Engineering Tripos Part IIA

Module 3M1: Mathematical Methods Examples Paper 1 Linear Algebra

Solutions to a number of questions are very short (1–2 lines). These are marked by (S). Questions for which you are encouraged to use a computer are marked by \ddagger .

Revision

Look over the concepts of rank, row space, column space, nullspace and left-nullspace from Part IB.

Complex matrices

1. (S) For the matrix

$$\mathbf{A} = \begin{bmatrix} 4+4i & 2-i \\ -3+2i & 4+i \end{bmatrix}$$

compute:

- a) $\det \mathbf{A}$;
- b) $\det \mathbf{A}^H$; and
- c) A^{-1} .
- 2. (S) What can you say about the diagonal entries of a Hermitian matrix?

Eigenvalues

3. Compute the eigenvalues of the rotation matrix

$$oldsymbol{Q} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}.$$

- 4. For a Hermitian matrix $\mathbf{M} \in \mathbb{C}^{n \times n}$:
 - a) (S) Prove that all eigenvalues are real; and
 - b) For the case of distinct eigenvalues, prove that the eigenvectors are orthogonal.
- 5. (S) For a matrix $A \in \mathbb{C}^{m \times n}$, show that the matrix $A^H A$ is positive semi-definite, i.e. $x^H A^H A x \ge 0$ for all $x \in \mathbb{C}^n$. What can you conclude on the eigenvalues of $A^H A$?
- 6. a) (S) Show that the eigenvalues of the matrices $\mathbf{A} \in \mathbb{C}^{n \times n}$ and \mathbf{A}^T are the same.
 - b) (S) Show that the eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the complex conjugates of the eigenvalues of A^H .
 - c) (S) For a matrix $A \in \mathbb{C}^{n \times m}$ and a matrix $B \in \mathbb{C}^{m \times n}$, show that the non-zero eigenvalues of AB and BA are the same.

1

Norms

7. (S) Show that for a vector $x \in \mathbb{C}^n$:

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{1} \leq n\|\boldsymbol{x}\|_{\infty}.$$

- 8. Using the definition of an operator norm of a matrix, prove that:
 - a) $||AB|| \le ||A|| ||B||$; and
 - b) $||A + B|| \le ||A|| + ||B||$.
- 9. For $\mathbf{A} \in \mathbb{C}^{m \times n}$, show that:
 - a) $\|\mathbf{A}\|_1 = \max_{1 \leq j \leq n} \|\mathbf{a}_j\|_1$, where \mathbf{a}_j is the jth column vector of \mathbf{A} ; and
 - b) $\|A\|_{\infty} = \max_{1 \le i \le m} \|a_i^{\star}\|_1$, where a_i^{\star} is the *i*th row vector of A.

Hint: Consider the definition of an operator norm for vectors with unit norm, i.e. $\|\mathbf{x}\|_1 = 1$ and $\|\mathbf{x}\|_{\infty} = 1$, respectively.

10. Compute the l_2 norm of the matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$

and verify that $\|\mathbf{A}\mathbf{x}\|_2 \leq \|\mathbf{A}\|_2$ for all $\mathbf{x} \in \mathbb{R}^2$ that satisfy $\|\mathbf{x}\|_2 = 1$.

Hint: consider $\mathbf{x} = [\cos \theta \sin \theta]^T$ and maximise $\|\mathbf{A}\mathbf{x}\|_2$ over θ .

11. Estimate the condition numbers $\kappa_1(\mathbf{A})$, $\kappa_2(\mathbf{A})$ and $\kappa_\infty(\mathbf{A})$ for the matrix

$$\boldsymbol{A} = \begin{bmatrix} 10^{-4} & 2\\ 1 & 1 \end{bmatrix}$$

and comment on the suitability of LU decomposition for this matrix.

Least-squares

- 12. Consider a least-squares problem $A^H A \hat{x} = A^H b$ where A is full rank. The residual vector is defined as $\mathbf{r} = A \hat{x} \mathbf{b}$.
 - a) Show that

$$oldsymbol{r}^{H}oldsymbol{A}oldsymbol{z}=oldsymbol{b}^{H}\left(oldsymbol{A}\left(oldsymbol{A}^{H}oldsymbol{A}
ight)^{-1}oldsymbol{A}^{H}-oldsymbol{I}
ight)oldsymbol{A}oldsymbol{z}=0 \quad orall oldsymbol{z}\in\mathbb{C}^{n}$$

and explain the significance of this result.

Hint: consider what the residual vector is orthogonal to.

b) Show that

$$oldsymbol{P} = oldsymbol{A} \left(oldsymbol{A}^H oldsymbol{A}
ight)^{-1} oldsymbol{A}^H$$

is an orhtogonal projection matrix matrix, i.e. $\mathbf{P}^2 = \mathbf{P}$ and $\mathbf{P}^H = \mathbf{P}$.

2

- c) What is the significance of P in a least-squares problem?
- 13. Show that if the $m \times n$ matrix **A** has linearly independent rows, then:
 - a) the matrix AA^H is invertible; and
 - b) $\mathbf{A}^{+} = \mathbf{A}^{H} \left(\mathbf{A} \mathbf{A}^{H} \right)^{-1}$ is a right-inverse of \mathbf{A} .

Iterative methods

14. If a stationary iterative scheme is used to solve a problem with the matrix

$$\boldsymbol{A} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix},$$

which of the Richardson, Jacobi and Gauss–Seidel methods would you expect to converge and why?

Singular value decomposition

- 15. (S) If $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$ is a singular value decomposition of the square matrix \mathbf{A} , find an expression for \mathbf{A}^{-1} and comment on the significance of the singular values.
- 16. ‡ For the matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{bmatrix}$$

- a) Find the singular value decomposition of the matrix.
- b) Find the pseudoinverse A^+ .
- c) Show that $A^+A = I$ (A^+ is a left inverse).
- d) Show that $AA^+ \neq I$.
- e) Find the general form of the vector b for which $AA^+b = b$.
- 17. ‡ Find the singular value decomposition and the pseudoinverse of the matrix

$$\boldsymbol{A} = \begin{bmatrix} 0 & 3 & 0 \\ 2 & 0 & 0 \end{bmatrix}.$$

Show that for every x in the row space of A that $A^+Ax = x$.

18. ‡ Find the minimum length least-squares solution to

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}.$$

Answers See https://nbviewer.jupyter.org/github/garth-wells/notebooks-3M1/blob/master/3M1%20Examples%20Paper%201%20Crib.ipynb

© Garth N. Wells 2017–2019.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/.

3