4.2 Integral Control (Answers)

4.2.1 Closed-Loop Transfer Function with Integral Control

The control signal for integral control is: $u_m(t) = k_i \int_0^t \left(r(\tau) - \omega_m(\tau) \right) d\tau$

In the Laplace domain: $U_m(s) = rac{k_i}{s} \left(R(s) - \Omega_m(s)
ight)$

Substitute $U_m(s)$ into the open-loop transfer function: $\Omega_m(s) = rac{K}{ au s + 1} U_m(s)$

This leads to: $\Omega_m(s) = rac{K}{ au s + 1} rac{k_i}{s} \left(R(s) - \Omega_m(s)
ight)$

Rearranging for $\Omega_m(s)$: $\Omega_m(s)(au s^2 + s + K k_i) = K k_i R(s)$

Thus, the closed-loop transfer function $G_I(s)$ is: $G_I(s)=rac{\Omega_m(s)}{R(s)}=rac{Kk_i}{ au s^2+s+Kk_i}$

4.2.2 Location of Poles as a Function of k_i

The characteristic equation is: $au s^2 + s + K k_i = 0$

The poles are the roots of this quadratic equation:

$$s = rac{-1 \pm \sqrt{1 - 4 au K k_i}}{2 au}$$

As k_i increases, the poles shift. For small k_i , the system has a slower response. As k_i increases, the system responds faster, but increasing k_i too much may lead to oscillations or instability if the discriminant becomes negative (complex poles).

4.2.3 Steady-State Value Using Final Value Theorem

For a step input $r(t)=r_0$, the Laplace transform is: $R(s)=rac{r_0}{s}$

Using the closed-loop transfer function: $\Omega_m(s) = rac{K k_i}{ au s^2 + s + K k_i} \cdot rac{r_0}{s}$

Applying the Final Value Theorem:

$$\omega_m(\infty) = \lim_{s o 0} s \cdot \Omega_m(s)$$

At s=0: $\omega_m(\infty)=r_0$. Thus, with integral control, the steady-state output matches the input exactly, eliminating steady-state error.