INTRODUCTION TO MACHINE LEARN-ING

KNOWLEDGE SHARING FOR CPE/SKE STUDENTS

SIRAKORN LAMYAI

STUDENT, KASETSART U.

OCTOBER 2, 2018

OUTLINE

- 1 Introduction to Machine Learning
 - What is Machine Learning? Traditional programming approach Machine learning approach
- Types of Machine Learning Problems
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- 3 Model
 - A good model Overfitting and underfitting

ľ

INTRODUCTION TO MACHINE LEARN-ING

■ This is Recaptcha.

- This is Recaptcha.
 - ► Recaptcha helps stop millions of spam a day.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - ► In some old days, we have to type Captcha texts to distinguish ourself from bots.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - ► In some old days, we have to type Captcha texts to distinguish ourself from bots.
 - ► How is it possible that with a single click, an automated system can distinguish bots from humans?

TRADITIONAL PROGRAMMING APPROACH

MACHINE LEARNING APPROACH

IN OTHER WORDS...

Machine Learning

Machine Learning

= Data + Data analysis algorithm

Machine Learning

Data + Data analysis algorithmAdapt to change

TYPES OF MACHINE LEARNING PROB-LEMS

1. Supervised learning

- 1. Supervised learning
- 2. Unsupervised learning

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

Determined by

Labels

SUPERVISED LEARNING

Unsupervised Learning

REINFORCEMENT LEARNING

■ A result of the combination between...

- A result of the combination between...
 - ▶ a **method** to recognise the data, and

- A result of the combination between...
 - ▶ a **method** to recognise the data, and
 - **sample datas** for such the method

Determine which group should the purple dot be in (red/green/blue) by **checking the colour of its nearest dot.**

Determine which group should the purple dot be in (red/green/blue) by **checking the colour of its nearest dot.**

Data

Determine which group should the purple dot be in (red/green/blue) by **checking the colour of its nearest dot.**

Data Method

Good model?

GOOD MODEL

How should we draw the line to predict this data?

GOOD MODEL

Blue, red, or green line?

1. Underfitting

1. Underfitting

► Our model fails to know the data's trends

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data
- 2. Overfitting

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data

2. Overfitting

Our model memorise instead of generalise

1. Underfitting

- Our model fails to know the data's trends
- Resulting in failure to predict further data

2. Overfitting

- Our model memorise instead of generalise
- Resulting in failure to catch the trend

Good model must generalise