Data Mining Association Analysis: Basic Concepts and Algorithms

Thanks to [Tan,Steinbach, Kumar]

Items

Bread, Milk

Bread, Diaper, Beer, Eggs

Milk, Diaper, Beer, Coke

Bread, Milk, Diaper, Beer

Bread, Milk, Diaper, Coke

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\{Diaper\} \rightarrow \{Beer\},\$ {Milk, Bread} → {Eggs,Coke}, {Beer, Bread} → {Milk},

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

- Itemset
 - A collection of one or more items
 - Example: {Milk, Bread, Diaper}
 - k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. σ({Milk, Bread.Diaper}) = 2
- Support
 - Fraction of transactions that contain an

2个同时出现

- E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:

$$\{\mathsf{Milk},\,\mathsf{Diaper}\} \to \{\mathsf{Beer}\}$$

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule

⇒ Computationally prohibitive!

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 $\begin{array}{l} \{\mbox{Milk,Diaper}\} \rightarrow \{\mbox{Beer}\} \ (\mbox{s=0.4, c=0.67}) \\ \{\mbox{Milk,Beer}\} \rightarrow \{\mbox{Diaper}\} \ (\mbox{s=0.4, c=0.67}) \\ \{\mbox{Diaper,Beer}\} \rightarrow \{\mbox{Milk}\} \ (\mbox{s=0.4, c=0.67}) \\ \{\mbox{Beer}\} \rightarrow \{\mbox{Milk,Diaper}\} \ (\mbox{s=0.4, c=0.5}) \\ \{\mbox{Milk}\} \rightarrow \{\mbox{Diaper,Beer}\} \ (\mbox{s=0.4, c=0.5}) \\ \\ \{\mbox{Milk}\} \rightarrow \{\mbox{Diaper,Beer}\} \ (\mbox{s=0.4, c=0.5}) \\ \end{array}$

Observations:

2^k-2 总共有这么 些规则

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d

LCM 用于生成itemset

- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$

$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent 作业之一,证明这个是否成立。因为可能会出现在
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subset Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support 反相关

Apriori Algorithm

- Method:
 - Let k=1 这里可以进行优化
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

- Number of frequent itemsets = $3 \times \sum_{k=1}^{10} {10 \choose k}$
- Need a compact representation

Closed Itemset

An itemset is closed if none of its immediate supersets has the same support as the itemset

B. AB. BD. ABD. BCD是

TID	Items
1	{A,B}
2	{B,C,D}
3	{A,B,C,D}
4	{A,B,D}
5	{A,B,C,D}

_		
	Itemset	Support
	{A}	4
	{B}	5
	{C}	3
	{D}	4
	{A,B}	4
	{A,C}	2
	{A,D}	3
	{B,C}	3

4		
5	Itemset	Support
3	{A,B,C}	2
1	{A,B,D}	3
4	{A,C,D}	2
4	{B,C,D}	3
2	{A,B,C,D}	2
3	(-,-,-,-,	
3		

个closed Itemset

通过closed Itemset可以找到 每个项的exact support

Alternative Methods for Frequent Itemset Generation

- Representation of Database
 - horizontal vs vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

			,	
Α	В	С	D	Е
1	1	2	2	1
4	2	3	2 4 5 9	3 6
5	2 5	4	5	6
4 5 6 7 8 9	7	2 3 4 8 9	9	
7	8 10	9		
8	10			
9				

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

• If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring $L \to \emptyset$ and $\emptyset \to L$)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

◆ Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

CD=>AB

D=>ABC

BD=>AC

- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Effect of Support Distribution

- How to set the appropriate minsup threshold?
 - If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective.

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for X → Y				
	Y	Y		
Χ	f ₁₁	f ₁₀	f ₁₊	
X	f ₀₁	f ₀₀	f _{o+}	
	f ₊₁	f ₊₀	ΙΤΙ	

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of X and Y f_{00} : support of X and Y

Used to define various measures

 support, confidence, lift, Gini, J-measure, etc.

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - P(S∧B) = P(S) × P(B) => Statistical independence
 - P(S∧B) > P(S) × P(B) => Positively correlated
 - P(S∧B) < P(S) × P(B) => Negatively correlated

		Measure	Formula
	#		POTIMIE $P(A,B)-P(A)P(B)$
There are lots of	1	φ-coefficient	$\frac{\sqrt{P(A_j)P(B_j)(1-P(A_j))}}{\sqrt{P(A_j)P(B_j)(1-P(A_j))(1-P(B_j))}}$ $\sum_j \max_k P(A_j, B_k) + \sum_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{k} P(A_{k}) - \max_{k} P(B_{k})}$
in the literature	3	Odds ratio (a)	$\frac{P(A,B)P(\overline{A},B)}{P(A,B)P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A}B)} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \sqrt{\alpha - 1}$
Some measures are good for certain	6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(A)P(\overline{B})}$
applications, but not	7	Mutual Information (M)	$\frac{\sum_i \sum_j P(A_i, B_j) \log P(A_i) P(\overline{B_j})}{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
for others	8	J-Measure (J)	$\max \left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(B)})\right)$
			$P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(A)})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
What criteria should			$-P(B)^2-P(\overline{B})^2$,
we use to determine			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure			$-P(A)^2 - P(\overline{A})^2$
is good or bad?	10	Support (s)	P(A,B)
1	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
What about Apriori-	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
style support based	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
pruning? How does	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
it affect these	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
measures?	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$
1	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
1	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
1	20	Jaccard (ζ)	P(A,B) $P(A)+P(B)-P(A,B)$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$

Statistical-based Measures

Measures that take into account statistical dependence

$$\begin{aligned} Lift &= \frac{P(Y \mid X)}{P(Y)} \\ Interest &= \frac{P(X,Y)}{P(X)P(Y)} \\ PS &= P(X,Y) - P(X)P(Y) \\ \phi - coefficient &= \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}} \end{aligned}$$