

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

electronic devices are not permitted You may use one sheet of notes.	Name:		
 Textbooks, calculators and any other electronic devices are not permitted You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. For full credit solve each problem fully, showing all relevant work. S S S S S S S S S S S S S S S S S S S	John Ste	one	
electronic devices are not permitted You may use one sheet of notes. • For full credit solve each problem fully, showing all relevant work. • For full credit solve each problem fully, showing all relevant work. • For full credit solve each problem fully, showing all relevant work.	UB Person N	Number:	Instructions:
1 2 3 4 5 6 7 TOTAL GRADE	1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4	1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4 6 6 6 6 6 6 6 6 6 6 6	 For full credit solve each problem fully, showing all relevant work. 3 4 5 6 7 8
	1 2	3 4	5 6 7 TOTAL GRADE

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2 \\
2 & -3 & 0 & 4
\end{bmatrix}$$
(1)
$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2 \\
0 & -1 & -2 & 6 + 4
\end{bmatrix}$$
(1)
$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2 \\
0 & -1 & -2 & 6 + 4
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & | & -1 & | \\ 0 & 1 & 2 & | & 2 & | \\ 0 & 0 & 0 & | & b+6 \end{bmatrix} \qquad 0 = b+6 \qquad b=-6$$

b) Yes. Not every column in the matrix is a pivet column.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

A.
$$+ B. + C. = 1$$

A. $+ B. + C. = 1$

A. $+ C. = 1$

A. $+$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

$$\begin{array}{lll}
\text{A)} & \left[\sqrt{1}(e_1) & T(e_2) \right] & T(e_1) & T(\left[\frac{1}{0} \right]) & = \left[\frac{1}{1} + \frac{0}{0} \right] & = \left[\frac{1}{1} \right] \\
\text{Standard} & = \left[\frac{1}{1} - \frac{1}{3} \right] & T(e_1) & T(\left[\frac{0}{1} \right]) & = \left[\frac{0}{1} - \frac{2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Madix} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Madix} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{1}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{-2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{-2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modify} & = \left[\frac{1}{1} - \frac{2}{3} \right] \\
\text{Modif$$

(1)
$$X_1 \cdot 2x_2 = 1$$
 $\begin{bmatrix} 1 & -2 & 1 \\ 1 & 1 & 10 \\ 1 & -3 & -2 \end{bmatrix}$
 $X_1 + X_2 = 10$ $\begin{bmatrix} 1 & 1 & 10 \\ 1 & -3 & -2 \end{bmatrix}$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(v) = Av$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 23 & 4 & 4 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 23 & 4 & 2 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 0 & 1 & 2 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \Big)_{\{(-7)\}}^{\{(-7)\}} \Big)_$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

Since W + U is in the span of U, V,

b) If u,v,w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

To be a linearly dependent set, for X,0 + X2V - X3U = 0

X1, X2, X3 = 0 most be the carry

S-rotion. I

(F {U, V} was a linearly dependent set, {U, V, w} wind also

be linearly dependent, since X3W and ist set X3 = 0.

Therefore, since {U, V, w} is linearly independent, {U, V} MUST be, too.

- **7. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

Fulse.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

Faisc