1. Conjugaison dans un sous-groupe

1.1. L'action par conjugaison

1. DÉFINITION. Soit G un groupe. Alors la relation

$$g \cdot h \coloneqq ghg^{-1}$$

définie une action du groupe G sur lui-même, appelée l'action par conjugaison. L'orbite d'un élément est sa classe de conjugaisons. Deux éléments d'une même classe de conjugaisons sont dits *conjugués*. Le stabilisateur d'un élément $h \in G$ est noté $Z_G(h)$.

- 2. Remarque. Dans un groupe abélien G, les classes de conjugaisons sont réduites à un élément : pour un élément $h \in G$, on a $Z_G(h) = \{h\}$.
- 3. EXEMPLE. Dans le groupe symétrique \mathfrak{S}_3 , les permutations (1 2 3) et (1 3 2) sont conjugués puisque $(1\ 3\ 2) = (2\ 3)^{-1}(1\ 2\ 3)(2\ 3)$.
- 4. DÉFINITION. Le centre d'un groupe G est le sous-groupe

$$Z(G) := \{ h \in G \mid \forall h \in G, \ ghg^{-1} = h \}.$$

- 5. Remarque. Pour un élément $h \in G$, on a $h \in Z(G) \Leftrightarrow G = Z_G(h)$.
- 6. DÉFINITION. Un automorphisme intérieur est un morphisme de la forme

$$\begin{vmatrix} G \longrightarrow G, \\ x \longmapsto gxg^{-1} \end{vmatrix}$$

pour un élément $g \in G$. On note Int(G) le groupe des morphismes intérieurs.

7. APPLICATION (théorème de Wedderburn). Tout corps fini, non supposé commutatif, est commutatif.

1.2. Exemples de classes de conjugaisons

8. Lemme (principe de transfert). Soient $\sigma := (a_1 \cdots a_k) \in \mathfrak{S}_n$ un k-cyclique et $\tau \in \mathfrak{S}_n$ une permutation. Alors

$$\tau \sigma \tau^{-1} = (\tau(a_1) \cdots \tau(a_k)).$$

- 9. Proposition. Dans le groupe \mathfrak{S}_n , les k-cycles sont conjugués.
- 10. COROLLAIRE. Deux permutations de \mathfrak{S}_n sont conjuguées si et seulement si leurs décompositions en produit de cycles à supports disjoints ont le même nombre de k-cycles pour tout $k \in \{2, \ldots, n\}$.
- 11. EXEMPLE. Les permutations (1 2)(3 4) et (1 3) ne sont pas conjugués dans \mathfrak{S}_4 .
- 12. LEMME. Le groupe \mathfrak{A}_n agit n-2-transitivement sur l'ensemble $\{1,\ldots,n\}$.
- 13. PROPOSITION. Si $n \ge 5$, les 3-cycles de \mathfrak{S}_n sont conjugués dans \mathfrak{A}_n .
- 14. DÉFINITION. Soit K un corps. Deux matrices de $GL_n(K)$ sont semblables si elles sont conjuguées dans $GL_n(K)$.
- 15. THÉORÈME (Frobenius). Deux matrices de $GL_n(K)$ sont semblables si et seulement si elles ont les mêmes invariantes de similitude.

16. Exemple. Les matrices

$$\begin{pmatrix} 0 & 1 & & & \\ & 0 & & & \\ & & 0 & & \\ & & & 0 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 0 & 1 & & \\ & 0 & & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$

ne sont pas semblables.

2. Sous-groupes distingués et groupes quotients

2.1. Sous-groupes distingués

17. DÉFINITION. Un sous-groupe H de G est distingu'e dans G si

$$\forall g \in G, \ \forall h \in H, \qquad ghg^{-1} \in H.$$

On note alors $H \triangleleft G$.

- 18. Exemple. Le groupe G et le groupe trivial $\{1\}$ sont distingué dans G. Le centre Z(G) est distingué dans G.
- 19. Remarque. Lorsque le groupe G est abélien, tout ses sous-groupes sont distingués.
- 20. Proposition. Soit H un sous-groupe de G. Alors les points sont équivalents :
 - il est distingué;
 - pour tout élément $q \in G$, on a qH = Hq;
 - pour tout élément $q \in G$, on a $qHq^{-1} \subset H$.
- 21. Proposition. Soit $f\colon G\longrightarrow H$ un morphisme de groupes. Alors son noyau $\operatorname{Ker} f$ est distingué dans G.
- 22. EXEMPLE. Le groupe alterné \mathfrak{A}_n est distingué dans \mathfrak{S}_n et le groupe spécial orthogonal SO(E) d'un espace euclidien E est distingué dans le groupe orthogonal O(E).
- 23. Proposition. Le groupe dérivé

$$D(G) := \langle xyx^{-1}y^{-1} \mid x, y \in G \rangle$$

est un sous-groupe distingué de G

2.2. Groupes quotients et théorèmes d'isomorphisme

24. DÉFINITION. Soit H un sous-groupe de G. On définit la relation \sim sur G par

$$x \sim y \iff xy^{-1} \in H.$$

L'ensemble des ces orbites est notée $G/H := G/\sim$ et appelée le quotient de G par H.

- 25. DÉFINITION. L'indice d'un sous-groupe H de G est l'entier [G:H]:=|G/H|.
- 26. Proposition. Soit H un sous-groupe d'un groupe fini G. Alors

$$|G| = [G:H] \times |H|.$$

- 27. Proposition. Un sous-groupe d'indice 2 est distingué
- 28. LEMME. Soit H un sous-groupe distingué de G. Soient $x, x', y, y' \in G$ quatre éléments tels que $x \sim x'$ et $y \sim y'$. Alors $xx' \sim yy'$.
- 29. COROLLAIRE. Un sous-groupe est distingué si et seulement s'il s'agit du noyau d'un morphisme.

- 30. Théorème. Soit H un sous-groupe distingué de G. Alors le quotient G/H est muni d'une structure de groupe.
- 31. EXEMPLE. Les quotients $\mathbb{Z}/n\mathbb{Z}$ avec $n \in \mathbb{N}^*$ sont des groupes.
- 32. APPLICATION. Le discriminant d'une forme quadratique non dégénéré sur un corps K est un élément du groupe $K^{\times}/K^{\times 2}$
- 33. Remarque. Avec cette définition, la projection canonique $\pi\colon G\longrightarrow G/H$ est alors un morphisme de groupes.
- 34. THÉORÈME (premier théorème d'isomorphisme). Soit $f: G \longrightarrow H$ un morphisme de groupes. Alors les groupes $G/\operatorname{Ker} f$ et $\operatorname{Im} f$ sont isomorphes.
- 35. Exemple. Les groupes $\mathbf{U} := \{z \in \mathbf{C} \mid |z| = 1\}$ et $\mathbf{R}/2\pi\mathbf{Z}$ sont isomorphes.
- 36. Théorème (deuxième théorème d'isomorphisme). Soient H un sous-groupe distingué de G et K un sous-groupe de G. Alors il existe un isomorphisme

$$\frac{K}{H\cap K}\simeq \frac{HK}{H}.$$

37. Théorème (troisième théorème d'isomorphisme). Soient H et K deux sousgroupes distingués de G tels que $H \subset K$. Alors il existe un isomorphisme

$$\frac{G}{K} \simeq \frac{G/H}{K/H}.$$

3. Groupes simples et p-groupes

3.1. Les groupes simples

- 38. Définition. Un groupe est simple s'il n'est pas trivial et si ses seuls sous-groupes distingués sont lui-même et le groupe trivial.
- 39. EXEMPLE. Pour $n \in \mathbb{N}^*$, le groupe $\mathbb{Z}/n\mathbb{Z}$ est simple si et seulement si l'entier nest premier.
- 40. PROPOSITION. Les seuls sous-groupes abéliens simples sont les groupes $\mathbf{Z}/p\mathbf{Z}$ pour un nombre premier p.
- 41. THÉORÈME. Soit K un corps. Alors le quotient $PSL_n(K) := SL_n(K)/Z(SL_n(K))$ est un groupe simple si $K \notin \{\mathbf{F}_2, \mathbf{F}_3\}$ et n=2.
- 42. LEMME. Le groupe \mathfrak{A}_5 est simple.
- 43. THÉORÈME. Soit $n \ge 5$ un entier. Alors le groupe \mathfrak{A}_n est simple.
- 44. COROLLAIRE. Pour tout entier $n \ge 5$, on a $D(\mathfrak{A}_n) = \mathfrak{A}_n$ et, pour tout entier $n \ge 2$, on a $D(\mathfrak{S}_n) = \mathfrak{A}_n$.
- 45. COROLLAIRE. Pour tout entier $n \ge 5$, le seul sous-groupe propre et non trivial du groupe \mathfrak{S}_n est le groupe \mathfrak{A}_n .

3.2. Les p-groupes et le théorème de Sylow

- 46. DÉFINITION. Soit p un nombre premier. Un p-groupe est un groupe fini dont le cardinal est une puissance de l'entier p.
- 47. Proposition. Le centre d'un p-groupe non trivial est non trivial.
- 48. DÉFINITION. Soient G un groupe fini de cardinal n et p un diviseur premier de l'entier n. On note $n = p^{\alpha}m$ avec $p \nmid m$. Un p-sous-groupe de Sylow de G est un sous-groupe de cardinal p^{α} .

- 49. EXEMPLE. Un p-sous-groupe de Sylow du groupe $GL_n(\mathbf{F}_p)$ est le groupe des matrices triangulaires supérieures dont les coefficients de la diagonale valent 1.
- 50. Théorème (Sylow). Soient G un groupe fini et p un diviseur de son ordre. Alors le groupe G contient au moins un p-sous-groupe de Sylow.
- 51. THÉORÈME (Sylow). Soient G un groupe fini de cardinal n et p un diviseur premier de l'entier n. On note $n = p^{\alpha}m$ avec $p \nmid m$. Alors
 - pour tout sous-groupe $H \subset G$, il existe un p-sous-groupe de Sylow $S \subset G$ tel que $H \subset S$:
 - les p-sous-groupes de Sylow sont conjugués;
 - le nombre de p-sous-groupes de Sylow vérifie $k \equiv 1 \mod p$ et $k \mid |G|$
- 52. COROLLAIRE. Soit S un p-sous-groupe de Sylow de G. Alors il est distingué si et seulement s'il est l'unique p-sous-groupe de Sylow de G.
- 53. APPLICATION. Un groupe d'ordre 63 n'est pas simple.

^[1] [2] [3] Josette Calais. Éléments de théorie des groupes. 3º édition. Presses Universitaires de France, 1998.

Xavier Gourdon. Algèbre. 2º édition. Ellipses, 2009.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.