

INFORMATION SUMMARY, AREA OF CONCERN: GRAND CALUMET RIVER, INDIANA

AD-A236 435

by

J. W. Simmers, C. R. Lee, D. L. Brandon H. E. Tatem, J. G. Skogerboe

Environmental Laboratory

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

March 1991 Final Report

Approved For Public Release; Distribution Unlimited

91-00783

Prepared for US Environmental Protection Agency
Great Lakes National Program Office
Assessment and Remediation of Contaminated Sediment Program
Chicago, Illinois 60604

Monitored by US Army Engineer Division, North Central Chicago, Illinois 60605-1592

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AN	D DATES COVERED
1. AGENCY USE ONE! (Leave Dialik)	March 1991		
4. TITLE AND SUBTITLE	March 1991	Final re	5. FUNDING NUMBERS
4. THE AND SUBTILE			3. FORDING NUMBERS
Information Summary, Are	ea of Concern: Gran	nd Calumet	
River, Indiana			
6. AUTHOR(S)			
J. W. Simmers, C. R. Lee	e, D. L. Brandon, H.	. E. Tatem,	
J. G. Skogerboe			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
USAE Waterways Experimer	nt Station, Environm	mental	Miscellaneous Paper
Laboratory, 3909 Halls H	•		EL-91-10
39180-6199	-		
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
US Environmental Protect	ion Agency, Great I	Lakes	
National Program Office, Chicago, IL 60604			
USAE Division, North Central, Chicago, IL 60605-1592			
11. SUPPLEMENTARY NOTES			
THE SQUARE TRANSPORT			
Available from National	Technical Informati	ion Service, 5	285 Port Royal Road,
Springfield, VA 22161			·
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited			
13. ABSTRACT (Maximum 200 words)	· · · · · · · · · · · · · · · · · · ·	······	<u> </u>

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediment (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOCs) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following AOCs: Saginaw Bay, Michigan; Sheboygan Harbor, Wisconsin; Grand Calumet River, Indiana; Ashtabula River, Ohio; and Buffalo River, New York.

(Continued)

		15. NUMBER OF PAGES
		203
		16. PRICE CODE
		20. LIMITATION OF ABSTRACT
OF THIS PAGE	OF ABSTRACT	
UNCLASSIFIED		1
	OF THIS PAGE	OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500

13. (Concluded).

The Environmental Laboratory of the US Army Engineer Waterways Experiment Station (WES) was asked to review existing data and information for each of the five priority AOCs. The approach used by WES was to bring together WES scientists who have been conducting research on the various aspects of contaminant mobility in the aquatic environment and develop a list of information required to evaluate the potential for contaminant mobility. A team of WES scientists then visited the RAP coordinator and associated staff for each AOC. Corps Districts responsible for the navigation projects in each AOC were also visited.

This report summarizes the information obtained for the Grand Calumet River. It is arranged for information retrieval by subject in a quick and easy manner (GLNPO Subject-Reference Matrix). Data and information from numerous reports have been included as figures and tables; wherever possible, the reference sources are identified.

14. (Concluded).

Fish tissue concentrations Groundwater Land use Metal contamination Pesticides Point and nonpoint source discharges Risk assessment Spills Toxicity bioassay Water quality

SUMMARY

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediment (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans. The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following five AOCs: Saginaw Bay, Michigan; Sheboygan Harbor, Wisconsin; Grand Calumet River, Indiana; Ashtabula River, Ohio; and Buffalo River, New York.

The ARCS Program is to be completed during the period 1988-1992. The overall objectives of the ARCS program are to:

- <u>a</u>. Assess the nature and extent of bottom sediment contamination at selected Great Lakes AOC.
- \underline{b} . Evaluate and demonstrate remedial options, including removal, immobilization, and advanced treatment technologies, as well as "no-action" alternatives.
- c. Provide guidance on assessment and remedial action to the various levels of government in the United States and Canada in the implementation of RAPs for the areas of concern, as well as direction for future evaluations in other areas.

The Environmental Laboratory (EL) of the US Army Engineer Waterways Experiment Station (WES) was asked to review existing data and information for each of the five priority AOCs. The approach used by WES was to bring together WES scientists who have been conducting research on the various aspects of contaminant mobility in the aquatic environment and develop a list of information (Table 1) required to evaluate the potential for contaminant mobility. All contaminant migration pathways were considered and are shown in Figure 1. A team of WES scientists then visited the RAP coordinator and associated staff for each AOC. Corps Districts responsible for the navigation projects in each AOC were also visited. During these meetings, discussions centered around what information was available for each item on the list of information developed by WES. Sources of additional information were obtained from the discussions.

This report summarizes the information obtained for the Grand Calumet River Area of Concern. The report attempts to retrieve information by subject in a quick and easy manner (GLNPO Subject-Reference Matrix). Data and information from numerous reports have been included as figures and tables. Wherever possible, references are given for the included data and information.

PREFACE

The study reported herein was conducted by the US Army Engineer Water-ways Experiment Station (WES) for the US Environmental Protection Agency (USEPA) Great Lakes National Program Office (GLNPO). The work was monitored by the US Army Engineer Division, North Central.

The report was prepared by Dr. J. W. Simmers, Research Biologist, Dr. C. R. Lee, Soil Scientist, Mr. D. L. Brandon, Statistician, Dr. H. E. Tatem, Aquatic Biologist, and Mr. J. G. Skogerboe, Physical Scientist, all of the Contaminant Mobility and Regulatory Criteria Group (CMRCG), Ecosystems Research and Simulation Division (ERSD), Environmental Laboratory (EL), WES.

Generous cooperation and assistance in locating existing data and information were provided by Messrs. Jan Miller and John Dorkin of the US Army Engineer District, Chicago, and Messrs. John Winter and Brad Rutledge of the State of Indiana Department of Environmental Management. Mr. Winter was also the Coordinator of the Remedial Action Plan. Mr. Larry Bird, ERSD, provided technical assistance in the preparation of tabulated data and the manuscript for publication.

The work was conducted under the supervision of Dr. L. H. Saunders, Chief, CMRCG; Mr. D. L. Robey, Chief, ERSD; and Dr. John Harrison, Chief, EL. General supervision was provided by Mr. D. Cowgill, NCD, and Mr. T. Kizlauskas, USEPA GLNPO, initially, and later by Mr. J. Miller, NCD, and Mr. D. Cowgill, USEPA GLNPO.

Commander and Director of WES was COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.

This report should be cited as follows:

Simmers, J. W., Lee, C. R., Brandon, D. L., Tatem, H. E., and Skogerboe, J. G. 1991. "Information Summary, Area of Concern: Grand Calumet River, Indiana," Miscellaneous Paper EL-91-10, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

CONTENTS

	<u>Page</u>
SUMMARY	1
PREFACE	3
LIST OF TABLES	5
LIST OF FIGURES	8
CONVERSION FACTORS, NON-SI TO SI (METRIC)	
UNITS OF MEASUREMENT	11
INTRODUCTION	12
Background	12
Purpose	12
Scope	13
Abbreviations	13
SUMMARY OF INFORMATION	13
Boundary of AOC	13
Contaminants of concern	14
Levels of contaminants	14
Volume of contaminated sediments	14
Sediment data	15
Water quality data	15
Point source discharges	15
Nonpoint discharges	15
Waterway hydraulics/watershed hydrology	16
Air quality	16
Potential hazardous waste sites/Superfund sites	16
Spills	16
Adjacent land use contaminant sources	16
Bioassay data	16
Biological data	17
Risk assessment	18
GLNPO SUBJECT-REFERENCE MATRIX	19
REFERENCES	25
POINTS OF CONTACT	28

LIST OF TABLES

<u>No .</u>	Titles
1	List of Information and Data Required to Evaluate In-Place Contaminated Sediments
2	Sediment Characterization Studies Nearshore Lake Michigan (Source R15, Table 3.1)
3	Sediment Characterization Studies Grand Calumet River (Source R36, Table 1)
4	Highest Concentration of Contaminants in GCR-IHC Sediments
5	Ranges of Water Quality Parameters in GCR-IHC
6	Percent Water Determined in Sediments from Indiana Harbor and Canal Area (Source Rl, Table 1)
7	Carbon Content in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 2)
8	Concentrations of Total Phenols and Ammonia in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 3)
9	PCB Concentrations in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 4)
10	Concentrations of 26 Major, Minor and Trace Elements in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 5)
11	Correlation Coefficients (R square) Determined from Select Metals in Indiana Harbor Sediments Versus Percent Total Organic Carbon (Source Rl, Table 8)
12	Concentrations of Cyanide Ion in Sediments from Indiana Harbor and Canal (Source R1, Table 9)
13	Concentrations of Total PAHs in Indiana Harbor Canal Sediments (Source R1, Table 10)
14	Concentrations of Priority Pollutants in Sediments of the Grand Calumet River System (Source R13, Table 2.4)
15	Ranking of the Priority Pollutant Organics and Metals Found in the Grand Calumet River Sediments Based on a Comparison of Sediment Concentrations and USEPA Water Quality Criteria for the Protection of Aquatic Life (Source R13, Table 2-5)
16	Ranking of the Priority Pollutant Organics and Metals Found in the Grand Calumet River Sediments Based on a Comparison of Sediment Concentrations and USEPA Water Quality Criteria for the Protection of Human Health (Source R13, Table 2-6)
17	Comparison of Averaged 1982 and 1984 Metals Content of Grand Calumet River Sediments (Source R13, Table 2-3)
18	Results of PCB Analysis of Indiana Harbor Canal Sediment Samples (Source R7, Table 2)
19	Chemical Characteristics of Sediment Collected Along Transect E in the Indiana Harbor Canal and Indiana Harbor September 1987 (Source R5, Table 6)
20	GCR-IHC Sediment Data for 1986 (Source P10)
21	Sediment Organic Concentrations in the Grand Calumet River (Source R20, Table 11)
22	Estimated Fluxes for PCBs in the GCR-IHC Ecosystem (Source R20, Table 13)
23	GCR-IHC Sediment Analysis Results (Source R10, Table 2)
24	Elutriate Test Results for Indiana Harbor (Source R10, Table 3)

<u>No.</u>	Titles
25	Comparative Chemical Composition of Indiana Harbor and Lake Michigan Sediments (Source R24, Table 2)
26	Analysis of Sediment Samples form Chicago River and Harbor and Calumet River and Harbor Collected April 27-28, 1981 (Source R9, Table 1)
27	Pollution Classification of Sediments Collected from Chicago River Harbor and Calumet River and Harbor (Source Rl, Table 2)
28	Elutriate Analysis of Sediment Samples from Calumet River and Harbor (Source R9, Table 3)
29	Fixed Station Water Quality Data (Source P10)
30	Water Quality Data from the Indiana Harbor USACOE Project Area (Source R43)
31 32	Water Quality Data from GCR-IHC, 3-4 Oct 84 (Source R12, Table 6) Chemical-Mass Discharge for Sampling Stations in GCR-IHC, 3-4 Oct 84 (Source R12, Table 9)
33	Exceedance of Water Quality Standards Grand Calumet River, 3-4 Oct 84 (Source R12, Table 8)
34	Selected Water Quality Parameters and Concentrations from Indiana Harbor and Canal (Source R42, Table D-7)
35	Concentrations of Total PCBs found in Hexane Bags Used to Monitor Water Quality (Source R1, Table 1)
36	Industrial Point Source Loadings ISBH 1984 Survey (Source R13, Table 2-8)
37 38	Combines Sewer Overflows to the Grand Calumet River-Locations and Characteristics (Source R13, Table 2-12)
	Chemical and Physical Properties of Nineteen Point Source Dis- chargers in the Grand Calumet River Basin During July and August 1986 (Source R30, Table 2)
39	Industrial Point Source Loadings 1984 (Source R20, Table 3)
40	Industrial Discharges to GCR-IHC Dry Weather, 1983 (Source R20, Table 1)
41	Projected Municipal Storm Water and Combined Sewage Point Source Discharges into the GCR-IHC (Source R36, Table 7)
42 43	Point Source Pollution Trends in the East Branch, Grand Calumet River (Source R20, Table 7)
	General and NPDES Permit Data of Point Source Discharges Within Indiana Harbor Canal South of the Lake George Junction Source R36, Table 14)
44	Flow Rates, pH and Specific Conductivity of Selected Dischargers from the GCR-IHC (Source R41, Appendix Table 2)
45	Locations of Sampling Stations in the Grand Calumet River Basin (Source R12, Table 1)
46	POTW Improvement 1968-1982 (Source R2O, Table 4)
47	Lysimeter Surface Runoff Water Quality During Early, Wet, Unoxidized Stage (Source R24, Table 6)
48	Lysimeter Surface Runoff Water Quality During Dry, Oxidized Stage (Source R24, Table 7)
49	Summary of Probable Maximum Leachate Contaminant Concentrations (Source R24, Table 5)
50	Summary of Flow Data, Indiana Harbor Canal and Grand Calumet River (Source R18, Figure 3.1c)
51	Summary of Flow Data, Indiana Harbor Canal and Grand Calumet River (Source R18, Table 3.3)

No.	Titles
52	Flow Measurements at River Sampling Stations in Figure 21, 3-4 Oct 84 (Source R12, Table 3)
53	Effluent Discharge Measurements at Industrial and Municipal Outfalls in Figure 21, 3-4 Oct 84 (Source R12, Table 4)
54	1986-87 Water Year Data Little Calumet River (Source R37, Page 201)
55	CERCLA Sites in the AOC (Source R15, Page 179-183)
56	Waste Fill and Lagoon Sites Mapped Within the Grand Calumet Watershed (Source R13, Table 2-15)
57	Waste Fills of Greatest Concern (Source R20, Table 5)
58	Results of EP-Toxicity Tests on Composite Samples from the AOC (Source R7, Table 3)
59	Embryo-Larval Survival/Teratogenicity Test Results on Discharges (Source R30, Table 3)
60	Chemistry Data from Toxicity-Teratogenicity Tests (Source R30, Table 6)
61	Prediction of Bioaccumulation Potential [TBP] and Hypothetical Maximum Whole Organism Concentrations of Organics for Lipid Contents of 2 and 5% Based on TBP Potential (Source R20, Table 12)
62	Concentrations of Organic Contaminants in Cyperus esculentus Grown in Sediment from Indiana Harbor (Source R25, Table D6)
63	Concentrations of Heavy Metals in Cyperus esculentus Grown in Sediments from Indiana Harbor (Source R25, Table D7)
64	Metal Concentrations in Indiana Harbor Sediments and Earthworms (Source R25, Table D9)
65	PCB Concentrations in Indiana Harbor Sediments and Earthworms (Source R25, Table D9)
66	PAH Concentrations in Indiana Harbor Sediments and Earthworms (Source R25, Table D9)
67	Summary of Electrofishing Catch from Station F in the Indiana Harbor Canal 2 Dec 84 (Source R39, Table 2)
68	Concentrations of Major, Minor, and Trace Elements in Fish and Crayfish from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 13)
69	Catch per Unit Effort During Electrofishing (Source Rl, Table 21a)
70	Catch per Unit Effort During Trawling (Source Rl, Table 21b)
71	Catch per Unit Effort in Crayfish Traps (Source R1, Table 21c)
72	Concentrations of Major, Minor, and Trace Elements in Periphyton and Plankton from Indiana Harbor and Adjacent Lake Michigan (Source kl, Table 14)
73	PCB Body Burdens in Indiana Harbor Fish, Plankton, and Crayfish (Source Rl, Table 12)
74	Percent Difference in Oxygen Liberation [Photosynthesis] and Oxygen Consumption [Respiration] Between Control and In Situ Colonization Test Systems in an 8-hr Biological Oxygen Demand Test (Source R1, Table 16)
75	Summary of Protozoan Counts of In Situ Colonization Studies (Source Rl, Table 17a)
76	Summary of Feeding Strategies of Protozoans Represented in In Situ Colonization Studies (Source R1, Table 17b)

<u>No.</u>	Titles		
77	Percent Response for Single Species Sediment Bioassays from Indiana Harbor (Source R1, Table 18)		
78	Aquatic Macroinvertebrates Collected from Stations 1, 2, 3, 4, 5, and 12a, 3-4 May 88 (Source R1, Table 22)		
79	Aquatic Macroinvertebrates Collected from Stations 6, 7, 8, 9a, 10a, and 11, 3-4 and 19 May 88 (Source R1, Table 22)		
80	Biomass Wet Weight and Dry Weight of the Macroinvertebrates Collected from Stations in Indiana Harbor 1-5 and 12a (Source R1, Table 24)		
81	Biomass Wet Weight and Dry Weight of the Macroinvertebrates Collected from Stations in Indiana Harbor 6-8, 9a, 10a, and 11a (Source R1, Table 25)		
82	Aquatic Annelida Collected in the GCR-IHC (Source Rl, Table 26)		
83	Phytoplankton Identified from Indiana Harbor and Canal (Source R1, Appendix 1)		
84	Periphyton Identified from Indiana Harbor and Canal (Source R1, Appendix 2)		
85	Summary of Fish Species Collected in Indiana Harbor (Source R1, Table 20)		
86	Vertebrate Wildlife Observed During Grand Calumet River Field Trip, 24-27 Jun 86 (Source R38)		
87	Preliminary List of Vegetation in the Grand Calumet River Area (Source R38)		

LIST OF FIGURES

No.	Title
1	Contaminant migration pathways for evaluation of in-place contaminated sediments
2	Movement of chemicals in the GCR-IHC ecosystem (Source P10)
3	General location of the Grand Calumet River AOC (Source R11, Figure 8)
4	Grand Calumet River AOC boundaries (Source R15, Figure 2-1)
5	Location of sediment sampling stations in Indiana Harbor (Source Rl, Figure 1)
6	Location of sediment sampling stations in the Indiana Harbor Canal (Source R7, Plate 3)
7	Location of sediment sampling in Indiana Harbor and the Grand Calumet River - IDEM (Source P10)
8	Location of sediment sampling in Indiana Harbor and Canal (Source RlO, Incl. 1)
9	Example sample location worksheet (Source R10, Plate 15)
10	Location of sampling transects (Source R5, Figure 1)
11	Grain size distribution for Indiana Harbor sediment (Source R24, Figure 5)
12	Histogram showing percent water in Indiana Harbor sediments (Source Rl, Figure 2)
13	Scatterplot of percent water vs. total organic carbon in Indiana Harbor sediments (Source Rl, Figure 3)
14	Histogram showing total organic carbon at sediment sampling stations (Source R1, Figure 4)

<u>No .</u>	Title
15	Total PCB concentrations in sediment samples from Indiana Harbor (Source Rl, Figure 6)
16	Location of Indiana fixed water quality monitoring stations in the AOC (Source R22, Figure 2.2)
17	Indiana water quality monitoring stations in the GCR-IHC area (Source R18, Figure 6.2)
18	Locations of ISBH monthly water quality monitoring stations (Source R13, Figure 2-4)
19	Locations of USEPA water quality monitoring stations CAL01-CAL17 (Source R18, Figure 1.6)
20a	Locations of USGS water quality monitoring stations (Source R12, Figure 1)
20ь	Locations of USGS water quality monitoring stations (Source R12, Figure 1)
21	Locations of water quality monitoring using membrane bags (Source R1, Figure 1)
22	IDEM water quality monitoring report - cadmium (Source 22)
23	IDEM water quality monitoring report - mercury (Source 22)
24	IDEM water quality monitoring report - oil and grease (Source 22)
25	IDEM water quality monitoring report - phenol (Source 22)
26	Sites of documented groundwater contamination (Source R11, Figure 22)
27	Summary of municipal and industrial point source flows (Source R14, Figure 2)
28	Locations of combined sewer outflows and waste fills in the AOC (Source R13, Figure 2-6)
29	Locations of point source dischargers in the AOC (Source R20, Figure 1)
30	Locations of combined sewer overflow discharges to AOC (Source R14, Figure 3)
31	Drainage basin of calumet area tributary streams (Source R18, Figure 2.2)
32	Stream flow directions within the AOC (Source R18, Figure 2.1)
33	Flow survey of GC-IHC (Source R18, Figure 3.2)
34a	Location of sites of the USGS Grand Calumet River inflow investigation (Source R18, 3.1a)
34b	Location of sites of the USGS Grand Calumet River inflow investigation (Source R18, 3.1b)
35	Summary of total air pollution emissions for AOC (Source R14, Figure 4)
36	Major sources of air pollution (Source Rl4, Figure 5)
37	Major sources of air pollution by category (Source R14, Figure 6)
38	Locations of major landfills in the AOC (Source R14, Figure 7)
39	Reported spills of hazardous materials (Source Rll, Figure 28)
40	Types of materials spilled (Source Rll, Figure 29)
41	Sources of materials spilled (Source R11, Figure 30)
42	Circumstances of materials spilled (Source R11, Figure 31)
43	Locations of major industrial and municipal plants (Source R18, Figure 4-18)
44	Numbers of underground storage tanks (Source R11, Figure 32)
45	Numbers of hazardous waste facilities (Source R11, Figure 37)
46	Natural areas along the GCR-IHC (Source R13, Figure 4-3)

No.	Title		
47	Locations of benthos sampling stations in Indiana Harbor (Source R1, Figure 1)		
48	Cumulative percent response for eight protozoan community field bioassays (Source Rl, Figure 7a)		
49	Cumulative percent response for seven protozoan community bioassays (Source R1, Figure 7b)		

CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	To Obtain
acres	4,046.873	square meters
cubic yards	0.7645549	cubic meters
inches	2.54	centimeters
miles (US statute)	1.609347	kilometers
pounds (mass)	0.4535924	kilograms
square miles	2.589998	square kilometers
tons (2,000 pounds, mass)	907.1847	kilograms

INFORMATION SUMMARY AREA OF CONCERN: GRAND CALUMET RIVER, INDIANA

INTRODUCTION

Background

The Water Quality Act of 1987, Section 118, authorizes the Great Lakes National Program Office (GLNPO) to carry out a 5-year study and demonstration project, Assessment and Remediation of Contaminated Sediment (ARCS), with emphasis on the removal of toxic pollutants from bottom sediments. Information from the ARCS program is to be used to guide the development of Remedial Action Plans (RAPs) for 42 identified Great Lakes Areas of Concern (AOC) as well as Lake-wide Management Plans (Figure 2).

The AOCs are areas where serious impairment of beneficial uses of water or biota (drinking, swimming, fishing, navigation, etc.) is known to exist, or where environmental quality criteria are exceeded to the point that such impairment is likely. Priority consideration was given to the following five AOCS: Saginaw Bay, Michigan; Sheboygan Harbor, Wisconsin; Grand Calumet River, Indiana; Ashtabula River, Ohio; and Buffalo River, New York.

Each state has established RAP coordinators to develop a RAP for each AOC. Most RAP coordinators state that there is a need to develop guidance to interpret the information in a manner that will allow decisions to be made about each AOC. The following summarizes the status of the RAP Reports for the five priority AOCs:

Area of Concern	Status
Saginaw Bay	Final RAP - September 1988
Grand Calumet River	Draft RAP - January 1988
Sheboygan Harbor	Draft RAP - December 1988
Buffalo River	Final RAP - November 1989
Ashtabula River	Draft RAP - September 1989

Purpose

The purpose of this report is to summarize the information collected during meetings with RAP Coordinators and Corps Districts to find out what information was available on contaminant migration at each of the five priority AOCs.

Scope

Information collected during visits to RAP Coordinators and Corps Districts is summarized. Sources of additional information have been referenced so that these sources could be contacted at a later date. Documents that were mentioned during meetings with RAP coordinators, but were not available at that time, are referenced so that these documents can be obtained, if desired. Retrieval of information by subject in a quick and easy manner was a goal of this report.

Abbreviations

Definitions of abbreviations used in this report are given below.

USEPA US Environmental Protection Agency

USEPA V US Environmental Protection Agency, Region V

USACOE US Army Corps of Engineers

USGS US Geological Survey

GCR Grand Calumet River

IHC Indiana Harbor Canal

GCR-IHC Grand Calumet River-Indiana Harbor Canal

AOC Area of Concern

IDEM Indiana Department of Environmental Management

GLNPO Great Lakes National Program Office

POTW Public Owned Treatment Works

RAP Remedial Action Plan

ISBH Indiana State Board of Health

IJC International Joint Commission on the Great Lakes

CERCLA Comprehensive Environmental Response, Compensation, and

Liability Act

NPDES National Pollution Discharge Elimination System

PCB Polychlorinated biphenyl

PAH Polycyclic aromatic hydrocarbon

USFDA US Food and Drug Administration

MSD Metropolitan Sanitary District (Chicago)

SUMMARY OF INFORMATION

Boundary of AOC

The general location of the Grand Calumet River (GCR) AOC is shown in Figure 3, and the boundary is shown in Figure 4. The AOC includes most of the

Grand Calumet River (GCR), the Indiana Harbor and Canal (IHC), and nearshore Lake Michigan. The AOC is located in Lake County, Indiana. The drainage basin composing the Grand Calumet-Indiana Harbor Canal (GCR-IHC) AOC includes approximately 43,000 acres (67 square miles).*

Contaminants of concern

At least 33 studies have been conducted which monitored water, sediment, or biota in the nearshore Lake Michigan portion of the Grand Calumet AOC (Table 2); 10 studies have been concerned with only the GCR-IHC sediments (Table 3). Data from these studies have been collected, and the Contaminants of Concern have been tabulated according to water sediment or biota in the AOC. Contaminants in the GCR-IHC AOC include a mix of metals and organic compounds including PCBs, PAHs, phenol, and cyanide. Fish consumption advisories for Lake Michigan have been promulgated by the states of Indiana, Illinois, Michigan, and Wisconsin as well as the USEPA Great Lakes National Program Office and the USFDA. The 1987 Lake Michigan Advisory suggested the following for Indiana Waters:

Brown trout over 23 inches, lake trout over 23 inches, Chinook over 32 inches, catfish and carp should not be eaten. Chinook salmon over 21 to 32 inches, lake trout between 20 to 23 inches, Coho salmon over 26 inches, and brown trout up to 23 inches should not be eaten by children age 15 or under, pregnant women, women who may become pregnant, or nursing mothers. All others should limit their consumption to one meal (0.23 kg) per week.

A fish consumption advisory was issued in 1985 which included the GCR/IHC system. No fish from these waters should be eaten.

Other impairments have been beach closings due to high coliform counts, aesthetic impact of crude oil on nearshore beaches, and the poor quality of biological habitats.

Levels of contaminants

The highest concentrations of contaminants found in the Grand Calumet River AOC sediments are listed in Table 4. Ranges of water quality parameters are shown in Table 5.

Volume of contaminated sediments

The Draft IDEM RAP (R15)** has summarized the estimates of the volume of soft, contaminated bottom sediments obtained by the USACOE and USEPA V. These

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 11.

^{**} See References list at the conclusion of the main text.

estimates are 1.4 million cu yd in the east branch of the Grand Calumet, and 700,000 cu yd in the west branch and IHC upstream of the navigation project. The authorized navigation project contains 1,000,000 cu yd, and the Chicago District USACOE has estimated between 500,000 and 1 million cu yd of soft sediments adjacent to the authorized channel. Altogether, there are approximately 3.5 to 4 million cu yd of contaminated sediments within the AOC. Sediment data

There have been at least 10 major sediment sampling studies on the GCR/IHC conducted by the USEPA V, the IDEM, and the USACOE. These studies have often included elutriate tests, modeling, and evaluations related to dredged material and disposal. The specific locations of the sampling sites and representative sediment contaminant data are shown in Figures 5-15 and Tables 6-28.

Water quality data

The IDEM, USACOE, MSD, and USEPA V have collected water quality data from the GCR-IHC and nearshore Lake Michigan. The IDEM has maintained a fixed station water quality surveillance program for several years in conjunction with the activities to monitor industrial and municipal wastewater discharges. Collection locations and typical data from the water quality assessments, including groundwater, are shown in Figures 16-26 and Tables 29-35.

Point source discharges

The Grand Calumet is predominantly fed by municipal and industrial waste water (up to 90 percent of the flow). The NPDES permits and extensive monitoring of outflows have produced an extensive body of data. Representative water quality monitoring data from industrial and municipal point sources, and the results and locations of monitoring stations and inflows are provided in Figures 27-30 and Tables 36-45. Improvement in POTW by municipal treatment facilities is shown in Table 46.

Nonpoint source discharges

Studies have been performed by the USEPA on the combined sewer overflow (CSO) loadings to the CG/IHC. In addition, as part of the analysis for a draft EIS on maintenance dredging and disposal, the Chicago District USACOE estimated the annual loadings of sediments to the GCR/IHC from point and non-point sources. These data are shown in Tables 47-49. The IDEM data have indicated that groundwater in the AOC is contaminated (Figure 25).

Waterway hydraulics/watershed hydrology

The drainage basin of the Grand Calumet is shown in Figure 31. Stream flow directions are shown in Figure 32. Flow data for IHC and the Grand Calumet River are summarized in Tables 50-54 and Figures 20 and 31-33. The sites evaluated in the USGS inflow investigation, as shown on USGS topographic sheets, are illustrated in Figure 34.

Air quality

Air quality data have been collected by IDEM. The air quality of Lake County was monitored for suspended particulates, sulfur dioxide, volatile organic compounds, nitrogen oxides, and carbon monoxide. The sources of the contaminants and percentage originating at each source have been identified. These data are summarized in Figures 35-37.

Potential hazardous waste sites/Superfund sites

Fifty sites have been identified and listed (Table 55), which are a mixture of NPL, RCRA, and CERCLA. There are 38 waste fills or lagoons in the AOC (Table 56). Of these sites, 11 have been considered to have highest priority (Table 57). The site locations of major landfills and national priority list sites are shown in Figure 38.

Spills

The IDEM has documented the spills that have occurred in Lake County and in the vicinity of the AOC. In 1986 there were 60 spills in Lake County. Locations and sources of spills are presented in Figures 39-42.

Adjacent land use contaminant sources

Adjacent land uses are predominantly industrial in nature. This has been extensively documented by the IDEM, USACOE, USGS, and USEPA. The adjacent land uses have previously been indicated in Tables 36-45 and Figures 20, 27-30, 34, and 40 in relation to point and nonpoint source discharges. Additional information on adjacent land use is shown in Figures 43-45 and Tables 55-57. There are 180 hazardous waste facilities in Lake County. A small portion of the land is still devoted to parks and natural areas (Figure 46).

Bioassay data

The contaminant mobility from sediment in the GCR/IHC area has been the subject of numerous bioassays or bioassessments. Many of the bioassays were conducted to evaluate the suitability of the sediment in the Federally authorized channel for various disposal alternatives. Other series of bioassays

were conducted to evaluate the toxic and chronic effects of municipal and industrial outfalls. Only biological assessments conducted with laboratory organisms under controlled conditions will be tabulated under this topic heading; field-oriented studies appear under "Biological Data." Typical Extraction Procedure-toxicity test results are shown in Table 58. Embryo-larval teratogenicity-toxicity test results on outfall effluents are shown in Tables 59 and 60. Predictions of total bioaccumulation potential based on animal lipid concentrations and sediment TOC are shown in Table 61. The results of bioassay procedures applied to evaluate the suitability of sediments from the Federal channel for upland disposal are shown in Tables 62-66. Biological data

The natural areas that occur within the GCR-IHC AOC are illustrated in Figure 47. The dune and swale ecosystems identified and inventoried by the Lake Michigan Federation and the Coastal Zone Management Program are relatively unique remnants of once extensive dune areas.

Field biological assessments have taken two forms: assessments of the presence of fish and wildlife (including endangered species), and collection of organisms for chemical analysis or other evaluations related to the presence of contaminants. Electrofishing, crayfish trapping, plankton/periphyton collection, and protozoan colonization and photosynthetic/respiration response tests were conducted on in-place sediments. The results are presented in Tables 67-77 and Figures 47-49. Aquatic (including benthic) macroinvertebrates were also collected. Biomass, diversity, and population density are shown in Tables 78-81. Lists of aquatic species present are provided as Tables 82-85. Fishery advisories are in effect throughout the AOC, as previously noted. In the GCR-IHC, the advisories pertain to recreational fishing, since there has never been a fishery of commercial proportions.

Typical wildlife (exclusive of avifauna) are listed in Table 86; dominant vegetation components are listed in Table 87. The dense cattail marshes bordering portions of the GCR-IHC may be important as wildlife cover. The remnants of the dune and swale ecosystem in the GCR-IHC are the locations of unique plant and animal communities. Rare animals include the glass lizard, Franklin's ground squirrel, Blanding's turtle, and the Federally endangered Indiana bat. Five plant species characteristic of the dune and swale areas are candidates for Federal endangered listings. Bird life of the AOC includes numerous State threatened and endangered species, including the black tern and the American bittern.

Risk assessment

There are no risk assessment data other than the fish consumption advisory and the beach closings previously mentioned. The risk to the human population is implied by the water quality data summarized in Table 5 and the percentage of the monitoring stations where water quality standards were exceeded (Table 33).

GLPNO SUBJECT-REFERENCE MATRIX

AREA OF CONCERN: Grand Calumet River, Indiana

Subject	Reference*	Point of Contact**		
Sediment				
Metals	R1, R2, R3, R5, R7, R9, R10, R13, R15, R19, R20, R24, R25, R32, R34, R36, R41	P2, P3, P7, P9, P10, P12		
PCBs	R1, R2, R3, R4, R5, R7, R10, R13, R15, R17, R19, R20, R23, R24, R25, R32, R33, R34, R36, R41	P2, P9, P7, P10, P12, P3		
PAHs	R1, R3, R13, R15, R19, R20, R24, R24, R25, R32, R34, R41	P2, P3, P7, P9, P10, P12		
Pesticides	R7, R13, R23, R24, R25, P36, R41	P2, P3, P7, P9, P10, P12		
TOC	R1, R5, R13, R15, R24, R25, R34	P2, P7, P10, P12		
Others (specify)		, , , ,		
Phenols	R1, R10, R15, R20, R24, R25, R41	P2, P7, P9, P10, P12		
Ammonia	R1, R10, R18, R24, R25, R41	P2, P7, P10, P12		
Cyanide	R1, R10, R41	P2, P7, P9, P10, P12		
Total inorganio	c carbon R34	P2, P7, P10, P12		
Total solids	R2, R3, R5, R10, R18, R25, R34, R41	P2, P7, P10, P12		
Total volatile solids	R5, R10, R15, R18, R41	P2, P6, P7, P10, P12		
0&G	R2, R5, R10, R15, R18, R24, R32, R34, R41	P2, P7, P9, P10, P12		
Halogenated hydrocarbons	R34	P2, P7, P6, P9, P10, P12		
COD	R3, R10, R15, R18, R41	P2, P7, P10, P12		
BOD	R3, R15, R18	P2, P7, P10, P12		
TKN (nitrogen)	R10, R15, R18, R34, R41	P2, P7, P10, P12		
Phosphorus	R15, R18, R24, R25, R34, R41	P2, P7, P10, P12		
pН	R25	P2, P7, P10, P12		
Conductivity	R25	P2, P7, P10, P12		
CEC	R25	P7, P10		
Modified elutriate	R24, R25, R41	P2, P12		
DTPA extraction	R24, R25, R41			
	(Continued)			

^{*} Numbers refer to sources listed in the References section.

^{**} Points of contact are listed on page 28.

Subject	Reference	Point of Contact
Peroxide oxidation	R24, R25	
EP-Toxicity	R41	P2
Particle Size	R5, R10, R15, R18, R24, R25, R41	P2, P12
Engineering properties	R15, R24, R25, R41	P2, P6
Deposition data	R15, R18, R35, R38	P2, P6, P7, P10
Transport data	R15, R18, R35, R38	P2, P6, P7, P10
Depth data	R5, R10, R15, R18, R35, R41	P2, P6, P7, P10, P12
Horizontal distribution	R15, R35, R41	P2, P6
Volume to be considered	R4, R15, R24, R25, R34, R35	P2, P6, P12
Water quality	R8, R14, R15, R22, R24, R25, R41	P7, P10, P12
Physical data	R8, R11, R12, R16, R18, R22, R23, R37	P7, P10, P12
Temperature	R12, R13, R18, R22, R23, R37	P7, P10, P12
DO	R11, R12, R15, R16, R17, R18, R22 R23, R37, R41	P7, P10, P12
Conductivity	R12, R18, R22, R23, R26, R37	P7, P10, P12
Hardness	R8, R12, R22, R37	P12
Total solids	R8, R12, R13, R15, R18, R22, R37, R41	P12
Suspended solids	R8, R12, R13, R18, R22, R25, R37, R41	P12
Chemical data		
РН	R11, R12, R13, R15, R16, R18, R22, R23, R25, R37	P7, P10, P12
TOC	R8, R11, R13, R16, R22, R25	P7, P10, P12
Metals	R8, R11, R12, R13, R15, R16, R17 R18, R20, R22, R23, R25, R41	P3, P7, P10, P12
PCBs	R8, R11, R13, R15, R16, R17, R20, R23, R25, R41	P3, P7, P10, P12
PAHs	R8, R11, R13, R16, R20, R25, R26, R41	P3, P7, P10, P12
Pesticides	R8, R11, R16, R23, R25	P3, P7, P10, P12
BOD	R11, R12, R16, R17, R18, R22, R41	P7, P10, P12
Others (specify)		
Phenols	R8, R11, R12, R13, R15, R16, R17, R18, R20, R22, R23, R25, R41	P7, P10, P12

Subject	Reference	Point of Contact
Ammonia	R8, R11, R13, R15, R16, R17, R18, R22, R23, R25, R37, R41	P7, P10, P12
Chlorides	R11, R12, R13, R15, R16, R17, R18, R22, R23	P7, P10, P12
Fluorides	R12, R13, R15, R18, R22	P7, P10, P12
Sulfates	R12, R13, R15, R18, R22, R23, R26	P7, P10, P12
Nutrients	R8, R12, R13, R15, R18, R22, R23, R37	P7, P10, P12
Cyanide	R8, R12, R13, R15, R17, R18, R22, R23, R41	P7, P10, P12
0&G	R8, R17, R18, R22, R41	P7, P10, P12
Bacteria	R8, R11, R13, R14, R15, R16, R17, R18, R22, R41	P7, P10, P12
Waterway hydrauli	cs	
Flow data	R1, R11, R12, R14, R15, R16, R18, R20, R27, R37, R38	
Water depth	R10, R12, R15, R18, R37	
Flood data	R18, R37	
Point discharges	R11, R13, R14, R15, R16, R17, R18, R20, R21, R41	
Concentration data	R11, R13, R14, R15, R16, R18, R20, R21	
Volume data	R11, R12, R13, R14, R15, R16, R18, R20, R21, R41	
Waste load data	R11, R12, R13, R14, R15, R16, R18, R20, R21, R41	
Nonpoint discharges	R11, R12, R13, R14, R15, R16	
Concentration data	R11, R12, R13, R16	
Volume data	R11, R12, R13, R16	
Waste load data	R11, R12, R13, R16	
Spills	R11, R13, R14, R16	
Watershed hydrology	R11, R14, R15, R16, R18, R27, R28, R37	
Rainfall data	R37, R41	
Acid rain		

Subject	Reference	Point of Contact
Runoff data	R11, R14, R15, R16, R24, R41	
Volume		
Solids	R24, R25, R41	
Chemical data (specify)	R24, R25, R41	
Groundwater	R11, R14, R15, R16, R24, R25, R27, R28	, R37
Chemical data		
Н	R28, R37	
Conductance	R28, R37	
Metals	R28, R37	
Organics	R28, R37	
Phenol	R28, R37	
Air		
Air quality data	R13, R14, R15	P5, P6
Atmospheric deposition	R13, R14, R15	P5, P6
Superfund sites	R11, R13, R14, R16	
Adjacent land use	R1, R11, R13, R14, R15, R16, R17, R18, R32	P12
Contaminant sources	R1, R11, R13, R14, R15, R16, R18	P12
Risk assessment	R11, R13, R14, R16, R19	
Bioassay data		
Acute	R7, R13, R15, R19, R24, R26, R29, R41	P3, P11, P12
Chronic	R13, R26, R29, R30, R41	P3, P11, P12, P13
Bioaccumula- tion	R13, R24	P3, P11, P12
Other		
Protozoan com- munity bioassa	R1 y	P11
Microtox	R1	P11
Algal photo- synthetic inhibition	R1	P11

Subject	Reference	Point of Contact *
Nematode growth and development	R1	P11
Membrane dialysis bags	R1	P11
Earthworms	R24	
Higher plants	R24	
Teratogenic effects	R26, R30, R41	P13
Phototoxicity and photo- mutagenicity	R29	P8
Biological data		
Fish		
Diversity	R1, R11, R13, R14, R15, R16 777, R19, R22, R35, R38, R39, 741	P1, P7, P10, P11, P12
Quantity	R1, R11, R13, R1:, R15, R16, R17, R19, R22, R35, R38, R39, R41	P7, P10, P11
Tissue content	R1, R11, R13, R14, R15, R16, R19, R20, R22, R24, R25, R41	P1, P3, P7, P10, P11, P12
Advisory	R11, R13, R14, R15, R16, R22	P11
Benthic		
Diversity	R1, R11, R13, R14, R15, R16, R18, R19, R31, R35, R38, R39, R41	P7, P10, P11
Abundance	R1, R11, R13, R14, R15, R16, R18, R19, R31, R35, R38, R39, R41	P7, P10, P11
Content	R1, R20, R24, R25	P11, P12
Reptiles/ amphibians	R17, R38, R39	
Birds		
Diversity	R15, R17, R38, R39, R41	
Quantity	R15, R17, R38, R41	
Contents		
Plants (incl. alg	gae)	
Diversity	R1, R15, R17, R18, R38, R39, R41	P4
Abundance	R1, R15, R17, R18, R38, R39, R41	P4
Contents	R24	
Mammals	R15, R17, R18, R38, R41	
	(Continued)	

Subject	Reference	Point of Contact	
Endangered species	R15, R17, R40, R41	P4	
Other			
Plankton	R1, R15, R18, R22	P11	

REFERENCES

- R1 Risatti, J. Bruno, and Ross, Philippe, Eds. 1989. Chemical, Biological and Toxicological Study of Sediments from Indiana Harbor and Canal and Adjacent Lake Michigan, (Preliminary Report to Chicago District, US Army Corps of Engineers, Chicago, IL.).
- R2 Resources Conservation Company. 1988. B.E.S.T. Glassware Test Report for US Army Corps of Engineers Indiana Harbor. Resources Conservation Company, Belleview, WA.
- R3 Lehman, Richard W. 1988. Wet Air Oxidation Testing of Indiana Harbor Sludge for US Army Corps of Engineers. Zimpro Passavant Inc., Military Road, Rothschild, WI.
- R4 Chicago District, US Army Corps of Engineers. 1988 (3 Oct). Indiana Harbor Navigation Maintenance Draft Plan of Study, CENCC-DD (PM). Chicago,
- R5 Polls, Irwin. 1988. Sediment Survey of the Indiana Harbor Canal, Indiana Harbor, and Adjacent Lake Michigan for the Chicago District, US Army Corps of Engineers. The Metropolitan Sanitary District of Greater Chicago.
- R6 Environmental Laboratory. 1986. Disposal Alternatives for PCB-Contaminated Sediments from Indiana Harbor, Indiana; Vol I. US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- R7 Chicago District, Corps of Engineers. 1983. Indiana Harbor and Canal, Analysis of Sediment Samples Collected in August 1983. Chicago, IL.
- R8 Crabb, N. 1986. US Army Corps of Engineers Analytical Report, Indiana Harbor.
- R9 Jones, J. 1988. "Biological and Toxicological Analyses of Sediment Samples from Indiana Harbor Canal, Indiana, and Adjacent Lake Michigan." Draft Report for US Army Corps of Engineers, Chicago District.
- R10 Chicago District, Corps of Engineers. 1979. Analysis of Sediment Samples Collected in September 1979. Chicago, IL.
- R11 Department of Environmental Management, State of Indiana. 1988. 1986-87 305(b) Report. Indianapolis, IN.
- R12 Crawford, Charles G., and Wangsness, David J. 1987. Streamflow and Water Quality of the Grand Calumet River, Lake County, Indiana, and Cook County, Illinois, October 1984. Water-Resources Investigations Report 86-4208. US Geological Survey, Indianapolis, IN.
- R13 Water Division, USEPA-Region V. 1985. Master Plan for Improving Water Quality in the Grand Calumet River/Indiana Harbor Canal, Final Report. Chicago, IL.
- R14 Indiana Department of Environmental Management and US Environmental Protection Agency-Region V. Not dated. Northwest Indiana Environmental Action Plan. Indianapolis, IN.
- R15 Indiana Department of Environmental Management. 1988. Northwest Indiana Environmental Action Plan, Draft. Indianapolis, IN.
- R16 Department of Environmental Management, State of Indiana. 1986. 1984-85 305(b) Report. Indianapolis, IN.

- R17 Lake Michigan Federation. Not dated. The Grand Calumet: Exploring the River's Potential. Report of the Lake Michigan Federation. (Available from Department of Environmental Management, Indianapolis, IN.)
- R18 Snow, Richard H. 1974. Water Pollution Investigation: Calumet Area of Lake Michigan. Great Lakes Initiative Contract Program Report No. EPA-905/9-74-011-A, US Environmental Protection Agency, Chicago, IL.
- R19 Great Lakes Water Quality Board. 1987. 1987 Report on Great Lakes Water Quality: Appendix A, Progress in Developing Remedial Action Plans for Areas of Concern in the Great Lakes Basin. Report to the International Joint Commission. International Joint Commission for the Great Lakes, Windsor, Ontario.
- R20 Brannon, James M., et al. 1989. Analysis of Impacts of Bottom Sediments from Grand Calumet River and Indiana Harbor Canal on Water Quality. Miscellaneous Paper D-89-1. US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- R21 HydroQual. 1984. "Grand Calumet River Wasteload Allocation Study," Project No. ISBH00100 for Indiana State Board of Health, Indianapolis, IN, by HydroQual, Inc., Mahweh, NJ.
- R22 Water Quality Surveillance and Standards Branch. 1986. Indiana's Fixed Station Water Quality Monitoring Program Strategy. Office of Water Management, Department of Environmental Management, Indianapolis, IN.
- R23 Division of Water Pollution Control, Indiana State Board of Health. 1981. Physical and Chemical Characteristics of the Indiana Portion of Lake Michigan, 1980-1981. Indiana Environmental Management Board, Indiana Stream Pollution Control Board, Indianapolis, IN.
- R24 Environmental Laboratory. 1987. "Disposal Alternatives for PCB-Contaminated Sediments from Indiana Harbor, Indiana; Vol I." US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- R25 Environmental Laboratory. 1987. "Disposal Alternatives for PCB-Contaminated Sediments from Indiana Harbor, Indiana; Vol II." US Army Engineer Waterways Experiment Station, Vicksburg, MS.
- R26 Redmon, Pete. 1987. "Review of Chronic Toxicity Results from the Calumet River-Indiana Harbor Canal Dischargers, Conducted Summer and Fall 1986." Memorandum for Record, 24 Feb 87. USEPA-Region V, Chicago, IL.
- R27 Watson, Lee, R., and Fenlon, Joseph M. 1988. Geohydrology of the Calumet Aquifer, Northwestern Indiana. Proceedings of the Indiana Senior Academy of Science, p 36.
- R28 Banaszak, Konrad J., and Fenlon, Joseph M. 1988. Water Quality in the Calumet Aquifer in a Highly Industrialized Region of Indiana. Proceedings of the Indiana Senior Academy of Science, p 36.
- R29 Spacie, Anne, and Davenport, Richard. 1988. Studies on the Phototoxicity of Hydrocarbon Fractions in Grand Calumet River Sediments. Proceedings of the Indiana Senior Academy of Science, p 37.
- R30 Simon, Thomas P. 1988. Sub-chronic Toxicity Evaluation of Major Point Source Dischargers in the Grand Calumet River and Indiana Harbor Canal using the Embryo-Larval Survival and Teratogenicity Test. Proceedings of the Indiana Senior Academy of Science, p 37.

- R31 Bright, Greg R. 1988. Recent Water Quality in the Grand Calumet River as Measured by Benthic Invertebrates. Proceedings of the Indiana Senior Academy of Science, p 38.
- R32 US Environmental Protection Agency. 1988. "US Progress in Implementing the Great Lakes Water Quality Agreement, Annex Reports to the International Joint Commission." US Environmental Protection Agency, Great Lakes National Program Office, Chicago, IL.
- R33 Indiana Harbor Task Force. 1987. Indiana Harbor Newsletter. Issue No. 3 (October). US Army Corps of Engineers, Chicago District. Chicago, IL.
- R34 Indiana Harbor Task Force. 1988. Indiana Harbor Newsletter. Issue No. 4 (January). US Army Corps of Engineers, Chicago District. Chicago, IL.
- R35 Indiana Harbor Task Force. 1988. Indiana Harbor Newsletter. Issue No. 6 (November). US Army Corps of Engineers, Chicago District. Chicago, IL.
- R36 Zapotosky, J. E., and White, W. S. Not dated. A Preliminary Draft Report on Inorganic and Organic Contaminants in the Sediments of Grand Calumet River and Indiana Harbor. Research Project 8H437-00-193, ISG #EPA-79-D-F0819. USEPA-Region V, Chicago, IL.
- R37 Glatfelter, D. R., Thompson, R. E., and Nell, G. E. 1988. "Water Resources Data-Indiana, Water Year 1987." USGS-WDR-IN-87-1. US Geological Survey, Water Resources Division, Indianapolis, IN.
- R38 Rud, Jerry, Parks, Neil, and Jim Stahl. 1986. "Grand Calumet River Field Trip." Office Memorandum, 21 July 1986. Office of Water Management, Department of Environmental Management, Indianapolis, IN.
- R39 Organic Laboratory Section, Biology Team. 1985. "October Electrofishing and Reconnaissance Survey of the Grand Calumet River, Indiana. US Environmental Protection Agency, Central Regional Laboratory, Region V. Chicago, IL 60605.
- R40 Rabenold, Patricia P. 1988. 1987 Survey of Black Terns (*Chilidonas nigra*) Breeding in Indiana. Grant Report No. 22. Nongame and Endangered Wildlife Program, Division of Fish and Wildlife, Bloomington, IN.
- R41 Ross, Curtis. 1986 (12 Dec). "Chronic Bioassay, BIO-CHEM Report, Grand Calumet River, Indiana Harbor Canal." Memorandum from Curtis Ross, Director, Central Regional Laboratory, to Charles Sutfin, Director, Water Division, Environmental Protection Agency, Region V, Chicago, IL.
- R42 Chicago District, Corps of Engineers. 1986 (Feb). Indiana Harbor Confined Disposal Facility and Maintenance Dredging, Lake County, Indiana. Draft Environmental Impact Statement. Chicago, IL.

POINTS OF CONTACT

Name	Area of Expertise	Location	Telephone
P1 Paul Whitman	Fish contaminants	USAE District, Chicago, 111 N. Canal St., Chicago, IL 60606	312-353-6518
P2 Steve Garbaciak	Environmental engineering, sediment testing and treatment technology	USAE District, Chicago, 111 N. Canal St., Chicago, IL 60604	312-353-0789
P3 Marc Tuchman	Bioassay data	US Environmental Protection Agency 230 S. Dearborn St. Chicago, IL 60604	312-886-0239
P4 Gerould S. Wilhelm	Plant communities	The Morton Arboretum Lisle, IL	708-719-2419
P5 Howard Zar	Sediment, water quality, atmospheric deposition	US Environmental Protection Agency 230 S. Dearborn St. Chicago, IL 60604	312-886-0239
P6 Jay Semmler	Environmental engineering, volatile loss	USAE District, Chicago, 111 N. Canal St. Chicago, IL 60604	312-353-6518
P7 Skip Bunner	RAP Coordinator	Indiana Department of Environmental Management 105 S. Meridian St. Indianapolis, IN 42606-6015	317-243-8409
P8 Anne Spacie	PAH phototoxicity	Department of Forestry and Natural Resources Purdue University W. Lafayette, IN 47907	,
P9 C. Lee Bridges	Sediment quality criteria	Indiana Department of Environmental Management 105 S. Meridian St. Indianapolis, IN 42606-6015	

P10 John Winters	Fish and benthic data	Indiana Department of Environmental Management 105 S. Meridian St. Indianapolis, IN 42606-6015	317-243-5028
Pll Philippe Ross	Bioassay data	Illinois Natural History Survey 107 E. Peabody Dr. Champaign, IL 61820	271-333-6897
P12 John Dorkin	Fisheries, bioassay data, water quality	USAE District, Chicago, 111 N. Canal St. Chicago, IL 60606	312-886-0451
P13 Thomas P. Simon	Embryo-larval teratogenicity bioassays	US Environmental Protection Agency Central Regional Laboratory 530 S. Clark St. Chicago, IL 60605	

Table 1. List of Information and Data Required to Evaluate In-Place Contaminated Sediments

```
1. SEDIMENT DATA
      Water Content
                                          OG
      Hydrous Oxides (manganese, ferrous) EC
      Total PAHs
      Total PCBs (aroclors and congeners) Sulfides
      TOC
                                          SOD
      Total Solids
                                          Volatile Solids
      MO
                                          Salinity
      EP Test
                                          NH3
      CEC (plus calcium, magnesium phosphorus, potassium concentration in
           extractant)
      Atterberg Limits
      Specific Gravity Determination
      Dispersion Coefficients
      Sediment Particle Density
      Bulk Density
      Permeability
      Particle Size Distribution (hydrometer method); (include sand, fine
                                                        sand, silt and clay)
      Wet Sediment PH (1:2 sediment to distilled water solution)
      Dry Sediment PH (1:2 sediment to distilled water solution)
      % Base Saturation
      % Free Calcium Carbonate
      Potential PH or lime requirement using titration or similar method
      Total Carbon Content
      Total Soluble Heavy Metal Content
      Total Heavy Metal Content
      Surface Runoff Suspended Solids
      Wet Sediment Extractable Heavy Metal Content (DTPA preferred)
      Dry Sediment Extractable Heavy Metal Content (DTPA preferred)
      Depth (thickness) of Mixed Top Sediment Layer
      Depth (thickness) of Contaminated Sediment Layers
      Sedimentation Rate (possibly to ough core dating)
      Sediment Deposition History
      Suspended Solids Settling Rates (possibly through sediment traps)
      Consolidation Characteristics
      Sediment Porosity (mixed layer and deeper layers)
      Pesticides
      Priority Pollutants (40 CFR Part 136)
     Dioxin
     Reference Site
2. WATER QUALITY DATA
      DOC
                  TOC
     DO
                  Hardness
      BOD
     Metals
                  Conductivity
                                  (Continued)
```

Table 1 (Continued)

PAHs

Temperature

PCBs

Total Solids

Total Suspended Solids (distributed in time and space)

Best Estimates of Partition Coefficients for Low (water column) and

High (bottom sediments) Sediment Concentrations

Sediment-Water Contaminant Distribution Coefficients

Bacteriological Quality

Priority Pollutants

Interstitial Water Contaminant Concentration

3. WATERWAY HYDRAULICS & FLOW

Hydrology or Flows Through the System

Area of Bottom Contamination

Water Depth at Area of Contamination

Contaminant Waste Loads to System

Floods

4. POINT DISCHARGES INTO WATERWAY

Contaminant Loads Based on Concentration and Volumetric Flow Rates

Nonpoint Discharge

Combined Sewer Overflow

NONPOINT DISCHARGES INTO WATERWAY

Storm-Induced Surface Runoff

Groundwater: Information on Geohydrology and Groundwater

Characteristics

Atmospheric Deposition

6. WATERSHED HYDROLOGY

7. MISCELLANEOUS INFORMATION

Climatological Data

Air quality

8. CONTAMINATED SITES

Hazardous waste

Superfund

Spill

9. LAND USE OF ADJACENT PROPERTIES

10. BIOASSAY TEST DATA

Rapid:

Microtox

Daphnia

Ceriodaphnia

Pontoporeia

Ames Test

(Continued)

(Sheet 2 of 3)

```
Chronic:
```

C. tentans Daphnia

Fathead minnows Macroinvertebrate

Plant bioassay data:

Total PCB Content (aroclor content)

Specific PCB Congeners

PAHs

Heavy Metal Uptake

11. BIOLOGICAL DATA

Fisheries surveys, including:

body weight/size
diet/stomach contents

feeding type lipid content phytoplankton zooplankton

birds mammals federal state

Benthic Community

overall benthic "health"
benthic indicators/low diversity
plants

12. RISK ASSESSMENT

Human Health Ecological

Table 2. Sediment Characterization Studies Nearshore Lake Michigan (Source R15, Table 3.1)

Type of Data Collected						
	Physical and/or Chemical	Plankton	Macro- invertebrate	Fishery	Other Wildlife including birds, manuals, etc.	Endangered Species
Study Citation		•	•			
In. State Bd. of Health 1982	x			•		
Snow 1974	x					
Torrey 1976	x					
IIT Research Inst.	x	x	x			
Rockwell et al. 1980				• .		
Harrison et. al. 19						
Nalepa et. al. 1985	•		x		•	
Moxley & Alien 1973			x			
Alley & Moxley 1975			x			
Polls & Dennison 19	84 X		x	x		
Gannon & Beeton 196	9	x	X			
Greenwood et. al. 1	986 X		x	x	x	x
USEPA 1977	. X		x			
US COE 1986	x		x	x	x	x
Potos 1981	x		X			
Limno-Tech 1984	X		x			
Goodyear et. al. 19	82			X		
US COE 1985	X	x	x	x	x	x
Brock 1986					x	x
City of Chicago 198	14	X				

Table 2 (Concluded)

		Ty	mpe of Data Coll	ected		
	Physical and/or Chemical	Plankton	Macro- invertebrate	Fishery	Other Wildlife including birds, mammals, etc.	Endangered Species
Study Citation					·	
U.S. EPA 1985	· x		x	x	•	
U.S. EPA 1987	X					
Cook 1966		x				
Polls & Dennison 19	984 X		x	x		
Polls et. al. 1983	x	•	x			
Gannon and Beeton 1	.969 ·	x	x			
Brannon et. al. 198	36				•	
WES 1987	x	•	x		·	•
Potos 1981	x		x			
USCOE 1985	· x		x	x	x	x
USCOE 1986	X		x	X	x	x
USEPA 1977	X		x			
Hydroqual 1984	X					

Table 3. Sediment Characterization Studies Grand Calumet River (Source R36, Table 1)

Organization	Area Sampled (Number of Stations)	Year	Parameters	Sampling Methodology	Analytical Methods
Purdue University (Romano)	dredged (2) undredged (11)	1974	metals (4)	Ekman dredge - top 6" of sediment - frozen in plastic bags until analyzed.	Bulk sediment - AA*
U.S. Environmental Protection Agency - Region V	dredged (13)	7761	inorganics (11): mainly metals; organics PCB's, pesticides, PAH's (4), phenols, oil and grease; sediment characteristics; size distribution; odor, visible oil, percent total solids and percent volatile solids.	Ponar Oredge: sedi- ment surface	Bulk sediment and elutriate analysis. ^b
U.S. Environmental Protection Agency - Region V	undredged (8); cluster of 5 stations bracket- ing Gary STP.	1978	inorganics (17); mainly metals; organics PCB's and PAH's (limited; sediment characteristics: percent total solids and percent volatile solids	Ponar Dredge: sedi- ment surface	Bulk sediment analysis.
Indiana State Board of Health	dredged (4); undredged (5)	1978	organics; PCB's only; sediment characteristics; visual description	Ponar Dredge: sedi- ment surface	Bulk sediment analysis.
Survey	headwater Lagoons: (2)	1978	inorganics (7): mainly metals: organics PCB's and pesticides	Polyethylene Scoop - sediment surface	Bulk sediment analysis.
	(2)	1979	(as above)		
	(2)	1979	organics only: PCB's and pesticides		
U.S. Army Corps of Engineers	dredged (13)	1979	inorganics (11): mainly metals; organics oil and grease only; sediment characteristics: percent total solids and percent volatiles solids	A Sprague Henwood skid mounted rotary drill to take samples, sediment samples composited to make one sample for each 3' in depth 3' multiples to below last dredged level.	Bulk and elutriate, analysis.
			(Continued)		

(Continued)

*Atomic absorption. *Methodology in C.emistry Laboratory Manual for Bottom Sediments and Elutriate Testing, 1979.

Table 3 (Concluded)

Organization	Area Sampled (Number of Stations)	Year Sampled	Parameters	Sampling Methodology	Analytical Methods
U.S. Environmental dredged (4) Protection Agency	dredged (4)	1971	inorganics (9): oil & grease, total solids, volatile solids.	Petersen Dredge	Bulk sediment analysis
Heidleburg	dredged (13)	1977	inorganic (12): oil & grease, sediment characteristic size distribution, ocor, percent total solids, percent volatile solids.	Ponar Dredge	Bulk and elutriate analysis ^b

Table 4. Highest Concentration of Contaminants in GC-IHC Sediments

Chemical	Highest Concentration $(\mu g/g)$	Study
Ammonia	545.0	R1
Arsenic	29.5	R25
Cadmium	45.0	R1
Chromium	1,680.0	R10
Copper	600.0	P10
Cyanide	4.4	P10
Iron	326,000	R10
Lead	1,430	R1
Manganese	382,000	R1
Mercury	2.20	R10
Nickel	140.0	R13
Zinc	4,630	R1
PCBs (total)	102.3	R25
Arochlor 1248	27.0	R20
Arochlor 1254	6.9	R13
Arochlor 1260	8.56	R10
Arochlor 1242	89.08	R10
P-cresol	4.5	P10
Chlorophenyl-phenylether	3.2	P10
Dibenzofuran	160.0	P10
Phenol	0.278	R1
Di methylphenol	3.2	P10
Di-chlorophenol	3.3	P10
Napthalene	2,033.333+/-57.735	R25
Acenapthylene	27.0	R13
Acenapthene	105.333+/- 8.083	R25
Fluorene	160.0	P10
Benzo(a)pyrene	105.667+/-16.921	R25
Fluoranthene	160.000+/-10.000	R25
Phenanthrene	206.667+/-11.547	R25
Anthracene	170.0	R13
Pyrene	3,300.0	P10
Benzo(a)anthracene	140.0	R13
Chrysene	130.0	R13
Benzo(b)-fluoranthene	200.0	R13
Benzo(k)-fluoranthene	140.0	R20
Benzo(g,h,i)-perylene	39.667+/- 4.163	R25
Dibenzo(a,h)anthracene	11.0	R13
Indeno(1,2,3-c,d)-pyrene	57.000+/-10.440	R25
Di-N-octyl phthalate	47.0	R13
Bis(2-ethylhexyl)phthalate	26.0	R13
Butyl benzyl pthalate	0.6	R13
Di-N-butyl pthalate	0.8	R13
Heptachlor epoxide	<1.0	R36
Endosulfan I	<0.05	R36
Endosulfan II	<0.02	
Endrin	<0.02	R36
	** • * **	1.00

(Continued)

Table 4 (Concluded)

Chemical	Highest Concentration $(\mu g/g)$	Study
Isodrin	<1.3	R36
Dieldrin	<0.02	R36
Chlorodane	<0.2	R36
DDT	<1.0	R36
DDD	<0.4	R36
DDE	<0.3	R36
Mirex	<0.2	R36
Methoxychlor	<2.0	R36
2,4-D	<0.5	R36
DCPA	<0.03	R36
1,2-DCB	0.04	R13
1,4-DCB HCB	0.14	R13

Table 5. Ranges of Water Quality Parameters in GCR-IHC

Parameter		on	centratio	n	Source
Arsenic	0.003	-	<0.001	mg/l	R43
Cadmium	0.000	7 -	<0.0001	mg/l	R43
Chromium	8.0	-	<1.0	ug/l	R12
Copper	61.0	-	<1.0	ug/l	R12
Iron	6,000	-	210	ug/l	R12
Lead	28.0	-	<1.0	ug/l	R12
Mercury	2.5	-	<1.0	ug/l	R12
Nickel	24.0	-	4.0	ug/l	R12
Zinc	410.0	-	20.0	ug/l	R12
Fecal Coliforms	270,000	-	210	mg/l	P10
Oil & Grease	20.0	-	1.3	mg/l	P10
BOD	41.0	-	1.0	mg/l	P10 R12
COD	30	-	0.5	mg/1	R12
Hardness	360	-	30	mg/l CaCO3	R12
Cyanides	0.17	-	0.01	mg/l	R12
Ammonia	11.0	-	0.06	mg/l	P10 R12
Nitrogen, Kjeldahl	81.7	-	0.1	mg/l	R12
Nitrate	10.2	-	0.9	mg/l	R12
Nitrite	1.8	-	0.01	mg/l	R12
TOC	7.9	-	2.3	mg/l	R43
Phenols	64.0	-	<1.0	ug/l	R12
Total Phosphorus	0.58	-	<0.01	mg/l	R12
Ortho Phosphorus	0.30	-	<0.01	mg/l	R12
Sulfate	5,900	~	22	mg/1	R12
Fluoride	4.7	-	0.1	mg/l	R12
Chloride	438	-	11	mg/l	R12
TDS	9,100	-	162	mg/l	R12
TSS	16.0	-	<1.0	mg/l	R12
DO	9.9	-	2.9	mg/l	P10 R12
Temperature	15.0	_	35.0	Degrees C	R12
Specific Conductance	1,800	-		uS/cm	R12
pH	6.1	-	8.6	,	R12
Bis(2-ethylhexyl)	- · · -		- • -		
phthalate	360	_	15	ug/l	R43
•				0/ -	24-3

Table 6. Percent Water Determined in Sediments from Indiana Harbor and Canal Area (Source R1, Table 1) (see Figure 5)

Stat	ion	Percent Water	
\$	51	60.06	
\$	32	84.51	
5	S2b	70.33	
\$	33	63.32	
5	34	33.93	
5	S5	37.19	
5	36	24.08	
	S 7	20.31	
	88a	53.13	
	39a	53.86	
	S10	16.71	
•	§11	53.15	
	S12	39.68	
	Potting Soil	55.26	
	Sand	0.00	

Table 7. Carbon Content in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 2) (see Figure 5)

		Percent (Carbon
Station	Total	Inorganic	Organic
1	15.18	2.61	12.5
2	18.31	1.47	16.8
2B	19.30	1.49	17.8
3	14.58	1.92	12.6
4	10.79	3.30	7.
5	8.07	3.47	4.
6	1.80	1.73	0.
7	5.23	5.20	0.
8A	10.36	2.72	7.
9A	7.14	4.40	2.
10	2.79	1.36	1.
11	5.41	3.50	1.
12	12.73	2.43	10.
Potting Soil	18.02	0.28	17.
(yrt) bnac	0.17	0.03	0.

Table 8. Concentrations of Total Phenols and Ammonia in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 3) (see Figure 5)

Station	Phenol (ppm)	Ammonia (ppm)
 1	0.042	55.8
2	0.070	545.0
2b	0.070	234.5
3	0.278	. 101.5
4	0.071	59.0
5	0.024	52.0
6	0.024	7.0
7	0.000	9.5
8a	0.024	58.5
9a	0.094	36.5
10	0.000	3.5
11	0.024	25.5
12	0.060	54.0
Potting Soil	0.012	32.5
Sand (Dry)	0.024	1.0
Blank #1	••	
Blank #2	••	

Table 9. PCB Concentrations in Sediments from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 4) (see Figure 5)

Station	Total PCB's (ppb)	MDL (ppb)
\$1 *	71.51	2.80
S2*	102.52	2.80
S2B*	BMDL	2.80
S3*	58.29	2.80
S4*	BMDL	2.80
S5*	BMDL	2.80
S6	55.61	2.80
S 7	17.69	2.80
S8A	0.00	2.80
S9A	19.01	2.80
S10	68.53	2.80
S11a	494.60	2.80
S12a	4.55	2.80
Potting Soil	178.06	2.80
Sand (Dry)	23.86	2.80

Table 10. Concentrations of 26 Major, Minor, and Trace Elements in Sediments from Indiana Harbor and Adjacent Lake Michigan [ppm unless indicated] (Source R1, Table 5) (see Figure 5)

							Trace	Element	Conce	ntration				
Sample	No.	Al	As	8	Ва	Вe	Ca	Cd	Co	Cr	Cu	ře	Hg (ppb)	K
Station	1	9500	BOL	373	180	BOL	53800	23	BOL	940 -	235	76300	652	5620
Station	2	13000	80L	360	313	BOL	37700	45	BOL	993	488	192000	1710	9980
Station	28	15000	BDL	523	258	BOL	37200	45	BOL	1070	269	208000	1360	7000
Station	3	13600	BDL	550	200	5	48200	38	BUL	855	275	156000	1420	BOL
Station	4	10300	183	370	228	3	85300	28	BDL	423	80L	149000	594	BOL
Station	5	7980	80L	343	75	BOL	65500	13	BOL	190	55	35500	253	BOL
Station	6	2940	BOL	283	20	BOL	27400	BOL	BOL	80L	BOL	12500	BOL	BOL
Station	7	3090	BOL	163	15	8DL	88000	BOL	BOL	BOL	BOL	10400	121	BOL
Station		14000	BOL	400	128	BOL	51300	33	BOL	548	90	164000	680	BOL
Station		13000	BOL	318	103	5	88800	BOL	BDL	215	BOL	31100	178	BOL
Station	10	5300	BOL	355	43	BOL	78300	8DL	BOL	195	120	21800	71	BOL
Station		11700	80L	300	83	5	70300	BOL	BOL	213	BOL	23900	122	BOL
Station		9400	BOL	313	120	BOL	59000	30	BOL	450	110	168000	826	BOL
Potting	soil	9940	BOL	BDL	140	BOL	24100	BOL	80L	BOL	BOL	17100	132	BUL
Sand		2210	BOL	440	15	BOL	1320	BOL	BOL	BOL	80L	3900	BOL	80L
Det.lim.	.(DL)	161	130	12	3	3	39	11	25	115	36	126	5	5580

						Tra	ce Elemen	t Concer	tration					
Sample	No.	Hg	Mn	Мо	Na	N1	P	РЬ	Sb	Se	Si	Sn	٧	Zn
Station	1	22300	2530	BDL	8DL	100	2640	1430	BOL	BDL	N.A.	318	BDL	3540
Station		11600	5850	8DL	BOL	115	6170	835	BOL	BOL	N.A.	340	205	4280
Station	28	12200	6400	BOL	BDL	125	3980	910	BDL	BDL	N.A.	315	340	4700
Station	3	17700	5400	BDL	BOL	103	3800	730	BOL	BUL	N.A.	423	160	4630
Station	4	20200	38200	BDL	BDL	100	976	208	BOL	BOL	N.A.	128	203	1860
Station	5	24200	1790	BOL	BOL	50	446	95	BDL	BDL	N.A.	BDL	BOL	923
Station	6	15400	465	BDL	BDL	28	80L	BDL	BDL	BDL	N.A.	BUL	BOL	520
Station	7	50000	573	BDL	BOL	30	323	BOL	BOL	BUL	N.A.	BUL	RDF	133
Station	8A	16300	5050	BDL	BDL	88	1390	BUL	BOL	BOL	N.A.	470	195	4250
Station	9A	37300	1700	BUL	BUL	53	527	398	BUL	BUL	N.A.	193	ROL	658
Station	10	46900	1160	BDL	BDL	48	598	BOL	BOL	BDL	N.A.	150	BOL	578
Station	11	31700	1220	BDL	BOL	50	554	BDL	BOL	BOL	N.A.	195	BOL	348
Station	12	16400	5550	BOL	. BOL	70	2100	388	BOL	BOL	N.A.	268	223	2470
Potting	soil	2550	658	BDL	BOL	BOL	739	BDL	BOL	BUL	N.A.	BDL	105	610
Sand		773	150	BOL	BOL	BOL	BDL	BDL	BDL	BOL	N.A.	BDL	BOL	508
Det.lim.	(OL)	21	51	22	21800	27	265	94	80	63	37	110	98	47

T-jbr-9-14

Table 11. Correlation Coefficients (R square) Determined from Select Metals in Indiana Harbor Sediments Versus Percent Total Organic Carbon (Source Rl, Table 8) (see Figure 5)

Metal	TOC
Cr	0.940
Cd	0.887
Zn	0.843
Cu	0.724
Pb	0.648
Sn	0.538
Ni	0.102
Hg	0.000

Table 12. Concentrations of Cyanide Ion in Sediments from Indiana Harbor and Canal (Source R1, Table 9) (see Figure 5)

	[CN ⁻]	
Station	(μg/mL)	
 S1	BMDL	
S2	BMDL	
S2B	BMDL	
S3	BMDL	
S4	BMDL	
S5	BMDL	
S6	BMDL	
S7	BMDL	
S8A	BMDL	
S9A	BMDL	
S10	BMDL	
S11	BMDL	
S12	BMDL	
Potting Soil	BMDL	
Sand	BMDL	

Note: BMDL = below mean detection limits

Table 13. Concentrations of Total PAHs in Indiana Harbor Canal Sediments [range of wavelengths: 245 to 260 nm] (Source R1, Table 10) (see Figure 5)

	Total PAH's
Station	(ppb)
S1	935.28
S2	141.41
S2B	181.53
S3	188.18
S4	87.33
S5	134.36
S6	1.14
S7	0.91
S8A	24.20
S9A	13.45
S10	6.43
S11a	9.41
S12a	107.53
S12b	114.85
Potting Soil	1.61
Sand	0.67

Method detection limit 0.01 mg/kg.

Concentrations of Priority Pollutants in Sediments of the Grand Calumet River System (Source R13, Table 2.4) Table 14.

	4 : : :		Inter- stitial			
•	Sediment concen-		concen-	Aquatic 11	Aquatic life criteria	Human health
Pollutant	tration (ug/g)	, k	tration (mg/l)	acute (1) (mg/l)	chronic (mg/l)	criteria''' (mg/l)
Polychlorinated biphenyls			•		1	
Arochlor 1248	17	2.8×10^{5}	1.2×10^{-3}	0.002	1.4×10^{-3}	
Arochlor 1254	6.9	5.3 x 10 ⁵	2.6×10^{-4}	0.002	1.4×10^{-2}	7.9 x 10 ⁻⁸
Monocyclle aromatic chemicals	ls i	•	•			
1,2-Dichlorobenzene	0.04	1.7×10^{3}	5.2×10^{-3}	<1.12	<0.763	7.0
1,4-Dichlorobenzene	0.14	1.7×10^{3}	1.6×10^{-3}	<1.12	0.763	0.4
Phthalate esters		•	•			
Di-N-octyl phthalate	47	3.6 x 10 ⁹	2.6×10^{-1}	6.0 %	<0.003	į
Bis(2-ethylhexyl)phthalate	e 26.0	1.7×10^5	3.9×10^{-3}	<0.94	<0.003	!
Butyl benzyl phthalate	9.0	1.7×10^{5}	7.0×10^{-3}	6.0 %	<0.003	i
Di-N-butyl phthalate	9.0	1.7×10^5	0.4 × 10 ⁻²	60.94	<0.003	34
Polycyclic aromatic hydrocar	rbons	•				91
Acenaphthene	0.001	4.6 x 10 ³	95.0	<1.7	1	$2.8 \times 10^{\circ}$
Acenaphthylene	27.0	2.5×10^{3}	0.22	<1.1>	1	2.8 x 10 ⁻⁶
Anthracene	170.0	1.4 × 10 ⁴	0.24	<1.1>	ŀ	2.8×10^{-0}

(Continued)

Table 14 (Concluded)

	Sediment		sticial water			
	concer-	2	concen-	Aquatic 11	Aquatic life criteria	Human health
Pollutant	tration ('') (ug/g)	, .	tration (mg/1)	acute (mg/l)	chronic (mg/1)	criteria (mg/l)
Polycyclic aromatic hydroca	carbons (cont'd)	ont'd)				
Benzo[a]anchracene	140.0	2.0×10^5	0.01		1	2.8 × 10 ⁻⁶
Benzo∫b]fluoranthene	200.0	5.5×10^{5}	7.1×10^{-3}	<1.7	}	2.8×10^{-6}
Benzo[k]fluoranthene .	120.0	5.5×10^{5}	4.2×10^{-3}		1	2.8×10^{-6}
Benzo[g,h,t]perylene	38.0	1.6×10^{6}	4.7×10^{-4}		}	2.8×10^{-6}
Benzolalpyrene	200.0	5.5 × 10 ⁶	1.9 × 10 ⁻³	<1.1>	1	2.8 x 10 ⁻⁶
Chrysene	130.0	2.0×10^{5}	1.2×10^{-2}	<1.7	1	2.8×10^{-6}
Dibenzo[a,h]anthracene	11.0	3.3×10^6	$^{\prime}$ 7.0 x 10 ⁻⁵	<1.1>	}	2.8×10^{-6}
Fluoranthene	120.0	3.8×10^4	6.0×10^{-2}	64. 0	1	0.042
Fluorene	0.86	3.9×10^3	0.48	<1.7	ì	2.8×10^{-6}
Indeno(1,2,3-cd)pyrene	6.8	1.6 × 10 ⁶	8.5×10^{-5}	<1.1>	.]	2.8×10^{-6}
Naphthalene	33.0	076	0.70	<i.7< td=""><td>}</td><td>2.8×10^{-6}</td></i.7<>	}	2.8×10^{-6}
Phenanthrene	200.6	1.4 × 10 ⁴	0.29	<1.7	}	2.8 x 10 ⁻⁶
Pyrene	65.0	3.8×10^4	0.03	<1.1	}	2.8 x 10 ⁻⁶

Table 15. Ranking of the Priority Pollutant Organics and Metals Found in the Grand Calumet River Sediments Based on a Comparison of Sediment Concentrations and USEPA Water Quality Criteria for the Protection of Aquatic Life (Source R13, Table 2-5)

Compound	Score
Ranking based on acute toxicity	•
Aroclor 1248	0.61
Naphthalene	0.41
Fluorene	0.28
Acenapthene	0.26
Phenol	0.22
Phenanthrene	0.17
Anthracene	0.14
Acenapthylene	0.13
Arochlor 1254	0.13
Pyrene	0.02
Fluoranchene	1.5×10^{-2}
Benzo(a)anthracene	3.0×10^{-3}
Chrysene	7.6×10^{-3}
Benzo(b)fluoranthene	4.2×10^{-3}
Bis(2-ethylhexyl)phthalate	4.2×10^{-3}
Benzo[a]pyrene	3.2×10^{-3}
Benzo[k]fluoranthene	2.5×10^{-3}
N-Nitrosodiphenylamine	1.6×10^{-3}
1,4-Dichlorobenzene	1.5×10^{-3}
1,2-Dichlorobenzene	4.7×10^{-3}
Benzo[g,h,i]perylene	2.8×10^{-4}
Di-N-butyl phthalate	1.0 x 10 =
Butyl benzyl phthalate	7.5×10^{-3}
Indeno(1,2,3-cd)pyrene	5.0×10^{-3}
Dibenzo(a,h]anchracene	4.1×10^{-3}
Di-N-octyl phthalate	2.8 x 10 ⁻⁷
Ranking based on chronic toxicity	
Arochlor 1248	85.7
Arochlor 1254	18.8
Bis(2-ethylhexyl)phthalate	1.0
Phenol	0.07
Di-N-butyl phthalate	0.03
Butyl benzyl phthalate	0.02
1,4-Dichlorobenzene	2.1×10^{-3}
1,2-Dichlorobenzene	5.8 x 10 ⁻⁴
Di-N-octyl phthalate	8.9 x 10 ⁻³

Table 16. Ranking of the Priority Pollutant Organics and Metals Found in the Grand Calumet River Sediments Based on a Comparison of Sediment Concentrations and USEPA Water Quality Criteria for the Protection of Human Health (Source R13, Table 2-6)

Compound	Score
on-Carcinogens	
Lead	9.0 x 10 ³
Cadmium	5.6 × 10 ³
Mercury	4.2×10^{3}
Fluoranthene	1.5
Phenol	6.7×10^{-2}
l,4-Dichlorobenzene	4.1×10^{-3}
l,2-Dichlorobenzene	1.2×10^{-3}
Di-N-butyl phthalate	2.7×10^{-6}
~	·
Carcinogens	
Arsenic	2.6 x 10 ⁸
Naphthalene	2.5 X 10 ⁵
Acenaphthene	1.6 x 10 ⁵
Fluorene	1.8 x 10 ⁵
Phenanthrene	1.02 x 10 ⁵
Anthracene	8.7 x 10 ⁴
Acenaphthylene	7.7 x 10 ⁴
Arochlor 1248	1.5 x 10 ⁴
Pyrene	1.2×10^4
Benzo[a]anthracene	5.0 x 10 ³
Chrysene	4.6×10^{3}
Arochlor 1254	3.3×10^3
Benzo(b)fluoranthene	2.6×10^{3}
Benzo[h] fluoranthene	1.7 x 10 ³
Benzo[a]pyrene	260
Benzo[g,h,i]perylene	170
Indeno[1,2,3-cd]pyrene	30
Dibenzo(a,h)anthracene	24
N-Nitrosodiphenylamine	1.9×10^{-2}

Table 17. Comparison of Averaged 1982 and 1984 Metals Content of Grand Calumet River Sediments (Source R13, Table 2-3)

Source Sampling date	ISBH 1984 January 1984	USEPA 1982 October 1980
Metal	Reported Concentration	s (ug/g dry wt.)
Mercury (Hg)	0.68	0.73
Cadmium (Cd)	7	8
Arsenic (As)	18	27
Nickel (Ni)	140	98
Copper (Cu)	214	182
Chromium (Cr)	561	408
Lead (Pb)	414	1192
Zinc (Zn)	955	2687

Table 18. Results of PCB Analysis of Indiana Harbor Canal Sediment Samples (Source R7, Table 2) (see Figure 6)

Sampling location	Sample depth (feet, LWN)	Total PCB's (ppm, dry weight)
IH83-1	-17.9 to -19.9 -19.9 to -21.9 -21.9 to -23.9	14.9 17.5 23.6
	-23.9 to -25.4	35.1
IH83-2	-17.9 to -19.9	11.7 22.2/24.4
	-19.9 to -21.9 -21.9 to -24.1	19.4
IH83-3	-18.8 to -20.8	16.0
	-20.8 to -22.8 -22.8 to -23.3	26.2 30.6
IH83-3A	-18.8 to -20.8	14.0
	-20.8 to -22.8 -22.8 to -25.0	24.7 24.3
IH83-4	-12.8 to -14.8	14.3/18.5
	-14.8 to -16.8 -16.8 to -17.8	15.4 26.9
	-17.8 to -18.8	<0.3
IH83-5	-20.7 to -22.7 -22.7 to -23.9	18.1 22.5
IH83-6	-21.1 to -23.1 -23.1 to -24.4	<0.3/<0.3 <0.3
IH83-7	-18.9 to -20.9	<0.3
	-20.9 to -22.9 -22.9 to -24.1	6.4 9.3
IH83-8	-19.9 to -21.9	23.1
	-21.9 to -23.9 -23.9 to -25.0	69.9 115.

Concentrations of replicate samples are reported, separated by a slash.

Table 19. Chemical Characteristics of Sediment Collected
Along Transect E in the Indiana Harbor Canal and
Indiana Harbor, September 1987 (Source R5, Table 6)
(see Figure 10)

		Sta	Station Designation	ion	
Constituent*	9.0	1.3	2.7	3.8	5.4
Total Solids (%)	48.0	40.8	29.1	23.2	26.4
Total Volatile Solids (%)	6.5	7.6	20.6	19.7	20.1
Total Organic Carbon (mg/kg)	10,392	23,718	68,859	71,151	47,398
Fats, Oils and Greases (mg/kg)	12,433	32,968	74,293	59,970	104,224
Arsenic (mg/kg)	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium (mg/kg)	108.0	150.0	576.0	478.0	602.0
Iron (mg/kg)	24,000	43,100	45,000	29,900	006,09
Lead (mg/kg)	255.0	439.0	963.0	940.0	153.0
Manganese (mg/kg)	978.0	1,118.0	996.0	1,207.0	1,207.0
Nickel (mg/Kg)	30.0	50.0	120.0	70.0	0.06
Zinc (mg/kg)	930.0	1,920.0	4,280.0	3,250.0	4,120.0
Total PCBs (mg/kg)	1.45	2.23	10.14	90.8	17.30

^{*}Expressed on a dry weight basis.

Background Maximum	0.5 29	0.7 1.0 50	20 < 0.1 150 0.44	21 0.55 0.5 10	130 0.022 0.014	0.003		
Dickey	11 (20) 7.0 (6.1) 44 (60)	4 2.3 (1.2) 10 (11) 730 (610)	360 (360) 3.3 (1.4) 960 (1200) 0.99 (0.65)	81 (72) 3.8 (3.0) 6.0 (<1.8) < 23 (<24)	4,200 (4,300) 4.1 (3.1) ND (ND)	17 (ND) ND (ND) ND (ND)	27 (ND) ND (ND) ND (ND) ND (ND)	
Lake George Canal			600 (17) 0.13 (<0.13) 1100 (100) 0.37 (0.041)			(ND) (ND) (ND) (ND) (ND) (ND)	ND (ND) ND (ND) ND (ND) 12 (ND)	
Indianapolis	26 (30) 13 (13) 210 (68)	4 2.4 (1.3) 27 (22) 990 (570)	450 (440) 1.0 (3.5) 1100 (1200) 1.2 (0.89)	129 (180) 17 (42) 26 (15) 2 24 (<26)	4,500 (3,700) 1.5 (0.35) 0.01 (ND)	ND (ND) ND (3.9) 2.5 (ND)	11 (ND) 3.0 (ND) 5.8 (ND) ND (ND)	
Kennedy	7 (13) 1.9 (5.4)	 9.3 (23) 42.2 (42.1) 1.3 (7.7) 75 (330) 	70 (220) 0.13 (0.23) 360 (870) 0.18 (1.1)			ND (51) ND (ND) ND (ND)	ND (ND) ND (ND) ND (ND) ND (ND)	
Cline	11 (15) 3.8 (7.6)	 21 (67) 2.2 (1.2) 2.8 (6.2) 280 (540) 	120 (300) 1.5 (1.3) 350 (790) 0.19 (0.78)	44 (1.6 <1.4 <22 (1,609 6.1 (0.02	ND (ND) ND (ND) 6.5 (3.8)	ND (ND) 4.2 (3.7) ND (62) 5.9 (ND)	
Bridge	24 (12) 3.9 (3.6)	(2) (3) (3)	150 (180) 4.4 (3.4) 500 (730) 0.61 (0.90)	42 (47) 1.4 (1.5) < 1.7 (3) < 19 (< 20)	2,000 (2,700) 14 (1.9) ND (ND)	ND (ND) ND (ND) 220 (11)	te 21 (ND) ND (11) ND (ND) 160 (ND)	
	% Volatile Solids antimony	arsenic beryllium cadmium chromium	copper cyanide lcad mercury	nickel selenium silver thallium	zinc PCB-1248 BHC	pentachloro- phenol pentachloro- anisole napthalene	his (2-ethyl- hexyl) phthalate 21 (ND) methylnaph- thalene ND (11) dicrhylph- thalate ND (ND) fluorene 160 (ND)	

Table 20 (Concluded)

•	Bridge	Cline	Kennedy	Indianapolis	Lake George Cana <u>l</u>	Dickey
fluoranthene	ND (24)			(ND) (ND)	(an) an	(ND) QN
pyrene	3,300 (22)			_	_	
dibenzofuran	160 (5.1)		_	(ON) ON	(ON) ON	
acenapthene	ND (4.5)	(QN) QN	(DN) ON	_	_	_
1-2 dichloro-						
penzene //	ND(1.5)	(QN) QN	(QN) QN	(QN) QN	(QN) QN	(QN) QN
chloronaph-	(IN) 5 9	(UN) UN	(N) (N)	(QN) QN	(ON) QN	(ON) ON
henzoanth-						
racene	47 (ND)	(QN) QN	(QN) QN	17 (ND)	(QN) QN	(QN) QN
benzofluor-		't				
anthene	(QN) QN	(ON) ON		(QN) QN	(QN) QN	ND (4.0)
4-nitroaniline	(ON) (IN		(QN) QN	(ON) ON		13 (ND)
chlorophenyl-				(dis) dis		(AN)
phenylether	(QN) QN			(QN) (N	(ON) ON	(GN) 0.4
p-cresol	(QN) QN	ND (ND)	(ON) ON	4.5 (ND)		(QN) (NO
dimethy1-				•		
phenol	(QN) QN	(QN) QN	3.2 (2.0)	(QN) QN	(QN) QN	(GN) GN
dichloro-				(411)		
pheno1	(QN) QN	(QN) QN	3.3 (2.8)	(QN) QN	(an) an	(an) an

ND = Not Detected

Table 21. Sediment Organic Concentrations in the Grand Calumet River (Source R20, Table 11)

	Sediment Con	centration, ppm	Estimated Interstitial
Organic	This Study	USEPA (1985)	Concentration, ppb
PCBs (1248)	27	17	1.3
Naphthalene	2000	33	28.6
Acenaphthylene	22	27	0.12
Acenaphthene	96	100	0.28
Fluorene	69	98	0.22
Phenanthrene	200	201	0.2
Anthracene	62	170	0.06
Fluoranthene	150	120	5.07
Pyrene	140	65	0.04
Chrysene	92	130	0.57
Benzo(a)anthracene	86	140	0.04
Benzo(b)fluoranthene	140	200	3.38
Benzo(k)fluoranthene	140	120	3.31
Benzo(a)pyrene	87	200	0.54
Indeno(1,2,3-cd)pyrene	50	6.8	42.2
Benzo(g h i)perylene	35	38	2.91

Table 22. Estimated Fluxes for PCBs in the GCR-IHC Ecosystem* (Source R20, Table 13)

Location**	Sediment Concentration mg/kg	Interstitial Water Concentration µg/l	Estimated Flux† ng/m²/day × 10 ⁻⁵	Max Conc. at 2% Lipid ppm
1	13.15	0.93	9.2	6.8
2	5.86	0.41	4.0	3.0
3	27.38	1.90	18.9	14.2
4	11.34	0.80	7.9	5.9
5	31.74	2.24	22.3	16.5
6	22.93	1.62	16.1	11.9
7	7.36	0.52	5.1	3.8
8	1.11	0.08	0.7	0.6
9	3.13	0.22	2.1	1.6
10	1.89	0.13	1.2	1.0
11	ndtt	nd	nd	nd
12	0.09	0.006	0.(i	0.05
13	nd	nd	nd	nd

†† nd = less than detection level (e.g. <0.02 ppm).

^{*} Hypothetical maximum whole organism concentration of PCBs in organism with lipid content of 2 percent.

^{**} Locations are the same as those used in US Army Engineer District, Chicago (1979).

[†] PCB concentration in overlying water is 0.8×10^{-5} mg/ ℓ .

32.2 234.20 7.500 1,700 1,700 1,700 1,900 1,900 2,190

26.3 28.1 311,700 96,100 7,900 96,600 2.2 1.2 1.2 1.2 1.2 2.2 2.020 2.020

234.500 234.500 2.500 2.500 119.100 6.6 6.700 9.900 11,270

45.3 160.700 4,100 1,800 1,200 1,200 1,200 4,230 4,230 4,230 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,000

208,300 6,200 2,300 7,600 51,300 1,3 1,420 8,600 3,770 16

36.7 189:10 8:200 7:400 66.600 1.20 1.20 1.20 1.20 1.20

29.2 269.7 269.7 10,800 3,900 54,700 1.1 1.1 1.1 2,060 350

27.9 265.700 10.500 3.000 7.600 6.100 1.980

Total Kjeldahl Mitrogen Amonia Mitrogen Chemical Oxygen Demand Volatile Solide, Z

Total Phosphorus

Oll and Gresse

Hercury Lead 21nc

Hanganese Mickel

12.83 40.02 40.02 1.52 14.35

27.38 <0.02 <0.02 2.02 29.40

0.0000

60.02 60.02 60.02 1.02

5.86 6.02 6.02 7.93

51.66 <0.02 <0.02 2.25 53.91

64.40 40.02 40.02 3.56 67.96

56.40 40.02 40.02 2.34 58.74

2.19 40.02 40.02 8.56

13.15 60.02 60.02 2.04 15.19

Aroclor 142
Aroclor 248
Aroclor 254
Aroclor 260
Total PCB

10,770 169,200

29,140

16,800 270 123,400

21,800 310 85,800

1,680 7,540 220

10,500 360 171,400

10,400 164,600

Chromium Nagnesium Copper Irom

Codetus Arsenic

3-7-10

2-5-8

2-1-6

1-11-21

1-1-4

Parameter

Potel Solids. I

Table 23.

GCR-IHC Sediment Analysis Results (Source R10, Table 2) (see Figure 8)

Parameter	1-11-1	1-15-11	-							1			
١				7			21-/-	-1-0	0-2-0	1	7-5-6	9-1-2	6 . 3-4
Total Solids, Z	49.2	35.6	40.3	56.9	59.7		12.2	55.6	11.15	1	6 37		١
Volatile Solide. T	21.1		-	-								2.0	2.5
			0.61	1.17	2.5		:	9.17	7.		19.6	- -	•
Chemical Drygen Demend	200.46	207,000	224,700	198,400	200,000		43.900	314.400	315.700	_	267,100	92,000	57, 100
Total Kjeldahl Hitrogen	4,300	3,300	4.300	3,500	3,200		240	3.200	007		000		
Amonda Mirrosa	-	0					2				3	3	20.6
		006	3	20.	205		2	210	750	_	570	9	8
Inter Freehouse	008	200	300	7.	2,300		6 10	3,200	4,200	_	1,200	730	00
OIL and Gresse	87.700	98.500	97,500	106.100	96.000		. 550	65,700	67,700	_	26.400	8.600	2.200
Harcury	:	٥.٧	7.7	1.0	2.5		60. 2	1.2	1.5		6.0	0.2	£0.2
Lead	980	1,360	1,600	1,550	1,410		22	630	770	_	360	071	9
Zinc	7,700	6,300	6,100	5,700	5, 100		90	3.500	5.000	_	2.600	1.200	90
Manganese	2,820	2,460	1,590	1,460	1.460		470	2,360	2.650		3,450	084) (
Kickel	120	79	82	36	27		36	110	87		6.5	2	·
Arsenic	26	9	6	6	-		79	40	7		; \$;;	3 2
Codmiss	25	•	20	77	25		ī	•	; •		•	? •	•
Chromium	1.330	210	290	2	; ;		* *	ָבָר פּ	`;			•	- (
				•	90		2	2	2		27	2	9
	9,000	9.950	13,160	17,460	17,780		27,590	13,290	10,910	_	2.8 00	22,660	28,720
Copper	270	250	200	260	001		32	270	240	_	120	35	28
Iron	232,000	238,000	174.800	180,400	176,800	91,600	22,400	219,700	216,800	238,500	271,700	1.800	7,000 7,000
•.02													
Arocler 1242	39.65	20.45	11.3	<0.02	<0.02	31.74	<0.02	22.01	10	7. 7	1 43	=	4
Arnelos 1748													•
- TO	70.05	40.02	40.0 5	<0.02	40.0 5	40.0 5	40.0 2	40.0 5	40.0 2	40.0 5	6 0.02	¢0 .03	40.0 2
Aroclor 1254	40.0 5	*0.0	40.0 5	<0.0 2	<0.02	c 0.03	<0.02	<0.03	<0.02	40.0 2	40.0 2	<0.02	€0.02
Arocior 1260	2.50	1.26	0.37	90.0	0.12	1.82	<0.02	0.74	0.14	0.76	0.35	0.20	0.05
Total PCB	42.15	21.71	11.71	0.0	0.12	33.56	<0.02	23.67	89.22	A. 12	2.82	1.11	9.0
					1	- 1	,			:))		

Table 23 (Continued)

Table 23 (Concluded)

Parameter	2-1-5	9-3-4	25.5	10-5-6	10-7-8	11-1-2	11-3-4	12-1-2	12-3-5	13-12-2	13-3-4
Total Solids, I	41.8	41.6	46.7	43.3	51.1	75.7	78.9	56.3	42.0	91.7	78.4
Volatile Solids, Z	19.1	19.3	13.1	17.6	13.6	3.7	0.4	7.4	12.3	2.6	3.1
Chemical Oxygen Demand	382,600	415,700	290,700	304,500	232,400	37,900	62,000	163,300	186,500	29,100	41.700
Total Kjeldshi Mitrogen	2,400	2,500	1,600	2,600	2,000	680	750	2,100	1,900	097	700
Ammonta Mitrogen	450	670	260	570	450	S	30	340	300	2	9
Total Phosphorus	1,300	2,700	780	1,500	1.400	240	680	1,800	1,700	9 00	90 9
O11 and Grease	100,500	76,000	69,100	49,600	40.200	210	680	26,900	27,200	310	220
Hercury	9.0	0.7	0.5	0.5	0.5	¢0.7	40. 2	0.3	4.0	40. 2	40. 7
Lead	630	630	009	220	470	8 2	20	067	300	=	91
Zinc	2,300	4,700	3,100	009.4	3,900	80	80	4,300	1,700	91	8
Manganese	2,500	2,820	2,490	1,750	1,600	390	390	1,920	1,230	430	390
Nickel	110	120	011	7.	2	32	*	*	92	22	*2
Arsenic	65	101	90	63	99	12	12			=	=
Cadmium	~	•	•	•	•	₹	₹	•	1	Ţ	Ţ
Chronium	160	280	140	300	260	16	*1	250	001	=	=
Magnestum	9.890	7,810	000	11,620	14, 160	26,610	25,250	21,480	24,600	24,680	25,730
Copper	280	280	240	180	160	22	S	160	90	=	20
Iron	266,000	322,500	229.800	216,700	203,600	22,200	23,200	147,200	85,700	20,000	21,600
PC3.	٠										
Aroclor 1242	3.13	5.41	11.47	1.89	7.67	<0.02	0.03	0.0	1.90	<0.02	c 0.02
Aroclor 1248	40.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	40.0 2	<0.02	<0.02	€0.05
Aroclor 1254	<0.02	€0.02	<0.02	<0.02	<0.02	<0.02	*0.0	<0.0 2	<0.03	c 0.02	c 0.05
Aroclor 1260	0.45	1.06	0.49	1.06	1.12	<0.02	<0.02	0.57	0.45	<0.03	40.0 3
Total PCB	3.5	6.47	11.96	2,95	8.79	<0.02	0.03	99.0	2.35	¢0.03	<0.03

Elutriate Test Results for Indiana Harbor (Source R10, Table 3) (see Figure 8) Table 24.

		Elutriste Water			S	utriate W	ster Using	6	20 at Eacl	_			
Parameter	Fatte	Without Sediment	7-1-1	1-5-8	1-9-12	1-13-16	1-17-21	2-1-4	2-5-8	2-6-2	3-3-6	3-7-10	3-11-7
000	7/84	•	100	147	136	162	154		92		*		011
100	7/34	•	36	77	97	63	63		21		32		:
TKN	7/1.	4.7	128.6	164.0	144.0	136.8	117.8		19.6		75.8		65.3
Amonta-II	7/8	3.1	120.0	157.8	138.1	131.0	106.5		17.1		74.0		0.44
Nitrate-Mitrite-B	1 /4	0.85	0.35	0.29	0.40	0.39	3.05		3.30		2.98		3.45
Total P	7/34	90,00	0.28	0.31	0.32	0.70	0.28		<0.02		0.11		0.0
Cyanide	7/34	0.020	0.024	0.034	0.030	0.065	0.040		0.018		0.024		0.021
Phenole	7/8.	<0.010	0.018	0.018	0.015	0.031	0.035		0.035		0.010		0.026
Armenic	2/84	\$	7	•	•	21	•	4	12	•	٠	1	~
Mercury	7/14	<0.2	0.3	••	c 0.2	c 0.2	9.0	0.5	4.0	0.3	c0. 2	60.2	40. 3
Cadmium	7/14	₹	-	₹	7	Ţ	-	7	₹	7	₹	Ţ	Ţ
Chrostum	7/84	-	2	•	26	160	67	4	7	-	•	17	=
Copper	7/84	12	7	12	1	77	21	68	79	61	18	21	25
Lead	7/17	20	23	34	78	36	07	32	73	29	28	58	35
Mckel	7/34	•	7	94	57	19	£3	96	140	22	15	27	23
Zinc	7/51	34	36	32	141	007	344	31	20	ጟ	04	102	*
Iron	7/14	0	117	110	324	0101	721	288	231	20	92	120	75
Nagnestus	1/4	16.5	12.4	7.5	8 .8	3.9	5.2	12.7	8.14	17.4	13.1	13.1	19.3
Nanganese	7/10	410	¢10	¢10	¢10	•10 •10	010	51	67	97	35	77	96
Aluminum	7/37	30	400	340	350	950	250	110	320	9	240	240	91

(Continued)

3.13 0.06 0.018 0.026

3.40 60.02 0.018 0.022

29 6.8 5.3 5.3 6.02 0.019

58 27 23.0 18.5 1.44 0.02 0.062

86 122.3 18.3 1.20 0.043 0.043

102 31 58.2 53.2 3.24 0.07 0.031

80 23 39.3 35.1 3.49 0.05 0.019

19 5.4 5.0 13.68 0.02 0.020

76 23 10.2 8.2 3.32 0.03 0.018

113 74.5 71.3 0.07 0.047 0.047

122 43 73.6 69.0 3.21 0.08 0.032

100 29 47.4 42.7 4.21 0.04 0.025

59 23 52.8 50.4 3.50 60.02 0.025

COD
TOC
TKN
Ammonts-N
Nitrate+Mitrite-N
Total P
Cyanide
Phenole

50.0

Araenic
Hercury
Cadmium
Chromium
Chromium
Chromium
Chromium
Lead
Hickell
Zinc
Iron
Hagnesium
Manganese

40.2 40.2 50.2 130 130 150 200

<2
<0.2
<0.2
22
22
22
23
24
19
19
160
160
160</pre>

9-1-2

Elutriate Hater Using Sediments at Each Station -16 5-3-6 5-7-10 6-1-4 6-5-8 7-3-4

4-13-16

4-9-12

4-5-8

Parameter

Table 24 (Continued)

3.88 60.02 0.021 0.038 3.7 3.5 4.17 4.0.02 0.023, 64 20 17.6 17.3 3.46 0.02 0.019 Elutriate Water Using Sediments at Each Station 10-7-8 11-1-2 11-3-5 60.2 126.2 177 177 178 178 178 178 178 85 36.7 26.7 26.1 3.14 0.03 0.017 5.4 3.8 50.02 0.018 0.044 4.4 3.64 0.02 0.018 79 26 41.3 37.2 3.20 0.07 0.024 76 30 39.3 35.9 0.06 0.018 104 60.6 51.4 3.08 0.05 0.033 112 656 52.4 52.8 2.87 0.04 0.040 Unite 88/6 88/6 88/6 88/6 88/6 88/6 COD TOC TXM Ammonia-P Nitrate+Wifrite-W Total P Cyanide ' Parabeter Magnesium Mengenese Aluminum Armenic Hercury Cadmium Chromium Copper Lead Nickel 21uc Iron

Table 24 (Concluded)

Table 25. Comparative Chemical Composition of Indiana Harbor and Lake Michigan Sediments (Source R24, Table 2)

Parameter Indiana Harbor Lake Michigan		Concentration in Sedime	
Arsenic 29.5 10.1 Cadmium 20:0 0.1 Chromium 650.0 4.4 Lead 879.0 11.9 Mercury 0.5 BD* Zinc 4,125.0 54.1 Pesticides Aldrin 2.55 0.0006 Polyaromatic hydrocarbons Acenaphthene 96 BD Acenaphthylene 22 BD Anthracene 62 BD Benzo(a)anthracene 86 BD Benzo(a)anthracene 86 BD Benzo(a)prene 87 BD Benzo(a)prene 87 BD Chrysene 92 BD Fluoranthene 150 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD Polychlorinated biphenyls PCB-1248 BD POlychlorinated biphenyls PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight sediment weight			
Cadmium 20:0 0.1 Chromium 650.0 4.4 Lead 879.0 11.9 Mercury 0.5 BD* Zinc 4,125.0 54.1 Pesticides Aldrin 2.55 0.0006 Polyaromatic hydrocarbons Acenaphthene 96 BD Acenaphthylene 22 BD Acenaphthylene 62 BD Anthracene 86 BD Benzo(a)anthracene 86 BD Benzo(b)fluoranthene 140 BD Benzo(a)pyrene 87 BD Benzo(a)pyrene 92 BD Chrysene 92 BD Fluoranthene 150 BD Fluoranthene 2,000 0.46 Phenanthrene 2,000 BD Naphthalene 2,000 BD Pyrene 140 BD Polychlorinated biphenyls 33.4 BD	**	· · · · · · · · · · · · · · · · · · ·	
Chromium 650.0 4.4 Lead 879.0 11.9 Mercury 0.5 BD* Zinc 4,125.0 54.1 Pesticides Aldrin 2.55 0.0006 Polyaromatic hydrocarbons Acenaphthene 96 BD Acenaphthene 96 BD Acenaphthene 92 BD Anthracene 62 BD Benzo (a) anthracene 86 BD Benzo (a) anthracene 86 BD Benzo (a) pyrene 87 BD Benzo (a) pyrene 87 BD Benzo (a) pyrene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno (1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 20 BD Pyrene 140 BD <t< td=""><td></td><td>29.5</td><td>10.1</td></t<>		29.5	10.1
Lead 879.0 11.9	Cadmium	20:0	0.1
Mercury Zinc 0.5 4,125.0 BD* 54.1 Pesticides Aldrin 2.55 0.0006 Polyaromatic hydrocarbons Acenaphthene 96 BD Acenaphthylene BD Acenaphthylene Acenaphthylene 22 BD Acenaphthylene BD Acenaphthylene Anthracene 62 BD Acenaphthylene BD Acenaphthylene Anthracene 86 BD Acenaphthylene BD Acenaphthylene Anthracene 86 BD Acenaphthylene BD Acenaphthylene Benzo(a) anthracene 86 BD Acenaphthylene BD Acenaphthylene Benzo(a) anthracene 86 BD Acenaphthylene BD Acenaphthylene Benzo(a) pyrene 87 BD Acenaphthylene BD Acenaphthylene Benzo(a) pyrene 87 BD Acenaphthylene BD Acenaphthylene Bn Benzo(a) pyrene 92 BD Acenaphthylene BD BD Acenaphthylene Pluoranthene 150 BD BD Acenaphthylene BD BD BD Acenaphthylene Pluoranthene 2,000 BD	Chromium	650.0	4.4
Pesticides	Lead	879.0	11.9
Pesticides	Mercury	0.5	BD*
Polyaromatic hydrocarbons	Zinc	4,125.0	54.1
Polyaromatic hydrocarbons Acenaphthene 96 BD Acenaphthylene 22 BD Anthracene 62 BD Benzo(a)anthracene 86 BD Benzo(b)fluoranthene 140 BD Benzo(a)pyrene 87 BD Benzo(g) h 1)perylene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD Polychlorinated biphenyls PCB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight Total inorganic carbon 2.28% of 0.47% of sediment weight Oil and grease 3.88% of 1.71% of sediment weight	Pesticides		
Acenaphthene 96 BD Acenaphthylene 22 BD Anthracene 62 BD Benzo(a) anthracene 86 BD Benzo(b) fluoranthene 140 BD Benzo(a) pyrene 87 BD Benzo(g h 1) perylene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluoranthene 69 BD Indeno(1,2,3-c d) pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD POB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight sediment weight Oil and grease 3.88% of sediment weight 1.71% of sediment weight	Aldrin	2.55	0.0006
Acenaphthylene	Polyaromatic hydrocarbons		
Anthracene	Acenaphthene	96	BD
Anthracene	Acenaphthylene	22	BD
Benzo(b)fluoranthene 140 BD Benzo(a)pyrene 87 BD Benzo(g h i)perylene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD POB-1248 PCB-1254 BD O.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of occupancy of sediment weight sediment weight Sediment weight Oil and grease 3.88% of occupancy of sediment weight sediment weight Sediment weight Sediment weight PDB		62	BD
Benzo(a)pyrene 87 BD Benzo(g h i)perylene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD PCB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight 0.47% of sediment weight 011 and grease 3.88% of sediment weight 1.71% of sediment weight	Benzo(a)anthracene	86	BD
Benzo(a)pyrene 87 BD Benzo(g h i)perylene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD PCB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight 0.47% of sediment weight 011 and grease 3.88% of sediment weight 1.71% of sediment weight	Benzo(b)fluoranthene	140	BD
Benzo(g h 1)perylene 35 BD Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD PCB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight 1.83% of sediment weight Total inorganic carbon 2.28% of sediment weight 0.47% of sediment weight 011 and grease 3.88% of sediment weight 1.71% of sediment weight		87	BD
Chrysene 92 BD Fluoranthene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD POB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight 1.83% of sediment weight Total inorganic carbon 2.28% of sediment weight 0.47% of sediment weight 011 and grease 3.88% of sediment weight 1.71% of sediment weight	Benzo(g h i)perylene		BD
Fluorene 150 BD Fluorene 69 BD Indeno(1,2,3-c d)pyrene 50 BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD Polychlorinated biphenyls PCB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight Total inorganic carbon 3.88% of sediment weight Oil and grease 3.88% of 1.71% of sediment weight			BD
Fluorene Indeno(1,2,3-c d)pyrene So BD Naphthalene 2,000 0.46 Phenanthrene 200 BD Pyrene 140 BD Polychlorinated biphenyls PCB-1248 PCB-1254 BD Total organic carbon 7.39% of sediment weight Sediment weight Total inorganic carbon 2.28% of sediment weight Sediment weight Sediment weight Total and grease 3.88% of 1.71% of sediment weight	Fluoranthene		BD
Indeno(1,2,3-c d)pyrene Naphthalene Phenanthrene Phenanthrene Pyrene 200 BD Pyrene Polychlorinated biphenyls PCB-1248 PCB-1254 BD PCB-1254 BD 7.39% of sediment weight Sediment weight Total inorganic carbon 2.28% of sediment weight Total inorganic carbon 3.88% of 1.71% of sediment weight 1.71% of sediment weight 2.28% of sediment weight 3.88% of sediment weight 3.88% of sediment weight 3.88% of sediment weight	Fluorene		BD
Naphthalene Phenanthrene Phenanthrene Pyrene 2,000 BD BD Pyrene 140 BD Polychlorinated biphenyls PCB-1248 PCB-1254 BD Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight 011 and grease 3.88% of sediment weight Total organic carbon 3.88% of sediment weight sediment weight	Indeno(1,2,3-c d)pyrene		BD
Phenanthrene Pyrene 200 BD BD Polychlorinated biphenyls PCB-1248 PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight sediment weight 011 and grease 3.88% of sediment weight Sediment weight Total inorganic carbon 3.88% of sediment weight sediment weight			0.46
Pyrene 140 BD Polychlorinated biphenyls PCB-1248 33.4 BD PCB-1254 BD 0.013 Total organic carbon 7.39% of sediment weight sediment weight Total inorganic carbon 2.28% of sediment weight sediment weight Oil and grease 3.88% of 1.71% of sediment weight	Phenanthrene		BD
PCB-1248 PCB-1254 BD 0.013 Total organic carbon 7.39% of 1.83% of sediment weight sediment weight Total inorganic carbon 2.28% of 0.47% of sediment weight sediment weight Oil and grease 3.88% of 1.71% of sediment weight	Pyrene	140	BD
PCB-1254 BD 0.013 Total organic carbon 7.39% of 1.83% of sediment weight sediment weight Total inorganic carbon 2.28% of 0.47% of sediment weight sediment weight 011 and grease 3.88% of 1.71% of sediment weight Placeholder of the sediment weight sediment weight	Polychlorinated biphenyls		
PCB-1254 BD 0.013 Total organic carbon 7.39% of 1.83% of sediment weight sediment weight Total inorganic carbon 2.28% of 0.47% of sediment weight sediment weight Oil and grease 3.88% of 1.71% of sediment weight	PCB-1248	33.4	BD
Total inorganic carbon 2.28% of sediment weight 2.28% of sediment weight 3.88% of sediment weight 3.88% of sediment weight 3.88% of sediment weight 3.88% of sediment weight	PCB-1254		0.013
Total inorganic carbon 2.28% of 0.47% of sediment weight 011 and grease 3.88% of 1.71% of sediment weight 8 sediment weight 1.71% of sediment weight 1.71% of sediment weight	Total organic carbon	7.39% of	1.83% of
sediment weight sediment weight 011 and grease 3.88% of 1.71% of sediment weight sediment weight	-		
oil and grease 3.88% of 5.1.71% of sediment weight sediment weight	Total inorganic carbon	2.28% of	0.47% of
sediment weight sediment weight		sediment weight	sediment weight
DI .	011 and grease		: 1.71% of
Phenol 3 BD	•	sediment weight	sediment weight
	Pheno1	3	BD

^{*} BD = below detection.

Analysis of Sediment Samples from Chicago River and Harbor and Calumet River and Harbor Collected April 27-28, 1981 (Source R9, Table 1) Table 26.

of 40.5 .5 18 53 16 133 276 of 40.5 .5 18 53 16 133 276 in 42.4 .19 23 112 13 133 242 in 33.2 1.72 24 99 28 88 400 in 33.9 1.44 46 64 <5 136 656 50.4 (.13 33 91 18 155 254 32.4 (.13 29 57 <5 72 222 33.7 1.7 14 106 40 114 473 11	LOCATION	Moisture (%)	CN	AS	BA	CD	CR	PB	AG	НС
of 40.5 .5 18 53 16 133 276 of 40.5 .5 18 53 16 133 276 of 40.5 .19 23 112 13 133 242 of 40.5 .19 23 112 13 133 242 of 33.2 1.72 24 99 28 88 400 on 33.9 1.44 46 64 <5 136 656 on 33.4 <.13 33 91 18 155 254 on 32.4 <.13 29 57 <5 72 222 on 37.7 .17 14 106 40 114 473 11	CALUMET HARBOR				-					
of 40.5 .5 18 53 16 133 276 DF 42.4 .19 23 112 13 133 242 in 45.1 1.16 18 185 23 152 393 in 45.1 1.16 18 185 23 152 393 in 33.2 1.22 24 99 28 88 400 in 33.9 1.44 46 64 <5	2A - near N. break-	52.7	.48	21	168	2	117	255	\$:
of 40.5 .5 18 53 16 133 276 DF 42.4 .19 23 112 13 133 242 In 45.1 1.16 18 185 23 152 393 In 45.1 1.16 18 185 23 152 393 In 33.2 1.72 24 99 28 88 400 In 33.9 1.44 46 64 65 136 656 In 33.9 1.44 46 64 65 136 656 In 33.4 (.13 29 57 65 72 222 In 33.4 (.13 29 57 65 31 101 457 In 37.7 17 14 106 40 114 473 11	wall									
of 40.5	CALUMET HARBOR		_			_		_		
Of 40.5 .5 18 53 16 133 276 DF 42.4 .19 23 112 13 133 242 DF 42.4 .19 23 112 13 133 242 DF 42.4 .19 23 112 13 133 242 DF 42.4 .13 24 99 28 88 400 DF 50.4 .13 33 91 18 155 254 DF 13.4 .13 29 57 <5 72 222 DF 13.7 .17 14 106 40 114 473 1	IN - N. line of		_	_	_	_		_		
DF 42.4 .19 23 112 13 133 242 .10	643	40.5	- 5.	18	53		133	276	\$	
DF 42.4 .19 23 112 13 133 242 .10	PL									
DF 42.4 .19 23 112 13 133 242 106 45.1 1.16 18 185 23 152 393 1.72 24 99 28 88 400 1.44 46 64 <5 136 656 1.44 46 64 <5 136 656 1.44 46 64 <5 136 656 1.44 46 64 <5 136 656 1.44 46 64 <5 136 656 1.44 46 64 <5 136 400 114 457 14 106 40 114 473 1.44 40 40 40 40 40 40 40	CALUMET HARBOR		_		_	_	_	_	,_	
n. 45.1 1.16 18 185 23 152 393 33.2 1.72 24 99 28 88 400 n. 33.9 1.44 46 64 <5 136 656 50.4 <.13 33 91 18 155 254 32.4 <.13 29 57 <5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1	2E - E. line of CDF	42.4	- 19	23	112	13	133	245	\$:
n. 45.1 1.16 18 185 23 152 393 33.2 1.72 24 99 28 88 400 n. 33.9 1.44 46 64 <5 136 656 50.4 <.13 33 91 18 155 254 32.4 <.13 29 57 <5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1										
n. 45.1 1.16 18 185 23 152 393 33.2 1.72 24 99 28 88 400 n. 33.9 1.44 46 64 <5 136 656 50.4 <.13 33 91 18 155 254 32.4 <.13 29 57 <5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1	CALUMET RIVER				_					_
33.2 1.72 24 99 28 88 400 n 33.9 1.44 46 64 <5 136 656 50.4 <.13 33 91 18 155 254 32.4 <.13 29 57 <5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1	5 - Division bwtn.	45.1	11.16	18	185	23	152	393	_ \$	<u>;</u>
33.2 1.72 24 99 28 88 400 n 33.9 1.44 46 64 <5 136 656 50.4 (.13 33 91 18 155 254 32.4 (.13 29 57 <5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1	Harbor/River									
33.2 1.72 24 99 28 88 400 n 33.9 1.44 46 64 <5 136 656 50.4 <.13 33 91 18 155 254 32.4 <.13 29 57 <5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1	CALUMET RIVER					_	_	_		
50.4 1.44 46 64 <5 136 656	10 - 106th St.	33.2	11.72	24	66	28	88	400	\$.2
33.9 1.44 46 64 <5 136 656	CALUMET RIVER				_			_		
50.4 (.13 33 91 18 155 254 32.4 (.13 29 57 (5 72 222 51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473 1	13 - Turning Basin	33.9	11.44	46	64	\$	136	656	\$	-
50.4 (<.13	#3									
50.4 (<.13	CHICAGO HARBOR		_		_	_	_			_
32.4 (<.13	15 - outer Harbor	50.4	<. 13	33	91	18	155	254	\$:
32.4 <.13 29 57 <5 72 222	CHICAGO HARBOR				_	_				
51.3 .27 30 56 31 101 457	14 - Inner Harbor	32.4	<.13	59	57	<5	72	222	<5	.3
51.3 .27 30 56 31 101 457 37.7 .17 14 106 40 114 473	CHICAGO RIVER				_					
37.7 14 106 40 114 473	12 - Lake Shore	51.3	1 .27	30	95	31	101	457	~ \$:
37.7 14 106 40 114 473	Drive		_							
37.7 .17 14 106 40 114 473	CHICAGO RIVER									
	10 - N. Clark St.	37.7	. 17	14	106	40	114	473	128	<.1

All units expressed as mg/kg dry weight except as noted otherwise.

Table 27. Polution Classification of Sediments Collected from Chicago River Harbor and Calumet River and Harbor (Source R9, Table 2)

Classification	Cn	As	Ba	Cd	Cr	РЬ	Hg
Non-polluted	- <u>2</u> /	0	0	2	0	0	10
Moderately polluted	2	0	3	-	1	0	-
Heavily polluted $\underline{1}/$	6	10	7	8	9	10	0

Ten samples analyzed.

^{1/} Cadmium and Mercury is classified as polluted or not with no intermediate classification.

^{2/} Classified as non-polluted: below detection limit which is above non-polluted concentration. Therefore two samples cannot be classified for Cn.

Elutriate Analysis of Sediment Samples from Calumet River and Harbor (Source R9, Table 3) Table 28.

LOCATION CALLMET HARBOR	SAMPLE CN Elutriate <20	CN (<20	AS <1	BA 52.7	8 ₽	CR CR	PB <2	AG .1	HG C
2A - near N. breakwall	Water	<20	2	22.1	2	5	\$	*:	Ş
CALUMET HARBOR	Elutriate	420	12	6.77	2-		42	*:	2
IN - N. line of CDF, 500' E. of PL	Water	<20	2	21	=		- Z		=
CALLMET HARBOR	Elutriate	<20	3	1 76	=	9	42		<u>-</u>
2E - E. line of CDF on fence line	Water	<20	=	21.6	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$:	=
CALUMET RIVER	Elutriate	<20	2	44.9	=	5	\$	\.\.	
5 - division between Harbor/River	Water	<20	-	22.7	5	2	\$	•	<u>-</u>
CALUMET RIVER	Elutriate <20	<20	7	67.2	:	<u>-</u>	5		2
10 - 106th St.	Warer	<20	2	24	\$	2	\$	•	
CALUMET RIVER	Elutriate	<20	3	8.99	2	12	42		2
13 - Turning basin #3	Water	<20	5	28.5	5	Ş	\$		=

All units expressed as µg/liter

Table 29. Fixed Station Water Quality Data (Source P10) (see Figures 16 and 17)

						Field	1	H.	chlo-		Fluo-	Ι΄.	Sul-		Total	Diss.			Total		Fecal	oi t
St	Standard	Time	0.0	800s	Temp	됩	됩	7	rides	5	ride	۵	fates	TDS	5	Fe	•	된	PCBs	Phenols	colif.	Grease
			0.4					0.05	12.5	0.1	1.50		22.5	260	52	200	52		_	10		
1985	Jan 22	1030	0.9	8.0			7.2		140*	0.52	N.S.		120	_	<10	N.S.				\$	120	3.1
	Feb 21	1245	7.7	20.0			7.0		190*	<.005	S. N		270*		<10	N.S.				ν	45,000	9.9
	Mar 21	1130	0.9	41.0			7.1		150*	.015	N.S.		120		<10	N.S.				\$	23,000	8.3
	Apr 19	1240	6.2	3.2			7.3		170*	.023	ĸ.s.		130		<10	120				ئ	2,500	5.1
	May 13	1200	4.1	7.3			7.1		143*	600.	s.s.		100		<10	100				\$	250	6.4
	June 20	1130	3.8*	10.0	25°	7.0	7.1	3.2*	130*	.025	.s.	.42	87	_	<10	160				\$	2,300	6.9
	July 18	1200	3.2*	4.6			7.1		130*	.027	N.S.		110		<10	150				څ.	290	2.8
	Aug 22	1240	*0.4	14.0			7.1		130*	.015	N.S.		130	_	<10	180				ŵ	210	2.2
	Sept 19	1150	5.5	3.8			7.3		140*	<.005	N.S.		120		<10	120				\$	20,000	1.3
	Oct 31	1235	4.5	5.0			7.1		¥0 7 1	.057	N.S.		130		<10	130				ô	25,000	2.5
	Nov 21	1300	2.5*	>8 4			7.1		110	.021	N.S.		130	_	<10	190				బ	270,000	5.8
	Dec 19	1200	8.0	15.0			7.4		160*	.180*	N.S.		140	_	<10	180				Ą	2,700	4.2
1586	Jan 16	1100	4.2*	N.S.			7.4		N.S.	.041	N.S.		N.S.		10	190				2	8,200	N.S.
	Feb 20	1210	5.8	62			7.4		N.S.	.106*	N.S.	• •	N.S.		~10	220				∞	170,000	11.0
	Mar 20	1220	5.5	K.S.			7.4		N.S.	.038	¥.S.		¥.S.		<10	N.S.				~	22,000	4.6
	Apr 17	1200	5.5	5.4			7.4		K.S.	.035	ĸ.s.		N.S.		<10	160				N.S.	2,900	5.6
	May 22	1200	49.4	N.S.			7.4		ĸ.s.	.035	N.S.		ĸ.s.		<10	150				ŵ	4,000	N.S.
	June 20	1200	3.6*	5.4			7.5		¥.S.	.043	ĸ.s.		N.S.		<10	240				ô	2,600	7.6
	July 17	1130	2.0*	N.S.			7.3		N.S.	.031	K.S.	67.	N.S.		<10	180				2	4,100	11.0
	Aug 21	1400	2.3*	7.5			7.4		N.S.	.034	ĸ.s.		ĸ.s.		<10	160				7	3,800	20.0
	Sept	No sa	sa Iduu	taken.		41	instruc		~	access.												
	Oct 9	1000	2.5*	10.0			7.5			.027	N.S.	.52	N.S.	716*	1 0	150	20	0.2	X.S.	\$	33,000	N.S.
	Nov 20	1130	6.2	N.S.			7.4			. 135	N.S.	.57	N.S.	629	<10	160	07	0.1	N.S.	Å	40,000	N.S.
	Dec 18	1140	7.0	5.9			7.5			.070	N.S.	.24	N.S.	685	<10	210	9	<0.1	N.S.	7	4,500	7.0
1987	Jan 29	1155	8.0	N.S.			7.5			N.S.	N.S.	.39	S.S.	716	~10	130	82	0.1	N.S.	=	8,400	K.S.
	Feb 19	1230	9.5	4.9			7.7			<.005	N.S.	.30	N.S.	265	<10	120	10	*0.1	×. S.	80	14,000	3.0
	Mar		9.5	N.S.			7.6	7.2*		.028	ĸ.s.	.24	N.S.	225	<10	N.S.	10	<0.1	N.S.	9	2,900	2.0
	Apr		2.9*	7.6			7.8			.175	N.S.	.56	N.S.	901	~10	N.S.	13	60.1	ĸ.s.	51	2,000	N.S.
	₩ay		*0	N.S.			7.2			.019	N.S.	1.70	N.S.	979	<10	280	88	0.2	N.S.	\$	9,000	N.S.
	June		1.4*	6.1			7.5			.048	N.S.	0.62	N.S.	989	1 0	230	54	<0.1	N.S.	\$	000'6	N.S.

N.S. = not sampled. * Violation of 330 IAC 2-2-5.

Water Quality Data from the Indiana Harbor USACOE Project Area (Source R8) Table 30.

Result Units:	s: mg/1					ı			
PARAMETER	STATION NO.	4975-6 #1	4975-7	4975-8	4975-9	4975-10	4975-11	4975-12	4975-13 #8
Arsenic (0.00)	001)	0.002	•	0.003	•	0.002	<0.001	<0.001	0.001
Cadmium (0.	0001)	0.0003		0.0004	<0.0001	•	0.0002	0.0006	0.0007
Chromium (0	(0.002)	, 0,		<0.002	QN	QN	<0.002	0.002	<0.00>
Copper (0.0	.001)	0.003		0.003	•	0.002	0.003	0.003	00.00
Iron (0,002)		0.071	0.031	0.006	0.002	0.002	0.003	0.005	0.019
Lead (0.001		0.002	0.001	<0.001	•	•	0.001	<0.001	0.001
Manganese		;	;	!	l J	1	!	;	•
Mercury (0.	0001)	QN	ON	QN	0.0002	QN	QN	QN	QN
Nickel (0.0	02)	0.007	0.007	•	0.005	0.006	0.003	0.004	0.003
Selentum (0.001)	.001)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zinc (0.01)	•	<0.01	<0.01	•	0.02	0.01	0.01	<0.01	0.05
COD (4.0)		QN	ON	ON	4.2	ON	Q N	QN	<4.0
Coliform, F	ecal	1	1	1	;	1	;		
Cyanides, To	otal (0.01)	Q N	<0.01	ON	<0.01	QN		<0.01	
Hardness, T	otal (1)	155	159	151	146		141		
-	(0.10	_	0.16	0.17	0.16	0.12	•	•	٠
ж.	(Jeldah) (0.10)	QN	ON	QN	Q	Q	Q	O N	2
S	e (0.5)	QN N	QN	Q		Q N			
		7.9	3.1	2.5	2.3	2.4	2.8	3.1	2.4
Phenols		1	!	:					
Phosphorus,	Total (0.02)	0.03	0.03	0.02				0.0	
TDS (1.0)		174	170	184	186	160		170	
155 (1.0)		8.0	8.0	0.9	7.0	7.0		18.0	
ND - NO+ de	herted detection	uo							
しずませ	() ()	į							
< - Below detection	detection limit								

(Continued)

mg/l	
ts:	
Uni	
sult	
Re	

4975-14	<0.001 0.0002	.00	00.	0.013	00.	ON	•	00	•	4.2		<0.01	က	0.29	QN	Z	2.9	1	0.06	176	14.0
PARAMETER STATION NO.	Arsenic (0.001) Cadmium (0.0001)	hromium (0.00	opper (0.00	ron (0.00	ead (U.	ercury	ickel (0.002)	elenium	inc (0,	00 (4.0)	oliform, Feca	yanides, Total	ardness, Total (1)	itrogen, Ammonia (O.	ftrogen, Kjeldahl (0.1	il & Grease (0.))	henols	hosp	08 (1.0)	SS (1.

ND - Not detected, detection
 limit in ()
< - Below detection limit</pre>

(Continued)

Result Units: .ug/1

PARAMETER	SET TO STATION NO.	4975-6	4975-7	4975-8	4975-9	4975-10 #5	4975-11	4975-12	4975-13
2-Chlorophenol (5)	01 (5)	ON	O S	ON	O O	ON	0 0	0 2	N X
Phenol (5)	1.57		202		2 2 2	202	200	202	2 O C
2.4-Dichloro	2,4-Dichlorophenol (5)		2 Z	2 2	2 2	2 2	2 C	2 2	2 2
2,4,6-Trichl	ophenol (5)		ON	ÜN	ON	ON	QN	QN	QN
4-Chloro-3-m	ethylphenol (Q.N	ON	QN	ON	ON	ON	QN
2,4-Dinitrophenol (10)	henol (10)		QN	QN	QN N	ON	QN	QN	ON
2-Methyl-4,6-dinitro-nhenol (10)	-dinitro-	QN	QN	QN	QN	QN	QN	QN	QN
Pentachlorophenol (5)	henol (5)	. QN	ON	QN	ON	QN	QN	ON	ON
4-Nitrophenol (5)	رو) ا	ON	QN	ON	QN	QN	9	ON	ON

ND - Not detected, detection
limit in ()
< - Below detection limit</pre>

(Continued)

(Sheet 3 of 14)

ı	
	7
	Ö
	b n
	••
	S
	نه
	Uni
	Ļ
	\equiv
	SU
	S
	9
	œ

Table 30 (Continued)

4975-14	
	<u> </u>
	(5)
20	5)
1	(5) (5) (0) (0)
	(5) (10) (10) (10)
2	t 50-1
STATION	lorophenol (5) trophenol (5) ol (5) Dimethylphenol (5) G-Trichlophenol (5) loro-3-methylphenol Dinitrophenol (10) thyl-4,6-dinitro- enol (10) achlorophenol (5)
	(5)
SI	y 1 ph y 1 ph y 1 ph y 1 ph o phe o phe o phe o phe
	000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	er (47 3 47 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
~	opheropheropheropheropheropheropheropher
븬	opher opher
i.i.	10111101101010101010101010101010101010
3	Chlo enol 4-Dir 4-Di Chlo Methy ntach
2	ON 944404E CEN
PARAMETER	
;	000000400 C4

ND - Not detected, detection
 limit in ()
< - Below detection limit</pre>

(Sheet 5 of 14)

Result Units:	s: ug/1								
	SEI ID					4975-10	4975-11	4975-12	4975-13
PARAMETER	STATION NO.	#1	#5	#3	*	#2	9		
2 K-Dinitro	101 June (10)	CN	QN	ON	ON	QN	QN	ON	QN.
0 10 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0	13+6 (3)	2	C	QN	QN	QN	O N	Q N	QN
1 2 Ginbon	1 2 Dishopy hydraying (10)	0 C	O N	QN N	ON	ON	ON	ON	ON.
1, c-uipheny	(3)	C	QN	QN	Q N	QN	ON	QN	Q :
	· · · ·	2	ON	ON	ON	ON	9 2	ON	O Y
rigorene (5	/ parene (10)	2	QN	QN	QN	QN	Q.	QN	ON
Hexaciloroby Hexachloroby	chadiono (10)	2	2	ON	ON	QN N	QN N	ON	Q N
He Kachilorop	Texaciloroperations (10)	C X	Q	QN	ON	QN	QN	QN	Q :
nevacii or oc	counce (10)	010 ND	C	QN	QN N	QN	ON.	ON	ON
Texacilloroc.	Cd) pure cadicac		C	QN	ON	QN	QN	QN	QN N
Indeno(1,2,	S-calpyrana 131	2 2	C Z	Q	QN	QN	ON	QN	QN
Isopnorone Naphthalone	(2)	C Z	Q N	QN	QN	QN	QN	QN	Q
Naph that the	(10)	2	QN	ON	QN	QN	ON	QN	Q :
Mitroscodi.	mothylamine (10		Q.X	QN	QN N	QN	QN	ON.	QN :
- N - N - N - N - N - N - N - N - N - N	oronylamine (19		QN	QN	QN	QN N	QN	Q	ON
1-N1-100001	next (100001 Propy) with (1000)		QN.	QN	QN	QN	QN	Q N	QN
04022546707			QN	QN	QN	QN	QN	Q N	2
Durone (2)			ON	ON	ON	S	ON	S S	2
2, 3, 7, 8-Tet	rachlorodibenzo	QN -	QN	ON	ON	Q N	QN.	QN	Q N
nixoip-d	(10)			!	:	2	2		2
1,2,4-Trich	1,2,4-Trichlorobenzene (10)	QN (QN	Q.	QN N	ON	2	2	O N
ND - Not de	Not detected, detection	uo							
limit / Below d	limit in () / Relea detection limit								
D MOIDO - >	טופרנים ביי								

ned)

(Sheet 6 of 14)

1/6n
its:
L'
Result

4975-14 #9	0 0 C	2000	2 2 2 2	0 Q 2 X	69 ND	QN	ONN	00000	0 0 0 0 0 0 0
PARAMETER STATION NO.	Acenephthene (4) Acenaphthylene (2)		t) (t)	Bis(2-chloroethyl)ether (5) Bis(2-chloroethoxy)	Bis(2-ethylhexyl) phthalate (2) Bis(2-chlorofsopropyl)	ether (5) 4-Bromophenyl phenyl	Butyl benzyl phthalate (6) 2-Chloronaphthalene (4) 4-Chlorophenyl phenyl	Chrysene (2) Chrysene (2) Dibenzo(a,h)anthracene (6) Di-n-butyl phthalate (1) 1,3-Dichlorobenzene (10)	ene (5 ridine (4) (4)

(Sheet 7 of 14)

_
\
6
=
_
• •
S
ىد
-
=
_
\Rightarrow
ı
_
3
S
نة
α

75-14		
EI ID 49	(2) (10) ine (10) (10) tadiene (10) rene (5) mine (10) mine (10) mine (10)	detection n limit
STATI	trotoluene trotoluene hthalate (enylhydraz hene (3) (3) robenzene robutadien rocyclopen .2,3-cd)py ne (5) ene (10) odimethyla odiphenyla rene (1) 2) Tetrachlor in (10)	detected, it in () w detectio
PARAMETER	2, 4-Dini 2, 6-Dini Dioctylp 1, 2-Diph Fluorent Fluorent Hexachlo Hexachlo Indeno(1 Isophoro Nitroben Nitroben Nitros n-Nitros n-Nitros n-Nitros n-Nitros n-Nitros n-Nitros n-Nitros n-Nitros	ND - Not lim < - Belo

(Sheet 8 of 14)

Result Units: ug/l								
PARAMETER STATION NO.	4975-6	4975-7	4975-8	4975-9	4975-10	4975-11 #6	4975-12	4975-13
Aldrin (0.002)	<0.00>		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chlordane (0.025)	<0.025							
A A 1 DDD (0.004)	<0.004							
	<0.002							
	<0.015							
0.010.01 0.010 0.0	<0.002							
_	<0.003							
Loutachlor (0.002)	<0.00>							
Heptachlor enoxide (0.002)	<0.00							
tindical of chorine (0.00m)	<0.01							
Kothouse (0.01)	2							
Milou (O OOE)	0000							
Total (0.003)	<0.25							
PCB (0.05)	<0.05	<0.05	<0.05	<0.05				

ND - Not detected, detection
limit in ()
< - Below detection limit</pre>

(Sheet 9 of 14)

Result Units: ug/1

49/5-14	,
STATION NO.	1001
PARAMETER	יייירני

<u>.</u>		00
9		02
(0.004)		00
,4'-DDE (0.002)		<0.002
_		01
_		00
00.0		00
r (0.002		00
r ep	(0.002)	00
0.01)		01
5		2
0.005)		•
_		•
PCB (0.05)		<0.05

ND - Not detected, detection
limit in ()
< - Below detection limit</pre>

Result Units: ug/l									
SEI	0 497	5		4975-8	4975-9			4975-12	
	KO.	#		£		2	9	-	80
Acrolein (50)			2	ND	ON	QN	QN	QN	Q
Acres (50)			Q	QN	ON	QN	2	Q	ON
Renyere (1)			QN	QN	ON	ON	ON	Q I	ON :
Bromomethane (10)			QN	QN	QN	Q N	Q	Q N	ON:
Bromodichloromethane (2)		QN	QN	CN	Q	Q	Q :	Q :
Brosoform (1)			ON	QN	QN	ON	Q	2	2
Carbon tetrachloride (2)	QN	QN	QN	ON	9	Q :	2 :	2 3
Chlorobenzene (2)			QN N	QN	QN	Q :	Q :	2 :	2 2
Chloroethane (1)			QN	QN N	QN	QN	QX:	2 :	2 2
2-Chloroethyl vinyl et.	her (4)		QN	QN	QN	2	0 i	2 X	2 :
Chloroform (1)	•		QN	ON	ON	2	Q (2 :	2 2
Chloromethane (10)			QN	QN	QN	QN	Q i	a c	2 3
Dibromochloromethane (2)		QN	Q	QX	0 N	QN	Q :	Q :
1 1-Dichloroethane (1)			QN	QN		QN	ON		0 X
1 2-Dichloroethane (1)			QN	QN	~1	Q	QN	∵	2
1 1 Dichichloroethere (1)			QN	QN	QN	Q	QN	Q :	ON:
Trans-1 2-Dichloroethe	ne (1)		QN	QN	QN	ON	Q	ON:	QN:
1.2-Dichloroprobane (1			QN	QN	ON	Q.	Q :	Q X	2 2
Cis-1.3-Dichloropropen	e (2)		ON	Q	QN	CN:	0 X	O S	2 2
Transl 3-Dichloroprobe	ne (2)		QN	QN N	QN	2	2	O S	O N
Fthv] benzene (1)	•		ON	QN	QN				
Methylene chloride (1)	₽		7	.	.	~ 1	<1 		1>
1,1,2,2-Tetrachloroeth	ane (3)	Z:	2	0 S	2 2	2 2		2 2	2 2
Tetrachloroethene (1)		z	2 2) X	2 Z	2 2	·	QN	Q.
<pre>1,1,1-Trichloroethane (1) 1,2_Trichloroethane (1)</pre>	33	2 2	Q Q	9 1	28	2	ON S	QN	Q
, , , , , , , , , , , , , , , , , , ,									

(Continued)

_
_
D
3
••
S
·
~
5
=
L.
_
3
S
a
œ

4975-9 4975-10 4975-11 4975-12 497 #4 #5 #6 #7	ON O
•	
4975-6	
STATION NO.	Trichloroethane (1) Trichlorofluoromethane (1) Toluene (1) Vinyl chloride (10) Xylene (1)
PARAMETER	Trichloroetl Trichlorofl Toluene (1) Vinyl chlori Xylene (1)

ND - Not detected, detection
limit in ()
< - Below detection limit</pre>

(Continued)

(Sheet 12 of 14)

975-14 #9	Q N Q N	O C	ON	0 0 2 Z Z	O N	ON	O N	0 0 N N	0 C	202	2 N	0 0 C	2 Z Z Z
PARAMETER STATION NO.	crolein	enzene (1) romomethane (10	romodichloromet	rbon tetra	hloroethane (1 -Chloroethyl v	hloroform (1) hloromethane (10	ibromochlorometh 1-Dichloroethan	,2-Dichloroetha	rans-1,2-Dichloroethe	is-1,3-Dichloropropene	ransi,3-Dichloropropene (thyl benzene (1)	ethylene chloride (11,2,2-Tetrachloroe	trachiorochneme (1,1-T.ichlorocthau 1,2-Trichlorocthau

(Sheet 13 of 14)

Table 30 (Concluded)

Result Units: ug/l

PARAMETER STATION	SEI	N 0 0	4975-14 #9	
ichloroethane (l ichlorofluorometh) han	e (1)	2 Z Z	
Toluene (1) Vinyl chloride (10) Xylene (1)	_			

ND - Not detected, detection
limit in ()
< - Below detection limit</pre>

Table 31. Water Quality Data from GCR-IHC 3-4 Oct 84 (Source R12, Table 6) (see Figure 20)

[mg/L, milligram per liter; n.d., no data; °C, degree Celsius; µS/cm, microsiemens per centimeter at 25 °Celsius; µg/L, microgram per liter]

	Determi	ned by meter		Determin	ed by Winkl	er method
Station ID	Average dissolved- oxygen concen- tration (mg/L)	Minimum dissolved- oxygen concen- tration (mg/L)	Maximum dissolved- oxygen concen- tration (mg/L)	Average dissolved- oxygen concen- tration (mg/L)	Minimum dissolved- oxygen concen- tration (mg/L)	Maximum dissolved- oxygen concen- tration (mg/L)
C1A C3 C4	8.2 7.4 7.4	7.7 6.2 6.4	9.5 8.3 8.4	7.8 8.0 7.3	7.4 7.8 6.8	8.2 8.6 7.8
C5 C6 C12 GW1	6.7 6.1 5.7 6.5	6.4 5.3 4.8 6.3	7.4 6.6 6.2 7.2	6.0 5.9 5.7 8.1	4.0 5.0 5.0 8.0	7.0 6.6 6.4 8.4
GW1A GW2 GW3 GW4	5.5 5.3 5.0 6.4	4.3 4.9 4.5 5.7	6.1 5.7 5.7 6.9	6.4 7.0 6.4 8.0	6.2 6.6 5.8 7.8	6.6 7.4 7.0 8.4
GW6 GW7 GW7A GW1 0A	6.9 6.1 6.8 8.0	6.4 5.4 6.3 7.4	7.4 6.8 7.1 9.2	8.6 8.9 8.3 7.3	8.2 8.4 7.8 7.2	8.8 9.2 8.6 7.4
GW11A GW12 GW13 ST14	9.4 10.3 9.3 4.7 7.5	8.4 9.7 8.7 3.8 5.2	11.9 11.8 10.0 5.2 11.5	8.4 9.1 9.0 4.4	8.0 9.0 8.8 4.2	8.8 9.2 9.2 4.6
ST17 GWTP VM1 DP1 Dr2	7.5 5.9 n.d. n.d.	5. 2 4. 4 n.d. n.d. n.d.	7.7 n.d. n.d. n.d.	6.1 n.d. 8.0 7.4 8.5	6.0 n.d. 7.8 7.2 8.3	6.2 n.d. 8.2 7.6 9.0
DP3 HW1 USSL1 C7	n.d. n.d. n.d. 6.6	n.d. n.d. n.d. 4.4	n.d. n.d. n.d. 7.6	7.6 3.3 5.5 6.3	7.4 < .1 5.4 4.4	8.0 6.6 5.6 7.6
C7A C8 C9 C10	5.8 5.0 1.5	4.8 4.0 .9	7.0 6.0 3.0	5.7 4.9 1.3	4.6 4.2 .8	6.6 6.0 1.8 1.2
C11 ECWTP HWTP	.8 5.7 7.2	.6 4.7 n.d.	1.0 7.1 n.d.	.9 n.d.	.8 n.d. n.d.	1.2 n.d. n.d.

Table 31 (Continued)

	L	L		<u> </u>		
Station ID	Average temper- ature (°C)	Minimum temper- ature (°C)	Maximum temper- ature (°C)	Average specific conductance (µS/cm	Minimum specific conductance (µS/cm)	Maximum specific conductance (µS/cm)
				267	2/0	420
C 1A	19.1	17.7	19.7	367	349	
C3	18.3	16.4	19.5	359	343	380 480
C4	19.5	18.0	20.7	421	385	
C5	19.2	17.9	20.7	429	384	478
C6	19.8	18.0	21.5	n.d.	n.d.	n.d.
C12	18.9	17.3	20.2	498	465	579
GW 1	21.0	20.0	23.0	356	350	360
GW 1A	32.0	28.0	35.0	363	330	420
GW2	27.6	25.0	30.0	420	340	550
GW3	22.0	21.0	23.0	372	340	420
GW4	17.8	17.0	18.0	358	340	380
GW6	17.2	16.0	19.0	359	340	390
GW7	23.2	16.0	28.0	335	320	360
GW7A	16.6	15.0	20.0	345	340	350
GW 1 OA	20.7	20.0	22.0	341	300	380
GW 1 1A	19.8	19.0	21.0	336	320	390
GW 12	15.8	15.0	17.0	323	300	400
GW 13	16.4	16.0	17.0	285	240	350
ST14	27.8	27.0	28.0	656	530	740
ST17	24.0	23.0	25.0	735	600	800
CWTP	18.8	17.0	20.0	n.d.	n.d.	n.d.
VM 1	17.8	16.0	20.0	n.d.	n.d.	n.d.
DP 1	26.3	25.0	28.0	n.d.	n.d.	n.d.
DP2	24.3	23.5	25.0	n.d.	n.d.	n.d.
DP3	29.6	23.5	31.0	n.d.	n.d.	n.d.
HW1	23.7	23.3	24.4	n.d.	n.d.	n.d.
USSLl	23.0	23.0	24.0	n.d.	n.d.	n.d.
C7	17.2	15.0	19.0	1,630	480	2,100
C7A	18.0	15.0	20.0	1,610	1,295	1,950
C8	20.1	18.2	21.0	1,180	1,000	1,320
C9	19.8	18.0	21.0	n.d.	650	n.d.
C10	19.0	17.0	20.3	n.d.	n.d.	n.d.
Cll	18.6	16.8	21.1	1,150	1,010	1,290
ECWTP	18.2	17.5	19.0	n.d.	n.d.	n.d.
HWTP	17.8	16.0	21.0	n.d.	n.d.	n.d.
**** * *	2,40		21.0			

Table 31 (Continued)

Station ID	Average pH (standard units)	Minimum pH (standard units)	Maximum pH (standard units)	Suspended solids (mg/L)	Dissolved solids (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulfate (mg/L)	Hardness as CaCo3 (mg/L)
CIA	7.6	7.3	7.8	10	203	25	.0.2	33	110
C3	7.9	7.6	8. 1	4	186	18	.3	31	110
C4	6.6	6.1	6.9	6	246	43	.3	38	140
C5	7.2	6.8	7.4	< 1	326	44	.4	40	140
C6	n.d.	n.d.	n.d.	3	306	44	.4	49	140
C12	7.3	7.3	7.5	4	288	52	.5	52	150
GW LA	7.9	7.7	8.2	3	173	13	-2	26	110
GW2	8.1	7.8	8.2	5	254	63	-1	29	130
GW3	7.7	7.4	8.0	4	162	17	.3	26	110
GW4	7.6	7.3	8.1	5	174	15	.2	26	110
GW6	7.7	7.4	8.0	2	168	12	.2	26	130
GW7	7.4	7.1	8.0	2	144	11	. 2	22	120
GW7A	7.7	7.4	8.0	2	197	24	1.3	40	130
GW 1 OA	8.1	7.9	8.3	4	167	11	. 1	24	94
GW1 1A	8.3	8.1	8.6	2	193	21	.9	36	120
GW12	7.3	7. I	7.8	3	235	13	. 1	36	140
GW13	7.4	7.0	7.6	2	162	11	.1	24	130
ST14	6.8	6.6	7.9	12	399	65	.3	120	250
ST17	6.6	6.4	6.8	2	523	190	.2	47	280
GWTP	7.1	7.0	7.5	4	480	84	.8	28	190
VM I	8.6	8.4	8.9	2	378	124	1.1	32	120
DP1	n.d.	n.d.	n.d.	6	284	44	.4	63	180
DP2	7.6	7.4	8.0	4	1,240	220	1.1	190	120
DP3	7.5	7.5	7.6	4	9,100	32	.7	5,900	320
HW 1	n.d.	n.d.	n.d.	3	166	11	.9	26	110
USSL1	6.7	6.7	7.2	12	712	63	4.7	320	360
C7	7.6	7.5	8.2	12	938	329	2.3	154	200
C7A	n.d.	n.d.	n.d.	11	1,000	335	2.3	162	220
C8	7.1	6.8	7.2	14	684	160	1.3	116	200
C9	7.5	7.4	7.7	16	660	153	1.2	114	220
C10	n.d.	n.d.	n.d.	16	661	155	1.3	120	190
C11	7.1	6.9	7.2	16	674	160	1.2	120	140
GW1	7.8	7.7	7.9	4	184	17	-1	28	30
ECWTP	7. 1	6.9	7.2	7	1,080	438	3. 1	190	220
HWTP	n.d.	n.d.	n.d.	3	593	120	1.1	104	210

Table 31 (Continued)

					i	
	Five day	Total				[
	biochemical-	4	Carbonaceous	Filtered		
	oxygen	oxygen	biochemical-	biochemical-	Total	Total
Station		demand		oxygen demand		cyanide
ID	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)
CIA	3.8	12.0	5.5	n.d.	17	0.05
C3	1.8	6.5	3.0	n.d.	2	.02
C4	2.6	10.0	6.9	n.d.	34	.01
C5	3.7	11.0	7.7	n.d.	20	.01
C6	2.8	10.0	6.3	n.d.	2	< .01
C12	3.2	11.0	7.4	n.d.	27	< .01
GW 1	2.0	6.5	4.0	n.d.	< 1	.04
GW 1A	1.2	4.5	•5	n.d.	14	.02
GW2	2.4	13.0	5.6	n.d.	64	< .01
GW3	3.3	7.0	4.3	n.d.	13	•05
GW4	1.0	3.0	2.6	n.d.	< 1	< .01
GW6	1.5	5.0	2.7	n.d.	17	< .01
GW7	1.8	4.0	3.6	n.d.	< 1	< .01
GW 7A	1.4	3.0	2.3	n.d.	52	.06
GW 1 OA	2. 1	13.0	7.4	n.d.	1	< .01
GW 1 1A	3.0	12.0	7.8	n.d.	< 1	.05
GW 1 2	1.0	3.0	2.5	n.d.	< 1	< .01
GW13	1.0	3.0	2.8	n.d.	< 1	< .01
ST14	1.5	7.0	4.5	n.d.	< 1	< .01
ST17	12.0	31	30	n.d.	67	< .01
GWTP	4.0	14.0	11.4	n.d.	2	< .01
VM 1	1.0	4.0	3.7	n.d.	< 1	< .01
DP1	2.1	12.0	5.9	n.d.	16	.01
DP2	1.0	25.0	19.0	n.d.	< 1	< .01
DP3	1.2	4.0	3.4	n.d.	` <u>-</u> 5	< .01
HW1	1.0	4.0	3.1	n.d.	n.d.	< .01
USSLI	1.0	7.0	3.1	n.d.	< 1	< .01
C7	2.5	27	16.	n.d.	` 8	.17
C7A	4.2	31	17.	n.d.	11	.04
C8	15.0	48	30	36	7	.02
C9	13.0	50	30	41	2	.02
C10	12.0	49	28	39	4	.02
C10	11.5	49	26 27	n.d.	3	.01
ECWTP	13.0	24	14.0	n.d.	2	.26
HWTP	4.5		21	n.d.	1	< .01
nwir	4. 0	36	21	11 • 0 •	1	01

Table 31 (Continued)

Station ID	Total organic nitrogen (mg/L as N)	Total ammonia (mg/L as N)	Total nitrite (mg/L as N)	Total nitrate (mg/L as N)	Total ortho- phosphorus (mg/L as P)	Total phosphorus (mg/L)
CIA	0.5	1.50	0.05	0.21	0.02	0.02
C3	.1	.80	.06	.21	•02	•03
C4	•3	.71	.08	1.32	•02	•05
C5	2	.77	•09	1.51	•04	.13
C6	•5	•85	-10	1.40	•03	.04
C12	•6	.82	.13	1.57	-04	.06
GW1	.1	-58	.02	-21	•03	.04
GW1A	< .1	.93	.03	.26	< .01	< .01
GW2	•2	1.70	.03	•26	.01	< .01
GW3	.4	.63	.03	•21	.02	< .01
GW4	• 2	.09	.03	•26	< .01	< .01
GW6	.1	.53	.03	.17	< .01	< .01
GW7	• 2	•09	•01	-18	.02	.01
GW7A	.2	.17	.01	.14	-01	.02
GW1 OA	•1	1.30	.06	•21	< .01	.01
GW11A	< .1	.96	.05	.20	< .01	< .01
GW12	-1	.12	.01	.23	•02	< .01
GW13	-1	•05	.02	.26	< .01	< .01
ST14	< .1	•57	.02	•38	•01	< .01
ST17	.4	.22	.18	.11	•02	.03
GWTP	1.5	•61	•07	9.03	•20	.35
VM 1	. 2	.06	.36	.21	•09	.09
DPI	•2	1.40	.12	1.48	.03	•06
DP2	81.7	1.30	.01	.17	< .01	< .01
DP3	•6	.13	.01	•09	< .01	< .01
HWI	.1	.21	.02	.48	< .01	< .01
USSL1	. 4	.91	•08	1.12	< .01	•04
C7	1.6	2.60	1.00	8.10	•05	.18
C7A	1.7	3.20	•98	8.12	•07	•23
C8	2.5	4.10	.43	3.07	•25	•54
C9	2.4	4.70	•37	2.13	•30	.62
C10	2.6	4.90	.34	1.96	-29	•58
Cll	2.5	5.00	•37	2.13	•29	.44
ECWTP	1.9	2.40	1.80	10.20	•28	.57
HWTP	1.7	3.50	.18	1.52	•28	•35

Table 31 (Concluded)

					<u> </u>			
	Total	Total hexavalent	Total	Total	Total	Total	Total	Total
Station			copper	iron	lead		nickel	
ID	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
	(h8/r)	(18/1)	(pg/L)	(PB/L)	(1841)	(18/11)	(Pg/D/	(18/17)
CIA	3	< 1	2	1,500	7 -		4	30
C3	2	< 1	4	810	6	. 2	8	40
C4	2	< 1	1	1,000	4	.2	6	30
C5	2	< 1	8	3,600	42	. 2	9	100
C6	2	< 1	3	740	5	•3	7	40
C12	< 1	< 1	3	1,200	6	. 2	8	50
GW1	< 1	< 1	< 1	380	1	• 5	5	20
GW 1A	< 1	< 1	4	310	< 1	.7	4	30
GW2	< 1	< 1	1	360	< 1	2.5	10	20
GW3	2	< 1	< 1	410	< 1	• 3	7	20
GW4	< 1	< 1	< 1	540	20	• 3	5	20
GW6	1	< 1	< 1	250	< 1	• 5	5	30
GW7	< 1	< 1	< 1	350	< 1	•3	7	40
GW7A	< 1	< 1	3	860	4	1.0	5	20
GW1 OA	2	< 1	1	470	< 1	• 2	6	20
GW11A	1	< 1	< 1	760	3	1.0	7	30
GW 1 2	1	< 1	< 1	490	1	.7	4	20
GW13	2	< 1	< 1	210	1	. 4	5	20
ST14	1	< 1	1	6,000	3	1.1	7	30
ST17	1	< 1	< 1	1,100	< 1	.9	8	30
GWTP	n.d.	n.d.	9	450	1	. 4	11	40
VM 1	3	< 1	4	190	5	.6	5	20
DP l	1	< 1	1	1,700		.3	6	410
DP2	8	< 1	5	1,200		• 2	12	40
DP3	7	< 1	7	1,000		< .1	8	90
HW1	5	< 1	2	290		. 2	8	20
USSL1	< 1	< 1	61	2,600		• 3	24	380
C7	8	< 1	12	1,900	16	.3	13	100
C7A	4	< 1	6	1,200	14	. 6	14	80
С8	4	< 1	7	1,200	12	. 6	13	50
C9	3	< 1	2	1,100		• 6	13	50
C10	< 1	< 1	7	1,200	14	.6	14	50
C11	< 1	< 1	8	1,400	18	• 5	13	50
ECWTP	1	< 1	3	700		1.3	12	60
HWTP	1	< 1	< 1	330	< 1	• 5	11	20

Table 32. Chemical-Mass Discharge for Sampling Stations in GCR-IHC, 3-4 October 84 (Source R12, Table 9) (see Figure 20)

[Results in pounds per day; loads shown as less than (<) are based on estimate of streamflow and detection limit of given constituent or property; numbers are rounded to 3 or less significant figures; n.d., no data]

		 	 			
Station ID	Suspended solids	Dissolved solids	Chloride	Sulfate	Fluoride	Hardness
CIA	6,850	139,000	17,100	22,600	137	75,300
C3	7,980	371,000	35,900	61,800	598	219,000
C4	15,700	643,000	112,000	99,300	784	366,000
C5	< 2,610	852,000	•	105,000	1,050	366,000
C6	8,000	816,000	117,000	131,000	1,070	374,000
C12	10,800	776,000	140,000	140,000	1,350	404,000
GW 1	940	43,200	4,000	6,580	23.5	7,050
GW 1A	21	1,210	91	182	1.4	771
GW2	334	17,000	4,210	1,940	6.7	8,690
GW3	138	5,590	586	897	10.3	3,800
GW 4	78	2,720	234	406	3.1	1,720
GW6	602	50,500	3,610	7,820	60.2	39, 100
GW7	622	44,800	3,420	6,840	62.2	37,300
GW 7A	1,260	125,000	15,200	25,300	822	82,200
GW 1 OA	166	6,930	457	996	4.2	3,900
GW11A	503	48,600	5,290	9,060	227	30,200
GW 12	176	13,800	764	2,120	5.9	8,230
GW 13	42	3,410	231	505	2.1	2,730
ST14	168	5,590	911	1,680	4. 2	3,500
ST17	364	95,300	34,600	8,560	36.4	51,010
GWTP	1,110	133,000	23,300	7,760		52,600
VM 1	2	306	100	26		97
DPl	226	10,700	1,660	2,380	15.1	6,790
DP2	39	12,000	2,130	1,840	10.7	1,160
DP3	24	n.d.	190	35,000	4. 2	1,900
HW 1	1	54	4	8		36
USSLI	1	38	3			
C7	168	13,100	4,610			
C7A	860	78,200	26,200			17,200
C8	3, 850	188,000	44,000			55,000
C9	4,400	181,000	42,100			60,500
C10	4,400	182,000	42,600			52,200
Cll	4,400	185,000	44,000			38,500
ECWTP	751	116,000	47,000			23,600
HWTP	• 690	136,000	27,600	24,000	253	48,300

Table 32 (Continued)

	<u> </u>	<u> </u>		
	Total	Carbonaceous		
Station	biochemical-	biochemical-	Total	Total
ID	oxygen demand	oxygen demand	phenol	cyanide
			<u> </u>	<u> </u>
ClA	8,210	3,770	11.6	34.2
C3	13,000	6,060	4.00	39.9
C4	26,100	18,100	88.9	26.1
C5	28,800	20,000	52.3	26.1
C6	26,700	16,900	5.3	< 26.7
C12	29,600	20,100	72.8	< 26.9
GW 1	1,530	937	< .24	9.4
GW 1A	32	3	.10	. 1
GW 2	869	377	4.28	< .7
GW3	241	147	.45	1.7
GW4	47	41	< .02	< .2
GW6	1,500	814	5.11	< 3.0
GW7	1,240	1,120	< .31	< 3.1
GW7A	1,900	1,430	32.9	37.9
GW 1 OA	540	306	.04	< .4
GW 1 1A	3,020	1,970	< .25	12.6
GW 12	176	146	< .06	< .6
GW13	63	59	< .02	< .2
ST14	98	64	< .01	< .1
ST17	5,650	5,470	12.2	< 1.8
GWTP	3,880	3,150	.55	< 2.8
VM 1	3	3	< .01	< .1
DP1	453	224	-60	. 4
DP2	243	188	< .01	< .1
DP3	24	20	.03	< .1
HW 1	1	1	n.d.	< .1
USSL1	< 1	< 1	< .01	< .1
C7	378	221	.11	2.4
C7A	2,420	1,340	. 86	3.1
C8	13,200	8,320	1.92	5.5
C9	13,700	8,150	.55	
C10	13,500	7,640	1.10	
C11	13,500	7,520	.82	
ECWTP	2,600	1,460	.21	27.9
HWTP	8,300	4,800	.23	
	•	•		

Table 32 (Continued)

	<u> </u>					
Station ID	Total organic nitrogen		Total nitrite	Total nitrate	Total phosphorus	Total ortho- phosphorus
ClA	342	1,030	34.2	144	13.7	13.7
C3	199	1,600	120	419	5 9. 8	39.9
C4	758	1,860	209	3,450	- 131	52.3
C5	601	2,010	235	3,950	340	105
C6	1,470	2,270	267	3,740	107	80.0
C12	1,560	2,210	350	4,230	162	108
GW 1	28.2	136	4.7	49.4	9.4	7.1
GW IA	< .9	6.5	• 2	1.8	< .1	< .1
GW2	13.4	114	2.0	17.4	< .7	.7
GW3	12.8	21.7	1.0	7.2	< .3	.7
GW 4	3.3	1.4	• 5	4.1	< .2	< .2
GW6	21.1	159	9.0	51.1	< 3.0	< 3.0
GW7	65.3	28.0	3.1	56.0	3.1	6. 2
GW 7A	145	108	6.3	88.5	12.6	6.3
GW 1 0A	4.2	54.0	2.5	8.7	. 4	< .4
GW 1 LA	10.1	242	12.6	50.3	< 2.5	< 2.5
GW 12	4.7	7.1	• 6	13.5	< .6	1.2
GW13	3. 2	1.1	.4	5.5	< .2	< .2
ST14	. 4	8.0	. 3	5.3	< .1	. 1
ST17	69.2	40.1	32.8	20.0	5.5	3.6
GWTP	413	169	19.4	2,500	97.0	55.4
VM 1	.2	< .1	•3	0.2	.1	. 1
DP1	7.5	52.8	4.5	55.8	2.3	1.1
DP2	793	12.6	. 1	1.6	< .1	< .1
DP3	3.4	.8	.1	0.5	< .1	< .1
HW1	< .1	.1	< .1	0.2	< .1	< .1
USSL1	< .1	< .1	< .1	0.1	< .1	< .1
C7	22.4	36.4	14.0	114	2.5	. 7
C7A	133	25 0	76.6	635	18.0	5.5
C8	687	1,130	118	844	148	68.7
С9	660	1,290	102	586	170	82.5
C10	715	1,350	93.5	539	159	79.7
C11	687	1,375	102	586	121	79.7
ECWTP	204	257	193	1,090	61.1	30.0
HWTP	391	806	41.4	350	80.5	64.5

Table 32 (Concluded)

Station Total chromium Total copper Total iron Total lead Total mercury Total nickel Total zinc C1A 2.05 1.37 1,030 4.79 .14 2.74 20.5 C3 3.99 7.98 1,620 12.0 .40 16.0 79.8 C4 5.23 5.23 2,610 10.5 .52 15.7 78.4 C5 5.23 20.9 9,410 110 .52 23.5 261 C6 5.34 8.00 1,970 13.3 .80 18.7 107 C12 < 2.69 8.08 3,230 16.2 .54 21.6 135 GW1 < .24 < .24 89.3 .24 .12 1.18 4.70 GW1 < .01 .03 2.2 < .01 <01 .03 .21 600 3.1 .18 .470 600 .00 .00 .00 .00 .00 .00 .00										+			
C3							I						
C3	CIA		2.05		1.37	1.03	0		4.79		.14	2.74	20.5
C4						•							
C5						-							78.4
C6 5.34 8.00 1,970 13.3 .80 18.7 107 C12 < 2.69 8.08 3,230 16.2 .54 21.6 135 GW1 < .24 < .24 89.3 .24 .12 1.18 4.70 GW1A < .01 .03 2.22 < .01 < .01 .03 .21 GW2 < .07 .07 .07 24.1 < .07 .17 .67 1.34 GW3 .07 < .03 14.1 < .03 .01 .24 .69 GW4 < .02 < .02 .84 .31 < .01 .08 .31 GW6 .30 < .30 .75.2 < .30 .15 1.50 9.02 GW7 < .31 < .09 < .31 .09 .218 12.4 GW7A < .63 < 1.90 544 2.53 .63 3.16 12.6 GW10A .08 .04 19.5											:52	23.5	261
C12								1	3.3		.80	18.7	107
GW1A					8.08	3,23	0	1	6.2		.54	21.6	135
GW1A		<	.24	<	.24	. 8	9.3		. 24		.12	1.18	
GW3		<	.01		.03		2.2	<	.01	<	.01	.03	
GW4	GW2	<	.07		.07	2	4. 1	` <	•07		.17	. 67	
GW6	GW3		•07	<	.03	1	4.1	<					
GW7	GW4	<	.02	<	•02		8.4		. 31	<	.01		
GW7A	GW6		.30	<									
GW10A	GW7	<	.31	<		10	9	<					
GW11A	GW7A	<											
GW12	GW 1 OA							<					
GW13	GW 1 1 A												
ST14 .01 .01 84.1 .04 .02 .10 .42 ST17 .18 < .18	GW12		.06	<									
ST17 .18 < .18	GW13			<									
GWTP	ST14												
WM1	ST17			<				<					
DP1						13							
DP2		<		<				<					
DP3													
HW1													
USSL1 < .01 < .01													
C7													
C7A .31 .47 93.8 1.09 .05 1.09 6.25 C8 1.10 1.92 330 3.30 .16 3.57 13.7 C9 .82 .55 302 4.12 .16 3.57 13.7 C10 < .27 1.92 330 3.85 .16 3.85 13.7 C11 < .27 2.20 385 4.95 .14 3.57 13.7 ECWTP .11 .32 75.1 .86 .14 1.29 6.44		<		<									
C8 1.10 1.92 330 3.30 .16 3.57 13.7 C9 .82 .55 302 4.12 .16 3.57 13.7 C10 < .27 1.92 330 3.85 .16 3.85 13.7 C11 < .27 2.20 385 4.95 .14 3.57 13.7 ECWTP .11 .32 75.1 .86 .14 1.29 6.44													
C9 .82 .55 302 4.12 .16 3.57 13.7 C10 < .27 1.92 330 3.85 .16 3.85 13.7 C11 < .27 2.20 385 4.95 .14 3.57 13.7 ECWTP .11 .32 75.1 .86 .14 1.29 6.44													
C10 < .27 1.92 330 3.85 .16 3.85 13.7 C11 < .27 2.20 385 4.95 .14 3.57 13.7 ECWTP .11 .32 75.1 .86 .14 1.29 6.44													
C11 < .27 2.20 385 4.95 .14 3.57 13.7 ECWTP .11 .32 75.1 .86 .14 1.29 6.44													
ECWTP .11 .32 75.1 .86 .14 1.29 6.44		-											
		<											
HWTP .23 < .23 75.9 < .23 .11 2.53 4.61				_				_					
	HWTP		. 23	<	.23		75.9	<	• 2	3	. 1]	2.53	4.61

Table 33. Exceedance of Water Quality Standards, Grand Calumet River, 3-4 Oct 84 (Source R12, Table 8) (see Figure 20)

[Based on Indiana Stream Pollution Control
Board water-quality standards listed in
table 5 in effect at time of survey;
n.d., no data]

	Programme and the second secon	stations where was exceeded
Constituent	East Branch	West Branch
pH	0	0
Dissolved oxygen	0	50
Temperature	0	0
Ammonia (total)	0	100
Chloride	0	100
Cyanide	0	17
Dissolved solids	0	100
Fluoride	0	33
Phosphorus (total)	17	100
Sulfate	0	0
Chromium (total)	0	0
Iron (dissolved)	n.d.	n.d.
Lead (total)	0	0
Mercury (total)	0	67
PCB's (total)	n.d.	n.d.
Phenol	67	17

Selected Water Quality Parameters and Concentrations from Indiana Harbor and Canal 'Source R42, Table D7) Table 34.

				Polls and	State
Parameter	Units	ISBH 1983	USEPA 1981	Dennison (1984)	Water Quality Standards
Dissolved Solids	{/bm	1	247.2 mu/l	267.3	
Suspended Solids	[/bm	10.9 mo/1	1/5m C 8l	2	
800	1/bm	2.88 mg/]	11.8 mg/	ς•α ~	
000	mg/1	16.0 mg/l	37.7 mg/1	20°50	
Ammonia-N	mg/1	1.300 mg/l	1.661 mg/1	0.636	
NO2+NO3-N	mg/1	0.863 mg/l	0.578 mg/l	,	
Total Kieldahl Nitroyen	mg/l	•	2.25 mg/1	3,79	
Cyanide	ug/1	126.3	110.3	12.3	10.0
Phenolics	ng/J	5.4	7.7	14.8	0,1
Total Phosphorus	mg/l	0.633	0,108	<0.1	0.03
Oil and Grease	mg/1	3.92	8.9	2.6))
Fecal Coliform	#colonies/100 ml	871.0	•	} \	
Total Dissolved Oxygen	mg/1	7.11	•	1	7.0
Arsenic	l/bn	1.67	15.7	1.0	50.0
Cadmium	ug/1	2.0	<2>	0.33	1.00
Chromium (hex)	ug/1	10.0		<2>	•
Copper	ug/l	5.2	0.6	17.6	
Iron	1/6n	1215.5	1445.0	554.9	0.15
Lead	ug/1	10.7	<30	5 .0	50.0
Mangenese	ug/1	8.79	0.09	122	
Mercury	ug/1	0.107	0.17	0.086	0.05
Nickel	ug/1	<10	<30	,	
Zinc	≤ 1		81.7	0.0757	
a denotes monthly averages	ges from three sampling		sites during 1983 (158H 1983)	983).	

denotes monthly wellayes from six samples collected during 1980 (USEPA 1981). denotes averages from six samples collected during 1980 (USEPA 1981). denotes averages from fourteen samples collected during 1983 (Polls and Dennison 1984).

Table 35. Concentrations of Total PCBs Found in Hexane Bags Used to Monitor Water Quality (Source R1, Table 1) (see Figure 21)

Sample		Amt DCB	PCBs	MDL
	Hour	pg/ul)	(ppb)	(ppb)
Forks 1	7	3.12	62.40	10.00
Forks 2 Forks 3	7	1.57 0.50	31.40 10.00	10.00 10.00
10183 3	,	0.50	10.00	10.00
Forks 1	48	0.83	16.60	10.00
Forks 2	48	0.52	10.40	10.00
Forks 3	48	0.46	9.20	10.00
Forks 1	168	0.00	0.00	10.00
Forks 2	168	3.32	66.40	10.00
Forks 3	168	0.15	3.00	10.00
Forks 1	336	1.59	31.80	10.00
Forks 2	336	0.95	19.00	10.00
Forks 3	336	0.71	14.20	10.00
Forks 1	720	2.25	45.00	10.00
Forks 2	720	4.11	82.20	10.00
Forks 3	720	2.07	41.40	10.00
Bag Blank	1 0	0.00	0.00	10.00
Bag Blank		0.00	0.00	10.00
Blank 1	0	0.02	0.40	10.00
Blank 2	Ö	0.08	1.60	10.00
- · · · · · · · · ·	-	,,,,	2000	20.00

MDL = Method Detection Limit

Limit of Quantitation = 1 pg DCB Limit of Detection = 500 fg Percent recovery of perchlorination: 95%

Table 36. Industrial Point Source Loadings, ISBH 1984 Survey (Source R13, Table 2-8) (see Figure 29)

Industry	Flow	BOD	Flow BOD Amonia	Phosphorus Chlorides TDS	Chlorides	TDS		Sulfates Cyanides Iron	Iron	Phenols	Lead
Citgo	1	1	;	•	;	!	1	;	:	:	:
Dupont	4.70	157	1	0.2	1,137	52,486	33,935	1	;	1	1
Inland Steel	592	23,704	1,977	147	85,322	919,578	135,306	39	352	31	0
J & L Steel	154	5,195	787	47	51,878	335,274	50,059	32	0	6	1
U.S.S. Lead	90.0	7	;	;	95	403	260	1	;	;	;
U.S. Steel	309	10,710	827	107	58,221	525,617	66,572	3	637	9	0
Vulcan Materials	0.12	14	:	;	950	1,661	42	;	:	i i	i i
Industrial Disposal	1.00	127	;	m	9,365	23,567	2,977	;	:	;	;
American Steel	0.13	2	;	;	39	358	69	;	1	;	! !
Blaw Knox	0.04	7	;	:	24	1140	33	:	1	!	1
Explorer Pipeline	1	:	;	:	:	:	:	:	!	:	;

Notes: All water quality parameters shown in lbs/day. $(mg/l = lbs/day \times \frac{1}{8.34} \times \frac{1}{Flow})$

-- indicates parameter not measured.

O indicates parameter measured to be zero.

Flow is in millions of gallons per day.

Table 37. Combined Sewer Overflows to the Grand Calumet River-Locations and Characteristics (Source R13, Table 2-12) (see Figure 28)

Map CSO <u>Number</u>	Mile-Segment ⁽¹⁾ [Cross St.]	Sanitary <u>District</u>	Est. Annual Overflow Vol. [References below]
1	12.6-E.Br.	Gary	1.25 bg/year (USEPA, 1983)
2	12.3-E.Br. [Virginia St.]	Gary	0.59 bg/year (USEPA, 1983)
3	11.2-E.Br. [Hwy 90]	Gary	0.09 bg/year (USEPA, 1983)
4	11.0-E.Br. [Buchanan St.]	Gary	0.27 bg/year (USEPA, 1983)
5	10.0-E. Br. [Bridge St.]	Gary	0.43 bg/year (USEPA, 1983)
6	9.4-E.Br. [Hwy 90]	Gary	0.89 bg/year (USEPA, 1983)
7	7.6-E.Br.	Gary	0.75 bg/year (USEPA, 1983)
8	6.5-E.Br. [Cline Ave.]	E. Chicago	0.49 bg/year (USEPA, 1983)
9	4.7-E.Br. [Kennedy Ave.]	Hammond	1.80 bg/year (USEPA, 1983)
10 ⁽²⁾	4.6-W.Br. [Indianapolis Boulevard]	E. Chicago	2.93 bg/year (USEPA, 1983)
11	6.0-W.Br. [Columbia Ave.]	Hammond (pump sta.)	1.22 bg/year (USEPA, 1983)
12	6.0-W.Br. [Columbia Ave.]	Hammond	0.09 bg/year (USEPA, 1983)
13	1.7-S.Ca. [Turning basin]	E. Chicago	0.23 bg/year (N/A)

 $^{(2)}$ Assumed point of entry for Magoun Avenue Pumping Station CSO.

⁽¹⁾River miles, as delineated in ISHB 1984. Name of Segment or Reach: E.Br. - East Branch; W.Br. - West Branch; M.St. - Main Stem; S.CA. - Ship Canal, from Lake George Branch to Harbor.

Table 37 (Concluded)

Map CSO Number	Mile-Segment [Cross St.]	Sanitary <u>District</u>	Est. Annual Overflow Vol. [References below]
14	<pre>1.7-S.Ca. [Opposite turning basin]</pre>	E. Chicago	(3)

⁽³⁾Although listed as a CSO, this outfall is a storm sewer only. This outfall has been included because it discharges significant volumes of oily wastes which infiltrate into the storm sewer from contaminated groundwater and soils at the Energy Cooperative, Inc., site.

References:

Williams, G. G. East Chicago Lab and Field data, Volume 3. Howard, Needles, Tammen, and Bergendoff, September 1981. As cited in Combined Sewer Overflow Loading Inventory for Great Lakes Basin, Final Report. March 1983. Prepared for USEPA Great Lakes National Program Office, Chicago, by GCS Corporation.

Howard, Needles, Tammen, and Bergendoff Company for Bessozzi, Carpenter, and Ignelzi, Inc., of Hammond, IN. East Chicago Combined Sewer Overflow Water Quality Impact Analysis. Volume I: Technical Report. January 1982.

Table 38. Chemical and Physical Properties of 19 Point Source Dischargers in the Grand Calumet River Basin During July and August 1986 (Source R30, Table 2)

Outfall	рH		Alkalinity (mg/L CaCO ₃)		
East Chicago	7.78	247-259	149-160	1464	
East Chicago _a	8.10	133-138	253-265	1575	
Gary STP	8.10	227-255	149-159	728	
Hammond STP	7.90	200-256	235-249	1119	
U.S. X 002 007 010 018 020 030 034	8.32 7.81 8.04 7.39 8.29	2 115-147 2 128-142 1 137-145 1 117-143 9 125-142 9 132-147 0 211-224	112-154 112-126 112-124 100-106 100-120 113-126 98-109	279 278 378 252 282 330 535	
E.I. DuPont d 003 003 _a		2 510-540	30-40 24-30	8670 8480	
LTV Stee1 009 010 011		5 133-150 8 154-175 9 116-139	101109 110124 6064	355 434 441	
Inland Steel 002 008 008a 011 012 014 014a	8.10 8.20 8.60 8.30	4 101-108 5 117-156 0 131-142 6 151-189	96-117 104-119 138-145 105-129 103-114 88-103 88-96	286 301 339 300 329 458 467	

 $[\]boldsymbol{a}$ - water chemistry for definitive sample.

Table 39. Industrial Point Source Loadings 1984 (Source R20, Table 3) (see Figure 29)

	Flow										
Industry	agd.	BOD	Ammonia	Phosphorus	Chlorides	TDS	Sulfates	Cyanides	Iron	Phenols	Lead
Citgo	₩	1	1	ı	•		1	ı	t	1	ı
duPont	4.70	157	ı	0.2	1,137	52,486	33,935	1	ı	ı	ı
Inland Steel	592	23,704	1,977	147	85,322	919,578	135,306	39	352	31	011
J & L Steel	154	5,195	787	47	51,878	335,274	50,059	32	0	6	ı
U.S.S. Lead	0.06	4	1	1	95	403	260	•	ı	1	ı
U.S. Steel	309	10,710	827	107	58,221	525,617	66,572	3	637	9	0
Vulcan Materials	0.12	14	ı		950	1,661	42	t	•	í	ı
Industrial disposal	1.00	127	ı	٣	9,365	23,567	2,977	ŧ	1	ı	ı
American Steel	0.13	2	ı	ı	39	358	69	ŧ	-	ŧ	ı
Blaw Knox	0.04	4	1	ı	24	140	33	t	•	ı	•
Explorer Pipeline	ı	ŧ	ı	ı	ı	1	1	i	1	,	,
Totals	1,061	39,917	3,288	301	207,031	1,859,084	289,253	74	989	97	10

* USEPA (1985).

** All water quality parameters are shown in pounds per day $\left(mg/\ell = 1b/day \times \frac{1}{8.34} \times \frac{1}{Flow} \right)$.

Indicates parameter not measured.
 Indicates parameter measured to be zero.

Table 40. Industrial Discharges to GCR-IHC Dry Weather, 1983 (Source R20, Table 1) (see Figure 29)

Industry	Outfall No.	Description
J.S. Steel	002	Tube operation recycle blow down,
		noncontact water from coke plant
	005	Noncontact cooling water from coke
		plant
	007	Noncontact water from coke plant,
		miscellaneous
	010	Noncontact water from coke plant
	015	Noncontact water from #3 sinter
•		plant
	018	Noncontact water from energy
		division
	020	Noncontact water from #1 basic
		oxygen process (BOP) shop
	028	Primary bar plate mills and BOP
		shops
	030	Primary bar plate mills and BOP
		shops
	032	Noncontact water from bar mills
	033	Noncontact cooling water from
		atmospheric gas plant and miscel
		laneous finishing operations
	034	Process water from terminal treat-
		ment plant and 84-in. hot strip
		mill recycle system blow down.
		Noncontact cooling from miscel-
		laneous finishing operations
Industrial disposal	100	
Vulcan materials	001	
E.I. duPont	100	Process and noncontact cooling
		from chemical production
	002	Process and noncontact cooling
		from chemical production
	003	Process and noncontact cooling
		from chemical production
Harbison-Walker	001	
U.S.S. Lead	001	Noncontact cooling water from
		blast furnace and casting mold
Blaw-Knox	001	
	004	
American Steel	001	Process and cooling waters from foundry
J & L Steel	001	Process and cooling from flat roll
		operations
	1000	tinued)

^{*} After HydroQual (1984).

Table 40 (Concluded)

Industry	Outfall No.	Description
J & L Steel	002	Cooling water from cold rolling and finishing
	009	Powerhouse and sinter plant cool- ing water
	010	Powerhouse and blast furnace cool- ing water
	011	Process and cooling water from steel plant operations
Inland Steel	001	Process and cooling water from elec- tric furnace steel shop and bar mill
	002	Process water, cooling water, and noncontact water from numerous operations
	003	Process and noncontact cooling water from numerous operations
	005	Process and noncontact cooling water from bar mill
	007	Noncontact cooling from blast furnaces
	008	Noncontact condenser cooling water from powerhouse
	011	Noncontact cooling from blast fur- naces, noncontact from sinter plant and powerhouse
	012	Blast furnaces blow down, cooling water from coke plant, and treated sanitary water
	014	Process water from numerous operations
	015	Noncontact water from open hearth furnace and small amount of treated sanitary water
	018	Grit water from basic oxygen fur- naces, contact and noncontact basic oxygen furnace, powerhouse cooling water

Table 41. Projected Municipal Storm Water and Combined Sewage Point Source Discharges into the GCR-IHC (Source R36, Table 7) (see Figure 29)

INDIANA HARBOR CANAL NORTH OF LAKE GEORGE BRANCH ST-27 (Ship Canal) East Chicago SA-28 (Ship Canal) East Chicago ST-25 (Ship Canal) East Chicago C-26 (Ship Canal) East Chicago ST-25 (Ship Canal) East Chicago ST-24 2.0 East Chicago ST-24 2.0 East Chicago ST-22 2.0 East Chicago ST-22 2.0 East Chicago ST-22 2.0 East Chicago ST-21 (Ship Canal) East Chicago GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicago ST-6 2.9 East Chicago GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-6 3.1 East Chicago	Dickey Road Dickey Road Canal Street Ship Turnaround of Ship Canal Indianapolis Blvd. Indianapolis Blvd. Indianapolis Blvd.	า ส	(acres)	(in.) 48 10 30 96	(mg/year)	Storm	lb/storm	lb/storm	lb/storm	1b/storm	Notes
INDIANA HARBOR CANAL NORTH OF LAKE GEORGE BRANCH ST-27 (Ship Canal) East Chicag SA-28 (Ship Canal) East Chicag ST-25 (Ship Canal) East Chicag C-26 (Ship Canal) East Chicag ST-25 (Ship Canal) East Chicag ST-24 2.0 East Chicag ST-23 2.0 East Chicag ST-22 2.0 East Chicag ST-22 2.0 East Chicag ST-23 2.0 East Chicag ST-24 (Ship Canal) East Chicag GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-6 2.9 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag		32 13 78 232 232 7 7	50 20 41 391	78 30 30 86							
ST-27 (Ship Canal) East Chicag SA-28 (Ship Canal) East Chicag ST-25 (Ship Canal) East Chicag C-26 (Ship Canal) East Chicag C-26 (Ship Canal) East Chicag ST-24 2.0 East Chicag ST-23 2.0 East Chicag ST-22 2.0 East Chicag GRAND GALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-6 2.9 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL		32 13 78 232 232 7 7	50 20 41 391	48 30 96							
SA-28 (Ship Canal) East Chicag ST-25 (Ship Canal) East Chicag C-26 (Ship Canal) East Chicag LAKE GEORGE BRANCH ST-24 2.0 East Chicag ST-23 2.0 East Chicag ST-22 2.0 East Chicag ST-22 2.0 East Chicag GRAND GALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-5 3.1 East Chicag ST-5 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL ST-6 2.9 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL		13 78 232 10 7 7	20 41 391	10 30 8	32	0.896	141.9	12,681	15.7	9.71	
ST-25 (Ship Canal) East Chicag C-26 (Ship Canal) East Chicag LAKE GEORGE BRANCH ST-24 2.0 East Chicag ST-23 2.0 East Chicag ST-22 2.0 East Chicag ST-22 2.0 East Chicag ST-22 2.0 East Chicag GRAND CAUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-6 2.9 East Chicag ST-6 2.9 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL		78 232 10 7 10	41 391 15	8 30	0	0	0	0	0	0	æ
C-26 (Ship Canal) East Chicag LAKE GEORGE BRANCH ST-24 2.0 East Chicag ST-23 2.0 East Chicag ST-22 2.0 East Chicag ST-22 2.0 East Chicag ST-21 (Ship Canal) East Chicag GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL		232 10 10 1	391 15	%	82	2.38	377	33,684	41.6	25.8	. م
ST-24 ST-24 ST-23 ST-23 ST-22 ST-22 SUDIANA HARBOR CANAL ST-21 ST	Indianapo Blvd. Indianapo Blvd. Indianapo Blvd.	ot	15		255	7.14	1131	101,052	125.0	4.7	a,b
ST-24 2.0 East Chicag ST-23 2.0 East Chicag ST-22 2.0 East Chicag INDIANA HARBOR CANAL SOUTH OF LAKE GEORGE BRANCH ST-21 (Ship Canal) East Chicag GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag	Indianapo Blvd. Indianapo Blvd. Indianapo Blvd.	01 C C C C C C C C C C C C C C C C C C C	15								
ST-23 ST-22 ST-22 ST-22 ST-22 SUTH OF LAKE GEORGE BRANCH ST-21 ST-21 SAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 ST-6 ST-6 ST-6 ST-8 ST	Indianapy Blvd. Indianapy Blvd.	, ot		;	10	0.28	44.3	3,963	4.90	3.04	
ST-22 2.0 East Chicag INDIANA HARBOR CANAL SOUTH OF LAKE GEORGE BRANCH ST-21 (Ship Canal) East Chicag GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-6 3.1 East Chicag ST-6 3.1 East Chicag	Indianapo Blvd.	6 .	=	12	7	0.196	31.0	2,774	3.43	2.13	
INDIANA HARBOR CANAL SOUTH OF LAKE GEORGE BRANCH ST-21 (Ship Canal) East Chicag GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-8 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL	Columbus	,	15	54	0	0.28	44.3	3,963	7.90	3.04	
ST-21 (Ship Canal) East Chicag GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-8 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL	Columbus	ı									
GRAND CALUMET RIVER WEST OF INDIANA HARBOR CANAL ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-8 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL		_	1	;	7	0.196	31	2,774	3.43	2.13	
ST-5 3.1 East Chicag ST-6 2.9 East Chicag ST-8 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL											
ST-6 2.9 East Chicag ST-8 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL	go Toll Rd. Pumping	65	574	:	65	1.82	288	25,758	51.9	19.7	
ST-8 3.1 East Chicag GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL	U	30	95	72	30	1.68	58 58	23,777	22.4	18.2	
GRAND CALUMET RIVER EAST OF INDIANA HARBOR CANAL	-	75	57	54	75	1.176	38 1	16,644	20.6	12.7	
SI-11 6.4 East Chicago	go Cline Ave.	564 205	% % %	;	340	9.52	1,508	134,736	167.0	103	יס ע
6.4		78 8	252	;	624	17.5	2,773	247,677	306.0	190.0	,
C-12 7.4 Gary	Cofax Street	672	1,179	8	57.6	20.97	3,323	296,787	367	227	U
C-15 11.5 East Chicago	go Pierce Street	273	430	108	273	7.6	1,210	108,128	134	82.8	U
11.6	Polk St	89	141	82	89	2.38	394.5	35,240	43.6	26.9	· u
	Alley 9 East	587	576	%	287	16.44	2,605	232,674	288	178	v
C-19 13.1	Rhode Island	1,253	1,972	132	1,253	35.08	5,558	496,485	614	380	U
ST-20 16.4 Gary	Grand Boulevard	377	593	06	377	10.55	1,671	149,314	105	114	v

*Will discharge to proposed sanitary sewer system.
*Increased flows due to anticipated improvements within area.
*The projected population increase of 8,935 persons for Gary assumed not to change run-off quantities.
*Increased flows due to multi-family housing developments with resultant increased run-off.

Point Source Pollution Trends in the East Branch, Grand Calumet River (Source R20, Table 7) (see Figure 29) Table 42.

DIs-		1	low, mgd		CBG	CROD 1 1b/day**	ay * A	4 HN	NH4-N. 1b/day	lay	Total Phenols	henols,	1b/day	11	TDS. 1b/day	i i
No.	Discharger (Outfall No.)	H-(hial 9/83	1 H-(hal 10/83	10/84	11-Qual 9/83	H-()ual 10/83	USGS 10/84	H-Qual 9/83	H-Qual 10/83	USGS 10/84	H-Qual 9/83	H-Qual 10/83	USCS 10/84	H-Qual 9/83	H-Qual 10/83	USCS 10/84
11	U.S. Steel (002)	36.3	27.5		5,056	344	1,529	0	97	136	BDI.	BDL	BDL	61,759	38,989	43,300
28	U.S. Strel (005)	8.1	2.0	0.84	369	20	31.5			6.5	BDL		0.1	2,447	3,169	1,210
29	U.S. Steel (007)	15.5	12.8	8.00	129	320	867	719	288	113	1.2	2.2	4.3	28,181	21,350	16,900
30	U.S. Steel (010)	3.4	1.7	4.12	284	37	240	87	20	21.6	0.3	8.1	53.6	5,274	2,552	5,570
31	U.S. Steel (015)	1.8	1.6	1.85	173	28	46.3	80		1.4	BDL	0.1	BDL	2,822	2,535	2,690
32	U.S. Steel (018)	42.2	34.2	36.1	387	314	1,505	107	185	160	BDL	BDL	5.2	59,831	42,784	20,600
33	U.S. Steel (019)	46.3	39.6	37.3		495	1,244	=	30	28	BDL	3.6	BDL	63,716	49,540	008.44
34	U.S. Steel (020)	81.6	65.8	75.8		689	1,897	12	38	107	BDL	BDL	32.9	122,498	98,779	125,000
35	U.S. Steel (028)	23.4	16.4	4.97		164	536	15	93	53.9	BDL	0.1	0.04	45,349	23,251	6,920
36	U.S. Steel (030)	59.9	36.5	30.2		369	3,022			242	BDL	1.5	BDL	106,907	48,706	78,600
37	U.S. Steel (032)	2.7	5.6	2.55	71	191	79	-		1.1			BDL	717'7	4,337	3,450
38	U.S. Steel (033)	2.1	1.5	1.70	11	97	66	=		8.1			BDL	2,644	2,752	2,660
39	U.S. Steel (034)	33.4	25.9	21.8	7,187	2,268	5,636	œ	13	40.0	BDL	1.1	12.2	122,565	87,082	95,100
2	Gary POTW (001)	33.5	27.3	32.7	1,118	1,434	3,818	909	902	166	BDL	BDL	0.5	130,475	126,819	131,000
77	Industrial disposal (001)	0.78	1.19		159	95						BDL		18,293	28,841	
07	Vulcan Materials (001)	0.10	0.14	0.10	22	2	3.3			0.1		BDL	BDL	2,318	1,004	315
1	E.1: duPont (001)	3.3		4.52	101	101	452			52.8			9.0	7,348	7,348	10,700
6 0	E.I. duPont (002)	1.09	0.48	1.14	62	62	238			12.4			BDL	3,627	1,021	11 800
•	E.I. duPont (003)	0.57	09.0	0.70	Ξ	11	38			0.8			0.03	49,059	36,569	53,100
9	Harbison Walker (001)	0.01	0.01	0.04	0	0	1.3			0.1			0	71	60	25
01	U.S.S. Lead (001)	90.0	90.0	0.01	4	4	9.0			0.1			BDL	200	909	23
1	U.S. Steel (031)			7.05			176			7.1			BDL	ي .		13,800

(Continued)

Note: RDI. indicates below detection limit for the particular analysis. Blank indicates analysis not performed for that outfall.

* HydroQual (1984) and USCS (1985 unpublished data).

** CROD = ultimate carbonaceous blochemical oxygen demand.

Table 42 (Concluded)

-67d		Cva	nide. 1b/	dav	Iro	n. 1b/da		Merc	ury. 16/	day	Chrom	1um, 1b/	day	د	b/dl .ba:	ay
charge		上	H-Qual	USGS	H-Qual	H-Qual	SCS	H-Qual	H-Qual	USCS	H-Qual	H-Qual	USGS	H-Qua1	al H-Qual USGS	USCS
No.	Discharger (Outfall No.)	اپ	/83 10/83 10	10/84	9/83	/83 10/83 1	0/84	9/83	10/83	10/84	9/83	9/83 10/83 10/84	10/84	9/83	10/83	10/84
27	U.S. Steel (002)	î.	BDL	7.6			4.68			0.1			BOL			0.5
8.2	U.S. Steel (005)			0.1			2.2	BDL		0.005	BDL		BDL			BDL
54	U.S. Steel (007)	BDL	3.2	BDL			54			0.2			BDL			BDL
30	U.S. Steel (010)	BDI.	BOL	1.1	3		14.1			0.01			0.07			BDL
=	U.S. Steel (015)	TOS		BDL			8.3			0.005			BDL	BDL		0.3
32	U.S. Steel (018)	BDL	BDL	BDL			75.3			0.2			60.0			BDL
33	U.S. Steel (019)	708	BDL	BDL			109			0.09			BDL			BDL
34	U.S. Steel (020)	305	BDL	37.9			244	BDL		9.0			BDL			2.5
35	U.S. Steel (028)	BDL		BDL	74	248	19.5			0.008			0.08			BDL
36	U.S. Steel (030)			12.6	190	7 90	161			0.3			0.3			9.0
3.7	U.S. Steel (032)			109	2	2	4.5			0.009			0.04			0.02
38	U.S. Steel (033)			BDL			85			0.02			0.01			0.04
39	U.S. Steel (034)	BDL	BDL	BDL	89	173				0.2	BDL	BDL	0.2			BOL
2	Gary POTW (001)	nas	RDL	BDL	53	39	123	BDL BDL 0.1 BDL BDL	BDL	0.1	BDL	BDL	BDL	BDL		0.3
77	Industrial Disposal (001)	001)							BDL							
07	Vulcan Materials (001)			BDL			0.2			0.001			0.002			0.004
1	E.I. duPont (001)			0.004			99			0.01			0.04			9.0
or	E.I. duPont (002)			BDL			11.4			0.002			0.08	BDL	0.01	0.1
6	E.1. duPont (003)			BDL			8.8			BDL			0.04			0.2
9	Harbison Walker (001)			BDL			0.1			0.000			0.002			0.007
10	U.S.S. Lead (001)			BDL			0.2			0.000			BOL			000.0
	U.S. Steel (031)			BDL			28.8			0.04			90.0			90.0

Table 43. General and NPDES Permit Data of Point Source Discharges Within Indiana Harbor Canal South of the Lake George Junction (Source R36, Table 14)

Discharge	Location	NPDES	SIC	ن	Average	Receiving	Concentr	Cr Oil and	0il and		Data Source and
201	7,111,1637		3	Source	F (OM (MCD)	Stream	S.S.	(total)	Grease	H	Comments
1-23	Phillips Pipe- line Co. (E. Chicago)	IN 0032999	2911	Cooling water and process water	:	Indiana Harbor Canal/Lake Michigan	50	;	10	0.0-0.9	NPDES Permit: Minor
1-21	Union Carbide (E. Chicago)	IN 0000043	2813	Industrial gas plant - cooling water	0.125	Indiana Harbor Canal/Lake	50	0.25	10	:	NPDES Permit data and data supplied by Union Cartbide; minor
1-33	General Ameri- can Transpor- tation Corp. Plant #2 (E. Chicago	IN 0000256	3743	Process water cooling water	0.045	Indiana Harbor Canal/Lake Michigan	30 (11.3)	:	15 (5.6)	6.0-9.0	NPDES Permit not required
1-24	Blaw-Knox Foundry and Mill Machinery, Inc. (E. Chicago)	IN 0032549 -001	3569	Stormwater only	;	Indiana Harbor Canal/Lake Michigan	:	;	;	:	Minor
1-25	Blaw-Knox	- 005	3569	Stormwater, ground 0.0765 water, and non- contact cooling water	0.0765	Indiana Harbor Canal/Lake Michigan	:	:	10 (6.4)	0.6-0.9	6.0-9.0 NPDES Permit

Table 44. Flow Rates, pH and Specific Conductivity of Selected Dischargers from the GCR-IHC (Source R41, Appendix Table 2)

<u>Outfall</u>	Discharge Rate (mgd)	рН	Temp. °C	Specific Conductivity (uS)	CaCO3 mg/L Hardness	Alkalinity
East Chicago ₂	*******	7.78	24	1464	247-259	149-160
East Chicago ₁	15. 79 mgd	8.10	24	1575	133-138	253-265
Gary STP	30-3 5 mgd	8.10	24	728	227-255	149-159
Hammond STP	35 mgd	7.90	24	1119	200-256	235-249
U.S. Steel ₂ 002 007 010 018 020 030 034 E.I. Du Pont de Nemours 003 003 ₁	30 mgd 20 mgd 31 mgd 55 mgd 10 mgd 24 mgd 30 mgd 200 gpm 180 gpm	8.22 8.32 7.81 8.04 7.39 8.29 7.80	24 24 24 24 24 24 24 24 24	279 278 378 252 282 330 535	115-147 128-142 137-145 117-143 125-142 132-147 211-224	112-154 112-126 112-124 100-106 100-120 113-126 98-109
LTV Steel 009 010 011	32.97 mgd 56.51 mgd 18,000 gpm	8.05 7.98 8.39	24 24 24	355 434 441	123-150 154-175 116-139	101-109 110-124 60-64
Inland Steel Co. 002 008 008 ₁ 011 012 014 014 ₁	92.4 mgd 33.8 mgd 42.6 mgd 96.4 mgd 73.35 mgd 50.0 mgd 47.7 mgd	8.17 8.10 8.24 8.66 8.30 8.26 7.87	24 24 24 24 24 24 24	286 301 339 300 329 458 467	90-147 104-138 101-108 117-156 131-142 151-189 148-164	96-117 104-119 138-145 105-129 103-114 88-103 88-96

Denotes fresh sample collected for definiative chronic embryo-larval testing.

^{2.} These are rough estimates-flow data unavailable at time of collection but indicated running at normal capacity.

Table 45. Locations of Sampling Stations in the Grand Calumet River Basin (Source R12, Table 1)

Station ID	Station description	River mile	River segment
CIA	East Branch Grand Calumet River at Virginia Street	12.4	East
C3	East Branch Grand Calumet River at Bridge Street	10.0	East
C4	East Branch Grand Calumet River at Industrial Highway	8.5	East
C5	East Branch Grand Calumet River at Cline Avenue	6.5	East
C6	East Branch Grand Calumet River at Kennedy Avenue	4.7	East
C12	Indiana Harbor Ship Canal at 151st Street	3.8	East
GW 1	U.S. Steel outfall 002	13.5	
GW1A	U.S. Steel outfall 005	13.5	East
GW2	U.S. Steel outfall 007	13.3	East
GW3	U.S. Steel outfall 010	13.1	East
GW4	U.S. Steel outfall 015	12.9	East
GW6	U.S. Steel outfall 018	12.4	
GW7	U.S. Steel outfall 019	12.3	
GW7A	U.S. Steel outfall 020	12.2	East
	U.S. Steel outfall 028	11.8	East
	U.S. Steel outfall 030	11.6	
GW12	U.S. Steel outfall 031	11.5	
GW13	U.S. Steel outfall 032	11.5	East
ST14	U.S. Steel outfall 033	11.3	
ST17	U.S. Steel outfall 034	9.2	East
GWTP	Gary wastewater-treatment plant	8.8	East
VM 1	Vulcan Materials outfall 001	6.8	
DPl	Dupont outfall 001	5.2	East
DP2	Dupont outfall 002	4.9	East
DP3	Dupont outfall 003	4.9	East
HW1	Harbison-Walker Refactories outfall 001	4.8	East
USSL1	U.S.S. Lead outfall 001	4.2	East
C7	West Branch Grand Calumet River near Indianapolis Blvd.	5.5	West
C7A	West Branch Grand Calumet River near Indiana Toll Road	4.8	West
C8	West Branch Grand Calumet River at Columbia Avenue	4.1	West
C9	West Branch Grand Calumet River at Hohman Avenue	3.0	West
C10	West Branch Grand Calumet River at Burnham Avenue	1.8	
C11	West Branch Grand Calumet River near Burnham Park	0.9	West
ECWTP	East Chicago wastewater-treatment Plant	5.4	West
HWTP	Hammond wastewater-treatment Plant	4.5	West

Table 46. POTW Improvement, 1968-1982* (Source R20, Table 4)

POTW	Parameter	1968	1982
East Chicago	Flow, mgd	11.3	16.7
	BOD ₅ , lb/day (mg/l)	13,700(146)	10,400(73)
	TSS, lb/day (mg/l)	10,400(110)	15,000(99)
Hammond	Flow, mgd	33.4	37.9
	BOD ₅ , lb/day (mg/l)	10,800(39)	540(1.7)
	TSS, 1b/day (mg/l)	9,360(37)	600(1.9)
Gary	Flow, mgd	48.5	41.4
	BOD ₅ , lb/day (mg/l)	4,590(11)	3,107(9.0)
	TSS, lb/day (mg/l)	8,480(21)	2,070(6.0)

^{*} USEPA (1985).

Table 47. Lysimeter Surface Runoff Water Quality During Early, Wet, Unoxidized Stage (Source R24, Table 6)

	Mean Unfil. Runoff	Mean Filt. Runoff	USEPA Maximum
Parameter	Conc. mg/l	Conc. mg/l	Criteria
рH	7.64	7.66	NA*
Conductivity**	0.0052	0.0052	NA
S/m			
SS	6,600	NA	NA
DDE	<0.00001	0.00004	NA
PCB-1248	0.096	0.0015	0.014
PAHs	18.03	0.148	NA
Naphthalene	6.91	0.115	NA
Acenaphthylene	0.212	<0.005	NA
Acenaphthene	0.857	0.0131	NA
Fluorene	0.780	0.010	NA
Phenanthrene	1.67	0.0097	NA
Anthracene	0.494	<0.005	NA
Fluoranthene	1.57	<0.005	NA
Pyrene	1.35	<0.005	NA
Chrysene	0.853	<0.005	NA
Benzo(a)	0.787	<0.005	NA
anthracene	0.101	.0.003	••••
Benzo(b)	1.12	<0.005	NA
fluoranthene	1.12	-0.003	****
Benzo(k)	1.12	<0.005	NA
fluoranthene	1.12	10.003	NA
	0.104	<0.005	NA
Indeno(1,2,3-C D)	0.194	<0.005	NA
pyrene	<0.010	40. 00E	37.4
Dibenzo(A H)	<0.010	<0.005	NA
anthracene	0.104		•-•
Benzo(G H)	0.124	<0.005	NA
perylen			
Heavy Metals			
Cadmium	0.154	0.0021+	0.0015-0.002
Copper	1.79	0.0237+	0.012-0.043
Nickel	0.707	0.0297	1.1-3.1
Zinc	30.9	0.360 +	0.180-0.570
Manganese	9.64	0.0170	, NA
Chromium	4.06	0. 0567	2.2-9.9
Lead	6.80	0.0670	0.074-0.400
Iron	627	1.39	NA
Mercury	0.0037	<0.0002	0.0017
Arsenic	0.232	<0.005	0.440

NA = Standards not available.

S/m = Siemans per mieter = 0.1 X mmhos per centimetre.

Concentrations equal or exceed USEPA Maximum Water Quality Criteria Protection of Aquatic Life.

Table 48. Lysimeter Surface Runoff Water Quality During Dry, Oxidized Stage (Source R24, Table 7)

Parameter	Mean Unfil. Runoff Conc. mg/l	Mean Filt. Runoff Conc. mg/l	USEPA Maximum Criteria
pH	6.3	6.3	NA*
Conductivity	4.9	NA	NA
Sm			
SS	56	NA	NA
PCB-1248	<0.0002	<0.0002	0.014
PAH			ΔY
Naphthalone	0.025 A	0.023 A	N
Acenaphthylene	<0.005	<0.005	N N
Acenaphthene	<0.005	<0.005	N N
Fluorene	<0.005	<0.005	N N
Phenanthrene	0.0069 A	0.0056 A	N N
Anthracene	<0.005	<0.005	n N
Fluoranthene	0.0067	<0.005	N N
Pyrene	0.0061	<0.005	N N
Chrysene	<0.005	<0.005	N N
Benzo (a)	<0.005	<0. 005	IA .
anthracene		-0.005	N
Benzo (b)	<0.005	<0.005	**
fluoranthene		-0.005	N
Indeno-1,2,3,_C D	<0.005	<0. 005	N
pyrene		40. 00E	N
Benzo (g h 1)	<0.005	<0.005	N
perylene			
Heavy metals		0.000/ ++ +	0.0015-0.002
Cadmium	0.0011	0.0026 **,+	0.012-0.043
Copper	0.054	0.072 **,+	0.021
Chromium	0.027	0.0043	1.1-3.1
Nickel	0.038	0.046 **	0.180-0.570
Zinc	0.34	0.53 **,+	0.180-0.570 NA
Manganese	0.28	0.40 **	0.74-0.400
Le ad	0.032	0.008 **	0.74-0.400 NA
Iron	5.74	0.041	0.0017
Mercury	<0.0002	<0.0002	0.440
Arsenic	<0.005	<0.005	U , 440.

^{*} NA = No values available.

^{**} Filtered concentrations are not statistically significantly different from unfiltered concentrations.

⁺ Concentrations exceed USEPA Maximum Water Quality Criteria for Protection of Aquatic Life.

Table 49. Summary of Probable Maximum Leachate Contaminant Concentrations (Source R24, Table 5)

	Concentration (mg/l)					
Contaminant	Anserobic	Aerobic				
Arsenic	0.034	0.016				
Cadmium	0.009	0.0995				
Chromium	0.195	0.013				
Lead	0.370	0.055				
Zinc	1.27	0.454				
Total PCB	0.00054	0.0032				
Total PAH	1.82	0.0674				

Table 50. Summary of Flow Data, Indiana Harbor Canal and Grand Calumet River (Source R18, Figure 3.1c) (see Figures 31-33)

		Flow in	Cubic Fee	et per Sec	ond		
Site	Nov.	May	Aug.	Sept.	Mar.	Mar.	
No.	1954	1955	1955	1955	1956	1964	Location
1A		31.3	-	-	-	-	
1	52.2	69.0	-	-	-	-	
2	89.5	104	-	-	-	-	
2 3 3A	265	256	329	-	225	297	Virginia Str ee t
3A	•	344	-	-	-	~	
4	512	491	591	565	490	507	Broadway Street
4A	-	559	-	587	-	-	
5	564	582	723	640	492	657	Buchanan Street
5A	-	649	769	735	609	749	
5B	-	725	810	824	722	718	U.S. Highway 12
6	734	-	783	813	653	848	
6	•	•	-	-	-	808	
6 7 8 9	870	726	1010	844	806	894	Kennedy Avenue
8	785	657	977	933	855	1010	151st Street
9	117	181	209	57.1	58.0	20.1	Calumet Avenue
10	•	•	-	1040	1128	1450	Dickey Road
11	-	-	-	-	-	16.0	Burnham Avenue
	581.68	581.50	581.21	580.70	579.67	577.4 *	Monthly mean levels of Lake Michigan-Datum 1929

^{*} Approximate elevation.

Table 51. Summary of Flow Data, Indiana Harbor Canal and Grand Calumet River (Source R18, Table 3.3) (see Figures 31-33)

	Flow.	Flow. cfs				
Location	Typical value	Range	Typical value			
Grand Calumet River, east branch	800	600 to 900	23			
Grand Calumet River, west branch	70	- 40 to 90	2.0			
IHC, Columbus Drive	1200	800 to 2200	34.			
IHC, Dickey Rd.	1500	-	42.			
IHC mouth, upstream sources	2200	1500 to 3800	62.			
IHC mouth, total	3500	3150 to 4200	100.			

Table 52. Flow Measurements at River Sampling Stations in Figure 20, 3-4 Oct 84 (Source R12, Table 3)

Station ID	Measurement number	Beginning time	Ending time	Discharge (ft ³ /s)	Average velocity (ft/s)	Average depth (ft)	Width (ft)	Area (ft ²)
C4	1	0900	1005	406	1.2	4.3	77	328
C4	2	1055	1145	377	1.1	4.3	77.	330
C4	3	1300	1342	440	1.3	4.5	77	347
C4	4	1500	1548	460	1.4	4.3	77	332
C4	5	1650	1735	480	1.5	4.3	77	331
C4	6	1900	1950	475	1.4	4.5	77	350
C4	7	2057	2142	490	1.5	4.3	77	333
C4	8	2300	2342	526	1.6	4.4	77	337
C4	9	0102	0148	542	1.6	4.4	77	336
C4	10	0303	0352	518	1.5	4.5	77	343
C4	11	0503	0547	571	1.7	4.5	77	345
C4	12	0655	0741	535	1.6	4.4	77	339
C4	13	0850	0935	559	1.5	4.9	77	374
		A	verage	491	1.5	4.4	77	340
C5	1	0903	1045	363	.4	5.6	168	940
C5	2	1116	1230	435	.5	5.2	168	881
C5	3	1306	1415	402	.4	5.7	168	958
C5	4	1500	1620	485	.5	5.6	168	934
C5	5	1700	1830	466	•5	5.5	168	922
C5	6	1915	2015	426	. 4	5.7	168	953
C5	7	2100	2215	489	•5	5.7	168	956
C5	8	2300	0026	502	• 5	5.8	168	975
C5	9	0106	0220	545	•6	5.8	168	979
C5	10	0309	0427	527	• 5	6.0	168	1002
C5	11	0502	0625	526	• 5	5.8	168	974
C5	12	0700	0823	514	• 5	5.6	168	948
C5	13	0900	1000	553	.6	5.9	168	986
		A	verage	479	•5	5.7	168	954

(Continued)

[All measurements by U.S. Geological Survey; measurements at site C9 were made in the culverts beneath Hohman Avenue, measurements at all other sites were made in the stream channel; ft³/s, cubic foot per second; ft, foot; ft², square foot]

Station ID	Measurement number	Beginning time	Ending time	Discharge (ft ³ /s)	Average velocity (ft/s)	Average depth (ft)	Width (ft)	Area (ft ²)
ClA	1	0900	1015	127	0.8	3.2	49	155
ClA	2	1100	1215	127	.8	3.1	49	154
ClA	3	1300	1430	118	•8	3.1	49	153
ClA	4	1500	1620	128	.9	2.9	49	140
ClA	5	1700	1810	124	.8	3.1	49	154
C 1A	6	1900	2015	129	•8	3.3	49	161
CIA	7	2100	2210	128	.8	3.3	49	162
CIA	8	2300	0025	129	.8	3.2	49	159
ClA	9	0100	0230	134	.9	3.2	49	156
ClA	10	0330	0435	128	•8	3.4	49	167
ClA	11	0500	0650	142	.8	3.6	49	175
C 1A	12	0700	0830	118	•7	3.4	49	165
C1A	13	0900	1000	121	•7	3.5	49	171
		A	verage	127	.8	3.3	49	159
С3	1	0900	1020	328	. •8	4.5	86	386
C3	2	1120	1240	292	.8	4.5	86	386
C3	3	1315	1420	308	.8	4.6	85	388
C3	4	1500	1615	311	.8	4.6	85	389
C3	5	1710	1815	352	.9	4.6	85	391
C3	6	1910	2015	371	•9	4.6	85	394
C3	7	2110	2220	394	1.0	4.6	86	399
C3	8	2310	0015	381	.9	4.7	86	402
C3	9	0115	0220	405	1.0	4.6	88	409
C3	10	0310	0420	416	1.0	4.6	88	408
C3	11	0515	0630	411	1.0	4.8	87	414
C3	12	0715	0820	411	1.0	4.7	87	410
C3	13	0905	1020	424	1.0	4.7	88	411
		A	verage	370	.9	4.6	86	399

Table 53. Effluent Discharge Measurements at Industrial and Municipal Outfalls in Figure 20, 3-4 Oct 84 (Source R12, Table 4)

[Measurements at U.S. Steel Corporation outfalls by U.S. Geological Survey; all other measurements by plant operators; all measurements taken at discharge point except at Hammond Wastewater-Treatment Plant where flow was metered at inflow; ft³/s, cubic foot per second]

Station ID	Measurement number	Beginning time	Ending time	Discharge (ft ³ /s)
GW1	1	0900	0920	44.9
GW 1	2	1540	1600	46.1
GW1	3	2010	2010	43.0
GW 1	4	0315	0315	42.0
GW1	5	0715	0715	42.0
			Average	43.6
GW 1A	1	0905	0905	1.3
GW IA	2	1020	1030	2.6
GW 1A	3	· 1545	1545	2.6
GW1A	4	0345	0345	•0
GW 1A	5	0730	0730	.0
			Average	1.3
GW2	1	0920	0930	13.0
GW2	2	1050	1100	10.7
GW2	3	1615	1625	13.0
GW2	4	0410	0420	12.6
GW2	5	0745	0745	12.6
			Average	12.4
GW3	1	1010	1025	6.5
GW3	2	1135	1135	6.5
GW3	3	1640	1640	6.6
GW3	4	0445	0445	6.5
GW3	5	0800	0810	5.9
			Average	6.4
GW4	1	1055	1055	2.8
GW4	2	1435	1445	3.1
GW4	2 3	1825	1825	2.8
GW4	4	0500	0500	2.8
GW4	5	0835	0850	2.8
			Average	2.9

Table 54. 1986-87 Water Year Data, Little Calumet River (Source R37, Page 201)

LOCATION.--Lat 41°34'19", long 87°19'13", in NEISEI sec.15, T.36 N., R.8 W., Lake County, Hydrologic Unit 04040001, on right bank 100 ft upstream of Pennsylvania Railroad bridge, 800 ft upstream of Martin Luther King Avenue bridge at Gary, 1.3 mi downstream of highway 53, and 1.5 mi upstream from confluence with Deep River.

DRAINAGE AREA. -- 5.8 mi 2, approximately.

PERIOD OF RECORD. -- June 1958 to September 1967, October 1968 to September 30, 1971 (discharge), December 13, 1984 to current year (gage heights only).

GAGE.--Water-stage recorder. Wooden control since Dec. 13, 1984. Datum of gage is 580.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Stage affected by backwater from Deep River during times of flood. Minimum gage height for the period of record may have been lower prior to December 13, 1984.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 11.59 ft, Nov. 21, 1985; minimum gage height, 5.74 ft, Sept. 10, 15-19, 1986. Minimum gage height not reported prior to December 13, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.-- Flood in October 1954 reached a stage of 13.09 ft, from flood mark.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 9.83 ft, June 3; minimum gage height, 5.86 ft, Aug. 13.

SMOAL 2 LOKYT	ATA			GAGE HET	GHT, IN FEE 24	T. WATE	R YEAR OC	TOBER 1986	TO SEPTE	MBER 1987		
DAY	OCT	¥0¥	DEC	JAN	FEB	KAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.12		8.72	6.57	6.90	7.46	6.54	6.97	0.40			
2	6.93		8.54	6.59	7.12	7.45	6.52		9.48	6.87	6.33	8.45
3	8.47		8.36	6.59	7.31	7.39	6.45	7.00	9.81	6.81	6.31	8.16
4	8.52		8.18	6.57	7.55	7.28		7.17	9.78	6.65	6.26	7.83
5	8.59		7.90	6.89	7.55	7.14	6.43 6.44	7.18 7.10	9.67 9.54	6.47 6.41	6.21 6.14	7.52 7.22
5	8.58	•••	7.70	6.64	7.47	7.09	6.42	6.99				
7	8.50		7.76	6.65	7.41	6.99	5.42		9.28	6.81	6.07	6.98
8	8.25		8.01	6.61	6.85	6.90		6.89	8.95	7.09	6.03	6.84
9	7.93		8.06	6.28	7.39		6.43	6.72	8.58	7.35	6.04	6.78
10			8.07	6.44	7.25	6.78 7.38	6.53 6.66	6.62	8.18	7.30	6.13	6.69
••			-	••••	,	7,30	0.00	6.57	7.11	7.11	6.03	6.58
11			7.92	6.31	7.17	6.94	7,47	6.56	7.92			
12			7.69	6.59	7.10	6.72	7.73	6.59		7.12	5.99	6.52
13			7.45	6.62	7.04	6.74	7.75	6.49	7.91	7.00	5.90	6.76
14			7.24	6.83	6.98	6.88	8.76		7.62	6.75	7.07	6.69
15			7.61	7.06	6.80	6.73	9.29	6.51 6.46	7.30 7.01	6.63 6,94	7.34 7.17	6.59
16			7 20							0.34	7.17	6.46
17			7.29	7.07	6.74	6.77	9.06	6.40	8.79	6.72	7.71	6.90
18			7.12	7.02	6.72	6.59	9.05	6.93	6.63	6.45	8.38	7.30
19			7.10	7.06	6.71	6.55	8.87	8.68	6.55	6.33	8.38	7.35
50		6.91	6.93	7.07	6.68	6.81	8.57	9.26	6.48	6.28	8.32	
		7.02	6.84	7.00	6.59	7.13	8.25	9.44	6,95	6.75	8.05	7.19 7.03
Ž 1		7.08	6.78	6.91	6.59	6.94	8.00	9.49	• • •			
22		7.47	6.73	6.58	6.58	6.97			7.05	6.26	7.92	7.00
23		7.37	6.73	6.58	6.72		8.05	9.42	6.95	6.17	7.93	7.79
24		7.32	6.71	6.39		6.76	8.17	9.20	6.83	6.15	7.86	7.81
25		7.24	6.71	6.29	6.59 6.53	6.77 6.94	8.16	8.93	6.62	6.13	7.59	7.65
26			•	0.23	0.53	0.34	8.10	8.89	7.25	6.11	7.57	7.44
		8.42	6.67	6,28	6.55	6.85	7.91	8.77	• • •			
27		8.56	6.63	6.27	6.56	6.78	7.74		7.04	6.23	8.47	7.12
28		8.75	6,60	6,26	7.28	6.73		8.50	6.73	6.41	8.79	6.90
29		8.87	6.64	6.41			7.49	8.07	6.50	6.27	9.01	6,77
30		8.81	6.60	6.52		6.58	7.28	7.72	6.70	6.23	9.07	7.05
31			6.60	6.64	•••	6.55 6.53	7.09	8.24	7.03	6.20	8.94	6.96
MEAN								8.59		6.45	8.72	•••
HAX			7.35	6.63	6.95	6.91	7.59	7.69	7.70	6.60	7.35	
MIN	•		8.72	7.07	7.55	7.46	9.29	9.49	9.81			7.14
			6.60	6.26	6.53	6.53	6.42	6.40	6,48	7.35 6.11	9.07 5.90	8.45 6.46
WTR YR 1	987 ME/	NH 7.2	24	H1 GH	9.81 JUN	2	LOW	5.90 AUG		~	J. 70	V.70

Table 55. CERCLA Sites in the AOC (Source R15, Pages 179-183)

Midco I Site SD 01-01-75 EPA Emergency Removal 7- Gary, IN PA 03-01-83 EPA EPA CO-0-1-83 EPA CO-0-1-82 EPA CO-0-1-82 EPA CO-0-1-82 EPA CO-0-1-82 EPA CO-0-1-83 SI O9-01-82 EPA CO-0-1-83 SI O9-01-82 EPA CO-0-1-83 SI O9-01-82 EPA CO-0-1-82 EPA CO-0-1-82 EPA CO-1-83 SI O9-01-82 EPA CO-1-82 EPA CO-1-83 SI O9-01-82 EPA CO-1-83 SI O9-01-82 EPA CO-1-83 SI O9-01-82 EPA CO-1-84 SI CO-1-85 SI	SITE NAME	EVENT	START	COMPLETED	LEAD	REMARKS
Sary, IN PA SI O8-01-82 HR O8-01-82 EPA HR O8-01-82 EPA RP 11-24-84 EPA RCRA 7-16-84. GEN. SI O9-01-82 HR O8-01-82 EPA RCRA 7-16-84. GEN. SI O9-01-82 RII O9-30-82 RII O9-30-82 RII O9-30-82 RII O9-30-82 RII O9-30-82 RII RII O9-30-82 RII RCRA 10-13-83, GEN. RCRA Permit Issued RCRA Amoco Oil, J6L Tankfield PA O4-01-84 KAA Amoco Oil, J6L Tankfield PA O4-01-83 EPA RCRA Permit Issued RCRA Permit Issued RCRA Amoco Oil, J6L Tankfield PA O4-01-83 EPA RCRA Permit Issued RCRA Permit Issued RCRA Amoco Oil, J6L Tankfield PA O4-01-83 EPA RCRA PERMIT ISSUED RCRA 11-18-80 RCRA 11-18-8	fidco I Site	SD		01-01-75	EPA	Emergency Removal 7-
SI 08-01-82 EPA HR 08-01-82 CO 06-27-84 EPA RCRA 7-16-84. GEN. Mineth Ave. Dump SD 01-01-75 EPA 02-01-83 SI 09-01-82 EPA RCRA 10-13-83, GEN. Mary, IN SI 09-01-82 EPA RCRA 10-13-83, GEN. Mary City Landfill SD 04-01-75 EPA O4-01-84 SI 12-01-84 SI 12-01-84 SI 12-01-84 SI 12-01-84 SI 12-01-84 SI SI SI 12-01-84 SI		PA		03-01-83		_
HR O8-01-82 CO 06-27-84 EPA RCRA 7-16-84. GEN. Hineth Ave. Dump SD 01-01-75 EPA O2-01-83 SI 09-01-82 EPA RCRA 10-13-83, GEN. HR O8-01-82 EPA RCRA 10-13-83, GEN. HR O8-01-82 EPA RCRA 10-13-83, GEN. HR O9-30-82 EPA RCRA 10-13-83, GEN. HR O9-30-82 EPA RCRA 10-13-83, GEN. HR O9-30-82 EPA RCRA 10-13-83, GEN. HR O9-01-75 EPA RCRA 10-13-83, GEN. HR O9-01-75 EPA RCRA Permit Issued Amoco/Whiting Ref. SD O9-01-78 EPA STATE EPA RCRA 11-18-80 TSD, TRS, GEN BEAST Chicago, IN SI 12-26-85 EPA RCRA 11-18-80 TSD, PA, 11-18-80 TSD, TSD, TSD, TSD, TSD, TSD, TSD, TSD,					EPA	
CO RP 11-24-84 EPA RCRA 7-16-84. GEN. Sineth Ave. Dump SD 01-01-75 EPA 02-01-83 SI 09-01-82 EPA RCRA 10-13-83, GEN. RII 09-01-82 EPA RCRA 10-13-83, GEN. RII 09-30-82 EPA RCRA 10-13-83, GEN. SI 12-01-84 SI 12-01-84 Amoco/Whiting Ref. SD 04-01-75 EPA RCRA Permit Issued Was Amoco 011, J&L Tankfield PA 04-01-83 TSD, TRS, GEN 15L = Jones 6 Laughin Steel Whiting, IN SI 04-15-83 EPA RCRA Permit Issued Whiting, IN SI 04-15-83 EPA STATE Chicago, IN SI 12-01-84 STATE Chicago, IN SI 12-26-85 EPA RCRA PERM SI 12-26-85 EPA RCRA II-18-80 RCRA III-18-80 RCRA II-18-80 RCRA III-18-80					"	
RP 11-24-84 EPA RCRA 7-16-84. GEN. Rineth Ave. Dump SD 01-01-75 EPA 02-01-83 SI 09-01-82 EPA RCRA 10-13-83, GEN. RII 09-30-82 EPA RCRA 10-13-83, GEN. Cary City Landfill SD 04-01-75 EPA O4-01-84 SI 12-01-84 STATE Laughlin Steel Whiting, IN SI 04-01-79 EPA RCRA 10-13-83, GEN. Cary City Landfill SD 04-01-79 EPA RCRA PETRIC SD 04-01-84 STATE SI 12-01-84 SI SI 06-25-86 SI SI SI 06-25-86 SI SI SI O6-25-86 SI SI SI O6-25-86 SI SI SI SI SI O6-25-86 SI SI SI SI SI SI O6-25-86 SI SI SI SI SI SI O6-25-86 SI						FDA
Sineth Ave. Dump					FPA	
Sary IN	•	Kt		11-24-04	Di a	NO.12 / 20 0 / 1 0 0 / 1
SI	Wineth Ave. Dump	SD		01-01-75	EPA	
SI	Gary, IN	PA		02-01-83		
Gary City Landfill SD 04-01-75 EPA 04-01-84 SI 12-01-84 SI SI 12-01-84 SI SI 12-01-83 SI	-	SI		09-01-82	EPA	
RII		HR		08-01-82		RCRA 10-13-83, GEN.
Sary, IN PA SI 12-01-84 Amoco/Whiting Ref. SD 09-01-78 EPA RCRA Permit Issued ARA Amoco 011, J&L Tankfield PA 04-01-83 TSD, TRS, GEN 15L = Jones & Laughlin Steel Whiting, IN SI 04-15-83 EPA East Chicago City SD 04-01-79 EPA 12-01-84 STATE Chicago, IN SI 12-26-85 EPA 12-01-84 STATE Chicago, IN SI 12-01-84 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Gary Dev. Co., Inc. SD 04-01-79 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA RCRA 8-12-8-, GEN, TSD, PA, 11-18-80 Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, TSD RCRA STATE Part A 11-19-80 R				09-30-82		
Sary, IN PA SI 12-01-84 Amoco/Whiting Ref. SD 09-01-78 EPA RCRA Permit Issued ARA Amoco 011, J&L Tankfield PA 04-01-83 TSD, TRS, GEN 15L = Jones & Laughlin Steel Whiting, IN SI 04-15-83 EPA East Chicago City SD 04-01-79 EPA 12-01-84 STATE Chicago, IN SI 12-26-85 EPA 12-01-84 STATE Chicago, IN SI 12-01-84 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Gary Dev. Co., Inc. SD 04-01-79 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA RCRA 8-12-8-, GEN, TSD, PA, 11-18-80 Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, TSD RCRA STATE Part A 11-19-80 R					55.	
SI 12-01-84 Amoco/Whiting Ref. SD 09-01-78 EPA RCRA Permit Issued AKA Amoco 011, J&L Tankfield PA 04-01-83 TSD, TRS, GEN J&L = Jones & Laughlin Steel Whiting, IN SI 04-15-83 EPA East Chicago City SD 04-01-79 EPA Dump PA 12-01-84 STATE Chicago, IN SI 12-26-85 EPA Gary Dev. Co., Inc. SD 04-01-79 EPA Gary, IN PA 04-01-84 EPA RCRA 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA Mobil Chemical Co. SD 04-01-79 EPA Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN					EPA	
Amoco/Whiting Ref. SD 09-01-78 EPA RCRA Permit Issued AKA Amoco 011,	Gary, IN					
AKA Amoco Oil, J&L Tankfield PA J&L = Jones & Laughlin Steel Whiting, IN SI East Chicago City SD Dump PA Chicago, IN SI Gary Dev. Co., Inc. SD Gary, IN PA Gary, IN SI Stauffer Chem. Co. Hammond, IN PA SI Stauffer Chem. Co. Hammond, IN PA SI SI SI SI SI SI SI SI SI S		SI		12-01-84		
J&L Tankfield PA J&L = Jones & Laughlin Steel Whiting, IN SI 04-01-83 EPA East Chicago City SD 04-01-79 EPA Dump PA 12-01-84 STATE Chicago, IN SI 12-26-85 EPA Gary Dev. Co., Inc. SD 04-01-79 EPA Gary, IN PA 04-01-84 SI 12-01-84 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA Phosphorus Division PA 03-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE PAR A 11-19-80 Hammond, IN PA 07-19-85 EPA RCRA 8-12-8-, GEN, SI 12-86 STATE PAR A 11-19-80 Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD	•	SD		09-01-78	EPA	RCRA Permit Issued
### East Chicago City SD	J&L Tankfield J&L = Jones &	PA		04-01-83		TSD, TRS, GEN
Dump PA 12-01-84 STATE Chicago, IN SI 12-26-85 EPA Gary Dev. Co., Inc. SD 04-01-79 EPA Gary, IN PA 04-01-84 SI 12-01-84 EPA RCRA 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA Phosphorus Division PA 03-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Perit PA Hammond, IN PA 07-19-85 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 HR 12-86 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD	•	sī		04-15-83	EPA	
Dump PA 12-01-84 STATE Chicago, IN SI 12-26-85 EPA Gary Dev. Co., Inc. SD 04-01-79 EPA Gary, IN PA 04-01-84 SI 12-01-84 EPA RCRA 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA RCRA 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA RCRA 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA Interim status/Perit Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 RCRA 8-12-8- Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD SI	Fast Chicago City	SD		04-01-79	EPA	
Chicago, IN SI 12-26-85 EPA Gary Dev. Co., Inc. SD 04-01-79 EPA Gary, IN PA 04-01-84 SI 12-01-84 EPA RCRA 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA Phosphorus Division PA 03-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Perit SI 06-25-86 STATE Part A 11-19-80 Hammond, IN PA 07-19-85 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 HR 12-86 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD					STATE	
### 5-86 Gary Dev. Co., Inc. SD	•					
Gary Dev. Co., Inc. SD 04-01-79 EPA 04-01-84 SI 12-01-84 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA Phosphorus Division PA 03-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Periman SI 06-25-86 STATE PART A 11-19-80 RCRA 8-12-8-, GEN, SI 06-25-86 STATE PART A 11-19-80 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD SI	Unicago, IN		5-86	12-20-03	Era	
Gary, IN PA SI 12-01-84 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA O3-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD SI		1110	3-00			
Gary, IN PA SI 12-01-84 EPA RCRA 11-18-80 TSD, PA, 11-18-80 Mobil Chemical Co. SD 04-01-79 EPA O3-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Periman Stauffer Chem. Co. SD 10-01-79 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD SI	Gary Dev. Co., Inc.	SD		04-01-79	EPA	
SI				04-01-84		
Mobil Chemical Co. SD 04-01-79 EPA Phosphorus Division PA 03-01-83 Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Perimental Disposal Corp. (IDC) SD 11-01-79 EPA RCRA 8-12-8-, GEN, SI Corp. (IDC) SD 11-01-84 EPA Hauling Firm RCRA 8-25-80, TSD SI				12-01-84	EPA	RCRA 11-18-80
Phosphorus Division PA 03-01-83 Gary, IN O3-01-83 Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Perion Status Perion Perion Status Perion Perion Status Perion Pe		-				TSD, PA, 11-18-80
Gary, IN Stauffer Chem. Co. SD 10-01-79 EPA Interim status/Perit Hammond, IN PA 07-19-85 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 HR 12-86 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD	Mobil Chemical Co.	SD		04-01-79	EPA	
Hammond, IN PA 07-19-85 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD		PA		03-01-83		
Hammond, IN PA 07-19-85 EPA RCRA 8-12-8-, GEN, SI 06-25-86 STATE Part A 11-19-80 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD SI	Stauffer Chem. Co.	SD		10-01-79	EPA	Interim status/Perit
SI 06-25-86 STATE Part A 11-19-80 HR 12-86 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm RCRA 8-25-80, TSD SI					EPA	RCRA 8-12-8 GEN. T
HR 12-86 RCRA status "1" cannot score Industrial Disposal Corp. (IDC) SD 11-01-79 EPA Hauling Firm East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD	uammond, In					
Corp. (IDC) SD 11-01-79 EPA Hauling Firm East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD SI						RCRA status "l"
East Chicago, IN PA 01-01-84 RCRA 8-25-80, TSD						77114 Pt
· SI					EPA	
	East Chicago, IN	PA		01-01-84		RCRA 8-25-80, TSD
HR 07-01-86	•					
		HR		07-01-86		

(Sheet 1 of 5)

Table 55 (Continued)

				···
USS Lead Refining				
Inc.	SD	01-01-80	EPA	Primary & Secondary
East Chicago, IN	PA	05-01-83		lead smelter since
	SI	07-03-85	EPA	1920. 8-18-80, GEN,
	SI2	05-12-86	EPA	11-18-80.
	HR	03-16-86		RCRA status "l"
				cannot score.
Ken Industries Inc.	SD	02-01-80	EPA	RCRA 8-18-80, TSD.
Hammond, IN	SI	09-27-86		
Vulcan Materials	SD	02-01-80	EPA	
Company	PA	03-01-84		
Gary, IN	SI	08-01-82		RCRA 8-18-80, GEN,
•	HR	08-01-82		Part, 11-17-80
Federated Metals	SD	03-01-80	EPA	Interim status
Corporation	PA	03-01-84	EPA	RCRA 8-18-80, GEN,
dorporadizon.	• • •	03 01 04	2	TSD, Part A 11-18-80.
Calumet College	SD	05-01-80	EPA	
AKA Amoco Research	PA	09-01-84	State	
Fac.	SI 10-19-	·	EPA	·
Hammond, IN	10-17-	04	or v	
Calumet Containers	SD	05-01-80	EPA	Emergency Removal 5-21-
AKA Steel Container		12-01-82	LIA	Lucigency Removal 3-21-
Hammond, IN	PA2	08-16-85		
mammond, in	SI	01-01-84	EPA	RCRA 7-16-84, GEN.
	HR	07-01-82	LIA	KCKA 7-10-04, GEN.
770				
Site #73	SD	06-01-80	EPA	
AKA Roland Dump	PA	01-01-84		
Gary, IN	SI	09-19-85	EPA	
	HR	05-11-86	EPA	
Energy Cooperative	SD	07-01-83	EPA	
Inc.	PA	03-01-83		•
East Chicago, IN	SI	08-01-83	EPA	
	SI2	03-04-86		RCRA 01-01-80 GEN, TRS,
	HR	08-01-83		TSD. Part A, 11-13-80
Flexiflo	SD	07-01-80	EPA	
AKA Conrail Flex	PA	09-27-85	STATE	
Flo	SI 11-01-	-85	EPA	
Hammond, IN				
Gary Sanitary	SD	07-01-80	EPA	Claimed non-handler
District	PA	12-01-83		Part A&B withdrawn,
Lake Street Sewage	SI	09-30-86	EPA	met int. stat. RCRA GE 11-18-80, Part A 11-18-80
		(Continued)		- -
		(oonernaea)		

(Continued)

(Sheet 2 of 5)

Table 55 (Continued)

AKA Ralston St.					
Lagoon	•				
Gary, IN					
Indiana Harbor Belt RR	SD		07-01-80	EPA	
Hammond, IN	PA		09-25-85	STATE	
				EPA	RCRA 8-17-82, TRS.
Industrial Cinder	SD		07-01-80	EPA	Sia. dump and various
Gary, IN	PA		04-01-84		sundry materials
	SI		09-10-85	EPA	•
	HR		07-28-86		
Keil Chemical	SD		07-01-80	EPA	
Hammond, IN	SI	05-01-86			RCRA 11-04-80, GEN and ID #IND082071234 only
Cities Service Co. #95	SD PA		07-01-80 04-01-84	EPA	Open Dump
Gary, IN	SI		08-21-85	EPA	
sary, in	HR		08-01-86	LFA	
	шк		00-01-00		
Site #10 AKA IDC	SD		07-01-80	EPA	
Solidfill Site	PA		02-01-84		
AKA Laidlaw Sys.	HR		07-31-86		
Gary, IN	SI		10-01-84	EPA	
Site #63 btwn.	SD		07-01-80	EPA	
Midco 2	PA		04-01-84		
Gary, IN	SI		09-05-85	EPA	
	HR		07-24-86		
Site #18-72	SD		07-01-80	EPA	
Frontage Rd &	SI	06-23-86			
Gary, IN					
Union Carbide Corp.	SD		07-01-80	EPA	
East Chicago, IN	PA		03-01-84		RCRA 7-29-80, Part A
	SI		03-11-86	STATE	11-19-80, Part B
	HR		07-28-86		received
General American	SD		08-01-80	EPA	
Transporation Corp.	PA		02-01-84		RCRA 8-18-80, GEN, TS
East Chicago, IN	SI		09-27-85	EPA	Part A 11-17-80
Hodges Lloyd	SD		08-01-80	EPA	Reclaimer of waste of
AKA American	PA		09-01-84	STATE	RCRA 8-18-80, GEN, TS
Recovery Co., Inc			- - ·		Part A 6-7-84
East Chicago, IN					
Indiana Harbor	SD		08-01-80	EPA	
East Chicago, IN	PA		07-01083		RCRA 8-18-80, GEN, TS
	SI	09-10-83			Part A 11-18-80.

Table 55 (Continued)

Inland Steel Co.	SD		08-01-80	EPA	
East Chicago, IN	PA		02-01-85	STATE	RCRA 8-14-80, GEN, TRS
	SI		09~05-85	EPA	TSD, UIC. Part A 11-1
	HR		07-31-86		***RCRA***
U.S. Steel Corp.,	SD		08-01-80	EPA	
Gary Works &	PA		09- 01-84	STATE	
Tubing Spec.	SI		03-04-86	EPA	RCRA Part A 7-1-85.
Gary, IN	HR		97-28-86		
West Shore	SD .	•	09-01-80	EPA	
Trucking	PA		09-25-85	STATE	
AKA McCaw	SI		09-30-86	EPA	
Warehouse Hammond, IN					
Bongi Cartage	SD		10-01-80	EPA	
Gary, IN	PA		04-18-86		
	SI		01-06-87		
Willet Trucking	SD		10-01-85	EPA	
Hammond, IN	PA		09-25-85	STATE	
•	SI	10-01-80		EPA	
Mobil Oil Co.	SD		06-01-81	EPA	
East Chicago	PA		03-01-81		
5821 Indianapolis			••••		
Blvd.	SI		09-16-86	EPA	
East Chicago, IN					RCRA 8-18-80. GEN.
Conservation	SD		08-01-82	EPA	Emergency Removal
Chemical	SI		05-01-84	STATE	RCRA 8-18-80, TRS, TSD
Gary, IN	HR1		08-01-82		Part A 11-19-80
•	HR2		01-18-86		
Midco II	SD		08-01-82	EPA	Emergency Removal 5-14
Gary, IN	SI		08-01-84	EPA	amorgone, nemovar 3 1.
•	HR		08-01-84		
	FS1		12-15-84		
Samocki Brothers	PA		03-01-84		Landfill
Trk.	SI		08-21-85	EPA	
Gary, IN	HR		07-30-86	LIA	
-			07-30-00		
Hammond Valve Corp. Hammond, IN	SD PA		03-01-85	EPA	DCD1 2 17 01 CEV TO
namond, III	SI		03-21-85	STATE	RCRA 2-17-81, GEN, TJD
	HR		12-27-85 07-31-86	EPA	Part A 6-3-85. ***RCRA***
ITT Charl Co T	C.D.				
LTV Steel Co., Inc.			07-31-85	EPA	
Hammond, IN	PA SI	07-15-86	07-14-86		
			(Continued)		
			, ,		

(Sheet 4 of 5)

Table 55 (Concluded)

House's Junk Yard	SD		08-20-85	STATE	
Gary, IN	PA		05-25-85	STATE	
	SI	10-29-85		EPA	
Hammond Sewage	PA		09-26-85	STATE	
Treatment Hammond, IN				EPA	
General Drainage	SD		01-09-86	EPA	
Gary, IN	PA		06-23-86	2	
	SI	06-23-86			PCRA 7-31-80, TRS
Luria Brothers and Company Gary, IN	SD		04-23-86	EPA	
Chicago Flame	SD		0587	STATE	
Hardening	PA		0887	STATE	
East Chicago, IN			•		
Black Beauty	SD		0587	STATE	
Products	PA	•	0887	STATE	
Gary, IN					
Matz-American	SD		0587	STATE	
Plating	PA		0887	STATE	
Gary, IN					
Standard Alloys Hammond, IN	SD		0887	STATE	

SD = Site Discovery

RCRA = Resource Conservation & Recovery Act

GEN = Generator

TRS = Transporter

TSD = Treat, Store, and/or Disposal Facility

UIC = Underground Injection Control Facility

Part A = Date Facility Submitted Part A (RCRA)

PA = Preliminary Assessment

SI = Site Inspection

HR = Hazard Ranking System

Table 56 (Concluded)

Site (I) No./Qd.	Indiana State ERRIS Number	Miles to River Bank	City	Owner or Name
		. /2		
21C	IND-001859032	1/3	Hammond	Stauffer Chemical
22C	IND-094760444	1/5	Hammond	Shell Oil Terminal
23C	IND-068584432	3/10	Hammond	Ruan Trans- port Co.
24C	IND-010294304	3/10	Hammond	Chemical Haulers
25C	IND-980500540	1/4	Gary	Site #10
26C	IND-077005916	2/5	Gary	Gary Dev. Co.
27C	IND-005444732	1/2	Gary	Vulcan Mater- ials
*28C		1/10	Gary	Sanitary Dist.
*29C	IND-077001808	<1/10	Gary	Sanitary Dist.
30C	IND-074403296	1/4	Gary Co.	Andersen Dev.
31C	IND-000606731	181/4	Gary	Mobile Chem. Phos. Div.
32C	IND-045046810	1&1/2	Gary	RJ Conner, Inc.
33C	IND-980679849			
	& - 980794432	1&1/10	Gary	Ninth Ave. Dumps
_34C	IND-980500532	1/2	Hammond	Old Hammond Dump
*35D	IND-042329631	1/10	E. Chicago	Mobile Oil Terminal
*36D	IND-074429895	1/5	E. Chicago	Gen. American Transp. Co.
*37D	IND-980500227	1/5	E. Chicago	Sanitary Dist.
*38 D		<1/10	Hammond	Sanitary Dist.
	•			

⁽¹⁾See Figure 2-6
Sites within 1/5 mile of river

Table 56. Waste Fill and Lagoon Sites Mapped Within the Grand Calumet Watershed (Source R13, Table 2-15)

			·	
Site ⁽¹⁾ No./Qd.	Indiana State ERRIS Number	Miles to River Bank	City	Owner or Name
1A	IND-014387880	2	Gary	Calumet Ind.
2A	IND-077042034	1/3	E. Chicago	Hodges Lloyd
* 3A	IND-005462601	<1/10	E. Chicago	Ind. Harbor Works
4A	IND-005460753	1	Hammond	American
5A.	IND-074375585	1&1/4	Whiting	Amoco Wh. Refinery
6B	IND-005159199	2/5	E. Chicago	Inland Steel
7B	IND-980607469	1&1/2	E. Chicago	Cities' Ser. Refinery
8B	IND-040888992	1 .	Gary	Conservation Chemical
9B	IND-980679559	4/5	Gary	MIDCO II
10B	IND-980500516	3/5	Gary	Samacki Bros. Trucking
*118	IND-005444062	<1/10	Gary	USSC Gary Wks. & Tubing Spec.
*12B	IND-980500573	<1/10	Gary	Site #75
13B	IND-980679211	2/5	Gary	Industrial Cinder, Inc.
14B	IND-067469437	1/3	Gary	Municipal Airport
15B	IND-980500565	1	Gary	Site #18
16B	IND-044250587	. 3/5	E. Chicago	Industrial Disposal Co.
*17B	IND-005174354	<1/10	E. Chicago	Du Pont Co.
*18B	IND-047030226	<1/10	E. Chicago	USS Lead Refinery
19B	IND-077001147	2/5	E. Chicago	Union Carbide
20B	IND-094738762	2/5	E. Chicago	Union Carbide

Table 57. Waste Fills of Greatest Concern (Source R20, Table 5)

Site No.	Miles to River Bank	Owner or Name	Potential Pollutants
3A	0.1	J & L Steel	Oily wastes, heavy metal
11B	0.1	U.S. Steel	N/A.
12B	0.1	Uncontrolled	N/A
17B	0.1	duPont	N/A
18B	0.1	U.S.S. Lead	Lead, arsenic
28C	0.1	Gary Sludge Lagoon	POTW sludge
29C	0.1	Gary Sludge Lagoon	POTW sludge, PCB
35D	0.1	Mobile Oil Terminal	Refinery waste
36D	0.2	GATX Corporation	Waste storage pond
37D	0.2	E. Chicago Landfill	N/A
38D	0.1	Hammond Sludge Lagoon	POTW sludge

Results of EP-Toxicity Tests on Composition Samples from the AOC (Source $\ensuremath{\mathrm{R}}\xspace^{-1}$, Table 3) Table 58.

Parameter	IHR3-1	Composite IHR3-3A	Sample Location IHR3-4 IHR3	cation IH83-5	1HR3-6	Maximum Concentration for characteristic of EP-Toxicity
Arsenic	0.13	0,13	0.11	n . n8	0.04	5 . ກ
Barium	0.72	n. 78	05-0	n . 61	1.23	າ ເບ
Cadmium	0,015	0.019	0.011	0.012	0.010	1.0
Chromium	0.102	ก•ู ท9ห	0.178	760°u	0.130	₽ . 5
Lead	0,40	0.51	0.54	0.50	0.42	5.0
Mercury	0,0003	0,0002	<0.000	<0°00°0	<0.000	0.2
Selenium	0,001	0,001	<0° 00 00 00 00 00 00 00 00 00 00 00 00 0	0.002	<0°00	1.0
Silver	0,008	0,011	0.008	0° 006	0.011	5 . 0
Endrin	<0° 00°5	<0° 005	<0° u)	<0° 00	<0° u02	0,02
Lindane	200°0>	<u•< td=""><td>20U°U></td><td><u•< td=""><td>200°U></td><td>0.4</td></u•<></td></u•<>	20U°U>	<u•< td=""><td>200°U></td><td>0.4</td></u•<>	200°U>	0.4
Methoxychlor	(0.0)	(U°U)	(0.01	lu*u>	ໄທ•ທ	າທ• ທ
Toxaphene	(U*U)	<0°01	<0.01	<0.01	[U*U>	0.5
2,4,n	<0.1	< 0. 1	<0.1	<0.1	۵.1	10°0
2,4,5-TP Silvex	< ۵. 1	<0.1	<0.1	<n.1< td=""><td>(h.1</td><td><1.0</td></n.1<>	(h.1	<1.0
	-					

All units are expressed as mg/l.

Table 59. Embryo-Larval Survival/Teratogenicity Test Results on Discharges (Source R30, Table 3)

Effluent	Percent		tive Pe atogeni		Sur	vival	
Concentration					A		x
Inland Steel 00	08						
0	100	0	0	0	90	98	94
3	99	0	1.0	1.0	98	94	96
10	94	0	2.1	2.1	88	78	83
30	100	0	0	0	100	96	98
60	96	0	2.0	2.0	96	86	91 *
100	84 *	1	0	1.1	70	62	66 *
Inland Steel 0							
0	100	0	0	0	90	98	94
3	97	0	0	0 6 *	94	98	96
10	100	1.0	5.5	6 * 4.1*	98	100	99
30	98	0	4.1	4.1 9.5*	100 56	94 80	97
60	95 74 *	2.1 5.4	7.4 2.7	9.5 8.1*	20 2	80 0	68 * 1 *
100	/4	J.4	2.1	0.1	۷	U	1
DuPont de Nemo	urs						
0	96	0	0	0	96	98	97
3	95	0	2.1	2.1	96	86	90
10	98	0	2.0	2.0	100	96	98
30	98	35.7	30.6	66.3 *		20	43 *
60		65.3	1.0	66.3 *	U	2	Ι.
100	97	65.9	0	65.9 *	0	0	0 *

 $[\]mbox{\scriptsize \star}$ - Signifies a significant deviation from the control.

Table 60. Chemistry Data from Toxicity-Teratogenicity
Tests (Source R30, Table 6)

Definitive Embryo-Larval Chronic Toxicity Testing.

Metals Ag ug/L Al B Ba Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	tal <6 186 490 36 <1 <6 8 11 685 24 118 <15 <15	Dis- <u>solved</u> <6 <80 487 28 <1 <6 <8 10 123 26 112	Total <6 <80 81 <6 <1 <6 <8 <6 106	Dis- solved <6 <80 83 30 <1 <6 <8	Total <6 <80 84 19 <1 <10 <6	Dis- solved <6 <80 84 19 <1 <10 <6	014 Total <6 <80 <6 <1 <10	Dis- solve <6 <80 115 24 <1
Metals Ag ug/L Al B Ba Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	<6 186 490 36 <1 — <6 <8 11 685 24 118 <15	solved <6 <80 487 28 <1 <6 <8 10 123 26	<6 <80 81 <6 <1 — <6 <8 <6	solved <6 <80 83 30 <1 <6 <8	<6 <80 84 19 <1 <10 <6	<pre>solved <6 <80 84 19 <1 <10</pre>	<6 <80 <80 <6 <1	<pre>solve <6 <80 115 24 <1</pre>
Metals Ag ug/L Al B Ba Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	<6 186 490 36 <1 — <6 <8 11 685 24 118 <15	<6 <80 487 28 <1 <6 <8 10 123 26	<6 <80 81 <6 <1 — <6 <8 <6	solved <6 <80 83 30 <1 <6 <8	<6 <80 84 19 <1 <10 <6	<6 <80 84 19 <1 <10	<6 <80 <80 <6 <1	<6 <80 115 24 <1
Al B Ba Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	186 490 36 <1 <6 <8 11 685 24 118 <15	<80 487 28 <1 <6 <8 10 123 26	<80 81 <6 <1 <6 <8 <6	<6 <80 83 30 <1 <6 <8	<80 84 19 <1 <10 <6	<80 84 19 <1 <10	<80 <80 <6 <1	<80 115 24 <1
B Ba Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	490 36 <1 <6 <8 11 685 24 118 <15	487 28 <1 <6 <8 10 123 26	81 <6 <1 <6 <8 <6	83 30 <1 <6 <8	84 19 <1 <10 <6	84 19 <1 <10	<80 <6 <1	115 24 <1
Ba Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	36 <1 <6 <8 11 685 24 118 <15	28 <1 <6 <8 10 123 26	<6 <1 <6 <8 <6	30 <1 <6 <8	19 <1 <10 <6	19 <1 <10	<6 <1	24 <1
Be Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	<1 <6 <8 11 685 24 118 <15	<1 <6 <8 10 123 26	<1 <6 <8 <6	<1 <6 <8	<1 <10 <6	<1 <10	<1	<1
Cd Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	<6 <8 11 685 24 118 <15	<6 <8 10 123 26	 <6 <8 <6	 <6 <8	<10 <6	<10		
Co Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	<8 11 685 24 118 <15	<8 10 123 26	<8 <6	<6 <8	<6		<10	
Cr Cu Fe Li Mn Mo Ni Sn Sr Ti V	<8 11 685 24 118 <15	<8 10 123 26	<8 <6	<8		10		<10
Cu Fe Li Mn Mo Ni Sn Sr Ti V	11 685 24 118 <15	10 123 26	<6		- ~		<6	<6
Fe Li Mn Mo Ni Sn Sr Ti V	685 24 118 <15	123 26			<8	<8	<8	<8,
Li Mn Mo Ni Sn Sr Ti V	24 118 <15	26	106	7	7	7	21	21*
Mn Mo Ni Sn Sr Ti V	118 <15			88	<80	<80	<80	2800
Mo Ni Sn Sr Ti V	<15	117	<10	40	<10	<10	<10	20
Ni Sn Sr Ti V			<5	8	5	5	<5	65
Sn Sr Ti V	CIS	<15	<15	<15	<15	<15	<15	<15
Sr Ti V		<15	<15	<15	<15	<15	<15	<15
Ti V	<40	<40	<40	<40 *	<40	<40	<40	<40
V	208	213*	<10	194*	116	116*	<10	147
	<25	<25	<25	<25	<25	<25	<25	<25 <5
17	<5	<5	<5 <5	<5 <5	<5	<5	<5 <5	<5
Y Zn	<5 81	<5 <40	<40	58 *	<5 <40	<5 <40	<40	141*
	72	74	<.5	158	<40 35	35	<.5	
Ca mg/L K	7	7	<2	3	<2	<2	<2	5
Mg	17	17	<.1		10	10	<.1	
ng Na	221	218*	1	1700*	6	6	<1	14
1461	4	210	•	1700	Ū	J	`*	- •
As <u>ug</u> /L	5	3	<20	<20	<2	<2	2	<2
Se	16	16*	<2	<2	<2	<2	<2	<2
Cđ	<1	<1.	<1	<1	. 2	3*	.3	3 .
Pb	17	11*	<2	<2	4	10*	81	25'
Hg	0.2	0.3*	0.1	<0.1	<0.	1 <0.1	<0.1	<0.
Hexavalent								
Chromium ug Cr	/L <	:10	<	10	<	(10	<	(10
Total Organic								
Carbon mg C/L		10		<3		<3		6
Ammonia mg N/L		0.35*	<	0.5	•	(0.5	•	<0.5
Phenols yg Phenolics/L		30		26		28		40
Total Cyanide ug Cn/L	3	800*		<5		<5		19

Table 60 (Concluded)

Oil and Grease mg/L	^< 5	<5	<5	7
GC/MS semi -volatile Organic scan for Priority pollutants	NS a	NS	NS	NS
VOA	NS	NS	NS	NS

a - data was either below detection or was not significant.

 $^{^{\}star}$ - Signifies that element or compound may be a toxic agent.

Table 61. Prediction of Bioaccumulation Potential [TBP] and Hypothetical Maximum Whole Organism Concentrations of Organics for Lipid Contents of 2 and 5% Based on TBP Potential (Source R20, Table 12)

	Conc. in Sediment	TBP*	Max Ct** f	•
Organic	(ug/g)	(ppm)	2%	5%
PCBs	27	702	14	35
Naphthalene	2,000	51,975	1,040	2,599
Acenaphthylene	22	572	11	29
Acenaphthene	96	2,495	50	125
Fluorene	69	1,793	36	90
Phenanthrene	200	5,198	104	260
Anthracene	62	1,611	23	81
Fluoranthene	150	3,898	78	195
Pyrene	140	3,698	74	185
Chrysene	92	2,390	48	120
Benzo(a)anthracene	86	2,235	45	112
Benzo(b)fluoranthene	140	3,638	73	182
Benzo(k)fluoranthene	140	3,638	73	182
Benzo(a)pyrene	87	2,261	45	113
Indeno(1,2,3-cd)pyrene	50	1,299	26	65
Benzo(g h i)perylene	35	910	18	46

** Ct = Tissue concentration, fresh weight (ppm).

^{*} TBP = (Cs/foc)/0.52 where Cs = chemical concentration in sediment (ppm) and foc = decimal fraction organic carbon in sediment.

Table 62. Concentrations of Organic Contaminants in Cyperus esculentus Grown in Sediments from Indiana Harbor (Source R25, Table D6)

	Concentratio	n, μg/g (ODW)	
Compound	Flooded	Upland	
Aldrin	<0.005	<0.005	
PCB-1248	<0.05	<0.05	
Naphthalene	<2	<2	
Acenaphthylene	<2	<2	
Acenaphthene	<2	<2	
Fluorene	<2	<2	
Phenanthrene	<2	<2	
Anthracene	<2	<2	
Fluoranthene	<2	<2	
Pyrene	<2	<2	
Chrysene	<2	<2	
Benzo(a)anthracene	<2	<2	
Benzo(b) fluoranthene	<2	<2	
Benzo(k)fluoranthene	<2	<2	
Indeno-1,2,3-c d)pyrene	<2	<2	
Dibenzo(a h)anthracene	<2	<2	
Benzo(g h 1)perylene	<2	<2	

^{*} Mean of four replicates.

Table 63. Concentrations of Heavy Metals in *Cyperus*esculentus Grown in Sediments from
Indiana Harbor (Source R25, Table D7)

	Concentrat	ion, µg/g
Metal	Flooded*	Upland**
Zn	34.9*	128
Cd	0.095	14.5
Cu	1.45	12.8
Fe	138	226
Mn	38.4	453
As	<0.025	<0.025
Hg	<0.005	<0.005
NI	0.549	0.167
Cr	2.43	14.5
Pb	1.51	47.0

^{*} Mean of four replicates.

^{**} Composite of four replicates.

Table 64. Metal Concentrations in Indiana Harbor Sediments and Earthworms (Source R25, Table D9)

Metal	Original Sediment	Aged** Sedimen		Initial Earthworms	Bioassa Earthwor	•	CF
Arsenic	29.5	25.962 +/-	1.587	1.582 +/- 0.072a	2.808 +/-	0.369Ъ	0.11
Cadmium	20.0	19.094 +/-	2.519	6.082 +/- 0.468a	9.037 +/-	0.823ъ	0.47
Chromium	650.0	506.729 +/-	36.102	0.000 +/- 0.000a	3.892 +/-	2.822a	0.01
Copper	282.0	237.888 +/-	7.128	11.302 +/- 0.389a	23.112 +/-	3.022b	0.10
Lead	879.0	689.730 +/-	38.902	0.457 +/- 0.122a	6.530 +/-	3.088Ъ	0.01
Mercury	0.530	0.522 +/-	0.904	0.059 +/- 0.103a	0.000 +/-	0.000a	0.00
Nickel	137.0	111.860 +/-	1.401	1.302 +/- 0.295a	3.225 +/-	0.829b	0.03
Zinc	4125.0	3767.454 +/-	114.381	118.426 +/- 5.693a	149.956 +/-	19.096a	0.04

^{*} Mean of three replicates +/- standard deviation expressed as µg/g (=ppm) dry weight.

Means in a row followed by the same letter are not significantly different according to Duncan's New Multiple Range procedure at alpha = 0.05.

Time = 0.

Time = 28 days.

Concentration factor (ratio of concentration in worms to that in the aged sediment).

^{** 6-}month aging.

Table 65. PCB Concentrations in Indiana Harbor Sediments and Earthworms (Source R25, Table D9)

Chlorobiphenyls	Original Sediment	Aged** Sediment	Initial Earthworms	Bioassay Earthworms
2.4-Di	<0.002	<0.010 +/- 0.000	<0.008 +/- 0.000a	<0.008 +/- 0.002a
2.4'-Di	4.3	<0.013 +/- 0.006	0.015 +/- 0.008a	0.020 +/- 0.020a
2,4-4'-Tri	17.5	<0.010 +/- 0.000	<0.008 +/- 0.000a	<0.008 +/- 0.002a
2,3',4',5-Tetra	27.0	3.550 +/- 1.210	<0.010 +/- 0.004a	1.365 +/- 0.391b
2,2',4,5'-Tetra	7.8	5.007 +/- 1.782	0.025 +/- 0.011a	1.137 +/- 0.807a+
1,2',5,5'-Tetra	35.0	<0.010 +/- 0.000	<0.015 +/- 0.013a	<0.008 +/- 0.002a
2,2',4,6-Tetra	17.5	<0.010 +/- 0.000	<0.008 +/- 0.000a	<0.008 +/- 0.002a
2,2',3',4,5-Penta	4.55	1.787 +/- 0.858	0.013 +/- 0.004a	0.614 +/- 0.165b
2,2',4,5,5'-Penta	1.55	<0.010 +/- 0.000	<0.008 +/- 0.000a	<0.008 +/- 0.002a
2.2',3,4,5'-Penta	4.9	1.417 +/- 0.761	<0.008 +/- 0.000a	0.554 +/- 0.164b
7,2',3,4,4',5'-Hexa	2.6	1.149 +/- 0.753	0.008 +/- 0.000a	0.216 +/- 0.064b
7,2',4,4',5,5'-Hexa	1.3	<0.457 +/- 0.774	<0.008 +/- 0.000a	<0.008 +/- 0.002a
2,2',3,3',6,6'-Hexa	<0.002	<0.010 +/- 0.000	<0.008 +/- 0.000a	<0.008 +/- 0.002a
2,2',3,4,5,6'-Hexa	11.5	<0.010 +/- 0.000	<0.010 +/- 0.004a	<0.008 +/- 0.002a
2,2',3,4,4',5,5'-Hepta	1.85	1.660 +/- 1.449	<0.008 +/- 0.000a	0.104 +/- 0.047b

^{*} Mean of three replicates +/- standard deviation expressed as $\mu g/g$ (=ppm) dry weight. Means in a row followed by the same letter are not significantly different according to Duncan's New Multiple Range procedure at alpha = 0.05.

Time = 0.

Time = 28 days.

The analysis of variance indicated that uptake could be considered marginally significant:probability > F = 0.0754.

Expressed as Aroclor 1248 in the original sediment only.

^{** 6-}month aging.

Table 66. PAH Concentrations in Indiana Harbor Sediments and Earthworms (Source R25, Table D9)

РАН	Origi Sedim		Aged** Sediment	Initial Earthworms	Bioassay Earthworms
Naphthalene	2033.333 +/-	57.735a	46.267 +/- 1.258	o d,	d
Acenaphthylene	21.667 +/-	.577	đ	d	d
Acenaphthene	105.333 +/-	8.083	đ	d	d
Fluorene	78.333 +/-	8.145a	4.287 +/- 0.731	o d	d
Phenanthrene	206.667 +/-	11.547a	14.267 +/- 3.650	o d	d
Anthracene	63.333 +/-	1.528a	74.033 +/- 6.269	o d	35.264 +/- 16.37
Fluoranthene	160.000 +/-	10.000a	36.933 +/- 5.659	o d	d
Pyrene	143.333 +/-	5.774a	74.033 +/- 6.269	o d	35.264 +/- 16.37
Chrysene	95.667 +/-	4.04la	25.500 +/- 5.724	o d	12.218 +/- 5.92
Benzo(a)anthracene	102.000 +/-	13.856a	21.633 +/- 2.363	o d	d
Benzo()fluoranthene	156.667 +/-	15.275a	41.700 +/- 19.213	o d	20.915 +/- 10.49
Benzo(a)pyrene	105.667 +/-	16.921a	33.900 +/- 10.789	o d	18.420 +/- 5.90
Indeno(1,2,3-c,d)pyrene	57.000 +/-	10.440a	18.513 +/- 12.491	o d	9.295 +/- 2.78
Dibenzo(a,h)anthracene	13.667 +/-	6.351a	d	đ	d
Benzo(g,h,i)perylene	39.667 +/-	4.163a	4.280 +/- 7.703	o d	4.497 +/- 0.74
Total PAH	3382.333 +/-	142.388a	388.217 +/- 80.765)	131.430 +/- 11.17

Note: d = detection limit.

Time = 0.

Time = 28 days.

Benzo(b)fluoranthene + Benzo(k)fluoranthene.

^{*} Means of three replicates +/- standard deviation expressed as ug/g (=ppm) dry weight. Means in a row followed by the same letter are not significantly different according to Duncan's New Multiple Range procedure at alpha = 0.05.

^{** 6-}month aging.

Table 67. Summary of Electrofishing Catch from Station F in the Indiana Harbor Canal, 2 Dec 84 (Source R39, Table 2)

	-	Total Majobt	Catch Pe	Catch Per 30 Minutes	Catch Pe	Catch Per 400 Meters	Percent of	Percent of Total Catch
Fish Species Collected	Number of Fish	щ б	Number of Fish	weight of Fish (9)	Number of Fish	weight of Fish (g)	Number of Fish	weight of Fish (9)
Alewife		4.61	0.34	1.55	0.50	2.31	0.45	0.05
Gizzard shad	72	500.62	24.13	167.81	36.00	250.31	32.58	4.98
Central mudminnow		1.08	0.34	0.36	0.50	0.54	0.45	0.01
Goldfish	26	180.20	8.72	60.40	13.00	90.10	11.76	1.79
Carp	7	8,859.92	2.35	2,969.81	3,50	4,429.96	3.17	88.18
Fathead minnow	22	19.56	7.37	95*9	11,00	9.78	9.95	0.19
Pumpkinseed	28	329.28	9.39	110.37	14.00	164.64	12.67	3.28
Yellow perch	64	151.76	21.45	50.87	32,00	75.88	28.96	1.51
TOTALS	221	10,047.03	74.09	3,367.73	110.50	5,023.52		
* Total oloctoofiching time and dicta	, c c c c c c c c c c c c c c c c c c c	00 000000000000000000000000000000000000	00					

^{*} Total electrofishing time and distance, 89 minutes, 30 seconds, and 800 meters, respectively.

Table 68. Concentrations of Major, Minor, and Trace Elements in Fish and Crayfish from Indiana Harbor and Adjacent Lake Michigan* (Source R1, Table 13) (see Figure 47)

Al
<0L
<dl< td=""></dl<>
<dl< td=""></dl<>
5
5
6
11
8
6
2
3
4
4
5
7
194
.) 1
_
Mg
2.30

Sample No.	Mg	Mn	Но	Na	N 1	P	Pb	Sb	Se	S 1	Sn	٧	Zn
R-Carp-1	298	2.30	<0L	1160	0.41	4810	<0L	0.81	1.54	1.03	1.78	<0L	134
R-Carp-2	389	2.87	<dl< td=""><td>1020</td><td>1.19</td><td>7260</td><td><dl< td=""><td><dl< td=""><td>1.29</td><td>0.58</td><td>2.77</td><td><0L</td><td>86</td></dl<></td></dl<></td></dl<>	1020	1.19	7260	<dl< td=""><td><dl< td=""><td>1.29</td><td>0.58</td><td>2.77</td><td><0L</td><td>86</td></dl<></td></dl<>	<dl< td=""><td>1.29</td><td>0.58</td><td>2.77</td><td><0L</td><td>86</td></dl<>	1.29	0.58	2.77	<0L	86
R-Carp-3	354	2.60	<dl< td=""><td>1100</td><td>0.35</td><td>7340</td><td><0L</td><td><ol< td=""><td>1.50</td><td>1.14</td><td><dl< td=""><td><ol< td=""><td>77</td></ol<></td></dl<></td></ol<></td></dl<>	1100	0.35	7340	<0L	<ol< td=""><td>1.50</td><td>1.14</td><td><dl< td=""><td><ol< td=""><td>77</td></ol<></td></dl<></td></ol<>	1.50	1.14	<dl< td=""><td><ol< td=""><td>77</td></ol<></td></dl<>	<ol< td=""><td>77</td></ol<>	77
Q-Carp-1	317	4.14	<0L	1140	0.33	5690	1.05	<dl< td=""><td>2.19</td><td>1.39</td><td>2.76</td><td><dl< td=""><td>119</td></dl<></td></dl<>	2.19	1.39	2.76	<dl< td=""><td>119</td></dl<>	119
Q-Carp-2	247	3.37	<dl< td=""><td>893</td><td>0.35</td><td>4860</td><td>1.29</td><td><dl< td=""><td>1.78</td><td>0.39</td><td>3.56</td><td><dl< td=""><td>80</td></dl<></td></dl<></td></dl<>	893	0.35	4860	1.29	<dl< td=""><td>1.78</td><td>0.39</td><td>3.56</td><td><dl< td=""><td>80</td></dl<></td></dl<>	1.78	0.39	3.56	<dl< td=""><td>80</td></dl<>	80
Q-Carp-3	383	4.95	<dl< td=""><td>1150</td><td>0.30</td><td>7100</td><td>1.09</td><td><dl< td=""><td>1.24</td><td>0.58</td><td><dl< td=""><td><dl< td=""><td>109</td></dl<></td></dl<></td></dl<></td></dl<>	1150	0.30	7100	1.09	<dl< td=""><td>1.24</td><td>0.58</td><td><dl< td=""><td><dl< td=""><td>109</td></dl<></td></dl<></td></dl<>	1.24	0.58	<dl< td=""><td><dl< td=""><td>109</td></dl<></td></dl<>	<dl< td=""><td>109</td></dl<>	109
Q-Carp-4	318	4.90	<dl< td=""><td>980</td><td>1.63</td><td>4880</td><td><dl< td=""><td><dl< td=""><td>1.93</td><td>3.57</td><td><dl< td=""><td><dl< td=""><td>117</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	980	1.63	4880	<dl< td=""><td><dl< td=""><td>1.93</td><td>3.57</td><td><dl< td=""><td><dl< td=""><td>117</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.93</td><td>3.57</td><td><dl< td=""><td><dl< td=""><td>117</td></dl<></td></dl<></td></dl<>	1.93	3.57	<dl< td=""><td><dl< td=""><td>117</td></dl<></td></dl<>	<dl< td=""><td>117</td></dl<>	117
Carp-5	677	6.57	<dl< td=""><td>1710</td><td>0.35</td><td>12500</td><td>1.11</td><td><dl< td=""><td>5.15</td><td>1.44</td><td><dl< td=""><td><ol< td=""><td>123</td></ol<></td></dl<></td></dl<></td></dl<>	1710	0.35	12500	1.11	<dl< td=""><td>5.15</td><td>1.44</td><td><dl< td=""><td><ol< td=""><td>123</td></ol<></td></dl<></td></dl<>	5.15	1.44	<dl< td=""><td><ol< td=""><td>123</td></ol<></td></dl<>	<ol< td=""><td>123</td></ol<>	123
Q-Carp-6	170	2.87	<ol< td=""><td>676</td><td>0.40</td><td>2030</td><td><ol< td=""><td><0L</td><td>1.09</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>46</td></dl<></td></dl<></td></dl<></td></ol<></td></ol<>	676	0.40	2030	<ol< td=""><td><0L</td><td>1.09</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>46</td></dl<></td></dl<></td></dl<></td></ol<>	<0L	1.09	<dl< td=""><td><dl< td=""><td><dl< td=""><td>46</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>46</td></dl<></td></dl<>	<dl< td=""><td>46</td></dl<>	46
R-Shad-1	181	1.84	<0L	666	0.36	2180	<0L	<0L	0.77	<0L	<ol< td=""><td><dl< td=""><td>14</td></dl<></td></ol<>	<dl< td=""><td>14</td></dl<>	14
R-Shad-2	248	6.24	<dl< td=""><td>904</td><td>0.33</td><td>4380</td><td><dl< td=""><td><dl< td=""><td>1.24</td><td>0.96</td><td>3.43</td><td><dl< td=""><td>17</td></dl<></td></dl<></td></dl<></td></dl<>	904	0.33	4380	<dl< td=""><td><dl< td=""><td>1.24</td><td>0.96</td><td>3.43</td><td><dl< td=""><td>17</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.24</td><td>0.96</td><td>3.43</td><td><dl< td=""><td>17</td></dl<></td></dl<>	1.24	0.96	3.43	<dl< td=""><td>17</td></dl<>	17
R-Shad-3	235	5.36	<dl< td=""><td>711</td><td>0.41</td><td>3800</td><td><ol< td=""><td><dl< td=""><td>0.77</td><td>0.43</td><td>1.73</td><td><0L</td><td>17</td></dl<></td></ol<></td></dl<>	711	0.41	3800	<ol< td=""><td><dl< td=""><td>0.77</td><td>0.43</td><td>1.73</td><td><0L</td><td>17</td></dl<></td></ol<>	<dl< td=""><td>0.77</td><td>0.43</td><td>1.73</td><td><0L</td><td>17</td></dl<>	0.77	0.43	1.73	<0L	17
R-Shad-4,5	262	3.56	<dl< td=""><td>703</td><td>0.28</td><td>4120</td><td><ol< td=""><td><dl< td=""><td><0L</td><td>1.38</td><td>1.76</td><td><0L</td><td>14</td></dl<></td></ol<></td></dl<>	703	0.28	4120	<ol< td=""><td><dl< td=""><td><0L</td><td>1.38</td><td>1.76</td><td><0L</td><td>14</td></dl<></td></ol<>	<dl< td=""><td><0L</td><td>1.38</td><td>1.76</td><td><0L</td><td>14</td></dl<>	<0L	1.38	1.76	<0L	14
R-Shad-6,11	156	4.81	<ol< td=""><td>524</td><td><0L</td><td>1980</td><td><dl< td=""><td><dl< td=""><td>1.41</td><td>1.04</td><td><dl< td=""><td><0L</td><td>iż</td></dl<></td></dl<></td></dl<></td></ol<>	524	<0L	1980	<dl< td=""><td><dl< td=""><td>1.41</td><td>1.04</td><td><dl< td=""><td><0L</td><td>iż</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.41</td><td>1.04</td><td><dl< td=""><td><0L</td><td>iż</td></dl<></td></dl<>	1.41	1.04	<dl< td=""><td><0L</td><td>iż</td></dl<>	<0L	iż
R-Shad-12	245	3.40	<dl< td=""><td>882</td><td>1.41</td><td>2820</td><td><ol< td=""><td><dl< td=""><td>2.33</td><td>1.51</td><td>2.43</td><td><ol< td=""><td>30</td></ol<></td></dl<></td></ol<></td></dl<>	882	1.41	2820	<ol< td=""><td><dl< td=""><td>2.33</td><td>1.51</td><td>2.43</td><td><ol< td=""><td>30</td></ol<></td></dl<></td></ol<>	<dl< td=""><td>2.33</td><td>1.51</td><td>2.43</td><td><ol< td=""><td>30</td></ol<></td></dl<>	2.33	1.51	2.43	<ol< td=""><td>30</td></ol<>	30
R-Shad-13,14	283	3.44	<dl< td=""><td>709</td><td><dl< td=""><td>5930</td><td><dl< td=""><td><dl< td=""><td>1.51</td><td>2.14</td><td><dl< td=""><td>1.01</td><td>19</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	709	<dl< td=""><td>5930</td><td><dl< td=""><td><dl< td=""><td>1.51</td><td>2.14</td><td><dl< td=""><td>1.01</td><td>19</td></dl<></td></dl<></td></dl<></td></dl<>	5930	<dl< td=""><td><dl< td=""><td>1.51</td><td>2.14</td><td><dl< td=""><td>1.01</td><td>19</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.51</td><td>2.14</td><td><dl< td=""><td>1.01</td><td>19</td></dl<></td></dl<>	1.51	2.14	<dl< td=""><td>1.01</td><td>19</td></dl<>	1.01	19
Det. Limit (DL)	0.21	0.51	0.22	218	0.27	2.65	0.94	0.80	0.63	0.37	1.10	0.98	0.5

^{*} ppm unless otherwise indicated.

Table 68 (Continued)

Sample No.	Al	As	8	8a	Be	Ca	Cd	Со	Cr	Cu -	Fe	Hg (ppb)	K
Q-Shad 1 Q-Shad-7	2.6 7.4	<0L <0L	1.43	0.41 1.08	<0L <0L	4290 14100	<dl <dl< td=""><td><0L <0L</td><td><dl 1.2</dl </td><td>1.12</td><td>53.6 98.2</td><td>53.0 29.0</td><td>2600 2360</td></dl<></dl 	<0L <0L	<dl 1.2</dl 	1.12	53.6 98.2	53.0 29.0	2600 2360
R-Ale-1 R-Ale-2 R-Ale-3 R-Ale-4,5 R-Ale-6	2.6 <dl 1.8 <dl <ol< td=""><td>1.38 1.15 <ol <ol< td=""><td>1.62 0.25 1.53 0.79 <dl< td=""><td>0.33 0.20 0.60 0.36 0.45</td><td><dl <dl <ol <ol< td=""><td>6000 5800 9400 7300 10500</td><td><dl <dl <dl <ol <ol< td=""><td><0L <0L <0L <0L</td><td><0L 1.6 1.2 1.3</td><td>1.19 0.80 1.11 0.78 1.05</td><td>31.5 24.2 27.7 24.7 32.5</td><td>80.3 82.3 53.0 26.3 37.4</td><td>2520 2470 2780 2390 2760</td></ol<></ol </dl </dl </dl </td></ol<></ol </dl </dl </td></dl<></td></ol<></ol </td></ol<></dl </dl 	1.38 1.15 <ol <ol< td=""><td>1.62 0.25 1.53 0.79 <dl< td=""><td>0.33 0.20 0.60 0.36 0.45</td><td><dl <dl <ol <ol< td=""><td>6000 5800 9400 7300 10500</td><td><dl <dl <dl <ol <ol< td=""><td><0L <0L <0L <0L</td><td><0L 1.6 1.2 1.3</td><td>1.19 0.80 1.11 0.78 1.05</td><td>31.5 24.2 27.7 24.7 32.5</td><td>80.3 82.3 53.0 26.3 37.4</td><td>2520 2470 2780 2390 2760</td></ol<></ol </dl </dl </dl </td></ol<></ol </dl </dl </td></dl<></td></ol<></ol 	1.62 0.25 1.53 0.79 <dl< td=""><td>0.33 0.20 0.60 0.36 0.45</td><td><dl <dl <ol <ol< td=""><td>6000 5800 9400 7300 10500</td><td><dl <dl <dl <ol <ol< td=""><td><0L <0L <0L <0L</td><td><0L 1.6 1.2 1.3</td><td>1.19 0.80 1.11 0.78 1.05</td><td>31.5 24.2 27.7 24.7 32.5</td><td>80.3 82.3 53.0 26.3 37.4</td><td>2520 2470 2780 2390 2760</td></ol<></ol </dl </dl </dl </td></ol<></ol </dl </dl </td></dl<>	0.33 0.20 0.60 0.36 0.45	<dl <dl <ol <ol< td=""><td>6000 5800 9400 7300 10500</td><td><dl <dl <dl <ol <ol< td=""><td><0L <0L <0L <0L</td><td><0L 1.6 1.2 1.3</td><td>1.19 0.80 1.11 0.78 1.05</td><td>31.5 24.2 27.7 24.7 32.5</td><td>80.3 82.3 53.0 26.3 37.4</td><td>2520 2470 2780 2390 2760</td></ol<></ol </dl </dl </dl </td></ol<></ol </dl </dl 	6000 5800 9400 7300 10500	<dl <dl <dl <ol <ol< td=""><td><0L <0L <0L <0L</td><td><0L 1.6 1.2 1.3</td><td>1.19 0.80 1.11 0.78 1.05</td><td>31.5 24.2 27.7 24.7 32.5</td><td>80.3 82.3 53.0 26.3 37.4</td><td>2520 2470 2780 2390 2760</td></ol<></ol </dl </dl </dl 	<0L <0L <0L <0L	<0L 1.6 1.2 1.3	1.19 0.80 1.11 0.78 1.05	31.5 24.2 27.7 24.7 32.5	80.3 82.3 53.0 26.3 37.4	2520 2470 2780 2390 2760
Q-Ale-1 Q-Ale-2	4.0 9.8	<dl <dl< td=""><td>4.86 <dl< td=""><td>0.55 0.58</td><td><0L <0L</td><td>7970 7500</td><td><0L <0L</td><td><0L <0L</td><td><5L 1.</td><td>0.64 0.91</td><td>50.5 73.6</td><td>27.6 39.4</td><td>1630 2340</td></dl<></td></dl<></dl 	4.86 <dl< td=""><td>0.55 0.58</td><td><0L <0L</td><td>7970 7500</td><td><0L <0L</td><td><0L <0L</td><td><5L 1.</td><td>0.64 0.91</td><td>50.5 73.6</td><td>27.6 39.4</td><td>1630 2340</td></dl<>	0.55 0.58	<0L <0L	7970 7500	<0L <0L	<0L <0L	<5L 1.	0.64 0.91	50.5 73.6	27.6 39.4	1630 2340
T-Ale-1	<ol< td=""><td><dl< td=""><td><ol< td=""><td>0.35</td><td><0L</td><td>7200</td><td><0L</td><td><0L</td><td><ol< td=""><td>0.70</td><td>26.4</td><td>38.5</td><td>1910</td></ol<></td></ol<></td></dl<></td></ol<>	<dl< td=""><td><ol< td=""><td>0.35</td><td><0L</td><td>7200</td><td><0L</td><td><0L</td><td><ol< td=""><td>0.70</td><td>26.4</td><td>38.5</td><td>1910</td></ol<></td></ol<></td></dl<>	<ol< td=""><td>0.35</td><td><0L</td><td>7200</td><td><0L</td><td><0L</td><td><ol< td=""><td>0.70</td><td>26.4</td><td>38.5</td><td>1910</td></ol<></td></ol<>	0.35	<0L	7200	<0L	<0L	<ol< td=""><td>0.70</td><td>26.4</td><td>38.5</td><td>1910</td></ol<>	0.70	26.4	38.5	1910
R-OVIR-1 R-OVIR-2	569. 97.6	<0L 2.03	<dl <dl< td=""><td>43.40 14.50</td><td><0L <0L</td><td>37100 38300</td><td>0.278 0.297</td><td><0L <0L</td><td>1.9 2.4</td><td>25.00 27.30</td><td>685.0 1140.0</td><td>17.2 <dl< td=""><td>1500 1320</td></dl<></td></dl<></dl 	43.40 14.50	<0L <0L	37100 38300	0.278 0.297	<0L <0L	1.9 2.4	25.00 27.30	685.0 1140.0	17.2 <dl< td=""><td>1500 1320</td></dl<>	1500 1320
T-OVIR-1	109.	<0L	1.80	23.40	<0L	41000	<dl< td=""><td><dl< td=""><td><dl< td=""><td>30.20</td><td>140.0</td><td>16.1</td><td>1130</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>30.20</td><td>140.0</td><td>16.1</td><td>1130</td></dl<></td></dl<>	<dl< td=""><td>30.20</td><td>140.0</td><td>16.1</td><td>1130</td></dl<>	30.20	140.0	16.1	1130
Det. Limit (DL)	1.6	1.30	0.12	0.03	0.03	0.39	0.11	0.25	1.2	0.36	1.3	5.0	56

Sample No.	Mg	Mn	Мо	Na	N1	P	Pb	Sb	Se	\$1	Sn	٧	Zn
Q-Shad I	245.	3.93	<dl< td=""><td>715</td><td>0.31</td><td>3600</td><td><0L</td><td><ol< td=""><td><0L</td><td>0.43</td><td>1.12</td><td></td><td>18.1</td></ol<></td></dl<>	715	0.31	3600	<0L	<ol< td=""><td><0L</td><td>0.43</td><td>1.12</td><td></td><td>18.1</td></ol<>	<0L	0.43	1.12		18.1
u-Shad-7	368.	6.89	<dl< td=""><td>818</td><td>0.30</td><td>8290</td><td><0L</td><td><dl< td=""><td><0L</td><td>1.72</td><td><dl< td=""><td><ol< td=""><td>26.2</td></ol<></td></dl<></td></dl<></td></dl<>	818	0.30	8290	<0L	<dl< td=""><td><0L</td><td>1.72</td><td><dl< td=""><td><ol< td=""><td>26.2</td></ol<></td></dl<></td></dl<>	<0L	1.72	<dl< td=""><td><ol< td=""><td>26.2</td></ol<></td></dl<>	<ol< td=""><td>26.2</td></ol<>	26.2
R-Ale-1	224.	2.95	<dl< td=""><td>681</td><td><dl< td=""><td>4190</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.93</td><td><0L</td><td><dl< td=""><td>33.4</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	681	<dl< td=""><td>4190</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.93</td><td><0L</td><td><dl< td=""><td>33.4</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	4190	<dl< td=""><td><dl< td=""><td><dl< td=""><td>0.93</td><td><0L</td><td><dl< td=""><td>33.4</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>0.93</td><td><0L</td><td><dl< td=""><td>33.4</td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.93</td><td><0L</td><td><dl< td=""><td>33.4</td></dl<></td></dl<>	0.93	<0L	<dl< td=""><td>33.4</td></dl<>	33.4
R-Ale-2	210.	3.15	<dl< td=""><td>766</td><td><dl< td=""><td>4010</td><td><dl< td=""><td><dl< td=""><td><0L</td><td>1.07</td><td><dl< td=""><td><dl< td=""><td>28.2</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	766	<dl< td=""><td>4010</td><td><dl< td=""><td><dl< td=""><td><0L</td><td>1.07</td><td><dl< td=""><td><dl< td=""><td>28.2</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	4010	<dl< td=""><td><dl< td=""><td><0L</td><td>1.07</td><td><dl< td=""><td><dl< td=""><td>28.2</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><0L</td><td>1.07</td><td><dl< td=""><td><dl< td=""><td>28.2</td></dl<></td></dl<></td></dl<>	<0L	1.07	<dl< td=""><td><dl< td=""><td>28.2</td></dl<></td></dl<>	<dl< td=""><td>28.2</td></dl<>	28.2
R-Ale-3	294.	3.47	<0L	767	<dl< td=""><td>5040</td><td><dl< td=""><td><dl< td=""><td>0.74</td><td>0.60</td><td><dl< td=""><td><dl< td=""><td>23.0</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	5040	<dl< td=""><td><dl< td=""><td>0.74</td><td>0.60</td><td><dl< td=""><td><dl< td=""><td>23.0</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>0.74</td><td>0.60</td><td><dl< td=""><td><dl< td=""><td>23.0</td></dl<></td></dl<></td></dl<>	0.74	0.60	<dl< td=""><td><dl< td=""><td>23.0</td></dl<></td></dl<>	<dl< td=""><td>23.0</td></dl<>	23.0
R-A1e-4,5	250.	2.82	<dl< td=""><td>641</td><td><dl< td=""><td>4960</td><td><dl< td=""><td><dl< td=""><td><0L</td><td>0.54</td><td><dl< td=""><td><dl< td=""><td>28.9</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	641	<dl< td=""><td>4960</td><td><dl< td=""><td><dl< td=""><td><0L</td><td>0.54</td><td><dl< td=""><td><dl< td=""><td>28.9</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	4960	<dl< td=""><td><dl< td=""><td><0L</td><td>0.54</td><td><dl< td=""><td><dl< td=""><td>28.9</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><0L</td><td>0.54</td><td><dl< td=""><td><dl< td=""><td>28.9</td></dl<></td></dl<></td></dl<>	<0L	0.54	<dl< td=""><td><dl< td=""><td>28.9</td></dl<></td></dl<>	<dl< td=""><td>28.9</td></dl<>	28.9
R-Ale-6	322.	4.85	<dl< td=""><td>854</td><td>0.35</td><td>6850</td><td><dl< td=""><td><dl< td=""><td><0L</td><td>0.58</td><td><dl< td=""><td><0L</td><td>31.7</td></dl<></td></dl<></td></dl<></td></dl<>	854	0.35	6850	<dl< td=""><td><dl< td=""><td><0L</td><td>0.58</td><td><dl< td=""><td><0L</td><td>31.7</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><0L</td><td>0.58</td><td><dl< td=""><td><0L</td><td>31.7</td></dl<></td></dl<>	<0L	0.58	<dl< td=""><td><0L</td><td>31.7</td></dl<>	<0L	31.7
Q-A1e-1	221.	3.27	<dl< td=""><td>396</td><td><dl< td=""><td>4850</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.23</td><td><dl< td=""><td><dl< td=""><td>20.6</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	396	<dl< td=""><td>4850</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.23</td><td><dl< td=""><td><dl< td=""><td>20.6</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	4850	<dl< td=""><td><dl< td=""><td><dl< td=""><td>1.23</td><td><dl< td=""><td><dl< td=""><td>20.6</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>1.23</td><td><dl< td=""><td><dl< td=""><td>20.6</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td>1.23</td><td><dl< td=""><td><dl< td=""><td>20.6</td></dl<></td></dl<></td></dl<>	1.23	<dl< td=""><td><dl< td=""><td>20.6</td></dl<></td></dl<>	<dl< td=""><td>20.6</td></dl<>	20.6
Q-A1e-2	236.	5.19	<dl< td=""><td>629</td><td>0.39</td><td>4800</td><td><ol< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>24.0</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></ol<></td></dl<>	629	0.39	4800	<ol< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>24.0</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></ol<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>24.0</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>24.0</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>24.0</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>24.0</td></dl<></td></dl<>	<dl< td=""><td>24.0</td></dl<>	24.0
T-Ale-1	224.	3.85	<0L	414	<dl< td=""><td>4640</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><0L</td><td>19.6</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	4640	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><0L</td><td>19.6</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><0L</td><td>19.6</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td><0L</td><td>19.6</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><0L</td><td>19.6</td></dl<></td></dl<>	<dl< td=""><td><0L</td><td>19.6</td></dl<>	<0L	19.6
R-OVIR-1	718.	373.0	<dl< td=""><td>1530</td><td>1.76</td><td>3210</td><td><dl< td=""><td>0.88</td><td><dl< td=""><td>3.91</td><td><ol< td=""><td>2.22</td><td>62.0</td></ol<></td></dl<></td></dl<></td></dl<>	1530	1.76	3210	<dl< td=""><td>0.88</td><td><dl< td=""><td>3.91</td><td><ol< td=""><td>2.22</td><td>62.0</td></ol<></td></dl<></td></dl<>	0.88	<dl< td=""><td>3.91</td><td><ol< td=""><td>2.22</td><td>62.0</td></ol<></td></dl<>	3.91	<ol< td=""><td>2.22</td><td>62.0</td></ol<>	2.22	62.0
R-OVIR-2	535.	180.0	<dl< td=""><td>1200</td><td>1.39</td><td>3170</td><td>6.24</td><td>0.94</td><td><dl< td=""><td>6.74</td><td><dl< td=""><td>1.93</td><td>47.9</td></dl<></td></dl<></td></dl<>	1200	1.39	3170	6.24	0.94	<dl< td=""><td>6.74</td><td><dl< td=""><td>1.93</td><td>47.9</td></dl<></td></dl<>	6.74	<dl< td=""><td>1.93</td><td>47.9</td></dl<>	1.93	47.9
T-OVIR-1	662.	32.5	<dl< td=""><td>1150</td><td><0L</td><td>3510.</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>2.00</td><td><gl< td=""><td>1.52</td><td>27.5</td></gl<></td></dl<></td></dl<></td></dl<></td></dl<>	1150	<0L	3510.	<dl< td=""><td><dl< td=""><td><dl< td=""><td>2.00</td><td><gl< td=""><td>1.52</td><td>27.5</td></gl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>2.00</td><td><gl< td=""><td>1.52</td><td>27.5</td></gl<></td></dl<></td></dl<>	<dl< td=""><td>2.00</td><td><gl< td=""><td>1.52</td><td>27.5</td></gl<></td></dl<>	2.00	<gl< td=""><td>1.52</td><td>27.5</td></gl<>	1.52	27.5
Det. Limit (C	L) 0.21	0.51	0.22	218	0.27	2.65	0.94	0.80	0.63	0.37	1.10	0.98	0.470

Table 68 (Concluded)

Sample No.	Al	As	В	Ва	Ве	Ca	Cd	Co	Cr	Cu	Fe	Hg (ppb)	ĸ
Q-PACU-1 Q-PACU-2	37.1 21.5	<dl <dl< td=""><td>0.97 1.94</td><td>6.79 2.48</td><td><dl <dl< td=""><td>27400 11500</td><td><dl <ol< td=""><td><0L <0L</td><td>3.5</td><td>22.00 10.10</td><td>575.0 168.0</td><td><dl <dl< td=""><td>1820 771</td></dl<></dl </td></ol<></dl </td></dl<></dl </td></dl<></dl 	0.97 1.94	6.79 2.48	<dl <dl< td=""><td>27400 11500</td><td><dl <ol< td=""><td><0L <0L</td><td>3.5</td><td>22.00 10.10</td><td>575.0 168.0</td><td><dl <dl< td=""><td>1820 771</td></dl<></dl </td></ol<></dl </td></dl<></dl 	27400 11500	<dl <ol< td=""><td><0L <0L</td><td>3.5</td><td>22.00 10.10</td><td>575.0 168.0</td><td><dl <dl< td=""><td>1820 771</td></dl<></dl </td></ol<></dl 	<0L <0L	3.5	22.00 10.10	575.0 168.0	<dl <dl< td=""><td>1820 771</td></dl<></dl 	1820 771
Q-SUN-1,2,3	<dl< td=""><td><0L</td><td>1.70</td><td>0.05</td><td><dl< td=""><td>12</td><td><0L</td><td><0L</td><td><dl< td=""><td><0L</td><td><0L</td><td>31.0</td><td><0L</td></dl<></td></dl<></td></dl<>	<0L	1.70	0.05	<dl< td=""><td>12</td><td><0L</td><td><0L</td><td><dl< td=""><td><0L</td><td><0L</td><td>31.0</td><td><0L</td></dl<></td></dl<>	12	<0L	<0L	<dl< td=""><td><0L</td><td><0L</td><td>31.0</td><td><0L</td></dl<>	<0L	<0L	31.0	<0L
R-SUN-1,2,3	9.5	<0L	1.19	0.63	<dl< td=""><td>20900</td><td><0L</td><td><dl< td=""><td><dl< td=""><td>1.32</td><td>67.3</td><td><0L</td><td>3100</td></dl<></td></dl<></td></dl<>	20900	<0L	<dl< td=""><td><dl< td=""><td>1.32</td><td>67.3</td><td><0L</td><td>3100</td></dl<></td></dl<>	<dl< td=""><td>1.32</td><td>67.3</td><td><0L</td><td>3100</td></dl<>	1.32	67.3	<0L	3100
S-ORUS-1	26.9	<dl< td=""><td>1.99</td><td>39.0</td><td><dl< td=""><td>56900</td><td><dl< td=""><td><dl< td=""><td>1.3</td><td>31.50</td><td>39.7</td><td>15.1</td><td>885</td></dl<></td></dl<></td></dl<></td></dl<>	1.99	39.0	<dl< td=""><td>56900</td><td><dl< td=""><td><dl< td=""><td>1.3</td><td>31.50</td><td>39.7</td><td>15.1</td><td>885</td></dl<></td></dl<></td></dl<>	56900	<dl< td=""><td><dl< td=""><td>1.3</td><td>31.50</td><td>39.7</td><td>15.1</td><td>885</td></dl<></td></dl<>	<dl< td=""><td>1.3</td><td>31.50</td><td>39.7</td><td>15.1</td><td>885</td></dl<>	1.3	31.50	39.7	15.1	885
Q-Gold-1 Q-Gold-2,3	3.64 4.8	<0L <0L	0.35 <dl< td=""><td>0.62 0.58</td><td><0L <0L</td><td>15500 13000</td><td><0L <0L</td><td><0L <0L</td><td>2.2 1.2</td><td>1.30 1.20</td><td>50.7 63.5</td><td>17.5 12.2</td><td>2140 1880</td></dl<>	0.62 0.58	<0L <0L	15500 13000	<0L <0L	<0L <0L	2.2 1.2	1.30 1.20	50.7 63.5	17.5 12.2	2140 1880
S-PER-1-10	<dl< td=""><td><dl< td=""><td><0L</td><td>0.90</td><td><dl< td=""><td>13200</td><td><dl< td=""><td><0L</td><td><0L</td><td><0L</td><td>14.3</td><td>22.8</td><td>2790</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><0L</td><td>0.90</td><td><dl< td=""><td>13200</td><td><dl< td=""><td><0L</td><td><0L</td><td><0L</td><td>14.3</td><td>22.8</td><td>2790</td></dl<></td></dl<></td></dl<>	<0L	0.90	<dl< td=""><td>13200</td><td><dl< td=""><td><0L</td><td><0L</td><td><0L</td><td>14.3</td><td>22.8</td><td>2790</td></dl<></td></dl<>	13200	<dl< td=""><td><0L</td><td><0L</td><td><0L</td><td>14.3</td><td>22.8</td><td>2790</td></dl<>	<0L	<0L	<0L	14.3	22.8	2790
Det. Limit (DL	.) 1.6	1.30	0.12	0.03	0.03	0.39	0.11	0.25	1.2	0.36	1.3	5.0	56

Sample No.	Mg	Mn	Мо	Na	Ni	Р	Pb	56	Se	Si	Sn	V	Zn
Q-PACU-1 Q-PACU-2	434. 174.	29.8 10.8	<0L <0L	1250 535	0.66 0.28	2380 1240	2.83 1.26	1.60 <0L	<0L <0L	1.19 <dl< td=""><td><0L <cl< td=""><td>1.84 <dl< td=""><td>31.6 19.2</td></dl<></td></cl<></td></dl<>	<0L <cl< td=""><td>1.84 <dl< td=""><td>31.6 19.2</td></dl<></td></cl<>	1.84 <dl< td=""><td>31.6 19.2</td></dl<>	31.6 19.2
Q-SUN-1,2,3	0.51	<0L	<dl< td=""><td><dl< td=""><td><ol< td=""><td>3.76</td><td><0L</td><td><dl< td=""><td><dl< td=""><td>1.24</td><td><0L</td><td><0L</td><td>3.0</td></dl<></td></dl<></td></ol<></td></dl<></td></dl<>	<dl< td=""><td><ol< td=""><td>3.76</td><td><0L</td><td><dl< td=""><td><dl< td=""><td>1.24</td><td><0L</td><td><0L</td><td>3.0</td></dl<></td></dl<></td></ol<></td></dl<>	<ol< td=""><td>3.76</td><td><0L</td><td><dl< td=""><td><dl< td=""><td>1.24</td><td><0L</td><td><0L</td><td>3.0</td></dl<></td></dl<></td></ol<>	3.76	<0L	<dl< td=""><td><dl< td=""><td>1.24</td><td><0L</td><td><0L</td><td>3.0</td></dl<></td></dl<>	<dl< td=""><td>1.24</td><td><0L</td><td><0L</td><td>3.0</td></dl<>	1.24	<0L	<0L	3.0
R-SUN-1,2,3	501.	5.54	<dl< td=""><td>865</td><td>0.48</td><td>11000</td><td><dl< td=""><td><dl< td=""><td><0L</td><td>0.71</td><td><ol< td=""><td><0L</td><td>36.2</td></ol<></td></dl<></td></dl<></td></dl<>	865	0.48	11000	<dl< td=""><td><dl< td=""><td><0L</td><td>0.71</td><td><ol< td=""><td><0L</td><td>36.2</td></ol<></td></dl<></td></dl<>	<dl< td=""><td><0L</td><td>0.71</td><td><ol< td=""><td><0L</td><td>36.2</td></ol<></td></dl<>	<0L	0.71	<ol< td=""><td><0L</td><td>36.2</td></ol<>	<0L	36.2
S-ORUS-1	702.	16.2	<dl< td=""><td>951</td><td><dl< td=""><td>3920</td><td>1.15</td><td>1.68</td><td><ol< td=""><td><dl< td=""><td><ol< td=""><td>1.44</td><td>18.8</td></ol<></td></dl<></td></ol<></td></dl<></td></dl<>	951	<dl< td=""><td>3920</td><td>1.15</td><td>1.68</td><td><ol< td=""><td><dl< td=""><td><ol< td=""><td>1.44</td><td>18.8</td></ol<></td></dl<></td></ol<></td></dl<>	3920	1.15	1.68	<ol< td=""><td><dl< td=""><td><ol< td=""><td>1.44</td><td>18.8</td></ol<></td></dl<></td></ol<>	<dl< td=""><td><ol< td=""><td>1.44</td><td>18.8</td></ol<></td></dl<>	<ol< td=""><td>1.44</td><td>18.8</td></ol<>	1.44	18.8
Q-Gold-1 Q-Gold-2,3	437. 396.	2.11 2.74	<dl <dl< td=""><td>1000 729</td><td>0.29 6.25</td><td>9170 7960</td><td>1.01 <0L</td><td><0L <0L</td><td>1.66 1.59</td><td>1.39 <dl< td=""><td><0L <0L</td><td><dl <dl< td=""><td>60.4 59.1</td></dl<></dl </td></dl<></td></dl<></dl 	1000 729	0.29 6.25	9170 7960	1.01 <0L	<0L <0L	1.66 1.59	1.39 <dl< td=""><td><0L <0L</td><td><dl <dl< td=""><td>60.4 59.1</td></dl<></dl </td></dl<>	<0L <0L	<dl <dl< td=""><td>60.4 59.1</td></dl<></dl 	60.4 59.1
S-PER-1-10	382.	1.85	<dl< td=""><td>698</td><td>0.300</td><td>8330</td><td><dl< td=""><td><0L</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>22.5</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	698	0.300	8330	<dl< td=""><td><0L</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>22.5</td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>	<0L	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>22.5</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>22.5</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>22.5</td></dl<></td></dl<>	<dl< td=""><td>22.5</td></dl<>	22.5
Det. Limit (DL	.) 0.21	0.51	0.22	218	0.27	2.65	0.94	0.80	0.63	0.37	1.10	0.98	0.50

Table 69. Catch per Unit Effort During Electrofishing (Source R1, Table 21a) (see Figure 47)

Station	Time	Catch	Total Weight	Weight(g)/Hour
	Shocked		(grams)	
Q	2 hr	25 Gizzard Shad		
		6 Carp		
		2 Alewives		
		5 Goldfish		
		1 Emerald Shiners		
		3 Sunfish, BGxPS		
		24 Golden Shiners		
		Total = 66 Fish	15.989	<u>7950</u>
R	3 hr	14 Gizzard Shad		
•	J .u	3 Carp		
		25 Alewives		
		3 Sunfish, BGxPS		
			17.461	5920
		Total = 45 Fish	<u>17.461</u>	5820
S	1 hr	0 Fish	Ω	Q

Table 70. Catch per Unit Effort During Trawling (Source R1, Table 21b) (see Figure 47)

Station	Time (hours) (na	Distance	Catch	Total Weight (grams)	Weight(g)/naut. mile
T	1.12*	1.83	3 Alewives	93.8	51.3
* This is	the sum of thre	e trawls.			

Table 71. Catch per Unit Effort in Crayfish
Traps (Source R1, Table 21c)
(see Figure 47)

Station	# Traps	Catch	Total Weight (g)	Weight(g)/Trap
Q-beg	2	1 P. acutus 10. virilis	27.4	13.7
Q-end	2	6 P. acutus	129.5	64.8
R-beg	3	7 O. virilis	87.1	29.0
R-end	3	8 O. virilis	93.1	31.0
S-beg	3	1 E. nigrum	1.1	0.37
S-end*	2	30 P. flavescens	1833.8	611.3
		1 C. bairdi		
		1 O. rusticus		

^{*} All traps were recovered after one day, with the exception of two traps at S-end; one was recovered empty and the other was left for 16 days.

Table 72. Concentrations of Major, Minor, and Trace Elements in Periphyton and Plankton from Indiana Harbor and Adjacent Lake Michigan (Source R1, Table 14) (see Figure 47)

Sample No.	Al	As	8	Ва	Be	Ca	Cq	Co	Cr	Cu	Fe	Hg (ppb)	K
Periphyton						_			-				
R-925	117.0	1.80	4.74	2.47	<ol< td=""><td>4020</td><td>0.31</td><td><dl< td=""><td>3.2</td><td>0.46</td><td>1470</td><td><dl< td=""><td>459</td></dl<></td></dl<></td></ol<>	4020	0.31	<dl< td=""><td>3.2</td><td>0.46</td><td>1470</td><td><dl< td=""><td>459</td></dl<></td></dl<>	3.2	0.46	1470	<dl< td=""><td>459</td></dl<>	459
R-926	151.0	3.25	4.85	3.64	<ol< td=""><td>6410</td><td>0.49</td><td><dl< td=""><td>4.5</td><td>0.39</td><td>2310</td><td><dl< td=""><td>423</td></dl<></td></dl<></td></ol<>	6410	0.49	<dl< td=""><td>4.5</td><td>0.39</td><td>2310</td><td><dl< td=""><td>423</td></dl<></td></dl<>	4.5	0.39	2310	<dl< td=""><td>423</td></dl<>	423
R-929	135.0	3.25	2.72	1.94	<0L	1140	0.437	<dl< td=""><td>6.07</td><td>2.33</td><td>2060</td><td><dl< td=""><td>835</td></dl<></td></dl<>	6.07	2.33	2060	<dl< td=""><td>835</td></dl<>	835
R-935	768.0	8.65	20.40	11.10	0.05	6350	2.50	1.35	27.8	11.0	11500	13.3	865
Plankton													
Q-5	481.0	5.44	5.54	8.48	0.05	1250	1.52	<dl< td=""><td>28.0</td><td>15.2</td><td>5490</td><td>51.8</td><td>150</td></dl<>	28.0	15.2	5490	51.8	150
R-8	377.0	2.97	3.42	4.90	0.05	1320	0.89	<dl< td=""><td>12.2</td><td>7.57</td><td>3200</td><td>31.9</td><td>171</td></dl<>	12.2	7.57	3200	31.9	171
Det. Limit (0	L) 1.61	1.30	0.12	0.03	0.03	0.39	0.11	0.25	1.2	0.36	1.3	5.0	56

Sample No.	Mg 	Mn	Мо	Na	Ni	P	РЬ	Sb	Se	Si	Sn	٧	Zn
Periphyton										•			
R-925	503	78.9	<ol< td=""><td><dl< td=""><td>0.83</td><td>127.</td><td>1.75</td><td><ol< td=""><td><ol< td=""><td>N.A.</td><td>1.55</td><td><0L</td><td>27.3</td></ol<></td></ol<></td></dl<></td></ol<>	<dl< td=""><td>0.83</td><td>127.</td><td>1.75</td><td><ol< td=""><td><ol< td=""><td>N.A.</td><td>1.55</td><td><0L</td><td>27.3</td></ol<></td></ol<></td></dl<>	0.83	127.	1.75	<ol< td=""><td><ol< td=""><td>N.A.</td><td>1.55</td><td><0L</td><td>27.3</td></ol<></td></ol<>	<ol< td=""><td>N.A.</td><td>1.55</td><td><0L</td><td>27.3</td></ol<>	N.A.	1.55	<0L	27.3
R-926	539	112.	<dl< td=""><td><ol< td=""><td>1.07</td><td>136.</td><td>2.86</td><td>0.825</td><td><dl< td=""><td>N.A.</td><td>1.26</td><td>10.8</td><td>41.5</td></dl<></td></ol<></td></dl<>	<ol< td=""><td>1.07</td><td>136.</td><td>2.86</td><td>0.825</td><td><dl< td=""><td>N.A.</td><td>1.26</td><td>10.8</td><td>41.5</td></dl<></td></ol<>	1.07	136.	2.86	0.825	<dl< td=""><td>N.A.</td><td>1.26</td><td>10.8</td><td>41.5</td></dl<>	N.A.	1.26	10.8	41.5
R-929	310	155.	<ol< td=""><td><ol< td=""><td>1.55</td><td>111.</td><td>7.38</td><td><dl< td=""><td><dl< td=""><td>N.A.</td><td>1.31</td><td>4.47</td><td>32.8</td></dl<></td></dl<></td></ol<></td></ol<>	<ol< td=""><td>1.55</td><td>111.</td><td>7.38</td><td><dl< td=""><td><dl< td=""><td>N.A.</td><td>1.31</td><td>4.47</td><td>32.8</td></dl<></td></dl<></td></ol<>	1.55	111.	7.38	<dl< td=""><td><dl< td=""><td>N.A.</td><td>1.31</td><td>4.47</td><td>32.8</td></dl<></td></dl<>	<dl< td=""><td>N.A.</td><td>1.31</td><td>4.47</td><td>32.8</td></dl<>	N.A.	1.31	4.47	32.8
R-935	1240	730.	<dl< td=""><td>243</td><td>6.05</td><td>303.</td><td>34.8</td><td><dl< td=""><td><dl< td=""><td>N.A.</td><td>6.05</td><td>13.0</td><td>140.</td></dl<></td></dl<></td></dl<>	243	6.05	303.	34.8	<dl< td=""><td><dl< td=""><td>N.A.</td><td>6.05</td><td>13.0</td><td>140.</td></dl<></td></dl<>	<dl< td=""><td>N.A.</td><td>6.05</td><td>13.0</td><td>140.</td></dl<>	N.A.	6.05	13.0	140.
Plankton													
Q-5	376	263.0	<dl< td=""><td>601</td><td>3.28</td><td>386.</td><td>35.20</td><td>0.83</td><td><dl< td=""><td>N.A.</td><td>11.7</td><td>5.64</td><td>200.</td></dl<></td></dl<>	601	3.28	386.	35.20	0.83	<dl< td=""><td>N.A.</td><td>11.7</td><td>5.64</td><td>200.</td></dl<>	N.A.	11.7	5.64	200.
R-8	359	132.0	<ol< td=""><td>387</td><td>1.83</td><td>171.</td><td>15.60</td><td>0.89</td><td><ol< td=""><td>N.A.</td><td>6.34</td><td>5.69</td><td>106.</td></ol<></td></ol<>	387	1.83	171.	15.60	0.89	<ol< td=""><td>N.A.</td><td>6.34</td><td>5.69</td><td>106.</td></ol<>	N.A.	6.34	5.69	106.
Det. Limit (C	DL \ 0.21	0.51	0.22	218	0.27	2.65	0.94	0.80	0.63	0.37	1.10	0.98	0.5

Table 73. PCB Body Burdens in Indiana Harbor Fish, Plankton, and Crayfish (Source R1, Table 12)

Sample	Total PCBs (ppb)	MDL (ppb)
PERIPHYTON-R-925	265.53	13.75
PERIPHYTON-R-926	275.41	13.75
PERIPHYTON-R-929	34.58	13.75
PERIPHYTON-R-935	109.40	13.75
PLANKTON-Q-5	162.59	13.75
PLANKTON-R-8	480.43	- 13.75
R-CARP-1a	4212.69	- 13.75
R-CARP-1b	4466.83	13.75
R-CARP-2	633.60	13.75
R-CARP-3	981.95	13.75
Q-CARP-1	1817.20	13.75
Q-CARP-2	7863.95	13.75
Q-CARP-3	453.74	13.75
Q-CARP-4	1620.89	13.75
Q-CARP-5	1181.49	13.75
Q-CARP-6	200.41	13.75
R-SHAD-1	986.22	13.75
R-SHAD-2	265.81	13.75
R-SHAD-3	142.39	13.75
R-SHAD-4,5	1618.30	13.75
R-SHAD-6,11a	915.27	13.75
R-SHAD-6,11b	891.42	13.75
R-SHAD-12	117.08	13.75
R-SHAD-13,14	119.75	13.75
Q-SHAD-1	418.48	13.75
Q-SHAD-7a	211.74	13.75
Q-SHAD-7b	206.66	13.75
R-ALE-2	309.58	13.75
R-ALE-3	118.40	13.75
R-ALE-4,5a	15.75	13.75
R-ALE-4,5b	- 14.38	13.75
R-ALE-6	414.70	13.75
Q-ALE-1	125.70	13.75
O-ALE-2	531.62	13.75
T-ALE-1	108.58	13.75
R-OVIR-1	120.79	13.75
R-OVIR-2	148.55	13.75
T-OVIR-1	90.22	
O-PACU-1		13.75
Q-PACU-1	381.81	13.75
	124.95	13.75
Q-SUN-1,2,3	512.49	13.75
R-SUN-1,2,3a	763.74	13.75
R-SUN-1,2,3b	790.08	13.75
S-ORUS-1	356.29	13.75
Q GOLD-1	739.74	13.75
Q-GOLD-2,3	1130.42	13.75
S-PER-1-10	377.85	13.75
Blank 1,2 - PC	20.35	13.75
Blank 3,4 - PC	BMDL	13.75
Blank 5,6 - PC	5.91	13.75
Blank 1,2 - Extract	0.00	13.75

Table 74. Percent Difference in Oxygen Liberation
[Photosynthesis] and Oxygen Consumption
[Respiration] Between Control and In Situ
Colonization Test Systems in an 8-hr
Biological Oxygen Demand Test (Source R1,
Table 16)

Station	Oxygen liberation	Oxygen consumption
Q - B	-313.6*	+49.9*
Q-E	-233.5*	+56.8*
R - B	-233.5*	+53.8*
R-E	-276.8*	+46.9*
S	lost ^a	lost ^a

^{*} Significant difference in dissolved oxygen values between control and test systems (a=0.05). Each value is the mean of three replicates.

Table 75. Summary of Protozoan Counts of In Situ Colonization Studies (Source R1, Table 17a)

Station	Control	IHC Q-B	IHC Q-E	IHC R-B	IHC R-E
# Species found	47	41	38	25	42
Shannon Diversity Index (H) ^a	3.52	3.06	2.84	2.80	3.47

^a Shannon, C. 1948

^a Suspected vandalism.

Table 76. Summary of Feeding Strategies of Protozoans Represented in In Situ Colonization Studies (Source R1, Table 17b)

Feeding Strategy	Control*	IHC Q-B	IHC Q-E	-IHC R-B	IHC R-E
Algivores	11.1%	7.4%	8.3%	12.5%	10.3%
Saprotrophs	0.0%	0.0%	0.0%	0.0%	0.0%
Nonselective Omnivores	8.3%	14.8%	8.3%	18.8%	13.8%
Predators	0.0%	0.0%	0.0%	0.0%	0.0%
Photosynthetic Autotrophs	19.4%	3.7%	12.5%	0.0%	10.3%
Bactivores- Detritivores	61.1%	74.1%	70.8%	68.8%	65.5%

Table 77. Percent Response for Single Species Sediment Bioassays from Indiana Harbor (Source R1, Table 18) (see Figure 47)

		Percent Response (r ²)		
Station	Microtox™	S. capricornutum	P. redivivus	
1	146.07 (0.96)	97.09 (0.49)	66.62	
2	152.90 (0.90)	100.01 (0.54)	43.99	
3	165.50 (0.91)	87.57 (0.37)	90.69	
4	130.90 (0.98)	109.37 (0.40)	72.91	
5	24.19 (0.98)	119.49 (0.44)	84.63	
6	183.93 (0.95)	67.27 (0.26)	37.60	
7	not completed	not completed	25.80	
8a	27.64 (0.94)	88.38 (0.57)	81.71	
8	-2.69 (0.08)	44.98 (0.07)	20.22	
9a	-7.24 (0.59)	81.83 (0.55)	40.09	
10a	-5.29 (0.32)	48.18 (0.11)	8.20	
ila	2.11 (0.01)	117.76 (0.28)	18.82	
12a	137.07 (0.96)	102.80 (0.33)	99.22	
Potting soil	-20.05 (0.19)	108.67 (0.17)	27.39	
Sand	-8 46 (0.64)	102.89 (0.49)	39.75	

Table 78. Aquatic Macroinvertebrates [number/square meter] Collected from Stations 1, 2, 3, 4, 5, and 12a, 3-4 May 88 (Source R1, Table 22) (see Figure 47)

	STATION					
SPECIES	1	2	3	4	5	12a
OELENTERATA			*			
Hydroida						
Hydridae	_	_		43	86	
11yanac				45	00	
SCHELMINTHES						
NEMATODA (unident.)	-	-	•	-	-	-
NNELIDA DLIGOCHAETA Haplotaxida Naididae Paranais frici	-	-	-	-	-	-
er i.e						
Tubificidae						
Aulodrilus limnobius Limnodrilus sp. §	86	215	-	-	86	•
Limnodrilus cervix	86	430	4133	_	-	-
Limnodrilus hoffmeisteri				86	430	732
Potamothrix vejdovskyi	-	2583	-	-	•	•
Quistadrilus multisetosus	-	861	2067	-	-	904
ÚIW/OCC *	1464	7147	5517	43	129	818
UW/CC **	-	517	-	-	-	-
IRUDINEA (Leeches)						
Erpobdellidae (unidentifiable	· -	43	-	_	-	•
Glossiphoniidae	-	73	-	-		
Helobdella stagnalis	-	-	-	_	-	•

^{§ =}Developing penis sheaths were present in these individuals (most likely Limnodrilus cervix or Limnodrilus hoffmeisteri).

* =Unidentifiable immature without capilliform chaetae (mostly Tubificidae).

^{** =}Unidentifiable immature with capilliform chaetae (mostly Tubificidae).

Table 78 (Concluded)

			STA	TION		
SPECIES	1	2	3	4	5	12a
RTHROPODA						
DIPTERA						
Chaoboridae						
Chaoborus sp.	43	_	-	-	-	•
Chironomidae	-13					
Tanypodinae						
Procladius sp.	_		-	-	•	-
Prodiamesinae						
Monodiamesa depectinata	-	-	-	-	-	•
Diamesinae						
Potthastia sp.	-	-	-	-	•	-
Chironominae						
Chironomus decorus	-	•	•	-	-	-
Demicryptochironomus sp.		-	-	-	-	-
adult Chironomidae	-	-	-	-	-	-
IOLLUSCA						
GASTROPODA (unident.)						
Hydrobiidae	-	-	-	43	-	-
Amnicola sp.	-	-	-	-	-	•
Planorbidae						
Gyraulus sp.	•	•	-	-	-	-
Valvatidae						
Valvata sp.	-	-	-	-	•	-
PELECYPODA						
Sphaeriidae (unident.)	689	-	-	-	172	-
Pisidium sp.	215	-	-	-	-	-
Sphaerium sp.	-	-	43	-	-	-

Table 79. Aquatic Macroinvertebrates [number/square meter] Collected from Stations 6, 7, 8, 9a, 10a, and 11, 3-4 and 19 May 88 (Source R1, Table 22) (see Figure 47)

			ST	ATION		
SPECIES	6	7	8	9a _.	1 Őa	11
COELENTERATA Hydroida						
Hydridae	172	344	86	86	431	86
,		5 * *	00	00	151	00
ASCHELMINTHES						
NEMATODA (unident.)	. -	431	-	301	215	215
ANNELIDA OLIGOCHAETA Haplotaxida Naididae						
Paranais frici	-	-	-	-	43	-
Tubificidae						
Aulodrilus limnobius	172	-	-	129	-	•
Limnodrilus sp. §	•	-	-	-	-	-
Limnodrilus cervix	-	-	-	-	-	
Limnodrilus hoffmeisteri	43	-	517	-	474	215
Potamothrix vejdovskyi	129	-	4908	258	861	129
Quistadrilus multisetosus UIW/OCC *	-	258	1033	3100	646	86 1206
UW/CC **	-	230	1033	43	86	1200
•		_	_	75	50	
RUDINEA (Leeches)						
Erpobdellidae (unident.)	-	-	-	-	-	-
Glossiphoniidae			120			
Helobdella stagnalis	•	-	129	-	-	-

^{§ =}Developing penis sheaths were present in these individuals (most likely Limnodrilus cervix or Limnodrilus hoffmeisteri).

^{* =}Unidentifiable immature without capilliform chaetae (mostly Tubificidae).

^{** =}Unidentifiable immature with capilliform chaetae (mostly Tubificidae).

Table 79 (Concluded)

			ST	ATION		
SPECIES	6	7	8	9a	10a	11
RTHROPODA					·	
DIPTERA						
Chaoboridae						
Chaoborus sp.		-		-	•	-
Chironomidae						
Tanypodinae						
Procladius sp.	-	-	-	86	-	43
Prodiamesinae				•		
Monodiamesa depectinata	•	•	•	129	•	129
Diamesinae						
Potthastia sp.	-	-	-	43	-	-
Chironominae						
Chironomus decorus	•	-	-	86	-	-
Demicryptochironomus sp.	-	•	-	86	-	-
adult Chironomidae	-	-	43	43	-	-
DLLUSCA						
GASTROPODA (unident.)						
Hydrobiidae	-	43	-	43	86	-
Amnicola sp.	-	•	-	-	-	-
Planorbidae					40	
Gyraulus sp.	-	-	-	-	43	-
Valvatidae			42			172
Valvata sp.	-	-	43	-	-	172
PELECYPODA						
Sphaeriidae (unident.)	-	-	-	86	•	86
Pisidium sp.	-	172	-	86	-	86
Sphaerium sp.	-	-	-	-	-	-

Table 80. Biomass [g/square meter] Wet Weight and Dry Weight, in Parentheses, of the Macroinverte-brates Collected from Indiana Harbor Stations 1-5 and 12a (Source R1, Table 24) (see Figure 47)

			STAT	ION		
SPECIES	1	2	3	4	5	12a
COELENTERATA		•••••				•
Hydroida Hydridae	-	•	-	-	.0043 (.###)	-
ASCHELMINTHES NEMATODA (unident.)	-	-	-	-	-	-
ANNELIDA						
OLIGOCHAETA (almost exclusively Tubificidae)	14.97 (3.272)	11.93 (3.208)	176.2 (44.73)	.2626 (.0904)	.8439 (.1894)	6.234 (1.666)
HIRUDINEA (Leeches) Erpobdellidae (unidentifiable)	-	-	•	-	-	.0474 (.0258)
Glossiphoniidae Helobdella stagnalis	-	-	-	-	-	-
ARTHROPODA DIPTERA						
Chironomidae larvae Chironomidae pupae	-	-	-	-	-	- ;
MOLLUSCA GASTROPODA (unident.)						
Hydrobiidae	-	-	3.380 (1.981)	-	-	-
PELECYPODA						
Sphaeriidae (unident.)	.0430 (.0344)	-	147.9 (75.45)	-	3.720 (1.920)	-

Table 81. Biomass [g/square meter] Wet Weight and Dry Weight, in Parentheses, of the Macroinverte-brates Collected from Indiana Harbor Stations 6-8, 9a, 10a, and 11a Source R1, Table 25) (see Figure 47)

			STAT	ION		
SPECIES	6	7	8	9a	10a	11
COELENTERATA						
Hydroida Hydridae	.0086 (.###)	-	.1206 (.0474)	•	.0301 (.0172)	-
ASCHELMINTHES NEMATODA (unident.)	-	.0043 (.###)	-	.0086 (.###)	.0086 (.###)	.0043 (.###)
ANNELIDA OLIGOCHAETA (almost exclusively Tubificidae)	.0172 (.0129)	.0043 (.###)	5.296 (1.274)	.8137 (.3401)	.3401 (.1292)	3.810 (.5468)
HIRUDINEA (Leeches) Glossiphoniidae Helobdella stagnalis	-	-	-	-	-	.0474 (.0258)
ARTHROPODA DIPTERA Chironomidae larvae	-	-	-	.5856 (.1550)	•	.0603 (.0215)
Chironomidae pupae	-	-	-	.0775 (.0172)	-	-
MOLLUSCA GASTROPODA Hydrobiidae	-	.4951 (.3272)	-	1.206 (.8353)		.7147 (.5037)
PELECYPODA Sphaeriidae (unident.)	-	.5769 (.4004)	-	1.296 (.5985)	.2885 (.1162)	1.033 (.5726)

ANNELIDA (true segmented worms)

ACLITELLATA

APHANONEURA

Aeolosomatidae

Aeolosoma sp.

CLITELLATA

OLIGOCHAETA (aquatic microdriles)

Glossoscolecidae

Sparganophilus tamesis Benham

Haplotaxida

Haplotaxidae

Haplotaxis gordioides (Hartmann)

Enchytraeidae spp.

Naididae

Amphichaeta sp.

Arcteonais lomondi (Martin)

Chaetogaster diaphanus (Gruithuisen)

Chaetogaster diastrophus (Gruithuisen)

Chaetogaster limnaei von Baer

Bratislavia unidentata (Harman)

Dero (Aulophorus) furcata (Müller)

Dero (Aulophorus) vaga (Leidy)

Dero (Dero) digitata (Müller)

Nais behningi (Michaelsen)

Nais barbata Müller

Nais bretscheri (Michaelsen)

Nais communis Piguet

Nais elinguis Müller

Nais pardalis Piguet

Nais pseudobtusa Piguet

Nais simplex Piguet

Nais variabilis Piguet

Ophidonais serpentina (Müller)

Paranais frici Hrabe *

Piguetiella michiganensis Hiltunen

Pristina breviseta Bourne

Pristinella jenkinae (Stephenson)

Pristina leidyi (Smith)

Slavina appendiculata (d'Udekem)

Specaria josinae (Vejdovsky)

Stylaria lacustris (Linnaeus)

Uncinais uncinata (Orsted)

Vejdovskiella intermedia (Bretscher)

Tubificidae

Aulodrilus americanus Brinkhurst & Cook

Aulodrilus limnobius Bretscher *

Aulodrilus pigueti Kowalewski

Aulodrilus pluriseta (Piguet)

Branchiura sowerbyi Beddard

Ilyodrilus templetoni (Southern)

Isochaetides freyi (Brinkhurst)

Limnodrilus angustipenis Brinkhurst & Cook

Limnodrilus cervix Brinkhurst *

Limnodrilus cervix variant

Limnodrilus claparedianus Ratzel

Limnodrilus hoffmeisteri Claparède *

Limnodrilus hoffmeisteri variant

Limnodrilus hoffmeisteri form spiralis

Limnodrilus maumeensis Brinkhurst & Cook

Limnodrilus maumeensis variant

Limnodrilus profundicola (Verrill)

Limnodrilus udekemianus Claparède

Potamothrix bavaricus (Oschmann)

Potamothrix bedoti (Piguet)

Potamothrix hammoniensis (Michaelsen)

Potamothrix moldaviensis Vejdovsky & Mrazek

Potamothrix vejdovskyi (Hrabe) *

Quistadrilus multisetosus (Smith) * (two subspecies recognized; see text for explanation)

Rhyacodrilus coccineus (Vejdovsky)

Rhyacodrilus montana (Brinkhurst)

Spirosperma ferox Eisen

Spirosperma nikolskyi (Lastockin & Sokolskaya)

Tasserkidrilus kessleri (Hrabe)

Tasserkidrilus superiorensis (Brinkhurst & Cook)

Tubifex ignotus (Stolc)

Tubifex tubifex (Müller)

Lumbriculida

Lumbriculidae

Lumbriculus variegatus (Müller)

Stylodrilus heringianus Claparède

HIRUDINEA (leeches)

Erpobdellidae

Erpobdella punctata (Leidy)

Glossiphoniidae

Helobdella elongata (Castle)

Helobdella stagnalis (Linnaeus) *

^{† =} Records from MSDGC (1975, 1977a, 1977b) Stimpson et al. (1975), Whitley and Wetzel (1976), Mozley and Howmiller (1977), Spencer (1980), and Wetzel (1989). Phylogeny follows Brinkhurst (1986).

Table 83. Phytoplankton Identified from Indiana Harbor and Canal (Source R1, Appendix 1)

Area	Dominant taxa (in order of relative abundance)	Comments
Q (small sample)	Fragilaria crotonensis Tabellaria fenestrata Synedra ulna Asterionella formosa Melosira varians/Spirulina (?) sp.	Diatoms were very abundant. The sample was dominated by smaller taxa and was not very diverse.
R (small sample)	Tabellaria fenestrata Asterionella formosa Fragilaria crotonensis Synedra ulna Melosira varians	Sample was dominated by filamentous/colonial diatoms and was not very diverse.
T (large sample)	Tabellaria fenestrata Fragilaria crotonensis Synedra ulna Asterionella formosa Oscillatoria sp.	The sample was numerically dominated by diatoms. Several different algalgroups were observed, making the sample relatively diverse.

Table 84. Periphyton Identified from Ind and Harbor and Canal (Source R1, Appendix 2)

Area	Dominant taxa (in order of relative dominance)	Comments
R (begin.)	Oscillatoria/Lyngbya sp. Tabellaria fenestrata Synedra ulna Achnanthes sp. Melosira sp.	Sample was not very diverse.
R (end)	Cladophora sp. (glomerata) Rhoicosphenia curvata Achnanthes sp. Synedra ulna Lyngbya spJOscillatoria sp.	Cladophora was the most abundant filamentous alga and most American forms are assigned to the species glomerata. Sample was also dominated by diatoms.

Table 85. Summary of Fish Species Collected in Indiana Harbor (Source R1, Table 20)

Species	Common name	1983 ^a	1984 ^b	1988 ^C
Alosa pseudoharengus	Alewife	×	×	×
Dorosoma cepedianum	Gizzard shad	×	×	X
Umbra limi	Central mudminnow	x	- X	
Carassius auratus	Goldfish	x =	x	X
Cyprinus carpio	Carp	x	×	X
C. auratus x C. carpio	hybrid	x	x	
Notemigonus crysoleucas	Golden shiner	×	x	×
Notropis atherinoides	Emerald shiner	×	x	X
Notropis hudsonius	Spottail shiner	×	x	
Pimephales notatus	Bluntnose minnow	×	x	
Pimephales promelas	Fathead minnow	x	x	
Lepomis gibbosus	Pumpkinseed	x	x	
Lepomis macrochirus	Bluegill	x	x	
Pomoxis nigromaculatus	Black crappie	x	x	
Perca flavescens	Yellow perch	x	x	,
Salmo gairdneri	Rainbow trout		x	
Salmo trutta	Brown trout		×	
Salvenlinus namaycush	Lake trout		x	
Oncorhynchus tsawytscha	Chinook salmon		x	
Osmerus mordax	Rainbow smelt		×	
Catostomus commersoni	White sucker		×	
Ambloplites rupestris	Rock bass		x	
Lepomis cyanellus	Green sunfish		×	
Micropterus dolomieui	Small mouth bass			
Etheostoma nigrum	Johnny darter			;
Cottus bairdi	Mottled sculpin			
Lepomis (Hybrid)	Sunfish (Bluegill x Pumpk	kinseed?)		•

aUSEPA 1985 bUSACE 1986

^cCurrent study

Table 86. Vertebrate Wildlife Observed During Grand Calumet River Field Trip, 24-27 Jun 86 (Source R38)

VERTEBRATE WILDLIFE *OBSERVED DURING GRAND CALUMET RIVER FIELD TRIP (June 24-27, '86)

		₹ 5	5 - 15	>15
FISH				
Carp Golden Shiner Goldfish Redear Sunfish		(1)	-	X X X
REPTILES	;		•	

Painted Turtle

X

AMPHIBIANS

(None)

MAMMALS

Muskrat

X (many dens were observed)

*Birds are in separate list

Table 87. Preliminary List of Vegetation in the Grand Calumet River Area (Source R38)

Dominant Vegetation	
Cattail	Typha domingensis (Typhaceae)
Reed Grass	Phragmites cummunis (Gramineae)
Water Plantain	Sagittaris sp. (Alismaceae)
Lemna sp. (duckweed	i) in stagnant marsh areas and coves.
Occasionals	
Pondweed	Potamogeton sp. (Najadaceae)
Water milfoil	Myriophyllum sp. (Haloragidaceae)

Figure 1. Contaminant migration pathways for evaluation of in-place contaminated sediments

Direct Effect
Bioaccumulation
Contaminant Source

Figure 2. Movement of chemicals in the GCR-IHC ecosystem (Source Pl0) $\,$

Figure 3. General location of the Grand Calumet River AOC (Source R11, Figure 8)

Figure 4. Grand Calumet River AOC boundaries (Source R15, Figure 2-1)

Location of sediment sampling stations in Indiana Harbor (Source Rl, Figure 1) (see Tables 6-13) Figure 5.

Location of sediment sampling stations in the Indiana Harbor Canal (Source R7, Plate 3) Figure 6.

Indiana Department of Environmental Management Sampling Sites

Figure 7. Location of sediment sampling stations in Indiana Harbor and the Grand Calumet River - IDEM (Source P10) (see Table 20)

Figure 8. Location of sediment sampling stations in Indiana Harbor and Canal - Reference 10 (Source R10, Incl. 1) (see Table 23)

SAMPLE LOCATION WORKSHEET

Figure 9. Example sample location worksheet (Source R10, Plate 15)

Figure 10. Location of sampling transects (Source R5, Figure 1) (see Table 19)

Grain size distribution for Indiana Harbor sediment (Source R24, Figure 5) Figure 11.

Figure 12. Histogram showing percent water in Indiana Harbor sediments (Source R1, Figure 2) (see also Figure 5)

Figure 13. Scatterplot of percent water versus total organic carbon (TOC mg/kg) in Indiana Harbor sediments (Source R1, Figure 3)

Figure 14. Histogram showing total organic carbon (mg/kg) at sediment sampling stations (Source R1, Figure 4) (see also Figure 5)

Figure 15. Total PCB concentrations (ppb) in sediment samples from Indiana Harbor (Source R1, Figure 6) (see also Figure 5)

Location of Indiana fixed water quality monitoring stations in the AOC (Source R22, Figure 2.2) (see Table 29) Figure 16.

Figure 17. Indiana water quality monitoring stations in the GCR-IHC area (Source R18, Figure 6.2) (see Table 29)

Figure 18. Locations of ISBH monthly water quality monitoring stations (Source R13, Figure 2-4)

Figure 19. Locations of USEPA water quality monitoring stations CAL01-CAL17 (Source R18, Figure 1.6)

Figure 20a. Locations of USGS water quality monitoring stations (Source R12, Figure 1) (see Tables 31-33)

Figure 20b. Locations of USGS water quality monitoring stations Source R12, Figure 1) (see Tables 31-33)

Lake Michigan

Figure 21. Locations of water quality monitoring using membrane bags (Source R1, Figure 1) (see Table 35)

Figure 22. IDEM water quality monitoring report - cadmium (Source 22)

IDEM water quality monitoring report - mercury (Source 22) Figure 23.

IDEM water quality monitoring report - oil and grease (Source 22) Figure 24.

Figure 25. IDEM water quality monitoring report - phenol (Source 22)

Figure 26. Sites of documented groundwater contamination (Source R11, Figure 22)

INDUSTRIAL AND MUNICIPAL POINT SOURCE FLOWS

Reference: Indiana Stream Pollution Control Board published October, 1984

Figure 27. Summary of municipal and industrial point source flows (Source R14, Figure 2)

Locations of combined sewer outflows and waste fills in the AOC (Source R13, Figure 2-6) (see Tables 36 and 37) Figure 28.

Figure 29. Locations of point source dischargers in the AOC (Source R20, Figure 1) (legend on following page; see also Tables 39-42) (Continued)

Мар #	Source	Type of Discharge	Flow (MGD)
1.	U.S. Steel	P/C	60
2.	•	C	2
3.		P/C	14
4.		P	5
5.		C	l
6.		C	55 -
7.	j	С	70
8.		P/C	90
9.	į į	P .	35
10.	ļ	P/C	90
11.	İ	C	7
12.	₩	C	3
13.	•	P/C	14
14.		P	60
15.	Industrial Dispos		M.D.
17	Vulcan Materials Explorer Pipe	P/C	N.A.
19	Citgo Petroleum	С	M.D.
10.	Harbison-Walker	·	M.D.
20.	Dupont	c ·	M.D.
21.	l	P.	5 5
22.	→	P	5 5
23.	U.S.S. Lead	ę	.06
	E. Chicago STP	P	20
25.	Hammond STP	P	48
	Blaw-Knox	P	2.2 tgd
27.	*	P	2.2 tgd
28.	Inland Steel	P/C	l ·
29.	. 1	P/C	135
30.		P/C	8
31.		P/C	13
32.		P/C	30
33.	.	С	45
34.	1	С	90
35.		P/C	18
36.		P	42
37.	₩	P/C	30
38.	1	P/C	130
	J&L Stael	P	57
40.]	С	46 .
41.	1	. C	43
42.	, , , ,	C	2
43.	American Steel	C	.22
44.	J&L Steel	P	9
	Nacas		

Notes

- P= Process wastewater, treated process wastewaters, and/or contact cooling waters
- C= Non-contact cooling waters, and/or stormwater runoff
- P/C=Outfall discharges both types of waters
- M.D. = Minor discharge
- MGD= Million gallons per day
- tgd= thousand gailons per day

Figure 29 (Concluded)

() GARY SANITARY DISTRICT

① E. CHICAGO SANITARY DISTRICT

(3) HAMMOND SANITARY DISTRICT

Figure 30. Locations of combined sewer overflow discharges to AOC (Source R14, Figure 3)

Drainage basin of Calumet area tributary streams (Source R18, Figure 2.2) (see Table 50) Figure 31.

Streamflow directions within the AOC (Source R18, Figure 2.1) (see Tables 50 and 51) Figure 32.

Figure 33. Flow survey of GCR-IHC (Source R18, Figure 3.2) (see also Figure 32 and Tables 50 and 51)

Figure 34a. Location of sites of the USGS Grand Calumet River inflow investigation (Source R18, 3.1a) (see Tables 50-54)

Figure 34b. Location of sites of the USGS Grand Calumet River inflow investigation (Source R18, 3.1b) (see Tables 50-54)

LAKE COUNTY INDUSTRIAL AIR EMISSIONS Annual Totals

Figure 35. Summary of total air pollution emissions for AOC (Source R14, Figure 4)

Figure 36. Major sources of air pollution (Source R14, Figure 5)

LAKE COUNTY AIR EMISSIONS BY CATEGORY Annual Totals (1985)

Figure 37. Major sources of air pollution by category (Source R14, Figure 6)

▲ NATIONAL PRIORITY LIST SITES

MAJOR LAND DISPOSAL FACILITIES

Figure 38. Locations of major landfills in the AOC (Source R14, Figure 7)

Figure 39. Reported spills of hazardous materials (Source R11, Figure 28)

Figure 40. Types of materials spilled (Source R11, Figure 29)

Figure 41. Sources of materials spilled (Source R11, Figure 30)

Figure 42. Circumstances of materials spilled (Source R11, Figure 31)

Figure 43. Locations of major industrial and municipal plants (Source R18, Figure 4-18) (Continued)

Figure 43. (Concluded)

Figure 44. Numbers of underground storage tanks (Source R11, Figure 32)

Figure 45. Numbers of hazardous waste facilities (Source R11, Figure 37)

Natural areas along the GCR-IHC (Source R13, Figure 4-3) Figure 46.

Figure 47. Locations of benthos sampling stations in Indiana Harbor (a = alternate station substituted for original due to rough water) (Source R1, Figure 1)

Figure 48. Cumulative [significant] percent response for eight protozoan community field bioassays [Station 2 was not included] (Source R1, Figure 7a) (see Figure 47)

Figure 49. Cumulative [significant] percent response for seven protozoan community bioassays [stations 8a-12a, soil, and sand] (Source R1, Figure 7b) (see Figure 47)