

Operatsioonisüsteemi ja teenuste administreerimine

- Virtualiseerimine
- Konteinerid

Virtualiseerimine

Virtualiseerimine on süsteemihalduses üldine trend

- Võrkude virtualiseerimine
 - VPN firma sisevõrk IP tasandil üle avaliku võrgu
 - VLAN virtuaalne võrk Etherneti tasandil
- Kettahalduse virtualiseerimine
 - SAN, NAS, RAID, LVM
- Ressursside virtualiseerimine OS-s
 - virtuaalmälu, protsessori aja jagamine, võrguliidesed
- Teenuste tasemel virutaliseerimine
 - virtuaalsed veebiserverid, meiliserverid
- Protsesside kapseldamine
 - Java, sandboxes (Chrome, Adobe)
- Serverite virtualiseerimine

VLAN näide

802.1q VLAN tagging

- 802.1q märgendamine võimaldab
 - defineerida VLAN-i, kus seadmed asuvad eri switchide küljes
 - seadmed kuuluvad korraga mitmesse VLAN-i
- Kõik võrguseadmed ei aktsepteeri 802.1q pakette!
- Muudab Etherneti paketi päist
 - -TPI 2 baiti
 - -TAG 2 baiti
 - prioriteet
 - · VLAN ID 1-4096

LVM

DAS-NAS-SAN

x86 Virtualization* Overview

From This

*Represents "Type 1" or Bare Metal "Server" Virtualization

To This

Isoleerimine

Virtualiseerimise fundametaalne olemus

- Tarvara isoleerimine
 - Erinevad versioonid
 - Erinevad teegid (DLL hell)
- Turvakontektstide isoleerimine
 - Teenused eraldi
 - Erinevad kasutajate ja haldajate baasid
- Jõudluse isoleerimine
 - Ressursside dünaamiline jagamine

Miks?

- Sest virtualiseerimine võimaldab:
 - suurendada rakenduste turvalisust (iga rakenduse jaoks oma virtuaalmasin);
 - loob uusi võimalusi nii serverites (uus server vähem kui 10 minutiga) kui tööjaamades (erinevate operatsioonisüsteemide samaaegne kasutamine);
 - suurendada riistvara kasulikku koormatust ning kohandada ressursse vastavalt koormusele;
 - vähendada sõltuvusi riistvarariketest;
 - hoida kokku kulusid (toide, jahutus, riiulipind).

Virtuaalmasinate kasutajad

- Serverimajutusega tegelev teenusepakkuja
- Ettevõtja/IT juht, kes peab servereid hankima ja käideldavuse tagama
- Tarkvara kasutajatugi
- Tarkvara arendaja ja testija
- Demo, õpetajad
- Teistel asjahuvilised

Levinud olukord

Hulk reaalseid servereid

Virtualiseermine

- Igal virtuaalarvutil on oma failipuu, eraldi juurkasutaja (administraator).
- Virtuaalmasinale saab ette anda kasutatava protsessoriressursi, mälu hulga jt ressursipiiranguid
- Virtualiseerimine võimaldab ühes füüsilises masinas kasutada korraga erinevaid operatsioonisüsteeme.

Virtualiseerimise variandid

- "Raskekaalulised" lahendused (virtuaalmasinal on oma tuum):
 - riistvara tarkvaraline emuleerimine (Qemu, UML);
 - dünaamiline ümberkompileerimine (VmWare, Hyper-V);
 - paravirtualiseerimine (Xen, VmWare);
 - riistvara toega virtualiseerimine (KVM, VmWare, Xen);
- "Kergekaalulised" lahendused (virtuaalmasin kasutab peremehe tuuma):
 - konteinervirutaliseerimine (vServer, OpenVZ, LXC)
 - chroot, jail

Dünaamiline ümberkompileerimine

 OS1 ja OS2 võivad olla Windowside, Linuxite või BSDde "karbiversioonid".

Eelised/Puudused

- Eelised
 - virtuaalmasinas kasutatav operatsioonisüsteem on muutmata kujul.
- Puudused
 - võivad esineda dünaamilisest ümberkompileerimisest tingitud jõudlusprobleemid

Näiteid: QEmu, VMware Workstation/Server, Virtual PC/Server, Parallels

Paravirtualiseerimine

 OS1 ja OS2 on modifitseeritud vältimaks dünaamilist ümberkompileerimist.

Protsessoritootjate tugil

Vältimaks virtuaalmasina OS-i dünaamilist (ja staatilist) ümberkompileerimist on nii AMD kui ka Intel välja töötanud hüperviisorrežiimi võimaldavad riistvaralaiendused.

- AMD
 - AMD-V virtualiseerimistehnoloogia
 - RVI

- Intel
 - Virtualization Technology VT-i, VT-x, jt
 - EPT

Processor modes

- Hypervisor mode (-1)
- Protected mode (0)
- User mode (>0)

Hüperviisorlahendus

Konteinervirutaliseerimine

- võimaldab ühes Linuxi serveris käigus hoida mitmeid Linux servereid
- kõik virtuaalmasinad kasutavad ühist tuuma
- virtuaalmasinatel on oma failisüsteem
- virtuaalmasinad võivad pärineda erinevatest distributsioonidest (eeldusel, et suudavad olemasoleva tuuma peal töötada)
- praktiliselt puudub jõudluse kadu
- virtuaalmasinate kaupa saab piirata kasutatavaid ressursse
- virtuaalmasinaid saab hallata sõltumatult, aga ka otse host masina käsurealt, kuna kõigi virtuaalmasinate failisüsteemid on host failisüsteemi osad
- Vahendid: LXC, Vserver, OpenVZ, Virtuozzo

Eelised, puudused võrreldes raskekaaluliste lahendustega

Eelised

- őhuke virtualiseerimiskiht, jõudluse minimaalne kadu
- dünaamiline mälu ümberjagamine
- ühine haldus

Puudused

- väiksem eraldatus ühine tuum (turva)probleemid tuumas mõjutavad kõiki guest-e
- ei võimalda erinevaid operatsioonisüsteeme
- probleemid rakendustega, mis vajavad tuuma poolt erikohtlemist (lisamoodulid) näiteks Kerberos autentimisega NFS, Bind
- ilma oluliste lisaprivileegideta ei saa virtuaalmasinate all failisüsteeme monteerida

Konteinervirtualiseerimise lahendused

- LXC
 - kõige kergekaalulisem
 - libvirt tugi
- Vserver
 - kergekaalulisem
 - parem ühilduvus teiste tuuma taseme modifikatsioonidega
 - parem ühilduvus Debian põhiste distributsioonidega
- OpenVZ
 - detailsem ressursihaldus
 - checkpoint (elusa migreerimise) tugi
 - võrgukihi täielik virtualiseerimine
 - · tulemüür igas virtuaalmasinas
 - · virtuaalne võrk virtuaalmasinate vahel
 - parem dokumentatsioon
 - parem tugi RPM põhistele distributsioonidele
- Virtuozzo OpenVZ kommertsversioon

chroot, BSD jail

- Kõige kergekaalulisemad konteinerid
- Ei moodusta omaette operatsioonisüsteemi
- Mingi teenusele/protsessile piiratakse ligipääs ainult mingile failisüsteemi osale
- Turvaprobleemid
 - avatud failisangad jäävad avatuks ka peale chroot-i
 - aktiivset kataloogi ei muudeta
 - puuduvad ressursipiirangud

Checkpointing

- Võimaldab salvestada virtuaalmasina hetkeseisu
- Kasutatakse
 - varundamiseks
 - elusaks migreerimiseks
 - muudatuste tagasivõtmise võimaldamiseks
- Variandid
 - ainult mälu seisu salvestamine
 - · failisüsteemi hetkeseis tuleb fikseerida sõltumatult
 - · elusaks migreerimiseks tuleb virtuaalmasin failisüsteemi replikeerimiseks külmutada
 - mälu ja failisüsteemi hetkeseisu salvestamin
 - · võimaldab praktiliselt nähtamatut elusat migreerimist
 - · võimaldab töötava süsteemi varundamist
 - · virtuaalmasina erinevate konfiguratsioonide puud näiteks SP1 uuendustega ja ilma, SP2 uuendustega ja ilma

Ballooning

- Virtuaalmasine mäluhaldus
- Balloon protsess virtuaalmasinas
 - täidab guest opsüsteemilt vaba mälu
 - annab selle mälu *host* opsüsteemile (VMM-ile)

Libvirt

- Ühine virtualiseerimisliides mitmetele virtualiseerimistehnoloogiatele
 - VmWare, Parallels, MS Hyper-V
 - KVM/Qemu
 - OpenVZ, LCX, UML
- Võrkude virtualiseerimine
 - bridging, NAT, jt
- Ketaste virtualiseerimine
 - NFS, LVM, iSCSI, jt

Virtualiseerimise tegevused

- virtuaalmasina loomine template-st
- virutaalmasina start-stop
- virtuaalmasina suspend-resume
- snapshot-i tegemine
- virtuaalmasina migreerimine
- seadme lisamine-eemaldamine
- võrgukonfiguratsioon
- protsessori ja mälu ressursihaldus
- infopäringud, statistika

Kokkuvõte

- Virtualiseerimine võimaldab hoida kokku kulusid.
- Virtualiseerimine võimaldab suurendada turvalisust.
- Virtualiseerimine teeb võimaldab dünaamili lahendusi.
- Virtualiseerimine võimaldab dünaamilisemat süsteemihaldust