Source: [KBhPHYS201CircuitCalculations]

1 | Kirkoff's Laws

Kirkoff's First Law

Definition 1 · Kirkoff's First Law **Sum of voltage in any closed loop should add up to 0**

As in, the sum of all voltage changes from Start => Start will add up to 0.

Kirkoff's Second law

Definition 2 · Kirkoff's Second Law **Net current flowing into a node is 0**

With a current i_0 , when it flows into a junction like B, the current i_0 splits into i_2 and i_3

A Quick Kirkoff Excercise

Here's a circuit:

Figure 1: Screen Shot 2020-09-14 at 10.38.44 AM.png

So, to calculate the resistance and current at every point o START at start

- +12
- $-I_1*10$ (per $I=\frac{\Delta V}{resistance}$)
- $-I_2 * 20$
- $-I_1 * 15$
- = 0

 $I_1 - I_2 - I_3 = 0$, per Kirerbab's Second Law.