Seattle Data Science Journal Club: Wager & Athey

Benjamin S. Skrainka

January 9, 2018

Seattle Data Science Journal Club

What, why, where, when

Building a platform where data scientists can discuss the latest and greatest in the field and network:

- A seminar series like in graduate school:
 - Discuss important papers with top Seattle data scientists
 - Remain current on latest ideas
 - Occurs every other month
- A speaker series:
 - Hear key data science thinkers
 - ▶ Occurs every other month + 1

Discussion of purpose

This is a meetup to discuss the latest data science ideas:

- What topics interest you?
- Are there speakers you want to hear?
- What cadence?
- Do you want to help lead/organize this group?
- Let us know...

Wager & Athey (2017)

Wager & Athey (2017)

Wager & Athey (2017): Estimation and Inference of Heterogeneous Treatment Effects Using Random Forest

- Develop non-parametric causal forest to estimate causal effects:
 - Heterogeneous treatment effects
 - Extends on random forest
- First tools to perform valid statistical inference:
 - Asymptotically Gaussian
 - Pointwise consistent
 - Works for any random forest algorithm

Wager & Athey (2017)

Part of a new strand of literature uniting Econometrics and ML to estimate causal effects.

- ML:
 - Great for prediction
 - Great for large datasets
 - Poor for inference
- Econometrics/Applied Statistics/etc.:
 - ► Great for causality (e.g., Rubin)
 - Great for estimation and inference of causal effects
 - ▶ Poor for model selection and many features

Research agenda

Social science problems often consist of prediction + causal inference:

- Use ML for prediction, model selection, and robustness
- Extend to handle inference & estimation of causal effects

Policy evaluation

Data scientists often need to estimate the impact of a policy:

- Is feature X better than feature Y?
- Did our advertising work?

We can apply this literature to many problems we face, such as A/B testing Real-world example: Ascarza (2016) Retention futility: Targeting high risk customers might be ineffective:

- Uses a similar method to measure heterogeneous response to churn intervention
- Computes optimal policy, which is counter to conventional wisdom

Literature

Some classics:

- Breiman (2004). Random forests
- Imbens & Rubin (2015). Causal Inference

Some recent papers:

- Athey & Imbens (2016). Recursive partitioning for heterogeneous causal effects
- Athey, Tibshirani, and Wager (2016). Generalized random forests
- Wager, Hastie, and Efron (2014). Confidence intervals for random forests

Motivations

Paper tackles several problems:

- Gelman's "Garden of forking paths" well-intentioned, ex-post data-driven hypothesis testing
 - ► Should pre-specify analysis plan
 - ▶ But, cannot anticipate all forms of heterogeneity ex-ante
- Optimal policy: must estimate treatment effect heterogeneity

Insights of paper

Construct confidence intervals for estimates from modified random forest algorithm using several insights:

- Estimate treatment effects using RF to determine "nearby" observations
 - ► I.e., with correct splitting, each leaf should be (close to) a random experiment with nigh identical units
- Cross-validation for inference (honest trees)
- ullet Given a tree built on the training set, can use any valid method to estimate au on test set
- Prediction at individual and not leaf/group level (e.g., Athey & Imbens (2016))

Applied to decision trees (Athey & Imbens) and random forests (this paper).

Structure of paper

Organization of the paper:

- Prove consistency & asymptotic normality for a variant of RF
- Prove infinitesimal jackknife consistent for aVar
- Extend results to estimation of heterogeneous treatment effects in potential outcomes framework
- Compare causal forest vs. k-NN using simulations

Notation: potential outcomes notation

Paper uses potential outcomes notation:

- Outcome is $Y_i(W_i)$ for individual i with treatment status W_i
- Treatment is $W_i \in \{0,1\}$
- Want to measure causal effect, $\tau(x)$ at x

$$\tau(x) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x]$$

but we cannot observe both $Y_i(1)$ and $Y_i(0)$...

Estimation

Prediction at x:

$$\hat{\mu}(x) = \frac{1}{|\{i : X_i \in L(x)\}|} \cdot \sum_{\{i : X_i \in L(x)\}} Y_i$$

Let

$$\hat{\mu}(x|w) = \frac{1}{|\{i: W_i = w, X_i \in L(x)\}|} \cdot \sum_{\{i: W_i = w, X_i \in L(x)\}} Y_i$$

Estimation of treatment effect at x for a causal tree:

$$\hat{\tau}(x) = \hat{\mu}(x|w=1) - \hat{\mu}(x|w=0)$$

For a RF with B trees, $\hat{ au}(x) = \frac{1}{B} \cdot \sum\limits_{b=1}^{B} \hat{ au}_b(x)$

Estimation of variance

Estimation of variance uses:

$$\widehat{V}_{IJ}(x) = rac{n-1}{n} \left(rac{n}{n-s}
ight)^2 \sum_{i=1}^n ext{Cov}_*[\widehat{ au}_b^*(x), N_{ib}^*],$$

where:

- $Cov_*[\cdot, \cdot]$ is over all trees b = 1, ..., B
- N_{ib}^* indicates whether observation i is in tree b

Assumptions

Unconfoundeness:

- $\{Y_i(0), Y_i(1)\} | W_i \perp \!\!\! \perp X_i$
- As if a neighborhood is a randomized experiment

Overlap (probabilistic):

- $\epsilon < \mathbb{P}[W = 1 | X = x] < 1 \epsilon$
- For large *n*, a neighborhood contains both treatments

Honest trees

Asymptotic normality and consistency require:

- Subsample size s scales appropriately
- Honest trees:
 - ► Double-sample trees use two samples:
 - \star \mathcal{I} : used to estimate effects within each leaf
 - \star \mathcal{J} : used to determine splits
 - ► Propensity trees:
 - ★ Ignore Y_i when computing splits
 - **★** Train classification tree for W_i
 - ★ Estimate leaf-level responses
 - ★ In tradition of propensity matching

Procedure 1: double-sample trees

Plan: split the sample and use one half to build tree and other to estimate:

- Draw random subsample of size s without replacement
- 2 Split it into ${\mathcal I}$ and ${\mathcal J}$
- Grow tree via recursive partitioning:
 - ▶ Use any data in \mathcal{J} and only X or W in \mathcal{I}
 - ▶ Do not use Y in \mathcal{I}
- Estimate $\hat{\tau}(x)$ using only \mathcal{I}

Note: must sample without replacement

Procedure 2: propensity trees

Use W_i to determine splits and Y_i to estimate τ :

- **1** Draw random subsample \mathcal{I} of size s without replacement
- ② Train classification tree using \mathcal{I} using W_i as label and X_i as features
 - ▶ Must have > k observations in each leaf for each treatment
 - ► Can optimize using Gini criterion, entropy, etc.
- **3** Estimate $\tau(x)$ on L(x)

Definitions

Key definitions:

- honest tree:
 - ▶ Double-sample tree: does not use Y_i in \mathcal{I} to choose splits
 - ▶ Propensity tree: does not use Y_i to choose splits
- random-split tree:
 - ▶ Marginalize over auxiliary randomness, $\xi \sim \Xi$ in RF
 - lacktriangledown At every split, $\pi/d < \mathbb{P}[ext{split along } j ext{-th feature}], orall \pi \in (0,1]$
 - lacktriangle Note: ξ contains randomness for splitting features

Definitions

Key definitions:

- α -regular $\forall \alpha > 0$ if:
 - standard case:
 - ***** At least α of training observations on each side of split
 - ★ Terminal nodes have at between k and 2k-1 observations
 - lacktriangle double-sample: ${\cal I}$ satisfies above condition
- symmetric:
 - Output of predictor independent of order of training set

Results

Results are theoretical with some confirmation via simulation:

- Theorems on asymptotic normality of mean and treatment effects
- Simulation experiments

Theorems

Then they prove some theorems, given regularity conditions:

- Theorem 1: $\frac{\hat{\mu}_n \mu(x)}{\sigma_n(x)} \stackrel{a}{\sim} N(0,1)$
- Lemma 2: probability limit on $diam_j(L(x))$
- Theorem 3: $|\mathbb{E}[\hat{\mu}_n(x)] \mu(x)| \mathcal{O}(f(s, \alpha))$
- Theorem 11: causal forest has:
 - ▶ Predictions $\hat{\tau}(x)$ are consistent and asymptotically Gaussian and centered
 - Variance that is consistently estimated

Simulation experiments

Compare causal forest to k-NN:

- CF provides:
 - Superior matching
 - lacktriangle Stable MSE which is \ll MSE of k-NN
- ullet CF coverage deteriorates for more than pprox 10 features
- In some simulations, bias dominates variance for RF and causes uncentered CI
- \Rightarrow need to improve control for bias, perhaps via better splitting rule

Questions

Some questions:

- Simulations use large enough n?
- How much data needed to succeed?
- ullet How much overlap needed to measure au well?
- Performance vs. classical methods (propensity score, matching)?
- Why not split on entropy?
- How to identify lack of balance in leaves?
- Performance on real data?

Future meetings

Thanks for attending!

We will meet every month:

- month % 2 == 1 \Rightarrow discuss a paper
- month % 2 == 0 \Rightarrow listen to a speaker
- Next month's speaker: Jake Vanderplas