NI Trial Analysis

A Bayes Factor Approach to Noninferiority Trials

Amy Ly

Oregon State University

June 12, 2023

- 1 Background
- 2 NI Trial Analysis
- 3 Case Study Reanalysis
- 4 Robustness Check
- 6 Conclusion

2 / 27

Background .00

- 2 NI Trial Analysis
- 4 Robustness Check

Background

000

Amv Lv

Drug Discovery and Development Timeline

- Ethical concerns?
- Worth the cost?

Background

Biocreep: An erosion in the level of improvement seen in new drugs after a series of NI trials because a worser therapy is incorrectly declared efficacious

Factors influencing biocreep¹:

- availability of historical data
- selection of active control
- improvement in standard care
- patient population characteristics

¹Everson-Stewart & Emerson, 2010

- 2 NI Trial Analysis
- 3 Case Study Reanalysis
- 4 Robustness Check
- 6 Conclusion

Background

NI margin: the amount by which the true effect of the new therapy is allowed to be worse than that of the active control

Fixed-Margin Approach: 95-95% Method

- 1st 95% refers to CI of estimated effect of control based on historical studies
- 2nd 95% refers to CI used to test H_0 in NI study

Frequentist Analysis Approach

Possible outcomes shown below².

- Perform a t-test.
- Calculate CI and assess where it is relative to the NI margin

Treatment difference (Test drug - Control)

8 / 27

²Schumi & Wittes (2011)

The Form of a Bayes Factor

- Posterior odds: how much we favor one hypothesis over another after observing the data
- Prior odds: how much we favor one hypothesis over another **before** we see the data
- BF: how much the data shifted the relative odds between two hypotheses

H_i refers to the set of assumptions used

$$\frac{p(H_1|y)}{p(H_0|y)} = \frac{p(y|H_1)}{p(y|H_0)} * \frac{p(H_1)}{p(H_0)}$$

BF₁₀ = Prior Posterior likelihood odds odds ratio

$$BF_{10} = \frac{\int p(y \mid \theta_1, H_1) * p(\theta_1 \mid H_1) d\theta_1}{\int p(y \mid \theta_0, H_0) * p(\theta_0 \mid H_0) d\theta_0}$$

Ratio of prior-weighted averaged likelihoods with continuous θ_i

Oregon State University

The BF in a NI Trial Setting

Treatment is Noninferior

$$H_0$$
: $\theta_T - \theta_C = -M_2$

$$H_{\rm A}$$
: $\theta_T - \theta_C > -M_2$

$$BF_{0+}: \frac{P(y|\theta_T - \theta_C = -M_2)}{P(y|\theta_T - \theta_C > -M_2)}$$

Treatment is Inferior

$$H_0$$
: $\theta_T - \theta_C = -M_2$

$$H_{\rm A}$$
: $\theta_T - \theta_C < -M_2$

$$BF_{-0}: \frac{P(y|\theta_T - \theta_C < -M_2)}{P(y|\theta_T - \theta_C = -M_2)}$$

The larger the BF, the more evidence for supporting that the treatment is noninferior

$$BF_{+-} = \frac{BF_{0-}}{BF_{0+}} = \frac{\frac{P(y|\theta_T - \theta_C = -M_2)}{P(y|\theta_T - \theta_C < -M_2)}}{\frac{P(y|\theta_T - \theta_C < -M_2)}{P(y|\theta_T - \theta_C > -M_2)}} = \frac{P(y|\theta_T - \theta_C > -M_2)}{P(y|\theta_T - \theta_C < -M_2)}$$

Background

The Informed T-Test

³Keysers et al, 2020

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

For more details, check out *Informed Bayesian t-tests*.

$$\mathrm{BF}_{10} = - \frac{\int_{0}^{\infty} \left(1 + \frac{n_y n_x}{n_y + n_x} g \right)^{-\frac{1}{2}} \exp\left\{ - \frac{\mu_x^2}{2 \left(\frac{n_y + n_x}{n_y + n_x} + g \right)} \right\} \left[1 + \frac{t^2}{(n_y + n_x - 2) \left(1 + g \frac{n_y n_x}{n_y n_x} \right)} \right]^{\frac{-n_y + n_x - 1}{2}} [A + B] \, p(g) \mathrm{d}g}{\Gamma\left(\frac{n_y + n_x - 1}{n_y + n_x} \right) \left[1 + \frac{t^2}{n_y + n_x - 2} \right]^{\frac{-n_y + n_x - 1}{2}}}.$$

p(g) corresponds to the density of an inverse-gamma distribution of the form

$$p(g) = \frac{\left(r^{2\frac{\kappa}{2}}\right)^{\frac{\kappa}{2}}}{\Gamma(\frac{\kappa}{2})} g^{-\frac{\kappa}{2}-1} \exp\left(-\frac{r^{2}\kappa}{2g}\right)$$

$$A = \Gamma\left(\frac{n-1}{2}\right) F_1\left(\frac{n-1}{2}; \frac{1}{2}; \frac{\mu_{\delta}^2 t^2}{2\left(\frac{n_y + n_x}{n_y n_x} + g\right) \left[\left(n_y + n_x - 2\right)\left(1 + \frac{n_y n_x}{n_y + n_x}g\right) + t^2\right]}\right)$$

$$B = \frac{\mu_{\delta}t}{\sqrt{\frac{1}{2}\left(\frac{n_{y}+n_{x}}{n_{y}n_{x}}+g\right)\left[\left(n_{y}+n_{x}-2\right)\left(1+\frac{n_{y}n_{x}}{n_{y}+n_{x}}g\right)+t^{2}\right]}}\Gamma\left(\frac{n}{2}\right) \times F_{1}\left(\frac{n}{2};\frac{3}{2};\frac{\mu_{\delta}t^{2}}{2\left(\frac{n_{y}+n_{x}}{n_{y}n_{x}}+g\right)\left[\left(n_{y}+n_{x}-2\right)\left(1+\frac{n_{y}n_{x}}{n_{y}+n_{x}}g\right)+t^{2}\right]}\right)$$

 F_1 corresponds to the confluent hypergeometric function.

⁴Gronau et al. 2020

- 1 Background
- 2 NI Trial Analysis
- 3 Case Study Reanalysis
- 4 Robustness Check
- 6 Conclusion

Context

Test the noninferiority of the beta-lactam strategy to the beta-lactam-macrolide and fluoroquinolone strategies in treating clinically suspected community-acquired pneumonia (CAP), set in the Netherlands 5 .

- Primary measure: 90-day mortality
- intention-to-treat analysis
- NI margin of 3%
- result based on 90% CI

Treatment	Mortality Count	Sample Size	Mortality Rates (%)	Adherence rates (%)
Beta-lactam	59	656	9.0	93
Beta-lactam- macrolide	82	739	11.1	88
fluoroquinolone	78	888	8.8	92.7

Group comparisons are:

- beta-lactam-macrolides (BM) vs beta-lactam (B)
- fluoroquinolone (F) vs beta-lactam (B)

⁵Postma et al (2015)

Frequentist Analysis Result

90% Cl's don't include NI margin => beta-lactam strategy is noninferior to the other alternative treatments.

Amy Ly Oregon State University

Beta-lactam is Noninferior

Setting Up the BF Test

Background

It should be more difficult to assess whether there is a statistically significant difference between beta-lactam and fluoroquinolone.

Beta-lactam is Inferior

$$H_0: p_F - p_B = -M_2$$
 $H_0: p_F - p_B = -M_2$ $H_A: p_F - p_B < -M_2$ $H_A: p_F - p_B > -M_2$

If $\delta = p_x - p_y$ is negative, then the Beta-lactam treatment observed higher mortality counts and is inferior

BF., is the ratio of marginal likelihood under the hypothesis that beta-lactam is noninferior to marginal likelihood under the hypothesis that beta-lactam is inferior.

$$BF_{+-} = \frac{BF_{0-}}{BF_{0+}} = \frac{\frac{P(y|\theta_F - \theta_B = -M_2)}{P(y|\theta_F - \theta_B < -M_2)}}{\frac{P(y|\theta_F - \theta_B < -M_2)}{P(y|\theta_F - \theta_B > -M_2)}} = \frac{P(y|\theta_F - \theta_B > -M_2)}{P(y|\theta_F - \theta_B < -M_2)}$$

16 / 27

BF Analysis Result

Posterior Distribution with Default Prior

BF₊(d; 0.1059, $1/\sqrt{2}$, 1) = 28.87

 BF_{+-} indicates the data is about 28 times more likely under the noninferiority hypothesis.

Amy Ly

Oregon State University

- 1 Background
- 2 NI Trial Analysis
- 3 Case Study Reanalysis
- 4 Robustness Check
- 6 Conclusion

How the Prior Affects the Posterior Distribution

Posterior vs Prior Comparison

Effect size

Effect size

Effect size

Does Choice of Prior Matter?

True Effect Sizes Matters

Contour Plot of log(BF)

Overlapped with Contour Plot of Effect Size in Green

Overlap with the Frequentist Decision

Contour Plot of log(BF)

Overlapped with Contour Plot of Z-Statistic in Purple

Decision Boundaries for Noninferiority

- 1 Background
- 2 NI Trial Analysis
- 3 Case Study Reanalysis
- 4 Robustness Check
- **5** Conclusion

Lessons Learned

To summarize:

- Qualitative conclusions between the Frequentist and BF testing methods were similar for this case study.
- Could be useful for exploratory studies.

Follow up:

• How would the BF method impact the rate of biocreep?

Thank you!

- Sarah, for guiding me
- Family and friends, for supporting me
- Stats department, for teaching me
- Colleagues, for their flexibility

References

Background

- 1 Everson-Stewart, S., & Emerson, S. (2010). Bio-creep in non-inferiority clinical trials. Stat Med, doi: 10.1002/sim.4053. PMID: 20809482.
- Schumi, J., & Wittes, J. T. (2011). Through the looking glass: understanding non-inferiority. Trials, https://doi.org/10.1186/1745-6215-12-106.
- Keysers C, Gazzola V, Wagenmakers EJ. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat Neurosci. 2020 Jul;23(7):788-799. doi: 10.1038/s41593-020-0660-4. Epub 2020 Jun 29. Erratum in: Nat Neurosci. 2020 Nov;23(11):1453. PMID: 32601411; PMCID: PMC7610527.
- Gronau, Q. F., Ly, A., & Wagenmakers, E.-J. (2020). Informed Bayesian t-Tests. The American Statistician, DOI:10.1080/00031305.2018.1562983.
- Fostma, D., van Werkhoven, C., van Elden, L., Thijsen, S., Hoepelman, A., Kluytmans, J., . . . Bonten, M. (2015). CAP-START Study Group. Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med, doi: 10.1056/NEJMoa1406330. PMID: 25830421.

