Baptiste Pasquier

Lycée privé Sainte-Geneviève

2018-2019

- Cryptographie symétrique
 - Cryptographie symétrique
 - Chiffrement SPN
- Cryptanalyse différentielle
 - Définitions
 - Tableau de distribution des différences.
- Conception d'un chiffrement SPN
 - Couche de substitution/confusion

0000000

Cryptographie symétrique

Source: blog.emsisoft.com

Cryptographie symétrique

Définition 1 : Réseau de substitution-permutation

Un **réseau de substitution-permutation** est une architecture de chiffrement par bloc constituée d'une couche d'addition de clé, d'une couche de substitution et d'une couche de permutation

Cryptographie symétrique

Définition 1 : Réseau de substitution-permutation

Un réseau de substitution-permutation est une architecture de chiffrement par bloc constituée d'une couche d'addition de clé, d'une couche de substitution et d'une couche de permutation

FIGURE - Tour d'un SPN sur 16 bits

0000000 Chiffrement SPN

Cryptographie symétrique

Définition 2 : Fonction XOR

On définit la fonction OU exclusif (XOR, \oplus) par sa table de vérité :

X	0	0	1	1
y	0	1	0	1
$x \oplus y$	0	1	1	0

Cryptographie symétrique

Définition 2 : Fonction XOR

On définit la fonction OU exclusif (XOR, \oplus) par sa table de vérité :

Conception d'un chiffrement SPN

X	0	0	1	1
y	0	1	0	1
$x \oplus y$	0	1	1	0

On note \mathbb{F}_2 le corps $\mathbb{Z}/2\mathbb{Z}$.

Définition 3 : Extension à \mathbb{F}_2^n

Soit $n \in \mathbb{N}^*$. On étend la définition de la fonction \oplus pour définir la fonction $\oplus : \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2^n$ par :

$$\oplus: \left\{ \begin{array}{ccc} \mathbb{F}_2^n \times \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2^n \\ (x_1, \dots, x_n), (y_1, \dots, y_n) & \longmapsto x_1 \oplus y_1, \dots, x_n \oplus y_n \end{array} \right.$$

00000000 Chiffrement SPN

Cryptographie symétrique

Définition 4 : Fonction booléenne

Une fonction booléenne de n variables est une fonction de \mathbb{F}_2^n dans \mathbb{F}_2 .

Conception d'un chiffrement SPN

Cryptographie symétrique

Définition 4 : Fonction booléenne

Une fonction booléenne de n variables est une fonction de \mathbb{F}_2^n dans \mathbb{F}_2 .

x_1	0	1	0	1
<i>X</i> ₂	0	0	1	1
$f(x_1,x_2)$	0	1	0	0

TABLE - Table de vérité d'une fonction booléenne de 2 variables

00000000 Chiffrement SPN

Définition 5 : Sbox

Une table de substitution (Sbox) est la table de vérité d'une fonction de \mathbb{F}_2^m dans \mathbb{F}_2^n . Elle est donc composée de *n* fonctions booléennes de *m* variables.

Chiffrement SPN

<i>x</i> ₁	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
x ₂	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
x ₃	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
X4	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
$S_1(x_1, x_2, x_3, x_4)$	0	0	1	1	0	1	1	0	1	0	0	0	1	1	0	1
$S_2(x_1,x_2,x_3,x_4)$	1	0	0	0	1	1	1	0	1	1	1	0	0	0	0	1
$S_3(x_1, x_2, x_3, x_4)$	1	1	1	0	0	1	0	0	0	0	1	1	1	0	0	1
$S_4(x_1, x_2, x_3, x_4)$	1	0	1	0	0	1	1	1	0	1	0	1	0	1	0	0

 $\ensuremath{\mathrm{TABLE}}$ – Sbox de $\ensuremath{\mathbb{F}}_2^4$ dans $\ensuremath{\mathbb{F}}_2^4$

Cryptographie symétrique

<i>x</i> ₁	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
x ₂	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
X3	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
X4	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
$S_1(x_1, x_2, x_3, x_4)$	0	0	1	1	0	1	1	0	1	0	0	0	1	1	0	1
$S_2(x_1,x_2,x_3,x_4)$	1	0	0	0	1	1	1	0	1	1	1	0	0	0	0	1
$S_3(x_1,x_2,x_3,x_4)$	$\parallel 1$	1	1	0	0	1	0	0	0	0	1	1	1	0	0	1
$S_4(x_1, x_2, x_3, x_4)$	$\parallel 1$	0	1	0	0	1	1	1	0	1	0	1	0	1	0	0

Table – Sbox de \mathbb{F}_2^4 dans \mathbb{F}_2^4

	X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
Ī	S(x)	е	4	d	1	2	f	b	8	3	а	6	С	5	9	0	7

TABLE - Même Sbox en écriture hexadécimale

Définition 6 : Pbox

Une table de permutation (Pbox) est le tableau de valeurs d'une bijection de $\{0, \ldots, n-1\}$.

00000000 Chiffrement SPN

Cryptographie symétrique

Définition 6 : Pbox

Une table de permutation (Pbox) est le tableau de valeurs d'une bijection de $\{0, \ldots, n-1\}$.

	X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
P	(x)	0	4	8	С	1	5	9	d	2	6	а	е	3	7	b	f

TABLE - Phox

Chiffrement SPN

Définition 6 : Pbox

Une table de permutation (Pbox) est le tableau de valeurs d'une bijection de $\{0, \ldots, n-1\}$.

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
P(x)	0	4	8	С	1	5	9	d	2	6	а	е	3	7	b	f

Table - Pbox

FIGURE - Schéma de la Pbox

Définitions

Problème

Comment retrouver les clés k_i en supposant pouvoir appliquer l'algorithme de chiffrement à n'importe quelle chaine?

Définition 7 : Différentielle

Définitions

Une **différentielle** est un couple $(\Delta X, \Delta Y) \in (\mathbb{F}_2^n)^2$ de différence en entrée et de différence en sortie de l'algorithme de chiffrement.

Définition 8 : Chemin différentiel

Un **chemin différentiel** est un (r)-uplet de $(F_2^n)^r$ correspondant à des différences à chaque étape de l'algorithme de chiffrement.

Soit $X, X' \in (\mathbb{F}_2^n)^2$. On note $\Delta X = X \oplus X'$.

Proposition 1:

Pour toute clé K, on a :

$$(X \oplus K) \oplus (X' \oplus K) = X \oplus X' = \Delta X$$

Proposition 2:

Pour toute Pbox P, on a :

$$P(X) \oplus P(X') = P(X \oplus X') = P(\Delta X)$$

$$X = 0011$$

 $X' = 0101$ $\Delta X = 0110$

$$\left. \begin{array}{l}
 X = 0011 \\
 X' = 0101
 \end{array} \right\} \Delta X = 0110$$

$$k = 0100$$

$$\left. \begin{array}{l}
 X = 0011 \\
 X' = 0101
 \end{array} \right\} \Delta X = 0110$$

$$k = 0100$$

$$Y = 0111 \ Y' = 0001 \ \Delta Y = 0110$$

$$X = 0011$$

 $X' = 0101$ $\Delta X = 0110$

$$k = 0100$$

$$Y = 0111 \ Y' = 0001 \ \Delta Y = 0110$$

$$X = 0011 \\ X' = 0101$$
 $\Delta X = 0110$

	Х	0	1	2	3
F	P(x)	2	0	1	3

TABLE - Phox

$$\left. \begin{array}{l} Y = 0101 \\ Y' = 0110 \end{array} \right\} \ \Delta Y = 0011$$

$$X = 0011$$

 $X' = 0101$ $\Delta X = 0110$

X	0	1	2	3
P(x)	2	0	1	3

TABLE - Phox

$$\left. \begin{array}{l} Y = 0101 \\ Y' = 0110 \end{array} \right\} \ \Delta Y = 0011$$

Tableau de distribution des différences

Tableau de distribution des différences d'une Sbox

Soit S une Sbox.

Notations:

Soit $(\Delta X, \Delta Y) \in (\mathbb{F}_2^n)^2$. On définit :

$$\delta(\Delta X, \Delta Y) = \mathsf{card}\{X \in \mathbb{F}_2^n \mid S(X) \oplus S(X \oplus \Delta X) = \Delta Y\}$$

Tableau de distribution des différences d'une Sbox

Soit S une Shox.

Notations:

Soit $(\Delta X, \Delta Y) \in (\mathbb{F}_2^n)^2$. On définit :

$$\delta(\Delta X, \Delta Y) = \mathsf{card}\{X \in \mathbb{F}_2^n \mid S(X) \oplus S(X \oplus \Delta X) = \Delta Y\}$$

Définition 9 : Difference distribution table (DDT)

Le tableau de distribution des différences de la Sbox S donne les valeurs de $\delta(\Delta X, \Delta Y)$ pour tout $(\Delta X, \Delta Y) \in (\mathbb{F}_2^n)^2$.

0

Tableau de distribution des différences

Exemple

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	е	4	d	1	2	f	b	8	3	a	6	С	5	9	0	7

Table - Sbox

									Outp	ıt diff	erence	:					
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	-	-	-	2	-	-	-	2	-	2	4	-	4	2	-	-
1	2	-	-	-	2	-	6	2	2	-	2	-	-	-	-	2	-
	3	-	-	2	-	2	-	-	-	-	4	2	-	2	-	-	4
İ	4	-	-	-	2	-	-	6	-	-	2	-	4	2	-	-	-
8	5	-	4	-	-	-	2	2	-	-	-	4	-	2	-	-	2
difference	6	-	-	-	4	-	4	-	-	-	-	-	-	2	2	2	2
قِ ا	7	-	-	2	2	2	-	2	-	-	2	2	-	-	-	-	4
	8	-	-	-	-	-	-	2	2	-	-	-	4	-	4	2	2
Input	9	-	2	-	-	2	-	-	4	2	-	2	2	2	-	-	-
1 5	10	-	2	2	-	-	-	-	-	6	-	-	2	-	-	4	0
-	11	-	-	8	-	-	2	-	2	-	-	-	-	-	2	-	2
ı	12	-	2	-	-	2	2	2	-	-	-	-	2	-	6	-	-
	13	-	4	-	-	-	-	-	4	2	-	2	-	2	-	2	-
	14	-	-	2	4	2	-	-	-	6	-	-	-	-	-	2	-
	15	-	2	-	-	6	-	-	-	-	4	-	2	-	-	2	-

 ${f TABLE}$ – DDT de la Sbox

Tableau de distribution des différences

Tableau de distribution des différences

Tableau de distribution des différences

Tableau de distribution des différences

Comment déterminer k_5 ?

Définition 10 : Uniformité différentielle

On définit l'**uniformité différentielle** $\mu(S)$ d'une Sbox S par le maximum de son tableau de distribution des différences.

$$\mu(S) = \max_{\Delta X, \Delta Y \in (F_2^n)^2, \, \Delta X \neq 0} \delta(\Delta X, \Delta Y)$$

Définition 10 : Uniformité différentielle

On définit l'**uniformité différentielle** $\mu(S)$ d'une Sbox S par le maximum de son tableau de distribution des différences.

$$\mu(S) = \max_{\Delta X, \Delta Y \in (F_2^n)^2, \Delta X \neq 0} \delta(\Delta X, \Delta Y)$$

		Output difference															
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Input difference	0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	1	-	-	-	2	-	-	-	2	-	2	4	-	4	2	-	-
	2	-	-	-	2	-	6	2	2	=	2	-	-	-	-	2	-
	3	-	-	2	-	2	-	-	-	-	4	2	-	2	-	-	4
	4	-	-	-	2	-	-	6	-	-	2	-	4	2	-	-	-
	5	-	4	-	-	-	2	2	-	-	-	4	-	2	-	-	2
	6	-	-	-	4	-	4	-	-	-	-	-	-	2	2	2	2
	7	-	-	2	2	2	-	2	-	-	2	2	-	-	-	-	4
	8	-	-	-	-	-	-	2	2	-	-	-	4	-	4	2	2
	9	-	2	-	-	2	-	-	4	2	-	2	2	2	-	-	-
	10	-	2	2	-	-	-	-	-	6	-	-	2	-	-	4	0
	11	-	-	8	-	-	2	-	2	-	-	-	-	-	2	-	2
	12	-	2	-	-	2	2	2	-	-	-	-	2	-	6	-	-
	13	-	4	-	-	-	-	-	4	2	-	2	-	2	-	2	-
	14	-	-	2	4	2	-	-	-	6	-	-	-	-	-	2	-
	15	-	2	-	-	6	-	-	-	-	4	-	2	-	-	2	-

Hypothèse:

Un bon algorithme de chiffrement nécessite une Sbox avec la plus faible uniformité différentielle.

Conception d'un chiffrement SPN

•0000

6

8

10

Conception d'un chiffrement SPN

Conception d'un chiffrement SPN

Couche de substitution/confusion

Conception d'un chiffrement SPN

Couche de substitution/confusion

Conclusion

• Importance de l'uniformité différentielle

Conclusion

- Importance de l'uniformité différentielle
- Permutations APN

Conclusion

- Importance de l'uniformité différentielle
- Permutations APN
- Couche de diffusion/permutation

•00

FIGURE - Pbox A

FIGURE - Pbox B

 $\mathbf{FIGURE} - \mathsf{Pbox}\ \mathsf{C}$

FIGURE - Pbox D

Vérification

Bibliographie

- Céline BLONDEAU. La cryptanalyse différentielle et ses généralisations. Université Pierre et Marie Curie Paris VI, 2011.
- Anne CANTEAUT. Lecture Notes on Cryptographic Boolean Functions. Inria, 2016.
- Howars M. HEYS. « A tutorial on linear and differential cryptanalysis ». In: *Cryptologia* 26.3 (2002), p. 189-221.
- Lars R. Knudsen et Matthew J. B. Robshaw. *The Block Cipher Companion. Chapitre 6.* Springer Publishing Company, 2011.