
       Training Labels Shape: (22,)
       Testing Features Shape: (6, 28)
       Testing Labels Shape: (6,)
[315]: from sklearn.ensemble import RandomForestRegressor
       # Instantiate model with 1000 decision trees
       rf = RandomForestRegressor(n_estimators = 1000, random_state = 16)
       # Train the model on training data
       rf.fit(train_features, train_labels)
[315]: RandomForestRegressor(n_estimators=1000, random_state=16)
[318]: predictions = rf.predict(test_features)
       # Calculate the absolute errors
       errors = abs(predictions - test_labels)
       print(predictions)
       print(test_labels)
       # Print out the mean absolute error (mae)
       print('Mean Absolute Error:', round(np.mean(errors), 2))
       [2.87580718 4.25897317 5.8105842 3.70545577 1.1053376 3.26321117]
       [32.86144977 7.50993727 27.47911776 1.13333333 5.72817894 3.82608696]
       Mean Absolute Error: 10.44
[317]: # Calculate mean absolute percentage error (MAPE)
       mape = 100 * (errors / test_labels)
       # Calculate and display accuracy
       accuracy = 100 - np.mean(mape)
       print('Accuracy:', round(accuracy, 2), '%.')
       Accuracy: 10.71 %.
```

Figure 2: Random Forest modeling from Project 1. Using only the Percent Identity Matrix as feature evaluation.

```
[42] 1 X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X_gyrAC, Y
  1 SupportVectorRegModel = SVR()
      2 SupportVectorRegModel.fit(X_train,Y_train)
      3 Y_pred = SupportVectorRegModel.predict(X_test)
      4 print(Y_pred)
      5 print(Y_test)
      6 mae = mean_absolute_error(Y_test,Y_pred,multioutput='raw_values')
      7 er=abs(Y_pred-Y_test)
      8 print(mae)
      9 perr = 100 * (er/Y test)
     10 print('Accuracy: ', 100- np.mean(perr), '%') #CIPRO PERCENT ACCURACY

    [2.08576253 2.11395013 2.12801082 2.13672888 2.00762582 2.01230012

      2.00683144 2.01352654 2.01385161 2.01380248 2.02696643]
     0.79964474 27.47911776 2.17220482 9.89460455 5.11393 ]
     [7.28663805]
     Accuracy: 35.26862549965166 %
Figure 3: Support Vector Regression model using k-mer econding of sequences.
      1 predictions = rf.predict(test_features)
      3 # Calculate the absolute errors
      4 errors = abs(predictions - test_labels)
      5 print(predictions)
      6 print(test_labels)
      8 # Print out the mean absolute error (mae)
      9 print('Mean Absolute Error:', round(np.mean(errors), 2))
 [5.17279808 1.73286418 6.81096128 3.44742671 4.0973224 6.73872015
      0.62853459 6.78013271 1.76458131 6.84113125 5.46721843]
     0.79964474 27.47911776 2.17220482 9.89460455 5.11393
     Mean Absolute Error: 4.72
      1 # Calculate mean absolute percentage error (MAPE)
      2 mape = 100 * (errors / test_labels)
      4 # Calculate and display accuracy
      5 accuracy = 100 - np.mean(mape)
      6 print('Accuracy:', round(accuracy, 2), '%.')
```

Figure 4: Random Forest Regression modeling using k-mer encoding of sequences.

Accuracy: 76.43 %.

References

- Card R, Zhang J, Das P, Cook C, Woodford N, Anjum MF. 2013. Evaluation of an Expanded Microarray for Detecting Antibiotic Resistance Genes in a Broad Range of Gram-Negative Bacterial Pathogens. Antimicrob Agents Chemother. 57(1):458–465. doi:10.1128/AAC.01223-12.
- 2. Davies J, Davies D. 2010. Origins and Evolution of Antibiotic Resistance. MMBR. 74(3):417–433. doi:10.1128/MMBR.00016-10.
- 3. Dost B. 2010. Optimization algorithms for biological data. La Jolla: University of California, San Diego. [accessed 2021 Apr 15]. http://escholarship.org/uc/item/0s47h26s.
- 4. Drlica K, Zhao X. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev. 61(3):377–392.
- 5. Festa P. 2007. On some optimization problems in molecular biology. Mathematical Biosciences. 207(2):219–234. doi:10.1016/j.mbs.2006.11.012.
- Munita JM, Arias CA. 2016. Mechanisms of Antibiotic Resistance. Microbiology Spectrum. 4(2). doi:10.1128/microbiolspec.VMBF-0016-2015. [accessed 2021 Apr 16]. http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.VMBF-0016-2015.
- 7. Mustafa GR, Li C, Zhao S, Jin L, He X, Shabbir MZ, He Y, Li T, Deng W, Xu L, et al. 2021. Metagenomic analysis revealed a wide distribution of antibiotic resistance genes and biosynthesis of antibiotics in the gut of giant pandas. BMC Microbiol. 21(1):15. doi:10.1186/s12866-020-02078-x.
- 8. O'Shea K, Nash R. 2015 Dec 2. An Introduction to Convolutional Neural Networks. arXiv:151108458 [cs]. [accessed 2021 Apr 16]. http://arxiv.org/abs/1511.08458.
- 9. Park Y, Kellis M. 2015. Deep learning for regulatory genomics. Nat Biotechnol. 33(8):825–826. doi:10.1038/nbt.3313.
- Patel S. 2014. Role of Proteomics in Biomarker Discovery. In: Advances in Protein Chemistry and Structural Biology. Vol. 94. Elsevier. p. 39–75. [accessed 2021 Apr 15]. https://linkinghub.elsevier.com/retrieve/pii/B9780128001684000032.
- 11. Reali F, Priami C, Marchetti L. 2017. Optimization Algorithms for Computational Systems Biology. Front Appl Math Stat. 3. doi: 10.3389/fams.2017.00006. [accessed 2021 Apr 15]. http://journal.frontiersin.org/article/10.3389/fams.2017.00006/full.
- 12. Volz C, Ramoni J, Beisken S, Galata V, Keller A, Plum A, Posch AE, Müller R. 2019. Clinical Resistome Screening of 1,110 Escherichia coli Isolates Efficiently Recovers Diagnostically Relevant Antibiotic Resistance Biomarkers and Potential Novel Resistance Mechanisms. Front Microbiol. 10:1671. doi:10.3389/fmicb.2019.01671.

- 13. Wang Y, Zhang X-S, Chen L. 2010. Optimization meets systems biology. BMC Syst Biol. 4 Suppl 2:S1. doi:10.1186/1752-0509-4-S2-S1.
- 14. Whetton AD, Preston GW, Abubeker S, Geifman N. 2020. Proteomics and Informatics for Understanding Phases and Identifying Biomarkers in COVID-19 Disease. J Proteome Res. 19(11):4219–4232. doi:10.1021/acs.jproteome.0c00326.
- 15. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy. 67(11):2640–2644. doi:10.1093/jac/dks261.
- 16. Zhang N, Juneau P, Huang R, He Z, Sun B, Zhou J, Liang Y. 2021. Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils. Geoderma. 382:114760. doi:10.1016/j.geoderma.2020.114760.
- 17. Zhang X-X, Zhang T, Fang HHP. 2009. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 82(3):397–414. doi:10.1007/s00253-008-1829-z.
- 18. Zhang Y, Shen G, Hu S, He Y, Li P, Zhang B. 2021. Deciphering of antibiotic resistance genes (ARGs) and potential abiotic indicators for the emergence of ARGs in an interconnected lake-river-reservoir system. Journal of Hazardous Materials. 410:124552. doi:10.1016/j.jhazmat.2020.124552.