Definitions Classification Engineering Applications Example

Ordinary Differential Equations - Lecture 1

ME3001 - Mechanical Engineering Analysis

March 29, 2020

Review of Differential Equations

Lecture 1 - Review of Differential Equations:

- Definitions
- Classification
- Engineering Applications
- Example

What is a Differential Equation?

Definition:	
A differential equation is an	equation which describes a functio
and one or more of its	of the
with respect to the	

Standard Form of an ODE

Ordinary Differential Equations are written in the following form.

$$a_n \frac{dy^{(n)}}{d^{(n)}x} + a_{n-1} \frac{dy^{(n-1)}}{d^{(n-1)}x} + ... + a_2 \frac{dy^2}{d^2x} + a_1 \frac{dy}{dx} + a_0 y = f(x)$$

The apostrophe is commonly used for the derivative.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_2 y'' + a_1 y' + a_0 y = f(x)$$

If time is the independent variable the equation changes slightly.

Is the differential equation ordinary or partial?

An ordinary differential eq	uation has	independent
variable and	dependent variable.	
A partial differential equat	tion has	
independent variable	dependent varia	ble.

What is the order of the equation?

The order of a differential equation is the

present in the equation.

Ordinary or Partial Order Degree Linear or Non-Linea

What is the degree of the equation?

The **degree** of a differential equation is the ______
of its highest derivative, after the equation has been made rational and integral in all of its derivatives.

Is the differential equation linear or non-linear?

	ordinary differential equation is wing statements are true.	if the
0	The dependent variable and its derivatives are of degree.	the first
2	The coefficients are constants or dependent on the independent variable.	ne
If eit	ther rule is broken, the equation is	

Engineering Applications

Differential equations are used to describe physical systems in many areas of engineering. An equation that represents a physical (or theoretical) system is known as a

- Solid Mechanics
- Kinematics and Dynamics
- Heat Transfer and Thermodynamics
- Fluid Mechanics

Example - Mathematical Model

Newton's Second Law

$$\Sigma F = ma$$

leads to an equation of motion.

$$\dot{y} + \frac{c}{m}y = f(t)$$

Example - Solution

The solution to a differential equation describes the				
		as a function		
of the				
1	1			

There are many different methods for finding the solution.