Define tion theory and a theorem of Mori

Jason Starn

Fix an algebraically closed field k.

Def. A Fano manifold X/k is a smooth, would proper variety sit $\det (T_X) = w_X^{-1} \quad \text{is ample} \, .$

Examples (1) (writes \longrightarrow \mathbb{P}^{2} (2) Surfaces \longrightarrow Del Pezzo surfaces $= \mathbb{P}^{2} \times \mathbb{P}^{1}$ flow up of \mathbb{P}^{2} at $n \leq 8$ general pts

(3) $X_d \subset \mathbb{P}^n$ a smooth hypersurface of degree of is Fano it $d \leq n$.

Theorem (Mori) Every Fano noted of dim > 1 is "univalled": every closed pt ρ of \times is contained in the image of finite mapping $f: P^1 \to \times$.

Obstruction theory

Let R be a borar, complete, noetherian ring. W alg. closed residue field k.

Let $C_R = (at. of beat, artinian R-algs, vs. idee field k.$

Intritesimal ext'n $A' \xrightarrow{9} A$ st. (see (a) = N with $M_A' \cdot N = 0$.

- a f-dim'l k-vec. sp.

 $\Sigma: 0 \longrightarrow V \longrightarrow A' \longrightarrow A \longrightarrow 0.$ $V \longrightarrow V \longrightarrow A' \longrightarrow A \longrightarrow 0.$ $\Sigma: 0 \longrightarrow V \longrightarrow A' \longrightarrow A \longrightarrow 0.$

Let $F: \ell_R \longrightarrow Sets$ be a functor $w = f(\kappa) = \{\cdot\}$

Def. situation $(\Sigma, x \in F(A))$

O a fidim'e k-vec. sp.

$$(N \mapsto N \otimes O)$$

w is a rule $(\Sigma, x) \mapsto w_{\Sigma, x} \in V \otimes O$.

(i) suitably natural, i.e.
$$U: (\Sigma, x) \longrightarrow (\widetilde{\Sigma}, \widetilde{x}) , u: \Sigma \longrightarrow \widetilde{\Sigma} \text{ s.t.}$$

$$U: (\Sigma, x) \longrightarrow (\widetilde{\Sigma}, \widetilde{x}) , u: \Sigma \longrightarrow \widetilde{\Sigma} \text{ s.t.}$$

$$U: (\Sigma, x) \longrightarrow (\widetilde{\Sigma}, \widetilde{x}) , u: \Sigma \longrightarrow \widetilde{\Sigma} \text{ s.t.}$$

the image of WEN under NOU -> NOO is WI. I.

(ii) $W_{\Sigma,x}$ equals 0 iff x is the image of an elt $x' \in F(A')$.

Even (i) => "if" in (ii).

Examples. (1) Let
$$F = hs$$
, $S = RTXI/I = RTX_1,..., X_2I/(f_1,...,bs)$.

$$I/I^{2} \longrightarrow \widehat{\bigcap}_{R} \mathbb{C} \times \mathbb{D}/_{R} \underset{RC \times \mathbb{D}}{\otimes} S$$

$$|I|$$

$$|R[I \times \mathbb{D}] \{ \text{d} x_{1}, \text{d} x_{2} \}$$

$$(\phi: dx_i \mapsto c_i) \mapsto (f_j \mapsto \sum_{i=1}^{\nu} \frac{\partial f_j}{\partial x_i} c_i)$$

3 R-alg. homo.

v': $k\mathbb{C} \times \mathbb{D} \longrightarrow A'$

Every lift is of the form v'+ 2,

d: "dxi" - ut in N

6: ÂRIXI/R -N

b'+ 2 factors through S if \$1,-- fs -> 0.

S-module homomorphism $I/I^2 \rightarrow N$ $f_j \mapsto (v'+\delta)(f_j)$

We shot: eft $w \in Hom_S(I/I^2, N) / Hom_{RUXD}(\widehat{x}, N)$ is independent of the choice

of v1.

(Hom (I/I2, K)/ Hom (R, K)) & N.

This obstruction vanishes iff vv extends to an R-alg hom. $S \longrightarrow A'$.

Example Let C be a smooth, proj. conn'd curve $/\kappa$, Let $Z \subset C$ be an effective Cartier divisor. Let X be a smooth κ -scheme. Let $f_0: C \to X$ be a κ -morphism.

benob g := folz: 7 -> X.

 $R = \kappa$, $F : A \longrightarrow \{f_A : C_R^{\otimes} A \longrightarrow X_R^{\otimes} A \}$ (i) $f = bo \mod m_A \}$ $S_{Pa} A \qquad (ii) f = bo \mod m_A \}$

Obstaction thony . O=H1(C, 6*Tx & Iz)

Ciren a deformation situation

O-N- A'- A-O ta: CA- XA

Let $U \subset C$ be an affine open. $f = f_A = f_{A'}$ as maps of top. spaces $Z_A \subset Z_{A'}$ $U_A \hookrightarrow U_{A'}$

falua I Fain c NoT unique

OX -> F. O.U.

Other Choices differ by a derivation $IIX \longrightarrow N\otimes f * OU_A \otimes I_Z$

{UB} spen affin con- of C.

For every B, choose FA, UB

On Upn Ur, FA, up (upnur -) FA, ur lupnur

is an ext in Rx -> No fx Ournup & Iz

~ W_{Z,f} ∈ H¹(ζ, Hom (f^{*}_A, Rx, N & I_{ZA}))

= H1 (C, Homos (f*Ix, N& Iz))

= No H1 (c, f* Tx & Iz)

Fart. Let F= hs be a Propresentable functor on CR.

Let $\theta_{\text{can}} = \text{Hom}(I/I^2, \kappa) / \text{Hom}(\hat{\Omega}_{\text{RIXI}/R}, \kappa)$

Let O be any other obstaction theory, then $\exists ! \ \forall : \ O_{Can} \longrightarrow O$ s.t. every $W_{\Xi_i, \chi} = \text{image} \ W_{\Xi_i, \chi}$ can under ψ .

MA1 = 0

And y is injective. WE I/mRTXD I & 9

It does not extend after taking pushout.

 I/m_{RIXD} I — free κ - Let space ω basis the images of a minimal set of gen!s for I.

 $S = R(x_1, \dots, x_n D)/(f_1, \dots, f_s)$ $t_p = -dx, \dots, \dots, -dx, \dots$

din to = = = = min A of gen's,

din n 10 7.5 = min # of relations

dim S >, dim R + dim_k
$$t_F - dim_k O$$

Example For $C \xrightarrow{t_O} X$
 $Z \xrightarrow{g}$
 $C \subset C_A \xrightarrow{t_A} X$
 $U \xrightarrow{g}$
 $V \xrightarrow{g}$

$$\dim S \geqslant \dim R + n - s \geqslant \dim R + \dim t_F - \dim O$$

$$\dim S / m_R S \geqslant \dim t_F - \dim O \qquad \text{and equality} \implies S \text{ is } R - \text{flat}$$

$$(\text{miracle flatness})$$

 $\theta = H^1(c, f^*T_X \otimes I_Z)$

tr = Ho(c, +* Tx & Iz)

$$\dim S \geq (h^{\circ} - h^{\circ}) (C, f^{*}T_{\times} \otimes I_{?})$$

$$= \deg (f^{*}T_{\times}) + \dim(X) (1 - g(C) - \deg(?))$$

$$= \deg (f^{*} \det(T_{\times}))$$

If this dim. is positive, then \dim_{Lfo} Hom $(C, X; g: 7 \to X)$ is positive. $9-\mathsf{proj}$.

In pos. chan, use First. to make din positive!