12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 93402396.1

(22) Date de dépôt : 01.10.93

(51) Int. Cl. 5: A61K 7/13, C07C 323/26,

C07C 323/36

(30) Priorité: 02.10.92 FR 9211711

(43) Date de publication de la demande : 06.04.94 Bulletin 94/14

84) Etats contractants désignés : AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

71 Demandeur : L'OREAL 14, Rue Royale F-75008 Paris (FR) 16, rue Docteur Bergonié
F-93190 Livry-Gargan (FR)
Inventeur: Lagrange, Alain
5, rue de Montry
F-77700 Coupvray (FR)
Inventeur: Genet, Alain
9, rue des Coquelicots
F-93600 Aulnay-sous-Bois (FR)

Mandataire: Casalonga, Axel
BUREAU D.A. CASALONGA - JOSSE
Morassistrasse 8
D-80469 München (DE)

(54) Utilisation en teinture des fibres kératiniques de métaphénylènediamines soufrées et nouvelles métaphénylènediamines soufrées.

67) L'invention est relative à l'utilisation pour la teinture des fibres kératiniques d'au moins une métaphénylènediamine soufrée de formule générale :

$$\begin{array}{c|c}
 & \text{SZ} \\
 & \text{NHR}_1 \\
 & \text{R}_4 \\
 & \text{NHR}_2
\end{array}$$
(I)

dans laquelle,

Z est alkyle, aralkyle, monohydroxyalkyle, polyhydroxyalkyle, aryle, aminoalkyle, fluoroalkyle;

R₁ et R₂, identiques ou différents, sont hydrogène, alkyle, monohydroxyalkyle, polyhydroxyalkyle, monocarbamylalkyle, dialkylcarbamyle, aminoalkyle, acylaminoalkyle, carbalcoxyalkyle, carbamyle, monoalkylcarbamyle, fluoroalkyle;

R₃ est hydrogène, alkyle, R₄ et R₅ identiques ou différents, sont hydrogène, halogène, alcoxy, hydroxyalkyle, -SZ, Z ayant les significations ci-desus; ainsi que les sels d'acides correspondants, au moins un des R₂, R₄ ou R₅ est différent d'hydrogène

moins un des R₃, R₄ ou R₅ est différent d'hydrogène L'invention est également relative à une composition tinctoriale, un procédé de teinture et à de nouvelles métaphénylènediamines soufrées.

La présente invention est relative à l'utilisation pour la teinture de fibres kératiniques et plus particulièrement des cheveux humains, de métaphénylènediamines soufrées, à des compositions tinctoriales contenant ces métaphénylènediamines soufrées, à un procédé de teinture mettant en oeuvre ces compositions, ainsi qu'à de nouvelles métaphénylènediamines soufrées et leur procédé de préparation.

On a déjà utilisé des dérivés soufrés d'amines aromatiques, associés à des précurseurs de colorants d'oxydation, pour la teinture de fibres kératiniques.

Il est connu de teindre les fibres kératiniques et en particulier les cheveux humains, avec des compositions tinctoriales contenant des précurseurs de colorants d'oxydation et des coupleurs.

Les coupleurs, encore appelés modificateurs de coloration, permettent de faire varier les nuances obtenues avec les précurseurs de colorants d'oxydation.

Dans le domaine de la teinture des fibres kératiniques et en particulier des cheveux humains, on est à la recherche de coupleurs qui, associés à des précurseurs de colorants d'oxydation, permettent d'obtenir un large éventail de nuances, tout en conférant aux cheveux une coloration ayant une résistance satisfaisante à la lumière, au lavage, aux intempéries, à la transpiration et aux différents traitements que peuvent subir les cheveux

La demanderesse vient de découvrir, ce qui fait l'objet de l'invention, que l'utilisation de certaines métaphénylènediamines soufrées à titre de coupleurs avec des précurseurs de colorants d'oxydation de type ortho et/ou para et un agent oxydant dans des compositions tinctoriales pour fibres kératiniques, permettaient d'obtenir après application sur les fibres kératiniques et en particulier les cheveux humains, un large éventail de nuances de coloration présentant une résistance à la lumière, au lavage, aux intempéries, à la transpiration et aux différents traitements que peuvent subir les cheveux, particulièrement remarquable.

La présente invention a donc pour objet l'utilisation des métaphénylènediamines soufrées définies ci-après pour la teinture des fibres kératiniques et en particulier les cheveux humains.

Un autre objet de l'invention est constitué par des compositions tinctoriales d'oxydation, destinées à être utilisées pour la teinture des fibres kératiniques et en particulier des cheveux humains, contenant au moins un précurseur de colorant d'oxydation de type or tho et/ou para et au moins une métaphénylènediamine soufrée de formule (I) définie ci-après.

Un autre objet de l'invention porte sur le procédé de coloration des fibres kératiniques et en particulier des cheveux humains, mettant en oeuvre une telle composition mélangée à un agent oxydant.

L'invention a également pour objet de nouvelles métaphénylènediamines soufrées ainsi que leur procédé de préparation.

D'autres objets de l'invention apparaîtront à la lecture de la description et des exemples qui suivent.

La présente invention a donc pour objet l'utilisation pour la teinture de fibres kératiniques et en particulier les cheveux humains d'au moins, une métaphénylènediamine soufrée de formule générale :

$$R_5$$
 R_4
 R_4
 R_3
 R_4
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8

dans laquelle : Z représente un radical alkyle en C_1 - C_{18} , un radical aralkyle dans lequel le radical alkyle est en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 ou polyhydroxyalkyle C_2 - C_6 , un radical aryle, un radical fluoroalkyle en C_1 - C_4 , un radical aminoalkyle de formule :

55

50

5

10

15

20

25

30

35

10

5

dans laquelle n est un nombre entier compris entre 1 et 6 inclus; R_6 et R_7 , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C_1 - C_4 , hydroxyalkyle en C_1 - C_4 , acyle en C_1 - C_6 ;

 R_1 et R_2 , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , polyhydroxyalkyle en C_2 - C_6 , monocarbamylalkyle en C_1 - C_6 , dialkyl-carbamyle en C_1 - C_6 , aminoalkyle en C_1 - C_6 , acylaminoalkyle (C_1 - C_4), carbalcoxy (C_2 - C_6) alkyle (C_1 - C_4), carbamyle ou monoalkyl en C_1 - C_6 carbamyle, fluoroalkyle en C_1 - C_4 ;

R₃ représente un atome d'hydrogène, un radical alkyle en C₁-C₄;

 R_4 et R_5 , identiques ou différents, représentent un atome d'hydrogène, un radicale alkyle en C_1 - C_4 , un radical alcoxy en C_1 - C_4 , un radical hydroxyalkyle en C_1 - C_4 , un halogène, un radical -SZ où Z a les significations indiquées ci-dessus,

au moins un des radicaux R_3 , R_4 ou R_5 est différent d'un atome d'hydrogène, et leurs sels d'acides.

Parmi les significations préférées du radical Z dans les métaphénylènediamines soufrées de formule générale (I) selon l'invention, le radical alkyle en C₁-C₁₈ désigne les radicaux méthyle, éthyle, propyle, butyle, dodécyle, hexadécyle; le radical aralkyle désigne le radical benzyle; le radical mono ou polyhydroxyalkyle désigne -CH₂-CH

30

-CH2-CH2-NHCOCH3; ou

20

25

35

45

lorsque les groupements R_6 et R_7 représentent un radical acyle, celui-ci désigne de préférence les radicaux formyle, acétyle et propionyle.

Lorsque le groupement R₃ désigne un radical alkyle, celui-ci est un radical méthyle, éthyle, n-propyle, isopropyle, n-butyle ou isobutyle.

Les sels d'acides correspondants sont choisis de préférence parmi les chlorhydrates, les sulfates ou les bromhydrates.

Parmi les métaphénylènediarnines soufrées de formule générale (I), on peut citer :

le 2-méthyl-4-méthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 2-méthyl-4-méthylsul-fanyl-benzène-1,3-diamine,

le 2-éthyl-4-méthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 2-éthyl-4-méthylsulfanyl-benzène-1,3-diamine,

le 4-chloro-6-propylthio-1,3 diamino benzène dénommé selon la nomenclature IUPAC 4-chloro-6-propylsulfanyl-benzène-1,3-diamine,

le 4,6-bis-méthylthio- 1 ,3-diaminobenzène dénommé selon la nomenclature IUPAC 4,6-bis-méthylsulfanylbenzène-1,3-diamine

le 4,6-bis-éthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC le 4,6-bis-éthylsulfanyl-benzene-1,3-diamine

le 4,6-bis-trifluorométhylthio-1,3-[N,N'bis(2,2,2trifluoroéthyl)]-diamino benzène dénommé selon la nomenclature IUPAC

N,N'-bis-(2,2,2-trifluoro-éthyl)-4,6-bis-trifluorométhylsulfanyl benzène-1,3-diamine le 4-méthyl-6-méthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 4-méthyl-6-méthylsul-fanyl-benzène-1,3-diamine

le 4-éthylthio-6-méthyl-1,3-diamino benzène dénommé selon la nomenclature IUPAC 4-éthylsulfanyl-6-mé-

thyl-benzène-1,3-diamine

le 4-carboxyéthylthio-6-carboxyméthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC acide 3-(2,4-diamino-5-carboxyméthylsulfanyl-phénylsulfanyl)-propionique

le 4,6-bis-carboxyéthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC acide 3-[2,4-diamino-5-(2-carboxyéthylsulfanyl)-phénylsulfanyl]-propionique

le 2-méthyl-4,6-bis-méthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 2-méthyl-4,6-bis-méthylsulfanyl-benzène-1,3-diamine

le 4,6-bis-éthylthio-2-méthyl-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 4,6-bis-éthylsulfanyl-2-méthyl-benzène-1,3-diamine

le 4,6-bis-propylthio-2-méthyl-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 4,6-bis-propylsulfanyl-2-méthyl-benzène-1,3-diamine

le 4-méthoxy-6-β-acétylaminoéthylthio-1,3diaminobenzène dénommé selon la nomenclature IUPAC N-[2-(2,4-diamino-5-méthoxy-phénylsulfanyl)-éthyl]-acetamide

le 4-méthoxy-6-méthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 4-méthoxy-6-méthylsulfanyl-benzène-1,3-diamine

le 5-chloro-2-méthyl-4-β-acétylaminoéthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC N[2-(2,4-diamino 6-chloro 3-méthylphényl sulfanyl)éthyl] acétamide. le 4,6-bis-hydroxyéthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 2-[2,4-diamino-5-(2-hydroxy-éthylsulfanyl)-phénylsulfanyl]-éthanol

Les composés de formule (I) sont utilisables comme coupleurs en présence de précurseurs de colorants d'oxydation de type ortho et/ou para connus en eux-mêmes, permettant de teindre les cheveux par coloration d'oxydation, selon un processus mettant en oeuvre une réaction de condensation oxydative des précurseurs et du coupleur.

Les précurseurs de colorants de type ortho et/ou para sont des composés qui ne sont pas des colorants en eux-mêmes, mais qui forment un colorant par un processus de condensation oxydative, soit sur eux-mêmes, soit en présence d'un coupleur ou modificateur.

Ces précurseurs de colorants d'oxydation de type ortho ou para sont des composés benzéniques ou hétérocycliques qui comportent deux groupements fonctionnels amino ou hydroxy et amino, en position ortho ou para l'un par rapport à l'autre.

Les précurseurs de colorants d'oxydation de type ortho ou para peuvent être choisis parmi les paraphénylènediamines, les paraaminophénols, les précurseurs hétérocycliques para dérivés de la pyridine, de la pyrimidine ou du pyrazole, tels que la 2,5-diaminopyridine, la 2-hydroxy 5-aminopyridine, la 2,4,5,6-tétraaminopyrimidine, le 4,5-diamino 1-méthylpyrazole, la 2-diméthylamino 4,5,6-triaminopyrimidine, les orthoaminophénols et les bases dites "doubles".

A titre de paraphénylènediamines, on peut plus particulièrement citer les composés répondant à la formule (III) :

$$\begin{array}{c}
R_{12} \\
R_{11} \\
R_{10} \\
R_{9} \\
NH_{2}
\end{array}$$
(III)

50 dans laquelle:

 R_8 , R_9 , R_{10} , identiques ou différents, représentent un atome d'hydrogène ou d'halogène, un radical alkyle, un radical alcoxy, un radical carboxy, sulfo ou hydroxyalkyle en C_1 - C_4 ;

R₁₁ et R₁₂, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle, hydroxyalkyle, alcoxyalkyle, carbamylalkyle, mésylaminoalkyle, acétylaminoalkyle, uréidoalkyle, carbalcoxyaminoalkyle, sulfoalkyle, pipéridinoalkyle, morpholinoalkyle, ou phényle éventuellement substitué en para par un groupement amino.; ou bien R₁₁ et R₁₂ forment conjointement avec l'atome d'azote auquel ils sont liés, un hétérocycle pipéridino ou morpholino, sous réserve que R₈ ou R₁₀ représente un atome d'hydrogène lorsque R₁₁ et R₁₂ ne représentent pas un atome d'hydrogène, ainsi que les sels de ces composés. Ces radicaux alkyle ou alcoxy

55

20

25

30

ont de préférence 1 à 4 atomes de carbone et désignent notamment les radicaux méthyle, éthyle, propyle, méthoxy et éthoxy.

Parmi les composés de formule (III) on peut plus particulièrement citer la paraphénylènediamine, la ptoluylènediamine, la méthoxyparaphénylènediamine, la chloroparaphénylènediamine, la 2,3-diméthylparaphénylènediamine, la 2,6-diméthylparaphénylènediamine, la 2,6-diéthylparaphénylènediamine, la 2,5-diméthylparaphénylènediamine, la 2-méthyl 5-méthoxyparaphénylènediamine, la 2,6-diméthyl 5-méthoxyparaphénylènediamine, la N,N-diméthylparaphénylènediamine, la N,N-diéthylparaphénylènediamine, la N,N-dipropylparaphénylènediamine, la 3-méthyl 4-amino N,N-diéthylaniline, la N,N-di-(β-hydroyyéthyl)paraphénylènediamine, la 3-méthyl 4-amino N,N-di-(β-hydroxyéthyl)aniline, la 3-chloro 4-amino N,N-di-(β-hydroxyéthyl)aniline, la 4-amino N,N-(éthyl, carbamylméthyl)-aniline, la 3-méthyl 4-amino N,N-(éthyl, carbarnylméthyl)aniline, la 4amino N,N-(éthyl, β-pipéridinoéthyl) aniline, la 3-méthyl 4-amino N,N-(éthyl, β-pipéridinoéthyl)aniline, la 4amino N,N-(éthyl, β-morpholinoéthyl)aniline, la 3-méthyl 4-amino N,N-(éthyl,β-morpholinoéthyl)aniline, la 4amino N,N-(éthyl,β-acétylaminoéthyl) aniline, la 4-amino N-(β-méthoxyéthyl) aniline, la 3-méthyl 4-amino N,N-(éthyl, β-acétylaminoéthyl) aniline, la 4-amino N,N-(éthyl, β-mésylaminoéthyl) aniline, la 3-méthyl 4-amino N,N-(éthyl, β-mésylaminoéthyl) aniline, la 4-amino N,N-(éthyl, β- sulfoéthyl)aniline, la 3-méthyl 4-amino N,N-(éthyl, β-sulfoéthyl) aniline, la N-[(4'-amino)phényl]-morpholine, la N-[(4'-amino)phényl]pipéridine, la 2hydroxyéthylparaphénylènediamine, la fluoroparaphénylènediamine, la carboxyparaphénylènediamine, la sulfoparaphénylènediamine, la 2-isopropylparaphénylènediamine, la 2-n-propylparaphénylènediamine, l'hydroxy-2-n-propylparaphénylènediamine, la 2-hydroxyméthylparaphénylènediamine, la N,Ndiméthyl 3-méthyl paraphénylènediamine, la N,N-(éthyl,β-hydroxyéthyl)paraphénylènediamine, la N-(dihydroxypropyl)paraphénylènediamine, la N-4'-aminophénylparaphénylènediamine, la N-phénylparaphénylènediamine.

Ces paraphénylènediamines peuvent être utilisées soit sous forme de base libre, soit sous forme de sels, tels que chlorhydrate, bromhydrate ou sulfate.

Parmi les p-aminophénols, on peut citer le p-aminophénol, le 2-méthyl 4-aminophénol, le 3-méthyl 4-aminophénol, le 3-méthyl 4-aminophénol, le 3-chloro 4-aminophénol, le 2,6-diméthyl 4-aminophénol, le 3,5-diméthyl 4-aminophénol, le 2,3-diméthyl 4-aminophénol, le 2-hydroxyméthyl 4-aminophénol, le 2-méthoxy 4-aminophénol, le 3-méthoxy 4-aminophénol, le 3-(β-hydroxyéthyl)4-aminophénol, le 2-méthoxyméthyl 4-aminophénol, le 2-aminométhyl 4-aminophénol, le 2-β-hydroxyéthylaminométhyl 4-aminophénol, le 2-éthoxyméthyl 4-aminophénol, le 2-(β-hydroxyéthoxy)méthyl 4-aminophénol.

Les bases dites "doubles" sont des bis-phénylalkylènediamines, répondant à la formule :

$$R_{14}$$
 R_{15}
 R_{15}
 R_{16}
 R_{16}

dans laquelle:

 Z_1 et Z_2 , identiques ou différents, représentent des groupements hydroxyle ou NHR₁₇, où R₁₇ désigne un atome d'hydrogène ou un radical alkyle inférieur;

 R_{14} et R_{15} , identiques ou différents, représentent soit des atomes d'hydrogène, soit des atomes d'halogène, soit encore des radicaux alkyle;

R₁₃ et R₁₆, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle, hydroxyalkyle ou aminoalkyle, dont le reste amino peut être substitué; Y représente un radical pris dans le groupe constitué par les radicaux suivants :

55

50

5

10

15

20

25

30

35

40

-
$$(CH_2)_n$$
-, - $(CH_2)_m$ -O- $(CH_2)_m$ -,
- $(CH_2)_q$ -CHOH- $(CH_2)_q$ -,
- $(CH_2)_p$ -N- $(CH_2)_p$ -;
- $(CH_3)_q$ -

dans lesquels n est un nombre entier compris entre 0 et 8 et m, q et p sont des nombres entiers compris entre 0 et 4, cette base pouvant se présenter également sous forme de ses sels d'addition avec des acides.

Les radicaux alkyle ou alcoxy ci-dessus indiqués désignent de préférence un groupement ayant 1 à 4 atomes de carbone et notamment méthyle, éthyle, propyle, méthoxy et éthoxy.

Parmi les composés de formule (IV) on peut citer le N,N'-bis-(β-hydroéthyl)N,N'-bis-(4'-aminophényl) 1,3-diamino 2-propanol, la N,N'-bis-(β-hydroxyéthyl)N,N'-bis-(4'-aminophényl)éthylènediamine, la N,N'-bis-(4-aminophényl)tétraméthylènediamine, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4-aminophényl)tétraméthylènediamine, la N,N'-bis-(4'-amino 3'-méthylphényl)éthylènediamine.

Parmi les orthoaminophénols, on peut citer plus particulièrement le 1-amino-2-hydroxybenzène, le 6-méthyl 1-hydroxy 2-aminobenzène, le 4-méthyl 1-amino 2-hydroxybenzène, le 4-acétylamino 1-amino 2-hydroxybenzène.

Les composés de formule (I) sont appliqués sur les fibres kératininiques et en particulier les cheveux humains au moyen de compositions tinctoriales qui constituent un autre objet de l'invention.

Les compositions conformes à l'invention contiennent dans un milieu approprié pour la teinture au moins une métaphénylènediamine soufrée définie ci-dessus. Les compositions préférées contiennent au moins une métaphénylènediamine soufrée définie ci-dessus, en association avec au moins un présurseur de colorant d'oxydation tel que défini ci-dessus.

Les compositions tinctoriales conformes à l'invention peuvent également contenir en plus du coupleur répondant à la formule (I) définie ci-dessus, d'autres coupleurs connus en eux-mêmes, tels que les métadiphénols, les métaaminophénols, les métaphénylènediamines différentes de celles de formule (I) ci-dessus, les métacylaminophénols, les métauréidophénols, les métacarbalcoxyaminophénols, l' α -naphtol, les dérivés indoliques, les coupleurs possédant un groupement méthylène actif, tel que les composés β -cétoniques, les pyrazolones

Parmi ces coupleurs on peut plus particulièrement citer, le 2, 4-dihydroxyphénoxyéthanol, le 2,4-dihydroxyanisole, le métaaminophénol, le monométhyléther de résorcine, la résorcine, la 2-méthyl-résorcine, le 2-méthyl 5-aminophénol, le 2-méthyl 5-N-(β -mésylaminoéthyl) aminophénol, le 2,6-diméthyl 3-aminophénol, la 6-hydroxybenzomorpholine, le 2,4-diaminoanisole, le 2,4-diaminophénoxyéthanol, la 6-aminobenzomorpholine, le [2-N-(β -hydroxyéthyl) amino 4-amino]-phénoxyéthanol, le 2-amino 4-N-(β -hydroxyéthyl) amino anisole, le (2,4-diamino)phényl- β , γ -dihydroxypropyléther, la 2,4-diaminophénoxyéthylamine, le 1,3-diméthoxy 2,4-diaminobenzène, le 1,3,5-triméthoxy 2,4-diaminobenzène, le 1-amino 3,4-méthylènedioxybenzène, le 1-hydroxy 3,4-méthylènedioxybenzène, le 2-chloro 6-méthyl 3-aminophénol, le 2-méthyl 3-aminophénol, le 2-méthyl 3-aminophénol, le 2-méthyl)amino 4-aminobenzène, le 3-diéthylaminophénol, le 1,3-dihydroxy 2-méthylbenzène, le 1-hydroxy 2,4-dichloro 3-aminobenzène, le 4,6-di(hydroxyéthoxy) 1,3-diaminobenzène, le 4-méthyl 6-éthoxy 1,3-diaminobenzène, le 4-chloro 6-méthyl 3-aminophénol, le 6-chloro 3-trifluoroéthylaminophénol, et leurs sels.

On peut rajouter à ces compositions, comme cela est bien connu dans l'état de la technique, notamment en vue de nuancer ou d'enrichir en reflet les colorations apportées par les précurseurs de colorants d'oxydation, des colorants directs tels que des colorants azoïques, ant hraquinoniques ou les dérivés nitrés de la série benzénique.

L'ensemble des précurseurs de colorants par oxydation de type para et/ou ortho, ainsi que les coupleurs utilisés dans les compositions tinctoriales conformes à l'invention, représente de préférence de 0,3 à 7 % en poids par rapport au poids de la dite composition. La concentration en composés métaphénylènediamines soufrées de formule (I) peut varier entre 0,05 et 3,5 % en poids du poids total de la composition.

Les compositions tinctoriales conformes à l'invention contiennent également dans leur forme de réalisation préférée, des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères ou leurs mélanges, bien connus dans l'état de la technique.

Ces agents tensio-actifs sont présents dans les compositions conformes à l'invention dans des proportions comprises entre 0,5 et 55 % en poids, et de préférence entre 2 et 50 % en poids par rapport au poids total de

5

10

20

25

30

35

40

45

50

la composition.

5

10

15

20

25

30

35

40

45

50

Ces compositions peuvent également contenir des solvants organiques pour solubiliser les composants qui ne seraient pas suffisamment solubles dans l'eau. Parmi ces solvants, on peut citer à titre d'exemple, les alcanols inférieurs en C₁-C₄, tels que l'éthanol et l'isopropanol; le glycérol; les glycols ou éthers de glycols comme le 2-butoxyéthanol, l'éthylèneglycol, le propylèneglycol, le monoéthyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, les produits analogues et leurs mélanges.

Les solvants sont présents de préférence dans des proportions comprises entre 1 et 40 % en poids, et en particulier entre 5 et 30 % en poids par rapport au poids total de la composition.

Les agents épaississants que l'on peut ajouter dans les compositions conformes à l'invention peuvent être choisis parmi l'alginate de sodium, la gomme arabique, les polymères d'acide acrylique éventuellement réticulés, les dérivés de cellulose, les hétérobiopolysaccharides tels que la gomme de xanthane, on peut également utiliser des agents épaississants minéraux tels que la bentonite.

Ces agents épaississants sont présents de préférence dans des proportions comprises entre 0,1 et 5 %, et en particulier entre 0,2 et 3 % en poids par rapport au poids total de la composition.

Les agents antioxydants qui peuvent être présents dans les compositions sont choisis en particulier parmi le sulfite de sodium, l'acide thioglycolique, le bisulfite de sodium, l'acide déhydroascorbique, l'hydroquinone et l'acide homogentisique. Ces agents antioxydants sont présents dans la composition dans des proportions comprises entre 0,05 et 1,5 % en poids par rapport au poids total de la composition.

Le pH de ces compositions est compris entre 3 et 10,5. 11 est ajusté à la valeur désirée à l'aide d'agents alcalinisants bien connus de l'état de la technique, tels que l'ammoniaque, les carbonates alcalins, les alcanolamines tels que les mono-, di- et triéthanolamines ainsi que leurs dérivés ou les hydroxydes de sodium et de potassium, ou d'agents acidifiants classiques, tels que les acides minéraux ou organiques, tels que les acides chlorhydrique, tartrique, citrique, et phosphonique.

Ces compositions peuvent également contenir d'autres adjuvants cosmétiquement acceptables, tels que par exemple des agents de pénétration, des agents séquestrants, des parfums, des tampons, etc.

Les compositions conformes à l'invention peuvent se présenter sous des formes diverses, telles que sous forme de liquide, de crème, de gel ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques et notarnment des cheveux humains. Ces compositions peuvent être conditionnées en flacons aérosols en présence d'un agent propulseur et former des mousses.

Les composés de formule (I) sont utilisés conformément à l'invention selon un procédé comprenant l'application sur les fibres kératiniques du composé de formule (I) et de précurseurs de colorants d'oxydation ortho et/ou para en présence d'un agent oxydant.

Les compositions tinctoriales conformes à l'invention contenant un précurseur de colorant par oxydation du type para et/ou ortho et un coupleur de formule (I), sont utilisées suivant un procédé mettant en oeuvre la révélation par un agent oxydant.

Conformément à ce procédé on mélange, au moment de l'emploi, la composition tinctoriale décrite ci-dessus avec une solution oxydante en une quantité suffisante pour pouvoir développer une coloration, puis on applique le mélange obtenu sur les fibres kératiniques et en particulier les cheveux humains.

Le pH de la composition appliquée sur les cheveux varie de préférence entre 2 et 13. 11 est ajusté à la valeur désirée à l'aide d'agents alcalinisants bien connus de l'état de la technique, tels que l'ammoniaque, les carbonates alcalins, les alcanolamines comme la mono-, la di- et la triéthanolamine, ainsi que leurs dérivés ou les hydroxydes de sodium ou de potassium ou d'agents acidifiants classiques, tels que les acides minéraux ou organiques, tels que les acides chlorhydrique, tartrique, citrique, phosphorique et sulfonique. La solution oxydante contient à titre d'agent oxydant, l'eau oxygénée, le peroxyde d'urée, des persels, tels que le persulfate d'ammonium des peracides organiques et leurs sels ou des bromates de métaux alcalins. On utilise de préférence une solution d'eau oxygénée à 20 volumes.

Le mélange obtenu est appliqué sur les cheveux et on laisse poser pendant 10 à 40 minutes, de préférence 15 à 30 minutes, après quoi on les rince, les lave au shampooing, on les rince à nouveau et on les sèche.

Le coupleur de formule (I) définie ci-dessus, peut également être mis en oeuvre dans un procédé à plusieurs étapes, consistant dans l'une des étapes, à appliquer le précurseur de colorant d'oxydation du type ortho et/ou para ou leur mélange et, dans une autre étape, à appliquer une composition tinctoriale contenant le coupleur de formule (I).

L'agent oxydant peut être introduit, juste avant l'application, dans la composition appliquée dans le deuxième temps ou bien être appliqué sur les fibres kératiniques elles-mêmes, dans un troisième temps, les conditions de pose, de pH, de lavage et de séchage étant identiques à celles indiquées ci-dessus.

Un autre objet de l'invention est constitué par de nouvelles métaphénylène diamines soufrées qui répondent à la formule :

(V)
$$R_{5}$$
 R_{4}
 R_{3}
 R_{3}

dans laquelle: Z' représente un radical alkyle en C_1 - C_{18} , un radical aralkyle dans lequel le radical alkyle est en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 ou polyhydroxyalkyle C_2 - C_6 , un radical aryle, un radical fluoroalkyle en C_1 - C_4 ,un radical aminoalkyle de formule:

----- (CH₂)_n ----- N R'_{6} R'_{7} (II)

dans laquelle n est un nombre entier compris entre 1 et 6 inclus; R'_{6} et R'_{7} , identiques aux différents, représentent un atome d'hydrogène ou un radical alkyle en C_{1} - C_{4} , hydroxyalkyle en C_{1} - C_{4} , acyle en C_{1} - C_{6} ;

 R'_1 et R'_2 , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , polyhydroxyalkyle en C_2 - C_6 , monocarbamylalkyle en C_1 - C_6 , dialkyl-carbamyle en C_1 - C_6 , aminoalkyle en C_1 - C_6 , acylaminoalkyle (C_1 - C_4), carbalcoxy (C_2 - C_6) alkyle (C_1 - C_4), carbamyle ou monoalkyl en C_1 - C_6 carbamyle, fluoroalkyle en C_1 - C_6 ;

R'₃ représente un atome d'hydrogène, un radical alkyle en C₁-C₄;

 R'_4 et R'_5 , identiques ou différents, représentant un atome d'hydrogène, un halogène, un radical alcoxy en C_1 - C_4 , hydroxyalkyle en C_1 - C_4 , un radical -SR avec R représentant un radical hydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_6 , aralkyle dans lequel le radical alkyle est en C_1 - C_6 , un radical aryle, un radical aminoalkyle de formule :

dans laquelle n est un nombre entier compris entre 1 et 6 inclus; R'₆ et R'₇ identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄, hydroxyalkyle en C₁-C₄ ou acyle en C₁-C₆, sous réserve que R'₄ et R'₅ ne désignent pas simultanément un atome d'hydrogène;

et lorsque un des R'₄ ou R'₅ désigne un atome de chlore, R'₃ représente un radical alkyle.

Parmi les composés répondant à la formule (V) définie ci-dessus on peut citer de préférence :

ie 4-méthoxy-6-β-acétylaminoéthylthio -1,3 diaminobenzène dénommé selon la nomenclature IUPAC N-[2-(2,4-diamino-5-méthoxy-phénylsulfanyl-éthyl]-acétamide

le 4-méthoxy-6-méthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC 4-méthoxy-6-méthylsulfanyl-benzène-1,3-diamine

le 5-chloro-2-méthyl-4-β-acétylamonoéthylthio-1,3-diaminobenzène dénommé selon la nomenclature IUPAC N[2-[2,4-diamino 6-chloro 3-méthylphénylsulfanyl)éthyl] acétamide.

Le 4,6-bis-hydroxyéthyl thio-1,3-diarninobenzène dénommé selon la nomenclature IUPAC 2-[2,4-diami-

55

5

10

15

20

Z₁-SH

no-5-(2-hydroxy-éthylsulfanyl)-phénylsulfanyl]-éthanol

Les métaphénylènediamines soufrées de formule (V) ou leurs sels peuvent être préparées selon un procédé en plusieurs étapes.

Selon un premier procédé et dans une première étape, on fait réagir en présence d'une base telle que la potasse ou le carbonate de potassium, le 1,3-dichloro 4,6-dinitrobenzène sur un thiol de formule (VI) :

(VI)dans laquelle Z₁ représente un radical alkyle en C₁-C₁₈, aralkyle dans lequel le radical alkyle est en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, un radical aryle ou un groupement de formule (VII)

20 dans laquelle R'6 et n ont les significations indiquées précédemment dans la formule (V); et R17 représente un atome d'hydrogène ou un radical alkyle en C1-C3; dans une deuxième étape, on réduit les substituants nitro du composé de formule (VIII) :

$$z_1$$
 NO_2 $VIII)$

35 obtenu précédernment pour préparer un composé répondant à la formule (IX) ;

$$SZ_1$$
 NH_2
 NH_2
 NH_2

dans laquelle Z₁ a la signification indiquée ci-dessus ;

éventuellement, dans une troisième étape, et suivant le composé métaphénylènediamine soufrée de formule 50 (I) que l'on souhaite obtenir, on effectue

- a) soit une mono-substitution des amines aromatiques pour obtenir un composé de formule (V) dans laquelle R'1 et/ou R'2 sont différents de H;
- b) soit une hydrolyse acide du composé (IX) dans lequel Z' représente un groupement de formule (VII) pour obtenir le composé de formule (X).

55

5

25

30

40

S-(CH₂)_n-NR₆ H

NH₂

NH₂

$$(X)$$

dans laquelle R'_6 et n ont les significations indiquées ci-dessus, R'_6 ne désignant toutefois pas de radical acyle en C_1 - C_6 ,

les amines nucléaires pouvant être ensuite monosubstituées.

 c) soit on effectue au préalable une substitution de l'amine extranucléaire du composé de formule (IX) pour obtenir le composé de formule (XI)

dans laquelle R'₆ et R'₇ et n ont les significations indiquées ci-dessus, les amines nucléaires pouvant être ensuite monosubstituées.

Selon un second procédé, et dans une première étape on fait réagir un composé substitué de formule (XII)

dans laquelle R_{17} représente un groupement alkyle en $C_1\text{-}C_4$ sur un thiol de formule :

Z₁ -SM (XIII

dans laquelle, M est un métal alcalin et Z₁ a les significations indiquées ci-dessus.

Dans une deuxième étape, on réduit le substituant nitro du composé de formule (XIV)

$$R_{17}$$
 O NO_2 NO_2

5

10

15

20

25

30

35

40

45

50

obtenu précédemment pour préparer le composé de formule (XV)

$$R_{17} O$$

$$NH_2$$

$$NH_2$$

$$NH_2$$

dans laquelle R₁₇ et Z₁ ont les significations indiquées ci-dessus ; éventuellement, dans une troisième étape, et suivant la métaphénylènediamine soufrée de formule (V) que l'on souhaite obtenir, on effectue une monosubstitution de l'amine aromatique pour obtenir un composé de formule (V) dans laquelle R'₁ ou R'₂ est différent de H.

Selon un troisième procédé et dans une première étape on fait réagir un 2,4-dinitrobenzène polysubstitué de formule (XVI)

$$CI$$
 CH_3
 CI
 NO_2
 NO_2
 NO_2

sur un thiol de formule :

5

10

15

20

25

30

35

40

45

50

Z₁-SM (XIII)

dans laquelle, M est un métal alcalin et Z₁ a les significations indiquées ci-dessus.

Dans une deuxième étape, on réduit les substituants nitro du composé de formule (XVII) :

$$Z_{1S}$$
 CH_3
 CI
 NO_2
 CI
 NO_2
 CI

obtenu précédemment pour préparer un composé répondant à la formule (XVIII).

$$Z_1S$$
 CH_3
 CH_3

55 dans laquelle Z_1 a les significations indiquées ci-dessus.

La réduction des groupes nitro s'effectue de préférence en utilisant du fer en milieu acétique ou alors par le cyclohexène en présence d'un catalyseur palladium-charbon ou encore par le zinc en poudre en présence d'éthanol et de chlorure d'ammonium ou par tout autre procédé de réduction classique.

La substitution des amines aromatiques ou de l'amine extra-nucléaire peut être effectuée en faisant réagir, par exemple, le bromure d'éthyle, la bromhydrine du glycol, l'éthyl-chloroformiate, la β-chloracétamide, ou l'anhydride acétique.

Les exemples qui suivent sont destinés à illustrer l'invention sans pour autant présenter un caractère limitatif.

Exemple de préparation 1 :

Préparation du dichlorhydrate, monohydrate de 4-méthoxy 6-methylthio 1,3- diaminobenzène dénommé selon la nomenclature IUPAC dichlorhydrate de 4-méthoxy 6-méthylsulfanyl-benzène 1,3-diamine, monohydrate.

1ère étape : Synthèse du (5-méthoxy 2,4-dinitrophényl)-méthyl-sulfane.

A une suspension de thiométhylate de sodium (0,15 mole) dans 120 ml de diméthoxyéthane à température ambiante, on ajoute goutte à goutte en une heure une solution de 23,2 g (0,1 mole) de 1-chloro 5-méthoxy-2,4-dinitro-benzène dans 60 ml de diméthoxyéthane.

La réaction est exothermique : on maintient la température entre 23 et 25°.

A la fin de la coulée, on agite la suspension pendant une demie heure et puis on verse dans 60 ml d'eau glacée. Le précipité cristallisé est essoré, réempaté dans l'eau, lavé à l'isopropanol et recristallisé du diméthoxyéthane bouillant.

On obtient des cristaux jaunes (16,9 g) fondant à 161°C et dont l'analyse élémentaire calculée pour $C_8H_8N_2O_5$ S est :

·	C %	Н%	N %	0 %	s %
Calculé	39,34	3,30	11,47	32,76	13,13
Trouvé	39,54	3,28	11,44	32,71	13,20

2ème étape : réduction.

On chauffe au reflux de l'alcool un mélange de 2,2 g de chlorure d'ammonium, 16,5 ml d'eau, 140 ml d'alcool à 96° et 41 g de zinc en poudre fine. On ajoute par portions le (5-méthoxy 2,4-dinitrophényl)méthyl-sulfane obtenu à l'étape 1 (11,0 g-0,045 mole) de façon à maintenir le reflux sans chauffage. La réaction est exothermique.

A la fin de l'addition le chauffage au reflux est prolongé pendant une demi-heure. Le milieu réactionnel est filtré bouillant sur 17 ml d'alcool absolu chlorhydrique environ 6 N.

Par refroidissement du filtrat, le dichlorhydrate de 4-méthoxy 6-méthylsulfanyl-benzène-1,3-diamine, monohydrate cristallise.

Après essorage et séchage sous vide sur potasse on obtient 7,0 g de cristaux blancs fondant avec décomposition à 198-203°C et dont l'analyse élémentaire calculée pour $C_8H_{16}Cl_2$ N_2O_2S est :

	C %	Н%	N %	0%	S %	d %
Calculé	34,92	5,86	10,18	11,63	11,65	25,77
Trouvé	35,23	5,87	10,23	11,30	11,81	25,63

50

15

20

25

30

35

40

45

Exemple de préparation 2 :

Préparation du dichlor hydrate, monohydrate de 4-méthoxy 6-β-acétylaminoéthylthio 1,3-diaminobenzène dénommé selon la nomenclature IUPAC dichlor hydrate de N-[2-(2,4-diamino-5-méthoxy-phénylsulfanyi)-éthyl]-acétamide monohydrate.

1ère étape : Synthèse du N-[2-(5-méthoxy 2,4-dinitro-phénylsulfanyl)-éthyl]-acétamide.

On dissout 10 g de potasse en poudre dans une solution de 19,0 g (0,15 mole) de N-(2-mercapto-éthyl)-acétamide dans 100 ml de diméthoxyéthane chauffée à 40°C.

Après refroidissement à 15°C on coule goutte-à-goutte, en trente minutes, une solution de 23,2 g (0,1 mole) de 1-chloro-5-méthoxy-2,4-dinitro-benzène dans 60 ml de diméthoxyéthane, en maintenant la température entre 15 et 20°C.

La suspension est agitée pendant 1 heure puis est versée dans 500 ml d'eau glacée.

Le précipité cristallisé est essoré, réempaté dans l'eau puis dans l'alcool isopropylique et recristallisé de l'alcool à 96° bouillant.

On obtient 23,2 g de cristaux jaunes fondant à 185°C et dont l'analyse élémentaire calculée pour C₁₁H₁₃N₃O₆ S est :

	С %	Н%	N %	0 %	S %
Calculé	41,90	4,16	13,33	30,45	10,17
Trouvé	41,94	4,15	13,38	30,54	10,09

25

30

10

15

20

2ème étape : Réduction

La réduction est effectuée selon le mode opératoire décrit pour l'exemple 1 étape 2.

On obtient des cristaux blancs de dichlorhydrate de N-[2-(2,4-diamino 5-méthoxy-phénylsulfanyl)-éthyl]-acétamide monohydrate fondant avec décomposition à 183-187°C et dont l'analyse élémentaire calculée pour C₁₁H₂1N₃O₃S cl est :

	С%	Н%	N %	0%	S %	d %
Calculé	38,16	6,11	12,13	13,86	9,26	20,48
Trouvé .	37,83	6,48	11,93	14,12	9,25	20,37

35

40 Exemple de préparation 3 :

Préparation du 4,6-bis-hydroxyéthylthio 1,3-diaminobenzène dénommé selon la nomenclature IU-PAC 2-[2,4-diamino 5(2-hydroxyéthylsulfanyl)-phénylsulfanyl]-éthanol.

45 <u>1ère étape</u>: Synthèse du 2-[5-(2-hydroxy-éthylsulfanyl)2,4-dinitro-phénylsulfanyl]-éthanol.

On chauffe à 60°C un mélange de 34,5 g de carbonate de potassium, de 8 g de 2-mercaptoéthanol et de 100 ml de dioxane.

On ajoute 11,9 g (0,05) de 1,5 dichloro-2,4-dinitro-benzène et prolonge le chauffage 1 h à 60° puis 1 h à 100°C.

Le milieu réactionnel est versé dans 500 ml d'eau glacée. Le précipité cristallisé est essoré, réempaté dans l'eau et séché sous vide sur anhydride phosphorique.

Après recristallisation, on obtient 9,0 g de cristaux jaune orangé fondant à 149° C.

55 2ème étage : Réduction

La réduction est effectuée selon le mode opératoire décrit pour l'exemple 1, étape 2. On obtient des cristaux blancs (81 %) de 2-[2,4-diamino-5-(2-hydroxy-éthylsulfanyl)-phénylsulfanyl]-éthanol fondant à 144°C et dont l'analyse élémentaire calculée pour $C_{10}H_{16}N_2O_2S_2$ est :

	С %	Н%	N %	0 %	S %
Calculé	46,13	6,19	10,76	12,29	24,63
Trouvé	46,21	6,07	10,67	12,42	24,57

Exemple de préparation 4 :

5

10

20

25

30

35

40

45

50

55

Préparation du 5-chioro 2-méthyl 4-β-acétaminoéthylthio 1,3-diaminobenzène dénommé selon la nomenclature IUPAC N-[2-(2,4-diamino 6-chloro 3-méthyl-phénylsulfanyl)-éthyl]-acétamide.

15 1ère étape: Synthèse du N-[2-(6-chloro 3-méthyl 2,4-dinitrophénylsulfanyl)-éthyl]-acétamide.

Cette synthèse est effectuée selon le mode opératoire décrit pour l'exemple 2, étape 1. En partant de 30,1 g (0,12 mole) de 1,2-dichloro-4-méthyl 3,5-dinitro-benzène, on obtient 15,5 g de cristaux jaune pâle fondant à 152°C (recristallisés de l'acétate d'éthyle) et dont l'analyse élémentaire calculée pour C₁₁H₁₂Cl N₃OS est :

	С %	Н%	N %	0 %	s %	CI %
Calculé	39,59	3,62	12,59	23,97	9,61	10,62
Trouvé	39,67	3,62	12,63	23,84	9,69	10,56

2ème étape : Réduction

La réduction est effectuée selon le mode opératoire décrit pour l'exemple 1, étape 2.

On obtient des cristaux blancs (recristallisés de l'éthanol 96°) de N-[2-(2,4-diamino 6-chloro 3-méthyl-phénylsulfanyl)-éthyl]acétamide fondant à 111°C et dont l'analyse élémentaire calculée pour C₁₁H₁₆ Cl N₃ OS est :

	C.%	Н%	N %	0%	S %	CI %
Calculé	48,26	5,89	15,35	5,84	11,71	12,95
Trouvé	48,31	5,92	15,27	5,92	11,69	12,87

Exemples de compositions

EXEMPLE 1

Dichlorhydrate, monohydrate de 4-méthoxy 6-β-acétylaminoéthylthio 1,3-diaminobenzène
 1,038

- Dichlorhydrate de 2,6-diméthyl paraphénylènediamine 0,627 g

- Alcool oléique polyglycérolé à 2 moles de glycérol 4 g

- Alcool oléique polyglycérolé à 4 moles de glycérol 5,7 g

- Acide oléique 3 g

 Amine oléique oxyéthylénée à 2 moles d'oxyde d'éthylène commercialisé sous la dénomination ETHO-MEEN O12 par la Société AKZO 7 g

- Sel de sodium du laurylamino succinamate de diéthylaminopropyle 3 g MA

- Alcool oléique 5 g

- Diéthanolamide d'acide oléique 12 g

Propylène glycol 3,5 gAlcool éthylique 7 g

- Dipropylène glycol 0,5 g

- Monométhyléther de propylène glycol 9 g

Métabisulfite de sodium en solution aqueuse à 35 % 0,45 g MA

Acétate d'ammonium 0,8 g Antioxydant, séquestrant. q.s

Parfum, conservateur a.s

Monoéthanolamine q.s.

pH: 9.8 Eau déminéralisée 100 g q.s.p.

Au moment de l'emploi, on mélange la composition ci-dessus, poids pour poids, avec de l'eau oxygénée à 20 volumes dont le pH est ajusté entre 1 et 1,5 par addition d'acide orthophosphorique. Le pH du mélange est égal à 6,5. Celui-ci est appliqué sur des cheveux gris à 90 % de blancs pendant 30 minutes à température ambiante. Les cheveux sont ensuite rincés, lavés au shampooing, rincés une nouvelle fois puis séchés. Ils sont colorés en bleu.

EXEMPLE 2

5

10

20

25

30

35

40

45

50

55

Il est similaire à l'exemple 1 à la seule différence que l'on remplace les 1,038 g de dichlorhydrate, monohydrate 15 de 4-méthoxy-6-β-acétylaminoéthylthio 1,3-diaminobenzène par 0,821 g de 5-chloro 2-méthyl 4-β-acétylaminoéthylthio 1,3-diaminobenzène.

Les conditions de teinture sont identiques à celles décrites à l'exemple 1. Les cheveux gris à 90 % de blancs sont colorés en doré mât.

EXEMPLE 3

On prépare la composition tintoriale suivante :

- Dichlorhydrate, monohydrate de 4-méthoxy 6-méthylthio 0,55 g 1,3-diaminobenzène

- Paraphénylènediamine 0,216 g

- Octyldodécanol vendu sous la dénomination EUTANOL D 8 g par la Société HENKEL

- Alcool oléique

- Lauryléthersulfate de monoéthanolamine vendu sous la dénomination SIPON LM 35 par la Société HENKEL 3 g

Alcool éthylique 10 g Alcool benzylique 10 g

Alcool cétylstéarylique oxyéthyléné à 33 moles d'oxyde d'éthylène vendu sous la dénomination SIMUL-SOL GS par la société SEPPIC

Acide éthylène diamine tétracétique 0,2g

Solution de polymère cationique comportant les motifs suivants :

3,7 g à 60 % de M.A. Monoéthanolamine

7,5 g Diéthanolamide d'acide linoléique vendu sous la dénomination COMPERLAN F par la Société HENKEL

Ammoniaque à 20 % de NH3 10,2 g

Métabisulfite de sodium en solution aqueuse à 35 % 1,3 g

Hydroquinone 0,15 g

1-phényl 3-méthyl 5-pyrazolone 0,2g

Eau déminéralisée qs.p. 100 g

Cette composition est mélangée au moment de l'emploi, poids pour poids, avec de l'eau oxygénée à 20 volumes

dont le pH est égal à 3. Le pH du mélange est égal à 9,5. Celui-ci est appliqué sur des cheveux gris permanentés pendant 30 minutes à température ambiante. Les cheveux sont ensuite rincés, lavés au shampooing et séchés. lls sont colorés en gris bleuté mât.

Revendications

5

10

15

20

25

30

35

40

45

50

55

Utilisation pour la teinture des fibres kératiniques, et en particulier les cheveux humains, d'au moins une métaphénylènediamine soufrée de formule générale :

> SZ NHR₁ **(I)** NHR₂

dans laquelle : Z représente un radical alkyle en C1-C18, un radical aralkyle dans lequel le radical alkyle est en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆ ou polyhydroxyalkyle en C₂-C₆, un radical aryle, un radical fluoroalkyle en C₁-C₄, un radical aminoalkyle de formule :

dans laquelle n est un nombre entier compris entre 1 et 6 inclus, R₆ et R₇, identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C₁-C₄, hydroxyalkyle en C₁-C₄, acyle en C₁-C₆; R₁ et R₂, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, monocarbamylalkyle en C₁-C₆, dialkylcarbamyle (C₁-C₆), aminoalkyle en C₁-C₆, acylaminoalkyle en C₁-C₄, carbalcoxy en C₂-C₆ alkyle (C₁-C₄), carbamyle ou monoalkyl en C1-C6 carbamyle, fluoroalkyle en C1-C4 R₃ représente un atome d'hydrogène, un radical alkyle en C₁-C₄;

R₄ et R₅, identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C₁-C₄, un radical alcoxy en C₁-C₄, hydroxyalkyle en C₁-C₄, un halogène, un radical -SZ où Z a les significations indiquées ci-dessus, au moins un des radicaux R₃, R₄ ou R₅ est différent d'un atome d'hydrogène et leurs sels d'acides correspondants.

- Utilisation selon la revendication 1, caractérisée par le fait que la métaphénylènediamine soufrée de formule (I) est mise en oeuvre en présence de précurseurs de colorants d'oxydation de type ortho et/ou para.
- Utilisation selon la revendication 1 ou 2, caractérisée par le fait que dans le composé de formule (I), Z désigne un radical méthyle, éthyle, propyle, butyle, dodécyle, hexadécyle, le radical benzyle, le radical phenyle, un radical mono ou polyhydroxyalkyle choisi parmi:
 - -CH₂-CH₂-OH, -CH₂-CHOH-CH₂-OH, -CH₂-CHOH-CH₃, un radical aminoalkyle choisi parmi :
 - -CH₂-CH₂NH₂, -CH₂-CH₂-NHCH₃, un radical acylaminoalkyle choisi parmi:

-CH₂-CH₂-NH-COCH₃; ou

-CH₂-CH₂-N-COCH₃, CH₃

5

15

25

35

40

45

et lorsque R₆ ou R₇ désignent un radical acyle, celui-ci représente un groupement formyle, acétyle ou propionyle.

- 4. Utilisation selon l'une quelconque des revendications 1 à 3 caractérisée en ce que les composés de formule (I) sont choisis parmi les composés suivants :
 - le 2-méthyl-4-méthylthio-1,3-diaminobenzène
 - le 2-éthyl-4-méthylthio-1,3-diaminobenzène
 - le 4-chloro-6-propylthio-1,3 diamino benzène
 - le 4,6-bis-méthylthio-1,3-diaminobenzène
 - le 4,6-bis-éthylthio-1,3-diaminobenzène
 - le 4,6-bis-trifluorométhylthio-1,3-[N,N'-bis-(2',2',2'-trifluoroéthyl)] diamino benzène
 - le 4-méthyl-6-méthylthio -1,3-diaminobenzène
 - le 4-éthylthio -6-méthyl-1,3-diamino benzène
 - le 4-carboxyéthylthio 6-carboxyméthylthio-1,3-diaminobenzène
- le 4,6-bis-carboxyéthylthio 1,3-diaminobenzène
 - le 2-méthyl 4,6-bis-méthylthio 1,3-diaminobenzène
 - le 4,6-bis-éthylthio-2-méthyl 1,3-diaminobenzène
 - le 4,6-bis-propylthio-2-méthyl 1,3-diaminobenzène
 - le 4-méthoxy 6-β-acétylaminoéthylthio-1,3-diaminobenzène
 - le 4-méthoxy 6-méthylthio 1,3-diaminobenzène
 - le 5-chloro 2-méthyl 4-β-acétylaminoéthylthio 1,3-diaminobenzène
 - le 4,6-bis-hydroxyéthyl thio 1,3-diaminobenzène
 - et leurs sels d'acides.
- 5. Utilisation selon l'une quelconque des revendications 1 à 4, caractérisé par le fait que les sels d'acides correspondants sont choisis parmi les chlorhydrates, les sulfates ou les bromhydrates.
 - 6. Utilisation selon l'une quelconque des revendications 2 à 5, caractérisée par le fait que les précurseurs de colorants d'oxydation sont choisis parmi les paraphénylènediamines, les paraaminophénols, les précurseurs hétérocycliques para dérivés de la pyridine, de la pyrimidine, ou du pyrazole, les orthoaminophénols et les bis-phénylalkylènediamines.
 - 7. Composition tinctoriale pour fibres kératiniques, et en particulier les cheveux humains, contenant dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation de type ortho et/ou para, et au moins, à titre de coupleur, une métaphénylènediamine soufrée telle que définie dans les revendications 1, 3 ou 4.
 - 8. Composition tinctoriale selon la revendication 7, caractérisée en ce qu'elle contient d'autres coupleurs choisis parmi les métadiphénols, des métaarninophénols, des métaphénylènediamines différentes de celles de formule (I), des métaacylaminophénols, des métauréidophénols, des métacarbalcoxyaminophénols, l'α-naphtol, les dérivés indoliques, les coupleurs possédant un groupe méthylène actif.
 - 9. Composition tinctoriale selon l'une quelconque des revendications 7 à 8, caractérisée en ce qu'elle contient 0, 05 à 3,5 % en poids du poids total de la composition d'au moins un composé de formule (I).
- 50 10. Composition tinctoriale selon l'une quelconque des revendications 7 à 9, caractérisée en ce qu'elle contient de 0,3 à 7 % en poids par rapport au poids total de la composition, de précurseurs de colorants d'oxydation de type ortho et/ou para et de coupleurs.
- 11. Composition tinctoriale selon l'une quelconque des revendications 7 à 10, caractérisée en ce qu'elle contient en outre un adjuvant choisi parmi des agents- tensio-actifs cationiques, anioniques, non-ioniques, amphotères ou leurs mélanges, en des concentrations comprises entre 0,5 % et 55 % en poids par rapport au poids total de la composition, les solvants organiques en des concentrations comprises entre 1 et 40 % en poids par rapport au poids total de la composition, les colorants directs, les agents épais-

sissants en des concentrations comprises entre 0,1 et 5 % en poids par rapport au poids total de la composition et les agents antioxydants en des proportions comprises entre 0,05 et 1,5 % en poids par rapport au poids total de la composition.

- 12. Composition tinctoriale selon l'une quelconque des revendications 7 à 11, caractérisée en ce qu'elle se présente sous forme de liquide, de crème, de gel ou sous toute autre forme appropriée, ou peut être conditionnée en flacon aérosol en présence d'un agent propulseur et former des mousses.
- 13. Procédé de teinture d'oxydation des fibres kératiniques et en particulier des cheveux humains, caractérisé en ce que l'on applique sur les fibres kératiniques au moins un précurseur de colorant d'oxydation de type ortho et/ou para, et une métaphénylènediamine soufrée de formule générale :

$$R_5$$
 R_4
 R_3
 R_4
 R_3
 R_4
 R_3
 R_4
 R_3

dans laquelle: Z représente un radical alkyle en C_1 - C_{18} , un radical aralkyle dans lequel le radical alkyle est en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 ou polyhydroxyalkyle C_2 - C_6 , un radical aryle, un radical fluoroalkyle en C_1 - C_4 , un radical aminoalkyle de formule:

$$-----(CH2)n ------ N$$

$$R7 (II)$$

dans laquelle n est un nombre entier compris entre 1 et 6 inclus, R_6 et R_7 , identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C_1 - C_4 , hydroxyalkyle en C_1 - C_4 , acyle en C_1 - C_6 ; R_1 et R_2 , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 , polyhydroxyalkyle en C_2 - C_6 , monocarbamylalkyle en C_1 - C_6 , dialkyl-carbamyle en C_1 - C_6 , aminoalkyle en C_1 - C_6 , acylaminoalkyle en C_1 - C_4 , carbalcoxy (C_2 - C_6) alkyle (C_1 - C_4), carbamyle ou monoalkyl en C_1 - C_6 carbamyle, fluoroalkyle en C_1 - C_4 ; R_3 représente un atome d'hydrogène, un radical alkyle en C_1 - C_4 ,

- R_4 et R_5 , identiques ou différents, représentent un atome d'hydrogène, un halogène, un radical alkyle en C_1 - C_4 , alcoxy en C_1 - C_4 , hydroxyalkyle en C_1 - C_4 , un radical SZ où Z à les significations indiquées ci-dessus, sous réserve qu'au moins un des radicaux R_3 , R_4 , R_5 soit différent d'un atome d'hydrogène et les sels d'acides correspondants, en présence d'un agent oxydant.
- 14. Procédé selon la revendication 13, caractérisé en ce que l'on mélange, au moment de l'emploi, une composition tinctoriale pour fibres kératiniques, et en particulier les cheveux humains, contenant, dans un milieu approprié pour la teinture, au moins un précurseur de colorant d'oxydation de type ortho et/ou para, et au moins, à titre de coupleur, une métaphénylènediamine soufrée telle que définie dans la revendication 13, avec une solution oxydante en une quantité suffisante pour développer la coloration, la composition résultante ayant un pH variant entre 2 et 13, et on applique le mélange ainsi obtenu sur les fibres kératiniques, et en particulier les cheveux humains.
 - 15. Procédé de teinture d'oxydation selon l'une quelconque des revendications 13 à 14, caractérisé par le fait

15

20

25

30

35

40

45

50

qu'on laisse poser pendant 10 à 40 minutes, de préférence 15 à 30 minutes, on rince les cheveux, on les lave au shampooing, on les rince à nouveau et on les sèche.

16. Nouvelles Métaphénylènediamines soufrées de formule générale :

$$R_4$$
 R_3
 R_4
 R_3

dans laquelle: Z' représente un radical alkyle en C_1 - C_{18} , un radical aralkyle dans lequel le radical alkyle est en C_1 - C_6 , un radical monohydroxyalkyle en C_1 - C_6 ou polyhydroxyalkyle C_2 - C_6 , un radical aryle, un radical fluoroalkyle en C_1 - C_4 , un radical aminoalkyle de formule:

dans laquelle n est un nombre entier compris entre 1 et 6 inclus; R'_{8} et R'_{7} , identiques aux différents, représentent un atome d'hydrogène ou un radical alkyle en C_{1} - C_{4} , hydroxyalkyle en C_{1} - C_{4} , acyle en C_{1} - C_{6} ; R'_{1} et R'_{2} , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_{1} - C_{6} , un radical monohydroxyalkyle en C_{1} - C_{6} , polyhydroxyalkyle en C_{2} - C_{6} , monocarbamylalkyle en C_{1} - C_{6} , dialkyl-carbamyle en C_{1} - C_{6} , aminoalkyle en C_{1} - C_{6} , acylaminoalkyle (C_{1} - C_{4}), carbalcoxy (C_{2} - C_{6}) alkyle (C_{1} - C_{4}), carbamyle ou monoalkyl en C_{1} - C_{6} carbamyle, fluoroalkyle en C_{1} - C_{4} ; R'_{3} représente un atome d'hydrogène, un radical alkyle en C_{1} - C_{4} ;

R'4 et R'5, identiques ou différents, représentant un atome d'hydrogène, un halogène un radical alcoxy en C_1 - C_4 , hydroxyalkyle en C_1 - C_4 , un radical -SR avec R représentant un radical hydroxyalkyle en C_1 - C_4 , polyhydroxyalkyle en C_2 - C_6 , aralkyle dans lequel le radical alkyle est en C_1 - C_6 , un radical aryle, un radical aminoalkyle de formule :

dans laquelle n est un nombre entier compris entre 1 et 6 inclus; R'_{6} et R'_{7} identiques ou différents, représentent un atome d'hydrogène ou un radical alkyle en C_{1} - C_{4} , hydroxyalkyle en C_{1} - C_{6} ,

sous réserve que R'₄ et R'₅ ne désignent pas sirnultanément un atome d'hydrogène; et lorsque un des R'₄ ou R'₅ désigne un atome de chlore, R'₃ représente un radical alkyle.

17. Métaphénylènediamines soufrées selon la revendication 17, caractérisée en ce qu'elle est choisie parmi:

5

10

15

20

25

30

35

45

50

le 4-méthoxy 6-β-acétylaminoéthylthio 1,3-diaminobenzène
le 4-méthoxy 6-méthylthio 1,3-diaminobenzène
le 5-chloro 2-méthyl 4-β-acétylaminoéthylthio 1,3-diaminobenzène
le 4,6-bis-hydroxyéthyl thio 1,3-diaminobenzène

RAPPORT DE RECHERCHE EUROPEENNE

Numero de la demando EP 93 40 2396

atégorie	Citation du document des part	avec indication, on cas do becoin, ies pertinentes	Revendication	CLASSEMENT DE LA DEMANDE (JALCES)
(EP-A-0 253 593 * le document e	(ETHYL CORP.) n entier *	16	A61K7/13 C07C323/26
	US-A-4 982 002 * le document e	(B.G.MCKINNIE ET AL.) n entier *	16	C07C323/36
	vol. 33 , Mars pages 746 - 753 R.B.GOSNELL ET aromatic diamin	EXHIB. (ISSEEG) 1988 , ANAHEIN, CALIF. USA AL. 'An ortho-thicalkylate e as an improved liquid rbon fiber reinforced epox	1	
	ELEMENTS, GORD PUBLISHERS		16	
	page 136, exem	ole 37		DOMAINES TECHNIQUE RECHERCHES (IN.CL.S) A61K
	US-A-4 973 760 * le document e	(R.L.DAVIS) n entier *	16	C07C
	FR-A-1 061 331 * le document en	(CILAG) n entier *	16,17	
	DE-A-33 43 642 * le document en	(HENKEL KGAA) n entier *	1-15	
Α.	WO-A-92 22525 (1 * le document e	-'OREAL) n entier *	1-17	
۸,	FR-A-2 687 308 (* le document e	(L'OREAL) 20 Août 1993 n entier *	1-17	
		our toutes les revendications		
	im de la recherda LA HAYE	Date of actorisated de la secharcia 11 Mars 1994	0	Executor
X : parti Y : parti	ATEGORE DES DOCUME cultivement pertinent à lui ser cultivement pertinent en comb a document de la même cutége ro-plan trchaologique	NTS CITES T: théurie ou prim E: document de hi date de dépôt o finaisme avec un D: ché desse le de	revet antirleur, mai la après cette date mande	nwatine