# **Constructions With Relations**

# The Clowder Project Authors

July 21, 2025

This chapter contains some material about constructions with relations. Notably, we discuss and explore:

- 1. The existence or non-existence of Kan extensions and Kan lifts in the 2-category **Rel** (??).
- 2. The various kinds of constructions involving relations, such as graphs, domains, ranges, unions, intersections, products, converse relations, composition of relations, and collages (Section 9.2).

This chapter is under revision. TODO:

- 1. Rename range to image
- 2. Co/limits in Rel.

# **Contents**

| 9.1 | Co/Li | mits in the Category of Relations      | 2  |
|-----|-------|----------------------------------------|----|
| 9.2 | More  | Constructions With Relations           | 2  |
|     |       | The Domain and Range of a Relation     |    |
|     | 9.2.2 | Binary Unions of Relations             | 3  |
|     | 9.2.3 | Unions of Families of Relations        | 4  |
|     |       | Binary Intersections of Relations      |    |
|     | 9.2.5 | Intersections of Families of Relations | 6  |
|     | 9.2.6 | Binary Products of Relations           | 7  |
|     | 9.2.7 | Products of Families of Relations      | 10 |
|     | 9.2.8 | The Collage of a Relation              | 10 |
| Α   | Other | Chapters                               | 15 |

# 9.1 Co/Limits in the Category of Relations

This section is currently just a stub, and will be properly developed later on.

## 9.2 More Constructions With Relations

## 9.2.1 The Domain and Range of a Relation

Let *A* and *B* be sets.

#### **DEFINITION 9.2.1.1.1** ► THE DOMAIN AND RANGE OF A RELATION

Let  $R: A \to B$  be a relation.<sup>1,2</sup>

1. The **domain of** R is the subset dom(R) of A defined by

$$dom(R) \stackrel{\text{def}}{=} \left\{ a \in A \middle| \begin{array}{l} \text{there exists some } b \in B \\ \text{such that } a \sim_R b \end{array} \right\}.$$

2. The **range** of R is the subset range(R) of B defined by

range
$$(R) \stackrel{\text{def}}{=} \left\{ b \in B \mid \text{ there exists some } a \in A \right\}.$$

$$\chi_{\mathrm{dom}(R)}(a) \cong \underset{b \in B}{\mathrm{colim}} \left( R_a^b \right) \qquad (a \in A)$$

$$\cong \bigvee_{b \in B} R_a^b,$$

$$\chi_{\mathrm{range}(R)}(b) \cong \underset{a \in A}{\mathrm{colim}} \left( R_a^b \right) \qquad (b \in B)$$

$$\cong \bigvee_{a \in A} R_a^b,$$

where the join  $\vee$  is taken in the poset ({true, false},  $\preceq$ ) of Constructions With Sets, Definition 3.2.2.1.3.

<sup>2</sup>Viewing R as a function  $R: A \to \mathcal{P}(B)$ , we have

$$dom(R) \cong \underset{y \in Y}{colim}(R(y))$$

$$\cong \bigcup_{y \in Y} R(y),$$

$$range(R) \cong \underset{x \in X}{colim}(R(x))$$

$$\cong \bigcup_{x \in X} R(x),$$

<sup>&</sup>lt;sup>1</sup>Following ??, ??, we may compute the (characteristic functions associated to the) domain and range of a relation using the following colimit formulas:

## 9.2.2 Binary Unions of Relations

Let A and B be sets and let R and S be relations from A to B.

#### **DEFINITION 9.2.2.1.1** ► BINARY UNIONS OF RELATIONS

The **union of** R **and**  $S^1$  is the relation  $R \cup S$  from A to B defined as follows:

• Viewing relations from A to B as subsets of  $A \times B$ , we define<sup>2</sup>

$$R \cup S \stackrel{\text{def}}{=} \{(a, b) \in B \times A \mid \text{we have } a \sim_R b \text{ or } a \sim_S b\}.$$

• Viewing relations from A to B as functions  $A \to \mathcal{P}(B)$ , we define

$$[R \cup S](a) \stackrel{\text{def}}{=} R(a) \cup S(a)$$

for each  $a \in A$ .

#### PROPOSITION 9.2.2.1.2 ▶ PROPERTIES OF BINARY UNIONS OF RELATIONS

Let R, S,  $R_1$ , and  $R_2$  be relations from A to B, and let  $S_1$  and  $S_2$  be relations from B to C.

1. Interaction With Converses. We have

$$(R \cup S)^{\dagger} = R^{\dagger} \cup S^{\dagger}.$$

2. Interaction With Composition. We have

$$(S_1 \diamond R_1) \cup (S_2 \diamond R_2) \stackrel{\text{poss.}}{\neq} (S_1 \cup S_2) \diamond (R_1 \cup R_2).$$

## PROOF 9.2.2.1.3 ► PROOF OF PROPOSITION 9.2.2.1.2

#### Item 1: Interaction With Converses

Clear.

## Item 2: Interaction With Composition

Unwinding the definitions, we see that:

<sup>&</sup>lt;sup>1</sup>Further Terminology: Also called the **binary union of** R **and** S, for emphasis.

<sup>&</sup>lt;sup>2</sup>This is the same as the union of *R* and *S* as subsets of  $A \times B$ .

- The condition for  $(S_1 \diamond R_1) \cup (S_2 \diamond R_2)$  is:
  - **–** There exists some b ∈ B such that:

```
* a \sim_{R_1} b and b \sim_{S_1} c;
or
* a \sim_{R_2} b and b \sim_{S_2} c;
```

- The condition for  $(S_1 \cup S_2) \diamond (R_1 \cup R_2)$  is:
  - **–** There exists some b ∈ B such that:

```
* a \sim_{R_1} b or a \sim_{R_2} b;
and
* b \sim_{S_1} c or b \sim_{S_2} c.
```

These two conditions may fail to agree (counterexample omitted), and thus the two resulting relations on  $A \times C$  may differ.

#### 9.2.3 Unions of Families of Relations

Let *A* and *B* be sets and let  $\{R_i\}_{i\in I}$  be a family of relations from *A* to *B*.

#### **DEFINITION 9.2.3.1.1** ► THE UNION OF A FAMILY OF RELATIONS

The **union of the family**  $\{R_i\}_{i\in I}$  is the relation  $\bigcup_{i\in I} R_i$  from A to B defined as follows:

• Viewing relations from A to B as subsets of  $A \times B$ , we define<sup>1</sup>

$$\bigcup_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a, b) \in (A \times B)^{\times I} \middle| \text{ there exists some } i \in I \right\}.$$

• Viewing relations from A to B as functions  $A \to \mathcal{P}(B)$ , we define

$$\left[\bigcup_{i\in I}R_i\right](a)\stackrel{\mathrm{def}}{=}\bigcup_{i\in I}R_i(a)$$

for each  $a \in A$ .

<sup>&</sup>lt;sup>1</sup>This is the same as the union of  $\{R_i\}_{i\in I}$  as a collection of subsets of  $A\times B$ .

#### PROPOSITION 9.2.3.1.2 ▶ PROPERTIES OF UNIONS OF FAMILIES OF RELATIONS

Let A and B be sets and let  $\{R_i\}_{i\in I}$  be a family of relations from A to B.

1. Interaction With Converses. We have

$$\left(\bigcup_{i\in I} R_i\right)^{\dagger} = \bigcup_{i\in I} R_i^{\dagger}.$$

#### PROOF 9.2.3.1.3 ► PROOF OF PROPOSITION 9.2.3.1.2

Item 1: Interaction With Converses

Clear.

## 9.2.4 Binary Intersections of Relations

Let A and B be sets and let R and S be relations from A to B.

#### **DEFINITION 9.2.4.1.1** ► BINARY INTERSECTIONS OF RELATIONS

The **intersection of** R **and**  $S^1$  is the relation  $R \cap S$  from A to B defined as follows:

• Viewing relations from A to B as subsets of  $A \times B$ , we define<sup>2</sup>

$$R \cap S \stackrel{\text{def}}{=} \{(a, b) \in B \times A \mid \text{we have } a \sim_R b \text{ and } a \sim_S b\}.$$

• Viewing relations from A to B as functions  $A \to \mathcal{P}(B)$ , we define

$$[R \cap S](a) \stackrel{\text{def}}{=} R(a) \cap S(a)$$

for each  $a \in A$ .

## PROPOSITION 9.2.4.1.2 ➤ PROPERTIES OF BINARY INTERSECTIONS OF RELATIONS

Let R, S,  $R_1$ , and  $R_2$  be relations from A to B, and let  $S_1$  and  $S_2$  be relations from B to C.

1. Interaction With Converses. We have

$$(R \cap S)^{\dagger} = R^{\dagger} \cap S^{\dagger}.$$

<sup>&</sup>lt;sup>1</sup>Further Terminology: Also called the **binary intersection of** *R* **and** *S*, for emphasis.

<sup>&</sup>lt;sup>2</sup>This is the same as the intersection of *R* and *S* as subsets of  $A \times B$ .

2. Interaction With Composition. We have

$$(S_1 \diamond R_1) \cap (S_2 \diamond R_2) = (S_1 \cap S_2) \diamond (R_1 \cap R_2).$$

## PROOF 9.2.4.1.3 ► PROOF OF PROPOSITION 9.2.4.1.2

#### Item 1: Interaction With Converses

Clear.

#### Item 2: Interaction With Composition

Unwinding the definitions, we see that:

- The condition for  $(S_1 \diamond R_1) \cap (S_2 \diamond R_2)$  is:
  - **–** There exists some b ∈ B such that:

```
* a \sim_{R_1} b and b \sim_{S_1} c;
and
* a \sim_{R_2} b and b \sim_{S_2} c;
```

- The condition for  $(S_1 \cap S_2) \diamond (R_1 \cap R_2)$  is:
  - **–** There exists some b ∈ B such that:

```
* a \sim_{R_1} b and a \sim_{R_2} b;
and
* b \sim_{S_1} c and b \sim_{S_2} c.
```

These two conditions agree, and thus so do the two resulting relations on  $A \times C$ .

#### 9.2.5 Intersections of Families of Relations

Let *A* and *B* be sets and let  $\{R_i\}_{i\in I}$  be a family of relations from *A* to *B*.

## **DEFINITION 9.2.5.1.1** ► THE INTERSECTION OF A FAMILY OF RELATIONS

The **intersection of the family**  $\{R_i\}_{i\in I}$  is the relation  $\bigcup_{i\in I} R_i$  defined as follows:

• Viewing relations from A to B as subsets of  $A \times B$ , we define<sup>1</sup>

$$\bigcup_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a, b) \in (A \times B)^{\times I} \middle| \begin{array}{l} \text{for each } i \in I, \\ \text{we have } a \sim_{R_i} b \end{array} \right\}.$$

• Viewing relations from A to B as functions  $A \to \mathcal{P}(B)$ , we define

$$\left|\bigcap_{i\in I} R_i\right|(a) \stackrel{\text{def}}{=} \bigcap_{i\in I} R_i(a)$$

for each  $a \in A$ .

<sup>1</sup>This is the same as the intersection of  $\{R_i\}_{i\in I}$  as a collection of subsets of  $A\times B$ .

#### PROPOSITION 9.2.5.1.2 ▶ PROPERTIES OF INTERSECTIONS OF FAMILIES OF RELATIONS

Let *A* and *B* be sets and let  $\{R_i\}_{i\in I}$  be a family of relations from *A* to *B*.

1. Interaction With Converses. We have

$$\left(\bigcap_{i\in I} R_i\right)^{\dagger} = \bigcap_{i\in I} R_i^{\dagger}.$$

#### PROOF 9.2.5.1.3 ► PROOF OF PROPOSITION 9.2.5.1.2

Item 1: Interaction With Converses

Clear.

# 9.2.6 Binary Products of Relations

Let A, B, X, and Y be sets, let  $R: A \rightarrow B$  be a relation from A to B, and let  $S: X \rightarrow Y$  be a relation from X to Y.

## **DEFINITION 9.2.6.1.1** ► BINARY PRODUCTS OF RELATIONS

The **product of** R **and**  $S^1$  is the relation  $R \times S$  from  $A \times X$  to  $B \times Y$  defined as follows:

• Viewing relations from  $A \times X$  to  $B \times Y$  as subsets of  $(A \times X) \times (B \times Y)$ , we define  $R \times S$  as the Cartesian product of R and S as subsets of  $A \times X$  and  $B \times Y$ .

• Viewing relations from  $A \times X$  to  $B \times Y$  as functions  $A \times X \to \mathcal{P}(B \times Y)$ , we define  $R \times S$  as the composition

$$A \times X \xrightarrow{R \times S} \mathcal{P}(B) \times \mathcal{P}(Y) \overset{\mathcal{P}_{B,Y}^{\otimes}}{\hookrightarrow} \mathcal{P}(B \times Y)$$

in Sets, i.e. by

$$[R \times S](a, x) \stackrel{\text{def}}{=} R(a) \times S(x)$$

for each  $(a, x) \in A \times X$ .

Further Terminology: Also called the **binary product of** R and S for emphasis. That is,  $R \times S$  is the relation given by declaring  $(a, x) \sim_{R \times S} (b, y)$  iff  $a \sim_R b$  and  $x \sim_S y$ .

## PROPOSITION 9.2.6.1.2 ▶ PROPERTIES OF BINARY PRODUCTS OF RELATIONS

Let A, B, X, and Y be sets.

1. Interaction With Converses. Let

$$R: A \rightarrow A$$

$$S: X \to X$$

We have

$$(R \times S)^{\dagger} = R^{\dagger} \times S^{\dagger}.$$

2. Interaction With Composition. Let

$$R_1: A \rightarrow B$$
,

$$S_1: B \rightarrow C$$
,

$$R_2: X \rightarrow Y$$
,

$$S_2: Y \rightarrow Z$$

be relations. We have

$$(S_1 \diamond R_1) \times (S_2 \diamond R_2) = (S_1 \times S_2) \diamond (R_1 \times R_2).$$

#### PROOF 9.2.6.1.3 ► PROOF OF PROPOSITION 9.2.6.1.2

## Item 1: Interaction With Converses

Unwinding the definitions, we see that:

- We have  $(a, x) \sim_{(R \times S)^{\dagger}} (b, y)$  iff:
  - We have  $(b, y) \sim_{R \times S} (a, x)$ , i.e. iff:
    - \* We have  $b \sim_R a$ ;
    - \* We have  $y \sim_S x$ ;
- We have  $(a, x) \sim_{R^{\dagger} \times S^{\dagger}} (b, y)$  iff:
  - We have  $a \sim_{R^{\dagger}} b$  and  $x \sim_{S^{\dagger}} y$ , i.e. iff:
    - \* We have  $b \sim_R a$ ;
    - \* We have  $y \sim_S x$ .

These two conditions agree, and thus the two resulting relations on  $A \times X$  are equal.

## Item 2: Interaction With Composition

Unwinding the definitions, we see that:

- We have  $(a, x) \sim_{(S_1 \diamond R_1) \times (S_2 \diamond R_2)} (c, z)$  iff:
  - We have  $a \sim_{S_1 \diamond R_1} c$  and  $x \sim_{S_2 \diamond R_2} z$ , i.e. iff:
    - \* There exists some  $b \in B$  such that  $a \sim_{R_1} b$  and  $b \sim_{S_1} c$ ;
    - \* There exists some  $y \in Y$  such that  $x \sim_{R_2} y$  and  $y \sim_{S_2} z$ ;
- We have  $(a, x) \sim_{(S_1 \times S_2) \diamond (R_1 \times R_2)} (c, z)$  iff:
  - There exists some  $(b, y) \in B \times Y$  such that  $(a, x) \sim_{R_1 \times R_2} (b, y)$  and  $(b, y) \sim_{S_1 \times S_2} (c, z)$ , i.e. such that:
    - \* We have  $a \sim_{R_1} b$  and  $x \sim_{R_2} y$ ;
    - \* We have  $b \sim_{S_1} c$  and  $y \sim_{S_2} z$ .

These two conditions agree, and thus the two resulting relations from  $A \times X$  to  $C \times Z$  are equal.

#### 9.2.7 Products of Families of Relations

Let  $\{A_i\}_{i\in I}$  and  $\{B_i\}_{i\in I}$  be families of sets, and let  $\{R_i\colon A_i\to B_i\}_{i\in I}$  be a family of relations.

#### **DEFINITION 9.2.7.1.1** ► THE PRODUCT OF A FAMILY OF RELATIONS

The **product of the family**  $\{R_i\}_{i\in I}$  is the relation  $\prod_{i\in I} R_i$  from  $\prod_{i\in I} A_i$  to  $\prod_{i\in I} B_i$  defined as follows:

• Viewing relations as subsets, we define  $\prod_{i \in I} R_i$  as its product as a family of sets, i.e. we have

$$\prod_{i \in I} R_i \stackrel{\text{def}}{=} \left\{ (a_i, b_i)_{i \in I} \in \prod_{i \in I} (A_i \times B_i) \middle| \begin{array}{l} \text{for each } i \in I, \\ \text{we have } a_i \sim_{R_i} b_i \end{array} \right\}.$$

· Viewing relations as functions to powersets, we define

$$\left[\prod_{i\in I} R_i\right] ((a_i)_{i\in I}) \stackrel{\text{def}}{=} \prod_{i\in I} R_i(a_i)$$

for each  $(a_i)_{i \in I} \in \prod_{i \in I} R_i$ .

## 9.2.8 The Collage of a Relation

Let A and B be sets and let  $R: A \rightarrow B$  be a relation from A to B.

#### **DEFINITION 9.2.8.1.1** ► THE COLLAGE OF A RELATION

The **collage of**  $R^1$  is the poset  $Coll(R) \stackrel{\text{def}}{=} (Coll(R), \preceq_{Coll(R)})$  consisting of:

• The Underlying Set. The set Coll(R) defined by

$$Coll(R) \stackrel{\text{def}}{=} A \coprod B.$$

• *The Partial Order*. The partial order

$$\preceq_{\mathbf{Coll}(R)} : \mathbf{Coll}(R) \times \mathbf{Coll}(R) \rightarrow \{\mathsf{true}, \mathsf{false}\}$$

on Coll(R) defined by

$$\preceq (a, b) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } a = b \text{ or } a \sim_R b, \\ \text{false} & \text{otherwise.} \end{cases}$$

<sup>&</sup>lt;sup>1</sup>Further Terminology: Also called the **cograph of** R.

## **NOTATION 9.2.8.1.2** $\blacktriangleright$ **NOTATION:** $\mathsf{Pos}_{/\Delta^1}(A,B)$

We write  $\mathsf{Pos}_{/\Delta^1}(A,B)$  for the category defined as the pullback

$$\mathsf{Pos}_{/\Delta^1}(A,B) \stackrel{\mathsf{def}}{=} \mathsf{pt} \underset{[A],\mathsf{Pos},\mathsf{ev}_0}{\times} \mathsf{Pos}_{/\Delta^1} \underset{\mathsf{ev}_1,\mathsf{Pos},[B]}{\times} \mathsf{pt},$$

as in the diagram



## REMARK 9.2.8.1.3 ► UNWINDING NOTATION 9.2.8.1.2

In detail,  $Pos_{/\Delta^1}(A, B)$  is the category where:

- *Objects.* An object of  $Pos_{/\Delta^1}(A, B)$  is a pair  $(X, \phi_X)$  consisting of
  - A poset *X*;
  - A morphism  $\phi_X : X \to \Delta^1$ ;

such that we have

$$\phi_X^{-1}(0) = A,$$
  
 $\phi_X^{-1}(1) = B.$ 

• *Morphisms*. A morphism of  $\mathsf{Pos}_{/\Delta^1}(A,B)$  from  $(X,\phi_X)$  to  $(Y,\phi_Y)$  is a morphism of posets  $f\colon X\to Y$  making the diagram



commute.

.

Let A and B be sets and let  $R: A \rightarrow B$  be a relation from A to B.

1. Functoriality. The assignment  $R \mapsto \operatorname{Coll}(R)$  defines a functor

Coll: 
$$\operatorname{Rel}(A, B) \to \operatorname{Pos}_{/\Lambda^1}(A, B)$$
,

where

• Action on Objects. For each  $R \in \text{Obj}(\mathbf{Rel}(A, B))$ , we have

$$[Coll](R) \stackrel{\text{def}}{=} (Coll(R), \phi_R)$$

for each  $R \in \mathbf{Rel}(A, B)$ , where

- The poset Coll(R) is the collage of R of Definition 9.2.8.1.1.
- The morphism  $\phi_R : \mathbf{Coll}(R) \to \Delta^1$  is given by

$$\phi_R(x) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } x \in A, \\ 1 & \text{if } x \in B \end{cases}$$

for each  $x \in Coll(R)$ .

 Action on Morphisms. For each R, S ∈ Obj(Rel(A, B)), the action on Hom-sets

 $Coll_{R,S}$ :  $Hom_{Rel(A,B)}(R,S) \rightarrow Pos(Coll(R), Coll(S))$ 

of Coll at (R, S) is given by sending an inclusion

$$\iota \colon R \subset S$$

to the morphism

$$Coll(\iota): Coll(R) \rightarrow Coll(S)$$

of posets over  $\Delta^1$  defined by

$$[\mathbf{Coll}(\iota)](x) \stackrel{\mathrm{def}}{=} x$$

for each  $x \in Coll(R)$ .

2. Equivalence. The functor of Item 1 is an equivalence of categories.

<sup>&</sup>lt;sup>1</sup>Note that this is indeed a morphism of posets: if  $x \preceq_{Coll(R)} y$ , then x = y or  $x \sim_R y$ , so we have either x = y or  $x \sim_S y$  (as  $R \subset S$ ), and thus  $x \preceq_{Coll(S)} y$ .



# **Appendices**

# **A** Other Chapters

## **Preliminaries**

- 1. Introduction
- 2. A Guide to the Literature

#### Sets

- 3. Sets
- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

### Relations

- 8. Relations
- 9. Constructions With Relations

10. Conditions on Relations

## **Categories**

- 11. Categories
- 12. Presheaves and the Yoneda Lemma

## **Monoidal Categories**

13. Constructions With Monoidal Categories

## **Bicategories**

14. Types of Morphisms in Bicategories

#### Extra Part

15. Notes