Bandit Learning with Positive Externalities

Virag Shah, Jose Blanchet, Ramesh Johari Management Science and Engg Department, Stanford University

Positive Externalities in Online Platforms

- Learning algorithms are often used to recommend alternatives to users.
- Common assumption: arrivals not influenced by decisions.
- Reality: Positive Externalities / Self-Reinforcement / Network Effects – a positive experience attracts more users of the same type

What could go wrong?

- Suppose Blue users like Blue items (but not Red items)
- Suppose Red users like Red items (but not Blue items)
- Suppose $\mathbb{E}[$ Blue-Blue match reward $] > \mathbb{E}[$ Red-Red match reward

- Successful Red-Red matches made early on may trigger more Red user arrivals.
- So the platform might learn to prefer Red-Red matches even if it is suboptimal!

Main Insights from our Results

- There is a cost to being optimistic in the face of uncertainty as initial mistakes are amplified. UCB algorithm, in particular, fails miserably.
- It is possible to prevent the snowballing arising from positive externalities by structuring the exploration procedure well.
- Once enough evidence is gathered, one may even use the externalities to shift the arrivals to a profit-maximizing population.

Model

Standard bandit setting:

- m: Number of arms (items)
- T: Time horizon; one user arrives per time step
- μ_a : Expected reward when arm a pulled (Bernoulli)
- a^* : best arm
- $T_a(t)$: number of times arm a pulled up to time t
- $S_a(t)$: total reward at arm a up to time t
- Goal: maximize expected total reward (R_T) .

Positive externalities:

- Let θ_a be initial "bias" of arm a.
- We assume the user arriving at time t likes arm a independently with probability:

$$\lambda_a(t) = \frac{f(\theta_a + S_a(t))}{\sum_b f(\theta_b + S_b(t))}.$$

- f is the externality function. We consider $f(x) = x^{\alpha}$, $\alpha > 0$. α determines the strength of the positive externality.
- $\mathbb{P}(\text{reward at }t|\text{ arm }a\text{ pulled}) = \mu_a \text{ if user }t \text{ likes }a,$ otherwise zero.

Main Results

Suboptimality of UCB Algorithm:

Definition: UCB(γ) algorithm, at time t, pulls the arm a with largest:

empirical mean reward up to $t + \sqrt{\frac{\gamma \ln t}{T_a(t-1)}}$.

Theorem

 $UCB(\gamma)$ exhibits O(T) regret for each $\gamma > 0$. In fact, $\lim_{T\to\infty} \mathbb{P}(S_{a^*}(T) = 0) > 0.$

Optimal Algorithm:

Definition: The Balanced-Exploration (BE) algorithm is as follows:

Suppose $w_k = \ln \ln k$ for each $k \ge 1$. Fix $\tau = w_T \ln T$.

- For $t \leq \tau$, pull the arm with lowest cumulative reward $S_a(t-1)$ (ties broken at random).
- For $t > \tau$, pull the arm with highest mean reward $S_a(\tau)/T_a(\tau)$ at time τ .

Theorem

The regret of the BE algorithm is as follows:

- 1. If $0 < \alpha < 1$ then $\mathbb{E}[R_T] = \tilde{O}(T^{1-\alpha} \ln^{\alpha} T)$.
- 2. If $\alpha = 1$ then $\mathbb{E}[R_T] = \tilde{O}(\ln^2 T)$. 3. If $\alpha > 1$ then $\mathbb{E}[R_T] = \tilde{O}(\ln^\alpha T)$.

Further, there exists no algorithm which can achieve better asymptotic performance than above.

• We also provide an adaptive variant of BE, called BE-AE, which successively drops suboptimal arms.