Indeksy ekonomiczne

Numer	Ilc	ość	Cena je	dnostkowa
artykułu	Rok 0	Rok 1	Rok 0	Rok 1
1	q_{10}	q_{11}	p_{10}	p_{11}
2	q_{20}	q_{21}	p_{20}	p_{21}
:	•	•	•	:
k	q_{k0}	q_{k1}	p_{k0}	p_{k1}

Rok0 rok bazowy

Rok 1 rok badany

Problem:

opisać syntetycznie zmiany wartości w roku badanym w stosunku do roku bazowego; wyodrębnić wpływ zmian ilości oraz zmian cen.

Numer	Wartość	Wartość
1	$w_{1,00} = q_{10}p_{10}$	$w_{1,11} = q_{11}p_{11}$
2	$w_{2,00} = q_{20}p_{20}$	$w_{2,11} = q_{21}p_{21}$
• •	• •	• •
k	$w_{k,00} = q_{k0} p_{k0}$	$w_{k,11} = q_{k1} p_{k1}$
Razem	w_{00}	w_{11}

Numer	Wartość	Wartość
1	$w_{1,01} = q_{10}p_{11}$	$w_{1,10} = q_{11}p_{10}$
2	$w_{2,01} = q_{20}p_{21}$	$w_{2,10} = q_{21}p_{20}$
•	•	• • •
k	$w_{k,01} = q_{k0} p_{k1}$	$w_{k,10} = q_{k1} p_{k0}$
Razem	w_{01}	$\overline{w_{10}}$

Indeks zmian wartości

$$I_w = \frac{w_{11}}{w_{00}}$$

 $I_w>1$: wzrost wartości produkcji o $(I_w-1)\cdot 100\%$ $I_w<1$: spadek wartości produkcji o $(1-I_w)\cdot 100\%$

Ogólna zmiana wartości może być efektem: zmian ilości artykułów zmian cen jednostkowych

Indeks Laspayresa zmian ilości

$$_L I_{qp} = \frac{w_{10}}{w_{00}}$$

Indeks Paaschego zmian ilości

$$_{P}I_{qp} = \frac{w_{11}}{w_{01}}$$

Indeks Fishera zmian ilości

$$_{F}I_{q}=\sqrt{_{L}I_{qp}\cdot _{P}I_{qp}}$$

Indeks Laspayresa zmian cen

$$_{L}I_{pq} = \frac{w_{01}}{w_{00}}$$

Indeks Paaschego zmian cen

$$_{P}I_{pq} = \frac{w_{11}}{w_{10}}$$

Indeks Fishera zmian cen

$$_{F}I_{p}=\sqrt{_{L}I_{pq}\cdot _{P}I_{pq}}$$

$$I_w = {}_F I_q \cdot {}_F I_p = {}_P I_{qp} \cdot {}_L I_{pq} = {}_L I_{qp} \cdot {}_P I_{pq}$$

Przykład. Zbadać dynamikę importu trzech towarów latach 1995 i 1998.

Towar	Ilość		Cena je	dnostkowa
	1995	1998	1995	1998
A	1280	1360	108	111
В	830	890	93	101
\mathbf{C}	1640	1660	97	107

Towar	w_{00}	w_{11}	w_{01}	w_{10}
\overline{A}	138240	150960	142080	146880
В	77190	89890	83830	82770
\mathbf{C}	159080	177620	175480	161020
	374510	418470	401390	390670

Zmiana wartości

$$I_w = \frac{w_{11}}{w_{00}} = \frac{418470}{374510} = 1.117380$$

Zmiana ilości

$$_{L}I_{qp} = \frac{w_{10}}{w_{00}} = \frac{390670}{374510} = 1.043150$$

$$_{P}I_{qp} = \frac{w_{11}}{w_{01}} = \frac{418470}{401390} = 1.042552$$

$$_{F}I_{q} = \sqrt{_{L}I_{qp} \cdot _{P}I_{qp}}$$

$$= \sqrt{1.043150 \cdot 1.042552} = 1.042851$$

Zmiana cen

$$_{L}I_{pq} = \frac{w_{01}}{w_{00}} = \frac{401390}{374510} = 1.071774$$

$$_{P}I_{pq} = \frac{w_{11}}{w_{10}} = \frac{418470}{390670} = 1.071160$$

$$_{F}I_{p} = \sqrt{_{L}I_{pq} \cdot _{P}I_{pq}}$$

$$= \sqrt{1.071774 \cdot 1.071160} = 1.071467$$

Towar	Wartość		Zmiana cen
	1995	1998	(1995 = 100)
A	138240	150960	102.78
В	77190	89890	108.60
\mathbf{C}	159080	177620	110.31

$$w_{00} = 374510 \qquad w_{11} = 418470$$

$$\frac{p_{A1}}{p_{A0}} = 1.0278$$
 $\frac{p_{B1}}{p_{B0}} = 1.0860$ $\frac{p_{C1}}{p_{C0}} = 1.1031$

$$w_{A,01} = q_{A0}p_{A1} = 1.0278 \cdot q_{A0}p_{A0}$$
$$= 1.0278 \cdot w_{A,00} = 1.0278 \cdot 138240 = 146880$$

$$w_{A,10} = q_{A1}p_{A0} = q_{A1} \cdot \frac{p_{A1}}{1.0278}$$
$$= \frac{w_{A,11}}{1.0278} = \frac{150960}{1.0278} = 142080$$

Czas	Obserwacja	Indeksy jednopodstawowe
		absolutne
$\overline{t_0}$	y_0	0
t_1	y_1	$y_1 - y_0$
t_2	y_2	$y_2 - y_0$
t_3	y_3	$y_3 - y_0$
•	•	• •
•	•	•
t_k	y_k	$y_k - y_0$

Czas	Obserwacja	Indeksy jednor	odstawowe
		względne	$i_{t c}$
$\overline{t_0}$	y_0	•	1
t_1	y_1	$(y_1 - y_0)/y_0$	y_1/y_0
t_2	y_2	$(y_2 - y_0)/y_0$	y_2/y_0
t_3	y_3	$(y_3 - y_0)/y_0$	y_3/y_0
:	:	• •	• •
t_{k}	y_k	$(y_k - y_0)/y_0$	y_k/y_0

Czas	Obserwacja	Indeksy łańcuchowe
		absolutne
$\overline{t_0}$	y_0	0
t_1	y_1	$y_1 - y_0$
t_2	y_2	$y_2 - y_1$
t_3	y_3	$y_3 - y_2$
•	:	:
•	•	•
$t_{m{k}}$	y_k	$y_k - y_{k-1}$

Czas	Obserwacja	Indeksy łańcu	chowe
		względne	$i_{t t-1}$
$\overline{t_0}$	y_0	•	•
t_1	y_1	$(y_1 - y_0)/y_0$	y_1/y_0
t_2	y_2	$(y_2 - y_1)/y_1$	y_2/y_1
t_3	y_3	$(y_3-y_2)/y_2$	y_3/y_2
•	•	• •	•
t_k	y_k	$(y_k - y_{k-1})/y_{k-1}$	y_k/y_{k-1}

Średnie tempo zmian

$$\bar{i}_{t|t-1} = \sqrt[k-1]{i_{1|0}i_{2|1}i_{3|2}\cdots i_{k|k-1}} = \sqrt[k-1]{y_k/y_0}$$

Przykład. Zbadać dynamikę zmian wielkości produkcji w latach 1990–1998

rok	produkcja
1990	9468
1991	8644
1992	7965
1993	8599
1994	8460
1995	7857
1996	8088
1997	7979
1998	7217

Czas	Indeksy jednopodstawowe		
	absolutne	$i_{t c}$	
1990			
1991	-824	0.91297	
1992	-1503	0.84125	
1993	-869	0.90822	
1994	-1008	0.89354	
1995	-1611	0.82985	
1996	-1380	0.85425	
1997	-1489	0.84273	
1998	-2251	0.76225	

Czas	Indeksy łańcuchowe	
	absolutne	$i_{t c}$
1990		
1991	-824	0.91297
1992	-679	0.92145
1993	634	1.07960
1994	-139	0.98384
1995	-603	0.92872
1996	231	1.02940
1997	-109	0.98652
1998	-762	0.90450

Średnie tempo zmian

 $0.91297 \cdot 0.92145 \cdot 1.07960 \cdot 0.98384$

 $0.92872 \cdot 1.02940 \cdot 0.98652 \cdot 0.90450 = 0.76225$

$$\sqrt[8]{0.76225} = 0.96663$$

