Mobile Computing – Mobile Transport Layer

- MTL provides mobility support for applications
 - TCP
 - Connection oriented, reliable
 - UDP
 - Connectionless, unreliable
- Functions:
 - Checksumming ove user data
 - Multiplexing/demultiplexing of data from/to applications
- Advantage of TCP
 - In the time of packet loss, TCP assumes network congestion and slows down the transmission rate.

TCP - Handshake

Traditional TCP

- Congestion Control
 - Payload (packet) data could be more router cannot forward the packet
 - Control: router drops the packet
 - Receiver informs the sender missed packet using sequence number –
 ack
 - Tcp –slows down the transmission rate when congestion takes place to mitigate the congestion
- Slow Start the way TCP acts after detection of congestion
 - Congestion window sender calculates the CW for a receiver
 - Sender sends one packet and waits for ack
 - After the ack is received, CW is increased everytime (exponential growth)
 - Congestion Threshold sender reduces the CW to 1 packet
 - Linear increase continues till time-out occurs at sender due to a missing ack or until sender gets ack for same packet for long time

Traditional TCP

- Fast retransmit/fast recovery
 - TCP sends an acknowledgement only after receiving a packet
 - If a sender receives several acknowledgements for the same packet
 - This implies that receiver received all packets up to the acknowledged packet in sequence.
 - Gap in the packet stream is not due to congestion, but packet loss due to a **transmission error**.
 - Fast retransmit: sender retransmit the missing packet(s) before the timer expires.
 - Fast recovery: since the receipt of ack shows that there is no congestion to justify a slow start
 - Sender can continue with the current congestion window.

Influences of mobility on TCP-mechanisms

- TCP assumes congestion if packets are dropped
 - If the ack for a packet is missed, TCP assumes problem is because of congestion in network
 - Mobility factor
 - Mobile & wireless end-systems creates more packet loss
 - Trying to retransmit packet on layer 2 may take too long
- Mobility handover problem
 - Mobility from old to new foreign agent

Classical TCP Improvements - Indirect TCP

 Indirect TCP: I-TCP segments a TCP connection into a fixed part and a wireless part

Reason

- TCP performs poorly with wireless links
- TCP within the fixed network cannot be changed

I-TCP- Working of TCP segments

- Standard TCP is used between the fixed host and the access point
 - Access point acts as a proxy
 - i.e it is seen as mobile host for the fixed host and as the fixed host for the mobile host.
- Special TCP adapted to wireless links is used between access point and mobile host
- Foreign agent: is acting as a access point between fixed host and mobile host
 - FA —controls the mobility of the MH and can hand over the connection to the next FA
 - FA forwards the packet from MH to FH

I-TCP- Working – Handover (Socket & State migration)

- After the handover, old proxy must forward buffered data to the new proxy
 - New FA informs the old FA about its location to enable packet forwarding.

I-TCP – Advantages & Disadvantages

Advantages

- No changes in the fixed network are necessary.
- Transmission errors on the wireless link do not propagate into the fixed network
- Simple to control, mobile TCP is used only for one hop between, e.g., a foreign agent and mobile host
- Very fast retransmission of packets is possible.

Disadvantages

- Loss of end-to-end semantics: foreign agents might crash false positive ack
- **Higher latency** possible due to **buffering of data** within the foreign agent and forwarding to a new foreign agent

Classical TCP Improvements - Snooping TCP

- Drawback of I-TCP: segmentation of the single TCP connection into two TCP connections
 - This looses the original end-to-end TCP semantic.
- Solution: Snooping TCP
 - "Extension of TCP within the foreign agent
 - **Buffering** of packets sent to the mobile host
 - Lost packets on the wireless link (both directions) will be retransmitted immediately by the mobile host or foreign agent, respectively (so called "local" retransmission)
 - The foreign agent "snoops" the packet flow and recognizes acknowledgements in both directions, it also filters ACKs

Snooping TCP

Snooping TCP – Advantages & Disadvantages

Advantages:

- End-to-end TCP semantic is preserved
- CH does not need to be changed
 - Enhancements are done in FA

Disadvantages:

• It takes some time until the FA can successfully retransmit a packet from its buffer due to problems on the wireless link.

Classical TCP Improvements - Mobile TCP

- It handles the occurrence of lengthy and/or frequent disconnections
 - Problems:
 - sender tries to retransmit data controlled by a retransmission timer that doubles with each unsuccessful retransmission attempt.
 - the longer the period of disconnection, the more buffer is needed.
 - Creates problem in handover

Mobile TCP

- M-TCP- same goals as I-TCP & snooping TCP
 - Tries to improve overall throughput, lower delay, maintain end-to-end semantics of TCP, handover
 - Provides solution to lengthy/frequent disconnections
- **M-TCP** splits the TCP connection into two parts:
 - Unmodified TCP connection supervisory host (SH)
 - Optimized TCP connection optimization techniques
- Supervisory host
 - monitors all packets, if disconnection detected
 - Set sender window size to 0
 - Sender automatically goes into persistent mode
 - If it detects connectivity again
 - Reopens the window of the sender
- Advantages
 - Maintains semantics, supports disconnection, no buffer forwarding
- Disadvantages
 - Loss on wireless link propagated into fixed network

Classical TCP Improvements – Fast retransmit/fast recovery

- Change of foreign agent often results in packet loss
 - TCP reacts with **slow-start** although there is no congestion
- Solution
 - Forced fast retransmit
 - As soon as the mobile host has registered with a new foreign agent, the MH sends duplicated acknowledgements on purpose
 - This **forces the fast retransmit** mode at the communication partners
 - Additionally, the TCP on the **MH** is forced to continue sending with the actual window size and not to go into slow-start after registration
 - Advantage
 - Simple changes result in significant higher performance
 - Disadvantage
 - It requires more cooperation between the mobile IP and TCP layer.

Classical TCP Improvements – Transmission/Time-out freezing

- Mobile hosts can be disconnected for a longer time
 - No packet exchange possible, e.g., in a tunnel, disconnection due to overloaded cells. with higher priority traffic
 - TCP disconnects after time-out completely
- Solution
 - TCP freezing
 - MAC layer is often able to detect interruption in advance
 - MAC can inform TCP layer of upcoming loss of connection
 - TCP stops sending, but does now not assume a congested link
 - MAC layer signals again if reconnected
- Advantage
 - It is independent of TCP mechanism
- Disadvantage
 - TCP on mobile host has to be changed, mechanism depends on MAC layer

Classical TCP Improvements – Selective retransmission

TCP acknowledgements are often cumulative

• If single packets are missing quite often a whole packet sequence beginning at the gap has to be retransmitted (go-back-n), thus wasting bandwidth

Solution

- Selective retransmission as one solution
 - RFC2018 allows for acknowledgements of single packets, not only acknowledgements of in-sequence packet streams without gaps
 - sender can now retransmit only the missing packets

Advantage

- much higher efficiency
- Disadvantage
 - more complex software in a receiver, more buffer needed at the receiver

Classical TCP Improvements – Transaction – oriented TCP

Example TCP connection setup overhead

Transaction -oriented TCP

TCP phases

- Connection setup, data transmission, connection release
- Using 3-way-handshake needs 3 packets for setup and release, respectively
- Thus, even short messages need a minimum of 7 packets!

Transaction oriented TCP

- RFC1644, T-TCP, describes a TCP version to avoid this overhead
- Connection setup, data transfer and connection release can be combined
- Thus, only 2 or 3 packets are needed

Advantage

More efficient

Disadvantage

- Requires changed TCP
- Mobility not longer transparent