Due date: 11/03/17

Recall that

- 1. From ALR 5.14,
- 2. Using your class notes and/or textbook, show the following equalities:
 - a) $\mathbf{H}\mathbf{H}_R = \mathbf{H}_R$ and $\mathbf{H}\mathbf{X}_1 = \mathbf{H}_R\mathbf{X}_1 = \mathbf{X}_1$ (Recall that $\mathbf{X} = (\mathbf{X}_1|\mathbf{X}_2)$ and \mathbf{H} and \mathbf{H}_R are the hat matrices for \mathbf{X} and \mathbf{X}_1 , respectively).
 - b) $\mathbf{H} \mathbf{H}_R$ is symmetric and idempotent.
 - c) Under H_0 , and only under H_0 ,

$$\frac{1}{\sigma^2} SSreg \sim \chi_q^2$$

with $SSreg = RSS_R - RSS_F$.

(Hint: Under the null $\beta_2 = \mathbf{0}$ and $E(\mathbf{Y}|\mathbf{X}) = \mathbf{X}_1\beta_1$, or $E(\mathbf{Y} - \mathbf{X}_1\beta_1) = \mathbf{0}$).

- d) SSreg and $\hat{\sigma}^2$ are independent.
- e) Use all previous parts to show that

$$\frac{\frac{SSreg}{q}}{\frac{RSS}{n-p'}} \sim Fq, n-p'$$

3. From ALR 6.4. In addition, using the full model, perform the test

$$H_0: \beta_{02} - \beta_{03} = 14$$
 and $\beta_{12} + \beta_{13} = .2$

with H_A : at least one equality doesn't hold. Show your work. In addition, how could you interpret this test?