Esercizi di Geometria Differenziale del 18 Dicembre

Marco Romagnoli (578061)

10 gennaio 2022

Esercizio 5.6

Svolgimento. Per ricavare il tensore metrico si usa la formula del cambio di coordinate dei tensori per passare dalle coordinate cartesiane (x, y) a quelle polari (ρ, θ)

$$g_{ij} = \frac{\partial x^a}{\partial \overline{x}^i} \frac{\partial x^b}{\partial \overline{x}^j} g_{ab}^E$$

dove \mathbf{g}^E è il tensore metrico euclideo e \overline{x}^i sono le coordinate polari, da cui, sapendo che $x = \rho \cos \theta$ e $y = \rho \sin \theta$, si ricava:

$$g_{11} = \left(\frac{\partial x}{\partial \rho}\right)^2 + \left(\frac{\partial y}{\partial \rho}\right)^2 = \cos^2 \theta + \sin^2 \theta = 1$$

$$g_{21} = g_{12} = \frac{\partial x}{\partial \rho} \frac{\partial x}{\partial \theta} + \frac{\partial y}{\partial \rho} \frac{\partial y}{\partial \theta} = -\cos \theta \sin \theta + \cos \theta \sin \theta = 0$$

$$g_{22} = \left(\frac{\partial x}{\partial \theta}\right)^2 + \left(\frac{\partial y}{\partial \theta}\right)^2 = \rho^2 \cos^2 \theta + \rho^2 \sin^2 \theta = \rho^2$$

Per ricavare i simboli di Christoffel a partire dal tensore metrico si può usare la formula

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl} \left(\frac{\partial g_{il}}{\partial x^{j}} + \frac{\partial g_{jl}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{l}} \right)$$

da cui si ricava che

$$\begin{split} \Gamma_{11}^1 &= \frac{1}{2}g^{11} \left(\frac{\partial g_{11}}{\partial \rho} + \frac{\partial g_{11}}{\partial \rho} - \frac{\partial g_{11}}{\partial \rho} \right) = 0 \\ \Gamma_{12}^1 &= \Gamma_{21}^1 = \frac{1}{2}g^{11} \left(\frac{\partial g_{11}}{\partial \theta} + \frac{\partial g_{21}}{\partial \rho} - \frac{\partial g_{21}}{\partial \rho} \right) = 0 \\ \Gamma_{22}^1 &= \frac{1}{2}g^{11} \left(\frac{\partial g_{21}}{\partial \theta} + \frac{\partial g_{21}}{\partial \theta} - \frac{\partial g_{22}}{\partial \rho} \right) = -\rho \\ \Gamma_{11}^2 &= \frac{1}{2}g^{22} \left(\frac{\partial g_{12}}{\partial \rho} + \frac{\partial g_{12}}{\partial \rho} - \frac{\partial g_{11}}{\partial \theta} \right) = 0 \\ \Gamma_{12}^2 &= \Gamma_{21}^2 = \frac{1}{2}g^{22} \left(\frac{\partial g_{22}}{\partial \rho} + \frac{\partial g_{12}}{\partial \theta} - \frac{\partial g_{21}}{\partial \theta} \right) = \frac{1}{2}\rho^{-2}(2\rho) = \frac{1}{\rho} \\ \Gamma_{22}^2 &= \frac{1}{2}g^{22} \left(\frac{\partial g}{\partial \theta} + \frac{\partial g_{22}}{\partial \theta} - \frac{\partial g_{22}}{\partial \theta} \right) = 0 \end{split}$$

dove q^{ij} sono le coordinate di

$$\boldsymbol{g}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & \rho^{-2} \end{pmatrix}.$$

Da questo si può verificare che il tensore di Riemann è nullo sapendo che

$$R_{ijk}^l = \frac{\partial \Gamma_{jk}^l}{\partial x^i} - \frac{\partial \Gamma_{ik}^l}{\partial x^j} + \Gamma_{im}^l \Gamma_{jk}^n - \Gamma_{jm}^l \Gamma_{ik}^n$$

e quindi esplicitando i conti (trascurando i termini in cui ogni addendo è nullo) si vede che:

$$\begin{split} R_{122}^1 &= \frac{\partial \Gamma_{22}^1}{\partial \rho} - \Gamma_{22}^1 \Gamma_{12}^2 = -1 + \frac{\rho}{\rho} = 0 \\ R_{212}^1 &= -\frac{\partial \Gamma_{22}^1}{\partial \rho} + \Gamma_{22}^1 \Gamma_{12}^2 = 1 - \frac{\rho}{\rho} = 0 \\ R_{221}^1 &= \Gamma_{22}^1 \Gamma_{12}^2 - \Gamma_{22}^1 \Gamma_{21}^2 = 0 \\ R_{112}^2 &= \frac{\partial \Gamma_{12}^2}{\partial \rho} - \frac{\partial \Gamma_{12}^2}{\partial \rho} + \Gamma_{12}^2 \Gamma_{21}^2 - \Gamma_{12}^2 \Gamma_{21}^2 = 0 \\ R_{121}^2 &= \frac{\partial \Gamma_{21}^2}{\partial \rho} + \Gamma_{12}^2 \Gamma_{21}^2 = -\frac{1}{\rho^2} + \frac{1}{\rho} \frac{1}{\rho} = 0 \\ R_{211}^2 &= -\frac{\partial \Gamma_{21}^2}{\partial \rho} - \Gamma_{12}^2 \Gamma_{21}^2 = \frac{1}{\rho^2} - \frac{1}{\rho} \frac{1}{\rho} = 0 \end{split}$$

Esercizio 5.8

Svolgimento. Il piano iperbolico, in due dimensioni, è definito tramite il modello del semipiano come

$$\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 | y > 0 \}$$

equipaggiato con il tensore metrico $g = \frac{1}{y^2} g_E$, dove g_E è il tensore metrico euclideo. Tramite quest'ultimo, sapendo che $g^{ij} = y^2 \delta^{ij}$ sono le coordinate di g^{-1} , si possono calcolare esplicitamente i simboli di Christoffel:

$$\begin{split} \Gamma_{11}^1 &= \frac{1}{2}g^{11} \left(\frac{\partial g_{11}}{\partial x} + \frac{\partial g_{11}}{\partial x} - \frac{\partial g_{11}}{\partial x} \right) = 0 \\ \Gamma_{12}^1 &= \Gamma_{21}^1 = \frac{1}{2}g^{11} \left(\frac{\partial g_{11}}{\partial y} + \frac{\partial g_{21}}{\partial x} - \frac{\partial g_{12}}{\partial x} \right) = \frac{1}{2}y^2 \left(-\frac{2}{y^3} \right) = -\frac{1}{y} \\ \Gamma_{22}^1 &= \frac{1}{2}g^{11} \left(\frac{\partial g_{21}}{\partial x} + \frac{\partial g_{21}}{\partial y} - \frac{\partial g_{22}}{\partial x} \right) = 0 \\ \Gamma_{11}^2 &= \frac{1}{2}g^{22} \left(\frac{\partial g_{12}}{\partial x} + \frac{\partial g_{12}}{\partial x} - \frac{\partial g_{11}}{\partial y} \right) = \frac{1}{2}y^2 \left(\frac{2}{y^3} \right) = \frac{1}{y} \\ \Gamma_{12}^2 &= \Gamma_{21}^2 &= \frac{1}{2}g^{22} \left(\frac{\partial g_{12}}{\partial y} + \frac{\partial g_{22}}{\partial x} - \frac{\partial g_{12}}{\partial y} \right) = 0 \\ \Gamma_{22}^2 &= \frac{1}{2}g^{22} \left(\frac{\partial g_{22}}{\partial y} + \frac{\partial g_{22}}{\partial y} - \frac{\partial g_{22}}{\partial y} \right) = \frac{1}{2}y^2 \left(-\frac{2}{y^3} \right) = -\frac{1}{y} \end{split}$$

Esercizio 5.10

Svolgimento. Data la connessione ∇ su \mathbb{R}^3 definita come nel testo dell'esercizio, si può vedere che $\Gamma^k_{ij} = \varepsilon^{ijk}$ e quindi sicuramente non è simmetrico, infatti $\Gamma^k_{ij} = -\Gamma^k_{ji}$. Affinché sia compatibile con g deve essere vero che $\nabla_v g = 0 \quad \forall v \in \mathbb{R}^3$ che in carte diventa

$$v^{i} \left(\frac{\partial g_{bc}}{\partial x^{i}} - g_{jc} \Gamma^{j}_{ib} - g_{bj} \Gamma^{j}_{ic} \right) = 0$$

In questo caso, dato che $g_{ij}=\delta_{ij}$ e in particolare è costante, si ha che

$$g_{jc}\Gamma^{j}_{ib} + g_{bj}\Gamma^{j}_{ic} = \delta_{jc}\varepsilon^{ibj} + \delta_{bj}\varepsilon^{icj} = \varepsilon^{ibc} + \varepsilon^{icb} = \varepsilon^{ibc} - \varepsilon^{ibc} = 0$$

Quindi ∇ è compatibile con il tensore metrico euclideo. Le geodetiche sono date dalle soluzioni dell'equazione

$$D\dot{\boldsymbol{x}} = \ddot{\boldsymbol{x}} + \dot{x}^i \dot{x}^j \Gamma^k_{ij} = 0$$

Si può vedere che il fattore $\dot{x}^i\dot{x}^j$ è simmetrico per scambio degli indici i e j, mentre Γ^k_{ij} è antisimmetrico per lo stesso scambio. Quindi $\dot{x}^i\dot{x}^j\Gamma^k_{ij}=0$ e l'equazione da risolvere è solamente $\ddot{x}=0$ e le geodetiche sono x=p+vt con $p,v\in\mathbb{R}^3$.