В настоящее время всё в большей степени возрастает роль оценки качества продукции, процессов и систем менеджмента качества предприятий. Для анализа и оценки качества продукции и процессов разработаны многочисленные инструменты, начиная от «семи простых инструментов качества». В условиях быстро меняющейся экономической ситуации возрастают требования к управленческим решениям, особенно в производстве сложной наукоёмкой продукции. В этом случае логично говорить о необходимости обеспечения и повышения качества управленческих решений

Ряд авторов [1, 2] не рассматривает понятие качества решений, а основным показателем оценки того, насколько данное решение приемлемо, в их работах является «эффективность управленческого решения» — отношение полученного результата к затратам, которые были понесены для его достижения. Выделяют следующие варианты решений:

- неэффективные, не позволяющие решить проблему;
- рациональные, позволяющие решить проблему;
- оптимальные варианты решения варианты, позволяющие решить проблему наилучшим образом в определенном критерием смысле или построить наилучшую систему в определенном критерием смысле.

Те, кто используют понятие «качество управленческого решения», отмечают, что решения являются весьма сложными объектами оценки по параметрам качества.

Говоря о качестве управленческого решения, в данной работе мы будем придерживаться определения, сформулированного в работе [3]. Согласно этому определению, под качеством управленческого решения понимается совокупность параметров решения, удовлетворяющих конкретного потребителя или потребителей и обеспечивающих возможность его реализации.

В настоящее время для оценки качества управленческих решений используются следующие методы [4, 5]:

— оценка качества решения по количеству корректировок, которые необходимо предпринять впоследствии. Недостаток данного метода в том, что он позволяет дать оценку лишь «постфактум». Однако на основе наиболее хорошо зарекомендовавших себя решений может быть создана и использована база данных типовых решений;

- экспертиза решений. Наиболее часто рекомендуется для решений, носящих инновационный характер. Критичным здесь является фактор компетентности и профессионализма самих экспертов, что является отдельным предметом оценки. Применяются статистические методы;
- оценка соблюдения технологии создания управленческого решения.

В большей степени, нежели проблема оценки параметров качества решения, изучена проблема оценки факторов, влияющих на качество решения. В ряде случаев это рассматривается как оценка качества: если учтены факторы, определяющие качество, решение будет обладать приемлемым качеством.

Согласно [3-6], к факторам, определяющим качество управленческого решения, относятся:

- качество исходной информации (известно, что точность результатов расчета не может быть выше точности исходных данных). Под качеством информации понимают совокупность следующих параметров: достоверность, достаточность, защищенность от помех и ошибок, удобство формы представления;
- оптимальный или рациональный характер принимаемого решения;
- своевременность решения. Она также определяется совокупностью параметров: скорость разработки решения, его принятия, передачи и организации исполнения;
- соответствие принимаемых решений действующему механизму управления и базирующимся на нем методам управления;
- квалификация кадров, осуществляющих разработку, принятие решений и организацию их исполнения;
- готовность управляемой системы к исполнению принятых решений.

Работа [7], давая несколько иное толкование упомянутым факторам, дополняет их социально-психологическими факторами (авторитет руководителя и др.). Исследование [8] рассматривает в качестве основных факторов, оказывающих влияние на качество управленческого решения, теоретические подходы и модели, применение к системе менеджмента научных принципов, методов моделирования, автоматизация управления и др.

Связь факторов, определяющих качество решения, составляющих технологии принятия решения, и собственно параметров качества решения отображена на рис. 1.

Внешние факторы, определяющие качество: - информация;	Факторы, составляющие технологию принятия решения: - компетентность сотрудников;	Параметры качества решения - энтропия; - риск; - реализуемость;	Качество результата (качество продукта, услуги, относительно которых
- механизм управ- ления; - управляемая сис- тема	- оперативность; - тип решения; - защищённость от по- мех	- адекватность	принято решение)

Рис. 1. Взаимосвязь подходов к оценке качества решений

Существует несколько подходов к определению параметров качества управленческих решений. Наряду с понятием «параметры качества решения» используются понятие критериев качества, а также требований к качественному решению. На основе анализа работ [6, 7], можно выделить следующие основные критерии качества управленческих решений: полномочность, обоснованность, директивность, непротиворечивость, ность, четкость и конкретность формулировок, реальная осуществимость, своевременность, экономичность (определяемая по размерам затрат), эффективность. Работа [5] добавляет к ним такой критерий оценки, как «сочетание жёсткости и гибкости», а также указывает на характеристики решений низкого качества: безальтернативность, основанность на ошибочных прогнозах либо ошибочно выбранных критериях. Большинство критериев, приведённых выше, применимых для более широкого класса задач, трудно поддается количественной оценке (к примеру конкретность, полномочность и др.) и, следовательно, трудно отслеживается и контролируется. Для повышения объективности оценок необходимо разработать систему показателей, которые было бы возможно измерить исходя, к примеру, из данных учётных систем, используемых на предприятии.

В настоящей работе базируемся на методике, предложенной в работе [4]. Согласно ей, к параметрам качества управленческого решения относятся:

- показатель энтропии количественной неопределенности проблемы;
 - степень риска;
- вероятность реализации решения по показателям качества, затрат, сроков;
- степень адекватности (или степень точности прогноза) теоретической модели фактическим

данным, на основании которых она была разработана.

В связи с этим, обобщённый показатель качества управленческого решения можно представить следующей формулой:

$$Q = \sum_{i} \lambda_{i} \cdot P_{i}^{Q} , \qquad (1)$$

где λ_i — весовой коэффициент параметра; $P^{\mathcal{Q}}_i$ — оцениваемый параметр качества, в т. ч. $P^{\mathcal{Q}}_1$ — параметр по энтропии, $P^{\mathcal{Q}}_2$ — параметр по рискам, $P^{\mathcal{Q}}_3$ — параметр реализации решения, $P^{\mathcal{Q}}_4$ — параметр адекватности.

В настоящей работе проблема оценки качества управленческих решений рассматривается применительно к управлению проектированием оснастки. Процесс проектирования и изготовления оснастки составляет существенную долю техноло-

гической подготовки производства и характеризуется наличием большого количества относительно несложных уникальных заказов.

Для оценки и совершенствования процесса принятия управленческих решений была разработана базовая модель управления проектированием оснастки. Процесс управления, как следует из теории функций управления [1], предполагает планирование (определение сроков выпуска), составление расписания (распределение работ и определение локальных сроков для исполнителей), а также контроль над исполнением заказов. Взаимодействие этих процессов в модели обеспечивает сеть Петри. Взаимодействие процессов базовой модели с сетью Петри отражено на рис. 2.

Сеть включает позиции, содержащие совокупность заказов, находящихся на одной стадии выполнения, и переходы, соответствующие основным этапам работы над заказами. Они сведены в табл. 1.

Рис. 2. Базовая модель процесса управления проектированием оснастки

Таблица 1 Позиции и переходы сети Петри

Позиции сети Петри		Переходы сети Петри		Входные функции	Выходные функции
Номер	омер Смысл		Смысл	переходов	переходов
0 1 2 9	Источник (поступающие заказы) Отвечающие требованиям Не отвечающие требованиям Отклонённые	$t_0 \\ t_{10} \\ t_{20}$	Получен Отвергнут Принят	$n \\ (1-p_1) n \\ p_1 n$	$ \begin{array}{c} p_1 n, (1-p_1) n \\ (1-p_1) n \\ p_1 n \end{array} $
3 5 10	Ожидающие распределения Потерявшие актуальность Изъятые	t ₃₀ t ₇₀	Направлен исполнителю Снята актуальность	$p_1 n, v_8 $ $(1-p_2) \cdot W$	$p_1 n, v_8 $ $(1-p_2) \cdot W$
4 6	Заказы на рабочем месте Выполненные	t ₄₀	Выполнен	$W = p_1 n + v_8$	$p_2 \cdot W$, $(1-p_2) \cdot W$
7	Выполненные без отклонений	t ₅₀	Направлен на исполнение цеху-заказчику	$p_2 \cdot W$	$p_2 \cdot p_3 \cdot W,$ $p_2 \cdot (1 - p_3) \cdot W$
8 11 12	Содержащие отклонения Выполненные и внедрённые в цехе Выход	t_{60} t_{80} t_{90}	Принято без претензий Возникли замечания Работа завершена	$p_2 \cdot p_3 \cdot W$ $p_2 \cdot (1 - p_3) \cdot W$ $n - v_8$	$p_2 \cdot p_3 \cdot W$ $p_2 \cdot (1 - p_3) \cdot W$ $n - v_8$

В табл. 1 используются следующие показатели:

n — среднее количество заказов в периоде;

 p_1 – вероятность принятия заказа на проектирование;

 p_2 — вероятность сохранения заказом актуальности;

 p_3 — вероятность принятия заказа заказчиком без претензий;

 v_8 – возвращённые заказы.

Рассмотрим применение параметров из формулы (1) к данной модели.

Показатель энтропии

Для составления данного показателя воспользуемся определением информационной энтропии. Информационная двоичная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n) рассчитывается по формуле:

$$H(x) = -\sum_{i=1}^{n} p(i) \cdot \log_2 p(i), \qquad (2)$$

где p(i) — вероятность i-го состояния случайного события x.

Если проблема формулируется только качественно, без количественных показателей, то показатель энтропии приближается к нулю. Если все показатели проблемы выражены количественно, показатель энтропии приближается к единице. Для планирования количеством событий в показателе энтропии считаем количество периодов, на которые может быть назначен заказ. Состояния «Заказ назначен на период i, i = 1, ..., n» имеют вероятности $p_1, ..., p_n$ соответственно. Для распределения работ количеством событий в показателе энтропии соответственно считаем количество работников j, j = 1, ..., m, которым может быть поручено выполнить заказ, для определения локальных сроков (приоритетов работникам) количеством событий в показателе энтропии - количество номеров заказов k, k = 1, ..., l, для которых оценка производится одновременно. Перечни периодов, сотрудников и заказов приведены в автоматизированной системе учёта работ. Вероятности в начальный момент времени полагаются равными,

при каждом назначении для заказа периода выполнения, исполнителя и приоритета соответствующая вероятность равна 1.

Показатель энтропии исчисляется, таким образом, по формуле

$$P_{1}^{Q} = -\left(\gamma^{p} \sum_{i=1}^{n} p^{p}(i) \cdot \log_{2} p^{p}(i) + \gamma^{r} \sum_{j=1}^{m} p^{r}(j) \cdot \log_{2} p^{r}(j) + \gamma^{s} \sum_{k=1}^{l} p^{s}(k) \cdot \log_{2} p^{s}(k)\right), \tag{3}$$

где $p^p(i)$, $p^r(j)$, $p^s(k)$ — вероятности событий i, j, k в процессах планирования, распределения работ и определения локальных сроков; γ^p , γ^r , γ^s — весовые коэффициенты значимости решений при планировании, распределении работ и определении локальных сроков соответственно. Они связаны соотношением

$$\gamma^p + \gamma^r + \gamma^s = 1. \tag{4}$$

По опыту функционирования подразделения $\gamma^p \approx 0,4...0,5$, $\gamma^r \approx 0,3...0,4$, $\gamma^s \approx 0,1...0,2$.

Чем меньше энтропия, тем больше определённость и, следовательно, лучше решение.

$$P_1^Q \to \min$$
 . (5)

Показатель риска

Риском при принятии любого управленческого решения о заказе считаем возможность возникновения его претензий со стороны инструментального завода либо цеха-заказчика. В случае если заказ, о котором принято данное управленческое решение, принят с отклонениями, он будет возвращён либо со стадии исполнения, либо со стадии внедрения. Это показано на рис. 1 и в табл. 1 потоком v_8 . Он связан с прочими показателями формулой

$$v_8 = \frac{p_2(1-p_3)p_1}{1-p_2(1-p_3)}n = \left(1 - \frac{1}{1-p_2(1-p_3)}\right)p_1n. \quad (6)$$

Вероятность возврата заказа p_3 отражает риск.

Показатель риска возврата

$$P_2^Q = p_3 \to \min . \tag{7}$$

Иначе показатель риска может быть оценён как доля возвращённых заказов в общей работе:

$$\beta = \frac{v_8}{W} = \frac{v_8}{p_1 \cdot n + v_8} \,. \tag{8}$$

Преимущество показателя (8) в том, что он может быть определён исходя из отчётности бюро, формируемой автоматизированной системой учёта, в которой отдельно выделяются работы по устранению ошибок и замечаний.

Показатель реализации решения

Поскольку решение будет так или иначе реализовано, оценим не вероятность реализации, а

возможные её последствия с точки зрения достижения целей подразделения.

По затратам

В качестве затрат используются трудозатраты конструкторов M_T , в связи с чем верно

$$P_{31}^{\mathcal{Q}} = \sum M_T \to \min . \tag{9}$$

По компетентности сотрудников

Для оценки компетентности сотрудников используется сводная матрица I («Исполнитель» — «Заказ»), которая является взвешенной суммой матриц, отражающих предпочтения в распределении работ по различным параметрам:

$$I = \sum_{j} v_{j} \cdot I_{j} , \qquad (10)$$

где υ_j – весовые коэффициенты значимости характеристик; I_j – матрицы, каждая из которых представляет собой произведение матриц «Заказ – «Характеристика» и ««Характеристика» – Конструктор». Параметр «Характеристика» является формальным и может принимать следующие фактические значения: используемый инструмент проектирования (САПР), квалификацию, специализацию, опыт (недавно выполненные работы). После вычисления всех матриц I_j ищется минимум целевой функции q_r :

$$P_{32}^{Q} = q_r = \sum U_{ij} \cdot H_{ij} \,, \tag{11}$$

где q_r – критерий качества распределения сотрудников по компетенции; U_{ij} – цены назначения, обратные соответствующим элементам матрицы I; H_{ij} – трудоёмкость заказа или его доли, назначенной для выполнения конструктору.

По срокам

Выполнение решения по срокам оценивается штрафной функцией, причём целью является минимум запаздывания критичных заказов. Эта функция имеет вид

$$P_{33}^{Q} = q = \sum f_i \Delta t_i \to \min , \qquad (12)$$

где q — критерий выполнения решений по срокам; Δt_i — превышение срока исполнения, рассчитываемое как разность фактического срока выпуска и планового срока; f_i — штраф, значение которого пропорционально элементу матрицы A с соответствующими значениями параметров «Срок» и «Изделие»; A («Срок» — «Изделие») — прирост осна-

щённости за период, определяемый планами предприятия по выпуску новых изделий:

$$P_3^Q = \mu_1 N_1 P_{31}^Q + \mu_2 N_2 P_{32}^Q + \mu_3 N_3 P_{33}^Q \rightarrow \min$$
, (13)

где μ_1 , μ_2 , μ_3 , — весовые коэффициенты значимости соблюдения требований затрат, компетентности и сроков соответственно. По опыту функционирования подразделения $\mu_1 \approx 0,2...0,3$, $\mu_2 \approx 0,3...0,4$, $\mu_3 \approx 0,4...0,5$; N_1 , N_2 , N_3 — нормирующие коэффициенты, равные соответственно максимальным возможным значениям P^Q_{31} , P^Q_{32} , P^Q_{33} .

Показатель адекватности

Решения принимаются на основе теоретической модели, основанной на методе решающих матриц. Показатель адекватности рассчитывается исходя из сравнения исходных и реальных матриц, на основе которых принимается управленческое решение. В рассматриваемой модели в качестве исходных для принятия решения берутся следующие матрицы:

A («Срок» – «Изделие»);

B («Операция» – «Оснастка») – вероятность применения оснастки на операции, определяемая специализацией оснастки, опытом технологических бюро в её применении;

C («Цех» — «Операция») — доля операций данного типа в суммарной трудоёмкости работ цеха, определяемая специализацией цехов;

D («Изделие» – «Цех») – доля трудоёмкости работ цеха в трудоёмкости процесса изготовления изделия, определяемая расцеховкой изделий;

E («Оснастка» – «Заказ») — вероятность появления оснастки в заказе, определяемая решениями технологов.

На основе перечисленных исходных матриц можно вычислить следующие результирующие матрицы:

P («Изделие» – «Операция») – вероятность того, что при изготовлении изделия будет затребована данная операция:

$$P = D \cdot C \; ; \tag{14}$$

 O_d («Изделие» — «Оснастка») — оснащённость изделия:

$$O_d = P \cdot B \,; \tag{15}$$

 $Pr\ («Срок» - «Оснастка») - прогнозная потребность в оснастке:$

$$Pr = A \cdot O_d \; ; \tag{16}$$

 $Pre\ («Срок» - «Заказ») - прогнозное расписание заказов:$

$$Pre = Pr \cdot E$$
; (17)

 O_{sc} («Цех» – «Оснастка») – оснащённость (потребность в оснастке) цеха:

$$O_{sc} = C \cdot B \,; \tag{18}$$

Z («Срок» – «Цех») – прогнозная загрузка цехов

$$Z = A \cdot D . \tag{19}$$

По предшествующим периодам осуществляется сопоставление реального поступления заказов с рассчитанным по математической модели, далее путём вычисления промежуточных матриц P, O_{sc}, O_d, Z находится матрица, нуждающаяся в корректировке, и может осуществляться переоценка исходных данных. Если прогноз о поступлении заказов не оправдывается ($a_{np} < a_{kp}$, где a_{np} — коэффициент корреляции фактического и прогнозного поступления, a_{kp} определяется в зависимости от требуемого качества планирования),

$$P_4^Q = \sum (1 - a_{\rm kp}) \to \min. \tag{20}$$

Поскольку данный показатель требует сравнения планируемой и реальной ситуации и неизвестен в момент принятия решения, при оценке качества решения он принимается в виде константы, которая зависит от того, является ли течение процесса штатным, либо часто наблюдаются отклонения или внешние воздействия (служебные записки о возможном изменении планов, изменение решений заказчиков и т. п.).

Элементы указанных в предыдущих разделах матриц (A, B, C, D, E, I) соответствуют показателям, имеющимся в отчётности по маршрутным технологиям, отчётности цехов. Для определения элемента матрицы строится выборка документов по интересующему нас показателю и определяется доля этих документов среди содержащихся в системе.

После определения частных показателей рассчитывается сводный показатель оценки качества решения в соответствии с формулой (1).

Предложенная система показателей позволяет:

- объективно и разносторонне оценивать качество решений, принимаемых в подразделении, в соответствии со спецификой его деятельности;
- отслеживать факторы, влияющие на качество решения, на основе данных учётных автоматизированных систем;
- разработать на основе указанной модели автоматизированную систему оценки управленческих решений.