Assignment 5 Sam Kim 00 1422913 $1. \quad a) \quad A = \begin{bmatrix} 15 \\ 1-3 \end{bmatrix}$ Find E. val = 2-2, 4 = [5-1] e At = [[][e2+ 0][= xe] [= xe] $x' = \begin{bmatrix} 5 \\ -3 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ x = x + 5y x = 0 (0,0), $y = -\frac{x}{5}$ y = x - 3y y = 0 (0,0), $y = \frac{x}{3}$ 5 Gopes 1, 707/2 M= 41 = e4 21 = e4 $\lim_{t \to +\infty} m = 0$ lim m= 00 Horizontal (=0 hull oline tx1=0 hull d'me The equilibrium at (0,0) is unstable and repetting.

 $A = \begin{bmatrix} 3 & -2 \end{bmatrix}$ Find E. vel = 4 = 2+i, 2-i P = ((+i) ent=ext court cosut 50 P=[(() - eze cost sint? $x' = \begin{bmatrix} 3 - 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ X = 0 (0,0) $y = \frac{2}{3}x$ X = 3 x -2 y 41 - x 4 41=0@(60) 4=-x Stopes yl M- Yi 6' = -13 = -1The equilibrium at (0,0) is repelling and unstable

Find E wal =
$$4i$$
, $-4i$, $\begin{bmatrix} -\frac{3}{5} + \frac{4}{5}i \\ 5 \end{bmatrix}$, $\begin{bmatrix} -\frac{3}{5} - \frac{4}{5}i \\ 5 \end{bmatrix}$

E At = $\begin{bmatrix} \cos 4t \sin 4t \\ -\sin 4t \cos 4t \end{bmatrix}$
 $\begin{cases} x^{1} = \begin{bmatrix} -3 & -5 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ 7 \end{bmatrix}$
 $\begin{cases} x^{1} = 0 \Rightarrow 0 \end{cases}$
 $\begin{cases} x^{1} = 0 \end{cases}$

$$P = \begin{cases} 2 - 4 \\ 1 - 2 \end{cases}$$

$$\begin{cases} 2 - 4 \\ 1 - 2 \end{cases} \begin{cases} 2 - 4 \\ 1 - 2 \end{cases} \begin{cases} 2 - 4 \\ 1 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases}$$

$$\begin{cases} 2 - 4 \\ 1 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases} \begin{cases} 2 - 4 \\ 1 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases}$$

$$\begin{cases} 2 - 4 \\ 1 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases} \end{cases} 2 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases} \begin{cases} 2 - 4 \end{cases} \begin{cases} 2 - 4 \end{cases} \end{cases} 2 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases} \begin{cases} 2 - 4 \end{cases} \end{cases} 2 - 2 \end{cases} 2 - 2 \end{cases} \begin{cases} 2 - 4 \end{cases} 2 - 2 \end{cases} 2 - 2$$

null d'ine x = 0 ; f y=0, y=2-x stability at (1,1), 4-0, f 6=3,4=1 $\begin{bmatrix} -3 & -3 & 7 \\ 0 & -2 & 3 \\ 5 & 1 & 1 \end{bmatrix}$ shbility at (3, -1) $= \begin{bmatrix} 3 & 3 \\ -2 & 0 \end{bmatrix}$ shbility at [3,0] D) unsure about what happen (at (3,-1) and (3,0).