DE LA RECHERCHE À L'INDUSTRIE

HOWTO METIS

Introduction to METIS Jean-François Artaud

MARDI 25 JUIN 2013

www.cea.fr

FOREWORD

- The goal of this training is to learn how to run METIS :
 - Connected to Tore Supra and JET database
 - Compiled or inside Matlab
 - Inside Simulink
- Explains what METIS is but does not provide a detailed training on METIS Physics applications:
 - → Only practice is useful
 - Manual
 - Study of a real case
 - Direct support in each case

OUTLINE

METIS overview

METIS standalone

Inside METIS
Use METIS with GUI
Advanced METIS features

METIS in Simulink

List of Parameters

WHAT IS METIS

- METIS is an fast Integrated Transport Code with simplified assumptions
- All parameters of an ITER discharge calculated in 1 minute (300 time slices)
- Design for
 - Scenario Design
 - > Flight Simulator
 - > First analysis of a discharge
- Mixture of 0D and 1.5D equations
- > Highly convergent computing scheme
- Originally part of CRONOS

MAIN METIS FEATURES

- ✓ Mixed 1D and 0D equations
 - ✓ Current diffusion 1.5D with moment equilibrium
 - ✓ Source <u>profiles</u> deduced from simple models
 - ✓ Global energy content from 0D ODE (scaling, transients)
 - ✓ Temperature <u>profiles</u>: stationary 1D solution, χ scaled to W_{th}
 - ✓ All non-linearities solved (dependence of sources on profiles, fusion power, He ash transport)
 - ✓ Bootstrap and resistivity: O. Sauter et al, Phys. Plasmas 6 (1999) 2834
- ✓ Input : Power references, I_P, plasma density, Z_{eff}, LCMS geometry
- Output : all standard 1D and 0D data that you would expect from a transport code
- Global time convergence (wave form relaxation)

WORLDWIDE METIS USE

 Connected to Tore Supra, JET, DIII-D and ITM databases

 Existing tokamaks simulations: Tore Supra, JET, DIII-D, SST1, EAST, KSTAR, ...

• Future tokamaks : WEST, FAST, JT60-SA, ITER, DEMOs, ...

METIS INTERNAL WORKFLOW

2 points model

W radiation
and
accumulation

Boundaries conditions, density, Prad

GUI OVERVIEW

METIS OUTPUT EXAMPLE (1/2)

Results: 0D data

Results: profiles

METIS OUTPUT EXAMPLE (2/2)

3.1 3.2

Internal 2D METIS equilibrium

METIS USE CASES

METIS has 2 mains Use Cases:

- Stand-alone full scenario simulation
 - CRONOS module
 - Matlab function with data base access or UAL connection
 - Standalone runtime (no Matlab license need) with data base access or UAL connection
- One time step solver in a workflow
 - Use inside Simulink workflow (simmetis)
 - Use inside Kepler workflow through Matlab actor
 - Incoming: service for Kepler (no Matlab license need)

HELP AND MANUAL

- METIS is provided with METIS_HELP.pdf file

 → details technical manual and instruction
 (not completely up-to-date with current METIS version)
- In the GUI and in Matlab command line:
 - ✓ Parameters tooltip
 - ✓ Data description
- For evolution mode in Matlab command line :
 - ✓ Simulink help: simmetis, zerodevolution
 - ✓ ITM help: metis4itm, training, wiki page of the project

MATLAB WORKSPACE (1/2)

- Standalone METIS data structure :
 - Input data : z0dinput
 - Output data : post
 - post.zerod : 0d data
 - post.profil0d : profiles
 - post.z0dinput: input data use during simulation
- Evolution mode data structure : z0dstruct

MATLAB WORKSPACE (2/2)

• z0dinput structure:

- Information :
 - z0dinput.info : parameter tooltips
 - z0dinput.zsinfo : 0D data descriptions
 - z0dinput.profinfo : 1D data descriptions
- Data:
 - z0dinput.option : parameters
 - z0dinput.cons : references (lp, powers, ...)
 - z0dinput.geo: plama geometry
 - z0dinput.exp0d: experimental data + LCFS pts

WHERE FIND METIS?

- Source of the code :
 - On wikicronos server:

https://wikicronos.partenaires.cea.fr/wiki/index.php/METIS

- Inside CRONOS : everywhere CRONOS is installed
- In ITM Gforge server:
 http://gforge.efda-itm.eu/gf/project/metis4itm

WHERE FIND METIS?

Compiled versions:

- On wikicronos server:

https://wikicronos.partenaires.cea.fr/wiki/index.php/METIS

- In ITM server:

/pfs/home/jfa/public/

See the ITM training document:

https://gforge.efda-itm.eu/gf/project/metis4itm/docman/?subdir=90

WHERE FIND METIS?

Pre-installed version :

On IRFM server : Cephee, Andromede
 (we can install it, on demand, on any server that have access to Matlab)

- On ITM server:

/pfs/home/jfa/public/metis4itm

See the ITM training document:

https://gforge.efda-itm.eu/gf/project/metis4itm/docman/?subdir=90

DIFFERENCE BETWEEN VERSIONS

METIS as a CRONOS module :

- Exchange data between CRONOS
 ← METIS
- Access to more data bases : DIII-D, ...
- Complementary tools: HELENA, NCLASS direct call

METIS for ITM :

- Access to UAL
- Coupling with Kepler

METIS standalone :

- Simpler installation
- Can be call from Simulink

METIS runtime (compiled version):

- No Matlab license need (= no Matlab workspace)
- Work on many OS (available for Linux, Windows)

LAUNCH METIS

- Pre-installed version :
 - outside matlab : just launch metis script
 - @ root of CRONOS installation
 - @ inside directory .../metis4itm/trunk
 - Inside matlab:
 addpath to CRONOS or metis4itm
 addpath .../Projet_Cronos or
 addpath .../metis4itm/trunk
 launch metis
- ✓ If you can, to more easily follow the presentation, launch METIS now

LAUNCH METIS

Compiled version:

- For ITM version : see training
- Otherwise : read the readme.txt file and follows instruction
- Some help is provide on METIS page of wikicronos:

https://wikicronos.partenaires.cea.fr/wiki/index.php/METIS

MAIN GUI WINDOWS (1/2)

MAIN GUI WINDOWS (2/2)

RECIPE FOR A SIMULATION

- 1. Create or load a data set
- 2. Edit and modify references
- 3. Optionally, edit the LCFS (if X-point)
- 4. Edit and modify parameters
- 5. Run the simulation in fast mode
- 6. Visualize results
- 7. Come back to 2, if change are needed
- 8. Run complete simulation
- 9. Visualize and check results
- 10. Save results

LOAD DATA

- Button load open a file selector :
 - Just selected a file and open it
- METIS have unified file for input/output
- All METIS files are compatible with new METIS versions (ascendant compatibility)
- Some sample files (used for non-regression tests) are in the directory certification/metis:

.../metis/certification/metis

READ DATA FROM DATABASES

- From « initialization » :
 - access to Tore Supra and JET database
 - Possibility to create a simulation ab initio
 - With pre-processing, access to DIII-D data
 - Under CRONOS, create a METIS simulation from CRONOS data (if available)
- Create a new simulation
- ✓ Data are only in memory : must be saved!

EDIT PARAMETERS

- Parameters group by topic
- Each button open a form
- Change the input parameters

o module interface metis4itm (section #UAL)											×
module interface metis4itm (section #UAL)											Help
init_output_cpo	0	•	(integer)	restart			(string) "	coreprof	1	•	(intege
coretransp	1	•	(integer)	coresource_lhcd	1	•	(integer)	coresource_eccd	1	v	(intege
coresource_icrh	1	v	(integer)	coresource_nbicd	1	-	(integer)	coresource_fusion	1	v	(intege
coreneutrals	1	v	(integer)	coresource_radiation	1	-	(integer)	coresource_cyclotron	1	v	(intege
neoclassic	1	v	(integer)	coresource_full	1	-	(integer)	equilibrium	1	v	(intege
grid_equi	0	v	(integer)	cocos	Г	13	(integer) [1 18]			_	
		=								=	
					_						
Cancel Oreset OUpdate)0k

EDIT REFERENCE

 Time dependent reference can be edit with the help of graphic editor

LIST OF REFERENCES

Plasma parameters:

- ip : plasma current
- flux : edge poloidal flux
- nbar : line averaged density
- zeff : line averaged effective chage
- iso : isotopic plasma composition (n_D/n_T)
- picrh : ICRH/FW input power
- plh : LFCD input power
- pnbi : NBI input power (can open 2 reference editors)
- pecrh : ECRH input power
- hmore : enhancement factor
- ftnbi : NBI composition
- xece : ECRH maximum deposition position.

Plasma geometry :

- a : minor radius
- r : major radius
- z0: vertical shift
- K : elongation
- d : averaged triangularity
- b0 : toroidal magnetic field at the major radius

Separatrix generator for X-point :

- More moments
- Real X-point
- For given interval of time

LCFS GENERATOR

LCFS parameters:

rxup : upper triangularity (normalized)

zxup : upper elongation (normalized)

apup, amup : upper X-point angles

ra : major radius

za : vertical shift

a : minor raduis

rxdo : lower triangularity

zxdo : upper triangularity

apdo, amdo : lower X-point angles

b0 : maximum magnetic field on TF conductor

delta: gap between TF and inner plasma point

nbp : number points in LCFS

mode : interpolation curve type

filename : filename of LCFS given by point

ton : first time for X-point LCFS

– toff : last time for X-point LCFS

Before and after, use references R, a, K, d

RUN METIS

Main modes :

- Fast : just to have a look and tune parameters and references
- Compute: Full computation for final results
- Fit : Compute energy using measurement
 (and optionally search for LHCD current drive efficiency)

Other modes (for test) :

- Evolution: test the simulation in evolution mode
- Restart: restart a simulation in evolution mode

VISUALIZE RESULTS

- At the end of the simulation overview graph is opened.
- Generic graph (0D): just push the button
 - Power, energy, current, confinement, temperature density, equilibrium, geometry, convergence, ...
- 2D plot :
 - equi 2D, Profiles, Er
- Specialize graphs :
 - L→ H, Consumed flux, LH wave , ...
- Machine dependent graphs :
 - Neutron DD, DDS TS, NBI JET, Ne profile
- Generic data browser and plotter.

DATA BROWSER

SAVE DATA

- Button load open a file selector :
 - Just selected a file or enter a new name and save it
- METIS have unified file for input/output.

METIS WITHOUT GUI

METIS commands:

- metis_load : load and update a simulation
- metis_save : save a simulation (from workspace)
- metis_fast : fast simulation (selected time slices)
- metis_run : full simulation (all time slices)
- metis_upadate_tests : update non regression tests

Call METIS functions in a mfile :

- zerod_init : initialise a simulation
- zerod_fast : fast simulation (selected time slices)
- zerod : full simulation (all time slices)
- zerodevolution : one time step simulation

METIS & EXTERNAL DATA

- METIS can use external data for :
 - Heat sources: LHCD, ICRH, ECCD, NBICD, Pline
 - Kinetic profiles : Ne, Te, Ti
- External data override internal METIS computation
- Heat sources are renormalized on references.
- Density is renormalized on n_bar reference
- > Details available in file:

.../zerod/external_data_rule_for_METIS.m

METIS IN SIMULINK

- ✓ METIS call from Simulink = S-function simmetis
- ✓ Standard S-function Input & output
- simmetis use one time step METIS computation : zerodevolution .
- > Some documentation is written inside functions
 - √ help simmetis or help zerodevolution (in Matlab)
 - ✓ S-function documentation :

http://www.mathworks.fr/fr/help/simulink/slref/sfunction.html

METIS EVOLUTION IN SIMULINK

METIS INTERFACE TO SIMULINK

SAMPLE SIMULINK WORKFLOW

- Sample workflow for simmetis testing (under .../zerod/):
 - test_simmetis.mdl : simple test
 - flux_control_example.mdl : poloidal flux feedback test
- Sample interface between Simulink and simmetis (under .../zerod/):
 - interface_simmetis.mdl : switches, multiplexor +
 S-function call
- For testing :
 - Launch METIS + load a simulation
 - Open Simulink workflow, tune simulation parameters, and run it

MATLAB WORKSPACE (IN EVOLUTION MODE)

- METIS takes default parameters and references in Matlab workspace
- > METIS GUI still active with Simulink
- ✓ Only active selected references and parameters are override by Simulink data
- All METIS internal data copy in Malab workspace
- Simulink can access to any METIS data

METIS DATA STRUCTURES FOR SIMULINK

- Last (current time) METIS data are available in Matlab workspace from Simulink:
 - zerod_simmetis : 0D METIS data
 - profil0d_simmetis : 1D METIS data
 - cons_simmetis: references (use by METIS)
 - geo_simmetis: geometry (use by METIS)
 - sepa_simmetis : if LCFS given by points
- More data available in global structure : see simmetis online help

PARAMETERS INTERFACES (1/6)

PARAMETERS INTERFACES (2/6)

	module interface zerod (section #Confinement & Transport) module interface zerod (section #Confinement & Transport)									
scaling	0	→ (integer)	dilution	1	→ (integer)	tau_limitation On		(string)		
ploss_exp	with_prad	(string)	fprad	0.333333	(real)	HH_li	0	(real) [0 3		
fpped	1	(real) [-100 10]	fstiff	1	(real) [-10 10]	usepped_scl 0		(integer)		
taurotmul	0	(real) [0 10]	fintrinsic	1	(real) [0 10]	omega_shape 0		(integer)		
xiioxie	1	(real) [-10 10]	kishape	3	(real) [-10 10]	ki_expo	2	(real) [0 20		
xieorkie	0	(integer)	grad_ped	1	(integer)					
()Cancel	reset	0	Jpdate					Ook		

PARAMETERS INTERFACES (3/6)

PARAMETERS INTERFACES (4/6)

PARAMETERS INTERFACES (5/6)

angle_ecrh	90	-	(real)	
synergie	1		(real) [0 10]	
sens	1	Ţ	(integer)	
eccdmul	1		(real) [0.1 10]	

PARAMETERS INTERFACES (6/6)

module interface zero module interface zerod (sectio		Help
rip 0 → (integer)	,	петр
Cancel Creset)Update	∩0k

COMPILED METIS SPLASH SCREEN

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance Cedex T. +33 (0)4 42 25 46 59 | F. +33 (0)4 42 25 64 21 DSM IRFM