Quiz 5

Chemistry 3BB3; Winter 2006

1.	Write the electronic Schrödinger equation for the hydrogen molecule cation, H_2^+ , in Sunits, showing the dependence on \hbar , e , m_e , etc		
2,3.		electronic energy of the hydrogis the ground state wave function	
4,5.	<u> </u>	electronic energy of the hydrog That is the ground state wave fo	
6-10.		able by filling in the appropria	te properties for the molecular
M - 1	ground states.	Dand Onder	N/14:1: -:4
H ₂	ecuie	Bond Order	Multiplicity
He ₂			
Li ₂			
Be ₂			
B ₂			
C_2			
N_2			
O_2			
F_2			

Ne₂

Quiz 5

Chemistry 3BB3; Winter 2006

1. Write the electronic Schrödinger equation for the hydrogen molecule cation, $\mathbf{H_2}^+$, in SI units, showing the dependence on \hbar , \mathbf{e} , m_e , etc..

$$\left(-\frac{\hbar^2}{2m_e}\nabla^2-\frac{e^2}{4\pi\varepsilon_0r_l}--\frac{e^2}{4\pi\varepsilon_0r_r}\right)\!\psi \;\; r_l,r_r,\phi \;\; =E\psi \;\; r_l,r_r,\phi$$

where r_i and r_r are the distances from the "left" and "right" nuclei, respectively

2,3. What is the ground state electronic energy of the hydrogen molecule cation, H₂⁺, in the united atom limit? What is the ground state wave function? (You can use atomic units in this problem.)

$$E_{\scriptscriptstyle u.a.} = -\frac{2^2}{2} = -2$$
 Hartree $\psi_{\scriptscriptstyle u.a.} \propto e^{-2r}$

4,5. What is the ground state electronic energy of the hydrogen molecule cation, H₂⁺, in the separated atom limit? What is the ground state wave function? (You can use atomic units in this problem.)

$$\begin{split} E_{sep.a.} &= -.5 \text{ Hartree} \\ \psi_{\text{sep.a.}} &\propto c e^{-\textit{n}} \pm \sqrt{1 - |c|^2} e^{-\textit{r}_{\text{r}}} \end{split}$$

where r_l and r_r are the distances from the "left" and

"right" nuclei, respectively.

6-10. Complete the following table by filling in the appropriate properties for the molecular ground states.

Molecule	Bond Order	Multiplicity	
H_2	1	1	
He ₂	0	1	
Li ₂	1	1	
Be ₂	0	1	
B_2	1	3	
C_2	2	1	
N_2	3	1	
O_2	2	3	
F ₂	1	1	
Ne ₂	0	1	