Домашняя работа к 09.09.20

Котов Артем

8 сентября 2020 г.

Содержание

1.	Task 1	2
2.	Task 2	3
3.	Task 3	4
4.	Task 4	4
	4.1. $\{oldsymbol{v}_i+oldsymbol{v}_j\}_{i eq j}$	
	4.1.1. Случай поля $1+1=0$ $(1=-1)$	5
	4.2. $\{oldsymbol{v}_i-oldsymbol{v}_j\}_{i eq j}$	5
	4.2.1. Случай поля $1+1=0$ $(1=-1)$	6
5.	Task 5	6
	5.1. Отсутствие одно-элементных подмножеств	6
	5.2 Наличие лвух-элементных полмножеств	6

1. Task 1

Рассмотрим, удовлетворяют ли вектора

$$\mathbf{v} \in V = \left\{ \begin{pmatrix} x^1 \\ x^2 \\ x^3 \\ x^4 \\ x^5 \\ x^6 \end{pmatrix} : \left\{ \begin{aligned} \sum x^i &= 0 \\ 2(x^2 + x^3) &= x^5 \end{aligned} \right\}$$

аксиомам линейного пространства:

•
$$x + y \in V$$
:

$$\sum (x^i + y^i) = \sum x^i + \sum y^i = 0 + 0 = 0$$

$$2(x^2 + y^2 + x^3 + y^3) = 2(x^2 + x^3) + 2(y^2 + y^3) = x^5 + y^5$$

•
$$c \cdot \mathbf{x} \in V$$
:
 $c \cdot \sum x^i = c \cdot 0$
 $2(cx^2 + cx^3) = cx^5 \Longrightarrow 2(x^2 + x^3) = x^5$

Также $\mathbf{0} \in V$. Таким образом, V является пространством в K^6 .

Найдем базис:

СЛАУ:
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 0 & -1 & 0 \end{pmatrix}$$

$$\downarrow \downarrow$$

$$x^1 = -x^2 - x^3 - x^4 - x^5 - x^6$$

$$x^5 = 2x^2 + 2x^3$$

$$\downarrow \downarrow$$

$$\begin{cases} x^1 = -3x^2 - 3x^3 - x^4 - x^6 \\ x^5 = 2x^2 + 2x^3 \end{cases}$$

Т. о. свободные переменные: $x^2, x^3, x^4, x^6 \Longrightarrow \dim(V) = 4$ В качестве базиса можно взять следующие вектора:

$$\begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

2. Task 2

Рассмотрим СЛАУ на коэффициенты для системы уравнений, задающую V (сразу переставим строчки более удобным образом):

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

После преобразования матрицы методом Гаусса получим:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Что приводит к

$$\begin{cases} a_4 = -a_5 - a_6 \\ a_3 = a_6 \\ a_2 = a_5 \\ a_1 = -a_5 - a_6 \end{cases} \implies \begin{cases} a_1 = -a_5 - a_6 \\ a_2 = a_5 \\ a_3 = a_6 \\ a_4 = -a_5 - a_6 \end{cases} \implies a_5, a_6 — \text{свободные параметры}$$

Выберем сначала $a_5=1, a_6=0$, а затем $a_5=0, a_6=1$, тогда получим два уравнения из системы:

$$\begin{cases}
-x_1 + x_2 - x_4 + x_5 = 0 \\
-x_1 + x_3 - x_4 + x_6 = 0
\end{cases}$$

3. Task 3

 $x^2 + 4x + 3$ в базисе:

1)

$$1, x, x^2 : \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$

$$2x+1, x, x^2+x+1: \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$$

3)

$$(x-5)(x-6), (x-5)(x-7), (x-6)(x-7) :$$

$$x^{2} + 4x + 3 = \alpha(x-5)(x-6) + \beta(x-5)(x-7) + \gamma(x-6)(x-7) =$$

$$(\alpha + \beta + \gamma)x^{2} - (11\alpha + 12\beta + 13\gamma)x + (30\alpha + 35\beta + 42\gamma)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\begin{cases} \alpha + \beta + \gamma = 1 \\ 11\alpha + 12\beta + 13\gamma = -4 \end{cases} \implies \begin{pmatrix} 1 & 1 & 1 & 1 \\ 11 & 12 & 13 & -4 \\ 30 & 35 & 42 & 3 \end{pmatrix}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\gamma = 24, \beta = -63, \alpha = 40 \implies \begin{pmatrix} 40 \\ -63 \\ 24 \end{pmatrix}$$

4. Task 4

4.1. $\{ \boldsymbol{v}_i + \boldsymbol{v}_j \}_{i \neq j}$

Для $\{v_i + v_j\}_{i \neq j} = \hat{V}$ предъявим схему, по которой можно выбрать базис из \hat{V} в V: Рассмотрим $\{v_1 + v_j\}_{j=2}^n$. Это множество содержит n-1 линейно-независимых векторов, их координаты к исходном базисе:

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \dots \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Из их представления в базисе $\{ {m v}_i \}$ как раз наглядно видна их линейная независимость, но их лишь n-1 штук.

Добавим $\boldsymbol{u}=(0,1,1,0,\ldots,0)^T$ в этот набор. Тогда, надо проверить, что мы не нарушили линейную независимость. Рассмотрим следующую тройку (остальные вектора содержат вторую 1 месте с большим индексом, следовательно, "новый" вектор не скажется на них, а они ни при каких коэффициентах не окажут влияния на линейную зависимость/независимость рассматриваемой тройки, хотя формально можно было бы посчитать определитель матрицы, составленный из всех этих векторов и убедиться, что он не равен 0):

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Если не учитывать "несущественные" нули далее 3-ей компоненты, то можно заметить, что эта система векторов есть попарные суммы стандартных базисных векторов в D3, которые линейно-независимы. Таким образом, можно выбрать набор $\{\{v_1 + v_j\}_{j=2}^n, u\}$.

4.1.1. Случай поля 1+1=0 (1=-1)

Рассмотрим вектора $w_{ij} = v_i + v_j$. Пусть $b_i = v_1 + v_i$ по прежнему будем рассматриваться нами как часть искомого базиса (при другом возможном наборе n-1 векторов можно переразложить их по $\{b_i\}$). Тогда, для того, чтобы искомый набор являлся базисов в исходном пространстве V, достаточно добавить еще один вектор, который будет линейнонезависим с $\{b_i\}$. Покажем, что нельзя выбрать такой w_{ij} :

$$\left. m{w}_{ij} \right|_{i \neq 1} = m{v}_i + m{v}_j = (m{v}_1 - m{v}_1) + m{v}_i + m{v}_j = m{v}_1 + m{v}_1 + m{v}_i + m{v}_j = (m{v}_1 + m{v}_i) + (m{v}_1 + m{v}_j) = m{b}_i + m{b}_j$$

То есть любой оставшийся вектор w_{ij} является линейной комбинацией $\{b_i\} \Longrightarrow$ нельзя выбрать базис в таком пространстве.

4.2.
$$\{ {m v}_i - {m v}_j \}_{i \neq j}$$

Заметим, что конечномерные линейные пространства размерности n изоморфны \mathbb{R}^n , которое в свою очередь представляет в виде прямой суммы $\mathbb{R}^n=F\bigoplus G$, где $F=\{\boldsymbol{x}\in\mathbb{R}^n:\sum x^i=0\}$ и $G=\{\boldsymbol{x}\in\mathbb{R}^n:x^1=x^2=\ldots=x^n\}$. Можем рассмотреть $\{\boldsymbol{v}_i-\boldsymbol{v}_j\}_{i\neq j}$ как подмножество $U=\{\boldsymbol{x}:\sum x^i=0\}$. Но тогда видно, что нам не хватает, как минимум, вектора из G, то есть из $\{\boldsymbol{v}_i-\boldsymbol{v}_j\}_{i\neq j}$ можно выбрать в лучшем случае базис только для F.

4.2.1. Случай поля 1+1=0 (1=-1)

$$oldsymbol{u}_{ij} = oldsymbol{v}_i - oldsymbol{v}_j = oldsymbol{v}_i + oldsymbol{v}_j = oldsymbol{w}_{ij} \Longrightarrow$$
 можно сослаться на 4.1.1.

5. Task 5

5.1. Отсутствие одно-элементных подмножеств

Воспользуемся изоморфизмом $2^M \longleftrightarrow^n K: x^i \in 0, 1$, то есть с бинарными строками длины n. В терминах бинарных строк, утверждается, что можно выбрать такое подпространство в 2^M размерности n-1, что ни какой элемент не будет содержать ровно одну 1. Рассмотрим следующие бинарные строки:

Количество таких строк n-1, они линейно-независимы. Видно, что сумма любой пары этих строк даст строку также содержащую две 1, так как x^1 сократится, а на остальных координатах стоят непересекающиеся 0 и 1. То есть в линейных комбинациях не будет содержаться строки с лишь одной 1.

5.2. Наличие двух-элементных подмножеств

Рассмотрим следующий набор бинарных строк:

Очевидно, что это базис (причем, стандартный) в n-мерном пространстве. Выкинем какойто вектор из этого набора, тогда останется базис n-1 мерного пространства. Видно, что в нем всегда будут получатся в линейных комбинациях строки, содержащие две 1.

Но это был какой-то конкретный базис. Предположим, что нашелся другой базис, тогда мы переразложим найденный базис, по стандартному.