Eigenvalues and Eigenvectors

Miliyon T.

October 7, 2013

1 Introduction

Definition 1.1. Assume that $L: \mathbb{R}^k \to \mathbb{R}^k$ is a linear operator. If the vector $v \in \mathbb{R}^k$ and the scalar $\lambda \in \mathbb{R}$ satisfy $Lv = \lambda v$, then v is called an eigenvector of L. The scalar λ is called an eigenvalue of L.

Clearly, zero vector is always an eigen-vector. Also, if u is an eigenvector, then κu is also an eigenvector for every $\kappa \in \mathbb{R}$. Indeed, assuming that λ is the eigenvalue corresponding to u we have $A(\kappa u) = \kappa A(u) = \kappa \lambda u = \lambda \kappa u$.

Example 1.2. Find the eigenvalues and the eigenvectors of the operator with the matrix

$$A = \begin{bmatrix} 5 & 4 \\ -4 & -5 \end{bmatrix}.$$

Hide solution

We are looking for a vector $u = \begin{bmatrix} x \\ y \end{bmatrix}$ and a scalar $\lambda \in \mathbb{R}$ such that $Au = \lambda u$. The last equation is equivalent to the system:

$$5x + 4y = \lambda x$$
$$-4x - 5y = \lambda y.$$

The previous system is equivalent to:

$$(5 - \lambda)x + 4y = 0$$
$$-4x + (-5 - \lambda)y = 0.$$

If we multiply the first equation by $5 + \lambda$, the second equation by 4 and add the obtained two equations we deduce: $(25 - \lambda^2 - 16)x = 0$. If $9 - \lambda^2 \neq 0$, then we must have x = 0. This would imply that y = 0 which would lead to a trivial eigenvector. Assume that $9 - \lambda^2 = 0$. Then we have $\lambda \in \{-3, 3\}$, and these are the two eigenvalues.

The eigenvalue $\lambda_1=3$ corresponds to the eigenvector whose coordinates (x,y) satisfy the system:

$$2x + 4y = 0$$
$$-4x - 8y = 0.$$

A non-trivial solution (-2,1) corresponds to the eigenvector $u_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Similarly, the eigenvalue $\lambda_2 = -3$ gives us the system:

$$8x + 4y = 0$$
$$-4x - 2y = 0.$$

This gives us another eigenvector $u_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

In the previous example, we found eigenvalues as the zeroes of the polynomial $\varphi_A(\lambda) = \lambda^2 - 9$. This is called the characteristic polynomial of the matrix A. More precisely,

Definition 1.3. Let A be an $n \times n$ matrix. The polynomial $\varphi_A(\lambda) = \det (A - \lambda I)$ is called the characteristic polynomial of the matrix A.

The proof of the following theorem is obvious once we have seen the solution of Example 1.

Theorem 1.4. Assume that A is an $n \times n$ matrix. A real number η is an eigenvalue of A if and only if $\varphi_A(\eta) = 0$.

Hide proof The real number η is an eigenvalue of A if and only if the equation $Av = \eta v$ has at least one non-trivial solution $v \in \mathbb{R}^n$. The last vector equation is equivalent to $(A - \eta I)v = 0$, which can be understood as a system of n equation with n variables. This system has a non-trivial solution if and only if the matrix $A - \eta I$ is non-invertible.

Polynomials with matrices

We will use the eigenvectors and eigenvalues to find closed formulas for n-th powers of matrices. We will illustrate the method by considering the following example.

Example 1.5. Let $A = \begin{bmatrix} 5 & 4 \\ -4 & -5 \end{bmatrix}$. Let us denote by a_n , b_n , c_n , and d_n the numbers such that $A^n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$. Find the formulas for a_n , b_n , c_n , and d_n .

Hide solution

The operator A^n is uniquely determined by the vectors A^nv and A^nw for any two vectors $v, w \in \mathbb{R}^2$ that form a basis for \mathbb{R}^2 .

Assume that there are two eigenvectors of A that form a basis for \mathbb{R}^2 . Assume that $v_1, v_2 \in \mathbb{R}^2$ and $\lambda_1, \lambda_2 \in \mathbb{R}$ satisfy $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$. Then we have

$$A^{n}v_{1} = A^{n-1}(Av_{1}) = A^{n-1}(\lambda_{1}v_{1}) = \lambda_{1}A^{n-1}v_{1} = \lambda_{1}A^{n-2}(Av_{1}) = \lambda_{1}^{2}A^{n-2}v_{1} = \dots = \lambda_{1}^{n}v_{1},$$
 and similarly $A^{n}v_{2} = \lambda_{2}^{n}v_{2}$.

From Example 1 we know that $u_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and $u_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ are the eigenvectors of A and that their corresponding eigenvalues are 3 and -3. Therefore $A^n \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \cdot 3^n \\ 3^n \end{bmatrix}$ and $A^n \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \cdot (-3)^n \\ 2 \cdot (-3)^n \end{bmatrix}$.

It remains to find the matrix of A^n . In order to do that we need to find $A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $A^n \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Calculating $A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. We need to find scalars α_1 and α_2 such that $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \alpha_1 u_1 + \alpha_2 u_2$. This gives us the system of equations:

$$-2\alpha_1 - \alpha_2 = 1$$
$$\alpha_1 + 2\alpha_2 = 0.$$

Multiplying the second equation by 2 and adding it to the first implies $\alpha_2 = \frac{1}{3}$. Substituting this value into the second equation yields $\alpha_1 = -\frac{2}{3}$. Thus

$$A^{n} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -\frac{2}{3} A^{n} u_{1} + \frac{1}{3} A^{n} u_{2} = \begin{bmatrix} \frac{2}{3} \cdot 2 \cdot 3^{n} + \frac{1}{3} \cdot (-(-3)^{n}) \\ -\frac{2}{3} \cdot 3^{n} + \frac{1}{3} \cdot 2 \cdot (-3)^{n} \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^{n-1} + (-3)^{n-1} \\ -2 \cdot 3^{n-1} - 2 \cdot (-3)^{n-1} \end{bmatrix}.$$

Calculating $A^n \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. We need to find scalars β_1 and β_2 for which $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \beta_1 u_1 + \beta_2 u_2$. The last equation is equivalent to the following system:

$$-2\beta_1 - \beta_2 = 0$$
$$\beta_1 + 2\beta_2 = 1.$$

If we multiply the second equation by 2 and add it to the first we obtain $\beta_2 = \frac{2}{3}$. Substituting this value in the first equation yields $\beta_1 = -\frac{1}{3}$. Therefore

$$A^{n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\frac{1}{3}A^{n}u_{1} + \frac{2}{3}A^{n}u_{2} = \begin{bmatrix} \frac{1}{3} \cdot 2 \cdot 3^{n} + \frac{2}{3} \cdot (-(-3)^{n}) \\ -\frac{1}{3} \cdot 3^{n} + \frac{4}{3} \cdot (-3)^{n} \end{bmatrix} = \begin{bmatrix} 2 \cdot 3^{n-1} + 2 \cdot (-3)^{n-1} \\ -3^{n-1} - 4 \cdot (-3)^{n-1} \end{bmatrix}.$$

Thus

$$A^{n} = \begin{bmatrix} 4 \cdot 3^{n-1} + (-3)^{n-1} & 2 \cdot 3^{n-1} + 2 \cdot (-3)^{n-1} \\ -2 \cdot 3^{n-1} - 2 \cdot (-3)^{n-1} & -3^{n-1} - 4 \cdot (-3)^{n-1} \end{bmatrix},$$

or, equivalently:

$$a_n = 4 \cdot 3^{n-1} + (-3)^{n-1}$$

$$b_n = 2 \cdot 3^{n-1} + 2 \cdot (-3)^{n-1}$$

$$c_n = -2 \cdot 3^{n-1} - 2 \cdot (-3)^{n-1}$$

$$d_n = -3^{n-1} - 4 \cdot (-3)^{n-1}$$

Theorem 1.6. Assume that A is an $n \times n$ matrix that has n linearly independent eigenvectors v_1 , ..., v_n . Assume that $\lambda_1, \ldots, \lambda_n$ are eigenvalues corresponding to v_1, \ldots, v_n . Then there exists an invertible $n \times n$ matrix P such that

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ & & & \vdots & \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$

Proof. Assume that
$$v_i = \begin{bmatrix} v_{1i} \\ v_{2i} \\ \vdots \\ v_{ni} \end{bmatrix}$$
, and let $P = \begin{bmatrix} v_{11} & v_{12} & v_{13} & \cdots & v_{1n} \\ v_{21} & v_{22} & v_{23} & \cdots & v_{2n} \\ & & & \vdots & \\ v_{n1} & v_{n2} & v_{n3} & \cdots & v_{nn} \end{bmatrix}$.

Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n . In other words, the vector e_i has 1 at the *i*-th position and 0 at every other position. Then we have $Pe_i = v_i$ for each $i \in \{1, 2, \ldots, n\}$. Thus

 $APe_i = Av_i = \lambda_i v_i$ and $P^{-1}APe_i = P^{-1}(\lambda_i v_i) = \lambda_i P^{-1}v_i = \lambda_i e_i$. Thus

$$P^{-1}AP(e_i) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \lambda_i \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

The *i*-th row of the matrix of the operator $P^{-1}AP$ must be equal to $P^{-1}AP(e_i)$, hence the matrix

of the operator $P^{-1}AP$ must be $\begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ & & & \vdots & \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}.$

Theorem 1.7 (Cayley-Hamilton). Assume that A is an $n \times n$ matrix and φ_A its characteristic polynomial. Then $\varphi_A(A) = 0$.

Proof. We will prove this theorem under the assumption that A has n linearly independent eigenvectors. The proof of the general case follows the same idea but requires the theory of Jordan canonical forms. In Example 5 at the end of this article we will see some techniques involving Jordan canonical forms.

According to Theorem 2 there is a matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix whose diagonal entries are the eigenvalues of A. Then we have $A = PDP^{-1}$ and $A^k = PD^kP^{-1}$ for each $k \in \mathbb{N}$. Thus $\varphi_A(A) = P\varphi_A(D)P^{-1}$. However, $\varphi_A(D) = 0$, since the entries of D are the eigenvalues of A, and each of them is a zero of the characteristic polynomial according to Theorem 1. This completes the proof.

2 Recursive systems of equations

Our next goal is to use the techniques of eigenvalues and eigenvectors to solve the recursive systems of equations.

Example 2.1. Assume that $(x_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty}$ are two sequence of real numbers defined in the following way: $x_0 = 3$, $y_0 = 2$, and

$$x_{n+1} = 5x_n + 4y_n$$

$$y_{n+1} = -4x_n - 5y_n,$$

for $n \geq 0$. Determine the formulas for x_n and y_n .

Hide solution Let $A = \begin{bmatrix} 5 & 4 \\ -4 & -5 \end{bmatrix}$. Then we have for $n \ge 0$: $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = A \begin{bmatrix} x_n \\ y_n \end{bmatrix}$. Therefore: $\begin{bmatrix} x_n \\ y_n \end{bmatrix} = A \begin{bmatrix} x_{n-1} \\ y_{n-1} \end{bmatrix} = A^2 \begin{bmatrix} x_{n-2} \\ y_{n-2} \end{bmatrix} = \dots = A^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}.$

In Example 2 we showed that $A^n = \begin{bmatrix} 4 \cdot 3^{n-1} + (-3)^{n-1} & 2 \cdot 3^{n-1} + 2 \cdot (-3)^{n-1} \\ -2 \cdot 3^{n-1} - 2 \cdot (-3)^{n-1} & -3^{n-1} - 4 \cdot (-3)^{n-1} \end{bmatrix}$, hence:

$$\begin{bmatrix} x_n \\ y_n \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^{n-1} + (-3)^{n-1} & 2 \cdot 3^{n-1} + 2 \cdot (-3)^{n-1} \\ -2 \cdot 3^{n-1} - 2 \cdot (-3)^{n-1} & -3^{n-1} - 4 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n + 2 \cdot 3^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} \\ -2 \cdot 3^n + 2 \cdot (-3)^n + 2 \cdot 3^{n-1} \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 3$$

Thus:

$$x_n = 4 \cdot 3^n - (-3)^n + 4 \cdot 3^{n-1} + 4 \cdot (-3)^{n-1} = 16 \cdot 3^{n-1} + 7 \cdot (-3)^{n-1}$$

$$y_n = -2 \cdot 3^n + 2 \cdot (-3)^n - 2 \cdot 3^{n-1} - 8 \cdot (-3)^{n-1} = -8 \cdot 3^{n-1} - 14 \cdot (-3)^{n-1}$$

Using the technique described above we can solve the recursive equations. The following example provides the formula for Fibonacci numbers.

Example 2.2 (Fibonacci numbers). Assume that $(F_n)_{n=0}^{\infty}$ is the sequence defined as $F_0 = 0$, $F_1 = 1$ and for $n \ge 0$ the following equation holds:

$$F_{n+2} = F_{n+1} + F_n$$
.

Prove that

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

Hide solution

Let us denote $G_n = F_{n+1}$. Then we have $G_0 = 1$, $F_0 = 0$ and for $n \ge 0$ the following holds:

$$F_{n+1} = G_n$$

$$G_{n+1} = F_n + G_n,$$

or, equivalently $\begin{bmatrix} F_{n+1} \\ G_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} F_n \\ G_n \end{bmatrix}$. Let us denote $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Similarly to the argument presented in Example 3 we get $\begin{bmatrix} F_n \\ G_n \end{bmatrix} = A^n \begin{bmatrix} F_0 \\ G_0 \end{bmatrix}$. Therefore, our goal is to find A^n . In order to do so, we will first find eigenvalues and eigenvectors

Therefore, our goal is to find A^n . In order to do so, we will first find eigenvalues and eigenvectors of the matrix A. The eigenvalues are the solutions of the equation $\varphi_A(x) = 0$, where $\varphi_A(x) = \det(A - xI) = -x(1-x) - 1 = x^2 - x - 1$. Since $\varphi_A(x) = \left(x - \frac{1-\sqrt{5}}{2}\right) \cdot \left(x - \frac{1+\sqrt{5}}{2}\right)$, we get that the eigenvalues are $\lambda_1 = \frac{1-\sqrt{5}}{2}$ and $\lambda_2 = \frac{1+\sqrt{5}}{2}$.

We will now find an eigenvector corresponding to the eigenvalue λ_1 . Let us denote by $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ the required eigenvector. Then we have $-\lambda_1 u_1 + u_2 = 0$ and $u_1 + (1 - \lambda_1)u_2 = 0$ and we may take $u = \begin{bmatrix} 1 \\ \lambda_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1-\sqrt{5}}{2} \end{bmatrix}$. Similarly, we find $v = \begin{bmatrix} 1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$. We have $A^n u = \lambda_1^n u$ and $A^n v = \lambda_2^n v$. In order to determine the matrix A^n it remains to find the vectors $A^n e_1$ and $A^n e_2$, where $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are the elements of the standard basis of \mathbb{R}^2 . We will first express e_1 in terms of u and v. In order to do so we need to find scalars α_1 and α_2 such that $e_1 = \alpha_1 u + \alpha_2 v$. This gives us the system:

$$1 = \alpha_1 + \alpha_2
0 = \alpha_1 \cdot \frac{1 - \sqrt{5}}{2} + \alpha_2 \cdot \frac{1 + \sqrt{5}}{2}.$$

Solving the system gives us $(\alpha_1, \alpha_2) = \left(\frac{1+\sqrt{5}}{2\sqrt{5}}, \frac{\sqrt{5}-1}{2\sqrt{5}}\right)$. We now obtain:

$$A^{n}e_{1} = A^{n} \left(\alpha_{1}u + \alpha_{2}v\right) = \frac{1+\sqrt{5}}{2\sqrt{5}}\lambda_{1}^{n}u + \frac{\sqrt{5}-1}{2\sqrt{5}}\lambda_{2}^{n}v$$
$$= \frac{1}{\sqrt{5}} \left[\frac{\frac{(1+\sqrt{5})\lambda_{1}^{n}+(\sqrt{5}-1)\lambda_{2}^{n}}{2}}{\frac{(1+\sqrt{5})\lambda_{1}^{n+1}+(\sqrt{5}-1)\lambda_{2}^{n+1}}{2}} \right].$$

In order to find $A^n e_2$ we first need to find the scalars β_1 and β_2 such that $e_2 = \beta_1 u + \beta_2 v$. The last equation becomes:

$$0 = \beta_1 + \beta_2$$

$$1 = \beta_1 \cdot \frac{1 - \sqrt{5}}{2} + \beta_2 \cdot \frac{1 + \sqrt{5}}{2}.$$

After solving the system we obtain $(\beta_1, \beta_2) = \left(-\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$. Then we have

$$A^{n}e_{2} = A^{n} (\beta_{1}u + \beta_{2}v) = -\frac{1}{\sqrt{5}} \lambda_{1}^{n}u + \frac{1}{\sqrt{5}} \lambda_{2}^{n}v$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{2}^{n} - \lambda_{1}^{n} \\ \lambda_{2}^{n+2} - \lambda_{1}^{n+1} \end{bmatrix}.$$

Therefore

$$A^{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} \frac{(1+\sqrt{5})\lambda_{1}^{n}+(\sqrt{5}-1)\lambda_{2}^{n}}{2} & \lambda_{2}^{n}-\lambda_{1}^{n} \\ \frac{(1+\sqrt{5})\lambda_{1}^{n+1}+(\sqrt{5}-1)\lambda_{2}^{n+1}}{2} & \lambda_{2}^{n+2}-\lambda_{1}^{n+1} \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} F_{n} \\ G_{n} \end{bmatrix} = A^{n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{2}^{n}-\lambda_{1}^{n} \\ \lambda_{2}^{n+1}-\lambda_{1}^{n+1} \end{bmatrix}.$$

Thus

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

In the next example we treat the recursive system of equations whose matrix does not have a basis of eigenvectors. This is an introductory example to Jordan forms of matrices.

Example 2.3. Consider the matrix $A = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$ and the following system of equations:

$$x_{n+1} = 4x_n + y_n$$

$$y_{n+1} = -x_n + 2y_n,$$

with the initial conditions $x_0 = 2$, $y_0 = 5$.

- (a) Prove that A has only one eigenvalue λ and determine λ .
- (b) Find an eigenvector u corresponding to λ .
- (c) Does there exist an eigenvector w of A such that u and w are not scalar multiples of each other?
- (d) Find a vector v such that $Av = \lambda v + u$. Here u and λ are the eigenvector and the eigenvalue from the previous parts of the problem.
 - (e) Determine the matrix A^n .
 - (f) Find the closed formulas for x_n and y_n .

Hide solution

- (a) The characteristic polynomial of A is $\varphi_A(x) = (4-x)(2-x) + 1 = x^2 6x + 9 = (x-3)^2$, hence $\lambda = 3$ is the only eigenvalue of A.
- (b) We need to find $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ such that Au = 3u. This gives us the following system of equations:

$$u_1 + u_2 = 0 -u_1 - u_2 = 0,$$

and each eigenvector of A must satisfy $u = \begin{bmatrix} t \\ -t \end{bmatrix}$ for $t \in \mathbb{R}$. We can take $u = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- (c) Such w does not exist because each eigenvector w of A is of the form $w = t \begin{bmatrix} 1 \\ -1 \end{bmatrix} = tu$.
- (d) Let us denote $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. We will find v_1 and v_2 . The numbers v_1 and v_2 must satisfy the following system of equations:

$$v_1 + v_2 = 1
-v_1 - v_u = -1.$$

We can take $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(e) Since the vectors u and v are linearly independent it suffices to find $A^n u$ and $A^n v$. Clearly, $A^n u = \lambda^n u = 3^n u$, and

$$\begin{array}{lll} A^n v & = & A^{n-1}(Av) = A^{n-1} \left(\lambda v + u \right) = \lambda A^{n-1} v + A^{n-1} u = \lambda A^{n-1} v + \lambda^{n-1} u \\ & = & \lambda A^{n-2} \left(Av \right) + \lambda^{n-1} u = \lambda A^{n-2} \left(\lambda v + u \right) + \lambda^{n-1} u = \lambda^2 A^{n-2} v + 2\lambda^{n-1} u \\ & \vdots \\ & = & \lambda^n v + n \lambda^{n-1} u = \left[\begin{array}{c} 3^n + n 3^{n-1} \\ -n 3^{n-1} \end{array} \right]. \end{array}$$

We now need to find $A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $A^n \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. We have already found that $A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3^n + n3^{n-1} \\ -n3^{n-1} \end{bmatrix}$. In order to find the other vector we first express $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in terms of u and v: $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = v - u$, hence:

$$A^{n} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = A^{n}v - A^{n}u = \begin{bmatrix} 3^{n} + n3^{n-1} \\ -n3^{n-1} \end{bmatrix} - \begin{bmatrix} 3^{n} \\ -3^{n} \end{bmatrix} = \begin{bmatrix} n3^{n-1} \\ 3^{n} - n3^{n-1} \end{bmatrix}.$$

Thus:

$$A^{n} = \begin{bmatrix} 3^{n} + n3^{n-1} & n3^{n-1} \\ -n3^{n-1} & 3^{n} - n3^{n-1} \end{bmatrix}.$$

(f) We solve the recursive system of equations by first expressing it in the form $\begin{bmatrix} x_{n+1} \\ y_{n+1} \end{bmatrix} = A \begin{bmatrix} x_n \\ y_n \end{bmatrix}$. In the same way as in Example 3 we conclude that $\begin{bmatrix} x_n \\ y_n \end{bmatrix} = A^n \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$, thus:

$$\left[\begin{array}{c} x_n \\ y_n \end{array} \right] = \left[\begin{array}{c} 3^n + n3^{n-1} & n3^{n-1} \\ -n3^{n-1} & 3^n - n3^{n-1} \end{array} \right] \cdot \left[\begin{array}{c} 2 \\ 5 \end{array} \right] = \left[\begin{array}{c} 2 \cdot 3^n + 7n \cdot 3^{n-1} \\ 5 \cdot 3^n - 7n \cdot 3^{n-1} \end{array} \right],$$

which is equivalent to:

$$x_n = 2 \cdot 3^n + 7n \cdot 3^{n-1}$$

 $y_n = 5 \cdot 3^n - 7n \cdot 3^{n-1}$.

Remark. The vectors u and v from previous example form a basis called Jordan basis for the matrix A.