# International Rectifier

# IRF9540NSPbF IRF9540NLPbF

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- 150°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Some Parameters are Different from IRF9540NS/L
- P-Channel
- Lead-Free

#### Description

Features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of other applications.









D<sup>2</sup>Pak IRF9540NSPbF

TO-262 IRF9540NLPbF

| G    | D     | S      |
|------|-------|--------|
| Gate | Drain | Source |

#### **Absolute Maximum Ratings**

|                                         | Parameter                                        | Max.                   | Units |
|-----------------------------------------|--------------------------------------------------|------------------------|-------|
| I <sub>D</sub> @ T <sub>C</sub> = 25°C  | Continuous Drain Current, V <sub>GS</sub> @ -10V | -23                    | Α     |
| I <sub>D</sub> @ T <sub>C</sub> = 100°C | Continuous Drain Current, VGS @ -10V             | -14                    |       |
| I <sub>DM</sub>                         | Pulsed Drain Current ①                           | -92                    |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C   | Maximum Power Dissipation                        | 3.1                    | W     |
| P <sub>D</sub> @T <sub>C</sub> = 25°C   | Maximum Power Dissipation                        | 110                    |       |
|                                         | Linear Derating Factor                           | 0.9                    | W/°C  |
| $V_{GS}$                                | Gate-to-Source Voltage                           | ± 20                   | V     |
| E <sub>AS</sub>                         | Single Pulse Avalanche Energy ②                  | 84                     | mJ    |
| I <sub>AR</sub>                         | Avalanche Current ①                              | -14                    | Α     |
| E <sub>AR</sub>                         | Repetitive Avalanche Energy ①                    | 11                     | mJ    |
| dv/dt                                   | Peak Diode Recovery dv/dt ③                      | -13                    | V/ns  |
| T <sub>J</sub>                          | Operating Junction and                           | -55 to + 150           | °C    |
| T <sub>STG</sub>                        | Storage Temperature Range                        |                        |       |
|                                         | Soldering Temperature, for 10 seconds            | 300 (1.6mm from case ) |       |

#### **Thermal Resistance**

|                 | Parameter                                       | Тур. | Max. | Units |
|-----------------|-------------------------------------------------|------|------|-------|
| $R_{\theta JC}$ | Junction-to-Case                                |      | 1.1  | °C/W  |
| $R_{\theta JA}$ | Junction-to-Ambient (PCB Mount, steady state) © |      | 40   |       |

#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                                               | Parameter                            | Min. | Тур.  | Max. | Units | Conditions                                         |
|---------------------------------------------------------------|--------------------------------------|------|-------|------|-------|----------------------------------------------------|
| V <sub>(BR)DSS</sub>                                          | Drain-to-Source Breakdown Voltage    | -100 |       |      | ٧     | $V_{GS} = 0V, I_D = -250\mu A$                     |
| $\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta T_{\mathrm{J}}$ | Breakdown Voltage Temp. Coefficient  |      | -0.11 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = -1mA           |
| R <sub>DS(on)</sub>                                           | Static Drain-to-Source On-Resistance |      |       | 117  | mΩ    | V <sub>GS</sub> = -10V, I <sub>D</sub> = -14A ④    |
| V <sub>GS(th)</sub>                                           | Gate Threshold Voltage               | -2.0 |       | -4.0 | V     | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$              |
| gfs                                                           | Forward Transconductance             | 5.6  |       |      | S     | $V_{DS} = -50V, I_{D} = -14A$                      |
| I <sub>DSS</sub>                                              | Drain-to-Source Leakage Current      |      |       | -50  | μΑ    | $V_{DS} = -100V, V_{GS} = 0V$                      |
|                                                               |                                      |      |       | -250 |       | $V_{DS} = -80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                                              | Gate-to-Source Forward Leakage       |      |       | 100  | nA    | V <sub>GS</sub> = -20V                             |
|                                                               | Gate-to-Source Reverse Leakage       |      |       | -100 |       | V <sub>GS</sub> = 20V                              |
| $Q_g$                                                         | Total Gate Charge                    |      | 73    | 110  | nC    | I <sub>D</sub> = -14A                              |
| $Q_{gs}$                                                      | Gate-to-Source Charge                |      | 13    | 20   |       | $V_{DS} = -80V$                                    |
| $Q_{gd}$                                                      | Gate-to-Drain ("Miller") Charge      |      | 38    | 57   |       | V <sub>GS</sub> = -10V ④                           |
| t <sub>d(on)</sub>                                            | Turn-On Delay Time                   |      | 13    |      | ns    | $V_{DD} = -50V$                                    |
| t <sub>r</sub>                                                | Rise Time                            |      | 64    |      |       | I <sub>D</sub> = -14A                              |
| t <sub>d(off)</sub>                                           | Turn-Off Delay Time                  |      | 40    |      |       | $R_G = 5.1\Omega$                                  |
| t <sub>f</sub>                                                | Fall Time                            |      | 45    |      |       | V <sub>GS</sub> = -10V ④                           |
| L <sub>D</sub>                                                | Internal Drain Inductance            |      | 4.5   |      | nΗ    | Between lead,                                      |
|                                                               |                                      |      |       |      |       | 6mm (0.25in.)                                      |
| L <sub>S</sub>                                                | Internal Source Inductance           |      | 7.5   |      |       | from package                                       |
|                                                               |                                      |      |       |      |       | and center of die contact                          |
| C <sub>iss</sub>                                              | Input Capacitance                    |      | 1450  |      | pF    | V <sub>GS</sub> = 0V                               |
| C <sub>oss</sub>                                              | Output Capacitance                   |      | 430   |      |       | V <sub>DS</sub> = -25V                             |
| C <sub>rss</sub>                                              | Reverse Transfer Capacitance         |      | 230   |      |       | f = 1.0MHz, See Fig. 5                             |

#### **Source-Drain Ratings and Characteristics**

| <del>oou.o</del> | Source Brain Hatings and Characteristics |           |                                                                      |      |       |                                                      |  |  |  |
|------------------|------------------------------------------|-----------|----------------------------------------------------------------------|------|-------|------------------------------------------------------|--|--|--|
|                  | Parameter                                | Min.      | Тур.                                                                 | Max. | Units | Conditions                                           |  |  |  |
| Is               | Continuous Source Current                | _         |                                                                      | -23  |       | MOSFET symbol                                        |  |  |  |
|                  | (Body Diode)                             |           |                                                                      |      | Α     | showing the                                          |  |  |  |
| I <sub>SM</sub>  | Pulsed Source Current                    | _         |                                                                      | -92  |       | integral reverse                                     |  |  |  |
|                  | (Body Diode) ①                           |           |                                                                      |      |       | p-n junction diode.                                  |  |  |  |
| $V_{SD}$         | Diode Forward Voltage                    |           |                                                                      | -1.6 | ٧     | $T_J = 25^{\circ}C$ , $I_S = -14A$ , $V_{GS} = 0V$ ④ |  |  |  |
| t <sub>rr</sub>  | Reverse Recovery Time                    |           | 140                                                                  | 210  | ns    | $T_J = 25^{\circ}C$ , $I_F = -14A$ , $V_{DD} = -25V$ |  |  |  |
| $Q_{rr}$         | Reverse Recovery Charge                  |           | 890                                                                  | 1340 | пC    | di/dt = -100A/µs ④                                   |  |  |  |
| t <sub>on</sub>  | Forward Turn-On Time                     | Intrinsio | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |      |       |                                                      |  |  |  |

#### **Notes**

- ① Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J$ = 25°C, $L$ = 0.88mH \\ $R_G$ = 25$\Omega, $I_{AS}$ = -14A. (See Figure 12) \\ \hline \end{tabular}$
- 4 Pulse width  $\leq 300 \mu s$ ; duty cycle  $\leq 2\%$ .
- S When mounted on 1" square PCB (FR-4or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

# International TOR Rectifier

# IRF9540NS/LPbF



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance vs. Temperature

www.irf.com

3



**Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage



**Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage



**Fig 7.** Typical Source-Drain Diode Forward Voltage



Fig 8. Maximum Safe Operating Area

# International TOR Rectifier

# IRF9540NS/LPbF



**Fig 9.** Maximum Drain Current vs. Case Temperature



Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

# International **TOR** Rectifier



Fig 12a. Unclamped Inductive Test Circuit



Fig 12b. Unclamped Inductive Waveforms



Fig 14a. Basic Gate Charge Waveform



**Fig 13.** Maximum Avalanche Energy vs. Drain Current



Fig 14b. Gate Charge Test Circuit

#### Peak Diode Recovery dv/dt Test Circuit



<sup>\*</sup> Reverse Polarity of D.U.T for P-Channel



\*\*\* V<sub>GS</sub> = 5.0V for Logic Level and 3V Drive Devices

Fig 15. For P-Channel HEXFETS

# D<sup>2</sup>Pak Package Outline

Dimensions are shown in millimeters (inches)

International IOR Rectifier







- 1, DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. WOLD FLASH SHALL NOT EXCEED 0.127 [.005\*] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

| 5 | CON | TROLLING | DIMENSION: | INCH |
|---|-----|----------|------------|------|

| S Y M<br>B O L | MILLIM<br>MIN. |       | INC  | UFC. | 0 1    |
|----------------|----------------|-------|------|------|--------|
| L              |                |       |      | I    |        |
|                |                | MAX.  | MIN. | MAX. | NOT ES |
| A              | 4.06           | 4.83  | .160 | .190 |        |
| A1             | 0.00           | 0.254 | .000 | .010 |        |
| b              | 0.51           | 0.99  | .020 | .039 |        |
| ь1             | 0.51           | 0.89  | .020 | .035 | 4      |
| b2             | 1,14           | 1,78  | .045 | .070 |        |
| c              | 0.38           | 0.74  | .015 | .029 |        |
| c1             | 0.38           | 0.58  | .015 | .023 | 4      |
| c2             | 1,14           | 1,65  | .045 | .065 |        |
| D              | 8.51           | 9.65  | .335 | .380 | 3      |
| D1             | 6.86           |       | .270 |      |        |
| E              | 9.65           | 10.67 | .380 | .420 | 3      |
| E1             | 6.22           |       | ,245 |      |        |
| е [            | 2.54           | BSC   | .100 | BSC  |        |
| н              | 14,61          | 15.88 | .575 | .625 |        |
| L              | 1,78           | 2.79  | .070 | .110 |        |
| L1             |                | 1,65  |      | .065 |        |
| L2             | 1.27           | 1,78  | .050 | .070 |        |
| L3             | 0.25           | BSC   | .010 | BSC  |        |
| L4             | 4.78           | 5.28  | .188 | .208 |        |
| m              | 17.78          |       | .700 |      |        |
| m1             | 8.89           |       | .350 |      |        |
| n              | 11,43          |       | .450 |      |        |
| 0              | 2.08           |       | .082 |      |        |
| P              | 3.81           |       | .150 |      |        |
| R              | 0.51           | 0.71  | .020 | .028 |        |
| θ              | 90*            | 93*   | 90,  | 93*  |        |

#### LEAD ASSIGNMENTS

#### HEXFET

1,- GATE 2, 4,- DRAIN 3.- SOURCE

#### IGBTs, CoPACK

1.- GATE 2. 4.- COLLECTOR 3.- EMITTER

#### DIODES

1.- ANODE • 2, 4.- CATHODE 3.- ANODE

. PART DEPENDENT.

#### D<sup>2</sup>Pak Part Marking Information

EXAMPLE: THIS IS AN IRF530S WITH

LOT CODE 8024

ASSEMBLED ON WW 02, 2000

FOOT PRINT SCALE 2;1

IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead - Free"





# International TOR Rectifier

### IRF9540NS/LPbF

#### TO-262 Package Outline

Dimensions are shown in millimeters (inches)



#### TO-262 Part Marking Information



International IOR Rectifier

#### D<sup>2</sup>Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)







COMFORMS TO EIA-418.

- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
- (3) (4) INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site,

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, 052

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/05

Note: For the most current drawings please refer to the IR website at: <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>