CHANGEMENTS DE MESURE

Exercice 1. Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel sur un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$, et soit T>0. Construire une mesure de probabilité \mathbb{Q} sur \mathscr{F}_T , équivalente à \mathbb{P} (sur \mathscr{F}_T), sous laquelle le processus $(\exp{(\sigma B_t + rt)})_{0\leq t\leq T}$ est une martingale.

Exercice 2 Soit $(B_t)_{t \in [0,T]}$ un mouvement brownien réel. On pose $S_t = e^{\sigma B_t - \frac{\sigma^2 t}{2}}$.

- 1. Montrer que $dS_t = \sigma S_t dB_t$ et calculer la décomposition en semi-martingale de $R_t = S_t^{-1}$.
- 2. Soit $\mathbb Q$ la mesure dont la densité par rapport à $\mathbb P$ est S_T . Trouver la loi de R_t sous $\mathbb Q$.
- 3. En déduire la symétrie Put-Call : pour tout K > 0,

$$\mathbb{E}_{\mathbb{P}}[(S_T - K)_+] = K \mathbb{E}_{\mathbb{Q}}[(K^{-1} - S_T^{-1})_+].$$

Exercice 3 . Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel sur un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$, et soient $\phi, \psi \in \mathscr{H}^2_{loc}$. Pour $t\geq 0$, on pose

$$Z_t := \exp\left(\int_0^t \phi(s) dB_s - \frac{1}{2} \int_0^t \phi^2(s) ds\right) \qquad \text{et} \qquad Y_t := \int_0^t \psi(s) dB_s - \int_0^t \psi(s) \phi(s) ds.$$

- 1. Montrer que le processus $(Z_tY_t)_{t>0}$ est une martingale locale.
- 2. Soit T un réel positif tel que $\mathbb{E}[Z_T] = 1$. Montrer que $(Y_t)_{0 \le t \le T}$ est une martingale locale sous une certaine probabilité \mathbb{Q} sur \mathscr{F}_T équivalente à \mathbb{P} , que l'on explicitera.

Exercice 4 (Dérive). Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel sur un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$ et soit a>0 un nombre positif. On rappelle que $\tau_a:=\inf\{t\geq 0\colon B_t\geq a\}$ a pour densité

$$f_a(x) = \frac{a}{\sqrt{2\pi x^3}} e^{-\frac{a^2}{2x}} \mathbf{1}_{\mathbb{R}_+}(x).$$

Étant donné $b \in \mathbb{R}$, on pose $X_t := B_t - bt$ et on s'intéresse à $\gamma_a := \inf\{t \geq 0 \colon X_t \geq a\}$.

- 1. Trouver une probabilité $\mathbb Q$ sur $\mathscr F_\infty$ sous laquelle $(X_t)_{t\geq 0}$ est un mouvement brownien.
- 2. En déduire, sous la mesure \mathbb{P} , la fonction de répartition de γ_a puis la loi de $Z:=\sup_{t>0}B_t-bt$.

Exercice 5 (Fonctionnelles quadratiques du brownien). Pour $a, b, t \ge 0$, on cherche à calculer

$$I(a,b) := \mathbb{E}\left[\exp\left\{-aB_t^2 - \frac{b^2}{2}\int_0^t B_s^2 \mathrm{d}s\right\}\right].$$

- 1. Calculer I(a, 0) pour tout a. On supposer désormais b > 0.
- 2. Trouver un processus ψ localement intégrable tel que le processus $(Z_t)_{t\geq 0}$ défini ci-dessous soit une martingale locale :

$$Z_t := \exp\left\{-b\int_0^t B_s dB_s - \int_0^t \psi(s) ds\right\}.$$

3. Exprimer Z_t en fonction de b, t, B_t et $\int_0^t B_s^2 ds$ seulement, et en déduire que

$$I(a,b) = \mathbb{E}\left[Z_t \exp\left\{\left(\frac{b}{2} - a\right)B_t^2\right\}\right] \exp\left(-\frac{bt}{2}\right).$$

- 4. Construire une probabilité \mathbb{Q} sur $(\Omega, \mathcal{F}_{\infty})$ sous laquelle le processus $(W_t)_{t\geq 0}$ défini par $W_t:=B_t+b\int_0^t B_s\mathrm{d}s$ soit un mouvement brownien.
- 5. Montrer que pour tout $t \ge 0$,

$$B_t = \int_0^t e^{b(s-t)} \, \mathrm{d}W_s.$$

6. Pour $t \ge 0$ fixé, expliciter la loi de B_t sous la mesure \mathbb{Q} et en déduire la formule suivante :

$$I(a,b) = \left\{ \cosh(bt) + \frac{2a}{b} \sinh(bt) \right\}^{-\frac{1}{2}}.$$

Exercice 6 Soit $B=(B_t)_{t\in[0,1]}$ un mouvement brownien et H un processus localement intégrable. On note $\mathbb Q$ la mesure de probabilité dont la densité par rapport à $\mathbb P$ est $Z=\exp(-\int_0^1 H_s\mathrm{d}B_s-\frac12\int_0^1 H_s^2\mathrm{d}s)$. On rappelle que la divergence de Kullback-Leibler entre deux mesures équivalentes μ,ν est définie par

$$d_{KL}(\mu \mid \nu) = \int \left(\ln \frac{d\mu}{d\nu} \right) d\mu.$$

- 1. Calculer $d_{KL}(\mathbb{Q} \mid \mathbb{P})$.
- 2. Calculer $d_{KL}(\mathbb{P} \mid \mathbb{Q})$.

Exercice 7 (Condition de Novikov). Soit $\phi \in \mathcal{H}^2_{loc}$. On pose pour tout $t \geq 0$,

$$Z_{\phi}(t) := \exp\left\{ \int_0^t \phi(s) dB_s - \frac{1}{2} \int_0^t \phi^2(s) ds \right\}.$$

Le but est de démontrer que $(Z_{\phi}(t))_{t\geq 0}$ est une martingale sous la condition de Novikov :

$$\forall t \ge 0, \qquad \mathbb{E}\left[\exp\left\{\frac{1}{2}\int_0^t \phi^2(s)\mathrm{d}s\right\}\right] < \infty.$$
 (*)

- 1. Que peut-on dire du processus $(Z_{\phi}(t))_{t\geq 0}$ en général? Et si $\mathbb{E}[Z_{\phi}(t)]=1$ pour tout $t\geq 0$?
- 2. Soit $0 < \lambda < 1$. Trouver p > 1 et $0 < \theta < 1$ tels que pour tout $t \ge 0$,

$$Z_{\lambda\phi}^p(t) = Z_{\phi}^{\theta}(t) \exp\left\{\frac{1-\theta}{2} \int_0^t \phi^2(s) ds\right\}.$$

- 3. En déduire que sous la condition (*), on a $\mathbb{E}[Z_{\lambda\phi}(t)] = 1$ pour tout $t \geq 0$.
- 4. Montrer par ailleurs que pour tout $t \ge 0$,

$$\mathbb{E}[Z_{\lambda\phi}(t)] \le \mathbb{E}\left[Z_{\phi}(t)\right]^{\lambda^2} \mathbb{E}\left[\exp\left\{\frac{1}{2}\int_0^t \phi(s) dB_s\right\}\right]^{2\lambda(1-\lambda)}.$$

5. Vérifier que le membre droit est fini sous la condition (\star) , et conclure.