Bluetooth 5.4

Study of how pairing algorithm work and what is new in version 5.4 and how encryption is done

Tirelli Andrea - 191979

Bluetooth - Intro

Pairing

• BT 5.4 - PAwR Encryption

Pairing - Intro

The first step in establishing a Bluetooth connection is the pairing process.

"Two devices discovering each other and establishing a connection."

- Discovery
- Pairing request & response
- Authentication

Pairing - Additional knowledge (non crypto)

Network form by two or more devices is called **piconet**.

→ network form by multiple piconet is called scatternet.

Type of links:

- Synchronous Connection-Oriented (SCO)
- Asynchronous Connection-Less (ACL)

Pairing - Request/Response packet

Field	ield Code		ООВ	AuthReg (1 Byte)					Maximum	Initiator	Responder
Sub- define	(1 Byte)	Cap (1	DF (1	BF	МІТМ	sc	KP	Reserved	Encryption Key Size	Key Distribution	Key Distribution
		Byte)	Byte)						(1 Byte)	(1 Byte)	(1 Byte)
Bits*	8	8	8	2	1	1	1	3	8	8	8

Table 1 Pairing Request/Response

- IO Cap
- OOB DF
- MitM
- SC
- Max Encryption Key Size

^{*}Bit order is LSB to MSB.

Pairing - Authentication algorithm

	Initiator									
Responder	DisplayOnly	Display YesNo	Keyboard Only	NoInput NoOutput	Keyboard Display					
Display Only	Just Works Unauthenti- cated	Just Works Unauthenti- cated	Passkey Entry: responder displays, ini- tiator inputs Authenti- cated	Just Works Unauthenti- cated	Passkey Entry: responder displays, initiator inputs Authenti- cated					
Display YesNo	Just Works Unauthenti- cated	Just Works (For LE Legacy Pairing) Unauthenti- cated	Passkey Entry: responder displays, ini- tiator inputs	Just Works Unauthenti- cated	Passkey Entry (For LE Legacy Pairing): responder displays, in tiator inputs Authenti- cated					
		Numeric Comparison (For LE Secure Con- nections) Authenti- cated	Authenti- cated		Numeric Compariso (For LE Secure Con nections) Authenti- cated					
Keyboard Only	Passkey Entry: initia- tor displays, responder inputs Authenti- cated	Passkey Entry: initia- tor displays, responder inputs Authenti- cated	Passkey Entry: initia- tor and responder inputs Authenti- cated	Just Works Unauthenti- cated	Passkey Entry: initia tor displays responder inputs Authenti- cated					
NoInput NoOutput	Just Works Unauthenti- cated	Just Works Unauthenti- cated	Just Works Unauthenti- cated	Just Works Unauthenti- cated	Just Works Unauthenti cated					
Keyboard Display	Passkey Entry: initia- tor displays, responder inputs	Passkey Entry (For LE Legacy Pairing): initiator dis- plays, responder inputs Authenti- cated	Passkey Entry: responder displays, ini- tiator inputs	Just Works Unauthenti- cated	Passkey Entry (For LE Legacy Pairing): initiator dis- plays, responder inputs Authenti- cated					
	Authenti- cated	Numeric Comparison (For LE Secure Con- nections)	Authenti- cated		Numeric Compariso (For LE Secure Connections)					
		Authenti- cated			Authenti- cated					

- Legacy Pairing: Just Work
- Secure Pairing: Numeric Comparison

NOTE: Legacy Pairing != Unauthenticated

Pairing - Just Work & Numeric Comparison (1)

Comparison:

Just Work and Numeric

- DHKey exchange
- 2. Generation of nonce
- 3. Calculate commit
- 4. Share commit(s)
- Check commit(s)

ONLY Numeric Comparison:

+ Verification (and so authentication) of the commit value

lote.

^{*} P256(), Elliptic-Curve Diffie-Hellman fuction.

^{*} f4() is used to generate confirm values during the pairing process.

^{*} g2() is used to generate the 6-digit numeric comparison values during authentication process.

^{*} For details about cryptographic toolbox, please refer to Bluetooth Core Spec v5.0. Vol 3. Part H. Section 2.2.

Pairing - Just Work & Numeric Comparison (2)

Just Work, the problem:

"When Just Works is used, the commitment checks (steps 7a and 7b) are not performed, and the user is not shown the 6-digit values."

→ Possible attack: Man-in-the-Middle

https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/security-manager-specification.html

Pairing - Just Work & Numeric Comparison (3)

Note:

- * P256(), Elliptic-Curve Diffie-Hellman fuction.
- * f4() is used to generate confirm values during the pairing process.
- * g2() is used to generate the 6-digit numeric comparison values during authentication process.
- * For details about cryptographic toolbox, please refer to Bluetooth Core Spec v5.0, Vol 3, Part H, Section 2.2.

Pairing - Long Term Key (LTK)

It is important to highlight that after the **authentication** phase terminate with success, it is **not possible** for an attacker to attack the scheme.

PAwR - Intro

Main goal -> Define structures and algorithm that is required for this type of communication.

+ (BT 5.4) support for response by the slaves of the network.

Before 5.4 (so in BT ≤ 5.3) every manufacturer could implements it's own way to do that.

PAwR - Packet structure

Encrypted Data AD type

- Encrypted Data:
 - Randomizer, used to formulate the *nonce*
 - o 2 AD
 - ESL*
 - Local Name*
 - MIC, Message Integrity Check, Bluetooth name definition for the MAC
- Unencrypted Data:
 - Flags

^{*}This AD might be different, this is the case for and ESL environment

PAwR - Security Guarantees

- Confidentiality
- Authentication

This indicates to apply an AEAD scheme...

But it is not possible to apply the notions given to us by literature:

- Encrypt-then-MAC
- 2 Keys
 - 1 key for authentication AES-CMAC
 - 1 key for confidentiality AES-CBC

PAwR - CCM mode (1)

Scheme follow the mode: Authenticate-then-Encrypt

CBC-MAC: authentication

CTR Mode: encryption

Important notes:

"The nonce of CCM must be carefully chosen to never be used more than once for a given key. This is because CCM is a derivation of counter (CTR) mode and the latter is effectively a stream cipher."

Housley, Russ (December 2005). <u>"rfc4309"</u>. IETF: 3. AES CCM employs counter mode for encryption. As with any stream cipher, reuse of the same IV value with the same key is catastrophic.

PAwR - CCM mode (2)

Notice how CTR Mode use **K** and **counter**, this form a sort of **Stream cipher** to encrypt data.

KNOB - Key Negotiation of Bluetooth Attack (1)

Idea: negotiate a lower **size key** (1byte)

1 byte key ciphertext ct=Enc(K'c, pt)

Entropy negotiation is **not encrypted** and **not authenticated**.

KNOB - Key Negotiation of Bluetooth Attack (2)

"For the encryption algorithm, the key size (N) may vary between 1 and 16 octets (8-128 bits). The size of the encryption key is configurable for two reasons. The first has to do with the many different requirements imposed on cryptographic algorithms in different countries - both with respect to export regulations and official attitudes towards privacy in general. The second reason is to facilitate a future upgrade path for the security without the need of a costly redesign of the algorithms and encryption hardware; increasing the effective key size is the simplest way to combat increased computing power at the opponent side."

https://www.youtube.com/watch?v=v9Xq9XcnNh0