Statistics Summary

Mathematical Notes

October 19, 2025

Contents

1	Descriptive Statistics 3					
	1.1	Measures of Central Tendency				
	1.2	Measures of Dispersion				
2	Parameter Estimation 3					
	2.1	Point Estimation				
	2.2	Properties of Estimators				
	2.3	Maximum Likelihood Estimation				
	2.4	Method of Moments				
3	Confidence Intervals 4					
	3.1	Definition				
	3.2	Common Confidence Intervals				
		3.2.1 Normal Mean (Known Variance)				
		3.2.2 Normal Mean (Unknown Variance)				
		3.2.3 Proportion				
4	Hypothesis Testing					
	4.1	Basic Concepts				
	4.2	Types of Errors				
	4.3	Test Statistics				
		4.3.1 Z-Test				
		4.3.2 t-Test				
		4.3.3 Chi-Square Test				
	4.4	p-Values				
5	Reg	ression Analysis				
	5.1	Simple Linear Regression				
	5.2	Least Squares Estimation				
	5.3	Coefficient of Determination				
	5.4	Multiple Linear Regression				
	5.5	ANOVA				
6	Bayesian Inference 7					
	6.1	Bayes' Theorem				
	6.2	Prior Distributions				
	6.3	Rayasian Estimation				

7	Nonparametric Methods 7				
	7.1	Goodness of Fit Tests	7		
		7.1.1 Kolmogorov-Smirnov Test	7		
		7.1.2 Chi-Square Goodness of Fit	7		
	7.2	Rank Tests	7		
		7.2.1 Wilcoxon Rank-Sum Test	7		
		7.2.2 Mann-Whitney U Test	8		
8	Time Series Analysis 8				
	8.1	Stationarity	8		
	8.2	ARIMA Models	8		
9	Des	ign of Experiments	8		
	9.1	Randomized Controlled Trials	8		
	9.2	Factorial Designs	8		
	9.3	Blocking	8		
10	Mul	tivariate Statistics	8		
	10.1	Multivariate Normal Distribution	8		
	10.2	Principal Component Analysis	9		
	10.3	Canonical Correlation	9		
11	App	olications	9		
	11.1	Clinical Trials	9		
	11.2	Quality Control	9		
	11.3	Survey Sampling	9		
12	Imp	ortant Theorems 1	0		
	12.1	Central Limit Theorem	0		
	12.2	Slutsky's Theorem	0		
	199	Dolta Mathad	Ω		

1 Descriptive Statistics

1.1 Measures of Central Tendency

Definition 1.1. For a sample x_1, x_2, \ldots, x_n :

- Mean: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Median: Middle value when data is ordered
- Mode: Most frequently occurring value

1.2 Measures of Dispersion

Definition 1.2. • Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

- Standard Deviation: $s = \sqrt{s^2}$
- Range: $\max(x_i) \min(x_i)$
- Interquartile Range: $Q_3 Q_1$

2 Parameter Estimation

2.1 Point Estimation

Definition 2.1. A **point estimator** $\hat{\theta}$ is a statistic used to estimate a population parameter θ .

2.2 Properties of Estimators

Definition 2.2. An estimator $\hat{\theta}$ is:

- Unbiased if $E[\hat{\theta}] = \theta$
- Consistent if $\hat{\theta} \xrightarrow{p} \theta$ as $n \to \infty$
- Efficient if it has minimum variance among unbiased estimators

2.3 Maximum Likelihood Estimation

Definition 2.3. The maximum likelihood estimator (MLE) is the value of θ that maximizes the likelihood function $L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$.

2.4 Method of Moments

Definition 2.4. The **method of moments** estimator equates sample moments to population moments:

$$\frac{1}{n}\sum_{i=1}^{n}X_i^k = E[X^k]$$

3

3 Confidence Intervals

3.1 Definition

Definition 3.1. A confidence interval for parameter θ is an interval [L, U] such that $P(L \le \theta \le U) = 1 - \alpha$.

3.2 Common Confidence Intervals

3.2.1 Normal Mean (Known Variance)

For $X \sim \mathcal{N}(\mu, \sigma^2)$ with known σ^2 :

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

3.2.2 Normal Mean (Unknown Variance)

For $X \sim \mathcal{N}(\mu, \sigma^2)$ with unknown σ^2 :

$$\bar{X} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}$$

3.2.3 Proportion

For binomial proportion p:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Figure 1: Confidence interval for normal distribution

4 Hypothesis Testing

4.1 Basic Concepts

Definition 4.1. A hypothesis test is a procedure for deciding between two competing hypotheses:

• H_0 : Null hypothesis

• H_1 : Alternative hypothesis

4.2 Types of Errors

Definition 4.2. • Type I Error: Reject H_0 when it's true (probability α)

• Type II Error: Fail to reject H_0 when it's false (probability β)

• Power: $1 - \beta = P(\text{reject } H_0 | H_1 \text{ true})$

4.3 Test Statistics

4.3.1 **Z**-Test

For testing mean with known variance:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

4.3.2 t-Test

For testing mean with unknown variance:

$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} \sim t_{n-1}$$

4.3.3 Chi-Square Test

For testing variance:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi_{n-1}^2$$

4.4 p-Values

Definition 4.3. The **p-value** is the probability of observing a test statistic as extreme or more extreme than the observed value, assuming H_0 is true.

5 Regression Analysis

5.1 Simple Linear Regression

Definition 5.1. The simple linear regression model is:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

5.2 Least Squares Estimation

The least squares estimators are:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

5.3 Coefficient of Determination

Definition 5.2. The coefficient of determination is:

$$R^2 = \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

where SSR is sum of squares due to regression, SSE is sum of squared errors, and SST is total sum of squares.

Figure 2: Simple linear regression

5.4 Multiple Linear Regression

Definition 5.3. The multiple linear regression model is:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_n X_{in} + \epsilon_i$$

5.5 ANOVA

Definition 5.4. Analysis of Variance (ANOVA) tests whether the means of several groups are equal:

$$F = \frac{\text{MSB}}{\text{MSW}} \sim F_{k-1, n-k}$$

where MSB is mean square between groups and MSW is mean square within groups.

6 Bayesian Inference

6.1 Bayes' Theorem

Theorem 6.1.

$$P(\theta|data) = \frac{P(data|\theta)P(\theta)}{P(data)} = \frac{L(\theta)\pi(\theta)}{\int L(\theta)\pi(\theta)d\theta}$$

where $\pi(\theta)$ is the prior distribution and $P(\theta|data)$ is the posterior distribution.

6.2 Prior Distributions

Definition 6.1. Common conjugate priors:

- Normal-Normal: $X|\mu \sim \mathcal{N}(\mu, \sigma^2), \ \mu \sim \mathcal{N}(\mu_0, \tau^2)$
- Beta-Binomial: $X|p \sim \text{Binomial}(n,p), p \sim \text{Beta}(\alpha,\beta)$
- Gamma-Poisson: $X|\lambda \sim \text{Poisson}(\lambda), \lambda \sim \text{Gamma}(\alpha, \beta)$

6.3 Bayesian Estimation

Definition 6.2. Bayesian point estimators:

- Posterior Mean: $E[\theta|data]$
- Posterior Median: Median of posterior distribution
- Maximum A Posteriori (MAP): Mode of posterior distribution

7 Nonparametric Methods

7.1 Goodness of Fit Tests

7.1.1 Kolmogorov-Smirnov Test

Definition 7.1. Tests whether a sample comes from a specified distribution:

$$D_n = \sup_{x} |F_n(x) - F_0(x)|$$

where F_n is the empirical CDF and F_0 is the hypothesized CDF.

7.1.2 Chi-Square Goodness of Fit

Definition 7.2.

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi_{k-1}^2$$

where O_i are observed frequencies and E_i are expected frequencies.

7.2 Rank Tests

7.2.1 Wilcoxon Rank-Sum Test

Tests whether two independent samples come from the same distribution.

7.2.2 Mann-Whitney U Test

Nonparametric alternative to the two-sample t-test.

8 Time Series Analysis

8.1 Stationarity

Definition 8.1. A time series is **stationary** if:

- $E[X_t] = \mu$ (constant mean)
- $Var(X_t) = \sigma^2$ (constant variance)
- $Cov(X_t, X_{t+k}) = \gamma(k)$ (covariance depends only on lag)

8.2 ARIMA Models

Definition 8.2. An **ARIMA**(p,d,q) model is:

$$\phi(B)(1-B)^d X_t = \theta(B)\epsilon_t$$

where B is the backshift operator, $\phi(B)$ is the AR polynomial, and $\theta(B)$ is the MA polynomial.

9 Design of Experiments

9.1 Randomized Controlled Trials

Definition 9.1. A randomized controlled trial randomly assigns subjects to treatment and control groups to minimize bias.

9.2 Factorial Designs

Definition 9.2. A factorial design studies the effect of multiple factors simultaneously:

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

9.3 Blocking

Definition 9.3. Blocking groups similar experimental units together to reduce variability and increase precision.

10 Multivariate Statistics

10.1 Multivariate Normal Distribution

Definition 10.1. A random vector $\mathbf{X} = (X_1, \dots, X_p)^T$ has a multivariate normal distribution if:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

10.2 Principal Component Analysis

Definition 10.2. Principal Component Analysis (PCA) finds linear combinations of variables that explain maximum variance:

$$\mathbf{Y} = \mathbf{A}\mathbf{X}$$

where A is chosen to maximize variance of Y.

10.3 Canonical Correlation

Definition 10.3. Canonical correlation finds linear combinations of two sets of variables that are maximally correlated.

11 Applications

11.1 Clinical Trials

Statistics is essential for:

- Sample size determination
- Randomization procedures
- Interim analyses
- Safety monitoring

11.2 Quality Control

Applications include:

- Control charts
- Process capability analysis
- Design of experiments
- Reliability analysis

11.3 Survey Sampling

Used in:

- Population estimation
- Stratified sampling
- Cluster sampling
- Nonresponse adjustment

12 Important Theorems

12.1 Central Limit Theorem

Theorem 12.1. If X_1, X_2, \ldots are i.i.d. with mean μ and variance σ^2 , then:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0, 1)$$

12.2 Slutsky's Theorem

Theorem 12.2. If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$, then:

- $\bullet \ X_n + Y_n \xrightarrow{d} X + c$
- $\bullet \ X_n Y_n \xrightarrow{d} cX$
- $X_n/Y_n \xrightarrow{d} X/c \text{ (if } c \neq 0)$

12.3 Delta Method

Theorem 12.3. If $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ and g is differentiable at θ , then:

$$\sqrt{n}(g(\hat{\theta}_n) - g(\theta)) \xrightarrow{d} \mathcal{N}(0, [g'(\theta)]^2 \sigma^2)$$