Основы глубинного обучения

Лекция 5

Оптимизация в глубинном обучении. Свёрточные архитектуры.

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2024

Нормализации

- В нейронной сети каждый слой обучается на выходах предыдущих слоёв
- Если слой в начале сильно меняется, то все следующие слои надо переделывать

Допустим, веса первого слоя сильно поменялись после градиентного шага

• Идея: преобразовывать выходы слоёв так, чтобы они гарантированно имели фиксированное распределение

- Реализуется как отдельный слой
- Вычисляется для текущего батча
- Оценим среднее и дисперсию каждой компоненты входного вектора:

$$\mu_B = rac{1}{n} \sum_{j=1}^n x_{B,j}$$
 покоординатно $\sigma_B^2 = rac{1}{n} \sum_{j=1}^n (x_{B,j} - \mu_B)^2$

 $x_{B,j}-j$ -й объект в батче B

• Отмасштабируем все выходы:

$$\tilde{x}_{B,j} = \frac{x_{B,j} - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

• Зададим нужные нам среднее и дисперсию:

$$z_{B,j} = \gamma \circ \tilde{x}_{B,j} + \beta$$

обучаемые параметры (векторы, размерность равна размерности входных векторов)

- *n* размер батча
- d размерность входного вектора

Важно: после BatchNorm среднее и дисперсия каждого выхода зависят только от параметров нормализации, но не от параметров прошлых слоёв!

Во время применения нейронной сети:

• Те же самые формулы, но вместо μ_B и σ_B^2 используем их средние значения по всем батчам

- Обычно вставляется между полносвязным/свёрточным слоём и нелинейностью
- Позволяет увеличить длину шага в градиентном спуске

• Не факт, что действительно устраняет covariance shift

How Does Batch Normalization Help Optimization?

Shibani Santurkar* **MIT**

shibani@mit.edu

Dimitris Tsipras* **MIT** tsipras@mit.edu

Andrew Ilyas* MIT ailyas@mit.edu

Aleksander Madry MIT madry@mit.edu

• Добавим шум после нормализации — хуже не становится!

• Как связаны градиенты до и после обновления на предыдущих слоях?

• Функционал ошибки становится более «гладким»!

(a) loss landscape

(b) gradient predictiveness

(c) "effective" β -smoothness

- *n* размер батча
- d размерность входного вектора

Layer Normalization

- *n* размер батча
- d размерность входного вектора

Layer Normalization

• Нормализуем распределение «признаков» одного объекта

$$\mu_i = \frac{1}{d} \sum_{j=1}^d x_{ij}$$

$$\sigma_i^2 = \frac{1}{d} \sum_{j=1}^{d} (x_{ij} - \mu)^2$$

 $x_{ij}-j$ -й признак i-го объекта

Layer Normalization

• Отмасштабируем все выходы:

$$ilde{x}_{ij} = rac{x_{ij} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

• Зададим нужные нам среднее и дисперсию:

$$z_{ij} = \gamma \circ \widetilde{x}_{ij} + \beta$$
 обучаемые параметры (скаляры)

Инициализации

Инициализация весов

- Не должно быть симметрий (плохо инициализировать всё одним числом)
- Хороший вариант:

$$w_j \sim \frac{2}{\sqrt{n}} \mathcal{N}(0,1)$$

n — число входов

• Пытаемся сделать так, чтобы масштаб всех выходов был примерно одинаковым

https://www.tensorflow.org/tutorials/images/data_augmentation

https://github.com/albumentations-team/albumentations

- Много разных вариантов
- «Бесплатное» расширение обучающей выборки
- В некотором смысле регуляризация модели

- Обычно аугментации случайно применяют к картинкам из текущего батча
- На этапе применения можно сделать несколько аугментаций картинки, применить сеть к каждой, усреднить предсказания

Архитектуры свёрточных сетей

LeNet (1998)

LeNet (1998)

- Для данных MNIST
- Идея end-to-end обучения
- Использовали аугментацию
- Около 60.000 параметров
- Доля ошибок на тесте 0.8%

ImageNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- Около 1.000.000 изображений
- 1000 классов

• Обычно качество измерялось на основе лучшей гипотезы модели

AlexNet (2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto kriz@cs.utoronto.ca

Ilya Sutskever

University of Toronto ilya@cs.utoronto.ca

Geoffrey E. Hinton

University of Toronto

hinton@cs.utoronto.ca

AlexNet (2012)

AlexNet (2012)

- Используют ReLU, аугментацию, dropout
- Градиентный спуск с инерцией (momentum)
- Обучение на двух GPU (5-6 суток)
- Около 60 миллионов параметров

Ошибка около 17%

VGG (2014)

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman*

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk

ConvNet Configuration									
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
input (224 × 224 RGB image)									
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
maxpool									
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
	maxpool								
FC-4096									
FC-4096									
FC-1000									
soft-max									

Table 2: **Number of parameters** (in millions).

Network	A,A-LRN	В	C	D	Е
Number of parameters	133	133	134	138	144

- Только маленькие свёртки
 - Меньше параметров
 - Больше нелинейностей (т.к. больше свёрточных слоёв)
- Градиентный спуск с инерцией
- Dropout для двух первых полносвязных слоёв

• Хитрая инициализация (сначала обучается вариант A со случайными начальными весами, потом им инициализируются более глубокие сети)

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test (Q)		
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

GoogLeNet (2014)

Going Deeper with Convolutions

```
Christian Szegedy<sup>1</sup>, Wei Liu<sup>2</sup>, Yangqing Jia<sup>1</sup>, Pierre Sermanet<sup>1</sup>, Scott Reed<sup>3</sup>,

Dragomir Anguelov<sup>1</sup>, Dumitru Erhan<sup>1</sup>, Vincent Vanhoucke<sup>1</sup>, Andrew Rabinovich<sup>4</sup>

<sup>1</sup>Google Inc. <sup>2</sup>University of North Carolina, Chapel Hill

<sup>3</sup>University of Michigan, Ann Arbor <sup>4</sup>Magic Leap Inc.
```

¹{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com
²wliu@cs.unc.edu, ³reedscott@umich.edu, ⁴arabinovich@magicleap.com

Figure 3: GoogLeNet network with all the bells and whistles.

GoogLeNet (2014)

(b) Inception module with dimensionality reduction

GoogLeNet (2014)

- Снижается число каналов перед «тяжёлыми» свёртками
- Несколько выходных слоёв для улучшения обучаемости

- Обучается градиентным спуском с инерцией
- Ошибка 6.67% на ImageNet

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- Добавление слоёв в свёрточную сеть ухудшает качество даже на обучении
- Хотя возможностей для переобучения больше, сеть почему-то не может ими воспользоваться

- Даёт низкую ошибку на обучении даже с 1000 слоёв (но там плохо на тестовой выборке)
- Обучается градиентным спуском с инерцией со случайной инициализацией
- Ошибка 4.49% на ImageNet

Эволюция архитектур

Xception

Xception

- Разделяется роль свёрток: либо по каналам, либо по пространству
- Более эффективное использование параметров

Что ещё?

- Highway networks
- Inception-ResNet
- Squeeze and Excitation Network
- MobileNet
- EfficientNet

• ...