3. Zasada działania algorytmu k-NN dla klasyfikacji i regresji. Jego wady i zalety.

Zasada działania algorytmu k-NN (k-Nearest Neighbors)

Algorytm k-NN (k-Nearest Neighbors) jest jednym z najprostszych algorytmów uczenia maszynowego, wykorzystywany zarówno do klasyfikacji, jak i regresji. Jego główna zasada polega na tym, że dla nowego przykładu (punktu) decydujące są jego najbliżsi sąsiedzi w przestrzeni cech.

Klasyfikacja

W klasyfikacji, algorytm k-NN przypisuje nowemu przykładowi etykietę klasy na podstawie większości głosów jego kkk-najbliższych sąsiadów.

Kroki algorytmu k-NN dla klasyfikacji:

- Wybór parametru kkk: Liczba najbliższych sąsiadów, którzy będą brani pod uwagę.
- Obliczenie odległości: Użyj odpowiedniej metryki odległości, np. odległości euklidesowej, aby obliczyć odległość między nowym punktem a wszystkimi punktami w zbiorze treningowym.
- Wyznaczenie najbliższych sąsiadów: Znajdź kkk-najbliższych sąsiadów nowego punktu.
- Głosowanie: Przypisz nowemu punktowi etykietę klasy, która jest najczęstsza wśród kkk-najbliższych sąsiadów.

Regresja

W regresji, algorytm k-NN przewiduje wartość ciągłą dla nowego punktu na podstawie średniej wartości jego kkk-najbliższych sąsiadów.

Kroki algorytmu k-NN dla regresji:

- Wybór parametru kkk: Liczba najbliższych sąsiadów, którzy będą brani pod uwagę.
- Obliczenie odległości: Użyj odpowiedniej metryki odległości, aby obliczyć odległość między nowym punktem a wszystkimi punktami w zbiorze treningowym.
- Wyznaczenie najbliższych sąsiadów: Znajdź kkk-najbliższych sąsiadów nowego punktu.
- Predykcja: Przewidź wartość jako średnią wartość kkk-najbliższych sąsiadów.

Wady i zalety algorytmu k-NN

Zalety:

- Prostota: Łatwy do zrozumienia i zaimplementowania.
- Brak fazy treningowej: Nie wymaga trenowania modelu, co oszczędza czas na etapie treningu.
- Skuteczność w małych zbiorach danych: Działa dobrze w przypadkach, gdy zbiór danych jest mały i dobrze rozdzielony.

Wady:

- Skalowalność: Wysokie koszty obliczeniowe dla dużych zbiorów danych, ponieważ konieczne jest obliczanie odległości do wszystkich punktów w zbiorze treningowym.
- Wrażliwość na skalowanie cech: Wszystkie cechy powinny być odpowiednio skalowane, aby zapewnić, że odległości są porównywalne.
- Wpływ parametru kkk: Wybór odpowiedniego kkk jest kluczowy. Zbyt małe kkk może prowadzić do przetrenowania, a zbyt duże kkk może prowadzić do niedotrenowania.
- Wrażliwość na szum i dane odstające: Może być wrażliwy na szum w danych, ponieważ każdy punkt ma wpływ na wynik klasyfikacji lub regresji.

4. Zasada działania algorytmu k-means i k-medoids

Zasada działania algorytmu k-means

Algorytm k-means jest popularną metodą grupowania (klasteryzacji) danych, której celem jest podział zbioru danych na *kk*k klastrów (grup), w taki sposób, aby obiekty w obrębie jednego klastra były do siebie jak najbardziej podobne, a obiekty z różnych klastrów jak najbardziej od siebie różne.

Kroki algorytmu k-means:

- 1. **Inicjalizacja**: Wybór *kk*k początkowych centroidów (środków klastrów) losowo lub za pomocą bardziej zaawansowanych metod jak k-means++.
- 2. **Przypisanie punktów**: Każdy punkt danych jest przypisywany do najbliższego centroidu na podstawie wybranej metryki odległości, zazwyczaj Euklidesowej.
- 3. **Aktualizacja centroidów**: Nowe centroidy są obliczane jako średnia arytmetyczna punktów przypisanych do każdego klastra.
- 4. **Iteracja**: Kroki 2 i 3 są powtarzane, aż do momentu, gdy centroidy przestaną się zmieniać (osiągnięcie zbieżności) lub zostanie osiągnięta maksymalna liczba iteracji.

Zalety k-means:

- Prostota i szybkość działania.
- Efektywność dla dużych zbiorów danych.

Wady k-means:

- Wrażliwość na wybór początkowych centroidów.
- Problemy z wykrywaniem klastrów o nieregularnych kształtach.
- Wymaga podania liczby klastrów kk z góry.

Zasada działania algorytmu k-medoids

Algorytm k-medoids jest podobny do k-means, ale zamiast centroidów (średnich punktów), jako reprezentantów klastrów wybiera rzeczywiste punkty danych, zwane medoidami. Dzięki temu algorytm jest mniej wrażliwy na wartości odstające.

Kroki algorytmu k-medoids:

- 5. **Inicjalizacja**: Wybór *kk*k początkowych medoidów losowo.
- 6. **Przypisanie punktów**: Każdy punkt danych jest przypisywany do najbliższego medoidu na podstawie wybranej metryki odległości.
- 7. **Aktualizacja medoidów**: Dla każdego klastra, wybierany jest nowy medoid, który minimalizuje sumę odległości do wszystkich punktów w klastrze.
- 8. **Iteracja**: Kroki 2 i 3 są powtarzane, aż do osiągnięcia zbieżności lub maksymalnej liczby iteracji.

Zalety k-medoids:

- Odporniejszy na wartości odstające niż k-means.
- Lepsze w przypadku klastrów o nieregularnych kształtach.

Wady k-medoids:

- Wolniejszy niż k-means, zwłaszcza dla dużych zbiorów danych.
- Wymaga podania liczby klastrów *kk*k z góry.

18. Wpływ parametrów algorytmu genetycznego na szybkość i stabilność jego działania

Wpływ parametrów na algorytm genetyczny

Algorytmy genetyczne są inspirowane procesami biologicznej ewolucji i są stosowane do rozwiązywania problemów optymalizacyjnych. Wybór parametrów algorytmu genetycznego ma kluczowe znaczenie dla jego wydajności i stabilności.

Kluczowe parametry algorytmu genetycznego:

9. Rozmiar populacji:

- Większa populacja może prowadzić do lepszego przeszukiwania przestrzeni rozwiązań, ale zwiększa również koszt obliczeniowy.
- Zbyt mała populacja może prowadzić do przedwczesnej zbieżności do suboptymalnych rozwiązań.

10. Liczba pokoleń (iteracji):

- Większa liczba pokoleń zwiększa szansę na znalezienie optymalnego rozwiązania, ale również zwiększa czas obliczeń.
- Zbyt mała liczba pokoleń może skutkować niedostatecznym przeszukaniem przestrzeni rozwiązań.

11. Prawdopodobieństwo mutacji:

- Mutacja wprowadza różnorodność do populacji, zapobiegając przedwczesnej zbieżności.
- Zbyt wysokie prawdopodobieństwo mutacji może prowadzić do losowego przeszukiwania i destabilizacji procesu.
- Zbyt niskie prawdopodobieństwo mutacji może prowadzić do utraty różnorodności i zastoju w lokalnych minimach.

12. Prawdopodobieństwo krzyżowania (crossover):

- Krzyżowanie pozwala na łączenie dobrych cech z dwóch rodziców, tworząc lepsze potomstwo.
- Zbyt wysokie prawdopodobieństwo krzyżowania może prowadzić do szybkiego zbieżności, ale ryzykuje utratą różnorodności.
- Zbyt niskie prawdopodobieństwo krzyżowania może prowadzić do wolniejszego przeszukiwania przestrzeni rozwiązań.

13. Metoda selekcji:

- Różne metody selekcji, takie jak selekcja turniejowa, ruletka, czy selekcja rankingowa, wpływają na sposób wyboru osobników do reprodukcji.
- Selekcja zbyt elitarna może prowadzić do przedwczesnej zbieżności, podczas gdy zbyt losowa selekcja może spowolnić proces optymalizacji.

Podsumowanie wpływu parametrów:

- Dobór odpowiednich parametrów jest kluczowy dla zapewnienia efektywnego i stabilnego działania algorytmu genetycznego.
- Parametry muszą być dostosowane do specyfiki problemu i mogą wymagać eksperymentalnej optymalizacji.
- Równowaga między eksploracją (przeszukiwaniem nowych rozwiązań) a eksploatacją (wykorzystaniem najlepszych znalezionych rozwiązań) jest kluczowa dla sukcesu algorytmu.

Przykład algorytmu genetycznego

Do lepszego wyjaśnienia mechanizmów działania populacji, prześledzimy działanie jednej iteracji algorytmu genetycznego na przykładowym problemie. Będziemy dążyć do minimalizacji wartości funkcji na zbiorze liczb całkowitych z przedziału . Nasza funkcja jest dana następującym wzorem: x^3-24x^2-180x

Ponieważ poszukujemy najmniejszej wartości funkcji w przedziale , to osobnikiem w naszym algorytmie genetycznym będzie 5-bitowa liczba całkowita. Będzie to argument naszej funkcji zapisany w systemie dwójkowym.

•

Parametry i metody naszego algorytmu genetycznego:

metoda selekcji: metoda koła ruletki,

krzyżowanie: jednopunktowe,

prawdopodobieństwo krzyżowania: 1, prawdopodobieństwo mutacji: 0,02,

metoda sukcesji: sukcesja z całkowitym zastępowaniem.

rozmiar populacji: 6

Pozostaje jeszcze kwestia wyboru populacji startowej algorytmu genetycznego. W tym przypadku została ona wygenerowana w sposób losowy. Przy użyciu generatora liczb pseudolosowych wylosowano sześć liczb całkowitych z przedziału [0,31].

Nr osobnika	Populacja	Wartość	Wartość	Prawdopod.	Liczba
	początkowa	х	f(x)	Wylosowania	wylosowanych
				osobnika	kopii
1	00101	5	-1375	0,0856	0
2	10011	19	-5225	0,3253	2
3	00111	7	-2093	0,1304	1
4	01100	12	-3888	0,2421	2
5	11101	29	-1015	0,0632	0
6	01000	8	-2464	0,1534	1

Następnie po jednej iteracji algorytmu genetycznego otrzymujemy:

Pula rodzicielska	Wylosowany punkt krzyżowania	Populacja po krzyżowaniu	Populacja po mutacji	Wartość x	Wartość f(x)
10011	2	10100	10100	20	-5200
01100	2	01011	01011	11	-3553
10011	3	10000	10010	18	-5184
01000	3	01011	01011	11	-3553
01100	2	01111	0111	15	-4725
00111	2	00100	01100	12	-3888

Po jednej iteracji algorytmu najmniejszą wartością funkcji f jaką udało nam się uzyskać w nowym pokoleniu jest f(20)=-5200. Jest to wynik gorszy niż w poprzednim pokoleniu, który wynosił f(19)=-5225. Taka sytuacja może się wydarzyć ze względu na losowość naszego algorytmu genetycznego. Można temu zapobiec, stosując inną metodę selekcji lub sukcesji. Innym możliwym rozwiązaniem jest zwiększenie liczby iteracji i zapisywanie najlepszego wyniku spośród wszystkich dotychczasowych populacji.