RIG — | EEE, 0.5 EEC, 0.4 CCC, 0.1

Length(sequence) -
$$(k-1)$$
 = # layers
7 - $(3-1)$ = 5

seq = ATWGRTG K = 3

stitchextend_dict

CCE ECC CCH

Layer 1, Layer 2

CCEE 0.3*0.9

ECCH 0.2*0.1

CCE ECC CCH

Edge Contraction Layer 1, Layer 2

CCEE 0.3*0.9

ECCH 0.2*0.1

CCEE 0.3*0.9

ECCH 0.2*0.1

CCEE ECCH CHE

Layer 2, Layer 3

CCEE 0.3*0.9 Del

ECCH 0.2*0.1 Del

ECCHE 0.2*0.1*0.1 Add

CCEEE 0.3*0.9*0.9 Add

CCEE ECCH CHE

Edge Contraction Layer 2, Layer 3

ECCHE 0.2*0.1*0.1

CCEEE 0.3*0.9*0.9

Edge Contraction Layer 2, Layer 3

ECCHE 0.2*0.1*0.1

CCEEE 0.3*0.9*0.9

Edge Contraction Layer 2, Layer 3

0.3*0.9*0.9*1*0.5

HHE

ННН

HHE) |

$$O(\ell-k+1)$$
 Layers in the graph

At most 3 out edges per node

k-1 overlap

HHE

HHH

+

$$O(3^{\ell-k+1} * 3^k * (\ell-k+1))$$

$$O(3^{\ell+1} * (\ell - k + 1))$$

HHE $O(\ell - k + 1)$ Layers in the graph

Heuristic:

Limit the number of extended sequences kept after each iteration through layers. Only take the top X probable extended sequences.

At most 3 out edges per node

At most 3 * 3 possible out edges per node after extension

*

*

*

O(1) possible paths by the end

Since paths are limited as we are extending

Heuristic:

$$O(3^k * (\ell - k + 1))$$

*

*

INPUT:

Protein Sequence = ATWGRTG

$$\ell = 7$$

$$k = 3$$

DebruijnExtend $O(3^{\ell+1} * (\ell - k + 1))$

Output (most probable):

CCEEEEE Prob: 0.1215

INPUT:

Protein Sequence = ATWGRTG

$$\ell = 7$$

$$k = 3$$

Example of using software (CMD line)

python DebruijnExtend.py gfp.fasta 4 gfp.ss3

STEP 0 – Hash Table (Training)

For each k-mer in a training database, find every possible secondary structure and its probability.

RTG
$$\longrightarrow$$
 EEE, 0.5 EEC, 0.4 CCC, 0.1

ATW \longrightarrow CCE, 0.3 ECC, 0.2 HHH, 0.5

GRT \longrightarrow EEE, 1

TWG \longrightarrow CEE, 0.9 CCH, 0.1

WGR \longrightarrow CHE, 0.1 EEE, 0.9

<u>DebruijnExtend</u>

Dreycey Albin, Angela Folz

STEP 1 – K-mer Mapping

Look up the corresponding set of secondary structures for each k-mer using the precomputed hash table.

STEP 2 - Stitch-Extend

Use BFS to traverse the Debruijn graph to find the highest weighted path. This is implemented using a dynamic programming method where the subproblem is matching the contracted nodes to the nodes of the next layer.

OUTPUT (most probable):

CCEEEEE Prob: 0.1215

 $TC: O(3^{\ell+1} * (\ell - k + 1))$

