Examples after update the sampling method 2019-08-28

Example 1

Suppose we simulate the data from the following joint distribution:

$$f(s,t) = \frac{1}{1000}(s+t)$$

where $s \in (0, 10)$ and $t \in (0, 10)$.

Simulate data.

The marginal plots is:

The estimation plot:

comparison of True and estimated S(t)

The mean abs difference

	KM	Slud1	Slud2	Riemann	Integral
0	.024	0.025	0.025	0	0.023

The distribution of true $\rho(t)$

Histogram of rho

Example 2 Tsiatis

The functions

Function	Description	Expression
$P(T < t, C < c)$ $f(t, c)$ $f_t(t)$	Joint CDF Joint PDF Marginal PDF of T	$1 + exp(-\lambda t - \mu c - \theta tc) - exp(-\lambda t) - exp(-\mu c)$ $(\lambda \mu - \theta + \lambda \theta t + \mu \theta c + \theta^2 tc) exp(-\lambda t - \mu c - \theta ct)$ $\lambda exp(-\lambda t)$

Function	Description	Expression
$S_t(t)$	Survival function of T	$exp(-\lambda t)$
$f_c(c)$	Marginal PDF of C	$\mu exp(-\mu c)$
$S_c(c)$	$P_c(C>c)$	$exp(-\mu c)$
$S_x(t)$	P(T > t, C > t)	$exp(-\lambda t - \mu t - \theta t^2)$
$\psi(t)$	$\int_{t}^{\infty} f(t,c)dc$	$(\lambda + \theta t)exp(-\lambda t - \mu t - \theta t^2)$

Parameter settings (consistent to Tsiatis's example):

- scenario 1: $\lambda = 0.1, \mu = 0.2, \theta = 0.02$
- scenario 2: $\lambda=1, \mu=1, \theta=1$

P.S. the problem here is that he inverse function cannot be calculated. Just estimated.

The marginal plots is ($\lambda = 0.1, \mu = 0.2, \theta = 0.02$):

The estimation plot:

comparision: lambda=0.1, mu=0.2, theta=0.02

The mean abs difference

KM	Slud1	Slud2	Riemann	Integral
0.046	0.022	0.026	0	0.026

The distribution of true $\rho(t)$

Histogram of rho

The marginal plots is ($\lambda=1,\mu=1,\;\theta=1$):

The estimation plot:

The mean abs difference

KM	Slud1	Slud2	Riemann	Integral
0.022	0.035	0.041	0.004	0.037

Time

The distribution of true $\rho(t)$

Histogram of rho

Example 3: Piecewise