Tyberiusz Seruga 19.05.2016

Sprawozdanie z zajęć laboratoryjnych

Algorytmy grafowe – przeszukiwanie BFS i DFS

1. Wstęp:

Celem ćwiczenia było zaimplementowanie grafu oraz metod jego przeszukiwania: przeszukiwanie w głąb ("DFS") i wszerz ("BFS").

Jako metodę reprezentacji gradu wybrano macierz sąsiedztwa ze względu na złożoność sprawdzenia istnienia krawędzi O(1), oraz prostotę implementacji. Wadą tej implementacji jest duża złożoność pamięciowa $O(n^2)$, gdzie n to liczba wierzchołków. Złożoność przejrzenia wszystkich krawędzi to $O(V^2)$.

Dla każdej liczby n wierzchołków, stworzono n+0.3n krawędzi losowo rozmieszczonych między istniejącymi wierzchołkami.

2. Wyniki:

BFS:				DFS			
n:	10	100	1000	n:	10	100	1000
	0,004	0,015	0,218		0,001	0,108	10,038
	0,004	0,014	0,218		0	0,109	9,903
	0,004	0,015	0,218		0,001	0,108	9,901
	0,004	0,015	0,218		0	0,109	9,843
	0,004	0,015	0,218		0,001	0,109	9,902
	0,004	0,015	0,224		0	0,109	9,907
	0,004	0,014	0,219		0,001	0,109	9,943
	0,004	0,014	0,218		0,001	0,109	9,902
	0,004	0,016	0,218		0,001	0,108	9,971
	0,004	0,015	0,224		0,001	0,109	9,908
Średnia:	0,004	0,0148	0,2193	Średnia:	0,0007	0,1087	9,9218

3. Wykresy:

Rys. 1. Złożoność obliczeniowa dla algorytmów przeszukiwania grafu dla n = 10, 100, 1000.

4. Wnioski:

Jak widać z wykresu, algorytm BFS jest szybszy dla małych ilości danych ($^{\sim}O(1)$), natomiast dla dużej liczby danych, algorytmy BFS i DFS mają zbliżoną złożoność $O(n^2)$, przy czym BFS, mimo korzystania z pomocniczej struktury danych (kolejki) ma lepsze wyniki. Wyniki się zgadzają z teoretycznym przeszukiwaniem grafu wyrażonego macierzą sąsiedztwa ($O(n^2)$).

Nie udało się zmierzyć czasu dla 10⁶ wierzchołków z powodu braku pamięci na maszynie wirtualnej (debugowano narzędziem Valgrind, który nie wykrył przecieków pamięci).