

710193M Arquitectura de computadores

Carlos Andrés Delgado S.

Unidad lógica aritmética (ALU)

Representación

Aritmética con

710193M Arquitectura de computadores II Aritmética del computador carlos.andres.delgado@correounivalle.edu.co

Carlos Andrés Delgado S.

Facultad de Ingeniería. Universidad del Valle

Febrero de 2016

710193M Arquitectura de

computadores II

Carlos Andrés Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con

1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

Contenido

710193M Arquitectura de computadores

II Carlos Andrés

Carlos Andrés Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética con enteros 1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

Unidad lógica aritmética

710193M Arquitectura de computadores

Carlos Andr Delgado S

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética con enteros

Definiciones

- Realiza cálculos aritméticos y lógicos
- Los elementos del computador suministra datos a la ALU
- Se basan en dispositivos lógicos digitales

Unidad lógica aritmética

710193M Arquitectura de computadores

Carlos André

Unidad lógica aritmética (ALU)

Representació de enteros

Aritmética con enteros

Figura 1: Entradas y salidas ALU

Contenido

710193M Arquitectura de

computadores II

Carlos André Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros 1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

710193M Arquitectura de computadores II

Carlos Andrés Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Definiciones

- Cualquier número entero decimal puede representar en base binaria
- La base decimal consta de los dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- La base binaria consta de los dígitos 0,1

Ejemplo

$$4_{10} = 100_2$$

Representación de números reales

710193M Arquitectura de computadores II

Deigado 3.

aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Definiciones

- Cualquier número real decimal se puede representar en binario
- Se debe tomar en cuenta la coma de la base

Ejemplo

$$10,025_{10} = 1010,01_2$$

710193M Arquitectura de computadores II

Carlos Andre Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética co enteros

Definiciones

- Este tipo de representación sirve para que pueda ser procesada por el computador
- Si limitamos la representación a **número enteros no negativos** su representación es inmediata, si esta tiene n bits se pueden representar números desde 0 hasta $2^n 1$

Ejemplo

Una palabra de 8 bits puede representar números entre 0 y 255 ejemplo:

$$00000000_2 = 0_{10}$$

 $00010000_2 = 16_{10}$
 $10000000_2 = 128_{10}$
 $11111111_2 = 255_{10}$

710193M Arquitectura de computadores

Carlos André Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética con

Transformación decimal a binario

- Para realizar la transformación de binario a decimal se realizan divisiones sucesivas por 2 y se toma el residuo
- Cuando se termina el proceso, el número en binario resultante es el orden inverso de los residuos

Ejemplo

Figura 2: Conversión decimal a binario

710193M Arquitectura de computadores

Carlos André Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Ejercicio en clase

Transformar de decimal a binario los siguientes números:

- 1000₁₀
- **2432**₁₀
- 175₁₀

710193M Arquitectura de computadores II

Carlos Andres Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

Ejercicio en clase

Respuestas:

- **11111101000**₂
- 100110000000₂
- 10101111₂

710193M Arquitectura de computadores

Carlos Andrés Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Transformación binario a decimal

- Se toma en cuenta el valor de cada posición en base 2 y se multiplica por 0 o 1 según el caso
- Se suman estos valores para obtener el número en base decimal

Ejemplo

Figura 3: Conversión binario a decimal

710193M Arquitectura de computadores II

Carlos André Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética con enteros

Ejercicio en clase

Transformar de binario a decimal los siguientes números:

- 10001011₂
- 101101011011₂
- **11101000110**₂

710193M Arquitectura de computadores

Carlos Andrés Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

Ejercicio en clase

Respuestas:

- **■** 139₁₀
- **2907**₁₀
- 1862₁₀

Representación en suma magnitud

710193M Arquitectura de computadores II

Carlos André Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Definición

- Se utiliza para presentar enteros negativos y positivos
- El bit más a la izquierda (más significativo) es:
 - 1 1 si el número es negativo
 - 2 0 si el número es positivo
- Para esta representación se establece el tamaño de n bits, donde se utilizan n-1 bits para representar el número deseado
- El rango de representación en signo magnitud es $-2^{n-1} 1$ a $2^{n-1} 1$ para n bits

Representación en suma magnitud

710193M Arquitectura de computadores

Carlos André Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

Ejemplo

Para el caso de n = 8 se tiene por ejemplo:

$$18_{10} = 00010010_2$$
$$-18_{10} = 10010010_2$$

Representación en suma magnitud

710193M Arquitectura de computadores II

Carlos Andrés Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética coi enteros

Limitaciones

Existen dos representaciones del cero:

 $0_{10} = 10000000_2$

Esto es inconveniente ya que se tiene que tomar en cuenta las dos representaciones del cero

 Debido a la limitación de la representación en signo magnitud esta no es utilizada

710193M Arquitectura de computadores II

Delgado S

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Definición

- Se utiliza para presentar enteros negativos y positivos
- El bit más a la izquierda (más significativo) es:
 - 1 1 si el número es negativo
 - 2 0 si el número es positivo
- Difiere en la forma de representar los bits restantes.
- El rango de la representación es: -2^{n-1} hasta $2^{n-1} 1$

710193M Arquitectura de computadores II

Deigado S.

(ALU)

de enteros

Aritmética coi enteros

Definición

Para calcular el complemento a dos de un número binario, se realiza el siguiente proceso:

- Si es positivo: Es la misma representación que signo magnitud
- Si es negativo: Aplique el siguiente procedimiento:
 - 1 Cambie 0 por 1 y 1 por 0 a un número en representación de signo magnitud, excepto el bit más significativo
 - 2 Sume 1 al este número

710193M Arquitectura de computadores II

Unidad lágic

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética cor enteros

Ejemplo

Transforme 4 y -4 a signo magnitud, en una representación binaria de 4 bits.

- 1 Para 4, en signo magnitud es: 0100, por lo que su representación en complemento a dos es 0100.
- 2 Para -4, en signo magnitud es 1100, su complemento 1011 y lo sumamos 1, se obtiene 1100

710193M Arquitectura de computadores II

Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética coi enteros

Ejercicio en clase

Transforme a complemento a dos los siguientes números decimales:

- 59₁₀
- -117_{10}
- **207**₁₀

Suponga en todos los casos que se utiliza una representación de 10 bits.

710193M Arquitectura de computadores II

Carlos André Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética co enteros

Ejercicio en clase

Respuestas:

- **0000111011**₂
- 1110001011₂
- **0011001111**₂

Enlace

Una herramienta útil: http://www.exploringbinary.com/twos-complement-converter/

Contenido

710193M Arquitectura de computadores

II Carlos Andrés

Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

1 Unidad lógica aritmética (ALU)

2 Representación de enteros

3 Aritmética con enteros

710193M Arquitectura de computadores

Carlos André Delgado S.

Unidad lógica aritmética (ALU)

Representació: de enteros

Aritmética con enteros

Negación

Para obtener el opuesto a un entero, se debe invertir los bits y sumarle 1.

Ejemplo

 $18_{10} = 00010010_2$

Complemento bit a bit: 11101101₂ Sumandole 1:

 $111011110_2 = -18_{10}$

710193M Arquitectura

computadores || | Carlos Andrés

Unidad lógica aritmética

Representación de enteros

Aritmética con enteros

Suma y resta

La suma y la resta se realiza en la misma forma como si los números fueran enteros sin signo.

$ \begin{array}{rcl} 1001 & = & -7 \\ +0101 & = & 5 \\ 1110 & = & -2 \end{array} $	$ \begin{array}{rcl} 1100 & = & -4 \\ +0100 & = & 4 \\ \hline 10000 & = & 0 \end{array} $
(a) $(-7) + (+5)$	(b) $(-4) + (+4)$
0011 = 3	1100 = -4
$\pm 0100 = 4$	+1111 = -1
0111 = 7	11011 = -5
(c) $(+3) + (+4)$	(d) $(-4) + (-1)$
0101 = 5	1001 = -7
+0100 = 4	$\pm 1010 = -6$
1001 = Deshordamiento	10011 = Desbordamiento
(e) $(+5)$ + $(+4)$	(f)(-7)+(-6)

Figura 4: Suma de números en complemento a dos

710193M Arquitectura de computadores II

Regla de desbordamiento

Al sumar dos números, y ambos son o bien positivos o negativos, se produce desbordamiento si y sólo si el resultado tiene signo opuesto

Unidad lógic aritmética (ALU)

Representació: de enteros

Aritmética con enteros

Regla de la resta

Para substraer un número (el substraendo) de otro (minuendo) se obtiene la negación del substraendo y se le suma al minuendo

710193M Arquitectura

computadores

Aritmética con enteros

$\begin{array}{r} 0010 = 2 \\ +1001 = -7 \\ \hline 1011 = -5 \end{array}$	$\begin{array}{rcl} 0101 & = & 5 \\ \pm 1110 & = & -2 \\ \hline{10011} & = & 3 \end{array}$
(a) $M = 2 = 0010$	(b) M = 5 = 0101
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ \begin{array}{rcl} 1011 & = & -5 \\ +1110 & = & -2 \\ \hline 11001 & = & -7 \end{array} $	0101 = 5 +0010 = 2 0111 = 7
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
$\begin{array}{rcl} 0111 &=& 7 \\ +0111 &=& 7 \\ \hline 1110 &=& Desberdamiento \\ \end{array}$	1010 = 6 +1100 = -4 10110 = Desbordamiento
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Figura 5: Resta de números en complemento a dos

710193M Arquitectura de computadores II

Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

Figura 6: Representación suma y resta de números en complemento a dos

710193M Arquitectura de computadores II

Carlos Andre Delgado S.

Unidad lógic aritmética (ALU)

Representació de enteros

Aritmética con enteros

Multiplicación

La multiplicación es una operación compleja en hardware o software. En este caso se va discriminar la multiplicación entre enteros con y sin signo

Multiplicación enteros sin signo

Es similar a la multiplicación clásica.

710193M Arquitectura de computadores II

Unidad lógica

aritmética (ALU)

de enteros

Aritmética con enteros

Figura 7: Multiplicacion enteros sin signo

710193M Arquitectura de computadores II

Delgado S.

Unidad lógica aritmética (ALU)

de enteros

Aritmética con enteros

Multiplicación enteros con signo

Para los enteros con signo se utiliza la notación de complemento a dos. Debido a que esta no es sencilla se utiliza la representación de un número binario en potencias de dos:

$$1101 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $2^3 + 2^2 + 2^0$

Figura 8: Representación de un número como suma de potencias

Por lo que se puede realizar la multiplicación en complemento a dos como sumas de multiplicaciones parciales.

710193M Arquitectura de computadores II

Carlos André Delgado S.

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

Multiplicación enteros con signo

Figura 9: Ejemplo multiplicación en complemento a dos

Arquitectura de computadores II

710193M

Delgado S.

Unidad lógic aritmética (ALU)

Representació de enteros

Aritmética con enteros

Ejercicio en clase

Realiza las siguientes multiplicaciones.

$$5_{10}*-10_{10}$$

$$-15_{10}*-3_{10}$$

Suponga en todos los casos que se utiliza una representación de 8 bits.

710193M Arquitectura de computadores II

Carlos Andrés Delgado S.

Unidad lógica aritmética (ALU)

Representación de enteros

Aritmética con enteros

División

La división es una operación altamente costosa, en nuestro caso se realiza de igual forma que la división clásica.

Figura 10: Ejemplo división enteros sin signo

Preguntas

710193M Arquitectura de computadores

Carlos André

Unidad lógic aritmética (ALU)

Representación de enteros

Aritmética con enteros

¿Preguntas?

Siguiente clase: Aritmética del computador: Representación y aritmética en coma flotante