

타원곡선암호

Elliptic Curves Cryptography (ECC)

https://youtu.be/_GOmrsCbNss

Elliptic Curves Cryptography

• ECC, ECDH, ECDSA?

Name	Example
TLS (Transport Layer Security)	HTTPs
SSH (Security SHell)	Remote control
PGP (Pretty Good Privacy)	E-mail
Cryptocurrencies	Bitcoin

→ Internet Security

E LI

Elliptic Curves

$$y^2 = x^3 + ax + b$$

Normal Form

Singularity Form

$$\left\{(x,y)\in\mathbb{R}^2\mid y^2=x^3+ax+b,\ 4a^3+27b^2\neq 0\right\}\ \cup\ \left\{0\right\}$$

Groups

- Addition (+)
 - Closure
 - Associativity
 - Identity element
 - Inverse element

Commutativity → Abelian group

Example :
$$\mathbb{Z}$$
 ($a\ group$), \mathbb{N} ($not\ a\ group$)
Have Doesn't Have Inverse Element Inverse Element

Elliptic Curves over Group

- Elements
 - Points of an curve
- Identity element
 - Point at infinity or Ideal point → 0
- Inverse element
 - Point symmetric about x-axis;
- Addition
 - Given aligned three points P, Q, R \rightarrow P + Q + R = 0 (associative, commutative)

A C

Geometric Addition

$$P + Q + R = 0, P + Q = -R$$

$$P = 0$$
 or $Q = 0$

→ Identity element

$$P = -Q$$

→ Inverse element

$$P = Q \text{ or } P \neq Q \text{ but no } R$$

→ Tangency

Algebraic Addition

•
$$P + 0 = 0 + P = P, P + (-P) = 0$$

• Points P, Q, R

$$m = rac{y_P - y_Q}{x_P - x_Q} egin{array}{cccc} x_R &=& m^2 - x_P - x_Q \ y_R &=& y_P + m(x_R - x_P) \ y_R &=& y_Q + m(x_R - x_Q) \end{array}$$

$$m=\frac{3x_P^2+a}{2}$$

Tangency

Formula

$$y^2 = x^3 + ax + b$$
$$y = y_P + m(x - x_P)$$

$$x^{3} + ax + b$$

= $\{y_{P} + m(x - x_{P})\}^{2}$

$$x^{3} - m^{2}x^{2} \cdots + b = 0$$

$$x_{P} + x_{Q} + x_{R} = m^{2}$$

$$x_{R} = m^{2} - x_{P} - x_{Q}$$

Formula

$$y^2 = x^3 + ax + b$$

$$m = \frac{3x_P^2 + a}{2y_P}$$

Scalar Multiplication

$$nP = P + P + \cdots + P$$

Double and Add algorithm

$$151 = 1 \cdot 2^{7} + 0 \cdot 2^{6} + 0 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$
$$= 2^{7} + 2^{4} + 2^{2} + 2^{1} + 2^{0}$$

Finite Field F_p

- Operation
 - Addition (+)
 - Multiplication (·)
- Closed
- Associative and Commutative
- Identity element, Inverse element
- Distributive
- p is a prime number

Finite Field F_p

- Addition: $(18 + 9) \mod 23 = 4$
- Subtraction: $(7 14) \mod 23 = 16$
- Multiplication: $4 \cdot 7 \mod 23 = 5$
- Additive inverse: $-5 \mod 23 = 18$

Indeed:
$$(5 + (-5)) \bmod 23 = (5 + 18) \bmod 23 = 0$$

• Multiplicative inverse: $9^{-1} \mod 23 = 18$

Indeed: $9 \cdot 9^{-1} \mod 23 = 9 \cdot 18 \mod 23 = 1$

Division

Find inverse and perform multiplication

→ Extended Euclidean Algorithm

Elliptic Curves over F_p

$$egin{array}{ll} \left\{ (x,y) \in \mathbb{R}^2 & | & y^2 = x^3 + ax + b, \\ & 4a^3 + 27b^2 \neq 0
ight\} \ \cup \ \{0\} \end{array}$$

$$egin{array}{ll} ig\{(x,y)\in (\mathbb{F}_p)^2 & | & y^2\equiv x^3+ax+b \pmod p, \ & 4a^3+27b^2\not\equiv 0 \pmod pig\} \ \cup \ \{0\} \end{array}$$

$$y^2 = x^3 - 7x + 10 \pmod{p}$$

p = 19, 97, 127, 487

Symmetric

Abelian group

Point Addition

$$P + Q + R = 0, P + Q = -R$$

$$P = 0 \ or \ Q = 0$$

→ Identity element

$$P = -Q$$

→ Inverse (mod q)

$$P = Q, P \neq Q but no R$$

→ Tangency (접선)!

Point Addition

$$m = (y_P - y_Q)(x_P - x_Q)^{-1} \mod p$$
 $x_R = (m^2 - x_P - x_Q) \mod p$
 $y_R = [y_P + m(x_R - x_P)] \mod p$
 $= [y_Q + m(x_R - x_Q)] \mod p$
 $m = (3x_P^2 + a)(2y_P)^{-1} \mod p$

Order

- Order
 - The number of points
 - Trying all x (from 0 to p-1) is "hard" if p is large
 - Schoof's algorithm
 - Computing the order

Scalar Multiplication

$$nP = P + P + \cdots + P$$

Double and Add algorithm

Cyclic subgroup

$$y^2 = x^3 + 2x + 3 \pmod{97} P = (3,6)$$

Scalar Multiplication

•
$$1P=(3,6)$$

•
$$2P=(80,10)$$

•
$$3P=(80,87)$$

•
$$4P=(3,91)$$

•
$$6P=(3,6)$$

•
$$(5k+1)P=(3,6)$$

•
$$(5k+2)P=(80,10)$$

•
$$(5k+3)P=(80,87)$$

•
$$(5k+4)P=(3,91)$$

5 points repeated are closed

→Subgroup

P is base point (generator)

Subgroup Order

- Subgroup order
 - Minimum n where nP=0
- Lagrange's theorem
 - The order of subgroup is a divisor or the order of parent group
- Find subgroup order
 - Calculate N
 - Find out all the divisor of N
 - Compute nP
 - Find smallest n such that nP=0

Discrete Logarithm

• Given P and Q, finding k such that Q=kP is "harder"

No proof, but there is no known polynomial time algorithm

DSA, DH, ElGamal

