Notebook 1 Indicator Variable Example

```
# The first part of the "brick" of lecture notes for this course is about including categorical
# variables as explanatory (X) variables on the right hand side of a linear model. This is an
# additional example of using the simplest form of categorical variable (a Yes/No or 0/1 coded
# variable, often frequently referred to as a "dummy" variable).
# This example is taken from exercise 3.7 on page 80 of Lattin J, Carroll JD and Green, PE (2003)
# Analyzing Mutivariate Data, published by Thomson Brooks/Cole, which was a text for another
# statistics unit (STAT8020 Multivariate Analysis).
# In this example, data was collected in March 1977 on 116 bank employees (of Harry's Trust and
# Savings Bank) hired during 1969 to 1971 as general office trainees. The following variables
# were collected for each employee:
   EmpID - employee ID number (a three or four digit identifying number)
   Sex - sex 	 of 	 employee 	 (0 = Male, 1 = Female)
   Age - age at hire (in months)
  EducYrs - years of education
   EducLvl - level of education (1 = Graduate school, 2 = College graduate, 3 = Some college,
                                  4 = High school graduate, 5 = None of the above)
#
  WorkExp - prior work experience (in months)
  Start - starting salary (in $)
   Senior - seniority (total number of months of employment)
   Salary - current salary (in $)
# The data are available in "Bankwages.txt" and can be read into R using any of the methods
# demonstrated in lectures.
# For example, the following approach will work if you downloaded both this example R file
# and the data file to the same directory on your computer and then started RStudio by
# opening the R file with RStudio (with ANU computers, you need to right-click and go
# "Open With" RStudio - if you double-click, then "really helpful: default association is to
# try and open the file with the package Statistica, which is no longer available on the ANU
# computer network):
bankwages <- read.table("BankWages.txt", header=T)</pre>
# First examine the data by simply typing the name (or if you are using RStudio, you can
# double-click on the object in the Environment window, which opens the Viewer):
bankwages
##
       EmpID Sex Age EducYrs EducLvl WorkExp Start Senior Salary
              0 534
## 1
         708
                          12
                                   4
                                       216.0 6600
                                                       70
                                                            9000
        712
              0 322
                                                       70 11760
## 2
                          15
                                   3
                                        15.0 6300
```

```
722
                                                   70 10980
## 3
             0 334
                        12
                                4
                                     40.5 5880
## 4
        736
             0 432
                        15
                                3
                                     93.0 6600
                                                   94 13920
## 5
        745
             0 364
                        15
                                3
                                     43.0 5700
                                                   96 13020
## 6
        765
             0 378
                                4
                                     75.0 6000
                                                   87 11040
                        12
## 7
        771
             0 338
                        15
                                3
                                     48.0 6000
                                                   72 11340
        785
                                3
                                     55.0 6300
## 8
            0 344
                        15
                                                   68 12120
## 9
        786
            0 354
                        15
                                3
                                     34.0 6300
                                                   82 32000
        787 0 368
                                     52.0 6000
                                                   81 10620
## 10
                        15
                                3
```

##	11	812	0	345	15	3	46.0	6300	67	12480
##	12	816	0	322	14	3	14.5	6000	71	11220
##	13	821		364	15	3	55.0	6600	79	11100
##	14	829		329	12	4	47.0	6300	66	13416
##	15	843		390	15	3	64.0	6300	92	12660
##	16	844		383	12	4	106.0	6600	64	13560
##	17	850		397	15	3	69.0	6600	83	13260
##	18	857		492	12	4	210.0	7200	65	11520
##	19	880		352	12	4	46.0	5700	95	9300
##	20	911		364	14	3	59.0	6300	91	15960
##	21	931		356	12	4	83.0	5700	96	14460
##	22	934		394	14	3	60.0	6600	90	15120
##	23	961		344	12	4	80.0	6300	66	12108
##	24	968		331	15	3	12.0	6300	76	17364
##	25	979		386	15	3	68.0	6000	96	16800
##	26	983		381	15	3	48.0	6300	91	10980
##	27	1007		349	15	3	48.0	6300	70	11940
##	28	1009		368	12	4	94.0	6600	79	13560
##	29	1033		401	12	4	119.5	6000	94	10800
##	30	1044		341	15	3	55.5	6300	70	10140
##	31	1067		307	15	3	9.5	5700	65	12660
##	32	1071		327	12	4	85.0	6300	63	15660
##	33	1103		361	12	4	85.0	6300	82	11940
##	34	1111		369	15	3	78.0	6600	67	10860
##	35	1124		365	15	3	78.0	6300	94	13560
##	36	644		294	12	4	5.0	4500	80	7860
##	37	645		276	12	4	0.0	4500	65	8700
##	38	648		297	8	5	9.0	4800	81	10980
##	39	651		309	15	3	7.0	5400	69	9660
##	40	662		289	12	4	12.0	4980	69	9780
##	41	663		384	16	2	19.0	6900	85	14280
##	42	666		292	12	4	5.0	4500	80	8940
##	43	675		279	12	4	0.0	4800	69	8640
##	44	680		290	12	4	0.0	4980	69	11160
##	45	682		283	12	4	0.0	4500	66	8160
	46	684		680	12	4	139.0	5100	63	8580
##		691		310	12	4	0.0	4200	93	10560
##		698				4				
##	48 4a	701		298 299	12 12	4	0.0 7.0	4500 6600	81 71	9060 8880
	50	710		340	15	3	24.0	6600	86	11760
	51	714		279	8	5	17.0	4980	69	11640
	52	714	1		12	4	5.0	4500	81	10920
	53	720	1		15	3	0.0	4620	93	9660
	54	724		300	12	4	18.0	4500	80	9360
	55	729	1		12	4	2.0	4500	69	9060
##	56	742		546	12	4	197.5	5400	64	9360
##	57	743		740	12	4	204.5	7500	90	12600
##	58	745 746		301	12	4	7.5	4380	80	9720
##	59	750		322	15	3	11.0	4620	93	11700
##	60	753	1		12	4				
##	61	762		301	12	4	0.0	4500	69 80	8340 11400
	62	762 774		307	12	4	3.5 5.5	4500 4560	80 93	11040
	62 63	774 780		332	15	3	31.5	5340	93 88	14220
##	04	781	Τ	315	12	4	24.0	4500	92	8040

##	65	790	1	288	12	4	2.0	4620	74	10440
##	66	796		705	15	3	265.0	7800	82	11100
##	67	803		315	15	3	7.0	4800	76	10200
##	68	809		298	12	4	24.0	5100	65	9000
##	69	813		307	15	3	21.5	5580	73	9180
##	70	818		322	16	2	20.0	7800	64	13140
##	71	828	1	311	12	4	9.5	4200	93	9180
##	72	847	1	296	12	4	0.0	4500	77	8520
##	73	863	1	351	16	2	26.0	7200	75	13200
##	74	871	1	294	12	4	0.0	4380	81	9240
##	75	873	1	327	12	4	22.0	6000	76	11664
##	76	876	1	292	12	4	0.0	4500	80	9360
##	77	879	1	284	12	4	4.5	4980	69	12240
##	78	885	1	292	8	5	4.5	4380	81	9000
##	79	888	1	281	12	4	0.0	4500	69	8160
##	80	912	1	295	12	4	18.0	4620	81	10680
##	81	913	1	667	17	1	375.0	5100	73	11640
##	82	919	1	301	12	4	0.0	4500	81	9960
##	83	924	1	303	12	4	11.0	4380	81	7860
##	84	929	1	362	16	2	2.5	6900	80	13800
##	85	937	1	361	16	2	12.0	7200	71	14640
##	86	941	1	299	12	4	8.5	4380	81	8820
##	87	955		295	12	4	11.0	4800	81	10200
##	88	970		325	15	3	47.0	4440	67	12540
##	89	980	1	350	16	2	4.0	6300	82	9300
##	90	981		292	12	4	4.0	4860	77	13800
##	91	994		326	15	3	18.5	5100	81	11280
##	92	1004		309	12	4	30.0	6120	72	11760
	93	1011		310	12	4	16.0	4500	83	9600
##	94	1012		301	12	4	9.0	5700	63	11760
##	95	1015		326	12	4	47.0	5400	78	9840
##	96	1028		354	15	3	3.0	5400	94	10560
##	97	1039		345	15	3	5.0	7200	75	14820
##	98	1043		292	12	4	7.5	4800	79	9780
	99	1050		306	12	4	6.0	4200	92	11400
##	100	1054		296	12	4	4.5	4380	79	9900
##	101	1056		345	15	3	22.0	5400	90	13020
##	102	1059		281 534	12	4 4	1.5 3.0	4500 6000	68	9120
## ##	103 104	1062 1063		365	12 16	2	0.0	6600	90 90	13320 15420
##	104	1063		293	12	4	19.5	5100	69	9540
##	106	1076		300	12	4	0.0	4380	80	7260
##	107	1078		618	12	4	181.0	5400	67	8340
##	108	1035		527	16	2	143.0	6600	98	12120
##	109	1090		342	15	3	6.0	7200	78	13020
##	110	1091		328	12	4	32.0	5400	73	11160
##	111	1099		328	12	4	18.0	5580	72	11520
##	112	1102		284	12	4	0.0	4500	69	9120
##	113	1102		284	12	4	1.5	4500	69	8280
##	114	1110		349	15	3	56.5	5580	64	10080
##	115	1125		726	8	5	159.0	4800	73	8460
##	116	1129		289	12	4	13.0	4500	81	9240
			_		·=	-				

```
names(bankwages)
## [1] "EmpID"
                 "Sex"
                           "Age"
                                     "EducYrs" "EducLvl" "WorkExp" "Start"
## [8] "Senior" "Salary"
# Attach the data for the remainder of this session, so that the variables are available using
# the above column names:
attach(bankwages)
# The question of interest when collecting the data was "is there evidence of any gender (sex)
# discrimination in the employee compensation offered by this bank to general office trainees?"
# We have two measures of compensation in these data - starting and current salary levels
# (Start and Salary) and Sex is a 0/1 variable which indicates the employees gender.
# Firstly, are there apparent differences between the current salaries for males and females:
mean(Salary)
## [1] 11283.38
mean(Salary[Sex==0])
## [1] 13092.23
mean(Salary[Sex==1])
## [1] 10501.78
# As Sex is already coded as 0/1 indicator variable, we can decide whether these apparent
# differences in mean current salaries are significant by fitting a simple linear regression
# model:
Salary.lm <- lm(Salary ~ Sex)</pre>
plot(Salary.lm)
```


The plots indicate a definite problem with this model caused by an apparent outlier - # observation #9, but ignoring this for the moment and looking at the rest of the model output:

anova(Salary.lm)

Analysis of Variance Table

```
##
## Response: Salary
                   Sum Sq
                           Mean Sq F value
              1 164000725 164000725 23.714 3.63e-06 ***
## Sex
## Residuals 114 788398942
                            6915780
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(Salary.lm)
##
## Call:
## lm(formula = Salary ~ Sex)
##
## Residuals:
##
     Min
                           3Q
             1Q Median
                                 Max
   -4092 -1564
                 -607
                        1138 18908
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                            444.5
## (Intercept) 13092.2
                                    29.45 < 2e-16 ***
                                    -4.87 3.63e-06 ***
## Sex
               -2590.5
                            532.0
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2630 on 114 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1649
## F-statistic: 23.71 on 1 and 114 DF, p-value: 3.63e-06
# What are the estimated coefficients of this model? The intercept turns out to be the mean
# salary for males and the slope is the difference between the mean salary for males and the
# mean salary for females:
mean(Salary[Sex==0])
## [1] 13092.23
mean(Salary[Sex==1]) - mean(Salary[Sex==0])
## [1] -2590.451
# Note the t-test on the slope using this parameterisation turns out to be identical to the
# two sample t-test (assuming equal variances), that is typically included in a first year
# introductory statistics course:
t.test(Salary[Sex==1], Salary[Sex==0], var.equal=TRUE)
##
## Two Sample t-test
## data: Salary[Sex == 1] and Salary[Sex == 0]
## t = -4.8697, df = 114, p-value = 3.63e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3644.245 -1536.657
## sample estimates:
## mean of x mean of y
```

```
## 10501.78 13092.23
# Note the above "treatment" coding (using O/1) is not the only way we could have coded sex as
# an indicator variable. Here is an alternative parameterisation of Sex (usually called "sum"
# coding in an experimental design context):
Sex2 \leftarrow ifelse(Sex==0,-1,1)
Sex2
##
    [24] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
                                           1
                                             1
                                                1
## [47] 1 1 1 1 1
                      1
                         1
                            1
                               1 1
                                     1
                                        1
                                           1
                                                      1
                                                         1
                                                            1
                                                              1
                                             1
                                                1
                                                   1
   [70]
        1 1 1 1 1 1 1 1 1
                                  1
                                     1
                                        1
                                           1
                                             1
                                                1
                                                   1
                                                      1
                                                         1
                                                            1
                                  1
                                    1
## [93] 1
            1 1 1 1 1 1 1 1
                                        1
                                          1
                                             1
                                                1
                                                   1
                                                      1
## [116] 1
cbind(Sex, Sex2)
##
         Sex Sex2
##
    [1,]
           0
    [2,]
              -1
##
           0
##
    [3,]
           0
              -1
    [4,]
##
           0
               -1
##
    [5,]
           0
              -1
##
    [6,]
              -1
           0
    [7,]
              -1
##
           0
##
    [8,]
           0
              -1
    [9,]
              -1
##
           0
##
   [10,]
           0
              -1
##
   [11,]
           0
              -1
##
   [12,]
           0
               -1
##
   [13,]
              -1
           0
   [14,]
           0
              -1
   [15,]
              -1
##
           0
##
   [16,]
           0
               -1
              -1
##
   [17,]
           0
##
   [18,]
           0
              -1
   [19,]
              -1
##
           0
##
   [20,]
           0
              -1
##
  [21,]
           0
              -1
   [22,]
##
           0
              -1
##
   [23,]
           0
               -1
##
   [24,]
           0
              -1
##
   [25,]
           0
              -1
   [26,]
##
           0
              -1
   [27,]
##
           0
               -1
##
   [28,]
           0
              -1
##
   [29,]
           0
              -1
   [30,]
##
           0
              -1
##
   [31,]
           0
               -1
##
  [32,]
           0
              -1
##
  [33,]
           0
              -1
              -1
## [34,]
           0
##
   [35,]
           0
               -1
```

[36,]

[37,]

1

1

1

1

```
##
     [38,]
              1
                    1
##
     [39,]
              1
                    1
                    1
##
     [40,]
              1
##
    [41,]
                    1
              1
     [42,]
                    1
##
              1
##
    [43,]
              1
                    1
     [44,]
##
              1
                    1
     [45,]
##
              1
                    1
##
     [46,]
              1
                    1
##
    [47,]
              1
                    1
##
    [48,]
              1
                    1
##
    [49,]
                    1
              1
##
     [50,]
              1
                    1
##
     [51,]
                    1
##
     [52,]
              1
                    1
     [53,]
##
              1
                    1
##
     [54,]
              1
                    1
##
     [55,]
                    1
              1
##
     [56,]
              1
                    1
##
     [57,]
              1
                    1
     [58,]
##
              1
                    1
##
     [59,]
              1
                    1
##
     [60,]
                    1
              1
     [61,]
##
              1
                    1
##
     [62,]
                    1
              1
##
     [63,]
              1
                    1
##
     [64,]
              1
                    1
##
     [65,]
              1
                    1
##
     [66,]
                    1
              1
##
     [67,]
              1
                    1
##
     [68,]
                    1
              1
##
     [69,]
              1
                    1
##
     [70,]
              1
                    1
     [71,]
##
              1
                    1
##
     [72,]
              1
                    1
##
     [73,]
              1
                    1
                    1
##
     [74,]
              1
##
     [75,]
              1
                    1
##
     [76,]
              1
                    1
##
    [77,]
              1
                    1
    [78,]
##
              1
                    1
    [79,]
##
              1
                    1
##
     [80,]
              1
                    1
##
     [81,]
              1
                    1
     [82,]
##
              1
                    1
     [83,]
##
              1
                    1
##
     [84,]
              1
                    1
##
     [85,]
                    1
##
     [86,]
              1
                    1
##
     [87,]
              1
                    1
##
     [88,]
                    1
              1
                    1
##
     [89,]
##
     [90,]
                    1
              1
##
     [91,]
                    1
```

```
## [92,]
           1
                1
## [93,]
           1
                1
                1
## [94,]
## [95,]
           1
                1
## [96,]
                1
           1
## [97,]
           1
                1
## [98,]
                1
           1
## [99,]
                1
           1
## [100,]
           1
                1
## [101,]
           1
                1
## [102,]
           1
                1
## [103,]
                1
           1
## [104,]
           1
                1
## [105,]
                1
## [106,]
           1
                1
## [107,]
                1
           1
## [108,]
           1
                1
## [109,]
                1
           1
## [110,]
                1
           1
## [111,]
                1
## [112,]
           1
                1
## [113,]
           1
## [114,]
                1
           1
## [115,]
                1
           1
## [116,]
                1
           1
# However, the model using this new variable gives output that is almost identical to the
# original model:
Salary.lm2 <- lm(Salary ~ Sex2)</pre>
plot(Salary.lm2)
```



```
1 164000725 164000725 23.714 3.63e-06 ***
## Residuals 114 788398942
                            6915780
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(Salary.lm2)
##
## Call:
## lm(formula = Salary ~ Sex2)
## Residuals:
    Min
            1Q Median
                           3Q
                                 Max
## -4092 -1564
                 -607 1138 18908
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 11797
                              266
                                   44.35 < 2e-16 ***
                 -1295
                              266
                                   -4.87 3.63e-06 ***
## Sex2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2630 on 114 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1649
## F-statistic: 23.71 on 1 and 114 DF, p-value: 3.63e-06
# The only difference is in the estimated coefficients of the model (the model parameters).
# The new intercept turns out to be, not the overall mean salary (which is what would have
# happened had if we had the same number of males and females - called a balanced design),
# but instead it is the simple (rather than weighted) average of the mean salary for males
# and the mean salary for females:
mean(Salary)
## [1] 11283.38
(mean(Salary[Sex==0]) + mean(Salary[Sex==1]))/2
## [1] 11797
coef(Salary.lm2)
## (Intercept)
                     Sex2
    11797.003
                -1295.225
# If we add the slope coefficient to from this new intercept (i.e. when Sex2 = +1),
# we arrive at the mean salary for males:
coef(Salary.lm2)[1] - coef(Salary.lm2)[2]
## (Intercept)
     13092.23
mean(Salary[Sex==0])
## [1] 13092.23
# And if we subtract the slope coefficient from the intercept (i.e. when Sex2 = +1),
# we get the mean salary for females:
```

```
coef(Salary.lm2)[1] + coef(Salary.lm2)[2]

## (Intercept)
## 10501.78

mean(Salary[Sex==1])

## [1] 10501.78

# We will discuss these alternative ways of parameterising a model later in this part of the # course, but before we leave this example, let's examine the models that Lattin, Carroll and # Green fit in their solutions to this exercise. First a model for examining the differences # in starting salaries, controlling for the effects of work experience and years of education, # which they do by including these additional variables in the model:

Start.lm <- lm(Start ~ Sex + WorkExp + EducYrs)
plot(Start.lm)</pre>
```

Residuals vs Fitted


```
anova(Start.lm)
## Analysis of Variance Table
## Response: Start
##
                   Sum Sq Mean Sq F value
                                              Pr(>F)
               1 27119338 27119338 57.983 9.044e-12 ***
               1 7395592 7395592 15.812 0.0001243 ***
## WorkExp
## EducYrs
               1 17758902 17758902 37.970 1.159e-08 ***
## Residuals 112 52383723
                            467712
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
summary(Start.lm)
##
## Call:
## lm(formula = Start ~ Sex + WorkExp + EducYrs)
##
## Residuals:
                1Q Median
                                3Q
                                       Max
## -2420.0 -413.9
                   -144.1
                             329.0
                                   1932.3
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           508.440
                                     5.806 6.07e-08 ***
## (Intercept) 2952.017
               -683.376
                           148.151
                                    -4.613 1.06e-05 ***
## Sex
                                     3.734 0.000298 ***
                             1.081
## WorkExp
                  4.035
## EducYrs
                219.896
                            35.686
                                     6.162 1.16e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 683.9 on 112 degrees of freedom
## Multiple R-squared: 0.4995, Adjusted R-squared: 0.4861
## F-statistic: 37.26 on 3 and 112 DF, p-value: < 2.2e-16

# There are problems with this model, notably that observation #81, a female who turns out to
# be the only college graduate out of all 116 employees, appears to have a large negative
# residual - i.e. she has a much lower starting salary than her additional education would
# suggest. We could treat her as a special case and exclude her from the analysis (one way of
# dealing with potential outliers, but not necessarily the best way in this instance):
Start.lm2 <- lm(Start[-81] ~ Sex[-81] + WorkExp[-81] + EducYrs[-81])
plot(Start.lm2)</pre>
```


Fitted values Im(Start[-81] ~ Sex[-81] + WorkExp[-81] + EducYrs[-81])

 $Im(Start[-81] \sim Sex[-81] + WorkExp[-81] + EducYrs[-81])$

lm(Start[-81] ~ Sex[-81] + WorkExp[-81] + EducYrs[-81])

```
anova(Start.lm2)
## Analysis of Variance Table
## Response: Start[-81]
##
                      Sum Sq Mean Sq F value
                                                 Pr(>F)
                  1 26947666 26947666 68.906 2.761e-13 ***
                  1 11034978 11034978 28.217 5.642e-07 ***
## WorkExp[-81]
## EducYrs[-81]
                  1 23081686 23081686 59.021 6.663e-12 ***
## Residuals
                111 43409548
                               391077
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
summary(Start.lm2)
##
## Call:
## lm(formula = Start[-81] ~ Sex[-81] + WorkExp[-81] + EducYrs[-81])
##
## Residuals:
                1Q
                   Median
                                3Q
                                       Max
## -1498.3 -362.7
                   -175.3
                             320.3 1797.4
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                            489.999
## (Intercept)
                2210.749
                                      4.512 1.61e-05 ***
                -480.568
## Sex[-81]
                            141.932
                                    -3.386 0.000982 ***
## WorkExp[-81]
                   7.177
                              1.186
                                      6.051 1.99e-08 ***
## EducYrs[-81]
                258.055
                             33.590
                                      7.683 6.66e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 625.4 on 111 degrees of freedom
## Multiple R-squared: 0.5845, Adjusted R-squared: 0.5733
## F-statistic: 52.05 on 3 and 111 DF, p-value: < 2.2e-16
# Compare the ANOVA tables and estimated coefficients of Start.lm and Start.lm2 - both models
# suggest there is significant discrimination against females in starting salaries, controlling
# for work experience and years of education, but the size of the mean difference in starting
# salaries, b(Sex) = -$683 in Start.lm compared to b(Sex) = -$481 in Start.lm2, suggests that
# observation 81 has had a significant effect on this difference!
# Finally, Lattin, Carroll and Green proposed this model for current salaries:
Salary.lm3 <- lm(Salary ~ Sex + Start + WorkExp + EducYrs + Senior)
plot(Salary.lm3)</pre>
```

Residuals vs Fitted

Fitted values
Im(Salary ~ Sex + Start + WorkExp + EducYrs + Senior)

Fitted values Im(Salary ~ Sex + Start + WorkExp + EducYrs + Senior)

Residuals vs Leverage

Im(Salary ~ Sex + Start + WorkExp + EducYrs + Senior)

```
anova(Salary.lm3)
```

##

##

Sex

Start

WorkExp

Coefficients:

(Intercept) -225.5811

-1337.9169

1.1972

-6.9152

```
## Analysis of Variance Table
## Response: Salary
##
                    Sum Sq
                             Mean Sq F value
               1 164000725 164000725 29.6240 3.216e-07 ***
## Sex
## Start
               1 116820146 116820146 21.1016 1.166e-05 ***
## WorkExp
                  23570694
                            23570694
                                     4.2577
                                               0.04143 *
## EducYrs
                  17697856
                            17697856
                                      3.1968
                                               0.07653 .
               1
## Senior
                  21341708
                            21341708
                                      3.8550
                                               0.05212 .
               1
## Residuals 110 608968538
                             5536078
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(Salary.lm3)
##
## Call:
## lm(formula = Salary ~ Sex + Start + WorkExp + EducYrs + Senior)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
  -3645.7 -1046.5 -325.7
                             779.3 18248.8
```

0.9314

0.0182 *

0.0823 .

0.0004 ***

Estimate Std. Error t value Pr(>|t|)

-0.086

-2.396

-1.753

3.652

2615.8534

558.2854

0.3278

3.9437

```
## EducYrs 197.3786 144.9695 1.362 0.1761

## Senior 45.2260 23.0343 1.963 0.0521 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 2353 on 110 degrees of freedom

## Multiple R-squared: 0.3606, Adjusted R-squared: 0.3315

## F-statistic: 12.41 on 5 and 110 DF, p-value: 1.497e-09

# This model also has problems with two potential outliers: observations #9 (a male with a very # large current salary) and #81 (again). We will discuss how to deal with outliers (again), # later in the course.
```