BÀI TẬP CHƯƠNG 3

Ví dụ 7.1: Lọc FIR được mô tả bởi phương trình hiệu số:

$$y(n) = 0.1x(n) + 0.25x(n-1) + 0.2x(n-2)$$

Tìm hàm số chuyển, chiều dài của lọc, hệ số khác không và đáp ứng xung.

Câu 1 (**Matlab**): Tổng hợp bộ lọc **cao qua** FIR với *bậc lọc phù hợp*, có các chỉ tiêu kỹ thuật:

$$\delta_p = 0.08$$
, $\delta_s = 0.08$, $\omega_c = \pi/2$, $\omega_p = \pi/2 + 0.2$, và $\omega_s = \pi/2 - 0.2$. Vẽ $\left| H\left(\omega\right) \right|$ của lọc.

Câu 2 (Matlab): Tổng hợp bộ lọc thông dải FIR với bậc lọc phù hợp có các chỉ tiêu kỹ thuật:

$$\delta_p = 0.02, \ \delta_s = 0.02$$

$$\omega_{cH} = 2\pi/3$$
, $\omega_{cHp} = 2\pi/3 - 0.18$, $\omega_{cHs} = 2\pi/3 + 0.18$

$$\omega_{cL} = \pi/3$$
, $\omega_{cLp} = \pi/3 + 0.18$, $\omega_{cLs} = \pi/3 - 0.18$

Vẽ đáp ứng biên độ $|H(\omega)|$ của lọc.

Câu 3 (Matlab): Tổng hợp bộ lọc dải chặn FIR với bậc lọc phù hợp có các chỉ tiêu kỹ thuật:

$$\delta_p = 0.02, \ \delta_s = 0.02$$

$$\omega_{cH} = 2\pi/3$$
, $\omega_{cHp} = 2\pi/3 + 0.18$, $\omega_{cHs} = 2\pi/3 - 0.18$

$$\omega_{cL} = \pi/3$$
, $\omega_{cLp} = \pi/3 - 0.18$, $\omega_{cLs} = \pi/3 + 0.18$

Vẽ đáp ứng biên độ $|H(\omega)|$ của lọc.

Câu 4 (Matlab): Cho tín hiệu đầu vào lọc có dạng như sau:

$$x(t) = 1\sin(2\pi 2t) + 2\sin(2\pi 5t) + 3\sin(2\pi 8t) + 4\sin(2\pi 12t)$$

Lấy mẫu x(t) với tần số $f_s = 72$ Hz. Thiết kết lọc FIR với **bậc lọc phù hợp** để khôi phục:

a) $x_1(t) = 1\sin(2\pi 2t)$

- b) $x_4(t) = 4\sin(2\pi 12t)$
- c) $x_{2.3}(t) = 2\sin(2\pi 5t) + 3\sin(2\pi 8t)$ d) $x_{1.4}(t) = 1\sin(2\pi 2t) + 4\sin(2\pi 12t)$
- e) $x_{2,4}(t) = 2\sin(2\pi 5t) + 4\sin(2\pi 12t)$

*Sinh viên tự viết các hàm đáp ứng xung lý tưởng của: a0_CaoQua.m, a0_ThongDai.m, a0_DaiChan.m

*Sinh viên tự viết các hàm cửa sổ: b0_ChuNhat.m, b0_TamGiac.m, b0_Hanning.m, b0_Hamming.m, b0_Blackman.m

Câu 5 (Matlab): Cho tín hiệu đầu vào lọc có dạng như sau:

$$x(t) = 1\sin(2\pi 2t) + 2\sin(2\pi 5t) + 3\sin(2\pi 8t) + 4\sin(2\pi 12t)$$

Lấy mẫu x(t) với tần số $f_s=72~{\rm Hz}$. Thiết kết lọc ${
m IIR}$ với $\emph{bậc lọc phù hợp}$ để khôi phục:

a)
$$x_1(t) = 1\sin(2\pi 2t)$$

b)
$$x_4(t) = 4\sin(2\pi \frac{12}{t})$$

c)
$$x_{2,3}(t) = 2\sin(2\pi 5t) + 3\sin(2\pi 8t)$$

c)
$$x_{2,3}(t) = 2\sin(2\pi 5t) + 3\sin(2\pi 8t)$$
 d) $x_{1,4}(t) = 1\sin(2\pi 2t) + 4\sin(2\pi 12t)$