Assignment – 4

Mohith Degala

700746278

GitHub Link: https://github.com/Mohith700/Assignment_4.git

Video Link:

https://drive.google.com/file/d/1meTc25OHMBsmgQDJUgd2aNGpEYMRtXTN/v iew?usp=drive link

1) Data Manipulation:

```
import pandas as pd
    data = pd.read_csv('data.csv')
    description = data.describe()
    print(description)
    Null_values = data.isnull().sum()
    print("Null_Values:")
    print(Null_values)
    data.fillna(data.mean(), inplace=True)
    agg_columns = ['Duration', 'Calories']
    agg_functions = {
        'Duration': ['min', 'max', 'count', 'mean'],
        'Calories': ['min', 'max', 'count', 'mean']
    aggregated_data = data[agg_columns].agg(agg_functions)
    print("Aggregated Data:")
    print(aggregated_data)
    filtered_data1 = data[(data['Calories'] >= 500) & (data['Calories'] <= 1000)]</pre>
    filtered_data2 = data[(data['Calories'] > 500) & (data['Pulse'] < 100)]</pre>
    df_modified = data.drop(columns=['Maxpulse'])
    data.drop(columns=['Maxpulse'], inplace=True)
    data['Calories'] = data['Calories'].astype(int)
    import matplotlib.pyplot as plt
    plt.scatter(data['Duration'], data['Calories'])
    plt.xlabel('Duration')
    plt.ylabel('Calories')
    plt.title('Scatter Plot: Duration vs Calories')
    plt.show()
```

\Longrightarrow		Duration	Pulse	Maxpulse	Calories
	count	169.000000	169.000000	169.000000	164.000000
	mean	63.846154	107.461538	134.047337	375.790244
	std	42.299949	14.510259	16.450434	266.379919
	min	15.000000	80.000000	100.000000	50.300000
	25%	45.000000	100.000000	124.000000	250.925000
	50%	60.000000	105.000000	131.000000	318.600000
	75%	60.000000	111.000000	141.000000	387.600000
	max	300.000000	159.000000	184.000000	1860.400000
	Null Va	alues:			
	Duration				
	Pulse	0			
	Maxpul:				
	Calori				
	dtype:				
	Aggrega	ated Data:			
		Duration	Calories		
	min	15.000000	50.300000		
	max	300.000000	1860.400000		
	count	169.000000	169.000000		
	mean	63.846154	375.790244		

2) Linear Regression:

```
[3] import pandas as pd
    file_name = 'Salary_Data.csv'
    data = pd.read_csv(file_name)
    print(data.head())
```

```
import pandas as pd
   import numpy as np
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.metrics import mean_squared_error
   import matplotlib.pyplot as plt
   file_name = 'Salary_Data.csv'
   data = pd.read_csv(file_name)
   X = data[['YearsExperience']]
   y = data['Salary']
   X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=42)
   model = LinearRegression()
   model.fit(X_train, y_train)
   y_pred = model.predict(X_test)
   mse = mean_squared_error(y_test, y_pred)
   print("Mean Squared Error:", mse)
   plt.scatter(X_train, y_train, color='blue', label='Training Data')
   plt.xlabel('Years of Experience')
   plt.ylabel('Salary')
   plt.title('Training Data - Salary vs. Years of Experience')
   plt.legend()
   plt.show()
   plt.scatter(X_test, y_test, color='red', label='Test Data')
   plt.xlabel('Years of Experience')
   plt.ylabel('Salary')
   plt.title('Test Data - Salary vs. Years of Experience')
   plt.legend()
   plt.show()
```

O/P:

\supseteq		YearsExperience	Salary
	0	1.1	39343.0
	1	1.3	46205.0
	2	1.5	37731.0
	3	2.0	43525.0
	4	2.2	39891.0

→ Mean Squared Error: 35301898.887134895

Test Data - Salary vs. Years of Experience

120000 - Test Data

100000 - 80000 - 600000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 60000 - 600000 - 600