数据采集方法作业

姓名: 蒋贵豪 学号: B+X9bo

2021年11月29日

题目 1. 对于一个物质提取试验,共有 6 个试验因子: 甲醇 (x_1) 、乙醇 (x_2) 、丙醇 (x_3) 、丁醇 (x_4) 、PH 值 (x_5) 、时间 (x_6) 。我们的试验次数少于 15 次,有先验信息表明, $INT(x_2,x_3)$, $INT(x_5,x_6)$ 显著。利用坐标交换算法,寻找 D-最优设计,计算相应设计的 D 值。并说明选择初始设计的个数。

解答. 因为非正规设计中,试验次数为 4 的倍数,而我们需要的次数需要少于 15 次,因此我们选择试验次数 n=12,因为我们有 6 个试验因子,因此我们的设计矩阵为 $\mathbf{D}_{12\times 6}$ 。

运用坐标变换算法,我们的试验因子都是连续的变量,因此我们对设计矩阵 \mathbf{D} 中的每个位置 x_{ij} ,均产生 [-1,1] 上的随机数,然后改变 x_{ij} 为 -1 和 1,计算对应的 $\mathbf{X}^T\mathbf{X}$ 的行列式,然后选取 x_{ij} 为 -1 或 1。重复上述过程,直到信息矩阵行列式不再增大。

我们编写的 **Matlab** 代码见附录,下面是我们寻找 D-最优设计的结果。为方便展示,我们对得到的设计矩阵 **D** 按因子水平取值进行了排序。**当初始设计的个数** N=100 **时**,得到的设计矩阵为如表1所示,信息矩阵如式1所示。对应的信息矩阵的行列式为: $|\mathbf{X}^T\mathbf{X}|=2684354560$ 。

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 12 & 0 & 0 & 0 & -4 & 0 & 0 & 0 & 0 \\ 0 & 12 & 0 & 4 & 0 & -4 & 0 & 0 & 0 \\ 0 & 0 & 12 & 0 & 0 & 0 & 0 & 0 & 4 \\ 0 & 4 & 0 & 12 & 0 & -4 & 0 & 0 & 0 \\ -4 & 0 & 0 & 0 & 12 & 0 & 0 & 0 & 0 \\ 0 & -4 & 0 & -4 & 0 & 12 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 12 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 \end{bmatrix}$$
 (1)

表 1: 初始设计个数 N=100 得到的设计矩阵 \mathbf{D}

试验号	x_1	x_2	x_3	x_4	x_5	x_6
1	-1	-1	-1	-1	-1	1
2	-1	-1	-1	-1	1	-1
3	-1	-1	1	1	1	-1
4	-1	1	-1	-1	1	1
5	-1	1	-1	1	-1	-1
6	-1	1	1	-1	1	1
7	1	-1	-1	1	1	1
8	1	-1	1	-1	-1	-1
9	1	-1	1	-1	-1	1
10	1	1	-1	-1	1	-1
11	1	1	1	-1	-1	-1
12	1	1	1	1	-1	1

改变**初始设计的个数为** N=1000,得到的设计矩阵为如表2所示,信息矩阵如式2所示。对应的信息矩阵的行列式为: $|\mathbf{X}^T\mathbf{X}|=2818572288$ 。

$$\mathbf{X}^{T}\mathbf{X} = \begin{bmatrix} 12 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\ 4 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 12 & 0 & 0 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 12 & 0 & 0 & 4 & 0 & 0 \\ 4 & 0 & 0 & 0 & 12 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 & 12 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 & 12 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 12 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 12 \end{bmatrix}$$
 (2)

表 2: 初始设计个数 N = 1000 得到的设计矩阵 **D**

试验号	x_1	x_2	x_3	x_4	x_5	x_6
1	-1	-1	-1	-1	1	-1
2	-1	-1	1	1	1	1
3	-1	1	-1	1	-1	1
4	-1	1	1	1	-1	-1
5	1	-1	-1	1	-1	-1
6	1	-1	-1	1	1	1
7	1	-1	1	-1	-1	1
8	1	-1	1	1	1	-1
9	1	1	-1	-1	-1	-1
10	1	1	-1	1	1	-1
11	1	1	1	-1	1	1
12	1	1	1	1	-1	1

同样,我们改变**初始设计的个数为** N=10000,得到的设计矩阵和信息矩阵的结果同 N=1000。说明我们在 N=1000 得到的解已经接近了全局最优,因此我们的 D-最优设计如表2所示。也就是:

附录

本次作业用到的所有代码如下:

```
1 N = 100;%重复次数, 获取全局最优
2 rng(1129);
3 Information_Max = 0;
4 for k = 1:N
       D = 2*rand(12,6)-1;
5
       X(:,1) = linspace(1,1,12)';
       for i = 1:12
           for j = 1:6
8
                D(i,j) = -1;
9
               X(:,2:7) = D;
10
               X(:,8) = D(:,2).*D(:,3);
11
               X(:,9) = D(:,5).*D(:,6);
12
               a = det(X'*X);
13
               D(i,j) = 1;
14
               X(:,2:7) = D;
15
               X(:,8) = D(:,2).*D(:,3);
16
               X(:,9) = D(:,5).*D(:,6);
17
               b = \det(X'*X);
18
                \textbf{if} \ a \ \geq \ b
19
                    D(i,j) = -1;
20
                end
21
           end
22
       end
23
       if det(X'*X) > Information Max
           Information Max = det(X'*X);
25
           D k = D;
26
       end
27
28 end
```