التمرين الأول: (15 نقطة)

جسم صلب (S)کتلته m = 100g ، پنزلق علی طریق ABC (أنظر الشکل -1) حیث :

. B مستوي مائل أملس ، و A تقع على إرتفاع A من المستوي المائل الأفقي الذي يشمل النقطة A

22m طريق أفقي خشن طوله: BC

(S) الجزء الأول: الجملة المدروسة هي الجسم

نترك الجسم (S) ينحدر بدون سرعة إبتدائية من النقطة A ليصل إلى النقطة

. $\nu_{\scriptscriptstyle B}=10m\ /s$ بسرعة B

B و A بين (S) بين الخورجية المؤثرة على الجسم (S)

B و A مثل الحصيلة الطاقوية للجملة المدروسة بين A

B و A اكتب معادلة إنحفاظ الطاقة بين

4. جد الإرتفاع h.

د ما طبیعة حركة الجسم (S) علل .

الجزء الثاني: الجملة المدروسة مي (الجسم (S)+ الأرض).

بعد قطع الجسم للمسافة AB يواصل حركته على المسار BC في وجود قوة إحتكاك \overline{f} أفقية و ثابتة في الشدة .

- A و B بين B و B مثل القوى الخارجية المؤثرة على الجسم B و B
 - C و B أكتب معادلة إنحفاظ الطاقة بين الموضعين
- $(\nu_c = 0)$ بسرعة معدومة (S) يصل إلى النقطة C بسرعة معدومة (S) .
 - أ. أحسب شدة قوة الإحتكاك.

BC بد أحسب عمل قوة الثقل $W'(\overline{P})$ خلال المسار

الجزء الثالث: الجملة المدروسة هي (الجسم (S) + النابض + الأرض).

يسقط الجسم (S) من النقطة C بدون سرعة إبتدائية ($v_c=0$) ، فيلتحم بنابض طوله الأصلي و ثابت مرونته K=500N/m .

- D و C أكتب معادلة إنحفاظ الطاقة بين الموضعين C
- . D السرعة التي يصطدم بها الجسم (S) بالنابض في الموضع 2
- . أذكر أشكال الطاقة عند الموضع D و G ، حيث الموضع G يوافق أقصى إنضغاط.
 - G و D أكتب معادلة إنحفاظ الطاقة بين الموضعين D
 - G مثل القوى الخارجية المؤثرة على الجسم في الموضع G

ىة(0

H=1m

D

الشكل -1-

الأرض

1

التمرين الثاني

يزاح عن $l=1,6\,m$ يزاح عن $m=0,1\,kg$ يزاح عن $l=1,6\,m$ يزاح عن $m=0,1\,kg$ يزاح عن $m=0,1\,kg$ يزاح عن وضع توازنه الشاقولي OB بزاوية $\alpha=60^\circ$ إلى الموضع $\alpha=60^\circ$ يتر ك حرا لحاله بدون سرعة إبتدائية ، دون أن يخضع لإحتكاك .

. l و lpha بدلالة lpha و lpha

. A حسب قيمة الطاقة الكامنة الثقالية للكرة عند الموضع A

. B و A بين آلموضعين A و A عثل الحصيلة الطاقوية للجملة (كرة + أرض) بين آلموضعين

. B و A بين الموضعين A (كرة + أرض) بين الموضعين A

. B حسب سرعة الكرة عند رجوعها إلى الموضع

ال. عند رجوع الكرة إلى الموضع B تصدم طرف نابض مرن A

x ثابت مرونته $k=160\ N\ /\ m$ ثابت مرونته تا نصفاط $k=160\ N\ /\ m$

و تتناقص سرعتها إلى أن تنعدم عند الموضع $\,M\,$ ، بدوّن أن تخضع لإحتكاك . $\,M\,$ مثل الحصيلة الطاقوية للجملة (كرة + نابض) بين الموضعين $\,B\,$ و $\,M\,$

. M و B بين الموضعين B و B أكتب معادلة إنحفاظ الطاقة للجملة (كرة + نابض) بين الموضعين

. احسب اقصى إنضغاط x للنابض (3

g = 10 N / kg تعطـــــى قيمة الجاذبية الأرضية

التمرين الثالث

. g = 10 N/Kg نعتبر في كل التمرين

ينطلق متزحلق كتلته مع زلاجته M=100 Kg ، دون سرعة ابتدائية من قمة منحدر A ، تعلو بمقدار M=100 Kg عن مستوي أفقي الطلق متزحلق كتلته مع زلاجته C عن مستوي أفقي طوله BC=200m إلى أسفل المنحدر يتابع المتزحلق حركته على ميدان أفقي طوله BC=200m إلى أن يتوقف عند نقطة C

- 1- باعتبار الاحتكاكات محملة ، مثل القوى المطبّقة على المتزحلق في الجزء AB ثم أحسب عمل كل قوّة منها .
 - . B استنتج قيمة السرعة $V_{\scriptscriptstyle B}$ للمتزحلق عند النقطة
 - 3- أما طبيعة حركته على الجزء BC ؟ علل .
 - ب) استنتج شدّة القوّة التي أدّت إلى توقيف المتزحلق .

التمرين الرابع

بينما كان أبو إسلام يسوق سيارته ذات كتلة M=800kg و سرعتها 72km/h في حركة هبوط على طريق مائل يميل عن سطح الأرض بزاوية α=4° الشكل -3- فوجئ السائق بإشارة قف STOP الموجودة في النقطة B فأضطر لفرملة المييارة إنطلاقا من النقطة A بينما كان الشرطى يراقب حركة المرور وعند توقف السيارة قام الشرطي

بسحب رخصة السياقة من السائق.

عاد الأب الى المنزل غاضبا فسأله إينه ما ذا حدث يا أبت ؟ فقص الأب الحادثة لـ: إسلام .

فسأله إسلام وكم كانت المسافة بين النقطتين Aو B

فقال الأب: 90.0 فقال إسلام: إن الشرطي كان محق في ذلك .

إذا علمت أن قوة الإحتكاك على الطريق ثابتة و شدتها f=2286N معاكسة للحركة خلال الإنتقال AB

g=10N /kg: وان

في نظرك هل الشرطي محق في ذلك؟ مع التبرير

التمرين الخامس

- ا) يصعد جسم صلب (S) كتلته m=500 g بسر عة ثابتة مستوي مائل (S) يصعد جسم صلب (AB = 3 m) ميث T شدتها (AB = 3 m) ميث (BB = 3
 - 1- احسب مجموع أعمال القوى المطبقة على الجسم بين A و B .
 - 2- أحسب التغير في الطاقة الحركية للجسم بين A و B .
- 3- قارن التغير في الطاقة الحركية مع مجموع أعمال القوى . ماذا تستنتج ؟
 - 4- مثل الحصيلة الطاقوية للجس بسن A و B
- 5- أحسب قيمة المقدار الفيزيائي الذي كان سببا في استنتاجك في السؤال 3.
 - إذا كانت الاستطاعة المحولة من طرف الحبل هي : P = 2.328 W .
- II) عند وصول الجسم إلى B ينقطع الحبل . باعتبار الجملة (جسم + أرض) و باعتبار الطاقة الكامرة الثقالية المستوي الأفقي المار من A . أحسب :
 - 1- سرعة الجسم عند A.
 - 2- أوجد التغير في الطاقة الكامنة الثقالية بين A و B . ماا تستنتج ؟

يعطى : Cos10 = 0.984 ، sin10 = 0.174 ، g = 10 N/Kg

التمرين السادس

ق تفاحة كتلتما ع00 توجد على غين شجرة على ارتبغاع على المتفاحة في هذه اللحظة كالمرقودة المساطة كالمرقودة المساطة كالمرقدة والعاقة المركمة التي تكتسبها المتفاحة في هذه اللحظة كالمرقودة المستعلى المستعلى

التمرين السابع

نضع كرية كتلتها m=0.1kg ملامسة لنابض عند الوضع B الذي يمثل وضع راحة النابض ثم نضغط الكرية فيتقلص النابض بمقدار x ثم نحرر الكرية بدون سرعة لتتحرك وفق مسار مستقيم AC ثم تسلك مسارا دائريا نصف قطره B إلى أن تتوقف عند الموضع D المعلمة بالزاوية α ، الاحتكاكات مهملة .

1- أكمل الجدول التالي وذلك بتحديد أشكال الطاقة التي تمتلكها كل جملة في المواضع المختلفة .

٥- ليستنتيح العق المطبقة لينضغط النابين؟

الموضع				
D	C	В	A	الجملة
				نابض
				كرية
				كرية + نابض
				كرية + أرض
				كرية +أرض +نابض

- 2

أ - مثل الحصيلة الطاقوية بين A و B باعتبار الجملة هي :

1- (كرية) 2 - (كرية + نابض)

ب - مثل الحصيلة الطاقوية للجملة (كرية + أرض) بين الموضعين C و D .

3 - مثل الحصيلة الطاقوية واكتب معادلة انحفاظ الطاقة للجملة (كرية) بين الموضعين C و D و

 $V_C = \sqrt{2gR(1-\cos\alpha)}$ معطاة بالعلاقة C معطاة الكرية عند C معطاة بالعلاقة ثم أحسب قيمتها.

R=0.1m , g=10 N/kg , $\alpha=60^{\circ}$: تعطی

التمرين الثامن

قام أحد الطلبة بتمثيل منحنى تغير الطاقة الحركية لجملة (كرة معدنية) كتلتها m=40g قام برميها نحو الأعلى بدلالة الزمن ،فتحصل على المنحنى التالي

1-عند اللحظة t=0s عين بيانيا قيمة الطاقة الحركية ثم احسب السرعة الإبتدائية التي أنطلقت بها هذه الكرة

2- من المنحنى بعد مدة زمنية معينة تنعدم الطاقة الحركة لهذه الجملة ، عين هذه المدة الزمنية

3- ماهي القوة التي تخضع لها هذه الكرة

4- احسب المسافة التي تقطعها الكرة خلال عملية الرمي

5- كيف نفسر مايلى:

5-1 بعد مرور ثانية واحدة Ec= 5j ثم بعد 9 ثواني نجد نفس مقدار الطاقة الحركية

2-5 بعد 10 ثواني تصبح الطَّاقة الحركية للكرة مساوية الطاقة الحركية الإبتدائية

6- مثل الحصيلة الطاقوية للكرة خلال المجال الزمني (0 إلى 5 ثا) ثم (5ثا إلى 10 ثا)

7- إذا أعتبرنا الجملة (كرة +الأرض) كيف يكون شكل منحنى الطاقة الكامنة الثقالية

التمرين التاسع

طفل يلعب بسيارة صغيرة كتلتها M = 0.05kg

- 1/ أ) أحسب عمل القوة الموازية للطريق التي يطبقها الطفل على السيارة أثناء انتقالها مسافة قدرها $lpha=30^{
 m o}$ فقيا ثم تتبع بمستوي مائل طوله m BC=45cm ويميل عن الأفق بزاوية m AB=80cmعلما أن هذه القوة شدتها 0.60N
 - ب) عين استطاعة هذه القوة حيث الانتقال يدوم 55.
 - 2/أ) أوجد عمل الثقل المقدم خلال طوري الحركة و استنتج مقداره الكلي .

ب) ما هي الاستطاعة الموافقة ؟ g = 9.8 N/kg

التمرين العاشر

تبدأ كرة نقطية كتلتها M =0.1kg حركتها من السكون اعتبارا من النقطة A الموجودة في قمة مستوى مائل طوله AB=3m و يميل على الأفق بزاوية $\alpha=30^\circ$ ، ثم تواصل حركتها على مستوي أفقي طوله BC=2m فتصطدم عند النقطة C بكرة نواس (كرة معلقة بخيط) موجود في حالة توازن فتؤدي إلى g = 10 N/kg انزياح كرة النواس عن الوضع الشاقولي بزاوية β . تهمل الاحتكاكات،

- أ- باعتبار الجملة (كرة)
- 1- مثل الحصيلة الطاقوية بين الوضعين A و B , وأكتب معادلة انحفاظ الطاقة بين الموضعين A و B .
 - 2- أحسب الطاقة الحركية للكرة عند الموضع B .ثم أحسب سرعة الكرة عند B .
 - 3- أحسب عمل ثقل الكرة من B إلى ثم استنتج الطاقة الحركية للكرة عند C.
 - ب إذا افترضنا أن كرة النواس تكتسب كل الطاقة الحركية للكرة أثناء الصدم.
- 1- مثل الحصيلة الطاقوية للجملة (كرة النواس) بين الموضعينC و D , وأكتب معادلة انحفاظ الطاقة لكرة النواس من C إلى D.
- ٢- تنعدم سرعة كرة النواس عند D . أحسب الارتفاع الأعظمي h_D الذي تبلغه كرة النواس إذا علمت أن كتلة كرة النواس M = 0.2kg .
 - L = 1m إذا كان طول خيط النواس B الشاقول B إذا كان طول خيط النواس B .