

Rank Annotated Trees

Todor Peev, Vincent Trélat

École Nationale Supérieure des Mines de Nancy Département Informatique

May 23, 2022

Introduction

Proofs

Useful functions First lemmas

Definition

(Type definition)

datatype 'a rtree = Leaf | Node "'a rtree" nat 'a "'a rtree"

Example :

 $\langle\langle\langle\langle\rangle,0,3,\langle\rangle\rangle,1,4,\langle\rangle\rangle,3,6::$ nat, $\langle\langle\langle\rangle,0,7,\langle\rangle\rangle,1,8,\langle\langle\rangle,0,9,\langle\rangle\rangle\rangle\rangle$

Definition

(Type definition)

datatype 'a rtree = Leaf | Node "'a rtree" nat 'a "'a rtree"

Example :

 $\langle \langle \langle \langle \rangle, 0, 3, \langle \rangle \rangle, 1, 4, \langle \rangle \rangle, 3, 6 :: nat, \langle \langle \langle \rangle, 0, 7, \langle \rangle \rangle, 1, 8, \langle \langle \rangle, 0, 9, \langle \rangle \rangle \rangle$

Definition

(Type definition)

datatype 'a rtree = Leaf | Node "'a rtree" nat 'a "'a rtree"

Example 1

 $\langle\langle\langle\langle\rangle,0,3,\langle\rangle\rangle,1,4,\langle\rangle\rangle,3,6::\mathtt{nat},\langle\langle\langle\rangle,0,7,\langle\rangle\rangle,1,8,\langle\langle\rangle,0,9,\langle\rangle\rangle\rangle\rangle$

Useful functions

```
fun num_nodes :: "'a rtree \Rightarrow nat" where "num_nodes \langle \rangle = 0" | "num_nodes \langle 1, _, _, r\rangle = 1 + num_nodes 1 + num_nodes r"
```

```
fun set_rtree :: "'a rtree \Rightarrow 'a set" where

"set_rtree \langle \rangle = {}" |

"set_rtree \langle \rangle 1, n, x, r\rangle = set_rtree 1 \cup set_rtree r \cup {x}"
```

```
fun rbst :: "('a::linorder) rtree \Rightarrow bool" where
"rbst \langle \rangle = True" |
"rbst \langle 1, n, x, x\rangle = ((\foralla \in set_rtree 1. a < x) \land
(\foralla \in set_rtree r. x < a) \land
rbst 1 \land
rbst r \land
n = num_nodes 1)"
```

Useful functions

```
fun set_rtree :: "'a rtree \Rightarrow 'a set" where
   "set_rtree \langle \rightarrow = \{\}" |
   "set_rtree \langle 1, n, x, r \rangle = set_rtree 1 \cup set_rtree r \cup \{x\}"
```

Useful functions

```
fun num_nodes :: "'a rtree \Rightarrow nat" where "num_nodes \langle \rangle = 0" | "num_nodes \langle 1, _, _, r\rangle = 1 + num_nodes 1 + num_nodes r"
```

```
fun set_rtree :: "'a rtree \Rightarrow 'a set" where
    "set_rtree \langle \rangle = {}" |
    "set_rtree \langle 1, n, x, r\rangle = set_rtree 1 \cup set_rtree r \cup {x}"
```

```
fun rbst :: "('a::linorder) rtree ⇒ bool" where
   "rbst ⟨⟩ = True" |
   "rbst ⟨ 1, n, x, x⟩ = ((∀a ∈ set_rtree 1. a < x) ∧
        (∀a ∈ set_rtree r. x < a) ∧
        rbst 1 ∧
        rbst r ∧
        n = num_nodes 1)"</pre>
```

First lemmas