Esercitazione 8

Geometria e Algebra Lineare GE110 - AA 2022–2023

26 Aprile 2023

Esercizio 1. Sia \mathbb{A} uno spazio affine su uno spazio vettoriale V, e siano P_0, \ldots, P_N $N+1 \geq 2$ punti di \mathbb{A} . Definiamo il sottospazio affine generato da P_0, \ldots, P_N il sottospazio affine passante per P_0 e con giacitura $W = \langle \overline{P_0P_1}, \overline{P_0P_2}, \ldots, \overline{P_0P_N} \rangle$, e lo indichiamo con

$$\overline{P_0P_1\dots P_N}=\mathcal{S}_{P_0,W}.$$

I punti P_0, \ldots, P_N si dicono *indipendenti* se dim $\overline{P_0P_1 \ldots P_N} = N$.

- 1. Dimostrare che $\overline{P_0P_1\dots P_N}$ non dipende dall'ordine in cui vengono presi $P_0,\dots,P_N;$
- 2. Descrivere $\overline{P_0P_1}$ quando i punti sono indipendenti;
- 3. Descrivere $\overline{P_0P_1P_2}$ quando i punti sono indipendenti.

Esercizio 2. Tre punti P_0, P_1, P_2 dello spazio affine $\mathbb{A}^2_{\mathbb{R}}$ si dicono allineati se dim $\overline{P_0P_1P_2}=1$. Stabilire quali delle seguenti terne di punti sono allineati:

- (a) $\{(1/2,2),(1/2,100),(1/2,\pi/4)\};$
- (b) $\{(1,1),(1,-1),(-1,1)\};$
- (c) $\{(5,9), (-6,-2), (1,3)\}.$

Esercizio 3. Si consideri il seguente sottospazio vettoriale di \mathbb{R}^3 :

$$W := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_3 = 0\}.$$

- (a) Determinare le equazioni parametriche di W;
- (b) Sia \mathbb{A}^3 lo spazio affine \mathbb{R}^3 su sè stesso, e sia $P = (1,0,1) \in \mathbb{A}^3$. Descrivere esplicitamente i punti di $\mathcal{S}_{P,W}$ e determinare equazioni cartesiane e parametriche di $\mathcal{S}_{P,W}$;
- (c) Dati Q = (1, 2, 0) e R = (0, 2, 1) in \mathbb{A}^3 , stabilire se $\mathcal{S}_{Q,W} = \mathcal{S}_{R,W}$.

Esercizio 4. Si consideri il seguente sottospazio vettoriale di \mathbb{R}^4 :

$$W := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^3 : x_1 - x_3 = x_1 + x_2 = 0\}.$$

- (a) Determinare le equazioni parametriche di W;
- (b) Sia \mathbb{A}^4 lo spazio affine \mathbb{R}^4 su sè stesso, e sia $P = (1, 1, -1, -1) \in \mathbb{A}^4$. Descrivere esplicitamente i punti di $\mathcal{S}_{P,W}$ e determinare equazioni cartesiane e parametriche di $\mathcal{S}_{P,W}$;
- (c) Dati Q = (0, -1, 1, 1) e R = (0, 1, 1, -2) in \mathbb{A}^4 , stabilire se $\mathcal{S}_{Q,W} = \mathcal{S}_{R,W}$.

Esercizio 5. Sia \mathbb{A} uno spazio affine su uno spazio vettoriale V e sia $C \in \mathbb{A}$. Per ogni $P \in \mathbb{A}$ definiamo il punto simmetrico di P rispetto a C il punto $\sigma_C(P)$ che soddisfa l'identità

$$\overrightarrow{C\sigma_C(P)} = -\overrightarrow{CP}.$$

- 1. Fissato un riferimento affine O, e_1, \ldots, e_n , se i punti C e P hanno coordinate c_1, \ldots, c_n e x_1, \ldots, x_n dimostrare che $\sigma_C(P)$ ha coordinate $2c_1 x_1, \ldots, 2c_n x_n$;
- 2. Dimostrare che l'applicazione $\sigma_C : \mathbb{A} \to \mathbb{A}$ verifica $\sigma_C(\sigma_C(P)) = P$ per ogni $P \in \mathbb{A}$;
- 3. Se $\mathcal{S}_{Q,W}$ è il sottospazio affine di $\mathbb A$ passante per Q di giacitura W dimostrare che

$$\sigma_C(\mathcal{S}_{Q,W}) = \mathcal{S}_{\sigma_C(Q),W}$$

.