DIGITAL CIRCUITS

Week-4, Lecture-1 Boolean Algebra

Sneh Saurabh 23rd August, 2018

Digital Circuits: Announcements/Revision

Duality Principle: More Explanation (1)

$$(x_1 + x_2)' = x_1' x_2'$$

$$B + A = 1$$

Can using the duality principle, we can simply state?

$$A + B = 1 \Rightarrow B.A = 0$$

Proof:

Let
$$A = x_1 + x_2$$
 and $B = x_1'x_2'$

$$B.A$$

$$= x_1' x_2' (x_1 + x_2)$$

$$= x_1' x_2' x_1 + x_1' x_2' x_2$$

$$= 0 + 0 = 0$$

Answer: No

- Duality Principle can only be applied on a statement that is TRUE in general
- It implies that the statement must be TRUE for ALL combination of value of the variables involved in the statement
- If A and B are arbitrary Boolean variables then A + B = 1 is not TRUE for A = B = 0

Duality Principle: More Explanation (2)

- Here B + A = 1 is always true because B and A are related due to assumption:
 - ightharpoonup Let $A = x_1 + x_2$ and $B = x_1'x_2'$
- And because of this assumption "B.A = 0" turns out to be TRUE.

A counter example:

- Let $A = x_1$ and $B = x_1' + x_2$
- It is easy to see that B + A = 1,
 ➤ But B. A = x₂x₁ ≠ 0
- ⇒ Principle of duality cannot be directly applied to: B + A = 1

$$A + B = 1$$

 $\Rightarrow x_1 + x_2 + x_1' x_2' = 1$

Principle of Duality can be applied:

$$x_1. x_2. (x_1' + x_2') = 0$$

Complement of a function: Using Dual Expression

To find a complement of a function expressed as AND/OR/NOT:

- 1. Find the dual of the expression
- 2. Replace each literal by complement of the literal

Given: f(a, b, c) = ab + a'bc

Find f'(a, b, c).

- 1. Dual of ab + a'bc is (a + b)(a' + b + c)
- 2. f'(a,b,c) = (a'+b')(a+b'+c')

Can easily be checked using De Morgan's Theorem or Truth Table

Digital Circuits Synthesis using Logic Gates

Synthesis: SOP to Network

$$f(x_1, x_2) = x_1' x_2' + x_1' x_2 + x_1 x_2$$

Synthesis: SOP Simplification

$$f(x_1, x_2) = x_1' x_2' + x_1' x_2 + x_1 x_2$$

$$x'_1x_2' + x_1'x_2 + x_1x_2$$

$$=x'_1(x'_2 + x_2) + x_1x_2$$

$$=x'_1 + x_1x_2$$

$$=(x'_1 + x_1)(x'_1 + x_2)$$

$$=(x'_1 + x_2)$$

$$x_1$$
 x_2 f

2(a)
$$x + 0 = 0 + x = x$$

2(b)
$$x. 1 = 1. x = x$$

$$3(a) x + y = y + x$$

3(b)
$$x. y = y. x$$

$$4(a) x. (y + z) = x. y + x. z$$

4(b)
$$x + (y.z) = (x + y).(x + z)$$

$$5(a) x + x' = 1$$

5(b)
$$x. x' = 0$$

Some important definition: Minterm

Product Term: A single literal or a logical AND of two or more literals.

Example: x, x', xy, yy', abc, a'bc'd, ...

Minterm: For a function of *N* variables, a minterm is a *normal product* term with *N literals*.

Example: Consider a function of 3 variables: a, b, c

Which of the following are minterms abc, (a + b + c), abc', ab, ab'c', c, a'bb'

Answer: abc, abc', ab'c'

For a function of N variables, 2^N minterms exist.

Some important definition: Maxterm

Sum Term: A single literal or a logical OR of two or more literals.

Example: x, x', x + y, y + y', a + b + c, a' + b + c' + d, ...

Maxterm: For a function of *N* variables, a maxterm is a *normal sum* term with *N literals*.

Example: Consider a function of 3 variables: a, b, c

Which of the following are maxterms:

$$(a + b + c)$$
, abc , $(a + b + c')$, $(a + b)$, $(a + b' + c')$, c , $(a'+b+b')$

Answer: (a + b + c), (a + b + c'), (a + b' + c')

For a function of N variables, 2^N maxterms exist.

Minterm and Maxterm of 3 variables (1)

			Minterms		Maxterms	
x	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Minterms

- Bit is complemented if it is 0, else without complement
- Designated as m_0, m_1, \dots
- *m_j* where *j* is the decimal equivalent of corresponding binary number

Maxterms

- Bit is complemented if it is 1, else without complement
- Designated as M_0, M_1, \dots
- M_j where j is the decimal equivalent of corresponding binary number

Minterm and Maxterm of 3 variables (2)

			Minterms		Maxterms	
x	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

Maxterms and corresponding Minterms are complement

$$(x + y + z) = (x'y'z')'$$

$$\Rightarrow M_0 = m_0'$$

• Similarly, $M_1=m_1'$, $M_j=m_j'$

Canonical Sum of Product (CSOP)

Canonical Sum of Product (CSOP): A Boolean function in sum of product (SOP) form in which each product term is a minterm.

Example: Consider a function of 3 variables: a, b, c

Which of the following are CSOP:

$$f_1(a,b,c) = abc + a'bc + a'b'c$$

$$f_2(a,b,c) = abc + a'b$$

$$f_3(a,b,c) = a'b'c' + a'b'c + a'bc' + a'bc + ab'c' + ab'c + abc' + abc'$$

$$f_4(a,b,c) = a'b'c' + (a'+c')(b'c+a')$$

Answer: $f_1(a, b, c)$ and $f_3(a, b, c)$

CSOP: Representation

A Boolean function in CSOP form can easily be derived from a truth table

x	у	Z	Minterm	Maxterm	f(x,y,z)
0	0	0	$m_0 = x'y'z'$	$M_0 = x + y + z$	0
0	0	1	$m_1 = x'y'z$	$M_1 = x + y + z'$	1
0	1	0	$m_2 = x'yz'$	$M_2 = x + y' + z$	0
0	1	1	$m_3 = x'yz$	$M_3 = x + y' + z'$	0
1	0	0	$m_4 = xy'z'$	$M_4 = x' + y + z$	1
1	0	1	$m_5 = xy'z$	$M_5 = x' + y + z'$	0
1	1	0	$m_6 = xyz'$	$M_6 = x' + y' + z$	0
1	1	1	$m_7 = xyz$	$M_7 = x' + y' + z'$	1

Take the sum of minterms that produces 1.

$$f(x, y, z) = x'y'z + xy'z' + xyz$$
$$= m_1 + m_4 + m_7$$

CSOP: Compact Representation

$$f(x, y, z) = \Sigma m(1,4,7)$$

 Σm : denotes SUM of minterms

Numbers: are indices of minterms

Canonical Product of Sum (CPOS)

Canonical Product of Sum (CPOS): A Boolean function in product of sum (POS) form in which each sum term is a maxterm.

Example: Consider a function of 3 variables: a, b, c

Which of the following are CSOP:

$$f_1(a,b,c) = (a+b+c)(a'+b+c)(a'+b'+c)$$

$$f_2(a,b,c) = (a+b+c)(a'+b)$$

$$f_3(a,b,c) = a'b'c' + (a'+c')(b'c+a')$$

$$f_4(a,b,c) = (a'+b'+c')(a'+b'+c)(a'+b+c')(a'+b+c)(a+b'+c')(a+b'+c')(a+b'+c')(a+b'+c')(a+b'+c')(a'+b'+c')$$

Answer: $f_1(a, b, c)$ and $f_4(a, b, c)$

CPOS: Representation

x	у	Z	Minterm	Maxterm	f(x,y,z)
0	0	0	$m_0 = x'y'z'$	$M_0 = x + y + z$	0
0	0	1	$m_1 = x'y'z$	$M_1 = x + y + z'$	1
0	1	0	$m_2 = x'yz'$	$M_2 = x + y' + z$	0
0	1	1	$m_3 = x'yz$	$M_3 = x + y' + z'$	0
1	0	0	$m_4 = xy'z'$	$M_4 = x' + y + z$	1
1	0	1	$m_5 = xy'z$	$M_5 = x' + y + z'$	0
1	1	0	$m_6 = xyz'$	$M_6 = x' + y' + z$	0
1	1	1	$m_7 = xyz$	$M_7 = x' + y' + z'$	1

A Boolean function in CPOS form can easily be derived from a truth table

Take the product of maxterms that produces 0.

CPOS: Compact Representation

$$f(x, y, z) = \Pi M(0,2,3,5,6)$$

ΠM: denotes PRODUCT of maxterms

Numbers: are indices of maxterms

$$f' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$f = (f')' = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

CSOP and CSOP: function and complement

For complement: take the missing terms

CSOP

$$f(x, y, z) = \Sigma m(1,3,4,7)$$

$$f'(x, y, z) = \Sigma m(0, 2, 5, 6)$$

CSOP

$$\mathbf{F}(A, B, C, D) = \Sigma m(1, 2, 5, 7, 10, 15)$$

$$\mathbf{F}'(A, B, C, D) = \Sigma m(0,3,4,6,8,9,11,12,13,14)$$

 CSOP to CPOS or vice-versa: take the missing terms

CPOS

$$f(x, y, z) = \Pi M(0, 2, 5, 6)$$

$$f'(x, y, z) = \Pi M(1,3,4,7)$$

CSOP

$$\mathbf{F}(A, B, C, D) = \Pi M(0,3,4,6,8,9,11,12,13,14)$$

$$\mathbf{F}'(A, B, C, D) = \Pi M(1,2,5,7,10,15)$$

- From CSOP to CPOS and vice-versa can be done
- From function in CSOP/CPOS to its complement