Soft Morphological Processing of Tactile Stimuli for Autonomous Category Formation

Luca Scimeca, Perla Maiolino and Fumiya Iida

Motivation & Hypothesis

- Morphology affects tactile sensor response, pre-processing stimuli before inference can be done. It is fundamental we understand how the influence can change the robot perception of its surroundings.
- Through morphology, wish to influence the sensor response to retrieve tactile information which simplifies a predetermined, tactile, object discrimination task.

Discrimination Tasks

- 4 3D-printed objects with two varying properties.
- 7 possible discrimination tasks, from the combinations of different objects.
- Task 5 and 6 based on edge detection and elongation respectively.

Task Table	Cluster 1	Cluster 2
Task 1	0	
Task 2		
Task 3	0	
Task 4		
Task 5	0	
Task 6		0 0
Task 7	0 🗆	

Dimensionality Reduction & Clustering

Raw Tactile Images

10mm 6mm 3mm Objects

- Raw tactile images retrieved when probing each object in turn vertically.
- Hotter areas correspond to tactile taxels detecting a higher pressure.

Dimensionality Reduction & Clustering

- From the Raw tactile images, the tactile matrix X is formed.
- PCA re-encodes objects in 2 dimensions.
- K-Means Clustering is used to divide the objects into 2 groups.

Clusters in PCA subspace

 Projected, 2-dimensional encoding of each probed object and the corresponding cluster guess.

Results

Task Optimization

 Depending on the used soft filter (morphology), the Autonomous Category Formation process forms qualitatively different clusters (optimized for different tasks).

Autonomous Category Formation Variations

- The projected tactile change position according to the soft filter.
- 3 mm filter draws close in space objects with sharp edges (edge detection).
- 6mm soft filter induces clusters based on object elongation.

Spatial Resolution Influence

 Performing the experiments over different number of taxels shows the need of a high spatial resolution tactile sensor.

References

- Hughes, J., Iida, F. (2018). Multi-functional soft strain sensors for wearable physiological monitoring, IEEE RAS International Conference on Soft Robotics (RoboSoft2018)
- lida, F., & Nurzaman, S. G. (2016). Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective. Interface focus, 6(4).
- Shimojo, M. (1997). Mechanical filtering effect of elastic cover for tactile sensor. IEEE Transactions on Robotics and Automation, 13(1), 128-132.

http://divf.eng.cam.ac.uk/birl