FIRST-ORDER LOGIC

SYNTAX

Term

Constants - a,b,c... Variables - x,y,z...

Function

Arity n: Takes n terms as input, and forms a term

Predicate

Arity n: Takes n terms as input, and forms an atom

SYNTAX

Atom	Predicate: p,q,r
Logical Connectives	\wedge : and, \vee : or, \neg : not, \rightarrow : implies, \leftrightarrow : if and only if(iff)
Quantifier	∀ : Universal ∃ : Existential
Literal	Atom or its negation
Formula	A literal or the application of logical connectives and quantifiers to formulae

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

$$\forall \mathbf{x}. ((\exists \mathbf{y}. p(f(\mathbf{x}), \mathbf{y})) \rightarrow q(\mathbf{x}))$$

Variables

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

Function

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

Predicate

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$

Quantifier

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of x

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of y

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of y

An occurrence of a variable is bound if it is in the scope of some quantifier

$$\forall x. ((\exists y. p(f(x), y)) \rightarrow q(x))$$
Scope of y

An occurrence of a variable is bound if it is in the scope of some quantifier

An occurrence of a variable is free if it is not in the scope of some quantifier

SEMANTICS - EXAMPLES

- All Humans are mortal.
 - Assume unary predicates human and mortal.

 $\forall x . human(x) \rightarrow mortal(x)$

SEMANTICS - EXAMPLES

- There always exists someone such that if (s)he laughs, then everyone laughs.
 - Assume unary predicate laughs.

 $\exists x. (laughs(x) \rightarrow \forall y. laughs(y))$

SEMANTICS - EXAMPLES

- Every dog has its day.
 - $\forall x . dog(x) \rightarrow \exists y . day(y) \land itsDay(x, y)$
- Some dogs have more days than others.
 - $\exists x, y . dog(x) \land dog(y) \land \#days(x) > \#days(y)$
- All cats have more days than dogs.
 - $\forall x, y . (dog(x) \land cat(y)) \rightarrow \#days(y) > \#days(x)$

INTERPRETATIONS

- An interpretation I is an assignment from variables (in general, terms) to values in a specified domain.
- Domain, D_I
 - A nonempty set of values or objects. Also called universe of discourse.
 - Numbers, humans, students, courses, animals,...
- Assignment, α_I
 - Maps constants and variables to elements of the domain ${\cal D}_I$ (i.e. values)
 - Maps functions and predicate symbols to functions and predicates (of the same arity) over $D_{\it I}$

INTERPRETATIONS - EXAMPLE 1

- Suppose $D_I = \{A, B\}$
- Constants a and b are mapped to following elements in D_I
 - $\alpha_I(a) = B$ $\alpha_I(b) = A$
- A binary function symbol f is mapped to the following actual function on D_I :
 - $\alpha_I(f) = \{ (A, A) \to B, (A, B) \to B, (B, A) \to A, (B, B) \to B \}$
- A unary predicate symbol p is mapped to the following actual predicate on ${\cal D}_{\cal I}$
 - $\alpha_I(p) = \{A \rightarrow True, B \rightarrow False\}$

INTERPRETATIONS - EXAMPLE 2

- Consider the formula: $x + y > z \rightarrow y > z x$
 - Here, +, are functions and > is a predicate.
 - Equivalent to $p(f(x, y), z) \rightarrow p(y, g(z, x))$.
- A standard interpretation for this formula would be:
 - Domain: Z
 - +, would be mapped to the standard integer addition and subtraction functions.
 - > would be mapped to the standard greater-than relation over integers.
 - x, y, z could be mapped to 5,10,9 resp.

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

$I \vDash \top$		
$I \not \models \bot$		
$I \vDash p$	iff I[p]=true	
$I \nvDash p$	iff I[p]=false	

Inductive Case:

$I \vDash \neg F$	$\inf I \nvDash F$
$I \vDash F_1 \land F_2$	iff $I \vDash F_1$ and $I \vDash F_2$
$I \vDash F_1 \lor F_2$	iff $I \vDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \to F_2$	iff $I \nvDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \leftrightarrow F_2$	iff $I \vDash F_1$ and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

 $I \models \mathsf{T}$

 $I \nvDash \bot$

 $I \vDash p$

 $I \nvDash p$

What does this mean?

iff I[p]=true

iff I[p]=false

Inductive Case:

1	F	$\neg F$	1'			
I	Н	F	٨	F		

$$I \vDash F_1 \land F_2$$

$$I \vDash F_1 \vee F_2$$

$$I \models F_1 \rightarrow F_2$$

$$I \vDash F_1 \leftrightarrow F_2$$

iff
$$I \nvDash F$$

iff
$$I \vDash F_1$$
 and $I \vDash F_2$

iff
$$I \vDash F_1$$
 or $I \vDash F_2$

iff
$$I \not\models F_1$$
 or $I \models F_2$

iff
$$I \vDash F_1$$
 and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$

SEMANTICS - CONTINUED...

$$I \vDash p(t_1, ..., t_n) \text{ iff } \alpha_I[p](\alpha_I[t_1], ..., \alpha_I[t_n]) = \top$$

$$\alpha_{I}[f(t_{1},...,t_{n})] = \alpha_{I}[f](\alpha_{I}[t_{1}],...,\alpha_{I}[t_{n}])$$

SEMANTICS - EXAMPLE

$$D_{I} = \{A, B\}$$

$$\alpha_{I}(a) = B \quad \alpha_{I}(b) = A$$

$$\alpha_{I}(f) = \{(A, A) \rightarrow B, (A, B) \rightarrow B, (B, A) \rightarrow A, (B, B) \rightarrow B\}$$

$$\alpha_{I}(p) = \{A \rightarrow True, B \rightarrow False\}$$

INTERPRETATION

$$I \vDash p(b)$$

 $I \vDash p(f(a,b))$
 $I \nvDash p(f(b,a))$

SEMANTICS - QUANTIFIERS

- An x-variant of interpretation $I=(D_I,\alpha_I)$ is an interpretation $J=(D_J,\alpha_J)$ such that
 - $D_I = D_J$;
 - and $\alpha_I[y] = \alpha_J[y]$ for all constant, free variable, function, and predicate symbols y, except possibly x.
- An x-variant of I, where x is mapped to some $v \in D_I$ is denoted by $I[x \mapsto v]$.

 $I \vDash \forall x . F \text{ iff for all } v \in D_I, I[x \mapsto v] \vDash F$ $I \vDash \exists x . F \text{ iff there exists } v \in D_I, I[x \mapsto v] \vDash F$

SEMANTICS - QUANTIFIERS - EXAMPLE

$$D_{I} = \{A, B\}$$

$$\alpha_{I}(a) = B \quad \alpha_{I}(b) = A$$

$$\alpha_{I}(f) = \{(A, A) \rightarrow B, (A, B) \rightarrow B, (B, A) \rightarrow A, (B, B) \rightarrow B\}$$

$$\alpha_{I}(p) = \{A \rightarrow True, B \rightarrow False\}$$

INTERPRETATION I

$$I \vDash \exists x . p(x)$$
$$I \vDash \forall x . \neg p(f(b, x))$$

SATISFIABILITY AND VALIDITY

- A FOL formula F is satisfiable if there exists an interpretation I such that $I \models F$.
 - If no such interpretation exists, then it is unsatisfiable
- A FOL formula F is valid if for all interpretations $I, I \models F$
 - Technically, only for interpretations which assign to all the constants, variables, predicates, functions used in F.
- F is valid iff $\neg F$ is unsatisfiable.

FREE VARIABLES

- Given a FOL formula F, a variable x is free in F if there is a use of x in F which is not bound to any quantifier.
 - free(F) denotes all variables free in F.
- A FOL formula F is closed if it does not contain any free variables.
- Technically, satisfiability and validity are only applicable for closed FOL formulae.
- However, we can extend these concepts to formulae with free variables by following the below convention:
 - For satisfiability, all free variables are implicitly existentially quantified.
 - For validity, all free variables are implicitly universally quantified.

SATISFIABILITY AND VALIDITY

EXAMPLES

- Is the formula $\forall x . \exists y . p(x, y)$ satisfiable?
 - Yes. A satisfying interpretation: $I = (\{A\},)$
- Is the formula $\forall x . \exists y . p(x, y)$ valid?
 - No. A falsifying interpretation: $I = (\{A\},)$
- Is the formula $(\forall x . p(x)) \rightarrow (\exists y . p(y))$ valid?
- Is the formula $\forall x.(p(x) \rightarrow (\exists y.p(y)))$ valid?
 - What about $\forall x.(p(x) \rightarrow (\forall y.p(y)))$?

DECISION PROCEDURE FOR VALIDITY

- Semantic Argument Method
 - Deductive Approach
 - Proof by Contradiction
 - Assume that a falsifying interpretation exists.
 - Use proof rules to deduce more facts.
 - The goal is to find contradictory facts in each branch (also called closing the branch).
- Proof rules for negation, conjunction, disjunction, implication, iff carry over from Propositional logic

PROOF RULES UNIVERSAL QUANTIFICATION

$$I \vDash \forall x . F$$

$$I[x \mapsto v] \vDash F$$
 For any $v \in D_I$

PROOF RULES

UNIVERSAL QUANTIFICATION

$$I \vDash \forall x . F$$

$$I[x \mapsto v] \vDash F$$
 For any $v \in D_I$

$$I \not\vDash \forall x . F$$

$$I[x \mapsto v] \not\vDash F$$
For a fresh $v \in D_I$

PROOF RULES

EXISTENTIAL QUANTIFICATION

$$I \vDash \exists x . F$$

$$I[x \mapsto v] \vDash F$$
For a fresh $v \in D_I$

PROOF RULES

EXISTENTIAL QUANTIFICATION

$$I \vDash \exists x . F$$

$$I[x \mapsto v] \vDash F$$
For a fresh $v \in D_I$

$$I \not\models \exists x . F$$

$$I[x \mapsto v] \not\models F$$
 For any $v \in D_I$

PROOF RULES CONTRADICTION

$$J \vDash p(s_1, ..., s_n) \quad K \nvDash p(t_1, ..., t_n)$$

$$J = I[...] \quad K = I[...]$$

$$\alpha_J[s_i] = \alpha_K[t_i] \text{ for all } i = 1, ..., n$$

 $I \vDash \bot$

Prove that $(\forall x . p(x)) \rightarrow (\forall y . p(y))$ is valid

$$I \nvDash (\forall x . p(x)) \rightarrow (\forall y . p(y))$$

$$I \vDash (\forall x . p(x))$$
 $I \nvDash (\forall y . p(y))$

Prove that $(\forall x . p(x)) \rightarrow (\forall y . p(y))$ is valid

$$I \nvDash (\forall x . p(x)) \rightarrow (\forall y . p(y))$$

$$I \vDash (\forall x . p(x))$$
 $I \nvDash (\forall y . p(y))$

[for a fresh v]

$$I[y \mapsto v] \not\vDash p(y)$$

Prove that $(\forall x . p(x)) \rightarrow (\forall y . p(y))$ is valid

$$I \nvDash (\forall x . p(x)) \rightarrow (\forall y . p(y))$$

$$I \vDash (\forall x . p(x))$$
 $I \nvDash (\forall y . p(y))$

[for a fresh v]

$$I[x \mapsto v] \vDash p(x) \qquad I[y \mapsto v] \nvDash p(y)$$

EXAMPLE

Prove that $(\forall x . p(x)) \rightarrow (\forall y . p(y))$ is valid

$$I \nvDash (\forall x . p(x)) \to (\forall y . p(y))$$

$$I \vDash (\forall x . p(x)) \qquad I \nvDash (\forall y . p(y))$$

$$I[x \mapsto v] \vDash p(x) \qquad I[y \mapsto v] \nvDash p(y)$$
CONTRADICTION

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \vDash \exists x . F \to G \quad I \nvDash (\forall x . F) \to (\exists x . G) \quad I \nvDash \exists x . F \to G \quad I \vDash (\forall x . F) \to (\exists x . G)$$

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I \nvDash (\forall x . F) \rightarrow (\exists x . G)$$

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I \not\models (\forall x . F) \rightarrow (\exists x . G)$$

$$I[x \mapsto v] \models F \to G$$

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I \nvDash (\forall x . F) \rightarrow (\exists x . G)$$

$$I[x \mapsto v] \models F \to G$$

$$I[x \mapsto v] \not\models F \qquad I[x \mapsto v] \models G$$

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I[x \mapsto v] \models F \rightarrow G$$

$$I[x \mapsto v] \nvDash F \qquad I[x \mapsto v] \vDash G$$

$$I \nvDash (\forall x . F) \rightarrow (\exists x . G)$$

$$I \vDash (\forall x . F) \quad I \nvDash (\exists x . G)$$

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I[x \mapsto v] \models F \to G$$

$$I \nvDash (\forall x . F) \rightarrow (\exists x . G)$$

$$I \vDash (\forall x . F) \quad I \nvDash (\exists x . G)$$

$$I[x \mapsto v] \not\models F$$
 $I[x \mapsto v] \models G$ $I[x \mapsto v] \models F$

Prove that $\exists x. F \to G \leftrightarrow (\forall x. F) \to (\exists x. G)$ is valid

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I[x \mapsto v] \models F \to G$$

$$I \nvDash (\forall x . F) \rightarrow (\exists x . G)$$

$$I \vDash (\forall x . F) \quad I \nvDash (\exists x . G)$$

$$I[x \mapsto v] \not\models F \qquad I[x \mapsto v] \models G \qquad I[x \mapsto v] \models F$$

$$I[x \mapsto v] \models C$$

$$I[x \mapsto v] \models F$$

CONTRADICTION

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I[x \mapsto v] \models F \to G$$

$$I \nvDash (\forall x . F) \rightarrow (\exists x . G)$$

$$I \vDash (\forall x . F) \quad I \nvDash (\exists x . G)$$

$$I[x \mapsto v] \not\models F \qquad I$$

$$I[x \mapsto v] \models G$$

$$I[x \mapsto v] \not\vDash F$$
 $I[x \mapsto v] \vDash G$ $I[x \mapsto v] \vDash F$ $I[x \mapsto v] \not\vDash G$

Prove that $\exists x. F \to G \leftrightarrow (\forall x. F) \to (\exists x. G)$ is valid

$$I \nvDash \exists x . F \to G \leftrightarrow (\forall x . F) \to (\exists x . G)$$

$$I \models \exists x . F \rightarrow G$$

$$I[x \mapsto v] \models F \to G$$

$$I[x \mapsto v] \models F \to G$$

$$I[x \mapsto v] \models G$$

$$I \nvDash (\forall x.F) \rightarrow (\exists x.G)$$

$$I \vDash (\forall x . F) \quad I \nvDash (\exists x . G)$$

$$I[x \mapsto v] \not\models F$$
 $I[x \mapsto v] \models G$ $I[x \mapsto v] \models F$ $I[x \mapsto v] \not\models G$

CONTRADICTION

Homework: Complete the proof in the other branch

MORE EXAMPLES

- Prove or disprove validity of following FOL formulae
 - $\forall x. F \to G \leftrightarrow (\exists x. F) \to (\forall x. G)$
 - $(\forall x . p(x)) \leftrightarrow \neg(\exists x . \neg p(x))$
 - $(\exists x . p(x)) \rightarrow (\forall y . p(y))$
 - $\exists x . (p(x) \rightarrow \forall y . p(y))$

DECIDABILITY OF VALIDITY OF FOL

- Church and Turing showed that it is undecidable to find whether a first-order formula is valid or not.
- But we have just seen the Semantic Argument-based decision procedure!
 - How to instantiate domain values in Proof rules for quantifiers?
 - What order should proof rules be applied in?
- The semantic argument-based method can be augmented to make the validity of FOL problem semi-decidable.
 - If the input formula is valid, then the method will halt and answer positive.
 - If the input formula is not valid, then the method may never halt.
 - More details in the BM book [Chapter 2, Section 2.7].

NORMAL FORMS OF FOL

- Negation Normal Form (NNF)
 - Should use only \neg , \land , \lor as the logical connectives, and \neg should only be applied to literals
 - $\neg(\forall x.F) \Leftrightarrow \exists x. \neg F \text{ and } \neg(\exists x.F) \Leftrightarrow \forall x. \neg F$

PRENEX NORMAL FORM

- A formula is in Prenex Normal Form (PNF) if all of its quantifiers appear at the beginning of the formula:
 - $Q_1x_1...Q_nx_n.F[x_1,...,x_n]$, where F is quantifier-free and may have $x_1,...,x_n$ as free variables.
- How to convert an arbitrary formula F to PNF?
 - 1. First, convert F to NNF (call it F_1).
 - 2. If two quantified variables in F_1 have the same name, then rename them to fresh variables (obtaining the formula F_2).
 - 3. Remove all quantifiers in F_2 to obtain F_3 .
 - 4. Add all the removed quantifiers at the beginning of F_3 , ensuring that if Q_j was in the scope of Q_i in F_2 , then Q_i occurs before Q_j

PRENEX NORMAL FORM

EXAMPLE

$$F: \ \forall x. \ \neg(\exists y. \ p(x,y) \ \land \ p(x,z)) \ \lor \ \exists y. \ p(x,y)$$

$$F_1: \ \forall x. \ (\forall y. \ \neg p(x,y) \ \lor \ \neg p(x,z)) \ \lor \ \exists y. \ p(x,y)$$

$$F_2: \ \forall x. \ (\forall y. \ \neg p(x,y) \ \lor \ \neg p(x,z)) \ \lor \ \exists w. \ p(x,w)$$

$$F_3: \ \neg p(x,y) \ \lor \ \neg p(x,z) \ \lor \ p(x,w)$$

$$\forall x. \ \forall y. \ \exists w. \ \neg p(x,y) \ \lor \ \neg p(x,z) \ \lor \ p(x,w)$$

QUESTIONS

- Semantic Argument-based method for Validity of FOL Formula
 - Can it be directly used for checking satisfiability of FOL Formula?
 - No. Consider the formula $\forall x . \exists y . p(x, y)$.
 - Applying the proof rules will result in an interpretation which is not satisfying.
- Why do we insist on fresh values in some proof rules?
 - Example: $\exists x . \exists y . \exists z . p(x, y) \lor \neg p(x, z)$.
- Prenex Normal Form
 - Is $\forall x . \exists y . p(x, y) \Leftrightarrow \exists y . \forall x . p(x, y)$?
 - What about $\forall x . \exists y . p(x) \land q(y)$ and $\exists y . \forall x . p(x) \land q(y)$?

HOMEWORK

• Please try Exercises 2.1-2.4 in the BM Book, Chapter 2.