Loi et Symbole $X \leadsto$	Probabilités	E(X)	Var(X)	Fonction caractéristique $\varphi_X(t) = E(e^{itX})$
Bernouilli $\mathcal{B}(p)$	P(X = 0) = 1 - p $P(X = 1) = p$	p	p(1-p)	$1 - p + pe^{it}$
Binomiale $\mathcal{B}(n,p)$	$P(X = k) = C_n^k p^k (1 - p)^{n-k} \mathbb{1}_{\{0,\dots,n\}}(k)$	np	np(1-p)	$(1 - p + pe^{it})^n$
Binomiale négative $\mathcal{BN}(n,p)$	$P(X = k) = C_{k-1}^{n-1} p^{n} (1-p)^{k-n} \mathbb{1}_{\{n,\dots\}}(k)$	$\frac{n}{p}$	$rac{n(1-p)}{p^2}$	$\left(\frac{pe^{it}}{1 - (1 - p)e^{it}}\right)^n$
Poisson $\mathcal{P}(\lambda)$	$P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!} {1 \hspace{07in} 1}_{\mathbb{N}}(k)$	λ	λ	$e^{\lambda(e^{it}-1)}$
Géométrique $\mathcal{G}(p)$	$P(X = k) = p(1 - p)^{k - 1} \mathbb{1}_{\mathbb{N}^*}(k)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^{it}}{1-(1-p)e^{it}}$
Hypergéométrique $\mathcal{H}(N, m, n)$ $(m, n) \in \{1, \dots, N\}^2$	$P(X = k) = \frac{C_m^k C_{N-m}^{n-k}}{C_N^n} \mathbb{1}_{\{0,\dots,\min(m,n)\}}(k)$	$\frac{nm}{N}$	$\frac{nm(N-n)(N-m)}{N^2(N-1)}$	