Методы оптимизации Лекция 2: Сопряжённые конусы. Отделимость. Автоматическое дифференцирование

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

12 сентября 2022 г.

На прошлой лекции

- ▶ О чём этот курс и почему он нужен
- ▶ Примеры постановок задач оптимизации
- Выпуклые множества и их свойства

Напоминание: конусы

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K.$

Напоминание: конусы

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется выпуклым конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Напоминание: конусы

Определение

Множество $\mathcal K$ называется конусом, если для любого $\mathbf x\in\mathcal K$ и произвольного числа $\theta\geq 0$ выполнено $\theta\mathbf x\in\mathcal K$.

Определение

Множество $\mathcal K$ называется **выпуклым** конусом, если для любых точек $\mathbf x_1, \mathbf x_2 \in \mathcal K$ и любых чисел $\theta_1 \geq 0, \; \theta_2 \geq 0$ выполнено $\theta_1 \mathbf x_1 + \theta_2 \mathbf x_2 \in \mathcal K$.

Важные конусы

- ightharpoonup Неотрицательный октант $\mathbb{R}^n_+=\{\mathbf{x}\in\mathbb{R}^n\mid x_i\geq 0,\; i=1,\ldots,n\}
 ightarrow\mathsf{LP}$
- lacktriangle Конус второго порядка $\{(\mathbf{x},t)\in\mathbb{R}^n imes\mathbb{R}_+\mid \|\mathbf{x}\|_2\leq t\} o$ SOCP
- lacktriangle Конус симметричных положительно полуопределённых матриц $\mathbf{S}^n_+ o \mathsf{SDP}$

Сопряжённый конус (dual cone)

Определение

Пусть \mathcal{K} — конус. Тогда множество

$$\mathcal{K}^* = \{ \mathbf{y} \mid \langle \mathbf{y}, \mathbf{x} \rangle \ge 0, \ \mathbf{x} \in \mathcal{K} \}$$

называется сопряжённым конусом.

Сопряжённый конус (dual cone)

Определение

Пусть \mathcal{K} — конус. Тогда множество

$$\mathcal{K}^* = \{ \mathbf{y} \mid \langle \mathbf{y}, \mathbf{x} \rangle \ge 0, \ \mathbf{x} \in \mathcal{K} \}$$

называется сопряжённым конусом.

Свойства

- ▶ K* конус
- $ightharpoonup \mathcal{K}^*$ выпуклый конус для *любого* конуса \mathcal{K}
- lacktriangle Если $\mathcal{K}_1\subseteq\mathcal{K}_2$, то $\mathcal{K}_2^*\subseteq\mathcal{K}_1^*$

Сопряжённый конус (dual cone)

Определение

Пусть \mathcal{K} — конус. Тогда множество

$$\mathcal{K}^* = \{ \mathbf{y} \mid \langle \mathbf{y}, \mathbf{x} \rangle \ge 0, \ \mathbf{x} \in \mathcal{K} \}$$

называется сопряжённым конусом.

Свойства

- ▶ K* конус
- lacktriangleright \mathcal{K}^* выпуклый конус для *любого* конуса \mathcal{K}
- ightharpoonup Если $\mathcal{K}_1 \subseteq \mathcal{K}_2$, то $\mathcal{K}_2^* \subseteq \mathcal{K}_1^*$

Определение

Если $\mathcal{K} = \mathcal{K}^*$, то конус называется самосопряжённым (self-dual)

Определение

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Определение

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\|\cdot\|_2 \to \|\cdot\|_* = \|\cdot\|_2$

Определение

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\|\cdot\|_2 \to \|\cdot\|_* = \|\cdot\|_2$

Самосопряжённые конусы

 $ightharpoonup \mathbb{R}^n_+$

Определение

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\|\cdot\|_2 \to \|\cdot\|_* = \|\cdot\|_2$

Самосопряжённые конусы

- $ightharpoonup \mathbb{R}^n_+$
- lacktriangle Конус второго порядка $\{(\mathbf{x},t)\in\mathbb{R}^n imes\mathbb{R}_+\mid \|\mathbf{x}\|_2\leq t\}$

Определение

Сопряжённой нормой относительно $\|\cdot\|$ называется

$$\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \le 1} \mathbf{z}^\top \mathbf{x}.$$

Примеры

- $\|\cdot\|_1 \to \|\cdot\|_* = \|\cdot\|_{\infty}$
- $\|\cdot\|_2 \to \|\cdot\|_* = \|\cdot\|_2$

Самосопряжённые конусы

- $ightharpoonup \mathbb{R}^n_+$
- lacktriangle Конус второго порядка $\{(\mathbf{x},t)\in\mathbb{R}^n imes\mathbb{R}_+\mid \|\mathbf{x}\|_2\leq t\}$
- $ightharpoonup \mathbf{S}_{+}^{n}$

Правильный конус (proper cone)

Определение

Конус $\mathcal K$ называется правильным (proper), если

- $ightharpoonup \mathcal{K}$ выпуклый
- $ightharpoonup \mathcal{K}$ замкнутый
- $ightharpoonup \mathcal{K}$ не содежит прямых
- ightharpoonup внутренность ${\cal K}$ непуста

Правильный конус (proper cone)

Определение

Конус $\mathcal K$ называется правильным (proper), если

- $ightharpoonup \mathcal{K}$ выпуклый
- $ightharpoonup \mathcal{K}$ замкнутый
- К не содежит прямых
- ightharpoonup внутренность ${\cal K}$ непуста

Упражнение

Покажите, что самосопряжённые конусы, перечисленные выше, являются правильными.

Обобщённое отношение частичного порядка Пусть \mathcal{K} — правильный конус. Тогда $\mathbf{x} \leq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in \mathcal{K}$.

Обобщённое отношение частичного порядка

Пусть \mathcal{K} — правильный конус. Тогда $\mathbf{x} \leq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in \mathcal{K}.$

Пример: конус \mathbf{S}^n_+

Пусть $\mathbf{X},\mathbf{Y}\in\mathbf{S}^n$. Тогда $\mathbf{X}\leq_{\mathcal{K}}\mathbf{Y}$ означает, что $\mathbf{Y}-\mathbf{X}\in\mathbf{S}^n_+$

Обобщённое отношение частичного порядка

Пусть \mathcal{K} — правильный конус. Тогда $\mathbf{x} \leq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in \mathcal{K}.$

Пример: конус \mathbf{S}^n_+

Пусть $\mathbf{X},\mathbf{Y} \in \mathbf{S}^n$. Тогда $\mathbf{X} \leq_{\mathcal{K}} \mathbf{Y}$ означает, что $\mathbf{Y} - \mathbf{X} \in \mathbf{S}^n_+$

Задача линейного программирования

$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{ op} \mathbf{x}$	$\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^ op \mathbf{x}$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$	s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$
$x_i \ge 0$	$\mathbf{x} \in \mathbb{R}^n_+$

Обобщённое отношение частичного порядка

Пусть \mathcal{K} — правильный конус. Тогда $\mathbf{x} \leq_{\mathcal{K}} \mathbf{y} \Leftrightarrow \mathbf{y} - \mathbf{x} \in \mathcal{K}$.

Пример: конус \mathbf{S}^n_+

Пусть $\mathbf{X},\mathbf{Y} \in \mathbf{S}^n$. Тогда $\mathbf{X} \leq_{\mathcal{K}} \mathbf{Y}$ означает, что $\mathbf{Y} - \mathbf{X} \in \mathbf{S}^n_+$

Задача линейного программирования

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} & \min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\top} \mathbf{x} \\ \text{s.t. } \mathbf{A} \mathbf{x} = \mathbf{b} & \text{s.t. } \mathbf{A} \mathbf{x} = \mathbf{b} \\ x_i \ge 0 & \mathbf{x} \in \mathbb{R}^n_+ \end{aligned}$$

Введение нелинейности

Использование декартового произведение трёх самосопряжённых конусов позволяет записать многие практически важные выпуклые задачи

Отделимость выпуклых множеств

Определение

Множества \mathcal{A},\mathcal{B} называются отделимыми, если существует вектор $\mathbf{a} \neq 0$ и число b такие что

- $ightharpoonup \mathbf{a}^{ op}\mathbf{x} + b \geq 0$ для всех $\mathbf{x} \in \mathcal{A}$
- $ightharpoonup \mathbf{a}^{ op} \mathbf{y} + b \leq 0$ для всех $\mathbf{y} \in \mathcal{B}$.

Отделимость выпуклых множеств

Определение

Множества \mathcal{A},\mathcal{B} называются отделимыми, если существует вектор $\mathbf{a} \neq 0$ и число b такие что

- $ightharpoonup \mathbf{a}^{ op}\mathbf{x} + b \geq 0$ для всех $\mathbf{x} \in \mathcal{A}$
- $ightharpoonup \mathbf{a}^{ op} \mathbf{y} + b \leq 0$ для всех $\mathbf{y} \in \mathcal{B}$.

Теорема

Пусть \mathcal{A} и \mathcal{B} — выпуклые и непересекающиеся множества. Тогда существует разделяющая их гиперплоскость.

Отделимость выпуклых множеств

Определение

Множества \mathcal{A},\mathcal{B} называются отделимыми, если существует вектор $\mathbf{a} \neq 0$ и число b такие что

- $ightharpoonup \mathbf{a}^{ op} \mathbf{x} + b \geq 0$ для всех $\mathbf{x} \in \mathcal{A}$
- $ightharpoonup \mathbf{a}^{ op} \mathbf{y} + b \leq 0$ для всех $\mathbf{y} \in \mathcal{B}$.

Теорема

Пусть \mathcal{A} и \mathcal{B} — выпуклые и непересекающиеся множества. Тогда существует разделяющая их гиперплоскость.

Теорема

Два выпуклых множества, одно из которых открыто, не пересекаются тогда и только когда, когда они отделимы.

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- lacktriangle множество $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0\}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- lacktriangle множество $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0\}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Доказательство

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- **▶** множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Доказательство

lacktriangle Первое условие означает, что f b лежит в конусе ${\cal K}$, образованном столбцами матрицы ${f A}=[{f a}_1,\ldots,{f a}_m]$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- ▶ множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Доказательство

- lacktriangle Первое условие означает, что f b лежит в конусе ${\cal K}$, образованном столбцами матрицы ${f A}=[{f a}_1,\ldots,{f a}_m]$
- **Е**сли это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки **b**:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in \mathcal{K} \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- ▶ множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Доказательство

- lacktriangle Первое условие означает, что f b лежит в конусе ${\cal K}$, образованном столбцами матрицы ${f A}=[{f a}_1,\ldots,{f a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки b:

$$\mathbf{c}^{\top}\mathbf{y} < d, \ \mathbf{y} \in \mathcal{K} \quad \mathbf{c}^{\top}\mathbf{b} > d.$$

lacktriangle Поскольку $0 \in \mathcal{K}$, то d > 0. Также $\mathbf{a}_i \in \mathcal{K} \Rightarrow \alpha \mathbf{a}_i \in \mathcal{K} \ \alpha > 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- **▶** множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Доказательство

- lacktriangle Первое условие означает, что f b лежит в конусе ${\cal K}$, образованном столбцами матрицы ${f A}=[{f a}_1,\ldots,{f a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки b:

$$\mathbf{c}^{\top}\mathbf{y} < d, \ \mathbf{y} \in \mathcal{K} \quad \mathbf{c}^{\top}\mathbf{b} > d.$$

- lacktriangle Поскольку $0\in\mathcal{K}$, то d>0. Также $\mathbf{a}_i\in\mathcal{K}\Rightarrow \alpha\mathbf{a}_i\in\mathcal{K}\ \alpha>0$
- lacktriangle Значит $\mathbf{c}^{ op} lpha \mathbf{a}_i < d \Rightarrow \mathbf{c}^{ op} \mathbf{a}_i < d/lpha$. При $lpha o \infty$, $\mathbf{c}^{ op} \mathbf{a}_i \leq 0$

Лемма Фаркаша

Выполнено одно и только одно из следующих условий

- ▶ множество $\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge 0 \}$ непусто
- lacktriangle существует вектор ${f p}$ такой что ${f p}^{ op}{f A} \ge 0$ и ${f p}^{ op}{f b} < 0$

Доказательство

- lacktriangle Первое условие означает, что f b лежит в конусе ${\cal K}$, образованном столбцами матрицы ${f A}=[{f a}_1,\ldots,{f a}_m]$
- ► Если это не так, то существует гиперплоскость, которая *строго* отделяет конус от точки b:

$$\mathbf{c}^{\top} \mathbf{y} < d, \ \mathbf{y} \in \mathcal{K} \quad \mathbf{c}^{\top} \mathbf{b} > d.$$

- lacktriangle Поскольку $0\in\mathcal{K}$, то d>0. Также $\mathbf{a}_i\in\mathcal{K}\Rightarrow \alpha\mathbf{a}_i\in\mathcal{K}\ \alpha>0$
- lacktriangle Значит $\mathbf{c}^{ op} lpha \mathbf{a}_i < d \Rightarrow \mathbf{c}^{ op} \mathbf{a}_i < d/lpha$. При $lpha o \infty$, $\mathbf{c}^{ op} \mathbf{a}_i \leq 0$
- lacktriangle Таким образом, ${f p}=-{f c}$ и выполнено второе условие

Приложение: теорема об арбитраже

- ightharpoonup Пусть есть n активов с ценами p_1, \ldots, p_n до и v_1, \ldots, v_n в конце периода инвестирования
- lacktriangle Пусть $\mathbf{x} \in \mathbb{R}^n$ размер инвестиций в каждый актив
- ightharpoonup Значения для цен v_i неизвестны, но пусть возможно K наборов таких цен, которые известны
- ightharpoonup Если $\langle {f p},{f x}
 angle < 0$ и $\langle {f v}^{(k)},{f x}
 angle \geq 0$ для всех $k=1,\ldots,K$, то такая стратегия гарантировано принесёт прибыль!
- Ситуация на рынке, при которой существует гарантированно прибыльная стратегия называется арбитражем
- Такая ситуация в общем случае не обязана выполняться, то есть система $\mathbf{V}\mathbf{x} \geq 0, \ \langle \mathbf{p}, \mathbf{x} \rangle < 0$ несовместна
- lacktriangle По лемме Фаркаша это равносильно существованию $\mathbf{y} \geq 0$ такому, что $\mathbf{V}^{ op}\mathbf{y} = \mathbf{p}$

Полный рынок (complete market)

- lacktriangle Пусть известна вся матрица ${f V}$ и все p_i кроме p_n
- lacktriangle Тогда можно поставить задачу поиска интервала для p_n

$$\max_{p_n, \mathbf{y}} / \min_{p_n, \mathbf{y}} p_n$$
s.t. $\mathbf{V}^{\top} \mathbf{y} = \mathbf{p}$
 $\mathbf{y} \ge 0$

 Если условие арбитража приводит к единственным ценам, то такой рынок называется полным.

Главное в первой части

▶ Сопряжённые конусы и геометрическая интерпретация

Главное в первой части

- ▶ Сопряжённые конусы и геометрическая интерпретация
- ▶ Самосопряжённые конусы

Главное в первой части

- ▶ Сопряжённые конусы и геометрическая интерпретация
- ▶ Самосопряжённые конусы
- ▶ Отделимость выпуклых множеств

Градиент и гессиан

Определение

Градиентом дифференцируемой функции f в точке $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, называется вектор \mathbf{g} такой что

$$\lim_{\mathbf{d} \to 0} \frac{f(\mathbf{x} + \mathbf{d}) - f(\mathbf{x}) - \langle \mathbf{g}, \mathbf{d} \rangle}{\|\mathbf{d}\|} = 0.$$

Этот вектор единственный (проверьте!).

Утверждение

Для градиента f в ${\bf x}$ и производной по любому направлению ${\bf d}$ выполнено $f'({\bf x},{\bf d})=\langle f'({\bf x}),{\bf d}\rangle$, где $f'({\bf x},{\bf d})$ — производная по направлению ${\bf d}$.

Градиент и гессиан

Определение

Градиентом дифференцируемой функции f в точке $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\,(f))$, называется вектор \mathbf{g} такой что

$$\lim_{\mathbf{d}\to 0} \frac{f(\mathbf{x}+\mathbf{d}) - f(\mathbf{x}) - \langle \mathbf{g}, \mathbf{d} \rangle}{\|\mathbf{d}\|} = 0.$$

Этот вектор единственный (проверьте!).

Утверждение

Для градиента f в ${\bf x}$ и производной по любому направлению ${\bf d}$ выполнено $f'({\bf x},{\bf d})=\langle f'({\bf x}),{\bf d}\rangle$, где $f'({\bf x},{\bf d})$ — производная по направлению ${\bf d}$.

Определение

Для дважды непрерывно диффренцируемой функции f матрица ${\bf H}$ с элементами

$$h_{ij} = \frac{\partial f}{\partial x_i \partial x_j}$$

называется гессиан.

Аналитически

$$[f'(\mathbf{x})]_i = \frac{\partial f(\mathbf{x})}{\partial x_i}$$

Аналитически

$$[f'(\mathbf{x})]_i = \frac{\partial f(\mathbf{x})}{\partial x_i}$$

Численное приближение

$$[f'(\mathbf{x})]_i \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}, \quad h \to 0$$

Аналитически

$$[f'(\mathbf{x})]_i = \frac{\partial f(\mathbf{x})}{\partial x_i}$$

▶ Численное приближение

$$[f'(\mathbf{x})]_i \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}, \quad h \to 0$$

Символьное https://docs.sympy.org/latest/ tutorials/intro-tutorial/calculus.html

```
>>> sym.diff(sym.sin(x), x)
cos(x)
>>> sym.diff(sym.sin(2 * x), x)
2*cos(2*x)
>>> sym.diff(sym.tan(x), x)
2
tan (x) + 1
```

Аналитически

$$[f'(\mathbf{x})]_i = \frac{\partial f(\mathbf{x})}{\partial x_i}$$

▶ Численное приближение

$$[f'(\mathbf{x})]_i \approx \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x})}{h}, \quad h \to 0$$

► Символьное https://docs.sympy.org/latest/ tutorials/intro-tutorial/calculus.html

```
>>> sym.diff(sym.sin(x), x)
cos(x)
>>> sym.diff(sym.sin(2 * x), x)
2*cos(2*x)
>>> sym.diff(sym.tan(x), x)
2
tan (x) + 1
```

Автоматическое дифференцирование

Вычислительный граф

Основная идея

Вычисление большинства практически важных функций представимо в виде суперпозиции элементарных операций.

Вычислительный граф

Основная идея

Вычисление большинства практически важных функций представимо в виде суперпозиции элементарных операций.

Пример

- 1. $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2 = f_3(f_2(f_1(\mathbf{x})))$
- $2. f_1(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- 3. $f_2(\mathbf{u}) = \|\mathbf{u}\|_2$
- 4. $f_3(t) = t^2$

Вычислительный граф

Основная идея

Вычисление большинства практически важных функций представимо в виде суперпозиции элементарных операций.

Пример

- 1. $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2 = f_3(f_2(f_1(\mathbf{x})))$
- $2. f_1(\mathbf{x}) = \mathbf{A}\mathbf{x} \mathbf{b}$
- 3. $f_2(\mathbf{u}) = \|\mathbf{u}\|_2$
- 4. $f_3(t) = t^2$

Визуализация суперпозиции функций

Подобные суперпозиции представляются в виде направленного ациклического графа (DAG).

Как вычислить градиент?

Скалярный случай: $u: \mathbb{R}^n \to \mathbb{R}$

- lacktriangle Пусть $f(\mathbf{x})=g(u(\mathbf{x}))$, тогда $f'(\mathbf{x})=rac{\partial g}{\partial u}rac{\partial u}{\partial \mathbf{x}}$
- ightharpoonup Важно смотреть на размерности и понимать как записывать $rac{\partial u}{\partial \mathbf{x}}.$

Векторный случай: $h:\mathbb{R}^n o \mathbb{R}^m$

- $lackbox{lack} f(\mathbf{x}) = g(h(\mathbf{x}))$, где $g: \mathbb{R}^m
 ightarrow \mathbb{R}$
- $lackbox{ } rac{\partial f}{\partial x_k} = \sum_j rac{\partial g}{\partial h_j} rac{\partial h_j}{\partial x_k} = \sum_j J_{jk} rac{\partial g}{\partial h_j} k$ -ый элемент градиента
- $lackbox{} rac{\partial f}{\partial \mathbf{x}} = \mathbf{J}^{ op} rac{\partial g}{\partial h}$, где \mathbf{J} якобиан h

Chain rule и autodiff¹

Мотивирующий пример

- $lacktriangledown f = h(q(\mathbf{x}))$, где $h: \mathbb{R}^k o \mathbb{R}^m$, $q: \mathbb{R}^n o \mathbb{R}^k$
- $lackbox{f J}_f={f J}_h(g({f x})){f J}_g({f x})$ или $J_f^{(i,j)}=rac{\partial f_i}{\partial x_j}=\sum_{l=1}^krac{\partial h_i}{\partial g_k}rac{\partial g_k}{\partial x_j}$

¹Griewank A., Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. – Society for Industrial and Applied Mathematics, 2008.

Chain rule и autodiff¹

Мотивирующий пример

- $lackbox{} f = h(g(\mathbf{x}))$, где $h: \mathbb{R}^k o \mathbb{R}^m$, $g: \mathbb{R}^n o \mathbb{R}^k$
- $ightharpoonup f J_f = f J_h(g({f x})) f J_g({f x})$ или $J_f^{(i,j)} = rac{\partial f_i}{\partial x_j} = \sum_{l=1}^k rac{\partial h_i}{\partial g_k} rac{\partial g_k}{\partial x_j}$

Обобщение

- $lacktriangledown f = f_L \circ \ldots \circ f_1$ представление в виде графа

¹Griewank A., Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. – Society for Industrial and Applied Mathematics, 2008.

Chain rule и autodiff¹

Мотивирующий пример

- $lackbox{} f = h(g(\mathbf{x}))$, где $h: \mathbb{R}^k o \mathbb{R}^m$, $g: \mathbb{R}^n o \mathbb{R}^k$
- $lackbox{f J}_f = {f J}_h(g({f x})){f J}_g({f x})$ или $J_f^{(i,j)} = rac{\partial f_i}{\partial x_j} = \sum_{l=1}^k rac{\partial h_i}{\partial g_k} rac{\partial g_k}{\partial x_j}$

Обобщение

- $lacktriangledown f = f_L \circ \ldots \circ f_1$ представление в виде графа

Способы вычисления \mathbf{J}_f

- ► Справа налево forward mode
- ▶ Слева направо backward mode

¹Griewank A., Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation. – Society for Industrial and Applied Mathematics, 2008.

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

Реализация

ightharpoonup Выбираем элемент x_j

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор ${f u}={f e}_j-j$ -ый орт

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u}=\mathbf{e}_j-j$ -ый орт
- lacktriangle Умножаем рекурсивно ${f J}_L \dots {f J}_2 {f J}_1 {f u}$ справа налево

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u}=\mathbf{e}_j-j$ -ый орт
- lacktriangle Умножаем рекурсивно ${f J}_L \dots {f J}_2 {f J}_1 {f u}$ справа налево
- > Умножение происходит одновременно с вычислением $f_L \circ \ldots \circ f_1$

Основная идея

Вычислить $\frac{\partial f_i}{\partial x_k}$ для всех i и для заданного k, то есть вычислить j-ый столбец матрицы \mathbf{J}_f

- ightharpoonup Выбираем элемент x_j
- lacktriangle Задаём вектор $\mathbf{u}=\mathbf{e}_j-j$ -ый орт
- lacktriangle Умножаем рекурсивно ${f J}_L \dots {f J}_2 {f J}_1 {f u}$ справа налево
- > Умножение происходит одновременно с вычислением $f_L \circ \ldots \circ f_1$
- lacktriangle Для каждой f_i необходимо реализовать действие самой функции и умножение ${f J}_i$ на вектор

Основная идея

Вычислить $rac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

Реализация

lacktriangle Выбираем компоненту f_k

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- ightharpoonup Выбираем компоненту f_k
- lacktriangle Задаём вектор $\mathbf{u} = \mathbf{e}_k k$ -ый орт
- lacktriangle Умножаем рекурсивно ${f u}^{ op}{f J}_L\dots{f J}_2{f J}_1$ слева направо

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор ${f u}={f e}_k-k$ -ый орт
- lacktriangle Умножаем рекурсивно ${f u}^{ op}{f J}_L\dots{f J}_2{f J}_1$ слева направо
- $lue{}$ Сначала вычисляем f, сохраняем промежуточные результаты, потом произведение выше \Rightarrow два обхода графа

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

- lacktriangle Выбираем компоненту f_k
- lacktriangle Задаём вектор ${f u}={f e}_k-k$ -ый орт
- lacktriangle Умножаем рекурсивно ${f u}^{ op}{f J}_L\dots{f J}_2{f J}_1$ слева направо
- ightharpoonup Сначала вычисляем f, сохраняем промежуточные результаты, потом произведение выше \Rightarrow два обхода графа
- lacktriangle Для каждой f_i необходимо реализовать действие самой функции и умножение ${f J}_i^{ op}$ на вектор

Основная идея

Вычислить $\frac{\partial f_k}{\partial x_i}$ для всех i и для заданного k, то есть вычислить j-ую строку матрицы \mathbf{J}_f

Реализация

- ightharpoonup Выбираем компоненту f_k
- lacktriangle Задаём вектор ${f u}={f e}_k-k$ -ый орт
- lacktriangle Умножаем рекурсивно ${f u}^{ op}{f J}_L\dots{f J}_2{f J}_1$ слева направо
- ightharpoonup Сначала вычисляем f, сохраняем промежуточные результаты, потом произведение выше \Rightarrow два обхода графа
- lacktriangle Для каждой f_i необходимо реализовать действие самой функции и умножение ${f J}_i^{ op}$ на вектор

Если m=1, то ${f u}=1$ и результат совпадает с градиентом!

Forward vs backward modes

Вычислительная сложность

- Forward mode: $C(f(\mathbf{x}), \mathbf{Ju}) \leq 2.5C(f(\mathbf{x}))$
- $\blacktriangleright \ \, \mathsf{Backward} \,\, \mathsf{mode} \colon C(f(\mathbf{x}), \mathbf{J}^{\top}\mathbf{u}) \leq 4C(f(\mathbf{x}))$

Forward vs backward modes

Вычислительная сложность

- Forward mode: $C(f(\mathbf{x}), \mathbf{Ju}) \leq 2.5C(f(\mathbf{x}))$
- ▶ Backward mode: $C(f(\mathbf{x}), \mathbf{J}^{\top}\mathbf{u}) \leq 4C(f(\mathbf{x}))$

Требуемая память

- Forward mode: не требует, все вычисления делаются в процессе вычисления f
- lacktriangle Backward mode: требует, промежуточные значения f_{i-1} надо сохранить для вычисления $\mathbf{J}_i^{ op}\mathbf{u}$

Forward vs backward modes

Вычислительная сложность

- Forward mode: $C(f(\mathbf{x}), \mathbf{Ju}) \leq 2.5C(f(\mathbf{x}))$
- ▶ Backward mode: $C(f(\mathbf{x}), \mathbf{J}^{\top}\mathbf{u}) \leq 4C(f(\mathbf{x}))$

Требуемая память

- Forward mode: не требует, все вычисления делаются в процессе вычисления f
- lacktriangle Backward mode: требует, промежуточные значения f_{i-1} надо сохранить для вычисления $\mathbf{J}_i^{ op}\mathbf{u}$

Вывод

- ightharpoonup Если $m \ll n$, используйте backward mode
- ightharpoonup Если $m \geq n$, используйте forward mode

Различные реализации могут оптимизировать промежуточные вычисления!

Где реализованы эти подходы?

- ► JAX https://jax.readthedocs.io/en/latest/ notebooks/autodiff_cookbook.html
- PyTorch https://pytorch.org/tutorials/beginner/ blitz/autograd_tutorial.html
- ► Autograd https://github.com/HIPS/autograd

▶ Градиент и гессиан

- ▶ Градиент и гессиан
- ▶ Вычисление функции как проход по графу

- Градиент и гессиан
- ▶ Вычисление функции как проход по графу
- ▶ Вычисление градиента через проход вперёд

- Градиент и гессиан
- Вычисление функции как проход по графу
- ▶ Вычисление градиента через проход вперёд
- Вычисление градиента через проход назад