AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. Canceled
- 2. (Currently Amended) The composition as claimed in claim ± 4 , wherein the R radical of the formula (I) of the inhibitor γ .2 is a cyclic alkylene or an arylene radical.
- 3. (Currently Amended) The composition as claimed in claim ± 4 , wherein the R¹, R², R³, R⁴, R^{1'}, R^{2'} and R^{3'} radicals of the formulae (I) and (II) of the inhibitor γ .2 are cyclic alkylenes, arylenes or alkylarylenes.
- 4. (Currently Amended) An adhesive silicone elastomer composition which can be crosslinked under hot conditions by polyaddition (hydrosilylation), this composition being of the type of those comprising:
- α/ at least one PolyOrganoSiloxane (POS) carrying ethylenic and/or acetylenic unsaturation(s) {POS comprising ≡Si-[unsaturation] units};
- ♦ β / at least one polyorganosiloxane (POS) carrying ≡Si-H units;
- γ / a catalytic combination comprising:
 - ~ γ.1 at least one metal catalyst

- ~ γ.2 and at least one crosslinking inhibitor;
- ♦ δ/ a filler;
- ε/ at least one adhesion promoter;
- ρ/ at least one POS resin;
- ♦ \(\lambda \) at least one agent for stability toward heat;
- φ/ optionally at least one other functional additive;
 said composition being a single-component composition wherein the crosslinking
 inhibitor γ.2 is selected from the group of compounds of following formula (I) or (II):

$$R^{1}O$$
 $P-R-P$
 OR^{4}
(I)

in which:

R, R¹, R², R³, R⁴, R¹, R² and R³, which are <u>is</u> identical or different, represent represents a linear, branched or cyclic alkylene radical or a substituted or unsubstituted arylene radical, in particular:

 a linear or branched alkylene radical having in particular from 2 to 30 carbon atoms (C),

- ii. an alkylene radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 4 to 14 C, or
- iii. an arylene or alkylarylene radical comprising one or more fused or nonfused aromatic rings, in particular 1 or 2 rings, it being possible for a ring to comprise from 4 to 14 C, optionally substituted by 1 or more, in particular from 1 to 2, linear or branched alkylene(s) having in particular from 1 to 12 C and wherein:
- R1, R2, R3, R4, R1', R2' and R3', which are identical or different represent a linear alkyl radical or a substituted aryl radical in particular:
- i. a linear or branched alkyl radical having in particular from 2 to 30 carbon atoms (C),
- ii. an alkyl radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 4 to 14 C, or
- iii. an aryl or alkylarylene radical comprising one or more fused or nonfused

 aromatic rings, in particular 1 or 2 rings, it being possible for a ring to

 comprise from 4 to 14 C, optionally substituted by 1 or more, in particular from

 1 to 2, linear or branched alkyl(s) having in particular from 1 to 12 C

wherein the inhibitor γ .2 corresponds to either of the following formulae (III) or (IV):

$$R^5$$
 R^5
 R^5
 R^5
 R^5
 R^7
 R^7

in which the ${
m R}^5$ radicals, which are identical or different, are linear or branched alkyls having in particular from 1 to 12 C.

5. (Currently Amended) The composition as claimed in claim ± 4 , wherein the inhibitor γ .2 corresponds to the formula (V) or (VI):

- 6. (Currently Amended) The composition as claimed in claim ± 4 , wherein the catalyst γ .1 is a platinum catalyst.
- 7. (Currently Amended) The composition as claimed in claim ± 4 , wherein the phosphorus of γ -2/platinum of γ -1 ratio by weight is such that:
- P/Pt ≥ 1.

- 8. (Previously Presented) The catalytic composition as claimed in claim
 6, wherein the catalyst γ.1 is a platinum/unsaturated siloxane complex.
- 9. (Currently Amended) An adhesive silicone elastomer composition which can be crosslinked under hot conditions by polyaddition (hydrosilylation), this composition being of the type of those comprising:
- α/ at least one PolyOrganoSiloxane (POS) carrying ethylenic and/or acetylenic unsaturation(s) {POS comprising ≡Si-[unsaturation] units};
- ♦ β/ at least one polyorganosiloxane (POS) carrying ≡Si-H units;
- γ/ a catalytic combination comprising:
 - ~ γ.1 at least one metal catalyst
 - ~ γ.2 and at least one crosslinking inhibitor;
- δ/ a filler;
- ε/ at least one adhesion promoter;
- ρ/ at least one POS resin;
- λ/ at least one agent for stability toward heat;
- φ/ optionally at least one other functional additive;
 said composition being a single-component composition wherein the crosslinking
 inhibitor γ.2 is selected from the group of compounds of following formula (I) or (II):

$$R^{1}O$$
 $P-R-P$ OR^{3} OR^{4}

$$R^{1'}O$$
, $P-OR^{3'}$

in which:

R, R¹, R², R³, R⁴, R¹, R² and R³, which are <u>is</u> identical or different, represent represents a linear, branched or cyclic alkylene radical or a substituted or unsubstituted arylene radical, in particular:

- a linear or branched alkylene radical having in particular from 2 to 30 carbon atoms (C),
- ii. an alkylene radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 4 to 14 C, or
- iii. an arylene or alkylarylene radical comprising one or more fused or nonfused aromatic rings, in particular 1 or 2 rings, it being possible for a ring to comprise from 4 to 14 C, optionally substituted by 1 or more, in particular from 1 to 2, linear or branched alkylene(s) having in particular from 1 to 12 C and wherein:

R1, R2, R3, R4, R1', R2' and R3', which are identical or different represent a linear alkyl radical or a substituted aryl radical in particular:

- i. a linear or branched alkyl radical having in particular from 2 to 30 carbon atoms (C),
- ii. an alkyl radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 4 to 14 C, or

iii. an aryl or alkylarylene radical comprising one or more fused or nonfused

aromatic rings, in particular 1 or 2 rings, it being possible for a ring to

comprise from 4 to 14 C, optionally substituted by 1 or more, in particular from

1 to 2, linear or branched alkyl(s) having in particular from 1 to 12 C

wherein the catalyst γ.1 is a platinum/unsaturated siloxane complex,

wherein the catalytic combination γ comprises the following chemical entity (I'):

$$R^{10}$$
 OR^3 Si Pt P P P Pt Si R^{20} OR^4 Si Si (I^4)

in which:

R, R¹, R², R³, R⁴, R¹, R² and R³, which are <u>is</u> identical or different, represent represents a linear, branched or cyclic alkylene radical or a substituted or unsubstituted arylene radical, in particular:

- i. a linear or branched alkylene radical having in particular from 2 to 30 carbon atoms (C),
- ii. an alkylene radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 4 to 14 C, or
- iii. an arylene or alkylarylene radical comprising one or more fused or nonfused aromatic rings, in particular 1 or 2 rings, it being possible for a ring to comprise from 4 to 14 C, optionally substituted by 1 or more, in particular from 1 to 2, linear or

branched alkylene(s) having in particular from 1 to 12 C and wherein:

- R1, R2, R3, R4, R1', R2' and R3', which are identical or different represent a linear alkyl radical or a substituted aryl radical in particular:
- i. a linear or branched alkyl radical having in particular from 2 to 30 carbon atoms (C),
- ii. an alkyl radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 4 to 14 C, or
- <u>aromatic rings, in particular 1 or 2 rings, it being possible for a ring to</u>

 <u>comprise from 4 to 14 C, optionally substituted by 1 or more, in particular from 1 to 2, linear or branched alkyl(s) having in particular from 1 to 12 C.</u>
- 10. (Previously Presented) The composition as claimed in claim 9, wherein the catalytic combination γ comprises the following chemical entity (III'):

in which the R⁵ radicals, which are identical or different, preferably identical, are linear or branched alkyls having in particular from 1 to 12 C.

11. (Previously Presented) The composition as claimed in claim 10, wherein the catalytic combination γ comprises the following chemical entity (V'):

- 12. (Currently Amended) The composition as claimed in claim 4 4, wherein:
- the α POS or POSs comprise siloxyl units

$$R^6_nSiO_{4-n/2}$$

and siloxyl units of formula:

$$Z_xR^6_vSiO_{4-x-v/2}$$

• the β POS or POSs comprise siloxyl units

$$R^6 nSiO_{4-n/2}$$

and siloxyl units of formula:

in which formulae the various symbols have the following meaning:

- ⇒ the R⁶ symbols, which are identical or different, each represent a nonhydrolyzable group of hydrocarbon nature, it being possible for this radical to be:
 - * an alkyl radical having from 1 to 5 carbon atoms which can comprise from 1 to 6 chlorine atoms,
 - cycloalkyl radicals having from 3 to 8 carbon atoms which can
 comprise from 1 to 4 chlorine atoms,
 - * aryl or alkylaryl radicals having from 6 to 8 carbon atoms which can comprise from 1 to 4 chlorine atoms,
 - * cyanoalkyl radicals having from 3 to 4 carbon atoms; methyl, ethyl, propyl, isopropyl, butyl, isobutyl, n-pentyl, t-butyl, chloromethyl, dichloromethyl, α-chloroethyl, α,β-dichloroethyl, β-cyanoethyl, γ-cyanopropyl, phenyl, p-chlorophenyl, m-chlorophenyl, 3,5-dichlorophenyl, trichlorophenyl, tetrachlorophenyl, o-, p- or m-tolyl, and xylyl,
- \Rightarrow the Z symbols represent a C_2 - C_6 alkenyl group;
- \Rightarrow n = an integer equal to 0, 1, 2 or 3;
- \Rightarrow x = an integer equal to 0, 1, 2 or 3;
- \Rightarrow y = an integer equal to 0, 1 or 2;
- \Rightarrow the sum x + y lies within the range from 1 to 3,
- \Rightarrow w = an integer equal to 0, 1, 2 or 3.
- 13. (Previously Presented) The composition as claimed in claim 12,comprising:

- α/ at least one POS exhibiting, per molecule, at least two C₂-C₆ alkenyl groups bonded to silicon;
- β/ at least one POS exhibiting, per molecule, at least two hydrogen atoms bonded to silicon;
- γ/ a catalytic combination as defined in claim 12;
- ε/ an adhesion promoter,
- δ/ an inorganic and/or microsphere and/or hollow and/or expanded and/or expandable inorganic filler;
- ρ/ optionally at least one POS resin carrying T and/or Q, optionally M and/or
 D, siloxyl units and alkenyl-comprising siloxyl units,
- λ / optionally at least one colorant;
- φ/ optionally at least one other functional additive.
- 14. (Previously Presented) The composition as claimed in claim 12 which is an RTV composition wherein its POS α and/or ρ constituent(s) is(are) chosen from alkenylsilyl POSs having a viscosity η at 25 °C such that:

$$200 \le \eta \le 200\ 000\ mPa\cdot s$$
.

- 15. (Currently Amended) A process for the preparation of the composition as claimed in claim $\pm \underline{4}$: comprising preparing the catalytic combination γ :
 - either by mixing the inhibitor $\gamma.2$ with a solution/dispersion of catalyst $\gamma.1$,

- or by mixing the catalyst γ.1 in a dispersion of the inhibitor γ.2 in a silicone oil,
- > and further comprising:
 - a) first of all mixing a portion of the constituents, with the exception of the catalytic combination γ;
 - b) heating, optionally under vacuum;
 - c) cooling;
 - d) and then adding the remainder of the constituents, except for the catalytic combination γ , with stirring to the premix thus obtained and, finally, adding the catalytic combination γ .
 - 16. 17. (Cancelled)
- 18. (Currently Amended) A method for adhesively assembling at least two elements comprising coating at least one of the elements to be assembled with a layer of an adhesive composition as claimed in claim + 4, applying said elements against one another with said layer therebetween, and crosslinking said adhesive composition.
- 19. (Currently Amended) A method for adhesively assembling at least two elements consisting essentially of coating at least one of the elements to be assembled with a layer of an adhesive composition as claimed in claim ± 4 , applying said elements against one another with said layer therebetween, and crosslinking said adhesive composition.

- 20. (Previously Presented) The method according to claim 18, wherein the crosslinking is carried out by heating.
- 21. (Previously Presented) The method according to claim 18, wherein the elements to be assembled are two in number.
- 22. (Previously Presented) The method according to claim 18, wherein one of the elements to be assembled is a woven, knitted or nonwoven fibrous material.
- 23. (Currently Amended) The composition as claimed in claim 4 4, wherein R, R1, R2, R3, R4, R1', R2' and R3', represent:

R is identical or different, represents a linear, branched or cyclic alkylene radical or a substituted or unsubstituted arylene radical, in particular:

- i. a linear or branched alkylene radical having in particular from 2 to 12 carbon atoms (C),
- ii. an alkylene radical comprising one or more rings, in particular 1 or 2, it being possible for a ring to have in particular from 5 to 8 C, or
- an arylene or alkylarylene radical comprising one or more fused or nonfused aromatic rings, in particular 1 or 2 rings, it being possible for a ring to comprise from 6 to 8 C, optionally substituted by 1 or more, in particular from 1 to 2, linear or branched alkylene(s) having in particular from 4 to 12 C and wherein:

R1, R2, R3, R4, R1', R2' and R3', which are identical or different represent a linear

alkyl radical or a substituted or unsubstituted aryl radical in particular:

- i. a linear or branched alkylene alkyl radical having 2 to 12 C,
- ii. an alkylene alkyl radical comprising one or more rings, in particular 1 or 2, wherein the rings have 5 to 8 C, or
- iii. an alkylene alkyl or alkylarylene radical comprising one or more fused or nonfused aromatic rings, in particular 1 or 2 rings, comprising from 6 to 8 C, optionally substituted by 1 or more, in particular from 1 to 2, linear or branched alkylene(s) alkyl(s) having in particular from 4 to 12 C.