Reinforcement Learning

What's Wrong with Value/Policy Iteration?

MDP formulation reminder:

S: set of all possible states, S0: start state, SF: set of final states

A: set of all possible actions

T: transition matrix, P(s'|s,a)

R: reward function, R(s), R(s,a), R(s,a,s')

requires fully-observable environment

must know S,A,T,R up front!

Minimal Requirements to Learn a Policy

Could an agent learn an optimal policy knowing only:

- current state identifier (no "meaning")
- allowed action identifiers (no "meaning")
- numeric reward of most recent action

?

Yes! By iteratively exploring the world to obtain training tuples of a new type:

"This state and reward resulted from taking that action from that state."

This is what we call the Reinforcement Learning problem.

Plugging that Agent into the World

Two interconnected models form the typical RL problem:

- Agent explores world, uses experience to learn an optimal policy.
- Agent usually knows S, S0, A.
- World also knows T & R, or f(s, a) = (s', r)

World tells agent what state it is in. Agent tells world what action it takes. World tells agent its new state and an immediate reward.

Experience Tuples

This process produces a series of experience tuples for the agent:

Model-Based Reinforcement Learning

Select random or directed actions to generate many learning tuples.

- Use them to construct a model of the world (i.e. estimate T & R)
- Build T(s,a,s') = P(s'|s,a) from the sample distribution.
- Build R(s) or R(s,a) or R(s,a,s') from the mean sample reward.

Example experiences:
$$T(s,a,s')$$
 $<12, 1, 12, 1 > T(12,1,12) = 0.5$
 $<12, 1, 13, 1.5 > T(12,1,13) = 0.5$
 $<12, 2, 12, 0 > T(12,2,12) = 0.33$
 $<12, 2, 13, 1 > T(12,2,13) = 0.66$
 $R(s,a)$
 $R(s,a)$
 $R(s,a)$
 $R(s,a)$
 $R(s,a)$
 $R(s,a)$

R(12,2)=1

With an estimated T & R, now solve MDP as before!

Model-Free Reinforcement Learning

Solving RL by estimating T & R from many random samples is fine.

Why might that not be ideal?

- 1. Waste of effort? We only case about $\pi^*(s) > a$ 2. Incur real world cost/risk while collecting samples.

Remember the argument for Policy Iteration instead of Value Iteration? We're doing it again.

We don't actually care about T & R. So why compute them?