# Primer análisis de física del quark top utilizando el ATLAS OPEN DATA a

 $\sqrt{s} = 13 \text{ TeV y } L_{\text{int}} = 3.2 \text{ fb}^{-1} \text{ (2015)}$ 

IFIC's Severo Ochoa Summer Student School: 9-20 July 2018

Álvaro Ruiz García <sup>1</sup> Carles Falcó i Gandia<sup>2</sup>

<sup>1</sup>Universidad de Valencia

<sup>2</sup>Universidad Autónoma de Barcelona

Tutor: Susana Cabrera, en coordinación con el grupo ATLAS-OUTREACH (Meirin Oan Evans y Arturos Sánchez Pineda)

23 de noviembre de 2018

#### Contenido

- Estudio de la producción de un sólo top (single-top) en el canal t
  - Estudio a nivel de generador
  - Estudio de reconstrucción de la masa
  - Estudio de selección de señal single-top canal t y rechazo de fondos.
- $oldsymbol{2}$  Estudio de la producción de un par top-antitop  $(tar{t})$ 
  - Estudio de reconstrucción de la masa y selección de señal
- Conclusiones

## Estudio a nivel de generador



Figura 1: Diagrama de Feynman proceso t-channel

$$p^{W} = p^{I} + p^{\nu}$$
  $p^{t} = p^{W} + p^{b} = p^{I} + p^{\nu} + p^{b}$ 

hist M topq

Mean 172.8 Std Dev 3.215

Entries 1053134



400

300

250

200

150

100

50







#### Estudio de reconstrucción de la masa.

#### Determinación del momento longitudinal del neutrino

The ATLAS collaboration, Aaboud, M., Aad, G. et al. J. High Energ. Phys. (2017) 2017: 17

$$(p^{W})^{2} = (p^{l} + p^{\nu})^{2}$$

$$(E_{T}^{miss})^{2} = (p_{T}^{\nu})^{2} + (p_{z}^{\nu})^{2} \qquad E^{\nu} = \sqrt{(E_{T}^{miss})^{2} + (p_{z}^{\nu})^{2}}$$

$$a(p_{z}^{\nu})^{2} + bp_{z}^{\nu} + c = 0 \longrightarrow \begin{cases} a = (E^{l})^{2} - (p_{z}^{l})^{2} \\ b = p_{z}^{l} \left( -m_{W}^{2} + m_{l}^{2} - 2(p_{x}^{l}p_{x}^{\nu} + p_{y}^{l}p_{y}^{\nu}) \right) \\ c = (E^{l})^{2} (E_{T}^{miss})^{2} - \frac{1}{4} \left( m_{W}^{2} - m_{l}^{2} + 2(p_{x}^{l}p_{x}^{\nu} + p_{y}^{l}p_{y}^{\nu}) \right)^{2} \end{cases}$$

$$\Delta = (E_{l})^{2} \left[ \left( m_{W}^{2} - m_{l}^{2} + 2(p_{x}^{l}p_{x}^{\nu} + p_{y}^{l}p_{y}^{\nu}) \right)^{2} + 4(E_{T}^{miss})^{2} \left( -(E^{l})^{2} + (p_{z}^{l})^{2} \right) \right]$$

•  $\Delta > 0 \ (\approx 70 \ \%) \longrightarrow \text{Solución con menor } p_z$ 

$$\bullet \ \Delta < 0 \ (\approx 30 \, \%) \longrightarrow \begin{cases} \circ \quad \Delta = 0 \\ \circ \quad \text{Se calcula } E_T^{\text{miss}} \ \text{tal que } \Delta = 0. \\ E_T^{\text{miss}} = E_T^{\text{miss}'} + \delta \ \text{tal que } \Delta > 0 \end{cases}$$



# Estudio de selección de señal single-top canal t y rechazo de fondos

#### Cortes previos (preselección):

- Trigger de leptones y criterios de calidad del evento
- 1 leptón cargado  $(e \circ \mu)$  y aislado
- $E_T^{\text{miss}} > 30 \text{ GeV y } M_T^W > 50 \text{ GeV (reducir QCD)}$
- 2 jets y 1 b-jet (mv2c10>0.7892)

#### Cortes de selección:

The ATLAS collaboration, Aaboud, M., Aad, G. et al. J. High Energ. Phys. (2017) 2017: 124

- Pseudorapidity del light jet  $|\eta| > 1.5$
- $|\eta_I \eta_b| > 1.5$
- $H_t = p_t^l + p_t^{\text{light jet}} + p_t^{\text{b-jet}} + E_T^{\text{miss}} > 195 \text{ GeV}$
- 150 GeV  $< M_{top} < 220$  GeV



$$\eta = -\ln\left[ an\left(rac{ heta}{2}
ight)
ight]$$







| $N_{ m evt}~(\sqrt{s}=13~{ m TeV},~L_{ m int}=3.2~{ m fb}^{-1})$ |                |                       |
|------------------------------------------------------------------|----------------|-----------------------|
| Proceso                                                          | Preselección   | Después de los cortes |
| t-channel $(S)$                                                  | $1147\pm13$    | $153\pm5$             |
| $t\bar{t}$                                                       | $1853 \pm 41$  | $64\pm7$              |
| W+ jets                                                          | $5034 \pm 230$ | $80\pm16$             |
| ZDiboson ( $Z$ +jets, $ZZ$ , $ZW$ , $WW$ )                       | $478 \pm 34$   | $4\pm4$               |
| stopWtchan (Wt,s-channel)                                        | $395 \pm 5$    | $13\pm1$              |
| Fondo total (B)                                                  | 7760           | 160                   |
| Datos reales                                                     | 11928          | 396                   |
| $\sigma = \frac{S}{\sqrt{S+B}}$                                  | 12.16          | 8.66                  |
| S/B                                                              | 0.15           | 0.96                  |



# Estudio de reconstrucción de la masa y selección de señal

#### Cortes previos (preselección):

- Procesos con al menos 4 jets: 2 procedentes de uno de los W y 2 b-jets
- Un leptón cargado (e o  $\mu$ ) y aislado. Procedente del W
- E<sub>T</sub><sup>miss</sup> > 30 GeV vinculada a los neutrinos



Buscamos 3 jets que maximicen  $(\sum_{i=1}^{3} p_i).Pt() \to M_{\text{top}}$ Entre los anteriores se buscan 2 jets que maximicen  $(\sum_{i=1}^{2} p_i).Pt() \to M_W$ Corte de selección:

• 70 GeV  $< M_{\rm rec}^W < 90$  GeV



#### Conclusiones

- Se ha contribuido a la validación y puesta a punto del nuevo ATLAS Open Data a  $\sqrt{s}=13$  TeV con análisis de física del top.
- Producción de un solo top en el canal t:
  - Análisis de generador.
  - Ejercicio de reconstrucción de la masa y determinación del  $p_z$  del neutrino.
  - Selección de una muestra enriquecida en señal basada en cortes secuenciales (cuantificación del cociente S/B i de  $\sigma$ ).
- Producción  $t\bar{t}$ :
  - Se ha realizado un análisis de la selección y un estudio de la reconstrucción de la masa.
- Se ha contribuido de las infraestructuras de análisis tanto en C++ como en Python del nuevo ATLAS Open Data.
- Desde el punto de vista de la física del top tanto las muestras simuladas como de datos reales y la infraestructura de análisis parecen adecuadas para estudiantes.

### Agradecimientos

- Agradacemos al IFIC la oportunidad de participar en esta escuela de verano, al grupo ATLAS por su acogida, a todos los tutores y especialmente a Susana Cabrera.
- Agradecemos al grupo de la colaboración ATLAS por permitirnos utilizar las muestras y la infraestructura de análisis del nuevo ATLAS Open Data a  $\sqrt{s}=13$  TeV.