نظرية الأوتومات واللغات الصورية دورة 2024 فصل ثاني

بسم الله الرحمن الرحيم

- 1- The language L = $\{a^i, b^j, c^k; i = j \text{ or } j = k\}$ is :
 - a- Type -3 Grammar
 - b- Type -2 Grammar
 - c- Type -4 Grammar
 - d- Type -0 Grammar
 - e- Type -1 Grammar
- 2- Every DFA Recognizing the language L = {w € {0,1}* : w ends with 01} needs at least states:
 - a- 2
 - b- 3
 - c- 4
 - d- 5
 - e- None
- 3- Which of The following statement about Regular Expression is true?
 - a- Regular Expression can only recognize Regular Languages
 - b- Regular Expression can recognize any computable languages
 - c- RE are more powerful than PDA
 - d- RE can be directly converted into turning machines
- 4- Which of the following statement about the closure properties of CFL are true?
 - a- CFL are closed under union, intersection and complement
 - b- CFL are closed under union, intersection but not complement
 - c- CFL are closed under union, concatenation but not complement
 - d- CFL are not closed with any of the mentioned
- 5- Which of the following statement about the Equivalence of DFAs and NFAs true?
 - a- DFAs and NFAs are not Equivalent as NFAs can recognize more languages than DFAs
 - b- DFAs and NFAs are not Equivalent as DFAs can recognize more languages than NFAs

	 c- DFAs and NFAs are Equivalent as they can recognize same class of languages (Regular Ex) d- DFAs and NFAs are Equivalent as they can both converted into Turning machines e- DFAs and NFAs are not Equivalent as they have different computational models
6-	A regular Expression is always: a- Finite b- Infinite c- Either a or b d- Undecidable
7-	Which of this RE describes a languages of all strings starting with the letter 'a': a- (a+b)*a b- (a+b)*b c- a(a+b)* d- b(a+b)* e- none
8-	Which of this recognize {w w contains an odd number of 0s } a- 1(00)*01 b- (011)*0 c- 0(1*1)*0 d- (0*10*10*)*
9-	S → aSa bSb a b; The language generated by prev grammar over {a,b} is the set of : a- All palindromes b- All odd length palindromes c- String begin and end with same symbol d- All even length palindromes
10-	A → aA a b The Number of steps to form aaab a- 2 b- 3 c- 4 d- 5
11-	Which of the following isn't computational function that can be computed by Turning machine

- a- Multiplication of natural numbers
- b- Addition of natural numbers
- c- Exponentiation of natural numbers
- d- Finding the greatest common divisor of natural numbers
- e- Solving the halting problem
- 12- The Grammar in question 10 is:
 - a- Type 1
 - b- Type 2
 - c- Type 3
 - d- Type 0
- 13- Which of this is correct about useless variable
 - a- Reachable
 - b- Generator
 - c- Both a b
 - d- None
- 14- The following automata Which edge of it not traversed (visited) when enter this String 011100101
 - a- B
 - b- C
 - c- CD
 - d- A

15- The number of states for L(M).L(N) For the following two automates M N is :

- a- 1
- b- 2
- c- 3
- d- 5
- 16- The Regular Rules for the automata in question 14
 - $a A \rightarrow 0B | 1C, B \rightarrow 1, C \rightarrow 0, D \rightarrow 1B | 0A$
 - b- A \rightarrow 0B|1, B \rightarrow 1D, C \rightarrow 0D, D \rightarrow 1B|0A
 - $c-A \rightarrow 0|1C, B \rightarrow 1D, C \rightarrow 0D, D \rightarrow 1B|0A$
 - $d A \rightarrow 0 | 1C, B \rightarrow 1D, C \rightarrow 0, D \rightarrow 1B | 0A$
- 17- We still in 14 if we change all normal states into final states and vice versa how many words will be accepted then?
 - a- 1
 - b- 2
 - c- 4
 - d- 5
 - e- Can't decide
- 18- Let Σ = {0,1}* and the grammar G be: S \rightarrow ϵ | SS | 0S1 | 1S0 State which of the following is true for the given:
 - (A) Language of all and only Balanced strings
 - (B) It contains equal number of 0's and 1's
 - (C) Ambiguous Grammar (D) All of the mentioned

19- Which among the following cannot be accepted by a regular grammar	
 (A) L is a set of numbers divisible by 2 (B) L is a set of binary complement (C) L is a set of string with odd number of 0 (D) L is a set of 0^n, 1^n 	
 20- consider this two grammar S and R S → aSb epsilon , R → cRd epsilon If we define grammar G = S union R so the number of steps to give productions will equal to : a- 1 b- 2 c- 4 d- 5 can't decide 	
21- What we can consider this grammar B → AC a a- Regular b- Non regular c- Ambiguous d- CNF	
22- What we can consider this grammar A → aA b a- Regular b- Non regular c- Ambiguous d- CNF	
 23- Which of The Following isn't component of Turning Machine a- Tape b- Stack c- Finite Control d- Head 	
24- Which of the following is a parctical application of turing machin?a- solving differential equationsb- recognize regular languages	

- c- simulating a computer program
- e- generating random number

25- Consider This Turning Machine:

The following turing machine acts like:

- A- Copies a string
- B- Delete a symbol
- C- Insert a symbol
- D-None of the mentioned
 - 26- What is the language of this grammar $S \rightarrow aSa \mid aAa$, $A \rightarrow bA \mid b$ with $\{a,b\}$
 - a- a^n b^n a^m
 - b- a^n b^m a^n
 - c- a^n b^m a^(n+m)
 - d- a^n b^(n+m) b^m
 - 27- CYK algorithm for This grammar:
 - $S \rightarrow AB$
 - $A \rightarrow AA|AB|a$
 - $B \rightarrow CC$
 - $C \rightarrow b$

And this word aaabb

By applying the Cyk algorithm for the above word what we will get?

- a- S
- b- A,S

- c- A,B,C,S
- d- Phi
- e- S,A,B
- 28- The languages accepted for this DFA is : pred by this DFA is?

- a- b*ab*ab*ab*
- b- (a+b)*
- c- b*a(a+b)*
- d- b*ab*ab*
- 29- Which of The following is/are true?
 - a- {epsilon=phi}
 - b- aa*=a
 - c- epsilon accepted by any finite automata
 - d- both b and c
 - e- none
- 30- let's take this two RE T = $(a+b^*)^*$ and S = $(a+b)^*$ select the right answer :
 - a- S⊆T
 - b- T⊆S
 - c- S=T
 - d- S intersection T = phi
- 31- The minimum Number of states to recognize an octal number divisible by 3 are/is:
 - a- 5
 - b- 3
 - c- 4
 - d- 7
- 32- What is The difference between DFA and NFA

- a- DFA has single transition for each state and input symbol, while an NFA can have multi transitions
- b- DFA can recognize more languages than NFA
- c- DFA has fixed number of states while an NFA can have infinite number of states
- d- DFA has tape, while NFA aren't
- 33- What is the relation between Regular Expression and Regular Grammar
 - a- RE and RG are completely unrelated
 - b- RE can be used to generate RG
 - c- RG can be used to generate RE
 - d- Both are equivalent in their expressive power
- 34- In TM id d not defined on the current state and the current tape symbol then the machine :
 - a- Doesn't halts
 - b- Halts
 - c- None
 - d- Goes into loop forever
- 35- Consider the following languages:

```
(I) \{a^nb^m \mid n > m \lor n < m\}

(II) \{a^nb^m \mid n \ge m \lor n \le m\}

(III) \{a^nb^m \mid n > m \land n < m\}

(IV) \{a^nb^m \mid n \ge m \land n \le m\}
```

Which of the following languages are regular?

- a- Only (I) and (IV)
- b- Only (II) and (III)
- c- Only (II), (III) and (IV)
- d- None of the above