Introducción Modelo ARCH(p) Modelo GARCH(p,q) Diagnóstico de modelos

Maestría en Estadística Aplicada

Técnicas de análisis de series de tiempo Modelos de volatilidad

Mg. Jesús Eduardo Gamboa Unsihuay

25 de junio de 2019

Estructura del capítulo IV

- 1. Introducción
- 2. Modelo ARCH(p)
- 3. Modelo GARCH(p,q)
- 4. Diagnóstico de modelos

Introducción

- Los modelos de regresión lineal, suavización exponencial y ARIMA asumen homocedasticidad de la varianza, es decir $V(Y_t) = \sigma_t^2$, $\forall t$
- Con frecuencia, las series financieras y ambientales de alta frecuencia no cumplen este supuesto
- La volatilidad se define como la varianza condicional (a valores pasados) de una serie y se utiliza como medida de riesgo.
- En las series financieras, se suele trabajar sobre la volatilidad de los retornos.

Características de la volatilidad

- Tiende a aglomerarse (agruparse por periodos)
- Tiende a regresar a la media
- Es asimétrica (propiedad de apalancamiento)

Retornos

Sea P_t el precio de un activo en el tiempo t. Se define:

• Retorno simple, discreto o arimético

$$R_t = \frac{P_t}{P_{t-1}} - 1$$

Log-retorno o retorno continuo

$$r_t = \log\left(\frac{P_t}{P_{t-1}}\right) = \log(P_t) - \log(P_{t-1})$$

La distribución probabiística de los retornos tiene colas pesadas y en general, exceso de curtosis.

Modelo ARCH(1)

Engle (1982) propone el primer modelo Autorregresivo condicional heterocedástico, con la varianza del tiempo t dependiendo de un ruido blanco del periodo anterior. Inicialmente, este modelo asume un proceso $\{Y_t\}$ estacionario de media cero. Así:

$$Y_t = \epsilon_t, \qquad \epsilon_t \sim N(0, \sigma_t^2)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2$$

corresponde a un modelo ARCH(1), con $\alpha_0 > 0$ y $0 \le \alpha_1 \le 1$. Peña (2017) demuestra que $\nu_t = \epsilon_t^2 - \sigma_t^2$ es un ruido blanco. De ahí que:

$$\epsilon_t^2 = \sigma_t^2 + \nu_t \rightarrow \epsilon_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \nu_t$$

establece una dependencia de tipo AR(1) entre los cuadrados de las observaciones.

Modelo ARCH(1)

Se puede permitir una media μ_t de tal modo que:

$$Y_t = \mu_t + \epsilon_t, \qquad \epsilon_t \sim N(0, \sigma_t^2) \to Y_t | \mu_t \sigma_t^2 \sim N(\mu_t, \sigma_t^2)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2$$

donde $\alpha_0 > 0$, $0 \le \alpha_1 \le 1$ y μ_t puede ser modelado con alguna de las técnicas vistas previamente en el curso.

Modelo ARCH(p)

Se tiene el siguiente caso más general:

$$Y_t = \mu_t + \epsilon_t, \qquad \epsilon_t \sim N\left(0, \sigma_t^2\right) \to Y_t | \mu_t \sigma_t^2 \sim N\left(\mu_t, \sigma_t^2\right)$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_j \epsilon_{t-j}^2$$

donde $\alpha_0 > 0$, $\sum_{j=1}^p \alpha_j < 1$ y μ_t puede ser modelado con alguna de las técnicas vistas previamente en el curso.

Modelo ARCH(p) Identificación

- La función de autocorrelación de los residuales luego de haber ajustado la media muestra buen comportamiento, pero no de los residuales al cuadrado.
- La función de autocorrelación de estos residuos al cuadrado se extingue mientras que la parcial se trunca en el p-ésimo desfase, sugiriendo el orden del modelo ARCH.
- En ocasiones, no pocos desfases pueden ser necesarios → modelo GARCH

Modelo GARCH(1,1)

El modelo GARCH(1,1) está dado por:

$$Y_t = \mu_t + \epsilon_t, \qquad \epsilon_t \sim N\left(0, \sigma_t^2\right) \to Y_t | \mu_t \sigma_t^2 \sim N\left(\mu_t, \sigma_t^2\right)$$
$$\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

donde $\alpha_0 \ge 0$, $\alpha_1 \ge 0$, $\beta_1 \ge 0$, $\alpha_1 + \beta_1 < 1$ y μ_t puede ser modelado con alguna de las técnicas vistas previamente en el curso.

Modelo GARCH(p,q)

El modelo GARCH(1,1) está dado por:

$$Y_t = \mu_t + \epsilon_t, \qquad \epsilon_t \sim N\left(0, \sigma_t^2\right) \to Y_t | \mu_t \sigma_t^2 \sim N\left(\mu_t, \sigma_t^2\right)$$
$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

donde $\alpha_0 \geq 0$, $\alpha_i \geq 0$, $\beta_j \geq 0$, $\sum_{i=1}^{\max(r,s)} \alpha_i + \beta_i < 1$ y μ_t puede ser modelado con alguna de las técnicas vistas previamente en el curso.

Diagnósticos

- Parámetros cuya contribución es significativa
- Los residuos estandarizados deben comportarse como ruido blanco
- Normalidad de errores
- Errores con media cero

Bibliografía

- Peña, D. Análisis de series temporales. Alianza Editorial, 2da edición. España, 2010.
- Bauwens, L; Hafner, C; Laurent, S. Handbook of volatility models and their applications.
 Wiley, Canada, 2012.