

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Kirschbaum, Bernd Berglund, Erick Meisterernst, Michael

Polites, Greg

- (ii) TITLE OF INVENTION: PURIFICATION OF HIGHER ORDER TRANSCRIPTION COMPLEXES FROM TRANSGENIC NON-HUMAN ANIMALS
 - (iii) NUMBER OF SEQUENCES: 17
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: HELLER, EHRMAN, WHITE & McAULIFFE
 - (B) STREET: 1666 K Street, N.W., Suite 300
 - (C) CITY: Washington
 - (D) STATE: D.C.
 - (E) COUNTRY: USA
 - (F) ZIP: 20006
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/849,243
 - (B) FILING DATE: 07-May-2001
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Granados, Patricia D.
 - (B) REGISTRATION NUMBER: 33,683
 - (C) REFERENCE/DOCKET NUMBER: 38005-0148
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202)912-2000
 - (B) TELEFAX: (202)912-2020
 - (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Val 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 10

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
 - Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 10
- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1..22 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GGAGCAACCG CCTGCTGGGT GC 22 (2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 1..21 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: CCTGTGTTGC CTGCTGGGAC G 21 (2) INFORMATION FOR SEQ ID NO: 7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: exon

(B) LOCATION: 1..21

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGAGACTGAA GTTAGGCCAG C

21

- (2) INFORMATION FOR SEQ ID NO: 8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 76 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: exon(B) LOCATION: 1..76
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
- GCGGCACCAG GCCGCTGCTG TGATGATGAT GATGATGGCT GCTGCCCATG ACTGCGTAAT
- GCGGTCATGA CGCTTT

76

60

- (2) INFORMATION FOR SEQ ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 75 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1..75
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
- GAAGGGGGTG GGGGAGGCAA GGGTACATGA GAGCCATTAC GTCGTCTTCC TGAATCCCTT

60

TAGCCGCTTT GCTCG

75

- (2) INFORMATION FOR SEQ ID NO: 10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1..22
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCCTATGACG TCCCGGATTA CG

22

- (2) INFORMATION FOR SEQ ID NO: 11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1..22
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GTGGAGTGGT GCCCGGCAAG GG

22

- (2) INFORMATION FOR SEQ ID NO: 12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly Cys

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1310 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

480

540

- (A) NAME/KEY: exon
- (B) LOCATION: 1..1310
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
- CCATGGGCTA TCCCTATGAC GTCCCGGATT ACGCAGTCAT GGGCAGCAGC CATCATCATC

 ATCATCACAG CAGCGGCCTG GTGCCGCGCG GCAGCCATAT GGATCAGAAC AACAGCCTGC

 CACCTTACGC TCAGGGCTTG GCCTCCCCTC AGGGTGCCAT GACTCCCGGA ATCCCTATCT

 TTAGTCCAAT GATGCCTTAT GGCACTGGAC TGACCCCACA GCCTATTCAG AACACCAATA

 GTCTGTCTAT TTTGGAAGAG CAACAAAGGC AGCAGCAGCA ACAACAACAG CAGCAGCAGC

 AGCAGCAGCA GCAGCAACAG CAACAACAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC

 AGCAGCAGCA GCAGCACAA CAGCAGCAG AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC

 AGCAGCAGCA GCAGCAGCAA CAGGCAGCAG CAGCAGCAGC CGTTCAGCAG TCAACGTCCC

AGCAGGCAAC ACAGGGAACC TCAGGCCAGG CACCACAGCT CTTCCACTCA CAGACTCTCA

CAACTGCACC CTTGCCGGGC ACCACTCCAC TGTATCCCTC CCCCATGACT CCCATGACCC

600	CCATCACTCC	TGCCACGCCA	GCTTCGGAGA	GTTCTGGGAT	TGTACCGCAG	CTGCAAAATA
660	TTGTATCCAC	AGTGAATCTT	GGTTGTAAAC	TTGACCTAAA	GACCATTGCA	CTTCGTGCCC
720	GAAACGCCGA	ATATAATCCC	AAGCGGTTTG	CTGCGGTAAT	CATGAGGATA	AGAGAGCCAC
780	GAACCACGGC	ACTGATTTC	AGTTCTGGGA	AAATGGTGTG	CACAGGAGCC	AAGAGTGAAG
840	AACAGTCCAG	ACTGGCAGCA	AGAAAATATG	CTAGAGTTGT	ACAGAAGTTG	GGTTTTCCAG
 900	CTAAGTTCTT	GGACTTCAAG	ATTCAGAACA	TGGTGGGGAG	CTGTGATGTG	AAGTTTCCTA
	TAAGGTTAGA	AGGCCTTGTG	CTCACCCACC	AACAATTTAG	TAGTTATGAG	CCAGAGTTAT
960	TTCCTGGTTT	AATCTACAGA	ATGATCAAAC	CCAGAATTGT	TCTCCTTATT	TTTGTTTCTG
1020	GAAAAGTTGT	ATTAACAGGT	GCTAAAGTCA	GAGCAGAAAT	TTATGAAGCA	TTTGAAAACA
1080	TCTACCCTAT	TCTAAAGGGA	TTCAGGAAGA	CGACGTAATG	GCTCTCATGT	ACCCTTGCCT
1140	CCCCCACCCC	CTTCTTTTTT	TTTTTTAAA	CAAATCAGTT	TGTTTTGGTA	CCTTTAAATG
1200	GTGGTGTTGT	GAGAAGATGG	ATGTTGAGTT	GCAGGGTGTG	GCACCAGGTG	ATGCCCTTCT
1260			CCCGGAATTC			
1310	GIAAGIGCCC	CITCCGGCAI	CCCGGAATIC	CIGCAGCCCA	ACGCGGCCGC	

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4286 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 1..4286
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

60	GAATTCCCCT	GCAGGTCACT	TAGCGTTGGC	CACATAGTAG	GTTCTCAAAT	ACTTGTTAAT
120	AAATAAGTTT	GTTCGAGAAG	CTGGGCAATG	ATATTCTACA	GCTGGAAGAA	GAAACATAAT
180	GATCTAGTAA	TTAGCTCAAT	TAAAAATAAA	CGTTCTTCTT	TCCTCAGAGG	AGCATTTCCC
240	AAGGCCTGCC	TTGATAGCCA	TCCAAAAAGG	CCAAGCTCAT	CCAATCTTGC	CCTAGATTTA
300	TGCTAAAATG	CAGTTACAAT	CGATAGGATG	ACAGAAAACG	ACAGCACTTA	TTTAAATATA
360	ATAGGCACTT	ATTTAAATAG	GAGAAGCTGT	GACTTCATAG	CAAGTGTTGG	GGTTAGGAAA
420	CTGGGTGGAT	AAACTTGCTG	ATGCTGTAGA	TCTTAGCCTC	TACATGAGAT	CATGTGGAAA
480	ATCTGAAAGC	ATTTTAGGTT	CCTTATGTTT	GCAATCAAAT	AACTGTACAC	CTTTTAATTT
540	AAAAAGTACC	ATGAGGCACA	CACACACACT	CGCAGGAACT	TTTTGGCGTA	ACAAAACTAG
600	AATTAGATCT	AAAAGCTAAC	TGTAGGACTG	AGTCTATTCT	AAACTGAAAG	CCTGGACATC
	TGGAGTACCA	GGGGGAGATG	ACGTGTTACG	GGCTTCCATA	AAAGCAGCTG	GCTTTGAATG
660	GAAGGAGCCA	AGAGGCCAGC	ACAGGAGCGG	ATTCGTCGCT	TTCACGGCCA	TCGAGCCGAA
720	CCTCTCGCAA	GTCCGTGAGC	CGTTAAGGAG	GCCCCCAGTC	CCGACCCTTC	GCCCCAAGCC
780	CCTCGGGGTC	CCCGGGCCTG	GTACTCCTTG	CCACACGGGA	GGGGCGCGGA	AGCCGGGGCG
840	GAGGAGGAGC	CAACCCCGGG	CTGGGCTGAG	ACCCGCAGAG	GAAGACGCTC	TAGGGATTTG
900	TCCCGGACTA	GCGAGATGGC	AAGGCTGAGG	ACGGGAGGCT	GATTGAGAGG	CGAAGGTACA
960		AATACAACCT				
1020				4		
1080						CGGAGCTGAG
1140	AGTAATTCAT	ACAAAAGGAC	TCGCCCCTGC	CTTGGGGAAT	CCCAGGGACC	GTCGTTAAAC

1200	TCCCACTAAC	GTAGAACCCA	GAGATCGCTG	CGTTCCCGCC	CCCTCACCCG	CCCGCTCTCG
1260	TCATCACTGA	GGTGGAGAAG	AGCATGCGTG	AGGCTCCGGT	GCCCGTCAGT	GGGCAGAGCG
1320	CACATCGCCC	ACAGTCCCCG	AGAAGTTGGG	GGGAGGGGTC	GGCAATTGAA	CCGGTGCCTA
1380	GAGAAGGTGG	CGCGGGGTAA	ACTGGGAAAG	TGATGTCGTG	TACTGGCTCC	GCCTTTTTCC
1440	CGAGGGTGGG	GGAGAACCGT	ATATAAGTGC	AGTAGTCGCC	GTGAACGTTC	TTTTTCGCAA
1500	CGGGTTTGCC	GCCAGAACAC	AGGTAAGTGC	CGTGTGTGGT	TCCCGCGGGC	CTGGCCTCTT
1560	TACGGGTTAT	GGCCCTTGCG	TGCCTTGAAT	TACTTCCACG	CCCCTGGCTG	CAGTACGTGA
1620	TTCTTGATCC	CGAGCTTCGG	GTTGGAAGTG	GGTGGGAGAG	TTCGAGGCCT	TGCGCTTAAG
1680	GAGCCCCTTC	GCCTCGTGCT	TGAGTTGAGG	CCTGGCCTGG	GCGCTGGGGC	CGCCGCGTGC
1740	GAATCTGGTG	GCACCTTCGC	GCCTGTCTCG	CTGCTTTCGA	TAAGTCTCTA	GCCATTTAAA
1800	ATTTTTGATG	ACCTGCTGCG	ACGCTTTTTT	TCTGGCAAGA	TAGTCTTGTA	AATGCGGGCC
1860	AAGATCTGCA	CACTGGTATT	TCGGTTTTTG	GGGCCGCGGG	CGGCGACGGG	GCCCGTGCGT
1920	CCCAGCGCAC	ATGTTCGGCG	AGGCGGGGCC	TGCGAGCGCG	GCCACCGAGA	ATCGGACGGG
1980	GGTAGTCTCA	AGCTGGCCGG	CCTGCTCTGG	TGCCTGGCCT	CGCGCCGCCG	TGTATCGCCC
2040	CGCCCTGGGC	GGCAAGGCTG	GCCCGGTCGG	CACCAGTTGC	GTGAGCGGAA	AGATGGCCGC
2100	TTCCCGGCCC	TGCTGCAGGG	AGCTCAAAAT	GGAGGACGCG	GCGCTCGGGA	GAGCGGGCGG
2160	GTGAGTCACC	CACACAAAGG	AAAAGGGCCT	TTCCGTCCTC	AGCCGTCGCT	TCATGTGACT
2220	CCACGGAGTA	CCGGGCGCCG	TCCAGGCACC	TCGATTAGTT	CTCGAGCTTT	TGGAGTACGT
2280	CGTCTTTAGG	TTGGGGGGAG	GGGTTTTATG	CGATGGAGTT	TCCCCACACT	GAGTGGGTGG

2340	AGACTGAAGT	TAGGCCAGCT	TGGCACTTGA	TGTAATTCTC	CTTGGAATTT	GCCCTTTTTG
2400	AGTTTGGATC	TTGGTTCATT	CTCAAGCCTC	AGACAGTGGT	TCAAAGTTTT	TTTCTTCCAT
2460	TTCAGGTGTC	GTGAGGAATT	GCCCGGGGGA	TCCATGGGCT	ATCCCTATGA	CGTCCCGGAT
2520	TACGCAGTCA	TGGGCAGCAG	CCATCATCAT	CATCATCACA	GCAGCGGCCT	GGTGCCGCGC
2580	GGCAGCCATA	TGGATCAGAA	CAACAGCCTG	CCACCTTACG	CTCAGGGCTT	GGCCTCCCCT
2640	CAGGGTGCCA	TGACTCCCGG	AATCCCTATC	TTTAGTCCAA	TGATGCCTTA	TGGCACTGGA
2700	CTGACCCCAC	AGCCTATTCA	GAACACCAAT	AGTCTGTCTA	TTTTGGAAGA	GCAACAAAGG
2760	CAGCAGCAGC	AACAACAACA	GCAGCAGCAG	CAGCAGCAGC	AGCAGCAACA	GCAACAGCAG
2820	CAGCAGCAGC	AGCAGCAGCA	GCAGCAGCAG	CAGCAGCAGC	AGCAGCAGCA	ACAGGCAGTG
2880	GCAGCTGCAG	CCGTTCAGCA	GTCAACGTCC	CAGCAGGCAA	CACAGGGAAC	CTCAGGCCAG
2940	GCACCACAGC	TCTTCCACTC	ACAGACTCTC	ACAACTGCAC	CCTTGCCGGG	CACCACTCCA
3000	CTGTATCCCT	CCCCCATGAC	TCCCATGACC	CCCATCACTC	CTGCCACGCC	AGCTTCGGAG
3060	AGTTCTGGGA	TTGTACCGCA	GCTGCAAAAT	ATTGTATCCA	CAGTGAATCT	TGGTTGTAAA
3120	CTTGACCTAA	AGACCATTGC	ACTTCGTGCC	CGAAACGCCG	AATATAATCC	CAAGCGGTTT
3180	GCTGCGGTAA	TCATGAGGAT	AAGAGAGCCA	CGAACCACGG	CACTGATTTT	CAGTTCTGGG
3240	AAAATGGTGT	GCACAGGAGC	CAAGAGTGAA	GAACAGTCCA	GACTGGCAGC	AAGAAAATAT
3300	GCTAGAGTTG	TACAGAAGTT	GGGTTTTCCA	GCTAAGTTCT	TGGACTTCAA	GATTCAGAAC
	ATGGTGGGGA	GCTGTGATGT	GAAGTTTCCT	ATAAGGTTAG	AAGGCCTTGT	GCTCACCCAC
3360 3420	CAACAATTTA	GTAGTTATGA	GCCAGAGTTA	TTTCCTGGTT	TAATCTACAG	AATGATCAAA

3480	CCCAGAATTG	TTCTCCTTAT	TTTTGTTTCT	GGAAAAGTTG	TATTAACAGG	TGCTAAAGTC
3540	AGAGCAGAAA	TTTATGAAGC	ATTTGAAAAC	ATCTACCCTA	TTCTAAAGGG	ATTCAGGAAG
3600	ACGACGTAAT	GGCTCTCATG	TACCCTTGCC	TCCCCCACCC	CCTTCTTTTT	TTTTTTTTAA
3660	ACAAATCAGT	TTGTTTTGGT	ACCTTTAAAT	GGTGGTGTTG	TGAGAAGATG	GATGTTGAGT
3720	TGCAGGGTGT	GGCACCAGGT	GATGCCCTTC	TGTAAGTGCC	CCTTCCGGCA	TCCCGGATAT
3780	CCTGCAGCCC	AACACGGCCG	CTCGAGCATG	CATCTAGAGA	ACGTCACGGC	CGCGATCCCC
3840	CTGTGCCTTC	TAGTTGCCAG	CCATCTGGTT	GTTTGCCCCT	CCCCGTGCC	TTCCTTGACC
3900	CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	TAATAAAATG	AGGAAATTGC	ATCGCATTGT
3960	CTGAGTAGGT	GTCATTCTAT	TCTGGGGGGT	GGGGTGGGGC	AGGACAGCAA	GGGGGAGGAT
	TGGGAAGACA	ATAGCAGGCA	TGCTGGGGAT	GCGGTGGGCT	CTATGGGTAC	CCAGGTGCTG
4020	AAGAATTGAC	CCGGTTCCTC	CTGGGCCAGA	AAGAAGCAGG	CACATCCCCT	TCTCTGTGAC
4080	ACACCCTGTC	CACGCCCCTG	GTTCTTAGTT	CCAGCCCCAC	TCATAGGACA	CTCAACTTGG
4140	AGCGGTCTCT	CCCTCCCTCA	TCAGCCCACC	AAACCAAACC	TAGCCTCCAA	GAGTGGGAAG
4200	AAATTAAAGC	AAGAAGGCTA	TTAAGTGCAG	AGGGAGAGAA	AATGCCTCCA	ACATGTGAGG
4260	AAGTAATGAT	AGAAATCATA	GAATTC			
4286	inio iinii omi					

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3263 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: exon

(B) LOCATION: 1..3263

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

ATCGATAAGC TGAGATCCGG CTAGAAACTG CTGAGGGCTG GACCGCATCT GGGGACCATC 60 TGTTCTTGGC CCTGAGCGGG GCAGGAACTG CTTACCGCAG ATATCCTGTT TGCCCCAATT 120 CAGCTGTTCC ATCTGTTCTT GGCCCTGAGC GGGGCAGGAA CTGCTTACCA CAGATATCCT 180 GTTTGGCCCA TATTCAGCTG TCTCTCTGTT CCTGACCTTG ATCTGAACTT CTCTATTCTC 240 AGTTATGTAT TTTTCCCATG CCTTGCAAAA TGGCGTTACT TAAGCTAGCT TGCCAAACCT 300 ACGGCTGGGG TCTTTCACGT TTATATCTAT GAGGGGAAGG ACCCAGAGTG GGGAAGCTGG 360 GATCTTGGGA ACACGCTTCT CTACATGGCA TTGTCTGCAC GGTGGAGTCC GGATCTGAGC 420 TTGGCTTGGT TTTTAAAACC AGCCTGGAGT AGAGCAGATG GGTTAAGGTG AGTGACCCCT 480 CAGCCCTGGA CATTCTTAGA TGAGCCCCCT CAGGAGTAGA GAATAATGTT GAGATGAGTT 540 CTGTTGGCTA AAATAATCAA GGCTAGTCTT TATAAAACTG TCTCCTCTTC TCCTAGCTTC 600 GATCCAGAGA GAGACCTGGG CGGAGCTGGT CGCTGCTCAG GAACTCCAGG AAAGGAGAAG 660 CTGAGGTTAC CACGCTGCGA ATGGGTTTAC GGAGATAGCT GGCTTTCCGG GGTGAGTTCT 720 CGTAAACTCC AGAGCAGCGA TAGGCCGTAA TATCGGGGAA AGCACTATAG GGACATGATG 780 TTCCACACGT CACATGGGTC GTCCTATCCG AGCCAGTCGT GCCAAAGGGG CGGTCCCGCT 840 GTGCACACTG GCGCTCCAGG GAGCTCTGCA CTCCGCCCGA AAAGTGCGCT CGGCTCTGCC 900 AGGACGCGGG GCGCGTGACT ATGCGTGGGC TGGAGCAACC GCCTGCTGGG TGCAAACCCT 960

1020	TTGCGCCCGG	ACTCGTCCAA	CGACTATAAA	GAGGGCAGGC	TGTCCTCTAA	GCGTCACCAC
1080	GACTTCAACG	TCCTGAGTAC	CTTCTCCTCA	CTTACTCCGT	AGCTCCAGCT	TCACCAGATC
1140	CTCGAGAACG	TCTCCCATGG	GCTATCCCTA	TGACGTCCCG	GATTACGCAG	TCATGGGCAG
1200	CAGCCATCAT	CATCATCATC	ACAGCAGCGG	CCTGGTGCCG	CGCGGCAGCC	ATATGGATCA
1260	GAACAACAGC	CTGCCACCTT	ACGCTCAGGG	CTTGGCCTCC	CCTCAGGGTG	CCATGACTCC
 1320	CGGAATCCCT	ATCTTTAGTC	CAATGATGCC	TTATGGCACT	GGACTGACCC	CACAGCCTAT
1380	TCAGAACACC	AATAGTCTGT	CTATTTTGGA	AGAGCAACAA	AGGCAGCAGC	AGCAACAACA
1440	ACAGCAGCAG	CAGCAGCAGC	AGCAGCAGCA	ACAGCAACAG	CAGCAGCAGC	AGCAGCAGCA
1500	GCAGCAGCAG	CAGCAGCAGC	AGCAGCAGCA	GCAACAGGCA	GTGGCAGCTG	CAGCCGTTCA
1560	GCAGTCAACG	TCCCAGCAGG	CAACACAGGG	AACCTCAGGC	CAGGCACCAC	AGCTCTTCCA
1620	CTCACAGACT	CTCACAACTG	CACCCTTGCC	GGGCACCACT	CCACTGTATC	CCTCCCCCAT
1680	GACTCCCATG	ACCCCCATCA	CTCCTGCCAC	GCCAGCTTCG	GAGAGTTCTG	GGATTGTACC
1740	GCAGCTGCAA	AATATTGTAT	CCACAGTGAA	TCTTGGTTGT	AAACTTGACC	TAAAGACCAT
1800	TGCACTTCGT	GCCCGAAACG	CCGAATATAA	TCCCAAGCGG	TTTGCTGCGG	TAATCATGAG
1860	GATAAGAGAG	CCACGAACCA	CGGCACTGAT	TTTCAGTTCT	GGGAAAATGG	TGTGCACAGG
1920	AGCCAAGAGT	GAAGAACAGT	CCAGACTGGC	AGCAAGAAAA	TATGCTAGAG	TTGTACAGAA
1980	GTTGGGTTTT	CCAGCTAAGT	TCTTGGACTT	CAAGATTCAG	AACATGGTGG	GGAGCTGTGA
2040	TGTGAAGTTT	CCTATAAGGT	TAGAAGGCCT	TGTGCTCACC	CACCAACAAT	TTAGTAGTTA
2100	TGAGCCAGAG	TTATTTCCTG	GTTTAATCTA	CAGAATGATC	AAACCCAGAA	TTGTTCTCCT

2160	TATTTTTGTT	TCTGGAAAAG	TTGTATTAAC	AGGTGCTAAA	GTCAGAGCAG	AAATTTATGA
2220	AGCATTTGAA	AACATCTACC	CTATTCTAAA	GGGATTCAGG	AAGACGACGT	AATGGCTCTC
2280	ATGTACCCTT	GCCTCCCCCA	CCCCCTTCTT	TTTTTTTTT	TAAACAAATC	AGTTTGTTTT
2340	GGTACCTTTA	AATGGTGGTG	TTGTGAGAAG	ATGGATGTTG	AGTTGCAGGG	TGTGGCACCA
2400	GGTGATGCCC	TTCTGTAAGT	GCCCCTTCCG	GCATCCCGGA	ATTCCTGCAG	CCCAACGCGG
2460	CCGCTTCGAG	GGATCTTTGT	GAAGGAACCT	TACTTCTGTG	GTGTGACATA	ATTGGACAAA
2520	CTACCTACAG	AGATTTAAAG	CTCTAAGGTA	AATATAAAAT	TTTTAAGTGT	ATAATGTGTT
2580	AAACTACTGA	TTCTAATTGT	TTGTGTATTT	TAGATTCCAA	CCTATGGAAC	TGATGAATGG
2640	GAGCAGTGGT	GGAATGCCTT	TAATGAGGAA	AACCTGTTTT	GCTCAGAAGA	AATGCCATCT
2700	AGTGATGATG	AGGCTACTGC	TGACTCTCAA	CATTCTACTC	CTCCAAAAAA	GAAGAGAAAG
2760	GTAGAAGACC	CCAAGGACTT	TCCTTCAGAA	TTGCTAAGTT	TTTTGAGTCA	TGCTGTGTTT
2820	AGTAATAGAA	CTCTTGCTTG	CTTTGCTATT	TACACCACAA	AGGAAAAAGC	TGCACTGCTA
2880	TACAAGAAAA	TTATGGAAAA	ATATTCTGTA	ACCTTTATAA	GTAGGCATAA	CAGTTATAAT
2940	CATAACATAC	TGTTTTTCT	TACTCCACAC	AGGCATAGAG	TGTCTGCTAT	TAATAACTAT
3000	GCTCAAAAAT	TGTGTACCTT	TAGCTTTTTA	ATTTGTAAAG	GGGTTAATAA	GGAATATTTG
3060	ATGTATAGTG	CCTTGACTAG	AGATCATAAT	CAGCCATACC	ACATTTGTAG	AGGTTTTACT
3120	TGCTTTAAAA	AACCTCCCAC	ACCTCCCCCT	GAACCTGAAA	CATAAAATGA	ATGCAATTGT
3180	TGTTGTTAAC	TTGTTTATTG	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	GCATCACAAA
3240	TTTCACAAAT	AAAGCATTTT	TTTCACTGCA	TTCTAGTTGT	GGTTTGTCCA	AACTCATCAA

TGTATCTTAT CATGTCTGGA TCC

3263

- (2) INFORMATION FOR SEQ ID NO: 16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Val Met Gly Ser Ser 1 10 15

His His His His His Ser Ser Gly Leu Val Pro Arg Gly Ser His 20 25 30

Met Asp Gln Asn Asn Ser Leu Pro Pro Tyr Ala Gln Gly Leu Ala Ser 35 40 45

Pro Gln Gly Ala Met Thr Pro Gly Ile Pro Ile Phe Ser Pro Met Met 50 55 60

Pro Tyr Gly Thr Gly Leu Thr Pro Gln Pro Ile Gln Asn Thr Asn Ser 65 70 75 80

Leu Ser Ile Leu Glu Glu Gln Gln Arg Gln Gln Gln Gln Gln Gln Gln Gln 95

Val Ala Ala Ala Val Gln Gln Ser Thr Ser Gln Gln Ala Thr Gln 130 135 140

Gly Thr Ser Gly Gln Ala Pro Gln Leu Phe His Ser Gln Thr Leu Thr 145 150 155 160

Thr Ala Pro Leu Pro Gly Thr Thr Pro Leu Tyr Pro Ser Pro Met Thr 165 170 175

Pro Met Thr Pro Ile Thr Pro Ala Thr Pro Ala Ser Glu Ser Ser Gly
180 185 190

Ile Val Pro Gln Leu Gln Asn Ile Val Ser Thr Val Asn Leu Gly Cys 195 200 205

Lys Leu Asp Leu Lys Thr Ile Ala Leu Arg Ala Arg Asn Ala Glu Tyr

210 215 220

Asn Pro Lys Arg Phe Ala Ala Val Ile Met Arg Ile Arg Glu Pro Arg 225 230 235 240

Thr Thr Ala Leu Ile Phe Ser Ser Gly Lys Met Val Cys Thr Gly Ala
245 250 255

Lys Ser Glu Glu Gln Ser Arg Leu Ala Ala Arg Lys Tyr Ala Arg Val 260 265 270

Val Gln Lys Leu Gly Phe Pro Ala Lys Phe Leu Asp Phe Lys Ile Gln 275 280 285

Asn Met Val Gly Ser Cys Asp Val Lys Phe Pro Ile Arg Leu Glu Gly
290 295 300

Leu Val Leu Thr His Gln Gln Phe Ser Ser Tyr Glu Pro Glu Leu Phe 305 310 315 320

Pro Gly Leu Ile Tyr Arg Met Ile Lys Pro Arg Ile Val Leu Leu Ile 325 330 335

Phe Val Ser Gly Lys Val Val Leu Thr Gly Ala Lys Val Arg Ala Glu 340 345 350

Ile Tyr Glu Ala Phe Glu Asn Ile Tyr Pro Ile Leu Lys Gly Phe Arg 355 360 365

Lys Thr Thr 370

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly