

6.12: Chemical Properties

The most important chemical characteristic of ionic compounds is that *each ion has its own properties. Such properties are different from those of the atom from which the ion was derived.* In other words, an Na⁺ ion is quite different from an Na atom, and a Cl⁻ ion is unlike an isolated Cl atom or either of the Cl atoms in a Cl₂ molecule. You eat a considerable quantity of Na⁺ and Cl⁻ ions in table salt every day, but Na atoms or Cl₂ molecules would be quite detrimental to your health. The unique chemical properties of each type of ion are quite evident in aqueous solutions. Most of the reactions of BaCl₂(aq), for example, can be classified as reactions of the Ba²⁺ (aq) ion or the Cl⁻(aq) ion. If sulfuric acid, H₂SO₄, is added to a solution of BaCl₂, the solution turns milky and very fine crystals of BaSO₄(s) eventually settle out. The reaction can be written as:

$$\mathrm{Ba^{2+}}(aq) + \mathrm{H_2SO_4}(aq)
ightarrow \mathrm{BaSO_4}(s) + 2\mathrm{H^+}(aq)$$

Below is a video of this reaction.

The solution of $BaCl_2$ is clear and colorless, but when H_2SO_4 is added through the the thin glass tube, the contents become white and opaque, as insoluble $BaSO_4(s)$ come out of solution.

This reaction is characteristic of the *barium ion*. It will also occur if H_2SO_4 is added to solutions such as $BaI_2(aq)$ or $BaBr_2(aq)$ which contain barium ions but no chloride ions. By contrast, if a solution of silver nitrate, $AgNO_3$, [which contains silver ions, $Ag^+(aq)$] is added to a $BaCl_2$ solution, a reaction characteristic of the *chloride ion* occurs. A white curdy precipitate of AgCl(s) forms according to the equation:

$$\operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq) o \operatorname{AgCl}(s)$$

Other ionic solutions containing chloride ions, such as LiCl(aq), NaCl(aq), or $MgCl_2(aq)$, give an identical reaction. Below is a video of the reaction of a sodium chloride solution with a silver nitrate solution.

Both the NaCl(aq) solution and the $AgNO_3(aq)$ solution begin clear and colorless. When the NaCl(aq) solution is added to the $AgNO_3(aq)$ solution, a cloudy white precipitate of AgCl(s) is formed. The same result would have occurred had $BaCl_2$ been used, as the reaction is only between the Ag^+ and Cl^- ions, as seen:

$$\operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq) \to \operatorname{AgCl}(s)$$

Many binary ionic solids not only dissolve in water, they also react with it. When the compound contains an anion such as N^{3-} , O^{2-} , or S^{2-} , which has more than one negative charge, the reaction with water produces hydroxide ions, OH^{-} :

$${
m O}^{2-} + {
m H}_2{
m O}
ightarrow {
m OH}^-(aq) + {
m OH}^-(aq)$$
 ${
m S}^{2-} + {
m H}_2{
m O}
ightarrow {
m HS}^-(aq) + {
m OH}^-(aq)$ ${
m N}^{3-} + 3{
m H}_2{
m O}
ightarrow {
m NH}_3(aq) + 3{
m OH}^-(aq)$

Thus, when sodium oxide, Na₂O, is added to water, the resulting solution contains sodium ions and hydroxide ions but no oxide ions:

$$Na_2O + H_2O \rightarrow 2Na^+(aq) + 2OH^-(aq)$$

The hydride ion also reacts with water to form hydroxide ions. When lithium hydride, LiH, is dissolved in water, for example, the following reaction occurs:

$$\mathrm{LiH}(s) + \mathrm{H_2O}
ightarrow \mathrm{Li}^+(aq) + \mathrm{OH}^-(aq) + \mathrm{H_2}(q)$$

Note that hydrogen gas is evolved in this reaction. Lithium hydride crystals provide a very compact, if somewhat expensive, method for storing hydrogen.

Among the *halide ions* (F⁻, Cl⁻, Br⁻, I⁻) only the fluoride ion shows any tendency to react with water, and that only to a limited extent. When sodium fluoride is dissolved in water, for example, faint traces of hydroxide ion can be detected in the solution owing to the reaction

$$F^- + H_2O \rightarrow HF + OH^-$$

With sodium chloride, by contrast, no such reaction occurs.

This page titled 6.12: Chemical Properties is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.