3D Object Representations Introduction

Object Representation

- Graphics scenes can contain many different kinds of objects and material surfaces
 - Trees, flowers, clouds, rocks, water, bricks, wood paneling, rubber, paper, steel, glass, plastic and cloth
- So no single method can be used to describe all the characteristics of these different shapes/materials

3D Object Representations

- Boundary representation
 - Describing a 3D object as a set of surfaces that separate the object interior from the environment
 - Eg) Polyhedra, curved boundary surfaces
- Space-partitioning
 - Describe the interior properties by partitioning the spatial region into a set of small, non overlapping, contiguous solids (usually cubes)
 - Eg) Volumetric data, trees
- Procedural methods
 - using Fractals, shape grammars for accurate representation of natural objects.

3D Object Representations

- Constructive solid geometry
 - Creates a new volume by applying set operations on two specified volumes
- Physically-based modeling:
 - Methods that simulates the behavior of objects in terms of the interaction of external and internal forces.
 - Eg: movement of rope in air, a piece of cloth

Basic Boundary Representations

- Polyhedra (a set of surface polygons)
 - triangles, quadrilaterals
- Quadric surfaces (second degree equations)
 - sphere, ellipsoid, torus
- Superquadrics (additional parameters)
 - superellipse (2D), superellipsoid (3D)
- Spline surfaces
 - Bézier, B-spline, rational splines (NURBS)

Polyhedra examples

Polygon Surfaces

- A polyhedron is a 3D solid which consists of a collection of surface polygons, usually joined at their edges
- Simplifies and speeds up surface rendering as surfaces are described as linear equations.
- Also referred as standard graphics objects.
- Polyhedron can be represented
 - By precise surface features
 - Polygon mesh

Polygon Table

- Specify polygon surface as
 - Set of vertices & associated attributes parameters
- Polygon info is stored as data tables
 - 1. Geometric tables vertex & orientation
 - 2. attribute tables degree of transparency, reflectivity and texture characteristics
- Geometric data is stored as 3 lists
 - Vertex table, edge table & polygon table
 - The edge table includes pointer to the polygon table so that common edges can be identified.

L	VERTEX TABLE		
Γ	V,:	x_1, y_1, z_1	
İ	V2:	x_2, y_2, z_2	
ı	V_3 :	x_3, y_3, z_3	
1	V4:	x_4, y_4, z_4	
	V	X- V- Z-	

Į	EDGE TABLE	
-	E,:	V_1 , V_2
İ	E2:	V_2 , V_3
1	E3:	V_3 , V_1
1	E4:	V3. V4
- 1	E .:	V., V.

POLYGON-SURFACE TABLE		
S₁:	E_1, E_2, E_3	
S₂:	E_3, E_4, E_5, E_6	

Figure 10-2
Geometric data table representation for two adjacent polygon surfaces, formed with six edges and five vertices.

 $E_1: V_1, V_2, S_1 \\ E_2: V_2, V_3, S_1 \\ E_3: V_3, V_1, S_1, S_2 \\ E_4: V_3, V_4, S_2 \\ E_6: V_4, V_5, S_2 \\ E_6: V_5, V_1, S_2$

Figure 10-3
Edge table for the surfaces of Fig. 10-2 expanded to include pointers to the polygon table.

Plane Equations

- To produce a display of 3D object we process the input data representation for the object through several procedures.(WC to DC)
- For some of the processes information about the spatial orientation of the individual surface components of the objects needed
- The information is obtained from the vertex coordinate values and the equation describe polygon surfaces

Plane Equations

- Equation of a plane surface
 - Ax + By + Cz + D = 0
 - (x,y,z) is any point on the plane A,B,C,D are constants describing spaital properties of the plane.
 - To find A,B,C,D solve sets of plane eqns.
 - (x1,y1,z1) (x2,y2,z2), (x3,y3,z3)
 - Slove set of simultaneous linear plane equations for the ratios (A/D)xk + (B/D)yk + (C/D)zk = -1 k=1,2,3

The solution for this set of equations can be obtained in determinant form, using Cramer's rule, as

$$A = \begin{bmatrix} 1 & y_1 & z_1 \\ 1 & y_2 & z_2 \\ 1 & y_3 & z_3 \end{bmatrix} \qquad B = \begin{bmatrix} x_1 & 1 & z_1 \\ x_2 & 1 & z_2 \\ x_3 & 1 & z_4 \end{bmatrix}$$

$$C = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \qquad D = - \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{bmatrix}$$

$$(3.13-3)$$

Expanding the determinants, we can write the calculations for the plane coefficients in the form

$$A = y_1(z_2 - z_3) + y_2(z_3 - z_1) + y_3(z_1 - z_2)$$

$$B = z_1(x_2 - x_3) + z_2(x_3 - x_1) + z_3(x_1 - x_2)$$

$$C = x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)$$

$$D = -x_1(y_2z_3 - y_3z_2) - x_2(y_3z_1 - y_1z_3) - x_3(y_1z_2 - y_2z_1)$$

Orientation of a plane surface

- The orientation of the plane surface can be described with the normal vector, which has Cartesian components(A,B,C) are calculated with above
- Need to distinguish between two sides of the polygon surface (inside and outside)
 - Inside: Plane faces the object interior
 - Outside: Outward face.
- Normal vector will be from inside to outside if
 - polygon vertices are specified in counterclockwise direction &
 - Viewing from the outer side of the plane in a right handed coordinate system.

Normal Vector N Calculations using unit cube

- Determine the components of normal vector by two methods
- Method 1:
 - Select 3 vertices in counterclockwise direction
 - Coordiantes are substituted to obtain plane coefficients: A=1,B=0,C=0,D=-1 by substituting these vertices in determinant eqns.
 - Normal vector obtained is in the positive x axis
- Method 2:
 - Normal vector can be obtained using vector cross product
 - V1,v2,v3 are vertex positions from outside to inside
 - $N = (V2-V1) \times (V3-V1)$
 - Generate value for A,B,C and obtain D using plane equations

Figure 10-5 The shaded polygon surface of the unit cube has plane equation x - 1 = 0 and normal vector N = (1, 0, 0).

Inequalities of Plane Eqns.

- Plane eqns. are also used to find the position of the spatial points relative to the plane surfaces.
- For any point (x,y,z) not on plane surface,
 - $Ax + By + Cz + D \neq 0$
 - Ax + By + Cz + D < 0 point lies inside the surface
 - Ax + By + Cz + D > 0 point lies outside the surface

Polygon Mesh

- Using a set of connected polygonally bounded palanar surfaces to represent an object, may have curved surfaces or Edges.
- Common types of ploygon meshes are triangular strip and quadrilateral meshes.
- Triangle strip
 Produce n-2 connected triangles, given n-vertices
- Quadrilateral mesh
 Generate (n-1)(m-1) quadrilaterals, given n by m
 array of vertices

Curved Lines and Surfaces

- Display of 3D curved lines and surfaces are **generated** using set of mathematical functions defining the objects or from a set of user specified data points.
- when functions are specified the package can project the defining equations of a curve to the display plane and plot pixel along the path of Projection plane.
 - Eg: Quadrics and superquadrics
- When of set discrete coordinate points is used to specify an object shape a functional description is obtained that best fits the designated points according to the constraints of the application
 - Eg: spline reprsentations

Quadric - Sphere

- A frequently used class of objects are quadric surfaces
- •These are 3D surfaces described using quadratic equations
- •Quadric surfaces include:
 - Spheres
 - Ellipsoids
 - Tori

Quadric - Sphere

•A spherical surface with radius r centred on the origin is defined as the set of points (x, y, z) that satisfy the equation

$$x^2 + y^2 + z^2 = r^2$$

 This can also be done in parametric form using latitude and longitude angles

$$x = r \cos \varphi \cos \theta \qquad -\pi 2 \le \varphi \le \pi 2$$

$$y = r \cos \varphi \sin \theta \qquad -\pi \le \theta \le \pi$$

$$z = r \sin \varphi \qquad -\pi \le \theta \le \pi$$

Quadric - Sphere

Quadric - ellipsoid

- Ellipsoidal is extension of spherical surface where the radii In three mutually perpendicular directions have different Values.
- •The cartesian reprsentation for points over the surface of an ellipsoid is centered on the orgin is

$$\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 = 1$$

•The parametric reprsentation for the ellipsoid in terms of latitude and longitude angle is

$$x = r_x \cos \phi \cos \theta,$$
 $-\pi/2 \le \phi \le \pi/2$
 $y = r_y \cos \phi \sin \theta,$ $-\pi \le \theta \le \pi$
 $z = r_z \sin \phi$

Quadric - Torus

- •The torus is doughnut shaped object.
- •Obtained by rotating circle or ellipse about a specified axis.

Quadric - torus

$$\left[r - \sqrt{\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2}\right]^2 + \left(\frac{z}{r_z}\right)^2 = 1 \tag{10-11}$$

where r is any given offset value. Parametric representations for a torus are similar to those for an ellipse, except that angle ϕ extends over 360°. Using latitude and longitude angles ϕ and θ , we can describe the torus surface as the set of points that satisfy

$$x = r_x(r + \cos\phi)\cos\theta, \qquad -\pi \le \phi \le \pi$$

$$y = r_y(r + \cos\phi)\sin\theta, \qquad -\pi \le \theta \le \pi$$

$$z = r_z\sin\phi$$
(10-12)

SuperQuadrics

- •The object are a generalization of quadric reprsentations.
- •Super quadrics obtained by incorporating additional parameters to the quadric equations to provide increased flexibility for adjusting object shapes.

Superquadric - superellipse

- •The superellipse is obtained from the equation of ellipse by allowing the exponent on the x and y terms to be variable
- The cartesian superellipse equation is

$$\left(\frac{x}{r_x}\right)^{2/s} + \left(\frac{y}{r_y}\right)^{2/s} = 1$$

Parametric Equations

$$x = r_x \cos^5 \theta, \qquad -\pi \le \theta \le \pi$$

$$y = r_y \sin^5 \theta$$

$$0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5 \quad 3.0$$

Superquadric - Superellipsoid

 It is obtained from the equation of ellipsoid by incorporating Two exponent parameters

$$\left[\left(\frac{x}{r_x}\right)^{2/s_2} + \left(\frac{y}{r_y}\right)^{2/s_2}\right]^{s_2/s_1} + \left(\frac{z}{r_z}\right)^{2/s_1} = 1$$

$$x = r_x \cos^{s_1} \phi \cos^{s_2} \theta, \qquad -\pi/2 \le \phi \le \pi/2$$

$$y = r_y \cos^{s_1} \phi \sin^{s_2} \theta, \qquad -\pi \le \theta \le \pi$$

$$z = r_x \sin^{s_1} \phi$$

Superellipsoids

Blobby objects

- Some objects do not maintain fixed shape, change their surface property
 - in certain motions
 - in contact with other objects
 - Shape is not fixed
 - water droplets
 - melting objects
 - muscule shape in human body
 - These objects exhibit their "blobbiness".
 - Also, various bumps and dents are often used to describe the object

Usual principle

- Fixed volume while shape is changed, e.g. molecules moving apart from each other and human muscles
- Molecular bonding: As two molcules move away from each other, the surface shapes stretch, snap and finally contract into spheres.

Gaussian functions

 To represent blobby objects several density functions are used. One such function is Gaussian density functions or bumps.

$$f(x,y,z) = \sum_{k} b_{k} \cdot e^{-a_{k} \cdot r_{k}^{2}} - T = 0$$

where
$$r_k = \sqrt{x_k^2 + y_k^2 + z_k^2}$$
, T is a treshold value

- Parameters a and b are used to adjust the amount of blobbiness
- If b < 0 dents instead of bumps

Spatial Partitioning

Volume data

- Use identical cells (voxels)
- Space-filling tesselation with cubes or parallelopipeds
- Expensive storage but simple data structure
- Useful for medical imaging: volume visualization

Spatial Partitioning

AOctrees

- Partition space into 8 cubes, recursively
- Increase space efficiency of solid tesselations

Figure 8-65

Quadtree representation for a square region of the xy plane that contains a single foreground-color area on a solid-color background.

Spatial Partitioning

- •Binary Space Partitioning (BSP) trees
 - Subdivide a scene into two sections at each step with a plane that can be at any position and orientation

Constructive Solid Geometry Methods

- •Constructive Solid Geometry (CSG) performs solid modelling by generating a new object from two three dimensional objects using a set operation
- Valid set operations include
 - Union
 - Intersection
 - Difference

Constructive Solid Geometry Methods

Constructive Solid Geometry Methods

- •CSG usually starts with a small set of primitives such as blocks, pyramids, spheres and cones
- •Two objects re initially created and combined using some set operation to create a new object
- •This object can then be combined with another primitive to make another new object
- •This process continues until modelling complete

Ray-Casting

- •Ray-casting is typically used to implement CSG operators when objects are described with boundary representations.
- •Ray casting is applied by determining the objects that are intersected by a set of parallel lines emanating from the $\mathcal{X}\mathcal{Y}$ plane along the \mathcal{Z} axis.
- •The $\mathcal{X}\mathcal{Y}$ plane is referred to as the firing plane

Ray-Casting

Ray-Casting

- •Surface intersections along each ray are calculated and these are sorted according to distance from the firing plane.
- •The surface limits for the composite object are then determined by the specified set operation

Firing Plane

Operation	Surface Limits
Union Intersection Difference (obj ₂ – obj ₁)	A, D C, B B, D

Images taken from Hearn & Baker, "Computer Graphics with OpenGL" (2004)

Procedural Modeling

Self-similar fractals Substitution

Example: Koch curve

Procedural Modeling

Substitution rules

Figure 8-76

Self-similar constructions for a fern. (Courtesy of Peter Oppenheimer, Computer Graphics Lab, New York Institute of Technology.)

Procedural Modeling

Natural scenes with trees, flowers, and grass

Physically Based Modeling

Particle systems

Shape description is combined with physical simulation

Physically Based Modeling

Procedural modeling + physically based simulation

