Introduction to Topological Manifold: Chap 4

Due on March, 2021

Yuchen Ge

Some Notes

exercise 1

Note 1: For $A \subseteq B \subseteq C$:

- 1. If A is a compact subspace of B, then A is a compact subspace of C.
- 2. If A is a compact subspace of C, then A is a compact subspace of B.

Note 2: Suppose that $f: X \to Y$ is a homeomorphism and U is a subset of X. Show that the restriction $f|_U$ is a homeomorphism from U to f[U]

Solution: $f: X \to Y$ continuous, so $f|_A: A \to Y$ continuous (domain restriction), and hence $(f|_A)': A \to f[A]$ continuous (codomain restriction).

If $g: Y \to X$ is the continuous inverse of A, $g|_{f[A]} \to X$ is continuous (domain restriction) and so $(g|_{f[A]})': f[A] \to g[f[A]]$ is continuous (codomain restriction).

Domains and codomains match and the two equations still hold:

$$(g|_{f[A]})' \circ (f|_A)' = 1_A$$

and

$$(f|_A)' \circ (g|_{f[A]})' = 1_{f[A]}.$$

So indeed $(f|_A)': A \to f[A]$ is a homeomorphism as well.

exercise 2

Exercise 4.10

Proof. We are assuming M is connected. The double D(M) is equal to a union of two copies of M that intersect in $\partial M \neq \emptyset$. On the other hand, it is a standard lemma in topology that the union of two connected sets that has a nontrivial intersection is connected.

Prop 4.10

Proof. By applying the locally euclidean property, we can obtain (path) connected basis for each small open set. Then we take their union and obtain a (path) connected basis basis. \Box

Problems of Chapter 3

Problem 1

Proof. Suppose \mathbb{R}^n is homeomorphic to $U \subset \mathbb{R}$ which is open and f be such a homeomorphism. Let $y \in U$ and f(x) = y. Then $f|_{\mathbb{R}^n \setminus \{y\}}$ is a homeomorphism between $\mathbb{R}^n \setminus \{y\}$ and $U \setminus \{x\}$. However, $\mathbb{R}^n \setminus \{y\}$ is connected but $U \setminus \{x\}$ is not.

Problem 3

Proof. Suppose p is both an interior and boundary point. Choose coordinate charts (U, ϕ) and (V, ψ) such that $\phi(U)$ is open in IntH and $\psi(V)$ is open in H, with $\psi(p) \in \partial \mathbb{H}$. Let $W = U \cap V$; then $\phi(W)$ is homeomorphic to $\psi(V)$. $\phi(W) - \phi(p)$ is not connected. So we would reach a contradiction if $\psi(V) - \psi(p)$ is connected.

Problem 4

Proof. (a) We should show that it isn't a manifold of any dimension. If we take any point of X other than the origin, it clearly has a neighbourhood homeomorphic to an interval in \mathbb{R} , so if X is a manifold, it is a one-dimensional manifold. However the origin can't be locally euclidean of dimension one: suppose it were a 1-manifold and V were a neighbourhood of the origin which is homeomorphic to \mathbb{R} . Then removing the origin gives us 4 components in V and 2 components in \mathbb{R} . A contradiction!

(b) Show that the origin causes trouble. Assume that C is a topological surface. Open sets $U \subseteq C$ and $V \subseteq \mathbb{R}^2$ exists together with a homeomorphism $\phi: U \to V$ and $(0,0,0) \in U$.

For $(a,b) := \phi((0,0,0)) \in V$, some open ball $B \subset \mathbb{R}^2$ centered at (a,b) exist with $(a,b) \in B \subseteq V$.

Let $W := \phi^{-1}(B)$ and prescribe $\psi : W \to B$ by $w \mapsto \phi(w)$. Then ψ is a homeomorphism. However, it sends the notconnected set $W - \{(0,0,0)\}$ to the connected set $B - \{(a,b)\}$. A contradiction!

Problem 5

Hausdorff and second countable and locally Euclidean are all topological invariance property! Then we only need to prove $\pi: S \times \mathbb{R} \to C$ is a quotient map: to prove it sends saturated open subsets to open subsets, we prove two situations on whether the image of saturated open subsets contains the origin!

Problem 6

Proof. (a) If B is uncountable and < a well-order on B, then let $C = \{x \in B : \{y | y < x\} \text{ is uncountable}\}$. Then we have:

- (1) If $C \neq \phi$ then let $x_C = \min C$. By definition of C and of x_C , if $y < x_C$ then $\{z | z < y\}$ is countable. Let $Y = \{y : y < x_C\}$ which is uncuntable.
- (2) If $C = \phi$, then it's trivial.
- (b) Properties of Long line are considered trivial if imagined as an extension of real line.

Problem 7

Proof. Lemma: Let $f: X \to Y$ be a continuous map between topological spaces, and let \mathcal{B} be a basis for the topology of X. Let $f(\mathcal{B})$ denote the collection of subsets of Y. Show that $f(\mathcal{B})$ is a basis for the topology of Y if and only if f is surjective and open.

q is open quotient which clearly satisfies the conditions for f in the lemma, then the conclusions for locally connectedness, locally path-connectedness and locally compactness are clear.

Problem 8

Fact1: If X is locally connected, the connected components are open.

Problem 9

Fact1: Every component is a manifold and open.

Fact2: Every open subset of an n-manifold is an n-manifold.

Problem 10

Problem 11

Note that $CX = X \times I/(X \times \{0\})$.

Proof. (a) It suffices to show that there exists a point p to which any point in CX can be connected by a continuous path. In the cone, we can take this 'connecting point' to be the vertex of the cone.

To see this, let (x,t) be a point in CX and consider the map $\lambda: I \to X \times I$ defined by $\lambda(s) = (x,(1-s)t)$. Since both coordinates of λ are continuous, λ itself is continuous (i.e., λ is a continuous path in $X \times I$ that joins the point (x,t) to the point (x,0) (this is still true if t=0.) Let $\pi: X \times I \to CX$ be the quotient map. Since π is continuous, the composition $\pi \circ \lambda$ is also continuous. This composition is thus a continuous path that joins (x,t) to p=(x,0).

Since we've shown than an arbitrary point (x,t) in CX can be joined to p, we can conclude that CX is indeed path-connected.

(b) Assume first that X is locally path connected. It's actually two facts that a finite product of locally (path) connected spaces is locally (path) connected and the image of a locally (path) connected space with a open quotient map is locally (path) connected. Putting these two facts together shows that CX must be locally path connected. (Note: to prove it's an open mapping, it suffices to prove that the images of basis open sets are open.)

For the converse, assume CX is locally path connected. It's clear that every point have a basis of path connected neighbourhoods. So take a point $x \in X$, which corresponds to $(x,1) \in CX$. Let U be a neighbourhood of x in X. Then $U \times (\frac{1}{2},1]$ is a neighbourhood of x in CX and it doesn't contain the apex of the cone. By assumption, there exists a path-connected neighbourhood V of X below X below X below X onto X then gives us a path connected neighbourhood of X in X below X (remember, we are basically in a product space now and **projections are continuous, surjective and open maps**).

Locally connected can be proved in a similar way.

Problem 12

Proof. Let $X = \bigcup_{\alpha} O_{\alpha}$, then

$$S \bigcap O_{\alpha} = \emptyset \text{ or } O_{\alpha}.$$

Problem 13

(a) First we prove it's connected but not path-connected and locally connected.

Proof. **The topologist's sine curve is connected:** The first method: call the topologist's sine curve T, and let $A = \{(x, \sin 1/x) \in \mathbb{R}^2 \mid x \in \mathbb{R}^+\}$. Then $A \subseteq T \subseteq \overline{A}$. It isn't difficult to show that A is connected (even path connected!) then the conclusion immediately follows.

The second method: if the graph X of the topologist's sine curve were not connected, then there would be disjoint non-empty open sets A, B covering X. Let's assume a point $(x, \sin(1/x)) \in B$ for some x > 0. Then the whole graph for positive x is contained in B, only leaving the point (0,0) for the set A. But any open set about (0,0) would contain $(1/n\pi, \sin(n\pi))$ for large enough $n \in \mathbb{N}$, thus A would intersect B.

The topologist's sine curve is not path-connected: If $S = \{(0,0)\} \cup \{(x,\sin(1/x)) : 0 < x < 1\}$ and $f = (f_1, f_2) : [0,1] \rightarrow S$ is a path with f(0) = (0,0), then f(t) = (0,0) for all t. (Prove by contradiction)

The topologist's sine curve is not locally connected: Let's stick with a particular point on the interval $0 \times [-1, 1]$, say p = (0, 0). Consider open squares and let $U_{\epsilon} := (-\epsilon, \epsilon) \times (-\epsilon, \epsilon)$ be some open square centered at p (where $\epsilon > 0$). Then $U_{\epsilon} \cap \overline{S}$ consists of $0 \times (-\epsilon, \epsilon)$ and the graph of the function $\sin(1/x)$ restricted to the domain $D_{\epsilon} := \{x \in (0, \epsilon) : |\sin(1/x)| < \epsilon\}$. We should be picturing a bunch of very short curve segments which are almost vertical. We can choose ϵ small enough that D_{ϵ} does not contain any x such that $\sin(1/x) = 1$.

Now let V be some nonempty open subset of U_{ϵ} containing p. It contains $U_{\epsilon'}$ for some smaller $\epsilon' > 0$. Then there exists some $x_0 \in (0, \epsilon')$ such that $\sin(1/x_0) = 1$ and $(x_0, \infty) \cap D_{\epsilon'} \neq \emptyset$. It follows that

$$D_{\epsilon'} = \left(D_{\epsilon'} \cap (0, x_0)\right) \bigcup \left(D_{\epsilon'} \cap (x_0, \infty)\right),$$

which follows that it is disconnected.

We can use this information to prove that $V \cap \overline{S}$ is disconnected. The idea is to look at the intersections of this set with $(-\infty, x_0) \times \mathbb{R}$ and with $(x_0, \infty) \times \mathbb{R}$. Note that neither of these intersections is empty. Secondly, these open sets do indeed cover $V \cap \overline{S}$ since V contains no point whose y-coordinate is 1. So we conclude that $V \cap \overline{S}$ is disconnected.

- (b) Answer without proof:
- **Component:** The whole curve.
- **Path-component:** The origin and all other parts.

Problem 15

A stronger statement of (b) and (d) would be:

- (b) If U is any nonempty open subset of G, then the subgroup $\langle U \rangle$ generated by U is both open and closed.
- (d) If G is connected, then every nonempty open subset of G generates G.

Proof. (a) This is trivial. Because $U^c = \bigcup_{g:gU \neq U} gU$ is open.

(b) Replace U by $U \cup U^{-1}$ and then observe that

$$\langle U \rangle = \bigcup_{m=1}^{\infty} U^m.$$

It suffices therefore to show that U^m is open for each m, which follows from a simple induction argument and the fact that UV is open if U, V are open.

- (c) Here it is important that $1 \in U$. I argue that $1 \in U^m$ for each m. Since U^m is connected (continuous image of Cartesian products of U), $\bigcup_{m=1}^{\infty} U^m$ is connected.
- (d) This follows from (b). Because $\langle U \rangle$ is both open and closed, and since is non-empty it must be the whole G (since G is connected.)

Problem 16

Proof. We just sketch the proof:

⇒: Manifold admits a basis of regular balls.

 \Leftarrow : It suffices to show X the space is second countable. Let K_n be the covering of X by compact sets, and assume they're all nonempty. For each $x \in K_n$, there is an open neighborhood $U_{x,n}$ which is homeomorphic to an open ball in \mathbb{R}^m . Then we have $K_n \subset \bigcup_{x \in K_n} U_{x,n}$. By compactness, there are finitely many $U_{x,n}$ which cover each K_n . By unioning these all together for each n gives us a countable covering for X by open sets which are homeomorphic to open balls in \mathbb{R}^m . Each of these sets has a countable basis. The countable union of these sets is also a countable set, so it remains to show that this set is a basis, which is easy.

Problem 17

Recall that a coordinate ball $B \subset M$ is a regular coordinate ball if there is a neighborhood \bar{B} of \bar{B} and a homeomorphism $f: \hat{B} \to B_{\hat{r}}(x)$ that takes B to $B_r(x)$ and \bar{B} to $\overline{B_r(x)}$ for some $\hat{r} > r > 0$ and $x \subset \mathbb{R}^n$.

An n-dimensional manifold with boundary is a second countable Hausdorff space in which every point has a neighborhood homeomorphic either to an open subset of \mathbb{R}^n , or to an open subset of \mathbb{H}^n .

Proof. With the subspace topology, it's clear that $M \setminus B$ is second countable and hausdorff. We only need to prove it's locally euclidean. For $x \in \hat{B} - \bar{B}$, we have

$$f|_{\hat{B}-\bar{B}}:(\hat{B}-\bar{B})\longrightarrow (B_{\hat{r}}(x)-\overline{B_{r}(x)}).$$

Consider $x \in M - \hat{B}$. Since M is locally euclidean in the beginning, we have $\phi_x : U_x \to O$, where U_x is some neighbourhood of x and O is an open set in \mathbb{R}^n . Then construct:

$$\phi_x|_{U_x\cap(M-\bar{B})}:U_x\cap(M-\bar{B})\to\phi_x\bigg(U_x\cap(M-\bar{B})\bigg)\subset O\subset\mathbb{R}^n,$$

which sends a neighbourhood of x to an open set of O.

Finally consider $x \in \bar{B} - B$, we have:

$$f|_{\hat{B}_{-B}}:(\hat{B}-B)\longrightarrow (B_{\hat{r}}(x)-B_{r}(x)).$$

We can cut the $B_{\hat{r}}(x) - B_r(x)$ into pieces so as to send them homeomorphically to some open sets in \mathbb{H}^n . \square

Problem 18

- (a) Thm 3.79.
- (b) Images of M_1 and M_2 are both connected and intersect.
- (c) Images of M_1 and M_2 are both compact. (Fact: finite union of compact sets is compact!)

Problem 19

Question: If M and N are two n-manifolds, and $B_1 \subset M$ and $B_2 \subset N$ are two open, regular coordinate balls (definition below), the connected sum M # N is the quotient of the disjoint union $(M - B_1) \coprod (N - B_2)$ by the relation that identifies points on the spherical boundaries of each component via some homeomorphism h. Now I want to show that there are two open sets $U, V \subset M \# N$, such that:

- 1. $U \cong M \{p\}$ and $V \cong N \{q\}$, for some points $p \in M$ and $q \in N$
- 2. $U \cap V \cong S^{n-1} \times \mathbb{R}$
- 3. $U \cup V = M \# N$.
- **1. Sketch:** Take a larger coordinate ball D in N, containing B_2 , which works because B_2 is regular. $(M B_1) \bigsqcup (D B_2)$ is a saturated open set, so its image in M # N is open. Let U be the image of $(M B_1) \bigsqcup (D B_2)$.

Now we have a homeomorphism from $D - B_2$ to $\overline{\mathbb{B}}_t(0) - \{0\}$ (the punctured closed ball). Then map that punctured ball to $\overline{B}_1 - \{p\}$, with the composition denoted by h. And show the map $f: (M - B_1) \bigsqcup (D - B_2) \to M - \{p\}$

$$f(x) = \begin{cases} x & x \in M - B_1 \\ h(x) & x \in D - B_2 \end{cases}$$

is coherent with h and is a quotient map, and then use the uniqueness of quotients to show U is homeomorphic to $M - \{p\}$.

(Note: we let t=1 actually to avoid some notation issue!)

Proof. Assume the homeomorphism is $h: \partial B_2 \to \partial B_1$. Now we have a homeomorphism $g: D - B_2 \to \overline{\mathbb{B}}_t(0) - \{0\}$ and a homeomorphism $k: \overline{B_1} \to \overline{\mathbb{B}_t(0)}$.

As above mentioned, $k^{-1} \circ g$ is a homeomorphism from $D - B_2$ to $\overline{B}_1 - \{p\}$ (assuming k(p) = 0). The problem is what happens on the boundary: we need it to do exactly what h does. The key is that we can do something between g and k^{-1} that helps with that.

Thinking just about the boundary, we want to find a map $r: \partial \mathbb{B}_t(0) \to \partial \mathbb{B}_t(0)$, such that

$$k^{-1} \circ r \circ q \equiv h$$

as maps from ∂B_2 to ∂B_1 .

Then clearly we have $r: r = k \circ h \circ g^{-1}$. But we need this to be defined on all of $\overline{\mathbb{B}}_t(0) - \{0\}$. We define $\tilde{r}: \overline{\mathbb{B}}_t(0) - \{0\} \to \overline{\mathbb{B}}_t(0) - \{0\}$ as

$$\tilde{r}(x) = |x|r\left(\frac{x}{|x|}\right)$$

It's easy to check this is a homeomorphism (the inverse is just $|x|r^{-1}\left(\frac{x}{|x|}\right)$). Define $G = k^{-1} \circ \tilde{r} \circ g$, we have a homeomorphism from $D - B_2$ to $\overline{B}_1 - \{p\}$. And more importantly,

$$G(x) = h(x)$$
 for $x \in \partial B_2$

So we can define $f: (M-B_1) \sqcup (D-B_2) \to M-\{p\}$ as

$$f(x) = \begin{cases} x & x \in M - B_1 \\ G(x) & x \in D - B_2 \end{cases}$$

This map is continuous and surjective and is a quotient map. And with the help of \tilde{r} , this map now makes the same identifications as the original quotient map.

2. Sketch: it helps to look at the preimage of $U \cap V$ under the quotient map. There's a nice quotient map, from the "N" and "M" pieces, to $\mathbb{S}^{n-1} \times \mathbb{R}$. (Imagination!)

Problem 20

Recall that in the topology U is open iff U = -U. A space X is said to be **limit point compact** if every infinite subset of X has a limit point in X, and **sequentially compact** if every sequence of points in X has a subsequence that converges to a point in X.

Proof. To prove it's not compact, consider the cover $\{(-n, n) : n \in \mathbb{N}^*\}$. It's easy to prove limit point compact.

Problem 21

Prove the basis of each topology generates each other.

Problem 22

Problem 23

Proof. (a) We just need to apply below two facts:

Fact1: compact subspace of hausdorff space is closed.

Fact2: $U \cup (Y - C) = Y - (C - U)$.

(b) Compactness is clear. And hausdorff property comes from the definition of locally compactness. For example, for $x \in X$ and $y = \infty$, we have

(c) We have

A sequence of points in X diverges to infinity.

- \Leftrightarrow For every compact set $K \subset X$, there are at most finitely many values of i for which $x_i \subset K$.
- \Leftrightarrow For every compact set $K \subset X$, there are all but finitely many values of i for which $x_i \subset X^* \setminus K$.
- \Leftrightarrow It converges to ∞ in X^* .

(d) and (e) are clear.

Problem 24

Proof. A sketch:

 \Rightarrow : Problem 23

⇐: Open subset of locally compact hausdorff space is agian locally hausdorff.

Problem 25

A corollary of problem 27.

Problem 26

Problem 27

Proof. A space in which all compact subsets are closed is called a KC-space. Clearly Hausdorff spaces have this property.

To avoid ambiguous notation, let us write $f_1: X_1 \to Y_1$ for the extension of f via $f_1(\infty_X) = \infty_Y$. We then have without any requirements on X, Y.

 f_1 is continuous $\Leftrightarrow f^{-1}(K)$ is compact for each compact closed $K \subset Y$.

To prove it, consider $V_1 \subset Y_1$ open. If $V_1 \subset Y$, then $f_1^{-1}(V_1) = f^{-1}(V_1)$ is open in X (since f is continuous), and thus open in X_1 . Therefore we have

 f_1 is continuous

 $\Leftrightarrow f_1^{-1}(V_1)$ is open in X_1 for all $V_1 = Y_1 \setminus K$ with compact closed $K \subset Y$.

(Since we have $f_1^{-1}(Y_1 \setminus K) = X_1 \setminus f_1^{-1}(K) = X_1 \setminus f^{-1}(K)$.)

 $\Leftrightarrow f^{-1}(K)$ is a closed subset of X.

 $\Leftrightarrow f$ is proper.

Problem 28

Problem 29

Proof. Note that the countable closed set (denoted by C) is complete metric or locally compact Hausdorff with subspace topology. So Baire category theorem applies to C as well. Note

Point x is not an isolated point of C.

- ⇔ Every neighbourhood of x doesn't only intersects C with x.
- ⇔ For subspace C, every neighbourhood of x doesn't only intersects C with x.
- \Leftrightarrow For subspace C, every neighbourhood of x intersect with $C \setminus \{x\}$.
- $\Leftrightarrow U_x = C \setminus \{x\}$ is dense in C.

And in both cases C have closed singletons, so U_x is open. So if no point is isolated,

$$\emptyset = \bigcap_{x \in C} U_x$$

contradicts Baires theorem for C.

Problem 30

Proof. We only need to prove $f|_{A_i}$ is continuous with A_i covering X. Since $\{A_\alpha\}$ is a locally finite closed cover of X, we have $\forall x \in X$

 $\exists U_x \text{ and } \{A_{x_i}\}_{i=1}^{n_x} \text{ s.t. } \{A_{x_i}\}_{i=1}^{n_x} \text{ only intersect with } U_x.$

Then since $f|_{A_{x_i} \cap U_x}$ is continuous and the i's are finite, by gluing lemma $f|_{U_x}$ is continuous. By gluing lemma again, f is continuous.

Problem 33

Proof. $X = \{X_a\}$ and let $\{P_a\}$ be the associated partition of unity, the index set for both is A. Define $A' = \{a | a \in A, P_a \neq 0\}$ and $V_a = P_a^{-1}((0,1])$ for $a \in A'$, open in M. It is easy to see that $\{V_a | a \in A'\}$ is a locally finite refinement.

First, $\forall x \in X$, $\exists b$ such that $P_b(x) > 0$, which proves that V_a is an open refinement. Second, V_a is locally compact since $V_a \subset supp P_a$ Combing the two facts together, we have $\{V_a\}$ forms a locally finite open refinement.

Problem 34

Proof. Let $f: M \to \mathbb{R}^k$ be the injective continuous map and let $g: M \to \mathbb{R}$ be an exhaustion function, then the map x to (f(x), g(x)), which is proper, injective and continuous.

(it's proper since $g(x) \to \infty$ as $x \to \infty$ in M.)