Time Series 5. Outliers treatment in time series

Josep A. Sanchez-Espigares

Department of Statistics and Operations Research Universitat Politecnica de Catalunya Barcelona, Spain

Transfer function (Regression with ARMA errors)

ARIMA models with eXogenous variables (ARIMAX)

- Y_t observed series (output)
- X_{i,t} exogenous variables (input)
- $oldsymbol{ ilde{Y}}_t$ series without the effect of exogenous variables
- Estimate β_i with OLS, the residuals are the \tilde{Y}_t series (beware spurious relationships!)

$$Y_t = \sum_{i=1}^h \beta_i X_{i,t} + \tilde{Y}_t$$

ullet Estimate an ARMA model for the $ilde{Y}_t$ series

$$\phi(B)(Y_t - \sum_{i=1}^h \beta_i X_{i,t}) = \theta(B) Z_t$$

Additive Outlier (AO)

Transfer function: Pulse
$$(X_t = \mathbf{1}_{t=T0}(t))$$

Residuals of linear and observed series

ACF/PACF of linear and observed series

Transitory Change (TC)

It affects on one period and its effect decreases in the next periods.

Transfer function: Exponential decreasing with $\delta = 0.7$ ($X_t = \delta^{(t-T_0)} \mathbf{1}_{t \geq T_0}(t)$)

Residuals of linear and observed series

ACF/PACF of linear and observed series

Level Shift (LS)

It affects on one period and its effect remains in the next periods.

Transfer function: Step $(X_t = \mathbf{1}_{t > T0}(t))$

Residuals of linear and observed series

ACF/PACF of linear and observed series

Outlier Treatment

For the residual with the higher value over a given threshold:

- Detection of outliers, based on a significance test for the 3 types of outliers (AO, TC ans LS)
- Estimation the effect of the most significant type
- Linearized series by removing the outlier
- Repeat the process until all the residuals lie among the threshold

Example: AirBCN

Monthly passengers (in thousands) of international air flights at El Prat (BCN). Source: Ministry of Public Works of Spain (http://www.fomento.es)

Miles de pasajeros de lineas aereas internacionales en el aeropuerto del P

ARIMA model

```
##
## Call:
## arima(x = lnserie, order = c(0, 1, 1), seasonal = list(order = c(2,
##
## Coefficients:
##
             ma1
                 sar1 sar2
       -0.3741 -0.6344 -0.4279
##
## s.e. 0.0566 0.0567 0.0564
##
## sigma^2 estimated as 0.002331: log likelihood = 516.81, aic = -102
    (1+0.634B^{12}+0.428B^{24})(1-B)(1-B^{12})\log X_t = (1-0.374B)Z_t
                      Z_t \sim N(0, \sigma_z^2 = 0.00233)
```

Outlier detection

##		0bs	type_detected	W_coeff	ABS_L_Ratio
##	1	14	TC	-0.21465793	5.997766
##	2	32	AO	0.19056486	6.298607
##	3	244	TC	-0.15519774	4.735810
##	4	142	TC	-0.12686443	3.960561
##	5	52	AO	-0.09618053	3.417006
##	6	220	LS	-0.10184648	3.285543
##	7	184	TC	-0.11793107	3.889489
##	8	88	AO	-0.08320794	3.114094
##	9	112	AO	-0.08206789	3.115474
##	10	275	LS	-0.08368511	2.874148
##	11	226	LS	-0.08167645	2.838597
##	12	120	TC	-0.08133733	2.861306

Chronology

```
##
      Obs Type W_coeff tStat
                                       Fecha
                                               Eff
       14
           TC -0.21465793 5.997766 Feb 1991 -19.3
## 1
## 2
      32
               0.19056486 6.298607 Ago 1992
                                             21.0
## 5
      52
           AO -0.09618053 3.417006 Abr 1994 -9.2
## 8
      88
           AD -0.08320794 3.114094 Abr 1997
                                             -8.0
## 9
      112
           AD -0.08206789 3.115474 Abr 1999 -7.9
## 12 120
           TC -0.08133733 2.861306 Dic 1999 -7.8
## 4
     142
           TC -0.12686443 3.960561 Oct 2001 -11.9
## 7
      184
           TC -0.11793107 3.889489 Abr 2005 -11.1
## 6
     220
           LS -0.10184648 3.285543 Abr 2008
                                              -9.7
## 11 226
           LS -0.08167645 2.838597 Oct. 2008 -7.8
## 3
     244
           TC -0.15519774 4.735810 Abr 2010 -14.4
## 10 275
           LS -0.08368511 2.874148 Nov 2012 -8.0
```

Outlier Effects

Outlier Effects

Comparison of observed and linearized series

Linearized series Model

```
##
## Call:
## arima(x = lnserie.lin, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1))
      period = 12))
##
##
## Coefficients:
##
            ma1
                sar1
                             sar2
##
        -0.4635 -0.5759 -0.3781
## s.e. 0.0577 0.0569 0.0554
##
## sigma^2 estimated as 0.001272: log likelihood = 615.35, aic = -122
```

$$\log X lin_t = \log X_t - \sum_{i=1}^m \omega_i \mathbf{1}_{t=t_i}^{Type}(i)$$

$$(1 + 0.576B^{12} + 0.378B^{24})(1 - B)(1 - B^{12}) \log X lin_t = (1 - 0.464B)Z_t$$

$$Z_t \sim N(0, \sigma_Z^2 = 0.00127)$$