Calcolo Numerico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente	
Analisi	Prof. A. Manzoni		
CdL Ingegneria Aerospaziale	Prof. S. Micheletti		
Appello			
03 settembre 2019			
Cognome:	Nome:	Matricola:	

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 3h.

SPAZIO RISERVATO AL DOCENTE

	PART	FI	
Pre Test	.,,		
Esercizio 1			
Esercizio 2			
Totale			
	PART	E II	
Pre Test			
Esercizio 1			
Esercizio 2			
Totale			
	FINA	LE	1

Parte I - Pre Test

1. (1 punto) Determinare il valore dell'epsilon macchina ε_M (riferito al numero reale 1) associato all'insieme di numeri floating-point $\mathbb{F}(2,7,-4,3)$.

- **2.** (1 punto) Sia $A=\begin{bmatrix}3&3&0\\\beta&6&3\\3&0&3\end{bmatrix}$ una matrice dipendente da un parametro $\beta\in\mathbb{R}$. Per quali valori di $\beta \in \mathbb{R}$ la matrice A ammette un'unica fattorizzazione LU (senza pivoting)?

$$\beta \neq 6$$

3. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 3 & 1 \\ 0 & 10 & 1 \end{bmatrix}$ e si determini la sua fattorizzazione LU senza pivoting. Riportare i valori dell'elemento $\vec{l}_{32}=(L)_{32}$ della matrice triangolare inferiore L e dell'elemento $u_{33} = (U)_{33}$ della matrice triangolare superiore U.

$$l_{32} = 2$$
 $u_{33} = -5$

4. (1 punto) Quale tra gli autolavori della matrice $A=\begin{bmatrix} -3 & 11 & -3 \\ 0 & 1 & 21 \\ 0 & 0 & -10 \end{bmatrix}$ può essere determinato applicando il metodo delle potenze dirette? Se ne riporti il valore

$$\lambda_1(A) = -10$$

5. (2 punti) Si consideri la funzione $f(x) = e^{(x-10/9)} - 1$ con un unico zero α e il metodo di bisezione per la sua approssimazione. Senza applicare esplicitamente il metodo, si stimi l'errore commesso dopo k=6 iterazioni partendo dall'intervallo iniziale [-2,6].

$$|x^{(k)} - \alpha| \le 0.0625$$

6. (2 punti) Si consideri la funzione $f(x) = x^2 - \frac{5}{2}x + 1$ e il metodo di Newton per l'approssi mazione dello zero $\alpha = \frac{1}{2}$. Si riportino i valori della prima e della seconda iterata $x^{(1)}$ e $x^{(2)}$ del metodo assumendo l'iterata iniziale $x^{(0)} = 0$.

$$x^{(1)} = 0.4$$
 $x^{(2)} = 0.494118$

7. (1 punto) Si consideri la funzione $\phi(x) = (e^{-9x} - 1)/9 + x$. Qual è l'ordine di convergenza p atteso applicando il metodo delle iterazioni di punto fisso per l'approssimazione del punto fisso $\alpha = 0$ di $\phi(x)$ per un'iterata iniziale $x^{(0)}$ "sufficientemente" vicina ad α ?

$$p = 2$$

Parte I - Esercizi

11 punti

e anche soluzion	e dei sistema	imeare.		
			®) del metodo azione utilizzata	
mone del <i>sistem</i>	a unicare 11 A	– b , si delilik		α.

	Qual è la direzione di discesa del metodo del gradiente in corrispondenza dell'iterata $\mathbf{x}^{(k)}$? S riporti inoltre la sua espressione in termini della funzione Φ di cui al punto (a).
	(1 punto) Sia ora $n=100$ la dimensione del sistema lineare $A\mathbf{x}=\mathbf{b}$ con $\mathbf{b}=(7,7,\ldots,7)^T$ e l
	matrice $A = \begin{bmatrix} 8.1 & -3 & -1 & & & 0 \\ -3 & 8.1 & -3 & -1 & & & \\ -1 & -3 & 8.1 & -3 & -1 & & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \\ & & -1 & -3 & 8.1 & -3 & -1 \\ & & & -1 & -3 & 8.1 & -3 \\ 0 & & & & -1 & -3 & 8.1 \end{bmatrix}.$
	$A = \begin{bmatrix} & & \ddots & \ddots$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Si definisca e si riporti il valore del numero di condizionamento spettrale $K(A)$ di A .
	of definisca e si riporti ii vaiore dei numero di condizionamento spettrale $K(A)$ di A .
.)	$K(A) = \underline{115,702826}$ (2 punti) Si utilizzi opportunamente la funzione Matlab® pcg per approssimare la soluzione di sistema lineare di cui al punto (c) mediante il metodo del gradiente coniugato; si considerino tolleranza tol= 10^{-3} e nmax= 100 (pcg considera di default l'iterata iniziale $\mathbf{x}^{(0)} = (0,0,\dots,0)^T$
	Si riportino: il numero di iterazioni N effettuato, la terza componente della soluzione approssimat $\mathbf{x}^{(N)}$, ossia $x_3^{(N)}$, e il valore del corrispondente residuo normalizzato $r_{rel}^{(N)}$ in formato esponenziale
	$N = _{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}}$
	(3 punti) Si consideri ora il metodo del gradiente precondizionato per la soluzione del sistem lineare $A\mathbf{x} = \mathbf{b}$ di cui al punto (c) con la matrice di precondizionamento
	$P = \operatorname{tridiag}(-1, \beta, -1) \in \mathbb{R}^{n \times n}$
	dipendente da un parametro β tale per cui sia simmetrica e definita positiva. Si determini graficamente tramite Matlab [®] il valore di $\beta \in [2,2.5]$ che garantisce la convergenza più rapida de metodo a \mathbf{x} . Indicato con β^* tale valore, lo si riporti e si giustifichi il risultato ottenuto anche co l'ausilio di un opportuno grafico.
	$\beta^{\star} = \underline{\qquad 2,0345}$

$\lambda_n($	ERCIZIO 2. Si consideri il metodo delle <i>potenze inverse</i> per l'approssimazione dell'autovalore A) di modulo minimo di una matrice $A \in \mathbb{R}^{n \times n}$.	
(a)	$(3\ punti)$ Si riporti l'algoritmo delle potenze inverse definendo in modo preciso tutta la notazione utilizzata.	11 pun
	$(1\ punto)$ Quale strategia computazionalmente efficiente è conveniente adottare nell'implementazione dell'algoritmo delle potenze inverse? Perché?	

(d) (4 punti) Si implementi in Matlab® la funzione potenzeinverse.m per l'approssimazione dell'autovalore $\lambda_n(A)$ di modulo minimo di un'assegnata matrice A mediante il metodo delle potenze inverse (si utilizzi il comando "back-slash" di Matlab® \ laddove necessario). Si utilizzi il criterio d'arresto basato sulla differenza relativa tra due approssimazioni successive dell'autovalore, ovvero $\frac{|\lambda_n^{(k)} - \lambda_n^{(k-1)}|}{|\lambda_n^{(k)}|} < tol$ per $k \geq 1$ e tol un'opportuna tolleranza. La struttura della funzione è la seguente.

function [lambda,y,Nit] = potenzeinverse(A,x0,nmax,tol).

Si considerino come *input*: A, la matrice assegnata; x0, il vettore iniziale; nmax, il numero massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino come *output*: lambda, l'autovalore approssimato; y, l'autovettore di modulo unitario approssimato; Nit, il numero di iterazioni effettuate.

Si utilizzi opportunamente la funzione potenzeinverse.m per approssimare l'autovalore $\lambda_n(A)$ di modulo minimo della matrice A di cui al punto (c). Si utilizzino $\mathbf{x}^{(0)} = (1 \ 1 \ 1)^T$ come vettore iniziale, la tolleranza tol= 10^{-3} e nmax= 100.

Si riportino: il numero N_{it} di iterazioni effettuate, il valore approssimato $\lambda_n^{(N_{it})}$ dell'autovalore, l'autovettore di modulo unitario corrispondente $\mathbf{y}^{(N_{it})}$ e le iterate $\lambda_n^{(0)}$ e $\lambda_n^{(1)}$ (si usino almeno 4 cifre decimali).

$$N_{it} = \underline{\qquad \qquad \qquad } \qquad \qquad \lambda_n^{(N_{it})} = \underline{\qquad \qquad } 1,3637 \qquad \qquad \mathbf{y}^{(N_{it})} = \underline{\qquad \qquad } (0,1207,\ 0,7683,\ -0,6286)^T$$
 $\lambda_n^{(0)} = \underline{\qquad \qquad } 2,6667 \qquad \qquad \lambda_n^{(1)} = \underline{\qquad \qquad } 2,2953 \qquad \qquad \qquad$

Parte II - Pre Test

1. (2 punti) Siano assegnati i nodi equispaziati x_0, x_1, \ldots, x_4 nell'intervallo [0,4] e i corrispondenti valori $y_0 = -1, y_1 = -1, y_2 = 0, y_3 = 0$ e $y_4 = 1$. Si consideri il polinomio di Lagrange $\Pi_4(x)$ interpolante tali dati ai precedenti nodi e si riporti il valore di $\Pi_4(-0.1)$.

$$\Pi_4(-0.1) = -0.74865$$

2. (2 punti) Si consideri l'interpolante polinomiale lineare a tratti $\Pi_1^H f(x)$ della funzione $f(x) = 4x + \sin(10x)$ nell'intervallo I = [0,3]. Senza costruire esplicitamente $\Pi_1^H f(x)$, si stimi il numero n di sottointervalli equispaziati di [0,3] tali per cui l'errore di interpolazione è inferiore alla tolleranza $tol = 10^{-6}$.

$$n \ge 10\,607$$

3. (1 punto) Assegnati i nodi $x_0 = 0$, $x_1 = 1$ $x_2 = 2$, $x_3 = 3$ e $x_4 = 4$ e i dati corrispondenti $y_0 = 9$, $y_1 = 0$, $y_2 = 9$, $y_3 = 9$ e $y_4 = 27$, si determini l'espressione della retta di regressione r(x) approssimante tali dati nel senso dei minimi quadrati.

$$r(x) = 1.8 + 4.5 x$$

4. (1 punto) Sia $f(x) = 4x^4$; si approssimi f'(0) mediante la formula delle differenze finite in avanti utilizzando il passo h = 0.2; si riporti il valore $\delta_+ f(0)$ di tale approssimazione.

$$\delta_{+}f(0) = 0.032$$

5. (1 punto) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = t \ [30 t + 3 y(t)] & t \in (0,10), \\ y(0) = 1. \end{cases}$$

Utilizzando il metodo di Eulero all'indietro (Eulero Implicito) con passo h = 1/5 e $u_0 = y_0 = 1$, si riporti il valore calcolato di u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{31}{22} = 1,409\,091$$

6. (2 punti) Si consideri il seguente problema di Cauchy:

$$\begin{cases} y'(t) = -5\sqrt{t} - 2y(t) & t \in (0,100), \\ y(0) = 7. \end{cases}$$

Utilizzando il metodo di Crank-Nicolson con passo h = 1/4 e $u_0 = 7$ si calcoli u_1 , ovvero l'approssimazione di $y(t_1)$.

$$u_1 = \frac{79}{20} = 3,95$$

pual è la condizione sul passo di discretizzazione $h>0$ che garantisce assoluta stabilità?
Parte II - Esercizi
cizio 1.
P(t) Si descriva la formula di quadratura del $P(t)$ medio $P(t)$ per l'approssimazione ell'integrale $P(t)$ si definisca tutta la notazione utilizzata e si fornisca l'interpre per grafica della formula.

	la di quadratura del puni cisione le risposte date.	to medio composita, si	i riportino i valori di p e r ; s
c) (3 punti) Si utilizzino	o opportuni comandi Mat	tlab® per approssimar	e il seguente integrale:
	$I(f) = \int_0^{\pi} 5 \left[x^3 \right]$	$+\sin\left(4x+\sqrt{2}\right)dx$	
ziati di $[0,\pi]$. Si calc	colino e si riportino i valo		$M \ge 1$ sottointervalli equispa (f) dell'integrale utilizzando
valori $M = 1$ (101111111	$(a \text{ semple}) \in M - 10$		
	$\frac{76,396473}{1000000000000000000000000000000000000$		121,152 557
$I_1^{PM}(f) = _$		$I_{10}^{PM}(f) = _$	
$I_1^{PM}(f) = _$	76,396473 i riporti il valore dell'erro	$I_{10}^{PM}(f) = _$	
$I_1^{PM}(f) = \underline{}$ Per il caso $M=10$ si d) (2 punti) Si consideri per approssimare l'in dell'integrale corrispo	i riporti il valore dell'erro $\widetilde{E}_{10}^{PM}(f) \leq \underline{\hspace{1cm}}$ i ora la formula di quadra tegrale $I(f)$ di cui al purondente. Si usi tale form	$I_{10}^{PM}(f)=$ ore stimato, ovvero \widetilde{E}_{10}^{F} atura di $Gauss$ -Legen nto (c); si indichi con nula nel caso $n=2$:	dre (semplice) con $n+1$ not $I_n^G(f)$ il valore approssimat sapendo che nell' <u>in</u> tervallo d
$I_1^{PM}(f) = \underline{}$ Per il caso $M=10$ si d) (2 punti) Si consideri per approssimare l'in dell'integrale corrispo	i riporti il valore dell'erro $\widetilde{E}_{10}^{PM}(f) \leq \underline{\hspace{1cm}}$ i ora la formula di quadra tegrale $I(f)$ di cui al purondente. Si usi tale form	$I_{10}^{PM}(f)=$ ore stimato, ovvero \widetilde{E}_{10}^{F} atura di $Gauss$ -Legen nto (c); si indichi con nula nel caso $n=2$:	dre (semplice) con $n+1$ not $I_n^G(f)$ il valore approssimat sapendo che nell' <u>in</u> tervallo d
$I_1^{PM}(f) = \underline{\hspace{0.5cm}}$ Per il caso $M=10$ si d) (2 punti) Si consideri per approssimare l'in dell'integrale corrispo riferimento $\widehat{I}=[-1]$	i riporti il valore dell'erro $\widetilde{E}_{10}^{PM}(f) \leq \underline{}$ i ora la formula di quadra ntegrale $I(f)$ di cui al pur ondente. Si usi tale formula, 1] i nodi di quadratura i quadratura sono $\widehat{\alpha}_0 = \frac{5}{9}$	$I_{10}^{PM}(f) = _$ for $S_{10}^{PM}(f) = _$	dre (semplice) con $n+1$ noo $I_n^G(f)$ il valore approssimat sapendo che nell'intervallo c 0 e $\widehat{y}_2 = +\sqrt{\frac{3}{5}}$, mentre
$I_1^{PM}(f) = 1$ Per il caso $M = 10$ si d) (2 punti) Si consideri per approssimare l'in dell'integrale corrispondenti $\widehat{I} = [-1]$ corrispondenti pesi di	i riporti il valore dell'erro $\widetilde{E}_{10}^{PM}(f) \leq \underline{}$ i ora la formula di quadra tegrale $I(f)$ di cui al purondente. Si usi tale formula, il quadratura sono $\widehat{\alpha}_0 = \frac{5}{9}$ evvero $I_2^G(f)$.	$I_{10}^{PM}(f) = _$ for $S_{10}^{PM}(f) = _$	

	$\int -u''(x) + V u'(x) = f(x)$ in (e)	a,b),
	$\begin{cases} -u''(x) + V u'(x) = f(x) & \text{in } (a) = \alpha, \\ u(b) = \beta, \end{cases}$	(1)
second'ordine) su una g $i = 0, \dots, N+1$ e passo	l problema ai limiti (1) con uno scheriglia di $N+2$ nodi equispaziati $\{x\}$	ema alle differenze finite centrate (de $\{x_i\}_{i=0}^{N+1}$, con $x_0 = a$, $x_i = x_0 + ih$ per le equazioni del sistema risultante in
/ -	, fornendo l'espressione dei coeffici	nazione di cui al punto (a), ovvero denti della matrice A , del vettore d

12 punti

Versione n. 1 – Soluzioni – Pag. 11

$(2 \ punti)$ Si pongano ora il dato $V=1000 \ \mathrm{e}\ N=9$. Senza risolvere il proble niente può presentare la soluzione numerica ottenuta con il metodo di cui al pula risposta data e si proponga almeno un rimedio a tale inconveniente.	
n	iente può presentare la soluzione numerica ottenuta con il metodo di cui al pu