WiSe 2022/23 Stand: 23. Oktober 2022

2. freiwillige Hausaufgabe - Logik

Abgabe: bis 10:30 am 18.11.2022 im ISIS-Kurs [WiSe 2022/23] Logik

Aus Zeitgründen werden wir wahrscheinlich die erste Aufgabe nicht in der Großübung besprechen.

Hausaufgabe 1

Zeigen Sie die folgenden Äquivalenzen mittels Äquivalenzumformungen.

(i)
$$\neg (X \land Y \rightarrow (Z \leftrightarrow X)) \lor Y \equiv Y$$

(ii)
$$\neg (X \land Y \to Z) \lor \neg (\neg Z \land Y \land X) \equiv \top$$

Zeigen Sie die folgende Äquivalenz ohne von Wahrheitstafeln Gebrauch zu machen.

(iii)
$$\neg (X \leftrightarrow Y) \equiv \neg X \leftrightarrow Y$$

Hausaufgabe 2

Sei β eine zu den Formeln $\varphi, \psi \in AL$ passende Belegung. Wir erweitern die Semantik der Aussagenlogik um den Operator \ominus wie folgt:

$$\llbracket \varphi \ominus \psi \rrbracket^{\beta} := \begin{cases} 1 & , \ \llbracket \varphi \rrbracket^{\beta} = \llbracket \psi \rrbracket^{\beta} = 0 \\ 0 & , \text{ sonst.} \end{cases}$$

Zeigen Sie, dass für jede aussagenlogische Formel φ eine äquivalente aussagenlogische Formel φ' existiert, welche ausschließlich den Operator \ominus verwendet.

Anmerkung: In \LaTeX kann man \ominus als Operator wie folgt implementieren:

\newcommand{\nor}[2]{\ensuremath{#1 \operatorname{\ominus} #2}}.

$\underline{\text{Hausaufgabe 3}}$

Lemma 1 Seien $\varphi, \psi \in AL$ mit $|\operatorname{var}(\varphi)| \ge 1$ und $\varphi \equiv \psi$. Dann gibt es eine Formel $\psi' \in AL$, welche die gleichen Junktoren benutzt wie ψ , für die $\psi' \equiv \varphi$ und $\operatorname{var}(\psi') \subseteq \operatorname{var}(\varphi)$ gilt.

Optional: Zeigen Sie Lemma 1.

Wir definieren AL^+ als die Menge der Formeln $\varphi \in AL$, die weder \neg noch \bot enthalten.

Zeigen Sie: Es gibt keine zu $\neg X$ äquivalente Formel $\varphi \in AL^+$. (Lemma 1 ist hier sehr hilfreich.)