

Final Projects Exam - Power Electronics

Rizki Alfiansyah (21/478438/TK/52722)

LOCALLY ROOTED,
GLOBALLY RESPECTED

Buck Converter

Design a buck converter to step down voltage with detail instructions.

LOCALLY ROOTED, GLOBALLY RESPECTED

Specification Buck Converter

Input Voltage : 24 Volt

Output voltage : 9 V

Switching Frequency : 100 kHz

Output Power : 8.1 Watt

Current Ripple : 0.05 A

Voltage Ripple : 0.5 V

Determine L Value

$$L = \frac{(V_{in} - V_{out}).D}{\Delta I_L.f_s}$$

$$L = \frac{(24-9).0.375}{0.5.100000}$$

$$L = \frac{5.625}{50000}$$

$$L = 1.125 \times 10^{-3}$$

$$V_{in} = Tegangan \ Input$$

$$V_{out} = Tegangan \ Output$$

$$D = Duty \ Cycle$$

$$\Delta I_L = Ripple \; Arus$$

$$f_s = Frekuensi Switching$$

Determine C Value

$$C = \frac{\Delta I_L}{8.f_s.\Delta V_{OUT}}$$

$$C = \frac{0.5}{8.100000.0.5}$$

$$C = 1.25 \times 10^{-6}$$

$$C = Nilai\ Kapasitor$$

$$\Delta I_L = Ripple \ Arus$$

$$f_s = Frekuensi Switching$$

$$\Delta V_{out} = Ripple \ Tegangan$$

Open-Loop Buck Converter

Running Simulation Based on Output Voltage and Current

Ripple Voltage on Peak Minimum and Maximum Voltage

Ripple Current on Peak Minimum and Maximum Current

Closed-Loop Buck Converter

Running Simulation Based on Output Voltage and Current

Ripple Voltage on Peak Minimum and Maximum Voltage

Ripple Current on Peak Minimum and Maximum Current

PV Grid Connected Inverter

The task involves determining inverter specifications, PV module configuration, and designing a control system that can controls the active and reactive power injected to the grid.

LOCALLY ROOTED, GLOBALLY RESPECTED

PV Module Configuration

On this condition of PV Grid Connected Inverter, we assume that DC voltage input using 700 Vdc. So, model configuration

$$I_{PV} = \frac{P_n}{V_{dc}}$$
 $I_{PV} = \frac{100000}{700}$
 $I_{PV} = 142.85 A$

Dari kasus diatas, maka dibutuhkan kurang lebih 16 PV dengan tegangan 50 V yang diseri untuk memenuhi kebutuhan Vdc 800 V

Determine L and C Value

Based on that system, we use RLC filter to downside the ripple on voltage. So, value of L and C can be,

$$\Delta i_L = \frac{0.1 \cdot P_{n\sqrt[2]{2}}}{3V_{ph}} = 20 A$$

$$V_{dc} = \frac{2\sqrt{2}}{m_i \cdot \sqrt{3} \cdot V_L} = 700 V$$

$$C_f = 0.03 \times C_{base} = 500 \,\mu H$$

PV Grid Connected Inverter

Running Voltage Output to Grid Connected

GADJAH MADA

Running Current Output to Grid Connected

GADJAH MADA

UNIVERSITAS GADJAH MADA

Sekian, dan Terima Kasih

