The Master theorem

Let $a \ge 1$ and b > 1 be constants. Let f(n) be an asymptotically positive function, and let T(n) be defined on the nonnegative integers by the recurrence relation:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where n/b stands for either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

We have that

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and if $af(n/b) \leq cf(n)$ for some constant c < 1 and n large enough, then $T(n) = \Theta(f(n))$