1 Adjacency matrix of a binary relation, Floyd-Warshall algorithm

Определение

Любое отношение r на конечном множестве $A = \{a_1, \ldots, a_n\}$, можно представить в виде бинарной матрицы **смежности** $M(r) = (m_{ij}|i,j \le n)$, определённой следующим образом:

$$m_{ij} = 1 \Leftrightarrow (a_i, a_j) \in r$$

Пример матричного представления

Для отношения $r = \{(a_1, a_3), (a_2, a_3), (a_2, a_3), (a_3, a_1)\}$ матрица M(r) будет выглядеть так:

$$M(r) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Алгоритм (Флойда-Уоршелла)

Дано отношение r на конечном множестве A и M(r) - матрица смежности, его транзитивное замыкание может быть вычислено по следующему алгоритму. Вначале инициализируем матрицу W элементами из M(r). Затем мы перебираем k и индексы i,j от 1 до n, где n - количество элементов в A, и изменяем W следующим образом:

```
for k = 1 to n
for i = 1 to n
for j = 1 to n
   W[i][j] = W[i][j] or (W[i][k] and W[k][j])
```

2 Modelling of recursion with Y-combinator

Рекурсия в λ -исчислении

Напомним, что Y-комбинатор: $Y = \lambda h.(\lambda x.h(xx))(\lambda x.h(xx))$ является комбинатором неподвижной точки $Yf \equiv f(Yf)$. Используя Y можно

смоделировать рекурсивный вызов функции. В качестве примера возьмем функцию, вычисляющую факториал. Определим

$$F = \lambda fx.(IF\ (ISZERO\ x)\ \underline{1}\ (MULT\ x\ (f\ (PRED\ x))))$$

Тогда функция FACT = Y F будет представлять факториал:

$$FACTn = n!$$

Посмотрим, как работает рекурсия с Y-комбинатором на примере факториала. Для этого вычислим 3!.

$$FACT \ \underline{3} = Y \ F \ \underline{3} \Rightarrow F \ (Y \ F) \ \underline{3} \Rightarrow$$

$$(\lambda fx.(IF \ (ISZERO \ x) \ \underline{1} \ (MULT \ x \ (f \ (PRED \ x))))) \ (Y \ F) \ \underline{3} \Rightarrow$$

$$IF \ (ISZERO \ \underline{3}) \ \underline{1} \ (MULT \ \underline{3} \ ((Y \ F) \ (PRED \ \underline{3}))) \Rightarrow$$

$$MULT \ \underline{3} \ (Y \ F \ (PRED \ \underline{3})) \Rightarrow MULT \ \underline{3} \ (F \ (Y \ F) \ \underline{2}) \Rightarrow$$

$$MULT \ \underline{3} \ (\lambda fx.(IF \ (ISZERO \ x) \ \underline{1} \ (MULT \ x \ (f \ (PRED \ x))))) \ (Y \ F) \ \underline{2}) \Rightarrow$$

$$MULT \ \underline{3} \ (IF \ (ISZERO \ \underline{2}) \ \underline{1} \ (MULT \ \underline{2} \ ((Y \ F) \ (PRED \ \underline{2})))) \Rightarrow$$

$$MULT \ \underline{3} \ (MULT \ \underline{2} \ (F \ (Y \ F) \ \underline{1})) \Rightarrow$$

$$MULT \ \underline{3} \ (MULT \ \underline{2} \ (MULT \ \underline{1} \ ((Y \ F) \ (PRED \ \underline{1})))))) \Rightarrow$$

$$MULT \ \underline{3} \ (MULT \ \underline{2} \ (MULT \ \underline{1} \ (Y \ F) \ \underline{0}))) \Rightarrow$$

$$MULT \ \underline{3} \ (MULT \ \underline{2} \ (MULT \ \underline{1} \ (F \ (Y \ F) \ \underline{0}))) \Rightarrow$$

$$MULT \ \underline{3} \ (MULT \ \underline{2} \ (MULT \ \underline{1} \ (F \ (Y \ F) \ \underline{0}))) \Rightarrow$$

3 Syntactical equivalence in predicate calculus, replacement theorem

Определение

Две формулы ϕ и ψ сигнатуры σ называются синтаксически эквивалентными (или просто эквивалентными), тогда и только тогда, когда $\triangleright \phi \vdash \psi$ и $\triangleright \psi \vdash \phi$. Это отношение обозначается как: $\phi \equiv \psi$.

Лемма

Отношение \equiv на множестве $F(\sigma)$ является отношением эквивалентности.

Доказательство

Рефлексивность: очевидно следует из $\phi \vdash \phi \in \operatorname{PredC}_{\sigma}$. Симметричность - следует из определения. Транзитивность. Пусть $\phi \equiv \psi \equiv \chi$. Тогда по определению $\triangleright \phi \vdash \psi$ и $\triangleright \psi \vdash \chi$. Следовательно, по правилу сечения $\triangleright \phi \vdash \chi$. Доказательство $\triangleright \chi \vdash \phi$ выполняется аналогично. Следовательно, $\phi \equiv \chi$.

Лемма (эквивалентность)

Пусть $\phi_1 \equiv \phi_2, \psi_1 \equiv \psi_2$. Тогда:

- 1. $\neg \phi_1 \equiv \neg \phi_2$
- 2. $(\phi_1 \bullet \psi_1) \equiv (\phi_2 \bullet \psi_2)$, где $\bullet \in \{\land, \lor, \rightarrow\}$
- 3. $\forall x \phi_1 \equiv \forall x \phi_2$
- 4. $\exists x \phi_1 \equiv \exists x \phi_2$

Доказательство

Эквивалентности 1 и 2 доказываются точно так же, как и в логике высказываний. Докажем эквивалентности 3 и 4. Пусть $\phi_1 \equiv \phi_2$. Тогда $\triangleright \phi_1 \vdash \phi_2$.

Рассмотрим квази-выводы:
$$\frac{\phi_1 \vdash \phi_2}{\forall x \phi_1 \vdash \phi_2} \quad \frac{\phi_1 \vdash \phi_2}{\phi_1 \vdash \exists x \phi_2} \\ \exists x \phi_1 \vdash \exists x \phi_2$$

Таким образом $\triangleright Qx\phi_1 \vdash Qx\phi_2$, где $Q \in \{\forall,\exists\}$. Обратные секвенции $\triangleright Qx\phi_2 \vdash Qx\phi_1$ могут быть доказаны аналогично. \square

Теорема (о замене)

Пусть формула ϕ' получена из ϕ заменой некоторого вхождения подформулы ψ формулой ψ' . Тогда если $\psi \equiv \psi'$, то $\phi \equiv \phi'$.

Доказательство

Доказательство проводится индукцией по разности глубин формул ϕ и ψ . Шаг индукции следует из леммы об эквивалентностях.

Теорема (о замене)

Пусть ϕ - формула и $\psi \sqsubseteq \phi$ - некоторая подформула. Тогда если $\psi \equiv \psi'$, и ϕ' - результат замены некоторого вхождения формулы ψ на формулу ψ' , то $\phi \equiv \phi'$.

Доказательство

Индукция по разности глубин n формул $d(\phi)-d(\psi)$. Если n=0, то $\phi=\psi$, доказывать нечего. Пусть 0< n и утверждение верно для всех k< n. Рассмотрим варианты построения ϕ . Случай 1. Если $\phi=\neg\phi_1,\,\psi\sqsubseteq\phi$, то $\psi\sqsubseteq\phi_1$, по предположению индукции, тогда если ϕ_1' является результатом замены формулы ψ на формулу ψ' , то $\phi_1'\equiv\phi_1$. Следовательно, по лемме об эквивалентности

$$\phi' = \neg \psi_1' \equiv \neg \phi_1 = \phi$$

Случай 2. Если $\phi = (\phi_1 \bullet \phi_2)$, где $\bullet \in \{\land, \lor, \to\}$, и $\psi \sqsubset \phi$, то $\psi \sqsubseteq \phi_1$ или $\psi \sqsubseteq \phi_2$. Пусть, например, $\psi \sqsubseteq \phi_1$. Тогда по предположению индукции если ϕ'_1 является результатом замены формулы ψ на формулу ψ' , то $\phi'_1 \equiv \phi_1$. Следовательно, по лемме об эквивалентности

$$\phi' = (\psi_1' \land \phi_2) \equiv (\phi_1 \land \phi_2) = \phi$$