1

Matrix theory - Assignment 14

Shreeprasad Bhat AI20MTECH14011

 ${\it Abstract} {-\!\!\!\!\!-} {\bf This~document~proves~properties~on~double~dual}$

Download latex-tikz from

https://github.com/shreeprasadbhat/matrix-theory/blob/master/assignment14/

1 Problem

Let S be a set, F a field, and V(S; F) the space of all functions from S into F:

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = cf(x)$$

Let W be any n-dimensional subspace of V(S, F). Show that there exist points x_1, x_2, \ldots, x_n in S and functions f_1, \ldots, f_n in W such that $f_i(x_j) = \delta_{ij}$

2 Pictorial representation of problem

Fig. 0: Vector space of all function V and it's n-dimensional subspace W

Fig. 0: Functions f_1, f_2, \dots, f_n where $f_i: S \to F$

3 Solution

Given	$S \text{ is a set}$ $F \text{ is a field}$ $V(S, F) \text{ is a linear functional}$ such that $W \text{ be } n\text{-dim subspace of } V(S, F).$ $Also, \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$
To prove	$f_i(x_j) = \delta_{ij}$
	where $x_1, x_2, \dots, x_n \in S$ and $f_1, f_2, \dots, f_n \in W$
Proof	Let $\phi_x:W\to F$
	Suppose $\phi_x(f) = 0 \ \forall x \in S \ \& \ f \in W$ $\implies f(x) = 0$
	If $\forall x, \ \phi_x(f) \neq 0$ for some $f \in W$ If $n > 0 \ \exists \in S$ such that $\phi_x(f) \neq 0 \text{ for some } f \in W$ $\implies f_1(x_1) \neq 0$
	By scaling we can have $f_1(x_1) = 1$
	Hence $f_i(x_j) = \delta_{ij}$

Now, we have

$$f_1(x_1) = f_1(1) = 1$$
 (4.0.5)

$$f_1(x_2) = f_1(0) = 0$$
 (4.0.6)

Also,

$$f_2(x_1) = f_2(1) = 0$$
 (4.0.7)

$$f_2(x_2) = f_2(0) = 1$$
 (4.0.8)

Hence $f_i(x_j) = \delta_{ij}$.

Fig. 0: Functions f_1, f_2 and points x_1, x_2

4 Example

Consider points $\{x_1, x_2\} \in S$, let

$$x_1 = 1 (4.0.1)$$

$$x_2 = 0 (4.0.2)$$

Also consider functions $\{f_1, f_2\} \in W$ where

$$f_1(x) = x (4.0.3)$$

$$f_2(x) = 1 - x \tag{4.0.4}$$