Option SCIA

Mathématiques du signal

Promo 2007

Table des matières

	nsformation de Laplace 1
1.1	Outils mathématiques nécessaires
	1.1.1 Équation différentielle linéaire à cœfficients constants
	1.1.2 Produit de convolution
	1.1.3 Fonction complexe d'une variable complexe
1.2	Définition de la transformation de Laplace
	1.2.1 Propriétés
1.3	Tableau des transformées de Laplace usuelles
1.4	Transformée de Laplace inverse
La	transformation en z 7
2.1	Définitions du signal échantillonné
2.2	Choix de <i>T</i>
2.3	Calcul pratique d'une transformée en z
2.4	Calcul indirect d'une transformée en z
2.5	Principales propriétés de la transformation en z
	2.5.1 Linéarité
	2.5.2 Théorème du retard
	2.5.3 Convolution
	2.5.4 Théorème de la valeur initiale / Théorème de la valeur finale
abl	e des figures
1	Échelon de Heaviside
2	Retard d'un signal
3	Tableau des transformées de Laplace usuelles
4	
4	Exemple d'utilisation de \mathscr{L}
5	•
	Exemple d'utilisation de \mathscr{L}
5	Exemple d'utilisation de \mathscr{L}
5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5 6 7	Exemple d'utilisation de \mathscr{L}
5 6 7 8	Exemple d'utilisation de \mathscr{L}
5 6 7 8 9	Exemple d'utilisation de \mathscr{L} 4Graphe de $e(t)$ 4Première période isolée4 $H_1(p)$ 5 $H_2(p)$ 5 $H_3(p)$ 5
5 6 7 8 9 10	Exemple d'utilisation de \mathscr{L} 4Graphe de $e(t)$ 4Première période isolée4 $H_1(p)$ 5 $H_2(p)$ 5 $H_3(p)$ 5Fonction de transfert $G(p)$ 6
5 6 7 8 9 10 11	Exemple d'utilisation de \mathscr{L} 4Graphe de $e(t)$ 4Première période isolée4 $H_1(p)$ 5 $H_2(p)$ 5 $H_3(p)$ 5Fonction de transfert $G(p)$ 6Pont diviseur de tension6
	1.3 1.4 La 2.1 2.2 2.3 2.4 2.5

1 Transformation de Laplace

1.1 Outils mathématiques nécessaires

1.1.1 Équation différentielle linéaire à cœfficients constants

Exemple:

$$a_n \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_0 y(t) = b_m \frac{d^m u(t)}{dt^m} + b_{m-1} \frac{d^{m-1} u(t)}{dt^{m-1}} + \dots + b_0 u(t)$$

La linéarité de l'équation vient du fait qu'il n'y a pas de produit de dérivées. Les cœfficients constants sont indépendants du temps.

Exemple numérique :

$$\ddot{y}(t) + \dot{y}(t) - 6y(t) = 12t + 20$$

Première étape : on cherche la solution générale de l'équation sans second membre

$$\ddot{y}(t) + \dot{y}(t) - 6y(t) = 0$$

Équation caractéristique : on remplace les dérivées par un paramètre $r: r^2+r-6=0 \Rightarrow r_1=-3; r_2=2$. La solution générale sans second membre : $y(t)=Ae^{-3t}+Be^{2t}$.

Deuxième étape : solution particulière de l'équation avec second membre Solution particulière de la forme : y(t) = at + b.

$$a - 6(at + b) = 12t + 20 \Rightarrow \begin{cases} -6at = 12t \Rightarrow a = -2 \\ a - 6b = 20 \Rightarrow b = -\frac{11}{3} \end{cases}$$

Solution générale de l'équation avec second membre On somme la solution générale de l'équation sans second membre et une solution particulière de l'équation avec second membre.

$$y(t) = Ae^{-3t} + Be^{2t} - 2t - \frac{11}{3}$$

A et B dépendent des conditions initiales normalement connues. La transformée de Laplace offre une méthode de résolution concurrente plus simple.

1.1.2 Produit de convolution

Soient deux signaux continus x(t) et y(t). On appelle produit de convolution :

$$x(t) * y(t) = \int_{-\infty}^{+\infty} x(\tau).y(t-\tau)d\tau$$

L'"impulsion" de Dirac ou le "pic" de Dirac, $\delta(t)$, joue le rôle d'unité de convolution. On a :

$$x(t) * \delta(t) = \delta(t) * x(t) = x(t)$$

1.1.3 Fonction complexe d'une variable complexe

C'est une fonction de $\mathbb{C} \to \mathbb{C}$.

1.2 Définition de la transformation de Laplace

Soit f(t) une fonction généralement causale $(f(t) = 0, t \le 0)$, on pose

$$F(p) = \int_{0}^{+\infty} f(t)e^{-pt}dt \text{ avec } p \in \mathbb{C}$$

On dira que F(p) est la transformée de Laplace de $f(t): f(t) \xrightarrow{\mathscr{L}} F(p)$. On a $p = \sigma + j\omega$ avec ω la pulsation. $\omega = 2\pi f$ avec f la fréquence.

Convergence de \mathcal{L} ? La convergence ne pose aucun problème pour les signaux réels (qui possèdent un sens physique). Les problèmes peuvent survenir si l'on considère des fonctions mathématiques non-réalisables.

Fig. 1 – Échelon de Heaviside

Exemple Échelon unitaire (voir Fig. 1):

$$\mathscr{L}[u(t)] = \int_{0}^{+\infty} e^{-pt} f(t)dt = \left[\frac{e^{-pt}}{-p}\right]_{0}^{+\infty} = 0 + \frac{1}{p} = \frac{1}{p}$$

1.2.1 Propriétés

On se sert le plus souvent des propriétés de la transformée de Laplace plutôt que de sa définition.

Linéarité

$$\mathscr{L}[\lambda f(t) + \mu g(t)] = \lambda F(p) + \mu G(p)$$

Fig. 2 - Retard d'un signal

Théorème du retard (voir Fig. 2)

$$\mathscr{L}[f(t-\tau)] = e^{-\tau p} F(p)$$

t	p
Échelon de Heaviside	$\frac{1}{p}$
$\delta(t)$	1
Rampe unitaire $tu(t)$	$\frac{1}{p^2}$
$e_{-at}u(t), a \in \mathbb{C}$	$\frac{1}{p+a}$

Fig. 3 – Tableau des transformées de Laplace usuelles

Dérivation / intégration On suppose que la condition initiale f(t=0) est nulle.

$$\mathscr{L}\left[\frac{df(t)}{dt}\right] = pF(p) - f(t=0)$$

Si l'on suppose que les conditions initiales sont nulles, alors la dérivation et l'intégration dans l'espace de la variable p se ramènent à une multiplication ou à une division par p.

Propriété de convolution

$$\mathscr{L}[f(t) * g(t)] = F(p)G(p)$$

Théorème de la valeur initiale / finale

$$\begin{cases} \lim_{t \to 0} f(t) &= \lim_{p \to +\infty} pF(p) \\ \lim_{t \to +\infty} f(t) &= \lim_{p \to 0} pF(p) \end{cases}$$

1.3 Tableau des transformées de Laplace usuelles

Exemple
$$f(t) = \sin(\omega t)u(t)$$
: On a $\sin(\omega t) = \frac{e^{j\alpha} - e^{-j\alpha}}{2j}$

$$\begin{split} \mathscr{L}[f(t)] &= \mathscr{L}\left[\frac{e^{j\omega t} - e^{-j\omega t}}{2j}u(t)\right] \\ &= \frac{1}{2j}(\mathscr{L}[e^{j\omega t}u(t)] - \mathscr{L}[e^{-j\omega t}u(t)]) \\ &= \frac{1}{2j}\left(\frac{1}{p - j\omega} - \frac{1}{p + j\omega}\right) \\ &= \frac{\omega}{p^2 + \omega^2} \end{split}$$

1.4 Transformée de Laplace inverse

 $F(p) \xrightarrow{\mathscr{L}^{-1}} f(t)$. La méthode la plus simple et la plus utilisée est la décomposition en éléments simples. $Exemple\ F(p) = \frac{2p^2 + 12p + 6}{p(p+2)(p+3)}$: La décomposition en éléments simples permet de retrouver la table 3.

$$F(p) = \frac{A}{p} + \frac{B}{p+2} + \frac{C}{p+3}$$

On multiplie les deux membres par p, puis on fait p=0:1=A.

On multiplie les deux membres par p+2, puis on fait p=-2:5=B

On multiplie les deux membres par p + 3, puis on fait p = -3: -4 = C

$$F(p) = \frac{2p^2 + 12p + 6}{p(p+2)(p+3)} = \frac{1}{p} + \frac{5}{p+2} - \frac{4}{p+3} \xrightarrow{\mathscr{L}^{-1}} f(t) = \left(1 + 5e^{-2t} - 4e^{-3t}\right)u(t)$$

Fig. 4 – Exemple d'utilisation de ${\mathscr L}$

Fig. 5 – Graphe de e(t)

Application (voir figure 4) $\mathscr L$ permet de calculer la réponse $V_s(t)$ à une sollicitation e(t) donnée. On considère e(t) dans la figure 5

1. Calculer $\mathscr{L}[e(t)] = E(p)$. Ne pas faire appel à la définition mais aux propriétés. On s'intéresse d'abord à une période isolée (montrée dans la figure 6). Calculer H(p)

 ${\rm Fig.}~6-{\rm Premi\`ere}~{\rm p\'eriode}~{\rm isol\'ee}$

D'après le théorème du retard, $\mathscr{L}[f(t-\tau)] = e^{-\tau p} F(p)$

- (voir figure 7) $H_1(p) = \frac{1}{10} \times \frac{1}{p^2}$.

Fig. $7 - H_1(p)$

- (voir figure 8) $H_2(p) = \frac{-2}{10} \times \frac{1}{p^2} \times e^{-10p}$.

Fig. $8 - H_2(p)$

- (voir figure 9) $H_3(p) = \frac{1}{10} \times \frac{1}{p^2} \times e^{-20p}$.

Fig.
$$9 - H_3(p)$$

$$H(p) = H_1(p) + H_2(p) + H_3(p) = \frac{1}{p^2} \left(1 - 2e^{-10p} + e^{-20p} \right) = \frac{(1 - e^{-10p})^2}{10p^2} \to E(p)$$
?

On a

$$e(t) = h(t) + h(t - 20) + h(t - 40) + \cdots \xrightarrow{\mathscr{L}} E(p) = H(p) + H(p)e^{-20p} + H(p)e^{-40p} + \cdots$$
$$= H(p)(1 + e^{20p} + e^{-40p} + \cdots)$$

On admet que la série est convergente.

$$E(p) = H(p) - \frac{1}{1 - e^{-20p}} = \frac{(1 - e^{-20p})^2}{10p^2(1 - e^{-10p})(1 + e^{-10p})} = \frac{1 - e^{-10p}}{10p^2(1 + e^{-10p})} = E(p)$$

2. On applique un pont diviseur de tension comme montré dans la figure 11.

Fig. 10 – Fonction de transfert G(p)

Fig. 11 – Pont diviseur de tension

$$G(p) = \frac{V_s(p)}{E(p)} = \frac{R}{R + R_g + \frac{1}{C_p}} = \frac{RC_p}{1 + (R + R_g)C_p}$$

2 La transformation en z

C'est l'outil de base pour traiter les signaux échantillonnés (dits encore "discrets" ou numériques).

2.1 Définitions du signal échantillonné

On considère un signal f(t) causal $(f(t) = 0, t \le 0)$. T = période d'échantillonnage.

Remarque: On suppose que l'échantillonnage est périodique.

Échantillons : $f(0), f(T), f(2T), \ldots$

 $f^*(t) = \{f(0), f(T), f(2T), \ldots\}.$

 \mathscr{L} pour passer si fréquentiel \Rightarrow problème. \mathscr{L} d'une suite de nombre n'est pas définie. D'où la nécessité de faire appel à une deuxième définition qui est moins intuitive mais a le même contenu.

$$f^*(t) = \sum_{n=0}^{+\infty} f(nT)\delta(t - nT)$$

Peigne de Dirac $\sum_{n=0}^{+\infty} \delta(t-nT)$. C'est un support ou un emballage de l'information.

Lorsqu'on multiplie un dirac par une constante, la surface de Dirac prend la valeur de cette constante. On a des échantillons $f(0), f(T), \ldots$ à transporter. Pour cela, on utilise un peigne de Dirac.

Calcul de $\mathscr L$ de $f^*(t)$

- $-\mathcal{L}$ est linéaire.
- Théorème du retard : $\mathscr{L}[f(t-\tau)] = e^{-\tau p}F(p)$.
- $-\mathcal{L}$ élémentaires : $\mathcal{L}[\delta(t)] = 1$

$$\mathcal{L}[f^*(t)] = F^*(p)$$

$$= \mathcal{L}\left[\sum_{n=0}^{+\infty} f(nT)\delta(t - nT)\right]$$

$$= \sum_{n=0}^{+\infty} \mathcal{L}[f(nT)\delta(t - nT)]$$

$$= \sum_{n=0}^{+\infty} \underbrace{f(nT)}_{cte} \mathcal{L}[\delta(t - nT)]$$

$$= \sum_{n=0}^{+\infty} f(nT)e^{-nTp} \mathcal{L}[\delta(t)]$$

$$= \sum_{n=0}^{+\infty} f(nT)e^{-nTp}$$

Pour éliminer l'exponentielle, on effectue une changement de variable : $z=e^{Tp}$

$$\mathscr{F}(z) = \sum_{n=0}^{+\infty} f(nT)z^{-n}$$

Remarque: $F^*(p)$ est souvent appelée "transformée de Laplace échantillonnée de f(t)". Remarque échantillonnage idéal / échantillonnage réel :

2.2 Choix de T

Problème de la reconstitution du signal continu à partir du signal échantillonné. La reconstitution de f(t) à partir de $f^*(t)$ est théoriquement possible seulement si T a été bien choisi. Y'a-t-il perte d'information lors de l'échantillonage? Comment mesurer la quantité d'information contenue dans un signal? On utilise le spectre de Fourier.

Transformée de Fourier presqu'équivalente à la transformée de Laplace : $f(t) \xrightarrow{\mathscr{F}} F(\nu)$. $F(\nu)$ est une fonction complexe d'un argument réel (la fréquence). Spectre de Fourier = $|F(\nu)|$ en fonction de ν . Le spectre de Fourier mesure la quantité d'information contenue dans le signal f(t).

On admet que
$$f^*(t) \xrightarrow{\mathscr{F}} F^*(\nu) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} F\left(\nu - \frac{k}{T}\right)$$
.

Ainsi, lorsqu'on échantillonne un signal, on recopie l'information une infinité de fois le long de l'axe fréquentiel, avec l'écart $\frac{1}{T}$. Pour retrouver l'information, on construit un filtre rectangulaire qui va éliminer les composantes qui ne sont pas centrées en 0, garder la composante centrée en 0 et appliquer un gain de T.

La reconstitution de f(t) n'est possible que si lors de l'échantillonnage, les différentes copies du spectre central se sont placées les unes à côté des autres sans se chevaucher.

Théorème de Shonnon $T < \frac{1}{N}$. Lorsqu'on échantillonne un signal continu à spectre fréquentiel borné [-N, N], on ne perd aucune information si la fréquence d'échantillonnage est supérieure au double de la plus haute fréquence contenue dans le signal continu.

Reconstitution approchée du signal continu à partir du signal échantillonné.

Fig. 12 – Reconstitution approchée de f(t)

 B_0 est défini dans le domaine temporel. Étudions le comportement de B_0 dans le domaine fréquentiel.

$$B_0(p) = \frac{\mathcal{L}(sortie)}{\mathcal{L}(entr\acute{e}e)}$$

On a

$$f_{B_0}(t) = f(0) \qquad 0 \le t < T$$

$$f_{B_0}(t) = f(T) \qquad T \le t < 2T$$

$$\vdots$$

L'ensemble de ces expression peut être remplacé par

$$f_{B_0}(t) = f(0)[u(t) - u(t-T)] + f(T)[u(t-T) - u(t-2T)] + \cdots$$
 avec $u(t)$ signal en échelon

Donc

$$\mathcal{L}[f_{B_0}(t)] = f(0) \left[\frac{1}{p} - \frac{1}{p} e^{-Tp} \right] + f(T) \left[\frac{1}{p} e^{-Tp} - \frac{1}{p} e^{-2Tp} \right] + \cdots$$

$$= \frac{1 - e^{-Tp}}{p} \left(f(0) + f(T) e^{-Tp} + f(2T) e^{-2Tp} \right)$$

$$= \frac{1 - e^{-Tp}}{p} \sum_{i=0}^{n} f(nT) e^{-nTp}$$

Or
$$F^*(p) = \mathcal{L}[f^*(t)] = \sum_{i=0}^n f(nT)e^{-nTp}$$
, donc

$$B_0(p) = \frac{1 - e^{-Tp}}{p}$$

On construit le diagramme de Bode :

$$|B_0(j\omega)| = \left| \frac{1 - e^{-Tj\omega}}{j\omega} \right|$$

$$= \left| \frac{1 - \cos(T\omega) + j\sin(T\omega)}{j\omega} \right|$$

$$= \frac{\sqrt{(1 - \cos(T\omega))^2 + \sin^2(T\omega)}}{\omega}$$

$$= \frac{\sqrt{2 - 2\cos(T\omega)}}{\omega}$$

2.3 Calcul pratique d'une transformée en z

On a

$$\mathscr{F}(z) = \sum_{n=0}^{+\infty} f(nT)z^{-n}$$

si l'on considère l'obtention de $\mathscr{F}(z)$ à partir du signal continu. Si l'on part du signal échantillonné par la transformée de Laplace,

$$\mathscr{F}(z) = \sum_{\text{pôles } p_i \text{ de } F(p)} r\acute{e}sidus \ de \frac{F(p)}{1 - e^{Tp}z^{-1}}$$

En pratique, F(p) est une fraction rationnelle en p. On fait la liste des pôles de F(p):

- les pôles simples p_i .

- les pôles multiples
$$p_i$$
 d'ordre n .
$$Exemple : F(p) = \frac{(3p+7)^2}{(2p-5)(5p+12)^3}.$$

Fig. 13 – Diagramme de Bode de B_0

$$-\frac{7}{3} \text{ est un zéro d'ordre 2.}$$

$$-\frac{5}{2} \text{ est un pôle simple.}$$

$$-\frac{12}{5} \text{ est un pôle d'ordre 3.}$$

$$\mathscr{F}(z) = \sum r_i$$

où r_i est un résidu associé au pôle p_i .

Résidu d'un pôle simple

$$r_i = \frac{N(p_i)}{D'(p_i)} = \frac{1}{1 - e^{Tp_i}z^{-1}}$$

en posant $F(p) = \frac{N(p)}{D(p)}$ et $D'(p) = \frac{dD(p)}{dp}$.

Résidu d'un pôle p_i multiple d'ordre n

$$r_i = \frac{1}{(n-1)!} \left(\frac{d^{n-1}}{dp^{n-1}} \left[(p - p_i)^n \frac{F(p)}{1 - e^{Tp} z^{-1}} \right] \right)_{p = p_i}$$

Exemple f(t) = u(t):

Méthode 1

$$\mathscr{F}(z) = \sum_{n=0}^{+\infty} u(nT)z^{-n} = \sum_{n=0}^{+\infty} (z^{-1})^n$$

On admet que la série est convergente. Donc

$$\mathscr{F}(z) = \sum_{n=0}^{+\infty} (z^{-1})^n = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$$

Méthode 2 On a $F(p) = \frac{1}{p}$, donc un seul pôle simple : $p_1 = 0$.

$$\mathscr{F}(z) = r_1 = \frac{N(p_i)}{D'(p_1)} \frac{1}{1 - e^{Tp_1}z^{-1}}$$

Ici, comme $F(p) = \frac{N(p)}{D(p)}$, alors N(p) = 1 et $D(p) = p \Rightarrow D'(p) = 1$. Donc

$$\mathscr{F}(z) = \frac{1}{1 - e^{Tp_1}z^{-1}} = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

Exemple f(t) = tu(t):

Méthode 1

$$\mathcal{F}(z) = \sum_{n=0}^{+\infty} nTu(nT)z^{-n}$$
$$= T\sum_{n=0}^{+\infty} nz^{-n}$$
$$= \frac{Tz}{(z-1)^2}$$

Méthode 2 On a $F(p) = \frac{1}{p^2}$. On a un pôle d'ordre $2: p_1 = 0$.

$$r_i = \frac{1}{(2-1)!} \left(\frac{d}{dp} \left[(p-0)^2 \frac{\frac{1}{p^2}}{1 - e^{Tp} z^{-1}} \right] \right)_{p=0} = \frac{e^{Tp} T z^{-1}}{(1 - e^{Tp} z^{-1})^2} = \frac{T z^{-1}}{(1 - z^{-1})^2} = \frac{T z}{(z-1)^2}$$

 $\begin{aligned} & \textit{Exemple } f(t): \ F(p) = \frac{1}{(p+a)(p+b)} : \text{Calculer } \mathscr{F}(z). \\ & F(p) \text{ a deux pôles}: p_1 = -a \text{ et } p_2 = -b. \text{ Donc } \mathscr{F}(z) = \sum \text{ résidus } = r_1 + r_2. \ r_1 \text{ et } r_2 \text{ sont associés à des} \end{aligned}$ pôles simples:

$$r_i = \frac{N(p_i)}{D'(p_i)} \frac{1}{1 - e^{Tp_i} z^{-1}}$$

On a donc

$$F(p) = \frac{1}{(p+a)(p+b)} = \frac{N(p)}{D(p)}$$

$$D(p) = (p+a)(p+b) \Rightarrow D'(p) = 2p+a+b$$

$$r_1 = \frac{1}{b-a} \frac{1}{1-e^{-aT}z^{-1}}$$

$$r_2 = \frac{1}{a-b} \frac{1}{1-e^{-bT}z^{-1}}$$

$$Z\left\{\frac{1}{(p+a)(p+b)}\right\} = \frac{1}{b-a} \left[\frac{z}{z-e^{-aT}} - \frac{z}{z-e^{-bT}}\right]$$

Calcul indirect d'une transformée en z

On dispose de résultats de fonctions élémentaires :

t	p	z
u(t)	$\frac{1}{p}$	$\frac{z}{z-1}$
tu(t)	$\frac{1}{p^2}$	$\frac{Tz}{(z-1)^2}$
$e^{-at}u(t)$	$\frac{1}{p+a}$	$\frac{z}{z-e^{-aT}}$

2 cas de calculs indirects:

1. Décomposition en éléments simples de F(p):

Exemple
$$F(p) = \frac{1}{(p+a)(p+b)}$$
:
On a $F(p) = \frac{A}{p+a} + \frac{B}{p+b}$.

- En multipliant les deux membres par p+a puis p=-a, alors on a $\frac{1}{-a+b}=A$.
- En multipliant les deux membres par p + b puis p = -b, alors on a $\frac{1}{-b+a} = B$.

Donc
$$F(p) = \frac{1}{-a+b} \frac{1}{p+a} + \frac{1}{-b+a} \frac{1}{p+b}$$
. On aa donc

$$\mathscr{F}(z) = \frac{1}{-a+b} \frac{z}{z - e^{-aT}} + \frac{1}{-b+a} \frac{z}{z - e^{-bT}}$$

2. Fonctions trigonométriques :

Exemple $f(t) = \sin(\omega t)u(t)$: Essayons d'utiliser la méthode directe :

$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j}
Z\{\sin(\omega t)u(t)\} = Z\left\{\frac{e^{j\omega t} - e^{-j\omega t}}{2j}\right\}
= \frac{1}{2j} \left[Z\{e^{j\omega t}u(t)\} - Z\{e^{-j\omega t}u(t)\}\right]
= \frac{1}{2j} \left[\frac{z}{z - e^{-j\omega T}} - \frac{z}{z - e^{-j\omega T}}\right]
= \frac{z}{2j} \left[\frac{z - e^{-j\omega T} - z + e^{j\omega T}}{z^2 - z(e^{j\omega T} + e^{-j\omega T}) + 1}\right]
= \frac{z\sin(\omega T)}{z^2 - 2z\cos(\omega T) + 1}$$

Au final, il y a 4 méthodes de résolution de Z :

- 2 méthodes directes :
 - $-t \rightarrow z$ voie 1.
 - $-p \rightarrow z$ voie 2.
- 2 méthodes indirectes :
- décomposition en éléments simples de F(p).
- déconposition des fonctions trigonométriques (Euler).

2.5 Principales propriétés de la transformation en z

2.5.1 Linéarité

$$Z\{\lambda f(t) + \mu g(t)\} = \lambda \mathscr{F}(z) + \mu \mathscr{G}(z), \forall (\lambda, \mu) \in \mathbb{C}^2$$

2.5.2 Théorème du retard

$$Z\{f(t - kT)\} = z^{-k}\mathscr{F}(z)$$

2.5.3 Convolution

$$\sum_{k=0}^{+\infty} f(kT)g((n-k)T) = f(kT) * g(kT)$$
$$Z\{f(kT) * g(kT)\} = \mathscr{F}(z)\mathscr{G}(z)$$

Théorème de la valeur initiale / Théorème de la valeur finale

$$\lim_{k \to 0} f(kT) = \lim_{z \to +\infty} \mathscr{F}(z)$$

$$\lim_{k \to +\infty} f(kT) = \lim_{z \to 1} \left[\frac{z-1}{z} \mathscr{F}(z) \right]$$

Définition: $Z^{-1}[\mathscr{F}(z)] = \{f(kT)\}_{k=0}^{+\infty}$. La transformée inverse n'est qu'une collection d'échantillons. **On** ne retrouve pas le signal continu d'origine: $Z^{-1}\left[\frac{Tz}{(z-1)^2}\right] \neq tu(t) (=\{kTu(kT)\}_{k=0}^{+\infty})$ Si l'on prend deux fonction différentes qui prennent la même valeurs aux points d'échantillonage, alors

$$Z\{f(t)\} = Z\{g(t)\} \Rightarrow \mathscr{F}(z) = \mathscr{G}(z) \Rightarrow Z^{-1}[\mathscr{F}(z)] = Z^{-1}[\mathscr{G}(z)] = \{f(kT)\} = \{g(kT)\}$$

Il existe une infinité de fonctions continues du temps qui possèdent la même transformée en z. Toutes ces fonctions continues prennent les mêmes valeurs aux instants t = kT.

Il existe 4 méthodes pour calculer Z^{-1} :

- -2 méthodes analytiques : résultat sous la forme f(kT) = formule en fonction de k et T.
- -2 méthodes numériques : résultat sous la forme $f(0) = \dots, f(T) = \dots, \dots$
 - 1. Méthode des résidus :

$$f(kT) = \sum$$
résidus de $\mathscr{F}(z).z^{n-1}$

Fonction auxiliaire : $\mathcal{G}(z) = \mathcal{F}(z)z^{n-1}$.

Hypothèse : la fonction auxiliaire $\mathscr{G}(z)$ ne possède que des pôles simples, soit z_i . On pose $\mathscr{G}(z) = \frac{N(z)}{D(z)} \Rightarrow f(kT) = \sum_i \frac{N(z_i)}{D'(z_i)}$ en posant $D'(z) = \frac{dD(z)}{dz}$.

Exemple : Soit $\mathscr{F}(z) = \frac{z(z+1)}{(z-a)(z-b)}$. Calculer sa transformée en z inverse par la méthode des résidus. On a $\mathscr{G}(z) = \frac{z^n(z+1)}{(z-a)(z-b)} = \frac{N(z)}{D(z)}$. On a 2 pôles simples : $z_1 = a$ et $z_2 = b$. Donc $D(z) = (z-a)(z-b) \Rightarrow D'(z) = 2z-a-b$.

$$f(nT) = \sum_{i} \frac{N(z_i)}{D'(z_i)} = \frac{a+1}{a-b} a^n + \frac{b+1}{b-a} b^n$$

Donc au final,

$$Z^{-1}\left\{\frac{z(z+1)}{(z-a)(z-b)}\right\} = \left\{\frac{a+1}{a-b}a^n + \frac{b+1}{b-a}b^n\right\}_{n=0}^{+\infty}$$

2. Développement en fractions élémentaires : s'inspire de la méthode de décomposition en éléments simples pour le calcul d'une transformée de Laplace inverse.

Rappel:
$$F(p) = \frac{A}{p+a} + \frac{B}{p+b} + \cdots \xrightarrow{\mathscr{L}^{-1}} f(t) = Ae^{-at}u(t) + Be^{-bt}u(t) + \cdots$$

On peut être tenté de décomposer $\mathscr{F}(z)$ en éléments simples, mais ensuite on est bloqué car $\frac{1}{z+a}$ n'est pas une transformée en z élémentaire. On procède donc en 2 phases :

(a) On considère une fonction auxiliaire : $\mathscr{G}(z) = \frac{\mathscr{F}(z)}{z}$ et on décompose $\mathscr{G}(z)$ en éléments simples :

$$\mathscr{G}(z) = \frac{A}{z+a} + \frac{B}{z+b} + \dots = \frac{\mathscr{F}(z)}{z}$$

(b) On multiplie les deux membres par z:

$$\mathscr{F}(z) = \frac{Az}{z+a} + \frac{Bz}{z+b} + \cdots$$

 $Exemple\ \mathscr{F}(z)=\frac{2z}{(z-1)(z-0,5)}$: Calculer $Z^{-1}[\mathscr{F}(z)]$ par la méthode 2.

(a) On pose
$$\mathscr{G}(z) = \frac{\mathscr{F}(z)}{z} = \frac{2}{(z-1)(z-0,5)} = \frac{4}{z-1} - \frac{4}{z-0,5}$$

(b) On multiplie par z les deux membres : $\mathscr{F}(z) = \frac{4z}{z-1} - \frac{4z}{z-0.5}$. Posons $0, 5 = e^{-aT}$. Au final, on a

$$f(nT) = 4 \times 1 - 4e^{-anT} = 4(1 - 0, 5^n) \Rightarrow Z^{-1} \left\{ \frac{2z}{(z - 1)(z - 0, 5)} \right\} = \{4(1 - 0, 5^n)\}_{n=0}^{+\infty}$$

3. Division selon les puissances coirssantes de z^{-1} : l'id'ee est de reprendre la d'efinition de la transformée en $z:\mathscr{F}(z)=\sum_{n=0}^{+\infty}F(nT)z^{-n}$. On s'intéresse au problème inverse en considérant f(nT) comme cœfficients de z^{-n} si on exprime $\mathscr{F}(z)$ comme un polynôme à variables z^{-1} . Le développement polynômial de $\mathscr{F}(z)$ fourni par division polynômiale.

 $\textit{Exemple } \mathscr{F}(z) = \frac{z^2}{(z-1)(z^2-0,4z+0,1)} \text{ : Déterminer la transformée en } z \text{ inverse de } \mathscr{F}(z).$

On a

$$\mathscr{F}(z) = \frac{z^2}{(z-1)(z^2-0,4z+0,1)} = \frac{z^{-1}}{1-1,4z^{-1}+0,5z^{-2}-0,1z^{-3}}$$

$$z^{-1}$$

$$1,4z^{-2}-0,5z^{-3}+0,1z^{-4}$$

$$\frac{1-1,4z^{-1}+0,5z^{-2}-0,1z^{-3}}{z^{-1}+1,4z^{-2}+1,46z^{-3}+1,44z^{-4}}$$

$$\begin{vmatrix} z^{-1} \\ 1, 4z^{-2} - 0, 5z^{-3} + 0, 1z^{-4} \\ 1, 46z^{-3} - 0, 6z^{-4} + 0, 14z^{-5} \\ 1, 44z^{-4} - 0, 59z^{-5} + 0, 146z^{-6} \end{vmatrix} \begin{vmatrix} \frac{1 - 1, 4z^{-1} + 0, 5z^{-2} - 0, 1z^{-3}}{z^{-1} + 1, 4z^{-2} + 1, 46z^{-3} + 1, 44z^{-4}} \\ \frac{1 - 1, 4z^{-1} + 0, 5z^{-2} - 0, 1z^{-3}}{z^{-1} + 1, 4z^{-2} + 1, 46z^{-3} + 1, 44z^{-4}} \end{vmatrix}$$

Le quotient peut être représenté comme $\sum_{n=0}^{+\infty} f(nT)z^{-n}$. Donc f(0) = 0, f(T) = 1, f(2T) = 1, 4, f(3T) = 1, 46, f(4T) = 1, 44...

On aurait pu retourver ce résultat avec le théorème de la valeur finale :

$$\lim_{n \to +\infty} f(nT) = \lim_{z \to 1} \left[\frac{z - 1}{z} \mathscr{F}(z) \right]$$

$$= \lim_{z \to 1} \left[\frac{z - 1}{z} \frac{z^2}{(z - 1)(z^2 - 0, 4z + 0, 1)} \right]$$

$$= \frac{1}{1 - 0, 4 + 0, 1} \approx 1,42857$$

Avantage : méthode générale, pas de condition pour son application. Inconvénient : risque d'accumulation des erreurs d'arrondi.

4. Équation aux différences : d'un point de vue théorique, l'équation aux différences est la transposition en discret de l'équation différentielle en continu. On s'appuie sur le théorème du retard : $Z[f(t-kT)] = z^{-k}\mathscr{F}(z), k > 0 \Rightarrow Z^{-1}[z^{-k}\mathscr{F}(z)] = \{[f(t-kT)]_{t=nT}\}.$

 $Exemple \ \frac{X(z)}{Y(z)} = \frac{0,3z}{z-0,2} \ : \ \text{On cherche la transformée en z inverse de $X(z)$. On suppose connues la transposée en z inverse de $Y(z)$, c'est-à-dire <math>\{y(nT)\} = \{y_n\}$. On divise en haut et en bas par la plus grande puissance de \$z\$ pour n'avoir que des puissance négatives ou nulles.

$$\frac{X(z)}{Y(z)} = \frac{0.3}{1 - 0.2z^{-1}} \Rightarrow X(z) - 0.2z^{-1}X(z) = 0.3Y(z)$$

On égale les transformées en z inverses des deux membres : c'est l'équation aux différences.

$$Z^{-1}[X(z)] = \{x(nT)\} = \{x_n\} \Rightarrow x_n - 0, 2x_{n-1} = 0, 3y_n$$

On a besoin d'une condition initiale $x_{-1} = 0$ et on suppose connus $y_n = 1, \forall n$.

Exemple $f(t) = (2 + 5t + 3t^2)u(t)$: Trouver $\mathscr{F}(z)$.

On a $\sum_{n=0}^{+\infty} nz^{-n} = \frac{z}{(z-1)^2}$. En dérivant par rapport à z, on obtient

$$\sum_{n=0}^{+\infty} (-n^2)z^{-n-1} = \frac{(z-1) - 2z(z-1)}{(z-1)^4} = \frac{z-1}{(z-1)^3}$$

Donc $\sum_{n=0}^{+\infty} n^2 z^{-n} = \frac{z(z+1)}{(z-1)^3}$. Au final, on a

$$\mathscr{F}(z) = \frac{2z}{z-1} + \frac{5Tz}{(z-1)^2} + \frac{3T^2z(z+1)}{(z-1)^3}$$

Fig. 14 - x(t)

Exemple Figure 14: En prenant t = 0, 5s, calculer X(z).

$$X(z) = \sum_{n=0}^{+\infty} x(nT)z^{-n} = 1 + 1,25z^{-1}1,5z^{-2} + 1,75z^{-3} + 2z^{-4} + 2z^{-5} + 2z^{-6}$$

Exemple $X(z) = \frac{1}{z-1}$: Calculer la transformée en z inverse.

$$X(z) = z^{-1} \frac{z}{z-1} \Rightarrow x(nT) = \{f((n-1)T)\} \Rightarrow Z^{-1}[X(z)] = \{0, 1, 1, 1, 1, \dots\}$$