Екзаменаційна робота

Киращук Інна та Коломієць Микола

11 червня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	4

Завдання 1

Означення 1

Нехай $S\subseteq C(X)$. Множина S сильно розділяє точки множини X, якщо

$$\forall x_1, x_2 \in X, x_1 \neq x_2, \forall a_1, a_2 \in \mathbb{R}, \exists f \in S : f(x_1) = a_1, f(x_2) = a_2$$

Означення 2

Нехай $S\subseteq C(X)$. Множину S називають решіткою, якщо $\forall f,g\in S$: $\max\{f,g\}\in S, \min\{f,g\}\in S.$

теорема Какутані-Крейна.

Нехай X — компакт, $S\subseteq C(X)$. Припустимо, що:

- 1) S решітка
- 2) S замкнена множина
- 3) S сильно розділяє точки множини X
- **4**) 1 ∈ *S*

S співпадає з усім простором C(X).

Розв'язання:

Нехай $h \in C(X)$, будемо шукати таку f для $\varepsilon \in R$, що $\|h-f\| < \varepsilon$

Нехай $h\in C(X)$ і дана ε . Ми шукаємо $f\in S$ що задовільняє умову $\|h-f\|<\varepsilon$. Покажемо для кожного $x\in X$, існує $f_x\in S$ така, що $f_x(x)=h(x)$ і $h\leq f_x+\varepsilon$. Тоді для кожного x, знайдемо U_x , відкритий окіл x з $h(y)\geq f_x(y)-\varepsilon$ для кожного $y\in U_x$ (з неперервності $h-f_x$). U_x покриття X тож нехай U_{x_1},\ldots,U_{x_n} підпокриття. Тоді $f=f_{x_1}\wedge\cdots\wedge f_{x_m}$ задовільняють умову $f(y)+\varepsilon=\min_i \{f_{x_i}(y)+\varepsilon\}\geq h(y)$. Більше того з того, що $y\in U_{x_i}$ для певного $i,f(y)-\varepsilon\leq f_{x_i}(y)-\varepsilon\leq h(y)$. Таким чином $\|f-h\|_\infty<\varepsilon$. Тепер спробуємо знайти f_x , що задовільняють цим умовам. З того, що S сильно розділяє точки і $1\in S$, для кожного x та y в X, ми можемо знайти $f_{xy}\in S$ з $f_{xy}(x)=h(x)$ і $f_{xy}(y)=h(y)$. Для кожного y, ми можемо знайти V_y , відкриту множину навколо y з $f_{x_y}(z)+\varepsilon\geq h(z)$ для $z\in V_y.V_{y_1},\ldots,V_{y_n}\varepsilon$ покриттям X для підходящих y_1,\ldots,y_n . Якщо взяти $f_x=f_{xy_1}\vee\cdots\vee f_{xy_n}$, тоді $f_x(x)=h(x)$, і для будь-якого $z\in X$

$$f_x(z) + \varepsilon = \max_{i=1,\dots,n} \{ f_{xy_1}(z) + \varepsilon \} \ge h(z)$$

Це завершує доведення

Завдання 2

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$(f(x), x) \ge 0 \quad \forall x \in S^{n-1}.$$

Доведіть, що існує точка $x_0 \in B^n : f(x_0) = 0.$

Розв'язання:

Доводити будемо від супротивного.

Нехай
$$\forall x \in B^n, f(x) \neq 0.$$

Визначимо неперервне відображення

$$B^n \xrightarrow{\phi} B^n, \quad \phi x = -\frac{f(x)}{\|f(x)\|}$$

За теоремою Брауера

$$\exists y \in B^n, \quad -\frac{f(y)}{\|f(y)\|} = y \Rightarrow (f(y), y) = -\|f(y)\| < 0$$

З включення $y \in S^{n-1}$ маємо протиріччя з умовою задачі.

Доведено!