MINIMIZATION TECHNIQUES

-> Binary Logic is used in all of today's digital computers and devices, the cost of the circuits that implement it is an important factor.

-> Finding simpler and cheaper, but equivalent, realizations of a circuit must be good. To reducing the overall cost of the design.

Boolean therens:

1 complementation laus -

complement means, to change o's to is and is to o's.

 $law \models \overline{0} = 1$

law 2 = 1 = 0

 $law 3 = A = 0 \rightarrow \overline{A} = 1$

law 4 = A = 1 = A = 0.

Law 5 = $\overline{A} = A$ (Double complementation does not change the function).

a ANO Lows!

ا سما A.O = O

LOW 2 = A.1 = A

law 3 = A A = A

 $law U = A \cdot \overline{A} = 0$

3. OR Laure !-

law 1 = A + 1 = 1

Law 3: A+A = A

law2 = A+0 = A

Law 4 : A+A = 1

R			:`
	7	្រ	3+A
<u>.</u>			ر المراجعة الم
	/ /	•	
A			

A	B	A+B
0	O	0
0	} }	
l	6	
1		1 .

A	B	B+A
001	0 1 0 1	0

A-	<u>.</u>		A.	B
B -	A	B	A-B	\
í	0	0	8	
	O	1	0	
)	U	0	
(1	1	1	

5 Associate laus: -

					_						
	A	B	C	A+B	(A+B)+C	1	Α	В	C	B+C	A+(B+C)
	0	0	D	. 0	O	1	O	0	O	O	O
	O	. 0	1	0	1	:	0	0		1.	1
	0	I	ò	1	1	-	0		0		\ \frac{1}{3}
	,0.	1	[.,	, , , ,	1		O		'	0	
	ţ	O	0		1				0.		
1	ι	0	J		1	•		0			
	l	1	0		1 /		$\left \frac{1}{2} \right V$		D		'
		1	[]		1	•		ľ		1	

law 2 ! (A.B) c = A(B.C).

	A	В	C	AB	(AB) C
1	0	0	0	0	10
	Ø	۰۵	li	0	0
	Ø	1	0	0	0
ſ	0] , î	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.	, 0
	1	0	0	บ	0
1	1	0 }	1 }	0	0
	l	1/	0	j	0
	1	f	1	1	

B		B.C)A
	— \ \ \ \	
•		

A:	В	C	B.C	A(BG)
0	0	.0	. ტ	0
0	Ó]	0	0
Ö	1	ט	0	0
0	ب	\		Ö
1.	Ο,	b	Ö	0
Ţ	D		. 0	0
		0	Ø	O
	1	1		

7. Redundant	literal	Rule:	_
· .			

$$= A(\overline{A} + B)$$

$$= A.\overline{A} + AB$$

= AB

A	В	A+B	A(A+B
		1	O
\ \	<u>٠</u>	\	0
U)		0
· []	0	10	, ,
1		<u> </u>	1

		1
A	B	AB
0	0	0
	i	
	O	0
	1_	
	•	•

	A	B	AB	ATAB
٠	0	0	O	0.
	0	1	1	1
	l	O	0	ţ ·
ĺ	 	j	0	1 -

AB	AtB
0 0	0
0 1	
1 0	
)

8. Idenpotence Laws:

Idempotence means the same value

9. Absorption laws

Law 1 = ATA.B = A

A	B	A B	A+A-B
0	0	·O	
0	1	0	0 ,
ŧ	0	0	1
		<u> </u>	

- = A+AB
- = A(1+B) 1+B=1
- A 1
- = A.

			• •		
law	2	1 F.	A(A+	·B)	_

	A	B	A+B	A(A+B)
Ì	0	0	0	0
	.0	1	. 1	0
	l	0 '	1 *	ŀ
1	(<u> </u>	1 -	1.

- = A.A + AB
- = A + AB
- = A(I+B)
 - = A.

-	= A(A+	any term)	١
	= A)

10. Consensus Theorem '-

Thedem 1: AB+AC+BC = AB+AC.

- AB+ AC+ BC (A+A)
- = AB+AC+ ABC+ ABC
- = AB(I+C) + AC(I+B)
- = ABCI) + AC = AB+AC.

If a sum of products comparises a term containing A and a term containing A, and a third term containing the left out literals of the first two terms,

then the third term is redundant.

-> The function remains the same with or without the third term removed or retained.

Transposition Theorem

R.H.S =
$$(A+C)$$
 $(\overline{A}+B)$

Demogran's Theorem :-

The complement of a sun of vociables is equal to the product of their individual complements.

<u>A</u>	a	A.B
<u></u>	-d_	

	Α	B	A+13	A+B
	0	O	0	
	0	Ä.	1	٥
1	l:	0		0
	1	1	1	0

A	B	A	B	Ā, B
0	0	1	1	
0	۱,	 	υ	0
1	Ô	O		0
1)	D	0	0

Similarly
$$\rightarrow \overline{A+B+C+D+E} = \overline{A} \overline{B} \cdot \overline{C} \cdot \overline{D} \cdot \overline{E}$$

 $\rightarrow \overline{AB+CD+ED} = (\overline{AB})(\overline{CD})(\overline{ED})$
 $= (A+\overline{B})(\overline{C}+D)(E+D)$

 $\overline{AB} = \overline{A} + \overline{B}$ Law 2

The complement of the product of variables is equal to the sum of their individual complements.

Duality: -

O

when changing from one logic system to another, of becomes '1' and '1' becomes '0'. An AND gete becomes an orgate and an or gate becomes on AND gate. Given a Boolean identity, we an produce a dual identity by changing all '+' Sign to', ' Signs, all & '.' signs to '+' signs. The vorliables we not complemented.

```
Reducing Boolean Expressions by using Boolean theorems:
* f = A[B+C(AB+AC)]
  f = A [B+C ((AB) (AC))
    = A[B+C(A+B)(A+C)]
   = A[B+C[A+B)(A+C)]
    = A[B+C[AA+AC+AB+BC]
                                  A.A = A
  = A[B+C[A+AC+AB+BC]
    = A[B+AC+ACC+ABC+BCC]
                                  C.C = 0
    =A [B+AC+ABC]
   = AB+ AAC+ AABC
                           A.A.=0.
   = AB
* f = (\overline{A} + B) (\overline{B} + C) + (AB + C)
     AB+AC+BB+BC+AB+C B.B = 0
   = AB + AC + BC + AB + C
   = C(1+A+B)+AB+AB
   = AB+AB+C
* f = (A+B) (ABC) + (AC)
    = (A.B) (A+B+C)+A+C
    = AA+AB+AC+AB+BB+BC+A+C
    = A+AB+AC+B+BC +A+C
```

*
$$f = (A+B+C)(A+B+C)(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+\overline{C})$$

$$= \overline{C}(B+\overline{B}+A) = \overline{C}(1+A) = \overline{C}$$

少

* f(A,B,C,D) = AB+BC+AO+CO.

Applying the consensus thesim to and yth terms

$$\overline{A}\overline{B} + \overline{B}\overline{C} + \overline{A}\overline{O} + CO + \overline{B}O = \overline{B}\overline{C}+CO + \overline{B}O = \overline{B}\overline{C}+CO)$$

3rd and 5th terms, the term AB becomes redundant.

(BD + AO + AB = BD+ AD)

frie = AD+BC+CD

K-map (kornaugh-map:

The K-map method, on the other hand, is a systematic methode of (Simplification dep) simplifying the Boolean Expressions The K-map is a charit or a graph, composed of an aviangement of adjacent Cells, each representing a particular combination of variables in sum 81 paradoct form.

- > An a voulable function can have 20 possible combinations
- of product terms in sop town, or an possible combinations
- of sum terms in pos form.
 - -> A Two- voriable K-map will have 2=4 cells or squares,
- -> a three-variable k-map will have 23=8 cells on squares
- -) a four variable k-map will have 2 = 16 cells or squares.
- -) Any boolean Expression can be expressed in a standard or expanded sum of paroducts tom or in a standard or canonical or expanded product of sums tom.
- Fach of the poroduct terms in the standard sop form is called minterns and each of the sum terms in the standard pos form is called maxterns.

Two-Variable K-map - (Mapping of Sop Expressions).

A two-voriable K-map has $2^2 = 4$ cells & squares. 4 possible combinations of the input voriables A and B. (AB, AB, AB, AB).

* f = AB+AB simply by using K-map.

The minteress of a two-variable

* Reduce the expression by using k-map.

logic diagram

mapping of pos Expressions! -

 $M_{\delta} = A + B$, $M_{1} = A + B$, $M_{2} = \overline{A} + B$, $M_{3} = \overline{A} + \overline{B}$

The maxterns of a two-voriable k-map.

f = A, B

Three-voriable k-map

A function in three variable (AIB, C) Expressed in the standard sop term can have 23 = 8 possible combinations they are ABC, ABC, ABC, ABC, ABC, ABC, ABC, and ABC. in the Standard posterm can have $2^3 = 8$ in possible combinations. They are A+B+C, A+B+C, A+B+C, A+B+C, A+B+C, A+B+C, A+B+C and A+B+C

AB	, <u>C</u>	01	11	ĮΟ
0	ABC (mo)o	AB C (mi)	ABC (M2)3	ABC (m2)2
· :1	ABC (My) y	ABC (mg)	ABC (mg) 1	ABC (MOG

·			
6	()	2/	-
1. 0.0	V+B+C	A+B+C	AtBta
AtBtC (Mo)	A+B+C (Mi)	(M3)	(M 5)
1 (1.10)	5	7	- 6
	T+R+C	A+B+C	A+B+C
A+B+C	A+ Bt 5	(M-1)	(Mc)
(M4)	(1 (3)	(,,,)	1
		_	

mirteruns

max terms.

* Reduce the expression f= ABC+ABC+ABC+ABC+ABC.

ABC = 001 = M.

ABC = 101 = M5

ABC = 010 = M2

ABC = 110 = MG.

 $f_1 = M_1 + M_5 = \overline{ABC} + \overline{ABC} = \overline{BC}(A+\overline{A}) = \overline{BC}$. $f_2 = M_5 + M_1 = \overline{ABC} + \overline{ABC} = \overline{AC}(B+\overline{B}) = \overline{AC}$. $f_3 = M_1 + M_6 = \overline{ABC} + \overline{ABC} = \overline{AB}(C+\overline{C}) = \overline{AB}$. $f_4 = M_2 + M_6 = \overline{ABC} + \overline{ABC} = \overline{BC}(A+\overline{A}) = \overline{BC}$. $f = f_1 + f_2 + f_3 + f_4$.

B — — —

logic, diagram

* Reduce the Expression f= (A+B+C)(A+B+C) (A+B+C)

$$f_{1} = M_{0} = A+B+C$$

$$f_{2} = M_{5}. M_{7} = (\overline{A}+B+\overline{C})(\overline{A}+B+\overline{C})$$

$$= \overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}B+\overline{B}B+B\overline{C}+\overline{A}C+B\overline{C}+\overline{C}C}$$

$$= \overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}B+B\overline{C}+\overline{B}C+B\overline{C}+\overline{C}C}$$

$$= \overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}B+B\overline{C}+\overline{A}\overline{C}+\overline{B}C+\overline{C}C}$$

$$= \overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}B+\overline{B}C+\overline{A}\overline{C}+\overline{B}C+\overline{C}C}$$

$$= \overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}B+\overline{B}C+\overline{A}\overline{C}+\overline{B}C+\overline{C}C}$$

$$= \overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}+\overline{B}C+\overline{A}\overline{C}+\overline{B}C+\overline{C}C}$$

$$= \overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}B+\overline{B}C+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}C+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}C+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}C+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}C+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}C+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{B}+\overline{B}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}+\overline{A}\overline{B}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{B}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{C}\overline{C}\overline{C}$$

$$= \overline{A}\overline{A}\overline{A}\overline{A}+\overline{A}\overline{C}+\overline{A}\overline{C}+\overline{A$$

Four-vouable K-map:-

A four - variable (A,B,C,D) expression can have

24 = 16 possible combinations.

W.	CD 00	.01	11	10	AB C	000	· 0	11.	10
	IABCO	ĀĠĊO	ĀBLD	ABCO	00	AtBtC+0	AtBtCtD	A+B+C+D	A+BtC+D
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2022	7000	ARC 0	0]	A+B+C+D	AtBtCtD	AtBtCtO	Atrigic+0
:	12	13	15	14	1 🕏	<u> </u>	- 13 C	AtBICT D	A-1B-1C-10
11	ABCD	ABCD	ABCD	ABCD	· LOP	AtBtCtD	AtBtCtD		1000
10	ABCO	ABCD	ABCD	ARCD	10	A+B+C+D	ArB+C+D	A+ BtC+D	AtBtC+0
		Sop 40	pw.			 ۲	os fou	ກຸ	
		1·· U				1.	· .		ļ

* reduce the expression $f = \sum m(0,1,2,3,5,7,8,9,10,12,13)$ and implement the expression by using miversal togéc:

$$f_{min} = f_1 + f_2 + f_3$$

= $\overline{BD} + A\overline{C} + \overline{AD}$

* Reduce the expression f = TTM(2.8, 9, 10, 11, 12, 14) and implement the expression by using unwersal logic. f = TTM(2,8,9,10,11,12,14).

prime implicants (- [PI]

Each square or rectangular made up of the bunch of adjacent minterns is called a subcute Each. of these Subcuber in called a poince implicants.

essential prime implicants:-

The point implicants which contains at least one I which cannot be covered by any other prime implicant is called an essential point implicant (EPI) Redundant poume implicants:-

The point implicant whole each 1 is covered at least by one EPI is called a stedundant point implicants. (RPI).

Selective poime implicants:-

A prime implicant which is neither an essential prime implicant nova redundant porime implicant is called a selective prime implicant (SPI)

#= Em(5,7,13,15,9,14,4)

False prime implicants: - (FPI)

The prime implicants obtained by using the maxterns are called false prime implicants.

Essertial false point implicants/. -

The FPI's which contains at least one 'o' which cannot be covered by any other FPI is called Essential False prime implicants (EFPI).

The four corner o's from the largest cluster of adjacent o's, which is an FPI whose o's are covered by essential FPIs and hence is a redundant false point implicant (RFPI,

F(A,B,C,D) = (A+C)(A+B+D)(A+B+D)(A+B+D)

The function has in all seven FPIs marked in figure.

The FPI is an essential FPI as it contains as at locations

and 7 which cannot be covered by any other FPI.

The remains FPI are all SFPIs.

Five-voriable K-map:-

A fine- vormable (AIB,CIDA expression can have 25=32 possible combinations of input voriables.

The 32 squares of the K-map are divided into ∞ blocks of 16 squares each one block taken as a A=1!

Six-Voriable K-map:

A Six-variable (A,B,C,D,E,F) expression carrhave $2^6 = 64$ possible combinations of input variables.

The 64 squares of the K-map are divided into 4 blocks of 16 squares each one block taken as a AB = "00" and "11".

* Reduce the exponension

f= 5m (0,2,7,8,10,13,16,18,24,26,29,31,32,34,37,39,40,42,45,47,48,50,53,55,56,58,61,63).

fi = BCDEF

fa = COEF

f3 = DF

fu = ADF

f5 = BCDF

 $F = f_1 + f_2 + f_3 + f_4 + f_5$

Frain = BCOEF+COEF+DF+ADF+BCDF.

Don't care combinations:

The combinations for which the values of the expression are not specified are called don't care combinations of optional combinations and such expressions, therefore in completely specified. The don't care terms are denoted by in completely specified. The don't care terms are denoted by in completely specified. The don't care as process of design using an sop map each don't care is treated as a 1 if it is helpful in map reduction ouring the process of design using an Pos map each don't care is treated as a 0 if it is helpful in map reduction.

- A standard sop expression with don't cares can be converted into a standard pos term by keeping the don't cares as they are, and writing the missing missing missing of the sop term as the maxteurs of the pos term.
- A standard pos expression with don't cares can be converted into a standard sop form by keeping the don't cares as they are and writing the missing maxterns of the pos form as the min terms of the sop form.

$$F_{min} = f_1 + f_2$$

= $\overline{WX} + YZ$.
 $F(A_1B_1C_1D) = TTM [D_13,7,8,9,10,11,15).TTd (2,4).$

AB	00,	01	11	. 10	· .		÷
0.0	0	1	0	d.		' ' '	Q+3
0)	0,		0		76	f2=	A+B
()	12	13	O	14	7f2	f3 =	(B+D).
10	0	0 9	6/	D	<u> </u>	3	

frain = $f_1 + f_2 + f_3 = (\overline{C} + \overline{D}) (\overline{A} + B) (B + D)$. limitations of K-map:

- > K-maps are not suitable when the number of variables involved exceed four. It may be used with defficulty up to five and six variable. Systems. But beyond 'six variable k-maps cannot be physically visualized.
- The K-map simplification is a marval technique and simplification process is beauty dependent on the abilities of the designer. It cannot be programmed.

Reduce the expression $f = \sum m(1.5.6.12.13.14) + d(3.4)$ by using whereal logic $f = \sum m(1.5.6.13.14) + d(3.4) \rightarrow Sop form.$

$$f_{min} = (\overline{C} + \overline{D}) (B + \overline{D}) (\overline{A} + B)$$

auine mccluskey & tabular method :-

W. V arise and E.J. Mccluskey developed on exact tabular method to simplify the Boolean Expression. This methode is called the arise Mccluskey or tabular method.

The procedure for the minimization of a Boolean expression by the tabular methode

step 1. list all the minterms.

of is in their tunory representation in column 1.

step3. compare each term of the lowest index group with every term in the succeeding group.

Stepy: compare the terms generated in step2 in the same fashion combine two terms which duffer by only a single 1 and whole dashes are in the same position to generate a, new term.

Step 5: - list all the prime implicants and draw the implicant chart (The don't cares if any should not appear in the prime implicant chart).

steps: - obtain essential prime implicants and write the minimal expression.

* obtain the minimal expression for $f = \sum m(1,2,3,5,6,7.8)$ 9,12,13,15) using tabular methode.

	<u> </u>		٠								•	, • <u> </u>	
Step	1		.c	tep	2.				Ste	.p : 3	S	•	
	1 000)						~ .		-	ьч). O			
	2.0010	. •	ا دا کیل	ร์) (ฯ	0_()			. •	- (B,	•		1.4
1 - 8	8 1000	<u>`</u> ~	/(),°	1) (8)	- 0	اد	•			4) O			
index a	3 00 11	· ·	(2)	3) (1)	001	 	(8,9	` <i>\9</i> 'I.	3)(;	4D 1.	_0 _	- BU	
		. ,	Xdi	676	10-	10	(5,7	113,1	5)(8	(8)	1_) P	
		_	/W	ון נדו	7 1 9	_	···.				·.	••	
	6 0 11 0 9	``````\	\(\\ \\ \\ \\\ \\ \\ \\ \\ \\ \\ \\ \\ \	13)(r	1) 1-	00						· .	
	4 100%	\			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						٠		
	12 11.00		\(3)	۲)[۲) O _z],		. * •					,
index 3	7.011	l	<u>/(</u> 5	ון) (2 באר (2	.) 0 [<u> </u>			:	• • • • • • • • • • • • • • • • • • • •	· ·		<i>ኤ</i>
THUCK 3	7.011-1	1 / '	- (- '	70	· , — • ·	_							
		/	<u> </u>	, 1) U	101	\ :						é	
index 4	15 111	14.	<u> </u>	113) (4) 1	01			-	•			
		1			<u>-</u>	0 —	:		-	::			
				1,15)(9)_				,			· ·	
			(J	3,15)	(3) -	1-V		•		٠,		:	
	Poi	ine '	impl	icant	Chy	vd.	-::- /		0 1	· · · · · ·		<u> </u>	
		1 8		3	_5 \ 	6	7	8		12	13	15	
P=5,7,1					X		X				X	(x)	
0 → 8,9,1								$\langle \nabla \rangle$	-X'		X		į
R → 3,3	· ·	(X	X			X						
5 -> 1,5,	Ì	X	_,	<i>.</i>	X				\mathcal{X}		X	,	
$L \rightarrow 113^{1}$	5,7	X		X	X		X			\ \ \ \			
	·		-	 	· ·	1	<u>- - '</u>	<u> </u>	<u></u>			1	_
1						•	-	<u>-</u> -	.,			•	4

P+ B+R+S > BD + AC+ AC+ CD P+ B+R+T > BD + AC+ AC+ AD.

٠,	:	·			<u> </u>		<u>.</u> .
·	Simplify t	he following.	function i	sing the	borancher	g metho	7:
	f(A,	B, C, D, E) =	Σm(0,4	,1a,16,19,	24, 18, 29,	,31)	
							·
ا	Index 0	0 00000	(0,4)) (y) 0	00-00	W /	<u> </u>
			(-) (0000 /		
	index 1	4 00100/				- 	
		16 10000	(4,12	(8) (8)	1-100	U and a second	
			(16/6	શ્4) (૪) (_000	T	.
	inder &	12 01100		0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000	<u> </u>	
	·.	24 11000	Kia i a	0) [16]	-1100	S ~	
		19 10011	x. (24,3	28)(4)	11-00	R	
	index 3	•	-	- 2 2 2		.	
		28 11100	(ବଃ	,a9) (ı)	1110 —	9)	
		29 11101.		217 (2)	111-)	ρ	· · .
	index 4	29 1110	- (« 11	JIJ (2-1.		· · · · · · · · · · · · · · · · · · ·	
		31 11111.	/				
1.	index5		rime impl	inat chas	nh		
,			The inqu			~	
	<u> </u>	0 4	ା	16	19 24	28 a9	31
,	P(a9,31)					X	
1	Q(28,29)					XX	
	R (24,28)	: 				X	·
-	S (12, 28))	X			X	
	T (16,24)			X	X		· · · · · · · · · · · · · · · · · · ·
	U (4112)		X	×		· •••••••••	
	(0/4)	× ×	, ·				
K	(X (19)	i			(X)		
1	· /		•				

				4
Intable x and p are essential prime	implicar	पेत्र.	. •	, ,
6 4	12	16	24	28
ω(04) (4) x x				
V(0,16) (16) X		X		
v (4,12) (8)	X	∨ ¹	X	
T(16,24) (8)	√ ·	7	/ \	χ
5(12,28) (16)	X			
R(24,28) (4)		•	X	X
a (28,29) (1)	വി മുപ്പ	essenti	al.	χ.
In the reduced PI chart, there PIS, dominated grows or dominated PIS, dominated grows or dominated	ra culum	ns in	column	no.
PIS, dominated shows of dominated	st select	ഷാന ന	•	To the second se
12 10 process of dominated grows wand v Firs	6	24	28.	
v(0,16)				
U(4,12) X		ح.		; ;
T (16,24)	ζ' '	X	V	
S(12,28)		X	X	
p(24,28)/		, ~	X	
In this now vis dominated to	T ware yo	-, 910W	u and	JOW
In this now vis dominated to a one dominated by 910w 5. 50 910w 6.	us V, V, O	, can be	, Fedu	(ed ,
a ore dominated 13	_	2	- &	
* T(16, a4) X	X		<i>x</i> *	·
* 5(12,28) x	×		X	.
R(24,28)	econdou	_		ine
1	econclara		eur p	
implicants so R is redundant				
C C TRIVEP	· = ===	7 <u>2</u> 2~		n (6
Thun = W+S+ 1+x1 = ABDE+ BCDE+	AC DET	- મહુ છ	t + Al	3LC.

And the second s

www.Jntufastupdates.com

3.5

	- National Control of Control of 第 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
k	Design an sop coruit to detect the decimal numbers 0, 2, 4, 6 and
	1) Like EDIL BOD COde INDULY
1	Decimal 521 (code
	0 (2,4,69,11,13)
	2 001
	0 101 0 00 10 1/3
ĺ	3
	4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5 1000 Y 131-11 A 11/10/10 1
,	100 1 1 1 1 1 1 1 1 1
į	6 fmin = AD+AC+LD
	6 1001 1 fmin = AD+AC+CD
	8 x
	9 1111
	t. mal commit
>	pesign a combinational concent content
	that accepts a 3-bit BCD number c 1
1.	and generates are output benary of the input number.
Ţ.	number equal to the square of the input number.
,	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	A B C X6 X5 X4 X3 X2 X1 1 3 (12 1)
	00000000 K-map for X5 = AC+ BC
	001000000000000000000000000000000000000
	MADLED XV. CABC + ABC
	100001.0000
	10 0 1 0 0 1 3 2
	11010000000000

والمتعادية والمتعادية