Introduction à la théorie des jeux

Jeux à somme nulle : théorèmes de minmax généraux

Tristan Garrec

6 avril 2020

ENSTA Paris

Cours à distance

Retrouvez l'enregistrement vidéo des transparents commentés. Attention, le fichier n'est disponible qu'un temps limité (sept jours après la mise en ligne).

Ainsi que le nouveau document en ligne,

- Pour poser toutes vos questions ;
- Pour apporter des suggestions sur le cours à distance ;
- · Signaler des coquilles dans les transparents (je vous en saurais gré).

Et finalement la page du cours.

Retour sur le cours précédent

Correction des exercices

- 1. L'application $t\mapsto \operatorname{val}(A-tB)$ est continue (elle est même $\|B\|_{\infty}$ -Lipschitz) et strictement décroissante. De plus $\lim_{t\to +\infty}\operatorname{val}(A-tB)=-\infty$ et $\lim_{t\to -\infty}\operatorname{val}(A-tB)=+\infty$. Il existe donc $v\in\mathbb{R}$ tel que $\operatorname{val}(A-vB)=0$;
- 2. C'est une conséquence immédiate de 1. et de l'existence de stratégies optimales ;
- 3. On retrouve le théorème de von Neumann avec $\forall (s, t) \ B_{st} = 1$.

Correction des exercices

Soit A une matrice stochastique de taille n. Soit $B=A-I_n$. On considère le jeu matriciel B. Dans ce jeu, la stratégie uniforme τ^* de J2 lui garantit 0. Donc $\min_{\tau} \max_{\sigma} \sigma B \tau \leq 0$.

Soit une stratégie mixte τ de J2 et soit $s \in \arg\min_t \tau_t$ considéré comme une stratégie pure de J1. Alors

$$sB\tau = sA\tau - s\tau = \sum_t A_{st}\tau_t - \min_t \tau_t \ge \sum_t A_{st} \min_t \tau_t - \min_t \tau_t \ge 0.$$

On a montré que $\min_{\tau} \max_{\sigma} \sigma B \tau = 0$. Donc val(B) = 0.

Soit σ^* une stratégie optimal de J1. Comme τ^* est une stratégie optimale à support complet, $\forall t \ \sigma^* Bt = 0$, donc $\sigma^* A = \sigma^*$.

nulle : le cas général

Jeux à deux joueurs et à somme

Lemme de l'intersection, Berge (1966)

Lemme (de l'intersection, Berge (1966))

Soient C_1, \ldots, C_n des sous-ensembles convexes compacts non vides d'un espace vectoriel topologique localement convexe séparé.

On suppose que $\bigcup_{i=1}^{n} C_i$ est convexe, et que pour tout $j \in \{1, ..., n\}$, $\bigcap_{i \neq j} C_i$ est non vide. Alors $\bigcap_{i=1}^{n} C_i$ est non vide.

Figure 1: Intersection deux à deux non vide mais union non convexe

Figure 2: Intersection deux à deux non vide et union convexe

Lemme de l'intersection, Berge (1966)

Démonstration.

On procède par récurrence. Pour n=1 il n'y a rien à démontrer. Soit $n \ge 2$ et supposons le résultat vrai pour n-1 et faux pour n. On a donc C_1, \ldots, C_n convexes compacts tels que $\bigcap_{i=1}^n C_i = \emptyset$. Donc C_n et $D_n = \bigcap_{i=1}^{n-1} C_i$ sont des convexes compacts non vides disjoints.

Théorème (de Hahn-Banach (1927))

Soit E un EVTLCS, A et B deux sous-ensembles convexes, non vides et disjoints. Si A est compact et B est fermé, alors il existe un hyperplan affine fermé séparant strictement A et B.

6/19

Lemme de l'intersection, Berge (1966)

Suite de la démonstration.

Notons H un tel hyperplan. Pour $i \in \{1, ..., n-1\}$ soient $C_i' = C_i \cap H$ et $C' = (\bigcup_{i=1}^n C_i) \cap H$, qui sont convexes et compacts. $C_n \cap H = \emptyset$ implique que $C' = (\bigcup_{i=1}^{n-1} C_i) \cap H$ et $D_n \cap H = \emptyset$ implique que $\bigcap_{i=1}^{n-1} C_i' = \emptyset$.

D'après l'hypothèse de récurrence appliquée aux C_i' , il existe $j \in \{1, ..., n-1\}$ tel que $\bigcap_{i=1, i\neq j}^{n-1} C_i' = \emptyset$. Soit $K = \bigcap_{i=1, i\neq j}^{n-1} C_i$. On a $D_n \subset K$ et $C_n \cap K \neq 0$ par hypothèse. K est convexe et intersecte des ensembles séparés par H donc $K \cap H \neq \emptyset$. Or $K \cap H = \bigcap_{i=1, i\neq j}^{n-1} C_i' = \emptyset$.

Rappels

Définition

Soit E un ensemble convexe. Une application $f: E \to \mathbb{R}$ est quasi-concave si pour tout réel λ , la section supérieure large $\{x \in E \mid f(x) \geq \lambda\}$ est convexe.

f est quasi-concave si - f est quasi-convexe.

Définition

Soit E un espace topologique. Une application $f: E \to \mathbb{R}$ est semi-continue supérieurement (s.c.s) si pour tout réel λ , la section supérieure large $\{x \in E \mid f(x) \geq \lambda\}$ est fermée.

f est semi-continue inférieurement si -f est s.c.s.

Proposition

Si E est compact et f est s.c.s., alors f atteint sont maximum sur E.

Le théorème de Sion (1958)

Théorème (de Sion (1958))

Soit un jeu à somme nulle $\Gamma = (S, T, g)$ tel que

- 1. *S et T sont convexes*;
- 2. S ou T est compact;
- 3. $\forall t \in T \ g(\cdot, t)$ est quasi-concave s.c.s. et $\forall s \in S \ g(s, \cdot)$ est quasi-convexe s.c.i.

Alors Γ a une valeur. De plus, si S (resp. T) est compact, le sup (resp. inf) est atteint : le joueur correspondant possède une stratégie optimale.

Le théorème de Sion (1958)

Démonstration.

Supposons que S est compact et que Γ n'a pas de valeur. Soit $v \in \mathbb{R}$ tel que $\sup_{s \in S} \inf_{t \in T} g(s, t) < v < \inf_{t \in T} \sup_{s \in S} g(s, t)$. On a donc $\forall s \in S \exists t \in T \ g(s, t) < v \text{ et } \forall t \in T \ \exists s \in S \ g(s, t) > v$.

Pour tout $t \in T$ posons $S_t = \{s \in S \mid g(s, t) < v\}$. $(S_t)_{t \in T}$ forme un recouvrement ouvert de S, soit $\bigcup_{t \in T_0} S_t \supset S$ un recouvrement fini.

Soit $T' = \operatorname{conv} T_0$, qui est compact car homéomorphe au simplexe sur T_0 . On a $\sup_{s \in S} \inf_{t \in T'} g(s,t) < v \operatorname{car} S \subset \bigcup_{t \in T'} S_t$ et $v < \inf_{t \in T'} \sup_{s \in S} g(s,t)$ car l'inf est sur un ensemble plus petit.

Pour tout $s \in S$ posons $T'_s = \{t \in T' \mid g(s, t) > v\}$. $(T'_s)_{s \in S}$ forme un recouvrement ouvert de T', soit $\bigcup_{s \in S_0} T'_s \supset T'$ un recouvrement fini.

10 / 19

Le théorème de Sion (1958)

Suite de la démonstration. On a donc

$$\forall s \in \text{conv} S_0 \exists t \in T_0 \ g(s,t) < v \text{ et } \forall t \in \text{conv} T_0 \exists s \in S_0 \ g(s,t) > v.$$
 (1)

Supposons, quitte à retirer des éléments, que (S_0, T_0) vérifiant (1) est minimal pour l'inclusion.

Pour tout $s \in S_0$ posons $A_s = \{t \in T' \mid g(s,t) \leq v\}$ qui est un sous-ensemble convexe et compact de T'. On a $\cap_{s \in S_0} A_s = \emptyset$ et pour tout $s_0 \in S \cap_{s \in S_0 \setminus \{s_0\}} A_s \neq \emptyset$ par minimalité de S_0 . D'après le lemme de l'intersection $\bigcup_{s \in S_0} A_s$ n'est pas convexe.

Il existe donc $t_0 \in T' \setminus \bigcup_{s \in S_0} A_s$ et pour tout $s \in S_0$ $g(s, t_0) > v$. Comme $g(\cdot, t_0)$ est quasi-concave, on a pour tout $s \in \text{conv} S_0$ $g(s, t_0) > v$.

De même il existe $s_0 \in \text{conv} S_0$ tel que pour tout $t \in T'$ $g(s_0, t) < v$. Finalement $v < g(s_0, t_0) < v$.

Exercice

Exercice

On considère une famille de jeux à somme nulle $\Gamma_n = (S, T, g_n)$ où

- $(g_n: S \times T \to \mathbb{R})_n$ est une suite décroissante de fonctions uniformément bornées, s.c.s. en s pour tout t;
- Pour tout n, Γ_n a une valeur notée v_n ;
- S est compact.
- 1. On pose $g = \inf_n g_n$. Montrer que $\Gamma = (S, T, g)$ a pour valeur $v = \inf v_n$ et que J1 a une stratégie optimale dans Γ ;
- 2. On considère les jeux suivants (à 1 joueur), comparer la valeur v de Γ et $\lim_n v_n$.
 - 2.1 $S = [0, +\infty[$ et $g_n = \mathbb{1}_{s \ge n};$
 - 2.2 S = [0, 1] et g_n est continue et linéaire par morceaux avec $g_n(0) = g_n\left(\frac{2}{n}\right) = g_n(1) = 0$ et $g_n\left(\frac{1}{n}\right) = 1$.

Correction

- 1. Pour $n \in \mathbb{N}$, posons $A_n = \{s \in S \mid \inf_{t \in T} g_n(s,t) \ge v \frac{1}{n}\}$ qui est compact car $\inf_{t \in T} g(\cdot,t)$ est s.c.s. et S est compact, et non vide car $v \le v_n$. De plus la suite $(A_n)_{n \in \mathbb{N}}$ est décroissante donc l'intersection est non vide. Soit $s \in \cap_{n \in \mathbb{N}} A_n$, s garantit v à J1 et $\max_{s \in S} \inf_{t \in T} g(s,t) \ge v$. Soit $n \in \mathbb{N}$ tel que $v_n \le v + \frac{1}{n}$ et soit t_n une stratégie $\frac{1}{n}$ -optimale de J2 dans Γ_n . On a pour tout $s \in S$, $g(s,t_n) \le g_n(s,t_n) \le v_n + \frac{1}{n} \le v + \frac{2}{n}$. Donc $\inf_{t \in T} \max_{s \in S} g(s,t) \le v$.
- 2. 2.1 Pour tout $n \in \mathbb{N}$ on a $v_n = 1$ et pour tout $s \in S$, $\inf_n g_n(s) = 0$ donc v = 0. S n'est pas compact;
 - 2.2 Idem. $(g_n)_n$ n'est pas décroissante.

Extension mixte

On considère des jeux sans hypothèse de convexité sur les espaces d'actions.

Soit A un espace métrique compact. On note $\Delta(A)$ l'ensemble des probabilités Boréliennes sur A. On muni $\Delta(A)$ de la topologie faible-*, qui en fait un espace métrique compact.

Soit $f:A\to\mathbb{R}$ une fonction s.c.i., alors $\Delta(A)\ni\mu\mapsto\int_A fd\mu\in\mathbb{R}$ est également s.c.i.

Soit $\Gamma=(S,T,g)$ avec S et T des espaces métriques compacts, et g mesurable et telle que le théorème de Fubini s'applique, l'extension mixte est le jeu $\Gamma^{\Delta}=(\Delta(S),\Delta(T),g)$ où g est étendue bilinéairement

$$g(\sigma,\tau) = \int_{S \times T} g(s,t) d\sigma(s) \otimes d\tau(t).$$

Théorème d'existence en stratégies mixtes

Théorème

Soit un jeu à somme nulle $\Gamma = (S, T, g)$ tel que

- 1. S et T sont métriques compacts;
- 2. $\forall (s,t) \in S \times T \ g(\cdot,t) \ est \ s.c.s. \ et \ g(s,\cdot) \ est \ s.c.i.$;
- 3. g est bornée et mesurable par rapport à la tribu Borélienne produit $\mathcal{B}_S \otimes \mathcal{B}_T$.

Alors l'extension mixte de Γ a une valeur et chaque joueur à une stratégie optimale (mixte).

Exercices

Exercice

Soient S = T = [0, 1], soit $g : S \times T \rightarrow \{-1, 0\}$ telle que pour tout $(s, t) \in S \times T$

$$g(s,t) = \begin{cases} -1 & \text{si } t = 0 \text{ et } s < \frac{1}{2} \\ -1 & \text{si } t = 1 \text{ et } s \ge \frac{1}{2} \\ 0 & \text{sinon.} \end{cases}$$

- 1. Montrer que le jeu n'a pas de valeur en stratégies pures ;
- 2. Montrer que les conditions du théorème de Sion sont satisfaites partout sauf en t = 1;
- 3. Ce jeu admet-il une valeur en stratégies mixtes?

Correction

- 1. On a $\inf_{t \in T} \sup_{s \in S} g(s, t) = 0$ et $\sup_{s \in S} \inf_{t \in T} g(s, t) = -1$.
- 2. S et T sont convexes et compacts. On vérifie que pour tout $s \in S$, $g(s,\cdot)$ est s.c.i. et pour tout $t \in T \setminus \{1\}$, $g(\cdot,t)$ est s.c.s. En t=1 on a $\limsup_{s \to \frac{1}{2}} g(s,1) = 0 > g\left(\frac{1}{2},1\right)$ donc $g(\cdot,1)$ n'est pas s.c.s.
- 3. Soit σ la stratégie uniforme de J1 sur S. On a $g(\sigma,t)=0$ si $t\in]0,1[$ et $g(\sigma,t)=-\frac{1}{2}$ sinon. Donc J1 garantit $-\frac{1}{2}$. Soit $\tau=\frac{1}{2}\delta_0+\frac{1}{2}\delta_1$. Alors pour tout $s\in S$ $g(s,\tau)=-\frac{1}{2}$. La valeur du jeu en stratégies mixtes est $-\frac{1}{2}$.

Exercices

Exercice

Soient S = T = [0, 1], soit $g : S \times T \rightarrow \{0, 1\}$ telle que pour tout $(s, t) \in S \times T$

$$g(s,t) = \begin{cases} 0 & \text{si } s = t \\ -\frac{1}{s^2} & \text{si } s > t \\ \frac{1}{t^2} & \text{si } s < t. \end{cases}$$

- 1. Montrer que $\forall t \in T$ $\int_S g(s,t)ds = 1$ et $\forall s \in t$ $\int_T g(s,t)dt = -1$;
- 2. Montrer que $\sup_{\sigma \in \Delta(S)} \inf_{t \in T} g(\sigma, t) > \inf_{\tau \in \Delta(T)} \sup_{s \in S} g(s, \tau)$;
- 3. Peut-on définir l'extension mixte de (S, T, g) ?

Correction

- 1. Soit $t \in T$, $\int_S g(s, t) ds = \int_0^t \frac{1}{t^2} ds + \int_t^1 -\frac{1}{s} ds = \frac{1}{t} + 1 \frac{1}{t} = 1$. Et de même.
- 2. On a $\sup_{\sigma \in \Delta(S)} \inf_{t \in T} g(\sigma, t) \ge 1 > -1 \ge \inf_{\tau \in \Delta(T)} \sup_{s \in S} g(s, \tau)$.
- 3. Le théorème de Fubini ne s'applique pas : $\int_{T} \int_{S} g(s, t) ds dt = 1 \neq -1 = \int_{S} \int_{T} g(s, t) dt ds.$