

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A dispersion of tin-doped indium oxide fine

particles, the dispersion comprising (1) tin-doped indium oxide fine particles, (2) a plasticizer for an interlayer film, (3) an organic solvent containing at least one alcohol as a main component, and a (4) dispersion stabilizer,

wherein under measuring conditions of a concentration of the tin-doped indium oxide

fine particles of 0.7% by weight and an optical path length of a glass cell of 1 mm,

a visible light transmittance is 80% or more,

a solar radiation transmittance at a wavelength within a range from 300 nm to 2100 nm is

3/4 or less of the visible light transmittance,

a haze value is 1.0% or less,

a reflection yellow index is -20 or more,

~~the dispersion stabilizer comprises a chelate, an organic acid, and a phosphate ester-based compound,~~

~~the content of the dispersion stabilizer is from 6 % to 20.7% by weight, wherein the dispersion stabilizer comprises (i) a chelate at a content in a range of 3.3 to 30 parts by weight per 100 parts by weight of the tin-doped indium oxide fine particles, (ii) an organic acid at a content in a range of 6.0 to 20.3 parts by weight per 100 parts by weight of the tin-doped indium~~

oxide fine particles, and (iii) a phosphate ester-based compound at a content in a range of 6.7 to 16.7 parts by weight per 100 parts by weight of the tin-doped indium oxide fine particles.

the concentrationcontent of the tin-doped indium oxide fine particles is from 10% to 60% by weight,

the content of the alcohol is from 4 to 13.8% by weight, and

the content of the plasticizer is from 10% to 80% by weight

the content of the chelate is in a range of 3.3 to 30 parts by weight, the content of the organic acid is in a range of 6.0 to 20.3 parts by weight, and the content of the phosphate ester-based compound is in a range of 6.7 to 16.7 parts by weight, relative to 100 parts by weight of the tin-doped indium oxide fine particles, respectively.

2. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,

wherein instead of the reflection yellow index being -20 or more, or with the reflection yellow index being -20 or more,

under measuring conditions of the optical path length of the glass cell of 1 mm, a reflection value at 0 degrees among reflected light distribution at an incidence angle of 45 degrees measured by a goniophotometer is 30 or less.

3. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,

wherein the plasticizer for an interlayer film is at least one selected from the group consisting of dihexyl adipate, triethylene glycol di-2-ethylhexanoate, tetraethylene glycol di-2-ethylhexanoate, triethylene glycol di-2-ethyl butyrate, tetraethylene glycol di-2-ethyl butyrate, tetraethylene glycol di-heptanoate, and triethylene glycol di-heptanoate.

4. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,
wherein the at least one alcohol comprises at least one selected from the group consisting of methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, lauryl alcohol, diacetone alcohol, cyclohexanol, ethylene glycol, diethylene glycol, and triethylene glycol.

5. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,
wherein the dispersion stabilizer contains at least one atom selected from the group consisting of nitrogen, phosphorus, and chalcogen.

6.-8. (canceled).

9. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,
wherein a content of the plasticizer for an interlayer film is from 1 to 99.9% by weight, a content of the organic solvent containing at least one alcohol as a main component is from 0.02 to 25% by weight.

10. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,
wherein the dispersion of tin-doped indium oxide fine particles is obtained by diluting a dispersion of tin-doped indium oxide fine particles which contains tin-doped indium oxide fine particles, a plasticizer for an interlayer film, an organic solvent containing at least one alcohol as a main component, and a dispersion stabilizer, and in which a concentration of the tin-doped indium oxide fine particles is from 0.1 to 95% by weight, with a plasticizer for an interlayer film,

or a plasticizer for an interlayer film containing an organic solvent containing at least one alcohol as a main component and/or a dispersion stabilizer.

11. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,

wherein, when a concentration of the tin-doped indium oxide fine particles is adjusted to 10.0% by weight by diluting a dispersion of tin-doped indium oxide fine particles having the concentration of the tin-doped indium oxide fine particles of 10.0% by weight or more, or when a concentration of the tin-doped indium oxide fine particles is adjusted to 40.0% by weight by diluting a dispersion of tin-doped indium oxide fine particles having the concentration of the tin-doped indium oxide fine particles of 40.0% by weight or more,

a mean volume particle size of the tin-doped indium oxide fine particles is 80 nm or less, and

a particle size at 90% accumulation (D90) is 160 nm or less.

12. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,

wherein a primary average particle size of the tin-doped indium oxide fine particles is 0.2 μ m or less.

13. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 1,

wherein a lattice constant of a tin-doped indium oxide fine particle crystal is from 10.11 to 10.16 Å.

14. (currently amended): A method for manufacturing the dispersion of tin-doped indium oxide fine particles according to claim 1,

the method comprising mixing an organic solvent containing at least one alcohol as a main component, a dispersion stabilizer, tin-doped indium oxide fine particles, and plasticizer for an interlayer film, thereby dispersing the tin-doped indium oxide fine particles,

wherein the dispersion stabilizer comprises a chelate, an organic acid, and a phosphate ester-based compound;

the content of the dispersion stabilizer is from 6% to 20.7% by weight, wherein the dispersion stabilizer comprises (i) a chelate at a content in a range of 3.3 to 30 parts by weight per 100 parts by weight of the tin-doped indium oxide fine particles, (ii) an organic acid at a content in a range of 6.0 to 20.3 parts by weight per 100 parts by weight of the tin-doped indium oxide fine particles, and (iii) a phosphate ester-based compound at a content in a range of 6.7 to 16.7 parts by weight per 100 parts by weight of the tin-doped indium oxide fine particles, and the concentration content of the tin-doped indium oxide fine particles is from 10% to 60% by weight,

the content of the alcohol is from 4% to 13.8% by weight, and

the content of the plasticizer is from 10% to 80% by weight

the content of the chelate is in a range of 3.3 to 30 parts by weight, the content of the organic acid is in a range of 6.0 to 20.3 parts by weight, and the content of the phosphate ester-based compound is in a range of 6.7 to 16.7 parts by weight, relative to 100 parts by weight of the tin-doped indium oxide fine particles, respectively.

15. (previously presented): The method for manufacturing a dispersion of tin-doped indium oxide fine particles according to claim 14,

wherein a mixed solution containing the organic solvent containing at least one alcohol as a main component, the dispersion stabilizer, and the tin-doped indium oxide fine particles is prepared, and

this mixed solution is mixed with the plasticizer for an interlayer film to obtain a dispersion of tin-doped indium oxide fine particles.

16. (previously presented): The method for manufacturing a dispersion of tin-doped indium oxide fine particles according to claim 15,

wherein the mixed solution containing the organic solvent containing at least one alcohol as a main component, the dispersion stabilizer, and the tin-doped indium oxide fine particles is prepared, and

this mixed solution is added to the plasticizer for an interlayer film, or the plasticizer for an interlayer film is added to this mixed solution, thereby dispersing the tin-doped indium oxide fine particles.

17. (previously presented): The method for manufacturing a dispersion of tin-doped indium oxide fine particles according to claim 15,

wherein a plasticizer containing an organic solvent containing at least one alcohol as a main component or a dispersion stabilizer is used as the plasticizer for an interlayer film.

18. (previously presented): An interlayer film for heat shield laminated glass, which is formed by using a resin composition of a mixture of the dispersion of tin-doped indium oxide fine particles of claim 1 and a resin,

wherein, under measuring conditions in which the interlayer film having a thickness of 0.76 mm is interposed between clear glass sheets having a thickness of 2.5 mm,

electromagnetic wave shield properties at a frequency of 0.1 MHz to 26.5 GHz is 10dB

or less,

a haze value is 1.0% or less,

a visible light transmittance is 70% or more,

a solar radiation transmittance at a wavelength within a range from 300 to 2100 nm is 80% or less of the visible light transmittance, and

a reflection yellow index is -12 or more.

19. (previously presented): The interlayer film for laminated glass according to claim 18,

wherein instead of the reflection yellow index being -12 or more or with the reflection yellow index being -12 or more,

a reflection value at 0 degrees among reflected light distribution at an incidence angle of 45 degrees measured by a goniophotometric measurement is 25 or less.

20. (previously presented): The interlayer film for laminated glass according to claim 18,

wherein 20 to 60 parts by weight of the plasticizer for an interlayer film and 0.1 to 3 parts by weight of the tin-doped indium oxide fine particles based on 100 parts by weight of a polyvinyl acetal resin are contained.

21. (previously presented): The interlayer film for laminated glass according to claim 20,

wherein the polyvinyl acetal resin is a polyvinyl butyral resin.

22. (previously presented): The interlayer film for laminated glass according to claim 18,

wherein the resin composition obtained by mixing the dispersion of tin-doped indium oxide fine particles with the resin further contains an alkali metal salt and/or an alkali earth metal salt as an adhesion adjustor.

23. (previously presented): The interlayer film for laminated glass according to claim 18,

wherein the tin-doped indium oxide fine particles have an average particle size of 80 nm or less and are dispersed such that a number of particles having a particle size of 100 nm or more is one per μm^2 or less.

24. (previously presented): A laminated glass comprising the interlayer film for laminated glass of claim 18.

25. (previously presented): The laminated glass according to claim 24,
wherein the laminated glass has heat ray shield properties in which electromagnetic wave shield performance at a frequency of 0.1 MHz to 26.5 GHz is 10 dB or less, a haze value is 1.0% or less, a visible light transmittance is 70% or more, a solar radiation transmittance at a wavelength within a range from 300 to 2100 nm is 80% or less of the visible light transmittance, and a reflection yellow index is -12 or more.

26. (previously presented): The laminated glass according to claim 25,
wherein instead of the reflection yellow index being -12 or more, or with the reflection yellow index being -12 or more,

a reflection value measured at 0 degrees among reflected light distribution at an incidence angle of 45 degrees measured by a goniophotometric measurement is 25 or less.

27. (currently amended): A dispersion of tin-doped indium oxide fine particles, the dispersion comprising (1) tin-doped indium oxide fine particles, (2) a plasticizer for

an interlayer film, (3) an organic solvent containing at least one alcohol as a main component, and (4) a dispersion stabilizer,

wherein under measuring conditions of a concentration of the tin-doped indium oxide fine particles of 0.7% by weight and an optical path length of a glass cell of 1 mm, a visible light transmittance is 80% or more, a solar radiation transmittance at a wavelength within a range from 300 nm to 2100 nm is 3/4 or less of the visible light transmittance,

a haze value is 1.0% or less,

a reflection yellow index is -20 or more,

the dispersion stabilizer comprises a chelate, an organic acid, and a phosphate ester-based compound,

the concentration content of the tin-doped indium oxide fine particles is from 10% to 60% by weight,

in the dispersion, the content of the organic acid is in a range of 2% to 8% by weight, the content of the phosphate ester-based compound is in a range of 1% to 6% by weight, the content of the chelate is in a range of 1% to 10.3% by weight, the content of the alcohol is from 4% to 13.8% by weight, and the content of the plasticizer is from 10% to 80% by weight, respectively, and

the total content of the chelate, the organic acid, and phosphate ester-based compound is in a range of 26.7 to 60 parts by weight relative to 100 parts by weight of the tin-doped indium oxide fine particles.

28. (previously presented): The dispersion of tin-doped indium oxide fine particles according to claim 27,

wherein the total content of the chelate, the organic acid, and phosphate ester-based compound is in a range of 6 to 20.7% by weight.

29. (previously presented): An interlayer film for heat shield laminated glass, which is formed by using a resin composition of a mixture of the dispersion of tin-doped indium oxide fine particles of claim 27 and a resin,

wherein, under measuring conditions in which the interlayer film having a thickness of 0.76 mm is interposed between clear glass sheets having a thickness of 2.5 mm,

electromagnetic wave shield properties at a frequency of 0.1 MHz to 26.5 GHz is 10dB or less,

a haze value is 1.0% or less,

a visible light transmittance is 70% or more,

a solar radiation transmittance at a wavelength within a range from 300 to 2100 nm is 80% or less of the visible light transmittance, and

a reflection yellow index is -12 or more.

30. (previously presented): A laminated glass comprising the interlayer film for laminated glass of claim 29.