Generalized functions Tutorial notes

Tutorial 6

6.1. Complements regarding distributions on \mathbb{R}^n .

DEFINITION 6.1. Given a closed subspace $W \subseteq \mathbb{R}^n$ and $m \in \mathbb{N}$ define

$$V_m(C_c^{\infty}(\mathbb{R}^n), W) := \left\{ f \in C_c^{\infty}(\mathbb{R}^n) : \frac{\partial^{\alpha}}{(\partial x)^{\alpha}} f \mid_W \equiv 0, |\alpha| \le m \right\}.$$

Defined similarly for W a subset.

EXERCISE 6.2. Let W be a k-dimensional subspace of \mathbb{R}^n and $U = \mathbb{R}^n \setminus W$. Show that

$$\overline{C_c^{\infty}(U)} = \bigcap_{m=0}^{\infty} V_m(C_c^{\infty}(\mathbb{R}^n), W).$$

SOLUTION. Home exercise.

DEFINITION 6.3. Define $F_m((C_c(\mathbb{R}^n)^*, W) := \{ \xi \in C_c^{\infty}(\mathbb{R}^n)^* : \xi \mid_{V_m} \equiv 0 \}$, where V_m is as above.

EXERCISE 6.4. Prove that for any $U \subseteq \mathbb{R}^n$ with compact closure and any $\xi \in C_W^{-\infty}(\mathbb{R}^n)$, there exists $\xi' \in F_m$ such that $\xi \mid_U \equiv \xi' \mid_U$.

SOLUTION. Let V be an open subset with compact closure, properly containing \bar{U} , and let $\xi' = \xi \cdot I_U$, where I_U is some smooth function such that which attains the value 1 on \bar{U} and 0 on V^c . Clearly, $\xi \mid_{U} \equiv \xi' \mid_{U}$, and we need to verify $\xi' \in F_m$ for some $m \in \mathbb{N}$. Assume this is false- then for any $m \in \mathbb{N}$ we may find $f_m \in V_m$ such that $\langle \xi', f_m \rangle \neq 0$. Up to multiplying each f_m by a constant (namely- the constant $\langle \xi', f_m \rangle^{-1}$), we may assume $\langle \xi', f_m \rangle = 1$ for all m. Furthermore, since ξ' is compactly supported, without loss of generality, up to multiplication by a test function ψ with $\psi_{\operatorname{cl}(V)} \equiv 1$, we may assume that the f_m 's are all supported on a compact set containing \bar{V} . Finally we note that, by definition, we have that, for any $\alpha \in \mathbb{N}_0^m$, the sequence $(\frac{\partial^{\alpha}}{\partial x^{\alpha}}f_m)_m$ is, apart from finitely many terms, constant zero, and therefore converges uniformly to 0. In particular $f_m \xrightarrow{m \to \infty} 0$ in $C_c^{\infty}(U)$ and thus $\langle \xi', f_m \rangle \xrightarrow{m \to \infty} 0$. A contradiction, since $\langle \xi', f_m \rangle = 1$ by definition.

EXERCISE 6.5. Compute $\overline{C_c^{\infty}(\mathbb{R}^n \setminus \{0\})}$.

SOLUTION. $\overline{C_c^{\infty}(\mathbb{R}^n\setminus\{0\})}$ is the set of compactly supported smooth functions such that $\frac{\partial^{\alpha}}{\partial x^{\alpha}}f(0)=0$, for all $\alpha\in\mathbb{N}_0^n$. Note that, for example, any function of the form $e^{-1/\|x\|^2}\cdot\psi$, where ψ is smooth function supported on a compact neighbourhood of 0, lies in $\overline{C_c^{\infty}(\mathbb{R}^n)}$, but is supported on $\operatorname{Supp}(\psi)\ni 0$.

6.2. Complements regarding ℓ -spaces. Recall the following definition:

DEFINITION 6.6. An ℓ -space X is a locally compact, totally disconnected and Hausdorff space. X is said to be *countable* at infinity, or σ -compact, if it is a countable union of compact sets.

EXERCISE 6.7. Find a compact ℓ -space X and an open subset $U \subseteq X$ such that U is not σ -compact.

SOLUTION. Let $X = \mathbb{R} \cup \{\infty\}$, with the topology defined so that $V \subseteq X$ is open if $\infty \notin V$ or otherwise, if $\infty \in V$ and $\mathbb{R} \setminus V$ is finite. One easily verifies that X is compact, Hausdorff and totally disconnected. Moreover, for $U = \mathbb{R} \subseteq X$, we know that the topology on U is simply the discrete topology on a space of cardinality 2^{\aleph_0} , and in particular, cannot be σ -compact.

Recall that, in the previous tutorial, it was shown that any ℓ -space is (topologically) zero dimensional, i.e. it has a basis of clopen sets. In the case where G is an ℓ -group (i.e. a topological group which is an ℓ -space), we have the following:

Lemma 6.8 (van-Danzig's Theorem). Let G be an ℓ -group, i.e. a topological group which is an ℓ -space. Then G has a neighborhood base at 1 of compact open subgroups.

PROOF. Since we already saw in the previous tutorial that any ℓ -space has a basis of compact open neighbourhoods of 1, it would suffice to prove that any compact open subset $1 \in K \subseteq G$ contains a compact open subgroup.

Let $1 \in K$ be a compact open subset. Since group multiplication is continuous and K is open, for any $x \in K$, we may find a neighbourhood $V_x \subseteq K$ of 1 such that $x \cdot V_x \subseteq K$. Furthermore, again, using continuity, for any $x \in K$, we may find an open neighbourhood $1 \in L_x \subseteq V_x$ such that $L_x^2 \subseteq V_x$. Clearly, $K = \bigcup_{x \in K} x L_x = \bigcup_{x \in K} x V_x$, and, by compactness, there exist x_1, \ldots, x_r such that $K = \bigcup_{j=1}^r x_j L_{x_j}$. Put $L = \bigcap_{j=1}^r L_{x_j}$. Then L is open and satisfies

$$K \cdot L = \bigcup_{j=1}^r x_j L_{x_j} L \subseteq \bigcup_{j=1}^r x_j L_{x_j}^2 \subseteq \bigcup_{j=1}^r x_j V_{x_j} \subseteq K.$$

Note that we may assume L is symmetric, i.e. $L^{-1} = L$. Otherwise, just take the intersection of L and L^{-1} . Let H be the subgroup of G generated by L. Then $H = \bigcup_{i=0}^{\infty} \underbrace{L \cdots L}_{i=0}$ is the union of open sets and thus open; it is closed in K and hence compact,

since any the complement of an open subgroup is a union of cosets, which is also open; and, by the defining property of L, it satisfies $K \cdot H \subseteq K$, and hence $H = 1 \cdot H \subseteq K$, as wanted.

Remark 6.9. If in addition G is compact, we may take the subgroups in the lemma to be normal in G. This is proved in the home-exercise.

We will now prove an important result on ℓ -groups.

Theorem 6.10. Let G be an ℓ -group. There exists, up to multiplication by a constant, a unique left invariant distribution $\mu_G \in (S(G)^*)^G$ - i.e., such that

$$\langle g_0 \mu_G, f \rangle = \int_G f(g_0 g) d\mu_G(g) = \int_G f(g) d\mu_G(g) = \langle \mu_G, f \rangle,$$

for all $g_0 \in G$ and $f \in S(G)$. Furthermore, we may assume μ is positive. Such a distribution is called a Haar measure on G.

PROOF. We begin by showing uniqueness. The essential step in this case is to note that the measure μ_G is completely determined by its value on the indicator function of a small enough subgroup.

Let $\mathcal{H} = \{H_{\alpha}\}_{{\alpha} \in I}$ be a basis of compact open subgroups of G. Note that, up to replacing all H_{α} 's with $H_{\alpha} \cap H_{\alpha_0}$ for some α_0 , we may assume $\bigcup \mathcal{H} \subseteq H_{\alpha_0}$.

Step 1. Uniquness. Since $S(X) = \operatorname{Span}_{\mathbb{R}} \{I_H : H \in \mathcal{H}\}$ and μ is non-zero, there necessarily exists $H \in \mathcal{H}$ such that $\mu(H) \neq 0$. We claim that this implies $\mu(H') \neq 0$ for all $H' \in \mathcal{H}$. Indeed, assume towards a contradiction that $\mu(H') = 0$ for some $H' \in \mathcal{H}$ and put $K = H' \cap H$. Then K is again a compact open subgroup, and, since its translates cover both H and H', it is of finite index in both groups. Now, by the assumption $\mu(H') = 0$ and μ is translation invariant, it follows that

$$0 = \mu(H') = [H' : K]\mu(K),$$

and hence $\mu(K) = 0$. On the other hand, the same argument shows that

$$0 \neq \mu(H) = [H:K]\mu(K) = [H:K] \cdot 0 = 0.$$

A contradiction.

Moreover, this computation shows that

$$\mu(H') = [H':K]\mu(K) = \frac{[H':K]}{[H:K]}\mu(H)$$

for any $H' \in \mathcal{H}$. Thus, the values of μ on the $I_{H'}$'s. and hence on S(X), is determined by its values on any compact subgroup $H \in \mathcal{H}$.

Step 2. Existence. This will be proved in the next tutorial.

3