Геометрията в състезателното програмиране Част I

Автори

Христо Борисов Иван Тодоров

10 март 2009 г.

Съдържание

1	Фор	омули	2
	1.1	Уравнение на права. Свойства	2
	1.2	Пресечна точка на две прави	2
	1.3	Отсечки в триъгълник (медиана, ъглополовяща, височина)	3
	1.4	Разстояние между две точки и между точка и права	3
	1.5	Вектори	4
	1.6	Векторно произведение (Cross Product)	4
	1.7	Скаларно произведение (Scalar Product)	5
	1.8	Ориентация на точка и права	5
			5
		Транслация, ротация, хомотетия, симетрия, проекция	7

1 Формули

1.1 Уравнение на права. Свойства

Права в равнината можем да представим по следния начин:

$$Ax + By + C = 0$$

За да намерим коефициентите A, B, C на права, минаваща през точките с координати (x_1, y_1) и (x_2, y_2) решаваме следната детерминанта:

$$\begin{vmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = x_0(y_1 - y_2) + y_0(x_2 - x_1) + (x_1y_2 - x_2y_1)$$

и получаваме $A = y_1 - y_2$ $B = x_2 - x_1$ $C = x_1y_2 - x_2y_1$

Ако имаме уравненията на две прави

$$f: A_1x + B_1y + C_1$$

$$g: A_2x + B_2y + C_2$$

и ако:

1.
$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$$
 правите съвпадат

2.
$$\frac{A_1}{A_2} = \frac{B_1}{B_2}$$
 правите са успоредни

Перпендикулярната на дадеда права f: Ax + By + C през точка с координати (x_1, y_1) има уравнение $g: Bx - Ay + C_1$, където C_1 се намира от уравнението $Bx_1 - Ay_1 + C_1 = 0 \Leftrightarrow C_1 = Ay_1 - Bx_1$

$$g: Bx - Ay + Ay_1 - Bx_1$$

1.2 Пресечна точка на две прави

Нека са дадени правите $A_1x + B_1y + C_1$ и $A_2x + B_2y + C_2$, за да намерим тяхната пресечна точка е достатъчно да решим системата от линейни уравнения:

$$\begin{vmatrix} A_1x + B_1y + C_1 = 0 \\ A_2x + B_2y + C_2 = 0 \end{vmatrix}$$

Нека
$$\Delta = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix}$$
, $\Delta_1 = \begin{vmatrix} -C_1 & B_1 \\ -C_2 & B_2 \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} A_1 & -C_1 \\ A_2 & -C_2 \end{vmatrix}$

тогава пресечната точка има координати

$$x = \frac{\Delta_1}{\Delta} = \frac{(-C_1)B_2 - (-C_2)B_1}{A_1B_2 - A_2B_1}$$

$$y = \frac{\Delta_2}{\Delta} = \frac{A_1(-C_2) - A_2(-C_1)}{A_1B_2 - A_2B_1}$$

Ако $\Delta = 0$ правите или съвпадат или са успоредни.

1.3 Отсечки в триъгълник (медиана, ъглополовяща, височина)

Ако $AM(M \in BC)$ е медиана в $\triangle ABC$, то M има координати $x_M = \frac{x_B + x_C}{2}, y_M = \frac{y_B + y_C}{2}$ и от тук уравнението на правата, минаваща през A и M, лесно се намира.

Ако искаме да построим уравнението на правата, описана от височината $AH(H \in BC)$, първо трябва да намерим уравнението на правата през BC и после по описания в 1.1 начин да намерим перпендикулярната на тази права през точка A.

За да намерим ъглополовящата в триъгълник най-краткият начин е да използваме **теоремата за ъглополовяща в триъгълник**, която за ΔABC с ъглополовяща AL има следното твърдение:

$$\frac{|AB|}{|AC|} = \frac{|BL|}{|LC|}$$

По известни върхове на триъгълника можем да намерим отношението на двете страни, определящи ъгъла, към който е ъглополовящата и чрез това отношение да намерим точното положение на пресечната точка на ъглополовящата с третата страна. От там можем да възстановим уравнението на ъглополовящата. Ако $\frac{AB}{AC} = \frac{p}{q}$ то:

$$L(x_B + \frac{(x_C - x_B).p}{p+q}, y_B + \frac{(y_C - y_B).p}{p+q})$$

Друг подход за намиране на ъглополовящата е да използваме ротация. Ако намерим $\sin \alpha$ и $\cos \alpha$ и чрез формулите за тригонометрични преобразувания намерим съответно $\sin \frac{\alpha}{2}$ и $\cos \frac{\alpha}{2}$, ще ротираме една от прилежащите страни и ротираната страна ще определя права, която е ъглополовяща. За въпросните преобразувания, трансформации и тригонометрични функции ще стане дума по-долу в статията.

1.4 Разстояние между две точки и между точка и права

Разстояние между точките А и В се смята чрез Питагорова теорема:

$$distance(A, B) = \sqrt{(A_x - B_x)^2 + (A_y - B_y)^2}$$

Често е достатъчно да се използва квадрата на разстоянието (т.е. да не се коренува), като така се запазва целочислеността и се спестява изчислителното време за намиране на корена. Тъй като разстоянията са неотрицателни, повдигането на квадрат е еквивалентно преобразувание:

$$distance(A,B) < distance(C,D) \Rightarrow distance^2(A,B) < distance^2(C,D)$$

Разстоянието между точката Р и правата f : Ax + By + C e:

$$distance = \left| \frac{AP_x + BP_y + C}{\sqrt{A^2 + B^2}} \right|$$

1.5 Вектори

Дефиниция₁: Множеството от насочени отсечки в равнината (пространството), успоредни и равни на дадена.

Дефиниция₂: Наредена последователност от числа (елементи).

Всяка точка в равнината може да се разгледа като вектор с елементи нейните координати и всъщност представлява насочена отсечка с начало - началото на координатната система и край - дадената точка. Казано по друг начин - отстояние от началото на координатната система.

$$T.P(x_p, y_p) = \vec{P}(x_p, y_p)$$

Според Дефиниция₁ векторът, представляван от отсечка в равнината с начало т. $A(x_A, y_A)$ и край т. $B(x_B, y_B)$ представлява отстоянието на т.В от т.А и изглежда така:

$$\vec{P}(x_B - x_A, y_B - y_A)$$

*Забележка: Горните формулировки са валидни както за равнината, така и за всяко N-мерно пространство.

1.6 Векторно произведение (Cross Product)

Векторното произведение \vec{P} и \vec{Q} представлява вектор, перпендикулярен на тях и с дължина равна на площта на успоредника, определен от \vec{P} и \vec{Q} :

$$\vec{P}x\vec{Q} = |\vec{P}|.|\vec{Q}|.\sin\angle(\vec{P};\vec{Q}).\vec{z},$$

където \vec{z} е вектор с дължина 1, перпендикулярен на \vec{P} и \vec{Q} .

Тъй като резултатният вектор се намира в друга равнина спрямо \vec{P} и \vec{Q} , по-скоро неговата дължина представлява интерес за нас, тъй като тя ни дава лицето на споменатия успоредник, както и удвоеното лице на триъгълника, определен от двата вектора. За векторите $\vec{P}(a_1,b_1)$ и $\vec{Q}(a_2,b_2)$ векторното произведение може да се изрази така:

$$\left| \begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right| = a_1 b_2 - a_2 b_1$$

Точно заради умножението на кръст векторното произведение се нарича Cross Product. Ако имаме три точки A, B, C то произведението на векторите $\vec{P}(B_x - A_x, B_y - A_y)$ и $\vec{Q}(C_x - A_x, C_y - A_y)$ ни дава удвоеното лице на $\triangle ABC$. Интересното е, че това лице може да е и отрицателно. Ако ъгъла между векторите е отрицателен, то и синуса му ще е отрицателен, а от там и лицето. Затова говорим за насочено лице. Ориентацията на точките A, B, C е положителна (точка C е отляво на правата AB), ако лицето е с положителна стойност и обратно - ориентацията е отрицателна (точка C е от дясно на AB), ако лицето е отрицателно. Следователно

чрез векторното произведение може да се определи взаимното положение на точка и права. Чрез векторното произведение също така можем да намираме синуса на ъгъла между два вектора:

$$\sin \angle (\vec{A}, \vec{B}) = \frac{\vec{A} \times \vec{B}}{|\vec{A}| \cdot |\vec{B}|}$$

Като използваме стойностите на sin за специалните ъгли, можем да определим взаимното положение на двата вектора (колинеарни, перпендикулярни и т.н.)

1.7 Скаларно произведение (Scalar Product)

Скаларното произведение на вектори представлява произведението на дължините на векторите и на косинуса на ъгъла между тях:

$$\vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.\cos\angle(\vec{A},\vec{B})$$

В равнината скаларното произведение на векторите $\vec{A}(x_A,y_A)$ и $\vec{B}(x_B,y_B)$ се изчислява така:

$$\vec{A}.\vec{B} = x_A.x_B + y_A.y_B$$

От горните изразявания получаваме лесен начин за смятане на косинус на ъгъл:

$$\cos \angle(\vec{A}, \vec{B}) = \frac{x_A \cdot x_B + y_A \cdot y_B}{|\vec{A}| \cdot |\vec{B}|}$$

Като използваме стойностите на cos за специалните ъгли, можем да определим взаимното положение на двата вектора (колинеарни,перпендикулярни и т.н.)

1.8 Ориентация на точка и права

Ориентацията на точката P и права може да се установи чрез *Cross Product*, ако правата ни е зададена с две точки A и B. Можем да дефинираме функция CP(точка, точка, точка), която да ни връща векторното произведения на векторите, образувани от тези точки. Тогава, ако CP(A, B, P) е с положителна стойност, то точката P е в положителната полуравнина спрямо правата AB(т.е. отляво на правата), ако е CP(A, B, P) е с отрицателна стойност, то точката P е в отрицателната полуравнина спрямо правата AB(т.е. одясно на правата) и ако CP(A, B, P) е 0, то точките A, B и P са колинеарни(лежат на една права).

1.9 Лице на равнинни фигури

• Лице на триъгълник
Формулите за лице на тази проста геометрична фигура намира широко приложение

в изчислителната геометрия за намиране на линейни елементи, ъгли и лица на по сложни геометрични обекти.

Формулата за лице на триъгълник е:

$$S_{\Delta} = \frac{a.h_a}{2} = \frac{b.h_b}{2} = \frac{c.h_c}{2}$$

Тъй като височината може да се изрази като функция на ъгъл умножена по някоя от неприлежащите му страни, в сила е и формулата:

$$S_{\Delta} = \frac{a.b.\sin \angle(a,b)}{2} = \frac{a.c.\sin \angle(a,c)}{2} = \frac{b.c.\sin \angle(b,c)}{2}$$

Ако използваме синусова теорема и изразим функциите sin чрез третата страна и радиуса на описаната окръжност **R**, получаваме следната формула:

$$S_{\Delta} = \frac{a.b.c}{4.R}$$

Особено важна формула за лице на триъгълник е *Хероновата формула*. Тя ни дава лицето на триъгълник по известни три страни, а в изчислителната геометрия при дадени три точки, дължините на страните лесно се изчисляват. Ето я и формулата:

$$S_{\Delta} = \sqrt{p(p-a)(p-b)(p-c)}$$

където р е полупериметъра на триъгълника.

Важно е да се знае, че поради операцията коренуване, която се прилага неколкократно за да намерим дължините на страните, а след това и в самата формула, точността на резултата се губи до определена степен.

Като използвате различни комбинации на тези формули можете да намерите някои неизвестни елементи, например по известни три страни - радиуса на описаната окръжност, височината към коя да е страна, тригонометричните функции на кой да е ъгъл. А ориентираното лице на триъгълника се използва за намиране на лицето на произволни N-ъгълници (не задължително изпъкнали) като се разбият на триъгълници.

• Лице на многоъгълник

Лицата на многоъгълници в равнината се смятат като даден многоъгълник се разбие на подходящи по прости фигури (триъгълници, трапци и т.н.) и лицето му се представи като алгебричен сбор на лицата на фигурите от разбивката. Във втора част на тази статия е изложен общия случай на разбивка на всеки N-ъгълник на триъгълници.

• Лице на кръг

Лицето на кръг се смята по формулата:

$$S = \pi . r^2$$

В дадени случаи може да е по-удобно да гледаме на кръга като на правилен N-ъгълник за $N \mapsto \infty$:

$$S_{ ext{Кръг.}} = \lim_{N \to \infty} S_{ ext{правилен N-ъгълник}} = \lim_{N \to \infty} N \frac{r^2 \cdot \sin \frac{2\pi}{N}}{2} =$$

$$= \lim_{N \to \infty} N \frac{r^2 \cdot \sin \frac{2\pi}{N}}{2} \cdot \frac{\frac{2\pi}{N}}{\frac{2\pi}{N}} = \lim_{N \to \infty} N \frac{r^2}{2} \cdot \frac{2\pi}{N} = \pi \cdot r^2$$

1.10 Транслация, ротация, хомотетия, симетрия, проекция

• Транслация

Транслацията е вид трансформация, еднозначно определена от вектор. При транслация Т на точка $A(x_A, y_A)$ с вектор $\vec{K}(x_K, y_K)$ се получава точка-образ на дадената $A'(x_A + x_K, y_A + y_K)$. Или с други думи, транслацията представлява изместване на даден обект по дадено направление(вектор). Ако на точките се гледа като на вектори, то образът е векторен сбор на началната точка и направлението.

• Ротация

Ротацията е вид трансформация, която се определя еднозначно от точка (център на ротацията) и ъгъл на ротацията. При ротация с център O и ъгъл α , образът A' на A е такъв, че:

$$OA' = OA$$
$$\angle AOA' = \alpha$$

Координатите на образа могат да се изчислят като се използва факта, че началната точка и образът й лежат на окръжност с център O и радиус OA. Изчисляват се тригонометричните функции sin и соз на $\angle AOP_0$, където P_0 е произволна точка, такава че $OP_0 \mid\mid Ox^{\rightarrow}$. Изчисляват се и sin и соз на $\angle AOP_0$, като се използват формулите за тригонометрична функция от сбор на ъгли:

$$OA = OA'$$

$$\angle AOP_0 = \angle AOP_0 + \angle A'OA$$

$$\angle OP_1 = OA'.cos \angle AOP_0$$

$$\angle A'P_1 = OA'.sin \angle AOP_0$$

$$\sin \angle AOP_0 = \sin(\angle AOP_0 + \angle A'OA) =$$

$$= \sin \angle AOP_0 \cos \angle A'OA + \cos \angle AOP_0 \sin \angle A'OA$$

$$\cos \angle AOP_0 = \cos(\angle AOP_0 + \angle A'OA) =$$

$$= \cos \angle AOP_0 \cos \angle A'OA - \sin \angle AOP_0 \sin \angle A'OA$$

и чрез тях намираме координатите на образа:

$$X_{\text{Oбраз}} = x_O + AO. \cos \angle AOP_0$$

 $Y_{\text{Oбраз}} = y_O + AO. \sin \angle AOP_0$

Сравнително по-лесен начин да се ротира даден вектор е да се използва матрицата на ротация. Матрицата на ротация е наречена така, защото умножена по даден вектор, дава като резултат вектор, който представлява образ на първия при ротация. За равнинния случай матрицата на ротация изглежда така:

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Образът \vec{P}' на \vec{P} изглежда така:

$$\vec{P'} = R_{\theta}.\vec{P} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}. \begin{pmatrix} x_P \\ y_P \end{pmatrix} = \begin{pmatrix} (x_P.\cos\theta - y_P.\sin\theta) \\ (x_P.\sin\theta + y_P.\cos\theta) \end{pmatrix}$$

Умножен по този начин, векторът \vec{P} се ротира с $\angle \theta$ в положителна посока (обратна на часовниковата стрелка) или координатната система се завърта с $\angle \theta$ в отрицателна посока (запазвайки точката статична). За да го ротираме по часовниковата стрелка трябва да използваме ъгъл на ротация - $\angle \theta$ и да го умножим с матрица $R_{-\theta}$. Тъй като соѕ е четна функция ($\cos(-\theta) = \cos \theta$), а sin е нечетна ($\sin(-\theta) = -\sin \theta$), матрицата на ротация в този случай има вида:

 $R_{-\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

Образът ще се намери отново чрез умножение на матрицата с вектора:

$$\vec{P'} = R_{-\theta} \cdot \vec{P} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x_P \\ y_P \end{pmatrix} = \begin{pmatrix} (x_P \cdot \cos \theta + y_P \cdot \sin \theta) \\ (-x_P \cdot \sin \theta + y_P \cdot \cos \theta) \end{pmatrix}$$

Често се налага ротация с ъгли, равни или кратни на $\frac{\pi}{2}$ (90°). При тези ъгли тригонометричните функции приемат специални стойности. При четните кратни на $\frac{\pi}{2}$ синусът приема стойност нула,а косинусът единица. При нечетните кратни на $\frac{\pi}{2}$ обратно - синусът приема стойност единица,а косинусът нула. Например при при ротация с ъгъл $\theta=90^\circ$:

$$\sin \theta = 1$$

$$\cos \theta = 0$$

Матрицата на ротация добива вида:

$$R_{\frac{\pi}{2}} = \left(\begin{array}{cc} 0 & -1\\ 1 & 0 \end{array}\right)$$

Тогава, умножавайки вектора \vec{P} с тази матрица, ще получчим приятният вид на образа му $\vec{P'}$:

$$\vec{P}'(-y_P, x_P)$$

• Хомотетия

Трансформация, еднозначно определена от точка (център на хомотетията) и коефициент на хомотетията. При хомотетия \mathbf{H} с център O и коефициент k образът на всяка точка $A(x_A, y_A)$ е точка $A'(x_A', y_A')$, така че $\overrightarrow{OA'} = k.\overrightarrow{OA}$. При хомотетия с коефициент k на геометрични фигури с център някой от върховете на фигурата образът е фигура, подобна на първата с коефициент на подобие k.

• Симетрия

Симетрията е трансформация, при която образът е на равно разстояние с изходната точка спрямо даден обект. В зависимост от вида на този обект симетрията бива:

– Централна симетрия

Трансформация, определена еднозначно от единствена точка - център на симетрията. При симетрия с център $O(x_O, y_O)$ ако образът на $A(x_A, y_A)$ е $A'(x_A', y_A')$, то той изглежда така:

$$A'(x_O - (x_A - x_O), y_O - (y_A - y_O))$$

– Осева симетрия

Трансформация, определена еднозначно от права - ос на симетрията. При осева симетрия образът на точка е точка, която лежи на права, перпендикулярна на оста и съдържаща началната точка. Разстоянието от образа до оста е равно на разстоянието от началната точка до оста, но са от различни страни. Намирането на образа се състои в намирането на петата на перпендикуляра от началната точка до оста на симетрия и намиране на образа при централна симетрия спрямо тази пета.

• Проекция

Проектирането е трансформация, при която точките се нанасят върху проекционна права (равнина) по дадено направление (вектор или права). При проектиране на точка A по направление \vec{P} върху права L, образът A' ще е такава точка, че $A' \in L$ и $A\vec{A}' = k.\vec{P}$. Когато направлението е вектор, перпендикулярен на проекционната права, трансформацията се нарича *ортогонална проекция*. Когато направлението е вектор, успореден на проекционната права, образ не съществува. В изчислителната геометрия често се налага обекти да се проектират ортогонално върху образуващите прави (равнини) на равнината (пространстово). Във всяко N-мерно пространство ортогоналното проектиране върху образуваща равнина представлява пренасяне на точките във N-1 мерно пространство (чрез изтриване на една от координатите). Този тип проектиране е подходящ когато трябва сведем пространството до по-нисък клас за да можем да приложим попрости геометрични операции и след това да се възползваме от тях в началния образ.