VIP Cheatsheet: First-order ODE

Shervine Amidi

June 2, 2018

Introduction

 \Box Differential Equations – A differential equation is an equation containing derivatives of a dependent variable y with respect to independent variables x. In particular,

- Ordinary Differential Equations (ODE) are differential equations having one independent variable.
- Partial Differential Equations (PDE) are differential equations having two or more independent variables.

 \square Order - An ODE is said to be of order n if the highest derivative of the unknown function in the equation is the n^{th} derivative with respect to the independent variable.

 \square Linearity – An ODE is said to be linear only if the function y and all of its derivatives appear by themselves. Thus, it is of the form:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y + b(x) = 0$$

Direction Field Method

□ Implicit form – The implicit form of an ODE is where y' is not separated from the remaining terms of the ODE. It is of the form:

$$F(x,y,y') = 0$$

Remark: Sometimes, y' cannot be separated from the other terms and the implicit form is the only one that we can write.

Explicit form – The explicit form of an ODE is where y' is separated from the remaining terms of the ODE. It is of the form:

$$y' = f(x,y)$$

 \square Direction field method – The direction field method is a graphical representation for the solution of ODE y' = f(x,y) without actually solving for y(x). Here is the procedure:

- Determine the values (x_i, y_i) that form the grid.
- Compute the slope $f(x_i,y_i)$ for each point of the grid.
- Report the associated vector for each point of the grid.

Separation of variables

□ Separable – An ODE is said to be separable if it can be written in the form:

$$f(x,y) = g(x)h(y)$$

 \square Reduction to separable form – The following table sums up the variable changes that allow us to change the ODE y'=f(x,y) to u'=g(x,u) that is separable.

Original form	Change of variables	New form
$y' = f\left(\frac{y}{x}\right)$	$u \triangleq \frac{y}{x}$	u'x + u = f(u)
$y' = f\left(ax + by + c\right)$	$u \triangleq ax + by + c$	$\frac{u'-a}{b} = f(u)$

Equilibrium

□ Characterization – In order for an ODE to have equilibrium solutions, it must be (1) autonomous and (2) have a value y^* that makes the derivative equal to 0, i.e:

(1)
$$\boxed{ \frac{dy}{dt} = f(x,y) = f(y) } \quad \text{and} \quad (2) \quad \boxed{ \exists \ y^*, \frac{dy^*}{dt} = f(y^*) = 0 }$$

☐ Stability – Equilibrium solutions can be classified into 3 categories:

- Unstable: solutions run away with any small change to the initial conditions.
- Stable: any small perturbation leads the solutions back to that solution.
- Semi-stable: a small perturbation is stable on one side and unstable on the other.

Linear first-order ODE technique

□ Standard form – The standard form of a first-order linear ODE is expressed with p(x), r(x) known functions of x, such that:

$$y' + p(x)y = r(x)$$

Remark: If r = 0, then the ODE is homogeneous, and if $r \neq 0$, then the ODE is inhomogeneous.

□ General solution – The general solution y of the standard form can be decomposed into a homogenous part y_h and a particular part y_p and is expressed in terms of p(x), r(x) such that:

$$y = y_h + y_p$$
 with $y_h = Ce^{-\int pdx}$ and $y_p = e^{-\int pdx} \times \int [re^{\int pdx}] dx$

Remarks: Here, for any function p, the notation $\int pdx$ denotes the primitive of p without additive constant. Also, the term $e^{-\int pdx}$ is called the basis of the ODE and $e^{\int pdx}$ is called the integrating factor.

□ Reduction to linear form – The one-line table below sums up the change of variables that we apply in order to have a linear form:

Name, setting	Original form	Change	New form
Bernoulli, $n \in \mathbb{R} \setminus \{0,1\}$	$y' + p(x)y = q(x)y^n$	$u \triangleq y^{1-n}$	u' + (1 - n)p(x)u = (1 - n)q(x)

Existence and uniqueness of an ODE

Here, we are given an ODE y' = f(x,y) with initial conditions $y(x_0) = y_0$.

□ Existence theorem – If f(x,y) is continuous at all points in a rectangular region containing (x_0,y_0) , then y'=f(x,y) has at least one solution y(x) passing through (x_0,y_0) . Remark: If the condition does not apply, then we cannot say anything about existence.

□ Uniqueness theorem – If both f(x,y) and $\frac{\partial f}{\partial y}(x,y)$ are continuous at all points in a rectangular region containing (x_0,y_0) , then y'=f(x,y) has a unique solution y(x) passing through (x_0,y_0) .

Remark: If the condition does not apply, then we cannot say anything about uniqueness.

Numerical methods for ODE - Initial value problems

In this section, we would like to find y(t) for the interval $[0,t_f]$ that we divide into N+1 equally-spaced points $t_0 < t_1 < ... < t_N = t_f$, such that:

$$\frac{dy}{dt} = f(t,y) \quad \text{with} \quad y(0) = y_0$$

□ Error – In order to assess the accuracy of a numerical method, we define its local and global errors ϵ_{local} , ϵ_{global} as follows:

$$\frac{\epsilon_{\text{local}} = |y^{\text{exact}}(t_n) - y^{\text{numerical}}(t_n)|}{\epsilon_{\text{global}}} \quad \text{and} \quad \epsilon_{\text{global}} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} |y^{\text{exact}}(t_n) - y^{\text{numerical}}(t_n)|^2}$$

Remarks: If $\epsilon_{local} = O(h^k)$, then $\epsilon_{global} = O(h^{k-1})$. Also, when we talk about the 'error' of a method, we refer to its global error.

□ Taylor series – The Taylor series giving the exact expression of y_{n+1} in terms of y_n and its derivatives is:

$$y_{n+1} = y_n + hy'_n + \frac{h^2}{2}y''_n + \frac{h^3}{6}y'''_n + \dots = \sum_{k=0}^{+\infty} \frac{h^k}{k!}y_n^{(k)}$$

We can also have an expression of y_n in terms of y_{n+1} and its derivatives:

$$y_n = y_{n+1} - hy'_{n+1} + \frac{h^2}{2}y''_{n+1} - \frac{h^3}{6}y'''_{n+1} + \dots = \sum_{k=0}^{+\infty} \frac{(-h)^k}{k!}y_{n+1}^{(k)}$$

□ Stability – The stability analysis of any ODE solver algorithm is performed on the model problem, defined by:

$$y' = \lambda y$$
 with $y(0) = y_0$ and $\lambda < 0$

which gives $y_n = y_0 \sigma^n$, for which h verifies the condition $|\sigma(h)| < 1$.

□ Euler methods – The Euler methods are numerical methods that aim at estimating the solution of an ODE:

Type	Update formula	Error	Stability condition
Forward Euler	$y_{n+1} = y_n + hf(t_n, y_n)$	O(h)	$h < \frac{2}{ \lambda }$
Backward Euler	$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$	O(h)	None

 \square Runge-Kutta methods – The table below sums up the most commonly used Runge-Kutta methods:

Type	Method	Update formula	Error	Stability condition
RK1	Euler's	$y_{n+1} = y_n + hk_1$ where $k_1 = f(t_n, y_n)$	O(h)	$h < rac{2}{ \lambda }$
RK2	Heun's	$y_{n+1} = y_n + h\left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)$ where $k_1 = f(t_n, y_n)$ and $k_2 = f(t_n + h, y_n + hk_1)$	$O(h^2)$	$h < \frac{2}{ \lambda }$

System of linear ODEs

 \square **Definition** – A system of n first order linear ODEs

$$\begin{cases} y_1' = a_{11}y_1 + \dots + a_{1n}y_n \\ \vdots \\ y_n' = a_{n1}y_1 + \dots + a_{nn}y_n \end{cases}$$

can be written in matrix form as:

$$\vec{y}' = A\vec{y}$$

where
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
 and $\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

□ System of homogeneous ODEs – The resolution of the system of 2 homogeneous linear ODEs $\vec{y}' = A\vec{y}$ is detailed in the following table:

Case	$\textbf{Eigenvalues} \leftrightarrow \textbf{Eigenvectors}$	Solution
Real distinct eigenvalues	$\begin{array}{c} \lambda_1 \leftrightarrow \vec{\eta}_{\lambda_1} \\ \lambda_2 \leftrightarrow \vec{\eta}_{\lambda_2} \end{array}$	$\vec{y} = C_1 \vec{\eta}_{\lambda_1} e^{\lambda_1 t} + C_2 \vec{\eta}_{\lambda_2} e^{\lambda_2 t}$
Double root eigenvalues	$\lambda \leftrightarrow \vec{\eta}$ $\vec{\rho}$ s.t. $(A - \lambda I)\vec{\rho} = \vec{\eta}$	$\vec{y} = [(C_1 + C_2 t)\vec{\eta} + C_2 \vec{\rho}]e^{\lambda t}$
Complex conjugate eigenvalues	$\begin{array}{c} \alpha + i\beta \leftrightarrow \vec{\eta}_R + i\vec{\eta}_I \\ \alpha - i\beta \leftrightarrow \vec{\eta}_R - i\vec{\eta}_I \end{array}$	$\vec{y} = C_1(\cos(\beta t)\vec{\eta}_R - \sin(\beta t)\vec{\eta}_I)e^{\alpha t} + C_2(\cos(\beta t)\vec{\eta}_I + \sin(\beta t)\vec{\eta}_R)e^{\alpha t}$