Name: Apuyan, Viktor Angelo

Section: CPE22S3

Performed on: 03/07/2024

Submitted on: 03/07/2024

Submitted to: Engr. Roman M. Richard

Exercise 1

```
import random
random.seed(0)
salaries = [round(random.random()*1000000, -3) for _ in range(100)]
salaries
```

```
Out[]: [844000.0,
          758000.0,
          421000.0,
          259000.0,
          511000.0,
          405000.0,
          784000.0,
          303000.0,
          477000.0,
          583000.0,
          908000.0,
          505000.0,
          282000.0,
          756000.0,
          618000.0,
          251000.0,
          910000.0,
          983000.0,
          810000.0,
          902000.0,
          310000.0,
          730000.0,
          899000.0,
          684000.0,
          472000.0,
          101000.0,
          434000.0,
          611000.0,
          913000.0,
          967000.0,
          477000.0,
          865000.0,
          260000.0,
          805000.0,
          549000.0,
          14000.0,
          720000.0,
          399000.0,
          825000.0,
          668000.0,
          1000.0,
          494000.0,
          868000.0,
          244000.0,
          325000.0,
          870000.0,
          191000.0,
          568000.0,
          239000.0,
          968000.0,
          803000.0,
          448000.0,
          80000.0,
          320000.0,
          508000.0,
          933000.0,
```

```
109000.0,
          551000.0,
          707000.0,
          547000.0,
          814000.0,
          540000.0,
          964000.0,
          603000.0,
          588000.0,
          445000.0,
          596000.0,
          385000.0,
          576000.0,
          290000.0,
          189000.0,
          187000.0,
          613000.0,
          657000.0,
          477000.0,
          90000.0,
          758000.0,
          877000.0,
          923000.0,
          842000.0,
          898000.0,
          923000.0,
          541000.0,
          391000.0,
          705000.0,
          276000.0,
          812000.0,
          849000.0,
          895000.0,
          590000.0,
          950000.0,
          580000.0,
          451000.0,
          660000.0,
          996000.0,
          917000.0,
          793000.0,
          82000.0,
          613000.0,
          486000.0]
In [ ]: #MEAN
         n = len(salaries)
         get_sum = sum(salaries)
         mean = get_sum / n
         print("Mean / Average is: " + str(mean))
```

Mean / Average is: 585690.0

```
In [ ]: #Median
         salaries.sort()
         median_form = salaries[49] + salaries[50]
         med = median form / 2
         print("The Median is: " + str(med))
       The Median is: 589000.0
In [ ]: #Mode
         salaries.sort()
         list_1=[] # Create an empty list to store the frequency of each salary
         # Iterate through the salary list
         i=0
         while i<len(salaries):</pre>
           list_1.append(salaries.count(salaries[i])) # Count the occurrences of the curren
           i+=1 # increment the counter
         dic = dict(zip(salaries, list_1)) # Create a dictionary to map salaries to their fr
         dic2 = \{k \text{ for } (k,v) \text{ in } dic.items() \text{ if } v == \max(list_1)\} \text{ } \# \text{ } Create \text{ } a \text{ } set \text{ } to \text{ } store \text{ } salar
         print("The mode for this dataset: " + str(dic2))
       The mode for this dataset: {477000.0}
In [ ]: #Sample Variance
         summation = 0
         for x in salaries:
           summation += (x - mean)**2
         sample var = summation/(len(salaries)-1)
         print("Sample Variance for this dataset: " + str(sample_var))
       Sample Variance for this dataset: 70664054444.44444
In [ ]: #Sample Standard Deviation
```

```
stdev = sample var**0.5
print("Standard Deviation for this dataset: " + str(stdev))
```

Standard Deviation for this dataset: 265827.11382484

Exercise 2

```
In [ ]: #Range
        range_of_data = max(salaries) - min(salaries)
        print("The range of the dataset is: " + str(range_of_data))
       The range of the dataset is: 995000.0
In [ ]: #Coefficient of variation Interquartile range
        q1 = np.percentile(salaries, 25)
        q3 = np.percentile(salaries, 75)
        iqr = q3 - q1
```

```
cov = np.std(salaries) / np.mean(salaries) * 100
print("COV: " + str(cov))
print("IQR: " + str(iqr))

COV: 45.15949370793889
IQR: 413250.0

In []: #Quartile coefficient of dispersion
qcd = (q3 - q1) / (2 * med)
print("Quartile Coefficient of Dispersion:", qcd)
```

Quartile Coefficient of Dispersion: 0.35080645161290325

Exercise 3: Pandas for Data Analysis

```
In []: import pandas as pd
import numpy as np

diabetes = pd.read_csv(("diabetes.csv"))
diabetes
```

```
FileNotFoundError
                                          Traceback (most recent call last)
<ipython-input-3-7662f8a01cc7> in <cell line: 4>()
      2 import numpy as np
---> 4 diabetes = pd.read_csv(("diabetes.csv"))
      5 diabetes
/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py in wrapper(*args,
**kwargs)
    209
                        else:
    210
                            kwargs[new_arg_name] = new_arg_value
--> 211
                    return func(*args, **kwargs)
    212
    213
                return cast(F, wrapper)
/usr/local/lib/python3.10/dist-packages/pandas/util/ decorators.py in wrapper(*args,
**kwargs)
    329
                            stacklevel=find_stack_level(),
    330
                        )
--> 331
                    return func(*args, **kwargs)
    332
                # error: "Callable[[VarArg(Any), KwArg(Any)], Any]" has no
    333
/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in read_csv(fil
epath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix,
mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitials
pace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, s
kip blank lines, parse dates, infer datetime format, keep date col, date parser, day
first, cache_dates, iterator, chunksize, compression, thousands, decimal, linetermin
ator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_error
s, dialect, error bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_mem
ory, memory_map, float_precision, storage_options)
    948
            kwds.update(kwds_defaults)
    949
--> 950
            return read(filepath or buffer, kwds)
   951
    952
/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in read(filepa
th_or_buffer, kwds)
    603
    604
            # Create the parser.
--> 605
            parser = TextFileReader(filepath_or_buffer, **kwds)
    606
    607
            if chunksize or iterator:
/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in init (sel
f, f, engine, **kwds)
   1440
  1441
                self.handles: IOHandles | None = None
                self._engine = self._make_engine(f, self.engine)
-> 1442
  1443
   1444
            def close(self) -> None:
/usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in _make_engine
```

```
(self, f, engine)
                       if "b" not in mode:
  1733
                           mode += "b"
  1734
                    self.handles = get_handle(
-> 1735
  1736
                        f,
  1737
                        mode.
/usr/local/lib/python3.10/dist-packages/pandas/io/common.py in get_handle(path_or_bu
f, mode, encoding, compression, memory map, is text, errors, storage options)
               if ioargs.encoding and "b" not in ioargs.mode:
   854
                   # Encoding
    855
--> 856
                   handle = open(
    857
                       handle,
    858
                       ioargs.mode,
FileNotFoundError: [Errno 2] No such file or directory: 'diabetes.csv'
```

1. Identify Column Names

```
In [ ]: column_names = list(diabetes.columns.values)
    print("Column Names :", column_names)

Column Names : ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insuli n', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']
```

2. Identify the data types of the data

3. Display the total number of records

```
In [ ]: text = "Total Number of Records: "
  total_records = len(diabetes)
  print(text + str(total_records))
```

Total Number of Records: 768

4. Display the first 20 records

```
In [ ]: diabetes.head(20)
```

]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFur
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
5	5	116	74	0	0	25.6	
6	3	78	50	32	88	31.0	
7	10	115	0	0	0	35.3	
8	2	197	70	45	543	30.5	
9	8	125	96	0	0	0.0	
10	4	110	92	0	0	37.6	
11	10	168	74	0	0	38.0	
12	10	139	80	0	0	27.1	
13	1	189	60	23	846	30.1	
14	5	166	72	19	175	25.8	
15	7	100	0	0	0	30.0	
16	0	118	84	47	230	45.8	
17	7	107	74	0	0	29.6	
18	1	103	30	38	83	43.3	
19	1	115	70	30	96	34.6	
4							

5. Display the last 20 records

In []: diabetes.tail(20)

ıt[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	Diabetes Pedigree Fu
	748	3	187	70	22	200	36.4	
	749	6	162	62	0	0	24.3	
	750	4	136	70	0	0	31.2	
	751	1	121	78	39	74	39.0	
	752	3	108	62	24	0	26.0	
	753	0	181	88	44	510	43.3	
	754	8	154	78	32	0	32.4	
	755	1	128	88	39	110	36.5	
	756	7	137	90	41	0	32.0	
	757	0	123	72	0	0	36.3	
	758	1	106	76	0	0	37.5	
	759	6	190	92	0	0	35.5	
	760	2	88	58	26	16	28.4	
	761	9	170	74	31	0	44.0	
	762	9	89	62	0	0	22.5	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	
	4							>

6. Change the Outcome column to Diagnosis

```
In [ ]: #after renaming
   diabetes.rename(columns = {'Outcome':'Diagnosis'}, inplace = True)
   diabetes.head()
```

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
	0	6	148	72	35	0	33.6	(
	1	1	85	66	29	0	26.6	(
	2	8	183	64	0	0	23.3	(
	3	1	89	66	23	94	28.1	(
	4	0	137	40	35	168	43.1	2
	4							•

7. Create a new column Classification that display "Diabetes" if the value of outcome is 1, otherwise "No Diabetes"

8. Create a new dataframe "withDiabetes" that gathers data with diabetes

```
In [ ]: diabetes = pd.DataFrame(diabetes)
withDiabetes = diabetes[diabetes['Diagnosis'] == 1].copy()
withDiabetes
```

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
	0	6	148	72	35	0	33.6	
	2	8	183	64	0	0	23.3	
	4	0	137	40	35	168	43.1	
	6	3	78	50	32	88	31.0	
	8	2	197	70	45	543	30.5	
	•••				•••			
	755	1	128	88	39	110	36.5	
	757	0	123	72	0	0	36.3	
	759	6	190	92	0	0	35.5	
	761	9	170	74	31	0	44.0	
	766	1	126	60	0	0	30.1	

268 rows × 10 columns

9. Create a new dataframe "noDiabetes" thats gathers data with no diabetes

```
In [ ]: diabetes = pd.DataFrame(diabetes)
noDiabetes = diabetes[diabetes['Diagnosis'] == 0].copy()
noDiabetes
```

[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
	1	1	85	66	29	0	26.6	
	3	1	89	66	23	94	28.1	
	5	5	116	74	0	0	25.6	
	7	10	115	0	0	0	35.3	
	10	4	110	92	0	0	37.6	
	•••							
	762	9	89	62	0	0	22.5	
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	767	1	93	70	31	0	30.4	
	500 rd	ows × 10 colur	mns					

500 rows × 10 columns

10. Create a new dataframe "Pedia" that gathers data with age 0 to 19

11. Create a new dataframe "Adult" that gathers data with age greater than 19

```
In [ ]: Adult = diabetes[diabetes['Age'] > 19]
Adult
```

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFu
	0	6	148	72	35	0	33.6	
	1	1	85	66	29	0	26.6	
	2	8	183	64	0	0	23.3	
	3	1	89	66	23	94	28.1	
	4	0	137	40	35	168	43.1	
	•••					•••		
	763	10	101	76	48	180	32.9	
	764	2	122	70	27	0	36.8	
	765	5	121	72	23	112	26.2	
	766	1	126	60	0	0	30.1	
	767	1	93	70	31	0	30.4	

768 rows × 10 columns

12. Use numpy to get the average age and glucose value.

```
In [ ]: mean = np.mean(diabetes['Age']), np.mean(data['Glucose'])
for x in mean:
    print(x)
```

33.240885416666664 120.89453125

13. Use numpy to get the median age and glucose value.

```
In [ ]: get_median = np.median(diabetes['Glucose']), np.median(diabetes['Age'])
get_median
Out[ ]: (117.0, 29.0)
```

14. Use numpy to get the middle values of glucose and age.

```
In [ ]: median = np.median(data['Age']), np.median(data['Glucose'])
    for x in median:
        print(x)

29.0
117.0
```

15. Use numpy to get the standard deviation of the skinthickness.

```
In []: stdev_skinthick = np.std(diabetes['SkinThickness']) #
    print("Standard Deviation for this dataset:", stdev_skinthick)
    nump_median = np.median(diabetes['Age']), np.median(diabetes['Glucose'])
    for x in nump_median:
        print(x)

Standard Deviation for this dataset: 15.941828626496939
    29.0
    117.0
```

6.4 Conclusion

What I've learned in this HOA, is that I was able to learn a bit of an overview about data analysis. It kind of reminds of our DBMS course last semester wherein we would display a table and manipulate certain things for us to display important information. Here in this HOA, it is exactly the same but we are using python programming. I was glad that there are built-in modules for us to make our lives easier, because when I was doing exercise 1 without using the statistic modules, it is difficult and at the same time it lengthens the code. Furthermore, I got to learn how to use different