Internetworking – Routing im Internet

Routing im Internet

Für das Routinginnerhalb Autonomer Systeme ist das Interior Gateway Protokoll – IGP – zuständig

IGP basiert auf dem OSPF – Open Shortest Path First:

- Standardisiert in RFC 2328, ursprünglich schon 1989 eingeführt als RFC 1131
- Link-State-Routing, basiert auf Dijkstra-Algorithmus
- Erlaubt
 - schnelle, dynamische Anpassung an Topologieveränderungen
 - hierarchisches Routing
 - Routing im LAN (Broadcast-Netzwerk) und WAN
- unterstützt unterschiedliche Metriken im Internet (kürzeste Routen, billigste Routen, ...) und
- herstellerunabhängig

OSPF – Open Shortest Path First

Netz wird als Graph G mit gewichteten Kanten modelliert

Ziel: Finde kürzeste Wege von Startknoten A zu allen Knoten von G

Vorgehensweise:

- Weise allen Knoten die beiden Eigenschaften Distanz und Vorgänger zu,
- führe zwei zunächst leere Knoten-Listen "besucht" und "gefunden" und
- initialisiere Distanz im Startknoten A mit 0 und in allen anderen. Knoten mit ∞

Solange es Knoten gibt, die noch nicht gefunden sind,

- wähle einen Knoten mit minimaler Distanz aus und
 - speichere ihn Liste "gefunden" und
 - berechne für alle seine noch unbesuchten Nachbarknoten die Summe des jeweiligen Kantengewichtes und der aktuellen Distanz
 - ist Knoten noch nicht in besucht-Liste, wird er eingefügt

Nachrichtentypen für Kommunikation zwischen Routern

Hello	Wer sind meine Nachbarn?
Link State Update	Link-State-Aktualisierung an Nachbarn (Status, Metrik/Kosten)
Link State Ack	Bestätigung der Link-State-Aktualisierung
Database Description	Link-State-Pakete mit aktuellen Informationen des Senders
Link State Request	Link-State-Anforderung an Nachbarn zum Ermitteln der aktuellsten Verbindungsdaten

Besucht	A:0
Kürzester Weg gefunden	

Beispiel: Dijkstra-Algorithmus (1/2)

Wähle Knoten D aus besucht-Liste

Besucht B: 4, C: 8, **D:3**

Kürzester Weg gefunden A:0

Wähle Knoten B aus besucht-Liste

Besucht **B:4**, C:7, E:9, F:6

Kürzester Weg gefunden A:0, D:3

BesuchtC:7, E:9, F:5Kürzester Weg gefundenA:0, D:3, B:4

Wähle Knoten C aus besucht-Liste

BesuchtC:7, E:9, G:10Kürzester Weg gefundenA:0, D:3, B:4, F:5

Beispiel: Dijkstra-Algorithmus (2/2)

Wähle Knoten E aus Besucht-Liste

Besucht E: 8, G: 10

Kürzester Weg gefunden A: 0, D: 3, B: 4, F: 5, C: 7

Wähle Knoten G aus besucht-Liste

Besucht	G: 9
Kürzester Wea aefunden	A: 0, D: 3, B: 4, F: 5, C: 7, E: 8

besucht-Liste leer

→ Algorithmus terminiert

Besucht	
Kürzester Weg gefunden	A:0, D:3, B:4, F:5, C:7, E:8, G:9

BGP – Border Gateway Protocol

- Nur für AS-Grenz-Router(!), also für die Verbindung zwischen zwei Internet Service Providern
- Muss bestimmte Regelungen beachten
 - politische, sicherheitstechnische, wirtschaftliche
 - manuelle Konfiguration (Scripts)

(bei IGP -> geht es "nur" um möglichst effiziente Paketzustellung)

- BGP-Router kommunizieren via TCP-Verbindung
 - zuverlässig, verbirgt Details der durchquerten Netze
- Grundsätzlich Distanzvektor-Routing
 - verwaltet Distanz UND zugehörigen Pfad
 - teilt Nachbarn den verwendeten Pfad mit

Beispiel:

Informationen, die F von seinen Nachbarn über den Router D erhält:

B: B-C-D

G: G-C-D

I: I-J-H-D

E: E-F-G-C-D

F ermittelt z.B. kürzesten Pfad nach D, endgültige Routingentscheidung trifft Administrator durch Router-Regeln

Internetworking – Routing im Internet

