Analysis of small RNA-seq for characterising piRNA

What you need:

- *Requires installation
 - terminal
 - Python (might need to install into your computer)
 - Perl
 - Snakemake*
 - Fastqc*
 - Cutadapt*
 - Bowtie 1*
 - Samtools*
 - Bedtools*

Procedures:

Part 0. Quality check of sequencing file

Run fastqc program. You can use compressed fastq file.

Usage:

fastqc [sample].fastq.gz

Part 1. Processing fastq file into fasta file before mapping

Usage:

snakemake -s [filename].py

Snakemake filename	Description
01_remove_adapter.py	Remove the sequence from raw reads after
	NEB adapter sequence (use bold part)
	'AGATCGGAAGAGCACACGTCT'. Discard
	reads that are shorter than 16 nt in length
	and reads that are not trimmed at all.
02_get_sequence.py	Retrieve only sequence from fastq file
	output as plain text.
03_count_seq_make_fasta.py	Measure the length of sequences, collect
	and count duplicated sequences then
	transform them into fasta format.
	>[sequence]:[length]:[no. of sequence]
	sequence
04_count_seq_metrics.py	Not necessary.
	Check the length distribution of adapter
	removed sequences. You should see a
	strong peak at 22 nt which is from miRNAs.
	There will be also a peak at 25–30 nt.

Part 2. Mapping of sequence to known non-coding RNAs, retrotransposons, and genome

Snakemake filename	Description
05_remove_known_ncRNA.py	Map sequences to mature miRNAs, hairpin miRNAs, snRNAs, snoRNAs, rRNAs, tRNAs, DNA transposons, simple repeats without allowing mismatches. Mapped sequences will be discarded to avoid false positive annotation for retrotransposons (TEs) and coding genes.
06_map_TE_v3_genome_v3.py	Map the unmapped sequences from previous step to retrotransposon sequences from Repeatmasker allowing up to 3 mismatches. If there are several matches, annotation with best mapping score will be reported. Those unmapped sequence will be further mapped to genomic sequence allowing up to 3 mismatches.
07_annotate_TE_family_v3.py	Acquire full classification of TEs including strand information. Output as [sample]_teRNA_family.txt. This file will be used further analysis in Part 4.
08_annotate_genome_v3.py	Classify sequences that were mapped to genome into TEs or genic or others (no annotation) using bedtools.

Part 3. Generate master table using Rstudio and make figures for general information

File / command	Description
09_merging_v3.Rmd	Combine all annotation information
	from .sam files for each sample and output
	as [sample]_table.txt.
cat *_table.txt > sRNA_full_table_v3.txt	Combine above txt files to make 1 master
	data frame. This table is deposited to GEO
	and can be downloaded.
10_views_v3.Rmd	Input: sRNA_full_table_v3.txt
	Visualise:
	 Length distributions (all annotated
	sRNAs, TE-derived sRNAs, LINE-
	derived sRNAs, and IAP-derived
	sRNAs)
	 Composition of annotated 25–30 nt
	small RNAs
	 Pairwise plot of each 25–30 nt small
	RNAs that have more than 10 count

Part 4. Ping-pong analysis & TE-derived piRNA focused analysis

File	Description
11_views_TE_v3.Rmd	Input: [sample]_teRNA_family.txt
	Visualise:
	 Relative amount of Top 10 LINE/IAP piRNA in bar chart
	Output:
	 Spefcific piRNA sequence in dab-
	delimited txt for step 12-14
12_table_to_fasta_v3.py	Make fasta file out of tab delimited txt file.
13_map_consensus_v3.py	Map fasta format sequences to consensus
	sequence of TEs (up to 3 mismatches) and
	calculate the distances of 5' ends of
	sense/antisense piRNAs.
14_count_nuc_IAP_L1_v3.py	Count first and 10th nucleotide from 5' end of piRNA.
15_views_pingpong_v3.Rmd	Visualise:
	 Frequency of overlapped nucleotide length
	 Frequency of 1U & 10A