SHORT NOTES 1
PCA
(A.) EVD (Eigenvalus Decomposition)
A= V NV-1
A = original square motering V = materin subsected materin subsections of A N = diagonal materin subsections elements o are eigenvalues of A.
(B) SVD (Singular Value Decomposition)
A = () \(\text{Y} \) A \(\text{m} \text{x} \) grectargules motions
V = matrin where columns are eigenvectory
Of AD ATA U= matrin whose column are eigenvectors of
U= mating, material surface
AAT V = transpose of V i.e. materia whom yours are eigenvectors of ATA. yours are eigenvectors of ATA.
$[A]_{n\times m} = [\underbrace{v_1}_{v_2} - \underbrace{v_n}_{n\times k}]_{n\times k} [\underbrace{v_1}_{v_2} - \underbrace{v_n}_{k\times m}]_{k\times m} [\underbrace{v_1}_{v_2} - \underbrace{v_n}_{k\times m}]_{k\times m}$
The pick only top k-large ingernectory only for PCA.
only for PCT

In PCA we want: (1) We want to superegent the data using bowers (2) The data has high variance along these dimensions. (3.) The dimension by the minimum correlation-Thm: - X is a material whose columns are zero mean V in $\sum = \frac{1}{m} x^T x$ is the convariance writerin where, each (1, 5) +h element stores the consumme b/w columny ; and J of X. $Cov(X,Y) = \sum_{i=1}^{n} (n_i - \overline{x})(Y_i - \overline{y}) \qquad \begin{bmatrix} \overline{x} = mean & \text{declare } x \\ \overline{y} = 11 & \text{if } y \\ \overline{x} = ro. & \text{of dates } pti$ A FORMULA PCA FORMULA To perform PCA on X pTEP=D $\Sigma = X^T X$ P= matrix contains eigen vectors of [D = diagonal moteum having eigenalus of Z (X=XP)