

ZMOD45xx Algorithm for OAQ

CONTENTS

Contents

1	ZMO	D4510	Application	on Programm	ing Inter	face Ov	erview						1	ı
2	How	to Wor	k with the	IDT ZMOD4	510 Algoi	rithm Li	brary						2	<u>></u>
3	Mod	ule Inde	ЭХ										3	3
	3.1	Module	es						 	 	 	 	 3	3
4	Data	Struct	ure Index										4	ļ
	4.1	Data S	tructures						 	 	 	 	 2	ļ
5	File	Index											5	5
	5.1	File Lis	st						 	 	 	 	 Ę	5
6	Mod	ule Doc	cumentation	on									6	ò
	6.1	Handle	es of the R	cda					 	 	 	 	 6	3
		6.1.1	Detailed	Description					 	 	 	 	 6	3
		6.1.2	Macro D	efinition Docu	mentation	ı			 	 	 	 	 6	3
			6.1.2.1	RCDA_STR	ATEGY_	ADJ .			 	 	 	 	 6	3
			6.1.2.2	RCDA_STR	ATEGY_	FIX			 	 	 	 	 6	3
			6.1.2.3	RCDA_STR	ATEGY_	SET .			 	 	 	 	 6	3
	6.2	Discrin	ninations c	of the gases					 	 	 	 	 7	7
		6.2.1	Detailed	Description					 	 	 	 	 8	3
		6.2.2	Macro D	efinition Docu	mentation	ı			 	 	 	 	 8	3
			6.2.2.1	GAS_DETE	CTION_S	STRATE	GY_AL	JTO	 	 	 	 	 8	3

CONTENTS

			6.2.2.2	GAS_DETECTION_STRATEGY_FORCENO2	8
			6.2.2.3	GAS_DETECTION_STRATEGY_FORCEO3	8
		6.2.3	Function	Documentation	8
			6.2.3.1	calc_oaq()	8
			6.2.3.2	oaq_base_init()	9
		6.2.4	Variable I	Documentation	9
			6.2.4.1	aqi_no2	9
			6.2.4.2	aqi_o3	9
			6.2.4.3	conc_no2	10
			6.2.4.4	conc_o3	10
			6.2.4.5	prob_no2	10
			6.2.4.6	rcda_22	10
			6.2.4.7	rcda_42	10
			6.2.4.8	stabilization_sample	10
			6.2.4.9	trim_b	10
			6.2.4.10	trim_beta2	10
			6.2.4.11	trim_data_version	10
7	Data	Structi	ure Docun	nentation	11
	7.1	oaq_ba	ase_handle	e_t Struct Reference	11
		7.1.1	Detailed	Description	11
8	File	Docum	entation		12
	8.1	oaq.n I	-iie Ketere	nce	12
		811	Detailed	Description	13

Chapter 1

ZMOD4510 Application Programming Interface Overview

This document describes the gas algorithm libraries for the ZMOD45xx Gas Sensor Module for Outdoor Air Quality(OAQ). The figure below shows an overview of the ZMOD4510 API, programming example and libraries. Custom microcontrollers can be used to establish I2C communication. Using the user's own microcontroller requires implementing the user's own target-specific I2C and low-level functions (highlighted in light blue). The following describes in detail the gas measurement libraries of the ZMOD4510 for calculation of Air Quality Index(AQI)*.

*The AQI is defined by the US Environmental Protection Agency (EPA).

More information can be found at: https://airnow.gov/index.cfm?action=aqibasics.aqi

Chapter 2

How to Work with the IDT ZMOD4510 Algorithm Library

 Include the header file in the user's program for gas sensor module control; for example:

```
#include "oaq.h"
```

- · Copy the library file into user's project folder
- · Call the intended function in the user's program

Example for zmod4510:

```
#include "oaq.h"
#define D_RISING_M1 0.0
#define D_FALLING_M1 0.13533528
int main() {
    oaq_base_handle_t handle;
    float rmox[15];
    float aqi;
    uint8_t general_purpose[9] = {185, 16, 134, 113, 114, 74, 124, 97, 0}; // 9 bytes trim information read
    uint8_t stabilization_samples = 10; // Number of samples to be ignored for stabilization
    // Call oaq_base_init only once at the beginning of measurements
   oaq_base_init(&handle, general_purpose, stabilization_samples);
   // your functionality
    // r_mox measurement
    aqi = calc_oaq(&handle, rmox, RCDA_STRATEGY_ADJ,
   GAS_DETECTION_STRATEGY_AUTO, D_RISING_M1, D_FALLING_M1);
    // your functionality
    return 0;
```

Module Index 3

Chapter 3

Module Index

3.1 Modules

Here is a list of all modules:

Handles of the Rcda						 . (.	Ι.,		٦,	.\		7								(
Discriminations of the gases						 														7

Data Structure Index 4

Chapter 4

Data Structure Index

4.1	ata	Stru	ictii	rΔe
→. I	 ala	JUL	ւեւս	169

Н	lere	are	the	data	structures	with	brief	descriptions
---	------	-----	-----	------	------------	------	-------	--------------

oaq_base_handle_t						
Variables that describe the sensor or the algorithm state	 	 	 		 	1

File Index 5

Chapter 5

File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

oaq.h

This file	contains	the	data	structure	definitions	and th	e function	definitions	for t	the OA	∖Q base	
algorithr	n											12

Chapter 6

Module Documentation

6.1 Handles of the Rcda

Handles of the Rcda.

Macros

- #define RCDA_STRATEGY_FIX (0)
- #define RCDA_STRATEGY_SET (1)
- #define RCDA_STRATEGY_ADJ (2)

6.1.1 Detailed Description

Handles of the Rcda.

6.1.2 Macro Definition Documentation

6.1.2.1 RCDA_STRATEGY_ADJ

#define RCDA_STRATEGY_ADJ (2)

adjust rcda to follow slow drifts

6.1.2.2 RCDA_STRATEGY_FIX

#define RCDA_STRATEGY_FIX (0)

hold rcda fixed

6.1.2.3 RCDA_STRATEGY_SET

#define RCDA_STRATEGY_SET (1)

set the rcda to the actal measurement

6.2 Discriminations of the gases

Discriminations of the gases.

Data Structures

• struct oaq_base_handle_t

Variables that describe the sensor or the algorithm state.

Macros

- #define GAS_DETECTION_STRATEGY_AUTO (0)
- #define GAS_DETECTION_STRATEGY_FORCEO3 (1)
- #define GAS_DETECTION_STRATEGY_FORCENO2 (2)

Typedefs

typedef float oaq_prec_t

internal precision for gas classification, must be at least 32bit floating point!

Functions

void oaq_base_init (oaq_base_handle_t *handle, const uint8_t *general_purpose, const uint8_←
t stabilization_samples)

initializes the OAQ algorithm

• float calc_oaq (oaq_base_handle_t *handle, const float *rmox, const uint8_t rcda_strategy, const uint8_t gas_detection_strategy, const float d_rising_m1, const float d_falling_m1, const float d_class_m1)

calculates AQI from present sample

Variables

- float trim_beta2
- float trim_b
- float rcda_22
- float rcda 42
- uint8_t trim_data_version
- uint8_t stabilization_sample
- float prob no2
- float conc_no2
- float conc_o3
- float aqi_no2
- float aqi_o3

6.2.1 Detailed Description

Discriminations of the gases.

6.2.2 Macro Definition Documentation

6.2.2.1 GAS_DETECTION_STRATEGY_AUTO

```
#define GAS_DETECTION_STRATEGY_AUTO (0)
```

use automatic gas discrimination

6.2.2.2 GAS_DETECTION_STRATEGY_FORCENO2

```
#define GAS_DETECTION_STRATEGY_FORCENO2 (2)
```

handle the measurements as NO2

6.2.2.3 GAS_DETECTION_STRATEGY_FORCEO3

```
#define GAS_DETECTION_STRATEGY_FORCEO3 (1)
```

handle the measurements as O3

6.2.3 Function Documentation

6.2.3.1 calc_oaq()

calculates AQI from present sample

Parameters

in	handle	pointer to algorithm state variable
in	rmox	pointer to array of the 15 sequencer rmox measurements
in	rcda_strategy	how to handle Rcda
in	gas_detection_strategy	do automatic gas discrimination or force O3 or NO2
in	d_rising_m1	rcda damping factor for rising rmox
in	d_falling_m1	rcda damping factor for falling rmox
in	d_class_m1	damping factor for gas classification

Returns

AQI value

6.2.3.2 oaq_base_init()

initializes the OAQ algorithm

Parameters

out	handle	pointer to algorithm state variable
in	general_purpose	pointer to the 9 bytes trim information
in	stabilization_samples	number of samples to be ignored for stabilization

6.2.4 Variable Documentation

6.2.4.1 aqi_no2

float aqi_no2

equivalent NO2 AQI

6.2.4.2 aqi_o3

float aqi_o3

equivalent O3 AQI

6.2.4.3 conc_no2 float conc_no2 equivalent NO2 concentration [ppb] 6.2.4.4 conc_o3 float conc_o3 equivalent O3 concentration [ppb] 6.2.4.5 prob_no2 float prob_no2 NO2 probability 6.2.4.6 rcda_22 float rcda_22 Rcda estimation for Rmox_22 6.2.4.7 rcda_42 float rcda_42 Rcda estimation for Rmox_42 6.2.4.8 stabilization_sample uint8_t stabilization_sample number of samples still needed for stabilization 6.2.4.9 trim_b float trim_b NO2 intercept from trim data 6.2.4.10 trim_beta2 float trim_beta2 slope from trim data 6.2.4.11 trim_data_version

uint8_t trim_data_version
version of trim data in NVM

Chapter 7

Data Structure Documentation

7.1 oaq_base_handle_t Struct Reference

Variables that describe the sensor or the algorithm state.

```
#include <oaq.h>
```

Data Fields

- float trim beta2
- float trim_b
- float rcda_22
- float rcda_42
- uint8_t trim_data_version
- uint8_t stabilization_sample
- float prob_no2
- float conc_no2
- float conc_o3
- float aqi_no2
- float aqi_o3

7.1.1 Detailed Description

Variables that describe the sensor or the algorithm state.

The documentation for this struct was generated from the following file:

• oaq.h

File Documentation 12

Chapter 8

File Documentation

8.1 oaq.h File Reference

This file contains the data structure definitions and the function definitions for the OAQ base algorithm.

```
#include <stdint.h>
#include <math.h>
```

Data Structures

• struct oaq_base_handle_t

Variables that describe the sensor or the algorithm state.

Macros

- #define RCDA_STRATEGY_FIX (0)
- #define RCDA_STRATEGY_SET (1)
- #define RCDA_STRATEGY_ADJ (2)
- #define GAS_DETECTION_STRATEGY_AUTO (0)
- #define GAS_DETECTION_STRATEGY_FORCEO3 (1)
- #define GAS_DETECTION_STRATEGY_FORCENO2 (2)

Typedefs

• typedef float oaq_prec_t

internal precision for gas classification, must be at least 32bit floating point!

File Documentation 13

Functions

void oaq_base_init (oaq_base_handle_t *handle, const uint8_t *general_purpose, const uint8_
 t stabilization_samples)

initializes the OAQ algorithm

• float calc_oaq (oaq_base_handle_t *handle, const float *rmox, const uint8_t rcda_strategy, const uint8_t gas_detection_strategy, const float d_rising_m1, const float d_falling_m1, const float d_class_m1)

calculates AQI from present sample

8.1.1 Detailed Description

This file contains the data structure definitions and the function definitions for the OAQ base algorithm.

Date

2019-09-24

Author

IDT

Version

```
4.0.0 - https://semver.org/
```

The library contains an algorithm to calculate an OAQ index from ZMOD4510 measurements. The implementation is made to allow more than one sensor.