Post-COVID Stock Forecasting: An Investigation of Bayesian Methods in Machine Learning

Renyi Qu

Keio University

May 31, 2021

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- 6 Conclusion

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- 6 Conclusion

Background

- COVID-19: 2020/01-now
- deep interest in Bayesian methods during winter holiday
- investigate Bayesian integration in different (uncommon) forecasting methods:

• Regression: GPR, SVR

Neural networks: BNN, LSTM

• Decision Tree Ensembles: Random Forest, XGBoost

• New Bayesian: BPS

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- Conclusion

Data

4 datasets of major stock indices in the world from Yahoo Finance: Nikkei 225, NASDAQ, SSE Composite Index, HANG SENG Index.

Figure 1: Normalized Stock Market Index Price (2020/01-2021/03)

Exploratory Data Analysis

Index	Original	1st-order difference	2nd-order difference
Nikkei225	-0.483	-10.457	-8.759
	(0.895)	(0.000)	(0.000)
Nasdaq	-0.746	-5.049	-12.555
	(0.834)	(0.000)	(0.000)
SSEC	-1.197	-16.587	-10.204
	(0.675)	(0.000)	(0.000)
HSI	-1.525	-11.783	-8.499
	(0.521)	(0.000)	(0.000)

Figure 2: Exploratory Data Analysis

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- 6 Conclusion

Bayesian Inference

Bayes' Theorem:

$$p(\theta|x) = \frac{p(\theta)p(x|\theta)}{p(x)}$$

Bayesian inference:

Posterior \propto Prior \times Likelihood

- Modeling: define prior & formulate likelihood
- 2 Computing: generate posterior

MCMC = Markov Chain Sampling + Monte Carlo Integration

Metropolis-Hastings Algorithm

Algorithm 1: Metropolis-Hastings algorithm

```
Initialize: t = 0, x_0, g(x|y);
for t in [1, t_{max}] do
    Generate a random candidate x \sim g(x|x_t);
    Calculate acceptance probability a = \min \left( 1, \frac{P(x)}{P(x_t)} \frac{g(x_t|x)}{g(x|x_t)} \right);
    Generate a Bernoulli indicator u \sim \text{Bernoulli}(a);
    if u then
       x_{t+1} = x;
    else
        x_{t+1} = x_t;
    end
```

end

Hamiltonian Monte Carlo (HMC)

Replace the original posterior distribution with the Hamiltonian of the system:

$$H(x,v) = \ln P(x) + \ln Q(v)$$

- $\ln P(x)$: the potential energy of the system (i.e. underlying likelihood)
- In Q(v): the kinetic energy of the system (i.e. random noise introduced by velocity v)

Establish a new acceptance probability:

$$a = \min\left(1, \frac{\exp\left(H(x_T, v_T)\right)}{\exp\left(H(x_0, v_0)\right)}\right)$$

No-U-Turn Sampler: an improvement of HMC that automatically optimizes integration time \mathcal{T} , widely used in probabilistic programming packages.

Variational Inference

Approximate the posterior distribution p(H|D) with q(H) and make them as similar as possible. Such dissimilarity is measured by Kullback–Leibler (KL) divergence:

$$D_{\mathsf{KL}}(q\|p) = \int_{H} q(H') \ln \frac{q(H')}{p(H'|D)} dH'$$

The posterior p(H'|D) is still in the equation \rightarrow further derivation:

$$\begin{split} D_{\mathsf{KL}}(q\|p) &= \int_{H} q(H') \Big(\ln \frac{q(H')}{p(H',D)} + \ln p(D) \Big) dH' \\ &= \int_{H} q(H') \ln \frac{q(H')}{p(H',D)} dH' + \int_{H} q(H') \ln p(D) dH' \\ &= \mathbb{E}_{q} [\ln q(H) - \ln q(H,D)] + \ln p(D) \\ &= \ln p(D) - \mathcal{L}(q) \end{split}$$

Bayesian Optimization for Hyperparameter Tuning

- lacktriangle Define a hyperparameter space ${\cal H}$ for all hyperparameters of interest.
- ② Initialize a sample set $\{\mathbf{h}_j, l_j\}_{j=1}^N$
- **3** Train a GPR based on the sample set, with a Gaussian prior $f(\mathbf{h})$ and the output $l_j \sim N(f(\mathbf{h}_j), v)$.
- Identify the hyperparameter that minimizes the acquisition function:

$$a_{LCB}(\mathbf{h}; \{\mathbf{h}_j, l_j\}) = \mu(\mathbf{h}; \{\mathbf{h}_j, l_j\}) - \kappa \sigma(\mathbf{h}; \{\mathbf{h}_j, l_j\})$$

- **3** Add $\mathbf{h}_{\mathsf{opt}} = \mathsf{arg}\,\mathsf{min}_{\mathbf{h}a_{\mathsf{LCB}}(\mathbf{h};\{\mathbf{h}_i,l_i\})}$ back to the sample set.
- Repeat 3-5 until convergence.

Gaussian Process Regression

Gaussian Process Regression: non-parametric, no fixed functional form but a collection of normally distributed random functions.

Credit: https://planspace.org/20181226-gaussian_processes_ are_not_so_fancy/

Gaussian Process Regression

Model:

$$f(x) \sim \mathcal{GP}(\mu(x), k(x, x'))$$
$$y \sim \mathcal{GP}(\mu(x), k(x, x') + \sigma_y^2 I)$$

Kernel choice: radial basis function (RBF):

$$k(x, x') = \sigma_f^2 e^{-\frac{\|x - x'\|^2}{2l^2}}$$

Posterior Inference:

$$\begin{bmatrix} f(x) \\ f(x^*) \end{bmatrix} \sim N \left(\begin{bmatrix} \mu(x) \\ \mu(x^*) \end{bmatrix}, \begin{bmatrix} k(x, x') & k(x^*, x) \\ k(x^*, x) & k(x^*, x^{*'}) \end{bmatrix} \right)$$

Support Vector Regression

Support Vector Machine (SVM): construct a decision boundary with maximal geometric margin.

Support Vector Regression (SVR): SVM for regression.

Credit: https://www.pinterest.es/pin/787285578600674679/

Support Vector Regression

Objective function:

$$\underset{\mathbf{w}}{\operatorname{arg min}} \left\{ \left[\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} |\xi_i| \right] + \sum_{i} \mathcal{L}(y_i - f(\mathbf{w}, x_i)) \right\}$$

Posterior Inference with constant hyperparameters:

$$p(f|D) \propto p(f)p(D|f)$$

$$p(f|D) \propto \exp \left\{ -C \sum_{i} \mathcal{L}(y_i - f(\mathbf{w}, x_i)) - \frac{1}{2} f^T k^{-1}(x, x') f \right\}$$

Bayesian Neural Network

Figure 3: Neural Network

Bayesian Neural Network

Variational Posterior:

$$\mathbf{w} = \mu + \ln\left(1 + e^{\rho}\right) \circ \epsilon$$

ELBO:

$$f(\mathbf{w}, \theta) = \ln q(\mathbf{w}|\theta) - \ln p(\mathbf{w}p(D|\mathbf{w}))$$

Gradients:

$$\begin{split} \Delta_{\mu} &= \frac{\partial f}{\partial \mathbf{w}} + \frac{\partial f}{\partial \mu} \\ \Delta_{\rho} &= \frac{\partial f}{\partial \mathbf{w}} \frac{\epsilon}{1 + \mathbf{e}^{-\rho}} + \frac{\partial f}{\partial \rho} \end{split}$$

Gradient descent on the variational parameters:

$$\mu \leftarrow \mu - \alpha \Delta_{\mu}$$
$$\rho \leftarrow \rho - \alpha \Delta_{\rho}$$

Figure 4: Long Short-Term Memory

LSTM

- ① Compute F gate: $\Gamma_f = \sigma(W_f[a^{< t-1>}; x^{< t>}] + b_f)$
- 2 Compute U gate: $\Gamma_u = \sigma(W_u[a^{< t-1>}; x^{< t>}] + b_u)$
- **3** Compute O gate: $\Gamma_o = \sigma(W_o[a^{< t-1>}; x^{< t>}] + b_o)$
- **1** Compute candidate: $\tilde{c}^{< t>} = \tanh \left(W_c[a^{< t-1>}; x^{< t>}] + b_c \right)$
- **5** Compute memory cell: $c^{< t>} = \Gamma_u \tilde{c}^{< t>} + \Gamma_f c^{< t-1>}$
- **1** Output activation for the next unit: $a^{< t>} = \Gamma_o \cdot \tanh c^{< t>}$

Random Forest

Figure 5: Example of a decision tree

Random Forest = a bag of multiple decision trees

$$\hat{f} = \frac{1}{B} \sum_{b=1}^{B} f_b(x^*)$$

XGBoost

Idea:

$$\hat{y}_i^{(t)} = \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$$

Objective function to be optimized:

$$\sum_{i=1}^{m} \left(g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right) + \Omega(f_t)$$

- $g_i = \frac{\partial \mathcal{L}}{\partial \hat{y}_i^{(t-1)}}$: first-order gradient $(\mathcal{L}(y_i, \hat{y}_i^{(t-1)})$: original loss function)
- $h_i = \frac{\partial^2 \mathcal{L}}{\partial \hat{y}_i^{(t-1)^2}}$: second-order gradient
- $\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$: regularization term

Bayesian Predictive Synthesis

Figure 6: Bayesian Predictive Synthesis

Bayesian Predictive Synthesis

Original BPS:

$$p(y|\mathcal{H}) = \int_{\mathbf{x}} \alpha(y|\mathbf{x}) \prod_{j=1}^{J} h_j(x_j) d\mathbf{x}$$

Temporal BPS:

$$p(y|\mathbf{\Phi}_t, \mathcal{H}_t) = \int \alpha_t(y_t|\mathbf{x}_t, \mathbf{\Phi}_t) \prod_{j=1}^J h_{tj}(x_{tj}) d\mathbf{x}_t$$

Prior:

$$p(\mathbf{x}_t|\mathbf{\Phi}_t,y_{1:t-1},\mathcal{H}_{1:t}) \equiv p(\mathbf{x}_t|\mathcal{H}_t) = \prod_{j=1}^J h_{tj}(x_{tj})$$

Likelihood:

$$\alpha_t(y_t|\mathbf{x}_t, \mathbf{\Phi}_t) = N(y_t|\mathbf{F}_t^T \boldsymbol{\theta}_t, v_t)$$

Bayesian Predictive Synthesis

Likelihood - DLM:

$$y_t = \mathbf{F}_t^T \boldsymbol{\theta}_t + \nu_t, \quad \nu_t \sim N(0, v_t)$$

$$\boldsymbol{\theta}_t = \boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t, \quad \boldsymbol{\omega}_t \sim N(0, v_t \mathbf{W}_t)$$

- $\mathbf{F}_t = (1, \mathbf{x}_t^T)^T$
- $\bullet \ \theta_t = (\theta_{t0}, \cdots, \theta_{tJ})^T$
- $\Phi_t = (\theta_t, v_t)$

Posterior inference:

- **1** Draw parameters from $p(\Phi_{1:t}|\mathbf{x}_{1:t}, y_{1:t})$ by FFBS.
- ② Draw agent states from $p(\mathbf{x}_{1:t}|\Phi_{1:t},y_{1:t},\mathcal{H}_{1:t})$ by MH.

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- 6 Conclusion

Experiment

- Python:
 - GPR: $k_{\text{GPR}} = k_{\text{noise}} + k_{\text{const}} \times k_{\text{RBF}}$
 - BNN: 8×16×8, ReLU, MSE, Adam, epoch 10, batch size 32
 - LSTM: 1→16, ReLU, MSE, Adam, epoch 10, batch size 32
 - Random Forest: max_depth (in [3,10]), min_samples_leaf (in [1,4]), min_samples_split (in [2,10]), n_estimators (in [100,200])
 - XGBoost: max_depth (in [3,10]), gamma (in [0,1]), colsample_bytree (in [0.1,0.9]), eta (in [0.1,0.5]), and subsample (in [0.5,1])
- Julia:
 - SVR: RBF with scaled I, $C = 1000, \epsilon = 10^{-5}$
 - BPS: monthly average prices instead of daily prices, J = 4, Gaussian priors, burn-in = 1000, MCMC = 2000.

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- 6 Conclusion

Table 3: CI Inclusion Accuracy Results (in %)

	GPR	SVR	BNN	LSTM	BPS
Nikkei225	99.58	69.05	29.07	67.01	100.00
NASDAQ	$\boldsymbol{63.62}$	28.23	17.84	48.69	100.00
SSEC	99.81	99.40	94.19	97.30	99.46
HSI	99.79	99.38	77.00	77.82	99.89

Results

Table 4: RMSE Results

	GPR	SVR	BNN	LSTM	RF	XGBoost	BPS
Nikkei225	599.22	4887.60	3506.62	2368.35	2464.90	2445.03	109.01
NASDAQ	872.53	4932.07	3673.23	2890.25	3107.07	3118.09	54.82
SSEC	38.29	35.63	108.30	92.66	44.43	43.58	18.56
HSI	353.16	341.44	1001.96	778.42	388.46	385.76	108.53

Nikkei225 Forecast

NASDAQ Forecast

SSEC Forecast

HSI Forecast

Optimal Hyperparameters

Table 5: Optimal Hyperparameters for Random Forest

	max_depth	min_sample_leaf	min_sample_split	n_estimators
Nikkei225	10	1	2	100
NASDAQ	10	1	2	100
SSEC	10	1	5	190
HSI	10	1	5	139

in Nonlinear Dynamics and Econometrics

Table 6: Optimal Hyperparameters for XGBoost

	max_depth	gamma	$colsample_bytree$	eta	${\it subsample}$
Nikkei225	3	0.37	0.90	0.1	0.8
NASDAQ	6	0.06	0.90	0.1	0.8
SSEC	3	1.00	0.90	0.1	0.8
HSI	3	0.64	0.83	0.1	0.8

Forecasts from Random Forest

Forecasts from XGBoost

Forecasts from BPS

Table of Contents

- Introduction
- 2 Data
- Methods
 - Intuition of Bayesian Methods
 - Models
- 4 Experiment
- 6 Results
- 6 Conclusion

Conclusion

- A good hardware condition is necessary for a successful implementation of advanced Bayesian methods.
- Pure Bayesian methods seem to be the best fit for time series forecasting tasks.
- Omplexity in the model structure does not necessarily improve the performance in time series forecasting.
- Bayesian optimization for hyperparameter tuning is beneficial for time series forecasting models.