

Can we mechanize mathematics?

Content

First-Order Logic

Th $(\mathbb{N}, +)$ – A Decidable Theory

Th $(\mathbb{N}, +, \times)$ – An Undecidable Theory

Gödel's Incompleteness Theorem

Conclusion

References

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

• Quantifiers: ∀, ∃

Lucas Waclawczyk Dresden, lune 20, 2020

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

• Quantifiers: ∀, ∃

• Variables: p, q, x, y, \dots

Boolean operators: ∧, ∨, ¬

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \wedge \left(\neg (R_1(x,1) \wedge R_1(y,1)) \vee R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: *p*, *q*, *x*, *y*, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots
- Special characters: [,],(,)

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \wedge \left(\neg (R_1(x,1) \wedge R_1(y,1)) \vee R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: p, q, x, y, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: R_1, R_2, \dots
- Special characters: [,],(,)

Simplified here:

 mostly "sentences" (no free variables)

$$\forall q \exists p \ \forall x \ \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

Formulas consist of:

- Quantifiers: ∀, ∃
- Variables: p, q, x, y, . . .
- Boolean operators: ∧, ∨, ¬
- Relation symbols: $R_1, R_2, ...$
- Special characters: [,],(,)

Simplified here:

- mostly "sentences" (no free variables)
- only prenex normal form (all quantifiers on the left)

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$\forall q \exists p \ \forall x \ \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$\stackrel{!}{=} \text{"There are infinitely many prime numbers."}$$

$$\forall q \exists p \forall x \forall y \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

- universe U
 - possible values for variables
 - here N

$$\forall q \exists p \forall x \forall y \ \left[R_1(p,q) \land \left(\neg (R_1(x,1) \land R_1(y,1)) \lor R_2(x,y,p) \right) \right]$$

$$= \forall q \exists p \forall x, y \ [p > q \land (x,y > 1 \to xy \neq p)]$$

- universe U
 - possible values for variables
 - here $\mathbb N$

- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$

"There are infinitely many prime numbers."

- universe U
 - possible values for variables
 - here \mathbb{N}

- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$

vs. $[(x + x = y) \lor (x \ge y)]$

- universe *U*
 - possible values for variables
 - here N
- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(ℳ)
 - sentences that make sense in ${\cal M}$
 - here L(\mathbb{N} , $>_2$, ($\times \neq$)₃)

◆ロ → ◆問 → ◆ き → ◆ き め へ で

$$\forall q \; \exists p \; \forall x, y \; [p > q \land (x, y > 1 \rightarrow xy \neq p)]$$

vs. $\forall y \; \exists x \; [\neg(xx \neq y)]$

- universe *U*
 - possible values for variables
 - here ℕ
- model M
 - universe + assignment of relations
 - here $(\mathbb{N}, >_2, (\times \neq)_3)$

- language L(M)
 - sentences that make sense in ${\cal M}$
 - here L(\mathbb{N} , $>_2$, ($\times \neq$)₃)
- *theory* Th (\mathcal{M})
 - true sentences formed with ${\cal M}$
 - here Th $(\mathbb{N}, >_2, (\times \neq)_3)$

What Is Decidability?

- here: for logic (there is a more general definition)
- let \mathcal{M} be a model, $\varphi \in L(\mathcal{M})$

$$\mathsf{Th}\left(\mathcal{M}\right)\;\mathsf{decidable}\;\coloneqq\;$$

there is an algorithm that decides whether φ is true in ${\mathcal M}$

Theorem 1

Theorem

Th $(\mathbb{N}, +)$ *is decidable.*

Decidability of Logical Theories Lucas Waclawczyk Dresden, June 20, 2020

Theorem 1

Theorem

Th $(\mathbb{N}, +)$ *is decidable.*

i.e., there is an algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N}, +)$ is true or false.

Idea: Construct an automaton that accepts an (almost) empty input iff the given sentence is true.

Let $i \in \mathbb{N} \setminus \{0\}$ and define $\Sigma_i := \{0, 1\}^i$ and $\Sigma_0 := \{()\}$. An example for a word in Σ_3 :

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \sim \quad \begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix}$$

Review: Automata

Example automaton that accepts $+_{\!3}$ encoded in Σ_3

Now, let

- $k \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in \mathsf{L}(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$

Now, let

•
$$k \in \{0, ..., I\}$$

- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in L(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_k := Q_{k+1} x_{k+1} \dots Q_l x_l [\psi(x_1, \dots, x_l)]$ $\Rightarrow \varphi_0 = \varphi$ $\Rightarrow \varphi_l = \psi(x_1, \dots, x_l)$

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

Now, let

- $k \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in L(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_k := Q_{k+1} x_{k+1} \dots Q_l x_l [\psi(x_1, \dots, x_l)]$ $\Rightarrow \varphi_0 = \varphi$ $\Rightarrow \varphi_l = \psi(x_1, \dots, x_l)$
- $\varphi_k(a_1,\ldots,a_k) := Q_{k+1}x_{k+1}\ldots Q_lx_l \left[\psi(a_1,\ldots,a_k,x_{k+1},\ldots,x_l)\right]$ where $a_1,\ldots,a_k \in \mathbb{N}$

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

Now, let

- $k \in \{0, ..., I\}$
- $\varphi = Q_1 x_1 \dots Q_l x_l [\psi(x_1, \dots, x_l)] \in L(\mathbb{N}, +)$ where $Q_1, \dots, Q_l \in \{\forall, \exists\}$
- $\varphi_k := Q_{k+1} x_{k+1} \dots Q_l x_l [\psi(x_1, \dots, x_l)]$ $\Rightarrow \varphi_0 = \varphi$ $\Rightarrow \varphi_l = \psi(x_1, \dots, x_l)$
- $\varphi_k(a_1,\ldots,a_k) := Q_{k+1}x_{k+1}\ldots Q_lx_l \left[\psi(a_1,\ldots,a_k,x_{k+1},\ldots,x_l)\right]$ where $a_1,\ldots,a_k \in \mathbb{N}$

 $\implies \varphi_I$ is only a Boolean expression.

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \ldots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \ldots, a_l)$ is true:

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \ldots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \ldots, a_l)$ is true:

ullet Take one addition automaton for each addition term in $arphi_l$

Addition automaton

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \ldots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \ldots, a_l)$ is true:

- Take one addition automaton for each addition term in φ_I
- Combine them:
 - automaton product for \wedge
 - automaton union for ∨
 - automaton complement for ¬

in a way that they behave like φ_l .

Conjunction of two simple automata

Construct an automaton A_l that behaves like $\varphi_l = \psi$, meaning A_l accepts exactly the tuples $(a_1, \ldots, a_l) \in \mathbb{N}^l$ for which $\varphi_l(a_1, \ldots, a_l)$ is true:

- Take one addition automaton for each addition term in φ_l
- Combine them:
 - automaton product for \wedge
 - automaton union for ∨
 - automaton complement for \neg

in a way that they behave like φ_l .

Important: There is an algorithm that constructs A_l from φ_l .

If $Q_l = \exists$, construct automaton A_{l-1} from A_l by

- copying states of A_l
- adding a new starting state
- making A_{l-1} guess the right a_l non-deterministically

Example construction of non-deterministic guessing

Example construction of non-deterministic guessing

If $Q_l = \exists$, construct automaton A_{l-1} from A_l by

- copying states of A_l
- adding a new starting state
- making A_{l-1} guess the right a_l non-deterministically

If however $Q_l = \forall$, use complementation twice $(\forall x_l \varphi_l = \neg \exists x_l \neg \varphi_l)$

If $Q_l = \exists$, construct automaton A_{l-1} from A_l by

- copying states of A_l
- adding a new starting state
- making A_{l-1} guess the right a_l non-deterministically

If however $Q_l = \forall$, use complementation twice $(\forall x_l \varphi_l = \neg \exists x_l \neg \varphi_l)$

 \implies Inductively construct A_{l-2}, \ldots, A_0

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

If $Q_l = \exists$, construct automaton A_{l-1} from A_l by

- copying states of A_l
- adding a new starting state
- making A_{l-1} guess the right a_l non-deterministically

If however $Q_l = \forall$, use complementation twice $(\forall x_l \ \varphi_l = \neg \exists x_l \neg \varphi_l)$

- \implies Inductively construct A_{l-2}, \ldots, A_0
- \implies A_k accepts input $(a_1, \ldots, a_k) \in \mathbb{N}^k \Leftrightarrow \varphi_k(a_1, \ldots, a_k)$ is true

◆□▶◆□▶◆□▶◆□▶ ■ 釣९@

If $Q_l = \exists$, construct automaton A_{l-1} from A_l by

- copying states of A_l
- adding a new starting state
- making A_{l-1} guess the right a_l non-deterministically

If however $Q_l = \forall$, use complementation twice $(\forall x_l \ \varphi_l = \neg \exists x_l \neg \varphi_l)$

- \implies Inductively construct A_{l-2}, \ldots, A_0
- \implies A_k accepts input $(a_1,\ldots,a_k)\in\mathbb{N}^k$ \Leftrightarrow $\varphi_k(a_1,\ldots,a_k)$ is true
- \implies A_0 accepts input () $\Leftrightarrow \varphi_0 = \varphi$ is true

If $Q_l = \exists$, construct automaton A_{l-1} from A_l by

- copying states of A_l
- adding a new starting state
- making A_{l-1} guess the right a_l non-deterministically

If however $Q_l = \forall$, use complementation twice $(\forall x_l \ \varphi_l = \neg \exists x_l \neg \varphi_l)$

$$\implies$$
 Inductively construct A_{l-2}, \ldots, A_0

$$\implies$$
 A_k accepts input $(a_1,\ldots,a_k)\in\mathbb{N}^k$ \Leftrightarrow $\varphi_k(a_1,\ldots,a_k)$ is true

$$\implies$$
 A_0 accepts input () \Leftrightarrow $\varphi_0 = \varphi$ is true

Let the algorithm return " $\varphi \in \text{Th}(\mathbb{N},+)$ " \Leftrightarrow A_0 accepts input ()

Theorem 2

Theorem

Th $(\mathbb{N}, +, \times)$ *is undecidable.*

Theorem 2

Theorem

Th $(\mathbb{N}, +, \times)$ *is undecidable.*

i.e., there is <u>no</u> algorithm that can decide, whether a sentence $\varphi \in L(\mathbb{N}, +, \times)$ is true or false.

Turing Machines

Example turing machine adapted from: [2]

• The word problem for Turing machines is undecidable. ([5], Satz 5.6)

- The word problem for Turing machines is undecidable. ([5], Satz 5.6)
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*

- The word problem for Turing machines is undecidable. ([5], Satz 5.6)
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w}(x) \in L(\mathbb{N},+,\times)$ that contains only one free variable x, such that

- The word problem for Turing machines is undecidable. ([5], Satz 5.6)
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w}(x) \in L(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}(x)$ is true $\Leftrightarrow M$ accepts w (x =computation history suitably encoded)

- The word problem for Turing machines is undecidable. ([5], Satz 5.6)
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w}(x) \in L(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}(x)$ is true $\Leftrightarrow M$ accepts w (x =computation history suitably encoded)

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

 \implies The formulas $\exists x [\varphi_{M,W}(x)] \in L(\mathbb{N},+,\times)$ are decidable.

- The word problem for Turing machines is undecidable. ([5], Satz 5.6)
- There is a mapping reduction that translates
 - a Turing machine *M* and a string *w*
 - to a formula $\varphi_{M,w}(x) \in L(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}(x)$ is true $\Leftrightarrow M$ accepts w (x =computation history suitably encoded)

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

- \implies The formulas $\exists x \ [\varphi_{M,w}(x)] \in L(\mathbb{N},+,\times)$ are decidable.
- ⇒ The word problem for Turing machines is decidable.

- The word problem for Turing machines is undecidable. ([5], Satz 5.6) f
- There is a mapping reduction that translates
 - a Turing machine M and a string w
 - to a formula $\varphi_{M,w}(x) \in L(\mathbb{N},+,\times)$ that contains only one free variable x, such that
 - $\varphi_{M,w}(x)$ is true $\Leftrightarrow M$ accepts w (x =computation history suitably encoded)

Assume Th $(\mathbb{N}, +, \times)$ is decidable.

- \implies The formulas $\exists x [\varphi_{M,w}(x)] \in L(\mathbb{N},+,\times)$ are decidable.
- ⇒ The word problem for Turing machines is decidable.
- \implies

Is there a true, unprovable sentence?

Is there a true, unprovable sentence?

A proof is a series of implications and can be written as a string over some alphabet (here: $L(\mathbb{N}, +, \times)$). Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Is there a true, unprovable sentence?

A proof is a series of implications and can be written as a string over some alphabet (here: $L(\mathbb{N}, +, \times)$). Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Lemmas:

1. The provable statements of Th $(\mathbb{N},+,\times)$ are Turing recognizable. **Proof idea:** Just try all possible (suitably encoded) proofs.

Is there a true, unprovable sentence?

A proof is a series of implications and can be written as a string over some alphabet (here: $L(\mathbb{N}, +, \times)$). Assumptions:

 A_1 Proofs can be checked by a machine.

A₂ Provable statements are true.

Lemmas:

- 1. The provable statements of Th $(\mathbb{N},+,\times)$ are Turing recognizable. **Proof idea:** Just try all possible (suitably encoded) proofs.
- 2. There is a (true) statement in Th $(\mathbb{N}, +, \times)$ that is not provable. **Proof idea:** Contradiction to Theorem 2 by using 1.

A True, Unprovable Statement

Theorem

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

A True, Unprovable Statement

Theorem

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

Proof: Let *M* be a Turing machine that operates as follows.

- Delete the input
- Look for proof of $\varphi \coloneqq \neg \exists x [\varphi_{M,0}(x)] \in \mathsf{Th} \, (\mathbb{N},+,\times)$
- Go to final state : \Leftrightarrow proof for φ has been found

A True, Unprovable Statement

Theorem

We can construct a true statement in Th $(\mathbb{N}, +, \times)$, that is not provable.

Proof: Let *M* be a Turing machine that operates as follows.

- Delete the input
- Look for proof of $\varphi := \neg \exists x [\varphi_{M,0}(x)] \in \mathsf{Th}(\mathbb{N},+,\times)$
- Go to final state : \Leftrightarrow proof for φ has been found
- φ is the wanted statement.

Gödel's Method

• Construct the statement "This statement cannot be proved by the axioms."

Gödel's Method

- Construct the statement "This statement cannot be proved by the axioms."
- Argue against just adding this statement to the axiom.

Gödel's Method

- Construct the statement "This statement cannot be proved by the axioms."
- Argue against just adding this statement to the axiom.
- ⇒ Incompleteness ⊕

Conclusion

⇒ There are (very simple) indecidable logical theories.

Conclusion

- \implies There are (very simple) indecidable logical theories.
- \implies No sound arithmetical system can be complete.

Conclusion

- \implies There are (very simple) indecidable logical theories.
- → No sound arithmetical system can be complete.
- → Mathematics cannot be mechanized.

References

- [1] Martin Alessandro Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=75082873
- [2] https://www.inf-schule.de/grenzen/berechenbarkeit/turingmaschine/station_turingmaschine
- [3] Michael Sipser: Introduction to the Theory of Computation. Thomson Course Technology, 2006
- [4] https://www.youtube.com/watch?v=04ndIDcDSGc
- [5] Prof. Dr. Franz Baader: Skript Theoretische Informatik und Logik (Sommersemester 2020), TU Dresden

