

Machine Learning

Multiple features

Multiple features (variables).

Size (feet ²)	Price (\$1000)		
$\rightarrow x$	y ~		
2104	460		
1416	232		
1534	315		
852	178		
•••			

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
_	× 1	×	×3	× 4	7)	
_	2104	5	1	45	460 7	
	1416	3	2	40	232	M= 47
	1534	3	2	30	315	
	852	2	1	36	178	
						J Thurs
No	otation:	*	*	1	~	(2) = (3)
_	<i>→ n</i> = nu	mber of fea	atures	n = 4		- 3 (

 \rightarrow $x^{(i)}$ = input (features) of i^{th} training example.

 $\longrightarrow x_j^{(i)}$ = value of feature j in i^{th} training example.

Andrew Ng

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. [O₀ O₁...O_n]

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_1 \end{bmatrix} \in \mathbb{R}^{m_1} \qquad 0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{n_{T_1}} \qquad (n_{T_1}) \times (n_{$$

Multivariate linear regression.

Machine Learning

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:

$$\frac{J(\theta_0, \theta_1, \dots, \theta_n)}{J(\theta_0)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **(simultaneously update for every** $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - o \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$rac{\partial}{\partial heta_0} J(heta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x^{(i)}}$$

(simultaneously update $\hat{ heta}_0, heta_1$)

}

7 New algorithm $(n \ge 1)$:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update $heta_j$ for

$$j=0,\ldots,n$$
)

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²) \leftarrow x_2 = number of bedrooms (1-5) \leftarrow θ_2 θ_2 θ_1

$$\Rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

 $\rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

Machine Learning

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.03, 1, \dots$$

Machine Learning

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_{0} + \theta_{1} \times frontage + \theta_{2} \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \Theta_{0} + \Theta_{1} \times depth$

Clad crea

Polynomial regression

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x_{1} + \theta_{2}x_{2} + \theta_{3}x_{3}$$

$$= \theta_{0} + \theta_{1}(size) + \theta_{2}(size)^{2} + \theta_{3}(size)^{3}$$
Size (x)
$$= (1 - 1) \cdot (0 - 1) \cdot (0 - 1) \cdot (0 - 1)$$
Size (x)
$$= (1 - 1) \cdot (0 - 1) \cdot (0 - 1) \cdot (0 - 1)$$
Size (x)

Size (x)

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

Choice of features

Machine Learning

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve for ϕ

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \cdots = 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

1		Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000))
$\rightarrow x_0$		x_1	x_2	x_3	x_4	y	
1		2104	5	1	45	460	7
1		1416	3	2	40	232	l
1		1534	3	2	30	315	
1		852	2	_1	3 6	178	7
	> :	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $534 3 2$ $852 2 1$ $M \times (M+1)$	2 40 2 30 3 36	$y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	460 232 315 178	1est or

<u>m</u> examples $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$; <u>n</u> features.

E.g. If
$$\underline{x^{(i)}} = \begin{pmatrix} 1 \\ x_{1}^{(i)} \end{pmatrix} \times = \begin{bmatrix} 1 \\ x_{2}^{(i)} \end{bmatrix} \begin{pmatrix} y_{1}^{(i)} \\ y_{2}^{(i)} \end{pmatrix} \begin{pmatrix} y_{2}^{(i)} \\ y_{3}^{(i)} \end{pmatrix} \begin{pmatrix} y_{1}^{(i)} \\ y_{2}^{(i)} \end{pmatrix}$$

Andrew Ng

$$\theta = (X^T X)^{-1} X^T y$$

$$(X^T X)^{-1} \text{ is inverse of matrix } \underline{X}^T X.$$

$$Set \quad A: \quad X^T X.$$

$$(x^T X)^{-1} = A^{-1}$$

$$Octave: \quad pinv \quad X' * X' * y$$

$$pinv \quad (X^T * X) * X^T * y$$

$$pinv \quad (X^T * X) * X^T * y$$

$$O \le x_1 \le 1$$

$$O \le x_2 \le 10^{-5}$$

$$O \le x_3 \le 10^{-5}$$

\underline{m} training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- Needs many iterations.
 - Works well even when n is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute

$$(X^TX)^{-1} \xrightarrow{n \times n} O(n^3)$$

• Slow if \underline{n} is very large.

$$N = 10000$$

Machine Learning

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in m}^2$
 $x_1 = (3.18)^2 \times 1$

$$1m = 3.78$$
 feet
 $3m = 10$
 $3n = 10$

- Too many features (e.g. $m \leq n$).
 - Delete some features, or use regularization.