Comenzado el jueves, 3 de octubre de 2024, 13:14

Estado Finalizado

Finalizado en jueves, 3 de octubre de 2024, 13:46

Tiempo empleado 32 minutos 21 segundos

Calificación 16,00 de 20,00 (80%)

Pregunta **1**

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A=\{a_1,\ldots,a_m\}$ y $B=\{b_1,\ldots,b_n\}$. Una matriz $M=(m_{ij})$ representa una relación $R\subseteq A\times B$ six

- $oldsymbol{0}$ a. $m_{ij} = 1 \operatorname{si}(a_i, b_i) \in R^2 \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_i) \notin R^2$.
- \odot b. $m_{ij} = 1 \operatorname{si}(a_i, b_j) \in R \operatorname{y} m_{ij} = 0 \operatorname{si}(a_i, b_j) \notin R$.
- \circ c. $m_{ij} = 0 \operatorname{si}(a_i, b_i) \in R \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_i) \notin R$.
- $oldsymbol{0}$ od. $m_{ij} = 0 \operatorname{si}(a_i, b_i) \in \mathbb{R}^2 \operatorname{y} m_{ij} = 1 \operatorname{si}(a_i, b_i) \notin \mathbb{R}^2$.

Pregunta 2

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es transitiva si y solo si para todo $a,b,c \in A$:

- \bigcirc a. R(a,b) = R(b,a).
- \bigcirc b. R(a, a) = 0.
- \odot c. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- \bigcirc d. R(a, a) = 1.
- \bullet e. $R(a,c) \geq \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.

Pregunta 3

Finalizado

Se puntúa 1,00 sobre 1,00

La clausura transitiva de una relación ${\cal R}$ es:

- \odot b. la relación más grande que contiene a R.
- \odot c. la relación transitiva más pequeña que contiene a R.
- \odot d. la relación transitiva más grande que contiene a R.

Finalizado

Se puntúa 1,00 sobre 1,00

Un conjunto parcialmente ordenado difuso o poset difuso es:

- \bullet a. un par (X, S) donde X es un conjunto certero y S es un orden parcial difuso en X.
- \circ b. un par (X, S) donde X es un conjunto difuso y S es un orden parcial difuso en X.
- oc. ninguna de las otras respuestas.
- od. una relación de orden que es simétrica, reflexiva y antisimétrica.

Pregunta 5

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa es un orden parcial difuso si es:

Seleccione una o más de una:

- a. similaridad
- b. proximidad
- c. reflexivo
- d. transitivo
- e. antisimétrico
- f. simétrico
- g. irreflexivo

Pregunta 6

Finalizado

Se puntúa 1,00 sobre 1,00

Una relación difusa $R: A \times A \rightarrow [0,1]$ es simétrica si y solo si para todo $a,b \in A$:

- \bigcirc a. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- b. R(a,b) = R(b,a).
- \circ c. R(a, a) = 0.
- \bigcirc d. R(a, a) = 1.
- \odot e. $R(a,c) \ge \sup_{b \in A} R(a,b) * R(b,c)$ donde * es un norma t.

Pregunta **7**Finalizado

Se puntúa 0,00 sobre 1,00

Sean $P: A \times B \to [0,1]$ y $Q: B \times C \to [0,1]$ dos <u>relaciones difusas</u>. La composición min-max $R = P \bullet Q$ es una relación difusa en A y C definida como:

- \bigcirc a. $R(a,c) = \min_{b \in B} \max(P(a,b), Q(b,c))$.
- $oldsymbol{0}$ b. $R(a, c) = \max_{b \in B} \max(P(a, b), Q(b, c))$.
- \odot c. $R(a,c) = \max_{b \in B} \min(P(a,b), Q(b,c))$.
- \bigcirc d. $R(a,c) = \min_{b \in B} \min(P(a,b), Q(b,c))$.

Pregunta 8

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $S: X_{j_1} \times \cdots \times X_{j_k}$ una relación difusa donde $\{j_1, \ldots, j_k\}$ es una subsecuencia de $\{1, 2, \ldots, n\}$. La extensión cilíndrica de S en $X_1 \times X_2 \times \cdots \times X_n$ es una relación difusa cylS en $X_1 \times X_2 \times \cdots \times X_n$ tal que:

- \circ a. $cylS(x_{j_1},...,x_{j_k}) = S(x_{j_1},...,x_{j_k})$
- \bigcirc b. $cylS(x_{i_1}, \ldots, x_{i_k}) = S(x_1, \ldots, x_n).$
- \bigcirc c. $cylS(x_1,\ldots,x_n)=S(x_1,\ldots,x_n)$.
- d. $cylS(x_1, \ldots, x_n) = S(x_{j_1}, \ldots, x_{j_k}).$

Pregunta 9

Finalizado

Se puntúa 0,00 sobre 1,00

Sean R y S dos <u>relaciones difusas</u> sobre $A \times B$. La unión $Q = R \cup S$ en su forma más general se define Q(a,b) =:

- o a. ninguna de las otras respuestas.
- \bigcirc b. $R(a,b) \bigstar S(a,b)$ para todo $a,b \in A \times B$ donde \bigstar es una norma t.
- \odot c. $\max(R(a,b),S(a,b))$ para todo $a,b\in A\times B$.
- \bigcirc d. $R(a,b) \bigstar S(a,b)$ para todo $a,b \in A \times B$ donde \bigstar es una conorma t.

Finalizado

Se puntúa 1,00 sobre 1,00

Una función R en un conjunto A es reflexiva si y solo si:

- \bigcirc a. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- b. $(a,a) \in R$ para todo $a \in A$.
- \circ c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- $\quad \ \ \, 0. \ \ \, (a,b)\in R\, {\rm y}\, (b,a)\in R \, {\rm implica}\, a=b \, {\rm para} \, {\rm todo}\, a,b\in A.$

Pregunta 11

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R: A \times A \to [0,1]$ una relación difusa y sea A un conjunto finito de k elementos. Una clausura transitiva de R se define como:

- $@ \ \ a. \ \ \, R^+ = R \cup R^2 \cup \cdot \cdot \cdot \cup R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \! .$
- \bigcirc b. $R^+ = \bigcup_{i>0} R^i$ donde $R^i = R \circ R^{i-1}$.
- $\ \, \circ \ \, c. \ \, R^+ = R \cap R^2 \cap \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^{i-1} \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R \circ R^i \cdot \cdots \cap R^k \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde} \, R^i = R^i \cdot \cdots \cap R^i \, \mathrm{donde$
- od. ninguna de las otras respuestas.

Pregunta 12

Finalizado

Se puntúa 0,00 sobre 1,00

Una función R en un conjunto A es transitiva si y solo si:

- a. $(a,a) \in R$ para todo $a \in A$.
- \bigcirc b. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- \circ c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- \bigcirc d. $(a,b) \in R$ y $(b,a) \in R$ implica a=b para todo $a,b \in A$.

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $\epsilon \in [0,1]$. Decimos que una relación difusa $R: A \times A \to [0,1]$ es ϵ -reflexiva si y solo si para todo $a \in A$ se cumple:

- \bigcirc a. R(a,b) > 0 y R(b,a) > 0 implica a = b.
- \bigcirc b. R(a, a) = 1.
- \bigcirc c. R(a,b) = R(b,a).
- \bigcirc d. R(a, a) = 0.
- \odot e. $R(a,a) \geq \epsilon$.

Pregunta 14

Finalizado

Se puntúa 1,00 sobre 1,00

En la relación $R\cap S$, la notación $a(R\cap S)b$ es equivalente a decir:

- \odot a. aRb y aSb.
- \bigcirc b. $aRb \circ a Sb$.
- \bigcirc c. aRb y a Sb.
- \bigcirc d. $aRb \circ aSb$

Pregunta 15

Finalizado

Se puntúa 1,00 sobre 1,00

Una función R en un conjunto A es antisimétrica si y solo si:

- $\quad \ \ \, \text{ a. } \ \, (a,a)\in R \text{ para todo } a\in A.$
- \bigcirc b. $(b,a) \in R$ si y solo si $(a,b) \in R$ para todo $a,b \in A$.
- \circ c. $\operatorname{si}(a,b) \in R \operatorname{y}(b,c) \in R$, entonces $(a,c) \in R$ para todo $a,b,c \in A$.
- $@ \ \, \mathrm{d.} \ \, (a,b) \in R \, \mathrm{y} \, (b,a) \in R \, \mathrm{implica} \, a = b \, \mathrm{para} \, \mathrm{todo} \, a,b \in A.$

Finalizado

Se puntúa 1,00 sobre 1,00

La altura (del inglés *height*) de una relación difusa $S:A\times B\to [0,1]$, denotado h(S), se define como:

- \odot a. $\sup_{b \in B} \sup_{a \in A} S(a, b)$;
- \bigcirc b. $\sup_{a \in A} S(a, b)$.
- \bigcirc c. $\sup_{b \in B} S(a, b)$.
- od. ninguna de las otras respuestas.

Pregunta 17

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $R \subseteq A \times B$ y $S \subseteq B \times C$ dos relaciones. La relación $R \circ S$ que denota la composición de R y S es la relación que consiste de pares ordenados $(a,c) \in A \times C$ donde:

- \odot a. existe $b \in B$ tal que $(a,b) \in S$ y $(b,c) \in R$.
- \odot b. para todo $b \in B$ tal que $(a,b) \in R$ y $(b,c) \in S$.
- \odot c. existe $b \in B$ tal que $(a, b) \in R$ y $(b, c) \in S$.
- od. ninguna de las otras respuestas.

Pregunta 18

Finalizado

Se puntúa 1,00 sobre 1,00

Sea $A:X\to [0,1]$ un conjunto difuso. Decimos que una familia de conjuntos difusos $\Sigma=\{P_i\}_{i\in J}$ es una cobertura difusa de A si:

- \bigcirc a. $A = \bigcup_{i \in J} P_i^c$
- b. ninguna de las otras respuestas.
- $\ \, \text{o.} \ \, A = \cup_{i \in J} P_i.$
- $\quad \ \, \odot \ \, \mathrm{d.} \quad A = \cap_{i \in J} P_i.$

Finalizado

Se puntúa 1,00 sobre 1,00

Sean A_1,A_2,\ldots,A_n conjuntos certeros. Una relación difusa en $A_1\times A_2\times\cdots\times A_n$ es una relación de la forma:

- \odot a. $R: A_1 \times \cdots \times A_n \rightarrow [0,1]$
- \bigcirc b. $R: A_1 \times \cdots \times A_n \rightarrow \{0,1\}$
- \circ c. $R: A_1 + \cdots + A_n \to [0,1]$
- \bigcirc d. $R: A_1 \cup \cdots \cup A_n \rightarrow [0,1]$

Pregunta 20

Finalizado

Se puntúa 0,00 sobre 1,00

Sea X un conjunto certero y A un subconjunto certero de X. Sea P una relación de orden parcial difusa en X. La cota inferior difusa de A, denotada $L_{\phi(A)}$, se define como:

- \bigcirc a. $L_{\phi(A)} = \sup_{x_i \in A} P_{\geq}[x_i]$.
- \odot b. $L_{\phi(A)} = \inf_{x_i \in A} P_{\geq}[x_i]$.
- \bigcirc c. $L_{\phi(A)} = \bigcap_{x_i \in A} P_{\geq}[x_i]$.
- \bigcirc d. $L_{\phi(A)} = \bigcup_{x_i \in A} P_{\leq}[x_i]$.

■ Guía de la Actividad 3.1. Cuestionario 3

Ir a...

Guía de la Actividad 3.2. Ejercitario 3 ▶