

ATIVIDADE AVALIATIVA 2

Vibrações de Sistemas Mecânicos

Lucas Pereira Servilha R.A: 2052830 Lennin Ferreira de Souza R.A: 1997904 Marlon dos Santos Tomazini R.A: 2052857 Rafael Batista de Souza R.A: 2101939

Sumário

1.	QUESTÃO 3	3
2.	INTRODUÇÃO	4
3.	EQUAÇÃO DO MOVIMENTO PELO MÉTODO DE LAGRANGE	4
4.	DADOS PARA ANÁLISE	7
	4.1 Dados de entrada	7
	4.2 Deslocamento	8
	4.3 Velocidade	8
	4.4 Aceleração	9
5.	MÁXIMO DESBALANCEAMENTO PERMITIDO	9
6.	RESPOSTA EM FREQUÊNCIA DO SISTEMA AO DESBALANC	EAMENTO
	EM REGIME PERMANENTE	10
7.	PROCEDIMENTOS QUE GARANTEM SEGURANÇA NA PA	ARTIDA E
	PARADA DA MÁQUINA	10
8.	IMPACTO	10
9.	ANÁLISE DE INCERTEZAS	10
	9.1 Tolerâncias de fabricação	11
	9.2 Módulo de elasticidade	12
	9.3 Rigidez equivalente	12
	9.4 Cavitação	13
	9.5 Momento crítico	13
10	.CONCLUSÃO	14
44	ANEVO	4-

1. QUESTÃO 3

O fator de amplificação pode ser dito como um modificador da amplitude de vibração do sistema . Uma função excitadora senoidal de uma vibração permanente tem como resultado um fator de amplificação dinâmico ou magnitude. O fator de amplificação dinâmico depende da equação 1.1 e de ζ , depende da relação das frequências de excitação e natural e do fator de amortecimento. A parte 1.3 depende dos mesmos parâmetros, o que devolve um atraso na resposta.

$$r=\omega/\omega_n$$
 (1.1)

Mag=
$$(X/\delta_st)=1/(\{[1 [-(\omega/\omega_n)]^2]^2+[2\zeta\omega/\omega_n]\}^{(1/2)})$$
 (1.2)

$$\phi = 2\zeta r/(1-r^2)$$
 (1.3)

Se ζ =0, sem amortecimento e o valor de r se aproximar de 2, podemos observar que a magnitude cresce de forma exponencial, caso ela atinja 2, o valor de mag será infinito, por matlab o gráfico 1.1 ficará da seguinte forma:

2. INTRODUÇÃO

O trabalho trouxe um problema de desbalanceamento de uma turbina tipo Francis, problema resolvido com a teoria sobre desbalanceamento e por rotinas no Matlab, assim simulou-se uma situação real.

Obteve-se a equação do movimento por Lagrange, e com a rotina elaborada por meio dessa equação determinou-se o fator de segurança da máquina. Com esse fator calculou-se a amplitude do deslocamento.

Na sequência plotou-se a curva que diz se ocorrerá ressonância quando a turbina passar pela frequência natural, descobrindo qual o ponto de frequência natural, sugerindo-se meios de segurança para a partida e parada da máquina.

Por fim, analisou-se a possibilidade de um impacto repentino no rotor da turbina, e por meio da análise da incerteza pode-se garantir segurança mesmo que os dados tenham algum erro de precisão, e assim o deslocamento máximo seguir na margem definida.

3. EQUAÇÃO DO MOVIMENTO PELO MÉTODO DE LAGRANGE

Obteve-se a equação do movimento através do método de Lagrange, e para isso observou-se o modelo amortecido de um grau de liberdade e utilizou-se g como uma coordenada generalizada para definir a seguinte derivada temporal da equação do movimento:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{g}}\right) = \frac{\partial L}{\partial g}$$

A seguir apresentou-se a função de Lagrange (L) definida como a diferença da Energia Cinética (T) e Energia Potencial (U).

$$L = T - U$$

Substituiu-se Lagrange pela diferença entre a Energia Cinética e Energia Potencial na derivada temporal da equação do movimento.

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{g}} - \frac{\partial U}{\partial \dot{g}} \right) = \frac{\partial T}{\partial g} - \frac{\partial U}{\partial g}$$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{g}} - \frac{\partial U}{\partial \dot{g}} \right) - \frac{\partial T}{\partial g} + \frac{\partial U}{\partial g} = 0$$

Incluiu-se as forças dissipativas na equação precedente:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{g}} - \frac{\partial U}{\partial \dot{g}}\right) - \frac{\partial T}{\partial g} + \frac{\partial U}{\partial g} = -\frac{\partial F}{\partial \dot{g}}$$

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{g}} - \frac{\partial U}{\partial \dot{g}}\right) - \frac{\partial T}{\partial g} + \frac{\partial U}{\partial g} + \frac{\partial F}{\partial \dot{g}} = 0$$

Sabe-se que:

$$T = \frac{mx^2}{2}$$

$$U = \frac{Kx^2}{2}$$

$$R = \frac{cx^2}{2}$$

Para a coordenada generalizada x, temos:

$$\frac{d}{dt}\left(\frac{\partial(\frac{mx^2}{2})}{\partial \dot{x}} - \frac{\partial(\frac{mx^2}{2})}{\partial \dot{x}}\right) - \frac{\partial(\frac{mx^2}{2})}{\partial x} + \frac{\partial(\frac{kx^2}{2})}{\partial x} + \frac{\partial(\frac{cx^2}{2})}{\partial \dot{x}} = 0$$

A situação trata-se de um caso de vibração forçada, que ocorre por irregularidades na distribuição de massa dos elementos rotativos. Para a massa de desbalanceamento m_0 , que está a uma distância e do centro rotativo, onde o sistema rotaciona a uma velocidade angular w.

Com isso o sistema submeteu-se a ação de uma força centrífuga desbalanceada. Obteve-se a equação:

$$\frac{d}{dt}(m.\dot{x} + m_0.\dot{x}_r - 0) + K.x + c.\dot{x} = 0$$

Entendeu-se que o termo $m_0\dot{\mathbf{x}}_r$, se refere ao desbalanceamento, deixando a equação do movimento da seguinte forma:

$$m.\ddot{x}+m_0.\ddot{x}_r+c.\dot{x}+k.x=0$$

A velocidade angular é considerada constante, assim obteve-se o deslocamento em x da massa $m_{\scriptscriptstyle 0}$:

$$x_r = e.sin(\omega_r.t)$$

Derivou-se novamente para encontrar a aceleração:

$$\ddot{\mathbf{x}}_r = -e.\omega_r^2 sin(\omega_r.t)$$

Inseriu-se a aceleração na equação do movimento.

$$m.\ddot{x} - m_0.e.\omega_r^2.sin(\omega_r.t) + c.\dot{x} + k.x = 0$$

$$m.\ddot{x} + c.\dot{x} + k.x = m_0.e.\omega_r^2.sin(\omega_r.t)$$

Força desbalanceadora e equação do movimento são respectivamente apresentadas a seguir:

$$F_0 = m_0 \cdot e \cdot \omega_r^2$$

$$m \cdot \ddot{x} + c \cdot \dot{x} + k \cdot x = F_0 \cdot \sin(\omega_r \cdot t)$$

4. DADOS PARA ANÁLISE

O problema foi analisado e resolvido considerando o rotor como um disco e o eixo que suporta o rotor como uma viga engastada. Os parâmetros utilizados para aferir o comportamento do problema foram módulo de elasticidade (E), momento de inércia (I), a massa (M), comprimento (L) e diâmetro (D). Um exemplo da turbina tipo Francis pode ser observado na Figura 1.

Fig. 1: Turbina tipo Francis

4.1 Dados de entrada

Parâmetros	Valores	Unidades	
Módulo de Elasticidade	2.07 · 10 ¹¹	$\left[\frac{N}{m^2}\right]$	
Momento de Inércia	7.36 · 10 ⁻⁵	$[m^4]$	
Comprimento (eixo)	4	[m]	
Diâmetro (rotor)	2	[m]	
Massa (rotor)	2000	[kg]	
Diâmetro interno (eixo)	0.1	[m]	
Diâmetro externo (eixo)	0.2	[m]	
Rotação	600	[rpm]	

Peso específico do aço	7800	[kg]
Razão de amortecimento	0.01	-

4.2. Deslocamento

4.3 Velocidade

4.4 Aceleração

Ao analisar os 3 gráficos, percebe-se que os picos representam o momento em que a turbina passa por sua frequência natural, isso ocorre tanto ao ligar quanto ao desligar a máquina, logo após, a máquina passa a ter um comportamento vibracional constante.

A fim de evitar problemas na máquina devido a alta vibração, é necessário tomar algumas medidas para que a máquina não passe por suas frequências naturais.

5. MÁXIMO DESBALANCEAMENTO PERMITIDO

Para determinar o máximo balanceamento permitido, adotou-se uma margem de segurança de 15% em relação à folga do rotor, ou seja, o deslocamento máximo era de 500 [μm] e passou a ser 425 [μm]. A partir de uma rotina no Matlab ® e a Equação x foi possível encontrar o valor máximo de desbalanceamento permitido.

$$X = \frac{m_0}{e} \frac{r^2}{\sqrt{(1-r^2)^2 + (2\zeta r)^2}}$$

Logo, têm-se que o máximo desbalanceamento permitido é de 0.8467 [$kg \cdot m$]

6. RESPOSTA EM FREQUÊNCIA DO SISTEMA AO DESBALANCEAMENTO EM REGIME PERMANENTE.

Utilizou-se a Transformada Rápida de Fourier (FFT), pois com ela facilita a visualização dos picos, então foi possível calcular as frequências do sistema.

Gráfico 1: Frequência natural

Pode-se observar que a diferença de frequência representado, é determinado com a frequência natural inicialmente e em seguida a frequência que o motor trabalhará, evidenciando que a máquina passa por sua frequência natural duas vezes, uma ao ligar e outra ao desligar.

7. PROCEDIMENTOS QUE GARANTEM SEGURANÇA NA PARTIDA E A PARADA DA MÁQUINA

Como pode ser observado no Gráfico 1, a frequência de operação é maior que a frequência natural, isso significa que sempre que a máquina for ligada ou desligada, a frequência natural será excitada. Por este motivo, não é comum uma turbina ser ligada ou desligada várias vezes, porém mesmo assim é necessário que haja um sistema que evite a permanência da vibração forçada próxima à frequência natural.

O soft starter é um dispositivo utilizado para suavizar a partida de motores elétricos, através de um circuito de potência ele controla a tensão na aceleração e desaceleração do motor. O inversor também é utilizado para partida suave, além disso, com o uso dele é possível controlar a velocidade do motor.

Outro método utilizado para desaceleração é o freio, por ser simples e eficiente. Ele consegue entregar grande desaceleração a ponto de que quando a rotação passa pela frequência natural não há amplificação significativa.

8. IMPACTO

Como pode-se observar no Gráfico 2, o deslocamento causado pelo impacto é maior que a distância entre o rotor e o estator, logo para essa força de impacto a máquina irá sofrer sérios danos.

Gráfico 2: Impacto 5000 [N]

9. ANÁLISES DE INCERTEZAS

Considerando os parâmetros iniciais e o máximo desbalanceamento permitido, adotou-se uma margem de segurança para que os efeitos de incertezas não prejudiquem o funcionamento da turbina.

9.1 Tolerâncias de fabricação

Admitiu-se tolerância de fabricação para o eixo sendo de ±5 mm:

Tabela 2: Tolerâncias de fabricação

Diâmetro externo [mm]	200	200	200	195	195	195	205	205	205
Diâmetro interno [mm]	100	95	105	100	95	105	100	95	105
Máximo desbalance amento [kg · m]	0.8467	0.8482	0.8453	0.8498	0.8512	0.8484	0.8432	0.8446	0.8418

9.2 Módulo de elasticidade

Admitindo a existência de uma incerteza de 15% nas medidas das propriedades do material, representada pelo módulo de elasticidade, percebe-se o impacto sobre a rigidez e consequentemente sobre o comportamento do sistema

Tabela 3: Módulo de elasticidade

Módulo de Elasticidade [Pa]	2.07 · 10 ¹¹	2.38 · 10 ¹¹	1.76 · 10 ¹¹
Máximo desbalanceamento permitido [kg·m]	0.8467	0.8352	0.8583

Nota-se que quanto menor o módulo de elasticidade, maior será a massa necessária para balanceamento.

9.3 Rigidez equivalente

Considerando que a máquina tenha perda de 5% da rigidez equivalente ao ano.

Tabela 4: Rigidez equivalente

Rigidez Equivalente [N/m]	7.14 · 10 ⁵	6.78 · 10 ⁵	6.43 · 10 ⁵	6. 07 · 10 ⁵
Máximo desbalanceame nto permitido [kg·m]	0.8467	0.8507	0.8544	0.8583

Percebe-se que ao diminuir a rigidez, maior será a massa necessária para fazer o balanceamento.

9.4 Cavitação

Um problema que ocorre em turbinas é o efeito da cavitação, para tal, adotou-se que a máquina perde 5% de sua massa ao ano.

Tabela 5: Efeitos da cavitação

Massa total [kg]	2173.3	2064.6	1955.9	1847.3
Máximo desbalanceame nto permitido [kg·m]	0.8467	0.8003	0.7544	0.7082

Apesar de que como observa-se na Tabela 5, ao diminuir a massa menor será a massa necessária para o balanceamento, existe o risco da máquina passar a vibrar próximo a frequência natural, o que causaria riscos severos à máquina.

9.5 Momento Crítico

Devido ao fato da mudança dos parâmetros do diâmetro, módulo de elasticidade, rigidez equivalente e massa fazer com que haja alterações significativas no sistema, decidiu-se analisar para a situação mais crítica, sendo ela a qual o sistema se encontra com diâmetro externo de 205 mm, diâmetro interno 95 mm, módulo de elasticidade $2.38 \cdot 10^{11}$ Pa, além de considerar a perda da rigidez e os efeitos da cavitação.

Tabela 6: Momento Crítico

Rigidez Equivalente [N/m]	7.14 · 10 ⁵	6.78 · 10 ⁵	6.43 · 10 ⁵	6.07 · 10 ⁵
Massa total [kg]	2173.3	2064.6	1955.9	1847.3
Máximo desbalanceame nto permitido [kg·m]	0.8468	0.8045	0.7621	0.7198

Com os dados obtidos, plotou-se o Gráfico 3 considerando o momento crítico, porém desconsiderou-se os efeitos da cavitação e perda de rigidez. Isso foi feito para considerar uma máguina nova.

Gráfico 3: Momento crítico considerando máquina nova

10. CONCLUSÃO

Concluiu-se que o desbalanceamento é provocado por uma má distribuição de massa ao redor de um eixo de rotação. Assim determinou-se a equação do movimento pela fórmula de Lagrange, equação utilizada no software Matlab para a obtenção dos dados e gráficos.

Analisou-se uma turbina tipo Francis e encontrou-se o desbalanceamento e magnitude da força centrífuga. Além disso, utilizou-se o Matlab a curva de frequência do sistema ao desbalanceamento, mostrando assim qual foi a ressonância da máquina quando passa pela frequência natural.

Para se adequar ao limite de segurança pode-se ter como alternativa alterar a rigidez, o que muda o valor da frequência natural do eixo. Outra possibilidade é o aumento da aceleração angular, para que a turbina passe mais rápido pela frequência natural, encurtando o tempo que o sistema passa pela ressonância.

Por fim calculou-se a incerteza para que a turbina resista a futuros processos e seu envelhecimento natural, e notou-se que não houve problemas, mesmo com uma diferença no deslocamento máximo, isso porque os valores seguem no limite estipulado.

11. ANEXO

Questão 3:

```
clear
clc
r = 0:0.01:5;
zeta = [0.05 0.1 0.5 0.75 1.5 2];
tam r = length(r);
tam zeta = length (zeta);
Mag = zeros(tam zeta, tam r);
for i=1:tam zeta
   for j=1:tam_r
       Mag(i, j) = 1/sqrt((1-(r(j)^2))^2+(2*r(j)*zeta(i))^2);
   end
   hold on
   plot (r,Mag(i,:))
   xlabel('Razao de frequencia(r)')
   ylabel('Amplificaçao(Mag)')
   legend({'0.05','0.1','0.50','0.75','1.5','2'})
   xlim([0 3])
   set(gcf, 'color','w');
end
```

Questão 4:

```
clc
clear
% Dados de entrada
1 = 4; % comprimento viga
E = 2.07e11; % módulo eslaticidade aço
drotor = 2; % diâmetro rotor
m = 2000; % massa rotor
die = 0.1; % D interno eixo
dee = 0.2; % D externo eixo
zeta = 0.01; % razão de amortecimento
raco = 7800; % peso específico do aço (média)
n = 600; % Rotação [rpm]
% Momento de Inércia
I=(pi*((dee^4)-(die^4)))/64;
% Rigidez equivalente
k = (3*E*I)/(1^3);
% Massa da viga
Vviga = 1*pi*(((dee/2)^2)-((die/2)^2)); %Volume da viga
ms = Vviga*raco; % Massa da viga
% Massa equivalente
meq = m + (33*ms/140);
% Frequência Natural e Velocidade angular do motor
wn = sqrt(k/meq);
f = n/60; % Frequência de rotação
wr = 2*pi*f; % Rotação em rad/s
% Razão entre a rotação do motor e a frequência natural
```

```
r = wr/wn;
% Coeficiente de amortecimento
c = zeta*wn*2*meq;
% Deslocamento máximo permitido
fseg = 0.85; % fator de segurança
folga = 500e-6;
X = fseg*folga; % Deslocamento máximo
% Determinando o desbalanceamento
desba = X*meq*(sqrt(((1-(r^2))^2)+((2*zeta*r)^2)))/(r^2);
%Força de desbalanceamento
F0 = desba*(wr^2);
```


