Geomorphic (SPIM) fundamental function in canonical, generalized Kropina metric form

Colin P. Stark July 12, 2022

Summary

The geomorphic fundamental "metric" function \mathcal{F}^* prescribes the distance traveled by an erosion front in unit time. It takes the form (for the bedrock channel SPIM model) of power functions of the surface-normal erosion slowness covector components $\mathbf{p} = [p_x, p_z]$ multiplied by a position dependent rate variable $\varphi(\mathbf{r})$. This kind of fundamental function is called a generalized Kropina metric on T*M. This canonical metric is one of the family of so-called (α^*, β^*) Finsler (Cartan) metrics that, when defined on the cotangent manifold indicated by the * annotation, combine a contravariant Riemannian metric tensor a^{ij} with a vector field b^i (the equivalent on the tangent manifold employs a 1-form b_i along with a covariant metric tensor a_{ij}). In this geomorphic case, the Riemannian tensor is just the Euclidean metric tensor scaled by $\sqrt{\varphi(\mathbf{r})}$, while the vector field is simply $\varphi(\mathbf{r})$ applied to the horizontal unit vector.

Fundamental function

The co-Finsler/Cartan fundamental function for the geomorphic (SPIM) Hamiltonian, derived from first principles, is:

$$\mathcal{F}_* = p_x^{\eta} \left(p_x^2 + p_z^2 \right)^{\frac{1}{2} - \frac{\eta}{2}} \varphi(\mathbf{r})$$

For a gradient-scaling exponent of $\eta = \frac{1}{2}$ in the SPIM, we have

$$\mathcal{F}_* = \sqrt{p_x} \sqrt[4]{p_x^2 + p_z^2} \varphi(\mathbf{r})$$

while for a gradient-scaling exponent of $\eta = \frac{3}{2}$ in the SPIM, we have

$$\mathcal{F}_* = rac{p_x^{rac{3}{2}} arphi(\mathbf{r})}{\sqrt[4]{p_x^2 + p_z^2}}$$

Conversion to generalized Kropina form

$$\left(\alpha_{\mathrm{Kr}}^* = \sqrt{p_x^2 + p_z^2} \varphi(\mathbf{r}), \ \beta_{\mathrm{Kr}}^* = p_x \varphi(\mathbf{r})\right)$$

So we have the components of a Kropina-type metric on our Cartan/co-Finsler space, where

$$\alpha_{\mathrm{Kr}}^* = \left(a^{ij}(\mathbf{r}) \, p_i \, p_j\right)^{\frac{1}{2}}, \quad \beta_{\mathrm{Kr}}^* = p_i b^i(\mathbf{r}) \tag{1}$$

The Riemannian metric component a^{ij} is just a Euclidean metric

$$a^{ij}(\mathbf{r}) = \sqrt{\varphi(\mathbf{r})} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (2)

and the vector field component b^i (the dual of what would be a 1-form for a Kropina-type metric on a Finsler space) is

$$b^{i}(\mathbf{r}) = \varphi(\mathbf{r}) \begin{bmatrix} 1 \\ 0 \end{bmatrix} \tag{3}$$

$$(\alpha_{\mathrm{Kr}}^*)^{1-\eta} (\beta_{\mathrm{Kr}}^*)^{\eta} = p_x^{\eta} (p_x^2 + p_z^2)^{\frac{1}{2} - \frac{\eta}{2}} \varphi(\mathbf{r})$$

$$\left(\mathcal{F}_* = p_x^{\eta} (p_x^2 + p_z^2)^{\frac{1}{2} - \frac{\eta}{2}} \varphi(\mathbf{r}), \text{ True}\right)$$

Therefore F^* is a generalized m-Kropina metric, which has the standard form:

$$F^* = \alpha^{m+1} \beta^{-m} \tag{4}$$

where $m := -\eta$, with the constraint that $m \neq 0, -1$, and where $\alpha := \alpha_{Kr}^*$ and $\beta := \beta_{Kr}^*$ (don't confuse these α , β with the ray and surface tilt angles).

For $\eta = \frac{1}{2}$, we have a generalized $\left(-\frac{1}{2}\right)$ -Kropina metric function $F^* = \alpha^{1/2}\beta^{1/2}$.

For $\eta = \frac{3}{2}$, we have a generalized $\left(-\frac{3}{2}\right)$ -Kropina metric function $F^* = \alpha^{-1/2}\beta^{3/2}$.

For $\eta = 1$, the metric function is ill-defined.

Note: the canonical Kropina metric is usually used to describe F not F^* , but not exclusively.

References

Hrimiuc, D., & Shimada, H. (1996). On the \mathcal{L} -duality between Lagrange and Hamilton manifolds. Nonlinear World, 3, 613–641.

Hrimiuc, D., & Shimada, H. (1997). On some special problems concerning the \mathcal{L} -duality between Finsler and Cartan spaces. Tensor N. S., 58, 48–61.

Kropina, V. K. (1961). On projective two-dimensional Finsler spaces with special metric, 11.

Kushwaha, R. S., & Shanker, G. (2018). On the \mathcal{L} -duality of a Finsler space with exponential metric $\alpha e^{\beta/\alpha}$. Acta Universitatis Sapientiae, Mathematica, 10(1), 167–177.

Matsumoto, M. (1992). Theory of Finsler spaces with (α, β) -metric. Reports on Mathematical Physics, 31(1), 43–83.

Miron, R., Hrimiuc, D., Shimada, H., & Sabau, S. V. (2002). The Geometry of Hamilton and Lagrange Spaces. Dordrecht: Springer Science & Business Media. – see chapter 6 on "Cartan Spaces", which includes Kropina metrics on T*M, and (α^*, β^*) metrics

Sabau, S. V., & Shimada, H. (2001). Classes of Finsler spaces with (α, β) -metrics. Reports on Mathematical Physics, 41(1), 31–48.

Shanker, G. (2011). The \mathcal{L} -dual of a generalized m-Kropina space. Journal of the Tensor Society, 5, 15–25.