Central European Olympiad in Informatics 2020

Skubantys Šachmatai

Mistinę Šachmatų šalį sudaro stačiakampio formos gardelė iš R eilučių ir C stulpelių, kur R yra nemažesnis už C. Jos eilutės ir stulpeliai yra sunumeruoti nuo 1 iki R ir nuo 1 iki C, atitinkamai.

Sachmatų šalies gyventojai paprastai vadinami *figūromis*, ir jų iš viso šioje šalyje klajoja penkios ypatingos rūšys: pėstininkai, bokštai, rikiai, karalienės ir karaliai. Skirtingai nei dažnai manoma, jodinėjimas ir riterystė jau seniai nebepopuliarūs Šachmatų šalyje, taigi joje nėra jokių žirgų.

Kiekviena figūra juda po Šachmatų šalies langelius ypatingu būdu: vienu ėjimu,

- pėstininkas gali pajudėti per vieną eilutę į priekį (t.y. iš eilutės r į r+1), likdamas tame pačiame stulpelyje;
- bokštas gali pajudėti per bet kiek stulpelių į kairę ar dešinę likdamas toje pačioje eilutėje,
 ARBA per bet kiek eilučių pirmyn ar atgal, likdamas tame pačiame stulpelyje;
- rikis gali pajudėti į bet kurį langelį dviejose įstrižainėse, kurios kertasi jo užimame langelyje;
- karalienė gali persikelti į bet kurį langelį, kur galėtų persikelti bokštas arba rikis iš to paties langelio;
- karalius gali persikelti į bet kurį iš aštuonių kaimyninių langelių.

Sekančiame paveikslėlyje simboliu X pažymėta, kur kiekviena iš figūrų gali persikelti vienu ėjimu (čia eilutės sunumeruotos iš apačios į viršų, o stulpeliai – iš kairės į dešinę).

Neseniai, Šachmatų šalyje tapo pavojinga: po šalį judančios figūros gali būti pagrobtos nežinomų būtybių ir dingti be žinios. Todėl visos figūros įprato planuoti savo keliones kaip

1

v3

įmanoma trumpesnes, t.y. iš kuo mažiau ėjimų. Jas taip pat domina skirtingų trumpiausių kelių skaičius, kadangi kuo daugiau skirtingų kelių — tuo mažesnė tikimybė būti pagrobtam. Du keliai laikomi skirtingais, jei jie skiriasi bent vienu aplankytu langeliu.

Šiame uždavinyje laikysime, kad visos figūros atkeliauja į Šachmatų šalį kuriame nors eilutės nr. 1 stulpelyje, ir ją palieka kuriame nors eilutės nr. R stulpelyje. Jūsų užduotis yra atsakyti į Q užklausų: žinodami figūros rūšį, stulpelį, kuriame ji atkeliavo į šalį eilutėje nr. 1, ir stulpelį, kurį ji turi pasiekti eilutėje nr. R, suskaičiuokite mažiausią tam reikalingų ėjimų skaičių, ir kiek tokių (trumpiausių) kelių yra iš viso.

Pradiniai duomenys

Pirmojoje eilutėje įrašyti trys tarpais atskirti sveikieji skaičiai: Šachmatų šalies eilučių skaičius R, stulpelių skaičius C ir užklausų skaičius Q. Toliau pateikta Q eilučių:

Kiekvieną eilutę sudaro:

- simbolis T, žymintis figūros rūšį: P pėstininką (pawn), R bokštą (rook), B rikį (bishop), Q karalienę (queen), K karalių (king);
- du sveikieji skaičiai c_1 ir c_R , $1 \leq c_1, c_R \leq C$, žymintys kad figūra pradeda kelionę stulpelyje c_1 (eilutėje nr. 1), ir turi pasiekti stulpelį c_R (eilutėje nr. R).

Rezultatai

Išveskite Q eilučių, i-ojoje eilutėje pateikdami atsakymą į užklausą nr. i – du sveikuosius tarpu atskirtus skaičius. Pirmasis skaičius yra mažiausias reikalingų ėjimų skaičius, antrasis — skirtingų trumpiausių kelių skaičius. Kadangi atsakymas gali būti didelis skaičius, apskaičiuokite jį moduliu $10^9 + 7$, naudodami pateiktas bibliotekos funkcijas.

Jeigu nurodyto langelio pasiekti neįmanoma, išveskite "0 0".

Biblioteka

Vertinimo sistema pateikia biblioteką aritmetinėms operacijoms moduliu 10^9+7 atlikti. Visais atvejais, funkcijos parametrai gali būti bet kurios galimos int reikšmės, ir atsakymas bus skaičius nuo 0 iki 10^9+6 . Jums pateikta pavyzdinė bibliotekos versija testavimui, žr. "Praktinė informacija".

- Add(int a, int b): sudeda skaičius a ir b, ir grąžina atsakymą moduliu $10^9 + 7$.
- Sub(int a, int b): atima b iš a, ir grąžina atsakymą moduliu 10^9+7 .
- Mul(int a, int b): apskaičiuoja a ir b sandauga, ir gražina atsakyma moduliu $10^9 + 7$.
- Div(int a, int b): apskaičiuoja a dalybos iš $b \neq 0$ moduliu $10^9 + 7$ dalmenį, t.y. grąžina reikšmę $0 \leq q < 10^9 + 7$, jei ir tik jei Mul(b,q) rezultatas yra $(a \mod 10^9 + 7)$.

2

v3

Laikykite, kad visos šios operacijos atliekamos per konstantinį laiką.

Kad galėtumėte naudoti šias funkcijas savo sprendime, jūs turite įterpti eilutę #include "arithmetics.h" savo sprendimo faile (tarp kitų įterpinių).

Praktinė informacija

Faile sample.zip rasite antraštę arithmetics.h ir failą arithmetics.cpp, kuriame pateiktas pavyzdinis aritmetinių funkcijų kodas, skirtas testavimui.

Kad galėtumėte naudoti šias funkcijas, jūs turite nukopijuoti abu failus į tą patį katalogą kaip ir jūsų sprendimo failas (pvz. sachmatai.cpp), ir įterpti eilutę #include "arithmetics.h" tarp kitų įterpinių jūsų sprendime.

Tuomet paprasčiausiai kompiliuokite failą sachmatai.cpp kartu su arithmetics.cpp, pvz. įvykdydami g++ -o sachmatai arithmetics.cpp sachmatai.cpp komandinėje eilutėje. Arba, jei naudojate į projektus orientuotą integruotą programavimo aplinką (*IDE*), jūs turite įtraukti visus tris failus į projektą prieš kompiliuodami.

Teisingi atsakymai pavyzdiniams testams yra pateikti failuose output0.txt ir output1.txt. Nei viena iš pateiktų funkcijų ar įrankių netikrina jūsų atsakymų teisingumo.

3

Pateikdami sprendimą vertinimo sistemai, turite įkelti tiktai savo sprendimo failą (pvz. sachmatai.cpp, aukščiau minėtame pavyzdyje).

Pavyzdžiai

Pradiniai duomenys	Rezultatai	
8 8 5	0 0	
P 1 2	2 2	
R 4 8	2 5	
Q 2 3	2 2	
В 3 6	7 393	
K 5 5		

Ribojimai

 $1 \le Q \le 1000$ $2 \le C \le 1000$ $C \le R \le 10^9$

Laiko ribojimas: 1.3 s

Atminties ribojimas: 64 MiB

v3

Vertinimas

Dalinė užduotis	Taškai	Ribojimai
1	0	pavyzdžiai
2	8	$T \in \{'P', 'R', 'Q'\}$, t.y. figūros yra pėstininkai, bokštai arba karalienės
3	15	$T = 'B'$ ir $C, R \le 100$
4	22	T = 'B'
5	5	$T = 'K'$ ir $C, R \le 100$ ir $Q \le 50$
6	8	$T = 'K'$ ir $C, R \le 100$
7	15	$T = 'K'$ ir $C \le 100$
8	20	T = 'K'
9	7	jokių papildomų ribojimų

4