3.4. Hệ thức đệ quy

- Giới thiệu
- 4 Hệ thức đệ quy tuyến tính với hệ số hằng
- Nghiệm của hệ thức đệ quy tuyến tính thuần nhất
- Nghiệm của hệ thức đệ quy tuyến tính không thuần nhất

3.4. Hệ thức đệ quy

Định nghĩa. Hệ thức truy hồi đối với dãy số $\{a_n\}$ là công thức biểu diễn a_n qua một hay nhiều số hạng đi trước của dãy, cụ thể là a_1 , a_2 ,..., a_{n-1} , với n nguyên và $n \ge n_0$, trong đó n_0 là nguyên không âm. Dãy số được gọi là lời giải hay nghiệm của hệ thức truy hồi nếu các số hạng của nó thỏa mãn hệ thức truy hồi này

3.4.1. Giới thiệu

Ví dụ 1. Cho $\{a_n\}$ là dãy số thỏa mãn hệ thức truy hồi $a_n = a_{n-1}$ - a_{n-2} , với n=2,3,.., và giả sử $a_0 = 3$, $a_1 = 5$. Tìm a_2 và a_3 ?

Lời giải. Từ hệ thức truy hồi ta có: $a_2 = a_1 - a_0 = 5-3 = 2$; $a_3 = a_2 - a_1 = 2 - 5 = -3$.

3.4.1 Giới thiệu

Ví dụ 2. Hãy xác định xem dãy số {an} trong đó $a_n = 3n$ với mọi n nguyên không âm có phải là nghiệm vủa hệ thức truy hồi $a_n = 2a_{n-1} - a_{n-2}$ với n = 2, 3, 4,... hay không?

Lời giải. Giả sử $a_n = 3n$ với mọi $n \ge 2$. Khi đó, $a_n = 2$ a_{n-1} - $a_{n-2} = 2[(3(n-1)] - 3(n-2) = 3n$. Do vậy, $a_n = 3n$ là lời giải của hệ thức truy hồi đã cho

3.4.1. Giới thiệu

Mô hình hóa hệ thức truy hồi

Ví dụ 1. Bài toán dân số. Giả sử năm 1995, dân số thế giới là 7 tỉ người. Mỗi năm, dân số thế giới tăng 3%. Đến năm 2020, dân số thế giới là bao nhiêu người?

Lời giải. Gọi dân số thế giới sau n năm là P_n . Khi đó, dân số năm thứ n bằng 1.03 dân số thế giới năm trước đó. Từ đó ta có công thức truy

hồi cho dãy $\{P_n\}$.

 $P_n = 1.03 P_{n-1}$, với $n \ge 1$ và $P_0 = 7$.

Để tính P_n ta có thể sử dụng phương pháp lặp như sau:

 P_n = 1.03. $P_{n-1} = (1.03)^n.7$

Từ đó ta có P25 = (1.03)25.7

3.4. Hệ thức đệ quy

Đệ quy

Ví dụ: Để tính tổng S(n) = 1 + 2 + ... + n

Ta cần tính S(n).

- Để tính toán được S(n) trước tiên ta phải tính toán trước S(n-1) sau đó tính S(n) = S(n-1) + n.
- Để tính toán được S(n-1), ta phải tính toán trước S(n-2) sau đó tính S(n-1) = S(n-2) + n-1.
- Để tính toán được S(2), ta phải tính toán trước S(1) sau đó tính S(2) = S(1) + 2.

Và cuối cùng S(1) chúng ta có ngay kết quả là I

Bước thay thế ngược lại:

Xuất phát từ S(1) thay thế ngược lại chúng ta xác định S(n):

- S(1) = 1
- S(2) = S(1) + 2
- S(3) = S(2) + 3
- S(n) = S(n-1) + n

100

3.4.1. Giới thiệu

Ví dụ. Tháp Hà Nội

Có 3 cọc A,B,C và n đĩa với đường kính đôi một khác nhau. Nguyên tắc đặt đĩa vào cọc là: mỗi đĩa chỉ được chồng lên đĩa lớn hơn nó.

Ban đầu, cả n đĩa được đặt chồng lên nhau ở cọc A, hai cọc B và C để trống. Vấn đề đặt ra là chuyển cả n đĩa ở cọc A sang cọc C (có thể qua trung gian cọc B), mỗi lần chỉ chuyển một đĩa. Gọi x_n là số lần chuyển đĩa. Tìm x_n ?

Giải. Với n=1, ta có $x_1=1$.

Với n>1, trước hết ta chuyển n-1 đĩa bên trên sang cọc B qua trung gian cọc C (giữ nguyên đĩa thứ n dưới cùng ở cọc A). Số lần chuyển n-1 đĩa đó là x_{n-1} . Sau đó ta chuyển đĩa thứ n từ cọc A sang cọc C. Cuối cùng ta chuyển n-1 đĩa từ cọc B sang cọc C. Số lần chuyển n-1 đĩa đó lại là x_{n-1} .

Như vậy số lần chuyển toàn bộ n đĩa từ A sang C là:

$$x_{n-1} + 1 + x_{n-1} = 2x_{n-1} + 1.$$

Nghĩa là

$$\begin{cases} x_1 &= 1 \\ x_n &= 2x_{n-1} + 1 \quad \text{v\'oi } n > 1 \end{cases}$$

Ví dụ. Một cầu thang có n bậc. Mỗi bước đi gồm 1 hoặc 2 bậc. Gọi x_n là số cách đi hết cầu thang. Tìm x_n ?

Giải. Với n = 1, ta có $x_1 = 1$. Với n = 2, ta có $x_2 = 2$.

Với n>2, để khảo sát x_n ta chia thành hai trường hợp loại trừ lẫn nhau:

- Trường hợp 1. Bước đầu tiên gồm 1 bậc. Khi đó, cầu thang còn n-1 bậc nên số cách đi hết cầu thang là x_{n-1} .
- Trường hợp 2. Bước đầu tiên gồm 2 bậc. Khi đó, cầu thang còn n-2 bậc nên số cách đi hết cầu thang trong là x_{n-2} .

Theo nguyên lý cộng, số cách đi hết cầu thang là $x_{n-1} + x_{n-2}$. Do đó ta có:

$$x_n = x_{n-1} + x_{n-2}$$

Như vậy

$$\begin{cases} x_1 = 1, x_2 = 2; \\ x_n = x_{n-1} + x_{n-2} & \text{v\'oi } n > 2. \end{cases}$$

3.4.2. Hệ thức đệ quy tuyến tính với hệ số hằng

Định nghĩa. Một $h\hat{e}$ thức $d\hat{e}$ quy tuyến tính cấp k với $h\hat{e}$ số hằng là một hệ thức có dạng:

$$a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = f_n$$
 (1)

trong đó

- $a_0 \neq 0, a_1, \ldots, a_n$ là các hệ số thực;
- $\{f_n\}$ là một dãy số thực cho trước và
- $\{x_n\}$ là dãy ẩn nhận các giá trị thực.

Trường hợp dãy $f_n = 0$ với mọi n thì (1) trở thành

$$a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = 0$$
 (2)

Ta nói (2) là một $h\hat{e}$ thức $d\hat{e}$ quy tuyến tính thuần nhất cấp k với $h\hat{e}$ số hằng.

Ví du.

- $2x_n 5x_{n-1} + 2x_{n-2} = -n^2 2n + 3 \longrightarrow \text{tuy\'en tính cấp 2}.$
- $x_n 3x_{n-1} + 2x_{n-3} = 20 + n2^{n-2} + 3^n \longrightarrow \text{tuy\'en tính cấp } 3.$
- $2x_{n+2} + 5x_{n+1} + 2x_n = (35n + 51)3^n \longrightarrow \text{tuy\'en tính cấp 2}.$
- $x_{n+2} 2x_{n+1} + x_n = 0 \longrightarrow \text{tuy\'en tính thuần nhất cấp } 2$.

 \mathbf{Dinh} nghĩa. Xét hệ thức đệ quy tuyến tính cấp k

$$a_0 x_n + a_1 x_{n-1} + \ldots + a_k x_{n-k} = f_n \tag{1}$$

Mỗi dãy $\{x_n\}$ thỏa (1) được gọi là một nghiệm của (1).

Nhận xét rằng mỗi nghiệm $\{x_n\}$ của (1) được hoàn toàn xác định bởi k giá trị ban đầu $x_0, x_1, \ldots, x_{k-1}$.

Họ dãy số $\{x_n = x_n(C_1, C_2, \dots, C_k)\}$ phụ thuộc vào k họ tham số C_1, C_2, \dots, C_k được gọi là nghiệm tổng quát của (1) nếu mọi dãy của họ này đều là nghiệm của (1).

Với k giá trị ban đầu $y_0, y_1, \ldots, y_{k-1}$, tồn tại duy nhất các giá trị của k tham số C_1, C_2, \ldots, C_k sao cho nghiệm $\{x_n\}$ tương ứng thỏa

$$x_0 = y_0, \ x_1 = y_1, \ \dots, x_{k-1} = y_{k-1}$$
 (*)

Khi đó, nghiệm $\{x_n\}$ tương ứng được gọi $nghiệm\ riêng$ ứng với điều kiện ban đầu (*).

Giải một hệ thức đệ quy là đi **tìm nghiệm tổng quát** của nó; nhưng nếu hệ thức đệ quy có kèm theo điều kiện ban đầu, ta phải **tìm nghiệm riêng** thỏa điều kiện ban đầu đó.

Ví dụ.

•
$$2x_n - 3x_{n-1} = 0$$
 có nghiệm tổng quát là $x_n = C\left(\frac{3}{2}\right)^n$

•
$$\begin{cases} x_n - 5x_{n-1} + 6x_{n-2} = 0; \\ x_0 = 4; \\ x_1 = 9. \end{cases}$$
 có nghiệm riêng là $x_n = 3 \cdot 2^n + 3^n$.

Lưu ý. Trong phạm vi của chương trình ta chỉ xét các hệ thức đệ quy tuyến tính (cấp 1 và 2) với hệ số hằng.

3.4.3. Nghiệm của HTĐQTT thuần nhất

Xét hệ thức đệ quy tuyến tính thuần nhất

$$a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = 0$$
 (1)

Phương trình đặc trưng của (1) là phương trình bậc k định bởi:

$$a_0\lambda^k + a_1\lambda^{k-1} + \ldots + a_k = 0 \tag{*}$$

Trường hợp k=1. Phương trình đặc trưng (*) trở thành

$$a_0\lambda + a_1 = 0$$

nên có nghiệm là

$$\lambda_0 = -\frac{a_1}{a_0}.$$

Khi đó, (1) có nghiệm tổng quát là: $x_n = C \lambda_0^n$.

Trường hợp k = 2. Phương trình đặc trưng (*) trở thành

$$a_0\lambda^2 + a_1\lambda + a_2 = 0 \tag{*}$$

Người ta chứng minh được kết quả sau:

• Nếu (*) có hai nghiệm thực phân biệt λ_1 và λ_2 thì (1) có nghiệm tổng quát là:

$$x_n = C_1 \lambda_1^n + C_2 \lambda_2^n$$

• Nếu (*) có nghiệm kép thực λ_0 thì (1) có nghiệm tổng quát là

$$x_n = (C_1 + nC_2)\lambda_0^n$$

• Nếu (*) có hai nghiệm phức liên hợp được viết dưới dạng

$$\lambda = r(\cos\varphi \pm i\,\sin\varphi)$$

thì (1) có nghiệm tổng quát là

$$x_n = r^n (A\cos n\varphi + B\sin n\varphi)$$

Ví dụ. Giải hệ thức đệ quy
$$\begin{cases} x_n - 2x_{n-1} = 0 \\ x_0 = 5. \end{cases}$$
 (1)

Giải. Phương trình đặc trưng là $\lambda - 2 = 0$ có nghiệm là $\lambda = 2$. Suy ra (1) có nghiệm tổng quát là $x_n = C2^n$.

Từ điều kiện $x_0 = 5$ ta có C = 5. Suy ra nghiệm của (*) là $x_n = 5 \cdot 2^n$.

Ví dụ. Tìm nghiệm của
$$\begin{cases} x_n = 5x_{n-1} - 6x_{n-2}; \\ x_0 = 4; \\ x_1 = 9. \end{cases}$$
 (2)

Giải.
$$x_n = 5x_{n-1} - 6x_{n-2}$$

 $\Leftrightarrow x_n - 5x_{n-1} + 6x_{n-2} = 0$

Phương trình đặc trưng

$$\lambda^2 - 5\lambda + 6 = 0$$

có 2 nghiệm thực phân biệt $\lambda_1=2$ và $\lambda_2=3$. Suy ra (2) có nghiệm tổng quát là

$$x_n = C_1 \, 2^n + C_2 \, 3^n.$$

Vì $x_0 = 4$; $x_1 = 9$ nên $\begin{cases} C_1 + C_2 = 4 \\ 2C_1 + 3C_2 = 9. \end{cases}$ Suy ra $C_1 = 3, C_2 = 1$. Vậy

nghiệm của hệ thức đệ quy là

$$x_n = 3 \cdot 2^n + 3^n$$

Ví dụ. Tìm nghiệm của
$$\begin{cases} 4x_{n+1} - 12x_n + 9x_{n-1} = 0; \\ x_0 = 2; \\ x_1 = 9. \end{cases}$$
 (3)

Giải. Phương trình đặc trưng

$$4\lambda^2 - 12\lambda + 9 = 0$$

có 1 nghiệm thực kép là $\lambda_0=3/2$ và $\lambda_2=3$. Suy ra (3) có nghiệm tổng quát là

$$x_n = (C_1 + nC_2) \left(\frac{3}{2}\right)^n.$$

Vì
$$x_0 = 2$$
; $x_1 = 9$ nên $\begin{cases} C_1 = 2\\ \frac{3}{2}(C_1 + C_2) = 9. \end{cases}$ Suy ra $C_1 = 2, C_2 = 4$. Vậy

nghiệm của hệ thức đệ quy là

$$x_n = (2+4n)\left(\frac{3}{2}\right)^n.$$

Ví dụ. Tìm nghiệm của
$$\begin{cases} x_{n+2} - 2x_{n+1} + 4x_n = 0; \\ x_0 = 1; \\ x_1 = 4. \end{cases}$$
 (4)

Giải. Phương trình đặc trưng $\lambda^2 - 2\lambda + 4 = 0$ có 2 nghiệm phức liên hợp là

$$\lambda = 1 \pm i\sqrt{3} = 2\left(\cos\frac{\pi}{3} \pm i\sin\frac{\pi}{3}\right).$$

Suy ra (4) có nghiệm tổng quát là

$$x_n = 2^n \left(A \cos \frac{n\pi}{3} + B \sin \frac{n\pi}{3} \right).$$

Vì
$$x_0 = 1$$
; $x_1 = 4$ nên $\begin{cases} A = 1 \\ 2 \frac{1}{2}A + \frac{\sqrt{3}}{2}B \end{pmatrix} = 4$. Suy ra

 $A=1, B=\sqrt{3}$. Vậy nghiệm của hệ thức đệ quy là

$$x_n = 2^n \left(A \cos \frac{n\pi}{3} + \sqrt{3} \sin \frac{n\pi}{3} \right).$$

Ví dụ. Tìm nghiệm của
$$\begin{cases} x_n - 5x_{n-1} + 6x_{n-2} = 0 \\ \text{x0} = 1; \ x_1 = 3. \end{cases}$$

Giải.

Phương trình đặc trưng là:

$$\lambda^2 - 5\lambda + 6 = 0 \quad (*)$$

có hai nghiệm thực là $\lambda_1=2$ và $\lambda_2=3$. Do đó nghiệm tổng quát của (2) là:

$$x_n = C_1 \, 2^n + C_2 \, 3^n \tag{3}$$

Ví dụ. Giải hệ thúc đệ quy

$$2x_n - 3x_{n-1} + x_{n-2} = \mathbf{0} \tag{1}$$

Giải.

Phương trình đặc trưng của (1) là:

$$2\lambda^2 - 3\lambda + 1 = 0 \quad (*)$$

có hai nghiệm thực là $\lambda_1=1$ và $\lambda_2=1/2.$ Do đó nghiệm tổng quát của (1) là:

$$x_n = C_1 + C_2 \quad \frac{1}{2} \right)^n$$