FUNDAMENTALS OF MACHINE LEARNING

AA 2023-2024

Prova Finale (FACSIMILE)

18 Dicembre, 2023

Istruzioni: Niente libri, niente appunti, niente dispositivi elettronici, e niente carta per appunti. Usare matita o penna di qualsiasi colore. Usare lo spazio fornito per le risposte. Instructions: No books, no notes, no electronic devices, and no scratch paper. Use pen or pencil. Use the space provided for your answers.

This exam has 5 questions, for a total of 100 points and 10 bonus points.

No	ome:
Ma	atricola:
1. M	Iultiple Choice: Select the correct answer from the list of choices.
(8	a) [5 points] True or False: A K-nearest neighbor classifier is only able to learn linear discriminant functions. ○ True √ False
(l	b) [5 points] True or False: Projecting a dataset onto its first principal component maximizes the variance of the projected data. √ True ○ False
(c) [5 points] True or False: The K-means algorithm is guaranteed to find the best cluster centers for any dataset. \bigcirc True $$ False
(0	d) [5 points] True or False: A Parzen kernel density estimator uses only the nearest sample in the dataset to estimate the probability of an input sample x . ○ True √ False
(e) [5 points] How many parameters will a Multilayer Perceptron (MLP) for binary classification with a single hidden layer of width 10 and an input dimensionality of 8 have?
,	\bigcirc 80 $\sqrt{99}$ \bigcirc 88 \bigcirc None of the above
(:	f) [5 points] What will the entries of the Gram matrix be for a linear kernel? $(-T_{rr})^{\gamma}$
	\bigcap None of the above
(9	g) [5 points] Which of the following loss functions is called the negative log likelihood?
/($\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (\ln y_c - \ln \hat{y}_c)^2$
	$\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \sum_{c=1}^{C} (y_c - \ln \hat{y}_c)^2$
	$\sqrt{\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})} = -\sum_{c=1}^{C} y_c \ln \hat{y}_c$
	$\bigcirc \ \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} \ln \hat{y}_c$
(1	h) [5 points] How many iterations of gradient descent must we perform for an epoch of minibatch Stochastic Gradient Descent with a dataset of 1024 samples and a batch size of 16?
	\bigcirc 1024 \bigcirc 1 \bigcirc 32 \sqrt 64
	Total Question 1: 40

_		swer: Select ALL correct choices: there may be more than one correct choice, but there is tone correct choice.
(a) [5]	points]	What are the advantages of projecting data onto $K < D$ principal components?
		We eliminate noise in the original representation.
	\bigcirc	Classes are guaranteed to be linearly separable.
	\bigcirc	It is a nonlinear embedding that makes learning easy with simpler models.
		Models trained on the reduced data are simpler.
(b) [5]	points]	Which of the following are advantages of Ensemble Models (e.g. Committees)?
		They reduce the variance of the resulting model.
	\bigcirc	They are much more efficient than the base model.
		They can reduce the expected error of the final model.
	\bigcirc	The resulting model is nonlinear even if the base model is linear.
(c) $[5]$	points]	Which of the following are causes of the vanishing gradients when training neural networks?
		Saturated inputs to activation functions with near-zero derivatives when saturated.
	\bigcirc	Badly scaled input values.
		Very deep models.
	\bigcirc	Bad random initialization of the network parameters.
(d) [5]	points]	If we want to penalize classification errors less when training an SVM we should
	\bigcirc	Increase the hyperparameter C .
	\bigcirc	Use a radial basis kernel.
		Decrease the hyperparameter C .
	\bigcirc	None of the above.
	-	Which of the following are requirements for applying backpropagation to compute gradients network?
	\bigcirc	The network must not be too deep.
		The network must be a directed acyclic graph.
		All activation functions must be differentiable.
	\circ	All activation functions must be continuous.
(f) [5]	points]	Which of the following are true of the Nadaraya-Watson estimator?
	_	It only requires some of the training data at test time.
		It is a nonparametric method.
	•	It estimates a nonlinear function of the input.
	_	It estimates a linear function of the input.
(g) $[5]$	points]	Which of the following models are nonparametric?
	0	The Multilayer Perceptron (MLP).
	0	Logistic regression.
	$\sqrt{}$	The K-Nearest Neighbor Classifier
	\bigcirc	Decision Trees.

2.

Total Question 2: 35

3. [10 points] Show that a Committee Ensemble model using N bootstrapped linear regression models is a linear regression (i.e. that can be expressed as $\mathbf{w}^T \mathbf{x} + b$ for some \mathbf{w} and b).

Solution: A committee model with N bootstrapped linear regression models has this form:

$$f(\mathbf{x}; \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_n^T \mathbf{x} + b_n$$

for $\theta = (\mathbf{w}_n, b_b)_{n=0}^N$. But then by linearity and commutativity of inner products we have:

$$f(\mathbf{x}; \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_{n}^{T} \mathbf{x} + b_{n}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_{n}^{T} \mathbf{x} + \frac{1}{N} \sum_{n=1}^{N} b_{n} \text{ (by linearity)}$$

$$= \frac{1}{N} \mathbf{x}^{T} \sum_{n=1}^{N} \mathbf{w}_{n} + \frac{1}{N} \sum_{n=1}^{N} b_{n} \text{ (by commutativity of inner product)}$$

$$= \frac{1}{N} \hat{\mathbf{w}}^{T} \mathbf{x} + \hat{b}$$

For the new model parameters $\hat{\theta}$:

$$\hat{\mathbf{w}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{w}_n \text{ and } \hat{b} = \frac{1}{N} \sum_{n=1}^{N} b_n$$

4. [15 points] Show that a Multilayer Perceptron with two hidden layers with activation function $\sigma(x) = x$ is only capable of learning linear functions.

Solution: An MLP with two hidden layers computes the function:

$$\begin{split} f(\mathbf{x}) &= W_{\text{out}} \sigma(W_2 \sigma(W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_{\text{out}} \\ &= W_{\text{out}} (W_2 (W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_{\text{out}} \text{ (since } \sigma \text{ is the identity function)} \\ &= (W_{\text{out}} W_2 W_1) \mathbf{x} + [W_{\text{out}} W_2 \mathbf{b}_1 + W_{\text{out}} \mathbf{b}_2 + \mathbf{b}_{\text{out}}], \end{split}$$

which is a linear (well, affine) function $f(\mathbf{x}) = W\mathbf{x} + \mathbf{b}$ for:

$$\label{eq:wout} \begin{array}{lcl} W & = & W_{\mathrm{out}}W_2W_1 \\ \mathbf{b} & = & W_{\mathrm{out}}W_2\mathbf{b}_1 + W_{\mathrm{out}}\mathbf{b}_2 + \mathbf{b}_{\mathrm{out}}. \end{array}$$

5. [10 points (bonus)] Design a Deep Convolutional Neural Network (with at least three convolutional layers and one or more pooling layers) to classify MNIST images (input size 28 × 28). Draw the network (or write pseudocode for its definition) and indicate how many parameters each layer has and the sizes of the intermediate feature maps.

Solution: I will write pseudocode in tabular form for the definition of each layer (with corresponding numbers of parameters and size of the activations:

Layer	\mathbf{Type}	Activation Size	# Parameters
1	Input	$1 \times 28 \times 28$	0
2	Conv2D(32, 1, 3, 3)	$32 \times 26 \times 26$	320 (32 * 3 * 3 + 32)
3	ReLU	$32 \times 26 \times 26$	0
4	Conv2D(32, 32, 3, 3)	$32 \times 24 \times 24$	9248
5	ReLU	$32 \times 26 \times 26$	0
6	MaxPool(2, 2)	$32 \times 13 \times 13$	0
7	Conv2D(16, 32, 3, 3)	$16 \times 11 \times 11$	4624
8	ReLU	$16 \times 11 \times 11$	0
9	Conv2D(16, 16, 3, 3)	$16 \times 9 \times 9$	2320
10	ReLU	$16 \times 9 \times 9$	0
11	MaxPool(2, 2)	$16 \times 5 \times 5$	0
12	Flatten()	400	0
13	Linear(400, 128)	128	51328
14	ReLU	128	0
15	Linear(128, 64)	64	8256
16	ReLU	64	0
17	Linear(64, 10)	10	650