```
||n||68||= (* Convergence of Fourier Series to a function depending on number of terms*)
ln[09]:= NScProd[f_, g_] := (1 / (2 * Pi)) * NIntegrate[f Conjugate[g], {x, -Pi, Pi}];
     NFcoef[f_, n_] := Table[NScProd[f, Exp[ikx]], \{k, -n, n\}];
     cf[f_, n_] = Chop[NFcoef[f, n]];
     fct[c_{k}] := (k-1-(Length[c]-1)/2);
     Fseries[c] := Sum[c[k]] Exp[ifct[c, k] x], {k, 1, Length[c]}];
     FConvPlot[f_, n_] := Module[{c, F, plt},
       c = NFcoef[f, n];
       F = Fseries[c];
       plt = Plot[\{F, f\}, \{x, -\pi, \pi\}, Frame \rightarrow True, GridLines \rightarrow Automatic,
         PlotStyle → {Red, Blue}, PlotLabel → "Convergence of Fourier Series"];
       Return[plt]
      1
     Off[Table::iterb]
In[76]:= (* Functions to evaluate *)
     f5[x_] := 1 + Sin[x] + 10 Cos[x] + 100 Sin[2x] + 1000 Cos[3x];
     p1[x_{]} := x - Floor[(x + Pi) / (2 * Pi)] (2 Pi);
     f1[x_] := If[p1[x] < 0, 0, 1];
     f3[x_] := Abs[Cos[x/2]];
     f4[x_] := 2 Sin[Cos[x]] + 3 Cos[Sin[x]];
In[81]:= (* 1: Heaviside Function *)
```

ln[82]:= Manipulate[FConvPlot[f1[x], k], {k, 1, 20, 2}]

Off[NIntegrate::slwcon, NIntegrate::ncvb];

ln[84]:= (* Notice Gibbs' Phenomenon at large k*)

In[85]:= (* 2: Simple Periodic Function *)
Manipulate[FConvPlot[f5[x], k], {k, 1, 4, 1}]

In[87]:= (* 3: Simple Polynomial *)

 $ln[88]:= f9[x_] = (x-1) (x-1/3) (x+2/3) (x+2) (x-3);$ Manipulate[FConvPlot[f9[x], k], {k, 1, 50, 2}]

In[90]:= (* Will not converge for a non-periodic function. With a large number of coefficients, models may approach convergence for a small interval, but not for the entire function, as seen below. *)

In[91]:= FConvPlot[f9[x], 100]

In[92]:= (* 4: Complex Construction of Periodic Functions*) $f6[x_] := f4[x] + f3[f5[x]];$

In[93]:= FConvPlot[f6[x], 3]

In[94]:= (* Note this function is periodic,
 but we are only displaying one period. Fourier series will eventually converge to f6,
 but with a great number of terms and taking a long time to compute*)

In[95]:=

(* 5: Non-Periodic Function*)

 $ln[96]:= f7[x_] := Exp[0.5x] * Sin[10x];$ $Manipulate[FConvPlot[f7[x], k], \{k, 1, 50, 2\}]$

In[98]:= (* Again, will not converge for a non-periodic function. As we can see here,
we can come much closer to convergence with a large number of terms,
but we will never converge over the entire function. *)

In[99]:= (* 6: Linear Function *)

ln[100]:= Manipulate[FConvPlot[x + 10, k], {k, 1, 50, 2}]

ln[101]: (* Even an incredibly simple function like y= x+10, we cannot create complete convergence as it is not periodic.*)