

Polynomial Multiplication in NTRU Prime

Comparison of Optimization Strategies on Cortex-M4

Erdem Alkim Dean Yun-Li Cheng Chi-Ming Marvin Chung Hülya Evkan Leo Wei-Lun Huang

<u>Vincent Hwang</u> Ching-Lin Trista Li Ruben Niederhagen Cheng-Jhih Shih Julian Wälde Bo-Yin Yang

CHES 2021 - September 17, 2021

NTRU Prime

Parameter Sets and follow up works on Cortex-M4.

Table 1: Round 2 parameter sets.

Scheme	security level	p	q	W
{ntrulpr, sntrup}653	2	653	4621	{252, 288}
{ntrulpr, sntrup}761	3	761	4591	{250, 286}
{ntrulpr, sntrup}857	4	857	5167	{281, 322}

Table 2: Additional parameter sets for round 3.

Scheme	p	q	W
{ntrulpr, sntrup}953	953	6343	{345, 396}
{ntrulpr, sntrup}1013	1013	7177	{392, 448}
{ntrulpr, sntrup}1277	1277	7879	{429, 492}

Polynomials in NTRU Prime

- Primes p, q giving a field $\mathbb{Z}_q[x]/\langle x^p x 1 \rangle$
- Polynomials in $\mathbb{Z}_q[x]/\langle x^p-x-1\rangle$ and $\mathbb{Z}_3[x]/\langle x^p-x-1\rangle$
- small: coefficients are all in $\{\pm 1, 0\}$
- weight w: exactly w non-zero coefficients
- Short: small and weight w
- We focus on the case where one of the multiplicands is **small**
- If both multiplicands are small, we can apply Karatsuba with unsigned long multiplication, see [Li21].

Polynomial Multiplication for {ntrulpr, sntrup}761

- Good's trick:
 - Ring $\mathbb{Z}_{q'}[x]/\langle x^{1536}-1\rangle$
 - Multi-dimensional mapping:

$$\mathbb{Z}_{q'}[\textbf{x}]/\!\big\langle \textbf{x}^{1536}-1\big\rangle\cong \left(\mathbb{Z}_{q'}[\textbf{z}]/\!\big\langle \textbf{z}^3-1\big\rangle\right)[\textbf{y}]/\!\big\langle \textbf{y}^{512}-1\big\rangle$$

- Mixed-radix:
 - Ring $\mathbb{Z}_{4591}[x]/\langle x^{\{1620,1530\}}-1\rangle$
 - Small radices
 - Rader's trick for a large radix

Convolution and Its Application to

NTRU Prime

Convolution

For $\mathbf{a}(x)$, $\mathbf{b}(x) \in R[x]/\langle f(x) \rangle$.

- Convolution: $f(x) = x^N 1$
- NTRU Prime: $R[x]/\langle x^p x 1 \rangle$, not convolutions
- Observe: $deg(a(x)b(x)) \le 2p 2$
- $a(x)b(x) \in R[x]$ can be computed in $R[x]/\langle x^N 1 \rangle$ with N > 2p 2
- Reduce $\mathbf{a}(x)\mathbf{b}(x)$ from R[x] to $R[x]/\langle x^p x 1 \rangle$

Good's Trick

General Idea of Good's Trick [Goo51]

• Suppose $q_0 \perp q_1$ and map $x \mapsto yz$ for $y^{q_0} = z^{q_1} = 1$. We have:

$$\begin{array}{ccc} R[x]/\!\langle x^{q_0q_1}-1\rangle &\cong & \left(R[z]/\!\langle z^{q_1}-1\rangle\right)[y]/\!\langle y^{q_0}-1\rangle \\ &\stackrel{q_0\text{-NTT}}{\cong} &\prod_{i=0}^{q_0-1}\left(R[x]/\!\langle x^{q_1}-1\rangle\right)[y]/\!\langle y-\psi^i\rangle \end{array}$$

- $x^i \mapsto (yz)^i = y^i z^i = y^{i \bmod q_0} z^{i \bmod q_1}$
- $a_i x^i \mapsto a_{(i \bmod q_0, i \bmod q_1)} y^i \bmod q_0 z^i \bmod q_1$

Number-Theoretic Transforms (NTTs)

Number-theoretic Transforms (NTTs)

Let q be a prime and N|(q-1). Size N NTT is the isomorphism:

$$\begin{cases}
\mathbb{Z}_q[x]/\langle x^N - 1 \rangle & \to & \prod_{j=0}^{N-1} \mathbb{Z}_q[x]/\langle x - \psi_N^j \rangle \\
\sum_{i=0}^{N-1} a_i x^i & \mapsto & (\hat{a}_0, \dots, \hat{a}_{N-1})
\end{cases}$$

where $\hat{a}_i = \sum_{i=0}^{N-1} a_i \psi_N^{ij}$ for an Nth root of unity ψ_N .

We can implement $\mathbf{a}(x)\mathbf{b}(x)$ as $\mathrm{NTT}^{-1}\left(\mathrm{NTT}(\mathbf{a}(x))(\cdot)\mathrm{NTT}(\mathbf{b}(x))\right)$ where (\cdot) is the point-multiplication.

Efficient algorithms for NTTs are called FFTs.

Why Good's Trick?

$$R[x]/\langle x^{q_0q_1} - 1 \rangle \cong (R[z]/\langle z^{q_1} - 1 \rangle)[y]/\langle y^{q_0} - 1 \rangle$$

$$\cong \prod_{i=0}^{q_0-1} (R[z]/\langle z^{q_1} - 1 \rangle)[y]/\langle y - \psi^i \rangle$$

multiplication:

$$O(q_0^2q_1^2) \Longrightarrow O(q_0q_1^2 + q_0^2q_1)$$

There is an example showing Good's trick is fast for $x^6 - 1$ in the appendix.

Cooley-Tukey Fast Fourier

Transforms (FFTs)

General Idea of Cooley-Tukey FFT i

If $\zeta \in R$ is invertible, we have

$$R[x]/\langle x^N - \zeta^N \rangle \cong \prod_{i=0}^{N-1} R[x]/\langle x - \zeta \psi_N^i \rangle.$$

We apply this by observing roots of unity are invertible.

General Idea of Cooley-Tukey FFT ii

$$\psi = \psi_{N_0 N_1}$$
 and pick $\psi_{N_0} = \psi^{N_1}$ and $\psi_{N_1} = \psi^{N_0}$.

$$R[x]/\!\!\left\langle x^{N_0N_1} - 1\right\rangle \stackrel{N_0-\text{NTT},\zeta=1}{\cong} \prod_{i=0}^{N_0-1} R[x]/\!\!\left\langle x^{N_1} - \psi^{N_1i}\right\rangle$$

$$\stackrel{N_1-\text{NTT},\zeta=\psi^i}{\cong} \prod_{i=0}^{N_0-1} \prod_{j=0}^{N_1-1} R[x]/\!\!\left\langle x - \psi^{i+N_0j}\right\rangle$$

If $N_0 = 2^{k_0}$ and $N_1 = 2^{k_1}$, FFT is very fast.

If N_0 and N_1 are not sharing a same radix, we call it mixed-radix.

$$(p, q) = (761, 4591)$$
: **2D Good's Trick for** 1536

Observe $1536 = 512 \times 3$.

$$\left(R[z]/\langle z^3 - 1\rangle\right)[y]/\langle y^{512} - 1\rangle \cong \prod_{i=0}^{511} \left(R[z]/\langle z^3 - 1\rangle\right)[y]/\langle y - \psi^i\rangle$$

For 512-NTT with \mathbb{Z}_q , we need 512|(q-1), but 512 /(4591-1).

- Compute as in \mathbb{Z} , and then reduce to \mathbb{Z}_q
- Cortex-M4 with powerful 32-bit arithmetic: For $\mathbb{Z}_{q'}[x]/\langle x^{1536}-1\rangle$, choose a prime $q'>q\cdot p$ with 512|(q'-1) so $R=\mathbb{Z}_{q'}$
- For 512-NTT, consider $512=2\cdot 256,\ 256=2\cdot 128,\ \dots$, $4=2\cdot 2$, so eventually, we have the bit-reversal of $1,\psi^1,\dots\psi^{511}$
- Instead of (*512⁻¹), $\mathbb{Z}_{q'} \to \mathbb{Z}_q$, $\langle x^{1536} 1 \rangle \to \langle x^{761} x 1 \rangle$, we compute $\langle x^{1536} 1 \rangle \to \langle x^{761} x 1 \rangle$, (*512⁻¹), $\mathbb{Z}_{q'} \to \mathbb{Z}_q$.
- $\langle x^{1536}-1 \rangle \to \langle x^{761}-x-1 \rangle$ before $\mathbb{Z}_{q'} \to \mathbb{Z}_q$, choose $q'>q\cdot (2p-1)$
- For Short, one can replace p with w

$$(p, q) = (761, 4591)$$
: Mixed-radix i

■
$$4591 - 1 = 2 \times 3^3 \times 5 \times 17$$

■ $1620 = 270 \times 6 = 2 \times 3^3 \times 5 \times 6$
■ $\psi = \psi_{270}$ and let
$$\begin{cases} \psi' = \psi^{5i_0 + 10i_1 + 30i_2 + 90i_3} \\ \psi'' = \psi^{i_0 + 2i_1 + 6i_2 + 18i_3 + 54i_4}, dr_{270}(.) \end{cases}$$

$$\mathbb{Z}_{q}[x]/\!\langle x^{1620} - 1 \rangle \stackrel{\text{2-NTT,3-NTT}}{\cong} \prod_{i_{0}=0}^{1} \prod_{i_{1}=0}^{2} \mathbb{Z}_{q}[x]/\!\langle x^{270} - \psi^{45i_{0}+90i_{1}} \rangle$$

$$\stackrel{\text{3-NTT,3-NTT}}{\cong} \prod_{i_{0}=0}^{1} \prod_{i_{1}=0}^{2} \prod_{i_{2}=0}^{2} \prod_{i_{3}=0}^{2} \mathbb{Z}_{q}[x]/\!\langle x^{30} - \psi' \rangle$$

$$\stackrel{\text{5-NTT}}{\cong} \prod_{i_{0}=0}^{1} \prod_{i_{1}=0}^{2} \prod_{i_{2}=0}^{2} \prod_{i_{3}=0}^{4} \mathbb{Z}_{q}[x]/\!\langle x^{6} - \psi'' \rangle$$

$$(p, q) = (761, 4591)$$
: Mixed-radix ii

•
$$4591 - 1 = 17 \times 3^3 \times 10$$

•
$$1530 = 17 \times 90 = 17 \times 9 \times 10$$

•
$$\psi=\psi_{17.9}$$
 so $\psi^9=\psi_{17}$ and $\psi^{17}=\psi_9$

Rader's trick for 17-NTT

$$\mathbb{Z}_{q}[x]/\!\langle x^{1530} - 1 \rangle \stackrel{17\text{-NTT}}{\cong} \prod_{i=0}^{16} \mathbb{Z}_{q}[x]/\!\langle x^{90} - \psi^{9i} \rangle$$

$$\stackrel{9\text{-NTT}}{\cong} \prod_{i=0}^{16} \prod_{j=0}^{8} \mathbb{Z}_{q}[x]/\!\langle x^{10} - \psi^{i+17\cdot j} \rangle$$

General Framework of Rader's Trick [Rad68]

- For a prime p, compute part of the size p NTT as a size (p-1) convolution
- $\blacksquare \ \exists g \in \mathbb{Z}_p \text{ with } [1, \dots, p-1] \overset{i \mapsto g^i}{\cong} [1, \dots, p-1] \text{ as sets.}$
- $\forall j > 0$,

$$\hat{a}_j - a_0 = \sum_{i=1}^{p-1} (\psi^{-1})^{-ij} a_i$$

$$\Longleftrightarrow$$
 $\hat{a_{g^j}} - a_0 = \sum_{i=1}^{p-1} (\psi^{-1})^{g^{j-i}} a_{g^i}$

• Indices in blue sum to a fix $j \Longrightarrow$ convolution.

Rader's Trick for Size 5 NTT

• Consider
$$i \mapsto 2^i : \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$$

$$\hat{a}_2 - a_0 = (\psi^{-1})^2 a_2 + (\psi^{-1})^1 a_4 + (\psi^{-1})^3 a_3 + (\psi^{-1})^4 a_1
\hat{a}_4 - a_0 = (\psi^{-1})^4 a_2 + (\psi^{-1})^2 a_4 + (\psi^{-1})^1 a_3 + (\psi^{-1})^3 a_1
\hat{a}_3 - a_0 = (\psi^{-1})^3 a_2 + (\psi^{-1})^4 a_4 + (\psi^{-1})^2 a_3 + (\psi^{-1})^1 a_1
\hat{a}_1 - a_0 = (\psi^{-1})^1 a_2 + (\psi^{-1})^3 a_4 + (\psi^{-1})^4 a_3 + (\psi^{-1})^2 a_1$$

• convolution of $((\psi^{-1})^2, (\psi^{-1})^1, (\psi^{-1})^3, (\psi^{-1})^4)$ and (a_2, a_4, a_3, a_1)

Implementations

Basic Arithmetic

Cortex-M4F: Armv7-M with DSP and FPv4-SP extensions.

- One multiplication: smul{b, t}{b, t}, smla{b, t}{b, t}
- Two multiplications: smu{a, s}d{, x}, sml{a, s}d{, x}

Algorithm 1 32-bit Barrett 1: smmulr t, a, q^{-1} 2: mls a, t, q, a2: mls a, b2: mult, c_{low} , c_{high} , a, b2: mult, c_{low} , c_{high} , b3: smlal c_{low} , c_{high} , b

Figure 1: Inputs and outputs.

Butterfly Operations in \mathbb{Z}_{4591}

A typical sequence:

Algorithm 3 Radix-3 butterfly $w = \psi_3^2 || \psi_3$.

Require: a_0 , $a_{1,2} = a_2 || a_1$ where ψ_3 3rd root of unity, $t_0 = 0 \times 00010001$

Ensure: reduced $a_0 = a_0 + a_1 + a_2$, $a_{1,2} = a_0 + \psi_3^2 \cdot a_1 + \psi_3 \cdot a_2 || a_0 + \psi_3 \cdot a_1 + \psi_3^2 \cdot a_2 ||$

1: smlad
$$t_0, a_{1,2}, t_0, a_0$$

2: smlad
$$t_1, a_{1,2}, w, a_0$$

3: smladx
$$t_2$$
, $a_{1,2}$, w , a_0

4: smmulr
$$t, t_0, q^{-1}$$

4: smmulr
$$t$$
, t_0 , q

5: mls
$$a_0$$
, t , q , t_0

6: smmulr
$$t, t_1, q^{-1}$$

7: mls
$$t_1$$
, t , q , t_1

8: smmulr
$$t$$
, t_2 , q^{-1}

9: mls
$$t_2$$
, t , q , t_2

10: pkhbt
$$a_{1,2}$$
, t_1 , t_2 , $LSL\#16$

$$\triangleright t_0 \leftarrow a_0 + a_1 + a_2$$

$$\triangleright t_1 \leftarrow a_0 + \psi_3 \cdot a_1 + \psi_3^2 \cdot a_2$$

$$\triangleright t_2 \leftarrow a_0 + \psi_3^2 \cdot a_1 + \psi_3 \cdot a_2$$

$$\triangleright$$
 reduce t_0

$$\triangleright a_{1,2} \leftarrow t_2 || t_1$$

Three Layers of Radix-2 32-bit CT Butterflies

Algorithm 4 Cooley-Tukey NTT with three layers, no mul. if $\omega=\pm1$.

```
1: vmov r1 = \omega'_0
                                                                                                                                                         \triangleright butterflies (r4 \leftrightarrow r8), (r5 \leftrightarrow r9), (r6 \leftrightarrow r10), (r7 \leftrightarrow r11) below
 2: montgomery mul r8, r1
                                                                                                                                                                                                                                              \triangleright r8 = \omega_0 a_1
 3: montgomery_mul r9, r1
                                                                                                                                                                                                                                             \triangleright r9 = \omega_0 a_5
 4: montgomery mul r10, r1
                                                                                                                                                                                                                                            \triangleright r10 = \omega_0 a_6
 5: montgomery_mul r11, r1
                                                                                                                                                                                                                                            \triangleright r11 = \omega_0 a_7
 6: add r4, r8
                                                                                                                                                                                                                                      \triangleright r4 = a_0 + \omega_0 a_1
 7: add r5, r9
                                                                                                                                                                                                                                     \triangleright r5 = a_1 + \omega_0 a_5
 8: add r6, r10
                                                                                                                                                                                                                                     \triangleright r6 = a_2 + \omega_0 a_6
 9: add r7, r11
                                                                                                                                                                                                                                     \triangleright r7 = a_3 + \omega_0 a_7
10: sub r8, r4, r8, lsl #1
                                                                                                                                                                                                                                     \triangleright r8 = a_0 - \omega_0 a_4
11: sub r9, r5, r9, lsl #1
                                                                                                                                                                                                                                     \triangleright r9 = a_1 - \omega_0 a_5
                                                                                                                                                                                                                                    \triangleright r10 = a_2 - \omega_0 a_6
12: sub r10, r6, r10, lsl #1
                                                                                                                                                                                                                                    > r11 = a_3 - \omega_0 a_7
13: sub r11, r7, r11, lsl #1
14: vmov r1 = \omega_1', \omega_2'
                                                                                                                                                                   \triangleright butterflies (r4 \leftrightarrow r6), (r5 \leftrightarrow r7), (r8 \leftrightarrow r10), (r9 \leftrightarrow r11)
15: vmov r1 = \omega'_{3}, \omega'_{4}, \omega'_{5}, \omega'_{6}
                                                                                                                                                                    \triangleright butterflies (r4 \leftrightarrow r5), (r6 \leftrightarrow r7), (r8 \leftrightarrow r9), (r10 \leftrightarrow r11)
```

Butterflies for Good's Trick with Zeros

Results

Results: Big by Small Polynomial Multiplication

Toom-Cook	Good's	Rader's	Small radices
223 871	159 176	152 177	185 010

(p, q)	Ring for NTT	Approach	Cycles
(653, 4621)	$\mathbb{Z}_{4621}[x]/\langle x^{1320}-1\rangle$	Rader's	120 137
(761, 4591)	$\mathbb{Z}_{4591}[x]/\langle x^{1530}-1\rangle$	Rader's	152 177
(857, 5167)	$\mathbb{Z}_{q'}[x]/\langle x^{1728}-1\rangle$	2D Good's	183 430
(953, 6343)	$\mathbb{Z}_{q'}[x]/\langle x^{1920}-1\rangle$	3D Good's	185 790
(1013, 7177)	$\mathbb{Z}_{q'}[x]/\langle x^{2048}-1\rangle$	2048-NTT	225 484
(1277, 7879)	$\mathbb{Z}_{q'}[x]/\langle x^{2560}-1\rangle$	2D Good's	284 015

Results: Cycles of Full Schemes

	Toom-Cook	Good's	Rader's	small radices	
	ntrulpr761 Speed (cycles)				
G	823655	735168	727298	760 947	
Е	1309214	1110628	1093927	1153 722	
D	1491900	1214546	1187447	1 284 253	
	sntrup761 Speed (cycles)				
G	10901785	10787337	10773799	1 0808 526	
Ε	789442	701612	689996	726 930	
D	742182	586244	563885	637 286	

Results of Follow up Works (Merged into pqm4)

Streamlined NTRU Prime			
(p, q)	K	Е	D
(653, 4621)	6714568	631 853	486 707
(761, 4591)	7 951 328	683 652	538 141
(857, 5167)	10 264 255	853 302	689 920
(953, 6343)	12 761 557	943 350	744 434
(1013, 7177)	13 955 859	1 031 757	838 171
(1277, 7879)	22 989 117	1 326 335	1 071 964
	NTRU LF	Prime	
(p, q)	NTRU LF	Prime E	D
(p, q) (653, 4621)	_		D 1233059
(, ,,	К	Е	
(653, 4621)	K 677 981	E 1157987	1 233 059
(653, 4621) (761, 4591)	K 677 981 726 507	E 1157987 1312278	1 233 059 1 393 675
(653, 4621) (761, 4591) (857, 5167)	K 677 981 726 507 921 143	E 1157987 1312278 1547852	1 233 059 1 393 675 1 668 045

Polynomial Multiplication in NTRU Prime

- Compute as in \mathbb{Z}
 - Choose an $N=2^k\times 3^{\{0,1,2,3\}}\times 5^{\{0,1\}}\geq 2p-1$ for fast computation
 - Good's trick if 3|N or 5|N
 - Choose q' with N|(q'-1) for 32-bit arithmetic on Cortex-M4
 - $\mathbb{Z}_{q'} \to \mathbb{Z}_q$ before $\langle x^N 1 \rangle \to \langle x^p x 1 \rangle$, then q' > qp
 - $\mathbb{Z}_{q'} o \mathbb{Z}_q$ after $\langle x^N 1 \rangle o \langle x^p x 1 \rangle$, then q' > q(2p 1)
 - Short \Longrightarrow replace p with w
- Compute as in \mathbb{Z}_q
 - For a divisor d of q-1, we can compute size d NTT
 - Find an $N \ge 2p-1$ with d|N and small $\frac{N}{d}$
 - Small radices: fast
 - Large radices: Rader's trick
 - Butterflies with DSP extension: smul{b, t}{b, t}, smla{b, t}{b, t}, smu{a, s}d{, x}, sml{a, s}d{, x}

Thank you for your attention

Reference

Irving J. Good.

Random motion on a finite abelian group.

Proceedings of the Cambridge Philosophical Society, 47:756–762, 1951. MR 13.363e.

Ching-Lin Trista Li.

Implementation of polynomial modular inversion in lattice-based cryptograpgy on arm.

Master's thesis, National Taiwan University, 2021.

Charles M. Rader.

Discrete fourier transforms when the number of data samples is prime.

Proceedings of the IEEE, 56(6):1107-1108, 1968.

Convolution in
$$R[x]/\langle x^6 - 1 \rangle$$

For
$$\mathbf{a}(x) = \sum_{i=0}^{5} a_i x^i$$
, $\mathbf{b}(x) = \sum_{i=0}^{5} b_i x^i \in R[x]/\langle x^6 - 1 \rangle$,

$$a(x)b(x) = \sum_{i=0}^{5} \sum_{i_a+i_b \equiv i} a_{i_a} b_{i_b} x^i \in R[x]/\langle x^6 - 1 \rangle$$

- # multiplications: $6 \cdot 6 = 36$
- # additions: $6 \cdot 5 = 30$

Can we do better? Yes, with Good's trick.

Permutation

• $i \mapsto (i \mod 2, i \mod 3)$

$$\begin{cases} (a_0, \dots, a_5) \mapsto \begin{pmatrix} a_0 & a_4 & a_2 \\ a_3 & a_1 & a_5 \end{pmatrix} =: A \\ (b_0, \dots, b_5) \mapsto \begin{pmatrix} b_0 & b_4 & b_2 \\ b_3 & b_1 & b_5 \end{pmatrix} =: B$$

Add-sub the Rows

$$\begin{cases}
\begin{pmatrix} a_0 & a_4 & a_2 \\ a_3 & a_1 & a_5 \end{pmatrix} \mapsto \begin{pmatrix} a_0 + a_3 & a_4 + a_1 & a_2 + a_5 \\ a_0 - a_3 & a_4 - a_1 & a_2 - a_5 \end{pmatrix} \\
\begin{pmatrix} b_0 & b_4 & b_2 \\ b_3 & b_1 & b_5 \end{pmatrix} \mapsto \begin{pmatrix} b_0 + b_3 & b_4 + b_1 & b_2 + b_5 \\ b_0 - b_3 & b_4 - b_1 & b_2 - b_5 \end{pmatrix}$$

3×3 Convolutions

$$\begin{pmatrix}
 \begin{pmatrix}
 a_0 + a_3 & a_4 + a_1 & a_2 + a_5 \\
 a_0 - a_3 & a_4 - a_1 & a_2 - a_5
\end{pmatrix}, \begin{pmatrix}
 b_0 + b_3 & b_4 + b_1 & b_2 + b_5 \\
 b_0 - b_3 & b_4 - b_1 & b_2 - b_5
\end{pmatrix}$$

$$\mapsto \begin{pmatrix}
 c_0 & c_4 & c_2 \\
 c_3 & c_1 & c_5
\end{pmatrix} =: C$$

where
$$\begin{cases} c_0 &= \sum_{i_a+i_b\equiv 0} a_{i_a}b_{i_b} + \sum_{i_a+i_b\equiv 3} a_{i_a}b_{i_b} \\ c_3 &= \sum_{i_a+i_b\equiv 0} a_{i_a}b_{i_b} - \sum_{i_a+i_b\equiv 3} a_{i_a}b_{i_b} \\ c_4 &= \sum_{i_a+i_b\equiv 4} a_{i_a}b_{i_b} + \sum_{i_a+i_b\equiv 1} a_{i_a}b_{i_b} \\ c_1 &= \sum_{i_a+i_b\equiv 4} a_{i_a}b_{i_b} - \sum_{i_a+i_b\equiv 1} a_{i_a}b_{i_b} \\ c_2 &= \sum_{i_a+i_b\equiv 2} a_{i_a}b_{i_b} + \sum_{i_a+i_b\equiv 5} a_{i_a}b_{i_b} \\ c_5 &= \sum_{i_a+i_b\equiv 2} a_{i_a}b_{i_b} - \sum_{i_a+i_b\equiv 5} a_{i_a}b_{i_b} \end{cases}$$

Add-sub the Rows

$$\begin{pmatrix} c_{0} & c_{4} & c_{2} \\ c_{3} & c_{1} & c_{5} \end{pmatrix} \mapsto \begin{pmatrix} c_{0} + c_{3} & c_{4} + c_{1} & c_{2} + c_{5} \\ c_{0} - c_{3} & c_{4} - c_{1} & c_{2} - c_{5} \end{pmatrix}$$

$$= 2 \begin{pmatrix} \sum_{i_{a}+i_{b}\equiv 0} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 4} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 2} a_{i_{a}}b_{i_{b}} \\ \sum_{i_{a}+i_{b}\equiv 3} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 1} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 5} a_{i_{a}}b_{i_{b}} \end{pmatrix}$$

Permutation

$$(i \mod 2, i \mod 3) \mapsto i$$

$$2 \begin{pmatrix} \sum_{i_{a}+i_{b}\equiv 0} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 4} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 2} a_{i_{a}}b_{i_{b}} \\ \sum_{i_{a}+i_{b}\equiv 3} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 1} a_{i_{a}}b_{i_{b}} & \sum_{i_{a}+i_{b}\equiv 5} a_{i_{a}}b_{i_{b}} \end{pmatrix}$$

$$\mapsto 2 \begin{pmatrix} \sum_{i_{a}+i_{b}\equiv i} a_{i_{a}}b_{i_{b}} \end{pmatrix}_{0 \leq i < 6}$$

$$= 2 \sum_{i=0}^{5} \sum_{i_{a}+i_{b}\equiv i} a_{i_{a}}b_{i_{b}} x^{i}$$

How Many Additions and Multiplications?

	#(ADD)	#(MUL)
Permutation	0	0
Add-sub the rows $(A \text{ and } B)$	12	0
3×3 convolutions	12	18
Add-sub the rows (C)	6	0
Permutation	0	0
Total (including division by 2)	30	18 + 6

If 2 is invertible in R, we multiply each coefficient with 2^{-1} . The total number of multiplications is therefore 24.

$$(p, q) = (653, 4621)$$
: 1320 Mixed-radix

- $\psi = \psi_{132}$
- Rader's trick for 11-NTT

$$R[x]/\!\!\left\langle x^{1320} - 1 \right\rangle \stackrel{\text{11-NTT}}{\cong} \prod_{i=0}^{10} R[x]/\!\!\left\langle x^{120} - \psi^{12i} \right\rangle$$

$$\stackrel{\text{12-NTT}}{\cong} \prod_{i=0}^{10} \prod_{j=0}^{11} R[x]/\!\!\left\langle x^{10} - \psi^{i+11j} \right\rangle$$

$$(p, q) = (857, 5167)$$
: 2D Good's Trick for $1728 = 64 \times 27$

•
$$y^{64} = z^{27} = 1$$

$$R[x]/\langle x^{1728} - 1 \rangle \stackrel{x \mapsto yz}{\cong} (R[z]/\langle z^{27} - 1 \rangle) [y]/\langle y^{64} - 1 \rangle$$

$$\stackrel{64-NTT}{\cong} \prod_{i=0}^{63} (R[z]/\langle z^{27} - 1 \rangle) [y]/\langle y - \psi_{64}^i \rangle$$

$$\stackrel{9-NTT}{\cong} \prod_{i=0}^{63} \prod_{j=0}^{8} \left(R[z]/\langle z^3 - \psi_9^j \rangle \right) [y]/\langle y - \psi_{64}^i \rangle$$

$$(p, q) = (953, 6343)$$
: 3D Good's Trick for $1920 = 3 \times 128 \times 5$

$$z_0^3 = z_1^{128} = z_2^5 = 1$$

•
$$\mathcal{R}_1 = R[z_2]/\langle z_2^5 - 1 \rangle$$

•
$$\mathcal{R}_0 = \mathcal{R}_1[z_1]/\langle z_1^{128} - 1 \rangle$$

$$\begin{split} R[x]/\!\!\left\langle x^{1920} - 1\right\rangle & \overset{x \mapsto z_0 z_1 z_2}{\cong} \quad \mathcal{R}_0[z_0]/\!\!\left\langle z_0^3 - 1\right\rangle \\ & \overset{3\text{-NTT}}{\cong} \qquad \prod_{i=0}^2 \left(\mathcal{R}_1[z_1]/\!\!\left\langle z_1^{128} - 1\right\rangle\right) [z_0]/\!\!\left\langle z_0 - \psi_3^i\right\rangle \\ & \overset{128\text{-NTT}}{\cong} \qquad \prod_{i=0}^2 \left(\prod_{j=0}^{127} \mathcal{R}_1[z_1]/\!\!\left\langle z_1 - \psi_{128}^j\right\rangle\right) [z_0]/\!\!\left\langle z_0 - \psi_3^i\right\rangle \end{split}$$

$$(p, q) = (1013, 7177)$$
: 2048 NTT

• $\psi = \psi_{512}$

$$R[x]/\langle x^{2048} - 1 \rangle \stackrel{\text{512-NTT}}{\cong} \prod_{i=0}^{511} R[x]/\langle x^4 - \psi^i \rangle$$

$$(p, q) = (1277, 7879)$$
: 2D Good's Trick for $2560 = 512 \times 5$

•
$$v^{512} = z^5 = 1$$

•
$$\psi = \psi_{512}$$

$$R[x]/\langle x^{2560} - 1 \rangle \stackrel{x \mapsto yz}{\cong} \qquad \left(R[z]/\langle z^5 - 1 \rangle \right) [y]/\langle y^{512} - 1 \rangle$$

$$\stackrel{512\text{-NTT}}{\cong} \qquad \prod_{i=0}^{511} \left(R[z]/\langle z^5 - 1 \rangle \right) [y]/\langle y - \psi^i \rangle$$