

Exposure
$$E(x,y) t = L(k) \frac{T}{4} \left(\frac{A}{f}\right)^{2} (\hat{n} \cdot \hat{k})^{4} \cdot t$$

$$\downarrow \frac{1}{N^{2}} \qquad \qquad \downarrow \frac{1}{\sqrt{4}}$$
increase N (by decreasing A) \Rightarrow $E(x,y) \cdot t$ fixed decrease t (increase t)
increase N (by increasing t) \Rightarrow $E(K)$

$$decrease t$$
 (increase t)
$$decrease t$$
 (increase t)
$$my Nikon D70$$

radiance
$$L(x, \hat{x}, \lambda)$$

irradiance $E(x, \lambda)$
3D scene point
 $BRDF$ $p(x, lin, lout, \lambda)$

image irradiance
$$E(x,y,\lambda)$$

$$E_{R6B}(x,y) = \int C_{R6B}(x) E(x,y,\lambda) d\lambda$$

The intensities per pixel

