シスタチン C の e-GFR_{cvs} が 20mL/min 程度の高齢者がアイソカルや CZ-Hi などの経管

#184

食を 1200mL/day 投与されると 1 日カリウム摂取量は(0.15g/100)x 1200mL=1.8g、 1.8g/39^{*1}=46.1 mEq。 ソルデム 3AG、500mL は K⁺ が 10mEq/500mL で 4.5 パック (2250mL) 分のカリウム \mathbb{L}^{*1} 。 高血圧薬服用者が多く合剤には ARB を含むものが多 K⁺=6.5 mEq/L 以上は内科緊急対応が必要なパニックデータ。【偽性高 K⁺血症】 血漿中の K⁺値は4 mEq/L、赤血球内は105 mEq/L なので、まず溶血、あるいは溶血は なく K⁺の細胞膜通過(赤血球から漏出)による上昇を疑う。 血小板や白血球増多時に も血清分離時の血球破壊により細胞外へ K*流出がおきる。 確認が必要な場合は血清分 離が不要なへパリン採血による血漿 K*測定(血清分離時間も節約)。 抗凝固はヘパリ ンカリウム(ヘパカリン)使用は誤差になる。 通常のガス分析用シリンジは電極法で Na⁺、K⁺、Cl⁻を測定するためのヘパリン Li の粉末を封入済み。 高齢者の動脈穿刺は血 **栓剥離**の危険があるので、**静脈採血**(静脈採血のための黒い栓がシリンジの先端につい ている、これをピストンの最後尾に装着して気密)。 血漿 K⁺の方が血清 K⁺より低く血 漿 K⁺が正常の場合は偽性の可能性が高い。 筋力低下や ECG のテント状 T 波も参考に 考える。 AV 結節の伝導は K'と Ca²⁺の交換で脱分極を行う(心室筋には同期収縮のた めの高速化装置として Na⁺チャネルがある)ので高 K⁺血症は房室ブロックを起こす。 AV 結節の伝導特性(高頻度刺激をブロック)は心室の拡張時間を確保、心房細動時の 一回拍出量を維持する。<mark>【緊急対応】</mark>生命維持には血液循環の維持が最優先なので、高 K*により房室ブロック、徐脈、補充性結節調律など致命的不整脈(心室細動)が予測さ れる場合は Ca²⁺の静脈内投与を最優先 (ECG モニター下、8.5% グルコン酸 Ca²⁺液 10mL を 3~5 分かけてゆっくり静注、効果は 30 分持続、数回繰り返す)。 但しジギタリス 中毒による高 K⁺の場合は危険な VT や VF を起こすので禁忌/あるいは点滴で 30 分以 上かけゆっくり投与。 Ca²⁺の効果は膜の安定化作用や房室結節へ流入する Ca²⁺濃度勾 配の維持。<mark>【血清 K⁺低下の手段】</mark>は【一時的な方法】①Glucose-Insulin 投与で K⁺を細 胞内に取り込む ②重炭酸 Na*(メイロン)を静注してアルカローシスとし細胞内の H* と外の **K***を交換させる(異論あり、アシドーシスがないときは無効? 効果は浸透圧に よる循環血液量増加で希釈効果?) ③ β₂作動薬(サルブタモール 10~20 mg) 吸入に より K^+ を 90 分 0.5~1.5 mEq/L 低下できる。 β_2 刺激剤はアデニル酸シクラーゼを活性 化して細胞内 cAMP を増加、プロテインカイネース A を活性化、細胞内 Ca^{2+} 減少、ATP 依存性 Na⁺ポンプを活性化して細胞内の Na⁺を排泄、K⁺を細胞内に汲み上げて血漿 K⁺

 K^{\dagger} 再吸収を阻害するフロセミド(ラシックス)。 3ACE 阻害や ARBK濃度が上がると 膜電位が上昇する → 膜電位が上がると Naチャネルが開きにくくなる 遅延Kチャネルが早く閉 脱分極が鈍化する 再分極が急速化する R波が鈍化する T波は さらに左右対称で 幅が狭くなる (テント状T波) 高K 血症による心電図の変化

投与でレニン・アンジオテンシン・アルドステロン 系を阻害していた場合やアジソン病の高 K⁺血症に は鉱質ホルモン (フロリネフ) を投与して集合管で の Na⁺再吸収と K⁺分泌の増加を図る。 4血液透析。 細胞内に K⁺を取り込む方法はリバウンドがあるの で Ca²⁺投与で時間を稼げたら一時的方法にこだわ らず、すぐ **K**[†]排泄増加に取り組む。 **【**テント状 **T** 波の成因」心電図は再現性のある実験ができないの で、科学的でなく推論。 外液の K*濃度が上がると -90mV の静止電位があがり Na⁺の脱分極が鈍化

をさげる(機序不明とする記述もあり)。【カリウムの排泄促進】①ケイキサレートな どイオン交換樹脂を消化管内投与、消化管細胞膜経由で K⁺を Na⁺に交換。 ②尿細管で

> (QRS も)。 T 波は左右対称に幅が狭くなる。 論的には T 波振幅の増高は起きないが(右図参照) 高 K⁺時の T 波の増高を記載してある本は多い。

振幅の変化では分からない人もいる。 左右対称形になることは個人差がないの で、とりあえずこれで見つけること。 左右対称形の 高さはそれほど変わらない テント状T波 T波が大きい人(若年者に多い) 左右対称形の

T波の振幅は個人差が大きく、高K血症でも

*1カリウムの原子量は 39。 *2ARB とサイアザイドの合剤などは GFR35mL/min 以下はサイアザイド無効で K*低減作 用はない。 カリウムの少ない経管栄養はリーナレンが CZ-Hi の 1/5 (30mg/100mL), レナウエルは 1/15 (10mg/100mL)。 レナジーbit は 0~10mg/100mL。