Localización y separación de múltiples fuentes de voz usando un arreglo de micrófonos

Luis M. Gato Díaz Imiguelgato@comunidad.unam.mx

Maestría en Ingeniería Eléctrica, UNAM Posgrado de Procesamiento Digital de Señales

Proyecto Final - Procesamiento Digital de Audio Profesor: Dr. Caleb Rascón Estebané

Sumario

- 1 Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- 6 Resultados
- 6 Conclusiones

Sumario

- 1 Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- 6 Resultados
- 6 Conclusiones

Tarea No. 1: Estimar la dirección en donde se localizan las fuentes de voz.

- Separación a ciegas: tanto las fuentes de voz como el proceso de mezclado son desconocidos.
- Unicamente se dispone de las grabaciones asociadas a cada elemento del arreglo.
- Maximizar la relación señal a interferencia.
- Presencia de niveles de ruido y de reverberación moderados.
- Reducido costo computacional...

Tarea No. 2: Separar las distintas fuentes de voz presentes en la mezcla.

- Separación a ciegas: tanto las fuentes de voz como el proceso de mezclado son desconocidos.
- Únicamente se dispone de las grabaciones asociadas a cada elemento del arreglo.
 - Maximizar la relación señal a interferencia.
 - Presencia de niveles de ruido y de reverberación moderados.
- Reducido costo computacional.

Tarea No. 2: Separar las distintas fuentes de voz presentes en la mezcla.

- Separación a ciegas: tanto las fuentes de voz como el proceso de mezclado son desconocidos.
- Únicamente se dispone de las grabaciones asociadas a cada elemento del arreglo.
- Maximizar la relación señal a interferencia.
- Presencia de niveles de ruido y de reverberación moderados.
- Reducido costo computacional.

Tarea No. 2: Separar las distintas fuentes de voz presentes en la mezcla.

- Separación a ciegas: tanto las fuentes de voz como el proceso de mezclado son desconocidos.
- Únicamente se dispone de las grabaciones asociadas a cada elemento del arreglo.
- Maximizar la relación señal a interferencia.
- Presencia de niveles de ruido y de reverberación moderados.
- Reducido costo computacional...

Tarea No. 2: Separar las distintas fuentes de voz presentes en la mezcla.

- Separación a ciegas: tanto las fuentes de voz como el proceso de mezclado son desconocidos.
- Únicamente se dispone de las grabaciones asociadas a cada elemento del arreglo.
- Maximizar la relación señal a interferencia.
- Presencia de niveles de ruido y de reverberación moderados.
- Reducido costo computacional.

Tarea No. 2: Separar las distintas fuentes de voz presentes en la mezcla.

Sumario

- Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- Resultados
- 6 Conclusiones

Ecuación de onda en medios homogéneos y no dispersivos:

$$\frac{\partial^2 E(t,\mathbf{r})}{\partial x^2} + \frac{\partial^2 E(t,\mathbf{r})}{\partial y^2} + \frac{\partial^2 E(t,\mathbf{r})}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E(t,\mathbf{r})}{\partial t^2}$$
(1)

Si la fuente es un emisor puntual:

$$\frac{\partial^2 \{ rE(t, \mathbf{r}) \}}{\partial r^2} = \frac{1}{c^2} \frac{\partial^2 \{ rE(t, \mathbf{r}) \}}{\partial t^2}$$
 (2)

Solución de la ecuación de onda:

$$E(t,\mathbf{r}) = s(t - r/c) \tag{3}$$

Ejemplo: señales complejas de banda estrecha $E(t, \mathbf{r}) = Ae^{j(\omega t - \mathbf{k} \cdot \mathbf{r})} = Ae^{j\omega t}e^{-j\mathbf{k} \cdot \mathbf{r}}$

Detección tridimensional de una fuente:

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_M(t) \end{bmatrix} = \begin{bmatrix} e^{-j\mathbf{k}(\theta,\phi)\cdot\mathbf{r}_1} \\ e^{-j\mathbf{k}(\theta,\phi)\cdot\mathbf{r}_2} \\ \vdots \\ e^{-j\mathbf{k}(\theta,\phi)\cdot\mathbf{r}_M} \end{bmatrix} s(t) = \mathbf{a}(\theta,\phi)s(t)$$
(4)

Detección bidimensional de varias fuentes contaminadas con ruido:

$$\mathbf{x}(t) = \mathbf{A}(\theta)\mathbf{s}(t) + \mathbf{w}(t) \tag{5}$$

Modelo de campo lejano:

Modelo de campo lejano:

Sumario

- 1 Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- 6 Resultados
- 6 Conclusiones

Vector de correlación cruzada con transformada de fase:

$$r_{pq}[k] = \frac{1}{N} \sum_{n=0}^{N-1} \frac{X_p[m] X_q^*[m]}{|X_p[m]| |X_q[m]|} e^{j2\pi km/N} \qquad \text{para } k_{\min} \le k \le k_{\max}$$
 (6)

Vector de correlación cruzada con transformada de fase:

$$r_{pq}[k] = \frac{1}{N} \sum_{n=1}^{N-1} \frac{X_p[m] X_q^*[m]}{|X_p[m]| |X_q[m]|} e^{j2\pi km/N} \qquad \text{para } k_{\min} \le k \le k_{\max}$$
 (7)

Ajustes al método de correlación:

• Se usó un umbral para descartar niveles bajos de correlación: $r_{pq}[k]_{max} > \gamma_0$

Luego se incluyó un umbral adaptativo:

a) $\gamma_n = 0.9 \frac{(n-1)\gamma_{n-1} + max\{r_{pq}[k]_{max}\}}{b}$ b) $\gamma_n = 0.9 \frac{(n-1)\gamma_{n-1} + r_{pq}[k]_{max}}{b}$

Ajustes al método de correlación:

- Se usó un umbral para descartar niveles bajos de correlación: $r_{pq}[k]_{max}>\gamma_0$
- Luego se incluyó un umbral adaptativo:

a)
$$\gamma_n = 0.9 \frac{(n-1)\gamma_{n-1} + max\{r_{pq}[k]_{max}\}}{n}$$

b)
$$\gamma_n = 0.9 \frac{(n-1)\gamma_{n-1} + r_{pq}[k]_{max}}{n}$$

Se estima, para cada par de micrófonos la dirección de arribo:

$$\theta_{12} = \frac{\operatorname{sen}^{-1}(c\Delta t_{12})}{d}$$
 $\theta_{23} = \frac{\operatorname{sen}^{-1}(c\Delta t_{23})}{d}$ $\theta_{31} = \frac{\operatorname{sen}^{-1}(c\Delta t_{31})}{d}$ (8)

Se determina si existe redundancia en las direcciones de arribo:

$$[\theta_{12}; \theta'_{12}]$$
 $[\theta_{23}; \theta'_{23}] + 120^{\circ}$ $[\theta_{31}; \theta'_{31}] - 120^{\circ}$ (9)

Existen 2³ pares distintos de ángulos, de los cuales se pueden obtener 2 o hasta 3 pares que *apuntan* aproximadamente a la misma dirección.

Se estableció un umbral de coherencia: $\Delta \theta < 15^{\circ}$

Se determina si existe redundancia en las direcciones de arribo:

$$[\theta_{12}; \theta'_{12}]$$
 $[\theta_{23}; \theta'_{23}] + 120^{\circ}$ $[\theta_{31}; \theta'_{31}] - 120^{\circ}$ (9)

Existen 2³ pares distintos de ángulos, de los cuales se pueden obtener 2 o hasta 3 pares que *apuntan* aproximadamente a la misma dirección.

Se estableció un umbral de coherencia: $\Delta heta < 15^{
m o}$

Fuentes de voz que no coinciden por breves segmentos de tiempo ...

... proporcionan conjuntos distinguibles de direcciones de arribo, asociados a las distintas fuentes presentes:

Se usó el algoritmo de clasificación k-means para distinguir las distintas fuentes, suponiendo que no hay dos fuentes en una misma dirección.

Se aplicó a los centroides de *k*-means un filtro de media móvil y un umbral de desviación respecto a la media.

Se aplicó a los centroides de *k*-means un filtro de media móvil y un umbral de desviación respecto a la media.

Estas modificaciones permiten también extender el método a fuentes móviles:

antes ...

Estas modificaciones permiten también extender el método a fuentes móviles:

... después.

Sumario

- 1 Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- Resultados
- 6 Conclusiones

Separación de las fuentes de voz

Formador de haz de retardos y sumas:

Separación de las fuentes de voz

Formador de haz de retardos y sumas:

Separación de las fuentes de voz

Se aplican los retardos operando en el dominio de la frecuencia, sobre dos buffers solapados de 4 ventanas de datos (overlap-add):

Sumario

- Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- 6 Resultados
- 6 Conclusiones

Estimación de las direcciones de arribo de dos fuentes localizadas en $\theta = [5^{\circ} \ 8^{\circ}]^{T}$.

Error cuadrático medio de los estimadores.

		$ heta=5^{\mathrm{o}}$		$\theta = 8^{\rm o}$	
σ^2	SNR (dB)	MV	Bayes	MV	Bayes
0.0001	40.0	0.2236°	0.2236°	$0.3391^{\rm o}$	0.1871°
0.001	30.0	0.4743°	0.4301°	0.4416°	0.3808°
0.01	20.0	2.4135°	1.1136°	2.1107°	1.7176°
0.02	16.9	5.0453°	3.0668°	1.4265°	1.1832°
0.06	12.2	9.9088°	5.7615°	4.2988°	3.1177°
0.1	10.0	10.064°	4.9487°	5.0813°	3.5043°

Función de costo C_{ML} evaluada sobre la superficie $\{\theta_1, \theta_2\} \in \{-30^\circ, 30^\circ\} \times \{-30^\circ, 30^\circ\}$ para un escenario con dos fuentes localizadas en $\boldsymbol{\theta} = [-10^\circ \ 18^\circ]^T$ y $\sigma^2 = 0.02$.

Función de costo C_B evaluada sobre la superficie $\{\theta_1, \theta_2\} \in \{-30^\circ, 30^\circ\} \times \{-30^\circ, 30^\circ\}$ para un escenario con dos fuentes localizadas en $\boldsymbol{\theta} = [-10^\circ \ 18^\circ]^T$ y $\sigma^2 = 0.02$.

Estimación de las direcciones de arribo de tres fuentes localizadas en $\theta = [3^{\circ} \ 8^{\circ} \ 15^{\circ}]^{T}$.

Sumario

- 1 Descripción del problema
- 2 Modelo geométrico de propagación
- 3 Estimación de las direcciones de arribo
- 4 Separación de las fuentes de voz
- Resultados
- 6 Conclusiones

- Se obtuvo un método que permite estimar simultáneamente el número de fuentes y sus direcciones con un **reducido número de observaciones**.
- Presenta un menor error cuadrático medio que el estimador de máxima verosimilitud.
- Relativamente elevado costo computacional.
- No es aplicable a:
 - señales de banda ancha,
 - · campo no lejano,
 - ruido correlacionado.

- Se obtuvo un método que permite estimar simultáneamente el número de fuentes y sus direcciones con un reducido número de observaciones.
- Presenta un menor error cuadrático medio que el estimador de máxima verosimilitud.
- Relativamente elevado costo computacional.
- No es aplicable a:
 - señales de banda ancha,
 - · campo no lejano,
 - ruido correlacionado.

- Se obtuvo un método que permite estimar simultáneamente el número de fuentes y sus direcciones con un reducido número de observaciones.
- Presenta un menor error cuadrático medio que el estimador de máxima verosimilitud.
- Relativamente elevado costo computacional.
- No es aplicable a:
 - señales de banda ancha,
 - · campo no lejano,
 - ruido correlacionado.

- Se obtuvo un método que permite estimar simultáneamente el número de fuentes y sus direcciones con un **reducido número de observaciones**.
- Presenta un menor error cuadrático medio que el estimador de máxima verosimilitud.
- Relativamente elevado costo computacional.
- No es aplicable a:
 - señales de banda ancha,
 - campo no lejano,
 - ruido correlacionado.

Localización y separación de múltiples fuentes de voz usando un arreglo de micrófonos

Luis M. Gato Díaz Imiguelgato@comunidad.unam.mx

Maestría en Ingeniería Eléctrica, UNAM Posgrado de Procesamiento Digital de Señales

Proyecto Final - Procesamiento Digital de Audio Profesor: Dr. Caleb Rascón Estebané