# Lecture 2:

Image Classification with Linear Classifiers

# Administrative: Assignment 1

### Will be out Wednesday 4/9, due 4/23 by 11:59 PM

- K-Nearest Neighbor
- Linear classifiers: Softmax
- Two-layer neural network
- Image features
- Deep neural network and optimizers

# Administrative: Course Project

Project proposal due 4/25 (Friday) 11:59 pm

Contact us on Ed, each project team will have a TA assigned to them for future questions

your assigned TA for initial guidance (Canvas -> People -> Groups)

Use the Google Form to find project partners (will be posted later today)

"Is X a valid project for 231n?" --- Ed private post / TA Office Hours

More info on the website

Lecture 2 - 3

### Administrative: Discussion Sections

This Friday 12:30 pm-1:20 pm, in person at NVIDIA Auditorium, remote on Zoom (recording will be made available)

Python / Numpy, Google Colab

Presenter: Emily Jin (TA) with Assistance from Matthew Jin (TA)

# Syllabus

| Deep Learning Basics                                                                                                                                                                       | Perceiving and Understanding the Visual World                                                                                                                                                                  | Reconstructing and Interacting with the Visual World                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Data-driven approaches Linear classification K-Nearest Neighbor Loss Functions Optimization Backpropagation Multi-layer Perceptrons Neural Networks Activation Functions Data Augmentation | Transfer Learning Optimizers Convolutions PyTorch RNNs / Attention / Transformers Normalization Layers Architecture Design Video Understanding Vision and Language 3D Vision Object Detection and Segmentation | Style Transfer Generative Models Self-supervised Learning Image Generation Robotics and Embodied AI  Human-centered AI Fairness & Ethics |

# Image Classification

A Core Task in Computer Vision

#### Today:

- The image classification task
- Two basic data-driven approaches to image classification
  - K-nearest neighbor and linear classifier

### Image Classification: A core task in Computer Vision



This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}



### Challenges: Viewpoint variation









All pixels change when the camera moves!

This image by Nikita is licensed under CC-BY 2.0

### Challenges: Illumination









This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

This image is CC0 1.0 public domain

This image is CC0 1.0 public domain

### Challenges: Background Clutter





This image is CC0 1.0 public domain

This image is CCO 1.0 public domain

### Challenges: Occlusion







This image is CCO 1.0 public domain

This image is CC0 1.0 public domain

This image by jonsson is licensed under <u>CC-BY 2.0</u>

### Challenges: Deformation



This image by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>



<u>This image</u> by <u>Umberto Salvagnin</u> is licensed under <u>CC-BY 2.0</u>



This image by sare bear is licensed under CC-BY 2.0



This image by Tom Thai is licensed under CC-BY 2.0

### Challenges: Intraclass variation



This image is CC0 1.0 public domain

### Challenges: Context





 $Image\ source: https://www.linkedin.com/posts/ralph-aboujaoude-diaz-40838313\_technology-artificialintelligence-computervision-activity-6912446088364875776-h-Iq?utm\_source=linkedin\_share\&utm\_medium=member\_desktop\_web$ 

### Modern computer vision algorithms



This image is CC0 1.0 public domain

# An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

### Attempts have been made



John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

### Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set



# Nearest Neighbor Classifier

# First classifier: Nearest Neighbor

```
def train(images, labels):
                                             Memorize all data
  # Machine learning!
                                             and labels
  return model
def predict(model, test_images):
                                             Predict the label of
  # Use model to predict labels
                                            the most similar
  return test_labels
                                             training image
```

# First classifier: Nearest Neighbor



Training data with labels



query data

**Distance Metric** 





# Distance Metric to compare images

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

|    | test i | mage |     |
|----|--------|------|-----|
| 56 | 32     | 10   | 18  |
| 90 | 23     | 128  | 133 |
| 24 | 26     | 178  | 200 |
| 2  | 0      | 255  | 220 |

| 10 | 20 | 24  | 17  |  |
|----|----|-----|-----|--|
| 8  | 10 | 89  | 100 |  |
| 12 | 16 | 178 | 170 |  |
| 4  | 32 | 233 | 112 |  |

#### pixel-wise absolute value differences

| = | 46 | 12 | 14 | 1   |     |
|---|----|----|----|-----|-----|
|   | 82 | 13 | 39 | 33  | ado |
|   | 12 | 10 | 0  | 30  |     |
|   | 2  | 32 | 22 | 108 |     |
|   |    |    |    |     | ļ   |

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

### Nearest Neighbor classifier

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
  def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
  def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
     # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
     Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

### Nearest Neighbor classifier

Memorize training data

```
import numpy as np
class NearestNeighbor:
 def init (self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
```

```
Nearest Neighbor classifier
```

```
For each test image:
Find closest train image
Predict label of nearest image
```

```
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are fast at prediction; slow for training is ok

```
import numpy as np
class NearestNeighbor:
 def __init__(self):
    pass
 def train(self, X, y):
    """ X is N x D where each row is an example. Y is 1-dimension of size N """
   # the nearest neighbor classifier simply remembers all the training data
    self.Xtr = X
    self.ytr = y
 def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num test = X.shape[\theta]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
    # loop over all test rows
    for i in xrange(num test):
     # find the nearest training image to the i'th test image
      # using the L1 distance (sum of absolute value differences)
     distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
     min index = np.argmin(distances) # get the index with smallest distance
      Ypred[i] = self.ytr[min index] # predict the label of the nearest example
    return Ypred
```

#### Nearest Neighbor classifier

Many methods exist for fast / approximate nearest neighbor (beyond the scope of 231N!)

### A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

### What does this look like?



1-nearest neighbor

# K-Nearest Neighbors

Instead of copying label from nearest neighbor, take majority vote from K closest points



# K-Nearest Neighbors: Distance Metric

#### L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



### L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$



### K-Nearest Neighbors: Distance Metric - Example

**L1 Distance:** Measures distance by moving along grid lines (like walking in a city with square blocks).



**L2 Distance:** Measures the straight-line distance (as the crow flies).

$$d_2(I_1, I_2) = \sqrt{\sum_{p} (I_1^p - I_2^p)^2}$$

$$B(1/\sqrt{2}, 1/\sqrt{2})$$

$$A(1, 0)$$

$$Cart((0, 1)^2 + (0, 0)^2) = Cart(1^2) - 1$$

$$d_2(O,A) = \operatorname{sqrt}((0-1)^2 + (0-0)^2) = \operatorname{sqrt}(1^2) = 1$$

$$d_2(O,B) = \operatorname{sqrt}((0-1/\sqrt{2})^2 + (0-1/\sqrt{2})^2) = \operatorname{sqrt}(1/2+1/2) = \operatorname{sqrt}(1) = 1$$

 $d_2(O,A) = d_2(O,A) = 1$ 

# K-Nearest Neighbors: Distance Metric

#### L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



#### L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$



$$K = 1$$

# K-Nearest Neighbors: try it yourself!



http://vision.stanford.edu/teaching/cs231n-demos/knn/

# Hyperparameters

What is the best value of k to use? What is the best distance to use?

These are hyperparameters: choices about the algorithms themselves.

Very problem/dataset-dependent. Must try them all out and see what works best.

# **Setting Hyperparameters**

Idea #1: Choose hyperparameters that work best on the training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

train

test

Idea #1: Choose hyperparameters that work best on the training data

train

BAD: K = 1 always works perfectly on training data

train

BAD: No idea how algorithm will perform on new data

train

train

test

Never do this!

Idea #1: Choose hyperparameters that work best on the training data

BAD: K = 1 always works perfectly on training data

train

Idea #2: choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

train

test

Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

Better!

train

validation

test

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
|--------|--------|--------|--------|--------|
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 |

test

Useful for small datasets, but not used too frequently in deep learning

#### Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images



 $A lex\ Krizhevsky, "Learning\ Multiple\ Layers\ of\ Features\ from\ Tiny\ I\ mages",\ Technical\ Report,\ 2009.$ 

#### Example Dataset: CIFAR10

10 classes 50,000 training images 10,000 testing images



Test images and nearest neighbors



 $A lex\ Krizhevsky, "Learning\ Multiple\ Layers\ of\ Features\ from\ Tiny\ I\ mages",\ Technical\ Report,\ 2009.$ 



Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k ~= 7 works best for this data)

#### What does this look like?



#### What does this look like?



#### k-Nearest Neighbor with pixel distance never used.

- Distance metrics on pixels are not informative



(All three images on the right have the same pixel distances to the one on the left)

# K-Nearest Neighbors: Summary

In image classification we start with a training set of images and labels, and must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on the **K nearest training examples** 

#### **Distance metric and K are hyperparameters**

Choose hyperparameters using the validation set

Only run on the test set once at the very end!

# Linear Classifier

# Parametric Approach



# Parametric Approach: Linear Classifier



# Parametric Approach: Linear Classifier



#### Parametric Approach: Linear Classifier



#### Neural Network



This image is CCO 1.0 public domain



#### Recall CIFAR10



50,000 training images each image is 32x32x3

10,000 test images.

#### Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



# Example with an image with 4 pixels, and 3 classes (cat/dog/ship) Algebraic Viewpoint



# Interpreting a Linear Classifier





#### Interpreting a Linear Classifier: <u>Visual Viewpoint</u>



#### Interpreting a Linear Classifier: Geometric Viewpoint



$$f(x,W) = Wx + b$$



Array of 32x32x3 numbers (3072 numbers total)

<u>Catimage</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

#### Hard cases for a linear classifier

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else





#### Linear Classifier – Choose a good W







| -3.45 | -0.51                                                                | 3.42                                                                                               |  |
|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| -8.87 | 6.04                                                                 | 4.64<br>2.65<br>5.1<br>2.64<br>5.55                                                                |  |
| 0.09  | 5.31                                                                 |                                                                                                    |  |
| 2.9   | -4.22                                                                |                                                                                                    |  |
| 4.48  | -4.19                                                                |                                                                                                    |  |
| 8.02  | 3.58                                                                 |                                                                                                    |  |
| 3.78  | 4.49                                                                 | -4.34                                                                                              |  |
| 1.06  | -4.37                                                                | -1.5                                                                                               |  |
| -0.36 | -2.09                                                                | -4.79                                                                                              |  |
| -0.72 | -2.93                                                                | 6.14                                                                                               |  |
|       | -8.87<br>0.09<br><b>2.9</b><br>4.48<br>8.02<br>3.78<br>1.06<br>-0.36 | -8.87 <b>6.04</b> 0.09 5.31 <b>2.9</b> -4.22 4.48 -4.19 8.02 3.58 3.78 4.49 1.06 -4.37 -0.36 -2.09 |  |

- 1. Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Catimage by Nikita is licensed under CC-BY 2.0; Carimage is CCO 1.0 public domain; Frog image is in the public domain

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx

| -  | -  |     |    |    |
|----|----|-----|----|----|
| -  |    | 100 |    |    |
|    | -0 | C   | ~  |    |
| A  |    | 4   |    |    |
| 11 | 多  |     |    |    |
|    |    |     | 12 | ST |





1.3

2.0



frog

Lecture 2 - 66



our current classifier is



Suppose: 3 training examples, 3 classes.





cat







car













A loss function tells how good

With some W the scores

Suppose: 3 training examples, 3 classes.



f(x,W) = Wx



frog

Lecture 2 -68

2.2

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where  $x_i$  is image and  $y_i$  is (integer) label

Suppose: 3 training examples, 3 classes.

With some W the scores

cat

car

frog



f(x,W) = Wx



Where  $x_i$  is image and  $y_i$  is (integer) label 1.3 2.2

Loss over the dataset is a average of loss over examples: 
$$L = \frac{1}{N} \sum_i L_i(f(x_i, W), y_i)$$

A loss function tells how good

Given a dataset of examples

 $\{(x_i, y_i)\}_{i=1}^N$ 

our current classifier is

Softmax classifier



Want to interpret raw classifier scores as probabilities

cat 3.2

car

5.1

frog -1.7



Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

cat 3.2

car

5.1

frog -1.7

Softmax Function

Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

 $P(Y=k|X=x_i) =$ 

**Probabilities** must be  $\geq 0$ 

cat 
$$3.2$$
  $24.5$  car  $5.1$   $\xrightarrow{exp}$   $164.0$  frog  $-1.7$   $0.18$ 

unnormalized probabilities

Softmax **Function** 

















Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

car



Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat 3.2

car 5.1

frog -1.7

Q1: What is the min/max possible softmax loss L<sub>i</sub>?

Q2: At initialization all s<sub>j</sub> will be approximately equal; what is the softmax loss L<sub>i</sub>, assuming C classes?



Want to interpret raw classifier scores as probabilities

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax Function

Maximize probability of correct class

Putting it all together:

$$L_i = -\log P(Y = y_i | X = x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat 3.2

car 5.1

frog -1.7

Q2: At initialization all s will be approximately equal; what is the loss?

A:  $-\log(1/C) = \log(C)$ ,

If C = 10, then  $L_i = log(10) \approx 2.3$ 

# Coming up:

- Regularization
- Optimization



Reading Assignment – SVM Loss

With some W the scores f(x, W) = Wx







Multiclass SVM loss:

Given an example  $(x_i, y_i)$ where  $\,x_i\,$  s the image and where  $y_i$  s the (integer) label,

and using the shorthand for the scores vector:  $s = f(x_i, W)$ 

cat

3.2

1.3

2.2

2.5

 $L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1\\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$ 

$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

the SVM loss has the form:

5.1 car frog

-1.7

2.0

4.9

-3.1

With some W the scores f(x, W) = Wx

|   | 1 | 12 | a E | 3 |  |
|---|---|----|-----|---|--|
|   |   | 5  | 2   | 3 |  |
| 1 | 1 |    |     | 1 |  |
| 翻 | 遷 |    |     | 1 |  |





cat 3.2

1.3

2.2 2.5

5.1 car

2.0

4.9

-3.1

-1.7frog

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W) = Wx$$







2.2

2.5

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

-3.1

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx

$$f(x,W) = Wx$$







cat

frog

3.2

1.3

4.9

2.2 2.5

5.1 car

-1.72.0

-3.1

Interpreting Multiclass SVM loss:



$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Suppose: 3 training examples, 3 classes. With some W the scores f(x,W) = Wx







3.2 cat

1.3

2.2

5.1 car

frog

4.9

2.5

Lecture 2 -90

-1.7

-3.12.0

## Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

With some W the scores f(x, W) = Wx



3.2





Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $\,x_i\,$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

cat

car

5.1 -1.7

frog 2.9 Losses:

1.3

4.9

2.0

2.2

-3.1

2.5

= 2.9 + 0

the SVM loss has the form:

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $= \max(0, 5.1 - 3.2 + 1)$ 

 $+\max(0, -1.7 - 3.2 + 1)$  $= \max(0, 2.9) + \max(0, -3.9)$ 

= 2.9

With some W the scores f(x, W) = Wx







Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

cat

3.2

1.3

2.2

the SVM loss has the form:

5.1 car -1.7frog 2.9 Losses:

4.9 2.0 2.5

-3.1

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $= \max(0, 1.3 - 4.9 + 1)$  $+\max(0, 2.0 - 4.9 + 1)$ 

 $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0

= 0

With some W the scores f(x, W) = Wx







## Multiclass SVM loss:

 $(x_i,y_i)$ Given an example where  $\,x_i\,$  s the image and where  $y_i$ s the (integer) label,

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

cat

frog

Losses:

2.2

-3.1

the SVM loss has the form:

3.2 5.1 car

1.3 4.9

2.0

2.5

 $= \max(0, 2.2 - (-3.1) + 1)$ 

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

= 6.3 + 6.6

= 12.9

 $+\max(0, 2.5 - (-3.1) + 1)$  $= \max(0, 6.3) + \max(0, 6.6)$ 

Stanford CS231n 10<sup>th</sup> Anniversary

-1.7

2.9

Lecture 2 -93

April 3, 2025

3.2

5.1

-1.7

2.9

cat

car

frog

Losses:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx





vector: the SVM loss has the form:

```
2.5
                   Loss over full dataset is average:
                      L = \frac{1}{N} \sum_{i=1}^{N} L_i
-3.1
                 L = (2.9 + 0 + 12.9)/3
12.9
```

1.3 2.2 the SVM loss has the form: 
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
4.9 2.5 Loss over full dataset is average:  $L = \frac{1}{N} \sum_{i=1}^{N} L_i$ 
0 12.9 Legislation Le

Lecture 2 -94 April 3, 2025

Multiclass SVM loss:

where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Given an example  $(x_i, y_i)$ 

and using the shorthand for the scores

 $s = f(x_i, W)$ 

cat

car

frog

Losses:

Suppose: 3 training examples, 3 classes.

With some W the scores f(x, W) = Wx

1.3 4.9 2.0

Q3: At initialization W is small so all  $s \approx 0$ . What is the loss L<sub>i</sub>, assuming N examples and C classes?

Multiclass SVM loss:

Q1: What happens to loss if car

scores decrease by 0.5 for this

Q2: what is the min/max possible

training example?

Lecture 2 -95

SVM loss L<sub>i</sub>?

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

With some W the scores



f(x, W) = Wx



 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Multiclass SVM loss:

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

Suppose: 3 training examples, 3 classes.

3.2 cat

Losses:

1.3

2.2

5.1 car



-1.72.0 frog

2.9



-3.1

the SVM loss has the form:  $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

Q4: What if the sum was over all classes?

(including j = y\_i)

cat

car

frog

Losses:

With some W the scores



f(x, W) = Wx



2.5

12.9

5.1

1.3

2.2

-1.72.0 2.9

3.2

Suppose: 3 training examples, 3 classes.

4.9

-3.1

Q5: What if we used mean instead of sum?

 $(x_i,y_i)$ Given an example where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Multiclass SVM loss:

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

the SVM loss has the form:

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

Lecture 2 -97

With some W the scores f(x, W) = Wx





Lecture 2 -98

Given an example  $(x_i, y_i)$ where  $x_i$  s the image and where  $y_i$ s the (integer) label,

Multiclass SVM loss:

and using the shorthand for the scores  $s = f(x_i, W)$ vector:

3.2

5.1

-1.7

cat

car

frog

Losses:

1.3

4.9

2.2

the SVM loss has the form:

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

2.9

2.0

-3.112.9

2.5

With some W the scores f(x,W) = Wx







1.3

2.2

5.1 car

4.9

2.5

-1.7 frog

Losses:

2.0

-3.112.9



Q6: What if we used

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

2.9 Stanford CS231n 10<sup>th</sup> Anniversary

## Multiclass SVM Loss: Example code

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$



## Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_{i}e^{s_j}})$$
  $L_i = \sum_{j}$ 

$$L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$ 

assume scores:

[10, -2, 3]

[10, 9, 9]

Softmax vs. SVM

Q: What is the softmax loss and the SVM loss?

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$ 

 $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$ 

assume scores:

[20, -2, 3]

Softmax vs. SVM

[20, 9, 9][20, -100, -100]and

Q: What is the softmax loss and the SVM loss if I double the correct class score from 10 -> 20?

 $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$