Graduação em Sistemas de Informação - UFU

Disciplina: FACOM31701 - Trabalho de Conclusão de Curso 1

Professor: Prof. Dr. Rafael Pasquini

Aluno(a): Paula Prado Carvalho

Orientador(a): Prof.(a) Christiane Regina Soares Brasil

Entrega 3 (E3) - Trabalhos relacionados

- 1) Identifique, juntamente com o seu orientador(a), quais os principais trabalhos relacionados do seu projeto de TCC/PG (entre 3 a 5 trabalhos). Garanta que a bibliografia que será elaborada no arquivo ref.bib contenha todos os metadados necessários para identificação do veículo de publicação dos trabalhos relacionados.
- 2) Escreva um parágrafo sobre cada um dos trabalhos relacionados identificados na questão 1). Fale sobre o objetivo do trabalho, o método, os principais resultados e como ele se relaciona com o seu projeto.
- 3) Pontuação extra será atribuída aos alunos que entregarem, ao final do texto, uma tabela comparativa sobre as principais características dos trabalhos relacionados.
- 4) Feche o texto com um resumo sobre o Capítulo 7 de Revisão Bibliográfica do livro de referência (WAZLAWICK, 2020).

Observações:

- 1. Leia outras monografias para obter uma compreensão mais clara de como os trabalhos relacionados devem ser descritos.
- 2. Faça a devida citação do trabalho. Um tutorial de como utilizar o overleaf está disponível em (OVERLEAF, 2025). Note que neste modelo que foi fornecido para a entrega 1, além do arquivo main.tex que será utilizado para redigir

- seu texto, há um arquivo chamado ref.bib que contém algumas referências como exemplo.
- 3. Os parágrafos sobre os trabalhos relacionados devem apresentar um mínimo de coesão. Existem diversos conectivos que podem ser utilizados para auxiliar nesta tarefa.
- 4. Junto da entrega, o aluno deverá anexar um comprovante de concordância do seu orientador quanto ao texto sendo submetido. O comprovante de concordância poderá ser um e-mail do seu orientador, onde ele manifesta autorização para submeter o texto, ou uma assinatura digital do orientador, por exemplo, gov.br no PDF submetido.

1 TRABALHOS RELACIONADOS

Um marco importante na área é o trabalho de (ZHANG; LI, 2007), que introduziu o algoritmo MOEA/D (Multiobjective Evolutionary Algorithm based on Decomposition). Diferente dos métodos baseados apenas na dominância de Pareto, o MOEA/D decompõe um problema de otimização multiobjetivo em um conjunto de subproblemas de otimização escalar, resolvidos simultaneamente e de forma cooperativa. Essa abordagem permite que as soluções vizinhas compartilhem informações, promovendo maior diversidade e eficiência computacional. Por meio de experimentos em problemas-teste clássicos, os autores demonstraram que o MOEA/D alcança desempenho competitivo, especialmente em cenários de alta dimensionalidade, superando limitações comuns de algoritmos tradicionais.

Para contextualizar o desafio central desta área, o trabalho de (ISHIBUCHI; TSUKAMOTO; NOJIMA, 2008) apresenta uma revisão concisa e fundamental sobre a otimização com muitos objetivos (many-objective optimization). O estudo evidencia que algoritmos evolutivos multiobjetivo tradicionais, eficazes em cenários com dois ou três objetivos, passam a enfrentar sérias limitações quando esse número aumenta para quatro ou mais. Por meio de experimentos e análises, os autores demonstram a degradação da pressão seletiva — fenômeno em que quase todas as soluções se tornam não-dominadas, dificultando a evolução da população — e discutem abordagens propostas na literatura para mitigar tais desafios, como o uso de decomposição, métricas alternativas de diversidade e princípios de dominância modificados. Os resultados indicam que o crescimento no número de objetivos compromete severamente a capacidade de convergência dos algoritmos baseados unicamente em dominância de Pareto.

A utilização de algoritmos evolutivos multiobjetivo em problemas complexos tem se mostrado uma abordagem eficaz em diferentes domínios, especialmente quando é necessário lidar com múltiplos critérios conflitantes. Em um trabalho fundamental, (BRASIL, 2012) propôs o Algoritmo Evolutivo Multiobjetivo com Muitas Tabelas (AEMMT) para o problema de predição ab initio de estruturas

de proteínas, que exige a minimização simultânea de diversas funções de energia conflitantes, como van der Waals, eletrostática, ligação de hidrogênio e solvatação. A metodologia adota múltiplas subpopulações (tabelas), cada uma dedicada a otimizar combinações específicas dos objetivos, permitindo uma amostragem mais ampla e precisa do espaço de soluções. Os resultados mostraram que o AEMMT foi capaz de lidar com mais de dez critérios, obtendo sucesso inclusive na predição de estruturas complexas com folhas- β .

No campo dos algoritmos evolutivos multiobjetivo aplicados a problemas de alocação de recursos, (SANTOS et al., 2023) avaliou comparativamente o AEMMT, o AEMMD (Algoritmo Evolutivo Multiobjetivo com Múltiplas Dominâncias) e o consagrado NSGA-II no escalonamento de tarefas em sistemas multiprocessados. Considerando até cinco objetivos — como makespan e balanceamento de carga —, o autor adaptou e implementou os três algoritmos sob as mesmas condições experimentais. Os resultados indicaram superioridade do AEMMT, seguido pelo AEMMD, com o NSGA-II apresentando desempenho inferior. Essa evidência sugere que variantes baseadas em tabelas podem oferecer soluções de maior qualidade em problemas com múltiplos critérios, reforçando seu potencial para a otimização de portfólios.

Expandindo essa análise, (SANTOS, 2024) incorporou o NSGA-III à comparação, mantendo o problema de escalonamento como referência . Projetado especificamente para problemas com muitos objetivos, o NSGA-III utiliza um mecanismo de seleção baseado em pontos de referência, que garante melhor distribuição das soluções na fronteira de Pareto. Os resultados foram contundentes: o NSGA-III superou todos os demais algoritmos na maioria dos cenários, com vantagem mais expressiva em instâncias de maior complexidade. Essa característica, de manter simultaneamente alta diversidade e boa convergência, reforça a conclusão do estudo de que o NSGA-III se destaca como uma abordagem superior para problemas altamente complexos.

Ainda, explorando o potencial das variantes, (NASCIMENTO; VARGAS; WANNER, 2024) investigaram uma versão híbrida do NSGA-III, combinando-o com Evolução Diferencial, Sine Cosine Algorithm e Otimização Aritmética. Aplicada a problemas multi e muitos objetivos baseados em cenários reais, a abordagem

híbrida apresentou melhorias estatisticamente significativas nos indicadores IGD+ e HyperVolume em relação à versão original. Esses resultados demonstram que a hibridização é uma estratégia eficaz para potencializar o desempenho do NSGA-III, estabelecendo a versão híbrida como uma abordagem com desempenho global superior para os problemas analisados.

De forma diretamente aplicável ao presente projeto, (MWAMBA; MBU-CICI; MBA, 2025) avaliaram o NSGA-III na otimização de portfólios financeiros. O estudo comparou-o ao tradicional método de Média-Variância de Markowitz, considerando múltiplos objetivos: risco, retorno, assimetria (skewness) e curtose (kurtosis). Utilizando um conjunto de ativos globais, os autores demonstraram que o NSGA-III produziu carteiras mais diversificadas e robustas, com maiores índices de Sharpe, melhor assimetria e menor curtose, superando de forma consistente o método clássico. Este trabalho estabelece uma ponte direta entre a literatura de algoritmos evolutivos e o problema-alvo desta pesquisa, oferecendo um benchmark fundamental.

Demonstrando a versatilidade do AEMMT, (MACRI; BRASIL, 2025) aplicaram-no ao Problema de Roteamento de Veículos (PRV), com foco na distribuição de combustível. O estudo comparou uma versão multiobjetivo, que minimizava simultaneamente distância, tempo e combustível, com uma versão monoobjetivo baseada na ponderação desses mesmos critérios. A implementação de ambas as abordagens e a análise do comportamento evolutivo dos critérios mostraram que o AEMMT superou a versão monoobjetivo, especialmente pela melhoria contínua ao longo das gerações e pela exploração mais ampla do espaço de busca. Tal desempenho reforça a robustez do AEMMT e sua aplicabilidade em problemas combinatórios de alta complexidade.

A Tabela 1, a seguir, oferece um resumo comparativo dos trabalhos relacionados discutidos neste capítulo, detalhando os principais elementos de cada estudo. Nela, observa-se uma tendência clara na aplicação de algoritmos cada vez mais sofisticados, como o AEMMT e o NSGA-III, para lidar com um número crescente de objetivos. Nota-se também a superioridade consistente das abordagens multiobjetivo em relação às mono-objetivo e de algoritmos para muitos objetivos em cenários de maior complexidade.

Tabela 1 — Comparação entre trabalhos relacionados

Referência	Problema-alvo	$egin{aligned} & & & & & & & & & & & & & & & & & & &$	Nº Obj.	Métricas de Avaliação	Principais Resultados
Zhang e Li (2007)	Problemas de otimização multiobjetivo clássicos	MOEA/D	2 a muitos	Fronteira de Pareto, diversidade e convergência	MOEA/D superou métodos tradicionais ao decompor o problema em subproblemas escalares, promovendo diversidade e eficiência computacional.
Ishibuchi et al. (2008)	Revisão de problemas many-objective	NSGA-II e variações	≥ 4	Pressão seletiva, dominância, diversidade	Identificou limitações dos algoritmos baseados em Pareto em cenários com muitos objetivos, propondo alternativas como decomposição e métricas de diversidade.
Brasil (2012)	Predição <i>ab initio</i> de estrutura de proteínas	AEMMT	> 10	Qualidade da predição estrutural, convergência da busca	AEMMT obteve soluções de alta qualidade, capaz de lidar com mais de dez funções objetivo, gerando predições precisas de estruturas complexas.
Santos (2023)	Escalonamento de tarefas multiprocessadas	AEMMT, AEMMD, NSGA-II	Até 5	Makespan, balanceamento de carga, tempo de fluxo, custo de comunicação	AEMMT apresentou melhor desempenho geral, seguido de AEMMD; NSGA-II obteve resultados inferiores.
Santos (2024)	Escalonamento de tarefas multiprocessadas	AEMMT, AEMMD, NSGA-II, NSGA-III	Até 5	Média simples, média harmônica, HyperVolume	NSGA-III superou consistentemente os demais, especialmente em problemas de maior complexidade.
Nascimento et al. (2024)	Problemas multi e muitos objetivos reais	NSGA-III híbrido (com ED, SCA e AOA)	3 a 5	IGD+, HyperVolume	Versão híbrida superou a original estatisticamente, indicando maior eficiência e diversidade das soluções obtidas.
Mwamba et al. (2025)	Otimização de portfólios financeiros	NSGA-III, Média-Variância	4	Índice de Sharpe, skewness, kurtosis, retorno e risco	NSGA-III produziu carteiras mais diversificadas, com melhor índice de Sharpe, assimetria favorável e menor curtose que o modelo tradicional.
Macri e Brasil (2025)	Problema de Roteamento de Veículos (distribuição de combustível)	AEMMT, AE monoobjetivo	4	Melhoria percentual por critério, evolução ao longo das gerações	AEMMT superou AE monoobjetivo em todos os critérios, explorando melhor o espaço de busca e mantendo diversidade de soluções.

O Capítulo 7 do livro de referência (WAZLAWICK, 2020) estabelece a revisão bibliográfica como um pilar fundamental da pesquisa, criticando abordagens ad hoc (não sistemáticas) pelo risco de omitir trabalhos relevantes e incorrer na "síndrome da interseção esquecida". Para mitigar esses problemas, o autor detalha o processo da Pesquisa Bibliográfica Sistemática, um método documentado e repetível que aumenta a objetividade e a confiabilidade da pesquisa. A condução de uma revisão sistemática inicia-se pela elaboração de um protocolo rigoroso, que define as questões de pesquisa, a string de busca, as fontes de dados e os critérios de inclusão/exclusão, sendo recomendada uma revisão-piloto para validar esses elementos. O autor alerta para riscos como a elaboração de uma string de busca inadequada, que pode ser muito genérica ou restritiva, e o viés de publicação, que pode distorcer as conclusões ao se basear apenas em estudos com resultados positivos. A fase de execução envolve a aplicação dos critérios para selecionar os estudos, eliminar duplicatas e obter os textos completos, seguida pela avaliação da qualidade dos artigos selecionados por meio de checklists específicos. Por fim, o capítulo ressalta a importância de uma leitura crítica contínua, utilizando questionamentos para extrair falhas, conexões e novas oportunidades de pesquisa da literatura analisada.

REFERÊNCIAS

- BRASIL, C. R. S. Algoritmo evolutivo de muitos objetivos para predição ab initio de estrutura de proteínas. Tese (Doutorado) Universidade de São Paulo, 2012. Citado na página 3.
- ISHIBUCHI, H.; TSUKAMOTO, N.; NOJIMA, Y. Evolutionary many-objective optimization: A short review. In: IEEE. 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence). [S.l.], 2008. p. 2419–2426. Citado na página 3.
- MACRI, A.; BRASIL, C. Uma análise de múltiplos critérios do problema de roteamento de veículos usando o aemmt. *Anais do Computer on the Beach*, v. 16, p. 134–139, 05 2025. Citado na página 5.
- MWAMBA, J. W. M.; MBUCICI, L. M.; MBA, J. C. Multi-objective portfolio optimization: An application of the non-dominated sorting genetic algorithm iii. *International Journal of Financial Studies*, v. 13, n. 1, 2025. ISSN 2227-7072. Disponível em: https://www.mdpi.com/2227-7072/13/1/15. Citado na página 5.
- NASCIMENTO, P.; VARGAS, D. E.; WANNER, E. Performance evaluation of a hybrid nsga-iii for multi and many-objective optimization in real-world problems. In: *Anais do XV Workshop de Sistemas de Informação*. Porto Alegre, RS, Brasil: SBC, 2024. p. 80–85. ISSN 0000-0000. Disponível em: https://sol.sbc.org.br/index.php/wsis/article/view/33677. Citado na página 4.
- OVERLEAF. *Tutorials Overleaf, Editor LaTeX*. 2025. Disponível em: https://pt.overleaf.com/learn/latex/Tutorials>. Citado na página 1.
- SANTOS, J. F. et al. Algoritmos evolutivos multiobjetivo baseados em tabelas para escalonamento de tarefas em ambientes multiprocessados. Universidade Federal de Uberlândia, 2023. Citado na página 4.
- SANTOS, M. R. Aplicação do nsga-iii ao problema de escalonamento multiobjetivo de tarefas. Universidade Federal de Uberlândia, 2024. Citado na página 4.
- WAZLAWICK, R. S. Metodologia de Pesquisa para Ciência da Computação. 3. ed. Rio de Janeiro: GEN LTC, 2020. v. 3. Citado 2 vezes nas páginas 1 e 7.

ZHANG, Q.; LI, H. Moea/d: A multiobjective evolutionary algorithm based on decomposition. *IEEE Transactions on evolutionary computation*, IEEE, v. 11, n. 6, p. 712–731, 2007. Citado na página 3.