

QUÍMICA NIVEL MEDIO PRUEBA 1

Martes 8 de mayo de 2012 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

							,		
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
7		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	66
	'			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	86
~				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94
		_1		25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93
	atómico	ento ca relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92
	Número atómico	Elemento Masa atómica relativa		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91
	<u> </u>			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	06
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	* -	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Cuál es el número total de átomos en 0,100 mol de $[Pt(NH_3)_2Cl_2]$?
 - A. 11
 - B. 6.02×10^{22}
 - C. $3,01 \times 10^{23}$
 - D. 6.62×10^{23}
- 2. La nitroglicerina, $C_3H_5N_3O_9$, se puede usar en la fabricación de explosivos. ¿Cuál es el coeficiente de $C_3H_5N_3O_9(l)$ cuando la ecuación de la reacción de su descomposición se ajusta usando los números enteros más pequeños?

$$\underline{\hspace{1cm}} C_3H_5N_3O_9(l) \rightarrow \underline{\hspace{1cm}} CO_2(g) + \underline{\hspace{1cm}} H_2O(l) + \underline{\hspace{1cm}} N_2(g) + \underline{\hspace{1cm}} O_2(g)$$

- A. 2
- B. 4
- C. 20
- D. 33
- 3. Un mole de un gas ideal a 273 K y $1,01\times10^5$ Pa, ocupa un volumen de 22,4 dm³. ¿Qué volumen, en dm³, ocupan 3,20 g de $O_2(g)$ a 273 K y $1,01\times10^5$ Pa?
 - A. 2,24
 - B. 4,48
 - C. 22,4
 - D. 71,7

- 4. ¿Qué volumen, en m³, ocupan 2,00 mol de gas a 27 °C y 2,00 atm de presión? Suponga: 1,00 atm = $1,01 \times 10^5$ Pa y R = 8,31 J K⁻¹ mol⁻¹.
 - A. $\frac{8,31 \times 27}{1,01 \times 10^5}$
 - B. $\frac{2,00 \times 8,31 \times 27}{1,01 \times 10^5}$
 - C. $\frac{2,00 \times 8,31 \times 300}{2,00 \times 1,01 \times 10^5}$
 - D. $\frac{2,00 \times 8,31 \times 300}{1,01 \times 10^5}$
- **5.** ¿Qué enunciados sobre soluciones son correctos?
 - I. Un soluto se disuelve en un disolvente para formar una solución.
 - II. Una solución es una mezcla homogénea de dos o más sustancias.
 - III. Las concentraciones de las soluciones se pueden expresar en g dm⁻³.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **6.** ¿Qué partículas subatómicas están ubicadas en el núcleo de un átomo?
 - A. Protones y electrones
 - B. Neutrones y electrones
 - C. Protones y neutrones
 - D. Protones, neutrones y electrones

- 7. ¿Cuál es el nombre del tipo de espectro que consiste solo en longitudes de onda específicas?
 - A. Electromagnético
 - B. Continuo
 - C. De líneas
 - D. De masas
- 8. ¿Qué enunciados sobre el silicio son correctos?
 - I. Su distribución electrónica es 2,8,4.
 - II. Tiene cuatro electrones en su mayor nivel energético ocupado.
 - III. En el estado sólido, cada átomo de silicio está unido de forma covalente a otros cuatro átomos de silicio en disposición tetraédrica.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 9. ¿Qué serie presenta orden decreciente correcto con respecto al radio?
 - A. $Al^{3+} > Mg^{2+} > Na^{+} > F^{-}$
 - B. $F^- > Na^+ > Mg^{2+} > Al^{3+}$
 - C. $F^- > A1^{3+} > Mg^{2+} > Na^+$
 - D. $Na^+ > Mg^{2+} > Al^{3+} > F^-$

- **10.** ¿Cuál es la fórmula del nitruro de magnesio?
 - A. Mg_2N_3
 - B. Mg_3N_2
 - C. $Mg(NO_3)_2$
 - D. $Mg(NO_2)_2$
- 11. ¿Qué enlace covalente simple es el más polar, dados los siguientes valores de electronegatividad?

Elemento	Н	С	S	0
Electronegatividad	2,2	2,6	2,6	3,4

- A. C-O
- B. S-H
- C. C-H
- D. O-H

-7-

¿Cuáles son los valores aproximados de los ángulos de enlace?

	α	β	θ
A.	104,5°	120°	109,5°
B.	109,5°	109,5°	109,5°
C.	120°	120°	90°
D.	104,5°	120°	90°

- 13. El C₆₀ fulereno consiste en una estructura molecular simple. El dióxido de silicio, SiO₂, se puede describir como una estructura gigante covalente (macromolecular). ¿Qué enunciados son correctos?
 - I. Cada átomo de carbono en el C₆₀ fulereno está unido en una esfera de 60 átomos de carbono, que consiste en pentágonos y hexágonos.
 - II. Cada ángulo de enlace O–Si–O en el SiO₂ es de 180°.
 - III. El SiO₂ es insoluble en agua.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

14. ¿Qué tipos de fuerzas intermoleculares existen en el HBr, el Cl₂ y el CH₃F?

	HBr	Cl_2	CH₃F	
A.	van der Waals y dipolo-dipolo	solo van der Waals	van der Waals y dipolo-dipolo	
B.	van der Waals y dipolo-dipolo	solo van der Waals	van der Waals, dipolo-dipolo y enlace de hidrógeno	
C.	solo van der Waals	solo van der Waals	van der Waals, dipolo-dipolo y enlace de hidrógeno	
D.	van der Waals y dipolo-dipolo	van der Waals y dipolo-dipolo	van der Waals, dipolo-dipolo y enlace de hidrógeno	

15. Se utilizó un calorímetro simple para determinar la variación de entalpía que se produce cuando se combustiona un mole de etanol. El valor experimental hallado fue –867 kJ mol⁻¹. El valor en el Cuadernillo de Datos es de –1367 kJ mol⁻¹ (a 298 K y 1,01×10⁵ Pa).

Durante el experimento se formó algo de hollín negro.

¿Qué enunciados son correctos?

I. El porcentaje de error del experimento se puede calcular de la siguiente forma:

$$(1367 - 867) \times 100\%$$

- II. La diferencia entre los dos valores se debe a la pérdida de calor al ambiente.
- III. El hollín negro formado sugiere que la combustión fue incompleta.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

Considere las ecuaciones: **16.**

$$N_2(g) + 2H_2(g) \rightarrow N_2H_4(l)$$
 $\Delta H^{\Theta} = +50.6 \text{ kJ mol}^{-1}$

$$\Delta H^{\ominus} = +50.6 \text{ kJ mol}^{-1}$$

$$N_2H_4(1) \rightarrow N_2H_4(g)$$

$$N_2H_4(1) \to N_2H_4(g)$$
 $\Delta H^{\oplus} = +44.8 \text{ kJ mol}^{-1}$

¿Cuál es ΔH^{Θ} , en kJ, para la siguiente reacción?

$$N_2(g) + 2H_2(g) \rightarrow N_2H_4(g)$$

- A. -95,4
- B. -5,80
- C. +5,80
- D. +95,4
- ¿Cuáles son las unidades apropiadas para la velocidad de una reacción? **17.**
 - $mol dm^{-3} s^{-1}$ A.
 - $B. \quad mol \, dm^{-3} \; s$
 - C. $mol dm^{-3}$
 - D. S

18. El siguiente diagrama entálpico muestra el efecto del agregado de un catalizador sobre una reacción química. ¿Qué representan *m*, *n* y *o*?

Progreso de la reacción

	т	n	o
A.	ΔH	$E_{\rm a}$ (sin catalizador)	$E_{\rm a}$ (con catalizador)
B.	$E_{\rm a}$ (con catalizador)	ΔH	$E_{\rm a}$ (sin catalizador)
C.	$E_{\rm a}$ (con catalizador)	$E_{\rm a}$ (sin catalizador)	ΔH
D.	ΔΗ	$E_{\rm a}$ (con catalizador)	$E_{\rm a}$ (sin catalizador)

19. ¿Cuál es la expresión de la constante de equilibrio, K_c , para la siguiente reacción?

$$2NOBr(g) \rightleftharpoons 2NO(g) + Br_2(g)$$

A.
$$K_c = \frac{[\text{NO}][\text{Br}_2]}{[\text{NOBr}]}$$

B.
$$K_c = \frac{[NO]^2[Br_2]}{[NOBr]^2}$$

C.
$$K_c = \frac{2[NO] + [Br_2]}{[2NOBr]}$$

D.
$$K_{c} = \frac{[\text{NOBr}]^{2}}{[\text{NO}]^{2}[\text{Br}_{2}]}$$

¿Qué le sucede a la posición de equilibrio y al valor de $K_{\rm c}$ cuando se aumenta la temperatura de 20. la siguiente reacción?

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$
 $\Delta H^{\ominus} = +87.9 \text{ kJ mol}^{-1}$

$$\Delta H^{\ominus} = +87.9 \text{ kJ mol}^{-1}$$

	Posición de equilibrio	Valor de K _c
A.	se desplaza hacia los reactivos	disminuye
B.	se desplaza hacia los reactivos	aumenta
C.	se desplaza hacia los productos	disminuye
D.	se desplaza hacia los productos	aumenta

¿Cuál es la base conjugada de Brønsted–Lowry del H₂PO₄-? 21.

- H_3PO_4 A.
- HPO_4^{2-} B.
- PO_4^{3-} C.
- D. HO^{-}

22. A continuación se enumeran tres soluciones acuosas de ácido nítrico.

- 0,100 mol dm⁻³ de HNO₃ (aq) W.
- 0,001 mol dm⁻³ de HNO₃ (aq) X.
- 0,010 mol dm⁻³ de HNO₃ (aq) Y.

¿Cuál de las opciones presenta orden creciente correcto de pH de estas soluciones?

- A. W < X < Y
- В. W < Y < X
- C. X < W < Y
- D. X < Y < W

- **23.** ¿Cuál es el nombre del Cu₂S?
 - A. Sulfuro de cobre(I)
 - B. Sulfato de cobre(I)
 - C. Sulfuro de cobre(II)
 - D. Sulfato de cobre(II)
- **24.** Considere la siguiente reacción:

$$3\text{Sn}^{2+}(aq) + \text{Cr}_2\text{O}_7^{2-}(aq) + 2\text{H}^+(aq) \rightarrow 2\text{Cr}^{3+}(aq) + 3\text{SnO}_2(s) + \text{H}_2\text{O}(l)$$

¿Qué enunciado es correcto?

- A. El Sn²⁺ es el agente oxidante porque sufre oxidación.
- B. El Sn²⁺ es el agente reductor porque sufre oxidación.
- C. El $\operatorname{Cr_2O_7}^{2-}$ es el agente oxidante porque sufre oxidación.
- D. El $Cr_2O_7^{2-}$ es el agente reductor porque sufre oxidación.
- 25. ¿Qué sucede durante el funcionamiento de una pila voltaica basada en la siguiente reacción total?

$$2Ag^{\scriptscriptstyle +}(aq) + Cu\left(s\right) \to 2Ag\left(s\right) + Cu^{^{2+}}(aq)$$

	Circuito externo	Movimiento de los iones en solución
A.	los electrones se mueven desde el Cu(s) hacia la Ag(s)	el Ag ⁺ (aq) se mueve hacia el Cu(s)
В.	los electrones se mueven desde la Ag(s) hacia el Cu(s)	el Ag ⁺ (aq) se mueve hacia la Ag(s)
C.	los electrones se mueven desde el Cu(s) hacia la Ag(s)	el Ag ⁺ (aq) se mueve hacia la Ag(s)
D.	los electrones se mueven desde la Ag(s) hacia el Cu(s)	el Cu ²⁺ (aq) se mueve hacia el Cu(s)

Considere el compuesto (CH₃CH₂)CH=CH(CH₃). ¿Qué enunciados son correctos? **26.**

- 2-penteno es un nombre apropiado. I.
- II. La fórmula empírica es CH₂.
- III. El pentano es un isómero del compuesto.
- Solo I y II A.
- B. Solo I y III
- C. Solo II y III
- I, II y III D.

27. La diamorfina (heroína) contiene varios grupos funcionales diferentes. ¿Cuál de los siguientes dos grupos funcionales está presente en la diamorfina?

- A. éster, anillo bencénico
- B. cetona, anillo bencénico
- C. aldehído, alqueno
- D. cetona, alqueno

- **28.** ¿Qué compuesto tiene **menor** punto de ebullición?
 - A. CH₃CH₂CH₂OH
 - B. CH₃CH₂CH₂Br
 - C. CH₃CH₂COOH
 - D. CH₃CH₂CH₂CH₃
- 29. ¿Qué compuestos orgánicos, Q y P, se forman en la siguiente ruta de reacción en dos etapas?

Etapa 1:
$$CH_3(CH_2)_3Cl \xrightarrow{NaOH(aq)} Q$$

Etapa 2:
$$Q \qquad \xrightarrow{Cr_2O_7^{2-}(aq)/H^+(aq)} \qquad P$$

	Q	P
A.	CH ₃ (CH ₂) ₃ OH	CH ₃ (CH ₂) ₃ COOH
B.	CH ₃ (CH ₂) ₃ OH	CH ₃ (CH ₂) ₂ COOH
C.	CH ₃ CH ₂ CH=CH ₂	no se forman productos en la reacción
D.	CH ₃ (CH ₂) ₃ OH	CH ₃ (CH ₂) ₂ CHO

- **30.** Se investiga experimentalmente la relación entre la presión, P, y el volumen, V, de una cantidad fija de gas a temperatura constante. ¿Qué enunciados son correctos?
 - I. Un gráfico de V en función de P será una curva (no lineal).
 - II. Un gráfico de V en función de $\frac{1}{P}$ será lineal.
 - III. $V = \text{constante} \times \frac{1}{P}$
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III