Lista 6 - Geometreia Analítica e Álgebra Linear

Profa. Roseli

Considere fixado um sistema de coordenadas ortogonais no plano. Esboçar a figura relativa a cada exercício.

- 1. Determinar a equação da reta ${\bf t}$ tangente à circunferência ${\bf \gamma}: {\bf x}^2+{\bf y}^2$ $2{\bf x}$ $6{\bf y}$ 3=0 no ponto ${\bf P}=(-1,\,6).$ (${\bf R}: \ 2{\bf x}$ $3{\bf y}$ + 20=0)
- 2. Determinar as equações da retas que têm declividade $m=-\frac{3}{2}$ e são tangentes à circunferência $\gamma: 4x^2+4y^2+8x+4y-47=0$. (R: 3x+2y-9=0 e 3x+2y+17=0)
- 3. Determinar a equação da reta \mathbf{t} tangente à circunferência γ : $\mathbf{x}^2 + \mathbf{y}^2 8\mathbf{x} + 3 = 0$ no ponto $\mathbf{P} = (6, 3)$. (R: $2\mathbf{x} + 3\mathbf{y} 21 = 0$)
- 4. Determinar as equações da retas que passam pelo ponto P=(-2, 7) e são tangentes à circunferência γ : $x^2 + y^2 + 2x 8y + 12 = 0$.

(R:
$$2x - y + 11 = 0$$
 e $x + 2y - 12 = 0$)

5. Dada a circunferência γ : $x^2 + y^2 + 4x - 10y + 21 = 0$, determinar as equações das retas tangentes a ela e que são paralelas à reta \mathbf{r} : 5x - 5y + 31 = 0.

(R:
$$x - y + 3 = 0$$
 e $x - y + 11 = 0$)

6. Determinar as equações das retas tangentes à circunferência γ : $x^2 + y^2 + 6x - 8 = 0$ que são perpendiculares à reta \mathbf{r} : 4x - y + 31 = 0.

(R:
$$x + 4y + 20 = 0$$
 e $x + 4y - 14 = 0$)

7. Determinar as equações da retas que passam pelo ponto P=(6,-4) e são tangentes à circunferência γ : $x^2+y^2+2x-2y-35=0$.

(R:
$$6x + y - 32 = 0$$
 e $x - 6y - 30 = 0$)

8. A partir do ponto P = (-5, 4) são traçadas tangentes à circunferência $\gamma : x^2 + y^2 - 10x + 7 = 0$. Determinar o ângulo agudo formado por estas tangentes.

1

(R: arc tg
$$\frac{21}{20} \simeq 46^{\circ} 24'$$
)

- 9. Considere a circunferência γ : $x^2 + y^2 = 5$ e a reta \mathbf{r} : x 2y + k = 0, $k \in \mathbb{R}$. Determine o valor de \mathbf{k} para que:
 - (i) a reta **r** seja tangente à circunferência γ ; (R: k = \pm 5)
 - (ii) a reta ${\bf r}$ seja secante à circunferência ${m \gamma}$; (R: -5 < k < 5)
 - (iii) a reta r não intercepte a circunferência γ . (R: k < -5 ou k > 5)
- 10. Considere a circunferência γ : $x^2 + y^2 6x 2y + 6 = 0$ e a reta \mathbf{r} : y = mx + 3, $m \in \mathbb{R}$. Determine o valor de \mathbf{m} para que:
 - (i) a reta **r** seja tangente à circunferência γ ; (R: m = 0 ou m = $-\frac{12}{5}$)
 - (ii) a reta ${f r}$ seja secante à circunferência ${m \gamma};$ (R: $-\frac{12}{5}$ < m < 0)
 - (iii) a reta ${\bf r}$ não intercepte a circunferência ${m \gamma}$. (R: m < $-\frac{12}{5}$ ou m > 0)