EA869 Entrada e Saída: Aspectos básicos e GPIO

Faculdade de Engenharia Elétrica e de Computação (FEEC) Universidade Estadual de Campinas (UNICAMP)

Prof. Levy Boccato

Introdução

- Quando falamos de operações de entrada e saída (I/O, do inglês *input-output*), estamos sempre nos referindo ao fluxo de informação do ponto de vista do processador.
- Entrada: refere-se à chegada de dados à CPU. Ou seja, o dado sai de um dispositivo e vai para a CPU (registradores, memória).
 - > **Exemplos:** Mouse, teclado, sensor, *pendrive*, etc.
- **Saída:** refere-se à saída de dados da CPU. Ou seja, o dado é gerado na CPU e enviado para uma interface ou um dispositivo.
 - > Exemplos: Monitor, impressora, atuador, pendrive, etc.

Introdução

- Uma forma de conectar dispositivos externos a um microprocessador se dá utilizando alguns de seus pinos.
- O processador possui linhas dedicadas ao tratamento de dados, endereços e sinais de controle que formam um único **barramento**.
- Neste contexto, duas alternativas de projeto podem ser exploradas:
 - ➤ I/O mapeada em memória: os dispositivos, chamados de periféricos, ocupam endereços específicos do espaço de endereçamento de memória existente.
 - Os registradores de configuração e de dados relacionados àquele dispositivo (ou pino) do processador estão mapeados em faixas de endereços de memória.
 - ➤ I/O isolada: pinos adicionais no barramento indicam se o endereço fornecido deve ser associado a um acesso à memória ou a um dispositivo de I/O.

Entrada e Saída

- I/O mapeada em memória: os dispositivos compartilham com a memória o espaço de endereçamento existente.
 - > Exemplo: Endereço de 16 bits

- ➤ Não necessita de instruções especiais para acessar os dispositivos periféricos. Os mesmos comandos (*e.g, load* e *store*) para comunicação com a memória servem para I/O.
- ➤ Há uma perda de espaço de endereçamento para tratar os periféricos.
- ➤ É necessário realizar a decodificação dos endereços para a comunicação.

Entrada e Saída

- I/O isolada (port-mapped I/O): os dispositivos, chamados de periféricos, ocupam um espaço de endereçamento diferente (isolado) da memória.
 - > Exemplo: Endereço de 16 bits

M-I/O = 0 64 KB de endereços correspondem à memória

M-I/O = 1 64 KB de endereços correspondem aos periféricos

- ➤ Preciso de instruções especiais (*e.g.*, IN e OUT) para mover dados entre os registradores dos periféricos e a memória / processador.
- Não há perda de espaço da memória de dados.
- ➤ Decodificação de endereços é mais simples: quando o número de periféricos é muito menor que o espaço de endereçamento, então os bits de endereço mais significativos podem ser ignorados (decodificação parcial).

GPIOs

- As portas de entrada e saída de propósito geral (*General-Purpose Input/Output* GPIO) possivelmente representam os elementos mais explorados de microcontroladores.
- GPIOs são linhas digitais conectadas aos pinos externos do microcontrolador usadas para o controle e o acionamento de dispositivos (LEDs, botões, motores, etc.).
- Cada GPIO pode ser configurada independentemente como um pino de entrada ou de saída.
- Via *software*, pode-se **escrever** um nível lógico baixo ou alto em uma **GPIO** de **saída**. Analogamente, é possível **ler** valores digitais em uma **GPIO** de **entrada**.

Enable = 0

• GPIO – Saída

Output = Alta impedância

- GPIO Saída
 - ➤ Dois registradores (*flip-flops* tipo D):
 - > Data Direction Register (DDR): habilita a conexão entre o registrador de dados e o pino do microcontrolador.
 - Registrador de dados (Port): armazena o nível lógico a ser colocado no pino de saída.
 - Procedimento para escrever no pino n de saída da porta x:
 - 1. Escrever um nível lógico "1" em DDR*x*_Bit*n*.
 - 2. Escrever um nível lógico "1" ou "0" em Port*x*_Bit*n*.

• GPIO – Entrada

• GPIO – Entrada

- Acrescenta-se ao circuito um registrador (*flip-flop* tipo D), denominado Pin, com sua entrada de dados conectada ao pino do microcontrolador.
- ➤ Se o conteúdo do registrador DDR é "0", o registrador de saída é desconectado do pino e um dispositivo de entrada pode ser conectado com segurança ao pino do microcontrolador. Ou seja, o pino se transforma em uma entrada.
- ➤ A cada pulso do relógio, o nível lógico no pino é amostrado e armazenado no registrador Pin, de modo que seu conteúdo possa ser lido pelo processador.
- \triangleright Procedimento para leitura do pino n da porta x:
 - 1. Escrever um nível lógico "0" em DDR*x*_Bit*n*.
 - 2. Ler o conteúdo da linha Pin*x*_Bit*n* (conteúdo do registrador Pin).

- O microcontrolador Atmega328P possui 23 linhas GPIO, divididas em três portas:
 - > Porta B: 8 linhas
 - > Porta C: 7 linhas
 - > Porta D: 8 linhas
- Cada porta possui três registradores:
 - ➤ DDR*x*: define a direção da porta ("0" = entrada, "1" = saída).
 - ➤ PORT*x*: armazena o dado de saída.
 - > PINx: armazena o dado de entrada amostrado.

(OBS: x = B, C ou D)

- O microcontrolador ATMega328P oferece as duas alternativas de projeto de entrada-saída para as GPIOs.
- Ou seja, podemos acessar os registradores referentes às portas por meio de instruções do tipo *load* e *store* nos endereços mapeados em memória (I/O mapeada em memória), ou, então, através de operações de entrada (*in*) e saída (*out*) nos respectivos endereços de I/O (I/O isolada).

Exemplo:

DDRB – The Port B Data Direction Register

Bit	7	6	5	4	3	2	1	0	
0x04 (0x24)	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R/W	1 3							
Initial Value	0	0	0	0	0	0	0	0	

• Exemplo: Porta B

PORTB - The Port B Data Register

Bit	7	6	5	4	3	2	1	0	
0x05 (0x25)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

DDRB – The Port B Data Direction Register

Bit	7	6	5	4	3	2	1	0	
0x04 (0x24)	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R/W	•							
Initial Value	0	0	0	0	0	0	0	0	

PINB – The Port B Input Pins Address⁽¹⁾

Bit	7	6	5	4	3	2	1	0	_
0x03 (0x23)	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Read/Write	R/W								
Initial Value	N/A								

- Para alterar o conteúdo dos registradores DDRx e PORTx, é necessário realizar uma operação de escrita de um *byte* completo, mesmo que se deseja alterar apenas um dos bits, caso trabalhemos com I/O mapeada em memória.
- Se, porém, utilizarmos os endereços de I/O destes registradores, podemos manipular diretamente os bits desejados através de instruções especiais:
 - ➤ CBI zera um bit em um registrador de I/O.

Exemplo: CBI 0x04,7

- Zera o bit 7 (mais significativo) de DDRB.
- ➤ SBI seta um bit em um registrador de I/O.

Exemplo: SBI 0x04,3

Seta o bit 3 de DDRB.

Instruções mais simples: consomem menos ciclos de relógio

• Características elétricas das GPIOs:

-55°C to +125°C				
-65°C to +150°C				
-0.5V to V _{CC} +0.5V				
-0.5V to +13.0V				
6.0V				
40.0mA				
200.0mA				