MA 106 D1-T3 Recap-0

Siddhant Midha

23-03-2022

Table of Contents

1 Matrices

2 Vectors

3 Onto Linear System of Equations

■ Rectangular Arrays

- Rectangular Arrays

- Rectangular Arrays
- $A = [a_{ij}], B = [b_{ij}]$
- Sum

$$A+B:=[a_{ij}+b_{ij}]$$

- Rectangular Arrays
- $A = [a_{ij}], B = [b_{ij}]$
- Sum

$$A+B:=[a_{ij}+b_{ij}]$$

Scalar Multiplication

$$\alpha A := [\alpha a_{ij}]$$

- Rectangular Arrays
- $A = [a_{ij}], B = [b_{ij}]$
- Sum

$$A+B:=[a_{ij}+b_{ij}]$$

Scalar Multiplication

$$\alpha A := [\alpha a_{ij}]$$

Multiplication (when defined!)

$$c_{ij} := \sum_{k} a_{ik} b_{kj}$$

Exercises

Prove that

$$A+B=B+A$$

Define the transpose in terms of this notation, and show that

$$(A^T)^T = A$$

- Define symmetric and skew symmetric using this notation.
- (Assume correct dimensions and) Show that

$$(AB)C = A(BC)$$

$$(AB)^T = B^T A^T$$

Exercises

Definition

Given a matrix

$$A = [a_{ij}]$$

the trace of the matrix is defined as

$$Tr(A) := \sum_{i} a_{ii}$$

Show that

- Tr(A+B) = Tr(B+A)
- Tr(AB) = Tr(BA)

Invertibility

Definition

Let $A \in \mathbb{R}^{n \times n}$. It is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that

$$AB = BA = I$$

where I is the $n \times n$ identity matrix. Such a B is unique and is denoted as A^{-1}

Invertibility

Definition

Let $A \in \mathbb{R}^{n \times n}$. It is said to be invertible if there exists $B \in \mathbb{R}^{n \times n}$ such that

$$AB = BA = I$$

where I is the $n \times n$ identity matrix. Such a B is unique and is denoted as A^{-1}

Exercises:

- If A and B are invertible, show that
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
- If A has a row of zeroes, it is not invertible.

Invertibility

If there exist L and R such that

$$LA = AR = I$$

show that L = R.

• (Stronger form of the above) If there exists a B such that AB = I or BA = I, then A is invertible and B is its inverse.

Table of Contents

1 Matrices

2 Vectors

3 Onto Linear System of Equations

Basics

Column Vectors

- Belong in $\mathbb{R}^{n \times 1}$.
- Denoted as

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Basics

Column Vectors

- Belong in $\mathbb{R}^{n \times 1}$.
- Denoted as

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Row Vectors

- Belong in $\mathbb{R}^{1 \times n}$.
- Denoted as

$$\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

Products of Vectors

Inner Product

Let u, v be column vectors. The inner product is the real number

$$u^T v := \sum_i u_i v_i$$

Products of Vectors

Inner Product

Let u, v be column vectors. The inner product is the real number

$$u^T v := \sum_i u_i v_i$$

Outer Product

Let u, v be column vectors. The outer product is the matrix

$$uv^T = [c_{ij}]$$
 $c_{ij} := u_i v_j$

$$c_{ii} := u_i v_i$$

Table of Contents

1 Matrices

2 Vectors

3 Onto Linear System of Equations

Let

Let

$$A = [a_{ij}]$$

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$

Consider y = Ax.

Let

$$A = [a_{ij}]$$

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$

Consider y = Ax. Further define

$$A_i := \begin{bmatrix} a_{1i} & a_{2i} & \dots & a_{ni} \end{bmatrix}^T$$

Can I express y in terms of A_i 's?

Let

$$A = [a_{ij}]$$

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$

Consider y = Ax. Further define

$$A_i := \begin{bmatrix} a_{1i} & a_{2i} & \dots & a_{ni} \end{bmatrix}^T$$

Can I express y in terms of A_i 's? Now let x be a row vector and consider y = xA. What now?

Question

Consider the system of equations,

Question

Consider the system of equations,

$$x + 9y = -14$$
$$2x + 6y = 25$$

3x + 2y = -12

Question

Consider the system of equations,

$$x + 9y = -14$$
$$2x + 6y = 25$$
$$3x + 2y = -12$$

Given what we discussed before, how do we proceed here?