TD 1 - Modules

† Premiers exemples

Exercice 1. Soit k un corps. Parmi les sous-ensemble suivants de k[X], lesquels sont des sous-k-modules de k[X]?

- (a) Les polynômes de degré exactement 4.
- (b) Les polynômes de degré au plus 4.
- (c) Les polynômes unitaires.
- (d) L'ensemble {polynômes unitaires} \cup {0}.
- (e) Les polynômes de degré pair.

Exercice 2. Soit R un anneau commutatif, vu comme module sur lui-même.

- 1. Montrer que les sous-R-modules de R sont exactement les idéaux de R.
- 2. Déterminer tous les morphismes de R-modules de R vers R.
- 3. Que se passe-t-il si R = k est un corps?

Exercice 3. Soit $\varphi: M \to N$ un morphisme de R-modules, et soient M', N' des sous-modules respectifs de M et N. Montrer que $\varphi(M')$ est un sous-module de N et que $\varphi^{-1}(N')$ est un sous-module de M. En déduire que Ker φ et Im φ sont des sous-modules respectifs de M et de N.

Exercice 4. On considère $R = \mathbb{Z}$.

- 1. Justifier que $2\mathbb{Z} \subset R$ est un sous-R-module de R. Montrer que $2\mathbb{Z}$ n'admet pas de supplémentaire dans R.
- 2. On considère le R-module $M=\mathbb{Z}^2$. Montrer que les sous-R-modules $N_1=(1,1)\mathbb{Z}$ et $N_2=(2,3)\mathbb{Z}$ admettent des supplémentaires dans M.
- † Quelques situations fondamentales

Exercice 5. (Modules sur les polynômes, partie 1)

Soit k un corps, E un k-espace vectoriel, et R := k[X] l'anneau des polynômes à une variable.

1. Soit $u \in \operatorname{End}_k(E)$, montrer que la loi de composition

$$\begin{array}{ccc} R \times E & \longrightarrow & E \\ (P,x) & \longmapsto & P(u)(x) \end{array}$$

munit E d'une structure de R-module.

- 2. Réciproquement, soit M un R-module, montrer que M est aussi un k-espace vectoriel et que l'application $u: v \mapsto X.v$ est un endomorphisme du k-espace vectoriel M.
- 3. En déduire que tout R-module peut s'obtenir par la construction de la question 1).
- 4. Montrer que pour tout $u, v \in \operatorname{End}_k(E)$, les R-modules associés à (E, u) et (E, v) sont isomorphes si et seulement si u et v sont semblables (i.e conjuqués par un élément de $\operatorname{GL}(E)$).

Exercice 6. (Modules sur les polynômes, partie 2)

On reprend k un corps, E un k-espace vectoriel, et R := k[X]. Soit (E, u) un R-module monogène, c'est-à-dire que E = R.v pour un certain $v \in E$, on suppose également que E est de dimension finie comme k-espace vectoriel.

- 1. En considérant l'application $P\mapsto P.v$, montrer que $(E,u)\simeq R/(P_0)$ pour un certain polynôme unitaire $P_0\in k[X]$.
- 2. Montrer que P_0 est le polynôme minimal de l'endomorphisme u.
- 3. Montrer que E, vu comme k-espace vectoriel, admet pour base la famille $\{u^i(v)\}_{i\in[0,n-1]}$, où $n=\deg P_0$.
- 4. En déduire que P_0 est le polynôme caractéristique de l'endomorphisme u.

Exercice 7.

- 1. Soit $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ l'ensemble des fonctions lisses (i.e. infiniment dérivables) de \mathbb{R} dans lui-même.
 - a) Montrer que $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ est un \mathbb{R} -module ($=\mathbb{R}$ -espace vectoriel) de dimension infinie.
 - b) Montrer que l'application $\partial: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ envoyant f sur sa dérivée f' est un endomorphisme de \mathbb{R} -espace vectoriel.
 - c) Quel est le noyau de ∂ ? Son image?
- 2. Soit Ω un ouvert connexe de \mathbb{C} , et soit $\mathcal{H}(\Omega,\mathbb{C})$ l'ensemble des fonctions $\Omega \to \mathbb{C}$ qui sont holomorphes sur Ω .
 - a) Montrer que $\mathcal{H}(\Omega, \mathbb{C})$ est un \mathbb{C} -espace vectoriel de dimension infinie.
 - b) Montrer que l'application $\partial: \mathcal{H}(\Omega, \mathbb{C}) \to \mathcal{H}(\Omega, \mathbb{C})$ envoyant f sur sa dérivée f' est un endomorphisme de \mathbb{C} -espace vectoriel. Quel est son noyau?

(L'image de ∂ est a priori difficile à déterminer, nous verrons en analyse complexe des théorèmes garantissant l'existence de primitives holomorphes).

Exercice 8. (Algèbres)

Soient R et S deux anneaux commutatifs et unitaires.

1. Soit $f: R \to S$ un morphisme d'anneaux. Montrer que l'on munit S d'une structure de R-module en posant

$$\forall r \in R, s \in S, r.s := f(r)s$$

On dit que S est une R-algèbre (associative, commutative, unitaire).

- 2. Montrer que R[X] est une R-algèbre. Est-ce un R-module libre? Si oui, peut-on en exhiber une base?
- 3. Montrer que \mathbb{C} est une \mathbb{R} -algèbre. Quelle est la dimension de \mathbb{C} comme \mathbb{R} -espace vectoriel?
- 4. Montrer que \mathbb{R} est une \mathbb{Q} -algèbre. (On peut montrer que \mathbb{R} est de dimension infinie en tant que \mathbb{Q} -module).
- 5. Montrer que tout anneau commutatif unitaire est muni d'une structure de Z-algèbre.

Exercice 9. (Mon premier foncteur)

Soient S et R deux anneaux, et $f: R \to S$ un morphisme d'anneaux.

- 1. Soit M un R-module. Montrer que poser r.m := f(r).m munit M d'une structure de R-module.
- 2. Si $\varphi:M\to N$ est un morphisme de S-modules, montrer que la construction précédente fait de φ un morphisme de R-modules.
- 3. Soit k un corps, et soit (E, u) un k[X]-module. Montrer qu'en appliquant la construction ci-dessus au k[X]module (E, u), on retrouve le k-espace vectoriel E.
- 4. Soit E un \mathbb{C} -espace vectoriel de dimension n. Quelle est la dimension de E comme \mathbb{R} -espace vectoriel?
- 5. Qu'obtient-on en appliquant les résultats précédents au cas $R = \mathbb{Z}$?