

Program Fresh Graduate Academy Digital Talent Scholarship 2019 | Machine Learning

Non-Linear Regression

M. Ramli & M. Soleh

Bagian 1

Pendahuluan

Pendahuluan

- Regresi non linier adalah suatu metode untuk mendapatkan model non linier yang menyatakan <u>hubungan variabel dependen dan</u> variabel independen
- Regresi nonlinier dapat mengestimasi model hubungan variabel dependen dan independen dalam bentuk non linier dengan keakuratan yang lebih baik daripada regresi linier, karena dalam mengestimasi model dipakai iterasi algoritma.

Pendahuluan (2)

Membentuk Garis Lurus

Membentuk Garis Lengkung

Bagian 2

Model Regresi Non-Linear

Linear VS Non-Linear

- Bagaimana Anda bisa menyatakan bahwa dataset yang ada, secara alamiah bersifat linear atau non-linear?
- Model yang dipilih untuk regresi, sangat bergantung kepada dataset itu sendiri.
- Mari tinjau kembali perbedaan fungsi linear dan non linear:

6

Linear VS Non-Linear (2)

- Fungsi linear: Secara sederhana didefinisikan sebagai fungsi yang mengikuti prinsip:
 - Input/output = konstan
- Persamaan linear selalu merupakan polinomial derajat 1 (misalnya x + 2y + 3 = 0).
- Dalam kasus dua dimensi, fungsi linear selalu membentuk garis
- Pada dimensi lain, fungsi linear mungkin juga membentuk bidang atau titik. "Bentuk" fungsi linear selalu benar-benar lurus, tanpa kurva apa pun.

Mengapa Regresi Non-Linear

• Misalkan diberikan data seperti ini:

• Gunakan regresi linear atau non-linear?

Mengapa Regresi Non-Linear (2)

Digunakan model linear/ derajat 1:

RMSE of linear regression is 15.908242501429998.

R2 score of linear regression is **0.638**6750054827146

- Banyak data yang "jauh" dari garis model.
- Kondisi: under-fitting

Mengapa Regresi Non-Linear (3)

Jika menggunakan model non-linear (kuadratik) / derajat 2:

RMSE of polynomial regression is 10.120437473614711.

R2 of polynomial regression is **0.853**7647164420812.

• Garis model terlihat sudah mendekati persebaran data.

Mengapa Regresi Non-Linear (4)

Jika menggunakan model non-linear (kubik) / derajat 3:

RMSE is 3.449895507408725

R2 score is **0.983**0071790386679

- Garis model terlihat semakin mendekati persebaran data.
- Kondisi: appropriate-fitting / correct-fit

Perbandingan 3 Model

Berikut adalah perbandingan model linear, kuadratik dan kubik:

Bagaimana Dengan Derajat Yang Lain

Misalkan dimodelkan dengan derajat "20":

- Garis model juga melewati "noise" data.
- Kondisi: over-fitting

Bias vs Varians

- Bias merujuk pada kesalahan, karena asumsi model yang sederhana dalam menyesuaikan data.
- Bias yang tinggi artinya bahwa model tidak dapat menangkap pola di dalam data dan ini mengakibatkan kondisi under-fitting.

- Varians mengacu pada kesalahan, karena model yang kompleks mencoba menyesuaikan data.
- Varians tinggi artinya model melewati sebagian besar titik pada data dan menghasilkan kondisi over-fitting

Bias vs Varians (2)

Correct Fit Low Bias Low Variance

Overfit Low Bias High Variance

Bagian 2

Praktikum Lab

ML0101EN-Reg-NoneLinearRegression-py-v1.ipynb

IKUTI KAMI

- digitalent.kominfo
- digitalent.kominfo
- DTS_kominfo
- Digital Talent Scholarship 2019

Pusat Pengembangan Profesi dan Sertifikasi Badan Penelitian dan Pengembangan SDM Kementerian Komunikasi dan Informatika Jl. Medan Merdeka Barat No. 9 (Gd. Belakang Lt. 4 - 5) Jakarta Pusat, 10110

