Université de Technologie de Compiègne Génie informatique

Rétropropagation

Authors:

Nacim Khalis et Antoine Collas

27 mars 2018

1 Réseau de neurones : perceptron multicouche

L'objectif est de programmer un perceptron multicouche afin de classer un ensemble de bouteilles de vins en 3 ensembles.

L'architecture de notre perceptron multicouche est la suivante :

FIGURE 1 – Perceptron multi-couches tiré de 'Hands-On Machine Learning with Scikit-Learn and TensorFlow' de Aurélien Géron.

2 Rétropropagation appliquée à un réseau de classification

2.1 Notation

m est le nombre d'éléments dans notre ensemble d'entrainement.

K est le nombre de classes (et donc de sorties de notre réseau de neurones).

 n_{in} est le nombre de neurones de la couche d'entrée (sans le biais). Donc n_{in} correspond à la dimension de nos données d'entrée.

 n_{hidden} est le nombre de neurones de la couche cachée (sans le biais).

 n_{out} est le nombre de neurones de la couche de sortie. Donc n_{out} correspond au nombre de classes de notre problème.

 $b_i^{(l)}$ est le biais de la couche l all ant vers le ième neurone de la couche l+1.

 $w_{ij}^{(l)}$ est le poids entre le neurone i de la couche l et le neurone j de la couche l+1.

 $x_i^{(l)}$ est la sortie du neurone i de la couche l. Donc $x_i^{(2)} = relu(\sum\limits_{k=1}^{n_{in}} w_{ki}^{(1)} x_k^{(1)} + b_i^{(1)})$

relu(x) = max(0, x) est la fonction d'activation de la couche cachée.

 $softmax(x)_j = \frac{e^{x_j}}{\sum\limits_{k=1}^n e^{x_k}}$ est la fonction de sortie permettant d'obtenir la probabilité pour chaque classe.

 $E = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} (y_k^{(i)} \times log(\hat{p}_k^{(i)}))$ est l'erreur appelée entropie croisée. $y_k^{(i)}$ vaut 1 si le ième élément de l'échantillon appartient à la classe k, 0 sinon. $\hat{p}_k^{(i)}$ est la kème sortie du perceptron pour le ième élément de l'échantillon.

2.2 Rétropropagation

L'apprentissage d'un réseau de neurones est executé à l'aide d'une descente de gradient sur la fonction de coût. Les paramètres de notre réseau sont les poids $w_{ij}^{(l)}$ et les biais $b_j^{(l)}$. Nous cherchons donc à calculer les dérivées partielles de la fonction de coût par rapport à ces différents paramètres. Nous commençons par montrer comment calculer $\frac{\partial E}{\partial w_{ij}^{(2)}} \ \forall (i,j) \in \{1,...,n_{hidden}\} \times \{1,...,n_{out}\}$.

Pour un lot de données entré dans le réseau nous avons les équations suivantes en partant de l'erreur :

$$E = -\frac{1}{m} \sum_{p=1}^{m} \sum_{k=1}^{K} (y_k^{(p)} \times log(\hat{p}_k^{(p)}))$$
 (1)

avec

$$\hat{p}_k^{(p)} = softmax(x^{(p,3)})_k \tag{2}$$

où $x^{(p,3)}$ est la sortie de la dernière couche avant le softmax pour la pème donnée d'entrainement.

$$log(\hat{p}_k^{(p)}) = \frac{ln(\hat{p}_k^{(p)})}{ln(10)} = \frac{(x^{(p,3)})_k - ln(\sum_{q=1}^{n_{out}} e^{(x^{(p,3)})_q})}{ln(10)}$$
(3)

Règle de la chaine : si y = f(u) et $u = g(x) = (g_1(x), ..., g_m(x))$ alors $\frac{\partial y}{\partial x_i} = \sum_{l=1}^m \frac{\partial y}{\partial u_l} \frac{\partial u_l}{\partial x_i}$

Donc en appliquant la règle de la chaine :

$$\frac{\partial E}{\partial w_{ij}^{(2)}} = -\frac{1}{m} \sum_{p=1}^{m} \sum_{k=1}^{n_{out}} y_k^{(p)} \frac{\partial log(\hat{p}_k^{(p)})}{\partial w_{ij}^{(2)}}$$
(4)

$$\frac{\partial log(\hat{p}_k^{(p)})}{\partial w_{ij}^{(2)}} = \sum_{q=1}^{n_{out}} \frac{\partial log(\hat{p}_k^{(p)})}{\partial (x^{(p,3)})_q} \frac{\partial (x^{(p,3)})_q}{\partial w_{ij}^{(2)}}$$

$$(5)$$

or si $q \neq j$

$$\frac{\partial (x^{(p,3)})_q}{\partial w_{ij}^{(2)}} = 0 \tag{6}$$

donc

$$\frac{\partial log(\hat{p}_k^{(p)})}{\partial w_{ij}^{(2)}} = \frac{\partial log(\hat{p}_k^{(p)})}{\partial (x^{(p,3)})_j} \frac{\partial (x^{(p,3)})_j}{\partial w_{ij}^{(2)}}$$

$$(7)$$

Si $k \neq j$

$$\frac{\partial log(\hat{p}_k^{(p)})}{\partial (x^{(p,3)})_j} = -\frac{1}{ln(10)} \frac{e^{(x^{(p,3)})_j}}{\sum\limits_{q=1}^{n_{out}} e^{(x^{(p,3)})_q}} = -\frac{softmax(x^{(p,3)})_j}{ln(10)}$$
(8)

Sinon (dans le cas où k = j):

$$\frac{\partial log(\hat{p}_k^{(p)})}{\partial (x^{(p,3)})_i} = \frac{1}{ln(10)} \left[1 - softmax(x^{(p,3)})_j \right]$$
(9)

Donc $\forall k$:

$$\frac{\partial log(\hat{p}_k^{(p)})}{\partial (x^{(p,3)})_j} = \frac{1}{ln(10)} \left[\delta_{kj} - softmax(x^{(p,3)})_j \right]$$
(10)

où $\delta_{kj} = 1$ si k = j, 0 sinon.

De plus,

$$(x^{(p,3)})_j = \sum_{i=1}^{n_{hidden}} w_{ij}^{(2)}(x^{(p,2)})_i + b_j^{(2)}$$
(11)

Donc,

$$\frac{\partial (x^{(p,3)})_q}{\partial w_{ij}^{(2)}} = (x^{(p,2)})_i \tag{12}$$

$$\frac{\partial log(\hat{p}_k^{(p)})}{\partial w_{ij}^{(2)}} = \frac{1}{ln(10)} \left[\delta_{kj} - softmax(x^{(p,3)})_j \right] (x^{(p,2)})_i$$
(13)

Ce qui donne finalement :

$$\frac{\partial E}{\partial w_{ij}^{(2)}} = -\frac{1}{m \times ln(10)} \sum_{p=1}^{m} \sum_{k=1}^{n_{out}} y_k^{(p)} \left[\delta_{kj} - softmax(x^{(p,3)})_j \right] (x^{(p,2)})_i$$
(14)

Cette formule peut être interprétée de la manière suivante :

- Si la classe à prédire pour la p^{eme} donnée entrée dans le réseau est j alors le poids $w_{ij}^{(2)}$ est augmenté en fonction de la performance de la prédiction et de $(x^{(p,2)})_i$. Si la prédiction est déjà très bonne, $w_{ij}^{(2)}$ n'est est que légèrement augmenté sinon il est formetement augmenté pour augmenter la probabilité sortante du réseau.
- Si la classe à prédire est $k \neq j$ alors il y une diminution du poids en fonction de la probabilité sortante et de $(x^{(p,2)})_i$. Si la probabilité sortante est faible, le poids n'est que légèrement diminué. Si elle est élevée (alors qu'elle devrait être faible), le poids est fortement diminué.