1. Let S, T be subsets of a vector space V over a field F. Show that $\operatorname{Span}(S \cup T) = \operatorname{Span}(S) + \operatorname{Span}(T).$

2a. Consider the line $L_1 = \{t(1,2,3) | t \in \mathbf{R}\}$ and the plane

 $P_1 = \{(x, y, z) \in \mathbf{R}^3 \mid x + 3y - z = 0\} \text{ in } \mathbf{R}^3. \text{ Show that } \mathbf{R}^3 = L_1 \oplus P_1.$

2b. Consider the plane P_1 in **2a** and the plane

 $P_2 = \{(x, y, z) \in \mathbf{R}^3 \mid 2x - y - z = 0\}$ in \mathbf{R}^3 . Show that $\mathbf{R}^3 = P_1 + P_2$. Is it a direct sum? Justify your answer.

2c. In general, suppose that L is line and P a plane in \mathbb{R}^3 such that both L and P pass through the origin $\mathbf{0} = (0, 0, 0)$, and L is not entirely include in P. Show that $\mathbf{R}^3 = L \oplus P$.

Is the conclusion still true when $L \subset P$?

3. Let
$$UT_2 = \{ \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix} \mid a_{ij} \in F \}, \ LT_2 = \{ \begin{pmatrix} b_{11} & 0 \\ b_{21} & b_{22} \end{pmatrix} \mid b_{ij} \in F \}$$

be respectively the set of all upper triangular, and all lower triangular matrices in $M_2(F)$.

3a. Find the intersection $UT_2 \cap LT_2$. Justify your answer.

3b. Find the sum $UT_2 + LT_2$; is it a direct sum? Justify your answers.

4. Let $Sy_n = \{S \in M_n(\mathbf{R}) \mid S^t = S\}$ and $Sk_n = \{K \in M_n(\mathbf{R}) \mid K^t = S\}$ -K} be respectively the subset of all **symmetric**, and all **skew symmetric** matrices in $M_n(\mathbf{R})$. Show that both Sy_n and Sk_n are subspaces of $M_n(\mathbf{R})$ such that $M_n(\mathbf{R}) = \operatorname{Sy}_n \oplus \operatorname{Sk}_n$.

Hint. For any $A \in M_n(\mathbf{R})$, the matrix $(A+A^t)/2$ is symmetric while the matrix $(A - A^t)/2$ is skew-symmetric.

5. Let U_i , W_i , and U be subsets of a vector space V, which are not necessarily subspaces. Suppose that W is a vector subspace of V.

5a. Show that if $U_1 \subseteq U_2$ and $W_1 \subseteq W_2$ then $U_1 + W_1 \subseteq U_2 + W_2$. Is the converse true?

5b. Show that $W + \{0\} = W$ and W + W = W.

5c. Show that $U + W = W \iff U \subseteq W$.

6. Let $W_1, \ldots, W_s; s \geq 2$ be subspaces of a vector space V, and W := $\sum_{i=1}^{s} W_i$. Show the following equivalence of the direct sum definition.

(i) $(\sum_{i=1}^{k-1} W_i) \cap W_k = \{\mathbf{0}\} \ (\forall \ 2 \le k \le s).$ (ii) $(\sum_{i \ne \ell} W_i) \cap W_\ell = \{\mathbf{0}\} \ (\forall \ 1 \le \ell \le s).$

(iii) Every vector $\mathbf{w} \in W$ can be expressed as $\mathbf{w} = \mathbf{w}_1 + \cdots + \mathbf{w}_s$ for some $\mathbf{w}_i \in W_i$ and such expression of \mathbf{w} is unique: whenever $\mathbf{w} = \mathbf{w}'_1 + \cdots + \mathbf{w}'_s$ for some $\mathbf{w}'_i \in W_i$, we have $\mathbf{w}'_i = \mathbf{w}_i$.