CKA Course

By Nilesh Jayanandana

Containers vs VMs

Hybrid

VM Container

Containers

Containers are a solution to the problem of how to get software to run reliably when moved from one computing environment to another.

High Level Container Runtimes

- ContainerD
- RKT
- CRI-O

For more reference:

https://www.ianlewis.org/en/container-runtimes-part-1-introduction-container-r

Containers and Microservices

New Problems with Micro Services

- Docker CLI Allows you to manage the lifecycle of containers manually
- Docker Compose Allows you to run multi container systems

Is that enough??

Think about running 1000s of containers and managing them through Docker CLI!!

Docker Compose vs Orchestration

Container Orchestration

- Resource allocation
- Scheduling
- Scaling
- Load Balancing
- Service Discovery
- Manage Network & Access
- Track State
- Availability

Kubernetes

Kubernetes Components

- etcd
- Kubelet
- Scheduler
- Controller Manager
- Kube-DNS (Core dns)
- Kube-Proxy
- Kube API Server

Kubernetes Deployment

- Single Master Cluster
- HA with Stacked ETCD
- HA with external ETCD

API Server

- Authenticate User
- Validate Request
- Retrieve data
- Update ETCD
- Scheduler 6
- Kubelet

Controller Manager

- Watch Status
- Handle Life Cycle of resources

ETCD

- Store State
- Key Value Store
- Data at rest encryption needs to be done at API server level
- Can be external to K8s

Scheduler

- Make Scheduling decisions
- Can have custom schedulers

Kubelet

- Manage Container Lifecycle
- Needs to run in every node

Kube Proxy

- Manages internal Kubernetes network
- IP Forwarding and editing route tables
- A Kubernetes CNI is needed to be installed in order for networking to work properly.

Setup a Kubernetes Cluster with Kubeadm

Ports Needed to be Open in Kubernetes

- Master
 - o 6443 api server
 - o 2379-2380 etcd
 - 10250 kubelet
 - o 10251 scheduler
 - o 10252 controller-manager
 - o 10255 kubelet read only
 - o 8472 UDP kube proxy
 - o 30000-32767 node ports

- Worker
 - o 10250 kubelet
 - 10255 kubelet readonly
 - 8472 UDP kube proxy
 - o 30000-32767 nodeports

Setup Kubernetes Cluster

- Install Container D/Docker
- 2. Install Kubeadm, Kubectl
- 3. Open Ports
- 4. Initialize Kubernetes master with Kubeadm
- 5. Initialize Kubernetes nodes with Kubeadm
- 6. Install CNI

Install Script:

 $\frac{https://gist.githubusercontent.com/nilesh93/fe90c8d2137bc24d32479e4fae64c558/raw/9db75cbf4e211c23c9647dc41d1d2}{9e45fc16f41/kubernetes-prerequisites-ubuntu.sh}$

CNI Reference: Additional Reading

https://www.slideshare.net/JurajHantak/4-cncf-kubernetes-comparison-ofexistingcnipluginsforkubernetes?from action=save

Pods and Deployments

Pods

- Atomic Unit in Kubernetes
- Similar to VM in a Cloud Environment
- Has an IP address and resources are shared among containers
- IMMUTABLE Can only be created or deleted

Deployments

- Manages Pods
- Allows Rollbacks
- Rolling Updates
- Better suited for Stateless applications
- Replicaset is a snapshot of a deployment version

Pods vs Deployments vs Services

Kubernetes Resources Brief Overview

Services

Services - ClusterIP

Service is accessible internally

Services - NodePort

- Expose services externally over TCP
- Same port is opened on all nodes and will forward to service

Services - LoadBalancer

Automatically provision Cloud LB resource and connect to nodeports

Services - ExternalName

Point to an external DNS as a native service

Ingress

- Works at Layer 7
- Needs to Have an Ingress Controller
 - o Nginx
 - HAProxy
 - Contour
 - Envoy
- Support TLS termination

Cluster DNS

Configmaps and Secrets

Configmaps

- Key Value Pairs
- Can be injected as environment variables
- Can be mounted as a directory or a file

Secrets

- SAME as Configmaps, but with the exception of data being saved as base64
- Different types
 - Opaque
 - Dockerconfig
 - o Tls
 - Sshkey
- Mounted into the pod/container as text and NOT as base64

Volumes

Volumes - EmptyDir

- In memory
- Used to share data between 2 containers in the same pod
- Data is not persisted

Volumes - HostPath

- Mount a directory in host machine into containers
- Data is persisted

Volumes - Configmap/Secret

- Read only
- Can be mounted as a file or a volume
- Changes to these resources are reflected inside the containers at realtime

Volumes - PVC and PV

- Persistent method
- 3 modes
 - ReadOnly
 - ReadWriteOnly (commonly supported)
 - ReadWriteMany (only special volumes support this)

Storage Class

Dynamically provision
 PV and underlying
 physical storage

Static Binding

Cluster Upgrade and Maintenance

Cluster Upgrade

- Upgrade master
 - Kubectl drain master -- ignore-daemonsets
 - Update kubeadm, kubelet and kubectl
 - Kubeadm upgrade plan
 - Kubeadm upgrade apply
 - Kubectl uncordon master
- Then worker nodes
 - Kubectl drain worker -- ignore-daemonsets
 - Update kubeadm
 - Kubeadm upgrade node
 - Update kubelet
 - Kubeadm uncrodon worker

Possible different versions

Kubelet can be 2 minor versions under the API server.

But as a rule of thumb, always stick to same versions

ETCD Backup and Restore

ETCDCTL_API=3 etcdctl --endpoints 10.2.0.9:2379 \

--cert=/etc/kubernetes/pki/etcd/server.crt \

--key=/etc/kubernetes/pki/etcd/server.key \

--cacert=/etc/kubernetes/pki/etcd/ca.crt \

<command>

Backup

snapshot save snapshotdb

Verify

--write-out=table snapshot status snapshotdb

Scheduling

Scheduling

- Does node have adequate resources
- Is the node running out of resources (conditional taints)
- Does the pod request a specific node
- Does the node have a matching label
- If Pod requests a volume, can it be mounted
- Does the pod tolerate taints by the node
- Does the pod have affinity rules

Scheduling

- Pod
 - NodeSelectors select from node labels
 - NodeName specific node
 - Tolerations override a node taint
 - Affinity Set advanced rules on how pods can be scheduled
 - o schedulerName use custom schedulers
- Node
 - Taints disable scheduling

StatefulSets
DaemonSets
Jobs
CronJobs
HPA

DaemonSets

- No Replicas
- Runs a pod in Every current and Future Nodes
- Examples
 - Kube-Proxy
 - CNI Plugin
 - Logging Agent

Job and CronJob

- A container with a process that has a termination
 - Batch Job
 - Database migration script
- JOBS are immutable just like pods
- CronJob Ref
 https://crontab.guru/#*/10 * * * *

StatefulSet

- Stable, unique network identifiers.
- Stable, persistent storage.
- Ordered, graceful deployment and scaling.
- Ordered, automated rolling updates.

Needs a headless service to operate. (for inter pod discovery and communication)

<pod-name>.<svc-name>

***For headless Services, a cluster IP is not allocated, kube-proxy does not handle these Services, and there is no load balancing or proxying done by the platform for them. How DNS is automatically configured depends on whether the Service has selectors

Horizontal Pod AutoScaling (HPA)

- Metrics server needs to be installed
- Overrides replica count of deployment
- CPU Utilization and Memory Utilization can be used as a threshold
- Min, Max needs to be provided
- Can't scale to Zero

Network Policies

Network Policies

- Ingress Traffic coming in to the pod
- Egress Traffic going out of the pod
- Can limit via
 - Pod Selectors
 - Namespace selectors
 - o IP Ranges

Traffic Rules

Traffic Rules with Network Policy


```
policyTypes:
    - Ingress
ingress:
    - from:
     - podSelector:
          matchLabels:
          name: api-pod
    ports:
     - protocol: TCP
        port: 3306
```

Network Policy Full Example

Additional Information: https://kubernetes.io/docs/concepts/services-networking/network-policies/

```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: db-policy
spec:
  podSelector:
    matchLabels:
       role: db
  policyTypes:
  - Ingress
  ingress:
  - from:
     - podSelector:
         matchLabels:
           name: api-pod
     ports:
     - protocol: TCP
      nort: 3306
```

CNIs that Support Network Policies

- Calico
- Cillium
- Kube Router
- Canal
- Weavenet

^{**}Flannel Does not support Network Policies

RBAC

API Request Flow

Kubernetes Users

User Certificates

Certificate Signing

Users and Certificates

Service Accounts

Roles

ClusterRoles - Available Globally to cluster

Role - Available to a namespace only

Role Bindings

Cluster role and a role can both be binded by a role binding to a namespace

Cluster Role binding

Can only bind cluster roles and binding would give cluster wide permissions

ResourceQuota

Resource Quota

Ref: https://kubernetes.io/docs/concepts/policy/resource-quotas/

- Administration tool for a namespace
- Specify or provide a resource Quota to be used in a given namespace.
 - Namespace training cannot exceed the request quota of 4GB memory
- Limits and Requests can be used in quota

Best Practices

Pod/Deployment Best Practices

- Always have readiness checks and liveness checks
- Have requests and limits defined
 - Make sure limits don't cause a resource overcommit
- Never run containers as root or privileged
- Have security contexts properly defined
- If you are using deployments with RWO, use recreate strategy instead of rolling update
- Set PodAntiAffinity to make sure replicas having highest availability
- Use PodDisruption Budgets, Resource Quotas and LimitRanges where possible

CronJobs/Jobs

- Make sure scheduled jobs don't eat up cluster resources
 - Badly configured CronJob or Job can destroy a cluster in a matter of minutes!
- Make sure to run a Job at most once, avoid parallel runs unless absolutely necessary
- Retry Jobs only if necessary
- Job Cleanup should be enabled

Cluster

- Upgrade/Run maintenance atleast every 3 months
- Run KubeBench https://github.com/aquasecurity/kube-bench and fix vulnerabilities
- Don't expose k8s API publicly
- Use a CNI that support Network Policies
- Configure Network Policies to the cluster
- Use RBAC and Workload Identity

Tips for the Exam

Bookmarks

- https://kubernetes.io/docs/reference/kubectl/cheatsheet/
- https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
- https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/#backing-up-an-etcd-cluster
- https://kubernetes.io/docs/concepts/storage/volumes/
- <a href="https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/#create-a-persistent-volume-storag
- https://kubernetes.io/docs/concepts/services-networking/network-policies/
- https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
- https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/
- https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/#create-horizontal-pod-autoscaler
- https://kubernetes.io/docs/reference/access-authn-authz/rbac/
- https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

All tips available here

https://medium.com/platformer-blog/how-i-passed-the-cka-certified-kubernetes-administrator-exam-8 943aa24d71d

Thank You

Reach out to me on

Email: nilesh93.j@gmail.com

Linkedin: https://www.linkedin.com/in/nilesh93/