Testing Hypotheses

EDP 613

Week 9

A Note About The Slides

Currently the equations do not show up properly in Firefox. Other browsers such as Chrome and Safari do work

A Note About Previous Items

We're going to use some introduce some concepts from Chapter 7 here as well

Definitions

The margin of error (MoE) is

- Formally: the range of values above and below a sample statistic within a confidence interval
- In a nutshell: how many percentage points your results will differ from the real population value
- NOT the same as a confidence interval

(Statistical) **significance** is

- Formally: a measure of the probability of the null hypothesis being true compared to the acceptable level of uncertainty regarding the true answer
- In a nutshell: a result is probably not due to chance so it is likely real
- NOT the same as a practical significance

Interpretation

Example result:

A 95% confidence interval with a 3% margin of error

What it means:

Your statistic will be within

3 percentage points of the real population value

95% of the time

The **MoE** is a probability!

Back to Hypothesis Testing

Recall

The **null hypothesis** H_0 states

- Formally: that a parameter is equal to a specific value
- Informally: nothing probably happened

The alternative hypothesis H_1 states

- Formally: that a parameter differs from the value specified by the null hypothesis
- Informally: something probably happened

More about Hypothesis Testing

Say a null hypothesis is H_0 : $\mu=50$. Then three things can occur from a frequentist perspective

- ullet $H_1 < 50$: alternative hypothesis states that the parameter is \emph{less} than the value of the null.
 - ullet You know to test for everything to the **left** of $H_1=50$.
 - Called a left-tailed test
- ullet $H_1>50$: alternative hypothesis states that the parameter is *more* than the value of the null.
 - You know to test for everything to the **right** of $H_1=50$.
 - Called a right-tailed test

 $H_1
eq 50$: alternative hypothesis states that the parameter is *note* the value of the null.

- You know to test for everything to the **left** and **right** of $H_1=50$.
- Called a two-tailed test

$H_1 < H_0$: Left-Tailed Test

$H_1 > H_0$: Right-Tailed Test

$H_1 \neq H_0$: Two-Tailed Test

Testing Methods

Critical Value (CV)

p - value

Critical Value

- Uses a **test statistic** determines how strong the disagreement between a sample mean and a null hypothesis
- ullet Idea: We should reject H_0 if the value of the test statistic is unusual when we assume H_0 to be true
- Process
 - We choose a CV which forms a boundary between values that are considered unusual and values that are not
 - The region containing the unusual values is called the **critical region**
 - $\circ~$ If the value of the test statistic is in the critical regions, we *reject* H_0

Transitioning (Again!)

Going from a z-distribution

known population variance using z-scores

to

a t-distribution

known sample variance using t-tests

Note

We have to assume that for a large enough sample size, the t-distribution will closely match, or estimate, the a z-distribution

Things to note

- t-distribution table can be located in Appendix C
- Assumptions
 - Normality Samples are drawn from a population that fits a bell curve
 - *Independence* Samples do not share values
 - Random Sampling Samples are randomized
 - Homogeneity (for more than one sample) Samples have a similar makeup

Steps to Solving

- 1. Interpret the Question into Layman's Terms
- 2. Set Acceptable Threshold of Committing a Type I Error
- 3. State the Research Hypothesis
- 4. Calculate the Test Statistic
- 5. Determine the Critical Value
- 6. State the Decision Rule
- 7. Interpret the Results

One-sample t-test

- allows us to determine whether the mean of a sample data set is different than a known value
- used when the population variance is not known
- ullet can be used when the sample size is small ~ typically N < 30.

What the heck is a degree of freedom?

- 1. Forget statistics
- 2. Say you only own seven hats and want to wear a different one each day of the week.
- 3. Process
 - Day 1: Choose from 7
 - Day 2: Choose from 6

.

•

- Day 6: Choose from 2
- Day 7: Choose from 1

Statistical Methods I

ı had 7 - 1 = **6** days of hat freedom!

One Sample Mean

t-distribution

with degrees of freedom

$$t=rac{\overline{Y}-\mu}{s/\sqrt{N}} \qquad df=N-1$$

Example

Is the the median household income of West Virginia counties different than the national average?

Region	Median Household Income	Median Male Salary	Median Female Salary	Population	Households
United States	\$68,703	\$57,511	\$43,820	331,449,281	139,684,244
West Virginia	\$48,850	\$57,456	\$47,299	1,793,716	763,831

Interpret the Question into Layman's Terms

From Median Household Income, we think WV (48,850 USD) is practically lower than the US (68,850 USD), but is it significantly lower?

Set Acceptable Threshold of Committing a Type I Error

$$\alpha = 0.5$$

State the Research Hypothesis

 H_0

The **Median Household Income** of West Virginia counties is NOT significantly less than the national average

The **Median Household Income** of West Virginia counties is significantly less than the national average

Calculate the Test Statistic (1/2)

Population

 $\mu = \$68,703$

df

$$61 - 1 = 60$$

Sample

$$N = 61$$

$$s = \$5075.28$$

$$Y = \$45732.20$$

Calculate the Test Statistic (2/2)

$$t = \frac{45732.20 - 68703.00}{5075.28/\sqrt{61}}$$

$$\approx -0.579$$

Determine the Critical Value

In Appendix C, we see that for df=60 at lpha=0.05, we have $t_{crit}=1.671$

State the Decision Rule

Since -0.579 < 1.671 we reject H_0

Interpret the Results

The **Median Household Income** is significantly less than the national average!

Two-sample Mean

Used to compare one sample mean to another.

- We use two different test:
 - Equal variances
 - Unequal variances (assumed)
- **Homoscedasticity** the assumption of equal variances.

Difference Between Two Independent Means

- Observations in each sample are not related
- Need to compare differences between the sample means

Estimated Standard Error

$$S_{\overline{Y_1}-\overline{Y_1}} = \sqrt{rac{(N_1-1)\cdot s_1^2 + (N_2-1)\cdot s_2^2}{(N_1+N_2)-2}} \cdot \sqrt{rac{N_1+N_2}{N_1\cdot N_2}}$$

difference between means t-statistic

$$t=rac{Y_1-Y_2}{S_{\overline{Y_1}-\overline{Y_1}}}$$

df

$$df=\left(N_{1}+N_{2}
ight) -2$$

Difference Between Proportions

.pull-left[

Estimated Standard Error

$$S_{p_1-p_2} = \sqrt{rac{p_1(1-p_1)}{N_1} + rac{p_2(1-p_2)}{N_2}}$$

difference between means z-statistic

$$z=rac{p_1-p_2}{S_{p_1-p_2}}$$

Example

As part of the Pew Internet and American Life Project, researchers conducted two surveys in late 2009. The first survey asked a random sample of 800 U.S. teens about their use of social media and the Internet. A second survey posed similar questions to a random sample of 2253 U.S. adults. In these two studies, 73% of teens and 47% of adults said that they use social-networking sites. Use these results to construct and interpret a 95% confidence interval for the difference between the proportion of all U.S. teens and adults who use social-networking sites.

Interpret the Question into Layman's Terms

Is there a difference between the percent of teens and adults who use social networking sites?

Set Acceptable Threshold of Committing a Type I Error

$$\alpha = 0.05$$

State the Research Hypothesis

 H_0

There is no difference between the proportion of teens and adults who use social media

There is a difference between the proportion of teens and adults who use social media

Calculate the Test Statistic

$$S_{p_1-p_2} = \sqrt{rac{0.73(1-0.73)}{800} + rac{0.47(1-0.47)}{2253}}$$

 ≈ 0.0189

$$z = rac{0.73 - 0.47}{0.0189} \ pprox 13.76$$

State the Decision Rule

z=13.76 is greater than p value implying that we reject H_0

Interpret the Results

We are 95% confident that in late 2009 more teens than adults in the United States engaged in social media

That's it. Take a break before our R session!

