Modelagem de nicho ecológico e distribuição de espécies

Marília Melo Favalesso

Laboratório de Investigações Biológicas (LINBIO)

Agradecimentos pelo CRTL + C e CRTL + V

• Thadeu Sobral de Souza (LEEC – UNESP – Rio Claro, SP)

thadeusobral@gmail.com

• Maurício Humberto Vancine (LEEC – UNESP – Rio Claro, SP)

mauricio.vancine@gmail.com

Onde paramos:

Mas e a modelagem matemática?

"É a arte de transformar problemas da realidade em problemas matemáticos e resolvê-los interpretando suas soluções na linguagem do mundo real".

Basicamente criamos uma **função matemática** que representa (ou chega perto de representar) uma realidade.

Representação do pé-grande

Pé-grande real

"(...) Os modelos não representam TODAS as características do mundo real, mas representam aquelas essências para entender um problema específico, dados os parâmetros utilizados/disponíveis e os pressupostos assumidos (...)"

Modelos a partir de algoritmos...

"Algoritmo é uma <u>sequência finita de instruções bem definidas</u> e não ambíguas, cada uma das quais devendo ser executadas mecânica ou eletronicamente em um intervalo de tempo finito e com uma quantidade de esforço finita (...)"

"(...) Um algoritmo <u>não</u> representa, necessariamente, um programa de computador, e sim os passos necessários para realizar uma tarefa (...)

Fonte: https://pt.wikipedia.org/wiki/Algoritmo

Outros conceitos importantes

Presença:

Locais onde a espécie foi observada ou registrada.

O Ausência:

Locais onde foi confirmada a não ocorrência da espécie.

Pseudo-ausência:

Pontos gerados artificialmente para representar locais onde a espécie provavelmente não ocorre.

O Background:

Conjunto de pontos representando a disponibilidade das condições ambientais no espaço de estudo.

Apenas presença de espécies

Bioclim
Distância euclidiana
Distância de Mahalanobis
Distância de Gower (domain)
ENFA (análise ecológica de nicho fatoria)

Presença vs. Pseudo-ausência

GARP (genetic algoritmo for rule-se production)
MAXENT (máxima entropia)
SVM (support vector machine)

Presença vs. Ausência

GLMz (generalized linear model)
GAM (generalized additive model)
FDS (flexible discriminant analysis)
MARS (multivariate adaptive reg.
Splines)

Apenas presença de espécies

Bioclim
Distância euclidiana
Distância de Mahalanobis
Distância de Gower (domain)
ENFA (análise ecológica de nicho fatoria)

Presença vs. Pseudo-ausência

GARP (genetic algoritmo for rulese production) MAXENT (máxima entropia) SVM (support vector machine)

Presença vs. Ausência

GLMz (generalized linear model)
GAM (generalized additive model)
FDS (flexible discriminant analysis)
MARS (multivariate adaptive reg.
Splines)

Espaço E

- Ambiente é um gradiente
- Estima a distância, no espaço ambiental, entre cada região da área de estudo (célula) e o centroide do ponto de ocorrência.
- Geralmente a predição é continua entre 0 e ∞

Slide de Thadeu Sobral de Souza (UNESP)

Apenas presença de espécies

Bioclim
Distância euclidiana
Distância de Mahalanobis
Distância de Gower (domain)
ENFA (análise ecológica de nicho fatoria)

Presença vs. Pseudo-ausência

GARP (genetic algoritmo for rule-se production)

MAXENT (máxima entropia)

SVM (support vector machine)

Presença vs. Ausência

GLMz (generalized linear model)
GAM (generalized additive model)
FDS (flexible discriminant analysis)
MARS (multivariate adaptive reg.
Splines)

- Presença conhecida
- Pseudo-ausência

"black box" ou cofres

Apenas presença de espécies

Bioclim
Distância euclidiana
Distância de Mahalanobis
Distância de Gower (domain)
ENFA (análise ecológica de nicho fatoria)

Presença

O Ausência

Presença vs. Pseudo-ausência

GARP (genetic algoritmo for rule-se production)
MAXENT (máxima entropia)
SVM (support vector machine)

Presença vs. Ausência

GLMz (generalized linear model)
GAM (generalized additive model)
FDS (flexible discriminant analysis)
MARS (multivariate adaptive reg.
Splines)

Slide de Thadeu Sobral de Souza (UNESP)

Adendo 1

A espécie está corretamente identificada?

Utilizar métricas estatísticas para validação/avaliação do modelo!

Desenhos de Thadeu Sobral de Souza (UNESP)

Modelo de somente presença!

Validação vs. avaliação

Estipula um "limiar" (threshold)

<u>Sensibilidade</u> (% de acertos do modelo) 4/7 = 0.5714 * 100% = 57,14%

Omissão (% de erros do modelo) 3/7 = 0.4286 * 100% = 42,86%

Sensibilidade + omissão = 100%

Não temos tempo... Mas existem outras métricas de validação do modelo – tudo vai depender da natureza do seu modelo!

Curva ROC/índice AUC Independente de limiar!

Índice TSS

Índice KAPA

Outros tipos de teste estatísticos

Outros...

Mesmas métricas, mas agora elas avaliam e não validam!

Mesmas métricas, mas agora elas avaliam e não validam!

Validação vs. avaliação

Réplica 2

Sensibilidade

(71,43% + 100%) / 2 = 85,71% Sensibilidade

Mapa final!

Dois caminhos

Obrigado