

Garbage Classification

Xinmeng Chen Zhiyue Feng Ran Ju

- Data Preparation
 Cleaning, Reorganization, Augmentation
- Models
 KNN, AlexNet, Yolo, VGGNet
- Final Process
 Model, Performance
- Improvement
 Object Recoginzation

Data Preprocessing

Data Cleaning

kaggle

garbage-classification.zip

2020/4/20 10:31

WinRAR ZIP 压缩... 83,955 KB

waste-pictures.zip

2020/4/20 10:49

WinRAR ZIP 压缩... 2,148,962...

The smaller one has about **2,530** images and the bigger one has about 23,640 images. It has 26 classes in total

bandaid

battery cardboard

bowlsanddishes

bread metal

glass

bulb paper cans plastic carton trash

chopsticks

cigarettebutt

diapers

facialmask

glassbottle

leaflet

leftovers

medicinebottle

milkbox

nailpolishbottle

napkin

newspaper

XLight

However, when we look at the detail of each dataset...

The smaller one

The larger one

4 types of garbage with the total number of 5,071 images

First Version CNN

Image	Accuracy
RGB	0.715
B&W	0.61
Gray	0.66
LBP	0.589

KNN

Easiest network we tried

KNN

Time Consuming

Calculation complexity

Memory complexity

Lots of work of data processing

Memory Complexity

The number of categories is comparatively large.
The calculation matrix will take lots of memory.

Calculation Complexity

The number of features are large. The training set is not small.

Overfitting and Underfitting

The selection of K using cross validation method is global optimal.

Alex Net

Winner of ILSVRC-2012

Alex Net

ReLu activation function

Drop out and data augmentation

The effect of random crop

The effect of random crop

The confusion matrix without random crop

The confusion matrix using random crop

Performance

	precision	recall	f1-score	support	
0	0.80	0.51	0.63	72	
1	0.82	0.63	0.71	73	
2	0.73	0.65	0.69	88	
3	0.91	0.61	0.73	96	
4	0.80	0.78	0.79	120	
5	0.52	0.87	0.65	79	
6	0.73	0.83	0.78	71	
7	0.73	0.84	0.78	82	
8	0.98	0.75	0.85	68	
9	0.77	0.61	0.68	72	
10	0.65	0.82	0.73	106	
11	0.77	0.69	0.72	105	
12	0.59	0.86	0.70	78	
13	0.65	0.56	0.60	61	
accuracy			0.72	1171	
macro avg	0.75	0.72	0.72	1171	
weighted avg	0.75	0.72	0.72	1171	

	precision	recall	f1-score	support	
0	0.78	0.58	0.67	580	
1	0.85	0.62	0.72	455	
2	0.77	0.55	0.64	570	
3	0.68	0.71	0.69	595	
4	0.86	0.83	0.84	760	
5	0.68	0.86	0.76	585	
6	0.81	0.68	0.74	435	
7	0.75	0.88	0.81	560	
8	0.74	0.83	0.78	440	
9	0.69	0.70	0.70	420	
10	0.73	0.77	0.75	700	
11	0.71	0.81	0.76	775	
12	0.66	0.77	0.71	545	
13	0.68	0.61	0.64	380	
accuracy			0.74	7800	
macro avg	0.74	0.73	0.73	7800	
weighted avg	0.74	0.74	0.74	7800	

Original

Using random crop

PCA (principle component analysis)

AlexNet+Yolo

Self – designed Network

AlexNet + Yolo

Changes Regularization O2 Zero padding O3 More convolutional layer O4 Batch normalization

Performance

Performance

	precision	recall	f1-score	support	
0	0.80	0.51	0.63	72	
1	0.82	0.63	0.71	73	
2	0.73	0.65	0.69	88	
3	0.91	0.61	0.73	96	
4	0.80	0.78	0.79	120	
5	0.52	0.87	0.65	79	
6	0.73	0.83	0.78	71	
7	0.73	0.84	0.78	82	
8	0.98	0.75	0.85	68	
9	0.77	0.61	0.68	72	
10	0.65	0.82	0.73	106	
11	0.77	0.69	0.72	105	
12	0.59	0.86	0.70	78	
13	0.65	0.56	0.60	61	
accuracy			0.72	1171	
macro avg	0.75	0.72	0.72	1171	
weighted avg	0.75	0.72	0.72	1171	

	precision	recall	f1-score	support
0	0.63	0.83	0.72	70
1	0.87	0.60	0.71	65
2	0.85	0.66	0.74	91
3	0.81	0.76	0.78	83
4	0.83	0.86	0.84	97
5	0.77	0.88	0.82	89
6	0.88	0.69	0.78	75
7	0.76	0.75	0.75	76
8	0.69	0.91	0.79	65
9	0.78	0.60	0.68	70
10	0.81	0.75	0.78	127
11	0.72	0.91	0.80	116
12	0.71	0.87	0.78	78
13	0.80	0.57	0.66	69
			0.77	1171
accuracy	0.70	0.76	0.77	1171
macro avg	0.78	0.76	0.76	1171
weighted avg	0.78	0.77	0.76	1171

Original Updated

VGGNet

Second price network in ILSVRC, 2014

VGGNet

Difference

- Conv2D: 3 x 3 and 1 x 1 kernels.
- MaxPooling2D: 2 x 2 kernels.

Pros

Deeper layers & wider feature map

Cons

■ More parameters & time consuming

VGGNet – Result

Result	Layers	Accuracy	Loss
AlexNet	8	0.721	1.372
AlexNet+ Yolo	9	0.782	1.219
VGG-11	11	0.615	1.421
VGG-16	16	0.623	1.539

Reach saturation accuracy

Confusion matrix

Confused Data

bread (128).jpg

Leftovers (66).jpg

bread (139).jpg

Leftovers (83).jpg

Confusion type 1
Bread & Leftovers

glass21.jpg

glass27.jpg

metal17.jpg

metal43.jpg

plastic8.jpg

plastic22.jpg

Confusion type 2 Glass, Mental & Plastic

Final Model

AlexNet + Yolo + Separate Classification

Final Model

All type classification	Bread – Leftovers Classification	Mental – Glass – Plastic Classification
AlexNet + Yolo	SVM	CNN + SVM

Performance for Confused data Classification

Why perform bad? How to improve?

- Feature Extraction
- Methods
- Physical sensors

Final Model

Accuarcy	
14 small type	0.7613
4 big type	0.9118

Future

What we can do for next?

Further Improvement

