

CSCI-GA.3205 Applied Cryptography & Network Security

Department of Computer Science New York University

PRESENTED BY DR. MAZDAK ZAMANI mazdak.zamani@NYU.edu

Affine Cipher Attacks Review Steganography

- Extension of the shift cipher: rather than just adding the key to the plaintext, we also multiply by the key
- We use for this a key consisting of two parts: k = (a, b)

Let k, x, y $\in \{0,1, ..., 25\}$

- Encryption: $y = e_k(x) \equiv a x + b \mod 26$
- Decryption: $x = d_k(x) \equiv a^{-1}(y b) \mod 26$


```
Suppose a \in \mathbb{Z}_m
a-1 mod m (the multiplicative inverse of a modulo m):
aa^{-1} \equiv a^{-1}a \equiv 1 \pmod{m}
M = C = Z_{26}
K = \{(a,b) \in Z_{26} \times Z_{26}\}
For k=(a,b)\in K; x, y \in Z_{26}
       e_K(x)=(ax+b) \mod 26
       d_{K}(y)=a^{-1}(y-b) \mod 26
```


Α	В	С	D	E	F	G	Н	I	J	K	L	М
1	\uparrow	1										
	1						7			10		12
N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z
			-									Z

An example of Affine Cipher

• For example, let a = 9 and b = 2, so we are working with 9x + 2. Take a plaintext letter such as h (= 7). It is encrypted to $9 \cdot 7 + 2 = 65 = 13$ (mod 26), which is the letter N . Using the same function, we obtain Affine \rightarrow CVVWPM

Affine Cipher: How do we decrypt?

- If we were working with rational numbers rather than mod 26, we would start with y = 9 x + 2 and solve: x = 1/9 (y 2).
- But 1/9 needs to be reinterpreted when we work mod 26.
- Since gcd(9,26) = 1, there is a multiplicative inverse for $9 \pmod{26}$.
- In fact, $9 \cdot 3 = 1 \pmod{26}$, so 3 is the desired inverse and can be used in place of 1/9. We therefore have

$$x = 3 (y - 2) = 3y - 6 = 3y + 20 \pmod{26}$$
.

- The letter V (= 21) is mapped to $3 \cdot 21 + 20 = 83 = 5 \pmod{26}$, which is the letter f.
- Similarly, we see that the ciphertext CVVWPM is decrypted back to affine.

Affine Cipher: one-to-one decrypt

Suppose we try to use the function 13x + 4 as our encryption function. We obtain

input \rightarrow ERRER.

If we alter the input, we obtain

alter \rightarrow ERRER.

- Clearly this function leads to errors. It is impossible to decrypt, since several plaintexts yield the same ciphertext.
- In particular, we note that encryption must be one-to-one, and this fails in the present case.

Affine Cipher: one-to-one decrypt

What goes wrong in this example?

- If we solve y = 13x + 4, we obtain x = 1/13(y 4). But 1/13 does not exist mod 26 since $gcd(13,26) = 13 \neq 1$.
- More generally, it can be shown that a . x + b is a one-to-one function mod 26 if and only if gcd(a, 26) = 1.
- In this case, decryption uses $x = a^{-1}$. $y a^{-1}$. $b \pmod{26}$, where $a \cdot a^{-1} = 1 \pmod{26}$.
- So decryption is also accomplished by an affine function.

Since the inverse of a is needed for inversion, we can only use values for a for which: gcd(a, 26) = 1

There are 12 values for a that fulfill this condition. From this follows that the key space is only $12 \times 26 = 312$

Again, several attacks are possible, including:

• Exhaustive key search and letter frequency analysis, similar to the attack against the substitution cipher

Ciphertext only:

- An exhaustive search through all 312 keys would take longer than the corresponding search in the case of the shift cipher; however, it would be very easy to do on a computer.
- When all possibilities for the key are tried, a fairly short ciphertext, say around 20 characters, will probably correspond to only one meaningful plaintext, thus allowing the determination of the key. It would also be possible to use frequency counts, though this would require much longer texts.

Known plaintext:

With a little luck, knowing two letters of the plaintext and the corresponding letters of the ciphertext suffices to find the key.

In any case, the number of possibilities for the key is greatly reduced and a few more letters should yield the key.

For example, suppose the plaintext starts with *if* and the corresponding ciphertext is PQ.

In numbers, this means that 8 = i maps to 15 = P and 5 = i maps to 16. Therefore, we have the equations 8a + b = 15 and $5a + b = 16 \pmod{26}$.

Subtracting yields $3a = -1 = 25 \pmod{26}$, which has the unique solution a = 17.

Using the first equation, we find $8 \cdot 17 + b = 15 \pmod{26}$, which yields b = 9.

Known plaintext:

Suppose instead that the plaintext go corresponds to the ciphertext TH. We obtain the equations 6a + b = 19 and $14a + b = 7 \pmod{26}$. Subtracting yields - $8a = 12 \pmod{26}$. Since $\gcd(-8,26) = 2$, this has two solutions: a = 5,18.

The corresponding values of b are both 15 (this is not a coincidence; it will always happen this way when the coefficients of a in the equations are even).

So we have two candidates for the key: (5,15) and (18,15). However, $gcd(18, 26) \neq 1$ so the second is ruled out. Therefore, the key is (5,15).

If we know only one letter of plaintext, we still get a relation between a and b. For example, if we only know that g in plaintext corresponds to T in ciphertext, then we have $6a + b = 19 \pmod{26}$. There are 12 possibilities for a and each gives one corresponding b. Therefore, an exhaustive search through the 12 keys should yield the correct key.

Chosen plaintext:

- Choose ab as the plaintext.
 - The first character of the ciphertext will be a .0 + b = b,
 - \circ and the second will be a + b.

Therefore, we can find the key.

Chosen ciphertext:

- Choose AB as the ciphertext.
- This yields the decryption function of the form $x = a_1y + b_1$.
- We could solve for y and obtain the encryption key.

Cryptography vs Steganography

- Cryptography
 - Scrambling information so it cannot be read
 - o Transforms information into secure form so unauthorized persons cannot access it
- Steganography
 - Hides the existence of data
 - o An image, audio, or video file can contain hidden messages embedded in the file
 - Achieved by dividing data and hiding in unused portions of the file

Definitions

Steganography and watermarking techniques embed information into a media in a transparent manner.

Steganography is the study of methods for hiding the existence of secondary information in the presence of primary information in a way which neither affects on the size nor results in perceptual distortion.

Watermarking techniques are principally context-specific, that means, the algorithms must be designed regarding the media type of the data to be watermarked.

Therefore, watermarking indicates a specific application of steganography techniques.

Fundamental Properties

A fundamental tradeoff exists between three key variables: robustness, capacity and imperceptibility which restricts steganography designers.

- Imperceptibility is the perceptual similarity between the host and stego. In audio steganography, imperceptibility is evaluated as an audible distortion caused by signal modifications.
- The ability of embedded data or watermark for withstanding against intentional and unintentional attacks is measured as robustness.
- Capacity (Payload) indicates the amount of data that can successfully be embedded without introducing perceptual distortion.

Substitution-based Steganography

Substitution-based algorithms replace insignificant bits of the original file with message data in a manner that the least amount of distortion is caused.

Why Substitution Technique? Mostly the payload of substitution techniques is more than 40,000 bps, while more robust techniques, like spread spectrum, has a negligible payload that is only about 4 bps.

- Audio Least Significant Bit (LSB) steganography takes advantage of the quantization error that usually derives from the task of digitizing the audio signal.
- The information is encoded into the right most bits per samples or least significant bits from audio data.

Pixels and Resolution

	GRAYSCALE	
255	230	205
180	155	115
80	40	0

NUMBERS											
R 2	55 0		102 102	R	51 204						
В	Ö		255	100	153						
R 2	55	R	255	R	51						
G 2	55	G	0	G	204						
B 1	02	В	204	В	255						
R	51	R	51	R	255						
G	51	G	51	G	153						
В	0	В	153	В	153						

Set of digits

GRAY	= 1 SET OF D	IGITS
11111111	11100110	11001101
10110100	10011011	01110011
01010000	00101000	00000000

'RGB' = 3 SETS OF DIGITS											
11111111	01100110	00110011									
00000000	01100110	11001100									
00000000	111111111	10011001									
11111111	11111111	00110011									
11111111	00000000	11001100									
01100110	11001100	11111111									
00110011	00110011	11111111									
00110011	00110011	10011001									
00000000	10011001	10011001									

Colour spectrum

black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black	black
96.9%	95.9%	96.9%	96.9%	96.9%	96.9%	96.9%	96.9%	96.9%	96.9%	96.9%	96,9%	96.9%	96.9%	96.9%	96.9%	95.9%	96.9%	96.9%	96.9%	96.9%	96.9%	96,9%	96.9%	96.9%	96.9%	95.9%	96.9%	96.9%	96.9%
black 46.6%		black 46.6%		black 46.6%	green 44.8%	green 68.8%	green 68.8%	green 68.8%	green 68.8%	green 68.8%	green 68.8%	green 68.8%	green 68.8%	green 68.8%	green 36.0%	blue 52.3%	blue 52.3%	blue 52.3%	blue 52.3%	blue 52.3%	blue 52.3%	blue 52.3%	blue 52.3%	blue 52.3%	purple 61.9%			black 46.6%	
red 66.6%	red 66.6%	red 66.6%	red 66.6%	brown 93.5%	green 65.6%	green 83.8%	green 85.7%	green 85.7%	green 85.7%	green 85.7%	green 85.7%	green 85.7%	green 85.7%	green 100.0%	green 37.9%	blue 68.0%	blue 81.0%	blue 81.0%	blue 81.0%	blue 81,0%	blue 81.0%	blue 81.0%	blue 81.0%	blue 42.1%	purple 88.8%	purple 52.0%		red 66.6%	
red	red	red	brown	brown	green	green	green	green	green	green	green	green	green	green	blue	blue	blue	blue	blue	blue	blue	blue	blue	purple	purple	purple	red	red	red
87.5%	87.5%	87.5%	41.1%	56.7%	63.8%	59.2%	100.0%	91.1%	91.1%	91.1%	91.1%	91,1%	95.2%	92.0%	33.3%	83.3%	100.0%	90.4%	90.4%	90.4%	90.4%	90.4%	93.1%	96.7%	89.4%	50.0%	74.1%	87.5%	87.5%
red	red	red	orange	yellow	yellow	green	green	green	green	green	green	green	green	green	blue	blue	blue	blue	blue	blue	blue	blue	purple	purple	purple	pink	pink	red	red
94.1%	94.1%	67.7%	69.2%	18.9%	50.0%	92.5%	83.7%	93,1%	90.4%	90.4%	90.4%	96.0%	97.0%	83.3%	69.7%	76.9%	96.9%	87.5%	100.0%	100.0%	100.0%	96.4%	66.6%	92.1%	63.3%	37.8%	52.3%	86.6%	94.1%
70d 97.2%	red 72:0%	orange 91.6%	orange 90.4%	yellow 88.5%	yellow 96.7%	green 46.6%	green 87.8%	green 82.7%	green 88.8%	green 96.1%	green 76.6%	green 94.1%	green 64.8%	green 36.3%	blue 71.4%	blue 85.7%	blue 86.3%	blue 95.6%			5808 100 0%	68.9%	purple 78.5%	purple 70.3%	pink 64,8%	pink 79.3%	pink 76.9%	pink 50.0%	md 76.6%
red	orange	orange	yellow	yellow	yellow	yellow	yellow	green	green	green	green	green	blue	blue	blue	blue	blue	blue	blue	blue	blue	purple	purple	pink	pink	pink	pink	pink	pink
96.5%	81.8%	87.5%	70.0%	100.0%	100.0%	100.0%	48.1%	76.3%	79,1%	87.5%	93.3%	85.1%	46.6%	78.1%	78.1%	78.1%	74.2%	100.0%	94.5%	97.2%	84.8%	87.8%	74.4%	65.7%	65.7%	65.7%	65.7%	69.2%	61,5%
pink	orange	yellow	yellow	yellow	yellow	yellow	yellow	green	green	green	green	green	blue	blue	blue	blue	blue	blue	blue	blue	purple	purple	pink	pink	pink	pink	pink	pink	pink
55.2%	55.1%	38.0%	96.8%	96.8%	96.8%	96.8%	96.8%	51.6%	93.1%	83.7%	75.7%	35.2%	89.1%	89.1%	89.1%	89.1%	89.1%	90.4%	95.6%	87.5%	80.0%	78.1%	76.0%	76.0%	76.0%	76.0%	76.0%	87.0%	90.4%
pink 77.7%																	blue 68.4%				purple 60.0%			pink 74.1%	pink 74.1%	pink 74.1%	pink 74.1%	pink 74.1%	pink 93.5%
								yellow 34.4%								blue 75.0%	blue 75.0%		blue 75.0%	blue 51.5%	pink 72.9%	pink 72.9%	pink 72.9%	pink 72.9%	pink 72.9%	pink 72.9%	pink 72.9%	pink 72.9%	pink 72.9%
white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	white	
100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	
black 96.9%	black 59.3%	grey 53.8%	grey 59.2%	grey 42.3%	white 100.0%																								

Steganography - Least Significant Bits (LSB) Technique

- Suppose you have a 1024*768 pixel picture with 32bit RGB system.
- If you specify the intensity of blue colour by 7 bits instead, how much will be the capacity of this picture to hide a watermark?

Problem Statement

It is not achievable to get a high payload and high quality technique at the same time in steganography. A trade-off between the payload and the quality (imperceptibility and robustness) is necessary.

Apart from robustness that principally is not desirable for substitution techniques; the only remaining measure to achieve a high payload system, is imperceptibility.

However, substitution techniques comparatively are well-known in achieving high capacity, but the distortion caused by substitution degrades the quality.

Therefore, to take advantage of a potential high payload, imperceptibility should be retained.

All Possibility

Three Bit per Sample

In each sample, three LSB bits are used for the message bits embedding. So that, any alteration in the sample must not change those three bits.

If either of following possibilities occur:

- O Host bits are 101 and message bits are 000
- O Host bits are 110 and message bits are 000 or 001
- O Host bits are 111 and message bits are 000 or 001 or 010

Following algorithm below will modify the sample toward decreasing the amount of error.

From (fourth bit in the byte) TO (the end of the OR a bit whose value is 1)

DO reset current bit to 1;

IF (the loop above got finished because of second condition)

DO reset current bit to 0;

All Possibility

- ✓ All possible modification for the following possibility were studied, and found out that there is no chance to modify.
 - O Host bits are 011 OR host bits are 100
- ✓ If either of following possibilities occur:
 - O Host bits are 010 and message bits are 111
 - O Host bits are 001 and message bits are 110 or 111
 - O Host bits are 000 and message bits are 101 or 110 or 111

Following algorithm below will modify the sample toward decreasing the amount of error.

From (fourth bit in the byte) TO (the end of byte OR a bit whose value is 0)

DO reset current bit to 0;

IF (the loop above got finished because of second condition)

DO reset current bit to 1;

An Example of Mutation

```
Original host chromosome: 10000000_2=128_{10} Embedding message bits: 1111 (4 bps payload is supposed) Initial stego chromosome: 10001111_2=143_{10} Current difference: 143-128=15 1^{\rm st} iteration of mutation procedure: 10011111_2=159_{10} Current difference: 159-128=31 (getting worse) 2^{\rm nd} iteration of mutation procedure: 10111111_2=191_{10} Current difference: 191-128=63 (getting worse) 3^{\rm rd} iteration of mutation procedure: 11111111_2=255_{10} Current difference: 255-128=127 (getting worse) 4^{\rm th} iteration of mutation procedure: 01111111_2=127_{10} Current difference: 128-127=1 (The best!)
```


<u>Demo</u>

