Projections

We have a subspace W (the span of \vec{u}), and we want to find the vector (\hat{y}) closest to \vec{y} in W.

We also want to find $\vec{z} \in W^{\perp}$ such that $\vec{y} = \hat{y} + \vec{z}$. Diagrammatically,

We know $\vec{z} \in W^{\perp}$, so:

$$\vec{z} \cdot \vec{u} = 0$$

We also know $ec{y} = \hat{y} + ec{z}$ and $\hat{y} = k ec{u}$ ($k \in \mathbb{R}$), so:

$$egin{aligned} ec{z} &= ec{y} - k ec{u} \ 0 &= (ec{y} - k ec{u}) \cdot ec{u} \ &= ec{y} \cdot ec{u} - k ec{u} \cdot ec{u} \ k &= rac{ec{y} \cdot ec{u}}{ec{u} \cdot ec{u}}, \end{aligned} \qquad ec{u}
eq ec{0}$$

So finally, $\hat{y} = rac{ec{y} \cdot ec{u}}{ec{u} \cdot ec{u}} ec{u}$

Orthogonal Projection

Let non-zero $\vec{u} \in \mathbb{R}^n$, and $\vec{y} \in \mathbb{R}^n$. The orthogonal projection of \vec{y} onto \vec{u} is the vector in the span of \vec{u} that is closest to \vec{y} .

$$ext{proj}_{ec{u}}ec{y} = rac{ec{y}\cdotec{u}}{ec{u}\cdotec{u}}ec{u}$$

Also, $ec{y} = \hat{y} + ec{z}$ and, $ec{z} \in W^{\perp}$

From this we can conclude (look at the diagram),

$$||\vec{y}||^2 = ||\mathrm{proj}_{\vec{u}}\vec{y}||^2 + ||\vec{z}||^2$$

Best Approximation

Best Approximation Theorem

Let W be a subspace of \mathbb{R}^n , $\vec{y} \in \mathbb{R}^n$, and \hat{y} is the orthogonal projection of \vec{y} onto W. Then for any $\vec{v} \neq \hat{y}, \vec{v} \in W$, we have

$$||ec{y} - \hat{y}|| < ||ec{y} - ec{v}||$$

$$ec{y} - ec{v} = ec{y} - ec{v} + (\hat{y} - \hat{y}) = (\hat{y} - ec{y}) + (\hat{y} - ec{v})$$

Pythagorean Theorem: $||\vec{y} - \vec{v}||^2 = ||\hat{y} - \vec{y}||^2 + ||\hat{y} - \vec{v}||^2$

We know that $||\hat{y}-\vec{v}||^2
eq 0$ as $\hat{y}
eq \vec{v}$, so $||\vec{y}-\vec{v}||^2 > ||\vec{y}-\hat{y}||^2$

