Estrutura de Dados I 1/62

Complexidade de Algoritmos

Professor: Elton Sarmanho¹ E-mail: eltonss@ufpa.br

()

¹Faculdade de Sistemas de Informação - UFPA/CUTINS

5 de junho de 2025

Roteiro

Análise Assintótica de Algoritmos Objetivos

Tipos Abstratos de Dados Conceitos Gerais

Roteiro

Crescimento de funções

Conceitos Gerais

Notação O

Notação Ω

Notação Θ

Notação Assintótica

Trabalho 1 - Complexidade de Algoritmos

Referências Bibliográficas

Estrutura de Dados I 4/62

Análise Assintótica de Algoritmos

└Objetivos

- Esta aula apresenta conceitos gerais sobre complexidade de algoritmos. Ao final, você deverá compreender os seguintes tópicos:
 - ► Entender e compreender a importância de medir desempenho do algoritmo.
 - Saber medir desempenho de um algoritmo através da Anotação assintótica.

Estrutura de Dados I 5 / 62

Análise Assintótica de Algoritmos

└Objetivos

- Esta aula apresenta conceitos gerais sobre complexidade de algoritmos:
 - Dados e TAD's
 - Crescimento de funções
 - Notações
 - Funções

Estrutura de Dados I 6 / 62

- LTipos Abstratos de Dados
 - Conceitos Gerais

- Programas possuem tipos de dados que são característicos de cada implementação
 - ► Preciso definir claramente os tipos de dados
- Tipo de dados é um conjunto de valores munido de um conjunto de operações
 - int, float, char e etc

Estrutura de Dados I 7 / 62

LTipos Abstratos de Dados

Conceitos Gerais

- ► Um Tipo Abstrato de Dados (TAD) especifica um comportamento definido pelo usuário em termos de suas propriedades abstratas:
 - Descreve o **comportamento** de um objeto que <u>independe</u> da sua implementação e <u>linguaguem de programação</u>, unicamente através dessas propriedades abstratas

Estrutura de Dados I 8 / 62

LTipos Abstratos de Dados

Conceitos Gerais

Características do TAD

- Define o comportamento de um tipo de dado sem se preocupar com sua implementação.
- Necessário uma representação concreta:
 - Como TAD é implementado
 - como seus dados são manipulados com suas operações
- ▶ Base da POO

Estrutura de Dados I 9 / 62

LTipos Abstratos de Dados

Conceitos Gerais

Implementação do TAD

- Por exemplo, pode-se definir um TAD chamado pilha.
- Nele os operadores seriam inserção e remoção da pilha, ocorrendo no topo da estrutura.
- Os dados seriam elementos da pilha
- ► A implementação é dependente das estruturas disponíveis na linguagem utilizada e de opções de modelagem (estruturas estáticas ou dinâmicas)

Estrutura de Dados I 10/62

└Tipos Abstratos de Dados

Conceitos Gerais

Implementação do TAD

- Considere uma aplicação que utilize uma lista de inteiros.
 Poderíamos definir TAD Lista, com as seguintes operações
 - Faça lista vazia
 - obtenha o primeiro elemento da lista; se a lista estiver vazia, então retorne nulo;
 - insira um elemento na lista.
- Há várias opções de estruturas de dados que permitem uma implementação eficiente para listas (por ex., o tipo estruturado arranjo).

Estrutura de Dados I 11/62

└Tipos Abstratos de Dados

Conceitos Gerais

Implementação do TAD

- Cada operação do tipo abstrato de dados é implementada como um procedimento na linguagem de programação escolhida
- Qualquer alteração na implementação do TAD fica restrita à parte encapsulada, sem causar impactos em outras partes do código.
- Cada conjunto diferente de operações define um TAD diferente, mesmo atuando sob um mesmo modelo matemático.
- A escolha adequada de uma implementação depende fortemente das operações a serem realizadas sobre o modelo.

Estrutura de Dados I 12/62

Crescimento de funções

Conceitos Gerais

- ► A complexidade de algoritmos é fundamental para projetar algoritmos eficientes.
- Caracteriza a complexidade de tempo em função do tamanho da entrada (n)
- um algoritmo assintoticamente mais eficiente é a melhor escolha para todas as entradas, exceto as de tamanho pequeno.
 - Conta-se o número de operações consideradas relevantes realizadas pelo algoritmo e expressa-se esse número como uma função de n.
 - Essas operações podem ser comparações, operações aritméticas, movimento de dados, etc
 - permite analisar a complexidade de um algoritmo independente do ambiente computacional utilizado

Estrutura de Dados I 13 / 62

└Crescimento de funções

Conceitos Gerais

Pior caso, melhor caso, caso médio

- O número de operações realizadas por um determinado algoritmo pode depender da particular instância da entrada. Em geral interessa-nos o pior caso, i.e., o maior número de operações usadas para qualquer entrada de tamanho n.
- Análises também podem ser feitas para o melhor caso e o caso médio. Neste último, supõe-se conhecida uma certa distribuição da entrada.

Estrutura de Dados I 14/62

Crescimento de funções

└Notação O

Definição

- Para uma dada função g(n), denotamos O(g(n)) o conjunto de funções como:
 - $O(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais }$ que $0 \le f(n) \le c \cdot g(n) \text{ para todo } n \ge n_0 \}$
- ▶ Dizemos que $f(n) \in O(g(n))$, porém podemos adotar f(n) = O(g(n)) (Abuso da notação de igualdade)
- Na maiora dos casos estamos interessados no limite superior, pois queremos saber no pior caso, qual a complexidade de tempo

└Notação O

- Para todos os valores de n à direita de n₀, o valor de f(n) reside em c.g(n) ou abaixo desse
- ► A função g(n) estabelece um limite Assintótico superior para f(n)
- Exemplo: $an + b = O(n^2)$
 - Podemos pensar nessa equação como sendo $an + b \le O(n^2)$ ou $an + b \in O(n^2)$
 - Pois a taxa de Crescimento linear é menor ou igual a taxa quadrática

∟Notação O

- ► Como abuso de notação, vamos sempre escrever f(n) = O(g(n)) ao invés de $f(n) \in O(g(n))$
- Algoritmo 1: $f_1(n) = 2n^2 + 5n = O(n^2)$ Algoritmo 2: $f_2(n) = 500n + 400 = O(n)$
 - ▶ Um polinômio de grau d é de ordem $O(n^d)$. Como uma constante pode ser considerada como um polinômio de grau 0, logo dizemos que uma constante é $O(n^0) = O(1)$
 - Podemos descartar os termos de mais baixa ordem e coeficientes do termo de mais alta ordem

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \leq c.n$$

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \leq c.n$$

$$n+5 \leq c.n$$

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \leq c.n$$

$$n+5 \le c.n$$

$$5 \le c.n - n$$

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \leq c.n$$

$$n+5 \le c.n$$

$$5 \leq c.n - n$$

$$c.n - n \ge 5$$

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \leq c.n$$

$$n+5 \le c.n$$

$$5 \le c.n - n$$

$$c.n - n \ge 5$$

$$n(c-1) \geq 5$$

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \le c.n$$

$$n+5 \le c.n$$

$$5 \le c.n-n$$

$$c.n-n \ge 5$$

$$n(c-1) \ge 5$$

$$n \ge \frac{5}{c-1}$$

└Notação O

Exemplos

1.
$$n + 5 \in O(n)$$
?

$$f(n) \le c.n$$

$$n+5 \le c.n$$

$$5 \le c.n-n$$

$$c.n-n \ge 5$$

$$n(c-1) \ge 5$$

$$n \ge \frac{5}{c-1}$$

$$c = 2 e n_0 = 5$$

└Notação O

Exemplos - Aluno

2. $2n + 10 \in O(n)$ Qual valor de c e n_0 ?

∟Notação Ω

Definição

- Para uma dada função g(n), denotamos $\Omega(g(n))$ o conjunto de funções como:
 - $\Omega(g(n)) = \{f(n) : \text{ existem constantes positivas } c \in n_0 \text{ tais }$ que $0 \le c \cdot g(n) \le f(n)$ para todo $n \ge n_0\}$
- uma função f(n) pertence ao conjunto $\Omega(g(n))$ se existe uma constante positiva c de forma que ela possa estar limitada por $c \cdot g(n)$ para um valor de n suficientemente grande.
- ▶ Dizemos que $f(n) \in \Omega(g(n))$, porém podemos adotar $f(n) = \Omega(g(n))$ (Abuso da notação de igualdade)

LNotação Ω

- Para todos os valores de n à direita de n₀, o valor de f(n) reside em c.g(n) ou acima desse
- A função g(n) estabelece um limite Assintótico inferior para f(n)
- ightharpoonup Exemplo: $2n^2 + n = \Omega(n)$
 - Podemos pensar nessa equação como sendo $2n^2 + n \ge \Omega(n)$, ou seja, a taxa de Crescimento de $2n^2 + n$ é maior ou igual a taxa de n

∟Notação Ω

Exemplo 2

▶
$$6n + 1 \ge c$$

▶
$$6n \ge c - 1$$

$$n \geq \frac{c-1}{6}$$

Para
$$n_0 = 1$$
 temos de tomar $c = 7$

∟Notação Θ

Definição

- Para uma dada função g(n), denotamos $\Theta(g(n))$ o conjunto de funções como:
 - $\Theta(g(n)) = \{f(n) : \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ para todo } n \ge n_0 \}$
- ▶ uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existem constantes positiva c_1 e c_2 de forma que ela possa estar limitada por $c_1 \cdot g(n)$ e $c_2 \cdot g(n)$ para um valor de n suficientemente grande.

∟Notação Θ

- Para todos os valores de n à direita de n₀, o valor de f(n) reside em c₁.g(n) ou acima dele e c₂.g(n) ou abaixo dele.
- ▶ A função g(n) estabelece um limite Assintótico restrito para f(n)

└Notação Assintótica

limite superior

- ightharpoonup Seja dado um problema, multiplicação de duas matrizes quadradas $n \times n$
- Conhecemos um algoritmo para resolver este problema (pelo método trivial) de complexidade $O(n^3)$
- Sabemos que a complexidade deste problema não deve superar $O(n^3)$, uma vez que existe um algoritmo que o resolve com essa complexidade.
- ▶ O **limite superior** (*upper bound*) deste problema é $O(n^3)$
 - limite superior de um problema pode mudar se alguém descobrir um outro algoritmo melhor

- Crescimento de funções
 - └Notação Assintótica

limite superior

▶ O algoritmo de Strassen reduziu a complexidade para $O(n^{\log 7})$. Então um novo limite superior é criado.

└Notação Assintótica

limite superior

- O algoritmo de Strassen reduziu a complexidade para $O(n^{\log 7})$. Então um novo limite superior é criado.
- ightharpoonup Coppersmith e Winograd melhoraram ainda para $O(n^{2.376})$
- Note que limite superior de um problema depende do algoritmo. Pode diminuir quando aparecer um algoritmo melhor.

$$O(n^{2.376})$$
 $O(n^{\log 7})$ $O(n^3)$

└Notação Assintótica

Análise do uso da notação assintótica

- Para dois algoritmos, considere as funções de eficiência:
 - f(n) = 1000n
 - $ightharpoonup g(n) = n^2$
- ightharpoonup f é maior do que g para valores pequenos de n
- **b** g cresce mais rapidamente e podemos observar que no ponto onde n=1.000 ocorre a mudança de comportamento g>f
- Conforme as notações vistas, se existe um n_0 a partir do qual $c \cdot f(n)$ é pelo menos tão grande quanto g(n), então, desprezando os fatores constantes e considerando $n_0 = 1000$ e c = 1:
 - $f(n) = O(n^2)$
 - O que mostra que para $n \ge 1000$, n^2 é um limitante superior para f(n)

└Notação Assintótica

Análise do uso da notação assintótica

└Notação Assintótica

T(n) = O(1) : constante

Análise do uso da notação assintótica: Funções

```
T(n) = O(\log \log n): super-rápido

T(n) = O(\log n): logarítmico – muito bom

T(n) = O(n): linear – toda a entrada é visitada

T(n) = O(n \log n): limite de muitos problemas

T(n) = O(n^2): quadrático

T(n) = O(n^k): polinomial no tamanho da entrada

T(n) = O(k^n), O(n^1), O(n^n): exponencial – ruim!
```


39 / 62

└Notação Assintótica

Análise do uso da notação assintótica: Funções

Constante: ≈ 1

► Independente do tamanho de n, quantidade de operações executadas é uma quantidade fixa de vezes

Logarítmica: $≈ log_b n$

► Típica de algoritmos que resolvem um problema transformando-o em problemas menores.

Linear: $\approx n$

- Uma certa quantidade de operações é processada sobre cada um dos elementos de entrada
- Situação ideal para quando é preciso processar entrada e obter n elementos de saída

└Notação Assintótica

Análise do uso da notação assintótica: Funções

Log Linear(ou n-log-n): $\approx n \cdot \log_b n$

São algoritmos que resolvem um problema transformando-o em problemas menores, resolvem cada um de forma independente e depois agrupam as soluções.

Quadrática: $\approx n^2$

- ocorre quando os dados são processados aos pares, com laços de repetição aninhados
- São úteis para solucionar problemas de tamanho relativamente pequeno.

Exponencial e Fatorial: $\approx a^n$ e $\approx n!$

- Normalmente ocorre quando se usa uma solução de força bruta
- não são úteis do ponto de vista prático

└Notação Assintótica

Eficiência Assintótica

Algorithm A	Algorithm B	Algorithm C		
sum = 0 for i = 1 <i>to</i> n sum = sum + i	<pre>sum = 0 for i = 1 to n { for j = 1 to i sum = sum + 1 }</pre>	sum = n * (n + 1) / 2		

└Notação Assintótica

Eficiência Assintótica

	Algorithm A	Algorithm B	Algorithm C
Assignments	n + 1	1 + n(n+1)/2	1
Additions	n	n(n+1)/2	1
Multiplications			1
Divisions			1
Total operations	2n + 1	$n^2 + n + 1$	4
	O(n)	O(n²)	O(1)

└Notação Assintótica

Eficiência Assintótica

└Notação Assintótica

Medida de Complexidade

- ▶ Sejam 5 algoritmos A_1 a A_5 para resolver um mesmo problema, de complexidades diferentes. (Supomos que uma operação leva 1 ms para ser efetuada.)
- $ightharpoonup T_k(n)$ é a complexidade ou seja o número de operações que o algoritmo efetua para n entradas

n	A ₁ T _I (n)= n	A 2 T ₂ (n)=nlog n	A ₃ T ₃ (n)=n ²	A ₄ T ₄ (n)=n ³	A ₅ T ₅ (n)=2 ⁿ
16	0.016s	0.064s	0.256s	4s	1m4s
32	0.032s	0.16s	1s	33s	46 Dias
512	0.512s	9s	4m22s	1 Dia 13h	10137 Séculos

└Notação Assintótica

Exercício

- ► Um algoritmo tradicional e muito utilizado possui complexidade $f(n) = n^{1.3}$ enquanto um algoritmo novo proposto é da ordem de $g(n) = n \cdot \log n$
- ▶ Qual o melhor algoritmo ?

└Notação Assintótica

Exercício

Estrutura de Dados I 48 / 62

└Crescimento de funções

└Notação Assintótica

Dicas de análise na prática

- ▶ Se f(n) for um polinômio de grau d então f(n) é $O(n^d)$
 - despreze os termos de menor ordem
 - despreze os fatores constantes
- Use a menor classe de funções possível
 - ▶ 3n é O(n), ao invés de 3n é O(3n)
- Use a expressão mais simples
 - ▶ 3n + 5 é O(n), ao invés de 3n + 5 é O(3n)

└Notação Assintótica

Analisando Algoritmo

Repetições : o tempo de execução é pelo menos o tempo dos comandos dentro da repetição multiplicada pelo número de vezes que é executada.

Veja pseudo código abaixo é O(n) z = 1 Para x de 1 Ate n Faca: z = z * x

Estrutura de Dados I 50/62

└Crescimento de funções

└Notação Assintótica

Analisando Algoritmo

Repetições aninhadas : O processo de análise é realizado do processo mais interno ao externo

- o tempo total é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições
- Veja o exemplo a seguir em que é O(n²) matriz = [n,n] Para linha de 1 Ate n Faca: Para coluna de 1 Ate n Faca: printa(matriz[linha,coluna])

Notação Assintótica

Analisando Algoritmo

Condições: o tempo nunca é maior do que o tempo do teste entretanto considere **o tempo do maior** entre os comandos dentro do bloco do "então" e do "senão".

Veja o exemplo a seguir em que é O(n). Devido segundo bloco ser maior Tempo de execução

Se
$$(x < y)$$
:

$$x = y + 1$$

Senao:

Para x de 1 Ate n Faca:

$$y = y + x * 2$$

Estrutura de Dados I 52/62

└Crescimento de funções

Notação Assintótica

Analisando Algoritmo

Chamadas à subrotinas : a subrotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa que a chamou.

Crescimento de funções

Notação Assintótica

Analisando Algoritmo - Exercício

```
busca_linear(vetor, chave) {
    i = 0:
    enquanto(i < tamanho(vetor)) {</pre>
        se(vetor[i] == chave)
            retorna i;
        ++i:
    retorna -1:
```

└ Notação Assintótica

Analisando Algoritmo - Exercício

```
\begin{aligned} & \text{for} \big( \, i \, = 0; \, \, i \, < \, n{-}1; \, +{+}i \big) \\ & \text{for} \big( \, j \, = i \, + \, 1; \, \, j \, < \, n; \, +{+}j \big) \\ & \text{aux} \, = \, \, a[\, i \, ][\, j \, ]; \\ & \text{a}[\, i \, ][\, j \, ] \, = \, a[\, j \, ][\, i \, ]; \\ & \text{a}[\, j \, ][\, i \, ] \, = \, aux; \end{aligned}
```


└ Notação Assintótica

Analisando Algoritmo - Exercício

```
\begin{aligned} & \text{for} \big( \text{i} = 0; \text{ i} < \text{n} - 1; \text{ } + + \text{i} \big) \\ & \text{for} \big( \text{j} = \text{i} + 1; \text{ j} < \text{n}; \text{ } + + \text{j} \big) \\ & \text{aux} = \text{a[i][j]}; \\ & \text{a[i][j]} = \text{a[j][i]}; \\ & \text{a[j][i]} = \text{aux}; \end{aligned}
```


└Notação Assintótica

Analisando Algoritmo - Exercício - Aluno

```
01
    inicio
02
       i, j: inteiro
03
       A: vetor inteiro de n posicoes
04
       i = 1
05
06
       enquanto (i < n) faca
          A[i] = 0
07
          i = i + 1
08
09
10
       para i = 1 ate n faca
11
          para j = 1 ate n faca
12
             A[i] = A[i] + (i*j)
13
    fim
```


Estrutura de Dados I 57/62

Crescimento de funções

Trabalho 1 - Complexidade de Algoritmos

- 1. Implemente e calcule a complexidade dos algoritmos
 - a) Escreva um algoritmo para encontrar o maior elemento do Array de tamanho *n*.
 - b) Escreva um algoritmo para calcular exponenciação de x^y .
 - Escreva um algoritmo para verificar se palavra é palíndromo.

Referências Bibliográficas

Referências I

- Lee K.D., Hubbard S. (2015) Trees. In: Data Structures and Algorithms with Python. Undergraduate Topics in Computer Science. Springer, Cham. Retrieved from https://doi.org/10.1007/978-3-319-13072-9_6
- Hubbard, J. (2007). Schaum's Outline sof Data Structures with Java. Retrieved from http://www.amazon.com/Schaums-Outline-Data-Structures-Java/dp/0071476989
- Cormen, T. H., Leiserson, C. E., & Stein, R. L. R. E. C. (2012). Algoritmos: teoria e prática. Retrieved from https://books.google.com.br/books?id=6iA4LgEACAAJ.

Referências Bibliográficas

Referências II

- Ascenio, Ana Fernanda Gomes. Estrutura de dados: Algoritmos, análise da complexidade e implementações em Java e C++. São Paulo: Pearson Prentice Hall, 2010.
- Szwarcfiter, Jayme Luiz. Estruturas de dados e seus algoritmos / Jayme Luiz Szwarcfiter, Lilian Markenzon. 3.ed. [Reimpr.]. Rio de Janeiro: LTC, 2015.
- Capítulo 20: Árvores documentação Aprenda Computação com Python 3.0 2009.1. Retrieved from https://mange.ifrn.edu.br/python/aprenda-com-py3/capitulo_20.html

Estrutura de Dados I 62/62

Complexidade de Algoritmos

Professor: Elton Sarmanho¹ E-mail: eltonss@ufpa.br

 \bigcirc

¹Faculdade de Sistemas de Informação - UFPA/CUTINS

5 de junho de 2025

