

Lecture 5. Features and Fitting
Local invariant features

Juan Carlos Niebles and Jiajun Wu
CS131 Computer Vision: Foundations and Applications

CS 131 Roadmap

<u>Pixels</u>	Segments	Images	Videos	Web
Convolutions Edges Features	Resizing Segmentation Clustering	Recognition Detection Machine learning	Motion Tracking	Neural networks Convolutional neural networks

What will we learn today?

- Local invariant features
 - Motivation
 - General approach and requirements

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Image matching: a challenging problem

Template

Image matching: a challenging problem

by <u>Diva Sian</u>

by **swashford**

Harder Case

by <u>Diva Sian</u>

by <u>scgbt</u>

Harder Still?

NASA Mars Rover images

Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Motivation for using local features

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

Articulation

Intra-category variations

What will we learn today?

- Local invariant features
 - Motivation
 - General approach and requirements

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

General Approach

- Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

We need a repeatable detector!

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!

Feature Invariances: Geometric Transformations

Levels of Geometric Invariance

Feature Invariances: Photometric Transformations

- Often modeled as a linear transformation:
 - Scaling + Offset

Requirements for Local Features

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Many Existing Feature Detectors Available

• Hessian & Harris [Beaudet '78], [Harris '88]

• Laplacian, DoG [Lindeberg '98], [Lowe '99]

Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]

Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]

• EBR and IBR [Tuytelaars & Van Gool '04]

• MSER [Matas '02]

Salient Regions [Kadir & Brady '01]

• Others...

• Those detectors have become a basic building block for many applications in Computer Vision.

Summary

- Local invariant features
 - Motivation
 - General approach and requirements