

Correlation: compares two numeric variables

Pearson: assumes linearity

cor.test(x,y)

Spearman: rank-based

Regression: compares two or more numeric variables (and evaluates which of them most influence an outcome)

Linear regression: finds line of best fit to the data for one predictor X and one outcome Y, each datapoint i is given by:

$$Y_i = b_1 X_i + b_0 + \varepsilon_i$$

 b_I = slope of the line b_0 = intercept ε_i = residual, i.e., deviation from line

this is the line that minimises the deviations between the line and the data (SS_{res})

multiple regression: more than two predictors

$$Y_i = b_k X_{ki} + \dots + b_l X_{li} + b_0 + \varepsilon_i$$

for each predictor k, figures out its slope and how much it affects the outcome

Interactions included by multiplying factors: $X_{ki} * X_{ji}$ is an interaction between X_k and X_j

$myModel \leftarrow lm(y \sim x1 + x2 + x1:x2, dataset)$

this command returns a model object which also prints out slope of each factor (coefficients) as well as the intercept

summary(myModel)

Hypothesis test 1: Is the overall model significantly different to what you'd expect if H0 were true?

H0: No relationship between X and Y

H1: Relationship between X and Y as in the best-fitting regression equation

- look at overall F-statistic and p-value

Hypothesis test 2: Is a specific predictor (or interaction term) significant?

- look at p-value and slope for each predictor
- R does t-tests for each predictor against outcome

Effect size: given by R2, which captures proportion of the variance in Y accounted for by the model

- the same as the correlation coefficient r squared (for the model with only that predictor)

standardized coefficients β: allow you to compare weight of variables - calculated doing regression on z-scores