Ewaste-Net

Everything it touches turns into gold.

L.Ke, G.Rong, S.Wang, Y.Wang, Y.Sun Supervisors: Mr. A.Avery & MR. J. Barczykowski

2 million tonnes of e-waste was produced in 2022.

22.3%

of the year's e-waste mass was documented (UNITAR 2024).

Numerous Legislations are put forward towards Ewaste recycling. (EU 2024)

1. Datasets:

- Ambient-125
- Ewaste-70
- TextOBB-1681

2. Stage I.

- Yolo models
- Auto Cropping
- Future fine tuning tips

3. Stage II.

- Two experiments determines OCR and Crop types
 - Qwen Implementations
 - Results

- <u>4. Future Expectations</u> and a message to D3.

Datasets: Ambient-125

0

0

0

Datasets: Ewaste-70

3

3

Datasets: Text0bb-1681

1681 images, combining ours, D3 dataset, and publicly available datasets

Software/package used: Roboflow 3.0 API [Yolov8-based]

Hardware: On Google Colab T4 GPU 24GB RAM

F1 Score: 0.8857

Software/package used: Yolo v11 Roboflow

Hardware: On Google Colab T4 GPU 24GB RAM

Software/package used: Yolo v11 Roboflow

Augmentation: Tilting 25 degrees clock/anticlock-wise

Auto-tilting

Hardware: On Google Colab T4 GPU 24GB RAM

mAP@50 87.6% Precision 86.1%

Recall 83.8%

Software/package used: Roboflow (accurate)

Hardware: On Google Colab T4 GPU 24GB RAM

P/N. MZMTE2566HMHP-000D1 1513 REV 0

RATED: DC 3.3 V=0.7A 1513 REV 0 F/W EXT4A0Q

WARNING: Product can be damaged by Electrostatic ESD.),

Made in CHINA SAMSUNG ELECTRONICS CO., LTD 2015.03

KCC-REM-SEC-MZMZ-MT256D SSD PM851 GGb/S N363

SATA SSD

C€ GB/S 256G 256GGB

TÜV Rheinland CERTIFIED

Safety

ID 2000000000 S/N: S1EVNSAG366510 Planet First

END 200000000 S/N: S1EVNSAG366510 Planet First

S3C-0ECL-A04 WARNING: Product can be damaged by Electrosstatic 2 205.03

D33475 N363 Product of CHINA Product of CHINA D33475 N363

S3Q-0ECL-A04 WARNING: Product can be damaged by Electrosstatic 2 205.03

D33475 N363 Product of CHINA Product of CHINA D33475 N363

Expl: Line v. Block Crop

Exp2: OCR Benchmark

	EasyOCR	GPT-40	Qwen	DOCTR	Keras-ocr
WER	0.853	0.32	0.03	1.30	0.40
CER	0.5646	0.38	0.13	0.71	0.65
Lev	39.6	28.54	8.18	51.1	58.1

Avg. CER: **0.9890**

Avg. WER: 1.0538

Result Visualization

CH3 CH 4 CH 1 CH 2 CH 3 CH 4 CH 1 CH 2 CH3 CH 4 CH 1 CH 2 CH 3 CH 4 CH 1 CH 2 CH3 CH 4 CH 1 CH₂ CH 3 CH 4 CH 1 CH 2 CH 3 CH 4 CH 1 CH 2 CH3 CH 4 CH 1 CH 2 CH 3 CH 4 CH 1 CH 2 CH3 CH 4 CH₁ CH 2

CH 2

Goal:

Transform raw OCR text into structured, meaningful product data using Large Language Models (LLMs).

Key Capabilities:

- Interpret messy or partial text.
- Extract relevant product fields.
- Provide context-aware summaries.
- Estimate resale or recycling potential.

Why LLMs?

LLMs understand *context* and *semantics*, enabling more human-like reasoning over noisy or inconsistent data.

Typical Input & Output Flow

Input: "HP Pavilion dv6, S/N: CNF1234XYZ, Prod Date: 2012/07"

LLM Process:

Tokenization → Named Entity Recognition → Text normalization & completion → Field mapping & validation

Output:

Field	Value
Brand	HP
Model	Pavilion dv6
Serial Number	CNF1234XYZ
Production Date	July 2012
Category	Laptop

Key Extraction Targets

Entities LLMs Extract from Text:

Brand – Manufacturer name

Model – Full device model/series

Serial Number – Unique identifier

Production Date – Year and month of manufacture

Product Category – Phone, Laptop, Router, etc.

Special Tags - "Refurbished", "Battery Inside", etc.

Purpose: Enables downstream modules to lookup databases or rules for price/recycling.

Estimating Resale and Recyclability

• Given the collected and polished metadata, we can easily build a model to predict the resale price and recyclability of the e-waste product.

 After this, we finished an end-to-end e-waste sorting and marketing model based on merely the images as input.

Underestimation-

huge potentials ahead

FUTURE WORKS & DRAWBACKS

- **1. Stage I upgrade:** Automatic line croping algorithm can be easily trained given *sufficient and standardized* Ewaste factory images. This will save both time and space complexity for Stage II,III
- **2. Qwen upgrade:** Qwen has three main versions, 3b, 7b, and 32b, and a charged 72b. An upgrade of GPU, RAM, SSD with *Linux Cluster* would enable to access at least Qwen.7b, which will boost both accuracy and time complexity.
- **3. Underestimation:** Ground Truth table is provided by us bare eyes, if it can produce <u>real ground truth</u> (independent of eyesights) would produce a much objective meaningful benchmark index.

Prof. Cantay Caliskan

Mr. Alex Avery

Mr. Jerome Barczykowski