PROBLEM OF FINDING THE SHORTEST PATH TO TAKE PACKAGES IN A STORAGE

Project of Optimization (IT3052E) course Hanoi University of Science and Technology

Contents

- Problem details
- 2. Exact Algorithms
 - Backtracking
 - Dynamic Programming
 - · Constraint Programming
- 3. Heuristics and Meta Heuristics Algorithm
 - Greedy Algorithm 1
 - Greedy Algorithm 2
 - Variable Neighborhood Search
 - Simulated Annealing
 - Genetic Algorithm
- 4. Analysis and Conclusions

DESCRIPTION

4. Lấy hàng trong kho

- Trong một kho có các kệ để hàng hóa 1, 2, .., M. Giả thiết kệ j đặt ở điểm j (j = 1,...,M).
- Có N loại sản phẩm được bày rải rác trên các kệ trong kho, mỗi loại sản phẩm i có thể được bày ở nhiều kệ với số lượng khác nhau.
- Biết rằng Q(i,j) là số lượng sản phẩm loại i được bày ở kệ j (i = 1,...,N và j = 1,...,M).
- Nhân viên kho, xuất phát ở cửa kho (điểm 0), cần vào kho lấy các sản phẩm cho 1 đơn hàng trong đó sản phẩm loại i cần lấy số lượng c
- Biết rằng d(i,j) là khoảng cách từ điểm i đến điểm j (i, j = 0,1,...,M)
- Hãy tính toán phương án lấy hàng cho nhân viên kho sao cho tổn quãng đường di chuyển là nhỏ nhất.

DESCRIPTION

- In a warehouse there are many racks for packages 1, 2, ..., M. Suppose the rack is placed at point.
- There are N different types of packages placed all over the racks in the warehouse.
- The number of packages of type i placed at rack j is where and i = 1, 2, ..., N and j = 1, 2, ..., M.
- A warehouse staff starts at the entrance of the warhouse (point 0), needs to pick up the packages for an order in which the number of packages of type i is q(i).
- Given the distance from point i to point j is d(i, j).
- Calculate the route for the staff so that the distance they have to travel is minimal.

VALUES

- M is the number of the racks in the storage
- N is the number of types of the package in the storage
- Matrix Q(i,j) provides information about the number of package i (i=1,..N) in the j rack (j=1,..M)
- Matrix d(i,j) gives information about the distance costs of moving from rack i to rack j (i,j=0,..M)

PRE-PROCESSING

- Because the matrix d[i][j] can be asymmetric or does not satisfy the triangle inequality. This means that the optimal path can goes through the same point more than once. To simplified the problem, we introduce the step of preprocessing the input.
- Preprocess: By pre-calculate the shortest path between any two racks in the storage, the solution can be transformed into a path of racking in which each racking is visited only once while taking into account all the racks visited. Here we used the Floyd-Warshall algorithm.

Backtracking

- Preprocess: By pre-calculate the shortest path between any two racks in the storage, the solution can be transformed into a path of racks in which each racking is visited only once while taking into account all the racks visited. Here we used the Floyd-Warshall algorithm.
- Backtracking: check all the permutations using M racks
- Time Complexity: O(NxM!)

Branch and bound

Cut all branches that exceed the upper bound:

F' - min (d'[j] * max (0, q[j] - p[j] - Q[j][i])) ♥ package type j at current rack i

```
F': best result so far d'[j]: minimum distance required to collected a unit of package j (precalculate)
q[j]: constraint – number of package type j demanded
p[j]: number of packages type j collected at current tour
Q[j][j]: number of packages type j at current rack i
```

Dynamic Programming

Using Dynamic Programming with memoization, the brute-force search running time can be significantly reduced

F = Min (F + d[x][y])(racks visited, last visit rack x, an unvisited rack y,

last visit rack x,
Current collected packages,
remaining lacking
package types)

(racks visited + y, an unvisited rack y, update collected packages, update # remaining lacking package types)

Constraint Programming

Use OR-Tools to create a model for our problem as a constraint optimization problem.

Decision variables

$$x_{j,k} = \begin{cases} 1 \text{ if the } j^{th} \text{ rack is at position } k^{th} \text{ in the path,} \\ 0 \text{ otherwise} \end{cases}$$

Example:

Constraint Programming

Constraints:

$$\sum_{\substack{j=0\\k_0}}^{M} x_{j,k} = 1 \ \forall \ k = 0, 1, 2, ..., k_0;$$

$$\sum_{\substack{k=1\\k_0-1}}^{M} x_{j,k} = 1 \ \forall \ j = 0, 1, 2, ..., M;$$

$$\sum_{\substack{k=1\\k_0-1}}^{M} \left(\sum_{j=1}^{M} Q(i,j) \times x_{j,k}\right) \ge q(i) \ \forall \ i = 1, 2, 3, ..., N;$$

$$x_{0,0} = 1; x_{0,k_0} = 1.$$

Objective function to minimize:

$$f = \sum_{k=0}^{k_0 - 1} \left(\sum_{i=0}^{M} \left(\sum_{j=0}^{M} (x_{i,k} \times x_{j,k+1}) \times d(i,j) \right) \right).$$

- Use search technique to find the nearest racking
- Repeat the process until taking enough of the number of types of packages
- Immediately come back to the entrance from the current location.

 The algorithm is good only when the number of packages of all types in all racks is closed to each other and the number of packages that need to be taken is small

Explanation:

 The algorithm only optimize the distance moving, not taking too much concern in the number of packages in the racks that we will visit.

Use search technique to find the racking with the

```
# 'meaningful'
packages
distance from
the current rack
```

- Repeat the process until taking enough of the number of types of packages
- Immediately come back to the entrance from the current location.

 The algorithm is slightly worse than the first greedy algorithm in practical test cases.

 However, it can be more stable and avoid produce too bad results since it take into account both distance and number of packages factor

- A local search algorithm that can approximate global optimum without getting stuck in local optimum
- It takes into account three main factors: the initial and neighbor state, the cost function and cooling schedule

Graph Explanation of Simulated annealing:

1. Searching Space (Initial State and Neighbor state)

- Initial State is a random permutation of (1,..M);
- Idea: A solution demands choice of racks visiting and order of visiting
- We obtain a neighbor state by a move that changed these two factors at minor enough rate - inversing a part of the list that is the previous state to get the current state.

Choose an interval (I, r) (I is not necessarily smaller than r)

$$(I, r) = (2, 4)$$
 $(I, r) = (5, 3)$ $R1, R2, R3, R4, R5 \rightarrow R1, R4, R3, R2, R5$ $R1, R2, R3, R4, R5 \rightarrow R2, R1, R5, R2, R3$ $R1, R2, R3, R4, R5 \rightarrow R2, R1, R5, R2, R3$

Tabu list helps to prevent reversing the same interval (for a short term – M
iterations).

2. Cost function

- The fitness of a state is the total distance traveled in the route.
- We follow the solution until we pick up all the required packages
- We need to add the distance moving from the entrance to the first rack and the distance moving from the last rack to the entrance

$$cost function = \sum_{i=1}^{length} d(path[i-1], path[i]) + d(0, path[0]) + d(path[length], 0)$$

3. Cooling Schedule

Temperature value (t) changing over running time results in different probabilities of accepting a worse neighbor state (P) at different stages of the SA algorithm

$$P = \begin{cases} 1 & if \Delta c \le 0 \\ e^{-\Delta c/t} & if \Delta c > 0 \end{cases}$$

Geometrical cooling schedule

$$T_k = T_0 \times \alpha^k$$

To = 2000 k: $1 \rightarrow 20000$ $\alpha = 0.0003$

Variable Neighborhood Search (VNS)

A variable neighborhood search combine with iterated local search improvement

Initial Solution

Racks are added at random order to the path until the package constraint is met

Iterated Local Search:

- The path is usually short with respect to total #racks M
- Keep adding racks into consecutive initial solution to create different starting solutions.

 These highly distinctive starting solutions help explore various regions of the searching space

Neighborhood

MOVE 2: SWITCH

MOVE 1: CUT

R1, R2, R3, R4, R5, R6, R7

R1, R2, R3, R4, R5, R6, R7

MOVE 4: SWAP

MOVE 3: PUSH

R1, R2, (R3), R4, R5

R1, R2, R3, R4, R5 R2, R3, R1, R4, R5

(R8) R10 R6 R9 R7

Variable Neighborhood Search (VNS)

- Choose the best move out of the 4 move types at each iteration (only constraint-satisfied moved allowed)
- Whenever getting stuck (cannot find a better solution within the neighborhood), expand the move to 2 and maximum 3 repeated times
- The 4th move takes the longest to run and can only run the 2nd and 3rd times with respectively small test cases.

- An algorithm based on the biological evolution.
- We present the path that we will visit to be a list that is the permutation of (1,...M)

Create the population:

- Set the population size pop_size = 200.
- Using random.shuffle function to shuffle list [1,...,M] to create individuals.
- An individual will present a path.
- Value pop_size, number of generation, crossover rate and mutation rate are parameters and can be changed based on the size of the test, sacrifice the running time to get better result and vice versa.

In a generation:

- Using the random.randint function to choose randomly 2 parents from the population, using the Single Point Crossover function to create 2 offspring, create a chance that happens mutation.
- Calculate the fitness of every individual in the population, sort population from the best to the worst. Keep 180 individual that have the best fitness and 20 that have the worst fitness.

Repeat 200 generations.

Exact algorithms and greedy algorithms:

Data	Backtracking Size		acking	Dynamic Programming		Constraint Programming		Greedy 1	Greedy 2
		f	t(ms)	f	t(ms)	f	t(ms)	f	f
10x10data1	10x10	991	1012	991	119	991	22165	1273	1316
10x10data2	10x10	1086	1348	1086	76	1086	18950	1424	1968
10x10data3	10x10	1029	2581	1029	79	1029	12534	2913	1656
10x10data4	10x10	1083	2733	1083	87	1083	15040	1711	1526
10x10data5	10x10	1508	1134	1508	83	1508	36893	2234	1559

Genetic Algorithm					
f_min	f_max	f_avg	f_std	t_avg (ms)	
991	1025	1018.2	13.6	5071	
1086	1119	1099.2	16.1666323	5075	
1029	1029	1029	0	5625	
1083	1130	1103.2	18.03773822	5375	
1508	1559	1527	18.78297101	5539	
1230	1546	1377	124.9959999	9124	
836	1004	932	69.09413868	8260	
676	790	742	41.91419807	8806	
705	961	858.2	85.25585024	8367	
880	1146	1020.8	94.61162719	9153	
1607	1922	1768.8	123.2808176	141733	
1591	1838	1663.2	88.65979923	144452	
1474	1621	1534.8	62.18488562	50374	
1582	1842	1706	91.89776929	50331	
1304	1511	1415.2	76.32404601	47400	
	991 1086 1029 1083 1508 1230 836 676 705 880 1607 1591 1474 1582	f_min f_max 991 1025 1086 1119 1029 1029 1083 1130 1508 1559 1230 1546 836 1004 676 790 705 961 880 1146 1607 1922 1591 1838 1474 1621 1582 1842	f_min f_max f_avg 991 1025 1018.2 1086 1119 1099.2 1029 1029 1029 1083 1130 1103.2 1508 1559 1527 1230 1546 1377 836 1004 932 676 790 742 705 961 858.2 880 1146 1020.8 1607 1922 1768.8 1591 1838 1663.2 1474 1621 1534.8 1582 1842 1706	f_min f_max f_avg f_std 991 1025 1018.2 13.6 1086 1119 1099.2 16.1666323 1029 1029 0 1083 1130 1103.2 18.03773822 1508 1559 1527 18.78297101 1230 1546 1377 124.9959999 836 1004 932 69.09413868 676 790 742 41.91419807 705 961 858.2 85.25585024 880 1146 1020.8 94.61162719 1607 1922 1768.8 123.2808176 1591 1838 1663.2 88.65979923 1474 1621 1534.8 62.18488562 1582 1842 1706 91.89776929	

	Simulated Anealing				
	f_min	f_max	f_avg	f_std	t_avg (ms)
10x10data1	1025	1146	1095.8	45.11053092	6291
10x10data2	1182	1318	1221.2	53.68947755	6391
10x10data3	1029	1284	1217.8	95.75050914	6980
10x10data4	1083	1155	1121.2	32.49861536	6727
10x10data5	1508	1656	1568.6	49.46352191	6923
10x20data1	1402	1691	1525.8	115.9161766	11544
10x20data2	1051	1170	1115.4	44.7821393	10471
10x20data3	778	903	853.4	41.14170633	11177
10x20data4	955	1194	1096.4	86.11294908	10564
10x20data5	1145	1328	1235.8	61.44070312	11596
100x50data1	2093	2214	2142.8	39.3822295	188428
100x50data2	1888	2177	2055.6	97.91138851	162168
100x50data3	1813	2270	1989.8	165.4054413	67339
100x50data4	1842	2064	1977.8	74.28701098	66544
100x50data5	1771	2115	1873.6	129.3701666	63794

	Variable Neighborhood Search				
	f_min	f_max	f_avg	f_std	t_avg (ms)
10x10data1	991	1161	1066.666667	70.64622346	365
10x10data2	1086	1242	1138	73.53910524	770
10x10data3	1029	1029	1029	0	825
10x10data4	1083	1130	1107.666667	19.25847577	600
10x10data5	1508	1601	1563.333333	29.14713632	532
10x20data1	1100	1272	1164.333333	76.61302471	38404
10x20data2	836	966	895.3333333	53.67391255	22062
10x20data3	661	730	689	29.63106478	17460
10x20data4	745	923	828	73.16192088	28254
10x20data5	844	952	880	50.91168825	40138
100x50data1	1164	1325	1230	68.85249935	30694
100x50data2	983	1113	1069	41.15823125	23084
100x50data3	938	1103	1027	67.98529253	21490
100x50data4	1153	1175	1160.666667	10.14341604	24359
100x50data5	870	1057	963.3333333	66.38440245	25534

Conclusion

Exact algorithms:

- Dynamic Programming algorithm appears to be the best exact algorithm with the fastest running time.
- The Backtracking algorithm with branch and bound techniques run faster than the Constraint Programming algorithm.

Greedy algorithms:

 Greedy algorithms produce surprisingly good results in much less running time in big test cases

- For small tests, all 3 algorithms can reach the global optimum in 5 times testing.
- The VNS algorithm has stable running time and good results for all tests.
- The SA and GA appear to be bad when solving big test data (100x50 test size).
- For the GA test, the result is unstable for big data test and changing the parameter to sacrifice running time can return better optimum.

Assignment

Greedy Algorithm 1	Phan Duc Hung		
Greedy Algorithm 2	Truong Gia Bach		
Backtracking	Truong Gia Bach		
Dynamic Programming	Truong Gia Bach		
Constraint Programming	Tran Duong Chinh		
Variable Neighborhood Search	Truong Gia Bach		
Simulated Annealing	Truong Gia Bach		
Genetic Algorithm	Phan Duc Hung		
Data Collection and Analysis	Phan Duc Hung, Tran Duong Chinh		
Slides	Phan Duc Hung, Tran Duong Chinh, Truong Gia Bach		

HOW TO END A PRESENTATION

