ЛЕКЦ 11. Давхар интегралын хэрэглээ

Хоёрлосон интегралыг геометрт хэрэглэх

1. Хавтгайн дурсийн талбайг олох

Тэгш өнцөгт координатын системд хавтгай муж D-ийн талбай S-ийг дараах томъёогоор бодно.

$$S = \iint_{(D)} ds = \iint_{(D)} dxdy \tag{1}$$

Туйлын координатын системд

$$S = \iint_{(D)} \rho d\rho d\varphi \tag{2}$$

томъёогоор бодно.

2. Биеийн эзэлхүүн олох

Oxy хавтгайн D муж дээр тодорхойлогдсон z=f(x,y) тэгшитгэл бүхий нэг утгат тасралтгүй гадаргуугаар дээд талаасаа, z=0 хавтгайгаар доод талаасаа, хажуу талаасаа D-ийн хөвөө нь чиглүүлэгч байх шулуун цилиндр гадаргуугаар тус тус хүрээлэгдсэн биеийн эзэлхүүнийг дараах томъёогоор олно.

$$V = \iint_{D} f(x, y) dx dy = \iint_{D} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho d\varphi$$
 (3)

3. Гадаргуугийн талбай олох

а) Хэрэв z=f(x,y) гэсэн гөлгөр гадаргуу өгөгдөөд xoy хавтгайд түүний проекцыг D_{xy} гэвэл гадаргуугийн талбай S-ыг дараах томъёогоор олно.

$$S = \iint_{(D_{xy})} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy \tag{4}$$

б) Хэрэв гадаргуугийн тэгшитгэл y = f(x,z) гэж өгөгдөөд түүний oxz хавтгай дээрх проекц D_{xz} муж бол гадаргуугийн талбай S-ийг дараах томъёогоор бодно.

$$S = \iint_{(D_{xz})} \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} dxdz \tag{5}$$

в) Хэрэв гадаргуугийн тэгшитгэл x = f(y, z) бөгөөд yoz хавтгайд нэг утгат D_{yz} проекцтой бол гадаргуугийн талбайг дараах томъёогоор бодно.

$$S = \iint_{(D_{yz})} \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} dy dz \tag{6}$$

Зураг 1:

Жишээ 0.1. 2x-y=0 (AB), 2x-y-7=0 (DC), x-4y+7=0 (AD), x-4y+14=0 (BC) шугамуудаар хурээлэгдсэн дурсийн талбайг ол.

Бодолт: $A(1;2),\ B(2;4),\ C(6;5),\ D(5;3)$ цэгүүдэд оройтой параллелограмм тул $D=D_1\cup D_2\cup D_3$ хэсгүүдэд хуваана.

 $S = S_1 + S_2 + S_3$ (зураг 1.14)

$$S_1 = \iint_{D_1} dx dy = \int_1^2 dx \int_{\frac{x+7}{4}}^{2x} dy = \frac{7}{8};$$

$$S_2 = \iint_{D_2} dx dy = \int_2^5 dx \int_{\frac{x+7}{4}}^{\frac{x+14}{4}} dy = \frac{21}{4};$$

$$S_3 = \iint_{D_3} dx dy = \int_5^6 dx \int_{\frac{x+7}{4}}^{\frac{x+14}{4}} dy = \frac{7}{8};$$

$$S = \frac{7}{8} + \frac{21}{4} + \frac{7}{8} = 7 \text{ (кв.нэгж)}$$

Жишээ 0.2. $x^2 + y^2 - 2ax = 0$, $x^2 + y^2 - ax = 0$ шугамуудаар хүрээлэгдсэн дүрсийн талбай ол.

Бодолт: өгсөн тойргуудаар хязгаарлагдсан талбай тэгш хэмтэй юм. (зураг 1.15) Туйлын координатын системд бодъё. Тойргуудын тэгшитгэл туйлын координатад $\rho = a\cos\varphi$, $\rho = 2a\cos\varphi$ болно.

$$0 \leq \varphi \leq \frac{\pi}{2}, \ a\cos\varphi \leq \rho \leq 2a\cos\varphi$$

$$S=2\cdot\iint\limits_{(ABCODA)}
ho d
ho darphi=2\int\limits_0^{rac{\pi}{2}}darphi\int\limits_{a\cosarphi}^{2a\cosarphi}
ho d
ho=rac{3}{4}\pi a^2$$
 кв.нэгж

Жишээ 0.3. $z=a^2-x^2,\;x+y=a,\;y=2x,\;z=0,\;y=0$ гадаргуугаар хүрээлэгдсэн биеийн эзэлхүүнийг ол.

Бодолт: $z=a^2-x^2$ нь oy-тэй параллель үүсгэгч бүхий параболлог цилиндр гадаргуу юм. (зураг 1.16)

Зураг 2:

Зураг 3:

$$D: \ 0 \le y \le \frac{2a}{3}, \ \frac{y}{2} \le x \le a - y \ (\text{зураг 1.17})$$

$$V=\iint\limits_{(D)}zdxdy=\int\limits_{0}^{rac{2a}{3}}\int\limits_{rac{y}{2}}^{a-y}(a^2-x^2)dx=rac{41}{162}a^4$$
 куб.нэгж

Жишээ 0.4. $c(x^2+y^2)+a^2z=a^2c,\ (c>0),\ z=0$ гадаргуунуудаар хязгаарлагдсан биеийн эзэлхүүнийг ол.

Бодолт: Эргэлтийн параболоид (зураг 1.18) гадаргуу юм.

Зураг 18

Зураг 4:

Үүнийг туйлын координатад шилжүүлж бодвол тохиромжтой учир

$$0 \le \varphi \le 2\pi, \ 0 \le \rho \le a, \ x = \rho \cos \varphi, \ y = \rho \sin \varphi, \ c\rho^2 + a^2 z = a^2 c, \ z = \frac{c}{a^2} (a^2 - \rho^2)$$

$$V = \iint\limits_{D} z dx dy = \iint\limits_{D'} \frac{c}{a^2} (a^2 - \rho^2) \rho d\rho d\varphi = \frac{c}{a^2} \int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{a} (a^2 - \rho^2) d\rho$$

$$= \frac{c}{a^2} \Big|_{0}^{2\pi} \cdot \left(a^2 \frac{\rho^2}{2} - \frac{\rho^4}{4} \right) \Big|_{0}^{a} = \frac{c}{a^2} 2\pi \left(\frac{a^4}{2} - \frac{a^4}{4} \right) = \frac{1}{2} \pi a^2 c \quad \text{куб. нэгж}$$

Жишээ 0.5. $ay = x^2 + z^2$ гадаргуугийн I октант дахь хэсгээс y = 2a хавтгайгаар таслагдсан хэсгийн гадаргуугийн талбайг ол.

Бодолт: Өгөгдсөн гадаргуу нь oy эргэлтийн тэнхлэг бүхий эргэлтийн параболоидын хэсэг юм. Түүнийн xoz хавтгайд проекцлоё. $y=\frac{1}{a}(x^2+z^2)$ (зураг 1.19)

Проекц нь

$$\left\{ \begin{array}{ll} ay=x^2+y^2 \\ y=2a \end{array} \right. \implies 2a^2=x^2+z^2 \quad \text{буюу} \quad \left\{ \begin{array}{ll} x^2+z^2=2a^2 \\ y=0 \end{array} \right.$$

юм.

Туйлын координатад бодъё. $x = \rho \cos \varphi$, $y = \rho \sin \varphi$ тул

$$\rho^{2} = 2a^{2}, \ \rho = a\sqrt{2}, \ 0 \le \varphi \le \frac{\pi}{2}, \ 0 \le \rho \le a\sqrt{2}$$

$$y = \frac{1}{a}(x^{2} + z^{2}) \implies \frac{\partial y}{\partial x} = \frac{2x}{a}, \ \frac{\partial y}{\partial z} = \frac{2z}{a}$$

$$\sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^{2} + \left(\frac{\partial y}{\partial z}\right)^{2}} = \sqrt{1 + \frac{4x^{2}}{a^{2}} + \frac{4z^{2}}{a^{2}}} = \frac{1}{a}\sqrt{a^{2} + 4(x^{2} + z^{2})}$$

$$S = \frac{1}{2} \iint_{(D_{xz})} \sqrt{a^{2} + 4(x^{2} + z^{2})} dx dz = \frac{1}{a} \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{a\sqrt{2}} \sqrt{a^{2} + 4\rho^{2}} \rho d\rho \Rightarrow$$

Доторх интегралыг эхлэн бодвол

$$\frac{1}{8} \int_{0}^{a\sqrt{2}} (a^2 + 4\rho^2)^{\frac{1}{2}} d(a^2 + 4\rho^2) = \frac{1}{8} \cdot \frac{(a^2 + 4\rho^2)^{\frac{3}{2}}}{\frac{3}{2}} \bigg|_{0}^{a\sqrt{2}} = \frac{13}{6} a^3$$
$$S = \frac{1}{a} \frac{13}{6} a^3 \int_{0}^{\frac{\pi}{2}} d\varphi = \frac{13}{12} \pi a^2 \quad (\text{кв.нэгж})$$

өгсөн гадаргууг хоу ба уог хавтгайд проекцлож гадаргуугийн талбайг бодохыг зөвлөе.

Хоёрлосон интегралыг физикт хэрэглэх

1. Хэрэв oxy хавтгайн битүү D мужийн цэг бүрд $\rho = \rho(x,y)$ хувьсах нягт бүхий масс тархсан гэвэл D-ийн массыг дараах интегралаар олно.

$$m = \iint\limits_{(D)} \rho(x, y) dx dy \tag{7}$$

2. Хавтгай дурсийн Ox ба Oy тэнхлэгтэй харьцуулсан статик моментийг олж болно.

$$S_x = \iint_{\mathcal{D}} y \cdot \rho(x, y) dx dy, \ S_y = \iint_{\mathcal{D}} x \cdot \rho(x, y) dx dy \tag{8}$$

3. Хавтгай дүрсийн хүндийн төвийн координатуудыг дараах томъёогоор тодорхойлно. $((x_0, y_0)$ хүндийн төв)

$$x_0 = \frac{S_y}{m} = \frac{\iint\limits_D x \cdot \rho(x, y) dx dy}{\iint\limits_D \rho(x, y) dx dy}, \ y_0 = \frac{S_x}{m} = \frac{\iint\limits_D y \cdot \rho(x, y) dx dy}{\iint\limits_D \rho(x, y) dx dy}$$
(9)

4. Хавтгай дүрсийн, координатын тэнхлэгүүдтэй харьцангуй бодсон инерцийн моментуудыг тодорхойлно.

$$J_x = y^2 \cdot m; \quad J_y = x^2 \cdot m$$

$$J_x = \iint_D y^2 \rho(x, y) dx dy, \quad J_y = \iint_D x^2 \rho(x, y) dx dy \tag{10}$$

5. Хавтгай дурсийн координатын эхтэй харьцуулсан инерцийн моментыг олно.

$$J_0 = \iint_D (x^2 + y^2)\rho(x, y) dx dy$$
 (11)

Жишээ 0.6. Координатын тэнхлэгүүд болон $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ эллипсийн I мөчид орших нумаар хязгаарлагдсан нэгэн төрлийн дүрсийн статик момент S_x , S_y , J_x инерцийн момент болон хүндийн төвийг тус тус ол.

Бодолт: $y = \frac{b}{a}\sqrt{a^2 - x^2}, \ 0 \le x \le a, \ 0 \le y \le \frac{b}{a}\sqrt{a^2 - x^2}$ (зураг 1.20) $\rho(x,y) = 1$ гэвэл

Зураг 5:

$$S_{x} = \iint_{D} y dx dy = \int_{0}^{a} dx \int_{0}^{\frac{b}{a}\sqrt{a^{2}-x^{2}}} y dy$$

$$\int_{0}^{\frac{b}{a}\sqrt{a^{2}-x^{2}}} y dy = \frac{y^{2}}{2} \Big|_{0}^{\frac{b}{a}\sqrt{a^{2}-x^{2}}} = \frac{b^{2}}{2a^{2}} (a^{2} - x^{2})$$

$$S_{x} = \frac{b^{2}}{2a^{2}} \int_{0}^{a} (a^{2} - x^{2}) dx = \frac{b^{2}}{2a^{2}} (a^{2}x - \frac{x^{3}}{3}) \Big|_{0}^{a} = \frac{1}{3}ab^{2}, \quad S_{x} = \frac{1}{3}ab^{2}$$

$$S_{y} = \iint_{D} x dx dy = \int_{0}^{a} x dx \int_{0}^{\frac{b}{a}\sqrt{a^{2}-x^{2}}} dy; \quad S_{y} = \frac{1}{3}a^{2}b$$

$$\rho = 1; \quad m = \iint_{(D)} \rho(x, y) dx dy = \iint_{(D)} dx dy = \int_{0}^{a} dx \int_{0}^{\frac{b}{a}\sqrt{a^{2} - x^{2}}} dy =$$

$$= \int_{0}^{a} \frac{b}{a} \sqrt{a^{2} - x^{2}} dx = \frac{1}{4} \pi ab; \quad m = \frac{1}{4} \pi ab$$

$$x_{0} = \frac{S_{y}}{m} = \frac{\frac{1}{3} a^{2} b}{\frac{1}{4} \pi a b} = \frac{4a}{3\pi}; \quad y_{0} = \frac{S_{x}}{m} = \frac{\frac{1}{3} ab^{2}}{\frac{1}{4} \pi a b} = \frac{4b}{3\pi}$$

$$J_{x} = \iint_{(D)} 1 \cdot y^{2} dx dy = \int_{0}^{a} dx \int_{0}^{\frac{b}{a}\sqrt{a^{2} - x^{2}}} y^{2} dy = \frac{\pi ab^{3}}{16}$$

$$\int_{0}^{\frac{b}{a}\sqrt{a^{2} - x^{2}}} y^{2} dy = \frac{y^{3}}{3} \Big|_{0}^{\frac{b}{a}\sqrt{a^{2} - x^{2}}} = \frac{1}{3} \left[\frac{b^{3}}{a^{3}} \sqrt{(a^{2} - x^{2})^{3}} - a^{3} \right]$$

Жишээ 0.7. $y=\sin x,\ y=\cos x$ функцүүд ба $x=0,\ x=\frac{\pi}{4}$ шугамуудаар хүрээлэгдсэн дүрсийн массын тархалтын нягт $\rho(x,y)=y$ бол уг дүрсийн массыг тодорхойл. (Зураг 1.21)

Зураг 21

Бодолт:
$$m = \iint\limits_{(D)} \rho(x,y) dx dy = \iint\limits_{(D)} y dx dy$$

$$0 \le x \le \frac{\pi}{4}, \quad \sin x \le y \le \cos x$$

$$m = \int_{0}^{\frac{\pi}{4}} \int_{\sin x}^{\cos x} y dy dx = \int_{0}^{\frac{\pi}{4}} \frac{y^2}{2} \bigg|_{\sin x}^{\cos x} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) dx = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos 2x dx = \frac{1}{4} \sin 2x \bigg|_{0}^{\frac{\pi}{4}} = \frac{1}{4} (\sin \frac{\pi}{2} - \sin 0) = \frac{1}{4}, \quad m = \frac{1}{4}$$

Жишээ 0.8. O(0;0), A(4;3), C(6;0) цэгүүдэд оройтой нэгэн төрлийн гурвалжны инерцийн моментыг OB талын хувьд бод.

Бодолт: $\rho(x,y) = 1$ гэж үзье.

$$OA: y = \frac{3}{4}x, \quad AB: y = -\frac{3}{2}x + 9$$

Эндээс
$$x = \frac{4}{3}y$$
, $x = -\frac{2}{3}y + 6$

$$D: 0 \le x \le 3, \ \frac{4}{3}y \le x \le -\frac{2}{3}y + 6 \quad (\text{sypar } 1.22)$$

$$J_x = \iint_D y^2 \rho(x, y) dx dy = \iint_D y^2 \cdot 1 dx dy = \int_0^3 y^2 dy \int_{\frac{4y}{3}}^{-\frac{2}{3}y + 6} dx \Longrightarrow$$

$$\int_{\frac{4y}{3}}^{-\frac{2}{3}y+6} dx = \begin{vmatrix} -\frac{2}{3}y+6 \\ -\frac{2}{3}y+6 - \frac{4}{3}y = -2y+6 \end{vmatrix}$$

$$J_x = \int_{0}^{3} y^2(-2y+6)dy = \frac{27}{2} = 13.5$$

Гурвалсан интегралын хэрэглээ

1. Биеийн эзэлхүүн олох Хэрэв f(x,y,z)=1 бол гурвалсан интеграл нь T биеийн эзэлхүүнийг илэрхийлнэ.

$$V = \iiint_{(T)} dv = \iiint_{(T)} dx dy dz \tag{12}$$

2. Нэгэн төрлийн биш биеийн массыг олно. Хэрэв $\gamma(x,y,z)$ нь биеийн массын тархалтын нягт бол массыг дараах томъёогоор олно.

$$m = \iiint_{(T)} \gamma(x, y, z) dv = \iiint_{(T)} \gamma(x, y, z) dx dy dz$$
 (13)

3. Биеийн, координатын хавтгай бүртэй харьцангуй бодсон статик моментыг дараах томъёогоор бодно.

$$M_{xy} = \iiint_{(T)} z \cdot \gamma(x, y, z) dv$$

$$M_{yz} = \iiint_{(T)} x \cdot \gamma(x, y, z) dv$$

$$M_{xz} = \iiint_{(T)} y \cdot \gamma(x, y, z) dv$$
(14)

4. Биеийн хүндийн төв $M(x_0, y_0, z_0)$ цэгийг тодорхойлно.

$$x_{0} = \frac{M_{yz}}{m} = \frac{\iiint\limits_{(T)} x \cdot \gamma(x, y, z) dv}{\iiint\limits_{(T)} \gamma(x, y, z) dv}$$

$$y_{0} = \frac{M_{xz}}{m} = \frac{\iiint\limits_{(T)} \gamma(x, y, z) dv}{\iiint\limits_{(T)} \gamma(x, y, z) dv}$$

$$z_{0} = \frac{M_{xy}}{m} = \frac{\iiint\limits_{(T)} \gamma(x, y, z) dv}{\iiint\limits_{(T)} \gamma(x, y, z) dv}$$

$$(15)$$

5. Биеийн координатын тэнхлэгүүдтэй харьцуулсан инерцийн моментыг дараах томъёогоор тодорхойлно.

$$J_{x} = \iiint_{(T)} (y^{2} + z^{2})\gamma(x, y, z) dx dy dz$$

$$J_{y} = \iiint_{(T)} (x^{2} + z^{2})\gamma(x, y, z) dx dy dz$$

$$J_{z} = \iiint_{(T)} (x^{2} + y^{2})\gamma(x, y, z) dx dy dz$$

$$(16)$$

Санамж: Нэгэн төрлийн бие байвал $\gamma(x,y,z) = const$ болно. Энэ тохиолдолд $\gamma(x,y,z) = 1$ гэж авах тул дээрх интегралуудыг бодоход нилээд хялбар болно.

Эзэлхүүний элемент $\Delta V = |J| \cdot \Delta V'$ буюу $dV = \rho^2 \sin\theta d\rho d\theta d\varphi$ байна. (зураг 2.12)

Хэрэв $\rho = const$ бол θ, φ нь хувирах ба иймд цэгүүд бөмбөрцгийг үүсгэнэ. Хэрэв θ -тогтмол, ρ, φ координатууд хувирах бол конус гадаргуу, харин φ -тогтмол, ρ, θ координатууд хувирвал хагас хавтгайг тус тус үүсгэнэ. Иймээс бөмбөрцөг координатын системд координатын гадаргуунууд нь бөмбөрцөг, конус, хагас хавтгай байна. (зураг 2.14)

Жишээ 0.9. Нэг төрлийн бөмбөрцгийн радиус нь a, секторын орой дахь өнцөг нь 2α байг. Бөмбөрцгийн секторын хүндийн төвийг тодорхойл. (зураг 2.13)

Бодолт: Секторын хүндийн төв Oz тэнхлэг дээр орших тул $x_0=0,\ y_0=0$ байна. $z_0=?,\ \gamma(x,y,z)=1$

Зураг 6:

Зураг 7:

Бөмбөрцөг координатад бодъё. $z=\rho\cos\theta,\ dV=\rho^2\sin\theta d\rho d\theta d\varphi,\ 0\le\rho\le a,\ 0\le\theta\le\alpha,\ 0\le\varphi\le 2\pi$ тул

$$S_{xy} = \iiint_{T} \gamma z dv = \iiint_{T} 1 \cdot \rho \cos \theta \rho^{2} \sin \theta d\rho d\theta d\varphi =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{\alpha} \sin \theta \cos \theta d\theta \int_{0}^{a} \rho^{3} d\rho = \frac{1}{4} \pi a^{4} \sin^{2} \alpha;$$

$$m = \iiint_{T} \rho^{2} \sin \theta d\rho d\theta d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{\alpha} \sin \theta d\theta \int_{0}^{a} \rho^{2} d\rho = \frac{3}{4} \pi a^{3} \sin^{2} \frac{\alpha}{2};$$

$$z_{0} = \frac{S_{xy}}{m} = \frac{3}{4} a \cos^{2} \frac{\alpha}{2}$$

Жишээ 0.10. $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 + z^2 = b^2$, (a < b) гадаргуунуудын хооронд орших нэгэн төрлийн биеийн Oz тэнхлэгтэй харьцуулсан инерцийн моментыг тодорхойл.

Бодолт: Бөмбөрцөг координатын системд бодъё. $\gamma(\rho, \theta, \varphi) = k$ гэе. (зураг 2.15)

$$J_{oz} = \iiint_T (x^2 + y^2)kdv, \ |J| = \rho^2 \sin \theta, \ x^2 + y^2 = \rho^2 \sin^2 \theta,$$

Зураг 8:

Зураг 9:

$$x^{2} + y^{2} + z^{2} = \rho^{2}, \ a \leq \rho \leq b, \ 0 \leq \theta \leq \pi, \ 0 \leq \varphi \leq 2\pi,$$

$$J_{oz} = \int_{0}^{2\pi} \int_{a}^{\pi} \int_{a}^{b} k\rho^{2} \sin^{2}\theta (\rho^{2}\sin\theta d\rho d\theta d\varphi) = k \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{\rho^{5}}{5}\sin^{3}\theta\right) \Big|_{a}^{b} d\theta d\varphi$$

$$= \frac{k}{5} (b^{5} - a^{5}) \int_{0}^{2\pi} \int_{0}^{\pi} (1 - \cos^{2}\theta) \sin\theta d\theta d\varphi$$

$$= \frac{k}{5} (b^{5} - a^{5}) \int_{0}^{2\pi} \left(-\cos\theta + \frac{1}{3}\cos^{3}\theta\right) \Big|_{0}^{\pi} d\varphi = \frac{4k}{15} (b^{5} - a^{5}) \int_{0}^{2\pi} d\varphi$$

$$= \frac{8k\pi}{15} (b^{5} - a^{5})$$