RESISTER PROGRAMMABLE: INSTRUMENTATION AMPLIFIERS

Resister Program	able																				SINGLI	E SUPPL	Y		
MODEL		AD	620						AD62	22				AD	625	AD625	5	AD625	AD625	5	AD623 Si	ngle Sup	ply RR	Outpu	t
																		Te	mp						Tem
															Diff	erential	Inp	Ra	nge						Rai
			GAI	N		-45	-55			GA	IN	-45	-55			AIN	-	0	-25	-55	GAIN				-45
SPECIFICATION	ſ	RANGE			85 ##				RAN		85	125			RANGE		70	85	125	RANGE				85	
SI ECITICATION		1	10	100	1000	05	nn_	1	10		1000	95	123	1	10	100 1	1000	70	95	123	1	10	100	1000	
CADIEDDOD	. 67 100						0								10	100	LUUU			0					_
GAIN ERROR	± % FS	0.10	0.30	0.30	0.70	A	S	0.15	0.50	0.50	0.50	A	S	0.05				J	A	S	0.1	0.35	0.35	0.35	A
		0.02	0.15	0.15	0.50	В						В		0.03				K	В						
														0.02					C						
GAIN ERROR TO	± ppm/C	<	0ppm	>				<	50	opm	>			NS	NS	NS	NS				<	-10ppm-	>	>	
NONLINEARITY									10					####	0.005	#### (J	A	S	0.004		0.004		
							_		,	- P				####	0.002	#### #		K	В	~	0.00	0.00	0.00.	0.00.	_
							_							####	0.001	#### 1		- 11	C						+
CMDD 11/ UL.		72	02	110	110	Α.	0	- 66	06	102	102	Α.					_	т		c	7.4	94	110	110	-
CMRR 1K Unbal	ance	73	93	110	110	A	S	_ 66	86	103	103	A		70	90	100		J	A	S	74	94	110	110	A
		80	100	120	120	В						В		75	95	105		K	В						
														80	100	110	120		C						
Small Signal -3 d	Mhz	1	0.80	0.12	0.012			1	0.80	0.12	1.2			1	0.40	0.15 #	####				800	100	10	2	T
Settling Time .01	usec	15	15	15	150			10	10	10				15	15	15	75				20	20			
Slew Rate	V/usec		0.75				_	1																	_
DIC II TUUTE	174500		0.70				-																		+
VOLTAGE NOIS	E.						_																		+
			0.00	0.40	0.4		_	4	0.60	0.20	0.2			10	- 1	0.20	0.00								+
RTI @ .1 to 10Hz		6	0.80	0.40	0.4			4	0.60	0.30	0.3			10	1	0.30	0.20								
RTI @ 10 Hz																									
RTI @ 100 Hz														4											
RTI @ 1K Hz	nV/ Hz	13						TOT	AL=12					75							37				
RTO @ 1K Hz	nV/ Hz	100						TOT	AL=72												50				
CURRENT NOIS																									_
RTI @ .1 to 10Hz		10					_	10																	_
RTO @ 1K Hz							+							60							60				+
KIO @ IKIIZ	p/M III	0.1					-							- 00							00				+
DTO 4.050	O DITT	52 N	1.65 37	100 1	05.4.1		0	1.75	4 37	V 5 1	251 11		- 0	50.	7 17	05 170)			0	1.1	1.1	110	1110	-
RTO error at 25C	=GXK11-		1.65mV				S	1./5m	4mV	26.5m	251mV	A	S	5.2mV		25mVt0		J	A	S	1.1	11	110	1110	A
		.25mV	.7mV	5.2mV	50.2mV	В									3.5mV			K	В						
														2.03mV	2.3mV	5mV 3	2mV		C						
OFFSET VOLTA	GE	RTI		R	ГО			F	RTI	R'	го			R	ΓI	RT	O				RTI		RTO		
		+25C	Ta	+25C	Ta			+250	Ta	+25C	Ta			+25C	Ta	+25C	Ta				+25C	Ta	+25C	Ta	
		uV	uV/C	mV					uV/C		uV/C			uV	uV/C	mV u					uV	uV/C	mV	uV/C	
		125	15	0.4	5	A	S	250		1.5	15	A	S	200	2	_	50	J	A	S	150	1	1	10	A
			7				3	230	- 4	1.3	13	А	N)							3					
		50	/	0.2	2.5	В								50	1/.5		40	K	В		500	1	2	10	u/
														30	0.25	2	30		C						
		Ibias		I of	ffset				oias		ffset			I b	ias		fset				Ibias		I offs	et	
BIAS CURRENT		+25C	Ta	+25C	Ta			+250	Ta	+25C	Ta			+25C	Ta	+25C	Ta				+25C	Ta	+25C	Ta	
		nA	pA/C		pA/C				pA/C		pA/C			nA	pA/C	nA p					nA	pA/C		pA/C	
		10	File		F	A	-	5	3	2.5	2	Α	S	50	100		100	J	Α	S	25	25	1	5	Α
		10				А	-	,	- 3	2.3	-	71	D.	25	100		100	K	B	J	23	23	1	,	+ ^
																		V					-		+
														15	100	10	100		C						-
															256										
OUTPUT CURRE		5						1.5							@ 5mA						5				
POWER SUPPLY	7	±5V to ±1	8 @ 1.5m	A				±2V	to ±18	@ 1.31	nA			± 6 to	±18 V @	6mA					+3V to ±5	@ 0.5mA	4		
										i											1				
PACKAGES		& Pin plac	tic din				_	8 Pin	plastic	din				16 Pin	nlastic (lin					8 Pin plast	ic din			
LICHAGES		8 Pin plastic dip 8 Pin SOIC					_		SOIC	aib					16 Pin plastic dip 16 Pin ceramic dip						8 Pin SOI				+
							_									c aib					o rm SOI	-			+
		8 Pin Cere	шр						Cerdij)				20 LC											
PRICE		A=\$3.35						A=	####					A=	\$11.00		J=	\$7.64			A=\$3.35				

12/8/97 4:05 PM

RESISTER PROGRAMMABLE: INSTRUMENTATION AMPLIFIERS

B=\$5.78	B= \$18.50	K= \$10.83	B=\$5.78	
	C= \$30.80	S= \$37.13		

12/8/97 4:05 PM Ed Grokulsky Rev-3 11/1/97 PAGE-52