(1) Do Challenge Problem (14) from HW 2: if (a_n) is a sequence in \mathbb{R} and $\lim (a_{n+1} - a_n) = 0$, must (a_n) converge? Justify your answer. hw40 lim (Con+1-Go) =0 Fix No. Counterexample. an = In & A (an) conv. 680: So | im (ant1 - an) = | im ([n+1 - In) = |im (JA+1 -JN)(JA+1 +JA) $= \lim_{n \to \infty} \sqrt{nn} + \ln = D$ But lim an = lim In = 00 (2) Let (a_n) be a sequence in \mathbb{R} , and let $S \subseteq \mathbb{R}$ be its set of real subsequential limits. Prove that S is closed. let ces' be arbitrary LWTS: ces, that is, bein exists of {an} that converges to C Below ne will construct a subsequent (bm) of (an) that converges to c Let meN Since ces', VII(c) (S/(c) + \$\phi\$ let x e VICC) USICO, then x eS and x-cl < in So there exists a subsequence (anx) of (an) s.t. {any -> x as k-100 (n+3) nk is monotonely increasing)

So a KEN st. V k > K, lank - x 1 < zm Construction, if m=1, we choose ank as bm Crecursively) if $m \ge 1$, then $b_{m-1} = a_{n_{k_0}}$ for some $k_0 \in \mathbb{N}$ then we take k = max{k, ko}+1 and choose ank as bm Then $|D_m-C| \leq |D_m-x|+|x-c| \leq \frac{1}{m}$ Note that [bm] is a subsequence of {an} since every term of {bn} is some term of {an} with increasing index Now let E>O => => for some nEN $\frac{\text{lin bm} = C}{\text{of } \{b_m\}, |b_m - c| \leq \frac{1}{m+1} \text{ for all } m \geq N}$ So $\lim_{m\to\infty} b_m = C$ Here ne have proved: c is a subsequential limit of lan} Since c is arbitrary, S'S ⇒ces Therefore S is closed

hw 43) HASR INTO ALLAID (a) Prove that A' is closed. (b) Prove that cl(A) is closed. dosed to A d(A) 3 (c) Prove that cl(A) is the "smallest" closed set for every closed set F containing A. Proof (a) Let $c \in (A')^{c}$ So c is not a limit point of A let n ∈ V=(c) be arbitrary (we have 12-c1 <=) Consider $V_{|x-c|}(x)$, we have $V_{|x-c|}(x) \cap A = \emptyset$ So x & A' which implies x ∈ (A') C Since it is arbitrary => \sum_{\gamma} (c) \sum_{(A')}^{\cappa} Since C is arbitrary = (A') is open Therefore A' is closed (b) let ce(cl(A)) C Soc&A and c&A We can fix & 200 s.t. V=(c)) A(c) = \$ Sike C \(A = \rightarrow V_{\varepsilon}(a) \cap A = \rightarrow \) Let RE VE(C) => x ∈ A and VE(R) ⊆ VE(C) So VEW (A= Ø =) x &A'

(3) Given $A \subseteq \mathbb{R}$, write A' for the set of all limit points of A and define the *closure* of A to be

the set $cl(A) = A \cup A'$.

So
$$x \notin cl(A) \implies x \in (cl(A))^{C}$$

Since x is arbitrary $\implies V_{\frac{x}{2}}(c) \subseteq \xi(A)^{C}$
Since c is arbitrary $\implies (cl(A))^{C}$ is open

Since c is arbitrary => (CI(A)) is open Therefore cl(A) is closed. (C) let F be a closed set s.t. ASF

Let
$$a \in A'$$
 be arbitrary.
Let (an) be a sequence in A that converges to a
Since $A \subseteq F \implies \liminf = a \in F$
Since a is arbitrary $\Rightarrow A' \subseteq F$

So d(A) = A'VA SF Since F is arbitrary, this finishes the proof thet cl(A) is the smallest closed set containing A.

(d) Given $\epsilon > 0$, find the largest $\delta > 0$ such that $|\sqrt{x} - 2| < \epsilon$ whenever $|x - 4| < \delta$.

4) (a) Prove explicitly using the
$$\epsilon/\delta$$
 definition that $\lim_{x\to 2} x^3 = 8$.

(4) (a) Prove explicitly using the ϵ/δ definition that $\lim_{\epsilon \to 0} x^3 = 8$. (b) Given $\epsilon > 0$, find the largest $\delta > 0$ such that $|x^3 - 8| < \epsilon$ whenever $|x - 2| < \delta$.

(c) Prove explicitly using the ϵ/δ definition that $\lim_{x\to 4} \sqrt{x} = 2$.

 $|x^3 - 8| = |x^3 - 2^3| = |x - 2| |x^2 + 2x + 4|$

For
$$|\angle x < 3$$
, $|x^2 + 2x + 4| = |(x + u^2 + 3)| \in [3, 9]$
So consider $\delta = \min\{1, \frac{\varepsilon}{19}\}$
Then for $0 < |x-2| < \delta \Rightarrow$

$$|x^{2}-8|=|x-2||x^{2}+2x+4|| < \delta \cdot |a| < \epsilon$$

Since ϵ is arbitrary, this finishes the proof that $\lim_{n\to 2} \pi^3 = 8$

(b)

For any
$$£70$$
,
We want: $(2-8)^3 > 8-2$, $(2+1)^3 \le 8+2$
 $2-8 > 3/8-2$ $2+8 \le 3/8+2$
 $8 \le 2^{-3}8-2$ and $8 \le 3/8+2-2$

So the largest 8 is $min(2-\frac{3}{18-\epsilon}, \frac{3}{18+\epsilon}-2)$ = $\frac{3}{8+\epsilon}-2$

(c) Phoof

Let
$$\varepsilon > 0$$

$$|\sqrt{\pi} - 2| = |\frac{(\sqrt{\pi} - 2)(\sqrt{\pi} + 2)}{\sqrt{\pi} + 2}| = |\pi - 4|$$

where $|\sqrt{\pi} + 2| \ge 2$

So consider $\delta = \varepsilon$

Then suppose $0 < (\pi - 4) < \delta$

$$|\sqrt{\pi} - 2| = |\pi - 4|$$

(4)

where $|\sqrt{x}+2| \geqslant 2$ So consider $\delta = \xi$

Then suppose $0 < 1\pi - 41 < \delta$

4-8 4 4+8

So & = min{(2+E)2-4, 12-E)2+9}=(2+E)2-4

So the largest & is (2+E)-4

for any €70, we want: 54+6 <2+ε, 54-6 ≥2-€

lim 17 = 2

Since & is arbitrary, this finishes the proof that

=> S < (2+E)-4, S < (2-E)+4

(5) Let
$$A \subseteq \mathbb{R}$$
, let $f: A \to \mathbb{R}$ be a function, suppose that $a \in \mathbb{R}$ is a limit point of $A \cap (a, \infty)$, and suppose $\lim_{x \to a^+} f(x) = \infty$. Also let $c \in \mathbb{R}$, let $g: (c, \infty) \to \mathbb{R}$ be a function, and suppose that $\lim_{x \to \infty} g(x) = L \in \mathbb{R}$. Prove that $\lim_{x \to a^+} (g \circ f)(x) = L$.

Proof

Let $\mathcal{L} \neq \mathcal{L}$ Let $\mathcal{L} \neq \mathcal{L} \neq \mathcal{L}$ Let $\mathcal{L} \neq \mathcal{L} \neq$

|g(x))-L| < & whenever x > IN And 3500 s.t. for ZN whenever 0< x-a<8 since lim fix) = 00

since
$$\lim_{x\to a^{+}} f(x) = 00$$

Then fix that δ
Let $a < x < a + \delta \implies$
 $f(x) \ge N \implies |g(f(x)) - U| \le 2$

Since TI, E is arbibary, this finisher the proof that $\lim_{x\to 0} (g \circ f)(x) = L$.

(6) Let
$$f, g : \mathbb{R} \to \mathbb{R}$$
 be functions, let $a \in \mathbb{R}$, and suppose $\lim_{x \to a} f(x) = b$ and $\lim_{x \to b} g(x) = L$. Show by example that L need not be the limit of $g \circ f$ as $x \to a$.

Consider
$$f(x) = \begin{cases} 0, & \text{if } x \neq 1 \\ 1, & \text{if } x = 1 \end{cases}$$
So $\lim_{x \to 1} f(x) = 0$

$$f(x) = \begin{cases} 2, & \text{if } x \neq 0 \\ 0, & \text{if } x \neq 0 \end{cases}$$

example

So
$$l = \lim_{x \to 0} g(x) = 0$$

But $g(f(x)) = \begin{cases} 2, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$
 $\lim_{x \to 1} g(f(x)) = 2 \neq 0$
But $g(f(x)) = 2 \neq 0$

(7) Prove that for any sequence (a_n) of nonzero real numbers, $\limsup |a_n|^{1/n} \leq \limsup \left|\frac{a_{n+1}}{a_n}\right|$. *Hint*: Let $L > \limsup \left| \frac{a_{n+1}}{a_n} \right|$ be arbitrary; then there is N such that $\left| \frac{a_{n+1}}{a_n} \right| < L$ for all

Prove that for any sequence
$$(a_n)$$
 of nonzero real numbers, $\limsup |a_n|^{1/n} \leq \limsup \left|\frac{a_{n+1}}{a_n}\right|$.

Hint: Let $L > \limsup \left|\frac{a_{n+1}}{a_n}\right|$ be arbitrary; then there is N such that $\left|\frac{a_{n+1}}{a_n}\right| < L$ for all $n \geq N$; now use the fact that for any $n > N$,

$$|a_n| = \left|\frac{a_n}{a_{n-1}}\right| \cdot \left|\frac{a_{n-1}}{a_{n-2}}\right| \cdots \left|\frac{a_{N+1}}{a_N}\right| \cdot |a_N|$$
as a first step towards showing that $\limsup |a_n|^{1/n} \leq L$. Imsup $\lim_{n \to \infty} |a_n|$ be arbitrary.

Then $|a_n| \leq \lim_{n \to \infty} |a_n|$ be arbitrary.

Then $|a_n| \leq \lim_{n \to \infty} |a_n| \leq L$ whenever $|a_n| \leq L$ arbitrary.

So $|a_n| = \left|\frac{a_n}{a_{n-1}}\right| \left|\frac{a_{n-1}}{a_{n-2}}\right| \dots \left|\frac{a_{N+1}}{a_N}\right| \cdot |a_N|$

So $|a_n|^{\frac{1}{n}} < L^{\frac{n-N}{n}} |a_N|^{\frac{1}{n}} = L \cdot \left(\int L^{-N} |a_N| \right)$ Note that I NAN is a constant

Then $\lim_{n\to\infty} \int L^{+}|G_{N}| = \lim_{n\to\infty} L(\int L^{+}|G_{N}|) = \lim_{n\to\infty} L(\int L^{+}|G_{N}|) = L$ Since $\forall n \geqslant N$, $|G_{N}|^{\frac{1}{n}} < L$: $(\int L^{+}|G_{N}|)$, $\Rightarrow \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}} < \lim_{n\to\infty} |C_{N}|^{\frac{1}{n}} = L$ Above shows that for any $L > \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}}$ we have $L > \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}}$ Therefore we can conclude that $\lim_{n\to\infty} |G_{N}|^{\frac{1}{n}} \leq \lim_{n\to\infty} |G_{N}|^{\frac{1}{n}}$ et $A \subseteq \mathbb{R}$, suppose $a \in A \cap A'$, and let $f : A \to \mathbb{R}$ be a function. Prove that if f(a) > 0 and

(8) Let $A \subseteq \mathbb{R}$, suppose $a \in A \cap A'$, and let $f : A \to \mathbb{R}$ be a function. Prove that if f(a) > 0 and f is continuous at a, then there is $\epsilon > 0$ such that f is positive and bounded on $A \cap V_{\epsilon}(a)$.

Proof Since f is continuous at A, there exists $\varepsilon > 0$ s.t. If (a) - f(x) / 2f(a) whenever $|a-x| / 2\varepsilon$ and $x \in A$ So 0 < f(x) < 2f(a) whenever $x \in V_{\varepsilon}(a) \cap A$ (Since $a \in A'$, $V_{\delta}(a) \cap A \cap (a) \neq \emptyset$)

We can conclude that f is positive and bounded on $ANV_{\epsilon}(a)$.

Pnot let a ERIQ be arbitrary let E>D be arbitrary Since f is continuous on IR, 3670 J.t. If(x)-f(a) | < \frac{\xi}{2} whenever x \xi \(\lambda \) (G) By the density of Q in P, there exists 2EQ s.t. $q \in V_s(a)$ So (fa)-fa) <= Similarly we have $|g(q)-g(a)| < \frac{\epsilon}{2}$ Since $q \in Q \implies f(q) = g(q)$ So |fa)-ga/ ≤ |fa)-fa) |+|fa)-ga) |< € Since & is arbitrary, we have fla=gla Since a < IRIQ is arbitrary, ne have fix)=g(x) for x EQU(R) = R Therefore f=q.

(9) Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are continuous. Prove that if f(x) = g(x) for all $x \in \mathbb{Q}$, then f = g.

hw40 如果ASHT-closed, 和UAL Prot Suppose A = R is not close Flort unbounded con then there exists some $c \in A'$ s.t. $c \notin A$ We then consider the function f. A -> R defined by fix) = 1x-c1 This function is well defined since C#A => 71-C =>0 And it is continuous since fix= = is rational, is continuous everywhere and foca) = |71 is also continuous everywhere, so fix = froficx) is continuous everywhere. Let m = N be arbitrary Since CEA, Vi (c) NA KX} +16 So there is some nEA s.t. o<|x-c|< m Than C-mcx<c+m => 1==c1>M Since M is arbitrary, we have proved that f is unbounded Therefore for all ASIR that is not closed, we can find $f:A \rightarrow \mathbb{R}$ s.t. f is unbounded and continuous.

(10) Prove that if $A \subseteq \mathbb{R}$ is not closed, then there is an unbounded continuous function $f: A \to \mathbb{R}$.

(11) Using only the definitions of continuity and open set, prove that for any function $f:\mathbb{R}\to\mathbb{R}$, f is continuous if and only if $f^{-1}[V]$ is open for every open set $V \subseteq \mathbb{R}$. Prot (direction) Suppose f is continuous. Let VSR be an open set, so f'[v] = {x e R | f(x) EV} Let x Ef [[V], so fix EV Since V is open, there is some & >0 s-t. V_c (for)) \le V Since f is continuous, there exists 2 >0 s.t. Ifox - fig) 1< E whenever 17-y1<8 So tye Volx), fay = V= (fix) = V = y ef [[V] Thatfore Vstx) Cf [V] Since or is arbitrary, this shows that f-LVI is open Since V is auditary, it is proved that ftev) is open for every open set VER if f is continuous (direction): Suppose f-CVJ is open for every open set VER Let xER be arbitrary Consider the set V={yER | How-y|<E}=V_E(for)

Then f [V] is open Since |for-for)=0<&=)xEV So 3670 s.t. VI (x) SfTW] i.e. for all a GR st. 17-a/<8, we have 1fa)-fa)/28 So fix) is continuous at a

Since a EIR is arbitrary => f is continuous

Д

- (12) Suppose $A \subseteq \mathbb{R}$ is closed, and let $f: A \to \mathbb{R}$ be a continuous function. Prove that there is a continuous function $g: \mathbb{R} \to \mathbb{R}$ such that $g \upharpoonright A = f$.
- (13) Suppose $\{U_i : i \in I\}$ is a family of nonempty open sets in \mathbb{R} such that $U_i \cap U_j = \emptyset$ whenever $i \neq j$. Prove that I is countable.

(14) Let d(x,y) = |x-y| be the usual metric on \mathbb{R} , and let \mathcal{T} be the metric topology on \mathbb{R}

- generated by d, so \mathcal{T} consists of all open subsets of \mathbb{R}^3 (a) Prove that for any subset $A \subseteq \mathbb{R}$, A is open if and only if A can be expressed as a union of countably many open intervals in \mathbb{R} .
- (b) Is it true that every open set A in \mathbb{R} can be expressed as a union of open intervals with rational endpoints? Either give a counterexample if not, or else briefly explain how your proof in (a) could be modified in order to prove this stronger result.