Linear Algebra Standards

Module	E: How can we solve systems of linear equations?
□ □ E1.	Systems as matrices. I can translate back and forth between a system of linear equations and the corresponding augmented matrix.
\square \square E2.	Row reduction. I can put a matrix in reduced row echelon form.
□ □ E3.	Systems of linear equations. I can compute the solution set for a system of linear equations.
Module V: What is a vector space?	
□ □ V 1.	Vector property verification. I can show why an example satisfies a given vector space property, but does not satisfy another given property.
□ □ V2 .	Vector space identification. I can list the eight defining properties of a vector space, infer which of these properties a given example satisfies, and thus determine if the example is a vector space.
□ □ V 3.	Linear combinations. I can determine if a Euclidean vector can be written as a linear combination of a given set of Euclidean vectors.
\square \square V4.	Spanning sets. I can determine if a set of Euclidean vectors spans \mathbb{R}^n .
□ □ V 5.	Subspaces. I can determine if a subset of \mathbb{R}^n is a subspace or not.
Module S: What structure do vector spaces have?	
□ □ S1 .	Linear independence. I can determine if a set of Euclidean vectors is linearly dependent or independent.
$\square \square \mathbf{S2}.$	Basis verification. I can determine if a set of Euclidean vectors is a basis of \mathbb{R}^n .
□ □ S3.	Basis computation. I can compute a basis for the subspace spanned by a given set of Euclidean vectors.
	Dimension. I can compute the dimension of a subspace of \mathbb{R}^n .
	Abstract vector spaces. I can solve exercises related to standards V3-S4 when posed in terms of polynomials or matrices.
□ □ S6.	Basis of solution space. I can find a basis for the solution set of a homogeneous system of equations.
Module A: How can we understand linear maps algebraically?	
□ □ A1 .	Linear map verification. I can determine if a map between vector spaces of polynomials is linear or not.
□ □ A2.	Linear maps and matrices. I can translate back and forth between a linear transformation of Euclidean spaces and its standard matrix, and perform related computations.
□ □ A3.	Injectivity and surjectivity. I can determine if a given linear map is injective and/or surjective.
□ □ A4.	Kernel and Image. I can compute a basis for the kernel and a basis for the image of a linear map.
Module M: What algebraic structure do matrices have?	
□ □ M 1.	Matrix Multiplication. I can multiply matrices.
□ □ M2.	Invertible Matrices. I can determine if a square matrix is invertible or not.
□ □ M3 .	Matrix inverses. I can compute the inverse matrix of an invertible matrix.
Module G: How can we understand linear maps geometrically?	
□ □ G 1.	Row operations. I can represent a row operation as matrix multiplication, and compute how the operation affects the determinant.
□ G 2.	Determinants. I can compute the determinant of a square matrix.
	Eigenvalues. I can find the eigenvalues of a 2×2 matrix.
	Eigenvectors. I can find a basis for the eigenspace of a square matrix associated with a given eigenvalue.