36. Трансформаторы

Трансформатор представляет собой электромагнитный аппарат, предназначенный для преобразования напряжений электрической энергии без изменения частоты.

1 — сердечник; 2 — первичная обмотка; 3 — вторичная обмотка. Трансформатор состоит из железного ферромагнитного сердечника и обмоток из медного изолированного провода. Сердечник набирают из отдельных листов электротехнической стали, изолированных друг

от друга слоем лака или окалины, это делается для уменьшения потерь на гистерезис и от вихревых токов. Первичная обмотка трансформатора имеет W_1 витков и включается обычно в сеть. Вторичная обмотка с числом витков W_2 подключается к нагрузке. При подаче напряжения \dot{U}_1 на первичную обмотку трансформатора по ней протекает ток \dot{I}_1 , который создаёт магнитный поток в сердечнике $\Phi = \Phi_m \sin \omega t$

По закону электромагнитной индукции поток индуктирует в каждом витке обмоток э.д.с. e_R =-($d\Phi/dt$)=-($d\Phi_m$ sin $\omega t/dt$)=- $\omega\Phi_m$ cos ωt = $\omega\Phi_m$ sin(ωt -90°)

Действующее значение э.д.с. в витке: $E_B = (\omega/\sqrt{2})\Phi_m = (2\pi f/\sqrt{2})\Phi_m = 4,44f\Phi_m$ Следовательно э.д.с. первичной обмотки $E_1 = 4,44fW_1\Phi m$, а э.д.с. вторичной обмотки $E_2 = 4,44fW_2\Phi m$.

Различают следующие режимы работы трансформатора: 1. режим холостого хода. 2. рабочий режим (работа под нагрузкой). 3. Режим короткого замыкания.

Векторная диаграмма холостого хода трансформатора строится следующим образом. Откладываем горизонтальной оси вектор магнитного потока $\Phi_{\rm m}$. Вектор тока холостого хода I_{10} опережает вектор Φ_{m} на угол магнитных потерь δ , который составляет (2-3) 0 , для наглядности на векторной диаграмме угол δ изображён несколько большим. Вектор I_{10} имеет две проекции I_{10a} – активная составляющая и I_{10p} – реактивная составляющая тока холостого хода. Векторы Е1 и Е2 отстают от вектора магнитного потока Φ_{m} на 90° . Направим вектор $E_{\scriptscriptstyle 1}$ в противоположную сторону – получим вектор Е₁. К вектору E_1 пристроим вектор $R_1 I_{10}$ - вектор падения напряжения на активном сопротивлении первичной обмотки трансформатора. Под прямым углом вектору $R_{1}I_{10}$ пристраиваем вектор $X_{1}I_{10}$ – вектор падения напряжения на индуктивном сопротивлении первичной

обмотки трансформатора. Результирующий вектор $I_{10}Z_1$ – вектор падения напряжения на сопротивлении первичной обмотки.