5 Результаты измерений

Определение момента инерции ротора

Момент инерции цилиндра можно вычислить по следующей формуле:

$$I_{\mathbf{u}} = \frac{1}{2} m_{\mathbf{u}} \left(\frac{d_{\mathbf{u}}}{2} \right)^2$$

где $m_{\rm H}=(1,619\pm0,0003)$ кг – масса цилиндра, $d_{\rm H}=(0,078\pm0,0001)$ м – его диаметр.

$$I_{\text{II}} = 0.00123 \text{ кг} \cdot \text{м}^2$$

Погрешность определения момента инерции равна

$$\Delta I_{\mathrm{I}} = I_{\mathrm{I}} \sqrt{\left(\frac{\Delta m_{\mathrm{I}}}{m_{\mathrm{I}}}\right)^2 + \left(2\frac{\Delta d_{\mathrm{I}}}{d_{\mathrm{I}}}\right)^2} \approx 0,000003 \; \mathrm{kg \cdot m^2}$$

$$I_{\rm m} = (0.001230 \pm 0.000003) \ {\rm KF} \cdot {\rm M}^2$$

Далее вычислим **период крутильных колебаний цилиндра**, подвесив его на проволоке. Померим время его 5 колебаний.

N	T_5 , c	Т, с
1	20,32	4,064
2	20,03	4,006
3	20,11	4,022

Тогда среднее время колебаний равно $T=4{,}03$ с. Определим случайную погрешность по формуле

$$\sigma_T^{\text{с.п}} = \sqrt{\frac{1}{N_{\text{on}}} \sum_{i=1}^{N_{\text{on}}} (T_i - \langle T \rangle)^2} = 0.03 \text{ c}$$

Полная погрешность может быть вычислена по формуле, где $\Delta_{\rm cek}=0.5~{
m c}$ - время реакции человека:

$$\Delta T_{\text{II}} = \sqrt{(\sigma_T^{\text{c.i}})^2 + \left(\frac{\Delta_{\text{cek}}}{N}\right)^2} = 0.104 \text{ c}$$
$$T_{\text{II}} = (4.030 \pm 0.104) \text{ c}$$

Вычислим период крутильных колебаний ротора. Померим время его 7 колебаний.

N	T_7 , c	Т, с
1	22,21	3,173
2	22,42	3,203
3	22,48	3,211

Тогда среднее время колебаний равно $T=3{,}196$ с. Аналогично посчитаем погрешность . Тогда $\sigma_T^{\rm cn}=0{,}016$ с.

$$\Delta T_0 = \sqrt{(\sigma_T^{\text{c,t}})^2 + \left(\frac{\Delta_{\text{cek}}}{N}\right)^2} = 0.073 \text{ c}$$

$$T_0 = (3.196 \pm 0.073)$$
 c

Тогда момент инерции ротора равен:

$$I_0 = I_{\text{II}} \frac{T_0^2}{T_{\text{II}}^2} = 0,00077 \text{ K} \cdot \text{M}^2.$$

Погрешность вычисления момента инерции ротора гироскопа можно вычислить по формуле:

$$\Delta I_0 = I_0 \sqrt{(\varepsilon_{I_{\pi}})^2 + (2\varepsilon_{T_0})^2 + (2\varepsilon_{T_{\pi}})^2} \approx 0,00005 \text{ kg} \cdot \text{m}^2.$$

В итоге получаем:

$$I_0 = (0.00077 \pm 0.00005) \ \mathrm{kg \cdot m}^2$$

Определение частоты вращения ротора

Для определения частоты вращения ротора гироскопа будем исследовать зависимость скорости прецессии гироскопа в зависимости от момента силы, действующей на его ось. Результаты измерений представлены в таблице.

N	m, кг	$M, H \cdot M$	$\Delta M, \mathbf{H} \cdot \mathbf{M}$	T_1, c	T_2 , c	T, c	ε_T	Ω , c ⁻¹	$\Delta\Omega, c^{-1}$
1	0,342	0,3988	0,0004	29,66	29,69	29,68	0,034	0,212	0,007
2	0,274	0,3195	0,0003	36,56	37,28	36,92	0,027	0,170	0,005
3	0,220	0,2566	0,0003	45,73	44,8	45,27	0,022	0,139	0,003
4	0,179	0,2087	0,0002	56,89	57,1	57,00	0,018	0,110	0,002
5	0,142	0,1656	0,0002	71,24	72,3	71,77	0,014	0,088	0,001
6	0,093	0,1085	0,0002	108,23	107,11	107,67	0,009	0,058	0,001

Погрешность вычисления момента силы определяется следующим соотношением:

$$\Delta M = M \sqrt{\left(\frac{\Delta_{\text{\tiny BEC}}}{m}\right)^2 + \left(\frac{\Delta_{\text{\tiny JИН}}}{l}\right)^2}$$

Погрешность вычисления скорости прецессии равна:

$$\Delta\Omega = \Omega \cdot \varepsilon_T$$

По полученным данным построили график.

$$\Omega = kM$$
$$k = \frac{1}{I_0\omega_0}$$

Коэффициент наклона прямой можно посчитать по МНК

$$k = \frac{\langle M\Omega \rangle}{\langle M^2 \rangle} \approx 0.532 \; \frac{1}{\text{Дж} \cdot \text{c}}$$

Случайную погрешность определения k можно вычислить по следующей формуле:

$$\sigma_k^{\text{ch}} = \frac{1}{\sqrt{N_{\text{ou}} - 1}} \sqrt{\frac{\langle \Omega^2 \rangle}{\langle M^2 \rangle} - k^2} \approx 0.003 \ \frac{1}{\text{Дж} \cdot \text{c}}$$

Систематическую погрешность определения k можно вычислить следующим образом:

$$\sigma_k^{\text{chct}} = k \sqrt{\left(\frac{\Delta M}{M}\right)^2 + \left(\frac{\Delta \Omega}{\Omega}\right)^2} \approx 0.017 \frac{1}{\text{Дж} \cdot \text{c}}$$

Тогда полная погрешность определения k определяется следующим образом:

$$\Delta k = \sqrt{(\sigma_k^{\text{cm}})^2 + (\sigma_k^{\text{cuct}})^2} \approx 0.018 \ \frac{1}{\text{Дж} \cdot \text{c}}$$

Тогда:

$$k = (0.532 \pm 0.018) \frac{1}{\text{Дж} \cdot \text{c}}, (\varepsilon = 3.4\%)$$

Рис. 1: График зависимости скорости прецессии гироскопа от момента силы

 ${\bf C}$ помощью k можно вычислить угловую скорость вращения ротора гироскопа:

$$\omega_0 = \frac{1}{I_0 k}$$

Используя угловую скорость, можно определить частоту вращения ротора гироскопа:

$$u = \frac{\omega_0}{2\pi} = \frac{1}{2\pi I_0 k} = 388 \ \Gamma$$
ц

$$\Delta \nu = \nu \sqrt{\left(\frac{\Delta I_0}{I_0}\right)^2 + \left(\frac{\Delta k}{k}\right)^2} = 27~\Gamma\text{ц}$$

Таким образом, мы получили:

$$\nu = (388 \pm 27) \ \Gamma$$
ц, $(\varepsilon = 7.21\%)$

Определение частоты вращения ротора гироскопа при помощи осциллографа

Частоту измеряем по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой — переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на экране получится неподвижный эллипс.

При настройке генератора сигнала на частоту $\nu_0=386,5$ $\Gamma_{\rm II}$ на экране осциллографа виден неподвижный эллипс, следовательно эта частота сигнала совпадает с частотой вращения ротора гироскопа.

Оценка момента силы трения

Для оценки силы трения будем измерять на какую высоту опустился груз за t

N	m, кг	<i>T</i> , c	h, mm	$\Omega \frac{pag}{c}$	$M, H \cdot M^2$
1	0,342	59,7	8	0,0107	0,0201
2	0,274	110,0	9	0,0120	0,0226
3	0,22	91,4	8	0,0107	0,0201
4	0,179	115,2	8	0,0107	0,0201
5	0,142	142,5	7	0,0094	0,0176
6	0,093	108,5	6	0,0080	0,0151

$$M=\Omega I_0\omega_0=\frac{\Omega}{k}$$

$$\varepsilon_\Omega=\varepsilon_h=\frac{1\ {}_{\rm MM}}{h}$$
и тогда $\Delta M=M\sqrt{\varepsilon_k^2+\varepsilon_\Omega^2}$
$$M_{\rm cp}=0.019\pm0.003\ {\rm H\cdot\ M^2}$$

6 Обсуждение результатов

В ходе работы мы определили практически частоту вращения ротора гироскопа. Она равна $\nu = (388 \pm 27)$ Гц. Небольшое отклонение от измеренной частоты осциллографом $\nu = 386,5~\Gamma$ ц Можно обусловить тем, что мы использовали основное приближение гироскопа. Так же свой вклад внесли погрешность коэффициента наклона прямой и измеренного момента инерции ротора гироскопа. Наибольшую погрешность в измерение момента инерции внесло измерение периодов T_0 и $T_{\rm q}$, а момент инерции цилиндра был измерен с большой точностью. А периоды имеют такую погрешность, потому что мы мерили время малого количества колебаний. Еще в формуле I_0 периоды стоят в квадрате, поэтому их относительная погрешность удваивается. Теперь для погрешности коэф. наклона прямой. В нее основную погрешность внесло систематическая ошибка. Так как погрешность измерения времени равна полсекунды, а еще надо учесть случайную ошибку. Так же мы мерили время лишь одного периода. У момента была маленькая погрешность, так как масса и длина плеча была дана с большой точностью. Оценка момента силы трения имеет довольно большую погрешность из за плохого измерения высоты, на которую опустился рычаг. Абсолютная ошибка равна 1 мм, а сама величина не больше 10 мм, поэтому относительная погрешность порядка десяти процентов.

7 Вывод

В данной лабораторной работе мы:

- 1. Научились работать с гироскопом.
- 2. Узнали, как найти момент инерции тела сложной формы используя крутильные колебания и используя тело с известным моментом инерции. Момент инерции тела сложной формы вычисляется с помощью момента инерции тела с известным моментом инерции и отношений периодов в квадрате.
- 3. Оценили момент силы трения в гироскопе
- 4. Для того, чтобы увеличить точность измерения момента силы трения необходимо придумать способ, который будет точнее измерять на какую высоту опустился рычаг.
- 5. Нашли частоту вращения ротора гироскопа с помощью его прецессии.
- 6. Для увеличения точности измерения частоты вращения необходимо мерить время большего числа оборотов. Например измерять время 5-7 оборотов.
- 7. Так же можно увеличить количество точек в графике, тогда уменьшится случайная ошибка. То есть провести измерения со всеми грузиками, которые были в оборудовании.
- 8. Проверили, что выполняется приближение гироскопа. Скорее всего, другие ошибки внесли большее отклонение в измерения.
- 9. Измерили частоту вращения ротора при помощи осциллографа. Чтобы получить частоту, необходимо было получить совпадение частот на генераторе и на исследуемой ЭДС. При совпадении на экране появлялся неподвижный эллипс.