Sběrnice a komunikace periférií

Úvod

Na této otázce minulý rok vypadli 3 lidi, což bylo nejvíce ze všech. Nepodceňovat přípravu na tuto otázku. Není to pouze o naučení pár čísel a pár sběrnic, ale je potřeba dobře rozumět IQR a DMA, protože to je více než půlka otázky. Možnost spolupráce s maturitní otázkou na základní desky (číslo 4.), protože nějaké věci se budou již opakovat.

Definice

Sběrnice je skupina vodičů, které přenáší data mezi komponenty. Každá sběrnice je jiná a má jiné parametry.

Řadič sběrnice

Řídí přenosy dat po sběrnicích. Pouze jeden řadič je master, ostatní zařízení jsou slaves. Multimaster je označení pro více řadičů.

Arbitr sběrnice

Určuje, který řadič je aktivní pomocí priority. Druhy:

- centralizovaný soustředěný do jednoho modulu
- distribuovaný každý řadič může být na chvíli arbitrem

Parametry sběrnic

- Propustnost [b/s] (frekvence x šířka sběrnice), počet bajtů dat přenesených za sekundu
- Taktovací frekvence [kHz, MHz, GHz] Přenos informací řízen clockem
- Šířka sběrnice množství najednou přenesených bitů (určuje počet paralelních vodičů 1, 8, 16, 32, 64, ...)
- Rozšiřující slot sběrnice
 - fyzické vyústění sběrnice na základní desce
 - umožňují zapojení rozšiřujících karet do počítače
 - např. grafické, zvukové, síťové i jiné
 - o podle tvaru a barvy rozšiřujících slotů se dá určit typ sběrnic

Dělení

Podle provozu

- o Synchronní přenosy dat jsou řízeny (synchronizovány) hodinovými impulsy
- Asynchronní nepoužívají pro řízení přenosových operací hodinový signál, Start bit/Stop bit

Podle přenosu

- Sériové postupně po bitech (při jednom clocku)
- Paralelní posílání dat najednou (při jednom clocku)
 - elektrony jsou nosiče náboje, když se zvedne frekvence, tak nastane odstředivá síla a elektrony se budou navzájem rušit (cross talk)

Podle směru přenosu

- Jednosměrné (Simplex) Komunikace pouze v jednom směru, u většiny sběrnic se nepoužívá, např. tiskárny
- Obousměrné (Full-duplex) Komunikace v obou směrech, např. USB
- o Half-Duplex oba směry, ale musí se střídat (vysílačka)

Podle funkce

Pokud sběrnice používá stejné adresové a datové vodiče, tak je sdílená (multiplexovaná).

- Řídící slouží pro přenos řídících signálu (Sběrnice je aktivní, Zápis, Čtení atd)
- Adresové slouží pro přenos fyzické adresy (určitá adresa v paměti), Šířka určuje maximální velikost přenášené adresy
- Datové slouží pro přenos dat, je obousměrná, čím větší šířka, tím více dat dokáže přenést
 - Typické signály Clock, Memory read, Memory Write
- Stejné adresové a datové vodiče = sdílená (Multiplexovaná)

• Podle synchronizace

- Synchronní s clockem
- o Asynchronní s clockem
- Multimaster (nutný arbitr sběrnice rozhodovač priority)

Podle umístění

- Systémová propojuje CPU a chipset
- o Paměťová propojuje CPU a RAM
- o Rozšiřující pro karty typu PCI nebo PCIe 1x, 2x, 4x
- o Grafická pro grafické karty typu PCle 16x (dříve AGP)

Rozhraní (Maturitní otázka 7.)

- ISA (Industry Standard Architecture)
 - o šířka sběrnice adresová 24b, datová 16b
 - Rychlost 8-12 MHz, synchronní
 Výhoda kompatibilita s osmibitovými procesory, standard
 - Nevýhoda pomalá
- EISA (Extended Industry Standard Architecture)
 - Šířka sběrnice adresová i datová 32b
 - o rychlost až 33 MHz, synchronní
 - O Výhoda kompatibilita s ISA, rychlost, adresový prostor (4 GB)
- USB (Universal Serial Bus)
 - o připojení za provozu Plug&Play
 - o napájení zařízení přímo v kabelu
 - \circ USB 1.0 12Mb/s,
 - USB 2.0 480Mb/s
 - USB 3.0 5 Gbit/s
 - o USB 3.1 10 Gbit/s
 - USB 3.2 20 Gbit/s
 - o až 127 zařízení najednou
- AGP (Accelerated Graphics Port)
 - o Propojuje pouze základní desku a grafickou kartu
 - Nezávislá na sběrnici PCI
 - Ostatní vstupní a výstupní zařízení používají PCI sběrnici
 - o AGP slot není mechanicky se slotem PCI zaměnitelný
 - o Rychlosti
 - 1x (266 MB/s) 8 B přeneseno za 2 takty
 - 2x (533 MB/s) 8 B přeneseno během jednoho taktu
 - 4x (1.07 GB/s) 16 B přeneseno během jednoho taktu
 - 8x (2.1 GB/s) 32 B přeneseno během jednoho taktu

- PCI (Peripheral Component Interconnect)
 - Šířka sběrnice adresová 32b, datová 32b (PCI32) nebo 64b (PCI64)
 - Rychlost 33 MHZ (u 64b verze 66MHz nebo 133MHz)
 - o Synchronní sběrnice
 - o Procesorově nezávislá
 - o Možno použít sběrnice PCI nejen v PC (např. Macintosh)
 - o Můstek dovoluje provádět přizpůsobování napěťových úrovní
 - První 64bitová sběrnice (zpětně kompatibilní na 32bitů)

PCI Express

- Logické pokračování klasické PCI
- Vychází spíše ze sítí typu peer-to-peer než z architektury PCI, ale využívá existující komunikační standardy PCI
- Full duplex -> komunikace probíhá oběma směry najednou
- o Dva vodiče místo jednoho
- o Nezávislá komunikace mezi jednotlivými zařízeními
- o Nemusí se čekat na uvolnění sběrnice pro jiné zařízení
- Výrazné zvýšení přenosové rychlosti
 - až 6.4 GB/s u 16*
 - 1x 2,5 GBps (obousměrně 5 GBps)
 - 4x 10 GBps (obousměrně 20 GBps)
 - 8x 1.6 GBps (obousměrně 3.2 GBps)
 - 16x 3.2 GBps (obousměrně 6.4 GBps)

Patice Socket

Konektor na základní desce určen pro připojení CPU. Skoro každá řada má vlastní typ, které nejsou zpětně kompatibilní. Každý výrobce má taky jiné. Např. (1151 socket, AM4 socket...)

LGA, PGA, BGA

Způsoby, jak je procesor spojený s paticí.

LGA je používaný v desktop počítačích. CPU má kovové kontakty na své ploše a piny jsou přímo v socketu.

PGA je opačný případ LGA. Piny jsou na chipu a kovové plíšky v socketu.

BGA je pro CPU, které jsou na pevno přidělány k socketu. (hlavně u konzolí a telefonů).

FSB

- Propojuje procesor a severní most, je to systémová sběrnice
- Nástupce je QPI
- Zajišťuje komunikaci procesoru s nejdůležitějšími perifériemi, což výrazně ovlivňuje výkon

QPI (Quick path interconnect) – Intel / HyperTransport - AMD

- Vylepšuje komunikaci více jádrových procesorů
- Full duplex
- Převzato z multiprocesorových systémů

DMI (Direct Media Interface)

Nejnovější technologie Intelu. Nástupce QPI, které vylepšuje hlavně v datové propustnosti a má 3 verze a používá se dodnes.

Komunikace periférií s CPU

V počítači je nutné, aby CPU jako hlavní jednotka navázalo komunikaci. CPU, ale musí vědět s kým komunikuje a jednoznačnost zajišťují adresy jednotlivých portů. Mohou se stát tyto situace:

- Periferie vyžaduje pozornost CPU
- Periferie zasílá data CPU
- CPU zasílá data periferii
- Periferie zasílá data do RAM

Adresy I/O portů

Umožňují komunikaci CPU s každým zařízením v PC zvlášť. Každý PC má 64 tisíc adres I/O. Každá periferie má přidělen svůj rozsah (Jak RAM či I/O).

Přenos dat mezi pamětí a periférií

PIO (Programmable I/O)

Data jsou přenášena za účasti procesoru od sběrnice až do RAM. Procesor je tedy plně zaměstnán přenosem a nemůže vykonávat jinou práci.

DMA

Kanály přímého přístupu využívané některými zařízeními k přenosu dat do a z paměti bez účasti Procesoru. Přenos řídí obvod DMA (DMA Controller).

IRQ (Interrupt request)

Je hardwarový signál, kterým požádá zařízení procesor o pozornost a přerušení probíhajícího procesu za účelem provedení důležitější akce. Mechanizmus přerušení: kromě aktuálně běžícího programu musí reagovat na podněty jiných zař. nebo programů. Například reakce na stisk klávesy, informace o tisku a podobně.

Například při stisku klávesy na klávesnici je vyvoláno přerušení IRQ 1. Procesor provádí svou činnost a v okamžiku, kdy řadič vyvolá přerušení IRQ 1, přestane v této činnosti pokračovat a zahájí obsluhu vyvolaného přerušení. Pokud by klávesnice nevyužívala tohoto mechanizmu, vzniká velké riziko, že dříve, než procesor zaměstnaný jinou činností zaregistruje stisk této klávesy, dojde ke stisku klávesy jiné a tím k zapomenutí první klávesy. IRQ s nižším číslem mělo vyšší prioritu než IRQ s číslem vyšším.

IRQ	Použití
0	timer (základní deska) - hodinový obvod, který tikne každých cca 15ms
1	řadič klávesnice 8042 (základní deska)
2	kaskádní propojení
8	hodiny reálného času (základní deska)
9	volné nebo řadič SCSI (deska PCI)
10	volné
11	volné nebo SCSI
12	volné nebo myš PS/2
13	volné nebo koprocesor (80287/387)
14	první řadič pevného disku (IDE)
15	volné nebo druhý řadič disku (EIDE)
3	COM2 nebo COM4 (pouze jeden z nich)
4	COM1 nebo COM3 (pouze jeden z nich)
5	LPT2 nebo zvuk. karta
6	řadič disketové mechaniky
7	LPT1 nebo zvuk. karta

Volání CPU periférií

- Výběrem (pooling) CPU neustále sleduji periferii, jestli něco nepotřebuje, pomalé, zatěžuje -(např. DOS)
- Hardwarovým přerušením CPU nesleduje periférii, pokud periférie něco potřebuje aktivuje IRQ (má svoje vlastní jednoznačné číslo)

Při přerušení procesor přestane provádět právě probíhající činnost a místo něj začne řešit požadavek. Musí si uložit svoji rozpracovanou práci, tj. Adresu další instrukce, segment paměti, Flag registr. Po obsluze zařízení, které vyvolalo přerušení, se z paměti vyjmou dočasné hodnoty a následující instrukce přerušeného programu a pokračuje se v jeho provádění. Linky, kterými proudí signály přerušení jsou součásti sběrnice a označují se IRQO, IRQ1 atd. Pro rozlišení přerušení jednotlivých desek se přerušení od ISA karet označují IRQ a od karet PCI jako INT (INTA, INTB, INTC, INTD).

5

1. Vnější – periférie, uživatel, havarijní stavy – lze nebo nelze zakázat

2. Vnitřní – chyby operandů, chyby výsledků, krokování

Příčiny přerušení

- 1. **Programová přerušení** nepřípustný operační znak, přeplnění, nenaplnění, dělení nulou, nesprávná adresa (není v paměti), nesprávný tvar operandu
- 2. **Technická přerušení** výpadek napájení, porucha technického vybavení
- 3. I/O (V/V) přerušení od periférie reprezentuje informaci, že nějaká periférie změnila stav
- 4. Vnější přerušení příchod signálu na tzv. přerušovací vstupy procesoru
- 5. Instrukční přerušení pomocí speciálních instrukcí

Maska přerušení

Za určitých okolností je třeba některá přerušení zakázat – maskovat. Některá přerušení mají určité privilegium v tom, že maskována být nemohou (nemaskovatelná přerušení), většinou vnitřní přerušení.

Konfigurace nových systémových prostředků

Počítač softwarově zjistí nové prostředky a na každou periferii nastaví samostatné IRQ, DMA a I/O. Začíná u jednodušších.

Automatická

Plug&Play

Periférie umí sdělit procesoru své požadavky jako adresu, přerušení, DMA atd.

Princip

- 1. BIOS otestuje stávající zařízení
- 2. Zaregistruje případná nová zařízení
- 3. V rámci automatické konfigurace vyřeší možné konflikty

Firmware

- Obsahuje základní informace o zařízení
- Slouží k identifikaci zařízení
- Uplatňuje se i u jiných zařízení (např. u monitorů, modemů, tiskáren, disků atd.)

Ruční

v systému DOS soubory Config.sys, Autoexec.bat

• v systému Windows soubory *.INI nebo Správce zařízení

Zdroje

- 1. https://cs.wikipedia.org/wiki/Z%C3%A1kladn%C3%AD deska
- 2. https://cs.wikipedia.org/wiki/Sb%C4%9Brnice
- 3. https://en.wikipedia.org/wiki/Bus (computing)
- 4. https://www.outech-havirov.cz/skola/files/knihovna eltech/epo/sbernice.pdf
- 5. https://forum.root.cz/index.php?topic=3022.0
- 6. https://pctuning.tyden.cz/index.php?option=com_content&view=article&id=16406&catid=1&Itemid=57
- 7. https://en.wikipedia.org/wiki/Direct Media Interface
- 8. https://en.wikipedia.org/wiki/DML
- 9. https://cs.wikipedia.org/wiki/IRQ
- 10. https://en.wikipedia.org/wiki/Irq
- 11. https://forums.tomshardware.com/threads/differences-between-intel-qpi-and-ht-used-by-amd.207465/
- 12. https://cs.wikipedia.org/wiki/PIO
- 13. https://en.wikipedia.org/wiki/Programmed input/output
- 14. http://poli.cs.vsb.cz/edu/arp/down/komunikace.pdf
- 15. https://is.mendelu.cz/eknihovna/opory/zobraz cast.pl?cast=650

7