SBML Model Report

Model name: "Golomb2006_SomaticBursting"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Enuo He¹ at June sixth 2007 at 2:28 p.m. and last time modified at July fifth 2012 at 4:50 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	1
global parameters	45	unit definitions	2
rules	13	initial assignments	0

Model Notes

Model is according to the paper Contribution of Persistent Na+ Current and M-Type K+ Current to Somatic Bursting in CA1 Pyramidal Cell: Combined Experimental. Figure6Da has been reproduced by MathSBML. The original model from ModelDB. http://senselab.med.yale.edu/modeldb/

 $^{^{1}}BNMC, \verb"enuo@caltech.edu"$

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of six unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name ms

Definition ms

2.2 Unit mV

Definition mV

2.3 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.4 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.5 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.6 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_0000001			3	1	litre	Ø	

3.1 Compartment compartment_0000001

This is a three dimensional compartment with a constant size of one litre.

4 Parameters

This model contains 45 global parameters.

Table 3: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
Cm			1.000		\overline{Z}
pms			3.000		\mathbf{Z}
pns			4.000		\mathbf{Z}
VNa			55.000		\mathbf{Z}
t_tauh			-40.500		\mathbf{Z}
$t_{-}taun$			-27.000		\mathbf{Z}
thetaa			-50.000		\mathbf{Z}
sigmaa			20.000		\mathbf{Z}
thetab			-80.000		\mathbf{Z}
sigmab			-6.000		\mathbf{Z}
tauBs			15.000		\mathbf{Z}
sigmam			9.500		\mathbf{Z}
${ t sigmah}$			-7.000		\mathbf{Z}
${ t sigman}$			10.000		
sigmaz			5.000		
gNa			35.000		

Id	Name	SBO Value	Unit	Constant
gKdr		6.000		
gL		0.050		$\overline{\mathbf{Z}}$
Iapp		0.662		$ \overline{\mathbf{Z}} $
gA		1.400		$\overline{\mathbf{Z}}$
gNaP		0.300		\overline{Z}
gZ		1.000		$\overline{\mathbf{Z}}$
thetaz		-39.000		$\overline{\mathbf{Z}}$
tauZs		75.000		$\overline{\mathbf{Z}}$
phi		10.000		$ \overline{\mathbf{Z}} $
thetah		-45.000		$\overline{\mathbb{Z}}$
thetam		-30.000		$\overline{\mathbf{Z}}$
thetan		-35.000		$\overline{\mathbb{Z}}$
thetap		-47.000		\overline{Z}
sigmap		3.000		$\overline{\mathbf{Z}}$
VK		-90.000		$\overline{\mathbf{Z}}$
VL		-70.000		$\overline{\mathbf{Z}}$
INa		0.000		
INaP		0.000		\Box
IKdr		0.000		\Box
IA		0.000		
Iz		0.000		
Minfs		0.000		
Pinfs		0.000		
Ainfs		0.000		
zzs		0.001		\Box
bbs		0.204		\Box
nns		0.025		\Box
hhs		0.988		
V	VVs	-71.813		

5 Function definition

This is an overview of one function definition.

5.1 Function definition GAMMAF

Arguments VV, theta, sigma

Mathematical Expression

$$\frac{1}{1 + \exp\left(\frac{(VV - theta)}{sigma}\right)} \tag{1}$$

6 Rules

This is an overview of 13 rules.

6.1 Rule Minfs

Rule Minfs is an assignment rule for parameter Minfs:

$$Minfs = GAMMAF(V, thetam, sigmam)$$
 (2)

6.2 Rule Pinfs

Rule Pinfs is an assignment rule for parameter Pinfs:

$$Pinfs = GAMMAF(V, thetap, sigmap)$$
 (3)

6.3 Rule Ainfs

Rule Ainfs is an assignment rule for parameter Ainfs:

$$Ainfs = GAMMAF(V, thetaa, sigmaa)$$
 (4)

6.4 Rule IA

Rule IA is an assignment rule for parameter IA:

$$IA = gA \cdot Ainfs^{3} \cdot bbs \cdot (V - VK)$$
(5)

6.5 Rule Iz

Rule Iz is an assignment rule for parameter Iz:

$$Iz = gZ \cdot zzs \cdot (V - VK) \tag{6}$$

6.6 Rule INa

Rule INa is an assignment rule for parameter INa:

$$INa = gNa \cdot Minfs^{pms} \cdot hhs \cdot (V - VNa)$$
(7)

6.7 Rule INaP

Rule INaP is an assignment rule for parameter INaP:

$$INaP = gNaP \cdot Pinfs \cdot (V - VNa)$$
(8)

6.8 Rule IKdr

Rule IKdr is an assignment rule for parameter IKdr:

$$IKdr = gKdr \cdot nns^{pns} \cdot (V - VK) \tag{9}$$

6.9 Rule zzs

Rule zzs is a rate rule for parameter zzs:

$$\frac{d}{dt}zzs = \frac{GAMMAF(V, thetaz, sigmaz) - zzs}{tauZs}$$
(10)

6.10 Rule bbs

Rule bbs is a rate rule for parameter bbs:

$$\frac{d}{dt}bbs = \frac{GAMMAF(V, thetab, sigmab) - bbs}{tauBs}$$
 (11)

6.11 Rule hhs

Rule hhs is a rate rule for parameter hhs:

$$\frac{d}{dt}hhs = \frac{phi \cdot (GAMMAF(V, thetah, sigmah) - hhs)}{1 + 7.5 \cdot GAMMAF(V, t_tauh, -6)}$$
(12)

6.12 Rule V

Rule V is a rate rule for parameter V:

$$\frac{\mathrm{d}}{\mathrm{d}t}V = \frac{\mathrm{gL} \cdot (\mathrm{V} - \mathrm{VL}) - \mathrm{INa} - \mathrm{INaP} - \mathrm{IKdr} - \mathrm{IA} - \mathrm{Iz} + \mathrm{Iapp}}{\mathrm{Cm}} \tag{13}$$

6.13 Rule nns

Rule nns is a rate rule for parameter nns:

$$\frac{d}{dt}nns = \frac{phi \cdot (GAMMAF(V, thetan, sigman) - nns)}{1 + 5 \cdot GAMMAF(V, t_taun, -15)}$$
(14)

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany