Review of Independent Component Analysis

Element of Statistical Learning Book, Chapter 14

Hanchao Zhang

November 9, 2021

1 Latent Variables an Factor Analysis

The singular decomposition

$$X = UDV^{T} \tag{1}$$

We can write $\boldsymbol{S} = \sqrt{N}\boldsymbol{U}$ and $\boldsymbol{A}^T = \frac{\boldsymbol{D}\boldsymbol{V}^T}{\sqrt{N}}$ and we have

$$X = SA^{T} = \sqrt{N}U \frac{DV^{T}}{\sqrt{N}} = UDV^{T}$$
(2)

Where S and X have mean 0, and U is an orthogonal matrix. We can interpret the SVD or the corresponding principal component analysis as an estimate of a latent variable model.

$$X_{1} = a_{11}S_{1} + a_{12}S_{2} + \dots + a_{1p}S_{p}$$

$$X_{2} = a_{21}S_{1} + a_{22}S_{2} + \dots + a_{2p}S_{p}$$

$$\vdots \qquad \qquad \vdots$$

$$X_{p} = a_{p1}S_{1} + a_{p2}S_{2} + \dots + a_{pp}S_{p}$$
(3)

However, for any orthogonal matrix \mathbf{R} , we can write

$$X = \mathbf{A}S$$

$$= \mathbf{A}\mathbf{R}^{T}\mathbf{R}S$$

$$= \mathbf{A}^{*}S^{*}$$
(4)

Hence there are many such decompositions and it is therefore impossible to identify any particular latent variable as unique underlying sources. The classical factor analysis model has the form (q < p)

$$X_{1} = a_{11}S_{1} + a_{12}S_{2} + \dots + a_{1q}S_{q} + \varepsilon_{1}$$

$$X_{2} = a_{21}S_{1} + a_{22}S_{2} + \dots + a_{2q}S_{q} + \varepsilon_{2}$$

$$\vdots \qquad \qquad \vdots$$

$$X_{p} = a_{p1}S_{1} + a_{p2}S_{2} + \dots + a_{pq}S_{q} + \varepsilon_{p}$$
(5)

or

$$X = \mathbf{A}S + \varepsilon \tag{6}$$

Typically the S_j and ε_j are modeled as Gaussian random variables and the model is fit by maximum likelihood.

2 Independent Component Analysis

The ICA model has the form:

$$X_{1} = a_{11}S_{1} + a_{12}S_{2} + \dots + a_{1p}S_{p}$$

$$X_{2} = a_{21}S_{1} + a_{22}S_{2} + \dots + a_{2p}S_{p}$$

$$\vdots \qquad \qquad \vdots$$

$$X_{p} = a_{p1}S_{1} + a_{p2}S_{2} + \dots + a_{pp}S_{p}$$

$$(7)$$

or

$$X = AS \tag{8}$$

where the S_i are assumed to be statistically independent rather than uncorrelated. Intuitively, uncorrelated determines the second cross moment Cov(X), and statistically independent determines all cross moments. We wish to recover the matrix \mathbf{A} in $X = \mathbf{A}S$. Without loss of generality, we can assume that X has already been whitened to have $Cov(X) = \mathbf{I}$, which implies that \mathbf{A} is orthogonal. Solving the ICA problem amounts to find and orthogonal \mathbf{A} such that the components of the vector random variables $S = \mathbf{A}^T X$ are independent and non-Gaussian.

Many of the popular approaches to ICA are based on entropy. The differential entropy H of a random variable Y with density g(y) is given by

$$H(Y) = E[-\log g(Y)] = -\int g(y)\log g(y)dy \tag{9}$$

The quantity I(Y) is called the Kullback-Leibler distance or mutual information

$$I(Y) = \sum_{j=1}^{p} H(Y_j) - H(Y)$$
(10)

This is the measurement of Kullback-Leibler distance betweenthe density g(y) of Y and its independence version $\prod_{j=1}^p g_j(y_j)$, where $g_j(y_j)$ is the marginal density of Y_j . Now, if X has covariance \mathbf{I} , and $Y = \mathbf{A}^T X$ with \mathbf{A} orthogonal, then we will have

$$I(Y) = \sum_{j=1}^{p} H(Y_j) - H(Y)$$
(11)

$$= \sum_{j=1}^{p} H(Y_j) - H(X) - \log|\det \mathbf{A}|$$
 (12)

$$= \sum_{i=1}^{p} H(Y_i) - H(X)$$
 (13)

Kullback Leibler Divergence

I(Y) is a measurement of how one probability distribution is different from another probability distribution. In our case, the two distribution is $P = g_Y(y)$ and $Q = \prod_{j=1}^p g_j(y_j)$

The definition of Kullback Leibler divergence is

$$D_{KL}(P||Q) = \int_{\mathcal{X}} p(x) \frac{p(x)}{q(x)} dx \tag{14}$$

which in our case becomes

$$D_{KL}(P||Q) = \int_{\mathcal{X}} p(x) \log \frac{p(x)}{q(x)} dx = \int_{\mathcal{X}} \log \frac{p(x)}{q(x)} dP = \int_{\mathcal{Y}} \log \frac{g(y)}{\prod_{j=1}^{p} g_j(y_j)} dG$$
 (15)

$$= \int_{\mathcal{Y}} \left[\log g(y) - \sum_{j=1}^{p} \log g_j(y_j) \right] dG \tag{16}$$

$$= -E[-\log g(y)] + \sum_{j=1}^{p} E[-\log g_j(y_j)]$$
(17)

$$= \sum_{j=1}^{p} H(Y_j) - H(Y)$$
 (18)

since we have $Y \sim f_Y(y)$, and $Y = \mathbf{A}^T X$, where we can get $X = \mathbf{A} Y$, and the PDF of X is $f_X(x) = f_Y(x) ||\mathbf{A}||$

$$H(X) = E[-\log g_X(x)] = -E\left[\log\left(||\mathbf{A}|| \cdot g_Y(x)\right)\right]$$
(19)

$$= -E \left[\log ||A|| + \log g_Y(x) \right] \tag{20}$$

$$= -\log||A|| - E[-\log g_Y(x)] \tag{21}$$

$$= -\log||A|| + H[Y] \tag{22}$$

$$=H[Y] \tag{23}$$

For convenience, rather than using the entropy $H(Y_j)$, Hyvarinen and Oja (2000) ues the negentropy measure $J(Y_j)$ defined by

$$J(Y_i) = H(Z_i) - H(Y_i) \tag{24}$$

where Z_j is a Gaussian random variable with the same variance as Y_j . They proposed simple approximations to negentropy which can be computed and optimized on the data.

$$J(Y_j) \approx \left(E[G(Y_j)] - E[G(Z_j)] \right)^2 \tag{25}$$

where $G(u) = \frac{1}{a} \log \cosh(au)$ for 1 < a < 2.

With pre-whitened data, this amounts to looking for components that are as independent as possible.

3 Direct Approach of Independent Component Analysis by a Joint Product Density

Independent component have by definition a joint product density

$$f_S(s) = \prod_{j=1}^{p} f_j(s_j)$$
 (26)

And in the spirit of representing departures from Gaussianity, we represent each f_i as

$$f_j(s_j) = \phi(s_j) \exp\{g_j(s_j)\} = \frac{1}{\sqrt{2\pi}} \exp\{\frac{1}{2}s_j^2\} \cdot \exp\{g_j(s_j)\}$$
 (27)

the log-likelihood for the observed data $X = \mathbf{A}S$ is

$$\ell(\mathbf{A}\{g_j\}_{j=1}^p; \mathbf{X}) = \sum_{i=1}^N \sum_{j=1}^p [\log \phi_j(a_j^T x_i) + g_j(a_j^T x_i)]$$
(28)

which we want to maximize subjected to \boldsymbol{A} orthogonal and g_j result in density function. So, we instead maximize a regularized version

$$\sum_{j=1}^{p} \left[\sum_{i=1}^{N} \left[\log \phi_j(a_j^T x_i) + g_j(a_j^T x_i) \right] - \underbrace{\int \phi(t) e^{g_j(t)} dt}_{\text{density}} - \underbrace{\lambda_j \int \{g_j'''(t)\}^2(t) dt}_{\text{splines penalty}} \right]$$
(29)

The first integral that controls for density is problematic and requires an approximation. We construct a fine grid of L values s_{ℓ}^* in increments Δ covering the observed value s_i and count the number of s_i in the resulting bins:

$$y_{\ell}^* = \frac{\#s_i \in (s_i^* - \frac{\Delta}{2}, s_i^* + \frac{\Delta}{2})}{N} \tag{30}$$

Step 2 (a), we can then approximate the penalized likelihood by

$$\sum_{\ell=1}^{L} \left\{ y_i^* [\log(\phi(s_\ell^*)) + g(s_\ell^*)] - \Delta \phi(s_\ell^*) e^{g(s_\ell^*)} \right\} - \lambda \int g'''^2(s) ds \tag{31}$$

and in practice, we set all λ_j to the same.

Step 2(b), we optimize the \boldsymbol{A} with respect to the penalized likelihood function. Only the first terms in the sum involve \boldsymbol{A} , and since \boldsymbol{A} is orthogonal, ϕ do not depend on \boldsymbol{A} . Hence, we need to maximize

$$C(\mathbf{A}) = \frac{1}{N} \sum_{i=1}^{p} \sum_{i=1}^{N} \hat{g}_{j}(a_{j}^{T} x_{i}) = \sum_{i=1}^{p} C_{j}(a_{j})$$
(32)

1. for each j update

$$a_j \longleftarrow E\left\{X\hat{g}_j'(a_j^T X) - E[g_j''(a_j^T X)]a_j\right\}$$
(33)

2. Orthogonalize \boldsymbol{A} using the symmetric square-root transformation $(\boldsymbol{A}\boldsymbol{A}^T)^{\frac{1}{2}}\boldsymbol{A}$. Let UDV^T be the singular decomposition of \boldsymbol{A} , we will have

$$(\mathbf{A}\mathbf{A}^T)^{\frac{1}{2}}\mathbf{A} = (UDV^TVD^TU^T)^{\frac{1}{2}}UDV^T$$
(34)

$$= (UD^2U^T)^{\frac{1}{2}}UDV^T \tag{35}$$

$$= D^{-1}UDV^T (36)$$

$$\mathbf{A} \leftarrow UV^T \tag{37}$$