Training a Neural Network

Michael Shao

Machine Learning

Looking for the function

$$f(x_0, x_1, ...) = \hat{y}$$

We've defined the structure

but what about the parameters?

$$f_{\theta}$$
 $b_0, b_1, b_2, ...$
 θ

What's the best θ ?

• We can evaluate the performance of the model based on how closely the output follows the distribution in the **labeled** training set.

Comparing distributions?

Defining a loss function

Optimization

Gradient Descent

Minimizing the loss function

$$\theta^* = \arg\min_{\theta} L(\theta)$$

How do we do this?

Gradient Descent

Descending a slope:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} L(\theta)$$

https://uclaacm.github.io/gradient-descent-visualiser/#playground

Local Minima

Convergence

Divergence

Step, Batch, Epoch

- Split training data randomly into batches based on batch size.
- Calculate loss on batch, perform gradient descent = 1 step
- Iterate over all batches = 1 epoch

Loss Functions

The Training Criteria

Mean Squared Error Loss

criterion = torch.nn.MSELoss()

$$\frac{1}{N} \sum_{i=1}^{N} (f_{\theta}(x_i) - y_i)^2$$

Loss for Classification Tasks?

- Number of misclassifications?
- Inaccuracy?

What does a classification model output?

```
0 0.2
1 1.3
2 (25.7)
3 -11
4 102
```

But each output has no "meaning". Their values are only relative to the oth

Introducing... Softmax Activation

• Map values to (0, 1) with a sum of 1.

0.2
$$6.15 \times 10^{-45}$$

1.3 1.85×10^{-44}
 $\sigma (25.7) = (7.3 \times 10^{-34})$
 -11 8.41×10^{-50}
102

 p_0

Now, these values can be interpreted as probabilities: $\binom{p_1}{\dots}$.

Cross Entropy Loss

• We want the corresponding probability to be close to 1, so...

We want the log probability to be close to 0. In other words,

• We want to minimize $-\log(p_y)$

•
$$L(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log(p_{i,y_i})$$

Cross Entropy Loss

criterion = torch.nn.CrossEntropyLoss()

criterion = torch.nn.BCELoss() # For Binary CE

Calculating The Gradient

Back Propagation... In very very very simple words

Back Propagation

 The gradient is propagated from the last layer all the way back to the first layer.

Keywords: partial derivatives, chain rule

https://www.youtube.com/watch?v=Ilg3gGewQ5U