Dipole equations

 μ : the permeability of free space $\mu = 4\pi 10^{-7}$

 \vec{p} : the 3d point in space to measure the field at

 \vec{h} : a 3d point in space that represents the center of a permanent magnet

 \vec{g} : a 3d vector pointing from \vec{h} to \vec{p} (from the magnet to the point in space to measure the field)

$$\vec{g} = \vec{p} - \vec{h}$$

d: the distance between \vec{p} and \vec{h} $d = ||g||_2$

L : the side length of the cube magnet

 \vec{r} : the unit direction vector pointing in the direction of the magnet's north pole

(bRem): ? mystery number related to the strength of the magnet

 \vec{m} : the dipole moment of the magnet

$$\vec{m} = \frac{\vec{r}L^3(bRem)}{\mu}$$

 $\vec{B}(\vec{h},\vec{p})$: the field stength at the point \vec{p} from the magnet at point \vec{h}

$$\vec{B}(\vec{h},\vec{p}) = \frac{\mu}{4\pi} [\frac{3\vec{g}(\vec{m}\cdot\vec{g})}{d^5} - \frac{\vec{m}}{d^3}]$$

if there are several magnets at different points h_1, h_2, \dots, h_n , assuming they are all the same size with the same field strength, the total field strength at point \vec{p} is

$$\vec{B}_{total}(\vec{p}) = \sum_{i=1}^{n} \vec{B}(\vec{h}_i, \vec{p})$$

for a set of points in space $P = \{p_1, p_2, \cdots, p_m\}$, and field strengths $S = \{\vec{B}_{total}(p_1), \vec{B}_{total}(p_2), \cdots, \vec{B}_{total}(p_m)\} = \{\vec{s}_1, \vec{s}_2, \cdots, \vec{s}_m\}$ and the scalar values of S are $||S|| = \{||\vec{s}_1||_2, ||\vec{s}_2||_2, \cdots, ||\vec{s}_m||_2\}$ the homogeneity of the field is defined as

$$W = 10^{6} \frac{max(||S||) - min(||S||)}{mean(||S||)}$$