AULA 05 SUCESSÕES

5.1 SUCESSÕES

Uma sucessão de números reais é simplesmente uma função $x : \mathbb{N} \to \mathbb{R}$. É conveniente visualizar uma sucessão como uma sequência infinita: (x(0), x(1), x(2), ...). Neste contexto é usual escrever (x_n) em lugar de escrever (x_n) e dizer que x_n é o termo de ordem n da sucessão (x_n) .

Dadas sucessões (x_n) e (y_n) diz-se que a segunda é uma *subsucessão* da primeira se existe uma função $\sigma: \mathbb{N} \to \mathbb{N}$, estritamente crescente, i.e. satisfazendo a seguinte condição: $m < n \Rightarrow \sigma(m) < \sigma(n)$, tal que para qualquer $n \in \mathbb{N}$ se tem $y_n = x_{\sigma(n)}$. (Ou seja $(y_n) = (x_{\sigma(n)})$.) Exemplos típicos de subsucessões de uma sucessão (x_n) são as subsucessões dos termos pares (x_{2n}) e (x_{2n+1}) (nestes casos estamos a considerar as funções estritamente crescentes $\sigma(n) = 2n$ e $\tau(n) = 2n + 1$, respectivamente.)

Se (x_n) é uma sucessão então o conjunto $\{x_n \mid n \in \mathbb{N}\}$ diz-se o conjunto dos termos da sucessão. Deve observar-se que uma sucessão tem infinitos termos (um para cada $n \in \mathbb{N}$) mas pode acontecer que o valor de todos os termos seja o mesmo e, nesse caso, o conjunto dos termos da sucessão é singular.

DEFINIÇÃO 5.1 (SUCESSÃO LIMITADA). — Dizemos que uma sucessão (x_n) é limitada se existe um real positivo K tal que,

$$|x_n| \le K$$
, para qualquer $n \in \mathbb{N}$.

De forma equivalente, uma sucessão (x_n) é limitada se existem números reais L e U tais que, para qualquer $n \in \mathbb{N}$ se tem $L \le x_n \le U$.

DEFINIÇÃO 5.2.— Uma sucessão (x_n) é monótona crescente se, $x_{n+1} \ge x_n$, para qualquer $n \in \mathbb{N}$, e é monótona decrescente se $x_{n+1} \le x_n$, para qualquer $n \in \mathbb{N}$. A sucessão (x_n) diz-se monótona se é monótona crescente ou monótona decrescente.

Se (x_n) é a sucessão definida por $x_n = (-1)^n$ e (y_n) a sucessão definida por $y_n = 1/n$ podemos observar uma «diferença de comportamento»: enquanto que a primeira oscila indefinidamente tomando os valores I e -I, nunca estabilizando, os termos da segunda vão-se aproximando cada vez mais de o. O primeiro caso tipifica uma classe de sucessões que classificamos de *divergentes* enquanto que a segunda, tipifica a classe das sucessões *convergentes*.

De modo a caracterizar estas noções de forma rigorosa temos que introduzir o conceito de *limite de uma sucessão*.

DEFINIÇÃO 5.3. – Diremos que o limite de uma sucessão (x_n) é o número real α se,

$$(\forall \varepsilon > 0)(\exists p \in \mathbb{N})(\forall n \ge p)d(x_n, \alpha) < \varepsilon \tag{5.1}$$

onde $d: \mathbb{R} \to \mathbb{R}_0^+$ é a função distância definida por d(x,y) = |x-y|. (Assim, uma sucessão tem por limite um real α se dada uma distância ε , os termos da sucessão ficam, a partir de certa ordem, a uma distância de α inferior a ε .)

Uma vez que o conjunto $\{x \in \mathbb{R} \mid d(x,\alpha) < \varepsilon\}$ é o intervalo $]\alpha - \varepsilon, \alpha + \varepsilon[$, intervalo este que se denota por $V_{\varepsilon}(\alpha)$ e designa de *vizinhança aberta de centro em* α *e raio* ε , a condição anterior pode ser escrita como

$$(\forall \varepsilon > 0)(\exists p \in \mathbb{N})(\forall n \ge p)x \in V_{\varepsilon}(\alpha). \tag{5.2}$$

Observe-se que dado $\varepsilon > 0$, quanto mais pequeno é ε maior é $1/\varepsilon$ e, em certo sentido, mais este valor fica «próximo de $+\infty$ ». Esta observação simples motiva a definição seguinte: $d(x, +\infty) < \varepsilon$ sse $x > 1/\varepsilon$ e $V_{\varepsilon}(+\infty) =]1/\varepsilon, +\infty[$. De modo totalmente análogo definimos: $d(x, -\infty) < \varepsilon$ sse $x < -1/\varepsilon$ e $V_{\varepsilon}(-\infty) =]-\infty, -1/\varepsilon[$.

Feitas estas observações, dizemos que o limite de (x_n) é $+\infty$ ou $-\infty$ quando se verifica (5.1) ou (5.2) com $+\infty$ ou $-\infty$ no lugar de α . Ou seja,

DEFINIÇÃO 5.4.— Dizemos que o limite de (x_n) é $+\infty$ escrevevendo neste caso $\lim x_n = +\infty$ ou $(x_n) \to +\infty$ se, dado $\varepsilon > 0$ existe $p \in \mathbb{N}$ tal que, para todo o n > p se tem $d(x_n, +\infty) < \varepsilon$. Analogamente com $-\infty$ no lugar de $+\infty$.

É fácil constatar que se tem, $(x_n) \to +\infty$ se e só se, para qualquer número positivo K, existe $p \in \mathbb{N}$ tal que n > p implica $x_n > K$, i.e.,

$$(\forall K > 0)(\exists p \in \mathbb{N})(\forall n > p) \ x_n > K.$$

Analogamente, $(x_n) \to -\infty$ se para qualquer número positivo K existe uma ordem p a partir da qual, $x_n < -K$, i.e.,

$$(\forall K > 0)(\exists p \in \mathbb{N})(\forall n > p) \ x_n < -K.$$

Se o limite de (x_n) é $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$ escrevemos $\lim x_n = \alpha$ ou $(x_n) \to \alpha$. O resultado seguinte estabelece a unicidade do limite de uma sucessão (quando o limite existe).

LEMA 5.1.— Se (x_n) é uma sucessão e $\alpha, \beta \in \mathbb{R} \cup \{+\infty, -\infty\}$ são tais que $(x_n) \to \alpha$ e $(x_n) \to \beta$ então $\alpha = \beta$.

DEM. — Verificamos o caso em que $\alpha, \beta \in \mathbb{R}$, deixando ao cuidado do leitor verificar os restantes casos, onde de resto se podem considerar argumentos semelhantes aos que iremos aqui usar. Consideremos então que $\alpha, \beta \in \mathbb{R}$ e que $(x_n) \to \alpha$ e $(x_n) \to \beta$. Consideremos ϵ tal que o $< \epsilon < |\beta - \alpha|/2$. Nestas circunstâncias $V_{\epsilon}(\alpha) \cap V_{\epsilon}(\beta) = \emptyset$. Usando a definição de limite somos forçados a concluir que existe $p \in \mathbb{N}$ tal que para valores de n > p se tem $x_n \in V_{\epsilon}(\alpha)$ (porque $(x_n) \to \alpha$) e $x_n \in V_{\epsilon}(\beta)$ (porque $(x_n) \to \beta$). Mas isto é absurdo por que neste caso não se teria $V_{\epsilon}(\alpha) \cap V_{\epsilon}(\beta) = \emptyset$.

DEFINIÇÃO 5.5.— Se uma sucessão (x_n) tem como limite um número real então, dizemos que é convergente, caso contrário dizemos que é divergente.

Uma sucessão (x_n) tal que $(x_n) \to 0$ diz-se um *infinitésimo*. Se $(x_n) \to +\infty$ então (x_n) diz-se um *infinitamente grande positivo* e diz-se um *infinitamente grande negativo* de $(x_n) \to -\infty$. Se $(|x_n|) \to +\infty$ diz-se que (x_n) é um *infinitamente grande*.

LEMA 5.2.— Suponhamos que (x_n) é uma sucessão e que $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$. Nestas condições $(x_n) \to \alpha$ sse $(x_{\sigma(n)}) \to \alpha$, qualquer que seja a subsucessão $(x_{\sigma(n)})$ de (x_n) .

O resultado anterior é especialmente interessante na forma do seu contra-recíproco, ou seja, se duas subsucessões de uma dada sucessão têm limites diferentes então a sucessão não tem limite.

DEFINIÇÃO 5.6.— Dizemos que $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$ é um sublimite de (x_n) se existe uma subsucessão de (x_n) que tem α como limite.

Tendo em conta o resultado acima, uma sucessão tem limite sse o conjunto dos seus sublimites é singular, ou seja, tem um único elemento.

Em certas circunstâncias podemos decidir a existência do limite de uma sucessão considerando apenas alguns sublimites.

LEMA 5.3. — Suponhamos que $(x_{\sigma(n)})$ e $(x_{\tau(n)})$ são duas subsucessões de (x_n) de tal modo que a união $\{x_{\sigma(n)} \mid n \in \mathbb{N}\} \cup \{x_{\tau(n)} \mid n \in \mathbb{N}\}$ difere de $\{x_n \mid n \in \mathbb{N}\}$ apenas num número finito de termos e se $(x_{\tau(n)}) \to \alpha$ e $(x_{\sigma(n)}) \to \alpha$ então, podemos concluir que $(x_n) \to \alpha$.

DEM. – Dado $\epsilon > 0$, podemos considerar uma ordem $p \in \mathbb{N}$ tal que para n > p se tem

$$x_{\sigma(n)}, x_{\tau(n)} \in V_{\epsilon}(\alpha)$$

Como a quantidade de termos da sucessão (x_n) que não se encontram na união $\{x_{\sigma(n)} \mid n > p\} \cup \{x_{\tau(n)} \mid n > p\}$ é finita, podemos concluir que a partir de certa ordem aquela união contém todos os termos da sucessão. Assim a partir dessa mesma ordem temos $x_n \in V_{\epsilon}(\alpha)$ e, como ϵ é arbitrário podemos concluir que $(x_n) \to \alpha$ como se pretendia.

LEMA 5.4. – Toda a sucessão convergente é limitada.

DEM. — Suponhamos que $\langle x_n \rangle$ é uma sucessão convergente e que $\alpha \in \mathbb{R}$ é o seu limite. Se considerarmos, por exemplo, $\varepsilon=1$, sabemos que existe uma ordem p a partir da qual todos os termos x_n estão na vizinhança $V_1(\alpha)$. Consequentemente, o conjunto dos termos da sucessão a partir da ordem p, ou seja, o conjunto $\{x_n \mid n>p\}$ é limitado (os seus membros estão entre $\alpha-1$ e $\alpha+1$). É agora fácil concluir que o conjunto de todos os termos da sucessão é um conjunto limitado porque é o conjunto $\{x_0, x_1, \dots, x_p\} \cup \{x_n \mid n>p\}$ que é um conjunto limitado porque é a união de dois conjuntos limitados (o segundo já vimos antes que é limitado, o primeiro porque é finito). \blacksquare

O recíproco deste resultado não é em geral verdadeiro, i.e., existem sucessões limitadas que não são convergentes, e.g., a sucessão cujo termo geral é definido através da relação $x_n = (-1)^n$. Esta sucessão é evidentemente limitada, pois o conjunto dos seus termos que é $\{-1,1\}$ é finito e, consequentemente limitado. No entanto esta sucessão não converge.

De facto, nem sequer tem limite já que as subsucessões (x_{2n}) e (x_{2n+1}) são constantes de valor 1 e -1, respectivamente. Como qualquer sucessão constante de valor α tem limite α (ver o lema 5.8), temos que $\langle x_{2n} \rangle \to 1$ e $\langle x_{2n+1} \rangle \to -1$ e, assim, $\langle x_n \rangle$ não tem limite. No entanto uma sucessão limitada possui sempre subsucessões que convergem.

TEOREMA 5.1 (WEIERSTRASS).— Suponhamos que (x_n) é uma sucessão limitada. Nestas condições existe uma subsucessão de (x_n) que converge.

DEM. – A demonstração não é essencial, contudo será apresentada na secção final. ■

Ao contrário da característica de ser limitada, que não é por si só suficiente para garantir a existência de limite, a monotonia implica sempre a existência de limite.

LEMA 5.5. — Se $\langle x_n \rangle$ é monótona crescente e não é limitada então, $\langle x_n \rangle \to +\infty$. Se $\langle x_n \rangle$ é monótona decrescente e não é limitada então, $\langle x_n \rangle \to -\infty$.

Dem. - Exercício. ■

EXEMPLO 1. - A sucessão cujo termo geral é

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}$$

que é obviamente monótona crescente não é limitada. Com efeito a soma $1+1/2+\cdots+1/n$ torna-se maior que qualquer número positivo dado. Se fixarmos K>0 então existe $m \in \mathbb{N}$ tal que m>2K. Considerando agora $n>2^m$ tem-se

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) \dots + \left(\frac{1}{2^{m-1} + 1} + \dots + \frac{1}{2^m}\right).$$

mas a soma da direita é maior que,

$$\frac{1}{2} + 2\frac{1}{4} + 4\frac{1}{8} + \dots + 2^{m-1}\frac{1}{2^m} = \frac{m}{2} > K.$$

O resultado do lema anterior mostra que a monotonia não assegura, por si só, a convergência de uma sucessão. Tem-se contudo o resultado seguinte.

TEOREMA 5.2. – Se (x_n) é monótona e limitada então (x_n) é convergente.

DEM. — Demonstraremos que uma sucessão monótona crescente, limitada, converge para o supremo do conjunto dos seus termos. (A demonstração de que uma sucessão monótona decrescente, limitada, converge para o ínfimo do conjunto dos seus termos é totalmente análoga, pelo que a omitiremos.) Fixemos uma sucessão (x_n) , monótona crescente e limitada. Seja $\alpha = \sup\{x_n \mid n \in \mathbb{N}\}$ (o supremo existe pois este conjunto é não vazio e majorado, já que a sucessão é limitada). Vamos então mostrar que lim $x_n = \alpha$. Fixemos $\varepsilon > 0$. Temos que sendo α o supremo do conjunto dos termos de $\langle x_n \rangle$, tem-se que para qualquer $n \in \mathbb{N}$ se tem que $x_n \le \alpha$. Por outro lado, tem que existir um termo da sucessão, digamos x_p no intervalo $]\alpha - \varepsilon$, $\alpha + \varepsilon[=V_\varepsilon(\alpha)$, caso contrário todos os termos seriam menores ou iguais a $\alpha - \varepsilon$, contrariando o facto de α ser o supremo do conjuntos

dos termos de $\langle x_n \rangle$. Como $\langle x_n \rangle$ é monótona crescente tem-se que $x_n \geq x_p$, para qualquer n > p. Logo, $x_n \in V_{\varepsilon}(\alpha)$, para qualquer n > p. Como ε é arbitrário, acabámos de mostrar que,

$$(\forall \varepsilon > 0)(\exists p \in \mathbb{N})(\forall n > p)x_n \in V_{\varepsilon}(\alpha),$$

ou seja, que $\lim x_n = \alpha$.

LEMA 5.6. – Se $\alpha \in \mathbb{R}$ então, $(x_n) \to \alpha$ sse $(x_n - \alpha)$ é um infinitésimo.

DEM. – Basta observar que $|x_n - \alpha| = |(x_n - \alpha) - o|$.

LEMA 5.7. — A sucessão (x_n) é um infinitésimo sse o mesmo sucede com $(|x_n|)$.

DEM. – Basta observar que $|x_n - o| = ||x_n| - o|$.

LEMA 5.8.— Uma sucessão da forma (c), i.e., uma sucessão em que os seus termos são todos iguais a um dado $c \in \mathbb{R}$, diz-se constante. Toda a sucessão constante converge, tem-se (c) $\rightarrow c$.

Dem. - Exercício. ■

No que se segue denotamos por $\overline{\mathbb{R}}$ o conjunto $\mathbb{R} \cup \{-\infty, +\infty\}$.

LEMA 5.9.— Se $(x_n) \to \alpha$, $(y_n) \to \beta$ com $\alpha, \beta \in \overline{\mathbb{R}}$ e se a partir de certa ordem se tem $x_n < y_n$ (resp. $x_n \le y_n$) então, $\alpha \le \beta$. Em particular, (x_n) é convergente e se a partir de certa ordem $a \le x_n \le b$ então $a \le \lim x_n \le b$.

Dем.− ■

LEMA 5.10 (SUCESSÕES ENQUADRADAS).— Suponhamos que, a partir de certa ordem, se tem que $x_n \le z_n \le y_n$ e que $(x_n) \to \alpha$ e $(y_n) \to \alpha$ então, $(z_n) \to \alpha$.

DEM.- ■

LEMA 5.11. – Tem-se que:

- I. Se k > 0 então, $(\sqrt[n]{k}) \to 1$.
- 2. $(\sqrt[n]{n}) \rightarrow 1$.
- 3. Se |r| < 0 então, $(r^n) \to 0$; se r > 1 então, $(r^n) \to +\infty$; se r < -1 então (r^n) é infinitamente grande sem sinal definido; se r = -1 então (r^n) não tem limite e, se r = 1 então $(r^n) \to 1$.

DEM. — Para demonstrar (1), dividiremos a demonstração em dois casos k > 1 e k < 1 (o caso k = 1 é trivial). Assim, se k > 1 consideramos a sucessão (x_n) onde $x_n = \sqrt[n]{k} - 1$. Neste caso a sucessão (x_n) é uma sucessão de termos positivos. Tem-se então, usando a fórmula do binómio de Newton que $p = (1 + x_n)^n > 1 + nx_n$. Daqui resulta que

$$0 < x_n < \frac{p-1}{n}$$

concluindo-se que $(x_n) \to 0$, ou seja que $(\sqrt[p]{p}) \to 1$. O outro caso pode estabelecer-se passando ao inverso.

Para estabelecer (2) consideremos $x_n = \sqrt[n]{n} - 1$. Uma vez mais, recorrendo à fórmula do binómio de Newton, obtemos que

$$n = (1 + x_n)^n \ge \frac{n(n-1)}{2} x_n^2.$$

Daqui resulta que,

$$0 \le x_n \le \sqrt{\frac{2}{n-1}}$$

o que nos permite concluir que $(x_n) \to 0$ ou seja que $(\sqrt[n]{n}) \to 1$. (3) Exercício.

O resultado seguinte é útil em muitos contextos importantes em particular, na determinação de limites de sucessões do tipo ($\sqrt[n]{x_n}$). Em casos deste tipo, permite eliminar a raíz o que, do ponto de vista da manipulação algébrica das expressões, introduz uma simplificação.

TEOREMA 5.3. – Suponhamos que (x_n) é uma sucessão de termos positivos. Tem-se

- I. $Se(x_{n+1}/x_n) \to \alpha \in \overline{\mathbb{R}} \ ent \tilde{ao}(\sqrt[n]{x_n}) \to \alpha$.
- 2. Se $(x_{n+1}/x_n) \to \alpha$ e $0 \le \alpha < 1$ então $(x_n) \to 0$.
- 3. Se $(x_{n+1}/x_n) \to \alpha$ e $\alpha > 1$ então $(x_n) \to +\infty$.

DEM. — Para demonstrar (I) vamos considerar o caso em que o $< \alpha < +\infty$. O argumento para estabelecer o resultado nas outras circunstâncias pode ser facilmente adaptado a partir da situação que vamos considerar. Fixemos r > 0 tal que $V_r(\alpha) =]\alpha - r$, $\alpha + r \subseteq \mathbb{R}^+$. Tendo em conta a definição de limite de uma sucessão podemos concluir que existe uma ordem $N \in \mathbb{N}$ tal que para $n \geq N$ se tem: $x_{n+1}/x_n \in V_r(\alpha)$. Tem-se assim que,

$$(\alpha - r) < x_{N+1}/x_N < (\alpha + r), \log_{N} x_N(\alpha - r) < x_{N+1} < x_N(\alpha + r);$$

continuando,

$$(\alpha - r) < x_{N+2}/x_{N+1} < (\alpha + r), \log x_N(\alpha - r)^2 < x_{N+2} < x_N(\alpha + r)^2;$$

e, de uma maneira geral,

$$\frac{x_N}{(\alpha - r)^N} (\alpha - r)^{N+n} x_N (\alpha - r)^n < x_{N+n} < x_N (\alpha + r)^n = \frac{x_N}{(\alpha + r)^N} (\alpha + r)^{N+n}. \tag{5.3}$$

De (5.3) resulta que

$$\alpha - r \leftarrow \sqrt[N+n]{\frac{x_N}{(\alpha + r)^N}}(\alpha + r) < \sqrt[N+n]{x_N + n} < \sqrt[N+n]{\frac{x_N}{(\alpha + r)^N}}(\alpha + r) \rightarrow \alpha + r.$$
 (5.4)

Somos assim forçados a concluir que $(\sqrt[n]{x_n}) \to \alpha$, uma vez que r pode ser tomado tão pequeno quanto se queira.

Para estabelecer (2) e (3), basta observar no primeiro caso que a partir de certa ordem $N \in \mathbb{N}$ se tem $x_{n+1}/x_n < r < 1$ e no segundo, igualmente a partir de certa ordem $N \in \mathbb{N}$, se tem $x_{n+1}/x_n > k > 1$. Usando agora argumentos semelhantes aos utilizados no caso precedente podemos concluir que, no caso de (2) se tem $x_{N+n} < x_N r^{N+n}$ e, no caso de (3), $x_{N+n} > x_N k^n$. Basta agora usar o facto de $(r^n) \to 0$ se |r| < 1 e $(r^n) \to +\infty$ se r > 1.