Contents

1	Problem 1 : Introduction			
	1.1	Description	4	
	1.2	Domain	4	
	1.3	Co-Domain	4	
	1.4	Characteristics	4	
	1.5	Context of Use Model	,	
2	Problem 2 : Requirements		4	

1 Problem 1: Introduction

1.1 Description

F5: ab^x is an exponential function, where a is a constant value, $a \neq 0$ and it also represents starting (initial) value, b is called base and is a positive real number and $b \neq 1$, x is called the exponent (power), it is independent variable. In this function, b is a constant value, whereas x is variable.

1.2 Domain

The domain for exponential function is the set of real numbers. $x \in R$, $-\infty < x < \infty$, Domain : $\{x \mid x \in R\}$

1.3 Co-Domain

Co-Domain is the set of all possible function output values. Suppose $y = f(x) = ab^x$, then $-\infty < y < \infty$, so the range will be $[-\infty, \infty]$.

1.4 Characteristics

- In exponential function, if b > 0, then it is known as exponential growth function (increasing function). Its graphical representation shown in the left part of the figure 1.
- In exponential function, if 0 < b < 1, then it is known as exponential decay function (decreasing function). Its graphical representation shown in the right part of the figure 1.
- Exponential function have horizontal asymptote (i.e function approaches to a imaginary horizontal line but never crosses) at Y = 0 (i.e X axis).
- They are continuous function.
- There is no symmetry in exponential function, so they are neither odd nor even function.
- Exponential function is not injective but is surjective.

Exponential function

Figure 1: Exponential Function Graph (Growth And Decay).

1.5 Context of Use Model

Figure 2: Exponential Function Graph (Growth And Decay).

2 Problem 2: Requirements

- 1. Requirement 1
 - **ID** : R1
 - **Version** : 1.0
 - Type : Functional Requirement
 - **Priority** : High
 - Difficulty : Easy
 - **Description**: In the exponential function ab^x , the input value a should be greater than 0 i.e., a > 0 (or else it will result in output of the function to be 0 for every input), also input value of base b must be greater than 1 i.e., b > 1 (or else if b = 1, it will result in output of the function to be 'a' for every input of x).
- 2. Requirement 2
 - **ID** : R2
 - **Version** : 1.0
 - Type: Functional Requirement
 - Priority: High
 - Difficulty : Easy
 - **Description**: In the exponential function ab^x , the input value of base b must not be negative as it will result will be complex numbers so b > 0.
- 3. Requirement 3
 - ID : R3
 - **Version** : 1.0
 - Type: Functional Requirement
 - Priority: High
 - Difficulty : Easy
 - **Description**: In the exponential function ab^x , the input value of x must be any real number. i.e $x \in R$.

4. Requirement 4

- **ID** : R4
- **Version** : 1.0
- Type: Functional Requirement
- Priority: High
- **Difficulty**: Medium
- **Description**: The system must take input values of a, b and x from the users and return the output of ab^x function. For example, if a = 2, b = 3, x = 2, the output should be 18.

5. Requirement 5

- **ID** : R5
- **Version** : 1.0
- Type: Functional Requirement
- Priority : High
- Difficulty : Easy
- **Description**: If any of the input values a, b or x are not provided by the user, the system should not accept that input and ask user to provide the missing values.

6. Requirement 6

- **ID** : R6
- **Version** : 1.0
- Type: Functional Requirement
- Priority: High
- Difficulty : Easy
- **Description**: If the input values are not of integer type, the system must not accept it and handle the error and ask for integer values as input.

7. Requirement 7

• **ID** : R7

• **Version** : 1.0

 \bullet $\mathbf{Type}:$ Functional Requirement

Priority : Medium Difficulty : Easy

• **Description**: If the user enters any large input value which the system cannot handle, it should throw an exception and handle it accordingly.