Math 302 Fall 2011 Homework #9

Due Nov. 14, Mon. in class

Use the standard Euclidean metric on each Euclidean space below, unless otherwise specified.

- 1. Textbook, page 184, Section 4.2, 1.
- 2. Textbook, page 191, Section 4.4, 3.
- 3. Let $\|\cdot\|_2$ be the standard Euclidean norm on \mathbb{R}^n and $\|\cdot\|_{\alpha}$ be an arbitrary norm on \mathbb{R}^n . Recall that both $\|\cdot\|_2$ and $\|\cdot\|_{\alpha}$ are continuous on \mathbb{R}^n .
 - (1) Let $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : ||x||_2 = 1\}$. Show that \mathbb{S}^{n-1} is closed. (*Hint*: convert \mathbb{S}^{n-1} into the inverse image of a closed set in \mathbb{R} under $||\cdot||_2$.)
 - (2) Show that \mathbb{S}^{n-1} is compact.
 - (3) Show that there exist $x^* \in \mathbb{S}^{n-1}$ and $y^* \in \mathbb{S}^{n-1}$ such that

$$||x^*||_{\alpha} = \max_{x \in \mathbb{S}^{n-1}} ||x||_{\alpha}, \qquad ||y^*||_{\alpha} = \min_{x \in \mathbb{S}^{n-1}} ||x||_{\alpha}.$$

Further show that $||x^*||_{\alpha} > 0$ and $||y^*||_{\alpha} > 0$.

4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the projection function defined by

$$f(x,y) := x, \quad \forall (x,y) \in \mathbb{R}^2.$$

- (1) Show that f is continuous on \mathbb{R}^2 .
- (2) Let $A, B \subseteq \mathbb{R}$ be such that $A \times B \subseteq \mathbb{R}^2$ is connected. Show that A is connected.
- 5. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous on \mathbb{R}^n . Define the following function $g: \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^m$:

$$g(x) := (x, f(x)), \quad \forall \ x \in \mathbb{R}^n.$$

- (1) Show g is continuous on \mathbb{R}^n (*Hint*: think of sequential criterion).
- (2) For the function f given above, define the following set (called the graph of f)

$$\mathcal{S} := \{ (x, f(x)) : x \in \mathbb{R}^n \} \subseteq \mathbb{R}^n \times \mathbb{R}^m.$$

Show that S is connected.