实验三 组合逻辑电路分析与设计 实验报告

16337233 王凯祺 2017 年 4 月 5 日

1 实验目的

- 1. 掌握组合逻辑电路的分析方法,并验证其逻辑功能
- 2. 掌握组合逻辑电路的设计方法,并能用最少的逻辑门实现之
- 3. 熟悉示波器和逻辑分析仪的使用

2 实验原理

组合逻辑电路的设计:按照具体逻辑命题设计出最简单的组合电路。

- 1. 根据给定事件的因果关系列出真值表
- 2. 由真值表写函数式
- 3. 对函数式进行化简
- 4. 画出逻辑图, 并测试逻辑功能

3 实验仪器

数字电路实验箱、逻辑分析仪、74LS00、74LS86、74LS197

4 实验内容

设计一个代码转换电路,输入为4位8421码,输出为4位格雷码。

5 实验设计

5.1 真值表

A3	A2	A1	A0	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

5.2 卡诺图

5.2.1 Y3

A3 A2 A1 A0	00	01	11	10
00			1	1
01			1	1
11			1	1
10			1	1

Y3 = A3

5.2.2 Y2

A3 A2 A1 A0	00	01		11	10	
00			1		1	
01			1		1	
11			1		1	
10			1		1	

$$Y2 = A3 * \overline{A2} + \overline{A3} * A2 = A3 \oplus A2$$

5.2.3 Y1

A3 A2 A1 A0	00		01		11		10				
00					1		1				
01					1		1				
11		1								1	
10		1								1	
				_				_		/	

$$Y1 = A2 * \overline{A1} + \overline{A2} * A1 = A2 \oplus A1$$

5.2.4 Y0

A3 A2 A1 A0	00	01	11	10
00				
01	1	1	1	1
11				
10	1	1	1	1

$$Y0 = A1 * \overline{A0} + \overline{A1} * A0 = A1 \oplus A0$$

5.3 表达式

$$Y3 = A3$$

$$Y2 = A3 \oplus A2$$

 $Y1 = A2 \oplus A1$ $Y0 = A1 \oplus A0$

6 Proteus 电路设计

上图中, A_0 表示时钟信号, A_1 表示输入最低位, A_4 表示输入最高位, A_5 表示输出最低位, A_8 表示输出最高位。

7 静态测试

用逻辑开关模拟二进制代码输入,并把输出接 0-1 显示器,检查电路是否正常工作。

8 动态测试

将十六进制计数器 74LS197 的输出连接到代码转换的输入端,作为 8421 码的输入。

上图中, D_0 表示时钟信号, D_1 表示输入最低位, D_4 表示输入最高位, D_5 表示输出最低位, D_8 表示输出最高位。