

SECTION SC.EXPERIMENTALE

CORRIGEES

DES EXERCICES
DU MANUEL SCOLAIRE

TOME 1

ABROUG FETHI
Professeur principal

BOUSSETTA JALLOULI Professeur principal

MATHEMATIQUES

SOMMAIRE

1. Continuité & Limites	4
2. Suites réelles	19
3. Dérivabilité	38
4. Fonctions réciproques	54
5. Etudes des fonctions	77
6. Primitives	119
7. Nombres complexes	134
8. Equations à coefficients complexes	142
9. Produit scalaire - Produit vectoriel	157
lO. Equations de droites, de plans et de sphè	eres171

QCM

1)
$$\lim_{x \to +\infty} g(x) = -\infty$$

2)
$$f(2)=3$$
 et $f(5)=1$

<u>Vrai - Faux</u>

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(-x) = \lim_{X \to -\infty} f(X) = -\infty$$

2) (Faux) : contre exemple :
$$f(x) = \frac{x}{\sqrt{1+x^2}}$$
 croissante sur IR

et
$$\lim_{x\to+\infty} f(x) = 1$$

$$contre \ exemple: \quad f(x) {=} \frac{1}{x} \quad ; \ D_{_f} = \mathbb{R}^*$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$$

$$f$$
 n'est pas bornée

$$(\lim_{x\to 0^+} f(x) = +\infty)$$

contre exemple :
$$f(x) = \frac{\sin x}{x}$$
 ; $D_f = \mathbb{R}^*$

$$\lim_{x \to 0} f(x) = 1$$

$$\Delta$$
: $x = 0$ n'est pas une asymptote à (ζ_f)

contre exemple :
$$f(x)=4+\sin x$$

$$g(x)=3-\frac{1}{1+x^2}$$
; $h(x)=5+\frac{1}{1+x^2}$

on a :
$$g(x) \le f(x) \le h(x)$$

$$\lim_{x \to +\infty} g(x) = 3 \qquad ; \qquad \lim_{x \to +\infty} h(x) = 5$$

mais f n'a pas de limite en +∞

 \overline{a}) $f(x) = |x^2 - x - 3|$; $D_f = IR$

la fonction : $x \mapsto x^2$ - x-3 est continue sur IR (fonction polynôme)

d'où f est continue sur IR

b)
$$f(x) = x + 1 + \sqrt{x^2 + 1}$$
; $D_f = IR$

la fonction : $x \mapsto x^2 + 1$ est continue et positive sur IR d'où

la fonction : $x \mapsto \sqrt{x^2 + 1}$ est continue sur IR et par suite f est continue sur IR comme étant somme de deux fonction continues

c)
$$f(x) = \sqrt{\frac{x+1}{x-1}}$$

x	-∞	-1		1	+∞
x + 1	_	•	+		+
x-1	-			φ	+
$\frac{x+1}{x-1}$	+	0	_		+

$$D_f =]-\infty , -1] \cup]1 , +\infty[$$

la fonction : $x \mapsto \frac{x+1}{x-1}$ est continue et positive sur chacun des intervalles :

]- ∞ , -1] et]1 , + ∞ [, par suite f est continue sur D_f

d)
$$f(x) = (|x + 1| - 2)^5$$
 est définie et continue sur tout IR

e)
$$f(x) = \frac{3x^2 - |x|}{x^2 + 4}$$
 est définie et continue sur tout IR

f)
$$f(x) = \frac{1}{1 + \cos^2 x}$$
 est définie et continue sur tout IR $(1 + \cos^2 x \neq 0 \text{ pour tout } x \in IR)$

g)
$$f(x) = \frac{\cos x - 1}{\sin x - 1}$$
; $\sin x \neq 1 \iff x \neq \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$

f est définie et continue sur tout IR\ $\{\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}$

EXERCICE№2

$$f(x) = \begin{cases} 2 + \frac{1}{x+1} & si \quad x < -1\\ 2x^2 + x & si \quad x \ge -1 \end{cases}$$

1)
$$\sup]-\infty, -1[f'(x) = -\frac{1}{(x+1)^2} < 0 \Rightarrow f \text{ est décroissante Sur }]-\infty, -1[.$$

$$\sup]-1, +\infty [f'(x) = 4x + 1$$

2) la fonction :
$$x \mapsto 2 + \frac{1}{x+1}$$
 est continue sur IR\{ -1 }

En particulier sur]- ∞ , -1[d'où f est continue sur]- ∞ , -1[

De même f est continue sur]-1, $+\infty$ [

3)
$$f(-1) = 1$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} 2 + \frac{1}{x+1} = -\infty \text{ d'où f n'est pas continue en -1}$$

- 4) * chacune des équations f(x) = -3 et f(x) = -1 admet une unique solution
- * chacune des équations f(x) = 0.5 et f(x) = 1 admet trois solutions
 - * l'équations f(x) = 4 admet une unique solution.

1) f(-2) = 0

$$\lim_{x \to (-2)^+} f(x) = \lim_{x \to (-2)^+} \sqrt{x+2} = 0 = f(-2) \text{ ; f est continue à droite en } (-2)$$

$$\lim_{x \to (-2)^{-}} f(x) = \lim_{x \to (-2)^{-}} \frac{2x^{2} + x^{3}}{x + 2} = \lim_{x \to (-2)^{-}} (x^{2}) = 4 \neq f(-2)$$

Conclusion: f n'est pas continue en (-2)

- 2) f est continue sur chacun des intervalles :]- ∞ , -2[et]-2 , + ∞ [
- 3) f n'est pas continue sur IR car elle n'est pas continue en (-2)

EXERCICE№4

1) f(-1) = 0

*
$$\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} \sqrt{x^{2} - 1} = 0 = f(-1)$$

f est continue à gauche en (-1)

*
$$\lim_{x \to (-1)^{+}} f(x) = \lim_{x \to (-1)^{+}} \frac{(1-x)(1+x+x^{2})}{(1-x)(1+x)} = \lim_{x \to (-1)^{+}} \frac{(1+x+x^{2})}{(1+x)} = +\infty$$

f n'est pas continue à droite en (-1)

2) * la fonction: $x \mapsto x^2$ -1 est continue et positive sur chacun des intervalles $]-\infty$, -1] et $[1, +\infty[$

d'où f est continue sur chacun des intervalles :]- ∞ , -1] et [1, + ∞ [

* la fonction: $x \mapsto \frac{1-x^3}{1-x^2}$ est continue sur IR\{ -1, 1 }:

en particulier sur]-1,1[d'où f est continue sur]-1,1[

EXERCICE№5

$$f(x) = \frac{x^3 + 3x^2 - 6x - 8}{x - 2}$$

1)
$$D_f = IR \setminus \{2\}$$

2)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3}{x} = \lim_{x \to +\infty} x^2 = +\infty$$

De même $\lim_{x \to -\infty} f(x) = +\infty$

On a:
$$x^3 + 3x^2 - 6x - 8 = (x-2)(x^2 + 5x + 4)$$
 d'où pour $x \ne 2$

$$f(x) = x^2 + 5x + 4$$

$$\lim_{x \to 2} f(x) = 18$$

3) f admet une limite fini en 2 d'où f est prolongeable par continuité en 2

EXERCICEM6

1) * pour
$$x \in (0, 1)$$
, $f(x) = \frac{x^2 + x}{x^2 - x} = \frac{x + 1}{x - 1}$; $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x + 1}{x - 1} = -1$

* pour
$$x \in]-1$$
, $0[$, $f(x) = \frac{x^2 - x}{x^2 + x} = \frac{x - 1}{x + 1};$ $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x - 1}{x + 1} = -1$

D'où : $\lim_{x\to 0} f(x) = -1$, alors f admet un prolongement par continuité en 0

2) pour
$$x \neq -1$$
 et $x \neq 1$: $f(x) = \frac{(x+1)(x^2-x+1)}{(1-x)(1+x)} = \frac{(x^2-x+1)}{(1-x)}$,

D'où: $\lim_{x \to (-1)} f(x) = \frac{3}{2}$, f admet un prolongement par continuité en(-1)

3) pour
$$x \neq 0$$
;, $f(x) = 3 + \frac{\sin x}{x}$; $\lim_{x \to 0} f(x) = \lim_{x \to 0} 3 + \frac{\sin x}{x} = 4$ alors f admet un prolongement par continuité en 0

EXERCICENº7

1)
$$f(0) = 2$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x(x^2 - x - 2)}{x(x - 2)} = \lim_{x \to 0^+} \frac{(x + 1)(x - 2)}{(x - 2)}$$

$$= \lim_{x \to 0^+} (x + 1) = 1 \neq f(0) \text{ d'où f n'est pas continue en } 0$$

$$(2) f(2) = 3$$

pour
$$x \in (0, +\infty)$$
 ; $f(x) = x + 1$

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x+1) = 3 = f(2)$$
 d'où f est continue en 2.

EXERCICE№8

1)
$$x(x^2 - x - 2) = 0 \Leftrightarrow x = 0 \text{ ou } x = -1 \text{ ou } x = 2$$

 $D_f = IR^* \setminus \{-1\} \text{ ou } x = 2$

2)

x	-∞	-1	2	+∞
$x^2 - x - 2$	+	ф	<u> </u>	+

$$\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} -\frac{|x-2|}{x^2 - x - 2} = +\infty \text{ (de la forme - } \frac{3}{0})$$

 $\lim_{x \to (-1)^{-}} f(x) = -\infty$ Donc f n'admet pas de limite en (-1) car la limite à gauche est différent de la limite à droite

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x-2}{x^2 - x - 2} = \lim_{x \to +\infty} \frac{1}{x+1} = 0$$

*
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{(x-2)}{x^2 - x - 2} = \lim_{x \to -\infty} \frac{1}{x + 1} = 0$$

3) pour $x \in [0, 2[$

$$f(x) = \frac{-x(x-2)}{x(x-2)(x+1)} = \frac{-1}{x+1} \quad ; \qquad \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{-1}{x+1} = -1$$

$$\text{pour } x \in]-1 \text{ , 0}[$$

$$f(x) = \frac{x(x-2)}{x(x-2)(x+1)} = \frac{1}{x+1} \quad ; \qquad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{x+1} = 1$$

f n'admet pas de limite en 0 car la limite à gauche est différent de la limite à droite d'où f n'admet pas un prolongement par continuité en 0.

1)
$$\lim_{x \to 1^{+}} \left(\frac{-2}{x-1} \right) = -\infty$$
 ; $\lim_{x \to 1^{-}} \frac{-2}{x-1} = +\infty$

CMS

$$\lim_{x \to (-1)^{+}} \left(\frac{-2x^{3}}{x^{2}-1} \right) = -\infty \text{ (de la forme } \frac{2}{0^{-}} \text{); } \lim_{x \to (-1)^{-}} \left(\frac{-2x^{3}}{x^{2}-1} \right) = +\infty$$

$$\lim_{x \to 1^{-}} \left(\frac{-3}{x^{2} - 3x + 2} \right) = -\infty \quad ; \quad \lim_{x \to 1^{+}} \left(\frac{-3}{x^{2} - 3x + 2} \right) = +\infty$$

4) pour
$$x > 0$$
; $\sqrt{1 + x^2} = \sqrt{x^2(1 + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x^2}}$

Pour
$$x < 0$$
; $\sqrt{1 + x^2} = -x\sqrt{1 + \frac{1}{x^2}}$ d'où $\lim_{x \to +\infty} \frac{\sqrt{1 + x^2}}{x} = \lim_{x \to +\infty} \sqrt{1 + \frac{1}{x^2}} = 1$

et
$$\lim_{x \to -\infty} \frac{\sqrt{1+x^2}}{x} = \lim_{x \to -\infty} -\sqrt{1+\frac{1}{x^2}} = -1$$

EXERCICE№10

1) Pour
$$x \neq -1$$
: $f(x) = \frac{(x+1)(x^2+2x-4)}{(x+1)} = x^2 + 2x - 4$

$$\lim_{x \to (-1)} f(x) = \lim_{x \to (-1)} (x^2 + 2x - 4) = -5$$

$$g(x) = \begin{cases} f(x) & \text{si } x \neq -1 \\ -5 & \text{si } x = -1 \end{cases}$$
 est le prolongement par continuité de f en (-1)

2)
$$f(x) = \frac{1-\sqrt{2}\cos x}{4\left(x-\frac{\pi}{4}\right)}$$
; on pose $X = x - \frac{\pi}{4}$ alors $x \to \frac{\pi}{4}$

$$\lim_{x \to \frac{\pi}{4}} f(x) = \lim_{X \to 0} \frac{1 - \sqrt{2}\cos(X + \frac{\pi}{4})}{4X} = \lim_{X \to 0} \frac{1 - \sqrt{2}(\cos\frac{\pi}{4}.\cos X - \sin\frac{\pi}{4}.\sin X)}{4X}$$

$$= \lim_{X \to 0} \frac{1 - \cos X + \sin X}{4X} = \lim_{X \to 0} \frac{1}{4} \left[\frac{1 - \cos X}{X} + \frac{\sin X}{X} \right] = \frac{1}{4}$$

$$g(x) = \begin{cases} f(x) & \text{si } x \neq \frac{\pi}{4} \\ \frac{1}{4} & \text{si } x = \frac{\pi}{4} \end{cases}$$

3)
$$f(x) = \frac{16(\cos(4x)-1)}{(4x)^2}$$
; on pose $X = 4x$

$$X \to 0^{16} \left[\frac{\cos X - 1}{x^2}\right] = X \to 0^{\left[-16\left(\frac{1 - \cos X}{x^2}\right)\right]} = -8 \text{ d'où } : g(x) = \begin{cases} f(x) & \text{si } x \neq 0 \\ -8 & \text{si } x = 0 \end{cases}$$

CONTINUITÉ ET LIMITES

Ch 1 Tome I

EXERCICE№11

1)
$$f(x) = \cos\left(\frac{\pi x + 1}{x}\right)$$
; $f = v \text{ o u avec} \begin{cases} u(x) = \frac{\pi x + 1}{x} \\ v(x) = \cos x \end{cases}$

$$\lim_{x \to -\infty} u(x) = \pi \quad \text{et} \quad \lim_{x \to \pi} v(x) = -1 \quad \text{d'où } \lim_{x \to -\infty} f(x) = -1$$

CMS

2)
$$\lim_{x \to +\infty} \frac{3}{\sqrt{x}} = 0$$
 et $\lim_{x \to 0} \sin x = 0$, d'où $\lim_{x \to +\infty} f(x) = 0$

3)
$$\lim_{x \to 0^+} \frac{\sin(x^2)}{x}$$
; on pose $X = x^2$

$$\lim_{x \to 0^+} \frac{\sin(x^2)}{x} = \lim_{X \to 0^+} \frac{\sin X}{\sqrt{X}} = \lim_{X \to 0^+} \sqrt{X} \cdot \frac{\sin X}{x} = 0$$

$\underline{\mathbf{EXERCICEN} \cdot 12} \qquad \mathbf{f}(x) = \frac{1 - \cos x}{x}$

$$1) \lim_{x \to 0} f(x) = 0$$

2)
$$\lim_{x \to 0} \sin x = 0$$
 et $\lim_{x \to 0} f(x) = 0$ d'où : $\lim_{x \to 0} f(\sin x) = 0$

$$\lim_{x \to 0} f(1 - \cos x) = 0 \operatorname{car} \lim_{x \to 0} (1 - \cos x) = 0 \operatorname{et} \lim_{x \to 0} f(x) = 0$$

EXERCICE№13

16 6 3h

1) pour
$$x \neq 0$$
; $0 \le |\sin(\frac{2}{x})| \le 1 \Rightarrow 0 \le |x| \cdot |\sin(\frac{2}{x})| \le |x| \Rightarrow |f(x)| \le |x|$

$$\lim_{x \to 0} |x| = 0 \text{ d'où } \lim_{x \to 0} f(x) = 0$$

2) pour
$$x \neq 0$$
; $-1 \le \sin(\frac{2}{x}) \le 1 \implies -x^2 \le x^2$. $\sin(\frac{2}{x}) \le x^2$

$$\Rightarrow 1 - x^2 \le 1 + x^2$$
. $\sin(\frac{2}{x}) \le 1 + x^2$

$$\lim_{x \to 0} (1 - x^2) = \lim_{x \to 0} (1 + x^2) = 1 \text{ d'où } : \lim_{x \to 0} 1 + x^2 \sin(\frac{2}{x}) = 1$$

3) pour
$$x > 0$$
; $\sin(\frac{2}{x}) \ge -1 \Rightarrow \frac{1}{x} + \sin(\frac{2}{x}) \ge \frac{1}{x} - 1 \Rightarrow f(x) \ge \frac{1}{x} - 1$

$$\lim_{x \to 0^{+}} (\frac{1}{x} - 1) = +\infty \text{ d'où } \lim_{x \to 0^{+}} f(x) = +\infty$$

pour
$$x < 0$$
; $\sin(\frac{2}{x}) \le 1 \implies f(x) \le \frac{1}{x} + 1$

$$\lim_{x \to 0^{-}} (\frac{1}{x} + 1) = -\infty \text{ d'où } \lim_{x \to 0^{-}} f(x) = -\infty \text{ ; par suite f n'admet pas de}$$
limite en 0

1) * pour
$$x > 0$$
; $0 \le 1 + \cos x \le 2 \Rightarrow 0 \le \frac{1 + \cos x}{x} \le \frac{2}{x} \Rightarrow 0 \le f(x) \le \frac{2}{x}$

$$\lim_{x \to +\infty} \left(\frac{2}{x}\right) = 0 \text{ d'où } \lim_{x \to +\infty} f(x) = 0$$

* pour
$$x < 0$$
; $0 \le 1 + \cos x \le 2$ $\Rightarrow 0 \ge f(x) \ge \frac{2}{x}$

$$\lim_{x \to -\infty} \left(\frac{2}{x}\right) = 0 \text{ d'où } \lim_{x \to -\infty} f(x) = 0$$

2) * pour
$$x \neq 0$$
; $0 \le 1 + \cos x \le 2 \Rightarrow 0 \le f(x) \le \frac{2}{\sqrt{|x|}}$

$$\lim_{x \to +\infty} \frac{2}{\sqrt{|x|}} = \lim_{x \to -\infty} \frac{2}{\sqrt{|x|}} = 0 \text{ d'où } \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$$

3) * pour
$$x \in IR$$
; $0 \le 1 + \cos x \le 2 \implies 0 \le |x| (1 + \cos x) \le 2|x|$

$$\Rightarrow 0 \le \frac{|x|(1+\cos x)}{x^4+x^2+3} \le \frac{2|x|}{x^4+x^2+3} \Rightarrow 0 \le |f(x)| \le \frac{2|x|}{x^4+x^2+3}$$

$$\lim_{x \to +\infty} \frac{2|x|}{x^4 + x^2 + 3} = \lim_{x \to -\infty} \frac{2|x|}{x^4 + x^2 + 3} = 0 \text{ d'où}$$

$$\lim_{|x| \to +\infty} |f(x)| = 0 \lim_{|x| \to +\infty} f(x) = 0$$

EXERCICE№15

1) * pour
$$x \in IR$$
 ; $-1 \le \sin x \le 1 \implies -1 \le -\sin x \le 1 \implies 1 \le 2 -\sin x \le 3$

$$\Rightarrow \frac{1}{3} \le \frac{1}{2 - \sin x} \le 1$$
2) * pour $x > 0$; $\frac{1}{2 - \sin x} \ge \frac{1}{3} \implies \frac{x}{2 - \sin x} \ge \frac{x}{3}$

$$\lim_{x \to +\infty} (\frac{x}{3}) = +\infty \text{ d'où }\lim_{x \to +\infty} \frac{x}{2 - \sin x} = +\infty$$

$$\lim_{x \to +\infty} (x + 2) + (\sin x - 2) = (x + 2)$$

2) * pour
$$x > 0$$
; $\frac{1}{2-\sin x} \ge \frac{1}{3} \Rightarrow \frac{x}{2-\sin x} \ge \frac{x}{3}$

$$\lim_{x \to +\infty} (\frac{x}{3}) = +\infty \quad \text{d'où} \quad \lim_{x \to +\infty} \frac{x}{2-\sin x} = +\infty$$
* Soit $f(x) = \frac{x+\sin x}{2-\sin x} = \frac{(x+2)+(\sin x-2)}{2-\sin x} = \frac{(x+2)}{2-\sin x} - 1$

* Soit
$$f(x) = \frac{x+\sin x}{2-\sin x} = \frac{(x+2)+(\sin x-2)}{2-\sin x} = \frac{(x+2)}{2-\sin x}$$

* pour
$$x > 0$$
; $\frac{1}{2-\sin x} \ge \frac{1}{3} \Rightarrow \frac{x+2}{2-\sin x} \ge \frac{1}{3} (x+2) \Rightarrow f(x) \ge \frac{1}{3} (x-1)$

$$\lim_{x \to +\infty} \frac{1}{3}(x-1) = +\infty \text{ d'où } \lim_{x \to +\infty} f(x) = +\infty$$

EXERCICE№16

$$f(x) = \frac{x \cos x}{x^2 + 1}$$

1)
$$|xf(x)| = \frac{x^2}{x^2 + 1} |cosx| = (1 - \frac{1}{x^2 + 1}) |cosx|$$

 $|cosx| \le 1 \text{ et } 1 - \frac{1}{x^2 + 1} \le 1 \text{ d'où } |xf(x)| \le 1$

2)
$$|f(x)| \le \frac{1}{|x|}$$
 pour $x \ne 0$

$$\lim_{x \to +\infty} \frac{1}{|x|} = \lim_{x \to -\infty} \frac{1}{|x|} = 0 \text{ d'où } \lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0$$

$$f(x) = \frac{2 - \sin(\frac{1}{x})}{x} \quad ; \quad x \in \mathbb{R}^*$$

1) a) pour x>0
$$\sin(\frac{1}{x}) \le 1 \Rightarrow -\sin(\frac{1}{x}) \ge -1 \Rightarrow 2 - \sin(\frac{1}{x}) \ge 1$$

$$\Rightarrow \frac{2 - \sin(\frac{1}{x})}{x} \ge \frac{1}{x} \quad (\text{car x} > 0) \Rightarrow f(x) \ge \frac{1}{x}$$

b)
$$f(x) \ge \frac{1}{x}$$
 pour x>0 et $\lim_{x \to 0^+} (\frac{1}{x}) = +\infty$ d'où $\lim_{x \to 0^+} f(x) = +\infty$

2) a) pour x<0 2-sin
$$(\frac{1}{x}) \ge 1 \Rightarrow \frac{2-\sin(\frac{1}{x})}{x} \le \frac{1}{x}$$
 (car x<0) $\Rightarrow f(x) \le \frac{1}{x}$

b)
$$f(x) \le \frac{1}{x}$$
 pour $x < 0$ et $\lim_{x \to 0^-} (\frac{1}{x}) = -\infty$ d'où $\lim_{x \to 0^-} f(x) = -\infty$

Rq: f n'admet pas de limite en 0

EXERCICENº18

1)
$$f(x) = \frac{x+1}{x-2}$$
; $I =]2, +\infty[$ $f'(x) = \frac{-3}{(x-2)^2} < 0$

f est continue et strictement décroissante sur]2,+∞[

d'où f(]2,+
$$\infty$$
[) = $\lim_{x\to+\infty} f$, $\lim_{x\to 2^+} f$ [=]1,+ ∞ [

2)
$$f(x) = \sqrt{x^2 - 2x}$$
; $I =]-\infty, 0$ $f'(x) = \frac{x - 1}{\sqrt{x^2 - 2x}} < 0 \quad \forall x \in I$

f est continue et strictement décroissante sur]- ∞ ,0] \Rightarrow f(]- ∞ ,0])= $\left[f(0), \lim_{\longrightarrow} f\right[=[0,+\infty[$

3)
$$f(]0,\frac{\pi}{2}]) = [f(\frac{\pi}{2}), \lim_{x \to 0^+} f(x)] = [1,+\infty[$$

4)
$$f(x) = tg(\pi x)$$
 ; $I = \left[-\frac{1}{2}, 0 \right]$ $f'(x) = \pi \cdot (1 + tg^2(\pi x)) > 0$

f est continue et strictement croissante sur $\left[-\frac{1}{2},0\right]$

d'où f(
$$\left[-\frac{1}{2},0\right]$$
)= $\left[\lim_{(-\frac{1}{2})^+} f, f(0)\right]$ = $\left[-\infty,0\right]$ (car $\lim_{(-\frac{1}{2})^+} tg(\pi x) = -\infty$)

- 1) f(I) = [-2,3]
- 2) f(I) = [-1,4]
- 3) $f(I) = [1,2[\cup {3}]$
- 4) f(I) =]1,4]

EXERCICE№20

1) f(x) = -x + 3 fonction affine \Rightarrow sa courbe est une droite,

$$I = [1,4]$$
 $f(I) = [-1,2]$

2) $f(x) = \frac{1}{x} \Rightarrow$ sa courbe est une hyperbole,

$$I =]-\infty, 0[$$
 $f(I) =]-\infty, 0[$

3) $f(x) = x^2 + 1 \Rightarrow$ sa courbe est une parabole

I = [-1,2] f(I) = [1,5]

EXERCICE№21

 $f(x) = x^3 + 10 x - 1$

- 1) a) f est dérivable sur IR et $f'(x) = 3x^2 + 10 > 0$ d'où f est strictement croissante sur IR
 - b) f est continue sur [0,1] , $f(0) \times f(1) = -10 < 0$ d'où l'équation f(x) = 0 admet une solution $a \in]0,1[$
 - * comme f est strictement croissante sur IR alors a est unique
 - 2) $f(0) \times f(0,1) = -(0,1)^3 < 0$ d'où 0 < a < 0,1; $a \approx 0,1$

$$f(x) = x^3 - 6x^2 + x + 1$$

1) f est dérivable sur IR et f'(x) = $3x^2 - 12x + 1$

$$\lim_{|x| \to +\infty} \frac{f(x)}{x} = \lim_{|x| \to +\infty} x^2 = +\infty$$

 (\mathcal{C}_f) admet deux branches paraboliques de direction celle de (o,\vec{j}) au voisinage de $\pm \infty$

2) f est continue sur [0,1] et $f(0) \times f(1) = -3 < 0$ d'où il existe un réel a de [0,1] telle que f(a) = 0

3)
$$f(0,5) = \dots$$
; $f(0,6) = \dots$

$$\Rightarrow$$
 f(0,5) × f(0,6) < 0 \Rightarrow 0,5 < a < 0,6 ; a = 0,5

EXERCICE№23

$$f(x) = x^3 - 12 x + 1$$

1) f est dérivable sur IR et f'(x) = $3(x^2 - 4)$

x	-∞	-2		2	+∞
f'(x)	+	ø	-	ф	+
f(<i>x</i>)		→ 17~			> +∞
	-00			-15	

$$\lim_{|x| \to +\infty} \frac{f(x)}{x} = \lim_{|x| \to +\infty} x^2 = +\infty$$

CMS

 (\mathcal{C}_f) admet deux branches paraboliques de direction celle de $(0,\vec{j})$ au voisinage de $\pm \infty$

- 2) a) $(C_f) \cap (o, \vec{l}) = \{M_1, M_2, M_3\}$
 - b) f est continue sur [-4,-3] et $f(-4) \times f(-3) < 0 \Rightarrow -4 < x_1 < -3$
- 3) $0 < x_2 < 1$; $3 < x_3 < 4$
- 4) * pour k \in]- ∞ , -15[\cup]17 , + ∞ [, l'équation f(x) = k admet une unique solution
 - * pour k \in {-15;17} l'équation f(x) = k admet deux solutions
 - * pour k \in]-15;17 [l'équation f(x) = k admet trois solutions
 - 5) l'équation |f(x)| = 1 admet six solutions (graphiquement)

- 1) $h(x) = \sqrt{x} \frac{1}{x} 1$
- a) h est dérivable sur $]0,+\infty[$ et h' $(x) = \frac{1}{2\sqrt{x}} + \frac{1}{x^2} > 0$ d'où h est strictement croissante sur $]0,+\infty[$
- b) h est continue et strictement croissante sur]0,+ ∞ [d'où : $h(]0,+\infty[) =]\lim_{0^+} h, \lim_{+\infty} h [=]-\infty ,+\infty[$
- c) h est continue sur [2, 3] et h(2) × h(3) = $(\sqrt{2} \frac{3}{2})(\sqrt{3} \frac{4}{3}) < 0$ d'où l'équation h(x) = 0 admet une solution $\alpha \in]2, 3[$ comme h est strictement croissante alors α est unique
 - d) (calculatrice :f(2,1)=-0,02 ;f(2,2)=0,02) $\Rightarrow \alpha \sim 2,1$
 - 2) pour $x \in]0; +\infty [, f'(x) = \frac{1}{2\sqrt{x}} > 0]$

x	0		+∞
f'(x)		+	
f(x)			→ +∞
	0 -		

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

branche parabolique de direction celle de $(0, \vec{l})$

$$g'(x) = -\frac{1}{x^2} < 0$$

x	0 +∞	
g'(x)	-	
g(x)	+∞ 1	

1)
$$f(x) = cos x - x$$

 $f'(x) = -(1 + sin x) < 0$
pour tout $x \in [0, \frac{\pi}{2}]$

d'où f est strictement décroissante sur $[0, \frac{\pi}{2}]$

2) f est continue sur $[0, \frac{\pi}{2}]$

$$f(0) \times f(\frac{\pi}{2}) = -\frac{\pi}{2} < 0$$
 d'où il existe un réel $a \in]0$, $\frac{\pi}{2}[$ tel que $f(a) = 0$ comme f est strictement décroissante sur $[0, \frac{\pi}{2}]$ alors a est unique

3) (calculatrice) $0.7 < a < 0.8 \Rightarrow a \approx 0.7$

EXERCICE№26

$$G(x) = f(x) - x$$

1)
$$g(0) \times g(1) = f(0) \times (f(1) - 1) \le 0 \operatorname{car} f(0) \operatorname{et} (f(1) \in [0, 1])$$

2) g est continue sur [0, 1] et $g(0) \times g(1) \le 0$

d'où l'équation g(x) = 0 admet au moins une solution $\alpha \in [0, 1]$ par suite α est une solution de l'équation f(x) = x

application

soit
$$f(x) = \cos\left(\frac{\pi}{2}x\right)$$
; $f'(x) = -\frac{\pi}{2}\sin\left(\frac{\pi}{2}x\right) \le 0$

pour $x \in [0, 1]$

f est décroissante sur [0, 1]

$$f([0,1]) = [f(1), f(10)] = [0,1]$$

d'après 2) l'équation f(x) = x admet au moins une solution $\alpha \in [0, 1]$.

QCM

1. Un =
$$\frac{n^2 + 2}{n}$$
; $n \in \mathbb{N}^*$ $U_n \ge n$

2.
$$\operatorname{Un} = \frac{n + \cos(n)}{n+1}$$
 $\lim_{n \to +\infty} U_n = 1$

3. Un =
$$n.\sin(\frac{1}{n})$$
 $\lim_{n \to +\infty} U_n = 1$

VRAI-FAUX

- 1. FAUX contre exemple : $Un = (-1)^n$
- 2. a) Vrai (th du cours)

b)FAUX contre exemple : Un = -n et $Vn = n + \frac{1}{n}$ Un+Vn converge vers 0 mais Un et Vn ne sont pas convergentes

- 3. FAUX contre exemple : $Un = (-1)^n \rightarrow (Un)^2 = 1$ (Un)² converge vers 1 mais Un ne converge pas
- 4. FAUX voir définition
- 5. FAUX contre exemple : Un =(-1)ⁿ
 U2n converge vers 1 ; U2n+1 converge vers -1 mais Un n'est pas

 Convergente

1)
$$U_n = \frac{3n-1}{n+2} = \frac{3-\frac{1}{n}}{1+\frac{2}{n}}$$
; $\lim_{n \to +\infty} \frac{1}{n} = 0$ d'où $\lim_{n \to +\infty} U_n = 3$

2)
$$\lim_{n \to +\infty} \frac{n-1}{3n+2} = \lim_{n \to +\infty} \frac{1-\frac{1}{n}}{3+\frac{2}{n}} = \frac{1}{3}$$

3)
$$\lim_{n \to +\infty} \frac{1}{n^2 - n + 2} = 0$$

4)
$$\lim_{n \to +\infty} (n^3 - 2n^2 + 1) = \lim_{n \to +\infty} n^3 \left(1 - \frac{2}{n} + \frac{1}{n^3}\right) = +\infty$$

5)
$$U_n = \frac{3n-1}{|-n+2|}$$

Pour n > 2
$$U_n = \frac{3n-1}{n-2} = \frac{3-\frac{1}{n}}{1-\frac{2}{n}}$$
 alors $\lim_{n \to +\infty} U_n = 3$

6)
$$U_n = \sqrt{\frac{n^2 + 1}{n + 1}} = \sqrt{\frac{n + \frac{1}{n}}{1 + \frac{1}{n}}}$$
 alors $\lim_{n \to +\infty} U_n = +\infty$

7)
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
; $\lim_{x \to 0} \sin x = 0$ d'où $\lim_{n \to +\infty} \sin \left(\frac{1}{n}\right) = 0$

8)
$$\lim_{n \to +\infty} \cos\left(\frac{1}{n}\right) = 1$$
 car $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{x \to 0} \cos x = 1$

EXERCICE№2

$$a_n = \frac{n[1 + (-1)^n]}{n^2 + 1}$$

1)
$$a_{2n} = \frac{2n[1+(-1)^{2n}]}{4n^2+1} = \frac{4n}{4n^2+1}$$
 ; $a_{2n+1} = 0$

2)
$$\lim_{n \to +\infty} a_{2n+1} = 0$$
 et $\lim_{n \to +\infty} a_{2n} = \lim_{n \to +\infty} \frac{4n}{4n^2 + 1} = \lim_{n \to +\infty} \frac{4}{4n + \frac{1}{n}} = 0$ d'où

 $\lim_{n \to +\infty} a_n = 0$ et par suite a_n est convergente.

EXERCICEN3

$$a_n = \frac{n[1 + (-1)^n]}{n + 1}$$

1)
$$a_{2n} = \frac{2n[1+(-1)^{2n}]}{2n+1} = \frac{4n}{2n+1}$$
 ; $a_{2n+1} = 0$

2)
$$\lim_{n \to +\infty} a_{2n+1} = 0$$
 et $\lim_{n \to +\infty} a_{2n} = 2 \neq \lim_{n \to +\infty} a_{2n+1}$ d'où (a_n) est divergente

EXERCICEN94

1)
$$\lim_{n \to +\infty} \left[2 + \left(\frac{1}{3} \right)^n \right] = 2 \text{ car } \lim_{n \to +\infty} \left(\frac{1}{3} \right)^n = 0 \quad (-1 < \frac{1}{3} < 1)$$

2)
$$\lim_{n \to +\infty} \frac{1}{3+2^n} = 0$$

3)
$$U_n = \frac{2^n}{1+2^n} = \frac{1}{1+\left(\frac{1}{2}\right)^n}$$
 ; $(-1 < \frac{1}{2} < 1) \implies \lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0$

Par suite $\lim_{n \to +\infty} U_n = 1$

$$U_n = \frac{2^n}{(-5)^{n+1}} = \frac{-1}{5} \cdot \left(\frac{-2}{5}\right)^n$$
; $\lim_{n \to +\infty} U_n = 0$, car $(-1 < \frac{-2}{5} < 1)$

EXERCICE№6

1) $U_n = n + \sin n$ $\sin n \ge -1 \implies n + \sin n \ge n - 1 \implies U_n \ge n - 1$ et $\lim_{n \to +\infty} (n - 1) = +\infty$

$$\Rightarrow \lim_{n \to +\infty} U_n = +\infty$$

2) $U_n = \frac{1}{n} \left[\sin n + \left(\frac{1}{2} \right)^n \right] ; \quad (-1 \le \sin n \le 1)$

$$\implies$$
 $-1 + \left(\frac{1}{2}\right)^n \le \sin n + \left(\frac{1}{2}\right)^n \le 1 + \left(\frac{1}{2}\right)^n$

$$\Rightarrow \frac{1}{n} \left[-1 + \left(\frac{1}{2} \right)^n \right] \le U_n \le \frac{1}{n} \left[1 + \left(\frac{1}{2} \right)^n \right]$$

$$\lim_{n \to +\infty} \frac{1}{n} \left[-1 + \left(\frac{1}{2} \right)^n \right] = \lim_{n \to +\infty} \frac{1}{n} \left[1 + \left(\frac{1}{2} \right)^n \right] = 0 \text{ d'où } \lim_{n \to +\infty} U_n = 0$$

3) $U_n = -1 + \frac{1}{n^2} (\cos n + n)$; $(-1 \le \cos n \le 1)$

$$\Rightarrow$$
 n-1 \leq cos n + n \leq n+1 \Rightarrow $\frac{1}{n} - \frac{1}{n^2} \leq \frac{1}{n^2} (\cos n + n) \leq \frac{1}{n} + \frac{1}{n^2}$

$$\Longrightarrow \frac{1}{n} - \frac{1}{n^2} - 1 \le U_n \le \frac{1}{n} + \frac{1}{n^2} - 1$$

$$\lim_{n \to +\infty} \left(\frac{1}{n} - \frac{1}{n^2} - 1 \right) = \lim_{n \to +\infty} \left(\frac{1}{n} + \frac{1}{n^2} - 1 \right) = -1 \text{ d'où } \lim_{n \to +\infty} U_n = -1$$

EXERCICE№7

1) $U_n = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \dots \times \frac{n-1}{n}$ en simplifiant on aura :

$$U_n = \frac{1}{n}$$
 et $\lim_{n \to +\infty} U_n = 0$

2) $V_n = \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \frac{6}{5} \dots \times \frac{n+1}{n}$ en simplifiant on aura :

$$V_n = \frac{n+1}{2}$$
 et $\lim_{n \to +\infty} V_n = +\infty$

EXERCICEN98

$$U_n = \left(\frac{2}{n}\right)^n \; ; \; n \ge 1$$

- 1) $n \ge 4 \implies \frac{1}{n} \le \frac{1}{4} \implies \frac{2}{n} \le \frac{1}{2}$ d'où $\left(\frac{2}{n}\right)^n \le \left(\frac{1}{2}\right)^n \implies U_n \le \left(\frac{1}{2}\right)^n$
- 2) $0 \le U_n \le \left(\frac{1}{2}\right)^n$ pour $n \ge 4$

$$\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n = 0 \text{ d'où } \lim_{n \to +\infty} U_n = 0$$

$$W_n = \frac{n!}{3^n}$$
; $n \in IN$

1)
$$\frac{W_{n+1}}{W_n} = \frac{(n+1)!}{3^{n+1}} \times \frac{3^n}{n!} = \frac{n+1}{3}$$

 $n \ge 3 \implies n+1 \ge 4 \implies \frac{n+1}{3} \ge \frac{4}{3}$, d'où $\frac{W_{n+1}}{W_n} \ge \frac{4}{3}$

2) démonstration par récurrence

* vérifions pour n = 3

 $W_3 \ge \left(\frac{4}{3}\right)^0 W_3$ (donc la proprieté est vraie à l'ordre initial)

* Soit $n \ge 3$

Supposant que : $W_n \ge \left(\frac{4}{3}\right)^{n-3} W_3$ et montrons que : $W_{n+1} \ge \left(\frac{4}{3}\right)^{n-2} W_3$

D'après 1):
$$W_{n+1} \ge \frac{4}{3} W_n \implies W_{n+1} \ge \frac{4}{3} \left(\frac{4}{3}\right)^{n-3} W_3$$
$$\implies W_{n+1} \ge \left(\frac{4}{3}\right)^{n-2} W_3$$

*conclusion: $W_n \ge \left(\frac{4}{3}\right)^{n-3} W_3$ pour $n \ge 3$

3)
$$W_n \ge \left(\frac{4}{3}\right)^{n-3} W_3 \text{ pour } n \ge 3$$

$$\lim_{n \to +\infty} \left(\frac{4}{3}\right)^{n-3} W_3 = +\infty \text{ car}: W_3 > 0 \text{ et } \frac{4}{3} \ge 1 \text{ d'où}: \lim_{n \to +\infty} W_n = +\infty$$

EXERCICE№10

$$\overline{U_n = \frac{n}{3^n}} \quad ; n \ge 1$$

1) - a)
$$A_0(0,0)$$
; $A_1(1,\frac{1}{3})$; $A_2(2,\frac{2}{3^2})$;

b)
$$\frac{U_{n+1}}{U_n} = \frac{n+1}{3^{n+1}} \times \frac{3^n}{n} = \frac{n+1}{3n}$$
 pour : $n \ge 1$, $\frac{U_{n+1}}{U_n} - \frac{2}{3} = \frac{1-n}{3n} \le 0$ d'où : $\frac{U_{n+1}}{U_n} \le \frac{2}{3}$ pour : $n \ge 1$

c) pour :
$$n = 0$$
 ; $U_0 = 0$; $U_0 \le \left(\frac{2}{3}\right)^0$, (vraie)

Supposant que :
$$U_n \le \left(\frac{2}{3}\right)^n$$
 et montrons que : $U_{n+1} \le \left(\frac{2}{3}\right)^{n+1}$

D'après b):
$$U_{n+1} \le \frac{2}{3} U_n$$
 or $U_n \le \left(\frac{2}{3}\right)^n$ d'où $U_{n+1} \le \left(\frac{2}{3}\right)^{n+1}$

*conclusion: $U_n \le \left(\frac{2}{3}\right)^n$ pour $n \in IN$

d)
$$0 \le U_n \le \left(\frac{2}{3}\right)^n$$

$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \quad \text{d'où} : \quad \lim_{n \to +\infty} U_n = 0$$

2) pour
$$k \ge 1$$
 on $a: U_k \le \left(\frac{2}{3}\right)^k \implies \sum_{k=1}^n U_k \le \sum_{k=1}^n \left(\frac{2}{3}\right)^k$

$$\sum_{k=1}^{n} \left(\frac{2}{3}\right)^{k} = \frac{2}{3} \times \left(\frac{1 - \left(\frac{2}{3}\right)^{n}}{1 - \frac{2}{3}}\right)$$
: somme de n termes d'une suites géométrique

De raison $\left(\frac{2}{3}\right)$

D'où:
$$\sum_{k=1}^{n} U_k \le 2 \left[1 - \left(\frac{2}{3} \right)^n \right] \implies \sum_{k=1}^{n} U_k \le 2 \implies S_n \le 2 \text{ car } U_0 = 0$$

b)
$$S_{n+1} - S_n = \frac{n+1}{2^{n+1}} \ge 0$$

 (S_n) est croissante et majorée par 2, elle est donc convergente.

EXERCICE№11

$$a > 0$$
 , $b_n = \frac{n}{(1+a)^n}$

1)
$$(1+a)^n = \sum_{k=0}^n C_n^k a^k \implies (1+a)^n \ge C_n^2 a^2 \implies (1+a)^n \ge \frac{n(n-1)a^2}{2}$$

2) pour $n \ge 2$

$$\frac{1}{(1+a)^n} \le \frac{2}{n(n-1)a^2} \implies \frac{n}{(1+a)^n} \le \frac{2}{(n-1)a^2} \implies 0 \le b_n \le \frac{2}{(n-1)a^2}$$

$$\lim_{n \to +\infty} \frac{2}{(n-1)a^2} = 0 \quad \text{d'où} : \lim_{n \to +\infty} b_n = 0$$

3) 0 < q < 1

a)
$$\frac{1}{q} > 1$$
 d'où il existe un réel $a > 0$ tel que $\frac{1}{q} = 1 + a$
par suite $q = \frac{1}{1+a}$

b)
$$x_n = x_0 \cdot q^n$$
 ; $|x_n| = \frac{|x_0|}{(1+a)^n} \implies n|x_n| = |x_0| b_n$

$$\lim_{n \to +\infty} n|x_n| = 0 \quad \text{d'après 2}$$

Par suite $\lim_{n \to +\infty} nx_n = 0$

4) – a) la suite
$$x_n = \frac{1}{2^{n-1}} = \left(\frac{1}{2}\right)^{n-1}$$
 est géométrique de raison $q = \frac{1}{2} \in]0,1[$
D'où $\lim_{n \to +\infty} nx_n = 0 \implies \lim_{n \to +\infty} \frac{n}{2^{n-1}} = 0$

b) la suite
$$x_n = \left(\frac{1}{3}\right)^{n+2}$$
 est géométrique de raison $q = \frac{1}{3} \in]0,1[$

D'où
$$\lim_{n \to +\infty} nx_n = 0 \implies \lim_{n \to +\infty} n\left(\frac{1}{3}\right)^{n+2} = 0$$

c)
$$U_n = n \cdot \left(\frac{1}{\sqrt{2}}\right)^n + \left(\frac{1}{\sqrt{2}}\right)^n$$

soit
$$x_n = \left(\frac{1}{\sqrt{2}}\right)^n$$
 est géométrique de raison $q = \frac{1}{\sqrt{2}} \in]0,1[$

D'où
$$\lim_{n \to +\infty} x_n = 0$$
 et $\lim_{n \to +\infty} nx_n = 0$, par suite $\lim_{n \to +\infty} U_n = 0$

$$\begin{cases} U_1 = 1 \\ U_{n+1} = \sqrt{3U_n} \end{cases}, n \in \mathbb{N}^*$$

1) démonstartion par reccurence:

* pour n=1, $U_1=1 \le 3$ (vrai)

* supposons que : $U_n \le 3$ et montrons que : $U_{n+1} \le 3$

$$U_n \le 3 \Rightarrow 3.U_n \le 9 \Rightarrow \sqrt{3.U_n} \le 3 \Rightarrow U_{n+1} \le 3$$

conclusion: $U_n \le 3 ; \forall n \in \mathbb{N}^*$

2)
$$U_{n+1}-U_n = \sqrt{3.U_n}-U_n = \frac{3U_n-U_n^2}{\sqrt{3.U_n}+U_n} = \frac{U_n(3-U_n)}{\sqrt{3.U_n}+U_n}$$

on a : $U_n > 0$ et $3-U_n \ge 0$ d'où $U_{n+1}-U_n \ge 0$ $\Rightarrow U_n \le U_{n+1}$

par suite : (U_n) est croissante

3) (U_n) est croissante et majorée par 3 elle est donc convergente

* soit ℓ sa limite

 (U_n) est croissante $\Rightarrow U_n \ge U_1 \Rightarrow U_n \ge 1$ Donc $1 \le U_n \le 3 \Rightarrow 1 \le \ell \le 3$

* $U_{n+1} = f(U_n)$ avec $f(x) = \sqrt{3x}$ f est continue sur [1,3] d'où $\ell = f(\ell)$

$$\ell = f(\ell) \Leftrightarrow \ell = \sqrt{3\ell} \Leftrightarrow \ell^2 = 3\ell \Leftrightarrow \ell(\ell - 3) = 0$$

$$\Leftrightarrow \ell = 0$$
 ou $\ell = 3, 0 \notin [1,3]$ d'où $\ell = 3$

conclusion: $\lim_{n \to \infty} U_n = 3$

EXERCICE№13

1)
$$f(x) = 1 + \frac{1}{x}$$
 $f'(x) = \frac{-1}{x^2} < 0$

f est continue et strictement décroissante sur]0,+∞[d'où

$$f(]0,+\infty[) = \lim_{t\to\infty} f, \lim_{0^+} f[] =]1,+\infty[$$

2)

3)
$$\varphi = \frac{1+\sqrt{5}}{2}$$

$$f(\varphi) = 1 + \frac{2}{\sqrt{5} + 1} = 1 + \frac{2(\sqrt{5} - 1)}{4} = 1 + \frac{\sqrt{5} - 1}{2} = \frac{1 + \sqrt{5}}{2} = \varphi$$

4)
$$\begin{cases} x_0 = 2 \\ x_{n+1} = f(x_n) \end{cases}$$

a)
$$x_1 = f(x_0) = f(2) = \frac{3}{2}$$

$$x_2 = f(x_1) = f(\frac{3}{2}) = \frac{5}{3}$$

$$x_3 = \frac{8}{5}$$
; $x_4 = \frac{13}{8}$

b) par reccurence

*
$$U_0 = 2 \in \mathbb{Q}_+$$
 (vrai)

* supposons que $x_n \in \mathbb{Q}_+$ et montrons que $x_{n+1} \in \mathbb{Q}_+$

$$x_{n+1} = f(x_n) = 1 + \frac{1}{x} \in \mathbb{Q}_+$$

c) * montrons que :
$$x_n \in \left[\frac{3}{2}, 2\right]$$
; $\forall n \in \mathbb{N}$

* pour n=0 :
$$x_0 = 2 \in \left[\frac{3}{2}, 2 \right]$$

* supposons que :
$$x_n \in \left[\frac{3}{2}, 2\right]$$
 et montrons que : $x_{n+1} \in \left[\frac{3}{2}, 2\right]$

$$x_n \in \left[\frac{3}{2}, 2\right] \Rightarrow \frac{3}{2} \le x_n \le 2 \Rightarrow f(2) \le f(x_n) \le f(\frac{3}{2})$$
 (car f est décroissante)

$$\Rightarrow \frac{3}{2} \le x_{n+1} \le \frac{5}{3} \Rightarrow \frac{3}{2} \le x_{n+1} \le 2$$

conclusion: $x_n \in \left| \frac{3}{2}, 2 \right|$; $\forall n \in \mathbb{N}$

*
$$|\mathbf{x}_{n+1} - \varphi| = |f(x_n) - f(\varphi)| = |1 + \frac{1}{x_n} - 1 - \frac{1}{\varphi}| = |\frac{1}{x_n} - \frac{1}{\varphi}| = \frac{|x_n - \varphi|}{\varphi \cdot x_n}$$

comparons $\frac{1}{\varphi_{.}x_{-}}$ et $\frac{4}{9}$

$$\begin{aligned} x_{n} &\geq \frac{3}{2} &\Rightarrow \frac{1}{x_{n}} \leq \frac{2}{3} \Rightarrow \frac{1}{\varphi.x_{n}} \leq \frac{2}{3} \times \frac{1}{\varphi} \Rightarrow \frac{1}{\varphi.x_{n}} \leq \frac{\sqrt{5} - 1}{3} \Rightarrow \frac{1}{\varphi.x_{n}} \leq \frac{3(\sqrt{5} - 1)}{9} \Rightarrow \frac{1}{\varphi.x_{n}} \leq \frac{4}{9} \\ \text{d'où } &|x_{n+1} - \varphi| \leq \frac{4}{9} |x_{n} - \varphi| \end{aligned}$$

d)
$$|\mathbf{x}_1 - \boldsymbol{\varphi}| \le \frac{4}{9} |x_n - \boldsymbol{\varphi}|$$

 $|\mathbf{x}_2 - \boldsymbol{\varphi}| \le \frac{4}{9} |x_1 - \boldsymbol{\varphi}|$
 $|\mathbf{x}_3 - \boldsymbol{\varphi}| \le \frac{4}{9} |x_2 - \boldsymbol{\varphi}|$

$$\left| \mathbf{x}_{n} - \boldsymbol{\varphi} \right| \leq \frac{4}{9} \left| \mathbf{x}_{n-1} - \boldsymbol{\varphi} \right|$$

multiplions membre à membre et simplifions on a :

$$\left|\mathbf{x}_{n}-\boldsymbol{\varphi}\right| \leq \left(\frac{4}{9}\right)^{n}\left|2-\boldsymbol{\varphi}\right|$$

$$\lim_{n \to +\infty} \left(\frac{4}{9}\right)^n = 0 \implies \lim_{n \to +\infty} (x_n - \varphi) = 0 \implies \lim_{n \to +\infty} x_n = \varphi$$

EXERCICE№14

$$U_n = \sum_{k=1}^n \frac{1}{k^2}$$
 ; $n \in \mathbb{N}^*$

1) a)
$$U_1 = \sum_{k=1}^{1} \frac{1}{k^2} = 1$$
; $U_2 = \sum_{k=1}^{2} \frac{1}{k^2} = 1 + \frac{1}{2^2} = \frac{5}{4}$; $U_3 = U_2 + \frac{1}{3^2} = \frac{5}{4} + \frac{1}{9} = \frac{49}{36}$
b) $U_1 = U_2 = \frac{1}{3^2} = \frac{1}{4} = \frac{1}{3^2} = \frac{1}{4} = \frac{1}{3^2} = \frac{5}{4} = \frac{1}{3^2} = \frac{1}{4} = \frac$

b)
$$U_{n+1} - U_n = \frac{1}{(n+1)^2} \ge 0$$
 d'où (U_n) est croissante

2) a)
$$k \ge 2$$

$$\left(\frac{1}{k-1} - \frac{1}{k}\right) - \frac{1}{k^2} = \frac{1}{k(k-1)} - \frac{1}{k^2} = \frac{1}{k^2(k-1)} \ge 0$$
 d'où $\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$

b)
$$n \ge 2$$
 $k \ge 2$, on a: $\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k}$

$$\Rightarrow \sum_{k=2}^{n} \frac{1}{k^2} \le \sum_{k=2}^{n} \frac{1}{k-1} - \sum_{k=2}^{n} \frac{1}{k}$$

$$\Rightarrow U_n - 1 \le \sum_{k=1}^{n-1} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k}$$

$$\Rightarrow U_n - 1 \le 1 + \sum_{k=2}^{n} \frac{1}{k} - \frac{1}{n} - \sum_{k=2}^{n} \frac{1}{k} \Rightarrow U_n - 1 \le 1 - \frac{1}{n} \Rightarrow U_n \le 2 - \frac{1}{n}$$

c) (U_n) est croissante et majorée par 2 elle est donc convergente soit $\ell = \lim_{n \to +\infty} U_n$

 (U_n) est croissante $\Rightarrow U_n \ge U_3$, pour $n \ge 3$

$$\Rightarrow \frac{49}{36} \le U_n \le 2 - \frac{1}{n} \quad or \quad \lim_{n \to +\infty} (2 - \frac{1}{n}) = 2 \quad d'où \quad \frac{49}{36} \le \ell \le 2$$

EXERCICE№15

 $x \in \left]0,+\infty\right[$

1)
$$f(x)=4-\frac{3}{x}$$

1) $f(x)=4-\frac{3}{x}$ $f'(x)=\frac{3}{x^2}>0$

х	0	+∞
f'(x)	+	
f(x)		4

2)
$$\begin{cases} U_0 = \frac{3}{4} \\ U_{n+1} = f(U_n) \end{cases} ; n \in \mathbb{N}$$

a)
$$U_1 = f(U_0) = f(\frac{3}{4}) = 0$$

b)
$$U_2 = f(U_1) = f(0)$$
 n'existe pas d'où (U_n) n'est pas définie

3)
$$\begin{cases} U_0 = 3 \\ U_{n+1} = f(U_n) \end{cases}$$

- a) $U_1 = f(U_0) = 3$; $U_2 = 3$; $U_3 = 3$
- b) •pour n=0 on a $U_0=3$
 - supposons que $U_n=3$ et montrons que : $U_{n+1}=3$

 $U_{n+1}=f(U_n)=f(3)=3$ d'où : $U_n=3$; $\forall n \in \mathbb{N}$

4)
$$\begin{cases} U_0 = 5 \\ U_{n+1} = f(U_n) \end{cases}$$

a) $U_1 = f(5) = \frac{17}{5}$ $U_2 = f(\frac{17}{5}) = \frac{53}{17}$

b) montrons que : $U_n \ge 3$; $\forall n \in \mathbb{N}^*$

•
$$U_1 = \frac{17}{5} > 3$$
 (vrai)

• supposons que : $U_n \ge 3$ et montrons que $U_{n+1} \ge 3$

 $U_n \ge 3 \Rightarrow f(U_n) \ge f(3)$ (car f est croissante) $\Rightarrow U_{n+1} \ge 3$

conclusion: $U_n \ge 3$; $\forall n \in \mathbb{N}$

*
$$U_{n+1} - U_n = \frac{4U_n - 3}{U_n} - U_n = \frac{-U_n^2 + 4U_n - 3}{U_n} = \frac{-(U_n - 1).(U_n - 3)}{U_n}$$

 $\Rightarrow U_{n+1} - U_n \le 0$ car $U_n \ge 3$ d'où (U_n) est décroissante.

c) (U_n) est décroissante et minorée par 3 donc elle est convergente soit $\alpha = \lim_{n \to +\infty} U_n$ on a: $U_n \ge 3 \implies \alpha \ge 3$

f est continue sur $[3,+\infty[$ d'où $\alpha=f(\alpha)$

$$\alpha = f(\alpha) \Leftrightarrow \alpha^2 = 4\alpha - 3 \Leftrightarrow \alpha^2 - 4\alpha + 3 = 0 \Leftrightarrow \alpha = 1 \text{ ou } \alpha = 3 \qquad \text{or } \alpha \ge 3 \Rightarrow \alpha = 3$$

d)
$$U_n - 3 \le 10^{-5}$$
 calculatrice $n_0 = 11$ $(n \ge 11)$

EXERCICE№16

$$\begin{cases} U_1 = 5 \\ U_{n+1} = 5 - \frac{6}{U_n} \ , \ n \geq 1 \end{cases}$$

1)
$$U_2 = \frac{19}{5}$$
; $U_3 = \frac{65}{19}$

2) démonstration par récurrence :

* vérifions pour n = 0

$$U_{0+1} = U_1 = 5$$

$$\frac{3^{0+2}-2^{0+2}}{3^{0+1}-2^{0+1}} = \frac{9-4}{3-2} = 5$$
; $U_{0+1} = \frac{3^{0+2}-2^{0+2}}{3^{0+1}-2^{0+1}}$ (vraie)

*supposons que : $U_{n+1} = \frac{3^{n+2}-2^{n+2}}{3^{n+1}-2^{n+1}}$ et montrons que :

$$\begin{split} \mathbf{U}_{n+2} &= \frac{3^{n+3}-2^{n+3}}{3^{n+2}-2^{n+2}} \text{ , on a : } \mathbf{U}_{n+2} = 5 - \frac{6}{\mathbf{U}_{n+1}} = 5 - \frac{6(3^{n+1}-2^{n+1})}{3^{n+2}-2^{n+2}} \\ &= \frac{5(3^{n+2}-2^{n+2})-6(3^{n+1}-2^{n+1})}{3^{n+2}-2^{n+2}} = \frac{5\times 3^{n+2}-5\times 2^{n+2}-2\times 3^{n+2}-3\times 2^{n+2}}{3^{n+1}-2^{n+1}} \\ &= \frac{3\times 3^{n+2}-2\times 2^{n+2}}{3^{n+2}-2^{n+2}} = \frac{3^{n+3}-2^{n+3}}{3^{n+2}-2^{n+2}} \end{split}$$

* conclusion : $U_{n+1} = \frac{3^{n+2}-2^{n+2}}{3^{n+1}-2^{n+1}}$ pour tout $n \in IN$

3) pour
$$n \ge 1$$
; $U_n = \frac{3^{n+1}-2^{n+1}}{3^n-2^n} = \frac{3-2 \times \left(\frac{2}{3}\right)^n}{1-\left(\frac{2}{3}\right)^n}$

$$\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0 \text{ , d'où } \lim_{n \to +\infty} U_n = 0$$

1)
$$\begin{cases} a_0 = 1 \\ a_{n+1} = a_n^2 + a_n , n \ge 0 \end{cases}$$

* pour n = 0 on a : $a_0 \ge 0$ (vraie)

*supposons que : $a_n \ge n$; montrons que : $a_{n+1} \ge n+1$

$$a_n \ge n \implies a_n^2 \ge n^2 \text{ d'où}: a_n^2 + a_n \ge n^2 + n$$

$$\Rightarrow$$
 $a_{n+1} \ge n(n+1)$ d'où : $a_{n+1} \ge n+1$

* conclusion: $a_n \ge n$ pour tout $n \in IN$; $\lim_{n \to +\infty} n = +\infty$

d'où
$$\lim_{n \to +\infty} a_n = 0$$

2) – a) *) pour n = 0 , on a :
$$-1 \le b_0 \le 0$$

* supposons que :
$$-1 \le b_n \le 0$$
, montrons que : $-1 \le b_{n+1} \le 0$

$$-1 \le b_n \le 0 \Longrightarrow 0 \le b_n + 1 \le 1 \Longrightarrow 0 \ge b_n (b_n + 1) \ge b_n$$

$$\Rightarrow$$
 -1 $\leq b_n \leq b_{n+1} \leq 0$ d'où: -1 $\leq b_{n+1} \leq 0$

* conclusion : $-1 \le b_n \le 0 \ \forall \ n \in IN$

b)
$$b_{n+1} - b_n = b_n^2 \ge 0 \implies b_{n+1} \ge b_n$$
 d'où : (b_n) est croissante.

c) (b_n) est croissante et majorée par 0, elle est donc convergente.

Soit
$$\ell = \lim_{n \to +\infty} b_n$$

$$-1 \le b_n \le 0 \implies \ell \in [0,1]$$

On a: $b_{n+1} = f(b_n)$ avec $f(x) = x^2 + x$

F est continue sur [0,1] d'où $\ell = f(\ell) \iff \ell^2 + \ell = \ell \iff \ell^2 = 0$

Conclusion: $\lim_{n \to +\infty} b_n = 0$

EXERCICE№18

$$\begin{cases} U_0 = 0.1 \\ U_{n+1} = 1.6U_n.(1 - U_n) \end{cases}$$
1) $f(x)=1.6.x.(1-x) \Rightarrow f'(x)=1.6.[1-2x]$

X	-∞	1/2	+∞
f'(x)	+	0	-
f(x)		√ 0,4	

2) * pour n=0, on a : $0.1 \le U_0 = 0.1 < \frac{3}{8}$

- * supposons que : $0.1 \le U_n \le \frac{3}{8}$ et montrons que : $0.1 \le U_{n+1} \le \frac{3}{8}$
- $0,1 \le U_n \le \frac{3}{8} \Rightarrow f(0,1) \le f(U_n) \le f(\frac{3}{8})$ (car f est croissante sur $\left[(0,1); \frac{3}{8} \right]$

$$\Rightarrow 0.144 \le U_{n+1} \le \frac{3}{8} \qquad \Rightarrow 0.1 \le U_{n+1} \le \frac{3}{8}$$

conclusion: $0,1 \le U_n \le \frac{3}{8}$; $\forall n \in \mathbb{N}$

3) $U_{n+1} - U_n = U_n [1,6-1,6U_n - 1] = U_n . [0,6-1,6U_n] = \frac{U_n}{10} [6-16U_n] = \frac{8}{5} U_n . [\frac{3}{8} - U_n]$ $\Rightarrow U_{n+1} - U_n \ge 0 \quad \text{car } 0,1 \le U_n \le \frac{3}{8} \qquad \text{d'où } (U_n) \text{ est croissante}$

 (U_n) est croissante et majorée par $\frac{3}{8}$ elle est donc convergente

4) a)
$$1,6.(\frac{5}{8} - U_n)(\frac{3}{8} - U_n) = 1,6.\left[\frac{15}{64} - U_n + U_n^2\right] = \frac{16}{10} \times \frac{15}{64} - (1,6)(U_n - U_n^2)$$
$$= \frac{3}{8} - (1,6)U_n(1 - U_n) = \frac{3}{8} - U_{n+1}$$

b)
$$V_n = \frac{3}{9} - U_n$$

* $V_n \ge 0$ car $U_n \le \frac{3}{2}$

* d'après 4) a):
$$V_{n+1} = 1, 6(\frac{5}{8} - U_n).V_n \Rightarrow \frac{V_{n+1}}{V} = (1, 6)(\frac{5}{8} - U_n)$$

$$U_n \ge 0, 1 \Rightarrow -U_n \le \frac{-1}{10} \Rightarrow \frac{5}{8} - U_n \le \frac{21}{40} \Rightarrow (1, 6)(\frac{5}{8} - U_n) \le \frac{16}{10} \times \frac{21}{40} \Rightarrow \frac{V_{n+1}}{V_n} \le \frac{4 \times 21}{100}$$

$$\Rightarrow \frac{V_{n+1}}{V_n} \le 0.84$$

c) *
$$V_0 = \frac{3}{8} - U_0 = \frac{3}{8} - \frac{1}{10} = \frac{11}{40} \implies 0 \le V_0 \le (0.84)^0 = 1$$
 (vrai)

* supposons que : $0 \le V_n \le (0.84)^n$ et montrons que : $0 \le V_{n+1} \le (0.84)^{n+1}$

•
$$V_{n+1} \ge 0$$
 d'aprés 4) b)

•
$$\frac{V_{n+1}}{V_n} \le 0.84 \implies V_{n+1} \le (0.84) \cdot V_n \implies V_{n+1} \le (0.84) \cdot (0.84)^n$$

d'où
$$0 \le V_{n+1} \le (0,84)^{n+1}$$

conclusion: $0 \le V_n \le (0.84)^n$

d)
$$0 \le V_n \le (0.84)^n$$
 or $\lim_{n \to +\infty} (0.84)^n = 0$ car $0.84 \in]-1.1[$ d'où $\lim_{n \to +\infty} V_n = 0$

$$U_n = \frac{3}{8} - V_n \implies \lim_{n \to +\infty} U_n = \frac{3}{8}$$

c) on a:
$$0 \le \frac{3}{8} - U_n \le (0.84)^n$$
; $\forall n \in \mathbb{N}$

$$(0.84)^n \le 10^{-5} \Rightarrow (calculatrice) \quad n_0 \ge 67$$

EXERCICE№19

$$1) f(x) = \frac{1}{2} \left(x + \frac{5}{x} \right)$$

$$f'(x) = \frac{1}{2} \left(1 - \frac{5}{x^2} \right) = \frac{1}{2} \left(\frac{x^2 - 5}{x^2} \right) = \frac{(x - \sqrt{5})(x + \sqrt{5})}{2x^2}$$

\boldsymbol{x}	-∞	$-\sqrt{5}$	0	$\sqrt{5}$		+∞
f'(x)	+	Ф -	_	0	+	
f(x)		≯ -√5	+∞)		* +∞
	-8	<u>~_</u>		<u> </u>		

$$2) \left\{ \begin{aligned} &U_0 &= 3 \\ &U_{n+1} &= \mathrm{f}(U_n) \ , \ n \geq 0 \end{aligned} \right.$$

Montrons par récurrence que : $U_n > \sqrt{5}$; pour $n \ge 0$

*
$$U_0 = 3 > \sqrt{5}$$
 (vraie)

* supposons que : $U_n > \sqrt{5}$ et montrons que : $U_{n+1} > \sqrt{5}$

 $U_n > \sqrt{5} \implies f(U_n) > f(\sqrt{5})$ car f est strictement croissante sur $[\sqrt{5}, +\infty[$

D'où :
$$U_{n+1} > \sqrt{5}$$

Conclusion:
$$U_n > \sqrt{5}$$
; $\forall n \in IN \implies U_{n+1} > \sqrt{5}$ (1)

*
$$U_{n+1} - U_n = f(U_n) - U_n = \frac{1}{2} \left(U_n + \frac{5}{U_n} \right) - U_n = \frac{1}{2} \left(\frac{5}{U_n} - U_n \right)$$
$$= \frac{5 - U_n^2}{2U_n} = \frac{(\sqrt{5} - U_n)(\sqrt{5} + U_n)}{2U_n}$$

 $U_n > \sqrt{5}$ d'où : $U_{n+1} - U_n < 0 \Longrightarrow (U_n)$ est strictement décroissante

Par suite:
$$U_{n+1} < U_n \le U_0 \Longrightarrow U_{n+1} < U_n \le 3$$
 (2)

$$(1) + (2) \implies \sqrt{5} < U_{n+1} < U_n \le 3$$

b) (U_n) est décroissante et minorée par $\sqrt{5}$, elle est donc convergente. Soit $\ell = \lim_{n \to +\infty} U_n$

$$\sqrt{5} < U_n \le 3 \implies \ell \in [\sqrt{5},3]$$

 $U_{n+1} = f(U_n)$; f est continue sur $[\sqrt{5},3]$ d'où : $\ell = f(\ell)$

$$\Leftrightarrow \frac{1}{2} \left(\ell + \frac{5}{\ell} \right) = \ell \Leftrightarrow \ell + \frac{5}{\ell} = 2 \ell \Leftrightarrow \ell = \frac{5}{\ell} \Leftrightarrow \ell^2 = 5 \Leftrightarrow \ell = \sqrt{5}$$

Comme $\ell \ge \sqrt{5}$; conclusion: $\lim_{n \to +\infty} U_n = \sqrt{5}$

EXERCICE№20

1)
$$\begin{cases} U_n = \frac{2}{n} \\ V_n = -\frac{3}{n} \end{cases} \quad n \ge 2$$

$$n \le n + 1 \Longrightarrow \frac{1}{n} \ge \frac{1}{n+1} \quad \text{d'où} : \frac{2}{n} \ge \frac{2}{n+1} \quad \text{et } -\frac{3}{n} \le -\frac{3}{n+1}$$

$$\Longrightarrow U_n \ge U_{n+1} \quad \text{et} \quad V_n \le V_{n+1}$$

 (U_n) est décroissante et (\mathcal{V}_n) est croissante

Et on a : $V_n \le U_n$ et $\lim_{n \to +\infty} U_n - V_n = 0$

conclusion: (U_n) et (V_n) sont adjacentes.

2))
$$\begin{cases} U_n = \frac{n+2}{n-1} \\ V_n = \frac{2n+3}{2n+5} \end{cases} \quad (n \ge 4)$$

$$U_n - V_n = \frac{8n+13}{(2n+5)(n-1)} \ge 0$$
 d'où : $V_n \le U_n$

 (U_n) est décroissante et (V_n) est croissante

$$\lim_{n \to +\infty} (\mathsf{U}_n - \mathcal{V}_n) = 0$$

conclusion: (U_n) et (V_n) sont adjacentes.

3)
$$U_n \ge 0$$
 et $(\mathcal{V}_n) \le 0$ d'où : $\mathcal{V}_n \le U_n$

$$U_{n+1} - U_n = \frac{\sqrt{n} - \sqrt{n+2}}{(\sqrt{n+2} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n})} \le 0$$
 d'où (U_n) est décroissante.

$$\mathcal{V}_n = -U_n \Longrightarrow (\mathcal{V}_n)$$
 est croissante

$$\lim_{n \to +\infty} (\mathbf{U}_n - \mathcal{V}_n) = \lim_{n \to +\infty} 2\mathbf{U}_n = \lim_{n \to +\infty} \frac{2}{\sqrt{n+1} + \sqrt{n}} = 0$$

conclusion: (U_n) et (V_n) sont adjacentes.

EXERCICENº21

1) soit $W_n = U_n - V_n$

$$W_{n+1} = U_{n+1} - V_{n+1} = \frac{U_n + 2V_n}{3} - \frac{U_n + 3V_n}{4} = \frac{U_n - V_n}{12} = \frac{1}{12} W_n$$

D'où (W_n) est une suite géométrique de raison $\frac{1}{12}$ et de premier terme $W_0 = 11$

2)
$$U_n - V_n = W_n = W_0 \cdot q^n \implies U_n - V_n = 11 \times \left(\frac{1}{12}\right)^n \implies U_n - V_n \ge 0$$

Par suite : $U_n \ge \mathcal{V}_n$

3)*
$$U_{n+1} - U_n = \frac{U_n + 2V_n}{3} - U_n = \frac{2(V_n - U_n)}{3} = \frac{2}{3} W_n \le 0$$
 d'où : (U_n) est décroissante

*
$$\mathcal{V}_{n+1} - \mathcal{V}_n = \frac{1}{4} W_n \ge 0$$
 d'où : (\mathcal{V}_n) est croissante

$$* \lim_{n \to +\infty} (U_n - \mathcal{V}_n) = \lim_{n \to +\infty} W_n = \lim_{n \to +\infty} 11 \times \left(\frac{1}{12}\right)^n = 0$$

* on sait que : $U_n \ge \mathcal{V}_n$;

conclusion: (U_n) et (V_n) sont adjacentes

par suite elles convergent vers une même limite α

4)
$$t_n = 3U_n + 8V_n$$

a)
$$t_{n+1} = 3U_{n+1} + 8V_{n+1} = (U_n + 2V_n) + 2(U_n + 3V_n)$$

= $3U_{n+1} + 8V_{n+1} = t_n$ d'où : (t_n) est constante.

b)
$$t_0 = 3U_0 + 8V_0$$

$$t_0 = 44$$
 d'où : $t_n = 44$, \forall n \in IN

$$\Rightarrow 3U_n + 8V_n = 44 \Rightarrow \lim_{n \to +\infty} (3U_n + 8V_n) = 44 \Rightarrow 11\alpha = 44$$

$$\Rightarrow \alpha = \frac{44}{11} = 4$$

0<b<a

1) a)
$$\left(\frac{a+b}{2}\right)^2 = \frac{1}{4}(a^2 + b^2 + 2ab)$$
 $\Rightarrow \left(\frac{a+b}{2}\right)^2 - (\sqrt{ab})^2 = \frac{1}{4}(a^2 + b^2 - 2ab)$ $= \frac{1}{4}(a-b)^2 \ge 0$

d'où
$$(\frac{a+b}{2})^2 \ge (\sqrt{ab})^2$$
 et par suite $\sqrt{ab} \le \frac{a+b}{2}$
b) $(a-b)^2 - (a^2 - b^2) = a^2 + b^2 - 2ab - a^2 + b^2 = 2b^2 - 2ab$

$$(a-b)^{-} - (a^{-} - b^{-}) = a + b^{-} - 2ab - a + b^{-} = 2b - 2ab$$
$$= 2b \cdot (b-a) \le 0 \quad (\text{car } 0 < b < a)$$

d'où
$$(a-b)^2 \le a^2 - b^2$$

2)
$$\begin{cases} a_0 = a \\ a_{n+1} = \frac{a_n + b_n}{2} \end{cases}, \begin{cases} b_0 = b \\ b_{n+1} = \sqrt{a_n b_n} \end{cases}$$

a) * pour n=0
$$b_0 = b \le a_0 = a$$

* supposons que :
$$b_n \le a_n$$
 et montrons que : $b_{n+1} \le a_{n+1}$

$$b_{n+1} \le a_{n+1}$$
 d'après 1) a) conclusion : $b_n \le a_n$; $\forall n \in \mathbb{N}$

b)*
$$a_{n+1} - a_n = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} \le 0$$
 d'où (a_n) est décroissante

*
$$b_{n+1} - b_n = \sqrt{a_n b_n} - b_n = \sqrt{b_n} \left[\sqrt{a_n} - \sqrt{b_n} \right] \ge 0 \quad \text{car } \sqrt{a_n} \ge \sqrt{b_n}$$

d'où (b_n) est croissante

3) a) d'après 1) b):
$$(a_{n+1} - b_{n+1})^2 \le a_{n+1}^2 - b_{n+1}^2 \Rightarrow (a_{n+1} - b_{n+1})^2 \le \frac{(a_n + b_n)^2}{4} - a_n b_n$$

$$\Rightarrow (a_{n+1} - b_{n+1})^2 \le \frac{a_n^2 + b_n^2 + 2a_n b_n}{4} - a_n b_n$$

$$\Rightarrow (a_{n+1} - b_{n+1})^2 \le \frac{a_n^2 + b_n^2 - 2a_n b_n}{4}$$

$$\Rightarrow (\mathbf{a}_{n+1} - b_{n+1})^2 \le (\frac{a_n - b_n}{2})^2$$

b) * pour n=0
$$a_0 - b_0 = a - b \le \frac{a - b}{2^0}$$
 (vrai)
* supposons que : $a_n - b_n \le \frac{a - b}{2^n}$ et montrons que : $a_{n+1} - b_{n+1} \le \frac{a - b}{2^{n+1}}$
on a : $a_{n+1} - b_{n+1} \le \frac{a_n - b_n}{2}$ or $a_n - b_n \le \frac{a - b}{2^n}$ d'où $a_{n+1} - b_{n+1} \le \frac{a - b}{2^{n+1}}$
conclusion : $a_n - b_n \le \frac{a - b}{2^n}$ $\forall n \in \mathbb{N}$

*
$$b_n \le a_n$$
; $\forall n \in \mathbb{N}$

4) * (b_n) est croissante et (a_n) décroissante

*
$$0 \le a_n - b_n \le (\frac{1}{2})^n . (a - b)$$
 or $\lim_{n \to +\infty} (\frac{1}{2})^n . (a - b) = 0$ d'où $\lim_{n \to +\infty} (a_n - b_n) = 0$

d'où (a_n) et (b_n) sont adjacentes par suite, elles convergent vers la meme limite α

5) (a_n) est décroissante $\Rightarrow a_n \le a_0 \Rightarrow a_n \le a$; $\forall n \in \mathbb{N}$ on $a: b_n \le a_n$ d'où $b_n \le a$

$$(b_n)$$
 est croissante et majorée par a \Rightarrow alors $b_n \leq \alpha$; $\forall n \in \mathbb{N}$ et (b_n) converge vers α

 $\text{de meme}: a_{n} \geq \alpha \;\; ; \; \forall n \in \mathbb{N} \quad \text{d'où} \quad b_{n} \leq \alpha \leq a_{n} \quad \; ; \forall n \in \mathbb{N}$

$$a_n - b_n \le \frac{a - b}{2^n} \implies 0 \le a_n - \alpha \le \frac{a - b}{2^n}$$

pour a=2 et b=1 $0 \le a_n - \alpha \le \frac{1}{2^n}$

$$\frac{1}{2^n} \le 10^{-10} \iff 2^n \ge 10^{10}$$

on a: $2^{40} \ge 10^{10} \leftarrow (calculatrice)$ d'où $\alpha = a_{40}$ (à calculer)

QCM

- 1. $f(x)=\sin(\pi x^2) \Rightarrow f'(x)=2\pi x.\cos(\pi x^2)$
- 2. a/ f(-2)<f(-1) b/ y= $-\frac{1}{2}x$

- 3. $f([1,+\infty[=[-1,+\infty[$
- 4. x = 2
- 5. (ζ_f) admet deux tangentes horizontales

VRAI - FAUX:

- 1. (VRAI) f est continue sur [-1,2] et dérivable sur]-1,2[alors d'après le théorème des accroissement fini il existe au moins un réel $c \in]-1,2[$ tel que $f(2)-f(-1)=f'(c)(2-(-1)) \Leftrightarrow f'(c)=-1$
- 2. (FAUX)

Contre exemple : $f(x) = \sqrt{x}$ et g(x) = x $h(x) = (f.g)(x) = x\sqrt{x}$

h est dérivable en 0 mais f n'est pas dérivable à droite en 0

- 3. (VRAI) $f'(x) = 3x^2 - 6x + 2$ $\Delta' = 3 > 0$ alors l'équation f'(x) = 0 admet deux solutions distinctes (Rq :on pourra utiliser le th acc fini)
- 4. (VRAI) f est dérivable sur [2,5] et $|f'(t)| \le 2 \ \forall t \in [2,5]$ alors d'après le th des inégalités des Accroissement finis :

$$|f(5) - f(2)| \le 2 \times (5 - 2) \Rightarrow |f(5) - f(2)| \le 6$$

EXERCICENº1

1)
$$f(x) = \frac{x+1}{x-1}$$
; $a = 2$

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{\frac{x + 1}{x - 1} - 3}{x - 2} = \lim_{x \to 2} \frac{-2(x - 2)}{(x - 1)(x - 2)} = \lim_{x \to 2} \frac{-2}{(x - 1)} = -2$$

D'où f est dérivable en 2 et f'(2) = -2

(T):
$$y = f'(2).(x - 2) + f(2)$$

$$(T): y = -2x + 7$$

2)
$$f(x) = \frac{1}{4} x^4 + \frac{1}{2} x^3 - x$$
; $a = 0$

Comme étant fonction polynôme, f est dérivable sur IR et

$$f'(x) = x^3 + \frac{3}{2}x^2 - 1$$
; $f''(0) = -1$

(T):
$$y = f'(0).(x - 0) + f(0)$$

$$(T): y = -x$$

3)
$$f(x) = \sqrt{x^2 - 4}$$
 ; $a = -3$

$$\lim_{x \to -3} \frac{f(x) - f(-3)}{x + 3} = \lim_{x \to -3} \frac{\sqrt{x^2 - 4} - \sqrt{5}}{x + 3} = \lim_{x \to -3} \frac{x^2 - 9}{(x + 3)(\sqrt{x^2 - 4} + \sqrt{5})}$$

$$= \lim_{x \to -3} \frac{(x-3)}{(\sqrt{x^2-4}+\sqrt{5})} = \frac{-3}{\sqrt{5}}$$
 d'où f est dérivable en (-3) et f'(-3) = $\frac{-3}{\sqrt{5}}$

(T):
$$y = \frac{-3}{\sqrt{5}} \cdot (x+3) + \sqrt{5}$$

(T):
$$y = \frac{-3}{\sqrt{5}} \cdot (x + \frac{4}{3})$$

4)
$$f(x) = \sqrt{|2x+1|}$$
 ; $a = -1$

Pour
$$x \in]-\infty$$
, $-\frac{1}{2}$]; $f(x) = \sqrt{-2x-1}$

$$\lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1} \frac{\sqrt{-2x - 1} - 1}{x + 1} = \lim_{x \to -1} \frac{-2(x + 1)}{(x + 1)(\sqrt{-2x - 1} + 1)}$$

$$=\lim_{x \to -1} \frac{-2}{(\sqrt{-2x-1}+1)} = -1$$
 d'où f est dérivable en (-1) et f'(-1) = -1

(T):
$$y = -1(x + 3) + 1$$

$$(T): y = -x$$

1) soit
$$f(x) = \sqrt{x+1}$$
, f est dérivable sur]-1, $+\infty$ [et $f'(x) = \frac{1}{2\sqrt{x+1}}$

$$\lim_{x \to 1} \frac{\sqrt{x+1} - \sqrt{2}}{x-1} = \lim_{x \to 1} \frac{f(x) - f(1)}{x-1} = f''(1) = \frac{1}{2\sqrt{2}}$$

2) soit
$$f(x) = x - \sqrt{x-2}$$
, f est dérivable sur]2, $+\infty$ [et f'(x) = $1 - \frac{1}{2\sqrt{x-2}}$

$$\lim_{x \to 3} \frac{x - \sqrt{x - 2} - 2}{x - 3} = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = f'(3) = \frac{1}{2}$$

3) soit
$$f(x) = (x + 1)^{195}$$

f est dérivable sur IR et $f'(x) = 195(x + 1)^{194}$

$$\lim_{x \to 0} \frac{(x+1)^{195}-1}{x-0} = \lim_{x \to 0} \frac{f(x)-f(0)}{x-0} = f'(0) = 195$$

4) soit
$$f(x) = x^5 + x^4 + x^3 + x^2$$

$$f'(x) = 5x^4 + 4x^3 + 3x^2 + 2x$$

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1) = 14$$

EXERCICE№3

$$f(x) = |x^2 - 4|$$

1)-a) *
$$\lim_{x \to 2^{-}} \frac{f(x)-f(2)}{x-2} = \lim_{x \to 2^{-}} \frac{|x^2-4|}{x-2} = \lim_{x \to 2^{-}} \frac{-(x^2-4)}{x-2} = \lim_{x \to 2^{-}} [-(x+2)]$$

= $-4 = f'_{g}(2)$

*
$$\lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^+} \frac{|x^2 - 4|}{x - 2} = \lim_{x \to 2^+} \frac{(x^2 - 4)}{x - 2} = \lim_{x \to 2^+} (x + 2) = 4 = f'_d(2)$$

 $f'_g(2) \neq f'_d(2)$ d'où f n'est pas dérivable en 2

b)
$$\lim_{x \to (-2)^{-}} \frac{f(x) - f(-2)}{x + 2} = \lim_{x \to (-2)^{-}} \frac{|x^2 - 4|}{x + 2} = \lim_{x \to (-2)^{-}} \frac{(x^2 - 4)}{x + 2}$$

$$= \lim_{x \to (-2)^{-}} (x - 2) = -4 = f'_g(-2)$$

*
$$\lim_{x \to (-2)^+} \frac{f(x) - f(-2)}{x + 2} = \lim_{x \to (-2)^+} \frac{|x^2 - 4|}{x + 2} = \lim_{x \to (-2)^+} \frac{-(x^2 - 4)}{x + 2}$$

$$= \lim_{x \to (-2)^{+}} [-(x - 2)] = 4 = f'_{d}(-2)$$

$$f'_g(-2) \neq f'_d(-2)$$
 d'où f n'est pas dérivable en (-2)

2)

EXERCICE№4

Soit
$$f(x) = \frac{1}{x^2} \rightarrow f'(x) = \frac{-2}{x^3}$$
 f est dérivable en 1et f'(1)=-2

f(1)+f'(1).h est une approximation de f(1+h) Donc

1-2h est une approximation $de \frac{1}{(1+h)^2}$

$$\frac{1}{(1,0000000002)^2} = \frac{1}{(1+2.10^{-10})}$$

* même travail pour h=-2.10⁻¹⁰ donne

1,0000000004 est une approximation de $\frac{1}{(0,9999999998)^2}$

EXERCICENº5

1. $f(x)=3x^{10}-\frac{5}{4}x^8+3x-10$ f est une fonction polynôme; elle est donc dérivable sur IR et f'(x)=30x⁹-10x⁷+3

- 2. $f(x)=(1-x-3x^3)(x^2+2x)^3$ f est une fonction polynôme; elle est donc dérivable sur IR et f'(x)= $(-1-9x^2)(x^2+2x)^3+3(2x+2)(x^2+2x)^2(1-x-3x^3)$
- 3. $f(x) = \frac{x^2}{1-x}$ Comme étant fonction rationnel f est dérivable sur $D_f = IR \setminus \{1\}$ et en particulier sur $[1,+\infty[$ et $f'(x) = \frac{2x(1-x)+x^2}{(1-x)^2} = \frac{2x-x^2}{(1-x)^2}$
- 4. $f(x) = \frac{(x+1)^3}{x^2}$ Comme étant fonction rationnel f est dérivable sur $D_f = IR^*$ et en particulier sur $[1,+\infty[$
- $f'(x) = 1 \frac{3}{x^2} \frac{2}{x^3} = \frac{x^3 3x 2}{x^3}$
- 5. les fonctions $x \mapsto \cos(3x)$ et $x \mapsto \sin(2x)$ sont dérivables sur IR d'où f est dérivable sur IR et $f'(x) = -3\sin(3x) 2\cos(2x)$
- 6. $f(x) = \frac{\sin x}{1 \cos x}$ La fonction $x \mapsto 1 \cos x$ est dérivable et ne s'annule pas sur $[0, \pi[$ donc f est dérivable sur $[0, \pi[$ comme étant le quotient de deux fonctions dérivables et f'(x) = $\frac{-1}{1 \cos x}$
- 7. $f(x)=(1+\sin(2x))^3$ f est dérivable sur IR comme étant la puissance d'une fonction dérivable et f'(x)= 6 cos (2x).[1+sin (2x)]²
- 8. $f(x)=\tan^2(\frac{\pi}{2}x)$ la fonction $u: x \mapsto \frac{\pi}{2}x$ est dérivable sur [0,1[et $u([0,1[)=[0,\frac{\pi}{2}[$ et comme la fonction tangente est dérivable sur $[0,\frac{\pi}{2}[$ Alors f est dérivable sur [0,1[comme étant la composé de deux fonctions dérivables et $f'(x)=2.tg(\frac{\pi}{2}x).[\frac{\pi}{2}.(1+\tan^2(\frac{\pi}{2}x))] = \pi.tg(\frac{\pi}{2}x).[1+\tan^2(\frac{\pi}{2}x)]$
- 9. $f(x) = \sqrt{\frac{x-1}{x+1}}$ la fonction $x \mapsto \frac{x-1}{x+1}$ est dérivable et strictement positive sur $]1,+\infty[$ donc f est dérivable sur $]1,+\infty[$ et f'(x)= $\frac{1}{(x+1).\sqrt{x^2-1}}$
- 10. $x \mapsto \sqrt{x} 2$ est dérivable sur \mathbb{R}_{+}^{*} $x \mapsto \sqrt{x} + 2$ est dérivable et ne s'annule pas sur \mathbb{R}_{+}^{*}
- donc f est dérivable sur \mathbb{R}_+^* comme étant le quotient de deux fonctions dérivables et

$$f'(x) = \frac{\frac{1}{2\sqrt{x}}(\sqrt{x}+2) - \frac{1}{2\sqrt{x}}(\sqrt{x}-2)}{(\sqrt{x}+2)^2}$$
$$f'(x) = \frac{2}{\sqrt{x}(\sqrt{x}+2)^2}$$

$$f(x) = x^3 - 3x$$
 $g(x) = x - \frac{4}{x}$

1)
$$M(x,y) \in (\mathcal{C}) \cap (\mathcal{C}') \Leftrightarrow \begin{cases} y = x^3 - 3x \\ y = x - \frac{4}{x} \end{cases} \Leftrightarrow \begin{cases} x^3 - 3x = x - \frac{4}{x} \\ y = x^3 - 3x \end{cases}$$

$$\Leftrightarrow \begin{cases} x^3 - 4x + \frac{4}{x} = 0 \\ y = x^3 - 3x \end{cases} \Leftrightarrow \begin{cases} x^4 - 4x^2 + 4 = 0 \\ y = x^3 - 3x \end{cases} \Leftrightarrow \begin{cases} (x^2 - 2)^2 = 0 \\ y = x^3 - 3x \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 = 2 \\ y = x^3 - 3x \end{cases} \Leftrightarrow \begin{cases} x = -\sqrt{2} \\ y = \sqrt{2} \end{cases} \text{ ou } \begin{cases} x = \sqrt{2} \\ y = -\sqrt{2} \end{cases}$$

D'où :
$$(\mathcal{C}) \cap (\mathcal{C}') = \{A(-\sqrt{2}, \sqrt{2}), B(\sqrt{2}, -\sqrt{2})\}$$

2) * f'(x) =
$$3x^2 - 3$$

g'(x) = $1 + \frac{4}{x^2}$

*
$$f'(-\sqrt{2}) = g'(-\sqrt{2}) = 3$$

d'où :
$$(C)$$
 et (C') admettent la même tangente (T_A) en A

$$(T_A): y = 3(x + \sqrt{2}) + \sqrt{2}$$

$$(T_A): y = 3x + 4\sqrt{2}$$

*
$$f'(\sqrt{2}) = g'(\sqrt{2}) = 3$$

$$(T_B): y = 3(x - \sqrt{2}) - \sqrt{2}$$

$(T_B): y = 3x - 4\sqrt{2}$

EXERCICE№7

- 1) continuité en (-1)f(-1) = 0
- * $\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} \sqrt{-x 1} = 0 = f(-1)$
- * $\lim_{x \to (-1)^+} f(x) = \lim_{x \to (-1)^+} (x^2 1) = 0 = f(-1)$

f est continue à droite et à gauche en (-1), d'où : f est continue en (-1)

continuité en 1

$$f(1) = 0$$

*
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} - 1) = 0 = f(1)$$

*
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 2 \sin(x - 1) = 0 = f(1)$$

f est continue à droite et à gauche en 1, d'où: f est continue en 1

2) dérivabilité en (-1)

*
$$\lim_{x \to (-1)^{-}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to (-1)^{-}} \frac{\sqrt{-x - 1}}{x + 1} = \lim_{x \to (-1)^{-}} \frac{-(x + 1)}{(x + 1)\sqrt{-x - 1}}$$

= $\lim_{x \to (-1)^{-}} \frac{\frac{-1}{\sqrt{-x - 1}}}{\sqrt{-x - 1}} = -\infty$; f n'est pas dérivable en (-1)

dérivabilité en 1

*
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^{-}} (x + 1) = 2 = f'_g(1)$$

*
$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{2 \sin(x - 1)}{x - 1}$$
; on pose: $X = x - 1$

$$\lim_{X \to 0^+} \frac{2 \sin X}{X} = 2 = f'_d(1)$$

f est dérivable à droite et à gauche en 1 et $f'_g(1) = f'_d(1) = 2$, d'où : f est dérivable en 1 et f'(1) = 2

3) * la fonction $x \mapsto -x - 1$ est dérivable et strictement positive sur]- ∞ ,-1[D'où : f est dérivable sur]- ∞ ,-1[

* la fonction $x \mapsto x^2 - 1$ est dérivable sur IR , en particulier sur]-1,1[

* la fonction $x \mapsto x^2 - 1$ est derivable sur IR, en particulier sur]-1,1[d'où : f est dérivable sur]-1,1[

* la fonction $x \mapsto 2 \sin(x - 1)$ est dérivable sur IR, en particulier sur] 1,+ ∞ [, d'où : f est dérivable sur] 1,+ ∞ [.

EXERCICE№8

1)
$$f(x) = x^5 - 2x^3 + 3x + 4$$

$$f'(x) = 5x^4 - 6x^2 + 3$$

$$f''(x) = 3x^3 - 12x$$

$$f^{(3)}(x) = 60x^2 - 12$$

$$f^{(4)}(x) = 120x$$

$$f^{(5)}(x) = 120$$

$$f^{(n)}(x) = 0 \text{ pour } n \ge 6$$

2) $f(x) = \cos x + \sin x$

* on pose :
$$g(x) = \sin x$$
 ; $g'(x) = \cos x$; $g''(x) = -\sin x$
 $g^{(3)}(x) = -\cos x$; $g^{(4)}(x) = \sin x$

On pourra remarquer que : $g^{(2n)}(x) = (-1)^n \cdot \sin x$, pour $n \ge 1$

Montrons ce résultat par récurrence :

* pour
$$n = 1$$

 $g^{(2)}(x) = g''(x) = -\sin x = (-1)^{1} \cdot \sin x$ (vraint)

* supposons que:
$$g^{(2n)}(x) = (-1)^n \cdot \sin x$$

et montrons que : $g^{(2n+2)}(x) = (-1)^{n+1}$. sin x

$$g^{(2n)}(x) = (-1)^n \cdot \sin x \implies g^{(2n+1)}(x) = (-1)^n \cos x$$

$$\Rightarrow$$
 $g^{(2n+2)}(x) = -(-1)^n \sin x \Rightarrow g^{(2n+2)}(x) = (-1)^{n+1} \sin x$

Conclusion:

$$g^{(2n)}(x) = (-1)^n \cdot \sin x$$
, par suite $g^{(2n+1)}(x) = (-1)^n \cos x$.

De même on pose : $h(x) = \cos x$

$$h^{(2n)}(x) = (-1)^n \cos x$$

$$h^{(2n+1)}(x) = (-1)^{n+1} \sin x$$

Conclusion:

$$f^{(2n)}(x) = (-1)^n \cdot [\cos x + \sin x]$$
, $f^{(2n+1)}(x) = (-1)^n [\cos x - \sin x]$

3)
$$f(x) = \sin 2x$$

$$f^{(2n)}(x) = (-1)^n \cdot 2^{2n} \sin 2x$$
 , $f^{(2n+1)}(x) = (-1)^n \cdot 2^{2n+1} \cos 2x$

(récurrence)

4)
$$f(x) = \frac{1}{x-1} + \frac{1}{x+1}$$

$$f'(x) = -\left[\frac{1}{(x-1)^2} + \frac{1}{(x+1)^2}\right]$$

$$f''(x) = 2\left[\frac{1}{(x-1)^3} + \frac{1}{(x+1)^3}\right]$$

$$f^{(3)}(x) = -6\left[\frac{1}{(x-1)^4} + \frac{1}{(x+1)^4}\right]$$

$$f^{(4)}(x) = 24 \left[\frac{1}{(x-1)^5} + \frac{1}{(x+1)^5} \right]$$

Remarquons que pour $n \ge 1$: $f^{(n)}(x) = (-1)^n (n!) \left[\frac{1}{(x-1)^{n+1}} + \frac{1}{(x+1)^{n+1}} \right]$

(DEMONSTRATION PAR RECURRENCE)

EXERCICEN99

1. La fonction : $x \mapsto \sin x$ est dérivable et strictement positive sur $]0, \frac{\pi}{2}]$ d'où

f est dérivable sur
$$]0, \frac{\pi}{2}]$$
 et f'(x)= $\frac{\cos x}{2\sqrt{\sin x}}$

- 2. La fonction : $x \mapsto \frac{\pi}{x}$ est dérivable sur $[1,+\infty[$ et comme la fonction sinus est dérivable sur IR Alors f est dérivable sur $[1,+\infty[$ et f'(x)= $\frac{-\pi}{r^2}\cos(\frac{\pi}{r})$
- 3. f(x) = tg(sin(x))

La fonction sinus est dérivable sur IR et $\forall x \in IR$; $\sin(x) \in [-1,1]$; comme

la fonction tangente est dérivable sur [-1,1]Alors f est dérivable sur IR et

$$f'(x) = \cos(x) \cdot [1 + tg^2(\sin(x))]$$

EXERCICE№10

$$f(x) = \frac{x^2 - 3x + 6}{x - 1}$$
1) $f'(x) = \frac{x^2 - 2x - 3}{(x - 1)^2}$

$$f'(x) = -3 \Leftrightarrow -3(x - 1)^2 = x^2 - 2x - 3$$

$$\Leftrightarrow -3(x^2 - 2x + 1) = x^2 - 2x - 3 \Leftrightarrow 4x^2 - 8x = 0$$

$$\Leftrightarrow 4x(x - 2) = 0 \Leftrightarrow x = 0 \text{ ou } x = 2$$

Conclusion:

Les tangentes à (C_f) respectivement aux points d'abscisses : 0 et 2 sont parallèles à la droite d'équation : y = -3x

2) A(0,-6) et B(2,4)
$$\begin{cases} (T_A): y = -3x - 6 \\ (T_B): y = -3x + 10 \end{cases}$$

EXERCICEM11

$$f(x) = x^3 - 3x + 2$$
; A(1,0) et B(2,4)

$$f'(x) = \frac{y_B - y_A}{x_B - x_A} \iff 3x^2 - 3 = 4 \iff x^2 = \frac{7}{3} \iff x = \sqrt{\frac{7}{3}} \quad \text{car } x \in [1, 2]$$

Conclusion:

La tangente à (C_f) au point M_0 $(\sqrt{\frac{7}{3}}, f(\sqrt{\frac{7}{3}}))$ est parallèle à la droite (AB)

EXERCICENº12

$$f(x) = (x - 1)(x - 2)(x - 3)(x - 4)$$

* f est continue sur [1,2] et dérivable sur]1,2[et on a : f(1) = f(2)

D'après le théorème de ROLLE il existe un réel $\alpha_1 \in]1,2[$ tel que $f'(\alpha_1) = 0$

De même il existe un réel $\alpha_2 \in]2,3[$ tel que $f'(\alpha_2) = 0$

Et il existe un réel $\alpha_3 \in]3,4[$ tel que $f'(\alpha_3) = 0$

Conclusion:

 α_1 , α_2 et α_3 sont trois zéros distinctes de f'.

 $f(x) = \tan x$

1)
$$f'(x) = 1 + \tan^2 x > 0$$

$$0 \le x \le \frac{\pi}{4} \implies \tan 0 \le \tan x \le \tan \left(\frac{\pi}{4}\right)$$
 car la fonction tan est croissante sur $\left[0, \frac{\pi}{4}\right]$

$$\Rightarrow 0 \le \tan x \le 1 \Rightarrow 0 \le \tan^2 x \le 1 \Rightarrow 1 \le 1 + \tan^2 x \le 2$$

$$\Rightarrow 1 \le f'(x) \le 2 \text{ pour } x \in [0, \frac{\pi}{a}]$$

2) pour
$$t \in [0, x]$$
: $1 \le f'(x) \le 2$

D'après le théorème des inégalités des accroissements finis.

$$1(x-0) \le f(x) - f(0) \le 2(x-0)$$

$$\implies x \le \tan x \le 2x$$

EXERCICE № 14

Soit $f(t) = \sqrt{1+t}$

f est dérivable sur $[0,+\infty[$ et $f'(t) = \frac{1}{2\sqrt{1+t}}$

$$0 \le f'(x) \le \frac{1}{2} \text{ pour } t \in [0, x] \text{ d'où}: 0 \le f(x) - f(0) \le \frac{1}{2}x$$

Par suite :
$$0 \le \sqrt{1+x} - 1 \le \frac{1}{2}x$$

2) d'après la
$$1^{\underline{\text{ère}}}$$
) question : $0 \le \sqrt{1+u} - 1 \le \frac{1}{2}u$ pour $u \ge 0$

Pour
$$u = \frac{1}{x^2}$$
 on aura : $0 \le \sqrt{1 + \frac{1}{x^2}} - 1 \le \frac{1}{2x^2}$

$$\implies 1 \le \frac{1}{x} \sqrt{1 + x^2} - 1 \le 1 + \frac{1}{2x^2} \implies x \le \sqrt{1 + x^2} - 1 \le x + \frac{1}{2x} \text{ car } x > 0$$

EXERCICE№15

a) soit
$$f(t) = \sin t$$
; f est dérivable sur IR et $f'(t) = \cos t$

$$|f'(t)| \le 1$$
 d'où : $|f(x) - f(0)| \le 1|x - 0|$

$$\Rightarrow |f(x)| \le |x| \Rightarrow |\sin x| \le |x|$$

b) soit
$$f(t) = \tan t$$
; f est dérivable sur $[0, \frac{\pi}{2}]$ et $f'(t) = 1 + \tan^2 t \ge 1$

pour tout
$$t \in [0, x]$$
 d'où : $f(x) - f(0) \ge 1(x - 0) \Longrightarrow \tan x \ge x$

c) soit
$$f(t) = \cos t$$
; f est dérivable sur $[0, +\infty[$ et $f'(t) = -\sin t$

pour
$$t \in [0, x]$$
: $-1 \le f'(x) \le 1$ d'où: $-x \le f(x) - f(0) \le x$

$$\Rightarrow -x \le \cos x - 1 \le x \Rightarrow 1 - x \le \cos x \le x + 1$$

EXERCICE№16

$$f(x) = (x-1)\sqrt{1-x}$$

1)
$$D_f =]-\infty,1]$$

2)
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \sqrt{1 - x} = 0$$

f est dérivable à gauche en 1 et $f'_g(1) = 0$

interprétation graphique:

 (\mathcal{C}_f) admet une demi-tangente horizontale au point d'abscisse 1.

3) f est dérivable sur]-\infty,1 [et f'(x) =
$$\sqrt{1-x}$$
 + $(x-1)$. $(\frac{-1}{2\sqrt{1-x}})$

$$f'(x) = \sqrt{1-x} + (\frac{\sqrt{1-x}}{2}) = \frac{3}{2}\sqrt{1-x} \ge 0$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

x	-∞	1
f'(x)	+	
f(x)		→ 0

EXERCICE№17

$$f(x) = \frac{1}{\sqrt{x+1}}$$

1) la fonction $x \mapsto x + 1$ est dérivable et strictement positive sur IR $_+$

D'où f est dérivable sur IR +

$$f'(x) = \frac{-1}{2(\sqrt{x+1})^3}$$
 et $|f'(x)| = \frac{1}{2(\sqrt{x+1})^3}$

$$x \ge 0 \implies x + 1 \ge 1 \implies \sqrt{x + 1} \ge 1 \implies (\sqrt{x + 1})^3 \ge 1$$

$$\Rightarrow 2(\sqrt{x+1})^3 \ge 2 \Rightarrow \frac{1}{2(\sqrt{x+1})^3} \le \frac{1}{2} \text{ d'où}: |f'(x)| \le \frac{1}{2}$$

2) f est dérivable sur $[0,+\infty [$ et $|f'(t)| \le \frac{1}{2}$ pour tout $t \in \mathbb{R}_+$

D'après le théorème des inégalités des accroissements finis

$$|f(x) - f(0)| \le \frac{1}{2}|x - 0| \implies |f(x) - 1| \le \frac{1}{2}x$$

$$\Rightarrow -\frac{1}{2}x \le f(x) - 1 \le \frac{1}{2}x \Rightarrow 1 - \frac{1}{2}x \le f(x) \le \frac{1}{2}x + 1$$

D'où:
$$1 - \frac{x}{2} \le \frac{1}{\sqrt{1+x}} \le \frac{x}{2} + 1$$

3)
$$1 - \frac{10^{-11}}{2} \le \frac{1}{\sqrt{1 + 10^{-11}}} \le \frac{10^{-11}}{2} + 1$$

EXERCICENº18

$$f(x) = x^3 - x$$

1) f est dérivable sur IR et f'(x) = $3x^2 - 1$

x	-∞	$\frac{-1}{\sqrt{3}}$		$\frac{1}{\sqrt{3}}$		+∞
f'(x)	+	þ	-	0	+	
f(x)		$\frac{2}{3\sqrt{3}}$		<u>-2</u> 3√3		+8

$$(2) - a)$$

$$\underbrace{0,577350268}_{b} < \underbrace{0,577350269}_{a}$$

a, b $\in [\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$ f est strictement décroissante sur $[\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$

$$d'où: f(b) > f(a) \implies B > A$$

b)
$$a = 0.577350271$$
 ; $b = 0.577350272$

$$A = f(a)$$
 et $B = f(b)$

a < b et $a, b \in [\frac{1}{\sqrt{3}}, +\infty[$ f est strictement croissante sur $[\frac{1}{\sqrt{3}}, +\infty[$ d'où : $f(a) < f(b) \implies A < B$

EXERCICE№19

1)
$$f(x) = \sqrt{x+1} - \sqrt{x-1}$$

f est dérivable sur]1 , +
$$\infty$$
 [et $f'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x-1}} = \frac{\sqrt{x-1} - \sqrt{x+1}}{2\sqrt{x+1}\sqrt{x-1}}$
 $f'(x) = \frac{-2}{2\sqrt{x+1}\sqrt{x-1}(\sqrt{x-1} - \sqrt{x+1})} < 0$; $\forall x \in]1$, + ∞ [

x	1	+∞
f'(x)		_
f(x)	$\sqrt{2}$	
		0

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2}{\sqrt{x+1} + \sqrt{x-1}} = 0$$

Rq: f n'est pas dérivable à droite en 1

2)
$$g(x) = \cos x - \sin x$$
; $I = [0,\pi]$

g est dérivable sur $[0,\pi]$ et g'(x) = - $\sin x$ - $\cos x$ = - $[\cos x + \sin x]$

$$\begin{cases} g'(x) = 0 \\ x \in [0, \pi] \end{cases} \iff \begin{cases} \cos x = -\sin x \\ x \in [0, \pi] \end{cases} \iff x = \frac{3\pi}{4}$$

x	0		$\frac{3\pi}{4}$		π
g'(x)		-	þ	+	
g'(x) $g(x)$	1	*	-√2		7 -1

3) $h(x) = \cos(\sin x)$ $h'(x) = \cos x \cdot \cos'(\sin x) = -\cos x \cdot \sin(\sin x)$ le signe de h'(x) est celui de $(-\cos x)$

х	0		$\frac{\pi}{2}$		π
h'(x)		_	þ	+	
h(x)	1				1
		*	cos 1		

EXERCICEN

$$f(x) = \begin{cases} 4\sqrt{x+1} & si \ x \ge 3 \\ x^2 - 5x + c & si \ x < 3 \end{cases}$$

1) – a)
$$f(3) = 8$$

f est continue à gauche en 3 si et seulement si :
$$\lim_{x \to 3^-} (x^2 - 5x + c) = f(3)$$

 $\Leftrightarrow -6 + c = 8 \iff c = 14 \text{ d'où} : f(x) = \begin{cases} 4\sqrt{x+1} & \text{si } x \ge 3\\ x^2 - 5x + 14 & \text{si } x < 3 \end{cases}$

b) f est dérivable sur chacun des intervalles $]-\infty,3[$ et $]3,+\infty[$

* dérivabilité en 3 :

*
$$\lim_{x \to 3^{-}} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3^{-}} \frac{x^2 - 5x + 6}{x - 3} = \lim_{x \to 3^{-}} \frac{(x - 3)(x - 2)}{x - 3} = \lim_{x \to 3^{-}} (x - 2) = 1$$

D'où : f est dérivable à gauche en 3 et $f_g'(3) = 1$

*
$$\lim_{x \to 3^{+}} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3^{+}} \frac{4\sqrt{x + 1} - 8}{x - 3} = \lim_{x \to 3^{+}} \frac{4(\sqrt{x + 1} - 2)}{x - 3}$$

= $\lim_{x \to 3^{+}} \frac{4[(x + 1) - 4]}{(x - 3)[(\sqrt{x + 1}) + 2]} = \lim_{x \to 3^{+}} \frac{4}{\sqrt{x + 1} + 2} = 1$

D'où : f est dérivable à droite en 3 et $f_d'(3) = 1 = f_g'(3)$

D'où: f est dérivable en 3;

conclusion : f est dérivable sur IR

c)
$$f'(x) = \begin{cases} \frac{2}{\sqrt{x+1}} & \text{si } x \ge 3\\ 2x - 5 & \text{si } x < 3 \end{cases}$$

2) * pour $x \in]3, +\infty[$; $f'(x) = \frac{2}{\sqrt{x+1}}$

2) * pour
$$x \in [3,+\infty[$$
; $f'(x) = \frac{2}{\sqrt{x+1}}$

* pour
$$x \in]-\infty,3[$$
; $f'(x) = 0 \Leftrightarrow x = \frac{5}{2}$

x	-∞		5 2		+∞
f'(x)		~	0	+	
f(x)	+∞ _	<u></u>	$\frac{31}{4}$		→ +∞

*
$$\lim f(x) = \lim 4\sqrt{x+1} = +\infty$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4\sqrt{x+1} = +\infty$$

* $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 = +\infty$

3) f admet $\frac{31}{4}$ comme minimum absolu en $\frac{5}{2}$

EXERCICE№21

$$f(x) = x\sqrt{1-x^2}$$

$$D_f = [-1,1]$$

2)
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x\sqrt{1 - x^{2}}}{x - 1} = \lim_{x \to 1^{-}} \frac{x(1 - x^{2})}{(x - 1)\sqrt{1 - x^{2}}} = \lim_{x \to 1^{-}} \frac{x(1 + x)(1 - x)}{(x - 1)\sqrt{1 - x^{2}}}$$
$$= \lim_{x \to 1^{-}} \frac{-x(x + 1)}{\sqrt{1 - x^{2}}} = -\infty \quad (\text{ de la forme } \frac{-2}{0^{+}})$$

f n'est pas dérivable à gauche en 1

 (\mathcal{C}_f) admet une demi-tangente verticale au point d'abscisse 1.

3) – a) pour
$$x \in D_f = [-1,1]$$
, on a $(-x) \in D_f$

$$f(-x) = -x \sqrt{1 - (-x)^2} = -x \sqrt{1 - x^2} = -f(x) \text{ d'où : f est impaire.}$$

b) f n'est pas dérivable à droite en (-1) (f est impaire)

pour
$$x \in]-1,1[$$
; $f'(x) = \sqrt{1-x^2} + x\left(\frac{-2x}{2\sqrt{1-x^2}}\right)$

$$f'(x) = \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} = \frac{1 - 2x^2}{\sqrt{1 - x^2}}$$
 le signe de $f'(x)$ est celui de $(1 - 2x^2)$

x	-1	$\frac{-1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
f'(x)	-	þ	+ Ø	_
f(x)	0	<u>→</u> -1/2	$\frac{1}{2}$	• 0

c) * f admet
$$(-\frac{1}{2})$$
 comme minimum absolue en $(-\frac{1}{\sqrt{2}})$

* f admet
$$(\frac{1}{2})$$
 comme maximum absolue en $(\frac{1}{\sqrt{2}})$

4) – a) T :
$$y = f'(0).(x - 0) + f(0)$$

(T) : y = x

b)
$$f'(x) = \frac{1-2x^2}{\sqrt{1-x^2}}$$
 ; $f''(x) = \frac{x(2x^2-3)}{(\sqrt{1-x^2})^3}$

x	-1		0	1
f''(x)		+	Ø .	-

f'' s'annule en 0 en changeant de signe d'où le point de coordonnées (0,f(0)) est un point d'inflexion pour (\mathcal{C}_f) ;

f(0) = 0, d'où O(0,0) est un point d'inflexion pour (C_f) .

EXERCICE№22

$$f(x) = x \sqrt{x} - \frac{3}{16} x^2$$
; $x \ge 0$

1) f est dérivable]0,+∞[comme étant produit et somme de fonction dérivables.

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} (\sqrt{x} - \frac{3}{16} x) = 0$$
, d'où f est dérivable à droite en 0

Par suite f est dérivable sur $[0,+\infty[$.

Pour
$$x \in]0,+\infty[$$
; $f'(x) = \sqrt{x} + x(\frac{1}{2\sqrt{x}}) - \frac{3}{8}x = \sqrt{x} + \frac{\sqrt{x}}{2} - \frac{3}{8}x$
= $\frac{3\sqrt{x}}{2} - \frac{3}{8}x = \frac{12\sqrt{x} - 3x}{8}$

Pour
$$x = 0$$
; $\frac{12\sqrt{0} + 30}{8} = 0 = f'_{d}(0)$

Conclusion: Pour
$$x \in [0,+\infty[$$
; $f'(x) = \frac{12\sqrt{x}-3x}{8}$

b)
$$f'(x) = \frac{3\sqrt{x}}{8} [4 - \sqrt{x}]$$

 $f'(x) = 0 \Leftrightarrow x = 0 \text{ ou } x = 16$

x	0		16		+∞
f'(x)		+	ø	-	
$\frac{f'(x)}{f(x)}$			→ 16 \		
	0-			*	-∞

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \sqrt{x} \left[1 - \frac{3}{16} \sqrt{x} \right] = -\infty$$

- c) l'équation f(x) = 20 n'admet pas de solution dans $[0,+\infty[$ $(f(x) \le 16, \forall x \in [0,+\infty[$)
- 2) a) f est dérivable sur]0,+ ∞ [et f'(x) = $\frac{12\sqrt{x}-3x}{8}$

f'est dérivable sur $]0,+\infty[$; $(x \mapsto \sqrt{x} \text{ est dérivable sur }]0,+\infty[)$ d'où; f est deux fois dérivable sur $]0,+\infty[$

b)
$$f''(x) = \frac{12\frac{1}{2\sqrt{x}} - 3}{8} = \frac{1}{8} \left[\frac{6}{\sqrt{x}} - 3 \right] = \frac{3}{8} \left[\frac{2}{\sqrt{x}} - 1 \right]$$
$$= \frac{3}{8} \left(\frac{2 - \sqrt{x}}{\sqrt{x}} \right) = \frac{3}{8} \left(\frac{4 - x}{\sqrt{x}(2 + \sqrt{x})} \right)$$

Le signe de f''(x) est celle de (4 - x)

x	-1		4		1	1
f''(x)		+	ф	-		

f'' s'annule en 4 en changeant de signe d'où le point I(4, f(4)) est un point d'inflexion pour (C); I(4,5).

EXERCICE№23

$$f(x) = \sqrt{x + \sqrt{x}}$$

1)
$$D_{\rm f} = [0, +\infty[$$

2)
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\sqrt{x + \sqrt{x}}}{x} = \lim_{x \to 0^+} \sqrt{\frac{x + \sqrt{x}}{x^2}} = \lim_{x \to 0^+} \sqrt{\frac{\sqrt{x} + 1}{x\sqrt{x}}} = +\infty$$

f n'est pas dérivable à droite en 0

interprétation graphique:

- (\mathcal{C}_f) admet une demi-tangente parallèle à l'axe des ordonnées au point d'abscisse 0.
- 3) a) la fonction : $x \mapsto x + \sqrt{x}$ est dérivable sur]0,+ ∞ [et strictement positive D'où : f est dérivable sur]0,+ ∞ [

$$f'(x) = \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x + \sqrt{x}}} = \frac{2\sqrt{x} + 1}{4\sqrt{x}.\sqrt{x + \sqrt{x}}}$$
b) $f'(x) > 0$; $\forall x \in]0, +\infty[$

x	0		-	+∞
f'(x)		+		
f(x)				+∞
	0 —			

EXERCICE№24

$$f(x) = \frac{1}{2} (4 + \sin x)$$

$$1) f'(x) = \frac{1}{2} \cos x$$

On a:
$$|\cos x| \le 1 \Longrightarrow |f'(x)| \le \frac{1}{2}$$

2) - a)
$$g(x) = f(x) - x$$
 ; $g'(x) = f'(x) - 1 < 0$, car $|f'(x)| \le \frac{1}{2}$

D'où: g est strictement décroissante sur IR.

b) pour tout
$$x \in IR$$
, on a: $-1 \le \sin x \le 1$

$$\Rightarrow 3 \le 4 + \sin x \le 5 \Rightarrow \frac{3}{2} \le \frac{1}{2} (4 + \sin x) \le \frac{5}{2}$$

$$\Rightarrow \frac{3}{2} \le f(x) \le \frac{5}{2} \Rightarrow \frac{3}{2} - x \le \frac{1}{2} f(x) - x \le \frac{5}{2} - x$$

$$\Rightarrow \frac{3}{2} - x \le g(x) \le \frac{5}{2} - x$$

c)
$$g(x) \le \frac{5}{2} - x$$
 et $\lim_{x \to +\infty} \left(\frac{5}{2} - x\right) = -\infty$, d'où : $\lim_{x \to +\infty} g(x) = -\infty$

*
$$g(x) \ge \frac{3}{2} - x$$
 et $\lim_{x \to -\infty} \left(\frac{3}{2} - x \right) = +\infty$, d'où: $\lim_{x \to -\infty} g(x) = +\infty$

D'où : g est continue et strictement décroissante sur IR ;

d'où : g(IR) =]
$$\lim_{x \to +\infty} g$$
, $\lim_{x \to -\infty} g$ [=]- ∞ ,+ ∞ [g(IR) = IR

d) $0 \in g(IR)$ d'où il existe un réel a tel que g(a) = 0 comme g est strictement décroissante alors a est unique.

Par suite il existe un unique réel a tel que f(a) = a

$$g(\frac{2\pi}{3}).g(\frac{5\pi}{6}) < 0 \implies \frac{2\pi}{3} < a < \frac{5\pi}{6}$$

- $3) \begin{cases} U_0 & donné \\ U_{n+1} = f(U_n) \end{cases}$
 - a) f est dérivable sur IR et $|f'(x)| \le \frac{1}{2}$

d'après le théorème des inégalités des accroissements finis :

$$|f(U_n) - f(a)| \le \frac{1}{2} |U_n - a| \text{ d'où}: |U_{n+1} - a| \le \frac{1}{2} |U_n - a|$$

b) démonstration par récurrence :

*
$$|U_0 - a| \le \left(\frac{1}{2}\right)^0 |U_0 - a|$$
 (vraie)

* supposons que : $|U_n - a| \le \left(\frac{1}{2}\right)^n |U_0 - a|$

et montrons que : $|U_{n+1} - a| \le \left(\frac{1}{2}\right)^{n+1} |U_0 - a|$

on a:
$$|U_n - a| \le \left(\frac{1}{2}\right)^n |U_0 - a|$$
 et $|U_{n+1} - a| \le \frac{1}{2} |U_n - a|$

d'où:
$$|U_{n+1} - a| \le \left(\frac{1}{2}\right)^{n+1} |U_0 - a|$$

conclusion:

$$|U_n - a| \le \left(\frac{1}{2}\right)^n |U_0 - a|$$
 pour tout $n \in IN$

c)
$$|U_n - a| \le \left(\frac{1}{2}\right)^n |U_0 - a|$$

$$\lim_{n \to +\infty} \left(\frac{1}{2}\right)^n |U_0 - a| = 0 \quad ; \quad d'où :$$

$$\lim_{n \to +\infty} (U_n - a) = 0 \implies \lim_{n \to +\infty} U_n = a.$$

QCM

1)
$$I = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

2)
$$(f^{-1})'(\frac{1}{2}) = \frac{1}{f'(\frac{\pi}{3})} = -\frac{2}{\sqrt{3}}$$

- 3) f réalise une bijection de [1,4] sur [1,4]
- 4) f est dérivable sur]0,+∞[

VRAI-FAUX:

1) (FAUX)

CONTRE EXEMPLE:
$$f(x) = 3 - \frac{4x}{x^2 + 3}$$

$$* f(1)=2$$

*
$$\lim_{x \to +\infty} f(x) = 3$$

* f est dérivable sur [1,+∞[

* f'(x)=
$$\frac{4(x^2-3)}{(x^2+1)^2}$$

$$f([1,+\infty[)=[3-\frac{2}{\sqrt{3}},3[$$

- 2) (VRAI)
 - * f(x)=ax+b ; $a \neq 0$

f'(x)=a

• si a>0; f continue et strictement croissante

f est une bijection de \mathbb{R} sur \mathbb{R}

• si a<0; f est continue et strictement décroissante

f: bijection de \mathbb{R} sur \mathbb{R}

$$\sqrt[3]{16} > 2$$
 car $16 > 2^3$
 $\sqrt[4]{16} = 2$
 $\sqrt[4]{16} < \sqrt[3]{16}$

4) (VRAI) POUR N≥2

$$f(x) = \sqrt[n]{x}$$
 \rightarrow $f^{-1}(x) = x^n$
 $(f^{-1})'(0) = 0$

5) (FAUX) CONTRE EXEMPLE:

$$f(x) = x + \sqrt{1 + x^2} \qquad \text{I=}\mathbb{R}$$
$$f'(x) = 1 + \frac{x}{\sqrt{1 + x^2}}$$

f est dérivable sur R et f est strictement croissante sur R

$$\lim_{x \to -\infty} f = +\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{\sqrt{1 + x^2} - x} = 0$$

f est une bijection de \mathbb{R} sur $f(\mathbb{R})=\left]0,+\infty\right[$

$$y = f^{-1}(x) \Leftrightarrow f(y) = x \Leftrightarrow y + \sqrt{1 + y^2} = x$$
$$\Leftrightarrow \sqrt{1 + y^2} = x - y \Leftrightarrow 1 + y^2 = x^2 + y^2 - 2xy \Leftrightarrow y = \frac{x^2 - 1}{2x}$$

$$f^{-1}(x) = \frac{x^2 - 1}{2x}$$
 f^{-1} ne garde pas un signe constant sur $]0,+\infty[$

EXERCICE№1

- 1) f₁ n'est pas une bijection de [-4,3] sur [-4,3]
- 2) f₂ est une bijection de [-3,1] sur [-4,4] (continue et strictement décroissante)
- 3) f₃ est une bijection de [-3,4] sur [-3,4] (continue et strictement croissante)

$$f(x) = x^2 - 4x + 5$$
; $I =]-\infty,2]$

1) f est dérivable sur]-∞,2]

et
$$f'(x) = 2 x - 4 = 2(x - 2) \le 0$$
 pour tout $x \in]-\infty,2]$

f est continue et strictement décroissante sur]-∞,2]

elle réalise donc une bijection de $]-\infty,2]$ sur $J = f(]-\infty,2]) = [f(2), \lim_{x \to -\infty} f(]-\infty,2]$

$$J = [1, +\infty)$$

2)

x	-∞	2
f'(x)		-
f(x)	+8	→ 1

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(\frac{x^2}{x}\right) = \lim_{x \to -\infty} (x) = -\infty$$

 (\mathcal{C}_f) admet une branche parabolique de direction celle de $(0,\vec{j})$ au voisinage de $(-\infty)$

3) – a)
$$(\mathcal{C}_{f^{-1}}) = S_{\Delta}(\mathcal{C}_{f})$$
 avec $\Delta : y = x$

- b) $(\mathcal{C}_{f^{-1}})$ admet une demi-tangente verticale au point d'abscisse $1.\Rightarrow f^1$ n'est pas dérivable à droite en 1
 - c) f est dérivable sur]- ∞ ,2 [et f'(x) = 2 (x 2) \neq 0 pour tout x \in]- ∞ ,2[d'où : f⁻¹ est dérivable sur f(] ∞ , 2[) =]1,+ ∞ [.

d) on pose : $y = f^{-1}(x)$ avec : $x \in [1, +\infty[$ et $y \in]-\infty, 2]$

$$\Leftrightarrow$$
 f(y) = x \Leftrightarrow y² - 4y + 5 = x \Leftrightarrow (y - 2)² + 1 = x

$$\Leftrightarrow (y-2)^2 = x - 1 \Leftrightarrow |y-2| = \sqrt{x-1}$$

$$\Leftrightarrow y-2=-\sqrt{x-1} \text{ car } y \le 2$$

$$\Leftrightarrow y = 2 - \sqrt{x - 1}$$
 d'où: $f^{-1}(x) = 2 - \sqrt{x - 1}$

EXERCICE№3

$$f(x) = x - 1 - \frac{1}{x}$$
; $I =]-\infty,0[$

1)
$$f'(x) = 1 + \frac{1}{x^2} > 0$$

f est continue et strictement croissante sur $]-\infty,0[$

elle réalise donc une bijection de $]-\infty,0[$ sur $J = f(]-\infty,0[)$

$$J = f(]-\infty,0[) = \lim_{x \to -\infty} f, \lim_{x \to 0^{+}} f =]-\infty,+\infty[= IR]$$

2) soit
$$y = f^{-1}(x)$$
 avec : $x \in IR$ et $y \in]-\infty,0[$

$$\Leftrightarrow$$
 f(y) = x \Leftrightarrow y - 1 - $\frac{1}{y}$ = x \Leftrightarrow y² - y - 1 = xy

$$\Leftrightarrow y^2 - (1 + x)y - 1 = 0$$

$$\Delta = (1 + x)^2 + 4 > 0$$

$$y = \frac{1 + x - \sqrt{(1 + x)^2 + 4}}{2}$$
 car $y < 0$

D'où:
$$f^{-1}(x) = \frac{1 + x - \sqrt{x^2 + 2x + 5}}{2}$$

3) f est dérivable sur]-
$$\infty$$
,0 [et f'(x) = 1 + $\frac{1}{x^2} \neq 0$ pour tout $x \in]-\infty$,0[

d'où : f⁻¹ est dérivable sur IR.

$$(f^{-1})'(x) = \frac{1}{2} \left[1 - \frac{2x+2}{2\sqrt{x^2+2x+5}} \right] = \frac{1}{2} \left[1 - \frac{x+1}{\sqrt{x^2+2x+5}} \right]$$

EXERCICE№4

$$f(x) = \frac{x+1}{x-1}$$
 ; $I =]1,+\infty[$

1) f est dérivable sur]1,+
$$\infty$$
[et f'(x) = $\frac{-2}{(x-1)^2}$ < 0

x	1	+∞
f'(x)	-	
f(x)	+∞	
		→ 1

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{x}{x}\right) = 1$$

f est continue et strictement décroissante sur]1,+∞[

elle réalise donc une bijection de $]1,+\infty[$ sur $J = f(]1,+\infty[)$

$$J = f(]1,+\infty[) = \lim_{x \to +\infty} f, \lim_{x \to 1^{+}} [=]1,+\infty[$$

$$fof(x) = f(f(x)) = \frac{f(x) + 1}{f(x) - 1} = \frac{\frac{x + 1}{x - 1} + 1}{\frac{x + 1}{x - 1} - 1} = \frac{(x + 1) + (x - 1)}{(x + 1) - (x - 1)} = x ; fof(x) = x$$

b)
$$D_{f^{-1}} = D_f =]1, +\infty [$$
 et fof $(x) = x$

d'où:
$$f^{-1}(x) = f(x) = \frac{x+1}{x-1}$$
 pour $x \in]1,+\infty[$

EXERCICE№5

$$f(x) = \sqrt{x-1} + 2$$

1)
$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{\sqrt{x - 1}}{x - 1} = \lim_{x \to 1^{+}} \frac{1}{\sqrt{x - 1}} = +\infty$$

f n'est pas dérivable à droite en 1

 (\mathcal{C}_f) admet une demi-tangente parallèle à l'axe des ordonnées au point d'abscisse 1.

2) f est dérivable sur]1,+
$$\infty$$
[et f'(x) = $\frac{1}{2\sqrt{x-1}}$ > 0

x	1	+∞
f'(x)	+	
f(x)		→ +∞
	2 —	

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\sqrt{x-1} + 2 \right) = +\infty$$

3) * f est continue et strictement croissante sur]1,+∞[

elle réalise donc une bijection de $]1,+\infty[$ sur $]2,+\infty[$

* soit y =
$$f^{-1}(x)$$
 avec : $x \ge 2$ et y ≥ 1

$$\Leftrightarrow \sqrt{y} = x \iff \sqrt{y-1} + 2 = x \iff \sqrt{y-1} = x - 2$$

$$\Leftrightarrow$$
 $y-1=(x-2)^2 \Leftrightarrow$ $y=x^2-4x+5$

D'où:
$$f^{-1}(x) = x^2 - 4x + 5$$

4) f^{-1} est dérivable sur $[2,+\infty[$

$$f(x) = 1 + \frac{x}{\sqrt{1+x^2}}$$

2) f est dérivable sur IR et f'(x) =
$$\frac{\sqrt{1+x^2}-x(\frac{2x}{2\sqrt{1+x^2}})}{1+x^2}$$

$$f'(x) = \frac{(1+x^2)-x^2}{(1+x^2)\sqrt{1+x^2}} = \frac{1}{\left(\sqrt{1+x^2}\right)^2} > 0$$

x	-∞	+∞
f'(x)	+	
f(x)		→ 2
	0	

Pour $x \neq 0$

$$f(x) = 1 + \frac{x}{|x|\sqrt{1 + \frac{1}{x^2}}}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 + \frac{1}{\sqrt{1 + \frac{1}{x^2}}} \right) = 2$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(1 - \frac{1}{\sqrt{1 + \frac{1}{x^2}}} \right) = 0$$

* f est continue et strictement croissante sur IR ,elle réalise donc une bijection de IR sur $f(IR) = \int_{x \to -\infty}^{\lim} f(x) dx$, $\int_{x \to +\infty}^{\lim} f(x) dx = \int_{x \to +\infty}^{\lim} f(x) dx$

2) * soit
$$y = f^{-1}(x)$$
 avec : $x \in]0$, 2[et $y \in IR$

$$\Leftrightarrow$$
 f(y) = x \Leftrightarrow 1 + $\frac{y}{\sqrt{1+y^2}}$ = x \Leftrightarrow $\frac{y}{\sqrt{1+y^2}}$ = x - 1

$$\Leftrightarrow \frac{y^2}{1+y^2} = (x-1)^2$$
 avec y et $(x-1)$ sont de même signe (*)

$$\Leftrightarrow y^2 = (x - 1)^2 + (x - 1)^2 \cdot y^2 \Leftrightarrow (2x - x^2) y^2 = (x - 1)^2$$

$$\Leftrightarrow y\sqrt{2x - x^2} = x - 1$$
 d'après (*)

D'où :
$$y = \frac{x-1}{\sqrt{2x-x^2}}$$
 ; $f^{-1}(x) = \frac{x-1}{\sqrt{x(2-x)}}$

EXERCICENº7

1) * continuité à droite en 0

Pour
$$x > 0$$
; $f(x) = \frac{\sqrt{x}}{\sqrt{x}+1}$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{x} + 1} = 0 = f(0)$$
, d'où est continue à droite en 0

* dérivabilité à droite en 0

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{1}{x + \sqrt{x}} = +\infty$$

f n'est pas dérivable à droite en 0

2) – a) f est dérivable sur]0,+
$$\infty$$
[et f'(x) = $\frac{(x+\sqrt{x})-x(1+\frac{1}{2\sqrt{x}})}{(x+\sqrt{x})^2}$
= $\frac{x+\sqrt{x}-x-\frac{\sqrt{x}}{2}}{(x+\sqrt{x})^2} = \frac{\sqrt{x}}{2(x+\sqrt{x})^2} > 0$

Pour $x \in]0,+\infty[$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{1}{1 + \frac{1}{\sqrt{x}}} \right) = 1$$

- b) * f est continue et strictement croissante sur [0 ,+ ∞ [, elle réalise donc une bijection de IR₊ sur f(IR₊) = [f(0) , $\lim_{x \to +\infty}$ f[= [0 , 1[
- c) * f est dérivable sur]0,+ ∞ [et f'(x) = $\frac{\sqrt{x}}{2(x+\sqrt{x})^2} \neq 0$ d'où : f⁻¹ est dérivable sur f(]0,+ ∞ [) =] 0 , 1[. * f n'est pas dérivable à droite en 0
- (\mathcal{C}_f) admet une demi-tangente verticale au point d'abscisse 0, par suite : $(\mathcal{C}_{f^{-1}})$ admet une demi-tangente horizontale au point d'abscisse f(0)=0 D'où : f^{-1} est dérivable à droite en 0, et $(f^{-1})_d$ '(0)=0

Conclusion: f1 est dérivable sur [0,1[

3) * soit
$$y = f^{-1}(x)$$
 avec : $x \in [0, 1[$ et $y \in IR_+$
 $\Leftrightarrow f(y) = x \Leftrightarrow \frac{y}{y + \sqrt{y}} = x \Leftrightarrow \frac{\sqrt{y}}{\sqrt{y} + 1} = x$
 $\Leftrightarrow \sqrt{y} = x \sqrt{y} + x \Leftrightarrow \sqrt{y}(1 - x) = x$
 $\Leftrightarrow \sqrt{y} = \frac{x}{x - 1} \Leftrightarrow y = \left(\frac{x}{x - 1}\right)^2$ d'où : $f^{-1}(x) = \left(\frac{x}{x - 1}\right)^2$ pour $x \in [0, 1[$

1) *
$$f(0)=-1 \Rightarrow g(-1)=0$$

 (ζ_f) admet une tangente horizontal au point d'abscisse 0 d'ou (ζ_g) admet une tangente verticale au point d'abscisse f(0)=-1 par suite g n'est pas dérivable en (-1)

*
$$f(-2)=1 \Rightarrow g(1)=-2$$

 (ζ_f) admet une tangente verticale au point d'abscisse (-2) d'ou (ζ_s) admet une tangente horizontale au point d'abscisse f(-2)=1 par suite : g est dérivable en 1 et g'(1)=0

2) * f est décroissante sur $\mathbb R$ d'ou g est décroissante sur f($\mathbb R$)= $\mathbb R$

*
$$\lim_{x \to -\infty} f(x) = +\infty$$
 $\Rightarrow \lim_{x \to +\infty} g(x) = -\infty$
 $\lim_{x \to \infty} f(x) = -\infty$ $\Rightarrow \lim_{x \to -\infty} g(x) = +\infty$

х	-00		-1		+∞
f '(x)		-	II	-	
f(x)	+∞				

3)
$$(\zeta_g) = S_{\Delta}(\zeta_f)$$
 avec $\Delta : y=x$

EXERCICE№9

1) * f(1)= -1 \Rightarrow g(-1)=1 f est dérivable en 1 et f '(1)= -1 \neq 0 d'ou g est dérivable en (-1) et g'(-1)= $\frac{1}{f'(1)}$ = -1 * f(2)= -4 \Rightarrow g(-4)=2 f n'est pas dérivable a gauche en 2

(ζ_f) admet une demi tangente verticale au point d'abscisse 2 d'ou (ζ_g) admet une demi tangente horizontal au point d'abscisse (-4) g est dérivable a droite en (-4) et g'_d(-4)=0 2)

$$3) \lim_{x \to +\infty} g(x) = -1$$

EXERCICE№10

$$f(x) = \tan x$$

1) f est dérivable sur]-
$$\frac{\pi}{2}$$
, $\frac{\pi}{2}$ [et f'(x) = 1 + tan² x > 0

* f est continue et strictement croissante sur]-
$$\frac{\pi}{2}$$
, $\frac{\pi}{2}$ [,

elle réalise donc une bijection de]-
$$\frac{\pi}{2}$$
, $\frac{\pi}{2}$ [sur f(]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [) =] $\lim_{x \to -\frac{\pi}{2}^+}$ f, $\lim_{x \to \frac{\pi}{2}^-}$ f [

$$=]-\infty, +\infty[= IR$$

2) * f est dérivable sur]-
$$\frac{\pi}{2}$$
, $\frac{\pi}{2}$ [et f'(x) \neq 0 ? \forall x \in]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [d'où : f⁻¹ est dérivable sur IR . (f⁻¹)'(x) = $\frac{1}{f'(f^{-1}(x))}$

On pose
$$y = f^{-1}(x)$$
 on aura : $f(y) = x \iff \tan y = x$

On pose
$$y = f^{-1}(x)$$
 on aura : $f(y) = x \iff \tan y = x$
d'où : $(f^{-1})'(x) = \frac{1}{f'(y)} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}$ pour tout $x \in IR$

EXERCICE№11

$$f(x) = 2\cos x + 3 \quad x \in [0,\pi]$$

1)
$$f'(x) = -2sinx < 0$$
 pour $x \in]0,\pi[$

x	0		π
f'(x)	0	-	0
f(x)	5 —		_
			→ 1

2) * f est continue et strictement décroissante sur $[0,\pi]$, elle réalise donc une bijection de $[0,\pi]$ sur $f([0,\pi]) = [f(\pi),f(0)] = [1,5]$

3) - a)
$$g(5) = 0$$
 ; $g(1) = \pi$; $g(3) = \frac{\pi}{2}$

b) * f est dérivable sur]0 , π [et f'(x) = $-2sinx \neq 0$? \forall x \in]0 , π [d'où : g est dérivable sur f(]0 , π [) =]1 , 5 [

$$(g)'(x) = \frac{1}{f'(g(x))} = \frac{1}{f'(y)} = \frac{-1}{2siny}$$
 avec $y = g(x)$; $f(y) = x$

$$2\cos y + 3 = x \iff \cos y = \frac{x-3}{2}$$

* on a : $\sin y = \sqrt{1 - \cos^2 y}$, car $\sin y > 0$

$$\sin y = \sqrt{1 - \left(\frac{x-3}{2}\right)^2} \quad \text{d'où : } g'(x) = \frac{-1}{2\sqrt{1 - \left(\frac{x-3}{2}\right)^2}} = \frac{-1}{\sqrt{4 - (x-3)^2}}$$

EXERCICE№12

$$f(x) = \frac{1}{\sin x}$$

1) et
$$f'(x) = \frac{-\cos x}{\sin^2 x} \ge 0$$
 pour tout $x \in [\frac{\pi}{2}, \pi]$

* f est continue et strictement croissante sur $\left[\frac{\pi}{2}, \pi\right]$,

elle réalise donc une bijection de $\left[\frac{\pi}{2}, \pi\right]$ sur $f\left(\left[\frac{\pi}{2}, \pi\right]\right) = \left[f\left(\frac{\pi}{2}\right), \lim_{x \to \pi^-} f\right] = \left[1, +\infty\right[$

2) soit
$$\alpha = (f^{-1})(\frac{2\sqrt{3}}{3}) \iff \begin{cases} f(\alpha) = \frac{2\sqrt{3}}{3} \\ \alpha \in \left[\frac{\pi}{2}, \pi\right] \end{cases} \iff \begin{cases} \frac{1}{\sin \alpha} = \frac{2}{\sqrt{3}} \\ \alpha \in \left[\frac{\pi}{2}, \pi\right] \end{cases}$$

$$\Leftrightarrow \begin{cases} \sin \alpha = \frac{\sqrt{3}}{2} \\ \alpha \in \begin{bmatrix} \frac{\pi}{2} \\ \pi \end{bmatrix}, \pi \end{cases} \Leftrightarrow \alpha = \frac{2\pi}{3} \text{ d'où} : (f^{-1})(\frac{2\sqrt{3}}{3}) = \frac{2\pi}{3}; (f^{-1})(\sqrt{2}) = \frac{3\pi}{4} \end{cases}$$

3) * f est continue sur $\left[\frac{\pi}{2}, \pi\right]$, d'où : f⁻¹ est continue sur $\left[1, +\infty\right]$

* f est dérivable sur
$$]\frac{\pi}{2}$$
, π [et $f'(x) = \frac{-\cos x}{\sin^2 x} \neq 0$

d'où : f^{-1} est dérivable sur $f(]\frac{\pi}{2}$, $\pi[) =]1$, $+\infty[$

* f^{-1} n'est pas dérivable à droite en 1 (voir EX : 7, 2) – c))

Conclusion:

 f^{-1} est continue sur $[1, +\infty[$; f^{-1} est dérivable sur $]1, +\infty[$

4)
$$(f^{-1})'(x) = \frac{1}{f'(y)} = -\frac{\sin^2(y)}{\cos(y)}$$
 avec $y = f^{-1}(x) \Leftrightarrow x = f(y) \Leftrightarrow x = \frac{1}{\sin(y)} \Leftrightarrow \sin(y) = \frac{1}{x}$

$$\Rightarrow (f^{-1})'(x) = -\frac{1}{x^2 \cdot \sqrt{1 - \frac{1}{x^2}}} = -\frac{1}{x \cdot \sqrt{x^2 - 1}}$$

 $f(x) = 1 - \tan x$

1)
$$f'(x) = -(1 + \tan^2 x) < 0$$

x	$\frac{\pi}{2}$	$\frac{\pi}{}$
	2	2_
f'(x)	-	
f(x)	+∞	
		- ∞

2) * f est continue et strictement décroissante sur]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [,

elle réalise donc une bijection de]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [sur f(]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [) =] $\lim_{x \to \frac{\pi}{2}}$ f, $\lim_{x \to \left(-\frac{\pi}{2}\right)}$ + f [

 $=]-\infty, +\infty[= IR$

3)
$$(f^{-1})(0) = \frac{\pi}{4}$$
 ; $(f^{-1})(2) = -\frac{\pi}{4}$

4) f est dérivable sur]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [et f'(x) = -(1 + tan² x) \neq 0; \forall x \in]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [d'où : f⁻¹ est dérivable sur IR .

* soit $y = f^{-1}(x) \iff f(y) = x \iff 1 - \tan y = x \iff \tan y = 1 - x$

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)} = \frac{-1}{1 + \tan^2 y} = \frac{-1}{1 + (1 - x)^2} = \frac{1}{-x^2 + 2x - 2}$$

5)
$$\lim_{x \to -\left(\frac{\pi}{2}\right)} + f(x) = +\infty$$
 $\Longrightarrow \lim_{x \to +\infty} f^{-1}(x) = -\frac{\pi}{2}$ de même $\lim_{x \to -\infty} f^{-1}(x) = \frac{\pi}{2}$

 $(\mathcal{C}_{\mathbf{f}^{-1}})$ admet deux asymptotes horizontales d'équations respectives :

$$y = -\frac{\pi}{2}$$
 et $y = \frac{\pi}{2}$

EXERCICEN₂14

$$f(x) = \sqrt{\cos x}$$
 ; $\forall x \in [0, \frac{\pi}{2}]$

1)
$$\lim_{x \to \left(\frac{\pi}{2}\right)} - \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} = \lim_{x \to \left(\frac{\pi}{2}\right)} - \frac{\sqrt{\cos x}}{x - \frac{\pi}{2}} = \lim_{x \to \left(\frac{\pi}{2}\right)} - \left(\frac{\cos x}{x - \frac{\pi}{2}}\right) \cdot \frac{1}{\sqrt{\cos x}}$$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \left(\frac{\cos x}{x - \frac{\pi}{2}}\right) = \cos'\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$$

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{1}{\sqrt{\cos x}} = +\infty \quad \text{d'où}: \quad \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{f(x) - f(\frac{\pi}{2})}{x - \frac{\pi}{2}} = -\infty$$

f n'est pas dérivable à gauche en $\frac{\pi}{2}$

 $(\mathcal{C}_{\rm f})$ admet une demi-tangente verticale au point d'abscisse $\frac{\pi}{2}$

2) – a) f est dérivable sur
$$[0, \frac{\pi}{2}[$$
 et $f'(x) = \frac{-\sin x}{2\sqrt{\cos x}} \le 0 \ \forall \ x \in [0, \frac{\pi}{2}[$

* f est continue et strictement décroissante sur $\left[0, \frac{\pi}{2}\right]$,

elle réalise donc une bijection de $[0, \frac{\pi}{2}]$ sur $f([0, \frac{\pi}{2}]) = [f(\frac{\pi}{2}), f(0)] = [0, 1]$

par suite f admet une fonction réciproque f^{-1} définie sur [0, 1]

b) f n'est pas dérivable à gauche en $\frac{\pi}{2}$

 (\mathcal{C}_f) admet une demi-tangente verticale au point d'abscisse $\frac{\pi}{2}$ d'où :

 $(\mathcal{C}_{\mathbf{f}^{-1}})$ admet une demi-tangente horizontale au point d'abscisse $\mathbf{f}(\frac{\pi}{2})=0$

Par suite f^{-1} est dérivable à droite en 0 et $(f^{-1})'(0) = 0$

c)
$$f'_d(0) = 0$$

 (\mathcal{C}_f) admet une demi-tangente horizontale au point d'abscisse 0 d'où :

 $(\mathcal{C}_{f^{-1}})$ admet une demi-tangente verticale au point d'abscisse f(0) = 1

D'où : f^{-1} n'est pas dérivable à gauche en 1

3) f est dérivable sur]0, $\frac{\pi}{2}$ [et f'(x) = $\frac{-\sin x}{2\sqrt{\cos x}} \neq 0$

D'où : f^{-1} est dérivable sur]0, 1[

* soit
$$y = f^{-1}(x) \iff f(y) = x \iff \sqrt{\cos y} = x \iff \cos y = x^2$$

 $\sin^2 y + \cos^2 y = 1 \iff \sin^2 y = 1 - \cos^2 y \iff \sin y = \sqrt{1 - x^4} \operatorname{car} y \in]0, \frac{\pi}{2}[$

D'où:
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)} = \frac{-2\sqrt{\cos y}}{\sin y} = \frac{-2x}{\sqrt{1-x^4}}$$

EXERCICEM15

$$f(x) = \cos\left(\frac{\pi}{2}x\right) \quad ; \ \forall \ x \in [0, 1]$$

1) f est dérivable sur [0, 1] et $f'(x) = -\frac{\pi}{2} \sin\left(\frac{\pi}{2}x\right) \le 0$ car pour $0 \le x \le 1$; on a : $0 \le \frac{\pi}{2}x \le \frac{\pi}{2}$

x	0		1
f'(x)	0	-	
f(x)	1		
		—	0

$$f'_d(0) = 0$$
 ; $f'_g(1) = -\frac{\pi}{2}$

- 2) * f est continue et strictement décroissante sur [0, 1], elle réalise donc une bijection de [0, 1] sur f([0, 1]) = [f(1), f(0)] = [0, 1] = I
- 3) f est dérivable sur]0, 1] et f'(x) = $-\frac{\pi}{2} \sin(\frac{\pi}{2}x) \neq 0$

D'où : f^{-1} est dérivable sur f(]0,1])= [0, 1[

*
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)}$$
, avec $y = f^{-1}(x)$ d'où : $(f^{-1})'(x) = \frac{-2}{\pi \sin(\frac{\pi}{2}y)}$

On a:
$$y = f^{-1}(x) \implies f(y) = x \implies \cos\left(\frac{\pi}{2}y\right) = x \implies \sin\left(\frac{\pi}{2}y\right) = \sqrt{1 - x^2}$$

Car: $\frac{\pi}{2}y \in \left[0, \frac{\pi}{2}\right]$

D'où:
$$(f^{-1})'(x) = \frac{-2}{\pi\sqrt{1-x^2}}$$

EXERCICE№16

$$f(x) = \frac{1}{1 - \cos(\pi x)}$$
 ; $\forall x \in [0, 1]$

1) f est dérivable sur]0, 1] et $f'(x) = \frac{-\pi \sin(\pi x)}{(1 - \cos(\pi x))^2}$, $\forall x \in]0, 1] \implies (\pi x) \in]0, \pi] \implies \sin(\pi x) \ge 0$ d'où : $f'(x) \le 0$

x	0	1
f'(x)	-	
f(x)	+∞	
	-	1
1		2

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{1 - \cos(\pi x)} = +\infty \quad \text{car} : 1 - \cos(\pi x) > 0$$

2) a)
$$f(x) = x \Leftrightarrow f(x) - x = 0$$

On pose : g(x) = f(x) - x alors g'(x) = f'(x) - 1 < 0 car $f'(x) \le 0$

* g est continue et strictement décroissante sur]0, 1],

elle réalise donc une bijection de]0, 1] sur g(]0, 1]) = $\left[-\frac{1}{2}, +\infty\right[$

comme $0 \in g(]0, 1]$) alors il existe un unique réel $x_0 \in]0, 1]$ tel que $g(x_0) = 0$ par suite l'équation f(x) = x admet x_0 comme unique solution dans]0, 1] $f(\frac{2}{3}) = \frac{2}{3}$ d'où : $x_0 = \frac{2}{3}$

3) a) f est continue et strictement décroissante sur]0, 1],

Donc f est une bijection de]0, 1] sur $f(]0, 1]) = [f(1), \lim_{x \to 0^+} f[=[\frac{1}{2}, +\infty[$

b) $f'_{g}(1) = 0 \Rightarrow (C_{f})$ admet une demi-tangente horizontale au point d'abscisse 1

d'où : $(C_{f^{-1}})$ admet une demi-tangente verticale au point d'abscisse $f(1) = \frac{1}{2}$

D'où : f^{-1} n'est pas dérivable à droite en $\frac{1}{2}$

c) f est dérivable sur]0, 1[et f'(x) =
$$\frac{-\pi \sin(\pi x)}{(1-\cos(\pi x))^2} \neq 0$$

$$\forall x \in]0, 1[$$
 d'où : f^{-1} est dérivable sur $f(]0, 1[) =]\frac{1}{2}, +\infty[$

* soit
$$y = f^{-1}(x) \iff f(y) = x \iff \frac{1}{1 - \cos(\pi y)} = x \iff 1 - \cos(\pi y) = \frac{1}{x}$$

et
$$\cos(\pi y) = 1 - \frac{1}{x}$$
 ; $\sin(\pi y) = \sqrt{1 - \cos^2(\pi y)} \operatorname{car} y \in]0, \pi[$

$$\Rightarrow \sin(\pi y) = \sqrt{1 - \left(1 - \frac{1}{x}\right)^2} = \frac{1}{x}\sqrt{2x - 1}$$

D'où:
$$(f^{-1})'(x) = \frac{1}{f'(y)} = \frac{-(1-\cos(\pi y))^2}{\pi \sin(\pi y)} = \frac{-\frac{1}{x^2}}{\frac{\pi}{x}\sqrt{2x-1}}$$

$$(f^{-1})'(x) = \frac{-1}{\pi x \sqrt{2x-1}}$$

$$f(x) = \frac{x^2 + 1}{x^2 + x + 1}$$

1)
$$f'(x) = \frac{x^2 - 1}{(x^2 + x + 1)^2} \le 0 \ \forall \ x \in [-1, 1]$$

décroissante sur [-1, 1], elle réalise donc une bijection de

f est continue et strictement

x	-1	1
f'(x)	0	- 0
f(x)	2	→ 2/3

$$[-1, 1] sur \left[\frac{2}{3}, 2\right] = I$$

- 2): g(x) = f(x) x
- a) alors g'(x) = f'(x) 1 < 0 car $f'(x) \le 0$
- * g est continue sur [-1, 1], et g(-1).g(1) = -1 < 0, d'où l'équation g(x) = 0 admet une solution $\alpha \in]-1$, 1[,

comme g est strictement décroissante alors α est unique.

b)
$$g(\frac{2}{3}).g(1) < 0 \implies \alpha \in \frac{2}{3}, 1[$$
,

c)
$$M(x,y) \in (C_f) \cap \Delta \Leftrightarrow \begin{cases} y = f(x) \\ y = x \end{cases} \Leftrightarrow \begin{cases} y = x \\ f(x) = x \end{cases} \Leftrightarrow \begin{cases} y = x \\ g(x) = 0 \end{cases}$$

$$\Leftrightarrow y = x = \alpha$$

$$(\mathcal{C}_{f}) \cap \Delta = \{A(\alpha,\alpha)\}$$

3): f^{-1} n'est pas dérivable à droite en $\frac{2}{3}$ (voir ex 16, 3) – b)

4) - a)
$$f(-\frac{1}{2}) = \frac{5}{3}$$
; $f(0) = 1$; $f(\frac{1}{2}) = \frac{5}{7}$

b)
$$(f^{-1})'(\frac{5}{3}) = \frac{1}{f'(-\frac{1}{2})} = -\frac{4}{3}$$

 $(f^{-1})'(1) = \frac{1}{f'(0)} = -1$
 $(f^{-1})'(\frac{5}{7}) = \frac{1}{f'(\frac{1}{2})} = -\frac{49}{12}$

$$f(x) = \frac{x}{\sqrt{x^2 + 1}} - 1$$

1)
$$f'(x) = \frac{1}{(\sqrt{x^2+1})^3} > 0$$

x	-∞	+∞
f'(x)	+	
f(x)		→ 0
	-2	

* f est continue et strictement croissante sur IR ,elle réalise donc une bijection de IR sur g(IR) =] -2, 0[

$$(2) - a) f(x) = x \Leftrightarrow f(x) - x = 0$$

On pose :
$$g(x) = f(x) - x$$
 alors $g'(x) = f'(x) - 1 = \frac{1}{(\sqrt{x^2 + 1})^3} - 1 \le 0$ car $x^2 + 1 \ge 1$

* g est continue et strictement décroissante sur IR,

elle réalise donc une bijection de IR sur g(IR) = IR;

comme $0 \in g(IR)$ alors il existe un unique réel α tel que $g(\alpha) = 0$

par suite l'équation f(x) = x admet α comme unique solution dans IR

$$g(-2).g(-1) < 0$$
 (à vérifier) d'où : -2 < \alpha < -1

3) * soit
$$y = f^{-1}(x)$$
 avec : $x \in]-2$, $0[$ et $y \in IR$
 $\Leftrightarrow f(y) = x \Leftrightarrow \frac{y}{\sqrt{1+y^2}} - 1 = x \Leftrightarrow \frac{y}{\sqrt{1+y^2}} = 1 + x$
 $\Leftrightarrow \frac{y^2}{1+y^2} = (x+1)^2$ avec y et $(x+1)$ de même signe
 $\Leftrightarrow y^2 = (x+1)^2 + y(x+1)^2 \Leftrightarrow (-x^2 - 2x)y^2 = (x+1)^2$
 $\Leftrightarrow y\sqrt{-x^2 - 2x} = x + 1 \Leftrightarrow y = \frac{x+1}{\sqrt{-x^2 - 2x}}$
d'où : $f^{-1}(x) = \frac{x+1}{\sqrt{-x^2 - 2x}}$ pour $x \in]-2,0[$

4)
$$\begin{cases} U_0 = -1 \\ U_{n+1} = f(U_n) \end{cases}$$

a) récurrence

*
$$U_0 = -1$$
 on a: $\alpha \le U_0 \le -1$ (vraie)

* supposons que : $\alpha \le U_n \le -1$ montrons que : $\alpha \le U_{n+1} \le -1$

 $\alpha \le U_n \le -1 \Longrightarrow f(\alpha) \le f(U_n) \le f(-1)$ car f est croissante sur IR

d'où :
$$\alpha \leq U_{n+1} \leq -\frac{1}{\sqrt{2}} - 1 \leq -1 \Longrightarrow \alpha \leq U_{n+1} \leq -1$$

* $\underline{\text{conclusion}} : \alpha \le U_n \le -1 \text{ pour tout } n \in IN$

b)
$$U_{n+1} - U_n = f(U_n) - U_n$$

$$U_n \ge \alpha \implies f(U_n) - U_n \le 0 \text{ d'après } 2) - b)$$

D'où :
$$U_{n+1}$$
 - $U_n \le 0 \implies U_{n+1} \le U_n$

La suite (U_n) est décroissante et minorée par α , elle est donc convergente.

Soit ℓ sa limite : $U_{n+1} = f(U_n)$, f est continue sur IR.

D'où :
$$\ell = f(\ell) \iff \ell = \alpha$$
; conclusion : $\lim_{x \to 0^+} U_n = \alpha$

EXERCICE№19

$$f(x) = \frac{\sqrt{x^2 - 1}}{x} + 1$$
; $\forall x \in [1, +\infty[$

$$1) - a) \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{\sqrt{x^{2} - 1}}{x(x - 1)} = \lim_{x \to 1^{+}} \frac{x^{2} - 1}{x(x - 1)\sqrt{x^{2} - 1}} = \lim_{x \to 1^{+}} \frac{x + 1}{x\sqrt{x^{2} - 1}} = +\infty$$

D'où: f n'est pas dérivable à droite en 1.

b) f est dérivable sur]1, +∞[

$$f'(x) = \frac{\left(\frac{2x}{2\sqrt{x^2 - 1}}\right)x - \sqrt{x^2 - 1}}{x^2} = \frac{1}{x^2 \cdot \sqrt{x^2 - 1}} > 0$$

x	1	+∞
f'(x)	+	
f(x)		→ 2
	1 —	

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\sqrt{1 - \frac{1}{x^2}} + 1 \right) = 2$$

- c) f est continue et strictement croissante sur $[1, +\infty[$, elle réalise donc une bijection de $[1, +\infty[$ sur $I = f([1, +\infty[) = [1, 2[$
- 2) -a): f^{-1} est dérivable à droite en 1 et $(f^{-1})_d(1) = 0$ (voir ex 14, 2) b)) b) * soit y = $f^{-1}(x)$ avec : $x \in [1, 2[$ et $y \in [1, +\infty[$

$$\Leftrightarrow f(y) = x \iff \frac{\sqrt{y^2 - 1}}{y} + 1 = x \iff \sqrt{y^2 - 1} = y(x - 1)$$

$$\Leftrightarrow y^2 - 1 = y^2(x - 1)^2 \iff \left[1 - (x - 1)^2\right] \cdot y^2 = 1$$

$$\Leftrightarrow y^2 = \frac{1}{2x - x^2} \iff y = \frac{1}{\sqrt{2x - x^2}} (\text{car } y > 0) \quad \text{d'où} : f^{-1}(x) = \frac{1}{\sqrt{2x - x^2}}$$
B)

$$g(x) = \begin{cases} \frac{1}{f(\frac{1}{\cos x})} & si \ x \in [0, \frac{\pi}{2}[\\ \frac{1}{2} & si \ x = \frac{\pi}{2} \end{cases}$$

1) - a)
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \frac{1}{\cos x} = +\infty$$
 ; $\lim_{x \to +\infty} f(x) = 2$

D'où:
$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} f\left(\frac{1}{\cos x}\right) = 2$$

$$\Rightarrow \lim_{x \to \left(\frac{\pi}{2}\right)^{-}} g(x) = \frac{1}{2} = g\left(\frac{\pi}{2}\right); g \text{ est continue à gauche en } \frac{\pi}{2}$$

b) * pour
$$x = \frac{\pi}{2}$$
 ; $\frac{1}{1 + \sin(\frac{\pi}{2})} = \frac{1}{2} = g(\frac{\pi}{2})$

* pour
$$x \in [0, \frac{\pi}{2}]$$

$$f\left(\frac{1}{\cos x}\right) = \frac{\sqrt{\frac{1}{\cos^2 x} - 1}}{\frac{1}{\cos x}} + 1 = \cos x. \sqrt{\frac{\sin^2 x}{\cos^2 x}} + 1 = \cos x. \left|\frac{\sin x}{\cos x}\right| + 1$$
$$= \cos x. \frac{\sin x}{\cos x} + 1 \quad \cot x \in [0, \frac{\pi}{2}]$$

$$= 1 + \sin x \, d'où : g(x) = \frac{1}{1 + \sin x}$$

conclusion:
$$g(x) = \frac{1}{1 + \sin x}$$
, pour tout $x \in [0, \frac{\pi}{2}]$

2)
$$g'(x) = \frac{-\cos x}{(1+\sin x)^2} \le 0 \text{ pour } x \in [0, \frac{\pi}{2}[$$

* g est continue et strictement décroissante sur $[0, \frac{\pi}{2}]$, elle réalise donc une bijection de $[0, \frac{\pi}{2}]$, sur $J = [\frac{1}{2}, 1]$,

3) -a): g est dérivable sur
$$[0, \frac{\pi}{2}[$$
 et $g'(x) = \frac{-\cos x}{(1+\sin x)^2} \neq 0$

D'où :
$$g^{-1}$$
 est dérivable sur $g([0, \frac{\pi}{2}[) =]\frac{1}{2}, 1]$ et : $(g^{-1})'(x) = \frac{1}{g'(g^{-1}(x))}$

* soit
$$y = g^{-1}(x) \implies g(y) = x \implies \frac{1}{1 + \sin y} = x \implies 1 + \sin y = \frac{1}{x}$$

 $et \cos y = \sqrt{1 - \sin^2 y} \implies \cos y = \sqrt{1 - \left(\frac{1}{x} - 1\right)^2}$
 $\cos y = \frac{1}{x}\sqrt{2x - 1}$

d'où:
$$(g^{-1})'(x) = \frac{1}{g'(y)} = -\frac{(1+\sin y)^2}{\cos y} = -\frac{\frac{1}{x^2}}{\frac{1}{x}\sqrt{2x-1}}$$

$$(g^{-1})'(x) = -\frac{1}{x\sqrt{2x-1}}$$

b)
$$g'_{g}(\frac{\pi}{2}) = 0$$

 (\mathcal{C}_g) admet une demi-tangente horizontale au point d'abscisse $\frac{\pi}{2}$ d'où :

 $(\mathcal{C}_{g^{-1}})$ admet une demi-tangente verticale au point d'abscisse $g(\frac{\pi}{2}) = \frac{1}{2}$

D'où : g^{-1} n'est pas dérivable à droite en $\frac{1}{2}$

EXERCICE№20

*
$$y = \frac{\sqrt[3]{4}}{\sqrt[3]{32}} = \sqrt[3]{\frac{4}{32}} = \sqrt[3]{\frac{1}{8}} = \frac{1}{\sqrt[3]{8}} = \frac{1}{2}$$

*
$$t = \sqrt[3]{8^2} = (\sqrt[3]{8})^2 = 2^2 = 4$$

2) a)
$$(2+\sqrt{5})^3 = 2^3 + 3 \times 2^2 \sqrt{5} + 3 \times 2 \times (\sqrt{5})^2 + (\sqrt{5})^3$$

= $8 + 12\sqrt{5} + 30 + 5\sqrt{5} = 38 + 17\sqrt{5}$

b)
$$B = \sqrt[3]{38 + 17\sqrt{5}} - \sqrt[3]{38 - 17\sqrt{5}} \leftarrow n'a$$
 pas de sens
 $car 38 - 17\sqrt{5} < 0$

EXERCICE№21

- 1) $\sqrt[3]{x} = \sqrt[4]{2} \iff x = (\sqrt[4]{2})^3 \iff x = \sqrt[4]{8} \implies S_{\mathbb{R}} = \left\{ \sqrt[4]{8} \right\}$
- 2) $\sqrt[5]{x^2} = \sqrt[3]{3} \Leftrightarrow x^2 = (\sqrt[3]{3})^5 \Leftrightarrow x = \sqrt[6]{3^5} \text{ ou } x = \sqrt[6]{3^5} \Rightarrow S_{\mathbb{R}} = \left\{ \sqrt[6]{3^5}, -\sqrt[6]{3^5} \right\}$
- 3) $\sqrt[3]{x^2} 3.\sqrt[3]{x} + 2 = 0$

dans \mathbb{R}_+ : (E) $\Leftrightarrow (\sqrt[3]{x})^2 - 3.\sqrt[3]{x} + 2 = 0$ on pose $t = \sqrt[3]{x}$

l'équation devient : $t^2 - 3t + 2 = 0 \implies t = 1$ ou t = 2

 $t=1 \Leftrightarrow \sqrt[3]{x} = 1 \Leftrightarrow x = 1 \text{ et } t=2 \Leftrightarrow \sqrt[3]{x} = 2 \Leftrightarrow x = 8 \Rightarrow S_{\mathbb{R}} = \{1,8\}$

4) $(1-\sqrt[4]{x})^3 + 8 = 0 \Leftrightarrow (\sqrt[4]{x} - 1)^3 = 8 \Leftrightarrow \sqrt[4]{x} - 1 = 2 \Leftrightarrow \sqrt[4]{x} = 3$ $\Leftrightarrow x = 3^4 \Leftrightarrow x = 81 \Rightarrow S_{\mathbb{D}} = \{81\}$

EXERCICE№22

- * $\lim_{x \to +\infty} (x^2 x + 1) = \lim_{x \to +\infty} x^2 = +\infty$ d'où $\lim_{x \to +\infty} \sqrt[3]{(x^2 x + 1)} = +\infty$
- * $\lim_{x \to +\infty} x \sqrt[3]{x} = \lim_{x \to +\infty} \sqrt[3]{x} \cdot \left[\sqrt[3]{x^2} 1 \right] = +\infty$
- * on pose $f(x)=\sqrt[3]{x}$ f est dérivable sur $]0,+\infty[$ et f'(x)= $\frac{1}{3\sqrt[3]{x^2}}$

$$\lim_{x \to 2} \frac{\sqrt[3]{x} - \sqrt[3]{2}}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = f'(2) = \frac{1}{3\sqrt[3]{4}}$$

 $*\sqrt[4]{x} = \sqrt[4]{\sqrt[3]{x^3}} = \sqrt[12]{x^3} \quad ; \quad \sqrt[3]{x} = \sqrt[3]{\sqrt[4]{x^4}} = \sqrt[12]{x^4} \quad ; \quad \sqrt{x} = \sqrt[6]{x^6} = \sqrt[12]{x^6}$

$$\lim_{x \to +\infty} \frac{\sqrt[3]{x} - \sqrt{x}}{\sqrt[4]{x}} = \lim_{x \to +\infty} \frac{\sqrt[12]{x^4} - \sqrt[12]{x^6}}{\sqrt[12]{x^3}} = \lim_{x \to +\infty} \frac{\sqrt[12]{x^4}}{\sqrt[12]{x^3}} - \frac{\sqrt[12]{x^6}}{\sqrt[12]{x^3}}$$
$$= \lim_{x \to +\infty} \sqrt[12]{x} - \sqrt[12]{x^3} = \lim_{x \to +\infty} \sqrt[12]{x} \cdot (1 - \sqrt[12]{x^2}) = -\infty$$

EXERCICE№23

$$f(x) = x + \sqrt[3]{x} \quad ;$$

$$1) - a) \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} 1 + \frac{1}{\left(\frac{3}{\sqrt{x}}\right)^2} = +\infty$$

f n'est pas dérivable à droite en 0

interprétation:

 (C_f) admet une demi-tangente parallèle à l'axe des ordonnées au point d'abscisse 0

2) f est dérivable sur
$$]0, +\infty[$$

$$f'(x) = 1 + \frac{1}{3(\sqrt[3]{x})^2} > 0$$

x	0	+∞
f'(x)	+	
f(x)		+∞
	0 —	

*
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} 1 + \frac{1}{(\sqrt[3]{x})^2} = 1$$

$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \sqrt[3]{x} = +\infty$$

 (C_f) admet une bronche parabolique de direction asymptotique celle de Δ : y = x

4) * f est continue et strictement croissante sur IR+, elle réalise donc une bijection

de
$$IR_+$$
, sur $f(IR_+) = [f(0), \lim_{x \to +\infty} f[= [0, +\infty[= IR_+]])$

5)
$$f(1) = 2$$
; $f(2) = 10$

$$(f^{-1})'(2) = \frac{1}{f'(1)} = \frac{3}{4}$$
; $(f^{-1})'(10) = \frac{1}{f'(2)} = \frac{3\sqrt[3]{4}}{1+3\sqrt[3]{4}}$

EXERCICE№24

$$f(x) = x \cdot \sqrt[4]{x} \quad ;$$

$$1) - a) \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \sqrt[4]{x} = 0$$

f est dérivable à droite en 0 $f'_{d}(0) = 0$

interprétation:

 (C_f) admet une demi-tangente horizontale au point d'abscisse 0

$$f'(x) = \sqrt[4]{x} + x \left(\frac{1}{4(\sqrt[4]{x})^3}\right) = \frac{5}{4} \sqrt[4]{x} \ge 0$$

x	0	+∞
f'(x)	0	+
f(x)		→ +∞
	0	

3) *
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \sqrt[4]{x} = +\infty$$

- (\mathcal{C}_f) admet une bronche parabolique de direction celle de (0, $\vec{\jmath})$ au vois(+ ∞)
- 4) * f est continue et strictement croissante sur IR_+ , elle réalise donc une bijection de IR_+ , sur $f(IR_+) = [f(0), \lim_{x \to +\infty} f[=[0, +\infty[=IR_+$
- 5) * soit $y = f^{-1}(x)$ avec : x et $y \in IR_+$ $\Leftrightarrow f(y) = x \Leftrightarrow y \cdot \sqrt[4]{y} = x \Leftrightarrow \left(\sqrt[4]{y}\right)^5 = x$ $\Leftrightarrow \sqrt[4]{y} = \sqrt[5]{x} \Leftrightarrow y = \sqrt[5]{x^4} \quad \text{d'où} : f^{-1}(x) = \sqrt[5]{x^4} \quad \text{pour } x \in IR_+$

QCM:

- 1) 0 est un minimum relatif de f
- 2) La fonction f est croissante sur [-1,-0,5[et]-0,5,0]
- 3) X=-0,5
- 4) Y=2
- 5) Trois point communs

Vrai-Faux:

- 1) (faux); conte exemple: $f(x)=x^4$ et a=0
- 2) (vrai)

 $f^{\prime\prime}$ s'annule en a en changeant de signe d'où le point I(a,f(a)) est un point d'inflexion pour (C_f)

- 3) (faux); contre exemple : $f(x) = \frac{1}{x}$, $f'(x) = \frac{-1}{x^2}$, I =]0,2[f'] est croissante sur]0,2[mais f] est décroissante sur]0,2[mais f]
- 4) (faux) ; contre exemple :

$$f(x) = \cos x$$
 $I = \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$

$$f'(x) = -\sin x$$

$$f''(x) = -\cos x \le 0$$
 pour $x \in I$

mais f n'est pas décroissante sur $\left]\frac{-\pi}{2}, \frac{\pi}{2}\right[$

Ex1:

$$\Delta: y = -x + 2$$

1) *
$$\lim_{x \to -\infty} f(x) = 0$$
 * $\lim_{x \to 0^{-}} f(x) = +\infty$ * $\lim_{x \to 0^{+}} f(x) = -\infty$ * $\lim_{x \to 2^{-}} f(x) = -\infty$

$$* \lim_{x \to 2^+} f(x) = +\infty * \lim_{x \to +\infty} f(x) = -\infty * \lim_{x \to +\infty} \frac{f(x)}{x} = -1 * \lim_{x \to +\infty} (f(x) + x - 2) = 0$$

2)

Х	-∞	0	1	2	+∞
f'(x)	+	+	p -		
f(x)	0	/	1	+∞	-∞

- 3)* $m \in]-\infty,0] \cup \{1\}$ l'équation : f(x)=m admet trois solutions
 - * $m \in [0,1[$ l'équation f(x)=m admet quatre solutions
 - * $m \in]1,+\infty[$ l'équation f(x)=m admet deux solutions

Ex2:

- 1) $(\zeta_f) = (\zeta_3)$; $(\zeta_g) = (\zeta_1)$; $(\zeta_h) = (\zeta_2)$
- 2) * (ζ_1) admet une branche infinie parabolique de direction celle de $(0, \vec{i})$
 - * (ζ_2) admet la droite Δ :y=x comme asymptote oblique
 - * (ζ_3) admet une branche infinie parabolique de direction celle de $(\vec{O,j})$

<u>Ex3:</u>

1)
$$D_f = [1, +\infty[$$

$$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} -3\sqrt{x - 1} = -\infty \text{d'où} : \text{la droite } \Delta: y = 2x$$

est une direction asymptotique à (ζ_f) au voisinage de + ∞

2)
$$f(x) = \frac{1}{x} - \sqrt{x+2}$$
 $D_f = [-2, +\infty[/\{0\}]]$

*
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} - \sqrt{x+2} = +\infty$$
 et $\lim_{x \to 0^-} f(x) = -\infty$

la droite d'équation x=0 est une asymptote verticae à (ζ_f)

*
$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{1}{x^2} - \frac{\sqrt{x+2}}{x} = \lim_{x \to +\infty} \frac{1}{x^2} - \sqrt{\frac{x+2}{x^2}} = \lim_{x \to +\infty} \frac{1}{x^2} - \sqrt{\frac{1}{x} + \frac{2}{x^2}} = 0$$

 (ζ_f) admet une branche infinie de direction parabolique celle de $(0, \vec{i})$

3)
$$f(x) = x \cdot \sqrt{\frac{x-1}{x+1}}$$

Х	-∞	-1		1	+∞
x-1	-		-	0 +	
x+1	-	þ	+	+	
$\frac{x-1}{x+1}$	+		-	0 +	

$$D_f = \left] -\infty; -1 \right[\cup \left[1, +\infty \right[$$

*
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \sqrt{\frac{x-1}{x+1}} = +\infty$$

•
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \sqrt{\frac{x-1}{x+1}} = 1$$

•
$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} x \cdot \left[\sqrt{\frac{x-1}{x+1}} - 1 \right] = \lim_{x \to +\infty} x \cdot \left[\frac{\frac{x-1}{x+1} - 1}{\sqrt{\frac{x-1}{x+1}} + 1} \right]$$

$$= \lim_{x \to +\infty} x. \left[\frac{-2}{(x+1)(\sqrt{\frac{x-1}{x+1}} + 1)} \right] = \lim_{x \to +\infty} (\frac{x}{x+1})(\frac{-2}{\sqrt{\frac{x-1}{x+1}} + 1}) = -1$$

d'où Δ :y=x-1 est une asymptote oblique à (ζ_f) au voisinage (+∞)

$$\lim_{x \to (-1)^{-}} f(x) = -\infty \Rightarrow la \, droite \, d \, '\acute{e}q : x = -1 \, est \, une \, asymptote \, \grave{a} \, (\zeta_{\rm f})$$

*
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x \sqrt{\frac{x-1}{x+1}} = -\infty$$

•
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \sqrt{\frac{x-1}{x+1}} = 1$$

•
$$\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} (\frac{x}{x+1})(\frac{-2}{\sqrt{\frac{x-1}{x+1}} + 1}) = -1$$

 Δ :y=x-1 asymptote oblique à (ζ_f) au voisinage $(-\infty)$

Ex4:

$$f(x) = x + \sqrt{1 + x^2}$$

1)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{(\sqrt{1+x^2})^2 - x^2}{\sqrt{1+x^2} - x} = \lim_{x \to -\infty} \frac{1}{\sqrt{1+x^2} - x} = 0$$

d'où y=0 est une asymptote à (ζ_f) au voisinage $(-\infty)$

2)
$$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} (\sqrt{1 + x^2} - x) = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + x^2} + x} = 0$$

d'où Δ :y=2x est une asymptote à (ζ_f) au voisinage $(+\infty)$

$$\underline{Ex5:} \ f(x) = \begin{cases} x^2 - 2x + 4 & \text{si } x \le 1 \\ \frac{1}{x} + x + 1 & \text{si } x > 1 \end{cases}$$

1)
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^2 - 2x + 1}{x - 1} = \lim_{x \to 1^{-}} \frac{(x - 1)^2}{x - 1} = \lim_{x \to 1^{-}} (x - 1) = 0 = f'_{g}(1)$$

*
$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{\frac{1}{x} + x - 2}{x - 1} = \lim_{x \to 1^+} \frac{x^2 - 2x + 1}{x(x - 1)} = \lim_{x \to 1^+} \frac{x - 1}{x} = 0 = f'_d(1)$$

f est dérivable à gauche et à droite en 1 et $f'_d(1) = f'_g(1) = 0$ d'où

f est dérivable en 1 et f'(1)=0

2)

- la fonction : $x \mapsto x^2 2x + 4$ est dérivable sur \mathbb{R} en particulier sur $]-\infty,1[$ d'où f est dérivable sur $]-\infty,1[$
- de meme f est dérivable sur]1,+∞[
- f est dérivable en 1

conclusion: f est dérivable sur IR

$$f'(x) = \begin{cases} 2x - 2 & \text{si } x \le 1 \\ f'(1) = 0 \\ \frac{x^2 - 1}{x^2} & \text{si } x > 1 \end{cases}$$

3)
$$f'(x) = \begin{cases} 2(x-1) & \text{si } x \le 1 \\ \frac{x^2 - 1}{x^2} & \text{si } x > 1 \end{cases}$$
 $\frac{x}{f'(x)}$ $\frac{-\infty}{f(x)}$

 $\lim_{x\to -\infty} \frac{f(x)}{x} = \lim_{x\to +\infty} (x-2+\frac{4}{x}) = +\infty \quad (C_f) \text{ admet une branche infinie parabolique}$ de direction celle de (O,\vec{j})

•
$$\lim_{x \to +\infty} [f(x) - (x+1)] = \lim_{x \to +\infty} \left(\frac{1}{x}\right) = 0$$
 $\Delta: y = x+1$ est une asymptote à (C_f) au voisinage $(+\infty)$

Ex6:
$$f(x) = \frac{x^2}{3} + \frac{9}{4x}$$

1)
$$D_f = \mathbb{R}^*$$

2)
$$f'(x) = \frac{2}{3}x - \frac{9}{4x^2} = \frac{(2x-3)(4x^2+6x+9)}{12x^2}$$
 le signe de $f'(x)$ est celui de (2x-3) car $4x^2+6x+9>0$

3)

• la droite d'équation x=0 est une asymptote à (C_f)

• de meme : $\lim_{-\infty} \frac{f(x)}{x} = -\infty$ (C_f) admet une branche infinie parabolique de direction celle de (O, \vec{j}) au voisinage $(-\infty)$

5)

6)
$$(C'): y = |f(x)|$$

<u>Ex7:</u>

1)*
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^3}{(x-1)^2} = +\infty$$
 (de la forme $\frac{1}{0^+}$)

$$\lim_{x \to +\infty} (f(x) - (x+2)) = \lim_{x \to +\infty} \frac{x^3}{(x-1)^2} - (x+2) = \lim_{x \to +\infty} \frac{3x-2}{(x-1)^2} = \lim_{x \to +\infty} \frac{3x}{x^2} = \lim_{x \to +\infty} \frac{3}{x} = 0$$

 Δ :y=x+2 est une asymptote à (ζ_f) au voisinage $(+\infty)$

2)
$$\cdot \lim_{x \to \infty} f(x) - (x+2) = \lim_{x \to \infty} \frac{3x-2}{x^2 - 2x+1} = \lim_{x \to \infty} \frac{3x}{x^2} = \lim_{x \to \infty} \frac{3}{x} = 0$$

 Δ est une asymptote à (ζ_f) au voisinage $(-\infty)$

•
$$f'(x) = \frac{x^2.(x-3)}{(x-1)^3}$$

Х	-00	0	1		3		+∞
f'(x)	+	· þ	+	-	ф	+	
f(x)			* +∞	+∞	27/4		+∞

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3}{x^2} = \lim_{x \to +\infty} x = +\infty$$

$$et \lim_{x \to +\infty} f(x) = -\infty$$

Ex8:

$$f(x) = \frac{x^3 + 3x^2 + 3x + 5}{(x+1)^2} \qquad x \neq -1$$

1)
$$f(x) = \frac{(x^3 + 3x^2 + 3x + 1) + 4}{(x+1)^2} = \frac{(x+1)^3 + 4}{(x+1)^2} = x + 1 + \frac{4}{(x+1)^2}$$
 (a=1; b=1; c=4)

2)
$$f'(x) = 1 - \frac{8}{(x+1)^3} = \frac{(x+1)^3 - 8}{(x+1)^3} = \frac{(x-1)(x^2 + 4x + 7)}{(x+1)^3}$$

$$x^2 + 4x + 7 > 0$$
 (car $\Delta < 0$) \Rightarrow le signe de f'(x) est celui de $\frac{x-1}{x+1}$

3) a) $\lim_{x \to \infty} [f(x) - (x+1)] = \lim_{x \to \infty} \frac{4}{(x+2)^2} = 0$ d'où D:y=x+1 est une asymptote à (C) au voisinage de (\pm^{∞})

b)
$$f(x) - (x+1) = \frac{4}{(x+1)^2} > 0 \implies (C)$$
 est au dessus de D

Ex9:

$$f(x) = \frac{x^2 - 2x + 3}{x - 1}$$

1)
$$f(x) = \frac{(x^2 - 2x + 1) + 2}{x - 1} = \frac{(x - 1)^2}{x - 1} + \frac{2}{x - 1} = x - 1 + \frac{2}{x - 1}$$

2)
$$f'(x) = \frac{x^2 - 2x - 1}{(x - 1)^2}$$
 $x^2 - 2x - 1 = 0$ pour $x = 1 - \sqrt{2}$ ou $x = 1 + \sqrt{2}$

- 3) montrons que l(1,0) est un centre de symétrie pour (C)
- pour $x \in D_f = \mathbb{R}/\{1\} \Rightarrow x \neq 1 \Rightarrow -x \neq -1 \Rightarrow 2 x \neq 1 \Rightarrow (2 x) \in D_f$

•
$$f(2-x) = (2-x)-1+\frac{2}{(2-x)-1}=1-x+\frac{2}{1-x}=-x+1-\frac{2}{x-1}=-f(x)$$

d'où I (1,0) est un centre de symétrie pour (C)

4) a)
$$\lim_{x\to\infty} [f(x)-(x-1)] = \lim_{x\to\infty} \frac{2}{x-1} = 0$$
 d'où D: y=x-1 est une asymptote à (C)

b)
$$f(x) - (x-1) = \frac{2}{x-1}$$

x	-∞	1		+∞
f'(x)	-		+	
P.R				
	D/(C)		$\binom{C}{D}$	

- 5) g est continue et strictement croissante sur $\left[1+\sqrt{2},+\infty\right[$, elle réalise donc une bijection de $\left[1+\sqrt{2},+\infty\right[$ sur $\left[2\sqrt{2},+\infty\right[$
- 6) a) g est strictement croissante sur $\left[1+\sqrt{2},+\infty\right[$, d'où g^{-1} est strictement croissante sur $\left[2\sqrt{2},+\infty\right[$

$$\begin{array}{c|cccc}
x & 2\sqrt{2} & & +\infty \\
\hline
g^{-1}(x) & & & +\infty \\
\hline
1+\sqrt{2} & & & +\infty
\end{array}$$

b)
$$g(x) = x \Leftrightarrow \frac{x^2 - 2x + 3}{x - 1} = x \Leftrightarrow x^2 - 2x + 3 = x^2 - x \Leftrightarrow x = 3$$

 $(C) \cap (C') = \{A(3,3)\}$

c)
$$(C') = S_{\Delta}(C_g)$$
 avec $\Delta : y=x$

Ex10:
$$f(x) = \frac{x}{\sqrt{3}} - \frac{\sqrt{3}}{x}$$

1)
$$D_f = \mathbb{R}^*$$
 f est une fonction impaire $f'(x) = \frac{1}{\sqrt{3}} + \frac{\sqrt{3}}{x^2} > 0$

$$\lim_{|x| \to +\infty} (f(x) - \frac{x}{\sqrt{3}}) = \lim_{|x| \to +\infty} -\frac{\sqrt{3}}{x} = 0$$

d'où la droite Δ : $y = \frac{x}{\sqrt{3}}$ est une asymptote à (C) au voisinage de $\pm \infty$

- 2) D:x=1
- a) M(x,y); M'(x',y')

$$S(M) = M' \Leftrightarrow \begin{cases} M * M' \in D \\ \hline MM' \perp \vec{j} \end{cases} \Leftrightarrow \begin{cases} \frac{x + x'}{2} = 1 \\ y' = y \end{cases} \Leftrightarrow \begin{cases} x' = 2 - x \\ y' = y \end{cases}$$

b)
$$M(x, y) \in (C) \Leftrightarrow y = f(x) \Leftrightarrow y = \frac{x}{\sqrt{3}} - \frac{\sqrt{3}}{x} \Leftrightarrow y' = \frac{2 - x'}{\sqrt{3}} - \frac{\sqrt{3}}{2 - x'}$$

$$d'où (C'): y = \frac{2 - x}{\sqrt{3}} - \frac{\sqrt{3}}{2 - x}$$

c) $(C) \cap (C')$

$$M(x,y) \in (C) \cap (C') \Leftrightarrow \begin{cases} y = \frac{x}{\sqrt{3}} - \frac{\sqrt{3}}{x} \\ y = \frac{2-x}{\sqrt{3}} - \frac{\sqrt{3}}{2-x} \end{cases}$$

$$\frac{x}{\sqrt{3}} - \frac{\sqrt{3}}{x} = \frac{2-x}{\sqrt{3}} - \frac{\sqrt{3}}{2-x} \Leftrightarrow x - \frac{3}{x} = 2 - x - \frac{3}{2-x} \Leftrightarrow \frac{x^2 - 3}{x} = \frac{x^2 - 4x + 1}{2 - x}$$

$$\Leftrightarrow (x^2 - 3)(2 - x) = x(x^2 - 4x + 1) \Leftrightarrow 2x^3 - 6x^2 - 2x + 6 = 0$$

$$\Leftrightarrow (x - 1)(2x^2 - 4x - 6) = 0 \Leftrightarrow x - 1 = 0 \text{ ou } 2x^2 - 4x - 6 = 0$$

$$\Leftrightarrow x = 1 \text{ ou } x = 1 \text{ ou } x = 3$$

d'où
$$(C) \cap (C') = \{A, B, C\}$$
 A(1,f(1)); B(-1,f(-1)) et C(3,f(3))

d)
$$(C') = S_D(C)$$

Ex11:
$$f(x) = |x+1| + \frac{x}{x^2 - 1}$$

1)
$$D_f = \mathbb{R} / \{-1, 1\}$$

2)
$$f(x) =\begin{cases} -(x+1) + \frac{x}{x^2 - 1} & \text{si } x < -1 \\ x + 1 + \frac{x}{x^2 - 1} & \text{si } x > -1 \text{ et } x \neq 1 \end{cases}$$

$$f'(x) = \begin{cases} -1 - \frac{x^2 + 1}{(x^2 - 1)^2} & \text{si } x < -1 \\ 1 - \frac{x^2 + 1}{(x^2 - 1)^2} & \text{si } x > -1 \text{ et } x \neq 1 \end{cases}$$

$$f'(x) = \begin{cases} -(1 + \frac{x^2 + 1}{(x^2 - 1)^2}) & \text{si } x < -1 \\ \frac{x^2 (x^2 - 3)}{(x^2 - 1)^2} & \text{si } x > -1 \text{ et } x \neq 1 \end{cases}$$

- * pour $x \in]-\infty,1[$ f'(x) < 0
- * dans $]-1,+\infty[/\{1\} f'(x)=0 \Leftrightarrow x=0 \text{ ou } x=\sqrt{3}$

3) les droites d'équations respectives x=-1 et x=1 sont des asymptotes à (C)

$$* \lim_{x \to +\infty} [f(x) - (x+1)] = \lim_{x \to +\infty} \frac{x}{x^2 - 1} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

 $\Delta_1: y = x + 1$ est une asymptote à (C) au voisinage de $+\infty$

$$\lim_{x \to \infty} [f(x) + (x+1)] = 0$$

d'où $\Delta_2: y = -x - 1$ est une asymptote à (C) au voisinage de $-\infty$

4) pour
$$x \in]-1,+\infty[/\{1\}, f(x)-(x+1)=\frac{x}{x^2-1}]$$

X	-1	0	1	+∞
f(x)-(x+1)	+	b -		+
P.R	$(C)/\Delta_1$	Δ/C		C Δ_1

pour
$$x \in]-\infty, -1[$$
 $f(x)+x+1=\frac{x}{x^2-1}<0$ (C) est au dessus de Δ_2

5) T:y=1 pour x]-1,1[
$$f(x) = x+1+\frac{x}{x^2-1} \Rightarrow f(x)-1=x+\frac{x}{x^2-1}=\frac{x^3}{x^2-1}$$

X	-1	0	1
f'(x)	+	ф	
P.R		A(0,:	T/(C)

Ex12:
$$f(x) = \frac{x^4 - 6x^2 + 1}{x^3 - x}$$

1) a)
$$x^3 - x = 0 \Leftrightarrow x(x^2 - 1) = 0 \Leftrightarrow x = 0$$
 ou x=1 ou x=-1. $D_f = \mathbb{R}^* / \{-1, 1\}$

b)
$$f(x) = x + \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x+1}$$

$$f(x) = \frac{x^2(x^2 - 1) + a(x^2 - 1) + bx(x + 1) + cx(x - 1)}{x(x - 1)(x + 1)} = \frac{x^4 + (a + b + c - 1)x^2 + (b - c)x - a}{x^3 - x}$$

Par identification : on aura : $\begin{vmatrix} a+b+c-1=-6 \\ b-c=0 \\ -a=1 \end{vmatrix} \Leftrightarrow \begin{vmatrix} a=-1 \\ b=c=-2 \end{vmatrix}$ d'où

$$f(x) = x - \frac{1}{x} - \frac{2}{x-1} - \frac{2}{x+1}$$

2)
$$f'(x) = 1 + \frac{1}{x^2} + \frac{2}{(x-1)^2} + \frac{2}{(x+1)^2}$$
 $f'(x) > 0$

3)
$$\lim_{|x| \to \infty} [f(x) - x] = \lim_{|x| \to \infty} \left(\frac{-1}{x} - \frac{2}{x - 1} - \frac{2}{x + 1} \right) = 0$$

les droite d'équations respectives x=-1; x=0; x=1 et y=x sont des asymptotes à (C)

4)
$$f(x) = 0 \Leftrightarrow x^{4} - 6x^{2} + 1 = 0 \quad \text{et} \quad x \in D_{f} \Leftrightarrow (x^{2} - 3)^{2} = 8 \text{ et} \quad x \in D_{f}$$

$$\Leftrightarrow x^{2} - 3 = \sqrt{8} \quad \text{ou} \quad x^{2} - 3 = -\sqrt{8} \Leftrightarrow x^{2} = 3 + \sqrt{8} \quad \text{ou} \quad x^{2} = 3 - \sqrt{8}$$

$$\Leftrightarrow x = -\sqrt{3 + 2\sqrt{2}} \quad \text{ou} \quad x = \sqrt{3 + 2\sqrt{2}} \quad \text{ou} \quad x = -\sqrt{3 - 2\sqrt{2}} \quad \text{ou} \quad x = \sqrt{3 - 2\sqrt{2}}$$

$$S_{\mathbb{R}} = \left\{ -\sqrt{3 + 2\sqrt{2}}; \sqrt{3 + 2\sqrt{2}}; -\sqrt{3 - 2\sqrt{2}}; \sqrt{3 - 2\sqrt{2}} \right\}$$

$$*f(x) = x \Leftrightarrow \frac{x^4 - 6x^2 + 1}{x^3 - x} = x \Leftrightarrow x^4 - 6x^2 + 1 = x^4 - x^2 \Leftrightarrow x^2 = \frac{1}{5}$$
$$\Leftrightarrow x = \frac{-1}{\sqrt{5}} \quad \text{ou } x = \frac{1}{\sqrt{5}}$$
$$S_{\mathbb{R}} = \left\{ \frac{-1}{\sqrt{5}}; \frac{1}{\sqrt{5}} \right\}$$

5) f est une fonction impaire d'où (C) admet le point O(0,0) comme centre de symétrie

6) $P_k(x) = x^4 - kx^3 - 6x^2 + kx + 1$ dans $\mathbb{R}^* / \{-1;1\}$ $P_k(x) = 0 \Leftrightarrow f(x) = k$; graphiquement l'équation f(x)=k admet toujours quatre solutions distinctes

Ex13:
$$f(x) = \frac{3x^2 - x - 2}{x^2 - x - 2}$$

1)
$$x^2 - x - 2 = 0 \Leftrightarrow x' = -1$$
 et $x'' = 2$ $D_f = \mathbb{R} / \{-1; 2\}$

2)
$$f'(x) = \frac{-2x(x+4)}{(x^2-x-2)^2}$$

3) les droites d'équations respectives x=-1; x=2 et y=3 sont des asymptotes à (C)

4) dans $\mathbb{R}/\{-1,2\}$

$$f(x) = m \iff (3-m)x^2 + (m-1)x + 2(m-1) = 0$$

 $\underline{\mathbf{1}}^{\underline{\mathrm{er}}}\underline{\mathrm{cas}}: m \in \left] - \infty, 1 \right[\, \cup \, \right] 3, + \infty \left[\quad \text{l'équation (E_m) admet deux solutions de signes contraires} \right]$

$$\underline{2^{\text{em}} \text{ cas}} : m \in \left[1, \frac{25}{9}\right]$$
 l'équation (E_m) n'admet pas de racines

 $\underline{3^{\mathrm{em}}_{\mathrm{Cas}}}: m \in \left[\frac{25}{9}, 3\right] \cup \{1\}$ l'équation (E_m) admet une unique solution négative

a) g est continue et strictement décroissante sur $]2,+\infty[$ elle réalise donc une bijection de $[2,+\infty[$ sur g($]2,+\infty[$)= $[3,+\infty[$ par suite g admet une fonction réciproque $\,g^{-1}\,$

définie sur]3,+∞[

b)
$$(C_{g^{-1}}) = S_{\Delta}(C_g)$$
 avec $\Delta: y = x$

Ex14:

$$f(x) = \frac{(x+1)^3}{(x-1)^2}$$
; $x \ne 1$

1)
$$x+5+\frac{12}{x-1}+\frac{8}{(x-1)^2}=\frac{(x+5)(x-1)^2+12(x-1)+8}{(x-1)^2}=...=f(x)$$

2)
$$f'(x) = 1 - \frac{12}{(x-1)^2} - \frac{16}{(x-1)^2} = \frac{(x+1)^2(x-5)}{(x-1)^3}$$

3) a)
$$\lim_{|x| \to +\infty} [f(x) - (x+5)]$$

$$= \lim_{|x| \to +\infty} \left(\frac{12}{x-1} + \frac{8}{(x-1)^2} \right) = 0 \text{ d'où la droite D : y=x+5 est une asymptote à (C)}$$

b)
$$f(0) = 1 \Rightarrow A(0,1)$$

$$f(x) = x + 5 \Leftrightarrow \frac{12}{x - 1} + \frac{8}{(x - 1)} = 0 \Leftrightarrow 12x - 4 = 0 \Leftrightarrow x = \frac{1}{3}$$
 d'où $B(\frac{1}{3}, \frac{16}{3})$

$$T_A: y = 5x + 1$$
 $T_B: y = 28x - 4$

Ex15:

$$f(x) = \sqrt{x^2 - x + 1}$$

1) a)
$$x^2 - x + 1 = 0$$

$$\Delta = -3 < 0$$

d'où
$$x^2 - x + 1 > 0$$
 ; $\forall x \in \mathbb{R} \Rightarrow D_f = \mathbb{R}$

b)
$$x^2 - x + 1 = (x - \frac{1}{2})^2 - \frac{1}{4} + 1 = (x - \frac{1}{2})^2 + \frac{3}{4}$$
 d'où $f(x) = \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}}$

2) a)
$$f(x) - (x - \frac{1}{2}) = \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}} - (x - \frac{1}{2}) = \frac{\frac{3}{4}}{\sqrt{(x - \frac{1}{2})^2 + \frac{3}{4} + (x - \frac{1}{2})}}$$

d'où $\lim_{x \to +\infty} f(x) - (x - \frac{1}{2}) = 0 \Rightarrow \Delta : y = x - \frac{1}{2}$ est une asymptote à (ζ_f) au voisinage $(+\infty)$

b)
$$f(x) - (x - \frac{1}{2}) = \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}} - (x - \frac{1}{2})$$

 $(x - \frac{1}{2})^2 + \frac{3}{4} > (x - \frac{1}{2})^2 \Rightarrow \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}} > \left| x - \frac{1}{2} \right|$
 $\Rightarrow \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}} > (x - \frac{1}{2}) \Rightarrow \sqrt{(x - \frac{1}{2})^2 + \frac{3}{4}} - (x - \frac{1}{2}) > 0$
 $\Rightarrow f(x) - (x - \frac{1}{2}) > 0$ donc (ζ_f) est au dessus de Δ

3) *
$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{\sqrt{x^2 \cdot (1 - \frac{1}{x} + \frac{1}{x^2})}}{x} = \lim_{x \to -\infty} \frac{|x| \cdot \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}}{x} = \lim_{x \to -\infty} -\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} = -1$$

$$\lim_{x \to -\infty} (f(x) + x) = \lim_{x \to -\infty} (\sqrt{x^2 - x + 1} + x) = \lim_{x \to -\infty} \frac{(x^2 - x + 1) - x^2}{\sqrt{x^2 - x + 1} - x} = \lim_{x \to -\infty} \frac{-x + 1}{\sqrt{x^2 - x + 1} - x}$$

$$= \lim_{x \to -\infty} \frac{-x + 1}{|x| \cdot \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - x} = \lim_{x \to -\infty} \frac{-x(1 - \frac{1}{x})}{-x \left[\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} + 1\right]} = \lim_{x \to -\infty} \frac{1 - \frac{1}{x}}{1 + \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}} = \frac{1}{2}$$

D:y=-x+ $\frac{1}{2}$ est une asymptote à (ζ_f) au voisinage $(-\infty)$

4)
$$f'(x) = \frac{2x-1}{2\sqrt{x^2-x+1}}$$

(-∞		1/2		+∞
'(x)		-	P	+	
(x)	+∞		$\frac{\sqrt{3}}{2}$		+∞

Ex16:

$$f(x) = \sqrt{x^2 + 3x - 4}$$

1)
$$x^2 + 3x - 4 = 0$$
 x'=1 et x "=-4

$$D_f =]-\infty, -4] \cup [1, +\infty[$$

2)
$$\lim_{x \to (-4)^{-}} \frac{f(x) - f(-4)}{x + 4} = \lim_{x \to (-4)^{-}} \frac{\sqrt{x^2 + 3x - 4}}{x + 4} = \lim_{x \to (-4)^{-}} \frac{x - 1}{\sqrt{x^2 + 3x - 4}} = -\infty$$

f n'est pas dérivable à gauche en (-4)

(C_f) admet une demi-tangente verticale dirigée vers le haut au point d'abscisse -4

*
$$\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{x + 4}{\sqrt{x^2 + 3x - 4}} = +\infty$$
 f n'est pas dérivable à droite en 1

 (C_f) admet une demi-tangente verticale dirigée vers le haut au point d'abscisse ${f 1}$

- 3) la fonction $x \mapsto x^2 + 3x 4$ est dérivable et strictement positive sur chacun des intervalles $]-\infty, -4[$ et $]1, +\infty[$, d'où f est dérivable sur chacun des intervalles $]-\infty, -4[$ et $]1, +\infty[$ $f'(x) = \frac{2x+3}{2\sqrt{x^2+3x-4}}$
- 4)

5) $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \sqrt{1 + \frac{3}{x} - \frac{4}{x^2}} = 1$

$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} (\sqrt{x^2 + 3x - 4} - x) = \lim_{x \to +\infty} \frac{3x - 4}{\sqrt{x^2 + 3x - 4} + x} = \lim_{x \to +\infty} \frac{3 - \frac{4}{x}}{\sqrt{1 + \frac{3}{x} - \frac{4}{x^2} + 1}} = \frac{3}{2}$$

 $\Delta_1: y = x + \frac{3}{2}$ est une asymptote à (C) au voisinage de $+\infty$

de même : Δ_2 : $y = -x - \frac{3}{2}$ est une asymptote à (C) au voisinage de ($-\infty$)

6) a)

b)
$$(\Gamma): x^2 - y^2 + 3x - 4 = 0$$

$$x^2 - y^2 + 3x - 4 = 0$$

$$\Leftrightarrow y^2 = x^2 + 3x - 4 \Leftrightarrow y = \sqrt{x^2 + 3x - 4} \quad \text{ou } y = -\sqrt{x^2 + 3x - 4} \Leftrightarrow y = f(x) \quad \text{ou } y = -f(x)$$

$$\text{d'où } (\Gamma) = (C) \cup (C') \quad \text{avec } (C') = S_{(Ox)}(C)$$

Ex17:

$$f(x) = x^2 - 32\sqrt{x} + 31$$

1)
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x} = \lim_{x\to 0^+} \left(x-\frac{32}{\sqrt{x}}\right) = -\infty$$
 f n'est pas dérivable à droite en 0

2) f est dérivable sur $]0,+\infty[$

$$et f'(x) = 2x - \frac{16}{\sqrt{x}} = \frac{2x\sqrt{x} - 16}{\sqrt{x}} = \frac{2\left[(\sqrt{x})^3 - 8\right]}{\sqrt{x}} = \frac{2(\sqrt{x} - 2)(x + 2\sqrt{x} + 4)}{\sqrt{x}}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left[x - \frac{32}{\sqrt{x}} + \frac{31}{x} \right] = +\infty$$

3)
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(x - \frac{32}{\sqrt{x}} + \frac{31}{x} \right) = +\infty$$

(C) admet une branche parabolique de

direction celle de (O, \vec{j})

4)
$$g(x) = x^2 - 32\sqrt{|x|} + 31$$

- $D_g = \mathbb{R}$
- g est une fonction paire
- pour $x \in \mathbb{R}_+$ g(x)=f(x)

d'où
$$(C_g) = (C) \cup (C')$$
 avec $(C') = S_{(Ov)}(C)$

Ex18:

$$g(x) = x\sqrt{x} + 10$$

- 1) $\lim_{x\to 0^+} \frac{g(x) g(0)}{x} = \lim_{x\to 0^+} \sqrt{x} = 0$ g est dérivable à droite en 0 et $g_d(0) = 0$
- 2) $g'(x) = \frac{3}{2}\sqrt{x} \ge 0$

3)

,					
	X	0			+∞
	g'(x)	0	+		
	g'(x) g(x)			*	+∞
		10			

- 4) $\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \left(\sqrt{x} + \frac{10}{x} \right) = +\infty$
- (C) admet une branche parabolique de direction

celle de (O, \vec{j}) au voisinage de + ∞

5)

Ex19 :

$$f(x) = \frac{2 + \sqrt{4 - x^2}}{x}$$

1)

$$D_f = [-2, 2]/\{0\}$$

$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{\sqrt{4 - x^{2}} + (2 - x)}{x(x - 2)} = \lim_{x \to 2^{-}} \frac{1}{x} \left[-1 + \frac{\sqrt{4 - x^{2}}}{x - 2} \right]$$

$$= \lim_{x \to 2^{-}} \frac{1}{x} \left[-1 + \frac{4 - x^{2}}{(x - 2)\sqrt{4 - x^{2}}} \right] = \lim_{x \to 2^{-}} \frac{1}{x} \left[-1 - \frac{2 + x}{\sqrt{4 - x^{2}}} \right] = -\infty$$

f n'est pas dérivable à gauche en 2.

- (C) admet une demi-tangente verticale dirigée vers le haut au point d'abscisse 2
- 3) la fonction : $x \mapsto 4 x^2$ est dérivable et strictement positive sur]0,2[

d'où la fonction : $x \mapsto \sqrt{4-x^2}$ est dérivable sur]0,2[

par suite f est dérivable sur]0,2[comme étant quotient de deux fonctions dérivables

$$f(x) = \frac{2}{x} + \frac{\sqrt{4 - x^2}}{x}$$

$$f'(x) = \frac{-2}{x^2} + \frac{\frac{-x^2}{\sqrt{4 - x^2}} - \sqrt{4 - x^2}}{x^2} = \frac{-2}{x^2} - \frac{4}{x^2 \sqrt{4 - x^2}} = \frac{-2}{x^2} \left[1 + \frac{2}{\sqrt{4 - x^2}} \right] < 0$$

4) f est une fonction impaire, il suffit de l'étudier sur]0,2]

5) a)
$$f(x) = x \Leftrightarrow \frac{2 + \sqrt{4 - x^2}}{x} = x \Leftrightarrow x^2 = 2 + \sqrt{4 - x^2}$$

 $\Leftrightarrow x^2 - 2 = \sqrt{4 - x^2} \Leftrightarrow x^4 - 4x^2 + 4 = 4 - x^2 \Leftrightarrow x^4 - 3x^2 = 0$
 $\Leftrightarrow x^2(x^2 - 3) = 0 \Leftrightarrow x^2 = 3 \quad \text{car } x \neq 0 \Leftrightarrow x = \sqrt{3} \quad \text{ou } x = -\sqrt{3}$
 $(C) \cap D = \{A, B\} \quad avec \quad A(-\sqrt{3}, -\sqrt{3}) \text{ et } B(\sqrt{3}, \sqrt{3})$
b) $O(0,0)$ est un centre de symétrie pour (C)

6) a) f est continue et strictement décroissante sur]0,2], elle réalise donc une bijection de]0,2] sur $[1,+\infty[$

b) soit
$$y = f^{-1}(x)$$
 avec: $x \in [1, +\infty[; y \in]0, 2]$

$$\Leftrightarrow f(y) = x \Leftrightarrow \frac{2 + \sqrt{4 - y^2}}{y} = x \Leftrightarrow xy - 2 = \sqrt{4 - y^2} \Leftrightarrow x^2 y^2 - 4xy + 4 = 4 - y^2$$

$$\Leftrightarrow (1+x^2)y^2 - 4xy = 0 \Leftrightarrow y \Big[(1+x^2)y - 4x \Big] = 0 \Leftrightarrow (1+x^2)y - 4x = 0 \quad \text{car } y \neq 0 \Leftrightarrow y = \frac{4x}{1+x^2}$$

d'où
$$f^{-1}(x) = \frac{4x}{1+x^2}$$

c)
$$(C') = S_D(C_1)$$
 avec (C_1) : la courbe de la restriction de f sur]0,2]

Ex20:

$$f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$$

1)
$$D_f = \mathbb{R}$$

$$f'(x) = \frac{3}{2(\sqrt{x^2 + x + 1})^3}$$

$$\begin{array}{c|cccc}
x & -\infty & +\infty \\
\hline
f'(x) & + & \\
\hline
f(x) & & 2 & \\
\end{array}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+1}{\left| x \right| \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}} = \lim_{x \to +\infty} \frac{2 + \frac{1}{x}}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}} = 2$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x(2 + \frac{1}{x})}{-x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}} = \lim_{x \to \infty} \frac{2 + \frac{1}{x}}{-\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}}} = -2$$

2)
$$f(x) = 0 \Leftrightarrow x = \frac{-1}{2}$$
 $I(\frac{-1}{2}, 0)$

• pour $x \in D_f = \mathbb{R}$ on a : $(-1-x) \in D_f$

•
$$f(-1-x) = \frac{2(-1-x)+1}{\sqrt{(1+x)^2+(-1-x)+1}} = \frac{-(2x+1)}{\sqrt{x^2+x+1}} = -f(x)$$

d'où $I(\frac{-1}{2},0)$ est un centre de symétrie pour (C)

3)
$$\Delta: y = \frac{3}{2}x$$

$$f'(x) = \frac{3}{2} \Leftrightarrow \frac{3}{2\sqrt{x^2 + x + 1}} = \frac{3}{2} \Leftrightarrow \sqrt{x^2 + x + 1} = 1 \Leftrightarrow x^2 + x + 1 = 1$$

$$\Leftrightarrow x(x+1) = 0 \Leftrightarrow x = 0 \text{ ou } x = -1$$

les tangentes à (C) aux points d'abscisse 0 et -1 sont parallèles à Δ

$$T_0: y = \frac{3}{2}x + 1$$
 $T_1: y = \frac{3}{2}x + \frac{1}{2}$

4)

5) a) f est continue et strictement croissante sur IR , elle réalise donc une bijection de IR sur f(IR)=]-2,2[, d'où f admet une fonction réciproque f^{-1} définie sur]-2,2[

b)
$$(C_{f^{-1}}) = S_D(C_f)$$
 avec D: y=x

c)
$$(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{2}{3}$$

Ex21:

$$f(x) = \frac{-1}{2} + \frac{x}{2\sqrt{x^2 + 1}}$$

1)
$$D_f = \mathbb{R}$$
 $f'(x) = \frac{1}{2(x^2 + 1)\sqrt{x^2 + 1}}$

X	_∞	+∞
f'(x)	+	
f'(x) f(x)		0
	-1	

$$f(x) = \frac{-1}{2} + \frac{x}{2|x|\sqrt{1 + \frac{1}{x^2}}}$$

pour x>0,
$$f(x) = \frac{-1}{2} + \frac{1}{2\sqrt{1 + \frac{1}{x^2}}}$$
; $\lim_{x \to +\infty} f(x) = 0$

pour x<0,
$$f(x) = \frac{-1}{2} - \frac{1}{2\sqrt{1 + \frac{1}{x^2}}}$$
; $\lim_{x \to -\infty} f(x) = -1$

2) f est continue et strictement croissante sur IR , elle réalise donc une bijection de IR sur f(IR)=]-1,0[

II/
$$g(x) = \frac{-1}{2}x + 1 + \frac{1}{2}\sqrt{x^2 + 1}$$

1)
$$g'(x) = f(x) < 0$$

$$g(x) = 1 + \frac{1}{2} \left(\sqrt{x^2 + 1} - x \right)$$
; $\lim_{x \to -\infty} g(x) = +\infty$

$$g(x) = 1 + \frac{1}{2} \left[\frac{1}{\sqrt{1 + x^2 + x}} \right]; \lim_{x \to +\infty} g(x) = 1$$

2) $\lim_{x \to +\infty} g(x) = 1$ d'où Δ_1 : y=1 est une asymptote à (C')

$$\bullet \lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} \left(\frac{-1}{2} + \frac{1}{x} + \frac{1}{2} \frac{\sqrt{x^2 + 1}}{x} \right) = \lim_{x \to -\infty} \left(\frac{-1}{2} + \frac{1}{x} - \frac{1}{2} \sqrt{1 + \frac{1}{x^2}} \right) = -1$$

•
$$\lim_{x \to -\infty} (g(x) + x) = \lim_{x \to -\infty} \frac{1}{2}x + 1 + \frac{1}{2}\sqrt{x^2 + 1} = \lim_{x \to -\infty} 1 + \frac{1}{2}\left(\frac{1}{\sqrt{x^2 + 1} - x}\right) = 1$$

 Δ_2 :y=-x+1 est une asymptote à (C) au voisinage de (- ∞)

• position relative de (C') et Δ_1

$$g(x) - 1 = \frac{1}{2} \sqrt{x^2 + 1} - \frac{1}{2} x = \frac{1}{2} \left(\sqrt{x^2 + 1} - x \right)$$

$$\Rightarrow g(x) - 1 > 0 \text{ (C') est au dessus de } \Delta_1$$

$$x^2 + 1 > x^2 \Rightarrow \sqrt{x^2 + 1} > |x| \Rightarrow \sqrt{x^2 + 1} > x$$

• position relative de (C') et Δ_2

$$g(x) - (-x+1) = \frac{1}{2} \left(\sqrt{x^2 + 1} + x \right)$$

$$\sqrt{x^2 + 1} > |x| \Rightarrow \sqrt{x^2 + 1} > -x$$

$$\Rightarrow g(x) - (-x+1) > 0 \text{ (C') est au dessus de } \Delta_2$$

3) a)

b) g est continue et strictement décroissante sur IR , elle réalise donc une bijection de IR sur $g(IR)=]1,+\infty[$

c) on pose
$$y = g^{-1}(x)$$
 avec x>1, y $\in \mathbb{R}$

$$\Leftrightarrow g(y) = x \Leftrightarrow \frac{-1}{2}y + 1 + \frac{1}{2}\sqrt{y^2 + 1} = x \Leftrightarrow \sqrt{y^2 + 1} = 2x + y - 2$$

$$\Leftrightarrow y^2 + 1 = 4x^2 + 4xy - 8x + y^2 - 4y + 4 \Leftrightarrow (4x - 4)y = 1 - 4(x^2 - 2x + 1)$$

$$\Leftrightarrow y = \frac{1}{4x - 4} - \frac{x^2 - 2x + 1}{x - 1} \Leftrightarrow y = \frac{1}{4x - 4} - \frac{(x - 1)^2}{x - 1} \Leftrightarrow y = \frac{1}{4x - 4} - (x - 1)$$

d'où
$$g^{-1}(x) = \frac{1}{4x-4} - (x-1)$$

d)
$$(C_{g^{-1}}) = S_{\Delta}(C')$$
 avec $\Delta : y=x$

Ex22:

$$f(x) = 1 + \frac{x}{\sqrt{1 + x^2}}$$

1)
$$D_f = \mathbb{R}$$

$$f'(x) = \frac{\sqrt{1+x^2} - x\left(\frac{2x}{2\sqrt{1+x^2}}\right)}{1+x^2} = \frac{1}{(1+x^2)\sqrt{1+x^2}} > 0$$

$$\begin{array}{c|cccc}
x & -\infty & +\infty \\
\hline
f'(x) & + & \\
\hline
f(x) & 2 & \\
0 & & \\
\end{array}$$

pour
$$x \neq 0$$
; $f(x) = 1 + \frac{x}{|x|\sqrt{1 + \frac{1}{x^2}}}$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 1 + \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = 2 \quad et \quad \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} 1 - \frac{1}{\sqrt{1 + \frac{1}{x^2}}} = 0$$

2) a)
$$f''(x) = \frac{-3x}{(1+x^2)^2 \cdot \sqrt{1+x^2}}$$

f" s'annule en 0 en changeant de signe d'où A(0,1) est un point d'inflexion pour (C)

b) T:y=x+1

c) A(0,1) * pour
$$x \in D_f = \mathbb{R}$$
 on $(-x) \in D_f$

*
$$f(-x) = 1 - \frac{x}{\sqrt{1+x^2}} = 2 - \left[1 + \frac{x}{\sqrt{1+x^2}}\right] = 2 - f(x)$$

d'où A(0,1) est un centre de symétrie pour (C)

 a) f est continue et strictement croissante sur IR, elle réalise donc une bijection de IR sur f(IR)=]0,2[

b)
$$y = f^{-1}(x)$$
 avec $\begin{cases} x \in]0,1[\\ y \in \mathbb{R} \end{cases}$

$$\Leftrightarrow f(y) = x \Leftrightarrow 1 + \frac{y}{\sqrt{1 + y^2}} = x \Leftrightarrow \frac{y}{\sqrt{1 + y^2}} = x - 1 \Leftrightarrow \frac{y^2}{1 + y^2} = (x - 1)^2$$

avec y et (x-1) de même signe (*)

$$\Leftrightarrow y^{2} = (x-1)^{2} y^{2} + (x-1)^{2} \Leftrightarrow (2x-x^{2}) y^{2} = (x-1)^{2} \Leftrightarrow y^{2} = \frac{(x-1)^{2}}{2x-x^{2}} \Leftrightarrow y = \frac{x-1}{\sqrt{2x-x^{2}}}$$

d'après (*) d'où $f^{-1}(x) = \frac{x-1}{\sqrt{2x-x^2}}$

c)
$$(C_{f^{-1}}) = S_{\Delta}(C)$$
 avec $\Delta : y=x$

d) f est dérivable sur IR et $f'(x) = \frac{1}{(1+x^2)\sqrt{1+x^2}} \neq 0$ d'où f^{-1} est dérivable sur]0,2[

$$f^{-1}(x) = \frac{x-1}{\sqrt{2x-x^2}} \Rightarrow (f^{-1})'(x) = \frac{\sqrt{2x-x^2} - (x-1)\frac{1-x}{\sqrt{2x-x^2}}}{2x-x^2}$$
$$\Rightarrow (f^{-1})'(x) = \frac{(2x-x^2) + (x-1)^2}{(\sqrt{2x-x^2})^3} = \frac{1}{(\sqrt{2x-x^2})^3}$$

4)
$$f(x) = x \Leftrightarrow f(x) - x = 0$$

on pose
$$h(x)=f(x)-x \Rightarrow h'(x) = f'(x)-1 = \frac{1}{\left(\sqrt{1+x^2}\right)^3}-1 \le 0 \text{ car } 1+x^2 \ge 1$$

h est continue et strictement décroissante sur IR , elle réalise donc une bijection de IR $\sup_{n \in \mathbb{R}} h(n) = \lim_{n \to \infty} h \lim_{n \to \infty} h = \left[-\infty, +\infty \right] = \mathbb{R}$

comme $0 \in h(\mathbb{R})$, alors il existe un unique réel α tel que $h(\alpha) = 0$

$$h(\sqrt{3}) \times h(2) < 0 \implies \alpha \in \left[\sqrt{3}, 2\right]$$

par suite α est l'unique solution de l'équation f(x)=x dans IR

5)
$$\begin{cases} U_0 = 2 \\ U_{n+1} = f(U_n) \end{cases}$$

a) (récurrence)

•
$$U_0 = 2$$
 , $U_1 = f(U_0) = 1 + \frac{2}{\sqrt{5}}$ $U_0 \ge U_1 \text{ (vrai)}$

• supposons que : $U_n \ge U_{n+1}$ et montrons que : $U_{n+1} \ge U_{n+2}$

$$U_{\scriptscriptstyle n} \geq \mathrm{U}_{\scriptscriptstyle n+1} \Rightarrow f(U_{\scriptscriptstyle n}) \geq f(\mathrm{U}_{\scriptscriptstyle n+1}) \quad \text{car f est croissante sur IR d'où } U_{\scriptscriptstyle n+1} \geq \mathrm{U}_{\scriptscriptstyle n+2}$$

conclusion: $U_n \ge U_{n+1}$ pour tout $n \in \mathbb{N}$

par suite $(U_{\scriptscriptstyle n})$ est décroissante

b) (récurrence)

•
$$\sqrt{3} \le U_0 \le 2$$
 (vrai)

• supposons que :
$$\sqrt{3} \le U_n \le 2$$
 et montrons que : $\sqrt{3} \le U_{n+1} \le 2$

$$\sqrt{3} \le U_n \le 2 \Rightarrow f(\sqrt{3}) \le f(U_n) \le f(2) \Rightarrow 1 + \frac{\sqrt{3}}{2} \le U_{n+1} \le 1 + \frac{2}{\sqrt{5}} \Rightarrow \frac{2 + \sqrt{3}}{2} \le U_{n+1} \le 2$$
$$\Rightarrow \sqrt{3} \le U_{n+1} \le 2$$

conclusion: $\sqrt{3} \le U_n \le 2$ pour tout $n \in \mathbb{N}$

- c) (U_n) est décroissante et minorée par $\sqrt{3}$ elle est donc convergente
- soit $l = \lim_{x \to +\infty} U_n$

$$U_{n+1} = f(U_n)$$
 , f est continue sur IR d'où $l = f(l) \iff l = \alpha$ d'après 4)

Ex23:

$$f(x) = \sin x + \frac{1}{2}\sin(2x)$$
 f est dérivable sur \mathbb{R}

$$f(-x)=-f(x)$$
: f est impaire $f(x+2\pi)=f(x): 2\pi$ est une période de f il suffir d'étudier f sur $[0,\pi]$

$$f'(x) = \cos x + \cos 2x = \cos x + 2\cos^2 x - 1 = 2\cos^2 x + \cos x - 1 = 2(\cos x + 1)(\cos x - \frac{1}{2})$$

X	0		$\frac{\pi}{3}$		π
f'(x)	2	+	Q	-	0
f(x)			$\sqrt{\frac{3\sqrt{3}}{4}}$		
	0				0

Ex24:

$$f(x) = \frac{\cos x}{2\cos x - 1}$$

$$2\cos x - 1 = 0 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow \left\{ x = \frac{\pi}{3} + 2k\pi \ ; k \in \mathbb{Z} \ ou \ x = -\frac{\pi}{3} + 2k\pi \ ; k \in \mathbb{Z} \right\}$$

$$D_f = \mathbb{R} / \left\{ \left\{ \frac{\pi}{3} + 2k\pi \right\} \cup \left\{ -\frac{\pi}{3} + 2k\pi \right\} ; k \in \mathbb{Z} \right\}$$

f est dérivable sur D_f et f'(x) = $\frac{-\sin x(2\cos x - 1) + 2\sin x \cos x}{(2\cos x - 1)^2} = \frac{\sin x}{(2\cos x - 1)^2}$

• 2π est une période de f • f(-x)=f(x) : f est paire $\Rightarrow D_E = [0,\pi]/\{\frac{\pi}{3}\}$

х	0	$\frac{\pi}{3}$	_	π
f'(x)	0 -	+	+	0
f(x)	1	+∞		$\frac{1}{3}$

$$\lim_{x \to (\frac{\pi}{3})^{-}} \frac{\cos x}{2\cos x - 1} = +\infty$$

$$(\zeta_f) = \bigcup_{k \in \mathbb{Z}} \mathsf{t}_{2k\pi \bar{i}}(\zeta_0)$$

Ex25:

 $f(x) = \sin^2(x) + \cos(x)$

1) a/ $f(x+2\pi)=\sin^2(x+2\pi)+\cos(x+2\pi)=\sin^2(x)+\cos(x)=f(x)$ Donc 2π est une période de f.

b/*pour $x \in \mathbb{R}$ on a $(-x) \in \mathbb{R}$

* $f(-x)=\sin^2(-x)+\cos(-x)=[\sin(-x)]^2+\cos(x)=\sin^2(x)+\cos(x)=f(x)$

donc f est une fonction paire⇒la droite des ordonnées est un axe de symétrie de C_f

2) a/ Domaine d'étude $D_E = [0, \pi]$

$$f'(x) = 2\cos(x).\sin(x)-\sin(x) = 2\sin(x).\left[\cos(x) - \frac{1}{2}\right]$$

Х	0	$\frac{\pi}{3}$	π
f'(x)	0 +	0	- 0
f(x)	1	$\frac{5}{4}$	▲-1

b/*f est continue et strictement croissante sur $\left[0,\frac{\pi}{3}\right]$ donc f réalise une bijection de $\left[0,\frac{\pi}{3}\right]$ sur f(

$$\left[0,\frac{\pi}{3}\right]$$
)= $\left[1,\frac{5}{4}\right]$ et comme $0 \notin \left[1,\frac{5}{4}\right]$ alors l'équation f(x)=0 n'a pas de solution dans $\left[0,\frac{\pi}{3}\right]$

* f est continue et strictement décroissante sur $\left[\frac{\pi}{3},\pi\right]$ donc f réalise une bijection de

$$\left[\frac{\pi}{3}, \pi\right]$$
 sur $f\left(\left[\frac{\pi}{3}, \pi\right]\right) = \left[-1, \frac{5}{4}\right]$ et comme $0 \in \left[-1, \frac{5}{4}\right]$ alors l'équation $f(x) = 0$ admet

une seule solution $\alpha dans \left[\frac{\pi}{3}, \pi \right]$

Conclusion : l'équation f(x)=0 admet α comme unique solution dans $[0,\pi]$

 $f(2,2).f(2,3)<0\Rightarrow2,2<\alpha<2,3$

EX 26:

1.
$$f(x) = \frac{x^3}{(x-1)^2}$$
 $D_f = IR \setminus \{1\}$

f est dérivable sur IR\{1} et f'(x)= $\frac{x^2.(x-3)}{(x-1)^3}$ le signe de f'(x) est celui de (x-1).(x-3)

x	-00	0	İ	1		3		+∞
f'(x)	+	0	+		-	0	+	
f(x)	* /	/	+∞ ∦	+∞	,	27 8		+∞

•
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^3}{x^2} = \lim_{x \to +\infty} x = +\infty$$
 • $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3}{x^2} = \lim_{x \to -\infty} x = -\infty$

$$\bullet \lim_{x \to 1} f(x) = +\infty$$

•
$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2}{x^2} = 1$$
 • $\lim_{x \to \pm \infty} f(x) - x = \lim_{x \to \pm \infty} \frac{2x^2 - x}{x^2 - 2x + 1} = 2$

 Δ : y=x+2 est une asymptote à C_f au voisinage de (- ∞) et au voisinage de (+ ∞)

II.
$$h(x) = \frac{\sin^3(x)}{(\sin(x) - 1)^2} = f(\sin(x))$$

1)

a/ $\sin(x)$ -1=0 \Leftrightarrow $\sin(x)$ =1 \Leftrightarrow $x=\frac{\pi}{2}+2k\pi; k\in\mathbb{Z}$ \Rightarrow $\mathbf{D_h}=\mathbf{IR}\setminus\{\frac{\pi}{2}+2k\pi, k\in\mathbb{Z}\}$ b/ $h(x+2\pi)=f(\sin(x+2\pi))=f(\sin(x))=h(x)$ donc 2π est une période de h.

c/•
$$x \in D_h \Rightarrow x \neq \frac{\pi}{2} + 2k\pi$$
 , $k \in \mathbb{Z} \Rightarrow -x \neq -\frac{\pi}{2} - 2k\pi$, $k \in \mathbb{Z}$

$$\Rightarrow \pi - x \neq \frac{\pi}{2} - 2k\pi$$
 , $k \in \mathbb{Z} \Rightarrow 2 \cdot \frac{\pi}{2} - x \in D_h$

• $h(\pi-x)=f(\sin(\pi-x))=f(\sin(x))=h(x)$

Conclusion: Δ : $x=\pi/2$ est un axe de symétrie pour C_h

2) $a/h(x)=f(\sin(x))$

$$\begin{array}{c} \operatorname{Lim} \sin(x) = 1 \\ \xrightarrow{x \to \left(\frac{\pi}{2}\right)^{-}} \\ \operatorname{Lim} f(x) = +\infty \end{array} \Rightarrow \begin{array}{c} \operatorname{Lim} h(x) = +\infty \\ \xrightarrow{x \to \left(\frac{\pi}{2}\right)^{-}} \end{array}$$

b/h'(x) = cos(x).f'(sin(x))

$$pour \ x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[\begin{array}{c} \cos(x) \ge 0 \\ et \sin(x) \in \left[-1, 1 \right[\Rightarrow f'(\sin(x)) \ge 0 \right] \Rightarrow h'(x) \ge 0; \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[\\ \Rightarrow h \ est \ croissante \ sur \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \end{array}$$

$$h'(x) = 0 \Leftrightarrow \cos(x) = 0 \quad ou \quad f'(\sin(x)) = 0$$

$$\Leftrightarrow x = \frac{\pi}{2} + k\pi \quad ou \quad \sin(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi \quad ou \quad x = k\pi \quad k \in \mathbb{Z}$$

$$S_{D_h} = \left\{ \frac{-\pi}{2} + 2k\pi, k \in \mathbb{Z} \right\} \bigcup \left\{ k\pi, k \in \mathbb{Z} \right\}$$

d/ h' s'annule et ne change pas de signe

en 0 donc le point de coordonnées (0,h(0)) est un point d'inflexion pour C_h

Conclusion : l'origine du repère est un point d'inflexion pour C_h

3) Soit C₁ la courbe de la restriction de h sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\Delta : x = \pi/2$

 $C_2 = S_{\Delta}(C_1)$: la courbe de la restriction de h sur $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$

$$C_h = \bigcup_{k \in \mathbb{Z}} t_{2k\pi i}(C_1 \cup C_2)$$

X	$-\frac{\pi}{2}$		0		$\frac{\pi}{2}$
h'(x)	0	+	0	+	
h(x)	-1/4	/			+∞

EX 27:

1)
$$f(x) = \frac{x(x+1)}{x-2}$$
 $D_f = \mathbb{R}/\{2\}$

f est dérivable sur $\mathbb{R}/\{2\}$ et $f'(x) = \frac{x^2 - 4x - 2}{(x - 2)^2}$

$$x^2 - 4x - 2 = 0$$
 pour $x = 2 - \sqrt{6}$ ou $x = 2 + \sqrt{6}$

x	-∞	$2-\sqrt{6}$	12 2	$2+\sqrt{6}$	+∞
f'(x)	+	Φ -	-	0 +	
f(x)	-∞	f(x')	+∞	f(x'')	▼ +∞

*
$$f(x) = x + 3 + \frac{6}{x-2}$$

$$\lim_{x \to \infty} [f(x) - (x+3)] = \lim_{x \to \infty} \frac{6}{x-2} = 0 \Rightarrow \Delta : y = x+3 \text{ est une asymptote à } (\zeta_f)$$

$$f(2-\sqrt{6}) = 5-2\sqrt{6} \text{ et } f(2+\sqrt{6}) = 5+2\sqrt{6}$$

2) dans $\mathbb{R}/\{2\}$

$$x^2 + (1-m)x + 2m = 0 \Leftrightarrow x^2 + x = m.(x-2) \Leftrightarrow \frac{x(x+1)}{x-2} = m \Leftrightarrow f(x) = m$$

*1er $cas : m \in]-\infty, 5-2\sqrt{6}[-\infty]5 + 2\sqrt{6}, +\infty[$ l'équation admet deux solutions
*2eme $cas : m=5-2\sqrt{6}$ ou $m=5+2\sqrt{6}$ l'équation admet une unique solution

*3^{eme} cas : $m \in \left]5-2\sqrt{6}, 5+2\sqrt{6}\right[$ l'équation n'a pas de solution

3) (E)
$$\Leftrightarrow$$
 f(cosx)=m $\cos x \in [-1,1]$

$$f([-1,1]) = [-2;5-2\sqrt{6}]$$

 $h(x)=f(\cos x)$ est périodique de période 2π

$$1^{er}$$
 cas : m ∉ $\left[-2;5-2\sqrt{6}\right]$ l'équation n'a pas de solution

$$2^{\text{eme}}$$
 cas : $m \in \left[-2; 5-2\sqrt{6}\right]$ l'équation admet une infinité de solutions

Q.C.M:

- 1. $x \rightarrow 1 + tg^2 x$
- 2. $x \rightarrow 1 Cos x$
- 3. impaire
- 4. $x \to \frac{1}{2(1-x)^2} \frac{1}{2}$
- 5. $x \rightarrow x \sin x + \cos x$

Vrai - Faux:

1. (Vrai)

En effet : cette primitive est dérivable sur \mathbb{R} d'où elle est continue sur \mathbb{R}

2. (VRAI)

$$F(x) = \begin{cases} x^2 \sin \frac{1}{x} & \sin x > 0 \\ 0 & \sin x = 0 \end{cases}$$

F et dérivable sur $]0,+\infty[$

$$F'(x) = 2x \sin(\frac{1}{x}) + x^2(\frac{-1}{x^2}Cos\frac{1}{x})$$

$$F'(x) = 2x \sin(\frac{1}{x}) - Cos(\frac{1}{x})$$

$$F'(x) = f(x) pour x > 0$$

Montrons que F est dérivable

à droite en 0 et

$$F_d(0) = f(0) = 0$$

pour x > 0

$$\frac{F(x) - F(0)}{x - 0} = x \sin(\frac{1}{x})$$

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1 \Rightarrow$$

$$-x \le x \sin(\frac{1}{x}) \le x$$

$$\lim_{x \to 0^+} (-x) = \lim_{x \to 0^+} (x) = 0$$

d'ou

$$\lim_{x \to 0^+} \frac{F(x) - F(0)}{x - 0} = 0 = f(0)$$

Conclusion : F est une primitive de f

3. (FAUX)

Contre exemple:

$$f(x) = 1 \rightarrow F(x) = x$$

$$g(x) = x \rightarrow G(x) = \frac{1}{2}x^2$$

$$(F.G)(x) = \frac{1}{2}x^3$$

$$(F.G)'(x) = \frac{3}{2}x^2 \neq (f.g)(x)$$

4. (FAUX)

$$F(2x) \stackrel{dérivée}{\to} 2.f(2x)$$

5. (VRAI)

Thérèse du cours :

Il existe une unique primitive de f sur I qui prend une valeur donnée en un point donnée.

$$1. f(x) = -5x^4 + 2x - 3$$

$$I = \mathbb{R}$$

$$F(x) = -x^5 + x^2 - 3 + k \; ; (k \in \mathbb{R})$$

2.
$$f(x) = (x+2) - \frac{3}{x^2}$$
; $I =]-\infty, 0[$

$$f(x) = \frac{1}{2}(x+2)^2 + \frac{3}{x} + k \ (k \in \mathbb{R})$$

$$3. f(x) = \frac{3x}{(3x^2 + 2)^2}; I = \mathbb{R}$$

$$F(x) = \frac{-1}{2} \left(\frac{1}{3x^2 + 2} \right) + k \; ; (k \in \mathbb{R})$$

4.
$$f(x) = (-x+3)^6$$
 $I = \mathbb{R}$

$$F(x) = \frac{-1}{7}(-x+3)^7 + k \ (k \in \mathbb{R})$$

5.
$$f(x) = (x-1)(x^2-2x+7)^4 I = \mathbb{R}$$

$$F(x) = \frac{1}{10}(x^2 - 2x + 7)^5 + k$$

6.
$$f(x) = \frac{1}{\sqrt{-4x+3}}$$

$$I = \left] -\infty, \frac{3}{4} \right[$$

$$F(x) = -\frac{1}{2}\sqrt{-4x+3} + k$$

7.
$$f(x) = \frac{1}{\sqrt{x}} . Cos(\sqrt{x}); I =]0, +\infty[$$

$$F(x) = 2\sin(\sqrt{x}) + k$$

8.
$$f(x) = \frac{x^2 + 1}{(x^3 + 3x)^5}$$

$$F(x) = \frac{-1}{12(x^3 + 3x)^4} + k$$

9.
$$f(x) = \sin(2x+1).Cos^4(2x+1)$$

$$F(x) = \frac{-1}{10} \cos^5(2x+1) + k$$

10.
$$f(x) = x^2 \cdot \sin(x^3 + 1)$$

$$F(x) = -\frac{1}{3}\cos(x^3 + 1) + k$$

$$11. f(x) = \frac{\sin x}{\left(1 + \cos x\right)^3}$$

$$F(x) = +\frac{1}{2} \left(\frac{1}{(1+\cos x)^2} \right) + k$$

12.
$$f(x) = \frac{3}{x^2} + \frac{4}{x^3} - \frac{2}{x^4}$$

$$F(x) = \frac{-3}{x} - \frac{2}{x^2} + \frac{2}{3x^3} + k$$

$$F(x) = \frac{2 - 6x - 9x^2}{3x^3} + k$$

$$13.f(x) = \frac{2x - 1}{\sqrt{x^2 - x}}$$

$$F(x) = 2\sqrt{x^2 - x} + k$$

14.
$$f(x) = (1 + tg^2x) - 1$$

$$F(x) = tgx - x + k \ (k \in \mathbb{R})$$

Ex 2:

1. soit F une primitive de f sur [-2,2]

$$F'(x) = f(x)$$

$$pour \ x \in [-2, -1) \to f(x) \le 0$$

$$x \in [-1,0] \rightarrow f(x) \ge 0$$

$$x \in [0,1] \rightarrow f(x) \le 0$$

$$x \in [1,2] \rightarrow f(x) \ge 0$$

par exemple:

F est croissante sur [-1,0]

or graphiquement:

h est decroissante sur [-1,0]

d'ou h n'est pas une primitive de f

par suit : g est primitive de f

2. soit H: une primitive de h

$$H'(x) = h(x); \forall x \in [-2, 2]$$

 $graphiquement: h(0) \neq 0$

$$\Rightarrow H'(0) \neq 0$$

 \Rightarrow (ζ_H) n'admet pas une tgte horizentale au po int d'assisse 0

$$\Rightarrow (\varsigma_H) \neq (\varsigma_g)$$

d'ou f est une primitive de h sur [-2,2]

EX 3:

1.
$$f(x) = \sqrt{x+1}$$

$$F(x) = \frac{2}{3}(x+1).\sqrt{x+1}$$

2.
$$f(x) = x\sqrt{1+x^2}$$

$$F(x) = \frac{1}{3}(1+x^2).\sqrt{1+x^2}$$

3.
$$f(x) = (x-3) \cdot \sqrt{x^2 - 6x}$$

$$F(x) = \frac{1}{3}(x^2 - 6x).\sqrt{x^2 - 6x}$$

4.
$$f(x) = \frac{x+1}{\sqrt{x-1}}$$

$$f(x) = \frac{(x-1)+2}{\sqrt{x-1}}$$

$$f(x) = \sqrt{x-1} + \frac{2}{\sqrt{x-1}}$$

d'où:

$$F(x) = \frac{2}{3}(x-1).\sqrt{x-1} + 4\sqrt{x-1}$$

$$F(x) = (\frac{2}{3}x - \frac{10}{3}).\sqrt{x - 1}$$

5.
$$f(x) = (x + \frac{1}{2}).(x^2 + x)^7$$

$$F(x) = \frac{1}{16}(x^2 + x)^8$$

6.
$$f(x) = \frac{1}{x^2} \cdot \sqrt{\frac{3}{2x} + \frac{1}{2}}$$

$$(\frac{3}{2x} + \frac{1}{2})' = \frac{-3}{2x^2}$$

$$f(x) = \frac{-2}{3} \left[\frac{-3}{2x^2} \sqrt{\frac{3}{2x} + \frac{1}{2}} \right]$$

$$F(x) = \frac{-2}{3} \cdot (\frac{2}{3})(\frac{3}{2x} + \frac{1}{2}) \cdot \sqrt{\frac{3}{2x} + \frac{1}{2}}$$

$$F(x) = \frac{-4}{9} \left(\frac{3+x}{2x}\right) \sqrt{\frac{3+x}{2x}}$$

$$F(x) = \frac{-2(3+x)}{9x} \sqrt{\frac{3+x}{2x}}$$

7.
$$f(x) = (x+1)^{2009} - (x+1)^{2008}$$

$$F(x) = \frac{1}{2010}(x+1)^{2010} - \frac{1}{2009}(x+1)^{2009}$$

$\mathbf{Ex 4}$:

$$\overline{1. f(x)}$$
=tg x+tg³ x

f est continue sur I= $[0, \frac{\pi}{2}[$ d'où f

admet des primitives sur I

$$f(x) = (1 + tg^2 x).tg x$$

(de la forme U'.U)

D'où

$$F(x) = \frac{1}{2}tg^2x + k$$

$$F(\frac{\pi}{4}) = 1 \Rightarrow \frac{1}{2} + k = 1$$
$$\Rightarrow k = \frac{1}{2}$$

$$F(x) = \frac{1}{2}(1 + tg^2 x)$$

2. $f(x)=Cos(x)-Cos^3(x)$

f est continue sur I= IR

f admet donc des primitives sur I

$$f(x) = \cos x (1 - \cos^2 x)$$

$$f(x) = \cos x \cdot \sin^2(x)$$

d'où

$$F(x) = \frac{1}{3}\sin^3 x + k$$

$$F(\frac{\pi}{2}) = -1 \Rightarrow \frac{1}{3} + k = -1$$
$$\Rightarrow k = -\frac{4}{3}$$

$$F(x) = \frac{1}{3}(-4 + \sin^3 x)$$

3. f est continue sur $I=\mathbb{R}$ d'où f admet des primitives sur I

$$f(x) = \sin x(1 - \sin^2 x)$$

$$f(x) = \sin x. \cos^2 x$$

$$F(x) = \frac{-1}{3} \cos^3 x + k$$

$$f(\frac{-\pi}{4}) = 2 \Rightarrow \frac{-1}{3}(\frac{\sqrt{2}}{2})^3 + k = 2$$

$$\Rightarrow k = 2 + \frac{\sqrt{2}}{12}$$

$$F(x) = \frac{-1}{3} \cos^3 x + 2 + \frac{\sqrt{2}}{12}$$

4. f est continue sur $[0, \frac{\pi}{2}]$

$$f(x) = \frac{1}{\cos^2 x} (1 + tg \ x)$$

(de la forme U'.U)

$$F(x) = \frac{1}{2}(1 + tg x)^2 + k$$

$$F(\frac{\pi}{4}) = 0 \Longrightarrow k = -2$$

$$F(x) = \frac{1}{2}(1 + tg \ x)^2 - 2$$

EX 5

$$1. \ f(x) = Cos(x).Cos(3x)$$

$$g(x) = \sin x \cdot \sin(3x)$$

a)

$$*(f+g)(x) = \cos x \cdot \cos 3x + \sin x \sin 3x$$
$$= \cos(3x - x)$$
$$= \cos 2x$$

 $\varphi(x) = \frac{1}{2} \sin 2x \text{ est une primitive}$

$$de(f+g) sur IR$$

$$*(f-g)(x) = Cos 4x$$

$$\psi(x) = \frac{1}{4}\sin 4x$$

est une primitive de (f-g) sur IR b).

$$(\varphi + \psi)'(x) = \varphi'(x) + \psi'(x)$$

$$= (f+g)(x) + (f-g)(x)$$

$$=2f(x)$$

$$F(x) = \frac{1}{2}(\varphi + \psi)(x)$$
 est une

primitive de f sur IR

$$F(x) = \frac{1}{4}\sin(2x) + \frac{1}{8}\sin(4x) + k^{3} \text{ if } E \text{ IR}$$

$$(\varphi - \psi)'(x) = (f(x) + g(x)) - (f(x) - g(x))$$

$$= 2g(x)$$

$$G(x) = \frac{1}{2}(\varphi - \psi)(x)$$

G est une primitive de g sur IR

$$G(x) = \frac{1}{4}\sin(2x) - \frac{1}{8}\sin(4x) + k \text{ k} \in IR$$

2.

$$h(x) = \sin 4x + Cosx.\sin 4x$$

$$h(x) = \sin 4x + 2Cosx \cdot \sin 2x \cdot Cos2x$$

$$= \sin 4x + 4 \sin x. \cos^2 x (\cos 2x)$$

$$= \sin 4x + 4 \sin x \cdot Cos^2 x (2Cos^2 x - 1)$$

$$= \sin 4x + 8 \sin x. \cos^4 x - 4 \sin x \cos^2 x$$

$$H(x) = \frac{-1}{4} \cos 4x - \frac{8}{5} \cos^5 x + \frac{4}{3} \cos^3 + k$$

$$H(\pi) = 0 \Rightarrow \frac{8}{5} - \frac{4}{3} + k = 0$$

$$k = \frac{-4}{15}$$

$$H(x) = \frac{1}{4}\cos 4x - \frac{8}{5}\cos^5 x + \frac{4}{3}\cos^3 x - \frac{4}{15}$$

$\mathbf{EX 6}$:

$$f(x) = x.\sin x$$

1. f est dérivable sur $\mathbb R$

(produit de 2 fonction dérivables)

$$f'(x) = \sin x + x \cos x$$

f' est dérivable sur $\mathbb R$

$$f''(x) = Cos x + Cos x - x sin x$$

$$f''(x) = 2 \cos x - f(x)$$

$$\Rightarrow f(x) = 2 \cos x - f''(x)$$

2.
$$F(x) = +2 \sin x - f'(x) + k$$

$$F(x) = 2\sin - \sin x - x \cos x + k$$

$$F(x) = \sin x - x \cos x + k$$

$$F(\pi) = 0 \Rightarrow k = -\pi$$

d'où:

$$F(x) = \sin x - x \cos x - \pi$$

EX 7:

$$f(x) = \frac{x+2}{\left(x+1\right)^4}$$

$$f(x) = \frac{a}{x+1} + \frac{b}{(x+1)^2} + \frac{c}{(x+1)^3} + \frac{d}{(x+1)^4}$$

1. a)
$$\lim_{x \to (-1)^+} (x+1)^4 \cdot f(x) =$$

$$\lim_{x \to (-1)^+} (x+2) = 1$$

$$\lim_{x \to \infty} (x+1).f(x) =$$

$$\lim_{x \to +\infty} \frac{(x+1)(x+2)}{(x+1)^4} = \lim_{x \to +\infty} \frac{x^2}{x^4}$$

$$=\lim_{t\to\infty}\frac{1}{x^2}=0$$

b)
$$(x+1)^4 \cdot f(x) =$$

$$a(x+1)^3 + b(x+1)^2 + c(x+1) + d$$

$$\lim_{x \to (-1)^+} (x+1)^2 f(x) = d$$

or
$$\lim_{x\to(-1)^+} (x+1)^4 f(x) = 1$$
 d'où $d=1$

$$\lim_{x\to 1} (x+1)f(x) =$$

$$\lim_{x \to +\infty} \left(a + \frac{b}{x+1} + \frac{c}{(x+1)^2} + \frac{d}{(x+1)^3} \right) = a$$

$$\lim_{x\to 1} (x+1)f(x) = 0$$

$$d'où a = 0$$

$$f(x) = \frac{b}{(x+1)^2} + \frac{c}{(x+1)^3} + \frac{1}{(x+1)^4}$$

2. a)
$$\frac{x+2}{(x+1)^4} = \frac{b}{(x+1)^2} + \frac{c}{(x+1)^3} + \frac{1}{(x+1)^4}$$

$$\Rightarrow \frac{x+2}{(x+1)^4} - \frac{1}{(x+1)^4} = \frac{b}{(x+1)^2} + \frac{c}{(x+1)^3}$$

$$\Rightarrow \frac{1}{(x+1)^3} = \frac{b}{(x+1)^2} + \frac{c}{(x+1)^3}$$

$$\Rightarrow \frac{1-c}{(x+1)^3} = \frac{b}{(x+1)^2}$$

b)
$$\frac{1-c}{(x+1)^3} = \frac{bx+b}{(x+1)^3}$$
$$\Rightarrow \begin{cases} b=0\\ b=1-c \end{cases} \Rightarrow \begin{cases} b=0\\ c=1 \end{cases}$$

$$f(x) = \frac{1}{(x+1)^3} + \frac{1}{(x+1)^4}$$

3.
$$F(x) = \frac{-1}{2(x+1)^2} - \frac{1}{3(x+1)^3} + k$$

$$F(0) = 2 \Rightarrow -\frac{1}{2} - \frac{1}{3} + k = 0 \Rightarrow k = \frac{5}{6}$$

$$F(x) = \frac{5}{6} - \frac{1}{2(x+1)^2} - \frac{1}{3(x+1)^3}$$

EX8:

$$f(x) = \frac{2x+1}{(x-2)^3} \quad , x \in \mathbb{R} \setminus \{2\}$$

1.
$$f(x) = \frac{2(x-2)+5}{(x-2)^3}$$

$$f(x) = \frac{2}{(x-2)^2} + \frac{5}{(x-2)^3}$$

2.
$$F(x) = \frac{-2}{x-2} - \frac{5}{2(x-2)^2}$$

$$F(x) = \frac{-4x+3}{2(x-2)^2}$$

EX 9:

$$f(x) = \frac{1}{\sqrt{1-x^2}}; x \in]-1,1[$$

F est dérivable sur]-1,1[

$$\oint F'(x) = f(x)$$

$$\int F(0) = 0$$

$$g(x) = F(\sin x)$$

1. $la\ fonction: x \rightarrow \sin x$

est dérivable sur
$$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$\sin\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right) = \left[-1,1\right]$$

F est dérivable sur]-1,1[d'où g est

dérivable sur
$$\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$g'(x) = Cos \ x.F'(\sin x)$$

$$= Cos \ x. f(\sin x)$$

$$= \frac{Cos x}{\sqrt{1 - sin^2} x} = \frac{Cos x}{\sqrt{Cos^2 x}}$$
$$= \frac{Cos x}{|Cos x|} = 1 car \frac{Cos x > 0}{x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]}$$

$$g'(x) = 1; \forall x \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

2.
$$g'(x) = 1$$

$$d'où g(x) = x + k, k \in \mathbb{R}$$

$$g(0) = F(0) = 0$$

$$\Rightarrow 0 + k = 0$$

$$\Rightarrow k = 0$$

$$d'ou\ g(x) = x \ x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

3.
$$F(\frac{\sqrt{2}}{2}) = F\left(\sin(\frac{\pi}{4})\right) = g(\frac{\pi}{4}) = \frac{\pi}{4}$$

$$F(\frac{1}{2}) = F\left(\sin(\frac{\pi}{6})\right) = g(\frac{\pi}{6}) = \frac{\pi}{6}$$

$$F(-\frac{\sqrt{3}}{2}) = F\left(\sin(-\frac{\pi}{3})\right) = g(-\frac{\pi}{3}) = -\frac{\pi}{3}$$

EX 10:

$$f(x) = \sqrt{1 - x^2}$$
; $x \in [0, 1]$

F dérivable sur [0,1]

$$\begin{cases} F'(x) = f(x) \\ F(0) = 0 \end{cases}$$

$$g = F(Cos \ x); x \in \left[0, \frac{\pi}{2}\right]$$

1. g est dérivable sur $\left[0, \frac{\pi}{2}\right]$

comme était composée de deux fonction dérivable. (voir ex 9)

$$g'(x) = (-\sin x).F'(\cos x)$$

$$=(-\sin x).f(\cos x)$$

$$=-\sin x\sqrt{1-\cos^2 x}$$

$$=-\sin x|\sin x|$$

$$=-\sin^2 x$$
 $car \sin x \ge 0$

2.
$$g'(x) = -\sin^2 x = -\frac{1}{2}(1 - \cos 2x)$$

$$g(x) = -\frac{1}{2}(x - \frac{1}{2}\sin 2x) + k$$

$$g(\frac{\pi}{2}) = F(0) = 0$$

$$\Rightarrow -\frac{1}{2}(\frac{\pi}{2}-0)+k=0$$

$$\Rightarrow k = \frac{\pi}{4}$$

d'où

$$g(x) = -\frac{1}{2}(x - \frac{1}{2}\sin 2x) + \frac{\pi}{4}$$

$$\Rightarrow g(x) = -\frac{1}{2}x + \frac{1}{4}\sin 2x + \frac{\pi}{4}$$

3.
$$F(1) = F(Cos0) = g(0) = \frac{\pi}{4}$$

$$F(\frac{1}{\sqrt{2}}) = F(\cos\frac{\pi}{4}) = g(\frac{\pi}{4}) = \frac{\pi}{8} + \frac{1}{4}$$

EX 11 :

1.
$$f''(x) = 0 \Rightarrow f'(x) = a; a \in \mathbb{R}$$

$$\Rightarrow f(x) = a x + b \qquad (a,b) \in \mathbb{R}^2$$

2.
$$f''(x) = \sin x$$

$$\Rightarrow f'(x) = -Cos \ x + a; \ a \in \mathbb{R}$$

$$\Rightarrow f(x) = -\sin x + a x + b$$

$$(a,b) \in \mathbb{R}^2$$

EX 12:

- 1. f(x) = |x| $x \in \mathbb{R}$
- a) f est continue sur \mathbb{R}

b)
$$\begin{cases} f(x) = x & \sin x \in [0, +\infty[\\ f(x) = -x & \sin x \in] -\infty, 0[\end{cases}$$
$$\Rightarrow \begin{cases} F(x) = \frac{1}{2}x^2 + a & pour \ x \ge 0\\ F(x) = -\frac{1}{2}x^2 + b & pour \ x < 0 \end{cases}$$

F est dérivable sur $\mathbb{R} \Rightarrow F$ continue en 0 $\Rightarrow a = b$

$$d'où\begin{cases} F(x) = \frac{1}{2}x^2 + a & pour \ x \ge 0\\ F(x) = -\frac{1}{2}x^2 + a & pour \ x < 0 \end{cases}$$

$$F(4) = 0 \Rightarrow 8 + a = 0 \Rightarrow a = -8$$

$$\begin{cases} F(x) = \frac{1}{2}x^2 - 8 & pour \ x \ge 0 \\ F(x) = -\frac{1}{2}x^2 - 8 & pour \ x < 0 \end{cases}$$

- 2. g(x) = |x| + |x-1|
- a) g est continue sur IR

X	-∞	0	1 +∞
$ \mathbf{x} $	-x	X	X
x-1	-x+1	-x+1	x-1
g(x)	-2x+1	1	2x-1

$$\begin{cases} g(x) = -2x + 1 & pour \ x \le 0 \\ g(x) = 1 & pour \ 0 < x \le 1 \\ g(x) = 2x - 1 & pour \ x > 1 \end{cases}$$

d'où

$$G(x) = \begin{cases} -x^2 + x + a & pour \ x \le 0 \\ x + b & pour \ 0 < x \le 1 \\ x^2 - x + c & pour \ x > 1 \end{cases}$$

G est continueen 0

$$\Rightarrow \lim_{x \to 0^{-}} G(x) = \lim_{x \to 0^{+}} G(x) \Rightarrow a = b$$

G continue en $1 \Rightarrow$

$$1+b=c \Rightarrow c=a+1$$
 $d'où$

$$G(x) = \begin{cases} -x^2 + x + a & pour \ x \le 0 \\ x + a & pour \ 0 < x \le 1 \\ x^2 - x + a + 1 & pour \ x \ge 1 \end{cases}$$

 $(a \in \mathbb{R})$

EX 13:

$$f(x) = \sin^3 x + \sin^5 x$$

$$=\sin x.(1-\cos^2 x)+\sin x.(1-\cos^2 x)^2$$

$$=\sin x - \sin x \cos^2 x + \sin x (1 + \cos^4 x - 2\cos^2 x)$$

$$f(x) = 2\sin x - 3\sin x \cdot \cos^2 x$$
$$+\sin x \cdot \cos^4 x$$

$$F(x) = -2Cos x + Cos^3 x - \frac{1}{5}Cos^5 x$$

(on pourra aussi linéariser f(x))

EX 14:

$$a(t) = 1 - \frac{1}{(t+1)^2}$$
; $t \in [0,10]$

1.
$$\begin{cases} v'(t) = a(t) \\ v(0) = 0 \end{cases}$$

$$v(t) = t + \frac{1}{t+1} + k$$

$$v(0) = 0 \Rightarrow 1 + k = 0 \Rightarrow k = -1$$

$$v(t) = t - 1 + \frac{1}{t+1}$$

2.
$$v(10) = \frac{100}{11} m/s$$

EX 15:

$$f(x) = \sqrt{4 - x^2}$$
 ; $x \in [-2, 2]$

1.a) la fonction: $x \to 4 - x^2$ est continue et positive sur [-2,2] d'où f est continue sur [-2,2]

par suit f admet au moins une primitive sur [-2,2]

$$\begin{cases} F'(x) = f(x) \\ F(0) = 0 \end{cases}$$

$$\forall x \in D_F = [-2, 2]; (-x) \in D_F$$

$$f(x) = f(-x) \Rightarrow$$

$$F(x) = -F(-x) + k$$

$$F(0) = 0 \Rightarrow k = 0$$

$$d'où F(-x) = -F(x)$$

F est impaire.

2.
$$G(x) = F(2\cos x); x \in [0, \pi]$$

$$\Rightarrow -\pi \leq -x \leq 0$$

$$\Rightarrow 0 \le \pi - x \le \pi$$

$$\Rightarrow (\pi - x) \in D_C$$

$$G(\pi - x) = F(2Cos(\pi - x))$$

$$= F(-2Cos x)$$

$$= -F(2Cos x)$$

$$= -G(x)$$

conclusion: $I(\frac{\pi}{2}, 0)$ est un centre de symétrie pour la courbe de f

2.
$$f(x) = \frac{1}{\mu(x)\sqrt{1+x^2}}$$

$$f(x) = \frac{u^1(x)}{u^2(x)}$$

d'où

$$F(x) = \frac{-1}{u(x)}$$

$$F(x) = \frac{-1}{x + \sqrt{1 + x^2}}$$

$$g(x) = \frac{u^2(x)}{\sqrt{1+x^2}}$$

$$g(x) = u^2(x) \cdot \frac{1}{\sqrt{1+x^2}}$$

$$g(x) = u^2(x) \frac{u^1(x)}{u(x)}$$

$$g(x) = u^{1}(x)u(x)$$

d'où

$$G(x) = \frac{1}{2}u^{2}(x)^{2}$$

$$G(x) = \frac{1}{2}(x + \sqrt{1 + x^2})^2$$

EX 17:

$$\overline{f(x)} = x.Cos x$$

$$g(x) = x \cdot \sin x$$

$$1. f'(x) + g(x) = Cosx - x \sin x + x \sin x$$

$$= Cos x$$

$$d'où \quad g(x) = \cos x - f'(x)$$

$$G(x) = \sin x - (f(x))$$

$$G(x) = \sin x - (f(x))$$

$$G(x) = \sin x - x \cos x$$

2.
$$g'(x) - f(x) = \sin x + x \cos x - f(x)$$
$$= \sin x$$

$$d'où$$
 $f(x) = g'(x) - \sin x$
 $F(x) = g(x) - \cos x$

$$F(x) = x \sin x - \cos x$$

EX 18:

$$n \ge 2$$

$$p_n(x) = 1 + 2x + 3x^2 + \dots + n \cdot x^{n-1}$$

1.
$$F_n(x) = x + x^2 + \dots + x^n + k \quad k \in \mathbb{R}$$

$$F_n(0) = 1 \Rightarrow k = 1$$

d'où

$$F_n(x) = 1 + x + x^2 + \dots + x^n$$

2. $pour x \neq 1$

$$F_n(x) = \frac{1 - x^{n+1}}{1 - x}$$

(somme de (n+1) termes d'une suite géométrique de raison x)

$$F'_{n}(x) = \frac{-(n+1)x^{n}.(1-x)+1-x^{n+1}}{(1-x)^{2}}$$

$$F'_{n}(x) = \frac{nx^{n+1} - (n+1)x^{n} + 1}{(1-x)^{2}}$$

$$d'ou) \begin{cases} p_n(x) = \frac{nx^{n+1} - (n+1)x^n + 1}{(1-x)^2} & \text{si } x \neq 1 \\ p_n(1) = \frac{(n+1)n}{2} \end{cases}$$

 $\mathbf{EX 19}: \qquad x \in [0, \pi]$

1. $g(x) = x \cdot \sin x + Cos x - 1$

a)
$$g'(x) = \sin x + x \cos x - \sin x$$

 $g'(x) = x \cdot \cos x$

X	0		$\frac{\pi}{2}$		π
g'(x)	0	+	0	_	
g'(x) g(x)		/	$\frac{\pi}{2}-1$		•
	0				-2

b) g est continue sur $\left[\frac{2\pi}{3}, \pi\right]$

$$g(\frac{2\pi}{3}).g(\pi) = -2(\frac{\pi}{\sqrt{3}} - \frac{3}{2}) < 0$$

d'où l'équation g(x)=0 admet une solution $\alpha \in \left[\frac{2\pi}{3}, \pi\right]$

X	0		α	π
g(x)	0	+	0	

2. $f(x) = \begin{cases} \frac{1 - \cos x}{x} & \sin x \in]0, \pi] \\ 0 & \sin x = 0 \end{cases}$

a)
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - \cos x}{x} = 0 = f(0)$$

f est continue en droite en 0

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{1 - \cos x}{x^{2}} = \frac{1}{2}$$

f est dérivable à droite en 0 et $f_d'(0) = \frac{1}{2}$

$$b) \quad f'(x) = \frac{g(x)}{x^2}$$

X	0	α		π
f'(x)	+	0	-	
f(x)	,	$f(\alpha)$)	
			•	2
	U			$\overline{\pi}$

c)
$$f(\alpha) = \frac{1 - \cos \alpha}{\alpha}$$

 $g(\alpha) = 0 \Rightarrow \alpha \cdot \sin \alpha + \cos \alpha - 1 = 0$
 $\Rightarrow \cos \alpha = 1 - \alpha \cdot \sin \alpha$

d'où

$$f(\alpha) = \frac{\alpha \sin \alpha}{\alpha} = \sin \alpha$$

3.
$$\alpha \approx 2.34$$
; $f(\alpha) \approx 0.72$; $\frac{2}{\pi} \approx 0.61$

4.
$$k(x) = f(x)$$
 pour $x \in [\alpha, \pi]$
 k est continue et strictemen décroissant
 $sur[\alpha, \pi] \Rightarrow k$ est une bijéction $de[\alpha, \pi]$
 $sur\left[\frac{2}{\pi}, f(\alpha)\right] = I$

5.
$$h(x) = g(x) - 2 \cos x$$
 $x \in [0, \pi]$
 $h \text{ est continue sur } [0, \pi] \text{ } d' \text{ } o \hat{u} \text{ } h \text{ } admet \text{ } des$
 $primitives \text{ sur } [0, \pi]$
 $h(x) = x \cdot \sin x - \cos x - 1$
 $H(x) = -x \cdot \cos x - x + k$
 $H(0) = 1 \Rightarrow k = 1$
 $d' \text{ } o \hat{u} \text{ } H(x) = 1 - x - x \cdot \cos x$

EX 20:

$$\varphi(x) = \frac{1}{1+x^2}$$

$$\begin{cases} G'(x) = \varphi(x) \\ G(0) = 0 \end{cases}$$
1. $G'(-x) = \varphi(-x) = \varphi(x)$

$$= G'(x)$$

$$G'(x) = G'(-x)$$

$$\Rightarrow G(x) = -G(-x) + k \quad k \in \mathbb{R}$$

$$G(0) = 0 \to k = 0$$

$$d'où \quad G(-x) = -G(x)$$

$$G \text{ est impaire}$$
2.a) $x \in \mathbb{R}^*$

$$\psi(x) = G(x) + G(\frac{1}{x})$$

$$\psi \text{ est dérivable sur } \mathbb{R}^*$$

$$\psi'(x) = G'(x) - \frac{1}{x^2}G'(\frac{1}{x})$$

$$= \varphi(x) - \frac{1}{x^2}.\varphi(\frac{1}{x})$$

$$= \frac{1}{1+x^2} - \frac{1}{x^2+1}$$

$$= 0$$

$$\psi'(x) = 0$$

D'où ψ est constante sur chacun des intervalles $]-\infty, 0[et]0, +\infty[$

$$\psi(1) = G(1) + G(1) = 2G(1)$$

$$d'où$$

$$\psi(x) = 2G(1) ; \forall x \in]0, +\infty[$$

$$\Rightarrow \lim_{x \to +\infty} \psi(x) = 2G(1)$$

b)
$$u(t) = G(tg\ t) \ ; \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$$

$$u'(t) = (1 + tg^{2}t) \cdot G'(tg \ t)$$

$$= (1 + tg^{2}t) \cdot \varphi(tg \ t)$$

$$= (1 + tg^{2}t) \cdot \frac{1}{1 + tg^{2}t}$$

$$u'(t) = 1$$

$$u(t) = t + k$$
; $(k \in \mathbb{R})$

$$u(0) = G(tg \ 0) = G(0) = 0$$
$$\Rightarrow k = 0$$

$$u(t) = t$$
 ; $\forall t \in \left] \frac{-\pi}{2}, \frac{\pi}{2} \right[$

$$G(1) = G(tg \frac{\pi}{4}) = u(\frac{\pi}{4}) = \frac{\pi}{4}$$

$$\lim_{x \to +\infty} \psi(x) = 2G(1) = \frac{\pi}{2}$$

$$G(x) = \psi(x) - G\left(\frac{1}{x}\right)$$

$$\lim_{x\to+\infty}\psi(x)=\frac{\pi}{2}$$

$$\lim_{x \to +\infty} G(\frac{1}{x}) = G(0) = 0$$

$$d'où \lim_{x\to +\infty} G(x) = \frac{\pi}{2}$$

4.
$$G'(x) = \varphi(x) = \frac{1}{1+x^2} > 0$$

X	0	+∞
G'(x) G(x)	+	
G(x)		$-\frac{\pi}{2}$
		$\sqrt{2}$
	0	

G est impaire.

$$G'(0) = \frac{1}{2}$$

O: centre de symétrie.

EX 21:

$$f(x) = \sqrt{1 + \cos x} \quad ; \quad x \in [0, \pi]$$

1.a) f Est dérivable sur $[0, \pi[$

$$f'(x) = \frac{-\sin x}{2\sqrt{1 + \cos x}} \le 0$$

f est continue et strictement décroissante $sur[0,\pi]$ elle réalise donc une bijection $de[0,\pi]$ sur

$$g([0,\pi]) = [g(\pi),g(0)] = [0,\sqrt{2}]$$

b) f est dérivable sur $]0,\pi[$

$$et f'(x) = \frac{-\sin x}{2\sqrt{1 + \cos x}} \neq 0$$

d'où f^{-1} est dérivable sur

$$f(]0,\pi[)=\left]0,\sqrt{2}\right[$$

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} \quad on \ pose : y = f^{-1}(x)$$

$$f(y) = x$$

$$= \frac{-2\sqrt{1 + Cos y}}{\sin y}$$

$$f(y) = \sqrt{1 + Cos y} = x$$

$$\Rightarrow 1 + Cos y = x^{2}$$

$$\Rightarrow Cos y = x^{2} - 1$$

$$\Rightarrow Cos^{2}y = (x^{2} - 1)^{2}$$

$$\Rightarrow -Cos^{2}y = -1 - x^{4} + 2x^{2}$$

$$\Rightarrow 1 - Cos^{2}y = 2x^{2} - x^{4}$$

$$\Rightarrow \sin^{2}y = 2x^{2} - x^{4}$$

$$\Rightarrow \sin^{2}y = 2x^{2} - x^{4}$$

$$d'où$$

$$(f^{-1})'(x) = \frac{-2x}{\sqrt{2x^{2} - x^{4}}}$$

$$(f^{-1})'(x) = \frac{-2}{\sqrt{2 - x^{2}}}$$

$$\forall x \in \left] 0, \sqrt{2} \right[$$
2. $g(x) = \frac{2}{\sqrt{2 - x^{2}}}$

$$\forall x \in \left] -\sqrt{2}, \sqrt{2} \right[$$

$$G'(x) = g(x)$$

$$G(0) = 0$$
a) $\varphi(x) = G(x) + G(-x)$

$$= g(x) - g(-x)$$

$$= 0$$

$$\varphi \text{ est constante sur } \left] -\sqrt{2}, \sqrt{2} \right[$$

$$\varphi(0) = 0$$

$$\varphi(x) = 0, \ \forall \ x \in \left] -\sqrt{2}, \sqrt{2} \right[$$

$$\Rightarrow G(x) + G(-x) = 0$$

$$\Rightarrow G(-x) = -G(x)$$

G est impaire.

b) on a:

$$g(x) = -(f^{-1})'(x)$$

$$\Rightarrow G(x) = -f^{-1}(x) + k \quad ; \quad k \in \mathbb{R}$$

$$G(0) = -f^{-1}(0) + k$$

$$\Rightarrow 0 = -\pi + k$$

$$\Rightarrow k = \pi$$

$$d'où$$

$$G(x) = \pi - f^{-1}(x)$$

$$G(1) = \pi - \frac{\pi}{2} = \frac{\pi}{2}$$
EX 22:

$$\begin{cases} f(0) = 1 \\ f(1) = 0 \\ f'(x) = \frac{-2}{\pi \cdot \sqrt{1 - x^2}} \end{cases}$$
1. $f'(x) < 0 \; ; \; \forall x \in]0,1[$

$$f \text{ est continue sur } [0,1] \text{ et strictement } décroissante}$$

$$\Rightarrow f \text{ réalise une bijective } de[0,1] \text{ sur } f([0,1]) = [f(1), f(0)] = [0,1]$$
2.a) soit $g(x) = f(\cos x)$

$$g'(x) = -\sin x \cdot f'(\cos x)$$

$$= \frac{+2\sin x}{\pi \cdot |\sin x|}$$

$$= \frac{2}{\pi} \quad car \quad \sin x > 0$$

$$g \text{ est continue sur } \left[0, \frac{\pi}{2}\right]$$

$$dérivable \text{ sur } \left]0, \frac{\pi}{2}\right[$$

$$g'(x) = \frac{2}{\pi}$$

$$\Rightarrow g(x) = \frac{2}{\pi}x + k \quad ; \ k \in \mathbb{R}$$

$$g\left(\frac{\pi}{2}\right) = f(0) = 1$$

$$\Rightarrow 1 = 1 + k \Rightarrow k = 0$$

$$d'où g(x) = \frac{2}{\pi}x$$

$$\Rightarrow f(Cos \ x) = \frac{2}{\pi}x$$

$$b) \quad f(Cos \ x) = \frac{2}{\pi} x$$

$$\Rightarrow f^{-1}(\frac{2}{\pi}x) = \cos x$$

soit
$$t = \frac{2}{\pi}x$$

$$x = \frac{\pi}{2}t$$

$$d'où f^{-1}(t) = Cos\left(\frac{\pi}{2}t\right)$$

conclusion:

$$f^{-1}(x) = Cos(\frac{\pi}{2}x) \; ; \; \forall x \in [0,1]$$

3.
$$x \in \left[0, \frac{\pi}{2}\right]$$

$$h(x) = f(\cos x) + f(\sin x)$$

a) comme était composée et somme de fonctions dérivables

h est dérivable sur $\left]0,\frac{\pi}{2}\right[$

$$h(x) = f(\cos x) + f(\cos(\frac{\pi}{2} - x))$$
$$= \frac{2}{\pi}x + \frac{2}{\pi}(\frac{\pi}{2} - x)$$
$$h(x) = 1$$

$$h'(x) = -\sin x \ f'(\cos x) + \cos x \ f'(\sin x)$$

$$h'(x) = \frac{2\sin x}{\pi\sqrt{1 - \cos^2 x}} - \frac{2\sin x}{\pi\sqrt{1 - \sin^2 x}}$$

$$h'(x) = \frac{2}{\pi} - \frac{2}{\pi} = 0$$

b) h continue sur
$$\left[0, \frac{\pi}{2}\right]$$

dérivable sur
$$\left]0,\frac{\pi}{2}\right[$$

$$h'(x) = 0 \; ; \; \forall x \in \left[0, \frac{\pi}{2}\right[$$

d'où h est constante sur $\left[0, \frac{\pi}{2}\right]$

$$h(0) = f(1) + f(0) = 1$$

d'où

$$h(x) = 1$$
; $\forall x \in \left[0, \frac{\pi}{2}\right]$

4. $n \in \mathbb{N}^*$

$$\varphi_n(x) = Cos(\frac{\pi}{2}x) - x^n$$

$$x \in [0,1]$$

a)
$$\varphi_n(x) = \frac{-\pi}{2} \sin(\frac{\pi}{2}x) - n x^{n-1}$$

$$\varphi_n(x) \le 0$$
; $\forall x \in [0,1]$

 φ_n est continue et strictement décroissante sur[0,1] elle réalise donc une bijection de[0,1] sur

$$\varphi_n([0,1]) = [-1,1] \text{ et comme } 0 \in [-1,1]$$

alors il existe un uniqueréel

$$a_n \in [0,1] tq : \varphi_n(a_n) = 0$$

$$\varphi_n(0).\varphi_n(1) < 0 \Rightarrow a_n \in [0,1]$$

b)
$$n-p > 0$$
 alors
 $0 < x < 1 \Rightarrow 0 < x^{n-p} < 1$
 $\Rightarrow 0 < (x^{n-p}).x^p < x^p$
 $\Rightarrow x^n < x^p$
 $\Rightarrow -x^n > -x^p$
 $\Rightarrow Cos(\frac{\pi}{2}x) - x^n > Cos(\frac{\pi}{2}x) - x^p$
 $\Rightarrow \varphi_n(x) > \varphi_p(x)$

c)
$$a_n et a_{n+1} \in]0,1[$$
d'après b) $n+1>n$
 $d'où \varphi_{n+1}(a_{n+1})>\varphi_n(a_{n+1})$
 $\Rightarrow 0>\varphi_n(a_{n+1})$
 $\Rightarrow \varphi_n(a_n)>\varphi_n(a_{n+1})$
 $\Rightarrow a_n < a_{n+1}$
car φ_n est strictement décroissante sur $[0,1]$
 $d'où (a_n)$ est strictement décroissante
et comme on $a = a_n > 0$
 (a_n) est décroissante et min orée par 0
elle est donc convergente.

Q-C-M:

- 1. a. La distance MM'=|z-z'|
 - b. O,M et M' sont alignées.
 - c. z=iz'
- 2. A ,B et C sont alignées.
- 3. (AB) et (AC) sont perpendiculaires.

VRAI FAUX

- 1. Faux ; il suffit de prendre $z_1=3i$ et $z_2=1+2i$
- 2. Faux ;il suffit de prendre z = $e^{i\frac{\pi}{3}}$
- 3. Faux ; il suffit de prendre z=1 et z'=i

EX 1 page 19:

$$2i + \frac{1}{i} - 1 = 2i - i - 1 = -1 + i$$

$$\frac{1 + i\sqrt{3}}{\sqrt{3} - i} = \frac{(1 + i\sqrt{3}) \cdot (\sqrt{3} + i)}{3 + 1} = i$$

$$\left(\frac{1 + i}{1 - i}\right)^2 = i^2 = -1$$

$$\frac{(1 - i)(2 + i)}{i - 2} = \frac{(1 - i)(2 + i)^2}{-5} = \frac{(1 - i)(3 + 4i)}{-5}$$

$$= -\frac{7}{5} - \frac{1}{5}i$$

EX 2 page 19:

$$A = \frac{(3-2i)(5+i)}{3i(7+2i)} = \frac{17-7i}{-6+21i} \Rightarrow \bar{A} = \frac{17+7i}{-6-21i}$$

$$B = \left(\frac{i-3}{1+i}\right)^2 = \frac{8-6i}{2i} = -3 - 4i$$

$$\Rightarrow \bar{B} = -3 + 4i$$

C=
$$(2-i)(3+2i)(2+i)(3-2i)$$

= $(2-i)(2+i)$ $(3+2i)$ $(3-2i)$ =5X13=65
 $\Rightarrow \bar{C} = 65$

EX 3PAGE 19

 $\overline{Z_1}$ =...= Z_1 donc Z_1 est un réel Z_3 = $\overline{Z_2}$ donc Z_3 + Z_2 est un réel et Z_3 - Z_2 est imaginaire.

EX 4 PAGE 19

- L'ensemble des points M d'affixe z=a+i(a+1) avec a∈IR Est la droite d'éq :y=x+1
- 2. L'ensemble des points M d'affixe $z=2i\sin(\frac{a}{2})$ avec $a\in[0,2\pi$ [est le segment [AB]

Avec A(-2i) et B(2i).

3. a(z-i)=i(z+1) avec $a \in IR^*$ est équivaut à $\frac{z-i}{z+1}$ imaginaire et $z \notin \{-1,i\}$ donc l'ensemble des points est le cercle de diamètre [AB] avec A(i) et B(-1), privé de A et B.

EX 5 PAGE 19

$$|(1+i)^4| = |1+i|^4 = \sqrt{2}^4 = 4$$

$$|(2-3i)^2| = |2-3i|^2 = \sqrt{13}^2 = 13$$

$$|(-2+i)(1-3i)(1-4i)|=$$

$$|-2 + i||1 - 3i||1 - 4i|$$

= $\sqrt{5}\sqrt{10}\sqrt{17} = \sqrt{850}$

$$\left| \frac{1 - 5i}{i + 2\sqrt{3}} \right| = \frac{|1 - 5i|}{|i + 2\sqrt{3}|} = \frac{\sqrt{26}}{\sqrt{13}} = \sqrt{2}$$

EX 6 PAGE 19

1.
$$\bar{Z} = \frac{1}{Z} \Leftrightarrow Z.\bar{Z} = 1 \Leftrightarrow |Z|^2 = 1$$

$$\Leftrightarrow |Z| = 1$$

2.
$$|Z_1| = |Z_2| = 1 \Rightarrow \overline{Z_1} = \frac{1}{Z_1}$$

$$et \overline{Z_2} = \frac{1}{Z_2}$$

$$\Rightarrow \overline{\left(\frac{Z_1 + Z_2}{1 + Z_1 Z_2}\right)} = \frac{\overline{Z_1} + \overline{Z_2}}{1 + \overline{Z_1} . \overline{Z_2}} = \frac{\frac{1}{Z_1} + \frac{1}{Z_2}}{1 + \frac{1}{Z_1} . \frac{1}{Z_2}}$$

$$=\frac{Z_1+Z_2}{1+Z_1Z_2}$$
 donc $\frac{Z_1+Z_2}{1+Z_1Z_2}$ est réel

EX 7 PAGE 19

On désigne par M le point d'affixe z

$$* |Z| = |Z^2| \Leftrightarrow |Z| = |Z|^2$$

$$\Leftrightarrow |Z| = 1 \text{ ou}|Z| = 0$$

 \Leftrightarrow M=0 ou M ϵ Cercle trigo (1)

*
$$|Z| = |1 - Z| \Leftrightarrow OM=AM \text{ avec } Z_A=1$$

$$\Leftrightarrow$$
 M \in Δ :x=1/2 (Δ :med de [AO]) (2)

(1) Et (2)
$$\Rightarrow Z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$
 ou $Z = \frac{1}{2} - i \frac{\sqrt{3}}{2}$

EX 8 PAGE 19

- 1. $z'=z^2 \Leftrightarrow z'=(x+iy)^2=x^2-y^2+2xyi$ $\Rightarrow Réel(z')=x^2-y^2$ et Im(z')=2xy
- 2. z' réel⇔ 2xy=0⇔x=0 ou y=0
 ⇒L'ensemble des points M est la réunion de deux axes du repère.
- 3. z' imaginaire ⇔x²-y²=0
 ⇔(x-y)(x+y)=0⇔y=x ou y=-x
 ⇒L'ensemble des points M est la réunion de deux droites
 D :y=x la 1^{ere}bissectrice
 et D' :y=-x la 2^{ere}bissectrice

EX 9 PAGE 19

1.
$$Z_1 = \frac{Z_B + Z_C}{2} = \frac{2 - 2i}{2} = 1 - i$$

$$AB = |Z_B - Z_A| = |-3 - i| = \sqrt{10}$$

$$AC = |Z_C - Z_A| = |1 - 3i| = \sqrt{10}$$

$$BC = |Z_C - Z_B| = |4 - 2i| = \sqrt{20}$$

Cclusion : ABC est un triangle isocèle et rectangle en A

3.
$$a/D=S_{I}(A) \Rightarrow \overrightarrow{AI} = \overrightarrow{ID}$$

 $\Rightarrow Z_{D}-Z_{I}=Z_{I}-Z_{\Delta}$

$$\Rightarrow$$
 Z_D=Z_I+Z_I-Z_A=2-2i-2-i=-3i
b/ on a I=A*D=B*C \Rightarrow ABDC #
et on a : ABC triangle
rectangle et isocèle en A
Donc ABDC est un carré

EX 10 PAGE 19

A(-2,1); B(0,4); C(
$$\frac{7}{2}$$
,2); D($\frac{3}{2}$,-1)

$$Z_B-Z_A=4i-(-2+i)=2+3i$$

$$Z_{C}-Z_{D}=\frac{7}{2}+2i-\left(\frac{3}{2}-i\right)=2+3i$$

$$\Rightarrow Z_B - Z_A = Z_C - Z_D \Rightarrow ABCD\#$$

EX 11 PAGE 19

1)
$$|\bar{z} - 1 + 2i| = 3 \Leftrightarrow$$

 $|z - 1 - 2i| = 3 \Leftrightarrow$
 $|z - (1 + 2i)| = 3 \Leftrightarrow$

AM=3 avec $Z_A=1+2i$

Donc E est le cercle de centre le point A(1;2) et de rayon 3

2)
$$\frac{\left|\frac{iz+1-i}{\bar{z}+2+i}\right|}{\left|\frac{i(z-i-1)}{|z+2-i|}\right|} = 1 \Leftrightarrow$$

$$\frac{|i||z-(1+i)|}{|z-(-2+i)|} = 1 \Leftrightarrow$$

CM=BM avec $Z_C=1+i$ et $Z_B=-2+i$

Donc l'ensemble E est la droite médiatrice de [BC].

(représentation graphique : t .facile)

EX 12 PAGE 20 OBC est équilatéral

$$Z_A=-2+2i \Rightarrow |Z_A|=\sqrt{8}=2\sqrt{2}$$

et Arg(
$$Z_A$$
)= $\frac{3\pi}{4}$

$$|Z_R| = |Z_A| = \sqrt{8} = 2\sqrt{2}$$

$$Arg(Z_B) = Arg(Z_A) - \frac{\pi}{3} = \frac{5\pi}{12}$$

$$Z_C = 2 \Rightarrow |Z_C| = 2 \text{ et } Arg(Z_C) = 0$$

$$Z_D$$
=-1-i \Rightarrow $|Z_D| = \sqrt{2} \ et \ Arg(Z_D) = -\frac{3\pi}{4}$

EX 13 PAGE 20

$$|Z_A| = 1.5$$
 et $Arg(Z_A) = \frac{\pi}{6}$

$$|Z_B| = |Z_A| = 1.5$$
 et Arg $(Z_B) = \frac{\pi}{3}$

$$|Z_C| = 1.5$$
 et $Arg(Z_C) = \frac{2\pi}{3}$

$$|Z_D| = 1.5 \ et \ Arg(Z_D) = \frac{5\pi}{6}$$

$$|Z_E| = 1.5$$
 et $Arg(Z_E) = -\frac{2\pi}{3}$

$$|Z_F| = 1.5$$
 et Arg(Z_B) = $-\frac{\pi}{3}$

EX 14 PAGE 20

a. *-8i=8.(
$$\cos(\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})$$
)

* $\frac{-1+i}{\sqrt{2}} = \frac{-\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$

= $\cos(\frac{3\pi}{4}) + i.\sin(\frac{3\pi}{4})$

* $3i+\sqrt{3} = \sqrt{3}(1+i\sqrt{3})$

= $2\sqrt{3}.(\cos(\frac{\pi}{2})+i.\sin(\frac{\pi}{2}))$

- $-2,5=2,5.(\cos(\pi)+i\sin(\pi))$
- $\sqrt{2} \sqrt{6}i = \sqrt{2}(1 i\sqrt{3})$ = $2\sqrt{2}.(\cos(-\frac{\pi}{3}) + i.\sin(-\frac{\pi}{3}))$
- $5+5i=5\sqrt{2}\left(\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right)$

b.
$$*\frac{3(1+i\sqrt{3})}{(1+i)^2} = \frac{6e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{2}}} = 3e^{-i\frac{\pi}{6}}$$

 $= 3.(\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}))$
 $*\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$
 $= \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})$

$$*\left(\frac{1+i\sqrt{3}}{\sqrt{3}+i}\right)^{3} = \left(\frac{2e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{6}}}\right)^{3}$$
$$=\left(e^{i\frac{\pi}{6}}\right)^{3} = e^{i\frac{\pi}{2}}$$
$$=\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$$

*
$$(1-i)^5(1+i)^3 = 4\sqrt{2}e^{-i5\frac{\pi}{4}}.2\sqrt{2}e^{i3\frac{\pi}{4}}$$

= $16e^{-i\frac{\pi}{2}}$
= $16(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})$

EX 15 PAGE 20

1)
$$|Z_1| = |1 + i| = \sqrt{2}$$

 $Arg(Z_1) = \frac{\pi}{4}$
 $|Z_2| = |\sqrt{3} - i| = 2$
 $Arg(Z_2) = -\frac{\pi}{6}$
2) $Z_1.Z_2 = (1+i)(\sqrt{3} - i)$

 $=(1+\sqrt{3})+i(-1+\sqrt{3})$

$$Z_{1}.Z_{2} = 2.\sqrt{2}e^{i\left(\frac{\pi}{4} - \frac{\mu}{6}\right)} = 2\sqrt{2}e^{i\frac{\pi}{12}}$$
$$= 2\sqrt{2}\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$$

3)
$$2\sqrt{2}\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right) =$$

$$(1+\sqrt{3}) + i(-1+\sqrt{3})$$

$$\Rightarrow \cos\left(\frac{\pi}{12}\right) = \frac{1+\sqrt{3}}{2\sqrt{2}}$$
et $\sin\left(\frac{\pi}{12}\right) = \frac{-1+\sqrt{3}}{2\sqrt{2}}$

EX 16 PAGE 20

1.
$$|Z_1| = \left| -1 + i\sqrt{3} \right| = 2$$

 $Arg(Z_1) = \frac{2\pi}{3}$
 $|Z_2| = |1 + i| = \sqrt{2}$
 $Arg(Z_2) = \frac{\pi}{4}$

2.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

$$\arg(\frac{z_1}{z_2}) = \arg(z_1) - \arg(z_2) = \frac{2\pi}{3} - \frac{\pi}{4} = \frac{5\pi}{12}$$

3.
$$\frac{z_1}{z_2} = \frac{-1 + i\sqrt{3}}{1 + i} = \frac{\sqrt{3} - 1}{2} + i\frac{1 + \sqrt{3}}{2}$$

$$rel(\frac{z_1}{z_2}) = \sqrt{2} \cdot \cos(\frac{5\pi}{12}) = \frac{\sqrt{3} - 1}{2} \Rightarrow \cos(\frac{5\pi}{12}) = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$
$$Im(\frac{z_1}{z_2}) = \sqrt{2} \cdot \sin(\frac{5\pi}{12}) = \frac{1 + \sqrt{3}}{2} \Rightarrow \sin(\frac{5\pi}{12}) = \frac{1 + \sqrt{3}}{2\sqrt{2}}$$

EX 17 PAGE 20

$$e^{-i\frac{\pi}{4}} = \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$$

$$e^{2i\frac{\pi}{3}} = \cos(2\frac{\pi}{3}) + i\sin(2\frac{\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$\frac{e^{i\pi}}{4} = \frac{-1}{4}$$

$$2ie^{i\frac{\pi}{6}} = 2i(\frac{\sqrt{3}}{2} + i\frac{1}{2}) = -1 + i\sqrt{3}$$

EX 18 PAGE 20

$$2\sqrt{3} - 2i = 4\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) = 4e^{-i\frac{\pi}{6}}$$

$$-5 - 5i = 5(-1 - i) = 5\sqrt{2} \cdot e^{-i\frac{3\pi}{4}}$$

$$-1 + i\sqrt{3} = 2\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = 2 \cdot e^{i\frac{2\pi}{3}}$$

$$\frac{1 + i}{\sqrt{2}} = e^{i\frac{\pi}{4}}$$

$$\cos(\frac{\pi}{5}) - i\sin(\frac{\pi}{5}) = \cos(-\frac{\pi}{5}) + i\sin(-\frac{\pi}{5}) = e^{-i\frac{\pi}{5}}$$

EX 19 PAGE 20

1.
$$z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i} = \frac{2e^{i\frac{\pi}{3}}}{2e^{i\frac{\pi}{6}}} = e^{i\left(\frac{\pi}{3} - \frac{\pi}{6}\right)} = e^{i\frac{\pi}{6}}$$

2.
$$z^6 = \left(e^{i\frac{\pi}{6}}\right)^6 = e^{i\frac{\pi}{6}.6} = e^{i\pi} = -1$$

EX 20 PAGE 20

1.
$$-1+i=\sqrt{2}e^{i\frac{3\pi}{4}}$$

2.
$$(-1+i)^{11} = \left(\sqrt{2}e^{i\frac{3\pi}{4}}\right)^{11}$$

= $\sqrt{2}^{11}e^{i\frac{33\pi}{4}} = 32\sqrt{2}e^{i\frac{\pi}{4}}$
= $32.(1+i) = 32+32i$

EX 21 PAGE 20

- 1. L'ensemble des points M d'affixe z tel que $z=2e^{i\theta}$ avec $\theta \in [0;\pi]$ est le demi-cercle de centre le point O et de rayon 2 située dans le demi plan $y \ge O$.
- L'ensemble des points M d'affixe z tel que z=-2e^{iθ} avec θ ε[0 ;π] est le demi-cercle de centre le point O et de rayon 2 située dans le demi plan y ≤ O.
- 3. L'ensemble des points M d'affixe z tel que $z=2+\cos(\theta)+i\sin(\theta)=2+e^{i\theta}$ avec $\theta \in [0;2\pi[$ est le cercle de centre le point I(2;0) et de rayon 1 (faire une figure pour chaque cas)

EX 22 PAGE 21

1.

$$1 + e^{i\theta} = e^{i0} + e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}} \right)$$

$$= 2\cos\frac{\theta}{2} \cdot e^{i\frac{\theta}{2}}$$

$$1 - e^{i\theta} = e^{i0} - e^{i\theta} = e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right)$$

$$= -2i\sin(\frac{\theta}{2}) \cdot e^{i\frac{\theta}{2}}$$

2.

$$\begin{aligned} \left|1+e^{i\theta}\right| &= \left|2\cos\frac{\theta}{2}.\right| e^{i\frac{\theta}{2}} = 2\cos\frac{\theta}{2}.(car\frac{\theta}{2} \in \left]0; \frac{\pi}{2}\right[) \\ &Arg\left(1+e^{i\theta}\right) = Arg\left(2\cos\frac{\theta}{2}e^{i\frac{\theta}{2}}\right) = \frac{\theta}{2} \\ \left|1-e^{i\theta}\right| &= \left|-2i\sin(\frac{\theta}{2}).e^{i\frac{\theta}{2}}\right| = 2\sin(\frac{\theta}{2}) \\ &Arg\left(1-e^{i\theta}\right) = Arg\left(-2i\sin(\frac{\theta}{2})e^{i\frac{\theta}{2}}\right) = \frac{\theta}{2} - \frac{\pi}{2} \end{aligned}$$

EX 2 3 PAGE 21

1)
$$Z=\cos(\theta)-i\sin(\theta)=\cos(\theta)+i\sin(\theta)$$

= $e^{i\theta}=e^{-i\theta}$

2)
$$Z = \sin(\theta) + i\cos(\theta)$$

= $\cos(\frac{\pi}{2} - \theta) + i\sin(\frac{\pi}{2} - \theta) = e^{i(\frac{\pi}{2} - \theta)}$

3)
$$Z = -\cos(\theta) - i\sin(\theta) = -(\cos(\theta) + i\sin(\theta))$$

= $-e^{i\theta} = e^{i(\pi + \theta)}$

4)
$$Z = 1 + i \cdot \tan(\theta) = \frac{\cos(\theta) + i\sin(\theta)}{\cos(\theta)}$$

= $\frac{1}{\cos(\theta)} e^{i\theta} (\cos(\theta) > 0)$

5)
$$Z = \frac{e^{i\theta} - e^{-i\theta}}{e^{i\theta} + e^{-i\theta}} = \frac{2i\sin(\theta)}{2\cos(\theta)} = \tan(\theta)e^{i\frac{\pi}{2}}$$

* $pour \theta \in \left[-\frac{\pi}{2}; 0 \right] Z = -\tan(\theta)e^{i(-\frac{\pi}{2})}$

*
$$pour \theta \in \left[0; \frac{\pi}{2}\right] Z = \tan(\theta) e^{i\frac{\pi}{2}}$$

EX 2 4 PAGE 21

1.
$$M(t) \in \zeta$$
 et $(u; \overrightarrow{OM}) \equiv \alpha \Rightarrow t = e^{i\alpha} \Rightarrow$

$$U=t^3=e^{i3\alpha} = \cos(3\alpha) + i\sin(3\alpha)$$

et
$$v=2t=2(cos(\alpha)+isin(\alpha))$$

2. Pour
$$\alpha = \frac{\pi}{3} \Rightarrow U = -1 \Rightarrow A(-1;0)$$

$$W = 2t - t^3 = Z_B - Z_A$$

$$\Rightarrow \overrightarrow{OC} = \overrightarrow{AB} \Rightarrow C = t_{\overrightarrow{AB}}(O)$$

3. O ;A et B alignées ssi $\frac{aff(\overrightarrow{OA})}{aff(\overrightarrow{OB})}$ réel Ssi $\frac{t^3}{2t}$ =½ t^2 réel Ssi 2α =k. π \Leftrightarrow α =k. π /2 or α ϵ [0 ; π /2]

Donc O; A et B sont alignées pour $\alpha = \pi/2$ ou $\alpha = 0$

4. a/ On a $\overrightarrow{OC} = \overrightarrow{AB} \Rightarrow OABC \ est \ un \ parallè \log ramme$ b/ OABC rectgle ssi AC = OB = 2 ssi

$$\begin{vmatrix} 2t - 2t^3 \end{vmatrix} = 2$$

$$\Leftrightarrow |t - t^3| = 1 \Leftrightarrow |1 - t^2| = 1 \ car|t| = 1$$

$$\Leftrightarrow 2\sin(\alpha) = \pm 1 \ (d \ après \ Ex \ 22)$$

$$or \ \alpha \in \left[O; \frac{\pi}{2}\right] \Rightarrow \alpha = \frac{\pi}{6}$$

Conclusion : OABC est un rectangle pour $\alpha = \pi/6$

EX 2 5 PAGE 21

$$z = e^{i2\theta} - i \Rightarrow \overline{z} = e^{-i2\theta} + i$$

1. Soit I le milieu de [MM'] $\Rightarrow Z_I = \frac{z + \bar{z}}{2} = \cos(2\theta)$

OMNM' losange⇒ I milieu de [ON]

 \Rightarrow L'affixe du point N est :2cos(2 θ)

2. a/

$$z = e^{i2\theta} - i = e^{i2\theta} + e^{-i\frac{\pi}{2}}$$

$$= e^{i\frac{2\theta - \frac{\pi}{2}}{2}} \left(e^{i\frac{2\theta + \frac{\pi}{2}}{2}} + e^{-i\frac{2\theta + \frac{\pi}{2}}{2}} \right)$$

$$= e^{i(\theta - \frac{\pi}{4})} \cdot 2\cos(\theta + \frac{\pi}{4})$$

$$= 2\cos(\theta + \frac{\pi}{4})e^{i(\theta - \frac{\pi}{4})}$$

$$b / \frac{z}{z} = \frac{2\cos(\theta + \frac{\pi}{4})e^{i(\theta - \frac{\pi}{4})}}{2\cos(\theta + \frac{\pi}{4})e^{-i(\theta - \frac{\pi}{4})}} = e^{i(2\theta - \frac{\pi}{2})}$$

c/On a OMNM' est un losange ⇒
OMNM' carré ssi OMN rctgle en O

ssi
$$\frac{z}{z}$$
imaginair
ssi $2\theta - \frac{\pi}{2} = \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z}$
ssi $\theta = \frac{\pi}{2} + k\frac{\pi}{2}$ or $\theta \in \left[0; \frac{\pi}{4}\right[$
 $\Rightarrow \theta = 0$

d/ pour θ =0 \Rightarrow z=1-i

$$\Rightarrow$$
M(1;-1);M'(1;1) et N(2;0)

EX 26 PAGE 21

2. a/ aff(
$$\overrightarrow{BM}$$
)= Z_M - Z_B

$$=\cos(\theta)+i.\sin(\theta)+1-i.\sin(\theta)$$

$$=1+\cos(\theta)=aff(\overrightarrow{OA})$$

$$\Rightarrow \overrightarrow{BM} = \overrightarrow{OA} \Rightarrow OAMB \text{ est un}$$
parallélogramme
b/ OAMB est un losange ssi OA=OB
$$\sin 1+\cos(\theta) = \sqrt{1+\sin^2(\theta)}$$

$$\sin 1+2\cos(\theta)+\cos^2(\theta)=1+\sin^2(\theta)$$

$$\sin 2\cos^2(\theta)+2\cos(\theta)-1=0$$

$$\sin \cos(\theta)=\frac{-1-\sqrt{3}}{2} \text{ ou } \cos(\theta)=\frac{-1+\sqrt{3}}{2}$$
et comme $\frac{-1+\sqrt{3}}{2}$ ou $\cos(\theta)=\frac{-1+\sqrt{3}}{2}$
et comme $\frac{-1+\sqrt{3}}{2}$ ou cos(θ) donc il existe une
$$\cos(\theta)=\frac{-1+\sqrt{3}}{2} \text{ donc il existe une}$$
valeur de θ tel que OAMB est un losange.
$$c/\cos(\theta)=\frac{-1+\sqrt{3}}{2} \text{ donc } \theta=1,2\text{ rad}$$

3.
$$A(\theta)=(1+\cos(\theta)).\sin(\theta)$$

 $=\sin(\theta)+\frac{1}{2}\sin(2\theta)$
 $\Rightarrow A'(\theta)=\cos(\theta)+\cos(2\theta)$

θ	0		π/3	π/2
Α'(θ)		+	0	
Α(θ)		*		-

Donc A(θ) est maximale pour $\theta = \pi/3$

EX 27 PAGE 21

$$\begin{split} z &= \frac{1}{2} \Big(\sin(\varphi) + i \Big(1 - \cos(\varphi) \Big) \\ &= \frac{1}{2} \Big(\sin(\varphi) - i \Big(\cos(\varphi) \Big) + i \Big) \\ &= \frac{1}{2} \Bigg(\cos(\frac{\pi}{2} - \varphi) - i \sin(\frac{\pi}{2} - \varphi) + i \Bigg) \\ &= \frac{1}{2} \Bigg(e^{i(\varphi - \frac{\pi}{2})} + e^{i\frac{\pi}{2}} \Bigg) \\ &= \frac{1}{2} \Bigg(e^{i\frac{\varphi}{2}} \cdot \Bigg(e^{i\frac{\varphi - \pi}{2}} + e^{-i\frac{\varphi - \pi}{2}} \Bigg) \Bigg) = \frac{1}{2} \Bigg(e^{i\frac{\varphi}{2}} \cdot 2 \cos\left(\frac{\varphi - \pi}{2}\right) \Bigg) \\ &= \cos\left(\frac{\varphi - \pi}{2}\right) \cdot e^{i\frac{\varphi}{2}} \quad (0 < \varphi < \pi \Rightarrow \cos\left(\frac{\varphi - \pi}{2}\right) > 0) \\ &Donc |z| = \cos\left(\frac{\varphi - \pi}{2}\right) = \sin(\frac{\varphi}{2}) \quad et \ Arg(z) = \frac{\varphi}{2} \end{split}$$

2.
$$z_{1} = z - i = \frac{1}{2} \left(\sin(\varphi) - i \left(\cos(\varphi) - i \right) \right)$$

$$= \frac{1}{2} \left(\cos(\frac{\pi}{2} - \varphi) - i \sin(\frac{\pi}{2} - \varphi) - i \right)$$

$$= \frac{1}{2} \left(e^{i(\varphi - \frac{\pi}{2})} + e^{-i\frac{\pi}{2}} \right)$$

$$= \frac{1}{2} \left(e^{i\frac{\varphi - \pi}{2}} \cdot \left(e^{i\frac{\varphi}{2}} + e^{-i\frac{\varphi}{2}} \right) \right) = \frac{1}{2} \left(e^{i\frac{\varphi - \pi}{2}} \cdot 2 \cos\left(\frac{\varphi}{2}\right) \right)$$

$$= \cos\left(\frac{\varphi}{2}\right) \cdot e^{i\frac{\varphi - \pi}{2}} \left(0 < \varphi < \pi \Rightarrow \cos\left(\frac{\varphi}{2}\right) > 0 \right)$$

$$Donc |z_{1}| = \cos\left(\frac{\varphi}{2}\right) e^{i\frac{\varphi - \pi}{2}} \left(0 < \varphi < \pi \Rightarrow \cos\left(\frac{\varphi}{2}\right) > 0 \right)$$

$$\begin{aligned} |z_2| &= \frac{|z|}{|z_1|} = \frac{\cos(\frac{\varphi - \pi}{2})}{\cos(\frac{\varphi}{2})} = tg\left(\frac{\varphi}{2}\right) \\ Arg(z_2) &= Arg(z) - Arg(z_1) \\ &= \frac{\varphi}{2} - \frac{\varphi - \pi}{2} = \frac{\pi}{2} \end{aligned}$$

3)a/

$$on a z_{1} = z - i = \frac{1}{2} \left(e^{i(\varphi - \frac{\pi}{2})} + e^{-i\frac{\pi}{2}} \right)$$

$$= \frac{1}{2} e^{i(\varphi - \frac{\pi}{2})} - \frac{1}{2} i$$

$$\Leftrightarrow z_{1} - (-\frac{1}{2}i) = \frac{1}{2} e^{i(\varphi - \frac{\pi}{2})}$$

$$\Leftrightarrow z_{M} - z_{A} = \frac{1}{2} e^{i(\varphi - \frac{\pi}{2})} \quad avec \ z_{A} = -\frac{1}{2}i$$

$$\Leftrightarrow z_{M} - z_{A} = \frac{1}{2} e^{i\theta} \quad avec \ \theta \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$\Leftrightarrow M \in \frac{1}{2} cercle \ de \ centre \ A \ et \ de \ rayon \frac{1}{2}$$

le point A(0,-1/2) et de rayon ½ (Voiy figure)

E est le demi-cercle de centre

$$|z_2| = tg\left(\frac{\varphi}{2}\right)$$
 et $Arg(z_2) = \frac{\pi}{2}$
 $avec \frac{\varphi}{2} \in \left]0; \frac{\pi}{2}\right[$
 \Rightarrow F est la demi droite $[O, \overline{J})$

privée de O.

0.5

QCM

- 1. L'équation z²+z+1=0 a deux solutions conjuguées(les coefficients réels)
- 2. L'équation z²-2z+2=0 a pour solutions 1-i et 1+i (solutions conjuguées)
- 3. L'équation z³- z²+z-1=0 admet une seule solution réelle
- 4. L'équation z⁴=-1 admet quatre solutions distinctes
- 5. Le nombre $\sqrt{2} + i\sqrt{2}$ est une racine carrée de 4i

VRAI-FAUX

- 1. FAUX $i\sqrt{3}$ est une solution de l'éq : $z^2=-3$
- 2. FAUX 0 est une solution de $z^4=z^2$ et 0 n'est pas solution de $z^2=1$
- 3. FAUX i est aussi une solution de $z^4+z^2=0$
- 4. FAUX L'équation z²-2z+2=0 a pour solutions 1-i et 1+i(ne sont pas opposées)
- 5. FAUX $z^4 = a^4$ ssi z=a ou z=-a ou z=ia ou z=-ia
- 6. FAUX $e^{i\frac{\pi}{6}}$ est une racine cubique de i qui n'est pas imaginaire

EX 1 PAGE 31:

$$a = 4\sqrt{2}(1+i) = 4\sqrt{2}(\sqrt{2}e^{i\frac{\pi}{4}}) = 8e^{i\frac{\pi}{4}}$$

Les racines cubiques de a sont : $z_k = \sqrt[3]{8}e^{i(\frac{\pi}{4}+2k\pi)\over 3}$ $avec \ k \in \{0,1,2\}$ $\Rightarrow z_0 = 2e^{i\frac{\pi}{12}} \ ; \ z_1 = 2e^{3i\frac{\pi}{4}} \ ; \ z_2 = 2e^{17i\frac{\pi}{12}}$

EX 2 PAGE 31:

$$a = 8\sqrt{2}(-1-i) = 8\sqrt{2}(\sqrt{2}e^{-3i\frac{\pi}{4}}) = 16e^{-3i\frac{\pi}{4}}$$

Les racines quatrièmes de a sont :

$$\begin{aligned} z_k &= \sqrt[4]{16}.e^{i(\frac{-3\frac{\pi}{4}+2k\pi}{4})} & avec \quad k \in \{0,1,2,3\} \\ \Rightarrow z_0 &= 2e^{-3i\frac{\pi}{16}} \; ; \; z_1 = 2e^{5i\frac{\pi}{16}} \; ; \; z_2 = 2e^{13i\frac{\pi}{16}} : \; z_3 = 2e^{21i\frac{\pi}{16}} \end{aligned}$$

EX 3 PAGE 31: $a = 32i = 32e^{i\frac{\pi}{2}}$

Les racines cinquièmes de a sont :

$$z_{k} = \sqrt[5]{32}e^{i(\frac{\pi}{2} + 2k\pi)} = 2e^{i(\frac{\pi}{10} + \frac{2k\pi}{5})} \quad avec \ k \in \{0, 1, 2, 3, 4\}$$

EX 4 PAGE 31:

$$a = 32(-\sqrt{3} + i) = 32(2e^{5i\frac{\pi}{6}}) = 64e^{5i\frac{\pi}{6}}$$

Les racines sixièmes de 32(i- $\sqrt{3}$) sont : $z_k = 2e^{i(\frac{5\pi}{36} + \frac{2k\pi}{6})}$ avec $k \in \{0, 1, 2, 3, 4, 5\}$

EX 5 PAGE 31:

$$z^2 = 2i = (1+i)^2 \iff z = 1+i \text{ ou } z = -1-i$$
 $S_{\mathbb{C}} = \{1+i; -1-i\}$

*
$$z^2 + 4 = 0 \Leftrightarrow z^2 = (2i)^2 \Leftrightarrow z = 2i \text{ ou } z = -2i$$
 $S_{\mathbb{C}} = \left\{2i; -2i\right\}$

* z² =-5+12i en posant z =x+iy l'équation est équivaut au système suivant :

$$\begin{cases} \dot{x}^2 - y^2 = -5 & (1) \\ x^2 + y^2 = 13 & (2) \\ 2xy = 12 & (3) \\ (1) + (2) \Rightarrow 2x^2 = 8 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2 \\ pour x = 2; (3) donne \ y = 3 \rightarrow z = 2 + 3i \\ pour x = -2; (3) donne \ y = -3 \rightarrow z = -2 - 3i \\ S_{\mathbb{C}} = \{2 + 3i; -2 - 3i\} \end{cases}$$

$$*z^2 = e^{i\frac{\pi}{3}} \Leftrightarrow z = \pm e^{i\frac{\pi}{2} \over 2} = \pm e^{i\frac{\pi}{6}} \qquad S_{\mathbb{C}} = \left\{ e^{i\frac{\pi}{6}}; -e^{i\frac{\pi}{6}} \right\}$$

*
$$z^2 + i = 0 \Leftrightarrow z^2 = -i = \frac{-2i}{2} = \left(\frac{1-i}{\sqrt{2}}\right)^2 \Leftrightarrow z = \mp \frac{1-i}{\sqrt{2}}$$

*(1-iz)²=-1=i²
$$\Leftrightarrow$$
1-iz=i ou 1-iz=-i \Leftrightarrow $z=\frac{1-i}{i}=-1-i$ ou $z=\frac{1+i}{i}$ =1-i
$$S_{\mathbb{C}}=\left\{1-i;-1-i\right\}$$

* $(2z-1)^2 - (i-z)^2 = 0 \Leftrightarrow (2z-1-i+z)(2z-1+i-z) = 0 \Leftrightarrow (3z-1-i)(z-1+i) = 0 \Leftrightarrow z=1-i \text{ ou } z=\frac{1}{3}+i\frac{1}{3}$

$$S_{\mathbb{C}} = \left\{1 - i; \frac{1}{3} + \frac{1}{3}i\right\}$$

EX 6 PAGE 31:

1. $Z^2+z+2=0$ $\Delta=1^2-4.2=-7 \Rightarrow \delta=i\sqrt{7} \Rightarrow$

$$z = \frac{-1 - i\sqrt{7}}{2} \quad \text{ou} \quad z = \frac{-1 + i\sqrt{7}}{2}$$

$$S_{\mathbb{C}} = \left\{ -\frac{1}{2} - i\frac{\sqrt{7}}{2}; -\frac{1}{2} + i\frac{\sqrt{7}}{2} \right\}$$

- 2. Z^2 -2iz-1=0 \Leftrightarrow $(z-i)^2$ =0 \Leftrightarrow z=I $S_{\mathbb{C}} = \{i\}$
- 3. $Z^2-(4+2i)z+2+4i=0$ $\Delta'=(2+i)^2-(2+4i)=1 \Rightarrow z=1+1$ ou z=3+1 $S_c=\{1+1;3+i\}$
- 4. $(2+i)z^2+(1-7i)z-5=0$ $\Delta=(1-7i)^2+20(2+i)=-8+6i \Rightarrow \delta=1+3i \Rightarrow$ $Z=\frac{-1+7i+1+3i}{2(2+i)}=\frac{10i}{4+2i}=1+2i \text{ ou } z=\frac{-1+7i-1-3i}{2(2+i)}=\frac{-2+4i}{4+2i}=i \Rightarrow S_C=\{1+2i;i\}$

EX 7 PAGE 31:

- 1. $(\alpha i)^2 = \alpha^2 2i\alpha 1$
- 2. (E) $z^2 \alpha(\alpha + i)z + i\alpha^3 = 0$ $\Delta = \alpha^2(\alpha + i)^2 4i\alpha^3 = \alpha^2(\alpha^2 + 2i\alpha 1) 4i\alpha^3 = \alpha^2(\alpha^2 2i\alpha 1) = \alpha^2(\alpha i)^2 \Rightarrow \delta = \alpha(\alpha i)$ $\Rightarrow z = \frac{\alpha(\alpha + i) + \alpha(\alpha i)}{2} = \alpha^2$ ou $z = \frac{\alpha(\alpha + i) \alpha(\alpha i)}{2} = i\alpha$ $\Rightarrow S_C = \{\alpha^2 ; i\alpha \}$
- 3. $\left|\alpha^{2}\right| = \left|\alpha\right|^{2} = r^{2} \quad Arg(\alpha^{2}) \equiv 2.Arg(\alpha) \equiv 2.\theta \left[2\pi\right]$ $\left|i\alpha\right| = \left|i\alpha\right| = \left|i\right| \left|\alpha\right| = 1.r = r \quad Arg(i\alpha) \equiv Arg(i) + Arg(\alpha) \equiv \frac{\pi}{2} + \theta \left[2\pi\right]$

EX 8 PAGE 31:

- 1. a. E: $z^2 (3+i)z + 2(1+i) = 0$ $\Delta = (3+i)^2 8(1+i) = -2i = (1-i)^2 \Rightarrow \delta = 1-i$ $\Rightarrow z = \frac{3+i+1-i}{2} = 2$ ou $z = \frac{3+i-1+i}{2} = 1 + i \Rightarrow S_C = \{2; 1+i\}$ b. $2 = 2 \cdot (\cos(0) + i\sin(0))$ $1 + i = \sqrt{2} \cdot (\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$
- 2. E': X^4 -(3+i) X^2 +2(1+i)=0 en posant X^2 =z on obtient l'équation E $\Rightarrow X^2$ =2 ou X^2 =1+i $\Rightarrow X$ = $\pm\sqrt{2}$ ou X= $\pm\sqrt[4]{2}(\cos\left(\frac{\pi}{8}\right)+i.\sin\left(\frac{\pi}{8}\right))$

EX 9 PAGE 31:

- 1. $\sqrt{2}$.(1+i) est une solution de (E) $\Rightarrow [\sqrt{2}$.(1+i)]⁴ +a. $[\sqrt{2}$.(1+i)]²+b+12i=0 \Rightarrow 4.(-4)+a.2.2i+b+12i=0 \Rightarrow i.(4a+12)+b-16=0 \Rightarrow a=-3 et b=16
- 2. (E): z^4 -3 z^2 +16+12i=0 est une équation bicarrée et $\sqrt{2}$.(1+i) une solution $\Rightarrow -\sqrt{2}$.(1+i)solution $\Rightarrow z^4$ -3 z^2 +16+12i= $(z-\sqrt{2}$.(1+i)) $(z+\sqrt{2}$.(1+i)) $(z^2$ +n)= $(z^2$ -4i) $(z^2$ +n) \Rightarrow n=-3+4i (E) $\Leftrightarrow z^2$ -4i=0 ou z^2 =3-4i $\Leftrightarrow z=\pm\sqrt{2}$.(1+i) ou $z=\pm(1+2i)$ Conclusion: S_c ={1+2i; -1-2i; $\sqrt{2}$.(1+i); - $\sqrt{2}$.(1+i) }

EX 10 PAGE 31:

- 1. (E): $z^2+(1+i)z+i=0$ a-b+c=0 $\Rightarrow z=-1$ ou z=-i $\Rightarrow S_c=\{-1;-i\}$
- 2. a. $iz^2+(1-i)z-1=0\Leftrightarrow i.(z^2+(-1-i)z+i)=0\Leftrightarrow (z^2+(-1-i)z+i)=0$ a+b+c=0 \Rightarrow z=1 ou z=i \Rightarrow S_c={1 ;i} b. $z^4+(1+i)z^2+i=0$ en posant Z=z² on obtient l'équation (E) \Rightarrow z²=-1 ou z²=-i \Rightarrow z= $\pm i$ ou z= $\pm \frac{(1-i)}{\sqrt{2}}$

EX 11PAGE31:

1.
$$z^4 + 6z^2 + 25 = 0$$
 on pose: $t = z^2$

l'équation devient : $t^2 + 6t + 25 = 0$

$$\Delta' = -16 \rightarrow \delta' = 4i$$
 $t' = -3 + 4i$ et $t'' = -3 - 4i$

•
$$t = -3 + 4i \Leftrightarrow z^2 = -3 + 4i \Leftrightarrow \begin{cases} (1)x^2 - y^2 = -3 \\ (2)x^2 + y^2 = 5 \end{cases}$$
 (en posant z=x+iy)
$$(3)2xy = 4$$

$$(1)+(2) \Rightarrow 2x^2=2 \Rightarrow x^2=1 \Rightarrow x=\pm 1$$

Pour x=1 l'éq (3) donne y=2 \Rightarrow z=1+2i et Pour x=-1 l'éq (3) donne y=-2 \Rightarrow z=-1-2i

•
$$t = -3 - 4i \Leftrightarrow z^2 = -3 - 4i \Leftrightarrow z^2 = (1 - 2i)^2 \Leftrightarrow z = 1 - 2i \text{ ou } z = -1 + 2i$$

$$S_{\mathbb{C}} = \left\{1 + 2i; -1 - 2i; 1 - 2i; -1 + 2i\right\}$$

2.
$$z^4 + 4z^2 - 77 = 0$$

On pose :
$$t = z^2$$
 On aura : $t^2 + 4t - 77 = 0$
$$\Delta' = 81 \rightarrow \delta' = 9$$
$$t' = -11 et t'' = 7$$

•
$$t = 7 \Leftrightarrow z^2 = 7 \Leftrightarrow z = -\sqrt{7}$$
 ou $z = \sqrt{7}$

•
$$t = -11 \Leftrightarrow z^2 = -11 \Leftrightarrow z = i\sqrt{11} \text{ ou } z = -i\sqrt{11}$$

$$S_{\mathbb{C}} = \left\{ -\sqrt{7}; \sqrt{7}; -i\sqrt{11}; i\sqrt{11} \right\}$$

3.
$$(E): z^5 = \overline{z}$$

- 0 est une solution de (E).
- Déterminons les solutions non nulles de (E).

On pose $z = re^{i\theta}$; r > 0

$$(E) \Leftrightarrow (re^{i\theta})^5 = \overline{re^{i\theta}} \Leftrightarrow r^5 e^{5i\theta} = re^{-i\theta} \Leftrightarrow r^4 e^{6i\theta} = 1e^{i.0} \Leftrightarrow \begin{cases} r^4 = 1 \\ 6\theta = 2k\pi, k \in \mathbb{Z} \end{cases} \Leftrightarrow \begin{cases} r = 1 \\ \theta = \frac{k\pi}{3}, k \in \mathbb{Z} \end{cases}$$

Les solutions sont :

$$\begin{split} z_0 &= 1 \; ; z_1 = 1.e^{i\frac{\pi}{3}} = \frac{1}{2} + i\frac{\sqrt{3}}{2} \; ; \; z_2 = 1.e^{i2\frac{\pi}{3}} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} \; ; \; z_3 = 1.e^{i\pi} = -1 \\ z_4 &= 1.e^{4i\frac{\pi}{3}} = -\frac{1}{2} - i\frac{\sqrt{3}}{2} \; ; \; z_5 = 1.e^{5i\frac{\pi}{3}} = \frac{1}{2} - i\frac{\sqrt{3}}{2} \\ S_{\mathbb{C}} &= \left\{ 0, -1, 1, -\frac{1}{2} - i\frac{\sqrt{3}}{2}, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \frac{1}{2} - i\frac{\sqrt{3}}{2}, \frac{1}{2} + i\frac{\sqrt{3}}{2} \right\}. \end{split}$$

EX 12PAGE31:

posons
$$P(z) = z^3 - 8z^2 + 24z - 32$$
; $(E) \iff P(z) = 0$

1)
$$p(4) = 4^3 - 8 \times 4^2 + 24 \times 4 - 32 = 0$$
 d'où $z_0 = 4$ est une solution de (E).

2) • Factorisons P(z).

$$p(z) = (z-4)(z^{2} + bz + c)$$
$$p(z) = z^{3} + (b-4)z^{2} + (c-4b)z - 4c$$

Identifions On aura :
$$\begin{cases} b-4=-8\\ c-4b=24 \Leftrightarrow \begin{cases} b=-4\\ c=8 \end{cases} \end{cases}$$

D'où
$$P(z) = (z-4)(z^2-4z+8)$$

•
$$P(z) = 0 \Leftrightarrow z - 4 = 0$$
 ou $z^2 - 4z + 8 = 0$ $(\Delta' = -4 \rightarrow \delta' = 2i)$
 $\Leftrightarrow z = 4$ ou $z = 2 + 2i$ ou $z = 2 - 2i$

$$S_{\mathbb{C}} = \{4; 2+2i; 2-2i\}$$

3.
$$z_0 = 4 = 4e^{i0}$$
; $z_1 = 2(1+i) = 2\sqrt{2}e^{i\frac{\pi}{4}}$ et $z_2 = \overline{z_1} = 2\sqrt{2}e^{-i\frac{\pi}{4}}$

EX 13PAGE 31:

soit
$$P(z) = z^3 - (3+4i)z^2 - 4(1-3i)z + 12$$
; $(E) \Leftrightarrow P(z) = 0$
1. On pose $z = \alpha, \alpha \in IR$

$$P(\alpha) = 0 \Leftrightarrow \alpha^3 - (3+4i)\alpha^2 - 4(1-3i)\alpha + 12 = 0$$

$$\Leftrightarrow (\alpha^3 - 3\alpha^2 - 4\alpha + 12) + i(-4\alpha^2 + 12\alpha) = 0 \Leftrightarrow \begin{cases} \alpha^3 - 3\alpha^2 - 4\alpha + 12 = 0 & (1) \\ -4\alpha^2 + 12\alpha = 0 & (2) \end{cases}$$

$$(2) \Leftrightarrow \alpha(-4\alpha+12) = 0 \Leftrightarrow \alpha = 0 \text{ ou } \alpha = 3$$

Vérifions dans (1) pour $\alpha = 3$.

$$(3)^3 - 3(3)^2 - 4.3 + 12 = 27 - 27 - 12 + 12 = 0$$
 D'où 3 est une solution réelle de(E).

2) 3 est une solution de E⇒

$$P(z) = (z-3)[z^{2} + b.z + c]$$

$$P(z) = z^{3} + (b-3)z^{2} + (c-3b)z - 3c$$

Identifions

On aura :
$$\begin{cases} b-3=-(3+4i) \\ c-3b=-4(1-3i) \Leftrightarrow \begin{cases} b=-4i \\ c=-4 \end{cases} \text{ D'où} : P(z)=(z-3)\Big[z^2-4iz-4\Big]$$

$$(E) \Leftrightarrow (z-3)(z^2-4iz-4)=0 \Leftrightarrow z=3 \text{ ou } z^4-4iz-4=0 \Leftrightarrow z=3 \text{ ou } (z-2i)^2=0 \Leftrightarrow z=3 \text{ ou } z=2i$$

$$S_{\mathbb{C}} = \{3; 2i\}.$$

EX 14 PAGE32:

$$(E): z^3 = 2 + 11i$$

$$(E) \cdot \mathcal{L} = 2 + 1 \cdot \mathbf{I}$$

 $(2+i)^3 = 2^3 + 3 \cdot 2^2 i + 3 \cdot 2(i)^2 + i^3 = 8 + 12i - 6 - i = 2 + 11i$ D'où $z_0 = 2+i$ est solution de (E)

2)
$$(E) \Leftrightarrow z^3 - (2+11i) = 0$$
 Soit $f(z) = z^3 - (2+11i)$

$$f(z) = [z - (2+i)] \cdot [z^2 + bz + c]$$
 On a:
$$f(2+i) = 0$$
 D'où
$$f(z) = z^3 + (b-2-i)z^2 + [c-b(2+i)]z - c(2+i)$$

$$\text{Identifions ON AURA} \begin{cases} b-2-i=0 \\ c-b(2+i)=0 \\ -c(2+i)=-(2+11i) \end{cases} \Leftrightarrow \begin{cases} b=2+i \\ c=3+4i \end{cases}$$

On aura:

$$p_{\text{D'où}}: f(z) = [z - (2+i)].[z^2 + (2+i)z + 3 + 4i]$$

$$(E) \iff z = 2 + i \text{ ou } z^2 + (2 + i)z + 3 + 4i = 0$$

$$\Delta = -3(3+4i) \Rightarrow \delta = i\sqrt{3}(2+i) \quad z' = \frac{\left(\sqrt{3}-2\right)-i\left(1+2\sqrt{3}\right)}{2}et \quad z'' = \frac{-\left(2+\sqrt{3}\right)+i\left(2\sqrt{3}-1\right)}{2}$$

$$S_{\mathbb{C}} = \left\{2+i; \frac{\left(\sqrt{3}-2\right)-i\left(1+2\sqrt{3}\right)}{2}; \frac{-\left(2+\sqrt{3}\right)+i\left(2\sqrt{3}-1\right)}{2}\right\}$$

EX 15 PAGE32:

1.
$$\alpha = \frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right) = \cos\left(-\frac{\pi}{3}\right) + i.\sin\left(-\frac{\pi}{3}\right) = e^{-i\frac{\pi}{3}}$$

$$\beta = \frac{3+i\sqrt{3}}{2} = \sqrt{3}.\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = \sqrt{3}.\left(\cos\left(\frac{\pi}{6}\right) + i.\sin\left(\frac{\pi}{6}\right)\right) = \sqrt{3}.e^{i\frac{\pi}{6}}$$

2. a.
$$z^2-2z+1-e^{2i\theta}=0$$
 $\Delta'=1-1+e^{2i\theta}=e^{2i\theta}\Rightarrow \delta=e^{i\theta}\Rightarrow z=1+e^{i\theta}$ ou $z=1-e^{i\theta}$

$$z_1 = 1 - e^{i\theta}$$
 $z_2 = 1 + e^{i\theta}$

$$z_{1} = 1 - e^{i\theta} = e^{i0} - e^{i\theta} = e^{i\frac{\theta}{2}} \cdot \left(e^{-i\frac{\theta}{2}} - e^{i\frac{\theta}{2}} \right) = 2\sin(\frac{\theta}{2})e^{-i\frac{\pi}{2}} \cdot e^{i\frac{\theta}{2}} = 2\sin(\frac{\theta}{2}) \cdot e^{i(\frac{\theta}{2} - \frac{\pi}{2})}$$

b.

$$z_2 = 1 + e^{i\theta} = e^{i0} + e^{i\theta} = e^{i\frac{\theta}{2}} \underbrace{\left(e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}\right)}_{2\cos(\frac{\theta}{2})} = 2\cos(\frac{\theta}{2})e^{i\frac{\theta}{2}}$$

c.
$$z_1 = \alpha \Leftrightarrow \begin{cases} 2\sin\left(\frac{\theta}{2}\right) = 1 \\ \frac{\theta}{2} - \frac{\pi}{2} \equiv -\frac{\pi}{3}[2\pi] \end{cases} \Leftrightarrow \frac{\theta}{2} = \frac{\pi}{6}\left(car\frac{\theta}{2} \in \right]0, \frac{\pi}{2}[) \Leftrightarrow \theta = \frac{\pi}{3}$$

pour $\theta = \frac{\pi}{3}$ on a aussi $z_2 = \beta$

EX 16 PAGE32:

1) (E) :
$$z^2+(1-2i)z-2i=0$$
 a-b+c=0 \Rightarrow z=-1 ou z=2i S_C={-1;2i}

2)
$$E_{\theta}: z^2 + (1-2e^{i\theta})z - 2e^{i\theta} = 0$$
 $a-b+c=0 \Rightarrow z_1=-1$ et $z_2=2e^{i\theta}$ $S_c=\{-1, 2e^{i\theta}\}$

1.
$$Z_1 = \frac{-1+2e^{i\theta}}{2} = -0.5 + e^{i\theta}$$
 $\Rightarrow Z_1 + 0.5 = e^{i\theta}$

- 2. Z_i =-0,5+e^{iθ} l'ensemble des points I l'orsque θ varie dans [0 ;2 π [est le cercle de rayon 1 Et de centre le point B d'affixe -0,5
- 3. Le point A d'affixe -1 ;donc les points O et A sont sur l'axe des abscisses Pour que le point I soit aussi sur l'axe des abscisses il faut que $Im(Z_i=-0,5+e^{i\theta})=0$ $\Rightarrow sin(\theta)=0 \Rightarrow \theta=0$ ou $\theta=\pi$ (car $\theta \in [0;2\pi[$)

EX 17 PAGE32:

- 1. $z^2-2z+1+a^2=0\Leftrightarrow (z-1)^2-(ia)^2=0\Leftrightarrow z-1=ia$ ou $z-1=-ia\Leftrightarrow z=1+ia$ ou z=1-ia $S_c=\{1+ia;1-ia\}$
- 2. a/ O,A et B alignées ssi $\frac{Z_A}{z_B}$ réel ssi $\frac{1+ia}{1-ia}$ réel ssi $\frac{1-a_2+ia_1}{1+a_2-ia_1}$ réel ssi $(1-a_2+ia_1).(1+a_2+ia_1)$ réel ssi $(1-a_2)a_1+a_1(1+a_2)=0$ ssi $2a_1=0$ ssi $a_1=0$
 - b/ \overrightarrow{OA} et \overrightarrow{OB} sont orthogonaux ssi $\frac{Z_A}{Z_B}$ imaginaire ssi $\frac{1+ia}{1-ia}$ imaginaire ssi $\frac{1-a_2+ia_1}{1+a_2-ia_1}$ imaginaire ssi $(1-a_2+ia_1).(1+a_2+ia_1)$ imaginaire ssi $(1-a_2)(1+a_2)-a_1a_1=0$ ssi $a_1^2+a_2^2=1$ ssi |a|=1
- 3. a/ $1 + e^{ix} = e^{i0} + e^{ix} = e^{i\frac{x}{2}} \underbrace{\left(e^{-i\frac{x}{2}} + e^{i\frac{x}{2}}\right)}_{2\cos(\frac{x}{2})} = 2\cos(\frac{x}{2})e^{i\frac{x}{2}}$ $1 e^{ix} = e^{i0} e^{ix} = e^{i\frac{x}{2}} \left(e^{-i\frac{x}{2}} e^{i\frac{x}{2}}\right) = -2i\sin(\frac{x}{2})e^{i\frac{x}{2}}$

$$1 - e^{ix} = e^{i0} - e^{ix} = e^{i\frac{x}{2}} \cdot \underbrace{\left(e^{-i\frac{x}{2}} - e^{i\frac{x}{2}}\right)}_{-2i\sin(\frac{x}{2})} = -2i\sin(\frac{x}{2}) \cdot e^{i\frac{x}{2}}$$

b/

$$1 + ia = 1 + ie^{i\alpha} = 1 + e^{i\left(\alpha + \frac{\pi}{2}\right)} = 2\cos\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)e^{i\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)}$$

$$1 - ia = 1 - ie^{i\alpha} = 1 - e^{i\left(\alpha + \frac{\pi}{2}\right)} = -2i\sin\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)e^{i\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)}$$

c/ on a $a=e^{i\alpha}\Rightarrow |a|=1$ donc \overrightarrow{OA} et \overrightarrow{OB} sont orthogonaux \Rightarrow OAB est rectangle en O pour que OAB soit isocèle en O il faut et il suffit que OA=OB

$$\Leftrightarrow |1 + ia| = |1 - ia| \Leftrightarrow \left|\cos\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)\right| = \left|\sin\left(\frac{\alpha}{2} + \frac{\pi}{4}\right)\right| \left(-\frac{\pi}{2} < \alpha < \frac{\pi}{2} \to 0 < \frac{\alpha}{2} + \frac{\pi}{4} < \frac{\pi}{2}\right)$$
$$\Leftrightarrow \frac{\alpha}{2} + \frac{\pi}{4} = \frac{\pi}{4} \iff \alpha = 0 \Leftrightarrow a = 1$$

Conclusion : pour que OAB soit un triangle rectangle et isocèle en O il faut que a=1

EX 18 PAGE32:

1.

$$z + \frac{4}{z} = 4\cos(\theta) \Leftrightarrow z^2 - 4\cos(\theta)z + 4 = 0$$

$$\Delta' = 4\cos^2(\theta) - 4 = 4(\cos^2(\theta) - 1) = -4\sin^2(\theta) = (2i\sin(\theta))^2 \Rightarrow \delta' = 2i\sin(\theta)$$

$$\Rightarrow z = 2\cos(\theta) + 2i\sin(\theta) \text{ ou } z = 2\cos(\theta) - 2i\sin(\theta)$$

2.
$$2\cos(\theta) + 2i\sin(\theta) = 2e^{i\theta}$$
$$2\cos(\theta) - 2i\sin(\theta) = 2\cos(\theta) + 2i\sin(\theta) = 2e^{-i\theta}$$

3.

$$w r\acute{e}el \Leftrightarrow \overrightarrow{w} = w \Leftrightarrow \overrightarrow{z} + \frac{4}{z} = z + \frac{4}{z} \Leftrightarrow z.\overrightarrow{z} + 4z = z^{2}\overrightarrow{z} + 4\overline{z} et \ z \neq 0$$

$$\Leftrightarrow z \overline{z}.(\overline{z} - z) + 4(z - \overline{z}) = 0 \Leftrightarrow (z - \overline{z})(4 - z\overline{z}) = 0$$

$$\Leftrightarrow z = \overline{z} \quad ou \quad z\overline{z} = 4 \Leftrightarrow z r\acute{e}el \quad ou |z| = 2$$

$$M \in (O\overrightarrow{i}) \ priv\acute{e}e \ deO \quad ou \ M \in cercle \ de \ centreOet \ de \ rayon \ 2$$

$$E = \varsigma(O; 2) \cup (O; \overrightarrow{i}) \setminus \{O\}$$

- 4. a/ voir figure
 - b/ A et C sont deux points du cercle de centre O et de rayon 2 donc appartiennent à E B est un point de l'axe des abscisses donc appartient à E

$$c/\frac{z_A + z_C}{2} = \frac{2e^{i\theta} + 2e^{-i\theta}}{2} = 2\cos(\theta) = \frac{z_O + z_B}{2} donc OABC est un parallè \log ramme(1)$$

$$OA = OC = 2 \qquad (2)$$

$$(1) et(2) \Rightarrow OABC est un los ange$$

d/

OABC est un carrée
$$ssi \left| \frac{z_C - z_A}{z_B - z_O} \right| = 1$$

$$ssi \left| \frac{-4i \sin(\theta)}{4 \cos(\theta)} \right| = 1 \iff \cos(\theta) = \pm \sin(\theta)$$

$$ssi \theta = \frac{\pi}{4} \quad (\theta \in \left[0; \frac{\pi}{2} \right])$$

EX 19 PAGE33

1.
$$a/\left(e^{i\theta}-i\right)^2=e^{2i\theta}-2ie^{i\theta}+i^2=-1+e^{2i\theta}-2ie^{i\theta}$$

 $b/$
 $z^2-2iz+2ie^{i\theta}-e^{2i\theta}=0$ $\Delta'=-1-2ie^{i\theta}+e^{2i\theta}=\left(e^{i\theta}-i\right)^2\Rightarrow \delta=e^{i\theta}-i$
 $z'=i+e^{i\theta}-i=e^{i\theta}$ et $z''=i-e^{i\theta}+i=2i-e^{i\theta}$ $S_{\mathbb{C}}=\left\{e^{i\theta};2i-e^{i\theta}\right\}$

2. a/ ζ_1 est le cercle trigonométrique (de centre O et de rayon 1)

b/
$$Z_I = \frac{Z_{M_1} + Z_{M_2}}{2} = \frac{e^{i\theta} + 2i - e^{i\theta}}{2} = i$$

c/ ζ_2 est le cercle de centre le point A d'affixe 2i et de rayon 1 .

3. a/

$$(M_1 M_2)^2 = \left| 2i - e^{i\theta} - e^{i\theta} \right|^2 = 4 \left| i - e^{i\theta} \right|^2 = 4 \left| 2i \sin(\frac{\pi}{4} - \frac{\theta}{2}) \right|^2 = 8 \times 2 \sin^2(\frac{\pi}{4} - \frac{\theta}{2})$$
$$= 8 \times (1 - \cos(\frac{\pi}{2} - \theta)) = 8.(1 - \sin\theta)$$

b/ $M_1 M_2$ est max imale pour $\sin(\theta) = -1$; or $\theta \in [0; 2\pi] \Rightarrow \theta = \frac{3\pi}{2}$

EX 20 PAGE33

T.

$$z^{2} + i\sqrt{3}z - i = 0 \quad \Delta = -3 + 4i = (1 + 2i)^{2} \Rightarrow \delta = 1 + 2i$$

$$z = \frac{-i\sqrt{3} - 1 - 2i}{2} = -\frac{1}{2} - i(1 + \frac{\sqrt{3}}{2}) \quad ou \quad z = \frac{-i\sqrt{3} + 1 + 2i}{2} = \frac{1}{2} + i(1 - \frac{\sqrt{3}}{2})$$

II.

1. a/

$$(\cos\theta + i)^2 = \cos^2\theta + 2i\cos\theta - 1 = -(1 - \cos^2\theta) + 2i\cos\theta = -\sin^2\theta + 2i\cos\theta$$

$$b/$$

$$(E): z^2 + (2i\sin\theta)z - 2i\cos\theta = 0 \quad \Delta' = (i\sin\theta)^2 + 2i\cos\theta = -\sin^2\theta + 2i\cos\theta = (\cos\theta + i)^2$$

$$z = -i\sin\theta - (\cos\theta + i) = -\cos\theta - i(1+\sin\theta) \text{ ou } z = -i\sin\theta + (\cos\theta + i) = \cos\theta + i(1-\sin\theta)$$

2. a/

A, Bet C alignées ssi
$$\frac{z_B - z_A}{z_C - z_A}$$
 est un réel $\Leftrightarrow \frac{\cos \theta - i.\sin \theta}{-\cos \theta - i.(\sin \theta + 2)}$ est un réel $\Leftrightarrow (\cos \theta - i.\sin \theta)(-\cos \theta + i.(\sin \theta + 2))$ est un réel $\Leftrightarrow (\cos \theta)(\sin \theta + 2) + (\sin \theta)(\cos \theta) = 0$ $\Leftrightarrow (\cos \theta)(2 + 2\sin(\theta)) = 0 \Leftrightarrow \cos \theta = 0$ ou $\sin(\theta) = -1 \Leftrightarrow \theta = \frac{\pi}{2} \left(car \theta \in \left[0; \frac{\pi}{2} \right] \right)$ b/

Bet C appartiennent à un cercle de centre O Ssi $|Z_B| = |Z_C| \Leftrightarrow |e^{-i\theta} + i| = |-e^{i\theta} - i|$ $\Leftrightarrow \sqrt{\cos^2(\theta) + (1 - \sin(\theta))^2} = \sqrt{\cos^2(\theta) + (1 + \sin(\theta))^2}$

 $\Leftrightarrow \sin(\theta) = 0 \Leftrightarrow \theta = 0 (car \theta \in \left[0; \frac{\pi}{2}\right]$

Le rayon de ce cercle est $|Z_B| = |1+i| = \sqrt{2}$

EX 21 PAGE33

1.

$$(E): 2z^{2} - 2(1+i)z + \frac{1}{2} + i = 0 \qquad \Delta' = (1+i)^{2} - 1 - 2i = -1 \Rightarrow \delta' = i$$

$$z = \frac{1+i-i}{2} = \frac{1}{2} \quad ou \quad z = \frac{1+i+i}{2} = \frac{1}{2} + i \quad S_{\mathbb{C}} = \left\{\frac{1}{2}; \frac{1}{2} + i\right\}$$

2. a/

$$E_{\theta}: 2z^{2} - (1 + 2\cos(\theta) + 2i)z + \cos(\theta) + i = 0$$

un nombre réel α est une solution ssi $2\alpha^2 - (1 + 2\cos(\theta) + 2i)\alpha + \cos(\theta) + i = 0$

$$ssi 2\alpha^2 - \alpha - 2\cos(\theta)\alpha - 2i\alpha + \cos(\theta) + i = 0$$

$$ssi\left(2\alpha^2 - (1 + 2\cos(\theta))\alpha + \cos(\theta)\right) + i\left(-2\alpha + 1\right) = 0$$

$$ssi\left\{ \frac{-2\alpha + 1 = 0}{2\alpha^2 - (1 + 2\cos(\theta))\alpha + \cos(\theta) = 0} \right\} \Leftrightarrow \alpha = \frac{1}{2}$$

Conclusion: $\alpha = \frac{1}{2}$ est une solution réelle de E_{θ} .

$$z'.z'' = \frac{c}{a} \Rightarrow \frac{1}{2}.z'' = \frac{\cos(\theta) + i}{2} \Rightarrow z'' = \cos(\theta) + i$$

L'orsque θ var ie dans $\left[0; \frac{\pi}{2}\right]$; $\cos\theta$ var ie dans $\left[0; 1\right]$ et donc l'ensemble

E des points M est le segment de droite [BC] avec $z_B = i$ et $z_C = 1+i$

c/

$$AM = \left|\cos(\theta) - \frac{1}{2} + i\right| = \sqrt{\left(\cos(\theta) - \frac{1}{2}\right)^2 + 1} \Rightarrow AM \text{ est min imale pour } \cos(\theta) = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

Conclusion: AM est min imale pour $\theta = \frac{\pi}{3}$

EX 22 PAGE33

$$z^{4} = 1 \iff z = e^{i\frac{2k\pi}{4}} = e^{i\frac{k\pi}{2}} \quad k \in \left\{0, 1, 2, 3\right\} \quad S_{\mathbb{C}} = \left\{e^{i0}, e^{i\frac{\pi}{2}}, e^{i\pi}, e^{i\frac{3\pi}{2}}\right\} = \left\{1, i, -1, -i\right\}$$

$$\left(\frac{z-i}{z+i}\right)^4 = 1 \Leftrightarrow \frac{z-i}{z+i} = e^{i\frac{k\pi}{2}} \quad k \in \{0,1,2,3\} \quad d'après \quad a)$$

$$* \frac{z-i}{z+i} = 1 \quad impossible \qquad * \frac{z-i}{z+i} = i \Leftrightarrow z-i = iz-1 \Leftrightarrow z(1-i) = -1+i \Leftrightarrow z = -1$$

$$* \frac{z-i}{z+i} = -1 \Leftrightarrow z-i = -z-i \Leftrightarrow z = 0 \qquad * \frac{z-i}{z+i} = -i \Leftrightarrow z-i = -iz+1 \Leftrightarrow z(1+i) = 1+i \Leftrightarrow z = 1$$

$$S_{\mathbb{C}} = \{-1,0,1\}$$

EX 23 PAGE33

$$z^{3} = 4\sqrt{2}\left(-1+i\right) = 8e^{i\frac{3\pi}{4}} \iff z = 2e^{i\frac{\pi}{4} + \frac{2k\pi}{3}} \quad avec \ k \in \left\{0,1,2\right\}$$

$$S_{\mathbb{C}} = \left\{2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right); 2\left(\cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}\right); 2\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)\right\}$$

2.

Les racines cubiques de l'unité sont : 1,
$$j=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$$
 et $j^2=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$
$$\sqrt{2}+i\sqrt{2} \text{ \'et an t une racine cubique de } 4\sqrt{2}\left(-1+i\right) \Rightarrow \text{Les racines cubiques de } 4\sqrt{2}\left(-1+i\right) \text{ sont :}$$

$$\sqrt{2}+i\sqrt{2}; \left(\sqrt{2}+i\sqrt{2}\right).j=\frac{-\sqrt{2}-\sqrt{6}}{2}+i\frac{-\sqrt{2}+\sqrt{6}}{2} \text{ et } \left(\sqrt{2}+i\sqrt{2}\right).j^2=\frac{-\sqrt{2}+\sqrt{6}}{2}+i\frac{-\sqrt{2}-\sqrt{6}}{2}$$

3.

$$\left(\sqrt{2} + i\sqrt{2}\right) \cdot j = \frac{-\sqrt{2} - \sqrt{6}}{2} + i\frac{-\sqrt{2} + \sqrt{6}}{2} = 2e^{i\frac{\pi}{4}} \cdot e^{i\frac{2\pi}{3}} = 2e^{i\frac{11\pi}{12}}$$
$$\cos\frac{11\pi}{12} = \frac{-\sqrt{2} - \sqrt{6}}{4} \Rightarrow \cos\frac{\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4} \cdot et \sin\frac{11\pi}{12} = \frac{-\sqrt{2} + \sqrt{6}}{4} \Rightarrow \sin\frac{\pi}{12} = \frac{-\sqrt{2} + \sqrt{6}}{4}$$

EX 24 PAGE 33:

$$z^{6} = -1 = e^{i\pi} \Rightarrow z = e^{i\frac{\pi + 2k\pi}{6}} \quad k \in \{0; 1; 2; 3; 4; 5\}$$
$$S_{\mathbb{C}} = \left\{ e^{i\frac{\pi}{6}}; e^{i\frac{\pi}{2}}; e^{i\frac{5\pi}{6}}; e^{i\frac{7\pi}{6}}; e^{i\frac{3\pi}{2}}; e^{i\frac{11\pi}{6}}; \right\}$$

$$x^{6} + 1 = \underbrace{\left(x - e^{i\frac{\pi}{6}}\right)\left(x - e^{i\frac{11\pi}{6}}\right)}_{\left(x^{2} - x(e^{i\frac{\pi}{6}} + e^{i\frac{11\pi}{6}}) + 1\right)} \underbrace{\left(x - e^{i\frac{\pi}{2}}\right)\left(x - e^{i\frac{\pi}{2}}\right)}_{\left(x^{2} - x(e^{i\frac{\pi}{6}} + e^{i\frac{11\pi}{6}}) + 1\right)} \underbrace{\left(x^{2} - x(e^{i\frac{\pi}{2}} + e^{i\frac{3\pi}{2}}) + 1\right)}_{\left(x^{2} - x(e^{i\frac{\pi}{6}} + e^{i\frac{\pi}{6}}) + 1\right)} \underbrace{\left(x^{2} - x(e^{i\frac{\pi}{6}} + e^{i\frac{\pi}{6}}) + 1\right)}_{\left(x^{2} - x(e^{i\frac{\pi}{6}} + e^{i\frac{\pi}{6}}) + 1\right)}$$

$$= \left(x^{2} - 2\cos(\frac{\pi}{6})x + 1\right)\left(x^{2} - 2\cos(\frac{\pi}{2})x + 1\right)$$

$$= \left(x^{2} - \sqrt{3}x + 1\right)\left(x^{2} + 1\right)\left(x^{2} + \sqrt{3}x + 1\right)$$

QCM:

1)
$$\vec{u}.\vec{v} = -2$$

2)
$$\overrightarrow{AB} \wedge \overrightarrow{AC}$$
 est normal au plan (ABC)

3)
$$\|\overrightarrow{AB} \wedge \overrightarrow{AD}\| = \|\overrightarrow{BA} \wedge \overrightarrow{BC}\|$$

4) a)
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{AB} \wedge \overrightarrow{AD}$$

b)
$$\overrightarrow{AC} \wedge \overrightarrow{EG} = \overrightarrow{0}$$

c)
$$\overrightarrow{AC}.\overrightarrow{FH} = 0$$

d)
$$V = \frac{1}{6}$$

Vrai-Faux:

1) (vrai)

en effet : la droite (AD) est orthogonale à deux droites sécantes du plan (ABC) donc elle est perpendiculaire à ce plan

2) (faux)

 $\vec{s} \vec{u} \vec{e} \vec{v}$ nesont pas coliéaires alors $(\vec{u}, \vec{v}, \vec{u} \wedge \vec{v})$ est une base

3) a) (vrai)

$$\vec{u} \wedge \vec{v} \perp \vec{v}$$
 or $\vec{u} \wedge \vec{v} = \vec{v}$ d'où $\vec{v} \perp \vec{v} \Rightarrow \vec{v} = \vec{0}$

b) (faux)

contre exemple : si par exemple $\vec{u}=\vec{0}$, $\vec{u}.\vec{v}=\vec{u}.\vec{w}$ pour tout vecteur \vec{v} et \vec{w}

c) (faux)

$$\vec{u} \wedge \vec{v} = \vec{u} \wedge \vec{w} \Longleftrightarrow \vec{u} \wedge \vec{v} - \vec{u} \wedge \vec{w} = \vec{0} \Longleftrightarrow \vec{u} (\vec{v} - \vec{w}) = \vec{0}$$

 $\Leftrightarrow \vec{u}$ et $\vec{v} - \vec{w}$ sont colinéaires

ou bien: (voir QCM)

4) a)
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{AB} \wedge \overrightarrow{AD}$$
 mais $\overrightarrow{AC} \neq \overrightarrow{AD}$

EX1:

dans le repère orthonormé $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ on a :

A(0,0,0); F(1,0,1); H(0,1,1); E(0,0,1); B(1,0,0); C(1,1,0) et G(1,1,1)

*
$$\overrightarrow{AG} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 ; $\overrightarrow{FH} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \overrightarrow{AG} \cdot \overrightarrow{FH} = -1 + 1 + 0 = 0$

*
$$\overrightarrow{AG} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 ; $\overrightarrow{HC} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \Rightarrow \overrightarrow{AG} \cdot \overrightarrow{HC} = 1 + 0 - 1 = 0$

*
$$\overrightarrow{EG} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 ; $\overrightarrow{GB} \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \Rightarrow \overrightarrow{EG} \cdot \overrightarrow{GB} = 0 - 1 + 0 = -1$

*
$$\overrightarrow{AB} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 ; $\overrightarrow{HB} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \Rightarrow \overrightarrow{AB} \cdot \overrightarrow{HB} = 1 + 0 + 0 = 1$

EX2:

1) *
$$\overrightarrow{AB}.\overrightarrow{AD} = \|\overrightarrow{AB}\|.\|\overrightarrow{AD}\|.\cos B\widehat{A}D = 1 \times 1 \times \cos \frac{\pi}{3} = \frac{1}{2}$$

• de même
$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}$$

2)
$$\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.(\overrightarrow{CA} + \overrightarrow{AD}) = \overrightarrow{AB}.(\overrightarrow{AD} - \overrightarrow{AC}) = \overrightarrow{AB}.\overrightarrow{AD} - \overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2} - \frac{1}{2} = 0$$

- 3) $\overrightarrow{AB}.\overrightarrow{CD} = 0$ d'où les droites (AB) et (CD) sont orthogonales
 - de même on pourra montrer que (AC) et (BD) sont orthogonales
 - aussi pour les droites (AD) et (BC)

EX3:

a) *
$$(\vec{j} + \vec{k}) \cdot (\vec{k} - \vec{j}) = ||\vec{k}||^2 - ||\vec{j}||^2 = 1 - 1 = 0$$
 d'où $(\vec{j} + \vec{k}) \perp (\vec{k} - \vec{j})$

•
$$(\vec{j} + \vec{k}) \cdot \vec{i} = \vec{j} \cdot \vec{i} + \vec{k} \cdot \vec{i} = 0 + 0 = 0$$
 d'où $(\vec{j} + \vec{k}) \perp \vec{i}$

•
$$(\vec{k} - \vec{j}) \cdot \vec{i} = \vec{k} \cdot \vec{i} - \vec{j} \cdot \vec{i} = 0 - 0 = 0$$
 d'où $\vec{i} \perp (\vec{k} - \vec{j})$

d'où le repère $(O, \vec{j} + \vec{k}, \vec{k} - \vec{j}, \vec{i})$ est orthogonal

b)
$$(\vec{i} - \vec{j}) \cdot (\vec{j} - \vec{k}) = \vec{i} \cdot \vec{j} - \vec{i} \cdot \vec{k} - \vec{j} \cdot \vec{j} + \vec{j} \cdot \vec{k} = 0 - 0 - \|\vec{j}\|^2 + 0 = -1 \neq 0$$

d'où le repère $(O, \vec{i} - \vec{j}, \vec{j} - \vec{k}, \vec{k} - \vec{i})$ n'est pas orthogonal

EX4:

1)
$$\overrightarrow{BC} \wedge \overrightarrow{BA} = (\overrightarrow{BA} + \overrightarrow{AC}) \wedge \overrightarrow{BA} = \overrightarrow{BA} \wedge \overrightarrow{BA} + \overrightarrow{AC} \wedge \overrightarrow{BA} = \overrightarrow{0} + \overrightarrow{AC} \wedge (-\overrightarrow{AB})$$

= $-(\overrightarrow{AC} \wedge \overrightarrow{AB}) = \overrightarrow{AB} \wedge \overrightarrow{AC}$

2)
$$\overrightarrow{CA} \wedge \overrightarrow{CB} = \overrightarrow{CA} \wedge (\overrightarrow{CA} + \overrightarrow{AB}) = \overrightarrow{CA} \wedge \overrightarrow{CA} + \overrightarrow{CA} \wedge \overrightarrow{AB} = \overrightarrow{0} + (-\overrightarrow{AC}) \wedge \overrightarrow{AB}$$

= $-(\overrightarrow{AC} \wedge \overrightarrow{AB}) = \overrightarrow{AB} \wedge \overrightarrow{AC}$

3) *
$$\overrightarrow{BC} \wedge \overrightarrow{BA} = \overrightarrow{AB} \wedge \overrightarrow{AC} \Rightarrow \left\| \overrightarrow{BC} \wedge \overrightarrow{BA} \right\| = \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\|$$

$$\Rightarrow BC \times BA \times \sin \hat{B} = AB \times AC \times \sin \hat{A}$$

$$\Rightarrow BC.\sin \hat{B} = AC.\sin \hat{A}$$

$$\Rightarrow \frac{AC}{\sin \hat{B}} = \frac{BC}{\sin \hat{A}} \tag{1}$$

•
$$\overrightarrow{CA} \wedge \overrightarrow{CB} = \overrightarrow{AB} \wedge \overrightarrow{AC} \Rightarrow \left\| \overrightarrow{CA} \wedge \overrightarrow{CB} \right\| = \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\|$$

$$\Rightarrow AC \times BC \times \sin \hat{C} = AB \times AC \times \sin \hat{A}$$

$$\Rightarrow BC.\sin \hat{C} = AB.\sin \hat{A}$$

$$\Rightarrow \frac{AB}{\sin \hat{C}} = \frac{BC}{\sin \hat{A}}$$
 (2)

$$(1) + (2) \Rightarrow \frac{AB}{\sin \hat{C}} = \frac{AC}{\sin \hat{B}} = \frac{BC}{\sin \hat{A}}$$

EX5:

a)
$$\vec{u} \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & 1 \\ -2 & -1 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \vec{k} \qquad \text{d'où } \vec{u} \wedge \vec{v} = \vec{i} - 2\vec{j} - \vec{k}$$

b)
$$\vec{u} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ $\vec{u} \wedge \vec{v} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ d'où $\vec{u} \wedge \vec{v} = 2\vec{i} - \vec{j} + 2\vec{k}$

c)
$$\vec{u} \begin{pmatrix} 1 \\ \frac{2}{3} \\ \frac{1}{2} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \frac{1}{3} \\ \frac{-4}{9} \\ \frac{1}{2} \end{pmatrix}$

$$\vec{u} \wedge \vec{v} \begin{pmatrix} \begin{vmatrix} 2/3 & -4/9 \\ 1/2 & 1/2 \\ -\begin{vmatrix} 1 & 1/3 \\ 1/2 & 1/2 \\ \end{vmatrix} \\ \begin{vmatrix} 1 & 1/3 \\ 1/2 & 1/2 \\ \end{vmatrix} \\ \begin{vmatrix} 1 & 1/3 \\ 2/3 & -4/9 \\ \end{vmatrix} \end{pmatrix} \qquad \vec{u} \wedge \vec{v} \begin{pmatrix} 5/9 \\ -1/3 \\ -2/3 \\ \end{vmatrix}$$

d'où
$$\vec{u} \wedge \vec{v} = \frac{5}{9}\vec{i} - \frac{1}{3}\vec{j} - \frac{2}{3}\vec{k}$$

EX6:

on sait que : $\vec{i} \wedge \vec{j} = \vec{k}$; $\vec{j} \wedge \vec{k} = \vec{i}$ et $\vec{k} \wedge \vec{i} = \vec{j}$ car $(O, \vec{i}, \vec{j}, \vec{k})$ est orthonormé direct

$$- \quad \vec{j} \wedge \vec{k} = \vec{i}$$

$$- \vec{k} \wedge \vec{i} = \vec{j}$$

$$\vec{i} \wedge (-\vec{j}) = -(\vec{i} \wedge \vec{j}) = -\vec{k}$$

$$- (2\vec{j}) \wedge (-3\vec{k}) = -6(\vec{j} \wedge \vec{k}) = -6\vec{i}$$

$$\underbrace{\mathbf{EX7}:}_{\mathbf{u}} \vec{\mathbf{u}} \begin{pmatrix} 2\\1\\1 \end{pmatrix} \text{ et } \vec{\mathbf{w}} \begin{pmatrix} 3\\-4\\-2 \end{pmatrix}$$

1)
$$\vec{u} \cdot \vec{w} = 6 + (-4) + (-2) = 0$$
 d'où $\vec{u} \perp \vec{w}$

2) soit
$$\vec{v} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$\vec{u} \wedge \vec{v} = \vec{w} \iff \begin{cases} \begin{vmatrix} 1 & b \\ 1 & c \end{vmatrix} = 3 \\ -\begin{vmatrix} 2 & a \\ 1 & c \end{vmatrix} = -4 \iff \begin{cases} c-b=3 \\ a-2c=-4 \\ 2b-a=-2 \end{cases} \text{ pour a=2 on aura : b=0 et c=3} \\ \begin{vmatrix} 2 & a \\ 1 & b \end{vmatrix} = -2 \end{cases}$$

$$\vec{u} \wedge \vec{v} = \vec{w} \iff \begin{cases} c-b=3 \\ a-2c=-4 \\ 2b-a=-2 \end{cases} \text{ pour a=2 on aura : b=0 et c=3}$$

d'où
$$\vec{v} \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$$
 convient

3) soit
$$\vec{v} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 d'après 2)° $\vec{v} \begin{pmatrix} a \\ -1 + \frac{a}{2} \\ 2 + \frac{a}{2} \end{pmatrix}$ et $\vec{u}.\vec{v} = 1$

d'où
$$2a + (-1 + \frac{a}{2}) + (2 + \frac{a}{2}) = 1 \Leftrightarrow 3a = 0 \Leftrightarrow a = 0$$
 d'où $\vec{v} \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}$

EX8:

$$\begin{aligned} \|\vec{u}\| &= 1 \quad ; \quad \|\vec{v}\| = 4 \quad ; \quad \vec{u}.\vec{v} = 2 \quad ; \quad \vec{w} = 2\vec{u} \wedge \vec{v} - 3\vec{v} \\ * \vec{u}.\vec{w} = \vec{u}.(2\vec{u} \wedge \vec{v} - 3\vec{v}) = 2\vec{u}.(\vec{u} \wedge \vec{v}) - 3\vec{u}.\vec{v} = 0 - 3\vec{u}.\vec{v} = -6 \quad (\vec{u}.(\vec{u} \wedge \vec{v}) = 0 \text{ car } \vec{u} \perp (\vec{u} \wedge \vec{v})) \\ * \vec{v}.\vec{w} = 2\vec{v}.(\vec{u} \wedge \vec{v}) - 3\vec{v}.\vec{v} = 0 - 3 \|\vec{v}\|^2 = -3(4)^2 = -48 \\ * \|\vec{w}\|^2 = (2\vec{u} \wedge \vec{v} - 3\vec{v})^2 = 4 \|\vec{u} \wedge \vec{v}\|^2 + 9 \|\vec{v}\|^2 - 12(\vec{u} \wedge \vec{v}).\vec{v} = 4 \|\vec{u} \wedge \vec{v}\|^2 + 9(4)^2 - 0 = 144 + 4 \|\vec{u} \wedge \vec{v}\|^2 \\ \text{or} \\ \vec{u}.\vec{v} = \|\vec{u}\|.\|\vec{v}\|.\cos(\widehat{\vec{u}},\widehat{\vec{v}}) \Rightarrow 2 = 1 \times 4 \times \cos(\widehat{\vec{u}},\widehat{\vec{v}}) \Rightarrow \cos(\widehat{\vec{u}},\widehat{\vec{v}}) = \frac{1}{2} \Rightarrow \left|\sin(\widehat{\vec{u}},\widehat{\vec{v}})\right| = \frac{\sqrt{3}}{2} \\ \|\vec{u} \wedge \vec{v}\| = \|\vec{u}\|.\|\vec{v}\|.\left|\sin(\widehat{\vec{u}},\widehat{\vec{v}})\right| = 1 \times 4.\frac{\sqrt{3}}{2} = 2\sqrt{3} \\ \text{d'où } \|\mathbf{w}\|^2 = 144 + 4(2\sqrt{3})^2 = 192 \qquad \Rightarrow \|\mathbf{w}\| = \sqrt{192} = 8.\sqrt{3} \end{aligned}$$

EX9:

$$\begin{aligned} \|\vec{u}\| &= \|\vec{v}\| = 1 \quad ; \quad \vec{u} \perp \vec{v} \; ; \quad \vec{w} \wedge \vec{v} = \vec{u} - \vec{w} \\ 1) * \vec{v} \perp (\vec{w} \wedge \vec{v}) \implies \vec{v} \cdot (\vec{u} - \vec{w}) = 0 \implies \vec{v} \cdot \vec{u} - \vec{v} \cdot \vec{w} = 0 \implies \vec{v} \cdot \vec{w} = 0 \quad (\text{car } \vec{v} \cdot \vec{u} = 0) \implies \vec{w} \perp \vec{v} \\ * \text{ on a: } \vec{u} = \vec{w} + \vec{w} \wedge \vec{v} \implies \|\vec{u}\|^2 = \|\vec{w} + \vec{w} \wedge \vec{v}\|^2 \iff 1 = \|\vec{w}\|^2 + \|\vec{w} \wedge \vec{v}\|^2 + 2\vec{w} \cdot (\vec{w} \wedge \vec{v}) \\ \iff 1 = \|\vec{w}\|^2 + \|\vec{w} \wedge \vec{v}\|^2 \quad \text{or } \|\vec{w} \wedge \vec{v}\| = \|\vec{w}\| \cdot \|\vec{v}\| \cdot \|\vec{v}\| \cdot \|\vec{v}\| \cdot \|\vec{v}\| \cdot \|\vec{v}\| = \|\vec{w}\| \quad \text{on aura donc } :1 = \|\vec{w}\|^2 + \|\vec{w}\|^2 = 2\|\vec{w}\|^2 \\ \implies \|\vec{w}\|^2 = \frac{1}{2} \implies \|\vec{w}\| = \frac{\sqrt{2}}{2} \end{aligned}$$

2) en général, lorsque :
$$\|\vec{t}\| = \|\vec{k}\| = 1$$
 et $\vec{t} \perp \vec{k}$ on a : $(\vec{t}, \vec{k}, \vec{t} \wedge \vec{k})$: R.o.n direct et on a aussi : $\vec{k} \wedge (\vec{t} \wedge \vec{k}) = \vec{t}$; $(\vec{t} \wedge \vec{k}) \wedge \vec{t} = \vec{k}$

on a : $\vec{w} \perp \vec{v}$, $\|\vec{v}\| = 1$, $\|\vec{w}\| = \frac{\sqrt{2}}{2}$ d'où $\left(\sqrt{2}\vec{w},\vec{v},\sqrt{2}(\vec{w} \wedge \vec{v})\right)$ est un repère orthonormé direct $\Rightarrow \vec{v} \wedge \sqrt{2}(\vec{w} \wedge \vec{v}) = \sqrt{2}\vec{w} \Rightarrow \vec{v} \wedge (\vec{w} \wedge \vec{v}) = \vec{w}$ $\Rightarrow \vec{v} \wedge \sqrt{2}(\vec{w} \wedge \vec{v}) = \sqrt{2}\vec{w} \Rightarrow \vec{v} \wedge (\vec{w} \wedge \vec{v}) = \vec{w}$ $\Rightarrow \vec{w} = \vec{v} \wedge (\vec{u} - \vec{w}) \Rightarrow \vec{v} \vec{v}$

EX10:

on sait que lorsque \vec{u} et \vec{v} ne sont pas colinéaires, le vecteur $\vec{u} \wedge \vec{v}$ est orthogonal à \vec{u} et à \vec{v}

a)
$$\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$ $\vec{u} \wedge \vec{v} \begin{pmatrix} -7 \\ -7 \\ 7 \end{pmatrix}$ donc $\vec{w} \begin{pmatrix} -7 \\ -7 \\ 7 \end{pmatrix}$ convient

b)
$$\vec{u} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$ $\vec{u} \wedge \vec{v} \begin{pmatrix} 2 \\ -6 \\ -2 \end{pmatrix}_{\text{donc}}$ $\vec{w} \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix}$ convient

c)
$$\vec{u} \begin{pmatrix} 1+\sqrt{2} \\ -\sqrt{2} \\ 1-\sqrt{2} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -1 \\ 2-\sqrt{2} \\ 3-2\sqrt{2} \end{pmatrix} \vec{u} \wedge \vec{v} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

 \vec{u} et \vec{v} sont colinéaires , il suffit donc de choisir un vecteur \vec{w} orthogonal à \vec{u}

soit
$$\vec{w} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 $\vec{u}.\vec{w} = 0 \Leftrightarrow (1+\sqrt{2})a - b\sqrt{2} + (1-\sqrt{2})c = 0$

pour a=1 et c=1 , on aura b= $\sqrt{2}$ d'où $\vec{w} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$ convient

EX11:
$$\vec{u} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
 ; $\vec{v} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$; $\vec{w} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

a)
$$\vec{u} \wedge \vec{v} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 d'où $(\vec{u} \wedge \vec{v}) \wedge \vec{w} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

b)
$$\vec{v} \wedge \vec{w} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 d'où $\vec{u} \wedge (\vec{v} \wedge \vec{w}) \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$

c) $(\vec{u} \wedge \vec{v}) \wedge \vec{w} \neq \vec{u} \wedge (\vec{v} \wedge \vec{w})$: le produit vectoriel n'est pas associative.

EX12:

1)
$$\overrightarrow{AB} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
; $\overrightarrow{AC} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$; $\overrightarrow{AD} \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$; $\overrightarrow{AE} \begin{pmatrix} -5 \\ 2 \\ 3 \end{pmatrix}$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \text{ et } \overrightarrow{AD} \wedge \overrightarrow{AE} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

 $\overrightarrow{AD} \wedge \overrightarrow{AE} = -\left(\overrightarrow{AB} \wedge \overrightarrow{AC}\right)$, d'où $\overrightarrow{AB} \wedge \overrightarrow{AC}$ et $\overrightarrow{AD} \wedge \overrightarrow{AE}$ sont colinéaires.

2) $\overrightarrow{AB} \wedge \overrightarrow{AC}$ est un vecteur normal à chacun des plans (ABC) et (ADE) , d'où ils sont parallèles or $A \in (ABC) \cap (ADE)$, ils sont donc confondus , par suite les points A,B,C,D et E sont coplanaires

EX13:

$$d_{(A,(BC))} = \frac{\left\| \overrightarrow{AB} \wedge \overrightarrow{BC} \right\|}{\left\| \overrightarrow{BC} \right\|}$$

a) A(1,1,1); B(-1,0,1); C(0,0,1)

$$\overline{AB} \begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix} \; ; \; \; \overline{BC} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \overline{AB} \wedge \overline{BC} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \; d = \frac{\left\| \overline{AB} \wedge \overline{BC} \right\|}{\left\| \overline{BC} \right\|} = \frac{1}{1} = 1$$

b) A(-1,2,0); B(-1,5,0); C(-3,7,-3)

$$\overrightarrow{AB} \begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} \; ; \; \; \overrightarrow{BC} \begin{pmatrix} -2 \\ 2 \\ -3 \end{pmatrix} \quad \; \overrightarrow{AB} \wedge \overrightarrow{BC} \begin{pmatrix} -9 \\ 0 \\ 6 \end{pmatrix} \qquad d = \frac{\left\| \overrightarrow{AB} \wedge \overrightarrow{BC} \right\|}{\left\| \overrightarrow{BC} \right\|} = \frac{3\sqrt{13}}{\sqrt{17}}$$

c) A(1,-1,2); B(1,0,1); C(0,1,2)

$$\overrightarrow{AB} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} ; \overrightarrow{BC} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \overrightarrow{AB} \wedge \overrightarrow{BC} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \quad d = \frac{\|\overrightarrow{AB} \wedge \overrightarrow{BC}\|}{\|\overrightarrow{BC}\|} = \frac{\sqrt{6}}{\sqrt{3}} = \sqrt{2}$$

EX 14:

a) A(0,3,-2); M(1-2t,3+2t,-1-t)

$$AM = \sqrt{(1-2t)^2 + (2t)^2 + (1-t)^2} = \sqrt{9t^2 - 6t + 2}$$

b)
$$AM = \sqrt{(3t-1)^2 + 1}$$
 AM est minimale pour $t = \frac{1}{3}$

ou bien , on pose :
$$f(t) = \sqrt{9t^2 - 6t + 2}$$
 $\Rightarrow f'(t) = \frac{3.(3t - 1)}{\sqrt{9t^2 - 6t + 2}}$

c) soit H: le projeté orthogonal de A sur D $H(\frac{1}{3}, \frac{11}{3}, \frac{-4}{3})$: $(t = \frac{1}{3})$

EX15:
$$\overrightarrow{AB} \begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}; \overrightarrow{AC} \begin{pmatrix} 3 \\ 0 \\ -3 \end{pmatrix}; \overrightarrow{AD} \begin{pmatrix} 0 \\ 3 \\ -3 \end{pmatrix}$$

1.
$$\det(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = (\overrightarrow{AB} \wedge \overrightarrow{AC}) \cdot \overrightarrow{AD}$$
 $or \overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} -3 \\ -6 \\ -3 \end{pmatrix} \Rightarrow \det(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = -9 \neq 0$

 \Rightarrow Les vecteurs \overrightarrow{AB} ; \overrightarrow{AC} et \overrightarrow{AD} ne sont pas coplanaires et par suite les points A,B,C et D ne sont pas coplanaires.

2.
$$V = \frac{1}{6} \left| (\overrightarrow{AB} \wedge \overrightarrow{AC}) \cdot \overrightarrow{AD} \right| = \frac{1}{6} \cdot \left| -9 \right| = \frac{3}{2} \quad (u.v)$$

3. a)

$$\overline{CD} \begin{pmatrix} -3\\3\\0 \end{pmatrix} \qquad AC = AD = CD = 3\sqrt{2} \Rightarrow ACD \text{ est \'equilat\'eral}$$

b) Soit @ l'aire du triangle ACD

$$V = \frac{BH.@}{3} \Rightarrow BH = \frac{3.V}{@} \quad or \quad on \quad a: V = \frac{3}{2}et @ = \frac{1}{2} \left\| \overrightarrow{AC} \wedge \overrightarrow{AD} \right\| = 9.\frac{\sqrt{3}}{2}$$
$$\Rightarrow BH = \frac{3.\frac{3}{2}}{9.\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

EX 16: O=A*G=B*H=C*E=D*F

I=A*B; J=A*F=B*E; K=A*C=B*D

1) On rapporte l'éspace au R.O.N $\left(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}\right)$

A(0,0,0); B(1,0,0); D(0,1,0); E(0,0,1); G(1,1,1); C(1,1,0)

$$\Rightarrow \mathsf{I}(\frac{1}{2},\!0,\!0)\;;\mathsf{O}(\frac{1}{2}\;,\frac{1}{2},\frac{1}{2}\;);\mathsf{J}\;(\frac{1}{2}\;,\;0\;,\frac{1}{2}\;)\;\mathsf{et}\;\mathsf{K}(\;\frac{1}{2}\;,\frac{1}{2}\;,\!0)$$

$$\overline{IO} \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ \vdots \\ \overline{IJ} \end{pmatrix}; \overline{IJ} \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}; \overline{IK} \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \end{pmatrix} \Rightarrow \overline{IO} = \overline{IJ} + \overline{IK} \Rightarrow \overline{IO}, \overline{IJ} \text{ et } \overline{IK} \text{ sont coplanaires}$$

et par suite les points O,I,J et K sont coplanaires

2)

$$\overrightarrow{IO} = \overrightarrow{IJ} + \overrightarrow{IK} \Rightarrow OKIJ \ est \ un \ parallè \log ramme$$

$$IJ = IK = \frac{1}{2}$$

$$\overrightarrow{IJ}.\overrightarrow{IK} = 0 \Rightarrow \overrightarrow{IJ} \perp \overrightarrow{IK}$$

3)

$$V = \frac{1}{3} \left| \left(\overrightarrow{IJ} \wedge \overrightarrow{IK} \right) \cdot \overrightarrow{IB} \right| \quad \text{or } \overrightarrow{IJ} \wedge \overrightarrow{IK} \begin{pmatrix} -\frac{1}{4} \\ 0 \\ 0 \end{pmatrix} \quad \text{et } \overrightarrow{IB} \begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow V = \frac{1}{3} \cdot \left| -\frac{1}{8} \right| = \frac{1}{24} (u.v)$$

EX 17:

1) *
$$\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AD} = \frac{1}{3} \overrightarrow{BC} = \overrightarrow{BJ} \Rightarrow \overrightarrow{AI} = \overrightarrow{BJ}$$
 d'où ABJI est un parallélogramme (1)

*
$$\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AB} = \frac{1}{3} \overrightarrow{EH} = -\frac{1}{3} \overrightarrow{HE} = \overrightarrow{LH}$$
 d'où ALHI est un parallélogramme (2)

* $\overrightarrow{LK} = \overrightarrow{LH} + \overrightarrow{HG} + \overrightarrow{GK} = -\frac{1}{3}\overrightarrow{HE} + \overrightarrow{HG} + \frac{1}{3}\overrightarrow{GF} = \overrightarrow{HG} = \overrightarrow{AB}$ d'où ABKL est un parallélogramme (3) (1)+(2)+(3) \Rightarrow ABKLIJGH est un parallélepipède

2) a/
$$A(0,0,0)$$
; $B(1,0,0) \Rightarrow \overrightarrow{AB} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$A(0,0,0)$$
; $D(0,1,0) \Rightarrow \overrightarrow{AD} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ or $\overrightarrow{AI} = \frac{1}{3} \overrightarrow{AD} \Rightarrow \overrightarrow{AI} \begin{bmatrix} O \\ \frac{1}{3} \\ 0 \end{bmatrix}$

$$\overrightarrow{AL} = \overrightarrow{AE} + \overrightarrow{EL} = \overrightarrow{AE} + \frac{2}{3}\overrightarrow{EH} = \overrightarrow{AE} + \frac{2}{3}\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AD} + \overrightarrow{AE} \quad \text{d'où } \overrightarrow{AL} \begin{pmatrix} 0 \\ 2/3 \\ 1 \end{pmatrix}$$

b)
$$V = |(\overline{AB} \wedge \overline{AI}).\overline{AL}|$$

$$\overline{AB} \wedge \overline{AI} \begin{vmatrix} 0 & \frac{1}{3} \\ 0 & 0 \\ -\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \\ \begin{vmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{vmatrix} \end{vmatrix} \Rightarrow \overline{AB} \wedge \overline{AI} \begin{vmatrix} 0 \\ 0 \\ \frac{1}{3} \end{vmatrix} \Rightarrow (\overline{AB} \wedge \overline{AI}).\overline{AL} = 0 + 0 + \frac{1}{3} = \frac{1}{3}$$

d'où $V = \frac{1}{3}$ unité de volume

EX 18:

1) D(0,0,0); C(1,0,0); H(0,1,0); A(0,0,1)

B(1,0,1); G(1,1,0); E(0,1,1); F(1,1,1)

$$*\overline{FE} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} et \ \overline{FG} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \Rightarrow \overline{FE} \wedge \overline{FG} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \Rightarrow \overline{FE} \wedge \overline{FG} = -\overline{DH} = \overline{FB}$$

$$*\overline{DC} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} et \ \overline{CB} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \overline{DC} \wedge \overline{CB} \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \Rightarrow \overline{DC} \wedge \overline{CB} = -\overline{DH} = \overline{HD}$$

$$*\overline{DB} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} et \ \overline{DC} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \Rightarrow \overline{DB} \wedge \overline{DC} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \overline{DB} \wedge \overline{DC} = \overline{DH}$$

2)
$$*\overline{DB}\begin{pmatrix} 1\\0\\1 \end{pmatrix} et \ \overline{AH}\begin{pmatrix} 0\\1\\-1 \end{pmatrix} \Rightarrow \overline{DB} \wedge \overline{AH}\begin{pmatrix} -1\\1\\1 \end{pmatrix} \Rightarrow \overline{DB} \wedge \overline{DC} = \overline{CE}$$

3)
$$J(1,\frac{1}{2},\frac{1}{2})$$

$$*\overrightarrow{AB} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} et \overrightarrow{AJ} \begin{pmatrix} 1 \\ \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \Rightarrow \overrightarrow{AB} \wedge \overrightarrow{AJ} \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \Rightarrow \overrightarrow{DB} \wedge \overrightarrow{DC} = \overrightarrow{DK}$$

Ex 19:

$$I = E * F$$
 , $K = A * H = D * E$

1) a)

$$A(0,0,0) ; B(1,0,0) ; G(1,1,1); K(0,\frac{1}{2},\frac{1}{2}) ; I(\frac{1}{2},0,1)$$

$$\overrightarrow{IG} \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}; \overrightarrow{IA} \begin{pmatrix} -\frac{1}{2} \\ 0 \\ -1 \end{pmatrix}; \overrightarrow{BK} \begin{pmatrix} -1 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

$$\overrightarrow{IG} \wedge \overrightarrow{IA} \begin{pmatrix} -1\\ \frac{1}{2}\\ \frac{1}{2} \end{pmatrix} = \overrightarrow{BK}$$

b)
$$aire(IGA) = \frac{1}{2} \|\overline{BK}\| = \frac{\sqrt{6}}{4} (u.a)$$

2)

$$\overrightarrow{IB} \begin{pmatrix} \frac{1}{2} \\ 0 \\ -1 \end{pmatrix}$$

$$V = \frac{1}{6} \left| \left(\overrightarrow{IG} \wedge \overrightarrow{IA} \right) \cdot \overrightarrow{IB} \right| = \frac{1}{6} \left| \overrightarrow{BK} \cdot \overrightarrow{IB} \right| = \frac{1}{6} \left| -\frac{1}{2} + 0 - \frac{1}{2} \right| = \frac{1}{6} (u.v)$$

QCM

- 1) a) S a pour centre I(0,5 :0,5 :0,5) et pour rayon $\frac{\sqrt{5}}{2}$
 - b) $S \cap P = \emptyset$
- 2) a) (BCH): x + z 1 = 0
 b)La droite (HC)
 c) La droite passant par le centre du carré ABCD et parallèle à (AE)

VRAI-FAUX

- 1) Vrai en effet $\vec{N} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ et $\vec{N'} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ sont des vecteurs normaux respectives des deux plans et $\vec{N} \cdot \vec{N'} = 1 2 + 1 = 0$
- 2) Vrai en effet \overrightarrow{U} est un vecteur normal à P et $\overrightarrow{AB} \wedge \overrightarrow{AC}$ est aussi un vecteur normal à P ;par suite \overrightarrow{U} et $\overrightarrow{AB} \wedge \overrightarrow{AC}$ sont colinéaires.
- 3) Faux
 S de centre le point O et de rayon
 R=1 et P: $x-\frac{1}{2}=0$ $D(O,P)=\frac{\left|O-\frac{1}{2}\right|}{\sqrt{1}}=\frac{1}{2} < R \quad d'où S \cap P$ est un cercle de rayon:

$$r = \sqrt{1^2 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}$$

4) Vrai S est de centre I(1,1,1) et de rayon R=1. P₁:x=0; P₂: y=0; P₃:z=0

 P_1 .X=0, P_2 . Y=0, P_3 .Z=0 $D(I,P_1) = D(I,P_2) = D(I,P_3) = 1 = R$ P_1 : P_2 : P_3 P_3 : P_4

EX 1:

CMS

a/ A(1,-2,3); B(-1,0,1);
$$\overrightarrow{AB}\begin{pmatrix} -2\\2\\-2 \end{pmatrix}$$
D'où (AB):
$$\begin{cases} x = 1 - 2\alpha \\ y = -2 + 2\alpha ; \alpha \in IR \\ z = 3 - 2\alpha \end{cases}$$
b/ A(2,\frac{7}{2},0); B(2,-2,1); $\overrightarrow{AB}\begin{pmatrix} 0\\-5,5\\1 \end{pmatrix}$
D'où (AB):
$$\begin{cases} x = 2\\ y = -2 - 5,5\alpha ; \alpha \in IR \\ z = 1 + \alpha \end{cases}$$
c/ A(0,0,1); B(-1,-1,-1); $\overrightarrow{BA}\begin{pmatrix} 1\\1\\2 \end{pmatrix}$
D'où (AB):
$$\begin{cases} x = t\\ y = t ; t \in IR \\ z = 1 + 2t \end{cases}$$

EX 2:

$$\vec{u} \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} et \ \vec{u'} \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix} \text{ sont deux}$$
vecteurs directeurs respectifs de D et

D' et sont colinéaires (il est clair que $\overrightarrow{u'} = -2\overrightarrow{u}$); par suite les droites D et D' sont parallèles.

a/
$$\Delta: \begin{cases} x = 4 + 2t \\ y = -5 - 3\alpha & t \in IR \\ z = 8 + t \end{cases}$$
P:x+y+z-5=0

$$\vec{u} \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
 :vecteur directeur de Δ

$$\vec{N} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 :vecteur normal à P

$$\vec{u} \cdot \vec{N} = 2 - 3 + 1 = 0 \Rightarrow \vec{u} \perp \vec{N}$$

Par suite Δ et P sont parallèles

A(4,-5,8) un point de Δ et

n'appartient pas à P

Conclusion : Δ et P sont strictement parallèles.

b/
$$\vec{u}inom{5}{0}$$
 :vecteur directeur de Δ

$$\vec{N} \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$$
: vecteur normal à P

$$\vec{u} \cdot \vec{N} = 10 + 0 + 8 = 18 \neq 0$$

 $\Rightarrow \vec{u} \ et \ \vec{N}$ ne sont pas orthogonaux

Par suite Δ et P sont sécantes.

EX 4:

$$a/P:2x+3y-5z-20=0$$

 (O, \vec{l}) a pour représentation

paramétrique :
$$\begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases}$$
 teIR

 $M(x,y,z)\in P\cap (O,\vec{t})$ ssi

$$\begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases}$$
 ssi
$$2x + 3y - 5z - 20 = 0$$

$$\begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases}$$
ssi
$$2t + 3 \times 0 - 5 \times 0 - 20 = 0 \\ x = 10 ; y = 0 ; z = 0$$

Conclusion : $P \cap (O, \vec{t}) = \{A(10,0,0)\}$

b/ (O,\vec{j}) a pour représentation

paramétrique :
$$\begin{cases} x = 0 \\ y = t \\ z = 0 \end{cases}$$
 teIR

 $M(x,y,z) \in P \cap (O,\vec{\iota})$ ssi

$$\begin{cases} x = 0 \\ y = t \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} 2x + 3y - 5z - 20 = 0 \\ x = 0 \\ y = t \\ z = 0 \\ 2 \times 0 + 3t - 5 \times 0 - 20 = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ x = 0 \\ z = 0 \\ 2 \times 0 + 3t - 5 \times 0 - 20 = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases} x = 0 \\ z = 0 \end{cases}$$
ssi
$$\begin{cases}$$

Conclusion: $P \cap (O, \vec{j}) = \left\{ B(0, \frac{20}{3}, 0) \right\}$

$$c/ \vec{j} \wedge \vec{i} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \Rightarrow (O; \vec{j} \wedge \vec{i})$$

a pour représentation

paramétrique :
$$\begin{cases} x = 0 \\ y = 0 \\ z = -t \end{cases}$$
 teIR

 $M(x,y,z)\in P\cap (O, \vec{j}\wedge\vec{\iota})$ ssi

$$\begin{cases} x = 0 \\ y = 0 \\ z = -t \end{cases}$$
ssi
$$2x + 3y - 5z - 20 = 0$$

$$\begin{cases} x = 0 \\ y = 0 \\ z = -t \end{cases}$$
 ssi
2×0 + 3×0 + 5t - 20 = 0
x=0; y=0; z=4

Conclusion : $P \cap (O, \vec{j} \wedge \vec{i}) = \{C(0,0,-4)\}$

EX 5:

1) B(2,0,0); D(0,1,0) et H(0,1,1) $\Rightarrow I(1;0,5;0) \text{ et } \overrightarrow{HI} \begin{pmatrix} 1 \\ -0,5 \\ -1 \end{pmatrix}$

Par suite (HI) : $\begin{cases} x = t \\ y = 1 - \frac{1}{2}t ; \text{ teIR} \\ z = 1 - t \end{cases}$

2) D(0,1,0), E(0,0,1) et G(2,1,1)

$$\overrightarrow{DE} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \text{ et } \overrightarrow{DG} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \Rightarrow$$

$$\overrightarrow{DE} \wedge \overrightarrow{DG} \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} \text{ est un vecteur}$$
normal au plan (DEG).

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in (DEG)ssi\overrightarrow{DM}. \overrightarrow{(DE} \wedge \overrightarrow{DG}) = 0$$

Ssi -x+2y+2z-2=0

Conclusion (DEG): -x+2y+2z-2=0

3) Les points H,D,E et G ne sont pas coplanaires ⇒H∉(DEG)
 ⇒ (HI)⊄ (DEG) (1)

Soit J le milieu de [HI] \Rightarrow J $(\frac{1}{2}, \frac{3}{4}, \frac{1}{2})$

$$\frac{1}{2} - 2 \times \frac{3}{4} - 2 \times \frac{1}{2} + 2 = 0 \Rightarrow J\epsilon(DEG) (2)$$
1) et (2) \Rightarrow (HI) \cap (DEG)={J}

Ex 6: A(-1,-2,-3)

1) a/
$$(\vec{i} - \vec{j})\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
; $\vec{k}\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
 $(\vec{i} - \vec{j}) \wedge \vec{k}\begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$ est un vecteur normal au plan P.

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in P \, ssi \, \overrightarrow{AM} \cdot ((\vec{\imath} - \vec{\jmath}) \hat{\vec{k}}) = 0$$

$$Ssi - (x+1) - (y+2) + 0 = 0$$

Conclusion P:
$$x + y + 3 = 0$$

b/
$$(\vec{i} + \vec{j}) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \vec{i} + \vec{k} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$(\vec{\imath} + \vec{\jmath})^{\hat{}}(\vec{\imath} + \vec{k}) \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
 est un

vecteur normal au plan Q.

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in Q \ ssi\overrightarrow{AM}. [(\vec{i} + \vec{j})^{\hat{i}} + \vec{k})] = 0$$

Ssi
$$x - y - z - 4 = 0$$

Conclusion
$$Q: x - y - z - 4 = 0$$

$$\mathbf{c}/\ (\vec{\iota}^{\wedge}\vec{\jmath})\begin{pmatrix}0\\0\\1\end{pmatrix};\ \vec{\jmath}^{\wedge}\vec{k}\begin{pmatrix}1\\0\\0\end{pmatrix}$$

$$(\vec{i} \wedge \vec{j}) \wedge (\vec{j} \wedge \vec{k}) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 est un vecteur normal au plan R.

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in P \ ssi\overrightarrow{AM}. (\vec{\imath} \land \vec{\jmath}) \land (\vec{\jmath} \land \vec{k}) = 0$$

Ssi
$$y+2=0$$

Conclusion

$$R: y + 2 = 0$$

2)
$$O(0,0,0)$$
 P: $x + y + 3 = 0$
 $d(O;P) = \frac{|3|}{\sqrt{2}} = \frac{3}{\sqrt{2}}$
 $d(O;Q) = \frac{|-4|}{\sqrt{3}} = \frac{4}{\sqrt{3}}$
 $d(O;R) = \frac{|2|}{\sqrt{1}} = 2$

Ex 7:

2)
$$M(\frac{1}{3}; \frac{1}{3}; \frac{1}{3})$$

 $D(M,(OIJ)) = D(M,(OJK))$
 $= D(M,(OIK)) = \frac{1}{3}$

D(M,(IJK))=0

M∉(OIJ)⇒O,I,J et M ne sont pas coplanaires.

$$\overrightarrow{OI}\begin{pmatrix}1\\0\\0\end{pmatrix};\overrightarrow{OJ}\begin{pmatrix}0\\1\\0\end{pmatrix}$$

$$\overrightarrow{OI} \wedge \overrightarrow{OJ} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad ; \overrightarrow{OM} \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix}$$

$$V = \frac{1}{6} \left| \left(\overrightarrow{OI} \wedge \overrightarrow{OJ} \right) . \overrightarrow{OM} \right| = \frac{1}{6} . \frac{1}{3} = \frac{1}{18}$$

EX 8:

a/
$$\vec{n}$$
 $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ un vecteur normal à P \Rightarrow

$$P : 2x-y+3z+d=0$$

$$A \in P \Rightarrow 2-0+3+d=0 \Rightarrow d=-5$$

$$\Rightarrow$$
 P: 2x-y+3z-5=0

b/
$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in P \ SSi \ \overrightarrow{AM} \cdot \overrightarrow{n} = 0$$

$$1.(x-1)-(y-2)+0=0$$

ssi
$$x-y+1=0$$

Cclision
$$P:x-y+1=0$$

$$c/M\binom{x}{y} \in P \ SSi \ \overrightarrow{AM}. \overrightarrow{n} = 0$$

Cclision
$$P: 2x-3y-4z-4=0$$

Ex 9:

a/
$$D \perp P \Rightarrow \overrightarrow{N} \begin{pmatrix} -3 \\ 2 \\ 0 \end{pmatrix}$$
 qui est un vecteur normal à P est aussi un vecteur directeur de la droite D. et on a $A(0,0,1) \in D \Rightarrow$

$$D: \begin{cases} x = -3\alpha \\ y = 2\alpha ; \alpha \in \mathbb{R} \\ z = 1 \end{cases}$$

b/
$$D \perp P \Rightarrow \vec{N} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 qui est un vecteur

normal à P est aussi un vecteur directeur de la droite D. et on a $A(1,-3,2) \in D \Rightarrow$

D:
$$\begin{cases} x = 1 \\ y = -3 + \alpha ; \alpha \in \mathbb{R} \\ z = 2 \end{cases}$$

c/ $D \perp P \Rightarrow \vec{N} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ qui est un vecteur

normal à P est aussi un vecteur directeur de la droite D. et on a A(1,5,3) \in D \Rightarrow

D:
$$\begin{cases} x = 1 \\ y = 5 + \alpha ; & \alpha \in \mathbb{R} \\ z = 3 - 5\alpha \end{cases}$$

Ex 10:

1)
$$-1+5\times1-5=-1\neq7\Rightarrow A\not\in P$$

2)
$$a' \overrightarrow{AH} et \overrightarrow{N} \begin{pmatrix} -1 \\ 5 \\ -1 \end{pmatrix}$$
 sont deux

vecteurs normaux à P donc

 \overrightarrow{AH} et \overrightarrow{N} sont colinéaires et par suite il existe un réel k tel que $\overrightarrow{AH} = k \cdot \overrightarrow{N}$ ce

qui donne
$$\overrightarrow{AH} \begin{pmatrix} -k \\ 5k \\ -k \end{pmatrix}$$

b/
$$\overrightarrow{AH} \begin{pmatrix} x_0 - 1 \\ y_0 - 1 \\ z_0 - 5 \end{pmatrix}$$
 et H ϵ P

b/
$$\overrightarrow{AH}$$
 $\begin{pmatrix} x_0 - 1 \\ y_0 - 1 \\ z_0 - 5 \end{pmatrix}$ et H ϵ P
$$\Leftrightarrow \begin{cases} x_0 - 1 = -k \\ y_0 - 1 = 5k \\ z_0 - 5 = -k \\ -x_0 + 5y_0 - z_0 = 7 \end{cases}$$

$$\Leftrightarrow \begin{cases}
 x_0 = 1 - k \\
 y_0 = 1 + 5k \\
 z_0 = 5 - k \\
 -x_0 + 5y_0 - z_0 = 7
\end{cases}$$

$$\Rightarrow k = \frac{8}{27} \text{ et par suite}$$

$$x_0 = \frac{19}{27}; y_0 = \frac{67}{27} \text{ et } z_0 = \frac{127}{27}$$

Conclusion: $H(\frac{19}{27}; \frac{67}{27}; \frac{127}{27})$

EX 11:

1)
$$\overrightarrow{AB}\begin{pmatrix}1\\2\\0\end{pmatrix}$$
 et $\overrightarrow{AC}\begin{pmatrix}-1\\1\\-1\end{pmatrix}$

 $\begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 1 + 2 = 3 \neq 0 \Rightarrow \overrightarrow{AB}et \overrightarrow{AC}$ ne sont pas colinéaires et par suite A,B et C ne sont pas alignées.

2)
$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} -2\\1\\3 \end{pmatrix}$$
 est un vecteur normal au plan (ABC).

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in (ABC)ssi\overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$$

Conclusion (ABC): -2x+y+3z-5=0

3)
$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} -2\\1\\3 \end{pmatrix}$$
 est aussi un

vecteur normal au plan $Q \Rightarrow$

$$Q: -2x+y+3z+d=0$$

$$D(0,1,2) \in Q \Rightarrow 1+6+d=0 \Rightarrow d=-7$$

$$Q: -2x+y+3z-7=0$$

4)
$$\overrightarrow{OD} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \Rightarrow (OD) : \begin{cases} x = 0 \\ y = t \\ z = 2t \end{cases}$$
 ; teIR

 $M(x,y,z)\epsilon(OD)\cap(ABC)\Leftrightarrow$

$$\begin{cases} x = 0 \\ y = t \\ z = 2t \\ -2x + y + 3z - 5 = 0 \end{cases}$$

$$\Rightarrow t = \frac{5}{7} \Rightarrow x = 0 ; y = \frac{5}{7} \text{ et } z = \frac{10}{7}$$

Conclusion: L'intersection de la droite (OD) avec le plan (ABC) est le point $H(0; \frac{5}{7}; \frac{10}{7})$

EX 12:

P: 2x-y+2z-5=0

$$Q:2x+2y-z-4=0$$

1)
$$\vec{N} \begin{pmatrix} 2 \\ -1 \end{pmatrix} et \vec{N'} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 sont des
vecteurs normaux respectives de P
et Q
et $\vec{N} \cdot \vec{N'} = 4 - 2 - 2 =$
 $0 \Rightarrow \vec{N} \perp \vec{N'}$ et par suite $P \perp Q$

- 2) A(1,2-1) $d(A,P) = \frac{|2-2-2-5|}{\sqrt{9}} = \frac{7}{3}$ $d(A,Q) = \frac{|2+4+1-4|}{\sqrt{9}} = \frac{3}{3} = 1$
- 3) $P \cap Q = \Delta$ et $P \perp Q$ $\Rightarrow d^2(A, \Delta) = d^2(A, P) + d^2(A, Q)$ $\Rightarrow d(A, \Delta) = \frac{\sqrt{58}}{3}$ 4) $\Delta :\begin{cases} 2x - y + 2z - 5 = 0 \\ 2x + 2y - z - 4 = 0 \end{cases}$

On pose z=t on aura

$$\begin{cases} z = t & (1) \\ 2x - y = 5 - 2t & (2) \\ 2x + 2y = 4 + t & (3) \end{cases}$$

(3)-(2)
$$\Rightarrow$$
3y=-1+3t \Rightarrow y= - $\frac{1}{3}$ + t

Et par suite $x = \frac{7}{3} - \frac{1}{2}t$

Donc
$$\Delta$$
:
$$\begin{cases} x = \frac{7}{3} - \frac{1}{2}t \\ y = -\frac{1}{3} + t \end{cases}$$
; teIR

5)
$$M(\frac{7}{3} - \frac{1}{2}t; -\frac{1}{3} + t;t)$$

Soit la fonction $f:t \rightarrow f(t) = AM^2$

$$\Rightarrow f(t) = \left(\frac{4}{3} - \frac{1}{2}t\right)^2 + \left(-\frac{7}{3} + t\right)^2 + (1+t)^2$$
$$\Rightarrow f'(t) = \frac{9}{2}t - 4$$

La distance AM est minimale pour t= $8/9 \Rightarrow M(\frac{17}{9}; \frac{5}{9}; \frac{8}{9})$

EX 13: A(0,3,2)

 $P_m:(1+m)x+y-2mz-4-3m=0$

1) a/

$$d(A,P_m) = \frac{|3+4m-4-3m|}{\sqrt{(1+m)^2+1+4m^2}} = \frac{|m-1|}{\sqrt{5m^2+2m+2}}$$

b/ d(A,P_m)=
$$\frac{\sqrt{2}}{2}$$
 $\Leftrightarrow \frac{|m-1|}{\sqrt{5m^2+2m+2}} = \frac{\sqrt{2}}{2}$
 $\Leftrightarrow \frac{(m-1)^2}{5m^2+2m+2} = \frac{1}{2}$
 $\Leftrightarrow 2.(m-1)^2 = 5m^2+2m+2$
 $\Leftrightarrow 3m^2+6m=0 \Leftrightarrow m=0 \text{ ou } m=-2$

2) D:
$$\begin{cases} x = 1 - 2t \\ y = 3 + 2t \\ z = -1 - t \end{cases}$$
; $t \in \mathbb{R}$

$$(1+m)(1-2t)+(3+2t)-2m(-1-t)-4-3m=$$

1-2t+m-2mt+3+2t+2m+2mt-4-3m=0

 ${\Rightarrow} D \subset P_m$; pour tout réel m

EX 14:

1)
$$\overrightarrow{N_P} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 vecteur normal à P
$$\overrightarrow{N_Q} \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$
 vecteur normal à Q

$$\begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} = -6 \neq 0 \Rightarrow \overrightarrow{N_P} \text{ et } \overrightarrow{N_Q} \text{ ne sont pas}$$

colinéaires \Rightarrow P et Q sont secants.

Soit E l'ensemble des points équidistant de P et Q

*M(x,y,z)
$$\epsilon$$
E \Leftrightarrow d(M,P)=d(M,Q)

$$\Leftrightarrow \frac{|x+2y+2z-1|}{\sqrt{9}} = \frac{|3x-4z|}{\sqrt{25}}$$

$$\Leftrightarrow 25(x+2y+2z-1)^2 = 9(3x-4z)^2$$

$$\Leftrightarrow |5x+10y+10z-5=9x-12z|$$

$$ou$$

$$|5x+10y+10z-5=12z-9x|$$

$$\Leftrightarrow \begin{vmatrix} 4x - 10y - 22z + 5 = 0 \\ ou \\ 14x + 10y - 2z - 5 = 0 \end{vmatrix}$$

 \Leftrightarrow

Me plan F: 4x - 10y - 22z + 5 = 0ou

Me plan H: 14x + 10y - 2z - 5 = 0Donc E=F**U**H

$$\overrightarrow{N_F}$$
 $\begin{pmatrix} 4 \\ -10 \\ -22 \end{pmatrix}$ vecteur normal à F
$$\overrightarrow{N_H}$$
 $\begin{pmatrix} 14 \\ 10 \\ -2 \end{pmatrix}$ vecteur normal à H
$$\overrightarrow{N_F} \cdot \overrightarrow{N_H} = 56-100+44=0 \Rightarrow F \perp H$$

*Soit Δ =P \cap Q tout point de Δ est équidistant de P et Q (d=0) \Rightarrow Δ \subset E

CONCLUSION : l'ensemble des points équidistants de P et Q est la réunion de deux plans :

F:
$$4x - 10y - 22z + 5 = 0$$
 et
H: $14x + 10y - 2z - 5 = 0$
Qui sont perpendiculaires et
contenants la droite Δ .

EX 15: A(1,2,-1); B(2,1,1)

1) Q passe par A et de vecteur normal

$$\overrightarrow{AB}\begin{pmatrix} 1\\-1\\2\end{pmatrix}$$

 $M(x,y,z) \in \mathbb{Q} \Leftrightarrow \overrightarrow{AM}. \overrightarrow{AB} = 0$

$$\Leftrightarrow (x-1)\times 1+(y-2)\times (-1)+(z+1)\times 2=0$$

$$\Leftrightarrow$$
 x-y+2z+ 3=0

Cclusion
$$Q: x-y+2z+3=0$$

2)
$$P_m : x+y+m-3=0$$

 $a / \vec{N} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ vecteur normal à P_m

Par suite (AB) //
$$P_m$$

b/ A ϵ $P_m \Leftrightarrow 1+2+m-3=0 \Leftrightarrow m=0$
(AB) $\subset P_m$ ssi m=0

 $\overrightarrow{AB} \cdot \overrightarrow{N} = 1 - 1 + 0 = 0 \Rightarrow \overrightarrow{AB} \perp \overrightarrow{N}$

c/ Q de vecteur normal \overrightarrow{AB} et $\overrightarrow{AB} \perp \overrightarrow{N}$ \Rightarrow Q \perp P_m pour tout m \in IR

3) ABB'A' carré ssi AA'=AB
$$Ssi d(A,P_m)=AB$$

$$\Leftrightarrow \frac{|1+2+m-3|}{\sqrt{2}} = \sqrt{6}$$

$$\Leftrightarrow |m| = 2\sqrt{3}$$

$$\Leftrightarrow m = 2\sqrt{3} \text{ ou } m = -2\sqrt{3}$$

Ex 16:

A(a,0,0) B(0,b,0) C(0,0,c)

1) a)
$$\overrightarrow{AB} \begin{pmatrix} -a \\ b \\ 0 \end{pmatrix}$$
; $\overrightarrow{AC} \begin{pmatrix} -a \\ 0 \\ c \end{pmatrix}$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} bc \\ ac \\ ab \end{pmatrix}$$
 est normal au plan (ABC)

(ABC): (bc).x+(ac).y+(ab).z+d=0 $A(a,0,0) \in (ABC) \Rightarrow abc+d=0 \Rightarrow d=-abc$ d'où (ABC):(bc).x+(ac).y+(ab).z-abc=0

b) OH=d_{(O,(ABC))}

$$OH = \frac{abc}{\sqrt{(bc)^2 + (ac)^2 + (ab)^2}}$$

$$\frac{1}{OH^2} = \frac{(bc)^2 + (ac)^2 + (ab)^2}{a^2b^2c^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

$$\Rightarrow \frac{1}{OH^2} = \frac{1}{OA^2} + \frac{1}{OB^2} + \frac{1}{OC^2}$$

2) a) soit A: l'aire du triangle ABC

$$A = \frac{1}{2} \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\|$$

d'où :
$$A = \frac{1}{2} \sqrt{(bc)^2 + (ac)^2 + (ab)^2}$$

b)
$$A_1 = aire(OAB) = \frac{ab}{2}$$

$$A_2 = aire(OAC) = \frac{ac}{2}$$

$$A_3 = aire(OBC) = \frac{bc}{2}$$

$$A^{2} = \frac{1}{4} \Big[(bc)^{2} + (ac)^{2} + (ab)^{2} \Big]$$

$$A^2 = A_1^2 + A_2^2 + A_3^2$$

Ex 17:

- 1) S: $x^2+y^2+z^2-4x+2y-6z=0\Leftrightarrow$ $(x^2-4x)+(y^2+2y)+(z^2-6z)=0\Leftrightarrow$ $(x-2)^2-4+(y+1)^2-1+(z-3)^2-9=0\Leftrightarrow$ $(x-2)^2+(y+1)^2+(z-3)^2=14$ D'où l'ensemble S est la sphère de centre le point I(2,-1,3) et de rayon $\sqrt{14}$.
- 2) (E): $x^2+y^2+z^2-4x+2y-6z+14=0 \Leftrightarrow$ $(x^2-4x)+(y^2+2y)+(z^2-6z)=-14 \Leftrightarrow$ $(x-2)^2+(y+1)^2+(z-3)^2=0$ (E) = {I(2,-1,3)}

3) (F):
$$x^2+y^2+z^2-4x+2y-6z+16=0 \Leftrightarrow$$

 $(x^2-4x)+(y^2+2y)+(z^2-6z)=-16 \Leftrightarrow$
 $(x-2)^2+(y+1)^2+(z-3)^2=-2$
(F) $=\emptyset$

Ex 18:

(S):
$$x^2+y^2+z^2+ax+by+cz+d=0$$

O,A,B et C appartiennent à (S)⇒

$$\begin{cases} d = 0 \\ 1+1+1+a+b+c+d = 0 \\ 4+2a+d = 0 \\ 1+4+4+a-2b+2c+d = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} d = 0 \\ 4+2a+d = 0 \\ a+b+c+d = -3 \\ 2a+d = -4 \\ a-2b+2c+d = -9 \end{cases}$$

$$\Leftrightarrow$$
d=0; a=-2; b=5/4 et c=-9/4

(S)
$$:x^2+y^2+z^2-2x+5/4.y-9/4.z=0$$

Ex 19:

- 1) A(1,7,-1) P:x+y+z=0 (S) est de rayon R=d(A,P)= $\frac{|7|}{\sqrt{3}} = \frac{7}{\sqrt{3}}$ \Rightarrow (S): (x-1)²+(y-7)²+(z+1)² = $\frac{49}{3}$
- 2) A(0,2,3) P:x+y+z=0 $R=d(A,P)=\frac{|-2+3+5|}{\sqrt{3}} = \frac{6}{\sqrt{3}} = 2\sqrt{3}$ $\Rightarrow (S): x^2+(y-2)^2+(z-3)^2 = 12$
- 2) A(5,3,1) P:3x-2y-z+7=0 R=d(A,P)= $\frac{|15-6-1+7|}{\sqrt{14}} = \frac{15}{\sqrt{14}}$ \Rightarrow (S): (x-5)²+(y-3)²+(z-1)² = $\frac{225}{14}$

Ex 20:

$$\overrightarrow{IA} \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}$$
 est un vecteur normal à P

$$\Rightarrow$$
P: y-3z+d=0

$$A(1,4,-5) \in P \Rightarrow 4-3 \times (-5) + d = 0 \Rightarrow d = -19$$

Cclusion P: y-3z-19=0

Ex 21:

1)
$$\overrightarrow{OA} \wedge \overrightarrow{OB} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$
 vecteur normal à(OAB)
 $\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ vecteur normal à(ABC)
 $(\overrightarrow{OA} \wedge \overrightarrow{OB}).(\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0 + 0 + 0 = 0 \Rightarrow$
 $(OAB) \perp (ABC)$

- Désignons par P,Q et R les plans médiateurs respectifs de [OA],[OB] et [OC]
 - * \overrightarrow{OA} $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ est un vecteur normal à P \Rightarrow

$$P: 2x+d=0$$

$$I=O*A(1,0,0)\epsilon P \Rightarrow 2+d=0 \Rightarrow d=-2$$

P:
$$2x-2=0 \Leftrightarrow P: x=1$$

$$*\overrightarrow{OB} \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 est un vecteur normal à Q \Rightarrow

$$Q: x+y+d=0$$

$$J=O*B(1/2,1/2,0)\in Q \Rightarrow 1+d=0 \Rightarrow d=-1$$

$$Q:x+y-1=0$$

$$*M(x,y,z) \in R \Leftrightarrow OM = OC$$

$$\Leftrightarrow$$
 $x^2+y^2+z^2=(x-1)^2+(y-1)^2+(z-1)^2$

$$\Leftrightarrow$$
2x+2y+2z-3=0

$$R: 2x+2y+2z-3=0$$

3) Soit I(x,y,z) son centre $\Rightarrow I \in P \cap Q \cap R$

$$\begin{cases} x = 1 \\ x + y - 1 = 0 \\ 2x + 2y + 2z - 3 = 0 \end{cases}$$

$$\Rightarrow x=1 ; y=0 \text{ et } z=1/2$$
Donc I(1;0;\frac{1}{2})

Le rayon est $r = IO = \frac{\sqrt{5}}{2}$

EX 22:

1) (S) $(x-1)^2+(y-1)^2+(z-1)^2=16$ (S) de centre I(1,1,1) et de rayon R=4 $d(I,P) = \frac{|1+1+1-1|}{\sqrt{3}} = \frac{2}{\sqrt{3}} < R \implies (S) \cap P \text{ est}$ le cercle de rayon $r = \sqrt{16 - \frac{4}{3}} = \sqrt{\frac{44}{3}}$ et de centre le point w(x,y,z) le projeté orthogonal de I sur $P \Rightarrow \begin{cases} \overrightarrow{Iw} = k. \overrightarrow{N_P} \\ w \in P \end{cases}$

avec
$$\overrightarrow{N_P}$$
 $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ vecteur normal à P
$$\Rightarrow \begin{cases} x = 1 + k\\ y = 1 + k\\ z = 1 + k \end{cases} \Rightarrow k = -2/3$$

$$\Rightarrow W(1/3, 1/3, 1/3)$$

(S)∩P est le cercle de rayon $r = \sqrt{\frac{44}{3}}$ et de centre le point W(1/3,1/3,1/3)

2) (S)
$$(x-3/2)^2+(y+5/2)^2+(z-1/2)^2=35/4$$

(S) de centre I(3/2,-5/2,1/2) et de rayon $R = \frac{\sqrt{35}}{2}$ $d(I,P) = \frac{\left|\frac{3}{2} - 5 + \frac{3}{2} + 5\right|}{\sqrt{14}} = \frac{3}{\sqrt{14}} < R \implies (S) \cap P \text{ est}$ le cercle de rayon $r = \sqrt{\frac{35}{4} - \frac{9}{14}} = \sqrt{\frac{227}{28}}$ et de centre le point w(x,y,z) le projeté orthogonal de I sur $P \Rightarrow \begin{cases} \overline{Iw} = k. \ \overline{N_P} \\ w \in P \end{cases}$ $avec \overrightarrow{N_P} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ vecteur normal à P}$ $\Rightarrow \begin{cases} x = 3/2 + k \\ y = -5/2 + 2k \\ z = 1/2 + 3k \\ x + y + z - 1 = 0 \end{cases} \Rightarrow W(9/14, -41/14, -1/7)$

(S) \cap P est le cercle de rayon r = $\sqrt{\frac{227}{28}}$ et de centre le point W(9/14,-41/14,-1/7)

EX23:

3)(S) $(x-1)^2+(y+3/2)^2+(z-1/2)^2=4$ (S) de centre I(1,3/2,1/2) et de rayon R=2 $d(I,P) = \frac{|1+3+1-1|}{\sqrt{9}} = \frac{4}{3} < R \implies (S) \cap P$ est le cercle de rayon $r = \sqrt{\frac{20}{9}} = \frac{2\sqrt{5}}{3}$ et de centre le point w(x,y,z) le projeté orthogonal de I sur $P \Rightarrow \begin{cases} \overrightarrow{Iw} = k. \overrightarrow{N_P} \\ w \in P \end{cases}$ avec $\overrightarrow{N_P} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ vecteur normal à P $\Rightarrow \begin{cases} x = 1+k \\ y = 3/2+2k \\ z = 1/2+2k \end{cases} \Rightarrow k=-4/9$ x + 2y + 2z - 1 = 0

 \Rightarrow W(5/9,11/18,-7/18)

(S) \cap P est le cercle de rayon $r = \frac{2\sqrt{5}}{3}$ et de centre le point W(5/9,11/18,-7/18)

4)P:
$$\begin{cases} x = 1 + 2\alpha - \beta & (1) \\ y = -1 + \beta & (2) \\ z = 1 - \alpha & (3) \end{cases}$$

(2) et (3) $\Rightarrow \alpha=1-z$ et $\beta=1+y$

Remplaçons dans (1) on aura:

$$x=1+2(1-z)-(1+y) \Rightarrow P$$
 a pour équation
cartésienne :x+y+2z-2=0
(S) (x+1)²+(y-2)²+(z-2)²=5

(S) de centre I(-1,2,2) et de rayon R= $\sqrt{5}$ d(I,P)= $\frac{|-1+4+2-2|}{\sqrt{6}} = \frac{\sqrt{6}}{2} < R \implies (S) \cap P$ est le cercle de rayon $r = \frac{\sqrt{14}}{2}$ et de centre le point w(x,y,z) le projeté orthogonal de I sur P $\Rightarrow \begin{cases} \overrightarrow{Iw} = k. \overrightarrow{N_P} \\ w \in P \end{cases}$

avec
$$\overrightarrow{N_P}\begin{pmatrix} 1\\1\\2 \end{pmatrix}$$
 vecteur normal à P
$$\Rightarrow \begin{cases} x = -1 + k \\ y = 2 + k \\ z = 2 + 2k \\ x + y + 2z - 2 = 0 \end{cases} \Rightarrow k = -1/2$$

$$\Rightarrow W(-3/2, 1, 3/2)$$

(S) \cap P est le cercle de rayon $r = \frac{\sqrt{14}}{2}$ et de centre le point W(-3/2 ,1 ,3/2)

EX 24:

1) (S) est de centre A et A ϵ (ABC) \Rightarrow

- (S)∩(ABC) est le cercle de centre A , de même rayon 1 et situé dans le plan (ABC).
- 2) Soit Q le plan passant par A et perpendiculaire à(AC).
 (S)∩Q est le cercle de centre A,de rayon 1 et situé dans le plan Q.
- Soit P le plan passant par C et perpendiculaire à(AC).

$$AC=\sqrt{2} > R=1 \Rightarrow (S) \cap Q=\emptyset$$

EX 25: A(1,-1,2); B(-1,1,-2)

1)
$$\overrightarrow{AB} \begin{pmatrix} -2\\2\\-4 \end{pmatrix}$$
;
(AB):
$$\begin{cases} x = 1 - 2t\\ y = -1 + 2t\\ z = 2 - 4t \end{cases}$$
, $t \in IR$

2) a/ $\overrightarrow{AB} \begin{pmatrix} -2 \\ 2 \\ -4 \end{pmatrix} : \text{vecteur normal à P} \Rightarrow$ P : -2x + 2y - 4z + d = 0 $A(1,-1,2) \in P \Rightarrow -2 - 2 - 8 + d = 0 \Rightarrow d = 12$ P : -2x + 2y - 4z + 12 = 0

P: x-y+2z-6=0
b/ Q: x-y+2z +6=0
B(-1,1,-2)
-1-1+2×(-2)+6=-6+6=0
$$\Rightarrow$$
B \in Q
 $\overrightarrow{N}\begin{pmatrix} 1\\ -1\\ 2 \end{pmatrix}$ est normal à chacun des
plans P et Q \Rightarrow P//Q

I(a,b,c)

a/ A:le projeté orthogonal de I sur P

$$\Rightarrow$$
 (AI) \perp P or on a (AB) \perp P

$$\Rightarrow$$
 (AI) //(AB) et par suite I ϵ (AB)

b/
$$\overrightarrow{AI}$$
 $\begin{pmatrix} a-1\\b+1\\c-2 \end{pmatrix}$ et \overrightarrow{AB} $\begin{pmatrix} -2\\2\\-4 \end{pmatrix}$ sont

colinéaires ⇒

$$\begin{vmatrix} -2 & a-1 \\ 2 & b+1 \end{vmatrix} = 0et \begin{vmatrix} 2 & b+1 \\ -4 & c-2 \end{vmatrix} = 0$$

$$\Rightarrow$$
-2(b+1)-2(a-1)=0 et 2(c-2)+4(b+1)=0

$$\Rightarrow$$
 b+a=0 et c+2b=0

$$\Rightarrow$$
b= - a et c = 2a

c/(S) est de centre I et de rayon R=IB ~

(S) \cap P est le cercle de centre A et de rayon $2\sqrt{3}$

$$\Rightarrow$$
 IB²=IA²+(2 $\sqrt{3}$)² \Rightarrow IB²-IA²=12

IB²-IA²=12
IB²=(a+1)²+(b-1)²+(c+2)²
$$\Rightarrow$$
 a-b+2c=3
IA²=(a-1)²+(b+1)²+(c-2)²

d/ on a
$$\begin{cases} b = -a \\ c = 2a \\ a - b + 2c = 3 \end{cases}$$
$$\Rightarrow a=1/2 \; ; b = -\frac{1}{2} \quad \text{et } c = 1$$
$$I(1/2; -\frac{1}{2}; 1)$$

(S) est une sphère de centre I(1/2; -1/2; 1)

Et de rayon R=IB=
$$\frac{3\sqrt{6}}{2}$$

$$\Rightarrow$$
 (S): $(x-1/2)^2+(y+1/2)^2+(z-1)^2=27/2$

EX 26:

$$A(6,0,0)$$
; $B(0,6,0)$; $C(0,0,6)$ $D(-2,-2,-2)$

1) a/
$$\overrightarrow{AB}$$
 $\begin{pmatrix} -6\\6\\0 \end{pmatrix}$; \overrightarrow{AC} $\begin{pmatrix} -6\\0\\6 \end{pmatrix}$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} \begin{pmatrix} 36 \\ 36 \\ 36 \end{pmatrix} \neq \overrightarrow{O} \Rightarrow \overrightarrow{AB} \text{ et } \overrightarrow{AC} \text{ ne}$$

sont pas colinéaires et par suite A,B et C ne sont pas alignées.

b/
$$\overrightarrow{AB}$$
 $\stackrel{\wedge}{\overrightarrow{AC}}$ $\begin{pmatrix} 36\\36\\36 \end{pmatrix}$ est un vecteur normal

à
$$P \Rightarrow \vec{N} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 est un vecteur normal à P

$$\Rightarrow$$
P:x+y+z+d=0

$$A \in P \Rightarrow 6 + d = 0 \Rightarrow d = -6$$

$$\Rightarrow P : x + y + z - 6 = 0$$

$$c/\overrightarrow{OD}\begin{pmatrix} -2\\ -2\\ -2\end{pmatrix} \Rightarrow \overrightarrow{OD} = -2 \cdot \overrightarrow{N} \Rightarrow \overrightarrow{OD} \text{ et } \overrightarrow{N}$$

sont colinéaires et par suite (OD) et P sont perpendiculaires.

d/ (OD) :
$$\begin{cases} x = -2t \\ y = -2t \\ z = -2t \end{cases}$$
; $t \in \mathbb{R}$

e/ $H(x,y,z)\epsilon(OD)\cap P \Rightarrow$

$$\begin{cases} x = -2t \\ y = -2t \\ z = -2t \\ x + y + z - 6 = 0 \end{cases}$$

$$\Rightarrow$$
 -6t-6=0 \Rightarrow t=-1 \Rightarrow H(2;2;2)

* AH=BH=CH=
$$2\sqrt{6}$$

f/ (OD) est perpendiculaire à P et (OD) passe par H : centre du cercle ζ circonscrit au triangle ABC ; alors (OD) est l'axe de ζ .

2) a/
$$M(x,y,z) \in Q \Leftrightarrow CM = DM$$

 $\Leftrightarrow x^2 + y^2 + (z-6)^2 = (x+2)^2 + (y+2)^2 + (z+2)^2$
 $\Leftrightarrow 4x + 4y + 16z - 24 = 0$
 $\Leftrightarrow x + y + 4z - 6 = 0$

$$Q: x+y+4z-6=0$$

$$\begin{cases} x = -2t \\ y = -2t \\ z = -2t \end{cases}$$

b/ $M(x,y,z)\epsilon(OD)\cap Q \Leftrightarrow$

$$\Rightarrow (-2t)+(-2t)+4(-2t)-6=0 \Rightarrow -12t-6=0$$

$$\Rightarrow$$
t= - 1/2 \Rightarrow x=y=z=1

$(OD) \cap Q = \{I(1,1,1)\}$

3/a/ (S)
$$(x-1)^2+(y-1)^2+(z-1)^2=27$$

b/ IA=IB=IC=ID= $3.\sqrt{3} \Rightarrow$
A,B,C et D appartiennent à (S)
c/ A,B et C appartiennent à
 $(S) \cap P \Rightarrow (S) \cap P$ est le cercle ζ
circonscrit au triangle ABC.

Ex 27:

1) S:
$$x^2+y^2+z^2+2x-2y-2=0$$

$$\Leftrightarrow (x+1)^2 + (y-1)^2 + z^2 = 4$$

 \Rightarrow S de centre I(-1,1,0) et de rayon R=2

2)
$$P_m : x+z+m=0$$

$$a/P_0: x+z=0$$

$$d(I,P_0) = \frac{|-1+0|}{\sqrt{2}} = \frac{1}{\sqrt{2}} < R \implies (S) \cap P_0 \text{ est le}$$

$$\text{cercle } \zeta \text{ de rayon } r = \sqrt{4 - \frac{1}{2}} = \sqrt{\frac{7}{2}} \text{ et de}$$

$$\text{centre le point } w(x,y,z) \text{ le projeté}$$

$$\text{orthogonal de I sur } P_0 \Rightarrow \begin{cases} \overrightarrow{Iw} = k. \overrightarrow{N_0} \\ w \in P \end{cases}$$

avec
$$\overrightarrow{N_0} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 vecteur normal à P_0

$$\Rightarrow \begin{cases} x = -1 + k \\ y = 1 \\ z = k \\ x + z = 0 \end{cases} \Rightarrow k = \frac{1}{2}$$

$$\Rightarrow w(-1/2;1;1/2)$$

b/
$$\overrightarrow{N_0}\begin{pmatrix}1\\0\\1\end{pmatrix}$$
 vecteur normal à P_0

$$(\vec{\imath} - \vec{k}) \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \vec{j} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\overrightarrow{N_0}$$
. $(\overrightarrow{i} - \overrightarrow{k}) = 1 + 0 - 1 = 0 \Rightarrow \overrightarrow{i} - \overrightarrow{k}$ est un vecteur de P_0 . (1)

$$\overrightarrow{N_0}$$
. $\overrightarrow{j} = 0 + 0 + 0 = 0 \Rightarrow \overrightarrow{j}$ est un vecteur de P_0 . (2)

$$(\vec{i} - \vec{k}) \cdot \vec{j} = 0 + 0 + 0 = 0 \Rightarrow (\vec{i} - \vec{k}) \perp \vec{j} (3)$$

$$\|\vec{j}\| = 1$$
 $\left\| \frac{1}{\sqrt{2}} (\vec{i} - \vec{k}) \right\| = 1$ (4)

(1),(2),(3) et (4)
$$\Rightarrow$$
 (0; $\frac{1}{\sqrt{2}}(\vec{l} - \vec{k}); \vec{j}$) est un repère orthonormé de P₀

c/ on a:

et
$$\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\overrightarrow{OM} = \frac{x}{\sqrt{2}}(\vec{i} - \vec{k}) + Y\vec{j}$$

$$\Rightarrow \begin{cases} \frac{x}{\sqrt{2}} = x \\ Y = y \\ -\frac{x}{\sqrt{2}} = z \end{cases}$$

$$\Rightarrow$$
 X= $\sqrt{2}x = -\sqrt{2}z$ et Y=y

w(-1/2;1;1/2) le centre de ζ

$$\Rightarrow$$
 w($-\frac{\sqrt{2}}{2}$, 1) dans (O; $\frac{1}{\sqrt{2}}(\vec{i} - \vec{k})$; \vec{j})

 ζ est de rayon $\sqrt{\frac{7}{2}}$ donc

$$\zeta : (X + \frac{\sqrt{2}}{2})^2 + (Y - 1)^2 = \frac{7}{2}$$
 dans le repère $(O; \frac{1}{\sqrt{2}}(\vec{i} - \vec{k}); \vec{j})$

3)
$$d(I,P_m) = \frac{|-1+0+m|}{\sqrt{2}} = \frac{|m-1|}{\sqrt{2}}$$
 et R=2

$$d(I,P_m) < R \Leftrightarrow \frac{|m-1|}{\sqrt{2}} < 2$$

$$\Leftrightarrow |m-1| < 2\sqrt{2}$$

$$\Leftrightarrow -2\sqrt{2} < m\text{-}1 < 2\sqrt{2}$$

$$\Leftrightarrow$$
 1-2 $\sqrt{2}$ < m < 1 + 2 $\sqrt{2}$

- Pour m ϵ] 1- 2 $\sqrt{2}$;1 + 2 $\sqrt{2}$ [S et P_m sont sécants
- Pour $m \in \{1-2\sqrt{2}; 1+2\sqrt{2}\}$ S et P_m sont tangents

• Pour m ϵ] - ∞ ;1- $2\sqrt{2}$ [**U**]1 + $2\sqrt{2}$; + ∞ [S et P_m sont disjoints

- 1) Désignons par P,Q et R les plans médiateurs respectifs de [AB],[BC]et [AD]
- $\overrightarrow{BA} \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$ est un vecteur normal à P

$$\Rightarrow$$
 P: 2x+4z+d=0

$$A*B=I(-1,4,-3)\in P \Rightarrow -2-12+d=0$$

$$\Rightarrow$$
 d= 14 \Rightarrow P: 2x+4z+14=0

$$\Rightarrow$$
 P: x+2z+7=0

• $M(x,y,z) \in Q \Leftrightarrow BM=CM$

$$\Leftrightarrow$$
 (x+2)²+(y-4)²+(z+5)²=(x-1)²+(y-1)²+(z+5)²

$$\Leftrightarrow$$
 6x -6y +18 =0 \Leftrightarrow x - y + 3 = 0

$$\Rightarrow$$
 Q: x-y +3=0

- $\overrightarrow{DA} \begin{pmatrix} -1\\4\\3 \end{pmatrix}$ est un vecteur normal à R D*A=J(0,5;2;-2,5) \in R M(x,y,z) \in R \Leftrightarrow \overrightarrow{JM} . \overrightarrow{DA} = 0 \Leftrightarrow -1 (x-0,5)+4(y-2)+3(z+2,5)=0 \Leftrightarrow -x+4.y+3z=0 R:-x+4.y+3z=0
 - 2) $M(x,y,z) \in P \cap Q \cap R \Leftrightarrow$

$$\begin{cases} x + 2z + 7 = 0 \\ x - y + 3 = 0 \\ x - 4y - 3z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} z = -\frac{1}{2}(x+7) \\ y = x+3 \\ x-4(x+3) + \frac{3}{2}(x+7) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} z = -\frac{1}{2}(x+7) \\ y = x+3 \\ -3x-3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -1 \\ y = 2 \\ z = -3 \end{cases}$$

$$\Rightarrow$$
 $P \cap Q \cap R = \{I(-1,2,-3)\}$

S est de rayon IA= 3

$$\Rightarrow$$
 S: $(x+1)^2+(y-2)^2+(z+3)^2=9$

EX 29:

A(0,6,0); B(0,0,8); C(4,0,8)

1) a)
$$\overrightarrow{BC} \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix}$$
; $\overrightarrow{BA} \begin{pmatrix} 0 \\ 6 \\ -8 \end{pmatrix}$

 $\overrightarrow{BC}.\overrightarrow{BA}=0+0+0=0$ d'où (BC) \perp (BA)

b)
$$\overrightarrow{OA} \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix}$$
 ; $\overrightarrow{OC} \begin{pmatrix} 4 \\ 0 \\ 8 \end{pmatrix}$

$$\overrightarrow{OA}.\overrightarrow{OC}=0+0+0=0$$

d'où (OA) \perp (OC)

c)
$$\overrightarrow{OB} \begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix}$$

 $\overrightarrow{BC}.\overrightarrow{OB}=0$ d'où (BC) \perp (OB)

$$(BC) \perp (BA)$$

 $(BC) \perp (OB)$ \Rightarrow (OB) est perpendiculaire au plan (OAB)

2)
$$\overrightarrow{V} = \frac{1}{6} | (\overrightarrow{OA} \wedge \overrightarrow{OB}) . \overrightarrow{OC} |$$

$$\overrightarrow{OA} \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} ; \overrightarrow{OB} \begin{pmatrix} 0 \\ 0 \\ 8 \end{pmatrix}$$

$$\overrightarrow{OA} \wedge \overrightarrow{OB} \begin{pmatrix} 48\\0\\0 \end{pmatrix} ; \overrightarrow{OC} \begin{pmatrix} 4\\0\\8 \end{pmatrix}$$

$$V = \frac{1}{6} |192| = 32$$

3) O,A,B et C ne sont pas coplanaires d'où O,A,B et C appartiennent à une meme sphère (S)

(S):
$$x^2 + y^2 + z^2 + \alpha x + \beta y + \gamma z + d = 0$$

$$0 \in (S) \Rightarrow d = 0$$

(S):
$$x^2 + y^2 + z^2 + \alpha x + \beta y + \gamma z = 0$$

$$A \in (S) \Rightarrow 36 + 6\beta = 0 \Rightarrow \beta = -6$$

(S):
$$x^2 + y^2 + z^2 + \alpha x - 6y + \gamma z = 0$$

$$B \in (S) \Rightarrow 64 + 8\gamma = 0 \Rightarrow \gamma = -8$$

(S):
$$x^2 + y^2 + z^2 + \alpha x - 6y - 8z = 0$$

$$C \in (S) \Rightarrow 16 + 64 + 4\alpha - 64 = 0 \Rightarrow \alpha = -4$$

d'où (S):
$$x^2+y^2+z^2-4x-6y-8z=0$$

(S): $(x-2)^2+(y-3)^2+(z-4)^2=29$ d'où (S) est de centre I(2,3,4) de rayon $\sqrt{29}$ (Rq: on pourra considérer comme dans l'ex:18)

4) $M(0,0,\alpha)$

a) le plan P contenant M et perpendiculaire

à (OB) a pour équation : $z=\alpha$

la droite (OC) passe par O et de vecteur directeur MP) \perp (AC) $\Leftrightarrow \overrightarrow{MP} \perp \overrightarrow{AC}$

$$(OC) : \begin{cases} x=4k \\ y=0 \\ z=8k \end{cases}, k \in \mathbb{R}$$

$$P \cap (OC) : \begin{cases} x = 4k \\ y = 0 \\ z = 8k \\ z = \alpha \end{cases}$$

$$k = \frac{\alpha}{8}$$

d'où N
$$(\frac{\alpha}{2},0,\alpha)$$

de meme : $P(\frac{\alpha}{2}, 6 - \frac{3\alpha}{4}, \alpha)$ et $Q(0, 6 - \frac{3\alpha}{4}, \alpha)$

MN=QP d'où MNPQ est un parallélogramme

$$\overline{MQ} \begin{pmatrix} 0 \\ 6 - \frac{3\alpha}{4} \\ 0 \end{pmatrix}$$

 $\overrightarrow{MN}.\overrightarrow{MO}=0$ d'où $\overrightarrow{MN}\perp\overrightarrow{MO}$ conclusion: MNPQ est un rectangle b) * (OB) perpendiculaire au plan (MNPQ) d'où (OB) ⊥ (MP)

$$* \overrightarrow{MP} \begin{pmatrix} \alpha/2 \\ 6 - \frac{3\alpha}{4} \\ 0 \end{pmatrix} ; \overrightarrow{AC} \begin{pmatrix} 4 \\ -6 \\ 8 \end{pmatrix}$$

$$\Leftrightarrow 4(\frac{\alpha}{2})-6(6-\frac{3\alpha}{4})=0 \Leftrightarrow 2\alpha-36+\frac{9}{2}\alpha=0$$

$$\Leftrightarrow \alpha=\frac{72}{13}$$

c) MP²=
$$\frac{\alpha^2}{4}$$
+ $(6-\frac{3\alpha}{4})^2$

on pose :
$$f(x) = \frac{x^2}{4} + (6 - \frac{3x}{4})^2$$

 $x = 3 + (3x - 13x - 18)$

$$f'(x) = \frac{x}{2} - \frac{3}{2}(6 - \frac{3x}{4}) = \frac{13x}{8} - \frac{18}{2}$$

x	0	72/13	8
f'(x)		- 0 +	
f(x)		f(72/13)	/

MP est minimale pour $\alpha = \frac{72}{13}$

EX 30:

$$\overrightarrow{OM} = \alpha . \overrightarrow{k}$$

$$\overrightarrow{AN} = \beta . \overrightarrow{i}$$

1)
$$S: x^2 + (y-1)^2 + z^2 = 1$$

2) $M(0,0,\alpha)$ et $N(\beta,2,0)$

$$\overline{MN} \begin{pmatrix} \beta \\ 2 \\ -\alpha \end{pmatrix}$$

$$(x=k\beta)$$

$$(MN): \begin{cases} x=k\beta \\ y=2k & k \in \mathbb{R} \\ z=\alpha-k\alpha \end{cases}$$

3) a) (MN) tangente à (S) ssi la distance de J à la droite (MN) est égale R=1

$$\Leftrightarrow \frac{\left\| \overrightarrow{\mathbf{JM}} \wedge \overrightarrow{MN} \right\|}{\left\| \overrightarrow{MN} \right\|} = 1$$

$$\overrightarrow{JM} \begin{pmatrix} 0 \\ -1 \\ \alpha \end{pmatrix} \qquad \overrightarrow{MN} \begin{pmatrix} \beta \\ 2 \\ -\alpha \end{pmatrix}$$

$$\|\overrightarrow{MN}\| = \sqrt{\alpha^2 + \beta^2 + 4}$$

$$\overrightarrow{\mathrm{JM}} \wedge \overrightarrow{MN} \begin{pmatrix} -\alpha \\ \alpha\beta \\ \beta \end{pmatrix}$$

$$\|\overrightarrow{JM} \wedge \overrightarrow{MN}\| = \sqrt{\alpha^2 + \beta^2 + \alpha^2 \beta^2}$$

(MN) tangente à (S)
$$\Leftrightarrow \|\overline{JM} \wedge \overline{MN}\| = \|\overline{MN}\|$$

 $\Leftrightarrow \alpha^2 + \beta^2 + 4 = \alpha^2 + \beta^2 + \alpha^2 \beta^2$
 $\Leftrightarrow \alpha^2 \beta^2 = 4$

b)
$$\{Q\} = (MN) \cap S$$

$$Q(x,y,z) \text{ tq} : \begin{cases} x = k\beta \\ y = 2k \\ z = \alpha - k\alpha \\ x^2 + (y-1)^2 + z^2 = 1 \end{cases}$$

$$k^2 \beta^2 + (2k-1)^2 + \alpha^2 (1-k)^2 = 1$$

$$\Leftrightarrow k^2 \beta^2 + 4k^2 - 4k + 1 + \alpha^2 (1-2k+k)^2 = 1$$

$$\Leftrightarrow k^2 \beta^2 + 4k^2 - 4k + \alpha^2 - 2\alpha^2 k + \alpha^2 k^2 = 0$$

$$\Leftrightarrow (\alpha^2 + \beta^2 + 4) k^2 - (4 + 2\alpha^2) k + \alpha^2 = 0$$

$$\Delta' = (2 + \alpha^2)^2 - \alpha^2 (\alpha^2 + \beta^2 = 4)$$

$$\Delta' = 4 + 4\alpha^2 - \alpha^2 \beta^2 - 4\alpha^2 = 4 - (\alpha^2 \beta^2)$$

$$\Delta' = 4 - 4 = 0$$

$$\text{d'où} : k = \frac{2 + \alpha^2}{\alpha^2 + \beta^2 + 4}$$

$$Q\left(\frac{(2 + \alpha^2)\beta}{\alpha^2 + \beta^2 + 4}, \frac{2(2 + \alpha^2)}{\alpha^2 + \beta^2 + 4}, \frac{2 + \alpha\beta^2}{\alpha^2 + \beta^2 + 4}\right)$$

EX31:

$$5\overrightarrow{KA} + \overrightarrow{KD} = \overrightarrow{0}$$

$$\overrightarrow{AL} = \frac{1}{6}\overrightarrow{AB}$$

 $(A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})$: repère de (ξ)

1) A(0,0,0) ; B(1,0,0) ; c(0,1,0) ; D(0,0,1)

$$\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$$

$$\Rightarrow (\overrightarrow{GA} + \overrightarrow{AB}) + (\overrightarrow{GA} + \overrightarrow{AC}) + (\overrightarrow{GA} + \overrightarrow{AD}) = \overrightarrow{0}$$

$$\Rightarrow 3\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$$

$$\Rightarrow \overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} + \frac{1}{3}\overrightarrow{AD}$$

d'où
$$G(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$I=B*C \implies I(\frac{1}{2},\frac{1}{2},0)$$

$$J=C*D \implies J(0,\frac{1}{2},\frac{1}{2})$$

*
$$5\overrightarrow{KA} + \overrightarrow{KD} = \overrightarrow{0} \Rightarrow 5\overrightarrow{KA} + \overrightarrow{KA} + \overrightarrow{AD} = \overrightarrow{0}$$

$$\Rightarrow 6\overrightarrow{AK} = \overrightarrow{AD} \Rightarrow \overrightarrow{AK} = \frac{1}{6}\overrightarrow{AD}$$

d'où
$$K(0,0,\frac{1}{6})$$

*
$$\overrightarrow{AL} = \frac{1}{6} \overrightarrow{AB} \Rightarrow L(\frac{1}{6}, 0, 0)$$

2)*
$$K(0,0,\frac{1}{6})$$
 ; $\overline{KI} \begin{pmatrix} 1/2 \\ 1/2 \\ -1/6 \end{pmatrix}$

$$d'où (IK): \begin{cases} x = \frac{1}{2}\alpha \\ y = \frac{1}{2}\alpha \end{cases} \quad \alpha \in \mathbb{R}$$

$$z = \frac{1}{6} - \frac{1}{6}\alpha$$

 $L(\frac{1}{6},0,0); \overline{LJ}\begin{pmatrix} \frac{-1}{6} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}; d'ou(LJ): \begin{cases} x = \frac{1}{6} - \frac{1}{6}\beta \\ y = \frac{1}{2}\beta & \beta \in IR \\ z = \frac{1}{2}\beta \end{cases}$

* (AG):
$$\begin{cases} x = \frac{1}{3}\gamma \\ y = \frac{1}{3}\gamma \quad (\gamma \in IR) \\ z = \frac{1}{3}\gamma \end{cases}$$

3) M(x,y,z)
$$\in$$
(LI) \cap (AG) \Leftrightarrow

$$\begin{cases}
y = \frac{1}{3}\gamma \\
z = \frac{1}{3}\gamma \\
\frac{1}{6} - \frac{1}{6}\beta = \frac{1}{3}\gamma \\
\frac{1}{2}\beta = \frac{1}{3}\gamma
\end{cases}$$

$$\begin{cases} x = \frac{1}{3}\gamma \\ y = \frac{1}{3}\gamma \\ z = \frac{1}{3}\gamma \end{cases} \Rightarrow \begin{cases} x = \frac{1}{8} \\ y = \frac{1}{8} \\ z = \frac{1}{8} \end{cases}$$

$$\beta = \frac{1}{4}$$

Conclusion : (LI) \cap (AG)={Q($\frac{1}{8}, \frac{1}{8}, \frac{1}{8}$)}

Pour vérifier que le point $Q \in (IK)$; il suffit de signaler qu'en remplaçant α par ¼ dans l'équation de (IK) on obtient x=y=z=1/8

Alors on peut conclure que les droites (IK),(JL) et (AG) sont concourantes en $Q(\frac{1}{8}, \frac{1}{8}, \frac{1}{8})$.

EX 32: B(1,1,0)

P:
$$x+y-a=0$$
; $a \in]0,1[$

$$\overrightarrow{\mathit{SA}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \mathsf{D'où}$$

$$(SA): \begin{cases} x = 1 + \alpha \\ y = 0 ; (\alpha \in IR) \end{cases}$$

$$\overrightarrow{SB} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \text{D'où}$$

$$(SB): \begin{cases} x = \beta \\ y = \beta ; (\beta \in IR) \\ z = 1 - \beta \end{cases}$$

$$\overrightarrow{SC}\begin{pmatrix}0\\1\\-1\end{pmatrix}$$
 D' où

$$(SC): \begin{cases} x = 0 \\ y = 1 + \delta, \ \delta \in IR \\ z = -\delta \end{cases}$$

$$(OC): \begin{cases} x = 0 \\ y = t \\ z = 0 \end{cases} (t \in IR)$$

(OA):
$$\begin{cases} x = k \\ y = 0, (k \in IR) \\ z = 0 \end{cases}$$

2)
$$*\{I\} = P \cap (SA)$$

I(x ,y ,z) tel que :

$$\begin{cases} x = 1 + \infty \\ y = 0 \\ z = -\infty \\ x + y = a \end{cases}$$

$$(1+\infty)+0=a \implies \infty=a-1$$

$$*\{J\} = (SB) \cap P$$

J(x ,y ,z) tq:

$$\begin{cases} x = \beta \\ y = \beta \\ z = 1 - \beta \\ x + y = \alpha \end{cases}$$

$$\beta + \beta = a \Rightarrow \beta = \frac{a}{2}$$

D'où
$$J\left(\frac{\alpha}{2}, \frac{\alpha}{2}, 1 - \frac{\alpha}{2}\right)$$

De même:

$$K(0, a, 1-a)$$
; $L(0,a,0)$; $M(a,0,0)$

$$\mathsf{b})\overrightarrow{\mathit{IK}}\begin{pmatrix} -a \\ a \\ 0 \end{pmatrix} \overrightarrow{\mathit{ML}}\begin{pmatrix} -a \\ a \\ 0 \end{pmatrix}$$

$$\overrightarrow{IM} \begin{pmatrix} 0 \\ 0 \\ a-1 \end{pmatrix}$$

on a:

 $\overrightarrow{IK} = \overrightarrow{ML} \ d$ où IKLM est un parallélogramme

$$\overrightarrow{IK}.\overrightarrow{IM} = 0 \Rightarrow \overrightarrow{IK} \perp \overrightarrow{IM}$$

D'où IKLM est un rectangle

$$= A1+A2$$

A1=IKxIM carIKLMestun rectangle.

$$A_1 = \sqrt{2a^2} \cdot \sqrt{(a-1)^2} = a \cdot \sqrt{2} \cdot |a-1|$$

$$A_1 = \sqrt{2} \cdot a(1-a)$$

$$A_2 = \frac{1}{2} \|\overrightarrow{IJ} \wedge \overrightarrow{IK}\|$$

$$\overline{IJ}\begin{pmatrix} \frac{-\alpha}{2} \\ \frac{\alpha}{2} \\ \frac{\alpha}{2} \end{pmatrix}; \overline{IK}\begin{pmatrix} -\alpha \\ \alpha \\ 0 \end{pmatrix}$$

$$\overrightarrow{IJ} \wedge \overrightarrow{IK} \begin{pmatrix} -\frac{a^2}{2} \\ \frac{a^2}{2} \\ 0 \end{pmatrix}$$

$$A_2 = \frac{1}{2} \sqrt{\frac{a^4}{4} + \frac{a^4}{4}}$$

$$A_2 = \frac{a^2 \sqrt{2}}{4}$$

D'où
$$A = A_1 + A_2 = \frac{a\sqrt{2}}{4}.(4-3a)$$

$$3)f(x) = \frac{x\sqrt{2}}{4}(4-3x)$$

a)
$$f'(x) = \frac{\sqrt{2}}{2}(2 - 3x)$$

f admet $\frac{\sqrt{2}}{3}$ comme maxime absolu en $\frac{2}{3}$

A = f(a)D'où A est maximale Pour

$$\alpha = \frac{2}{3}$$

*soit Gle centre de gravité de OAC

$$\overrightarrow{GO} + \overrightarrow{GA} + \overrightarrow{GC} = 0 \Rightarrow$$

$$3\overrightarrow{oG} = \overrightarrow{oA} + \overrightarrow{oC}$$

$$\Rightarrow \overrightarrow{OG} = \frac{1}{3} \overrightarrow{OA} + \frac{1}{3} \overrightarrow{OC} d' où G(\frac{1}{3}, \frac{1}{3}, 0)$$

Pour
$$\alpha = \frac{2}{3}$$

$$P: x + y = \frac{2}{3}$$

On a:
$$\frac{1}{3} + \frac{1}{3} = \frac{2}{3} \implies G \in P$$

Collection

C M S

1 ère - 2 ème - 3 ème - 4 ème

Prix: 8000

I.S.B.N: 978-9938-808-08-7

