2023 年线性代数期末模拟卷

选择题

- 1. a 与 b 是两个不同的非零向量,则下列命题正确的是()。
 - A. [a,b] 表示一个向量

- B. $[a,b] \leq ||a|| ||b||$
- C. [a,b] 表示一个正实数 D. ||a+b|| = ||a|| + ||b||
- 2 . 若矩阵 A 与 B 相似,则下列结论可能错误的是()。
 - A. A 与 B 对应于相同的特征值,它们的特征向量相同
 - B. A² 与 B² 相似
 - C. A 与 B 相似于同一矩阵
 - D. |A| = |B|
- $^{3.}$ 已知 3 阶矩阵 A 的特征值为 0、1、2,则下列结论不正确的是(),
 - A. $A 与 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 等价
 - B. 存在正交矩阵 P ,使得 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$
 - C. A 是不可逆矩阵
 - D. 以 0、1、2 为特征值的 3 阶矩阵都与 A 相似

4.	以下关于正定矩阵叙述正确的是()。
	A. 正定矩阵的乘积一定是正定矩阵	F B. 正定矩阵的行列式一定小于零
	C. 正定矩阵的行列式一定大于零	D. 正定矩阵的差一定是正定矩阵
5.	若 A 为 n 阶正定矩阵,则 A 与 A^{-1}	必定()。
	A. 相似	B. 合同
	C. 有相同的特征值	D. 正交相似
6.	6. 若 A 为正交阵,则下列矩阵中不是正交阵的是().	
	A. $(A^{-1})^2$ B. 2 A	C. A ⁵ D. A*
7.	设矩阵 $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, 已知矩阵 A A	目似于 B ,则 $r(A-2E)$ 与 $r(A-E)$ 之和
	等于().	
	A. 2 B. 3	C. 4 D. 5
8.	实二次型的秩与符号差(即正负惯性	指数之差)的和为().
	A. 负数 B. 零	C. 奇数 D. 偶数
9 设 A, B 均为 n 阶矩阵, $x = (x_1, x_2, \dots, x_n)^T$,且 $x^T A x = x^T B x$,则当 ()		
	时, $A = B$ 。	
	A. $r(A) = r(B)$	B. A 与 B 合同
	C. A 与 B 相似	D. $\boldsymbol{A}^T = \boldsymbol{A} \boldsymbol{\perp} \boldsymbol{B}^T = \boldsymbol{B}$
10.	n 阶实对称矩阵 A 正定的充要条件	是()。
	A. $R(\mathbf{A})=n$	B. A 的所有特征值非负
	C. A ⁻¹ 正定	D. A 的主对角线元素都大于零

填空题

- 1. 设 $\|\alpha\| = 2$, $\|\beta\| = 3$, 则 $[\alpha + \beta, \alpha \beta] = ______$ 。
- 2. 若 R^3 的一组基为 $\alpha_1 = (1,1,1)^T$, $\alpha_2 = (1,1,-1)^T$, $\alpha_3 = (1,-1,-1)^T$,则向量 $\beta = (1,2,1)^T$ 在此基下的坐标是_____。
- 3. $\partial \alpha = (1,1,1)^T, \quad \beta = (1,0,k)^T, \quad \Xi矩阵 \alpha \beta^T 相似于 \begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad 则$

计算题

1. (15 分) 设
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 3 \\ t \end{pmatrix}$, 问

- (1) 当t为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关;
- (2) 当t为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关;
- (3) 当向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关时,将 α_3 表示为 α_1,α_2 的线性组合。

2. (8 分) 设有向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 14 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ -2 \\ 2 \\ 0 \end{pmatrix}$, 求该

向量组的秩和一个极大无关组,并把其余向量用该极大无关组线性表示。

3. (10分)设线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1, \\ x_2 - x_3 + 2x_4 = 1, \\ 2x_1 + 3x_2 + (m+2)x_3 + 4x_4 = n + 2, \\ 3x_1 + 5x_2 + x_3 + (m+8)x_4 = 5. \end{cases}$$

讨论当*m,n*为何值时,方程组无解?有唯一解?有无穷多解?在有无穷多解时,求其通解。

数
$$a$$
 的值及可逆矩阵 P ,使 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ 。

5. (15分)请利用正交变换化将如下二次型转换为标准型。

$$f(x_1, x_2, x_3) = 3x_1^2 + 3x_3^2 + 4x_1x_2 + 8x_1x_3 + 4x_2x_3$$

证明题

- 1. 设 A 为 n 阶正交矩阵,且 |A| = -1,证明: -E A 不可逆。
- 2. 设矩阵 A 为 n 阶正定矩阵,证明: |A+E|>1。
- 3. 设 λ_1 , λ_2 , λ_3 为三阶方阵A的三个不同的特征值,相应的特征向量依次为 a_1 , a_2 , a_3 ,令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$,证明: β , $A\beta$, A^{β} 线性无关.
- 4. 设n阶矩阵 $A \neq 0$, $A^k = 0$ (k为正整数),证明A不能相似于对角矩阵.
- 5. 设U为可逆实矩阵, $A = U^T U$,证明 $f = X^T A X$ 是正定二次型.
- 6. (5分)证明:设n阶方阵 $A=(a_{ii})$ 的全部特征值为 λ_i ($1 \le i \le n$),则

$$\sum_{i=1}^n \chi_i^2 = \sum_{i,j=1}^n a_{ij} a_{ji}$$

7. (5分)如果线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

的系数矩阵A的秩R(A)等于矩阵

$$C = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\ b_1 & b_2 & \cdots & b_n & 0 \end{pmatrix}$$

的秩 R(C), 即 R(A) = R(C)。那么该线性方程组有解。

8. 设矩阵 A 为 n 阶实对称矩阵,且 $A^3-6A^2+11A-6E=0$,证明 A 是正定矩阵。

【注意】题目中n阶改为3阶。

9. 已知A, B是 n 阶矩阵且A可逆,证明AB和BA有相同的特征值。