

RNA-Seq data analysis

Bioinformatics Group

2 May 2017

Materials and Software

- Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml).
- Samtools (http://samtools.sourceforge.net).
- Tophat2 (http://ccb.jhu.edu/software/tophat/index.shtml).
- STAR (https://github.com/alexdobin/STAR).
- Cufflinks (http://cole-trapnell-lab.github.io/cufflinks/).
- Rstudio (https://www.rstudio.com).
- CummeRbund package.
- DESeq2 package.

5/2/17

Benefits & Challenges

Benefits:

- Independence on prior knowledge
- High resolution, sensitivity and large dynamic range

Challenge:

- Interpretation is not straightforward
- Procedures continue to evolve

From reads to differential expression

مدينة الملك عبدالعزيز للعلوم والتقنية KACST

FASTQ file

مدينة الملك عبدالعزيز للعلوم، والتقنية KACST

Line1: Sequence identifier

Line2: Raw sequence Line3: meaningless

Line4: quality values for the sequence

```
@HWI-ST508:210:C0EDTACXX:1:1101:1872:1227 1:N:0:
AATTGTGAAAACCCAAAAGGTGGAGCAGCCATTNTTATACATTGCAGAAGGGNGANNNANCNTTATGAAATTTAGCACCTGCCTTCCTGAATGATAAATGG
@CCFFEFFHHHHHJJJJIJJCGHEIIIJJJJJ#1BFHIJJJJJJIJJIJJIJ+-;###-#-#-5?BFFFFEEEEEECCDDDDDDDDDDCCDDDDDDCCEED
@HWI-ST508:210:C0EDTACXX:1:1101:1895:1233 1:N:0:
TGACATAAGCTTGCATTTGAAAAGCACCTCCGAAAGCTTCCCAGCCTCAAAGNCANNATCGNCTTCTGATGCAGTTAGGCACCACAAGAGCTTCCCCACAA
@HWI-ST508:210:C0EDTACXX:1:1101:1761:1235 1:N:0:
GCTCTACTAAAAATATAAAAATTGGCCAGGCGCAGTGACACATGCCTGTAGTCCCNGCTATTCGGGAGGCTGACACAAGAATCAATCACTTGAACCCAG
CCCFFFFFHGHHHJJJJJJJJJJJJJJJJJIEIIIJFHGIIIIJJJJJJHIJJIJ#-;FGGIJIJHHFFDDEEDDCCDDDDCCDDDDDDDDDDDDDDDD
@HWI-ST508:210:C0EDTACXX:1:1101:1971:1236 1:N:0:
CAGGATGAAAGAGGTCTGGCCAGGTGCTGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCGAGGTGGGCCGATCACGAAGTCAGGAGTT
cccfffffhghhgjhijiijjjji3cfgijj9dfhjdehgijijjjjjiijjjggijjjjjjfijhffffddb/?bb@bc39?cd@b8+:@cdcb##
@HWI-ST508:210:C0EDTACXX:1:1101:1830:1239 1:N:0:
@HWI-ST508:210:C0EDTACXX:1:1101:1999:1240 1:N:0:
000DDA2?FHBHHEGEHIHGIGGHBFCGIEHGAEGGIIEGIIIIGHIGEHEGHIGIGBFHEHIEAHGHHFHEH;00DEBDCDEEBCDDCCCCC00CCCDCC
@HWI-ST508:210:COEDTACXX:1:1101:1806:1245 1:N:0:
```

Sequencing QC

Information we need to check

- Basic information(total reads, sequence length, etc.)
- Per base sequence quality
- Overrepresented sequences
- GC content
- Duplication level
- Etc.

FastQC

مدينة الملك عبدالعزيز للعلوم والتقنية KACST

http://www.bioinformatics.babraham.ac.uk/pr

Per base sequence quality

Duplication level

Overview of RNA-Seq

Transcriptome profiling using NGS

Before and After Normalization

للعلوم والتقنية KACST

Principal component analysis (PCA) Plots

5/2/17

Principal component analysis (PCA) Plots

MP-Plot

5/2/17