TD 8

Null

10 avril 2024

1 Exercice 1

On prend pour i entre 0 et N. $R(A, B) = \{42i, 1\}$, $S(B, C) = \{1, 42i\}$, $T(A, C) = \{0, 42i\}$.

2 Exercice 2

Pareil, pour i entre 0 et $N: R(A,B) = \{1,i\} \cup \{i,1\}, S(B,C) = \{1,i\} \cup \{i,1\}$ et $T(A,C) = \{1,i\} \cup \{i,1\}$

3 Exercice 3

C'est pas très tight. CF exercice 1

4 Exercice 4

On a $|X \bowtie X| = |X|$. CQFD.

5 Exercice 5

Pour $\mathcal{V}_{n+1} = \mathcal{V}_n \sqcup \{\nu_{n+1}\}$: On considère $I = \mathcal{V}_n$ et $J = \{\nu_{n+1}\}$. On a alors $Q = \cup Q[t_I]$ donc

$$|Q| \le \sum_{t_I \in L} \prod_{F \in \mathcal{E}_J} |R \ltimes t_I|^{x_F} \le \prod_{f \in \mathcal{E}} |R_f|^{x_F}$$

6 Exercice 6

On décompose le simplex de Fractionary Vertex Cover en calculant récursivement en divisant par 2 le nombre de sommets. Par le lemme de décomposition on a bien la complexité attendue avec un facteur log du temps que chaque étape prend.

7 Exercice 7

We have $|I \cap J| = |I' \cap J'| = 0$. Since $F \in \mathcal{E}_{J'} \setminus \mathcal{E}_J$, the attributes in F must be j and any number of attributes in I'. Thus, we always have $R_F \ltimes (t_{I'}, t_J) = 1$.

8 Exercice 8

Trivial par inclusion.

9 Exercice 9

$$\begin{split} \sum_{t_I \in L} \prod_{F \in \mathcal{E}_J} |R_F \ltimes t_{I|^{x_F}} &= \sum_{t_{I'} \in L'} \sum_{t_j} \prod_{F \in \mathcal{E}_J} |R_F \ltimes (t_{I'}, t_j)|^{x_F} \\ &= \sum_{t_{I'} \in L'} \sum_{t_j} \left(\prod_{F \in \mathcal{E}_J} |R_F \ltimes (t_{I'}, t_j)|^{x_F} \right) \cdot \left(\prod_{F \in \mathcal{E}_{J'} - \mathcal{E}_J} 1^{x_F} \right) \\ &= \sum_{t_{I'} \in L'} \sum_{t_j} \prod_{F \in \mathcal{E}_{J'}} |R_F \ltimes (t_{I'}, t_j)|^{x_F} \\ &= \sum_{t_{I'} \in L'} \prod_{F \in \mathcal{E}_{J'} - \mathcal{E}_{\{j\}}} |R_F \ltimes t_{I'}|^{x_F} \sum_{t_j} \prod_{F \in \mathcal{E}_{\{j\}}} |R_F \ltimes (t_{I'}, t_j)|^{x_F} \\ &\leq \sum_{t_{I'} \in L'} \prod_{F \in \mathcal{E}_{J'} - \mathcal{E}_{\{j\}}} |R_F \ltimes t_{I'}|^{x_F} \prod_{F \in \mathcal{E}_{\{j\}}} \left(\sum_{t_j} |R_F \ltimes (t_{I'}, t_j)| \right)^{x_F} \\ &\leq \sum_{t_{I'} \in L'} \prod_{F \in \mathcal{E}_{J'} - \mathcal{E}_{\{j\}}} |R_F \ltimes t_{I'}|^{x_F} \prod_{F \in \mathcal{E}_{\{j\}}} |R_F \ltimes t_{I'}|^{x_F} \\ &= \sum_{t_{I'} \in L'} \prod_{F \in \mathcal{E}_{J'}} |R_F \ltimes t_{I'}|^{x_F} \end{split}$$