Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset:

Data type of all columns in the "customers" table

```
Select column_name,
data_type
from scaler-dsml-sql-402117.target_sql.INFORMATION_SCHEMA.COLUMNS
where table_name = 'customers'
```


Insights: The datatypes in the table are majorly strings.

B. Get the time range between which the orders were placed.

```
Select
min(order_purchase_timestamp) as first_order,
max(order_purchase_timestamp) as last_order
from `target_sql.orders`
```


Insights: The first order date was in 2016 and the last was in 2018.

C: Count the Cities & States of customers who ordered during the given period.

```
Select count(distinct customer_city) as city_count,
count(distinct customer_state) as state_count
from `Project_Target.customers` c
join `Project_Target.orders`p
on c.customer_id = p.customer_id
where p.order_purchase_timestamp between '2016-09-04' and '2018-10-17'
```


insights: The Cities & States of customers who ordered during the given period is 4119 and 27.

In-depth Exploration:

a.ls there a growing trend in the no. of orders placed over the past years?

```
Select extract (year from order_purchase_timestamp) as year,
count(order_id) as count_of_orders
from `Project_Target.orders`
where order_status != 'canceled'
group by year
order by year
```


Insights: The count of orders have increased over the years.

Assumptions: The orders that has been canceled have not been counted as placed

B.Can we see some kind of monthly seasonality in terms of the no. of orders being placed?

```
Select extract(MONTH from order_purchase_timestamp) as month, count(order_id) as
count_of_orders
from `Project_Target.orders`
where order_status != 'canceled'
group by month
order by month, count_of_orders
```

			RESULTS CHART	PREVIEW	
Row	month ▼	11	count_of_orders 🕶		
1		1	8032		
2		2	8418		
3		3	9834		
4		4	9310		
5		5	10520		
6		6	9378		
7		7	10249		
8		8	10732		
9		9	4268		

Insights: The top 3 seasonal months for sales are August, July and May. **Assumptions: The orders that has been canceled have not been counted as placed**

C. During what time of the day, do the Brazilian customers mostly place their orders? (Dawn, Morning, Afternoon or Night)

```
select
case when hours between '00:00:00' and '06:00:00' then 'dawn'
when hours between '06:00:01' and '12:00:00' then 'Morning'
when hours between '12:00:01' and '18:00:00' then 'Afternoon'
else 'Night'
end as time_of_day, count(order_id) as count_of_orders
```

```
from
(Select
extract(TIME from order_purchase_timestamp) as hours,order_id
from`Project_Target.orders`
)
group by time_of_day
order by count_of_orders
```

Row	phase_of_day ▼	/1	orders_placed ▼	
1	Afternoon		38365	
2	Night		34096	
3	Mornings		22240	
4	Dawn		4740	

Insights: The placement of orders increases during the **afternoon**.

Evolution of E-commerce orders in the Brazil region:

a. Get the month on month no. of orders placed in each state.

```
Select month, a.customer_state, count(a.order_id) as order_count
from

(Select extract(MONTH from order_purchase_timestamp) as
month, o.order_id, customer_state
from `Project_Target.customers`c
join `Project_Target.orders`o
on c.customer_id = o.customer_id)a
group by month, customer_stat
order by customer_state, month
```


Insights: The output shows the different fluctuations in the order per month for different states, according to the season, it keeps on increasing and decreasing.

B. How are the customers distributed across all the states?

Insights: The customers are segmented on the area basis, the top three states on customer distribution are SP.RJ and M.

Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.

A. Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

```
Select a.months, a.monthly_2017, b. monthly_2018, b.monthly_2018-a.monthly_2017 as
change_in_payments,
round(((b.monthly_2018-a.monthly_2017)/monthly_2017)*100,2) as change_in_percentage
from
(Select extract(year from order_purchase_timestamp) as years,
extract(month from order_purchase_timestamp) as months,round(sum(payment_value),0) as
monthly_2017
from `Project_Target.orders` o
join `Project_Target.payments `p
on o.order_id = p.order_id
where extract(year from order_purchase_timestamp) = 2017 and extract(month from
order_purchase_timestamp) between 1 and 8
group by years, months
order by months, years)a
join
Select extract(year from order_purchase_timestamp) as years,
extract(month from order_purchase_timestamp) as months, round(sum(payment_value),0) as
monthly_2018
from `Project_Target.orders` o
join `Project_Target.payments `p
on o.order_id = p.order_id
where extract(year from order_purchase_timestamp) = 2018 and extract(month from
order_purchase_timestamp) between 1 and 8
group by years, months
order by months, years)b
on a.months = b.months
order by months
```

JOB IN	IFORMATION		RESULTS C	HART PREVIEW	JSON EXEC	UTION DETAILS	EXECUTION
Row	months ▼	/.	monthly_2017 ▼	monthly_2018 ▼	change_in_payments	change_in_percentag	
1 ~		1 ~	138488.0	1115004.0	976516.0	705.13	
2		2	291908.0	992463.0	700555.0	239.99	
3		3	449864.0	1159652.0	709788.0	157.78	
4		4	417788.0	1160785.0	742997.0	177.84	
5		5	592919.0	1153982.0	561063.0	94.63	
6		6	511276.0	1023880.0	512604.0	100.26	
7		7	592383.0	1066541.0	474158.0	80.04	
8		8	674396.0	1022425.0	348029.0	51.61	

Job history

Insights: The sales have increased throughout the months from Jan to Aug from the past year(2017)

B. Calculate the Total & Average value of order price for each state.

```
Select customer_state, round(sum(payment_value),2) as total_sum,
round(avg(payment_value),2) as average
from `Project_Target.customers`c
join `Project_Target.orders`o
on c.customer_id = o.customer_id
join `Project_Target.payments `p
on o.order_id = p.order_id
group by customer_state
order by customer_state, total_sum, average
```


Insights: The average price in AC is the highest.

C. Calculate the Total & Average value of order freight for each state.

```
Select customer_state, round(sum(freight_value), 1) as sum_freight_value,
round(avg(freight_value), 1) as avg_freight_value
from `Project_Target.customers`c
join `Project_Target.orders`o
on c.customer_id = o.customer_id
join `Project_Target.orderitems`od
on od.order_id = o.order_id
group by customer_state
order by customer_state
```

Row	customer_state ▼	sum_freight_value	avg_freight_value
1	AC	3686.7	40.1
2	AL	15914.6	35.8
3	AM	5478.9	33.2
4	AP	2788.5	34.0
5	ВА	100156.7	26.4

Insights: The output presents the sum and the average of the price rate at which a product is delivered from one point to another, grouped by states.

Analysis based on sales, freight and delivery time.

A. Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

```
Select order_id, DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
as time_to_deliver,

DATE_DIFF(order_estimated_delivery_date,order_delivered_customer_date,day) as
diff_estimated_delivery
from `Project_Target.orders`
where order_status = 'delivered'
```

JOB IN	IFORMATION	RESULTS	CHART PREVIEW	JSON	EXECUTION DETAILS	EXECUTIO	N GRAF	PH	
Row	order_id ▼	//	time_to_deliver ▼	diff_estimated_delive					
1	635c894d068ac3	37e6e03dc54e	30	1					
2	3b97562c3aee8b	dedcb5c2e45	32	0					
3	68f47f50f04c4cb	6774570cfde	29	1					
4	276e9ec344d3bf	029ff83a161c	43	-4					
5	54e1a3c2b97fb0	809da548a59	40	-4					
6	fd04fa4105ee804	45f6a0139ca5	37	-1					
7	302bb8109d097a	a9fc6e9cefc5	33	-5					
8	66057d37308e78	37052a32828	38	-6					
9	19135c945c554e	eebfd7576c73	36	-2					

Assumption: only those orders which have been delivered, are taken into consideration

Insights: The column time to deliver shows the time taken to deliver an order, if we work onto the aspects of delivery time and decrease the days, it can help, on better feedback and more happy customers.

The column diff_estimated_delivery presents the data on the estimated & actual delivery date of an order, for the order deliveries in negatives, those areas can be worked upon more on, delivery time, if the order is delivered before estimated time, this results in acquiring more customers and leading to better feedback.

B.Find out the top 5 states with the highest & lowest average freight value.

```
Select a.customer_state, round(avg_freight_value, 2) as avg_freight_value
from
(Select c.customer_state, avg(od.freight_value) as avg_freight_value, dense_rank()
over(order by avg(od.freight_value)desc) as Heighest_avg,
dense_rank() over(order by avg(od.freight_value)asc) as lowest_avg
from `Project_Target.customers` c
join `Project_Target.orders` o
on c.customer_id = o.customer_id
join `Project_Target.orderitems` od
on o.order_id = od.order_id
group by c.customer_state)a
where Heighest_avg <= 5 or lowest_avg <=5
order by avg_freight_value</pre>
```

JOB IN	IFORMATION RESULTS	CHART PREVIEW	JSON	EXECUTION DETAILS	EXECUTION GRAI
low /	customer_state ▼	avg_freight_value			
1	SP	15.15			
2	PR	20.53			
3	MG	20.63			
4	RJ	20.96			
5	DF	21.04			
6	PI	39.15			
7	AC	40.07			
8	RO	41.07			
9	РВ	42.72			
10	RR	42.98			

Insights: The top rows (1-5) present the lowest average freight values, while the rows (6-10) show the highest average freight value.

C. Find out the top 5 states with the highest & lowest average delivery time.

```
SELECT customer_state, t.avg_del_time
from
(Select customer_state,
round(avg(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,day)),2)
as avg_del_time,
dense_rank() over(order by
round(avg(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,day)),2)
desc) as high,
dense_rank() over(order by
round(avg(DATE\_DIFF(o.order\_delivered\_customer\_date,o.order\_purchase\_timestamp,day)), \\ 2)
) as low
from `Project_Target.orders` o
join `Project_Target.customers` c
on o.customer_id = c.customer_id
where order_status = 'delivered'
group by customer_state)t
where high<= 5 or low <= 5
order by avg_del_time
```

JOB IN	FORMATION RES	CHART PREVIEW	JSON	EXECUTION DETAILS	EXECUTION GRAPH
Row /	customer_state ▼	avg_del_time ▼			
1	SP	8.3			
2	PR	11.53			
3	MG	11.54			
4	DF	12.51			
5	SC	14.48			
6	PA	23.32			
7	AL	24.04			
8	AM	25.99			
9	AP	26.73			
10	RR	28.98			

D. Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery.

```
Select *,
round(((avg_est_date-avg_del_day)/avg_est_day)*100,2) as fast
from
(
Select c.customer_state,
round(avg(DATE_DIFF(o.order_delivered_customer_date,o.order_purchase_timestamp,day)),2)
as avg_del_day,
round(avg(Date_DIFF(o.order_estimated_delivery_date,o.order_purchase_timestamp,day)),2)
as avg_est_day
from `Project_Target.orders` o
join `Project_Target.customers` c
on o.customer_id = c.customer_id
where order_status = 'delivered'
group by c.customer_state)t
order by fast desc
limit 5
```


Insights: The table shows the fastest delivery time in the top 5 states.

VI Analysis based on the payments:

Find the month on month no. of orders placed using different payment types

```
Select t.month, t.order_count, t.payment_type
from

(Select extract(MONTH from o.order_purchase_timestamp) as month, count(o.order_id) as
order_count, payment_type
from `Project_Target.orders`o
join `Project_Target.payments ` p
on o.order_id = p.order_id
where order_status != 'canceled'
group by month, payment_type
order by month) t
```

Query results JOB INFORMATION **RESULTS** CHART PREVIEW **JSON EXECUTION DETAI** Row month order_count ▼ payment_type ▼ UPI 1 1 1710 2 2 UPI 1707 3 UPI 3 1934 4 1779 UPI 4 5 5 2027 UPI 6 6 1804 UPI 7 2062 UPI 7 UPI 8 2063 8 UPI 9 9 899 10 10 1050 UPI

order by payment_type, month

Insights: The data shows the different types of payment method used by the customers month on month and how many orders have they placed using the payment method.

B. Find the no. of orders placed on the basis of the payment installments that have been paid.

```
Select count(o.order_id) as order_count, payment_sequential
from `Project_Target.orders`o
join `Project_Target.payments `p
on o.order_id = p.order_id
where payment_sequential >= 1
group by 2
order by order_count, payment_sequential
```

Quer	y results					
JOB IN	FORMATION		RESULTS CH	ART PREVIEW	JSON	EXECUTION DET
Row	order_count ▼	/	payment_sequential			
1		1	27			
2		1	28			
3		1	29			
4		2	23			
5		2	24			
6		2	25			
7		2	26			
8		3	22			
9		4	20			
10		4	21			

 ${f Insights:}$ The data shows , the number of orders bought on EMIs and where at least 1 installment by customer has been paid