

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
A61K 31/00
A1 (11) International Publication Number: WO 96/15780
(43) International Publication Date: 30 May 1996 (30.05.96)

US

(21) International Application Number: PCT/US95/15536

(22) International Filing Date: 22 November 1995 (22.11.95)

(30) Priority Data: 08/344,155 23 November 1994 (23.11.94)

(60) Parent Application or Grant
(63) Related by Continuation
US
08/334,155 (CIP)
Filed on
23 November 1994 (23.11.94)

(71) Applicants (for all designated States except US): ISIS PHAR-MACEUTICALS, INC. [US/US]; 2290 Faraday Avenue, Carlsbad, CA 92008 (US). BOARD OF REGENTS, UNI-VERSITY OF TEXAS SYSTEM [US/US]; 201 West 7th Street, Austin, TX 78701 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BENNETT, C., Frank [US/US]; 2613 Valewood, Carlsbad, CA 92008 (US). STEPKOWSKI, Stanislaw, M. [CA/CA]; 2670-B Holly Hall

Drive, Houston, TX 77054 (US).

(74) Agents: LICATA, Jane, Massey et al.; Law Offices of Jane Massey Licata, Woodland Falls Corporate Park, Suite 201, 210 Lake Drive East, Cherry Hill, NJ 08002 (US).

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: COMPOSITIONS AND METHODS FOR PREVENTING AND TREATING ALLOGRAFT REJECTION

(57) Abstract

Compositions and methods are provided for the prevention and treatment of allograft rejection. Compositions are provided which comprise an antisense oligonucleotide targeted to a nucleic acid sequence encoding intercellular adhesion molecule-1, vascular cell adhesion molecule-1, or endothelial leukocyte adhesion molecule-1 in combination with an immunosuppressive agent. Methods of preventing or treating allograft rejection by treating an allograft recipient with such a composition are provided. Methods for preventing allograft rejection comprising pretreatment of the graft are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
		GE		MW	Malawi
AU	Australia		Georgia		
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
ВŘ	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

1

COMPOSITIONS AND METHODS FOR PREVENTING AND TREATING ALLOGRAFT REJECTION

FIELD OF THE INVENTION

This invention relates to compositions and methods for 5 preventing and treating allograft rejection. In particular, antisense oligonucleotide compositions comprising an combination with an immunosuppressive agent are provided. antisense oligonucleotide is targeted to nucleic acids encoding molecule-1 (ICAM-1), endothelial intercellular adhesion 10 leukocyte adhesion molecule-1 (ELAM-1, also known as Eselectin) or vascular cell adhesion molecule-1 (VCAM-1). immunosuppressive agent is a monoclonal antibody, antisense oligonucleotide or conventional immunosuppressive agent such as serum. or antilymphocyte rapamycin brequinar, 15 compositions have been found to extend allograft survival times induce donor-specific transplant tolerance. and compositions are useful for preventing and treating allograft rejection and for inducing tolerance to specific allergens or antigens.

20 BACKGROUND OF THE INVENTION

Inflammation is a localized protective response elicited by tissues in response to injury, infection, or tissue destruction resulting in the destruction of the infectious or injurious agent and isolation of the injured tissue. A typical inflammatory response proceeds as follows: recognition of an antigen as foreign or recognition of tissue damage; synthesis and release of soluble inflammatory mediators; recruitment of inflammatory cells to the site of infection or tissue damage;

- 2 -

destruction and removal of the invading organism or damaged tissue; and deactivation of the system once the invading organism or damage has been resolved.

Cell-cell interactions are involved in the activation of the immune response at each of the stages described above. One of the earliest detectable events in a normal inflammatory response is adhesion of leukocytes to the vascular endothelium, followed by migration of leukocytes out of the vasculature to the site of infection or injury. The adhesion of these leukocytes, or white blood cells, to vascular endothelium is an obligate step in the migration out of the vasculature. Harlan, J.M., Blood 1985, 65, 513-525.

The adhesion of white blood cells to vascular endothelium and other cell types is mediated by interactions 15 between specific proteins, termed "adhesion molecules", located on the plasma membrane of both white blood cells and vascular endothelium. The interaction between adhesion molecules is similar to classical receptor ligand interactions with the exception that the ligand is fixed to the surface of a cell 20 instead of being soluble. The adherence of white blood cells to vascular endothelium appears to be mediated in part if not in toto by the five cell adhesion molecules: intercellular adhesion molecule-1 (ICAM-1); ICAM-2; endothelial leukocyte adhesion molecule-1 (ELAM-1, also called E-selectin); vascular 25 cell adhesion molecule-1 (VCAM-1); and granule membrane protein-140 (GMP-140). Expression on the cell surface of ICAM-1, ICAM-2, ELAM-1, VCAM-1 and GMP-140 adhesion molecules is induced by inflammatory stimuli. The expression of ELAM-1 and VCAM-1 on endothelial cells is induced by cytokines such as 30 interleukin-1ß and tumor necrosis factor, but not gammainterferon. ICAM-1 expression on endothelial cells is induced by the cytokines, interleukin-1 tumor necrosis factor and gamma-interferon.

In organ transplantation, the reaction of host immune 35 cells with transplant cells is mediated by adhesive cell membrane receptors. An essential step in the activation of T lymphocytes is their interaction with endothelial cells of the

c

graft. Binding of T lymphocytes to the endothelial cells requires intercellular adhesion molecules. It is believed that the induction of ICAM-1 influences the leukocyte response in transplanted tissue. ICAM-1 has been shown to be expressed in rejecting kidney and liver allografts; Faull and Russ, Transplantation 1989, 48, 226-230; Adams et al., Lancet 1989, 2(8672), 1122-1125. ICAM-1 is also expressed on the endothelial-rich pancreatic islet complex; Zeng et al., Transplantation 1994, 58, 681-689. Other adhesion molecules, including VCAM-1 and ELAM-1, are also known to be involved in interactions between the transplanted tissue and the immune system.

It is believed that compositions comprising inhibitors of ICAM-1, VCAM-1 and ELAM-1 expression could provide a novel The use of 15 therapeutic class of anti-rejection agents. neutralizing monoclonal antibodies against ICAM-1 in animal models provides evidence that such inhibitors, if identified, would have therapeutic benefit for renal allografts (Cosimi et al., J. Immunol. 1990, 144, 4604-4612), cardiac allografts 20 (Isobe et al., Science 1992, 255, 1125-1127) and pancreatic islet allografts and xenografts (Zeng et al., Transplantation 1994, 58, 681-689). Experiments in monkeys have been performed to examine the effectiveness of monoclonal antibodies to ICAM-1 in blocking rejection of kidney allografts. Cosimi et al., J. 25 Immunol. 1990, 144, 4604-4612. As in humans, ICAM-1 molecules are expressed on vascular endothelium in normal kidney. During rejection, ICAM-1 expression increased on endothelial and tubular cells and on leukocytes; this increase correlated with Treatment with monoclonal massive infiltration of grafts. 30 antibody to ICAM-1 decreased cellular infiltration and allowed the necessary cyclosporine A dosage to be reduced. Clinical trials conducted in high-risk kidney allograft patients showed that treatment with mouse anti-ICAM-1 monoclonal antibody in a 14-day postoperative period in addition to the triple drug 35 therapy (cyclosporine A, azathioprine and corticosteroids) improved one-year allograft survival from 56% to 78%. Haug et al., Transplantation 1993, 55, 766-773. However, the majority

- 4 -

of patients developed human anti-mouse antibodies within the first two weeks following completion of monoclonal treatment.

Current agents which affect intercellular adhesion molecules include synthetic peptides, monoclonal antibodies, 5 and soluble forms of the adhesion molecules. To date. synthetic peptides which block the interactions with VCAM-1 or ELAM-1 have not been identified. Monoclonal antibodies may prove to be useful for the treatment of allograft rejection due to expression of ICAM-1, VCAM-1 and ELAM-1. The role of ICAM-1 10 and LFA-1 molecules in graft rejection has been previously demonstrated by treatment of heart allograft recipient mice with monoclonal antibodies to ICAM-1 and LFA-1. This combined treatment induced long-term allograft survival and donorspecific transplantation tolerance. Isobe et al., Science However, with chronic treatment, the 15 **1992**, 255, 1125-1127. host animal develops an immune response against the monoclonal antibodies thereby limiting their usefulness in long-term therapy. Soluble forms of the cell adhesion molecules suffer from many of the same limitations as monoclonal antibodies in 20 addition to the expense of their production and their low binding affinity. Thus, there is a long felt need for compositions which effectively inhibit allograft rejection.

PCT/US90/02357 (Hession et al.) discloses sequences encoding Endothelial Adhesion Molecules (ELAMs), 25 including ELAM-1 and VCAM-1 and VCAM-1b. A number of uses for these DNA sequences are provided, including (1) production of monoclonal antibody preparations that are reactive for these molecules which may be used as therapeutic agents to inhibit leukocyte binding to endothelial cells; (2) production of ELAM 30 peptides to bind to the ELAM ligand on leukocytes which, in turn, may bind to ELAM on endothelial cells, leukocyte binding to endothelial cells; (3) use of molecules binding to ELAMS (such as anti-ELAM antibodies, or markers such as the ligand or fragments of it) to detect inflammation; and 35 (4) use of ELAM and ELAM ligand DNA sequences to produce nucleic acid molecules which intervene in ELAM or ELAM ligand expression at the translational level using antisense nucleic

- 5 -

acid and ribozymes to block translation of a specific mRNA either by masking mRNA with antisense nucleic acid or cleaving it with a ribozyme. It is disclosed that coding regions are the targets of choice. For VCAM-1, AUG is believed to be most 5 likely; a 15-mer hybridizing to the AUG site is specifically disclosed in Example 17 of PCT/US90/02357.

SUMMARY OF THE INVENTION

In accordance with the present invention, compositions treating allograft rejection are provided. 10 compositions comprise an antisense oligonucleotide which is targeted to a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1 in combination with an immunosuppressive agent.

Also in accordance with the present invention, methods of preventing or treating allograft rejection are provided 15 which comprise treating an allograft recipient with antisense oligonucleotide which is targeted to a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1, in combination with an immunosuppressive agent.

Further in accordance with the present invention, 20 methods of preventing rejection of an allograft are provided which comprise treatment of the graft prior to transplantation.

DETAILED DESCRIPTION OF THE INVENTION

Recognition of an antigen as foreign is the initial step in the inflammatory response to injury, infection or 25 tissue destruction. Allograft rejection also begins with the recognition of foreign antigens. The acute infiltration of neutrophils into the site of inflammation appears to be due to increased expression of GMP-140, ELAM-1 and ICAM-1 on the surface of endothelial cells. The appearance of lymphocytes 30 and monocytes during the later stages of an inflammatory reaction appear to be mediated by VCAM-1 and ICAM-1. and GMP-140 are transiently expressed on vascular endothelial cells, while VCAM-1 and ICAM-1 are chronically expressed.

ICAM-1 is a member of the immunoglobulin supergene 35 family, containing 5 immunoglobulin-like domains at the amino terminus, followed by a transmembrane domain and a cytoplasmic domain. Human ICAM-1 is encoded by a 3.3-kb mRNA resulting in the synthesis of a 55,219 dalton protein. The mRNA sequence of human ICAM-1 (SEQ ID NO: 97) was described by Staunton et al., 5 Cell 1988, 52, 925-933. The mature glycosylated protein has an apparent molecular mass of 90 kDa as determined by SDS-polyacrylamide gel electrophoresis.

ICAM-1 exhibits a broad tissue and cell distribution, and may be found on white blood cells, endothelial cells, fibroblast, keratinocytes and other epithelial cells. The expression of ICAM-1 can be regulated on vascular endothelial cells, fibroblasts, keratinocytes, astrocytes and several cell lines by treatment with bacterial lipopolysaccharide and cytokines such as interleukin-1, tumor necrosis factor, gamma-interferon, and lymphotoxin. See, e.g., Frohman et al., J. Neuroimmunol. 1989, 23, 117-124. Increased expression of ICAM-1 molecules correlates with increased leukocyte infiltration followed by the rejection of organ allografts in both humans and mice. Nickoloff et al., J. Immunol. 1993, 150, 2148-2159.

20 ELAM-1 is a 115-kDa membrane glycoprotein which is a member of the selectin family of membrane glycoproteins. mRNA sequence of human ELAM-1 (SEQ ID NO:98) was described by Bevilacqua et al., Science 1989, 243, 1160-1165. The amino terminal region of ELAM-1 contains sequences with homologies to 25 members of lectin-like proteins, followed by a domain similar to epidermal growth factor, followed by six tandem 60-amino acid repeats similar to those found in complement receptors 1 These features are also shared by GMP-140 and MEL-14 antigen, a lymphocyte homing antigen. ELAM-1 is encoded for by 30 a 3.9-kb mRNA. The 3'-untranslated region of ELAM-1 mRNA contains several ATTTA sequence motifs which are responsible for the rapid turnover of cellular mRNA consistent with the transient nature of ELAM-1 expression.

ELAM-1 exhibits a limited cellular distribution in 35 that it has only been identified on vascular endothelial cells. Like ICAM-1, ELAM-1 is inducible by a number of cytokines including tumor necrosis factor, interleukin-1 and lymphotoxin and bacterial lipopolysaccharide. In contrast to ICAM-1, ELAM-1 is not induced by gamma-interferon. Bevilacqua et al., Proc. Natl. Acad. Sci. USA 1987, 84, 9238-9242; Wellicome et al., J. Immunol. 1990, 144, 2558-2565. The kinetics of ELAM-1 mRNA induction and disappearance in human umbilical vein endothelial cells precedes the appearance and disappearance of ELAM-1 on the cell surface.

VCAM-1 is a 110-kDa membrane glycoprotein encoded by a 3.2-kb mRNA. The sequence of human VCAM-1 mRNA (SEQ ID NO: 99) was described by Osborn et al., Cell 1989, 59, 1203-1211. VCAM-1 appears to be encoded by a single-copy gene which can undergo alternative splicing to yield products with either six or seven immunoglobulin domains. The receptor for VCAM-1 is proposed to be CD29 (VLA-4) as demonstrated by the ability of monoclonal antibodies to CD29 to block adherence of Ramos cells to VCAM-1. VCAM-1 is expressed primarily on vascular endothelial cells. Like ICAM-1 and ELAM-1, expression of VCAM-1 on vascular endothelium is regulated by treatment with cytokines. Rice and Bevilacqua, Science 1989, 246, 1303-1306; 20 Rice et al., J. Exp. Med. 1990, 171, 1369-1374.

The present invention employs oligonucleotides targeted to nucleic acid sequences encoding ICAM-1, VCAM-1 or This relationship between an oligonucleotide and the nucleic acid sequence to which it is targeted is commonly 25 referred to as "antisense." "Targeting" an oligonucleotide to a chosen nucleic acid target, in the context of this invention, The process usually begins with is a multistep process. identifying a nucleic acid sequence whose function is to be modulated. This may be, as examples, a cellular gene (or mRNA 30 made from the gene) whose expression is associated with a particular disease state, or a foreign nucleic acid from an infectious agent. In the present invention, the target is a nucleic acid sequence encoding ICAM-1, VCAM-1 or ELAM-1; in other words, the gene encoding ICAM-1, VCAM-1 or ELAM-1, or 35 mRNA expressed from the gene encoding ICAM-1, VCAM-1 or ELAM-1. The targeting process also includes determination of a site or sites within the nucleic acid sequence for the oligonucleotide

- 8 -

interaction to occur such that the desired effect, i.e., modulation of gene expression, will result. Once the target site or sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., bybridize sufficiently well and with sufficient specificity, to give the desired modulation.

In the context of this invention "modulation" means either inhibition or stimulation. Inhibition of target gene expression is presently the preferred form of modulation. 10 modulation can be measured in ways which are routine in the art, for example by Northern blot assay of mRNA expression or Western blot assay of protein expression as taught in the examples of the instant application. Effects on allograft survival and graft rejection can also be measured, as taught in 15 the examples of the instant application. "Hybridization", in the context of this invention, means hydrogen bonding, also known as Watson-Crick base pairing, between complementary bases, usually on opposite nucleic acid strands or two regions of a nucleic acid strand. Guanine and cytosine are examples of 20 complementary bases which are known to form three hydrogen bonds between them. Adenine and thymine are examples of complementary bases which form two hydrogen bonds between them. "Specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity 25 such that stable and specific binding occurs between the DNA or RNA target and the oligonucleotide. It is understood that an oligonucleotide need not be 100% complementary to its target nucleic acid sequence to be specifically hybridizable. oligonucleotide is specifically hybridizable when binding of 30 the oligonucleotide to the target interferes with the normal function of the target molecule to cause a loss of utility, and there is a sufficient degree of complementarity to avoid nonspecific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., 35 under physiological conditions in the case of in vivo assays or therapeutic treatment or, in the case of in vitro assays, under conditions in which the assays are conducted.

- 9 -

٠.

preferred embodiments of this invention, oligonucleotides are provided which are targeted to mRNA encoding ICAM-1, VCAM-1 or ELAM-1. In accordance with this invention, persons of ordinary skill in the art will understand 5 that mRNA includes not only the coding region which carries the information to encode a protein using the three letter genetic code, but also associated ribonucleotides which form a region known to such persons as the 5'-untranslated region, the 3'untranslated region, the 5' cap region, intron regions and splice junction ribonucleotides. 10 intron/exon or oligonucleotides may be formulated in accordance with this invention which are targeted wholly or in part to these associated ribonucleotides as well to as the ribonucleotides. The functions of messenger RNA 15 interfered with include all vital functions such as translocation of the RNA to the site for protein translation, actual translation of protein from the RNA, splicing or maturation of the RNA and possibly even independent catalytic activity which may be engaged in by the RNA. The overall 20 effect of such interference with the RNA function is to cause interference with ICAM-1, VCAM-1 or ELAM-1 protein expression. the of this context invention. the "oligonucleotide" refers to an oligomer or polymer

nucleotide or nucleoside monomers consisting of naturally 25 occurring bases, sugars and intersugar (backbone) linkages. The term "oligonucleotide" also includes oligomers or polymers comprising non-naturally occurring monomers, or portions thereof, which function similarly. Such modified substituted oligonucleotides are often preferred over native 30 forms because of properties such as, for example, enhanced cellular uptake, increased stability in the presence of nucleases, or enhanced target affinity. A number of nucleotide and nucleoside modifications have been shown to make the oligonucleotide into which they are incorporated more resistant 35 to nuclease digestion than the native oligodeoxynucleotide. Nuclease resistance is routinely measured by incubating oligonucleotides with cellular extracts or isolated nuclease

- 10 -

solutions and measuring the extent of intact oligonucleotide remaining over time, usually by gel electrophoresis. Oligonucleotides which have been modified to enhance their nuclease resistance survive intact for a longer time than 5 unmodified oligonucleotides. A number of modifications have also been shown to increase binding (affinity) oligonucleotide to its target. Affinity of an oligonucleotide for its target (in this case, a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1) is routinely determined by measuring Tm of an oligonucleotide/target pair, which temperature at which the oligonucleotide and target dissociate. Dissociation is detected spectrophotometrically. the Tm, the greater the affinity of the oligonucleotide for the In some cases, oligonucleotide modifications which 15 enhance target binding affinity are also, independently, able to enhance nuclease resistance.

Specific examples of some preferred oligonucleotides envisioned for this invention may contain phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or 20 cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar ("backbone") linkages. Most preferred are phosphorothioates and those with CH2-NH-O-CH2, CH2-N(CH3)-O- CH_2 , $CH_2-O-N(CH_3)-CH_2$, $CH_2-N(CH_3)-N(CH_3)-CH_2$ and $O-N(CH_3)-CH_2-CH_2$ backbones (where phosphodiester is O-P-O-CH2). Also preferred 25 are oligonucleotides having morpholino backbone structures. Summerton, J.E. and Weller, D.D., U.S. Patent No: 5,034,506. In other preferred embodiments, such as the protein-nucleic acid or peptide-nucleic acid (PNA) backbone, the phosphodiester backbone of the oligonucleotide may be replaced with a 30 polyamide backbone, the bases being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone. P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Science 1991, 254, 1497. Other preferred oligonucleotides may contain alkyl and halogen-substituted sugar moieties comprising one of the 35 following at the 2' position: OH, SH, SCH3, F, OCN, OCH3OCH3, $OCH_3O(CH_2)_nCH_3$, $O(CH_2)_nNH_2$ or $O(CH_2)_nCH_3$ where n is from 1 to about 10; C₁ to C₁₀ lower alkyl, substituted lower alkyl, alkaryl or

aralkyl; Cl; Br; CN; CF3; OCF3; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; SOCH₃; SO₂CH₃; ONO₂; NO₂; N₃; NH₂; heterocycloalkyl; polyalkylamino; heterocycloalkaryl; aminoalkylamino; substituted silyl; an RNA cleaving group; a cholesteryl group; 5 a reporter group; an intercalator; a group for improving the pharmacokinetic properties of an oligonucleotide; or a group pharmacodynamic properties of improving the similar oligonucleotide and other substituents having properties. Oligonucleotides may also have sugar mimetics such 10 as cyclobutyls in place of the pentofuranosyl group. preferred embodiments may include at least one modified base form or "universal base" such as inosine.

The oligonucleotides in accordance with this invention preferably are from about 8 to about 50 nucleotides in length.

15 In the context of this invention it is understood that this encompasses non-naturally occurring oligomers as hereinbefore described, having 8 to 50 monomers.

The oligonucleotides used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the talents of the routineer. It is also well known to use similar techniques to prepare other oligonucleotides such as the phosphorothicates and alkylated derivatives. It is also well known to use similar techniques and commercially available modified amidites and controlled-pore glass (CPG) products such as those available from Glen Research, Sterling VA, to synthesize modified oligonucleotides such as cholesterol-modified oligonucleotides.

For prophylactics and therapeutics, methods of preventing and treating allograft rejection are provided. The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill in the art. In accordance with some embodiments of this invention, an allograft recipient is treated by administering compositions

comprising an antisense oligonucleotide targeted to ICAM-1, VCAM-1 or ELAM-1 in combination with an immunosuppressive the present the context of agent. In invention, combination" means that the oligonucleotide and 5 immunosuppressive agent are administered in the same course of treatment and may be administered separately, simultaneously or in a mixture, i.e., a single composition or formulation containing both oligonucleotide and immunosuppressive agent. Examples of immunosuppressive agents include conventional 10 immunosuppressive agents, of which brequinar, rapamycin, and anti-lymphocyte serum are preferred, and monoclonal antibodies, of which those directed to LFA-1 or ICAM-1 are preferred. immunosuppressive agent may also be an antisense oligonucleotide. Preferred among these are oligonucleotides 15 targeted to B7-2 or LFA-1, or oligonucleotides targeted to ICAM-1, VCAM-1 or ELAM-1.

Oligonucleotides and/or immunosuppressive agents, or combinations of the two, may be formulated in a pharmaceutical composition, which may include carriers, thickeners, diluents, 20 buffers, preservatives, surface active agents, liposomes or formulations and the like in addition to the oligonucleotide. Pharmaceutical compositions may also include one or more active ingredients such as antimicrobial agents, anti-inflammatory agents, anesthetics, and the 25 Formulations for parenteral administration may include sterile aqueous solutions which may also contain buffers, liposomes, diluents and other suitable additives.

The pharmaceutical composition may be administered in a number of ways depending on whether local or systemic 30 treatment is desired, and on the area to be Administration may be topical (including ophthalmic, vaginal, rectal, intranasal), oral, by inhalation, or parenteral, for example by intravenous drip, subcutaneous, intraperitoneal or intramuscular injection. In the present 35 intraperitoneal injection, oral gavage or intravenous infusion by osmotic pump are preferred modes of administration.

Dosing is dependent on severity and responsiveness of

the condition to be treated, with course of treatment lasting from several days to several months or until a cure is effected or a diminution of disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual compositions, and can generally be estimated based on EC50's in in vitro and animal studies. In general, dosage is from 0.001 µg to 100 g and may be administered once or several times daily, weekly, monthly or yearly, or even every 2 to 20 years.

For prevention of allograft rejection, the allograft may be treated prior to transplantation. Perfusion of the 15 allograft is a preferred form of treatment; ex vivo perfusion is more preferred. Methods of organ perfusion are well known In general, harvested tissues or organs (preferably heart, kidney or pancreas) are perfused with the compositions of the invention in a pharmacologically acceptable 20 carrier such as, for example, lactated Ringer's solution, University of Wisconsin (UW) solution, Euro-Collins solution or Sachs solution. Simple flushing of the organ or pulsatile perfusion may be used. Perfusion time is generally dependent on the length of ex vivo viability of the organ being 25 transplanted; these viability times vary from organ to organ and are known in the art. Hearts and livers, for example, are generally transplanted within 4 to 6 hours of harvesting, whereas other organs may have longer ischemic viability. Kidneys, for example, may be transplanted up to 48 hr or even 30 72 hr after harvesting. Dosage may range from 0.001 μ g to 500 oligonucleotide and immunosuppressive Pancreatic islet cell allografts are now being used in place of whole pancreas transplants because of the reduced likelihood of rejection. Islet cell transplants are effective in allowing 35 diabetic patients to become independent of insulin injections. Hering et al., Cell Transplant 1993, 2, 269-282. pancreatic islet allografts, treatment of the isolated islets

- 14 -

ex vivo may be preferred. Zeng et al., Transplantation 1994, 58,681-689. Dosage may range from 0.001 μ g to 500 g each of oligonucleotide and immunosuppressive agent.

Prophylactic treatment of the allograft recipient with oligonucleotide and/or immunosuppressive agent may also be preferred for prevention of allograft rejection. In this case dosages are expected to be from 0.0001 μ g to 100 g each of oligonucleotide and immunosuppressive agent.

Several preferred embodiments of this invention are exemplified in accordance with the following nonlimiting examples. Persons of ordinary skill in the art will appreciate that the present invention is not so limited, however, and that it is generally applicable.

EXAMPLES

15 Example 1 Synthesis and characterization of oligonucleotides

Unmodified DNA oligonucleotides were synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by ß-cyanoethyldiisopropyl-phosphoramidites iodine. 20 purchased from Applied Biosystems (Foster City, CA). For phosphorothicate oligonucleotides, the standard oxidation bottle was replaced by a solution of 0.2 M benzodithiole-3-one 1,1-dioxide in acetonitrile for stepwise thiation of the phosphite linkages. The thiation 25 cycle wait step was increased to 68 seconds and was followed by the capping step.

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides were purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Analytical gel electrophoresis was accomplished in 20% acrylamide, 8 M urea, 45 mM Tris-borate buffer, pH 7.0. Oligodeoxynucleotides and phosphorothicate oligonucleotides were judged from electrophoresis to be greater than 80% full length material.

The relative amounts of phosphorothicate and

phosphodiester linkages obtained by this synthesis were periodically checked by ³¹P NMR spectroscopy. The spectra were obtained at ambient temperature using deuterium oxide or dimethyl sulfoxide-d₆ as solvent. Phosphorothioate samples typically contained less than one percent of phosphodiester linkages.

Secondary evaluation was performed with oligonucleotides purified by trityl-on HPLC on a PRP-1 column (Hamilton Co., Reno, Nevada) using a gradient of acetonitrile 10 in 50 mM triethylammonium acetate, pH 7.0 (4% to 32% in 30 minutes, flow rate = 1.5 ml/min). Appropriate fractions were pooled, evaporated and treated with 5% acetic acid at ambient temperature for 15 minutes. The solution was extracted with an equal volume of ethyl acetate, neutralized with ammonium 15 hydroxide, frozen and lyophilized. HPLC-purified oligonucleotides were not significantly different in potency from precipitated oligonucleotides, as judged by the ELISA assay for ICAM-1 expression.

Example 2 Quantitation of ICAM-1, VCAM-1 and ELAM-1 expression by ELISA

Expression of ICAM-1, VCAM-1 and ELAM-1 on the surface of cells was quantitated using specific monoclonal antibodies in an ELISA. Cells were grown to confluence in 96-well microtiter plates. The cells were stimulated with either 25 interleukin-1 or tumor necrosis factor for 4 to 8 hours to quantitate ELAM-1 and 8 to 24 hours to quantitate ICAM-1 and Following the appropriate incubation time with the cytokine, the cells were gently washed three times with a buffered isotonic solution containing calcium and magnesium 30 such as Dulbecco's phosphate buffered saline (D-PBS). cells were then directly fixed on the microtiter plate with 1 to 2% paraformaldehyde diluted in D-PBS for 20 minutes at 25°C. again with D-PBS cells were washed three times. Nonspecific binding sites on the microtiter plate were blocked 35 with 2% bovine serum albumin in D-PBS for 1 hour at 37°C. Cells were incubated with the appropriate monoclonal antibody diluted in blocking solution for 1 hour at 37°C.

antibody was removed by washing the cells three times with D-Antibody bound to the cells was detected by incubation with a 1:1000 dilution of biotinylated goat anti-mouse IgG (Bethesda Research Laboratories, Gaithersberg, MD) in blocking 5 solution for 1 hour at 37°C. Cells were washed three times with D-PBS and then incubated with a 1:1000 dilution of streptavidin conjugated to ß-galactosidase (Bethesda Research Laboratories) for 1 hour at 37°C. The cells were washed three times with D-PBS for 5 minutes each. The amount of ß-10 galactosidase bound to the specific monoclonal antibody was determined by developing the plate in a solution of 3.3 mM chlorophenolred-ß-D-galactopyranoside, 50 mM sodium phosphate, 1.5 mM MgCl₂; pH=7.2 for 2 to 15 minutes at 37°C. concentration of the product was determined by measuring the 15 absorbance at 575 nm in an ELISA microtiter plate reader.

Induction of ICAM-1 was observed following stimulation with either interleukin-1ß or tumor necrosis factor α in several human cell lines. Cells were stimulated with increasing concentrations of interleukin-1 or tumor necrosis factor for 15 hours and processed as described above. ICAM-1 expression was determined by incubation with a 1:1000 dilution of the monoclonal antibody 84H10 (Amac Inc., Westbrook, ME). The cell lines used were passage 4 human umbilical vein endothelial cells (HUVEC), a human epidermal carcinoma cell line (A431), a human melanoma cell line (SK-MEL-2) and a human lung carcinoma cell line (A549). ICAM-1 was induced on all the cell lines; however, tumor necrosis factor was more effective than interleukin-1 in induction of ICAM-1 expression on the cell surface.

Screening antisense oligonucleotides for inhibition of ICAM-1, VCAM-1 or ELAM-1 expression was performed as described above with the exception of pretreatment of cells with the oligonucleotides prior to challenge with the cytokines. Human umbilical vein endothelial cells (HUVEC) were treated with increasing concentration of oligonucleotide diluted in Opti MEM (GIBCO, Grand Island, NY) containing 8 μ M N-[1-(2,3-dioleyloxy) propyl]-N,N,N-trimethylammonium chloride

(DOTMA) for 4 hours at 37°C to enhance uptake of the oligonucleotides. The medium was removed and replaced with endothelial growth medium (EGM-UV; Clonetics, San Diego, CA) containing the indicated concentration of oligonucleotide for an additional 4 hours. Interleukin-1β was added to the cells at a concentration of 5 units/ml and incubated for 14 hours at 37°C. The cells were quantitated for ICAM-1 expression using a 1:1000 dilution of the monoclonal antibody 84H10 as described above. The oligonucleotides used were:

10 COMPOUND 1 - (ISIS 1558) a phosphodiester oligonucleotide targeted to position 64-80 of the mRNA covering the AUG initiation of translation codon having the sequence

5'-TGGGAGCCATAGCGAGGC-3' (SEQ ID NO: 1).

COMPOUND 2 - (ISIS 1570) a phosphorothioate oligonucleotide corresponding to the same sequence as COMPOUND 1.

COMPOUND 3 - a phosphorothicate oligonucleotide complementary to COMPOUND 1 and COMPOUND 2 exhibiting the sequence

5'-GCCTCGCTATGGCTCCCA-3' (SEQ ID NO: 81).

COMPOUND 4 - (ISIS 1572) a phosphorothicate oligonucleotide targeted to positions 2190-2210 of the mRNA in the 3' untranslated region containing the sequence

5'-GACACTCAATAAATAGCTGGT-3' (SEQ ID NO: 3).

COMPOUND 5 - (ISIS 1821) a phosphorothicate oligonucleotide targeted to human 5-lipoxygenase mRNA used as a control containing the sequence

5'-CATGGCGCGGGCCGCGGG-3' (SEQ ID NO: 82).

The phosphodiester oligonucleotide targeting the AUG initiation of translation region of the human ICAM-1 mRNA (COMPOUND 1) did not inhibit expression of ICAM-1; however, the corresponding phosphorothicate oligonucleotide (COMPOUND 2) inhibited ICAM-1 expression by 70% at a concentration of 0.1 μ M and 90% at 1 μ M concentration. The increased potency of the phosphorothicate oligonucleotide over the phosphodiester is due to increased stability. The sense strand to COMPOUND 2, COMPOUND 3, inhibited ICAM-1 expression by 25% at 10 μ M. If

COMPOUND 2 was prehybridized to COMPOUND 3 prior to addition to the cells, the effects of COMPOUND 2 on ICAM-1 expression were attenuated suggesting that the activity of COMPOUND 2 was due to antisense oligonucleotide effect, requiring hybridization to The antisense oligonucleotide directed against 3' 5 the mRNA. untranslated sequences (COMPOUND 4) inhibited ICAM-1 expression a concentration of 1 μM . The at oligonucleotide, targeting human 5-lipoxygenase (COMPOUND 5), reduced ICAM-1 expression by 20%. These data demonstrate that 10 oligonucleotides are capable of inhibiting ICAM-1 expression on human umbilical vein endothelial cells and suggest that the inhibition of ICAM-1 expression is due to an antisense activity.

The antisense oligonucleotide COMPOUND 15 concentration of 1 μ M was shown to inhibit expression of ICAM-1 on human umbilical vein endothelial cells stimulated with either tumor necrosis factor or interleukin-1. demonstrate that the effects of COMPOUND 2 are not specific for stimulation of cells by a particular cytokine.

Cell adherence assay 20 Example 3

A second cellular assay which was used to demonstrate the effects of antisense oligonucleotides on ICAM-1, VCAM-1 or ELAM-1 expression was a cell adherence assay. Target cells were grown as a monolayer in a multiwell plate, treated with 25 oligonucleotide followed by cytokine. The adhering cells were then added to the monolayer cells and incubated for 30 to 60 minutes at 37°C and washed to remove nonadhering cells. Cells adhering to the monolayer may be determined either by directly counting the adhering cells or prelabeling the cells with a 30 radioisotope such as 51Cr and quantitating the radioactivity associated with the monolayer as described. Dustin and Springer, J. Cell Biol. 1988, 107, 321-331.

of the effects of An example oligonucleotides targeting ICAM-1 mRNA on the adherence of DMSO 35 differentiated HL-60 cells to tumor necrosis factor treated human umbilical vein endothelial cells is as follows.

20

35

umbilical vein endothelial cells were grown to 80% confluence 12 well plates. The cells were treated with 2 μM oligonucleotide diluted in Opti-MEM containing 8 μ M DOTMA for 4 hours at 37°C. The medium was removed and replaced with 5 fresh endothelial cell growth medium (EGM-UV) containing 2 μ M of the indicated oligonucleotide and incubated 4 hours at 37°C. Tumor necrosis factor, 1 ng/ml, was added to cells as indicated and cells incubated for an additional 19 hours. The cells were 10⁶ washed once with EGM-UV and 1.6 x HL-60 The cells were 10 differentiated for 4 days with 1.3% DMSO added. allowed to attach for 1 hour at 37°C and gently washed 4 times with Dulbecco's phosphate-buffered saline (D-PBS) warmed to Adherent cells were detached from the monolayer by addition of 0.25 ml of cold (4°C) phosphate-buffered saline 15 containing 5 mM EDTA and incubated on ice for 5 minutes. number of cells removed by treatment with EDTA was determined by counting with a hemocytometer. Endothelial cells detached monolayer by EDTA treatment could easily be distinguished from HL-60 cells by morphological differences.

In the absence of tumor necrosis factor, 3% of the HL-60 cells bound to the endothelial cells. Treatment of the endothelial cell monolayer with 1 ng/ml tumor necrosis factor increased the number of adhering cells to 59% of total cells added. Treatment with the antisense oligonucleotide COMPOUND 25 2 or the control oligonucleotide COMPOUND 5 did not change the number of cells adhering to the monolayer in the absence of The tumor necrosis factor treatment. antisense oligonucleotide, COMPOUND 2, reduced the number of adhering cells from 59% of total cells added to 17% of the total cells In contrast, the control oligonucleotide, COMPOUND 5, 30 added. did not significantly reduce the number of cells adhering to the tumor necrosis factor treated endothelial monolayer, i.e., 53% of total cells added for COMPOUND 5 treated cells versus 59% for control cells.

These data indicate that antisense oligonucleotides are capable of inhibiting ICAM-1 expression on endothelial cells and that inhibition of ICAM-1 expression correlates with a decrease in the adherence of a neutrophil-like cell to the endothelial monolayer in a sequence specific fashion. Because other molecules, such as ELAM-1 and VCAM-1, also mediate adherence of white blood cells to endothelial cells, it is not expected that adherence would be completely blocked by antisense to ICAM-1.

Example 4 Cell culture and treatment with oligonucleotides

The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (Bethesda MD). Cells were grown in Dulbecco's Modified Eagle's Medium (Irvine Scientific, Irvine CA) containing 1 gm glucose/liter and 10% fetal calf serum (Irvine Scientific). Human umbilical vein endothelial cells (HUVEC) (Clonetics, San Diego CA) were cultured in EGM-UV medium (Clonetics). HUVEC were used between the second and sixth passages. Human epidermal carcinoma A431 cells were obtained from the American Type Culture Collection and cultured in DMEM with 4.5 g/l glucose. Primary human keratinocytes were obtained from Clonetics and grown in KGM (Keratinocyte growth medium, Clonetics).

20 Cells grown in 96-well plates were washed three times with Opti-MEM (GIBCO, Grand Island, NY) prewarmed to 37°C. Opti-MEM containing either 10 μg/ml N-[1-(2,3dioleyloxy) propyl] -N, N, N-trimethylammonium chloride Bethesda Research Labs, Bethesda MD) in the case of HUVEC cells 25 or 20 $\mu g/ml$ DOTMA in the case of A549 cells was added to each Oligonucleotides were sterilized by centrifugation through 0.2 μm Centrex cellulose acetate filters (Schleicher and Schuell, Keene, NH). Oligonucleotides were added as 20x stock solution to the wells and incubated for 4 hours at 37°C. 30 Medium was removed and replaced with 150 μ l of the appropriate growth medium containing the indicated concentration of oligonucleotide. Cells were incubated for an additional 3 to 4 hours at 37°C then stimulated with the appropriate cytokine for 14 to 16 hours, as indicated. ICAM-1 expression was 35 determined as described in Example 2. The presence of DOTMA during the first 4 hours incubation with oligonucleotide - 21 -

increased the potency of the oligonucleotides at least 100-fold. This increase in potency correlated with an increase in cell uptake of the oligonucleotide.

Example 5 ELISA screening of additional antisense oligonucleotides for activity against ICAM-1 gene expression in Interleukin-16-stimulated cells

5

Antisense oligonucleotides were originally targeted to five sites on the human ICAM-1 mRNA. Oligonucleotides were synthesized in both phosphodiester (P=O; ISIS 1558, 1559, 1563, 1564 and 1565) and phosphorothicate (P=S; ISIS 1570, 1571, 1572, 1573, and 1574) forms. The oligonucleotides are shown in Table 1.

TABLE 1

15 ANTISENSE OLIGONUCLEOTIDES WHICH TARGET HUMAN ICAM-1

	ISIS NO.	SEQ ID N	O. TARGET REGION	MODIFICATION
	1558	1	AUG Codon (64-81)	P=O
	1559	2	5'-Untranslated (32-49)	P=O
	1563	3	3'-Untranslated (2190-3010)) P=O
20	1564	4	3'-Untranslated (2849-2866)	P=O
	1565	5	Coding Region (1378-1395)	P=O
	1570	1	AUG Codon (64-81)	P=S
	1571	2	5'-Untranslated (32-49)	P=S
	1572	3	3'-Untranslated (2190-3010)	P=S
25	1573	4	3'-Untranslated (2849-2866)) P=S
	1574	5	Coding Region (1378-1395)	P=S
	1930	6	5'-Untranslated (1-20)	P=S
	1931	7	AUG Codon (55-74)	P=S
	1932	8	AUG Codon (72-91)	P=S
30	1933	9	Coding Region (111-130)	P=S
	1934	10	Coding Region (351-370)	P=S
	1935	11	Coding Region (889-908)	P=S

- 22 -

			- 22 -	
	1936	12	Coding Region (1459-1468)	P=S
	1937	13	Termination Codon (1651-1687)	P=S
	1938	14	Termination Codon (1668-1687)	P=S
	1939	15	3'-Untranslated (1952-1971)	P=S
5	1940	16	3'-Untranslated (2975-2994)	P=S
	2149	17	AUG Codon (64-77)	P=S
	2163	18	AUG Codon (64-75)	P=S
	2164	19	AUG Codon (64-73)	P=S
	2165	20	AUG Codon (66-80)	P=S
10	2173	21	AUG Codon (64-79)	P=S
	2302	22	3'-Untranslated (2114-2133)	P=S
	2303	23	3'-Untranslated (2039-2058)	P=S
	2304	24	3'-Untranslated (1895-1914)	P=S
	2305	25	3'-Untranslated (1935-1954)	P=S
15	2307	26	3'-Untranslated (1976-1995)	P=S
	2634	1	AUG-Codon (64-81)	2'-fluoro A, C & U; P=S
20	2637	15	3'-Untranslated (1952-1971)	2'-fluoro A, C & U;
	2691	1	AUG Codon (64-81)	P=O, except last 3 bases, P=S
25	2710	15	3'-Untranslated (1952-1971)	2 ' - 0 - methyl; P=0
	2711	1	AUG Codon (64-81)	2 ' - 0 - methyl; P=0
	2973	15	3'-Untranslated (1952-1971)	2 ' - 0 - methyl; P=S
30	2974	1	AUG Codon (64-81)	2 ' - 0 - methyl; P=S

WO 96/15780	PCT/US95/15536
-------------	----------------

- 23 -	
--------	--

	3064	27	5'-CAP (32-51)	P=S; G & C added as spacer to 3'
5	3067	84	5'-CAP (32-51)	P=S
	3222	84	5'-CAP (32-51)	2 ' - 0 -
	3224	84	5'-CAP (32-51)	methyl; P=O 2 ' - O - methyl; P=S
10	3581	85	3'-Untranslated (1959-1978)	P=S

Based on the initial data obtained with the five original targets, additional oligonucleotides targeted to the ICAM-1 mRNA were tested. The antisense oligonucleotide (ISIS 3067) which is targeted to the predicted transcription initiation 15 site (5' cap site) inhibited ICAM-1 expression by nearly 90% in IL-16-stimulated cells. ISIS 1931 and 1932 are targeted 5' and 3', respectively, to the AUG translation initiation codon. All three oligonucleotides targeted to the AUG region inhibit ICAM-1 expression, though ISIS 1932 yielded approximately 20% 20 inhibition and thus was less active than ISIS 1570 (70% inhibition) or ISIS 1931 (>50% inhibition). Oligonucleotides targeted to the coding region of ICAM-1 mRNA (ISIS 1933, 1934, 1935, 1574 and 1936) exhibited weak activity. Oligonucleotides targeted to the translation termination codon (ISIS 1937 and 25 1938) exhibited moderate activity, e.g., over 50% inhibition in the case of ISIS 1938.

Surprisingly, the most active antisense oligonucleotide was ISIS 1939, a phosphorothicate oligonucleotide targeted to a sequence in the 3'- untranslated region of ICAM-1 mRNA (see 30 Table 1). This oligonucleotide gave complete inhibition of ICAM-1 expression. Oligonucleotides targeted to other 3' untranslated sequences (ISIS 1572, 1573 and 1940) were not as active as ISIS 1939.

Because ISIS 1939 unexpectedly exhibited the greatest antisense activity of the original 16 oligonucleotides tested, other oligonucleotides targeted to sequences in the 3'-untranslated region of ICAM-1 mRNA (ISIS 2302, 2303, 2304,

2305, and 2307, as shown in Table 1) were tested. ISIS 2307, which is targeted to a site only five bases 3' to the ISIS 1939 target, was the least active of the series, and still showed nearly 70% inhibition of ICAM expression. ISIS 2302, which is 5 targeted to the ICAM-1 mRNA at a position 143 bases 3' to the ISIS 1939 target, was the most active of the series, with Examination of the predicted RNA nearly 100% inhibition. secondary structure of the human ICAM-1 mRNA 3'-untranslated Zuker, Science 1989, 244, region (according to M. 10 revealed that both ISIS 1939 and ISIS 2302 are targeted to sequences predicted to be in a stable stem-loop structure. However, it is generally believed that regions of RNA secondary should be avoided when designing structure oligonucleotides. Thus, ISIS 1939 and ISIS 2302 would not have 15 been predicted to inhibit ICAM-1 expression.

The control oligonucleotide ISIS 1821 showed a small amount of activity against ICAM expression, probably due in part to its ability to hybridize (12 of 13 base match) to the ICAM-1 mRNA at a position 15 bases 3' to the AUG translation initiation codon.

These studies indicate that the AUG translation initiation codon and specific 3'-untranslated sequences in the the susceptible to mRNA were most antisense oligonucleotide inhibition of ICAM-1 expression.

In addition to inhibiting ICAM-1 expression in human 25 umbilical vein cells and the human lung carcinoma cells (A549), ISIS 1570, ISIS 1939 and ISIS 2302 were shown to inhibit ICAM-1 expression in primary human keratinocytes by nearly 70%, over 80% and over 80%, respectively. These oligonucleotides also 30 inhibited ICAM-1 expression in the human epidermal carcinoma cells. These data demonstrate that antisense A431 oligonucleotides are capable of inhibiting ICAM-1 expression in several human cell lines. Furthermore, the rank order potency of the oligonucleotides is the same in the four cell lines 35 examined.

30

Specificity of antisense inhibition of ICAM-1

The specificity of the antisense oligonucleotides ISIS 1939 for ICAM-1 was 1570 ISIS evaluated immunoprecipitation of 35S-labelled proteins. A549 cells were 5 grown to confluence in 25 cm² tissue culture flasks and treated with antisense oligonucleotides as described in Example 4. The cells were stimulated with interleukin-1ß for 14 hours, washed with methionine-free DMEM plus 10% dialyzed fetal calf serum, and incubated for 1 hour in methionine-free medium containing 10 10% dialyzed fetal calf serum, 1 μM oligonucleotide and interleukin-18 as indicated. 35S-Methionine/cysteine mixture (Tran³⁵S-label, purchased from ICN, Costa Mesa, CA) was added to the cells to an activity of 100 μ Ci/ml and the cells were incubated an additional 2 hours. Cellular proteins were 15 extracted by incubation with 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1.0% NP-40, 0.5% deoxycholate and 2 mM EDTA (0.5 ml per well) at 4°C for 30 minutes. The extracts were clarified by centrifugation at 18,000 x g for 20 minutes. The supernatants preadsorbed with 200 μ l protein G-Sepharose beads 20 (Bethesda Research Labs, Bethesda MD) for 2 hours at 4°C, divided equally and incubated with either 5 μα monoclonal antibody (purchased from AMAC Inc., Westbrook ME) or HLA-A,B antibody (W6/32, produced by murine hybridoma cells obtained from the American Type Culture Collection, Bethesda, 25 MD) for 15 hours at 4°C. Immune complexes were trapped by incubation with 200 μ l of a 50% suspension of protein G-Sepharose (v/v) for 2 hours at 4°C, washed 5 times with lysis buffer and resolved on an SDS-polyacrylamide gel. were detected by autoradiography.

Treatment of A549 cells with 5 units/ml of interleukin-1ß was shown to result in the synthesis of a 95-100 kDa protein migrating as a doublet which was immunoprecipitated with the monoclonal antibody to ICAM-1. The appearance as a doublet is believed to be due to differently glycosylated forms of ICAM-1. 35 Pretreatment of the cells with the antisense oligonucleotide ISIS 1570 at a concentration of 1 μ M decreased the synthesis of ICAM-1 by approximately 50%, while 1 μ M ISIS 1939 decreased ICAM-1 synthesis to near background. Antisense oligonucleotide ISIS 1940, inactive in the ICAM-1 ELISA assay (Examples 2 and 5) did not significantly reduce ICAM-1 synthesis. None of the antisense oligonucleotides targeted to the ICAM-1 gene had a demonstrable effect on HLA-A, B synthesis, demonstrating the specificity of the oligonucleotides for ICAM-1. Furthermore, the proteins which nonspecifically precipitated with the ICAM-1 antibody and protein G-Sepharose were not significantly affected by treatment with the antisense oligonucleotides.

10 Example 7 Screening of additional antisense oligonucleotid s for activity against ICAM-1 by cell adhesion assay

Human umbilical vein endothelial (HUVEC) cells were grown and treated with oligonucleotides as in Example 4. Cells were treated with either ISIS 1939, ISIS 1940, or the control 15 oligonucleotide ISIS 1821 for 4 hours, then stimulated with TNF- α for 20 hours. Basal HUVEC minimally bound HL-60 cells, while TNF-stimulated HUVEC bound 19% of the total cells added. Pretreatment of the HUVEC monolayer with 0.3 µM ISIS 1939 reduced the adherence of HL-60 cells to basal levels. 20 control oligonucleotide, ISIS 1821, and ISIS 1940 reduced the percentage of cells adhering from 19% to 9%. These data indicate that antisense oligonucleotides targeting ICAM-1 can specifically decrease adherence of a leukocyte-like cell line (HL-60) to TNF- α -treated HUVEC.

25 Example 8 ELISA screening of antisense oligonucleotides for activity against ELAM-1 gene expression

Primary human umbilical vein endothelial (HUVEC) cells, passage 2 to 5, were plated in 96-well plates and allowed to reach confluence. Cells were washed three times with Opti-MEM 30 (GIBCO, Grand Island NY). Cells were treated with increasing concentrations of oligonucleotide diluted containing 10 μ g/ml DOTMA solution (Bethesda Research Labs, Bethesda MD) for 4 hours at 37°C. The medium was removed and with EGM-UV (Clonetics, San Diego CA) 35 oligonucleotide. Tumor necrosis factor α was added to the medium (2.5 ng/ml) and the cells were incubated an additional

E

4 hours at 37°C.

ELAM-1 expression was determined by ELISA. Cells were gently washed three times with Dulbecco's phosphate-buffered saline (D-PBS) prewarmed to 37°C. Cells were fixed with 95% 5 ethanol at 4°C for 20 minutes, washed three times with D-PBS and blocked with 2% BSA in D-PBS. Cells were incubated with ELAM-1 monoclonal antibody BBA-1 (R&D Systems, Minneapolis MN) diluted to 0.5 μ g/ml in D-PBS containing 2% BSA for 1 hour at 37°C. Cells were washed three times with D-PBS and the bound 10 ELAM-1 antibody detected with biotinylated goat anti-mouse secondary antibody followed by ß-galactosidase-conjugated streptavidin as described in Example 2.

The activity of antisense phosphorothioate oligonucleotides which target 11 different regions on the ELAM-15 1 cDNA and two oligonucleotides which target ICAM-1 (as controls) was determined using the ELAM-1 ELISA. The oligonucleotide and targets are shown in Table 2.

TABLE 2
ANTISENSE OLIGONUCLEOTIDES WHICH TARGET HUMAN ELAM-1

20	ISIS NO.	SEQ ID N	O. TARGET REGION	MODIFICATION
	1926	28	AUG Codon (143-164)	P=S
	2670	29	3'-Untranslated (3718-3737) P=S
	2673	30	3'-Untranslated (2657-2677) P=S
	2674	31	3'-Untranslated (2617-2637) P=S
25	2678	32	3'-Untranslated (3558-3577) P=S
	2679	33	5'-Untranslated (41-60)	P=S
	2680	34	3'-Untranslated (3715-3729) P=S
	2683	35	AUG Codon (143-163)	P=S
	2686	36	AUG Codon (149-169)	P=S
30	2687	37	5'-Untranslated (18-37)	P=S
	2693	38	3'-Untranslated (2760-2788) P=S
	2694	. 39	3'-Untranslated (2934-2954) P=S

In contrast to what was observed with antisense oligonucleotides targeted to ICAM-1 (Example 5), the most potent oligonucleotide modulator of ELAM-1 activity (ISIS 2679)

- 28 -

was targeted to a specific sequence in the 5'-untranslated region of ELAM-1. This oligonucleotide completely inhibited ELAM-1 expression. ISIS 2687, an oligonucleotide which targeted to sequences ending three bases upstream of the ISIS 2679 target, showed only 10-15% inhibition. Therefore, ISIS 2679 is targeted to a site on the ELAM-1 mRNA, which is sensitive to inhibition with antisense oligonucleotides. The sensitivity of this site to inhibition with antisense oligonucleotides was not predictable based upon RNA secondary structure predictions or information in the literature.

Example 9 ELISA screening of additional antisens oligonucleotides for activity against ELAM-1 gene expression

Inhibition of ELAM-1 expression by eighteen antisense 15 phosphorothicate oligonucleotides was determined using the The sequence and ELISA assay as described in Example 8. activity of each oligonucleotide against ELAM-1 are shown in The oligonucleotides indicated by an asterisk (*) have IC50's of approximately 50 nM or below and are preferred. 20 IC50 indicates the dosage of oligonucleotide which results in additional An 50% inhibition of ELAM-1 expression. oligonucleotide targeted to the 3'-untranslated region (ISIS 4728) did not inhibit ELAM expression.

TABLE 3

Inhibition of human ELAM-1 expression by antisense oligonucleotides ELAM-1 expression is given as % of control

9	<u>5</u>						-	. 2	9 -									
EXPRESSION SO NW 01120	50.2	73.8	6.0	20.2	48.5	46.9	35.7	55.3	2.3	46.3	28.1	53.8	64.6	34.7	70.6	15.3	67.2	
VCAM-1 E	70.2	91.1	6.4	30.0	47.9	51.1	53.9	68.5	14.1	49.4	33.	58.9	72.0	36.8	63.5	24.9	72.2	
SEQUENCE	GAAGTCAGCCAAGAACAGCT	TATAGGAGTTTTGATGTGAA	CTGCTGCCTCTGTCTCAGGT	ACAGGATCTCTCAGGTGGGT	AATCATGACTTCAAGAGTTCT	TGAAGCAATCATGACTTCAAG	CCAAAGTGAGAGCTGAGAGA	CTGATTCAAGGCTTTGGCAG	TTCCCCAGATGCACCTGTTT	GGGCCAGAGACCCGAGGAGA	CACAATCCTTAAGAACTCTTT	GTATGGAAGATTATAATATAT	GACAATATACAAACCTTCCAT	ACGITIGGCCTCAIGGAAGI	GGAATGCAAAGCACATCCAT	ACCTCTGCTGTTCTGATCCT	ACCACACTGGTATTTCACAC	
	1-19	17-36	40-59	64-83	143-163	148-168	177-196	1936-1955	rR2006-2025	2053-2082	2617-2637	2556-2676	2933-2953	2993-3012	3093-3112	3557-3576	3717-3736	junction
POSITION	5'-UTR	5'-UTR	5'-UTR	5'-UTR	AUG	AUG	I/E	Coding	I/E 3'UTR20	3'-UTR	3'-UTR	3'-UTR	3'-UTR	3'-UTR	3'-UTR	3'-UTR	3'-UTR	Intron/Exon
SEQ ID#	52	37	33	53	35	36	54	55	26	57	31	30	39	28	59	32	29	
#SISI	*4764	2587	*2679	*4759	*2683	*2686	*4756	4732	*4730	*4729	*2674	2673	2694	*4719	4720	*2678	2670	I/E indicates
ហ					10					15					2.0			

50 nM or below are indicated by an asterisk (*) Oligonucleotides with IC50's of approximately

- 30 -

Exampl 10 ELISA screening of antis nse oligonucleotid s for activity against VCAM-1 gene expression

Inhibition of VCAM-1 expression by fifteen antisense phosphorothicate oligonucleotides was determined using the 5 ELISA assay approximately as described in Example 8, except that cells were stimulated with TNF- α for 16 hours and VCAM-1 expression was detected by a VCAM-1 specific monoclonal antibody (R & D Systems, Minneapolis, MN) used at 0.5 μ g/ml. The sequence and activity of each oligonucleotide against VCAM-10 1 are shown in Table 4. The oligonucleotides indicated by an asterisk (*) have IC₅₀'s of approximately 50 nM or below and are preferred. IC₅₀ indicates the dosage of oligonucleotide which results in 50% inhibition of VCAM-1 expression.

TABLE 4

Inhibition of human VCAM-1 expression by antisense oligonucleotides VCAM-1 expression is given as % of control

ι	#SISI	Q E E E E E E E E E E E E E E E E E E E	POSITION		SEQUENCE	VCAM-1 EX	EXPRESSION 50 nm olion
ህ	*5884	# n	5'-UTR	1-19	CGATGCAGATACCGCGGAGT	79.2	37.2
	3791	61	5'-IJTR	38-5R	GCCTGGGAGGGTATTCAGCT	92.8	0.00
	5862	62	5'-UTR	48-58	CCTGTGTGTGCCTGGGAGGG	115.0	83.5
	*3792	63	AUG	110-129	GGCATTTTAAGTTGCTGTCG	68.7	33.7
10	5863	54	CODING	745-764	CAGCCTGCCTTACTGTGGGC	95.8	66.7
	*5874	65	CODING	1032-1052	CTTGAACAATTAATTCCACCT	66.5	35.3
	5885	99	E/I	1633-1649+intron	TTACCATTGACATAAAGTGTT	84.4	52.4
	*5876	67	CODING	2038-2057	CTGTGTCTCCTGTCCGCT	43.5	31 9.
	*5875	89	CODING	2183-2203	GICTITGITGITTICICITCC	59.2	34.8
15	3794	69	TERMIN.	2344-2362	TGAACATATCAAGCATTAGC	75.3	52.6
	*3800	70	3'-UTR	2620-2639	GCAATCTTGCTATGGCATAA	54.4	47.7
	+3805	71	3'UTR	2826-2845	CCCGGCATCTTACAAACC	67.7	44.9
	+3801	50	3'-UTR	2872-2892	AACCCAGTGCTCCCTTTGCT	36.5	21.3
	*5847	72	3'-UTR	2957-2976	AACATCTCCGTACCATGCCA	51.8	24.6
20	*3804	51	3'-UTR	3005-3524	GGCCACATTGGGAAAGTTGC	r-1 	23.3

Oligonucleotides with IC_{50} 's of approximately $50~\mathrm{nM}$ or below are indicated by an asterisk (\star) . E/I indicates exon/intron junction

- 32 -

Exampl 11 Murine models for testing antis nse oligonucleotides against ICAM-1

Many conditions which are believed to be mediated by intercellular adhesion molecules are not amenable to study in 5 humans. For example, allograft rejection is a condition which is likely to be ameliorated by interference with ICAM-1 expression, but clearly this must be evaluated in animals rather than human transplant patients. These conditions can be tested in animal models, however, such as the mouse models used 10 here.

Oligonucleotide sequences for inhibiting ICAM-1 expression in murine cells were identified. Murine ICAM-1 has approximately 50% homology with the human ICAM-1 sequence; a series of oligonucleotides which target the mouse ICAM-1 mRNA sequence were designed and synthesized, using information gained from evaluation of oligonucleotides targeted to human ICAM-1. These oligonucleotides were screened for activity using an immunoprecipitation assay.

Murine DCEK-ICAM-1 cells (a gift from Dr. Adrienne 20 Brian, University of California at San Diego) were treated with 1 μ M of oligonucleotide in the presence of 20 μ g/ml DOTMA/DOPE solution for 4 hours at 37°C. The medium was replaced with methionine-free medium plus 10% dialyzed fetal calf serum and 1 μ M antisense oligonucleotide. The cells were incubated for 25 1 hour in methionine-free medium, then 100 μ Ci/ml 35 S-labeled methionine/cysteine mixture was added to the cells. Cells were incubated an additional 2 hours, washed 4 times with PBS, and extracted with buffer containing 20 mM Tris, pH 7.2, 20 mM KCl, 5 mM EDTA, 1% Triton X-100, 0.1 mM leupeptin, 10 μ g/ml 30 · aprotinin, and 1 mM PMSF. ICAM-1 was immunoprecipitated from the extracts by incubating with a murine-specific ICAM-1 antibody (YN1/1.7.4) followed by protein G-sepharose. The immunoprecipitates were analyzed by and autoradiographed. Phosphorothioate oligonucleotides ISIS 3066 35 and 3069, which target the AUG codon of mouse ICAM-1, inhibited ICAM-1 synthesis by 48% and 63%, respectively, while oligonucleotides ISIS 3065 and ISIS 3082, which target

sequences in the 3'-untranslated region of murine ICAM-1 mRNA

inhibited ICAM-1 synthesis by 47% and 97%, respectively. The most active antisense oligonucleotide against mouse ICAM-1 was targeted to the 3'-untranslated region. ISIS 3082 was evaluated further based on these results; this 20-mer phosphorothicate oligonucleotide comprises the sequence (5' to 3') TGC ATC CCC CAG GCC ACC AT (SEQ ID NO: 83).

Example 12 Evaluation of ICAM-1 antisense oligonucleotides in bEND.3 murine endothelioma cells

bEND.3 cells were provided by Dr. Werner Risau, Max10 Planck-Institutes, Martinsreid, Germany. Cells were treated with oligonucleotide in the presence of 15 μg/ml DOTMA/DOPE liposome formulation for 4 hours. ICAM-1 expression was induced by treatment with 5 ng/ml human rTNF-α and 1000 u/ml murine IFN-γ for 16 hours. Cells were fixed with ethanol and ICAM-1 expression was quantitated by incubating with ICAM-1 monoclonal antibody (YN1/1.7.4, purified from ascites) followed by a biotinylated goat anti-rat IgG antibody and streptavidin-conjugated β-galactosidase. Results are expressed as percent control ICAM-1 expression. Both basal and cytokine-treated cells were pretreated with DOTMA.

Phosphorothicate oligonucleotides ISIS 3068, 3069, 3066, 3070, 3065, 3082, 3806, 3083, 3084 and 3099 were screened by ELISA in the bEND.3 murine endothelioma cell line. These oligonucleotides are shown in Table 5.

TABLE 5

Effect of antisense phosphorothicate oligonucleotides on ICAM-1 expression in bEND.3 cells

- 34 -

5	ISIS#	Sequ	ence	•					control ession	SEQ ID NO
	3068	AGC	TGC	GCT	GCT	ACC	TGC	AC	25%	89
	3069	GCC	CAT	TGC	AGG	GCC	AGG	GC	-5%	87
	3066	GGG	TTG	AAG	CCA	TTG	CAG	GG	45%	86
	3070	CTC	ATC	CAG	CAG	GCT	CAG	GG	75%	90
10	3065	CCA	GAG	GAA	GTG	GCT	GAG	GG	35%	88
	3082	TGC	ATC	CCC	CAG	GCC	ACC	AT	-55%	83
	3806	CAA	GTG	TGC	ATC	CCC	CAG	GC	-30%	91
	3083	TTG	GGA	CAA	TGT	CTC	AGC	TT	25%	92
	3084	TGC	CAG	TCC	ACA	TAG	TGT	TT	25%	93
15	3099	TGC	TTA	CCC	TCC	CAC	AGC	AG	5%	94

The bEND.3 cells expressed a basal level of ICAM-1 molecules that increased significantly after treatment with a combination of human TNF- α and murine IFN- γ . All of the oligonucleotides inhibited cytokine-induced ICAM-1 expression 20 compared to control, two oligonucleotides, ISIS 3082 and ISIS 3806, lowered ICAM-1 protein expression to below the basal level of expression. ISIS 3082 was also shown to reduce cytokine-induced ICAM-1 mRNA by greater than 95%. This effect was specific. Control oligonucleotide ISIS 7253 (SEQ ID NO: 25 95, a random mixture of the four bases at each position in a phosphorothicate 20 mer) and unrelated control oligonucleotide ISIS 1082 (SEO ID NO: 96) did not reduce ICAM-1 mRNA expression.

Example 13 Antisense oligonucleotide to ICAM-1 increases survival in murine heterotopic heart transplant model

To determine the therapeutic effects of ICAM-1 antisense oligonucleotide in preventing allograft rejection, the murine ICAM-1 specific oligonucleotide ISIS 3082 was tested for activity in a murine vascularized heterotopic heart transplant

model. Hearts from Balb/c mice were transplanted into the abdominal cavity of C3H mice as primary vascularized grafts essentially as described by Isobe et al., Circulation 1991, 84, 1246-1255. Oligonucleotides were administered by continuous intravenous administration via a 7-day Alzet pump. The mean survival time for untreated mice was 9.2 ± 0.8 days (8, 9, 9, 9, 10, 10 days). Treatment of the mice for 7 days with 5 mg/kg ISIS 3082 increased the mean survival time to 14.3 ± 4.6 days (11, 12, 13, 21 days).

10 Example 14 Additional mouse heterotopic heart transplants:

Other donor/recipient combinations were found to give similar results in the cardiac allograft experiments. Untreated C3H(H-2)^k mice rejected C57BL/10(H-2)^b vascularized heart allografts at a mean survival time of 7.7 \pm 1.4 days (6, 7, 7, 15 7, 8, 9, 10 days). A 7-day infusion of the unrelated control oligonucleotide, ISIS 1082, at either 5.0 or 10.0 mg/kg/day did not affect allograft survival $(7.1 \pm 0.7 \text{ days})$. In contrast, infusion of the ICAM-1 antisense oligonucleotide ISIS 3082 prolonged allograft survival in a dose-dependent fashion: 1.25 20 mg/kg/day prolonged graft survival to 11.0 \pm 0 days; 2.5 mg/kg/day prolonged survival to 12.0 \pm 2.7 days (9, 10, 12, 13, 16 days), 5.0 mg/kg/day to 14.1 ± 2.7 days (10, 12, 12, 13, 16, 16, 17, 17 days); and 10.0 mg/kg/day to 15.3 \pm 5.8 days (12, 12, 13, 24 days). All are p < 0.01. Extended 14-day treatment with 25 ISIS 3082 (5 mg/kg/day) further increased graft survival up to as much as 30 days (16, 17, 29, 30; mean = 23.0 ± 7.5 days). Similar results were obtained with C57BL/6(H-2b) to BALB/c transplants.

The effectiveness of the immunosuppression was documented by histological examination of the grafts on day 6 after transplantation. Syngeneic C57BL/10 hearts transplanted to C57BL/10 recipients showed mild infiltration with mononuclear cells (10% of the myocardium) compared to normal controls. Heart allografts from untreated recipients displayed strong infiltration with mononuclear cells and neutrophils. This effect was associated with severe necrosis and mineralization that

formed a dense band that affected 60% of the epicardium, myocardium and papillary muscles. In contrast, heart allografts from recipients treated with ISIS 3082 (5 mg/kg/day) showed only scattered infiltration with mononuclear cells in 20% of the myocardium. The antisense oligonucleotide targeted to ICAM-1 inhibited infiltration and subsequent destruction of heart allograft tissue by host cells.

Example 15 Antisense oligonucleotide to ICAM-1 combin d with monoclonal antibody to LFA-1 increases survival indefinitely in murine heterotopic heart transplant model

Monoclonal antibody (MAb-LFA-1) to LFA-1 was obtained from Dr. Yogita, Juntendo University School of Medicine, Tokyo, Japan. C3H recipients of C57 BL/10 hearts were untreated or treated with daily i.p. injection for 7 days of MAb-LFA-1 (50 μg/day) alone or in combination with ISIS 3082 (5.0 mg/kg/day, administered by Alzet osmotic pump for 7 days). Treatment with MAb-LFA-1 alone prolonged allograft survival to 14.3 ± 2.7 days. Combined treatment with MAb-LFA-1 and ISIS 3082 for 7 days resulted in indefinite survival of the heart allografts (>150 days; p < 0.001) in all 5 mice so treated. The interaction between two agents (oligonucleotide and immunosuppressant) was assessed by the combination index (CI) method (Chou, T-C. and Talalay, P. Adv. Enz. Regul. 1984, 22, 27) for the doses to achieve x% inhibition (days of graft survival):

for the mutually exclusive case where both drugs have the same or similar modes of action, or the more conservative expression:

$$CIx = \frac{D_1 \text{ combined}}{(Dx)_1 \text{ alone}} + \frac{D_1 \text{ combined}}{(Dx)_2 \text{ alone}} + \frac{(D_1 \text{ combined})}{(Dx)_2 \text{ alone}}$$

for the mutually exclusive case, where each drug has a different mode of action. Computer software (Biosoft, Cambridge UK) was used to determine the CI values. A CI of 1 indicates an additive effect, CI < 1 indicates a synergistic effect and CI > 1

indicates an antagonistic effect.

The CI value calculated for the combination of 5.0 mg/kg/day ISIS 3082 and 50 μ g/day anti-LFA-1 monoclonal antibody was 0.001, indicating strong synergism.

5 Example 16 Antisense oligonucleotide to ICAM-1 combined with monoclonal antibody to LFA-1 induces donor-specific transplantation tolerance

Recipients bearing C57BL/10 hearts for 65 days (n=4) were transplanted with donor-type C57BL/10 and third-party BALB/c (H-2^d) skin allografts. Induction of transplantation tolerance was demonstrated by permanent acceptance of donor-type skin grafts (>100 days) and acute rejection of third-party grafts in 9.0 ± 0.0 days. Control C3H mice (n=5) rejected C57BL/10 and BALB/c grafts in 9.2 ± 0.8 days and 8.1 ± 0.6 days, respectively. These results indicate that the combination of ICAM-1 antisense oligonucleotide and monoclonal antibody to LFA-1 induces donor-specific transplantation tolerance.

Example 17 Effects of antisense oligonucleotide to ICAM-1 combined with conventional immunosuppressive drugs

20 The interaction of ISIS 3082 with the immunosuppressive agents rapamycin (RAPA), brequinar (BQR), cyclosporine A (CsA) and anti-lymphocyte serum (ALS) was examined. CsA (Sandoz, Basel, Switzerland) dissolved in cremophor (Sigma, St. Louis MO) was delivered via jugular venous infusion by a 7-day osmotic pump 25 (Alzet, Palo Alto CA). RAPA (Wyeth Ayerst, Rouse Point NY) diluted in 10% Tween 80, 20% N-N-dimethylacetamide and 70% PEG-400 was infused i.v. by 7-day osmotic pump. BQR (DuPont, Wilmington DE) diluted in distilled water was administered every second day, q.o.d, by oral gavage for 7 days. Rabbit anti-mouse 30 ALS (Accurate, New York, NY) was injected once i.p. two days before grafting.

These immunosuppressive modalities act in different ways: ALS decreases the level of T cells, including the alloantigen-specific T cells. Monaco et al., J. Immunol. 1966, 96, 229-238. RAPA inhibits the transduction of signals delivered by lymphokines (Morice et al., J. Biol. Chem. 1993, 268, 3734-

3738) and BQR blocks the dehydroorotate dehydrogenase enzyme that is required for pyrimidine synthesis [Chen et al., Cancer Res. 1986, 46, 5014-5020]. CsA blocks calcineurin activity, thereby inhibiting the synthesis of lymphokines by T cells. Liu et al., 5 Cell 1991, 66, 807-815.

A single i.p. injection of ALS alone two days prior to transplantation prolonged graft survival in a dose-dependent manner: 0.1 ml gave a mean survival of 9.0 ± 0.0 days; 0.2 ml gave a mean of 10.4 ± 0.5 days (10, 10, 10, 11, 11 days) and 0.4 ml gave a mean survival of 14.0 ± 2.1 days (11, 14, 15, 16 days). All are p < 0.01. The combination of 0.2 ml ALS and the antisense oligonucleotide ISIS 3082 extended allograft survivals to 32.2 ± 8.3 days (20, 30, 31, 39, 41 days), 37.0 ± 5.8 days (32, 32, 41, 43 days) and 72.0 ± 49.1 days (33, 34, 54, 89, >150 days), respectively. All are p < 0.01 and CI < 0.001.

RAPA alone (0.05, 0.1 or 0.2 mg/kg/day) delivered i.v. by a 7-day osmotic pump prolonged graft survival in a dose-dependent manner: 0.05 mg/kg/day gave a mean survival of 7.4 ± 1.4 days (6, 6, 7, 9, 9 days); 0.1 mg/kg/day gave a mean survival of 13.0 ± 7.5 days (10, 11, 20, 20, 21 days) and 0.2 mg/kg/day gave a mean survival of 20.0 ± 10.9 days (12, 14, 17, 18, 39 days). The combination of 0.1 mg/kg/day RAPA and the antisense oligonucleotide ISIS 3082 extended allograft survivals to 32.4 ± 8.9 days (23, 24, 33, 39, 43 days) at 5 mg/kg/day of ISIS 3082 and 36.3 ± 6.1 days (32, 32, 36, 45 days) at 10 mg/kg/day of ISIS 3082. Both are p < 0.01 and CI < 0.02.

Oral gavage with BQR alone (0.5, 1.0 or 2.0 mg/kg/day) delivered every second day (q.o.d.) for 7 days prolonged allograft survival to 12.0 ± 2.4 days (9, 11, 11, 14, 15 days), 17.6 days (13, 16, 18, 19, 22 days) or 20.0 ± 4.1 days (15, 17, 20, 23, 25 days), respectively. The combination of 0.5 mg/kg BQR and 5.0 mg/kg ISIS 3082 resulted in a mean survival time of 38.8 ± 30.2 days (21, 24, 28, 28, 31, >100) (p <0.01; CI = 0.007).

A 7-day i.v. infusion of CsA, 2.5 or 5.0 mg/kg/day, was ineffective; 10.0 or 20.0 mg/kg/day CsA did prolong allograft survival. Addition of ISIS 3082 (5.0 or 10.0 mg/kg/day) to CsA

treatment (5.0 mg/kg/day) did not improve graft survival. CI was 14.1 and 51.0, respectively. A combination of the control oligonucleotide, ISIS 1082, and CsA did not affect graft survival time.

These results show that the ICAM-1 antisense oligonucleotide ISIS 3082 interacts synergistically with the immunosuppressive agents ALS, RAPA and BQR, but not with CsA, to block allograft rejection. Because CsA is not very effective in mice, it is unclear whether the lack of synergism between the antisense oligonucleotide and CsA is a pharmacological or a pharmacokinetic effect.

Example 18 Toxicology and pharmacokinetics of ISIS 3082

The ICAM-1 antisense oligonucleotide ISIS 3082 was well tolerated at therapeutic doses without producing signs of toxicity. Even at high doses (100.0 mg/kg/day given q.o.d for 14 days), ISIS 3082 did not produce any major side effects and did not induce an antigenic response.

Interestingly, ISIS 3082 was shown to be active in prolonging heart allograft survival when delivered in a saline suspension, without cationic liposomes. Similar observations have been made with other phosphorothicate oligonucleotides directed at other targets (see, for example, Simons et al., Nature 1992, 359, 67-70; Kitajima et al., Science 1992, 258, 1792-1795). Thus, although cationic liposomes enhance the effect of many oligonucleotides, including ISIS 3082, in vitro, they are not necessarily required for efficacy of the same oligonucleotides in vivo.

Example 19 Mouse pancreatic islet transplants

Fully H-2 and non-H-2 incompatible C3H (H-2^k)

30 streptozotocin-induced diabetic mice were transplanted with 700 fresh C57 BL/10 (H-2^b) dextran gradient-purified islet cells, into either the renal subcapsular space or embolized through the portal vein to the liver. All animals analyzed had non-fasting blood sugars less than 200 mg/dl within 4 post-operative days.

35 The day of rejection was defined as the first day of two

- 40 -

consecutive blood sugars >300 mg/dl and was documented histologically.

Glucose tolerance tests were done at postoperative days 2 and 7. After a 4-hour fast, the control and oligonucleotide-5 treated groups were given 2 grams dextrose/kg body weight IP. Blood sugars were recorded at 0, 15, 30, 45 and 90 minutes.

Example 20 Effect of anti-ICAM-1 oligonucleotide ISIS 3082 or monoclonal antibodies on pancreatic islet graft survival and islet function

After portal vein administration, control mice survived 11.2 ± 2.6 days and ISIS 3082 oligonucleotide-treated mice had a MST of 30.0 ± 18 days, p < 0.01.

Glucose tolerance tests: On postoperative day 2, the oligonucleotide-treated group had lower mean blood sugars compared to controls at 30 minutes (142.6 \pm 72 vs. 231.3 \pm 53.8, p < 0.05) and 45 minutes (100.4 \pm 68.4 vs. 199.5 \pm 62.1, p < 0.5). On postoperative day 7, the oligonucleotide-treated group also had lower mean blood sugars compared to controls at 30 minutes (189 \pm 58.5 vs. 251.5 \pm 70.1, p < 0.05) and 45 minutes 148.6 \pm 40.2 vs. 210.7 \pm 58.2, p < 0.5).

Significant islet allograft prolongation was achieved by ICAM-1 blockade. ICAM-1 antisense oligonucleotide was effective in improving islet function as well as prolonging graft survival.

Ċ

Example 21 Identification of rat oligonucleotides in vitro

Oligonucleotide sequences for inhibiting rat ICAM-1 expression were identified and screened in rat L2 cells. The most active sequence, ISIS 9125 (SEQ ID NO: 100), displayed an 5 EC₅₀ of approximately 150 nm. Sense and scrambled control sequences had no activity at doses from 150 nm to 1 μ M.

Example 22 Rat kidney allografts

Kidneys from Lewis rats were transplanted into ACI rats. Control rats (no oligonucleotide treatment) had a mean graft survival time of 8.5 ± 1.0 days (7, 8, 8, 9, 9, 10 days). Rats treated with oligonucleotide ISIS 9125 alone (10 mg/kg per day) for 7 days had a mean graft survival time of 9.2 ± 1.3 days (8, 9, 9, 11 days). Rats treated with oligonucleotide ISIS 9125 alone (10 mg/kg per day) for 14 days had a mean graft survival time of >18.3 days (18, >7, >30 days).

Example 23 Rat kidney allografts with cyclosporin

Kidneys from Lewis rats were transplanted into ACI rats. Control rats (no oligo, no cyclosporin) had a mean graft survival time of 8.5 ± 1.0 days (7, 8, 8, 9, 9, 9, 10 days). 20 Cyclosporin alone (2 mg/kg daily for 7 days) increased graft survival time to $10.5 \pm 3.4 \text{ days} (7, 9, 11, 15 \text{ days})$. treated with oligonucleotide ISIS 9125 alone (10 mg/kg per day for 7 days) had a mean graft survival time of 9.25 days (8, 9, 9, 11 days). Rats treated with both cyclosporin (2 mg/kg x 7 25 days) and oligonucleotide ISIS 9125 (10 mg/kg x 7 days) had a mean graft survival time of >24.2 days (10, 12, 24, 30, >45 days). Treatment with a reduced cyclosporin dose of 1 mg/kg for 14 days (no oligonucleotide) gave a mean graft survival time of This cyclosporin regimen in >17.0 days (15, 18, >18). 30 combination with ISIS 9125 (10 mg/kg, 14 days) gave a mean graft survival time of >30 days (>30, >30, >30).

Exampl 24 Rat cardiac allografts

Hearts from Lewis rats were transplanted into ACI rats using a modification of the method described in Example 12.

- 42 -

Control rats (no oligonucleotide treatment) had a mean graft survival time of 8.8 ± 0.8 days (8, 8, 9, 9, 9, 10 days). Rats treated with oligonucleotide ISIS 9125 alone (2.5 mg/kg for 7 days) had a mean graft survival time of 12.0 ± 1.7 days (10, 13, 13 days), rats treated with oligonucleotide ISIS 9125 alone (5 mg/kg for 7 days) had a mean graft survival time of 10 ± 3.0 days (7, 10, 13 days) and rats treated with ISIS 9125 alone (10 mg/kg per day for 7 days) had a mean graft survival time of 18.0 ± 3.8 days (13, 16, 16, 18, 22, 23 days).

10 Example 25 Rat cardiac allografts with cyclosporin

Hearts from Lewis rats were transplanted into ACI rats as above. Control rats (no oligo, no cyclosporin) had a mean graft survival time of 8.8 ± 0.8 days (8, 8, 9, 9, 9, 10 days). Cyclosporin alone (2 mg/kg daily for 7 days) increased graft survival time to 13.7 ± 1.5 days (12, 14, 15 days) and cyclosporine alone (4 mg/kg for 7 days) gave a graft survival time of 16.7 ± 3.8 days (14, 15, 21 days). Rats treated with oligonucleotide ISIS 9125 alone (5 mg/kg for 7 days) had a mean graft survival time of 10 ± 3.0 days (7, 10, 13 days) and rats treated with ISIS 9125 alone (10 mg/kg per day for 7 days) had a mean graft survival time of 18.0 ± 3.8 days (13, 16, 16, 18, 22, 23 days). Rats treated with both cyclosporin (4 mg/kg x 7 days) and oligonucleotide ISIS 9125 (10 mg/kg x 7 days) had a mean graft survival time of 21.7 ± 7.4 days (16, 19, 30 days).

PCT/US95/15536

WO 96/15780

- 43 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Bennett and Stepkowski
 - (ii) TITLE OF INVENTION: Compositions and Methods for Preventing and Treating Allograft Rejection
 - (iii) NUMBER OF SEQUENCES: 100
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Woodland Falls Corporate Park
 - (B) STREET: 210 Lake Drive East, Suite 201
 - (C) CITY: Cherry Hill
 - (D) STATE: NJ
 - (E) COUNTRY: USA
 - (F) ZIP: 08002
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: DISKETTE, 3.5 INCH, 1.44 Mb STORAGE
 - (B) COMPUTER: IBM PS/2
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: WORDPERFECT 5.0
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US95/15536
 - (B) FILING DATE: November 22, 1995
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/063,167
 - (B) FILING DATE: 5/17/93
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 08/007,997
 - (B) FILING DATE: 1/21/93
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/939,855

- 44 -

- (B) FILING DATE: 9/2/92
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 07/567,286
 - (B) FILING DATE: 8/14/90
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Jane Massey Licata
 - (B) REGISTRATION NUMBER: 32,257
 - (C) REFERENCE/DOCKET NUMBER: ISPH-0143
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (609) 779-2400
 - (B) TELEFAX: (609) 779-8488
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (iv) ANTI-SENSE: Yes
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

18

TGGGAGCCAT AGCGAGGC

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (iv) ANTI-SENSE: Yes
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

	GAGGAGCTCA GCGTCGACTG	20
(2)	INFORMATION FOR SEQ ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	GACACTCAAT AAATAGCTGG T	21
(2)	INFORMATION FOR SEQ ID NO: 4:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	GAGGCTGAGG TGGGAGGA	18
(2)	INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CGATGGGCAG TGGGAAAG	18

- 46 -

(2)	INFORM	MATION FOR SEQ ID NO: 6:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
		GGGCGCGTGA TCCTTATAGC	20
(2)	INFORM	MATION FOR SEQ ID NO: 7:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
		CATAGCGAGG CTGAGGTTGC	20
(2)	INFORM	MATION FOR SEQ ID NO: 8:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
		CGGGGGCTGC TGGGAGCCAT	20
(2)	INFOR	MATION FOR SEQ ID NO: 9:	

	(i) S	EQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
		AGAGCCCCGA GCAGGACCAG	20
(2)	INFORM	MATION FOR SEQ ID NO: 10:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	•	TGCCCATCAG GGCAGTTTGA	20
(2)	INFOR	MATION FOR SEQ ID NO: 11:	
	(i) s	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
		GGTCACACTG ACTGAGGCCT	20
(2)	INFOR	MATION FOR SEQ ID NO: 12:	

(i) SEQUENCE CHARACTERISTICS:

- 48 -

	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	CTCGCGGGTG ACCTCCCCTT	20
(2)	INFORMATION FOR SEQ ID NO: 13:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	TCAGGGAGGC GTGGCTTGTG	20
(2)	INFORMATION FOR SEQ ID NO: 14:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
	CCTGTCCCGG GATAGGTTC A	20
(2)	INFORMATION FOR SEQ ID NO: 15:	
	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 20

	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CCCCCACCAC TTCCCCTCTC	20
(2)	INFORMATION FOR SEQ ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	TTGAGAAAGC TTTATTAACT	20
(2)	INFORMATION FOR SEQ ID NO: 17:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 14	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	AGCCATAGCG AGGC	14
(2)	INFORMATION FOR SEQ ID NO: 18:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 12	

(B) TYPE: Nucleic Acid

- 50	_
------	---

		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
		CCATAGCGAG GC	12
(2)	INFOR	MATION FOR SEQ ID NO: 19:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 10	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
		ATAGCGAGGC	10
(2)	INFOR	MATION FOR SEQ ID NO: 20:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 16	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
		TGGGAGCCAT AGCGAG	16
(2)	INFOR	MATION FOR SEQ ID NO: 21:	
	(i) :	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 16	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	

- 51 -

		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
		GGAGCCATAG CGAGGC	16
(2)	INFORM	MATION FOR SEQ ID NO: 22:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
		GCCCAAGCTG GCATCCGTCA	20
(2)	INFOR	MATION FOR SEQ ID NO: 23:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
		TCTGTAAGTC TGTGGGCCTC	20
(2)	INFOR	MATION FOR SEQ ID NO: 24:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 20	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	

- 52 -

	(iv) ANT	I-SENSE: Yes	
	(xi) SEQ	UENCE DESCRIPTION: SEQ ID NO: 24:	
	AGT	CTTGCTC CTTCCTCTTG	20
(2)	INFORMATI	ON FOR SEQ ID NO: 25:	
	(i) SEQU	ENCE CHARACTERISTICS:	
	(A)	LENGTH: 20	
	(B)	TYPE: Nucleic Acid	
	(C)	STRANDEDNESS: Single	
	(D)	TOPOLOGY: Linear	
	(iv) ANT	I-SENSE: Yes	
	(xi) SEQ	UENCE DESCRIPTION: SEQ ID NO: 25:	
	CTC	ATCAGGC TAGACTTTAA	20
(2)	INFORMATI	ON FOR SEQ ID NO: 26:	
	(i) SEQU	ENCE CHARACTERISTICS:	
	(A)	LENGTH: 20	
	(B)	TYPE: Nucleic Acid	
	(C)	STRANDEDNESS: Single	
	(D)	TOPOLOGY: Linear	
	(iv) ANT	I-SENSE: Yes	
	(xi) SEQ	UENCE DESCRIPTION: SEQ ID NO: 26:	
	TGT	CCTCATG GTGGGGCTAT	20
(2)	INFORMATI	ON FOR SEQ ID NO: 27:	
	(i) SEQU	ENCE CHARACTERISTICS:	
	(A)	LENGTH: 22	
	(B)	TYPE: Nucleic Acid	
	(C)	STRANDEDNESS: Single	
	(D)	TOPOLOGY: Linear	
	(iv) ANT	I-SENSE: Yes	

- 53 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TCTGAGTAGC AGAGGAGCTC GA	22
(2)	INFORMATION FOR SEQ ID NO: 28:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	CAATCATGAC TTCAAGAGTT CT	22
(2)	INFORMATION FOR SEQ ID NO: 29:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	ACCACACTGG TATTTCACAC	20
(2)	INFORMATION FOR SEQ ID NO: 30:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	

- 54 -

	GTATGGAAGA TTATAATATA T	21
(2)	INFORMATION FOR SEQ ID NO: 31:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:	
	CACAATCCTT AAGAACTCTT T	21
(2)	INFORMATION FOR SEQ ID NO: 32:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	ACCTCTGCTG TTCTGATCCT	20
(2)	INFORMATION FOR SEQ ID NO: 33:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:	
	CTGCTGCCTC TGTCTCAGGT	20

- 55 -

(2)	INFORM	MATION FOR SEQ ID NO: 34:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 15	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 34:	
		GGTATTTGAC ACAGC	15
(2)	INFORM	MATION FOR SEQ ID NO: 35:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 21	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
		AATCATGACT TCAAGAGTTC T	21
(2)	INFORM	MATION FOR SEQ ID NO: 36:	
	(i) S	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 21	
		(B) TYPE: Nucleic Acid	
	•	(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
		TGAAGCAATC ATGACTTCAA G	21
(2)	INFORM	MATION FOR SEQ ID NO: 37:	

- 56 -

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	TATAGGAGTT TTGATGTGAA	20
(2)	INFORMATION FOR SEQ ID NO: 38:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
	ACAATGAGGG GGTAATCTAC A	21
(2)	INFORMATION FOR SEQ ID NO: 39:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	GACAATATAC AAACCTTCCA T	21
(2)	INFORMATION FOR SEQ ID NO: 40:	
	(i) SEQUENCE CHARACTERISTICS:	

- 57 -

(A) LENGTH: 21	
(B) TYPE: Nucleic Acid	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(iv) ANTI-SENSE: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
CCAGGCATTT TAAGTTGCTG T	21
(2) INFORMATION FOR SEQ ID NO: 41:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20	
(B) TYPE: Nucleic Acid	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(iv) ANTI-SENSE: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
CCTGAAGCCA GTGAGGCCCG	20
(2) INFORMATION FOR SEQ ID NO: 42:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 21	
(B) TYPE: Nucleic Acid	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(iv) ANTI-SENSE: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:	
GATGAGAAAA TAGTGGAACC A	21
(2) INFORMATION FOR SEQ ID NO: 43:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 19

- 58 -

		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 43:	
		CTGAGCAAGA TATCTAGAT	19
(2)	INFOR	MATION FOR SEQ ID NO: 44:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 19	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
		CTACACTTTT GATTTCTGT	19
(2)	INFOR	MATION FOR SEQ ID NO: 45:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 22	
		(B) TYPE: Nucleic Acid	
		(C) STRANDEDNESS: Single	
		(D) TOPOLOGY: Linear	
	(iv)	ANTI-SENSE: Yes	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
		TTGAACATAT CAAGCATTAG CT	22
(2)	INFOR	MATION FOR SEQ ID NO: 46:	
	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 22	

(B) TYPE: Nucleic Acid

- 59 -

	(C)) STRANDEDNESS: Single	
	(D)) TOPOLOGY: Linear	
	(iv) AN	TI-SENSE: Yes	
	(xi) SE(QUENCE DESCRIPTION: SEQ ID NO: 46:	
	TT	TACATATG TACAAATTAT GT	22
(2)	INFORMAT	ION FOR SEQ ID NO: 47:	
	(i) SEQ	UENCE CHARACTERISTICS:	
	(A)) LENGTH: 22	
	(B)) TYPE: Nucleic Acid	
	(C)) STRANDEDNESS: Single	
	(D)) TOPOLOGY: Linear	
	(iv) AN	TI-SENSE: Yes	
	(xi) SE	QUENCE DESCRIPTION: SEQ ID NO: 47:	
	AA'	TTATCACT TTACTATACA AA	22
(2)	INFORMAT	ION FOR SEQ ID NO: 48:	
	(i) SEQ	UENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) AN	TI-SENSE: Yes	
	(xi) SE	QUENCE DESCRIPTION: SEQ ID NO: 48:	
	AG	GGCTGACC AAGACGGTTG T	21
(2)	INFORMAT	ION FOR SEQ ID NO: 49:	
	(i) SEQ	UENCE CHARACTERISTICS:	
	•	LENGTH: 20	
	(B	B) TYPE: Nucleic Acid	

(C) STRANDEDNESS: Single

50 -

	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
	CCATCTTCCC AGGCATTTTA	20
(2)	INFORMATION FOR SEQ ID NO: 50:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
	AACCCAGTGC TCCCTTTGCT	20
(2)	INFORMATION FOR SEQ ID NO: 51:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
	GGCCACATTG GGAAAGTTGC	20
(2)	INFORMATION FOR SEQ ID NO: 52:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	

- 61 -

	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	GAAGTCAGCC AAGAACAGCT	20
(2)	INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
	ACAGGATCTC TCAGGTGGGT	20
(2)	INFORMATION FOR SEQ ID NO: 54:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
	CCAAAGTGAG AGCTGAGAGA	20
(2)	INFORMATION FOR SEQ ID NO: 55:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	

- 62 -

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	CTGATTCAAG GCTTTGGCAG	20
(2)	INFORMATION FOR SEQ ID NO: 56:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	TTCCCCAGAT GCACCTGTTT	20
(2)	INFORMATION FOR SEQ ID NO: 57:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
	GGGCCAGAGA CCCGAGGAGA	20
(2)	INFORMATION FOR SEQ ID NO: 58:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	

WO 96/15780	PCT/US95/15536
-------------	----------------

- 63 -

	ACGTTTGGCC TCATGGAAGT	20
(2)	INFORMATION FOR SEQ ID NO: 59:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	GGAATGCAAA GCACATCCAT	20
(2)	INFORMATION FOR SEQ ID NO: 60:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
	CGATGCAGAT ACCGCGGAGT	20
(2)	INFORMATION FOR SEQ ID NO: 61:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
	GCCTGGGAGG GTATTCAGCT	20

Ç

- 64 -

(2)	INFORMATION FOR SEQ ID NO: 62:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	CCTGTGTGTG CCTGGGAGGG	20
(2)	INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	GGCATTTTAA GTTGCTGTCG	20
(2)	INFORMATION FOR SEQ ID NO: 64:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
	CAGCCTGCCT TACTGTGGGC	20
(2)	INFORMATION FOR SEQ ID NO: 65:	

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	CTTGAACAAT TAATTCCACC T	21
(2)	INFORMATION FOR SEQ ID NO: 66:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
	TTACCATTGA CATAAAGTGT T	21
(2)	INFORMATION FOR SEQ ID NO: 67:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
	CTGTGTCTCC TGTCTCCGCT	20
(2)	INFORMATION FOR SEQ ID NO: 68:	

(i) SEQUENCE CHARACTERISTICS:

- 66 -

	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
	GTCTTTGTTG TTTTCTCTTC C	23
(2)	INFORMATION FOR SEQ ID NO: 69:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
	TGAACATATC AAGCATTAGC	20
(2)	INFORMATION FOR SEQ ID NO: 70:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
	GCAATCTTGC TATGGCATAA	20
(2)	INFORMATION FOR SEQ ID NO: 71:	
	(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 20

- 67 -

(B) TYPE: Nucleic Acid	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(iv) ANTI-SENSE: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
CCCGGCATCT TTACAAAACC	20
(2) INFORMATION FOR SEQ ID NO: 72:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20	
(B) TYPE: Nucleic Acid	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(iv) ANTI-SENSE: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
AACATCTCCG TACCATGCCA	20
(2) INFORMATION FOR SEQ ID NO: 73:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 22	
(B) TYPE: Nucleic Acid	
(C) STRANDEDNESS: Single	
(D) TOPOLOGY: Linear	
(iv) ANTI-SENSE: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:	
TCACTGCTGC CTCTGTCTCA GG	22
(2) INFORMATION FOR SEQ ID NO: 74:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 23	

(B) TYPE: Nucleic Acid

- 68 -

	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
	TGATTCTTTT GAACTTAAAA GGA	23
(2)	INFORMATION FOR SEQ ID NO: 75:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	TTAAAGGATG TAAGAAGGCT	20
(2)	INFORMATION FOR SEQ ID NO: 76:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 19	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
	CATAAGCACA TTTATTGTC	19
(2)	INFORMATION FOR SEQ ID NO: 77:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	

- 69 -

	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
	TTTTGGGAAG CAGTTGTTCA	20
(2)	INFORMATION FOR SEQ ID NO: 78:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
	AACTGTGAAG CAATCATGAC T	21
(2)	INFORMATION FOR SEQ ID NO: 79:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
	CCTTGAGTGG TGCATTCAAC CT	22
(2)	INFORMATION FOR SEQ ID NO: 80:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	

- 70 -

	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	
	AATGCTTGCT CACACAGGCA TT	22
(2)	INFORMATION FOR SEQ ID NO: 81:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
	GCCTCGCTAT GGCTCCCA	18
(2)	INFORMATION FOR SEQ ID NO: 82:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 18	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
	CATGGCGCGG GCCGCGGG	18
(2)	INFORMATION FOR SEQ ID NO: 83:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	

(iv) ANTI-SENSE: Yes

-		7:	1	
---	--	----	---	--

(iv) ANTI-SENSE: Yes

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

	- 71 -	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	
	TGCATCCCCC AGGCCACCAT	20
(2)	INFORMATION FOR SEQ ID NO: 84:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
	TCTGAGTAGC AGAGGAGCTC	20
(2)	INFORMATION FOR SEQ ID NO: 85:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	TATGTCTCCC CCACCACTTC	20
(2)	INFORMATION FOR SEQ ID NO: 86:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	

	_	_	
-	1	2	_

	GGGTTGAAGC CATTGCAGGG	20
(2)	INFORMATION FOR SEQ ID NO: 87:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
	GCCCATTGCA GGGCCAGGGC	20
(2)	INFORMATION FOR SEQ ID NO: 88:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	•
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
	CCAGAGGAAG TGGCTGAGGG	20
(2)	INFORMATION FOR SEQ ID NO: 89:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
	AGCTGCGCTG CTACCTGCAC	20

- 73 -

(2)	INFORMATION FOR SEQ ID NO: 90:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
	CTCATCCAGC AGGCTCAGGG	20
(2)	INFORMATION FOR SEQ ID NO: 91:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
	CAAGTGTGCA TCCCCCAGGC	20
(2)	INFORMATION FOR SEQ ID NO: 92:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
	TTGGGACAAT GTCTCAGCTT	20
(2)	INFORMATION FOR SEQ ID NO: 93:	

- 74 -

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
	TGCCAGTCCA CATAGTGTTT	20
2)	INFORMATION FOR SEQ ID NO: 94:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
	TGCTTACCCT CCCACAGCAG	20
2)	INFORMATION FOR SEQ ID NO: 95:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20	
	(B) TYPE: Nucleic Acid	
	(C) STRANDEDNESS: Single	
	(D) TOPOLOGY: Linear	
	(iv) ANTI-SENSE: Yes	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
	NNNNNNNN NNNNNNNNN	20
2)	INFORMATION FOR SEQ ID NO: 96:	
	(i) SEQUENCE CHARACTERISTICS:	

- 75 -

- (A) LENGTH: 21
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (iv) ANTI-SENSE: Yes
- (xi) SEQUENCE DESCRIPTION: SEO ID NO: 96:

GCCGAGGTCC ATGTCGTACG C

21

- (2) INFORMATION FOR SEQ ID NO: 97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3016
 - (B) TYPE: Nucleic Acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear
 - (iv) ANTI-SENSE: No
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

													50		
AGT".	rgca	ACC :	rcag(CCTC	GC T										80
700	700	000	000	000	000		ALA		ama	ama.	ama.	ama	cmc.	aaa	
	AGC														125
SER	5 E K	PRO	ARG	PRO	ALA	10	PRO	ALA	LEU	LEU	VAL 15	LEU	LEU	GLY	
GCT	CTG	TTC	CCA	GGA	CCT		דעע	GCC	CAG	מ ר מ		GTG	TCC	CCC	170
ALA	LEU												SER		_,,
	20					25			· ·		30	****			
TCA	AAA	GTC	ATC	CTG	CCC	CGG	GGA	GGC	TCC	GTG	CTG	GTG	ACA	TGC	215
SER	LYS	VAL	ILE	LEU	PRO	ARG	GLY	GLY	SER	VAL	LEU	VAL	THR	CYS	
	35					40					45				
AGC	ACC	TCC	TGT	GAC	CAG	CCC	AAG	TTG	TTG	GGC	ATA	GAG	ACC	CCG	260
SER	THR	SER	CYS	ASP	GLN	PRO	LYS	LEU	LEU	GLY	ILE	GLU	THR	PRO	
	50					55					60				
TTG	CCT	AAA	AAG	GAG	TTG	CTC	CTG	CCT	GGG	AAC	AAC	CGG	AAG	GTG	305
LEU	PRO	LYS	LYS	GLU	LEU	LEU	LEU	PRO	GLY	ASN	ASN	ARG	LYS	VAL	
	65					70					75				
TAT	GAA	CTG	AGC	AAT	GTG	CAA	GAA	GAT	AGC	CAA	CCA	ATG	TGC	TAT	350
TYR	GLU	LEU	SER	ASN	VAL	GLN	GLU	ASP	SER	GLN	PRO	MET	CYS	TYR	
	80					85					90				
TCA	AAC	TGC	CCT	GAT	GGG	CAG	TCA	ACA	GCT	AAA	ACC	TTC	CTC	ACC	395
SER	ASN	CYS	PRO	ASP	GLY	GLN	SER	THR	ALA	LYS	THR	PHE	LEU	THR	
	95					100					105				
GTG	TAC	TGG	ACT	CCA	GAA	CGG	GTG	GAA	CTG	GCA	CCC	CTC	CCC	TCT	440

- 76 -

VAL	TYR 110	TRP	THR	PRO	GLU	ARG 115	VAL	GLU	LEU	ALA	PRO 120	LEU	PRO	SER	
TGG	CAG	CCA	GTG	GGC	AAG	AAC	CTT	ACC	CTA	CGC	TGC	CAG	GTG	GAG	485
TRP	GLN 125	PRO	VAL	GLY	LYS	ASN 130	LEU	THR	LEU	ARG	CYS 135	GLN	VAL	GLU	
GGT		GCA	כככ	CGG	GCC		CTC	ACC	GTG	GTG		СТС	ССТ	GGG	530
												LEU			330 ,
GDI	140	AUA	FRO	AKG	лцл	145	טבט	1111	VAL	سم۷	150	טמנו	AIG	GLI	
CAC		C2C	OTTIC	***	aaa		CON	COM	ama	000		000	~ ~ m	~~~	
														GAG	5/5
GLU		GTO	LEU	LYS	ARG		PRO	ALA	VAL	GLY		PRO	ALA	GLU	
	155					160					165				
GTC	ACG													AAT	620
VAL	THR	THR	THR	VAL	LEU	VAL	ARG	ARG	ASP	HIS	HIS	GLY	ALA	ASN	
	170					175					180				
TTC	TCG	TGC	CGC	ACT	GAA	CTG	GAC	CTG	CGG	CCC	CAA	GGG	CTG	GAG	665
PHE												GLY			
	185					190					195	021			
CTG		GAG	ממ	ACC	TCG		CCC	TAC	CAG	СТС		ACC	بالمراب	GTC	710
LEU												THR			710
DEC	200	GLO	ASI	Inc	SER	205	FRO	IIK	GLIN	טפע		Ink	PRE	VAL	
CTTC		000	7 OT	000	CCA		C TTT	ama	3.00	-	210	C.T.C	CICI N	~~~	7.5
														GAG	/55
LEU		ALA	THR	PRO	PRO		LEU	VAL	SER	PRO		VAL	LEU	GLU	
	215					220					225				
														TTC	800
VAL	ASP	THR	GLN	GLY	THR	VAL	VAL	CYS	SER	LEU	ASP	GLY	LEU	PHE	
	230					235					240				
CCA	GTC	TCG	GAG	GCC	CAG	GTC	CAC	CTG	GCA	CTG	GGG	GAC	CAG	AGG	845
PRO	VAL	SER	GLU	ALA	GLN	VAL	HIS	LEU	ALA	LEU	GLY	ASP	GLN	ARG	
	245					250					255				
TTG		CCC	ACA	GTC	ACC		GGC	AAC	GAC	TCC		TCG	GCC	AAG	890
												SER			
	260					265					270				
GCC		GTC	AGT	GTG	ACC		GAG	GAC	GAG	GGC		CAG	CGG	CTG	935
												GLN			,,,
nun.	275	سم		V FILL	1111	280	CHC	AUI	GLU	GDI	285	GLIV	AIG	טטט	
ACG		CCA	מידים	አጥአ	CTC		አአሮ	CAC	700	CAC		ת הת	CTC	CAG	000
															900
Ink		АГА	VAL	TLE	LEU		ASN	GLIN	SER	GLIN		THR	LEU	GLM	
	290					295	~~~				300				
															1025
THR		THR	ILE	TYR	SER		PRO	ALA	PRO	ASN		ILE	LEU	THR	
	305					310					315				
															1070
LYS		GLU	VAL	SER	GLU	GLY	THR	GLU	VAL	THR	VAL	LYS	CYS	GLU	
	320					325					330				
GCC	CAC	CCT	AGA	GCC	AAG	GTG	ACG	CTG	AAT	GGG	GTT	CCA	GCC	CAG	1115
ALA	HIS	PRO	ARG	ALA	LYS	VAL	THR	LEU	ASN	GLY	VAL	PRO	ALA	GLN	
	335					340					345				
CCA		GGC	CCG	AGG	GCC		CTC	CTG	CTG	AAG		ACC	CCA	GAG	1160
												THR			
	350					355					360				
GAC		GGG	CGC	ACC	ጥጥር		TCC	ጥርጥ	GCA	ACC		GAG	CTC	GCC	1205
												GLU			1200
rio P	365	GLI	אתט	JER	FRE		C13	Ade	TH	IUK		GTO	v ML	WILK	
000		Cities	707	~~~	77~	370	~ ~	700	000	~~	375	~~~	ama	CITIC C	1050
															1250
GLY		LEU	TPE	HIS	LYS		GLN	THR	ARG	GTD		ARG	VAL	LEU	
	380					385					390				

- 77 -

TYR GLY PF	CC CGA C		GLU									1295
395 TGG CCA GA TRP PRO GI			GLN					CAG GLN				1340
410 AAC CCA TT ASN PRO LE	G CCC G											1385
	C GGG G											1430
440 ACC TAC CT THR TYR LE												1475
	C GTG A											1520
470 ATC ACT GI	G GTA G L VAL A	CA GCC	475 GCA	GTC	ATA	ATG	GGC	480 ACT	GCA	GGC	CTC	1565
485 AGC ACG TA	C CTC T	'AT AAC	490 CGC	CAG	CGG	AAG	ATC	495 AAG	AAA	TAC	AGA	1610
500 CTA CAA CA		AA AAA	505 GGG	ACC	CCC	ATG	AAA	510 CCG	AAC	ACA	CAA	1655
515 GCC ACG CC ALA THR PR	T CCC T	'GA	520	11110	FRO	PILL	шз	525	AUN	IIIK	GDIV	1670
530	O PRO -	• •										
ACCTATCCC	GGACAG	GGCC TO	CTTCC	CTCGG	CCI	TCCC	CATA	TTGG	TGGC	CAG		1720
TGGTGCCACA	CTGAAC	AGAG TO	GAAG	BACAT	' ATG	CCAT	GCA	GCTA	CACC	TA		1770
CCGGCCCTGG	GACGCC	GGAG GA	CAGG	GCAT	TGT	CCTC	AGT	CAGA	TACA	AC		1820
AGCATTTGGG	GCCATG	GTAC CI	GCAC	CACCI	' AAA	ACAC	TAG	GCCA	CGCA	ATC		1870
TGATCTGTAG	TCACAT	GACT AA	AGCCA	AGAG	GAA	GGAG	CAA	GACI	CAAG	SAC		1920
ATGATTGATG	GATGTT.	AAAG TO	TAGO	CTGA	TGA	GAGG	GGA	AGTG	GTGG	GG		1970
GAGACATAGO	CCCACC	ATGA GO	ACAT	ACAA	CTG	GGAA	ATA	CTGA	AACI	TG		2020
CTGCCTATTG	GGTATG	CTGA GO	CCCA	CAGA	CTI	'ACAG	AAG	AAGI	rggcc	CT		2070
CCATAGACAT	GTGTAG	CATC AA	AACA	CAAA	GGC	CCAC	ACT	TCCI	GACG	GA		2120
TGCCAGCTTG	GGCACT	GCTG TO	CTACI	GACC	CCA	ACCC	TTG	ATGA	TAT	STA		2170
TTTATTCATT	TGTTAT	TTTA CO	CAGCI	TTTA	TTA	GAGT	GTC	TTTT	TATGT	AG		2220
GCTAAATGAA	CATAGG	TCTC TO	GCCI	CACG	GAG	CTCC	CAG	TCC	ATGTO	CAC		2270
ATTCAAGGTC	ACCAGG	TACA GI	TGTA	CAGG	TTG	TACA	CTG	CAGG	BAGAG	TG		2320

- 78 -

CCTGGCAAAA	AGATCAAATG	GGGCTGGGAC	TTCTCATTGG	CCAACCTGCC	2370
TTTCCCCAGA	AGGAGTGATT	TTTCTATCGG	CACAAAAGCA	CTATATGGAC	2420
TGGTAATGGT	TCACAGGTTC	AGAGATTACC	CAGTGAGGCC	TTATTCCTCC	2470
CTTCCCCCCA	AAACTGACAC	CTTTGTTAGC	CACCTCCCCA	CCCACATACA	2520
TTTCTGCCAG	TGTTACAATG	ACACTCAGCG	GTCATGTCTG	GACATGAGTG	2570
CCCAGGGAAT	ATGCCCAAGC	TATGCCTTGT	CCTCTTGTCC	TGTTTGCATT	2620
TCACTGGGAG	CTTGCACTAT	TGCAGCTCCA	GTTTCCTGCA	GTGATCAGGG	2670
TCCTGCAAGC	AGTGGGGAAG	GGGGCCAAGG	TATTGGAGGA	CTCCCTCCCA	2720
GCTTTGGAAG	GGTCATCCGC	GTGTGTGTGT	GTGTGTATGT	GTAGACAAGC	2770
TCTCGCTCTG	TCACCCAGGC	TGGAGTGCAG	TGGTGCAATC	ATGGTTCACT	2820
GCAGTCTTGA	CCTTTTGGGC	TCAAGTGATC	CTCCCACCTC	AGCCTCCTGA	2870
GTAGCTGGGA	CCATAGGCTC	ACAACACCAC	ACCTGGCAAA	TTTGATTTTT	2920
TTTTTTTTT	TCAGAGACGG	GGTCTCGCAA	CATTGCCCAG	ACTTCCTTTG	2970
TGTTAGTTAA	TAAAGCTTTC	TCAACTGCCA	АААААААА	AAAAA	3016
(2) INFORMA	ATION FOR SE	EQ ID NO:	98:		

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3858
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- (iv) ANTI-SENSE: No
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:

TTCACATCAA AACTCCTATA CTGACCTGAG ACAGAGGCAG CAGTGATACC 50

CACCTGAGAG ATCCTGTGTT TGAACAACTG CTTCCCAAAA CGGAAAGTAT 100

TTCAAGCCTA AACCTTTGGG TGAAAAGAAC TCTTGAAGTC ATG ATT 146
MET ILE

GCT TCA CAG TTT CTC TCA GCT CTC ACT TTG GTG CTT CTC ATT AAA 191 ALA SER GLN PHE LEU SER ALA LEU THR LEU VAL LEU LEU ILE LYS 5 10 15

GAG AGT GGA GCC TGG TCT TAC AAC ACC TCC ACG GAA GCT ATG ACT 236

C

- 79 -

GLU	SER	GLY 20	ALA	TRP	SER	TYR	ASN 25	THR	SER	THR	GLU	ALA 30	MET	THR	
ТΔТ	GAT		GCC	AGT	GCT	TAT		CAG	$C\Delta\Delta$	AGG	ТАС		$C\Delta C$	СТС	281
	ASP	GLU					CYS					THR			201
		35					40					45			
	GCA														326
VAL	ALA	50					5 5					60			
TTG	AGC	TAT	TCA	CCA	AGT	TAT	TAC	TGG	ATT	GGA	ATC	AGA	AAA	GTC	371
LEU	SER	TYR 65	SER	PRO	SER	TYR	TYR 70	TRP	ILE	GLY	ILE	ARG 75	LYS	VAL	
AAC	AAT		TGG	GTC	TGG	GTA	GGA	ACC	CAG	AAA	CCT		ACA	GAA	416
ASN	ASN	VAL 80	TRP	VAL	TRP	VAL	GLY 85	THR	GLN	LYS	PRO	LEU 90	THR	GLU	
GAA	GCC		AAC	TGG	GCT	CCA		GAA	CCC	AAC	דעע		CAA	ΔΔΔ	461
	ALA														101
		95					100					105			
GAT	GAG	GAC	TGC	GTG	GAG	ATC	TAC	ATC	AAG	AGA	GAA	AAA	GAT	GTG	506
	GLU														
		110					115					120			
GGC	ATG	TGG	AAT	GAT	GAG	AGG	TGC	AGC	AAG	AAG	AAG	CTT	GCC	CTA	551
GLY	MET	TRP	ASN	ASP	GLU	ARG	CYS	SER	LYS	LYS	LYS	LEU	ALA	LEU	
		125					130					135			
TGC	TAC	ACA	GCT	GCC	TGT	ACC	AAT	ACA	TCC	TGC	AGT	GGC	CAC	GGT	596
CYS	TYR	THR	ALA	ALA	CYS	THR	ASN	THR	SER	CYS	SER	GLY	HIS	GLY	
		140					145					150			
									ACT						641
GLU	CYS		GLU	THR	ILE	ASN	ASN	TYR	THR	CYS	LYS	CYS	ASP	PRO	
		155					160					165			
	TTC														686
GLY	PHE		GLY	LEU	LYS	CYS		GLN	ILE	VAL	ASN		THR	ALA	
		170					175					180			
	GAA														731
LEU	GLU		PRO	GLU	HIS	GLY		LEU	VAL	CYS	SER		PRO	LEU	
CCA	770	185	700	ma c	7. 7. TT	m a m	190	maa	man	3.00	200	195	C B C	3.00	776
	AAC													AGG	//6
GLI	ASN	200	SER	IIR	ASN	SER	205	CYS	SER	TLE	SER	210	ASP	ARG	
GGT	ТΔС		CCA	»GC	AGC.	ATC		N C C	አ ጥር	CAC	TO TO		TCC	THO	821
GLY	TYR	LEU	PRO	SEB	SER	MET	CLII	TUD	MET	CIN	CAG	MET	CED	CED	021
021	* * * * * * * * * * * * * * * * * * * *	215	1110	011	OLI.	1.177 1	220	1111	14151	GLIN	CIS	225	SER	SEK	
GGA	GAA		AGT	GCT	CCT	ATT		GCC	TGC	דעע	GTG		GAG	тст	866
	GLU														000
		230					235			11011	****	240	020	010	
GAT	GCT		ACA	AAT	CCA	GCC		GGG	TTC	GTG	GAA		TTC	CAA	911
	ALA														
		245					250					255			
AAC	CCT		AGC	TTC	CCA	TGG		ACA	ACC	TGT	ACA		GAC	TGT	956
	PRO														
	-	260			_		265					270	- -		
GAA	GAA		TTT	GAA	CTA	ATG		GCC	CAG	AGC	CTT		TGT	ACC	1001
	GLU														- -
		275					280					285	• —		
TCA	TCT	GGG	AAT	TGG	GAC	AAC		AAG	CCA	ACG	TGT		GCT	GTG	1046
SER	SER	GLY	ASN	TRP	ASP	ASN	GLU	LYS	PRO	THR	CYS	LYS	ALA	VAL	
		290					295					300			

ACA THR	TGC CYS	ARG	GCC ALA	GTC VAL	CGC ARG	CAG GLN	CCT PRO 310	CAG GLN	AAT ASN	GGC GLY	TCT SER	GTG VAL 315	AGG ARG	TGC CYS	1091
AGC SER		305 TCC SER 320	CCT PRO	GCT ALA	GGA GLY	GAG GLU	TTC	ACC THR	TTC PHE	AAA LYS	TCA SER	TCC	TGC CYS	AAC ASN	1136
TTC PHE	ACC THR	TGT	GAG GLU	GAA GLU	GGC GLY	TTC PHE	ATG	TTG LEU	CAG GLN	GGA GLY	CCA PRO	GCC ALA 370	CAG GLN	GTT VAL	1181
GAA GLU	CYS	ACC THR 375	ACT THR	GLN	GLY	GLN	TRP 380	THR	GLN	GLN	ILE	PRO 385	VAL	CYS	1226
GAA GLU	ALA	PHE 390	GLN	CYS	THR	ALA	LEU 395	SER	ASN	PRO	GLU	ARG 400	GLY	TYR	1271
	ASN	CYS 405	CTT LEU	PRO	SER	ALA	SER 410	GLY	SER	PHE	ARG	TYR 415	GLY	SER	1316
SER	CYS	GLU 420	TTC PHE	SER	CYS	GLU	GLN 425	GLY	PHE	VAL	LEU	LYS 430	GLY	SER	1361
LYS	ARG	LEU 435	GLN	CYS	GLY	PRO	THR 440	GLY	GLU	TRP	ASP	ASN 445	GLU	LYS	1406
PRO	THR	CYS 450	GLU	ALA	VAL	ARG	CYS 455	ASP	ALA	VAL	HIS	GLN 460	PRO	PRO	1451
LYS	GLY	LEU 465	VAL	ARG	CYS	ALA	HIS 470	SER	PRO	ILE	GLY	GLU 475	PHE	THR	1496
TYR	ĻYS	SER 480	SER	CYS	ALA	PHE	SER 485	CYS	GLU	GLU	GLY	PHE 490	GLU	LEU	1541
TYR	GLY	SER 495	THR	GLN	LEU	GLU	CYS 500	THR	SER	GLN	GLY	GLN 505	TRP	THR	1631
GLU	GLU	510	PRO	SER	CYS	GLN	VAL 515	VAL	LYS	CYS	SER	SER 520	LEU	ALA	
VAL	PRO	GLY 525	LYS	ILE	ASN	MET	SER 530	CYS	SER	GLY	GLU	PRO 535	VAL	PHE	1676 1721
GLY	THR	VAL 540	CYS	LYS	PHE	ALA	CYS 545	PRO	GLU	GLY	TRP	THR 550	LEU	ASN	1766
GLY	SER	ALA 555	ALA	ARG	THR	CYS	GLY 560	ALA	THR	GLY	HIS	TRP 565	SER	GLY	
LEU	LEU	PRC 570	THR	CYS	GLU	ALA	PRO 575	THR	GLU	SER	ASN	ILE 580	PRO	LEU	1811
VAL	ALA	GLY 585	LEU	SER	ALA	ALA	GLY 590	LEU	SER	LEU	LEU	THR 595	LEU S	ALA	
PRO	TTI PHE	CTC E LEU	J LEU	TGG TRP	LEU	ARG	LYS	CYS	LEU	J ARG	LYS	ALA	LYS	LYS	1901

- 81 -

PHE VAL PRO ALA SER S 615	GC TGC CAA AGC CTT GAA ER CYS GLN SER LEU GLU 620 AC ATC CTT TAA GTTCAAA YR ILE LEU *** 635	SER ASP GLY 625	AGC 1946 SER 1990
ACAGGTGCAT CTGGGGAACT	AGAGGGATAC ACTGAAGTTA	ACAGAGACAG	2040
ATAACTCTCC TCGGGTCTCT	GGCCCTTCTT GCCTACTATG	CCAGATGCCT	2090
TTATGGCTGA AACCGCAACA	CCCATCACCA CTTCAATAGA	TCAAAGTCCA	2140
GCAGGCAAGG ACGGCCTTCA	ACTGAAAAGA CTCAGTGTTC	CCTTTCCTAC	2190
TCTCAGGATC AAGAAAGTGT	TGGCTAATGA AGGGAAAGGA	TATTTTCTTC	2240
CAAGCAAAGG TGAAGAGACC	AAGACTCTGA AATCTCAGAA	TTCCTTTTCT	2290
AACTCTCCCT TGCTCGCTGT	AAAATCTTGG CACAGAAACA	CAATATTTTG	2340
TGGCTTTCTT TCTTTTGCCC	TTCACAGTGT TTCGACAGCT	GATTACACAG	2390
TTGCTGTCAT AAGAATGAAT	AATAATTATC CAGAGTTTAG	AGGAAAAAA	2440
TGACTAAAAA TATTATAACT	TAAAAAAATG ACAGATGTTG	AATGCCCACA	2490
GGCAAATGCA TGGAGGGTTG	TTAATGGTGC AAATCCTACT	GAATGCTCTG	2540
TGCGAGGGTT ACTATGCACA	ATTTAATCAC TTTCATCCCT	ATGGGATTCA	2590
GTGCTTCTTA AAGAGTTCTT	AAGGATTGTG ATATTTTTAC	TTGCATTGAA	2640
TATATTATAA TCTTCCATAC	TTCTTCATTC AATACAAGTG	TGGTAGGGAC	2690
TTAAAAAACT TGTAAATGCT	GTCAACTATG ATATGGTAAA	AGTTACTTAT	2740
TCTAGATTAC CCCCTCATTO	TTTATTAACA AATTATGTTA	CATCTGTTTT	2790
AAATTTATTT CAAAAAGGGA	AACTATTGTC CCCTAGCAAG	GCATGATGTT	2840
AACCAGAATA AAGTTCTGAG	TGTTTTTACT ACAGTTGTTT	TTTGAAAACA	2890
TGGTAGAATT GGAGAGTAAA	AACTGAATGG AAGGTTTGTA	TATTGTCAGA	2940
TATTTTTCA GAAATATGTC	GTTTCCACGA TGAAAAACTT	CCATGAGGCC	2990
AAACGTTTTG AACTAATAAA	AGCATAAATG CAAACACACA	AAGGTATAAT	3040
TTTATGAATG TCTTTGTTGC	AAAAGAATAC AGAAAGATGG	ATGTGCTTTG	3090
CATTCCTACA AAGATGTTTC	TCAGATGTGA TATGTAAACA	TAATTCTTGT	3140
ATATTATGGA AGATTTTAA	TTCACAATAG AAACTCACCA	TGTAAAAGAG	3190

- 82 -

TCATCTGGTA	GATTTTTAAC	GAATGAAGAT	GTCTAATAGT	TATTCCCTAT	3240
TTGTTTTCTT	CTGTATGTTA	GGGTGCTCTG	GAAGAGAGGA	ATGCCTGTGT	3290
GAGCAAGCAT	TTATGTTTAT	TTATAAGCAG	ATTTAACAAT	TCCAAAGGAA	3340
TCTCCAGTTT	TCAGTTGATC	ACTGGCAATG	AAAAATTCTC	AGTCAGTAAT	3390
TGCCAAAGCT	GCTCTAGCCT	TGAGGAGTGT	GAGAATCAAA	ACTCTCCTAC	3440
ACTTCCATTA	ACTTAGCATG	TGTTGAAAAA	AAAAGTTTCA	GAGAAGTTCT	3490
GGCTGAACAC	TGGCAACGAC	AAAGCCAACA	GTCAAAACAG	AGATGTGATA	3540
AGGATCAGAA	CAGCAGAGGT	TCTTTTAAAG	GGGCAGAAAA	ACTCTGGGAA	3590
ATAAGAGAGA	ACAACTACTG	TGATCAGGCT	ATGTATGGAA	TACAGTGTTA	3640
TTTTCTTTGA	AATTGTTTAA	GTGTTGTAAA	TATTTATGTA	AACTGCATTA	3690
GAAATTAGCT	GTGTGAAATA	CCAGTGTGGT	TTGTGTTTGA	GTTTTATTGA	3740
GAATTTTAAA	TTATAACTTA	AAATATTTTA	TAATTTTTAA	AGTATATT	3790
TATTTAAGCT	TATGTCAGAC	CTATTTGACA	TAACACTATA	AAGGTTGACA	3840
ATAAATGTGC	TTATGTTT				3858

- (2) INFORMATION FOR SEQ ID NO: 99:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2813
 - (B) TYPE: NUCLEIC ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

CGGGCCTCAC TGGCTTCAGG AGCTGAATAC CCTCCCAGGC ACACACAGGT 50

GGGACACAAA TAAGGGTTTT GGAACCACTA TTTTCTCATC ACGACAGCAA 100

CTTAAA ATG CCT GGG AAG ATG GTC GTG ATC CTT GGA GCC 139
MET PRO GLY LYS MET VAL VAL ILE LEU GLY ALA

TCA AAT ATA CTT TGG ATA ATG TTT GCA GCT TCT CAA GCT TTT AAA 184
SER ASN ILE LEU TRP ILE MET PHE ALA ALA SER GLN ALA PHE LYS
15 20 25

15 20 25
ATC GAG ACC ACC CCA GAA TCT AGA TAT CTT GCT CAG ATT GGT GAC 229
ILE GLU THR THR PRO GLU SER ARG TYR LEU ALA GLN ILE GLY ASP

- 83 -

		30					35					40			
TCC	GTC		TTG	ACT	TGC	AGC		ACA	GGC	TGT	GAG		CCA	TTT	274
SER	VAL	SER 45	LEU	THR	CYS	SER	THR 50	THR	GLY	CYS	GLU	SER 55	PRO	PHE	
TTC	TCT	TGG												GTG	319
PHE		60	ARG				65					70			
														AGT	364
		75	GLY				80					85			
														TCT	409
		90	GLU				95					100			
			GAA											CCT	454
		105	GLU				110					115			400
														AAG	499
		120	GLU				125					130			E 4 4
			VAL											GAC	544
PRO	1115	135	VAL	шз	CIS	SER	140	AUA	ASP	VAL	IIK	145	FIIL	ADI	
AGG	CTG		ATA	GAC	TTA	CTG		GGA	GAT	CAT	CTC		AAG	AGT	589
			ILE												
		150					155					160			
														AAG	634
	*	165	LEU				170					175			
														AAA	679
		180	VAL				185					190			724
														TCT	124
		195	CYS				200					205			760
														ATA	769
		210	VAL				215					220			014
			ASN											CTG	0.1.4
		225					230					235			050
														CTA	859
GLN	GLU	GLY 240	GLY	SER	VAL	THR	MET 245	THR	CIS	SER	SER	250	GLI	LEO	
רכש.	ССТ	CCA	GAG	דיד ב	ттС	TGG		AAG	AAA	тта	GAT		GGG	AAT	904
PRO	ALA	PRO 255	GLU	ILE	PHE	TRP	SER 260	LYS	LYS	LEU	ASP	ASN 265	GLY	ASN	
CTA	CAG	CAC	CTT	TCT	GGA	AAT		ACT	CTC	ACC	TTA	TTA	GCT	ATG	949
LEU	GLN	HIS 270	LEU	SER	GLY	ASN	ALA 275	THR	LEU	THR	LEU	ILE 280	ALA	MET	
AGG	ATG	GAA	GAT	TCT	GGA	ATT	TAT	GTG	TGT	GAA	GGA	GTT	AAT	TTG	994
		285	ASP				290					295			
															1039
		300					305					310			
CCT	AGA	GAT	CCA	GAA	ATC	GAG	ATG	AGT	GGT	GGC	CTC	GTG	AAT	GGG	1084

- 84 -

PRO	ARG	ASP 315	PRO	GLU	ILE	GLU	MET 320	SER	GLY	GLY	LEU	VAL 325	ASN	GLY	
	TCT SER									AGC SER					1129
GAC	CGG	CTG	GAG	ATT	GAA	TTA	CTT	AAG	GGG	GAG	ACT	ATT	CTG	GAG	1174
ASP	ARG	1EU	GLU	ILE	GLU	LEU	150 350	LYS	GLY	GLU	THR	1LE 355	LEU	GLU	
AAT	ATA	GAG	TTT	TTG	GAG	GAT	ACG	GAT	ATG	AAA	TCT	CTA	GAG	AAC	1219
ASN	ILE	GLU 360	PHE	LEU	GLU	ASP	THR 365	ASP	MET	LYS	SER	LEU 370	GLU	ASN	
	AGT	TTG	GAA	ATG	ACC	TTC	ATC	CCT	ACC	ATT	GAA	GAT	ACT	GGA	1264
	SER	375					380					ASP 385	THR	GLY	
AAA	GCT	CTT	GTT	TGT	CAG	GCT	AAG	TTA	CAT	ATT	GAT				1309
	ALA	390					395					ASP 400	MET	GLU	
TTC	GAA	CCC	AAA	CAA	AGG	CAG	AGT	ACG	CAA	ACA	CTT				1354
PHE	GLU	405	LYS	GLN	ARG	GLN	SER 410	THR	GLN	THR	LEU	TYR 415	VAL	ASN	
GTT	GCC		AGA	GAT	ACA	ACC		TTG	GTC	AGC	ССТ		TCC	ATC	1399
VAL	ALA	PRO	ARG	ASP	THR	THR	VAL	LEU	VAL	SER	PRO		SER		1333
		420					425					430			
CTG	GAG	GAA	GGC	AGT	TCT	GTG	AAT	ATG	ACA	TGC	TTG	AGC	CAG	GGC	1444
LEU	GLU	435	GLI	SER	SEK	VAL	440	MET	THR	CYS	LEU	SER 445	GLN	GLY	
TTT	CCT		CCG	AAA	ATC	CTG		AGC	AGG	CAG	CTC		AAC	GGG	1489
	PRO	ALA 450	PRO	LYS	ILE	LEU	TRP 455	SER	ARG	GLN	LEU	PRO 460	ASN	GLY	
GAG	CTA	CAG	CCT	CTT	TCT	GAG	AAT	GCA	ACT	CTC	ACC	TTA	ATT	TCT	1534
GLU	LEU	GLN 465	PRO	LEU	SER	GLU	ASN 470	ALA	THR	LEU	THR		ILE	SER	
ACA	AAA		GAA	GAT	тст	GGG		ТАТ	тта	тст	GAA	475 GGA	ΔΤΤ	אאר	1579
THR	LYS	MET	GLU	ASP	SER	GLY	VAL	TYR	LEU	CYS	GLU	GLY	ILE	ASN	13.7
G3 G	a a m	480					485					490			
	GCT ALA	GGA GLV	AGA	AGC	AGA	AAG LVC	GAA	GTG	GAA	TTA	ATT		CAA GLN		1624
J		495	11110		Auto	110	500	VAL	GDO	HEO	THE	505	GLIM	VAL	
ACT	CCA	AAA	GAC	ATA	AAA	CTT	ACA	GCT	TTT	CCT	TCT	GAG	AGT	GTC	1669
THR	PRO	LYS 510	ASP	ILE	LYS	LEU	THR 515	ALA	PHE	PRO	SER	GLU 520	SER	VAL	
AAA	GAA		GAC	ACT	GTC	ATC		TCT	TGT	ACA	TGT		AAT	GTT	1714
LYS	GLU	GLY	ASP	THR	VAL	ILE	ILE	SER	CYS	THR	CYS	GLY	ASN	VAL	
CCI	<i>~</i>	525				~~~	530					535			
PRO	GLU	THE	TGG	ATA	ATC	CTG LEU	AAG T.VC	AAA	AAA	GCG	GAG	ACA	GGA	GAC	1759
		540					545					550			
ACA	GTA	CTA	AAA	TCT	ATA	GAT	GGC	GCC	TAT	ACC	ATC	CGA	AAG	GCC	1804
	VAL	555					560					565			
CAG	TTG	AAG	GAT	GCG	GGA	GTA	TAT	GAA	TGT	GAA	TCT	AAA	AAC	AAA	1849
GLN	LEU	LYS 570	ASP	ALA	GLY	VAL	TYR 575	GLU	CYS	GLU	SER	LYS 580	ASN	LYS	
GTT	GGC		CAA	TTA	AGA	AGT		ACA	CTT	GAT	GTT	CAA	GGA	AGA	1894
VAL	GLY	SER	GLN	LEU	ARG	SER	LEU	THR	LEU	ASP	VAL	GLN	GLY	ARG	
		585					590					595			

- 85 -

GAA GLU	AAC ASN	AAC ASN 600	AAA LYS	GAC ASP	TAT TYR	TTT PHE	TCT SER 605	CCT PRO	GAG GLU	CTT LEU	CTC LEU	GTG VAL 610	CTC	TAT TYR	1939
PHE	ALA	TCC SER	SER	LEU	ILE	ILE	CCT PRO 620	ALA	ILE	GLY	MET	1LE 625	ILE	TYR	1984
TTT PHE	GCA ALA	AGA	AAA LYS	GCC ALA	AAC ASN	ATG MET	AAG	GGG GLY	TCA SER	TAT TYR	AGT SER	CTT LEU 640	GTA VAL	GAA GLU	2029
	CAG GLN	AAA													2050
CTA	ATGC	rtg 2	TATA	STTC	AA C'	rgga(GACA	C TA	TTTA	rctg	TGC	TAA	CCT		2100
TGA	ract(GCT (CATC	ATTC	CT T	GAGA	AAAA)	C AA	rgag(CTGA	GAG	GCAG	ACT		2150
TCC	CTGA	ATG T	TATT	GAAC'	rt G	GAAA(GAAA'	r GC	CCAT	CTAT	GTC	CCTT	GCT		2200
GTG	AGCA	AGA A	AGTC	AAAG'	ra a	AACT'	rgcT(G CC	rga a (GAAC	AGT	AACT	GCC		2250
ATC	AAGA'	TGA (GAGA	ACTG(GA G	GAGT'	TCCT	r ga'	rctg:	TATA	TAC	ATAA	ACA		2300
TAA'	TTTG'	TAC I	ATAT	GTAA	AA T	AAAA'	TTAT	G CC	AŢAG	CAAG	ATT	GCTT	AAA		2350
ATA	GCAA	CAC '	TCTA'	TATT'	ra G	ATTG'	TTAA	A AT	AACT	AGTG	TTG	CTTG	GAC		2400
TAT'	TATA	ATT	TAAT	GCAT	GT T	AGGA.	AAAT'	T TC.	ACAT'	TAAT	ATT'	TGCT(GAC		2450
AGC'	TGAC	CTT	TGTC.	ATCT	TT C	TTCT.	ATTT'	TAT	TCCC'	TTTC	ACA	AAAT'	ГТТ		2500
ATT	CCTA	TAT .	AGTT	TTAT	GA C	AATA	ATTT	C AG	GTTT'	TGTA	AAG	ATGC	CGG		2550
GTT	TTAT.	ATT	TTTA	TAGA	CA A	ATAA	TAAG	C AA	AGGG.	AGCA	CTG	GGTT	GAC		2600
TTT	CAGG	TAC	TAAA	TACC	TC A	ACCT	ATGG	T AT	AATG	GTTG	ACT	GGGT'	TTC		2650
TCT	GTAT	AGT	ACTG	GCAT	GG T	ACGG	AGAT	G TT	TCAC	GAAG	TTT	GTTC.	ATC		2700
AGA	CTCC	TGT	GCAA	CTTT	cc c	AATG	TGGC	C TA	AAAA	TGCA	ACT	TCTT	TTT		2750
ATT	TTCT	TTT	GTAA	ATGT	TT A	.GGTT	TTTT	T GT	ATAG	TAAA	GTG	ATAA	TTT		2800
CTG	GAAT	TAA	AAA												2813

(2) INFORMATION FOR SEQ ID NO: 100:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20
- (B) TYPE: Nucleic Acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

- 86 -

(iv) ANTI-SENSE: Yes

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

AGGGCCACTG CTCGTCCACA

20

What is claimed is:

- A composition for treating allograft rejection comprising an oligonucleotide 8 to 50 nucleotides in length which is targeted to a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1 in combination with an immunosuppressive agent.
 - 2. The composition of claim 1 wherein the oligonucleotide comprises SEQ ID NO: 22.
 - 3. The composition of claim 1 wherein the immunosuppressive agent is a monoclonal antibody.
- 10 4. The composition of claim 2 wherein the monoclonal antibody is directed against LFA-1.
 - 5. The composition of claim 1 wherein the immunosuppressive agent is brequinar, rapamycin or antilymphocyte serum.
- 15 6. The composition of claim 1 wherein the immunosuppressive agent is an antisense oligonucleotide.
- 7. A method of preventing allograft rejection in an allograft recipient comprising treating the allograft recipient with an oligonucleotide 8 to 50 nucleotides in length which is 20 targeted to a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1, in combination with an immunosuppressive agent.
 - 8. The method of claim 7 wherein the immunosuppressive agent is a monoclonal antibody.
- 9. The method of claim 8 wherein the monoclonal 25 antibody is directed against LFA-1.
 - 10. The method of claim 7 wherein the immunosuppressive agent is brequinar, rapamycin or anti-lymphocyte serum.

- 88 -

- 11. The method of claim 7 wherein the immunosuppressive agent is an antisense oligonucleotide.
- 12. The method of claim 7 wherein the allograft is a cardiac allograft.
- 5 13. The method of claim 7 wherein the allograft is a renal allograft.
 - 14. A method of preventing allograft rejection in an allograft recipient comprising treating the allograft recipient with a composition of claim 1.
- 15. A method of preventing rejection of an allograft by an allograft recipient comprising treating the allograft with a composition of claim 1.
 - 16. The method of claim 15 wherein the treatment is performed ex vivo.
- 17. A method of preventing rejection of an allograft comprising treating the allograft with an oligonucleotide 8 to 50 nucleotides in length which is targeted to a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1.
- 18. The method of claim 17 wherein the oligonucleotide 20 comprises SEQ ID NO: 22.
- 19. A method of treating allograft rejection in an allograft recipient comprising treating the allograft recipient with an oligonucleotide 8 to 50 nucleotides in length which is targeted to a nucleic acid sequence encoding ICAM-1, ELAM-1 or VCAM-1 in combination with an immunosuppressive agent.
 - 20. The method of claim 19 wherein the

immunosuppressive agent is a monoclonal antibody.

- 89 -

C

- 21. The method of claim 20 wherein the monoclonal antibody is directed against LFA-1.
- 22. The method of claim 19 wherein the immunosuppressive agent is brequinar, rapamycin or anti-5 lymphocyte serum.
 - 23. The method of claim 19 wherein the immunosuppressive agent is an antisense oligonucleotide.
 - 24. The method of claim 19 wherein the allograft is a cardiac allograft.
- 10 25. The method of claim 19 wherein the allograft is a renal allograft.
 - 26. A method of treating allograft rejection in an allograft recipient comprising treating the allograft recipient with a composition of claim 1.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US95/15536

A. CLASSIFICATION OF SUBJECT MATTER								
IPC(6) :A61K 31/00 US CL :514/44	and the standard Inc							
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED Minimum documentation searched (classification system followed	d by classification symbols)							
U.S. : 514/44	- o,							
Documentation searched other than minimum documentation to the	e extent that such documents are included in the fields searched							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) APS, MEDLINE, EMBASE, BIOSIS, CAPLUS								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.							
Y WO, A, 94/05333 (BENNET ET A entire document.	L) 17 MARCH 1994, see 1-26							
JOURNAL OF CELLULAR BIOCHE 1993, Bennett et al, "INHIBITION CE-SELECTIN EXPRESSION OLIGONUCLEOTIDES", page 354, document.	OFICAM-1, VCAM-1, AND WITH ANTISENSE							
JOURNAL OF IMMUNOLOGY, Vol. 152, issued 1994, Bennett et al, "Inhibition of Endothelial Cell Adhesion Molecule Expression with Antisense Oligonucleotides", pages 3530-3540, see entire document.								
X Further documents are listed in the continuation of Box C	. See patent family annex.							
Special categories of cited documents: A' document defining the general state of the art which is not considered.	"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the							
to be of particular relevance	principle or theory underlying the invention *X* document of particular relevance; the claimed invention cannot be							
"E" cartier document published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered to involve an inventive step when the document is taken alone							
cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an eral disclosure, use, exhibition or other reasons. "O" document referring to an eral disclosure, use, exhibition or other reasons.								
"P" document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent family							
Date of the actual completion f the international search	Date of mailing of the international search report							
01 FEBRUARY 1996	1 5 FEB 1996							
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT	Authorized officer Which There 18							
Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 D. CURTIS HOGUE, JR. Telephone No. (703) 308-0196								

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/15536

C (Continua	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.							
Y	JOURNAL OF IMMUNOLOGY, Vol. 153, issued 1994, Stepkowski et al, "Blocking of Heart Allograft Rejection by Intercellular Adhesion Molecule-1 Antisense Oligonucleotides Alone or in Combination with Other Immunosuppressive Modalities", pages 5336-5346, see entire document.	1-26							
Y, P	JOURNAL OF INVESTIGATIVE DERMATOLOGY, Vol. 104, issued 1995, Hertl et al, "Inhibition of Interferon-gamma-Induced Intercellular Adhesion Molecule-1 Expression on Human Keratinocytes by Phosphorothioate Antisense Oligodeoxynucleotides Is the Consequence of Antisense-Specific and Antisense-Non-Specific Effects", pages 813-818, see entire document.	1-26							
Y	JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 266, No. 27, issued 25 September 1991, Chiang et al, "Antisense Oligonucleotides Inhibit Intercellular Adhesion Molecule 1 Expression by Two Distinct Mechanisms", pages 18162-18171, see entire document.	1-26							
Y	JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, Vol. 4, No. 6, issued December 1993, Lu et al, "Prevention and Treatment of Renal Allograft Rejection: New Therapeutic Approaches and New Insights Into Established Therapies", pages 1239-1256, see entire document.	1-26							
A	ANNALS OF SURGERY, Vol. 219, No. 1, issued 1994, Heemann et al, "Adhesion Molecules and Transplantation", pages 4-12, see entire document.	1-26							
Y	TRANSPLANTATION PROCEEDINGS, Vol. 25, No. 4, issued August 1993, Groth et al, "New Immunosuppressive Drugs in Transplantation", pages 2681-2683, see entire document.	1,5,7,10,19,22							
Y	ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, Vol. 696, issued 1993, Cramer et al, "The Use of Brequinar Sodium of Transplantation", pages 216-226, see entire document.	1,5,7,10,19,22							
Y	ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, Vol. 696, issued 1993, S. N. Sehgal, "Immunosuppressive Profile of Rapamycin", pages 1-8, see entire document.	1,5,7,10,19,22							

