McGill University Department of Mathematics and Statistics MATH 243 Analysis 2, Winter 2018 Assignment 2

You should carefully work out all problems. However, you only have to hand in solutions to problems 3, 4 and 5(b).

This assignment is due Wednesday, January 24, at 10:30am in class. Late assignments will not be accepted!

1. Consider the function $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) := \begin{cases} x + 2x^2 \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- (a) Show that f is continuously differentiable on $\mathbb{R} \setminus \{0\}$ and differentiable at 0 with f'(0) = 1.
- (b) Prove that, nonetheless, f isn't increasing on any neighborhood of 0 i.e. show that f isn't increasing on $]-\delta,\delta[$ for any $\delta>0.$

<u>Hint</u>: Prove that for any $\delta > 0$ there exists an $x \in]-\delta, \delta[, x \neq 0$, such that f'(x) < 0. Then, using the fact that f' is continuous at x, prove that there exists an $\eta > 0$ such that f is decreasing on $|x - \eta, x + \eta| \subseteq]-\delta, \delta[$.

2. Consider the function $f: \mathbb{R} \to \mathbb{R}$, defined by

$$f(x) := \begin{cases} x^4 \sin(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- (a) Show that f is continuously differentiable.
- (b) Let $g(x) := 2x^4 + f(x)$. Show that g has an absolute minimum at 0 but that, nonetheless, there does not exist any $\delta > 0$ such that g is decreasing on $]-\delta,0[$ and increasing on $]0,\delta[$.
- 3. Let I be an interval and let $f: I \to \mathbb{R}$ be differentiable on I. Prove that f satisfies a Lipschitz condition on I if and only if f' is bounded on I (recall that a function $f: I \to \mathbb{R}$ is said to satisfy a Lipschitz condition on I if there exists a K > 0 such that $|f(x) f(u)| \le K|x u|$ for all $x, u \in I$).
- 4. Let $c \in [a, b]$ and let

$$f:[a,b] \to \mathbb{R}, \ f(x) := \begin{cases} 1 & \text{if } x = c \\ 0 & \text{if } x \neq c \end{cases}$$

Prove that f is Riemann integrable on [a, b] and that $\int_a^b f = 0$.

—Please turn over!—

5. (a) Let f and g be Riemann integrable on [a,b] such that $f(x) \leq g(x)$ for all $x \in [a,b]$. Prove that $\int_a^b f \leq \int_a^b g$.

<u>Hint</u>: Prove first that $S(f; \dot{P}) \leq S(g; \dot{P})$ for all tagged partitions \dot{P} of [a, b].

- (b) Let f be Riemann integrable on [a,b] and let $M \in \mathbb{R}$ be a constant such that $|f(x)| \leq M$ for all $x \in [a,b]$. Prove that $\left| \int_a^b f \right| \leq M(b-a)$.
- 6. Use induction to prove that if f_1, \ldots, f_n are Riemann integrable on [a, b] and $k_1, \ldots, k_n \in \mathbb{R}$, then the linear combination $f := k_1 f_1 + \ldots k_n f_n$ is Riemann integrable on [a, b] and

$$\int_a^b f = k_1 \int_a^b f_1 + \dots + k_n \int_a^b f_n$$