CSC 600-01 (SECTION 1) **Homework 1 - Syntax** prepared by Ilya Kopyl

CSC 600 HOMEWORK 1 - SYNTAX

February 15, 2018

Homework is prepared by: Ilya Kopyl. It is formatted in LaTeX, using TeXShop editor (under GNU GPL license). Syntax diagrams are created in LucidChart online editor (lucidchart.com).

1. Using BNF write the syntax definitions of the following objects:

a) Natural number (1, 2, 3, ...). The answer:

b) Unsigned integer (0, 1, 2, 3, ...). The answer:

Example of BNF definition of unsigned integer in languages that do not support leading zeroes (e.g. Python):

```
c) Integer (..., -2, -1, 0, 1, 2, ...). The answer:
```

```
\langle integer \rangle ::= \langle sign \rangle \langle unsigned\ integer \rangle
```

$$\langle sign \rangle$$
 ::= + | - | $\langle empty \rangle$

 $\langle empty \rangle$::=

$$\langle unsigned\ integer \rangle : := \langle digit \rangle \mid \langle unsigned\ integer \rangle \langle digit \rangle$$

Example of BNF definition of an integer in languages that do not support leading zeroes (e.g. Python):

 $\langle integer \rangle$: := $\langle sign \rangle$ $\langle unsigned\ integer \rangle$

$$\langle sign \rangle$$
 : = + | - | $\langle empty \rangle$

 $\langle empty \rangle$::=

 $\langle unsigned\ integer \rangle : := 0 \mid \langle natural\ number \rangle$

 $\langle \mathit{natural} \; \mathit{number} \rangle \qquad \qquad : := \; \langle \mathit{non-zero} \; \mathit{digit} \rangle \; \mid \; \langle \mathit{natural} \; \mathit{number} \rangle \; \; \langle \mathit{digit} \rangle$

 $\langle digit \rangle$::= 0 | $\langle non\text{-}zero\ digit \rangle$

 $\langle non\text{-}zero\ digit \rangle$::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

d) Odd number (..., -3, -1, 1, 3, ..., 101, ..., 2047, ...). The answer:

 $\langle odd \ number \rangle$::= $\langle sign \rangle$ $\langle unsigned \ odd \ number \rangle$

 $\langle sign \rangle$: := + | - | $\langle empty \rangle$

 $\langle empty \rangle$::=

 $\langle unsigned\ odd\ number \rangle ::= \langle odd\ digit \rangle \mid \langle unsigned\ integer \rangle \langle odd\ digit \rangle$

 $\langle unsigned\ integer \rangle$: := $\langle digit \rangle$ | $\langle unsigned\ integer \rangle$ $\langle digit \rangle$

 $\langle digit \rangle$::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Example of BNF definition of an odd number in languages that do not support leading zeroes (e.g. Python):

```
\langle odd \ number \rangle
                                         ::= \langle sign \rangle \ \langle unsigned \ odd \ number \rangle
\langle sign \rangle
                                         : := + | - | \langle empty \rangle
\langle empty \rangle
                                         ::=
\langle unsigned\ odd\ number \rangle ::= \langle odd\ digit \rangle \mid \langle natural\ number \rangle \langle odd\ digit \rangle
\langle natural\ number \rangle
                                        ::= \langle non\text{-}zero\ digit \rangle \mid \langle natural\ number \rangle \langle digit \rangle
\langle digit \rangle
                                         ::= 0 \mid \langle non\text{-}zero\ digit \rangle
\langle non-zero\ digit \rangle
                                         := 2 \mid 4 \mid 6 \mid 8 \mid \langle odd \ digit \rangle
\langle odd \ digit \rangle
                                         ::= 1 | 3 | 5 | 7 | 9
    e) Even number (..., -4, -2, 0, 2, 4, ..., 332, ..., 1022, ...). The answer:
\langle even\ number \rangle
                                         ::= \langle sign \rangle \ \langle unsigned \ even \ number \rangle
                                         : := + | - | \langle empty \rangle
\langle sign \rangle
\langle empty \rangle
\langle unsigned\ even\ number \rangle : := \langle even\ digit \rangle \mid \langle unsigned\ integer \rangle \langle even\ digit \rangle
\langle unsigned\ integer \rangle
                                         ::= \langle digit \rangle \mid \langle unsigned\ integer \rangle \langle digit \rangle
\langle digit \rangle
                                         ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Example of BNF definition of an even number in languages that do not support leading zeroes (e.g. Python):

f) Integer divisible by five (..., -10, 5, 0, 5, 10, ...). The answer:

Example of BNF definition of an integer divisible by 5 in languages that do not support leading zeroes (e.g. Python):

2. Show syntax diagrams for questions (a), ..., (f) of problem 1.

Example of syntax diagrams for integers with no support of leading zeroes.

3. Write a BNF definition of the syntax of (all possible) input statements in $\mathbf{C}++$.

Following is an example of input statement in C++:

```
cin > sclr > vec[2 * i - 1] > mat[f(i)][j + k] > t[i/3][j][k];
     The answer:
"There are only two hard things in Computer Science: cache invalidation and
naming things." - Phil Karlton.
\langle input \ statement \rangle
                                        ::= cin \langle input \ arguments \rangle;
\langle input \ arguments \rangle
                                         ::= \gg \langle input \ value \rangle \mid \langle input \ arguments \rangle \gg \langle input \ value \rangle
                                         : := \langle variable \rangle \mid \langle array\ element \rangle \mid \langle struct\ member \rangle
\langle input \ value \rangle
                                        ::=\langle identifier \rangle
\langle variable \rangle
\langle array\ element \rangle
                                        : := \langle identifier \rangle \langle array indicies \rangle
                                         : := \langle non\text{-}digit\ character} \mid \langle identifier \rangle \ \langle digit \rangle
\langle identifier \rangle
\langle array \ indicies \rangle
                                        : := \langle array \ index \rangle \mid \langle array \ indicies \rangle \langle array \ index \rangle
                                         ::= [ \langle expression \rangle ]
\langle array \ index \rangle
\langle expression \rangle
                                         ::= \langle conditional \ expression \rangle
                                            | \langle arithmetic \ expression \rangle |
                                                  \langle function \ call \rangle
                                            \mid \langle identifier \rangle
                                                  \langle void \rangle
\langle logical \ or \rangle
                                         : := \langle logical \ and \rangle
                                           \mid \langle logical \ or \rangle \mid \mid \langle logical \ and \rangle
\langle logical \ and \rangle
                                         ::=\langle inclusive\ or \rangle
                                                  \langle logical \ and \rangle && \langle inclusive \ or \rangle
\langle inclusive \ or \rangle
                                         : := \langle exclusive \ or \rangle
                                            | \langle inclusive \ or \rangle | \langle exclusive \ or \rangle
\langle exclusive \ or \rangle
                                         : := \langle and \rangle
                                           \mid \langle exclusive \ or \rangle \ \hat{} \langle and \rangle
```

 $\mid \langle and \rangle \& \langle equality \rangle$

 $: := \langle equality \rangle$

 $\langle and \rangle$

```
\langle equality \ expression \rangle
                                           : := \langle relational \ expression \rangle
                                             \mid \langle equality \ expression \rangle == \langle relational \ expression \rangle
                                                    \langle equality \ expression \rangle != \langle relational \ expression \rangle
\langle relational\ expression \rangle ::= \langle addition \rangle
                                             \mid \langle relational \ expression \rangle \ \langle \langle addition \rangle
                                              | \langle relational \ expression \rangle > \langle addition \rangle
                                              \mid \langle relational \; expression \rangle \; \langle = \langle addition \rangle
                                              | \langle relational \ expression \rangle \rangle = \langle addition \rangle
\langle addition \rangle
                                           : := \langle multiplication \rangle
                                             \mid \langle addition \rangle + \langle multiplication \rangle
                                              \mid \langle addition \rangle - \langle multiplication \rangle
\langle multiplicative \ expression \rangle : := \langle pm \ expression \rangle
                                             \mid \langle multiplication \rangle \star \langle unary\ expression \rangle
                                              \mid \langle multiplication \rangle / \langle unary\ expression \rangle
                                              \mid \langle multiplication \rangle \ % \ \langle unary\ expression \rangle
```