$\tau_{1}^{\#2} \uparrow^{\alpha}$	$\tau_{1^{-}}^{#1} + \alpha$	$\sigma_{1}^{\#2} + \alpha$	$\sigma_{1^{-}}^{#1} \dagger^{\alpha}$	$\tau_{1+}^{*1} + \alpha \beta$	$\sigma_{1^+}^{*2} \dagger^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	$-\frac{2i\sqrt{2}k}{(\alpha_0\text{-}4\beta_1)(1+k^2)}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$		$\sigma_{1}^{\#1}{}_{\alpha\beta}$
0	0	0	0	$\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$\sigma_{1^{+}lphaeta}^{\#2}$
0	0	0	0	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	$ au_{1}^{\#1}{}_{lphaeta}$
$\frac{4 i k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)}$	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	0	0	0	$\sigma_{1^- \alpha}^{\#1}$
$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	0	0	$\sigma_{1^- lpha}^{\# 2}$
0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
$-\frac{4 k^2}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$	0	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	0	0	$ au_{1^-\alpha}^{\#2}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

		$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}{}_{\alpha}$
$\omega_{1}^{\#1} \dagger^{\alpha \beta}$	3 1	$\frac{1}{4}(\alpha_0-4\beta_1)$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_{1}^{#2} \dagger^{\alpha \beta}$	3	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha \beta}$	3	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1} + ^c$	γ	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$
$\omega_{1}^{#2} + ^{c}$	γ	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_1^{#1} \dagger^{a}$	γ	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{6}$	γ	0	0	0	$\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$	0	0	0

r#2 1 α	$\omega_{2}^{#1} \dagger^{\alpha\beta\chi}$
0	βχ
0	0
0	
$(\alpha_0 - 4 \beta_1) k$	0
0	
0	$-rac{lpha_0}{4}+eta_1$
0	1

 $2 \beta_1 k^2$

 $\frac{\alpha_0}{4} + \beta_1$

0

 $\omega_{2}^{\#1}{}_{lphaeta}$

 $f_{2}^{\#1}\alpha\beta$

 $\omega_{2^{-}}^{\#1}{}_{lphaeta\chi}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i}{\alpha_0} \frac{\sqrt{2}}{k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0-4\beta_1+2\alpha_3k^2}$

Total #:	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$ 3	$\tau_{1}^{#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
10	3	3	3	1	#	

	Massive particl	e
? $J^P = 0$	Pole residue:	$-\frac{1}{\alpha_3} > 0$
0 - 0	Polarisations:	1
\vec{k}^{μ}	Square mass:	$-\frac{\alpha_0-4\beta_1}{2\alpha_3}>0$
?	Spin:	0
	Parity:	Odd

Unitarity conditions

 $\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$