

UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET ODSJEK ZA AUTOMATIKU I ELEKTRONIKU PROJEKTOVANJE MIKROPROCESORSKIH SISTEMA

Mješalica hemikalija

SEMINARSKI RAD

Studenti: Zerina Jašarspahić Harun Špago

Profesor:

Doc. dr Nedim Osmić

Stručnjak iz prakse: Muhidin Hujdur, MoE - dipl.el.ing

Sarajevo, juni 2023. godine

Sažetak

Tema ovog rada je miješanje hemikalija koje se ispuštaju iz pet različitih rezervoara. U velikom rezervoaru se obavlja miješanje svih hemikalija. Na osnovu senzora nivoa reguliše se nivo određene hemikalije u velikom rezervoaru. Korisnik u bilo kojem trenutku može pokrenuti ili zaustaviti sistem. Za upravljanje sistemom korišten je PLC kompanije *Schneider Electric*. Softverska implementacija projekta izvršena je u programskim alatima *SoMachine* i *Vijeo Designer*. Također, za lakše upravljanje sistemom korišten je HMI modul.

Ključne riječi: Miješanje hemikalija, PLC, HMI modul, programski alat *SoMachine*, programski alat *Vijeo Designer*

Abstract

The topic of this paper is the mixing chemicals that are released from five different reservoirs. All chemicals are mixed in a large tank. Thanks to the level sensor, the level of a certain chemical in the large reservoir is regulated. The user can start or stop the system at any time. A PLC by *Schneider Electric* company was used to control the system. The software implementation of the project was done in the software tools *SoMachine* and *Vijeo Designer*. Also, a HMI module was used for the easier system management.

Keywords: Mixing chemicals, PLC, HMI module, software tools *SoMachine*, software tools *Vijeo Designer*

Sadržaj

Po	opis slika	3									
Po	opis tabela	4									
1	Specifikacija opreme										
2	Predračun opreme	5									
4	Grafički dio 3.1 Principijelna shema	8 14									
5	Softversko rješenje 5.1 Varijable	25 25 26									
6	Uputstvo za upotrebu	34									
7	7 Zaključak										
T :	itaratura	40									

Popis slika

3.1.1	Principijelna shema sistema [1]	7
	Unutrašnjost razvodnog ormara [2]	20
	Vanjski izgled razvodnog ormara [2]	21
	Vanjski izgled razvodnog ormara [2]	21
	Izgled komandne ploče [2]	22
5.2.1	Upravljanje ventilima manjih rezervoara [3]	26
5.2.2	Upravljanje ventilima manjih rezervoara [3]	27
5.2.3	Upravljanje svjetlosnim signalima [3]	28
	Upravljanje mješalicom i pumpom [3]	29
	Korišteni tasteri i pražnjenje velikog rezervoara [3]	30
	Isključenje sistema punjenja rezervora hemikalijama u slučaju greške na sis-	
	temu [3]	31
5.2.7	Simboličan prikaz nivoa tekućine u rezervoaru [4]	32
6.0.1	Izgled glavnog prozora HMI - ja [4]	34
6.0.2	HELP prozor za funkcije glavnog prozora [4]	35
	Izgled glavnog ekrana kada se proces završi [4]	35
	Prozor za ispuštanje smjese iz rezervoara [4]	36
	HELP prozor za funkcije prozora za ispuštanje smjese [4]	36
6.0.6	Izgled prozora kada se završi ispuštanje tekućine [4]	37
6.0.7	Alarmiranje grešaka [4]	37
	HELP za alarmni prozor [4]	38
	Prikaz poruke kada je djelovala termička zaštita motora koji pokreće mikser [4]	38

Popis tabela

1.0.1 Specifikacija opreme	3
2.0.1 Predračun opreme	5
3.3.1 Priključni plan	14
4.0.1 Lista signala	23
5.1.1 Pomoćne varijable	25

Specifikacija opreme

- PLC M241 M241CE24T programabilni logički kontroler koji obezbjeđuje ispravno funkcionisanje sistema, povezivanje sa HMI-jem, te upravljanje pratećim grijačima. Napajanje mu je 24 VDC.
- HMI Magelis S5T interfejs modul sa displejom koji se koristi za komunikaciju između čovjeka i PLC-a. Omogućava unos i prikaz podataka relevatnih za upravljanje sistemom, kao i razne vrste indikacija. Omogućava jednostavnu komunikaciju sa PLC-om preko Ethernet-a.
- XB5AT842 hitan stop za prislino prekidanje napajanja ormara, te zaustavljanja rada sistema.
- **K1A001ACH** grebenasta sklopka, glavni prekidač. Služi za pokretanje ormara, odnosno samog sistema.
- XB7NA31 taster sa normalno otvorenim kontaktom. Ukupno su potrebna 3 komada.
- XB4BS8442 taster sa normalno zatvorenim kontaktom. Ukupno su potrebna 2 komada.
- XB4BV5B3 zelena LED kao znak da je proces miješanja hemikalija aktivan.
- XB7EV04MP crvena LED kao znak da je smjesa u posudi za miješanje pripremljena.
- DL1CF380 sijalica za indikaciju prisustva AC napona u ormaru.
- DL1CF220 sijalica za indikaciju prisustva DC napona u ormaru.
- LP1K1210BD sklopnik koji će se koristiti monofazno. Nazivna struja za taj režim rada je 20 A. Ukupno su potrebna 2 komada.
- CA3SK20BD relej. Nazivna struja je 10 A. Ukupno je potrebno 10 komada.
- NSYTRV22 redne stezaljke.
- VT3213G13A020 ventili za ispuštanje tekućina iz rezervoara. Ukupno je potrebno 6 komada.
- XT512B1PAL2 kapacitivni senzor za detekciju nivoa smjese u rezervoaru. Ukupno je potrebno 6 komada.

- **Jednofazni asinhroni motor serije Ycl Sweelin, YC90L-2** motor snage 1.5 kW, struje 11.4 A, radnog napona 220 VAC. Potreban 1 komad.
- PGW G 50-125(I)A 2.2G pumpa radnog napona 220 VAC i snage 2.2 kW. Potreban 1 komad.
- A9A26500 prenaponska zaštita. Zadatak mu je da zaštiti opremu u ormaru od mrežnih prenapona.
- ABL8FEQ24150 napojna jedinica, 24 VDC i 15 A.
- **A9F93132** osigurač. Nazivna struja 32 A i karakteristika djelovanja B. Ukupno potreban 1 komad.
- LRD223 termički relej za zaštitu motora mješalice i pumpe. Opseg podešavanja struje preopterećenja je 16-24 A. Potrebna su 2 komada.
- **A9D47232** FID sklopka, 32 A.
- NSYS3D6830 razvodni ormar za ugradnju opreme.
- 16-700DIN din šina za montiranje opreme.

Tabela 1.0.1: Specifikacija opreme

Broj	Komponenta	Vrsta	Količina	Namjena	Položaj u dokumentaciji
1	NSYS3D6830	razvodni ormar	1	prostor za montiranje komponenti	
2	A9A26500	prenaponska zaštita 1P+1N	1	zaštita od prenapona	1-A4
3	A9D47232	FID sklopka	1	zaštita od električnog udara	1-F4
4	А9F93132	osigurač 1P+1N	1	zaštita ispravljača	1-G4
5	ABL8FEQ24150	napojna jedinica	1	pretvaranje iz AC napona u DC	1-C12
9	K1A001ACH	grebenasta sklopka	1	pokretanje sistema	1-D12
7	DL1CF380	sijalica	1	indikacija prisustva AC napona	1-D5
∞	DL1CF220	sijalica	1	indikacija prisustva DC napona	1-E13
6	XB5AT842	hitan stop	1	prisilno zaustavljanje rada sistema	1-C4
10	NSYTRV22	redna stezaljka	118	povezivanje vanjskih elemenata	1-B4,,6-E14
11	M241CE24T	PLC	1	upravljanje sistemom	2-C3
12	HMI Magelis S5T	HMI	1	grafički prikaz sistema	2-D13
13	XT512B1PAL2	senzor nivoa	6	za praćenje nivoa hemikalije	3-E2, 3-E3, 3-E5, 3-E6, 3-E11, 3-E12
14	XB7NA31	NO taster	3	za pokretanje sistema, otvaranje/za-tvaranje ventila 0	3-E15, 4-E5, 4-E8
15	XB4BS8442	NC taster	2	za zaustavljanje sistema i/ili mješa- lice	3-E14, 4-E3
16	CA3SK20BD	relej	10	pokretanje drugih dijelova sistema	5-E2,,5-E5; 5-E9,,5- E12; 5-E15; 5-E16
17	XB4BV5B3	zelena LED	1	proces miješanja hemikalija je aktivan	6-F9
18	XB7EV04MP	crvena LED	1	smjesa u posudi za miješanje je pri- premljena	6-F10
19	LP1K1210BD	sklopnik	2	za upravljanje mješalicom i pum- pom	6-C12, 6-C14
20	YC90L-2	Jednofazni motor serija Ycl Sweelin	1	mješalica	6-G12

Vrsta Količina 20 ventil 6 za pr pr pumpa 1 tanci termički relej 2 struja preo				
Vrsta Količina ventil 6 pumpa 1	Položaj u dokumentacij	6-F1, 6-F3, 6-F4, 6-F5 6-F7, 6-F8	6-G14	6-E12, 6-E14
Vrsta ventil pumpa termički relej	Namjena	za pražnjenje rezervoara	omogućava protok hemijskih supstanci	zaštita motora mješalice i pumpe od struja preopterećenja
(I)	Količina	9		2
Broj Komponenta 21 VT3213G13A020 22 PGW-G 50-125(I) A - 2.2G 23 LRD223	Vrsta	ventil	pumpa	termički relej
Broj 21 22 23	Komponenta	VT3213G13A020	PGW-G 50-125(I) A - 2.2G	LRD223
	Broj	21	22	23

Predračun opreme

Tabela 2.0.1: Predračun opreme

Iznos	\$837.62	\$624.69	\$62.58	\$188.06	\$344.32	\$870.03	\$24.9	\$17.73	\$21.49	\$42.39	\$68.07	\$63.87	\$146.32	\$671.64	\$452.64	\$119.99	\$60.00	\$212.11	\$199.99	\$360.28	\$180.05	\$32.53	\$146.92	\$5748.22	
Jedinična cijena	\$837.62	\$624.69	\$20.86	\$94.03	\$172.16	\$87.03	\$24.9	\$17.73	\$21.49	\$42.39	\$68.07	\$63.87	\$1.24	\$111.94	\$75.44	\$119.99	\$60.00	\$212.11	\$199.99	\$360.28	\$180.05	\$32.53	\$73.46	UKUPNO (USD):	
Količina	П	-	3	2	2	10	П	1	T	1	1	-	118	9	9	T	П	1	П	1	-	1	2		
Vrsta	PLC	HMI	taster	taster	sklopnik	relej	grebenasta sklopka	sijalica	sijalica	hitan stop	zelena led	crvena led	redne stezaljke	ventil	kapacitivni senzor nivoa	pumpa	jednofazni motor	razvodni ormar	FID sklopka	napojna jedinica	prenaponska zaštita	osigurač	termički relej		
Naziv komponente	M241 M241CE24T	HMI Magelis S5T	XB7NA31	XB4BS8442	LP1K1210BD	CA3SK20BD	K1A001ACH	DL1CF380	DL1CF220	XB4BS8442	XB4BV5B3	XB7EV04MP	NSYTRV22	VT3213G13A020	XT512B1PAL2	PGW - G 50-125(I)A - 2.2G	YC90L-2	NSYS3D6830	A9D47232	ABLS1A24200	A9A26500	A9F93132	LRD223		
Br.	Τ:	2.	3.	4.	5.	.9	7.	∞.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.	22.	23.		

Napomena:

- sve cijene su preuzete sa zvanične stranice kompanije *Schneider Electric* www.se.com iz razloga jer je sve korištene komponente proizvela spomenuta kompanija
- u sklopu navedenih cijena **nije** uključeno: programiranje PLC-a, ožičavanje sistema, montiranje sistema, dostava komponenti i cijene kablova.

Grafički dio

3.1 Principijelna shema

Slika 3.1.1: Principijelna shema sistema [1]

3.2 Shema djelovanja

U ovom potpoglavlju su prikazane sheme sistema urađene u QElectroTech-u [5]:

3.3 Priključni plan

Često pri kvaru elementa nekog sklopa, potrebno je izvršiti rastavljanje sklopa kako bi se došlo do kvara. U tim situacijama potrebno je zamijeniti pokvareni element i sve vratiti kako je i prije bilo. Da bi se minimizirao posao u takvim situacijama, preko rednih stezaljki su izvršeni svi priključci elemenata. što je prikazano i na shemama djelovanja.

Spomenuti priključci su podijeljeni u 21 skupinu rednih stezaljki, pri čemu svaka skupina ili distribuira na elemente napajanje ili obavlja određeni zadatak. Ispod je data legenda tih skupina zajedno sa svojim oznakama u tabelarnom i shematskom prikazu koji je urađen u *QElectroTech*-u [5]:

Tabela 3.3.1: Priključni plan

Skupina	Stezaljka	Oznaka	Napomena
X1	1-3	L, N, PE	ulazne stezaljke monofaznog napajanja
	4	L_AC_to_DC	napajanje napojne jedinice (+)
X2	5	X18	prosljeđivanje 220VAC napajanja skupini X18
X2	6	N_AC_to_DC	napajanje napojne jedinice (-)
	7	X19	prosljeđivanje 0VAC napajanja skupini X19
X3	8	PE_AC_to_DC	uzemljenje napojne jedinice
AS	9	PE_HMI	uzemljenje HMI-a
	10	24V_PLC	napajanje PLC-a (+)
	11	24V_HMI	napajanje HMI-a (+)
X4	12	X6	prosljeđivanje 24 VDC napajanja skupini X6
73.4	13	X9	prosljeđivanje 24 VDC napajanja skupini X9
	14	X12	prosljeđivanje 24 VDC napajanja skupini X12
	15	X15	prosljeđivanje 24 VDC napajanja skupini X15
	16	0V_PLC	napajanje PLC-a (-)
	17	0V_HMI	napajanje HMI-a (-)
X5	18	X7	prosljeđivanje 0 VDC napajanja skupini X7
AS	19	X10	prosljeđivanje 0 VDC napajanja skupini X10
	20	X13	prosljeđivanje 0 VDC napajanja skupini X13
	21	X16	prosljeđivanje 0 VDC napajanja skupini X16
	22	Senzor_B0_24V	dovođenje 24VDC na Vcc pin senzora B0
	23	Senzor_B1_24V	dovođenje 24VDC na Vcc pin senzora B1
	24	Senzor_B2_24V	dovođenje 24VDC na Vcc pin senzora B2
X6	25	Senzor_B3_24V	dovođenje 24VDC na Vcc pin senzora B3
710	26	Senzor_B4_24V	dovođenje 24VDC na Vcc pin senzora B4
	27	Senzor_B5_24V	dovođenje 24VDC na Vcc pin senzora B5
	28	Taster_S0_24V	dovođenje 24VDC na kraj tastera S0
	29	Taster_S1_24V	dovođenje 24VDC na kraj tastera S1

	30	COM0	izlaz COM0 PLC-a
	31	Senzor B0 0V	dovođenje 0VDC na GND pin senzora B0
	32	Senzor B1 0V	dovođenje 0VDC na GND pin senzora B1
17.5	33	Senzor_B2_0V	dovođenje 0VDC na GND pin senzora B2
X7	34	Senzor_B3_0V	dovođenje 0VDC na GND pin senzora B3
	35	COM1	izlaz COM1 PLC-a
	36	Senzor_B4_0V	dovođenje 0VDC na GND pin senzora B4
	37	Senzor_B5_0V	dovođenje 0VDC na GND pin senzora B5
X8	38-45	I0-I7	digitalni ulazi PLC-a
-	46	Taster_S2_24V	dovođenje 24VDC na kraj tastera S2
X9	47	Taster_S3_24V	dovođenje 24VDC na kraj tastera S3
	48	Taster_S4_24V	dovođenje 24VDC na kraj tastera S4
	49	T1	dovođenje 24VDC na NO kontakt T1
	50	T2	dovođenje 24VDC na NO kontakt T2
X10	51	COM2	izlaz COM2 PLC-a
X11	52-56	I8-I12	digitalni ulazi PLC-a
X12	57-59	V0+, V1+, V2+	napajanje V0+, V1+, V2+ digitalnih izlaza PLC-a
	60	V0-	napajanje V0- digitalnog izlaza PLC-a
	61	Ventil_0_r (-)	dovođenje 0VDC na relej za ventil 0
	62	Ventil_1_r (-)	dovođenje 0VDC na relej za ventil 1
	63	Ventil_2_r (-)	dovođenje 0VDC na relej za ventil 2
	64	Ventil_3_r (-)	dovođenje 0VDC na relej za ventil 3
	65	V1-	napajanje V1- digitalnog izlaza PLC-a
X13	66	Ventil_4_r (-)	dovođenje 0VDC na relej za ventil 4
	67	Ventil_5_r (-)	dovođenje 0VDC na relej za ventil 5
	68	Mješalica_r (-)	dovođenje 0VDC na relej za mješalicu
	69	Pumpa_r (-)	dovođenje 0VDC na relej za pumpu
	70	V2-	napajanje V2- digitalnog izlaza PLC-a
	71	LED_H0_r (-)	dovođenje 0VDC na relej za LED H0
	72	LED_H1_r (-)	dovođenje 0VDC na relej za LED H1
	73	Ventil_0_r (+)	digitalni izlaz Q0
	74	Ventil_1_r (+)	digitalni izlaz Q1
	75	Ventil_2_r (+)	digitalni izlaz Q2
	76	Ventil_3_r (+)	digitalni izlaz Q3
X14	77	Ventil_4_r (+)	digitalni izlaz Q4
7 N T T	78	Ventil_5_r (+)	digitalni izlaz Q5
	79	Mješalica_r (+)	digitalni izlaz Q6
	80	Pumpa_r (+)	digitalni izlaz Q7
	81	LED_H0_r (+)	digitalni izlaz Q8
	82	LED_H1_r (+)	digitalni izlaz Q9

	83	Ventil_0_p (+)	dovođenje 24VDC na kontakt ventila 0
	84	Ventil_1_p (+)	dovođenje 24VDC na kontakt ventila 1
	85	Ventil_2_p (+)	dovođenje 24VDC na kontakt ventila 2
3715	86	Ventil_3_p (+)	dovođenje 24VDC na kontakt ventila 3
X15	87	Ventil_4_p (+)	dovođenje 24VDC na kontakt ventila 4
	88	Ventil_5_p (+)	dovođenje 24VDC na kontakt ventila 5
	89	LED_H0_p (+)	dovođenje 24VDC na kontakt LED H0
	90	LED_H1_p (+)	dovođenje 24VDC na kontakt LED H1
	91	Ventil_0 (-)	dovođenje 0VDC na kraj ventila 0
	92	Ventil_1 (-)	dovođenje 0VDC na kraj ventila 1
	93	Ventil_2 (-)	dovođenje 0VDC na kraj ventila 2
X16	94	Ventil_3 (-)	dovođenje 0VDC na kraj ventila 3
A 10	95	Ventil_4 (-)	dovođenje 0VDC na kraj ventila 4
	96	Ventil_5 (-)	dovođenje 0VDC na kraj ventila 5
	97	LED_H0 (-)	dovođenje 0VDC na kraj LED H0
	98	LED_H1 (-)	dovođenje 0VDC na kraj LED H1
	99	Ventil_0 (+)	spajanje ventila 0 na kontakt releja
	100	Ventil_1 (+)	spajanje ventila 1 na kontakt releja
	101	Ventil_2 (+)	spajanje ventila 2 na kontakt releja
X17	102	Ventil_3 (+)	spajanje ventila 3 na kontakt releja
A17	103	Ventil_4 (+)	spajanje ventila 4 na kontakt releja
	104	Ventil_5 (+)	spajanje ventila 5 na kontakt releja
	105	LED_H0 (+)	spajanje LED H0 na kontakt releja
	106	LED_H1 (+)	spajanje LED H1 na kontakt releja
X18	107	L_mjesalice_s	dovođenje 220VAC na kontakter
ATO	108	L_pumpe_s	dovođenje 220VAC na kontakter
X19	109	N_mjesalice_s	dovođenje 0VAC na kontakter
All	110	N_pumpe_s	dovođenje 0VAC na kontakter
	111	L_T1	spajanje mješalice na 220VAC preko termičke zaštite
X20	112	N_T1	spajanje mješalice na 0VAC preko termičke zaštite
	113	L_T2	spajanje pumpe na 220VAC preko termičke zaštite
	114	N_T2	spajanje pumpe na 0VAC preko termičke za- štite

	115	L_Mješalica	spajanje termičke zaštite na kontakter
X21	116	N_Mješalica	spajanje termičke zaštite na kontakter
ALI	117	L_Pumpa	spajanje termičke zaštite na kontakter
	118	N_Pumpa	spajanje termičke zaštite na kontakter

3.4 Pregledni nacrt

Sistem za miješanje hemikalija sadrži dvije sastavne cjeline, i to komandna ploča sa kojeg korisnik upravlja sistemom i razvodni ormar u kojem su smještene sve komponente sistema.

Razvodni ormar korišten u ovom projektu je model NSYS3D6830 koji je proizvela francuska firma *Schneider Electric*. U unutrašnjosti ormara, što je prikazano na slici 3.4.1, nalaze se tri nosača na kojima su postavljeni elementi:

- 1. nosač na kojem su poredani elementi za mrežno napajanje, i to redom: odvodnik prenapona, skupina rednih stezaljki X1, FID sklopka, osigurač, stezaljke X2 i X3, te napojna jedinica i skupine X4 i X5,
- 2. skupine rednih stezaljki X6, X7 i X8 kao i releji, sklopnici zajedno sa termičkim relejima koji su korišteni u sistemu i
- 3. preostale skupine rednih stezaljki.

Slika 3.4.1: Unutrašnjost razvodnog ormara [2]

Sa vanjske strane ormara, što je prikazano na slikama 3.4.2 i 3.4.3, se nalaze: indikator prisutnosti AC napajanja, indikator prisutnosti DC napajanja, grebenasta sklopka zadužena za puštanje DC napona koji pokreće PLC i HMI modul i taster hitan stop za prisilno zaustavljanje rada cjelokupnog sistema.

Slika 3.4.2: Vanjski izgled razvodnog ormara [2]

Slika 3.4.3: Vanjski izgled razvodnog ormara [2]

Na komandnoj ploči, koja je prikazan na slici, se nalazi: HMI modul koji korisniku omogućava jednostavnije upravljanje i nadzor nad sistemom, dva svjetlosna indikatora kao signalizacija u kojoj fazi se nalazi proces i pet tastera, od čega su dva sa normalno zatvorenim kontaktima i tri sa normalno otvorenim kontaktima.

Slika 3.4.4: Izgled komandne ploče [2]

Lista signala

Tabela 4.0.1 sadrži signale koje PLC prima i šalje tokom svoga rada sa oznakama varijabli korištenih u softverskom rješenju datog problema:

Tabela 4.0.1: Lista signala

Broj	Oznaka	Tip	Kanal	Napomena
1	Q_ventil_0	DO	Q0	ventil za odvođenje tekućine iz velikog rezervoara
2	Q_ventil_1	DO	Q1	ventil za odvođenje tekućine iz prvog rezervoara
3	Q_ventil_2	DO	Q2	ventil za odvođenje tekućine iz drugog rezervoara
4	Q_ventil_3	DO	Q3	ventil za odvođenje tekućine iz trećeg rezervoara
5	Q_ventil_4	DO	Q4	ventil za odvođenje tekućine iz četvrtog rezervoara
6	Q_ventil_5	DO	Q5	ventil za odvođenje tekućine iz petog rezervoara
7	Q_mjesalica	DO	Q6	mješalica za miješanje tekućina
8	Q_pumpa	DO	Q7	pumpa za protok hemijskih supstanci
9	Q_lampica_H0	DO	Q8	indikator da je proces pretakanja tekućina započeo
10	Q_lampica_H1	DO	Q9	indikator da je smjesa u posudi za miješanje pripremljena
11	senzor_B0_	DI	Ι0	senzor nivoa kao indikator da je veliki rezervoar prazan
12	senzor_B1_	DI	I1	senzor nivoa za prvu tekućinu
13	senzor_B2_	DI	I2	senzor nivoa za drugu tekućinu
14	senzor_B3_	DI	I3	senzor nivoa za treću tekućinu
15	senzor_B4_	DI	I4	senzor nivoa za četvrtu tekućinu
16	senzor_B5_	DI	15	senzor nivoa za petu tekućinu
17	taster_S0	DI	I6	taster za isključenje sistema
18	taster_S1	DI	I7	taster za pokretanje sistema
19	taster_S2	DI	I8	taster za zaustavljanje mješalice
20	taster_S3	DI	I9	taster za uključenje ventila koji prazni veliki rezervoar
21	taster_S4	DI	I10	taster za isključenje ventila koji prazni veliki rezervoar
22	termička_mikser	DI	I11	termička zaštita motora mješalice
23	termička_pumpa	DI	I12	termička zaštita motora pumpe

Pojašnjenje korištenih skraćenica:

- DO digitalni izlaz (eng. Digital Output)
- DI digitalni ulaz (eng. Digital Input)

Treba napomenuti da su postavkom zadatka **taster_S0** i **taster_S2** imaju normalno zatvorene kontakte, te inicijalno oni imaju vrijednost TRUE. S druge strane, **taster_S1**, **taster_S3** i **taster_S4** imaju normalno otvorene kontakte, te inicijalno oni imaju vrijednost FALSE.

Softversko rješenje

Korištenjem softverskog paketa *SoMachine* napisan je kod koji obavlja tražene funkcionalnosti. Jedan dio sistema isprogramiran je pomoću funkcijskih blok dijagrama, odnosno skraćeno FBD. Drugi dio sistema je isprogramiran pomoću struktuiranog teksta, odnosno skraćeno ST.

5.1 Varijable

Pored već navedenih korištenih BOOL varijabli, korišteni su još RS flip-flop, SR flip-flop, F_TRIG blok, TP timer, AND, OR i NOT logičko kolo, što je prikazano u tabeli 5.1.1.

Tabela 5.1.1: Pomoćne varijable

Broj	Oznaka	Tip	Napomena
1	rezervoar1_	SR	upravljanje pražnjenjem prvog rezervoara
2	rezervoar2	RS	upravljanje pražnjenjem drugog rezervoara
3	rezervoar3	RS	upravljanje pražnjenjem trećeg rezervoara
4	rezervoar4	RS	upravljanje pražnjenjem četvrtog rezervoara
5	rezervoar5	RS	upravljanje pražnjenjem petog rezervoara
6	svjetlosni_signal_H0	RS	upravljanje svjetlosnim signalom H0
7	pumpa	RS	upravljanje pumpom
8	zaustavljanje_mjesalice	RS	upravljanje zaustavljanjem mješalice
9	iskljucenje_sistema	RS	upravljanje isključenjem cjelokupnog sistema
10	ventil_0	RS	upravljanje pražnjenjem velikog rezervoara
11	mjesalica	SR	upravljanje mješalicom
12	svjetlosni_signal_H1	SR	upravljanje svjetlosnim signalom H1
13	iskljucenje_mjesalice	TP	odgađanje isključenja mješalice za 10 [s]
14	iskljucenje_ventila_0	TP	odgađanje zatvaranja ventila_0 za 10 [s]
15	F_TRIG_taster_S0	F_TRIG	taster S0 otvoren
16	F_TRIG_taster_S2	F_TRIG	taster S2 otvoren
17	F_TRIG_iskljucenje_mjesalice	F_TRIG	isteklo 10 [s]; mjesalica se isključuje
18	F_TRIG_taster_S0_mjesalica	F_TRIG	taster S0 otvoren; potrebno isključiti mješalicu
19	F_TRIG_taster_S2_mjesalica	F_TRIG	taster S2 otvoren; potrebno zaustaviti mješalicu
20	F_TRIG_taster_S0_lampica_H0	F_TRIG	taster S0 otvoren; potrebno isključiti svjetlo H0
21	F_TRIG_iskljucenje_ventila_0	F_TRIG	isteklo 10 [s]; ventil se treba zatvoriti

Broj	Oznaka	Tip	Napomena
22	prebaci_panel3_	BOOL	prebacivanje na panel 3 na HMI - iju
23	termicka_mikser	BOOL	u slučaju preopterećenja signalizuje grešku na mikseru
24	termicka_pumpa	BOOL	u slučaju preopterećenja signalizuje grešku na pumpi
25	greska_senzor_B0	BOOL	u slučaju neispravnosti senzora nivoa B0
26	greska_senzor_B1	BOOL	u slučaju neispravnosti senzora nivoa B1
27	greska_senzor_B2	BOOL	u slučaju neispravnosti senzora nivoa B2
28	greska_senzor_B3	BOOL	u slučaju neispravnosti senzora nivoa B3
29	greska_senzor_B4	BOOL	u slučaju neispravnosti senzora nivoa B4

Pojašnjenje korištenih skraćenica:

- RS flip-flop, pri čemu veću prednost ima reset
- SR flip-flop, pri čemu veću prednost ima set
- TP timer timer koji se aktivira dovođenjem impulsa
- F_TRIG triger koji reaguje na opadajuću ivicu

5.2 FBD i ST rješenje zadatka

Na slikama 5.2.1. i 5.2.2. dato je upravljanje ventilima manjih rezervoara, odnosno izlazima **Q_ventil_1**, **Q_ventil_2**, **Q_ventil_3**, **Q_ventil_4** i **Q_ventil_5**.

Slika 5.2.1: Upravljanje ventilima manjih rezervoara [3]

Slika 5.2.2: Upravljanje ventilima manjih rezervoara [3]

Pritiskom na **taster_S1** otvara se prvi ventil, odnosno varijabla **Q_ventil_1** ima vrijednost TRUE. Izlaz **Q_ventil_1** je aktivan sve dok **senzor_B1** ne registruje da se veliki rezervoar napunio tečnošću iz prvog rezervoara. Uključenjem **senzora_B1** otvara se drugi ventil, odnosno varijabla **Q_ventil_2** ima vrijednost TRUE. Izlaz **Q_ventil_2** je aktivan sve dok **senzor_B2** ne registruje da se veliki rezervoar napunio tečnošću iz drugog rezervoara. Isti princip rada vrijedi i za sljedeće rezervoare. Treba napomenuti da ukoliko se u bilo kojem trenutku pritisne taster za isključenje sistema, a to je **taster_S0**, ventil će se zatvoriti.

Na slici 5.2.3 dato je upravljanje svjetlosnim signalima, odnosno izlazima **Q_lampica_H0** i **Q_lampica_H1**.

Slika 5.2.3: Upravljanje svjetlosnim signalima [3]

Pritiskom na taster_S1 aktivira se svjetlosni signal Q_lampica_H0, koji obavještava korisnika da je proces miješanja hemikalija započeo. Ukoliko se u nekom trenutku pritisne taster_S0 za zaustavljanje procesa, gasi se svjetlosni signal Q_lampica_H0. Ponovnim pritiskom na taster_S0, proces se nastavlja tamo gdje je stao, i digitalni izlaz Q_lampica_H0 je opet aktivan. Kada završi proces miješanja hemikalija, signal koji isključuje mješalicu također isključuje i svjetlosni signal Q_lampica_H0, a aktivira svjetlosni signal Q_lampica_H1. Aktiviranje izlaza Q_lampica_H1 je znak operatoru da je smjesa u posudi za miješanje pripremljena. Kada vrijednost digitalnog ulaza senzor_B0 bude FALSE, veliki rezervoar se ispraznio i izlaz Q_lampica_H1 se isključuje. Isključenjem izlaza Q_lampica_H1, znak je operatoru da se ponovo može započeti proces punjena velikog rezervoara različitim hemikalijama.

Na slici 5.2.4 dato je upravljanje mješalicom i pumpom, odnosno izlazima **Q_mjesalica** i **Q_pumpa**.

Aktiviranjem izlaza **Q_ventil_1**, aktivira se i izlaz **Q_mjesalica** koji aktivira izlaz **Q_pumpa**. Ukoliko se pritisne **taster_S0**, isključuje se cijeli sistem, a samim time i mješalica i pumpa. Ponovnim pritiskom na **taster_S1**, mješalica i pumpa, kao i cjelokupni sistem nastavljaju s radom. Ako korisnik pritisne **taster_S2**, zaustavlja se samo mješalica. Ponovnim pritiskom na **taster_S2**, uključuje se ponovo mješalica. Nakon što se i peti rezervoar isprazni, aktivira se ulaz **senzor_B5** koji gasi pumpu i pali timer koji odbrojava 10 sekundi. Nakon što timer odbroji 10 sekundi, gasi se i mješalica.

Slika 5.2.4: Upravljanje mješalicom i pumpom [3]

Na slici 5.2.5 dat je prikaz implementacije korištenih tastera **taster_S0**, **taster_S2**, **taster_S3** i **taster_S4**, te upravljanje ventilom za pražnjenje velikog rezervoara.

Kao što je već nekoliko puta navedeno **taster_S0** služi za zaustavljanje cjelokupnog sistema, i on ima normalno zatvorene kontakte. Također, i **taster_S2** ima normalno zatvorene kontakte i služi za zaustavljanje mješalice. Da bi se ponovo aktivirao cjelokupni sistem, odnosno mješalica, potrebno je ponovo pritisnuti **taster_S0**, odnosno **taster_S2**. Također, već je rečeno da se uključenjem izlaza **Q_lampica_H1** daje znak da je smjesa u velikom rezervoaru pripremljena. Tek kada je smjesa pripremljena, i kada se pritisne **taster_S3** može se početi prazniti veliki rezervoar pomoću digitalnog izlaza **Q_ventil_0**. Ukoliko se pritisne **taster_S4**, izlaz **Q_ventil_0** se deaktivira. Ukoliko se želi ponovo aktivirati izlaz **Q_ventil_0**, potrebno je pritisnuti **taster_S3**. Također, **taster_S3** i **taster_S4** imaju normalno otvorene kontakte. Nakon što **senzor_B0** registruje da se veliki rezervoar skoro ispraznio, aktivira se timer koji odbrojava 10 sekundi. Nakon odbrojanih 10 sekundi isključuje se izlaz **Q_ventil_0**. Ovime se osiguralo da se veliki rezervoar u potpunosti ispraznio.

Slika 5.2.5: Korišteni tasteri i pražnjenje velikog rezervoara [3]

Na slici 5.2.6. prikazan je dio koda koji je zadužen za isključivanje sistema u slučaju da dođe do neke greške na nekom od senzora ili ako dođe do djelovanja termičke zaštite na nekom od motora.

Slika 5.2.6: Isključenje sistema punjenja rezervora hemikalijama u slučaju greške na sistemu [3]

Pored ovog glavnog POU - a, u programu se nalazi još jedan POU, pri čemu je korišten ST način programiranja [3]. Zadatak ovog POU-a je da ažurira vrijednost varijable **brojac**, tipa INT, koja se kasnije koristi za simboličan prikaz nivoa tekućine u rezervoaru. U ovisnoti od toga koji senzor nivoa je aktivan, varijabla **brojac** može imati vrijednosti od 0 (rezervoar prazan) do 6 (rezervoar napunjen). Za simboličan prikaz nivoa tekućine u rezervoaru koristi se vertikalni graf sa naznačenim položajima senzora koji je prikazan na slici 5.2.7.

Slika 5.2.7: Simboličan prikaz nivoa tekućine u rezervoaru [4]

Pored navednih POU - ova koristi se još jedan čiji je zadatak da provjerava rad kapacitivnih senzora nivoa. Kod koji se koristi za signalizaciju greške rada senzora dat je u nastavku teksta, pri čemu je korišten ST način programiranja [3]. Kod se zasniva na činjenice da ako senzor nivoa koji detektuje viši nivo registruje postojanje smjese, a jedan ili više nižih senzora nivoa ne detektuje postojanje smjese, zaključak je da je neki od nižih senzora u kvaru.

```
IF ( senzor_B5_ OR senzor_B4_ OR senzor_B3_ OR senzor_B2_ OR
   senzor_B1_ ) AND senzor_B0_ = FALSE THEN
        greska_senzor_B0 := TRUE;
ELSE
        greska_senzor_B0 := FALSE;
END IF
IF ( senzor_B5_ OR senzor_B4_ OR senzor_B3_ OR senzor_B2_ ) AND
    senzor_B1_ = FALSE THEN
        greska_senzor_B1 := TRUE;
ELSE
        greska_senzor_B1 := FALSE;
END_IF
IF ( senzor_B5_ OR senzor_B4_ OR senzor_B3_ ) AND senzor_B2_ =
   FALSE THEN
        greska_senzor_B2 := TRUE;
ELSE
```

Uputstvo za upotrebu

Upravljanje samim procesom, pored korištenja već navedenih hardverskih tastera i prekidača, kao i bolji nadzor samog toka procesa moguće je postići korištenjem grafičkog interfejsa, odnosno HMI - ja. Pri pokretanju samog procesa na HMI - ju će se prikazati glavni prozor čiji je izgled prikazan na slici 6.0.1 (u toku je punjenje rezervoara hemikalijom broj 2).

Slika 6.0.1: Izgled glavnog prozora HMI - ja [4]

Na interfejsu je prikazan simboličan prikaz nivoa tekućine u rezervoaru, sa naznačenim nivoima B0,..., B5. U vrhu ekrana prikazuje se i broj rezervoara iz kojeg trenutno ističe hemikalija.

Na ekranu su ponuđene tri opcije, i to:

- 1. **S0** predstavlja *toggle button* koje je u normalno zatvorenom položaju (zelena boja), pritiskom na dugme zaustavlja se proces (dugme postane crvene boje) i ostaje u tom stanju sve dok se ponovno ne pritisne dugme (dugme postane zelene boje).
- 2. **S1** predstavlja taster čija je uloga pokretanje samog procesa punjenja rezervoara hemikalijama.

- 3. **S2** predstavlja *toggle button* koje je u normalno zatvorenom položaju (zelena boja), pritiskom na dugme zaustavlja se rad miješalice (dugme postane crvene boje) i ostaje u tom stanju sve dok se ponovno ne pritisne dugme (dugme postane zelene boje).
- 4. **HELP** predstavlja taster koji otvara novi prozor na kojem su objašnjene prethodno navedene funkcije tastera na glavnom prozoru (slika 6.0.2.).

```
Objasnjena komadi sa glavnog prozora

SO - HITAN STOP, zaustavlja rad sistema
S1 - taster pokrece sistem

S2 - prekidac zaustavlja rad mjesalice
HO - indikacija da sistem radi
H1 - indikacija da je sistem zavrsio

Kada zasvjetli lampica H1, u dnu ce se pojaviti dugme PRAZNJENJE, pritiskom se prelazi na prozor, na kojem se nalaze funkcije za praznjenje rezervoara

BACK
```

Slika 6.0.2: HELP prozor za funkcije glavnog prozora [4]

Po završetku procesa na glavnom prozoru se pojavljuje nova funkcionalnost **PRAŽNJENJE**, prikazana na slici 6.0.3. Pritiskom na navedeno dugme prelazi se na novi prozor na kojem se nalaze funkcionalnosti vezane za upravljanje procesom ispuštanja smjese iz velikog rezervoara.

Slika 6.0.3: Izgled glavnog ekrana kada se proces završi [4]

Na slici 6.0.4. prikazan je prozor na kojem se nalaze funkcionalnosti vezane za upravljanje procesom ispuštanje smjese iz velikog rezervoara.

Slika 6.0.4: Prozor za ispuštanje smjese iz rezervoara [4]

Ponovno je na ekranu na simboličan način prikazan nivo tekućine u rezervoaru, pri čemu su ponuđene i sljedeće opcije:

- 1. **S3** predstavlja taster kojim se otvara ispusni ventil.
- 2. **S4** predstavlja taster kojim se zatvara ventil.
- 3. **HELP** predstavlja dugme koje otvara pomoćni prozor na kojem su objašnjene funkcije pojedinih tastera (slika 6.0.5.).

Slika 6.0.5: HELP prozor za funkcije prozora za ispuštanje smjese [4]

Po završetku procesa ispuštanja smjese iz velikog rezervoara na ekranu će se pojaviti nova opcija **PUNJENJE**, koja je prikazana na slici 6.0.6. Pritiskom na navedeno dugme ponovno se otvara prozor za punjenje rezervoara hemikalijama tj. prozor prikazan na slici 6.0.1.

Slika 6.0.6: Izgled prozora kada se završi ispuštanje tekućine [4]

U slučaju greške koja može nastati usljed nekog kvara u sistemu, pojavit će se alarmini prozor na kojem se mogu vidjeti svi problemi koji su se javili. Na slici 6.0.7. prikazan je izgled alarmnog prozora koji se pojavljuje zbog neispravosti rada B2, B3 i B4 senzora nivoa.

Slika 6.0.7: Alarmiranje grešaka [4]

Alarmni prozor će se ukloniti onda kada se otklone kvarovi na uređajima koji su u kvaru (za navedeni slučaj potrebno je popraviti tri senzora nivoa B2, B3 i B4). Međutim po povratku na glavni prozor sistem će biti u isključenom stanju. Za ponovno pokretanje sistema potrebno je ručno pritisnuti, a zatim otpustiti dugme S0. Ova ista procedura može se pronaći ako se pritisne help na prozoru za alarmiranje (gornji desni ugao na slici 6.0.7.). Na slici 6.0.8. prikazan je sadržaj help prozora.

Slika 6.0.8: HELP za alarmni prozor [4]

Pošto sistem posjeduje dva motora koja imaju termičku zaštitu potrebno je alarmirati djelovanje termičkih zaštita. Na slici 6.0.9. prikazan je primjer poruke kada je djelovala termička zaštita motora koji pokreće mikser.

Slika 6.0.9: Prikaz poruke kada je djelovala termička zaštita motora koji pokreće mikser [4]

Zaključak

Na osnovu izloženog može se zaključiti da sama logika rješenja postavljenog problema nije toliko zahtjevna. Međutim, sami problem je dosta obiman jer zahtijeva korištenje velikog broja komponenti. Upravo zbog prethodno navedenog razloga, i sama cijena cjelokupnog projekta je poprilično visoka.

Rješavanje stvarnih problema u industrijskoj automatici je dosta jednostavno i efikasno ukoliko se koriste PLC-ovi. Također, sami programski alat *SoMachine*, koji služi za programiranje PLC-a, nudi veliku paletu različitih funkcionalnosti i načina programiranja. Korišteni HMI modul znatno olakšava upravljanje i nadgledanje cjelokupnog sistema.

Kada je riječ o sigurnosti, treba napomenuti da se pretpostavlja da su svi rezervoari zatvoreni, te su i samim time sigurni za čovjeka. Ukoliko je potrebno izvršiti određene popravke u sistemu, preporučuje se da veliki rezervoar bude prazan ako je to moguće. Također, prilikom popravke sistema, **obavezno** je da isti bude isključen.

Sistem koji je implementiran u ovom radu veoma često se susreće u stvarnom svijetu. Navedeni sistem pronalazi svoju primjenu u: farmaciji, poljoprivrednoj industriji, hemijskoj industriji i slično.

Literatura

- [1] Electric, S. Schneider electric, dostupno na: https://www.se.com/ww/en/
- [2] Autodesk, Autodesk Inventor, 2020.
- [3] Electric, S., SoMachine software V4.3, 2017.
- [4] Electric, S., SoMachine v4.3, Vijeo Designer v6.2, 2018.
- [5] QElectroTech, QElectroTech version 0.7, 2020.