Intro to Robotics

Lecture 7

Denavit-Hartenberg Convention

- Joint counts up from 1 at the base; axis counts up from 0
- Joint i connects link i 1 to link i
- Align the Z_i with joint i+1
- Base coordinate system: Z_0 axis align with joint 1, origin is at the base
- Origin of the coordinate system i:
 - intersection of the Z_i & Z_{i-1} or
 - the intersection of common normal between the Z_i & Z_{i-1} axes and the Z_i axis
- X_i axis:
 - $X_i = \pm (Z_{i-1} \times Z_i) / \|Z_{i-1} \times Z_i\|$ pointing from Z_{i-1} to Z_i , or
 - along the common normal between the Z_{i-1} & Z_i axes when they are parallel
- Y_i axis: $Y_i = +(Z_i \times X_i)/\|Z_i \times X_i\|$

Link and Joint Parameters

- Joint angle θ_i : the angle from X_{i-1} to X_i about the Z_{i-1}
- Joint distance d_i : the distance from X_{i-1} to X_i , as measured along Z_{i-1} . It could be negative
- Link length a_i : the distance from Z_{i-1} to Z_i , along X_i . It is always positive
- Link twist angle α_i : the angle from Z_{i-1} to Z_i about the X_i axis

i	$lpha_i$	a_i	d_i	θ_i	
1	$\pi/2$	0	$d_1 = 89.2$	$\theta_1 = \pi/2$	
2	0	$a_2 = 425$	0	$\theta_2 = \pi/2$	
3	0	$a_3 = 392$	0	$\theta_3 = 0$	
4	$\pi/2$	0	$d_4 = 109.3$	$\theta_4=\pi/2$	
5	$-\pi/2$	0	$d_5 = 94.75$	$\theta_5 = 0$	
6	0	0	$d_6 = 82.5$	$\theta_6 = 0$	

Transformation between i-1 and i

$$A_i^{i-1} = R(z_{i-1}, \theta_i) T(z_{i-1}, d_i) T(x_i, a_i) R(x_i, \alpha_i)$$

- Rotate about the Z $_{i-1}$ axis an angle of θ_i
- Translate along the Z_{i-1} axis a distance of d_i
- Translate along the X_i axis a distance of a_i
- Rotate about the X_i axis an angle of α_i

Transformation between i-1 and i

- D-H transformation matrix for adjacent coordinate frames, *i* and *i-1*.
 - The position and orientation of the *i*-th frame coordinate can be expressed in the (*i*-1)th frame by the following homogeneous transformation matrix:

$$A_{i}^{i-1} = R(z_{i-1}, \theta_{i})T(z_{i-1}, d_{i})T(x_{i}, a_{i})R(x_{i}, \alpha_{i})$$

$$\begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformation between i-1 and i

- D-H transformation matrix for adjacent coordinate frames, *i* and *i-1*.
 - The position and orientation of the *i*-th frame coordinate can be expressed in the (*i*-1)th frame by the following homogeneous transformation matrix:

$$A_{i}^{i-1} = R(z_{i-1}, \theta_{i})T(z_{i-1}, d_{i})T(x_{i}, a_{i})R(x_{i}, \alpha_{i})$$

$$\begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Forward Kinematics

Link	a_i	α_i	d_i	θ_i
1	0	0	d_1	θ_1^*
2	0	-90	d_2^*	0
3	0	0	d_3^*	0

* variable

$$A_{i-1}^{i} = R(z_{i-1}, \theta_{i})T(z_{i-1}, d_{i})T(x_{i}, a_{i})R(x_{i}, \alpha_{i})$$

$$\begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = A_{1}^{0} = \begin{bmatrix} C\theta_{1} & -C0S\theta_{1} & S0S\theta_{1} & 0C\theta_{1} \\ S\theta_{1} & C0C\theta_{1} & -S0C\theta_{1} & 0S\theta_{1} \\ 0 & S0 & C0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{1} = \begin{bmatrix} C\theta_{1} & -S\theta_{1} & 0 & 0 \\ S\theta_{1} & C\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{3}^{1} = A_{1}A_{2}A_{3} = \begin{bmatrix} C\theta_{1} & 0 & -S\theta_{1} & -S\theta_{1}d_{3} \\ S\theta_{1} & 0 & -C\theta_{1} & C\theta_{1}d_{3} \\ 0 & -1 & 0 & d_{1}+d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$