CLAIMS

- 1. A method of treating patients who have diseases characterized bone loss comprising the step of administering to said patient an amount of a TRANCE/RANK inhibitor effective to inhibit osteoclastogenesis and/or osteoclast function.
- 5 2. The method of claim 1 wherein said TRANCE/RANK inhibitor is a compound having the Formula I wherein:

 R_1 and R_2 are, independently, selected from the group consisting of -H, -OCH₃, -CH₂CH₃, -t-butyl, 3-carboxy-4-chlorophenylamino, -N-(CH₂CH₂OH)₂, and -O(O)C-Ph;

- R₃ is selected from the group consisting of -H, ethyl, -OCH₃, -Cl, Br, F, 3-carboxy-4-chlorophenylamino, -N-(CH₂CH₂OH)₂, -t-butyl, and -OC(O)-Ph, and is not limited to attachment at any certain position on the phenyl ring to which it is attached; and R₄ is selected from the group consisting of -Br,-Cl, and -F.
- 3. The method of claim 2 wherein R₃ is attached at either the 1 or 4 position of the phenyl ring.
 - 4. The method of claim 1 wherein

20

 R_1 , R_2 , and R_3 are -OCH₃, R_3 is attached at the 4 position, R_4 is -Cl; R_1 and R_2 are methyl, R_3 is ethyl, attached at the 4 position, R_4 is -Cl R_1 and R_2 are -OCH₃, R_3 is -Cl, attached at the 2 position, R_4 is -Cl; R_1 and R_2 are -OCH₃ and R_3 is H, R_4 is -Cl;

R. is H. R. and R. are 3-carboxy-4-chlorophenylar

 R_1 is H, R_2 and R_3 are 3-carboxy-4-chlorophenylamino, and R_3 is attached at the 4 position, R_4 is -Cl;

 R_1 and R_2 are $-N(CH_2CH_2OH)_2$, R_3 is Cl, attached at the 4 position, R_4 is -Cl;

25 R_1 , R_2 , and R_3 are t-butyl, R_3 is attached at the 4 position, R_4 is -Cl; R_1 is -OCH₃, R_2 and R_3 are H, R_4 is Cl; or R_1 , R_2 , and R_3 are benzoate, R_3 is attached at the 4 position, R_4 is -Br.

,

- 5. The method of claim 1 wherein said TRANCE/RANK inhibitor is selected from the group consisting I-A, I-B, I-C, I-D, I-E, I-F, I-G, I-H and I-I.
- 6. The method of claim 1 wherein said TRANCE/RANK inhibitor is a compound having the Formula II wherein:
- R_1 is selected from the group consisting of -diphenylchloro methyl, -di(4-chlorophenyl)chloro methyl, and 4-(diphenylchloromethyl)phenyl; and R_2 , R_3 , R_4 are independently selected from the group consisting of -Br, -Cl, and -F.
 - 7. The method of claim 6 wherein R_2 , R_3 , R_4 are each -Cl.
- 10 8. The method of claim 1 wherein the TRANCE/RANK inhibitor is selected from the group consisting compounds II-A, II-B, II-C and II-D.
 - 9. The method of claim 1 wherein said inhibitor is a compound having Formula III wherein:

 $R_1 = \text{(NO}_2\text{), O(CO)CH}_3, \text{OH, O(CO)CH}_3, \text{O(CO)(CH}_2\text{)}_2\text{COOH, O(CO)CH}_2\text{Br},$ $15 \quad \text{O(CO)CH}_2\text{Cl, O(CO)CH}_2\text{N(CH}_3\text{)}_3, \text{ or OC}_5\text{H}_9\text{O};$

 $R_2 = CH_2O(NO_2), CHO, CH_2O(NO_2), CN, CH_3, COOH, CHNOH, \\ CH_2O(CO)(CH_2)_2COOH, CHN(NH)CONH_2, CHN(NH)C_6H_5, CHN(CH_2)C_6H_5, \\ CH_2N(CH_2)_2OH, CH_2NC_6H_5, or CH_2N(NH)CSNH_2;$

 $R_3 = OH$, or H;

:

 $R_4 = CH_3;$

 $R_s = OH;$

 $R_6 = C_4H_3O_2, N(NHCO)C_6H_4Cl, N(NHCO)C_6H_4F, COOH, O, COCH_3, \\ CH(CH_3)(CH_2)_2COOH, CH(CH_3)(CH_2)_2COOCH_3, O(CO)C_6H_5, or OH; \\$

 $R_7 = O(CO)CH_2N(CH_3)_3$, or $O(CO)CH_3$;

 $R_8 = OH;$

 $R_0 = O$, or OH; and

 $R_{10} = O.$

- 10. The method of claim 1 wherein the inhibitor is selected from the group consisting compounds III-1 to III-31.
- 11. The method of claim 1 wherein said inhibitor is a compound having Formula IV wherein:
- 5 $R_1 = O(CO)(CH_2)_2COOH$, or $O(CO)CH_2Br$; and $R_2 = O(CO)(CH_2)_2COOH$, or $O(CO)CH_2Br$.
 - 12. The method of claim 1 wherein the inhibitor is selected from the group consisting compounds IV-1 and IV-2.
- 13. The method of claim 1 wherein said inhibitor is a compound having Formula V10 wherein:

 $R_1 = O$, OH, or $O(CO)CH_3$;

 $R_2 = O(CO)CH_3$, OH, $CO(CH_3)$, or $CO(CH_2)O(CO)CH_3$;

 $R_3 = CH_3$, or OH; and

 $R_4 = O(CO)CH_2C_6H_4I$, or CH_3 .

- 15 14. The method of claim 1 wherein the inhibitor is selected from the group consisting compounds V-1 and V-5
 - 15. The method of claim 1 wherein said inhibitor is a compound having Formula VI wherein:

 $R_1 = O(CO)CH_3$, OH, or $O(CO)(CH_2)_2COOH$;

 $R_2 = CH_{3:}$

 $R_3 = O$, or OH;

 $R_4 = CH_3$;

$$\begin{split} R_5 = & C_9 H_{13} COCH_3, \ C_9 H_{13} (CH_2 CH_3) (CH_2 OH), \ C_9 H_{13} (CH_2 CH_3) (CH_2 OCOCH_3), \\ C_9 H_{13} (CH_2 CH_3) (CH_2 OCO(CH_2)_2 COOH), \ C_9 H_{13} (CH_2 CH_3) (COOH), \ or \end{split}$$

25 $C_8H_7O(CH_3)(C_4H_9OCH_3);$

$$R_6 = CH_3$$

$$R_7 = O$$
, or H;
 $R_8 = CH_3$;
 $R_9 = (CH_3)_2$;and
 $R_{10} = Br$.

. . . .

- 5 16. The method of claim 1 wherein the inhibitor is selected from the group consisting compounds VI-1 and VI-11.
 - 17. The method of claim 1 wherein the inhibitor is selected from the group consisting compounds VII, VIII IX, X, XI and XII.
 - 18. The method of claim 1 wherein the inhibitor is a peptide having the formula:

 $10 R_1 - R_2 - R_3 - R_4 - R_5$

wherein:

R₁ is 1-5 amino acid residues;

R₂ is a linking amino acid residue;

R₃ is selected from the group consisting of: DRGWA (SEQ ID NO:1);

- DGDLAT (SEQ ID NO:2); SDFATE (SEQ ID NO:3); VTKTSIKIPSSH (SEQ ID NO:4);
 TKTSIKIPSSH (SEQ ID NO:5); KTSIKIPSSH (SEQ ID NO:6); YWSNSEF (SEQ ID NO:7); YWNSE (SEQ ID NO:8); PDQDAP (SEQ ID NO:9); PDSWH (SEQ ID NO:10);
 SKEL (SEQ ID NO:11); EIEF (SEQ ID NO:12); SRSGHS (SEQ ID NO:13);
 RFQEEIKENTKNDKQ (SEQ ID NO:14); TSYPD (SEQ ID NO:15); KENTK (SEQ ID
- 20 NO:16); and conservatively substituted derivatives thereof;

R₄ is a linking amino acid residue;

R₅ is 1-5 amino acid residues; and

wherein R_2 and R_4 are bound to each other, thereby forming a cyclic portion which includes R_2 , R_3 and R_4 with R_1 and R_5 forming exocyclic portions, and one or both of R_1

25 and R₅ comprising at least one tyrosine or phenylalanine.

- 19. The method of claim 1 wherein the inhibitor is selected form the group consisting of SEQ ID NOs:20-34.
- 20. The method of claim 19 wherein the inhibitor is selected from the group consisting of: SEQ ID NOs:20-30 with amidated C termini

5 [H]-YC DRGWA CY-[NH2]

[H]-YC DGDLAT CY-[NH2]

[H]-YC SDFATE CY-[NH2]

[H]-YC VTKTSIKIPSSH CY-[NH2]

[H]-YC KTSIKIPSSH CY-[NH2]

10 [H]-YC YWSNSEF CY-[NH2]

[H]-C YWNSE CY-[NH2]

[H]-YC PDQDAP CY-[NH2]

[H]-YC PDSWH CYDE-[NH2]

[H]-YC SKEL CYVKQE-[NH2]

15 [H]-YC EIEF CYKHR-[NH2]

and SEQ ID NO:S 31-34

TR-LSS YC SRSGHS CY

TR-LRQ YC RFQEEIKENTKNDKQ CY

TR-LTI YC TSYPD CI

- 20 TR-LED RYQEEC KENTK CDKQ.
 - 21. A method of modulating dendritic cell maturation, T cell proliferation, and/or CD40 receptor systems in an individual comprising the step of administering to said individual an amount of a TRANCE/RANK inhibitor effective to modulating dendritic cell maturation, T cell proliferation, and/or CD40 receptor systems.
- 25 22. The method of claim 21 wherein said TRANCE/RANK inhibitor is a compound having the Formula I wherein:

 R_1 and R_2 are, independently, selected from the group consisting of -H, -OCH₃, -CH₂CH₃, -t-butyl, 3-carboxy-4-chlorophenylamino, -N-(CH₂CH₂OH)₂, and -O(O)C-Ph;

 R_3 is selected from the group consisting of -H, ethyl, -OCH₃, -Cl, Br, F, 3-carboxy-4-chlorophenylamino, -N-(CH₂CH₂OH)₂, -t-butyl, and -OC(O)-Ph, and is not limited to attachment at any certain position on the phenyl ring to which it is attached; and R_4 is selected from the group consisting of -Br,-Cl, and -F.

- 5 23. The method of claim 21 wherein R₃ is attached at either the 1 or 4 position of the phenyl ring.
 - 24. The method of claim 21 wherein

 R_1 , R_2 , and R_3 are -OCH₃, R_3 is attached at the 4 position, R_4 is -Cl;

R₁ and R₂ are methyl, R₃ is ethyl, attached at the 4 position, R₄ is -Cl

R₁ and R₂ are -OCH₃, R₃ is -Cl, attached at the 2 position, R₄ is -Cl;

R₁ and R₂ are -OCH₃ and R₃ is H, R₄ is -Cl;

 R_1 is H, R_2 and R_3 are 3-carboxy-4-chlorophenylamino, and R_3 is attached at the 4 position, R_4 is -Cl;

R₁ and R₂ are -N(CH₂CH₂OH)₂, R₃ is Cl, attached at the 4 position, R₄ is -

15 Cl;

10

 R_1 , R_2 , and R_3 are *t*-butyl, R_3 is attached at the 4 position, R_4 is -Cl;

R₁ is -OCH₃, R₂ and R₃ are H, R₄ is Cl; or

 R_1 , R_2 , and R_3 are benzoate, R_3 is attached at the 4 position, R_4 is -Br.

- 20 25. The method of claim 21 wherein said TRANCE/RANK inhibitor is selected from the group consisting I-A, I-B, I-C, I-D, I-E, I-F, I-G, I-H and I-I.
 - 26. The method of claim 21 wherein said TRANCE/RANK inhibitor is a compound having the Formula II wherein:

R₁ is selected from the group consisting of -diphenylchloro methyl, -di(4-

25 chlorophenyl)chloro methyl, and 4-(diphenylchloromethyl)phenyl; and

 R_2 , R_3 , R_4 are independently selected from the group consisting of -Br, -Cl, and -F.

- 27. The method of claim 26 wherein R_2 , R_3 , R_4 are each -Cl.
- 28. The method of claim 21 wherein the TRANCE/RANK inhibitor is selected from the group consisting compounds II-A, II-B, II-C and II-D.
- 29. The method of claim 21 wherein said inhibitor is a compound having Formula III wherein:

 $R_1 = (NO_2), O(CO)CH_3, OH, O(CO)CH_3, O(CO)(CH_2)_2COOH, O(CO)CH_2Br, \\ O(CO)CH_2Cl, O(CO)CH_2N(CH_3)_3, or OC_5H_9O;$

 R_2 = $CH_2O(NO_2)$, CHO, $CH_2O(NO_2)$, CN, CH_3 , COOH, CHNOH, $CH_2O(CO)(CH_2)_2COOH$, $CHN(NH)CONH_2$, $CHN(NH)C_6H_5$, $CHN(CH_2)C_6H_5$,

10 CH₂N(CH₂)₂OH, CH₂NC₆H₅, or CH₂N(NH)CSNH₂;

 $R_3 = OH$, or H;

 $R_4 = CH_3$;

 $R_5 = OH;$

 $R_6 = C_4H_3O_2$, $N(NHCO)C_6H_4Cl$, $N(NHCO)C_6H_4F$, COOH, O, $COCH_3$,

15 $CH(CH_3)(CH_2)_2COOH$, $CH(CH_3)(CH_2)_2COOCH_3$, $O(CO)C_6H_5$, or OH;

 $R_7 = O(CO)CH_2N(CH_3)_3$, or $O(CO)CH_3$;

 $R_8 = OH;$

 $R_9 = O$, or OH; and

 $R_{10} = O.$

- 20 30. The method of claim 21 wherein the inhibitor is selected from the group consisting compounds III-1 to III-31.
 - 31. The method of claim 21 wherein said inhibitor is a compound having Formula IV wherein:

 $R_1 = O(CO)(CH_2)_2COOH$, or $O(CO)CH_2Br$; and

25 $R_2 = O(CO)(CH_2)_2COOH$, or $O(CO)CH_2Br$.

- 32. The method of claim 21 wherein the inhibitor is selected from the group consisting compounds IV-1 and IV-2.
- 33. The method of claim 21 wherein said inhibitor is a compound having Formula V wherein:

```
R_1 = O, OH, or O(CO)CH_3; R_2 = O(CO)CH_3, OH, CO(CH_3), or CO(CH_2)O(CO)CH_3; R_3 = CH_3, or OH; and R_4 = O(CO)CH_2C_6H_4I, or CH_3.
```

- 34. The method of claim 21 wherein the inhibitor is selected from the group consisting compounds V-1 and V-5
 - 35. The method of claim 21 wherein said inhibitor is a compound having Formula VI wherein:

```
R_{1} = O(CO)CH_{3}, OH, or O(CO)(CH_{2})_{2}COOH; R_{2} = CH_{3}; R_{3} = O, or OH; R_{4} = CH_{3}; R_{5} = C_{9}H_{13}COCH_{3}, C_{9}H_{13}(CH_{2}CH_{3})(CH_{2}OH), C_{9}H_{13}(CH_{2}CH_{3})(CH_{2}OCOCH_{3}), C_{9}H_{13}(CH_{2}CH_{3})(CH_{2}OCO(CH_{2})_{2}COOH), C_{9}H_{13}(CH_{2}CH_{3})(COOH), or C_{8}H_{7}O(CH_{3})(C_{4}H_{9}OCH_{3});
```

20
$$R_6 = CH_3$$
;
 $R_7 = O$, or H;
 $R_8 = CH_3$;
 $R_9 = (CH_3)_2$;and
 $R_{10} = Br$.

25 36. The method of claim 21 wherein the inhibitor is selected from the group consisting compounds VI-1 and VI-11.

- 37. The method of claim 21 wherein the inhibitor is selected from the group consisting compounds VII, VIII IX, X, XI and XII.
- 38. The method of claim 21 wherein the inhibitor is a peptide having the formula:

$$R_1 - R_2 - R_3 - R_4 - R_5$$

5 wherein:

15

R₁ is 1-5 amino acid residues;

R₂ is a linking amino acid residue;

DGDLAT (SEQ ID NO:2); SDFATE (SEQ ID NO:3); VTKTSIKIPSSH (SEQ ID NO:4);

10 TKTSIKIPSSH (SEQ ID NO:5); KTSIKIPSSH (SEQ ID NO:6); YWSNSEF (SEQ ID NO:7); YWNSE (SEQ ID NO:8); PDQDAP (SEQ ID NO:9); PDSWH (SEQ ID NO:10); SKEL (SEQ ID NO:11); EIEF (SEQ ID NO:12); SRSGHS (SEQ ID NO:13); RFQEEIKENTKNDKQ (SEQ ID NO:14); TSYPD (SEQ ID NO:15); KENTK (SEQ ID

R₃ is selected from the group consisting of: DRGWA (SEQ ID NO:1);

NO:16); and conservatively substituted derivatives thereof;

R₄ is a linking amino acid residue;

R₅ is 1-5 amino acid residues; and

wherein R_2 and R_4 are bound to each other, thereby forming a cyclic portion which includes R_2 , R_3 and R_4 with R_1 and R_5 forming exocyclic portions, and one or both of R_1 and R_5 comprising at least one tyrosine or phenylalanine.

- 20 39. The method of claim 21 wherein the inhibitor is selected form the group consisting of SEQ ID NOs:20-34.
 - 40. The method of claim 39 wherein the inhibitor is selected from the group consisting of: SEQ ID NOs:20-30 with amidated C termini

[H]-YC DRGWA CY-[NH2]

25 [H]-YC DGDLAT CY-[NH2]

[H]-YC SDFATE CY-[NH2]

[H]-YC VTKTSIKIPSSH CY-[NH2]

[H]-YC KTSIKIPSSH CY-[NH2]

UPN-3831

[H]-YC YWSNSEF CY-[NH2]

[H]-C YWNSE CY-[NH2]

[H]-YC PDQDAP CY-[NH2]

[H]-YC PDSWH CYDE-[NH2]

5 [H]-YC SKEL CYVKQE-[NH2]

[H]-YC EIEF CYKHR-[NH2]

and SEQ ID NO:S 31-34

TR-LSS YC SRSGHS CY

TR-LRQ YC RFQEEIKENTKNDKQ CY

10 TR-LTI YC TSYPD CI

TR-LED RYQEEC KENTK CDKQ.

41. A peptide having the formula:

$$R_1 - R_2 - R_3 - R_4 - R_5$$

wherein:

20

 R_1 is 1-5 amino acid residues;

R₂ is a linking amino acid residue;

R₃ is selected from the group consisting of: DRGWA (SEQ ID NO:1);
DGDLAT (SEQ ID NO:2); SDFATE (SEQ ID NO:3); VTKTSIKIPSSH (SEQ ID NO:4);
TKTSIKIPSSH (SEQ ID NO:5); KTSIKIPSSH (SEQ ID NO:6); YWSNSEF (SEQ ID NO:7); YWNSE (SEQ ID NO:8); PDQDAP (SEQ ID NO:9); PDSWH (SEQ ID NO:10);
SKEL (SEQ ID NO:11); EIEF (SEQ ID NO:12); SRSGHS (SEQ ID NO:13);
RFQEEIKENTKNDKQ (SEQ ID NO:14); TSYPD (SEQ ID NO:15); KENTK (SEQ ID NO:16); and conservatively substituted derivatives thereof;

R₄ is a linking amino acid residue;

 R_5 is 1-5 amino acid residues; and

wherein R_2 and R_4 are bound to each other, thereby forming a cyclic portion which includes R_2 , R_3 and R_4 with R_1 and R_5 forming exocyclic portions, and one or both of R_1 and R_5 comprising at least one tyrosine or phenylalanine.

- 42. The peptide of claim 41 wherein selected form the group consisting of SEQ ID NOs:20-34.
- 43. The peptide of claim 42 selected from the group consisting of: SEQ ID NOs:20-30 with amidated C termini

5 [H]-YC DRGWA CY-[NH2]

[H]-YC DGDLAT CY-[NH2]

[H]-YC SDFATE CY-[NH2]

[H]-YC VTKTSIKIPSSH CY-[NH2]

[H]-YC KTSIKIPSSH CY-[NH2]

10 [H]-YC YWSNSEF CY-[NH2]

[H]-C YWNSE CY-[NH2]

[H]-YC PDQDAP CY-[NH2]

[H]-YC PDSWH CYDE-[NH2]

[H]-YC SKEL CYVKQE-[NH2]

15 [H]-YC EIEF CYKHR-[NH2]

and SEQ ID NO:S 31-34

TR-LSS YC SRSGHS CY

TR-LRQ YC RFQEEIKENTKNDKQ CY

TR-LTI YC TSYPD CI

TR-LED RYQEEC KENTK CDKQ.