



# **EXAMENUL DE BACALAUREAT - 2007** Proba scrisă la MATEMATICĂ

#### PROBA D

Varianta ....055

Profilul: Filiera Teoretică: sp.: matematică-informatică, Filiera Vocațională, profil Militar, Specializarea: specializarea matematică-informatică

Toate subjectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p)a) Să se verifice că punctul M(1,0,1) aparține planului x+y+z=2.
- (4p)**b)** Dacă în triunghiul ascuțitunghic ABC avem  $\sin A = \frac{1}{2}$ , să se determine  $m(\hat{B}) + m(\hat{C})$ .
- c) Să se determine coordonatele mijlocului segmentului [AB], unde A(4,0) și B(0,2). (4p)
- (4p)d) Să se determine numărul punctelor de intersecție dintre cercul de ecuație  $x^2 + y^2 = 4$ și hiperbola de ecuație  $x^2 - y^2 = 1$ .
- e) Să se determine numărul soluțiilor din intervalul  $[0, 3\pi]$  ale ecuației  $\sin x = 1$ . (2p)
- Să se determine  $a \in \mathbf{R}$  astfel încât numărul complex  $z = a + (1-a) \cdot i$  să aibă modulul 1. (2p)

### SUBIECTUL II (30p)

- a) Să se calculeze 1+3+5+...+49. (3p)
- **b)** Să se calculeze  $1 + C_3^2 + C_4^2 + C_5^2$ .
- c) Să se determine soluțiile din mulțimea  $N^*$  ale inecuației  $2^x < 2^{\frac{4}{x}}$ . (3p)
- **d**) Să se rezolve în intervalul  $(0, \infty)$  ecuația  $\log_2 x = 2$ . (3p)
- e) Să se demonstreze că funcția  $f: \mathbf{R}^* \to \mathbf{R}$ ,  $f(x) = \frac{1}{x}$  este injectivă. (3p)
  - 2. Se consideră funcția  $f:(-1,\infty)\to \mathbb{R}$ ,  $f(x)=\frac{x^2}{x+1}$ .
- a) Să se calculeze f'(x), pentru x > -1. (3p)
- **b)** Să se determine punctele de minim local ale funcției f. (3p)
- c) Să se determine numărul asimptotelor verticale la graficul funcției f. (3p)
- **d)** Să se calculeze  $\int f(x) dx$
- e) Să se calculeze  $\lim_{x \to \infty} \frac{\int_{0}^{x} f(t) dt}{r^{2}}$ .



## SUBIECTUL III (20p)

În mulțimea  $M_2(\mathbf{Z}_5)$  se consideră matricele  $I_2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{1} \end{pmatrix}$ ,  $B = \begin{pmatrix} \hat{0} & \hat{2} \\ \hat{2} & \hat{0} \end{pmatrix}$  și mulțimea  $M = \left\{ A(\hat{a}) = \hat{a} \cdot I_2 + B \mid \hat{a} \in \mathbf{Z}_5 \right\}$ .

- (4p) a) Să se demonstreze că  $B^4 = I_2$ .
- (4p) b) Să se determine toate elementele  $\hat{a} \in \mathbb{Z}_5$  astfel încât  $\det(A(\hat{a})) = \hat{0}$ .
- (4p) c) Să se demonstreze că  $\forall \hat{x} \in \mathbf{Z}_5, \hat{x}^5 = \hat{x}$ .
- (2p) **d)** Să se arate că dacă  $k \in \{1, 2, 3, 4\}$ , atunci  $\hat{C}_{5}^{k} = \hat{0}$  în  $\mathbb{Z}_{5}$ .
- (2p) e) Să se demonstreze că  $\forall \hat{a} \in \mathbb{Z}_5$ ,  $(A(\hat{a}))^5 = A(\hat{a})$ .
- (2p) f) Să se determine numărul soluțiilor din mulțimea M ale ecuației  $X^{2007} = X^3$ .
- (2p) g) Să se demonstreze că ecuația  $X^5 X = I_2$  nu are soluții de forma  $X = \begin{pmatrix} x & 2007 \\ 2007 & x \end{pmatrix} \in M_2(\mathbf{Z})$ .

#### SUBIECTUL IV (20p)

Se consideră funcțiile  $f, F: \mathbf{R} \to \mathbf{R}, f(x) = e^{\sin^2 x}, F(x) = \int_0^x f(t) dt$  și șirul

 $(x_n)_{n\in\mathbb{N}^*}$ , cu  $x_n = F\left(\frac{1}{1}\right) + F\left(\frac{1}{2}\right) + \dots + F\left(\frac{1}{n}\right)$ ,  $n\in\mathbb{N}^*$ . Se admite cunoscut faptul că șirul  $(c_n)_{n\in\mathbb{N}^*}$  cu  $c_n = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n} - \ln n$ ,  $n\in\mathbb{N}^*$ , este convergent.

- (4p) a) Să se demonstreze că F'(x) > 0,  $\forall x \in \mathbb{R}$ .
- (4p) b) Aplicând teorema lui *Lagrange* funcției F pe intervalul [0, x], să se demonstreze că  $\forall x > 0$ ,  $\exists d_x \in (0, x)$  astfel încât  $F(x) = x \cdot f(d_x)$ .
- (4p) c) Să se demonstreze că  $\lim_{x\to 0} \frac{F(x)}{x} = 1$ .
- (2p) d) Să se demonstreze că  $\lim_{x \to \infty} F(x) = +\infty$  și  $\lim_{x \to -\infty} F(x) = -\infty$ .
- (2p) e) Să se demonstreze că funcția F este bijectivă.
- (2p) f) Să se demonstreze că  $\lim_{n\to\infty} x_n = +\infty$ .
- (2p) g) Să se arate că  $\forall \alpha > 0$ ,  $\lim_{n \to \infty} \frac{x_n}{n^{\alpha}} = 0$ .