EXAMEN FINAL CISE III - 12 Enero 2001 (2 horas)

- Publicación de calificaciones: 19 de enero a las 18 h. en el sótano -1 del módulo C4
- Alegaciones: hasta el 23 de enero (Buzón de J.M. López, vestíbulo del C4)
- Calificaciones definitivas: 26 de enero a las 18 h. sótano -1 del módulo C4

Problema 1 (2 puntos)

a) En el circuito de la figura calcular v_0 en función de v_1 , v_2 y V_{DC} .

- b) ¿Qué condición deben cumplir las resistencias para que $v_0 = K_A(v_2-v_1) + K_BV_{DC}$
- c) Se desea que cuando la señal de entrada, v_2 - v_1 , es sinusoidal de amplitud de pico 0,1 V, la señal de salida sea la que se muestra en la figura. ¿Cuánto deben valer R_1 y V_{DC} , sabiendo que R_2 =1k? ?

Problema 2 (3 puntos)

El circuito de la figura corresponde a un oscilador de frecuencia variable. Sabiendo que $?_{A}=1/(RC)$, $?_{1}=1/(R_{1}C_{1})$ y?? $_{1}<?_{A}/3$.

- a) Calcular las funciones de transferencia $v_{o2}/v_{o1},\,v_{o3}/v_{o2},\,v_{o4}/v_{o3}$ y $v_{o1}/v_{o4}.$
- b) Dibujar el diagrama de flujo y calcular la ganancia de lazo T(s) determinando el tipo de realimentación.
- c) Dibujar el lugar geométrico de las raíces
- d) Calcular la frecuencia y la condición de oscilación.

Problema 3 (2 puntos)

Se pretende diseñar una fuente de corriente con la ayuda de un regulador de tensión LM317, para ello se utilizará el circuito que se muestra en la figura, donde $v_o=v_{adj}+1.25V$. Datos: $v_i=15V$ R=10k? ? $R_2=1,25$? , $R_3=1k$? ? $R_2=40$? .

- a) Calcular los valores de $v_o,\,v_{adj}\,y\,v_L$ para tener una corriente I_L de 0,2 A
- b) Hallar el valor de R_1 para tener una corriente I_L de $0,2\ A$
- c) Hallar el rendimiento del regulador (I_{adj}<<I_o)

Problema 4 (3 puntos)

Considerar los amplificadores operacionales ideales con $v_{sat}=\pm V_{CC}$. Suponer los diodos ideales y r<R.

- a) Dibujar la evolución temporal de las tensiones v_1 y v_2 , indicando el valor de las amplitudes de las señales y de los instantes de paso por cero de las mismas. Las condiciones iniciales para t=0 son: v_1 = V_{CC} y v_2 =0.
- b) Si v_i es una tensión de entrada constante igual a K, siendo $0 < K < (V_{CC}/2)$, dibujar v_1 , v_2 y v_o y calcular la frecuencia de las señales y el ciclo de trabajo de la señal v_o .