Definir el problema para abrir un candado girando 3 dígitos comprendidos entre el 0 y el 9.

Variables y dominios:

Cada dígito del candado será una variable D1, D2 y D3. El dominio para las tres variables será el de los dígitos [0-9].

Estado:

Una tupla con valores para las tres variables (a,b,c) tal que $a,b,c \in [0-9]$

Función sucesor:

Las posibles acciones que se pueden realizar son girar subiendo (UP) o bajando (DOWN) de cualquier dígito. Esto da una lista de 6 posibles sucesores para cualquier estado y consideraremos un costo de 1 unidad por acción. Así la función sucesores será:

```
SUC((d1, d2, d3)): return[
(UPd1, ((d1 + 1) mod¹ 10, d2, d3), 1),
(DOWNd1, ((d1 - 1) mod 10, d2, d3), 1),
(UPd2, (d1, (d2 + 1) mod 10, d3), 1),
(DOWNd2, (d1, (d2 - 1) mod 10, d3), 1),
(UPd3, (d1, d2, (d3 + 1) mod 10), 1),
(DOWN d3, (d1, d2, (d3 - 1) mod 10), 1)]
```

Estado inicial:

 e_0 =(a, b, c) $a,b,c \in [0-9]$ Cualquier combinación válida.

Función objetivo:

OBJECTIVO((a, b, c)) = (a == A) y (b == B) y (c == C). Siendo ABC $A, B, C \in [0-9]$ la contraseña.

¹ Con el operador módulo **mod** transforma la lista de dígitos [0-9] en una lista circular, haciendo que 0 sea el siguiente a 9 y que 9 sea el anterior a 0.