Light

Chapter 13

Terminology

Two laws of reflection

• [1] The incident ray, the reflected ray, and the normal at the point of incidence all lie on the same plane.

• [2] The angle of incidence, i, is equal to the

angle of reflection, r. (i = r)

Regular v. Diffused Reflection

- Regular reflection
 - Reflection off a smooth surface
- Diffused reflection
 - Reflection off an irregular/rough surface

Ray diagram for plane mirrors

[Single light ray]

(Object and eye are points)

1> Draw image in mirror (should be the same distance from mirror as object)

- 2> Draw a line from image to eye
 to determine reflected ray
- 3> Draw line from object to point of incidence for incident ray

Ray diagram for plane mirrors

[Cone of light]

(Object is a point, eye is not a point)

1> Draw image in mirror (should be the same distance from mirror as object)

2> Draw two lines from image to
eye to determine reflected rays

3> Draw lines from object to
point of incidence for incident
rays

Ray diagram for plane mirrors

[Large object]

(Object is large, eye is a point)

Left as exercise.

\perp						N	1	n r	· O	n	W	: -	⊢ h		ฟลิ	. 7	1							\perp
									O		VV				NC									
				Wa	11																			
												//	///	///	///	///	///	///	///	///	///	///	///	,

\vdash						M	i	rr	ю.	r	W	i	th		ΝĈ	1	1 1							
				Wa	11							,,,,,,												
												//	///	///	1		///	///	///	///	///	///	///	,
									••••															
							••	•••			. • • • •													
							••																	
							•••																	

Refraction simulator

Bending Light - Snell's Law | Refraction | Reflection - PhET
Interactive Simulations (colorado.edu)

Refractive index (n)

$$n = \frac{c}{v}$$

where

- c = $3.0 \times 10^8 \text{ ms}^{-1}$ (speed of light in a vacuum),
- v is the speed of light in the medium, and
- n is the refractive index of the medium

Snell's Law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Note: Refractive index n of vacuum = 1

Critical angle of a medium

$$n = \frac{1}{\sin c}$$

Total Internal Reflection

- Happens when angle of incidence increases beyond critical angle
- Two conditions:
 - [1] Light ray must travel from material with higher refractive index to material with lower refractive index (higher --> lower)
 - [2] Angle of incidence of light ray must be greater than critical angle of the medium (i > c)

Critical angle of a medium

$$n = \frac{1}{\sin c}$$

Total Internal reflection

Shell's law:
$$n_1 s m \theta_1 = n_2 s i h \theta_2$$

Sihle $n_2 = 1$, (beause refractive index of at = 1)
 $\theta_2 = 90^\circ$, $s i h 90^\circ = 1$

$$n_{i} \sin \theta_{i} = (1)(1)$$

$$n_{i} = \frac{1}{\sin \theta_{i}}$$

Thin convex lenses

Terminology

- Orientation: Upright / Inverted
- Size: Diminished / Same size / Magnified
- Type: Real / Virtual

Case #1: u = infinite

Case #4: f < u < 2f

Case #2: u > 2f

Case #5: u = f

Case #3: u = 2f

Case #6: u < *f*

Case #1: u = infinite

Case #5: u = f

Case #3: u = 2f

Distance, u	Type of Image	Direction	Size
u≤f	virtual	upright	magnified
f < u < 2f	real	inverted	magnified
u = 2f	real	inverted	same
u > 2f	real	inverted	diminished
<i>u</i> = ∞	real	inverted	diminished