Extrema unter Nebenbedingungen

Satz 4.4(notwendige Bedingung für ein lokales Extremum unter Nebenbedingungen) Sei $U \subset \mathbb{R}^n$ offen und $M \subset U$ eine (n-m)-dimensionale Untermannigfaltigkeit des \mathbb{R}^n , die durch

$$M = \{x \in \mathbb{R}^n : g_1(x) = \dots = g_m(x) = 0\}$$

mit $g_i \in C^1(U, \mathbb{R})$, i = 1, ..., m, Rang $\frac{\partial (g_1, ..., g_m)}{\partial (x_1, ..., x_n)}(x) = m$ für alle $x \in M$, gegeben ist. Sei $f \in C^1(U, \mathbb{R})$. Hat $f_{|M}$ ein lokales Extremum in $a \in M$, so gibt es Konstanten $\lambda_1, ... \lambda_m \in \mathbb{R}$ mit

$$\operatorname{grad} f(a) = \sum_{i=1}^{m} \lambda_i \operatorname{grad} g_i(a) \qquad (\operatorname{grad} f(a) \in N_a M).$$

Die Zahlen $\lambda_1, ..., \lambda_m$ werden Lagrange-Multiplikatoren genannt.

Satz 4.5(hinreichende Bedingung für ein lokales Extremum unter Nebenbedingungen) Sei $U \subset \mathbb{R}^n$ offen, $f \in C^2(U, \mathbb{R})$,

$$M = \{x \in \mathbb{R}^n \colon g_1(x) = \dots = g_m(x) = 0\}$$

mit $g_i \in C^2(U, \mathbb{R})$, i = 1, ..., m, Rang $\frac{\partial(g_1, ..., g_m)}{\partial(x_1, ..., x_n)}(x) = m$ für alle $x \in M$. (a, λ^a) mit $a \in M$ erfülle die notwendige Bedingung für ein lokales Extremum $\operatorname{grad} f(a) = \sum_{i=1}^m \lambda_i^a \operatorname{grad} g_i(a)$. Setze

$$L(x) := f(x) - \sum_{i=1}^{m} \lambda_i^a g_i(x).$$

Dann gilt:

- 1) Ist die Form $\langle H_L(a)x, x \rangle$ auf T_aM positiv definit, so besitzt $f_{|M}$ in a ein strenges lokales Minimum.
- 2) Ist die Form $\langle H_L(a)x, x \rangle$ auf T_aM negativ definit, so besitzt $f_{|M}$ in a ein strenges lokales Maximum.
- 3) Ist die Form $\langle H_L(a)x, x \rangle$ auf T_aM indefinit, so besitzt $f_{|M}$ in a kein lokales Extremum.