Enumeration of area-weighted Dyck paths with restricted height

A.L. Owczarek¹ and T. Prellberg²

¹Department of Mathematics and Statistics, The University of Melbourne,

Parkville, Victoria 3010, Australia

² School of Mathematical Sciences Queen Mary University of London Mile End Road, London E1 4NS, UK

June 21, 2010

Abstract

We derive explicit expressions for q-orthogonal polynomials arising in the enumeration of area-weighted Dyck paths with restricted height.

1 Introduction and Statement of Results

Dyck paths are directed walks on \mathbb{Z}^2 starting at (0,0) and ending on the line y=0, which have no vertices with negative y-coordinates, and which have steps in the (1,1) and (1,-1) directions. We impose the additional geometrical constraint that the paths have height at most h, i.e., they lie between lines y=0 and y=h. Given a Dyck path π , we define the length $n(\pi)$ to be half the number of its steps, and the area $m(\pi)$ to be the sum of the starting heights of all steps in the (1,1) direction in the path. We denote by $u(\pi)$ and $v(\pi)$ the number of vertices in the line y=0 (excluding the vertex (0,0)) and the number of vertices in the line y=h, respectively. Let \mathcal{D}_h be the set of Dyck paths with height at most h, and define the generating function

$$D_h(a, b; q, t) = \sum_{\pi \in \mathcal{D}_h} a^{u(\pi)} b^{v(\pi)} q^{m(\pi)} t^{n(\pi)} .$$

The purpose of this note is to prove the following identity for $D_h(a, b; q, t)$.

Theorem 1. For h > 0,

$$D_{h}(a,b;q,t) = \frac{\sum_{m=0}^{\infty} (-t)^{m} q^{m(m-1)} \left((1-b) {\binom{h-m}{m}}_{q} + b {\binom{h+1-m}{m}}_{q} - (1-b) {\binom{h+1-m}{m-1}}_{q} - b {\binom{h-m}{m-1}}_{q} \right)}{\sum_{m=0}^{\infty} (-t)^{m} q^{m(m-1)} \left((1-b) {\binom{h-m}{m}}_{q} + b {\binom{h+1-m}{m}}_{q} - (1-a)(1-b) {\binom{h+1-m}{m-1}}_{q} - (1-a)b {\binom{h-m}{m-1}}_{q} \right)}.$$

$$(1)$$

Here, we have used the standard notation

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(q;q)_n}{(q;q)_k (q;q)_{n-k}} , \text{ where } (a;q)_n = (1-a)(1-aq)\cdots(1-aq^{n-1}) .$$

For a = b = 1, this identity simplifies considerably.

Corollary 2. For $h \ge 0$,

$$D_h(1,1;q,t) = \frac{\sum_{m=0}^{\infty} (-t)^m q^{m^2} {h-m \brack m}_q}{\sum_{m=0}^{\infty} (-t)^m q^{m(m-1)} {h+1-m \brack m}_q}.$$

Taking the limit $h \to \infty$, we recover the well-known result [3] that the area-weighted generating function D(q,t) for Dyck paths without height restriction is given by

$$D(q,t) = \frac{\sum_{m=0}^{\infty} \frac{(-t)^m q^{m^2}}{(q;q)_m}}{\sum_{m=0}^{\infty} \frac{(-t)^m q^{m(m-1)}}{(q;q)_m}}.$$

2 Proofs

We use as the starting point of our derivation a well-established connection between lattice path enumeration and continued fractions [2].

Proposition 3. $D_0(a, b, q, t) = b$, $D_1(a, b, q, t) = 1/(1 - abt)$, and for $h \ge 2$,

$$D_{h}(a,b;q,t) = \frac{1}{1 - \frac{at}{1 - \frac{qt}{1 - \frac{q^{2}t}{1 - \frac{q^{3}t}{1 - ba^{h-1}t}}}}.$$
(2)

While this can easily be proved by specialising the general theory in [2] to the case at hand, we shall give a direct combinatorial proof.

Proof. The only Dyck path of height zero is the zero step Dyck path. If h = 0 then it has weight b, whence $D_0(a, b; q, t) = b$. Let now $h \ge 1$. Except for the zero-step Dyck path with weight 1, every Dyck path of height at most h can be decomposed uniquely into a Dyck path of height at most (h - 1) bracketed by a pair of steps into the (1, 1) and (1, -1) directions, followed by another Dyck path of height h. The associated generating functions are $atD_{h-1}(1, b; q, qt)$ and $D_h(a, b; q, t)$, respectively. This decomposition leads to the functional-recurrence

$$D_h(a, b; q, t) = 1 + atD_{h-1}(1, b; q, qt)D_h(a, b; q, t)$$
.

Iterating $D_h(a, b; q, t) = 1/(1 - atD_{h-1}(1, b; q, qt))$ gives (2).

It is clear that the generating function can also be written as a rational function, and from Section 3 in [2] we obtain the following three-term recurrence.

Proposition 4. For $h \ge 1$,

$$D_h(a,b;q,t) = \frac{Q_h(0,b;q,t)}{Q_h(a,b;q,t)}$$

where

$$Q_{h}(a,b;q,t) = \begin{cases} 1 - abt , & h = 1 , \\ 1 - at - bqt , & h = 2 , \\ Q_{h-1}(a,1;q,t) - bq^{h-1}tQ_{h-2}(a,1;q,t) & h \ge 3 . \end{cases}$$
 (3)

Proof. The initial conditions follow from $D_1(a, b; q, t) = 1/(1 - abt)$ and $D_2(a, b; q, t) = (1 - bqt)/(1 - at - bqt)$, and the factor $bq^{h-1}t$ in the three-term recurrence is just the final term in the continued fraction (2).

We proceed by considering the generating function of the denominators $Q_h(a, b; q, t)$,

$$W(z;a,b;q,t) = \sum_{h=0}^{\infty} Q_h(a,b;q,t)z^w.$$

The next proposition expresses W(z; a, b; q, t) in terms of the basic hypergeometric series $\phi(z, q, t) = 1\phi_2(q; 0, z; q, t)$ [4], i.e.,

$$\phi(z,q,t) = \sum_{n=0}^{\infty} \frac{q^{n(n-1)}t^n}{(z;q)_n} \ .$$

Proposition 5.

$$W(z; a, b; q, t) = \frac{abt^2z^3 - at^2z^3 + abtz - abt - atz - btz - bz + b + z}{tz} + \frac{(bz - b - z)(1 - at)}{zt}\phi(z, q, -tz^2) - (bz - b - z)\phi(z, q, -qtz^2) . \quad (4)$$

Proof. The recurrence (3) implies that W(x; a, b; q, t) satisfies a functional equation,

$$W(z; a, b; q, t) = z(1 - z)(1 - abt) + z^{2}(1 - at - bqt) + zW(z; a, 1; q, t) - z^{2}bqtW(qz; a, 1; q, t).$$

Solving this functional equation for W(z; a, 1; q, t) by iteration gives

$$\begin{split} W(z;a,1;q,t) &= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n} q^{n^2+n} t^n \left(1 - at - zq^{n+1}t\right)}{(z;q)_{n+1}} \\ &= \frac{1 - at}{tz} - 1 - \frac{1 - at}{tz} \phi(z,q,-tz^2) + \phi(z,q,-qtz^2) \;. \end{split}$$

Inserting this expression into the functional equation gives (4).

Proposition 6.

$$Q_{h}(a,b;q,t) = \sum_{m=0}^{\infty} (-t)^{m} q^{m(m-1)} \times \left((1-b) \begin{bmatrix} h-m \\ m \end{bmatrix}_{q} + b \begin{bmatrix} h+1-m \\ m \end{bmatrix}_{q} - (1-a)(1-b) \begin{bmatrix} h+1-m \\ m-1 \end{bmatrix}_{q} - (1-a)b \begin{bmatrix} h-m \\ m-1 \end{bmatrix}_{q} \right) . \tag{5}$$

Proof. We obtain $Q_h(a, b; q, t)$ by extracting the coefficient of z^h in W(z; a, b; q, t). We expand the q-product in the function ϕ with the help of the q-binomial theorem [4] to obtain

$$\phi(z,q,tz^2) = 1 + \sum_{m=0}^{\infty} z^m \sum_{n=1}^{\infty} q^{n(n-1)} {m-n-1 \brack n-1}_q t^n .$$

Inserting this expansion into (4) and collecting terms with equal powers in z gives (5).

Theorem 1 now follows from Propositions 4 and 6.

Acknowledgements

Financial support from the Australian Research Council via its support for the Centre of Excellence for Mathematics and Statistics of Complex Systems is gratefully acknowledged by the authors. A L Owczarek thanks the School of Mathematical Sciences, Queen Mary, University of London for hospitality.

References

- [1] G. E. Andrews, R. Askey, and R. Roy, *Special Functions*, volume 71 of *Encyclopedia of Mathematics and its Applications*, Cambridge University Press, Cambridge, 1999.
- [2] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics 41 (1980) 125-161.
- [3] P. Flajolet and R. Sedgewick, *Analytic Combinatorics*, Cambridge University Press, Cambridge, 2009.
- [4] G. Gasper and M. Rahman, Basic Hypergeometric Series, volume 96 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2004.