Appendices (A-C)

Title: A Unified Benchmark for Security and Reliability Assessment of the Integrated Chemical Plant, Natural Gas and Power Transmission Networks

Authors: Zahra Kheirkhah Ravandi, R. Bozorgmehry Boozarjomehry, F. Babaei, S. M. R. Pishvaie

Appendix A. Data for the gas pipeline and geographical coordinates of the syngas plant, natural gas, and power transmission networks.

The pipeline data as well as the geographical coordinates of the Syngas plant, natural gas, and power transmission networks are given in Table A.1 to Table A.5.

		<u> </u>				<u> </u>	
Starting Node	Ending Node	Length [Km]	Diameter [m]	Node Number	Type	Latitude	Longitude
		100	0.9144			32.73863	-114.63904
1 2	2 3	30	0.6350	1 2	supply Node	32.73803	-114.63904
3	4	5	0.6350	3	Node	32.99842	-115.76985
4	5	15	0.6350	4	Node	32.78977	-115.76985
5	6	10	0.6350	5	Node	32.73448	-116.0316
3	O	10	0.0330	3	11000	32.73110	110.0310
6	7	5	0.6350	6	SynGas Demand	32.63406	-116.20342
7	8	10	0.6350	7	Node	32.7819	-116.13369
8	9	5	0.9144	8	Power	32.81886	-116.32434
					Demand		
9	10	60	0.9144	9	Node	33.06292	-115.39132
10	1.1	_	0.6250	10	37 1	22.5.10.15	1110000
10	11	5	0.6350	10	Node	33.54045	-114.9868
11	12	8	0.6350	11	Node	33.52901	-115.16741
11	12	O	0.0330	11	11000	33.32701	113.10711
11	13	6	0.6350	12	Demand	33.68336	-115.17709
10	14	80	0.9144	13	Power	33.50618	-115.3295
					Demand		
14	15	10	0.9144	14	Node	33.65556	-114.2273
1.7	1.6	20	0.0144	1.5	37 1	22 (712)	112.00405
15	16	20	0.9144	15	Node	33.67138	-113.99405
16	17	3	0.6350	16	Node	33.63961	-113.74963
10	1 /	3	0.0330	10	Node	33.03901	-113.74903
17	18	6	0.6350	17	Node	33.59129	-113.55726
17	10	O	0.0330	17	rode	33.37127	113.33720
16	19	5	0.6350	18	Demand	33.57985	-113.36486
		-		-			
15	20	40	0.9144	19	Power	33.73234	-113.67656
					Demand		
20	21	5	0.9144	20	Node	33.86509	-113.97678
21	22	20	0.9144	21	Node	33.97907	-114.07031
		_					
22	23	5	0.9144	22	Node	34.02234	-114.22682
22	2.4	16	0.0144	22	NT. 1	24 10074	114 12616
23	24	16	0.9144	23	Node	34.10874	-114.13616

22	25	8	0.6350	24	Power Demand	34.21138	-114.13185
Table A1.		1 . 543		25	Demand	34.14052	-114.28999
The natural	gas pipeline	data [1].					

Table A3.
The natural gas topology data.

Latitude

32.63406 **Table A.4**

SynGas plant topology data.

Longitude -116.20342

Bus ID	Latitude	Longitude
1	33.396	-113.836
2	33.358	-113.826
3	33.537	-113.620
4	33.812	-113.825
5	33.659	-113.999
6	33.738	-114.182
7	33.732	-113.677
8	34.459	-113.762
9	33.920	-114.308
10	33.913	-114.293
11	33.904	-114.301
12	33.911	-114.3134
13	34.211	-114.132
14	33.777	-114.820
15	33.506	-115.329
16	33.661	-115.321
17	33.575	-115.641
18	33.544	-115.801
19	33.869	-115.369
20	34.244	-115.262
21	33.527	-116.071
22	32.818	-116.324
23	34.382	-115.069
24	33.543	-114.656

Table A.2
Power network topology data.

Node number	ρ	φ
1	1.48473	0.031129
2	1.448602	0.031129
3	1.41155	0.031129
4	1.373498	0.031129
5	1.334362	0.031129
6	1.294042	0.031129
7	1.252426	0.031129
8	1.209378	0.031129
9	1.16474	0.031129
10	1.118321	0.031129

11	1.116204	0.005481
12	1.114084	0.005481
13	1.111959	0.005481
14	1.422476	0.005481
15	1.421228	0.005481
16	1.41998	0.005481
17	1.419563	0.00274
18	1.419772	0.00274
19	1.419355	0.00274
20	1.463949	0.025649
21	1.439167	0.025649
22	1.413951	0.025649
23	1.388276	0.025649
24	1.362118	0.025649
25	1.335448	0.025649
26	1.308234	0.025649
27	1.306561	0.007454
28	1.306546	0.000548
29	1.304836	0.006905
30	1.294322	0.018195
31	1.280259	0.018195
32	1.26604	0.018195
33	1.251659	0.018195
34	1.237111	0.018195
35	1.22239	0.018195
36	1.207489	0.018195
37	1.192403	0.018195
38	1.478308	0.018195
39	1.472212	0.012824
40	1.46609	0.012824
41	1.466086	0.000548
42	1.466076	0.000548
43	1.462038	0.012276
44	1.47724	0.005371
45	1.476172	0.005371
46	1.475103	0.005371
47	1.474034	0.005371
48	1.53248	0.005371
49	1.531451	0.005371
50	1.53042	0.005371
51	1.530005	0.004823
52	1.52934	0.004823
53	1.528674	0.004823
		2.33.33

Table A.5

The initial condition data of gas network.

Appendix B. Data for the power transmission network in the nominal condition

Table B.6 to Table B.9 provide the base case data for the power transmission network in its nominal operating condition of the integrated system.

Bus_I	Bus_Type	P_d	Q_d	G_s	\boldsymbol{B}_{s}	area	V_m	V_a	Base KV	zone	V _{max}	V _{min}
1	2	93.2256	18.9904	0	0	1	1	0	138	1	1.05	0.95
2	2	83.7304	17.264	0	0	1	1	0	138	1	1.05	0.95
3	1	155.376	31.9384	0	0	1	1	0	138	1	1.05	0.95
4	1	63.8768	12.948	0	0	1	1	0	138	1	1.05	0.95
5	1	61.2872	12.0848	0	0	1	1	0	138	1	1.05	0.95
6	1	68	14	0	-100	2	1	0	138	1	1.05	0.95
7	2	107.9	21.58	0	0	2	1	0	138	1	1.05	0.95
8	1	147.6072	30.212	0	0	2	1	0	138	1	1.05	0.95
9	1	87.5	18	0	0	1	1	0	138	1	1.05	0.95
10	1	97.5	20	0	0	2	1	0	138	1	1.05	0.95
11	1	0	0	0	0	3	1	0	230	1	1.05	0.95
12	1	0	0	0	0	3	1	0	230	1	1.05	0.95
13	3	228.748	46.6128	0	0	3	1	0	230	1	1.05	0.95
14	2	97	19.5	0	0	3	1	0	230	1	1.05	0.95
15	2	158.5	32	0	0	4	1	0	230	1	1.05	0.95
16	2	86.32	17.264	0	0	4	1	0	230	1	1.05	0.95
17	1	0	0	0	0	4	1	0	230	1	1.05	0.95
18	2	166.5	34	0	0	4	1	0	230	1	1.05	0.95
19	1	90.5	18.5	0	0	3	1	0	230	1	1.05	0.95
20	1	64	13	0	0	3	1	0	230	1	1.05	0.95
21	2	0	0	0	0	4	1	0	230	1	1.05	0.95
22	2	0	0	0	0	4	1	0	230	1	1.05	0.95
23	2	0	0	0	0	3	1	0	230	1	1.05	0.95
24	1	0	0	0	0	4	1	0	230	1	1.05	0.95

Table B.6

Bus data of the power transmission network in the base case [2].

Bus number	Type of load	Bus load	Load	If peak load 25 %higher			
	A, B, Const	% of load system	[MW]	[MW]			
1	В	4.85	86.4	108			
2	A	4.35	77.6	97			
3	A	8.08	144	180			
4	A	3.32	59.2	74			
5	A	3.19	56.8	71			

6	Const	3.81	68	85
7	В	5.61	100	125
8	В	7.68	136.8	171
9	Const	4.91	87.5	109.375
10	Const	5.47	97.5	121.875
13	A	11.89	212	265
14	Const	5.44	97	121.25
15	Const	8.89	158.5	198.125
16	В	4.49	80	100
18	Const	9.34	166.5	208.125
19	Const	5.08	90.5	113.125
20	Const	3.59	64	80
		Total 100		

Table B.7
Bus load data of the power transmission network in the base case [2].

Bus	P_g	Q_g	Q_{max}	Q_{min}	V_g	mBase	Status	P _{max}	P_{min}
1	10	0	8	0	1.035	100	1	16	8
1	10	0	8	0	1.035	100	1	16	8
1	60.8	0	24	-12.5	1.035	100	1	60.8	7.6
1	60.8	0	24	-12.5	1.035	100	1	60.8	7.6
2	12	0	8	0	1.035	100	1	16	8
2	12	0	8	0	1.035	100	1	16	8
2	60.8	0	24	-12.5	1.035	100	1	60.8	7.6
2	60.8	0	24	-12.5	1.035	100	1	60.8	7.6
7	60	0	48	0	1.025	100	1	80	8.333333
7	60	0	48	0	1.025	100	1	80	8.333333
7	60	0	48	0	1.025	100	1	80	8.333333
13	57.6	0	64	0	1.02	100	1	157.6	23
13	57.6	0	64	0	1.02	100	1	157.6	23
13	57.6	0	64	0	1.02	100	1	157.6	23
14	0	35.3	160	-50	0.98	100	1	0	0
15	9.6	0	4.8	0	1.014	100	1	9.6	0.48
15	9.6	0	4.8	0	1.014	100	1	9.6	0.48
15	9.6	0	4.8	0	1.014	100	1	9.6	0.48
15	9.6	0	4.8	0	1.014	100	1	9.6	0.48
15	9.6	0	4.8	0	1.014	100	1	9.6	0.48
15	124	0	64	-50	1.014	100	1	124	54.3
16	124	0	64	-50	1.017	100	1	124	54.3
18	320	0	160	-50	1.05	100	1	320	100
21	320	0	160	-50	1.05	100	1	320	100
22	40	0	12.8	-1.66667	1.05	100	1	40	1.666667
22	40	0	12.8	-1.66667	1.05	100	1	40	1.666667
22	40	0	12.8	-1.66667	1.05	100	1	40	1.666667
22	40	0	12.8	-1.66667	1.05	100	1	40	1.666667
22	40	0	12.8	-1.66667	1.05	100	1	40	1.666667
22	40	0	12.8	-1.66667	1.05	100	1	40	1.666667
23	124	0	64	-25	1.05	100	1	124	27.15

23	124	0	64	-25	1.05	100	1	124	27.15
23	280	0	120	-25	1.05	100	1	280	140

 Table B.8

 Generator data of the power transmission network in the base case [2].

F_Bus	T_Bus	0.0026	<i>x</i> 0.0139	<u>ь</u> 0.4611	Rate_A 140	Rate_B 250	Rate_C 200	ratio ()	angle	Status 1	angmin -360	angmax 360
1	3	0.0546	0.2112	0.0572	140	208	220	0	0	1	-360	360
1	5	0.0218	0.0845	0.0372	140	208	220	0	0	1	-360	360
2	4	0.0328	0.1267	0.0223	140	208	220	0	0	1	-360	360
2	6	0.0497	0.192	0.052	140	208	220	0	0	1	-360	360
3	9	0.0308	0.119	0.0322	140	208	220	0	0	1	-360	360
3	24	0.0023	0.0839	0	320	510	600	1.03	0	1	-360	360
4	9	0.0268	0.1037	0.0281	140	208	220	0	0	1	-360	360
5	10	0.0228	0.0883	0.0239	140	208	220	0	0	1	-360	360
6	10	0.0139	0.0605	2.459	140	193	200	0	0	1	-360	360
7	8	0.0159	0.0614	0.0166	140	208	220	0	0	1	-360	360
8	9	0.0427	0.1651	0.0447	140	208	220	0	0	1	-360	360
8	10	0.0427	0.1651	0.0447	140	208	220	0	0	1	-360	360
9	11	0.0023	0.0839	0	320	510	600	1.03	0	1	-360	360
9	12	0.0023	0.0839	0	320	510	600	1.03	0	1	-360	360
10	11	0.0023	0.0839	0	320	510	600	1.02	0	1	-360	360
10	12	0.0023	0.0839	0	320	510	600	1.02	0	1	-360	360
11	13	0.0061	0.0476	0.0999	400	600	625	0	0	1	-360	360
11	14	0.0054	0.0418	0.0879	400	625	625	0	0	1	-360	360
12	13	0.0061	0.0476	0.0999	400	625	625	0	0	1	-360	360
12	23	0.0124	0.0966	0.203	400	625	625	0	0	1	-360	360
13	23	0.0111	0.0865	0.1818	400	625	625	0	0	1	-360	360
14	16	0.005	0.0389	0.0818	400	625	625	0	0	1	-360	360
15	16	0.0022	0.0173	0.0364	400	600	625	0	0	1	-360	360
15	21	0.0063	0.049	0.103	400	600	625	0	0	1	-360	360
15	21	0.0063	0.049	0.103	400	600	625	0	0	1	-360	360
15	24	0.0067	0.0519	0.1091	400	600	625	0	0	1	-360	360
16	17	0.0033	0.0259	0.0545	400	600	625	0	0	1	-360	360
16	19	0.003	0.0231	0.0485	400	600	625	0	0	1	-360	360
17	18	0.0018	0.0144	0.0303	400	600	625	0	0	1	-360	360
17	22	0.0135	0.1053	0.2212	400	600	625	0	0	1	-360	360
18	21	0.0033	0.0259	0.0545	400	600	625	0	0	1	-360	360
18	21	0.0033	0.0259	0.0545	400	600	625	0	0	1	-360	360
19	20	0.0051	0.0396	0.0833	400	600	625	0	0	1	-360	360
19	20	0.0051	0.0396	0.0833	400	600	625	0	0	1	-360	360
20	23	0.0028	0.0216	0.0455	400	600	625	0	0	1	-360	360
20	23	0.0028	0.0216	0.0455	400	600	625	0	0	1	-360	360
21	22	0.0087	0.0678	0.1424	400	600	625	0	0	1	-360	360

Table B.9

Appendix C. Correlations and Parameters for the SynGas plant

The equations and correlations for calculating the physical properties, reaction rates, constants, and parameters are given by the equations (C.1)-(C.28) and Table C.10 [3].

$$u_{s,0} = \frac{F_{total,0}.R.T_0}{\Omega p_0} \tag{C.1}$$

$$u_{s} = u_{s,0} \frac{F_{total}. p_{0}. T}{F_{total,0}. p. T_{0}}$$
(C.2)

$$\varepsilon_B = \frac{0.9198}{(d_{tube}/d_{p,i})^2} + 0.3414 \tag{C.3}$$

$$\rho_b = \rho_s (1 - \varepsilon_B) \tag{C.4}$$

$$D_{m,j} = \frac{1}{\sum_{j=1, j \neq i}^{n} \frac{y_j}{D_{m,ij}}}$$
 (C.5)

$$\frac{(D.p)_H}{(D.p)} = function (T_R, p_R)$$
(C.6)

$$\frac{1}{D_{eff,j}} = \frac{\varepsilon}{T} \left(\frac{1}{D_{m,j}} + \frac{1}{D_{k,j}} \right) \tag{C.7}$$

$$D_{ax} = a.D_m + \frac{b.u_s.d_{p,i}/\varepsilon_B}{1 + \frac{c.D_m}{u_s.d_{p,i}/\varepsilon_B}}$$
(C.8)

$$\lambda_{gm} = \sum_{i=1}^{n} \frac{y_i \lambda_{g,i}}{\sum_{j=1}^{n} y_j A_{ij}} \tag{C.9}$$

$$A_{ij} = \frac{\left[1 + \left(\frac{\lambda_{tr,i}}{\lambda_{tr,j}}\right)^{0.5} \left(\frac{MW_i}{MW_j}\right)^{0.25}}{\left[8\left(1 + \frac{MW_i}{MW_j}\right)\right]^{0.5}}$$
(C.10)

$$\frac{\lambda_{tr,i}}{\lambda_{tr,j}} = \frac{r_j[\exp(0.00464T_{R,i}) - \exp(-0.2412T_{R,i})}{r_i[\exp(0.0464T_{R,i}) - \exp(-0.2412T_{R,i})}$$
(C.11)

$$\Gamma = 210(\frac{T_C M W^3}{P_C^4}$$
 (C.12)

$$\frac{\lambda_{ax}}{\lambda_{gm}} = \frac{\lambda_{ax}^0}{\lambda_{gm}} + \delta N_{pr} N_{Re} \quad \delta = 0.75$$
(C.13)

$$\frac{\lambda_{ax}^0}{\lambda_{gm}} = \varepsilon_B + \frac{1 - \varepsilon_B}{0.139\varepsilon_B - 0.0339 + \frac{2\lambda_{gm}}{3\lambda_S}} \tag{C.14}$$

$$\frac{1}{U} = \frac{1}{a_W} + \frac{d_{tube,o}}{6\lambda_{er}} (\frac{Bi+3}{Bi+4})$$
 (C.15)

$$Bi = \frac{a_W d_{tube,o}}{2\lambda_{er}} \tag{C.16}$$

$$\lambda_{er} = \lambda_{er}^{0} + 0.111\lambda_{g} \frac{N_{Re} N_{Pr}^{1/3}}{1 + 46(d_{p,i}/d_{tube,o})^{2}}$$
(C.17)

$$\lambda_{er}^{0} = \varepsilon_{B} \left(\lambda_{g} + 0.95 a_{ru} d_{p,i} \right) + \frac{0.95 (1 - \varepsilon)}{2/(3\lambda_{s}) + 1/(10\lambda_{g} + a_{rs} d_{p,i})}$$
(C.18)

$$a_{ru} = \frac{0.8171(T/100)^3}{1 + \varepsilon_B/2(1 - \varepsilon_B)(1 - e_m)/e_m}$$
(C.19)

$$a_{rs} = 0.8171 \frac{e_m}{2 - e_m} (T/100)^3$$
 (C.20)

$$a_W = (1 - 1.5(\frac{d_{tube,i}}{d_{p,i}})^{-1.5}) \frac{\lambda_g}{d_{p,i}} N_{Re}^{0.59} N_{pr}^{1/3}$$
(C.21)

$$r_1 = \frac{k_1}{p_{H_2}^{2.5}} \frac{p_{CH_4} p_{H_2o} - p_{H_2}^3 p_{CO} / K_1}{DEN^2}$$
 (C.22)

$$r_2 = \frac{k_2}{P_{H_2}} \frac{p_{CO} p_{H_2O} - P_{H_2} p_{CO_2} / K_2}{DEN^2}$$
 (C.23)

$$r_3 = \frac{k_3}{P_{H_2}^{3.5}} \frac{p_{CH_4} p_{H_2o}^2 - p_{H_2}^4 p_{CO_2} / K_3}{DEN^2}$$
 (C.24)

$$DEN = 1 + K_{CO}P_{CO} + K_{H_2}P_{H_2} + K_{CH_4}p_{CH_4} + \frac{K_{H_{2o}}p_{H_2o}}{p_{H_2}}$$
(C.25)

$$k_i = A(k_i) \cdot \exp[-E_i/(RT)], \text{ for } i = 1, ..., 3$$
 (C.26)

$$K_i = A(K_i) \cdot \exp[-\Delta H_i/(RT)], \text{ for } i = 1, ..., 3$$
 (C.27)

$$K_j = A(K_j) \cdot \exp[-\Delta H_j/(RT)], \text{ for } j = CH_4, H_2O, CO, H_2$$
 (C.28)

Activation energies (E), Heat of reactions $\Delta H_{1,2,3}$ and adsorption enthalpies $\Delta H_{component}[KJ/mol]$

 E_1 E_2 E_3 ΔH_1 ΔH_2 ΔH_3 ΔH_{CO} ΔH_{H_2} ΔH_{CH_4} ΔH_{H_2O}

240.1 67.13 243.9 206.1 -41.15 164.9 -70.65 -82.90 38.28 88.68 $A(k_1)[kmol\ bar^{0.5}kg^{-1}hr^{-1}]$ $A(k_2)[kmol\ bar^{0.5}kg^{-1}hr^{-1}]$ $A(k_3)[kmol\ bar^{0.5}kg^{-1}hr^{-1}]$ $A(K_2)[bar] A(K_3)[bar^2]$ $A(K_1)[bar^2]$ $4.225\times 10^{15} \ 1.955\times 10^{6} \ 1.02\times 10^{15}$ $4.707 \times 10^{12} \ 1.142 \times 10^{-2} \ 5.375 \times 10^{10}$ $A(K_{CO})[bar^{-1}] A(K_{H_2}) A(K_{CH_4})[bar^{-1}] A(K_{H_2O})[bar^{-1}]$ $8.23\times 10^{-5} \ 6.12\times 10^{-9} \ 6.65\times 10^{-4} \ 1.77\times 10^{5}$

Table C.10

The kinetic data required for the reaction rates of the steam methane reforming process [3].

References

- [1] B. Zhao, A. Zlotnik, A. J. Conejo, R. Sioshansi, and A. M. Rudkevich, "Shadow price-based coordination of natural gas and electric power systems," *IEEE Transactions on Power Systems*, vol. 34, no. 3, pp. 1942-1954, 2018.
- [2] A. Zlotnik, L. Roald, S. Backhaus, M. Chertkov, and G. Andersson, "Coordinated scheduling for interdependent electric power and natural gas infrastructures," *IEEE Transactions on Power Systems*, vol. 32, no. 1, pp. 600-610, 2016.
- [3] G. Pantoleontos, E. S. Kikkinides, and M. C. Georgiadis, "A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor," *International Journal of Hydrogen Energy*, vol. 37, no. 21, pp. 16346-16358, 2012.