MODELO DE DE REGRESSÃO LINEAR MÚLTIPLA

Apostila Suely Ruiz Giolo

Scatter do Ganho vs Tempo e Dose

02/12 - Análise de Regressão Múltipla - ARM

09/12 - Análise de Regressão Múltipla - ARM

16/12 - Aula Prática (Exercício)

- 1. ARM (Interpretação, ANOVA, Coeficientes (Determinação e correlação), Matricial, MMQO)
- 2. IC
- 3. TH
- 4. Diagnósticos
- Multicolineariedade
- 6. Diagnóstico de Influência
- 7. Métodos para tratar multicolineariedade
- 8. Seleção de variáveis e construção do modelo
- 9. Extrapolações
- 10. Validações MRLM
- 11. Regressão com parte categórica (Variáveis Dammy)
- 12. Regressão Polinomial
- 13. Exemplos

13/01 - ARM - Seleção de variáveis

20/01 - Variáveis Dummy

27/01 - 03/02 - 10/02 - 17/02

3.1 – Teste para significância da regressão (ANOVA)

$$F = QMreg / QMres$$

e que, sob Ho, tem distribuição $F_{p-1; n-p}$. Se Ho for rejeitada, haverá evidências de que pelo menos um β_i difere de zero.

3.2 – Teste para os coeficientes individuais da Regressão

$$H_0$$
: $\beta_j = 0$
 H_a : $\beta_i \neq 0$.

A estatística de teste usada, em geral, para testar as hipóteses apresentadas é dada por:

$$t^* = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 C_{ii}}} = \frac{\hat{\beta}_j}{e.p.(\hat{\beta}_j)} \stackrel{\text{sob H}_0}{\sim} t_{n-p} \quad (j = 0, 1, ..., k \ e \ i = j+1),$$

em que C_{ii} é o *i*-ésimo elemento da diagonal da matriz $(X^iX)^{-1}$ e $\hat{\sigma}^2 = QMres$. Se H_o não for rejeitada, haverá evidências de que a contribuição da regressora X_j para a explicação de Y não é significativa e, desse modo, X_j pode ser excluída do modelo. Caso contário, a regressora deve ser mantida no modelo.

3.2 – Método da SQextra para testar coeficientes

mede o **acréscimo** marginal na SQreg, quando uma ou diversas regressoras são adicionadas ao modelo de regressão ou,

SQextra

equivalentemente, a **redução** marginal na SQres, quando uma ou mais regressoras são adicionadas ao modelo;

Para isso temos a estatística t*, alternativamente temos a estatística F*;

Coeficiente de determinação parcial;

Coeficiente de correlação parcial.

3.2.1 – Método da SQextra para testar coeficientes

Para determinar a contribuição da regressora X_j para a SQreg, na presença das demais regressoras X_i ($i \neq j$) no modelo;

Determinar a contribuição de um subconjunto de variáveis regressoras para o modelo.

n = 20, Y = variável resposta e as regressoras contínuas X_1 , X_2 e X_3 , os modelos

• Regressão de Y em X_1 : $\hat{Y} = -1,496 + 0,8572x_1$.

F.V.	SQ	g.1.	QM
Reg	352,27	1	352,27
Res	143,12	18	7,95
Total	495,39	19	

 $d.p.(\beta_1) = 0.1288$

Regressão de Y em X_2 : $\hat{Y} = -23,634 + 0,8565x_2$.

F.V.	SQ	g.1.	QM
Reg	381,97	1	381,97
Res	113,42	18	6,30
Total	495,39	19	

d.p. $(\hat{\beta}_2) = 0.11$

Regressão de Y em X_1 e X_2 : $\hat{Y} = -19,174 + 0,2224x_1 + 0,6594x_2$.

F.V.	SQ	g.1.	QM
Reg	385,44	2	192,72
Res	109,95	17	6,47
Tota1	495,39	19	

 $d.p.(\hat{\beta}_1) = 0.3034$ $d.p.(\hat{\beta}_2) = 0.2912$

- quando X₁ e X₂ estão no modelo tem-se SQres (X₁,X₂) = 109,95 e
- quando somente X₁ está no modelo tem-se SQres (X₁) = 143,12 e, ainda,
- quando X_1 e X_2 estão no modelo tem-se SQreg $(X_1, X_2) = 385,44$ e
- quando somente X_1 está no modelo tem-se $SQreg(X_1) = 352,27$.

• efeito marginal de adicionar X₂ em X₁

$$SQ_E(X_2|X_1) = SQres(X_1) - SQres(X_1, X_2)$$

= $SQreg(X_1, X_2) - SQreg(X_1)$
= 33,17.

efeito marginal de adicionar X₃ ao modelo quando X₁ e X₂ estão presentes.

$$SQ_E(X_3|X_1, X_2) = SQres(X_1, X_2) - SQres(X_1, X_2, X_3) = 109,95 - 98,41 = 11,54$$
ou
 $SQ_E(X_3|X_1, X_2) = SQreg(X_1, X_2, X_3) - SQreg(X_1, X_2) = 396,98 - 385,44 = 11,54.$

• Regressão de Y em X_1 e X_2 : $\hat{Y} = -19,174 + 0,2224x_1 + 0,6594x_2$.

F.V.	SQ	g.1.	QM	$d.p.(\hat{\beta}_1) = 0.3034$
Reg	385,44	2	192,72	$d.p.(\hat{\beta}_2) = 0,2912$
Res	109,95	17	6,47	
Total	495,39	19		

• Regressão de Y em X_1 , X_2 e X_3 : $\hat{Y} = 117,08 + 4,344x_1 - 2,857x_2 - 2,186x_3$.

-		-, -		· · · · · · · · · · · · · · · · · · ·
F.V.	SQ	g.1.	QM_	$d.p.(\hat{\beta}_1) = 3,016$
Reg	396,98	3	132,33	$d.p.(\hat{\beta}_2) = 2,582$
Res	98,41	16	6,15	$d.p.(\hat{\beta}_3) = 1,596$
Total	495,39	19		

efeito marginal de adicionar X2 e X3 ao modelo quando X1 está presente.

$$\begin{aligned} \text{SQ}_{\text{E}}\left(X_{2},\,X_{3}|\,X_{1}\,\right) = &\,\,\text{SQres}\left(X_{1}\right) - \text{SQres}\left(X_{1},\,X_{2},\,X_{3}\right) = 143,12 - 98,41 = \,\,44,71 \\ &\,\,\textbf{ou} \\ \text{SQ}_{\text{E}}\left(X_{2},\,X_{3}|\,X_{1}\,\right) = &\,\,\text{SQreg}\left(X_{1},\,X_{2},\,X_{3}\right) - \,\,\text{SQreg}\left(X_{1}\right) \, = 396,98 - 352,27 \, = \,\,44,71. \end{aligned}$$

• Regressão de Y em X_1 : $\hat{Y} = -1,496 + 0,8572x_1$.

F.V.	SQ	g.1.	QM
Reg	352,27	1	352,27
Res	143,12	18	7,95
Tota1	495,39	19	

 $d.p.(\hat{\beta}_1) = 0.1288$

• Regressão de Y em X_1 , X_2 e X_3 : $\hat{Y} = 117,08 + 4,344x_1 - 2,857x_2 - 2,186x_3$.

F.V.	SQ	g.1.	QM_	$d.p.(\hat{\beta}_1) = 3,016$
Reg	396,98	3	132,33	d.p. $(\hat{\beta}_2) = 2,582$
Res	98,41	16	6,15	$d.p.(\hat{\beta}_3) = 1,596$
Total	495 39	19		

Interesse não está somente em obter tais reduções ou acréscimos, mas saber se a variável (ou as variáveis) Xj deve, ou não, ser incluída no modelo.

Finalidade, já foi visto que a estatística de teste parcial *t** é apropriada.

<u>Alternativamente</u>, pode-se usar a estatística de teste parcial F*,que usa as SQ extra.

Exemplo: Testar se a variável X_3 deve ser adicionada ao modelo contendo X_1 e X_2 , o que equivale a testaras hipóteses:

Ho: $\beta 3 = 0$

Ha: β 3 \neq 0.

Se H₀ não for rejeitada tem-se o **modelo reduzido** $E(Y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ e, se H₀ for rejeitada tem-se o **modelo completo** $E(Y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$.

A estatística de teste parcial F* para testar tais hipóteses é expressa por:

$$\mathrm{F*} = \ \frac{SQ_{E}\left(X_{3} | X_{1}, X_{2}\right) / \left[(n-3) - (n-4)\right]}{SQres(X_{1}, X_{2}, X_{3}) / (n-4)} = \frac{SQ_{E}\left(X_{3} | X_{1}, X_{2}\right) / 1}{QMres(X_{1}, X_{2}, X_{3})} \ \sim \ \mathrm{F}_{1; \ n-4}.$$

Para os dados do exemplo tem-se:

$$F^* = 11.54 / 6.15 = 1.88 \text{ (p-valor} = 0.189)$$

 $t^* = -2.186 / 1.596 = -1.37 \text{ (p-valor} = 0.189).$

o teste F*, pode também ser utilizado para testar se um subconjunto de regressoras pode ser retirado do modelo completo.

 Testar se X₂ e X₃ podem ser retiradas do modelo completo, isto é, do modelo contendo X₁, X₂ e X₃. Nesse caso tem-se as hipóteses:

$$H_0$$
: $\beta_2 = \beta_3 = 0$ versus H_a : $\beta_2 \neq 0$ ou $\beta_3 \neq 0$.

Se H_o não for rejeitada
$$\Rightarrow$$
 tem-se o **modelo reduzido**: $Y = \beta_o + \beta_1 x_1 + \epsilon$ e, se H_o for rejeitada \Rightarrow tem-se o **modelo completo**: $Y = \beta_o + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$.

Em sendo, $F^* = [(33,17 + 11,54)/2] / [98,41/16] = [44,71/2] / 6,15 = 3,63$, para o qual o p-valor associado à distribuição $F_{2;16}$ é igual a 0,05, é possível concluir pela rejeição da hipótese nula e, desse modo, opta-se pelo modelo completo.

- 3- Teste de Hipóteses
- 3.3 Coeficiente de determinação parcial R²
- coeficiente de determinação parcial entre Y e X₂ dado X₁ no modelo

$$\mathbf{r^2}_{\mathbf{Y2} \bullet 1} = \frac{SQ_{E}\left(X_{2} | X_{1}\right)}{SQres(X_{1})}.$$

coeficiente de determinação parcial entre Y e X1 dado X2 e X3 no modelo

$$r^{2}_{Y1 \bullet 23} = \frac{SQ_{E}(X_{1}|X_{2}, X_{3})}{SQres(X_{2}, X_{3})}$$

quando X2 é adicionada ao modelo contendo X1 a SQres(X1) é reduzida em 23,17%

- (a) $r^2_{Y2 \bullet 1} = 33,17/143,12 = 0,2317 (23,17\%),$
- (b) $r^2_{Y3 \bullet 12} = 11,54/109,95 = 0,105$ (10,5%) e,
- (c) $r^2_{Y1 \bullet 2} = 3,47/113,42 = 0,031$ (3,1%).

SQres(X1, X2) é reduzida em 10,5% quando X3 é adicionada ao modelo

E, se o modelo contém X2, adicionar X1 reduz a SQres em 3,1%.

3.3 – Coeficiente de correlação parcial

$$\mathbf{r} = + \sqrt{R^2}$$

- (a) $\mathbf{r}_{Y2\bullet 1} = (0.2317)^{1/2} = -0.48$ (sinal negative pois $\hat{\beta}_2 = -2.857$),
- (b) $\mathbf{r}_{Y3\bullet 12} = (0,105)^{1/2} = -0,324$ (sinal negativo pois $\hat{\beta}_3 = -2,186$) e,
- (c) $\mathbf{r}_{Y1\bullet 2} = (0.031)^{1/2} = 0.176$ (sinal positivo pois $\hat{\beta}_1 = 4.344$).

- 4- Diagnóstico nos MRLM
- 4.1 Análise dos resíduos
- (a) Resíduos em papel de probabilidade Normal $(e_i \times F_i)$
 - examinar se os erros apresentam distribuição aproximadamente Normal;
 - auxiliar na detecção de pontos atípicos.
- (b) Resíduos *versus* valores ajustados $(e_i \times \hat{y_i})$
 - verificar homogeneidade das variâncias dos erros;
 - fornecer informações sobre pontos atípicos.
- (c) Resíduos versus sequência de coleta (se conhecida) $(e_{(i)} \times i)$
 - informações sobre possível correlação entre os erros.
- (d) Resíduos versus cada X_j incluída no modelo (e_i x X_{ij})
 - informações adicionais sobre a adequacidade da função de regressão com respeito a j-ésima variável independente, ou seja, auxilia na detecção de nãolinearidade na regressora X_i;
 - informações sobre possível variação na magnitude da variância dos erros em relação a variável independente X_i;
 - informações sobre dados atípicos.

- 4- Diagnóstico nos MRLM
- 4.1 Análise dos resíduos
- (e) Resíduos parciais versus X_{ij} para cada X_j no modelo $(e_{ij}^* \times X_{ij})$
 - revelar mais precisamente a relação entre os resíduos e cada regressora X_j. O i-ésimo resíduo parcial para a regressora X_i é definido por:

$$e_{ij}^* = e_i + \hat{\beta}_j x_{ij}$$
 $(i = 1, ..., n)$

$$e_{ij}^* = (Y_i - \hat{Y}_i) + \hat{\beta}_j x_{ij}$$
 $(i = 1, ..., n)$.

Permite avaliar falhas de linearidade, presença de *outliers* e heterogeneidade de variâncias.

Se, por exemplo, a relação entre Y e X_j não for linear, o gráfico dos resíduos parciais indicará mais precisamente do que o gráfico *ei versus* X_j como transformar os dados para obter a linearidade.

4- Diagnóstico nos MRLM

4.1 – Análise dos resíduos

(f) Resíduos versus Xk omitidas do modelo

ajuda a revelar a dependência da resposta Y com uma ou mais das regressoras não presentes no modelo. Qualquer estrutura (padrão sistemático), que não o aleatório, indicarão que a inclusão daquela variável pode melhorar o modelo.

(g) Resíduos versus interações não incluídas no modelo

úteis para examinar se alguma, algumas ou todas as interações são requeridas no modelo. Um padrão sistemático nestes gráficos, que não o aleatório, sugere que o efeito da interação pode estar presente.

(h) Gráfico da regressora X_i versus regressora X_j ($i \neq j$)

- útil para estudar a relação entre as variáveis regressoras e a disposição dos dados no espaço X;
- encontrar pontos atípicos.

- 4- Diagnóstico nos MRLM
- 4.1 Análise dos resíduos

As regressoras X1 e X2 são altamente correlacionadas consequentemente, pode não ser necessário incluir ambas no modelo.

Quando duas ou mais variáveis regressoras forem altamente corelacionadas, *multicolinearidade* está presente nos dados.

A presença de multicolinearidade pode afetar seriamente o ajuste por MQO e, em algumas situações, produzir modelos quase inúteis.

A presença de multicolinearidade MQO e, em algumas situações, pro
$$\mathbf{r}_{\mathrm{XX}} = \begin{bmatrix} 1 & r_{12} & \dots & r_{ik} \\ r_{21} & 1 & & r_{2k} \\ \dots & \dots & \dots & \dots \\ r_{k1} & r_{k2} & \dots & 1 \end{bmatrix}$$

A matriz rXX é simétrica

Se rij for próximo de zero, então Xi e Xj não são altamente correlacionadas

Se rji for próximo de |1|, então Xi e Xj são altamente correlacionadas.

4- Diagnóstico nos MRLM

4.2 – Propriedades dos resíduos

Foi visto anteriormente que e = (I - H)Y, então segue que:

$$\mathbf{e} = (\mathbf{I} - \mathbf{H}) (\mathbf{X}\beta + \mathbf{\epsilon}) = \mathbf{X}\beta - \mathbf{H}\mathbf{X}\beta + (\mathbf{I} - \mathbf{H}) \mathbf{\epsilon}$$
$$= \mathbf{X}\beta - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X} \beta + (\mathbf{I} - \mathbf{H}) \mathbf{\epsilon} = (\mathbf{I} - \mathbf{H}) \mathbf{\epsilon}.$$

Logo,
$$\mathbf{E}(\mathbf{e}) = \mathbf{0}$$

$$\mathbf{e}, \qquad \mathbf{V}(\mathbf{e}) = \mathbf{V}[(\mathbf{I} - \mathbf{H}) \ \mathbf{\epsilon}] = (\mathbf{I} - \mathbf{H}) \ \mathbf{V} \ (\mathbf{\epsilon}) \ (\mathbf{I} - \mathbf{H})'$$

$$= (\mathbf{I} - \mathbf{H}) \ \sigma^2 \ \mathbf{I} \ (\mathbf{I} - \mathbf{H})' = \sigma^2 (\mathbf{I} - \mathbf{H})$$

pois, $(\mathbf{I} - \mathbf{H})$ é simétrica $((\mathbf{I} - \mathbf{H}) = (\mathbf{I} - \mathbf{H})')$ e idempotente $((\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})) = (\mathbf{I} - \mathbf{H})$.

$$e_i \sim N(0, \sigma^2(1 - h_{ii}))$$
 $i = 1, ..., n$
 $Cov(e_i, e_j) = -\sigma^2(h_{ij})$ $i, j = 1, ..., n$ $(i \neq j)$.

4- Diagnóstico nos MRLM

4.2 – Propriedades dos resíduos

1) Resíduos standardized	$d_i = \frac{e_i}{\sqrt{QMres}}$
2) Resíduos studentized	$r_i = \frac{e_i}{\sqrt{QMres(1 - h_{ii})}}$
3) Resíduos PRESS	$\mathbf{e}_{(i)} = \frac{e_i}{1 - h_{ii}}$
4) Resíduos <i>studendized</i> externamente (R-Student)	$t_{i} = \frac{e_{i}}{\sqrt{S^{2}_{(i)} (1 - h_{ii})}}$ sendo $S^{2}_{(i)} = \frac{(n - p - 1)QMres - e_{i}^{2} (1 - h_{ii})}{n - p}$

 h_{ii} corresponde ao *i*-ésimo componente da diagonal da matriz $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

- Pontos com grande resíduo e grande h_{ii} são observações, possivelmente, altamente influentes no ajuste por MQO.
- Resíduos associados a pontos os quais h_{ii} é grande terão resíduos PRESS grandes.
 Esses pontos geralmente serão altamente influentes.

5.1 Fatores de inflação da variância (VIF)

O VIF para o j-ésimo coeficiente de regressão pode ser escrito por:

$$VIF_j = \frac{1}{1 - R_j^2},$$

em que R²j é o coeficiente de determinação múltiplo obtido da regressão de Xj com as demais variáveis regressoras.

Se Xj for quase linearmente dependente com alguma das outras regressoras, então R²j será próximo de 1 e VIFj será grande.

VIF maiores que 10 implicam multicolineridade severa.

5.2 Análise dos autovalores da matriz r_{XX}

As raízes características, ou autovalores de \mathbf{r}_{XX} , denotadas por $\lambda_1, \lambda_2, ..., \lambda_k$, podem ser usados para medir a extensão da multicolinearidade nos dados. Se existirem uma, ou mais, dependência linear nos dados, então uma, ou mais, das raízes características serão pequenas. Auto valores de \mathbf{r}_{XX} são as raízes características da equação $|\mathbf{r}_{XX} - \lambda \mathbf{I}| = 0$.

Alguns analistas preferem, no entanto, examinar o número de condição da matriz \mathbf{r}_{XX} dado por:

$$\mathbf{k} = \frac{\lambda_{max}}{\lambda_{min}}.$$

Geralmente, se k < 100 ⇒ não existem sérios problemas de multicolinearidade, se 100 < k < 1000 ⇒ moderada a forte multicolinearidade e, se k >1000 ⇒ severa multicolinearidade.

Os índices de condição da matriz \mathbf{r}_{XX} são dados por: $\mathbf{k}_j = \frac{\lambda_{max}}{2}$.

Exemplo: Suponha Y = variável resposta e X_1 ,, X_9 as regressoras, de modo que os autovalores obtidos sejam:

$\lambda_1 = 4,2048$	$\lambda_4 = 1,0413$	$\lambda_7 = 0.0136$
$\lambda_2 = 2,1626$	$\lambda_5 = 0.3845$	$\lambda_8 = 0,0051$
$\lambda_3 = 1,1384$	$\lambda_6 = 0.0495$	$\lambda_9 = 0,0001.$

Assim, k = 42048, o que implica em severa multicolinearidade. Ainda,

$$k_1 = 1,0$$
 $k_4 = 4,04$ $k_7 = 309,18$ $k_2 = 1,94$ $k_5 = 10,94$ $k_8 = 824,47$ $k_3 = 3,69$ $k_6 = 84,96$ $k_9 = 42048$,

e como k₇ e k₈ > 100 e k₉ > 1000, há indícios de multicolinearidade envolvendo as variáveis X₇, X₈ e X₉.

5.3 Determinante da matriz r_{xx}

O determinante da matriz \mathbf{r}_{XX} pode ser usado como um indicador de existência de multicolineridade. Os valores possíveis deste determinante são $0 \le \det(\mathbf{r}_{XX}) \le 1$. Se $\det(\mathbf{r}_{XX}) = 1$, as regressoras são ortogonais, enquanto $\det(\mathbf{r}_{XX}) = 0$ implica em dependência linear exata entre as regressoras. O grau de multicolinearidade torna-se mais severo quando o determinante aproxima-se de zero.

6.1 Pontos de Alavancagem

A disposição dos pontos no espaço X é importante para a determinação das propriedades do modelo. Em particular, observações potencialmente remotas têm desproporcional alavancagem nos parâmetros estimados, bem como nos valores preditos e nas usuais estatísticas sumárias. Para localizar esses pontos remotos no espaço X, Hoaglin e Welsh (1978) sugeriram o uso da matriz *chapéu*, a qual é obtida por $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. De acordo com esses autores, a inspeção dos elementos da matriz \mathbf{H} pode revelar pontos que são potencialmente influentes em virtude de sua localização no espaço \mathbf{X} . Atenção é usualmente centrada nos elementos da diagonal da matriz \mathbf{H} , ou seja, nos \mathbf{h}_{ii} . Como,

$$\sum_{i=1}^{n} h_{ii} = \operatorname{rank}(\mathbf{H}) = \operatorname{rank}(\mathbf{X}) = \mathbf{p},$$

em que p é o número de parâmetros do modelo, tem-se que o tamanho médio de um elemento da diagonal da matriz \mathbf{H} é $\bar{h}=\mathrm{p/n}$ e, assim, como uma regra um tanto grosseira, tem-se que:

se $h_{ii} > 2(p/n) \Rightarrow$ a observação i é um possível ponto de alta alavancagem.

6.2 Influência nos coeficientes da regressão

Se for desejado, contudo, considerar a localização do ponto, bem como a variável resposta, Cook (1979) sugeriu o uso de uma medida que considera o quadrado da distância entre as estimativas $\hat{\beta}$ obtidas com todas as n observações (pontos) e as estimativas obtidas retirando-se a i-ésima observação (ponto), denotada por $\hat{\beta}_{(i)}$. Essa medida é expressa por:

$$D_i = \frac{(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{(i)})' \mathbf{X}' \mathbf{X} (\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{(i)})}{p \text{ QMres}} \qquad i = 1, ..., n.$$

Pontos com grandes valores de D_i têm considerável influência nas estimativas $\hat{\beta}$. Os valores de D_i são comparados com a distribuição $F_{\alpha, p, n-p}$. Se $D_i \approx F_{\alpha, p, n-p}$, então retirar o ponto i deve deslocar $\hat{\beta}$ para o limite de uma região de confiança de 50% de β baseado nos dados completos. Isto é uma grande discordância e indica que as estimativas obtidas por MQO são sensíveis ao i-ésimo ponto. Como $F_{0.5; n; n-p} \approx 1$, usualmente consideram-se os pontos em que $D_i > 1$ como sendo possivelmente influentes. Idealmente, seria desejado que cada estimativa $\hat{\beta}_{(i)}$ permanecesse dentro dos limites de uma região de confiança de 10 ou 20%.

Belsley, Kuh e Welsch (1980) sugeriram, ainda, uma estatística que indica o quanto cada coeficiente de regressão $\hat{\beta}_j$ muda, em unidades de desvio-padrão, se a i-ésima observação for removida. Esta estatística é dada, para j = 0, 1, ..., k, por:

DFBeta_{j,i} =
$$\frac{\hat{\beta}_{j} - \hat{\beta}_{j(i)}}{\sqrt{(S_{(i)})^{2} C_{j+1,j+1}}} \qquad i = 1, ..., n,$$

sendo $C_{j+1,\,j+1}$ o (j+1)-ésimo elemento da diagonal da matriz $C=(X^{i}X)^{-1}$.

Um valor grande de DFBeta_{j,i} indica que a observação i tem considerável influência no j-ésimo coeficiente de regressão. O ponto de corte $2/\sqrt{n}$ é, em geral, usado para comparar os DFBeta_{j,i}. Para amostras grandes, observações as quais | DFBeta_{j,i}| > $2/\sqrt{n}$ merecem atenção. Para amostras pequenas ou moderadas, as observações que merecem atenção são aquelas em que |DFBeta_{j,i}| > 1.

6.3 Influência nos valores ajustados

É possível, também, investigar a influência da i-ésima observação nos valores ajustados (preditos). Uma medida razoável é:

DFFit_i =
$$\frac{\hat{y}_i - \hat{y}_{(i)}}{\sqrt{(S_{(i)})^2 h_{ii}}}$$
 $i = 1, ..., n,$

sendo $\hat{y}_{(i)}$ o valor predito de \hat{y}_i sem o uso da *i*-ésima observação. O denominador é somente uma padronização. Assim, DFFit_i é o quanto o valor ajustado muda, em unidades de desvio-padrão, se a *i*-ésima observação for removida.

Geralmente, observações em que $|DFFit_i| > 1$, para amostras pequenas ou moderadas, e $|DFFit_i| > 2\sqrt{p/n}$, para amostras grandes, merecem atenção.

6.4 Influência na precisão da estimação

As medidas D_i , DFBeta_{j,i} e DFFit_i fornecem uma visão do efeito de cada observação nos coeficientes estimados e nos valores ajustados. Elas não fornecem, contudo, qualquer informação sobre a precisão geral da estimação. Para expressar o papel da *i*-ésima observação na precisão da estimação pode ser definido a medida a seguir.

Covratio_i =
$$\frac{|(X'_{(i)}X_{(i)})^{-1}(S_{(i)})^{2}|}{|(X'X)^{-1}QMres|} \qquad i = 1, ..., n.$$

Pontos de corte para Covratio_i não são fáceis de serem obtidos. Belsley et al.(1980) sugeriram que se Covratio_i > 1 + (3p/n) ou se Covratio_i < 1 - (3p/n), então, o *i*-ésimo ponto deve ser um possível ponto influente. O limite inferior é somente válido quando n > 3p. Em geral, esses pontos de corte são mais apropriados para amostras grandes.

7- Métodos para tratar com a multicolineariedade

Coleta adicional de dados

Coletar dados adicionais para combinações de Xi e Xi

Reespecificação do modelo

$$X = (X_1+X_3)/X_2$$
 ou $X = X_1*X_2*X_3$
Eliminação de regressoras

Regressão Ridge

Encontrar um estimador β ^* viciado, tal que seu vício seja pequeno, mas que sua variância seja menor do que a de β . O termo *regressão ridge* é usado para denominar um modelo de regressão em que esse tipo de estimador é considerado. Para mais detalhes sobre esse assunto, pode ser consultado, por exemplo, o livro de Montgomery e Peck (1992)

- 8- Seleção de variáveis e construção de modelos
- 1) o modelo deveria incluir tantas quantas regressoras fossem necessárias para auxiliar na predição de Y e,
- 2) o modelo deveria ser parcimonioso (conter poucas regressoras), visto que a variância da predição cresce conforme o número de regressoras cresce. Além disso, quanto mais regressoras existirem no modelo, maior o custo para coleta e manutenção do modelo.

O processo de encontrar um modelo que concilie esses objetivos é denominado

seleção da melhor equação de regressão

8.1- Critérios para avaliação dos modelos

a) Coeficiente de determinação múltiplo R²

O valor de R^2 cresce quando k cresce e é máximo quando todas as k regressoras são usadas. Assim, o analista pode usar o critério de adicionar regressoras até o ponto em que a adição de uma variável não for mais útil, pois fornece um acréscimo muito pequeno em R^2

b) Coeficiente de determinação múltiplo ajustado R²a ou QMres

O critério é escolher o subconjunto de regressoras que forneça o valor máximo de R²a, o que equivale a encontrar o subconjunto que minimize o QMres.

c) Estatística Cp de Mallows

$$C_p = \frac{\text{SQres}(p)}{\sigma^2} - n + 2p$$

em que σ^2 = QMres e p é o número de parâmetros em cada modelo. Valores pequenos de Cp são desejáveis. Modelos de regressão com Cp próximos da linha Cp = p e abaixo dela são candidatos ao <u>melhor modelo</u>.