

03 Net GAN

Net GAN Practice

Goal: generate fake objects (e.g. images) similar to real ones

Idea: play an adversarial game with two agents

Goal: generate fake objects (e.g. images) similar to real ones

Idea: play an adversarial game with two agents

Generator: maps noise z to a fake object x

Discriminator: maps object x to probability of real/fake

Game: The generator tries to fool the discriminator

The discriminator tries to detect the fake objects

Goal: generate fake objects (e.g. images) similar to real ones **Idea:** play an adversarial game with two agents

Generator: maps noise z to a fake object x

Discriminator: maps object x to probability of real/fake

Game: The generator tries to fool the discriminator

The discriminator tries to detect the fake objects

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The **Discriminator** wants to **max**:

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

The **Discriminator** wants to **max**:

- Recall that D(x) is in [0, 1]
- First term: ✓
 - \rightarrow large if D(x) is close to 1
 - → assign high probability to real objects

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The **Discriminator** wants to **max**:

- Recall that D(x) is in [0, 1]
- First term:
 - \rightarrow large if D(x) is close to 1
 - → assign high probability to real objects
- Second term:
 - \rightarrow large if 1-D(G(z) is close to 1
 - \rightarrow large if D(G(z)) is close to 0
 - → assign low probability to fake objects
- I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

$$\min_{G} \max_{\boldsymbol{x}} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

The **Generator** wants to min:

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))]$$

The **Generator** wants to min:

- Second term:
 - \rightarrow small if 1-D(G(z) is close to 0
 - \rightarrow small if D(G(z) is close to 1
 - → fool the discriminator into assigning high probability to fake objects

I. Goodfellow et al., Generative Adversarial Nets. in Proc. of NIPS, 2014, pp. 2672--2680.

Learning Social Graph Topologies using Generative Adversarial Neural Networks

Sahar Tavakoli¹, Alireza Hajibagheri¹, and Gita Sukthankar¹

¹University of Central Florida, Orlando, Florida sahar@knights.ucf.edu,alireza@eecs.ucf.edu,gitars@eecs.ucf.edu

Adj(G)

0	1	0	0
1	0	1	1
0	1	0	1
0	1	1	0

Img

Img

INPUT

 $I \in \mathbf{R}^{100} \ I \sim N(0,1)$

100 neurons

Results:

- **Comparison** of several **features** between original and generated graph. (Nb nodes, nb.edges, avg. degree, diameter, assortativity, etc..)
- On several **social interaction networks** (Karate club, Football, Dolphins, Enron)

03 NetGAN

NetGAN: Generating Graphs via Random Walks

 ${\bf Aleksandar\ Bojchevski}^{*1}\ \ {\bf Oleksandr\ Shchur}^{*1}\ \ {\bf Daniel\ Z\"{u}gner}^{*1}\ \ {\bf Stephan\ G\"{u}nnemann}^{1}$

Generator

03 NetGAN

inputs

NetGAN $\sigma((p_1+g)/ au) = v_1^*$ p_2 **Temperature param** W_{up} i.i.d. Sample from **Gumbel dist.** 40 neurons p_N N neurons 43

03 NetGAN Discriminator V_2

When to stop the training process?

EO-Criterion & VAL-Criterion

When to stop the training process?

EO-Criterion & VAL-Criterion

When to stop the training process?

EO-Criterion:

Stop the training process, when the input graph and the generated graph has an **edge overlapping** specified by the user.

How to build the graph?

0	10	2	0	1
				2
l				

How to build the graph?

1. Symmetrize $s_{i,j} = s_{j,i} = max(s_{i,j},s_{j,i})$

0	10	2	0	1
				2

How to build the graph?

- 1. Symmetrize $s_{i,j} = s_{j,i} = max(s_{i,j},s_{j,i})$
- 2. Ensure every node i has at least one edge $p_{i,j} = rac{s_{i,j}}{\sum_{v} s_{i,v}}$

	/ /			
0	10	2	0	1
				2

How to build the graph?

- 1. Symmetrize $s_{i,j} = s_{j,i} = max(s_{i,j},s_{j,i})$
- 2. Ensure every node i has at least one edge $p_{i,j} = rac{s_{i,j}}{\sum_v s_{i,v}}$
- 3. Continue sampling edges with probability $p_{i,j} = rac{s_{i,j}}{\sum_{u,v} s_{u,v}}$

04 NetGAN practice

Jupyter Notebook

Code:

https://github.com/mmiller96/netgan_pytorch

