KARTIK MADHIRA

kartikmadhira 1@gmail.com | 3012046989 | 8402, 49th Avenue | linkedin.com/in/kartik-madhira-aa
1555115/ | kartikmadhira 1.github.io

EXPERIENCE

Research Assistant, RAAS Lab, University of Maryland

Sep 2019 - Present

- Currently working on deploying end-to-end perception pipeline for UAV based autonomous bridge infrastructure inspection. The sensor module includes a 3D Lidar (VLP-16), Monocular Camera and IMU.
- Perception pipeline involves semantic understanding of the environment of the infrastructure using Lidar and Camera and catering as the input to the planning pipeline.

Perception Intern, Aeva Inc., Mountain View

May 2019 - Aug 2019

- Quantifying object tracking and detection in the perception pipeline Implemented and integrated end to end metrics to set benchmarks for tracker and classifier improvements.
- The metrics helped in improving the tracker for highway scene, acting as a feedback in the perception pipeline.

Research Assistant, Computer Vision Lab, University of Maryland

Aug 2018 - Apr 2019

- Implementation and testing of traditional as well supervised deep learning model for optical flow implementation on a downward-facing camera on a drone.
- Deep learning models specifically tested with edge compute devices such as Neural Compute Stick (NCS)

Trainee Data Engineer, Mu Sigma Inc., India

Jun 2017 - May 2018

• Implemented ARIMA forecasting models for predictions of monthly and yearly sales using past inventory data. The client was an E-commerce major in the US specializing in footwear.

Computer Vision Intern, TethrBox Technologies

May 2016 - Jul 2016

• Built static people counter solution for overhead downward-facing cameras. The counter used background subtraction and hungarian algorithm with euclidean distance for data association. Achieved 78% accuracy for the counter.

PROJECTS

Collision Avoidance (CAS) using Lidar and Camera fusion

- Implemented Time To Collision (TTC) pipeline in a perception stack by fusing information from the lidar and camera. Structure from Motion (SfM)
- A 3D reconstruction of a scene from a set of several snaps from a Quadrotor flying over a mat of AprilTags.

Supervised and Unsupervised HomographyNet

• Implementation of supervised and unsupervised deep learning approaches in estimating planar homography on Tensor-Flow. The trained network was used to create a panorama.

Human Detection Module - Software Development Project

• Followed Agile Iterative Process (AIP) with Unit Testing and pair-programming to write a software package in C++ (using OpenCV) to detect humans. Used Google Test framework.

SnapCut/Rotobrush

• Implemented Adobe After Effects segmentation pipeline SnapCut, a robust video object cutout using localized classifiers.

EDUCATION

Master of Engineering, Robotics

Aug 2018 - May 2020

University of Maryland

GPA: 3.96

Bachelors in Technology, Instrumentation and Control Engineering

Jul 2013 - Aug 2017

Nirma University

GPA: 3.8

SKILLS

Computer Vision: Visual Odometry, Object Segmentation, Object Detection, Visual SLAM, Structure from Motion (SfM), camera calibration, 3D Computer Vision, Image Processing

Lidar & Radar: Point Cloud Processing, Lidar-Camera calibration, Semantic Mapping, Sensor Fusion, Radar based tracking

Softwares/Libraries: OpenCV, TensorFlow, PCL, Keras, Boost, Agile Iterative Process (AIP), Robot Operating System (ROS), NumPy, Eigen

Computer Languages: Python, C++, MATLAB

PUBLICATIONS

 Self balancing robot using complementary filter: Implementation and analysis of complementary filter on SBR: Kartik Madhira, Ammar Gandhi and Aneesha Gujral, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 2950-2954.