Objectif : Analyse des logs par des techniques d'apprentissage automatique

- Partie 2 : comparaison - suite

Idée : visualiser graphiquement le Template ID en fonction du temps pour regarder l'évolution et corréler les anomalies.

Prétraitement : modification de csv2Deeplog pour faciliter le traitement et rajout des labels correspondant à chaque log :

```
if args.format == "HDFS" or args.format == "Hadoop":
    struct_log = pd.read_csv(args.csvIn, engine="c", na_filter=False, memory_map=True)
    column_idx = {col: idx for idx, col in enumerate(struct_log.columns)}
    for _, row1 in enumerate(struct_log.values):
        match.append(re.findall(r"(blk_-?\d+)", row1[column_idx["Content"]]))

for block_id_list in match:
        block_id_list[0]
        labeldata = label_data_dict[block_id]
        matched_label.s.append(labeldata)

with open(args.csvOut, 'w', newline='') as outfile:
        fieldnames = ["timestamp", "machine", "event", "anomaly"]
        writer = csv.DictWriter(outfile, fieldnames=fieldnames)
        writer.writeheader()

# Loop
    for row in csv_reader:
        event_id = row[7].replace("E", "")

        timestamp = row[0]
        #print(int(row[0][0]))
        #session_dict[row[0]]["label"] = label_data_dict[row[0]]

        writer.writerow({"timestamp": timestamp, "machine": "", "eventimestamp, machine event_anomaly."
```

et plot de Event_ID en fonction du temps complexe car plusieurs millions de données à traiter \rightarrow Matplotlib impossible.

umestamp	macnine	event	anomaly
1		0	0
2		3	0
3		0	0
4		0	0
5		5	0
6		5	0
7		8	0
8		8	0
9		5	0
10		8	0
11		10	0
12		10	0
13		10	0
14		0	0
15		0	0
16		3	0
17		12	0
18		0	0
19		0	0
20		0	1

Utilisation de la librairie Lenspy qui est capable de s'occuper de grandes séries temporelles.

Ce qui donne ceci :

Avec les labels superposés :

Utilisable?

Suite : tests de tous les algorithmes sur tous les types de logs disponibles

Supervi	sed												
Nom	HDFS	Apache	Hadoop	HealthApp	HPC	Linux	Mac	OpenSSH	OpenStack	Proxifier	Zookeeper	BGL	Thunderbird (10M)
LogRobust	96.00%	//	90.00%	//	//		//	//		//	//	97.01%	
CNN	95.59%	//	90.00%	//	//	//	//	//		//	//	96.23%	
LogBert	77.81%	//		//	//		//	//		//	//	89.47%	
LogGPT	99.33%	//		//	//	//	//	//		//	//	99.13%	
SVM	91.08%	//	88.00%	//	//	//	//	//		//	//	64.10%	
DecisionTree	99.53%	//	86.96%	//	//	//	//	//		//	//	6.75%	
Semi-supe	rvised												
Nom	HDFS	Apache	Hadoop	HealthApp	HPC	Linux	Mac	OpenSSH	OpenStack	Proxifier	Zookeeper	BGL	Thunderbird (10M)
DeepCase	89.34%											XX	
PLELog	97.35%											88.91%	
Unsuper	vised												
Nom	HDFS	Apache	Hadoop	HealthApp	HPC	Linux	Mac	OpenSSH	OpenStack	Proxifier	Zookeeper	BGL	Thunderbird (10M)
PCA	41.92%		91.49%									40.20%	
DeepLog	84.71%	88.56%	42.04%	81.34%	12.86%	21.74%	14.49%	62.45%	60.26%	99.06%	64.05%	86.31%	
LogAnomaly	31.50%											XX	
AutoEncoder	86.42%											77.15%	
LogCluster	87.49%		XX									89.80%	
Iforest	38.14%		XX									32.50%	
InvariantsMiner	14.06%		XX									41.12%	

XX : erreur ou autre // : absence de labels

 \rightarrow nécessité d'adapter toutes les fonctions pour pouvoir les appliquer sur tous les logs, très chronophage et résultats potentiellement discutables.

Nouveauté : LogGPT [1]

(b) Fine-tuning

Excellents résultats.

Références :

[1] : Xiao Han, Shuhan Yuan, Mohamed Trabelsi. "LogGPT: Log Anomaly Detection via GPT". ArXiv 2309.14482, 2023.