date: thursday, march 28, 2024

Algebraic Closure and Splitting Fields

I. Algebraic Closure

Given a polynomial $p(x) \in F[x]$, can find an extension E of F such that E has a root of p(x). Is there a field extension E' of F that contains all the roots of p(x)?

Theorem: Let E be an extension of F. Consider the set $E' = \{ \alpha \in E \mid \alpha \text{ is algebraic over } F \}$

Then E' is an extension of F (ie. E' is a subfield of E)

Given $\alpha, \beta \in E'$, need to show $\alpha \pm \beta, \alpha \beta, \beta \in (\beta \pm 0)$ all belong to E'. Both α, β are algebraic over F, so $F(\alpha, \beta)$ is a finite extension of F. But $\alpha \pm \beta, \alpha \beta, \beta \in F(\alpha, \beta)$. So all these elements are algebraic over F. So they belong to E'.

Deft: Let E be an extension of F. Then the algebraic closure of F in E is the field E'.

Deft: A field F is algebraically closed if every nonconstant polynomial p(x) e F[x] has a root.

eg. (nonexample) $\mathbb R$ is not algebraically closed since x^2+1 has no root.

Theorem: F is algebraically closed iff every nonconstant polynomial $p(\alpha) \in F[\alpha]$ factors into linear polynomials.

Proof. "=>"Let p(x) be a nonconstant polynomial. Because F is algebraically closed, p(x) has a root α . So $p(x) = (x - \alpha)q(x)$ with deg $q(x) < \deg p(x)$. Repeat with q(x). This has a root α_2 so $q(x) = (x - \alpha_2)q'(x)$. Repeat to end with $p(x) = (x - \alpha_1)(x - \alpha_2)$...
"(="Let $p(x) \in F[x]$. We know $p(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$ with $c, \alpha_1, \ldots, \alpha_n \in F$. But then $\alpha_i \in F$ is a root of p(x). Corollary: If F is algebraically closed, there is no proper algebraic extension. Proof Suppose E is an algebraic extension of F (so F⊆E). Let α∈E and let $p(x) \in F[x]$ be its minimal polynomial. But F algebraically closed imples p(x) factors into linear factors in F[x]. Also p(x) is irreducible. This forces $p(x) = c(x-\alpha)$. So $\alpha \in F$. Thus, FCFCF Theorem: Every field has a unique (up to isomorphism) algebraic closure. Proof. (if you believe in it lol) Needs axiom of choice Theorem:(Fundamental Theorem of Algebra) The field C is algebraically closed iff polynomial $D(x) \in \mathbb{C}[x]$ can be factored into linear factors. Splitting Fields Given a specific $p(x) \in F[x]$, we want a field that contains all the roots of p(x) (in fact, smallest).

eg. Want a field with all the roots of $\chi^4 - 2\chi^2 - 3 \in \mathbb{Q}[\chi]$. $\chi^4 - 2\chi^2 - 3 = (\chi^2 - 3)(\chi^2 + 1) = (\chi + \sqrt{3})(\chi - \sqrt{3})(\chi - i)(\chi + i)$ The field $\mathbb{Q}(13,i)$ will work.

Deformable: An extension E is a splitting field of p(x) if exists $\alpha_{1,...,\alpha_{n}} \in \mathbb{E}$ such that $E = F(\alpha_{1,...,\alpha_{n}})$ and $p(x) = c(x-\alpha_{1}) \cdot (x-\alpha_{n})$. A polynomial $p(x) \in F[x]$ splits in E if it is a product of linear factors in E[x].

eg. $p(x) = x^3 - 5 \in \mathbb{Q}[x]$ This has a root $\sqrt[3]{5}$ in $\mathbb{Q}(\sqrt[3]{5})$ but this is not a splitting field since it has two other complex roots. $(x^3 - 5) = (x - \sqrt[3]{5})(x^2 + \sqrt[3]{5}x + (\sqrt[3]{5})^2)$

has complex roots since
$$6^2$$
-4ac= $(35)^2$ -4 $(35)^2$ <0
Theorem: Let $p(x) \in F[x]$ be a non-constant polynomial. Then a

aplitting field of p(x) exists.

Proof
Do induction on deg p(x). If deg p(x)=1, then $p(x)=c(x-\alpha)$ with $\alpha \in F$ so F is the splitting field. Assume true for all q(x) with deg q(x) < n. Let deg p(x) = n. If p(x) is not irreducible,

 $p(x) = p_i(x) \cdots p_r(x)$ each irreducible and deg $p_i(x) < n$. By induction, there is a field $E_i = F(\alpha_{i_1}, ..., \alpha_{is_i})$ that is a splitting field for $p_i(x)$. But then $E = F(\alpha_{i_1}, ..., \alpha_{is_i}, \alpha_{2i_1}, ..., \alpha_{s_{2i_r}, ...})$ is the splitting field of p(x).

If p(x) is irreducible, there is a field K such that p(x) has a root $\alpha \in K$. So $p(x) = (x - \alpha) q(x)$ with $q(x) \in K[x]$ and degree q(x) < n.
In fact, $K = F(\alpha)$. By induction, there is a splitting field $K(\alpha_2,...,\alpha_n)$ for q(x). But $K(\alpha_2,...,\alpha_n) = F(\alpha)(\alpha_2,...,\alpha_n) = F(\alpha,\alpha_2,...,\alpha_n)$.

Theorem: Splitting field of $p(x) \in F[x]$ is unique up to isomorphism.

eg. Q(12) ~ Q(-12)

