Homework 7

Lance Remigio

April 30, 2025

Problem 1. Let $(V, \|\cdot\|_V)$ be a finite dimensional normed space.

- (i) Let W be a subspace of V such that $\dim(W) < \dim(V)$. Let $f: W \to \mathbb{F}$ be a linear functional.
- (ii) Let $v \in V \setminus \{0\}$. Show that there is $f \in V^*$ such that f(v) = 1 and ||f|| = ||v||.

Proof. (i) Since V is finite dimensional and f is a linear functional, it follows that f is also bounded. That is, f is a continuous linear functional. Hence, for any $v_n \to v$, we have $f(v_n) \to f(v)$. So, define a functional $\tilde{f}: V \to \mathbb{F}$ by

$$\tilde{f}(v) = \lim_{n \to \infty} f(v_n).$$

It follows from the algebraic properties of the limit and the linearity of f that \tilde{f} is also linear. Indeed, for any $x, y \in V$ such that $x_n \to x$ and $y_n \to y$ with $\alpha \in \mathbb{F}$, we have

$$\tilde{f}(x + \alpha y) = \lim_{n \to \infty} f(x_n + \alpha y_n)
= \lim_{n \to \infty} [f(x_n) + \alpha f(y_n)]$$

$$= \lim_{n \to \infty} f(x_n) + \alpha \lim_{n \to \infty} f(y_n)$$

$$= \tilde{f}(x) + \alpha \tilde{x}(y).$$
(Algebraic Limit Theorem)

Proof. (ii) Using the linear functional f we constructed from part (i), it follows from its linearity that for every $v \in V \setminus \{0\}$, we have

$$\begin{aligned} \left\| f\left(\frac{v}{\|f(v)\|}\right) \right\| &= \left\| f\left(\frac{v}{\|f(v)\|}\right) \right\| \\ &= \left\| \frac{1}{\|f(v)\|} f(v) \right\| \\ &= \frac{1}{\|f(v)\|} \cdot \|f(v)\| \\ &= 1 \end{aligned}$$

So, define $\hat{f}: V \to \mathbb{F}$ by

$$\hat{f}(v) = \left\| f\left(\frac{v}{\|f(v)\|}\right) \right\| = 1.$$

Now, our goal is to show that $\|\hat{f}\| = \|v\|$. Clearly, we see that \hat{f} is bounded and so

$$\|\hat{f}(v)\| \le \|\hat{f}\|\|v\| = 1 \cdot \|v\| = \|v\|.$$

Taking the supremum of the left-hand side above over all v such that ||v|| = 1, we have

$$\|\hat{f}\| \le \|v\|.$$

Now, we want to show that $\|\hat{f}\| \ge \|v\|$. Indeed, we have

$$\begin{split} \|\hat{f}\| &= \sup_{\|v\|=1} \|\hat{f}(v)\| \ge \|\hat{f}(v)\| \\ &= \left\| \|v\|\hat{f}(v) \right\| \\ &= \|v\| \|\hat{f}(v)\| \\ &= \|v\|. \end{split}$$

Hence, we conclude that $\|\hat{f}\| = \|v\|$.

Problem 2. Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces. Let $B(V, W) = \{T : V \to W : T \text{ is bounded and linear}\}$. We proved that B(V, W) is a normed space. Assume that B(V, W) is Banach. The goal of this exercise is to show B(V, W) is a Banach space.

(i) Let (T_n) be a Cauchy sequence in B(V, W) is a Banach Space. **Proof.** Suppose (T_n) is a Cauchy sequence in B(V, W). That is, for $n, m \to \infty$, we have

$$||T_n - T_m|| \to 0.$$

Our goal is to show that $(T_n v)$ is convergent in W. It suffices to show that Cauchy in W since W is a Banach normed space; that is, we need to show that

$$||T_n v - T_m v||_W \to 0$$

as $n, m \to \infty$. Note that for all $n \in \mathbb{N}$, T_n is bounded since (T_n) is a sequence in B(V, W). Hence, we have

$$0 \le \|(T_n - T_m)(v)\|_W \le \|T_n - T_m\|\|v\|_V \to 0$$

as $n, m \to \infty$. Hence, we have that $||(T_n - T_m)(v)||_W \to 0$ as $n, m \to \infty$. Thus, $(T_n v)$ is Cauchy in W which is our desired result.

(ii) Use (i) to define $T:V\to W$ and show that T is linear.

Proof. Define $T: V \to W$ by

$$T(v) = \lim_{n \to \infty} T_n(v).$$

We will show that T is linear. Indeed, we see that for any $x, y \in V$ and $\alpha \in \mathbb{F}$, we have

$$T(x + \alpha y) = \lim_{n \to \infty} T_n(x + \alpha y)$$

$$= \lim_{n \to \infty} [T_n(x) + \alpha T_n(y)]$$

$$= \lim_{n \to \infty} T_n(x) + \alpha \lim_{n \to \infty} T_n(y)$$

$$= T(x) + \alpha T(y).$$

(iii) Prove that for large $n, T_n - T \in B(V, W)$ and $||T_n - T|| \to 0$ as $n \to \infty$. **Proof.** Note that $T_n - T_m \in B(V, W)$. Using the continuity of the norm and that $||T_n - T_m|| \to 0$, we have

$$\begin{aligned} \|(T_n - T)v\|_W &= \|T_n v - \lim_{m \to \infty} T_m v\|_W \\ &= \lim_{m \to \infty} \|(T_n - T_m)v\|_W \\ &\leq \left(\lim_{m \to \infty} \|T_n - T_m\|\right) \cdot \|v\|_V. \end{aligned}$$

Dividing by $||v||_V$ (assuming that $v \neq 0$) and taking the supremum of the left-hand side of the inequality,

$$||T_n - T|| \le \lim_{m \to \infty} ||T_n - T_m|| \to 0.$$

Hence, $||T_n - T|| \to 0$. Using the fact that $||\cdot||$ is continuous and $T_m(v) \to T(v)$, it follows that for some R > 0

$$||(T_n - T_m)v||_W \le R||v||_V$$

$$\Longrightarrow ||(T_n - T)v||_W \le R||v||_V.$$

for all $v \in V$. Hence, $T_n - T \in B(V, W)$.

(iv) Prove that $T \in B(V, W)$ and conclude that B(V, W) is complete.

Proof. Since T_n for all $n \in \mathbb{N}$ is bounded, we can find $C_1 > 0$ such that

$$||T_n v||_W \le C_1 ||v||_V \tag{1}$$

Moreover, $T - T_n$ is bounded from part (iii), so we can find a $C_2 > 0$ such that

$$||(T - T_n)v||_W \le C_2 ||v||_V.$$

Using (1) and (2), we have

$$||T(v)||_{W} = ||(T - T_{n} + T_{n})v||_{W}$$

$$= ||(T - T_{n})v + T_{n}v||_{W}$$

$$\leq ||(T - T_{n})v||_{W} + ||T_{n}v||_{W}$$

$$\leq C_{2}||v||_{V} + C_{1}||v||_{V}$$

$$= (C_{1} + C_{2})||v||_{V}$$

where $C = C_1 + C_2$ is our desired constant.

Problem 3. Let p > 1. Prove that $((\ell^r)', \|\cdot\|)$ is isomorphic to $(\ell^q, \|\cdot\|_q)$ where q is such that $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. Using the Schauder basis for ℓ^p is $(e^{(k)})$ where $e^{(k)} = (\delta_{kj})$. Since $x \in \ell^p$, we have

$$x = \sum_{k=1}^{\infty} x_k e^{(k)}.$$

Let $f \in (\ell^p)'$. Since f is linear and bounded, we have

$$f(x) = \sum_{k=1}^{\infty} x_k \alpha_k \tag{1}$$

where $\alpha_k = f(e^{(k)})$. Since $\frac{1}{p} + \frac{1}{q} = 1$ and define

$$x_k^{(n)} = \begin{cases} |\alpha_k|^1/\alpha_k & \text{if } k \le n \text{ and } \alpha_k \ne 0\\ 0 & \text{if } k > n \text{ or } \alpha_k = 0 \end{cases}$$

Using (1) and our expression above, we have

$$f(x_n) = \sum_{k=1}^{\infty} x_k^{(n)} \alpha_k = \sum_{k=1}^{n} |\alpha_k|^q.$$

Furthermore, since (q-1)p = q, we have

$$f(x_n) \le ||f|| ||x_n|| = ||f|| \Big(\sum_{k=1}^n |x_k^{(n)}|^p \Big)^{1/p}$$
$$= ||f|| \Big(\sum_{k=1}^n |\alpha_k|^{(q-1)p} \Big)^{1/p}$$
$$= ||f|| \Big(\sum_{k=1}^n |\alpha_k|^q \Big)^{1/p}.$$

Hence, we have

$$f(x_n) = \sum_{k=1}^n |\alpha_k|^q \le ||f|| \Big(\sum_{k=1}^n |\alpha_k|^q\Big)^{1/q} \le ||f||.$$

Letting $n \to \infty$, we obtain

$$\left(\sum_{k=1}^{n} |\alpha_k|^{1/q}\right) \le ||f||. \tag{*}$$

Thus, $(\alpha_k) \in \ell^q$.

To obtain the other inequality, observe that for any $b = (\beta_k) \in \ell^q$, we associate a bounded linear functional g on ℓ^p . Hence, we may define g on ℓ^p by setting

$$g(x) = \sum_{k=1}^{\infty} x_k \beta_k$$

where $x = (x_k)$ in ℓ^p . Since g is linear and bounded (which follows from applying the Holder's Inequality on (1)), it follows that $g \in (\ell^p)'$. From (1) and the Holder's Inequality, we have

$$|f(x)| = \left| \sum_{k=1}^{\infty} x_k \alpha_k \right| \le \left(\sum_{k=1}^{\infty} |\alpha_k|^p \right)^{1/p} \left(\sum_{k=1}^{\infty} |\alpha_k| \right)^{1/q}$$
$$= ||x|| \left(\sum_{k=1}^{\infty} |\alpha_k|^q \right)^{1/q}$$

and so by taking the supremum over all x such that ||x|| = 1, we have

$$||f|| \le \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{1/q}.\tag{**}$$

Using (*) and (**), we can conclude that

$$||f|| = ||\alpha||_q$$

where $\alpha = (\alpha_k)$ and $\alpha_k = f(e^{(k)})$. Moreover, the mapping of $(\ell^p)'$ onto ℓ^q defined by $f \mapsto \alpha$ is linear and bijective, so it follows that ℓ^q and $(\ell^p)'$ are isomorphic.

Problem 4. Let V be a vector space.

(i) Let β be a basis for V. Show that for each $b \in \beta$ there is $f_b \in V^*$ such that $f_b(b) = 1$. **Proof.** We will consider two different cases. Suppose V is finite dimensional and so denote $\dim(V) = n$. Then β is finite and denote $\beta = \{x_1, x_2, \dots, x_n\}$. Since β is a basis, we know that for any $x \in V$

$$x = \sum_{i=1}^{n} \alpha_i x_i$$

for some $\alpha_i \in \mathbb{F}$ for all $1 \leq i \leq n$. Note that if we are trying to represent an x_i in β , we have

$$x_i = \sum_{i=1}^n \alpha_i x_i = 0 \cdot x_1 + \dots + 1 \cdot x_i + \dots + 0 \cdot x_n.$$

Hence, for each $1 \le i \le n$ we can define a map $f: V \to \mathbb{F}$ such that $f_{x_i}(x_i) = 1$ for each $1 \le i \le n$. More generally, for any $i \in \mathbb{N}$ where $x_i \in \beta$, we have $f_{x_i}(x_i) = 1$.

- (ii) Let $v \in V \setminus \{0\}$. Show that there is $f \in V^*$ such that $f(v) \neq 0$. **Proof.** Let $v \in V \setminus \{0\}$. Since $v = 1 \cdot v$, we can define a functional $f : V \to \mathbb{F}$, we have $f(v) = 1 \neq 0$. Clearly, this is linear.
- (iii) Use (ii) to prove the Canonical map $C: V \to V^{**}$ is injective.

Proof. Suppose $v \neq u$ where $v, u \in V$. Our goal is to show that $C(v) \neq C(u)$. By assumption, we have

$$v - u \neq 0 \Longrightarrow \exists f \in V^* \text{ such that } f(v - u) \neq 0.$$

From the linearity of f, we have $f(v) - f(u) \neq 0$ implies $f(v) \neq f(u)$. But this tells us that $C(v) \neq C(u)$.

Problem 5. Let V be an infinite dimensional normed space. Note that V' is a subspace of V^* . Prove that there is $f \in V^*$ such that $f \notin V'$.

Proof. Since V is infinite dimensional, we can find a sequence of vectors v_n in V such that

- (i) $||v_n|| = 1$
- (ii) $||v_n v_m|| \ge \frac{1}{2}$ for all $n \ne m$.

Define $T(v_n) = ||v_n||$ which is linear. From the above properties, we can find a subsequence (v_{n_k}) such that $T(v_{n_k})$ does not converge which means that T is an unbounded linear operator. Hence, $T \notin V'$.

Problem 6. Let $(V, \|\cdot\|)$ be an infinite dimensional normed space.

(i) Assume that $(V, \|\cdot\|)$ is Banach. Let (v_n) be a sequence in V. Assume that $\sum_{n=1}^{\infty} \|v_n\|$ converges in \mathbb{R} . Prove that $\sum_{n=1}^{\infty} v_n$ converges in V.

Proof. Let n > m. Assume that $\sum_{n=1}^{\infty} \|v_n\|$ converges in V. Our goal is to show that $\sum_{n=1}^{\infty} v_n$ converges in V. Since V is a Banach space, it suffices to show that the sequence of partial sums $s_n = \sum_{k=1}^n v_k$ is Cauchy in V. Denote the sequence of partial sums (ξ_n) by

$$\xi_n = \sum_{k=1}^n ||v_k||.$$

Since (ξ_n) converges by assumption, it follows that (ξ_n) is a Cauchy sequence in V. Hence,

$$|\xi_n - \xi_m| = \Big| \sum_{k=m+1}^n ||v_k|| \Big| \to 0 \text{ as } n, m \to \infty.$$

Now, we can see from the triangle inequality property of $\|\cdot\|$ that

$$0 \le ||s_n - s_m|| \le \left\| \sum_{k=m+1}^n v_k \right\| \le \sum_{k=m+1}^n ||v_k|| = |\xi_n - \xi_m| \to 0 \text{ as } n, m \to \infty.$$

Hence, we can see that (s_n) is a Cauchy sequence in V which is our desired result.

(ii) Let $V \subseteq \ell'$ that consists of sequences $x = (x_n)$ such that $x_n = 0$ for all $n \ge N$ for some N; that is, V consists of all sequences for which all terms are zero after some Nth term. Define $y^{(n)} \in \ell^{\infty}$ by setting

$$y_j^{(n)} = \begin{cases} \frac{1}{2^n} & \text{if } j = n\\ 0 & \text{otherwise} \end{cases}.$$

That is, the *n*th term of $y^{(n)}$ is $\frac{1}{2^n}$ and all other terms are zero. Then $y^{(n)} \in V$ for all n.

Show that

(a) $\sum_{n=1}^{\infty} ||y^{(n)}|| < \infty$.

Proof. Let n > m. Define the sequence of partial sums $(\xi^{(n)})$ by

$$\xi^{(n)} = \sum_{k=1}^{n} ||y^{(k)}||.$$

Since \mathbb{R} is complete, it suffices to show that $\xi^{(n)}$ is a Cauchy sequence in \mathbb{R} . This will show that the infinite series of the terms $||y^{(n)}||$ converges. Note that

$$0 \le |\xi^{(n)} - \xi^{(m)}| = \left| \sum_{k=1}^{n} ||y^{(k)}|| - \sum_{k=1}^{n} ||y^{(k)}|| \right|$$

$$= \left| ||y^{(n)}|| - ||y^{(m)}|| \right|$$

$$= ||y^{(n)} - y^{(m)}||$$

$$\le ||y^{(n)} - y^{(m)}||_{\infty}$$

$$\le \frac{1}{2^m} \to 0. \qquad (n, m \to \infty)$$

Hence, we see that $(\xi^{(n)})$ is a Cauchy sequence in \mathbb{R} which is our desired result.

(b) $\sum_{n=1}^{\infty} y^{(n)}$ does not converge in V.

Proof. Note that by $\lim_{n\to\infty}y^{(n)}\neq 0$; that is, $y^{(n)}\to \frac{1}{2^i}$ for all $i\in\mathbb{N}$. Clearly, the limit $\left(\frac{1}{2^i}\right)$ for all $i\in\mathbb{N}$ is non-zero. Hence, $\sum_{n=1}^\infty y^{(n)}$ does not converge.

Problem 7 (Extra Credit). Let $(V, \|\cdot\|)$ be a normed space in which for any sequence (v_n) in V

$$\sum_{n=1}^{\infty} \|v_n\| < \infty \Longrightarrow \sum_{n=1}^{\infty} v_n \text{ converges in } V.$$

Prove that $(V, \|\cdot\|)$ is Banach.

Proof. Suppose that every absolutely convergent series is convergent. Our goal is to show that $(V, \| \cdot \|)$ is a Banach space. To do this, we will show that every Cauchy sequence in V converges. Let (v_n) be a Cauchy sequence in V. From here, our strategy is to find a subsequence (v_{n_k}) of (v_n) such that (v_{n_k}) converges in V (by the lemma). By definition, (v_n) being Cauchy implies that for all $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that for any n > m > N, we have

$$||v_n - v_m|| < \varepsilon.$$

For $\varepsilon = 1$, there exists an $n_1 \in \mathbb{N}$ such that for any $n > m > n_1$, we have

$$||v_n - v_m|| < 1.$$

Furthermore, if $\varepsilon = \frac{1}{2}$. So, there exists an $n_2 > n_1$ by the Archimedean Property such that for any $n > m > n_2$, we have

$$||v_n - v_m|| < \frac{1}{2}.$$

In particular, if $\varepsilon = \frac{1}{2^{k-1}}$ for all $k \in \mathbb{N}$, then we can find an $n_k \in \mathbb{N}$ such that for any $n > m > n_k$, we have

$$||v_n - v_m|| < \frac{1}{2^{k-1}}.$$

Moreover, by the Archimedean Property we can find an $n_{k+1} \in \mathbb{N}$ such that $n_{k+1} > n_k > n_{k-1}$. Hence, it follows that (v_{n_k}) is a subsequence in V such that

$$0 \le ||v_{n_{k+1}} - v_{n_k}|| < \frac{1}{2^{k-1}}.$$
(*)

Note that since $\sum_{k=1}^{\infty} \frac{1}{2^{k-1}}$ is a geometric series it follows from the Comparison Test that

$$\sum_{k=1}^{\infty} \|v_{n_{k+1}} - v_{n_k}\|$$

converges to some $v \in V$. By assumption, this tells us that

$$\sum_{k=1}^{\infty} (v_{n_{k+1}} - v_{n_k})$$

converges to some v in V. Now, observe that

$$v_{n_1} + \sum_{j=1}^{k-1} (v_{n_{j+1}} - v_{n_j}) = v_{n_1} + (v_{n_2} - v_{n_1}) + (v_{n_3} - v_{n_2}) + \dots + (v_{n_k} - v_{n_{k-1}})$$

$$= v_{n_k}.$$

Taking the limit on both sides of the above equality, we see that

$$\lim_{k \to \infty} v_{n_k} = \lim_{k \to \infty} \left[v_{n_k} + \sum_{j=1}^{k-1} (v_{n_{j-1}} - v_{n_j}) \right]$$

$$= v_{n_1} + \lim_{k \to \infty} \sum_{j=1}^{k-1} (v_{n_{j+1}} - v_{n_j})$$

$$= v_{n_1} + v.$$

Thus, we now see that (v_{n_k}) converges in V which tells us that (v_n) is a converges in V. Hence,

Lemma. Let $(V, \|\cdot\|)$ be a normed space. Suppose (v_n) is a Cauchy sequence, and some subsequence (v_{n_k}) converges to a point v in V. Then (v_n) converges to v in V.

Proof. Let n > m. Since (v_n) is a Cauchy sequence in V, it follows that

$$||v_n - v_m|| \to 0$$

as $n, m \to \infty$. Also, (v_{n_k}) converges to some $v \in V$. So, for $k \to \infty$, we have

$$||v_{n_k} - v|| \to 0.$$

Using the triangle inequality, it follows that

$$0 \le ||v_n - v|| \le ||v_n - v_{n_k}|| + ||v_{n_k} - v|| \to 0.$$

Using the Squeeze Theorem, we have

$$||v_n - v|| \to 0$$

as $n \to \infty$ and we are done.