GM71C1000

1048576 WORDS x 1 BIT CMOS DYNAMIC RAM

Description

The GM71C1000 is the new generation dynamic RAM organized 1048576 x 1 Bit. GM71C1000 has realized higher density, higher performance and various functions by utilizing advanced CMOS process technology. The GM71C1000 offers Fast Page Mode as a high speed access Mode. Multiplexed address inputs permit the GM71C1000 to be packaged in a standard 18 pin DIP, 20 SOJ and ZIP. The package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of 5V \pm 10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL

Features

- 1,048,576 x 1 Bit organization
- Fast access time and cycle time: 80/100/120 (Max)
- Single Power Supply of 5V ± 10% with a built-in VBR generator

		GM7	GM71C1000(ns)				
	PARAMETER	-80	-10	-12			
TRAC	RAS Access Time	80	100	120			
t _{AA}	Column Address Access Time	40	45	55			
tCAC	CAS Access Time	25	25	30			
tRC	Cycle Time	160	190	220			
tpc	Fast Page Mode Cycle Time	55	55	65			

Low Power

385mW MAX. Operating (GM71C1000-80)

330mW MAX. Operating (GM71C1000-10) 275mW MAX. Operating (GM71C1000-12)

11mW MAX. Standby

- Read-Modify-Write, RAS-only refresh, CAS Before
 RAS Refresh and Fast page Mode Capability
- All input and output TTL compatible
- •512 refresh cycle/8ms
- Industry standard 18 pin Plastic DIP/20(26) SOJ/20 ZIP

Pin Configuration

18 PLASTIC DIP (TOP VIEW)

20(26) Lead SOJ Package

20 Lead Plastic ZIP

CAS VSS WE NO NO A1 A3 A4 A6 A8

Pin Description

Ao ~ Ae	Address Inputs	
RAS	Row Address Strobe	
CAS	Column Address Strobe	
WE	Write Enable	
Dour	Data Output	
DiN	Data Input	
V∞	+5V Supply	_
V _{SS}	0V Supply	
TF ^{*1}	Test Function	

Recommended Operating Conditions

$(T_A = 0^{\circ}C \text{ to } 70^{\circ}C)$	
VCC Supply Voltage	4.5 ~ 5.5V
VIH Input High Voltage	2.4 ~ 6.5V
VIL Input Low Voltage	-2.0 ~ 0.8V

Note) *1. TF pin can be connected with any line or unconnected provided the voltage level of TF pin must be kept lower than V_{CC} +0.5V.

Ordering Information

Type NO.	Access Time	PKG
GM71C1000-80	80 ns	300 MIL
GM71C1000-10	100 ns	18 PIN
GM71C1000-12	120 ns	PLASTIC DIP
GM71C1000SJ-80	80 ns	300 MIL
GM71C1000SJ-10	100 ns	26 (20) PIN
GM71C1000SJ-12	120 ns	PLASTIC SOJ
GM71C1000Z-80	80 ns	400 MIL
GM71C1000Z-10	100 ns	20 PIN
GM71C1000Z-12	120 ns	PLASTIC ZIP

Absolute Maximum Ratings*

Ambient Temperature Under Bias	0°C to 70°C
Storage Temperature (plastic)	-55°C to 125°C
Voltage on any Pin Except VCC Relative to VSS	-1.0V to 7.0V
Voltage on VCC relative to VSS	-1.0V to $+7.0V$
Data Output Current	50mA
Power Dissipation	1.0W

Note: Operation at or above Absolute Maximum Ratings can adversely affect device reliability.

100

DC Electrical Characteristics : (V_{CC} = 5V $\pm 10\%$, T_A = 0 $^{\sim}$ 70°C)

SYMBOL	PARAMETER	MIN	MAX	UNIT	NOTES	
VoH	Output Level Output "H" Level Voltage (I _{OUT} = -5mA)	2.4	-	٧		
Vol	Output Level Output "L" Level Voltage (I _{OUT} = 4.2mA)					
lcc1	Operating Current Average Power Supply Operating Current (RAS, CAS, Address Cycling: tac = tac MIN)	Power Supply Operating Current 100		70 60 50	mA	1, 2
lcc2	Standby Current (TTL) Power Supply Standby Current (RAS = CAS = V _{IH} ; Dout = High-Z)		-	2	mA	
lcc3	RAS Only Refresh Current	80		60	mA	2
	Average Power Supply Current (t _{RC} = t _{RC} MIN)	100	-	50		
		120		45		
lcc4	Fast Page Mode Current Average Power Supply Current	80		50	mA	
		100	-	50		1, 3
	Fast Page Mode (RAS=V _{IL} , CAS, Address Cycling: t _{PC} =t _{PC} MIN)			40	<u> </u>	
lccs	Standby Current (CMOS) Power Supply Standby Current (RAS = CAS = V _{CC} -0.2V), D _{OUT} = High-Z		-	1	mA	
Icca	CAS before RAS Refresh Current (tRC = Min)			60	mA	
			ļ	50		
		12	ļ	40	ļ	
Icc7	Standby Current RAS = VIH	80 10		5	- mA	
	CAS = V _{IL} D _{OUT} = Enable		 	5	- ""	ļ
l _{1(L)}	Input Leakage Current Any Input (0V ≤ V _{IN} ≤ 7V)	,	-10	10	μА	
lo(L)	Output Leakage Current (Dout is Disabled, 0V ≤ Vout ≤ 7V)		-10	10	μΑ	

Note) *1. Icc depends on output loading condition when the device is selected. Icc max is specified at the output open condition.

*2. Address can be changed less than three times while $\overline{RAS} = V_{IL}$

*3. Address can be changed once or less while CAS = ViH.

Capacitance (Vcc = 5V \pm 10%, f = 1MHz, TA = 0 $^{\sim}$ 70°C)

SYMBOL	PARAMETER	MIN	MAX	UNIT	NOTE
Cl ₁	Input Capacitance (Address, Data Input)	-	5	pF	1
Cl ₂	Input Capacitance (Clocks)	•	5	pF	1
Co	Output Capacitance (D _{OUT})	-	7	pF	1, 2

* Note 1. Capacitance is sampled and not 100% tested.

2. CAS = ViH to disable Dout.

Electrical Characteristics And Recommended AC Operating Conditions (Vcc=5V \pm 10%, Ta=0 $^{\sim}$ 70°C) (Note 5, 6, 7)

CVARCI		GM71C1000-80		GM71C1000-10		GM71C1000-12			NOTEC
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNII	NOTES
tRC	Random Read/Write Cycle Time	160	-	190	-	220	-	ns	
trwc	Read-Modify-Write Cycle Time	190	-	220	-	255		ns	
tPC	Fast Page Mode Cycle Time	55	-	55	-	65	•	ns	
t _{PCM}	Fast Page Mode Read-Modify- Write Cycle Time	85	-	85	•	100	-	ns	
trac	Access Time from RAS	-	80	-	100	•	120	ns	2, 3
tCAC	Access Time from CAS	-	25	-	25	•	30	ns	3, 4
taa	Access Time from Column Address	-	40	-	45	•	55	ns	3, 5
toff	Output Buffer Turn-off Delay	0	20	0	25	0	30	ns	9
t⊤	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	7
t _{RP}	RAS Precharge Time	70	•	80	-	90	•	ns	
tras	RAS Pulse Width	80	10000	100	10000	120	10000	ns	
trasc	RAS Pulse Width (Fast Page Mode)	-	10000	-	10000	•	10000	ns	13
t _{RSH}	RAS Hold Time (Read or Write Cycle)	25	-	25	-	30	-	ns	
tcsH	CAS Hold Time	80	-	100	-	120	•	ns	
tCAS	CAS Pulse Width	25	10000	25	10000	30	10000	ns	
tRCD	RAS to CAS Delay Time	22	55	25	75	25	90	ns	8
tRAD	RAS to Column Address Delay Time	17	40	20	55	20	65	ns	9
tcre	CAS to RAS Precharge Time	10	-	10	-	10	-	ns	
top	CAS Precharge Time (Fast Page Mode)	10	-	10	-	15	•	ns	
tasa	Row Address Set-up Time	0	•	0	-	0	-	ns	
trah	Row Address Hold Time	12	•	15	-	15	-	ns	
tasc	Column Address Set-up Time	0	•	0	•	0	•	ns	
tcah	Column Address Hold Time	20	-	20	-	25	•	ns	
traL	Column Address to RAS Lead Time	40	-	45	-	55	-	ns	
trcs	Read Command Set-Up Time	0	-	0	-	0	•	ns	10
trich	Read Command Hold Time to CAS	0	-	0	-	0	-	ns	10
t _{RRH}	Read Command Hold Time Referenced to RAS	10	-	10	•	10	-	ns	10

 $(V_{CC} = 5V \pm 10\%, T_A = 0 \sim 70^{\circ}C)$ Unit : nS (Note 5. 6. 7)

SYMBOL	PARAMETER	GM71C1000-85		GM71C1000-10		GM71C1000-12		Ī	
		MIN	MAX	MIN	MAX	MIN	MAX	UNII	NOTES
twch	Write Command Hold Time	20	-	20	-	25	-	ns	
twp	Write Command Pulse Width	15	-	15	-	20	-	ns	
trwL	Write Command to RAS Lead Time	25	-	25	•	30	-	ns	
tcwL	Write Command to CAS Lead Time	25	-	25	•	30	•	ns	
tos	Data Set-Up Time	0	-	0	-	0	-	ns	11
tDH	Data Hold Time	20	-	20	-	25	-	ns	11
tref	Refresh Period (512 cycle)	•	8	-	8	-	8	ns	
twcs	Write Command Set-Up Time	0	-	0	-	0	-	ns	10
tcwp	<u>CAS</u> to Write Delay Time	25	-	25	-	30	-	ms	10
tRWD	RAS to Write Delay Time	80	-	100	•	120	-	ns	10
tawd	Column Address to Write Delay	40	-	45	-	155	-	ns	10
TRPC	RAS to CAS Precharge Time	10	•	10	-	10	-	ns	
tchr	CAS Hold Time CAS Before RAS Refresh	20	•	20	•	25	-	ns	
t _{CSR}	CAS to Setup Time (CAS Before RAS Refresh)	10	•	10	-	10	•	ns	
tacp	Access Time from CAS precharge	-	50	-	50	-	60	ns	14
TRHCP	RAS Hold Time from CAS precharge	50	-	50	•	60	•	ns	

Notes

- *1. AC measurements assume ty = 5ns.
- Assumes that TRCD 🗲 TRCD (max) and TRAD 🗲 TRAD (max). If TRCD or TRAD is greater than the maximum recommended value shown in this table, TRAC exceeds the value shown
- Measured with a load circuit equivalent to 2TL loads and 100pF. Assumes that $\text{tRCD} \geq \text{tRCD}$ (max), $\text{tRAD} \leq \text{tRAD}$ (max). Assumes that $\text{tRCD} \leq \text{tRCD}$ (max) and $\text{tRAD} \geq \text{tRAD}$ (max).
- *6. ***OFF (max) is defined as the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
 *7. Transition times are measured between VIH and VIL.
- *8. Operation with the TRCD (max) limit insures that TRAC (max) can be met, TRCD (max) is specified as a reference point only, if TRCD is greater than the psecified TRCD (max) limit, then access time is controlled exclusively by TCAC.
- *9. Operation with the TRAD (max) limit insures that TRAC (max) can be met, TRAD (max) is specified as a reference point only, if TRAD is greater than the specified TRAD (max) limit, then access time is controlled exclusively by TAA.
- *10. twos, trwo, towo and tawo are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if twos \leq twos (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle: if trwo \leq trwo (min), tcwo \leq tcwo (min) and tawo \leq tawo (min), the cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- *11. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or read-modify-write cycles.
- *12. An initial pause of 100 µs is required after power-up followed by eight or more initialization cycles (any combination of cycles containing RAS clock such as RAS-only refresh). If internal refresh counter is used, eight or more CAS-before-RAS refresh cycles are required.

 13. TRASC is determined by RAS pulse width in fast page mode cycle.
- *14. Access time is determined by the longer of tAA, tCAC or tACP.

FIGURE 1. READ CYCLE

FIGURE 2. EARLY WRITE CYCLE

FIGURE 3. READ-MODIFY-WRITE CYCLE

FIGURE 4. FAST PAGE MODE READ CYCLE

FIGURE 5. FAST PAGE MODE WRITE CYCLE (EARLY WRITE)

FIGURE 6. FAST PAGE MODE READ-MODIFY-WRITE CYCLE

FIGURE 7. RAS ONLY REFRESH CYCLE

FIGURE 8. CAS BEFORE RAS REFRESH CYCLE

110

