

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

6-[(2,4-Dimethylanilino)methylidene]-2-hydroxycyclohexa-2,4-dienone

Shaukat Shujah, a* Saqib Ali, b Zia-ur-Rehman, b M. Nawaz Tahir and Auke Meetsmad

^aDepartment of Chemistry, Kohat University of Science & Technology, Kohat 26000, Kohat, Pakistan, ^bDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, ^cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^dCrystal Structure Center, Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Correspondence e-mail: shaukat.shujah@yahoo.com

Received 2 May 2013; accepted 5 May 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.043; wR factor = 0.123; data-to-parameter ratio = 10.6.

In the title compound, $C_{15}H_{15}NO_2$, the dihedral angle between the aromatic rings is 5.86 (6)°, and an intramolecular N— $H\cdots O$ hydrogen bond generates an S(6) motif, which helps to stabilize the enamine–keto tautomer. An intramolecular $O-H\cdots O$ hydrogen bond also occurs. In the crystal, inversion dimers linked by pairs of $O-H\cdots O$ hydrogen bonds generate $R_2^2(10)$ loops. A $C-H\cdots O$ interaction links the dimers into [010] chains and aromatic $\pi-\pi$ stacking [centroid–centroid separation = 3.6131 (9) Å] also occurs.

Related literature

For a related structure and background to Schiff bases, see: Shuja *et al.* (2007). For further structural aspects, see: Blagus & Kaitner (2011).

Experimental

Crystal data C₁₅H₁₅NO₂

 $M_r = 241.28$

Triclinic, $P\overline{1}$ V = 592.31 (11) Å³ Z = 2 b = 8.4348 (9) Å $M = 0.09 \text{ mm}^{-1}$ $M = 0.09 \text{ mm}^{-1$

Data collection

Bruker SMART APEX CCD areadetector diffractometer 4681 measured reflections 2363 independent reflections 2148 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.943$, $T_{\rm max} = 0.974$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.043 & 223 \ \mathrm{parameters} \\ wR(F^2)=0.123 & \mathrm{All} \ \mathrm{H-atom} \ \mathrm{parameters} \\ S=1.09 & \Delta\rho_{\mathrm{max}}=0.29 \ \mathrm{e} \ \mathrm{\mathring{A}}^{-3} \\ 2363 \ \mathrm{reflections} & \Delta\rho_{\mathrm{min}}=-0.27 \ \mathrm{e} \ \mathrm{\mathring{A}}^{-3} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathbf{H}\cdot\cdot\cdot A$
$O1-H21\cdots O2$	0.85 (2)	2.340 (17)	2.7674 (12)	111.3 (12)
$O1-H21\cdots O2^{i}$	0.85 (2)	2.00 (2)	2.7320 (13)	143.4 (15)
$N1-H31\cdots O2$	1.00 (2)	1.72 (2)	2.5873 (12)	142.7 (18)
$C13-H13\cdots O1^{ii}$	0.980 (14)	2.557 (14)	3.3069 (14)	133.3 (13)

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x, y - 1, z.

Data collection: *SMART* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 2006); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLUTO* (Meetsma, 2006) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

SS thanks the HEC (Higher Education Commission), Islamabad, for a fellowship (PIN No. 042–111889-PS2–104).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7078).

References

Blagus, A. & Kaitner, B. (2011). Acta Cryst. E67, o2958-o2959.

Bruker (2006). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). *J. Appl. Cryst.* 38, 381–388

Meetsma, A. (2006). Extended version of the program *PLUTO*. University of Groningen, The Netherlands. Unpublished.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shuja, S., Ali, S., Khalid, N. & Meetsma, A. (2007). Acta Cryst. E63, o3162– o3164.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2013). E69, o871 [doi:10.1107/S1600536813012233]

6-[(2,4-Dimethylanilino)methylidene]-2-hydroxycyclohexa-2,4-dienone

Shaukat Shujah, Saqib Ali, Zia-ur-Rehman, M. Nawaz Tahir and Auke Meetsma

Comment

As part of our ongoing studies of Schiff bases (Shuja *et al.* 2007), here we report the synthesis and structure of title compound, (I), (Fig. 1). In the molecular structure of (I) the bond distances C7–O2 [1.298 (13) Å] and C1–N1 [1.311 (14) Å] indicate keto-amino tautomeric form. This is further confirmed by a formation of strong intramolecular hydrogen bond N–H···O [N···O = 2.587 (12) Å] resulting in an S(6) ring. The C8–N1–C1–C2 torsion angle is 179.91 (12). The C1–N1 bond length [1.311 (14) Å] is smaller than the N1–C8 bond length [1.417 (14) Å]. The C1–C2 bond length [1.416 (16) Å] indicate a double-bond character and the short C5–C6 bond distance [1.372 (16) Å] of benzene core suggests the presence of quinoid effect (Blagus *et al.*, 2011). The molecules are connected by π – π interactions and O–H···O hydrogen bonds forming a two dimensional network (Fig. 2)

Experimental

An ethanolic solution (50 ml) of 2,4-dimethylaniline (2.5 mmol, 0.30 g) was added dropwise with constant stirring to a hot ethanolic solution (50 ml) of 2,3-dihydroxybenzaldehyde (2.5 mmol, 0.34 g) in a round bottomed flask equipped with a water condenser. The reaction mixture was kept under reflux for 2 h, cooled and kept at room temperature for 48 h. Red blocks of (I) were obtained on slow evaporation of the solvent.

Computing details

Data collection: *SMART* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 2006); data reduction: *SAINT-Plus* (Bruker, 2006); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLUTO* (Meetsma, 2006) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

The molecular stucture of (I), with displacement ellipsoids drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as dashed lines.

Figure 2 Schiff base molecules connected by π – π interactions and O—H···O hydrogen bonds.

6-[(2,4-Dimethylanilino)methylidene]-2-hydroxycyclohexa-2,4-dienone

Crystal data

 $C_{15}H_{15}NO_2$ $M_r = 241.28$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.6731 (8) Å b = 8.4348 (9) Å c = 10.5806 (12) Å $\alpha = 80.6107$ (18)° $\beta = 75.8216$ (19)° $\gamma = 63.3573$ (16)° V = 592.31 (11) Å³ Z = 2F(000) = 256

The final unit cell was obtained from the xyz centroids of 3645 reflections after integration using the SAINTPLUS software package (Bruker, 2000). $D_x = 1.353 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3645 reflections $\theta = 2.7-29.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Block, red $0.53 \times 0.48 \times 0.29 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine focus sealed Siemens Mo tube

Parallel mounted graphite monochromator Detector resolution: 4096x4096 / 62x62 (binned

512) pixels mm⁻¹ φ and ω scans

Absorption correction: multi-scan (*SADABS*; Bruker, 2006)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.123$ S = 1.092363 reflections 223 parameters 0 restraints

Primary atom site location: structure-invariant

direct methods

 $T_{\text{min}} = 0.943$, $T_{\text{max}} = 0.974$ 4681 measured reflections 2363 independent reflections 2148 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.009$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.$ $h = -9 \rightarrow 9$

 $h = -9 \rightarrow 9$ $k = -10 \rightarrow 10$

 $l = -13 \rightarrow 13$

Secondary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from

neighbouring sites

All H-atom parameters refined

 $w = 1/[\sigma^2(F_0^2) + (0.0825P)^2 + 0.0862P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} \leq 0.001$

 $\Delta \rho_{\text{max}} = 0.29 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.27 \text{ e Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	y	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.14548 (13)	0.99696 (10)	0.64979 (8)	0.0261 (3)	
O2	0.14914 (11)	0.77675 (9)	0.48083 (7)	0.0213 (2)	
N1	0.23552 (13)	0.45820 (12)	0.42735 (8)	0.0179 (3)	
C1	0.29515 (15)	0.40370 (14)	0.53911 (10)	0.0198 (3)	
C2	0.28631 (15)	0.52113 (14)	0.62454 (10)	0.0180(3)	
C3	0.35444 (16)	0.45246 (14)	0.74426 (10)	0.0214 (3)	
C4	0.35457 (16)	0.56226 (14)	0.82597 (10)	0.0217 (3)	
C5	0.28454 (16)	0.74722 (14)	0.79198 (10)	0.0209(3)	
C6	0.21286 (16)	0.81822 (14)	0.67902 (10)	0.0195 (3)	
C7	0.21212 (15)	0.70814 (14)	0.58908 (10)	0.0178 (3)	
C8	0.23908 (15)	0.35066 (13)	0.33599 (10)	0.0173 (3)	
C9	0.18384 (15)	0.43224 (13)	0.21664 (10)	0.0182 (3)	
C10	0.18940 (16)	0.32622 (14)	0.12556 (10)	0.0194 (3)	
C11	0.24356 (16)	0.14426 (14)	0.15117 (10)	0.0203 (3)	
C12	0.29389 (16)	0.06799 (14)	0.27204 (11)	0.0215 (3)	
C13	0.29397 (16)	0.16855 (14)	0.36332 (10)	0.0201 (3)	

C14	0.11771 (17)	0.62921 (14)	0.18686 (10)	0.0220 (3)
C15	0.24119 (18)	0.03446 (15)	0.05288 (12)	0.0250 (3)
H1	0.351(2)	0.273 (2)	0.5651 (14)	0.034 (4)*
Н3	0.400(2)	0.323(2)	0.7672 (15)	0.042 (4)*
H4	0.401(2)	0.5179 (18)	0.9075 (14)	0.027 (3)*
H5	0.286(2)	0.8279 (19)	0.8468 (14)	0.031 (4)*
H10	0.1540 (19)	0.3814 (17)	0.0398 (13)	0.024 (3)*
H12	0.326(2)	-0.062(2)	0.2955 (14)	0.036 (4)*
H13	0.328(2)	0.1118 (18)	0.4479 (13)	0.026 (3)*
H14	0.218(2)	0.6672 (19)	0.1967 (14)	0.037 (4)*
H14′	0.096(2)	0.6606 (19)	0.0969 (14)	0.033 (4)*
H14"	-0.010(2)	0.6970 (19)	0.2456 (14)	0.033 (4)*
H15	0.251(3)	0.088(2)	-0.0373(18)	0.049 (5)*
H15′	0.353 (2)	-0.084(2)	0.0470 (16)	0.047 (4)*
H15"	0.122(3)	0.016(2)	0.0749 (16)	0.046 (4)*
H21	0.076 (3)	1.025 (2)	0.5909 (19)	0.052 (5)*
H31	0.187 (3)	0.590(3)	0.412 (2)	0.088 (7)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0360 (5)	0.0169 (4)	0.0268 (4)	-0.0088(3)	-0.0143 (4)	-0.0005 (3)
O2	0.0259 (4)	0.0177 (4)	0.0188 (4)	-0.0070(3)	-0.0078(3)	0.0007(3)
N1	0.0187 (5)	0.0161 (4)	0.0183 (4)	-0.0068(3)	-0.0035(3)	-0.0018(3)
C1	0.0189 (5)	0.0172 (5)	0.0211 (5)	-0.0060(4)	-0.0037(4)	-0.0011 (4)
C2	0.0169 (5)	0.0176 (5)	0.0178 (5)	-0.0058(4)	-0.0031(4)	-0.0015 (4)
C3	0.0210 (5)	0.0194 (5)	0.0207 (5)	-0.0057(4)	-0.0053 (4)	-0.0002(4)
C4	0.0188 (5)	0.0251 (5)	0.0185 (5)	-0.0061(4)	-0.0057(4)	-0.0009(4)
C5	0.0201 (5)	0.0239 (5)	0.0191 (5)	-0.0086(4)	-0.0034(4)	-0.0051(4)
C6	0.0190(5)	0.0173 (5)	0.0211 (5)	-0.0069(4)	-0.0028(4)	-0.0028(4)
C7	0.0157 (5)	0.0193 (5)	0.0169 (5)	-0.0066(4)	-0.0026 (4)	-0.0009(4)
C8	0.0156 (5)	0.0175 (5)	0.0188 (5)	-0.0070(4)	-0.0025(4)	-0.0029(4)
C9	0.0167 (5)	0.0170 (5)	0.0200 (5)	-0.0067(4)	-0.0030(4)	-0.0014(4)
C10	0.0192 (5)	0.0206 (5)	0.0187 (5)	-0.0083(4)	-0.0043(4)	-0.0014(4)
C11	0.0180 (5)	0.0200(5)	0.0233 (5)	-0.0081(4)	-0.0021(4)	-0.0055(4)
C12	0.0206 (5)	0.0169 (5)	0.0259 (5)	-0.0073(4)	-0.0045(4)	-0.0010(4)
C13	0.0204 (5)	0.0177 (5)	0.0215 (5)	-0.0074(4)	-0.0053 (4)	0.0001 (4)
C14	0.0283 (6)	0.0172 (5)	0.0204 (5)	-0.0084(4)	-0.0083 (4)	0.0002 (4)
C15	0.0275 (6)	0.0221 (5)	0.0272 (6)	-0.0102(5)	-0.0064(4)	-0.0061(4)

Geometric parameters (Å, °)

O1—C6	1.3649 (13)	C10—C11	1.3961 (15)
O2—C7	1.2978 (13)	C11—C12	1.3961 (16)
O1—H21	0.85 (2)	C11—C15	1.5094 (17)
N1—C1	1.3107 (14)	C12—C13	1.3857 (16)
N1—C8	1.4174 (14)	C1—H1	1.005 (15)
N1—H31	1.00(2)	C3—H3	0.993 (15)
C1—C2	1.4158 (16)	C4—H4	0.968 (15)
C2—C3	1.4237 (15)	C5—H5	0.969 (15)

C2—C7	1.4350 (15)	C10—H10	0.992 (14)
C3—C4	1.3666 (16)	C12—H12	1.012 (15)
C4—C5	1.4184 (15)	C13—H13	0.980 (14)
C5—C6	1.3721 (16)	C14—H14	0.988 (17)
C6—C7	1.4365 (16)	C14—H14′	0.980 (15)
C8—C9	1.4018 (15)	C14—H14"	0.994 (15)
C8—C13	1.3982 (15)	C15—H15	0.987 (18)
C9—C14	1.5061 (15)	C15—H15'	0.982 (16)
C9—C10	1.3989 (15)	C15—H15"	0.96 (2)
C3—C10	1.5767 (15)	C13—1113	0.70 (2)
O1···O2	2.7674 (12)	C4···H14 ^{iv}	2.938 (16)
O1···C13i	3.3069 (14)	C4···H14′vi	3.059 (15)
O1···O2 ⁱⁱ	2.7320 (13)	C5···H15"iii	2.98 (2)
O1···C14 ⁱⁱ	3.3713 (14)	C7···H31	2.35 (2)
O2···O1 ⁱⁱ	2.7320 (13)	C12···H3 ^{vii}	3.096 (15)
O2···C12 ⁱ	3.4092 (14)	C13···H21 ^v	2.99 (2)
O2···O1	2.7674 (12)	C13···H1	2.635 (15)
O2···N1	2.5873 (12)	C14···H31	2.50 (2)
O2···C13 ⁱⁱⁱ	3.2538 (16)	C15···H5 ^v iii	2.871 (15)
O1···H13 ⁱ			
O1···H14"ii	2.557 (14)	H1···C13	2.635 (15)
	2.633 (14)	H1H3	2.39 (2)
O2···H31	1.72 (2)	H1···H13	2.07 (2)
O2···H12 ⁱ	2.649 (16)	H3···H1	2.39 (2)
O2···H21	2.340 (17)	H3···C12 ^{vii}	3.096 (15)
O2···H21 ⁱⁱ	1.999 (19)	H3···H12 ^{vii}	2.31 (2)
N1···O2	2.5873 (12)	H5···C15 ^{ix}	2.871 (15)
N1···H14	2.762 (14)	H5···H15 ^{ix}	2.57 (2)
N1···H14"	2.900 (15)	H5···H15′ ^{ix}	2.59(2)
C1···C2 ^{iv}	3.5296 (18)	H10···C4 ^x	3.015 (14)
C1···C7 ^{iv}	3.4250 (18)	H10···H14′	2.35 (2)
C2···C9 ⁱⁱⁱ	3.4592 (18)	H10···H15	2.46 (2)
C2···C1 ^{iv}	3.5296 (18)	H10···H10 ^{xi}	2.55(2)
C2···C2 ^{iv}	3.5848 (17)	H12···O2 ^v	2.649 (16)
C4···C9 ^{iv}	3.4797 (19)	H12···H3 ^{vii}	2.31(2)
C4···C8 ^{iv}	3.4962 (18)	H13···O1 ^v	2.557 (14)
C5···C13 ^{iv}	3.5694 (19)	H13···C1	2.675 (14)
C5···C8iv	3.3332 (18)	H13···H1	2.07(2)
C6···C12 ⁱⁱⁱ	3.4839 (19)	H13···H21 ^v	2.46 (3)
C6···C11 ⁱⁱⁱ	3.4209 (19)	H14···N1	2.762 (14)
C7···C12 ⁱⁱⁱ	3.5121 (18)	H14···H31	2.25 (3)
C7···C13 ⁱⁱⁱ	3.4649 (19)	H14···C4 ^{iv}	2.938 (16)
C7···C1 ^{iv}	3.4250 (18)	H14'···C4 ^x	3.059 (15)
C7···C8 ⁱⁱⁱ	3.5955 (18)	H14'···H10	2.35 (2)
C8C5iv	3.3332 (18)	H14"···N1	2.900 (15)
C8···C4 ^{iv}	3.4962 (18)	H14"···H31	2.40 (3)
C8···C7 ⁱⁱⁱ	3.5955 (18)	H14"···O1 ⁱⁱ	2.633 (14)
C9···C2 ⁱⁱⁱ	3.4592 (18)	H14"···C1 ⁱⁱⁱ	3.048 (16)
C9···C4 ^{iv}	3.4797 (19)	H15···H5 ^{viii}	2.57 (2)
C11···C6 ⁱⁱⁱ	3.4209 (19)	H15···H10	2.46 (2)
	5.1207 (17)	1110	2.40 (2)

Acta Cryst. (2013). E**69**, o871

C12···C7 ⁱⁱⁱ	3.5121 (18)	H15'···H5 ^{viii}	2.59(2)
C12···O2 ^v	3.4092 (14)	H15"····C5 ⁱⁱⁱ	2.98 (2)
C12···C6 ⁱⁱⁱ	3.4839 (19)	H21···O2	2.340 (17)
C13···C5 ^{iv}	3.5694 (19)	H21···C13 ⁱ	2.99 (2)
C13···C7 ⁱⁱⁱ	3.4649 (19)	H21···H13 ⁱ	2.46 (3)
C13···O2 ⁱⁱⁱ	3.2538 (16)	H21···O2 ⁱⁱ	2.00 (2)
C13 ···O1 ^v	3.3069 (14)	H31···O2	1.72 (2)
C14···O1 ⁱⁱ	3.3713 (14)	H31···C7	2.35 (2)
C1···H14"iii	` '	H31···C14	` '
	3.048 (16)		2.50 (2)
C1···H13	2.675 (14)	H31···H14	2.25 (3)
C4···H10 ^{vi}	3.015 (14)	H31···H14"	2.40 (3)
GC OI WAI	100 2 (11)	G0 G10 G10	110.00 (10)
C6—O1—H21	108.2 (11)	C8—C13—C12	119.90 (10)
C1—N1—C8	126.62 (9)	N1—C1—H1	118.8 (9)
C1—N1—H31	110.9 (13)	C2—C1—H1	118.4 (9)
C8—N1—H31	122.5 (12)	C2—C3—H3	118.1 (9)
N1—C1—C2	122.78 (10)	C4—C3—H3	121.0 (9)
C1—C2—C3	119.73 (10)	C3—C4—H4	122.0 (8)
C1—C2—C7	119.92 (10)	C5—C4—H4	118.2 (8)
C3—C2—C7	120.35 (10)	C4—C5—H5	121.7 (9)
C2—C3—C4	120.82 (10)	C6—C5—H5	117.5 (9)
C3—C4—C5	119.78 (10)	C9—C10—H10	119.3 (8)
C4—C5—C6	120.82 (10)	C11—C10—H10	118.6 (8)
O1—C6—C5	119.25 (10)	C11—C12—H12	119.8 (9)
O1—C6—C7	119.23 (10)	C13—C12—H12	118.9 (9)
C5—C6—C7	121.50 (10)	C8—C13—H13	120.6 (8)
C2—C7—C6	116.70 (10)	C12—C13—H13	119.5 (8)
O2—C7—C2	122.55 (10)	C9—C14—H14	111.6 (8)
O2—C7—C6	120.74 (9)	C9—C14—H14′	109.8 (9)
N1—C8—C13	120.74 (9)	C9—C14—H14"	110.7 (8)
N1—C8—C9			108.3 (13)
	118.11 (9)	H14—C14—H14′	
C9—C8—C13	120.34 (10)	H14—C14—H14"	108.7 (13)
C8—C9—C10	118.30 (9)	H14'—C14—H14"	107.6 (13)
C8—C9—C14	121.27 (9)	C11—C15—H15	113.3 (11)
C10—C9—C14	120.43 (9)	C11—C15—H15′	113.3 (10)
C9—C10—C11	122.16 (10)	C11—C15—H15"	111.1 (10)
C10—C11—C15	120.97 (10)	H15—C15—H15′	104.2 (14)
C10—C11—C12	118.03 (10)	H15—C15—H15"	107.9 (18)
C12—C11—C15	120.97 (10)	H15'—C15—H15"	106.4 (14)
C11—C12—C13	121.25 (10)		
C8—N1—C1—C2	179.91 (12)	O1—C6—C7—C2	179.47 (11)
C1—N1—C8—C9	-174.84 (12)	C5—C6—C7—O2	-177.99 (12)
C1—N1—C8—C13	5.77 (19)	C5—C6—C7—C2	1.19 (18)
N1—C1—C2—C3	-179.77 (12)	N1—C8—C9—C10	179.26 (11)
N1—C1—C2—C7	-0.87 (19)	N1—C8—C9—C14	-1.44 (18)
C1—C2—C3—C4	177.46 (12)	C13—C8—C9—C10	-1.34 (18)
C7—C2—C3—C4	-1.44 (19)	C13—C8—C9—C14	177.96 (12)
C1—C2—C7—O2	0.84 (19)	N1—C8—C13—C12	179.40 (12)
	- (-)		()

C1—C2—C7—C6	-178.32 (11)	C9—C8—C13—C12	0.0(2)
C3—C2—C7—O2	179.74 (12)	C8—C9—C10—C11	1.45 (19)
C3—C2—C7—C6	0.58 (18)	C14—C9—C10—C11	-177.87 (12)
C2—C3—C4—C5	0.53 (19)	C9—C10—C11—C12	-0.20 (19)
C3—C4—C5—C6	1.26 (19)	C9—C10—C11—C15	177.81 (12)
C4—C5—C6—O1	179.58 (12)	C10—C11—C12—C13	-1.2 (2)
C4—C5—C6—C7	-2.1 (2)	C15—C11—C12—C13	-179.20 (12)
O1—C6—C7—O2	0.29 (18)	C11—C12—C13—C8	1.3 (2)

Symmetry codes: (i) x, y+1, z; (ii) -x, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y-1, z; (vi) x, y, z+1; (vii) -x+1, -y, -z+1; (viii) x, y-1, z-1; (ix) x, y+1, z+1; (x) x, y, z-1; (xi) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O1—H21···O2	0.85(2)	2.340 (17)	2.7674 (12)	111.3 (12)
O1—H21···O2 ⁱⁱ	0.85 (2)	2.00(2)	2.7320 (13)	143.4 (15)
N1—H31···O2	1.00(2)	1.72(2)	2.5873 (12)	142.7 (18)
C13—H13···O1 ^v	0.980 (14)	2.557 (14)	3.3069 (14)	133.3 (13)

Symmetry codes: (ii) -x, -y+2, -z+1; (v) x, y-1, z.