BASIC TECHNIQUES FOR COMPUTER SIMULATIONS

ROOT FINDING METHODS

INTRODUCTION TO WPO SESSIONS

- Each WPO presentation contains an overview of the numerical techniques discussed during the theoretical sessions, with some useful advice on how to apply them using **Python**
- Our Python scripts will be developed and executed in Spyder
 (For installation instructions, visit: https://docs.spyder-ide.org/current/installation.html)
- The pdf file with the exercises, which can be downloaded from CANVAS, also includes details and instructions for the submission
- After the presentation, I will assign the homework, which must be submitted within 10 days from today. You will start in class and continue at home.

Contact: matteo.gravili@vub.be

ROOT-FINDING METHODS

$$f(x) = x^2 - 4 = 0$$

$$f(x) = e^x - 5\sin(x) = 0$$

1. BISECTION

A BRACKETING (CLOSED) METHOD

Choose $[x_l,x_u]$, so that $f(x_l)*f(x_u) < 0$

Approximation: $x_r = (x_l + x_u) / 2$

Depending on the sign of $f(x_r)$, x_r becomes either the new lower or new upper limit for the next iteration

New approximation: $x_r = (x_l + x_u) / 2$

HOW TO MAKE GOOD INITIAL GUESSES FOR X₁₁ AND X₁?

- In the bracketing methods, we initially want to choose x_l and x_u , so that $f(x_l)*f(x_u) < 0$
- We can always **plot the function** that we have to solve, to make sure that the initial range $[x_l,x_u]$ that we chose bounds a root
- Let's see a Python script which is able to plot any function

2. REGULA FALSI (FALSE POSITION)

ANOTHER BRACKETING (CLOSED) METHOD

Choose $[x_l, x_u]$, so that $f(x_l)*f(x_u) < 0$

Approximation:
$$x_r = x_u - \frac{f(x_u)(x_u - x_l)}{f(x_u) - f(x_l)}$$

Depending on the sign of $f(x_r)$, x_r becomes either the new lower or new upper limit for the next iteration

New approximation:
$$x_r = x_u - \frac{f(x_u)(x_u - x_l)}{f(x_u) - f(x_l)}$$

2. REGULA FALSI

PYTHON

Very similar to the bisection script

How to keep track of how many iterations N it takes for the method to converge?

3. NEWTON RAPHSON

AN OPEN METHOD

- One initial guess needed (x_n) , no interval
- Draw tangent line to the graph of f(x) at the point $x = x_n$
- Tangent line equation:

$$y = f'(x_n)(x - x_n) + f(x_n)$$

 The root of the tangent line gives us our new approximation:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

source: https://nl.wikipedia.org/wiki/Methode_van_Newton-Raphson

FLOW CHART 3. NEWTON RAPHSON PYTHON Start In def main() define function f to be solved and its derivative df Initial x_0 (n=0) call **def newton(...)** $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Is $f(x_{n+1}) \approx 0$? yes no Increase n by 1 Solution obtained End

4. SECANT

ANOTHER OPEN METHOD

- Similar to regula falsi method <u>but</u>:
 - 1. The two initial values (x_0, x_1) do not need to bound a root
 - 2. Keeps the two most recent root approximations
 - 3. No need to check the sign of the function

EXTRA STOPPING CRITERIA

- Critical to avoid infinite loops.
 Stop the code when:
 - **Maximum iterations** have been reached

GENERAL FLOW CHART FOR ROOT-FINDING METHODS

