Deep Generative Models

Lecture 5

Roman Isachenko

2024, Summer

Bayes theorem

$$p(\mathbf{t}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathbf{t})p(\mathbf{t})}{\int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}}$$

- x observed variables, t unobserved variables (latent variables/parameters);
- $ightharpoonup p(\mathbf{x}|\mathbf{t})$ likelihood;
- $p(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{t})p(\mathbf{t})d\mathbf{t}$ evidence;
- ho(t) prior distribution, p(t|x) posterior distribution.

Posterior distribution

$$p(\boldsymbol{\theta}|\mathbf{X}) = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) pprox rac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

ELBO derivation 1 (inequality)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}(q, \boldsymbol{\theta})$$

ELBO derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \\ = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{a},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}) \equiv rg \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta})).$$

5 / 27

EM-algorithm

► E-step

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \arg\min_{q} \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}^*));$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Amortized variational inference

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \cdot \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE model
- 4. ELBO surgery

Outline

- 1. ELBO gradients, reparametrization trick
- Variational autoencoder (VAE)

3. Normalizing flows as VAE mode

ELBO surgery

ELBO gradients, (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}), \quad \mathbf{z}_k \sim p(\mathbf{z}).$$

The variational posterior $q(\mathbf{z}|\mathbf{x}, \phi)$ assigns typically more probability mass in a smaller region than the prior $p(\mathbf{z})$.

ELBO gradients, (E-step, $\nabla_{\phi}\mathcal{L}(\phi, \boldsymbol{\theta})$)

E-step:
$$\nabla_{\phi} \mathcal{L}(\phi, \theta)$$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

$$\neq \int q(\mathbf{z}|\mathbf{x}, \phi) \nabla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

Reparametrization trick (LOTUS trick)

$$ightharpoonup r(x) = \mathcal{N}(0,1), \ y = \sigma \cdot x + \mu, \ p(y|\theta) = \mathcal{N}(\mu,\sigma^2), \ \theta = [\mu,\sigma].$$

$$lackbox{f \epsilon}^* \sim r(m{\epsilon}), \quad {f z} = {f g}_{m{\phi}}({f x}, m{\epsilon}), \quad {f z} \sim q({f z}|{f x}, m{\phi})$$

$$egin{aligned}
abla_{\phi} \int q(\mathbf{z}|\mathbf{x},\phi)\mathbf{f}(\mathbf{z})d\mathbf{z} &= \left.
abla_{\phi} \int r(\epsilon)\mathbf{f}(\mathbf{z})d\epsilon \right|_{\mathbf{z}=\mathbf{g}_{\phi}(\mathbf{x},\epsilon)} \ &= \int r(\epsilon)
abla_{\phi}\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon))d\epsilon pprox
abla_{\phi}\mathbf{f}(\mathbf{g}_{\phi}(\mathbf{x},\epsilon^*)) \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^{*}), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= \mathbf{g}_{\phi}(\mathbf{x}, \epsilon) = \sigma_{\phi}(\mathbf{x}) \odot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot), \sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- p(z) prior distribution on latent variables z. We could specify any distribution that we want. Let say $p(z) = \mathcal{N}(0, \mathbf{I})$.
- $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE mode

4. ELBO surgery

Generative models zoo

Variational autoencoder (VAE)

Final EM-algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$egin{aligned} oldsymbol{\epsilon}^* &\sim r(oldsymbol{\epsilon}); & \mathbf{z}^* = \mathbf{g}_{oldsymbol{\phi}}(\mathbf{x}, oldsymbol{\epsilon}^*); \end{aligned}$$
 $\mathcal{L}(oldsymbol{\phi}, oldsymbol{ heta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{ heta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, oldsymbol{\phi})||p(\mathbf{z}^*)). \end{aligned}$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|\mathbf{g}_{\phi}(\mathbf{x}, \epsilon^*), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})); \\
\nabla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, etc):

$$\phi := \phi + \eta \cdot \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

 $\theta := \theta + \eta \cdot \nabla_{\theta} \mathcal{L}(\phi, \theta).$

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from complicated distribution $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_e(\mathbf{x},\phi)$ outputs $m{\mu}_{m{\phi}}(\mathbf{x})$ and $m{\sigma}_{m{\phi}}(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)
- 3. Normalizing flows as VAE model

4. ELBO surgery

VAE vs Normalizing flows

	VAE	NF
Objective	ELBO $\mathcal L$	Forward KL/MLE
Encoder	stochastic $\mathbf{z} \sim q(\mathbf{z} \mathbf{x}, oldsymbol{\phi})$	$\begin{aligned} deterministic \\ \mathbf{z} &= \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) \\ q(\mathbf{z} \mathbf{x}, \boldsymbol{\theta}) &= \delta(\mathbf{z} - \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) \end{aligned}$
Decoder	$\begin{array}{c} stochastic \\ \mathbf{x} \sim p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) \end{array}$	$\begin{aligned} & \text{deterministic} \\ & \mathbf{x} = \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}) \\ & p(\mathbf{x} \mathbf{z}, \boldsymbol{\theta}) = \delta(\mathbf{x} - \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) \end{aligned}$
Parameters	$oldsymbol{\phi}, oldsymbol{ heta}$	$ heta \equiv \phi$

Theorem

MLE for normalizing flow is equivalent to maximization of ELBO for VAE model with deterministic encoder and decoder:

$$\rho(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \delta(\mathbf{x} - \mathbf{f}_{\boldsymbol{\theta}}^{-1}(\mathbf{z})) = \delta(\mathbf{x} - \mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z}));$$

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}) = \delta(\mathbf{z} - \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})).$$

Nielsen D., et al. SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows. 2020

Normalizing flow as VAE

Proof

1. Dirac delta function property

$$\mathbb{E}_{\delta(\mathbf{x}-\mathbf{y})}\mathbf{f}(\mathbf{x}) = \int \delta(\mathbf{x}-\mathbf{y})\mathbf{f}(\mathbf{x})d\mathbf{x} = \mathbf{f}(\mathbf{y}).$$

2. CoV theorem and Bayes theorem:

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z})|\det(\mathbf{J_f})|;$$

$$p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}) = \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})p(\mathbf{z})}{p(\mathbf{x}|\boldsymbol{\theta})}; \quad \Rightarrow \quad p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})|\det(\mathbf{J}_{\mathbf{f}})|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{KL(q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta}))}{\mathcal{L}(\boldsymbol{\theta})} = \mathcal{L}(\boldsymbol{\theta}).$$

Normalizing flow as VAE

Proof

ELBO objective:

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - \log \frac{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}{p(\mathbf{z})} \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})} + \log p(\mathbf{z}) \right].$$

1. Dirac delta function property:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})}\log p(\mathbf{z}) = \int \delta(\mathbf{z} - \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}))\log p(\mathbf{z})d\mathbf{z} = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})).$$

2. CoV theorem and Bayes theorem:

$$\mathbb{E}_{q(\mathbf{z}|\mathbf{x},\theta)}\log\frac{p(\mathbf{x}|\mathbf{z},\theta)}{q(\mathbf{z}|\mathbf{x},\theta)} = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},\theta)}\log\frac{p(\mathbf{z}|\mathbf{x},\theta)|\det(\mathbf{J_f})|}{q(\mathbf{z}|\mathbf{x},\theta)} = \log|\det\mathbf{J_f}|.$$

3. Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) = \log p(f_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det \mathbf{J}_{\mathbf{f}}|.$$

Outline

- 1. ELBO gradients, reparametrization trick
- 2. Variational autoencoder (VAE)

- 3. Normalizing flows as VAE mode
- 4. ELBO surgery

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n} \mathcal{L}_{i}(\phi, \theta) = \frac{1}{n}\sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i}, \phi)} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i}, \phi)||p(\mathbf{z})) \right].$$

Theorem

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i},\phi)||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z}|\phi)||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x},\mathbf{z}];$$

- ▶ $q_{agg}(\mathbf{z}|\phi) = \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}, \phi)$ **aggregated** variational posterior distribution.
- ▶ $\mathbb{I}_q[\mathbf{x}, \mathbf{z}]$ mutual information between \mathbf{x} and \mathbf{z} under empirical data distribution and distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- ▶ First term pushes $q_{agg}(\mathbf{z}|\phi)$ towards the prior $p(\mathbf{z})$.
- Second term reduces the amount of information about x stored in z.

ELBO surgery

$$\frac{1}{n}\sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i},\phi)||p(\mathbf{z})) = KL(q_{\text{agg}}(\mathbf{z}|\phi)||p(\mathbf{z})) + \mathbb{I}_{q}[\mathbf{x},\mathbf{z}].$$

Proof

$$\frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})||p(\mathbf{z})) = \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})}{p(\mathbf{z})} d\mathbf{z} =$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi}) \log \frac{q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})}{p(\mathbf{z})q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})} d\mathbf{z} =$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi}) \log \frac{q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})}{p(\mathbf{z})} d\mathbf{z} + \frac{1}{n} \sum_{i=1}^{n} \int q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi}) \log \frac{q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})}{q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})} d\mathbf{z} =$$

$$= KL(q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})||p(\mathbf{z})) + \frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})||q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi}))$$

$$\mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] = \frac{1}{n} \sum_{i=1}^{n} KL(q(\mathbf{z}|\mathbf{x}_{i}, \boldsymbol{\phi})||q_{\text{agg}}(\mathbf{z}|\boldsymbol{\phi})).$$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

ELBO surgery

ELBO revisiting

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{i}(\phi, \theta) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i}, \phi)} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}_{i}, \phi)||p(\mathbf{z})) \right] =$$

$$= \underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{q(\mathbf{z}|\mathbf{x}_{i}, \phi)} \log p(\mathbf{x}_{i}|\mathbf{z}, \theta) - \mathbb{I}_{q}[\mathbf{x}, \mathbf{z}] - KL(q_{agg}(\mathbf{z}|\phi)||p(\mathbf{z}))}_{\text{Marginal KL}}$$

Prior distribution p(z) is only in the last term.

Optimal VAE prior

$$\mathit{KL}(q_{\mathrm{agg}}(\mathbf{z}|\phi)||p(\mathbf{z})) = 0 \quad \Leftrightarrow \quad p(\mathbf{z}) = q_{\mathrm{agg}}(\mathbf{z}|\phi) = \frac{1}{n}\sum_{i=1}^{n}q(\mathbf{z}|\mathbf{x}_{i},\phi).$$

The optimal prior $p(\mathbf{z})$ is the aggregated variational posterior distribution $q_{\text{agg}}(\mathbf{z}|\phi)!$

Hoffman M. D., Johnson M. J. ELBO surgery: yet another way to carve up the variational evidence lower bound. 2016

Variational posterior

ELBO decomposition

$$\log p(\mathbf{x}|\theta) = \mathcal{L}(\phi, \theta) + KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\mathbf{x}, \theta)).$$

- $q(\mathbf{z}|\mathbf{x},\phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}),\sigma_{\phi}^2(\mathbf{x}))$ is a unimodal distribution.
- It is widely believed that mismatch between p(z) and $q_{agg}(z|\phi)$ is the main reason of blurry images of VAE.

Rezende D. J., Mohamed S. Variational Inference with Normalizing Flows, 2015

Summary

- The reparametrization trick gets unbiased gradients w.r.t to the variational posterior distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- The VAE model is an LVM with two neural network: stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ▶ NF models could be treated as VAE model with deterministic encoder and decoder.
- The ELBO surgery reveals insights about a prior distribution in VAE. The optimal prior is the aggregated variational posterior distribution.
- It is widely believed that mismatch between $p(\mathbf{z})$ and $q_{\text{agg}}(\mathbf{z}|\phi)$ is the main reason of blurry images of VAE.