العلامة		عناصر الإجابة * الموضوع الأول *						
مجزأة مجموع				<u> </u>	ه - الموضوع الاو	عناصر الإجاب		·.
	0.25						,	التمرين الأول : (ا 1- تفاعل بطي ا 2-
			$3H_2C_2O_4(aq)$	$+ Cr_2O_7^{2-}(aq)$	$+8H^+(aq)$	$-2Cr^{3+}(aq)+$	$6CO_2(aq)$	$+ 7H_2O(\ell)$
					ے mmol	عدد المولاد		
	3×0.25	t ₀	3,0	0,8	بوفرة	0	0	بوفرة
		t	3,0 - 3x	0,8 - x	بوفرة	2x	6x	بوفرة
	2×0.25	t_f	0,6	0	بوفرة	1,6 متفاعل محد <i>C</i>	$\frac{4,8}{r O^{2-}(qq)}$	بوفرة التفاعل تام، لأن
	0.25 0.25	.ā.	ب قيمته الأعظم	عل مساويا نصف		تغرقها التفاعل ا		3- هو المدة الز
04	0.25	4- أ- السرعة الحجمية: هي مقدار تغير تقدم التفاعل بالنسبة للزمن في 1 لتر من الوسط التفاعلي.						
	0.25	$v = \frac{1}{V} \frac{dx}{dt}$						
	2×0.25		n	$(Cr^{3+}) = [Cr$	$r^{3+}] \cdot V = 2$	$x \Rightarrow x = \frac{1}{2}$.V. [<i>Cr</i> ³⁺	7]
	0.25			,	$v = \frac{1}{2} \frac{dx}{dx} =$	$=\frac{1}{2}\frac{d[Cr^{3+}]}{dt}$	_	
	2×0.25		_ 1 6-3_			$v = \frac{1}{2} \frac{\Delta \left[}{}$	$\left[\frac{Cr^{3+}}{\Delta t}\right]$: بان	
		ع 2 8-0 0,10 mmon.5 . 2 6 0,00 mmon.5 . 2 5 - 2 8-0 التفسير : نتاقص تركيز المتفاعلات يقود إلى نتاقص التصادمات الفعالة و بالتالي نتاقص وعة النفاعل.						
	0.25							
							•	التمرين الثاني: (4
	0.50	$^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + ^{0}_{-1}e + \gamma - 1$						
	0.25					نبعاث إلكترونات		•
	0.25	الإشعاع γ : انبعاث موجة كهرومغناطيسية من النواة المشعة.						
04	0.50		$N_0 = \frac{m_0}{M} N_A = 2,2 \times 10^{20} \text{ noyaux } -2$					
	0.50		$\lambda = \frac{\ln 2}{t_{1/2}} = 7,28 \times 10^{-10} s^{-1} -3$					
	3×0.25					$A_0 = \lambda \times$	$N_0 = 1,6 \times 1$	$0^{11}Bq$ -4
	3×0.25			$A = A_0 \times$	$\langle e^{-\lambda t} \Rightarrow \ln t \rangle$	$\frac{A}{A0} = -\lambda \times t$	$\Rightarrow t =$	$\frac{A_0}{A_0}$ -5
	0.25		t = 9	91401818 s				
	0.25					2009/05/10		
<u> </u>	1	<u> </u>						

1	العلام	
مجنوع	مجزاة	عناصر الإجابة
	0.25	المتمرين الثالث: (04 نقاط)
	0.25	$C_6H_5COOH + H_2O = C_6H_5COO^- + H_3O^+ -1$
	0.25	$K_{q} = \frac{\left[H_{3}O^{+}\right]_{f}\left[C_{6}H_{5}COO^{-}\right]_{f}}{\left[C_{3}H_{5}COO^{-}\right]_{f}} -2$
	<u> </u>	$K_a = \frac{\left[H_3O^+\right]_f \left[C_6H_5COO^-\right]_f}{\left[C_6H_5COOH\right]_f} -2$
	0.50	$C_6H_5COOH(aq) + HO^-(aq) = C_6H_5COO^-(aq) + H_2O(\ell)$ -1-3
	0.50	F. (1
04	0.50	$E(V_{bE} = 10 mL, pH = 8)$
	2×0.25	$E'(V_{bE'} = 5mL, pH = 4,2)$ المدلول: E' : نقطة التكافؤ ، E' : نقطة التكافؤ التكافؤ التكافؤ
	0.25	$c_dV_a = c_bV_{bE} \Rightarrow c_a = 0.1 mol \cdot l^{-1}$ جـ عند نقطة التكافؤ:
	2×0.25	$c_a = \frac{m_0}{MV} \Rightarrow m_0 = 6.1g - 3$
	2×0.25	$K_a = 6,3 \times 10^{-5}$: ومنه $pk_a = pH = 4,2$ کن $K_a = 10^{-pK_o}$
	0.25	$C_6H_5COO^-$ النوع الغالب هو صفة الأساس $pH=6>pK_a$
	7.2.2	التمرين الرابع: (04 نقاط)
	0.25	$0 \le t \le 9_s$ النظام الانتقالي: $0 \le t \le 9_s$
	0.25	t>9s النظام الدائم: $t>9s$
	0.50	$v_{r}=19,6m \cdot s^{-1}$ ب- السرعة الحدية: $v_{r}=19,6m \cdot s^{-1}$
	0.50	$a_0 = \frac{dv}{dt} = 9.8 m \cdot s^{-2}$: ill t = 0 = 0 = = 0
	0.50	dt $a_0 = g$ نستنتج أن دافعة أرخميدس مهملة
	0.50	$v = C^{te} \Leftrightarrow a = \frac{dv}{dt} = 0$: د- في النظام الدائم
04	0.50	a:
	0.75	$E_C = \frac{1}{2} m v^2 = \frac{1}{2} 30 \times 10^{-3} \times (14, 6)^2 -4$
:		$E_c = 3,2J$:ومنه
		v(m/s)
	0.75	2- سقوط حر
	0.75	
		t(s)

العلامة		2.4-201434
مجموع	مجزاة	عناصر الإجابة
	0.50	التمرين التجريبي: (04 نقاط) -1-1 R -1-1 R -1-1
04	0.50	u_R ب $u_R = R imes i$ و منه تغیرات $u_R = R imes i$ $= \frac{1}{R} u_R$ ب
17	0.25	$u_R + u_R = E \implies L \times \frac{di}{dr} + (R + r) = E -1 - 2$
	0.25	$rac{di}{dt} + rac{(R+r)}{L}i(t) = rac{E}{L}$: ومنه $-$ نعوض الحل في المعادلة $-$
	0.25	$A \times e^{-\frac{t}{\tau}} \left(\frac{L}{\tau} - (R+r) \right) + (R+r)A = E \Rightarrow (R+r)A = E \qquad \int \frac{L}{\tau} - (R+r) = 0$
	0.25	$A=I_0$ و منه : $A=rac{E}{R+r}$ و يمثل الشدة العظمى للتيار
	0.25	$ au=rac{L}{R+r}$ و يمثل ثابت الزمن المميز للدارة.
	3×0.25	$I_{02} = I_{03}$ التعليل التجربة $I_{02} = I_{03}$ و $\tau_2 < \tau_3$ الأن: $\tau_2 < \tau_3$ و $\tau_3 = I_{01}$ $\tau_3 = I_{01}$ $\tau_3 = I_{01}$
	2×0.25	$ au_3 = 0.20 \; \mathrm{ms}$: ب $ au_3 = \frac{L}{R+r}$ و من البيان نجد أن
	2×0.25	$r=rac{L}{ au_3}-R$. $r=10\Omega$: ومنه

تابع الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبة: علوم تجريبية بكالوريا دورة: جوان <u>2012</u>
--

عناصر $ \nabla V_{i} ^{2} = \nabla V_$	العلامة		
$CH_{2}COOH + H_{3}O = CH_{2}COO^{-} + H_{3}O^{+} - 1 - 1$ 2×0.25 2×0.25 $[H_{3}O^{+}] < c_{1} : i $	مجموع	مجزاة	عناصر الإجابة " الموضوع التاني "
$CH_{s}COOH + H_{s}O^{-} = CH_{s}COO^{-} + H_{s}O^{-} - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$		0.25	التمرين الأول: (04 نقاط)
			$CH_3COOH + H_2O = CH_3COO^- + H_3O^+ - 1 - 1$
ومنه: حصض الإيثانويك لا يتفاعل كليّ مع الماء $ (\tau_{V} = \frac{[H_{2}O_{+}]_{r}}{c_{1}} = 3,98 \times 10^{-2} \Rightarrow \tau_{V} < 1 : 9)) $ 0.25 $ K_{1} = \frac{[H_{2}O^{+}]_{r}}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}O^{+}]_{r}} - \frac$		2×0.25	ب- جدول تقدم التفاعل.
ومنه: حصض الإيثانويك لا يتفاعل كليّ مع الماء $ (\tau_{V} = \frac{[H_{2}O_{+}]_{r}}{c_{1}} = 3,98 \times 10^{-2} \Rightarrow \tau_{V} < 1 : 9)) $ 0.25 $ K_{1} = \frac{[H_{2}O^{+}]_{r}}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}COOH]_{r}} - \frac{1}{[CH_{3}O^{+}]_{r}} - \frac$		2×0.25	$[H_3O^+]$ < c_1 : نلاحظ أن $[H_3O^+] = 10^{-pH} = 3,98 \times 10^{-4} \ mol \cdot L^{-1}$ جــ
$(\tau_{V} = \frac{[H_{3}O_{\cdot}]_{\cdot}}{c_{1}} = 3,98 \times 10^{-2} \Rightarrow \tau_{V} < 1 :])$ $K_{1} = \frac{[H_{3}O_{\cdot}]_{\cdot}}{[CH_{3}COOH]_{\cdot}} : \frac{1}{2} $ 2×0.25 $[H_{3}O^{+}]_{\cdot} = [CH_{3}COOH]_{\cdot}, [CH_{5}COOH]_{\cdot}]_{\cdot} = c_{1} - [H_{3}O^{+}]_{\cdot}$ $K_{1} = c_{1} \frac{\tau_{II}^{2}}{I - \tau_{II}} : \lambda_{1} = c_{1} - [H_{3}O^{+}]_{\cdot}$ $K_{1} = c_{1} \frac{\tau_{II}^{2}}{I - \tau_{II}} : \lambda_{2} = [H_{3}O^{+}]_{\cdot} = c_{1} \cdot \tau_{IV}$ $K_{1} = 1,6 \times 10^{-3} : \lambda_{1} = 4,78 K_{1} = 1,6 \times 10^{-5} - \lambda_{2}$ $0.25 DH < pK_{a1} : \lambda_{1} = \lambda_{2} = \lambda_{1} = \lambda_{2} \times 10^{-3} \text{ mol } \lambda_{1}^{-1} - \lambda_{2}$ $0.25 T_{1} = [H_{3}O^{+}]_{\cdot} = \frac{\sigma}{c_{1}} = 1,25 \times 10^{-3} \text{ mol } \lambda_{1}^{-1} - \lambda_{2}$ $0.25 T_{2} = \frac{[H_{3}O^{+}]_{\cdot}}{c_{1}} = 1,25 \times 10^{-3} \text{ mol } \lambda_{1}^{-1} - \lambda_{2}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$ $0.25 K_{2} = c_{2} \frac{\tau_{2I}^{2}}{I - \tau_{2I}^{2}} = 1,6 \times 10^{-3}$			
$ \begin{bmatrix} H_3O^+ \end{bmatrix}_f = \begin{bmatrix} CH_3COO^- \end{bmatrix}_f , \begin{bmatrix} CH_3COOH \end{bmatrix}_f = c_1 - \begin{bmatrix} H_3O^+ \end{bmatrix}_f \\ K_1 = c_1 \frac{\tau_H^2}{1 - \tau_{Hf}} & \text{cash} & \begin{bmatrix} H_3O^+ \end{bmatrix}_f = c_1 \cdot \tau_{Hf} \\ K_1 = 1,6 \times 10^{-5} & \text{cash} & \begin{bmatrix} H_3O^+ \end{bmatrix}_f = c_1 \cdot \tau_{Hf} \\ 0.25 & pH < pK_{a1} & \text{cash} & \text{cash} & \text{cash} & K_1 = 1,6 \times 10^{-5} & \text{cash} \\ 0.25 & CH_3COOH & \text{cash} & \text{cash} & \text{cash} & \text{cash} \\ 0.25 & \begin{bmatrix} CH_3COO^- \end{bmatrix}_f = \begin{bmatrix} H_3O^+ \end{bmatrix}_f = \frac{\sigma}{\lambda_{Hf}} + \lambda_{CH_2COO} & \text{cash} & \text{cash} \\ T_{1f} = \frac{1}{2} + \frac{1}{2}$			
$K_{1} = c_{I} \frac{\tau_{II}^{2}}{I - \tau_{IJ}} : 4 \text{ i.e. } [H_{3}O^{+}]_{I} = c_{1} \cdot \tau_{IJ}$ $K_{1} = l_{1}6 \times 10^{-5}$ 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.20 $0.$		0.25	$K_1 = \frac{\left[H_3O^+\right]_r \left[CH_3COO^-\right]_r}{\left[CH_3COOH\right]_r}$ د- ثابت التوازن:
$ \begin{array}{c} K_1 = 1,6 \times 10^{-5} \\ 0.25 \\$	 	2×0.25	
$pH < pK_{a1}$: نالحظ أن $pK_{a1} = 4.78$	04	0.25	
$ \begin{array}{c} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ \end{array} $			i ·
0.25 $ [CH_{3}COOH : 4\pi e 3] = \frac{1}{2} (2\pi e 3) + $		1	· · · · · · · · · · · · · · · · · · ·
$\tau_{2f} = \frac{[H_3O^+]_f}{c_2} = 1,25 \times 10^{-2} \qquad$		0.23	
$K_{2} = c_{2} \frac{\tau_{2f}^{2}}{1 - \tau_{2f}} \approx 1,6 \times 10^{-5}$ 0.25 0.25 0.25 0.25 0.25 0.26 0.27 0.27 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.20		0.25	$ \left[CH_3COO^- \right]_f = \left[H_3O^+ \right]_f = \frac{\sigma}{\lambda_{H_3O^+} + \lambda_{CH_3COO^-}} = 1,25 \times 10^{-3} \ mol \cdot L^{-1} $
0.25 النسبة النهائية التقدم التفاعل تتعلق بالحالة الابتدائية للجملة. 0.25 ب النسبة النهائية التقدم التفاعل تتعلق بالتركيب الابتدائي للجملة. 0.25 $v = 78$, $v = $		0.25	$\tau_{2f} = \frac{\left[H_3O^+\right]_f}{c_2} = 1,25 \times 10^{-2}$
0.25 النسبة النهائية التقدم التفاعل تتعلق بالحالة الابتدائية للجملة. 0.25 ب النسبة النهائية التقدم التفاعل تتعلق بالتركيب الابتدائي للجملة. 0.25 $v = 78$, $v = $		0.25	$K_2 = c_2 \frac{\tau_{2f}^2}{1 - \tau_{2f}} = 1.6 \times 10^{-5}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.25	
2×0.25 $N = 78$, $Z = 53$ $\frac{131}{53}I - 1$ 0.50 $E_t = \left[Zm_p + (A - Z)m_n - m(\frac{131}{53}I) \right] c^2 = 1009 \text{MeV}$ -2 0.50 $N(t) = N_0 \cdot e^{-\lambda t}$ -1 -4 0.50 $N(t) = N_0 \cdot e^{-\lambda t}$ -1 -4 10.50			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$0.50 \\ $		2×0.25	· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.50	$E_t = \left[Zm_n + (A - Z)m_n - m\binom{131}{53}I \right] c^2 = 1009 \text{MeV}$ -2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	04	0.50	- '
0.50 $\ln N = at + b - 1$ $\ln N = -\lambda t + \ln N_0$ 0.50 $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = 8 \text{ jours} \text{g} \lambda = -a = 8,7 \times 10^{-2} \text{ jours}^{-1} \text{;}$		0.50	22 24 -1
0.50 $\ln N = -\lambda t + \ln N_0$ 0.50 $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = 8 \text{ jours} 0.50$ $\lambda = -a = 8.7 \times 10^{-2} \text{ jours}^{-1}$]	
0.50 $t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = 8 \ jours 0.50$ $\lambda = -a = 8.7 \times 10^{-2} \ jours^{-1}$			
$m = m_0 \left(1 - e^{-\lambda t} \right)$			· ·
		0.50	$m = m_0 \left(1 - e^{-\lambda t} \right)$

التمرين الثالث: (04 نقاط)
ا أ-أ- المدخل Y_i يوافق اأ
المدخل ٢٠ يوافق ال
$u_b + u_R = E - \downarrow $
$\frac{1}{L} + \frac{(R+r)}{L}i(t) = \frac{E}{L}$
E = 12 V - 1-2
$I_0 = \frac{U_{R \max}}{D} = 0.1A - \checkmark$
v
$\frac{G}{r} \Rightarrow r = 20 \Omega \rightarrow$
$V_{R, max} = 6,3 V - 1-3$
,
$= \frac{[U][T][I]^{-1}}{[U][I]^{-1}} = [T] \equiv s$
F 3F 3
$=\tau(R+r)=1,2H$ \rightarrow
$L \cdot I_0^2 = 6.0 \times 10^{-3} J \rightarrow$
التمرين الرابع: (04 نقاط)
$x = v_0 \cos \alpha \times t - 1$
3 - 1 ₀ 005 at 1
$\tan \alpha \times x + h_A$
2 - عند النقطة (C) لديد
نعوض في معادلة ا
901
نجد : °5,89m. ا
$\Rightarrow t = \frac{d}{v_0 \cos \alpha} - 3$
$v_0 \cos \alpha$
$t \simeq 2,2s$

العلامة		7.1-20
مجموع	مجزاة	عناصر الإجابة
•	0.50 0.25 0.50	التمرين التجريبي: (04 نقطة) -1 التمرين التجريبي: (04 نقطة) -1 الرسم على الأقل : سحاحة ، بيشر ، حامل ، خلاط مغناطيسي. -1 الوسيلة هي : ماصة معيّرة بحجم -1 -1 -1 -1 -1 -1 -1 -1
	0.25 0.25	. التكافؤ هو النقطة التي يتم فيها النفاعل الكلي للمحلول المعيَّر وفق المعاملات الستوكيومنرية -2 $ \frac{[I_2]V}{2} = \frac{C_3 \times V_E}{2} \Rightarrow [I_2] = \frac{C_3 \times V_E}{2V} $
04	3×0.25	$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)$ -4 t_0 $3,2$ $18,4$ y_0 y
	0.25	4- السرعة الحجمية: هي مقدار تغير تقدم التفاعل بالنسبة للزمن في 1 لتر من الوسط التفاعلي.
	0.25	$v = \frac{1}{V} \frac{dx}{dt}$
	2×0.25	$v = \frac{d[I_2]}{dt} = \frac{\Delta[I_2]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1}$: in $t = 100 \text{ s}$
	2×0.25	$ui \Delta i$
	2×0.23	$t_{\frac{1}{2}} \simeq 50s$ من البيان نجد : -5