Hydrological flow paths

Prof. Kate Heal School of GeoSciences

Soil, Water & Atmospheric Processes

Ward & Robinson – Runoff chapter

Rose – Chapter 7

(Ward & Robinson, 2000)

Runoff components

(Ward & Robinson, 1999)

Runoff components

Channel precipitation

Overland flow

Groundwater flow

Throughflow

Lateral hydraulic conductivity > vertical hydraulic conductivity

Pipeflow

Flow medium	Velocity (m hour ¹)
Open channel	300-1000
Overland flow	50-500
Pipeflow	50-500
Matrix throughflow	0.005-0.2
Groundwater flow	
Sandstone	0.001-10
Shale	0.0000001-1.0
Jointed limestone	10-50

Contributions of different components vary in time and space

Horton model of streamflow generation

- Proposed in 1933 by Robert E. Horton
- Overland flow main source of stormflow
- Infiltration rate declined rapidly during rainfall events
- Most applicable to semi-arid, arid & urban catchments

http://abouthydrology.blog spot.co.uk

(Ward & Robinson, 1999)

Hewlett model of streamflow generation

www.history-ofhydrology.net

- BUT Hortonian overland flow not observed in humid forested catchments in E. USA
- => new model, emphasising role of throughflow
 - Variable source areas
 - Saturated overland flow

(Ward & Robinson, 1999)

Locations of variable source areas

(Ward & Robinson, 1999)

Variable source areas change over time and space

Tracer studies (natural chemical and stable isotopes) => "groundwater" can contribute 60-80% of stormflow

Hydrograph separation using dissolved silica and deuterium (2H) as tracers

Munyaneza et al. (2012) Hydrology and Earth System Sciences 16, 1991-2004

Groundwater ridging

Rapid conversion of a shallow capillary fringe from near-saturated to saturated conditions during a rainfall event

Occurs as result of intense rainfall at ground surface causing: 1) relief of capillary tension and/or 2) rapid addition of potential energy

Steep hydraulic gradient between ridge and river water => rapid groundwater flow

(Ward & Robinson, 1999)

Which do you think is the dominant runoff process in these situations?

- Hot arid environment?
- Princes Street?
- Temperate forest?
- Conifer plantation with drainage ditches?
- Field with high density of livestock?
- Peat moorland in wet winter?
- Peat moorland after a dry summer?
- Catchment with large area of wetland?

Summary of runoff processes and their controls

Arid-to-subhumid climate: thin vegetation: or disturbed by Man

Humid climate: dense vegetation

Thin soils: gentle concave footslopes; wide valley bottoms; soils of high to low permeability

> Topography and soils

Steep, straight hillslopes: deep, very permeable soils; narrow valley bottoms

