

N-Channel Enhancement Mode Power MOSFET

Description

The MS8205 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

- $V_{DS} = 20V$, $I_D = 5A$ $R_{DS(ON)} < 34mΩ$ @ $V_{GS} = 2.5V$ $R_{DS(ON)} < 29mΩ$ @ $V_{GS} = 4.5V$
- High Power and current handing capability
- Lead free product is acquired
- Surface Mount Package

Application

- Battery protection
- Load switch
- Power management

Absolute Maximum Ratings (TA=25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V_{DS}	20	V
Gate-Source Voltage	V _{GS}	±10	V
Drain Current-Continuous	I _D	5	Α
Drain Current-Pulsed (Note 1)	I _{DM}	25	Α
Maximum Power Dissipation	P _D	1.5	W
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 150	$^{\circ}\!\mathbb{C}$

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	100	°C/W
--	-----------------	-----	------

Electrical Characteristics (TA=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	21	_	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =19.5V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±10V,V _{DS} =0V	-	_	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	0.5	0.7	1.2	V
Dunin Courses On Chata Basistanas	_	V _{GS} =4.5V, I _D =4.5A	-	20	29	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =2.5V, I _D =3.5A	-	27	34	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =4.5A	-	10	_	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}		-	600	_	pF
Output Capacitance	C _{oss}	V _{DS} =8V,V _{GS} =0V, F=1.0MHz	-	330	_	pF
Reverse Transfer Capacitance	C _{rss}	1 1.01/11/2	-	140	_	pF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}		-	10	20	nS
Turn-on Rise Time	t _r	V_{DD} =10 V , I_{D} =1 A	-	11	25	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =4.5V, R_{GEN} =6 Ω	-	35	70	nS
Turn-Off Fall Time	t _f		-	30	60	nS
Total Gate Charge	Qg		-	10	15	nC
Gate-Source Charge	Q_{gs}	V_{DS} =10V, I_{D} =6A, V_{GS} =4.5V	-	2.3	-	nC
Gate-Drain Charge	Q_{gd}	v u3−∓v	-	1.5	-	nC
Drain-Source Diode Characteristics			•	•	•	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =1.7A	-	0.75	1.2	V
Diode Forward Current (Note 2)	I _S		-	-	1.7	Α
	1				<u> </u>	ь

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \leq 10$ sec.
- 3. Pulse Test: Pulse Width $\, \leqslant \,$ 300 μ s, Duty Cycle $\, \leqslant \,$ 2%.
- 4. Guaranteed by design, not subject to production

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output CHARACTERISTICS

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance

SOT23-6 PACKAGE INFORMATION

SYMBOLS		MILLIMETERS	3
	Min.	Nom.	Max.
A	197	2	1.45
A2	0.90	0.15	1.30
b	0.30	51	0.50
С	0.08	2	0.22
D	2.70	2.90	3.10
E	2.50	2.80	3.10
E1	1.50	1.60	1.70
е	0.95 BSC		
e1	1.90 BSC		
L	0.30	0.45	0.60
L1	0.60 BSC		
L2	0.20 BSC		
R	0.10	21	20
R1	0.10		0.25
θ	0°	4°	8°
θ1	0°	10°	15°