Tutorial 1.2 - Questions

- 1. In each of the following cases, state if the given set is bounded above or not. If a set is bounded above, give two different upper bounds for the set, give the supremum of the set and state if the set has a maximum or not.
 - a. (-3,2)
 - b. $(1, \infty)$
 - c. [10,11]
 - d. {5,4}
 - e. $\{10,9,8,7,6,5,4,3,2,1,0,-1,-2,-5\}$
 - f. $(-\infty, 2]$
 - g. $\{x \in \mathbb{R} : x^2 < 3\}$
 - h. $\{x \in \mathbb{R} : x^2 \le 3\}$
- 2. For each of the sets in Q.1, state if the given set is bounded below or not. If a set is bounded below, give two different lower bounds for the set, give the infimum of the set and state if the set has a minimum or not.
- 3. Let *S* be a nonempty subset of \mathbb{R} .
 - a. If α is the greatest element of S, then what is $\sup S$?
 - b. If $\sup S = a$, then what are the upper bounds of S?
 - c. If $\sup S = a$, does S have a maximum?
 - d. If $\sup S = a$ and $a \in S$, does S have a maximum?
- 4. Prove Proposition 1.4.
- 5. Prove Theorem 1.7.
- 6. Prove Theorem 1.8.
- 7. Let *S* and *T* be non-empty subsets of \mathbb{R} which are bounded above. Use Theorem 1.6 to prove that $\sup(S+T) = \sup S + \sup T$.
- 8. Decide which of the following statements are **True** and which are **False**.
 - a. $\frac{1}{2} \in \{0,1\}$
 - b. $3 \in (0,3)$
 - c. $17 \in [0,17]$

```
d. 17 \in (-3,18)
```

e.
$$17 \in [16,18]$$

f.
$$2 \in \{1,3,5,7\}$$

g.
$$2.5 \in \{x \in \mathbb{R} : x^2 \ge 4\}$$

h.
$$-1 \in \{x \in \mathbb{R} : 2x + 7 < 5\}$$

- 9. Assume that the Dedekind cut property, Theorem 1.9, as well as the ordered field axioms are satisfied. Show that the Dedekind completeness holds.
- 10. Show that if $S \subset \mathbb{Z}$, $S \neq \emptyset$, and S is bounded below, then S has a minimum.
- 11. Show that $\sqrt{2}$ is irrational.
- 12. Show that the rational numbers satisfy the axioms (A1)-(A4), (M1)-(M4), (D) and (O1)-(O3).
- 13. Let $a, b \in \mathbb{Q}$ with $b \neq 0$ and $r \in \mathbb{R} \setminus \mathbb{Q}$. Show that $a + br \in \mathbb{R} \setminus \mathbb{Q}$.
- 14. For $x \in \mathbb{R}$ and $n \in \mathbb{N}$, x^n is defined inductively by

a.
$$x^0 = 1$$
,

b.
$$x^{n+1} = xx^n$$
 for $n \in \mathbb{N}$.

Show that

i.
$$x^n x^m = x^{n+m}$$
,

ii.
$$(x^n)^m = x^{nm}$$
,

iii.
$$x^n y^n = (xy)^n$$
.

* * * * * * *