1. Max ATZ - 1 (ATEA) S.t ATZ = 0
1=077- *(0 =0) - \(67)
₹0C: ₹-1(25A)-X1=0 0
-(A'I)=0 0
From 10: 7-150- 1=0
ケミハ・マールヨ ラム・ディー・ラム・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー
$\Delta = \frac{1}{r} \Sigma^{\dagger} \overrightarrow{r} - \frac{\lambda}{\gamma} \Sigma^{\dagger} \overrightarrow{1}$
Multiply both side by IT, In = = = = = = = = = = = = = = = = = = =
$\frac{1}{r} \hat{\mathbf{I}} \hat{\mathbf{z}}^{\dagger} \hat{\mathbf{r}} = \frac{\lambda}{r} \hat{\mathbf{I}}^{\dagger} \hat{\mathbf{z}}^{\dagger} \hat{\mathbf{I}}$
プラマラー 入プラブラブ
$\lambda = \frac{\vec{I} \vec{\Sigma} \vec{r}}{\vec{I} \vec{\Sigma} \vec{I}} (proved)$

