Bernd Schröder

Why are Bessel Functions Important?

Why are Bessel Functions Important?

Solving the Bessel Equation

1. Parametric Bessel equations

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

arise when the equations $\Delta u = k \frac{\partial u}{\partial t}$ and $\Delta u = k \frac{\partial^2 u}{\partial t^2}$ are solved with separation of variables in polar or cylindrical coordinates. The function y(r) describes the radial part of the solution.

Why are Bessel Functions Important?

1. Parametric Bessel equations

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

arise when the equations $\Delta u = k \frac{\partial u}{\partial t}$ and $\Delta u = k \frac{\partial^2 u}{\partial t^2}$ are solved with separation of variables in polar or cylindrical coordinates. The function y(r) describes the radial part of the solution.

2. Because 0 is a regular singular point of the equation, it is natural to attempt a solution using the method of Frobenius.

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2 x^2 - v^2)y = 0$$

 $x^2y'' + xy' + (\lambda^2 x^2 - v^2)y = 0$

Solving the Bessel Equation

 $x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$

Frobenius Solution for $x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$ $x^2y'' - y^2y'' = 0$

$$x^{2}\sum_{n=0}^{\infty}c_{n}(n+r)(n+r-1)x^{n+r-2}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2 x^2 - v^2)y = 0$$

 $x^2y'' + xy' + (\lambda^2 x^2 - v^2)y = 0$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2 x^2 - v^2)y = 0$$

 $x^2y'' + xy' + (\lambda^2 x^2 - v^2)y = 0$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

 $x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

Solving the Bessel Equation

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\frac{1}{n=0} = 0 \qquad \frac{1}{n=0}$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_{n} v^{n+r} + \sum_{n=0}^{\infty} (n+r)c_{n} v^{n+r} + \sum_{n=0}^{\infty} \lambda^{2} c_{n} v^{n+r+2} - \sum_{n=0}^{\infty} v^{2} c_{n} v^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r} - \sum_{k=0}^{\infty} v^2 c_k x^{k+r}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\frac{1}{n=0} = 0 \qquad \frac{1}{n=0}$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_{n}x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_{n}x^{n+r} + \sum_{n=0}^{\infty} \lambda^{2}c_{n}x^{n+r+2} - \sum_{n=0}^{\infty} v^{2}c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r} - \sum_{k=0}^{\infty} v^2 c_k x^{k+r} = 0$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$
$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r} - \sum_{k=0}^{\infty} v^2 c_k x^{k+r} = 0$$

$$\left(r(r-1)c_0 + rc_0 - v^2 c_0 \right) x^r$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

Solving the Bessel Equation

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r} - \sum_{k=0}^{\infty} v^2 c_k x^{k+r} = 0$$

$$\left(r(r-1)c_0 + rc_0 - v^2 c_0 \right) x^r + \left((r+1)rc_1 + (r+1)c_1 - v^2 c_1 \right) x^{r+1}$$

$$(r(r-1)c_0 + rc_0 - v^2c_0)x^r + ((r+1)rc_1 + (r+1)c_1 - v^2c_1)x^{r+1}$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} V^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{\infty} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r} - \sum_{k=0}^{\infty} v^2 c_k x^{k+r} = 0$$

$$(r(r-1)c_0 + rc_0 - v^2 c_0) x^r + ((r+1)rc_1 + (r+1)c_1 - v^2 c_1) x^{r+1}$$

$$(r-1)c_0 + rc_0 - v^2c_0 x' + ((r+1)rc_1 + (r+1)c_1 - v^2c_1)x'^{r+1}$$

$$+ \sum_{k=0}^{\infty} \left[(k+r)(k+r-1)c_k + (k+r)c_k + \lambda^2 c_{k-2} - v^2c_k \right] x^{k+r} = 0$$

Frobenius Solution for
$$x^2y'' + xy' + (\lambda^2x^2 - v^2)y = 0$$

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

$$x^{2} \sum_{n=0}^{\infty} c_{n}(n+r)(n+r-1)x^{n+r-2} + x \sum_{n=0}^{\infty} c_{n}(n+r)x^{n+r-1} + (\lambda^{2}x^{2} - v^{2}) \sum_{n=0}^{\infty} c_{n}x^{n+r} = 0$$

$$\sum_{n=0}^{\infty} (n+r)(n+r-1)c_n x^{n+r} + \sum_{n=0}^{\infty} (n+r)c_n x^{n+r} + \sum_{n=0}^{\infty} \lambda^2 c_n x^{n+r+2} - \sum_{n=0}^{\infty} v^2 c_n x^{n+r} = 0$$

$$\sum_{k=0}^{n=0} (k+r)(k+r-1)c_k x^{k+r} + \sum_{k=0}^{\infty} (k+r)c_k x^{k+r} + \sum_{k=2}^{\infty} \lambda^2 c_{k-2} x^{k+r} - \sum_{k=0}^{\infty} v^2 c_k x^{k+r} = 0$$

$$(r(r-1)c_0 + rc_0 - v^2 c_0) x^r + ((r+1)rc_1 + (r+1)c_1 - v^2 c_1) x^{r+1}$$

$$+\sum_{k=2} \left[(k+r)(k+r-1)c_k + (k+r)c_k + \lambda^2 c_{k-2} - v^2 c_k \right] x^{k+r} = 0$$

$$= v^r + ((v+1)^2 - v^2) - v^{r+1} + \sum_{k=2}^{\infty} \left[((k+r)^2 - v^2) - v^{r+1} \right] x^{k+r} = 0$$

$$(r^2 - v^2) c_0 x^r + ((r+1)^2 - v^2) c_1 x^{r+1} + \sum_{k=2}^{\infty} [((k+r)^2 - v^2) c_k + \lambda^2 c_{k-2}] x^{k+r} = 0$$

$$r^2 - v^2 = 0$$

$$r^2 - v^2 = 0$$
, $r_{1,2} = \pm v$

Solving the Bessel Equation

$$r^2 - v^2 = 0, \quad r_{1,2} = \pm v$$

For r = v we obtain

$$c_1 \left((v+1)^2 - v^2 \right) = 0$$

$$r^2 - v^2 = 0, \quad r_{1,2} = \pm v$$

For r = v we obtain

$$c_1((\nu+1)^2-\nu^2)=0, c_1=0$$

$$r^2 - v^2 = 0$$
, $r_{1,2} = \pm v$

For r = v we obtain

$$c_1((\nu+1)^2-\nu^2)=0, c_1=0$$

Recurrence relation for k > 2:

$$\left((k+\nu)^2 - \nu^2\right)c_k + \lambda^2 c_{k-2} = 0$$

$$r^2 - v^2 = 0$$
, $r_{1,2} = \pm v$

For r = v we obtain

$$c_1((\nu+1)^2-\nu^2)=0, c_1=0$$

Recurrence relation for k > 2:

$$((k+v)^{2}-v^{2})c_{k}+\lambda^{2}c_{k-2} = 0$$

$$c_{k} = -\frac{\lambda^{2}}{(k+v)^{2}-v^{2}}c_{k-2}$$

$$r^2 - v^2 = 0, \quad r_{1,2} = \pm v$$

For r = v we obtain

$$c_1((v+1)^2-v^2)=0, c_1=0$$

Recurrence relation for k > 2:

$$((k+v)^{2}-v^{2})c_{k}+\lambda^{2}c_{k-2} = 0$$

$$c_{k} = -\frac{\lambda^{2}}{(k+v)^{2}-v^{2}}c_{k-2} = -\frac{\lambda^{2}}{k(k+2v)}c_{k-2}$$

Even Numbered Terms

$$c_{2n} = -\frac{\lambda^2}{2n(2n+2\nu)}c_{2n-2}$$

Even Numbered Terms

$$c_{2n} = -\frac{\lambda^2}{2n(2n+2\nu)}c_{2n-2}$$
$$= -\frac{\lambda^2}{4n(n+\nu)}c_{2(n-1)}$$

Even Numbered Terms

$$c_{2n} = -\frac{\lambda^2}{2n(2n+2v)}c_{2n-2}$$
 Even Numbered Terms
 $= -\frac{\lambda^2}{4n(n+v)}c_{2(n-1)}$
 $= (-1)^2 \frac{(\lambda^2)^2}{4^2n(n-1)(n+v)(n-1+v)}c_{2(n-2)}$

$$c_{2n} = -\frac{\lambda^{2}}{2n(2n+2v)}c_{2n-2}$$
 Even Numbered Terms

$$= -\frac{\lambda^{2}}{4n(n+v)}c_{2(n-1)}$$

$$= (-1)^{2} \frac{(\lambda^{2})^{2}}{4^{2}n(n-1)(n+v)(n-1+v)}c_{2(n-2)}$$

$$= (-1)^{3} \frac{(\lambda^{2})^{3}}{4^{3}n(n-1)(n-2)(n+v)(n-1+v)(n-2+v)}c_{2(n-3)}$$

$$c_{2n} = -\frac{\lambda^{2}}{2n(2n+2v)}c_{2n-2}$$
 Even Numbered Terms
$$= -\frac{\lambda^{2}}{4n(n+v)}c_{2(n-1)}$$

$$= (-1)^{2} \frac{(\lambda^{2})^{2}}{4^{2}n(n-1)(n+v)(n-1+v)}c_{2(n-2)}$$

$$= (-1)^{3} \frac{(\lambda^{2})^{3}}{4^{3}n(n-1)(n-2)(n+v)(n-1+v)(n-2+v)}c_{2(n-3)}$$

$$\vdots$$

$$= (-1)^{n} \frac{(\lambda^{2})^{n}}{4^{n}n(n-1)\cdots 2\cdot 1\cdot (n+v)(n-1+v)\cdots (2+v)(1+v)}c_{0}$$

$$c_{2n} = -\frac{\lambda^{2}}{2n(2n+2v)}c_{2n-2}$$
 Even Numbered Terms
$$= -\frac{\lambda^{2}}{4n(n+v)}c_{2(n-1)}$$

$$= (-1)^{2} \frac{(\lambda^{2})^{2}}{4^{2}n(n-1)(n+v)(n-1+v)}c_{2(n-2)}$$

$$= (-1)^{3} \frac{(\lambda^{2})^{3}}{4^{3}n(n-1)(n-2)(n+v)(n-1+v)(n-2+v)}c_{2(n-3)}$$

$$\vdots$$

$$= (-1)^{n} \frac{(\lambda^{2})^{n}}{4^{n}n(n-1)\cdots 2\cdot 1\cdot (n+v)(n-1+v)\cdots (2+v)(1+v)}c_{0}$$

$$= (-1)^{n} \frac{\Gamma(v+1)(\lambda^{2})^{n}}{4^{n}n!\Gamma(n+v+1)}c_{0}$$

$$y_1(x) = \sum_{n=0}^{\infty} c_{2n} x^{2n+\nu}$$

$$y_1(x) = \sum_{n=0}^{\infty} c_{2n} x^{2n+\nu}$$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{\Gamma(\nu+1) (\lambda^2)^n}{4^n n! \Gamma(n+\nu+1)} x^{2n+\nu}$$

$$y_{1}(x) = \sum_{n=0}^{\infty} c_{2n} x^{2n+\nu}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{\Gamma(\nu+1) (\lambda^{2})^{n}}{4^{n} n! \Gamma(n+\nu+1)} x^{2n+\nu} \frac{\lambda^{\nu}}{2^{\nu} \Gamma(\nu+1)}$$

$$y_{1}(x) = \sum_{n=0}^{\infty} c_{2n} x^{2n+\nu}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{\Gamma(\nu+1) (\lambda^{2})^{n}}{4^{n} n! \Gamma(n+\nu+1)} x^{2n+\nu} \frac{\lambda^{\nu}}{2^{\nu} \Gamma(\nu+1)}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{\lambda^{2n+\nu}}{2^{2n+\nu} n! \Gamma(n+\nu+1)} x^{2n+\nu}$$

$$y_{1}(x) = \sum_{n=0}^{\infty} c_{2n} x^{2n+\nu}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{\Gamma(\nu+1) \left(\lambda^{2}\right)^{n}}{4^{n} n! \Gamma(n+\nu+1)} x^{2n+\nu} \frac{\lambda^{\nu}}{2^{\nu} \Gamma(\nu+1)}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{\lambda^{2n+\nu}}{2^{2n+\nu} n! \Gamma(n+\nu+1)} x^{2n+\nu}$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n! \Gamma(n+\nu+1)} \left(\lambda \frac{x}{2}\right)^{2n+\nu}$$

$$J_{\nu}(x) = \sum_{n=0}^{\infty} (-1)^n \frac{1}{n!\Gamma(n+\nu+1)} \left(\frac{x}{2}\right)^{2n+\nu}$$

$$J_{\nu}(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n!\Gamma(n+\nu+1)} \left(\frac{x}{2}\right)^{2n+\nu}$$

$$J_{-\nu}(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n!\Gamma(n-\nu+1)} \left(\frac{x}{2}\right)^{2n-\nu}.$$

$$J_{\nu}(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n!\Gamma(n+\nu+1)} \left(\frac{x}{2}\right)^{2n+\nu}$$

$$J_{-\nu}(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{1}{n!\Gamma(n-\nu+1)} \left(\frac{x}{2}\right)^{2n-\nu}.$$

Both series are guaranteed to converge at least on $(0, \infty)$.

For $\lambda > 0$ and $\nu > 0$ such that ν is not an integer, the general solution of the parametric Bessel equation

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

is

$$y(x) = c_1 J_{\nu}(\lambda x) + c_2 J_{-\nu}(\lambda x).$$

For $\lambda > 0$ and $\nu > 0$ such that ν is not an integer, the general solution of the parametric Bessel equation

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

is

$$y(x) = c_1 J_{\nu}(\lambda x) + c_2 J_{-\nu}(\lambda x).$$

Of course, we are most interested in the solutions when v is an integer.

Bessel Functions of the Second Kind

Bessel Functions of the Second Kind

For v not an integer we define

$$Y_{\nu}(x) := \frac{\cos(\nu \pi) J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu \pi)}.$$

For v = m an integer we define

$$Y_m(x) := \lim_{v \to m} Y_v(x).$$

The functions Y_{ν} are called the **Bessel functions of the second kind.**

For ν not an integer we define

$$Y_{\nu}(x) := \frac{\cos(\nu \pi) J_{\nu}(x) - J_{-\nu}(x)}{\sin(\nu \pi)}.$$

For v = m an integer we define

$$Y_m(x) := \lim_{v \to m} Y_v(x).$$

The functions Y_v are called the **Bessel functions of the second** kind. For $\lambda > 0$ and any v > 0 the general solution of the parametric Bessel equation

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0$$

is

$$y(x) = c_1 J_V(\lambda x) + c_2 Y_V(\lambda x).$$

Solving the Bessel Equation

1. The shape of a vibrating drum membrane can be modeled with the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k \frac{\partial^2 u}{\partial t^2}$ and the condition that *u* is zero on the boundary.

Solving the Bessel Equation

- 1. The shape of a vibrating drum membrane can be modeled with the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k \frac{\partial^2 u}{\partial t^2}$ and the condition that u is zero on the boundary.
- 2. *u* is the displacement from equilibrium of the particle at (x, y) at time t.

- 1. The shape of a vibrating drum membrane can be modeled with the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k \frac{\partial^2 u}{\partial t^2}$ and the condition that *u* is zero on the boundary.
- 2. u is the displacement from equilibrium of the particle at (x,y) at time t.
- 3. The derivation is similar to that of the equation of an oscillating string. (Challenging exercise.)

Solving the Bessel Equation

- 1. The shape of a vibrating drum membrane can be modeled with the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = k \frac{\partial^2 u}{\partial t^2}$ and the condition that *u* is zero on the boundary.
- 2. u is the displacement from equilibrium of the particle at (x, y) at time t.
- 3. The derivation is similar to that of the equation of an oscillating string. (Challenging exercise.)
- 4. For a round membrane, we solve the equation with separation of variables in polar coordinates, which leads to the Bessel equation and Bessel functions.

Bessel Functions

Vibrating Drum Membranes (Outline)

Application

Solving the Bessel Equation

