Considere a série de dados tabelada a seguir para os problemas 1 a 4.

Х	-1	0	1	2
f(x)	-1	2	1	2

Um aluno esperto fez um gráfico, marcando os 4 pontos e desenhando uma curva sem se preocupar em fazer uma figura perfeita, mas apenas para ter ideia do formato da curva e conferir as soluções encontradas.

[1] Desenvolva o polinômio interpolador por Sistema Linear e determine o valor de f(-0,5), f(0,5) e f(1,5).

A solução é dada pelo sistema

$$\begin{bmatrix} X_{\theta}^{\theta} & X_{1}^{1} & X_{2}^{\theta} & X_{\theta}^{3} \\ X_{1}^{\theta} & X_{1}^{1} & X_{1}^{2} & X_{1}^{3} \\ X_{2}^{\theta} & X_{2}^{1} & X_{2}^{2} & X_{2}^{3} \\ X_{3}^{\theta} & X_{3}^{1} & X_{3}^{2} & X_{3}^{3} \end{bmatrix} \cdot \begin{pmatrix} a_{\theta} \\ a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \begin{pmatrix} y_{\theta} \\ y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}$$

Com os valores dados fica

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{bmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1 & 2 & 4 & 8 \end{bmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \\ 2 \end{pmatrix}$$

$$m = 1/1 = 1$$
, $L_2 = L_2$ - m . L_1
 $m = 1/1 = 1$, $L_3 = L_3$ - m . L_1

$$m = 1/1 = 1$$
, $L_4 = L_4$ - m . L_1

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 2 & 0 & 2 \\ 0 & 3 & 3 & 9 \end{bmatrix} \begin{pmatrix} -1 \\ 3 \\ 2 \\ 3 \end{pmatrix}$$

$$m = 2/1 = 2$$
, $L_3 = L_3$ - m . L_2

$$m = 3/1 = 3$$
, $L_4 = L_4$ - $m.L_2$

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 6 & 6 \end{bmatrix} \begin{pmatrix} -1 \\ 3 \\ -4 \\ -6 \end{pmatrix}$$

$$m = 6/2 = 3$$
, $L_4 = L_4$ - m . L_3

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix} \begin{pmatrix} -1 \\ 3 \\ -4 \\ 6 \end{pmatrix}$$

Por retrosubstituição calculase x_4 , x_3 , x_2 e x_1 que serão a_3 , a_2 , a_1 , a_0

$$a_3 = \frac{6}{6} = 1$$

$$a_2 = \frac{-4 - (-0.1)}{2} = -2$$

$$a_1 = \frac{3 + 2 \cdot (-2) - 1 \cdot 1}{1} = 0$$

$$a_1 = \frac{3+2\cdot(-2)-1\cdot1}{1} = 0$$

$$a_0 = \frac{-1-(-1)\cdot0-1\cdot(-2)-(-1)\cdot1}{1} = 2$$

$$p_3(x)=a_0+a_1.x+a_2.x^2+a_3.x^3$$

 $p_3(x)=2+0.x-2.x^2+1.x^3$

$$p_3(-0.5) = 2+0.(-0.5)-2.(-0.5)^2+1.(-0.5)^3 = 1.375$$

$$p_3(0,5) = 2+0.0,5-2.0,5^2+1.0,5^3 = 1,625$$

$$p_3(1,5) = 2+0.1,5-2.1,5^2+1.1,5^3 = 0,875$$

[2] Desenvolva o polinômio interpolador de Newton e determine o valor de f(-0,5), f(0,5) e f(1,5).

A solução é dada pelos coeficientes $\Delta^{\mathbf{k}}\mathbf{y}_{0}$ da tabela das diferenças divididas

	k	0	1	2	3
i	Xi	$y_i = \Delta^0 y_i$	$\Delta^{1} \mathbf{y}_{i}$	$\Delta^2 \mathbf{y}_i$	$\Delta^3 y_i$
0	-1	-1			
1	0	2	3	-2	1
2	1	1	-1	1	1
3	2	2	1		

Os coeficientes $\Delta^k y_0$ são -1, 3, -2, 1

 $p_{3}(x) = y_{0} + \Delta^{1}y_{0} .(x-x_{0}) + \Delta^{2}y_{0} .(x-x_{0}).(x-x_{1}) + \Delta^{3}y_{0} .(x-x_{0}).(x-x_{1}).(x-x_{2})$ ou, colocando os termos $(x_{k}-x_{0})$ em evidência, tem-se $p_{3}(x) = y_{0} + (x-x_{0}).\{\Delta^{1}y_{0} + (x-x_{1}).\{\Delta^{2}y_{0} + (x-x_{2}).\Delta^{3}y_{0}\}\}$

$$p_3(x) = -1+(x+1).\{3+(x-0).\{-2+(x-1).1\}\}$$

$$p_3(-0,5) = -1+(-0,5+1).\{3+(-0,5-0).\{-2+(-0,5-1).1\}\} = 1,375$$

$$p_3(0,5) = -1+(0,5+1).\{3+(0,5-0).\{-2+(0,5-1).1\}\} = 1,625$$

$$p_3(1,5) = -1+(1,5+1).\{3+(1,5-0).\{-2+(1,5-1).1\}\} = 0.875$$

[3] Desenvolva o polinômio interpolador de Newton-Gregory e determine o valor de f(-0,5), f(0,5) e f(1,5).

A solução é dada pelos coeficientes $\Delta^{\mathbf{k}}\mathbf{y}_{_{0}}$ da tabela das diferenças finitas

	k	0	1	2	3
ij	Xi	$y_i = \Delta^0 y_i$	$\Delta^{\mathtt{1}} \boldsymbol{y}_{i}$	$\Delta^2 \boldsymbol{y}_i$	$\Delta^3 y_i$
0	-1	-1			
1	0	2	3	-4	6
2	1	1	-1 1	2	ь
3	2	2	1		

Os coeficientes $\Delta^k y_0$ são -1, 3, -4, 6 e o espaçamento entre os pontos é h = 1

$$p_3(x) = y_0 + \frac{\Delta^1 y_0}{1!.h} .(x-x_0) + \frac{\Delta^2 y_0}{2!.h^2} .(x-x_0).(x-x_1) + \frac{\Delta^3 y_0}{3!.h^3} .(x-x_0) .(x-x_1).(x-x_2)$$

ou, colocando os termos (x_k-x₀) em evidência, tem-se

$$p_3(x) = y_0 + (x - x_0). \left\{ \frac{\Delta^1 y_0}{1!.h} + (x - x_1). \left\{ \frac{\Delta^2 y_0}{2!.h^2} + (x - x_2). \frac{\Delta^3 y_0}{3!.h^3} \right\} \right\}$$

$$p_3(x) = -1 + (x+1) \cdot \left\{ \frac{3}{1.1} + (x-0) \cdot \left\{ \frac{-4}{2.1} + (x-1) \cdot \frac{6}{6.1} \right\} \right\}$$
$$-1 + (x+1) \cdot \left\{ 3 + (x-0) \cdot \left\{ -2 + (x-1) \cdot 1 \right\} \right\}$$

$$p_3(\text{-}0,5) = \text{-}1+(\text{-}0,5+1).\{3+(\text{-}0,5-0).\{\text{-}2+(\text{-}0,5-1).1\}\} = 1,375$$

$$p_3(0,5) = -1+(0,5+1).\{3+(0,5-0).\{-2+(0,5-1).1\}\} = 1,625$$

$$p_3(1,5) = -1+(1,5+1).\{3+(1,5-0).\{-2+(1,5-1).1\}\} = 0.875$$

[4] Compare os resultados obtidos e comente a respeito.

Os resultados são idênticos.

O polinômio desenvolvido por sistema linear e o polinômio de Newton são idênticos, escritos com expressões equivalentes. Basta desenvolver a expressão do polinômio de Newton que se encontra o polinômio obtido por sistema linear.

O polinômio de Newton e o Newton-Gregory são idênticos, pois o espaçamento entre os pontos é constante. Caso contrário, nem seria possível utilizar Newton-Gregory.

Considere a série de dados tabelada a seguir para os problemas 5 a 9.

Х	0,5	1	1,5	2	2,5	3
f(x)	0,25	1	2,25	4	6,25	9

Um aluno esperto fez um gráfico, marcando os 6 pontos e desenhando uma curva sem se preocupar em fazer uma figura perfeita, mas apenas para ter ideia do formato da curva e conferir as soluções encontradas.

[5] Ajuste uma reta a esta nuvem de pontos, determinando a equação f(x) = a+b.x.

$$\hat{y} = a + b.x \Rightarrow \hat{y} = a_{\theta} + a_{1}.x$$

							Σ
Х	0,5	1	1,5	2	2,5	3	10,5
У	0,25	1	2,25	4	6,25	9	22,75
x ²	0,25	1	2,25	4	6,25	9	22,75
x.y	0,125	1	3,375	8	15,625	27	55,125

$$\begin{bmatrix} n & \sum x \\ \sum x & \sum x^2 \end{bmatrix} \cdot \begin{pmatrix} a_\theta \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum y \\ \sum x.y \end{pmatrix}$$
$$\begin{bmatrix} 6 & 10,5 \\ 10,5 & 22,75 \end{bmatrix} \cdot \begin{pmatrix} a_\theta \\ a_1 \end{pmatrix} = \begin{pmatrix} 22,75 \\ 55,125 \end{pmatrix}$$

$$\begin{bmatrix} n & \sum x \\ \sum x & \sum x^2 \end{bmatrix} \cdot \begin{pmatrix} a_\theta \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum y \\ \sum x.y \end{pmatrix}$$

$$\begin{bmatrix} 6 & 10,5 \\ 10,5 & 22,75 \end{bmatrix} \cdot \begin{pmatrix} a_\theta \\ a_1 \end{pmatrix} = \begin{pmatrix} 22,75 \\ 55,125 \end{pmatrix}$$

$$m = 10,5/6 = 1,75; L_2 = L_2 - m.L_1$$

$$\begin{bmatrix} 6 & 10,5 \\ 10,5 & 22,75 \end{bmatrix} \begin{pmatrix} 22,75 \\ 55,125 \end{pmatrix}$$

$$a_1 = 3,5; a_0 = -2,33333$$

$$\hat{y} = -2,333333 + 3,5.x$$

Calculando R² para este ajuste

							Σ
Х	0,5	1	1,5	2	2,5	3	
У	0,25	1	2,25	4	6,25	9	22,75
y ²	0,0625	1	5,0625	16	39,0625	81	142,1875
ŷ	-0,583333333	1,166666667	2,916666667	4,666666667	6,416666667	8,166666667	
е	0,833333333	-0,166666667	-0,666666667	-0,666666667	-0,166666667	0,833333333	
e ²	0,69444444	0,027777778	0,44444444	0,44444444	0,027777778	0,69444444	2,333333333

$$R^{2} = 1 - \left(\frac{n \cdot \sum e^{2}}{n \cdot \sum y^{2} - \left(\sum y\right)^{2}}\right) \quad R^{2} = 1 - \left(\frac{6 \cdot 2,33333}{6 \cdot 142,1875 - 22,75^{2}}\right) = 0,958279009$$

 $\begin{bmatrix} n & \sum x \\ \sum x & \sum x^2 \end{bmatrix} \cdot \begin{pmatrix} A_0 \\ A_1 \end{pmatrix} = \begin{pmatrix} \sum Y \\ \sum x.Y \end{pmatrix} \quad \begin{bmatrix} 6 & 10,5 \\ 10,5 & 22,75 \end{bmatrix} \cdot \begin{pmatrix} A_0 \\ A_1 \end{pmatrix} = \begin{pmatrix} 4,840736 \\ 14,468964 \end{pmatrix}$

[6] Ajuste uma exponencial a esta nuvem de pontos, determinando a equação $f(x) = a.b^x$.

$$\hat{y} = a.b^x \Rightarrow \ln \hat{y} = \ln a.b^x \Rightarrow \ln \hat{y} = \ln a + \ln b^x \Rightarrow \ln \hat{y} = \ln a + x. \ln b \Rightarrow \underbrace{\ln \hat{y}}_{\hat{Y}} = \underbrace{\ln a}_{\hat{A}} + \underbrace{\ln b}_{\hat{B}} . x \Rightarrow \hat{Y} = A + B.x \Rightarrow \hat{Y} = A_\theta + A_1.x$$

							Σ
Х	0,5	1	1,5	2	2,5	3	10,5
У	0,25	1	2,25	4	6,25	9	
Υ	-1,386294361	0	0,810930216	1,386294361	1,832581464	2,197224577	4,840736257
x ²	0,25	1	2,25	4	6,25	9	22,75
x.Y	-0,693147181	0	1,216395324	2,772588722	4,581453659	6,591673732	14,46896426

$$\begin{bmatrix} 6 & 10,5 \\ 10,5 & 22,75 \end{bmatrix} \begin{pmatrix} 4,840736 \\ 14,468964 \end{pmatrix}$$

$$m = 10,5/6 = 1,75; L_2 = L_2-m.L_1$$

$$\begin{bmatrix} 6 & 10,5 \\ 0 & 4,375 \end{bmatrix} \begin{pmatrix} 4,840736 \\ 5,997676 \end{pmatrix}$$

 $A_1 = 1,370897$; $A_0 = -1,592281$ $a_1 = e^{A1} = 3,938884;$ $a_0 = e^{A0} = 0,203461$

 $\hat{y} = 0,203461.3,938884^{x}$

Calculando R² para este ajuste

							2
Х	0,5	1	1,5	2	2,5	3	
У	0,25	1	2,25	4	6,25	9	22,75
y^2	0,0625	1	5,0625	16	39,0625	81	142,1875
ŷ	0,403801329	0,801409185	1,590526422	3,156657479	6,264898404	12,43370631	
Ε	-0,153801329	0,198590815	0,659473578	0,843342521	-0,014898404	-3,433706307	
e^2	0,023654849	0,039438312	0,4349054	0,711226607	0,000221962	11,790339	12,99978613

$$R^2 = 1 - \left(\frac{n \cdot \sum e^2}{n \cdot \sum y^2 - \left(\sum y\right)^2}\right)$$

$$R^2 = 1 - \left(\frac{6.12,999786}{6.142,1875 - 22,75^2}\right)$$

 $R^2 = 0,767558303$

[7] Ajuste uma exponencial a esta nuvem de pontos, determinando a equação $f(x) = a.x^b$.

$$\hat{y} = a.x^b \Rightarrow \ln \hat{y} = \ln a.x^b \Rightarrow \ln \hat{y} = \ln a + \ln x^b \Rightarrow \ln \hat{y} = \ln a + b.\ln x \Rightarrow \underbrace{\ln \hat{y}}_{\hat{Y}} = \underbrace{\ln a}_{\hat{A}} + b.\underbrace{\ln x}_{\hat{X}} \Rightarrow \hat{Y} = A + b.X \Rightarrow \hat{Y} = A_\theta + a_1.X$$

							Σ
Х	0,5	1	1,5	2	2,5	3	
Χ	-0,693147181	0	0,405465108	0,693147181	0,916290732	1,098612289	2,420368129
У	0,25	1	2,25	4	6,25	9	
Υ	-1,386294361	0	0,810930216	1,386294361	1,832581464	2,197224577	4,840736257
X ²	0,480453014	0	0,164401954	0,480453014	0,839588705	1,206948961	3,171845648
X.Y	0,960906028	0	0,328803908	0,960906028	1,679177411	2,413897922	6,343691296

$$\begin{bmatrix} 6 & 2,420368 \\ 2,420368 & 3,171846 \end{bmatrix} \begin{pmatrix} 4,840736 \\ 6,343691 \end{pmatrix}$$

$$L_2 = L_2 \text{-m.L}_1$$

$$\begin{bmatrix} 6 & 2,420368 \\ 0 & 2,195482 \end{bmatrix} \begin{pmatrix} 4,840736 \\ 4,390964 \end{pmatrix}$$

$$a_1 = 2$$
; $A_0 = 0$

$$a_0 = e^{A0} = 1$$

$$\hat{\mathbf{v}} = \mathbf{1} \cdot \mathbf{x}^2$$

$$\begin{bmatrix} n & \sum X \\ \sum X & \sum X^2 \end{bmatrix} \cdot \begin{pmatrix} A_e \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum Y \\ \sum X.Y \end{pmatrix} \quad \begin{bmatrix} 6 & 2,420368 \\ 2,420368 & 3,171846 \end{bmatrix} \cdot \begin{pmatrix} A_e \\ a_1 \end{pmatrix} = \begin{pmatrix} 4,840736 \\ 6,343691 \end{pmatrix}$$

Calculando R² para este ajuste

							Σ
Χ	0,5	1	1,5	2	2,5	3	
Υ	0,25	1	2,25	4	6,25	9	22,75
y ²	0,0625	1	5,0625	16	39,0625	81	142,1875
ŷ	0,0625	1	5,0625	16	39,0625	81	142,1875
Е	0	0	0	0	0	0	0
e ²	0	0	0	0	0	0	0

$$R^{2} = 1 - \left(\frac{n \cdot \sum e^{2}}{n \cdot \sum y^{2} - \left(\sum y\right)^{2}}\right)$$

$$R^2 = 1 - \left(\frac{6.0}{6.142, 1875 - 22, 75^2}\right) = 1$$

[8] Calcule o Coeficiente de Determinação para cada um dos casos e informe qual é o melhor ajuste.

Foram calculados nos problemas [5], [6] e [7]

$$\hat{y} = a + b.x$$
 $\hat{y} = -2,333333 + 3,5.x$

$$-2$$
, 333333 + 3, 5.x $R^2 = 0$, 958279 Bom

$$\hat{y} = a.b^x$$
 $\hat{y} = 0,203461.3,938884^x$ $R^2 = 0,767558$

$$R^2 = 0,767558$$
 Ruim

$$\hat{y} = a.x^b$$
 $\hat{y} = 1.x^2$

$$^2 = 1$$
 Ótimo (melhor)

[9] Considere o melhor ajuste e, se ele foi muito bom, explique o motivo.

O ajuste oferece Coeficiente de Determinação unitário que significa que a curva ajustada passa pelos pontos dados.

Este é o recado importante.

ATENÇÃO

Estes exemplos foram feitos para ajudá-lo a estudar.

Espera-se que você reproduza os exemplos, refazendo todos os cálculos.

Se encontrar algum erro de cálculo, basta corrigir e, caso queira, me informe.

É possível que existam erros de cálculo, pois fiz todos mentalmente, enquanto digitava o texto.

Note que escrevi todas as equações exatamente para não utilizar calculadora ao desenvolver o texto.

Em resumo, foi feito para ajudar e se estiver atrapalhando, interrompa a leitura e não utilize este texto.

Este não é o recado importante.

Extra: para colorir. Quantos desocupados vão gastar seu tempo colorindo?

Extra plus: para descolorir.

