

1. Typical Customer Requirement

'I want a piece of electronics that will make my voice louder and sound better when I am singing along with my favourite songs on my phone'

- 1. It needs to be portable and battery powered
- 2. It needs a display to tell me how loud I am singing
- 3. I also want to be able to sell it to lecturers to improve their presentations
- 4. It must match my iPhone /XiaoMi /Huawei phone colours
- 5. It must be cheap....

NOTE:- There is no mention of how many volts / amps / watts in this requirement

2. High Level, Concept Design

3. Examine the signal levels at the interfaces...

How do we design the system for best performance?

4. Identify the problem block(s)... usually the ones with the limited performance

4. Identify the problem block(s)... usually the ones with the limited performance

Our system performance is going to be limited by the MBED ADC / DAC performance

5. Examine the signal levels around problem blocks...

We have 3 key problems:

- I. Input range of ADC is between 0V and +3.3V
- 2. Audio signals are (usually) centred around 0V (positive and negative peaks). We need to modify our circuit to deal with this; i.e. to accept an input centred around 0V
- 3. The output range of DAC is between 0 and +3.3V; we want to output a signal centred around 0V

6. Solve the problems...

We have 3 key problems:

- I. Input range of ADC is between 0V and +3.3V ...Fixed
- 2. Audio signals are (usually) centred around 0V (positive and negative peaks). We need to modify our circuit to deal with this; i.e. to accept an input centred around 0V ...Fixed
- 3. The output range of DAC is between 0 and +3.3V; we want to output a signal centred around 0V ...Fixed

7. Introduce the other blocks to the system...

Finally... choose your power supplies

- After you have designed for the correct signal levels, look at the power supplies you will need
 - The input amplifier needs V+, V- to produce +/- 1.65Vpk output We have relatively free choice; let's assume +/- 3.3V
 - The MBED is constrained for a maximum supply of +3.6V (use +3.3V to be safe)
 - If MBED is running on +3.3V then design all logic around this value
 - The output Amplifier needs +/- 10V to produce +/- 9V pk output into 4 W (+/- 2.25Amps) [Power amp needs 1V headroom to operate]
- In some designs (e.g. automotive) you might be constrained by the available supplies

Typical System design 'Customer Questions'

Assuming the main components are fixed (microphone, mic amp, MBED, power amp, loudspeaker etc)

- How large a battery would be required for it to last 1 x 2 hour lecture?
 - Typical 'talking' voice SPL = 94dBA (1.6mVrms)
- How long would the same battery last if was used in a rock concert?
 - Typical 'screaming singing' voice SPL = 135dBA (at 25mm) [179mVrms]
- If Output Power = 6.4Vrms into a 4 ohm loudspeaker [10Wrms], do we require a heatsink on a iPhone? How large?
- Am I allowed to take this equipment on a commercial airline flight?
- These are 'typical' system design questions:- they do not 'sound' technical, but you need to perform a full engineering analysis to get the right answer!!

6 Rules for System Designers

- 1. Find out what the customer is <u>trying to do</u> (<u>NOT</u> what they <u>say</u> they want to do!!)
- 2. Agree a set of requirements with the customer of what <u>you</u> will do to meet <u>their</u> need
- 3. Think about the <u>WHOLE</u> problem and identify major tasks / functions / blocks you need to perform the task
- 4. Look at the interfaces; what is happening BETWEEN the blocks
- 5. Look at the physical limitations (power, signal levels, heat etc)
- Think about VALIDATION and VERIFICATION; how will you prove you have met the requirements

Self Study Question: How many bits do you need?

If you use a typical dynamic microphone (Shure SM57) which has a maximum output of 179mV, and a noise level of 0.3uVrms

- 1. What is theoretical dynamic range? [using DR = 20 log (Vmax / Vnoise)]
- 2. How many bits ? [using DR =(6.02*N) + 1.76 in dB]
- 3. Should you invest in 24 bit ADCs for audio recording using this microphone?

Self Study Question (Answer)

If you use a typical dynamic microphone (Shure SM57) which has a maximum output of 179mV, and a noise level of 0.3uVrms

- 1. What is theoretical dynamic range? [115.5dB]
- 2. How many bits ? [using DR = (6.02*N) + 1.76 in dB] [19bit]
- 3. Should you invest in 24 bit ADCs for audio? [No]
- Why: because we have just shown we only need about 19 bits to do the task...
- Important: this was not a 'guess' it was a careful calculation

https://www.bing.com/videos/search?q=road+traffic+management+system+chengdu+china&&view=detail&mid=16 DFF82082076D9C8D9A16DFF82082076D9C8D9A&&FORM=VRDGAR&ru=%2Fvideos%2Fsearch%3Fg%3Droad%252 Otraffic%2520management%2520system%2520chengdu%2520china%26gs%3Dn%26form%3DQBVR%26sp%3D-1%26pg%3Droad%2520traffic%2520management%2520system%2520chengdu%2520china%26sc%3D0-44%26sk%3D%26cvid%3D919404EFE5BD4C3198944A79CB6431AE

Land rover https://www.youtube.com/watch?v=KTxOB8CjmIU

https://www.youtube.com/watch?v=VSJM5xpLj0M

Chengdu traffic management

https://www.worldbank.org/en/news/feature/2018/11/16/reducing-traffic-congestion-and-emission-in-chinese-cities

High Speed Railway (Automated)

https://www.youtube.com/watch?v=wCc0aH68BTs&list=PLyi9k6lKscdiBdDiwOMvBh-nH9A21YV0z&index=1168

Airbus autoland https://www.youtube.com/watch?v=V0OJ-rPDXNs

Auto takeoff https://youtu.be/9TIBeso4abU

F1 Mercedes team https://www.youtube.com/watch?v=ilj6fp54YS4

Micra Advert

https://www.adsoftheworld.com/media/film/nissan_new_nissan_micra_nsport_where_to_next_intelligent_trace_control

Gandalf nods https://www.youtube.com/watch?v=2rCP4CRR07E

Gandalf quotes 'small things' https://www.youtube.com/watch?v=dG2UO2F0IY4

Gandalf you shall not pass https://www.youtube.com/watch?v=VlaiBeLrntQ