Iniziato	mercoledì, 5 luglio 2023, 16:56	
Stato	Completato	undefinedG
Terminato	martedì, 11 luglio 2023, 13:48	
Tempo impiegato	5 giorni 20 ore	
Valutazione	Non ancora valutato	

Risposta errata Punteggio ottenuto -0,20 su 1.00 A Gaussian linear model has been fitted to investigate the effect of the categorical regressor x. cat (with 3 categories: A, B, C and D) on the dependent variable y, using a sample of n units. The output obtained using the lm fuction is reported in the following:

```
> summary (M1)
Call:
lm(formula = y \sim x.cat - 1)
Residuals:
  Min 1Q Median 3Q Max
-8.588 -2.523 -0.170 2.638 10.338
Coefficients:
      Estimate Std. Error t value Pr(>|t|)
x.catA 4.1297 0.9628 4.289 5.98e-05 ***
x.catB 1.4439 0.7458 1.936 0.05713 .
x.catC 2.8431 0.8338 3.410 0.00111 **
x.catD 2.9955 1.1792 2.540 0.01344 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.729 on 66 degrees of freedom
Multiple R-squared: 0.3787, Adjusted R-squared: 0.341
F-statistic: 10.06 on 4 and 66 DF, p-value: 2.038e-06
```

Suppose that one is interested in testing whether x.cat has an overall significant effect on y. Which of the following matrix \mathbf{K} can be used (jointly with a vector \mathbf{t} composed of 0 with an appropriate number of rows) to express the corresponding null hypothesis H_0 as a system of linear constraints on the parameters of the fitted model?

Scegli un'alternativa:

a.
$$\mathbf{K} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

b.
$$\mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Risposta errata.

La risposta corretta è:
$$\mathbf{K} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Risposta errata

Punteggio ottenuto -0,20 su 1,00 Consider the Gaussian linear regression model

$$Y \mid \mathbf{X} \sim MVN_n (\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n).$$

and suppose that one is interested in the system of linear hypotheses

$$H_0$$
: $\mathbf{K}\boldsymbol{\beta} = \mathbf{t}$.

Which of the following expressions can be used to compute $\hat{\mathbf{b}}_{H_0}$, the maximum likelihood estimate for β in the constrained parametric subspace $\{\mathbf{b} : \mathbf{K}\mathbf{b} = \mathbf{t}\} \in \mathbb{R}^{p+1}$?

Scegli un'alternativa:

; a.
$$(\mathbf{K}\hat{\mathbf{b}} - \mathbf{t})^{\mathsf{T}} \left[\mathbf{K} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{K}^{\mathsf{T}} \right]^{-1} \left(\mathbf{K}\hat{\mathbf{b}} - \mathbf{t} \right)^{\mathsf{T}}$$

b.
$$\hat{\mathbf{b}} - (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{K}^{\mathsf{T}} \left[\mathbf{K} (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{K}^{\mathsf{T}} \right]^{-1} (\mathbf{K}\hat{\mathbf{b}} - \mathbf{t})$$

c.
$$\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{K}^{\mathsf{T}}\left[\mathbf{K}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{K}^{\mathsf{T}}\right]^{-1}\left(\mathbf{K}\hat{\mathbf{b}}-\mathbf{t}\right)$$

Risposta errata.

La risposta corretta è:
$$\hat{\mathbf{b}} - \left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{K}^{\mathsf{T}} \left[\mathbf{K}\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\right)^{-1}\mathbf{K}^{\mathsf{T}}\right]^{-1} \left(\mathbf{K}\hat{\mathbf{b}} - \mathbf{t}\right)$$

Parzialmente corretta

Punteggio ottenuto 0,50 su 1,00

Suppose that one is considering a set of candidate parametric statistical models for the same random sample Y. In order to select the optimal one, which of the following quantities should be minimized?

Note that more than one option can be selected

Scegli una o più alternative:

T b.
$$2\ln L(\hat{\theta}) - \ln L(\hat{\theta})$$

L b.
$$2\ln L(\hat{\theta}) - \ln n$$

L c. $2\ln L(\hat{\theta}) + k\ln n$

K d.
$$-2\ln L(\hat{\theta}) + k \ln n$$

Risposta parzialmente esatta.

Hai selezionato correttamente 1.

Le risposte corrette sono:

$$-2\ln L(\hat{\boldsymbol{\theta}}) + k \ln n_{i}$$

$$-\ln L(\hat{\boldsymbol{\theta}}) + \frac{k}{2} \ln n$$

Risposta errata

Punteggio ottenuto 0,00 su 1,00 Suppose that the R dataframe dataset contains information on a dependent variable y and a set of candidate regressor x1, x2, x3, x4, x5, x6 and x7, where x1, x2 and x3 are numerical regressors, x4 is a categorical regressor with 2 categories, x5 and x6 are categorical regressors with 3 categories and x7 is a categorical regressor with 4 categories.

Consider the model M1, fitted using the following R instruction:

```
M1 < -lm(y \sim x1 + x2 + x6, data = dataset)
```

Which of the following models can be compared with M1 using R^2 ?

Note that more than one option can be selected

Scegli una o più alternative:

```
K a. \lim(y\sim x1+x2+x3, data=dataset) 
 L b. \lim(y\sim x3+x7, data=dataset) 
 L c. \lim(y\sim x5+x6, data=dataset) 
 L d. \lim(y\sim x1+x2+x3+x4, data=dataset) 
 L e. \lim(y\sim x4+x5+x7, data=dataset)
```

Risposta errata.

```
Le risposte corrette sono:
```

```
lm(y\sim x3+x7, data=dataset),
lm(y\sim x1+x2+x3+x4, data=dataset),
lm(y\sim x5+x6, data=dataset)
```

Risposta errata

Punteggio ottenuto -0,25 su 1,00

Consider a Guassin linear regression model

$$Y | \mathbf{X} \sim MVN_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n).$$

Which of the following expressions can be used to compute the expected Fisher information matrix for the parameter vector β ?

Scegli un'alternativa:

- ' c. $\sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$; d. $\mathbf{X}^{\mathsf{T}}[\mathbf{y} \mathbf{X}\boldsymbol{\beta}] \square$

Risposta errata.

La risposta corretta è:

$$\frac{\mathbf{X}^{\mathsf{T}}\mathbf{X}}{\sigma^2}$$

Completo

Punteggio max.: 2,00

Suppose that the following Gaussian linear model

$$Y_i | \mathbf{x}_i \sim N(\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}, \sigma^2)$$
 independent $i = 1..., n$

has been fitted in R. This is a part of the resulting output:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.08039 0.06461 63.152 <2e-16
x1 0.05506 0.08077 0.682 0.4987
x2 -0.16193 0.08101 -1.999 0.0514
```

Residual standard error: 0.4472 on 47 degrees of freedom Multiple R-squared: 0.083, Adjusted R-squared: 0.044 F-statistic: 2.134 on 2 and 47 DF, p-value: 0.1297

Is it correct to state that, considering a significance level $\alpha = 0.05$, at least one of the two regressors has a significant effect on the dependent variable? Motivate your answer.

No, because the F-statistic does not show a significant value

No, it is not correct. Since the p-value associated with the F test statistic reported in the last line of the output is larger that 0.05, the linear independence hypothesis should not be rejected at a significance level 0.05. This implies that none of the regressors has significant effect on the dependent variable.

Precedente

Vai a...

Successivo