

Families

1 Why

We want to generalize operations beyond two objects.

2 Definition

Let A, B be non-empty sets. A family of elements of a first set indexed by elements of a second set is the range of a function from the second set to the first set. We call second set the index set.

If the index set is a finite set, we call the family a *finite* family. If the index set a countable set, we call the family a countable family. If the index set is an uncountable set, we call the family a uncountable family.

If the codomain is a set of sets, we call the family a *family of sets*. We often use a subset of the whole natural numbers as the index set. In this case, and for other indexed sets with orders, we call the family an *ordered family*

2.1 Notation

Let A be a non-empty set. We denote the index set by I, a mnemonic for index. For $i \in I$, let we denote the result of applying the function to i by a_i ; the notation evokes evokes function notation but avoids naming the function.

We denote the family of a_{α} indexed with I by $\{a_{\alpha}\}_{{\alpha}\in I}$, which is short-hand for set-builder notation. We read this notation "a sub-alpha, alpha in I."

3 Operations

The *pairwise extension* of a commutative operation is the function from finite families of the ground set to the ground set obtained by applying the operation pairwise to elements.

The *ordered pairwise extension* of an operation is the function from finite families ground set to the ground set obtained by applying the operation pairwise to elements in order.

3.1 Notation

Let (A, +) be an algebra and $\{A_i\}_{i=1}^n$ a finite family of elements of A. We denote the pairwise extension by

$$\underset{i=1}{\overset{n}{+}} A_i$$

4 Family Set Algebra

We define the set whose elements are the objects which are contained in at least one family member the family union. We define the set whose elements are the objects which are contained in all of the family members the family intersection.

4.1 Notation

We denote the family union by $\bigcup_{\alpha \in I} A_{\alpha}$. We read this notation as "union over alpha in I of A sub-alpha." We denote family intersection by $\bigcap_{\alpha \in I} A_{\alpha}$. We read this notation as "intersection over alpha in I of A sub-alpha."

4.2 Results

Proposition 1. For an indexed family $\{A_{\alpha}\}_{{\alpha}\in I}$ in S, if $I=\{i,j\}$ then

$$\bigcup_{\alpha \in I} A_{\alpha} = A_i \cup A_j$$

and

$$\cap_{\alpha \in I} A_{\alpha} = A_i \cap A_j.$$

Proposition 2. For an indexed family $\{A_{\alpha}\}_{{\alpha}\in I}$ in S, if $I=\emptyset$, then

$$\bigcup_{\alpha \in I} A_{\alpha} = \emptyset$$

and

$$\cap_{\alpha \in I} A_{\alpha} = S.$$

Proposition 3. For an indexed family $\{A_{\alpha}\}_{{\alpha}\in I}$ in S.

$$C_S(\cup_{\alpha\in I}A_\alpha)=\cap_{\alpha\in I}C_S(A_\alpha)$$

and

$$C_S(\cap_{\alpha\in I}A_\alpha) = \cup_{\alpha\in I}C_S(A_\alpha).$$