Stratified Space Learning Reconstructing Embedded Graphs

Y. Bokor¹
Mathematical Sciences Institute
Australian National University

EPFL. December 2019

¹supported by an Australian Government Research Training Program Fee-Offset Scholarship through the Australian National University

Embedded Graphs

We begin by restricting our attention to graphs.

Definition

- 1. An abstract graph G consists of two sets: a set of vertices V and a set of edges E.
- 2. An *embedded graph* |G| in n dimensions is a geometric realisation of an abstract graph.

Samples

Definition

Given an embedded graph $|G| \subset \mathbb{R}^n$, a point cloud sample P of |G| consists of a finite collection of points in \mathbb{R}^n sampled from |G|, potentially with noise. If the Hausdorff distance $d_H(|G|,P) \leq \epsilon$, we say P is an ε -dense sample.

This is a semi-parametric problem:

- ▶ obtain the abstract structure of the graph,
- obtain numerical estimates for the embedding of the abstract structure.

Let P be an ε -dense sample of $|G| \subset \mathbb{R}^n$, with |G| satisfying some conditions:

1. the distance between vertices is bounded below,

- 1. the distance between vertices is bounded below,
- 2. the distance between edges that do not share a vertex is bounded below,

- 1. the distance between vertices is bounded below,
- 2. the distance between edges that do not share a vertex is bounded below.
- 3. the angle between edges at a vertex is bounded below,

- 1. the distance between vertices is bounded below,
- 2. the distance between edges that do not share a vertex is bounded below.
- 3. the angle between edges at a vertex is bounded below,
- 4. at degree 2 vertices, the angle between the edges is also bounded above.

1. For each sample p, determine dim p.

- 1. For each sample p, determine dim p.
- 2. Find the number of vertices and edges by clustering the dim 0 and dim 1 samples.

- 1. For each sample p, determine dim p.
- 2. Find the number of vertices and edges by clustering the dim 0 and dim 1 samples.
- 3. Find boundary relations.

Dimension Function

Given a sample q, we consider a ball of radius 10ε centered at q, and look at the samples within this ball. There are several steps to determine if dim q is 0 or 1.

Dimension Function

- 1. Initialise graph \mathfrak{G}_q with vertices points $p \in P$ such that $d(p,q) \leq 10\epsilon$.
- 2. For p, p' vertices in \mathfrak{G}_q , add an edge between p and p' if $d(p, p') \leq 2\epsilon$.

Dimension Function

3. If the number of connected components in \mathfrak{G}_q is not 1, return dimension 1.

Dimension Function

4. Else, remove points p with $d(p,q) \le 8\varepsilon$, and add in edges between $p, p' \in \mathfrak{G}_q$ if $d(p,p') \le 3\varepsilon$.

Dimension Function

- 5. If the number of connected components in \mathfrak{G}_q is not 2, **return** 0.
- 6. Else, check Angle Condition.

Angle Condition

- 7. Find average of coordinates of points in the two connected components.
- 8. Calculate angle between the line segments from averages to q.

Angle Condition

- 9. If angle is less that $2\arccos(1/4)$ return 0.
- 10. Else return 1.

Vertices

- 1. Initialise empty vertex set V.
- 2. Initialise graph \mathfrak{G} on $\dim^{-1}(0)$, and connect p, p' if $d(p, p') \leq 9\varepsilon$.
- 3. For each connected component, add an element to V.
- 4. return V.

Edges

- 1. Initialise empty edge set E.
- 2. Initialise graph \mathfrak{G} on $\dim^{-1}(1)$, and connect p, p' if $d(p, p') \leq 3\varepsilon$.
- 3. For each connected component, add a unique element to E.
- 4. **return** *E*.

Boundary relations

- 1. Initalise $|E| \times |V|$ array B of zeros.
- 2. For each $i \in E$, find points in dim⁻¹(0) within 3ε of the corresponding points of dim⁻¹(1).
- 3. For $i \in E, j \in V$ change $B_{i,j}$ to 1 if samples corresponding to j are within 3ε of samples corresponding to i.

We now use non-linear least squares regression to best fit the locations of the vertices.

Partial Objectives

For dim
$$p^{(i)} = 0$$
: $\phi_i(x_1, \dots, x_{k_v}, \theta_i) = ||p^{(i)} - x_{j(i)}||^2$, with $\theta_i = 0$.

Partial Objectives

- For dim $p^{(i)} = 0$: $\phi_i(x_1, \dots, x_{k_v}, \theta_i) = ||p^{(i)} x_{j(i)}||^2$, with $\theta_i = 0$.
- For dim $p^{(i)} = 1$:

$$\phi_i(x_1,\ldots,x_{k_v},\theta_i) = \|p^{(i)} - \theta_i x_{j_1(i)} - (1-\theta_i) x_{j_2(i)}\|^2.$$

Partial Objectives

- For dim $p^{(i)} = 0$: $\phi_i(x_1, \dots, x_{k_v}, \theta_i) = ||p^{(i)} x_{j(i)}||^2$, with $\theta_i = 0$.
- For dim $p^{(i)} = 1$:

$$\phi_i(x_1,\ldots,x_{k_v},\theta_i) = \|p^{(i)} - \theta_i x_{j_1(i)} - (1-\theta_i) x_{j_2(i)}\|^2.$$

Combined objective:

$$\Phi(x_1,\ldots,x_{k_v},\theta_1,\ldots,\theta_n)=\sum_{i=1}^n\phi_i(x_1,\ldots,x_{k_v},\theta_i),$$

with
$$\theta_i \in [0,1]$$
 and $\theta_i = 0$ if $\dim(p^{(i)}) = 0$.

Big question: can we guarantee that the structure we identify is correct?

Big question: can we guarantee that the structure we identify is correct?

YES!!!!!!

Big question: can we guarantee that the structure we identify is correct?

YES!!!!!!

There are a few prpositions which when combined, prove the correctness of our algorithm.

Theorem

Let v be a vertex of $|G| \subset \mathbb{R}^n$, and $p \in P$ a sample. If p is within 3ε of v, then dim p = 0.

Theorem

Let $p \in P$ be a sample which is within ε of edge u, and within 4ε of edge w, u and w having a common vertex v. In addition, assume that the angle α between u and w at v is bounded below by $\frac{\pi}{3}$. Then d(p,v) is bounded above by $2\sqrt{7}\varepsilon$.

Theorem

Let $p \in P$ be a sample which is within ε of edge u, and within 4ε of edge w, u and w having a common vertex v. In addition, assume that the angle α between u and w at v is bounded below by $\frac{\pi}{3}$ and above by $\frac{\pi}{2}$. Then $\dim p = 0$.

Theorem

Let $p \in P$ be a sample with $\dim p = 1$, which is within ε of edge u, and within 4ε of edge w, u and w having a common vertex v, $\deg v > 2$. Then p is more than 3ε away from any sample \widetilde{p} with $\dim \widetilde{p} = 1$ and \widetilde{p} more than ε away from u.

 $1. \ \ \text{Allow for polynomial edges}.$

- 1. Allow for polynomial edges.
- 2. Include higher dimensional strata.

- 1. Allow for polynomial edges.
- 2. Include higher dimensional strata.
- 3. Examine possible uses of machine learning to improve the algorithm.

- 1. Allow for polynomial edges.
- 2. Include higher dimensional strata.
- 3. Examine possible uses of machine learning to improve the algorithm.
- 4. Repartition sample points with knowledge of the modeled vertex locations.