Kapittel 2: Utsagnslogikk

Nettkurs

Boka

Det sentrale spørsmålet er "Hva som følger fra hva?"

Atomære og samensatte utsagn

- Et **utsagn** (*preposition*) er noe som kan være sant eller usant. Dette noe kan være en *setning*, *ytring* eller *meningsinnholdet* til slike
- Atomære (atomic) utsagn er utsagn som du kan ikke dele opp i mindre biter
- Samensatte utsagn er utsagn som bygges opp fra atomære ved hjelp av logiske bindeord

Atomære og sammensatte formler

- En **utsagnsvariabel** (*propositional vatiable*) er en atomærformel (*atomic formula*)
- Utsagnsvariabler representerer atomære utsagn og brukes til å uttrykke sammensatte formler (sammensatte utsagn)

Konnektiver

- Konnektiver (logical connectives) representerer logiske bindeord:
 - ∘ ¬-ikke
 - ∧ oq
 - ∘ ∨ eller
 - $\circ \rightarrow$ impliseres/hvis, så
 - $\circ \leftrightarrow$ hvis og bare hvis (eksklusivt hvis) også hviss

Utsagnslogiske formler

• Enhver atomær formel er en utsagnslogisk formel

- Eksempler:
 - \circ F
 - $\circ \neg P$ negasjon (negation)
 - $\circ \neg \neg F$
 - \circ $(F \wedge G)$ konjunksjon (conjunction); formlene F og G kalles konjunktene (conjuncts)
 - $\circ (F \lor G)$ **disjunksjon** (*disjunction*); formlene F og G kalles **disjunktene** (*disjuncts*)
 - $\circ \ (F o G)$ implikasjon (implication)

Mer om "hvis" og "bare hvis"

- $(A \rightarrow B)$
- At A er sann, er en **tilstrekkelig** betingelse for at B er sann.
 - \circ Det er nok at A er sann for at B også skal være sann
 - \circ Formelen B kan være sann uten at A er sann, men $\mathit{hvis}\ A$ er sann, $\mathit{sa}\ \mathsf{ma}\ B$ være sann
- At B er sann, er en **nødvendig** betingelse for at A er sann.
 - $\circ \ \ A$ ikke kan være sann uten at B er også sann
 - \circ Formelen A er sann bare hvis B er sann

"Hvis og bare hvis"

- Jeg spiser det *hvis* det er godt.
 - $\circ \ \ \text{"Jeg spiser"} \leftarrow \text{"det er godt" (er glupsk)}$
- Jeg spiser det bare hvis det er godt.
 - \circ "Jeg spiser" \rightarrow "det er godt" (er kresen)
- Jeg spiser det hviss det er godt.
 - \circ "Jeg spiser" \leftrightarrow "det er godt" (er glupsk, men kresen)
 - Med andre ord, begge elementer er tilstrekkelig og nødvendig for hverandre

Presedensregler (precedence rules)

- ¬ sterkest
- ↑ svakere enn ¬

- \vee svakere enn både \neg og \wedge
- ullet ightarrow svakest
- Så dette betyr at $P \wedge Q o R$ står for $((P \wedge Q) o R)$ og <u>ikke</u> $(P \wedge (Q o R))$
- I tillegg:
 - $\circ \land \mathsf{og} \lor \mathsf{er} \ \mathsf{venstre-assosiative} \colon P \land Q \land R \ \, \longrightarrow \ \, ((P \land Q) \land R)$
 - $\circ \; o$ er høyre-assosiativ: $P o Q o R \; extstyle \longrightarrow \; (P o (Q o R))$