

AMERICAN INTERNATIONAL UNIVERSITY – BANGLADESH (AIUB)

Faculty of Engineering

Department of Electrical and Electronic Engineering

Course/Lab Name: EEE4103 Microprocessor and Embedded Systems

Semester: Spring 2023-24 Term: Final Quiz: Lab Total Marks: 20 Time: 30 Minutes

Question Mapping with Course Outcomes:

Item	COs	POIs	K	P	A	Marks	Obtained Marks
Q1-5	CO5	P.a.4.C.3	K4			3+5+4+4+4	
					Total:	20	

Student Information:

Student Name:			Section:	В					
Student ID #:						Date:	24.04.2024	Department:	
						_ 33300			

- 1. Compute the pressure at the altitude of (20 + a + c + e) m of a city. The average sea-level atmospheric pressure [3] is 1pr.d kPa.
- 2. Determine the output of the following program. Assume that appropriate devices are connected to the ports, [5] switchpin is connected to the LOW signal. Compute the input analog voltage when the PWM value is 2pe.

```
int switchpin = r+2;
int in1 = p+5;
int in2 = q;
int ConA = 10;
int speed1;
void setup() {
pinMode(switchpin, INPUT);
pinMode(in1, OUTPUT);
pinMode(in2, OUTPUT);
pinMode(ConA, OUTPUT); }
void TurnMotorA1(){
digitalWrite(in1, LOW);
digitalWrite(in2, HIGH);
float analogvalue = analogRead(A0);
int PWMvalue = map(analogvalue, 0, 1023, 0, 255);
analogWrite(ConA, PWMvalue);
Serial.println("The motor is running in the clockwise direction.");
Serial.print("Digital Value = ");
Serial.print(PWMvalue);
float analogVoltage = (PWMvalue *5.00)/255.00;
Serial.print(" Analog Voltage = ");
Serial.println(analogVoltage); }
void TurnMotorA2(){
digitalWrite(in1, HIGH);
digitalWrite(in2, LOW);
float analogvalue = analogRead(A0);
int PWMvalue = map(analogvalue, 0, 1023, 0, 255);
```

```
analogWrite(ConA, PWMvalue);// To activate the DC motor
         Serial.println("The motor is running in the anticlockwise direction.");
         Serial.print("Digital Value = ");
         Serial.print(PWMvalue);
         float analogVoltage = (PWMvalue *5.00)/255.00;
         Serial.print(" Analog Voltage = ");
         Serial.println(analogVoltage); }
         void loop() {
         if (digitalRead(2) == LOW) {
         TurnMotorA1(); }
         else if (digitalRead(2) == HIGH) {
         TurnMotorA2(); }
3. As per the components given below, connect the circuit as per the following program.
  const int trigPin = 11;
```

[4]

```
const int echoPin = 10;
const int greenLED = r;
const int yellowLED = r+1;
const int redLED = r+2;
void setup() {
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
pinMode(greenLED, OUTPUT);
pinMode(yellowLED, OUTPUT);
pinMode(redLED, OUTPUT);
```


4. Determine the output of the following program at the terminal.

```
from machine import Pin
import time

led = Pin(p+r, Pin.OUT)
while True:
    led.on()
    time.sleep(d)
    led.off()
    time.sleep(a)
```

As per the pin configuration given below, connect the circuit as per the diagram for the above program:

Pin Diagram for Questions # 4 and 5

Components diagram for Question #4

5. Determine the output of the following program based on the circuit diagram given above and the program [4] given below.

```
from machine import Pin
import time

button1 = Pin(12, Pin.IN,
Pin.PULL_DOWN)
led1 = Pin(q, Pin.OUT)
button2 = Pin(q+1, Pin.IN,
Pin.PULL_DOWN)
led2 = Pin(q+2, Pin.OUT)

while True:
    if button1.value():
        led1.toggle()
        time.sleep(b)
    if button2.value():
        led2.toggle()
        time.sleep(c)
```


Circuit Diagram for Question # 5