Klausur am 28.08.2010:

Musterlösungen

Aufgabe 1

Sei $n_0=1$. Es gilt $\frac{1\cdot(1+1)}{2}=1=\frac{1\cdot(1+1)(1+2)}{6}$. Es gilt somit der Induktionsanfang.

Als Induktionsannahme nehmen wir an, dass $\sum_{k=1}^{n} \frac{k(k+1)}{2} = \frac{n(n+1)(n+2)}{6}$ für ein $n \ge 1$ gilt.

Im Induktionsschritt untersuchen wir, ob aus dieser Annahme folgt, dass $\sum_{k=1}^{n+1} \frac{k(k+1)}{2} = \frac{(n+1)((n+1)+1)((n+1)+2)}{6} = \frac{(n+1)(n+2)(n+3)}{6}$ ist. Es gilt

$$\sum_{k=1}^{n+1} \frac{k(k+1)}{2} = \left(\sum_{k=1}^{n} \frac{k(k+1)}{2}\right) + \frac{(n+1)((n+1)+1)}{2}$$

$$= \frac{n(n+1)(n+2)}{6} + \frac{(n+1)(n+2)}{2} \text{ mit Induktionsannahme und Vereinfachen}$$

$$= \frac{n(n+1)(n+2)+3(n+1)(n+2)}{6}$$

$$= \frac{(n+1)(n+2)(n+3)}{6}.$$

Mit dem Prinzip der vollständigen Induktion folgt, dass die Formel für alle $n \in \mathbb{N}$ gilt.

Aufgabe 2

Es ist Kern(f) die Lösungsmenge des homogenen linearen Gleichungssystems Ax = 0. Um diese zu berechnen, überführen wir A in Treppennormalform. Dazu subtrahieren wir die erste Zeile von der zweiten, addieren die vierte Zeile zur dritten, und subtrahieren dann das Vierfache der ersten Zeile von der vierten. Das liefert

$$\begin{pmatrix} 1 & -4 & 1 \\ 0 & 7 & -2 \\ 0 & -7 & 2 \\ 0 & 14 & -4 \end{pmatrix}.$$

Jetzt addieren wir die zweite Zeile zur dritten und subtrahieren das Doppelte der zweiten Zeile von der vierten. Wir erhalten

$$\begin{pmatrix} 1 & -4 & 1 \\ 0 & 7 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Wir teilen die zweite Zeile durch 7 und addieren dann das Vierfache der zweiten Zeile zur ersten. Damit erhalten wir die Treppennormalform

$$\begin{pmatrix} 1 & 0 & -\frac{1}{7} \\ 0 & 1 & -\frac{2}{7} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Mit dem Algorithmus aus dem Skript folgt, dass $\operatorname{Kern}(f) = \left\langle \begin{pmatrix} -\frac{1}{7} \\ -\frac{2}{7} \\ -1 \end{pmatrix} \right\rangle$. Eine Basis von

$$\operatorname{Kern}(f) \text{ ist } \begin{pmatrix} -\frac{1}{7} \\ -\frac{2}{7} \\ -1 \end{pmatrix}.$$

Es ist $3 = \dim(\mathbb{R}^3) = \dim(\operatorname{Kern}(f)) + \dim(\operatorname{Bild}(f))$, also $\dim(\operatorname{Bild}(f)) = 2$.

Wir berechnen
$$Ae_1 = \begin{pmatrix} 1 & -4 & 1 \\ 1 & 3 & -1 \\ -4 & -5 & 2 \\ 4 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -4 \\ 4 \end{pmatrix} \text{ und } Ae_2 = \begin{pmatrix} 1 & -4 & 1 \\ 1 & 3 & -1 \\ -4 & -5 & 2 \\ 4 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

 $\begin{pmatrix} -4\\3\\-5\\-2 \end{pmatrix}$. Diese Vektoren sind linear unabhängig, denn sie sind keine Vielfachen voneinander.

Da $\dim(\operatorname{Bild}(f)) = 2$ ist, bilden sie eine Basis von $\dim(\operatorname{Bild}(f))$.

Aufgabe 3

Seien
$$\sum\limits_{i=0}^2 a_i T^i$$
 und $\sum\limits_{i=0}^2 b_i T^i$ in $V.$ Sei $a\in\mathbb{R}.$ Dann gilt

$$f(\sum_{i=0}^{2} a_i T^i + \sum_{i=0}^{2} b_i T^i) = f(\sum_{i=0}^{n} (a_i + b_i) T^i)$$

$$= \begin{pmatrix} a_0 + b_0 & a_0 + b_0 + a_1 + b_1 \\ a_1 + b_1 + a_2 + b_2 & a_0 + b_0 \end{pmatrix}$$

$$= \begin{pmatrix} a_0 & a_0 + a_1 \\ a_1 + a_2 & a_0 \end{pmatrix} + \begin{pmatrix} b_0 & b_0 + b_1 \\ b_1 + b_2 & b_0 \end{pmatrix}$$

$$= f(\sum_{i=0}^{2} a_i T^i) + f(\sum_{i=0}^{2} b_i T^i)$$

und

$$f(a\sum_{i=0}^{2}a_{i}T^{i}) = f(\sum_{i=0}^{2}aa_{i}T^{i}) = \begin{pmatrix} aa_{0} & aa_{0} + aa_{1} \\ aa_{1} + aa_{2} & aa_{0} \end{pmatrix}$$
$$= a\begin{pmatrix} a_{0} & a_{0} + a_{1} \\ a_{1} + a_{2} & a_{0} \end{pmatrix} = af(\sum_{i=0}^{2}a_{i}T^{i}).$$

Es folgt, dass f linear ist.

Aufgabe 4

Wenn alle $a_i = 0$ sind, dann ist auch $\sum_{i=1}^n a_i v_i = 0$. Nehmen wir nun an, dass nicht alle $a_i = 0$ sind und dass $\sum_{i=1}^n a_i v_i = 0$ ist. Wir müssen zeigen, dass es keinen Index $k, 1 \le k \le n$,

gibt, sodass $a_k=0$ ist. Angenommen, es gibt einen Index k mit $a_k=0$. Nach Annahme sind $v_1,\ldots,v_{k-1},v_{k+1},\ldots,v_n$ linear unabhängig. Da $0=\sum\limits_{i=1}^{k-1}a_iv_i+\sum\limits_{i=k+1}^na_iv_i$ ist, folgt, dass die Skalare $a_1,\ldots,a_{k-1},a_{k+1},\ldots,a_n$ Null sein müssen. Es folgt also $a_i=0$ für alle $1\leq i\leq 0$. Aber das hatten wir ausgeschlossen. Dieser Widerspruch zeigt, dass es keinen Index $k,1\leq k\leq n$, mit $a_k=0$ gibt, also alle Koeffizienten $\neq 0$ sind.

Aufgabe 5

Es gilt $f(0) = \cos(0) - \exp(0) + 1 = 1 - 1 + 1 = 1 > 0$ und $f(\frac{1}{100}) = \cos(2) - \exp(\frac{1}{100}) + 1 < 0$, denn $\cos(2) < 0$ und $\exp(\frac{1}{100}) > \exp(0) = 1$, da die Exponentialfunktion streng monoton wachsend ist.

Als Summe stetiger Funktionen ist f stetig. Mit dem Nullstellensatz von Bolzano folgt, dass f in $[0, \frac{1}{100}]$ eine Nullstelle besitzt.

Die Funktion f ist als Summe differenzierbarer Funktionen auch differenzierbar, und es gilt $f'(x) = -200\sin(200x) - \exp(x) < 0$ für $x \in [0, \frac{1}{100}]$, denn $\sin(y) \ge 0$ für $y \in [0, 2] \subseteq [0, \pi]$ und $\exp(x) > 0$. Also ist f streng monoton fallend auf $[0, \frac{1}{100}]$. Es folgt, dass f genau eine Nullstelle in $[0, \frac{1}{100}]$ besitzt.

Aufgabe 6

Es ist $f(x) = \cos(\frac{x}{2})\sin(x)$ für $x \in \mathbb{R}$, also

$$f(\frac{\pi}{2}) = \cos(\frac{\pi}{4})\sin(\frac{\pi}{2}) = \frac{1}{\sqrt{2}},$$

denn $\sin(\frac{\pi}{2}) = 1$.

Es ist $f'(x) = -\frac{1}{2}\sin(\frac{x}{2})\sin(x) + \cos(\frac{x}{2})\cos(x)$, also

$$f'(\frac{\pi}{2}) = -\frac{1}{2}\sin(\frac{\pi}{4})\sin(\frac{\pi}{2}) + \cos(\frac{\pi}{4})\cos(\frac{\pi}{2}) = -\frac{1}{2\sqrt{2}},$$

denn $\cos(\frac{\pi}{2}) = 0$.

Weiter ist $f''(x) = -\frac{1}{4}\cos(\frac{x}{2})\sin(x) - \sin(\frac{x}{2})\cos(x) - \cos(\frac{x}{2})\sin(x) = -\frac{5}{4}\cos(\frac{x}{2})\sin(x) - \sin(\frac{x}{2})\cos(x)$, also

$$f''(\frac{\pi}{2}) = -\frac{1}{4\sqrt{2}} - \frac{1}{\sqrt{2}} = -\frac{5}{4\sqrt{2}}.$$

Es folgt

$$P_{2,\frac{\pi}{2}}(x) = \frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}(x - \frac{\pi}{2}) - \frac{5}{8\sqrt{2}}(x - \frac{\pi}{2})^2.$$

Aufgabe 7

Wir zeigen, dass die Reihe divergent ist. Sei $a_n = \sqrt[n]{3}$. Es ist $a_n = 3^{\frac{1}{n}}$. Die Folge $(\frac{1}{n})$ ist eine Nullfolge. Da die allgemeine Potenzfunktion stetig ist, folgt

$$\lim_{n \to \infty} 3^{\frac{1}{n}} = 3^0 = 1,$$

und damit ist (a_n) keine Nullfolge. Es folgt, dass die Reihe divergent ist.

Aufgabe 8

Seien A, B Atome und $\alpha = A \to B$, $\beta = \neg A \to \neg B$, $\gamma = \neg (A \land B)$ damit gebildete Formeln.

1. Für die Konjunktion der Formeln α , β und γ gilt:

$$\begin{array}{lll} & \alpha \wedge \beta \wedge \gamma & \text{Konjunktion der Formeln} \\ \approx & (A \rightarrow B) \wedge (\neg A \rightarrow \neg B) \wedge \neg (A \wedge B) & \text{Implikationen ersetzen} \\ \approx & (\neg A \vee B) \wedge (\neg (\neg A) \vee \neg B) \wedge \neg (A \wedge B) & \text{Doppelte Negation} \\ \approx & (\neg A \vee B) \wedge (A \vee \neg B) \wedge \neg (A \wedge B) & \text{De Morgan} \\ \approx & (\neg A \vee B) \wedge (A \vee \neg B) \wedge (\neg A \vee \neg B) & \text{Konjunkive Normalform,} \\ & & Distributivg esetz \\ \approx & (\neg A \vee B) \wedge ((A \wedge \neg A) \vee \neg B) & \text{Äquivalenzen A1 und A2} \\ \approx & (\neg A \vee B) \wedge \neg B & \text{Distributivg esetz} \\ \approx & (\neg A \wedge \neg B) \vee (B \wedge \neg B) & \text{Äquivalenzen A1 und A2} \\ \approx & \neg A \wedge \neg B & \text{Negations normal form} \end{array}$$

mit den beiden Äquivalenzen A1 und A2, die für jede Formel σ gelten:

A1
$$\sigma \wedge \neg \sigma \approx \mathbf{0}$$
,

A2
$$\sigma \vee \mathbf{0} \approx \mathbf{0} \vee \sigma \approx \sigma$$
.

2. Sei \Im eine Bewertung der Formeln, welche mit den Atomen A und B gebildet werden können. Wenn gemäß der Voraussetzung $\Im(\alpha) = \Im(\beta) = \Im(\gamma) = 1$ ist, gilt aufgrund der gezeigten Äquivalenz $\alpha \wedge \beta \wedge \gamma \approx \neg A \wedge \neg B$, dass $\Im(\neg A \wedge \neg B) = \Im(\alpha \wedge \beta \wedge \gamma) = 1$ ist. Da einer Konjunktion von Formeln nur dann der Wert 1 zugeordnet wird, wenn allen Formeln der Wert 1 zugeordnet ist, folgt $\Im(\neg A) = \Im(\neg B) = 1$. Mit der Definition für die Negation ergibt sich $\Im(A) = 0$ und $\Im(B) = 0$.

Aufgabe 9

1. Wir zeigen, dass (a_n) monoton fallend und beschränkt ist. Mit dem Monotonieprinzip folgt dann die Konvergenz von (a_n) .

Wir beweisen mit Induktion nach n, dass $a_n \geq 2$ ist für alle $n \in \mathbb{N}$. Da $a_1 = 3$ ist, gilt der Induktionsanfang. Sei $a_n \geq 2$ für ein $n \in \mathbb{N}$. Dann gilt

$$a_{n+1} - 2 = \frac{a_n}{2} + \frac{2}{a_n} - 2 = \frac{a_n^2 - 4a_n + 4}{2a_n} = \frac{(a_n - 2)^2}{2a_n} \ge 0,$$

denn es sind $(a_n-2)^2 \ge 0$ und $a_n \ge 2 > 0$ nach Induktionsvoraussetzung. Mit dem Prinzip der vollständigen Induktion folgt $a_n \ge 2$ für alle $n \in \mathbb{N}$.

Wir zeigen nun, dass (a_n) monoton fallend ist. Da $a_n \geq 2$ ist, folgt $\frac{2}{a_n} \leq 1$, also $\frac{a_n}{2} \geq 1 \geq \frac{2}{a_n}$, und damit

$$a_{n+1} = \frac{a_n}{2} + \frac{2}{a_n} \le \frac{a_n}{2} + \frac{a_n}{2} = a_n.$$

Damit ist (a_n) nach oben durch 3 und nach unten durch 2 beschränkt und monoton fallend. Es folgt, dass (a_n) gegen ein $a \in \mathbb{R}$ konvergent ist.

2. Da alle Folgenglieder ≥ 2 sind, ist $a \geq 2$.

Da (a_n) gegen $a \neq 0$ konvergiert, konvergieren auch $(\frac{a_n}{2})$ und $(\frac{2}{a_n})$, und zwar gegen $\frac{a}{2}$ beziehungsweise gegen $\frac{2}{a}$. Es folgt

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(\frac{a_n}{2} + \frac{2}{a_n}\right) = \lim_{n \to \infty} \frac{a_n}{2} + \lim_{n \to \infty} \frac{2}{a_n} = \frac{a}{2} + \frac{2}{a} = \frac{a^4 + 4}{2a}.$$

Es folgt $2a^2 = a^2 + 4$, also $a^2 = 4$ und damit a = 2, denn $a \ge 2$.