

Let's practice!

Suppose Bob consumes burgers (x) and fries (y), which give him a utility of $U(X,Y) = X^{0.6}Y^{0.4}$. Bob's marginal utility for burgers is given by $MU_X = 0.6X^{-0.4}Y^{0.4}$ and his marginal utility for fries is given by $MU_Y = 0.4X^{0.6}Y^{-0.6}$.

He has \$20 to spend, and the original prices of burgers and fries are \$6 and \$2, respectively. At these prices, Bob consumes 2 burgers and 4 fries, which gives him a utility of 2.64.

Suppose the price of burgers increases to \$10. What are the substitution and income effects of this price change?

 $U(X,Y) = X^{0.6}Y^{0.4}$, $MU_X = 0.6X^{-0.4}Y^{0.4}$, $MU_Y = 0.4X^{0.6}Y^{-0.6}$, $P_X^{1} = \$6$, $P_X^{2} = \$10$, $P_Y = \$2$, I = \$20

$$MRSxy = \frac{MUx}{MUy} = \frac{0.6X^{-0.4}Y^{0.4}}{0.4X^{0.6}Y^{-0.6}} = \frac{0.6}{0.4}X^{-0.4^{-0.6}} = \frac{0.6}{0.4} \frac{y}{X} = \frac{1.5y}{X}$$

$$\frac{1.5y}{x} = \frac{10}{2}$$
 => $3y = 10x$ => $y = \frac{10}{3}x$ => $y = 3.33x$ OCR

$$20 = 10 \times + 2(3.33 \times)$$

$$\chi^* = 1.2$$

ECON 323 - MICROECONOMIC THEORY - DR. STRICKLAND

 $U(X,Y) = X^{0.6}Y^{0.4}$, $MU_X = 0.6X^{-0.4}Y^{0.4}$, $MU_Y = 0.4X^{0.6}Y^{-0.6}$, $P_X^{1} = \$6$, $P_X^{2} = \$10$, $P_Y = \$2$, I = \$20

- 2) FIND SUB BUNDLE * NEED NEW RELATIVE PRICES, ORIG. PREFS, ORIG. UTILITY LEVEL
- (i) NEW RELATIVE PRICES & ORIG PREFS => TANGENCY CONDITION: MRSxy = $\frac{Px^2}{Py}$ SOLVED THIS ALREADY (OCR OF NEW BUNDLE): $y = 3.33 \times 10^{-10}$
- (ii) OPIG. UTILITY LEVEL => PLUG THIS OCR INTO UTIL. FUNCTION $\frac{1}{2}$, SET EQUAL TO ORIG. UTILITY LEVEL (iii) PLUG GOOD BACK INTO OCR $U=\chi^{0.6}\,y^{0.4}=2.64$ $y=3.33\,(1.6)\approx \boxed{5.4}$
 - $\chi^{0.6} (3.33 \times)^{0.4} = 2.64$ $\chi^{0.6} (3.33)^{0.4} \chi^{0.4} = 2.64$ $(3.33)^{0.4} \chi^{1} = 2.64$ $\chi = \frac{2.64}{1.62} \approx 1.6$

(calculation on picture slipe)

iClicker

Which of the following is TRUE?

- A. Demand curve for Y shifts inward
- B. Demand curve for Y shifts outward
- C. Demand curve for X shifts inward
- D.) Demand curve for X shifts outward

Finding Market Demand

Finding Market Demand

Suppose Consumer 1's demand is given by $Q_1 = 50 - 0.5P$ and Consumer 2's demand is given by $Q_2 = 13 - 0.25P$. What is the **market demand curve**?

$$Q_{MKT} = Q_1 + Q_2$$
 $Q_{MKT} = (50 - 0.5P) + (13 - 0.25P)$
 $= 63 - 0.75P$

C2'S Demand CHoke PRICE: $Q_2 = 0 = 13 - 0.25P$

C1'S DEMAND CHOKE: