Class February 23

1. Direct Products and Finite Abelian Groups

Definition 0.1. G always denotes a group. G is the inner direct product of the subgroups $A, B \leq G$ if i) $A \triangleleft G$, $B \triangleleft G$ ii) $A \cap B = \{e\}$ iii) G = AB. The notation for direct products is $G = A \times B$.

Lemma 0.2. Assume $G = A \times B$.

- (a) A and B commute element-wise i.e. $ab = ba \ \forall a \in A, b \in B$.
- (b) if A and B are abelian, then so is G.

Proof. (a) Consider the commutators $[a,b] := (aba^{-1})b^{-1} = a(ba^{-1}b^{-1}) \in A \cap B = \{e\}$ $\implies aba^{-1}b^{-1} = e \implies ab = ba \ \forall a \in A, b \in B$

(b) $g_1, g_2 \in G \implies \exists a_1, a_2 \in A, b_1, b_2 \in B \text{ s.t. } g_1 = a_1b_1 \text{ and } g_2 = a_2b_2 \implies g_1g_2 = a_1b_1a_2b_2 = a_1a_2b_1b_2 \text{ and because } A, B \text{ are abelian, this equals } a_2(a_1b_2)b_1 = a_2b_2a_1b_1 = g_2g_1 \qquad \Box$

Example 0.3. (a) $V = <(12)(34) > \times <(13)(24) > \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

- (b) $U(8) = \{[1], [3], [5], [7]\} = <[3] > \times <[5] > \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$
- (c) $\mathbb{Z}_6 = <[3]> \cong \mathbb{Z}_3 \times <[2]> \cong \mathbb{Z}_2$
- (d) $D_6 = \{b^i, ab^i \mid 0 \le i \le 5\}$ such that $a^2 = b^6 = e$, $aba^{-1} = aba = b^{-1}$. Therefore, $D_6 \cong \langle b^3 \rangle \times \{e, b^2, b^4, a, ab^2, ab^4\} \implies D_6 \cong \mathbb{Z}_2 \times D_3$
- (e) By contrast, neither D_4 nor Q_8 can be written as direct products of two proper subgroups (Exercise).
- (f) Trivially, $\forall G, G = G \times \{e\}$

Lemma 0.4. If $|G| = p^2$, p is prime, then either G is cyclic or $G = A \times B \cong \mathbb{Z}_p \times \mathbb{Z}_p$ with subgroups A and B of order p.

Proof. G is a p-group so the center Z(G) is nontrivial. Assume $Z(G) = p \implies G/Z(G) \cong \mathbb{Z}_p$ $\implies G/Z(G)$ is cyclic and therefore G is abelian. But this is a contradiction, because if G is abelian, |G| = |Z(G)| by definition. Therefore, we know that G is abelian and G = Z(G).

Assume G is not cyclic $\implies |g| = p \ \forall g \in G \setminus \{e\}$. Pick any $a \in G \setminus \{e\}$ and set $A = \langle a \rangle \leq G$ $\implies |a| = |A| = p$. Therefore, $|G \setminus A| = p^2 - p > 0 \implies G \setminus A \neq \emptyset$. Pick $b \in G \setminus A$ and set $B := \langle b \rangle \leq G \implies |b| = |B| = p$.

Now, check (1) $A \triangleleft G, B \triangleleft G$ because G is abelian. (2) $A \cap B = \{e\}$. If $e \neq x \in A \cap B$ $\implies |x| = p \implies A = \langle x \rangle = B \implies b \in A$ which is a contradiction. (3) G = AB. $AB = \frac{|A||B|}{|A \cap B|} = \frac{p*p}{1} = p^2 = |G| \implies G = AB$

Class February 26

Remark 0.5. If $a, b \in G$ with $|a|, |b| < \infty$, then $|ab|| \ lcm(|a|, |b|)$ of ab = ba. If $ab \neq ba$, you cannot say anything about |ab|. If ab = ba, then |ab| < lcm(|a|, |b|) is possible in general (e.g. $b = a^{-1}$). If ab = ba and gcd(|a|, |b|) = 1, then |ab| = |a||b| = lcm(|a|, |b|). This uses the fact that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Definition 0.6. The (outer) direct product of the groups A, B is defined as $A \times B = \{(a, b) | a \in A, b \in B\}$ as set with a binary operation $\implies (a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2) \ \forall a_1, a_2 \in A \ \text{and} \ \forall b_1, b_2 \in B.$

This yields a group since (i) $A \times B$ satisfies associativity since A and B do (ii) $e_{A \times B} = (e_A, e_B)$ and (iii) $(a, b)^{-1} = (a^{-1}, b^{-1})$ for $a \in A, b \in B$.

Define $\iota_A:A\to A\times B$ which maps $a\to(a,e)$ and $\iota_B:B\to A\times B$ which maps $b\to(e,b)$. Then, ι_A,ι_B are injective group homomorphisms.

 $A \cong \iota_A(A) =: A' = \{(a,e) | a \in A\} \leq A \times B \text{ and } B \cong \iota_B(B) =: B' = \{(e,b) | b \in B\} leq A \times B.$

Remark 0.7. Properties of subgroups A', B' of $A \times B$:

- (1) $A', B' \triangleleft A \times B$, e.g. $(\widetilde{a}, b)(a, e)(\widetilde{a}^{-1}, b^{-1}) = (\widetilde{a}a\widetilde{a}^{-1}, beb^{-1}) = (\widetilde{a}a\widetilde{a}^{-1}, e) \in A'$
- (2) $A' \cap B' = \{(a, b) \in A \times B | b = e, a = e\} = \{(e, e)\}.$
- (3) $G = A'B' \implies \text{given } (a, b) \in A \times B, \text{ then } (a, b) = (a, e)(e, b)$

The consequence is that the outer product equals the inner product such that $A \times B = A' \times B'$

Lemma 0.8. Assume that $G = A \times B$ (inner; $A, B \leq G$) and that A', B' are groups with $A' \cong A$ and $B' \cong B$. Then, $G \cong A' \times B'$ (outer).

An application of this is that if $|G| = A \times B$ with $|A| = |B| = p \implies G \cong \mathbb{Z}_p \times \mathbb{Z}_p$ (outer).

Class February 28

Lemma 0.9. If $G = A \times B$ with subgroups $A, B \leq G$ and $a \in A, b \in B$ then $|ab| = lcm(|a|, |b|) (= \infty)$ if $|a| = \infty$ or $|b| = \infty$).

Proof. A previous lemma revealed that if $G = A \times B$, then A and B commute element-wise i.e. ab = ba $\forall a \in A, b \in B$. This implies that $(ab)^n = ab * ... * ab = a^nb^n \ \forall n \in \mathbb{N} \implies (ab)^n = e \Leftrightarrow a^nb^n = e \Leftrightarrow a^n = b^{-n} \in A \cap B = \{e\}. \ \therefore (ab)^n = e \Leftrightarrow a^n = e \text{ and } b^n = e \implies \text{if } |a| = \infty \text{ or } |b| = \infty, \text{ then } a^n \neq e \text{ } \forall n \in \mathbb{N} \text{ or } b^n \neq e \ \forall n \in \mathbb{N}. \text{ Now, assume } k = |a| < \infty \text{ and } l = |b| < \infty. \ ab)^n = e \Leftrightarrow a^n = e \text{ and } b^n = e \Leftrightarrow k \mid n \text{ and } l \mid n \Leftrightarrow lcm(k, l). \text{ Hence, } |ab| = min\{n \in \mathbb{N} \mid (ab)^n = e\} = lcm(k, l) = lcm(|a|, |b|)$

Remark 0.10. This is also true for the outer direct product $A \times B$, i.e. for $a \in A$ and $b \in B$, we get |(a,e)*(e,b)| = |(a,b)| = lcm(|a|,|b|). This follows from the previous lemma and $A \times B = A' \times B'$ (outer direct product equals inner direct product). More remarks follow:

- 1. a_1, b_1 * $(a_2, b_2) = (a_1a_2, b_1b_2)$
 - **Example 0.11.** $\mathbb{Z}_4 \times \mathbb{Q}_8 \leadsto ([k], x)([l], y) = ([k+l], xy)$ Moreover, note that all subgroups of \mathbb{Z}_4 and all subgroups of \mathbb{Q}_8 are normal but $\mathbb{Z}_4 \times \mathbb{Q}_8$ has a non-normal subgroup.
- 2. $H \le A, K \le B \implies H \times K = \{(h, k) \mid h \in H, k \in K\} \le A \times B$. But not all subgroups of $A \times B$ need to be of this form.
- 3. $H \times K \triangleleft A \times B \Leftrightarrow H \triangleleft A$ and $K \triangleleft B$ (check both directions with definitions).

Lemma 0.12. $A, B \leq G, G = A \times B \text{ and } A' \cong A, B' \cong B.$ Then, $G \cong A' \times B'$ (outer direct product)

Proof. $A' \cong A$ means \exists isomorphism $\varphi_A : A' \to A$, $B' \cong B$ means \exists isomorphism $\varphi_B : B' \to B$. Therefore, define a map $\varphi : A' \times B' \to G$ which maps $(a', b') \to \varphi_A(a')\varphi_B(b')$ NTS that φ is in fact an isomorphism:

To show that φ is a group homomorphism: $\varphi((a'_1, b'_1)(a'_2, b'_2)) = \varphi((a'_1a'_2, b'_1b'_2)) = \varphi_A(a'_1b'_2)\varphi_B(b'_1b'_2) = \varphi_A(a'_1)\varphi_A(a'_2)\varphi_B(b'_1)\varphi_A(a'_2)\varphi_B(b'_2) = \varphi((a'_1, b'_1)\varphi((a'_2, b'_2)) \implies \text{group homomorphism.}$

- φ is injective since φ_A and φ_B are injective; check $\ker(\varphi) = \{(e,e)\}$ (also use $A \cap B = \{e\}$). $\varphi_A(a')\varphi_B(b') = e \in G \implies \varphi_A(a') = e$ and $\varphi_B(b') = e$.
- φ is surjective since φ_A and φ_B are surjective. Given $g = ab \in G$ $(a \in A, b \in B)$, find preimages $a' \in A, b' \in B \implies \varphi((a', b')) = ab = g$.

 $\therefore \varphi$ is an bijective homomorphism, or an isomorphism.

Proposition 0.13. If $m, n \in \mathbb{N}$ with gcd(m, n) = 1, then $\mathbb{Z}_{nm} \cong \mathbb{Z}_n \times \mathbb{Z}_m$

Proof. $\mathbb{Z}_{nm} = \{[k]_{nm} \mid 1 \leq k \leq nm\}$. Set $a := [m]_{nm}$, $A := \langle a \rangle \Longrightarrow |a| = |A| = n$ and $b := [n]_{nm}$, $B := \langle b \rangle \Longrightarrow |b| = |B| = m$. Claim: $\mathbb{Z}_{nm} = A \times B$ (inner direct product). To show this, (1) $A, B \triangleleft \mathbb{Z}_{nm}$ because \mathbb{Z}_{nm} is abelian (2) $x \in A \cap B \Longrightarrow |x|| \gcd(|A|, |B|) = \gcd(n, m) = 1 \Longrightarrow x = [0]_{nm} = [nm]_{nm}$ (3) $|A + B| = \frac{|A| * |B|}{|A \cap B|} = \frac{n*m}{1} = nm = |\mathbb{Z}_{nm}| \Longrightarrow A + B = \mathbb{Z}_{nm}$ ("Chinese Remainder Theorem"). $A \cong \mathbb{Z}_n, B \cong \mathbb{Z}_m \Longrightarrow \mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{nm}$

Discussion 0.14. Direct products with > 2 factors can be done in two ways:

- 1. inductively: $A_1 \times ... \times A_n = (A_n \times ... \times A_{n-1}) \times A_n$
- 2. "inner": subgroups $A_1, ..., A_n \leq G$ such that (1) $A_i \triangleleft G \forall i$ (2) $A_i \cap A_1 ... A_{i-1} A_{i+1} ... A_n = \{e\}$ ($\Longrightarrow A_i \cap A_j = \{e\}$)
- 3. $G = A_1...A_n$

Example 0.15. $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. $A_1 = <([1], [0]) >, A_2 = <([0], [1]) >, A_3 = <([1], [1]) >. A_i \cap A_j = \{([0], [0])\} \ \forall i \neq j, \ \text{but} \ G \neq A_1 \times A_2 \times A_3 \ (\text{must have} \ |G| = \prod_{i=1}^n |A_i|) \ \text{if} \ G = A_1 \times ... \times A_n. \ \text{"outer": Given groups} \ A_1, ..., A_n \leadsto A_1 \times ... \times A_n = \{(a_i)_{1 \leq i \leq n} \ | \ a_i \in A \ \forall i \} \ \text{with multiplication} \ (a_i)(a_{i'}) := (a_i a_{i'})_{1 \leq i \leq n}$

Remark 0.16. $G = A_1 \times ... \times A_n$ (inner), then $A_i \cap A_j = \{e\} \ \forall i \neq j \implies A_i$ and A_j commute element-wise (using $A_i, A_j \triangleleft G$). Then it follows that (outer) $A_1 \times ... \times A_n \cong G$ (= $A_1 \times ... \times A_n$ (inner))

Class March 2

Proposition 0.17. Let G be a finite group with $|G| = \prod_{i=1}^n p_i^{e_i}$ such that $p_1, ..., p_n$ are distinct primes. Pick $P \in Syl_P(G) \ \forall i$. If $n_p = 1 \ (\Leftrightarrow P \lhd G) \ \forall i$, then $G = P_1 \times ... \times P_n$. Note that the assumption that $P_i \lhd G \ (\Leftrightarrow n_{p_i} = 1)$ applies in particular to finite abelian groups.

Proof. Verify (1)-(3) of an inner direct product (1) $P_i \triangleleft G \ \forall i$ (Consequence: Any product of some of the P_i 's is a (normal) subgroup of G. We apply $|AB| = \frac{|A|*|B|}{|A\cap B|} \ \forall A, B \leq G \leadsto |P_1...P_l| = \prod_{i=1}^l P_i^{n_i} \ (l \leq k),$ $|P_1...P_{i-1}P_{i+1}...P_k| = \frac{|G|}{P_i^{n_i}} =: \hat{P}_i \ (2) \ P_i \cap \hat{P}_i = \{e\} \text{ since } \gcd(|P_i|, |\hat{P}_i|) = \gcd(p_i^{n_i}, \frac{|G|}{P_i^{n_i}}) = 1$

(3)
$$|P_1...P_k| = \prod_{i=1}^k P_i^{n_i} |G| \implies P_1...P_k = G$$

Remark 0.18. G finite, p prime, $p \mid |G| \Longrightarrow$ by the 2nd Sylow Theorem, any element of p-power order is contained in some Sylow p-subgroup of G. $x \in G$, $|x| = p^i \Longrightarrow |\langle x \rangle| = p^i \Longrightarrow \exists P \in Syl_P(G) : x \in P$. If $n_p = 1$ i.e. $Syl_P(G) = \{P\}$, then $P = \{x \in G \mid |x| = p^i \text{ with } i \in \mathbb{N}_0\}$ ($|e| = p^0$). (\supseteq as remarked and \subseteq because any element of the p-subgroup P must have p-power order)

Corollary 0.19. Two finite abelian groups G and G' are isomorphic \Leftrightarrow they have isomorphic Sylow subgroups

Proof. (\Longrightarrow) \exists isomorphism $\varphi: G \to G'$. $G = P_1 \times ... \times P_k$ and $G' = P'_1 \times ... \times P'_k$. $G \cong G' \Longrightarrow$ the same primes $p_1, ..., p_k$ divide |G| and |G'|. Note that since φ is an isomorphism, $|x| = |\varphi(x)| \ \forall x \in G$. $\{x \in G \mid |x| \text{ is a power of } p_i\} = P_i \Longrightarrow \varphi(P_i) = \varphi(\{x \in G \mid |x| \text{ is a power of } p_i\}) = \{x' \in G \mid |x'| \text{ is a power of } p_i\} = P'_i$. Consequence: By restriction, φ induces an isomorphism between P_i and P'_i for any

1 < i < k.

(\Leftarrow) $G = P_i \times ... \times P_k$, $G' = P'_1 \times ... \times P'_k$. Assume \exists isomorphisms $\varphi_i : P_i \to P'_i \ \forall 1 \le i \le k$. Then, define $\varphi : G \to G'$ by $\varphi(x_1, ..., x_k) := \varphi_1(x_1)...\varphi_k(x_k)$ whenever $x_i \in P_i \ \forall i$. Note the following (i) every $g \in G$ can be written in this way since $G = P_1...P_k$ (ii) if $x_1...x_k = y_1...y_k$ with $x_iy_i \in P_i$ ($1 \le i \le k$) then $x_i = y_i \ \forall i$ and also P_i and P_j commute $\forall i \ne j$ e.g. $y_1^{-1}x_1 = y_2x_2^{-1}...y_kx_k^{-1} \in P_1 \cap P_2 \cap ... \cap P_k = \{e\}$. Now check φ is a group isomorphism (exercise).

Consequence: The analysis of finite abelian groups reduces to the analysis of finite abelian p-groups.

Proposition 0.20. If G is a finite abelian p-group and $a \in G$ with $|a| = max\{|b|| b \in G\}$, then there exists a subgroup $H \leq G$ such that $G = \langle a \rangle \times H$

Proof. Algebra: Pure and Applied by Aigli (page 124/125)

Corollary 0.21. Induction on |G|, if G is abelian, $|G| = p^n$, p prime, then there exists $e_1, ..., e_r \in \mathbb{N}$ such that $e_1 \geq ... \geq e_r \geq 1$, $e_1 + ... + e_r = n$ and $G \cong \mathbb{Z}_p e_1 \times ... \times \mathbb{Z}_p e_r$

Proposition 0.22. G abelian, $|G| = p^n$, p prime. Assume $G = \mathbb{Z}_p e_1 \times ... \times \mathbb{Z}_p e_r$, $e_1 \ge ... \ge e_r \ge 1$, $\cong \mathbb{Z}_p e'_1 \times ... \times \mathbb{Z}_p e'_s$, $e'_1 \ge ... \ge e'_s \ge 1$. Then r = s and $e_i = e'_i \ \forall \ 1 \le i \le r$

Proof. Proposition 3.4.13 on Page 127

Theorem 0.23. Fundamental Theorem of Finite Abelian Groups. If G is a finite abelian group, $|G| = \prod_{i=1}^k p_i^{n_i}$ with distinct primes $p_1, ..., p_k$, then there exist uniquely determined $r_i \in \mathbb{N}$; $e_{ij} \in \mathbb{N}$ $1 \leq j \leq r_i$, $e_{i1} \geq ... \geq e_{ir_i}$ and $e_{i1} + ... + e_{ir_i} = n_i$ such that $G \cong \mathbb{Z}_{p_1} e_{11} \times ... \times \mathbb{Z}_{p_1} e_{1r_1} \times ... \times \mathbb{Z}_{p_k} e_{kr_i}$.

Proof. Exercise that uses previously stated propositions and corollaries. \Box

Example 0.24. Determine, up to isomorphism, all abelian groups of order 72. $72 = 2^3 * 3^2$. Therefore, abelian groups of order 8: \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \mid 3$. Abelian groups of order 9: \mathbb{Z}_9 , $\mathbb{Z}_3 \times \mathbb{Z}_3 \mid 2$. Abelian groups of order 72 \implies there are 3*2=6 (form all the combinations between abelian groups of order 8 and 9).