БРЭГГОВСКОЕ РАССЕЯНИЕ СВЧ-ВОЛН НА МОДЕЛИ КРИСТАЛЛА

Цель работы: Изучение явления дифракции электромагнитной волны СВЧ диапазона на модели кристалла. Нахождение амплитуды рассеянной волны при различных ориентациях "кристалла" к падающей волне.

Краткая теория: Электромагнитная волна, проходящая через трехмерную дифракционную решетку, вызывает эффект интерференции вторичных волн, рассеянных узлами этой решетки без изменения длины волны. Это явление впервые было открыто М.Лауэ в 1913 г. при рассеянии рентгеновских лучей на кристалле. Кристалл является естественной трехмерной дифракционной решеткой для рентгеновских лучей, т.к. расстояние между рассеивающими центрами (атомами) в кристалле - одного порядка (10-8 см) с длиной волны рентгеновских лучей. Открытие дифракции рентгеновских лучей на кристалле явилось началом развития рентгеноструктурного анализа, который лег в основу важнейших заключений молекулярной физики и физики твердого тела.

Рис.1. Примеры кристаллографических плоскостей

В кристалле можно выделить ряд параллельных кристаллографических плоскостей, проходящих через узлы решетки (рис.1). Пусть плоская монохрома-

Рис.2. Отражение волны от кристаллографической плоскости

Рис.3. Зависимость интенсивности от угла отражения

тическая волна падает на одну такую плоскость под углом θ , расстояние между узлами в которой d. Будем считать, что рассеивающие центры, расположенные в узлах решетки, много меньше длины волны. Тогда зависимость интенсивности отраженной волны от угла φ (рис.2) может быть найдена суммированием волн от каждого рассеивающего центра, приходящих в точку наблюдения. Аналогичная задача решается в случае дифракции света на решетке. Ее решение имеет вид:

$$I = I_0 \frac{\sin^2 \left[Nkd \left(\sin \theta - \sin \phi \right) / 2 \right]}{\sin^2 \left[kd \left(\sin \theta - \sin \phi \right) / 2 \right]}$$

С увеличением числа узлов N интенсивность при угле φ =0 возрастает, а ширина главного лепестка $\Delta \varphi \to 0$ (рис.3). Таким образом, для большого N можно считать, что рассеяние волны лежит под углом равным углу падения, и поэтому можно заменить

рассеяние на узлах рассеянием от сплошной плоской поверхности. На этом

основывается теория Брэгга-Вульфа, по которой появление дифракционных максимумов может быть истолковано как отражение лучей от системы параллельных кристаллографических плоскостей. Отражение наблюдается лишь в том случае, когда лучи, отраженые параллельными плоскостями, имеют разность хода равную целому числу длин волн. Отсюда условие Брэгга-Вульфа записывается в виде

Рис.4. К условию Брэгга-Вульфа

$$2d\sin\theta = m\lambda \tag{1}$$

где d - межплоскостное расстояние;

 θ - угол между отражающей поверхностью и падающим лучом;

 λ - длина волны:

m - порядок отражения (целое число). (рис.4).

Описание установки: В данной работе в качестве модели кристалла используется пенопластовый куб, в узлах прямоугольной решетки которого помещены проводящие сплошные цилиндры диаметром 3мм и высотой 4мм. Оси цилиндров направлены по вертикали.

Источником электромагнитной волны служит СВЧ генератор с частотой 18-28 ГГц. Излучаемая рупором волна имеет линейную поляризацию и вектор ее электрического поля направлен по вертикали соосно с осями цилиндров "кристалла". Управление ориентацией куба относительно направления падения волны (угол α) осуществляется с помощью ЭВМ (рис.5). Положение детектора рассеянной волны (угол β) задается вручную. Интенсивность рассеянной волны измеряется СВЧ диодом и ее значение, обработанное АЦП, регестрируется ЭВМ. При этом регистрация происходит через каждый градус угла поворота "кристалла" α относительно направления падения волны. Таким образом, регистрируется зависимость $I = I(\alpha)$ для каждого фиксированного угла β .

Рис.5. Схема измерений и углов

Результатом измерения угловых зависимостей интенсивности для ряда углов β будет функция от двух угловых переменных α и β . Для структурного анализа удобно перейти от этих углов к новым углам (рис.5):

$$\gamma = -\beta/2 - \alpha$$

-угол между ориентирующим направлением куба и условной вспомогательной плоскостью, проходящей перпендикулярно плоскости вращения куба;

$$\theta = \beta/2$$

-угол падения и отражения от вспомогательной плоскости.

Имея зависимость $I(\theta)$ при заданном γ , можно определить расстояние между узлами решетки. Для этого нужно выбрать угол γ такой, чтобы вспомогательная плоскость проходила через одну из кристаллографических плоскостей (например при γ =0, $arctg(0.5)\approx30^{0}$, 45^{0} , 90^{0}), тогда максимумы зависимости $I(\theta)$ будут удовлетворять условию Брэгга-Вульфа (1), в котором d есть расстояние между этими плоскостями.

Включите питание блока генератора СВЧ волн. Выполнение работы: Настройте генератор на частоту 20-23ГГц (см. Примечание). Детектор установите по направлению излучаемой волны (угол $\beta=0$). Вызовите программу «cube main» и запустите ее, нажав верхнюю кнопку панели, рис.6. По запуску в диалоговом окне введите имя выходного файла, в который программа будет записывать измеряемые данные. Запустите двигатель вращения, нажав кнопку «measure» или механическую кнопку расположенную на блоке двигателя, и проведите несколько первых пробных измерений. По каждому нажатию кнопки запускается цикл записи сигнала детектора, соответствующий полному обороту куба. При правильной настройке генератора сигналы должны получаться с амплитудой более 100 единиц шкалы при коэффициенте усиления 10. После настройки и получения пробных измерений приступайте к основным измерениям. Для этого установите угол детектора строго на 0 и сбросьте кнопкой «reset» показания этого угла на панели программы. Каждый цикл измерения проводите последовательно увеличивая угол детектора в на 1 градус. Программа автоматически инкрементирует показания этого угла после очередного цикла. Измерения проведите для углов β=0..170 градусов. По окончании измерений нажмите кнопку «exit» и закройте панель программы.

Рис. 6. Панель программы измерений

Программа для обработки называется «cube_translate» (рис.7). Запустите ее также верхней кнопкой на панели и выберите файл с полученными данными. На графике будет отображаться зависимость интенсивности $I(\theta)$. Угол γ задается элементом управления «Gamma». Наиболее интересные для Вас графики можете записать в текстовый файл, нажав кнопку «Save to File». Используя условие Брегга-Вульфа и имея зависимости $I(\theta)$ при γ =0, 45°, 90°, определите расстояние между узлами решетки "кристалла".

Рис. 7. Панель программы обработки