University of Houston

Notes

${\color{red} {\rm COSC~3340}}$ Intro. to Automata and Computability

Ernst Leiss

Khalid Hourani

Contents

1	For	mal Languages
	1.1	Introduction
	1.2	Regular Languages
		1.2.1 Finite Automata
		1.2.2 Regular Expressions
		1.2.3 Regular Grammars
		1.2.4 Solutions of Certain Language Equations
	1.3	Accepted by Turing Machines
	1.4	Exercise Set 1

1 Formal Languages

1.1 Introduction

Definition 1.1.1. An **Alphabet** is a finite, non-empty set of atomic symbols.

Definition 1.1.2. A word or string is any finite sequence of symbols from an alphabet.

Definition 1.1.3. The **length** of a string, s, denoted |s|, is the number of symbols in s.

Definition 1.1.4. Given strings $s = s_1 s_2 \dots s_n$ and $t = t_1 t_2 \dots t_m$, their **concatenation** is defined

$$s \cdot t = s_1 s_2 \cdots s_n t_1 t_2 \cdots t_m$$

We denote by ε the **empty string**, the unique string of 0 characters.

Definition 1.1.5. Let A be any alphabet. The **Kleene Closure** of A, denoted A^* , is the set of all strings of any length over A.

Theorem 1.1.1. Let A be any finite set. Then A^* is countably infinite.

Proof. That A^* is infinite is straightforward: since A is non-empty, take $a \in A$. Then $\{a, aa, aaa, \ldots\} \subseteq A^*$.

To see that it is countable, we first write |A| = n. Now, consider the set of all strings of length 0. This is simply $\{\varepsilon\}$. Moreover, there are n strings of length 1, n^2 strings of length 2, n^3 strings of length 3, and so on. Thus, we map ε to 0, the strings of length 1 to $1, 2, \ldots, n$, the strings of length 2 to $n+1, n+2, \ldots, n+n^2$, the strings of length 3 to $n+n^2+1, n+n^2+2, \ldots, n+n^2+n^3$, and so on. This is a bijection from A^* to \mathbb{N} , which completes the proof.

Definition 1.1.6. Given an alphabet A, a **formal language** or simply **language** L is any subset of A^* .

Theorem 1.1.2. Given an alphabet A, the set of languages over A is uncountable.

Proof. Suppose, by way of contradiction, that the set of languages were countable, i.e., that we can enumerate the set as $\{L_1, L_2, L_3, \ldots\}$. Consider the set of all strings $\{s_1, s_2, s_3, \ldots\}$. Let L be the language defined as follows:

$$s_i \in L$$
 if and only if $s_i \notin L_i$

To see that L is not in the above list, consider s_i . If s_i is in L, then s_i is not in L_i , by construction, and $L \neq L_i$. Similarly, if s_i is not in L, then s_i must be in L_i , by construction, and $L \neq L_i$. In other words, for all $i, L \neq L_i$. Then L is not in the above list, which is a contradiction. Hence, the set of languages is uncountable.

All set operations, such as union, intersection, complement, set-difference, etc. can be applied to languages, since languages are simply subsets of a Kleene Closure of an alphabet.

Definition 1.1.7. Given two languages L_1 and L_2 , the concatenation $L_1 \cdot L_2$ is given by

$$L_1 \cdot L_2 = \{ s \cdot t | s \in L_1 \text{ and } t \in L_2 \}$$

Clearly, we have

$$L \cdot \emptyset = \emptyset = \emptyset \cdot L$$

$$L \cdot \{\varepsilon\} = L = \{\varepsilon\} \cdot L$$

Note that $L_1 \cdot L_2$ is not the same as $L_1 \times L_2$. Let $L_1 = L_2 = \{\varepsilon, 0, 00\}$. Then

$$L_1 \times L_2 = \{(\varepsilon, \varepsilon), (\varepsilon, 0), (\varepsilon, 00), (0, \varepsilon), (0, 0), (0, 00), (00, \varepsilon), (00, 0), (00, 00)\}$$

whereas

$$L_1 \cdot L_2 = \{\varepsilon, 0, 00, 000, 0000\}$$

Definition 1.1.8. Given a language L, the Kleene Closure of L, L^* , is

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

where

$$L^{i} = \begin{cases} \{\varepsilon\} & \text{if } i = 0\\ L \cdot L^{i-1} & \text{otherwise} \end{cases}$$

Note that, while 0^0 is normally left undefined, we define $\emptyset^0 = \{\varepsilon\}$.

Theorem 1.1.3. L^* is finite if and only if $L = \emptyset$ or $L = \{\varepsilon\}$.

Proof. If $L = \emptyset$, then $L^i = \emptyset^i = \emptyset$ for i > 0. Then

$$\begin{split} \emptyset^* &= \bigcup_{i=0}^\infty \emptyset^i \\ &= \emptyset^0 \cup \bigcup_{i=1}^\infty \emptyset^i \\ &= \{\varepsilon\} \cup \bigcup_{i=1}^\infty \emptyset \\ &= \{\varepsilon\} \end{split}$$

Similarly, if $L = \{\varepsilon\}$, then $L^i = \{\varepsilon\}$ for all i, and

$$\{\varepsilon\}^* = \bigcup_{i=0}^{\infty} \{\varepsilon\}^i$$
$$= \bigcup_{i=1}^{\infty} \{\varepsilon\}$$
$$= \{\varepsilon\}$$

However, if L is neither \emptyset nor $\{\varepsilon\}$, then there exists a string $s \in L$ with length at least 1. Then s, ss, sss, \ldots , are in L^* , hence L^* is infinite.

1.2 Regular Languages

1.2.1 Finite Automata

Definition 1.2.1. A **Deterministic Finite-State Automata** (DFA) or **Finite-State Machine** is a quintuple $(A, Q, \tau, q_0, \mathcal{F})$ where

A is the alphabet Q is a finite, non-empty set of states $\tau: Q \times A \to Q$ is the transition function q_0 is the initial state $\mathcal{F} \subseteq Q$ is the set of final states

We can extend τ as follows:

$$\tau^*:Q\times A^*\to Q$$

$$\tau^*(q,s) = \begin{cases} q & \text{if } s = \varepsilon \\ \tau^*(\tau(q,s_0),s') & \text{if } s = s_0 \cdot s' \end{cases}$$

We proceed informally and use τ to refer to τ^* . Consider the following DFA:

The figure indicates that we begin at state q_0 . The double-circles for states q_1 and q_2 indicate that they are accepting or final states. An arrow indicates the state to move to after receiving an input. For example, if we receive the input string abba, we begin at state q_0 and receive a, so we move to state q_1 . We then receive b and stay in q_1 . We repeat this for the next symbol, b, and then move to q_2 upon receiving the final a. Since q_2 is a final state, we say that this DFA **accepts** the string abba.

We can represent the above DFA using a table, as follows:

The first column indicates the states, while the first row indicates the symbols. The final column indicates whether a state is accepting: 0 refers to a non-final state, 1 to a final state. The remaining values indicate the transition function τ , e.g. $\tau(q_0, a) = q_1$, indicated by the entry corresponding to row q_0 and column a. Finally, the arrow pointing to q_0 indicates that it is the starting position.

Definition 1.2.2. Let D be some DFA. Then L(D), the language accepted by the DFA, is

$$\{s \in A^* | \tau(q_0, s) \in \mathcal{F}\}$$

Definition 1.2.3. A language is **regular** if and only if there exists a DFA that accepts it.

Definition 1.2.4. A Non-Deterministic Finite-State Automata (NFA) is a quintuple $(A, Q, \tau, q_0, \mathcal{F})$ where

A is the alphabet Q is a finite, non-empty set of states $\tau: Q \times A \to 2^Q$ is the transition function q_0 is the initial state $\mathcal{F} \subseteq Q$ is the set of final states

We can extend τ as follows: $\tau^*: 2^Q \times A^* \to 2^Q$

$$\tau^*(P,s) = \begin{cases} P & \text{if } s = \varepsilon \\ \tau^* \left(\bigcup_{q \in P} \tau(q,s_0), s' \right) & \text{if } s = s_0 \cdot s' \end{cases}$$

We proceed informally and use τ to refer to τ^* . Consider the following NFA:

The diagrams for an NFA and DFA follow the same notation. However, the notation for the table differs slightly:

		a	b	
\rightarrow	q_0	q_1	q_0	0
	q_1	q_2q_3	Ø	1
	q_2	q_3	q_2	1
	q_3	q_0	q_3	0

The values of the transition function are now sets. We informally refer to the set $\{q_0\}$ by q_0 , and similarly the set $\{q_2, q_3\}$ by q_2q_3 . In some cases, to avoid ambiguity, we will use commas, e.g. we may represent $\{q_2, q_3\}$ as q_2, q_3 . We similarly say, given a string s, if there exists a path through an NFA that ends in a final state, we say that the NFA **accepts** s.

Similarly, we define the set of languages accepted by an NFA $N,\,L(N),$ as

$$L(N) = \{ s \in A^* | \tau(q_0, s) \cap \mathcal{F} \neq \emptyset \}$$

We can convert an NFA to a DFA on the powerset $2^{\mathcal{Q}}$ by using the **subset construction**: begin with the initial state and traverse the NFA, adding unseen states to the left-most column until all paths have been exhausted. For example, with our NFA above, we begin with:

 q_0 has already been seen, so we ignore it. q_1 is new, so we add it to the table:

We now visit the corresponding states of q_1 , which are q_2q_3 and \emptyset , both of which have not yet been visited.

When q_2 receives a, it transitions to state q_3 . When q_3 receives a, it transitions to state q_0 , so q_2q_3 transitions to q_0q_3 . Similarly, q_2q_3 transitions to state q_2q_3 when it receives b.

The empty set transitions to the empty set, by definition.

		a	b	
\rightarrow	q_0	q_1	q_0	
	q_1	q_2q_3	Ø	
	q_2q_3	q_0q_3	q_2q_3	
	Ø	Ø	Ø	

 q_0q_3 has not yet been visited, so we add it to the left-most column:

		a	b	
\rightarrow	q_0	q_1	q_0	
	q_1	q_2q_3	Ø	
	q_2q_3	q_0q_3	q_2q_3	
	Ø	Ø	Ø	
	q_0q_3			

Then we visit its corresponding states:

		a	b
\rightarrow	q_0	q_1	q_0
	q_1	q_2q_3	Ø
	q_2q_3	q_0q_3	q_2q_3
	Ø	Ø	Ø
	q_0q_3	q_0q_1	q_0q_3

Continuing, we end with the following DFA:

		a	b	
\rightarrow	q_0	q_1	q_0	
	q_1	$q_{2}q_{3}$	Ø	
	q_2q_3	q_0q_3	q_2q_3	
	Ø	Ø	Ø	
	q_0q_3	q_0q_1	q_0q_3	
	q_0q_1	$q_1 q_2 q_3$	q_0	
	$q_1q_2q_3$	$q_0 q_2 q_3$	q_2q_3	
	$q_0q_2q_3$	$q_0 q_1 q_3$	$q_0q_2q_3$	
	$q_0q_1q_3$	$q_0q_1q_2q_3$	q_0q_3	
	$q_0q_1q_2q_3$	$q_0q_1q_2q_3$	$q_0 q_2 q_3$	

However, we need to include the accepting states. The accepting states of the NFA are q_1 and q_2 , and thus any state including either state is accepting:

		a	b	
\rightarrow	q_0	q_1	q_0	0
	q_1	$q_{2}q_{3}$	Ø	1
	q_2q_3	q_0q_3	q_2q_3	1
	Ø	Ø	Ø	0
	q_0q_3	q_0q_1	q_0q_3	0
	q_0q_1	$q_1 q_2 q_3$	q_0	1
	$q_1q_2q_3$	$q_0 q_2 q_3$	q_2q_3	1
	$q_0q_2q_3$	$q_0 q_1 q_3$	$q_0q_2q_3$	1
	$q_0q_1q_3$	$q_0q_1q_2q_3$	q_0q_3	1
	$q_0q_1q_2q_3$	$q_0q_1q_2q_3$	$q_0 q_2 q_3$	1

Note that an NFA does not necessarily admit a DFA with as many states. Consider the following example:

		a	b	
\rightarrow	0	$\{1,2,\ldots,n\}$	0	0
	1	2	1	0
	2	3	2	0
	:	:	:	:
	i	i+1	i	0
	•	:	:	:
	n-1	n	n-1	0
	n	1	n	1

The NFA above admits the following DFA:

		a	b	
\rightarrow	0	$ \{1,2,\ldots,n\} $	0	0
	$\{1, 2, \dots, n\}$	$\{1, 2, \ldots, n\}$	$\{1, 2, \ldots, n\}$	1

The above DFA contains only 2 states, despite the NFA containing n+1 states.

For an NFA, there is no guarantee of a unique smallest NFA which accepts the same strings. However, for a DFA, such a notion exists.

Consider two states, p and q, and corresponding L_p and L_q , where L_p has initial state p and L_q has initial state q. We say that p and q are distinguishable if there exists a string s such that s is in L_p and not in L_q , or vice-versa. We use this notion to **reduce** a DFA.

Begin with a partition of Q into subsets \mathcal{F} and $Q - \mathcal{F}$, i.e., the accepting and rejecting states. For a pair of states p, q if the result of transitioning p and q falls into different partitions, we partition the subset and continue.

For example, given the following DFA:

		a	b	
\rightarrow	0	1	2	0
	1	$\frac{2}{3}$	3	1
	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	3	4	0
	3	0	5	1
	4	5	6	0
	5	6	7	1
	6	7	0	0
	7	4	1	1

We have two partitions:

Now, 0 gets sent to the accepting partition by a and to the rejecting partition by b. Similarly, 2, 4, and 6 get sent to the accepting partition by a and to the rejecting partition by b. Thus, they belong to the same partition.

In the same vein, 1 gets sent to the rejecting partition by a and to the accepting partition by b. Similarly, 3, 5, and 7 get sent to the rejecting partition by a and to the accepting partition by b. Thus, our next partition is

That our row is the same as the preceding one indicates that we have finished, and now have a minimal DFA. Call the first subset p and the second q. When an element in p receives a, it is sent to q. When it receives b, it is sent to p. Similar logic for q gives our new DFA:

Recall that p began as a subset of the rejecting elements and q the accepting elements, which informs the last column of the above table.

Not all DFAs can be reduced. An obvious example is the above reduced DFA. For a less trivial example, consider the following DFA:

		a	b	
\rightarrow	0	1	2	0
	1	2	3	1
	2	3	4	0
	3	0	5	1
	4	5	6	0
	5	6	7	1
	6	7	0	0
	7	4	2	1

Begin, as in the previous problem, with two partitions:

As in the previous problem, 0, 2, 4, and 6 get sent to the same partition under a and b, respectively. Under a, 1, 3, 5, and 7 go to the rejecting partition. However, under b, 7 goes to the rejecting partition while 1, 3, and 5 go to the accepting partition, which means we must create a new partition for 7.

We continue the process, noting that there is no need to consider singletones, i.e., the partition $\{7\}$ is already in its finale state. Under a, 0, 2, and 4 get sent to the $\{1,3,5\}$ partition. Under b, they get sent to the $\{0,2,4,6\}$ partition. However, 6 gets sent to the $\{7\}$ partition, and so it must be partitioned separately. Similarly, 1 and 3 get sent to the $\{0,2,4,6\}$ partition under a, and to the $\{1,3,5\}$ partition under a, on the other hand, gets sent to the $\{7\}$ partition, and must be partitioned separately. In total, we have:

Rejecti	ng	Accepting		
0, 2, 4,	1, 3, 5, 7			
0, 2, 4, 6		1, 3,	5	7
0, 2, 4	6	1, 3	5	7

We continue:

I	Reje	cting	S	Accepting					
(0, 2,	4, 6	;	1, 3, 5, 7					
(0, 2,	4, 6	j	$1, 3, 5 \qquad 7$					
0, 2, 4			6	1,	3	5	7		
0,	2	4	6	1	3	5	7		
0	2	4	6	1	3	5	7		

Notice that the reduced DFA has 8 states, like the original! This means that the original DFA is already reduced, and cannot be reduced further.

1.2.2 Regular Expressions

Definition 1.2.5. Given an alphabet A, we define a **regular expression**

- (a) $a \in A$ is a regular expression denoting the language $\{a\}$
 - ε is a regular expression denoting $\{\varepsilon\}$
 - \emptyset is a regular expression denoting \emptyset
- (b) If α and β are regular expressions denoting the languages $L(\alpha)$ and $L(\beta)$, respectively, then
 - $\alpha \cup \beta$ denotes $L(\alpha) \cup L(\beta)$
 - $\alpha \cdot \beta$ denotes $L(\alpha) \cdot L(\beta)$
 - α^* denotes $L(\alpha)^*$

1.2.3 Regular Grammars

1.2.4 Solutions of Certain Language Equations

1.3 Accepted by Turing Machines

1.4 Exercise Set 1

Exercise 1: Construct DFAs for the following NFAs using the subset construction:

(a)			a		(b)			a	b	c		(c)			a	b	c	
	\rightarrow	1	2	0		\rightarrow	1	2	2	2	1	•	\rightarrow	1	2	2	2	1
		2	3	0			2	3	1	1, 2	1			2	3	1	2, 3	1
		3	4	0			3	4	3	Ø	1			3	4	3	Ø	1
		4	5	0			4	5	4	4	1			4	5	4	4	1
		5	6	0			5	1	5	5	1			5	1	5	5	1
		6	7	0											•			
		7	1, 2	1														

Solution . (a)		a	
$\overline{\ \rightarrow\ }$	1	2	0
	2	3	0
	3	4	0
	4	5	0
	5	6	0
	6	7	0
	7	1, 2	1
	1, 2	2, 3	0
	2, 3	3, 4	0
	3, 4	4, 5	0
	4, 5	5, 6	0
	5, 6	6, 7	1
	6, 7	1, 2, 7	1
	1, 2, 7	1, 2, 3	0
	1, 2, 3	2, 3, 4	0
	2, 3, 4	3, 4, 5	0
	3, 4, 5	4, 5, 6	0
	4, 5, 6	5, 6, 7	1
	5, 6, 7	1, 2, 6, 7	1
	1, 2, 6, 7	1, 2, 3, 7	1
	1, 2, 3, 7	1, 2, 3, 4	0
	1, 2, 3, 4	2, 3, 4, 5	0
	2, 3, 4, 5	3, 4, 5, 6	0
	3, 4, 5, 6	4, 5, 6, 7	1
	4, 5, 6, 7	1, 2, 5, 6, 7	1
	1, 2, 5, 6, 7	1, 2, 3, 6, 7	1
	1, 2, 3, 6, 7,	1, 2, 3, 4, 7	1
	1, 2, 3, 4, 7	1, 2, 3, 4, 5	0
	1, 2, 3, 4, 5	2, 3, 4, 5, 6	0
	2, 3, 4, 5, 6	3, 4, 5, 6, 7	1
	3, 4, 5, 6, 7	1, 2, 4, 5, 6, 7	1
	1, 2, 4, 5, 6, 7	1, 2, 3, 5, 6, 7	1
	1, 2, 3, 5, 6, 7	1, 2, 3, 4, 6, 7	1
	1, 2, 3, 4, 6, 7	1, 2, 3, 5, 7	1
	1, 2, 3, 5, 7	1, 2, 3, 4, 6	0
	1, 2, 3, 4, 6	2, 3, 4, 5, 7	1
	2, 3, 4, 5, 7	1, 2, 3, 4, 5, 6	0
	1, 2, 3, 4, 5, 6	2, 3, 4, 5, 6, 7	1
	2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6, 7	1
	1, 2, 3, 4, 5, 6, 7	1, 2, 3, 4, 5, 6, 7	1

Exercise 2: Reduce the following DFAs:

(c) Your result of 1(b).

(d) Your result of 1(c).

Exercise 3: Construct NFAs for the following regular expressions using the construction given in class; then find the corresponding DFAs; then reduce them:

(a)
$$(a^2 \cup a^3 \cup a^5)^*$$
 over $\{a\}$

(c)
$$(abc \cup ab)^*aa^*(ab)^*$$
 over $\{a, b, c\}$

(b)
$$(a^2)^*(a^3)^*(a^5)^*$$
 over $\{a\}$

(d)
$$0*(00 \cup 11)*(01 \cup 10)*1*$$
 over $\{0,1\}$

Exercise 4: Construct regular expressions for the languages accepted by the following automata: