VR = velocity ratio

 $v_b = \text{belt speed}$

CD = center distance (in)

 \emptyset = random angle that helps solve for the wrap angle (°)

 $\theta = \text{angle of wrap } (^{\circ})$

s = arc length (length of belt/chain wrap on sprocket)

d = distance (or span) (belt/chain length that is tangent to sprockets)

 $L_p = \text{belt/chain total length}$

 $H_{in} = \text{input power (hp)}$

 $P_{des} = \text{power (hp)}$

 $P_{rated} = \text{rated power (hp)}$

SF =service factor

1.3 Flat Belts

1.3.1 Nomenclature

 $F_1 = \text{taut-side tension}$

 $F_2 =$ slack-side tension

 $F_c = \text{centrifugal tension}$

 $F_i = initial tension$

f = maximum coefficient of friction

T = transmitted torque

w = weight per foot (lb/ft)

V = belt speed (ft/min)

H = transmitted power (hp)

b = belt width (in)

t = belt thickness (in)

 $\gamma = \text{specific weight (lb/in}^3)$

 $(F_1)_a$ =largest allowable tension

 F_a = allowable tension/unit width

 C_P = pulley correction factor (tab. 17-4)

 C_V = velocity correction factor (p. 889)

 $H_{\text{nom}} = \text{nominal (rated) power}$

 $H_a = \text{design power}$

 $K_s = \text{service factor}$

 $n_d = \text{design safety factor}$

 $n_f = \text{factor of safety}$

n = angular velocity (rpm)

1.3.2 Formulae

$$\Delta F = (F_1)_a - F_2 = \frac{2T}{d}$$

$$F_1 - F_2 = \frac{2T}{d}$$

$$F_1 = F_c + \frac{2F_i e^{f\phi}}{e^{f\phi} + 1}$$

$$F_2 = F_c + \frac{2F_i}{e^{f\phi} + 1}$$

$$F_1 - F_2 = \frac{2T}{d}$$

$$F_1 = F_c + \frac{2F_i e^{f\phi}}{e^{f\phi} + 1}$$

$$F_2 = F_c + \frac{2F_i}{e^{f\phi} + 1}$$

$$\begin{split} &\frac{F_1 - F_c}{F_2 - F_c} = e^{f\phi} \\ &F_c = \frac{w}{32.17 \, \text{ft/s}^2} \left(\frac{V}{60 \, \text{s/min}} \right)^2 \\ &F_i = \frac{F_1 + F_2}{2} - F_c = \frac{T}{d} \frac{e^{f\phi} + 1}{e^{f\phi} - 1} \\ &H = \frac{(F_1 - F_2)V}{33,000 \left(\frac{\text{ft lb}}{\text{min}}\right)/\text{hp}} \\ &w = 12 \, \text{in/ft} \, \gamma bt \\ &(F_1)_a = bF_a C_P C_V \\ &H_d = H_{\text{nom}} K_s n_d \\ &H_a = H_{\text{nom}} K_s n_d \\ &H_a = H_{\text{nom}} K_s n_d \\ &T = 63025 \frac{H_{\text{nom}} K_s n_d}{n} = 63025 \frac{H_d}{n} \\ &f' = \frac{1}{\phi} \ln \left(\frac{(F_1)_a - F_c}{F_2 - F_c} \right) \\ &\text{dip} = \frac{C^2 w}{96 \, \text{in/ft} F_i} \\ &F_1 = (F_1)_a \, \, \text{at operation limit} \\ &\text{require} \, f' < f \end{split}$$

1.3.3 Tables for Constants

Table 17–2 Properties of Some Flat- and Round-Belt Materials. (Diameter = d, thickness = t, width = w)

Material	Specification	Size, in	Minimum Pulley Diameter, in	Allowable Tension per Unit Width at 600 ft/min, Ibf/in	Specific Weight, Ibf/in ³	Coefficient of Friction
Leather	1 ply	$t = \frac{11}{64}$	3	30	0.035-0.045	0.4
		$t = \frac{13}{64}$	$3\frac{1}{2}$	33	0.035-0.045	0.4
	2 ply	$t = \frac{18}{64}$	$4\frac{1}{2}$	41	0.035-0.045	0.4
		$t = \frac{20}{64}$	6 ^a	50	0.035-0.045	0.4
		$t = \frac{23}{64}$	9^a	60	0.035-0.045	0.4
Polyamide ^b	F-0°	t = 0.03	0.60	10	0.035	0.5
	F-1 ^c	t = 0.05	1.0	35	0.035	0.5
	F-2 ^c	t = 0.07	2.4	60	0.051	0.5
	$A-2^c$	t = 0.11	2.4	60	0.037	0.8
	A-3 ^c	t = 0.13	4.3	100	0.042	0.8
	$A-4^c$	t = 0.20	9.5	175	0.039	0.8
	A-5 ^c	t = 0.25	13.5	275	0.039	0.8
Urethane ^d	w = 0.50 in	t = 0.062	See Table 17–3	5.2 ^e	0.038-0.045	0.7
	w = 0.75 in	t = 0.078		9.8^e	0.038-0.045	0.7
	w = 1.25 in	t = 0.090		18.9 ^e	0.038-0.045	0.7
	Round	$d = \frac{1}{4}$	See Table 17–3	8.3 ^e	0.038-0.045	0.7
		$d = \frac{3}{8}$		18.6 ^e	0.038-0.045	0.7
		$d = \frac{1}{2}$		33.0^{e}	0.038-0.045	0.7
		$d = \frac{3}{4}$		74.3 ^e	0.038-0.045	0.7

^aAdd 2 in to pulley size for belts 8 in wide or more.

^eAt 6% elongation; 12% is maximum allowable value.

^bSource: Habasit Engineering Manual, Habasit Belting, Inc., Chamblee (Atlanta), Ga.

^cFriction cover of acrylonitrile-butadiene rubber on both sides.

^dSource: Eagle Belting Co., Des Plaines, Ill.

 $C_v = 1$ for polyamide and ure thane belts

Table 17–4 Pulley Correction Factor C_P for Flat Belts*

	Small-Pulley Diameter, in								
Material	1.6 to 4	4.5 to 8	9 to 12.5	14, 16	18 to 31.5	Over 31.5			
Leather	0.5	0.6	0.7	0.8	0.9	1.0			
Polyamide, F-0	0.95	1.0	1.0	1.0	1.0	1.0			
F–1	0.70	0.92	0.95	1.0	1.0	1.0			
F-2	0.73	0.86	0.96	1.0	1.0	1.0			
A-2	0.73	0.86	0.96	1.0	1.0	1.0			
A-3	_	0.70	0.87	0.94	0.96	1.0			
A-4	_	_	0.71	0.80	0.85	0.92			
A-5	_	_	_	0.72	0.77	0.91			

1.4 V-Belt Drives

1.4.1 Anatomy

1.4.2 Design Selection

- 1. Compute the design power
 - (a) Find the service factor based from this table: