Extended Euclidean Algorithm for Polynomials			
Calculate	Which satisfies	Calculate	Which satisfies
$r_{-1}(x) = a(x)$		$v_{-1}(x) = 1; w_{-1}(x) = 0$	$a(x) = a(x)v_{-1}(x) + bw_{-1}(x)$
$r_0(x) = b(x)$		$v_0(x) = 0; w_0(x) = 1$	$b(x) = a(x)v_0(x) + b(x)w_0(x)$
$r_1(x) = a(x) \mod b(x)$ $q_1(x) = \text{quotient of}$ a(x)/b(x)	$a(x) = q_1(x)b(x) + r_1(x)$	$v_1(x) = v_{-1}(x) - q_1(x)v_0(x) = 1$ $w_1(x) = w_{-1}(x) - q_1(x)w_0(x) = -q_1(x)$	$r_1(x) = a(x)v_1(x) + b(x)w_1(x)$
$r_2(x) = b(x) \mod r_1(x)$ $q_2(x) = \text{quotient of}$ $b(x)/r_1(x)$	$b(x) = q_2(x)r_1(x) + r_2(x)$	$v_2(x) = v_0(x) - q_2(x)v_1(x) w_2(x) = w_0(x) - q_2(x)w_1(x)$	$r_2(x) = a(x)v_2(x) + b(x)w_2(x)$
$r_3(x) = r_1(x) \mod r_2(x)$ $q_3(x) = \text{quotient of}$ $r_1(x)/r_2(x)$	$r_1(x) = q_3(x)r_2(x) + r_3(x)$	$v_3(x) = v_1(x) - q_3(x)v_2(x) w_3(x) = w_1(x) - q_3(x)w_2(x)$	$r_3(x) = a(x)v_3(x) + b(x)w_3(x)$
•	•	•	•
•	•	•	•
•	•	:	•
$r_n(x) = r_{n-2}(x)$ $\mod r_{n-1}(x)$ $q_n(x) = \text{quotient of}$ $r_{n-2}(x)/r_{n-2}(x)$	$r_{n-2}(x) = q_n(x)r_{n-1}(x) + r_n(x)$	$v_n(x) = v_{n-2}(x) - q_n(x)v_{n-1}(x)$ $w_n(x) = w_{n-2}(x) - q_n(x)w_{n-1}(x)$	$r_n(x) = a(x)v_n(x) + b(x)w_n(x)$
$r_{n+1}(x) = r_{n-1}(x)$ $mod r_n(x) = 0$ $q_{n+1}(x) = \text{quotient of}$ $r_{n-1}(x)/r_n(x)$	$r_{n-1}(x) = q_{n+1}(x)r_n(x) + 0$		$d(x) = \gcd(a(x), b(x)) = r_n(x)$ $v(x) = v_n(x); w(x) = w_n(x)$

Table 5.4 shows the calculation of the multiplicative inverse of $(x^7 + x + 1) \mod (x^8 + x^4 + x^3 + x + 1)$. The result is that $(x^7 + x + 1)^{-1} = (x^7)$. That is, $(x^7 + x + 1)(x^7) \equiv 1(\mod (x^8 + x^4 + x^3 + x + 1))$.

Table 5.4 Extended Euclid $[(x^8 + x^4 + x^3 + x + 1), (x^7 + x + 1)]$

Initialization	$a(x) = x^8 + x^4 + x^3 + x + 1; v_{-1}(x) = 1; w_{-1}(x) = 0$ $b(x) = x^7 + x + 1; v_0(x) = 0; w_0(x) = 1$
Iteration 1	$q_1(x) = x; r_1(x) = x^4 + x^3 + x^2 + 1$ $v_1(x) = 1; w_1(x) = x$
Iteration 2	$q_2(x) = x^3 + x^2 + 1; r_2(x) = x$ $v_2(x) = x^3 + x^2 + 1; w_2(x) = x^4 + x^3 + x + 1$
Iteration 3	$q_3(x) = x^3 + x^2 + x; r_3(x) = 1$ $v_3(x) = x^6 + x^2 + x + 1; w_3(x) = x^7$
Iteration 4	$q_4(x) = x; r_4(x) = 0$ $v_4(x) = x^7 + x + 1; w_4(x) = x^8 + x^4 + x^3 + x + 1$
Result	$d(x) = r_3(x) = \gcd(a(x), b(x)) = 1$ $w(x) = w_3(x) = (x^7 + x + 1)^{-1} \mod(x^8 + x^4 + x^3 + x + 1) = x^7$