Nishan Kazaryan

5/19/22

CS 3186 Final Exam

5-> OA1 (i) Context-free grammar: Production rules: 1,2,3,4,5,6,7,8 (¿¿) Left-linear grammar: Production rules: 3,5,7,8 ((¿i) Right Linear regular grammar: Production rules: 1, 2, 5, 7, 8 (iv) Linear grammar: Production rules: 1,2,3,5,7,8

U.) Use pumping lemma to show 1= 8am 6 mm +13
Given Lis an infinite language, assume Lis context free
There exists a PDA with "n" of production rules * H of variables
Choose m= appen+1
$ w = 3n + 1 \ge n$ (as desired) $w = a^n b^n c^{n+1} = uvxyz$
Since Vxy 1 ≤ n, leads to many cases
Case 1: Vxy is within a's For i=0; you have less # of a's than b's (Since Vy =1)
For i=0; you have less # of a's than b's (Since /vy/>1)
Case 2: Uxy is within bis
For i=0; you have less # of b's than a's (Since /vy/=1)
For i=0; you have same or loss # of is than
For i=0; you have same or loss # of is than a's and b's (Since Ivyl=1)

Case 4: VXy spans as and b's For i: 0; you have at least loss them

2 a's or b's then c's (Since (Vy/2)). Case 5: VXy spans b's and e's For i=0; you have loss # of 6's or same)

of c's than a's (Since 1 vy/21). Example I used izo, ux 2 EL All the cases lead to a contradiction Honce, our assumption that Lis context to 15 not true, Lis not a CFL. 5.) L= {a2nbn/n=13 U {bn+1an n=13 (i) Algorithm: If the first letter is a, thon: Whon a, if top is 2 or a, then push a when b, if top is a, then pop two as It the first letter is b, then: When a, if top is Z or b, pops (n+1) bs When a, if top is Z, do nothing

Final

Name _____

1. (15 points) Minimize following DFA:

2. (30 points)

(i) Give a DFA, M_1 , that accepts a Language L_1 that contains even number of 0's. (Hint: only 2 states)

(ii) Give a DFA, M₂, that accepts a Language L₂ that contains even number of 1's.

(iii) Give acceptor for Reverse of L₁

(iv) Give acceptor for complement of L_2

(v) Give acceptor for L₁ union L₂

(vi) Give acceptor for $\,L_1\,$ intersection $\,L_2\,$

(vii) Give acceptor for L_1 - L_2

3. (15 points) Given the following grammar with production rules numbered from 1 to 8,

$$\left\{ \begin{array}{l} 1.S \longrightarrow 0A, \\ 2.S \longrightarrow 1A, \\ 3.S \longrightarrow A0, \\ 4.S \longrightarrow AB, \\ 5.S \longrightarrow 0, \\ 6.S \longrightarrow 0A1, \\ 7.A \longrightarrow 1, \\ 8.S \rightarrow \lambda \right\}$$

(i) Indicate which of the rules satisfy the conditions for a context-free grammar (Sample answer: Production rules 1,5,8)

- (ii) Indicate which of the rules satisfy the conditions for a left linear grammar
- (iii) Indicate which of the rules satisfy the conditions for a right linear regular grammar
- (iv) Indicate which of the rules satisfy the conditions for a linear grammar
- 4. (20 points) Use pumping lemma to show that the language $L = \{a^{m+1}b^mc^m\}$ is not context-free.
- 5. (20 points) Create a PDA that recognizes the following context free language with terminals {a, b}: L = { $a^{n+1}b^n|n \ge 1$ } \cup { $b^na^{n+2}|n \ge 1$ }.
 - (i) Describe your algorithm
 - (ii) Give the description as a complete 7-tuple with a transition diagram
 - (iii) Show configuration sequences on aaabb leading to acceptance.