Arbres binaires (suite)

Thomas Bellitto, Alix Munier-Kordon et Maryse Pelletier

LIP6 Sorbonne Université Paris

Algorithmique élémentaire

Plan du cours

- Arbres H-équilibrés
- Arbres parfaits
- Arbres binaires de recherche

Arbres H-équilibrés : définition

Definition

Un arbre binaire est H-équilibré si, pour tout nœud x, la différence entre la hauteur du fils gauche de x et la hauteur du fils droit de x vaut 1, 0 ou -1.

Arbres H-équilibrés : exemples

Arbre H-équilibré :

Arbre non H-équilibré :

Arbres H-équilibrés : propriété

Theorem

La hauteur d'un arbre H-équilibré de taille n est en $\Theta(\log n)$.

Meilleur cas : arbres *parfaits* (voir section suivante)

Pire cas : arbres de Fibonacci (voir TD)

Arbres parfaits : définition

Definition

Un *arbre parfait* est un arbre dont tous les niveaux sont entièrement pleins, sauf éventuellement le dernier qui est rempli le plus à gauche.

Arbres parfaits : exemples

Arbre parfait : Arbre non parfait :

Arbres parfaits : propriété

Theorem

La hauteur d'un arbre parfait de taille n est en $\Theta(\log n)$.

Preuve : $2^{h-1} \le n < 2^h$ (voir TD)

Exemple : un arbre parfait de taille 1000 a une hauteur égale à 10 : les 9 premiers niveaux sont entièrement remplis et le 10-ème niveau contient 489 nœuds.

Arbres parfaits : propriété

Theorem

La hauteur d'un arbre parfait de taille n est en $\Theta(\log n)$.

Preuve : $2^{h-1} \le n < 2^h$ (voir TD)

Exemple : un arbre parfait de taille 1000 a une hauteur égale à 10 : les 9 premiers niveaux sont entièrement remplis et le

10-ème niveau contient 489 nœuds.

Arbres parfaits : représentation

Un arbre parfait de taille n peut être représenté au moyen d'un tableau A[0..N], avec $N \ge n$, tel que :

- A[0] contient la taille n de T
- les cases A[1..n] sont remplies en parcourant T de gauche à droite, niveau par niveau.

Représentation : exemple

Arbre parfait :

Tableau: [10, 8, 5, 1, 6, 2, 4, 7, 3, 18, 9]

Arbres parfaits : représentation

Dans le tableau A[0..N] représentant un arbre parfait T:

- A[1] est la racine de T
- si $2i \le n$ alors le fils gauche de A[i] est A[2i]
- si $2i + 1 \le n$ alors le fils droit de A[i] est A[2i + 1]
- si i > 1 alors le père de A[i] est $A[i \div 2]$.
- ÷ est la division entière

Insertion dans un arbre parfait

Insertion d'un élément x dans un arbre parfait de taille n.

Si n < N:

- insérer x dans la case A[n+1]
- augmenter A[0] de 1.

Et si n = N? On peut décider de ne plus faire d'insertion ou bien doubler la taille du tableau.

Insertion: exemple

Avant:

Après :

8
5
1
6
2
4
7
/\
3
18
9
12

[10, 8, 5, 1, 6, 2, 4, 7, 3, 18, 9]

[11, 8, 5, 1, 6, 2, 4, 7, 3, 18, 9, 12]

Utilité des arbres parfaits : tas

Tas: arbre parfait croissant.

Les étiquettes croissent de la racine vers les feuilles.

Utilité des arbres parfaits : tas

- Insertion dans un tas : comme dans un arbre parfait, puis échanges avec le père tant que nécessaire.
 Complexité : O(log n).
- Suppression du minimum, avec obtention d'un nouveau tas. Complexité : O(log n).
- Tri par tas, par n insertions puis n suppressions de minimum.

Complexité : $O(n \log n)$.

Le tri par tas sera vu en TD.

Arbres binaires de recherche : définition

L'ensemble E des clefs est totalement ordonné.

Definition (ABR(E))

Un arbre binaire de recherche sur E est un arbre binaire dans lequel tout nœud a une clef qui est supérieure à toutes les clefs de son sous-arbre gauche et inférieure à toutes les clefs de son sous-arbre droit.

Pour tout nœud x:

Abréviation : ABR pour arbre binaire de recherche.

Remarque: les clefs d'un ABR sont deux à deux distinctes.

Arbres binaires de recherche : définition inductive

Definition (ABR(E))

```
T \in \mathcal{ABR}(\mathsf{E}) \ \mathsf{si} : Base T = \emptyset:
```

Ind.
$$T = (x, G, D)$$
 avec $x \in E$ et tel que,

- G et D sont dans $\mathcal{ABR}(E)$;
- toutes les clefs de G sont inférieures à x;
- toutes les clefs de D sont supérieures à x.

Theorem

Pour tout ensemble E ordonné, ABR(E) = ABR(E)

Preuve en TD

ABR: exemples

ABR:

Non ABR:

Propriété caractéristique

Theorem

Un arbre binaire est un ABR ssi son parcours infixe est rangé en ordre strictement croissant.

Preuve en TD

Propriété caractéristique : exemple

ABR:

(3, 5, 7, 8, 10, 12, 15)

Non ABR:

(3, 5, 7, 8, 10, 15, 12)

Recherche dans un ABR

Idée : comparer la clef cherchée et la racine pour savoir s'il faut descendre à gauche ou à droite.

Algorithme : recherche de x dans l'ABR T

```
def ABRcherche(x,T):
    if estABvide(T):
        return False
    if x == T.clef:
        return T
    if x < T.clef:
        return ABRcherche(x,T.gauche)
    return ABRcherche(x,T.droit)</pre>
```

Complexité: la hauteur de l'ABR.

Recherche dans un ABR : exemple

ABRcherche (9, T) renvoie

Insertion dans un ABR

Idée : comparer la nouvelle clef à la racine pour savoir s'il faut l'insérer à gauche ou à droite.

Algorithme: insertion de x dans l'ABR T

```
def ABRinsertion(x,T):
    if estABVide(T):
        return ABfeuille(x)
    if x == T.clef:
        return T
    if x < T.clef:
        return AB(T.clef, ABRinsertion(x,T.gauche), T.droit)
    return AB(T.clef,T.gauche, ABRinsertion(x,T.droit))</pre>
```

Complexité: la hauteur de l'ABR.

Insertion dans un ABR : exemple

ABRinsertion(4,T) renvoie

Recherche du maximum d'un ABR

Idée : le maximum est dans le nœud le plus à droite.

Algorithme: en TD

Complexité : la longueur de la branche droite.

Le maximum est 15.

Les nœuds de la branche droite sont 7, 10, 15.

La longueur de la branche droite est 3.

Suppression du maximum d'un ABR

Idée : remplacer le nœud le plus à droite par son fils

gauche.

Algorithme: en TD

Complexité : la longueur de la branche droite.

Avant suppression du max

Après suppression du max

Suppression de la racine d'un ABR

Idée : Si le sous-arbre gauche n'est pas vide :

- remplacer la racine par le max du sous-arbre gauche,
- supprimer le max du sous-arbre gauche.

Algorithme: en TD

Complexité : la longueur de la branche droite du sous-arbre gauche.

Avant suppression racine

Après suppression racine

Suppression d'un élément dans un ABR

Algorithme : suppression de *x* dans l'ABR *T*

```
def ABRsuppression(x,T):
    if estABVide(T):
        return T
    if x == T.clef:
        return ABRmoinsRacine(T)
    if x < T.clef:
        return AB(T.clef,ABRsuppression(x,T.gauche),T.droit)
    return AB(T.clef,T.gauche,ABRsuppression(x,T.droit))</pre>
```

Complexité : la hauteur de l'ABR.