

SBC: Base de Conocimiento

- Es un tipo especial de base de datos para la gestión del conocimiento.
- Provee los medio para la recolección, organización y recuperación computarizada de conocimiento.
- La base de conocimiento esta compuesta de hechos y reglas que el sistema conoce sobre el dominio del problema

Componentes Básicos de SBC

- Sistemas basados en conocimientos
 - Conocimiento + inferencia
- SBCs tiene 2 componentes esenciales
 - Una base de conocimiento que captura el conocimiento especifico del dominio
 - Un motor de inferencia el cual consiste de de algoritmos que manipulan conocimiento representado en la base de conocimiento.

SBC: Base de Conocimiento

- El conocimiento puede ser representado usando técnicas como:
 - Reglas de producción
 - Redes semánticas
 - Frames
- Scrips, etc
- También pueden ser una mezcla de diferentes métodos que forman parte de sistemas híbridos

Redes Semánticas

- Redes Semánticas son una tentativa de formalizarse como nuestro conocimiento es organizado en la memoria.
- Redes Semánticas son compuestas de nodos y links etiquetados.
- Cada nodo representa un objeto o propiedad de un objeto.
- Cada link representa la relación entre dos nodos.

RC - Redes Semanticas

Ej: Red Semántica Simple (cont.)

La sentencia "Animales comen" puede ser representada por la siguiente red:

- "Animal" y "Comer" son representados por nodos.
- La relación entre ellos (este animal come) es representado por el link rotulado "hace".
- Simplemente, se puede leer como "Animal hace Comer".

RC - Redes Semanticas

sor

Historia de las Redes Semánticas

- Originalmente a idea de redes semánticas fue propuesta en 1913 por Selz como una explicación de fenómenos psicológicos.
- En 1966, Quillian implemento aquellas ideas y mostró como el significado podría ser representado como la relación entre dos objetos.
- Representaciones mas complicadas tales como frames son realces de esta idea.

RC - Redes Semanticas

Red Semántica Simple (cont.)

 "Mamíferos y Pájaros son animales" puede, ahora, ser aumentada usándose el link "es_un":

⋄ Se Puede leer esta nueva sentencia como:

"Pájaro es un Animal" y

"Mamífero es un Animal".

Ej: Red Semántica Simple

- Redes Semánticas explicitan la relación entre objetos y propiedades.
- Por ejemplo, considere algunas cosas que sabemos sobre animales:
 - Animales comen;
 - Mamíferos y pájaros son animales;
 - Mamíferos tiene pelos; y
 - Perros son mamíferos

RC - Redes Semanticas

Una Red Semántica Simple (cont)

• Y, por último, se puede aumentar "Perros son mamíferos":

Búsqueda como una herramienta Exploratoria

- Podemos suponer que lo perros comen, y usar búsqueda sobre la rede para explicar esto (se el puede).
- Buscando a partir del nodo "Perro", podemos decir que "Perro es un Mamífero", "Mamífero es un Animal" y "Animal hace Comer".

Esto es una explicación para "Perros comen".

RC - Redes Semanticas

Transitividad en Redes Semánticas

- Redes Semánticas son naturalmente transitivas.
- Podemos concluir de la red desarrollada que si "Perro es un Mamífero" y "Mamífero es un Animal" entonces "Perro es un Animal"
- Entretanto, no es posible concluir que:
 - "Perro es un Pájaro"; o
 - "Pájaro tiene pelos".

RC - Redes Semanticas

Busca exhaustiva de información

- Se quisiéramos encontrar todo lo que podemos aprender sobre perros, solamente necesitamos usar Busca en Profundidad a partir de "Perro".
- De esa manera, podríamos encontrar que "perro son mamíferos", "perros tienen pelos", "perros son animales" y "perros comen".

RC - Redes Semanticas

Busca en Redes Semánticas

- La Búsqueda en Redes Semánticas puede ser usada de varias maneras para extraer informaciones.
- Por ejemplo, la búsqueda pode ser usada:
- como una herramienta explicativa;
- para explorar exhaustivamente un tópico; y
- para encontrar la relación entre dos objetos.

RC - Redes Semanticas

Intersección de Búsqueda

- Se quisiéramos encontrar si "perros" y "Pájaros" están relacionados, entonces podemos ejecutar, a partir de ambos nodos, una búsqueda en largura.
- La intersección nos da una pista sobre la relación entre los nodos.
- Esto es llamado activación distribuida o intersección de búsqueda.

RC - Redes Semanticas

Frames

- Frames (Minsky 1975) son mas poderosos que las redes semánticas, porque:
 - Ellos proveen una representación mas estructurada que la red semántica;
 - Tanto información como relación pueden ser especificados en un frame;
 - Ellos también pueden contener procedimientos.
- Frames pueden ser representados de una forma gráfica similar a redes semánticas.

Aspectos Generales de un Frame

- Slots son atributos del frame que pueden tener valores particulares, llamados valores.
- Valores pueden ser un valor absoluto, un intervalo o un valor default.
- Un frame genérico, tal como el frame "Perro", es una clase
- Una instancia de una clase frame es simplemente un frame con valores específicos, así como Rastus, o Perro, es una instancia de la clase de perros.

Una Instancia del Frame "Perro"

• "Rastus" - Una instancia de la clase "Perro":

Perro Es un Mamífero
nombre Rastus
raza German Shepherd
Pelo Longo
Sexo Macho

Frames y Demons

- Procedimientos que están dentro de frames son llamadas demons
- Un ejemplo de un *demon* es un procedimiento para calcular a área de un cuadrado dado el tamaño de un de los lados.
- Así el valor del área no precisa estar representado y si puede ser calculado a partir de otras informaciones en la instanciación del frame.

Consideraciones Finales

- Objetos en la Programación Orientada a Objetos son *muy* similares a los *frames*.
- Por esa razón, Lenguajes OO son una buena opción para la implementación de sistemas de *frames*.
- Vimos anteriormente que los procedimientos pueden ser alojadas dentro de frames para aumentar su flexibilidad y performance.

El Frame "Cuadrado"

Cuadrado
Tam. del lado
Área

 Cuando el lo encuentra, el calcula a área del cuadrado. Cuadrado
Tam. del lado 5
Área 25

Historia de Scripts

- Scripts (Schank e Abelson 1977) son una especialización de frames proyectados para manipular situaciones además de objetos.
- En una red semántica o en *frames*, nodos son objetos, y los links entre los objetos representan una gama de relaciones.
- En scripts, los nodos son eventos, y los links entre ellos son simplemente causales:
 - Esto es, un evento provoca el próximo.

Frames y herencia

- En el ejemplo animal/mamífero/perro, el nivel mas bajo *hereda* las propiedades de los niveles superiores.
- Por ejemplo: Perro tiene pelos, pues ellos son mamíferos y mamíferos tienen pelos.
- Herencia es una característica poderosa de frames, porque la información puede ser especificada en un nivel mas genérico, evitándose, así, redundancia.

Construyendo un Script

- Un Script es como un script cinematográfico.
- Como en un *script* de cine necesitamos considerar el número de elementos cuando proyectamos el *script*:
 - Cuales son los papeles de los objetos/personas en el script;
 - Cuales objetos de la escena se relaciona al script;
 - Cuales son las motivaciones o *entradas condicionales* para ejecutar el *script*;
 - Cuales escenas están por ocurrir; y
 - En cual orden ellas deben ocurrir; etc.

Un Script Básico • Antes de proyectamos el script, necesitamos de una secuencia básica inicial. • Por ejemplo, en la ida a un restaurante hay una secuencia de eventos que podemos esperar: Pagar Por la cena Pedir Comer cena Propina

E Script Restaurante (cont)

Escena 1: Entrar

- Estacionar el carro
- Entrar en el Restaurante
- · Esperar por una Mesa

^

- Ir hasta la Mesa
- Leer el Menú

Escena 2: Pedir la cena

Corte de un Script

 Es posible cortar cada uno de los eventos en una serie de subeventos. Por ejemplo con relación al evento entrar en el restaurante, se puede esperar:

Scripts

- Scripts pueden ser usados para:
- Contar historias sobre una secuencia de eventos;
- Responder preguntas tales como "lo que sucede si la carme del cliente estuviese quemada?"
- Y para seguir a los eventos para que nos lleven a alguna decisión.
- Scripts son muy similares a los frames, son codificados de la misma forma y son, normalmente, considerados como una sub- clase de frames.

El Script Restaurante

 Colocando los eventos junto con a los demás elementos, podríamos imaginar el script "Restaurant" asignando apenas algunas cosas, tales como:

SCRIPT RESTAURANTE

Papeles: Cliente, mozo, cocina.

Objetos de cena: Mesas, sillas, tenedores, cuchillo, platos, vasos, botellas de vino...

Entradas Condicionales: Cliente está Hambriento; Cliente está vestido in apropiadamente; Cliente tiene dinero.

Motor de Inferencia

- El motor de inferencia incluye un interpretador de reglas de una base de conocimiento y ejecuta ítem de una agenda
- Incluye también:
 - Un agendador
 - Un verificador de consistencia de las soluciones que surge

Componentes Adicionales

- Teniendo el núcleo de un SBC, que otros componentes son necesarios?
 - Un usuario;
- Un modulo de usuarios interactúan con el sistema;
- Un lugar para almacenar el conocimiento usado no trabajo;
- Una manera de conseguir ayuda del sistema.
- Eso es necesario para interactuar con el motor de inferencia y la base de conocimiento.

Interfase

- La interfase es un procesador de lenguaje orientado a procesar y producir comunicación entre usuario y sistema.
- Esto generalmente ocurre en lenguaje natural, siendo complementada por menús gráficos
- El procesamiento de lenguaje natural es por lo tanto importante en el SBC

Memoria de Trabajo

- La memoria de trabajo del sistema almacena condiciones iniciales hipótesis intermedias, decisiones y soluciones finales.
- Información e clasificación en 3 tipos
 - Planos (Como resolver el problema)
 - Agendas (acciones potenciales a ser ejecutadas)
 - Soluciones (soluciones candidatas y soluciones intermediarias)

Usuario

- Los SBC están diseñados para interactuar con varios usuarios actuando de diferentes maneras y circunstancias:
 - Modo consultor
 - Modo instructor
 - Modo acompañante
 - Modo cooperativo

Facilidades de Explicación

- El modulo que facilita la explicación puede justificar las conclusiones, y auxiliar a explicar el comportamiento del SBC
- Esto es hecho a través de preguntas iterativas:
 - Porque
 - Como

Adquisición del conocimiento

- · Como el sistema adquiere conocimiento
 - · Como el conocimiento es conseguido inicialmente
 - El sistema adquiere nuevos conocimientos
 - Como este conocimiento puede ser probado
 - Que componentes son necesarios para aumentar esos conocimientos

El Ingeniero del conocimiento

- El equipo de ingenieros del conocimiento realiza las siguientes tareas
 - Estructura el área del problema
 - Interpreta, traduce e integra conocimiento especialista al sistema.
 - Traza analogías.
 - Presenta contra ejemplos.
 - Chequea la consistencia del conocimiento

Refinamiento del conocimiento

- Futuros SBC podrán ser capaces de analizar aprender y mejorar sus propias performances resultando una base de conocimiento mas apropiada y un raciocinio mas efectivo
- Mientras tanto, en los SBCs actuales esta tarea la realiza el ingeniero en conocimiento

Conocimiento experto

- Adquirir conocimiento especialista para una base de un SBC incluye:
 - Obtener información de los especialistas yo fuentes documentadas
 - Clasificación de esta información en declarativa o procedimental
 - Codificación de esta información en un formato usado por el SBC
 - Chequear la consistencia del conocimiento

Shell de un SBC

- El shell de un SBC es un SBC con una base vacía.
- El Shell esta destinado a que los no programadores usufructúen los esfuerzos de los programadores que ya resolvieron un problema similar

Proceso de Desarrollo de SBC

Especificación dos Requisitos
ò
Adquisición de Conocimiento
ò
Proyecto
ò
Implementación
ò
Prueba
ò
Mantenimiento

Ejemplo Sistema Basado en Conocimiento

- Los sistemas expertos basados en reglas
 - Constituyen la más sencilla de las metodologías utilizadas en sistemas expertos.
 - Trabajan mediante la aplicación de reglas, comparación de resultados y aplicación de nuevas reglas basadas en una situación modificada.