

人工智能技术与应用

第二章 python 机器学习基础

- 2.1 Numpy 简介
- 2.2 pandas 简介
 - 2.2.1 引例
 - 2.2.2 Pandas的数据结构
 - 2.2.3 读写文件操作
 - 2.2.4 数据预处理

回顾: 引例 有害海藻数据的预处理

有害海藻数据集<mark>analysis.data。</mark>

该数据集有200个样本,每个样本包含18个分量。

未知值

- · 数据中有"XXXXXXX",表示未知值。未知值会对后期分析产生影响。
- NO3列有的数据带两个小数点,这是噪声数据。 噪声
- 最后一列 (a7) 有空白。 🗸 缺值
- 有个别行存在多列未知值。 未知值

思考:

- 1.未知值、缺值怎么处理?
- 2.噪声怎样处理?

2.2.4 数据预处理

- 数据预处理是数据分析过程的关键环节,它能提高数据的质量。
- 预处理主要包括:
 - 数据清洗 去除重复值、缺失值处理
 - 数据替换 整体替换、个别修改(已学)
 - 数据合并 记录(行)合并、字段(列)合并
 - 数据转换 独热编码、数据标准化等
 - 数据抽取 抽取记录(行)、抽取字段(列)、随机抽取

2.2.4 数据预处理 | 1 数据清洗

数据清洗:

- 是整个数据分析过程的关键环节。
- 目的是提高数据质量,将脏数据(指与数据分析任务无关的数据、格式 非法的数据、不在指定范围内的数据)清洗干净,使原数据具有完整性、 唯一性、合法性、一致性等特点。

Pandas中常见的数据清洗操作:

- 重复值处理
- 缺失值处理
- 异常值处理
- 统一数据格式

0 0 0 0 0

1数据清洗 | 重复值处理

■ 重复值处理

重复值是指表中出现<mark>两行</mark>或<mark>多行</mark>数据完全相同的数据。 如右图,name张帆的行出现两次。

Pandas提供duplicated()和drop_duplicates()用于去重。

两方法配合使用:

首先,用duplicated()检查是否有重复行。

然后,用drop_duplicates()移除重复行。

	age	name
0	20	张帆
1	19	王磊
2	18	邓敏
3	18	刘佳
4	20	张帆

1数据清洗 | 重复值处理

检查重复行 <df名>.duplicated(subset=None,keep='first') 删去重复行 <df名>.drop duplicates(subset=None,inplace=False)

参数:

- keep: 默认为first,从前向后查找,除第一次出现外,其余相同的被标记为重复。返回一个布尔型的Series对象,重复则标记为True,不重复则标记为False。
- subset: 待识别的列标签或列标签序列, 默认识别所有的 列标签。

例 重复值处理

```
agename020张帆119王磊218邓敏318刘佳420张帆
```

```
student.duplicated() # 检查重复行
```

```
False
False
False
False
False
True
dtype: bool
```

newst=student.drop_duplicates() # 返回去重结果, student不变 newst

student.drop_duplicates('age') 结果?

	age	name
0	20	张帆
1	19	王磊
2	18	邓敏
3	18	刘佳

1数据清洗 | 缺失值处理

■ 缺失值处理

- 缺失值:未知、不确定或将在以后添加的空缺数据。
- · Pandas中使用NaN表示缺失值

NaN 来自NumPy库, NaN是Not a Number.

NumPy中,缺失值有三种表示: np.NaN、np.NAN、np.nan,三者等同

- 缺失值来源有两个:
 - 一是包含缺失值的数据集;
 - 二是数据整理过程,如合并数据,用户输入数据

例 读入包含缺失值的数据文件

import pandas as pd
data1 = pd.read_csv('student2.csv')
data1

	num	name	age
0	1951027	张莉	19.0
1	1753019	李峰	20.0
2	1850012	童敏	20.0
3	2051034	吴峰	18.0
4	2101001	NaN	NaN

student2.csv

自动将其编码为缺失值

例 读入包含缺失值的数据文件

data3

num	name	age
1951027	张莉	19
1753019	李峰	20
1850012	童敏	20
2051034	吴峰	18
2101001	????	????

student3.csv

	num	name	age
0	1951027	张莉	19.0
1	1753019	李峰	20.0
2	1850012	童敏	20.0
3	2051034	吴峰	18.0
4	2101001	NaN	NaN

例 用户输入包含缺失值

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN
2	1850012	NaN	NaN	20.0
3	2051034	吴峰	NaN	NaN

1数据清洗 | 缺失值处理

■ 缺失值的方法:

• 发现缺失值: isnull()和notnull()

用于检查DataFrame对象中是否有缺失值

• 处理缺失值: fillna()和dropna()

用于填充和删除数据中的缺失值

1数据清洗 | 缺失值处理

• 发现和统计缺失值

Pandas 提供了检查缺失值常用方法。表中对象是指DataFrame或Series对象

方法	涵义
<对象名>.isnull()	检查 <mark>对象中</mark> 是否存在NaN,一旦发现则将对象中该位置标记为True,否则为False。返回一个布尔型DataFrame对象或Series对象。
<对象名>.isnull().any()	检查对象的 <mark>各个列</mark> 是否存在NaN元素,存在的列返回True,否则为False。返回一个布尔型Series对象或布尔值。
<对象名>.isnull().sum()	统计 <mark>各列</mark> 缺失值个数

例 发现和统计缺失值

```
ebola = pd.read_csv('country_timeseries.csv')
print(ebola.columns)
                                                                                Date
                                                                                                False
                                                                                Dav
                                                                                                False
                                                                                Cases Guinea
                                                                                                 True
    Index(['Date', 'Day', 'Cases Guinea', 'Cases Liberia', 'Cases SierraLeone',
                                                                                Cases Liberia
                                                                                                 True
           'Cases_Nigeria', 'Cases_Senegal', 'Cases_UnitedStates', 'Cases_Spain',
                                                                                Cases SierraLeone
                                                                                                 True
           'Cases Mali', 'Deaths Guinea', 'Deaths Liberia', 'Deaths SierraLeone',
                                                                                Cases Nigeria
                                                                                                 True
                                                                                Cases_Senegal
                                                                                                 True
           'Deaths Nigeria', 'Deaths Senegal', 'Deaths UnitedStates',
                                                                                Cases UnitedStates
                                                                                                 True
           'Deaths Spain', 'Deaths Mali'],
                                                                                Cases Spain
                                                                                                 True
          dtvpe='object')
                                                                                Cases Mali
                                                                                                 True
                                                                                Deaths Guinea
                                                                                                 True
                                                                                Deaths Liberia
                                                                                                 True
ebola.isnull() # 122行18列
                                                                                Deaths SierraLeone
                                                                                                 True
                                                                                Deaths Nigeria
                                                                                                 True
ebola.isnull().any() # 查看哪些列有缺失值·
                                                                                Deaths_Senegal
                                                                                                 True
                                                                                Deaths UnitedStates
                                                                                                 True
                                                                                Deaths Spain
                                                                                                 True
ebola.isnull().sum() # 统计各列缺失值个数
                                                                                Deaths_Mali
                                                                                                 True
ebola['Cases_Spain'].isnull().any() # 查看'Cases_Spain'有无缺失值
```

输出: True

1数据清洗 | 缺失值处理

· 清理缺失数据: fillna()、dropna()

<对象名>.fillna(value=None,method=None,axis=None,inplace=False) 把缺失值重新编码为其他值

- ① value: 用于填充的数值。可以是标量、字典等。
- ② method: 表示填充方式, 默认为None。可取值:
 - ffill: 用缺失值前面的一个值替代缺失值。
 - -bfill: 用缺失值后面的一个值替代缺失值。
- ③ axis: 指定填充行或列, 0指定行,1指定列。默认0。

注意:

method参数不能与value 参数同时使用。

例 填充缺失值

(1) 对address列,用缺值前一行的有效值填充

df1['address'].fillna(method='ffill',axis=0,inplace=True)
df1

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN
2	1850012	NaN	沪西	20.0
3	2051034	吴峰	沪西	NaN

如果一列以缺失值开始,ffill会出现什么情况? 如果一列以缺失值结束,bfill会出现什么情况?

2 1850012 None

吴峰

3 2051034

None 20.0

None NaN

列 填充缺失值

(2) 对age列的缺失值,用该列现有值的均值来填充。

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN
2	1850012	NaN	沪西	20.0
3	2051034	吴峰	沪西	NaN

df1['age'].fillna(value = df1['age'].mean(skipna=True),inplace=True) 或用下面语句,类似replace的语法

df1.fillna({'age':df1['age'].mean(skipna=True)},inplace=True)
df1

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	19.5
2	1850012	NaN	沪西	20.0
3	2051034	吴峰	沪西	19.5

• 清理缺失数据

<对象名>.dropna(axis=0, how='any', thresh=None, inplace=False)

删除缺失值

- ① axis:确定过滤行还是列;0指行,1指列。默认为0。
- ② how:确定过滤的标准。取值为'all',表示行或列数据<mark>全NaN才</mark>删除该行或列; 取值'any',若<mark>存在NaN值</mark>则删除该行或列,默认为'any'。
- ③ thresh: 指定行或列中非NaN个数的阈值, 小于此阈值则删除。

例 删除缺失值

```
address
          name
                         age
                             birthday
     num
0 1951027
           张莉
                   嘉定
                        19.0
                                 NaN
 1753019
           李峰
                   沪西
                        NaN
                                 NaN
  1850012
           NaN
                   NaN 20.0
                                 NaN
  2051034
           吴峰
                   NaN NaN
                                 NaN
4
     NaN
           NaN
                   NaN
                        NaN
                                 NaN
```

(1) 删除全NaN行和列

df1.dropna(how='all',inplace=True) # 删除行df1

df1.dropna(how='all',axis=1,inplace=True)

df1

	IIIIII	Hairic	audicss	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN
2	1850012	NaN	NaN	20.0
3	2051034	吴峰	NaN	NaN

name

address

age

	num	name	address	age	birthday
0	1951027	张莉	嘉定	19.0	NaN
1	1753019	李峰	沪西	NaN	NaN
2	1850012	NaN	NaN	20.0	NaN
3	2051034	吴峰	NaN	NaN	NaN

例 删除缺失值

(2) 删除非NaN个数少于3的行

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN
2	1850012	NaN	NaN	20.0
3	2051034	吴峰	NaN	NaN

(3) name列有缺失值,若该列与后期分析无关,也可删去

	num	address	age
0	1951027	嘉定	19.0
1	1753019	沪西	NaN

1数据清洗 | 异常值处理

- **异常值**,是指样本中的个别值,其值明显偏离它(或他们)所属样本的 其余观测值。这些值是不合理的,应予以剔除。
- **检测方法**: 3σ原则、箱线图法、Z-score法等。
 - 3σ原则:假定数据服从正态分布,99.7%数据集中在(μ-3σ,μ+3σ),超出 这个范围的值视为异常值,应予以剔除。
 - **Z-score法**: 假定数据服从高斯分布, 异常值是分布在尾部的数据点, 其归一化 $z_i = (x_i \mu)/\sigma$ 后, 满足 $|z_i| > z_{thr}$ 。 阈值 z_{thr} 一般设置为2.5、3.0或3.5。
 - 箱线图法(IQR法): 异常值被定义为小于QL-1.5*IQR或大于QU+1.5*IQR的值,即箱线图上的离散点。(QL:下四分位数。QU:上四分位数。IQR:四分位数间距, IQR=QU-QL)

例2.6 基于3σ原则检测异常值

自定义一个基于 3σ 原则的函数,来检查一组数据中是否存在异常值。

column - 指定的检测列

```
import numpy as np
import pandas as pd
```

```
data[column]中小于μ-3σ或大于μ+3σ均为异常值
                      返回值: outlier - 异常值数据框
def three sigma(data,column):
   mean_value=data[column].mean() # 求平均值
    std_value = data[column].std() # 求标准差
```

参数: data - 完整数据

upper = mean_value+3*std_value # 上界 outlier = data[(data[column]<lower)|(data[column]>upper)] # 异常值 return outlier

```
df = pd.read csv('outlier.csv',index col=0)
for col in df.columns:
    print(three_sigma(df,col)); print('-' * 50)
```

lower = mean value-3*std value # 下界

例 基于箱线图的异常值检测

箱线图是一种显示一组数据分散情况的统计图。Pandas中提供boxplot()方法,用于绘制箱线图。<数据框对象>.boxplot(column=None)

例 基于IQR法检测异常值

自定义一个基于IQR法的函数,来检查一组数据中是否存在异常值。

```
def IQR(data, column):
   print(f'以 {column} 列为依据,检测异常值...')
   # 1. 3 分位数
   (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
   # 四分位间距
   column_iqr = q3 - q1
   # 计算上下j界
   upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
   # 检测异常值
   outlier = data[(data[column] <= lower) | (data[column] >= upper)]
   return outlier, upper, lower
```


检出异常值后,常采用四种方法处理:

- (1) 用指定的值替换异常值。
- (2) 直接删除含有异常值的记录。
- (3) 不处理, 直接在有异常值的数据上进行后续分析。
- (4) 视为缺失值,采用缺失值处理方法处理。

1数据清洗 | 异常值处理

用replace()方法替换。格式:

<对象名>.replace(to_replace=None, value=None, inplace=False, method='pad')

参数:

- ① to_replace: 待替换的数据。取值为数值、字符串等。若是"数值",则对象中所有值等于to_replace的数据将被value参数值所替换;若取"字符串",则与to_replace相匹配的数据将被value参数值所替换。
- ② value: 用来替换任何匹配to_replace的值, 默认值None。
- ③ method: 替换时使用的方法。pad/ffill表示向前填充(按索引顺序,用其前的值填充),bfill表示向后填充(按索引顺序,用其后的值填充)。

注意: method参数不能与value参数同时使用。

例 异常值处理

df['computer'].replace(to_replace=189,value=89,inplace=True)

df

	math	english	computer
0	78	89	65
1	67	87	189
2	89	91	87
3	56	67	76
4	91	77	56

	math	english	computer
0	78	89	65
1	67	87	89
2	89	91	87
3	56	67	76
4	91	77	56

例 噪声数据处理

```
#将age列中出现的'???'替换为NaN
df['age'].replace('???',NaN,inplace=True)
df
```

将其他'???'替换为NaN df.replace('???',NaN,inplace=True) df

	num	name	address	age
0	1951027	张莉	嘉定	19.0
1	1753019	李峰	沪西	NaN
2	1850012	???	???	20.0
3	2051034	吴峰	???	NaN
	num	name	address	age
0	num 1951027	name 张莉	address 嘉定	age 19.0
0				
·	1951027	张莉	嘉定	19.0

1数据清洗 | 更改数据类型

■ 更改数据类型

数据处理时,可能出现数据类型不一致的情况。如

```
from numpy import NaN
df1 = pd.DataFrame({'num':['1951027','1753019','1850012','2051034'],
                   'name':['张莉','李峰','童敏','吴峰'],
                   'address':['嘉定','沪西','四平','四平'],
                   'age':[ 19,18,NaN, '19']})
#age列,用该列现有值的均值来填充缺失值
df1['age'].fillna(df1['age'].mean(skipna=True),inplace=True)
 TypeError: unsupported operand type(s) for +: 'int' and 'str'
type(df1['age'].dtype) # 查看age列中数据类型
```

numpy.dtype[object_]

1数据清洗 | 更改数据类型

用 astype(), 将Pandas的object类型数据<mark>强制转换</mark>为指定类型

格式: <对象名>.astype(dtype)

说明:

① 参数dtype,表示要转换到的数据类型。常用的有:

int64 (整型)、

float64 (带小数的数字)、

object (对应Python的字符串)

② 返回一个转换后的新对象,原对象不变。

1数据清洗 | 更改数据类型

	num	name	address	age	_
0	1951027	张莉	嘉定	19	
1	1753019	李峰	沪西	18	—
2	1850012	童敏	四平	NaN	
3	2051034	吴峰	四平	19	
			NaN是	浮点数	女。

	num	name	address	age
0	1951027	张莉	嘉定	19
1	1753019	李峰	沪西	18
2	1850012	童敏	四平	18.666667
3	2051034	吴峰	四平	19

	num	name	address	age
0	1951027	张莉	嘉定	19
1	1753019	李峰	沪西	18
2	1850012	童敏	四平	18
3	2051034	吴峰	四平	19

填充NaN时, age数据类型强转为float, 然后用该列现有值的均值来填充缺失值 df1['age'].fillna(df1['age'].astype('float').mean(skipna=True),inplace=True) df1

```
# age数据类型强转为int df1['age']=df1['age'].astype(dtype='int') df1
```


例 已知两个不同的数据框df1和df2,可否合并在一起构成df3?

df3	Α	В
1	a1	b1
2	a2	b2
3	аЗ	b3
4	a4	b4
5	а5	b5

通过Pandas 提供的concat可以实现!

2 数据合并

Pandas 提供了多种合并数据集的方法,包括:

- 1. 通过concat()函数,简单地堆叠数据
- 2. 通过merge()方法,根据主键合并数据
- 3. 通过join()方法,通过行索引合并数据

2数据合并 | 利用concat()函数合并数据

格式: pd.concat(objs,axis=0, join='outer', ignore_index=False)

沿着一个轴将多个对象进行堆叠(这与np.concatenate类似),与np.concatenate不同的是,pd.concat()在合并时会保留索引,即使出现重复。

说明:

默认:按0轴堆叠、采用外连接方式合并数据。

- ① objs: 待合并的多个对象构成列表。
- ② axis:表示连接的轴向。1表示沿1轴(列)堆叠,0表示沿0轴(行)堆叠,默认为0。
- ③ join:表示连接方式。inner表示内连接合并(对所有输入<mark>列交集</mark>合并),outer 表示外连接合并(对所有输入<mark>列并集</mark>合并,数据缺失的位置用NaN补 齐),默认为outer。
- ④ignore_index:设为True时,拼接轴不使用原索引,新索引为0到n-1

例 纵向堆叠

列名相同,直接合并即可

4 a4 b45 a5 b5

3 a3 b3

В

Α

df2

例 纵向堆叠与内连接

```
A B C
1 a1 b1 c1
2 a2 b2 c2
3 a3 b3 c3
```

4 b4 c4

5 a5 c5

```
df1 = pd.DataFrame({'A':['a1','a2','a3'],
                     'B':['b1','b2','b3'],
                     'C':['c1','c2','c3']},index=[1,2,3])
df1
                                                     df2
df2 = pd.DataFrame({ 'B':['b4','a5'],
                                                        4 b4 c4 d4
                     'C':['c4','c5'],
                                                        5 a5 c5 d5
                     'D':['d4','d5']},index=[4,5])
df2
                                                 df3
                                                     1 b1 c1
df3 = pd.concat([df1,df2],join='inner',axis=0)
                                                     2 b2 c2
df3
                                                     3 b3 c3
```

列名不完全相同时,设置join参数来解决

例 纵向堆叠与外连接

I C A		Α	В	С	D
df4	1	a1	b1	c1	NaN
	2	a2	b2	c2	NaN
	3	а3	b3	сЗ	NaN
	4	NaN	b4	c4	d4
	5	NaN	а5	с5	d5

列 横向堆叠与外连接

```
df3 = pd.concat([df1,df2],join='outer',axis=1)
df3
```

3 a3 b3 c3 d3

NaN NaN c4 d4

а1

a2

b1

1 a1

b1 c1 d1

b2 c2 d2

3 数据转换 分类变量

场景1:海藻数据analysis.dat中,有些列,取值反映了变量的不同类别,

如 season (spring,summer,autumn,winter) ,

size (small,medium,large)

speed (low, medium, high)

analysis.data

不能直接使用!

3 数据转换 | 分类变量

- 取值为类别的数据,常称为**分类变量**(也称**分类特征**,或称**类别特征**)。
- 分类变量的取值是一组固定值,这些值之间没有大小关系,不能直接用 于模型学习,需要进行数据转换。
- · 可采用one-hot编码(也称k取一编码)进行编码转换。

■ one-hot编码

思想:使用二进制特征表示,来解释分类变量的所有可能取值。

将一个分类变量替换为一个或多个新特征,新特征值为0和1,使得原分类变量的每个取值对应一个新的二进制特征,新特征有时被称为哑变量。

如,上海各区房价数据

	neighborhood	price	rooms
0	杨浦	850000	1
1	宝山	3000000	2
2	嘉定	2600000	2
3	静安	0000000	3

	price	rooms	neighborhood_嘉定	neighborhood_宝山	neighborhood_杨浦	neighborhood_静安
0	850000	1	0	0	1	0
1	3000000	2	0	1	0	0
2	2600000	2	1	0	0	0
3	10000000	3	0	0	0	1

Pandas的 get_dummies() 可对类别特征进行one-hot编码。

pd.get_dummies(data, prefix=None,dummy_na=False,

columns = None, drop first=False,...) 将类别特征转换为哑变量

参数:

- ① data:表示待转换的数据。类型为DataFrame,或array,Series对象。
- ② prefix: 表示新列名的前缀, 默认为None。
- ③ dummy_na: 是否为类别型数据中的NaN值添加一列, 默认为False。
- ④ columns:表示DataFrame要编码的列名列表,默认为None。若None,则对所有类别特征都进行one-hot编码。
- ⑤ drop_first: bool。是否删去第一级,得到k个类别的k-1个哑变量。默认False.

例 类别特征one-hot编码

```
import pandas as pd
df1 = pd.DataFrame({'neighborhood':['杨浦','宝山','嘉定','静安'],
                      'rooms':[1,2,2,3],
                      'price':[850000,3000000,2600000,100000000]})
df1
                                                      neighborhood rooms
                                                                      price
                                                            杨浦
                                                                     850000
                                                            宝山
                                                                     3000000
                                                    2
                                                            嘉定
                                                                    2600000
pd.get_dummies(df1) # 转换为哑变量
                                                    3
                                                            静安
                                                                  3 10000000
```

	rooms	price	neighborhood_嘉定	neighborhood_宝山	neighborhood_杨浦	neighborhood_静安
0	1	850000	0	0	1	0
1	2	3000000	0	1	0	0
2	2	2600000	1	0	0	0
3	3	10000000	0	0	0	1

例2.7 类别特征预处理


```
data file = 'house tiny.csv'
with open(data_file,'w',encoding='utf-8-sig') as f:
   f.write('房间数,楼层,价格\n') # 标题行,由列名构成
   f.write('NA,顶层,2750000\n') # 每行表示一个数据样本
   f.write('2,中间层,4060000\n')
   f.write('4,低层,10780000\n')
   f.write('NA,NA,1400000\n')
import pandas as pd
import numpy as np
data = pd.read_csv(data_file,header=0)
inputs,outputs = data.iloc[:, 0:2],data.iloc[:,2]
```

inputs 房间数 NaN 顶层 2.0 中间层 4.0 低层 NaN NaN 房间数 3.0 顶层 2.0 中间层 2 4.0 低层 inputs1 3.0 NaN

inputs['房间数']=inputs['房间数'].fillna(inputs['房间数'].mean())

inputs1 = pd.get_dummies(inputs, dummy_na=True)

X = np.array(inputs1.values)
y = np.array(outputs.values)

	房间数	楼层_中间层	楼层_低层	楼层_顶层	楼层_nan
0	3.0	0	0	1	0
1	2.0	1	0	0	0
2	4.0	0	1	0	0
3	3.0	0	0	0	1

场景2:有时我们需要把数据拆分到几个区间,每个区间视为<mark>一</mark>个离散的值。

如,将百分制的成绩分到[0,60),[60,70),[70,80),[80,90), [90,100] 五个区间中,五个区间分别对应1~5个级别。

- 这种将数据划分到各区间的操作是数据离散化。
- · Pandas的cut()函数可实现连续数据的离散化操作。

■ 离散化数据 Pandas的cut()可实现连续数据的离散化操作。

格式: pd.cut(data,bins,right=True,labels=None,...)

返回一个类似数组的对象,表示data中每个值对应的箱子。

说明:

- ① data:表示要分箱的数组,必须是一维的。
- ② bins:接收int和序列类型的数据。若传入int类型的值,则表示在data范围内的等宽单元的数目(即划分为多少个等距区间);若传入一个序列,则表示将data划分在指定的序列中,若不在此序列中,则为NaN。
 - ③ right: 是否包含右端点,决定区间的开闭,默认为True。
 - ④ labels: 用于生成区间的标签。

例 连续数据离散化

scores['五级制']=cuts scores

	쓰므	* 4	工机组
	学号	芯刀	五级制
0	10153450101	84.8	4
1	10153450102	74.5	3
2	10153450103	64.5	2
3	10153450104	73.8	3
4	10153450105	72.8	3
5	10153450106	79.0	3
6	10153450107	81.4	4
7	10153450108	65.0	2
8	10153450109	76.7	3
9	10153450110	81.8	4
10	10153450111	42.8	1
11	10153450112	62.1	2
12	10153450113	92.7	5
13	10153450114	74.6	3
14	10153450115	92.4	5
15	10153450116	79.4	3
16	10153450117	53.8	1
17	10153450118	73.3	3
18	10153450119	87.1	4
19	10153450120	67.3	2

案例:例2.4有害海藻数据的预处理(1) | 步骤

- (1) 读取文本文件存入DataFrame对象,并给出列名,如:
 'season','size','speed','mxPH','mnO2', 'Cl','NO3','NH4', 'oPO4','PO4','Chla',
 'a1','a2','a3','a4','a5','a6','a7'
- (2) 剔除'a7'为NaN的行
- (3) 将XXXXXXX的值替换为np.nan
- (4) 若一行中非NaN的项数小于13,则剔除
- (5) 将剩下的数据中NaN, 用该列均值替代
- (6) 对类别特征进行one-hot编码
- (7) 将预处理后的数据存入train1.csv文件中

课堂演示程序

- (1)读入文本文件analysis.data
- (2) 查找'a7'值为NaN时, NO3'列的值
- (3)剔除'a7'值为NaN的行
- (4) 查看data的'NO3' 列中是否还有带两个小数点的数据
- (5)将不确定值"XXXXXXX"替换为np.nan
- (6) 从第4列开始,数据类型都转换为float
- (7)删除一行中非nan项数小于13的行
- (8)对于data中含NaN的列,用该列均值(不含NaN)来代替NaN
- (9)查看data是否还有含有NaN的列
- (10) 对于season, size, speed 这些类别值, 我们进行one-hot编码
- (11) 将处理后的数据data存入train.csv文件中

思考: 若要从清洗后的数据中

随机抽取样本如何实现?

2.2.4 数据预处理 | 4 数据抽取

□ 数据抽取:

• 字段抽取:抽出某列上指定位置的数据构成新列。

如抽取身份证号码的第7位到15位。

df[新列名] = df[列名].astype(str)

df[新列名] = df[新列名].str.slice(start,end)

• 记录抽取: 抽取满足给定条件的行。

df[条件] 如 df[df.ID.isnull()] 抽取df中ID为缺失值的行。

• 随机抽取行: 随机从数据中按照给定行数或比例抽取行数据。

r = numpy.random.randint(start,end,n) 从[start,end)中随机抽n个整数构成数组。df.iloc[r,:]

[start,end)

Pandas 向量化字符串操作

Pandas 为**包含字符串的Series对象**提供的<mark>str属性</mark>,它既可满足向量化字符串 操作的需要,又能正确处理<mark>缺失值</mark>。如:

```
names = pd.Series(['bob','ann',NaN,'mary'])

name1 = names.str.capitalize() # pandas字符串方法,大写name中元素的首字母

name1

Ann
2 NaN
3 Mary a bob
dtype: object
```

nameslice = name1.str.slice(0,2) # pandas字符串方法,对names元素进行切片取值

nameslice

```
0 Bo
1 An
2 NaN
3 Ma
dtype: object
```

例 数据抽取举例

```
from pandas import DataFrame import numpy as np
```

```
birthdaynameage019991027张莉20120000119李峰19220000312NaN19319991014吴峰???
```

(1) 抽取birthday中的年份构成新列"year"。

```
df['year'] = df['birthday'].astype(str)
df['year'] = df['year'].str.slice(0,4)
df
```

	birthday	name	age	year
0	19991027	张莉	20	1999
1	20000119	李峰	19	2000
2	20000312	NaN	19	2000
3	19991014	吴峰	???	1999

(2) 抽取数据框中有缺失值的行

df[df.name.isnull()]

(3) 抽取数据框中age为???的行数据

df[df.age=='???']

	birthday	name	age	year
2	20000312	NaN	19	2000

	birthday	name	age	year
3	19991014	吴峰	???	1999

(2) 在清洗后的数据集中,随机抽取100个样本

```
import pandas as pd
import numpy as np

data=pd.read_csv('train.csv',sep=',',index_col=0)
r = np.random.randint(0,data.shape[0],100)
df = data.iloc[r,:]
print(df)
```


基于Z-score法检测异常值

- (1) 自定义一个基于Z-score法的函数,来检查一组数据中是否存在异常值。数据来自文件outlier.csv文件。
 - (2) 对检查到的异常值进行如下替换:

将english异常值190替换为90;

将computer异常值209,替换为其他值的均值。

作业 2.3 泰坦尼克号幸存者数据预处理

titanic数据共有两个文件:

- train.csv是训练集,样本类别(Survived列)已标注;
- test.csv是测试集,无标注信息。

train.csv是892行(含表头)、12列的数据表。特征如下:

PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
乘客ID	1表示幸存,	舱位等	乘客姓	乘客性	乘客年	兄弟姐妹同在	同船的父	乘客票	乘客的体	乘客所在	乘客登船的
	0表示遇难	级	名	别	龄	船上的数量	辈人数	号	热指标	的船船号	港口

data = pd.read_csv('train.csv',index_col=0)

读取train.csv文件,以Passengerld列为行索引,并进行下面要求的预处理。

要求: 1)提取Survived列的数据作为目标向量 y, 其余为X。

- 2) 从X中丢弃无用的特征: 'Name' , 'Ticket' , 'Cabin'
- 3) 将X中缺失数据用0填充。
- 4) 处理X中的性别数据,将male用0替换,female用1替换。
- 5) 对X中的Embarked进行one-hot编码转换。

测试题

- (1) 根据下图创建一个DataFrame对象,输出其中age列的元素类型
- (2) 将age列数据类型修改为整型。
- (3) 将修改后的DataFrame对象存入studentinfo.csv文件中。

	num	name	age
а	1951027	张莉	19.0
b	1753019	李峰	20.0
С	1850012	童敏	20.0
d	2051034	吴峰	18.0