

Lahore University of Management Sciences

CS331 - Introduction to Artificial intelligence

Spring 2024

Instructor(s)	Mian Muhammad Awais, Muhammad Tahir
Room No.	9-115A, 9-246A
Office Hours	TBA
Email	awais@lums.edu.pk, tahir@lums.edu.pk
Telephone	8188, 8423
Secretary/TA	TBA
TA Office Hours	TBA
Course URL (if any)	https://lms.lums.edu.pk/

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes
Recitation/Lab (per week)	Nbr of Lec(s) Per Week	-	Duration	-

Course Distribution	rse Distribution		
Core	Yes		
Elective			
Open for Student Category	CS Undergraduates		
Close for Student Category			

COURSE DESCRIPTION

This is a fundamental course which builds basic understanding of different AI based systems relying on prerequisite knowledge of good programming skills, basic data structures, algorithms, and some university level mathematics. The course has been divided into different modules which constitute the design of underlying intelligent computer-systems. They mainly include: <u>Games and Search</u>, <u>Reasoning under uncertainty</u>, and <u>Machine Learning</u>. In each of these parts, the focus will be on formulating and solving the underlying problems by introducing different algorithms for the said purpose. As in example, in Games and Search, we will focus on how to formulate a problem as a graph and apply search algorithms to solve it.

COURSE PRERE	QUISITE(S)
	• CS100
0 1: 0 1	

Grading Breakup and Policy

Homework Assignments: 10%

Quizzes: 20% Projects: 20%

Midterm Examination: 20% Final Examination: 30%

Examination De	ramination Details		
Midterm Exam	Yes/No: Yes Combine Separate: Combined Duration: 2 hours Preferred Date: During the Midweek Exam Specifications: In-person		
Final Exam	Yes/No: Yes Combine Separate: Combined Duration: 3 hours Exam Specifications: In-person		

Lahore University of Management Sciences

Course Lea	rnin	g Outcomes
	Ву	the end of the course, the students should be able to
CLO1	•	Understand key components in the field of artificial intelligence
CLO2	•	Understand and implement classical artificial intelligence techniques
CLO3	•	Analyze artificial intelligence techniques for practical problem solving

Relation t	tion to Program Learning Outcomes			
CS331 CLOs	Related PLOs	Level of Learning	Teaching Methods	CLO Attainment checked in
CLO1	PLO1: Academic Education	Cog-2	Instruction, Homework	Midterm, Final
CLO2	PLO2: Knowledge for Solving Computing Problems	Cog-3	Instruction, Homework	Midterm, Final
CLO3	PLO2: Knowledge for Solving Computing Problems	Cog-4	Instruction, Homework	Midterm, Final

Textbook(s)/Supplementary Readings

Textbook:

Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, 4th Edition

Reference Books:

• A First Course in Machine Learning by Simon Rogers and Mark Girolami, 2nd Edition

Week		Topics			
1		Intro to AI, Agents + Environment + Intelligence			
2 3		 Problem solving using search: Uninformed search 			
		 Informed (heuristic) search 			
	Problem Solving:	 Local search 	Homework 1 Project 1		
	Search and Games	 Constraint satisfaction problems (CSP): CSP solvers 			
		 CSP solvers (contd.) 			
		 Adversarial search and games 			
4		 Minimax, alpha-beta, expectimax 			
4		 Monte-Carlo tree search and chance 			
5		 Learning from examples, supervised learning 			
<u> </u>		 Learning theory, Model selection and Optimization 	Homework 2, 3		
	Machine Learning	 Decision trees 	Project 2, 3		
6		 Linear regression and classification 			
		 Learning probabilistic models 			
7-8		 Neural Nets: From perceptron learning to deep learning 			
		Midterm Exam			
9		Probability, Independence and inference			
9		 Bayes Nets: representation, semantics and inference 			
		Bayes Nets: representation, semantics and inference			
10	Uncertain knowledge	(contd.)			
	and reasoning	Probabilistic reasoning over time	Homework 4, 5 Project 4		
11	- and reasoning	Making simple decisions	110,000		
12	_	Sequential decision problems and MDPs			
13		 Reinforcement learning with applications in robotics 			
	Knowledge and	Logical agents, FOL and inference in FOL			

Lahore University of Management Sciences

Academic Honesty

The principles of truth and honesty are recognized as fundamental to a community of teachers and students. This means that all academic work will be done by the student to whom it is assigned without unauthorized aid of any kind. Plagiarism, cheating and other forms of academic dishonesty are prohibited. Any instances of academic dishonesty in this course (intentional or unintentional) will be dealt with swiftly and severely. Potential penalties include receiving a failing grade on the assignment in question or in the course overall. For further information, students should make themselves familiar with the relevant section of the LUMS student handbook.

Harassment Policy

SSE, LUMS and particularly this class, is a harassment free zone. There is absolutely zero tolerance for any behavior that is intended, or has the expected result of making anyone uncomfortable and negatively impacts the class environment, or any individual's ability to work to the best of their potential.

In case a differently-abled student requires accommodations for fully participating in the course, students are advised to contact the instructor so that they can be facilitated accordingly.

If you think that you may be a victim of harassment, or if you have observed any harassment occurring in the purview of this class, please reach out and speak to me. If you are a victim, I strongly encourage you to reach out to the Office of Accessibility and Inclusion at oai@lums.edu.pk or the sexual harassment inquiry committee at harassment@lums.edu.pk for any queries, clarifications, or advice. You may choose to file an informal or a formal complaint to put an end of offending behavior. You can find more details regarding the LUMS sexual harassment policy here.

To file a complaint, please write to harassment@lums.edu.pk.

SSE Council on Equity and Belonging

In addition to LUMS resources, SSE's **Council on Belonging and Equity** is committed to devising ways to provide a safe, inclusive and respectful learning environment for students, faculty and staff. To seek counsel related to any issues, please feel free to approach either a member of the council or email at cbe.sse@lums.edu.pk

Rights and Code of Conduct for Online Teaching

A misuse of online modes of communication is unacceptable. TAs and Faculty will seek consent before the recording of live online lectures or tutorials. Please ensure if you do not wish to be recorded during a session to inform the faculty member. Please also ensure that you prioritize formal means of communication (email, LMS) over informal means to communicate with course staff.