

Lecture 10 Clustering Evaluation

Mahdi Roozbahani Georgia Tech

These slides are based on slides from Mohammed Zaki, Chao Zhang, and Jiawei Han.

A programmer was walking out of door for work, his wife said "while you're out, buy some milk" and he never came home.

Clustering Evaluation

 Clustering evaluation aims at quantifying the goodness or quality of the clustering.

- Two main categories of measures:
 - External measures: employ external ground-truth
 - Internal measures: derive goodness from the data itself

Outline

External measures for clustering evaluation

- Matching-based measures
- **Entropy-based measures**
- 。 Pairwise measures
- Internal measures for clustering evaluation
 - Graph-based measures
 - **Davies-Bouldin Index**
 - 。Silhouette Coefficient

External Measures

External measures assume that the correct or ground-truth clustering is known *a priori*, which is used to evaluate a given clustering.

Let $\mathbf{D} = \{\mathbf{x}_i\}_{i=1}^n$ be a dataset consisting of n points in a d-dimensional space, partitioned into k clusters. Let $y_i \in \{1, 2, ..., k\}$ denote the ground-truth cluster membership or label information for each point.

The ground-truth clustering is given as $\mathcal{T} = \{T_1, T_2, \dots, T_k\}$, where the cluster T_j consists of all the points with label j, i.e., $T_j = \{\mathbf{x}_i \in \mathbf{D} | y_i = j\}$. We refer to \mathcal{T} as the ground-truth *partitioning*, and to each T_i as a *partition*.

Let $C = \{C_1, \dots, C_r\}$ denote a clustering of the same dataset into r clusters, obtained via some clustering algorithm, and let $\hat{y}_i \in \{1, 2, \dots, r\}$ denote the cluster label for \mathbf{x}_i .

So **k** is the number of ground truth partitions (T) and **r** is the number of clusters (C) obtained by algorithm

 n_{ij} = Number of data points in cluster i which are also in ground truth partition j

Matching-Based Measures (I): Purity

Purity: Quantifies the extent that cluster C_i contains points only from one (ground truth) partition:

from one (ground truth) partition:

artition:

$$c_{3} = purity_{i} = \frac{1}{n_{i}} \max_{j=1}^{\infty} \{n_{ij}\} \begin{cases} n_{31} = 0 \\ n_{32} = 0 \end{cases}$$

$$C_3 purity = purity_3 = \frac{7}{9}$$

The Total purity of clustering C is the weighted sum of the cluster-wise purity:

$$purity = \sum_{i=1}^{r} \frac{n_i}{n} purity_i = \frac{1}{n} \sum_{i=1}^{r} \max_{j=1}^{k} \{n_{ij}\}$$

What is purity value for a perfect clustering?

Purity = 1

$$purity_i = \frac{1}{n_i} \max_{j=1}^k \{n_{ij}\}$$

$$purity = \sum_{i=1}^{r} \frac{n_i}{n} purity_i = \frac{1}{n} \sum_{i=1}^{r} \max_{j=1}^{k} \{n_{ij}\}$$

purity1 =
$$30/50$$
;
purity2 = $20/25$;
purity3 = $25/25$;
purity = $(30 + 20 + 25)/100 = 0.75$

 C_3

 m_i

Two clusters may be matched to the same partition

C1 is more paired with T3 C2 is more paired with T2

CIT	T ₁	T ₂	T 3	Sum
C1	0/	20	30	50
C ₂ /	0	20	5	25
C ₃ (25	0	0	25
m _j	25	40	35	100

purity = (30 + 20 + 25)/100 = 0.75

C1 is more paired with T2 C2 is more paired with T2

C\T	T ₁	T ₂	7 3	Sum
C1	0/	30	20	50
C ₂	0	20	5	25
C ₃	25	0	0	25
m _j	25	50	25	100

purity = (30 + 20 + 25)/100 = 0.75

Maximum weight matching: Only one cluster can match one partition

Ex. If C1 is more paired with T2 THEN C2 and C3 cannot paired with T2

C\T	T ₁	T ₂	T ₃	Sum
C ₁	0	30	20	50
C_2	0	20	5	25
C3	25	0	0	25
m _j	25	50	25	100

Matching-Based Measures (II): Maximum Matching

- Drawback of purity: two clusters may be matched to the same partition.
- Maximum matching: the maximum purity under the one-toone matching constraint.

Examine all possible pairwise matching between C and T and choose

the best (the maximum)

Maximum matching = 0.65 > 0.6

C\T	T ₁	T ₂	T ₃	Sum
C ₁	0	30	20	50
C_2	0	20	5	25
<i>C</i> ₃	25	0	0	25
m _j	25	50	25	100

In a general context: Precision, Recall and Accuracy

Matching-Based Measures (II): F-Measure

- Precision: which measure quality, is the same as purity:
 - How precisely does each cluster represent the ground truth?

$$prec_{i} = \frac{1}{n_{i}} \max_{j=1}^{k} \{n_{ij}\} = \frac{n_{ij_{i}}}{n_{i}}$$

- Recall: measures completeness $recall_i = \frac{n_{ij_i}}{|T_{j_i}|} = \frac{n_{ij_i}}{m_{j_i}}$
 - . How completely does each cluster recover the ground truth?

The Fraction of point in partition T_j shred in common with cluster C_i

$$Prec_1 = \frac{6}{6}$$

$$Recall_1 = \frac{6}{10}$$

Precision and Recall

(Precision here is same as the purity)

Precision:

 $prec_1 = 30/50;$

 $prec_2 = 20/25$;

 $prec_3 = 25/25$

Recall:

 $recall_1 = 30/35;$

 $recall_2 = 20/40;$

 $recall_3 = 25/25$

C\T	T ₁	T ₂	T 3	Sum
C ₁	0	20	30	50
C ₂	0	20	5	25
C ₃	25	0	0	25
m _j	25	40	35	100

Matching-Based Measures (II): F-Measure

- F-Measure: the harmonic mean of precision and recall
 - Take into account both precision and completeness

$$F_i = \frac{2}{\frac{1}{prec_i} + \frac{1}{recall_i}} = \frac{2 \cdot prec_i \cdot recall_i}{prec_i + recall_i} = \frac{2 \cdot n_{ij_i}}{n_i + m_{j_i}}$$

The F-measure for the clustering C is the mean of clusterwise F-measure values:

C\T	T ₁	T ₂	T ₃	Sum
C ₁	0	20	30	50
C ₂	0	20	5	25
<i>C</i> ₃	25	0	0	25
m _j	25	40	35	100

Entropy-Based Measures (I): Conditional Entropy

Amount of information orderness in different partitions

The entropy for clustering C and partition T is

$$H(\mathcal{C}) = -\sum_{i=1}^{r} p_{C_i} \log p_{C_i} \qquad H(\mathcal{T}) = -\sum_{j=1}^{k} p_{T_j} \log p_{T_j}$$

$$\text{where } p_{C_i} \neq \frac{n_i}{n} \text{ and } p_{T_j} = \frac{m_j}{n}$$

$$P_{C_i} = P_{i1} + P_{i2} + P_{i3}$$
i.e., The probability of cluster C_i

$$n_i = n_{i1} + n_{i2} + \dots + n_{ik}$$

Conditional Entropy: The cluster-specific entropy, namely the conditional entropy of T with respect to cluster C_i:

$$H(\mathcal{T}|C_i) = -\sum_{j=1}^k \left(\frac{n_{ij}}{n_i}\right) \log\left(\frac{n_{ij}}{n_i}\right)$$
How ground truth is distributed within each cluster

$$n_{ij}$$
Ground truth (T)

Cluster (C)

Entropy-Based Measures (I): Conditional Entropy

• The conditional entropy of T given clustering C is defined as the weighted sum: n_{ij}

$$H(\mathcal{T}|\mathcal{C}) = \sum_{i=1}^{r} \frac{n_i}{n} H(\mathcal{T}|\mathcal{C}_i) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log \left(\frac{p_{ij}}{p_{\mathcal{C}_i}}\right) \frac{n_i}{n_i}$$
 $= H(\mathcal{C}, \mathcal{T}) - H(\mathcal{C})$

The more a clusters members are split into different partitions, the higher the conditional entropy (not a desirable condition and the max value is log k)

 $H(\mathcal{T}|\mathcal{C})=0$ if and only if \mathcal{T} is completely determined by \mathcal{C} , corresponding to the ideal clustering. If \mathcal{C} and \mathcal{T} are independent of each other, then $H(\mathcal{T}|\mathcal{C})=H(\mathcal{T})$.

$$\begin{split} H(\mathcal{T}|\mathcal{C}) &= -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log \frac{p_{ij}}{p_{\mathcal{C}_i}} \\ &= -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} (\log p_{ij} - \log p_{\mathcal{C}_i}) = -\sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} (\log p_{ij}) + \sum_{i=1}^{r} (\log p_{\mathcal{C}_i} \sum_{j=1}^{k} p_{ij}) = \\ &- \sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log p_{ij} + \sum_{i=1}^{r} (p_{\mathcal{C}_i} \log p_{\mathcal{C}_i}) = H(\mathcal{T}, \mathcal{C}) - H(\mathcal{C}) \end{split}$$

H(X,Y)				
H(X)		H(Y X)		
H(X Y) H		(Y)		

Entropy-Based Measures (I): Mutual Information

The mutual information tries to quantify the amount of shared information between the clustering C and partitioning T, and it is defined as

$$I(\mathcal{C}, \mathcal{T}) = \sum_{i=1}^{r} \sum_{j=1}^{k} p_{ij} \log \left(\frac{p_{ij}}{p_{C_i} \cdot p_{T_j}} \right) = H(\mathcal{T}) - H(\mathcal{T}|\mathcal{C})$$

When C and T are independent then $p_{ij} = p_{C_i} \cdot p_{T_j}$, and thus I(C, T) = 0. However, there is no upper bound on the mutual information.

We should do something about this

We measure the dependency between the observed joint probability p_{ij} of C and T, and the expected joint probability p_{ci} . p_{Tj} under the independence assumption

Entropy-Based Measures (I): Mutual Information

The normalized mutual information (NMI) is defined as the geometric mean:

$$NMI(\mathcal{C}, \mathcal{T}) = \sqrt{\frac{I(\mathcal{C}, \mathcal{T})}{H(\mathcal{C})} \cdot \frac{I(\mathcal{C}, \mathcal{T})}{H(\mathcal{T})}} = \frac{I(\mathcal{C}, \mathcal{T})}{\sqrt{H(\mathcal{C}) \cdot H(\mathcal{T})}}$$

The NMI value lies in the range [0, 1]. Values close to 1 indicate a good clustering.

Pairwise Measures

Given clustering C and ground-truth partitioning T, let $\mathbf{x}_i, \mathbf{x}_j \in \mathbf{D}$ be any two points, with $i \neq j$. Let y_i denote the true partition label and let \hat{y}_i denote the cluster label for point \mathbf{x}_i .

True Positives: \mathbf{x}_i and \mathbf{x}_j belong to the same partition in \mathcal{T} , and they are also in the same cluster in \mathcal{C} . The number of true positive pairs is given as

 $TP = \left| \{ (\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \hat{y}_i = \hat{y}_j \} \right|$ Same partition Same cluster False Negatives: \mathbf{x}_i and \mathbf{x}_j belong to the same partition in \mathcal{T} , but they do not belong to the same cluster in \mathcal{C} . The number of all false negative pairs is given as

$$FN = \left| \{ (\mathbf{x}_i, \mathbf{x}_j) : y_i = y_j \text{ and } \hat{y}_i \neq \hat{y}_j \} \right|$$

Same partition Different cluster

False Positives: \mathbf{x}_i and \mathbf{x}_j do not belong to the same partition in \mathcal{T} , but they do belong to the same cluster in \mathcal{C} . The number of false positive pairs is given as

$$FP = \left| \{ (\mathbf{x}_i, \mathbf{x}_j) : y_i \neq y_j \text{ and } \hat{y}_i = \hat{y}_j \} \right|$$
Different partition Same cluster

True Negatives: \mathbf{x}_i and \mathbf{x}_j neither belong to the same partition in \mathcal{T} , nor do they belong to the same cluster in \mathcal{C} . The number of such true negative pairs is given as

$$TN = \left| \{ (\mathbf{x}_i, \mathbf{x}_j) : y_i \neq y_j \text{ and } \hat{y}_i \neq \hat{y}_j \} \right|$$
Different partition Different cluster

Pairwise Measures

Because there are $N = \binom{n}{2} = \frac{n(n-1)}{2}$ pairs of points, we have the following

identity:

$$\sum_{i=1}^{k} \sum_{j=1}^{k} n_{ij} = N$$

$$N = TP + FN + FP + TN$$
 $n_{12} = 20 \times 19$

$$\sum_{i=1}^{r} \sum_{j=1}^{k} \binom{n_{ij}}{2} = \frac{1}{2} (\sum_{i=1}^{r} \sum_{j=1}^{k} (n_{ij}^2 - n_{ij})) = \frac{1}{2} ((\sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^2) - n)$$

$$N = TP + FN + FP + TN$$

$$n_{12} = \frac{20 \times 19}{2} = \frac{1}{2} \sum_{i=1}^{r} (n_{ij}^2 - n_{ij}) = \frac{1}{2} ((\sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^2) - n)$$

$$FN = \sum_{i=1}^{k} {m_i \choose 2} - TP$$

$$TN = N - (TP + FN + FP)$$

C\T	T ₁	T ₂	T 3	Sum
C ₁	0	20	30	50
C ₂	0	20	5	25
C ₃	25	0	0	25
m _j	25	40	35	100

 $n_{12} = 20$ Points which have same Cluster one and same Partition two

Pairwise Measures

Jaccard Coefficient: measures the fraction of true positive point pairs, but after ignoring the true negative:

$$Jaccard = \frac{TP}{TP + FN + FP}$$
 Perfect clustering = 1

Rand Statistic: measures the fraction of true positives and true negatives over all point pairs:

$$Rand = \frac{TP + TN}{N}$$
 Perfect clustering = 1 (like accuracy)

Fowlkes-Mallows Measure: Define the overall *pairwise precision* and *pairwise recall* values for a clustering C, as follows:

$$prec = TP/TP + FP$$
 $recall = TP/TP + FN$

The Fowlkes–Mallows (FM) measure is defined as the geometric mean of the pairwise precision and recall

$$FM = \sqrt{\textit{prec} \cdot \textit{recall}} = \frac{\textit{TP}}{\sqrt{(\textit{TP} + \textit{FN})(\textit{TP} + \textit{FP})}}$$

Higher value means a better clustering

Outline

- External measures for clustering evaluation
 - Matching-based measures
 - Entropy-based measures
 - 。 Pairwise measures
- Internal measures for clustering evaluation

- Graph-based measures
- Davies-Bouldin Index
- Silhouette Coefficient

We want intra-cluster datapoints to be as close as possible to each other and inter-clusters to be as far as possible from each other

The Beta-CV Measure

• Let W be the pair-wise distance matrix for all the given points. For any two point sets S and R, we define:

$$\textit{W}(\textit{S},\textit{R}) = \sum_{\mathbf{x}_i \in \textit{S}} \sum_{\mathbf{x}_i \in \textit{R}} \textit{w}_{ij}$$

The sum of all the intracluster and intercluster weights are given as

The Beta-CV Measure

The number of distinct intracluster and intracluster edges is given as

$$N_{in} = \sum_{i=1}^{k} \binom{n_i}{2}$$
 $N_{out} = \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} n_i \cdot n_j$

BetaCV Measure: The BetaCV measure is the ratio of the mean intracluster distance to the mean intercluster distance:

$$BetaCV = \frac{W_{in}/N_{in}}{W_{out}/N_{out}} = \frac{N_{out}}{N_{in}} \cdot \frac{W_{in}}{W_{out}} = \frac{N_{out}}{N_{in}} \frac{\sum_{i=1}^{K} W(C_i, C_i)}{\sum_{i=1}^{K} W(C_i, \overline{C_i})}$$

The smaller the BetaCV ratio, the better the clustering.

Normalized Cut

Normalized cut:
$$NC = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, C_i) + W(C_i, \overline{C_i})} = \sum_{i=1}^{k} \frac{1}{\frac{W(C_i, \overline{C_i})}{W(C_i, \overline{C_i})} + 1}$$

where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i

The higher normalized cut value, the better the clustering

Silhouette $\mu_{out_2}(X_i)$ Coefficient $\mu_{out}^{min}(X_i) = \min\{\mu_{ou_2}(X_i), \mu_{out_1}(X_i)\}$ $\mu_{in}(X_i)$ Xi $\mu_{out_1}(X_i)$

Silhouette Coefficient

Define the silhoutte coefficient of a point \mathbf{x}_i as

$$s_i = rac{\mu_{out}^{\mathsf{min}}(\mathbf{x}_i) - \mu_{in}(\mathbf{x}_i)}{\mathsf{max}\Big\{\mu_{out}^{\mathsf{min}}(\mathbf{x}_i), \mu_{in}(\mathbf{x}_i)\Big\}}$$

where $\mu_{in}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its own cluster \hat{y}_i :

$$\mu_{in}(\mathbf{x}_i) = \frac{\sum_{\mathbf{x}_j \in C_{\hat{y}_i}, j \neq i} \delta(\mathbf{x}_i, \mathbf{x}_j)}{n_{\hat{y}_i} - 1}$$

and $\mu_{out}^{min}(\mathbf{x}_i)$ is the mean of the distances from \mathbf{x}_i to points in the closest cluster:

$$\mu_{out}^{\min}(\mathbf{x}_i) = \min_{j
eq \hat{y}_i} \left\{ \frac{\sum_{\mathbf{y} \in C_j} \delta(\mathbf{x}_i, \mathbf{y})}{n_j} \right\}$$

The Silhouette Coefficient for clustering C: $SC = \frac{1}{n} \sum_{i=1}^{n} s_i$.

SC close to 1 implies a good clustering (Points are close to their own clusters but far from other clusters)

The Davies-Bouldin Index

Let μ_i denote the cluster mean

$$\mu_i = \frac{1}{n_i} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j$$

Let σ_{μ_i} denote the dispersion or spread of the points around the cluster mean

$$\sigma_{\mu_i} = \sqrt{\frac{\sum_{\mathbf{x}_j \in C_i} \delta(\mathbf{x}_j, \mu_i)^2}{n_i}} = \sqrt{var(C_i)}$$

The Davies–Bouldin measure for a pair of clusters
$$C_i$$
 and C_j is defined as the ratio

Calculate the DB of i cluster $DB_{ij} = \frac{\sigma_{\mu_i} + \sigma_{\mu_j}}{\delta(\mu_i, \mu_j)}$
 $D_i = \max_{i \neq j} DB_{ij}$

Calculate the DB of i cluster of clusters $DB_{ij} = \frac{\sigma_{\mu_i} + \sigma_{\mu_j}}{\delta(\mu_i, \mu_j)}$

 DB_{ij} measures how compact the clusters are compared to the distance between the cluster means. The Davies-Bouldin index is then defined as

$$DB = \frac{1}{k} \sum_{i=1}^{k} D_i$$

a lower value means that the clustering is better

Summary

- External measures for clustering evaluation
 - Matching-based measures
 - Entropy-based measures
 - Pairwise measures
- Internal measures for clustering evaluation
 - Graph-based measures
 - Davies-Bouldin Index
 - 。Silhouette Coefficient