

CLASSES OF WEIGHTED CONDITIONAL TYPE OPERATORS

Y. ESTAREMI

ABSTRACT. In this paper, some classes of weighted conditional expectation type operators on $L^2(\Sigma)$ are characterized.

1. Introduction and Preliminaries

Let (X, Σ, μ) be a complete σ -finite measure space. For any sub- σ -finite algebra $\mathcal{A} \subseteq \Sigma$, the L^2 -space $L^2(X, \mathcal{A}, \mu|_{\mathcal{A}})$ is abbreviated by $L^2(\mathcal{A})$, and its norm is denoted by $\|\cdot\|_2$. All comparisons between two functions or two sets are to be interpreted as holding up to a μ -null set. The support of a measurable function f is defined as $S(f) = \{x \in X; f(x) \neq 0\}$. We denote the vector space of all equivalence classes of almost everywhere finite valued measurable functions on X by $L^0(\Sigma)$.

For a sub- σ -finite algebra $\mathcal{A} \subseteq \Sigma$, the conditional expectation operator associated with \mathcal{A} is the mapping $f \rightarrow E^{\mathcal{A}}f$, defined for all non-negative measurable function f as well as for all $f \in L^2(\Sigma)$, where $E^{\mathcal{A}}f$, by the Radon-Nikodym theorem, is the unique \mathcal{A} -measurable function satisfying

$$\int_A f d\mu = \int_A E^{\mathcal{A}}f d\mu, \quad \forall A \in \mathcal{A}.$$

As an operator on $L^2(\Sigma)$, $E^{\mathcal{A}}$ is idempotent and $E^{\mathcal{A}}(L^2(\Sigma)) = L^2(\mathcal{A})$. This operator will play a major role in our work. Let $f \in L^0(\Sigma)$, then f is said to be conditionable with respect to E if $f \in \mathcal{D}(E) := \{g \in L^0(\Sigma) : E(|g|) \in L^0(\mathcal{A})\}$.

2000 *Mathematics Subject Classification.* 47B47.

Key words and phrases. Conditional expectation, A -class, $*A$ -class, polar decomposition, Aluthage transformation.

Throughout this paper we take u and w in $\mathcal{D}(E)$. If there is no possibility of confusion, we write $E(f)$ in place of $E^A(f)$. A detailed discussion about this operator may be found in [15].

Composition of conditional expectation operators and multiplication operators appear often in the study of other operators such as multiplication operators and weighted composition operators. Specifically, in [14], S.-T. C. Moy characterized all operators on L^p of the form $f \rightarrow E(fg)$ for g in L^q with $E(|g|)$ bounded. Eleven years later, R. G. Douglas, [2], analyzed positive projections on L^1 and many of his characterizations are in terms of combinations of multiplications and conditional expectations. More recently, P.G. Dodds, C.B. Huijsmans and B. De Pagter, [1], extended these characterizations to the setting of function ideals and vector lattices. J. Herron presented some assertions about the operator EM_u on L^p spaces in [10]. Also, some results about multiplication conditional expectation operators can be found in [9, 11]. In [3, 4] we investigated some classic properties of multiplication conditional expectation operators M_wEM_u on L^p spaces.

Let \mathcal{H} be the infinite dimensional complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is a partial isometry if $\|Th\| = \|h\|$ for h orthogonal to the kernel of T . It is known that an operator T on a Hilbert space is partial isometry if and only if $TT^*T = T$. Every operator T on a Hilbert space \mathcal{H} can be decomposed into $T = U|T|$ with a partial isometry U , where $|T| = (T^*T)^{\frac{1}{2}}$. U is determined uniquely by the kernel condition $\mathcal{N}(U) = \mathcal{N}(|T|)$. Then this decomposition is called the polar decomposition. The operator T is said to be positive operator and write $T \geq 0$, if $\langle Th, h \rangle \geq 0$, for all $h \in \mathcal{H}$.

In this paper we will be concerned with characterizing weighted conditional expectation type operators on $L^2(\Sigma)$ in terms of membership in the various partial normality classes. Here is a brief review of what constitutes membership for an

operator T on a Hilbert space in each classes:

- (i) T belongs to $*\text{-}A$ -class, if $|T^2| \geq |T^*|^2$.
- (ii) T belongs to quasi- $*\text{-}A$ -class, if $T^*|T^2|T \geq T^*|T^*|^2T$.
- (iii) The operator T belongs to A -class, if $|T|^2 \leq |T^2|$.

There has been considerable interest in recent years in classes of operators that is mentioned above. A small sample of the related articles are found in our list of references ([5, 6, 8, 7, 13]).

2. Some classes of weighted conditional type operators

In the first we reminisce some theorems that we have proved in [4].

Theorem 2.1. The operator $T = M_w E M_u$ is bounded on $L^2(\Sigma)$ if and only if $(E|w|^2)^{\frac{1}{2}}(E|u|^2)^{\frac{1}{2}} \in L^\infty(\mathcal{A})$, and in this case its norm is given by $\|T\| = \|(E(|w|^2))^{\frac{1}{2}}(E(|u|^2))^{\frac{1}{2}}\|_\infty$.

Lemma 2.2. Let $T = M_w E M_u$ be a bounded operator on $L^2(\Sigma)$ and let $p \in (0, \infty)$. Then

$$(T^*T)^p = M_{\bar{u}(E(|u|^2))^{p-1}\chi_S(E(|w|^2))} E M_u$$

and

$$(TT^*)^p = M_{w(E(|w|^2))^{p-1}\chi_G(E(|u|^2))} E M_{\bar{w}},$$

where $S = S(E(|u|^2))$ and $G = S(E(|w|^2))$.

Theorem 2.3. The unique polar decomposition of bounded operator $T = M_w E M_u$ is $U|T|$, where

$$|T|(f) = \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S \bar{u} E(uf)$$

and

$$U(f) = \left(\frac{\chi_{S \cap G}}{E(|w|^2)E(|u|^2)} \right)^{\frac{1}{2}} w E(uf),$$

for all $f \in L^2(\Sigma)$.

Theorem 2.4. The Aluthge transformation of $T = M_w E M_u$ is

$$\widehat{T}(f) = \frac{\chi_S E(uw)}{E(|u|^2)} \bar{u} E(uf), \quad f \in L^2(\Sigma).$$

Remark 2.5. By Theorem 2.3 and Theorem 2.4, we can compute the polar decomposition and Aluthge transformation of $T^* = U^*|T^*|$ as follows:

$$\begin{aligned} |T^*|(f) &= \left(\frac{E(|u|^2)}{E(|w|^2)} \right)^{\frac{1}{2}} \chi_G \bar{w} E(\bar{w}f); \\ U^*(f) &= \left(\frac{\chi_{S \cap G}}{(E(|u|^2)E(|w|^2))} \right)^{\frac{1}{2}} \bar{u} E(\bar{w}f); \\ \widehat{T^*}(f) &= \frac{\chi_G E(\bar{w}w)}{E(|w|^2)} w E(\bar{w}f), \end{aligned}$$

for all $f \in L^2(\Sigma)$.

In the sequel some necessary and sufficient conditions for weighted conditional type operators $M_w E M_u$ to be in $*$ - A -classes, quasi- $*$ - A -classes and A -classes of operators, will be presented.

Theorem 2.6. Let $T = M_w E M_u$ be a bounded operator on $L^2(\Sigma)$. Then

- (a) If $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$ on $S = S(E(|u|^2))$, then T belongs to A -class.

(b) If T belongs to A -class, then $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$ on $S' = S(E(u))$.

(c) If $S = S'$, then T belongs to A -class if and only if $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$ on S .

Proof. (a) By Theorem 2.3 we have

$$|T|^2(f) = E(|w|^2)\chi_S \bar{u}E(uf), \quad |T^2|(f) = |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S \bar{u}E(uf),$$

for all $f \in L^2(\Sigma)$. So for every $f \in L^2(\Sigma)$ we have

$$\begin{aligned} \langle |T^2|(f) - |T|^2(f), f \rangle &= \int_X |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S \bar{u}f E(uf) - E(|w|^2)\chi_S \bar{u}f E(uf) d\mu \\ &= \int_X |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S |E(uf)|^2 - E(|w|^2)\chi_S |E(uf)|^2 d\mu. \end{aligned}$$

This implies that if $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$ on S , then $\langle |T^2|(f) - |T|^2(f), f \rangle \geq 0$ for all $f \in L^2(\Sigma)$. So T is belonged to A -class.

(b) If T belongs to A -class, then by (a), for all $f \in L^2(\Sigma)$ we have

$$\int_X |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S |E(uf)|^2 - E(|w|^2)\chi_S |E(uf)|^2 d\mu \geq 0.$$

Let $A \in \mathcal{A}$, with $0 < \mu(A) < \infty$. By replacing f to χ_A , we have

$$\int_A |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S |E(u)|^2 - E(|w|^2)\chi_S |E(u)|^2 d\mu \geq 0.$$

Since $A \in \mathcal{A}$ is arbitrary, then $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$ on $S' = S(E(u))$.

(c) It follows from (a) and (b). \square

Theorem 2.7. Let $T = M_wEM_u$ be a bounded operator on $L^2(\Sigma)$. Then

(a) If

$$u|E(uw)|^{\frac{1}{2}}\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{4}}\chi_S \geq \bar{w}(E(|u|^2))^{\frac{1}{2}},$$

then T belongs to $*\text{-}A$ -class.

(b) If T is belonged to $*\text{-}A$ -class, then

$$|E(u)|^2|E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S \geq (E(|u|^2))^{\frac{1}{2}}|E(w)|^2.$$

Proof. (a) By using Theorem 2.3, for every $f \in L^2(\Sigma)$

$$|T^2|(f) = |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S \bar{u}E(uf), \quad |T^*|^2(f) = E(|u|^2)wE(\bar{w}f),$$

hence for every $f \in L^2(\Sigma)$

$$\begin{aligned} \langle |T^2|(f) - |T^*|^2(f), f \rangle &= \int_X |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S u\bar{f}E(uf) - E(|u|^2)w\bar{f}E(\bar{w}f)d\mu \\ &\quad \int_X |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S |E(uf)|^2 - E(|u|^2)|E(\bar{w}f)|^2 d\mu. \end{aligned}$$

This implies that, if

$$u|E(uw)|^{\frac{1}{2}}\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{4}}\chi_S \geq \bar{w}(E(|u|^2))^{\frac{1}{2}},$$

then $|T^2| \geq |T^*|^2$ i.e, T belongs to $*\text{-}A$ -class.

(b) If T belongs to $*\text{-}A$ -class, then by (a), for all $f \in L^2(\Sigma)$ we have

$$\int_X |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S |E(uf)|^2 - E(|u|^2)|E(\bar{w}f)|^2 d\mu \geq 0.$$

Let $A \in \mathcal{A}$, with $0 < \mu(A) < \infty$. By replacing f to χ_A , we have

$$\int_A |E(uw)|\left(\frac{E(|w|^2)}{E(|u|^2)}\right)^{\frac{1}{2}}\chi_S |E(uf)|^2 - E(|u|^2)|E(\bar{w}f)|^2 d\mu \geq 0.$$

Since $A \in \mathcal{A}$ is arbitrary, then

$$|E(u)|^2 |E(uw)| \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S \geq (E(|u|^2))^{\frac{1}{2}} |E(w)|^2.$$

Theorem 2.8. Let $T = M_w E M_u$ be a bounded operator on $L^2(\Sigma)$. Then

(a) If $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$, then T belongs to quasi-*- A -class.

(b) If T belongs to quasi-*- A -class, then

$$|E(uw)|^3 (E(|w|^2))^{\frac{1}{2}} \geq (E(|u|^2))^{\frac{3}{2}} (E(|w|^2))^2.$$

Proof. (a) Direct computation shows that, for $f \in L^2(\Sigma)$,

$$T^* |T^2| T(f) = |E(uw)|^3 \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S \bar{u} E(uf), \quad T^* |T^*|^2 T(f) = E(|u|^2) (E(|w|^2))^2 \bar{u} E(uf).$$

So, for all $f \in L^2(\Sigma)$

$$\begin{aligned} & \langle T^* |T^2| T(f) - T^* |T^*|^2 T(f), f \rangle \\ &= \int_X |E(uw)|^3 \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S \bar{u} f E(uf) - E(|u|^2) (E(|w|^2))^2 \bar{u} f E(uf) d\mu \\ &= \int_X (|E(uw)|^3 \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S - E(|u|^2) (E(|w|^2))^2) |E(uf)|^2 d\mu. \end{aligned}$$

This implies that if $|E(uw)|^2 \geq E(|u|^2)E(|w|^2)$, then

$$T^* |T^2| T - T^* |T^*|^2 T \geq 0.$$

(b) If T is belonged to quasi-*- A -class, then by (a), for all $f \in L^2(\Sigma)$ we have

$$\int_X |E(uw)| \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S |E(uf)|^2 - E(|u|^2) |E(\bar{w}f)|^2 d\mu \geq 0.$$

Let $A \in \mathcal{A}$, with $0 < \mu(A) < \infty$. By replacing f to χ_A , we have

$$\int_A |E(uw)| \left(\frac{E(|w|^2)}{E(|u|^2)} \right)^{\frac{1}{2}} \chi_S |E(u)|^2 - E(|u|^2) |E(\bar{w})|^2 d\mu \geq 0.$$

Since $A \in \mathcal{A}$ is arbitrary, then

$$|E(uw)|^3 (E(|w|^2))^{\frac{1}{2}} \geq (E(|u|^2))^{\frac{3}{2}} (E(|w|^2))^2.$$

J. Herron showed that: EM_u is normal if and only if $u \in L^\infty(\mathcal{A})$ [10]. So we have the following result.

Corollary 2.9. If we consider the operator $T = EM_u : L^2(\Sigma) \rightarrow L^2(\Sigma)$, then the followings are equivalent.

- (a) T is normal.
- (b) T is belonged to quasi-*- A -class.
- (c) $u \in L^\infty(\mathcal{A})$.

Example 2.10. (a) Let $X = [0, 1] \times [0, 1]$, $d\mu = dx dy$, Σ the Lebesgue subsets of X and let $\mathcal{A} = \{A \times [0, 1] : A \text{ is a Lebesgue set in } [0, 1]\}$. Then, for each f in $L^2(\Sigma)$, $(Ef)(x, y) = \int_0^1 f(x, t) dt$, which is independent of the second coordinate. This example is due to A. Lambert and B. Weinstock [12]. Now, if we take $u(x, y) = y^{\frac{x}{8}}$ and $w(x, y) = \sqrt{(4+x)y}$, then $E(|u|^2)(x, y) = \frac{4}{4+x}$ and $E(|w|^2)(x, y) = \frac{4+x}{2}$. So,

$E(|u|^2)(x,y)E(|w|^2)(x,y) = 2$ and $|E(uw)|^2(x,y) = 64\frac{4+x}{(x+12)^2}$. Direct computations shows that $E(|u|^2)(x,y)E(|w|^2)(x,y) \leq |E(uw)|^2(x,y)$. Thus, by Theorem 2.6 the weighted conditional type operator M_wEM_u belongs to A -classes of operators on $L^2(\Sigma)$.

(b) Let $\Omega = [-1, 1]$, $d\mu = \frac{1}{2}dx$ and $\mathcal{A} = < \{(-a, a) : 0 \leq a \leq 1\} >$ (Sigma algebra generated by symmetric intervals). Then

$$E^{\mathcal{A}}(f)(x) = \frac{f(x) + f(-x)}{2}, \quad x \in \Omega,$$

where $E^{\mathcal{A}}(f)$ is defined. Let $u(x) = x^2 - 1$ and $w \equiv 1$, then by Theorem 2.8 the operator M_wEM_u belongs to quasi-*- A -classes of operators on $L^2(\Sigma)$.

REFERENCES

- [1] P.G. Dodds, C.B. Huijsmans and B. De Pagter, characterizations of conditional expectation-type operators, Pacific J. Math. **141**(1) (1990), 55-77.
- [2] R. G. Douglas, Contractive projections on an L_1 space, Pacific J. Math. **15** (1965), 443-462.
- [3] Y. Estaremi, Essential norm of weighted conditional type operators on L^p -spaces, to appear in positivity.
- [4] Y. Estaremi and M.R. Jabbarzadeh, Weighted lambert type operators on L^p -spaces, Oper. Matrices **1** (2013), 101-116.
- [5] M. Fujii, Y. Nakatsu, On subclasses of hyponormal operators, Proc. Japan Acad. Ser. A. Math. Sci. **51** (1975), 243246.
- [6] T. Furuta, Generalized Aluthge transformation on p -hyponormal operators, Proc. Amer. Math. Soc. **124** (1996), 30713075.
- [7] In Ho Jeon, In Hyoun Kim, On operators satisfying $T^*|T^2|T \geq T^*|T^*|^2T$, Linear Algebra and its Applications **418** (2006), 854862.
- [8] T. Furuta, M. Yanagida, Further extension of Aluthge transformation on phyponormal operators, Integral Equations Operator Theory **29** (1997), 122125.
- [9] J. J. Grobler and B. de Pagter, Operators representable as multiplication-conditional expectation operators, J. Operator Theory **48** (2002), 15-40.
- [10] J. Herron, Weighted conditional expectation operators, Oper. Matrices **1** (2011), 107-118.
- [11] A. Lambert, L^p multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. **104** (1998), 147-153.

- [12] A. Lambert and Barnet M. Weinstock, A class of operator algebras induced by probabilistic conditional expectations, Michigan Math. J. **40** (1993), 359-376.
- [13] Salah Mecheri, On operators satisfying an inequality, Journal of Inequalities and Applications. **244** (2012), 1-9.
- [14] Shu-Teh Chen, Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. **4** (1954), 47-63.
- [15] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.

Y. ESTAREMI

E-mail address: `yestaremi@pnu.ac.ir`

FACULTY OF MATHEMATICAL SCIENCES, PAYAME NOOR UNIVERSITY , P. O. BOX: 19395-3697,
TEHRAN, IRAN