

Metode Numerik

2. Error

Sigit Adinugroho sigit.adinu@ub.ac.id

Topik

- Akurasi dan presisi
- Mengukur error (galat)
- Sumber galat

Tujuan Perkuliahan

- Mahasiswa dapat menghitung galat sejati dan galat relatif
- Mahasiswa dapat menghitung pendekatan galat relatif
- Mahasiswa mengetahui konsep digit signifikan
- Mahasiswa mengetahui sumber galat
- Mahasiwa mengetahui perbedaan dari masingmasing sumber galat

Akurasi vs Presisi

- Akurasi: Tingkat kedekatan pengukuran kuantitas terhadap nilai sebenarnya
- Presisi: Sejauh mana pengulangan pengukuran dalam kondisi yang tidak berubah mendapatkan hasil yang sama

Sumber:

John Robert Taylor (1999). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books. pp. 128–129

Akurasi vs Presisi

Error (Galat)

- Nilai sejati = Nilai pendekatan + galat
- Galat(E) = Nilai sejati (T) Nilai pendekatan (P)

- Rumus:
 - Galat mutlak (E)

•
$$E_m = |T - P|$$

- Galat Relatif
 - $E_r = \frac{E_m}{T} \times 100\%$

Error (Galat)

- Pada problem yang sebenarnya, adakalanya tidak mudah untuk menentukan nilai sebenarnya
- Untuk itu diberikan sejumlah komputasi secara berulang
- Sehingga dirumuskan sbb:

$$-E_r = \frac{P_{n+1} - P_n}{P_{n+1}} \times 100\%$$

- P adalah nilai pendekatan
- Nilai E_r akan terus dihitung sedemikian hingga tercapai $|E_r| < E_s$
- $-E_{s}$ adalah nilai yang ditentukan untuk membatasi perulangan

Contoh

Panjang sepatu yang sesuai ukuran adalah 40cm.
Namun Ukuran sepatu yang jadi adalah 39.6cm.

$$-E_m = T - P = |40 - 39.6| = 0.4cm$$

$$-E_r = \left| \frac{E_m}{T} x 100\% \right| = \left| \frac{0.4}{40} x 100\% \right| = 1\%$$

 Panjang sebuah baju disepakai sebesar 100cm, namun setelah jadi ternyata ukurannya 99.6cm

$$-E_m = T - P = |100 - 99.6| = 0.4cm$$

$$-E_r = \left| \frac{E_m}{T} x 100\% \right| = \left| \frac{0.4}{100} x 100\% \right| = 0.4\%$$

Sumber Galat

- Roundoff Error (Galat pembulatan)
- Truncation Error (Galat pemotongan)

Galat Pembulatan

- Komputer hanya mampu menyediakan bilangan dengan menggunakan nilai pendekatan
- Contoh:
 - nilai $\frac{1}{3}$ dinyatakan di komputer sebagai 0.333333
 - Roundoff error: 1 0.333333 = 0.666667
 - Nilai π dan $\sqrt{2}$ tidak mampu di presentasikan secara eksak

Galat Pembulatan

- Galat pembulatan muncul karena ketidak mampuan komputer untuk menghitung secara eksak (mutlak)
 - Komputer digital tidak mempunyai kemampuan presisi untuk menampilkan hasil perhitungan secara eksak
 - Rumus perhitungan sangat sensitive terhadap hasil pembulatan bilangan

Galat Pemotongan

- Error yang disebabkan karena prosedur matematika ketika melakukan pemotongan bilangan.
- Contoh: Deret Mc Laurin untuk menghitung e^x adalah:

$$-e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

- Ada keterbatasan untuk menampilkan secara eksak karena deret tersebut tidak terbatas
- Misal nilai e^x didekati sbb: $e^x = 1 + x + \frac{x^2}{2}$
- Maka ada truncation error sebesar

$$-error = e^{x} - \left(1 + x + \frac{x^{2}}{2}\right) = \frac{x^{3}}{3!} + \frac{x^{4}}{4!} \dots$$

- Tutorial Python
- Download Anaconda v3.6(Distribusi Python untuk data science)
 - https://www.anaconda.com/download/
- Install di Laptop