import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

df=pd.read_csv("/content/WineQT.csv")

- 1	_
- 1	_

\Rightarrow		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	Id
	0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	0
	1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5	1
	2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5	2
	3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6	3
	4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5	4
	1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6	1592
	1139	6.8	0.620	80.0	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5	6	1593
	1140	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5	1594
	1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6	1595
	1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5	1597

1143 rows × 13 columns

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1143 entries, 0 to 1142 Data columns (total 13 columns):

Column Non-Null Count Dtype -----

0	fixed acidity	1143 non-null	float64
1	volatile acidity	1143 non-null	float64
2	citric acid	1143 non-null	float64
3	residual sugar	1143 non-null	float64
4	chlorides	1143 non-null	float64
5	free sulfur dioxide	1143 non-null	float64
6	total sulfur dioxide	1143 non-null	float64
7	density	1143 non-null	float64
8	рН	1143 non-null	float64
9	sulphates	1143 non-null	float64
10	alcohol	1143 non-null	float64
11	quality	1143 non-null	int64
12	Id	1143 non-null	int64

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	Id
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	0
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	1
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	2
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	3
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	4

citric acid

```
# @title citric acid

from matplotlib import pyplot as plt

df['citric acid'].plot(kind='hist', bins=20, title='citric acid')
plt.gca().spines[['top', 'right',]].set_visible(False)
```


volatile acidity

```
# @title volatile acidity
from matplotlib import pyplot as plt
df['volatile acidity'].plot(kind='hist', bins=20, title='volatile acidity')
plt.gca().spines[['top', 'right',]].set_visible(False)
```


fixed acidity

```
# @title fixed acidity
from matplotlib import pyplot as plt
df['fixed acidity'].plot(kind='hist', bins=20, title='fixed acidity')
plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
plt.subplot(1, 2, 1)
sns.boxplot(x='quality', y='density', data=df, palette='viridis')
plt.title('Density across Wine Quality Levels')
plt.xlabel('Quality')
plt.ylabel('Density')
```

<ipython-input-42-742e99667c40>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=F sns.boxplot(x='quality', y='density', data=df, palette='viridis')
Text(0, 0.5, 'Density')

Density across Wine Quality Levels


```
# Acidity distribution across different quality levels
plt.subplot(1, 2, 2)
sns.boxplot(x='quality', y='pH', data=df, palette='viridis')
plt.title('Acidity (pH) across Wine Quality Levels')
plt.xlabel('Quality')
plt.ylabel('pH')

plt.tight_layout()
plt.show()
```

<ipython-input-43-4ac52eaba85b>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=f sns.boxplot(x='quality', y='pH', data=df, palette='viridis')

Acidity (pH) across Wine Quality Levels


```
# Correlation matrix heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap of Wine Dataset Features')
plt.show()
```

Correlation Heatmap of Wine Dataset Features

Correlation reatinap of wife Dataset reatures													1.0
fixed acidity -	1.00	-0.25	0.67	0.17	0.11	-0.16	-0.11	0.68	-0.69	0.17	-0.08	0.12	1.0
volatile acidity -	-0.25	1.00	-0.54	-0.01	0.06	-0.00	0.08	0.02	0.22	-0.28	-0.20	-0.41	- 0.8
citric acid -	0.67	-0.54	1.00	0.18	0.25	-0.06	0.04	0.38	-0.55	0.33	0.11	0.24	- 0.6
residual sugar -	0.17	-0.01	0.18	1.00	0.07	0.17	0.19	0.38	-0.12	0.02	0.06	0.02	
chlorides -	0.11	0.06	0.25	0.07	1.00	0.02	0.05	0.21	-0.28	0.37	-0.23	-0.12	- 0.4
free sulfur dioxide -	-0.16	-0.00	-0.06	0.17	0.02	1.00	0.66	-0.05	0.07	0.03	-0.05	-0.06	- 0.2
total sulfur dioxide -	-0.11	0.08	0.04	0.19	0.05	0.66	1.00	0.05	-0.06	0.03	-0.19	-0.18	
density -	0.68	0.02	0.38	0.38	0.21	-0.05	0.05	1.00	-0.35	0.14	-0.49	-0.18	- 0.0
pH -	-0.69	0.22	-0.55	-0.12	-0.28	0.07	-0.06	-0.35	1.00	-0.19	0.23	-0.05	0.2
sulphates -	0.17	-0.28	0.33	0.02	0.37	0.03	0.03	0.14	-0.19	1.00	0.09	0.26	
alcohol -	-0.08	-0.20	0.11	0.06	-0.23	-0.05	-0.19	-0.49	0.23	0.09	1.00	0.48	0.4
quality -	0.12	-0.41	0.24	0.02	-0.12	-0.06	-0.18	-0.18	-0.05	0.26	0.48	1.00	0.6
	<u>it</u>	<u>it</u> y -	- bi	ar -	es -	de -	de -	ity -	품	es -	- lot	ity -	

```
# Boxplot of wine quality distribution
plt.figure(figsize=(10, 6))
sns.boxplot(x='quality', y='alcohol', data=df, palette='coolwarm')
plt.title('Distribution of Alcohol Content by Wine Quality')
plt.xlabel('Quality')
plt.ylabel('Alcohol Content')
plt.show()
```

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=F sns.boxplot(x='quality', y='alcohol', data=df, palette='coolwarm')

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	Id
1138	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6	1592
1139	6.8	0.620	0.08	1.9	0.068	28.0	38.0	0.99651	3.42	0.82	9.5	6	1593
1140	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5	1594
1141	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6	1595
1142	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5	1597

row,columns=df.shape
print("The number of rows are",row)
print("The number of columns are",columns)

The number of rows are 1143
The number of columns are 13

df.size

14859

df.columns

df.dtypes

fixed acidity float64
volatile acidity float64
citric acid float64
residual sugar float64
chlorides float64

```
total sulfur dioxide
                            float64
     density
                            float64
                            float64
     рΗ
     sulphates
                            float64
     alcohol
                            float64
     quality
                              int64
     Ιd
                              int64
     dtype: object
df.isna().sum()
     fixed acidity
     volatile acidity
     citric acid
     residual sugar
                             0
     chlorides
     free sulfur dioxide
                             0
     total sulfur dioxide
     density
                             0
     рΗ
     sulphates
     alcohol
     quality
     Ιd
     dtype: int64
df.drop('Id', inplace=True, axis=1)
from sklearn.model_selection import train_test_split
```

free sulfur dioxide

V = df dnon/[!quality!] avic = 1)

float64