Mandatory Assignment 1 - Diffun

Johannes Agerskov

Dated: March 3, 2021

$\mathbf{Ex} \ \mathbf{1}$

Let $\varphi \in C_0^{\infty}(\mathbb{R}^2)$ and $u \in \mathcal{D}'(\mathbb{R})$. We show that $f(x) = \langle u, \varphi(x, \cdot) \rangle$ defines a function in $C_0^{\infty}(\mathbb{R})$ with $f'(x) = \langle u, \partial_x \varphi(x, \cdot) \rangle$.

Proof. We first of all notice that in the product topology the projection maps $\pi_1: \mathbb{R}^2 \ni (x,y) \mapsto x \in \mathbb{R}$ and $\pi_2: \mathbb{R}^2 \ni (x,y) \mapsto y \in \mathbb{R}$ are continuous. Therefore, $\pi_1(\operatorname{supp}(\varphi)) \subset \mathbb{R}$ and $\pi_2(\operatorname{supp}(\varphi)) \subset \mathbb{R}$ are compact sets, as they are images of a compact set under continuous maps. Now clearly, we have $\operatorname{supp}(\varphi(x,\cdot)) \subset \pi_2(\operatorname{supp}(\varphi))$ for all $x \in \mathbb{R}$, so $\operatorname{supp}(\varphi(x,\cdot))$ is closed subset of a compact set, and therefore $\varphi(x,\cdot)$ has compact support for all $x \in \mathbb{R}$. Furthermore, $\varphi(x,\cdot)$ is a C^∞ function, since the map $\sigma_x: \mathbb{R} \ni y \mapsto (x,y) \in \mathbb{R}^2$ is continuous, and all derivatives of $\varphi(x,\cdot)$ are equal to $\partial_y^m \varphi(x,\cdot) = \partial_y^m \varphi \circ \sigma_x$ for some $m \geq 0$, where the partial derivatites of φ which are continuous in the product topology by assumtion. Hence $\varphi(x,\cdot) \in C_0^\infty(\mathbb{R})$ for all $x \in \mathbb{R}$, and f is well-defined. Now by a similar argument we have that $\operatorname{supp}(\varphi(\cdot,y)) \subset \pi_1 \operatorname{supp}(\varphi)$ for all $y \in R$ and therefore $\varphi(x,\cdot) \neq 0$ only if $x \in \pi_1 \operatorname{supp}(\varphi)$. Therefore, we may conclude that $\operatorname{supp}(f(x)) \subset \pi_1(\operatorname{supp}(\varphi))$. Thus $\operatorname{supp}(f(x))$ is a closed subset of a compact set, hence it is compact.

Thus we know that f(x) is well-defined and have compact support. to show that f is a C^{∞} function. We compute the difference quotient for f

$$\frac{f(x+h) - f(x)}{h} = \left\langle u, \frac{\varphi(x+h, \cdot) - \varphi(x, \cdot)}{h} \right\rangle, \tag{1.1}$$

where we used linearity of $\langle u,\cdot\rangle$. Now Let h_n be any sequence, such that $h_n\to 0$. Let R>0 such that $h_n\in B(0,R)$, for all $n\geq 1$, where B(0,R) is the ball centered at 0 with radius R. Then we have $\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n}\to \partial_x\varphi(x,\cdot)$ in $C_0^\infty(\mathbb{R})$. This is seen by the mean value theorem: First we have $\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n}=\partial_x\varphi(x+\xi(x,h_n,\cdot),\cdot)$ for some $0\leq \xi(x,h_n,\cdot)\leq h_n$. Furthermore, since we by the above argument have that $\sup(\varphi(x,\cdot))\subset\pi_2\sup(\varphi)\subset\mathbb{R}$ for all $x\in\mathbb{R}$, we see that $\sup\left(\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n}\right)\subset\pi_2\sup(\varphi)+\overline{B(0,R)}\subset\mathbb{R}$ for all $n\geq 1$. Thus there exist a $j\geq 1$ such that $\sup\left(\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n}\right)\in K_j$ for all $n\geq 1$, where K_j is the increasing sequence of compact sets defined in lemma 2.2 in the book. Furthermore, since $\partial_x\varphi(\cdot,\cdot)$ is continuous with compact support, it a well known result that it is uniformly continuous. But then it is

clear that $\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n} = \partial_x \varphi(x+\xi_n(x,h_n,\cdot),\cdot) \to \partial_x \varphi(x,\cdot)$ uniformly (in ·) as $n \to \infty$, for all $x \in \mathbb{R}$. The same result holds for all the derivatives, $\partial_y^m \varphi(x,\cdot)$, by the same argument applied to $\partial_y^m \varphi(x,\cdot)$ instead of $\varphi(x,\cdot)$. Thus we have shown that there exist a $j \geq 1$ such that $\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n} \in C_{K_j}^{\infty}(\mathbb{R})$ for all $n \geq 1$ and

$$\sup \left\{ \left| \partial_y^m \left(\frac{\varphi(x + h_n, y) - \varphi(x, y)}{h_n} - \partial_x \varphi(x, y) \right) \right| : y \in K_j, \ m \le \alpha \right\} \to 0 \text{ as } n \to \infty, \quad (1.2)$$

for all $\alpha \geq 0$. Hence by theorem 2.5(a) we have that $\frac{\varphi(x+h_n,\cdot)-\varphi(x,\cdot)}{h_n} \to \partial_x \varphi(x,\cdot)$ in $C_0^{\infty}(\mathbb{R})$. It then follows from continuity of $u:C_0^{\infty}(\mathbb{R}) \to \mathbb{C}$ and (1.1) that $\frac{f(x+h_n)-f(x)}{h_n} \to \langle u,\partial_x \varphi(x,\cdot)\rangle$, as $n\to\infty$. Since this was shown for any sequence, h_n , converging to 0, we then may conclude that $\frac{f(x+h)-f(x)}{h} \to \langle u,\partial_x \varphi(x,\cdot)\rangle$ as $h\to 0$, such that $f'(x)=\langle u,\partial_x \varphi(x,\cdot)\rangle$. It then follows that f is continuous, since it is differentiable. Now to see that f is C^{∞} , we simply proceed by induction. Iterating the argument with φ replaced by $\partial_x^m \varphi$, which also is in $C_0^{\infty}(\mathbb{R})$, shows that f is m+1 times differentiable with $f^{(m+1)}(x)=\langle u,\partial_x^{m+1}\varphi(x,\cdot)\rangle$, thus $f\in C_0^m(\mathbb{R})$. Therefore, by induction, $f\in C_0^k(\mathbb{R})$ for all $k\geq 0$ such that $f\in C_0^{\infty}(\mathbb{R})$, which completes the proof. \square

Ex 2

Consider the function $u: \mathbb{R} \to \mathbb{C}$ given by $u(x) = \exp(-|x|), x \in \mathbb{R}$.

1) We show that $u \in L^1(\mathbb{R})$ and that in the sense of distributions we have

$$\left(1 - \frac{\mathrm{d}^2}{\mathrm{d}x^2}\right)u = 2\delta_0.$$
(2.3)

where δ_0 is the δ -distribution at 0. That $u \in L^1(\mathbb{R})$ is easily verified: u is measurable, since it is continuous. Furthermore,

$$\int_{\mathbb{R}} |u(x)| \, \mathrm{d}x = 2 \int_{[0,\infty)} \exp(-x) \, \mathrm{d}x = 2 \lim_{N \to \infty} \int_{[0,N]} \exp(-x) \, \mathrm{d}x$$

$$= 2 \lim_{N \to \infty} \int_{0}^{N} \exp(-x) \, \mathrm{d}x = 2 \lim_{N \to \infty} \left[-\exp(-x) \right]_{0}^{N} = 2 < \infty,$$
(2.4)

where we used that $\exp(-|x|)$ is even, the monotone convergence theorem, that we can convert Lebesgue integrals of continuous functions on bounded intervals to Riemann integrals, and finally the fundamental theorem of calculus. So $u \in L^1(\mathbb{R})$. To verify (2.3), notice that u is C^{∞} on \mathbb{R}_+ and \mathbb{R}_- , and that u is continuous on \mathbb{R} . Therefore, by lemma 3.6 in G. Grubb, we have that

$$\frac{\mathrm{d}}{\mathrm{d}x}u(x) = \begin{cases} -\exp(-x), & x > 0\\ \exp(x), & x < 0. \end{cases}$$
 (2.5)

which is again an $L^1(\mathbb{R})$ function (also by lemma 3.6). Now notice that $\frac{d}{dx}u(x) + 2H(x)$ is extendible to a continuous function on \mathbb{R} , where H is the Heaviside step function $H = \mathbb{1}_{(0,\infty)}$.

This is easily verified, as H does not change the continuity properties on \mathbb{R}_+ or \mathbb{R}_- , however, $\lim_{x\to 0_+}\left[\frac{\mathrm{d}}{\mathrm{d}x}u(x)+2H(x)\right]=-1+2=1$ and $\lim_{x\to 0_-}\left[\frac{\mathrm{d}}{\mathrm{d}x}u(x)+2H(x)\right]=1+0=1$. Thus lemma 3.6 again applies to this function, giving us

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x} u + 2H \right) = \frac{\mathrm{d}^2}{\mathrm{d}x^2} u + 2\delta_0 = \begin{cases} \exp(-x), & x > 0, \\ \exp(x), & x < 0. \end{cases}$$
 (2.6)

which is equivalent to

$$\left(1 - \frac{\mathrm{d}^2}{\mathrm{d}x^2}\right)u = 2\delta_0.$$
(2.7)

as desired.

2) We show that if $\phi \in C_0^{\infty}(\mathbb{R})$ then $u * \phi \in C^{\infty}(\mathbb{R})$ and

$$\left(1 - \frac{\mathrm{d}^2}{\mathrm{d}x^2}\right)u * \phi = 2\phi.$$
(2.8)

That $u * \phi \in C^{\infty}(\mathbb{R})$ follows from theorem 3.16 and by noticing that $u * \phi = \phi * u$ (by definition as the adjoint operation). Now (2.8) follows from Eq (3.42) in G. Grubb. Using this relation and linearity of the convolution we may calculate

$$\left(1 - \frac{\mathrm{d}^2}{\mathrm{d}x^2}\right)u * \phi = \left(\left(1 - \frac{\mathrm{d}^2}{\mathrm{d}x^2}\right)u\right) * \phi = 2\delta_0 * \phi = 2\left\langle\delta_0, \phi(x - \cdot)\right\rangle = 2\phi(x - 0) = 2\phi(x). \tag{2.9}$$

where we also used theorem 3.16 in the third equality again.

Ex 3

 $\mathbf{a})$

Let $f(x) = x^{-3/2}H(x)$, where H is the Heaviside step function. We show that $f|_{\mathbb{R}_+} \in L^1_{loc}(\mathbb{R}_+)$, but f is not in $L^1_{loc}(\mathbb{R})$.

Proof. Notice first that $f_n = \mathbb{1}_{(1/n,\infty)} f$ is a non-negative increasing sequence of functions such that $f_n \uparrow f$ pointwise. f_n are measurable, since

$$\{f_n > a\} = \begin{cases} (1/n, a^{-2/3}) & 0 < a < n^{3/2}, \\ (1/n, \infty) & a = 0, \\ \emptyset & a \ge n^{3/2}, \\ \mathbb{R} & a < 0 \end{cases}$$
(3.10)

which are all open sets, i.e. $\{f_n > a\} \in \mathcal{B}(\mathbb{R})$ for all $a \in \mathbb{R}$. By the monotone convergence theorem we therefore have that f is measurable. Now for any compact set $K \in \mathbb{R}_+$ we have

that there exist a, b > 0 such that $K \subset [a, b]$. Thus we estimate

$$\int_{K} |f(x)| \, \mathrm{d}x = \int_{K} f(x) \, \mathrm{d}x \le \int_{[a,b]} f(x) \, \mathrm{d}x, \tag{3.11}$$

where we used that f is non-negative. Since f is continuous on the interval (a, b) we may rewrite this integral as a Riemann integral

$$\int_{K} |f(x)| \, \mathrm{d}x \le \int_{a}^{b} f(x) \, \mathrm{d}x = \int_{a}^{b} x^{-3/2} \, \mathrm{d}x = \left[-2x^{-1/2} \right]_{a}^{b} = 2(a^{-1/2} - b^{-1/2}) < \infty. \tag{3.12}$$

Thus $f \in L^1_{loc}(\mathbb{R}_+)$. On the other hand, [0,1] is clearly a compact set in \mathbb{R} , and by the monotone convergence theorem we have

$$\int_{[0,1]} |f(x)| \, \mathrm{d}x = \int_{[0,1]} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{[0,1]} f_n(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{(1/n,1]} x^{-3/2} \, \mathrm{d}x \tag{3.13}$$

again since $x^{-3/2}$ is continuous on (1/n,1) we may rewrite in terms of Riemann integrals

$$\int_{[0,1]} |f(x)| \, \mathrm{d}x = \lim_{n \to \infty} \int_{1/n}^{1} x^{-3/2} \, \mathrm{d}x = \lim_{n \to \infty} \left[-2x^{-1/2} \right]_{1/n}^{1} = 2 \lim_{n \to \infty} \left(n^{1/2} - 1 \right) = \infty, \quad (3.14)$$

from which it follows that $f \notin L^1_{loc}(\mathbb{R})$.

We now show that $\langle \Lambda, \varphi \rangle = \int_{(0,\infty)} x^{-3/2} (\varphi(x) - \varphi(0)) dx$ defines a distribution in $\mathcal{D}'(\mathbb{R})$, which is equal to f on \mathbb{R}_+ and on \mathbb{R}_- .

Proof. We have already shown that $x^{-3/2}\mathbbm{1}_{[0,\infty)}$ is measurable and in $L^1_{\text{loc}}(\mathbb{R}_+)$. It will follows from the proof below that $\mathbbm{1}_{(0,\infty)}x^{-3/2}(\varphi(x)-\varphi(0))$ is in $L^1(\mathbb{R}_+)$ for any $\varphi\in C_0^\infty(\mathbb{R})$ so $\langle\Lambda,\varphi\rangle$ is well defined. That $\langle\Lambda,\cdot\rangle$ is a linear functional is obvious from linearity of the integral. $\langle\Lambda,\varphi\rangle\neq\infty$ will follows from the proof of continuity below. We show, that $\langle\Lambda,\cdot\rangle$ is also continuous on $C_0^\infty(\mathbb{R})$. To see this, let a>0 and let $\varphi\in C_{K_i}^\infty(\mathbb{R})$ and notice that

$$|\langle \Lambda, \varphi \rangle| = \left| \int_{(0,\infty)} x^{-3/2} \left(\varphi(x) - \varphi(0) \right) dx \right|$$

$$\leq \int_{(0,a]} \left| x^{-3/2} \left(\varphi(x) - \varphi(0) \right) \right| dx + \int_{(a,\infty)} \left| x^{-3/2} \left(\varphi(x) - \varphi(0) \right) \right| dx.$$
(3.15)

Now by the mean value theorem $(\varphi(x) - \varphi(0)) = \varphi'(\xi(x))x$ where $0 \le \xi(x) \le x$. Thus we have

$$|\langle \Lambda, \varphi \rangle| \leq \int_{(0,a]} \left| x^{-1/2} \varphi'(\xi(x)) \right| dx + \int_{(a,\infty)} \left| x^{-3/2} \left(\varphi(x) - \varphi(0) \right) \right| dx$$

$$\leq \max_{x \in \mathbb{R}} (\left| \varphi'(x) \right|) \int_{(0,a]} x^{-1/2} dx + 2 \max_{x \in \mathbb{R}} (\left| \varphi(x) \right|) \int_{(a,\infty)} x^{-3/2} dx. \tag{3.16}$$

where the maxima, $\max_{x \in \mathbb{R}}(|\varphi'(x)|) = \max_{x \in K_j}(|\varphi'(x)|)$ and $\max_{x \in \mathbb{R}}(|\varphi(x)|) = \max_{x \in K_j}(|\varphi(x)|)$ exist since, $\varphi \in C_{K_j}^{\infty}(\mathbb{R})$. By the usual conversion of Lebsgue integrals to Riemann integrals, via

e.g. monotone convergence theorem, we get

$$\max_{x \in K_{j}} (|\varphi'(x)|) \int_{(0,a]} x^{-1/2} dx + 2 \max_{x \in K_{j}} (|\varphi(x)|) \int_{(a,\infty)} x^{-3/2} dx
= 2 \max_{x \in K_{j}} (|\varphi'(x)|) a^{1/2} + 4 \max_{x \in K_{j}} (|\varphi(x)|) a^{-1/2} \le C \sup \left\{ \left| \varphi^{(m)}(x) \right| : x \in K_{j}, \ m \le 1 \right\}$$
(3.17)

where C might be chosen to be e.g. C = 6, which is easily seen by setting a = 1. Thereby we have shown for any $j \in \mathbb{N}$ that

$$\langle \Lambda, \varphi \rangle \le C \sup \left\{ \left| \varphi^{(m)}(x) \right| : x \in K_j, \ m \le 1 \right\},$$
 (3.18)

for all $\varphi \in C^{\infty}_{K_j}(\mathbb{R})$. Thus by theorem 2.5(d) we see that $\langle \Lambda, \cdot \rangle$ is continuous and therefore defines a distribution in $\mathcal{D}'(\mathbb{R})$.

That $\Lambda = \Lambda_f$ on \mathbb{R}_+ is easily seen: Let $\varphi \in C_0^{\infty}(\mathbb{R}_+)$, then

$$(\Lambda - \Lambda_f)(\varphi) = \int_{(0,\infty)} x^{-3/2} \left(\varphi(x) - \underbrace{\varphi(0)}_{=0} \right) dx - \int_{(0,\infty)} x^{-3/2} \varphi(x) dx = 0.$$
 (3.19)

where we used that $f \in L^1_{loc}(\mathbb{R})$ in the first equality and that $supp(\varphi) \subset (0, \infty)$ implies that $\varphi(0) = 0$. Thus we have shown that $\Lambda|_{\mathbb{R}_+} - \Lambda_f|_{\mathbb{R}_+} = 0$ which by definition means that $\Lambda = \Lambda_f$ (= f) on \mathbb{R}_+ . On \mathbb{R}_- both distributions are trivially zero, so $\Lambda = \Lambda_f$ (= f) on \mathbb{R}_- as well.

b)

Let $g(x) = -2x^{-1/2}H(x)$. We show that $g \in L^1_{loc}(\mathbb{R})$ and that $g' = \Lambda$.

Proof. Define $g_n = \mathbb{1}_{(1/n,\infty)}g$, then $-g_n$ is an increasing sequence of non-negative functions such that $-g_n \uparrow -g$ pointwise as $n \to \infty$. g_n are measurable, by a similar argument to one made in (a), or by noticing that g_n may be written as a product of a continuous function

$$\tilde{g}(x) = \begin{cases} g(x) & x > 1/n \\ -2xn^{3/2} & x \le 1/n \end{cases}$$
, and the measurable function $\mathbb{1}_{(1/n,\infty)}$. Thus, $-g_n$ are measurable

and by the monotone convergence theorem -g is measurable, from which it follows that g is measurable. Now let K be a compact subset of \mathbb{R} , then there exist a > 0 such that $K \in (-a, a)$ therefore, we estimate

$$\int_{K} |g(x)| \, \mathrm{d}x \le \int_{[-a,a]} |g(x)| \, \mathrm{d}x = \int_{[0,a]} 2x^{-1/2} = \lim_{n \to \infty} \int_{(1/n,a]} 2x^{-1/2} \, \mathrm{d}x, \tag{3.20}$$

where we used the monotonic convergence theorem in the last equality. The last integrals may be rewritten as Riemann integrals and thus we have

$$\int_{K} |g(x)| \, \mathrm{d}x \le \lim_{n \to \infty} \int_{1/n}^{a} 2x^{-1/2} \, \mathrm{d}x = 2 \lim_{n \to \infty} \left[2x^{1/2} \right]_{1/n}^{a} = 4a^{1/2} < \infty. \tag{3.21}$$

Thus it follows that $g \in L^1_{loc}(\mathbb{R})$. It therefore makes sense to compute the distributional deriva-

Dated: March 3, 2021

tive, g'. This can be computed directly from definition, let $\varphi \in C_0^{\infty}(\mathbb{R})$

$$\langle g', \varphi \rangle = -\langle g, \varphi' \rangle = \int_{(0, \infty)} 2x^{-1/2} \varphi'(x) \, dx = \int_{(0, \infty)} 2x^{-1/2} (\varphi(x) - \varphi(0))' \, dx,$$
 (3.22)

where we used that $(\varphi(x) - \varphi(0))' = \varphi'(x)$ in the last equality. Noticing that $|-2x^{1/2}\varphi'(x)| \in L^1(\mathbb{R}_+)$, since $\varphi' \in C_0^{\infty}(\mathbb{R})$, it follows from the dominated convergence theorem that

$$\langle g', \varphi \rangle = \lim_{n \to \infty} \int_{(1/n, n)} 2x^{-1/2} \left(\varphi(x) - \varphi(0) \right)' dx. \tag{3.23}$$

By rewriting in terms of Riemann integrals we have

$$\langle g', \varphi \rangle = \lim_{n \to \infty} \int_{1/n}^{n} 2x^{-1/2} (\varphi(x) - \varphi(0))' dx$$

$$= \lim_{n \to \infty} \left(\left[2x^{-1/2} (\varphi(x) - \varphi(0)) \right]_{1/n}^{n} + \int_{(1/n,n)} x^{-3/2} (\varphi(x) - \varphi(0)) dx \right),$$
(3.24)

where we used partial integration in the second equality. Now we use that

$$\lim_{n \to \infty} \left(\left[2x^{-1/2} \left(\varphi(x) - \varphi(0) \right]_{1/n}^n \right) = 2 \lim_{n \to \infty} \left[n^{-1/2} (\varphi(n) - \varphi(0)) - n^{1/2} (\varphi(1/n) - \varphi(0)) \right] = 0, \tag{3.25}$$

which can be seen from the fact that $\varphi(n)$ is bounded, and $|\varphi(1/n) - \varphi(0)| = |\varphi'(\xi_n)/n| \le C_1/n$ for some $C_1 > 0$ by the mean value theorem. In this case C_1 can be taken to be $\max(|\varphi'|)$. Now notice also that $|x^{-3/2}(\varphi(x) - \varphi(0))| \in L^1(\mathbb{R}_+)$ since, as was also used in part a), we have

$$\left| x^{-3/2} \left(\varphi(x) - \varphi(0) \right) \right| \le \begin{cases} \max(|\varphi'|) x^{-1/2} & 0 < x < 1 \\ 2 \max(|\varphi|) x^{-3/2} & x \ge 1 \end{cases}$$
 (3.26)

where as usual the top estimate follows from the mean value theorem and the bottom one is straightforward. Clearly, as seen by above in part a), this shows that $|x^{-3/2}(\varphi(x) - \varphi(0))| \in L^1(\mathbb{R}_+)$. But then notice that by the dominated convergence theorem it follows that

$$\int_{(1/n,n)} x^{-3/2} (\varphi(x) - \varphi(0)) dx \to \int_{(0,\infty)} x^{-3/2} (\varphi(x) - \varphi(0)) dx, \text{ as } n \to \infty.$$
 (3.27)

Combining (3.24), (3.25), and (3.27), we have thereby shown that

$$\langle g', \varphi \rangle = \int_{(0,\infty)} x^{-3/2} (\varphi(x) - \varphi(0)) dx = \langle \Lambda, \varphi \rangle,$$
 (3.28)

for all $\varphi \in C_0^{\infty}(\mathbb{R})$, such that $g' = \Lambda$.

Dated: March 3, 2021