PH20014: Electromagnetism 1

Problem Sheet 1

Standard problems

1. The electric field \vec{E} associated with an electromagnetic plane wave propagating in a lossy medium is of the form

$$\vec{E} = 50\hat{y}e^{-\alpha x}e^{i(\beta x - \omega t)} \text{ Vm}^{-1},$$

in our usual notation. If $\varepsilon_r=3.0$, $\mu_r=7.0$, $\sigma=6.0$ ohms $^{-1}$ m $^{-1}$ at the frequency 6.0 MHz, show that the medium can be considered as a good conductor and hence find α and β . Then, calculate

- (a) the phase velocity,
- (b) the wavelength,
- (c) the amplitude of the electric field \vec{E} at x = 0.1 m,
- (d) the amplitude of the \vec{H} field at x = 0.1 m.

Compare the results of (a) and (b) with those that would be obtained if the conductivity were zero.

- 2. Deduce the conductivity of a medium of relative permittivity equal to five if the magnitude of the conduction and displacement current densities in it are equal when a monochromatic plane wave of frequency 10⁸ Hz is propagated. What is the attenuation per metre of the amplitude of a plane wave of frequency 10⁶ Hz when propagated in such a medium? The relative permeability is unity.
- 3. (a) Show that the time-average of the energy density in a monochromatic (linearly-polarized) plane wave moving in an isotropic non-conducting medium is distributed equally between the electric and magnetic fields.
 - (b) In comparison, show that in a conducting medium, the time-average of energy density in the magnetic field is greater than in the electric field. [Hint: When comparing the energy densities in the magnetic and electric fields, use the internal impedance of the medium Z which conveniently expresses the ratio of the magnitudes of the two fields.]
- 4. [2016 Exam question] Consider a conducting medium with conductivity σ , with no free charges and obeying Ohm's law.
 - (a) Using the appropriate Maxwell's equations, relations between \vec{D} and \vec{E} , \vec{B} and \vec{H} in a medium and the identity $\nabla \times \left[\nabla \times \vec{F} \left(\vec{r} \right) \right] = \nabla \left(\nabla \cdot \vec{F} \left(\vec{r} \right) \right) \nabla^2 \vec{F} \left(\vec{r} \right)$, derive the modified wave equation, (4)

$$\nabla^2 \vec{E} = \mu_r \mu_0 \varepsilon_r \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} + \mu_r \mu_0 \sigma \frac{\partial \vec{E}}{\partial t}. \tag{1}$$

- (b) Show that $\vec{E} = \vec{E}_0 e^{-\alpha x} e^{i(\omega t \beta x)}$ is a solution of the above equation with $\frac{2\alpha\beta}{\beta^2 \alpha^2} = \frac{\sigma}{\omega\varepsilon_0\varepsilon_r}.(3)$
- (c) For an electromagnetic wave with frequency 25 kHz, the loss tangent of sea water ($\varepsilon_r = 80$, $\mu_r = 1$) is approximately 36,000. What is the skin depth for this wave? (2)

1

PH20014: Electromagnetism 1

Advanced problems

5. From the first half of the unit, you know that the energy flow in electromagnetism is described by Poynting vector $\vec{S} = \vec{E} \times \vec{H}$. Show that for a conducting LIH material, the following (Poynting's) theorem is true:

Explain the physical meaning of all the terms in the theorem.