Funções Trigonométricas Inversas

Seja $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ uma função injetiva. A função

$$f^{-1}$$
: $CD_f \rightarrow \mathbb{R}$
 $y \mapsto x$

onde x é tal que f(x) = y, é designada por função inversa de f.

Dizemos que uma função é invertível se admite inversa.

Obs. 1.2

- ► f é invertível sse f é injetiva;
- ▶ O contradomínio de f^{-1} é D_f (isto é, $CD_{f^{-1}} = D_f$);
- $\blacktriangleright \forall x \in D_f, (f^{-1} \circ f)(x) = x ; \forall y \in CD_f, (f \circ f^{-1})(y) = y;$
- $\blacktriangleright \forall x \in D_f, \forall y \in CD_f, f(x) = y \Leftrightarrow x = f^{-1}(y);$
- ▶ Os gráficos de f e f^{-1} são simétricos relativamente à reta y = x.

Função seno: sen : $\mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto \operatorname{sen} x$

Prop. 1.4

Propriedades da função seno:

- ► Domínio: R;
- ightharpoonup Contradomínio: [-1,1];
- ightharpoonup Função periódica de período 2π , isto é,

$$\operatorname{sen} x = \operatorname{sen}(x + 2k\pi), \ \forall x \in \mathbb{R} \ \ \operatorname{e} \ \ k \in \mathbb{Z};$$

- ► Função ímpar;
- ► Não é injetiva.

Gráfico da função seno

Obs. 1.5

A função seno não é injetiva em \mathbb{R} .

No entanto, a sua restrição ao intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ já é injetiva.

A restrição principal da função seno é a função

$$\begin{array}{ccc} f : & \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{sen} x \end{array}$$

que já é injetiva.

A inversa de f é chamada de função arco seno, denota-se por arcsen, e define-se do seguinte modo

$$\text{arcsen} : [-1,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto y = \operatorname{arcsen} x$$

onde

$$y = \operatorname{arcsen} x$$
 sse sen $y = x, \ \forall x \in [-1, 1], \ \forall y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].$

Obs. 1.7

arcsen x lê-se arco cujo seno é x.

Exer. 1.8

Caracterize a inversa das seguintes funções:

(a)
$$f(x) = \frac{1}{2} \operatorname{sen} \left(x + \frac{\pi}{2} \right)$$

(b) $f(x) = \frac{\pi}{2} - \frac{2 \operatorname{arcsen}(1 - x)}{3}$

(c)
$$f(x) = 2 \arcsin(\sqrt{x}) - \pi$$

Função cosseno: $\cos: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto \cos x$

Prop. 1.10

Propriedades da função cosseno:

- ► Domínio: R;
- ightharpoonup Contradomínio: [-1,1];
- ightharpoonup Função periódica de período 2π , isto é,

$$\cos x = \cos(x + 2k\pi), \ \forall x \in \mathbb{R} \ \ \text{e} \ \ k \in \mathbb{Z};$$

- ▶ Função par;
- ▶ Não é injetiva.

Gráfico da função cosseno

Obs. 1.11

A função cosseno não é injetiva em \mathbb{R} .

No entanto, a sua restrição ao intervalo $[0, \pi]$ já é injetiva.

A restrição principal da função cosseno é a função

$$f: [0,\pi] \longrightarrow \mathbb{R}$$
$$x \longmapsto \cos x$$

que já é injetiva.

A inversa de f é chamada de função arco cosseno, denota-se por arccos, e define-se do seguinte modo

$$\operatorname{arccos} : [-1,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto y = \operatorname{arccos} x$$

onde

$$y = \arccos x$$
 sse $\cos y = x$, $\forall x \in [-1, 1]$, $\forall y \in [0, \pi]$.

Obs. 1.13

 $\arccos x$ lê-se arco cujo cosseno é x.

Exer. 1.14

Caracterize a inversa das seguintes funções:

(a)
$$f(x) = \frac{1}{2 + \cos x}$$

(b)
$$f(x) = 2\pi - \arccos\left(\frac{x}{2}\right)$$

Função tangente

Def. 1.15

Função tangente:
$$\operatorname{tg}: D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \operatorname{tg} x = \frac{\operatorname{sen} x}{\cos x}$$

Prop. 1.16

Propriedades da função tangente:

- ▶ Domínio: $D = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\};$
- ► Contradomínio: R;
- Função periódica de período π , isto é,

$$\operatorname{tg} x = \operatorname{tg}(x + k\pi), \ \forall x \in D \ \ \operatorname{e} \ \ k \in \mathbb{Z};$$

- Função ímpar;
- ▶ Não é injetiva.

Obs. 1.17

A função tangente não é injetiva no seu domínio.

No entanto, a sua restrição ao intervalo $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ já é injetiva.

A restrição principal da função tangente é a função

$$\begin{array}{ccc} f : & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{tg} x \end{array}$$

que já é injetiva.

A inversa de f é chamada de função arco tangente, denota-se por arctg, e define-se do seguinte modo

$$\operatorname{arctg} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto y = \operatorname{arctg} x$$

onde

$$y = \operatorname{arctg} x$$
 sse $\operatorname{tg} y = x, \ \forall x \in \mathbb{R}, \ \forall y \in \left] -\frac{\pi}{2}, \frac{\pi}{2}\right[.$

Obs. 1.19

arctg x lê-se arco cuja tangente é x.

Gráfico da função arco tangente

Exer. 1.20

Caracterize a inversa das seguintes funções:

(a)
$$f(x) = \operatorname{tg}\left(\frac{\pi}{2-x}\right)$$

(b)
$$f(x) = \frac{\pi}{2} - \arctan(1 - x)$$

Função cotangente

Def. 1.21

Função cotangente: cotg : $D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto \operatorname{cotg} x = \frac{\cos x}{\operatorname{sen} x}$

Prop. 1.22

Propriedades da função cotangente:

- ▶ Domínio: $D = \{x \in \mathbb{R} : x \neq k\pi, k \in \mathbb{Z}\};$
- ► Contradomínio: R;
- Função periódica de período π , isto é,

$$\cot x = \cot (x + k\pi), \ \forall x \in D \ e \ k \in \mathbb{Z};$$

- ► Função ímpar;
- ► Não é injetiva.

Obs. 1.23

A função cotangente não é injetiva no seu domínio.

No entanto, a sua restrição ao intervalo $]0,\pi[$ já é injetiva.

Inversa da função cotangente

Def. 1.24

A restrição principal da função cotangente é a função

$$f:]0, \pi[\longrightarrow \mathbb{R}$$

$$x \longmapsto \cot g x$$

que já é injetiva.

A inversa de f é chamada de função arco cotangente, denota-se por arccotg, e define-se do seguinte modo

$$\begin{array}{ccc}
\operatorname{arccotg} & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\
 & x & \longmapsto & y = \operatorname{arccotg} x
\end{array}$$

onde

$$y = \operatorname{arccotg} x$$
 sse $\operatorname{cotg} y = x, \ \forall x \in \mathbb{R}, \ \forall y \in]0, \pi[.$

Obs. 1.25

arccotg x lê-se arco cuja cotangente é x.

Gráfico da função arco cotangente

Exer. 1.26

Caracterize a inversa das seguintes funções:

(a)
$$f(x) = 2 \cot \left(\frac{x}{3}\right)$$

(b)
$$f(x) = \pi + \operatorname{arccotg}\left(\frac{x-1}{2}\right)$$

Função secante:
$$sec : D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto sec x = \frac{1}{cos x}$

Prop. 1.28

Propriedades da função secante:

- ▶ Domínio: $D = \{x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\};$
- ► Contradomínio: $]-\infty,-1] \cup [1,+\infty[;$
- ightharpoonup Função periódica de período 2π , isto é,

$$\sec x = \sec(x + 2k\pi), \ \forall x \in D \ e \ k \in \mathbb{Z};$$

- ► Função par;
- ► Não é injetiva;
- $(\sec x)' = \operatorname{tg} x \sec x, \ \forall x \in D.$

Obs. 1.29

A função secante não é injetiva no seu domínio.

No entanto, a sua restrição ao intervalo $\left[0,\frac{\pi}{2}\right]\cup\left[\frac{\pi}{2},\pi\right]$ já é injetiva.

A restrição principal da função secante é a função

$$\begin{array}{cccc} f & : & \left[0, \frac{\pi}{2} \left[\; \cup \; \right] \frac{\pi}{2}, \pi \right] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \sec x \end{array}$$

que já é injetiva.

A inversa de f é chamada de função arco secante, denota-se por arcsec, e define-se do seguinte modo

$$\begin{array}{ccc} \operatorname{arcsec} & : &]-\infty,-1] \cup [1,+\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & y = \operatorname{arcsec} x \end{array}$$

onde,
$$\forall x \in]-\infty, -1] \cup [1, +\infty[, \ \forall y \in [0, \pi] \setminus \left\{\frac{\pi}{2}\right\}]$$

$$y = \operatorname{arcsec} x \quad \operatorname{sse} \quad \operatorname{sec} y = x.$$

Obs. 1.31

arcsec x lê-se arco cuja secante é x.

Gráfico da função arco secante

Função cossecante: cosec :
$$D \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \operatorname{cosec} x = \frac{1}{\operatorname{sen} x}$

Prop. 1.33

Propriedades da função cossecante:

- ▶ Domínio: $D = \{x \in \mathbb{R} : x \neq k\pi, \ k \in \mathbb{Z}\};$
- ▶ Contradomínio: $]-\infty,-1] \cup [1,+\infty[$;
- Função periódica de período 2π , isto é,

$$\operatorname{cosec} x = \operatorname{cosec}(x + 2k\pi), \ \forall x \in D \ \ \operatorname{e} \ \ k \in \mathbb{Z};$$

- ► Função ímpar;
- ► Não é injetiva;
- $(\csc x)' = -\cot x \csc x, \ \forall x \in D.$

Gráfico da função cossecante

Obs. 1.34

A função cossecante não é injetiva no seu domínio.

No entanto, a sua restrição ao intervalo $\left[-\frac{\pi}{2},0\right[\cup\left]0,\frac{\pi}{2}\right]$ já é injetiva. À inversa dessa restrição chama-se função arco cossecante

Exer. 1.35

Defina formalmente e esboce o gráfico da função arco cossecante.

Obs. 1.36

Função	Domínio	Contradomínio
arcsen x	[-1, 1]	$\left[-rac{\pi}{2},rac{\pi}{2} ight]$
arccos x	[-1, 1]	$[0,\pi]$
arctg x	\mathbb{R}	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$
arccotg x	\mathbb{R}	$]0,\pi[$
arcsec x	$]-\infty,-1]\cup[1,+\infty[$	$[0,\pi]\setminus\left\{rac{\pi}{2} ight\}$
arccosec x	$]-\infty,-1]\cup[1,+\infty[$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\setminus\{0\}$

Prop. 1.37

- $= \sin^2 x + \cos^2 x = 1$
- $2 \csc^2 x = 1 + \cot^2 x$, para $x \neq k\pi$, $k \in \mathbb{Z}$
- $\operatorname{sec}^2 x = 1 + \operatorname{tg}^2 x$, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$
- $4 \cos(x y) = \cos x \cos y + \sin x \sin y$

- $\cos(2x) = \cos^2 x \sin^2 x$
- 9 $\operatorname{sen}(2x) = 2 \operatorname{sen} x \cos x$
- $\cos^2 x = \frac{1 + \cos(2x)}{2}$

Derivação da inversa de uma função

Teo. 1.38

Teorema da derivada da função inversa

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função estritamente monótona e contínua e f^{-1} a inversa de f. Se f é diferenciável em $x_0\in]a,b[$ e $f'(x_0)\neq 0$, então f^{-1} é diferenciável em $y_0=f(x_0)$ e

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Exer. 1.39

- Sendo $f: [1,4] \to \mathbb{R}$ contínua e estritamente crescente tal que f(2) = 7 e $f'(2) = \frac{2}{3}$, calcule, caso exista, $(f^{-1})'(7)$.
- 2 Sabendo que $f(x) = 4x^3 + x + 2$ é invertível, calcule $(f^{-1})'(2)$.
- Seja $f(x) = x^3$. Determine a derivada de f^{-1} utilizando o teorema da função inversa.

Obs. 1.40

Resulta do teorema da derivada da função inversa que:

(arcsen
$$x$$
)' = $\frac{1}{\sqrt{1-x^2}}$, $\forall x \in]-1,1[$

2
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, \forall x \in]-1,1[$$

$$(\operatorname{arctg} x)' = \frac{1}{1+x^2} , \ \forall x \in \mathbb{R}$$

4
$$(\operatorname{arccotg} x)' = -\frac{1}{1+x^2}, \quad \forall x \in \mathbb{R}$$

Exer. 1.41

Prove as fórmulas anteriores usando o teorema da derivada da função inversa.

Obs. 1.42

Sejam u e v funções de x, $k \in \mathbb{R}$ e $a \in \mathbb{R}^+ \setminus \{1\}$.

$$\bullet \ \left(u^k\right)' = ku^{k-1}u'$$

•
$$(e^u)' = u'e^u$$

•
$$(a^u)' = u'a^u \ln a$$

•
$$(\ln u)' = \frac{u'}{u}$$

$$\bullet \ (\log_a u)' = \frac{u'}{u \ln a}$$

•
$$(\operatorname{sen} u)' = u' \cos u$$

•
$$(\cos u)' = -u' \operatorname{sen} u$$

•
$$(\operatorname{tg} u)' = u' \operatorname{sec}^2 u$$

•
$$(\cot u)' = -u' \csc^2 u$$

•
$$(\sec u)' = u' \operatorname{tg} u \operatorname{sec} u$$

• $(\csc u)' = -u' \cot u \csc u$

•
$$(\operatorname{arcsen} u)' = \frac{u'}{\sqrt{1-u^2}}$$

• $(\operatorname{arccos} u)' = -\frac{u'}{\sqrt{1-u^2}}$

•
$$(\operatorname{arctg} u)' = \frac{u'}{1 + u^2}$$

•
$$(\operatorname{arccotg} u)' = -\frac{u'}{1+u^2}$$

•
$$(u + v)' = u' + v'$$

• $(uv)' = u'v + uv'$

$$\bullet \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Exer. 1.43

- Seja $f(x) = \ln(\operatorname{arcsen} x)$, com $x \in]0,1[$. Calcule $(f^{-1})'$ utilizando o teorema da função inversa.
- 2 Calcule a derivada das seguintes funções:

(a)
$$f(x) = (1 + x^2) \operatorname{arctg} x$$
 (c) $f(x) = \operatorname{arccotg} (\operatorname{sen} (4x^3))$

(b)
$$f(x) = \arcsin\left(\frac{1}{x^2}\right)$$
 (d) $f(x) = \sqrt[3]{\arccos x}$

- Considere a função $f(x) = \arcsin(1-x) + \sqrt{2x-x^2}$.
 - (a) Determine o domínio de f.
 - (b) Mostre que $f'(x) = -\frac{x}{\sqrt{2x x^2}}$

Soluções Capítulo 1

$$\begin{array}{ll} \text{(a)} \ D_{f-1} = \left[-\frac{1}{2}, \frac{1}{2}\right] & CD_{f-1} = \left[-2, 2\right] \\ CD_{f-1} = \left[-\pi, 0\right] & f^{-1}(y) = 2\cos y \\ f^{-1}(y) = \operatorname{arcsen}(2y) - \frac{\pi}{2} & 1.20. \\ \text{(a)} \ D_{f-1} = \mathbb{R} \setminus \{0\} \\ \end{array}$$

(b)
$$D_{f-1} = \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$$
 $CD_{f-1} = \left]-c$ $CD_{f-1} = \left[0, 2\right]$ $f^{-1}(y) = 1 - \sec\left(\frac{3\pi}{4} - \frac{3y}{2}\right)$ (b) $D_{f-1} = \left[0, \pi\right]$ $CD_{f-1} = \mathbb{R}$

$$\begin{aligned} &\text{(c)} \ D_{f}-1 &= [-\pi, 0] \\ & \ CD_{f}-1 &= [0, 1] \\ & \ f^{-1}(y) &= \sec^2 \Big(\frac{y+\pi}{2}\Big) \end{aligned}$$

1.14.

(a)
$$D_{f-1} = \left[\frac{1}{3}, 1\right]$$

 $CD_{f-1} = \left[0, \pi\right]$
 $f^{-1}(y) = \arccos\left(\frac{1}{y} - 2\right)$

(b)
$$D_{f-1} = [\pi, 2\pi]$$
 $CD_{f-1} = [-2, 2]$

$$f^{-1}(y) = 2\cos y$$

(a)
$$D_{f-1} = \mathbb{R} \setminus \{0\}$$

 $CD_{f-1} =]-\infty, 0[\cup]4, +\infty[$
 $f^{-1}(y) = 2 - \frac{\pi}{2\pi c \pi y}$

(b)
$$D_{f-1} =]0, \pi[$$
 $CD_{f-1} = \mathbb{R}$

$$f^{-1}(y) = 1 - \operatorname{tg}\left(\frac{\pi}{2} - y\right)$$

1.26. (a)
$$D_{f-1} = \mathbb{R}$$
 $CD_{f-1} =]0, 3\pi[$ $f^{-1}(y) = 3 \operatorname{arccotg}\left(\frac{y}{2}\right)$

(b)
$$D_{f^{-1}} =]\pi, 2\pi[$$
 $CD_{f^{-1}} = \mathbb{R}$

$$f^{-1}(y) = 2\cot(y - \pi) + 1$$

1. $\frac{3}{2}$

3.
$$\left(f^{-1}\right)'(y) = \frac{1}{3\sqrt[3]{y^2}}$$

1.
$$(f^{-1})'(y) = e^y \cos(e^y)$$

2. (a)
$$2x \arctan x + 1$$

(b)
$$-\frac{2}{x\sqrt{x^4-1}}$$

(c)
$$-\frac{12x^2\cos(4x^3)}{1+\sin^2(4x^3)}$$

(d)
$$-\frac{1}{3\sqrt{1-x^2}}\frac{3}{\sqrt[3]{\operatorname{arccos}^2 x}}$$

Teoremas do Cálculo Diferencial

Def. 2.1

Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D_f$.

▶ a é um maximizante local de f e f(a) diz-se um máximo local de f se existir $\delta > 0$ tal que

$$f(a) \ge f(x), \ \forall x \in V_{\delta}(a) \cap D_f.$$

▶ a é um minimizante local de f e f(a) diz-se um mínimo local de f se existir $\delta > 0$ tal que

$$f(a) \le f(x), \ \forall x \in V_{\delta}(a) \cap D_f.$$

- ► Aos máximos e mínimos locais chamamos extremos locais.
- ► Aos maximizantes e minimizantes locais chamamos extremantes locais.

Extremos globais de uma função

Def. 2.2

Sejam $f: D_f \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D_f$.

▶ a é um maximizante global de f e f(a) diz-se um máximo global de f se

$$f(a) \geq f(x), \quad \forall x \in D_f.$$

▶ a é um minimizante global de f e f(a) diz-se um mínimo global de f se

$$f(a) \le f(x), \ \forall x \in D_f.$$

- ► Aos máximos e mínimos globais chamamos extremos globais.
- ► Aos maximizantes e minimizantes globais chamamos extremantes globais.

Teo. 2.3

Se $f: D_f \longrightarrow \mathbb{R}$ é uma função contínua e D_f é um conjunto compacto, então f atinge em D_f o máximo e o mínimo globais (isto é, $\exists x_1, x_2 \in D_f$ tais que $f(x_1) \le f(x) \le f(x_2)$, $\forall x \in D_f$).

Obs. 2.4

Notar que um intervalo [a, b] é um conjunto compacto. Assim, toda a função contínua em [a, b] tem aí máximo e mínimo globais.

Exer. 2.5

Seja
$$f(x) = \begin{cases} x+2 & \text{se } x \ge 0 \\ -x+1 & \text{se } x < 0 \end{cases}$$

- (a) A função f tem mínimo global em [-1,1]?
- (b) A alínea (a) contradiz o teorema de Weierstrass?

Prop. 2.6

Seja $f:]a,b[\longrightarrow \mathbb{R}$ uma função diferenciável em $c\in]a,b[$. Se c é um extremante local de f, então f'(c)=0.

Ilustração gráfica:

Obs. 2.7

O recíproco da proposição do slide anterior não é verdadeiro. De facto, existem funções com derivada nula em determinado ponto e esse ponto não é extremante.

Por exemplo, $f(x) = x^3$, no ponto x = 0.

- 2 Pode acontecer que a derivada de f não exista num dado ponto x_0 , mas x_0 ser extremante. Por exemplo:
 - ightharpoonup f(x) = |x|, no ponto $x_0 = 0$.

Teo. 2.8

Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Se f(a)=f(b), então existe $c\in]a,b[$ tal que f'(c)=0

Ilustração Gráfica:

Cor. 2.9

Seja f uma função contínua em [a,b] e diferenciável em]a,b[.

- (i) Entre dois zeros de f existe pelo menos um zero de f'.
- (ii) Entre dois zeros consecutivos de f' existe, no máximo, um zero de f.

Exer. 2.10

- Seja f a f.r.v.r. definida por $f(x) = \operatorname{arctg}((x-1)^2) + 2$. Usando o Teorema de Rolle, mostre que existe $c \in]0,2[$ tal que f'(c) = 0.
- 2 Mostre que se a > 0 a equação $x^3 + ax + b = 0$ não pode ter mais que uma raiz real, qualquer que seja $b \in \mathbb{R}$.
- Mostre que a função definida por $f(x) = \operatorname{sen} x + x$ tem um único zero no intervalo $[-\pi, \pi]$.

Teo. 2.11

Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Então, existe $c\in]a,b[$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Ilustração Gráfica:

Exer. 2.12

Seja
$$f(x) = \begin{cases} x^2 \operatorname{sen}\left(\frac{1}{x}\right) & \text{se } x < 0 \\ 0 & \text{se } x = 0 \\ \frac{\pi}{2} - \operatorname{arctg}\left(\frac{1}{x}\right) & \text{se } x > 0 \end{cases}$$

- (a) Estude f quanto à continuidade em x = 0.
- (b) Mostre que existe pelo menos um $c \in \left] -\frac{2}{\pi}, 0\right[$ tal que $f'(c) = \frac{2}{\pi}$.
- 2 Seja $f(x) = \arcsin(\ln x)$.
 - (a) Determine o domínio de f.
 - (b) Mostre que existe pelo menos um $c \in]1, e[$ tal que $f'(c) = \frac{\pi}{2(e-1)}$.
- Seja h uma função de domínio \mathbb{R} tal que $h'(x) = \cos x \cdot e^{\sin^2 x}$ e h(0) = 0. Usando o Teorema de Lagrange, mostre que $h(x) \leq e \cdot x$, para todo o $x \in \mathbb{R}^+$.

Sejam $I \subseteq \mathbb{R}$ um intervalo e $f: I \longrightarrow \mathbb{R}$ uma função contínua em I e diferenciável em int(I). Então

- (i) Se f'(x) = 0, $\forall x \in \text{int}(I)$, então f é constante em I.
- (ii) Se $f'(x) \ge 0$, $\forall x \in \text{int}(I)$, então f é crescente em I.
- (iii) Se $f'(x) \le 0$, $\forall x \in \text{int}(I)$, então f é decrescente em I.
- (iv) Se f'(x) > 0, $\forall x \in \text{int}(I)$, então f é estritamente crescente em I.
- (v) Se f'(x) < 0, $\forall x \in \text{int}(I)$, então f é estritamente decrescente em I.

Seja $f: D_f \longrightarrow \mathbb{R}$ uma função contínua em $[a, b] \subseteq D_f$ e diferenciável em [a, b], exceto possivelmente em $c \in [a, b]$. Então,

- (i) se f'(x) > 0, $\forall x < c$, e f'(x) < 0, $\forall x > c$, então f(c) é um máximo local de f.
- (ii) se f'(x) < 0, $\forall x < c$, e f'(x) > 0, $\forall x > c$, então f(c) é um mínimo local de f.

Exer. 2.15

- **1** $Seja <math>f(x) = \frac{\ln x}{x}.$
 - (a) Determine o domínio de f.
 - (b) Estude f quanto à monotonia e existência de extremos locais.
- 2 Mostre que $g(x) = x + 2 \operatorname{sen} x 1$ tem um único zero em $\left]0, \frac{\pi}{2}\right[$.
- Mostre que $h(x) = \frac{e^x}{e^x + 1}$ é estritamente crescente em \mathbb{R} .

Teorema de Cauchy

Teo. 2.16

Sejam f e g duas funções contínuas em [a,b] e diferenciáveis em]a,b[. Se $g'(x)\neq 0$, para todo o $x\in]a,b[$, então existe $c\in]a,b[$ tal que

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Obs. 2.17

Do Teorema de Cauchy pode estabelecer-se uma regra — Regra de Cauchy — de grande utilidade no cálculo de limites quando ocorrem indeterminações do tipo $\frac{\infty}{\infty}$ ou $\frac{0}{0}$.

Nos cinco slides seguintes enunciam-se as várias formas dessa regra.

Sejam f e g funções diferenciáveis em I =]a, b[tais que, $\forall x \in I$, $g(x) \neq 0$ e $g'(x) \neq 0$. Se

 $\lim_{x \to a^+} f(x)$ e $\lim_{x \to a^+} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

Sejam f e g funções diferenciáveis em I =]a, b[tais que, $\forall x \in I$, $g(x) \neq 0$ e $g'(x) \neq 0$. Se

 $\lim_{x \to h^-} f(x)$ e $\lim_{x \to h^-} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

$$\lim_{x\to b^-} \frac{f(x)}{g(x)} = \lim_{x\to b^-} \frac{f'(x)}{g'(x)}.$$

Sejam I =]a, b[e $c \in I$. Sejam f e g funções definidas em I e diferenciáveis em $I \setminus \{c\}$, tais que $g(x) \neq 0, \ \forall x \in I \setminus \{c\}$. Se $g'(x) \neq 0, \ \forall x \in I \setminus \{c\}$,

 $\lim_{x\to c} f(x)$ e $\lim_{x\to c} g(x)$ são ambos nulos ou ambos infinitos

e existe o limite

$$\lim_{x\to c}\frac{f'(x)}{g'(x)}$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Sejam f e g funções definidas em $I =]a, +\infty[$ e diferenciáveis em I, com $g(x) \neq 0$, $\forall x \in I$. Se $g'(x) \neq 0$, $\forall x \in I$,

$$\lim_{x \to +\infty} f(x)$$
 e $\lim_{x \to +\infty} g(x)$ são ambos nulos ou ambos infinitos

e

existe
$$\lim_{x \to +\infty} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Sejam f e g funções definidas em $I =]-\infty, b[$ e diferenciáveis em I, com $g(x) \neq 0, \forall x \in I$. Se $g'(x) \neq 0, \forall x \in I$,

 $\lim_{x \to -\infty} f(x)$ e $\lim_{x \to -\infty} g(x)$ são ambos nulos ou ambos infinitos

e

existe
$$\lim_{x \to -\infty} \frac{f'(x)}{g'(x)}$$

$$\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \lim_{x \to -\infty} \frac{f'(x)}{g'(x)}.$$

Exer. 2.23

1 Calcule, caso existam, os seguintes limites:

(a)
$$\lim_{x\to 0} \frac{2 \arcsin x}{3x}$$

(f)
$$\lim_{x \to -\infty} xe^{\frac{1}{x}}$$

(b)
$$\lim_{x \to 1} \frac{1-x}{\ln(2-x)}$$

(g)
$$\lim_{x \to +\infty} x \left(e^{\frac{1}{x}} - 1 \right)$$

(h) $\lim_{x \to +\infty} (x+3)^{\frac{1}{x^2}}$

(c)
$$\lim_{x \to 0} \frac{x^2}{\operatorname{arctg} x}$$
(d)
$$\lim_{x \to +\infty} \frac{\ln x}{x^3}$$

(i)
$$\lim_{x \to 0^+} (1 + \arcsin x)^{\frac{1}{x}}$$

(e)
$$\lim_{x \to 0^{-}} x^{2} \ln(-x)$$

(j)
$$\lim_{x \to 1^+} (\ln x)^{\ln x}$$

2 Mostre que existe

$$\lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x},$$

mas não pode aplicar-se para o seu cálculo a regra de Cauchy.

Soluções Capítulo 2

```
2.5. (a) Não (b) Não 

2.12. 1.(a) É contínua em x=0 

2.(a) \left[\frac{1}{e}, e\right] 

2.15. 1.(a) \mathbb{R}^+ (b) Est. crescente em ]0, e[ 

Est. decrescente em ]e, +\infty[ 

Máximo em x=e cujo valor é \frac{1}{e}
```

```
2.23. 

1. (a) \frac{2}{3} (b) 1 (c) 0 (d) 0 (e) 0 (f) -c (g) 1 (h) 1 (i) e (j) 1 2. 1
```

Integrais Indefinidos

Def. 3.1

Seja $f:I\longrightarrow \mathbb{R}$ uma função, onde I é um intervalo não degenerado (isto é, com mais do que um ponto) de \mathbb{R} . Chama-se primitiva ou antiderivada de f a toda a função F diferenciável em I tal que, para todo o $x\in I$,

$$F'(x) = f(x)$$
.

Se f admite uma primitiva em I dizemos que f é primitivável em I.

Obs. 3.2

- ▶ Caso I = [a, b], dizer que F é diferenciável em I significa que, para todo o $x \in]a, b[$, F é diferenciável em x e que existem e são finitas $F'_{+}(a)$ e $F'_{-}(b)$. Convenções análogas para I = [a, b[ou I =]a, b[.
- ► Toda a primitiva de uma função é uma função contínua.

Exer. 3.3

Indique uma primitiva das seguintes funções (no intervalo indicado)

- (a) f(x) = 2x, em \mathbb{R}
- (b) $f(x) = e^x$, em \mathbb{R} (c) $f(x) = \cos x$, em \mathbb{R}
- (d) $f(x) = \frac{1}{x}$, em \mathbb{R}^+

Prop. 3.4

Seja $f:I \to \mathbb{R}$ uma função e $F:I \to \mathbb{R}$ uma primitiva de f em I.

Então, para cada $C \in \mathbb{R}$, G(x) = F(x) + C é também uma primitiva de f em I.

Prop. 3.5

Se $F: I \to \mathbb{R}$ e $G: I \to \mathbb{R}$ são duas primitivas de $f: I \to \mathbb{R}$, então existe $C \in \mathbb{R}$ tal que F(x) - G(x) = C, para todo o $x \in I$.

Def. 3.6

À família de todas as primitivas de uma função f chamamos integral indefinido de f. Denota-se esse conjunto de funções por

$$\int f(x) \ dx.$$

A f chamamos função integranda e a x variável de integração.

Obs. 3.7

Atendendo à segunda proposição do slide anterior,

$$\int f(x) dx = F(x) + C, \ C \in \mathbb{R},$$

onde F é uma primitiva de f.

2 Se f for diferenciável, então

$$\int f'(x) dx = f(x) + C, \ C \in \mathbb{R}.$$

Obs. 3.8

$$2 \int \frac{1}{x} dx = \ln |x| + C, \quad C \in \mathbb{R} \quad \text{ (onde } x \in \mathbb{R}^+ \text{ ou } x \in \mathbb{R}^- \text{)}$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C , \quad C \in \mathbb{R}, \quad a \in \mathbb{R}^{+} \setminus \{1\}$$

$$\int \operatorname{sen} x \, dx = -\cos x + C \,\,, \quad C \in \mathbb{R}$$

$$\int \cos x \, dx = \sin x + C \,\,, \quad C \in \mathbb{R}$$

Alguns Integrais Indefinidos Imediatos (cont.)

Obs. 3.8 (cont.)

$$\int \sec^2 x \, dx = \operatorname{tg} x + C \,\,, \ \ \, C \in \mathbb{R}$$

$$\int \operatorname{cosec}^2 x \, dx = -\operatorname{cotg} x + C \,\,, \ \, C \in \mathbb{R}$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = x + C, \quad C \in \mathbb{R}$$

$$\int \frac{1}{1+x^2} dx = \arctan x + C \; , \; \; C \in \mathbb{R}$$

Prop. 3.9

Sejam f e g funções definidas em I e $\alpha, \beta \in \mathbb{R}$ não simultaneamente nulos.

Se f e g são primitiváveis em I, então $\alpha f + \beta g$ é primitivável em I e

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$$

Exer. 3.10

Calcule:

(a)
$$\int (2^x - 3 \sin x) dx$$
 (c) $\int \frac{x+3}{x^2} dx$

(b)
$$\int (x+3)x^2 dx$$
 (d) $\int \sqrt[5]{x^3} dx$

Prop. 3.11

Sejam I e J dois intervalos de números reais, $f:I\to\mathbb{R}$ uma função primitivável e $g:J\to\mathbb{R}$ uma função tal que a composta $f\circ g$ está definida.

Se g é diferenciável em J, então $(f\circ g)g'$ é primitivável e tem-se

$$\int f(g(x))g'(x)\,dx=F(g(x))+C\;,\quad C\in\mathbb{R}\;,$$

onde F é uma primitiva de f.

Exemplo de aplicação

$$\int 2x \cos(x^2) dx = \operatorname{sen}(x^2) + C, \quad C \in \mathbb{R}$$

Obs. 3.12

(Esta lista generaliza os slides 56 e 57, e é uma consequência da Prop. 3.11)

Seja u uma função de x.

$$2 \int \frac{u'}{u} dx = \ln|u| + C , \quad C \in \mathbb{R}$$

$$\int u' \operatorname{sen} u \, dx = -\cos u + C \,\,, \quad C \in \mathbb{R}$$

6
$$\int u' \cos u \, dx = \operatorname{sen} u + C$$
, $C \in \mathbb{R}$

Obs. 3.12 (cont.)

Exer. 3.13

Determine os seguintes integrais indefinidos:

(a)
$$\int \frac{x^4}{1+x^5} dx$$
 (f) $\int e^{\lg x} \sec^2 x dx$ (k) $\int \frac{3x}{\sqrt{1-x^4}} dx$

(b)
$$\int \text{sen}(\sqrt{2}x) \, dx$$
 (g) $\int \frac{x}{x^2 + 9} \, dx$ (l) $\int \frac{x^3}{\sqrt{1 - x^4}} \, dx$

(c)
$$\int x7^{x^2} dx$$
 (h) $\int \frac{1}{(x+9)^2} dx$ (m) $\int \frac{\ln x}{x} dx$

(d)
$$\int \operatorname{tg} x \, dx$$
 (i) $\int \frac{1}{x^2 + 9} \, dx$ (n) $\int \frac{5}{x \ln^3 x} \, dx$

(e)
$$\int \operatorname{sen} x \cos^5 x \, dx$$
 (j) $\int \frac{e^x}{1 + e^{2x}} \, dx$ (o) $\int \frac{1}{x \ln x} \, dx$

Exercícios (cont.)

Exer. 3.14

- Determine a primitiva da função $f(x) = \frac{1}{x^2} + 1$ que se anula no ponto x = 2.
- **2** Determine a função $f: \mathbb{R} \to \mathbb{R}$ tal que

$$f'(x) = \frac{2e^x}{3+e^x}$$
 e $f(0) = \ln 4$.

 ${f 3}$ Sabendo que a função f satisfaz a igualdade

$$\int f(x) dx = \operatorname{sen} x - x \cos x - \frac{1}{2}x^2 + c, \ c \in \mathbb{R},$$

determinar $f\left(\frac{\pi}{4}\right)$.

Prop. 3.15

Sejam u e v funções de x diferenciáveis em I. Então

$$\int u'v\,dx = uv - \int uv'dx.$$

Exemplo de aplicação

$$\int \underbrace{x}_{u'} \underbrace{\ln x}_{v} dx = \frac{x^{2}}{2} \ln x - \int \frac{x^{2}}{2} \frac{1}{x} dx$$
$$= \frac{x^{2}}{2} \ln x - \int \frac{x}{2} dx$$
$$= \frac{x^{2}}{2} \ln x - \frac{x^{2}}{4} + C, \quad C \in \mathbb{R}.$$

Obs. 3.16

- ► Esta fórmula é útil sempre que a função integranda se pode escrever como o produto de duas funções e, além disso, é conhecida uma primitiva de pelo menos uma delas.
- ► Sabendo primitivar apenas uma das funções, escolhe-se essa para primitivar e deriva-se a outra função.
- Quando conhecemos uma primitiva de cada uma das funções, devemos escolher para derivar a função que mais se simplifica por derivação. Por vezes essa escolha é indiferente.
- ► Por vezes é necessário efetuar várias aplicações sucessivas da fórmula de integração por partes.
- ▶ Por vezes obtém-se novamente o integral que se pretende determinar. Nesses casos, interpreta-se a igualdade obtida como uma equação em que a incógnita é o integral que se pretende determinar.

Exer. 3.17

Determine, usando a técnica de integração por partes, os seguintes integrais indefinidos:

(a)
$$\int x \cos x \, dx$$
 (e) $\int x^3 e^{x^2} \, dx$

(b)
$$\int e^{-3x} (2x+3) dx$$
 (f) $\int e^{2x} \sin x dx$

(c)
$$\int \operatorname{arctg} x \, dx$$
 (g) $\int \operatorname{sen}(\ln x) \, dx$

(d)
$$\int x^3 \ln x \, dx$$
 (h) $\int \ln^2 x \, dx$

Obs. 3.18

- 1 Potências ímpares de sen x ou cos x
 - Destaca-se uma unidade à potência ímpar e o fator resultante passa-se para a co-função usando $sen^2 x + cos^2 x = 1$.
- 2 Potências pares de sen x ou cos x

Passam-se para o arco duplo através das fórmulas

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$
 ou $\sin^2 x = \frac{1 - \cos(2x)}{2}$.

- Produtos onde existem fatores tipo sen (mx) ou cos (nx)
 Aplicam-se as fórmulas
 - $\operatorname{sen} x \operatorname{sen} y = \frac{1}{2} (\cos(x y) \cos(x + y));$
 - $\cos x \cos y = \frac{1}{2}(\cos(x+y) + \cos(x-y));$
 - $\operatorname{sen} x \operatorname{cos} y = \frac{1}{2} (\operatorname{sen}(x+y) + \operatorname{sen}(x-y)).$

Obs. 3.18 (cont.)

4 Potências pares e ímpares de tg x ou cotg x

Destaca-se $tg^2 x$ ou $cotg^2 x$ e aplicam-se as fórmulas

$$tg^2 x = sec^2 x - 1$$
 ou $cotg^2 x = cosec^2 x - 1$.

5 Potências pares de sec x ou cosec x

Destaca-se $\sec^2 x$ ou $\csc^2 x$ e ao fator resultante aplicam-se as fórmulas

$$\sec^2 x = 1 + \operatorname{tg}^2 x$$
 ou $\operatorname{cosec}^2 x = 1 + \operatorname{cotg}^2 x$.

6 Potências ímpares de sec x ou cosec x

Destaca-se $\sec^2 x$ ou $\csc^2 x$ e primitiva-se por partes escolhendo esse fator para primitivar.

Exer. 3.19

Determine os seguintes integrais indefinidos:

(a)
$$\int \cos^2 x \, dx$$
 (f) $\int \sec^6 x \, dx$

(b)
$$\int \sin^3 x \, dx$$
 (g) $\int \sin x \cos^2 x \, dx$

(c)
$$\int tg^6 x dx$$
 (h) $\int sen^5 x cos^2 x dx$

(d)
$$\int \sin^4 x \, dx$$
 (i) $\int \sin(3x) \cos(4x) \, dx$

(e)
$$\int \sec^3 x \, dx$$
 (j) $\int \sec(2x) \sec(-3x) \, dx$

Prop. 3.20

Sejam I e J intervalos de \mathbb{R} , $f:I\longrightarrow\mathbb{R}$ uma função primitivável e $\varphi:J\longrightarrow\mathbb{R}$ uma função diferenciável e invertível tal que $\varphi(J)\subseteq I$. Então a função $(f\circ\varphi)\varphi'$ é primitivável e, sendo H uma primitiva de $(f\circ\varphi)\varphi'$, tem-se que $H\circ\varphi^{-1}$ é uma primitiva de f.

Obs. 3.21

Na prática, quando calculamos uma primitiva recorrendo à proposição anterior, usando a mudança de variável $x=\varphi(t)$, escrevemos, por abuso de linguagem,

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t) dt = H(\varphi^{-1}(x)) + C, \quad C \in \mathbb{R}.$$

Exemplo de aplicação da técnica de primitivação por substituição

$$\int \frac{1}{1+\sqrt{2x}} dx$$

Substituição de variável: $\sqrt{2x} = t$, donde resulta $x = \frac{t^2}{2}$, $t \ge 0$.

$$\varphi(t)=rac{t^2}{2}$$
 é diferenciável e invertível em \mathbb{R}^+_0 e $arphi'(t)=t$. Assim

$$\int \frac{1}{1+\sqrt{2x}} dx = \int \frac{t}{1+t} dt$$

$$= \int \left(1 - \frac{1}{1+t}\right) dt$$

$$= t - \ln|1+t| + C, \quad C \in \mathbb{R}$$

$$= \sqrt{2x} - \ln(1+\sqrt{2x}) + C, \quad C \in \mathbb{R}.$$

Exer. 3.22

Determine, usando a técnica de integração por substituição, os seguintes integrais indefinidos:

(a)
$$\int x^2 \sqrt{1-x} \, dx$$
 (e)
$$\int \frac{1}{x+\sqrt[3]{x}} \, dx$$

(b)
$$\int x(2x+5)^{10} dx$$
 (f) $\int \frac{1}{x(1+\ln^2 x)} dx$

(c)
$$\int \frac{1}{\sqrt{e^x - 1}} dx$$
 (g) $\int \frac{1}{e^x + e^{-x} + 2} dx$

(d)
$$\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$
 (h) $\int \frac{\ln x}{x(1+\ln^2 x)} dx$

Primitivação de funções envolvendo radicais

Obs. 3.23

As **substituições trigonométricas** dadas na seguinte tabela permitem transformar a primitivação de uma função que envolve radicais na primitivação de uma função trigonométrica.

função com o radical	substituição
$\sqrt{a^2-b^2x^2}, \ a,b>0$	$x = \frac{a}{b} \operatorname{sen} t$, $\operatorname{com} t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$
$\sqrt{a^2+b^2x^2}$, $a,b>0$	$x = \frac{a}{b} \operatorname{tg} t, \operatorname{com} t \in] - \frac{\pi}{2}, \frac{\pi}{2}[$
$\sqrt{b^2x^2-a^2},\ a,b>0$	$x=rac{a}{b}\sec t$, com $t\in]0,rac{\pi}{2}[$

Exer. 3.24

Determine os seguintes integrais indefinidos:

(a)
$$\int \frac{1}{x^2 \sqrt{9 - x^2}} dx$$
 (e) $\int \sqrt{4 - (x+1)^2} dx$

(b)
$$\int x\sqrt{8+x^2} \, dx$$
 (f)
$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx$$

(c)
$$\int \frac{1}{x^2 \sqrt{x^2 - 7}} dx$$
 (g) $\int \frac{\sqrt{x^2 - 1}}{x} dx$

(d)
$$\int \frac{1}{x\sqrt{x^2+4}} dx$$
 (h) $\int x^2 \sqrt{4-x^2} dx$

Primitivação de Funções Racionais

Def. 3.25

Uma função cuja expressão analítica admite a forma

$$\frac{N(x)}{D(x)}$$

onde N e D são polinómios em x com coeficientes reais e D é não nulo, diz-se uma função racional.

Caso grau(N) < grau(D) dizemos que $\frac{N(x)}{D(x)}$ é uma fração própria.

Prop. 3.26

Se grau $(N) \ge \text{grau}(D)$, então existem polinómios Q e R tais que

$$N(x) = D(x)Q(x) + R(x),$$

com grau(R) < grau(D).

A Q e R chamamos quociente e resto da divisão de N por D, respetivamente.

Primitivação de Funções Racionais (cont.)

Obs. 3.27

Assim, caso grau(N) \geq grau(D),

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$$
polinómio fração própria

Como

$$\int \frac{N(x)}{D(x)} dx = \int Q(x) dx + \int \frac{R(x)}{D(x)} dx ,$$

e a primitivação de funções polinomiais é imediata, a primitivação de funções racionais reduz-se à primitivação de frações próprias, que por sua vez se pode reduzir à primitivação de frações simples.

Def. 3.28

Chamamos fração simples a toda a fração do tipo

$$\frac{A}{(x-\alpha)^p}$$
 ou $\frac{Bx+C}{(x^2+\beta x+\gamma)^q}$,

onde $p, q \in \mathbb{N}$, $A \in \mathbb{R} \setminus \{0\}$, $B, C \in \mathbb{R}$ não simultaneamente nulos e $\alpha, \beta, \gamma \in \mathbb{R}$ são tais que $\beta^2 - 4\gamma < 0$.

Exemplos de frações simples

$$\frac{2}{x-1}$$
, $\frac{1}{x^2}$, $\frac{x-2}{x^2+x+1}$, $\frac{1}{(x^2+x+2)^3}$

Prop. 3.29

Toda a fração própria pode ser decomposta numa soma de frações simples.

Obs. 3.30

Fração a decompor:
$$\frac{R(x)}{D(x)}$$
, com grau $(R) < \text{grau}(D)$

Procedimento

1 Decompor D(x) em fatores irredutíveis:

$$D(x) = a(x - \alpha_1)^{p_1} \dots (x - \alpha_n)^{p_n} (x^2 + \beta_1 x + \gamma_1)^{q_1} \dots (x^2 + \beta_m x + \gamma_m)^{q_m}$$
onde $a \in \mathbb{R} \setminus \{0\}, \ p_i, q_j \in \mathbb{N}, \ \alpha_i, \beta_j, \gamma_j \in \mathbb{R}, \ \text{com}$

$$\beta_j^2 - 4\gamma_j < 0$$
, para $i = 1, ..., n$ e $j = 1, ..., m$.

fração simples de acordo com o seguinte: (i) Ao fator de D(x) do tipo $(x - \alpha)^r$ $(r \in \mathbb{N})$ corresponde

2 Fazer corresponder a cada factor de D(x) uma determinada

$$\frac{A_1}{(x-\alpha)^2} + \frac{A_2}{(x-\alpha)^2} + \cdots + \frac{A_r}{(x-\alpha)^r}$$

onde A_1, \ldots, A_r são constantes reais a determinar.

Procedimento (cont.)

(ii) Ao fator de D(x) do tipo

$$(x^2 + \beta x + \gamma)^s$$
, com $\beta^2 - 4\gamma < 0$ e $s \in \mathbb{N}$

corresponde

$$\frac{B_1x + C_1}{x^2 + \beta x + \gamma} + \frac{B_2x + C_2}{(x^2 + \beta x + \gamma)^2} + \dots + \frac{B_sx + C_s}{(x^2 + \beta x + \gamma)^s}$$

onde B_i, C_i são constantes reais a determinar, $i=1,\ldots,s$.

Escrever $\frac{R(x)}{D(x)}$ como soma dos elementos simples identificados no ponto anterior e determinar as constantes que neles ocorrem, usando o método dos coeficientes indeterminados.

Primitivação de Frações Simples

T Fração do tipo:
$$\frac{A}{(x-\alpha)^r}$$

Se
$$r=1$$
, $\int \frac{A}{x-\alpha} dx = A \ln |x-\alpha| + C$, $C \in \mathbb{R}$

Se
$$r \neq 1$$
, $\int \frac{A}{(x-\alpha)^r} dx = \frac{A(x-\alpha)^{-r+1}}{-r+1} + C$, $C \in \mathbb{R}$

2 Fração do tipo:
$$\frac{Bx + C}{(x^2 + \beta x + \gamma)^s}$$

Reduz-se à primitivação de frações do tipo (i) ou (ii):

(i)
$$\frac{t}{(1+t^2)^s}$$
(ii) $\frac{1}{(1+t^2)^s}$

Primitivação das frações do tipo (i) e (ii) do slide anterior

(i) Fração do tipo:
$$\frac{t}{(1+t^2)^s}$$

Se
$$s=1$$
, $\int \frac{t}{1+t^2} dt = \frac{1}{2} \ln |1+t^2| + C$, $C \in \mathbb{R}$

Se
$$s \neq 1$$
, $\int \frac{t}{(1+t^2)^s} dt = \frac{(1+t^2)^{-s+1}}{2(-s+1)} + C$, $C \in \mathbb{R}$

(ii) Fração do tipo:
$$\frac{1}{(1+t^2)^s}$$

Se
$$s=1,\;\int \frac{1}{1+t^2}\,dt=\operatorname{arctg} t+C,\;C\in\mathbb{R}$$

Se $s \neq 1$, aplica-se o método de primitivação por partes recursivamente, partindo de $\int \frac{1}{1+t^2} \, dt$.

Exer. 3.31

Determine os seguintes integrais indefinidos:

(a)
$$\int \frac{x}{x^2 - 5x + 6} dx$$
 (e) $\int \frac{x + 2}{x(x^2 + 4)} dx$

(b)
$$\int \frac{2x-1}{(x-2)(x-3)(x+1)} dx$$
 (f) $\int \frac{x^3+4x-3}{(x^2+1)(x^2+4)} dx$

(c)
$$\int \frac{x+2}{(x-1)(x+3)^2} dx$$
 (g) $\int \frac{x^3+1}{x^3-x^2} dx$

(d)
$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx$$
 (h) $\int \frac{x+1}{x^2 + 4x + 5} dx$

Exer. 3.32

Determine os seguintes integrais indefinidos:

(a)
$$\int e^{2x} \sin(e^{2x}) dx$$
 (e) $\int x \ln(1+x^2) dx$

(b)
$$\int x \sqrt{(1-x^2)^3} \, dx$$
 (f) $\int \frac{\sqrt{x}}{1+\sqrt[3]{x}} \, dx$

(c)
$$\int x^2 \operatorname{arctg} x \, dx$$
 (g) $\int \sqrt{9 - x^2} \, dx$

(d)
$$\int \frac{(\arcsin x)^3}{\sqrt{1-x^2}} dx$$
 (h) $\int \frac{6x^2-7x-1}{(2x^2+1)(x-2)} dx$

Soluções Capítulo 3

- (a) x^2
- (b) $e^{x} + 3$
- (c) sen *x*
- (d) ln x

3.10.

- (a) $\frac{2^x}{\ln 2} + 3\cos x + c$, $c \in \mathbb{R}$
- (b) $\frac{x^4}{4} + x^3 + c, \ c \in \mathbb{R}$
- (c) $\ln |x| \frac{3}{x} + c, c \in \mathbb{R}$
- (d) $\frac{5}{9}x^{\frac{8}{5}} + c$, $c \in \mathbb{R}$

3.13.

- (a) $\frac{1}{5} \ln |1 + x^5| + c, c \in \mathbb{R}$
- (b) $-\frac{\sqrt{2}}{2}\cos(\sqrt{2}x) + c, c \in \mathbb{R}$
- (c) $\frac{7^{x^2}}{2 \ln 7} + c, c \in \mathbb{R}$
- (d) $-\ln|\cos x| + c, c \in \mathbb{R}$
- (e) $-\frac{\cos^6 x}{6} + c$, $c \in \mathbb{R}$
- (f) $e^{\operatorname{tg} x} + c$, $c \in \mathbb{R}$
- (g) $\frac{1}{2} \ln |x^2 + 9| + c, c \in \mathbb{R}$

(h)
$$-\frac{1}{r+0}+c, c \in \mathbb{R}$$

- (i) $\frac{1}{3} \operatorname{arctg} \left(\frac{x}{3} \right) + c, \ c \in \mathbb{R}$
- (j) $arctg(e^x) + c, c \in \mathbb{R}$
- (k) $\frac{3}{2} \operatorname{arcsen}(x^2) + c, \ c \in \mathbb{R}$
- (I) $-\frac{1}{2}\sqrt{1-x^4}+c, \ c \in \mathbb{R}$
- (m) $\frac{\ln^2 x}{2} + c$, $c \in \mathbb{R}$
- (n) $-\frac{5}{2}\frac{1}{\ln^2 x} + c, \ c \in \mathbb{R}$
- (o) $\ln |\ln x| + c, c \in \mathbb{R}$
- 1. $-\frac{1}{2} + x \frac{3}{2}$
 - 2. $2 \ln |3 + e^x| \ln 4$
- 3. $\frac{\pi}{4} \left(\frac{\sqrt{2}}{2} 1 \right)$
- 3.17.
 - (a) $x \operatorname{sen} x + \cos x + c, c \in \mathbb{R}$
 - (b) $-\frac{e^{-3x}(6x+11)}{9} + c, c \in \mathbb{R}$
 - (c) $x \arctan x \frac{1}{2} \ln(x^2 + 1) + c, c \in \mathbb{R}$
 - (d) $\frac{x^4}{4} \left(\ln x \frac{1}{4} \right) + c, \ c \in \mathbb{R}$

(e)
$$\frac{e^{x^2}(x^2-1)}{2} + c, c \in \mathbb{R}$$

(f)
$$\frac{e^{2x}(2 \operatorname{sen} x - \cos x)}{5} + c, \ c \in \mathbb{R}$$

(g)
$$\frac{x(\operatorname{sen}(\ln x) - \cos(\ln x))}{2} + c, c \in \mathbb{R}$$

(h)
$$x(\ln^2 x - 2 \ln x + 2) + c, c \in \mathbb{R}$$

3 19

- (a) $\frac{1}{2}(x + \frac{1}{2} \operatorname{sen}(2x)) + c, c \in \mathbb{R}$
- (b) $-\cos x + \frac{1}{3}\cos^3 x + c, \ c \in \mathbb{R}$
- (c) $\frac{\lg^5 x}{5} \frac{\lg^3 x}{3} + \lg x x + c, c \in \mathbb{R}$
- (d) $\frac{12x-8 \operatorname{sen}(2x)+\operatorname{sen}(4x)}{22}+c, c \in \mathbb{R}$
- (e) $\frac{\sec x \tan x + \ln|\sec x + \tan x|}{2} + c, c \in \mathbb{R}$
- (f) $\frac{\lg^5 x}{5} + \frac{2 \lg^3 x}{3} + \lg x + c, c \in \mathbb{R}$
- (g) $-\frac{\cos^3 x}{3} + c$, $c \in \mathbb{R}$
- (h) $-\frac{\cos^3 x}{3} + \frac{2\cos^5 x}{5} \frac{\cos^7 x}{7} + c, c \in \mathbb{R}$
- (i) $\frac{1}{2} \left(\cos x \frac{\cos(7x)}{7} \right) + c, c \in \mathbb{R}$

(j)
$$\frac{1}{2} \left(\frac{\operatorname{sen}(5x)}{5} - \operatorname{sen} x \right) + c, c \in \mathbb{R}$$

Soluções Capítulo 3 (cont.)

3.22.

(a)
$$-\frac{2}{3}(1-x)^{\frac{3}{2}} + \frac{4}{5}(1-x)^{\frac{5}{2}} - \frac{2}{7}(1-x)^{\frac{7}{2}} + c, \ c \in \mathbb{R}$$

(b)
$$\frac{1}{48}(2x+5)^{12} - \frac{5}{44}(2x+5)^{11} + c, c \in \mathbb{R}$$

(c)
$$2 \operatorname{arctg}(\sqrt{e^x - 1}) + c, c \in \mathbb{R}$$

(d)
$$-2\cos(\sqrt{x}) + c$$
, $c \in \mathbb{R}$

(e)
$$\frac{3}{2} \ln |x^{\frac{2}{3}} + 1| + c, \ c \in \mathbb{R}$$

(f)
$$arctg(\ln x) + c, c \in \mathbb{R}$$

(g)
$$-\frac{1}{c^{N+1}} + c, c \in \mathbb{R}$$

(h)
$$\frac{1}{2}\ln(\ln^2 x + 1) + c$$
, $c \in \mathbb{R}$

3.24.

(a)
$$-\frac{\sqrt{9-x^2}}{9x}+c, c \in \mathbb{R}$$

(b)
$$\frac{1}{3}(8+x^2)^{\frac{3}{2}}+c, c \in \mathbb{R}$$

(c)
$$\frac{\sqrt{x^2-7}}{7x} + c$$
, $c \in \mathbb{R}$

(d)
$$-\frac{1}{2} \ln \left| \frac{\sqrt{x^2+4}}{x} + \frac{2}{x} \right| + c, c \in \mathbb{R}$$

(e)
$$2 \arcsin\left(\frac{x+1}{2}\right) + \frac{(x+1)\sqrt{4-(x+1)^2}}{2} + c, \ c \in \mathbb{R}$$

(f)
$$\frac{1}{2}$$
 arcsen $x - \frac{x\sqrt{1-x^2}}{4} + c$, $c \in \mathbb{R}$

(g)
$$\sqrt{x^2-1} - \arccos\left(\frac{1}{x}\right) + c, c \in \mathbb{R}$$

(h) $2 \arcsin\left(\frac{x}{2}\right) -$

$$\frac{x(2-x^2)\sqrt{4-x^2}}{4}+c, \ c\in\mathbb{R}$$

3.31.

(a)
$$3 \ln |x-3| - 2 \ln |x-2| + c, c \in \mathbb{R}$$

(b)
$$-\ln|x-2| + \frac{5}{4}\ln|x-3| - \frac{1}{4}\ln|x+1| + c, c \in \mathbb{R}$$

(c)
$$\frac{1}{16} \left(-\frac{4}{x+3} + 3 \ln |x-1| - 3 \ln |x+3| \right) + c, \ c \in \mathbb{R}$$

(d)
$$\frac{x^3}{3} + \frac{x^2}{2} + 4x + 2 \ln|x| + 5 \ln|x-2| - 3 \ln|x+2| + c, c \in \mathbb{R}$$

(e)
$$\frac{1}{2} \ln |x| - \frac{1}{4} \ln(4 + x^2) + \frac{1}{2} \operatorname{arctg}\left(\frac{x}{2}\right) + c, \ c \in \mathbb{R}$$

$$\begin{array}{ll} \text{(f)} & \frac{1}{2} \ln(1+x^2) - \operatorname{arctg} x + \\ & \frac{1}{2} \operatorname{arctg} \left(\frac{x}{2} \right) + c, \ c \in \mathbb{R} \end{array}$$

(g)
$$x+\frac{1}{x}-\ln|x|+2\ln|x-1|+c,c\in\mathbb{R}$$

(h)
$$\frac{1}{2} \ln(x^2 + 4x + 5) - \arctan(x + 2) + c, c \in \mathbb{R}$$

3.32.

(a)
$$-\frac{1}{2}\cos(e^{2x}) + c, c \in \mathbb{R}$$

(b) $-\frac{1}{c}(1-x^2)^{\frac{5}{2}} + c, c \in \mathbb{R}$

(c)
$$\frac{x^3}{3} \arctan x - \frac{x^2}{6} - \frac{1}{6} \ln(1+x^2)$$

(d)
$$\frac{(\operatorname{arcsen} x)^4}{4} + c, c \in \mathbb{R}$$

(e)
$$\frac{1+x^2}{2}(\ln(1+x^2)-1)+c, c \in \mathbb{R}$$

(f)
$$\frac{6}{7}x\sqrt[6]{x} - \frac{6}{5}\sqrt[6]{x^5} + 2\sqrt{x} - 6\sqrt[6]{x} + 6 \operatorname{arctg}\sqrt[6]{x} + c, c \in \mathbb{R}$$

(g)
$$\frac{9}{2} \operatorname{arcsen} \left(\frac{x}{3}\right) + \frac{x\sqrt{9-x^2}}{2} + c, c \in \mathbb{R}$$

(h)
$$\ln |x - 2| + \ln(2x^2 + 1) + \frac{\sqrt{2}}{2} \operatorname{arctg}(\sqrt{2}x) + c, \ c \in \mathbb{R}$$

Integrais Definidos

Motivação à definição de Integral de Riemann

Questão:

Como calcular a área delimitada pelo gráfico de f, pelas retas x = a, x = b e y = 0 ?

Área calculada por excesso

Outra aproximação para o valor da área

Def. 4.1

► Chama-se partição de [a, b] a todo o subconjunto finito de [a, b]

$$\mathcal{P} = \{x_0, x_1, \dots, x_n\}$$

tal que $a \equiv x_0 < x_1 < \cdots < x_n \equiv b$.

► Chama-se diâmetro de \mathcal{P} , e denota-se por $\Delta \mathcal{P}$, à maior das amplitudes dos intervalos $[x_{i-1}, x_i]$, i = 1, 2, ..., n, isto é,

$$\Delta P = \max \{x_i - x_{i-1} : i = 1, 2, ..., n\}$$
.

► Chama-se seleção de P a todo o conjunto

$$C = \{x_1^*, x_2^*, \dots, x_n^*\}$$

tal que $x_1^* \in [x_0, x_1], x_2^* \in [x_1, x_2], \dots, x_n^* \in [x_{n-1}, x_n].$

Def. 4.2

Sejam $f: [a,b] \to \mathbb{R}$, $\mathcal{P} = \{x_0,x_1,\ldots,x_n\}$ uma partição de [a,b] e $\mathcal{C} = \{x_1^*,x_2^*,\ldots,x_n^*\}$ uma sua seleção. Chama-se soma de Riemann de f associada à partição \mathcal{P} e seleção \mathcal{C} à seguinte soma,

$$S_f(\mathcal{P},\mathcal{C}) := \sum_{i=1}^n f(x_i^*)(x_i - x_{i-1}).$$

Exer. 4.3

- **1** Determine uma partição $\mathcal P$ de [0,4] com 4 pontos e uma sua seleção $\mathcal C$.
- **2** Calcular a soma de Riemann de $f(x) = \sqrt{x}$ associada à partição \mathcal{P} e seleção \mathcal{C} anteriores.

Obs. 4.4

Nos slides anteriores, as somas A_m , A_M e A^* são somas de Riemann de f para uma mesma partição de [a, b] em 6 sub-intervalos, para três seleções diferentes.

Def. 4.5

Sejam $f:[a,b]\to\mathbb{R}$ e $I\in\mathbb{R}$. Diz-se que I é o integral de Riemann (ou integral definido) de f em [a,b] (ou de a para b) se para todo o $\epsilon>0$ existe $\delta>0$ tal que, para toda a partição $\mathcal P$ de [a,b], tal que $\Delta\mathcal P<\delta$, se tem

$$|S_f(\mathcal{P}, \mathcal{C}) - I| < \epsilon$$

para toda a seleção $\mathcal C$ de $\mathcal P$.

Caso exista I, nas condições anteriores, diz-se que f é integrável em [a, b] e escreve-se

$$I = \int_a^b f(x) \, dx \, .$$

Obs. 4.6

■ A variável de integração é uma variável muda, i.e., podemos escrever

$$\int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(u) du$$
, por exemplo.

■ Na definição de integral de Riemann considerou-se a < b.

Caso
$$a = b$$
, $\int_a^b f(x) dx = 0$;
Caso $a > b$, $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

Prop. 4.7

Sejam $f:[a,b] \to \mathbb{R}$ e I um número real.

Então I é o integral de Riemann de f de a para b se e só se, para toda a sucessão $(\mathcal{P}_n)_{n\in\mathbb{N}}$ de partições do intervalo [a,b] tal que

$$\lim_{n\to+\infty} (\Delta \mathcal{P}_n) = 0$$

se tem

$$\lim_{n\to+\infty} S_f\left(\mathcal{P}_n,\mathcal{C}_n\right) = I,$$

para toda a sucessão $(C_n)_{n\in\mathbb{N}}$ tal que, para cada $n\in\mathbb{N}$, C_n é uma seleção de \mathcal{P}_n .

Exer. 4.8

Il Sabendo que f definida por f(x) = x é integrável em [0,1], mostre usando a proposição anterior que

$$\int_0^1 x \, dx = \frac{1}{2}$$

2 Seja $k \in \mathbb{R}$. Sabendo que f definida por f(x) = k é integrável no intervalo [a, b], mostre usando a proposição anterior que

$$\int_a^b k \, dx = k(b-a)$$

Obs. 4.9

O cálculo do valor de $\int_a^b f(x) dx$ usando a definição pode por vezes ser complicado. Mais à frente veremos como determinar o valor do integral conhecendo apenas uma primitiva de f em [a,b].

Caraterização das funções integráveis

Prop. 4.10

Seja f uma f.r.v.r definida em [a, b]. Então f é integrável em [a, b] se e só se, para todo o $\epsilon > 0$, existe uma partição $\mathcal{P} = \{x_0, x_1, \cdots, x_n\}$ do intervalo [a, b] tal que, para todas as seleções $\mathcal{C} = \{x_1^*, x_2^*, \cdots, x_n^*\}$ e $\mathcal{C}' = \{x_1', x_2', \cdots, x_n'\}$ de \mathcal{P} , se tem

$$\sum_{i=1}^{n} |f(x_i^*) - f(x_i')|(x_i - x_{i-1}) < \epsilon.$$

Exer. 4.11

Verifique que a função definida por

$$h(x) = \left\{ egin{array}{ll} 0 & \textit{se} & x \in \mathbb{Q} \ 1 & \textit{se} & x \in \mathbb{R} \setminus \mathbb{Q} \end{array}
ight.$$

é limitada mas não é integrável em [0, 1].

Prop. 4.12

Seja $f:[a,b]\to\mathbb{R}$ uma função. Se f é integrável em [a,b] então f é limitada em [a,b].

Obs. 4.13

- A proposição anterior permite concluir que f não é limitada em $[a, b] \Rightarrow f$ não é integrável em [a, b].
- A proposição anterior é apenas necessária, isto é, existem funções limitadas num intervalo que não são integráveis nesse intervalo (ver Exer. 6.11).

Exer. 4.14

Mostre que a função f definida por

$$f(x) = \begin{cases} \frac{1}{x} & se \quad x \neq 0 \\ 0 & se \quad x = 0 \end{cases}$$

não é integrável em qualquer intervalo [a, b], onde a < 0 < b.

Prop. 4.15

Seja $f: [a, b] \to \mathbb{R}$ uma função.

- **1** Se f for contínua em [a, b] então f é integrável em [a, b].
- 2 Se f for limitada em [a, b] e descontínua num número finito de pontos então f é integrável em [a, b].
- \blacksquare Se f for monótona em [a,b] então f é integrável em [a,b].

Prop. 4.16

Sejam f e g funções definidas em [a,b]. Se f é integrável em [a,b] e g difere de f apenas num número finito de pontos (isto é, f(x) = g(x), para todo o $x \in [a,b]$, exceto para um número finito de valores de x), então

g é integrável em
$$[a, b]$$
 e $\int_a^b g(x) dx = \int_a^b f(x) dx$.

Exer. 4.17

Diga, justificando, se as seguintes funções são integráveis no intervalo considerado:

1
$$f(x) = \cos(x^2 - 2x)$$
, em [0, 4]

$$\mathbf{2} \ f(x) = \left\{ \begin{array}{ll} \operatorname{tg} x & \operatorname{se} & x \in \left[0, \frac{\pi}{2}\right] \\ 2 & \operatorname{se} & x = \frac{\pi}{2} \end{array} \right., \ \operatorname{em} \left[0, \frac{\pi}{2}\right]$$

$$\mathbf{3} \ f(x) = \left\{ \begin{array}{ll} x+1 & \text{se} & x \in [-2,0[\\ 2 & \text{se} & x=0 \\ x & \text{se} & x \in]0,1] \end{array} \right. , \ \text{em} \ [-2,1]$$

$$\mathbf{4} \ f(x) = \left\{ \begin{array}{ll} x+1 & \text{se} \quad x \in [3,7] \ \text{e} \quad x \not \in \mathbb{N} \\ 1 & \text{se} \quad x \in [3,7] \cap \mathbb{N} \end{array} \right., \ \text{em} \ [3,7]$$

Prop. 4.18

Sejam f e g funções integráveis em [a, b] e $\alpha \in \mathbb{R}$.

If
$$f + g$$
 é integrável em $[a, b]$ e
$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx;$$

2
$$\alpha f$$
 é integrável em $[a,b]$ e $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$;

3
$$f \cdot g$$
 é integrável em $[a, b]$;

4
$$f$$
 é integrável em qualquer sub-intervalo $[c, d]$ de $[a, b]$;

5 Se
$$c \in]a, b[$$
, então f é integrável em $[a, c]$ e em $[c, b]$ e

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx;$$

Prop. 4.18 (cont.)

6 Se
$$f(x) \ge 0$$
, para todo o $x \in [a, b]$, então $\int_a^b f(x) dx \ge 0$;

7 Se
$$f(x) \le g(x)$$
, para todo o $x \in [a, b]$, então

$$\int_a^b f(x) \, dx \le \int_a^b g(x) \, dx;$$

8 Se
$$m \le f(x) \le M$$
, para todo o $x \in [a, b]$, onde $m, M \in \mathbb{R}$, então

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a);$$

$$|f| \text{ \'e integrável em } [a,b] \text{ e} \left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx \, .$$

Exer. 4.19

- 2 Sabendo que

$$\int_1^3 f(x)\,dx = 5 \ \text{e} \ \int_7^1 f(x)\,dx = -11,$$
 calcule
$$\int_3^7 f(x)\,dx.$$

Mostre que se f é uma função contínua e estritamente crescente no intervalo [1,3], então

$$f(1) < \frac{1}{2} \int_{1}^{3} f(x) dx < f(3).$$

Teo. 4.20

Então

Seja f uma função integrável em [a, b] e

$$F(x) = \int_{0}^{x} f(t) dt.$$

(i) F é contínua em [a, b];

(ii) se f é contínua em $c \in]a, b[$, então F é diferenciável em c e F'(c) = f(c).

Cor. 4.21

Seja f uma função contínua em [a, b] e $F(x) = \int_a^x f(t) dt$. Então F é diferenciável em [a, b] e tem-se que

isto é,
$$F'(x) = f(x), \ \forall x \in [a, b],$$

$$\left(\int_a^x f(t)\,dt\right)'=f(x),\ \forall x\in[a,b].$$

Exer. 4.22

I Calcule F'(x) sendo F a f.r.v.r. dada por

(a)
$$F(x) = \int_{1}^{x} (\sin t^2 + e^{-t^2}) dt$$
 (b) $F(x) = \int_{1}^{2} \cos t^4 dt$

2 Seja f a função definida em \mathbb{R}^+ por $f(x) = x \ln \left(\frac{1}{x}\right)$ e seja

$$F(x) = \int_{1}^{x} f(t) dt$$
, para $x > 1$.

Justifique que F é diferenciável em x = 2 e calcule F'(2).

Mostre que se f é uma função contínua e não negativa em [a,b] e $\int_a^b f(x) dx = 0$, então f(x) = 0, $\forall x \in [a,b]$.

Sugestão: Considere a função $F(t) = \int_a^t f(x) dx$ e use o Teo. 6.20.

Cor. 4.23

Seja f uma função contínua num intervalo [a, b]. Então existe $c \in]a, b[$ tal que

$$\int_a^b f(t) dt = f(c)(b-a) .$$

Exer. 4.24

Seja $f(x) = x^2$ e $F(x) = \int_{1}^{x} f(t)dt$.

- **1** Justifique que a função F é contínua em [1,4].
- **2** Calcule F(1) e F'(2).
- Mostre que existe um $c \in]1, 4[$ tal que $F(4) = 3c^2$.

Cor. 4.25

Se f é contínua em [a, b], então $F(x) = \int_a^x f(t)dt$, $x \in [a, b]$, é uma primitiva de f em [a, b].

Cor. 4.26

Sejam I um intervalo aberto de \mathbb{R} , $f:[a,b]\to\mathbb{R}$ uma função contínua em]a,b[e $g_1:I\to\mathbb{R}$ e $g_2:I\to\mathbb{R}$ duas funções diferenciáveis em I tais que $g_1(I)\subseteq]a,b[$ e $g_2(I)\subseteq]a,b[$.

Então a função H definida em I por

$$H(x) = \int_{g_2(x)}^{g_2(x)} f(t) dt,$$

é diferenciável em I e, $\forall x \in I$,

$$H'(x) = f(g_2(x))g_2'(x) - f(g_1(x))g_1'(x)$$
.

Exer. 4.27

I Calcule F'(x) sendo F a f.r.v.r. dada por

(a)
$$F(x) = \int_{0.3}^{\cos x} \ln(t^2 + 1) dt$$
 (b) $F(x) = x^3 \int_{1}^{x} e^{-t^2} dt$

2 Determine $k \in \mathbb{R}$ de modo que F'(1) = 0, sendo F a função definida em \mathbb{R}^+ por

$$F(x) = \int_{-\infty}^{k \ln x} e^{-t^2} dt.$$

3 Considere a função F definida em $\mathbb R$ por

$$F(x) = \int_0^{x^2} (4 + \sin t) dt.$$

- (a) Calcule F'(x) para todo o $x \in \mathbb{R}$.
- (b) Estude a função F quanto à monotonia e existência de extremos locais.

Exer. 4.28

1 Considere a função F definida em $\mathbb R$ por

$$F(x) = \int_{0}^{x^3} t e^{\operatorname{sen} t} dt.$$

- (a) Justifique que F é diferenciável em \mathbb{R} e determine F'(x).
- (b) Calcule $\lim_{x\to 0} \frac{F(x)}{\text{sen } x}$
- 2 Seja $f:\mathbb{R} \to \mathbb{R}$ um função contínua. Considere a função φ dada por

$$\varphi(x) = \int_{-x}^{1+x^2} f(t) dt, \quad x \in \mathbb{R}.$$

- (a) Justifique que φ é diferenciável em $\mathbb R$ e determine $\varphi'(x)$.
- (b) Mostre que $\lim_{x\to 0} \frac{\varphi(x)}{x} = -f(1)$.

Se $f:[a,b]\to\mathbb{R}$ é contínua em [a,b] e se $F:[a,b]\to\mathbb{R}$ é uma primitiva de f então

$$\int^b f(x) dx = F(b) - F(a) .$$

Obs. 4.30

Notação: $F(b) - F(a) = F(x)\Big|_{a}^{b} = \Big[F(x)\Big]_{a}^{b}$

Exemplos de aplicação:

$$\int_{1}^{2} (x^{2} - 1) dx = \left[\frac{x^{3}}{3} - x \right]_{1}^{2} = \frac{8}{3} - 2 - \left(\frac{1}{3} - 1 \right) = \frac{4}{3}$$

$$\int_{e}^{e^{2}} \frac{1}{y \ln y} dy = \left[\ln |\ln y| \right]_{e}^{e^{2}} = \ln |\ln(e^{2})| - \ln |\ln(e)| = \ln(2)$$

Exer. 4.31

(a)
$$\int_0^1 \frac{2x}{x^2 + 1} dx$$
 (d) $\int_3^{11} \frac{1}{\sqrt{2x + 3}} dx$

(b)
$$\int_{-\pi}^{0} \text{sen}(3x) dx$$
 (e) $\int_{e}^{e^2} \frac{1}{x(\ln x)^2} dx$

(c)
$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$$
 (f) $\int_{-1}^0 \frac{1}{x^2+2x-3} dx$

2 Calcule
$$\int_{-1}^{1} f(x) dx$$
 onde $f(x) = \begin{cases} \frac{2}{1+x^2} & \text{se } x \in [-1,0[\\ 7 & \text{se } x = 0\\ \frac{1}{1+x} & \text{se } x \in]0,1] \end{cases}$

$$\int_{a}^{b} u'v \, dx = \left[uv\right]_{a}^{b} - \int_{a}^{b} uv' \, dx.$$

Exemplo de aplicação:

Exer. 4.33

Calcule: (a)
$$\int_0^1 (x+2)e^x dx$$
 (b) $\int_1^e x \ln x dx$

Sejam f uma função contínua em I e

$$\varphi: J \longrightarrow I \\
t \mapsto x = \varphi(t)$$

diferenciável em J e tal que φ' é contínua em J. Sejam $a,b\in I$ e $c,d\in J$ tais que $\varphi(c)=a$ e $\varphi(d)=b$. Então

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(\varphi(t))\varphi'(t) dt.$$

I e J denotam intervalos não degenerados de \mathbb{R} .

Exer. 4.36

Calcule: (a) $\int_{-1}^{\ln 2} \frac{1}{e^x + 4} dx$ (b) $\int_{0}^{1} \sqrt{4 - x^2} dx$

Se f é uma função contínua em [a,b] tal que $f(x) \ge 0$, $\forall x \in [a,b]$, então a área da região plana delimitada pelo gráfico de f e pelas retas y=0, x=a e x=b é dada por

$$\int_a^b f(x) \, dx.$$

Ilustração gráfica

$$A = \int_{a}^{b} f(x) \, dx$$

Se f é uma função contínua em [a, b] tal que $f(x) \le 0$, $\forall x \in [a, b]$, então a área da região plana delimitada pelo gráfico de f e pelas retas y = 0, x = a e x = b é dada por

$$-\int_a^b f(x)\,dx.$$

Ilustração gráfica

$$A = -\int_a^b f(x) \, dx$$

Se f e g são funções contínuas em [a, b] tais que $f(x) \ge g(x)$, $\forall x \in [a, b]$, então a área da região plana delimitada pelos gráficos de f e de g e pelas retas x = a e x = b é dada por

$$\int_{2}^{b} (f(x) - g(x)) dx.$$

Ilustração gráfica

$$y = g(x)$$
 $A = \int_a^b (f(x) - g(x)) dx$

Exer. 4.40

- **1** Calcule a área da região delimitada pelos gráficos das funções $f(x) = \frac{1}{x}$ e $g(x) = x^2$ e pelas retas x = 2 e y = 0.
- **2** Calcule a área da região do plano situada entre $x = -\frac{1}{2}$ e x = 0 e limitada pelo eixo das abcissas e pelo gráfico da função h definida por

$$h(x) = \frac{\arcsin x}{\sqrt{1 - x^2}}$$

- Seja $A = \{(x, y) \in \mathbb{R}^2 : y \ge (x 3)^2, y \ge x 1, y \le 4\}.$
 - (a) Represente geometricamente a região A.
 - (b) Calcule o valor da área da região A.

Exer. 4.41

Calcule a área da seguinte região sombreada, onde

$$f(x) = \begin{cases} (x+1)^3 + 1 & \text{se } x \le 0 \\ 2^{x+1} & \text{se } x > 0 \end{cases}.$$

119

Soluções Capítulo 4

- 4.3. Por exemplo: $\mathcal{P} = \{0, 1, 3, 4\}$ $C = \{0, 2, 4\}$
 - $2. 2\sqrt{2} + 2$
- 4.17.
 - 1. Sim
 - 2. Não
 - 3. Sim
 - 4. Sim
- 4.19. 2. 6
- 4.22.
 - 1. (a) $sen(x^2) + e^{-x^2}$ (b) $-\cos(x^4)$
 - $2. -2 \ln 2$
- 4.24.
 - 2. F(1) = 0; F'(2) = 4

- 4.27.
 - 1. (a) $-\sec x \ln(\cos^2 x + 1) \frac{1}{3x^2 \ln(x^6 + 1)}$ (b) $3x^2 \int_1^x e^{-t^2} + x^3 e^{-x^2}$ (e) $\frac{1}{2}$ (f) $-\frac{\ln 3}{4}$ 2. $\frac{\pi}{2} + \ln 2$
 - 2. $k = e^{-1}$
 - 3. (a) $2x(4 + sen(x^2))$
 - (b) Est. decresc. em ℝ⁻ Est. cresc. em \mathbb{R}^+
 - Mín 0 em x = 0
- 4.28.
 - 1. (a) $3x^5e^{\text{sen}(x^3)}$
 - (b) 0
- 2. (a) $2x f(1+x^2) e^x f(e^x)$
- 4.31.
 - 1. (a) ln 2
 - (b) $-\frac{2}{3}$ (c) $\frac{\pi}{6}$ (d) 2

- 4.33. (a) 2e - 1
 - (b) $\frac{e^2+1}{4}$
- 4.36.
 - (a) $\frac{\ln 3}{4}$ (b) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$
- 4.40.
 - 1. $\frac{1}{2} + \ln 2$ 2. $\frac{\pi^2}{72}$
 - 3. (b) $\frac{37}{6}$
- 4.41. 6 $-\frac{2}{\ln 2}$

Integrais Impróprios

Integrais Impróprios

Obs. 5.1

A definição de integral de Riemann exige que a função integranda, f, esteja definida num intervalo fechado e limitado, I, e que f seja limitada. Vamos agora estender este conceito omitindo uma (ou as duas) dessas condições, passando ao estudo do que chamamos Integrais Impróprios.

Os Integrais Impróprios podem ser de três espécies:

- 1.ª Espécie: / é ilimitado
- 2.ª Espécie: f é ilimitada ou não definida em alguns pontos de l
- **3. Espécie**: *I* é ilimitado e *f* é ilimitada ou não definida em alguns pontos de *I*

Integral impróprio de 1.ª espécie no limite superior de integração Seja $f: [a, +\infty[\to \mathbb{R}$ uma função integrável em $[a, t], \forall t \geq a$.

Se existe e é finito o limite

$$\lim_{t\to+\infty}\int_a^t f(x)\,dx$$

então o integral impróprio $\int_{a}^{+\infty} f(x) dx$ diz-se convergente e escreve-se

$$\int_{a}^{+\infty} f(x) dx = \lim_{t \to +\infty} \int_{a}^{t} f(x) dx.$$

Caso contrário, o integral em causa diz-se divergente.

Exemplo de aplicação:

Como

$$\lim_{t \to +\infty} \int_0^t \frac{1}{1+x^2} dx = \lim_{t \to +\infty} \left[\operatorname{arctg}(x) \right]_0^t$$
$$= \lim_{t \to +\infty} \operatorname{arctg} t$$
$$= \frac{\pi}{2},$$

o integral impróprio $\int_0^{+\infty} \frac{1}{1+x^2} dx$ é convergente e

$$\int_0^{+\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} \, .$$

Exer. 5.3

- 1 Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:
 - (a) $\int_{\pi}^{+\infty} \cos(x) dx$ (b) $\int_{2}^{+\infty} \frac{1}{(x+2)^2} dx$ (c) $\int_{1}^{+\infty} \frac{(\ln x)^3}{x} dx$
- Prove que o integral impróprio $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx$ é: divergente se $\alpha \leq 1$; convergente se $\alpha > 1$ e, neste caso, $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx = \frac{1}{\alpha 1}$.
- Prove que o integral impróprio $\int_0^{+\infty} \mathrm{e}^{\beta x} \, dx$ é: divergente se $\beta \geq 0$; convergente se $\beta < 0$ e, neste caso, $\int_0^{+\infty} \mathrm{e}^{\beta x} \, dx = -\frac{1}{\beta}$.

Integral impróprio de 1.ª espécie no limite inferior de integração

Seja $f:]-\infty, a] \to \mathbb{R}$ uma função integrável em $[t, a], \ \forall t \leq a$. Se existe e é finito o limite

$$\lim_{t\to-\infty}\int_{a}^{a}f(x)\,dx$$

então o integral impróprio $\int_{-\infty}^{a} f(x) dx$ diz-se convergente e escreve-se

$$\int_{-\infty}^{a} f(x) dx = \lim_{t \to -\infty} \int_{t}^{a} f(x) dx.$$

Caso contrário, o integral em causa diz-se divergente.

Exemplo de aplicação:

Como

$$\lim_{t \to -\infty} \int_{t}^{1} \frac{1}{1+x^{2}} dx = \lim_{t \to -\infty} [\operatorname{arctg}(x)]_{t}^{1}$$

$$= \lim_{t \to -\infty} (\frac{\pi}{4} - \operatorname{arctg} t)$$

$$= \frac{3\pi}{4},$$

o integral impróprio $\int_{-\infty}^{1} \frac{1}{1+x^2} dx$ é convergente e

$$\int_{-\infty}^{1} \frac{1}{1+x^2} \, dx = \frac{3\pi}{4} \, .$$

Exer. 5.5

■ Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:

(a)
$$\int_{-\infty}^{0} xe^{-x^2} dx$$

(b)
$$\int_{-\infty}^{2} \frac{1}{4-x} dx$$

(c)
$$\int_{0.0}^{0} \frac{4}{1+(x+1)^2} dx$$

2 Estude a natureza do seguinte integral impróprio em função do parâmetro $a \in \mathbb{R}^+ \setminus \{1\}$

$$\int_{-\infty}^{0} a^{x} dx$$

Prop. 5.6

Sejam $f: [a, +\infty[\to \mathbb{R} \text{ e } g: [a, +\infty[\to \mathbb{R} \text{ funções integráveis em } [a, t], \forall t \geq a$. Então verificam-se as seguintes condições:

I Se
$$\int_{a}^{+\infty} f(x) dx$$
 e $\int_{a}^{+\infty} g(x) dx$ são convergentes, então
$$\int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx$$
 é convergente, $\forall \alpha, \beta \in \mathbb{R}$, e
$$\int_{a}^{+\infty} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{+\infty} f(x) dx + \beta \int_{a}^{+\infty} g(x) dx.$$

2 Se
$$\int_{a}^{+\infty} f(x) dx$$
 é divergente, então $\int_{a}^{+\infty} (\alpha f(x)) dx$ é divergente, $\forall \alpha \in \mathbb{R} \setminus \{0\}$.

Obs. 5.7

Resultado análogo é válido para integrais impróprios de 1.ª espécie no limite inferior de integração.

Prop. 5.8

Sejam $f: [a, +\infty[\to \mathbb{R} \text{ uma função integrável em } [a, t], \ \forall t \geq a, \ e \ b > a.$ Então os integrais impróprios

$$\int_{a}^{+\infty} f(x) dx \quad e \quad \int_{b}^{+\infty} f(x) dx$$

têm a mesma natureza (*i.e.*, ou são ambos convergentes ou ambos divergentes). Em caso de convergência, tem-se que

$$\int_{a}^{+\infty} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{+\infty} f(x) dx.$$

Obs. 5.9

Resultado análogo, com as devidas adaptações, é válido para integrais impróprios de 1.ª espécie no limite inferior de integração.

Exemplos de aplicação:

1 Pelo Exercício 7.3.2 tem-se que

$$\int_{1}^{+\infty} \frac{1}{x^3} dx \text{ converge e que } \int_{1}^{+\infty} \frac{1}{x^3} dx = \frac{1}{2}.$$

Portanto

$$\int_{\frac{1}{2}}^{+\infty} \frac{1}{x^3} dx = \int_{\frac{1}{2}}^{1} \frac{1}{x^3} dx + \int_{1}^{+\infty} \frac{1}{x^3} dx = \frac{3}{2} + \frac{1}{2} = 2.$$

2 Como, atendendo ao Exercício 7.3.2, o integral impróprio

$$\int_{1}^{+\infty} x^{2} dx$$
 é divergente, então o integral impróprio
$$\int_{2}^{+\infty} x^{2} dx$$
 também é divergente.

Integral impróprio de $1.^o$ espécie em ambos os limites de integração Seja $f: \mathbb{R} \to \mathbb{R}$ uma função integrável em $[\alpha, \beta]$ para todos os $\alpha, \beta \in \mathbb{R}$ tais que $\alpha < \beta$.

1 Se, para algum $a \in \mathbb{R}$, os integrais impróprios

$$\int_{-\infty}^{a} f(x) dx \quad \text{e} \quad \int_{a}^{+\infty} f(x) dx \quad \text{são ambos convergentes}$$
 dizemos que o integral impróprio
$$\int_{-\infty}^{+\infty} f(x) dx \quad \text{é convergente}$$
 e escrevemos

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{+\infty} f(x) dx.$$

Def. 5.11 (cont.)

2 Se, para algum $a \in \mathbb{R}$, pelo menos um dos integrais impróprios

$$\int_{-\infty}^{a} f(x) dx \quad \text{ou} \quad \int_{a}^{+\infty} f(x) dx$$

é divergente dizemos que o integral impróprio $\int_{-\infty}^{+\infty} f(x) dx$ é divergente.

Exer. 5.12

Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:

(a)
$$\int_{-\infty}^{+\infty} x \, dx$$
 (b) $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, dx$ (c) $\int_{-\infty}^{+\infty} 2^x \, dx$

Prop. 5.13

Sejam f e g duas funções definidas em $[a, +\infty[$, integráveis em [a, t], $\forall t \geq a$, tais que

$$0 \le f(x) \le g(x) \; ,$$

para todo o $x \in [a, +\infty[$. Então:

(i) se
$$\int_{0}^{+\infty} g(x) dx$$
 é convergente, então $\int_{0}^{+\infty} f(x) dx$ é convergente.

(ii) se
$$\int_{-\pi}^{+\infty} f(x) dx$$
 é divergente, então $\int_{-\pi}^{+\infty} g(x) dx$ é divergente.

Obs. 5.14

Com ligeiras adaptações, pode enunciar-se o mesmo critério para integrais impróprios de 1.ª espécie, impróprios no limite inferior de integração.

Exemplo de aplicação:

Usando o Critério de Comparação estudar a natureza do integral

$$\int_{1}^{+\infty} \operatorname{sen} \frac{1}{x^2} dx.$$

Notar que, para todo o $x \in [1, +\infty[$ temos

$$0 \le \operatorname{sen} \frac{1}{x^2} \le \frac{1}{x^2}$$
 . (justifique!) (1)

Uma vez que o integral impróprio $\int_1^{+\infty} \frac{1}{x^2} dx$ é convergente e que a desigualdade (1) se verifica, pelo Critério de Comparação, o integral impróprio $\int_1^{+\infty} \sin \frac{1}{x^2} dx$ é convergente.

Prop. 5.15

Sejam f e g duas funções definidas em $[a, +\infty[$ e integráveis em $[a, t], \forall t \geq a$, tais que $f(x) \geq 0$ e g(x) > 0, $\forall x \in [a, +\infty[$. Seja

$$L = \lim_{x \to +\infty} \frac{f(x)}{g(x)} .$$

Então:

- (i) Se $L \in \mathbb{R}^+$, então $\int_a^{+\infty} f(x) dx$ e $\int_a^{+\infty} g(x) dx$ têm a mesma natureza.
- (ii) Se L=0 e $\int_a^{+\infty} g(x) dx$ é convergente, então $\int_a^{+\infty} f(x) dx$ é convergente.
- (iii) Se $L = +\infty$ e $\int_a^{+\infty} g(x) dx$ é divergente, então $\int_a^{+\infty} f(x) dx$ é divergente.

Exemplo de aplicação:

Usando o Critério do Limite estudar a natureza do integral

$$\int_{1}^{+\infty} \sin \frac{1}{x^2} dx.$$

Notar que, $\forall x \in [1, +\infty[$, sen $\frac{1}{x^2} \ge 0$ e $\frac{1}{x^2} > 0$. Além disso

$$L = \lim_{x \to +\infty} \frac{\operatorname{sen} \frac{1}{x^2}}{\frac{1}{2}} = 1.$$

Uma vez que $L \in \mathbb{R}^+$ e que $\int_1^{+\infty} \frac{1}{x^2} \, dx$ é convergente, pelo

Critério do Limite, o integral impróprio $\int_1^{+\infty} \sin \frac{1}{x^2} dx$ é convergente.

Obs. 5.16

Com ligeiras adaptações, pode enunciar-se o Critério do Limite para integrais impróprios de 1.ª espécie, impróprios no limite inferior de integração.

Exemplo de aplicação:

Estudo da natureza do integral impróprio $\int_{-\infty}^{0} \frac{e^{x}}{(x-1)^{2}} dx$. $\forall x \in]-\infty, 0], \frac{e^{x}}{(x-1)^{2}} > 0$ e $\frac{1}{(x-1)^{2}} > 0$.

Uma vez que

$$L = \lim_{x \to -\infty} \frac{\frac{e^{x}}{(x-1)^{2}}}{\frac{1}{(x-1)^{2}}} = \lim_{x \to -\infty} e^{x} = 0$$

e que $\int_{-\infty}^{0} \frac{1}{(x-1)^2} dx$ é convergente (verifique!), concluímos, pelo Critério do Limite, que $\int_{-\infty}^{0} \frac{e^x}{(x-1)^2} dx$ é convergente.

Exer. 5.17

Estude, utilizando o critério de comparação ou o critério do limite, a natureza dos seguintes integrais impróprios:

(a)
$$\int_{1}^{+\infty} \frac{\sin^2 x}{x^{\frac{5}{2}}} dx$$
 (d) $\int_{3}^{+\infty} \frac{x^2 + 1}{4 + \sqrt{x}} dx$

(b)
$$\int_{1}^{+\infty} \frac{5x^2 - 3}{x^8 + x - 1} dx$$
 (e) $\int_{1}^{+\infty} \frac{\cos^2(\frac{1}{x})}{x^7 + 2x + 1} dx$

(c)
$$\int_0^{+\infty} e^{x^2} dx$$
 (f) $\int_{-\infty}^0 \frac{x^3 + 3x}{2 + x^2} dx$

Seja $f: [a, +\infty[\to \mathbb{R} \text{ integrável em } [a, t], \text{ para todo o } t \in [a, +\infty[$. Dizemos que o integral impróprio

$$\int^{+\infty} f(x) \, dx$$

é absolutamente convergente, se o integral impróprio

$$\int_{a}^{+\infty} |f(x)| \, dx$$

é também convergente.

Prop. 5.19

Seja $f: [a, +\infty[\to \mathbb{R} \text{ integrável em } [a, t], \text{ para todo o } t \in [a, +\infty[.$ Se o integral impróprio

$$\int_{-\infty}^{+\infty} f(x)$$

é absolutamente convergente, então também é convergente.

Obs. 5.20

Com ligeiras adaptações, pode definir-se convergência absoluta e enunciar-se a mesma proposição para integrais impróprios de 1.ª espécie, impróprios no limite inferior de integração.

Exer. 5.21

Verifique se os seguintes integrais impróprios são absolutamente convergentes:

(a)
$$\int_{1}^{+\infty} \frac{\sin x}{x^2} \, dx$$

(b)
$$\int_{2}^{+\infty} \frac{(-1)^n}{1+2x^4} dx$$
, para todo o $n \in \mathbb{N}$

Integral impróprio de 2.ª espécie no limite inferior de integração

Seja $f:]a, b] \to \mathbb{R}$ uma função integrável em [t, b], $\forall a < t \leq b$. Se existe e é finito

$$\lim_{t\to a^+} \int_t^b f(x) \, dx$$

dizemos que o integral impróprio $\int_a^b f(x) dx$ é convergente e escrevemos, por definição,

$$\int_a^b f(x) dx = \lim_{t \to a^+} \int_t^b f(x) dx.$$

Integral impróprio de 2.ª espécie no limite de integração superior

Seja $f: [a, b] \to \mathbb{R}$ uma função integrável em [a, t], $\forall a \leq t < b$.

Se existe e é finito

$$\lim_{t \to b^{-}} \int_{a}^{t} f(x) \, dx$$

dizemos que o integral impróprio $\int_a^b f(x) dx$ é convergente e escrevemos, por definição,

$$\int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx.$$

Integral impróprio de $2.^a$ espécie em ambos os limites de integração Seja $f:]a, b[\to \mathbb{R}$ uma função integrável em $[t_1, t_2]$, para todos os t_1 e t_2 tais que $a < t_1 < t_2 < b$.

Dizemos que o integral impróprio $\int_a^b f(x) dx$ é convergente se, para algum $c \in]a, b[$, os integrais

$$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx$$

são ambos convergentes e escreve-se

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \, .$$

Integral impróprio de 2.ª espécie num ponto interior do intervalo de integração

Seja f uma função definida em [a,b] exceto possivelmente em $c \in]a,b[$, e integrável em [a,t], para todo o $a \leq t < c$ e em [r,b], para todo o $c < r \leq b$. Se os integrais impróprios

$$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx$$
 forem ambos convergentes,

então o integral impróprio $\int_a^b f(x) dx$ diz-se convergente e escreve-se

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Exer. 5.26

Determine a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor:

(a)
$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$$

(b)
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 - \sin x} dx$$

(c)
$$\int_{-3}^{3} \frac{x}{\sqrt{9-x^2}} dx$$

(d)
$$\int_{-2}^{1} \frac{1}{|x|} dx$$

(e)
$$\int_{0}^{3} \frac{1}{(x-1)(x-2)} dx$$

Propriedades dos integrais impróprios

Obs. 5.27

As propriedades, definições e critérios de convergência apresentados para os integrais de $1.^a$ espécie têm as suas versões para os integrais de $2.^a$ espécie.

Nos slides seguintes apresentamos esses resultados para o caso dos integrais de 2.ª espécie no limite inferior de integração, para os outros o estudo faz-se analogamente.

Prop. 5.28

Sejam $f:]a,b] \to \mathbb{R}$ e $g:]a,b] \to \mathbb{R}$ funções integráveis em [t,b], para todo o $t\in]a,b]$. Então verificam-se as seguintes condições:

I Se
$$\int_a^b f(x) dx$$
 e $\int_a^b g(x) dx$ são convergentes, então
$$\int_a^b (\alpha f(x) + \beta g(x)) dx$$
 é convergente, $\forall \alpha, \beta \in \mathbb{R}$, e
$$\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$
.

2 Se
$$\int_a^b f(x) dx$$
 é divergente, então $\int_a^b (\alpha f(x)) dx$ é divergente, para todo o $\alpha \in \mathbb{R} \setminus \{0\}$.

147

Prop. 5.29

Sejam $f: [a, b] \to \mathbb{R}$ uma função integrável em [t, b], para todo o $t \in]a, b]$, e a < b' < b. Então os integrais impróprios

$$\int_{a}^{b} f(x) dx \quad e \quad \int_{a}^{b'} f(x) dx$$

têm a mesma natureza (i.e., ou são ambos convergentes ou ambos divergentes). Em caso de convergência, tem-se que

$$\int_{a}^{b} f(x) dx = \int_{a}^{b'} f(x) dx + \int_{b'}^{b} f(x) dx.$$

Prop. 5.30

Sejam f e g duas funções definidas em]a, b], integráveis em [t, b], para todo o $t \in]a, b]$, tais que

$$0 \le f(x) \le g(x) ,$$

para todo o $x \in]a, b]$. Então:

(i) se
$$\int_a^b g(x) dx$$
 é convergente, então $\int_a^b f(x) dx$ é convergente.

(ii) se $\int_{a}^{b} f(x) dx$ é divergente, então $\int_{a}^{b} g(x) dx$ é divergente.

Prop. 5.31

Sejam f e g duas funções definidas em]a,b] e integráveis em [t,b], $\forall t \in]a,b]$, tais que $f(x) \geq 0$ e g(x) > 0, $\forall x \in]a,b]$. Seja

$$L = \lim_{x \to a^+} \frac{f(x)}{g(x)} .$$

Então:

- (i) Se $L \in \mathbb{R}^+$, então $\int_a^b f(x) \, dx$ e $\int_a^b g(x) \, dx$ têm a mesma natureza.
- (ii) Se L = 0 e $\int_a^b g(x) dx$ é convergente, então $\int_a^b f(x) dx$ é convergente.
- (iii) Se $L = +\infty$ e $\int_a^b g(x) dx$ é divergente, então $\int_a^b f(x) dx$ é divergente.

Def. 5.32

Seja $f:]a, b] \to \mathbb{R}$ integrável em [t, b], para todo o $t \in]a, b]$. Dizemos que o integral impróprio

$$\int_{a}^{b} f(x) dx \text{ \'e absolutamente convergente,}$$

se o integral impróprio

$$\int_{a}^{b} |f(x)| dx \text{ \'e tamb\'em convergente.}$$

Prop. 5.33

Seja $f:]a, b] \to \mathbb{R}$ integrável em [t, b], para todo o $t \in]a, b]$. Se o integral impróprio

$$\int_{a}^{b} f(x) dx$$

é absolutamente convergente, então também é convergente.

Exer. 5.34

1 Prove que o integral impróprio $\int_0^1 \frac{1}{x^{\alpha}} dx$ é: divergente se $\alpha \ge 1$;

convergente se $\alpha < 1$ e, neste caso, $\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \frac{1}{1 - \alpha}$.

2 Estude a natureza dos seguintes integrais impróprios:

(a)
$$\int_{0}^{1} \frac{\pi}{1 - \sqrt{x}} dx$$

(b)
$$\int_0^{\frac{\pi}{2}} \frac{\sin \sqrt{x}}{\sqrt[4]{x}} dx$$

Def. 5.35

Integral impróprio de 3.ª espécie do tipo $\int_{a}^{+\infty} f(x) dx$, onde f é ilimitada ou não está definida em x = a.

Seja $f:]a, +\infty[\to \mathbb{R}$ integrável em [t, t'], quaisquer que sejam $t, t' \in \mathbb{R}$ tais que a < t < t'.

Dizemos que o integral impróprio $\int_a^{+\infty} f(x) dx$ é convergente se, para algum $c \in]a, +\infty[$, os integrais impróprios $\int_a^c f(x) dx$ e $\int_c^{+\infty} f(x) dx$ forem ambos convergentes e escrevemos

$$\int_{a}^{+\infty} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$

Caso contrário, dizemos que o integral impróprio é divergente.

Def. 5.36

Integral impróprio de 3.ª espécie do tipo $\int_{-\infty}^{b} f(x) dx$, onde f é ilimitada ou não está definida em x = b.

Seja $f:]-\infty, b[\to \mathbb{R}$ integrável em [t,t'], quaisquer que sejam $t,t' \in \mathbb{R}$ tais que t < t' < b.

Dizemos que o integral impróprio $\int_{-\infty}^{b} f(x) dx$ é convergente se, para algum $c \in]-\infty, b[$, os integrais impróprios $\int_{-\infty}^{c} f(x) dx$ e $\int_{c}^{b} f(x) dx$ forem ambos convergentes e escrevemos

$$\int_{-\infty}^{b} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Caso contrário, dizemos que o integral impróprio é divergente.

Obs. 5.37

► Definem-se de modo análogo os integrais impróprios de 3.ª espécie dos tipos

$$\int_{a}^{+\infty} f(x) dx, \quad \int_{-\infty}^{b} f(x) dx \quad e \quad \int_{-\infty}^{+\infty} f(x) dx,$$

onde f não está definida ou é ilimitada em algum ponto do interior do intervalo de integração.

▶ Atendendo às definições apresentadas, para estudar a natureza de integrais impróprios de 3.ª espécie, devemos decompor o intervalo de integração de modo conveniente e estudar a natureza de integrais impróprios de 1.ª e de 2.ª espécies (correspondentes).

Exer. 5.38

1 Estude a natureza dos seguintes integrais impróprios e, em caso de convergência, calcule o seu valor.

(a)
$$\int_0^{+\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

(b)
$$\int_{-\infty}^{+\infty} \frac{1}{x^3} dx$$

2 Calcule, caso exista, $\int_{-\infty}^{+\infty} f(x) dx$ sendo

$$f(x) = \begin{cases} \frac{1}{x-1} & \text{se } x \le 0\\ \arctan x & \text{se } x > 0 \end{cases}$$

- 5.3.
 - 1. (a) Divergente
 - (b) $\frac{1}{4}$
 - (c) Divergente
- 5.5.
 - 1. (a) $-\frac{1}{2}$
 - (b) Divergente
 - (c) 3π 2. Diverge se 0 < a < 1;
 - 2. Diverge se 0 < a <Converge se a > 1e tem valor $\frac{1}{\ln a}$
- 5.12.
 - (a) Divergente
 - (b) π
 - (c) Divergente
- 5.17.
 - (a) Convergente
 - (b) Convergente
 - (c) Divergente
 - (d) Divergente

- (e) Convergente
- (f) Divergente
- 5.21.
 - (a) Sim
 - (b) Sim
- 5.26.
 - (a) $\frac{\pi}{2}$
 - (b) Divergente
 - (c)
 - (d) Divergente
 - (e) Divergente
- 5.34.
 - 2. (a) Divergente
 - (b) Convergente
- 5.38.
 - 1. (a) 2
 - (b) Divergente
 - 2. Divergente

Séries Numéricas

Seja (a_n) uma sucessão de números reais. Chama-se **série numérica de termo geral** a_n à "soma de todos os termos da sucessão $(a_n)_n$ ":

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n = \sum_{n \ge 1} a_n$$

A sucessão das somas parciais $(S_n)_n$ associada a esta série é a sucessão definida por

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n$$

Obs. 6.2

Um exemplo de série é a série harmónica dada por

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots = \sum_{n=1}^{\infty} \frac{1}{n}.$$

Dizemos que uma série $\sum_{n=1}^{\infty} a_n$ é **convergente** se $\lim_{n\to+\infty} S_n$ existe e é finito, caso em que é designado por **soma da série** e escrevemos

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to +\infty} S_n$$

Se $(S_n)_n$ é divergente, dizemos que a série é **divergente**.

Exer. 6.4

Estude a convergência das seguintes séries:

(a)
$$\sum_{n=1}^{+\infty} (-1)^n$$
 (b) $\sum_{n=1}^{+\infty} \alpha, \ \alpha \in \mathbb{R}$ (c) $\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$

Uma **série geométrica** de *razão* $r \in \mathbb{R}$, é uma série do tipo

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^{n},$$

onde $a \in \mathbb{R}$ é o primeiro termo da série.

Obs. 6.6

Note-se que o termo geral da sucessão de somas parciais é dado por

$$S_n = \begin{cases} na, & \text{se } r = 1\\ a\frac{1 - r^n}{1 - r}, & \text{se } r \neq 1 \end{cases}$$

Obs. 6.6 (cont.)

Conclui-se assim que, para $a \neq 0$:

$$\displaystyle \sum_{n=1}^{\infty} a r^{n-1}$$
 converge se e só se $|r| < 1$

e nesse caso

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$

Exer. 6.7

Verifique se as seguintes séries são convergentes e em caso afirmativo calcule a sua soma:

(a)
$$\sum_{n=0}^{+\infty} \left(\frac{99}{100}\right)^n$$
 (b) $\sum_{n=1}^{+\infty} (-1)^n \left(\frac{3}{e}\right)^n$ (c) $\sum_{n=1}^{+\infty} \frac{2^{n-1}}{3^n}$ (d) $\sum_{n=3}^{+\infty} 2^{-n}$

Séries redutíveis (ou de Mengoli ou telescópicas) 162

Def. 6.8

Uma série $\sum_{n=0}^{\infty} a_n$ diz-se **redutível** (ou de **Mengoli** ou **telescópica**)

se o seu termo geral se puder escrever numa das seguintes formas:

$$a_n = u_n - u_{n+p}$$
 ou $a_n = u_{n+p} - u_n$

onde (u_n) é uma sucessão e $p \in \mathbb{N}$.

Obs. 6.9

No caso em que $a_n = u_n - u_{n+p}$

$$S_n = \sum_{k=0}^{n} u_k - \sum_{k=0}^{n+p} u_k = u_1 + \cdots + u_p - (u_{n+1} + \cdots + u_{n+p})$$

e no caso em que $a_n = u_{n+p} - u_n$

$$S_n = \sum_{k=1}^n a_k = \sum_{k=n+1}^{n+p} u_k - \sum_{k=1}^p u_k = u_{n+1} + \ldots + u_{n+p} - (u_1 + \ldots + u_p)$$

Séries redutíveis (ou de Mengoli ou telescópicas) 163

Obs. 6.9 (cont.)

Assim, a série é convergente se $\lim_{n\to+\infty} (u_{n+1}+\cdots+u_{n+p})$ for finito.

Além disso, se $\lim_{n\to+\infty} u_n = k \in \mathbb{R}$, então $\lim_{n\to+\infty} (u_{n+1} + \cdots + u_{n+p}) = pk$.

Exer. 6.10

Determine a soma (se existir) das seguintes séries:

(a)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$
 (d) $\sum_{n=1}^{+\infty} \left(\frac{1}{2n} - \frac{1}{2n+2} \right)$

(b)
$$\sum_{n=1}^{+\infty} \ln\left(\frac{n}{n+1}\right)$$
 (e) $\sum_{n=2}^{+\infty} \frac{3}{(n+1)(n+4)}$

(c)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
 (f) $\sum_{n=2}^{+\infty} \frac{2}{n^2-1}$

As séries

$$\sum_{n=1}^{\infty} a_n \in \sum_{n=1}^{\infty} a_n = a_{p+1} + a_{p+2} + \cdots, \forall p \in \mathbb{N}$$

têm a mesma natureza. Assim, a natureza de uma série não depende dos seus primeiros termos.

Obs. 6.12

Como
$$S_n = \sum_{k=1}^n a_k$$
 e $S'_n = \sum_{k=p+1}^n a_k$ (com $n > p+1$), temos

$$S_n = S_n' + \sum_{k=1}^{p} a_k$$
, e, portanto, se existir um dos limites o outro também

existe:

$$\lim_{n} S_{n} = \lim_{n} S'_{n} + \sum_{k=1}^{p} a_{k}$$

Se a série
$$\sum_{n=0}^{\infty} a_n$$
 é convergente, então $\lim_{n\to\infty} a_n = 0$.

Obs. 6.14

O resultado anterior é considerado como um primeiro critério de convergência de uma série. Na verdade, o critério é útil na sua forma contrapositiva, isto é:

se
$$\lim_{n\to\infty} a_n \neq 0$$
 ou não existir $\Rightarrow \sum_{n=1}^{\infty} a_n$ é divergente

revelando-se, assim, como um "critério de divergência". Note-se que se $\lim_{n\to\infty} a_n = 0$, nada se pode concluir sobre a natureza da série.

Exer. 6.15

Analise a natureza das séries seguintes à luz da condição necessária de convergência:

(a)
$$\sum_{n=1}^{+\infty} (-1)^n$$
 (d) $\sum_{n=1}^{+\infty} \sqrt[n]{n}$

(b)
$$\sum_{n=1}^{+\infty} \ln\left(\frac{n}{n+1}\right)$$
 (e)
$$\sum_{n=1}^{+\infty} \left(1 + \frac{2}{n}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \operatorname{III}\left(\frac{1+\frac{1}{n}}{n}\right)$$

(c) $\sum_{n=1}^{+\infty} \frac{1}{n}$
(f) $\sum_{n=1}^{+\infty} \frac{1}{1+\left(\frac{7}{10}\right)^n}$

(a) Sejam $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} b_n$ duas séries numéricas convergentes com

somas A e B respetivamente. Então a série $\sum_{n=1}^{\infty} (a_n + b_n)$ é convergente e

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n = A + B$$

(b) Se $\sum_{n=1}^{\infty} a_n$ é convergente e tem soma A, então $\forall \lambda \in \mathbb{R}$, $\sum_{n=1}^{\infty} \lambda a_n$ é convergente e tem soma λA , $\sum_{n=1}^{\infty} \lambda a_n = \lambda A.$

Teo. 6.16 (cont.)

- (c) Se $\sum_{n=1}^{\infty} a_n$ é divergente então $\forall \lambda \in \mathbb{R} \setminus \{0\}$, $\sum_{n=1}^{\infty} \lambda a_n$ é divergente.
- (d) Se $\sum_{n=1}^{\infty} a_n$ é convergente e $\sum_{n=1}^{\infty} b_n$ é divergente, então a série $\sum_{n=1}^{\infty} (a_n + b_n)$ é divergente.

Obs. 6.17

Note-se que o resultado anterior nada diz quanto ao caso de ambas as séries serem divergentes. Na verdade, a série resultante $\sum_{n=0}^{\infty} (a_n + b_n)$ tanto pode ser convergente como divergente.

Exer. 6.18

Verifique se as seguintes séries são convergentes e, em caso afirmativo, determine a sua soma:

(a)
$$\sum_{n=1}^{+\infty} 50 \ln \left(\frac{n}{n+1} \right)$$

(c)
$$\sum_{n=1}^{+\infty} \left[\left(\frac{7}{11} \right)^n + \left(\frac{10}{3} \right)^n \right]$$

(b)
$$\sum_{n=2}^{+\infty} \frac{12}{n^2 - 1}$$
 (d) $\sum_{n=1}^{+\infty} \frac{3^n - 2^n}{4^n}$

Dizemos que a série $\sum_{n=1}^{\infty} a_n$ é uma **série de termos não negativos** se, $\forall n \in \mathbb{N}$, se tem $a_n > 0$.

Exer. 6.20

Verifique quais das seguintes séries são séries de termos não negativos:

(a)
$$\sum_{n=1}^{+\infty} (-1)^n$$
 (c) $\sum_{n=1}^{+\infty} \cos(n)$

(b)
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$
 (d)
$$\sum_{n=1}^{+\infty} \cos \left(\frac{1}{n} \right)$$

Seja $\sum_{n=1}^{+\infty} a_n$ uma série de termos não negativos. Então a sucessão das somas parciais associada à série é monótona crescente.

Teo. 6.22

Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos. Então, a série é convergente se e só se a sua sucessão das somas parciais é limitada superiormente.

Seja $\sum_{n=1}^{\infty} a_n$ uma série de termos não negativos e $f:[1,+\infty[\to \mathbb{R}]]$ uma função decrescente e tal que $f(n)=a_n, \, \forall n\in \mathbb{N}$. Então

$$\sum_{n=1}^{\infty} a_n \quad e \quad \int_1^{+\infty} f(x) dx$$

têm a mesma natureza.

Exer. 6.24

Estude a natureza das seguintes séries:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (c) $\sum_{n=2}^{+\infty} \frac{1}{n \ln(n)}$

Às séries da forma

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \quad \alpha \in \mathbb{R}$$

chamamos séries de Dirichlet (ou série harmónica de ordem α).

Obs. 6.26

A convergência destas séries é analisada usando o critério do integral. É fácil ver que (exercício!)

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ \'e}: \begin{cases} \text{convergente se } \alpha > 1 \\ \text{divergente se } \alpha \leq 1 \end{cases}.$$

Exer. 6.27

Indique a natureza das seguintes séries

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[10]{n^5}}$$

(d)
$$\sum_{n=1}^{\infty} n^{-1/2}$$

Obs. 6.28

Convém notar que, na utilização do critério do integral, o valor obtido na resolução do integral impróprio quando este é convergente **não é** a soma da respectiva série.

Suponha-se que existe $n_0 \in \mathbb{N}$ tal que

$$0 \le a_n \le b_n$$
, $\forall n \ge n_0, n_0 \in \mathbb{N}$.

Então:

(a)
$$\sum_{n=1}^{\infty} b_n$$
 converge $\Rightarrow \sum_{n=1}^{\infty} a_n$ converge.

(b)
$$\sum_{n=1}^{\infty} a_n$$
 diverge $\Rightarrow \sum_{n=1}^{\infty} b_n$ diverge.

Obs. 6.30

Convém notar que, se $\sum_{n=1}^{\infty} b_n$ for divergente ou $\sum_{n=1}^{\infty} a_n$ for convergente, nada se pode concluir.

Sejam
$$\sum a_n$$
 e $\sum b_n$ duas séries tais que $a_n \geq 0$ e $b_n > 0 \ \forall n \in \mathbb{N}$.

Suponha-se que existe o limite

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}$$

Então verificam-se as condições seguintes:

(a) se $L \in \mathbb{R}^+$, então as séries têm a mesma natureza.

(b) se
$$L = 0$$
, $\sum_{n=1}^{\infty} b_n$ converge $\Rightarrow \sum_{n=1}^{\infty} a_n$ converge.

(c) se
$$L = +\infty$$
, $\sum_{n=1}^{\infty} b_n$ diverge $\Rightarrow \sum_{n=1}^{\infty} a_n$ diverge.

Obs. 6.32

Podemos assim concluir que a série $\sum_{n=1}^{\infty} b_n$ funciona como referência, sendo necessário conhecer à partida a sua natureza. A escolha desta série é normalmente sugerida pela forma da série

$$\sum_{n=1}^{\infty} a_n$$
. Em muitas situações, as séries de Dirichlet
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 revelam-se de grande utilidade (como referência).

Exer. 6.33

Use o critério da comparação ou o critério do limite para estudar a natureza das séries seguintes:

(a)
$$\sum_{n=1}^{\infty} \frac{\operatorname{sen}^2(n)}{n^4}$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{37n^3 + 2}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n^3}}$$

(f)
$$\sum_{n=1}^{\infty} \operatorname{sen}\left(\frac{1}{n}\right)$$

(g) $\sum_{n=0}^{\infty} \frac{\arctan(1/n)}{n^2}$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{17n - 13}$$
(d)
$$\sum_{n=1}^{\infty} \frac{10n^2}{n^6 + 1}$$

(h)
$$\sum_{n=0}^{+\infty} \frac{e^{1/n}}{n}$$

$$\frac{n^2}{-1} \qquad \qquad \text{(h) } \sum_{n=1}^{+\infty} \frac{e^{1/n}}{n}$$

Seja $\sum_{n=1}^{\infty} a_n$ uma série de números reais e $\sum_{n=1}^{\infty} |a_n|$ a correspondente série dos módulos.

- (a) Se $\sum_{n=1}^{\infty} |a_n|$ converge, então $\sum_{n=1}^{\infty} a_n$ diz-se **absolutamente** convergente.
- (b) Se $\sum_{n=1}^{\infty} |a_n|$ diverge mas $\sum_{n=1}^{\infty} a_n$ converge, então $\sum_{n=1}^{\infty} a_n$ diz-se simplesmente convergente.

Teo. 6.35

Toda a série absolutamente convergente é também convergente.

Obs. 6.<u>36</u>

- (a) Realça-se que se $\sum_{n=1}^\infty |a_n|$ diverge, então nada se pode concluir sobre a natureza de $\sum_n a_n$. Esta pode ser convergente ou
 - $\underbrace{n=1}_{n=1}$ divergente.
- (b) Como $\sum_{n=1}^{\infty} |a_n|$ é uma série de termos não negativos, então podemos aplicar os critérios vistos anteriormente para estudar a sua natureza.

Convergência simples e absoluta

Exer. 6.37

Verifique se as séries seguintes são absolutamente convergentes:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 (c) $\sum_{n=1}^{\infty} \frac{\cos(n)}{e^n}$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 (d) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$

Seja $\sum a_n$ uma série de números reais <u>não nulos</u> e

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

Se o limite existir, verificam-se as condições seguintes:

- (a) se $0 \le L < 1$, então $\sum_{n=0}^{\infty} a_n$ é absolutamente convergente.
- (b) se L>1 ou $L=+\infty$, então $\sum_{n=0}^{\infty}a_n$ é divergente.
- (c) se L=1, nada se pode concluir (devemos utilizar outro critério para estudar a natureza da série).

Seja $\sum a_n$ uma série de números reais e

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Se o limite existir, verificam-se as condições seguintes:

- (a) se $0 \le L < 1$, então $\sum_{n=0}^{\infty} a_n$ é absolutamente convergente.
- (b) se L>1 ou $L=+\infty$, então $\sum a_n$ é divergente.
- (c) se L = 1, nada se pode concluir (devemos utilizar outro critério para estudar a natureza da série).

Exer. 6.40

Estude a natureza das seguintes séries:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!2^n}$$
 (e

(b)
$$\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^n$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{mn}{n} \right)$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{n! n^2}{(2n)!}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^n}{3^{n^2}}$$

(f)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{n+1} \right)^n$$

(g)
$$\sum_{n=1}^{\infty} n \left(\frac{4}{3}\right)^n$$

(h)
$$\sum_{n=1}^{\infty} \frac{3^n n! + 1}{n^n}$$

Uma **série alternada** é uma série onde os seus termos são alternadamente positivos e negativos, ou seja,

$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 ou $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$

onde $a_n > 0$, $\forall n \in \mathbb{N}$.

Exer. 6.42

Verifique se as seguintes séries são alternadas:

(a)
$$\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n}$$
 (c)
$$\sum_{n=1}^{+\infty} \frac{\cos(n)}{n!}$$

(b)
$$\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{2^n}{n^4}$$
 (d) $\sum_{n=1}^{+\infty} \frac{\cos(n\pi)}{n!}$

Seja $\sum_{i} (-1)^n a_n$ com $a_n > 0, \forall n \in \mathbb{N}$ uma série alternada. Se

- (a) a sucessão (a_n) é monótona decrescente;
- (b) $\lim_{n\to\infty} a_n = 0$;

então a série é convergente.

Exer. 6.44

Estude a natureza das seguintes séries usando o critério de Leibniz.

(a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n}$$
 (c) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$

(b)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{\ln n}$$
 (d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n+1}}$

Exer. 6.45

Estude a natureza (divergência, convergência absoluta ou convergência simples) das seguintes séries numéricas:

(a)
$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{n}$$

(f)
$$\sum_{n=1}^{\infty} (-1)^n \operatorname{sen}(1/n)$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n}$$

(g)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n!}{n!}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt[n]{n}}$$
(d)
$$\sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$

(h)
$$\sum_{n=1}^{\infty} \frac{n-\sqrt{n}}{(n+\sqrt{n})^2}$$

$$\frac{10)^n}{n!}$$

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \right)^{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2\sqrt{n}-1}$$

(j)
$$\sum_{n=0}^{\infty} \left[\frac{1}{n} - \frac{1}{5^n} \right]$$

Soluções Capítulo 6

- 6.4. (a) Div.
 - (b) Conv. e S=0 se
 - $\alpha = 0$: Div. se $\alpha \neq 0$
 - (c) Conv. e S=1
- 6.7.
 - (a) Conv. e S = 100
 - (b) Div.
 - (c) Conv. e S=1
 - (d) Conv. e $S = \frac{1}{4}$
- 6.10.
 - (a) $S = \frac{3}{2}$
 - (b) Div.
 - (c) S = 1
 - (d) $S = \frac{1}{2}$
 - (e) $S = \frac{47}{60}$ (f) $S = \frac{3}{2}$
- 6.15.
 - (a) Div. Nada se pode
 - concluir Nada se pode concluir

- (d) Div.
- (e) Div.
- (f) Div.
- 6.18. (a) Div.
 - (b) Conv. e S=9
 - (c) Div. (d) Conv. e S=2
- 6.20.
 - (a) Não
 - Sim (b)
 - (c) Não
 - Sim (d)
- 6.24.
 - (a) Div. (b) Conv.
 - (c) Div.
- 6.27. (a) Conv.
 - (b) Conv.
 - (c) Div.
 - (d) Div.

- 6.33.
 - (a) Conv.
 - (b) Conv.
 - (c) Div. Conv. (d)
 - Conv. (e)
 - Div. (f) (g) Conv.
 - (h) Div.
- 6.37. Sim (a)
- (b) Não Sim
 - (d) Não
- 6.40. (a) Abs. Conv.
 - Abs. Conv. (b)
 - Div.
 - Abs. Conv. (d)
 - Abs. Conv. (e) Div. (f)
 - (g) Div.
 - (h) Div.

- 6.42.
 - (a) Sim
 - (b) Sim
 - (c) Não
 - Sim (d)
- 6.44.
 - (a) Conv.
 - (b) Conv.
 - Nada se pode concluir
 - (d) Conv.
- 6.45.
 - (a) Simp. Conv.
 - (b) Abs. Conv.
 - Div.
 - (d) Abs. Conv.
 - Simp. Conv. (e)
 - Simp. Conv.
 - Div. (g)
 - (h) Div.
 - Abs. Conv.
 - (j) Div.