$$\chi_{STAT}^2 = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e} \left| \mathbf{f_e} = \frac{\text{row total} \times \text{column total}}{\text{n}} \right|$$

The test statistic for the McNemar test:

$$\mathbf{Z}_{STAT} = \frac{\mathbf{B} - \mathbf{C}}{\sqrt{\mathbf{B} + \mathbf{C}}}$$

McNemar test Contingency Table:

	Condition 2		
Condition 1	Yes	No	Totals
Yes	А	В	A+B
No	С	D	C+D
Totals	A+C	B+D	n

Wilcoxon Rank-Sum Test for Large Sample

$$Z_{STAT} = \frac{T_1 - \mu_{T_1}}{\sigma_{T_1}} = \frac{T_1 - \frac{n_1(n+1)}{2}}{\sqrt{\frac{n_1n_2(n+1)}{12}}}$$

The Kruskal-Wallis H-test statistic:

$$H = \left[\frac{12}{n(n+1)} \sum_{j=1}^{c} \frac{T_{j}^{2}}{n_{j}}\right] - 3(n+1)$$

Simple Linear Regression Model

$$\boxed{Y_i = \beta_0 + \beta_1 X_i + \epsilon_i} \\ \boxed{\hat{Y}_i = b_0 + b_1 X_i}$$

Total variation is made up of two parts: SST = SSR + SSE

Coefficient of Determination

$$r^2 = \frac{SSR}{SST} = \frac{\text{regression } sum \text{ of squares}}{total \text{ sum of squares}}$$

Inference about the slope: t test with df = n -2

$$t_{STAT} = \frac{b_1 - \beta_1}{S_{b_1}}$$

F test for overall significance with df1 = k, df2 = n - k - 1

$$F_{STAT} = \frac{MSR}{MSE}$$

$$MSR = \frac{SSR}{k}$$

$$MSE = \frac{SSE}{n-k-1}$$

Confidence interval estimate about the slope

$$\mathbf{b}_1 \pm t_{\alpha/2} \mathbf{S}_{\mathbf{b}_1}$$

Multiple Regression model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + \epsilon_{i} \hat{Y}_{i} = b_{0} + b_{1}X_{1i} + b_{2}X_{2i} + \dots + b_{k}X_{ki}$$

Adjusted R square

$$r_{adj}^2 = 1 - \left[(1 - r^2) \left(\frac{n-1}{n-k-1} \right) \right]$$

Variance Inflation Factor

$$VIF_j = \frac{1}{1 - R_i^2}$$

Nonlinear Regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \varepsilon_i$$

Logistic Regression

$$\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1, \pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Regression ANOVA table

Source	DF	Sum of Sq	Mean Sq	F Value	Pr(>F)
Regression	k	SSR	MSR	F	p-value
Residual	n-k-1	SSE	MSE		
Total	n-1	SST			

R functions for exam 2

Chi-square

chisq.test(dataframe[,i:j], correct =FALSE)

McNemar test (two-tailed test)

x<-matrix(c(A,B,C,D),2,2) mcnemar.test(x, correct = FALSE)

Wilcoxon Signed-Rank Test

wilcox.test(Growth Value\$'Growth', mu=5, alternative="greater")

Wilcoxon Signed-Rank Test for Matched-Pairs

wilcox.test(Growth Value\$'Growth', Growth Value\$'Value', alternative="two.sided", paired=TRUE)

Wilcoxon Rank-Sum Test for Independent Samples

wilcox.test(Undergrad_Salaries\$'Computer Science', Undergrad_Salaries\$'Finance', alternative="two.sided", paired=FALSE)

Kruskal-Wallis Rank Test

Stacked2<- melt(KWexample)
colnames(Stacked2)<- c("Major", "Size")
Stacked2
kruskal.test(Stacked2\$'Size',Stacked2\$'Major')

Calculate and interpret the correlation coefficient between debt payments and income.

cor(Debt_Payments\$'Income', Debt_Payments\$'Debt')
cor(Debt_Payments[2:4], use = "all.obs")

Create plot

install.packages("tidyverse")
library(tidyverse)
ggplot (data = Debt Payments) + geom point (mapping = aes (x = Income, y = Debt))

Simple Linear Regression

Simple <- lm(Debt~Income, data=Debt_Payments) summary(Simple) anova(Simple)

Multiple Linear Regression

Multiple2 <- lm(pie\$'pie sales'~pie\$'price (\$)'+pie\$'advertising (\$100s)') summary(Multiple2) MR1 <- lm(pie\$'pie sales'~1) anova(MR1, Multiple2)

Model with dummy variable

GNV<- ifelse(GNV_JAX_Jan2022\$city == "Gainesville, Florida", 1, 0) mlr2 <- lm(GNV_JAX_Jan2022\$PRICE ~ GNV_JAX_Jan2022\$`SQUARE FOOTAGE` + GNV) summary(mlr2)

Model with interaction variable

GNV_Int<- ifelse(GNV_JAX_Jan2022\$city == "Gainesville, Florida", GNV_JAX_Jan2022\$`SQUARE FOOTAGE`, 0)
mlr2_b <- lm(GNV_JAX_Jan2022\$PRICE ~ GNV_JAX_Jan2022\$`SQUARE FOOTAGE` +
GNV+GNV_Int)
summary(mlr2_b)

Create residual plot

plot(mlr2 b)

Calculate VIF

install.packages("car")
library(car)
lmobject1 <- lm(PRICE ~ BEDS+ SQFT + BEDSANDBATHS+ LOTSIZE, data = Tampa2022)
summary(lmobject1)
vif(lmobject1)</pre>

Logistic regression

logmod = glm(Purchase~Age, family = binomial, data = MacysPurchases) summary(logmod)

Build model using stepwise method

none <-lm(price ~1, data = GainesvilleHomes_Sp2019_Quant)
full <- lm(price ~ beds_baths + square_footage + lot_size+commute + year_built + es_dist + ms_dist + hs_dist, data = GainesvilleHomes_Sp2019_Quant)
MSE <- (summary(full)\$sigma)^2
step(none, scope=list(upper= full), scale=MSE) (#by default, it uses stepwise method)