COMPUTER VISION

ULTRAVISION

Anggota tim:

- 1. Farzan Aziz Fajarrudin
- 2.Adelia
- 3. Steven Tjayadi

GLOSSARY

- 1. Project Background
- 2. Objective
- 3. Dataset
- 4. Model comparison theory
- 5. VGG 16
- 5. ResNet 50
- 6. GoogleNet
- Perbandingan Model VGG 16, ResNet50, dan GoogleNet
- 8. Conclusion & Improvement

PROJECT BACKGROUND

- Dalam era digital saat ini, teknologi pengenalan wajah (face recognition) telah berkembang pesat dan digunakan luas dalam berbagai sektor, mulai dari keamanan hingga personalisasi layanan.
- Proyek ini dilakukan sebagai langkah awal untuk memahami dan mengimplementasikan teknologi Aldalam bidang computer vision, khususnya melalui tugas gender classification berbasis citra wajah.
- <u>Tujuan utama</u> kami dengan proyek ini adalah
 - mengembangkan pemahaman praktis dalam membangun pipeline AI dari preprocessing data hingga evaluasi model,
 - membuka potensi penerapan AI dalam solusi berbasis citra di dunia nyata.

Objektif

"Mengklasifikasi gender dari wajah manusia menggunakan CNN arsitektur VGG16, ResNet50, dan GoogLeNet"

Dataset

Nama: Custom Face Gender Dataset

Sumber: CelebA dataset (kami ekstrak hanya total

202599 dataset yang digunakan)

Format data: JPG (178x218), diresize ke 224x224 pxl

Label: gender male dan gender female

Hyperparameter tuning:

- Optimizer Adam
- Learning rate 0.0001
- Batch size 32
- Epoch 10

Augmentation:

- Random Flip horizontal 0.5
- Unfreeze 3 layer terakhir

Dataset

Male: 84434

Female: 118165

MODEL COMPARISON

Model	Struktur Utama	Kelebihan	Kekurangan	Jumlah Parameter
VGG16	13 Conv + 3 FC	Sederhana dan mudah diimplementasikan	X Jumlah parameter besar, boros memori dan komputasi	~138 juta
ResNet50	50-layer + Skip Connection	Stabil saat training model dalam; mengatasi vanishing gradient	X Kompleksitas meningkat; butuh waktu training lebih lama	~25.6 juta
GoogLeNet	Inception Module (multi-scale convs)	 ✓ Efisien secara komputasi & memori; cocok untuk deployment ringan 	X Struktur lebih kompleks; sulit dimodifikasi	~6.8 juta

Normalize

Komponen			Detail	
Train/Test Split			80% / 20%	
Loss Function			CrossEntrop	oyLoss
Optimizer			Adam	
Epochs			10	
Batch Size			32	
Device		GPU (CUDA)		
	precision	recall	f1-score	support
Female	0.96	0.94	0.95	825
Male	0.92	0.94	0.93	577
accuracy			0.94	1402
macro avg	0.94	0.94	0.94	1402
eighted avg	0.94	0.94	0.94	1402

Analisa:

- 1.Train accuracy 1.0 --> overfitting
- 2. Gap terlalu besar antara train dan validation data, model terlalu hafal dengan data training
- 3. Train loss sangat rendah --> overfitting
- 4. Validation loss tidak stabil
- 5. Kesalahan lebih banyak pada prediksi female sebagai male dibanding sebaliknya
- 6. precision, recall dan f1 score sangat tinggi, kemungkinan overfitting

Kesimpulan:

Precision, recall dan f1 score sangat tinggi, kemungkinan overfitting, model pretrained besar VGG16 dengan dataset kecil sangat cepat menghafal

Augmentation

Komponen			Detail	
Train/Test Split			80% / 20%	
Loss Function CrossEntropyLoss				
Optimizer			Adam	
Epochs 10				
Batch Size 32				
Device		GPU (CUDA)		
	precision	recall	f1-score	support
Female Male	0.96 0.92	0.94 0.94	0.95 0.93	825 577
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	1402 1402 1402

Analisa:

- 1.Train accuracy 100%, va;idation accuracy 94% --> masih overfitting
- 2. Train Loss = sangat kecil, Val Loss tetap besar --> augmentasi belum menambah kompleksitas cukup

Kesimpulan:

Efek augmentasi tidak mempengaruhi hasil validation test, overfitting masih terjadi, augmentasi hanya bantu generalisasi di training

	Sebelum augment	Setelah augment
Accuracy	1	1
Female	0.96	0.96
Male	0.94	0.94
Train loss	Yes	Yes
Validation loss	Yes	Yes

Rekomendasi Lanjutan

- 1.Eksperimen dengan jenis augmentasi lain, mungkin augmentasi masih terlalu ringan
- 2. Menambah epoch

Pred: Female | Label: Female

Pred: Male | Label: Male

Normalize

Pred: Female | Label: Female

Pred: Male | Label: Male

Pred: Female | Label: Female

Augmentation

Normalize

Komponen			Detail			
Train/Test Split			80% / 20%			
Loss Function		CrossEntropyLoss				
Optimizer			Adam			
Epochs			10			
Batch Size		32				
Device			GPU (CUDA)			
	precision	recall	f1-score	support		
Female	0.92	0.93	0.92	825		
Male	0.90	0.88	0.89	577		
accuracy			0.91	1402		
macro avg	0.91	0.91	0.91	1402		
weighted avg	0.91	0.91	0.91	1402		

Analisa:

- 1.Train accuracy naik dari 0.8 ke 0.9
- 2. Validation accuracy lebih tinggi dari train di akhir epoch
- 3. Tidak terjadi overfitting
- 4. Train dan validation loss turun bersamaan
- 5. Tidak ada underfitting/ overfitting
- 6. Precision macro average 91% --> performa seimbang

Kesimpulan:

ResNet50 mampu memberikan performa stabil tanpa overfitting, train dan validation loss/acuracy berjalan bersamaan.

Augmentation

Komponen			Detail		
Train/Test Split			80% / 20%		
Loss Function			CrossEntropyLoss		
Optimizer			Adam		
Epochs	10				
Batch Size	32				
Device		GPU (CUDA)			
	precision	recall	f1-score	support	
Female	0.97	0.96	0.96	825	
Male	0.94	0.95	0.95	577	
accuracy			0.96	1402	
macro avg weighted avg	0.96 0.96	0.96 0.96		1402 1402	

Analisa:

- 1.Train accuracy mencapai 1
- 2. Validation accuracy naik
- 3. Tidak ada gap signifikan antara train dan validation accuracy
- 4. Train loss mendekati 0
- 5. validation loss fluktuatif, ada indikasi overfitting
- 6. Kesalahan berkurang setelah augmentasi

Kesimpulan:

Data augmentasi berhasil di Resnet 50, akurasi dan f1 score meningkat tanpa overfitting berlebih. Model jadi lebih seimbang antara female dan male

	Sebelum augment	Setelah augment
Accuracy	0.91	0.96
Female	0.92	0.96
Male	0.89	0.95
Train loss	Yes	Yes
Validation loss	Yes	Yes

Rekomendasi Lanjutan

1.Eksperimen dengan jenis augmentasi lain, bisa coba early stop

Pred: Male | Label: Male

Pred: Male | Label: Male

Pred: Female | Label: Female

Pred: Male | Label: Male

Pred: Female | Label: Female

Pred: Female | Label: Female

Augmentation

Normalize

Komponen			Detail		
Train/Test Split 80% / 20%					
Loss Function	ction CrossEntropyLoss				
Optimizer			Adam		
Epochs 10					
Batch Size 32					
Device		GPU (CUDA)			
	precision	recall	f1-score	support	
Female	0.95	0.88	0.92	238	
Male	0.85	0.94	0.89	174	
accuracy			0.91	412	
macro avg	0.90	0.91	0.90	412	
weighted avg	0.91	0.91	0.91	412	

Analisa:

- 1.Train accuracy naik dari 0.65 ke 0.88
- 2. Validation accuracy lebih tinggi dari train di akhir epoch
- 3. Tidak terjadi overfitting
- 4. Train dan validation loss sama-sama turun
- 5. Tidak ada underfitting/ overfitting
- 6. Kesalahan terjadi 28 kasus dimana female diklasifikasi jadi male
- 7. Female precision 95% akurat, Male prescision 85% akurat
- 8. f1 = 0.90 macro average --> performa seimbang

Kesimpulan:

GoogleNet mampu mencapai akurasi tinggi 91% hanya dalam 10 epoch tanpa augmentation, kurva training stabil tidak ada overfitting

Epoch

0.70

Komponen			Detail	
Train/Test Split		80% / 20%		
Loss Function			CrossEntrop	yLoss
Optimizer			Adam	
Epochs 10				
Batch Size		32		
Device		GPU (CUDA)		
lassificatio	n Report:			
	precision	recall	f1-score	support
Female	0.92	0.89	0.91	238
Male	0.86	0.90	0.88	174
accuracy			0.89	412
macro avg	0.89	0.89	0.89	412
weighted avg	0.89	0.89	0.89	412

Analisa:

Train Accuracy Val Accuracy

- 1.Train accuracy naik dari 0.7 ke 0.9
- 2. Train dan validation loss turun bersamaan
- 3. Validation loss lebih rendah dari train loss berarti proses augmentation bisa membantu
- 4. Tidak terjadi peningkatan akurasi, malah terjadi penurunan
- 5. Female precision membaik dibanding tanpa augmentation
- 6. Accuracy turun dari 0.91 ke 0.89
- 8. f1 macro accuracy juga turun dari 0.9 ke 0.89

Kesimpulan:

Data augmentation tidak memberikan peningkatan performa, bahkan menurunkan akurasi, namun performa masih baik karena f1 score masih diatas 0.8 untuk kedua kelas

	Sebelum augment	Setelah augment
Accuracy	0.91	0.89
Female	0.92	0.91
Male	0.89	0.88
Train loss	Yes	Yes
Validation loss	Yes	Yes

Rekomendasi Lanjutan

- 1. Eksperimen dengan jenis augmentasi lain
- 2. Menambah epoch

Pred: Female | Label: Female

Pred: Female | Label: Female

Pred: Female | Label: Female

Pred: Female | Label: Female

Pred: Female | Label: Female

Pred: Male | Label: Female

Augmentation

COMPARISON

Model	Augmentasi	Accuracy	f1 female/male	Macro f1	Train acc	Overfitting
VGG16	no	0.54	0.95/0.93	0.94	1.00	yes
VGG16	yes	0.94	0.95/0.93	0.94	1.00	yes
Googlenet	no	0.91	0.92/0.89	0.90	0.88	no
Googlenet	yes	0.89	0.91/0.88	0.89	0.91	no
Resnet50	no	0.91	0.92/0.89	0.91	0.90	no
Resnet50	yes	0.96	0.96/0.95	0.96	1.00	no

CONCLUSION & IMPROVEMENT

- 1. Akurasi tertinggi ada pada model Resnet50 baik normal maupun hasil augmentasi
- 2. Googlenet sangat stabil tapi tidak mendapat benefit dari augmentasi
- 3. Minimum overfitting ada pada model googlenet sebelum augmentasi
- 4. Model VGG16 tidak efektif digunakan, bahkan setelah augmentasi, sehingga perlu regulariasi tambahan
- 5. Untuk project gender classification ini perlu pengembangan lebih lanjut terutama untuk bagian VGG dan googlenet agar mendapat pelatihan yang lebih cepat dan akurat.
- 6. Untuk improvement bisa ditambahkan model augmentasi lain sesuai model arsitekturnya, dan juga memperpanjang epoch 20-30 kali untuk melihat efek jangka panjang augmentasi

THANK YOU

