ФГБОУ ВО «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» Институт Информационных технологий, математики и механики Фундаментальная информатика и информационные технологии

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

«Алгоритм Дейкстры: На метках и на d-куче»

Выполнил:

Студент 3 курса, группы 3821Б1ФИ3: Дурандин Владимир Евгеньевич

Проверил:

Уткин Герман Владимирович кафедра: АГДМ

Содержание

1	Введение		2	
2	Постановка задачи Руководство пользователя			3
3				4
4	Руководство программиста			5
	4.1	Описа	ание структуры программы	5
	4.2		ания модулей и структур данных	
		4.2.1	Описание класса D-HEAP	
		4.2.2	Описание класса generator	
		4.2.3	Описание класса Graph	
		4.2.4	Описание модуля Test (Проверка на корректность)	
		4.2.5	Описание модуля Perfomance Tests (Замеры времени)	
	4.3	Алгор	ритмическая сложность алгоритмов Дейкстры	
		4.3.1	Алгоритм Дейкстры на метках	
		4.3.2	Алгоритм Дейкстры на d-куче	
5	Заключение		12	
6	6 Литература		20	

1 Введение

Алгоритм Дейкстры - это алгоритм на графах, который находит кратчайший путь от одной вершины графа к другой. Граф - это структура из точек-вершин, соединенных ребрами-отрезками. Его можно представить как схему дорог или как компьютерную сеть. Ребра - это связи, по ним можно двигаться от одной вершины к другой. Алгоритм Дейкстры работает для графов, у которых нет ребер с отрицательным весом, т.е. таких, при прохождении через которые длина пути как бы уменьшается. Поиск кратчайшего пути в графе является важной задачей в различных областях, таких как:

- 1. Разработка поведения неигровых персонажей, создание игрового ИИ в геймдеве;
- 2. Автоматическая обработка транспортных потоков;
- 3. Маршрутизация движения данных в компьютерной сети;
- 4. Расчёт движения тока по электрическим цепям.

Алгоритм Дейкстры может быть реализован с помощью различных структур данных, таких как куча, очередь с приоритетом или список. Время работы алгоритма зависит от выбранной структуры данных и от различных начальных условий. В данной лабораторной работе будут рассмотрены два алгоритма: на метках и на 3-куче, и в результате будут определены случаи, когда и в какой ситуации будет эффективен один из перечисленных алгоритмов.

2 Постановка задачи

Пусть G = (V, E, W) – ориентированный граф без петель со взвешенными ребрами, где множество вершин $V = \{1, \ldots, n\}$, множество ребер $E \subseteq V \times V, |E| = m$, и весовая функция W(u,v) каждому ребру $(u,v) \in E$ ставит в соответствие его вес – неотрицательное число. Требуется найти кратчайшие пути от заданной вершины $s \in V$ до всех остальных вершин.

Если исходный граф не является ориентированным, то для использования описанных алгоритмов следует превратить его в ориентированный, заменив каждое его ребро (u,v) на два ребра (u,v) и (v,u) того же веса.

Решением задачи будем считать два массива:

- массив dist[1..n], (dist[i] кратчайшее расстояние от вершины s до вершины i).
- массив $all_path[1..n]$, $(all_path[i]$ предпоследняя вершина в построенном кратчайшем пути из вершины s в вершину i).

В описываемых алгоритмах $+\infty$ может быть заменено на любое число, превосходящее длину любого кратчайшего пути из вершины s в любую другую вершину графа G.

В данной лабораторной работе необходимо определить эффективность алгоритмов и их особенности работы.

3 Руководство пользователя

Весь проект состоит из двух исполняемых файлов. Первый отвечает за проверку корректности работы обоих алгоритмов, а второй файл производит замеры на различных начальных условиях и записывает время работы в текстовые файлы.

При запуске, программа автоматически проводит набор из cemu тестов, результаты которых записываются в текстовые файлы $(1.txt, \dots, 7.txt)$, находящиеся вместе с исходными файлами в подпапке $Perfomance_Tests$ корневого каталога с приложением.

4 Руководство программиста

4.1 Описание структуры программы

Программа состоит из нескольких модулей и вспомогательных директорий с файлами:

- boost_1_82_0 библиотека boost с исходными файлами. Нужна для проверки корректности самостоятельно реализованных алгоритмов Дейкстры.
- GTestLib библиотека google test с исходными файлами.
- include директория с исходными файлами реализации алгоритмов.
 - **d_heap.hpp** исходный файл с шаблонной реалиазации структуры данных $D ext{-}HEAP$.
 - **generator.hpp** исходный файл с шаблонной реализацией генератора целых случайных чисел (mersenne twister engine).
 - **graph.hpp**, **graph.cpp** исходные файлы с реализацией основной части программы, а именно: алгоритм Дейкстры с метками и на d-куче, хранение графа, чтение графа из файла и его вывод в текстовые файлы, случайная генерация графа в файл и непосредственно в саму структуру хранения графа.
- input output директория с текстовыми файлами для ввода-вывода графа.
- Perfomance_Tests директория с исходными файлами реализацации замеров работы алгоритмов при заданных начальных условиях, текстовыми файлами, в которые записывается время работы в clock'ах. Данные в текстовых файлах расположены в таком порядке: первый столбец время работы алгоритма Дейкстры на d-куче (в нашем случае 3-куча), второй столбец время работы алгоритма Дейкстры на метках.
- REPORT директория с отчётом о проделанной работе.
- tests директория с исходными файлами реализации проверки корректности работы обоих алгоритмов Дейкстры, где используется библиотеки boost и google tests.

4.2 Описания модулей и структур данных

4.2.1 Описание класса D-НЕАР

```
namespace heap {
  template <typename T, size t dimension>
  class d Heap {
  public:
    d Heap(void) = default;
    d Heap(const std::vector<T>& vector);
    d_Heap(const T* vector, const size_t size);
    ^{\sim}d Heap() = default;
    size_t Get_size(void);
    size t Get capacity(void);
    bool isEmpty(void);
    size_t first_child(const size_t i);
    size t last child (const size t i);
    size t father (const size t i);
    size t min child (const size t i);
    T extract min(void);
    void push(const T& value);
    T pop(const size_t i);
    void sift_up(size_t i); // Всплытие
    void sift down(size t i); // Погружение
    void make heap(void);
    void make heap(const std::vector<T>& vector);
    void make heap(const T* vector, const size t size);
    template <typename Tp, size_t d>
    friend std::ostream& operator<<(std::ostream& cout,</pre>
      const d_Heap < Tp, d > \& heap_);
  private:
    std::vector<T> heap;
```

4.2.2 Описание класса generator

```
namespace gen {
  template <typename T>
  class Random Generator {
  public:
    Random Generator();
    Random Generator (T min, T max, size t seed = std::mt19937::default seed);
    T generate();
    T generate (T min, T max);
  private:
    std::mt19937 gen;
    std::uniform_int_distribution<T> distance;
  };
  template <typename T>
  inline gen::Random Generator<T>::Random Generator()
    : \operatorname{distance}((T)0, (T)0), \operatorname{gen}(\operatorname{std}::\operatorname{mt19937}::\operatorname{default} \operatorname{seed}) {}
  template <typename T>
  inline Random Generator<T>::Random Generator(T min, T max, size t seed)
    : distance(_min, _max), gen(seed) {}
  template <typename T>
  inline T Random Generator<T>::generate() {
    return distance (gen);
  template <typename T>
  inline T Random_Generator<T>:::generate(T _min, T _max) {
    distance = std::uniform_int_distribution<T>(_min, _max);
    return distance (gen);
  }
} // namespace gen
```

4.2.3 Описание класса Graph

```
namespace graph {
  struct Edge {
    size t to, weight;
    bool operator < (const Edge& other) const {
      return this -> weight < other. weight;
    bool operator > (const Edge& other) const {
      return this -> weight > other. weight;
    bool operator == (const Edge& other) const {
      return this -> weight == other.weight;
    }
  };
  using graph t = std::vector<std::vector<Edge>>;
  class Graph {
  public:
    Graph() = default;
    ^{\sim}Graph() = default;
    void init from file(const char* path);
    void generate to file (const char* path, const size t num vertices,
      const size t num edges, const size t min weight,
      const size_t max_weight);
    void generate_to_graph(const size_t num_vertices, const size_t num_edges,
      const size_t min_weight, const size_t max weight);
    void write to file (const char* path,
      const size t finish vertex = RESERVE SIZE MAX);
    std::vector<size_t>& Dijkstra_Mark();
    std::vector<size t>& Dijkstra 3Heap();
    std::vector<size_t>& Get_path(const size_t finish_vertex);
    size t Get vertexCount() const;
    size t Get edgeCount() const;
    size t Get startVertex() const;
    void Set startVertex(const size t node);
    void clear paths and dist();
    std::vector<Edge>& operator[](const size t index);
    const std::vector < Edge > & operator [] (const size t index) const;
  private:
    graph_t graph;
    std::vector<size t> all paths;
    std::vector < size_t > path;
    std::vector<size_t> dist;
    size_t vertexCount = (size_t)0, edgeCount = (size_t)0;
    size_t start_vertex;
  };
} // namespace graph
```

4.2.4 Описание модуля Test (Проверка на корректность)

```
const char* input_file_path = "..\\..\\input_output\\input.txt";
const char* input_file_path_2 = "..\\..\\input_output\\input_2.txt";
const char* input_file_path_3 = "..\\..\\input_output\\input_3.txt";
const char* output_file_path = "..\\..\\input_output\\output.txt";

using boost_Graph =
boost::adjacency_list<boost::listS , boost::vecS , boost::directedS ,
boost::no_property ,
boost::property<boost::edge_weight_t , size_t > ;
using Vertex = boost::graph_traits<boost_Graph>::vertex_descriptor;
using Edge = std::pair<size_t , size_t >;

TEST(TEST_NATIVE_DIJKSTRA, The_First_TEST) {...}
TEST(TEST_NATIVE_DIJKSTRA, The_Second_TEST) {...}
TEST(TEST_NATIVE_DIJKSTRA, BOOST_ONE_TEST) {...}
TEST(TEST_NATIVE_DIJKSTRA, BOOST_ONE_TEST) {...}
TEST(TEST_NATIVE_DIJKSTRA, BOOST_ONE_TEST) {...}
TEST(TEST_NATIVE_DIJKSTRA, BOOST_ONE_RANDOM_GENERATE_TO_GRAPH_TEST) {...}
TEST(TEST_NATIVE_DIJKSTRA, BOOST_ONE_RANDOM_TESTS) {...}
```

4.2.5 Описание модуля Perfomance Tests (Замеры времени)

```
using time_type = std::chrono::steady_clock::time_point;
using time n = std::chrono::nanoseconds;
using time ml = std::chrono::milliseconds;
using time mc = std::chrono::microseconds;
using time s = std::chrono::seconds;
namespace perf {
     \textbf{const char*} \hspace{0.2cm} \texttt{path1} \hspace{0.2cm} = \hspace{0.2cm} " \ldots \setminus \setminus \cdot \cdot \setminus \mathsf{Perfomance\_Tests} \setminus \setminus 1. \hspace{0.1cm} \texttt{txt} \hspace{0.1cm} ";
    \mathbf{const}\ \mathbf{char}*\ \mathrm{path2}\ =\ "..\setminus\setminus..\setminus\mathrm{Perfomance\_Tests}\setminus\setminus2.\,\mathrm{txt}\,";
    \mathbf{const} \ \mathbf{char} * \ \mathrm{path3} \ = \ " \ldots \setminus \setminus \ldots \setminus \mathrm{Perfomance\_Tests} \setminus \setminus 3.\ \mathrm{txt} \ ";
    \textbf{const char*} \hspace{0.2cm} \texttt{path4} \hspace{0.2cm} = \hspace{0.2cm} \texttt{"...} \hspace{0.2cm} \backslash \hspace{0.2cm} \backslash \hspace{0.2cm} \backslash \hspace{0.2cm} ... \hspace{0.2cm} \backslash \hspace{0.2cm} \backslash \hspace{0.2cm} \land \hspace{0.2cm} \bot \hspace{0.2cm} \texttt{rests} \hspace{0.2cm} \backslash \hspace{0.2cm} \backslash \hspace{0.2cm} 4.\hspace{0.2cm} \mathtt{txt} \hspace{0.2cm} \texttt{"};
    const char* path5 = "..\\..\\ Perfomance_Tests\\5.txt";
const char* path6 = "..\\..\\ Perfomance_Tests\\6.txt";
const char* path7 = "..\\..\\ Perfomance_Tests\\7.txt";
    void test_measurement_1();
    void test measurement 2();
    void test measurement 3();
    void test measurement 4();
    void test_measurement_5();
    void test measurement 6();
    void test_measurement_7();
 }  // namespace perf
```

4.3 Алгоритмическая сложность алгоритмов Дейкстры

4.3.1 Алгоритм Дейкстры на метках

Повторить V раз:

- Из всех вершин, расстояния до которых ещё не являются окончательными, выбрать ближайшую и пометить расстояние до неё как окончательное.
- Затем посмотреть рёбра из этой вершины и попробовать улучшить расстояния до вершин-соседей.

В алгоритме Дейкстры требуется V раз определять ближайшую вершину и не более 2E раз (в сумме по всем вершинам) производить релаксации (уменьшее расстояния до вершины).

Если мы используем только массив расстояний, то:

- ullet Сложность определения ближайшей вершины равна O(V).
- Сложность одной релаксации равна O(1).

Таким образом, общая сложность алгоритма Дейкстры на метках составляет $O(V^2+E)$.

4.3.2 Алгоритм Дейкстры на d-куче

В данной лабораторной работе подразумевается использование только 3-кучи. Алгоритмическая сложность основных методов d-кучи:

- Добавление: $O(\log_d(n))$;
- Удаление: $O(d * \log_d(n))$;
- Погружение: $O(d * \log_d(n))$;
- Всплытие: $O(\log_d(n))$;
- Взятие минимума: $O(\log_d(n))$.

Если мы храним необработанные вершины в d-куче, то:

- Сложность определения ближайшей вершины равна $O(\log(V))$.
- Сложность одной редаксации также равна $O(\log(V))$.

Таким образом, общая сложность алгоритма составляет $O((V+E)\log(V))$.

Первый вариант на метках более эффективен для плотных графов, второй вариант на d-куче более эффективен для разреженных графов.

5 Заключение

Все замеры проводились на данной рабочей машине:

- **OC**: Windows 10 Pro x64 (2009 build 19044)

- Процессор: Intel(R) Xeon(R) CPU E3-1270 v3 @ 3.50GHz

- **ОЗУ**: 16 ГБ DDR3

Далее представлены семь графиков с замерами работы алгоритмов Дейкстры на метках и на d-куче.

Tecm №1 Начальные условия:

- Количество вершин - n: $1, ..., 10^4 + 1$, **шаг** - 100

– Левая граница веса ребра: 1

– Правая граница веса ребра: 10⁶

– Количество рёбер – m: $\frac{n^2}{10}$

Рис. 1: Тест №1

На данном примере явно видно, что алгоритм на d-куче медленнее, так как у нас большое количество рёбер. И как говорилось ранее, алгоритм на d-куче будет эффективен только на разреженном графе. Поэтому на данных начальных условиях по всем параметрам выигрывает алгоритм на метках.

Тест №2 Начальные условия:

– Количество вершин – n: 1, ..., $10^4 + 1$, **шаг** – 100

– Левая граница веса ребра: 1

— Правая граница веса ребра: 10^6

– Количество рёбер – m
: n^2

Рис. 2: Тест №2

На данном примере граф является и вовсе полным, поэтому здесь выигрывает алгоритм на метках, так же как и в первом тесте.

Тест №3 Начальные условия:

– Количество вершин – n: $101, ..., 10^4 + 1$, **шаг** – 100

– Левая граница веса ребра: 1

– Правая граница веса ребра: 10⁶

– Количество рёбер – m: 100*n

Рис. 3: Тест №3

На данном примере графики ведут уже себя по-другому. Так как количество рёбер m=100*n, то чем больше количество вершин - тем больее эффективен будет алгоритм на d-куче. Только на начальных итерациях, когда количество вершин меньше 2000 граф является плотным, поэтому скорость работы обоих алгоритмов практически одинаковая.

Тест №4 Начальные условия:

– Количество вершин – n: $101, ..., 10^4 + 1$, **шаг** – 100

– Левая граница веса ребра: 1

– Правая граница веса ребра: 10⁶

– Количество рёбер – m: 1000 * n

Рис. 4: Тест №4

По сравнению с предыдущим тестом, количество рёбер увеличилось на порядок. Поэтому алгоритм на d-куче вновь стал проигрывать алгоритму на метках, так как граф стал опять плотным.

Тест №5 Начальные условия:

– Количество вершин – n: $10^4 + 1$

– Левая граница веса ребра: 1

– Правая граница веса ребра: 10⁶

– Количество рёбер – m: $0, ..., 10^7$, **шаг** – 10^5

Рис. 5: Тест №5

Данный пример является самым показательным и наглядным. Видно, что переходя граничную точку по количеству рёбер, алгоритм на d-куче будет работать медленнее, потому что граф становится плотным.

Тест №6 Начальные условия:

- Количество вершин $n: 10^4 + 1$
- Левая граница веса ребра: 1
- Правая граница веса ребра: 1, ..., 200, **шаг** 1
- Количество рёбер m: n^2

Рис. 6: Тест №6

Так как количество рёбер n^2 , можно определить, что граф является полным. Но судя по графку на маленьких значениях правой границы веса ребра алгоритм на d-куче всёже выигрывает. Это объясняется тем, что при увелечинии максимального веса ребра, в методе d-кучи - «Всплытие »,может происходить больше итераций, чем когда разброс значений маленький. То есть вся разница в константе, которая не пишется при определении алгоритмической сложности алгоритма.

Тест №5 Начальные условия:

- Количество вершин n: $10^4 + 1$
- Левая граница веса ребра: 1
- Правая граница веса ребра: 10⁶
- Количество рёбер m: $0, ..., 10^7$, **шаг** 10^5

Рис. 7: Тест №5

Данный пример является самым показательным и наглядным. Видно, что переходя граничную точку по количеству рёбер, алгоритм на d-куче будет работать медленнее, потому что граф становится плотным.

Тест №7 Начальные условия:

- Количество вершин n: $10^4 + 1$
- Левая граница веса ребра: 1
- Правая граница веса ребра: 1, ..., 200, **шаг** 1
- Количество рёбер m: 1000 * n

Рис. 8: Тест №7

На данном примере похожая ситуация, как и в предыдущем случае. Разница лишь в том, что граф не настолько плотный, чем в тесте №6. Но при увеличении максимального веса ребра алгоритм на d-куче становится медленнее. Поэтому уже при максимальном весе около 200 время работы алгоритмов практически одинаковое. Если ещё увеличивать максимальную границу веса ребра, то выигрывать конечно же алгоритм на метках.

Вывод:

В результате проделанной работы все поставленные задачи выполнены. Оба алгоритма эффективны при определённых начальных условиях. Поэтому, в зависимости от требований, следует выбирать тот алгоритм, который будет иметь преимущество именно в этой ситуации.

6 Литература

- 1. Moй GitHub. https://github.com/Sturmannn/Lab_Dijkstra_algorithm
- 2. Википедия. https://ru.wikipedia.org/wiki/Алгоритм_Дейкстры
- 3. YouTube. Алгоритм Дейкстры: два варианта реализации
- 4. Университет ИТМО. Алгоритм Дейкстры Викиконспекты