Open Optical Networks - The Amplifier

Exercise 1

Instantiate and use an EDFA.

- 1. download from the web portal the following files:
 - eqpt.json
 - default_edfa_config.json
 - utilities.py
- 2. create a json file with the parameters of your EDFA. This json file has the following parameters:
 - "uid": a string used as unique identifier. You can use the name you want.
 - "type": "Edfa"
 - "type_variety": "simple_edfa"
 - "operational": a structure containing the following parameters:
 - "gain_target": 17
 "tilt_target": 0
 "out_voa": 0

Please Note: the noise figure of the EDFA is not defined here. You can find it in the eqpt.json file.

- 3. download the 'utilities.py' library from the PoliTo web portal.
- 4. instantiate an EDFA using the json file you just created.

Hint 1: to help you in instantiating the EDFA, we provided you a function that, given the path of the json files will return the edfa parameters. You can find it in the utilities.py library and you can use the 'get_edfa_parameters function'.

Hint 2: To understand how to use the parameters read the documentation of the function 'get_edfa_parameters function'. Do do it you can use the 'help()' function or read it under the function declaration.

- 5. instantiate a noiseless WDM comb according to the parameters described in eqpt.json file
- 6. propagate the WDM comb through the EDFA.

 Hint: As Edfa has the method __call__(self, spectral_info), it can be used as function. So, the command edfa(spectral_information) will return the spectral information propagated through the EDFA.
- 7. plot the singal and ASE noise power before and after the propagation.
- 8. plot the signal-to-ASE noise ration (the OSNR) after the EDFA.

Exercise 2

Amplifier comparison

- 1. repeat the exercise # 1 but use an EDFA with noise figure = 4 and gain = 12
- 2. compare the two results: which is the most degrading amplifier and why?

Exercise 3

Power sweep

- 1. instantiate the EDFA and the WDM comb described in exercise # 2.
- 2. propagate the WDM comb through the EDFA by varying the channel power before the EDFA by \pm 2 dB with steps of 0.5 dB.
- 3. plot the signal power, ASE noise power of the central channel for each point of the sweep.
- 4. plot the OSNR of the central channel for each point of the sweep. *Hint:* use a transponder.