Problem Solving Training

Prepared by: Mohamed Ayman

Algorithm Software Engineer and Deep Learning Researcher at Valeo

Research and Teaching Assistant at The American University in Cairo (AUC)

[Spring 2021]

sw.eng.MohamedAyman@gmail.com

linkedin.com/in/cs-MohamedAyman

github.com/cs-MohamedAyman

codeforces.com/profile/Mohamed Ayman

Mohamed Ayman

Experience

Valeo [2019 - Present]

- Deep Learning Researcher

- Algorithm Software Engineer

• The American University in Cairo (AUC)

[2019 - Present]

[2016 - Present]

- Research Assistant

- Teaching Assistant

ICPC - International Collegiate Programming Contest

- Coach

- Mentor

Problem Solving Training

github.com/cs-MohamedAyman/Problem-Solving-Training/blob/master/README.md

Lecture Agenda

We will discuss in this lecture the following topics

- 1- Introduction to Training
- 2- Training Content and Timeline
- 3- Practice on Online Judges
- 4- Programming Competitions
- 5- Tutorials and References
- 6- Online Courses

4

Lecture Agenda

Section 1: Introduction to Training

Section 2: Training Content and Timeline

Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Level 1 Level 2 Level 3 Level 4

Level 1 Level 2 Level 3 Level 4

3 Months 6 Months 1 Year 3 Years

TOO LIGHT

Lecture Agenda

✓ Section 1: Introduction to Training

Section 2: Training Content and Timeline

Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Training Content and Timeline

Level 1

Prerequisite Knowledge: github.com/cs-MohamedAyman/Programming-Languages-and-Object-Oriented-Training

github.com/cs-MohamedAyman/Problem-Solving-Training/blob/master/README.md#level-1

Level 2

Prerequisite Knowledge: github.com/cs-MohamedAyman/Data-Structures-and-Algorithms-Analysis-Training

github.com/cs-MohamedAyman/Problem-Solving-Training/blob/master/README.md#level-2

Level 3

Prerequisite Knowledge: github.com/cs-MohamedAyman/Advanced-Data-Structures-and-Algorithms-Analysis-Training

github.com/cs-MohamedAyman/Problem-Solving-Training/blob/master/README.md#level-3

Level 4

Prerequisite Knowledge: github.com/cs-MohamedAyman/Advanced-Data-Structures-and-Algorithms-Analysis-Training

github.com/cs-MohamedAyman/Problem-Solving-Training/blob/master/README.md#level-4

Training Content and Timeline

Level 1

15 weeks

Python Programming Language Lectures

Module 1	Python Basics and Functions	Module 2	Python Collections and Strings
Lecture 01	Python Overview	Lecture 07	Strings
Lecture 02	Variable Types	Lecture 08	Lists
Lecture 03	Basic Operations	Lecture 09	Tuples
Lecture 04	Conditions	Lecture 10	Dictionaries
Lecture 05	Loops	Lecture 11	Sets
Lecture 06	Functions	Lecture 12	Numbers

Cpp Programming Language Lectures

Module 1	Cpp Basics and Pointers	Module 2	Cpp Arrays and Functions
Lecture 01	Cpp Overview	Lecture 07	Arrays
Lecture 02	Variable Types	Lecture 08	Functions
Lecture 03	Basic Operations	Lecture 09	Strings
Lecture 04	Conditions	Lecture 10	Structures
Lecture 05	Loops	Lecture 11	Enumerations and Unions
Lecture 06	Pointers and References	Lecture 12	Numbers

Training Content and Timeline - Level 1

H	[Week 01 - Week 02] HackerRank Sheets	2 weeks
CODE PORCES	[Week 03 - Week 05] Codeforces Sheets 1.1, 1.2	3 weeks
CODEFORCES S	[Week 06 - Week 08] Codeforces Sheets 1.3, 1.4	3 weeks
h	[Week 09 - Week 10] HackerEarth Sheets	2 weeks

Training Content and Timeline

Level 2

15 weeks

Data Structures Lectures

Module 1	Linear Data Structures	Module 2	Non-Linear Data Structures
Lecture 01	Complexity Analysis	Lecture 08	Binary Tree
Lecture 02	Array	Lecture 09	Binary Search Tree
Lecture 03	Linked List	Lecture 10	AVL Tree
Lecture 04	Stack	Lecture 11	Red Black Tree
Lecture 05	Queue	Lecture 12	Binary Heap Tree
Lecture 06	Deque	Lecture 13	Hash Table
Lecture 07	Built-in Linear Data Structures	Lecture 14	Built-in Non-Linear Data Structures

Algorithms Analysis Lectures

Module 1	Basic Algorithms	Module 2	Graph Algorithms and Dynamic Programming
Lecture 01	Complexity Analysis	Lecture 07	Introduction to Graph
Lecture 02	Sorting Algorithms	Lecture 08	Shortest Path Algorithms
Lecture 03	Searching Algorithms	Lecture 09	Spanning Tree Algorithms
Lecture 04	Decrease and Conquer	Lecture 10	Greedy Algorithms
Lecture 05	Divide and Conquer	Lecture 11	Brute Force Algorithms
Lecture 06	Transform and Conquer	Lecture 12	Dynamic Programming

Training Content and Timeline - Level 2

	[Week 01 - Week 02] HackerRank Sheets	2 weeks
C LeetCode	[Week 03 - Week 05] LeetCode Sheets 2.1, 2.2	3 weeks
COOFFORCES	[Week 06 - Week 08] Codeforces Sheets 2.1, 2.2	3 weeks
C LeetCode	[Week 09 - Week 11] LeetCode Sheets 2.3, 2.4	3 weeks
Coderonces	[Week 12 - Week 14] Codeforces Sheets 2.3, 2.4	3 weeks
C LeetCode	[Week 15 - Week 17] LeetCode Sheets 2.5, 2.6	3 weeks
<u>h</u>	[Week 18 - Week 19] HackerEarth Sheets (data structures)	2 weeks
<u>h</u>	[Week 21 - Week 22] HackerEarth Sheets (algorithms analysis)	2 weeks

Training Content and Timeline

Level 3, 4

15 weeks

15 weeks

Advanced Data Structures Lectures

Module 1	Advanced Data Structures	Module 2	Advanced Data Structures
Lecture 01	Disjoint Set	Lecture 08	AA Tree
Lecture 02	Skip List	Lecture 09	K-Dimensional Tree
Lecture 03	Trie	Lecture 10	B/B+ Tree
Lecture 04	Segment Tree	Lecture 11	Sparse Tables
Lecture 05	Binary Indexed Tree	Lecture 12	Suffix Array
Lecture 06	Treap	Lecture 13	Suffix Tree
Lecture 07	Splay Tree	Lecture 14	Advanced Trees

Advanced Algorithms Analysis Lectures

Module 1	Mathematical and Geometric Algorithms	Module 2	String Algorithms
Lecture 01	Mathematical Algorithms I	Lecture 06	String Algorithms
Lecture 02	Mathematical Algorithms II	Lecture 07	String Compression Algorithms
Lecture 03	Geometric Algorithms I	Lecture 08	Pattern Searching Algorithms I
Lecture 04	Geometric Algorithms II	Lecture 09	Pattern Searching Algorithms II
Lecture 05	Advanced Graph Algorithms	Lecture 10	Advanced Dynamic Programming

Lecture Agenda

- ✓ Section 1: Introduction to Training
- ✓ Section 2: Training Content and Timeline

Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Practice on Online Judges

Level 1

HackerRank OJ sheets

2 weeks

The HackerRank OJ sheets phase-1-cpp This sheet focus on c/c++ basic problems, It's divided into 8 classes of problems (Introduction - Conditionals and Loops - Arrays and Strings - Functions - Standard Template Libraries - Structs and Enums - Classes and Inheritance - Misc). It was ordered based on the problem difficulty and grouped by the problem type. Finally, this sheet contains ~70 problems. phase-1-python This sheet focus on python basic problems, It's divided into 6 classes of problems (Introduction - Basic Data Types - Collections - Functions - Standard Libraries - Classes). It was ordered based on the problem difficulty and grouped by the problem type. Finally, this sheet contains ~100 problems.

phase-1-cpp	60 problems	phase-1-python	100 problems
Introduction	15 problems	Introduction	5 problems
Conditionals and Loops	5 problems	Basic Data Types	20 problems
Arrays and Strings	10 problems	Collections	30 problems
Functions	5 problems	Functions	10 problems
Standard Template Libraries	5 problems	Standard Libraries	25 problems
Structs and Enums	5 problems	Classes	10 problems
Classes and Inheritance	15 problems		

Level 1

Codeforces OJ sheets

8 weeks

The Codeforces OJ sheets phase-1-1, phase-1-2, phase-1-3, phase-1-4 contain A-Div2 problems, and each sheet of them divided into 5 classes of problems (Basic Operators - Conditions - Loops - Lists/Arrays - Strings). These sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~120 problems.

	phase-1-1	phase-1-2	phase-1-3	phase-1-4
	160 problems	115 problems	115 problems	105 problems
Basic Operator	15 problems	10 problems	5 problems	5 problems
Condition	15 problems	15 problems	20 problems	20 problems
Loop	35 problems	20 problems	25 problems	20 problems
String	35 problems	30 problems	30 problems	30 problems
List / Array	60 problems	35 problems	35 problems	30 problems

Level 1

HackerEarth OJ sheets

4 weeks

The HackerEarth OJ sheets phase-1-1, phase-1-2, phase-1-3, phase-1-basic-programming contain implementation problems and basic programming problems. These sheets were ordered based on difficulty. Each sheet contains ~100 problems. It's divided into 4 classes of problems (Input/Output - Bit Manipulation - Recursion - Operators).

	phase-1-1	phase-1-2	phase-1-3	phase-1-basic-programming	
	100 problems	100 problems	100 problems	130 problems	
Implementation	25 problems	25 problems	25 problems	Input / Output	50 problems
Implementation	25 problems	25 problems	25 problems	Bit Manipulation	70 problems
Implementation	25 problems	25 problems	25 problems	Recursion	10 problems
Implementation	25 problems	25 problems	25 problems	Operators	5 problems

Level 2

Codeforces OJ sheets

8 weeks

The Codeforces OJ sheets phase-2-1, phase-2-2, phase-2-3, phase-2-4 contain B-Div2 problems, and each sheet of them divided into 5 classes of problems (Data Structure - Mathematics - String - Greedy - Brute Force). These sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~120 problems. For the last 2 sheets phase-2-div3-contests that focus on div3-contests (easy contests) and contains ~100 contests, and phase-2-educational-contests, that focus on educational-contests (medium contests) and contains ~100 contests. Finally phase-2-gym-contests that focus on gym-contests that contains ~200 contests.

	phase-2-1	phase-2-2	phase-2-3	phase-2-4
	120 problems	130 problems	105 problems	145 problems
Data Structure	10 problems	20 problems	30 problems	30 problems
String	40 problems	25 problems	5 problems	30 problems
Mathematics	25 problems	35 problems	35 problems	40 problems
Greedy	30 problems	35 problems	25 problems	30 problems
Brute Force	15 problems	15 problems	10 problems	15 problems

Level 2

HackerRank OJ sheets

4 weeks

The HackerRank OJ sheets phase-2-data-structures, phase-2-algorithms-basics, These sheets contain linear and non-linear data structures problems plus advanced data structures problems, and basic algorithms problems. Also, these sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~120 problems.

phase-2-data-structures	120 problems	phase-2-algorithms-basics	120 problems
Arrays & Linked Lists	20 problems	Warm-up & Recursion	20 problems
Stacks & Queues	10 problems	Sorting	15 problems
Trees & Balanced Trees	25 problems	Search	25 problems
Heap & Disjoint Set & Trie	10 problems	Implementation I	30 problems
Advanced	50 problems	Implementation II	30 problems

Level 2

4 weeks

LeetCode OJ sheets

The LeetCode OJ sheets phase-2-1, phase-2-2, phase-2-3, phase-2-4, phase-2-5, phase-2-6 contain linear and non-linear data structures problems, searching and sorting algorithms, and each sheet of them divided into 6 classes of problems (Array - LinkedList - Stack - Queue - Binary Tree - Heap Tree - HashTable) in addition to (Binary Search - Sorting - Divide and Conquer - Greedy - Bit Manipulation). These sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~200 problems.

phase-2-3	170 problems	phase-2-4	180 problems
Recursion	30 problems	Binary Tree I	30 problems
Binary Tree	30 problems	Binary Tree II	30 problems
Heap Tree	30 problems	Binary Tree III	30 problems
Hash Table I	30 problems	Heap Tree	30 problems
Hash Table II	30 problems	Hash Table I	30 problems
Hash Table III	20 problems	Hash Table II	30 problems

Level 2

4 weeks

LeetCode OJ sheets

The LeetCode OJ sheets phase-2-1, phase-2-2, phase-2-3, phase-2-4, phase-2-5, phase-2-6 contain linear and non-linear data structures problems, searching and sorting algorithms, and each sheet of them divided into 6 classes of problems (Array - LinkedList - Stack - Queue - Binary Tree - Heap Tree - HashTable) in addition to (Binary Search - Sorting - Divide and Conquer - Greedy - Bit Manipulation). These sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~200 problems.

phase-2-5	190 problems	phase-2-6	200 problems
Binary Search I	35 problems	Binary Search	30 problems
Binary Search II	35 problems	Greedy I	40 problems
Divide and Conquer	20 problems	Greedy II	40 problems
Sorting I	40 problems	Greedy III	40 problems
Sorting II	40 problems	Bit Manipulation I	25 problems
Greedy	20 problems	Bit Manipulation II	25 problems

Level 2

4 weeks

LeetCode OJ sheets

The LeetCode OJ sheets phase-2-1, phase-2-2, phase-2-3, phase-2-4, phase-2-5, phase-2-6 contain linear and non-linear data structures problems, searching and sorting algorithms, and each sheet of them divided into 6 classes of problems (Array - LinkedList - Stack - Queue - Binary Tree - Heap Tree - HashTable) in addition to (Binary Search - Sorting - Divide and Conquer - Greedy - Bit Manipulation). These sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~200 problems.

phase-2-1	200 problems	phase-2-2	210 problems
Array I	40 problems	Array I	50 problems
Array II	40 problems	Array II	50 problems
Array III	40 problems	Array III	50 problems
Linked List	10 problems	Linked List	30 problems
Stack	50 problems	Stack	10 problems
Queue and Dequeue	20 problems	Queue and Dequeue	20 problems

Level 2

Codeforces OJ sheets

The Codeforces OJ sheets phase-2-1, phase-2-2, phase-2-3, phase-2-4 contain B-Div2 problems, and each sheet of them divided into 5 classes of problems (Data Structure - Mathematics - String - Greedy - Brute Force). These sheets were ordered based on the problem difficulty and grouped by the problem type. Finally, each sheet contains ~120 problems. For the last 2 sheets phase-2-div3-contests that focus on div3-contests (easy contests) and contains ~100 contests, and phase-2-educational-contests, that focus on educational-contests (medium contests) and contains ~100 contests. Finally phase-2-gym-contests that focus on gym-contests that contains ~200 contests.

phase-2-div3	-contests	phase-2-educationa	al-contests	phase-2-gym-	contests
100 con	tests	100 contests		200 contests	
Div3 Contests I	20 Contests	Educational Rounds I	20 Contests	GYM Contests 2	20 Contests
Div3 Contests II	20 Contests	Educational Rounds II	20 Contests	GYM Contests 3 I	25 Contests
Div3 Contests III	20 Contests	Educational Rounds III	20 Contests	GYM Contests 3 II	15 Contests
Div3 Contests IV	20 Contests	Educational Rounds IV	20 Contests	GYM Contests 3 III	30 Contests
Div3 Contests V	20 Contests	Educational Rounds V	20 Contests	GYM Contests 3 IV	30 Contests
				GYM Contests 3 V	30 Contests

Level 2

8 weeks

HackerEarth OJ sheets

The HackerEarth OJ sheets phase-2-linear-data-structures, phase-2-non-linear-data-structures, phase-2-algorithms-searching, phase-2-algorithms-sorting, Each sheet contains linear and non-linear data structures problems, in addition to searching and sorting algorithms. These sheets were ordered based on the problem difficulty and each sheet contains ~100 problems.

phase-2-linear-data-structures	110 problems	phase-2-non-linear-data-structures	90 problems
Arrays 1D	65 problems	Binary Tree	10 problems
Arrays Multi-dimensional	20 problems	Binary Search Tree	10 problems
Stacks	25 problems	Heaps / Priority Queues	20 problems
Queues	5 problems	Hash Tables	50 problems
phase-2-algorithms-searching	120 problems	phase-2-algorithms-sorting	140 problems
Linear Search	15 problems	Bubble & Selection & Insertion & Merge	40 problems
Binary Search I	50 problems	Quick & Count & Heap	20 problems
Binary Search II	50 problems	Greedy Algorithms I	40 problems
Ternary Search	5 problems	Greedy Algorithms II	40 problems

Lecture Agenda

- ✓ Section 1: Introduction to Training
- ✓ Section 2: Training Content and Timeline
- ✓ Section 3: Practice on Online Judges

Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Programming Competitions

Google Competitions

code jam

hash code

kick start

Google Competitions - Code Jam

Code Jam - Practice Session March

Code Jam - Qualification Round March

Code Jam - Round 1A April

• Code Jam - Round 1B April

Code Jam - Round 1C
 May

Code Jam - Round 2 May

• Code Jam - Round 3 June

Code Jam - World Finals August

Google Competitions - Kick Start

Kick Start - Round A

March

Kick Start - Round B

April

Kick Start - Round C

May

Kick Start - Round D

July

Kick Start - Round E

August

Kick Start - Round F

September

Kick Start - Round G

October

Kick Start - Round H

November

Google Competitions - Hash Code

Hash Code - Hub registration opens
 November

Hash Code - Individual registration opens January

Hash Code - Registration closes
 February

• Hash Code - Online qualification round February

Hash Code - Results announced
 March

Hash Code - Final round April

Facebook Hacker Cup Competition

Facebook Hacker Cup - Qualification round

June

• Facebook Hacker Cup - Round 1 June

• Facebook Hacker Cup - Round 2 July

• Facebook Hacker Cup - Round 3 August

Facebook Hacker Cup - Onsite Final
 September

ICPC - International College Programming Contest

Qualification Round in Universities September

• ECPC Egyptian College Programming Contest October

• ACPC Arab College Programming Contest January

• ICPC International College Programming Contest May

Lecture Agenda

- ✓ Section 1: Introduction to Training
- ✓ Section 2: Training Content and Timeline
- ✓ Section 3: Practice on Online Judges
- ✓ Section 4: Programming Competitions

Section 5: Tutorials and References

Section 6: Online Courses

Python Tutorials

programiz.com/python-programming

docs.python.org/3

geeksforgeeks.org/python-programming-language

tutorialspoint.com/python3

Cpp Tutorials

programiz.com/cpp-programming

geeksforgeeks.org/c-plus-plus

tutorialspoint.com/cplusplus

Python References

Textbooks: github.com/cs-MohamedAyman/Programming-Languages-and-Object-Oriented-Training

Cpp References

Textbooks: github.com/cs-MohamedAyman/Programming-Languages-and-Object-Oriented-Training

Data Structures and Algorithms Analysis Tutorials

programiz.com/dsa

hackerearth.com/practice/data-structures hackerearth.com/practice/algorithms

geeksforgeeks.org/data-structures
geeksforgeeks.org/fundamentals-of-algorithms

tutorialspoint.com/data structures_algorithms

Data Structures and Algorithms Analysis References

Textbooks: github.com/cs-MohamedAyman/Data-Structures-and-Algorithms-Analysis-Training

Python Online Interpreters

repl.it online interpreter: repl.it/languages/python3

Cpp Online Compilers

repl.it online compiler: repl.it/languages/cpp

Python Online Interpreters

ideone online interpreter: ideone.com

Cpp Online Compilers

ideone online compiler: ideone.com

Python Online Interpreters

Tutorialspoint online interpreter: tutorialspoint.com/execute python3 online.php

Cpp Online Compilers

Tutorialspoint online compilers: tutorialspoint.com/compile cpp online.php

Lecture Agenda

- ✓ Section 1: Introduction to Training
- ✓ Section 2: Training Content and Timeline
- ✓ Section 3: Practice on Online Judges
- ✓ Section 4: Programming Competitions
- ✓ Section 5: Tutorials and References

Section 6: Online Courses

Python Coursera Specializations

Computational Thinking & Block Programming in K-12 Education Specialization by University of California San Diego

Introduction to Scripting in Python Specialization by Rice University

Fundamentals of Computing Specialization by Rice University

Programming in Python: A Hands-on Introduction Specialization by Codio

Cpp Coursera Specializations

Specializations: github.com/cs-MohamedAyman/Programming-Languages-and-Object-Oriented-Training

Programming Language Playlists

Playlists: github.com/cs-MohamedAyman/Programming-Languages-and-Object-Oriented-Training

Programming Language Playlists

Playlists: github.com/cs-MohamedAyman/Programming-Languages-and-Object-Oriented-Training

Naresh i Technologies Playlists	The Net Ninja Playlists	Intellipaat Playlists	Tech With Tim Playlists	easytuts4you Playlists
NIC	NET NINJA	4		tuts4you.com
by The Cherno Playlists	GeeksforGeeks Playlists	Geeky Shows Playlists	Caleb Curry Playlists	Sundeep Saradhi Kanthety Playlists
	Se	GS		Sundeep Saradhi A channel for self learning

Data Structures and Algorithms Specializations (C)

Specializations: https://github.com/cs-MohamedAyman/Data-Structures-and-Algorithms-Analysis-Training

Discrete Mathematics by Shanghai Jiao Tong University

Accelerated Computer Science Fundamentals Specialization by University of Illinois at Urbana-Champaign

Algorithms Specialization by Stanford University

Competitive Programming by Moscow Institute of Physics and Technology

Data Structures and Performance by University of California San Diego

Data Structures and Algorithms Specializations (C)

Specializations: https://github.com/cs-MohamedAyman/Data-Structures-and-Algorithms-Analysis-Training

Data Structures and Algorithms Playlists

Playlists: github.com/cs-MohamedAyman/Data-Structures-and-Algorithms-Analysis-Training

MIT OpenCourseWare Playlists	Tutorials Point (India) Ltd Playlists	nptelhrd Playlists	Neso Academy Playlists	mycodeschool Playlists
MIT	(ISO)			REA
ocw		NPTEL		
Gate Lectures by Ravindrababu Ravula Playlists	Gate Smashers Playlists	Education 4u Playlists	Jennys lectures CS-IT NET&JRF Playlists	Easy Engineering Classes Playlists
72:		D 1		
M.			Jenny's Lectures	EEC Classe Easy Engineering Clas

Data Structures and Algorithms Playlists

Playlists: github.com/cs-MohamedAyman/Data-Structures-and-Algorithms-Analysis-Training

KNOWLEDGE GATE Playlists	GeeksforGeeks Playlists	Sundeep Saradhi Kanthety Playlists	5 Minutes Engineering Playlists	Tushar Roy - Coding Made Simple Playlists
·KG·	Se	Sunderp Saradhi A chaffnel for self learning	FINUTES ENGINEERING	T
Back To Back SWE Playlists	Simple Snippets Playlists	TheTrevTutor Playlists	Unacademy Computer Science Playlists	WilliamFiset Playlists
	X			

Lecture Agenda

- ✓ Section 1: Introduction to Training
- ✓ Section 2: Training Content and Timeline
- ✓ Section 3: Practice on Online Judges
- ✓ Section 4: Programming Competitions
- ✓ Section 5: Tutorials and References
- ✓ Section 6: Online Courses

