RICHARDSON EXTRAPOLATION

(1) Onden of a Method:

If a method has an error term that is $O(h^{K})$, we say the method is with order method. For example, If we use a Taylor polynomial to approximate a function at n = a + h, we have f(n) = f(a + h)

 $f(\eta) = f(a+h)$ $= f(a) + h f'(a) + \frac{h^2}{2!} f''(a) + \frac{h^3}{3!} f'''(\eta)$

then we say that the approximation is $O(\frac{13}{h^3})$, or the method is of 3^{24} order. This is written as $f(h) = O(\frac{13}{h^3})$.

Richardson Extrapolation 1-

In earlier section, we derived first and second - order finite difference approximation formulas for first derivative by interpolating the data points. Now, we will use different values of h to improve the accuracy of these formulas.

Let 18 Consider the second-order Gentral différence formula for f'(xi) which gives O(R²) approximation; $f'(\gamma_{i}) = \frac{f(\gamma_{i+1}) - f(\gamma_{i-1})}{\gamma_{i+1} - \gamma_{i-1}} - \frac{h^2}{6} f''(\gamma_{i})$ this pant we have

this pant we have $f'(x_i) = \frac{f(x_i + h) - f(x_i - h)}{2h} - \frac{h^2}{6}f^3(h)$ $f'(x_i) = \frac{f(x_i + h) - f(x_i - h)}{2h} - \frac{h^2}{6}f^3(h)$ where $\eta \in [\chi_{i4}, \chi_{j+1}]$. Notations: P = true value of the derivative that is, f(xi) D(h) = approximate value of the derivative obtained by using a step size h. P(h/2) = approximate value of the derivativeobtained by using a step size h/2. equation D Con be wridden as $D = D(h) - \frac{h^2}{6} f^3(\eta) + o(h^4) - 2$

If we consider the step size h/2, instead of h, then from egn. 1) , we get $f'(n_i) = \frac{f(n_i + \frac{h}{2}) - f(n_i - \frac{h}{2})}{h} - \frac{h^2}{24}f^3(n)$ In other words $D = D(\frac{h}{2}) - \frac{h^2}{24}f^{(3)}\eta) + o(f^4)$ -3 Multiplying Equation 3 by 4 (So that the error term (ancels), we get $4D = 4D(\frac{h}{2}) - \frac{h^2}{6}f^{(3)}(\eta) + O(h^4)$ Subtracting Equation (2) from (1), are harry $3D = 4D\left(\frac{1}{2}\right) - D(h)$ $\Rightarrow \left(\mathcal{D} = 4 \mathcal{D} \frac{\mathcal{B}}{2} - \mathcal{D} \mathcal{B} \right)$ Phis gires an O(h4) approximation to D= f'(xi). This process of extrapolating from D(h) and D(h) to approximate D with higher order of accuracy is alled as kichardson, Extrapolation.

Duechon D- Consider - the following data

No. 11 1 2 3 4 5

d= f(n) 2 4 8 16 32 Estimate $f'(n_2) = f'(3)$ Using Richardson Extrapolation with h=2. Solution: we will directly calculate $f'(\eta_2)$ Uking Richardson Extrapolation. We know $D(h) = f(\eta_1 + h) - f(\eta_1 - h)$ $2 \int \left(\frac{h}{2}\right) = \frac{f(x_i + h/2) - f(x_i - h/2)}{h}$ He have given that h=2. This implies $D(h) = \frac{f(\eta_2 + h) - f(\eta_2 - h)}{2h}$ = f(3+2) - f(3-2) = 2(2) $= \frac{f(5) - f(1)}{4} = \frac{32 - 2}{4}$ of wind or the $= \frac{30}{4} = \frac{15}{2} = \boxed{7.5}$ $\mathcal{D}(h/2) = f(\eta_2 + h/2) - f(\eta_2 - h/2)$

$$D(h/2) = \frac{f(3+1) - f(3-1)}{2}$$

$$= \frac{f(4) - f(2)}{2} = \frac{16-4}{2}$$

$$= \frac{12}{2} = 6$$
Pudding them rapus in
$$D = \frac{4 \cdot D(h/2) - D(h)}{3}$$

$$= \frac{4 \cdot (6) - 7.5}{3}$$

$$= \frac{24 - 7.5}{3} = \frac{16.5}{3}$$

$$= \frac{24 - 7.5}{3} = \frac{16.5}{3}$$

$$= \frac{5.5}{3}$$
Remark: from the compal difference formula, we got
$$f'(3) = 6$$

$$U(\text{ang Richardson Extrapolation, we get}$$

$$f'(9) = 2^{n} \ln(2)$$

$$f'(9) = 2^{n} \ln(2)$$

$$f'(9) = 3^{n} \ln(2)$$

Now, we will find an O(h6) approximation of We have already eliminated he from and obtained a new approximated value D1 of D. therefore, we have and $D = D^{1}(\frac{h}{2}) + \frac{b_{4}h^{4}}{16} + \frac{b_{6}h^{6}}{64} + -\frac{8}{8}$ How, we will eliminate ht term from equation 7 & (h of) approximation. So, multiplying the egg. 8 by 16 and then subtracting it by eqn. Fourget 15 P = 16 D(h/2) - D(h) + 0 (h6)D = 16 D'(h/2) - D'(h) + 6(h6)15 Therefore, the O(h6) approximation of D using the step bize h and h/2 is given by: $D^2(h) = \frac{16 D'(h/2) - D'(h)}{15}$

Similarly, the O(R6) approximation of D the step size h/2 and h/4 is given $D^{2}(h/2) = \frac{16 D'(h/4) - D'(h/2)}{16 D'(h/2)}$ In general, the O(h 2(m+1)) approximation to D with sty gize h and h/2 is given by: $D^{m}(h) = \frac{4^{m} D^{m+}(h/2) - D^{m+}(h)}{(4^{m}-1)}$ where m=1,2,- such that $D^{\alpha}(h/2)=D(h/2)$ and $D^{\circ}(h) = D(h)$. Similarly, the O(h2(m+1)) approximation to p Hep Gize h/2 and h/4 is given by: $D^{m}(h/2) = 4^{m} D^{m-1}(h/4) - D^{m-1}(h/2)$ (60 m). $(4^{m}-1)$

Extrapolation Pable 1s given by The

.1	step size	O(h2)	0(44)	0(66)	0(48)
	· 4	D(h)	D'(R)	D2(h)	d o
	h/2	D(h/2)	D'(h/2)		D3 (M)
	h/4	D(R14)		D2(4/2)	24°
	h/8	D(R/8)	D(4/4)	3 e 3 4 18	t fire a

Durston:	PK	for	llowing	f	able of	f ray	lus is	gives:
f(2)	-) 2 s	1 1	2	3	256	625	7 2401	
	f'(3)	Ьу	Ric	hards	on Ex	drapola	tion a	eith:

approximate formula

 $f'(n_i) = \underbrace{f(n_i + h) - f(n_i - h)}_{2h}$

Solution: Since we are given three values of h, that is, h, h/2, h/4, so we will calculate approximation of O(-h2), O(h4) and O(h6).

Sty 6174
$$O(h^2)$$
 $O(h^4)$ $O(h^6)$
 $h=4$ $D(h)$ $D'(h)$ $D^2(h)$
 $h/2=2$ $D(h/2)$ $D(h/2)$ $D(h/2)$

Therefore, we have

$$D(h) = f'(3) = \frac{f(3+h) - f(3-h)}{2h} = \frac{f(7) - f(-1)}{8}$$

$$= \frac{2401 - 1}{8} = \frac{2400}{8} = \frac{2400}{8}$$

$$P(h|2) = f'(3) = \frac{f(3+h)-f(2-h)}{2h}$$

$$= \frac{f(5) - f(1)}{4} = \frac{6254}{4} = \frac{156}{2}$$

$$P(h|4) = f'(3) = \frac{f(3+h) - f(3-h)}{2h} = \frac{f(4) - f(2)}{2}$$

$$=\frac{256-16}{2}=120$$

This gires

$$D'(h) = \frac{4 P(h/2) - P(h)}{3} = \frac{4(156) - 300}{3}$$

$$=\frac{324}{3}=108$$

$$\mathcal{F}(h/2) = \frac{4 \mathcal{P}(h/2) - \mathcal{P}(h/2)}{3} = \frac{4(120) - 156}{3}$$

$$= 324$$

324 = 108

and
$$D^{2}(h) = \frac{4^{2} D'(h/2) - D'(h)}{(4^{2}-1)}$$

$$= \frac{16(108) - 108}{15} = \frac{1620}{15}$$

$$= \frac{108}{15}$$
Therefore, the Jable beganses
$$\frac{54cp \text{ (hizh O(h^{2}) O(h^{4}) O(h^{6})}}{4 300 - 108} = \frac{1620}{15}$$

$$\frac{4}{156} = \frac{108}{108}$$
Hence, $\int_{1}^{1}(3) = 108$ with $\int_{108}^{1}(3) = 108$

$$\frac{1}{156} = \frac{108}{108}$$
Hence, $\int_{1}^{1}(3) = 108$ with $\int_{108}^{1}(3) = 108$

$$\frac{1}{156} = \frac{108}{108}$$
Hence, $\int_{108}^{1}(3) = 108$ with $\int_{108}^{1}(3) = 108$

$$\frac{1}{156} = \frac{1620}{15}$$
Hence, $\int_{108}^{1}(3) = 108$

$$\frac{1}{156} = \frac{108}{108}$$
Hence, $\int_{108}^{1}(3) = 108$
Hence, $\int_{108}^{108}(3) = 108$
Hence, $\int_{108}^{1}(3) = 108$
He

Apply the approximate formula $f'(N_{-}) = f(N_{0} + h) - f(N_{0} - h)$ with h = 0.4, h = 0.2 & h = 0.1.