

The Study-Gym
Capstone Project – The Battle of Neighborhood

Zheng Jiahui May 2020

Introduction

1. The Background

a) The Country

Singapore, or officially the Republic of Singapore, is a sovereign city-state and island country in maritime Southeast Asia.

Planning Areas, also known as DGP areas or DGP zones, are the main urban planning and census divisions of Singapore delineated by the Urban Redevelopment Authority. There are a total of 55 of these areas, organised into five regions. Planning Areas are further subdivided into subzones for statistical purposes.

b) The Education System

Singapore's education system has been described as "world-leading" and in 2010 was among those picked out for commendation by the Conservative former UK Education Secretary Michael Gove. According to PISA, an influential worldwide study on educational systems, Singapore has the highest performance in international education and tops in global rankings. In January 2020, Singapore students made up half of the perfect scorers in the IB examinations worldwide. However, the Singaporean culture of Kiasuism spurs parents provide additional support for their children, for fear of their child "losing out" to others. Therefore, parents invest a lot in their children's education, as a good university degree guarantees a higher-paying job.

Besides formal education (local or international schools), 70% of parents also send their children for tuition and 6 in 10 secondary school students pay for private tuition (Straits Times, 2015). The number of tuition centres in Singapore has steadily grow from a list of 700 MOE-registered tuition agencies in 2012, to 800 in 2013 and 840 in 2014, and the tuition industry was worth 1.1 billion in 2018.

Much of the demand for tuition comes from those preparing for these exams. Peer pressure and competition between parents and students also serve to intensify the demand for tuition.

2. The Question

a) The Client

A friend of mine wants to set up a private tuition center, which would target at students of age 12-18 years old, who are currently studying O-Levels/A-Levels or IGCSE/IB syllabus at local schools in Singapore.

However, due to the fierce competition, she has come up with a new idea: she would like to open Study-Gyms, which is a combination of a study room and a gym, in which students from the school could study, get help from tutors, read books and do physical exercises.

Recently, she approached me, asking me to help her find out where she should open such business ventures.

b) The Factors

the factors affecting the suitability of a location are:

1) Population, esp. population of teenagers who are 12-18 years old:

The larger the population of students, the larger the market, as more teenagers would need private tuition services;

2) Public transport networks e.g. metro/MRT/buses, etc. :

The well-developed public transport network enables students who live further sway to come to tuition center conveniently;

3) Number of Schools in the area:

Higher concentration of schools means a large amount of students available.

4) Number of existing Bookstores and Gyms:

Higher number means more intense competition

Methodology

1. The Aim

There are two aims for this project:

- 1) Help my friend to find out suitable locations for her Study-Gym;
- 2) <u>Meanwhile, apply what I have learned from IBM Data Science Professional Certificate Courses as much as possible.</u>

2. The Method

- a) The Steps
- Find out the planning areas which has both the highest density of Student Population from 12-18 years old, who are studying either in Secondary Schools or Junior Colleges (or equivalent), and the highest number of schools (Secondary and JC Levels);
- 2) Rank the schools located in the planning areas from 1) in terms of the number of existing gyms and bookstores.
- 3) Come up with the list of Schools, whose neighborhoods are the most venues for the business venture.

b) The Tools

The skills and tools used in this project are: Webpage Scraping by BeautifulSoup and Requets, Data Wrangling and Data Pre-processing by python pandas and numpy, Data Visualization by matplotlip and folium, Data Analysis, Geocoding by Nominatim, Finding Nearby Venues by Foursquare API, One-Hot Encoding, K-mean Clustering by sklearn.

Other libraries and packages used include seaborn, json, etc. .

The entire project was run on Watson Studio Jupyter Notebook.

Data Acquisition

1. Data Source

- 1) The Planning Area of Singapore, which provides information on area of each Planning Area (2014): https://en.wikipedia.org/wiki/Planning Areas of Singapore:
- **2)** The Planning Area and Subzones, which provides information on overall population for each planning area and subzone: https://www.citypopulation.de/en/singapore/admin/
- **The Demographic Information,** Table 135 Resident Students Aged 5 Years and Over by Planning Area and Level of Education Attending: https://data.gov.sg/dataset/resident-students-aged-5-years-and-over-by-planning-area-and-level-of-education-attending-2015?resource_id=43762b5d-334f-4161-a4eb-d72d6f598d60
- 4) Secondary Schools in Singapore: https://en.wikipedia.org/wiki/List_of_secondary_schools_in_Singapore
- 5) Junior Colleges in Singapore: https://en.wikipedia.org/wiki/List_of_schools_in_Singapore
- 6) Schools with Postal Code and Level of Education: https://data.gov.sg/dataset/school-directory-and-information
- 7) Coordinates for Planning Area, Subzones and Schools: Manually prepared after getting Coordinates through Nominatim.

Data Acquisition

2. The Code

1) Web Scraping and Data Wrangling (Example)

```
In [2]: # use request.get to send a GET request to the specified url
url = "https://en.wikipedia.org/wiki/Planning_Areas_of_Singapore"

r = requests.get(url)

# get content from website and store in a variable
singapore_html = BeautifulSoup(r.content)

# store all the strings in the html page in variable "soup"
soup = BeautifulSoup(str(singapore_html))

In [4]: # use find "table", the second table on the website
plarea_tb = soup.find_all('table')[1]

# extract the charaters from the table
table_str = str(plarea_tb.extract())

# read the table into panda dataframe
singapore_df = pd.read_html(table_str)[0]

# display the first five rows of table
singapore_df.head()
```

requests: a Python module that allows you to send HTTP requests. The HTTP request returns a Response Object with all the response data (content, encoding, status, etc).

BeautifulSoup: a Python library for pulling data out of HTML and XML files.

Out[4]:		Name (English)	Malay	Chinese	Pinyin	Tamil	Region	Area (km2)	Population[7]	Density (/km2)
	0	Ang Mo Kio	NaN	宏茂桥	Hóng mào qiáo	ஆங் மோ கியோ	North- East	13.94	163950	13400
	1	Bedok	*	勿洛	Wù luò	பிடோக்	East	21.69	279380	13000
	2	Bishan	NaN	碧山	Bì shān	பீஷான்	Central	7.62	88010	12000
	3	Boon Lay	NaN	文礼	Wén lĩ	பூன் லே	West	8.23	30	3.6
	4	Bukit Batok	*	武吉巴督	Wůjí bā dū	புக்கிட் பாத்தோக்	West	11.13	153740	14000

2) Direct from local csv file uploaded to Watson Studio (Example)

```
In [11]: # The code was removed by Watson Studio for sharing.
In [12]: # store it in a dataframe
    sgedu_df = pd.read_csv(body)
# check the dataframe
    sgedu_df.head()
```

Watson Studio has inbuilt codes to get the uploaded csv file. However the code can't be shown as it is considered as sensitive.

Out[12]:		Planning Area	Total	Pre- Primary	Primary	Secondary	Post-Secondary (Non-Tertiary)	Polytechnic	Professional Qualification and Other Diploma	University
	0	Total	765.3	57.4	262.3	205.7	58.7	79.8	10.4	90.9
	1	Ang Mo Kio	31.8	3.0	11.7	8.2	2.3	3	0.2	3.4
	2	Bedok	54.4	3.2	18.4	15.0	4.2	5.5	0.7	7.5
	3	Bishan	17.5	1.3	5.8	4.1	1.5	1.4	0.4	3.1
	4	Bukit Batok	29.3	1.8	8.4	8.1	2.3	3.6	0.7	4.4

1. Codes

1) Basic Processing

Common pandas commands used f	Common pandas commands used for modification of Dataframes						
pd. read_csv() pd.merge() pd.concat() df[] = df.columns = df.shape df.columns	df.drop() df.rename() df.to_numeric () df.loc () df.iloc() df.sort_values() df.head ()	df.tail () df.to_csv () df.reset_index() df.set_index df.replace() df.groupby() df.set_value()					

2) Examples

```
In [36]: Sgsz2_df['Subzone'] = Sgsz2_df['Subzone'].astype(str).str.rstrip(', SG')
Sgsz2_df.head()

Out[36]: Subzone Planning Area

0 Flora Drive Pasir Ris
1 Loyang East Pasir Ris
2 Loyang West Pasir Ris
3 Pasir Ris Central Pasir Ris
4 Pasir Ris Drive Pasir Ris
```

```
In [45]: # get the top 5 entries
df_top5 = Sgsubz4_df.head()
          years = ['2000','2010', '2015', '2019']
          # transpose the dataframe
          df_top5 = df_top5[years].transpose()
          df_top5.head()
Out[45]: Subzone Tampines East Woodlands East Bedok North Tampines West Yunnan
           2000
                     137152.0
                                    64824.0
                                                     87199.0
                                                                   75761.0
                                                                                  62600.0
           2010
                     138807.0
                                    95401.0
                                                     91139.0
                                                                   77956.0
                                                                                   73587.0
                     138500.0
                                    95510.0
                                                     85930.0
                                                                   78110.0
                                                                                  70890.0
           2015
           2019
                     132840.0
                                    98510.0
                                                                   79670.0
                                                                                  68170.0
                                                     82530.0
```

1. Codes

3) Other Examples

```
In [106]: # group schools from same planning area together
                                                  sch\_df = ssch\_df.groupby(['Planning Area'])['Name'].apply(lambda \ x: \ ','.joillane'].apply(lambda \ x: \ ','.joillane'].apply(lambda \ x: \ ','.joillane'].apply(lambda \ x: \ ','.joillane').apply(lambda \ x: \ ','.joillane
                                                  n(x)).to_frame()
                                                  # reset the index numbers following the grouping
                                                  \verb|sch_df.reset_index(inplace=|True|)|
                                                   # display
                                                 sch_df.head()
Out[106]:
                                                                Planning Area
                                                                                                                                  Name
                                                    0 Ang Mo Kio
                                                                                                                                  Anderson Secondary School, Ang Mo Kio Secondary.
                                                                Bedok
                                                                                                                                  Anglican High School, Bedok Green Secondary Sch.
                                                    2 Bishan
                                                                                                                                  Catholic High School, Guangyang Secondary Schoo.
                                                    3
                                                                Boon Lav
                                                                                                                                  River Valley High School
                                                    4
                                                                Bukit Batok
                                                                                                                                  Bukit Batok Secondary School, Bukit View Second...
```

```
In [32]: # add a column that calculates density of student population
           sgpa_df['Density of Student Population(/km2)'] = sgpa_df.apply(lambda x: x
['Secondary Education'] / x['Area (km2)'], axis=1)
           # add a column that calculates density of population
           sgpa_df['Density of Population(/km2)'] = sgpa_df.apply(lambda x: x['Population'] / x['Area (km2)'], axis=1)
           # check the dataframe
           sgpa_df.head()
Out[32]:
              Planning Area
                                 Secondary
                                                            Density of Student
                                                                                  Density of
                                                Population
                                 Education
                                                            Population(/km2)
                                                                                  Population(/km2)
              Area
                         (km2)
              Ang Mo
           0
                         13.94
                                 10500.0
                                                174770.0
                                                            753.228121
                                                                                  12537.302726
              Kio
            1 Bedok
                         21.69
                                 19200.0
                                               289750.0
                                                            885.200553
                                                                                  13358.690641
           2 Bishan
                         7.62
                                                90700 0
                                                            734 908136
                                                                                  11902 887139
                                 5600.0
              Bukit
           3
                         11 13
                                 10400 0
                                                139270 0
                                                            934 411500
                                                                                  12513 027853
              Batok
              Bukit
                         14.34
                                 7600.0
                                                155840.0
                                                            529.986053
                                                                                  10867.503487
              Merah
```

1. Codes

3) Other Examples

```
In [121]: # import
            from sklearn import preprocessing
            # Create x, where x the 'scores' column's values as floats x = ns\_df[['Density of Student Population(/km2)','Number of Schools', 'Dens']
           ity of Population(/km2)']].values.astype(float)
            # Create a minimum and maximum processor object
           min_max_scaler = preprocessing.MinMaxScaler()
            # Create an object to transform the data to fit minmax processor
           x_scaled = min_max_scaler.fit_transform(x)
            # Run the normalizer on the dataframe
           ns_normalized = pd.DataFrame(x_scaled)
            # display
           ns_normalized.head()
Out[121]:
             0
                            2
            0 0.226799 0.6 0.341346
            1 0.284010 1.0 0.375170
            2 0.218858 0.5 0.315220
            3 0.305344
                        0.3 0.340346
            4 0.130023
                        0.2 0.272584
```

```
In [25]: def slicingTable(i):
    x = topplarea2_df.loc[i, 'x']
    y = topplarea2_df.loc[i, 'y']
    z = topplarea2_df.loc[i, 'Planning Area']

    sgsubdiv2_1=sgsubdiv2_df[x:y]
    sgsubdiv2_1['Planning Area']=z
    return sgsubdiv2_1

    def table(m):
        m_df = slicingTable(m)
        return m_df

In [27]: frame = [table(0), table(1), table(2), table(3), table(4), table(5), table
        (6), table(7), table(8), table(9)]
    mergedTable.head()
```

Out[27]:		Name	Status	Planning Area
	207	Flora Drive	Subzone	Pasir Ris
	208	Loyang East	Subzone	Pasir Ris
	209	Loyang West	Subzone	Pasir Ris
	210	Pasir Ris Central (Town)	Subzone	Pasir Ris
	211	Pasir Ris Drive	Subzone	Pasir Ris

2. Output

	Planning Area	Density of Student Population(/km2)	Density of Population(/km2)
24	Tanglin	131.061599	2490.170380
19	Queenstown	230.053842	4799.314733
11	Jurong East	274.817723	4766.124509
15	Novena	278.396437	5344.097996
6	Bukit Timah	330.861380	4248.146035

	Planning Area	Density of Student Population(/km2)_x	Density of Population(/km2)_x	Name	Number of Schools
0	Choa Chu Kang 25.368249 28531.914894		Bukit Panjang Government High School,Chua Chu	7	
1	Hougang	11.486001	15959.081120	Bowen Secondary School,Holy Innocents' High Sc	8
2	Tampines	8.616563	12505.026328	Changkat Changi Secondary School,Dunman Second	9
3	Woodlands	17.365710	18417.218543	Admiralty Secondary School, Christ Church Secon	11
4	Jurong West	14.976174	18560.925800	Boon Lay Secondary School,Dunearn Secondary Sc	12

Data Visualization With Bar Charts

1. Bar Charts – Population Density

a) Density of Student Population vs. Planning Area (index) In [122]: # plot style # plot style # plot # pl

2. Bar Charts - Top Ten Population Density

The top ten planning areas with the highest density of population of students attending Secondary Schools and Junior Colleges (or equivalent) are:

Choa Chu Kang Woodlands Sengkang Jurong West Bukit Panjang Hougang Bukit Batok Betok Tampines Pasir Ris

The top ten planning areas with the highest density of population are:

Choa Chu Kang Sengkang Jurong West Woodlands Outram Hougang Bukit Panjang Toa Payoh Bedok Ang Mo Kio

Data Visualization With Bar Charts

3. Bar Charts - Comparison

```
In [71]: # define variables
    density_of_population = sgtc3_top10['Density of Population(/km2)']
    density_of_student_population = sgtc3_top10['Density of Student Population(/km2)']
    labels = sgtc3_top10['Planning Area']

#
    x = np.arange(len(labels))
    width = 0.25

fig, ax = plt.subplots()
    rects1 = ax.bar(x - width/2, density_of_population, width, label='Population')
    rects2 = ax.bar(x + width/2, density_of_student_population, width, label='Student Population')

ax.set_ylabel('Density per Square Kilometer')
    ax.set_xlabel('Planning Area')
    ax.set_title('Density per Square Kilometer by Planning Area')
    ax.set_xticks(x)
    ax.set_xticks(x)
    ax.set_xticklabels(labels, rotation=90)
    ax.legend()
```

The Code:

Analysis

From the above bar chart we could see that the planning areas with highest density of student population does not necessarily mean that they also have the highest population density.

The discrepancy may imply: for planning areas like Bukit Panjang, Jurong West, and Woodlands, the percentage of students in secondary education is higher. Whereas for planning areas like Toa Payoh, and Outram Park, the percentage of students in secondary education is lower.

A conjecture thus arises: does the mismatch the result of number of schools in the specific planning areas

4. Bar Charts - Number of Schools

Choa Chu Kang - Ang Mo Kio - Ang Mo Kio - Ang Mo Kio - Ang Moodlands - Ang Woodlands - Ang Woo

Top 10 Planning Areas with highest number of Secondary Schools/Junior Colleges(or equivalent)

Planning Area

The five planning areas with the highest density of Student (12-18~ys) population and also the highest number of schools.

	Name	Planning Area
0	Admiralty Secondary School	Woodlands
1	Anglican High School	Bedok
2	Bedok Green Secondary School	Bedok
3	Bedok South Secondary School	Bedok
4	Bedok View Secondary School	Bedok
5	Boon Lay Secondary School	Jurong West
6	Bowen Secondary School	Hougang
7	Bukit Panjang Government High School	Choa Chu Kang
8	Changkat Changi Secondary School	Tampines
9	Chua Chu Kang Secondary School	Choa Chu Kang
10	Christ Church Secondary School	Woodlands
11	Damai Secondary School	Bedok
12	Dunearn Secondary School	Jurong West
13	Dunman Secondary School	Tampines
14	East Spring Secondary School	Tampines
15	Evergreen Secondary School	Woodlands
16	Fuchun Secondary School	Woodlands
17	Fuhua Secondary School	Jurong West
18	Holy Innocents' High School	
18	Hong Kah Secondary School	Hougang Jurong West
	,	
20	Hougang Secondary School	Hougang
21	Hua Yi Secondary School	Jurong West
22	Junyuan Secondary School	Tampines
23	Jurong Secondary School	Jurong West
24	Jurong West Secondary School	Jurong West
25	Juying Secondary School	Jurong West
26	Kranji Secondary School	Choa Chu Kang
27	Marsiling Secondary School	Woodlands
28	Montfort Secondary School	Hougang
29	Ngee Ann Secondary School	Tampines
30	Pasir Ris Secondary School	Tampines
31	Paya Lebar Methodist Girls' School (Secondary)	Hougang
32	Ping Yi Secondary School	Bedok
33	Regent Secondary School	Choa Chu Kang
34	Riverside Secondary School	Woodlands
35	St. Patrick's School	Bedok
36	Serangoon Secondary School	Hougang
37	Singapore Sports School	Woodlands
38	Springfield Secondary School	Tampines
39	St. Anthony's Canossian Secondary School	Bedok
40	St. Hilda's Secondary School	Tampines
41	Tampines Secondary School	Tampines
42	Teck Whye Secondary School	Choa Chu Kang
43	Temasek Junior College	Bedok
44	Temasek Secondary School	Bedok
	Unity Secondary School	Choa Chu Kang
46	Westwood Secondary School	Jurong West
47	Woodgrove Secondary School	Woodlands
	Woodlands Ring Secondary School	Woodlands
	Woodlands Secondary School	Woodlands
	,	
	Xinmin Secondary School	Hougang
51	Yuan Ching Secondary School	Jurong West
	Yuhua Secondary School	Jurong West
53	Yuying Secondary School	Hougang
54	Spectra Secondary School	Woodlands
55	Jurong Pioneer Junior College	Choa Chu Kang
56	River Valley Junior College	Jurong West
57	Temasek Junior College	Bedok
	Victoria Junior College	Bedok

List of 59 Schools in the top 5 Planning Areas:

Choa Chu Kang, Hougang, Tampines, Woodlands, Jurong West and Bedok

Geocoding with Nominatim

1. The Codes

```
In [111]: def getLanlong(i):
               postCode = scinf2_df.loc[i, 'postal_code']
address = postCode
geolocator = Nominatim(user_agent="sg_explorer")
                                                                                                                                          I wrote a function to
                                                                                                                                          loop through the
               location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('{}'.format(longitude))
                                                                                                                                          table to get
                                                                                                                                          coordinates for each
                                                                                                                                          postal codes of
           for x in range(9):
                                                                                                                                          schools.
               getLanlong(x)
           103.80278481638744
           103.83014981269604
                                                                                                                                          However, there are
           103.85159449486005
           103.84591077800243
                                                                                                                                          some errors with a
           103.8425200660313
                                                                                                                                          few coordinates and
           103.94145827956677
           103.78568186563996
                                                                                                                                          I got them through
           103.83564544302268
                                                                                                                                          simple nominatim
           103.7804261897334
                                                                                                                                          codes.
                                                                                                                                          Finally I combined all
In [116]: # get coordinates for schools which does not have (correct) coordinates # CHIJ ST. THERESA'S CONVENT
                                                                                                                                          the data for latitudes
                                                                                                                                          and longitudes
           address = "CHIJ ST. THERESA'S CONVENT, SG"
                                                                                                                                          offsite in csv form
           geolocator = Nominatim(user_agent="sg_explorer")
                                                                                                                                          with excel.
           latitude = location.latitude
longitude = location.longitude
           print('{},{}'.format(latitude, longitude))
           1.27614885,103.8222529475166
```

2. The Output

	Planning Area	Density (/km2)	Latitude	Longitude
0	Ang Mo Kio	13400	1.370073	103.849516
1	Bedok	13000	1.323976	103.930216
2	Bishan	12000	1.349057	103.749591
3	Bukit Batok	14000	1.349057	103.749591
4	Bukit Merah	11000	1.270439	103.828318

Latitudes and Longitudes for Planning Areas in Singapore

School Name	Latitude	Longitude
ADMIRALTY SECONDARY SCHOOL	1.445960	103.802785
AHMAD IBRAHIM SECONDARY SCHOOL	1.436070	103.830150
ANDERSON SECONDARY SCHOOL	1.375088	103.851594
ANDERSON SERANGOON JUNIOR COLLEGE	1.378750	103.845911
ANG MO KIO SECONDARY SCHOOL	1.367770	103.842520
	ADMIRALTY SECONDARY SCHOOL AHMAD IBRAHIM SECONDARY SCHOOL ANDERSON SECONDARY SCHOOL ANDERSON SERANGOON JUNIOR COLLEGE	ADMIRALTY SECONDARY SCHOOL 1.445960 AHMAD IBRAHIM SECONDARY SCHOOL 1.436070 ANDERSON SECONDARY SCHOOL 1.375088 ANDERSON SERANGOON JUNIOR COLLEGE 1.378750

Latitudes and Longitudes for Secondary Schools and Junior Colleges (or equivalent) in Singapore

Data Visualization (Maps) with Folium

1. The (Failure) of Codes

I had quite a failure with this part. While I had no problem creating simple marked maps with folium, when I tried to make marked maps with different circle radii, here is the code for further investigation.

I would also like to make a cholopleth map but I failed to find the relevant Json file. This could be a future exercise.

TypeError: Object of type 'float32' is not JSON serializable

```
: # store the Toronto's latitude and longitude info
  singapore_latlong = [latitude, longitude]
  print(singapore_latlong)
  # use folium library to create a map of Toronto using latitude
  # and longitude values
  map_singapore = folium.Map(location=singapore_latlong, tiles="OpenStreetMap", zoom_start=10.5
  # add markers to map
  for i in range(0, 28):
      folium.CircleMarker(
        location=[plare3_df.loc[i]['Latitude'], plare3_df.loc[i]['Longitude']],
        popup=plare3_df.loc[i]['Planning Area'],
       radius=plare3_df.loc[i]['Density (/km2)'],
       color='crimson',
        fill=True,
        fill color='crimson'
     ).add_to(map_singapore)
  map_singapore
```

[1.357107, 103.8194992]

The successful Code

```
# store the Toronto's latitude and longitude info
singapore_latlong = [latitude, longitude]
print(singapore_latlong)
# use folium library to create a map of Toronto using latitude
# and longitude values
map_singapore = folium.Map(location=singapore_latlong, tiles="OpenStreetMap", zoom_start=10.5
# add markers to map
for lat, lng, label in zip(schcor_df['Latitude'], schcor_df['Longitude'],schcor_df['School Name']):
    label = folium.Popup(label, parse_html=True)
    folium.Marker(
       [lat, lng],
       radius=2.5,
       popup=label,
       color='blue',
       fill= True,
       fill color='#2E7D32',
       fill opacity=0.5,
       parse_html=False).add_to(map_singapore)
map_singapore
```

[1.357107, 103.8194992]

Data Visualization (Maps) with Folium

2. The Output

Singapore's 27 Planning Areas with sizable number of Students.

Secondary Schools and Junior Colleges (or equivalent) in Singapore

Venues with Foursquare

1. The Code

```
In [13]: def getNearbyVenues(names, latitudes, longitudes, radius=500):
                     venues_list=[]
for name, lat, lng in zip(names, latitudes, longitudes):
    print(name)
                           # create the API request URL
               # Create the Air request OnL
url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&r
adius={}&limit={}'.format(
    CLIENT_ID,
    CLIENT_SECRET,
    VERSION,
                                 lat,
lng,
                                 radius,
LIMIT)
                           # make the GET request
results = requests.get(url).json()["response"]['groups'][0]['items']
                           # return only relevant information for each nearby venue
venues_list.append([(
                                 name,
lat,
                                lat,
lng,
v['venue']['name'],
v['venue']['location']['lat'],
v['venue']['location']['lng'],
v['venue']['categories'][0]['name']) for v in results])
                     nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_list])
                     nearby_venues = pu.batarrame(!recfilem for 
nearby_venues.columns = ['School Name', 
'School Latitude', 
'Venue', 
'Venue', 
'Venue Latitude',
                                           'Venue Longitude'
'Venue Category']
                     return(nearby_venues)
In [8]: # set the number of venues of returned by Foursquare API to be 100
              LIMIT = 100
              # define radius as 1000 meters
radius = 500
             # create URL
url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}
&limit={}'.format(
    CLIENT_ID,
    CLIENT_SECRET,
    VERSION,
                    sch_latitude,
sch_longitude,
                   radius,
              # display URL
```

Foursquare is an API that allows developers and users to explore venues near certain locations.

Here I searched for venues near each school in the dataset.

I set the radius to be 500 meters and the limit of venues returned to be 100.

Out[19]:

	School Name	School Latitude	School Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	ADMIRALTY SECONDARY SCHOOL	1.44596	103.802785	Woodlands Crescent Park	1.445158	103.802985	Park
1	ADMIRALTY SECONDARY SCHOOL	1.44596	103.802785	Woodlands Mart	1.445868	103.798627	Shopping Plaza
2	ADMIRALTY SECONDARY SCHOOL	1.44596	103.802785	Buzz @ Woodlands Mart	1.443994	103.799860	Paper / Office Supplies Store
3	ADMIRALTY SECONDARY SCHOOL	1.44596	103.802785	Fork & Spoon	1.445120	103.798602	Food Court
4	AHMAD IBRAHIM SECONDARY SCHOOL	1.43607	103.830150	Blk 171 Yishun Ave 7	1.436794	103.831819	Coffee Shop

The Foursquare API returned in total 2535 venues for 162 Schools

One hot encoding

```
# one hot encoding
singapore_onehot = pd.get_dummies(singapore_venues[['Venue Category']], prefix="", prefix_sep="")

# add school name column back to dataframe
singapore_onehot['School Name'] = singapore_venues['School Name']

# move school name column to the first column
col_name="School Name"
first_col = singapore_onehot.pop(col_name)
singapore_onehot.insert(0, col_name, first_col)
singapore_onehot.head()
```

In [25]: singapore_grouped = singapore_onehot.groupby('School Name').mean().reset_index()
singapore_grouped.head()

Out[25]:

	School Name	Airport	American Restaurant	Arcade	Art Gallery	Art Museum	Arts & Crafts Store	Arts & Entertainment	Asian Restaurant		Australian Restaurant
0	ADMIRALTY SECONDARY SCHOOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0
1	AHMAD IBRAHIM SECONDARY SCHOOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.125000	0.0	0.0
2	ANDERSON SECONDARY SCHOOL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.071429	0.0	0.0
3	ANDERSON SERANGOON JUNIOR COLLEGE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0
4	ANG MO KIO SECONDARY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.083333	0.0	0.0

One hot encoding is a process by which categorical variables are converted into a form that could be provided to ML algorithms to do a better job in prediction. For the K-means Clustering Algorithm, all unique items under Venue Category are one-hot encoded.

gymcenter = gym.sort_values(['Gym Center'])
gymcenter1 = gymcenter.tail(n=10)
gymcenter1

School Name

Gym Gym/Fitness Center Bookstore Gym Center

	School Name	Gym	Gym / Fitness Center	Bookstore	Gym Cente
35	CHUA CHU KANG SECONDARY SCHOOL	0.142857	0.000000	0.0	0.142857
103	PEIRCE SECONDARY SCHOOL	0.142857	0.000000	0.0	0.142857
80	METHODIST GIRLS' SCHOOL (SECONDARY)	0.076923	0.076923	0.0	0.153846
111	REGENT SECONDARY SCHOOL	0.052632	0.105263	0.0	0.157895
61	HILLGROVE SECONDARY SCHOOL	0.090909	0.090909	0.0	0.181818
73	KUO CHUAN PRESBYTERIAN SECONDARY SCHOOL	0.200000	0.000000	0.0	0.200000
47	EAST SPRING SECONDARY SCHOOL	0.111111	0.111111	0.0	0.222222
41	CRESCENT GIRLS' SCHOOL	0.250000	0.000000	0.0	0.250000
43	DAMAI SECONDARY SCHOOL	0.125000	0.125000	0.0	0.250000
105	PRESBYTERIAN HIGH SCHOOL	0.250000	0.000000	0.0	0.250000

By using the table generated from One Hot Encoding, I sorted out the Schools in which the frequency of numbers for gym/fitness center, and for book stores are the highest 10.

By removing these schools from the list of 59 Schools, I get a new list of 45 Schools. These would my suggestions to my friend.

Top Ten Venues

1. The Code

```
In [27]: num_top_venues = 10
            for hood in singapore_grouped['School Name']:
    print("---"+hood+"----")
                 temp = singapore_grouped[singapore_grouped['School Name'] == hood].T.reset_index()
temp.columns = ['venue', 'freq']
                temp.columns = [ venue , freq ]
temp = temp.iloc[1:]
temp['freq'] = temp['freq'].astype(float)
temp = temp.round({'freq': 2})
print(temp.sort_values('freq', ascending=False).reset_index(drop=True).head(num_top_venues))
                print('\n')
            ----ADMIRALTY SECONDARY SCHOOL----
                                       venue freq
Food Court 0.25
                                  Shopping Plaza 0.25
                                               Park 0.25
              Paper / Office Supplies Store 0.25
                                         Airport 0.00
Office 0.00
                                        Multiplex 0.00
                                           Museum 0.00
                                    Music School 0.00
                                      Music Store 0.00
 In [30]: num_top_venues = 10
              indicators = ['st', 'nd', 'rd']
              # create columns according to number of top venues
             columns = ['School Name']
for ind in np.arange(num_top_venues):
                  try:
                       columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
                       columns.append('{}th Most Common Venue'.format(ind+1))
              # create a new dataframe
             school_venues_sorted = pd.DataFrame(columns=columns)
school_venues_sorted['School Name'] = singapore_grouped['School Name']
              for ind in np.arange(singapore_grouped.shape[0]):
                  school_venues_sorted.iloc[ind, 1:] = return_most_common_venues(singapore_grouped.iloc[ind, :], num_top
              school_venues_sorted.head()
```

2. The Output

ut[30]:		School Name	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th M Com Venu
	0	ADMIRALTY SECONDARY SCHOOL	Food Court	Park	Paper / Office Supplies Store	Shopping Plaza	Yunnan Restaurant	Factory	Food & Drink Shop	Food	Flow
	1	AHMAD IBRAHIM SECONDARY SCHOOL	Coffee Shop	Food Court	Hot Spring	Indian Restaurant	Bus Stop	Asian Restaurant	Food & Drink Shop	Food	Farn
	2	ANDERSON SECONDARY SCHOOL	Food Court	Asian Restaurant	Seafood Restaurant	Noodle House	Grocery Store	Restaurant	Coffee Shop	Convenience Store	Colle
	3	ANDERSON SERANGOON JUNIOR COLLEGE	Food Court	Convenience Store	College Cafeteria	Tennis Court	Fast Food Restaurant	Park	College Auditorium	Dessert Shop	Flow
	4	ANG MO KIO SECONDARY SCHOOL	Chinese Restaurant	Food Court	Asian Restaurant	General Entertainment	Fast Food Restaurant	Coffee Shop	Vegetarian / Vegan Restaurant	Noodle House	Dog

Due to high variety in the venues, only the top 10 common venues are selected and a new DataFrame is made, which is used to train the K-means Clustering Algorithm.

K-Means Clustering

1. The Elbow Method - Opitimal K Value

```
In [69]: distortions = []
              K = range(1,15)
             for k in K:
                   kmeanModel = KMeans(n_clusters=k)
kmeanModel.fit(singapore2_grouped)
                   distortions.append(kmeanModel.inertia_)
In [70]: plt.figure(figsize=(16,8))
    plt.plot(K, distortions, 'bx-')
    plt.xlabel('k')
    plt.ylabel('Distortion')
             plt.title('The Elbow Method showing the optimal k')
Out[70]: Text(0.5, 1.0, 'The Elbow Method showing the optimal k')
                                                                The Elbow Method showing the optimal k
     17
     16
     15
     14
     13
     12
  The Elbow is at k =10
```

2. Clustering

```
In [71]: # set number of clusters
kclusters =10

# set a variable
singapore_grouped_clustering = singapore2_grouped

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(singapore_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
Out[71]: array([2, 2, 2, 2, 3, 3, 1, 3, 2, 7], dtype=int32)
```

K-Means Clustering

1. The Output

Out[73]:

	Cluster Labels	School Name	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue
0	2	ADMIRALTY SECONDARY SCHOOL	Food Court	Park	Paper / Office Supplies Store	Shopping Plaza	Yunnan Restaurant	Factory	Food & Drink Shop	Food
1	2	AHMAD IBRAHIM SECONDARY SCHOOL	Coffee Shop	Food Court	Hot Spring	Indian Restaurant	Bus Stop	Asian Restaurant	Food & Drink Shop	Food
2	2	ANDERSON SECONDARY SCHOOL	Food Court	Asian Restaurant	Seafood Restaurant	Noodle House	Grocery Store	Restaurant	Coffee Shop	Conveniend Store
3	2	ANDERSON SERANGOON JUNIOR COLLEGE	Food Court	Convenience Store	College Cafeteria	Tennis Court	Fast Food Restaurant	Park	College Auditorium	Dessert Shop
4	3	ANG MO KIO SECONDARY SCHOOL	Chinese Restaurant	Food Court	Asian Restaurant	General Entertainment	Fast Food Restaurant	Coffee Shop	Vegetarian / Vegan Restaurant	Noodle House

Conclusion

1. The Suggestion

According to the research, I would say my friend has come up with a quite interesting idea by combing study room/tuition with gyms

The one hot encoding shows that the neighborhoods of schools with the highest frequency of gyms would have low frequency of bookstores, which implies that a study gym would most likely to fill in an empty space.

So I would suggest my friend to open this Study Gym near the 45 schools.

However, my research is still not so refined yet; new insights would be generated with further research.

2. Dicussion and Improvement

The methodology could be further improved in the following ways.

1) The listed 59 schools should have been used for venues and one hot encoding

Since I was only looking at the suitability of the 59 schools after step 1, I could have just used the data for these schools instead of the whole list of 162 schools, this would essentially reduce the time needed and make the work more efficient.

2) The frequency of tuition centers should be used instead of bookstores

The most relevant venue categories would be tuition centers, however, Foursquare API and one hot encoding did not provide that category, bookstores was used instead

3) Density of population in Subzones should be used

Planning Area are further divided into subzones, which is more accurate due to its smaller size.