Introduction to gradient-based optimization

First and second order methods Naive gradient, stochastic gradient & accelerated gradient

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

Semi-parametric modelling - logistic regression

- → The objective is to predict the label $Y \in \{0,1\}$ based on $X \in \mathbb{R}^d$.
- \rightarrow Logistic regression models the distribution of Y given X.

$$\mathbb{P}(Y=1|X)=\sigma(\langle w,X\rangle+b)\,,$$

where $w \in \mathbb{R}^d$ is a vector of model **weights** and $b \in \mathbb{R}$ is the **intercept**, and where σ is the **sigmoid** function.

4/36

- \rightarrow The sigmoid function is a model choice to map $\mathbb R$ into (0,1).
- \rightarrow Another widespread solution for σ is $\sigma: z \mapsto \mathbb{P}(Z \leqslant z)$ where $Z \sim \mathcal{N}(0,1)$, which leads to a **probit** regression model.

Logistic regression

 $\rightarrow \{(X_i, Y_i)\}_{1 \leq i \leq n}$ are i.i.d. with the same distribution as (X, Y).

Likelihood

$$\begin{split} \prod_{i=1}^{n} \mathbb{P}(Y_{i}|X_{i}) &= \prod_{i=1}^{n} \sigma(\langle w, X_{i} \rangle + b)^{Y_{i}} (1 - \sigma(\langle w, X_{i} \rangle + b))^{1 - Y_{i}}, \\ &= \prod_{i=1}^{n} \sigma(\langle w, x_{i} \rangle + b)^{Y_{i}} \sigma(-\langle w, X_{i} \rangle - b)^{1 - Y_{i}} \end{split}$$

and the normalized negative loglikelihood is

$$f(w,b) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, \langle w, X_i \rangle + b).$$

Logistic regression

Compute \hat{w}_n and \hat{b}_n as follows:

$$(\hat{w}_n, \hat{b}_n) \in \mathsf{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \ \tfrac{1}{n} \sum_{i=1}^n \left(-Y_i(X_i^\mathsf{T} w + b) + \log(1 + e^{X_i^\mathsf{T} w + b}) \right) \ .$$

- → It is an average of losses, one for each sample point.
- → It is a convex and smooth problem.

Using the logistic loss function

$$\ell: (y, y') \mapsto \log(1 + e^{-yy'})$$

yields

$$(\hat{w}_n, \hat{b}_n) \in \underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \langle w, X_i \rangle + b) .$$

Maximum likelihood estimate

Assume for now that the intercept is 0. Then, the likelihood is,

$$L_n(w) = \prod_{i=1}^n \left(\frac{e^{X_i^T w}}{1 + e^{X_i^T w}} \right)^{Y_i} \left(\frac{1}{1 + e^{X_i^T w}} \right)^{1 - Y_i} = \prod_{i=1}^n \left(\frac{e^{X_i^T w Y_i}}{1 + e^{X_i^T w}} \right).$$

And the negative log-likelihood is

$$\ell_n(w) = -\log(L_n(w)) = \sum_{i=1}^n \left(-Y_i X_i^T w + \log(1 + e^{X_i^T w}) \right).$$

Derivatives

$$\begin{array}{lcl} \frac{\partial \left(\log (L_n(w)) \right)}{\partial w_j} & = & \sum\limits_{i=1}^n \left(Y_i X_{ij} - \frac{x_{ij} e^{X_i^T w}}{(1 + e^{X_i^T w})} \right) \\ & = & \sum\limits_{i=1}^n X_{ij} \left(Y_i - \sigma(\langle w, X_i \rangle) \right) \,. \end{array}$$

→ **No explicit solution** for the maximizer of the loglikelihood... Parameter estimate obtained using **gradient based optimization**.

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

General optimization problem

Parameter inference in machine learning often boils down to solving

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + g(w) ,$$

with f a goodness-of-fit functio based on a loss ℓ ,

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle w, x_i \rangle)$$

and

$$g(w) = \lambda pen(w)$$
,

where $\lambda > 0$ and $\mathbf{pen}(\cdot)$ is some penalization function.

$$\rightarrow \operatorname{pen}(w) = \|w\|_2^2 \text{ (Ridge)}.$$

$$\rightarrow \operatorname{pen}(w) = \|w\|_1$$
 (Lasso).

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

First order necessary condition

→ In dimension one.

Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. If x^* is a local extremum (minimum/maximum) then $f'(x^*) = 0$.

\rightarrow Generalization for d > 1.

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. If x^\star is a local extremum then $\nabla f(x^\star) = 0$.

Points such that $\nabla f(x^*) = 0$ are called **critical points**.

Critical points are not always extrema (consider $x \mapsto x^3$).

Gradient

The gradient of a function $f: \mathbb{R}^d \to \mathbb{R}$ in $x \in \mathbb{R}^d$, denoted by $\nabla f(x)$, is the vector of partial derivatives:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_d} \end{pmatrix}.$$

Some useful gradients

$$\rightarrow$$
 If $f: \mathbb{R} \rightarrow \mathbb{R}$, $\nabla f(x) = f'(x)$.

$$\rightarrow f: x \mapsto \langle a, x \rangle : \nabla f(x) = a.$$

$$\rightarrow f: x \mapsto x^T A x: \nabla f(x) = (A + A^T) x.$$

$$\rightarrow$$
 Particular case: $f: x \mapsto ||x||^2$, $\nabla f(x) = 2x$.

Heuristic: why gradient descent works?

For a function $f: \mathbb{R}^d \to \mathbb{R}$, define the **level sets**:

$$C_c = \{\mathbf{x} \in \mathbb{R}^d, f(\mathbf{x}) = c\}.$$

Figure 1: Gradient descent for function $f:(x,y)\mapsto x^2+2y^2$

→ The gradient is orthogonal to level sets.

Convexity

Convexity - Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex on \mathbb{R}^d if, for all $x, y \in \mathbb{R}^d$, for all $\lambda \in [0, 1]$, $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$

Convexity - First derivative

A differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for all $x, y \in \mathbb{R}^d$,

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$$

If $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable, the Hessian matrix in $x \in \mathbb{R}^d$ denoted by $\nabla^2 f(x)$ is given by

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_d}(x) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1}(x) & \frac{\partial^2 f}{\partial x_d \partial x_2}(x) & \dots & \frac{\partial^2 f}{\partial x_d^2}(x) \end{pmatrix}.$$

The Hessian matrix is symmetric if f is twice continuously differentiable.

Convexity

Convexity - Hessian

A twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if, for all $x \in \mathbb{R}^d$,

$$\nabla^2 f(x) \ge 0,$$

that is $h^T \nabla^2 f(x) h \ge 0$, for all $h \in \mathbb{R}^d$.

Optimality conditions: second order

Assume that f is twice continuously differentiable.

Necessary condition

If x^* is a local minimum, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semi-definite.

Sufficient condition

If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite then x^* is a strict local optimum.

For d=1, this condition boils down to $f'(x^*)=0$ and $f''(x^*)>0$.

Classes of algorithms

Gradient descent algorithms are **iterative procedures**. There are two classes of such algorithms, depending on the information that is used to compute the next iteration.

First-order algorithms that use f and ∇f . Standard algorithms when f is differentiable and convex.

Second-order algorithms that use f, ∇f and $\nabla^2 f$. They are useful when computing the Hessian matrix is not too costly.

Gradient descent algorithm

Gradient descent

Input: Function f to minimize, initial vector $w^{(0)}$, k = 0.

Parameters: step size $\eta > 0$.

While not converge do

Output: $w^{(n_*)}$ where n_* is the last iteration.

Gradient descent in practice

When does gradient descent converge?

Convex function

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex on \mathbb{R}^d if, for all $x, y \in \mathbb{R}^d$, for all $\lambda \in [0, 1]$, $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$

L-smooth function

A function f is said to be L-smooth if f is differentiable and if, for all $x, y \in \mathbb{R}^d$,

$$\|\nabla f(x) - \nabla f(y)\| \leqslant L\|x - y\|.$$

If f is **twice differentiable**, this is equivalent to writing that for all $x \in \mathbb{R}^d$,

$$\lambda_{max}(\nabla^2 f(x)) \leqslant L.$$

Convergence of Gradient Descent

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a *L*-smooth convex function. Let w^* be a minimum of f on \mathbb{R}^d . Then, Gradient Descent with step size $\eta \leqslant 1/L$ satisfies

$$f(w^{(k)}) - f(w^*) \leqslant \frac{\|w^{(0)} - w^*\|_2^2}{2\eta k}$$
.

In particular, for $\eta = 1/L$,

$$L\|w^{(0)} - w^*\|_2^2/2$$

iterations are sufficient to get an ε -approximation of the minimal value of f.

Descent Lemma

A key point: the descent lemma

If f is L-smooth, then for any $w, w' \in \mathbb{R}^d$,

$$f(w') \leqslant f(w) + \langle \nabla f(w), w' - w \rangle + \frac{L}{2} ||w - w'||_2^2$$
.

Using the descent Lemma,

$$\begin{split} & \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ f(\boldsymbol{w}^k) + \langle \nabla f(\boldsymbol{w}^k), \boldsymbol{w} - \boldsymbol{w}^k \rangle + \frac{L}{2} \| \boldsymbol{w} - \boldsymbol{w}^k \|_2^2 \right\} \\ & = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\| \boldsymbol{w} - \left(\boldsymbol{w}^k - \frac{1}{L} \nabla f(\boldsymbol{w}^k) \right) \right\|_2^2. \end{split}$$

Hence, it is natural to choose

$$w^{k+1} = w^k - \frac{1}{I} \nabla f(w^k) .$$

This is the most standard gradient descent algorithm.

Faster rate for strongly convex function

Strong convexity

A function $f: \mathbb{R}^d \to R$ is μ -strongly convex if

$$x \mapsto f(x) - \frac{\mu}{2} \|x\|_2^2$$

is convex.

If f is differentiable it is equivalent to, for all $x \in \mathbb{R}^d$,

$$\lambda_{min}(\nabla^2 f(x)) \geqslant \mu$$
.

This is also equivalent to, for all $x, y \in \mathbb{R}^d$,

$$f(y) \geqslant f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2.$$

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a *L*-smooth, μ strongly convex function. Let w^* be a minimum of f on \mathbb{R}^d . Then, Gradient Descent with step size $\eta \leqslant 1/L$ satisfies

$$f(w^{(k)}) - f(w^*) \le (1 - \eta \mu)^k ||f(w^{(0)}) - f(w^*)||_2^2.$$

How to choose η ?

Exact line search

At each step, choose the best η by optimizing

$$\eta^{(k)} = \operatorname*{argmin}_{\eta>0} f(w - \eta \nabla f(w)) .$$

→ Computationally very intensive...

Backtracking line search

Let $0 < \beta < 1$, then at each iteration, start with $\eta_k = 1$ and while $f\big(w^{(k)} - \eta_k \nabla f(w^{(k)})\big) - f\big(w^{(k)}\big) > -\frac{\eta_k}{2} \|\nabla f(w^{(k)})\|^2,$ update $\eta_k \leftarrow \beta \eta_k$.

→ Simple and work pretty well in practice.

If $f: \mathbb{R}^d \to \mathbb{R}$ is a *L*-smooth convex function, then, Gradient Descent with backtracking line search satisfies

$$f(w^{(k)}) - f(w^*) \le \frac{\|w^{(0)} - w^*\|_2^2}{2k \min(1, \beta/L)}.$$

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

Stochastic Gradient Descent (SGD)

Previous methods are based on **full gradients**, since each iteration requires the computation of

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w),$$

which depends on the whole dataset.

If *n* is large, computing $\nabla f(w)$ is computationally expensive.

If I is chosen uniformly at random in $\{1, \ldots, n\}$, then

$$\mathbb{E}[\nabla f_I(w)] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w) = \nabla f(w) ,$$

 $\nabla f_l(w)$ is an **unbiased** but very noisy estimate of the full gradient $\nabla f(w)$.

Computation of $\nabla f_I(w)$ only requires the *I*-th observation.

Stochastic Gradient Descent (SGD)

Stochastic gradient descent algorithm

Input: starting point $w^{(0)}$, steps (learning rates) η_k

For $k = 1, 2, \dots$ until *convergence* do

- \rightarrow Pick at random (uniformly) I_k in $\{1, \ldots, n\}$.
- → compute

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla f_{I_k}(w^{(k-1)}).$$

Return last $w^{(k)}$.

Remarks

- \rightarrow Each iteration has complexity O(d) instead of O(nd) for full gradient methods.
- \rightarrow Possible to reduce this to O(s) when features are s-sparse using lazy-updates.

Stochastic gradient descent in practice (I)

Convergence rate of SGD

Project each estimate into the ball B(0, R) with R > 0 fixed.

Let

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) .$$

Theorem

Assume that f is convex and that there exists b > 0 satisfying, for all $x \in B(0, R)$,

$$\|\nabla f_i(x)\| \leqslant b$$
.

Assume also that all minima of f belong to B(0,R). Then, setting $\eta_k = 2R/(b\sqrt{k})$,

$$\mathbb{E}\left[f\left(\frac{1}{k}\sum_{j=1}^k w^{(j)}\right)\right] - f(w^*) \leqslant \frac{3Rb}{\sqrt{k}}.$$

Stochastic gradient descent in practice (II)

Outline

Motivation in Machine Learning

Logistic regression

General formulation

Gradient descent procedures

Gradient Descent

Stochastic Gradient Descent

Momentum

Improving Polyak's momentum

Nesterov Accelerated Gradient Descent

Input: starting point $w^{(0)}$, learning rate $\eta_k > 0$, initial velocity $v^{(0)} = 0$, momentum $\beta_k \in [0,1]$.

While not converge do

Return last $w^{(k+1)}$.

Rate of convergence of Nesterov accelerated gradient (NAG)

Theorem

Assume that f is a L-smooth, convex function whose minimum is reached at w^* . Then, if $\beta_{k+1} = k/(k+3)$,

$$f(w^{(k)}) - f(w^*) \leqslant \frac{2\|w^{(0)} - w^*\|_2^2}{\eta(k+1)^2}$$
.

Theorem

Assume that f is a L-smooth, μ strongly convex function whose minimum is reached at w^* . Then, choosing

$$\beta_k = \frac{1 - \sqrt{\mu/L}}{1 + \sqrt{\mu/L}},$$

yields

$$f(w^{(k)}) - f(w^*) \le \frac{\|w^{(0)} - w^*\|_2^2}{\eta} \left(1 - \sqrt{\frac{\mu}{L}}\right)^k.$$

Rate of Coordinate Gradient Descent

Theorem - Nesterov (2012)

Assume that f is convex and smooth and that each f^j is L_j -smooth.

Consider a sequence $\{w^k\}$ given by CGD with $\eta_j = 1/L_j$ and coordinates chosen at random: i.i.d and uniform distribution in $\{1, \ldots, d\}$. Then,

$$\mathbb{E}[f(w^{k+1})] - f(w^{\star}) \leqslant \frac{n}{n+k} \left(\left(1 - \frac{1}{n}\right) (f(w^0) - f(w^{\star})) + \frac{1}{2} \|w^0 - w^{\star}\|_L^2 \right),$$

with
$$||w||_L^2 = \sum_{j=1}^d L_j w_j^2$$
.

- → Bound in expectation, since coordinates are taken at random.
- \rightarrow For cycling coodinates $j = (k \mod d) + 1$ the bound is much worse.