

NPTEL ONLINE CERTIFICATION COURSES

Compiler Design Lexical Analysis

Santanu Chattopadhyay
Electronics and Electrical Communication Engineering

Role of Lexical Analyzer ☐ Tokens, Patterns, Lexemes ☐ Lexical Errors and Recovery ☐ Specification of Tokens **CONCEPTS COVERED Recognition of Tokens** ☐ Finite Automata NFA and DFA Tool lex Conclusion

Why to separate Lexical analysis and parsing

- 1. Simplicity of design
- 2. Improving compiler efficiency
- 3. Enhancing compiler portability

Tokens, Patterns and Lexemes

- A token is a pair a token name and an optional token value
- A pattern is a description of the form that the lexemes of a token may take
- A lexeme is a sequence of characters in the source program that matches the pattern for a token

Example

Token	Informal description	Sample lexemes
if	Characters i, f	if
else	Characters e, I, s, e	else
comparison	< or > or <= or >= or !=	<=, !=
id	Letter followed by letter and digits	pi, score, D2
number	Any numeric constant	3.14159, 0, 6.02e23
literal	Anything but "surrounded by "	"core dumped"

Attributes for tokens

- E = M * C ** 2
 - <id, pointer to symbol table entry for E>
 - <assign-op>
 - <id, pointer to symbol table entry for M>
 - <mult-op>
 - <id, pointer to symbol table entry for C>
 - <exp-op>
 - <number, integer value 2>

Lexical errors

- Some errors are out of power of lexical analyzer to recognize:
 - fi (a == f(x)) ...
- However it may be able to recognize errors like:
 - -d=2r
- Such errors are recognized when no pattern for tokens matches a character sequence

Error recovery

- Panic mode: successive characters are ignored until we reach to a well formed token
- Delete one character from the remaining input
- Insert a missing character into the remaining input
- Replace a character by another character
- Transpose two adjacent characters

Input buffering

- Sometimes lexical analyzer needs to look ahead some symbols to decide about the token to return
 - In C language: we need to look after -, = or < to decide what token to return
 - In Fortran: DO 5 I = 1.25
- We need to introduce a two buffer scheme to handle large look-aheads safely

Specification of tokens

- In theory of compilation regular expressions are used to formalize the specification of tokens
- Regular expressions are means for specifying regular languages
- Example:
 - letter(letter | digit)*
- Each regular expression is a pattern specifying the form of strings

Regular Expressions

- ϵ is a regular expression denoting the language ϵ L(ϵ) = { ϵ }, containing only the empty string
- If a is a symbol in Σ then a is a regular expression, $L(a) = \{a\}$
- If r and s are two regular expressions with languages L(r) and L(s), then
 - -r|s is a regular expression denoting the language L(r) ∪ L(s), containing all strings of L(r) and L(s)
 - rs is a regular expression denoting the language L(r)L(s), created by concatenating the strings of L(s) to L(r)
 - r^* is a regular expression denoting $(L(r))^*$, the set containing zero or more occurrences of the strings of L(r)
 - (r) is a regular expression corresponding to the language L(r)

Regular definitions

```
d1 -> r1
d2 -> r2
...
dn -> rn
```

• Example:

```
letter_ -> A | B | ... | Z | a | b | ... | Z | _
digit     -> 0 | 1 | ... | 9
id     -> letter_ (letter_ | digit)*
```


Extensions

- One or more instances: (r)+
- Zero of one instances: r?
- Character classes: [abc]
- Example:
 - letter_ -> [A-Za-z_]
 - digit -> [0-9]
 - id -> letter_(letter_|digit)*

Examples with $\Sigma = \{0, 1\}$

- (0|1)*: All binary strings including the empty string
- (0|1)(0|1)*: All nonempty binary strings
- 0(0|1)*0: All binary strings of length at least 2, starting and ending with 0s
- (0|1)*0(0|1)(0|1)(0|1): All binary strings with at least three characters in which the third-last character is always 0
- 0*10*10*10*: All binary strings possessing exactly three 1s

Example

Set of floating-point numbers:

(+|-|E) digit (digit)*(. digit (digit)*|E)((E(+|-|E) digit (digit)*)|E)

Recognition of tokens

 Starting point is the language grammar to understand the tokens:

```
stmt -> if expr then stmt
| if expr then stmt else stmt
| ε
expr -> term relop term
| term
term -> id
| number
```


Recognition of tokens (cont.)

The next step is to formalize the patterns:

```
digit -> [0-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?
letter -> [A-Za-z_]
id -> letter (letter|digit)*
If -> if
Then -> then
Else -> else
Relop -> < | > | <= | >= | = | <>
```

We also need to handle whitespaces:

```
ws -> (blank | tab | newline)+
```


Transition diagrams

Transition diagram for relop

Transition diagrams (cont.)

Transition diagram for reserved words and identifiers

Transition diagrams (cont.)

Transition diagram for unsigned numbers

Transition diagrams (cont.)

Transition diagram for whitespace

Architecture of a transition-diagram-based lexical analyzer

```
TOKEN getRelop()
      TOKEN retToken = new (RELOP)
      while (1) { /* repeat character processing until a
                                                    return or failure occurs
      switch(state) {
                 case 0: c= nextchar();
                                    if (c == '<') state = 1;
                                    else if (c == '=') state = 5;
                                    else if (c == '>') state = 6;
                                    else fail();
                                                    /* lexeme is not a relop */
                                    break;
                 case 1: ...
                 case 8: retract();
                                   retToken.attribute = GT;
                                   return(retToken);
```


Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state n
 - A set of accepting states $F \subseteq S$

input

A set of transitions state → state

Finite Automata

Transition

$$s_1 \xrightarrow{a} s_2$$

Is read

In state s₁ on input "a" go to state s₂

- If end of input
 - If in accepting state => accept, othewise => reject
- If no transition possible => reject

Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition

A Simple Example

• A finite automaton that accepts only "1"

 A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state

Another Simple Example

- A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

• Check that "1110" is accepted but "110..." is not

And Another Example

- Alphabet {0,1}
- What language does this recognize?

And Another Example

Alphabet still { 0, 1 }

- The operation of the automaton is not completely defined by the input
 - On input "11" the automaton could be in either state

Epsilon Moves

• Another kind of transition: ε-moves

Machine can move from state A to state B without reading input

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves
- Finite automata have finite memory
 - Need only to encode the current state

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take

Acceptance of NFAs

An NFA can get into multiple states

- Input: 1 0 1
- Rule: NFA accepts if it can get in a final state

NFA vs. DFA (1)

 NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider

NFA vs. DFA (2)

For a given language the NFA can be simpler than the DFA

NFA

1 0 0
0
DFA

1 0 0
0
1

DFA can be exponentially larger than NFA

Regular Expressions to Finite Automata

High-level sketch

Regular Expressions to NFA (1)

- For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

For input a

Regular Expressions to NFA (2)

For AB

For A | B

Regular Expressions to NFA (3)

For A*

Example of RegExp -> NFA conversion

Consider the regular expression

$$(1 | 0)*1$$

NFA to DFA. The Trick

- Simulate the NFA
- Each state of resulting DFA
 - = a non-empty subset of states of the NFA
- Start state
 - = the set of NFA states reachable through ϵ -moves from NFA start state
- Add a transition $S \rightarrow^a S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ε-moves as well

