POLSCI 9590: Methods I

Sampling Weights and Final

Dave Armstrong

Sampling

Sampling Weight

A sampling weight identifies the number of people in the population for which each individual in the sample stands in.

- if π_i is the probability with which each observation is in the sample,
- $\frac{1}{\pi_i}$ is the sampling weight.

Group	Population	Sample	π_i	$rac{1}{\pi_i}$
Α	59933	500	0.0083	119.9
В	30131	500	0.0166	60.3
С	9936	500	0.0503	19.9

Estimating the Mean

R Stata

[1] -1.996288

```
samp <- pop %>%
  group_by(group) %>%
  mutate(n_pop = n()) %>%
  sample_n(500) %>%
  mutate(weight = n_pop/n()) %>%
  ungroup
```

No Sampling Weights

```
samp %>% summarise(mean = mean(y))

## # A tibble: 1 × 1

## mean

## <dbl>
## 1 1.77
```

With Weights

```
library(srvyr)
samp %>% as_survey_design(weights=weight) %>%
summarise(mean = survey_mean(y))
```

```
## # A tibble: 1 × 2
## mean mean_se
## <dbl> <dbl>
## 1 -1.92 0.116
```


Weights and the CES

The CES data we've been using have weights because:

- 1. Each region was sampled approximately equally.
- 2. They made some adjustment for mobile vs landline phone usage.

Table 2.2: Weights for PES

Province	Phone Ownership	Population	Sample	Weight per
FIOVINCE	Туре	Proportion	Proportion	Respondent
Newfoundland and Labrador	Landline only	0.1613%	0.2769%	0.5284
	Wireless only	0.2550%	1.1423%	0.2232
	Both	1.1136%	3.5999%	0.3094
	DK / Refused	0.0000%	0.0000%	-
Prince Edward Island	Landline only	0.0470%	0.4846%	0.0971
	Wireless only	0.1282%	1.9038%	0.0673
	Both	0.2352%	2.9076%	0.0809
	DK / Refused	0.0000%	0.0000%	-
Nova Scotia	Landline only	0.3233%	0.5192%	0.6226
	Wireless only	0.8411%	1.8692%	0.4500
	Both	1.5452%	2.6999%	0.5723
	DK / Refused	0.0000%	0.0000%	-
New Brunswick	Landline only	0.2449%	0.5538%	0.4422
	Wireless only	0.3442%	1.1076%	0.3107
	Both	1.5950%	3.3576%	0.4751
	DK / Refused	0.0000%	0.0000%	-
	Landline only	3.3536%	1.5922%	2.1062
	Wireless only	7.3495%	7.1305%	1.0307
Quebec	Both	12.7248%	10.7996%	1.1783
	DK / Refused	0.0415%	0.0346%	1.2001
Ontario	Landline only	3.3103%	1.4192%	2.3326
	Wireless only	14.7039%	7.0613%	2.0823
	Both	20.2467%	10.9034%	1.8569
	DK / Refused	0.1366%	0.692%	1.9739
Manitoba	Landline only	0.3354%	0.5538%	0.6057
	Wireless only	1.1970%	2.4922%	0.4803
	Both	1.9809%	3.7729%	0.5250
	DK / Refused	0.0000%	0.0000%	-
Saskatchewan	Landline only	0.1867%	0.3461%	0.5393
	Wireless only	1.2766%	2.9768%	0.4288
	Both	1.5385%	3.4614%	0.4444
	DK / Refused	0.0000%	0.0000%	-
Alberta	Landline only	0.5793%	0.5538%	1.0461
	Wireless only	4.8960%	2.8384%	1.7250
	Both	5.7366%	3.7729%	1.5204
	DK / Refused	0.0000%	0.0000%	-
British Columbia	Landline only	0.9188%	1.3153%	0.6985
	Wireless only	5.4165%	7.2690%	0.7452
	Both	7.2129%	11.1803%	0.6451
	DK / Refused	0.0237%	0.0346%	0.6855
Total	,	100.0%	100.0%	

Summaries

R Stata

agegrp variable

<fct> <chr>

1 18-34 market

```
library(rio)
ces19w <- import("ces19w.dta")</pre>
ces19w <- factorize(ces19w)</pre>
library(srvyr)
library(DAMisc)
cesw <- ces19w %>%
  as_survey_design(weights=weight)
sumStats(ces19w, var="market", byvar="agegrp")
## # A tibble: 3 × 12
    variable agegrp
                                     igr
                                            min
                                                   q25
                                                          q50
                                                                q75
                        mean
                                sd
              <fct>
                       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
     <chr>
             18-34 -0.186 0.350 0.53 -0.866 -0.464 -0.2
                                                              0.066 0.734
## 1 market
## 2 market
             35-54 -0.143 0.336 0.402 -1
                                                -0.334 -0.198 0.068 0.866
                                                                             498
                     -0.0801 0.337 0.466 -1
                                             -0.332 -0.066 0.134 0.866
## 3 market
              55+
                                                                            457
## # i 1 more variable: nNA <int>
sumStats(cesw, var="market", byvar="agegrp")
## # A tibble: 3 × 11
```

q25 median

-0.188 0.347 -0.866 -0.464 -0.2 0.00200 0.734 247.

q75

max

<dbl> <dbl> <dbl> <dbl> <dbl>

nNA

sd

mean

min

<dbl> <dbl> <dbl> <dbl> <dbl>

Plotting Confidence Intervals

R Stata

Cross-tabulations with Weights

R Stata

```
xt(cesw, var="vote", byvar="agegrp")
## $tab
## $tab[[1]]
     vote/agegrp
                                  35-54
                       18-34
                                                55+
                                                           Total
         Liberal 24%
                       (60)
                              26% (134)
                                         31% (145)
                                                           (339)
##
                                                     28%
    Conservative
                        (75)
                              38% (196)
                                         35% (165)
                                                           (436)
                  22%
                        (54)
                              18%
                                   (92)
                                         18%
                                              (83)
                                                           (229)
##
                                                     19%
##
                        (41)
                              12%
                                   (63)
                                         11%
                                               (49)
                                                     12%
                                                           (153)
                        (11)
                               7%
                                   (35)
                                          3%
                                               (13)
                                                      5%
                                                            (59)
           Green
           0ther
                        (6)
                                    (0)
                                               (10)
                                                      1%
                                                            (16)
           Total 100% (247) 100% (520) 100% (465) 100% (1,232)
##
##
## $chisq
## $chisq[[1]]
##
       Pearson's X^2: Rao & Scott adjustment
##
## data: NextMethod()
## F = 2.499, ndf = 9.8898, ddf = 11590.8410, p-value = 0.005596
##
##
## $stats
```


Correlations with Weights

R Stata

```
corfun <- function(df, var1, var2, level=.95, digits=3){
    require(survey)
    form <- glue::glue("scale({var1}) ~ scale({var2})-1")
    m = svyglm(form, design = df)
    r = coef(m)[1]
    p <- summary(m)$coef[1,4]
    r <- sprintf(glue::glue("%.{digits}f"), r)
    r <- glue::glue("{r}{ifelse(p < 1-level, '*', '')}")
    cat(glue::glue("r({var1},{var2}) = {r}\n"))
    }
corfun(cesw, "market", "leader_con")</pre>
```

r(market,leader_con) = 0.291*

Linear Models with Weights

R Stata

```
library(survey)
w_mod <- svyglm(market ~ educ , design=cesw)</pre>
summary(w_mod)
##
## Call:
## svyglm(formula = market ~ educ, design = cesw)
##
## Survey design:
## Called via srvyr
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -0.08359
                             0.01912 -4.373 1.34e-05 ***
## educHS/College -0.06958 0.02626 -2.649 0.00817 **
## educCollege Grad -0.06739
                               0.02821 -2.389 0.01706 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.1171218)
##
## Number of Fisher Scoring iterations: 2
```