

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Sporlan Electric Expansion Valves

ESX, SER, SEI, SEH

Bulletin 100-20, September 2008

10 FEATURES AND BENEFITS

- Step motor operated for precise control
- High resolution drive assembly

- Tight seating
- Corrosion resistant materials used throughout

- Field proven reliability
- Low power consumption 4 watts or less

Self lubricating materials used for long life

Compatibility tested with most CFC, HCFC, and HFC refrigerants and oils

The ESX, SER, SEI and SEH are Electronically Operated Step Motor flow control valves, intended for the precise control of liquid refrigerant flow. Synchronized signals to the motor provide discrete angular movement, which translates into precise linear positioning of the valve

piston. Valve pistons and ports are uniquely characterized, providing improved flow resolution and performance. The ESX, SER, SEI and SEH valves are easily interfaced with microprocessor based controllers, including Sporlan supplied controllers.

THE VALVES

Sporlan Electric Expansion Valves (EEVs) are currently available in nominal R-22 capacities from 1/2 to 175 tons (1.5 to 615 kW). Therefore, they are applicable on all the same types of systems found in the air conditioning and refrigeration industry as thermostatic expansion valves.

All Sporlan electric valves are designed for compatibility with all current halocarbon refrigerants, including CFCs, HCFCs and HFCs including R-410A. Specific system conditions will dictate which product is necessary to control the application. Specific details can be reviewed with the Sporlan Sales Engineer.

ELECTRIC VALVE BASICS

In current designs, the electronics controlling the valve are separate from the valve itself. The correct term to describe the valves is therefore *electronically controlled electric valves*. For convenience, the balance of this discussion will use the term *electric valve*.

Since electric valves are assigned their function in the system by the software in their controller, an electric valve can be used anywhere in the system; as an expansion valve, discharge gas bypass valve, evaporator control valve, heat reclaim valve, head pressure control valve or crankcase pressure control valve.

TYPES OF ELECTRONICALLY CONTROLLED VALVES

Four basic types of electric valves have been offered to the marketplace; solenoid or pulse, analog, heat motor and step motor.

Step motor valves, as shown in Figure 1, are the most sophisticated design. In this type of valve a small motor is used to open or close the valve port. The motor that is used does not rotate continuously, but instead, rotates a fraction of a revolution for each signal sent by the controller. These discrete "steps" give the motor its name. The number of step signals sent by the controller is "remembered" by the controller, and the controller can return the valve to any previous position at any time. This repeatability is almost absolute and extremely fine control can be obtained. The digital circuitry used by step motor controllers can respond quickly and accurately. The ESX is run at 83 steps per second while larger Sporlan step motors are run at a 200 steps-per-second rate and can be made to return to an exact position. Sporlan electric valves are designed for 500 to 6386 steps, so extraordinary resolution or control of flow is possible.

STEP MOTORS

Step motors have existed for many years but were limited to very specialized, and usually expensive, applications. When the personal computer industry expanded and automobiles became more electronically controlled, the need for small, reliable and inexpensive stepmotors increased dramatically. Step motors permitted the repeatable precision movement

needed for high speed printers and computerized engine management. In the 1980s Sporlan experimented with step motor technology, and production step motor valves were offered in the early 1990s.

STEP MOTOR THEORY

Unlike traditional motors that will rotate as long as the proper power is supplied, step motors rotate a known amount of arc and then stop. When power is removed and then reapplied the step motor will rotate another fixed amount, or step, and again stop. This cycle may be repeated indefinitely, within mechanical limits, in either direction. While seemingly complex, this start/stop motion is mechanically simpler than induction or commutated motors.

Step motors, like almost all motors, are based on the magnetic principal that opposite poles attract and like poles repel. These poles are called North (N) and South (S).

If the center magnet above is free to rotate, then the orientation shown will always occur. If electromagnets are used, then a pivoted magnet or rotor can be made to align with the magnetic fields created when the electromagnets are energized.

If power is left on, the magnetic poles will align and no further motion will take place.

If multiple groups of electromagnets are placed around a freely rotating permanent magnet rotor, and each is energized in series, then the rotor will step to each alignment position and a step motor is created.

The above is a simple example, in reality step motors may have 24 to 100 virtual electromagnets arranged around the rotor. Simple arithmetic shows these motors have 15° to 3.6° step angles or increments of rotation.

There are two general types of step motors: unipolar and bipolar. In a unipolar style, like the Sporlan ESX motor, current flows in only one direction. In the case of the Sporlan ESX valve motor, the gray lead is always at +12 volts DC and each of the other four colors is, in turn, connected to a ground. Drive circuitry is simpler, but torque and efficiency are lower than bipolar designs. However, unipolar motors are useful in small capacity valves like the Sporlan ESX. A bipolar motor, such as used in all other Sporlan valves, is powered by signals that change polarity. For the first step the black lead may be negative while the white is positive, for the second step the black becomes positive while the white becomes negative. This push/pull increases torque and efficiency for motor size and power input. Bipolar is the style of choice for all larger step motor valves. Table 1 on page 5 reflects bipolar driver circuitry.

DIGITAL LINEAR ACTUATORS - DLAs

Small increments of rotation may be useful in print head drives or for signaling purposes, but often a linear movement is more desirable. In the case of electric refrigerant control

valves, not only is linear motion needed, but significant linear force is also needed to close a port against high pressure. While small tonnage valves like the ESX successfully use direct drive, larger valves may not. The solution to both these needs is a Digital Linear Actuator, or DLA. DLAs are used to convert rotation to a push/pull, often with a large increase in output force. The force increase is derived from a simple geartrain and may account for a fivefold increase in mechanical

advantage. This torque increase is used to turn a drive screw or threaded shaft. A drive nut, or coupling, is threaded onto the shaft but prevented from turning by keyways, or specially shaped guides. Since the drive nut cannot turn, it must move forward or backward, depending on the rotation of the threaded shaft.

RESOLUTION

Resolution is defined as the ability of the valve to meet flow requirements accurately. In a Pulse type valve only two stages of resolution are possible, fully open or fully closed. Theoretically, if a valve needs to meet a 50% load then it may remain closed for half the time and be fully open for half the time. The control of temperature and superheat will be "jumpy" as the valve alternately floods and starves the evaporator. If the swings are 6° , we say the resolution is $\pm 3^{\circ}$. An Analog Electric Valve or TEV has better resolution because it opens and closes smoothly. In both valves, however, there is hysteresis.

Hysteresis is the internal friction of any system. In a TEV it takes more force or pressure to deform the diaphragm in the opening direction than in the closing direction. This hysteresis has an effect on the resolution of the TEV, and limits its ability to precisely meter refrigerant over widely changing head pressure and evaporator load conditions. Balanced ported TEVs, like Sporlan BF and O series valves, have a much greater ability to follow load than conventional TEVs, but still not to the extent that EEVs can.

The resolution of an Electric Expansion Valve or EEV is governed by the stroke and number of steps in that stroke. Sporlan offers valves in a variety of sizes for a multitude of applications. All valves except the ESX use the same motor/ driver assembly, but physical size limits the number of steps used in the different valves. ESX electric expansion valves have 500 nominal steps of stroke, small tonnage SER and SEI electric expansion valves have 1596 nominal steps of stroke, larger SER valves have 2500 steps, SEI-30 has 3193 steps, and large tonnage electric expansion valves have 6386 nominal steps of stroke. The piston or pin of the larger valves moves the same linear distance for each step, .0000783 inches. This extremely small change in the distance the pin moves away from the seat is reflected in the minute amount of refrigerant flow increase or decrease. Pulse type valves, with only open and shut capabilities, will have inferior resolution. A simple analogy is comparing an on/off light switch which has only two steps of resolution and a dimmer switch which may have thousands.

HARDWARE

Actual control hardware for the valves may take a variety of forms. The most complex and expensive utilizes discrete or individual transistors for each switching function. This design requires the use of eight transistors, labeled Q1 through Q8, connected as shown in the schematic Figure 7.

Transistors are simply solid state switches. Solid state means they are fabricated from a solid chip of silicon and have no moving parts. They act as switches or relays by using a small electrical signal to turn a large signal off and on. In the symbol above, the small signal enters the "base" lead and allows flow from emitter to collector. The microprocessor, or small computer, used in the controller has the ability to sequence signals to the "base" of each transistor. As shown in Table 1 below, this sequence of signals turn the transistors on and off in pairs, to step the valve open or shut. Transistors are available as bipolar (not to be confused with motors of the same name) which control current, and MOSFET (Metal Oxide Semiconductor Field Effect Transistor) which control voltage. In each type there are also transistors that are used to turn off the supply voltage or, the ground. Full exploration of these differences are beyond the scope of this explanation but drive circuitry using each of these types have been used successfully.

The actual drive sequence for Sporlan valves is shown in Table 1 below.

Table 1

	BIPOLAI	R DRIVE SE	QUENCE	
STEP	BLACK	WHITE	RED	GREEN
1	12 volts	0 volts	12 volts	0 volts
2	0 volts	12 volts	12 volts	0 volts
3	0 volts	12 volts	0 volts	12 volts
4	12 volts	0 volts	0 volts	12 volts
1	12 volts	0 volts	12 volts	0 volts

	UNIPOLA	R DRIVE SI	EQUENCE	
STEP	BLACK	WHITE	RED	GREEN
1	0 volts	12 volts	12 volts	12 volts
2	0 volts	0 volts	12 volts	12 volts
3	12 volts	0 volts	12 volts	12 volts
4	12 volts	0 volts	0 volts	12 volts
5	12 volts	12 volts	0 volts	12 volts
6	12 volts	12 volts	0 volts	0 volts
7	12 volts	12 volts	12 volts	0 volts
8	0 volts	12 volts	12 volts	0 volts
1	0 volts	12 volts	12 volts	12 volts

Gray is common and connected to 12 volts at all times Used for ESX valves only As each phase is energized in sequence, the shaft of the motor will move one step in the direction indicated. The sequence repeats as many times as needed to achieve the position calculated by the external electronic controller.

Reversing the sequence changes the direction of the motor shaft, proper sequencing allows the valve to open and close without loss of steps.

Permanent magnet step motors, such as those used by Sporlan, will maintain position when power is removed. This "brake" effect allows controllers to be simpler and use less energy. Sporlan suggests that all voltage be removed from the motor when not actively stepping to minimize heat and power consumption. Over 130 pounds of force (578 newtons) are needed to cause the motor to turn when not powered. This is not possible in any proper application of the valve.

SOFTWARE

The valves, with their motors and wiring, and controllers, with their transistors and microprocessors, are grouped together as "Hardware". To make the hardware perform a function, a set of instructions must be given to the microprocessor. This set of instructions is called "Software" and certain "routines" must be incorporated to make valve control possible.

Most step motor valves are designed without internal intelligence or feedback, that is, they move only in response to controller signals. The valves maintain their position when no signals are received and valve position is stored in controller memory. When the valve is given a signal to change position the controller keeps track of the change, however, the controller does not directly "know" whether the valve has changed position. To make this form of control effective, two control routines must be implemented: initialization and feedback loops.

INITIALIZATION

Initialization occurs when the valves are powered up for the first time, and sometimes when a large change to the system is made, e.g. closing for defrost. When the controller and valve combination are first powered together, the control does not know the valve position. To initialize, the controller sends out a stream of closing steps greater than the total number of steps in the valve stroke. This will assure that the valve is closed. This closed position becomes the "0" (zero) position of the valve used in all subsequent controller calculations.

This series of extra steps is called "overdriving", and the valves have been designed to accept this without damage. The actual number of overdriving steps is dependent upon the valve used. Sporlan valves, while all using the same motor/driver, are available in a variety of configurations and sizes. The number of nominal or flow steps changes from 500 for the ESX to 3500

for the small SER expansion valve and SDR-3(X) valves and 6500 for all others. The number of flow steps is the range over which the valves can best control flow. The actual number of mechanical travel steps is larger and dependent on manufacturing tolerance. To assure that the valves are completely closed during initialization, the number of steps shown below in Table 2 should be used.

Table 2

INITIAL	ZATION
VALVE TYPE	STEPS
ESX	500
SER 1.5 TO 20, G, J, K	3500
SEI-30 & 50	6500
SEH-100	6500
SEH-175	6500
CDS-9	6500
CDS-16	6500
SDR-3 & SDR-3X	3500
SDR-4	6500

Since the valves have been designed to accept overdriving steps without damage, an initialization of 7500 steps may be used on all valves except the ESX.

Once the valve is fully closed and the controller knows the "0" valve position, the algorithm may be implemented with the aid of a feedback loop.

FEEDBACK LOOPS

Feedback occurs when the result of a process is sensed and the sensory information is used to modify the process. In simpler terms, when the controller opens the EEV too much, causing overcooling, the temperature sensor "feeds back" that information, and the controller closes the valve. Step motor valves could be designed with internal feedback that would report the actual position of the valve in number of steps open, however, this would be expensive and undesirable in terms of temperature control.

Controller Sensor

Feedback Temperature Information

If a control algorithm were written with only references to absolute number of steps open, then changes in head pressure, liquid temperature, etc. would not be taken into account and control would be poor.

Instead, sensors are used to ascertain the effect of valve position on temperature and the position is changed to bring the sensed temperature closer to the setpoint.

VALVE OPERATION — ESX*

The "dry" stator used in the ESX is constructed with multiple magnetic pole pairs created by energized wire windings. The term "dry" is used because the windings of the stator are outside the refrigerant envelope. In the ESX stator there are 4 phases (windings) energized sequentially by a step motor controller that creates a rotating magnetic field. The stator magnetically couples with the rotor and causes it to turn in unison with the rotating field. The field rotates either clockwise or counter-clockwise depending on the sequence of electrical pulses to each of the 4 phases. The result is a proportional valve actuator with the ability to achieve a precise, repeatable position using an electronic signal.

The "wet" rotor is directly linked to a low-friction threaded "needle" which moves into and out of the valve's metering orifice. The term "wet" indicates that the permanent magnet rotor is located in the hermetic refrigerant environment. As the rotor rotates step by step, the needle's distance from the valve orifice changes incrementally, thus opening or closing the expansion valve. Valve "steps" are incremental changes of the rotor position; in the ESX valve, each step is equivalent to a 3.75° rotation of the rotor. An internal torsion spring limits clockwise and counter-clockwise motion to eliminate the potential damage due to driving the valve past its full open or full closed position. The torsion spring absorbs the torque at the extreme rotational positions and causes the rotor to "slip" in the magnetic field created by the stator. The ESX valve incorporates a spring-loaded needle designed to "collapse" as the valve approaches the full closed position. This novel feature limits maximum seating force to reduce seat wear and maximize valve life. The fine pitch thread design of the needle prevents "back travel" when power is removed. This specific feature increases efficiency by requiring power only when a change in valve position is called for, the ESX does not require continuous power to maintain position. The result is a highly reliable step motor expansion valve which is predictable, durable, and energy efficient.

The resolution and linear flow allow the ESX to be used at just a fraction of its capacity. The wide range of control possible with the model ESX allows it to be used down to 10% of its capacity, or up to 110%. Refer to the capacity tables for proper sizing for your application, refrigerant, and operating conditions.

Approximately 48 single-phase steps from full closed are required before the valve orifice begins to open. Beyond 448 steps, the flow rate does not significantly change. The usable flow range of the valve is from 48 to 448 steps and is the recommended design range for flow control. The step motor controller should be configured and scaled to use 48 single phase steps (from step=0 position) as the 0% capacity point, and to use 448 steps (from step=0 position) as the 100% capacity point.

The initial opening steps (step=0 to step=48) position the valve in its fully closed position but with varying levels of seating force. This is due to the spring compression biasing the needle (see Figure 9) against the valve seat. Full seating force is achieved at the home position (step=0), which is the fully overdriven position. It is suggested that in forward flow mode (flow entering side fitting) driving to step 48 will achieve sufficient seating force in most applications. It is not necessary to overdrive the valve to step=0 to achieve full valve closure in forward flow mode, but it is necessary to achieve full closure when the valve is flowed in the reverse direction.

Because the valve needle is spring biased, the MOPD (Maximum Operating Pressure Differential) of the valve in reverse flow can be significantly lower than in forward flow. The MOPD, in reverse flow only, varies with orifice size and is shown in Table 3. Exceeding the MOPD in reverse flow does not damage the valve; however, it will result in leakage through the valve seat until the pressure difference across the valve decreases below the MOPD. Maximum MOPD will always be achieved in forward flow.

*NOTE: ESX valves are suggested for A/C and heat pump only – please contact SVD for refrigeration applications.

VALVE OPERATION — SER, SER(I), SEI, SEH(I)

The SER, SEI and SEH valves modulate by the electronically controlled rotation of a step motor. The step motor drives a gear train and lead screw to position a piston. The piston is used to modulate flow through a port, refer to Figure 10.

The motor is a two phase type driven in the bi-polar mode. Two discrete sets of motor stator windings are powered in sequence to rotate the rotor 3.6 degrees per step. Polarity of the drive signal reverses for each step.

The sequencing is accomplished electronically through the bi-polar drive circuit shown in Figure 7. The drive transistors, Q1 through Q8, are electronically biased in pairs by the controller as shown in Table 1.

The SER valves have a stroke of .189" (4.8mm) and 1596 or 2500 steps of resolution. Each step yields .00012" (.03mm) of travel. Small SEI valves have 1596 with .250 inches of

NOTE: Exploded view for illustration only, motor housing is hermetic and cannot be disassembled.

Table 3

	ESX MOPD	
VALVE TYPE	FORWARD FLOW SIDE INLET	REVERSE FLOW BOTTOM INLET
ESX-14	500 psi	400 psi
ESX-18	500 psi	300 psi
ESX-24	500 psi	125 psi

and large SEI and SEH valves have an operating stroke of 0.500 inches (12.7 mm) and 6386 steps of control, therefore each step translates into 0.0000783 inches (.02 mm) of travel. When used with one of the Sporlan Valve Company controllers, the valves provide unsurpassed accuracy in resolution of flow and repeatability of position.

External parts of the valve are brass and copper and meet or exceed 2000 hour salt spray tests per ASTM B-117.

The SEI/SEH motor housing is equipped with a hermetic cable connection to the motor and a 10 foot (3 meter) motor lead is supplied as standard length. The lead can be supplied in a variety of lengths to suit specific customer requirements, both with or without connectors installed. The SER is equipped with a removeable cable.

Total power consumption is less than 4 watts when operating a rate of 200 steps per second with standard L/R type drive circuitry. Refer to motor specifications shown in Table 4. Faster step rates may be obtained with proper current limited chopper type drives. Please contact Sporlan Valve Company for more information.

The SER valves are rated at 700 psig (48 bar) MRP while the SEI and SEH valves have a safe working pressure of 620 psig (42 bar). Operating ambient temperature range is -50°F to 140°F (-45°C to 60°C) but temperatures of up to 250°F (120°C) may be used for dehydration.

Table 4

			SPECIFICATIONS			
	ESX	SEI .5 TO 11	SER 1.5 TO 20	SEI 30	SER(I) G, J, K	SEI 50,SEH(I) 100, 175
Motor type	4 phase, unipolar dry stator		2	phase, bipolar wet moto	or	
Compatible refrigerant		All com	mon CFC, HCFC and HF	C refrigerants including	R-410A	
Compatible oils		All c	ommon Mineral, Polyo	lester and Alkybenzene	oils	
Supply voltage		12	2 volt DC, -5%, +10% me	asured at the valve lead	ls	
Cable type	Removable stator	Hermetic 4 lead, 18 AWG, PVC insulation	Removable	Hermetic 4 lead, 18 AWG, PVC insulation	Removable	Hermetic 4 lead, 18 AWG, PVC insulation
Phase resistance	46ohms +- 10%	75 ohms +-10%	100 ohms +-10%	75 ohms +-10%	100 ohms +-10%	75 ohms +-10%
Current range	260 ma/phase	160 ma/ winding	120 ma/ winding	160 ma/ winding	120 ma/ winding	160 ma/ winding
Maximum power input	5.8 watts	3.8 watts	2.8 watts	3.8 watts	2.8 watts	3.8 watts
Recommended step rate	30 - 83.5/second	200/ second				
Number of steps	500 +-20	1596	1596	3193	2500	6386
Full motion transit time	16.7sec @ 30 pps 6 sec. @83.5 pps	7.5 seconds	7.5 seconds	16 seconds	12.5 seconds	30 seconds
Resolution	.0002" (.005mm) / step	.00008" (.002 mm) / step	.00012" (.003mm) / step	.00008" (.002mm) / step	.00012" (.003mm) / step	.00008" (.002mm) / step
Stroke	.104" (2.64 mm)	.125" (3.2 mm)	.189" (4.8mm)	.250" (6.4mm)	.297" (7.5mm)	.500" (12.7mm)
Max. internal leakage	140 cc/min @ 150 psid (10.3 bar), dry air	50 cc/min @ 100 psig (6.9 bar), dry air	50 cc/min @ 100 psig (6.9 bar), dry air	100 cc/min @ 100 psig (6.9 bar), dry air	100 cc/min @ 100 psig (6.9 bar), dry air	100 cc/min @ 100 psig (6.9 bar), dry air
Max. external leakage	.10 oz./yr at 300 psig (.2 gram/yr @ 20 bar)	.10 oz./yr at 300 psig (.2 gram/yr @ 20 bar)	.10 oz./yr at 300 psig (.2 gram/yr @ 20 bar)	.10 oz./yr at 300 psig (.2 gram/yr @ 20 bar)	.10 oz./yr at 300 psig (.2 gram/yr @ 20 bar)	.10 oz./yr at 300 psig (.2 gram/yr @ 20 bar)
MOPD	500 psig (34 bar) forward flow	500 psig (34 bar)				
MRP	650 psig (45 bar)	620 psig (49 bar)	700 psig (49 bar)	620 psig (49 bar)	700 psig (49 bar)	620 psig (49 bar)
Operating temp range	-40°F to 155°F (-40°C to 70°C)	-50°F to 155°F (-45°C to 60°C)				
Materials of construction			Brass, copper, syntheti	c seals, stainless steel		

APPLICATION

Sporlan Valve Division is not responsible for system design, any damage arising from faulty system design, or for misapplication of its products. If these valves are applied in any manner other than as described in this bulletin, the Sporlan warranty is void. Please contact your Sporlan Sales Engineer for assistance with your specific application. It is the responsibility of the controller manufacturer to provide suitable drive circuitry and power supply. Sporlan will assist where necessary, but accepts no liability for improper control of the valve. It is strongly suggested that power be disabled to the valve when not actively stepping. Conventional initialization routines, which include overdriving the motor to ascertain the zero step position are acceptable. Contact Sporlan for more information.

SELECTION PROCEDURE

Electric Expansion Valves (EEVs) are one part of a system used for refrigerant flow control in air conditioning or refrigeration applications. The other parts of the system are sensors and an electronic controller.

The EEV controls the flow of refrigerant entering the direct expansion (DX) evaporator in response to signals sent by the controller.

These signals are calculated by the controller from sensor inputs. A set of sensors, either two temperature sensors or a pressure transducer and a temperature sensor, are used to measure superheat. Typical control is based on superheat setpoint but an additional temperature sensor may be used to measure discharge water or air temperature. This air or water temperature is controlled directly, as long as superheat remains at a level to prevent floodback.

The ability of the EEV to control the amount of refrigerant in the evaporator to reach discharge setpoint while preventing floodback makes the EEV the ideal expansion device for most air conditioning, chiller, environmental chamber and refrigeration applications. Some EEV controllers can be programmed to follow unique control algorithms making the EEV especially useful for many diverse applications.

The actual selection of EEV valves should be based on information generally required for any expansion valve. The following procedure should be used when selecting a Sporlan EEV.

- **1. Determine refrigerant to be used.** The EEV valves may be used on most common refrigerants. See selection tables.
- **2. Determine capacity required for the valve.** This is normally the evaporator capacity at the desired conditions.
- 3. Determine pressure drop across valve. Subtract the evaporating pressure from the condensing pressure. The condensing pressure used in this calculation should be the minimum operating condensing pressure of the system. From this value, subtract all other pressure losses to obtain the net pressure drop across the valve. Be sure to consider all of the following possible sources of pressure drop: (1) friction losses through refrigeration lines including the evaporator and condenser; (2) pressure drop across liquid line accessories such as a solenoid valve and filter-drier; (3) static pressure loss (gain)

due to the vertical lift (drop) of the liquid line; and (4) pressure drop across a refrigerant distributor, if used. Refer to Bulletin 20-10 for further information on refrigerant distributors.

- **4.** Determine the liquid temperature of the refrigerant entering the valve. The EEV capacity tables are based on a liquid temperature of 100°F (38°C) for R-22, R-134a, R-404A/R-507 and R-407C. For other liquid temperatures, apply the correction factor given in the tables for each refrigerant.
- 5. Select valve from the capacity tables. Select a valve based on the design evaporating temperature and the available pressure drop across the valve. Due to improved ability to follow load, Sporlan EEVs provide 10% to 110% of nominal capacity listed in the capacity tables. Be sure to apply the appropriate liquid temperature correction factor to the valve ratings shown in the tables. Once the desired valve capacity has been located, determine the valve model from the first column of the tables. On multiple evaporator systems, select each valve on the basis of individual evaporator capacity.

SELECTION EXAMPLE:

Refrigerant: R-134a

Condensing Temperature: 133°F Liquid Temperature: 80°F Evaporator Temperature: 40°F

Liquid Line Loss: 7 psi

ΔP Distributor and Tubes: 35 psi*

Evaporator Load: 2.5 tons

Condensing Pressure (psig): 211
Liquid Line Loss (Estimates): -7
Distributor and Tubes: -35
Evaporator Pressure (psi): -69 ΔP across EEV: 100

R-134a, 80°F Liquid Correction Factor

from Table: 1.19

ESX-18 2.1 tons x 1.19 = 2.5 tons ESX-24 4.3 tons x 1.19 = 5.1 tons

Select an ESX 18 from capacity table.

^{*}See Sporlan Bulletin 20-10 for pressure drop data as related to percent loading.

ORDERING INSTRUCTIONS / NOMENCLATURE

The ESX, SER, and SEI up to SEI 30 are available in angle configurations. The SEI 50, SEH 100 and 175 are available in straight through configurations as shown below. The SEH and larger SER valves are also available with an optional sightglass

built-in. The sightglass indicates the moisture levels of the refrigerant, flash gas present at the valve, and provides a visual confirmation of valve piston movement. This unique feature is useful for system refrigerant charging and service.

^{*} Not all fitting sizes are available on all valves - see table below and on page 23.

MAXIMUM DIMENSIONS*

VALVE TYPE	A (Inches / mm)	B (Inches / mm)	C (Inches / mm)
SER 1.5	2.0 / 51	1.7 / 43	7.21 / 183
SER 6	2.0 / 51	2.3 / 58	7.21 / 183
SER 11	2.5 / 64	2.3 / 58	7.21 / 183
SER 20	2.6 / 66	2.4 / 61	7.21 / 183
SERI G	3.78 / 96	3.26 / 76	9.22 / 234
SERI J	3.78 / 96	3.39 / 86	9.22 / 234
SERI K	4.09 / 101	3.39 / 86	9.97 / 253
SEI .5 to 11	2.14 / 54	2.21 / 56	7.97 / 202
SEI 30	2.2 / 56	2.8 / 71	8.23 / 209
SEI 50	8.08 / 205	.68 / 17	8.23 / 209
SEH 100	9.32 / 237	5.15 / 131	8.46 / 215
SEH 175	8.46 / 215	5.24 / 133	8.51 / 216

^{*} Dimensions may be up to .5" / 12mm less based on connection size.

For specific dimensions contact Sporlan Division.

DIMENSIONS (Inches/mm)

Figure 12

Figure 13

Figure 14

R-22 CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F							0	°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	Туро	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250
	ESX 14	1.13	1.30	1.45	1.59	1.72	1.84	1.95	2.05	1.10	1.27	1.42	1.55	1.68	1.79	1.90	2.00	1.07	1.23	1.38	1.51	1.63	1.74	1.85	1.95
	ESX 18	1.99	2.30	2.57	2.82	3.04	3.25	3.45	3.63	1.94	2.24	2.51	2.74	2.96	3.17	3.36	3.54	1.89	2.18	2.43	2.67	2.88	3.08	3.27	3.44
	ESX 24	3.98	4.60	5.14	5.63	6.08	6.50	6.90	7.27	3.88	4.48	5.01	5.49	5.93	6.34	6.72	7.09	3.77	4.35	4.87	5.33	5.76	6.16	6.53	6.88
	SEI .5	0.39	0.45	0.50	0.55	0.59	0.64	0.68	0.71	0.38	0.44	0.49	0.54	0.58	0.62	0.66	0.69	0.37	0.43	0.48	0.52	0.57	0.60	0.64	0.68
	SEI 1	0.85	0.98	1.10	1.20	1.30	1.39	1.47	1.55	0.83	0.96	1.07	1.17	1.26	1.35	1.43	1.51	0.80	0.93	1.04	1.14	1.23	1.31	1.39	1.47
	SEI 2	1.73	2.00	2.23	2.45	2.64	2.83	3.00	3.16	1.69	1.95	2.18	2.39	2.58	2.76	2.92	3.08	1.64	1.89	2.12	2.32	2.50	2.68	2.84	2.99
	SEI 3.5	2.83	3.27	3.65	4.00	4.32	4.62	4.90	5.17	2.76	3.19	3.56	3.90	4.21	4.51	4.78	5.04	2.68	3.10	3.46	3.79	4.09	4.38	4.64	4.89
	SEI 6	5.35	6.18	6.91	7.57	8.17	8.74	9.27	9.77	5.21	6.02	6.73	7.37	7.96	8.51	9.03	9.52	5.07	5.85	6.54	7.16	7.74	8.27	8.77	9.25
R22	SEI 8.5	7.57	8.75	9.78	10.7	11.6	12.4	13.1	13.8	7.38	8.52	9.53	10.4	11.3	12.1	12.8	13.5	7.17	8.28	9.26	10.1	11.0	11.7	12.4	13.1
22	SEI 11	8.09	9.35	10.4	11.4	12.4	13.2	14.0	14.8	7.89	9.11	10.2	11.2	12.0	12.9	13.7	14.4	7.66	8.85	9.89	10.8	11.7	12.5	13.3	14.0
	SEI 30	26.0	30.0	33.5	36.7	39.7	42.4	45.0	47.4	25.3	29.2	32.7	35.8	38.7	41.3	43.8	46.2	24.6	28.4	31.7	34.8	37.6	40.2	42.6	44.9
	SEI 50	43.3	50.0	55.9	61.2	66.1	70.7	75.0	79.0	42.2	48.7	54.5	59.7	64.4	68.9	73.1	77.0	41.0	47.3	52.9	58.0	62.6	66.9	71.0	74.8
	SER 1.5	1.30	1.50	1.68	1.84	1.98	2.12	2.25	2.37	1.27	1.46	1.63	1.79	1.93	2.07	2.19	2.31	1.23	1.42	1.59	1.74	1.88	2.01	2.13	2.24
	SER 6	5.19	6.00	6.70	7.34	7.93	8.48	9.00	9.48	5.06	5.84	6.53	7.16	7.73	8.27	8.77	9.24	4.92	5.68	6.35	6.95	7.51	8.03	8.52	8.98
	SER 11	9.52	11.0	12.3	13.5	14.5	15.5	16.5	17.4	9.28	10.7	12.0	13.1	14.2	15.2	16.1	16.9	9.02	10.4	11.6	12.8	13.8	14.7	15.6	16.5
	SER 20	17.3	20.0	22.3	24.5	26.4	28.3	30.0	31.6	16.9	19.5	21.8	23.9	25.8	27.6	29.2	30.8	16.4	18.9	21.2	23.2	25.0	26.8	28.4	29.9
	SER(I) G	19.5	22.6	25.2	27.6	29.9	31.9	33.9	35.7	19.1	22.0	24.6	26.9	29.1	31.1	33.0	34.8	18.5	21.4	23.9	26.2	28.3	30.2	32.1	33.8
	SER(I) J	35.2	40.6	45.4	49.8	53.7	57.5	60.9	64.2	34.3	39.6	44.3	48.5	52.4	56.0	59.4	62.6	33.3	38.5	43.0	47.1	50.9	54.4	57.7	60.8
	SER(I) K	63.8	73.6	82.3	90.2	97.0	104	110	116	62.2	71.8	80.3	87.9	95.0	102	108	113	60.4	69.7	78.0	85.4	92.3	99.0	105	110
	SEH(I) 100	86.6	100	112	122	132	141	150	158	84.4	97.4	109	119	129	138	146	154	82.0	94.6	106	116	125	134	142	150
	SEH(I) 175	151	175	196	214	231	247	262	277	148	170	191	209	226	241	256	270	143	166	185	203	219	234	248	262

R-134a CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F							0°	°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	турс	40	60	80	100	120	140	160	180	40	60	80	100	120	140	160	180	40	60	80	100	120	140	160	180
	ESX 14	0.77	0.94	1.08	1.21	1.33	1.43	1.53	1.63	0.73	0.89	1.03	1.16	1.27	1.37	1.46	1.55	0.70	0.85	0.98	1.10	1.21	1.30	1.39	1.48
	ESX 18	1.36	1.66	1.92	2.14	2.35	2.54	2.71	2.88	1.29	1.59	1.83	2.05	2.24	2.42	2.59	2.75	1.23	1.51	1.74	1.95	2.13	2.30	2.46	2.61
	ESX 24	2.71	3.32	3.83	4.29	4.70	5.07	5.42	5.75	2.59	3.17	3.66	4.09	4.48	4.84	5.18	5.49	2.46	3.02	3.48	3.90	4.27	4.61	4.93	5.23
	SEI .5	0.26	0.32	0.37	0.42	0.46	0.50	0.53	0.56	0.25	0.31	0.36	0.40	0.44	0.47	0.51	0.54	0.24	0.29	0.34	0.38	0.41	0.45	0.48	0.51
	SEI 1	0.58	0.71	0.81	0.91	1.00	1.08	1.16	1.23	0.55	0.68	0.78	0.87	0.96	1.03	1.10	1.17	0.53	0.64	0.74	0.83	0.91	0.98	1.05	1.11
	SEI 2	1.18	1.44	1.67	1.86	2.04	2.21	2.36	2.50	1.13	1.38	1.59	1.78	1.95	2.11	2.25	2.39	1.07	1.31	1.51	1.69	1.86	2.00	2.14	2.27
	SEI 3.5	1.93	2.36	2.73	3.05	3.34	3.61	3.86	4.09	1.84	2.25	2.60	2.91	3.19	3.44	3.68	3.90	1.75	2.15	2.48	2.77	3.03	3.28	3.50	3.72
	SEI 6	3.64	4.46	5.15	5.76	6.31	6.82	7.29	7.73	3.48	4.26	4.92	5.50	6.03	6.51	6.96	7.38	3.31	4.05	4.68	5.23	5.73	6.19	6.62	7.02
R134a	SEI 8.5	5.16	6.32	7.29	8.16	8.93	9.65	10.3	10.9	4.93	6.03	6.97	7.79	8.53	9.22	9.85	10.4	4.69	5.74	6.63	7.41	8.12	8.77	9.37	9.94
2	SEI 11	5.51	6.75	7.79	8.71	9.55	10.3	11.0	11.7	5.26	6.45	7.44	8.32	9.12	9.85	10.5	11.2	5.01	6.13	7.08	7.92	8.67	9.37	10.0	10.6
	SEI 30	17.7	21.7	25.0	28.0	30.6	33.1	35.4	37.5	16.9	20.7	23.9	26.7	29.3	31.6	33.8	35.8	16.1	19.7	22.7	25.4	27.8	30.1	32.1	34.1
	SEI 50	29.5	36.1	41.7	46.6	51.1	55.1	58.9	62.5	28.1	34.5	39.8	44.5	48.8	52.7	56.3	59.7	26.8	32.8	37.9	42.3	46.4	50.1	53.6	56.8
	SER 1.5	0.88	1.08	1.25	1.40	1.53	1.65	1.77	1.88	0.84	1.03	1.19	1.34	1.46	1.58	1.69	1.79	0.80	0.98	1.14	1.27	1.39	1.50	1.61	1.70
	SER 6	3.54	4.33	5.00	5.59	6.13	6.62	7.07	7.50	3.38	4.14	4.78	5.34	5.85	6.32	6.75	7.16	3.21	3.94	4.54	5.08	5.57	6.01	6.43	6.82
	SER 11	6.50	7.94	9.17	10.3	11.2	12.1	13.0	13.8	6.19	7.58	8.76	9.79	10.7	11.6	12.4	13.1	5.89	7.22	8.33	9.32	10.2	11.0	11.8	12.5
	SER 20	11.8	14.4	16.7	18.6	20.4	22.1	23.6	25.0	11.3	13.8	15.9	17.8	19.5	21.1	22.5	23.9	10.7	13.1	15.1	16.9	18.6	20.0	21.4	22.7
	SER(I) G	13.3	16.3	18.8	21.1	23.1	24.9	26.6	28.2	12.8	15.6	18.0	20.1	22.0	23.8	25.4	26.9	12.1	14.8	17.1	19.1	21.0	22.6	24.2	25.7
	SER(I) J	24.0	29.3	33.9	37.9	41.5	44.8	47.9	50.8	22.9	28.1	32.4	36.2	39.6	42.8	45.7	48.5	21.8	26.7	30.8	34.4	37.7	40.7	43.5	46.2
	SER(I) K	43.4	53.2	61.4	68.7	75.2	81.3	86.9	92.1	41.5	50.8	58.7	65.6	71.8	77.6	83.0	88.4	39.4	48.4	55.8	62.4	68.3	73.9	79.0	83.7
	SEH(I) 100	58.9	72.2	83.4	93.2	102	110	118	125	56.3	68.9	79.6	89.0	97.5	105	113	119	53.6	65.6	75.7	84.7	92.8	100	107	114
	SEH(I) 175	103	126	146	163	179	193	206	219	98.5	121	139	156	171	184	197	209	93.7	115	133	148	162	175	187	199

				LIQU	ID TEMF	PERATUR	E CORRI	CTION I	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-410A CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F							0°	°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	Туро	80	120	160	200	240	280	320	360	80	120	160	200	240	280	320	360	80	120	160	200	240	280	320	360
	ESX 14	1.10	1.35	1.56	1.74	1.91	2.06	2.20	2.34	1.07	1.32	1.52	1.70	1.86	2.01	2.15	2.28	1.04	1.28	1.48	1.65	1.81	1.95	2.09	2.21
	ESX 18	1.95	2.39	2.75	3.08	3.37	3.64	3.90	4.13	1.90	2.33	2.69	3.00	3.29	3.56	3.80	4.03	1.85	2.26	2.61	2.92	3.2	3.45	3.69	3.92
	ESX 24	3.90	4.77	5.51	6.16	6.75	7.29	7.79	8.26	3.80	4.65	5.37	6.01	6.58	7.11	7.60	8.06	3.69	4.52	5.22	5.84	6.39	6.91	7.38	7.83
	SEI .5	0.38	0.47	0.54	0.60	0.66	0.71	0.76	0.80	0.37	0.45	0.53	0.59	0.64	0.70	0.74	0.79	0.36	0.44	0.51	0.57	0.63	0.68	0.72	0.77
	SEI 1	0.83	1.02	1.17	1.31	1.44	1.55	1.66	1.76	0.81	0.99	1.15	1.28	1.40	1.51	1.62	1.72	0.79	0.96	1.11	1.24	1.36	1.47	1.57	1.67
	SEI 2	1.69	2.07	2.40	2.68	2.93	3.17	3.39	3.59	1.65	2.02	2.34	2.61	2.86	3.09	3.30	3.51	1.61	1.97	2.27	2.54	2.78	3.00	3.21	3.41
	SEI 3.5	2.77	3.39	3.92	4.38	4.80	5.18	5.54	5.87	2.70	3.31	3.82	4.27	4.68	5.05	5.40	5.73	2.62	3.21	3.71	4.15	4.55	4.91	5.25	5.57
	SEI 6	5.23	6.41	7.40	8.27	9.06	9.79	10.5	11.1	5.11	6.25	7.22	8.07	8.84	9.55	10.2	10.8	4.96	6.07	7.01	7.84	8.59	9.28	9.92	10.5
S	SEI 8.5	7.41	9.08	10.5	11.7	12.8	13.9	14.8	15.7	7.23	8.85	10.2	11.4	12.5	13.5	14.5	15.3	7.02	8.60	9.93	11.1	12.2	13.1	14.0	14.9
R-410/	SEI 11	7.92	9.70	11.2	12.5	13.7	14.8	15.8	16.8	7.73	9.46	10.9	12.2	13.4	14.5	15.5	16.4	7.50	9.19	10.6	11.9	13.0	14.0	15.0	15.9
	SEI 30	25.4	31.1	35.9	40.2	44.0	47.5	50.8	53.9	24.8	30.4	35.1	39.2	42.9	46.4	49.6	52.6	24.1	29.5	34.1	38.1	41.7	45.0	48.2	51.1
	SEI 50	42.3	51.9	59.9	66.9	73.3	79.2	84.7	89.8	41.3	50.6	58.4	65.3	71.6	77.3	82.6	87.6	40.1	49.1	56.8	63.5	69.5	75.1	80.3	85.1
	SER 1.5	1.27	1.56	1.80	2.01	2.20	2.38	2.54	2.69	1.24	1.52	1.75	1.96	2.15	2.32	2.48	2.63	1.20	1.47	1.70	1.90	2.09	2.25	2.41	2.55
	SER 6	5.08	6.22	7.19	8.03	8.80	9.51	10.2	10.8	4.96	6.07	7.01	7.84	8.59	9.27	9.91	10.5	4.82	5.90	6.81	7.61	8.34	9.01	9.63	10.2
	SER 11	9.32	11.4	13.2	14.7	16.1	17.4	18.6	19.8	9.09	11.1	12.9	14.4	15.7	17.0	18.2	19.3	8.83	10.8	12.5	14.0	15.3	16.5	17.7	18.7
	SER 20	16.9	20.7	24.0	26.8	29.3	31.7	33.9	35.9	16.5	20.2	23.4	26.1	28.6	30.9	33.0	35.1	16.1	19.7	22.7	25.4	27.8	30.0	32.1	34.1
	SER(I) G	19.1	23.4	27.0	30.2	33.1	35.8	38.3	40.6	18.7	22.9	26.4	29.5	32.3	34.9	37.3	39.6	18.1	22.2	25.6	28.7	31.4	33.9	36.3	38.5
	SER(I) J	34.4	42.2	48.7	54.4	59.6	64.4	68.8	73.0	33.6	41.1	47.5	53.1	58.2	62.8	67.2	71.2	32.6	40.0	46.1	51.6	56.5	61.0	65.2	69.2
	SER(I) K	62.4	76.4	88.2	98.7	108	117	125	132	60.9	74.6	86.1	96.3	105	114	122	129	59.1	72.4	83.6	93.5	102	111	118	125
	SEH(I) 100	84.7	104	120	134	147	158	169	180	82.6	101	117	131	143	155	165	175	80.3	98.3	114	127	139	150	161	170
	SEH(I) 175	148	182	210	234	257	277	296	314	145	177	204	229	250	271	289	307	140	172	199	222	243	263	281	298

R-407C CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F								°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	туре	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250
	ESX 14	1.03	1.19	1.33	1.46	1.58	1.69	1.79	1.89	0.99	1.14	1.28	1.40	1.51	1.62	1.72	1.81	0.95	1.09	1.22	1.34	1.45	1.55	1.64	1.73
	ESX 18	1.83	2.11	2.36	2.59	2.79	2.99	3.17	3.34	1.75	2.03	2.26	2.48	2.68	2.86	3.04	3.20	1.68	1.93	2.16	2.37	2.56	2.74	2.90	3.06
	ESX 24	3.66	4.22	4.72	5.17	5.59	5.97	6.33	6.68	3.51	4.05	4.53	4.96	5.36	5.73	6.08	6.40	3.35	3.87	4.33	4.74	5.12	5.47	5.80	6.12
	SEI .5	0.36	0.41	0.46	0.51	0.55	0.58	0.62	0.65	0.34	0.40	0.44	0.48	0.52	0.56	0.59	0.63	0.33	0.38	0.42	0.46	0.50	0.53	0.57	0.60
	SEI 1	0.78	0.90	1.01	1.10	1.19	1.27	1.35	1.42	0.75	0.86	0.96	1.06	1.14	1.22	1.29	1.36	0.71	0.82	0.92	1.01	1.09	1.17	1.24	1.30
	SEI 2	1.59	1.84	2.05	2.25	2.43	2.60	2.75	2.90	1.53	1.76	1.97	2.16	2.33	2.49	2.64	2.78	1.46	1.68	1.88	2.06	2.23	2.38	2.52	2.66
	SEI 3.5	2.60	3.00	3.36	3.68	3.97	4.24	4.50	4.75	2.49	2.88	3.22	3.53	3.81	4.07	4.32	4.55	2.38	2.75	3.08	3.37	3.64	3.89	4.13	4.35
	SEI 6	4.91	5.67	6.34	6.95	7.50	8.02	8.51	8.97	4.71	5.44	6.08	6.67	7.20	7.70	8.16	8.61	4.50	5.20	5.81	6.37	6.88	7.35	7.80	8.22
	SEI 8.5	6.96	8.03	8.98	9.84	10.6	11.4	12.0	12.7	6.67	7.71	8.62	9.44	10.2	10.9	11.6	12.2	6.38	7.36	8.23	9.02	9.74	10.4	11.0	11.6
R-407	SEI 11	7.43	8.58	9.60	10.5	11.4	12.1	12.9	13.6	7.13	8.23	9.21	10.1	10.9	11.6	12.4	13.0	6.81	7.87	8.79	9.63	10.4	11.1	11.8	12.4
	SEI 30	23.8	27.5	30.8	33.7	36.4	38.9	41.3	43.5	22.9	26.4	29.5	32.4	35.0	37.4	39.6	41.8	21.9	25.2	28.2	30.9	33.4	35.7	37.9	39.9
	SEI 50	39.7	45.9	51.3	56.2	60.7	64.9	68.8	72.6	38.1	44.0	49.2	53.9	58.3	62.3	66.1	69.6	36.4	42.1	47.0	51.5	55.6	59.5	63.1	66.5
	SER 1.5	1.19	1.38	1.54	1.69	1.82	1.95	2.07	2.18	1.14	1.32	1.48	1.62	1.75	1.87	1.98	2.09	1.09	1.26	1.41	1.55	1.67	1.78	1.89	2.00
	SER 6	4.77	5.51	6.16	6.74	7.29	7.79	8.26	8.71	4.58	5.28	5.91	6.47	6.99	7.47	7.93	8.35	4.37	5.05	5.64	6.18	6.68	7.14	7.57	7.98
	SER 11	8.74	10.1	11.3	12.4	13.4	14.3	15.1	16.0	8.39	9.69	10.8	11.9	12.8	13.7	14.5	15.3	8.01	9.25	10.3	11.3	12.2	13.1	13.9	14.6
	SER 20	15.9	18.4	20.5	22.5	24.3	26.0	27.5	29.0	15.3	17.6	19.7	21.6	23.3	24.9	26.4	27.8	14.6	16.8	18.8	20.6	22.3	23.8	25.2	26.6
	SER(I) G	17.9	20.7	23.2	25.4	27.5	29.3	31.1	32.8	17.2	19.9	22.3	24.4	26.3	28.2	29.9	31.5	16.5	19.0	21.3	23.3	25.2	26.9	28.5	30.0
	SER(I) J	32.3	37.3	41.7	45.7	49.4	52.8	55.9	59.0	31.0	35.8	40.1	43.9	47.4	50.7	53.8	56.7	29.6	34.2	38.3	41.9	45.2	48.4	51.3	54.1
	SER(I) K	58.6	67.7	75.7	82.9	89.3	96.1	101	107	56.3	65.0	72.6	79.6	86.0	91.9	97.5	102.7	53.7	62.0	69.3	75.9	82.0	87.6	92.7	97.8
	SEH(I) 100	79.5	91.8	103	112	121	130	138	145	76.3	88.1	98.5	108	117	125	132	139	72.9	84.1	94.1	103	111	119	126	133
	SEH(I) 175	139	161	180	197	212	227	241	254	133	154	172	189	204	218	231	244	127	147	165	180	195	208	221	233

				LIQU	ID TEMF	PERATUR	E CORRI	ECTION I	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-404A CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F							0	°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	турс	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250
	ESX 14	0.74	0.86	0.96	1.05	1.14	1.22	1.29	1.36	0.70	0.81	0.91	0.99	1.08	1.15	1.22	1.29	0.66	0.76	0.86	0.93	1.01	1.08	1.15	1.21
	ESX 18	1.32	1.52	1.70	1.86	2.01	2.15	2.28	2.4	1.25	1.44	1.61	1.76	1.91	2.04	2.16	2.28	1.17	1.36	1.52	1.66	1.79	1.92	2.03	2.14
	ESX 24	2.63	3.04	3.40	3.72	4.02	4.30	4.56	4.81	2.50	2.88	3.22	3.53	3.81	4.08	4.32	4.56	2.35	2.71	3.03	3.32	3.59	3.83	4.07	4.29
	SEI .5	0.25	0.29	0.33	0.36	0.39	0.42	0.44	0.47	0.24	0.28	0.31	0.34	0.37	0.39	0.42	0.44	0.23	0.26	0.29	0.32	0.35	0.37	0.39	0.42
	SEI 1	0.56	0.64	0.72	0.79	0.85	0.91	0.97	1.02	0.53	0.61	0.68	0.75	0.81	0.86	0.92	0.97	0.50	0.57	0.64	0.70	0.76	0.81	0.86	0.91
	SEI 2	1.14	1.32	1.48	1.62	1.75	1.87	1.98	2.09	1.09	1.25	1.40	1.53	1.66	1.77	1.88	1.98	1.02	1.18	1.32	1.44	1.56	1.67	1.77	1.86
	SEI 3.5	1.87	2.16	2.42	2.65	2.86	3.06	3.24	3.42	1.77	2.05	2.29	2.51	2.71	2.90	3.07	3.24	1.67	1.93	2.15	2.36	2.55	2.73	2.89	3.05
_	SEI 6	3.54	4.09	4.57	5.00	5.40	5.78	6.13	6.46	3.35	3.87	4.33	4.74	5.12	5.48	5.81	6.12	3.15	3.64	4.07	4.46	4.82	5.15	5.46	5.76
R-404A	SEI 8.5	5.01	5.78	6.47	7.08	7.65	8.18	8.68	9.15	4.75	5.48	6.13	6.71	7.25	7.75	8.22	8.67	4.47	5.16	5.77	6.32	6.82	7.29	7.74	8.15
R-4	SEI 11	5.35	6.18	6.91	7.57	8.18	8.74	9.27	9.77	5.07	5.86	6.55	7.17	7.75	8.28	8.79	9.26	4.77	5.51	6.16	6.75	7.29	7.79	8.27	8.71
	SEI 30	17.2	19.8	22.2	24.3	26.2	28.0	29.7	31.4	16.3	18.8	21.0	23.0	24.9	26.6	28.2	29.7	15.3	17.7	19.8	21.7	23.4	25.0	26.5	28.0
	SEI 50	28.6	33.1	37.0	40.5	43.7	46.7	49.6	52.3	27.1	31.3	35.0	38.4	41.4	44.3	47.0	49.5	25.5	29.5	33.0	36.1	39.0	41.7	44.2	46.6
	SER 1.5	0.86	0.99	1.11	1.21	1.31	1.40	1.49	1.57	0.81	0.94	1.05	1.15	1.24	1.33	1.41	1.49	0.76	0.88	0.98	1.08	1.17	1.25	1.33	1.40
	SER 6	3.43	3.97	4.43	4.86	5.25	5.61	5.95	6.27	3.26	3.76	4.20	4.60	4.97	5.32	5.64	5.94	3.06	3.54	3.95	4.33	4.68	5.00	5.3	5.59
	SER 11	6.30	7.27	8.13	8.90	9.62	10.3	10.9	11.5	5.97	6.89	7.71	8.44	9.12	9.75	10.3	10.9	5.61	6.48	7.25	7.94	8.58	9.17	9.73	10.3
	SER 20	11.4	13.2	14.8	16.2	17.5	18.7	19.8	20.9	10.9	12.5	14.0	15.3	16.6	17.7	18.8	19.8	10.2	11.8	13.2	14.4	15.6	16.7	17.7	18.6
	SER(I) G	12.9	15.0	16.7	18.3	19.7	21.1	22.4	23.6	12.2	14.2	15.8	17.3	18.7	20.0	21.3	22.4	11.6	13.3	14.9	16.3	17.6	18.9	20.0	21.1
	SER(I) J	23.3	26.9	30.0	32.9	35.5	38.0	40.3	42.5	22.0	25.5	28.5	31.2	33.7	36.0	38.2	40.3	20.7	24.0	26.8	29.3	31.7	33.9	36.0	37.9
	SER(I) K	42.2	48.7	54.5	59.7	64.4	68.9	73.1	77.0	40.0	46.2	51.6	56.5	61.1	65.3	69.3	73.0	37.7	43.4	48.5	53.2	57.5	61.5	65.1	68.7
	SEH(I) 100	57.2	66.1	73.9	81.0	87.4	93.5	99.2	105	54.3	62.7	70.0	76.7	82.9	88.6	94.0	99.1	51.0	58.9	65.9	72.2	78.0	83.4	88.4	93.2
	SEH(I) 175	100	116	129	142	153	164	174	183	95	110	123	134	145	155	164	173	89.3	103	115	126	136	146	155	163

					-20)°F							-40)°F			
	Valve Type						Press	ure Dr	ор Асі	oss th	e Valv	e- PSI					
	,,,	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250
	ESX 14		_	_	l	_	_	_	_	ı	_	_		_	_	_	_
	ESX 18	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	ESX 24	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
	SEI .5	0.21	0.24	0.27	0.30	0.32	0.35	0.37	0.39	0.19	0.23	0.25	0.28	0.30	0.32	0.34	0.36
	SEI 1	0.46	0.53	0.60	0.66	0.71	0.76	0.80	0.85	0.43	0.50	0.55	0.61	0.66	0.70	0.75	0.79
	SEI 2	0.95	1.10	1.23	1.35	1.46	1.56	1.65	1.74	0.88	1.02	1.14	1.25	1.35	1.44	1.53	1.61
	SEI 3.5	1.56	1.80	2.01	2.20	2.38	2.55	2.70	2.85	1.44	1.67	1.87	2.04	2.21	2.36	2.50	2.64
A	SEI 6	2.95	3.40	3.80	4.17	4.50	4.81	5.10	5.38	2.73	3.15	3.53	3.86	4.17	4.46	4.73	4.99
R-404A	SEI 8.5	4.17	4.82	5.39	5.90	6.37	6.81	7.23	7.62	3.87	4.46	4.99	5.47	5.91	6.31	6.70	7.06
4	SEI 11	4.46	5.15	5.75	6.30	6.81	7.28	7.72	8.14	4.13	4.77	5.33	5.84	6.31	6.75	7.16	7.54
	SEI 30	14.3	16.5	18.5	20.2	21.8	23.4	24.8	26.1	13.3	15.3	17.1	18.7	20.2	21.6	23.0	24.2
	SEI 50	23.8	27.5	30.8	33.7	36.4	38.9	41.3	43.5	22.1	25.5	28.5	31.2	33.7	36.1	38.3	40.3
	SER 1.5	0.71	0.82	0.92	1.01	1.09	1.17	1.24	1.31	0.66	0.76	0.85	0.93	1.01	1.08	1.15	1.21
	SER 6	2.86	3.30	3.69	4.04	4.37	4.67	4.95	5.22	2.65	3.06	3.42	3.75	4.05	4.33	4.59	4.84
	SER 11	5.24	6.05	6.77	7.42	8.01	8.56	9.08	9.57	4.86	5.61	6.27	6.87	7.42	7.94	8.42	8.87
	SER 20	9.53	11.0	12.3	13.5	14.6	15.6	16.5	17.4	8.84	10.2	11.4	12.5	13.5	14.4	15.3	16.1
	SER(I) G	10.8	12.4	13.9	15.2	16.5	17.6	18.6	19.6	9.9	11.6	12.9	14.1	15.2	16.3	17.3	18.2
	SER(I) J	19.4	22.4	25.0	27.4	29.6	31.6	33.6	35.4	17.9	20.7	23.2	25.4	27.5	29.3	31.1	32.8
	SER(I) K	35.1	40.5	45.4	49.6	53.6	57.4	60.9	64.2	32.6	37.6	42.1	46.1	49.7	53.2	56.4	59.4
	SEH(I) 100	47.7	55.0	61.5	67.4	72.8	77.8	82.6	87.0	44.2	51.0	57.0	62.5	67.5	72.2	76.5	80.7
	SEH(I) 175	83.4	96.3	108	118	127	136	144	152	77.3	89.3	99.8	109	118	126	134	141

				LIQU	ID TEMF	PERATUR	E CORRI	ECTION I	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-507 CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F							0'	°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	Туро	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250
	ESX 14	0.72	0.84	0.94	1.03	1.11	1.19	1.26	1.33	0.69	0.79	0.89	0.98	1.05	1.13	1.20	1.26	0.65	0.75	0.84	0.92	0.99	1.06	1.13	1.19
	ESX 18	1.29	1.49	1.67	1.82	1.97	2.11	2.23	2.35	1.22	1.41	1.58	1.73	1.87	2.00	2.12	2.23	1.15	1.33	1.49	1.63	1.76	1.88	1.99	2.10
	ESX 24	2.58	2.98	3.33	3.65	3.94	4.21	4.47	4.71	2.44	2.82	3.15	3.46	3.73	3.99	4.23	4.46	2.30	2.66	2.97	3.25	3.51	3.76	3.99	4.20
	SEI .5	0.25	0.29	0.32	0.35	0.38	0.41	0.43	0.46	0.24	0.27	0.31	0.33	0.36	0.39	0.41	0.43	0.22	0.26	0.29	0.31	0.34	0.36	0.39	0.41
	SEI 1	0.55	0.63	0.70	0.77	0.84	0.89	0.95	1.00	0.52	0.60	0.67	0.73	0.79	0.85	0.90	0.95	0.49	0.56	0.63	0.69	0.75	0.80	0.85	0.89
	SEI 2	1.12	1.29	1.45	1.59	1.71	1.83	1.94	2.05	1.06	1.23	1.37	1.50	1.62	1.73	1.84	1.94	1.00	1.16	1.29	1.41	1.53	1.63	1.73	1.83
	SEI 3.5	1.83	2.12	2.37	2.59	2.80	2.99	3.18	3.35	1.74	2.01	2.24	2.46	2.65	2.84	3.01	3.17	1.64	1.89	2.11	2.31	2.50	2.67	2.83	2.99
	SEI 6	3.47	4.00	4.47	4.90	5.29	5.66	6.00	6.33	3.28	3.79	4.24	4.64	5.01	5.36	5.69	5.99	3.09	3.57	3.99	4.37	4.72	5.05	5.35	5.64
07	SEI 8.5	4.91	5.67	6.33	6.94	7.49	8.01	8.50	8.96	4.65	5.37	6.00	6.57	7.10	7.59	8.05	8.49	4.38	5.05	5.65	6.19	6.69	7.15	7.58	7.99
R507	SEI 11	5.24	6.05	6.77	7.41	8.01	8.56	9.08	9.57	4.97	5.73	6.41	7.02	7.59	8.11	8.60	9.07	4.68	5.40	6.04	6.61	7.14	7.64	8.10	8.54
	SEI 30	16.8	19.4	21.7	23.8	25.7	27.5	29.1	30.7	15.9	18.4	20.6	22.5	24.3	26.0	27.6	29.1	15.0	17.3	19.4	21.2	22.9	24.5	26.0	27.4
	SEI 50	28.0	32.4	36.2	39.7	42.8	45.8	48.6	51.2	26.6	30.7	34.3	37.6	40.6	43.4	46.0	48.5	25.0	28.9	32.3	35.4	38.2	40.8	43.3	45.7
	SER 1.5	0.84	0.97	1.09	1.19	1.28	1.37	1.46	1.54	0.79	0.92	1.03	1.13	1.22	1.30	1.38	1.45	0.75	0.86	0.96	1.06	1.15	1.23	1.30	1.37
	SER 6	3.36	3.88	4.34	4.76	5.14	5.49	5.83	6.14	3.19	3.68	4.11	4.51	4.87	5.20	5.52	5.82	3.00	3.47	3.87	4.24	4.58	4.90	5.20	5.48
	SER 11	6.17	7.12	7.96	8.72	9.42	10.1	10.7	11.3	5.84	6.75	7.54	8.26	8.93	9.54	10.1	10.7	5.50	6.35	7.10	7.78	8.40	8.98	9.53	10.0
	SER 20	11.2	12.9	14.5	15.9	17.1	18.3	19.4	20.5	10.6	12.3	13.7	15.0	16.2	17.3	18.4	19.4	10.0	11.6	12.9	14.1	15.3	16.3	17.3	18.3
	SER(I) G	12.7	14.6	16.3	17.9	19.4	20.7	21.9	23.1	12.0	13.9	15.5	17.0	18.4	19.6	20.8	21.9	11.3	13.0	14.6	16.0	17.3	18.4	19.6	20.7
	SER(I) J	22.8	26.4	29.4	32.2	34.9	37.2	39.4	41.7	21.6	24.9	27.9	30.5	33.0	35.3	37.4	39.4	20.3	23.5	26.3	28.7	31.0	33.2	35.2	37.1
	SER(I) K	41.3	47.7	53.4	58.4	63.2	67.5	71.6	75.5	39.1	45.2	50.6	55.3	59.8	63.9	67.8	71.5	36.9	42.6	47.6	52.1	56.3	60.2	63.8	67.3
	SEH(I) 100	56.1	64.7	72.4	79.3	85.7	91.6	97.1	102	53.1	61.3	68.6	75.1	81.1	86.7	92.0	97.0	50.0	57.8	64.6	70.7	76.4	81.7	86.6	91.3
	SEH(I) 175	98.1	113	127	139	150	160	170	179	93.0	107	120	131	142	152	161	170	87.5	101	113	124	134	143	152	160

					-20)°F							-40)°F			
	Valve Type						Press	ure Dr	ор Асі	ross th	e Valv	e- PSI					
		75	100	125	150	175	200	225	250	75	100	125	150	175	200	225	250
	ESX 14	_	_	—	_	—	_	—	_	_	_	—	_	_	_	_	_
	ESX 18	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	ESX 24	_	_	—	_	—	_	—	_	_	_	—	_	—	_	—	_
	SEI .5	0.21	0.24	0.27	0.29	0.32	0.34	0.36	0.38	0.19	0.22	0.25	0.27	0.30	0.32	0.34	0.35
	SEI 1	0.50	0.53	0.59	0.65	0.70	0.75	0.79	0.83	0.42	0.49	0.55	0.60	0.65	0.69	0.73	0.78
	SEI 2	0.93	1.08	1.21	1.32	1.43	1.53	1.62	1.71	0.87	1.01	1.12	1.23	1.33	1.42	1.51	1.59
	SEI 3.5	1.53	1.77	1.98	2.16	2.34	2.50	2.65	2.79	1.42	1.64	1.84	2.01	2.17	2.32	2.46	2.60
	SEI 6	2.89	3.34	3.73	4.09	4.42	4.72	5.01	5.28	2.69	3.11	3.47	3.80	4.11	4.39	4.66	4.91
R507	SEI 8.5	4.10	4.73	5.29	5.79	6.26	6.69	7.09	7.48	3.81	4.40	4.92	5.39	5.82	6.22	6.60	6.95
æ	SEI 11	4.38	5.05	5.65	6.19	6.69	7.15	7.58	7.99	4.07	4.70	5.25	5.75	6.22	6.64	7.05	7.43
	SEI 30	14.0	16.2	18.1	19.9	21.5	22.9	24.3	25.6	13.1	15.1	16.9	18.5	19.9	21.3	22.6	23.8
	SEI 50	23.4	27.0	30.2	33.1	35.8	38.2	40.5	42.7	21.8	25.1	28.1	30.8	33.2	35.5	37.7	39.7
	SER 1.5	0.70	0.81	0.90	0.99	1.07	1.15	1.22	1.28	0.65	0.75	0.84	0.92	0.99	1.07	1.13	1.19
	SER 6	2.81	3.24	3.63	3.97	4.29	4.59	4.86	5.13	2.61	3.02	3.37	3.69	3.99	4.26	4.52	4.77
	SER 11	5.15	5.95	6.65	7.28	7.87	8.41	8.92	9.40	4.79	5.53	6.18	6.77	7.31	7.82	8.29	8.74
	SER 20	9.36	10.8	12.1	13.2	14.3	15.3	16.2	17.1	8.70	10.1	11.2	12.3	13.3	14.2	15.1	15.9
	SER(I) G	10.5	12.2	13.7	15.0	16.2	17.3	18.3	19.3	9.9	11.4	12.7	13.9	15.0	16.1	17.0	17.9
	SER(I) J	19.0	21.9	24.6	26.9	29.1	31.1	33.0	34.8	17.7	20.4	22.9	25.0	27.0	28.9	30.6	32.3
	SER(I) K	34.5	39.9	44.5	48.8	52.7	56.4	59.8	63.0	32.0	37.1	41.4	45.4	49.0	52.4	55.5	58.6
	SEH(I) 100	46.8	54.1	60.4	66.2	71.5	76.4	81.1	85.5	43.5	50.3	56.2	61.5	66.5	71.1	75.4	79.5
	SEH(I) 175	81.9	94.6	106	116	125	134	142	150	76.2	87.9	98.3	108	116	124	132	139

				LIQU	ID TEMF	PERATUR	E CORRI	CTION F	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-422D CAPACITIES IN TONS (AT EVAPORATOR TEMPERATURE °F)

					40	°F							20	°F							0	°F			
	Valve Type										Press	ure Dr	op Acr	oss th	e Valv	e- PSI									
	турс	40	60	80	100	120	140	160	180	40	60	80	100	120	140	160	180	40	60	80	100	120	140	160	180
	ESX 14	0.54	0.66	0.76	0.85	0.93	1.00	1.07	1.14	0.51	0.62	0.716	0.80	0.88	0.95	1.01	1.07	0.47	0.58	0.67	0.75	0.82	0.89	0.95	1.01
	ESX 18	0.95	1.16	1.34	1.50	1.64	1.77	1.90	2.01	0.90	1.10	1.27	1.42	1.55	1.67	1.79	1.90	0.84	1.03	1.19	1.33	1.45	1.57	1.68	1.78
	ESX 24	1.90	2.32	2.68	3.00	3.29	3.55	3.79	4.02	1.79	2.19	2.53	2.83	3.10	3.35	3.58	3.80	1.68	2.05	2.37	2.65	2.91	3.14	3.36	3.56
	SEI 0.5	0.19	0.23	0.26	0.29	0.32	0.35	0.37	0.39	0.18	0.21	0.25	0.28	0.30	0.33	0.35	0.37	0.16	0.20	0.23	0.26	0.28	0.31	0.33	0.35
	SEI 1	0.40	0.49	0.57	0.64	0.70	0.76	0.81	0.86	0.38	0.47	0.54	0.60	0.66	0.71	0.76	0.81	0.36	0.44	0.51	0.56	0.62	0.67	0.72	0.76
	SEI 2	0.82	1.01	1.17	1.30	1.43	1.54	1.65	1.75	0.78	0.95	1.10	1.23	1.35	1.46	1.56	1.65	0.73	0.89	1.03	1.15	1.26	1.36	1.46	1.55
	SEI 3.5	1.35	1.65	1.91	2.13	2.34	2.52	2.70	2.86	1.27	1.56	1.80	2.01	2.20	2.38	2.55	2.70	1.19	1.46	1.69	1.89	2.07	2.23	2.39	2.53
	SEI 6	2.55	3.12	3.60	4.03	4.41	4.77	5.10	5.41	2.41	2.95	3.40	3.80	4.17	4.50	4.81	5.10	2.25	2.76	3.19	3.56	3.90	4.22	4.51	4.78
R-22D	SEI 8.5	3.61	4.42	5.10	5.70	6.25	6.75	7.22	7.65	3.41	4.17	4.82	5.38	5.90	6.37	6.81	7.22	3.19	3.91	4.51	5.05	5.53	5.97	6.38	6.77
2.	SEI 11	3.86	4.72	5.45	6.10	6.68	7.21	7.71	8.18	3.64	4.46	5.15	5.75	6.30	6.81	7.28	7.72	3.41	4.18	4.82	5.39	5.91	6.38	6.82	7.23
	SEI 30	12.4	15.2	17.5	19.6	21.4	23.1	24.7	26.2	11.7	14.3	16.5	18.5	20.2	21.8	23.4	24.8	10.9	13.4	15.5	17.3	19.0	20.5	21.9	23.2
	SEI 50	20.6	25.3	29.2	32.6	35.7	38.6	41.2	43.7	19.5	23.8	27.5	30.8	33.7	36.4	38.9	41.3	18.2	22.3	25.8	28.8	31.6	34.1	36.5	38.7
	SER 1.5	0.62	0.76	0.87	0.98	1.07	1.16	1.24	1.31	0.58	0.71	0.83	0.92	1.01	1.09	1.17	1.24	0.55	0.67	0.77	0.87	0.95	1.02	1.09	1.16
	SER 6	2.47	3.03	3.50	3.91	4.29	4.63	4.95	5.25	2.33	2.86	3.30	3.69	4.04	4.37	4.67	4.95	2.19	2.68	3.09	3.46	3.79	4.09	4.38	4.64
	SER 11	4.54	5.55	6.41	7.17	7.86	8.49	9.07	9.62	4.28	5.24	6.05	6.77	7.41	8.01	8.56	9.08	4.01	4.91	5.67	6.34	6.95	7.51	8.02	8.51
	SER 20	8.25	10.1	11.7	13.0	14.3	15.4	16.5	17.5	7.78	9.53	11.0	12.3	13.5	14.6	15.6	16.5	7.29	8.93	10.3	11.5	12.6	13.6	14.6	15.5
	SER G	12.8	14.7	16.5	18.0	19.5	20.8	22.1	23.3	12.1	13.9	15.6	17.0	18.4	19.6	20.8	22.0	11.3	13.0	14.5	16.0	17.3	18.4	19.6	20.6
	SER J	23.0	26.5	29.7	32.5	35.0	37.5	39.8	41.9	21.7	25.0	28.0	30.6	33.1	35.4	37.5	39.5	20.3	23.5	26.2	28.7	31.0	33.2	35.2	37.1
	SER K	41.7	48.0	53.7	58.8	63.6	67.9	72.1	76.0	39.3	45.4	50.7	55.5	60.0	64.2	68.0	71.7	36.8	42.5	47.5	52.0	56.3	60.1	63.8	67.2
	SEH(I) 175	41.2	50.5	58.3	65.2	71.4	77.1	82.5	87.5	38.9	47.7	55.0	61.5	67.4	72.8	77.8	82.6	36.5	44.7	51.6	57.7	63.2	68.2	73	77.4
	SEH(I) 175	72.2	88.4	102	114	125	135	144	153	68.1	83.4	96.3	108	118	127	136	144	63.8	78.2	90.3	101	111	119	128	135

					-20)°F							-40)°F			
	Valve Type						Press	ure Dr	op Acı	oss th	e Valv	e- PSI					
		40	60	80	100	120	140	160	180	40	60	80	100	120	140	160	180
	ESX 14	_	_		_		_	_	_	_	_		_	_	_		
	ESX 18	_	_		_		_	_	_	_	_		_	_	_		_
	ESX 24	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	SEI .5	0.15	0.18	0.21	0.24	0.26	0.28	0.30	0.32	0.14	0.17	0.20	0.22	0.24	0.26	0.28	0.30
	SEI 1	0.33	0.40	0.47	0.52	0.57	0.62	0.66	0.70	0.30	0.37	0.43	0.49	0.53	0.57	0.61	0.65
	SEI 2	0.70	0.83	0.96	1.07	1.18	1.27	1.36	1.44	0.63	0.77	0.88	0.99	1.09	1.17	1.25	1.33
	SEI 3.5	1.11	1.36	1.57	1.76	1.92	2.08	2.22	2.35	1.03	1.26	1.45	1.62	1.78	1.92	2.05	2.17
	SEI 6	2.10	2.57	2.97	3.32	3.63	3.92	4.20	4.45	1.94	2.37	2.74	3.06	3.36	3.62	3.87	4.11
R-22D	SEI 8.5	2.97	3.64	4.20	4.70	5.14	5.56	5.94	6.30	2.74	3.36	3.88	4.34	4.75	5.13	5.49	5.82
œ	SEI 11	3.17	3.89	4.49	5.02	5.50	5.94	6.35	6.73	2.93	3.59	4.15	4.63	5.08	5.48	5.86	6.22
	SEI 30	10.2	12.5	14.4	16.1	17.6	19.1	20.4	21.6	9.40	11.5	13.3	14.9	16.3	17.6	18.8	19.9
	SEI 50	17.0	20.8	24.0	26.8	29.4	31.8	33.9	36.0	15.7	19.2	22.2	24.8	27.1	29.3	31.3	33.2
	SER 1.5	0.51	0.62	0.72	0.80	0.88	0.95	1.02	1.08	0.47	0.57	0.66	0.74	0.81	0.88	0.94	0.99
	SER 6	2.04	2.49	2.88	3.22	3.53	3.81	4.07	4.32	1.88	2.30	2.66	2.97	3.26	3.52	3.76	3.99
	SER 11	3.73	4.57	5.28	5.90	6.47	6.98	7.47	7.92	3.45	4.22	4.88	5.45	5.97	6.45	6.90	7.31
	SER 20	6.79	8.31	9.60	10.7	11.8	12.7	13.6	14.4	6.27	7.68	8.87	9.91	10.9	11.7	12.5	13.3
	SER(I) G	10.5	12.2	13.5	14.9	16.1	17.2	18.2	19.2	9.7	11.2	12.5	13.7	14.8	15.8	16.8	17.7
	SER(I) J	18.9	21.8	24.4	26.7	28.9	30.9	32.7	34.5	17.4	20.1	22.5	24.7	26.7	28.5	30.3	31.9
	SER(I) K	34.3	39.5	44.2	48.5	52.4	55.9	59.3	62.6	31.6	36.6	40.8	44.7	48.4	51.7	54.8	57.7
	SEH(I) 100	33.9	41.6	48.0	53.7	58.8	63.5	67.9	72.0	31.3	38.4	44.3	49.6	54.3	58.6	62.7	66.5
	SEH(I) 175	59.4	72.8	84.0	93.9	103	111	119	126	54.9	67.2	77.6	86.7	95.0	103	110	116

				LIQU	ID TEMF	ERATUR	E CORRI	CTION	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C															
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-134a CAPACITIES IN KW (AT EVAPORATOR TEMPERATURE °C)

					5°	C							-10	°C							-20	°C			
	Valve Type									P	RESSI	JRE DI	ROP AG	CROSS	VALV	E (BAR	?)								
	iypo	2.5	4	5.5	7	8.5	10	11.5	13	2.5	4	5.5	7	8.5	10	11.5	13	2.5	4	5.5	7	8.5	10	11.5	13
	ESX 14	2.56	3.24	3.80	4.29	4.73	5.13	5.50	5.85	2.41	3.05	3.57	4.03	4.44	4.82	5.17	5.49	2.30	2.91	3.41	3.85	4.24	4.60	4.93	5.25
	ESX 18	4.54	5.74	6.73	7.59	8.37	9.08	9.73	10.3	4.26	5.39	6.32	7.13	7.86	8.52	9.14	9.72	4.07	5.15	6.04	6.81	7.51	8.14	8.73	9.28
	ESX 24	9.07	11.5	13.5	15.2	16.7	18.1	19.5	20.7	8.52	10.8	12.6	14.3	15.7	17.0	18.3	19.4	8.14	10.3	12.1	13.6	15.0	16.3	17.5	18.6
	SEI .5	0.89	1.12	1.32	1.49	1.64	1.78	1.90	2.02	0.83	1.05	1.24	1.39	1.54	1.67	1.79	1.90	0.79	1.01	1.18	1.33	1.47	1.59	1.71	1.82
	SEI 1	1.93	2.45	2.87	3.24	3.57	3.87	4.15	4.41	1.82	2.30	2.69	3.04	3.35	3.63	3.89	4.14	1.73	2.19	2.57	2.90	3.20	3.47	3.72	3.96
	SEI 2	3.95	4.99	5.85	6.60	7.28	7.89	8.46	9.00	3.70	4.69	5.50	6.20	6.83	7.41	7.95	8.45	3.54	4.48	5.25	5.92	6.53	7.08	7.59	8.07
	SEI 3.5	6.45	8.16	9.57	10.8	11.9	12.9	13.8	14.7	6.06	7.66	8.99	10.1	11.2	12.1	13.0	13.8	5.79	7.32	8.58	9.68	10.7	11.6	12.4	13.2
	SEI 6	12.2	15.4	18.1	20.4	22.5	24.4	26.1	27.8	11.4	14.5	17.0	19.2	21.1	22.9	24.6	26.1	10.9	13.8	16.2	18.3	20.2	21.9	23.5	24.9
34a	SEI 8.5	17.3	21.8	25.6	28.9	31.8	34.5	37.0	39.4	16.2	20.5	24.0	27.1	29.9	32.4	34.8	37.0	15.5	19.6	23.0	25.9	28.6	31.0	33.2	35.3
R-134a	SEI 11	18.4	23.3	27.4	30.9	34.0	36.9	39.6	42.1	17.3	21.9	25.7	29.0	31.9	34.6	37.1	39.5	16.5	20.9	24.5	27.7	30.5	33.1	35.5	37.7
_	SEI 30	59.2	74.9	87.8	99.0	109	118	127	135	55.6	70.3	82.4	93.0	102	111	119	127	53.1	67.2	78.8	88.8	97.9	106	114	121
	SEI 50	98.6	125	146	165	182	197	212	225	92.6	117	137	155	171	185	199	211	88.5	112	131	148	163	177	190	202
	SER 1.5	2.96	3.74	4.39	4.95	5.46	5.92	6.35	6.75	2.78	3.52	4.12	4.65	5.12	5.56	5.96	6.34	2.65	3.36	3.94	4.44	4.90	5.31	5.69	6.05
	SER 6	11.8	15.0	17.6	19.8	21.8	23.7	25.4	27.0	11.1	14.1	16.5	18.6	20.5	22.2	23.8	25.3	10.6	13.4	15.7	17.8	19.6	21.2	22.8	24.2
	SER 11	21.7	27.5	32.2	36.3	40.0	43.4	46.5	49.5	20.4	25.8	30.2	34.1	37.6	40.8	43.7	46.5	19.5	24.6	28.9	32.6	35.9	38.9	41.8	44.4
	SER 20	39.5	49.9	58.5	66.0	72.8	78.9	84.6	90.0	37.0	46.9	55.0	62.0	68.3	74.1	79.5	84.5	35.4	44.8	52.5	59.2	65.3	70.8	75.9	80.7
	SER(I) G	44.5	56.4	66.1	74.5	82.2	89.3	95.2	102	41.8	53.0	62.1	70.0	77.2	83.7	90.1	95.2	40.0	50.6	59.3	66.9	73.7	80.0	85.9	96.3
	SER(I) J	80.2	101	119	134	148	161	172	183	75.3	95.2	111	126	139	150	162	172	71.9	91.0	107	121	133	144	154	174
	SER(I) K	145	184	216	243	268	291	312	332	137	173	202	229	252	273	292	311	130	165	194	218	241	261	280	315
	SEH(I) 100	197	250	293	330	364	395	423	450	185	234	275	310	342	370	397	422	177	224	262	296	326	354	380	404
	SEH(I) 175	345	437	512	578	637	691	740	787	324	410	481	542	598	648	695	739	310	392	459	518	571	619	664	706

R-410A CAPACITIES IN KW (AT EVAPORATOR TEMPERATURE °C)

					5°	C							-10	°C							-20)°C			
	Valve Type									P	RESSI	JRE DE	ROP A	CROSS	VALV	E (BAF	<u>r)</u>								
	туре	5	8	11	14	17	20	23	26	5	8	11	14	17	20	23	26	5	8	11	14	17	20	23	26
	ESX 14	3.68	4.65	5.46	6.16	6.78	7.36	7.89	8.39	3.56	4.50	5.27	5.95	6.56	7.11	7.63	8.11	3.46	4.38	5.13	5.79	6.38	6.92	7.42	7.89
	ESX 18	6.51	8.23	9.65	10.9	12.0	13.0	14.0	14.8	6.29	7.96	9.33	10.5	11.6	12.6	13.5	14.3	6.12	7.74	9.08	10.2	11.3	12.2	13.1	14.0
	ESX 24	13.0	16.5	19.3	21.8	24.0	26.0	27.9	29.7	12.6	15.9	18.7	21.1	23.2	25.2	27.0	28.7	12.2	15.5	18.2	20.5	22.6	24.5	26.3	27.9
	SEI .5	1.27	1.61	1.89	2.13	2.35	2.55	2.73	2.90	1.23	1.56	1.83	2.06	2.27	2.46	2.64	2.81	1.20	1.51	1.78	2.00	2.21	2.40	2.57	2.73
	SEI 1	2.77	3.51	4.11	4.64	5.11	5.55	5.95	6.32	2.68	3.39	3.98	4.49	4.94	5.36	5.75	6.11	2.61	3.30	3.87	4.36	4.81	5.22	5.59	5.95
	SEI 2	5.66	7.16	8.39	9.47	10.4	11.3	12.1	12.9	5.47	6.92	8.11	9.15	10.1	10.9	11.7	12.5	5.32	6.73	7.90	8.91	9.82	10.6	11.4	12.1
	SEI 3.5	9.25	11.7	13.7	15.5	17.1	18.5	19.8	21.1	8.94	11.3	13.3	15.0	16.5	17.9	19.2	20.4	8.70	11.0	12.9	14.6	16.0	17.4	18.7	19.8
	SEI 6	17.5	22.1	25.9	29.3	32.2	35.0	37.5	39.9	16.9	21.4	25.1	28.3	31.2	33.8	36.3	38.5	16.4	20.8	24.4	27.5	30.3	32.9	35.3	37.5
R-410A	SEI 8.5	24.8	31.3	36.7	41.4	45.7	49.5	53.1	56.5	23.9	30.3	35.5	40.0	44.1	47.9	51.3	54.6	23.3	29.5	34.5	39.0	42.9	46.6	50.0	53.1
3-4	SEI 11	26.5	33.5	39.2	44.3	48.8	52.9	56.7	60.3	25.6	32.3	37.9	42.8	47.2	51.1	54.8	58.3	24.9	31.5	36.9	41.6	45.9	49.8	53.4	56.7
	SEI 30	84.9	107	126	142	157	170	182	194	82.1	104	122	137	151	164	176	187	79.8	101	118	134	147	160	171	182
	SEI 50	141	179	210	237	261	283	303	323	137	173	203	229	252	274	293	312	133	168	197	223	245	266	285	303
	SER 1.5	4.25	5.37	6.30	7.10	7.83	8.49	9.10	9.68	4.10	5.19	6.09	6.87	7.57	8.21	8.80	9.36	3.99	5.05	5.92	6.68	7.36	7.99	8.56	9.10
	SER 6	17.0	21.5	25.2	28.4	31.3	34.0	36.4	38.7	16.4	20.8	24.3	27.5	30.3	32.8	35.2	37.4	16.0	20.2	23.7	26.7	29.4	31.9	34.2	36.4
	SER 11	31.1	39.4	46.2	52.1	57.4	62.3	66.8	71.0	30.1	38.1	44.6	50.3	55.5	60.2	64.5	68.6	29.3	37.0	43.4	49.0	54.0	58.6	62.8	66.8
	SER 20	56.6	71.6	83.9	94.7	104	113	121	129	54.7	69.2	81.1	91.5	101	109	117	125	53.2	67.3	79.0	89.1	98.2	106	114	121
	SER(I) G	63.9	80.8	95.2	107	118	128	137	145	61.8	78.1	91.8	104	114	123	133	141	60.1	76.1	89.3	100	111	120	129	137
	SER(I) J	115	145	171	192	212	230	247	263	111	140	165	186	205	223	238	253	108	137	161	181	200	217	232	247
	SER(I) K	208	264	309	349	384	417	447	475	201	255	299	337	371	403	433	460	196	248	291	328	361	392	421	447
	SEH(I) 100	283	358	420	474	522	566	607	645	274	346	406	458	504	547	587	624	266	337	395	445	491	532	571	607
	SEH(I) 175	495	626	735	829	913	990	1062	1129	479	605	710	801	883	957	1027	1091	466	589	691	779	859	932	999	1062

				LIQU	ID TEMF	PERATUR	E CORRI	CTION I	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	R-22 1.56 1.51 1.45 1.40 1.34 1.29 1.23 1.17 1.12 1.06 1.00 0.94 0.88 0.82 0.76														
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-407C CAPACITIES IN KW (AT EVAPORATOR TEMPERATURE °C)

					5°	C							-10)°C							-20	°C			
	Valve Type									P	RESSI	JRE DE	ROP A	CROSS	VALV	E (BAF	?)								
	Туро	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18
	ESX 14	3.19	3.91	4.52	5.05	5.53	5.97	6.39	6.77	3.02	3.69	4.27	4.77	5.22	5.64	6.03	6.40	2.89	3.54	4.09	4.57	5.01	5.41	5.78	6.13
	ESX 18	5.65	6.92	7.99	8.93	9.78	10.6	11.3	12.0	5.34	6.54	7.55	8.44	9.24	9.98	10.7	11.3	5.12	6.27	7.23	8.09	8.86	9.57	10.2	10.9
	ESX 24	11.3	13.8	16.0	17.9	19.6	21.1	22.6	24.0	10.7	13.1	15.1	16.9	18.5	20.0	21.3	22.6	10.2	12.5	14.5	16.2	17.7	19.1	20.5	21.7
	SEI .5	1.11	1.35	1.56	1.75	1.91	2.07	2.21	2.34	1.04	1.28	1.48	1.65	1.81	1.95	2.09	2.21	1.00	1.23	1.42	1.58	1.73	1.87	2.00	2.12
	SEI 1	2.41	2.95	3.40	3.81	4.17	4.50	4.81	5.11	2.27	2.78	3.22	3.60	3.94	4.25	4.55	4.82	2.18	2.67	3.08	3.45	3.78	4.08	4.36	4.62
	SEI 2	4.91	6.02	6.95	7.77	8.51	9.19	9.82	10.4	4.64	5.68	6.56	7.34	8.04	8.68	9.28	9.84	4.45	5.45	6.29	7.03	7.70	8.32	8.90	9.44
	SEI 3.5	8.03	9.84	11.4	12.7	13.9	15.0	16.1	17.0	7.59	9.29	10.7	12.0	13.1	14.2	15.2	16.1	7.27	8.91	10.3	11.5	12.6	13.6	14.5	15.4
	SEI 6	15.2	18.6	21.5	24.0	26.3	28.4	30.4	32.2	14.3	17.6	20.3	22.7	24.8	26.8	28.7	30.4	13.7	16.8	19.4	21.7	23.8	25.7	27.5	29.2
12	SEI 8.5	21.5	26.3	30.4	34.0	37.2	40.2	43.0	45.6	20.3	24.9	28.7	32.1	35.2	38.0	40.6	43.1	19.5	23.8	27.5	30.8	33.7	36.4	38.9	41.3
R-407	SEI 11	23.0	28.1	32.5	36.3	39.8	43.0	45.9	48.7	21.7	26.6	30.7	34.3	37.6	40.6	43.4	46.0	20.8	25.5	29.4	32.9	36.0	38.9	41.6	44.1
	SEI 30	73.7	90.2	104	116	128	138	147	156	69.6	85.3	98.4	110	121	130	139	148	66.7	81.7	94.4	106	116	125	133	142
	SEI 50	123	150	174	194	213	230	246	260	116	142	164	183	201	217	232	246	111	136	157	176	193	208	222	236
	SER 1.5	3.68	4.51	5.21	5.82	6.38	6.89	7.37	7.81	3.48	4.26	4.92	5.50	6.03	6.51	6.96	7.38	3.34	4.09	4.72	5.28	5.78	6.24	6.67	7.08
	SER 6	14.7	18.0	20.8	23.3	25.5	27.6	29.5	31.3	13.9	17.0	19.7	22.0	24.1	26.0	27.8	29.5	13.3	16.3	18.9	21.1	23.1	25.0	26.7	28.3
	SER 11	27.0	33.1	38.2	42.7	46.8	50.5	54.0	57.3	25.5	31.3	36.1	40.4	44.2	47.7	51.0	54.1	24.5	30.0	34.6	38.7	42.4	45.8	48.9	51.9
	SER 20	49.1	60.2	69.5	77.7	85.1	91.9	98.2	104	46.4	56.8	65.6	73.4	80.4	86.8	92.8	98.4	44.5	54.5	62.9	70.3	77.0	83.2	89.0	94.4
	SER(I) G	55.5	67.9	78.5	87.6	96.1	104	111	117	52.4	64.2	74.1	82.9	91.0	97.8	105	111	50.2	61.5	71.1	79.5	86.7	94.4	100	106
	SER(I) J	99.5	122	141	158	173	187	200	212	94.4	116	133	149	163	177	189	200	90.1	111	128	143	156	169	181	192
	SER(I) K	181	222	256	286	314	338	362	384	171	209	241	270	296	320	342	363	164	201	232	259	284	307	328	348
	SEH(I) 100	246	301	347	388	425	459	491	521	232	284	328	367	402	434	464	492	222	272	315	352	385	416	445	472
	SEH(I) 175	430	526	608	680	744	804	860	912	406	497	574	642	703	760	812	861	389	477	550	615	674	728	778	826

				LIQU	ID TEMF	PERATUR	E CORRI	ECTION I	FACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-404A CAPACITIES IN KW (AT EVAPORATOR TEMPERATURE °C)

	l				5°	C							-10	°C							-20)°C			
	Valve Type									P	RESSI	JRE DE	ROP A	CROSS	VALV	E (BAF	?)								
	Турс	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18
	ESX 14	2.30	2.81	3.25	3.63	3.98	4.30	4.60	4.88	2.13	2.61	3.02	3.38	3.7	3.99	4.27	4.53	2.02	2.47	2.85	3.19	3.49	3.77	4.03	4.28
	ESX 18	4.07	4.98	5.75	6.43	7.04	7.61	8.13	8.63	3.78	4.63	5.34	5.97	6.54	7.07	7.55	8.01	3.57	4.37	5.05	5.64	6.18	6.68	7.14	7.57
	ESX 24	8.13	9.96	11.5	12.9	14.1	15.2	16.3	17.2	7.55	9.25	10.7	11.9	13.1	14.1	15.1	16.0	7.14	8.74	10.1	11.3	12.4	13.3	14.3	15.1
	SEI .5	0.79	0.97	1.12	1.26	1.38	1.49	1.59	1.69	0.74	0.91	1.04	1.17	1.28	1.38	1.48	1.57	0.70	0.86	0.99	1.10	1.21	1.31	1.40	1.48
	SEI 1	1.73	2.12	2.45	2.74	3.00	3.24	3.46	3.68	1.61	1.97	2.28	2.54	2.79	3.01	3.22	3.41	1.52	1.86	2.15	2.4	2.63	2.84	3.04	3.23
	SEI 2	3.54	4.33	5.00	5.59	6.12	6.61	7.07	7.50	3.28	4.02	4.64	5.19	5.69	6.14	6.57	6.97	3.10	3.80	4.39	4.91	5.37	5.80	6.20	6.58
	SEI 3.5	5.78	7.08	8.18	9.14	10.0	10.8	11.6	12.3	5.37	6.58	7.59	8.49	9.30	10.0	10.7	11.4	5.07	6.21	7.17	8.02	8.79	9.49	10.1	10.8
	SEI 6	10.9	13.4	15.5	17.3	18.9	20.4	21.8	23.2	10.1	12.4	14.4	16.0	17.6	19.0	20.3	21.5	9.59	11.7	13.6	15.2	16.6	17.9	19.2	20.3
1	SEI 8.5	15.5	18.9	21.9	24.5	26.8	28.9	30.9	32.8	14.4	17.6	20.3	22.7	24.9	26.9	28.7	30.5	13.6	16.6	19.2	21.5	23.5	25.4	27.1	28.8
R-404A	SEI 11	16.5	20.2	23.4	26.1	28.6	30.9	33.1	35.1	15.4	18.8	21.7	24.3	26.6	28.7	30.7	32.6	14.5	17.8	20.5	22.9	25.1	27.1	29.0	30.8
	SEI 30	53.0	65.0	75.0	83.9	91.9	99.2	106	113	49.3	60.3	69.7	77.9	85.3	92.2	98.5	104	46.5	57.0	65.8	73.6	80.6	87.1	93.1	98.7
	SEI 50	88.4	108	125	140	153	165	177	188	82.1	101	116	130	142	154	164	174	77.6	95.0	110	123	134	145	155	165
	SER 1.5	2.65	3.25	3.75	4.19	4.59	4.96	5.30	5.63	2.46	3.02	3.48	3.89	4.27	4.61	4.93	5.23	2.33	2.85	3.29	3.68	4.03	4.35	4.65	4.94
	SER 6	10.6	13.0	15.0	16.8	18.4	19.8	21.2	22.5	9.85	12.1	13.9	15.6	17.1	18.4	19.7	20.9	9.31	11.4	13.2	14.7	16.1	17.4	18.6	19.7
	SER 11	19.4	23.8	27.5	30.7	33.7	36.4	38.9	41.2	18.1	22.1	25.5	28.6	31.3	33.8	36.1	38.3	17.1	20.9	24.1	27.0	29.6	31.9	34.1	36.2
	SER 20	35.4	43.3	50.0	55.9	61.2	66.1	70.7	75.0	32.8	40.2	46.4	51.9	56.9	61.4	65.7	69.7	31.0	38.0	43.9	49.1	53.7	58.0	62.0	65.8
	SER(I) G	40.0	48.9	56.4	63.2	69.2	74.7	79.9	84.7	37.1	45.4	52.4	58.7	64.3	69.4	74.2	78.7	35.0	42.9	49.6	55.4	60.7	65.5	70.1	74.4
	SER(I) J	71.8	88.4	102	114	124	134	144	152	66.7	81.8	94.4	105	116	125	133	142	63.1	77.2	89.3	99.5	109	118	126	133
	SER(I) K	130	160	184	206	225	244	261	276	121	148	171	191	210	226	242	257	114	140	162	181	198	214	229	242
	SEH(I) 100	177	217	250	280	306	331	354	375	164	201	232	260	284	307	328	348	155	190	219	245	269	290	310	329
	SEH(I) 175	309	379	438	489	536	579	619	656	287	352	406	454	498	538	575	610	271	332	384	429	470	508	543	576

					-30)°C							-40)°C			
	Valve Type					P	RESS	JRE DI	ROP A	CROSS	VALV	E (BAF	R)				
	- "	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18
	ESX 14	_	_	_	_		_		_	_	_		_	_	_		_
	ESX 18	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	ESX 24	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	SEI .5	0.66	0.81	0.93	1.04	1.14	1.23	1.31	1.39	0.61	0.75	0.87	0.97	1.06	1.14	1.22	1.30
	SEI 1	1.43	1.75	2.02	2.26	2.47	2.67	2.86	3.03	1.33	1.63	1.88	2.11	2.31	2.49	2.67	2.83
	SEI 2	2.91	3.57	4.12	4.61	5.05	5.45	5.83	6.18	2.72	3.33	3.85	4.30	4.71	5.09	5.44	5.77
	SEI 3.5	4.76	5.83	6.74	7.53	8.25	8.91	9.53	10.1	4.45	5.45	6.29	7.03	7.70	8.32	8.89	9.43
A	SEI 6	9.00	11.0	12.7	14.2	15.6	16.8	18.0	19.1	8.40	10.3	11.9	13.3	14.6	15.7	16.8	17.8
R-404A	SEI 8.5	12.7	15.6	18.0	20.2	22.1	23.8	25.5	27.0	11.9	14.6	16.8	18.8	20.6	22.3	23.8	25.2
F.	SEI 11	13.6	16.7	19.3	21.5	23.6	25.5	27.2	28.9	12.7	15.6	18.0	20.1	22.0	23.8	25.4	27.0
	SEI 30	43.7	53.5	61.8	69.1	75.7	81.8	87.4	92.7	40.8	50.0	57.7	64.5	70.7	76.3	81.6	86.5
	SEI 50	72.8	89.2	103	115	126	136	146	155	68.0	83.3	96.1	107	118	127	136	144
	SER 1.5	2.19	2.68	3.09	3.46	3.79	4.09	4.37	4.64	2.04	2.50	2.88	3.23	3.53	3.82	4.08	4.33
	SER 6	8.74	10.7	12.4	13.8	15.1	16.4	17.5	18.5	8.16	9.99	11.5	12.9	14.1	15.3	16.3	17.3
	SER 11	16.0	19.6	22.7	25.3	27.8	30.0	32.1	34.0	15.0	18.3	21.2	23.6	25.9	28.0	29.9	31.7
	SER 20	29.1	35.7	41.2	46.1	50.5	54.5	58.3	61.8	27.2	33.3	38.5	43.0	47.1	50.9	54.4	57.7
	SER(I) G	32.9	40.3	46.6	52.0	57.0	61.5	65.8	69.8	30.7	37.7	43.4	48.5	53.2	57.5	61.5	65.2
	SER(I) J	59.2	72.5	83.7	93.5	103	111	118	126	55.3	67.7	78.1	87.6	96.1	104	111	117
	SER(I) K	107	132	152	170	186	201	215	228	100	122	142	158	173	188	201	213
	SEH(I) 100	146	178	206	230	252	273	291	309	136	167	192	215	236	254	272	288
	SEH(I) 175	255	312	361	403	442	477	510	541	238	291	337	376	412	445	476	505

				LIQU	ID TEMP	PERATUR	E CORRI	CTION	ACTORS						
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

R-507 CAPACITIES IN KW (AT EVAPORATOR TEMPERATURE °C)

					5°	,C							-10	°C							-20	°C			
	Valve Type									P	RESS	URE DI	ROP A	CROSS	VALV	E (BAF	?)								
	турс	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18
	ESX 14	2.25	2.76	3.18	3.56	3.90	4.21	4.50	4.78	2.09	2.56	2.96	3.31	3.62	3.91	4.18	4.43	1.98	2.42	2.80	3.13	3.43	3.70	3.96	4.20
	ESX 18	3.98	4.88	5.63	6.30	6.90	7.45	7.97	8.45	3.70	4.53	5.23	5.85	6.41	6.92	7.40	7.85	3.50	4.28	4.95	5.53	6.06	6.55	7.00	7.42
	ESX 24	7.97	9.76	11.3	12.6	13.8	14.9	15.9	16.9	7.40	9.06	10.5	11.7	12.8	13.8	14.8	15.7	7.00	8.57	9.89	11.1	12.1	13.1	14.0	14.8
	SEI .5	0.78	0.96	1.10	1.23	1.35	1.46	1.56	1.65	0.72	0.89	1.02	1.14	1.25	1.35	1.45	1.53	0.68	0.84	0.97	1.08	1.19	1.28	1.37	1.45
	SEI 1	1.70	2.08	2.40	2.68	2.94	3.18	3.40	3.60	1.58	1.93	2.23	2.49	2.73	2.95	3.15	3.34	1.49	1.83	2.11	2.36	2.58	2.79	2.98	3.16
	SEI 2	3.46	4.24	4.90	5.48	6.00	6.48	6.93	7.35	3.22	3.94	4.55	5.09	5.57	6.02	6.43	6.82	3.04	3.73	4.30	4.81	5.27	5.69	6.08	6.45
	SEI 3.5	5.66	6.94	8.01	8.96	9.81	10.6	11.3	12.0	5.26	6.44	7.44	8.31	9.11	9.84	10.5	11.2	4.97	6.09	7.03	7.86	8.62	9.31	9.95	10.6
	SEI 6	10.7	13.1	15.1	16.9	18.5	20.0	21.4	22.7	9.94	12.2	14.1	15.7	17.2	18.6	19.9	21.1	9.40	11.5	13.3	14.9	16.3	17.6	18.8	19.9
R-507	SEI 8.5	15.2	18.6	21.4	24.0	26.3	28.4	30.3	32.2	14.1	17.2	19.9	22.2	24.4	26.3	28.1	29.8	13.3	16.3	18.8	21.0	23.1	24.9	26.6	28.2
F-1	SEI 11	16.2	19.8	22.9	25.6	28.1	30.3	32.4	34.4	15.0	18.4	21.3	23.8	26.0	28.1	30.1	31.9	14.2	17.4	20.1	22.5	24.6	26.6	28.4	30.2
	SEI 30	52.0	63.6	73.5	82.2	90.0	97.2	104	110	48.2	59.1	68.2	76.3	83.6	90.3	96.5	102	45.6	55.9	64.5	72.2	79.0	85.4	91.3	96.8
	SEI 50	86.6	106	122	137	150	162	173	184	80.4	98.5	114	127	139	150	161	171	76.1	93.1	108	120	132	142	152	161
	SER 1.5	2.60	3.18	3.67	4.11	4.50	4.86	5.20	5.51	2.41	2.95	3.41	3.81	4.18	4.51	4.82	5.12	2.28	2.79	3.23	3.61	3.95	4.27	4.56	4.84
	SER 6	10.4	12.7	14.7	16.4	18.0	19.4	20.8	22.0	9.65	11.8	13.6	15.3	16.7	18.1	19.3	20.5	9.13	11.2	12.9	14.4	15.8	17.1	18.3	19.4
	SER 11	19.1	23.3	26.9	30.1	33.0	35.6	38.1	40.4	17.7	21.7	25.0	28.0	30.6	33.1	35.4	37.5	16.7	20.5	23.7	26.5	29.0	31.3	33.5	35.5
	SER 20	34.6	42.4	49.0	54.8	60.0	64.8	69.3	73.5	32.2	39.4	45.5	50.9	55.7	60.2	64.3	68.2	30.4	37.3	43.0	48.1	52.7	56.9	60.8	64.5
	SER(I) G	39.1	47.9	55.3	61.9	67.7	73.2	78.3	83.0	36.3	44.5	51.3	57.5	62.9	68.0	72.7	77.1	34.3	42.1	48.6	54.3	59.5	64.3	68.7	72.9
	SER(I) J	70.4	85.9	99.5	111	122	132	141	150	65.4	80.1	92.7	104	113	122	131	139	61.8	75.7	87.6	97.8	107	116	123	131
	SER(I) K	128	156	180	201	221	239	255	271	118	145	167	187	205	222	237	252	112	138	158	178	194	210	224	238
	SEH(I) 100	173	212	245	274	300	324	346	367	161	197	227	254	279	301	322	341	152	186	215	241	263	285	304	323
	SEH(I) 175	303	371	429	479	525	567	606	643	281	345	398	445	487	526	563	597	266	326	376	421	461	498	532	565

					-30)°C							-40)°C			
	Valve Type					Р	RESS	URE DI	ROP A	CROSS	VALV	E (BAF	?)				
	-,,,,	4	6	8	10	12	14	16	18	4	6	8	10	12	14	16	18
	ESX 14	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
	ESX 18	_	_	l		_			_	_	_	l	_	_	_	_	_
	ESX 24	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	SEI .5	0.64	0.79	0.91	1.02	1.12	1.21	1.29	1.37	0.60	0.74	0.85	0.95	1.04	1.13	1.21	1.28
	SEI 1	1.40	1.72	1.98	2.22	2.43	2.62	2.81	2.98	1.31	1.61	1.86	2.08	2.27	2.46	2.63	2.79
	SEI 2	2.86	3.51	4.05	4.53	4.96	5.36	5.73	6.07	2.68	3.28	3.79	4.24	4.64	5.01	5.36	5.68
	SEI 3.5	4.68	5.73	6.62	7.40	8.11	8.76	9.36	9.93	4.38	5.37	6.20	6.93	7.59	8.20	8.76	9.29
	SEI 6	8.85	10.8	12.5	14.0	15.3	16.6	17.7	18.8	8.28	10.1	11.7	13.1	14.3	15.5	16.6	17.6
R-507	SEI 8.5	12.5	15.3	17.7	19.8	21.7	23.4	25.1	26.6	11.7	14.4	16.6	18.5	20.3	21.9	23.4	24.9
~	SEI 11	13.4	16.4	18.9	21.2	23.2	25.0	26.8	28.4	12.5	15.3	17.7	19.8	21.7	23.4	25.1	26.6
	SEI 30	42.9	52.6	60.7	67.9	74.4	80.3	85.9	91.1	40.2	49.2	56.8	63.6	69.6	75.2	80.4	85.3
	SEI 50	71.6	87.7	101	113	124	134	143	152	67.0	82.0	94.7	106	116	125	134	142
	SER 1.5	2.15	2.63	3.04	3.40	3.72	4.02	4.29	4.56	2.01	2.46	2.84	3.18	3.48	3.76	4.02	4.26
	SER 6	8.59	10.5	12.1	13.6	14.9	16.1	17.2	18.2	8.04	9.84	11.4	12.7	13.9	15.0	16.1	17.1
	SER 11	15.7	19.3	22.3	24.9	27.3	29.5	31.5	33.4	14.7	18.0	20.8	23.3	25.5	27.6	29.5	31.3
	SER 20	28.6	35.1	40.5	45.3	49.6	53.6	57.3	60.7	26.8	32.8	37.9	42.4	46.4	50.1	53.6	56.8
	SER(I) G	32.3	39.6	45.7	51.2	56.0	60.5	64.7	68.6	30.3	37.1	42.8	47.9	52.4	56.6	60.5	64.2
	SER(I) J	58.1	71.2	82.3	91.8	101	109	116	123	54.5	66.7	77.0	85.9	94.4	102	109	116
	SER(I) K	105	129	150	167	183	197	211	224	99	121	139	156	171	184	197	209
	SEH(I) 100	143	175	202	226	248	268	286	304	134	164	189	212	232	251	268	284
	SEH(I) 175	251	307	354	396	434	469	501	531	234	287	332	371	406	439	469	497

				LIQU	ID TEMF	PERATUR	E CORRI	ECTION I	ACTORS	;					
°F	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
°C	-18	-12	-7	-1	4	10	16	21	27	32	38	43	49	54	60
R-22	1.56	1.51	1.45	1.40	1.34	1.29	1.23	1.17	1.12	1.06	1.00	0.94	0.88	0.82	0.76
R-134a	1.70	1.63	1.56	1.49	1.42	1.36	1.29	1.21	1.14	1.07	1.00	0.93	0.85	0.78	0.71
R-404A/507	1.99	1.89	1.79	1.69	1.59	1.50	1.40	1.30	1.20	1.10	1.00	0.89	0.78	0.66	0.51
R-407C	1.33	1.30	1.28	1.25	1.22	1.19	1.16	1.12	1.09	1.04	1.00	0.95	0.90	0.84	0.77
R-410A	1.79	1.71	1.63	1.55	1.47	1.40	1.32	1.24	1.16	1.08	1.00	0.92	0.83	0.73	0.62

AVAILABLE CONNECTIONS

ТҮРЕ	INLET – Inches STANDARD CONNECTIONS In BOLD	OUTLET – Inches STANDARD CONNECTIONS In BOLD	CONFIGURATION	CABLE STANDARD C In B	ONNECTIONS
	III DOLD	III DOLD		Feet	Meters
ESX 14	5/16 ODF, 3/8 ODF	5/16 ODF, 3/8 ODF, 1/2 ODF	Angle	5 , 10	1.5 , 3
ESX 18	5/16 ODF, 3/8 ODF	5/16 ODF, 3/8 ODF, 1/2 ODF	Angle	5 , 10	1.5 , 3
ESX 24	5/16 ODF, 3/8 ODF	5/16 ODF, 3/8 ODF, 1/2 ODF	Angle	5 , 10	1.5 , 3
SER 1.5*	3/8 , 1/2, 5/8 ODF	3/8, 1/2 , 5/8	Angle	10 , 40	3 , 12
SER 6*	3/8, 1/2 , 5/8 ODF	3/8, 1/2, 5/8 , 7/8	Angle	10 , 40	3 , 12
SER 11*	3/8, 1/2, 5/8 ODF	1/2, 5/8, 7/8 , 1-1/8 ODF	Angle	10 , 40	3 , 12
SER 20*	1/2, 5/8, 7/8 , 1-1/8 ODF	5/8, 7/8, 1-1/8, 1-3/8 ODF	Angle	10 , 40	3 , 12
SEI 30	5/8, 7/8, 1-1/8 ODF	5/8, 7/8, 1-1/8, 1-3/8 ODF	Angle	10 , 20, 30, 40	3 , 6, 9, 12
SEI 50	7/8, 1-1/8 , 1-3/8 ODF	7/8, 1-1/8, 1-3/8 , 1-5/8 ODF	Straight Through	10 , 20, 30, 40	3 , 6, 9, 12
SEH 100	1-1/8 , 1-3/8 ODF	1-3/8, 1-5/8 ODF	Straight Through	10 , 20, 30, 40	3 , 6, 9, 12
SEH 175	1-1/8, 1-3/8, 1-5/8 ODF	2-1/8 ODF	Straight Through	10 , 20, 30, 40	3 , 6, 9, 12
SER G*	5/8, 7/8	1/2, 5/8, 7/8, 1-1/8	Angle	10 , 40	3 , 12
SER J*	7/8 , 1-1/8	7/8 , 1-1/8, 1-3/8	Angle	10 , 40	3 , 12
SER K	1-1/8	7/8, 1-1/8 , 1-3/8, 1-5/8	Angle	10 , 40	3 , 12
SEI .5 to 11	1/4, 3/8, 1/2, ODF 1/4, 3/8, 1/2 SAE	3/8, 1/2, 5/8 ODF 1/2 SAE	Angle	10 , 20, 30, 40	3 , 6, 9, 12

 $^{{}^{*}}$ Suitable for bi-directional applications.

CLIMATE CONTROL

- Accumulators
- CO₂ controls
- Electronic controllers
- Filter-driers
- Hand shut-off valves
- Heat exchangers
- Hose & fittings
- Pressure regulating valves
- Refrigerant distributors
- Safety relief valves
- Solenoid valves
- Thermostatic expansion valves

AEROSPACE

- Flight control systems & components
- Fluid conveyance systems
- Fluid metering delivery & atomization devices
- Fuel systems & components
- Hydraulic systems & components
- Inert nitrogen generating systems
- Pneumatic systems & components
- Wheels & brakes

ELECTROMECHANICAL

- AC/DC drives & systems
- Electric actuators, gantry robots
- Electrohydrostatic actuation systems
- Electromechanical actuation systems
- Human machine interfaces
- Linear motors
- Stepper motors, servo motors, drives & controls
- Structural extrusions

FILTRATION

- Analytical gas generators
- Compressed air & gas filters
- Condition monitoring
- Engine air, fuel & oil filtration & systems
- Hydraulic, lubrication & coolant filters
- Process, chemical, water & microfiltration filters
- Nitrogen, hydrogen & zero air generators

FLUID & GAS HANDLING

- Brass fittings & valves
- Diagnostic equipment
- Fluid conveyance systems
- Industrial hose
- PTFE & PFA hose, tubing & plastic fittings
- Quick disconnects
- Rubber & thermoplastic hose & couplings
- Tube fittings & adapters

HYDRAULICS

- Diagnostic equipment
- Hydraulic cylinders & accumulators
- Hydraulic motors & pumps
- Hydraulic systems
- Hydraulic valves & controls
- Power take-offs
- Quick disconnects
- Rubber & thermoplastic hose & couplings
- Tube fittings & adapters

PNEUMATICS

- Air preparation
- Brass fittings & valves
- Manifold:
- Pneumatic actuators, grippers, valves, controls & accessories
- Quick disconnects
- Rotary actuators
- Rubber & thermoplastic hose & couplings
- Structural extrusions
- Thermoplastic tubing & fittings
- Vacuum generators, cups & sensors

PROCESS CONTROL

- Analytical sample conditioning products & systems
- Fluoropolymer chemical delivery fittings, valves & pumps
- High purity gas delivery fittings, valves & regulators
- Instrumentation fittings, valves & regulators
- Medium pressure fittings & valves
- Process control manifolds

SEALING & SHIELDING

- Dynamic seals
- Elastomeric o-rings
- EMI shielding
- Extruded & precision-cut, fabricated elastomeric seals
- Homogeneous & inserted elastomeric shapes
- High temperature metal seals
- Metal & plastic retained composite seals
- Thermal management

Parker Hannifin Corporation **Sporlan Division**

206 Lange Drive • Washington, MO 63090 USA phone 636 239 1111 • fax 636 239 9130 www.sporlan.com

92008 / Bulletin 100-20