Mathematical Olympiads Discord Server

2019 October Beginner Contest

Time: 4 hours

Each problem is worth 7 points

Calculators and protractors are not allowed. Do not write your name on your working. After your timeslot finishes, please read the instructions in #how-to-submit-scripts. Do not discuss the contents of this paper outside the text channel #finished-contestants and the voice channel Post-Contest Banter until notified by staff.

Problem 1. A positive integer is called *square-free* if it is not a multiple of any square other than 1. George and his n friends sit around a table. George thinks of a positive integer k > 1 and writes it on the blackboard. The person to his left then divides the number on the blackboard by a square-free number to obtain another positive integer $k_1 < k$, and replaces k with k_1 on the blackboard. The process repeats with each person in succession, going clockwise around the table, generating positive integers $k_1 > k_2 > k_3 > \cdots$ and so on. The first person to write 1 on the blackboard wins.

Prove that for any value of n, George can always think of a positive integer k such that he is guaranteed to win.

Problem 2. Let \mathbb{Q} denote the set of rational numbers. Find all functions $f:\mathbb{Q}\to\mathbb{Q}$ such that for all rational a and b,

$$f(a)f(b) = f(a+b).$$

Problem 3. Do there exist points A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, and Z in the Euclidean plane, not all the same, such that <math>ABCD, EFGH, IJKL, MNOP, QRST, UVWX, YZAB, CDEF, GHIJ, KLMN, OPQR, STUV, and WXYZ are all squares?

(Note that the vertices of a square do not necessarily have to be in order, so that if ABCD is a square then so is ACBD.)

Problem 4. Let ABC be a triangle and denote by M the midpoint of BC. Suppose X is the point on the perimeter of ABC such that MX bisects the perimeter of ABC. Show that MX is parallel to the internal angle bisector of $\angle BAC$.