ЗАДАЧИ К ЗАЧЁТУ

по дисциплине «Вычислительная математика

1. Вычислить корень нелинейного уравнения с заданной степенью точности одним из численных методов. Построить график функции и определить интервал изоляции корня. При решении уравнения методами хорд, касательных или комбинированным обосновать выбор нулевого приближения, а также выполнить проверку необходимости сужения интервала изоляции корня. При решении уравнения методом итераций обосновать переход к каноническому уравнению и выполнить проверку сходимости итерационного процесса. Вычисления вести в таблицах. Для метода итераций привести иллюстративный график сходимости.

1)
$$0.5 + \lg (X - 1) = 0$$
; [1.1 ; 2, 0] $E = 10^{-4}$ Метод итераций.

2)
$$2 SIN (X - 0, 6) + X - 1, 5 = 0$$
; [0,4; 1, 3] $E = 10^{-3}$ Метод хорд.

3)
$$X^2 - SIN X = 0$$
; [0, 5; 1, 4] $E = 10^{-4}$ Метод касательных.

4)
$$3 LN(X^2 + 1) - 2 X^2 = 0$$
; [1, 0; 1,18] $E = 10^{-4}$ Метод хорд.

5)
$$6 X^2 - X EXP(X) = 0$$
; [0,1;1,0] $E = 10^{-3}$ Комбинированный метод.

6)
$$X + LG(1 + X) - 1$$
, $5 = 0$; [0,1;1,9] $E = 10^{-5}$ Метод итераций.

7)
$$X + COS X - 1$$
, $4 = 0$; [0;0,9] $E = 10^{-4}$ Метод итераций.

8)
$$(X-1)^2 - 0.5 EXP(X) = 0$$
; [0,1;1,0] $E = 10^{-3}$ Метод хорд.

9) SIN(
$$X/2$$
) + 1 – X^2 = 0; [1,0;2,8] $E = 10^{-5}$ Метод касательных.

10)
$$2 - LN(X) = 0$$
; [3,0 ;7,5] $E = 10^{-5}$ Комбинированный метод

11)
$$3 X - EXP(X) = 0;$$
 [1.0; 1,9] $E = 10^{-4}$ Метод итераций.

12) 2
$$X + LN(X) + 0.5 = 0$$
; [0,01; 0,91] $E = 10^{-5}$ Метод хорд.

13)
$$LN(X) - COS(X) = 0$$
; [0,80; 1,70] $E = 10^{-3}$ Комбинированный метод.

14)
$$2 X - COS(X) + 0,5 = 0$$
; [0;0,45] $E = 10^{-4}$ Метод итераций.

15)
$$2 X - LN(X) - 7 = 0;$$
 [4,0;4,9] $E = 10^{-5}$ Метод касательных.

16)
$$X + LN(X) - 0.5 = 0$$
; [0,1;1,0] $E = 10^{-4}$ Метод итераций.

17)
$$5 X - 8 LN(X) - 8 = 0;$$
 [3,0;3,9] $E = 10^{-5}$ Метод итераций.

18)
$$X^2 - 4$$
 SIN(X) = 0; [1,2;2,1] $E = 10^{-3}$ Метод хорд.

19)
$$LN(X+2)+2$$
 $X-3=0$; [0,1;1,0] $E=10^{-4}$ Метод касательных.

20) LN(
$$2 X + 1$$
) + $X - 2 = 0$; $[0,5;1,4]$ $E = 10^{-4}$ Комбинированный метод.

2. Определить корни линейной системы уравнений 4-го порядка методом Гаусса с точностью до 10^{-4} . Вычисления вести в таблице, содержащей столбец контроля.

1)
$$\begin{cases} x_1 - 0.51x_2 + 0.12x_3 + 0.55x_4 = 0.12 \\ 0.12x_1 + 0.18x_2 - 0.22x_3 - 0.41x_4 = 0.13 \\ 0.22x_1 - 3.01x_2 + 0.31x_3 + 0.58x_4 = 1 \\ x_1 + 0.24x_2 - 3.05x_3 - 0.22x_4 = 3.41 \end{cases}$$

2)
$$\begin{cases} 2,2x_1 - 3,17x_2 + 1,24x_3 - 0,87x_4 = 0,46 \\ 1,50x_1 + 2,11x_2 - 0,45x_3 + 1,44x_4 = 1,50 \\ 0,86x_1 - 1,44x_2 + 0,62x_3 + 0,28x_4 = -0,12 \\ 0,57x_1 - 0,78x_2 - 0,56x_3 - 0,83x_4 = 0,27 \end{cases}$$

3)
$$\begin{cases} 0.85x_1 + 1.27x_2 - 2.37x_3 + 0.57x_4 = 1.47 \\ 1.47x_1 - 0.27x_2 + 0.56x_3 - 1.21x_4 = 0.86 \\ 0.66x_1 + 1.31x_2 - 0.63x_3 + 0.43x_4 = -0.55 \\ 0.57x_1 - 0.78x_2 - 0.56x_3 - 0.83x_4 = 0.27 \end{cases}$$

4)
$$\begin{cases} x_1 + 0.55x_2 - 0.13x_3 + 0.34x_4 = 0.13 \\ 0.13x_1 - 0.17x_2 + 0.33x_3 + 0.17x_4 = 0.11 \\ 0.11x_1 + 0.16x_2 - 0.22x_3 - 0.11x_4 = 1 \\ 0.13x_1 - 0.12x_2 + 0.21x_3 + 0.22x_4 = 0.18 \end{cases}$$

5)
$$\begin{cases} 0.13x_1 + 0.22x_2 - 0.14x_3 + 0.15x_4 = 1\\ 0.22x_1 - 0.31x_2 + 0.42x_3 + 5.1x_4 = 6.01\\ 0.62x_1 - 0.74x_2 + 0.85x_3 - 0.96x_4 = 0.11\\ 0.12x_1 + 0.13x_2 + 0.14x_3 + 0.45x_4 = 0.16 \end{cases}$$

$$\begin{cases} 0.73x_1 + 0.24x_2 - 0.38x_3 - 1.43x_4 = 0.58 \\ 1.56x_1 + 0.66x_2 + 1.44x_3 - 0.67x_4 = 1.24 \\ 1.07x_1 - 0.77x_2 + 1.25x_3 + 0.66x_4 = -0.66 \\ 0.75x_1 + 1.22x_2 - 0.83x_3 + 0.37x_4 = 0.92 \end{cases}$$

7)
$$\begin{cases} 2,34x_1 - 1,42x_2 - 0,54x_3 + 0,21x_4 = 0,66 \\ 1,44x_1 - 0,53x_2 + 1,43x_3 - 1,27x_4 = -1,44 \\ 0,63x_1 - 1,32x_2 - 0,65x_3 + 1,43x_4 = 0,94 \\ 0,56x_1 + 0,88x_2 - 0,67x_3 - 2,38x_4 = 0,73 \end{cases}$$

8)
$$\begin{cases} 2x_1 + 0.05x_2 - 3.01x_3 - 0.11x_4 = 0.21 \\ x_1 - 2x_2 + 3.02x_3 + 0.05x_4 = 0.18 \\ 0.33x_1 + 0.99x_2 - 2x_3 - 0.17x_4 = 0.17 \\ 0.17x_1 - 0.07x_2 + 0.33x_3 + 2x_4 = 0.17 \end{cases}$$

9)
$$\begin{cases} 1,42x_1 + 2,34x_2 + 0,88x_3 + 0,55x_4 = 0,72 \\ 0,71x_1 - 1,15x_2 + 0,53x_3 - 0,67x_4 = -0,18 \\ 0,55x_1 - 0,93x_2 - 1,42x_3 + 1,32x_4 = 0,68 \\ 0,44x_1 - 0,25x_2 + 1,92x_3 - 1,08x_4 = 0,43 \end{cases}$$

$$10) \begin{cases} 0.64x_1 + 0.72x_2 - 0.83x_3 + 4.2x_4 = 2.23 \\ 0.58x_1 - 0.83x_2 + 1.43x_3 - 0.62x_4 = 1.71 \\ 0.86x_1 + 0.77x_2 - 1.83x_3 + 0.88x_4 = -0.54 \\ 1.32x_1 - 0.52x_2 - 0.65x_3 + 1.22x_4 = 0.65 \end{cases}$$

11)
$$\begin{cases} 0,63x_1 - 0,76x_2 + 1,34x_3 + 0,37x_4 = 1,21\\ 0,54x_1 + 0,83x_2 - 0,74x_3 - 1,27x_4 = 0,86\\ 0,24x_1 - 0,44x_2 + 0,35x_3 + 0,55x_4 = 0,25\\ 0,43x_1 - 1,21x_2 + 2,32x_3 - 1,41x_4 = 1,55 \end{cases}$$

$$12) \begin{cases}
1,32x_1 - 0,83x_2 - 0,44x_3 + 0,62x_4 = 0.68 \\
0,83x_1 + 0,42x_2 - 0,56x_3 + 0,77x_4 = 1,24 \\
0,58x_1 - 0,37x_2 + 1,24x_3 - 0,62x_4 = 0,87 \\
0,35x_1 + 0,66x_2 - 1,38x_3 - 0,93x_4 = -1,08
\end{cases}$$

13)
$$\begin{cases} x_1 - 2,01x_2 + 2,04x_3 + 0,17x_4 = 0,18 \\ 0,33x_1 - 0,77x_2 + 0,44x_3 - 0,51x_4 = 0,19 \\ 0,31x_1 + 0,17x_2 - 0,21x_3 + 0,54x_4 = 0,21 \\ 0,17x_1 + x_2 - 0,13x_3 + 0,21x_4 = 0,31 \end{cases}$$

$$14) \begin{cases} 0,63x_1 + x_2 + 0,71x_3 + 0,34x_4 = 2,08 \\ 1,17x_1 + 0,18x_2 - 0,65x_3 + 0,71x_4 = 0,17 \\ 2,71x_1 - 0,75x_2 + 1,17x_3 - 2,35x_4 = 1,28 \\ 3,58x_1 + 0,21x_2 - 3,45x_3 - 1,18x_4 = 0,05 \end{cases}$$

$$15) \begin{cases} 0.18x_1 + 0.19x_2 + 0.20x_3 - 0.21x_4 = 0.22 \\ 0.51x_1 - 0.50x_2 + 0.49x_3 - 0.48x_4 = 0.47 \\ 0.61x_1 + 0.62x_2 - 0.63x_3 + 0.64x_4 = 0.65 \\ 0.11x_1 - 0.15x_2 + 0.22x_3 - 0.38x_4 = 0.42 \end{cases}$$

3. **Решить систему линейных уравнений**, приведённую к каноническому виду, одним из итерационных методов. Корни найти с точностью до 10^{-3} . Сформулировать и проверить условия сходимости.

1)
$$\begin{cases} x_1 = 0.12x_1 - 0.23x_2 + 0.25x_3 - 0.16x_4 + 1.24 \\ x_2 = 0.14x_1 + 0.34x_2 - 0.18x_3 + 0.24x_4 - 0.89 \\ x_3 = 0.33x_1 + 0.03x_2 + 0.46x_3 - 0.32x_4 + 1.15 \\ x_4 = 0.12x_1 - 0.05x_2 + 0.15x_4 - 0.57 \end{cases}$$

2)
$$\begin{cases} x_1 = 0.17x_1 + 0.27x_2 - 0.13x_3 - 0.11x_4 - 1.42 \\ x_2 = 0.13x_1 - 0.12x_2 + 0.09x_3 - 0.06x_4 + 0.48 \\ x_3 = 0.11x_1 + 0.05x_2 - 0.02x_3 + 0.12x_4 - 2.34 \\ x_4 = 0.13x_1 + 0.18x_2 + 0.24x_3 + 0.43x_4 + 0.72 \end{cases}$$

3)
$$\begin{cases} x_1 = 0.05x_1 - 0.06x_2 - 0.12x_3 + 0.14x_4 - 2.17 \\ x_2 = 0.04x_1 - 0.12x_2 + 0.68x_3 + 0.11x_4 + 1.40 \\ x_3 = 0.34x_1 + 0.08x_2 - 0.06x_3 + 0.44x_4 - 2.10 \\ x_4 = 0.11x_1 + 0.12x_2 - 0.03x_4 - 0.80 \end{cases}$$

4)
$$\begin{cases} x_1 = 0.07x_1 - 0.08x_2 + 0.11x_3 - 0.18x_4 - 0.51 \\ x_2 = 0.18x_1 + 0.52x_2 + 0.21x_4 + 1.17 \\ x_3 = 0.13x_1 + 0.31x_2 - 0.21x_4 - 1.02 \\ x_4 = 0.08x_1 - 0.38x_3 + 0.28x_4 - 0.28 \end{cases}$$

5)
$$\begin{cases} x_1 = 0.22x_2 - 0.11x_3 + 0.31x_4 + 2.70 \\ x_2 = 0.38x_1 - 0.12x_3 + 0.22x_4 - 1.50 \\ x_3 = 0.11x_1 + 0.23x_2 - 0.51x_4 + 1.20 \\ x_4 = 0.17x_1 - 0.21x_2 + 0.31x_3 - 0.17 \end{cases}$$

6)
$$\begin{cases} x_1 = 0.19x_1 - 0.07x_2 + 0.38x_3 - 0.21x_4 - 0.81 \\ x_2 = -0.22x_1 + 0.08x_2 + 0.11x_3 + 0.33x_4 - 0.64 \\ x_3 = 0.51x_1 - 0.07x_2 + 0.09x_3 - 0.11x_4 + 1.71 \\ x_4 = 0.33x_1 - 0.41x_2 - 1.21 \end{cases}$$

7)
$$\begin{cases} x_1 = 0.13x_1 + 0.27x_2 - 0.22x_3 - 0.18x_4 + 1.21 \\ x_2 = -0.21x_1 - 0.45x_3 + 0.18x_4 - 0.33 \\ x_3 = 0.12x_1 + 0.13x_2 - 0.33x_3 + 0.18x_4 - 0.48 \\ x_4 = 0.33x_1 - 0.05x_2 + 0.06x_3 - 0.28x_4 - 0.17 \end{cases}$$

8)
$$\begin{cases} x_1 = 0.17x_1 + 0.31x_2 - 0.18x_3 + 0.22x_4 - 1.71 \\ x_2 = -0.21x_1 + 0.33x_3 + 0.22x_4 + 0.62 \\ x_3 = 0.32x_1 - 0.18x_2 + 0.05x_3 - 0.19x_4 - 0.89 \\ x_4 = 0.12x_1 + 0.28x_2 - 0.14x_3 + 0.94 \end{cases}$$

$$\begin{cases} x_1 = 0.13x_1 + 0.23x_2 - 0.44x_3 - 0.05x_4 + 2.13 \\ x_2 = 0.24x_1 - 0.31x_3 + 0.15x_4 - 0.18 \\ x_3 = 0.06x_1 + 0.15x_2 - 0.23x_4 + 1.44 \\ x_4 = 0.72x_1 - 0.08x_2 + 0.05x_3 + 2.42 \end{cases}$$

$$10) \begin{cases} x_1 = 0.18x_1 - 0.34x_2 - 0.12x_3 + 0.15x_4 - 1.33 \\ x_2 = 0.11x_1 + 0.23x_2 - 0.45x_3 + 0.32x_4 + 0.84 \\ x_3 = 0.05x_1 - 0.12x_2 + 0.14x_3 - 0.18x_4 - 1.16 \\ x_4 = 0.12x_1 + 0.08x_2 + 0.06x_3 + 0.57 \end{cases}$$

11)
$$\begin{cases} x_1 = 0.42x_1 - 0.52x_2 + 0.03x_3 + 0.44 \\ x_2 = 0.31x_1 - 0.26x_2 - 0.36x_3 + 1.42 \\ x_3 = 0.12x_1 + 0.08x_2 - 0.14x_3 - 0.24x_4 - 0.83 \\ x_4 = 0.15x_1 - 0.35x_2 - 0.18x_3 - 1.42 \end{cases}$$

12)
$$\begin{cases} x_1 = 0.21x_1 + 0.12x_2 - 0.34x_3 - 0.16x_4 - 0.64 \\ x_2 = 0.34x_1 - 0.08x_2 + 0.17x_3 - 0.18x_4 + 1.42 \\ x_3 = 0.16x_1 + 0.34x_2 + 0.15x_3 - 0.31x_4 - 0.42 \\ x_4 = 0.12x_1 - 0.26x_2 - 0.08x_3 + 0.25x_4 + 0.83 \end{cases}$$

13)
$$\begin{cases} x_1 = 0.23x_1 - 0.04x_2 + 0.21x_3 - 0.18x_4 + 1.24 \\ x_2 = 0.45x_1 - 0.23x_2 + 0.06x_3 - 0.88 \\ x_3 = 0.26x_1 + 0.34x_2 - 0.11x_3 + 0.62 \\ x_4 = 0.05x_1 - 0.26x_2 + 0.34x_3 - 0.12x_4 - 1.17 \end{cases}$$

$$\begin{cases}
 x_1 = 0.08x_1 - 0.03x_2 - 0.04x_4 - 1.20 \\
 x_2 = 0.51x_2 + 0.27x_3 - 0.08x_4 + 0.81 \\
 x_3 = 0.33x_1 - 0.37x_2 + 0.21x_4 - 0.92 \\
 x_4 = 0.11x_1 + 0.03x_3 + 0.58x_4 + 0.17
\end{cases}$$

15)
$$\begin{cases} x_1 = 0.12x_1 - 0.23x_2 + 0.25x_3 - 0.16x_4 + 1.24 \\ x_2 = 0.14x_1 + 0.34x_2 - 0.18x_3 + 0.24x_4 - 0.89 \\ x_3 = 0.33x_1 + 0.03x_2 + 0.46x_3 - 0.32x_4 + 1.15 \\ x_4 = 0.12x_1 - 0.05x_2 + 0.15x_4 - 0.57 \end{cases}$$

4. **Решить систему двух нелинейных уравнений** методом Ньютона. Отделить корни графически и выбрать начальные приближения корней. Уточнения невязок выполнять до 10⁻⁵.

1)
$$\begin{cases} x + \ln(y + 2,1) = 0 \\ y + \sin(x + 0,2) = 0 \end{cases}$$

2)
$$\begin{cases} x - \ln(y+5,1) = 0 \\ y - \cos(x+1,2) = 0 \end{cases}$$

3)
$$\begin{cases} x - \ln(5, 3 - y) = 0 \\ y - tg(x - 0, 5) = 0 \end{cases}$$

4)
$$\begin{cases} x + \ln(6,4 - y) = 0 \\ y + (x - 0,9)^3 = 0 \end{cases}$$

5)
$$\begin{cases} x + 0.1 - e^{y - 0.1} = 0 \\ y - \sin x = 0 \end{cases}$$

6)
$$\begin{cases} x - 1 + e^{-0.48 - y} = 0 \\ y + \cos x = 0 \end{cases}$$

7)
$$\begin{cases} x + 2.5 - e^{1.5 - y} = 0 \\ y + tgx = 0 \end{cases}$$

8)
$$\begin{cases} x - 0.8 + e^{y - 0.5} = 0 \\ y + x^2 - 1 = 0 \end{cases}$$

$$9) \begin{cases} x - e^{-y} = 0 \\ y - e^{x} = 0 \end{cases}$$

$$10) \begin{cases} x - 0.5 - e^{0.5 - y} = 0 \\ y - tgx = 0 \end{cases}$$

11)
$$\begin{cases} x + \ln(y + 4,3) = 0 \\ y + \sin(x + 2,8) = 0 \end{cases}$$

12)
$$\begin{cases} x - \ln(y + 1, 1) = 0 \\ y - \cos(x + 0, 1) = 0 \end{cases}$$

13)
$$\begin{cases} x - \ln(2, 8 - y) = 0 \\ y - tg(x + 0, 2) = 0 \end{cases}$$

14)
$$\begin{cases} x + \ln(2, 1 - y) = 0 \\ y + (x - 1, 7)^3 = 0 \end{cases}$$

15)
$$\begin{cases} x - e^{y - 0.8} + 2.4 = 0 \\ y - \sin x = 0 \end{cases}$$

5. **По заданной таблице значений функции выполнить интерполяцию** для заданного значения аргумента. В таблицах с постоянным шагом использовать первую и вторую формулы Ньютона. В таблицах с неравноотстоящими значениями аргумента применить интерполяционный многочлен Лагранжа. Вычисления вести в соответствующих таблицах.

1)							
							$X_1=2,17$
Y	1,263	1,288	1,315	1,343	1,373	1,405	$X_2=2,38$

2)																		
X	3,			86	3,9		4,0		4,		_ ′	18		=3,8				
Y	0,0	521	0,	668	0,7	712	0,	764	0,	793	0,	829	X_2	=4,1	5			
3)																		
X		1,2	8	1,3	2	1,3	6	1,4	0	1,4	4	1,43	8	X ₁ =	= 1,3	3		
Y		0,5	29	0,4	97	0,4	67	0,4	39	0,4	12	0,38	87	X ₂ =	= 1,4	5		
4)																		
4) X		1,3:	5	1,4	4	1,5	3	1,6	2	1,7	1	1,80)	X ₁ =	= 1,4	1		
Y		4,7		4,7		4,8		4,8		4,89		4,9			$\frac{1,7}{1,7}$			
		1,77		1,7	07	1,0		1,0	55	1,0		1,22		112	1,7	0		
5)				ı								1						
X		1,79		1,8		1,9		1,9		2,0		2,09			= 1,8			
Y		0,5	29	0,4	97	0,4	67	0,4	39	0,4	12	0,3	87	X ₂ =	= 2,0	7		
6)																		
X		2,3	6	2,4	6	2,5	6	2,6	6	2,7	6	2,80	6	X ₁ =	= 2,4	1		
Y		1,7	14	1,7	27	1,7	44	1,7	65	1,79	91	1,82	21	X ₂ =	= 2,8	2		
7) X		3,6	7	3,7	1	3.7	5	3,7	0	3,8	3	3 8'	7	Y	= 3,6	0		
Y		3,8		3,8		3,75 3 3,845		3,8		3,8					= 3.8			
1		3,0	13	3,0	20	3,0	+3	3,0	00	3,0	72	3,9	22	A 2 -	- 5,6	5		
8)																		
X		1,8	8	1,9	7	2,0	6	2,1	5	2,2	4	2,39	9	$X_1 =$	= 1,9	1		
Y		2,9	26	2,9	39	2,9	56	2,9	77	3,0	03	3,0	33	X ₂ =	= 2,2	8		
9)																		
X		0,5	4	0,6	0	0,6	6	0,7	2	0,7	8	0,84	4	X ₁ =	= 0,5	8		
Y		1,49		1,4	63	1,4	37	1,4	16	1,3	99	1,3	86	X ₂ =	= 0,8	0		
													•			•		
10)		1 7	<u> </u>	1.7	0	1 0	<u> </u>	1.0	2	2.0	<u> </u>	2.0	7	V	_ 1 7	6		
X		1,7		1,7		1,8		1,9		2,0		2,0			= 1.7			
1		2,50	00	2,4	70	2,4	30	2,4	29	2,4	12	2,39	99	Λ2 -	= 2,0	3		
11)																		
X	0,4	43		0,48	;	0,	55		0,6	52		0,70		0,7	75		X=0,	512
Y	1,0	5359	7	1,73	234	1,	876	586	2,0)334:	5	2,22	846	2,8	33973	3		
12)																		
12) X	0,0)2		0,08	;	0.	12		0,1	7		0,23		0,3	30		X=0,	125
Y		0231	6	1,09			147	725		2148		1,30	120		10976			
	- ,		-	,,,,		,	,		- ,-			,- 0				·		
13)	_			0 :		T -	4	 1			1	0 =		1 -	- 1	-		10-
X	0,3		1	0,41			47) (1	0,5			0,56	50 2	0,6			X=0,4	482
Y	2,	7395	1	2,30	080	1,	968	364	1,7	877	6	1,59	502	1,3	34310)		

14)							
	0,41	0,46	0,53	0,60	0,65	0,72	X=0,616
Y	2,57418	2,32513	2,09336	1,86203	1,74926	1,62098	
15)		T			T	T	T
X	0,68	0,73	0,80	0,88	0,93	0,99	X=0,774
Y	0,80866	0,89492	1,02964	1,20966	1,34087	1,52368	
16)							
X	0,11	0,15	0,21	0,29	0,35	0,40	X=0,186
Y	9,05421	6,61659	4,69170	3,35106	2,73951	2,36522	
17)							
X	0,05	0,10	0,17	0,25	0,30	0,36	X=0,275
Y	0,05004	0,10033	0,17165	0,25534	0,30933	0,37640	
18)							
X	0,62	0,67	0,74	0,80	0,87	0,96	X=0,725
Y	0,53794	0,51171	0,47711	0,44933	0,41895	0,38289	
19)		T			T	T	1
X	1,03	1,08	1,16	1,23	1,26	1,33	X=1,255
Y	2,80107	2,94408	3,18993	3,42123	3,52542	3,78104	
20)							
X	0,10	0,20	0,29	0,40	0,49	0,55	X=0,367

1,66071

1,66448

1,65734

1,65322

8. Для функций, заданных таблицами, выполнить среднеквадратичное приближение, применив метод наименьших квадратов для определения параметров выбранных зависимостей.

1,64987

1,64764

1)										
X	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9
Y	0	5	9	13	17	20	24	26	29	32
2)										
X	2,0	2,2	2,4	2,6	2,8	3.0	3,2	3,4	3,6	3,8
Y	1,20	1,38	1,58	1,82	2,09	2,40	2,80	3,17	3,64	4,18
3)										
X	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8	4,9
Y	128	147	169	194	223	256	294	338	388	446
4)										
X	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
Y	12,5	14,7	17,2	20,2	23,8	28,0	32,8	38,6	45,3	53,2
5)										
X	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0
Y	6,5	7,0	7,6	8,2	8,8	9,4	10,0	10,6	11,3	12,0

6)										
X	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8	4,9
Y	1,23	1,28	1,33	1,38	1,44	1,49	1,55	1,60	1,66	1,72
										_
7)										
7) X Y	4,0	4,1	4,2	4,3	4,4	4,5	4,6	4,7	4,8	4,9
Y	64	73	85	97	112	128	147	169	194	223
8)										,
X	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9
Y	25,0	29,4	34,4	40,4	47,6	56,0	65,6	77.2	90,6	106,4
9)		T	T	1	1			1		
X	5,0	5,1	5,2	5,3	5,4	5,5	5,6	5,7	5,8	5,9
Y	1,78	1,84	1,90	1,96	2,03	2,09	2,15	2,22	2,28	2,35
10)		1	T	1	1			1		
X	10	11	12	13	14	15	16	17	18	19
Y	95	116	139	163	190	219	250	283	319	355
11)	T	T	T	T .	T			T .		
X	5,0	5,2	5,4	5,6	5,8	6,0	6,2	6,4	6,6	6,8
Y	20,2	22,1	24,1	26,2	28,3	30,6	33,0	35,4	37,9	40,5
12)	— 0	1 = 4	T = a	1	1	T = -	I .	1	— •	
X	7,0	7,1	7,2	7,3	7,4	7,5	7,6	7,7	7,8	7,9
Y	41,2	42,6	43,9	45,3	46,8	48,2	49,6	51,1	52,6	54,1
10)										
13)	0.1	100	0.2	0.4	0.5	0.6	0.7	0.0	0.0	1.0
X	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
Y	1,91	3,03	3,98	4,82	5,59	6,31	7,00	7,65	8,27	8,88
1.4)										
14)	1.0	1.2	1.6	1.0	2.2	2.5	20	2.1	2.4	2.7
X Y	1,0	1,3	1,6	1,9	2,2	2,5	2,8	3,1	3,4	3,7
ľ	2,05	1,92	1,77	1,71	1,56	1,50	0,99	0,91	0,43	0,19
15)										
15) v	2.0	2.2	2.4	2.6	20	2.0	2.2	2.4	2.6	20
X Y	2,0	2,2	2,4	2,6	2,8	3,0	3,2	3,4	3,6	3,8
I	2,23	2,27	2,72	3,13	3,82	4,22	5,06	5,68	6,42	7,57