1. Write a pois.prob() function that computes P(X=x), $P(X \neq x)$, P(X < x), $P(X \le x)$, P(X > x), and $P(X \ge x)$. Enable the user to specify the rate parameter λ .

```
pois.prob <- function(x, lambda, type="<=") {

# Initialize result variable
result <- NA

# Compute probabilities based on the type argument
if (type == "=") {
    result <- dpois(x, lambda) # P(X = x)
} else if (type == "<") {
    result <- ppois(x - 1, lambda) # P(X < x)
} else if (type == "<=") {
    result <- ppois(x, lambda) # P(X < x)
} else if (type == ">=") {
    result <- 1 - ppois(x, lambda) # P(X > x)
} else if (type == ">=") {
    result <- 1 - ppois(x, lambda) # P(X > x)
} else if (type == ">=") {
    result <- 1 - ppois(x - 1, lambda) # P(X >= x)
}

return(result)
}
```

2. Write a beta.prob() function that computes P(X=x), $P(X\neq x)$, P(X< x), $P(X\leq x)$, P(X>x), and $P(X\geq x)$ for a beta distribution. Enable the user to specify the shape parameters α and β .

```
beta.prob <- function(x, size, prob, type="<=") {
    # Use dbeta and pbeta to conditionally return the correct probability
}</pre>
```