Analízis II (F), 1. zárthelyi dolgozat, 2022.10.27..

Megoldások

(Vázlatosan)

1. Keresse meg azokat az $a, b \in \mathbb{R}$ paramétereket, hogy differenciálható legyen az alábbi függvény minden $x \in \mathbb{R}$ esetén!

$$f(x) = \begin{cases} e^{ax+b} \cdot \operatorname{sh} x, & \text{ha } x \leq 0, \\ a \cdot \operatorname{arctg}(2x) + b, & \text{ha } x > 0. \end{cases}$$

(7 pont)

Megoldás:

• Legyen

$$b(x) := e^{ax+b} \operatorname{sh} x \quad (x \in \mathbb{R})$$
 és $j(x) := a \operatorname{arctg}(2x) + b \quad (x \in \mathbb{R}).$

A deriválási szabályok alapján igaz, hogy $b, j \in D(\mathbb{R})$ minden $a, b \in \mathbb{R}$ esetén, és

$$b'(x) := ae^{ax+b} \operatorname{sh} x + e^{ax+b} \operatorname{ch} x \quad (x \in \mathbb{R}) \quad \text{és} \quad j'(x) := \frac{2a}{1 + (2x)^2} \quad (x \in \mathbb{R}).$$

• Ezért $\forall x \in \mathbb{R} \setminus \{0\} \colon f \in D\{x\},$ illetve $f \in D\{0\} \iff b(0) = j(0)$ és b'(0) = j'(0).

$$b(0) = e^b \operatorname{sh} 0 = 0 \quad \text{és} \quad j(0) = a \operatorname{arc} \operatorname{tg} 0 + b = b \qquad \Longrightarrow \qquad 0 = b.$$

$$b'(0) = ae^b \operatorname{sh} 0 + e^b \operatorname{ch} 0 = e^b \quad \text{és} \quad j'(0) = \frac{2a}{1+0} = 2a \qquad \Longrightarrow \qquad e^b = 2a.$$

$$0 = b, \quad e^b = 2a \qquad \Longrightarrow \qquad \underbrace{a = \frac{1}{2}, \ b = 0.}_{=====}$$

2. Keresse meg azt a maximális területű téglalapot amelynek egyik oldala az x tengelyen fekszik, és két csúcsa az

$$f(x) := 3 - \frac{x^2}{12} \qquad (-6 \le x \le 6)$$

y

T(x)

f(x)

 $f(x) := 3 - \frac{x^2}{12}$

függvény grafikonján helyezkedik el! (8 pont)

Megoldás:

• f nemnegatív és páros. Olyan téglalapokról van szó, amelyeknek két csúcsa az origóra szimmetrikusan fekszik az x tengelyen, és a másik két csúcsa f grafikonján van. A

$$T(x) := 2x \cdot f(x) = 2x \left(3 - \frac{x^2}{12}\right) \quad (0 \le x \le 6)$$

függvénynek keressük az abszolút maximumhelyét.

• A deriválási szabályok szerint $T \in D(0,6)$, és

$$T(x) = 6x - \frac{x^3}{6}$$
 \Longrightarrow $T'(x) = 6 - \frac{x^2}{2}$, $T''(x) = -x$ $(0 < x < 6)$.

- Szükséges feltétel: $T'(x) = 0 \iff 6 \frac{x^2}{2} = 0 \iff x = \sqrt{12}$
- Elégséges feltétel: $T''(\sqrt{12}) = -\sqrt{12} < 0 \implies T$ -nek lok. max. van az $x = \sqrt{12}$ -ban.
- $T(\sqrt{12}) = 4\sqrt{12} > 0$, T(0) = T(6) = 0, így T-nek abszolút maximuma van az $x = \sqrt{12}$ pontban. Tehát a maximális területű téglalap oldalainak hossza $2\sqrt{12}$ és 2.
- 3. L'Hospital-szabály segítségével számítsuk ki az alábbi határértékeket!

a)
$$\lim_{x \to 1+0} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$$
, (4 pont) b) $\lim_{x \to 0+0} x^{\frac{1}{\ln(2x)}}$. (4 pont)

Megold'as:

•

$$\lim_{x \to 1+0} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right) = \lim_{x \to 1+0} \frac{\ln x - x + 1}{(x-1) \ln x} = \left(\frac{0}{0} \right)^{\text{L'Hospital}} = \lim_{x \to 1+0} \frac{\frac{1}{x} - 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \frac{1}{x}} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x + (x-1) \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x - x + 1}{1 \cdot \ln x} = \lim_{x \to 1+0} \frac{\ln x -$$

•

$$= \lim_{x \to 1+0} \frac{1-x}{x \ln x + x - 1} = \left(\frac{0}{0}\right)^{\text{L'Hospital}} = \lim_{x \to 1+0} \frac{-1}{1 \cdot \ln x + x \cdot \frac{1}{x} + 1} = \frac{-1}{0+1+1} = \frac{1}{2}.$$

•

$$x^{\frac{1}{\ln 2x}} = \exp\left(\ln\left(x^{\frac{1}{\ln 2x}}\right)\right) = \exp\left(\frac{\ln x}{\ln 2x}\right).$$

•

$$\lim_{x\to 0+0}\frac{\ln x}{\ln 2x}=\left(\frac{-\infty}{-\infty}\right)^{\text{L'Hospital}}\lim_{x\to 0+0}\frac{\frac{1}{x}}{\frac{1}{2x}\cdot 2}=1.$$

• Az exp függvény folytonossága miatt

$$\lim_{x \to 0+0} x^{\frac{1}{\ln(2x)}} = \lim_{x \to 0+0} \exp\left(\frac{\ln x}{\ln 2x}\right) = \exp\left(\lim_{x \to 0+0} \frac{\ln x}{\ln 2x}\right) = \exp(1) = \underline{e}.$$

4. Teljes függvényvizsgálat végzése után vázolja az

$$f(x) := x \cdot e^{-\frac{x}{3}} \qquad (x \in \mathbb{R})$$

függvény grafikonját! (10 pont)

Megoldás:

• **Kezdeti vizsgálatok.** A függvény akárhányszor differenciálható, zérushelye: x=0. Előjelvizsgálat:

$$\begin{array}{c|cccc} & x < 0 & 0 & x > 0 \\ \hline f & - & 0 & + \end{array}$$

Monotonitás, lokális szélsőértékek.

$$f'(x) = 1 \cdot e^{-\frac{x}{3}} + xe^{-\frac{x}{3}} \left(-\frac{1}{3}\right) = \left(1 - \frac{x}{3}\right)e^{-\frac{x}{3}} \qquad (x \in \mathbf{R})$$

Így $f'(x) = 0 \iff x = 3$. A következő táblázat tartalmazza a derivált függvénnyel végzett előjelvizsgalatot és ennek következményeit.

	x < 3	3	x > 3
f'	+	0	_
f	 	$\frac{3}{e}$	↓ ↓
lok.		max	

• Konvexitás, inflexiós pontok.

$$f''(x) = \left(-\frac{1}{3}\right)e^{-\frac{x}{3}} + \left(1 - \frac{x}{3}\right)e^{-\frac{x}{3}}\left(-\frac{1}{3}\right) = \left(\frac{x}{9} - \frac{2}{3}\right)e^{-\frac{x}{3}} \qquad (x \in \mathbf{R})$$

Így $f''(x) = 0 \iff x = 6$. A következő táblázat tartalmazza a második derivált függvénnyel végzett előjelvizsgálatot és ennek következményeit.

	x < 6	6	x > 6
f''	_	0	+
f		$\frac{6}{e^2}$)
		infl.	

• Határértékek

$$\lim_{+\infty} f = \lim_{x \to +\infty} x e^{-\frac{x}{3}} = \lim_{x \to +\infty} \frac{x}{e^{\frac{x}{3}}} = \left(\frac{+\infty}{+\infty}\right)^{\text{L'Hospital}} \lim_{x \to +\infty} \frac{1}{\frac{1}{3}e^{\frac{x}{3}}} = \lim_{x \to +\infty} \frac{3}{e^{\frac{x}{3}}} = \frac{3}{+\infty} = 0,$$

$$\lim_{-\infty} f = \lim_{x \to -\infty} x e^{-\frac{x}{3}} = (-\infty) \cdot (+\infty) = -\infty.$$

• Aszimptoták. A $(+\infty)$ -ben

$$\lim_{x \to +\infty} f(x) = 0 \qquad \Longrightarrow \qquad y = 0 \text{ aszimptota}$$

A
$$(-\infty)$$
-ben

$$A = \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} e^{-\frac{x}{3}} = +\infty \qquad \implies \qquad \text{nincs aszimptota}.$$

Ábrázolás.

5. Írja fel az alábbi függvény 0 pont körüli másodfokú Taylor-polinomját, és adjon becslést a közelítés hibájára a $[0, \frac{1}{3}]$ intervallumon!

$$f(x) := \sqrt[3]{1+3x}$$
 $\left(x > -\frac{1}{3}\right)$.

(7 pont)

Megoldás:

- A függvény akárhányszor deriválható, és minden $x>-\frac{1}{3}$ pontban

$$f(x) = (1+3x)^{1/3} \qquad \Longrightarrow \qquad f(0) = 1,$$

$$f'(x) = \frac{1}{3}(1+3x)^{-2/3} \cdot 3 = (1+3x)^{-2/3} \qquad \Longrightarrow \qquad f'(0) = 1,$$

$$f''(x) = -\frac{2}{3}(1+3x)^{-5/3} \cdot 3 = -2(1+3x)^{-5/3} \qquad \Longrightarrow \qquad f''(0) = -2.$$

• A keresett Taylor-polinom:

$$T_{2,0}f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 = 1 + x - x^2$$
 $(x \in \mathbb{R}).$

• A hibabecsléshez a Taylor-formulát alkalmazzuk a Lagrange-féle maradéktaggal. Ekkor minden $0 < x \le \frac{1}{3}$ értékhez van olyan $0 < \xi < x$ szám, hogy

$$f(x) - T_{2,0}f(x) = \frac{f'''(\xi)}{3!}x^3.$$

Másrészt

$$f'''(x) = \frac{10}{3}(1+3x)^{-8/3} \cdot 3 = \frac{10}{\sqrt[3]{(1+3x)^8}}.$$

Ekkor

$$\left|f'''(\xi)\right| = \frac{10}{\sqrt[3]{(1+3\xi)^8}} \le \frac{10}{\sqrt[3]{(1+3\cdot 0)^8}} = 10.$$

• Így

$$|f(x) - T_{2,0}f(x)| = \frac{|f'''(\xi)|}{6}|x|^3 \le \frac{10}{6} \cdot \left|\frac{1}{3}\right|^3 = \frac{5}{81} \approx 0,0617.$$