

Skaitinis apibrėžtinio integralo apskaičiavimas:

Niutono ir Koteso formulės

Temoje aiškinama:

- Apibrėžtinio integralo geometrinė prasmė. Integralo reikšmės skaitinio apskaičiavimo uždavinio formuluotė;
- Hemingo būdas Niutono ir Koteso formulių koeficientams apskaičiuoti;
- Koeficientų apskaičiavimas pagal Lagranžo daugianarius;
- Skaitinis integralo reikšmės apskaičiavimas, skaidant integravimo intervalą į keleto žingsnių ilgio dalis;
- Niutono ir Koteso formulių tikslumo eilė;
- Apskaičiuotų reikšmių patikslinimas, panaudojant Ričardsono ekstrapoliavimo formulę
- Apskaičiuotų reikšmių patikslinimas, panaudojant Rombergo metodą

Apibrėžtinio integralo geometrinė prasmė. Integralo reikšmės skaitinio apskaičiavimo uždavinio formuluotė

Apibrėžtinis integralas. *Apibrėžimas* ir geometrinė prasmė

Duotos funkcijos f(x) apibrėžtinis integralas intervale [a,b] – tai suminė reikšmė su ženklu imamo ploto, kurį apriboja funkcijos kreivė, Ox ašis ir vertikalios atkarpos, išvestos taškuose x=a ir x=b nuo Ox ašies iki funkcijos kreivės

Tai neformalus apibrėžimas, paremtas geometrine interpretacija

Apibrėžiant matematiškai, funkcijos f(x) apibrėžtinis integralas intervale [a,b] yra "apatinės" ir "viršutinės" integralinių sumų riba:

Integralas apibrėžtas *Rymano (Rieman) prasme,* kai abiejų sumų ribos sutampa

- Nagrinėsime tik Rymano prasme apibrėžtus integralus;
- Apsiribosime atvejais, kai funkcijos reikšmės yra aprėžtos visame jos apibrėžimo intervale, o integralo reikšmės kaip figūros ploto interpretacija yra akivaizdi ir vienareikšmė;
- Siekiama, kad skaitiškai apskaičiuota integralo reikšmė būtų kiek galima artimesnė tiksliai jo reikšmei;
- Realiuose uždaviniuose tikslios reikšmės apskaičiuoti dažniausiai negalime. Ar metodas pakankamai tikslus, nustatome:
- -teoriškai analizuodami jo savybes;
- -spręsdami pavydžius, kurių tikslūs sprendiniai žinomi

Apibrėžtinio integralo skaitinis apskaičiavimas

 Apibrėžtinis integralas skaitiškai apskaičiuojamas, pakeičiant jį baigtinio funkcijos reikšmių skaičiaus su svorio koeficientais suma:

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i} f(x_{i}), \quad a \leq x_{i} \leq b$$

$$f(x_{i})$$

$$a = x_{0} \quad x_{i} \quad x_{i+1}$$

Bendruoju atveju, taškai gali būti išdėstyti netolygiai

Hemingo būdas Niutono ir Koteso formulių koeficientams apskaičiuoti

Niutono ir Koteso formulės. *Hemingo išvedimo būdas*

•Intervale taikomas interpoliavimas vienanariais, parinkus tolygiai išdėstytus interpoliavimo mazgus žingsniu $\Delta x=(b-a)/(n-1)$:

$$\int_{a}^{b} f(x)dx = \Delta x \cdot \sum_{i=1}^{n} w_{i} f(x_{i}), \ a \leq x_{i} \leq b$$

Pareikalaujame, kad formulė tiksliai integruotų daugianarius nuo 0 iki (n-1) eilės imtinai:

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{cases} \frac{1}{\Delta x} \int_a^b x dx \\ \vdots \\ w_n \end{cases} = \frac{n-1}{b-a} \cdot \begin{cases} \frac{1}{2} (b^2 - a^2) \\ \vdots \\ \frac{1}{n} (b^n - a^n) \end{cases}$$

$$[\mathbf{G}]\{\mathbf{w}\} = \{\mathbf{m}\}$$

Koeficientų išraiškas apskaičiuojame iš lygčių sistemos. Tokiu būdu galime aprašyti bet kokios eilės skaitinio integralo apskaičiavimo formulę (schemą)

Pvz_SMA_11_1_koeficientai_Hemingo_metodu

Apibrėžtinio integralo skaitinio apskaičiavimo uždavinys yra glaudžiai susijęs su anksčiau šiame kurse nagrinėtu interpoliavimo uždaviniu:

• Lygčių sistemos koeficientų matrica yra tokia pati, kokia taikoma sprendžiant interpoliavimo uždavinį Hemingo metodu; $\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{bmatrix}$$

- Išvesta formulė tiksliai apskaičiuoja vienanarių integralus, o tuo pačiu ir bet kokio daugianario integrala iki parinktos eilės (n-1);
- Tai , reiškia, kad <u>iš tikrujų integruojame</u> daugianari, interpoliuojanti duotaja funkcija patrinktuose mazguose, o ne pačią duotąją funkciją.

Koeficientų apskaičiavimas pagal Lagranžo daugianarius

Niutono ir Koteso formulės koeficientų apskaičiavimas panaudojant Lagranžo daugianarius

•Intervale taikomas interpoliavimas daugianariais (pvz. Lagranžo), parinkus tolygiai išdėstytus interpoliavimo mazgus žingsniu ∆x=(b-a)/(n-1):

$$w_{i} = \frac{n-1}{b-a} \int_{a}^{b} L_{i}(x) dx \qquad L_{j}(x) = \prod_{\substack{i=1\\i\neq j}}^{n} \frac{x-x_{i}}{x_{j}-x_{i}}$$

•Skaitinio integravimo formulės koeficientai gali būti apskaičiuoti, taikant integravimo veiksmus simboliais :

syms dx x L a

Pvz_SMA_11_2_Newton_Cotes_Lagrange_symbolic

Hemingo metodu skaičiuoja Pvz_SMA_11_3_Newton_Cotes_symbolic

Niutono ir Koteso formulės. Aukštesnių eilių interpoliavimas Lagranžo daugianariais:

N=2:

[1/2,1/2]×(b-a)
$$\int_{a}^{b} f(x) dx = \left(\frac{1}{2}f(a) + \frac{1}{2}f(b)\right) \times (b-a)$$

N=3:

[1/3, 4/3, 1/3]
$$\times \frac{b-a}{2}$$

$$\int_{a}^{b} f(x) dx = \left(\frac{1}{3}f(a) + \frac{4}{3}f\left(a + \frac{b-a}{2}\right) + \frac{1}{3}f(b)\right) \times \frac{b-a}{2}$$

N = 4:

$$[3/8, 9/8, 9/8, 3/8] \times \frac{b-a}{3}$$

$$\int_{a}^{b} f(x) dx = \left(\frac{3}{8}f(a) + \frac{9}{8}f\left(a + \frac{b-a}{3}\right) + \frac{9}{8}f\left(a + 2\frac{b-a}{3}\right) + \frac{1}{3}f(b)\right) \times \frac{b-a}{3}$$

N=5:

$$[14/45, 64/45, 8/15, 64/45, 14/45] \times \frac{b-a}{4}$$

N=6:

 $[95/288, 125/96, 125/144, 125/144, 125/96, 95/288] \times \frac{b-a}{5}$

N=7:

 $[41/140, 54/35, 27/140, 68/35, 27/140, 54/35, 41/140] \times \frac{b-a}{6}$

N=8:

 $[\,5257/17280, 25039/17280, 343/640, 20923/17280, 20923/17280, 343/640, 25039/17280, 5257/17280] \times \frac{b-a}{7}$

N=9:

 $[3956/14175, 23552/14175, -3712/14175, 41984/14175, -3632/2835, 41984/14175, -3712/14175, 23552/14175, 3956/14175] \times \frac{b-a}{8}$

Skaitinis integralo reikšmės apskaičiavimas, skaidant integravimo intervalą į keleto žingsnių ilgio dalis

- •Imant n diskretizavimo taškų, Lagranžo intepoliavimu paremta formulė tiksliai suintegruoja daugianarius iki n-1 eilės. Taip yra todėl, kad tokius daugianarius interpoliavimo formulė aprašo tiksliai;
- •Praktiškai formulę taikome integruodami bet kokias funkcijas, todėl gauname interpoliavimo paklaidą. Esant dideliam taškų skaičiui, aukštos eilės Lagranžo daugianariai yra labai banguoti. Todėl bendruoju atveju <u>didinant taškų</u> skaičių integravimo tikslumas nebedidėja;
- Patogiau skaidyti intervalą [a,b] dalimis ir taikyti interpoliavimą daugianariu kiekvienoje dalyje, esant nedideliam mazgų skaičiui

Niutono ir Koteso formulės. *Tiesinis interpoliavimas Lagranžo daugianariais kiekviename žingsnyje*

$$\int_{a}^{b} f(x)dx = \frac{\Delta x}{2} \Big(f(x_0) + 2f(x_1) + 2f(x_2) \cdots + 2f(x_{n-1}) + f(x_n) \Big),$$

Niutono ir Koteso formulės. *Interpoliavimas antrosios* eilės Lagranžo daugianariais žingsnių porose

Simpsono formulė:

$$\Delta x = x_{i+1} - x_i , i = 1, n$$

Intervalų skaičius n-1 turi būti lyginis

$$\int_{0}^{b} f(x)dx = \frac{\Delta x}{3} \Big(f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 2f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n}) \Big),$$

Niutono ir Koteso formulės. *Interpoliavimas trečios* eilės Lagranžo daugianariais žingsnių triadose:

Intervalų skaičius n-1 turi būti dalus iš 3

$$\int_{0}^{b} f(x)dx = \frac{\Delta x}{8} \left(3f(x_{0}) + 9f(x_{1}) + 9f(x_{2}) + 6f(x_{3}) + 9f(x_{4}) + \dots + 6f(x_{n-3}) + 9f(x_{n-2}) + 9f(x_{n-1}) + 3f(x_{n}) \right),$$

Niutono ir Koteso formulių tikslumo eilė

- Formulės, kuri tiksliai apskaičiuoja k laipsnio daugianario integralą, tikslumo eilė yra k;
- Formulės sudarytos taip, kad n taškų formulės tikslumo eilė yra bent jau n-1;
- Kai kurių formulių tikslumo eilė gali būti ir aukštesnė.
 Patikrinkime.

Ši sistemos dalis tikrai tenkinama

- •Kiek papildomų lygčių tenkinama, galime patikrinti kiekvienos konkrečios formulės atveju;
- Jeigu tenkinama kuri nors iš šių lygčių, tai reiškia, kad formulė tiksliai integruoja tokį kintamojo laipsnį

Trapecijų formulės tikslumo eilės patikrinimas

$$\Delta x \begin{bmatrix} 1 & 1 \\ 0 & \Delta x \\ 0 & \Delta x^2 \\ 0 & \Delta x^3 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix} - \begin{bmatrix} \Delta x \\ \Delta x^2/2 \\ \Delta x^3/2 \\ \Delta x^4/4 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \Delta \mathbf{x}^3/6 \\ \Delta \mathbf{x}^4/4 \end{bmatrix}$$

- •Tenkinamos 2 lygtys (t.y. kiek buvo numatyta apskaičiuojant koeficientus)
- Trapecijų formulės tikslumo eilė yra 1

Simpsono formulės tikslumo eilės patikrinimas

- •Tenkinamos 4 lygtys (t.y. viena daugiau, nei buvo numatyta apskaičiuojant koeficientus)
- Simpsono formulės tikslumo eilė yra 3
- •Būtų galima pademonstruoti, kad visų Niutono ir Koteso formulių, panaudojančių *nelyginį taškų skaičių*, tikslumo eilė yra *lygi taškų skaičiui*;
- •visų Niutono ir Koteso formulių, panaudojančių *lyginį taškų skaičių*, tikslumo eilė yra *vienetu mažesnė už taškų skaičių*;

Pvz_SMA_11_5_Trapeciju_ir_Simpsono_metodai

Pvz_SMA_11_6_Ivairiu_Niutono_Koteso_formuliu_taikymas

Pvz_SMA_11_7_Ivairiu_Niutono_Koteso_formuliu_taikymas_ciklas

- Dažniausiai naudojama tiesinė arba antros eilės Lagranžo interpoliacija (t.y. trapecijų ir Simpsono formulės):
 - -tokios formulės paprastesnės;
 - -aukštesnės eilės formulės įgalina padidinti tikslumą tik nežymiai, be to, ne visuomet;
 - -kai intervalai tarp interpoliavimo mazgų vienodi, tikslumą galima pagerinti, panaudojant *Ričardsono ekstrapoliavimo* formulę ir Rombergo metodą

Apskaičiuotų reikšmių patikslinimas, panaudojant Ričardsono ekstrapoliavimo formulę

Niutono ir Koteso metodu apskaičiuotų integralo reikšmių tikslumo pagerinimas, panaudojant *Ričardsono ekstrapoliavimo formulę*

Tarkime, kad tam tikru metodu galime apskaičiuoti integralo reikšmę su paklaida, proporcinga diskretizavimo žingsnio ilgiui (t.y. formulė yra nulinės tikslumo eilės):

$$I_0(h) = I + c_1 h + c_2 h^2 + \cdots,$$

$$I_0(h/2) = I + c_1 h/2 + c_2 h^2/4 + \cdots,$$

$$I_1 = 2I_0(h/2) - I_0(h) = I - \frac{c_2}{2}h^2 + \cdots,$$

Taip apskaičiuotos reikšmės paklaida yra proporcinga diskretizavimo žingsnio ilgio kvadratui. Tai reiškia, gavome aukštesnės tikslumo eilės reikšmę, panaudodami dvi reikšmes, apskaičiuotas pagal žemesnės tikslumo eilės formulę.

Jeigu reikšmę galime apskaičiuoti pagal pirmos tikslumo eilės formulę:

$$I_{1}(h) = I + c_{2}h^{2} + c_{3}h^{3} + \cdots,$$

$$I_{1}(h/2) = I + c_{2}h^{2}/4 + c_{3}h^{3}/8 + \cdots,$$

$$I_{2} = \left(4I_{1}(h/2) - I_{1}(h)\right)/3 = I - \frac{c_{3}}{6}h^{3} + \cdots,$$

Taip apskaičiuotos reikšmės paklaida yra proporcinga diskretizavimo žingsnio ilgio kubui. Tai reiškia, gavome aukštesnės tikslumo eilės reikšmę, panaudodami dvi reikšmes, apskaičiuotas pagal žemesnės tikslumo eilės formulę.

Pavyzdys. Trapecijų metodas yra 1 tikslumo eilės (t.y. jo paklaida proporcinga žingsnio kvadratui);

Apskaičiavę trapecijų metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę

Pvz_SMA_11_8_Ricardsono_ekstrapoliacija

Pavyzdys. Simpsono metodas yra 3 tikslumo eilės (t.y. jo paklaida proporcinga žingsnio ketvirtajam laipsniui);

Apskaičiavę Simpsono metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę:

Pvz_SMA_11_8_Ricardsono_ekstrapoliacija

1.7

Pavyzdys. Trapecijų metodas yra 1 tikslumo eilės (t.y. jo paklaida proporcinga žingsnio kvadratui);

Apskaičiavę trapecijų metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę

0.2

0.4

0.6

Pvz_SMA_11_8_Ricardsono_ekstrapoliacija

Pavyzdys. Simpsono metodas yra 3 tikslumo eilės (t.y. jo paklaida proporcinga žingsnio ketvirtajam laipsniui);

Apskaičiavę Simpsono metodu integralo reikšmes, esant tam tikram ir du kartus mažesniam žingsniui, pagal Ričardsono formulę gausime aukštesnės tikslumo eilės reikšmę:

Ekstrapoliuotos reikšmės tikslumas pagerėjo.

Pvz_SMA_11_8_Ricardsono_ekstrapoliacija

Apskaičiuotų reikšmių patikslinimas, panaudojant Rombergo metodą

Niutono ir Koteso metodu apskaičiuotų integralo reikšmių tikslinimas, panaudojant *Rombergo metodą*

Pvz_SMA_11_9_Rombergo_metodas

SMA_11_Klausimai savikontrolei:

- 1. Apibūdinkite apibrėžtinio integralo (AI) skaitinio apskaičiavimo bendrąją formulę;
- 2.Paaiškinkite, kaip taikomas Hemingo metodas AI apskaičiavimui. Kaip gaunama lygčių sistemos koeficientų matrica ir dešniųjų pusių vektorius. Kokie dydžiai gaunami, išsprendus šią lygčių sistemą;
- 3. Kaip parenkami interpoliavimo mazgai, taikant Niutono ir Koteso formules. Koks ryšys tarp Lagranžo interpoliavimo funkcijų ir AI skaitinio apskaičiavimo koeficientų;
- 4. Paaiškinkite AI apskaičiavimą pagal Niutono ir Koteso formules, taikant integravimo intervalo skaidymą dalimis;
- 5.Kas yra Al skaitinio apskaičiavimo formulės eilė. Kaip ji nustatoma? Kokios tikslumo eilės yra trapecijų ir Simpsono formulės;
- 6. Paaiškinkite Ričardsono ekstrapoliacijos formulę. Kam ji taikoma, nuo ko priklauso jos koeficientai;
- 7. Paaiškinkite Rombergo metodą. Kuo jis paremtas ir kam taikomas