海淀区七年级第二学期期中调研

数学

(分数: 100分 时间: 90分钟)

2018.4

学校 班级 姓名 成绩

一、选择题(本题共 30 分,每小题 3 分)

第 1-10 题均有四个选项,符合题意的选项只有一个.

1. $\sqrt{2}$ 的相反数是

 $B.-\sqrt{2}$

2. 如图, ∠1的同位角是

A. ∠2

B. ∠3

C. ∠4

D. ∠5

3. 下列图形中,不能通过其中一个四边形平移得到的是

B.

D.

如图,点B,C,E三点共线,且BA//CD,则下面说法正确的是

B.
$$\angle 1 = \angle B$$

C.
$$\angle 3 = \angle B$$

D.
$$\angle 3 = \angle A$$

5. 估算 $\sqrt{19}$ 的值是在

A.3 和 4 之间 B. 4 和 5 之间 C. 5 和 6 之间 D. 6 和 7 之间

6. 如图,将线段 AB 平移得到线段 CD,点 A(-1,4) 的 对应点为C(4,7),则点B(-4,-1)的对应点D的 坐标为

B.
$$(2, 3)$$

7. 若实数 a, b 满足 $\sqrt{a+2} + |b-1| = 0$, 那么 a+b 的值是

$$C. -2$$

8. 在平面直角坐标系 xOy 中,点 P 在第四象限,且点 P 到 x 轴的距离为 1,到 y 轴的距离为 3, 则点 P 的坐标为

A.
$$(3,-1)$$

B.
$$(-3,1)$$

B.
$$(-3,1)$$
 C. $(1, -3)$

D.
$$(-1,3)$$

9. 如图,已知平行线 a,b,一个直角三角板的直角顶点在直线 a 上,另一个顶点在直线 b 上, 若 $\angle 1 = 70^{\circ}$,则 $\angle 2$ 的大小为

D. 30°

)

)

10. 如图的网格线是由边长为1的小正方形格子组成的, 小正 方形的顶点叫格点,以格点为顶点的多边形叫格点多边形, 小明研究发现,内部含有3个格点的四边形的面积与该 四边形边上的格点数有某种关系,请你观察图中的4个格 点四边形.设内部含有 3 个格点的四边形的面积为 S,其各 边上格点的个数之和为m,则S与m的关系为 ()

A.
$$S = m$$

B.
$$S = m - \frac{3}{2}$$

C.
$$S = \frac{1}{2}m + 2$$

B.
$$S = m - \frac{3}{2}$$
 C. $S = \frac{1}{2}m + 2$ D. $S = \frac{1}{2}m + 3$

- 二、填空题(本题共24分,每小题3分)
- 12. 若点 P(2x+6, 3x-3) 在 y 轴上,则点 P 的坐标为
- 13. 若一个二元一次方程组的解是 $\begin{cases} x = 2, \\ y = 1. \end{cases}$ 请写出一个符合此要求的二元一次方程组______

- 15. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角 $\angle A$ 是 135°,则第二次的拐角 $\angle B$ 是_____,根据是____.

- 16. 如果方程组 $\begin{cases} 2x + 3y = 7, \\ 5x y = 9 \end{cases}$ 的解是方程 7x + my = 16 的一个解,则 m 的值为______.

18. 初三年级 261 位学生参加期末考试,某班 35 位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图 1 和图 2 所示,甲、乙、丙为该班三位学生.

从这次考试成绩看,

- ① 在甲、乙两人中,总成绩名次靠前的学生是_____;

三、解答题(本题共 46 分, 第 19 题 4 分, 第 20 题 6 分, 第 21 \sim 22 题, 每小题 4 分, 第 23 题 5 分, 第 24 题 4 分, 第 25 题 5 分, 第 26 \sim 27 题, 每小题 7 分)

20. 解下列方程组.

(1)
$$\begin{cases} y = 2x - 1, \\ 3x + 2y = 5. \end{cases}$$

(2)
$$\begin{cases} x - 2y = 1, \\ 2x + y = -3. \end{cases}$$

21. 如图,已知 AD//BC, $\angle 1 = \angle 2$.求证 BE//DF.

22. 如图,已知 CO LAB 于点 O,∠AOD=5∠DOB,求∠COD 的度数.

23. 一个数值转换器,如图所示:

- (1) 当输入的x为 16 时. 输出的y 值是_____;
- (2) 若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;
- (3) 若输出的 y 是 $\sqrt{3}$,请写出两个满足要求的 x 值:______.

- 24. **作图题:** 如图,直线 AB, CD 相交于点 O,点 P 为射线 OC 上异于 O 的一个点.
 - (1) 请用你手中的数学工具画出 $\angle AOC$ 的平分线 OE;
 - (2) 过点 P 画出 (1) 中所得射线 OE 的垂线 PM (垂足为点 M), 并交直线 AB 于点 N;
 - (3) 请直接写出上述所得图形中的一对相等线段_____

25. 如图, 己知 *CF* // *DE*, ∠*ABC*=85°, ∠*CDE*=150°, ∠*BCD*=55°, 求证 *AB* // *DE*.

- 26. 对于平面直角坐标系 xOy 中的点 P(x, y), 若点 Q 的坐标为 (x+ay, ax+y) (其中 a 为常数,且 $a\neq 0$),则称 Q 是点 P 的 "a 系联动点".例如:点 P(1,2)的"3 系联动点"Q 的坐标为 (7,5).
 - (1) 点 (3,0) 的 "2 系联动点"的坐标为_____; 若点 *P* 的 "-2 系联动点"的坐标是 (-3,0),则点 *P* 的坐标为 ;
 - (2)若点P(x,y)的 "a 系联动点"与 "-a 系联动点"均关于x 轴对称,则点P分布在_____,请证明这个结论;
 - (3) 在 (2) 的条件下,点 P 不与原点重合,点 P 的 "a 系联动点"为点 Q,且 PQ 的长度为 OP 长度的 3 倍,求 a 的值.

- 27. 在直角坐标系中,点 O 为坐标原点,A (1,1),B (1,3),将线段 AB 平移到直线 AB 的右边得到线段 CD (点 C 与点 A 对应,点 D 与点 B 对应),点 D 的坐标为 (m, n),且 m>1.
 - (1) 如图 1, 当点 C 坐标为 (2,0) 时,请直接写出三角形 BCD 的面积: ______;
 - (2) 如图 2,点 E 是线段 CD 延长线上的点, $\angle BDE$ 的平分线 DF 交射线 AB 于点 F. 求证 $\angle C = 2\angle AFD$;
 - (3) 如图 3, 线段 CD 运动的过程中,在 (2) 的条件下,n=4.

2017-2018 海淀区七年级第二学期期中调研 参考答案及评分标准

一、选择题(本题共30分,每小题3分)

题号	1	2	3	4	5	6	7	8	9	10
答案	В	A	D	C	В	D	A	A	В	С

二、填空题(本题共24分,每小题3分)

11. 2 12.
$$(0,-12)$$
 13. $\begin{cases} x+y=3, \\ x-y=1. \end{cases}$ (注: 第 13 题答案不唯一,填 $\begin{cases} x=2, \\ y=1 \end{cases}$, $\begin{cases} x+y=3, \\ y=1 \end{cases}$, $\begin{cases} x=2, \\ x-y=1 \end{cases}$

等以
$$\begin{cases} x=2, \\ y=1 \end{cases}$$
为解的二元一次方程组均可给分.)

14. > 15. 135°; 两直线平行,内错角相等(注:第15题第一空2分,第二空1分)

16. 2 17.
$$2\sqrt{2} - 2$$

18. 甲;数学;理由如下:由图 2 可知,该班总成绩在丙之后的有 4 人,据此可知,在图 1 中由右往左数的第 5 个点即表示丙,分别过图 1 和图 2 中代表丙的点作水平线,易知在图 1 中语文成绩在丙之后的人数明显少于图 2 中数学成绩在丙之后的人数,故丙同学的数学成绩更靠前.

(注: 第18题每空1分)

三、解答题(本题共 46 分, 第 19 题 4 分, 第 20 题 6 分, 第 21 \sim 22 题, 每小题 4 分, 第 23 题 5 分, 第 24 题 4 分, 第 25 题 5 分, 第 26 \sim 27 题, 每小题 7 分)

19.
$$\mathbf{R}$$
: $\sqrt[3]{8} + |\sqrt{3} - 2| + \sqrt{(-2)^2}$

$$= 2 + (2 - \sqrt{3}) + 2 \dots 3 \, \hat{\mathcal{T}}$$

$$= 6 - \sqrt{3} \dots 4 \, \hat{\mathcal{T}}$$

20. (1)
$$\begin{cases} y = 2x - 1 & \text{(1)} \\ 3x + 2y = 5 & \text{(2)} \end{cases}$$

把 x=1 代入① y=1

$$\therefore \begin{cases} x = 1, \\ y = 1. \end{cases}$$
3

(2)	$\begin{cases} x - 2y = 1 & \text{(1)} \\ 2x + y = -3 & \text{(2)} \end{cases}$
解:	②×2, 得 $4x + 2y = -6$ ③ ①+③, 得
	5x = -5, x = -1.
	-1-2y=1, -2y=2, y=-1.
	$ \begin{cases} x = -1, \\ y = -1. \end{cases} $ 3
21.	证明: ∵ <i>AD</i> // <i>BC</i> , ∴ ∠1 = ∠3 · · · · · ·
又	$\mathbb{Z} : \angle 1 = \angle 2$,
22.	∴ ∠2 = ∠3
	设 $\angle BOD = x^{\circ}, \angle AOD = 5x^{\circ}.$
	∵∠AOD+∠BOD=180°,1 分
	$\therefore x + 5x = 180.$
	$\therefore x=30.$
	∴ ∠BOD=30°2 分
	$\because CO ot AB$,
	∴ ∠BOC=90°
	$\therefore \angle COD = \angle BOC - \angle BOD$
	=90°-30°
	=60°.
23.	\mathbf{R} : (1) $\sqrt{2}$;
	(2) 0, 1
	因为0和1的算术平方根是它们本身,0和1是有理数4分
	(3)3,95 分
注:	第(2)问写对一个数给1分,第(3)问答案不唯一.