MATH211: Linear Methods I

Matthew Burke

Tuesday 9th October, 2018

Lecture on Tuesday 9th October, 2018

Euclidean space

Equations for lines and planes

Distance and scalar product

Last time

- ► Adjugates and inverses
- Cramer's rule

Common determinants

► Polynomial interpolation

Midterm

- ▶ On the 26th October.
- Won't need to memorize any proofs.
- Will need to understand the methods used and answer abstract questions about them.

Polynomial interpolation

Example

Given data points (0,1), (1,2), (2,5) and (3,10), find an interpolating polynomial p(x) of degree at most three, and then estimate the value of y corresponding to $x=\frac{3}{2}$.

Euclidean space

Column vectors as points

Recall a column vector consists of n numbers in a column:

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

The set of all column vectors of length n is called \mathbb{R}^n .

(So \mathbb{R}^n is *n*-dimensional space: each component is a dimension.)

Interpreting a scalar

To interpret a number we need to choose 'units'.

Example (Energy)

- Can measure energy differences.
- Pick an arbitrary zero energy for system.
- Pick an arbitrary 'unit' perhaps Joule.

Picture in 2D

Picture in 3D

Picture of addition

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] + \left[\begin{array}{c} x_3 \\ x_4 \end{array}\right] = \left[\begin{array}{c} x_1 + x_3 \\ x_2 + x_4 \end{array}\right]$$

Picture of scalar multiplication

$$\left[\begin{array}{c}2\\1\end{array}\right]\mapsto 2\cdot \left[\begin{array}{c}2\\1\end{array}\right]=\left[\begin{array}{c}4\\2\end{array}\right]$$

Definition

Vectors A and B are parallel iff there is some scalar k such that

$$B = kA$$

Notation about base of vector

Definition

We write \overrightarrow{AB} to denote the vector starting at A and ending at B. Therefore

$$\overrightarrow{AB} = B - A$$

Bisection

$$midpoint(A, B)$$

$$= \overrightarrow{0A} + \frac{1}{2}\overrightarrow{AB}$$

$$= (A - 0) + \frac{1}{2}(B - A)$$

$$= \frac{1}{2}(A + B)$$

Questions?

Examples

Example

Find the point that is midway between

Euclidean space

$$\begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 5 \\ 0 \\ -3 \end{bmatrix}$$

Example

Find the two points trisecting the segment between

$$\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix} \text{ and } \begin{bmatrix} 8 \\ -6 \\ 2 \end{bmatrix}$$

Examples

Example

Let

$$P = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, Q = \begin{bmatrix} -3 \\ 0 \\ 5 \end{bmatrix}, X = \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix} \text{ and } Y = \begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix}$$

Is \overrightarrow{PQ} parallel to \overrightarrow{XY} ? Is \overrightarrow{PX} parallel to \overrightarrow{QY} ?

Example

The diagonals of a parallelogram bisect each other.

Example

If ABCD is an arbitrary quadrilateral then the midpoints of the four sides form a parallelogram.

Equations for lines and planes

Two dimensions

Given a system of equations

$$a_{11}x_1 + a_{12}x_2 = b_1$$
$$a_{21}x_1 + a_{22}x_2 = b_2$$

the solution set could be:-

- empty
- ► a point (a unique solution)
- ► a line (infinitely many solutions)

... and we have to do row reduction to find out which.

Two dimensions

Once we have solved the system we get one of:-

- no solutions
- a unique solution

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} c_1 \\ c_2 \end{array}\right]$$

► a single parameter (say s)

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} c_1 \\ c_2 \end{array}\right] + s \left[\begin{array}{c} d_1 \\ d_2 \end{array}\right]$$

Definition

A parametric (vector) equation describing a line in \mathbb{R}^2 is a vector equation of the form

$$\vec{x} = \vec{c} + s\vec{d}$$

Three dimensions

Given a system of equations

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

the solution set could be:-

- empty
- ► a point (a unique solution)
- a line (infinitely many solutions)
- ► a plane (infinitely many solutions)

...and we have to do row reduction to find out which.

Three dimensions

Once we have solved the system we get one of:-

- no solutions
- a unique solution
- ► a single parameter (say s)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} + s \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

ightharpoonup two parameters (say s and t)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} + s \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} + t \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$

Parametric forms of 3D lines and planes

Definition

A parametric (vector) equation describing a line in \mathbb{R}^3 is a vector equation of the form

$$\vec{x} = \vec{c} + s\vec{d}$$

for \vec{x} , \vec{c} and \vec{d} in \mathbb{R}^3 and s in \mathbb{R} .

Definition

A parametric (vector) equation describing a plane in \mathbb{R}^3 is a vector equation of the form

$$\vec{x} = \vec{c} + s\vec{d} + t\vec{e}$$

for \vec{x} , \vec{c} , \vec{d} and \vec{e} in \mathbb{R}^3 and s in \mathbb{R} .

Properties of parametric form

► Can immediately see what kind of geometric object it is.

Often easier to write down.

► The parametric form of a line/plane is *not* unique.

The symmetric form of a line in 3D

Sometimes a 'half-way' form of the equation of a line in \mathbb{R}^3 is used.

Definition (Symmetric form of equation for line)

$$\frac{x_1+b_1}{a_1}=\frac{x_2+b_2}{a_2}=\frac{x_3+b_3}{a_3}$$

where $a_i \neq 0$.

We can convert this to parametric form immediately by setting all three terms equation to a parameter *s*:

$$x_1 + b_1 = a_1 s$$

 $x_2 + b_2 = a_2 s$
 $x_3 + b_3 = a_3 s$

Questions?

Examples

Example

Convert the following line into a parametric form

$$\frac{x-2}{3} = \frac{y-1}{2} = z+3$$

Example

Write down a parametric equation for the line passing through the points

$$\begin{bmatrix} 2 \\ -1 \\ 7 \end{bmatrix} \text{ and } \begin{bmatrix} -3 \\ 4 \\ 5 \end{bmatrix}$$

Example

Example

Write down a parametric equation for the line passing through

$$\left[\begin{array}{c}4\\-7\\1\end{array}\right]$$

and parallel to the line

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -7 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix}$$

Example

Example

For the following two lines find the point of intersection.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

Example

Write down a system of equations whose solution set is the line

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Distance and scalar product

Length of a vector

Definition (Two dimensions)

If
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 then $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2}$

Definition (Three dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 then $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$

Definition (n dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 then $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

Distance between two points

Definition (Two dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ then

$$d(\vec{x}, \vec{y}) = d(0, \vec{y} - \vec{x}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Definition (Three dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ then

$$d(\vec{x}, \vec{y}) = d(0, \vec{y} - \vec{x}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

N dimensions and scalar multiplication

Definition (n dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ then

$$d(\vec{x}, \vec{y}) = d(0, \vec{y} - \vec{x}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Lemma (Scalar multiplication)

If \vec{v} is a non-zero vector and a is a scalar then

$$\|a\vec{v}\| = |a|\|\vec{v}\|$$

Examples

Definition

A *unit vector* is a vector with length equal to 1.

Example

The following vectors are unit vectors:-

$$\left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\end{array}\right], \left[\begin{array}{c}0\\0\\1\end{array}\right], \left[\begin{array}{c}\sqrt{\frac{1}{2}}\\0\\-\sqrt{\frac{1}{2}}\end{array}\right]$$

Examples

Example

Find the distance between

$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

Example

Find the length of

$$\begin{bmatrix} -3 \\ 4 \end{bmatrix} \text{ and } \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

Dot product

Just definition and relationship to distance.

Examples

The simple example on slide 4.

Questions?