第1章 随机事件及其概率

(1)排列 组合公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。
	$C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。
	加法原理 (两种方法均能完成此事): m+n
(0) 1, 11	某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n
(2) 加法	种方法来完成,则这件事可由 m+n 种方法来完成。
和乘法原	乘法原理 (两个步骤分别不能完成这件事): m×n
理	某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n
	种方法来完成,则这件事可由 m×n 种方法来完成。
(9) utk	重复排列和非重复排列(有序)
(3)一些	对立事件(至少有一个)
常见排列	顺序问题
(4) 随机	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
试验和随	但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
机事件	验。
Λι 3.	试验的可能结果称为随机事件。
	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
	如下性质:
	①每进行一次试验,必须发生且只能发生这一组中的一个事件;
(5)基本	②任何事件,都是由这一组中的部分事件组成的。
事件、样本	这样一组事件中的每一个事件称为基本事件,用 ω 来表示。
空间和事	基本事件的全体,称为试验的样本空间,用 ①表示。
件	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母
	<i>A, B, C,</i> …表示事件,它们是 Ω 的子集。
	Ω 为必然事件, \emptyset 为不可能事件。 $A = 0$ 为必然事件, $A = 0$ 为不可能事件。
	不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
	①关系:
	如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
	$A \subset B$
	如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B :
(6)事件的关系与 运算	$A=B_{\circ}$
	$A \times B$ 中至少有一个发生的事件: $A \cup B$, 或者 $A+B$ 。
	属于 A 而不属于 B 的部分所构成的事件,称为 $A 与 B$ 的差,记为 $A-B$,也可
	表示为 A - AB 或者 \overline{AB} ,它表示 A 发生而 B 不发生的事件。
	A 、 B 同时发生: $A \cap B$, 或者 AB 。 $A \cap B=\emptyset$,则表示 $A 与 B$ 不可能同时发生,
	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。

	Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 \overline{A} 。它表示 A 不发生
	的事件。互斥未必对立。
	②运算: (t 久東 _ A (BC) - (AB) C _ A L (BLIC) - (A L B) L L C
	结合率: A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率: (AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
	德摩根率: $\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满
	足下列三个条件: 1° 0≤P(A)≤1,
	$ \begin{array}{ccc} 1 & 0 \leqslant P(A) \leqslant 1, \\ 2^{\circ} & P(\Omega) & = 1 \end{array} $
(7) 概率	3° 对于两两互不相容的事件 A_1 , A_2 , …有
的公理化	$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$
定义	$I\left(\bigcup_{i=1}^{A_i}A_i\right) - \sum_{i=1}^{P}I\left(A_i\right)$
	常称为可列(完全)可加性。
	则称 P(A) 为事件 A 的概率。
	$1^{\circ} \Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$
	$2^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n} .$
(8) 古典	设任一事件 A ,它是由 $\omega_{\scriptscriptstyle 1}, \omega_{\scriptscriptstyle 2} \cdots \omega_{\scriptscriptstyle m}$ 组成的,则有
概型	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
	$=\frac{m}{m}=\frac{A \text{ mossion}}{m}$
	$=\frac{m}{n}=\frac{11/1121113211321132}{$ 基本事件总数
	
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何
(9) 几何	概型。对任一事件A,
概型	L(A)
	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
(10) 加法	P(A+B) = P(A) + P(B) - P(AB)
公式	当 P(AB) = 0 时, P(A+B)=P(A)+P(B)
	P(A-B) = P(A) - P(AB)
(11) 减法 公式	当 B⊂A 时, P(A-B)=P(A)-P(B)
(12) 条件	定义 设 A、B 是两个事件,且 P(A)>0,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
概率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。

	条件概率是概率的一种,所有概率的性质都适合于条件概率。
	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
(13) 乘法	更一般地,对事件 A ₁ , A ₂ , ····A _n , 若 P(A ₁ A ₂ ····A _{n-1})>0,则有
公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1}
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$,则称事件 $A \setminus B$ 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
(14) 独立	<u> </u>
性	必然事件Ω和不可能事件∅与任何事件都相互独立。
	那么A、B、C相互独立。
	对于 n 个事件类似。
	设事件 B1, B2, · · · , Bn 满足
	1° B_1, B_2, \cdots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$,
(15) 全概	n
公式	$A \subseteq \bigcup_{i=1}^{D} b_i$
	则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots + P(B_n)P(A \mid B_n)$
	设事件 B_1 , B_2 ,, B_n 及 A 满足
	1° B_1 , B_2 ,, B_n 两页不相容, $P(Bi)_{>0}$, $i = 1, 2,, n$,
	$A \subset \bigcap^n B_i$
	2° $\underset{i=1}{\overset{\smile}{\smile}}$, $P(A) > 0$,
(10) Fig.	则
	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{1 - (1 - (1 - (1 - (1 - (1 - (1 - (1 - $
斯公 氏	$\sum_{i=1}^{n} P(B_{i}) P(A/B_{i})$
	J^{-1}
	·
(17) 伯努	我们作了 ⁿ 次试验,且满足
利概型	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
性 (15)全概 公式 (16)贝叶 斯公式	立。 必然事件 Ω 和不可能事件 0 与任何事件都相互独立。 0 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, $P(AB) = P(A)P(B)$; $P(BC) = P(B)P(C)$; $P(CA) = P(C)P(A)$ 并且同时满足 $P(ABC) = P(A)P(B)P(C)$; $P(CA) = P(C)P(A)$ 并且同时满足 $P(ABC) = P(A)P(B)P(C)$ 那么 A 、 B 、 C 相互独立。 对于 n 个事件类似。 设事件 B_1, B_2, \cdots, B_n 满成足 1° B_i, B_2, \cdots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \cdots, n)$, $A \subset \bigcup_{i=1}^{n} B_i$ 2° 则有 $P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots + P(B_n)P(A \mid B_n)$ 。 设事件 B_1 , B_2 , \cdots , B_n 两两互不相容, $P(B_i) > 0$, $i = 1$, 2 , \cdots , n , $A \subset \bigcup_{i=1}^{n} B_i$ $P(A) > 0$,则 $P(B_i \mid A) = \frac{P(B_i)P(A \mid B_i)}{\sum_{j=1}^{n} P(B_j)P(A \mid B_j)}$, $i = 1$, 2 , \cdots n。 $P(B_i \mid A) = \frac{P(B_i)P(A \mid B_i)}{\sum_{j=1}^{n} P(B_j)P(A \mid B_j)}$, $i = 1$,

- lacktriangle每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与否是互不影响的。

这种试验称为伯努利概型,或称为n 重伯努利试验。

用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 1-p=q ,用 $P_n(k)$ 表

示n 重伯努利试验中A 出现 $k(0 \le k \le n)$ 次的概率,

$$P_n(k) = C_n^k p^k q^{n-k}, \quad k = 0,1,2,\dots,n$$

第二章 随机变量及其分布

(1) 离散型随机变量的分布律

设离散型随机变量 X 的可能取值为 $X_k(k=1,2,\cdots)$ 且取各个值的概率,即事件 $(X=X_k)$ 的概率为

 $P(X=x_k)=p_k, k=1, 2, \dots,$

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:

$$\frac{X}{P(X=x_k)} \left| \frac{x_1, x_2, \cdots, x_k, \cdots}{p_1, p_2, \cdots, p_k, \cdots} \right|$$

显然分布律应满足下列条件:

(1)
$$p_k \ge 0$$
, $k = 1, 2, \cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$

(2)连续型随机变量的分布密度

设F(x) 是随机变量X 的分布函数,若存在非负函数f(x) ,对任意实数x ,有 $F(x) = \int_{-\infty}^{x} f(x) dx$

则称 X 为连续型随机变量。 f(x) 称为 X 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面 4 个性质:

$$f(x) \ge 0$$

$$2^{\circ} \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$$

(3) 离散 与连续型 随机变量 的关系

$$P(X = x) \approx P(x < X \le x + dx) \approx f(x)dx$$

积分元 f(x)dx 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

(4) 分布 设X为随机变量,x是任意实数,则函数 函数 $F(x) = P(X \le x)$ 称为随机变量 X 的分布函数,本质上是一个累积函数。 $P(a < X \le b) = F(b) - F(a)$ 可以得到 X 落入区间 (a,b] 的概率。分布 函数 F(x) 表示随机变量落入区间 (- ∞ , x] 内的概率。 分布函数具有如下性质: 1° $0 \le F(x) \le 1$, $-\infty < x < +\infty$; 2° F(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$; 3° $F(-\infty) = \lim_{x \to \infty} F(x) = 0$, $F(+\infty) = \lim_{x \to \infty} F(x) = 1$; 4° F(x+0) = F(x), 即 F(x) 是右连续的; 5° P(X = x) = F(x) - F(x - 0). 对于离散型随机变量, $F(x) = \sum_{x \le x} p_x$; 对于连续型随机变量, $F(x) = \int_{0}^{x} f(x)dx$ 。 0-1 分布 (5) 八大 P(X=1)=p, P(X=0)=q分布 二项分布 在n 重贝努里试验中,设事件A发生的概率为p。事件A发生 的次数是随机变量,设为X,则X可能取值为 $0,1,2,\dots,n$ 。 $P(X = k) = P_n(k) = C_n^k p^k q^{n-k}$, 其 中 q = 1 - p, 0 ,则称随机变量 X 服从参数为n, p 的二项分布。记为 $X \sim B(n, p)$. 当n=1时, $P(X=k)=p^kq^{1-k}$,k=0.1,这就是(0-1)分 布,所以(0-1)分布是二项分布的特例。

泊松分	布 设随机变量 X 的分布律为
	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2\cdots,$
	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或
	者 $P(\lambda)$ 。 泊松分布为二项分布的极限分布 $(np=\lambda, n\to\infty)$ 。
超几何	分布 $P(X=k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0,1,2\cdots,l$ $l = \min(M,n)$
	随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。
几何分	布 $P(X = k) = q^{k-1} p, k = 1, 2, 3, \dots,$ 其中 p \geqslant 0,q=1-p。
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
均匀分	π 设随机变量 X 的值只落在 $[a,b]$ 内,其密度函数 $f(x)$ 在 $[a,b]$
	上为常数 $\frac{1}{b-a}$,即
	$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \sharp \ell \ell, \end{cases}$
	则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为
	$ \begin{pmatrix} 0, & x < a, \\ \underline{x - a} \end{pmatrix} $
	$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \frac{x}{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$
	(1, x>b.
	当 $a \le x_1 \le x_2 \le b$ 时, X 落在区间(x_1, x_2)内的概率为
	$P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a} .$

指数分布

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

$$\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$$

正态分布

设随机变量X的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty,$$
 其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ

的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。

f(x) 具有如下性质:

f(x) 的图形是关于 $x = \mu$ 对称的;

参数 $\mu=0$ 、 $\sigma=1$ 时的正态分布称为标准正态分布,记为

$$X \sim N(0,1)$$
 其密度函数记为
$$\varphi(x) = \frac{\sqrt{2\pi}e^{-2}}{\sqrt{2\pi}}, -\infty < x < +\infty,$$

分布函数为

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$

 $\Phi(x)$ 是不可求积函数,其函数值,已编制成表可供查用。

$$\Phi(-x) = 1 - \Phi(x) \perp \Phi(0) = \frac{1}{2}$$

如果 $X^{\sim}N(\mu,\sigma^2)$,则 $\frac{X-\mu}{\mu}^{\sim}N(0,1)$ 。

$$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \frac{\sigma}{\mu}}{-}\right) - \Phi\left(\frac{x_1 - \mu}{-}\right).$$

(6)分位 数		$P(X \le \mu_{\alpha}) = \alpha ;$ $P(X > \mu_{\alpha}) = \alpha .$
(7) 函数分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \frac{x_1, x_2, \dots, x_n, \dots}{p_1, p_2, \dots, p_n, \dots}, $ $Y=g(X)$ 的分布列 $(y_i=g(x_i)$ 互不相等) 如下: $ \frac{Y}{P(Y=y_i)} \frac{g(x_1), g(x_2), \dots, g(x_n), \dots}{p_1, p_2, \dots, p_n, \dots}, $ 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
	连续型	先利用 X 的概率密度 $f_X(x)$ 写出 Y 的分布函数 $F_Y(y) = P(g(X) \le y)$, 再利用变上下限积分的求导公式求出 $f_Y(y)$ 。

第三章 二维随机变量及其分布

	分 二	早 一维	地加多	と里以	.开刀 1	h		
(1) 联合 分布	离散型	如果二维	随机向量	量ξ (X,	Y)的所	有可能取	值为至多	可列
		个有序对(x,	y),则称	がを为离	散型随机	量。		
		设 <i>ξ</i> = ()	X, Y) 的	所有可能	能取值为 ($(x_i, y_j)(i$	$, j = 1, 2, \cdot$	··) ,
		且事件{ξ=()	(x_i, y_j)	的概率为	<i>p_{i,j,}</i> ,称			
		$P\{(X,Y)\}$	$(x_i, y_i) = (x_i, y_i)$	(y_j) $\} = p$	$\phi_{ij}(i, j=1)$,2,)		
		为 <i>ξ</i> = (X, Y)的分布	律或称え	与 X 和 Y	的联合分	布律。联	合分
		 布有时也用下						
		Y						
		X	<i>y</i> 1	y_2	•••	y_j	•••	
		X_I	p_{II}	p_{12}	•••	p_{Ij}	•••	
		X_2	p_{21}	p_{22}	•••	p_{2j}	•••	
		:	÷	:		:	÷	
		X_i	p_{il}		•••	p_{ij}	•••	
		÷	÷	:		÷	:	
		这里 p _{ij} 具有	下面两个	性质:				1
		(1) $p_{ij} \geqslant 0$ (, ···);				
		$(2) \sum_{i} \sum_{j}$	$p_{ij}=1.$					

连续型 对于二维随机向量 $\xi=(X,Y)$, 如果存在非负函数 $f(x,y)(-\infty < x < +\infty, -\infty < y < +\infty)$,使对任意一个其邻边 分别平行于坐标轴的矩形区域 D, 即 D= $\{(X,Y) | a < x < b, c < y < d\}$ $P\{(X,Y) \in D\} = \iint f(x,y) dx dy,$ 则称 ξ 为连续型随机向量;并称 f(x,y)为 $\xi=(X,Y)$ 的分布 密度或称为X和Y的联合分布密度。 分布密度 f(x,y)具有下面两个性质: (1) $f(x, y) \ge 0$; (2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$ (2) 二维 $\xi(X = x, Y = y) = \xi(X = x \cap Y = y)$ 随机变量 的本质 (3) 联合 设(X, Y)为二维随机变量,对于任意实数 x, y, 二元函数 分布函数 $F(x, y) = P\{X \le x, Y \le y\}$ 称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函 数。 分布函数是一个以全平面为其定义域,以事件 $\{(\omega_1,\omega_2)|-\infty < X(\omega_1) \le x,-\infty < Y(\omega_2) \le y\}$ 的概率为函数值的一个实值函 数。分布函数 F(x, y) 具有以下的基本性质: (1) $0 \le F(x, y) \le 1$; (2) F(x,y) 分别对 x 和 y 是非减的,即 当 $x_2 > x_1$ 时,有 $F(x_2, y) \ge F(x_1, y)$; 当 $y_2 > y_1$ 时,有 $F(x, y_2) \ge F(x, y_1)$; (3) F(x, y) 分别对 x 和 y 是右连续的, 即 F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$ (5) 对于 $x_1 < x_2$, $y_1 < y_2$, $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$ (4) 离散 $P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dx dy$ 型与连续 型的关系

(5)边缘	离散型	X 的边缘分布为
分布		$P_{i\bullet} = P(X = x_i) = \sum_i p_{ij}(i, j = 1, 2, \dots);$
		Y的边缘分布为
		$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij}(i, j = 1, 2, \dots)$
	连续型	X的边缘分布密度为
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$
		Y的边缘分布密度为
		$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$
(6) 条件	离散型	在已知 X=x _i 的条件下,Y 取值的条件分布为
分布		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
		在已知 Y=y;的条件下, X 取值的条件分布为
		$P(X = x_i Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
	连续型	在已知 Y=y 的条件下, X 的条件分布密度为
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
		在已知 X=x 的条件下, Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
(7) 独立	一般型	$F(X, Y) = F_X(x) F_Y(y)$
性	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_x(x) f_y(y)$ 直接判断,充要条件:
		①可分离变量
	/b · · ·	②正概率密度区间为矩形
	二维正态分布	②正概率密度区间为矩形 $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$
		$\rho = 0$

函数

随机变量的 | 若 $X_1, X_2, \cdots X_m, X_{m+1}, \cdots X_n$ 相互独立, h, g 为连续函数,则: h (X₁, X₂, ···X_m) 和 g (X_{m+1}, ···X_n) 相互独立。

特例: 若 X 与 Y 独立,则: h(X)和 g(Y)独立。

例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

(8) 二维 均匀分布

设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D\\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) ~ U (D).

例如图 3.1、图 3.2 和图 3.3。

图 3.1

图 3.2

(9)	二维
正态を	∤布

设随机向量(X,Y)的分布密度函数为

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, |\rho| < 1$ 是 5 个参数,则称 (X, Y) 服从二维正态分布,

记为 (X, Y) \sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即 X \sim N (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2$).

但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X, Y)未必是二维正态分布。

(10)函数 分布

Z=X+Y

根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$

对于连续型,
$$f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$$

两个独立的正态分布的和仍为正态分布($\mu_1+\mu_2,\sigma_1^2+\sigma_2^2$)。 n 个相互独立的正态分布的线性组合,仍服从正态分布。

$$\mu = \sum_{i} C_{i} \mu_{i}$$
, $\sigma^{2} = \sum_{i} C_{i}^{2} \sigma_{i}^{2}$

$Z=max,min(X_1,X_2,\cdots X_n)$

若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为

 $F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 Z=max,min(X₁,X₂,···X_n)的分布函数为:

$$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$$

$$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$$

 χ^2 分布

设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分布,可以证明它们的平方和

$$W = \sum_{i=1}^{n} X_i^2$$

的分布密度为

$$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$$

我们称随机变量 W 服从自由度为 n 的 χ^2 分布, 记为 W $\sim \chi^2(n)$, 其中

$$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$$

所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。

 χ^2 分布满足可加性: 设

$$Y_i - \chi^2(n_i),$$

则

$$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$$

	t 分布	设 X, Y 是两个相互独立的随机变量,且
		$X \sim N(0,1), Y \sim \chi^2(n),$
		可以证明函数
		$T = \frac{X}{\sqrt{Y/n}}$
		的概率密度为
		$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$
		我们称随机变量 T 服从自由度为 n 的 t 分布,记为 T~t(n)。
		$t_{1-\alpha}(n) = -t_{\alpha}(n)$
		设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且 X 与 Y 独立,可以证明
		$F = \frac{X/n_1}{Y/n_2}$ 的概率密度函数为
		$f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2} - 1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1 + n_2}{2}}, y \ge 0\\ 0, y < 0 \end{cases}$
		我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$.
		$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

(1)	离散型	连续型

一随变的字征	期望就是平均值	设 X 是离散型随机变量,其分布律为 $P(X = x_k) = p_k$, $k=1,2,\cdots,n$, $E(X) = \sum_{k=1}^n x_k p_k$ (要求绝对收敛)	设 X 是连续型随机变量,其概率密度为 $f(x)$, $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ (要求绝对收敛)
	函数的期望	$Y=g(X)$ $E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$Y=g(X)$ $E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$
	方差 $D(X) = E[X - E(X)]^2$, 标准差 $\sigma(X) = \sqrt{D(X)}$,	$D(X) = \sum_{k} [x_k - E(X)]^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$
	矩	①对于正整数 k,称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩,记为 v_k ,即 v_k = $E(X^k) = \sum_i x_i^k p_i$,	①对于正整数 k, 称随机变量 X 的 k 次幂的数学期望为 X 的 k 阶原点矩, 记为 v_k , 即 $v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx$,
		$k=1, 2, \cdots$. ②对于正整数 k ,称随机变量 X 与 $E(X)$ 差的 k 次幂的数学期 望为 X 的 k 阶中心矩,记为 μ_k ,	$k=1, 2, \cdots$. ②对于正整数 k ,称随机变量 X 与 $E(X)$ 差的 k 次幂的数学期望为 X 的 k 阶中心矩,记为 μ_k ,即
		即 $\mu_k = E(X - E(X))^k$.	$\mu_k = E(X - E(X))^k$ \vdots $= \int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx$
		$= \sum_{i} (x_i - E(X))^k p_i ,$ $k=1, 2, \dots.$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	切比雪夫不等式	设随机变量 X 具有数学期望 E (任意正数 ε , 有下列切比雪夫不	X) = μ, 方差 D (X) = σ², 则对于 等式	
		$\left P(\left X - \mu \right \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2} \right $		
		切比雪夫不等式给出了在未知 X 的分布的情况下,对概率		
		P(X	$-\mu \geq \varepsilon$)	
		 的一种估计,它在理论上有重要		
(2)	(1) E(C)=C			
期望	(2) E(CX) = CE(X)			
的性质	(3) $E(X+Y)=E(X)+E(Y)$	$E(\sum_{i=1}^{n} C_{i} X_{i}) = \sum_{i=1}^{n} C_{i} E(X_{i})$		
	(4) $E(XY) = E(X) E(Y)$,	充分条件: X和Y独立; 充要条件: X和Y不相关。		
(3)	(1) $D(C)=0$; $E(C)=C$	- (···) - (···)		
方差	(2) $D(aX) = a^2D(X);$			
的性质	(3) $D(aX+b) = a^2D(X);$ (4) $D(X) = E(X^2) - E^2(X)$	E(aX+b)=aE(X)+b		
灰		Y), 充分条件: X 和 Y 独立;		
	充要条件: X 和 Y 不相关。			
	D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))], 无条件成立。			
	而 E(X+Y)=E(X)+	E(Y), 无条件成立。		
(4)		期望	方差	
常见分布	0-1 分布 B (1, p)	р	p(1 – p)	
的期望和	二项分布 B(n, p)	пр	np(1-p)	
方差	泊松分布 P (λ)	λ	λ	
	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	
	超几何分布 $H(n,M,N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$	
	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	
	指数分布 $e(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	

	正态分布 $N(\mu,\sigma^2)$	μ	σ^2	
	χ ² 分布	n	2n	
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$	
(5) 二维 随机	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$	
变量 的 字特		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\bullet j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$	
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =	
		$\sum_{i} \sum_{j} G(x_i, y_j) p_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x, y) f(x, y) dx dy$	
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$	
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{\bullet j}$	$D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$	
	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方		
		差或相关矩,记为 $\sigma_{ extit{XY}}$ 或 $\operatorname{cov}(X,Y)$,即		
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$		
		与记号 σ_{xy} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分别记为 σ_{xx}		
		与 $\sigma_{\scriptscriptstyle YY}$ 。		

	相关系数	对于随机变量 X 与 Y, 如果 D (X) >0, D(Y)>0, 则称
		$rac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		$\sqrt{D(X)}\sqrt{D(Y)}$
		为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
		$\mid \rho \mid \leq 1$,当 $\mid \rho \mid = 1$ 时,称 X 与 Y 完全相关: $P(X=aY+b)=1$
		而当 $\rho=0$ 时,称 X 与 Y 不相关。
		以下五个命题是等价的:
		$ \bigcirc \rho_{XY} = 0; $
		2cov(X, Y) = 0;
	协方差矩阵	$egin{pmatrix} \sigma_{_{XX}} & \sigma_{_{XY}} \ \sigma_{_{YX}} & \sigma_{_{YY}} \end{pmatrix}$
	混合矩	对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 v_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X, Y)=cov (Y,	
协 方 差 的	(ii) cov(aX, bY) = ab cov (iii) cov(X ₁ +X ₂ , Y) = cov(X ₁ +X ₂)	
性质	(iv) $\operatorname{cov}(X, Y) = \operatorname{E}(XY) - \operatorname{E}(XY)$	
(7) 独 立	(i) 若随机变量 X 与	Y 相互独立,则 $ ho_{xy}=0$; 反之不真。
和不相关	(ii) 若(X, Y)~N	$(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho),$
711/	则 X 与 Y 相互独	立的充要条件是X和Y不相关。

第五章 大数定律和中心极限定理

(1) 大数定律	切比雪	设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,且被同一
$\overline{X} \to \mu$	夫大数	常数 C 所界: $D(X_i) < C(i=1,2,\cdots)$,则对于任意的正数 ϵ ,有
,	定律	$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
		特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E(X_1) = \mu$,
		则上式成为
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
	伯努利	设 μ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在
	大数定 律	每次试验中发生的概率,则对于任意的正数 ε ,有
	H-	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
		伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生的频率与概率有较大判别的可能性很小,即
		$\lim_{n\to\infty}P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$
		这就以严格的数学形式描述了频率的稳定性。
	辛钦大 数定律	设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,且 E (X_n) = μ , 则对于任意的正数 $ε$ 有
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
(2) 中心极限定理	列维- 林德伯	设随机变量 X ₁ , X ₂ , …相互独立, 服从同一分布, 且具有相 同 的 数 学 期 望 和 方 差 :
	格定理	$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \cdots)$,则随机变量
$\overline{X} \to N(\mu, \frac{\sigma^2}{n})$		$B(A_k) - \mu, D(A_k) - 0 \rightarrow 0(K-1,2,\cdots)$, 妈现机文里
		$\sum_{k=1}^{n} X_{k} - n\mu$
		$Y_n = rac{\displaystyle\sum_{k=1} X_k - n\mu}{\sqrt{n}\sigma}$
		的分布函数 $F_n(x)$ 对任意的实数 x ,有
		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$
		此定理也称为 独立同分布 的中心极限定理。

	棣莫弗 设随机变量 X_n 为具有参数 n, p(0 $<$ p $<$ 1)的二项分布,则对于		
	拉斯定 任意实数 x, 有		
	$=\lim_{n\to\infty}P\left\{\frac{X_n-np}{\sqrt{np(1-p)}}\leq x\right\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{t^2}{2}}dt.$		
(3)二项定理	若当 $N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则		
	$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$		
	超几何分布的极限分布为二项分布。		
(4) 泊松定理	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则		
	$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}$ $(n \to \infty).$		
	其中 k=0, 1, 2, …, n, …。 二项分布的极限分布为泊松分布。		

第六章 样本及抽样分布

(1) 数理	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全	
统计的基		体称为总体(或母体)。我们总是把总体看成一个具有分布的随	
本概念		机变量(或随机向量)。	
	个体	总体中的每一个单元称为样品(或个体)。	
	样本	我们把从总体中抽取的部分样品 x_1, x_2, \cdots, x_n 称为样本。样本	
		中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,	
		总是把样本看成是 n 个相互独立的且与总体有相同分布的随机	
		变量,这样的样本称为简单随机样本。在泛指任一次抽取的结	
		果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量 (样本);在具体的一次	
		抽取之后, x_1, x_2, \cdots, x_n 表示 n 个具体的数值 (样本值)。我们	
		称之为样本的两重性。	
	样本函数和 统计量	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称	
		$\varphi = \varphi \qquad (x_1, x_2, \dots, x_n)$	
		为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未	
		知参数,则称 φ (x_1, x_2, \cdots, x_n)为一个统计量。	

	常见统计量 及其性质	样本均值
		样本方差
		$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$
		样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$
		样本 k 阶原点矩
		$M_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \cdots$
		样本 k 阶中心矩
		$M'_{k} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{k}, k = 2,3,\cdots$
		$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n},$
		$E(S^2) = \sigma^2, E(S^{*2}) = \frac{n-1}{n}\sigma^2,$
		其中 $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$,为二阶中心矩。
(2) 正态 总体下的	正态分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
四大分布		本函数
		$u = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
	t 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样
		本函数
		$t \stackrel{def}{=} \frac{x - \mu}{s / \sqrt{n}} \sim t(n - 1),$
		其中 t (n-1)表示自由度为 n-1 的 t 分布。

	χ ² 分布	0 设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样	
		 本函数	
		$w^{\frac{def}{2}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$	
		其中 $\chi^2(n-1)$ 表示自由度为 n-1 的 χ^2 分布。	
	F分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而	
		y_1, y_2, \cdots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本	
		函数	
		$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$	
		其中	
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$	
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 ,第二自由度为	
		$n_2 - 1$ 的 F 分布。	
(3) 正态 总体下分	\overline{X} 与 S^2 独立	•	
布的性质			

第七章 参数估计

(1)点	矩估计
估计	

设总体 X 的分布中包含有未知数 $\theta_1, \theta_2, \cdots, \theta_m$,则其分布函数可以表成 $F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也 包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$,即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。 又设 x_1,x_2,\cdots,x_n 为总体 X 的 n 个样本值,其样本的 k 阶原点矩为

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} \quad (k=1,2,\cdots,m).$$

这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"的原则建立方程,即有

$$\begin{cases} v_1(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i, \\ v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \\ \dots \\ v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m. \end{cases}$$

由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1},\hat{\theta_2},\cdots,\hat{\theta_m})$ 即为参数 $(\theta_1,\theta_2,\cdots,\theta_m)$ 的矩估计量。

若 $\hat{\theta}$ 为 θ 的矩估计,g(x)为连续函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的矩估计。

	1.77 1 21			
	极大似	当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为		
	然估计	$f(x;\theta_1,\theta_2,\cdots,\theta_m)$, 其中 $\theta_1,\theta_2,\cdots,\theta_m$ 为未知参数。又设		
		x_1, x_2, \dots, x_n 为总体的一个样本,称		
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$		
		为样本的似然函数,简记为 L_n . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为		
		$P{X = x} = p(x; \theta_1, \theta_2, \dots, \theta_m)$,则称		
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$		
		为样本的似然函数。		
		若似然函数 $L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m)$ 在 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m$ 处取		
		到最大值,则称 $\hat{\theta}_1,\hat{\theta}_2,\dots,\hat{\theta}_m$ 分别为 $\theta_1,\theta_2,\dots,\theta_m$ 的最大似然估计值,		
		相应的统计量称为最大似然估计量。		
		$\left. \frac{\partial \ln L_{_{n}}}{\partial \theta_{_{i}}} \right _{\theta_{_{i}} = \hat{\theta}_{i}} = 0, i = 1, 2, \cdots, m$		
		$\stackrel{\circ}{H}$ 为 θ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大		
		似然估计。		
(2)估计量的	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若 E $(\hat{\theta}) = \theta$,则称		
评选标 准		$\stackrel{\wedge}{ heta}$ 为 $ heta$ 的无偏估计量。		
		$E(\overline{X}) = E(X), E(S^2) = D(X)$		
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_2, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_2, \dots, x_n)$ 是未知参数 θ		
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。		

	一致性	设 $\hat{\theta}_n$ 是 θ 的一串估计量,如果对于任意的正数 ε ,都有 $\lim_{n\to\infty}P(\hat{\theta}_n-\theta >\varepsilon)=0,$ 则称 $\hat{\theta}_n$ 为 θ 的一致估计量(或相合估计量)。
(3)区 间估计	置信区间和置信度	\ddot{E} 为 θ 的无偏估计,且 $D(\hat{\theta}) \to 0$ ($n \to \infty$),则 $\hat{\theta}$ 为 θ 的一致估计。只要总体的 $E(X)$ 和 $D(X)$ 存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。 设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x_{,2}, \cdots, x_n$ 出 发 , 找 出 两 个 统 计 量 $\theta_1 = \theta_1(x_1, x_{,2}, \cdots, x_n)$ 与
		$\theta_2=\theta_2(x_1,x,_2,\cdots,x_n)$ $(\theta_1<\theta_2)$, 使 得 区 间 $[\theta_1,\theta_2]$ 以 $1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 θ ,即
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
		那么称区间 $[\theta_1, \theta_2]$ 为 θ 的置信区间, $1-\alpha$ 为该区间的置信度(或置信水平)。
	单总期 忘的和 方差的	设 $x_1, x_{,_2}, \cdots, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$ 下,我们来确定 μ 和 σ^2 的置信区间 $[\theta_1, \theta_2]$ 。具体步骤如下:
	区间估计	(i) 选择样本函数; (ii) 由置信度 $1-\alpha$,查表找分位数; (iii) 导出置信区间 $[\theta_1,\theta_2]$ 。

		_
	己知方差,估计均值	(i)选择样本函数
		$u = \frac{\overline{x} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
		(ii) 查表找分位数
		$P\left(-\lambda \le \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
		(iii) 导出置信区间
		$\left[\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$
	未知方差,估计均值	(i) 选择样本函数
		$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} \sim t(n-1).$
		(ii)查表找分位数
		$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
		(iii) 导出置信区间
		$\left[\bar{x} - \lambda \frac{S}{\sqrt{n}}, \bar{x} + \lambda \frac{S}{\sqrt{n}}\right]$
	方差的区间估计	(i)选择样本函数
		$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
		(ii) 查表找分位数
		$P\left(\lambda_1 \leq \frac{(n-1)S^2}{\sigma^2} \leq \lambda_2\right) = 1 - \alpha.$
		(iii) 导出 σ 的置信区间
		$\left[\sqrt{\frac{n-1}{\lambda_2}}S,\sqrt{\frac{n-1}{\lambda_1}}S\right]$
L	1	

第八章 假设检验

基本思想 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是 不会发生的,即小概率原理。 为了检验一个假设从是否成立。我们先假定从是成立的。如果根据这个假 定导致了一个不合理的事件发生,那就表明原来的假定 从是不正确的,我们拒 绝接受 Ki: 如果由此没有导出不合理的现象,则不能拒绝接受 Ki,我们称 Ki是 相容的。与恐相对的假设称为备择假设,用恐表示。 这里所说的小概率事件就是事件 $\{K \in R_{\alpha}\}$,其概率就是检验水平 α ,通 常我们取 α =0.05,有时也取 0.01 或 0.10。 基本步骤 假设检验的基本步骤如下: (i) 提出零假设 抵; 选择统计量 K; (ii) (iii) 对于检验水平α查表找分位数λ; (iv)由样本值 x_1, x_2, \dots, x_n 计算统计量之值 K; 将 K 与 λ 进行比较,作出判断: 当 $|K| > \lambda$ (或 $K > \lambda$) 时否定 H , 否则认为 H相容。 两类错误 第一类错误 当 私 为真时,而样本值却落入了否定域,按照我们规定的 检验法则,应当否定 从。这时,我们把客观上 从成立判为 Li 为不成立(即否定了真实的假设), 称这种错误为"以真 当假"的错误或第一类错误,记 α 为犯此类错误的概率,即 $P{$ 否定 $H_0 | H_0$ 为真 $} = \alpha$; 此处的α恰好为检验水平。 当 H 为真时,而样本值却落入了相容域,按照我们规定的 第二类错误 检验法则,应当接受 H。这时,我们把客观上 H。不成立判 为 从成立 (即接受了不真实的假设), 称这种错误为"以假 当真"的错误或第二类错误,记 β 为犯此类错误的概率, 即 $P{接受 H_l | H_l 为真} = \beta$ 。 两类错误的关系 人们当然希望犯两类错误的概率同时都很小。但是,当 容量 n 一定时, α 变小,则 β 变大;相反地, β 变小,则 α 变大。取定 α 要想使 β 变小,则必须增加样本容量。 在实际使用时,通常人们只能控制犯第一类错误的概 率,即给定显著性水平α。α大小的选取应根据实际情况而 定。当我们宁可"以假为真"、而不愿"以真当假"时,则 应把α取得很小,如0.01,甚至0.001。反之,则应把α取 得大些。

2011-1-1

单正态总体均值和方差的假设检验

条件	零假设	统计量	对应样本 函数分布	否定域
	$H_0: \mu = \mu_0$	_	N(0, 1)	$ u > u_{1-\frac{\alpha}{2}}$
已知 σ^2	$H_0: \mu \leq \mu_0$	$U = \frac{x - \mu_0}{\sigma_0 / \sqrt{n}}$		$u > u_{1-\alpha}$
	$H_0: \mu \geq \mu_0$			$u < -u_{1-\alpha}$
	$H_0: \mu = \mu_0$	$T = \frac{\bar{x} - \mu_0}{S / \sqrt{n}}$	t(n-1)	$ t > t_{1-\frac{\alpha}{2}}(n-1)$
未知 σ^2	$H_0: \mu \leq \mu_0$ T			$t > t_{1-\alpha}(n-1)$
	$H_0: \mu \geq \mu_0$			$t < -t_{1-\alpha} (n-1)$
	$H_0: \sigma^2 = \sigma^2$ $H_0: \sigma^2 \le \sigma_0^2$	$w = \frac{(n-1)S^2}{\sigma_0^2}$	$\kappa^2(n-1)$	$w < \kappa_{\frac{\alpha}{2}}^2 (n-1)$ 或
+ 100 2				$w > \kappa_{1-\frac{\alpha}{2}}^2(n-1)$
未知 σ^2				$w > \kappa_{1-\alpha}^2 (n-1)$
	$H_0: \sigma^2 \ge \sigma_0^2$			$w < \kappa_{\alpha}^{2}(n-1)$

2011-1-1