Appendix A Used notation

We list the notation used throughout the paper

V: vocabulary of words

 \mathcal{V} : vocabulary of groups

w, v: a word

 F_w : relative frequency of a word w

 γ_i, γ_j : a group

 $\mathbb{V} \times \Gamma$: set of all possible pairs (w, γ_i)

 c_{γ_i} : relative frequency of a group γ_i

 γ : an assignment (grouping)

 $H(\gamma)$: unigram entropy of a grouping γ

 $G\left(c_{\gamma_{i}'}\right)$: partial enropy of a group γ_{i}

C: number of groups

 $[1,\ldots,C]$ - natural numbers from 1 to C

 \mathbb{N} - natural numbers

Appendix B Omitted proofs

Definition 1 (Matroid). Let Ω be a finite set (universe) and $\mathcal{I} \subseteq 2^{\Omega}$ be a set family (independent sets). A pair $\mathcal{M} = (\Omega, \mathcal{I})$ is called a matroid if

- 1. $\emptyset \in \mathcal{I}$
- 2. If $Q \in \mathcal{I}$ and $R \subseteq Q$ then $R \in \mathcal{I}$
- 3. For any $Q, R \in I$ with |R| < |Q| there exists $\{x\} \in Q \setminus R$ such that $R \cup \{x\} \in \mathcal{I}$.

Let us denote a family of all grouping sets of $\mathbb{V} \times \mathcal{V}$ as \mathcal{G} .

Proof of Lemma 1. We have to show that $(\mathbb{V} \times \mathcal{V}, \mathcal{G})$ satisfies three condition from the Definition 1.

- 1. An empty grouping is a grouping.
- 2. Consider an arbitrary $Q \in \mathcal{G}$ and $R \subset Q$. Since Q defines a grouping, for any $(w, \gamma_i) \in Q$ we have $(w\gamma_j) \notin Q$ for all $\gamma_j \neq \gamma_i$. Therefore, for all $(w, \gamma_i) \in R$ we have $(w\gamma_j) \notin R$ given $\gamma_j \neq \gamma_i$ and thus R defines a grouping as well.
- 3. Consider two arbitrary $R,Q\in\mathcal{G}$ with |R|<|Q|. Let us denote $\{w\in\mathbb{V}:(w,\gamma_i)\in Q \text{ for some } \gamma_i\}$ as $\pi(Q)$. We claim that $|Q|=|\pi(Q)|$. Otherwise, there must exist w such that $(w,\gamma_i),(w,\gamma_j)\in Q$ and $\gamma_i\neq\gamma_j$. However, this is forbidden for a set which defines a grouping. Analogously, $|R|=|\pi(R)|$. Since both R,Q are finite, we have $0<|Q\setminus R|=|\pi(Q)|-|\pi(R)|=|\pi(Q)\setminus\pi(R)|$. Consider

an arbitrary $w' \in \pi(Q) \setminus \pi(R)$ and its group $\gamma_{i'}$ in Q; we have $(w', \gamma_{i'}) \in Q \setminus R$. Moreover, since w' is ungrouped by R, we conclude that $R \cup \{(w', \gamma_{i'})\} \in \mathcal{G}$ and finish the proof.

Definition 2 (Submodular function). *A function* $f: 2^{\Omega} \to \mathbb{R}$, where Ω is finite, is submodular if for any $X \subseteq Y \subseteq \Omega$ and any $x \in \Omega \setminus Y$ we have

$$f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y).$$

For any non-negative real x and fixed a > 0, we denote $-(x + a) \log_2(x + a) + x \log x$ as $L_a(x)$.

Proof of Lemma 2. First, we show that $H(Q) \geq 0$ for all $Q \subseteq \mathbb{V} \times \mathcal{V}$. By definition, we have $H(\emptyset) = 0$. Consider an arbitrary non-empty $Q \subseteq \mathbb{V} \times \mathcal{V}$. For any $\gamma_i \in \mathcal{V}$ we have

$$0 \le c_{\gamma_i} = \sum_{\substack{w \in \mathbb{V}: \\ (w, \gamma_i) \in Q}} F_w \le \sum_{w \in \mathbb{V}} F_w = 1.$$

Therefore, $-c_{\gamma_i} \log c_{\gamma_i} \geq 0$ and

$$\sum_{i=1}^{C} L\left(c_{\gamma_i}\right) \ge 0.$$

Now we establish submodularity. Consider an arbitrary $Q \subseteq \mathbb{V} \times \mathcal{V}$, $R \subset Q$ and any $(w', \gamma_{i'}) \notin Q$. Let $Q' := Q \cup \{(w', \gamma_{i'})\}$, $R' := R \cup \{(w', \gamma_{i'})\}$. We need to show that

$$H(R') - H(R) \ge H(Q') - H(Q).$$
 (4)

Let us denote the frequency of the unigram γ_j in Q, Q' as $c_{\gamma_j}(Q)$, $c_{\gamma_j}(Q')$. Since Q and Q' differ only in the group $\gamma_{i'}$ we have

$$H(Q') - H(Q) = -c_{\gamma_{i'}}(Q') \log c_{\gamma_{i'}}(Q) + c_{\gamma_{i'}}(Q) \log c_{\gamma_{i'}}(Q)$$
(5

Similarly, (5) holds for H(R') - H(R). Thus, to proof (4) it is enough to show

$$-c_{\gamma_{i'}}(R')\log c_{\gamma_{i'}}(R') + c_{\gamma_{i'}}(R)\log c_{\gamma_{i'}}(R) \ge -c_{\gamma_{i'}}(Q')\log c_{\gamma_{i'}}(Q') + c_{\gamma_{i'}}(Q)\log c_{\gamma_{i'}}(Q)$$

We have $c_{\gamma_i'}(Q') = c_{\gamma_i'}(Q) + F_{w'}$; therefore, (5) can be rewritten as $L_{F_{w'}}(c_{\gamma_{i'}}(Q))$. Similarly, $c_{\gamma_i'}(R') = c_{\gamma_i'}(R) + F_{w'}$ hence we need to establish

$$L_{F_{n,l}}(c_{\gamma_{i,l}}(R)) \ge L_{F_{n,l}}(c_{\gamma_{i,l}}Q).$$
 (6)

For any $(w,i') \in R$ we have $(w,i') \in Q$; thus $c_{\gamma_{i'}}(R) < c_{\gamma_{i'}}(Q)$, and (6) follows from the fact that $L_{F_{w'}}(x)$ is monotone decreasing for all nonnegative real x.

Proof of Theorem 1. By the result (Lee et al., 2009), the Algorithm 5 outputs the map γ' such that

$$\frac{1}{4+4\varepsilon}H(\gamma^*) \le H(\gamma'). \tag{7}$$

where γ^* is the grouping which achieves largest value of H. We need to show that the approximation guarantee still holds if $\gamma'(w)$ is undefined for some w.

After Step 8, the groupings γ' and γ differ only for the group i_0 ; thus,

$$H(\gamma) - H(\gamma') = L(c_{\gamma_{i_0}}) - L(c_{\gamma'_{i_0}}).$$

Assume that $H(\gamma) - H(\gamma') < 0$. First, there must exist $j \in \mathcal{V}$ such that

$$L\left(c_{\gamma_{j_0}'}\right) \le \frac{1}{C}H\left(\gamma'\right)$$

and thus for the group i_0 we have

$$L\left(c_{\gamma_{i_0}'}\right) \le \frac{1}{C}H\left(\gamma'\right) \tag{8}$$

From (8) and $L(x) \ge 0$ we obtain

$$L\left(c_{\gamma_{i_0}}\right) - L\left(c_{\gamma'_{i_0}}\right) \ge -L\left(c_{\gamma'_{i_0}}\right) \ge -\frac{1}{C}H\left(\gamma'\right)$$

hence

866

867

868

869

871

873

879

884

892

894

895

$$H(\gamma) \ge \frac{C-1}{C} H(\gamma') \ge \frac{C-1}{4C+4\varepsilon C} H(\gamma^*).$$

For a single matroid constrain, the algorithm from (Lee et al., 2009) runs in time $(|\Omega|)^{O(1)}$ where Ω is the universe. In our case, $\Omega = \mathbb{V} \times \mathcal{V}$ hence the running time is $O(C|\mathbb{V}|)^{O(1)}$. The rest of the Algorithm 5 takes $O(C|\mathbb{V}|)^{O(1)}$ steps, thus we obtain the stated running time and finish the proof. \square