Jordan-Wigner Transform: Simulation of Fermionic Creation and Annihilation Operators in a Quantum Computer

by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx

Introduction

The Jordan-Wigner transform allows us to take a system of interacting Fermions (second quantization, occupation notation), and map it into an equivalent model of interacting spins, which can then, in principle, be simulated using standard techniques in a quantum computer. This enables to use quantum computers to simulate systems of interacting Fermions, as explained by Michael A. Nielsen, "The Fermionic canonical relations and the Jordan-Wigner transform", 2005, published in his personal blog. Here is a copy of that document:

http://homepage.cem.itesm.mx/lgomez/quantum/NielsenJordanWigner.pdf

NOTE:

This **could** be an efficient implementation of fermionic operators in a **quantum computer**. However, in this "normal" computer, these calculations are **very** slow. If you need faster calculations with these operators, and you do not care about their possible implementation in a quantum computer, these documents might be useful for you:

Algebra of operators and commutators. Mathematica file: http://homepage.cem.itesm.mx/lgomez/quantum/v7algebra.nb

Algebra of operators and commutators. PDF file: http://homepage.cem.itesm.mx/lgomez/quantum/v7algebra.pdf

Load the Package

First load the Quantum' Computing' package. Write:

Needs["Quantum'Computing"];

then press at the same time the keys SHETI-ENTER to evaluate. Mathematica will load the package.

Needs["Quantum`Computing`"]

```
Quantum`Computing` Version 2.2.0. (June 2010)

A Mathematica package for Quantum Computing
  in Dirac bra-ket notation and plotting of quantum circuits
by José Luis Gómez-Muñoz

Execute SetComputingAliases[] in order to use
  the keyboard to enter quantum objects in Dirac's notation

SetComputingAliases[] must be executed again in each new notebook that is created
```

In order to use the keyboard to enter quantum objects write:

SetComputingAliases[];

then press at the same time the keys SHIT-ENTER to evaluate. The semicolon prevents Mathematica from printing the help message. Remember that SetComputingAliases[] must be evaluated again in each new notebook:

```
SetComputingAliases[];
```

Annihilation Operator in terms of Pauli Operators

This is the definition of a fermionic annihilation operator in terms of Pauli operators and the operator $| 0 \rangle \langle 1 |$. Pauli operators $\sigma_{\tau=\hat{k}}$ produce the correct sign when acting on a ket (or, equivalent, produce the correct commutation relations) and the operator $| 0 \rangle \cdot \langle 1 |$ annihilates the corresponding fermion (qubit).

$$\begin{array}{l} \textbf{nfermions} = 3; \\ \textbf{a[j_{-}]} := \begin{pmatrix} \overset{\text{j-1}}{\bigotimes} \sigma_{\mathcal{Z}, \hat{k}} \end{pmatrix} \otimes \begin{pmatrix} - & \mid 0_{\hat{j}} \end{pmatrix} \cdot \begin{pmatrix} 1_{\hat{j}} & \mid \end{pmatrix} \otimes \begin{pmatrix} \text{nfermions} \\ & \bigotimes \\ & m = j+1 \end{pmatrix} \\ \end{array}$$

Each qubit represents a fermionic state. A qubit value of "zero" means that the state is not occupied; "one" means the fermionic state is occupied. Here the the annihilation operator a[2] annihilates the second fermionic state, $1_{\hat{n}} \rightarrow 0_{\hat{n}}$.

QuantumEvaluate
$$\left[\mathbf{a}[2] \cdot \mid \mathbf{1}_{\hat{1}}, \mathbf{1}_{\hat{2}}, \mathbf{0}_{\hat{3}}\right]$$
 $\left|\mathbf{1}_{\hat{1}}, \mathbf{0}_{\hat{2}}, \mathbf{0}_{\hat{3}}\right\rangle$

If the annihilation operator is applied to a ket with the corresponding fermionic state equal to "zero" (nonoccupied), then the ket is "destroyed":

```
QuantumEvaluate \left[a[2] \cdot \left| 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}}\right\rangle\right]
```

Here we can see the action of the annihilation operator a[2] in any possible basis ket for a three fermionic-states system. Notice the negative signs, which depend on the occupation of the previous fermionic states:

QuantumTableForm[a[2]]

```
Output
                   | 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle
                  | 0_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle
1
2
                  | 0_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle - | 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle
              | 0_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle - | 0_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle
3
                 | 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle = 0
              | 1_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle
5
                 | 1_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle | 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle
              |1_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}}\rangle |1_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}}\rangle
```

Here we can see the action of the annihilation operator a[3] in any possible basis ket for a three fermionic-states system. Notice the negative signs, which depend on the occupation of the previous fermionic states:

QuantumTableForm[a[3]]

i Î	Input	Output
0	$ 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	0
1	\mid 0 $_{\hat{1}}$, 0 $_{\hat{2}}$, 1 $_{\hat{3}}$ \rangle	$- \mid 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$
2	$ \ 0_{\hat{1}}, \ 1_{\hat{2}}, \ 0_{\hat{3}} \rangle$	0
3	$ \ 0_{\hat{1}}, \ 1_{\hat{2}}, \ 1_{\hat{3}} \rangle$	$ 0_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$
4	$ \ 1_{\hat{1}}$, $0_{\hat{2}}$, $0_{\hat{3}}$	0
5	$ \ 1_{\hat{1}}$, $0_{\hat{2}}$, $1_{\hat{3}}$ \rangle	$ 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$
6	$ \ 1_{\hat{1}}$, $1_{\hat{2}}$, $0_{\hat{3}}$ \rangle	0
7	$ 1_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	- $ 1_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$

Creation Operator in terms of Pauli Operators

This is the fermionic annihilation operator that was defined above:

a[j]

$$\begin{vmatrix} -\overset{-1+j}{\bigotimes} \sigma_{Z,\hat{k}} \cdot & | & 0_{\hat{j}} \end{pmatrix} \cdot \langle 1_{\hat{j}} & | & \overset{3}{\bigotimes} \sigma_{O,\hat{m}} \end{vmatrix}$$

The fermionic creation operator is the hermitian conjugate of the annihilaton operator. Press [ESC]her[ESC] for the hermitian-conjugate template, or use the "Quantum Notation" Palette, in the menu Palettes of Mathematica:

a[j][†]

$$-\left(\bigotimes_{\mathsf{m}=\mathsf{j}+1}^{3}\sigma_{o,\,\hat{\mathsf{m}}}\right)^{\dagger}\cdot\left|\ 1_{\,\hat{\mathsf{j}}}\right\rangle\cdot\left\langle\,0_{\,\hat{\mathsf{j}}}\ \left|\ \cdot\left(\bigotimes_{\mathsf{k}=1}^{-1+\mathsf{j}}\sigma_{Z,\,\hat{\mathsf{k}}}\right)^{\,\dagger}\right.$$

Each qubit represents a fermionic state. A qubit value of "zero" means that the state is not occupied; "one" means the fermionic state is occupied. Here the treation operator a [2] † "creates" a fermion in the second fermionic state, $0_{\hat{2}} \rightarrow 1_{\hat{2}}$. Notice the negative sign. This sign depends on the occupation of the previous fermionic states:

QuantumEvaluate
$$\left[a[2]^{\dagger} \cdot \mid 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}}\right]$$

$$- \mid 0_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}}\right)$$

If the creation operator is applied to a ket with the corresponding fermionic state equal to "one" (occupied), then the ket is "destroyed":

```
QuantumEvaluate \left[a\left[2\right]^{\dagger}\cdot\left|0_{\hat{1}},1_{\hat{2}},0_{\hat{3}}\right\rangle\right]
0
```

Here we can see the action of the creation operator a [2] in any possible basis ket for a three fermionic-states system. Notice the negative signs, which depend on the occupation of the previous fermionic states:

QuantumTableForm [a[2][†]]

Here we can see the action of the creation operator a [3] in any possible basis ket for a three fermionic-states system. Notice the negative signs, which depend on the occupation of the previous fermionic states:

QuantumTableForm [a[3] †]

	Input	Output
0	$ 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	$- \mid 0_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$
1	$ 0_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$	0
2	$ 0_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$	$ 0_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$
3	$ 0_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	0
4	$ 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	$ 1_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$
5	$ 1_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$	0
6	$ 1_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$	- $ 1_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$
7	$ 1_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	0

Commutation Relations

This is the fermionic annihilation operator that was defined above. TraditionalForm gives a format closer to the format used in papers and textbooks:

TraditionalForm[a[j]]

$$-\bigotimes_{k=1}^{j-1} \left(\sigma_{\hat{k}}^{\mathcal{Z}}\right) \mid 0 \rangle \langle 1 \mid \bigotimes_{m=j+1}^{3} \left(\sigma_{\hat{m}}^{0}\right)$$

The anticommutator of annihilation and creation operators of the same state give the identity. Press [ESC]anti[ESC] for the anticommutator template and [ESC]her[ESC] for the hermitian conjugate, or use the "Quantum Notation" Palette, in the menu Palettes of Mathematica. This calculation is too slow, see the Note at the beginning of this document:

```
PauliExpand [[a[2], a[2]^{\dagger}]_{+}]
\sigma_{o,\hat{1}} \cdot \sigma_{o,\hat{2}} \cdot \sigma_{o,\hat{3}}
```

The PauliIdentities->False option transforms the identity operators to the number one. This calculation is too slow, see the Note at the beginning of this document:

```
PauliExpand [ [a[2], a[2]^{\dagger}]_{\downarrow}, PauliIdentities \rightarrow False
```

Anticommutator of annihilation and creation in different fermionic states:

```
PauliExpand [ [a[2], a[3]^{\dagger}]_{\downarrow} ]
```

Annihilate two times destroys any ket, therefore this anticommutator is zero:

```
{\tt PauliExpand}[[\![a[2]\,,\,a[2]]\!]_{\scriptscriptstyle +}]
0
```

Annihilate in different states does not destroy any ket, however the anticommutator is zero, see below the True-tables to understand this result:

```
PauliExpand[[[a[2], a[3]]],
```

Here we see why the previous anitcommutator $[a[2], a[3]]_{+}=a[2]\cdot a[3]+a[3]\cdot a[2]$ is zero: $a[3]\cdot a[2]$ gives kets with opposite sign to those given by $a[2] \cdot a[3]$:

	Input	Output		Input	Output
0	$ 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	0	0	$ 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	0
1	$ 0_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$	0	1	$ 0_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$	0
2	$ 0_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$	0	2	$ 0_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$	0
3	$ 0_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	$- \mid 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	3	$ 0_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	$ 0_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$
4	$ 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	0	4	$ 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	0
5	$ 1_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$	0	5	$ 1_{\hat{1}}, 0_{\hat{2}}, 1_{\hat{3}} \rangle$	0
6	$ 1_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$	0	6	$ 1_{\hat{1}}, 1_{\hat{2}}, 0_{\hat{3}} \rangle$	0
7	$ 1_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	$- \mid 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$	7	$ 1_{\hat{1}}, 1_{\hat{2}}, 1_{\hat{3}} \rangle$	$ 1_{\hat{1}}, 0_{\hat{2}}, 0_{\hat{3}} \rangle$

Special Products of Annihilation and Creation Operators

This is the fermionic annihilation operator that was defined above. TraditionalForm gives a format closer to the format used in papers and textbooks:

TraditionalForm[a[j]]

$$-\bigotimes_{k=1}^{j-1} \left(\sigma_{\hat{k}}^{\mathcal{Z}}\right) |0\rangle\langle 1| \bigotimes_{m=j+1}^{3} \left(\sigma_{\hat{m}}^{0}\right)$$

Next expression evaluates to $\sigma_{z,\hat{z}}$ (times the identities in the other qubits/fermionic-states). This can be useful to write Hamiltionians, see the last two pages of http://homepage.cem.itesm.mx/lgomez/quantum/NielsenJordanWigner.pdf

PauliExpand[a[2]
$$\cdot$$
 a[2][†] - a[2][†] \cdot a[2]]
$$\sigma_{o,\hat{1}} \cdot \sigma_{z,\hat{2}} \cdot \sigma_{o,\hat{3}}$$

The PauliIdentities->False option transforms the identity operators to the number one. This calculation is too slow, see the Note at the beginning of this document:

PauliExpand
$$[a[2] \cdot a[2]^{\dagger} - a[2]^{\dagger} \cdot a[2]$$
, PauliIdentities \rightarrow False $\sigma_{Z,\hat{2}}$

Next expression evaluates to $\sigma_{\chi,\hat{1}} \cdot \sigma_{\chi,\hat{2}}$ (times the identities in the other qubits/fermionic-states). This can be useful to write Hamiltionians, see the last two pages of http://homepage.cem.itesm.mx/lgomez/quantum/NielsenJordanWigner.pdf

PauliExpand[(a[1][†] - a[1]) · (a[2][†] + a[2])]
$$\sigma_{\chi,\hat{1}} \cdot \sigma_{\chi,\hat{2}} \cdot \sigma_{o,\hat{3}}$$

The PauliIdentities->False option transforms the identity operators to the number one. This calculation is too slow, see the Note at the beginning of this document:

```
\texttt{PauliExpand}\left[\left(\mathtt{a[1]}^{\dagger}-\mathtt{a[1]}\right)\cdot\left(\mathtt{a[2]}^{\dagger}+\mathtt{a[2]}\right),\,\,\mathtt{PauliIdentities}\rightarrow\mathtt{False}\right]
\sigma_{\chi,\hat{1}} \cdot \sigma_{\chi,\hat{2}}
```

Next expression can be useful to write Hamiltionians, see the last two pages of http://homepage.cem.itesm.mx/lgomez/quantum/NielsenJordanWigner.pdf

```
PauliExpand \left(a[1]^{\dagger} + a[1]\right) \cdot \left(a[2]^{\dagger} - a[2]\right)
-\sigma_{y,\hat{1}} \cdot \sigma_{y,\hat{2}} \cdot \sigma_{o,\hat{3}}
```

The PauliIdentities->False option transforms the identity operators to the number one. This calculation is too slow, see the Note at the beginning of this document:

```
PauliExpand \left( a[1]^{\dagger} + a[1] \right) \cdot \left( a[2]^{\dagger} - a[2] \right), PauliIdentities \rightarrow False
-\sigma_{y,\hat{1}}\cdot\sigma_{y,\hat{2}}
```

Next expression can be useful to write Hamiltionians, see the last two pages of http://homepage.cem.itesm.mx/lgomez/quantum/NielsenJordanWigner.pdf

```
PauliExpand \left(a[1]^{\dagger} - a[1]\right) \cdot \left(a[2]^{\dagger} - a[2]\right)
-i \sigma_{\chi,\hat{1}} \cdot \sigma_{y,\hat{2}} \cdot \sigma_{o,\hat{3}}
```

The PauliIdentities->False option transforms the identity operators to the number one. This calculation is too slow, see the Note at the beginning of this document:

```
PauliExpand \left( a[1]^{\dagger} - a[1] \right) \cdot \left( a[2]^{\dagger} - a[2] \right), PauliIdentities \rightarrow False
-i \sigma_{\chi,\hat{1}} \cdot \sigma_{y,\hat{2}}
```

Next expression can be useful to write Hamiltionians, see the last two pages of http://homepage.cem.itesm.mx/lgomez/quantum/NielsenJordanWigner.pdf

```
PauliExpand \left(a[1]^{\dagger} + a[1]\right) \cdot \left(a[2]^{\dagger} + a[2]\right)
-\, \dot{\mathbb{1}} \,\, \sigma_{\mathcal{Y},\, \hat{\mathbb{1}}} \,\cdot\, \sigma_{\chi,\, \hat{\mathbb{2}}} \,\cdot\, \sigma_{o,\, \hat{\mathbb{3}}}
```

TraditionalForm[] gives a format closer to the format of papers and textbooks:

$$\begin{split} & \texttt{TraditionalForm} \big[\texttt{PauliExpand} \big[\left(\texttt{a[1]}^\dagger + \texttt{a[1]} \right) \cdot \left(\texttt{a[2]}^\dagger + \texttt{a[2]} \right) \big] \big] \\ & - i \, \sigma_1^\mathcal{Y} \sigma_2^\mathcal{X} \sigma_3^\theta \end{split}$$

TeXForm can be used to generate expression for papers and books

```
\texttt{TeXForm} \left[ \texttt{TraditionalForm} \left[ \texttt{PauliExpand} \left[ \left( \texttt{a[1]}^\dagger + \texttt{a[1]} \right) \cdot \left( \texttt{a[2]}^\dagger + \texttt{a[2]} \right) \right] \right] \right]
-i \sigma _1^{\mathcal{Y}}\sigma _2^{\mathcal{X}}\sigma
      _3^{\mathit{0}}
```

NOTE:

This could be an efficient implementation of fermionic operators in a quantum computer. However, in this "normal" computer, these calculations are very slow. If you need faster calculations with these operators, and you do not care about their possible implementation in a quantum computer, these documents might be useful for you:

Algebra of operators and commutators. Mathematica file: http://homepage.cem.itesm.mx/lgomez/quantum/v7algebra.nb

Algebra of operators and commutators. PDF file: http://homepage.cem.itesm.mx/lgomez/quantum/v7algebra.pdf

by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx