TPN°2: Cotas asintóticas

Algoritmos y Estructuras de Datos II

NOTACIÓN O GRANDE

Notación O grande

Cota superior para el crecimiento de T(n)

Gráficamente

ĸ,

Notación O grande

¿Existe un único valor de c y n_0 que verifican que $T(n) \le c.f(n)$?

NOTACIÓN Ω

Cota inferior para el crecimiento de T(n)

Gráficamente

¿Existe un único valor de d y n_0 que verifican que $T(n) \ge d.f(n)$?

Gráficamente

EJEMPLOS

 $T(n) \in \Omega(f(n)) \Leftrightarrow \exists d \in \mathbb{R}^+ \land \exists n_0 \in \mathbb{N} / \forall n \ge n_0, T(n) \ge d * f(n)$

$$\underbrace{2^{n}}_{\mathsf{T(n)}} \in \Omega(\underline{n^{3}})?$$

$$2^{n} \ge d * n^{3}$$
$$2^{n} / n^{3} \ge d$$

Pasos:

- 1. Plantear la desigualdad
- 2. Despejar la constante
- 3. Analizar
- 4. Concluir

n	2 ⁿ / n ³
1	2
2	0,5
3	0,293
4	0,25
5	0,256
6	0,296
10	1,024
50	9.007.199.254

Verdadero d = 1 $n_0 = 10$

Verdadero d = 0.25 $n_0 = 4$

Verdadero d = 0.5 $n_0 = 12$

 $T(n) \in \Omega(f(n)) \Leftrightarrow \exists d \in \mathbb{R}^+ \land \exists n_0 \in \mathbb{N} / \forall n \ge n_0, T(n) \ge d * f(n)$

$$\underbrace{4n^2 + 6n}_{\mathsf{T(n)}} \in \Omega(\underline{n^3})?$$

$$4n^2 + 6n \ge d * n^3$$

 $(4n^2 + 6n) / n^3 \ge d$
 $4/n + 6/n^2 \ge d$

Pasos:

- 1. Plantear la desigualdad
- 2. Despejar la constante
- 3. Analizar
- 4. Concluir

n	4/n + 6/n ²
1	10
2	3,5
3	2
4	1,375
5	1,04
10	0,46
100	0,0406

Falso
La función 4n² + 6n
no se puede acotar
inferiormente con
una función
polinómica n³

NOTACIÓN Θ

Notación Θ

$$T(n) \in \Theta(f(n)) \Leftrightarrow \land \\ \exists \ c,d \in R^+ \\ \exists \ n_0 \in N$$

$$Cota \ superior$$

$$\land \forall \ n \geq n_0, \quad d^*f(n) \leq T(n) \leq c^*f(n)$$

EJEMPLOS

Notación Θ

 $T(n) \in \Theta(f(n)) \Leftrightarrow \exists c, d \in \mathbb{R}^+ \land \exists n_0 \in \mathbb{N} / \forall n \ge n_0, d^*f(n) \le T(n) \le c^*f(n)$

$$\underbrace{4n^2 + 6n}_{\mathsf{f(n)}} \in \Theta(\underline{n^2})?$$

$$d^*n^2 \le 4n^2 + 6n \le c^*n^2$$

 $d \le (4n^2 + 6n)/n^2 \le c$
 $d \le 4 + 6/n \le c$

Pasos:

- 1. Plantear la desigualdad
- 2. Despejar las constantes
- 3. Analizar
- 4. Concluir

n	4 + 6/n
1	10
2	7
3	6
4	5,5
5	5,2
10	4,6
100	4,06

Verdadero

$$c = 10$$

$$d = 4$$

$$n_0 = 1$$

Verdadero

$$c = 6$$

$$d = 1$$

$$n_0 = 3$$

Verdadero

$$c = 5$$

$$d = 3$$

$$n_0 = 10$$

Notación O

 $T(n) \in \Theta(f(n)) \Leftrightarrow \exists c, d \in \mathbb{R}^+ \land \exists n_0 \in \mathbb{N} / \forall n \ge n_0, d^*f(n) \le T(n) \le c^*f(n)$

$$d^*n^3 \le 2^n \le c^*n^3$$

 $d \le 2^n / n^3 \le c$

Pasos:

- 1. Plantear la desigualdad
- 2. Despejar la constante
- 3. Analizar
- 4. Concluir

n	2 ⁿ / n ³
1	2
2	0,5
3	0,293
4	0,25
5	0,256
6	0,296
10	1,024
50	9.007.199.254

Falso
La función 2ⁿ no se
puede acotar
superiormente con
una función
polinómica n³

REGLA DEL LIMITE

M

Regla del Límite

Regla del límite: Sean $f, g: N \rightarrow R^*$ dos funciones arbitrarias de los números naturales en los números reales no negativos, y sea $L = \lim_{n \to \infty} [f(n)/g(n)]$.

Se tiene que:

```
Si L \in \mathbb{R}^+ entonces f \in \Theta(g)
Si L = 0 entonces f \in O(g) y f \notin \Theta(g)
Si L \rightarrow \infty entonces f \in \Omega(g) y f \notin \Theta(g)
```

Regla del Límite

$$f(n)=2^{n} \qquad g(n)=n$$

$$f(n) \qquad g(n)$$

$$L = \underset{n \to \infty}{\text{Lim }} f(n)/g(n)$$

$$L = \underset{n \to \infty}{\text{Lim }} 2^{n}/n = \underset{n \to \infty}{\text{Lim }} (2^{n}.\text{Ln2})/1 = \infty$$

$$L \to \infty \qquad \text{entonces} \qquad f(n) \in \Omega(g(n)) \quad \text{y} \quad f(n) \notin \Theta(g(n))$$

$$L \to \infty \qquad \text{entonces} \qquad f(n) \in \Omega(g(n)) \quad \text{y} \quad f(n) \notin O(g(n))$$

Preguntas... ...y a practicar...

