M1C03 Lectures 9 and 10 Quantifiers

Jeremy Lane

Sept 27 and 29, 2021

Announcement(s)

- Quiz 3 due Friday
- 2 Thursday lecture is cancelled.

Overview of this week

- Quantifiers
- Natural numbers, integer, rational numbers, real numbers, prime numbers
- Direct proofs and counter-examples involving quantifiers

Reference: Lakins, 1.1.2, 1.1.3, 1.2, 2.1.

Predicates, universes, and quantifiers

A *predicate* is a statement whose truth value depends on part of the statement that is variable. The set of possible values of the variable is the *universe*.

Example: x + 1 > 3. This is a predicate, which we may denote P(x).

Predicates can be turned into propositions in several different ways.

Example: 3 + 1 > 3. *This is* P(3).

Example: For all x, x + 1 > 3. This is the universal quantifier $(\forall x)P(x)$.

Example: There exists x such that x+1>3. This is the existential quantifier $(\exists x)P(x)$.

Definition: An integer n is *even* if there exists an integer j such that n = 2j.

Definition: An integer n is *odd* if there exists an integer j such that n = 2j + 1.

Show that if m and n are even, then m+n is even.

Rough work:

- Understand the definition. Some examples might help. 6 is even because $6 = 2 \cdot 3$. 5 is not even because it cannot be written as $2 \cdot j$ for an integer j.
- Given: $(\exists j)(m=2j)$, $(\exists j)(n=2j)$. Probably the j that satisfies the condition for m and n is different. Let's call the second one k instead.
- Goal: Show that m+n can be written as $2 \cdot j$ for some integer j.
- m + n = 2j + 2k = 2(j + k)

Definition: An integer n is *even* if there exists an integer j such that n=2j.

Definition: An integer n is *odd* if there exists an integer j such that n = 2j + 1.

Show that if m and n are even, then m+n is even.

Proof.

Assume that m and n are even integers.

We will show from the definition that m+n is even.

Since m is even, we can fix an integer j such that m=2j.

Similarly, since n is even, we can fix an integer k such that n=2k.

Then,

$$m + n = 2j + 2k = 2(j + k)$$

where we have used the distributive property of multiplication in the second step.

Thus, we have shown that m+n=2(j+k), so m+n is even.

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is *strictly increasing* if for all $a, b \in \mathbb{R}$, if b > a, then f(b) > f(a).

Show that $f(x) = x^3$ is strictly increasing.

Rough work:

- Understand the definition. Draw the picture of what a strictly increasing function looks like and think about how the quantifier and the implication in the definition is related to the shape of the graph.
- We will need to show that $b^3 > a^3$ when b > a. We can't use derivatives. Let's try basic algebra.
- We remember that $b^3 a^3 = (b a)(b^2 + ab + a^2)$ (difference of cubes). First term is > 0. Remains to explain why second term is > 0.
- Second term is $b^2 + ab + a^2 = \frac{(b+a)^2}{2} + \frac{b^2+a^2}{2}$ (check for yourself).
- We know $x^2 \ge 0$ with equality if and only if x=0 (Prove it yourself: Lakins Exercise 2.1.6)
- Since a and b cannot both be 0, $b^2 + a^2 > 0$

Show that $f(x) = x^3$ is strictly increasing.

Proof.

We show that $f(x)=x^3$ is strictly increasing from the definition. Fix a,b arbitrary real numbers. Assume that b>a. We want to show that $b^3>a^3$.

By the difference of cubes formula and some basic algebra, we have

$$b^{3} - a^{3} = (b - a)(b^{2} + ab + a^{2}) = (b - a)\left(\frac{(b + a)^{2}}{2} + \frac{b^{2} + a^{2}}{2}\right).$$

We show that the expression on the right is >0. We have b-a>0 by assumption, so it will suffice to show that the second term is also positive. For the second term,

$$\frac{(b+a)^2}{2} + \frac{b^2 + a^2}{2} \ge \frac{1}{2}(a^2 + b^2)$$

since $x^2 \ge 0$ for any number x. Finally, since $x^2 = 0$ if and only if x = 0 and a and b cannot both be 0, we have that

$$\frac{1}{2}(a^2 + b^2) > 0.$$

Putting this all together, we have shown that $b^3>a^3$. Thus f is strictly increasing.

Proof by cases

In the previous proof we used some algebra trickery to show that the following statement is true.

If b > a, then $b^2 + ab + a^2 > 0$.

Proof by cases

In the previous proof we used some algebra trickery to show that the following statement is true.

If b > a, then $b^2 + ab + a^2 > 0$.

Definition: An integer n is *divisible* by a non-zero integer m if there exists an integer k such that n=km. We write $m\mid n$ and say that m is a *divisor* of n.

Show that if n is divisible by m, then n^2 is divisible by m^2 .

Definition: An integer n is *divisible* by a non-zero integer m if there exists an integer k such that n=km. We write $m\mid n$ and say that m is a *divisor* of n.

Show that if n is divisible by m, then n^2 is divisible by m^2 .

Negating statements with quantifiers

Negate the following statements.

• n is even.

 \bullet n is divisible by m.

ullet f is strictly increasing.

Negating statements with quantifiers

Theorem

For any predicate P(x),

- $\neg(\forall x)P(x)$ is logically equivalent to $(\exists x)\neg P(x)$.
- $\neg(\exists x)P(x)$ is logically equivalent to $(\forall x)\neg P(x)$.

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is *strictly increasing* if for all $a, b \in \mathbb{R}$, if b > a, then f(b) > f(a).

Show that $f(x) = x^2 - 1$ is not strictly increasing.

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is *strictly increasing* if for all $a, b \in \mathbb{R}$, if b > a, then f(b) > f(a).

Show that $f(x) = x^2 - 1$ is not strictly increasing.

Definition: An integer n is *divisible* by a non-zero integer m if there exists an integer k such that n=km. We write $m\mid n$ and say that m is a *divisor* of n.

Show that the following statement is false.

For all positive integers p, n, and m, if $p\mid nm$, then $p\mid n$ or $p\mid m$.

Definition: An integer n is *divisible* by a non-zero integer m if there exists an integer k such that n=km. We write $m\mid n$ and say that m is a *divisor* of n.

Show that the following statement is false.

For all positive integers p, n, and m, if $p\mid nm$, then $p\mid n$ or $p\mid m$.

Summary

- In math, Defintions are always biconditional statements (even though we only write "if"). (Lakins, pp. 18)
- If we want to prove something satisfies a definition, and all we know is the definition, then we must give a proof using the definition. (Lakins, pp. 21)
- When using a statement of the form $(\exists x)P(x)$ in a proof, we fix x such that P(x) (this is called *existential instantiation*). (Lakins, pp. 21)
- When proving a statement of the form $(\forall x)P(x)$, we begin by *fixing* an *arbitrary* x.
- Negate a statement involving quantifiers by switching \exists/\forall and negating predicates (be careful, more on this next week).
- One way to show a statement is false is to prove its negation is true.
- Showing a universal statement $(\forall x)P(x)$ is false by finding an x such that $\neg P(x)$ (and thus proving the negation $(\exists x)\neg P(x)$ is true) is called *proof by counterexample*. (Lakins, 2.1.1)
- To give a proof by cases, you must find a way to enumerate all possible cases AND give a valid proof for each case. (Lakins, 2.1.2)