

Turno Recursantes
Clase 3

Conceptos básicos

- Lógica digital.
- Algebra de Boole.
- Circuitos Lógicos Combinacionales
- Circuitos Lógicos Secuenciales

El nivel de lógica digital

- Un circuito digital es en el que están presentes dos valores lógicos
- Compuertas son dispositivos electrónicos que pueden realizar distintas funciones con estos dos valores lógicos
- Como vimos en el Ingreso las compuertas básicas son: AND, OR, NOT, NAND, NOR y XOR

Compuertas: símbolo y descripción funcional

Α	Х
0	1
1	0

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Χ
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Χ
0	0	0
0	1	1
1	0	1
1	1	1

Algebra Booleana

Para describir los circuitos que pueden construirse combinando compuertas, se requiere un nuevo tipo de álgebra, donde las variables y funciones sólo puedan adoptar valores 0 ó 1: álgebra booleana.

Algebra Booleana

Puesto que una función booleana de n variables tiene 2ⁿ combinaciones de los valores de entrada, la función puede describirse totalmente con una tabla de 2ⁿ renglones, donde c/u indica un valor de la función (0 ó 1) para cada combinación distinta de las entradas:

=> tabla de verdad

Recordemos algunas identidades del álgebra booleana

Identidad	1.A=A	0+A=A
Nula	0.A=0	1+A=1
Idempotencia	A.A=A	A+A=A
Inversa	$A.\overline{A}=0$	$A+\overline{A}=1$
Conmutativa	A.B=B.A	A+B=B+A
Asociativa	(AB).C=A(BC)	(A+B)+C=A+(B+C)
Distributiva	A+B.C=(A+B).(A+C)	A.(B+C)=AB+AC
Absorción	A.(A+B)=A	A+A.B=A
De Morgan	$\overline{A.B} = \overline{A} + \overline{B}$	$\overline{A+B}=\overline{A}.\overline{B}$

Leyes de De Morgan

Ejemplo: construir un NOT con NAND

$$F = \overline{A.B} = \overline{A.A} = \overline{A}$$

Leyes de De Morgan

Ejemplo: construir un OR con NAND

Implementación de funciones booleanas

- Escribir la tabla de verdad para la función
- Dibujar una AND para cada término que tiene un 1 en la columna de resultado (con sus entradas apropiadas)
- > Invertir las entradas necesarias
- Unir todas las AND a una OR

Implementación

Ejemplo: construir la tabla de verdad e implementar el circuito de una función booleana M, de tres entradas A, B y C, tal que M=1 cuando la cantidad de '1' en A, B y C es ≥ 2 y M=0 en otro caso.

Tabla de verdad

Α	В	С	М	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	•
1	1	0	1	•
1	1	1	1	—

Función M

$M = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$

- Hay tantos términos como 1s en la tabla
- Cada término vale 1 para una única combinación de A, B y C
- Las variables que valen 0 en la tabla aparecen aquí negadas

Función M (2)

$$M = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

4

Otro ejemplo

Supongamos la siguiente Tabla de Verdad

Α	В	M
0	0	0
0	1	1
1	0	1
1	1	0

Función
$$M = \overline{AB} + A\overline{B} \Rightarrow M = A XOR B$$

Recordemos

- ✓ En un AND, basta que una de sus entradas sea 0 para que la función valga 0.
- ✓ En un OR, basta que una de sus entradas sea 1 para que la función valga 1.
- ✓ Hacer el XOR con 1 invierte el valor de la variable.
- ✓ Hacer el XOR con 0 deja el valor de la variable como estaba.

Circuitos combinatorios

Ejemplo

S representa la suma aritmética de 2 bits y C es el acarreo

Semi-sumador ó Half adder

Circuitos Combinacionales o Combinatorios

- Responden a los valores lógicos en las entradas, la salida está determinada exclusivamente por los valores de las entradas en ese instante.
- Si cambia la entrada, cambia la salida.
- Los valores pasados de las entradas no influyen en los valores de las salidas.

Ejemplo 1

Según valor de entradas A, B y C $F=D_x$

Multiplexor de 8 entradas •74151

Para cada combinación de las entradas A, B y C sólo UNA de las salidas D_x vale '1'

Decodificador 3 a 8

Si todos los bits A_i son iguales a los B_i la salida es '1'

Comparador de 4 bits

Desplazador de 1 bit

Según el valor de la entrada C se 'correrán' un lugar a derecha o izquierda.

1 bit de ALU

Ejemplo 5

Según F₁F₀ será la función que se realizará sobre A y B.

Respuesta temporal

Suponemos que los retardos de compuerta \(\Delta t\) son iguales

Circuitos Secuenciales

- Las salidas dependen tanto de las entradas como del estado interno del circuito.
 - ¿Qué es el estado interno del circuito?
- Tienen la característica de "almacenar" valores lógicos internamente.
- Estos valores se almacenan aunque las entradas no estén.

¿Cómo se almacena un valor lógico?

- ▶La salida es también entrada
- ➤ En ningún circuito combinatorio una salida transportaba información hacia la entrada
- ▶La ecuación lógica

$$M=M+P$$

¿Cómo se ...?(2)

Supongamos que
$$P=0$$
 y $M=0$
 $M=M+P=0+0=0$

¿Cómo se ...?(3)

$$M = M + P = 1 + 1 = 1$$

¿Cómo se ...?(4)

►Ahora P=0

$$M = M + P = 1 + 0 = 1$$

➤ Una vez que la salida M toma el valor 1 no hay forma de volver a 0

Ahora
$$P=1$$
 y $B=0$, $M=1$

$$M=(M+P).B$$

4

¿Cómo se ...?(6)

➤ Si ahora P=0 y B=0, M=1. Nada cambia.

¿Cómo se ...?(7)

 \triangleright Si ahora P=0 y B=1, M=0.

¿Cómo se ...?(8)

- \triangleright Si ahora P=0 y B=0, M=0.
- P puede cambiar y se reflejará en M

¿Cómo se ...?(9)

¿Cómo se ...?(10)

Finalmente queda así

FLIP-FLOP SR

4

FLIP-FLOP SR(2)

- ➤ Aparece la salida Q_{n+1}
- \triangleright Q_n= salida anterior
- >S = Set = poner a 1
- ightharpoonup R = Reset = poner a 0
- > Las salidas Q y Q son complementarias

FLIP-FLOP SR(3)

Supongamos S y R = 0 y Q = 0

4

FLIP-FLOP SR(4)

- Supongamos S y R = 0 y Q = 1
 - ❖Por lo que "recuerda" cual era el estado anterior.

1

FLIP-FLOP SR(5)

❖Si ahora S=1 y R=0

- ➤ Se puede construir con un flip-flop una memoria de 1 bit.
- Se llama biestable porque el circuito posee sólo 2 estados posibles de funcionamiento, se queda en cada uno de ellos, salvo que las entradas provoquen un cambio.

Secuenciales - Clasificación

- Según la manera en que las salidas respondan a las señales lógicas presentes en la entrada, los biestables se clasifican en:
 - SR
 - J-K
 - D
 - T

Secuenciales – Clasificación(2)

- Respecto del instante en que pueden cambiar dichas salidas, pueden ser:
 - Asincrónicos: cuando en la entrada se establece una combinación, las salidas cambiarán
 - Sincrónicos: la presencia de una entrada especial, determina "cuando" cambian las salidas acorde a las entradas

Reloj: "señal especial"

- El orden en que ocurren los sucesos es importante.
- A veces los sucesos deben ocurrir simultaneamente.
- Reloj: es una señal de tiempo precisa que determina cuando se producen eventos.

Reloj (Clock) (CLK)

Cada tiempo T, la señal se repite

Flip-Flop SR sincrónico

> S y R son las entradas que tendrán efecto cuando CK tome el valor 1.

Tabla de comportamiento: SR sincrónico

CK	S	R	Q_{n+1}
1	0	0	Q _n
1	0	1	0
1	1	0	1
1	1	1	Prohibido
0	X	X	Q_n

Flip-Flop D

En el FF SR hay que aplicar 2 entradas diferentes para cambiar de estado.

➤ El FF D permite aplicar una sola entrada para cambiar la salida.

Flip-Flop D

Flip Flop J-K

 La salida Q cambiará de 0 a 1 o 1 a 0 en cada pulso de la entrada T.

Recordando un bit

- Con una señal (CK) se copia el valor de D en Q
- Sin esa señal, el valor de Q permanece igual

Puedo recordar un Bit

CK	D	Q
0	0	q
0	1	q
1	0	0
1	1	1

Recordando n bits

Si CK actúa sobre n bits simultáneamente

Registro n bits

Chip con 8 FF-D (74LS374)

Selección y operaciones

Registro con desplazamiento

Control		Function
e,	00	
0	0	Mootenge
0	4	Shitlet
4	0	Stifting ht
<u> </u>	4	Parallel load

Contador módulo 8

Notas de Clase 3

Un Registro

Varios Registros

mayor información ...

- Operaciones Lógicas
 - Apunte 3 de Cátedra
- Circuitos Secuenciales
 - Apunte 5 de Cátedra
- Apéndice A: Lógica digital (A.3., A.4.)
 - Stallings, 5ta Ed.
- Capítulo 3: Lógica digital y representación numérica
 - Apuntes COC Ingreso 2013