Importing important libraries and classes

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score, KFold
from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier
import seaborn as sns
import matplotlib.pyplot as plt

Loading the datasets

df1 = pd.read_csv('_/content/sample_data/Iris.csv')
df1

_							
77		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

df2 = pd.read_csv('/content/sample_data/winequalityN (1).csv')
df2

		type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	white	7.0	0.270	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	8.8	6
	1	white	6.3	0.300	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	9.5	6
	2	white	8.1	0.280	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	10.1	6
	3	white	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
	4	white	7.2	0.230	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
	6492	red	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
	6493	red	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	NaN	11.2	6
	6494	red	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
	6495	red	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
	4 ▮													•

Checking for any null values in the datasets

df1.isna().sum()

dtype: int64

df2.isna().sum()

Handling the null values

```
# Handle potential NaN values
df1.fillna(0, inplace = True) # Replace NaN with 0 or another suitable value
df2.fillna(0, inplace = True)
```

df1.isna().sum()

dtype: int64

df2.isna().sum()

```
0
                       0
        type
    fixed acidity
                       0
   volatile acidity
     citric acid
                       0
   residual sugar
                       n
      chlorides
 free sulfur dioxide 0
 total sulfur dioxide 0
      density
         рΗ
                       O
     sulphates
                       0
       alcohol
                       n
       quality
dtvpe: int64
```

Creating a function to evaluate classifier performance and create their heatmap

```
def evaluate_classifier(classifier, X, y, classifier_name):
# def is a Python keyword used to define a function.
# evaluate classifier is the name of the function.
# The function takes four arguments:
   classifier: The machine learning model (e.g., Decision Tree, Random Forest) you want to evaluate.
   X: The input features of your dataset (often a pandas DataFrame).
   y: The target variable or labels you're trying to predict.
   classifier_name: A string representing the name of the classifier (for display purposes).
    kfold = KFold(n_splits=10, shuffle=True, random_state=42)
    scores = cross_val_score(classifier, X, y, cv=kfold, scoring='accuracy')
    print(f"{classifier_name} Accuracy: {scores.mean():.4f} (+/- {scores.std() * 2:.4f})")
    # KFold: This creates a strategy for splitting your data into 10 folds (groups) for cross-validation.
      n splits=10: Divides the data into 10 folds.
       shuffle=True: Randomly shuffles the data before splitting.
       random_state=42: Sets a seed for reproducibility.
   \hbox{\# cross\_val\_score: This function applies the classifier to the data using the $k$-fold strategy,}\\
    # calculates the model's accuracy for each fold, and stores the results in the scores variable.
    # print: This line displays the average accuracy and standard deviation of the
    # classifier's performance across all folds.
    try:
        numerical_cols = X.select_dtypes(include=['number']).columns
        if len(numerical cols) > 0:
            plt.figure(figsize=(8, 6))
            sns.heatmap(X[numerical_cols].corr(), annot=True, cmap="coolwarm")
            \verb|plt.title(f"Heatmap| for {classifier\_name}| (Numerical Features)")|
        else:
            print("No numerical features found for heatmap visualization.")
    except (ValueError, TypeError) as e:
       print(f"Heatmap visualization not possible for this data: {e}")
    # try...except: This block is used to handle potential errors during heatmap creation.
    # numerical_cols: This line identifies the columns in your dataset (X) that contain numerical data.
    # if len(numerical_cols) > 0:: If numerical features are found, the code proceeds to create the heatmap.
    # sns.heatmap: This function from the seaborn library generates the heatmap.
        X[numerical cols].corr(): Calculates the correlation between numerical features.
         annot=True: Displays the correlation values on the heatmap.
         cmap="coolwarm": Sets the color scheme of the heatmap.
    # plt.title, plt.show: These lines set the title of the heatmap and display it.
    # If no numerical features are found or an error occurs, informative messages are printed.
```

Seperating the attributes based on input features and target feature

```
# Dataset 1
try:
    X1 = df1.drop('Species', axis=1)
    y1 = df1['Species']
except KeyError:
    print("Error: 'Species' column not found in dataset1.csv. Please check your data.")
    exit()
```

```
# try:: This begins a try...except block. It's used for error handling. The code within the try
# block is executed, and if a KeyError occurs, the code within the except block is executed instead.
# X1 = df1.drop('Species', axis=1):
   X1: This variable is assigned the features (input data) for the machine learning model.
   df1: This is the Pandas DataFrame containing data loaded from dataset1.csv.
    .drop('Species', axis=1): This line removes the column named 'Species' from the DataFrame df1.
        'Species' is the name of the column to be dropped.
         axis=1 specifies that we are dropping a column (axis=0 would drop a row).
         The result (DataFrame without the 'Species' column) is assigned to X1.
# y1 = df1['Species']:
    y1: This variable is assigned the target variable (what we want the model to predict).
     df1['Species']: This selects the 'Species' column from the DataFrame df1. This column
    likely contains the labels or categories you want to predict.
# except KeyError:: If a KeyError occurs during the execution of the try block (specifically,
# if the 'Species' column is not found in df1), the code inside the except block will be executed.
# A KeyError typically happens when you try to access a column that doesn't exist in a DataFrame.
# print("Error: 'Species' column not found in dataset1.csv. Please check your data."): This line prints
# an error message to the console, informing the user that the 'Species' column is missing and suggesting
# they check their data file.
# exit(): This line terminates the program's execution because if no tareget attribute in dataset how we predict
# Dataset 2
   X2 = df2.drop('type', axis=1)
   y2 = df2['type']
except KeyError:
   print("Error: 'type' column not found in dataset2.csv. Please check your data.")
    exit()
# THis is the same code as the above just for dataset2 oe df2
Applying the Decision Tree classifier
# Decision Tree Classifier
dt_classifier = DecisionTreeClassifier(random_state=42)
# dt_classifier = DecisionTreeClassifier(random_state=42): This line is where the
# Decision Tree model is created.
      dt_classifier: This is a variable that will hold our Decision Tree model.
       Think of it as a container for the model.
     DecisionTreeClassifier(): This is the function from the sklearn.tree library
       that actually creates the Decision Tree model.
     random state=42: This sets a seed for the random number generator used within
#
        the Decision Tree algorithm. Setting a seed ensures that if you run the code
       multiple times, you'll get the same results (which is important for reproducibility).
print("Dataset 1:")
evaluate\_classifier(dt\_classifier, ~X1, ~y1, ~"Decision ~Tree")
# This line calls the evaluate_classifier function (which was defined earlier in the code) to
# assess the performance of the Decision Tree model on the first dataset.
      dt_classifier: The Decision Tree model we created.
      X1: The features (input data) for the first dataset.
      y1: The target variable (what we want to predict) for the first dataset.
      "Decision Tree": A string representing the name of the classifier (used for display purposes).
print("\nDataset 2:")
evaluate_classifier(dt_classifier, X2, y2, "Decision Tree")
# Same with dataset2 or df2
```

Dataset 1: Decision Tree Accuracy: 0.9933 (+/- 0.0400)

Dataset 2: Decision Tree Accuracy: 0.9865 (+/- 0.0066)

Comparing the Decision Tree Classifiers with "Bagging" and "AdaBoost" with different estimators

```
# Ensemble methods - Bagging and AdaBoost (combined loop for brevity)
for classifier_type in ["Bagging", "AdaBoost"]:
         for n_estimators in [3, 5, 7, 9]:
                   if classifier_type == "Bagging":
                            classifier = BaggingClassifier (DecisionTreeClassifier (), \ n\_estimators = n\_estimators, \ random\_state = 42)
                            classifier = AdaBoostClassifier (DecisionTreeClassifier(), n\_estimators = n\_estimators, random\_state = 42 \\
                   print(f"\nDataset 1 - {classifier_type} ({n_estimators} estimators):")
                   evaluate_classifier(classifier, X1, y1, f"{classifier_type} ({n_estimators})")
                   print(f"\nDataset 2 - {classifier_type} ({n_estimators} estimators):")
                   evaluate_classifier(classifier, X2, y2, f"{classifier_type} ({n_estimators})")
# Nested Loops:
              The code uses two nested for loops to iterate through different configurations:
#
#
                        The outer loop (for classifier_type in ["Bagging", "AdaBoost"]) selects either "Bagging" or
#
                             "AdaBoost" as the ensemble method.
                        The inner loop (for n_estimators in [3, 5, 7, 9]) iterates through different numbers of
#
                            estimators (weak learners) to be used in the ensemble.
# Creating the Ensemble Classifiers:
         Inside the loops, an if statement checks the classifier_type:
               \label{lem:continuous}  \mbox{If it's "Bagging", a BaggingClassifier is created using BaggingClassifier (DecisionTreeClassifier(), a BaggingClassifier(), a B
#
#
                   n_estimators=n_estimators, random_state=42).
                     This means it will create an ensemble of Decision Trees using the Bagging technique.
```

- $\ensuremath{\text{n_estimators}}$ controls the number of Decision Trees in the ensemble. random state=42 ensures consistent results. If classifier_type is "AdaBoost", an AdaBoostClassifier is created using AdaBoostClassifier # # (DecisionTreeClassifier(), n_estimators=n_estimators, random_state=42). This creates an ensemble of Decision Trees using the AdaBoost technique. # Similar to Bagging, <code>n_estimators</code> and <code>random_state</code> have the same roles.
- # Evaluating the Classifiers:
- After creating the classifier, the code calls the evaluate_classifier function #
 - (defined earlier) to assess its performance on both datasets (X1, y1, X2, y2).

Dataset 1 - Bagging (3 estimators): Bagging (3) Accuracy: 0.9867 (+/- 0.0800)

