

Introduction to Probability Theory

Gunvor Elisabeth Kirkelund Lars Mandrup

Todays Content

- Introduction to Probability Theory
- Definitions, concepts and notation
- Relative Frequency Approach
- Set theory
- Basic Axions on probabilities

Example - X linked recessive disease

- → Conditional probabilities
- → Don't (only) rely on logic
- → Systematic calculations

Probability Line

- All probabilities are numbers between 0 and 1.
- In percentage, between 0% to 100%.
- · We begin with one sample point.

Words to Know

Experiment/trial (Forsøg/test)

Roll a dice

Sample space (Udfaldsrum)

S={1,2,3,4,5,6}

Sample point (Bestemt udfald)

 $a = \{4\}$

Event (Hændelse)

 $A=\{2,4,6\}$ (even number)

Elementary event

Event that has one possible outcome

Joined event

Event that has many possible outcomes

Simultaneous event

Event with two or more sub trials

Relative Frequency Approach

- The number of times event A occurs: N_A
- The number of times that all events occur (sample space): $N = N_A + N_B + N_C + \cdots$
- Then we have the relative frequency:

$$Pr(A) \sim r(A) = \frac{N_A}{N}$$

All sample points should have the same a priori probability

• Where: $Pr(A) = \lim_{N \to \infty} r(A)$

Risk of a Meltdown

- There are 437 reactors in the world.
- ~153M operating reactor hours.
- ~Four reactor meltdowns.
- What are the chance of a meltdown?

$$\frac{4}{153M}$$
 pr. reactor pr. hour

$$\sum_{n=1}^{437} \frac{4}{153M} = \frac{1}{87600}$$
 pr. hour

$$\frac{24*365}{87600} = \frac{1}{10}$$
 pr. year

- → Be carefull: Small samples, small probabilities, circumstances, etc.
- \rightarrow Very uncertain: If number of reactors $> 4370 \rightarrow Pr(Meltdown)>1$

Set Theory (Mængdelære)

A set:

- A collection of things.
- Elements of sets are not ordered.

- The set of all persons in a drug trial group.
- The number of cars i DK.
- All numbers.
- All colours.

A Subset to a Set (Delmængder)

 A subset is any set, where all elements are included in the original set

Notation:

B is a subset to A:

$$B \subset A$$

Example:

For a set $A = \{blue, red, green\}$ we have a subset $B \subset A$ if B is in A,

e.g. $\{blue, red\}, \{blue, red, green\}, \{green\}, \{\}\}$

The Sample Space (Udfaldsrum)

- The sample space contains all possible events.
- The probability that a sample is from the sample space is 1.

Pr(S)=1 All events

- A sample space contains 20 people
- 8 has a given disease, 12 is healthy
- Draw a random person.
- What is the chance that a person is a person?
- What is the chance that a person is sick?

A Sample Point (Udfald)

- An elementary event.
- Events are collections of sample points.
- Sample space is the collection of all possible sample points.
- Sample points are not ordered.

Throw of a dice:

Possible outcomes: 1,2,3,4,5,6 \rightarrow S={1,2,3,4,5,6}

Events: $A = \{1,2,3\}$ and $B = \{2,4,6\}$; $A \subset S$; $B \subset S$

Basic Axions of Probability

- The probability of a sample point (element of a sample space).
- The probability of a event (E) (collection of sample points).
- All sample points of a probability space (S) sums up to 1.
- Basic Axions of Probability:

Axion 1:
$$0 \le Pr(E) \le 1$$

Axion 2:
$$Pr(S) = 1$$

The Empty Set (Den tomme mængde)

- The empty set is always a subset of any set.
- This corresponds to the impossible event.

$$\varnothing = \{\}$$
 The null set

The probability of the impossible event is 0.

- The set of boys in an all girlschool.
- The chance of pigs growing wings and fly.
- To get an 8 when rolling a dice.

Summary

The certain event S is the certain set.

Ø is the empty set.

The impossible event

Joint Events (Fællesmængde)

- The intersection A ∩ B are the common elements of the events A and B
- $A \cap B$ means A and B.

Venn diagram

- A is the event of VW cars i DK
- B is the event of red cars in DK
- The intersection of the events is all red VW in DK.

Mutually Exclusive (Disjoint) Events (Disjunkte)

• The sets of A and B are disjoint if: $A \cap B = \emptyset$

- Event A: The child is a girl.
- Event B: The child is a boy.

Union of Events (Foreningsmængde)

- The union of events A ∪ B are all the events in one set 'plus' the events in the other set.
- $A \cup B$ means A or B.
- $A \cup B = A + B A \cap B$

- I can choose between oatmeal (A) and cornflakes (B) for breakfast.
- The union of the events is that I had breakfast.

The Complement Event (Komplementær)

Notation:
$$S \setminus E = \overline{E} = E^c$$
 "not-E"

Notice:

$$E \cup ar{E} = S$$
 The certain event $E \cap ar{E} = arnothing$ The impossible event

Example:

The complement of having a disease is not having a disease

Calculation Rules for Set Theory

Probability of joint events

Venn diagram

Independence (Uafhængighed)

We define that two events are independent if and only if:

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

Notice:

This does not apply if the events A and B are dependent.

- Two throws with a dice
- The gender of two siblings

Conditional Probability (Betingede sandsynligheder)

We write a conditional probability as:

"A given B"

- This means that if the event B has already happened, what is the probability of the event A.
- Reduction of the sample space (possible events) from S to B

- From a population, I have selected a female.
- What is the chance that the selected person is below 1.6 m in height?

Conditional Probabilities – Bayes Rule

$$\Pr(A|B) = \frac{N_{A \cap B}}{N_B} = \frac{N_{A \cap B}/N_S}{N_B/N_S} = \frac{\Pr(A \cap B)}{\Pr(B)}$$

$$\Pr(B|A) = \frac{N_{B \cap A}}{N_A} = \frac{N_{B \cap A}/N_S}{N_A/N_S} = \frac{\Pr(B \cap A)}{\Pr(A)}$$

Probabilities of a Joint Event

We can calculate the probability of a joint event

$$Pr(A \cap B) = Pr(A|B) \cdot Pr(B) = Pr(B|A) \cdot Pr(A)$$

Notice:

- We can extend this rule to multiple events.
- Joint events are not the same as conditional events
- If A and B independent:

$$Pr(B|A) = Pr(B)$$
 and $Pr(A|B) = Pr(A)$

Very important!

Bayes Rule

We can write Bayes rule for two events as:

$$Pr(B) \cdot Pr(A|B) = Pr(A) \cdot Pr(B|A)$$

or

$$Pr(A|B) = \frac{Pr(B|A) \cdot Pr(A)}{Pr(B)} = \frac{Pr(A \cap B)}{Pr(B)}$$

Conditional Probabilities – Total Probability

$$\Pr(A) = \frac{N_A}{N_S} = \frac{N_{A \cap B}}{N_S} + \frac{N_{A \cap \bar{B}}}{N_S} = \frac{N_{A \cap B}}{N_B} \cdot \frac{N_B}{N_S} \cdot \frac{N_B}{N_S} + \frac{N_{A \cap \bar{B}}}{N_{\bar{B}}} \cdot \frac{N_{\bar{B}}}{N_S}$$

$$Pr(A) = Pr(A \cap B) + Pr(A \cap \overline{B})$$
$$= Pr(A|B) \cdot Pr(B) + Pr(A|\overline{B}) \cdot Pr(\overline{B})$$

Conditional Probabilities - Example

Rolling a dice:

Sample space: Events:

$$S=\{1,2,3,4,5,6\}$$

$$A = \{1,2,3\}$$

$$B=\{1,3,5\}$$

$$\overline{B}$$
={2,4,6}

Venn diagram

$$Pr(A) = \frac{N_A}{N_S} = \frac{3}{6} = \frac{1}{2}$$

$$\Pr(B) = \frac{N_B}{N_S} = \frac{3}{6} = \frac{1}{2}$$

$$\Pr(\bar{B}) = \frac{N_{\bar{B}}}{N_{S}} = \frac{3}{6} = \frac{1}{2}$$

$$Pr(A \cap B) = \frac{N_{A \cap B}}{N_S} = \frac{2}{6} = \frac{1}{3}$$

$$\Pr(A \cap \bar{B}) = \frac{N_{A \cap \bar{B}}}{N_S} = \frac{1}{6}$$

Conditional Probabilities - Example

Pr(A|B) =
$$\frac{N_{A \cap B}}{N_B} = \frac{2}{3}$$

$$= \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{1/3}{1/2} = \frac{2}{3}$$

$$Pr(A|\bar{B}) = \frac{N_{A\cap\bar{B}}}{N_{\bar{B}}} = \frac{1}{3}$$

$$= \frac{Pr(A\cap\bar{B})}{Pr(\bar{B})} = \frac{1/6}{1/2} = \frac{2}{6} = \frac{1}{3}$$

$$\Pr(A) = \frac{N_A}{N_S} = \frac{N_{A \cap B}}{N_S} + \frac{N_{A \cap \overline{B}}}{N_S} = \frac{N_{A \cap B}}{N_B} \cdot \frac{N_B}{N_S} + \frac{N_{A \cap \overline{B}}}{N_{\overline{B}}} \cdot \frac{N_{\overline{B}}}{N_S}$$
$$= \frac{3}{6} = \frac{2}{6} + \frac{1}{6} = \frac{2}{3} \cdot \frac{3}{6} + \frac{2}{3} \cdot \frac{3}{6} = \frac{1}{2}$$

$$\Pr(A) = \Pr(A \cap B) + \Pr(A \cap \bar{B}) = \Pr(A|B) \cdot \Pr(B) + \Pr(A|\bar{B}) \cdot \Pr(\bar{B}) = \frac{2}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} = \frac{3}{6} = \frac{1}{2}$$

Markov Properties

Bayes rule for tree events:

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B|A) \cdot Pr(C|B,A)$$

For a Markov chain, it holds that:

$$Pr(A \cap B \cap C) = Pr(A) \cdot Pr(B|A) \cdot Pr(C|B)$$

$$Pr(C|B,A) = Pr(C|A \cap B) = Pr(C|B)$$

(A don't give new information)

Probabilities of a Union of Event

We can calculate the probability of a union of events:

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

Notice:

If the events are mutually exclusive

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

Probabilities of Complement Events

 We can write some rules for the probabilities of a complement event

$$Pr(E \cup \overline{E}) = Pr(S) = 1$$

 $Pr(E) + Pr(\overline{E}) = Pr(S) = 1$
 $Pr(E) = 1 - Pr(\overline{E})$

Example:

The probability of not hitting 2 eyes on dice.

$$Pr(\{1,3,4,5,6\}) = 1 - Pr(\{2\}) = 1 - \frac{1}{6} = \frac{5}{6}$$

Summary of Probability

Relative frequency: $Pr(A) = \frac{N_A}{N_S}$

Complement: $Pr(\overline{A}) = 1 - Pr(A)$

Exclusive: $Pr(\overline{A} \cap B) = Pr(B) - Pr(A)$ if $A \subset B$

Bayes rule:
$$Pr(B|A) = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A)}$$

Bayes formula:
$$Pr(B_i|A) = \frac{Pr(A|B_i) \cdot Pr(B_i)}{\sum_{i=1}^{n} Pr(A|B_i) \cdot Pr(B_i)}$$

Independence:
$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

Neutralized by a healthy Xgene

Example - X linked recessive

- A mother has a sick X gene.
- The chance of giving the sick X gene to a child is 50%.
- A boy with the sick X gene has the disease.
- A girl with the sick X gene is a carrier of the disease.
- Of cause the chance of not giving the sick X gene to a child is also 50%.

Hunter Syndrome (MPS II)

- X linked recessive
- 1:130.000 male births
- What are the probability that a boy have Hunter?
- Event A: The boy has Hunter.

$$Pr(A) = \frac{1}{130.000} = 7,69.10^{-6}$$

Genetic Risk Assessment Hunters Syndrome (MPS II)

Information:

- X linked recessive.
- Boy T has Hunter.

Events:

- Event B: Mrs. B is a carrier.
- Event A: Boy A has Hunter.

Find:

What is Pr(A)?

$$Pr(B)=\frac{1}{2};$$
 $Pr(A|B)=\frac{1}{2}$
 $Pr(B)=\frac{1}{2};$ $Pr(A|B)=\frac{1}{4}$
 $Pr(\overline{B})=1-Pr(B)=\frac{1}{2};$ $Pr(A|\overline{B})=0$
 $Pr(A)=Pr(A\cap B)+Pr(A\cap B)=\frac{1}{4}$

Genetic Risk Assessment Hunters Syndrome (MPS II)

Information:

- X linked recessive.
- Boy T has Hunter.

Events:

- Event A: Boy A has Hunter.
- Event B: Mrs. B is a carrier.
- Event C: Girl C is a carrier.

Find:

What is Pr(C|\overline{A})?

Genetic Risk Assessment Hunters Syndrome (MPS II)

Events:

- Event A: Boy A has Hunter.
- Event B: Mrs. B is a carrier.
- Event C: Girl C is a carrier.

$$Pr(B)=\frac{1}{2};$$
 $Pr(A)=\frac{1}{4};$ $Pr(\overline{A})=1-Pr(A)=\frac{3}{4};$ $Pr(A|B)=Pr(\overline{A}|B)=\frac{1}{2};$ $Pr(A|\overline{B})=0:$ $Pr(\overline{A}|\overline{B})=1;$ $Pr(C|B)=Pr(\overline{C}|B)=\frac{1}{2};$ $Pr(C|\overline{B})=0;$ $Pr(\overline{C}|\overline{B})=1;$

Bayes: $Pr(B|\overline{A}) = \frac{Pr(\overline{A}|B) \cdot Pr(B)}{Pr(\overline{A})} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{3}{4}} = \frac{1}{3}$

Markov: $Pr(C \cap B | \overline{A}) = Pr(C \mid B) \cdot Pr(B \mid \overline{A}) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$ $Pr(C \cap \overline{B} \mid \overline{A}) = Pr(C \mid \overline{B}) \cdot Pr(\overline{B} \mid \overline{A}) = O$

 $Pr(C|\overline{A}) = Pr(C \cap B|\overline{A}) + Pr(C \cap \overline{B}|\overline{A}) = \frac{1}{4} + O = \frac{1}{4}$

Words and Concepts to Know

Experiment/Trial	Intersection	Markov cha	ain
Sample space	Mutua	ally Exclusive/Disjoint	
Sample point	Union	Complement/not	Event
Relative frequency	Independ	ence	Set
Subse	t	Bayes Rule	
Empty set/Null set	Condition	nal probability	
Joint e	vents	Total probabil	ity

Probability Theory and Combinatorics

Gunvor Elisabeth Kirkelund Lars Mandrup

Agenda for Today

- Repetition from last time
- Bayesian probability calculations and total probability
- Bernoulli trials
- Combinatorics
- An experiment

Basic Probability

 Probability theory tells us what is in the sample given nature

Basic Axions:

Axion 1: $0 \le Pr(A) \le 1$

Axion 2: Pr(S) = 1

S: Sample space

A: Event

λ: Sample point

 Often (but not always) we use the relative frequency:

$$\Pr(A) = \frac{N_A}{N}$$

Basic Probability

• Complement: $Pr(A) = 1 - Pr(\bar{A})$

• Union: $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$

• Joint: $Pr(A \cap B) = Pr(A|B) \cdot Pr(B) = Pr(B|A) \cdot Pr(A)$

• Conditional: Pr(A|B)

Bayes Rule and Independence

Bayes Rule:

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(B|A) \cdot Pr(A)}{Pr(B)}$$

A and B independent:

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

$$Pr(B|A) = Pr(B)$$
 and $Pr(A|B) = Pr(A)$

Total Probability

We sometime call it the marginal

Pr(A) of an event is the total probability of that event.

$$Pr(A) = Pr(A \cap B) + Pr(A \cap \overline{B})$$
$$= Pr(A|B) \cdot Pr(B) + Pr(A|\overline{B}) \cdot Pr(\overline{B})$$

Total Probability

We sometime call it the marginal

Pr(A) of an event is the total probability of that event.

$$Pr(A) = Pr(A \cap B_1) + Pr(A \cap B_2) + \dots + Pr(A \cap B_i) + \dots$$

= $Pr(A|B_1) \cdot Pr(B_1) + Pr(A|B_2) \cdot Pr(B_2) + \dots$

where the B_i 's are mutually exclusive $(B_i \cap B_j = \emptyset \text{ for } i \neq j)$ and $S = B_1 \cup B_2 \cup ... \cup B_i \cup ...$

Summary of Probability

Relative frequency: $Pr(A) = \frac{N_A}{N_S}$

Complement: $Pr(\bar{A}) = 1 - Pr(A)$

Exclusive: $Pr(\bar{A} \cap B) = Pr(B) - Pr(A)$ if $A \subset B$

Bayes rule:
$$Pr(B|A) = \frac{Pr(A|B) \cdot Pr(B)}{Pr(A)}$$

Independence: $Pr(A \cap B) = Pr(A) \cdot Pr(B)$

- In a conversation effort, we look for dead orcas when we are visiting an ocean.
- Given (conditioned) that we have selected an ocean to examine, how many males and females orcas will we observe?

Gender\location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female $(\overline{\mathbf{B}})$	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

Orca Example (Cont'd)

The probability selecting an ocean is identical.

Event A₁: Atlantic

Event A₂: Antartica

Event A₃: Pacific

Event A₄: Seaworld

S		
A ₁	A_2	
A_3	A_4	

$$Pr(A_1) = Pr(A_2) = Pr(A_3) = Pr(A_4) = \frac{1}{4}$$

 $Pr(A_1) + Pr(A_2) + Pr(A_3) + Pr(A_4) = 1$

The events $A_1 - A_4$ are mutually exclusive.

Orca Example Total Probability

The event B, that the orca is a male, can then be written as:

$$B = (B \cap A_1) \cup (B \cap A_2) \cup (B \cap A_3) \cup (B \cap A_4)$$

• The total probability of a found killer whale, being a male, since event $A_1 - A_4$ re mutually exclusive (sum rule):

$$Pr(B) = Pr(B \cap A_1) + Pr(B \cap A_2) + Pr(B \cap A_3) + Pr(B \cap A_4)$$

We rewrite with Bayes rule:

$$Pr(B) = Pr(A_1) Pr(B|A_1) + Pr(A_2) Pr(B|A_2) + Pr(A_3) Pr(B|A_3) + Pr(A_4) Pr(B|A_4)$$

Orca Example Cont'd

Total Probability:

$$Pr(B) = Pr(A_1) Pr(B|A_1) + Pr(A_2) Pr(B|A_2) + Pr(A_3) Pr(B|A_3) + Pr(A_4) Pr(B|A_4)$$

	A_1	В	A_2
	A_3		A_4
4)			

Gender\ location	Atlantic (A₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female ($\overline{\mathbf{B}}$)	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

$$Pr(B) = \frac{8}{10} \cdot \frac{1}{4} + \frac{3}{10} \cdot \frac{1}{4} + \frac{1}{12} \cdot \frac{1}{4} + \frac{19}{28} \cdot \frac{1}{4} = 0,465$$

We can also use a Graphical approach with Venn diagrams

diagrams.

 The total probability of B is given by the marked area divided by the area of S.

Orca Example

 If an orca found is a male, what is the probability of us being in the Antartica?

$$Pr(A_2|B)$$

· We use Bayes rule:

$$Pr(A_2|B) = \frac{Pr(A_2 \cap B)}{Pr(B)} = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)}$$

•
$$Pr(B) = 0.47$$
; $Pr(A_2) = 0.25$; $Pr(B|A_2) = 0.3$

$$Pr(A_2|B) = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)} = \frac{0.3 \cdot 0.25}{0.47} = 0.16$$

Orca Example

- Is locations of the found orca independent of gender?
- How would you test it?

Gender\location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female $(\overline{\mathbf{B}})$	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

$$Pr(A_2 \mid \bar{B}) = \frac{Pr(\bar{B} \mid A_2)Pr(A_2)}{Pr(\bar{B})} = \frac{0.7 \cdot 0.25}{1 - 0.47} = 0.33 \neq 0.16 = Pr(A_2 \mid B)$$

Orca Example Conclusion

 Prior: What is the probability of us being in the Antartica?

$$Pr(A_2) = 0.25$$

 Likelihood: A tacked orca is found dead in Antartica, what is the probability of it being male?

$$Pr(B|A_2) = 0.3$$

 Posterior: A tacked orca whale is found dead and is a male, what is the probability of us being in Antartica?

$$Pr(A_2|B) = 0.16$$

Orca Example - Another test method

- In a conversation effort, we pick up dead orcas from different oceans.
- The dead orcas are marked with the ocean and collected in the same container.
- A dead orca is randomly picked from the container: What is the probability that the orca is a male?

Gender\location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)
Female ($\overline{\mathbf{B}}$)	2	7	11	9
Male (B)	8	3	1	19
Total	10	10	12	28

Orca Example – Another test method

Total Probability:

$$Pr(B) = Pr(A_1) Pr(B|A_1) + Pr(A_2) Pr(B|A_2)$$
$$+ Pr(A_3) Pr(B|A_3) + Pr(A_4) Pr(B|A_4)$$

	S	
A_1		A_2
	T B T	
A_3		A_4

Gender\location	Atlantic (A ₁)	Antartica (A ₂)	Pacific (A ₃)	Seaworld (A ₄)	Total
Female $(\overline{\mathbf{B}})$	2	7	11	9	29
Male (B)	8	3	1	19	31
Total	10	10	12	28	60

$$Pr(B) = \frac{10}{60} \cdot \frac{8}{10} + \frac{10}{60} \cdot \frac{3}{10} + \frac{12}{60} \cdot \frac{1}{12} + \frac{28}{60} \cdot \frac{19}{28} = \frac{8+3+1+19}{60} = \frac{31}{60} = 0,517$$

Orca Example – Another test method

 If an orca found is a male, what is the probability that it is from the Antartica?

$$Pr(A_2|B)$$

We use Bayes rule:

$$Pr(A_2|B) = \frac{Pr(A_2 \cap B)}{Pr(B)} = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)}$$

• Pr(B) = 0.517; $Pr(A_2) = 0.167$; $Pr(B|A_2) = 0.3$

$$Pr(A_2|B) = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B)} = \frac{0.3 \cdot 0.167}{0.517} = \frac{3}{31} = 0.097$$

Tests and Types of Errors

We can classify testing with two outcomes as:

Given Result	Disease (True)	No disease (False)
Positive test	Sensitivity	Type I Error
Negative test	Type II Error	Specificity

Example: Ebola Test

- Event E: Patient are infectious with Ebola.
- Event T: The Ebola test is positive.

Example: Ebola Test

 Prior: What are the probability of a patient having Ebola?

 Likelihood: What are the probability of a positive test given infectious with Ebola? Or of a negative test given not infectious with Ebola?

$$Pr(T|E)$$
 Sensitivity $Pr(ar{T}|ar{E})$ Specificity

 Posterior: What are the probability of being infectious given that a test is positive?

Example: Ebola Test — Total Probability

Prior: What are the probability of a patient having ebola?

$$Pr(E) = 0.01$$
 $Pr(\bar{E}) = 1 - 0.01 = 0.99$

Likelihood: What are the probabilities of the tests?

$$Pr(T|E)=0,9$$
 Sensitivity $Pr(\bar{T}|\bar{E})=0,8$ Specificity

 Complement: What are the probability of a patient having a positive test without being infectious?

$$Pr(T|\bar{E}) = 1 - Pr(\bar{T}|\bar{E}) = 0, 2$$

Example: Ebola Test — Total Probability

Total Probability with the Sum Rule: What are the

probability of a patient having a positive test?

$$Pr(T) = Pr(T \cap E) + Pr(T \cap \bar{E})$$

The Product Rule: We can with Bayes rule find

$$Pr(T) = Pr(T|E) Pr(E) + Pr(T|\bar{E}) Pr(\bar{E})$$

= 0,9 \cdot 0,01 + 0,2 \cdot 0.99
= 0,207

Ebola Example — Posterior

We have: We now know the probabilities:

$$P(E)=0,01$$
 $P(T)=0,207$
 $P(T|E)=0,9$
 $P(T|E)=0,9$
 $P(T|E)=0,9$

 Product Rule: What are the probability of being infectious given that a test is positive?

$$Pr(E|T) = \frac{Pr(T|E)Pr(E)}{Pr(T)} = \frac{0.9 \cdot 0.01}{0.207} = 0.043$$

Ebola Example — Posterior

What are the probability of being infectious given that a test is positive?

$$Pr(E|T) = \frac{Pr(T|E)Pr(E)}{Pr(T)} = \frac{0.9 \cdot 0.01}{0.207} = 0.043$$

What are the probability of <u>not</u> being infectious given that a test is positive?

$$Pr(\bar{E} \mid T) = 1 - Pr(E \mid T) = 0.957$$

What are the probability of <u>not</u> being infectious given a negative test?

$$Pr(\bar{E}|\bar{T}) = \frac{Pr(\bar{T}|\bar{E})Pr(\bar{E})}{Pr(\bar{T})} = \frac{0.8 \cdot 0.99}{0.793} = 0.999$$

What are the probability of being infectious given that a test is negative?

$$Pr(E | \bar{T}) = 1 - Pr(\bar{E} | \bar{T}) = 0.001$$

Ebola Example — Conclusion

• If the test is negative, it is allmost certain (99,9%) that you're not being infectious:

$$Pr(\bar{E}|\bar{T}) = 0.999$$

• If the test is positive, there is still only a small risk (4,3%) that you actually are being infectious:

$$Pr(E|T) = 0.043$$

Monty Hall Dilemma

- We have three doors
- Behind two of the doors is a goat
- Behind one door is a million dollars (\$)
- What is the chance of guessing behind which door the money is?

$$Pr(\$|1) = Pr(\$|2) = Pr(\$|3) = \frac{1}{3}$$

Monty Hall Dilemma cont'd

- We make a selection of a door, say door 2, without open it.
- The quizmaster eliminates one of the doors (\$), which we did not select, based on his knowledge on the goat situation, say door 1.
- We can now reselect between door 2 and 3.
- What are the probabilities of the money being behind the two doors? Should we switch door?

Monty Hall Dilemma cont'd

 What are the probabilities of the money being behind the two doors? Should we switch door?

$$Pr(\$|1+3) = \frac{2}{3} = Pr(\$|1) + Pr(\$|3) = 0 + Pr(\$|3)$$

$$\Downarrow$$

$$Pr(\$|3) = \frac{2}{3} > \frac{1}{3} = Pr(\$|2)$$

The Binomial Distribution

We have n repeated trials.

Bernoulli trial

- Each trial has two possible outcomes
 - Success probability p
 - Failure probability q=1-p
- What is the probability of having k successes out of n trials?
- We write this question as:

$$Pr_n(k) = \frac{n!}{k! (n-k)!} p^k q^{n-k} = \binom{n}{k} p^k q^{n-k}$$

• Faculty: $n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$ 0! = 1

Bernoulli Trial

Definition: The binomial coefficient is defined as:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

Number of ways to select k objects out of a collection of n objects

Example: Out of 10 children, what is the probability that exactly 2 are girls?

$$Pr_n(k) = \frac{n!}{k!(n-k)!} p^k q^{n-k}$$

$$= \frac{10!}{2!(10-2)!} (0,5)^2 (1-0,5)^{10-2} = 0,044$$

Combinatorics

- Take an object from a collection of n objects.
- Repeat the test k times.

Types of Experiments:

- With or without replacement
- Ordered or unordered

Example:

What is the probability that if I have two children that the oldest is a girl and the youngest is a boy?

- Ordered.
- · With replacement.

Ordered with Replacement

- Take an object from a collection of n objects.
- Put it back each time.
- Repeat the test k times.
- The sequence of the objects matters.
- The number of combinations is: n^k
 - Each trial has n possible outcomes
 - All the trials are independent

Ordered without Replacement

- Take an object from a collection of n objects.
- Do not put it back each time.
- Repeat the test k times.
- The sequence of the objects matters.
- The number of combinations is:

$$_{n}P_{k} = P_{k}^{n} = \frac{n!}{(n-k)!} = n \cdot (n-1) \dots (n-k+1)$$

The 1st trial has n possible outcomes, the 2nd trial has n-1 possible outcomes, ..., the k'th trial has n-k+1 possible outcomes

Unordered without Replacement

- Take an object from a collection of n objects.
- Do not put it back each time.
- Repeat the test k times.
- The sequence of the objects do not matter.
- The number of combinations is:

$$\binom{n}{k} := \frac{n!}{k!(n-k)!}$$

The k ordered draws can be shuffled in k! different ways (sequences)

Unordered with Replacement

- Take an object from a collection of n objects.
- Put it back each time.
- Repeat the test k times.
- The sequence of the objects do not matter.
- The number of combinations is:

$$\binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$$

➤ Each time we draw an object, we should replace an object (except for the last draw). This correspond to we start with n+k-1 object and draw k objects unordered without replacement.

Summary of Combinatorics

 We can summarise the number of possible outcomes of k trials, sampled from a set of n objects.

		Replacement		
		With	Without	
Sam-	Ordered	n^k	$P_k^n = \frac{n!}{(n-k)!}$	
pling	Unordered	$\binom{n+k-1}{k} = \frac{(n+k-1)!}{k! (n-1)!}$	$\binom{n}{k} = \frac{n!}{k! (n-k)!}$	

Experiment: Birthday Example

- k=35 students
- n=365 (number of days in the year)
- What are the probability that at least two have birthday on the same day (E)?

All have different Ordered sampling without replacement birthdays (k unique birthsdays in n days)

Complement rule

$$\Pr(E) = 1 - \Pr(\bar{E}) = 1 - \frac{\frac{n!}{(n-k)!}}{n^k} = 1 - \frac{\frac{365!}{(365-35)!}}{365^{35}} > 80\%$$

Ordered sampling with replacement (all possible combinations of k students birthdays in n days)

- k=50 students: Pr(E)>97%
- k=75 students: Pr(E) > 99,97%

Words and Concepts to Know

Type I Error Prior Binomial coefficient Sampling Unordered Replacement Specificity Likelihood Combinatorics Bernoulli Trial Sensitivity Posterior Ordered Binomial distribution Type II Error