# PCT

#### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

| (51) International Patent Classification <sup>5</sup> : A61K 37/36                                                                                                                                                                                                                                                                                                                                                        | A1                                                           | (11) International Publication Number: WO 91/19513 (43) International Publication Date: 26 December 1991 (26.12.91)                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (21) International Application Number: PCT/US (22) International Filing Date: 20 June 1991 (30) Priority data: 20 June 1990 (20.06.90) (71) Applicant: BRISTOL-MYERS SQUIBB COMPA (72) Inventors: OLESON, Frederick, B. Jr.; 5104 Shi Fayetteville, NY 13066 (US), COMERESKI, C ; 510 David Drive, North Syracuse, NY 13068 (74) Agent: POOR, Brian, W.; Bristol-Myers Squibb (3005 First Avenue, Seattle, WA 98121 (US). | (20.06.s<br>ANY [U<br>(US).<br>iraz La:<br>tharles,<br>(US). | patent), CA, CH (European patent), DE (European patent), FR  [European patent), FR  (European patent), FR  (European patent), GR  (European patent), GR  (European patent), GR  (European patent), FR  (European patent), NL  (European patent), NL  (European patent), NL  (European patent), NL  (European patent), SE  (European patent)  (SS   Published  With International search report. |
| (54) Title: METHODS OF MODULATING BLOOP                                                                                                                                                                                                                                                                                                                                                                                   | ) PRE                                                        | SSURE USING TGF-8 AND ANTAGONISTS THEREOF                                                                                                                                                                                                                                                                                                                                                       |

(54) Title: METHODS OF MODULATING BLOOD PRESSURE USING 1GF-P AND ANTAGONISTS THEREO

#### (57) Abstract

The use of TGF- $\beta$  and TGF- $\beta$  antagonists to modulate blood pressure is described. In a specific embodiment described by way of example herein, recombinant mature TGF- $\beta$ 1 isolated and purified from transfected Chinese Hamster Ovary cells induced rapid, significant and sustained decreases in arterial blood pressure of cynomolgus monkeys receiving daily injections of the rTGF- $\beta$ 1. The TGF- $\beta$ 1 used to lower blood pressure may be obtained from native sources or may be produced by recombinant DNA or chemical synthetic techniques.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT | Austria                  | ES | Spain                        | MG  | Madagascar               |
|----|--------------------------|----|------------------------------|-----|--------------------------|
| AU | Australia                | FI | Finland                      | MI. | Mali                     |
| BB | Barbados                 | FR | France                       | MN  | Mongolia                 |
| BE | Belgium                  | GA | Gabon                        | MR  | Mauritania               |
| BF | Burkina Faso             | GB | United Kingdom               | MW  | Malawi                   |
| BG | Bulgaria                 | GN | Guinca                       | NL  | Netherlands              |
| BJ | Benin                    | GR | Greece                       | NO  | Norway                   |
| BR | Brazil                   | HU | Hungary                      | PL  | Poland                   |
| CA | Canada                   | IT | Italy                        | RO  | Romania                  |
| CF | Central African Republic | JP | Japan                        | SD  | Sudan                    |
| CC | Congo                    | KP | Democratic People's Republic | SE  | Sweden                   |
| CH | Switzerland              |    | of Korea                     | SN  | Senegal                  |
| CI | Côte d'Ivoire            | KR | Republic of Korea            | su  | Soviet Union             |
| CM | Cameroon                 | LI | Liechtenstein                | TD  | Chad                     |
| cs | Czechoslovakia           | LK | Sri Lanka                    | TG  | Togo                     |
| DE | Germany                  | LU | Luxembourg                   | us  | United States of America |
| DK | Denmark                  | MC | Monaço                       |     | Omnos Siatos di America  |
|    |                          |    |                              |     |                          |

#### METHODS OF MODULATING BLOOD PRESSURE USING TGF-β AND ANTAGONISTS THEREOF

#### INTRODUCTION

The present invention is directed to the use of transforming growth factor-beta (TGF- $\beta$ ) and TGF- $\beta$  antagonists to modulate blood pressure (BP). The method of the invention is demonstrated by way of example in which mature recombinant TGF- $\beta$ 1 (rTGF- $\beta$ ) is used to rapidly lower blood pressure in adult cynomolgus monkeys. However, the scope of the invention is not limited to the use of rTGF- $\beta$ 1 but rather encompasses the use of mature and precursor forms of all members of the TGF- $\beta$  family effective at modulating blood pressure, including natural and recombinant mature TGF- $\beta$ 1, TGF- $\beta$ 2, TGF- $\beta$ 3, TGF- $\beta$ 4, etc., as well as TGF- $\beta$ 8 hybrids, analogs and latent TGF- $\beta$ 6 complexes. Similarly, the invention includes the use of any and all compositions effective at antagonizing TGF- $\beta$ 8 activity, including but not limited to anti-TGF- $\beta$ 8 antibodies and TGF- $\beta$ 8 receptors.

#### 2. BACKGROUND OF THE INVENTION

#### 2.1. TRANSFORMING GROWTH FACTOR-BETA

TGF- $\beta$  is a member of a recently described family of polypeptides that regulate cellular differentiation and proliferation. Other members of this family include Mullerian inhibitory substance (Cate et al., 1986, Cell 45:685-698), the inhibins (Mason et al., 1985, Nature 318:659-663) and a protein predicted from a transcript of the decapentaplegic gene complex of Drosophila (Padgett et al., 1987, Nature 325: 81-84.

Four types of TGF- $\beta$ 1 have been identified and designated TGF- $\beta$ 1, TGF- $\beta$ 2, TGF- $\beta$ 1, 2, and TGF- $\beta$ 3. The first described type, TGF- $\beta$ 1, consists of two identical disulfide linked subunits having molecular weights of 13,000 (Assoian et al., 1983, J. Biol. Chem. 258:7155-7160; Frolik et al.,

1983, Proc. Natl. Acad. Sci. USA 80:3676-3680; Frolik et al., 1984, J. Biol. Chem. 260:10995-11000). It has been purified from several tissue sources including placenta (Frolik et al., 1983, Nature 325:81-84), blood platelets (Childs et al., 1982, Proc. Natl. Acad. Sci. USA 79:5312-5316; Assoian et al., 1983, J. Biol. Chem. 258:7155-7160) kidney (Roberts et al., 1983, Biochemistry 22:5692-5698), and demineralized bone (Seyedin et al., 1985, Proc. Natl. Acad. Sci. USA 82:119-123). cDNA clones coding for human (Derynck et al., 1985, Nature 316:701-705), mouse (Derynck et al., 1986, J. Biol. Chem. 261:4377-4379) and simian (Sharples et al., 1987, DNA 6:239-244) TGF-β1 have been isolated. DNA sequence analysis of these clones indicates that TGF-\$1 is synthesized as a large precursor polypeptide, the carboxy terminus of which is cleaved to yield the mature TGF- $\beta$  monomer. Strong sequence homology has been found throughout the TGF- $\beta$ 1 precursor protein from all of the above sources.

In the presence of 10% serum and epidermal growth factor, TGF-\$1 promotes the anchorage independent growth of normal rat kidney fibroblasts (Roberts et al., 1981, Proc. Natl. Acad. Sci. USA 78:5339-5343; Roberts et al., 1982, Nature 295:417-419; Twardzik et al., 1985, J. Cell. Biochem. 28:289-297); in the presence of 10% serum alone, it is able to induce colony formation of AKR-2B fibroblasts (Tucker et al., 1983, Cancer Res. 43:1518-1586). TGF-\$1\$ has also been shown to cause fetal rat muscle mesenchymal cells to differentiate and produce cartilage specific macromolecules (Seyedin et al., 1986, J. Biol. Chem. 261:5693-5695).

In contrast to its effect on cell proliferation, TGF-01 purified from human platelets has been shown to inhibit the growth of certain cells in culture (Tucker et al., 1984, Science 226:705-707). TGF-01 has also been shown to inhibit the growth of several human cancer cell lines

(Roberts et al., 1985, Proc. Natl. Acad. Sci. USA 82:119-123). This inhibitory/stimulatory effect of TGF- $\beta$ 1 may depend on several factors including cell type and the physiological state of the cells (for review see Sporn et al., 1986, Science 233:532-534).

TGF-82, like TGF-81, is a polypeptide of molecular weight 26,000 composed of two identical 13,000-dalton subunits which are disulfide like (Chiefetz et al., 1987, Cell 48:409-415; Ikeda et al., 1987, Biochemistry 26:2406-2410) and has been isolated from bovine demineralized bone (Seydin et al., 1987, J. Biol. Chem. 262:1946-1949), porcine platelets Chiefetz et al., 1987, 48:409-415), a human prostatic adenocarcinoma cell line, PC-3 (Ikeda et al., 1987, biochemistry 26:2406-2410), and a human gliablastoma cell line (Wrann et al., 1987, EMBO 6:1633-1636). cDNA clones coding for human and simian  $TGF-\beta 2$  have been isolated (Madisen et al., 1988, DNA 7:1-8; Webb et al., 1988, DNA 7:493-497). The mature TGF-82 monomer is cleaved from one of two larger precursor polypeptides, the mRNAs of which may arise via differential splicing (Webb et al., 1988, DNA 7:493-497).

TGF- $\beta$ 1 and TGF- $\beta$ 2 share 71% amino acid sequence identity in their mature regions, and 41% identity in their precursor structures. TGF- $\beta$ 3, the amino acid sequence of which has very recently been deduced from cDNA clones, appears to contains C-terminal 112 amino acid sequence with about 80% homology to the mature monomers of TGF- $\beta$ 1 and TGF- $\beta$ 2 (Dijke et al., 1988, Proc. Natl. Acad. Sci. USA 85:4715-4719). TGF- $\beta$ 1.2 is a heterodimeric form comprising a  $\beta$ 1 and  $\beta$ 2 subunit linked by disulfide bonds (Chiefetz et al., 1987, Cell 48:409-415).

#### SUMMARY OF THE INVENTION

The present invention is directed to methods of modulating blood pressure using  $TGF-\beta$  polypeptides,  $TGF-\beta$  antagonists, and/or combinations thereof. The invention may be subdivided into two categories solely for the purpose of description.

First, the invention relates to the use of  $TGF-\beta s$  as antihypertensive agents capable of rapidly and significantly lowering blood pressure. This aspect of the invention encompasses the use of any and all  $TGF-\beta$  polypeptides having a hypotensive activity, including mature and precursor forms of  $TGF-\beta 1$ ,  $TGF-\beta 2$ ,  $TGF-\beta 3$ , hybrid  $TGF-\beta s$ , latent  $TGF-\beta$  complexes,  $TGF-\beta$  analogs, etc. In a specific embodiment of the invention, described more fully by way of example herein (Section 6., infra), simian recombinant  $TGF-\beta 1$  is administered perenterally to induce rapid significant, and sustained decreases of arterial blood pressure in cynomolgus monkeys. In a related embodiment,  $TGF-\beta s$  may be used to rapidly lower blood pressure to normal levels in patients facing acute hypertension and emergency conditions associated with extreme hypertension.

Second, the invention relates to the use of  $TGF-\beta$  antagonists to elevate blood pressure through the inhibition of hypotension induced by  $TGF-\beta$  and/or related factors. Any composition which antagonizes  $TGF-\beta$  activity may be useful in this regard, including for example, anti- $TGF-\beta$  antibodies and  $TGF-\beta$  receptors. Additionally, methods which lower and/or maintain the level of circulating  $TGF-\beta$  in an individual may result in a similar pressor effect. For example, anti- $TGF-\beta$  antisense RNA molecules may inhibit synthesis and release of bioactive  $TGF-\beta$ s, thereby preventing excessive hypotensive signal generation and resulting hypotension.

#### 4. DESCRIPTION OF THE FIGURES

FIG. 1. Nucleotide sequence of simian TGF-β1 cDNA and deduced amino acid sequence. The 1600 bp insert of pTGF-β1-2 was subcloned into the M13mp18 and M13mp19 cloning vectors (Yanisch-Perron et al., 1985, Gene 33:103-119) and both strands were sequenced using the dideoxy chaintermination method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA 74:5463-5467). The deduced amino acid sequence of simian TGF-β1 is presented directly above the cDNA sequence. The human TGF-β1 nucleotide sequence is aligned with and presented directly below the simian cDNA sequence; dots indicate homologous nucleotide residues within the sequences. Amino acid differences between the human and simian proteins are indicated in the top line. The mature TGF-β1 sequence is boxed and the signal peptide is overlined.

FIG. 2. Nucleotide sequence of human TGF-82-442 cDNA and deduced amino acid sequence. The 2597 BP insert of PC-21 was subcloned into pEMBL (Dante et al., 1983, Nucleic Acids Res. 11:1645-1654) and sequenced on both strands using the dideoxy chain-termination method (Sanger et al., 1977, Proc. Natl. Acad. Sci. USA 74:5463-5467). The coding sequence is shown and the deduced amino acid sequence is presented directly above. The mature TGF-82 sequence is boxed and the signal peptide is overlined. Potential glycosylation sites are indicated by asterisks. The arrow indicates the putative signal sequence cleavage site. The nucleotide sequence of simian TGF-β2-414 cDNA is identical to the human TGF- $\beta$ 2-442 cDNA sequence except that (a) nucleotides 346 through 432 (bracketed) are deleted and replaced by the sequence AAT, and (b) several silent nucleotide changes occur elsewhere in the structure (indicated by single letters directly below the changed nucleotide). The deduced amino acid sequence for simian

TGF- $\beta$ 2-414 precursor is identical to the human TGF- $\beta$ 2-442 precursor amino acid sequence except that Asparagine replaces amino acid residues 116 through 144 in the human TGF- $\beta$ 2-442 structure. The nucleotide sequence of a human TGF- $\beta$ 2-414 cDNA has been sequenced through the region indicated by broken underlining and was found to be perfectly homologous to the human TGF- $\beta$ 2-442 cDNA sequence except that nucleotides 346 through 432 are deleted and replaced by the sequence AAT.

FIG. 3. Nucleotide sequence of hybrid  $TGF-\beta 1/\beta 2$  precursor DNA and deduced amino acid sequence. The coding sequence is shown and the deduced amino acid sequence is presented directly above. The mature  $TGF-\beta 2$  sequence is boxed and the precursor signal peptide is overlined. Glycosylation sites are indicated by asterisks. The arrow indicates the putative signal sequence cleavage site. The  $TGF-\beta 2$  mature coding sequence depicted is of human origin. The simian  $TGF-\beta 2$  mature coding sequence is nearly identical to the human sequence: only 3 silent base changes occur and are indicated by single letters directly below the changed nucleotide.

### 5. DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to methods of modulating blood pressure in an animal using  $TGF-\beta$  polypeptides, antagonists and/or combinations thereof. The invention is based upon the discovery that parenterally administered mature  $rTGF-\beta 1$  rapidly and significantly lowers blood pressure in cynomologus monkeys. Thus, one aspect of the invention relates to the use of  $TGF-\beta s$  as antihypertensive/hypotensive agents. Precisely the opposite effect, i.e., raising and/or maintaining blood pressure, may be achieved by  $TGF-\beta$  antagonists capable of inhibiting the antihypertensive/hypotensive effects of  $TGF-\beta$ . In this

regard, the invention encompasses the use of anti-TGF- $\beta$  antibodies, TGF- $\beta$  receptors and other compositions capable of inhibiting TGF- $\beta$ -induced hypotension.

### 5.1. USE OF TGF-βS AS ANTIHYPERTENSIVE AGENTS

One aspect of the invention relates to the use of  $TGF-\beta s$  as antihypertensive/hypotensive agents. Applicants' initial data indicates that  $rTGF-\beta 1$  can rapidly and significantly lower blood pressure in simian test subjects at a dosage which appears to be at or close to the physiologically tolerable limit. In this regard, parenteral administration of a  $TGF-\beta$  at such a dose may be acceptable in hypertensive emergencies requiring agressive treatment. Lower does of a  $TGF-\beta$  may also be effective at reducing blood pressure, and such doses may be appropriate for patients with moderate to severe hypertension. In these patients, less agressive therapy may be desirable where adverse side effects can not be tolerated.

Human patients with diastolic blood pressure greater than 130 mm Hg and complications such as hypertensive encephalopathy, progressive renal failure, acute pulmonary edema, cerebral accident, papilledema, or multiple fresh retinal hemorhages are generally treated agressively with a parenteral antihypertensive agent such as, for example, nitroprusside and diazoxide. Treatment of hypertension characterized by such acute complications generally aims to lower BP to about 100 mm Hg within 30 to 60 minutes, since rapid decrease is a key determinant of survival in patients facing these emergencies.

The TGF- $\beta$  anithypertensive may be administered alone or in combination with other antihypertensive agents in suitable pharmacological carriers via any appropriate route. In hypertensive emergencies, parenteral administration will provide the fastest decrease in BP and

is therefore the recommended route of administration in such situations. Additionally, the TGF-# may be linked to a carrier or targeting molecule and/or incorporated into liposomes, microcapsules, and controlled release preparations prior to administration in vivo.

### 5.1.1. SOURCES OF TGF-β

In accordance with the invention, mature and/or precursor forms of TGF- $\beta$ 1, TGF- $\beta$ 2, TGF- $\beta$ 3, TGF- $\beta$ 1/ $\beta$ 2, etc., may be used to lower blood pressure. The TGF- $\beta$  used may be obtained from a variety of sources, including but not limited to isolating natural TGF- $\beta$ 5 from appropriate sources, producing TGF- $\beta$ 5 by recombinant DNA techniques, or by chemical synthetic methods, etc.

#### 5.1.1.1. TGF-β1

Natural TGF-β1 can be isolated from a variety of sources. This potent modulator of cell behavior is synthesized by a variety of normal and transformed cells in culture (Roberts et al., 1981, Proc. Natl. Acad. Sci. USA 78:5339-5343) and has been purified from various sources including placenta (Frolik et al., 1983, Proc. Natl. Acad. Sci. USA 80:3676-3680), kidney (Roberts et al., 1983, Biochemistry 22:5692-5698), urine (Twardzik et al., 1985, J. Cell. Biochem. 28:289-297) and blood platelets (Childs et al., 1982, Proc. Natl. Acad. Sci. USA 79:5312-5316). Additionally, the human (Derynck et al., 1985, Nature 316:701-705), mouse (Derynck et al., 1986, J. Biol. Chem. 261:4377-4379), and simian (Sharples et al., 1987, DNA 6:239-244) TGF-β1 have been described.

Large quantities of TGF-#1 may be obtained by recombinant DNA techniques using eucaryotic host cells transfected with recombinant DNA vectors containing the

TGF-β1 coding sequence controlled by expression regulatory elements. Examples of such methods are described in copending application Serial No. 07/353,728 filed August 17, 1989, which application is incorporated by reference herein it its entirety. Briefly, a cDNA clone coding for simian TGF-81 precursor was obtained from a cDNA library made from an African Green Monkey cell line, BSC-40. The deduced amino acid sequence of the mature simian TGF-\$1 shown in FIG. 1 has 100% homology with that of the mature human TGF-Expression vectors were constructed which contain the 81. entire coding sequence for the simian TGF-β1 precursor placed under the control of SV40 expression elements. They were used to transfect Chinese Hamster Ovary cells (CHO cells). The resulting CHO transfectants produce and secrete primarily a high molecular weight complex from which mature bioactive TGF- $\beta$  may be liberated by a routine acidification procedure.

### 5.1.1.2. TGF-β2

Natural TGF- $\beta2$  used in accordance with the invention can be obtained from a variety of sources. A protein isolated from bovine demineralized bone has been identified as being related to TGF- $\beta$  (Seyedin et al., 1987, J. Biol. Chem. 262:1946-1949). The protein has also been isolated from porcine platelets (Cheifetz et al., 1987, Cell 48:409-415), a human prostatic adenocarcinoma cell line PC-3 (Ikeda et al., 1987, Biochemistry 26:2406-2410), and a human glioblastoma cell line (Wrann et al., 1987, EMBO 6:1633-1636). Partial amino acid sequence of this protein indicated that it was homologous to TGF- $\beta$  and has been termed TGF- $\beta$ 2.

Large quantities of TGF- $\beta2$  may be obtained by recombinant DNA techniques using eukaryotic host cells transfected with recombinant DNA vectors containing a TGF- $\beta2$  coding sequence controlled by expression regulatory

elements. Examples of such methods are described in copending application Serial No. 07/446,020 filed December 5, 1989, which application is incorporated by reference herein in its entirety. Briefly, cDNA clones coding for human TGF-82 precursor were obtained from a cDNA library made from a tamoxifen treated human prostatic adenocarcinoma cell line, PC-3. The cDNA sequence of one such clone is shown in FIG. 2 and predicts that TGF- $\beta$ 2 is synthesized as a 442 amino acid polypeptide precursor from which the mature 112 amino acid TGF-β2 subunit is derived by proteolytic This TGF- $\beta$ 2 precursor, termed TGF- $\beta$ 2-442, shares a 41% homology with the precursor of TGF- $\beta$ 1. In another embodiment, cDNA clones coding for simian TGF-\$2 precursor were obtained from a cDNA library made from an African green monkey kidney cell line, BCS-40. The cDNA sequence of one such clone predicts that TGF- $\beta2$  is also synthesized as a 414 amino acid polypeptide precursor from which the mature 112 amino acid TGF-82 subunit is derived by proteolytic cleavage. This TGF- $\beta$ 2 precursor, termed TGF- $\beta$ 2-414, has an amino acid sequence of 414 amino acid residues and is identical to the amino acid sequence of  $TGF-\beta 2-442$ , except that it contains a single Asparagine residue instead of the 29 amino acid sequence from residue numbers 116 to 135 of the human TGF-β2-442 sequence.

Clones from the BSC-40 cDNA library which encode a simian TGF- $\beta$ 2-442 precursor as well as clones from the human PC-3 cDNA library which encode a human TGF- $\beta$ 2-414 precursor have also been identified. The human and simian TGF- $\beta$ 2-442 precursors appear to be perfectly homologous at the amino acid level, as do the human and simian TGF- $\beta$ 2-414 precursors.

#### 5.1.1.3. HYBRID MATURE AND PRECURSOR TGF-βs

Hybrid mature TGF- $\beta$  molecules may be prepared using recombinant DNA techniques or synthetic methods. Examples of such methods are also described in copending applications Serial No. 284,972, filed December 15, 1988, which application is incorporated by reference herein in its entirety.

Hybrid precursor TGF- $\beta$  molecules may be prepared using recombinant DNA techniques or synthetic methods, as described in co-pending application Serial No. 07/353,728 filed August 17, 1987. Briefly, expression vectors containing the TGF- $\beta$ 2 mature coding sequence joined in-phase (<u>i.e.</u>, in the same translational reading frame) to the TGF- $\beta$ 1 signal and precursor sequences (see FIG. 3) were constructed and used to transfect Chinese Hamster Ovary cells (CHO cells). The resulting CHO transfectants produce and secrete mature, biologically active TGF- $\beta$ 2.

### 5.1.1.4. MODIFIED TGF-β

Variations in the amino acid sequences shown herein for the different TGF- $\beta$  molecules, as well as variations in the steric configuration, the type of covalent bonds which link the amino acid residues, and/or addition of groups to the amino- or carboxy-terminal residues are within the scope of the invention. For example, the TGF- $\beta$  molecules used in accordance with the invention may include altered sequences such as conservative alterations which result in a silent change thus producing a functionally equivalent molecule. Thus, the amino acid sequences shown in FIGS. 1-3 may be altered by various changes such as insertions, deletions and substitutions, either conservative or non-conservative, where such changes might provide for certain advantages in their use. As used herein, conservative substitutions would involve the substitution of

one or more amino acids within the sequences shown with another amino acid having similar polarity and hydrophobicity/hydro-philicity characteristics resulting in a silent alteration and a functionally equivalent molecule. Such conservative substitutions include but are not limited to substitutions within the following groups of amino acids: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; phenylalanine, tyrosine; and methionine, norleucine.

# 5.1.1.5. LATENT TGF-β COMPLEX

 $TGF-\beta 1$  may be isolated from tissues or tissue culture cells in an inactive, biologically latent form which may be activated by chaotropic agents, proteases, or in vivo. Similarly, CHO cell transfected with the simian TGF-81 precursor coding sequence secrete a high molecular weight latent complex involving both the mature and "pro" regions of the TGF- $\beta$  precursor. The association of the "pro" region of the TGF- $\beta$  precursor has also been observed in latent TGF- $\beta$ 1 complex isolated from platlets. Although the mechanism of activation in vivo is unknown, it is possible that the latent complex provides an important level of regulation on TGF- $\beta$ 1 bioactivity. In accordance with the method of the invention, latent TGF- $\beta$  complex may be useful as a means of controlling the hypotensive effect induced by the bioactive form of TGF- $\beta$  by releasing it at the situs of natural in vivo activation mechanisms. The identification, isolation and characterization of latent TGF-\$1 complex from recombinant CHO cells is described more fully in copending application Serial No. 07/353,728 filed August 17, 1989, which application is incorporated herein by reference in its entirety.

#### 5.2. USE OF TGF-β ANTAGONISTS AS PRESSOR AGENTS

Applicants' discovery that rTGF- $\beta$ 1 is capable of rapidly and significantly lowering blood pressure suggests that the TGF- $\beta$ s may be involved in the regulation of BP and/or in the genesis of hypotension. In this regard, through their ability to impede the hypotensive effect of TGF- $\beta$ , antagonists of TGF- $\beta$ s may be useful as pressor/hypotensor agents capable of elevating BP. Any composition which effectively antagonizes the hypotensive effect of a TGF- $\beta$  may be used for this purpose, including but not limited to anti-TGF- $\beta$  antibodies and TGF- $\beta$  receptors.

For example,  $TGF-\beta$  antagonists may be useful in treating medical conditions characterized by a loss of BP where the elevation of BP to normal levels is desirable. Such conditions include, for example, shock associated with blood volume loss, cardiac emergencies, and hypotension in acute renal failure. The TGF- $\beta$  antagonists may be administered alone or in combination and/or together with other pressors/hypotensors such as dopamine, epinephrine, aminophylline, etc. Compounds containing effective doses of TGF-8 antagonist formulated in a suitable pharmacological carrier may be administered to patients experiencing hypotension or conditions associated with hypotension via any appropriate route including but not limited to injection, infusion and selective catheterization in order to elevate BP. In addition, the TGF- $\beta$  antagonist may be linked to a carrier or targeting molecule and/or incorporated into liposomes, microcapsules, and controlled release preparations prior to administration in vivo.

#### 5.2.1. ANTI-TGF- $\beta$ ANTIBODIES

Antibodies capable of inhibiting the hypotensive effect of TGF- $\beta$  may be useful as pressor agents. Various procedures known in the art may be used for the production of polyclonal antibodies to epitopes of TGF-βs. For the production of antibodies, various host animals can be immunized by injection with a TGF- $\beta$ , or a synthetic TGF- $\beta$ peptide, including but not limited to rabbits, mice, rats, etc. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peotides, oil emulsions, keyhold lympet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

A monoclonal antibody to an epitope of a  $TGF-\beta$  can be prepared by using any technique which provides for the production of antibody molecules by continous cell lines in culture. These include but are not limited to the hybridoma technique originally described by Kohler and Milstein (1975, Nature 256, 495-497), and the more recent human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72) and EEV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Antibody fragments which contain the idiotype of the molecule may be generated by known techniques. For example, such fragments include but are not limited to the  $F(ab')_2$  fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the  $F(ab')_2$ 

fragment, and the two Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent.

The generation of anti-TGF-β antibodies is described in copending application Serial No. 7/353,728 filed August 17, 1989, and in copending application Serial No. 07/446,020 filed December 5, 1989.

#### 5.2.2. TGF-β RECEPTORS

Exogenous TGF- $\beta$  receptor molecules may be useful pressor agents inasmuch as they are capable of binding circulating TGF- $\beta$  and/or out-competing endogenous receptors which may initiate the hypotensive effect of TGF- $\beta$ . TGF- $\beta$  receptors may be prepared by the methods described in copending application Serial No. 269,524 filed November 11, 1988, which application is incorporated by reference herein in its entirety.

### EXAMPLE: EFFECT OF PARENTERALLY ADMINISTERED <u>rTGF-β1</u> ON BLOOD PRESSURE IN CYNOMOLGUS MONKEYS Described below is part of a study designed to

evaluate the pharmacotoxic effects of rTGF- $\beta$ 1 following daily intravenous infusions to cynomolgus monkeys (<u>Macaca fascicularis</u>). The results described herein indicate that rTGF- $\beta$ 1 has a profound reducing effect on blood pressure.

### 6.1. PROTOCOL

#### 6.1.1. CYNOMOLGUS MONKEYS

One adult male and two adult female cynomolgus monkeys were monitored for blood pressure changes resulting from daily  $TGF-\beta l$  treatment. Monkeys were fed commerically available chow daily and were provided water ad libitum. Blood pressures were measured via chronic arterial catheters surgically implanted at least 5 days prior to the initiation of the study. One of the female monkeys (39-181) underwent

general anesthesia and a chronic venous catheter was implanted in the right illiac vein. Approximately one month later, this catheter was removed, and the monkey was assepically implanted with chronic arterial and venous catheters in the illiac artery and vein. The other female monkey (29-825) and the male monkey (B-344) were also implanted with chronic venous and arterial catheters in the illiac artery and vein. The catheters were exteriorized via a tether apparatus as a venous access to facillitate the administration of the test article or vehicle control.

### 6.1.2. TEST ARTICLE FORMULATION

The formulation of the test and/or control articles was performed daily prior to administration. Each 10 ml of test article dosing solution (0.0213 mg/ml) was prepared by mixing 0.66 ml of rTGF-#1 stock solution (0.46 mg/ml in 5mM HCl) with 9.34 ml of 0.1% monkey serum albumin in PBS solution. The pH of the dosing solution was recorded after formulation and prior to administration each day. Dose volumes were calculated based on the most recent nontethered body weights and rounded to the nearest 0.1 ml.

Recombinant mature TGF-\$1 was isolated and purified from the supernatants of cultured Chinese Hamster Ovary cells transfected with the complete simian TGF-\$1 precursor coding sequence as described in co-pending application Serial No. 07/353,728 filed August 17, 1989, which application is incorporated by reference herein in its entirety.

### 6.1.3. TREATMENT

Monkey 39-181 received 1% monkey albumin in PBS (vehicle control) at a volume of 8 ml/kg daily for five consecutive days. Monkey 69-168 was treated for five consecutive days at a dose of 0.17 mg/kg and at a

concentration of 0.0213 mg/ml. rTGF- $\beta$ 1 was administered to Monkeys 29-825, 39-181 and B344 at a dose of 0.51 mg/kg and at a concentration of 0.0639 mg/ml. Monkey 29-825 was treated for three consecutive days, monkey 39-181 for three consecutive days, and monkey B-344 for one day. The body weights used to calculate the dosages of either the test article or control were the most recent body weights obtained without the encumbrance of the tether apparatus.

rTGF-\$1 or vehicle control was administered intravenously through chronic venous catheters at a rate of 1.60 ml of dosing solution/minute via an infusion pump (Harvard Apparatus), and calibrated according to the standard operating procedures of the test facility. Prior to the administration of the test article and control, catheter patency was maintained via periodic flushing of the catheter with 0.9% sterile saline. The volume, time, and date of administration of rTGF-\$1 and control were recorded.

# 6.1.4. BLOOD PRESSURE MEASUREMENTS

Blood pressure measurements were recorded from monkeys 29-825, 39-181, and B344 via chronic arterial catheters. Blood pressure measurements were recorded for at least one minute prior to and after completion of the administration of the test article. Blood pressure measurements were also recorded as amended or at the discretion of the study director if such measurements were clinically relevant.

#### 6.2. CLINICAL OBSERVATIONS

The monkeys were observed daily over 29 days for clinical abnormalities, food and water intake, body temperature, respiration rate, blood pressure, and other

parameters. Additionally, blood samples were collected from each monkey to provide samples for hematology, serum chemistry and immunological analyses.

# 6.2.1. EFFECT OF rTGF-β1 ON BP

Two of the three monkeys receiving rTGF-\$1 injections experienced immediate, significant and progressive decreases in arterial blood pressure. The third experimental monkey also experienced BP loss, but these results are somewhat more difficult to interpret in view of the extreme hypotension existing in this animal prior to treatment. No significant BP fluctuations were observed in the control monkey. The individual BP observations for the three experimental monkeys are tabulated in TABLE I.

| ANIMAL<br>NUMBER | SEX | DOSE<br>mg/kg | STUDY<br>DAY | MEAL ATERIAL BLOOD<br>PRESSURE (mm Hg) |
|------------------|-----|---------------|--------------|----------------------------------------|
| 39-181           | F   | 0.51          | 1 (Pre)      | 44                                     |
|                  |     |               | 1 (Post)     | 48                                     |
|                  |     |               | 1 (4 Hr)     | 50                                     |
|                  |     |               | 2 (Pre)      | 60                                     |
|                  |     |               | 2 (Post)     | 32                                     |
|                  |     |               | 2 (4 Hr)     | 46                                     |
|                  |     |               | 3 (Pre)      | 40                                     |
|                  |     |               | 3 (Post)     | 32                                     |
|                  |     |               | 3 (4 Hr)     | 12                                     |
|                  |     |               | 4            | 18                                     |
|                  |     |               | 5            | 32                                     |
| 29-825           | F   | 0.51          | 1 (Pre)      | 108                                    |
|                  |     |               | 1 (Post)     | 80                                     |
|                  |     |               | 1 (4 Hr)     | 48                                     |
|                  |     |               | 2 (Pre)      | 76                                     |
|                  |     |               | 2 (Post)     | 76                                     |
|                  |     |               | 3 (Pre)      | - 20                                   |
|                  |     |               | 4            | 52                                     |
|                  |     |               | 5            | 50                                     |
| B-344            | м   | 0.51          | 1 (Pre)      | 104                                    |
|                  |     |               | 1 (Post)     | 60                                     |
|                  |     |               | 1 (4 Hr)     | 36                                     |
|                  |     |               | 2            | 20                                     |
|                  |     |               | 3            | 32                                     |
|                  |     |               | 4            | 22                                     |
|                  |     |               | 5            | 20                                     |
|                  |     |               | 9            | 36                                     |
|                  |     |               |              |                                        |

Monkeys 29-825 and B-344 experienced an immediate (1 hour post-administration) BP reduction of 26% and 42%, respectively. Four hours after treatment, BP had dropped by 55% in monkey 29-825 and by 65% in monkey B-344. These initial drops in BP were sustained in the subsequent treatment days, resulting in hypotension and shock. Monkey 39-181 did not respond to initial TGF-\$1\$ treatment (day 1) with a reduction in BP, possibly because of its pre-existing hypotensive condition. Interestingly, a slight elevation in BP was observed on day 2 prior to treament, and a sustained decrease in BP was observed thereafter.

In addition to the dramatic decrease in EP and the accompanying shock/hypotension observed in all three treated animals, other observed effects directly attributable to TGF-β1 included hemotopoietic changes (decrease in erythrocytes, lymphocytes and platlets) and immunological compromise (decrease in lymphocyte responsiveness to mitogen). Additionally, all the treated monkeys had no or minimal appetite, and all were inactive during the treatment period. Monkey 29-825 was recumbent on day 4, required fluid therapy on days 4 and 5, and was euthanized on day 5 because of its moribund condition. Monkey 39-181 had darkened blood on days 3 and 4, developed septicemia on day 8, and was euthanized because of its deteriorating condition on day 8. Monkey B-344 appeared normal from days 6 to 29.

The present invention is not to be limited in scope by the cell lines, TGF-\$\textit{molecules}\$ and assays exemplified which are intended as but single illustrations of one aspect of the invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled

in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

# WHAT IS CLAIMED IS:

- 1. A method of treating hypertension comprising administering a TGF- $\beta$  to an individual at a dose effective at lowering blood pressure.
- 2. The method of claim 1 wherein the TGF- $\beta$  comprises a mature TGF- $\beta$ 1.
- 3. The method of claim 1 wherein the TGF- $\beta$  comprises a mature TGF- $\beta2$  .
- 4. The method of claim 1 wherein the TGF- $\beta$  comprises a mature TGF- $\beta$ 1/ $\beta$ 2 hybrid.
- 5. The method of claim 1 wherein the TGF- $\beta$  comprises a TGF- $\beta 1$  precursor.
- 6. The method of claim 1 wherein the TGF- $\beta$  comprises a TGF- $\beta2$  precursor.
- 7. The method of claim 1 wherein the TGF- $\beta$  comprises a hybrid TGF- $\beta$ 1/TGF- $\beta$ 2 precursor.
- 8. The method of claim 1 wherein the TGF- $\beta$  comprises a latent TGF- $\beta1$  complex.
- 9. The method of claim 1 wherein the TGF- $\beta$  comprises a latent TGF- $\beta2$  complex.
- 10. A method of lowering blood pressure in a mammal comprising administering TGF- $\beta$  to the mammal in an amount and for a time period effective at inducing the desired hypotensive effect.

- 11. The method of claim 10 wherein the  $TGF-\beta$  comprises a mature  $TGF-\beta$ 1.
- 12. The method of claim 10 wherein the TGF- $\beta$  comprises a mature TGF- $\beta$ 2.
- 13. The method of claim 10 wherein the TGF- $\beta$  comprises a mature TGF- $\beta$ 1/ $\beta$ 2 hybrid.
- 14. The method of claim 10 wherein the TGF- $\beta$  comprises a TGF- $\beta$ 1 precursor.
- 15. The method of claim 10 where in the TGF- $\beta$  comprises a TGF- $\beta2$  precursor.
- 16. The method of claim 10 where in the TGF- $\beta$  comprises a hybrid TGF- $\beta$ 1/TGF- $\beta$ 2 precursor.
- 17. The method of claim 10 where in the TGF- $\beta$  comprises a latent TGF- $\beta1$  complex.
- 18. The method of claim 10 where in the TGF- $\beta$  comprises a latent TGF- $\beta$ 2 complex.
- 19. A method of treating hypotension comprising administering to an individual a TGF- $\beta$  antagonist capable of inhibiting the hypotensive activity induced by TGF- $\beta$  at a dose effective at inducing an elevation in blood pressure.
- 20. The method of claim 19 wherein the TGF- $\beta$  antagonist is an anti-TGF- $\beta$  antibody.
- 21. The method of claim 19 wherein the  $TGF-\beta$  antagonist is a  $TGF-\beta$  receptor.

- 22. The method of claim 19 wherein the TGF- $\beta$  antagonist is TGF- $\beta$ 1 antagonist.
- 23. The method of claim 22 wherein the TGF- $\beta$ 1 antagonist is an anti-TGF- $\beta$ 1 antibody.
- 24. The method of claim 22 wherein the TGF- $\beta$  antagonist is a TGF- $\beta$ 1 receptor.
- 25. The method of claim 19 wherein the TGF- $\beta$  antagonist is a TGF- $\beta 2$  antagonist.
- 26. The method of claim 25 Wherein the TGF- $\beta 2$  antagonist is a TGF- $\beta 2$  antibody.
- 27. The method of claim 25 wherein the TGF- $\beta 2$  antagonist is a TGF- $\beta 2$  receptor.
- 28. A method of elevating blood pressure comprising administering to a mammal a  $TGF-\beta$  antagonist in an amount and for a time period effective at inducing the desired blood pressure increase.
- 29. The method of claim 28 wherein the TGF- $\beta$  antagonist is an anti-TGF- $\beta$  antibody.
- 30. The method of claim 28 wherein the TGF- $\beta$  antagonist is a TGF- $\beta$  receptor.
- 31. The method of 28 wherein the TGF- $\beta$  antagonist is a TGF- $\beta 1$  antagonist.
- 32. The method of claim 31 wherein the TGF- $\beta$ 1 antagonist is an anti-TGF- $\beta$ 1 antibody.

- 33. The method of claim 31 wherein the TGF- $\beta$ 1 antagonist is a TGF- $\beta$ 1 receptor.
- 34. The method of claim 28 wherein the TGF- $\beta$  antagonist is a TGF- $\beta 2$  antagonist.
- 35. The method of claim 34 wherein the TGF- $\beta 2$  antagonist is a TGF- $\beta 2$  antibody.
- 36. The method of claim 34 wherein the TGF- $\beta 2$  antagonist is a TGF- $\beta 2$  receptor.

| Simia:<br>Human |       | -           | 261        |            |            |            |            |            |            |            |            |               | -CGTCT           |             |
|-----------------|-------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------|------------------|-------------|
| Simia<br>Human  | n CC  | TGGT.       | ACCA       | GATC       | rcgc       | CCAT       | CTAG       | GTTA       | TTTC       | CGTG       | GGAT       | ACTG          | AGACAC           | -175        |
| Simiar<br>Human | CC    | CCGG        | rcca       | AGCC:      | rccc       | CTCC       | ACCA       | CTGC       | GCCC!      | TCT        | CCCG'      | ragg:         | A-CCTC           | -123        |
| Simiar<br>Human | G.    | CTTT        | CCT        | CGAGO      | ccc        | CCT        | ACCT.      | TTTC       | CCGG       | GGA(       | cccc       | CAGC          | CCTGC            | -71         |
| Simian<br>Human | AGG   | GGC         | GGG        | CTC        | CCAC       | CAA        | ACTAC      | ccc        | FGTT       | GCGG       | CTCTC      | eggc <i>i</i> | AGTGCC           | <b>-</b> 19 |
| Simian<br>Human | GGG   | • • • •     | ••••       | CCTC       | CCC        | ATG        | CCG        | CCC        | TCC        | GGG        | Leu<br>CTG | CGG           | CTG              | 24          |
|                 | Ŧ     | 10          |            | 7          |            | -          |            | -          |            |            |            | 20            | . Leu            |             |
| Simian          | CTG   | CCG         | CTG        | CTG        | CTA        | CCG        | CTC        | CTC        | TGG        | CTA        | Leu<br>CTG | Val           | . Leu<br>: CTG   | 63          |
| Human           | • • • | • • •       | • • •      | •••        | • • •      |            |            |            |            |            | • • • • •  |               |                  | •••         |
| Simian<br>Human | ACG   | CCT         | Ser        | CGG        | Pro        | GCC        | GCA        | GGA        | CTA        | Ser        | ACC        | TGC           | Lys<br>AAG       | 102         |
|                 | mh    | <b>T</b> 1- | 3          | W-4        | <b>~</b> 1 | 40         | **- 1      |            |            |            | _          |               | Glu              |             |
| Simian          | ACT   | ATC         | GAC        | ATG        | GAG        | CTG        | GTG        | AAG        | CGG        | AAG        | CGC        | ATC           | GAG              | 141         |
| Human           |       | • • •       |            |            |            | • • •      |            | • • •      |            |            |            |               | • • •            |             |
| Simian<br>Human | Thr   | ATC         | CGC        | GGC        | CAG        | ATC        | CTG        | TCC        | AAG        | CTG        | CGG        | CTC           | 60<br>Ala<br>GCC | 180         |
|                 |       |             |            |            |            |            |            |            |            | 70         |            |               |                  |             |
| Simian<br>Human | AGC   | Pro<br>CCC  | CCG        | AGC        | CAG        | GGG        | GAG        | GTG        | CCG        | Pro<br>CCC | GGC        | CCG           | CTG              | 219         |
| .cmdII          | •••   | •••         | • • •      | • • •      | • • •      | •••        | •••        | •••        | •••        | •••        | • • •      | •••           | • • •            |             |
|                 |       |             |            |            |            |            | 80         |            |            |            |            |               |                  |             |
| Simian          | Pro   | Glu<br>GAG  | Ala<br>GCC | Val<br>GTG | Leu<br>CTC | Ala<br>GCC | Leu<br>CTG | Tyr<br>TAC | Asn<br>AAC | Ser<br>AGC | Thr<br>ACC | Arg<br>CGC    | Asp<br>GAC       | 258         |

FIG. 1

1/7-1

|                 |            |            |            | 90         |                   |            |            |                   |            |            |            |                   |            |     |
|-----------------|------------|------------|------------|------------|-------------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|-----|
| Simian<br>Human | CGG        | GTG        | GCC        | GGĞ        | GAG               | AGT        | GCG        | GAG               | CCG        | GAG        | CCC        |                   | CCG        | 297 |
| Simian          | 100<br>Glu | Ala        | Asp        | Tyr        | Tyr               | Ala        | Lys        | Glu               | Val        | Thr        | 110<br>Arg | Val               | Leu        | 336 |
| Human           |            |            |            |            |                   |            |            |                   |            |            |            |                   |            |     |
| Simian          | Met        | Val        | Glu        | Thr        | His               | Asn        | Glu        | 120<br>Ile        | Tyr        | Asp        | Lys        | Phe               | Lys        | 375 |
| Human           |            |            |            |            |                   |            |            |                   |            |            |            |                   |            | 373 |
| Simian          | Gln<br>CAG | Ser        | Thr        | His<br>CAC | 130<br>Ser<br>AGC | Ile<br>ATA | Tyr        | Met<br>ATG        | Phe<br>TTC | Phe<br>TTC | Asn<br>AAC | Thr<br>ACA        | Ser<br>TCA | 414 |
| Human           |            |            |            |            |                   |            |            |                   |            |            |            |                   | •••        |     |
| Simian          |            |            |            |            |                   |            |            |                   |            |            |            | 150<br>Leu<br>CTC |            | 453 |
| Human           |            |            |            |            |                   |            |            |                   |            |            |            | •••               |            |     |
| Simian          | CGĞ        | GCA        | GAG        | CTG        | CGT               | CTG        | CTG        |                   | AGG        | CTC        | AAG        | Leu<br>TTA        | AAA        | 492 |
| Human           | •••        | • • •      | •••        | •••        | •••               | •••        |            | AGG               | •••        | •••        | •••        | •••               | •••        |     |
| Simian<br>Human | GTC        | GAG        | CAG        | CAT        | GTG               | GAG        | CTG        | TĀC               | CAG        | AĀA        | TĀC        |                   | AAC        | 531 |
| Simian<br>Human | AAT        | TCC        | TGG        | CGĀ        | TAC               | CTC        | AGC        | AAC               | CGG        | CTG        | CTG        |                   | CCC        | 570 |
| пишан           | 190        |            | •••        | • • •      | •••               | • • •      | • • • •    | • • • •           | •••        | •••        | 200        |                   | •••        |     |
| Simian<br>Human | Ser<br>AGC | Asn<br>AAC | TCG        | CCG        | GAG               | TGG        | TTG        | TCT               | TTT        | GAT        | Val<br>GTC |                   | Gly<br>GGA | 609 |
| Simian          | Val<br>GTT | Val<br>GTG | Arg<br>CGG | Gln<br>CAG | Trp<br>TGG        | Leu<br>TTG | Ser<br>AGC | 210<br>Arg<br>CGC | Gly<br>GGA | Gly<br>GGG | Glu<br>GAA | Ile<br>ATT        | Glu<br>GAG | 648 |
|                 |            |            |            |            |                   |            |            |                   |            |            |            |                   |            |     |

FIG. 1(cont.)

2/

|                 |       |            |       |       | 220   |       | 2/1     |       |            |            |            |                   | Arq        |      |
|-----------------|-------|------------|-------|-------|-------|-------|---------|-------|------------|------------|------------|-------------------|------------|------|
| Simian<br>Human | GGC   | TTT        | CGC   | CTT   | Ser   | Ala   | CAC     | TGC   | TCC        | TGT        | GAC        | Ser<br>AGC        | Lys<br>AAA | 687  |
|                 |       |            |       |       |       |       |         |       |            |            |            |                   |            |      |
| Simian          | Asp   | 230<br>Asn | Thr   | Leu   | Gln   | Val   | Asp     | Ile   | Asn<br>AAC | Gly<br>GGG | Phe<br>TTC | 240<br>Thr<br>ACT | Thr        | 726  |
| Human           |       |            |       |       |       |       |         |       |            |            |            |                   |            |      |
|                 |       |            |       |       |       |       |         |       |            |            |            |                   |            |      |
|                 | Glar  | 220        | 7~~   | G111  | Asp   | Tou   | A la    | mh =  | 250        | Hie        | Glyr       | Wet               | λen        |      |
| Simian          |       |            |       |       |       |       |         |       |            |            |            |                   |            | 765  |
| Human           |       |            |       |       |       |       |         |       |            |            |            |                   |            |      |
|                 |       |            |       |       |       | 260   |         |       |            |            |            |                   |            |      |
|                 | Ara   | Pro        | Phe   | Len   | Leu   |       | Met     | λla   | Thr        | Pro        | Leu        | Glu               | Ara        |      |
| Simian          | CGĞ   | CCT        | TTC   | CTG   | CTT   | CTC   | ATG     | GCC   | ACC        | CCG        | CTG        | GAG               | AGG        | 804  |
| Human           |       | • • •      | • • • | • • • | • • • |       | • • •   |       |            |            |            |                   | • • •      |      |
|                 |       |            | 270   |       |       |       |         |       |            |            |            |                   | 280        |      |
|                 | Δla   | Gln        |       | T.em  | Gln   | Ser   | Ser     | Ara   | His        | Ara        | Ara        | Ala               |            |      |
| Simian          | GCC   | CAA        | CAT   | CTG   | CAA   | AGC   | TCC     | CGG   | CAC        | CGC        | CGA        | GCC               | CTG        | 843  |
| Human           |       |            |       |       |       |       |         |       |            |            |            |                   |            |      |
|                 |       |            |       |       |       |       |         |       |            | 290        |            |                   | _          |      |
|                 | Asp   | Thr        | Asn   | Tvr   | Cys   | Phe   | Ser     | Ser   | Thr        | Glu        | Lvs        | Asn               | Cvs        |      |
| Simian          | GAC   | ACC        | AAC   | TAC   | TGC   | TTC   | AGC     | TCC   | ACG        | GAG        | AAG        | AAC               | TGC        | 882  |
| Human           | • • • | • • •      | • • • | Т     | • • • | • • • | • • •   | • • • | • • •      | • • •      | •••        | • • •             | • • •      |      |
|                 |       |            |       |       |       |       | 300     |       |            |            |            |                   |            |      |
|                 | Cys   | Val        | Arg   | Gln   | Leu   | Tyr   | Ile     | Asp   | Phe        | Arg        | Lys        | Asp               | Leu        |      |
| Simian          |       |            |       |       |       |       |         |       |            |            |            |                   |            | 921  |
| Human           | • • • | • • •      | • • • | • • • | • • • | с     | • • •   | • • • | • • •      | • • •      | • • •      | •••               | • • •      |      |
|                 |       |            |       | 310   |       |       |         |       |            |            |            |                   |            |      |
|                 | Gly   | Trp        | Lys   | Trp   | Ile   | His   | Glu     | Pro   | Lys        | Gly        | Tyr        | His               | Ala        |      |
| Simian          |       |            |       |       |       |       |         |       |            |            |            |                   |            | 960  |
| Human           | •••   | •••        | •••   | •••   | •••   | •••   | • • • • | •••   | • • • •    | •••        | •••        | • • • •           | •••        |      |
|                 | 320   |            |       |       |       |       |         |       |            |            | 330        |                   |            |      |
|                 | Asn   | Phe        | Cys   | Leu   | Gly   | Pro   | Cys     | Pro   | Tyr        | Ile        | Trp        | Ser               | Leu        |      |
| Simian          |       |            |       |       |       |       |         |       |            |            |            |                   |            | 999  |
| Human           | •••   | •••        | • • • | с     | • • • | •••   | с       | •••   | • • •      | • • •      | •••        | • • •             | • • •      |      |
|                 |       |            |       |       |       |       |         | 340   |            |            |            |                   |            |      |
|                 | Asp   | Thr        | Gln   | Tyr   | Ser   | Lys   | Val     | Leu   | Ala        | Leu        | Tyr        | Asn               | Gln        |      |
| Simian          |       |            |       |       |       |       |         |       |            |            |            |                   |            | 1038 |
| Human           |       |            |       |       |       |       |         |       |            |            |            |                   |            |      |

FIG. 1(cont.)

#### 2/7-1

|               |         |         |         |         | 350   |       |       |       |         |         |         |         |       |     |
|---------------|---------|---------|---------|---------|-------|-------|-------|-------|---------|---------|---------|---------|-------|-----|
|               | His     | Asn     | Pro     | Gly     | Ala   | Ser   | Ala   | Ala   | Pro     | Cys     | Cys     | Val     | Pro   |     |
| Simian        | CAT     | AAC     | CCG     | GGC     | GCC   | TCG   | GCG   | GCG   | CCG     | TĞC     | TĞC     | GTG     | CCG   | 10  |
| Human         | • • •   | • • •   | • • •   | • • •   | • • • | • • • |       | • • • | • • •   | •••     | • • •   | • • •   | • • • |     |
|               |         | 360     |         |         |       |       |       |       |         |         |         | 370     |       |     |
|               |         | Ala     |         |         |       |       |       |       |         |         |         |         |       |     |
| Simian        | CAG     | GCG     | CTG     | GAG     | CCA   | CTG   | CCC   | ATC   | GTG     | TAC     | TĀC     | GTG     | GGĈ   | 11  |
| Human         | • • •   | •••     | • • •   | • • •   | G     | • • • | • • • | • • • | • • •   | • • •   | • • •   | • • •   | • • • |     |
|               |         |         |         |         |       |       |       |       | 380     |         |         |         |       |     |
|               | Arg     | Lys     | Pro     | Lys     | Val   | Glu   | Gln   | Leu   | Ser     | Asn     | Met     | Ile     | Val   |     |
| Simian        | CGC     | AAG     | CCC     | AAG     | GTG   | GAG   | CAG   | CTG   | TCC     | AAC     | ATG     | ATC     | GTG   | 11  |
| Human         | • • •   | • • •   | • • •   | • • •   | • • • | • • • | • • • | •••   | • • •   | • • •   | • • •   | • • •   | • • • |     |
|               |         |         |         |         |       | 390   |       |       |         |         |         |         |       |     |
|               |         | Ser     |         |         |       |       |       |       |         |         |         |         |       |     |
| Simian        |         |         |         |         |       |       |       |       |         |         |         |         |       | 119 |
| Human         | • • •   | • • •   | • • •   | G       | • • • |       | • • • | т.    | • • • • | • • • • | • • • • | • • • • | .G.   |     |
|               |         |         |         |         |       |       |       |       |         |         |         |         |       |     |
| Simian        | CCCG    | GCAG    | GCCC    | GGCC    | CCGC  | CCCA  | CCCC  | ACCC  | CCGC    | TGTC    | TTGC    | CCTI    | GGG   | 125 |
| luman         | • • • • | • • • • | • • • • | • • • • | A.    | G     |       | G     | • • • • | c.      | • • • • | A.      | • • • |     |
| Simian        | GGCI    | GTAT    | TTAA    | GGAC    | ACCC  | GTGC  | CCCA  | AGCC  | CACC    | тесе    | cccc    | ттап    | 222   |     |
| Iuman         |         |         | • • • • |         |       |       |       |       |         |         |         |         |       |     |
| Simian        | ۵.      |         |         |         |       |       |       |       |         |         |         |         |       |     |
| uman<br>Juman | GA      |         |         |         |       |       |       |       |         |         |         |         |       | 130 |

| _ | _ |  |
|---|---|--|

| GCC        | CCT        | CCGI       | CAGI       | TCGC       | CAGO       | TGCC       | AGC        | CCGG       | GACC       | TTTT       | CATC       | TCTT           | CCCT       | TTG        | -409 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------|
| GCC        | GGAG       | GAGC       | CGAG       | TTCA       | GATC       | CGCC       | ACTO       | CCGCA      | ccc        | AGAC       | TGAC       | ACAC           | TGAA       | CTC        | -351 |
| CAC        | TTCC       | TCCT       | CTTA       | AATT       | TATI       | TCTA       | CTTA       | ATAG       | CCAC       | TCGI       | CTCT       | TTTT           | TTCC       | CCA        | -293 |
| TCT        | CATI       | GCTC       | CAAG       | AATT       | TTTT       | TCTT       | CTTA       | CTCG       | CCAA       | AGTO       | AGGG       | TTCC           | CTCT       | GCC        | -235 |
| CGT        | ccce       | TATT       | AATA       | TTTC       | CACI       | TTTG       | GAAC       | TACT       | GGCC       | TTTT       | CTTT       | TTAA           | AGGA.      | ATT        | -177 |
| CAA        | GCAG       | GATA       | CGTT       | TTTC       | TGTT       | GGGC       | ATTG       | ACTA       | GATI       | GTTI       | GCAA       | AAGT           | TTCG       | CAT        | -119 |
| CAA        | AAAC       | AACA       | ACAA       | .CAAA      | AAAC       | CAAA       | CAAC       | TCTC       | CTTG       | ATCI       | ATAC       | TTTG.          | AGAA'      | TTG        | -61  |
| TTG        | ATTT       | CTTT       | TTTT       | TATT       | CTGA       | CTTT       | TAAA       | AACA       | ACTI       | TTTI       | TTCC       | ACTT           | TTTT       | AAA        | -3   |
|            | 1          |            |            |            |            |            |            |            |            | 10         |            |                |            |            |      |
| AA .       | Met<br>ATG | His<br>CAC | Tyr<br>TAC | Cys<br>TGT | Val<br>GTG | Leu<br>CTG | Ser<br>AGC | Ala<br>GCT | Phe<br>TTT | Leu<br>CTG | Ile<br>ATC | Leu :<br>CTG : | His I      | Leu<br>CTG | 42   |
|            |            |            |            |            |            | 1          |            |            |            | T          |            |                |            |            |      |
| T/a 1      | Thr.       | 77= 1      | 77=        | Len        | 20         |            | Sor        | Thr        | Cve        | Ser        | Thr        | T.e.11         | Asn        | Met        |      |
| GTC        | ACG        | GTC        | GCG        | CTC        | AGC        | CTG        | TCT        | ACC        | TGC        | AGC        | ACA        | CTC            | GAT        | ATG        | 87   |
| 30         |            |            |            |            |            |            |            |            |            | 40         |            |                |            |            |      |
| Asp<br>GAC | Gln<br>CAG | Phe<br>TTC | Met<br>ATG | Arg        | Lys<br>AAG | Arg<br>AGG | ATC        | Glu<br>GAG | A1a<br>GCG | ATC        | Arg<br>CGC | GGG            | CAG        | ATC        | 132  |
|            |            |            |            |            | 50         |            |            |            |            |            |            |                |            |            |      |
| Leu<br>CTG | Ser        | Lys<br>AAG | Leu<br>CTG | Lys<br>AAG | Leu        | Thr        | Ser        | Pro        | Pro        | Glu<br>GAA | Asp<br>GAC | Tyr<br>TAT     | Pro        | Glu<br>GAG | 177  |
| 60         |            |            |            |            |            |            |            |            |            | 70         |            | *              |            |            |      |
| Pro        | Glu<br>GAG | Glu<br>GAA | Val<br>GTC | Pro        | Pro        | Glu<br>GAG | Val<br>GTG | Ile        | Ser        | Ile<br>ATC | Tyr        | Asn<br>AAC     | Ser<br>AGC | Thr        | 222  |
|            |            |            |            |            | 80         |            |            |            |            |            |            |                |            |            |      |
| Arg        | Asp        | Leu        | Leu        | Gln        | Glu        | Lys        | Ala        | Ser        | Arg        | Arg<br>AGG | Ala<br>GCG | Ala            | Ala        | Cys        | 267  |
| 90         |            |            |            |            |            |            |            |            |            | 100        |            |                |            |            |      |
| Glu        | Arg        | Glu        | Arg        | Ser        | Asp        | Glu        | Glu        | Tyr        | Tyr        | Ala        | Lys<br>AAG | Glu            | Val        | Tyr        | 312  |
| GAG        | CGC        | GAG        | AGG        | AGC        |            | GAA        | GAG        | TAC        | IAC        | GCC        | MMG        | GAG            | GII        | INC        | 312  |
| Lys        | Ile        | Asp        | Met        | Pro        | 110<br>Pro | Phe        | Phe        | Pro        | Ser        | Glu        | Thr        | Val            | Cys        | Pro        |      |
|            | ATA        | GAC        | ATG        | CCG        | CCC        | TTC        | TTC        | ccc        | TCC        |            | ACT        | GTC            | TGC        | CCA        | 357  |
| 120<br>Val | Val        | Thr        | Thr        | Pro        | Ser        | Gly        | Ser        | Val        | Gly        | 130<br>Ser | Leu        | Cys            | Ser        | Arg        |      |
| GTT        | GTT        | ACA        | ACA        | CCC        | TCT        | GGĈ        | TCA        | GTG        | GGĈ        | AGC        | TTG        | TGC            | TCC        | AGÃ        | 402  |

3/7-1

|                   |            |            |            |                 | 140               |            | ٠,         |            | -               | 7                 |            |            |            |            |     |
|-------------------|------------|------------|------------|-----------------|-------------------|------------|------------|------------|-----------------|-------------------|------------|------------|------------|------------|-----|
| Gln<br>CAG        | Ser        | Gln<br>CAG | Val<br>GTG | CTC             | Cys<br>TGT        | Gly<br>GGG | TAC        | Leu<br>CTT | Asp<br>GAT      | Ala<br>GCC        | Ile<br>ATC | Pro        | CCC        | Thr<br>ACT | 447 |
| 150<br>Phe<br>TTC | Tyr        | Arg<br>AGA | Pro        | Tyr             | Phe               | Arg<br>AGA | Ile<br>ATT | Val<br>GTT | Arg<br>CGA<br>G | TTT               | Asp        | Val<br>GTC | Ser<br>TCA | Ala<br>GCA | 492 |
|                   |            |            |            |                 | 170               |            |            |            |                 |                   |            |            |            |            |     |
|                   |            |            |            |                 | Ser               | Asn        |            |            |                 |                   |            |            |            | Val<br>GTC | 537 |
|                   | Arg        |            |            |                 |                   |            |            |            |                 |                   |            |            |            | Ile<br>ATT | 582 |
|                   |            |            |            |                 |                   | Lys        |            |            |                 |                   |            |            |            | Thr        | 627 |
| 210<br>Gln<br>CAG | Arg<br>CGC | Tyr<br>TAC | Ile<br>ATC | Asp<br>GAC      | Ser<br>AGC        | Lys<br>AAA | Val<br>GTT | Val<br>GTG | Lys<br>AAA      | 220<br>Thr<br>ACA | Arg<br>AGA | Ala<br>GCA | Glu<br>GAA | Gly<br>GGC | 672 |
|                   |            |            |            |                 |                   | Val<br>GTA |            |            |                 |                   |            |            |            |            | 717 |
| 240<br>His<br>CAC | His<br>CAT | Lys<br>AAA | Asp<br>GAC | Arg<br>AGG      | Asn<br>AAC        | Leu<br>CTG | Gly<br>GGA | Phe<br>TTT | Lys<br>AAA      | 250<br>Ile<br>ATA | Ser<br>AGC | Leu<br>TTA | His<br>CAC | Cys<br>TGT | 762 |
|                   |            |            |            |                 | 260               |            |            |            |                 |                   |            |            |            | *          |     |
|                   |            |            |            |                 |                   | Pro<br>CCA |            |            |                 |                   |            |            |            |            | 807 |
| 270               |            |            |            |                 |                   |            |            |            |                 | 280               |            |            |            |            |     |
| Lys               | Ser<br>AGT | Glu<br>GAA | Glu<br>GAA | Leu<br>CTA<br>T | Glu<br>GAA        | Ala<br>GCA | Arg<br>AGA | Phe<br>TTT | Ala<br>GCA      | Gly               | Ile<br>ATT | Asp<br>GAT | Gly<br>GGC | Thr<br>ACC | 852 |
| Ser<br>TCC        | Thr<br>ACA | Tyr<br>TAT | Thr<br>ACC | Ser<br>AGT      | 290<br>Gly<br>GGT | Asp<br>GAT | Gln<br>CAG | Lys<br>AAA | Thr<br>ACT      | Ile<br>ATA        | Lys<br>AAG | Ser<br>TCC | Thr<br>ACT | Arg<br>AGG | 897 |
| 300               |            |            |            |                 |                   |            |            |            |                 | 310               |            |            |            |            |     |
|                   |            |            |            |                 |                   | Thr        |            |            |                 |                   |            |            |            |            | 942 |

FIG. 2(cont.)

4/7

| Pro  | Ser<br>TCC | TAC  | Arg<br>AGA | Leu      | Glu<br>GAG | Ser<br>TCA | Gln<br>CAA | Gln<br>CAG | Thr  | Asn<br>AAC | Arg<br>CGG | Arg<br>CGG | Lys<br>AAG | Lys<br>AAG | 987  |
|------|------------|------|------------|----------|------------|------------|------------|------------|------|------------|------------|------------|------------|------------|------|
| 330  |            |      |            |          |            |            |            |            |      | 340        |            |            |            |            |      |
| Arq  | Ala        | Leu  | Asp        | Ala      | Ala        | Tyr        | Cys        | Phe        | Arg  | Asn        | Val        | Gln        | Asp        | Asn        |      |
| CGT  | GCI        | TTG  | GAT        | GCG      | GCC        | TĀT        | TGC        | TTT        | AGA  | AAT        | GTG        | CAG        | GAT        | AAT        | 1032 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
|      |            |      | -          |          | 350        |            |            |            |      |            |            |            |            |            |      |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            | Gly        |      |
| TGC  | TGC        | CTA  |            | CCA<br>G |            | TAC        | ATT        | GAT        | TTC  | AAG        | AGG        | GAT        | CTA        | GGG        | 1077 |
|      |            |      |            | _        |            |            |            |            |      |            |            |            |            |            |      |
| 360  |            |      |            |          |            |            |            |            |      | 370        |            |            |            | Cys<br>TGT |      |
| Trp  | Lys        | Trp  | Ile        | His      | Glu        | Pro        | Lys        | Gly        | Tyr  | Asn        | Ala        | Asn        | Phe        | Cys        | 1100 |
| TGG  | AAA        | TGG  | ATA        | CAC      | GAA        | ccc        | AAA        | GGG        | TAC  | AAT        | GCC        | AAC        | TTC        | TGT        | 1122 |
|      |            |      |            |          |            |            |            | -          |      |            |            |            |            |            |      |
|      |            |      |            |          | 380        |            |            |            |      |            |            |            |            |            |      |
| Ala  | Gly        | Ala  | Cys        | Pro      | Tyr        | Leu        | Trp        | Ser        | Ser  | Asp        | Thr        | Gln        | His        | Ser        |      |
| GCT  | GGA        | GCA  | TGC        | CCG      | TAT        | TTA        | TGG        | AGT        | TCA  | GAC        | ACT        | CAG        | CAC        | AGC        | 1167 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
| 390  |            |      |            |          |            |            |            |            |      | 400        |            |            |            |            |      |
| Arg  | Val        | Leu  | Ser        | Leu      | Tyr        | Asn        | Thr        | Ile        | Asn  | Pro        | Glu        | Ala        | Ser        | Ala        |      |
| AGG  | GTC        | CTG  | AGC        | TTA      | TAT        | AAT.       | ACC        | ATA        | AAT. | CCA        | GAA        | GCA        | TCT        | GCT        | 1212 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
|      |            |      |            |          | 410        |            |            |            |      |            |            |            |            |            |      |
| Ser  | Pro        | Cys  | Cys        | Val      | Ser        | Gln        | Asp        | Leu        | Glu  | Pro        | Leu        | Thr        | Ile        | Leu        |      |
| TCT  | CCT        | TGC  | TGC        | GTG      | TCC        | CAA        | GAT        | TTA        | GAA  | CCT        | CTA        | ACC        | ATT        | CTC        | 1257 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
| 420  |            |      |            |          |            |            |            |            |      | 430        |            |            |            |            |      |
| Tyr  | Tyr        | Ile  | Gly        | Lys      | Thr        | Pro        | Lys        | Ile        | Glu  | Gln        | Leu        | Ser        | Asn        | Met        |      |
| TAC  | TAC        | ATT  | GGC        | AAA      | ACA        | ccc        | AAG        | ATT        | GAA  | CAG        | CTT        | TCT        | AAT        | ATG        | 1302 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
|      |            |      |            |          | 440        |            |            |            |      |            |            |            |            |            |      |
| Ile  | Val        | Lys  | Ser        | Cys      | Lys        | Cys        | Ser        |            |      |            |            |            |            |            |      |
| ATT  | GTA        | AAG  | TCT        | TGC      | AAA        | TGC        | AGC        | TAA        | AATI | CTTG       | GAAA       | AGTG       | GCAA       | LGA        | 1351 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
| CCAA | AATO       | ACA  | ATGAT      | GATO     | ATAA       | TGAT       | GATG       | ACGA       | CGAC | AACG       | ATGA       | TGCT       | TGTA       | AC         | 1409 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |
| AAGA | AAA        | ATA  | AGAGA      | GCCI     | TGGT       | TCAT       | CAGI       | GTTA       | AAAA | ATTT       | TTGA       | AAAG       | GCGG       | TA         | 1467 |
| CTAC | :ጥጥር ፣     | GACT | CTTT       | CC A A   | COOP       | CTCT       | ጥርጥር       | יחיחים     | ጥጥልአ | ልልሮሞ       | CCCA       | ጥርጥር       | מממ        | 'Δ Δ       | 1525 |
| CIAC |            | JACE |            | JUNE     |            | 5161       | 1016       |            |      | I          | Juch       |            |            |            | 2323 |
| AAAA | AGTT       | GAAG | GCCI       | TATI     | CTAC       | ATTT       | CACC       | TACI       | TTGT | AAGT       | GAGA       | GAGA       | CAAG       | AA         | 1583 |
|      |            |      |            |          |            |            |            |            |      |            |            |            |            |            |      |

FIG. 2(cont.)

5/7

| GCAAATTTTTTTAAAGAAAAAAAAAAACACTGGAAGAATTTATTAGTGTTAATTATG       | 1641 |
|-----------------------------------------------------------------|------|
| TGAACAACGACAACAACAACAACAACAACAACAACAACAGGAAAATCCCATTAAGTGGAGTTG | 1699 |
| CTGTACGTACCGTTCCTATCCCGCGCCTCACTTGATTTTCTGTATTGCTATGCAATA       | 1757 |
| GGCACCCTTCCCATTCTTACTCTTAGAGTTAACAGTGAGTTATTTAT                 | 1815 |
| ATATAATGAACGTTTCATTGCCCTTGGAAAATAAAACAGGTGTATAAAGTGGAGACCA      | 1873 |
| AATACTTTGCCAGAAACTCATGGATGGCTTAAGGAACTTGAACTCAAACGAGCCAGAA      | 1931 |
| AAAAAGAGGTCATATTAATGGGATGAAAACCCAAGTGAGTTATTATATGACCGAGAAA      | 1989 |
| GTCTGCATTAAGATAAAGACCCTGAAAACACATGTTATGTATCAGCTGCCTAAGGAAG      | 2047 |
| CTTCTTGTAAGGTCCAAAAACTAAAAAGACTGTTAATAAAAGAAACTTTCAGT           | 2100 |
| CAG(poly A)                                                     | 2103 |

FIG. 2(cont.)

| -215         | CAG        | GTAC       | CCTG       | GTCT       | c          | GATC       | AA         | AGA-       | TCGG       | CAGG       | GTGG       | ATCT        | GGGG       | 61 A       | -2         |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|
| <b>-</b> 157 | TCC        | AGCC!      | TCCA       | CCGG       | ACCC       | AGAC       | ACTG.      | GGAT       | CGTG       | TTTC       | GTTA       | CTAG        | CCAT       | TCGC       | ATC        |
| -101         | CTA        | CCTC       | AGGC       | CTCG.      | TTCC       | AACT       | CCTC       | GGA-       | CGTA       | CTCC       | CCTT       | GCGC        | CACT       | CCAC       | CCI        |
| -43          | GCC        | ACTA       | CCAA       | CCCA       | CCTC       | GGGG       | GGGC       | GCAG       | CCCT       | CAGC       | cccc       | GGGA        | CCGG       | TTTC       | CCT        |
| 12           |            | Pro 8      |            |            |            | CTCC       | cccc       | GGCG       | GGGG       | TGCC       | GCAG'      | CTCG        | CGCT       | TTCG       | CTG        |
|              | T.eu       | Leu        | Trn        | T.em       | Ten        | Dro        | Ton        | Ton        | T 011      | 10         | 7.011      | <del></del> | 3          | T          | <b>~</b> 1 |
| 57           | CTG        | CTA        | TGG        | CTG        | CTG        | CCG        | CTA        | CTG        | CTG        | CCG        | CTG        | CTG         | CGG        | CTG        | GGG        |
|              |            |            |            |            | 30         |            |            |            |            |            |            |             |            |            | 20         |
| 102          | Lys<br>AAG | Cys<br>TGC | Thr        | Ser        | Leu        | Gly<br>GGA | Ala<br>GCA | Ala<br>GCC | Pro        | Arg        | Ser        | Pro         | Thr        | Leu        | Val<br>GTG |
|              |            |            |            |            |            |            |            |            |            | 40         |            |             |            |            |            |
| 147          | Ile<br>ATC | Thr<br>ACC | Glu<br>GAG | Ile<br>ATC | Arg<br>CGC | Lys<br>AAG | Arg<br>CGG | Lys<br>AAG | Val<br>GTG | Leu        | Glu<br>GAG | Met<br>ATG  | Asp<br>GAC | Ile<br>ATC | Thr<br>ACT |
|              |            | <b></b>    |            |            | 60         | _          | _          |            | _          |            |            |             |            |            | 50         |
| 192          | AGC        | Pro<br>CCG | CCC        | Ser        | GCC        | CTC        | Arg        | Leu<br>CTG | Lys<br>AAG | Ser        | Leu<br>CTG | Ile<br>ATC  | Gln<br>CAG | Gly<br>GGC | Arg<br>CGC |
|              | Δla        | Leu        | Va 1       | Ala        | Glu        | Bro        | Lou        | Dro        | G1 v       | 70         | Dro        | ¥7.5.7      | <b>~</b> 1 | c1         | ~1 ~       |
| 237          | GCC        | CTC        | GTG        | GCC        | GAG        | CCC        | CTG        | CCG        | GGC        | CCC        | CCG        | GTG         | GAG        | GGG        | CAG        |
|              |            |            |            |            | 90         |            |            |            |            |            |            |             |            |            | 80         |
| 282          | GAG        | Ala<br>GCG | Ser<br>AGT | Glu<br>GAG | GGG        | Ala<br>GCC | Val<br>GTG | Arg<br>CGG | Asp<br>GAC | Arg<br>CGC | Thr        | Ser<br>AGC  | Asn<br>AAC | Tyr<br>TAC | Leu<br>CTG |
|              |            |            |            |            |            |            |            |            |            | 100        |            |             |            |            |            |
| 327          | Thr<br>ACC | Val<br>GTC | Glu<br>GAG | Lys<br>AAG | Ala<br>GCC | Tyr<br>TAC | Tyr<br>TAC | Asp<br>GAC | Ala<br>GCC | Glu<br>GAG | Pro<br>CCG | Glu<br>GAA  | Pro<br>CCC | Glu<br>GAG | Pro<br>CCG |
|              |            |            |            |            | 120        |            |            |            |            |            |            |             |            |            | 110        |
| 372          | Phe<br>TTC | Lys<br>AAG | Asp<br>GAC | Tyr<br>TAT | Ile<br>ATC | Glu<br>GAA | Asn<br>AAC | His<br>CAC | Thr<br>ACC | Glu<br>GAA | Val<br>GTG | Met<br>ATG  | Leu<br>CTA | Val<br>GTG | Arg<br>CGC |
|              |            |            |            | •          |            |            |            |            |            | 130        |            |             |            |            |            |
| 417          | Glu<br>GAG | Ser<br>TCA | Thr<br>ACA | Asn<br>AAC | Phe<br>TTC | Phe<br>TTC | Met<br>ATG | Tyr<br>TAT | Ile<br>ATA | Ser        | His<br>CAC | Thr<br>ACA  | Ser<br>AGC | Gln<br>CAG | Lys<br>AAG |
|              |            |            |            |            | 150        |            |            |            |            |            |            |             |            |            | 140        |
| 462          | Glu<br>GAG | Ala<br>GCA | Arg<br>CGG | Ser<br>TCC | Leu        | Leu<br>TTG | Val<br>GTG | Pro<br>CCT | Glu<br>GAA | Pro<br>CCT | Val<br>GTA | Ala<br>GCA  | Glu<br>GAA | Arg        | Leu        |

|                   |            |            |            |            |                   |            | 7/7        |            |            |                   |            |                    |            |            |      |
|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|--------------------|------------|------------|------|
| Lev               | Arg<br>CGT | Leu        | Leu        | <u> </u>   | Arg<br>AGG        |            | Lys        | Leu<br>TTA | Lys        | Val<br>GTC        | Glu<br>GAG | Gln                | His<br>CAT | Val<br>GTG | 504  |
| Glu<br>GAG        | Leu        | Tyr        | Gln<br>CAG | Lys<br>AAA | Tyr               | Ser        | Asn        | Asn<br>AAT | Ser        | 180<br>Trp        | Arg        | Tyr                | Leu<br>CTC | Ser<br>AGC | 549  |
| Asn<br>AAC        | Arg        | Leu<br>CTG | Leu<br>CTG | Ala<br>GCG | 190<br>Pro<br>CCC | Ser        | Asn<br>AAC | Ser<br>TCG | Pro<br>CCG | Glu<br>GAG        | Trp        | Leu<br>TTG         | Ser        | Phe<br>TTT | 594  |
| 200<br>Asp<br>GAT | Val        | Thr        | Gly<br>GGA | Val<br>GTT | Val<br>GTG        | Arg<br>CGG | Gln<br>CAG | Trp<br>TGG | Leu<br>TTG | 210<br>Ser<br>AGC | Arg        | Gly<br>GGA         | Gly<br>GGG | Glu<br>GAA | 639  |
| Ile<br>ATT        | Glu<br>GAG | Gly<br>GGC | Phe<br>TTT | Arg<br>CGC | 220<br>Leu<br>CTT | Ser<br>AGC | Ala<br>GCC | His<br>CAC | Cys<br>TGC | Ser<br>TCC        | Cys<br>TGT | Asp<br>GAC         | Ser<br>AGC | Lys<br>AAA | 684  |
|                   | Asn        |            |            |            |                   |            |            |            |            |                   |            |                    | Gly<br>GGC | Arg<br>CGC | 729  |
| Arg<br>CGA        | Gly<br>GGT | Asp<br>GAC | Leu<br>CTG | Ala<br>GCC | 250<br>Thr<br>ACA | Ile<br>ATT | His<br>CAT | Gly<br>GGC | Met<br>ATG | Asn<br>AAC        | Arg<br>CGG | Pro<br>CCT         | Phe<br>TTC | Leu<br>CTG | 774  |
|                   |            |            |            |            |                   |            |            |            |            |                   |            |                    | Gln<br>CAA |            | 819  |
| Ser<br>TCC        | Arg<br>CGG | His<br>CAC | Arg<br>CGC | Arg<br>CGA | 280<br>Ala<br>GCT | Leu<br>TTG | Asp<br>GAT | Ala<br>GCG | Ala<br>GCC | Tyr               | Cys<br>TGC | Phe<br>TTT         | Arg<br>AGA | Asn<br>AAT | 864  |
| 290<br>Val        | Gln        | Asp        | Asn        | Cys        | Cys               | Leu        | Arg        | Pro        | Leu        | 300<br>Tyr        | Ile        | Asp                | Phe<br>TTC | Lys        |      |
|                   |            |            |            |            | 310               |            |            | G-         |            |                   |            |                    |            |            | 909  |
| Arg<br>AGG        | Asp<br>GAT | Leu<br>CTA | Gly<br>GGG | Trp<br>TGG | Lys<br>AAA        | Trp<br>TGG | Ile<br>ATA | His<br>CAC | Glu<br>GAA | Pro               | Lys<br>AAA | Gly<br>GGG<br>——A- | Tyr<br>TAC | Asn<br>AAT | 954  |
|                   | Asn        |            |            |            |                   |            |            |            | Tyr        |                   |            |                    | Ser<br>TCA |            | 999  |
| Thr               | Gln<br>CAG | His<br>CAC | Ser<br>AGC | Arg        | 340<br>Val<br>GTC | Leu<br>CTG | Ser<br>AGC | Leu<br>TTA | Tyr<br>TAT | Asn<br>AAT        | Thr<br>ACC | Ile<br>ATA         | Asn<br>AAT | Pro<br>CCA | 1044 |

|      |               |           |                 |        |       |       | 7/7                                     |       |       |        |         |         |       |     |
|------|---------------|-----------|-----------------|--------|-------|-------|-----------------------------------------|-------|-------|--------|---------|---------|-------|-----|
| 350  |               |           |                 |        |       |       |                                         |       |       | 360    |         |         |       |     |
| Glu  | Ala           | Ser       | Ala             | Ser    | Pro   | Cys   | Cys                                     | Val   | Ser   | Gln    | Asp     | Leu     | Glu   | Pro |
| GAA  | GCA           | TCT       | GCT             | TCT    | CCT   | TGC   | TGC                                     | GTG   | TCC   |        | GAT     | TTA     | GAA   | CCT |
|      |               |           |                 |        |       |       |                                         |       |       |        |         |         |       |     |
|      |               |           |                 |        | 370   |       |                                         |       |       |        |         |         |       |     |
| Leu  | Thr           | Ile       | Leu             | Tyr    | Tvr   | Ile   | Gly                                     | Lys   | Thr   | Pro    | Lys     | Ile     | Glu   | Gln |
| CTA  | ACC           | ATT       | CTC             | TÃC    | TÂC   | ATT   | GGC                                     | AAA   | ACA   | CCC    | AAG     | ATT     | GAA   | CAG |
| 380  |               |           | <del></del>     |        |       |       |                                         |       |       | 390    |         |         |       |     |
|      | Ser           | Asn       | Met             | Tle    | Val   | Lvs   | Ser                                     | Cvs   | Lvs   |        | Ser     | ***     |       |     |
| CTT  | TCT           | AAT       | ATG             | ATT    | GTA   | AAG   | TCT                                     | TGC   | AAA   | TGC    | AGC     | TAA     | AAT   | CT  |
|      |               |           |                 |        |       |       |                                         |       |       |        |         |         |       |     |
| TGG  | AAAA          | STGG      | CAAG            | ACCA   | LAAT  | GACA! | ATGA:                                   | rgat( | GATA! | ATGA:  | rga To  | SACG    | ACGA  | CAA |
| CGN  | rga To        |           | ግጥ አ አ <i>ለ</i> | 28 861 |       | מחמי  | AGAG:                                   | ACCC  | rrcc  | ימיחים | יראפי   | יכיייי  |       | TAZ |
| CGA. | IGAI          | SCIIC     | JIAA            | LANGE  |       | -AIA  | IONG                                    | aucc. |       |        | · cnc   |         |       |     |
| TTT  | rgaa <i>i</i> | AAGG      | CGGT            | ACTAC  | STTC  | AGAC  | ACTT:                                   | rgga/ | AGTT  | rgtg:  | TCT     | TTT     | STTA  | AAA |
|      |               |           |                 |        |       |       |                                         |       |       |        |         |         |       |     |
| CTGC | CAT           | TGAC      | CACA            | AAAA   | AAGTT | rGAAG | sGCC.                                   | L'TAT | rcrac | JATT.  | CAC     | JIACI   | rire  | LAA |
| GTGZ | AGAGA         | GAC       | AAGAZ           | GCAZ   | ATT   | ттт   | TAA?                                    | GAA   | AAAA  | ATAAZ  | CAC     | rgga/   | GAAT  | TT  |
|      |               |           |                 |        |       |       |                                         |       |       |        |         |         |       |     |
| ATT  | AGTGI         | TAAT      | TAT             | TGA    | CAAC  | CGAC  | AACA                                    | ACAA  | CAAC  | ACAZ   | CAA     | CAG     | AAA   | ATC |
|      | TAAG          |           |                 |        |       |       |                                         | -ma m |       | 2000   |         | nmc a n | nmmm  | - m |
| CCA  | LTAAG         | TGGF      | GTTC            | CTGT   | ACG   | ACCC  | TTCC                                    | TATO  | CCG   | GCC    | CAC     | TGA     |       | CI  |
| GTAT | rtgei         | TATGO     | CAATA           | AGGC   | CCCI  | TCC   | CATTO                                   | TTAC  | CTCT  | PAGAG  | TTA     | CAGI    | GAG   | TA  |
|      |               |           |                 |        |       |       |                                         |       |       |        |         |         |       |     |
| TTT  | ATTGI         | GTGT      | TACT            | 'ATA   | AATG  | AACC  | TTTC                                    | CATTO | CCC   | rtgg?  | LAAAI   | 'AAAA'  | CAGG  | TG  |
| mama | AAGT          |           | . 2007          | 22002  | -mma  |       | C 3 3 7                                 | CECT  | maca  | TCCC   | מחחים   | CCAZ    | Стто  | 2 2 |
| IMIN | MMGI          | GGMC      | MCC             | WWIN   | CILI  | GCCF  | ıgnını                                  | 1C1Cr | 11667 | iidac  | . I III | dGhr    |       | m   |
| CTCA | AACG          | AGCC      | AGAZ            | AAAA   | AGAG  | GTC   | TAT                                     | TAAT  | GGAT  | GAA    | ACC     | AAGI    | GAGI  | TA  |
|      |               |           |                 |        |       |       |                                         |       |       |        |         |         |       |     |
| TTAT | PATGA         | CCGA      | GAAA            | GTCI   | GCAT  | TAAC  | ATA                                     | AAGAC | CCT   | AAA    | CAC     | TGTT    | PATGT | 'AT |
| CAGO | TGCC          | ית א מיתי | CAAC            | ירייי. | ጥጥሮ፣  | מממי  | יייררי                                  | 2222  | СТА   | 2220   | АСТО    | מ מדיד: | тааа  | AG  |
| CAGC | .1966         | ·IAAC     | MANDE           | CIIC   | .1161 | nacc  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ww    | CIM   | www    | nc10    |         |       |     |
| 2220 | יחיחים ר      | יאמיים    | 'AG (r          | กใง    | 21    |       |                                         |       |       |        |         |         |       |     |

|                                                                     |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | International Application No. PCT                                                                                                                                                                                                                                                       | US91/04449                                                                                                                                                                     |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                                                                                                                  | N OF SUBJECT MATTER (il several classifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| According                                                           | to Internati                                                                                                                                     | onal Patent Classification (IPC) or to both Natio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onal Classification and IPC                                                                                                                                                                                                                                                             |                                                                                                                                                                                |
|                                                                     |                                                                                                                                                  | 51K 37/36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
|                                                                     | CL.: 5                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| II. FIELDS                                                          | SEARCH                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
|                                                                     |                                                                                                                                                  | Minimum Document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| Classificatio                                                       | n System                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Classification Symbols                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |
| U.S.                                                                | •                                                                                                                                                | 514/2,8,12,21;<br>424/85.1, 88;<br>530/380,395,399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
|                                                                     |                                                                                                                                                  | Desumentation Searched other th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an Minimum Documentation<br>are included in the Fields Searched <sup>6</sup>                                                                                                                                                                                                            |                                                                                                                                                                                |
| Databas                                                             | ses:                                                                                                                                             | Dialog (Files 5, 73, 155,<br>System (File USPAT, 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         | Patent                                                                                                                                                                         |
| # DOCU                                                              | MENTS C                                                                                                                                          | ONSIDERED TO BE RELEVANT .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| Category *                                                          | Cital                                                                                                                                            | ion of Document, 11 with indication, where appr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | opriate, of the relevant psssages 12                                                                                                                                                                                                                                                    | Relevant to Claim No. 13                                                                                                                                                       |
|                                                                     |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| Y                                                                   | Der<br>Gro<br>and                                                                                                                                | URE, Vol. 316, issued<br>Ynck et al., "Human t<br>wth Factor-PnComplemen<br>Expression, vormal and<br>ls," pages 701-705, se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ransforming<br>tary DNA Sequence<br>Transformed                                                                                                                                                                                                                                         | 1-2,4-5,<br>7-8,10-11<br>13-14,16-17                                                                                                                                           |
| Y                                                                   | TGF                                                                                                                                              | l, Vol. 49, issued 22<br>-B Family of Growth an<br>tors," pages 437-438,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d Differentiation                                                                                                                                                                                                                                                                       | 13-18                                                                                                                                                                          |
| Y                                                                   | et<br>cDN                                                                                                                                        | , Vol. 7, NO. 1, issue<br>al., "Transforming Gro<br>A Cloning and Sequence<br>, see entire document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wth Factor-B2:                                                                                                                                                                                                                                                                          | 1,4,6,7,<br>9-10,13<br>15-16,18.                                                                                                                                               |
| Y                                                                   | of Difi                                                                                                                                          | , Vol. 7, No. 7, issue<br>al., "Structural and S<br>TGF-B2 cDNA Clones Pre-<br>ferent Precursor Protei<br>ernative mRNA splicing<br>entire document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equence Analysis<br>dicts Two<br>ns Produced by                                                                                                                                                                                                                                         | 1,6,7,10<br>15,16,18                                                                                                                                                           |
| "A" doc con "E" earl fill "L" doc whi cita "O" doc oth "P" doc ieta | ument defi-<br>sidered to<br>lier docum-<br>g date<br>ument which is cited<br>tion or oth<br>tument refe<br>er means<br>ument put<br>ir than the | or of the decuments: **Of the deciment is not been promoted associated and the set which is not be of particular relevance. The deciment is not unabled on or after the international charge throw doubts on priority claimital or a seathfuln his publication (see of animals) or a seathfuln his publication (see of animals) or a seathfuln his publication of the deciment | These decument published eiter for printing size sen and in conflicted to understeed the principal size sen and in conflicted to understeed the principal size sen and in conflicted in conflicted in the conflicted size size sent to printing size size size size size size size size | cs; the claimed inventi-<br>cannot be considered<br>ccs; the claimed inventi-<br>en inventive step when<br>or more other such do<br>obvious to a person skill<br>patent family |
|                                                                     |                                                                                                                                                  | r 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Signature of Authorized Office                                                                                                                                                                                                                                                          | /                                                                                                                                                                              |
| internation                                                         | nai Search                                                                                                                                       | ng Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Theso Was                                                                                                                                                                                                                                                                               | nden                                                                                                                                                                           |

| ategory * | ENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEE<br>Citation of Document, with indication, where appropriate, of the relevant passages                                                          | Relevant to Claim No |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Y         | Cell, Vol. 48. issued 13 February 1987,<br>Cheifetz et al "The Transforming Growth<br>Factor-B System, a Complex Pattern of<br>Cross-Reactive Ligands and Receptores",<br>pages 409-415, see entire document. | 1,4,7.10<br>13,16    |
|           |                                                                                                                                                                                                               |                      |
|           |                                                                                                                                                                                                               |                      |
|           | ·                                                                                                                                                                                                             |                      |
|           | ·                                                                                                                                                                                                             |                      |
|           |                                                                                                                                                                                                               |                      |

International Application No. PCT/IIS91/04449

| FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET                                                                                                                                         |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
| 1                                                                                                                                                                                           |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
| V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE!                                                                                                                               |                                        |
| This international eaarch raport has not been established in respect of certain claims under Article 1                                                                                      | 7(2) (a) for the following reasons:    |
| 1. Claim numbers bacausa they raiste to subject matter 12 not required to be exerched by                                                                                                    | y thie Authority, namely:              |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
| 2. Claim numbers, because they relate to parts of the international application that do not                                                                                                 | comply with the prescribed require-    |
| 2. Claim numbers, because they raise to parts of the international approach of 12, specific ments to such an extent that no meaningful international sparch can be carried out 12, specific | ally:                                  |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
| Claim numbers                                                                                                                                                                               | second and mire sentences or           |
| VI. A OSSERVATIONS WHERE UNITY OF INVENTION IS LACKINS                                                                                                                                      |                                        |
| This international Searching Authority found multiple inventions in this international application as i                                                                                     | ollows:                                |
| SEE ATTACHED SHEET                                                                                                                                                                          |                                        |
| SEE ATTACHED SHEET                                                                                                                                                                          |                                        |
|                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                             |                                        |
| <ol> <li>As all required additional search fees were timely paid by the applicant, this international search of the international application.</li> </ol>                                   | report covers all searchable claims    |
| a Call As not some of the constant additional sparch feet were timely paid by the applicant, this into                                                                                      | ernational search report covers only   |
| these claims of the international application for which fees were paid, specifically claims: 1—2                                                                                            | 2,4-11,13-18                           |
| TELEPHONE PRACTICE                                                                                                                                                                          |                                        |
| 3. No required additional search fees were timely paid by the applicant. Consequently, this internation first mentioned in the claims; it is covered by claim numbers:                      | ational search report is restricted to |
| the intention lies mentioned in the Samue, it is covered by Samuel                                                                                                                          |                                        |
|                                                                                                                                                                                             | nerional Searching Authority did no    |
| <ol> <li>As all searchable claims could be searched without effort justifying an additional ice, the inter-<br/>invite payment of any additional ice.</li> </ol>                            | Automy or me                           |
| Remark on Protest                                                                                                                                                                           |                                        |
| ☐ The additional search fees were accompanied by applicant's protest. ☐ No protest accompanied the payment of additional search fees.                                                       |                                        |
| Mo protest accompanied the payment of additional search level.                                                                                                                              |                                        |

25

In the examination of international applications filed under the Patent Cooperation Treaty, PCT Rule 13.1 states that the international application shall relate to one invention only or to a group of inventions so linked as to form "a single general 5 inventive concept."

PCT Rule 13.2 indicates that this shall be construed as permitting, in particular, one of the following three possible combinations of the claimed invention:

- (1) a product, a process specifically adapted for the manufacture of said product and a use of said product,
  - (2) a process, and an apparatus or means specifically designed for carrying out said process, or
- (3) a product, a process specially adapted for the
  15 manufacture of said product and an apparatus or means
  designed for carrying out the process.

Additionally, current United States Patent and Trademark
Office restriction practice permits the following combinations of
the claimed invention:

- 20 (4) a product, and a process specifically adapted for the manufacture of said product, and
  - (5) a product, and a use of the said product, as where said use as claimed cannot be practiced with another materially different product.
  - This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-18, a first method drawn to methods of 30 treating hypertension.

Group II, claims 19-36, a second method drawn to methods of treating hypotension.

Serial No. Pc./US 91/04449 Art Unit 186

Group III, a first specie of TGF-8 drawn to TGF-81.

Group IV, a second specie of TGF-8 drawn to TGF-82.

Group V, a third specie of TGF-8 drawn to TGF-81/82 hybrids.

Group VI, a fourth specie of TGF-8 drawn to TGF-81

5 precursor.

20

Group VII, a fifth specie of TGF-8 drawn to TGF-82 precursor.

Group VIII, a sixth specie of TGF-8 drawn to TGF-81/TGF-82 precursor.

10 Group IX, a seventh specie of TGF-8 drawn to TGF-81 complex.
Group X, an eighth specie of TGF-8 drawn to TGF-82 complex.

The inventions listed as Groups I-X do not meet the requirements for Unity of Invention for the following reasons:

The inventions of Groups I and II are directed to methods of treating two pathologic disease states using different reagents and are not so linked as to form a single general inventive concept.

The inventions of Groups III-X are directed to species of TGF-8 that differ in physical properties such as chemical composition primary swino acid sequence and molecular veightmand are not so linked as to form a single general inventive concept.

During a telephonic requirement for election, on August 8, 1991, applicant's representative, Brian W. Poor, elected the 25 invention of Groups I, III, and the additional Groups V-X for examination.