Zephyr[™]Project

Developer Summit
June 8-10, 2021 • @ZephyrloT

Conduct FMEA in the safety analysis of Zephyr

ENJIA MAI, INTEL

Outline

- What is FMEA?
- Why we apply the FMEA in zephyr project?
- How we do the SW FMEA?
- Show examples of SW FMEA.
- Conclusion
- Q & A

What is FMEA

- FMEA stands for Failure Mode and Effect Analysis
 - Failure modes
 - Effects analysis

- Definitions
 - FMEA is a step-by-step approach for identifying all possible failures in a design, a manufacturing or assembly process, or a product or service.
 - The latest official documents: AIAG / VDA FMEA handbook (2019)

What is FMEA

FMEA characteristics

- Identify potential failure modes in a system
- Estimate the Risk of the potential failure
- The result of analysis will be documented
- An FMEA is often a qualitative analysis
- Often as the first step of a system reliability study

FMEA variations

- PFMEA (process)
- DFMEA (design). SW FMEA is one kind of it.

Why we apply the FMEA in zephyr project

- The reason of conducting SW FMEA
 - Function safety certification (IEC-61508)
 - Quality of the zephyr project

- The advantage applying the SW FMEA
 - Check the design and documents
 - Find out the potential failure mode and prevention
 - Better adapting to develop safety-critical product

How we do the SW FMEA

- The generic method of implementing SW FMEA:
 - Take the interface between HW/SW or SW/SW module as the analysis object.
 - Enumerate the failure mode of the interface, analyze the impact of the failure mode on the software module or software requirements, especially the functional safety-related parts influences.
 - After clarifying the cause of the failure, control measures are applied to the cause of the failure.

- The target working products of SW FMEA
 - SW FMEA report
 - Countermeasures apply to code base
 - Update on requirement documents

SW FMEA flow for single item

7

Example of applying SW FMEA

- Failure mode and effect analysis on the semaphore component
 - Step 1 & 2: SW architecture Walk through and identify SW component

SW architecture

SW Architecture Specification

Step 1 & 2

SW Architecture spec and components analysis

https://docs.zephyrproject.org/latest/reference/kernel/synchronization/semaphores.html

Concepts

Any number of semaphores can be defined (limited only by available RAM). Each semaphore is referenced by its memory address.

A semaphore has the following key properties:

- A count that indicates the number of times the semaphore can be taken. A count of zero indicates that the semaphore is unavailable.
- A limit that indicates the maximum value the semaphore's count can reach.

A semaphore must be initialized before it can be used. Its count must be set to a non-negative value that is less than or equal to its limit.

A semaphore may be given by a thread or an ISR. Giving the semaphore increments its count, unless the count is already equal to the limit.

A semaphore may be taken by a thread. Taking the semaphore decrements its count, unless the semaphore is unavailable (i.e. at zero). When a semaphore is unavailable a thread may choose to wait for it to be given. Any number of threads may wait on an unavailable semaphore simultaneously. When the semaphore is given, it is taken by the highest priority thread that has waited longest.

Note

The kernel does allow an ISR to take a semaphore, however the ISR must not attempt to wait if the semaphore is unavailable.

Implementation

Defining a Semaphore

Step 3 & 4

- Step3: Descript SW subcomponent functionalities
 - Refer to the SAS then descript the functionalities.
 - Functional description
 - The kernel does allow an ISR to take a semaphore, however the ISR must not attempt to wait if the semaphore is unavailable. Refer to function k_sem_take()
- Step 4: Select applicable systematic SW failure mode
 - Base on single functionality, to analyze the potential failure mode of this functionality. Then
 decide its failure mode.
 - Failure mode:
 - Delay interrupt request
 - Take the semaphore in interrupt cannot wait for too long, or even do a scheduling

Step 5: Effect analysis

Effect analysis

 Analyze what the effects will happen, include the dependency components, while this failure mode happens.

Effect of failure:

Wrong Data

Cause of failure:

Incorrect usage

Control detection:

Add an assert to check when it is in ISR, we cannot give waiting time as a parameter.

Step 6: Effect Rate

- Effect Rate
 - RPN (Risk Priority Number) show the probability of potential risk.
 - RPN = Severity x Occurrence x Detectability
 = 7 x 5 x 3 = 105

Detectability: how easily they can be detected

Value	Description	Definition									
1	AlmostCertain	Design control will detect potential cause/mechanism and subsequent failure mode									
2	VeryHigh	Very high chance the design control will detect potential cause/mechanism and subsequent failure mode									
3	High	High chance the design control will detect potential cause/mechanism and subsequent failure mode									
4	ModeratelyHigh	Moderately High chance the design control will detect potential cause/mechanism and subsequent failure mode									
5	Moderate	Moderate chance the design control will detect potential cause/mechanism and subsequent failure mode									
6	Low	Low chance the design control will detect potential cause/mechanism and subsequent failure mode									
7	VeryLow	Very low chance the design control will detect potential cause/mechanism and subsequent failure mode									
8	Remote	Remote chance the design control will detect potential cause/mechanism and subsequent failure mode									
9	VeryRemote	Very remote chance the design control will detect potential cause/mechanism and subsequent failure mode									
10	AbsoluteUncertainty	Design control cannot detect potential cause/mechanism and subsequent failure mode									

Severity: how serious their consequences

Value	Description	Definition										
1	None	No effect										
2	Very Minor	unction operable with minimal interference										
3	Minor	nction operable with some degradation of performance										
4	Very Low	Function operable with significant degradation of performance										
5	Low	Function inoperable without damage										
6	Moderate	Function inoperable with minor damage										
7	High	Function inoperable with equipment damage										
8	Very High	Function inoperable with destructive failure without compromising safety										
9	Critical	Very high severity ranking when a potential failure mode affects function operation with warning										
10	Catastrophic	Very high severity ranking when a potential failure mode affects fuction operation without warning										

Occurrence: how frequently they occur

Value	Description	Definition									
1	Very Improbable	So unlikely, it can be assumed occurrence may not be experienced									
2	Improbable	So unlikely, it can be assumed occurrence may not be experienced (fortified)									
3	Very Remote	Unlikely but possible to occur in the usage of the SW									
4	Remote Unlikely but possible to occur in the usage of the SW (fortified)										
5	Occasional	Likely to occur some time in the usage of the SW									
6	Moderate Occasional	Likely to occur some time in the usage of the SW (fortified)									
6 7	Moderate Occasional Probable	Likely to occur some time in the usage of the SW (fortified) Will occur several times in the usage of the SW									
-											
7	Probable	Will occur several times in the usage of the SW									
7	Probable Very Probable	Will occur several times in the usage of the SW Will occur several times in the usage of the SW (fortified)									

Step 7: Countermeasure identification

- Countermeasure identification
 - Design the countermeasure which could solve or mitigate the risk.
 - Control prevention:
 - Taking semaphore operation cannot wait in ISR
 - Countermeasure:
 - Add an __ASSERT to catch the incorrect usage of taking semaphore.

(Taking semaphore in interrupt context with a delay)

```
z_impl_k_sem_take(struct k_sem *sem, k_timeout t timeout)
        int ret = 0;
        __ASSERT(((arch_is_in_isr() == false) ||
                  K TIMEOUT EQ(timeout, K NO WAIT)), "");
        k_spinlock_key_t key = k_spin_lock(&lock);
        sys trace semaphore take(sem);
        if (likely(sem->count > 0U)) {
                sem->count--;
                k spin unlock(&lock, key);
                ret = 0:
                qoto out;
        if (K TIMEOUT EQ(timeout, K NO WAIT)) {
                k_spin_unlock(&lock, key);
                ret = -EBUSY;
                goto out;
        ret = z pend curr(&lock, key, &sem->wait q, timeout);
out:
        sys trace end call(SYS TRACE ID SEMA TAKE);
        return ret;
```

Step 8 : Post mitigation failure rate

- Post mitigation failure rate
 - Rate the RPN again after applying the mitigation(countermeasures)
 - RPN = Severity x Occurrence x Detectability
 = 7 x 5 x 1 = 35

The Risk Priority Number should be lower than acceptable value

	RPN threshold									
Maturity	SIL 1	SIL 2		SIL 3						
	ASIL A	ASIL B	ASIL C	ASIL D						
New / immature	200	150	100	80						
sw	150	100	80	60						

Example SW FMEA worksheet

																Developer 5d	
Analysis																	
ld	SW Unit/ SubUnit	Function ality	Funct. D	escr. Fail Mo		FM Description	Effect of Failure	Severity	Causes of Failure	Control Prevention	Occurrence	Control Detection	Detectability	RPN	Recommended Actions	Responsibility / Action Owner	Target Completion Date
SW FMEA79	Semahpore	Kernel	The ker does allo ISR to ta semaph however ISR mus attemp wait if to semapho unavaila Mappin function k_sem_t	ow an ake a nore, or the st not interest to interest the requere is able. g to on	yed rupt est f	Take the semphore in interrupt cannot wait for too long, or even do a scheduling.	Wrong Data	7 : High	Other interrupt would be delayed or missing.	Make taking semaphore operation cannot wait in ISR	5 : Occasional	Add an assert to check when it is in ISR, we cannot give waitig time as a parameter.	3 : High	105	Add an assert to detect and check.	Andy Ross	Mar/20/2020
	After mitigation																
Actions Taken	Effective S Date	everity - O Post	ccurrence l Post	Detectability Post	- RPN Pos		Maturity Level Rationale	Comment	Uuld	Analysis process							
Add an assert to detect and check, once it	Mar/20/20 20	7 : High	5 : Occasional	1 : AlmostCertai	35	5 Propose	Use a assert to detect it and trigger an exception means system	commit 7832738ae 985a63febb 8f82e7c4e3	4e6c-			Mitig	gate proc	ess			

4824f48486 1f2397954

1ef}

will be

halted. Is

there any alternative

exception

Conclusion

- Conducting FMEA is also aim to:
 - Figure out some existing safety mechanisms
 - Figure out existing countermeasures in current code base
 - Address some potential failure mode

- Let's work together to make zephyr project better
 - The impacts and challenges

Thank you for your listening!

Q&A

Zephyr[™]Project

Developer Summit
June 8-10, 2021 • @ZephyrloT