Name	of Course	Class	Formal	Methods	- Tutorial
ranie	or Course	. Otass.	rumai	Mennoas	- Luiuliai

Due on A Month at Midnight

 $Rozier\ Professor:\ A\ Time$

Soumyabrata Talukder Soumyabrata Talukder

Give an appropriate positive constant c such that $f(n) \le c \cdot g(n)$ for all n > 1.

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

Solution

We solve each solution algebraically to determine a possible constant c.

Part One

$$n^{2} + n + 1 =$$

$$\leq n^{2} + n^{2} + n^{2}$$

$$= 3n^{2}$$

$$\leq c \cdot 2n^{3}$$

Thus a valid c could be when c = 2.

Part Two

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

Thus a valid c is c = 2.

Part Three

$$n^{2} - n + 1 =$$

$$\leq n^{2}$$

$$\leq c \cdot n^{2}/2$$

Thus a valid c is c = 2.

Let $\Sigma = \{0,1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5.

Let the state q_k indicate the remainder of k divided by 5. For example, the remainder of 2 would correlate to state q_2 because 7 mod 5 = 2.

Figure 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

Problem 3

Write part of Quick-Sort(list, start, end)

```
1: function QUICK-SORT(list, start, end)
```

- 2: **if** $start \ge end$ **then**
- 3: return
- 4: end if
- 5: $mid \leftarrow PARTITION(list, start, end)$
- 6: QUICK-SORT(list, start, mid 1)
- 7: QUICK-SORT(list, mid + 1, end)
- 8: end function

Algorithm 1: Start of QuickSort

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0$, $\forall i \neq j$.

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta_1}$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$\begin{aligned} \mathbf{E}[\hat{\beta}_1] &= \mathbf{E}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i \mathbf{E}[Y_i]}{\sum x_i^2} \\ &= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2} \\ &= \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2} \\ &= \beta_1 \end{aligned}$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\begin{aligned} \operatorname{Var}[\hat{\beta_1}] &= \operatorname{Var}\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{\sum x_i^2}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \operatorname{Var}[Y_i] \\ &= \frac{1}{\sum x_i^2} \sigma^2 \\ &= \frac{\sigma^2}{\sum x_i^2} \end{aligned}$$

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

Proof. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \ge n_0, \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \leq a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \leq c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \ldots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$\leq c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

Problem 6

What are the connectives in propositional logic?

Connectives				
Connective Pronunciation		Meaning	Alternative pronunciations / notations	
_	not	$\neg a$: a is false	-a; ! a	
\wedge	and	$a \wedge b$; a and b are both true	a*b; ab; a&&b a&b	
V	or	$a \lor b$: at least one of $\{a, b\}$	a+b; a b; a b	
		is true		
\Rightarrow	implies	$a \Rightarrow b$: equivalent to $\neg a \lor b$	$a \to b$; $a \supset b$; if a then b; a only	
			if b; b if a; b is necessary for a; a	
			is sufficient for b	

Problem 7

This is not a problem. It is an example of a table-formatted proof with subproofs that have subproofs.

1	H -has-2 \Rightarrow P -unsafe \land G -unsafe \lor J -unsafe \land P -unsafe \lor	WaterWorld axiom,
	G -unsafe \wedge J -unsafe	choosing a grouping
		of the ternary \vee ,
		as justified by \vee
		commutativity
2	subproof: $\vdash H$ -has-2	

2.a		$\vdash H$ -has-2 \land J-safe		Premise	
2.b		$\vdash H$ -has-2		∧Elim (left), line 2.a	
3	P -unsafe \wedge G -unsaf	$fe \land G\text{-}unsafe \lor J\text{-}unsafe \land P\text{-}unsafe \lor G\text{-}unsafe \land$			
	J- $unsafe$				
4	subproof: $\vdash \neg J$ -unsaj	fe			
4.a		H -has- $2 \wedge J$ -safe		Premise	
4.b		J-safe		∧Elim (right), line	
		7 0 7 0		4.a WaterWorld axiom	
4.c			J -safe $\Rightarrow \neg J$ -unsafe		
4.d		,	$\neg J$ -unsafe		
5	subproof: $\vdash P$ -unsafe	_	$\land G$ -unsafe		
5.a		subproof: G -unsafe \land	J - $unsafe \vdash \mathtt{false}$		
5.a.i			G -unsafe $\land J$ -unsafe	Premise for subproof	
5.a.ii			J- $unsafe$	∧Elim (right), line	
				5.a.1	
5.a.iii			false	falseIntro, lines 4,	
5.b		$\neg (G\text{-}unsafe \land J\text{-}unsafe)$		5.a.2 RAA, line 5.a	
5.c		· ,		CaseElim (right),	
3.0		$P\text{-}unsafe \wedge G\text{-}unsafe \vee J\text{-}unsafe \wedge P\text{-}unsafe$		lines 3, 5.b	
5.d		subproof: J - $unsafe \land P$ - $unsafe \vdash false$		inies 5, 5.b	
5.d.i		suspicion o unoujeri	J -unsafe $\land P$ -unsafe	Premise for subproof	
5.d.ii			J-unsafe	∧Elim (left), line	
Jan				5.d.1	
5.d.iii			false	falseIntro, lines 4,	
				5.d.2	
5.e		$\neg J$ -unsafe \land P -unsaf	RAA, line 5.d		
5.f		P - $unsafe \land G$ - $unsafe$		CaseElim (right),	
_			lines 5.c, 5.e		
6	G-unsafe			\wedge Elim (right), line 5	

Translate the following English requirement into a Linear Temporal Logic (LTL) formula φ : "The value of p must oscillate at every tick of the system clock."

$$\varphi = \Box((p \land \mathcal{X} \neg p) \lor (\neg p \land \mathcal{X} p))$$

This formula describes a *computation*; let's call it π . Draw the first 14 time steps of computation π , showing the values of p at each time step. Assume p is initialized to 0.

We draw the computation for this formula in Figure 2.

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Problem 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals $\int_0^1 (1-x^2) \mathrm{d}x$ and $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$.