

(All rights reserved)

BACHELOR OF SCIENCE IN ENGINEERING SECOND SEMESTER EXAMINATIONS: 2014/2015 CPEN 306: MICROELECTRONICS DEVICES AND CIRCUITS [3 Credits]

INSTRUCTIONS: Answer ALL questions.

TIME ALLOWED: TWO AND HALF HOURS

Q1 (a) Consider the common-emitter (CE) NPN transister ampifier shown in the figure 1 and state the function of each component in the circuit. [4marks]

- (b) Given that the values of R_1 =1k Ω , R_2 =45k Ω , R_L =40k Ω , R_E =50k Ω and V_{CC} =10V, Calculate the:
 - (i) the base voltage

[2marks]

(ii) the base current

[2marks]

(iii) the emitter current

[2marks]

Figure 1

(c) If the input signal frequency ranges from 200Hz to 50kHz, calculate the required capacitance of the capacitor needed at the emitter terminal to ensure d.c stabilization.

[4marks]

(d) Draw a frequency response curve of a resistance-capacitance coupled amplifier and explain the causes of the sudden drop in amplification at the low and high frequency ranges.

[4marks]

Page 1 of 3

Examiner: Mr. Agyare Debra

- Q2.(a) Draw the static I-V characteristics of a diode and use it to explain the Zener breakdown phenomenon associated with semiconductor diodes. [4marks]
- (b) A 12V stabilized voltage needed to run a d.c motor is to be produced from a full-wave bridge rectifier with an unregulated output of 25V d.c. If a Zener diode with a maximum power rating of 6W is connected across the output of the full-wave rectifier through a series resistor R_s to achieve the required voltage, calculate,
 - (i) The current that will flow through the Zener diode if a load resister of $20k\Omega$ is connected across it [3marks]
 - (ii) The value of the series current-limiting resistor(Rs) [3marks]
 - (iii) The total load current(I_L) [3marks]
 - (iv) The total supply current(Is) [3marks]
- (c) A switching NPN silicon transister has a forward current gain $\beta=100$ and maximum collector current $I_{c(max)}=25$ mA.If the input voltage is 24V, calculate, the base resistor needed to switch the load "fully on". [4marks]

Figure 2

Q3 (a) Define the following parameters of power supply systems:

(i) Efficiency of rectification. [1 mark]

(ii) Ripple factor. [1 mark]

(iii) Peak inverse voltage(PIV) [1 mark]

(b) Draw a full-wave bridge rectifier with a capacitor input filter [2marks]

(c) With the aid of input and output wavesforms briefly explain how the Q3(b) works.

[3marks]

(d) A full-wave rectifier whose secondary voltage is 230V r.m.s has $200k\Omega$. Determine the following:	a load resistor of
(i) d.c output voltage	[4marks]
(ii) ripple voltage	[4marks]
(iii) PIV	[4marks]
Q4 (a) State three general oscillator requirements	[2marks]
(b) Explain briefly with the aid of diagram how oscillation is maint	
LC tuned circuit.	[3marks]
(c) Draw a circuit diagram of a crystal oscillator and explai	n how it works.
[5marks]	
(d)The electrical equivalent circuit of a crystal has a series inducta	nce of 5H and a
series capacitance of $25\mu F$. If the shunt capacitance is $100\mu F$, calcul-	ate the series and
parallel resonant frequencies	[4marks]
(e) Draw a circuit diagram of an Astable Multivibrator using Op	Amp to generate
the output signal	[2marks]
(f) If the values of the external components are given as R=24	$4k\Omega$, C=65 μ F and
the regenerative feedback factor β=0.01, calculate the time pe	riod of the output
waveform.	[4marks]
Q5(a)The class of operation of an amplifier is very important. State the	ne two bases upon
which amplifiers are classified as class A, class B and class C.	[2marks]
(b)Compare class A, class B and class C amplifiers in terms of:	
(i) Overall Efficiency.	[2marks]
(ii) Conduction Angle.	[2marks]
(iii) Signal Distortion.	[2marks]
(c) Give three typies of Distortions associated with amplifies	[3marks]
(d) State in each case how the Distortion can be minimized	[3marks]
(e) A amplifier has a gain of 60dB. If the input resistance of the a	mplifier is 75Ω
and its output terminals feed a matched load of 140Ω, calculate t	
will follow in the load when a voltage of 100µV r.m.s is ap	
	[6marks]