Tomás Pérez Condensed Matter Theory - Lecture Notes August 8, 2022

Theory & Notes

1. CUENTITAS

Given a physical system, a density operator for is a positive semi-definite, self-adjoint operator of trace one acting on the system's Hilbert space, denoted by \mathbb{H} . The set of all density operators has the structure of a vector space $\mathcal{C}(\mathbb{H})$,

$$\mathcal{C}(\mathbb{H}) = \{ \rho \in GL(N, \mathbb{C}) \mid \rho^{\dagger} = \rho, \ \rho > 0, \text{ Tr } \rho = 1 \},$$

where $GL(N, \mathbb{C})$ is the general linear group over the complex number field, whose elements are squared matrices of $N \times N$ -dimension. The following statements can then be proved:

- 1) $\mathcal{C}(\mathbb{H})$ is a topological space. This is, this space can be imbued with a topology \mathcal{T} which satisfies a set of axioms.
 - In effect, the desired topology may be chosen to be the trivial topology $\mathcal{T} = \{\emptyset, \mathcal{C}(\mathbb{H})\}\$,
 - or it may be chosen out to be the discrete topology, ie. any collection of τ -sets, subsets of $\mathcal{C}(\mathbb{H})$, so that that $\mathcal{T} = \bigcup \tau$ adheres to the topological space's axioms.
 - Another interesting election is to define a metric on this space, allowing for the construction of the metric topology. More on this later.
- 2) $(\mathcal{C}(\mathbb{H}), \mathcal{T})$ is a Hausdorff space, allowing for the distinction of elements via disjoint neighbourhoods,
- 3) $(\mathcal{C}(\mathbb{H}), \mathcal{T})$ is a topological manifold.
- 4) $(\mathcal{C}(\mathbb{H}), \mathcal{T})$ is a differentiable manifold,
- 5) and is a Riemannian non-convex manifold

Density operators can either describe pure or mixed states, which are deffined as follows

• Pure states can be written as an outer product of a vector state with itself, this is

$$\rho$$
 is a pure state if $\exists |\psi\rangle \in \mathbb{H} \mid \rho \propto |\psi\rangle \langle \psi|$.

In other words, ρ is a rank-one orthogonal projection. Equivalently, a density matrix is a pure state if there exists a unit vector in the Hilbert space such that ρ is the orthogonal projection onto the span of ψ .

Note as well that

$$|\psi\rangle\langle\psi|\in\mathbb{H}\otimes\mathbb{H}^{\star}$$
, but $\mathbb{H}\otimes\mathbb{H}^{\star}\sim\mathrm{End}(\mathbb{H})$

ie. the tensor space $\mathbb{H} \otimes \mathbb{H}^*$ is canonically isomorphic to the vector space of endormorphisms in \mathbb{H} , ie. to the space of linear operators from \mathbb{H} to \mathbb{H} . It's important to note that this isomorphism is only strictly valid in finite-dimensional Hilbert spaces, wherein for infinite-dimensional Hilbert spaces, the isomorphism holds as well provided the density operators are redefined as being trace-class.

• Mixed states do not adhere to the previous properties.

Let \mathcal{B} be the set of all operators which are endomorphisms on $\mathcal{C}(\mathbb{H})$, ie.

$$\mathcal{B} = \{ \mathbf{O} | \ \mathbf{O} : \mathcal{C}(\mathbb{H}) \to \mathcal{C}(\mathbb{H}) \}.$$

Note that, by definition, $\mathcal{C}(\mathbb{H}) \subset \mathcal{B}$. Consider an N-partite physical system, then its associated Hilbert space will have $\mathcal{O}(2^N)$ dimension and its associated density operator space will have $\mathcal{O}(2^{2N})$ dimension. Then, all linear operators acting on $\mathcal{C}(\mathbb{H})$ can be classified as k-body operators, with $k \leq N$. This is, in essence, operators whose action is non-trivial only for a total of k particles. Therefore, the N-partite Hilbert space can be written as

$$\mathbb{H} = \bigotimes_{j=1}^{N} \mathfrak{H}_{j},$$

where \mathfrak{H}_j is the *j*-th subsytem's Hilbert space. This definition thus allows for systems with different particles species (eg. fermions, bosons, spins etc.). Then,

$$\mathcal{B}_1(\mathbb{H}) = \{ \hat{\mathbf{O}} | \hat{\mathbf{O}} : \mathfrak{H}_j \to \mathfrak{H}_j, \ \forall j \leq N \}$$

is the space of all one-body operators. Then the space of k-body operators can be recursively defined in terms of this set,

$$\mathcal{B}_k(\mathbb{H}) = \{ \otimes_{i=1}^k \mathbf{O}_i | \mathbf{O}_i \in \mathcal{B}_1(\mathbb{H}) \}, \text{ where } \mathcal{B}(\mathbb{H}) = \bigsqcup_{i=1}^N \mathcal{B}_i(\mathbb{H}).$$

If $\mathbb H$ is a Hilbert space and $A \in \mathcal B$ is a non-negative self-adjoint operator on $\mathbb H$, then it can be shown that A has a well-defined, but possible infinite, trace. Now, if $\mathbf A$ is a bounded operator, then $\mathbf A^\dagger \mathbf A$ is self-adjoint and non-negative. An operator $\mathbf A$ is said to be Hilbert-Schmidt if $\mathrm{Tr}\ \mathbf A^\dagger \mathbf A < \infty$. Naturally, the space of all Hilbert-Schmidt operators form a vector space, labelled by $\mathfrak{Hs}(\mathbb H)$. Then, the Hilbert Schmidt inner product can be defined as

$$\langle \cdot, \cdot \rangle_{HS}: \; \mathfrak{Hs}(\mathbb{H}) \times \mathfrak{Hs}(\mathbb{H}) \to \mathbb{C}, \, \text{where} \qquad \qquad \begin{aligned} \langle \mathbf{A}, \mathbf{B} \rangle_{HS} &= \text{Tr} \; \mathbf{A}^{\dagger} \mathbf{B} \\ ||\mathbf{A}||_{HS} &= \sqrt{\text{Tr} \; \mathbf{A}^{\dagger} \mathbf{A}}. \end{aligned}$$

If the Hilbert space is finite-dimensional, the trace is well defined and if the Hilbert space is infinite-dimensional, then the trace can be proven to be absolutely convergent and independent of the orthonormal basis choice¹.

This inner product implies that $(\mathfrak{H}, \langle \cdot, \cdot \rangle_{HS})$ is a

• inner product space since the norm is the square root of the inner product of a vector and itself ie.

$$||\mathbf{A}||_{\mathsf{HS}} = \langle \mathbf{A}, \mathbf{A} \rangle_{\mathsf{HS}} = \sqrt{\mathrm{Tr} \, \mathbf{A}^{\dagger} \mathbf{A}}$$

• and is a normed vector space since the norm is always well defined over $\mathfrak{hs}(\mathbb{H})$.

Acá va un comentario "importante": no tiene sentido que dos vectores estén infinitamente lejos, no? entónces tengo que definir esto producto interno y métrico solo en HS(H) y no sobre B(H)

Now, every inner product space is a metric space. In effect, since the function

$$\begin{array}{ccc} \mathbf{A} \to \sqrt{\mathrm{Tr} \; \mathbf{A}^\dagger \mathbf{A}} & \text{then} & \mathbf{A}, \mathbf{B} \xrightarrow{d} \sqrt{\mathrm{Tr} \; \mathbf{A}^\dagger \mathbf{B}} \\ \text{is a well-defined norm} & \text{is a well-defined distance} \end{array}$$

$$d_{\mathrm{HS}}(\cdot, \cdot): \, \mathfrak{Hs}(\mathbb{H}) \times \mathfrak{Hs}(\mathbb{H}) \to \mathbb{R}$$

$$d_{\mathrm{HS}}(\mathbf{A}, \mathbf{B}) = \sqrt{\operatorname{Tr} \mathbf{A}^{\dagger} \mathbf{B}}$$

With this metric thus defined, then $(\mathfrak{Hs}(\mathbb{H}), d_{\mathrm{HS}})$ is a metric space. Every metric space can be modified, via the completions of its metric, in such a way that $(\mathfrak{Hs}(\mathbb{H})^*, d_{\mathrm{HS}}^*)$ is a complete metric space, in the sense of the convergence of Cauchy series, where $\mathfrak{Hs}(\mathbb{H}) \subset \mathfrak{Hs}(\mathbb{H})^*$. In this particular case, given that the metric over $\mathfrak{Hs}(\mathbb{H})$ is always a finite number -having removed those elements with infinite trace-, then it is already complete $\mathfrak{Hs}(\mathbb{H}) \sim \mathfrak{Hs}(\mathbb{H})^*$. Therefore, $\mathfrak{Hs}(\mathbb{H})$ is a Hilbert space with respect to the Hilbert-Schmidt inner product $\langle \cdot, \cdot \rangle_{\mathrm{HS}}$

$${
m Tr}\,{f A}^\dagger{f B}=\sum_{\lambda\in\Lambda}\langle{f e}_\lambda,{f A}^\dagger{f B}{f e}_\lambda
angle$$

is absolutely convergent and the value of the sum is independent of the choice of orthonormal basis $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$.

 $^{^1}$ In effect, given a non-negative, self-adjoint operator, its trace is always invariant under orthogonal change of basis. Should the trace be a finite number, then it is called a trace class. Any given operator $\mathbf{A} \in \mathcal{B}$ is trace-class if the non-negative self-adjoint operator $\sqrt{\mathbf{A}^{\dagger}\mathbf{A}}$ is trace class as well. Now, given two Hilbert-Schmidt operators $\mathbf{A}, \mathbf{B} \in \mathfrak{H}$, then the new operator $\mathbf{A}^{\dagger}\mathbf{B}$ is a trace-class operator, meaning that the sum

(or with respect to the Hilbert-Schmidt distance $d_{\rm HS}$).

Thus defined, the Hilbert-Schmidt inner product is complex-valued, thus not immediately suited for our calculations.

Theorem 1. Consider the modified Hilbert-Schmidt product given by

$$\begin{split} \langle \cdot, \cdot \rangle_{\mathrm{HS}}^{\rho_0} : \; \mathfrak{Hs}(\mathbb{H}) \times \mathfrak{Hs}(\mathbb{H}) &\to \mathbb{R} \\ \langle \mathbf{A}, \mathbf{B} \rangle_{\mathrm{HS}}^{\rho_0} = \frac{1}{2} \mathrm{Tr} \; \rho_0 \{ \mathbf{A}^\dagger, \mathbf{B} \} \end{split} \quad \text{where } \rho_0 \in \mathcal{C}(\mathbb{H}).$$

We claim this is a valid inner product over the space of all linear trace-class endomorphisms on \mathbb{H} , $\mathfrak{Hs}(\mathbb{H})$.

Proof. In order to prove this is a well-defined inner product over the space of trace-class operators, we must prove that it linear in it second argument and sesquilinear in its first argument, hermitian and positive-defined. In effect.

- 1) the linearity and sesquilinearity is self evident.
- 2) Is it hermitian? Yes

(1)
$$\langle \mathbf{A}, \mathbf{B} \rangle_{\mathrm{HS}}^{\rho_0} = \frac{1}{2} \mathrm{Tr} \; \rho_0 \{ \mathbf{A}^{\dagger}, \mathbf{B} \} = \frac{1}{2} \mathrm{Tr} \; \rho_0 \left(\mathbf{A}^{\dagger} \mathbf{B} + \mathbf{B} \mathbf{A}^{\dagger} \right)$$

$$= \frac{1}{2} \mathrm{Tr} \; \rho_0 \left(\mathbf{B}^{\dagger} \mathbf{A} + \mathbf{A} \mathbf{B}^{\dagger} \right)^{\dagger} = \frac{1}{2} \mathrm{Tr} \; \rho_0 \{ \mathbf{B}^{\dagger}, \mathbf{A} \}^{\dagger}$$

$$= (\langle \mathbf{B}, \mathbf{A} \rangle_{\mathrm{HS}}^{\rho_0})^*$$

3) Is it positive-defined? Yes, in effect,

(2)
$$\langle \mathbf{A}, \mathbf{A} \rangle_{HS}^{\rho_0} = \frac{1}{2} \operatorname{Tr} \rho_0 \{ \mathbf{A}^{\dagger}, \mathbf{B} \} = \operatorname{Tr} \sqrt{\rho} \frac{\mathbf{A} \mathbf{A}^{\dagger} + \mathbf{A}^{\dagger} \mathbf{A}}{2} \sqrt{\rho}$$

quod erat dem

In our context, since the calculations are to be computed via the (modified) Hilbert-Schmidt inner product and metric, only trace-class operators are allowed. Therefore, some redefinitions are needed.

is the space of all one-body operators, and where
$$\mathfrak{H}_{\mathfrak{S}_{1}}(\mathbb{H}) = \{\hat{\mathbf{O}}|\hat{\mathbf{O}} \in \mathcal{B}_{1} \wedge ||\mathbf{O}||_{\mathrm{HS}}^{\rho_{0}} < \infty, \ \forall j \leq N\} \quad \text{one-body operators,} \quad \text{and where}$$

$$\mathfrak{H}_{\mathfrak{S}_{k}}(\mathbb{H}) = \{ \bigotimes_{i=1}^{k} \hat{\mathbf{O}}_{i} | \hat{\mathbf{O}}_{i} \in \mathfrak{H}_{1}(\mathbb{H}) \ \forall i, k \leq N \} \quad \text{is the space of all} \quad \mathfrak{H}_{k}(\mathbb{H}) = \bigsqcup_{k=1}^{N} \mathfrak{H}_{k}(\mathbb{H})$$

Consider now an N-body quantum system, where correlations, entanglements, and interactions are present. Different particle species are allowed. The One-body and Two-body Max-Ent frameworks are defined as follows

Näive one-body Max-Ent

In the Näive one-body Max-Ent framework, there are N sets of one-body operators, each one corresponding to one the N subsystems, which are assumed to be the local basis. These operators must be local operators, acting non-trivially in only one Hilbert subspace, and must be trace-class. The framework thus allows for interactions between different particle species since the basis may have different dimension, this is

Then, the one-body Max-Ent basis \mathfrak{B}_{ME_1} is defined as the union of these sets

$$\mathfrak{B}_{ME_1} = \bigsqcup_{k=1}^{N} \mathfrak{b}_k,$$

whose dimension is given by the sum of the \mathfrak{b} -basis dimensions ie. $\dim(\mathfrak{B}_{ME_1}) = \sum_{k=1}^N \dim(\mathfrak{b}_k) \sim \mathcal{N}$. Then, the one-body Max-Ent states are given by

(4)
$$\mathbf{\mathcal{S}}_{ME,1}(\mathfrak{B}_{ME_1}) = \{ \rho \in \mathcal{C}(\mathbb{H}) \mid \exists \{\lambda_k\}_{k=1}^{\dim \mathfrak{B}_{ME_1}} \subset \mathbb{R} \text{ such that } \rho \propto \exp\left(-\sum_i \lambda_i \mathbf{O}_i\right) \}.$$

Näive two-body Max-Ent

Here, similarly to the näive one-body Max-Ent framework, we have N sets of local one-body operators at our disposal, which must be trace-class and must only non-trivially act in only one Hilbert subspace. If the one-body local operators are

$$\begin{aligned} \{\mathbf{O}_{i}^{(1)}\}_{i=1}^{n_{1}} &\in \mathfrak{Hs}_{1}(\mathbb{H}^{(1)}) \\ &\vdots \\ \{\mathbf{O}_{i}^{(\ell)}\}_{i=1}^{n_{1}} &\in \mathfrak{Hs}_{1}(\mathbb{H}^{(\ell)}) \\ &\vdots \\ \{\mathbf{O}_{i}^{(\ell)}\}_{i=1}^{n_{\ell}} &\in \mathfrak{Hs}_{1}(\mathbb{H}^{(\ell)}) \\ &\vdots \\ \{\mathbf{O}_{i}^{(N)}\}_{i=1}^{n_{N}} &\in \mathfrak{Hs}_{1}(\mathbb{H}^{(N)}) \end{aligned} \qquad \begin{aligned} \mathfrak{b}_{1} &= \{\mathbf{O}_{i}^{(1)} \otimes \bigotimes_{k=2}^{N} \mathbb{1}^{(k)}\}_{i=1}^{n_{1}} \subset \mathfrak{Hs}(\mathbb{H}^{\otimes N}) \\ &\vdots \\ \mathfrak{b}_{\ell} &= \{\bigotimes_{k=1}^{\ell} \mathbb{1}^{(k)} \otimes \mathbf{O}_{i}^{(\ell)} \otimes \bigotimes_{k'=\ell+1}^{N} \mathbb{1}^{(k')}\}_{i=1}^{n_{\ell}} \subset \mathfrak{Hs}(\mathbb{H}^{\otimes N}) \\ &\vdots \\ \mathfrak{b}_{N} &= \{\bigotimes_{k=1}^{N-1} \mathbb{1}^{(k)} \otimes \mathbf{O}_{i}^{(N)}\}_{i=1}^{n_{N}} \subset \mathfrak{Hs}(\mathbb{H}^{\otimes N}) \end{aligned}$$

However, unlike the previous case, we now allow for two-body operators to be included. These new sets of two-body operators may be defined as follows

$$\begin{aligned} \mathbf{c}_{11} &= \{ \mathbf{O}_{i}^{(1)} \mathbf{O}_{j}^{(1)} \bigotimes_{k=2}^{N} \mathbb{1}^{(k)} \}_{i,j=1}^{\Gamma(n_{1},n_{1})} \mid \mathbf{O}_{i}^{(1)} \in \mathfrak{b}_{1} \\ \mathbf{c}_{12} &= \{ \mathbf{O}_{i}^{(1)} \otimes \mathbf{Q}_{j}^{(2)} \bigotimes_{k=3}^{N} \mathbb{1}^{(k)} \}_{i,j=1}^{\Gamma(n_{1},n_{2})} \mid \mathbf{O}_{i}^{(1)} \in \mathfrak{b}_{1}, \mathbf{Q}_{j}^{(2)} \in \mathfrak{b}_{2} \\ &\vdots \\ \mathbf{c}_{\ell\ell'} &= \{ \mathbf{O}_{i}^{(\ell)} \otimes \mathbf{Q}_{j}^{(\ell)} \bigotimes_{k=1}^{N} \mathbb{1}^{(k)} \}_{i,j=1}^{\Gamma(n_{\ell},n_{\ell'})} \mid \mathbf{O}_{i}^{(1)} \in \mathfrak{b}_{\ell}, \mathbf{Q}_{j}^{(2)} \in \mathfrak{b}_{\ell'}, \\ &\vdots \\ \mathbf{c}_{NN} &= \{ \bigotimes_{k=1}^{N-1} \mathbb{1}^{(k)} \otimes \mathbf{O}_{i}^{(N)} \mathbf{O}_{j}^{(N)} \}_{i,j=1}^{\Gamma(n_{N},n_{N})} \mid \mathbf{O}_{i}^{(N)} \in \mathfrak{b}_{N} \end{aligned}$$

where $\Gamma(n_a, n_b)$ counts all the possible, non-repeating, order notwithstanding, pair combinations of elements from a n_a -cardinality set with elements from a n_b -cardinality set. In other words,

(6)
$$\Gamma(n_a, n_b) = \begin{cases} n_a^2 & \text{if } n_a = n_b \\ n_b + \frac{n_a(n_b - 1)}{2} & \text{otherwise} \end{cases}$$

Then, the two-body Max-Ent basis is

$$\mathfrak{B}_{ME_2} = \bigsqcup_{k=1}^N \mathfrak{b}_k \cup \bigsqcup_{k,k'=1}^N \mathfrak{c}_{kk'},$$

from which the two-body Max-Ent states are given by

(7)
$$\mathbf{\mathcal{S}}_{ME,2}(\mathfrak{B}_{ME_2}) = \{ \rho \in \mathcal{C}(\mathbb{H}) \mid \exists \{\lambda_k\}_{k=1}^{\ell \leq N}, \{\gamma_{mn}\}_{\substack{m,n=1\\m < n}}^{\ell \leq N} \subset \mathbb{R} \text{ such that } \rho \propto \exp\left(-\sum_{i,j} \lambda_i \mathbf{O}_i - \gamma_{ij} \mathbf{O}_i \mathbf{O}_j\right) \}.$$
 Note that $\dim \mathfrak{B}_{ME_2} = \sum_{k=1}^{N} \dim(\mathfrak{b}_k) + \sum_{i,j=1}^{N} \dim(\mathfrak{c}_{ij}) \sim \mathcal{O}(N^2)$

Both of these techniques require substantially fewer parameters than the exact dynamics, which requires $\mathcal{O}(2^{2N})$ complex-valued entries (or alternatively $\mathcal{O}(2^{2N+1})$ real-valued parameters.