

软件工程导论

廖力

lliao@seu.edu.cn

课程结构

- Unit1. 软件工程概述
- Unit2. 软件工程技术
 - 一、系统工程
 - 二、需求工程
 - 三、设计工程
 - 四、软件构建与测试
- Unit3. 软件项目管理

1. 什么是系统?

※系统定义(ISO):

- ■一组或一系列相关的元素[人、产品(硬件和软件)及过程(设备、装备、材料和规程)], 其行为满足运转需要并且为产品生存周期的维持提供支撑。
- ❖例如: 国美电器的销售系统
 - 在若干城市的若干门店、具有合作关系的家电企业
 - 一套行之有效的销售模式:处理上游和下游的关系

- ❖所谓基于计算机的系统是指:通过处理信息 来完成某些预定义目标而组织在一起的元素 的组合
- ❖对于用户而言有意义的是可以达到预期目标的系统(完整的软硬件解决方案)而不是单一软件
- ❖组成基于计算机系统的元素主要有:软件、硬件、人员、数据库(及其它系统软件)、文档和规程(Procedure)

- *基于计算机的系统示例
- ❖校园一卡通
 - 硬件设备: 服务器、刷卡器、一卡通网络、IC卡
 - 软件系统: 结算软件、银行接口、查询系统...
 - 规程/人员:设计与一卡通相关办理、消费、 挂失、充值、结算等制度和流程,设置相 应的岗位和职责

*系统的层次结构

- 任何系统都处在一个更大的系统之中,形 成系统的层次结构
- 基于计算机的系统可呈现一个层次结构, 例如:
 - 校园一卡通系统包括基础网络、结算系统、银行接口系统、消费终端等子系统
 - •一卡通系统处于整个学校系统(教务、财务、学工...)之中

系统层次结构图 **Business or Product Domain World view** Domain of interest **Domain view** System element **Element viev**

Unit 2.1 软件工程技术——系统工程

Detailed view

- *基于计算机的系统中软件与系统的关系
 - 计算机软件通常位于整个系统的核心位置
 - 不同的计算机信息系统具有不同的特点
 - •如:一般应用软件系统 vs. 嵌入式软件系统
 - 随着技术发展, 软硬件的边界不断变化
 - 不断增强的硬件指令支持
 - · USB Key、加密狗等硬件解决了许多软件 很难解决的问题

3. 什么是系统工程?

❖系统工程:

- 关注目标系统各种相关要素的分析、设计, 并将其组织成有机的系统
- 有机: 像生命体一样,各个部分密切配合、 有序演化,达到系统的总体目标

❖系统工程 vs. 软件工程

- 系统工程更加广泛,软件工程源于系统工程
- 任何软件的开发都处于一个更大的系统之中, 因此软件开发必须先了解软件所处的系统全 局视图

4. 什么是计算机系统工程?

❖计算机系统工程是一个问题求解的活动,其目的是分析基于计算机的系统的功能、性能等要求,并把它们分配到基于计算机系统的各个系统元素中,确定它们的约束条件和接口

5. 计算机系统工程分类——

Business Process Engineering

6. 计算机系统工程的任务

❖(1)识别用户的要求(了解问题)

标识系统的功能和性能范围,确定系统的功能、性能、约束和接口

- ❖(2)系统建模和模拟(提出完整的解决 方案)
 - •硬件系统模型
 - *软件系统模型
 - ■人机接口模型
 - ■数据模型

6. 计算机系统工程的任务

- ❖(3)成本估算及进度安排(给出实施计划)
- ❖(4)可行性分析(系统及实施方案的现实可行性)

从经济、技术、法律等方面分析所给出的解决方案是否可行。

❖(5)生成系统规格说明

7. System Modeling with UML

Deployment diagrams

 Each 3-D box depicts a hardware element that is part of the physical architecture of the system

Activity diagrams

Represent procedural aspects of a system element

Class diagrams

 Represent system level elements in terms of the data that describe the element and the operations that manipulate the data

Deployment Diagram

Unit 2.1 软件工程技术——系统工程

Activity Diagram

Class Diagram

class name

Box attributes barcode note use of capital forwardSpeed letter for multi-word conveyorLocation attribute names height widt h dept h weight cont ent s operations (parentheses at end readBarcode() of name indicate the updateSpeed() list of attributes that the readSpeed() operation requires) updateLocation() readLocation() get Dimensions() get Weight() checkContents()

Thank You !

lliao@seu.edu.cn