班级计算45到2学号 220110	515姓名全正达	教师签字	级
实验日期 <i>202</i> 3、12、11	预习成绩	总成绩	/

实验名称 拉伸法测杨氏弹性模量

-. 实验目的

1. 学习用允杠杆测量微小长度变化的原理。

2. 研究用拉伸法测金属丝的构氏弹性模量

3. 字抗用还是法处理实验数据。 二. 实验预习

1. 杨氏模量的物理意义是什么?国标单位是什么?

物理意义: 描述固体材料抵抗勃变能力的构理量.

单位: N/m²

2. 光杠杆法的原理是什么,是如何实现微小量放大的?(画出测量原理光路图)。

原理:利用平面镜转动,将微小用位移放大或放大的 级位移后进行测量做小K度变化.

3. 本实验需要测量哪些物理量来间接得到杨氏模量?

拉力变化量、铜丝直径、镜面到私尺的距离、 棒状物体压成、它村得原成、后支1时改变微小距离。

三. 实验现象及数据记录

一次性测量数据

L(mm)	H(mm)	D(mm)		
732.2	687.0	01.72		

金属丝直径测量数据 螺旋测微器零差 $d_0=$ -0.00 $^{>}_{ m mm}$

方分1 百谷知估 du (mm)	1	· -00	3 7 - - - - - - - - - - 	4 ^ -	3	0	- 701
直径视值 d 视 i(mm)	a hal	N.258	0.598	0 59/	0.598	0.791	0 596

加减力时标尺刻度与对应拉力数据

NHAMA AND COUNTY AND THE TAXABLE										
序号 <i>i</i>	1	2	3	4	5	6	7	8	9	10
拉力视值 fi (kg)	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
加力时标尺刻度 xi ⁺ (mm)	11.0	14.8	18.1	21.	125.2	29.0	\$2.0	8.23	39.Y	43.D
减力时标尺刻度 x _i -(mm)	11.3		-					_		42.8
平均标尺刻度(mm)		_				_				
$x_i = (x_i^+ + x_i^-)/2$	11.15	14.7	18.2	21.5	25.6	29.2	52.3	12.7	39. <i>6</i>	42.9
标尺刻度改变量(mm)	10 ~	7	7	77 V.	17.7					
$\Delta x_i = x_{i+5} - x_i$	18.05	11-6	77	INY	11.3					

教师 姓名 签字 **从 必 休**

四. 数据处理

(要有详细的计算过程,推导不确定度的表达式,计算杨氏模量及其不确定度,给出完整的 测量结果表达形式)

$$\overline{d} = \frac{1}{6} (0.601 + 0.598 + 0.598 + 0.596 + 0.596) - 0.002 = 0.596 mm$$

$$\Delta X$$
: $U_A = \sqrt{\frac{1}{20}} \frac{1}{14} (\Delta X_1 - \overline{\Delta X})^2 = 0.13 \text{ mm}$
 $U_B = U_A/\sqrt{3} = 0.076 \text{ mm}$, $U_X = \sqrt{U_1^2 + U_{13}^2} = 0.15 \text{ mm}$

$$d: U_A = \sqrt{\frac{1}{100}\sum_{i=1}^{\infty}(\Delta x_i^2 - \Delta \overline{x})^2} = 0.60 \text{ mm}$$

$$D: U_D = \frac{\Delta D}{\sqrt{3}} = 0.01 \text{ mm}.$$

$$\Delta f: U = \frac{\Delta(\Delta f)}{\sqrt{3}} = 0.003.$$

$$U_{E} = \int \left(\frac{\partial E}{\partial x} \right)^{2} u_{x}^{2} + \left(\frac{\partial E}{\partial U} \right)^{2} u_{U}^{2} + \left(\frac{\partial E}{\partial U} \right)^{2} u_{H}^{2} + \left(\frac{\partial E}{\partial U} \right)^{2} u_{H}^$$

$$\frac{\partial E}{\partial af}$$
) Naf = 3.0 × 109 N/m²

五. 实验结论及误差分析

六. 讨论问题

- 1.材料相同,但粗细、长度不同的两根钢丝,它们的杨氏模量是否相同?
- 2.从误差分析的角度分析为什么同是长度测量,需要采用不同的量具? 测量长度不同,所局精度不同,才能使相对误差较小
- 3.实验过程中为什么加力和减力过程,施力螺母不能回旋? **为了消除 弹性滞厄效应带来所误差**.
- 4.用逐差法处理数据的优点是什么?应该注意什么问题?

祝高实验数据利用中,减小了随机误差.