Задание №6 (ФИПИ)

Ниже приведена программа, записанная на пяти языках программирования.

Паскаль	Python
var s, t, A: integer;	s = int(input())
begin	t = int(input())
readln(s);	A = int(input())
readln(t);	if (s > A) or (t > 12):
readln(A);	print("YES")
if (s > A) or (t > 12)	else:
then	print("NO")
writeln("YES")	
else	
writeln("NO")	
end.	

Было проведено 9 запусков программы, при которых в качестве значений переменных \boldsymbol{s} и \boldsymbol{t} вводились следующие пары чисел:

$$(13,2); (11,12); (-12,12); (2,-2); (-10,-10); (6,-5); (2,8); (9,10); (1,13).$$

Укажите наименьшее целое значение параметра A, при котором для указанных входных данных программа напечатает «NO» пять раз

Аналитический способ:

1) Построим трассировочную таблицу без учета А

Nº	S	Т	Α	if $(s > A)$ or $(t > 12)$:	Результат
1	13	2		(13 > A) or (2 > 12)	Результат зависит от <i>А</i>
2	11	12		(11 > A) or (12 > 12)	Результат зависит от A
3	-12	12		(-12 > A) or (12 > 12)	Результат зависит от A
4	2	-2		(2 > A) or (-2 > 12)	Результат зависит от \boldsymbol{A}
5	-10	-10		(-10 > A) or (-10 > 12)	Результат зависит от <i>А</i>
6	6	-5		(6 > A) or (-5 > 12)	Результат зависит от \boldsymbol{A}
7	2	8		(2 > A) or (8 > 12)	Результат зависит от A
8	9	10		(9 > A) or (10 > 12)	Результат зависит от \boldsymbol{A}
9	1	13		(1 > A) or (13 > 12)	YES (при любом значении A)

2) Заполним столбец *А* значениями при которых результат будет «NO»

Nº	S	Т	A	if $(s > A)$ or $(t > 12)$:	Результат
1	13	2	[13; ∞;)	(13 > A) or (2 > 12)	NO
2	11	12	[11; ∞;)	(11 > A) or (12 > 12)	NO
3	-12	12	[−12; ∞;)	(-12 > A) or (12 > 12)	NO
4	2	-2	[2; ∞;)	(2 > A) or (-2 > 12)	NO
5	-10	-10	[−10; ∞;)	(-10 > A) or (-10 > 12)	NO
6	6	-5	[6; ∞;)	(6 > A) or (-5 > 12)	NO
7	2	8	[2; ∞;)	(2 > A) or (8 > 12)	NO
8	9	10	[9; ∞;)	(9 > A) or (10 > 12)	NO
9	1	13		(1 > A) or (13 > 12)	YES (при любом значении A)

3) Для удобства отсортируем таблицу по возрастанию переменной А

Nº	S	Т	A	if $(s > 10)$ or $(t > A)$:	Результат
3	-12	12	[−12; ∞;)	(-12 > A) or (12 > 12)	NO
5	-10	-10	[−10; ∞;)	(-10 > A) or (-10 > 12)	NO
4	2	-2	[2; ∞;)	(2 > A) or (-2 > 12)	NO
7	2	8	[2; ∞;)	(2 > A) or (8 > 12)	NO
6	6	-5	[6; ∞;)	(6 > A) or (-5 > 12)	NO
8	9	10	[9; ∞;)	(9 > A) or (10 > 12)	NO
2	11	12	[11; ∞;)	(11 > A) or (12 > 12)	NO
1	13	2	[13; ∞;)	(13 > A) or (2 > 12)	NO

- 1. Если \mathbf{A} взять из промежутка [-12; -11] будет напечатано только один раз NO (запуск 3)
- 2. Если \mathbf{A} взять из промежутка [-10; 1] будет напечатано только два раз NO (запуск 3 и 5)
- 3. Если *А* взять из промежутка [2; 5] будет напечатано только четыре раз NO (запуск 3,5,4 и 7)
- 4. Если \mathbf{A} взять из промежутка [6; 8] будет напечатано только пять раз NO (запуск 3,5,4,7 и)

Программный способ:

1) Создадим список для всевозможных запусков:

```
list_s_t = [(13, 2), (11, 12), (-12, 12), (2,-2), (-10,-10), (6,-5), (2, 8), (9, 10), (1, 13)]
```

2) Переберем всевозможные варианты A, рекомендую брать с запасом, для данной задачи это от $-1\,200\,$ до $1\,300$, минимальное и максимальное значение s умноженное на 100, для каждого значения подсчитаем количество результатов печати NO

```
list_s_t = [(13, 2), (11, 12),(-12, 12), (2,-2), (-10,-10), (6,-5), (2, 8), (9, 10), (1, 13)]
for A in range(-1200, 1300):
    count = 0
```

3) Далее в цикле для каждого A проходим по всем 9 запускам, если количество напечатанных NO будет равно 5, то выводим значение A

```
list_s_t = [(13, 2), (11, 12),(-12, 12), (2,-2), (-10,-10), (6,-5), (2, 8), (9, 10), (1, 13)]
for A in range(-1200, 1300):
    count = 0
    for s,t in list_s_t:
        if (s>A) or (t > 12):
            continue #print("YES")
        else:
            count += 1 #print("NO")
    if count == 5:
        print(A)
```