Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Волгоградский государственный технический университет

Факультет Электроники і	и вычислительной тех	кники
Кафедра <u>Системы автома</u>	тизированного проек	тирования и ПК
Согласовано	Утверж	кдаю
	Зав. ка	федрой САПР и ПК, д.т.н.,
(должность гл. специалиста предпр	*	
	??.	
(подпись) (инициалы, фами	· ·	М. В. Щербаков
«	(подпи	лсь) (инициалы, фамилия) >>2017
ПОЯ	СНИТЕЛЬНАЯ ЗАП	ИСКА
с выпус	кной работе бакалавр	а на тему
	именование вида работы)	
Іортирование сверточн	нои неиросети на	ARM архитектуру с
ограниченными вычисли	гельными ресурсами	и ресурсами памяти
Автор	Мельни	ков Тимофей Алексеевич
(подпись и дата подп		(фамилия, имя, отчество)
Обозначение ВСТАВИТ		
Группа <u>ИВТ-461</u>	мента)	
(mwqu tuanni)	20. 4	
Направление ??.??.		
	(код по ОКСО, наименование	направления, программы)
уководитель работы		А. В. Катаев
Консультанты по раздела	(подпись и дата подписания) М:	(инициалы и фамилия)
краткое наименование раздела)	(подпись и дата подписания)) (инициалы и фамилия)
(краткое наименование раздела)	(подпись и дата подписания)) (инициалы и фамилия)
(краткое наименование раздела)	(подпись и дата подписания)) (инициалы и фамилия)
Нормоконтролер		????? ??????????
	ись и дата подписания)	(инициалы и фамилия)

(инициалы и фамилия)

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Волгоградский государственный технический университет

Кафедра Системы автоматизированного проектирования и ПК

	Утверждаю
	Зав. кафедрой САПР и ПК, д.т.н.,
	??.
	 М. В. Щербаков
	(подпись) (инициалы, фамилия) «
	«
Вадание на выпуски	ную работу бакалавра
	менование вида работы) Тимофей Алексеевич
	илия, имя, отчество)
Код кафедры??.??	Группа <u>ИВТ-461</u>
ограниченными вычислительными Утверждена приказом по университ Срок представления готовой работы Исходные данные для выполнения	тету от «??» <u>??????</u> <u>201?</u> № <u>????</u> —ст (дата, подпись студента)
Содержание основной части поясни	ительной записки
Что-то там раз	
Что-то там два	
Перечень графического материала	
1) Графический материал раз	
2) Графический материал два	

Руководитель работы		А. В. Катаев			
-	(подпись и дата подписания)	(инициалы и фамилия)			
Консультанты по разделам:					
(краткое наименование раздела)	(подпись и дата подписания)	(инициалы и фамилия)			
(краткое наименование раздела)	(подпись и дата подписания)	(инициалы и фамилия)			
(краткое наименование раздела)	(полпись и лата полписания)	(инициалы и фамилия)			

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Волгоградский государственный технический университет Кафедра «Системы автоматизированного проектирования и ПК»

Утверждаю	
Зав. кафедро	ой САПР и ПК, д.т.н.
??.	
	М. В. Щербаков
(подпись)	(инициалы, фамилия)
«»	2017

Портирование сверточной нейросети на ARM архитектуру с ограниченными вычислительными ресурсами и ресурсами памяти ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ВСТАВИТЬ КОД-81

Аннотация

Документ представляет собой пояснительную записку к выпускной работе бакалавра на тему «Портирование сверточной нейросети на ARM архитектуру с ограниченными вычислительными ресурсами и ресурсами памяти», выполненную студентом группы ИВТ-461, Мельниковым Тимофеем Алексеевичем.

В данной работе рассмотрена возможность реализации алгоритмов машинного обучения, в частности прямой проход сверточной нейронной сети, на устройстве с ограниченными вычислительными ресурсами и ресурсами памяти.

Объём пояснительной записки составил 16 страниц и включает 0 рисунков и 0 таблицы.

Содержание

Введение	6
1 Обзор фреймворков машинного обучения	8
1.1 Caffe	8
1.1.1 Основыне характеристики Caffe	9
1.1.2 Приемущества Caffe	10
1.1.3 Архитектура Caffe	10
2 Используемые алгоритмы и модели	12
2.1 Теоретические основы нейронных сетей	12
2.1.1 Перцептрон - основа нейронных сетей	12
3 Проектирование системы	13
Заключение	14
Список использованных источников	15
Приложение А — Техническое задание	16

Введение

Задачи обработки и анализа аналоговой информации являюся одиними из самых сложных в ІТ-индустрии. Долгое время такие задачи решались евристическими линейными алгоритмами, которые требовали огромных аппаратных ресурсов при малой точности результата. На протяжении последних десяти лет стремительно растет и развивается прикладная область математики цель которой изучение и развитие искусственных нейронных сетей (НС). Актуальность разработок и исследований в данной области оправдывается применением НС в различных сферах деятельности. Это автоматизация процессов анализа объектов, образов, уневерсализация управления, прогнозирование, создание экспертных систем, анализ неформализованной информации и многие другие применения. В частности, в данной дипломной работе используются нейронные сети для классификации и детектирования объектов на изображении.

Наиболее существенным недостатком НС является их требовательность к вычислительным ресурсам и ресурсам памяти. Частично данная проблема решается использованием сверточных нейронных сетей, которые в виду особенностям логики работы позволяют в разы сократить потребляемые нейронной сетью ресурсы.

Не только искусственные нейронные сети являются трендом IT-идустрии, активно развивается коцепция интернета вещей. Диапазон встраиваемых технологий простирается от концепции умных зданий до промышленной консолидации. Интеграция встраиваемых систем и искусственных нейронных сетей позволяет автоматизировать и упростить многие процессы во многих сферах деятельности.

В связи с вышесказанным целью данной дипломной работы является внедрение фрейворка машинного обучения на enbedded систему С.Н.І.Р. и последующая его оптимизация. На основе проделанной работы необходимо сделать вывод о эффективности и рентабельности данного решения.

Для достижения поставленной цели необходимо решить следующие задачи:

- Изучить фреймворки глубокого машинного обучения
- Разработать консольное приложение для реализации прямого прохода нейронной сети
- Оптимизировать использование оперативной памяти и сделать загрузку весов по мере использования
- Разработать клиент-серверное приложение, демонстрирующее результат работы

В первом разделе пояснительной записки описаны фрейворки машинного обучения. Далее приведено обоснование выбора фреймворка darknet.

Во втором разделе описаны используемые модели нейронных сетей и алгоритм прямого прохода.

Третей раздел посвящен разворачиванию фреймворка на устройстве С.Н.І.Р. и оптимизации работы алгоритма прямого прохода. Так же описана разработка клиент-серверной части для визуализации работы приложения.

1 Обзор фреймворков машинного обучения

Данные раздел содержит справочную информацию, технические особенности и функциональные возможноти фреймворков глубоко машинного обучения и их сравнение. Так же раздел содержит обоснование выбора фреймворка darknet для встраивания и оптимизации на мобильном пк С.Н.І.Р.

Из всего множества фрейворков были выделены Caffe, Torch, Darknet, как наиболее зрелые, функционально полные и широко используемые.

1.1 Caffe

Саffе представляет собой фреймворк, разработанный учеными и практиками, с прозрачной и гибкой архитектурой для глубокого обучения и построения эталонных моделей. Фреймворк распространяется под BSD-лицензией и является с++ библиотекой. Так же реализованы обертки для руthon и MATLAB для универсализации обучения и развертывания глубоких моделей. Саffе используется на промышленных компаниях и в медиацинтрах, обрабатывая 40 миллионов изображений в день на Titan GPU (примерно 2.5 милисекунд на изображение). Одно из преимуществ Саffе это разделение модели данных от реализации. Что позволяет использовать приложения на разных платформах.

Caffe поддерживается и разрабатывается университетом Беркли, а именно центром BVLC.

1.1.1 Основыне характеристики Caffe

Саffе представляет полный набор инструментов для обучения, тестирования, настройки и разработки можелей с подробной документацией и разобранными примерами. Поэтому процесс обучение использования фреймворка занимает короткий период. Возможность использования GPU делает Caffe одним из самых быстрых фреймворков, что позволяет его использовать в промышленном секторе. Такие показатели достигнуты благодаря особенностям описаным ниже.

Саffе является модульным программным обеспечением. Что позволяет легко добалять новые форматы данных, слои и функции потерь. В фреймворке уже реализовано множество слоев и функций потерь, что позволяет реалзовавать нейронную сеть для задачь различных предметных областей и категорий.

В Caffe представление и реализация разделены. Для описания модели в Caffe используется конфигурационный файл в формате protobuf. Caffe поддерживает сетевые архитектуры в форме произвольно ориентированных ациклических графов. Важным деталей является то, что после создания экземпляра модели Caffe выделяется ровно столько памяти, сколько необходимо для работы сериализованной нейронной сети и для хранения адреса объекта.[1]

В Caffe используется полное тестовое покрытие. Каждый модуль имеет собственный набор тестов. Модуль будет принят, только после прохождение всего набора тестов. Это позволяет эффективно оптимизировать модули и гарантирует стабильную работу фреймворка.

Саffe содержит предворительно обученные модели для академических целей и некоммерческого использования. Доступны сверточные НС с архитектурой "AlexNet"и вариации данной НС, обученные на базе данных ImageNet[2]. Так же доступны реккурентные модели[3].

1.1.2 Приемущества Caffe

От других современных фреймворков глубокого обучения Caffe отличается следующими качествами(!):

- Реализция полностью основана на C++, что облегчает интеграцию с встраиваемыми системами. СРU режим позволяет использовать фреймворк без специализированного GPU.
- Готовые модели позволяют не тратитб время и ресурсы на обучение. Важным пунктом является подробная документация для сериализации и использовании моделей.

1.1.3 Архитектура Caffe

Саffе сохраняет и передает данные в четырехмерных массивах, которые названы блобами. Блобы представляют унифицированный интерфейс для работы памятью, содержащий пакеты ихображений (или других данных), параметров или обновлений параметров. Блобы скрывают вычислительные издержки смешанной работы СРU и GPU, выполняя синхронихацию по нере необходимости. Память выделяется по требованию (лениво), что позволяет эффективней ее использовать. Модели сохраняются как буфер, использующий протокол Google (Google Protocol Buffers), который имеет ряд достоинст: минимальный размер строки при сериализации, эфективная сериализация, высокая читабельность в текстовом виде и удобные интерфейсы работы на нескольких языках. Необходимые для обучения огромные массивы данных храняться в базах данных LevelDB. Google Protocol Buffers и LevelDB обеспечивают пропускную способность в 150 Мб/с.

Слой в Caffe представляет собой структуру соответствующую формальному определению слоя: он принимает на вход один или несколько блобов и выдает один или несколько блобов результатом. Caffe предоставляет полный набор типов слоев для глубокого обучения,

включая сверточный, pooling слой, inner products слой, нелиности, такие как выпремленная линейная и логическая, слои потерь, таких как softmax и hinge. Настройка слой требует минимальных усилий в виду композиционного построения сетей.

Саffe обеспечивает функциональность для любого направценного ациклического графа слоев, позволяя корректно выполнять прямой и обратный проход. Модели Caffe — это сквозные системы машинного обучения.

- 2 Используемые алгоритмы и модели
- 2.1 Теоретические основы нейронных сетей
- 2.1.1 Перцептрон основа нейронных сетей

В основе современной концепции

3 Проектирование системы

Заключение

Список использованных источников

- 1 https://arxiv.org/pdf/1408.5093.pdf
- 2 J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, 2014
- 3 A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012
 - 4 http://ronan.collobert.com/pub/matos/2011 torch7 nipsw.pdf

Приложение A Техническое задание