Отчет по Заданию №3

По предоставленным историческим данным в виде таблицы loanform_features.csv

- 1. Определить какие факторы влияют на вероятность невозврата кредита и отранжировать их по прогностической силе.
- 2. Определить какие факторы влияют на вероятность одобрения кредита и отранжировать их по прогностической силе.
- 1. Для анализа данных принято решение использовать пакет pandas, в виду его возможностей в области проведения расчетов над табличными данными и визуализации, а так же потому что pandas является высокоуровневым пакетом и позволяет минимизировать время на разработку кода.

Начинаем анализ с загрузки данных и визуального анализа *DataFrame*. (код модуля в peппозитории, в папке app, под названием predict_power_factors.py: https://github.com/mark-rtb/data_mining.git)

Рис.1. Первые пять строк *DataFrame*.

Как видно из рисунка 1, данные для анализа имеют как категориальные, так и количественные признаки. Так же имеются пропуски в данных(nan).

Ключевым признаком для анализа возврата кредита является столбец "ВАД".

Удалим строки в DataFrame в которых в столбце "BAD", значение nan.

Удалим признаки 'ORDERID', 'APPROVED', 'ISSUED' так как очевидно, что они не могут повлиять на возврат кредита.

Заменим в столбце "BAD", значения «вернул», «не вернул» на 1 и 0 соответственно.

Посчитаем корреляцию между парами значений и построим их зависимости.

Рис.2. Корреляционные зависимости пар факторов.

Визуальный анализ рисунка 2 показывает очевидную зависимость возврата кредита от таких факторов как *SHTRAFDAYSQUANT*, *ORDERSTATUS*, *IS_ONLINE* и т.д., однако эксперты отмечают, что не всегда высокая корреляция является показателем прогностической силы фактора. В научном сообществе рекомендуется для оценки использовать мера прогностической силы переменной *- information value (IV)*.

Рассчитаем information value (IV), как видно из таблицы некоторые параметры поменялись местами по прогностической силе, в сравнении с корреляционными коэффициентами. Так же немаловажен тот факт, что information value (IV), позволяет численно оценить влияние факторов.

VAR_NAME	IV
SHTRAFDAYSQUANT	1.877137
FIRSTLOAN	0.172628
IS_ONLINE	0.103522
CLIENTAGE	0.046501
ORDERSTATUS	0.015547
issued_sum	0.010820
FAMILYQUANT	0.007275
FAMILYSTATUS	0.003647
MONTHINCOME	0.000428

Табл.1. Оценки информативности переменной методом information value (IV).

2. Выполнив все те же шаги для фактора одобрения кредита, получим корреляционную зависимость и оценку меры прогностической силы методом *information value (IV)*:

Рис.3. Корреляционные зависимости пар факторов.

VAR_NAME	IV
IS_ONLINE	1.957993
ORDERSTATUS	0.740756
issued_sum	0.740756
FAMILYQUANT	0.673922
MONTHINCOME	0.493780
FAMILYSTATUS	0.345741
CLIENTAGE	0.300749
FIRSTLOAN	0.171032
SHTRAFDAYSQUANT	0.050955

Табл.2. Оценки информативности переменной методом information value (IV).

В процессе анализа модулем из реппозитория создаются объекты .pkl в дирректории с данными, которые в дальнейшем можно использовать для построения моделей машинного обучения.

Код модуля написан на языке *Python 3.6,* для корректной работы модуля необходимы библиотеки:

Pandas, seaborn, matplotlib, os, numpy, scipy, re