# LINEAR REGRESSION: VALIDATION

Connor K. Brubaker

Department of Statistics Texas A&M University

## MODEL VALIDATION

Inferences and predictions made from a fitted model only make sense if the assumptions of that model are fulfilled.

Model validation is the process of evaluating if the assumptions are met.

# ANSCOMBE'S DATA SETS



## ANSCOMBE'S DATA SETS

Each of these four data sets results in the same fitted regression line,

$$\hat{Y} = 3 + 0.5X$$

but only one (Data Set 1) satisfies the assumptions of the model—only one of these results in a valid model!

Don't just look at numerical output of a model. Always check it visually!

### ASSUMPTIONS OF THE LINEAR MODEL

The simple linear model makes four assumptions:

- 1. X and Y are linearly related,
- 2. the errors  $\varepsilon_1, \dots, \varepsilon_n$  are independent of each other,
- 3. the errors  $\varepsilon_1, \dots, \varepsilon_n$  have a common variance  $\sigma^2$  (homoscedasticity), and
- 4. the errors  $\varepsilon_1, \ldots, \varepsilon_n$  are normally distributed with a mean of 0 and variance  $\sigma^2$ .

We will look at ways of visually evaluating these.

#### LINEARITY AND CONSTANT VARIANCE

Linearity and homoscedasticity is assessed by looking at scatter plots of the fitted residual

$$\hat{\varepsilon}_i = Y_i - \hat{Y}_i$$

against  $X_i$  (called a residual plot).

A residual plot should have no discernable pattern.

# RESIDUAL PLOTS FOR ANSCOMBE'S DATA SETS



# RESIDUAL PLOT FOR HOUSING DATA



## AN EXAMPLE OF HETEROSCEDASTICITY

A residual plot like this indicates that the homoscedasticity assumption has been violated.



## NORMALITY ASSUMPTION

The normality of errors assumption can be checked visually with a normal Q-Q plot like we've seen before. Here is the Q-Q plot of the residuals from the housing data.



#### LEVERAGE POINTS

- Data points which have considerable influence on the fitted model are called leverage points.
- ► They have X values that lie away from the rest of the data points.
- Leverage points can be either "good" or "bad".
- The leverage of a point can be examined by removing it from the data, refitting the model, and evaluating the effect.

## GOOD LEVERAGE POINTS

A leverage point that follows the linear pattern of the data is a good leverage point.



## GOOD LEVERAGE POINTS

A leverage point that is also an outlier is a bad leverage point.



### DEALING WITH BAD LEVERAGE POINTS

- ▶ Bad leverage points need investigation. They may be candidates for removal from the data due to wrong data entry, bad experimental conditions, etc.
- ► If valid, the existence of bad leverage points may suggest a different model is needed (e.g., non-linear model)
- ► Even if a leverage point is "good", they do affect standard errors and the value of R<sup>2</sup>, so they always warrant investigation to check they are valid.