

Past Papers Higher Chemistry

2019 Marking Scheme

Grade	Mark Required		% condidated cabicuina anada
Awarded	(/ ₁₂₀)	%	% candidates achieving grade
Α	80+	66.6%	28.3%
В	67+	55.8%	25.3%
С	54+	45.0%	23.0%
D	47+	39.2%	9.5%
No award	<47	<39.2%	13.9%

Section:	Multiple Choice		Extended A	nswer	Assignmer	nt
Average Mark:	12.1	/20	42.9	/80	13.1	/20

	2019	9 Hi	gher Chemistry Marking Scheme				
MC Qu	Answer	% Pupils Correct	Reasoning				
1	C		Hydrogen has electronegativity of 2.2 so the atom with electronegativity closest to 2.2 would be non-polar when joined to hydrogen.				
2	В		MA CCl ₄ is non-polar due to 3D arrangement of Cl atoms around central C atom B NH ₃ is a polar molecule due to the electronegativity difference between atoms C CO ₂ is non-polar due to linear arrangement of O atoms around central C atom D CH ₄ is non-polar as it is a hydrocarbon. All hydrocarbons are non-polar.				
3	A		\square A CO reduces metal ores to metals. CO acting as Reducing Agent \square B MnO ₄ ⁻ + 8H ⁺ + 5e ⁻ \rightarrow Mn ²⁺ + 4H ₂ O is reduction \therefore MnO ₄ ⁻ acting as oxidising agent \square C H ₂ O ₂ + 2H ⁺ + 2e ⁻ \rightarrow 2H ₂ O is reduction \therefore H ₂ O ₂ acting as oxidising agent \square D Cr ₂ O ₇ ²⁻ +14H ⁺ +5e ⁻ \rightarrow 2Cr ³⁺ +7H ₂ O is reduction \therefore Cr ₂ O ₇ ²⁻ acting as oxidising agent				
4	С		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
5	В		☑A Primary Alcohol: 1 carbon directly attached to carbon with the -OH group ☑B Tertiary Alcohol: 3 carbons directly attached to carbon with the -OH group ☑C Secondary Alcohol: 2 carbons directly attached to carbon with the -OH group ☑D Secondary Alcohol: 2 carbons directly attached to carbon with the -OH group				
6	Α		☑A Amino acid with -CH ₃ side group has been removed during partial hydrolysis ☑B CH-CH ₃ group should be on left of -CH ₂ - group in hydrolysis fragment ☑C -CH ₂ - group has been removed but two groups are rejoined ☑D CH-CH(CH ₃) ₂ group should be on right of -CH ₂ - group in hydrolysis fragment				
7	D		$\blacksquare A$ pentyl ethanoate has a total of 7 carbons cannot have formula $C_6H_{12}O_2$ $\blacksquare B$ hexan-2-one has formula $C_6H_{12}O$ so only has 1 oxygen atom not 2 oxygen atoms. $\blacksquare C$ 3-methylpentan-2-ol has formula $C_6H_{13}OH$ so only has 1 oxygen atom not 2. $\blacksquare D$ hexanoic acid has formula $C_6H_{12}O_2$				
8	В		Primary Alcohols Hot copper(II) oxide Acidified dichromate solution Secondary Alcohol Hot copper(II) oxide Acidified dichromate solution Ketone Hot copper(II) oxide Acidified dichromate solution Benedict's or Fehling's solution Tollen's Reagent A pentan-1-ol is a primary alcohol would oxidise with hot copper(II) oxide to pentanal which would further oxidise with Fehling's solution to form pentanoic acid B pentan-2-ol is a secondary alcohol would oxidise with hot copper(II) oxide to form pentan-2-one which does not react with Fehling's solution. C pentan-3-one is a ketone and does not oxidise with hot copper(II) oxide. D pentanoic acid is a carboxylic acid and does not oxidise with hot copper(II) oxide.				
9	D		 ■ A molecule has five carbons but not in one continuous chain of five carbons ■ B longest chain containing functional group has three carbons : ends in propanoic acid ■ C two separate methyl -CH₃ groups attached to C₂ so is dimethyl not a ethyl -C₂H₅ group. ■ D 2x methyl -CH₃ groups attached to C₂ of three carbon main chain with -COOH group 				

10	D	\blacksquare A Molecule A has 10 carbons and is derived from two C_5 isoprene units joining together \blacksquare B Molecule B has 10 carbons and is derived from two C_5 isoprene units joining together							
		$\boxtimes C$ Molecule C has 10 carbons and is derived from two C_5 isoprene units joining together $\square D$ Molecule D has 9 carbons so cannot be made by two C_5 isoprene units joining together.							
		A methanol (primary alcohol) oxidises to methanoic acid (carboxylic acid)							
11		■B propanal (aldehyde) oxidises to propanoic acid (carboxylic acid)							
11		☑C butan-2-one (ketone) reduces to become butan-2-ol (secondary alcohol)							
		■D propan-2-ol (secondary alcohol) oxidises to propanone (ketone)							
		☑A Primary Amine: 1 carbon directly bonded to nitrogen atom							
12	В	☑B Secondary Amine: 2 carbons directly bonded to nitrogen atom							
		▼C Tertiary Amine: 3 carbons directly bonded to nitrogen atom▼D Primary Amine: 1 carbon directly bonded to nitrogen atom							
	_								
13	D	Formula of Calcium Phosphate = $Ca_3(PO_4)_2$ 1mol of $Ca_3(PO_4)_2$ contains 3mol of Ca^{2+} ions and 2 mol of PO_4^{3-} ions.							
		gfm CH ₄ = 16g ∴ no. of mol = $\frac{mass}{gfm} = \frac{4}{16} = 0.25$ mol ☑ A gfm He = 4g ∴ no. of mol = $\frac{mass}{gfm} = \frac{1}{4} = 0.25$ mol							
14	Λ	■ B gfm H ₂ = 2g :: no. of mol = $\frac{mass}{qfm} = \frac{1}{2} = 0.5$ mol							
14		S \bigcirc S							
		I E D gfm $Cl_2 = 71g$ ∴ n o. of mol = $\frac{mass}{gfm} = \frac{35.5}{71} = 0.5$ mol							
		$MgCO_3 + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2O + CO_2$							
		1mol 2mol 1mol 1mol 1mol 1mol 0.05mol 0.05mol 0.05mol 0.05mol							
		Only 0.06mol of nitric acid available but 0.1mol nitric acid needed to react with all 0.05mol MgCO ₃							
15		\therefore Nitric acid HNO $_3$ is the limiting factor.							
		0.03mol							
		☑A 0.03mol of CO ₂ gas produced							
		\blacksquare B 0.03mol of MgCO ₃ produced							
		$\square C$ 0.03mol of MgCO ₃ reacted \therefore 0.02mol of MgCO ₃ remaining $\square D$ nitric acid HNO ₃ is the limiting factor so all 0.06mol are used up.							
		$\boxtimes A$ O atom in C=O bonds have δ - charges so will not be attracted to each other							
1/	_	☑B C-H bond is non-polar due to similar electronegativity so no dipole							
16	U	国C C-H bonds are non-polar due to similar electronegativity so no dipoles							
		$\ \square$ D C in C=O bond has δ + charge and is attracted to δ - charge on other C=O bond							
17	В	atom economy = $\frac{\text{mass of useful products}}{\text{total mass of reactants}} \times 100 = \frac{(4 \times 55.8)}{(2 \times 159.6) + (3 \times 12)} \times 100 = \frac{223.2}{319.2 + 36} \times 100 = 62.8\%$							
1/	D	total mass of reactants (2x159.6)+(3x12) 319.2+36							
		$C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O(1)$							
		1mol 5mol 3mol 4mol							
18	В	1vol 5vol 3vol negligible volume							
		100cm ³ 500cm ³ 300cm ³ -							
		(+100cm³ O ₂ leftover)							
		Total Volume at end of reaction = $300 \text{cm}^3 CO_2 + 100 \text{cm}^3$ leftover $O_2 = 400 \text{cm}^3$							
		Step 1: 60% of 100% = $\frac{60}{100}$ × 100% = 60%							
19 B	В								
		Step 2: 90% of 60% = $\frac{90}{100}$ x 60% = 54%							
		100							
		☑A Volume of gas must be reduced as volume of acid is reduced (zinc in excess)							
20		☑B Initial Rate of reaction must be increased as lumps replaced by powder							
		☑C Initial rate must be greater and final volume of gas must be reduced							
		☑D Initial Rate of reaction must be increased as lumps replaced by powder							

21	Α	$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$ $\Delta H_2 = \Delta H_1 - \Delta H_3 - \Delta H_4$ $b = a - c - d$ $AH_3 = c$ $\Delta H_4 = d$ $AH_4 = d$
22	۵	 ☒A Higher Activation Energy will make a successful collision less likely to happen. ☒B The higher the kinetic energy of reactants the more like the collision will have sufficient energy to react. ☒C Higher the concentration the higher the likelihood of a successful collision ☒D Whether a reaction is exothermic or endothermic has no bearing on the reaction rate.
23	C	 ☒A no change in pressure from reactants to products ∴ lowering pressure has no effect ☒B lowering pressure favours pressure increasing reaction (reverse reaction) ☒C lowering pressure favours pressure increasing reaction (forward reaction) ☒D lowering pressure favours pressure increasing reaction (reverse reaction)
24	A	☑A Increasing the temperature moves the curve to the right. ☑B Increasing the temperature moves the curve to the right not the left. ☑C Ea does not change when temperature is changed ☑D Area under curve should be same as same number of particles.
25	D	H_3C $C = C$

2	2019 Higher Chemistry Marking Scheme						
Long Qu	Answer	Reasoning					
1 a(i)	Answer showing:	Na ₂ S ₂ O ₃ + 2HCl					
1a(ii) Part A	A 0 B 10 C 20 D 30 E 40	For the concentration of thiosulphate to be varied, the total volume of the solution must be kept constant. The total volume of sodium thiosulphate solution and water is 50 cm ³ in each experiment.					
1a(ii) Part B	35.1	Rate = $\frac{1}{\text{Time}}$:: time = $\frac{1}{\text{Rate}}$ = $\frac{1}{0.0285}$ = 35.1s					
1a(iii)	12±1	For doubling of rate from $0.02s^{-1}$ to $0.04s^{-1}$ Temperature at $0.02s^{-1} = 44^{\circ}C$ Temperature at $0.04s^{-1} = 56^{\circ}C$ Change in temperature = $12^{\circ}C$					
1b	Sufficient Energy to React And Correct Geometry	1st Mark: sufficient or enough energy energy equal to or greater than the activation energy activation energy activated complex 2nd Mark: (Collision must occur with) suitable/correct/geometry/orientation					
1c(i)	X at peak on curve	The top of the hill (peak on the curve) is the activated complex where the bonds of the reactants are half broken and the bonds of the products are half formed.					
1c(ii)	potential energy (kJ mot')	A catalyst lowers the activation energy without changing the position of the reactants or products. This means that the top of the hill is lowered. The enthalpy change is the same as the positions of the reactants and products are unchanged.					
2a(i)	protons or increasing	Going across a period does not increase the size of an atom as it is the same outer shell which is being filled up. The increased positive charge in the nucleus attracts the outer shell into more as you go across a period.					
2a(ii)	One answer from:	Increased radius increases Covalent radius increases Atom size attraction of nucleus for outer electron decreases					
2b(i)	$N^+(g) \rightarrow N^{2+}(g) + e^-$	1 st Ionisation Energy: The removal of one mole of electrons from one mole of atoms in the gaseous state. 2 nd Ionisation Energy: The removal of one mole of electrons from one mole of 1+ ions in the gaseous state.					
2b(ii)	Answer to Include:	The 6th ionisation energy involves removing an electron from the shell which is full/ stable/closer to the nucleus The 6th electron is removed from the electron shell which is inner/full/ stable/closer to the nucleus The 6th electron is less shielded The 6th electron is removed from the electron shell which is inner/full/ stable/closer to the nucleus The 6th electron is more strongly attracted to/pulled towards the nucleus.					
2c	1 st Mark: Al forms Al ³⁺ ion P forms P ³⁻ ion 2 nd Mark: P ³⁻ ion has one more electron shell than Al ³⁺ ion	Phosphorus atoms have electron arrangement of 2,8,5 and form P ³⁻ ions which have electron arrangement of 2,8,8 Aluminium atoms have electron arrangement of 2,8,3 and form Al ³⁺ ions which have electron arrangement of 2,8 Phosphide P ³⁻ ion has one more electron shell than aluminium Al ³⁺ ion.					
2d	Radius Ratio = 0.96 Caesium Chloride Structure	Radius ratio = $\frac{\text{Radius of positive ion}}{\text{Radius of negative ion}} = \frac{135}{140} = 0.96$					

		3 mark answer	2 mark answer	1 mark answer	
3	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant the situation, showing that the problem is understood.	relevant to the situation, showing that at least a little of the chemistry within the problem is understood.	
4 a(i)	Biological catalyst	An enzyme is a protein which acts as a catalyst for the chemical rinside living things.			
4a(ii)	4.5	Mass of cider = $1.36g/cm^3 \times 50cm^3$ %mass of alcohol = $\frac{Mass \text{ of alcohol}}{Mass \text{ of cide}}$.48%		
4b(i)	Carbon dioxide	Malic acid C4H6O5	Lactic Ac	·	
4b(ii) Part A	0.25	R _f = Distant	nce moved by substance ance moved by solvent	4.1 16.4 = 0.25	
4b(ii) Part B	Sample 4 or Cider B	Problem Solving: Cider B spot at 4.1 indicating all	•	der that has no malic acid ed into lactic acid	
4c	Propane-1,2,3-triol	Propane-1,2,3-tri OH OH OH glycerol Propane-1,2,3-tri Single bonds between carbons on Carbons 1,2,3 Functional groups on Carbons 1,2,3 3 hydr OH glycerol			
4d(i)	Answer to include:	hydroxy	or or or or or	form hydrogen bonds due to hydroxyl groups ydroxyl groups are added en bonding)	
4d(ii)	2-methylbutanoic acid	H H H O H—C—C—C—C—O- H H CH ₃ ethyl 2-methylbut	H H	H H H O H O H C C C C C C C C C C C C C	
4d(iii)	2-methylbuta-1,3-diene or isoprene	H ₂ C C—CH H ₃ C CH ₂ 2-methylbuta-1,3-diene			
4e (i)	Carbonyl	O C	COHOXYI group aldehy	O C C C C C C C C C	

4e(ii)	Ethanoic acid	Primary Aldehyde Carboxylic Alcohol acid				
10(11)		Ethanol — Ethanal — Ethanoic acid				
		Bond Breaking Steps Bond Forming Steps				
		4xC-H bonds 4x 412kJ = 1648kJ 2xC=O bonds 2x 743kJ = 1486kJ 2xO=O bond 2x 498kJ = 996kJ 4xO-H bonds 4x 463kJ = 1852kJ				
		Total bond breaking = 2644kJ Total bond Forming = 3338kJ				
5a(i)	-694	Enthalpy change = +2644 - 3338 = -694kJ mol ⁻¹				
		ΔH = ΣB ond enthalpies for bonds broken - ΣB ond enthalpies for bonds formed				
		ΔH = 2644 - 3338				
		$\Delta H = -694 \text{ kJ mol}^{-1}$				
50(::)	Answer to include:	Mean bond enthalpy is an average energy from a number of compounds.				
5 α(ii)	7115WEI TO ITICIQUE.	Bond enthalpy relates to only one particular compound or molecule.				
		no. of moles = $\frac{\text{Volume}}{\text{Molar Volume}} = \frac{0.200 \text{litres}}{24 \text{ litres mol}^{-1}} = 0.00833 \text{mol}$				
		Molar Volume 24 litres mol-1 - 0.0003311101				
5	0.2/7	$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(l)}$				
5a(iii)	0.367	1mol 2mol 1mol 2mol 2mol				
		0.00833mol 0.00833mol				
		mass = no. of mol \times gfm = 0.00833 \times 44 = 0.367g				
		The before and after masses of the spirit burner (including lid) are				
5b(i)	Record the mass of burner	needed to calculate the change in mass of the spirit burner and this				
35(1)	before and after heating	change in mass is the mass of heptane burned.				
		Heat Energy = Specific Heat Capacity X Mass X Change In Temperature				
		2				
		$E_h = c \times m \times \Delta T$				
		$E_{h} = 4.18 \text{ kJ kg}^{-1} \circ C^{-1} \times 0.4 \text{kg} \times 23 \circ C$				
E1	2407					
5b(ii)	-3496	$E_h = 38.456 kJ$				
		gfm Heptane C7H16 = (7x12) + (16x1) = 84 + 16 = 100g				
		1.1g heptane ◆ → 38.456kJ				
		1mol heptane = 100g heptane ◆ → 38.456kJ × 100/1.1				
		= -3496kJ mol ⁻¹				
5h(:::)	One answer from:	Loss of heat to surroundings Incomplete combustion Loss by evaporation				
5b(iii)	One unswer from.	Absorption of heat by glass/beaker/can No stirring No lid on container				
	Same number of	Both molecules have identical number of electrons (34) so have the same				
6a(i)	electrons or Same	ability to form London Dispersion Forces between molecules (due to				
Part A		formation of temporary dipoles in their electron clouds). The difference				
	strength of LDF	between the molecules mist be caused by other intermolecular forces.				
600		1st Propan-1-ol has stronger intermolecular Intermolecular forces in propan-1-ol take more mark: forces than ethanethiol energy to break than those in ethanethiol				
6a(i)	Answer to include:	mark: forces than ethanethiol energy to break than those in ethanethiol 2 nd Intermolecular bonds in propan-1-ol are hydrogen bonds and intermolecular bonds in				
Part B		mark: ethanethiol are permanent dipole to permanent dipole attractions				
	,1 ,1 , 1	Alkane: Methane CH4 Ethane C2H6 Propane C3H8				
6 a (ii)	methanethiol	Thiol: Mathanethiol CH3SH Ethanethiol C2H5SH Propanethiol C3H7SH				
		1cm³ air				
6a(iii)	11.853mg	1 litre air ← ≥ 2.7×10 ⁻⁴ mg				
	11.0001119	43900 litres air ← 2.7×10 ⁻⁴ mg × ⁴³⁹⁰⁰ / ₁ = 11.853mg or 0.0118g				
		Primary Thiol Secondary Thiol Tertiary Thiol				
		-SH group attached to carbon -SH group attached to carbon -SH group attached to carbon				
6 k	-SH group is attached to	which is attached to 0 or 1 which is attached to 2 other which is attached to 3 other				
6b(i)	carbon which is attached to 3 other carbons	other carbons atoms carbon atoms. carbon atoms. -SH group attached to carbon -SH group attached to carbon -SH group attached to carbon				
	TO 5 OTHER CUMBONS	which is attached to 2 which is attached to 1 which is attached to no				
		hydrogen atoms. hydrogen atom. hydrogen atoms.				

6b(ii) Part A	H H SH H—C—C—C—H H CH₃ H	H H SH H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H H - C - C - C - H
6b(ii) Part B	41.2	2-methylpropene + hydrogen sulphide $\begin{array}{c} $
7a(i)	Propagation	Step Reactants (before Arrow) Initiation No free radicals on Reactant Side Propagation Free Radicals found on both sides of arrow Termination Reactant Side No free radicals on Product Side No free radicals on Reactant Side Propagation Reactant Side
7a(ii)	uv/ultraviolet	Ultraviolet light can cause the formation of free radicals as energy in the uv light can cause bonds to split and the two electrons in the bond separate one to each side. This means there are unpaired electrons which are called free radical. This breaks the plastic down in to smaller chunks that can be digested by bacteria.
7a(iii)	Anti-oxidant or Free Radical Scavenger	Free Radical Scavengers and anti-oxidants quickly react with any free radical particles going and prevent future propagation steps which would prolong the breakdown of the plastics.
7b(i)	Water/H ₂ O	5-hydroxypentanoic acid = $C_5H_{10}O_3$ lactone = $C_5H_8O_2$ Difference = H_2O
7b(ii)	H ₃ C CH O CH ₂ C CCH ₂ O	One less carbon between Carboxyl -COOH group and Hydroxyl group ∴One less carbon in lactone ring i.e. ring has 4 carbons plus 1 oxygen in ring Carbon with hydroxyl -OH group has methyl -CH₃ group sticking off it ∴Methyl -CH₃ group sticking off C on other side of -O-C=O ester group
7b(iii)	3-hydroxybutanoic acid	3-hydroxybutanoic acid OH OH side Four carbon Carboxyl -COOH on C3 group main chain functional group

		amino acid 1	amino acid 2	amino acid	amino acid 4	amino acid 5	amino acid 6
8a(i)	6	H H O	H H C	O H C CH CH CH CH CH CH	O I	H H O	H H O
8a(ii)	London Dispersion Forces	There are three for all substances but a permanent dipole at Bonding is the stron	are the weake ttractions are	st form of inter stronger than l	molecular att London Disper	raction. Perm	anent dipole to
8b(i)	Answer to include:	2 nd Mark: Trai	nsfer quan	n (in small vo titatively/wit k/line (on vol	h rinsings/	/with washi	ngs
8b(ii)	11.0	Concentration (%) Viscosity (units) Difference Prediction (units)	2.0 1.0 1 (-)	4.0 2.0 .0 2 (-)	6.0 4.0 0 (-)	8.0 7.0 3.0 (-)	(4.0) 11.0
8c(i)	Enzyme Changes shape or denatured	Enzymes are spectomaturing is cause This 3D structure the enzyme has clactive sire and the	sed by the 3 e is held by hanged shap	BD structure of various types of the substro	f the prote of bonding e ite molecule	in in the enz g.g. hydrogen no longer fi	yme changing. bonding. Once
8c(ii)	37.88	13.2mg bromela 500mg bromelai		→ 1g pineap → 1g x ⁵⁰⁰ / ₁ = 37.88g	•		
9a(i)	+220±2	Activation Ener R to Act NB: Activation 6	tivated Cor	nplex = 220 -	0 - +220k	J mol ⁻¹	e value.
9a(ii)	One Answer from:	Favours the endo		(Forward) ro exothe			e reaction is lothermic
9b	Diagram showing:	workable method pass	for removal of through water	er (1mark)	ng Cl ₂ to w		od to collect gas nark) syringe
9c	-391	① ② ③ 3 ①×-1 ② ③×4 Add ①'+②+③'	C + \frac{1}{2}H_2 + C + 2H_2 +	$2H_{2} \rightarrow$ $2CI_{2} \rightarrow$ $\frac{1}{2}CI_{2} \rightarrow$ $CH_{4} \rightarrow$ $2CI_{2} \rightarrow$ $2CI_{2} \rightarrow$ $4CI_{2} \rightarrow$	CCI4 HCI C + 2 CCI4 4HCI	ΔH=-98 ΔH=-92 2H ₂ ΔH=+75 ΔH=-98 ΔH=-36	3 kJ mol ⁻¹ 8 kJ mol ⁻¹

10a	Tap water contains metal ions/salts which are not found in deionised water	The tap water used might contained chloride ions or magnesium ions which would alter the concentration of either ions in the final solution. Deionised water or distilled water are free from ions.				
10b(i)	Pipette Measuring cylinder		urate method of transferring accura t provide an accurate measurement o			
10b(ii)	E C B D A 1st 2nd 3nd 4th 5th Step Step Step Step Step Step	C Filter B Wash D Dry th	eigh the filter paper ter the precipitate ush the precipitate with water to remove any impurities by the precipitate in an oven eigh the precipitate and the filter paper			
10b(iii)	0.463	MgCl _{2(aq)} + 2 1mol 0.00486mol m ass = n o. of mol × g 1	ol × gfm = 0.00486 × 95.3 = 0.463g			
10c	96.0	% purity = ma	$\frac{\text{ass of pure sample}}{\text{ss of impure sample}} \times 100 = \frac{2}{2}.$	503 ×100 = 96.0%		
11	Open Question Answer to Include:	3 mark answer Demonstrates a good understanding of the chemistr involved. A good comprehension the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the proble	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.			
12a(i)	Ionic Positively charged	Compound A has polar bonds which have permanent dipoles to allow interaction with water molecules. Compounds B+C have ionic charges which allow these compounds to interact with water.				
12a(ii) Part A	Alkaline hydrolysis or saponification	Alkali will hydrolyse fats/oils into glycerol and three fatty acids. The alka will then neutralise the fatty acids to form salts which act as soaps.				
12a (ii) Part B	Answer to Include:	1st Mark ionic/hydrophilic part and a non-polar/hydrophobic part to molecule 2nd Mark Head/COO- part of the molecules dissolves in water (hydrophilic) Tail/hydrocarbon chain part of molecule dissolves in oil (hydrophobic) Agitation cause small oil droplets to form The (negatively-charged) ball-like structures repel each other Soap/compound C allow emulsions to form or break oil into micelle				
12a(iii)	React edible oil with glycerol	Edible oils can form an ester link with the hydroxyl -OH group on a glycerol (propane-1,2,3-triol). The emulsifier has a hydrophobic tail from the edible oil that has just joined on and has hydrophilic hydroxyl -OH groups.				
12b(i)	One answer from:	Both nuclei have the so for the bonding o		- · · · · · · · · · · · · · · · · · · ·		
12b(ii)	One answer from:	To ensure all chlorine sused up/to prevent chlorine being released reactant hydroxide released reactant released release				
12c	Answer to include:	2nd Mark. Rate of F	id increases in the number of orward Reaction increases concentration of H ⁺ ions by turning th			
12d(i)	OCl- + 2H+ + 2e- ↓ Cl- + H2O	redox OC - + oxidation reduction OC - +	$2H^{+} + 2I^{-} \longrightarrow I_{2}$ $2I^{-} \longrightarrow I_{2}$ $2H^{+} + 2e^{-} \longrightarrow$			

	1.76×10 ⁻²	no. of mol = volume × concentration = 0.0090 litres × 0.098 mol C^1 = 8.82×10^{-4} mol C^2 + $2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_2O_6$ 1 mol 2 mol 2 mol 4.41×10^{-4} mol 8.82×10^{-4} mol
12d(ii)	or 0.0176	$OCl^{-} + 2I^{-} + 2H^{+} \longrightarrow I_{2} + Cl^{-} + H_{2}O$ 1mol 1mol 4.41×10 ⁻⁴ mol 14.41×10 ⁻⁴ mol
		concentration = $\frac{\text{no. of mol}}{\text{volume}}$ = $\frac{4.41 \times 10^{-4} \text{mol}}{0.025 \text{ litres}}$ = $1.76 \times 10^{-2} \text{ mol l}^{-1}$