Chapter 4

Analyzing Change: Applications of Derivatives

Relative Extreme Points

Definition 4.2.1 (Relative Extrema)

Definitions

Let $f(x)$ be a function defined on an input interval $[a, b]$. Let $a < c < b$.
We say that f has a at c if the output $f(c)$ is
any other output in some interval around c . Likewise, f has a
at c if the output $f(c)$ is any other output in some interval around c .
Relative maxima/minima are also referred to as
Definition 4.2.2 (Critical Point)
A critical point of a continuous function f is a pairat which f is
The input value c of a
critical point is called the

Chapter 4.2 133

Example 4.2.3. Find the critical points of $f(x) = 4x^3 + 8x^2 - 20x - 21$ on the interval [-5, 5].

Theorem 4.2.4 (First Derivative Test)
Suppose c is a critical input of a continuous function f .
• If f' changes from positive to negative at c , then
• If f' changes from negative to positive at c , then
• If f' does not change its sign at c , then
·

Theorem 4.2.5 (Conditions Where Extreme Points Exist) For a function f with input x, a relative extremum can occur at x = c only if f(c) exists/is defined. Further, • A relative extremum exists where ______ and the graph of f'(x)the input axis at x = c. • A relative extremum can exist where f(x) exists, but f'(x) does not exist; further investi-

gation will be needed.

134 Chapter 4.2

Theorem 4.2.6 (Old Derivative Facts)

Let f(x) be a function defined on an input interval [a, b], and let a < c < b.

- If ______, then f(x) is increasing at x = c.
- If ______, then f(x) is decreasing at x = c.
- If ______, then the line tangent to f(x) at x = c is horizontal.

Methods of Finding Extrema

Let f(x) be differentiable on an open interval (a, b).

Algebraic Method:

- 1. Calculate the derivative f'(x)
- 2. Set f'(x) = 0 and solve for x. All solutions will be horizontal asymptotes; individual analysis (corresponding to 1st Derivative Test) will determine if f'(c) is a maximum, minimum, or neither.

Calculator, Method 1:

- 1. Input f(x) into Y_1
- 2. Plot f(x), and do Zoom \rightarrow 0:ZoomFit
- 3. If you are finding a **local maximum**, press 2nd→Trace→4:maximum. If you are finding a **local minimum**, press 2nd→Trace→3:minimum.
 - (a) The calculator will prompt for a left bound. Input a number *slightly less than* where you expect the maximum/minimum to be.
 - (b) The calculator will then prompt for a right bound. Input a number *slightly greater than* where you expect the maximum/minimum to be.
 - (c) The calculator will then prompt for a guess. Input a guess, or press enter.
 - (d) The max/min will be displayed as a coordinate pair. If the pair is needed, use appropriate rounding guidelines.
 - (e) If you forget the value of the max/min, the calculator will store the x-coordinate in the variable X. In order to recall it, on the home screen, press X and the calculator will return the appropriate value.

Chapter 4.2 135

Calculator, Method 2:

- 1. Input f(x) into Y_1
- 2. In Y_2 , use the nDeriv command by pressing Math \rightarrow nDeriv(. The complete entry must look like

$$Y_2 = \mathtt{nDeriv}(\mathtt{Y1}(\mathtt{X}),\mathtt{X},\mathtt{X})$$

This will have the calculator graph the derivative as well as the original function

3. The local extrema are given by wherever the derivative graph touches the x-axis. According to 1st Derivative Test, a local max occurs when the derivative crosses from positive to negative, and a local min occurs when the derivative crosses from negative to positive.

Examples

Example 4.2.7. The percentage of people in the United States (aged 15 and above) who are sleeping at a given time of night can be modeled as

$$s(t) = -2.63t^2 + 29.52t + 13.52$$
 percent, t number of hours after 9pm

- (a) Find the critical input values of s on the interval $0 \le t \le 11$, and calculate the output value for any critical point.
- (b) Graph s(t) and s'(t). Label and interpret the critical inputs.

Example 4.2.8. Sketch a graph such that

- f'(x) > 0 for x < -1
- f'(x) < 0 for x > -1
- f'(-1) = 0

Example 4.2.9. Sketch a graph such that

- f has a relative maximum at x = 3
- f has a relative minimum at x = -1
- f'(x) < 0 for x < -1 and x > 3
- f'(x) > 0 for -1 < x < 3
- f'(-1) = f'(3) = 0

Example 4.2.10. Consider the function $f(x) = x^2 + 2.5x - 6$.

(a) Write the derivative formula

(b) Locate and classify each critical point.

Example 4.2.11. Consider the function $f(x) = 0.3x^3 + 1.2x^2 - 6x + 4$.

(a) Write the derivative formula

(b) Locate and classify each critical point.

Example 4.2.12. Consider the function $f(x) = 5e^{-x} + \ln x$ (for x > 0).

(a) Write the derivative formula

(b) Locate and classify each critical point.

Example 4.2.13. Consider the function $f(x) = \frac{10}{1 + 2e^{-0.5x}}$.

(a) Write the derivative formula

(b) Locate and classify each critical point.

Example 4.2.14. For the following graphs, determine which of the following statements are true:

- (1) f'(x) > 0 for x < 2
- (2) f'(x) > 0 for x > 2
- (3) f'(x) = 0 for x = 2

10.

11.

12.

