多媒體系統

PTT意見探勘實作

張家瑋博士

國立臺中科技大學資訊工程系助理教授

NATURAL LANGUAGE PROCESSING 自然語言處理的原理與應用

DATA PREPARATION

- Data preprocessing and cleaning
 - Preprocess data in order to reduce noise and handle missing values
 - 斷字, 斷詞
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
 - 移除stop words, 擷取有用資訊(TF-IDF)
- Data transformation
 - Generalize and/or normalize data
 - 轉成向量(Vector representation)

SEGMENTATION

- Segment by word/ sentence
- Segment in English
 - In English, we can directly segment the word by space ""
 - Ex: I love machine learning. → [I, love, machine, learning]
- Segment in Chinese
 - In Chinese, we segment the word by meaningful word rather than directly segment by characters.
 - Ex: 我喜歡機器學習 > [我, 喜歡, 機器, 學習] rather than [我, 喜, 歡, 機, 器, 學, 習]

根據字詞結構將一句話斷字

Dear 小明, 這是目前公司的最新技術,利用 apples 和 pens 的特性可以讓產能最 佳化......

Dear, 小明, 這是, 目前, 公司, 的, 最新, 技術, 利用, apples, 和, pens, 的, 特性, 可以, 讓, 產能, 最佳化,

REMOVING STOP WORDS

- Remove the word which is meaningless.
- Usually do after segment.
- Remove stop words in Chinese
 - Example of stop words: 的, 了, 且, 個, 是
 - Ex: 今天的空氣品質不好 > [今天, 空氣, 品質, 不好]
- Remove stop words in English
 - Example of stop words: is, the, an, and, a
 - Ex: Today 's air quality is not good → [Today's, air, quality, not, good]

移除stop-word

STEMMING

- Stemming is to transform the word into its original type by removing word endings such as -s, -ed and -ing.
 - "bikes" is replaced with "bike",
 - "raining" is replaced with "rain"
 - "tried" is replaced with "try"

stemming

小明, 目前, 最新, 技術, 利用, apple, pen, 特性, 產能, 最佳化,

REPRESENTATION

- Select features from the data
- Transform data into vector model

- Ex)
 - WordNet
 - TF-IDF (Term Frequency Inverse Document Frequency)
 - Word2Vec

自然語言理解 NATURAL LANGUAGE UNDERSTANDING

SEMANTIC SIMILARITY MEASURES

VECTOR REPRESENTATION

	w_1	W ₂	W ₃	••	••	••	W _{n-1}	W _n	label
D_1	0.11	0.23	0		••		0.57	0	0
D_2	0	0	0				0.29	0.7	1
D_3	0	0.81	0.44				0	0	0
D_4	0	0.37	0	••		••	0	0.16	1
	••	••	••	••	••	••	••	••	
D_k	••	••	••	••	••	••	••	••	1

Machine learning

TF-IDF

TF-IDF

• TF: term frequency:

$$ext{tf}_{ ext{i,j}} = rac{n_{i,j}}{\sum_k n_{k,j}}$$

IDF: inverse document frequency:

$$\mathrm{idf_i} = \log rac{|D|}{|\{j: t_i \in d_j\}|}$$

where:

- |D|: total number of documents in the corpus
- $|\{j:t_i\in d_j\}|$: number of documents where term t_i appears

Then:

 $\textbf{tfid} f_{i,j} = t f_{i,j} \times i d f_i$

Document 1

Term	Term Count
this	1
is	1
а	2
sample	1

Document 2

Term	Term Count			
this	1			
is	1			
another	2			
example	3			

The calculation of tf-idf for the term "this" is performed as follows:

$$ext{tf}(" ext{this}",d_1)=rac{1}{5}=0.2 \ ext{tf}(" ext{this}",d_2)=rac{1}{7}pprox 0.14$$

$$\operatorname{idf}("\mathsf{this}",D) = \log\!\left(rac{2}{2}
ight) = 0$$

 So tf-idf is zero for the word "this", which implies that the word is not very informative as it appears in all documents.

$$ext{tfidf}(" ext{this}",d_1)=0.2 imes0=0 \ ext{tfidf}(" ext{this}",d_2)=0.14 imes0=0$$

Document 1

Term	Term Count
this	1
is	1
а	2
sample	1

Document 2

Term	Term Count
this	1
is	1
another	2
example	3

A slightly more interesting example arises from the word "example", which occurs three times only in the second document:

$$ext{tf("example"}, d_1) = rac{0}{5} = 0 \ ext{tf("example"}, d_2) = rac{3}{7} pprox 0.429 \ ext{idf("example"}, D) = \logigg(rac{2}{1}igg) = 0.301$$

$$\operatorname{idf}("\mathsf{example}",D) = \log\!\left(rac{2}{1}
ight) = 0.301$$

$$ext{tfidf}("\mathsf{example}",d_1) = ext{tf}("\mathsf{example}",d_1) imes ext{idf}("\mathsf{example}",D) = 0 imes 0.301 = 0$$
 $ext{tfidf}("\mathsf{example}",d_2) = ext{tf}("\mathsf{example}",d_2) imes ext{idf}("\mathsf{example}",D) = 0.429 imes 0.301 imes 0.13$

PTT OPINION MINING PTT的輿情分析

張家瑋博士 國立臺中科技大學資訊工程系助理教授

PTT INTRODUCTION

oppo5566 (5566) [問卦] 發錢 預測大谷翔平本日打擊 Thu Apr 12 07:26:39 2018

大谷翔平 本日要先發打擊對上遊騎兵左投Matt moore,

這是上次鄉民預測中的發錢名單

https://i.imgur.com/t7xIGOK.

以及收到P幣之後的感謝回信

https://i.imgur.com/vEm8tme.

那這次要預測的推文格式為:安

範例: 3/1/1

前十位預測中的鄉民稅後各100F

PS. 不用擔心錢不夠發, 有朋友實推

```
786164 + 2 4/12 hachilou
786165 +X3 4/12 Safin
786166 +X2 4/12 borondawon
                    786167 +10 4/12 mike901003
                                   4/12 lianpig5566
再打出全壘打我就
```

實作大綱

- 1. 繪製圖表(matplotlib、seaborn)
- 2. 中文斷詞(jieba)
 - 去除stop-words、斷詞
- 3. 機器學習(sklearn)
 - TFIDF \ LinearSVC

Code Structure

```
import library
匯入函示庫
                 import library1 as lib1
                 from library import sub-library as sublib
                 print('Hello World')
                for i in range(10):
                 ---- print('Hi!')  #印出十次 'Hi!'
           個
           空白
                 def sayhi():
                 ---- print('Hi')
                                 #呼叫 function sayhi(),印出一次 'Hi'
                 sayhi()
```

Import Library

import json #用來讀取/產生 json 格式的套件 import numpy as np #用來處理數值矩陣的套件

import matplotlib as mpl #用來繪製圖表的套件 import matplotlib.pyplot as plt #為 matplotlib 的子套件,提供命令行式函數的集合 import seaborn as sns #基礎於 matplotlib 的高階圖表的繪製套件

from collections import defaultdict #使用 dictionary 儲存資料

zhfont1 = mpl.font_manager.FontProperties(fname='DejaVuSans.ttf') #讀取中文字型

Load Data

```
# load ptt posts

path = 'gossip.json' #欲載入文檔之路徑

with open(path, encoding='utf8') as f:
    posts = json.load(f)
```

Load Data

```
{ "author": "morning3569",
    "title" = "[協尋] 1/1台中清水早上八點多車禍",
    "content" = "\n\n1/1 早上8點多\n\n台中清水紫雲巖.....",
    "comments" =
    [{ "content": "bad", "score":-1, "user": "xxxx"},
    { "content": "good", "score":1, "user": "yyy"},
    { "content": "soso", "score":0, "user": "zzz"},
    ....
]
, "score":-244
}
```

```
total_comments = defaultdict(int)
                                         #宣告 dict 儲存所有留言
          total_pushes = defaultdict(int)
                                         #宣告 dict 儲存所有推文
          total_hates = defaultdict(int)
                                         #宣告 dict 儲存所有噓文
          for post in posts:
                              #逐一讀取 json 中的所有八卦版文章
            for comment in post['comments']: #抓出該篇文章的所有留言
             user = comment['user'] #抓出該則留言的鄉民帳號
              total comments[user] += 1 #該名user的留言次數+1
同在第二個
              if comment['score'] > 0:
for loop
                                         #score 大於 0 代表是推文
               total_pushes[user] += 1
的生命週期中
                                        #該名user的推文次數+1
              elif comment['score'] < 0:</pre>
                                         #score 小於 0 代表是嘘文
                total_hates[user] += 1
                                         #該名user的嘘文次數+1
```

繪製圖表

- matplotlibseaborn

推

嘘

Top 20 的鄉民ID

counts.items()取得所有在案鄉民的ID與其留言次數。如下: {[account, times], [account1, times1], [account2, times2]...]}

def show_distributions(counts, pushes, hates):

sorted_cnts = [t[0] for t in sorted(counts.items(), key= lambda x: -x[1])][:20] #取前20個最踴躍回覆者之ID

```
usernames = [u for u in sorted_cnts] #依序取得前20名的鄉民ID total_y = [counts[u] for u in sorted_cnts] #依序取得前20名鄉民的總留言數 y_pushes = [pushes[u] for u in sorted_cnts] #依序取得前20名鄉民的推文數 y_hates = [hates[u] for u in sorted_cnts] #依序取得前20名鄉民的噓文數
```

#依序取得前20名鄉民的噓文數

y_neutral = np.asarray(total_y) - np.asarray(y_pushes) - np.asarray(y_hates) #依序取得前20名鄉民的箭頭(中立)留言數

因sorted()預設是遞增, 所以實作技巧上可以將次 數都先加上負號,再取前 20個。

```
y_NandP = y_neutral + np.asarray(y_pushes)
#依序將前20名鄉民的箭頭(中立)留言數與推文數相加
....
```

```
def show_distributions(counts, pushes, hates):
 X = np.arange(20) #生成 0-19 的矩陣(array), 代表 Top20 的鄉民
 fig, ax = plt.subplots(figsize = (10,8))
 plt.bar(X, np.asarray(y_pushes)+np.asarray(y_neutral), facecolor='#00ACC1', edgecolor='white')
 #將推文數與中立留言數相加·依照 Top20 的 ID 順序繪圖·該顏色代表鄉民的推文數
 plt.bar(X, np.asarray(y_neutral), facecolor='#7CB342', edgecolor='white')
 #依照 Top20 的 ID 順序繪圖·該顏色代表鄉民的中立留言數
 plt.bar(X, -np.asarray(y_hates), facecolor='#FFB300', edgecolor='white')
 #依照 Top20 的 ID 順序繪圖,該顏色代表鄉民的嘘文數。Y軸之值加上負號,讓噓文在另一象限顯示
 plt.xlim(-0.5, 19.5) #設定本圖的 X 軸邊界,左右多 0.5 是為了美觀留有空間
 plt.ylim(-max(y_hates)*1.2, max(y_NandP)*1.2) #設定本圖的Y軸邊界,分別以上下象限的最大值得1.2倍
               #去除 Y 軸的標籤
 plt.yticks(())
 ax.set_xticks(X) #設定 X 軸的 0-19 的軸距標記
 ax.set_xticklabels(usernames, rotation=45, fontsize=12, fontproperties=zhfont1)
 #在已設定的X軸標記上,將鄉民的ID標記上。設定ID文字傾斜45度,文字大小12並使用DejaVu Sans字體。
```

```
def show_distributions(counts, pushes, hates):
 #以下設定推、嘘、中立留言的次數所顯示的位置
                                                                   Z
 for x, y, z in zip(X, np.asarray(y_pushes)+np.asarray(y_neutral), np.asarray(y_pushes)):
    plt.text(x, y+10, z, ha='center', va='bottom')
  for x, y in zip(X, np.asarray(y_neutral)):
    plt.text(x, y-35, y, ha='center', va='bottom')
  for x,y in zip(X, -np.asarray(y_hates)):
    plt.text(x, y-35, abs(y), ha='center', va='bottom')
                            取絕對值
  plt.show(fig) #顯示圖表
```

Top 20 踴躍留言者的簡易分析

show_distributions(total_comments, total_pushes, total_hates)

Top 20 的鄉民ID

中文斷詞

- jieba
- remove stop-words

Jieba 中文斷詞

import jieba #用來處理中文斷詞的套件

for w in jieba.cut("我來到台南成功大學"): print(w)

我來 到

台南

成功

大學

[實作] PTT鄉民用語分析 { "author": "morning3569",

"title" = "[協尋] 1/1 台中清水早上八點多車禍",

"comments" =

"content" = "\n\n1/1 早上8點多\n\n台中清水紫雲巖...."

```
[{ "content" : "bad" , "score" :-1, "user" : "xxx" },
                                                             { "content" : "good" , "score" :1, "user" : "yyy" },
                                                             { "content" : "soso" , "score" :0, "user" : "zzz" },
# 預處理鄉民留言之用語 (斷詞與計算次數) – Start
c words = []
c_scores = []
                                                            "score" : -244
for post in posts:
  for comment in post['comments']:
                                   #取得八卦文文章之鄉民留言
    l = comment['content'].strip()
                                   #去頭去尾換行之類的字符
   if I and comment['score'] != 0:
     d = defaultdict(int)
     for w in jieba.cut(l):
                                   # w 是針對 | 中的文字斷詞後所得之詞語
       d[w] += 1
     if len(d) > 0:
       c_scores.append(1 if comment['score'] > 0 else 0) #每則留言之標記(推/嘘)
       c_words.append(d)
#預處理鄉民留言之用語 (斷詞與計算次數) - End
```

機器學習

- TF-IDF
- Vector Representation
- LinearSVC

TF-IDF

單篇文章的詞頻統計

{'1': 2, '/': 1, ' ': 1, '早上': 1, '8': 1, '點多': 1, '台': 1, '中': 1, '清水': 1, '紫': 1, '雲': 1, '巖': 1, '外': 1, '中山路': 1, '那邊': 1, '的': 3, '7': 1, '-': 1, '11': 1, '附近': 1, '我': 1, '同學': 1, '阿嬤出': 1, '嚴重': 1, '車禍': 1, '肇事者': 1, '到現': 1, '在': 1, '加護': 1, '還沒': 1, '出面': 1, '現在': 1, '還在': 1, '加護': 1, '病房': 1, '如果': 1, '有': 2, '路口': 1, '監視器': 1, '影像': 1, '或是': 1, '行車紀': 1, '錄器': 1, '拍': 1, '到': 1, '豫請': 1, '提供': 1, '麻煩': 1, '八卦': 1, '板': 1, '各位': 1, '幫高調': 1, '謝謝': 1, '!': 2})

(0, 5)1.0 (0, 6)1.0 (0, 7)1.0 (0, 8)1.0 篇 (0, 9)1.0 (0, 10)1.0 的 (0, 11)1.0 向 (0, 12)1.0 (0, 13)1.0 (0, 14)1.0 轉 (0, 15)1.0 (0, 16)1.0 (0, 17)1.0 (0, 18)1.0 (0, 19)1.0 (0, 20)1.0

(0, 21)

(0, 22)

(0, 23)

(0, 24)

1.0

1.0

1.0

1.0

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

1.0

1.0

2.0

1.0

(0, 29)1.0 (0, 30)2.0 (0, 31)1.0 (0, 32)1.0 (0, 33)1.0 (0, 34)1.0 (0, 35)3.0 (0, 36)1.0 (0, 37)1.0 (0, 38)1.0 (0, 39)1.0 (0, 40)1.0 (0, 41)1.0 (0, 42)1.0 (0, 43)1.0 (0, 44)1.0 (0, 45)1.0 (0, 46)1.0 (0, 47)1.0 (0, 48)1.0 (0, 49)1.0 (0, 50)1.0 (0, 51)1.0 (0, 52)1.0 (0, 53)

TF-IDF

單篇的 TF-IDF (Sparse Matrix) 單篇的 Vector Representation

單	篇約	充計詞頻	į
0)	1.0	(0, 29)	1.0
1)	1.0	(0, 30)	2.0
2)	1.0	(0, 31)	1.0
3)	2.0	(0, 32)	1.0
4)	1.0	(0, 33)	1.0
5)	1.0	(0, 34)	1.0
6)	1.0	(0, 35)	3.0
7)	1.0	(0, 36)	1.0
8)	1.0	(0, 37)	1.0
9)	1.0	(0, 38)	1.0
10)	1.0	(0, 39)	1.0
11)	1.0	(0, 40)	1.0
12)	1.0	(0, 41)	1.0
13)	1.0	(0, 42)	1.0
14)	1.0	(0, 43)	1.0
15)	1.0	(0, 44)	1.0
16)	1.0	(0, 45)	1.0
17)	1.0	(0, 46)	1.0
18)	1.0	(0, 47)	1.0
19)	1.0	(0, 48)	1.0
20)	1.0	(0, 49)	1.0
21)	1.0	(0, 50)	1.0
22)	1.0	(0, 51)	1.0
23)	1.0	(0, 52)	1.0
24)	1.0	(0, 53)	2.0

(0, 0) (0, 1)

(0, 2) (0, 3)

(0, 4) (0, 5)

(0, 6) (0, 7)

(0, 8) (0, 9)

(0, 10)

(0, 11) (0, 12) (0, 13) (0, 14) (0, 15) (0, 16) (0, 17) (0, 18) (0, 19) (0, 20) (0, 21) (0, 22) (0, 23) (0, 24)

.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	
.0	

單篇的

TF-IDF

計算

(0, 53)	0.23735633163877065	(0, 24)	0.11867816581938533
(0, 52)	0.11867816581938533	(0, 23)	0.11867816581938533
(0, 51)	0.11867816581938533	(0, 22)	0.11867816581938533
(0, 50)	0.11867816581938533	(0, 21)	0.11867816581938533
(0, 49)	0.11867816581938533	(0, 20)	0.11867816581938533
(0, 48)	0.11867816581938533	(0, 19)	0.11867816581938533
(0, 47)	0.11867816581938533	(0, 18)	0.11867816581938533
(0, 46)	0.11867816581938533	(0, 17)	0.11867816581938533
(0, 45)	0.11867816581938533	(0, 16)	0.11867816581938533
(0, 44)	0.11867816581938533	(0, 15)	0.11867816581938533
(0, 43)	0.11867816581938533	(0, 14)	0.11867816581938533
(0, 42)	0.11867816581938533	(0, 13)	0.11867816581938533
(0, 41)	0.11867816581938533	(0, 12)	0.11867816581938533
(0, 40)	0.11867816581938533	(0, 11)	0.11867816581938533
(0, 39)	0.11867816581938533	(0, 10)	0.11867816581938533
(0, 38)	0.11867816581938533	(0, 9)	0.11867816581938533
(0, 37)	0.11867816581938533	(0, 8)	0.11867816581938533
(0, 36)	0.11867816581938533	(0, 7)	0.11867816581938533
(0, 35)	0.35603449745815596	(0, 6)	0.11867816581938533
(0, 34)	0.11867816581938533	(0, 5)	0.11867816581938533
(0, 33)	0.11867816581938533	(0, 4)	0.11867816581938533
(0, 32)	0.11867816581938533	(0, 3)	0.23735633163877065
(0, 31)	0.11867816581938533	(0, 2)	0.11867816581938533
(0, 30)	0.23735633163877065	(0, 1)	0.11867816581938533
(0, 29)	0.11867816581938533	(0, 0)	0.11867816581938533

Scikit-learn (sklearn)

from sklearn.feature_extraction import DictVectorizer #用於轉換 dict 為 sklearn estimators 可用的向量

from sklearn.feature_extraction.text import TfidfTransformer #將矩陣轉換為 TF 或 TF-IDF 表示

from sklearn.svm import LinearSVC #以 LinearSVC 演算法為例

以 LinearSVC 提取留言的用語特徵

```
# 將詞語及其出現次數轉換成向量
c_dvec = DictVectorizer() #宣告向量轉換方法
c_tfidf = TfidfTransformer() #宣告TFIDF方法
c_X = c_tfidf.fit_transform(c_dvec.fit_transform(c_words))
#將所有的留言中的詞語矩陣,轉成向量並計算tf-idf
c_svc = LinearSVC() #宣告 LinearSVC 方法
c_svc.coef_[0] #取得留言用語的權重係數,值越大代表越有代表性
```

以 LinearSVC 提取留言的前三十大用語

display_top_features(c_svc.coef_[0], c_dvec.get_feature_names(), 30)

正面 用語

負面 用語

