Hunting Inverse Hessian Matrices

Robert Gower and Jacek Gondzio

Irish Applied Mathematics Research Students' Meeting 2014, Galway.

NUI Galway OÉ Gaillimh

December 11, 2014

 $\min_{x} f(x)$ with $g(x) \leq 0$.

"Nothing in the world takes place without optimization, and there is no doubt that all aspects of the world that have a rational basis can be explained by optimization methods", Leonhard Euler (1744).

 $\min_{x} f(x)$ with $g(x) \leq 0$.

"Nothing in the world takes place without optimization, and there is no doubt that all aspects of the world that have a rational basis can be explained by optimization methods", Leonhard Euler (1744).

"Nothing in the world takes place without optimization, and there is no doubt that all aspects of the world that have a rational basis can be explained by optimization methods", Leonhard Euler (1744).

$$\min_{x} f(x) = 100(x - y^{2})^{2} + (y - 1)^{2}$$

Input:
$$x_0 \in \mathbb{R}^n$$
 for $k = 0, 1, 2, \dots$ do $| x_{k+1} = x_k - \nabla f(x_k)$ end

$$\min_{x} f(x) = 100(x - y^{2})^{2} + (y - 1)^{2}$$

Input:
$$x_0 \in \mathbb{R}^n$$
for $k = 0, 1, 2, \dots$ do
$$| x_{k+1} = x_k - \nabla f(x_k)$$
end

$$\min_{x} f(x) = 100(x - y^{2})^{2} + (y - 1)^{2}$$

Input:
$$x_0 \in \mathbb{R}^n$$

for $k = 0, 1, 2, \dots$ do
 $\mid x_{k+1} = x_k - \nabla f(x_k)$
end

$$\min_{x} f(x) = 100(x - y^{2})^{2} + (y - 1)^{2}$$

Input:
$$x_0 \in \mathbb{R}^n$$

for $k = 0, 1, 2, ...$ do
 $| x_{k+1} = x_k - \nabla f(x_k)$
end

Zigzags 4'000 iterations!

Using Second-order information Search for stationary point

$$\nabla f(x) = 0$$
, Fermat 1646

linearize around x_k

$$\nabla f(x_k+d) \approx \nabla^2 f(x_k)d + \nabla f(x_k)$$

Search for stationary point

$$\nabla f(x) = 0$$
, Fermat 1646

linearize around x_k

$$\nabla f(x_k+d) \approx \nabla^2 f(x_k)d + \nabla f(x_k) = 0$$

Search for stationary point

$$\nabla f(x) = 0$$
, Fermat 1646

linearize around x_k

$$\nabla f(x_k+d) \approx \nabla^2 f(x_k)d + \nabla f(x_k) = 0$$

Newton's Method Input:
$$x_0 \in \mathbb{R}^n$$
 for $k = 0, 1, 2, \dots$ do Solve $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$ $x_{k+1} = x_k + d_k$ end

Search for stationary point

$$\nabla f(x) = 0$$
, Fermat 1646

linearize around x_k

$$\nabla f(x_k+d) \approx \nabla^2 f(x_k)d + \nabla f(x_k) = 0$$

Newton's Method Input: $x_0 \in \mathbb{R}^n$ for $k = 0, 1, 2, \dots$ do $\begin{vmatrix} \mathbf{Solve} & \nabla^2 f(x_k) d_k = -\nabla f(x_k) \\ x_{k+1} = x_k + d_k \end{vmatrix}$ end

Search for stationary point

$$\nabla f(x) = 0$$
, Fermat 1646

linearize around x_k

$$\nabla f(x_k+d) \approx \nabla^2 f(x_k)d + \nabla f(x_k) = 0$$

Newton's Method Input: $x_0 \in \mathbb{R}^n$ for $k = 0, 1, 2, \dots$ do $\begin{vmatrix} \mathbf{Solve} & \nabla^2 f(x_k) d_k = -\nabla f(x_k) \\ x_{k+1} = x_k + d_k \end{vmatrix}$ end

Solve a linear system

Solving one Newton system

Proxy solve
$$\nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

$$d_k = \min_{d \in \mathcal{S}_k} \|\nabla^2 f(x_k) d + \nabla f(x_k)\|$$

where $\mathcal{S}_k \subset \mathbb{R}^n$ is a subspace.

Requires calculating $\nabla^2 f_k S_k$

Figure: Contour $d^T \nabla^2 f_k d$

Problem: Solving linears system expensive. What can be done?

Solving one Newton system

Proxy solve
$$abla^2 f(x_k) d_k = -
abla f(x_k)$$

$$d_k = \min_{d \in \mathcal{S}_k} \|\nabla^2 f(x_k) d + \nabla f(x_k)\|$$

where $\mathcal{S}_k \subset \mathbb{R}^n$ is a subspace.

Requires calculating $\nabla^2 f_k S_k$

Figure: Contour $d^T \nabla^2 f_k d$

Problem: Solving linears system expensive. What can be done?

Another interpretation: Stationary points of local quadratic

$$f(x_k + d) \approx f(x_k) + \langle \nabla f(x_k), d \rangle + \frac{1}{2} d^T \nabla^2 f(x_k) d.$$

Solving one Newton system

Proxy solve
$$abla^2 f(x_k) d_k = -
abla f(x_k)$$

$$d_k = \min_{d \in \mathcal{S}_k} \|\nabla^2 f(x_k) d + \nabla f(x_k)\|$$

where $\mathcal{S}_k \subset \mathbb{R}^n$ is a subspace.

Requires calculating $\nabla^2 f_k S_k$

Figure: Contour $d^T \nabla^2 f_k d$

Problem: Solving linears system expensive. What can be done? Another interpretation: Stationary points of local quadratic

$$f(x_k + d) \approx f(x_k) + \langle \nabla f(x_k), d \rangle + \frac{1}{2} d^T \nabla^2 f(x_k) d.$$

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$.

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$. Each Newton system is similar

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$. Each Newton system is similar

Solving each system individually is a waste

The Hessian "slowly" changes $\nabla^2 f(x_{k+1}) \approx \nabla^2 f(x_k)$. Each Newton system is similar Solving each system individually is a waste.

Proxy solve
$$\nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

$$d_k = \arg\min_{d \in \mathcal{S}_k} \|\nabla^2 f(x_k) d + \nabla f(x_k)\|$$

where $S_k \subset \mathbb{R}^n$ is a subspace. Requires calculating $\nabla^2 f_k S_k$

Figure: $d^T \nabla^2 f_k d$

Changing Coordinates d = Py can help when

Proxy solve
$$abla^2 f(x_k) d_k = -
abla f(x_k)$$

$$d_k = \arg\min_{Py \in \mathcal{S}_k} \|\nabla^2 f(x_k) Py + \nabla f(x_k)\|$$

where $S_k \subset \mathbb{R}^n$ is a subspace. Requires calculating $\nabla^2 f_k S_k$

Figure: $y^T P^T \nabla^2 f_k P y$

Changing Coordinates d = Py can help when $P \approx \nabla^2 f_k^{-1}$ then $\nabla^2 f_k P \approx I$, easy.

Proxy solve
$$\nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

$$d_k = \arg\min_{Py \in \mathcal{S}_k} \|\nabla^2 f(x_k) Py + \nabla f(x_k)\|$$
where $\mathcal{S}_k \subset \mathbb{R}^n$ is a subspace.
Requires calculating $\nabla^2 f_k \mathcal{S}_k$

Figure: $y^T P^T \nabla^2 f_k P y$

Changing Coordinates d = Py can help when $P \approx \nabla^2 f_k^{-1}$ then $\nabla^2 f_k P \approx I$, easy. Objective: $P_{k-1} \approx \nabla^2 f(x_{k-1})^{-1}$ from available information to precondition $\|\nabla^2 f(x_k) P_{k-1} v + \nabla f(x_k)\|$.

Proxy solve
$$abla^2 f(x_k) d_k = -
abla f(x_k)$$

$$d_k = \arg\min_{Py \in \mathcal{S}_k} \|\nabla^2 f(x_k) Py + \nabla f(x_k)\|$$

where $S_k \subset \mathbb{R}^n$ is a subspace.

Requires calculating $\nabla^2 f_k S_k$

Figure: $y^T P^T \nabla^2 f_k P y$

Changing Coordinates d = Py can help when

 $P \approx \nabla^2 f_k^{-1}$ then $\nabla^2 f_k P \approx I$, easy.

Objective: $P_{k-1} \approx \nabla^2 f(x_{k-1})^{-1}$ from available information to precondition $\|\nabla^2 f(x_k) P_{k-1} y + \nabla f(x_k)\|$.

Proxy solve
$$\nabla^2 f(x_k) d_k = -\nabla f(x_k)$$

$$d_k = \arg\min_{Py \in \mathcal{S}_k} \|\nabla^2 f(x_k) Py + \nabla f(x_k)\|$$
 where $\mathcal{S}_k \subset \mathbb{R}^n$ is a subspace. Requires calculating $\nabla^2 f_k \mathcal{S}_k$

Figure: $y^T P^T \nabla^2 f_k P y$

Changing Coordinates d = Py can help when

 $P \approx \nabla^2 f_k^{-1}$ then $\nabla^2 f_k P \approx I$, easy.

Objective: $P_{k-1} \approx \nabla^2 f(x_{k-1})^{-1}$ from available information to precondition $\|\nabla^2 f(x_k) P_{k-1} y + \nabla f(x_k)\|$.

```
Input: P_0 = I

for k = 1, 2, ... do

Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k)
```

```
Input: P_0 = I

for k = 1, 2, ... do

Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k);

Step x_{k+1} = P_{k-1} d_k + x_k
```

```
Input: P_0 = I

for k = 1, 2, ... do

Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k);

Step x_{k+1} = P_{k-1} d_k + x_k;

Calculate P_k from P_{k-1} and \nabla^2 f(x_k) S_k.
```

```
Input: P_0 = I
for k = 1, 2, ... do
     Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k);
     Step x_{k+1} = P_{k-1}d_k + x_k; Calculate P_k from P_{k-1} and \nabla^2 f(x_k)S_k.
```

end

```
Just the Facts for calculating P_k
```

```
Input: P_0 = I

for k = 1, 2, ... do

Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k);

Step x_{k+1} = P_{k-1} d_k + x_k;

Calculate P_k from P_{k-1} and \nabla^2 f(x_k) S_k.
```

end

Just the Facts for calculating P_k

- lacksquare $\|
 abla^2 f(x_k)^{-1}
 abla^2 f(x_{k-1})^{-1}\|$ small \Rightarrow make $\|P_k P_{k-1}\|$ small
- ▶ $\nabla^2 f(x_k)^{-1}$ is symmetric \Rightarrow make P_k symmetric

```
Input: P_0 = I

for k = 1, 2, ... do

Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k);

Step x_{k+1} = P_{k-1} d_k + x_k;

Calculate P_k from P_{k-1} and \nabla^2 f(x_k) S_k.
```

end

Just the Facts for calculating P_k

- lacksquare $\|
 abla^2 f(x_k)^{-1}
 abla^2 f(x_{k-1})^{-1}\|$ small \Rightarrow make $\|P_k P_{k-1}\|$ small
- ▶ $\nabla^2 f(x_k)^{-1}$ is symmetric \Rightarrow make P_k symmetric
- ▶ Has the action $\nabla^2 f(x_k)^{-1} (\nabla^2 f(x_k) S_k) = S_k \Rightarrow \text{make}$ $P_k (\nabla^2 f(x_k) S_k) = S_k$

Preconditioned Newton's Method

```
Input: P_0 = I

for k = 1, 2, ... do

Proxy solve \nabla^2 f(x_k) P_{k-1} d_k = -\nabla f(x_k);

Step x_{k+1} = P_{k-1} d_k + x_k;

Calculate P_k from P_{k-1} and \nabla^2 f(x_k) S_k.
```

end

Just the Facts for calculating P_k

- $ightharpoonup \|
 abla^2 f(x_k)^{-1}
 abla^2 f(x_{k-1})^{-1}\| \text{ small } \Rightarrow \text{make } \|P_k P_{k-1}\| \text{ small }$
- ▶ $\nabla^2 f(x_k)^{-1}$ is symmetric \Rightarrow make P_k symmetric
- ▶ Has the action $\nabla^2 f(x_k)^{-1} (\nabla^2 f(x_k) S_k) = S_k \Rightarrow \text{make}$ $P_k (\nabla^2 f(x_k) S_k) = S_k$

Problem: We have $P_{k-1} \approx \nabla^2 f(x_{k-1})$ we observe $\nabla^2 f(x_k) S_k$ how to estimate $\nabla^2 f(x_k)^{-1}$

Problem: We have $P_{k-1} \approx \nabla^2 f(x_{k-1})$ we observe $\nabla^2 f(x_k) S_k$ how to estimate $\nabla^2 f(x_k)^{-1}$

Problem: We have $P_{k-1} \approx \nabla^2 f(x_{k-1})$ we observe $\nabla^2 f(x_k) S_k$ how to estimate $\nabla^2 f(x_k)^{-1}$

$$\begin{aligned} \min_{P_k} & & \|P_k - P_{k-1}\|_{\textit{Frobenius}(\mathcal{W}_k)}^2 \\ & & & P_k \nabla^2 f_k \mathcal{S}_k = \mathcal{S}_k \\ & & & P_k = P_k^T. \end{aligned}$$

- ► Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f(x_k)^{-1}$ and P_k over $\nabla^2 f(x_k) S_k$.

$$\begin{aligned} \min_{P_k} & & \|P_k - P_{k-1}\|_{Frobenius(\mathcal{W}_k)}^2 \\ & & & P_k \nabla^2 f_k \mathcal{S}_k = \mathcal{S}_k \\ & & & P_k = P_k^T. \end{aligned}$$

- Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f(x_k)^{-1}$ and P_k over $\nabla^2 f(x_k) S_k$.
- Must be symmetric

$$\begin{aligned} \min_{P_k} & & \|P_k - P_{k-1}\|_{\textit{Frobenius}(\mathcal{W}_k)}^2 \\ & & & P_k \nabla^2 f_k \mathcal{S}_k = \mathcal{S}_k \\ & & & P_k = P_k^T. \end{aligned}$$

- Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f(x_k)^{-1}$ and P_k over $\nabla^2 f(x_k) S_k$.
- Must be symmetric

$$P_k = \nabla^2 f(x_k) + \left(I - \mathcal{W}_k \operatorname{proj}_{\mathcal{S}_k}^{\mathcal{W}_k}\right) \left(P_{k-1} - \nabla^2 f(x_k)\right) \left(I - \operatorname{proj}_{\mathcal{S}_k}^{\mathcal{W}_k} \mathcal{W}_k\right)$$

$$\begin{aligned} \min_{P_k} & & \|P_k - P_{k-1}\|_{Frobenius(\mathcal{W}_k)}^2 \\ & & & P_k \nabla^2 f_k \mathcal{S}_k = \mathcal{S}_k \\ & & & P_k = P_k^T. \end{aligned}$$

- Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f(x_k)^{-1}$ and P_k over $\nabla^2 f(x_k) S_k$.
- Must be symmetric

$$P_k = \nabla^2 f(x_k) + \left(I - \mathcal{W}_k \operatorname{proj}_{\mathcal{S}_k}^{\mathcal{W}_k}\right) \left(P_{k-1} - \nabla^2 f(x_k)\right) \left(I - \operatorname{proj}_{\mathcal{S}_k}^{\mathcal{W}_k} \mathcal{W}_k\right)$$

$$\min_{P_k} \quad \|P_k - P_{k-1}\|_{Frobenius(\mathcal{W}_k)}^2$$

$$P_k \nabla^2 f_k \mathcal{S}_k = \mathcal{S}_k$$

$$P_k = P_k^T.$$

- Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f(x_k)^{-1}$ and P_k over $\nabla^2 f(x_k) S_k$.
- Must be symmetric

$$P_k = \nabla^2 f(x_k) + \left(I - \mathcal{W}_k \mathsf{proj}_{\mathcal{S}_k}^{\mathcal{W}_k}\right) \left(P_{k-1} - \nabla^2 f(x_k)\right) \left(I - \mathsf{proj}_{\mathcal{S}_k}^{\mathcal{W}_k} \mathcal{W}_k\right)$$

$$\operatorname{proj}_{\mathcal{S}}^{A}A := \mathcal{S}(\mathcal{S}^{T}A\mathcal{S})^{-1}\mathcal{S}^{T}A = A - \operatorname{projection \ onto \ span}(\mathcal{S}).$$

$$\begin{aligned} \min_{P_k} & & \|P_k - P_{k-1}\|_{Frobenius(\mathcal{W}_k)}^2 \\ & & & P_k \nabla^2 f_k \mathcal{S}_k = \mathcal{S}_k \\ & & & P_k = P_k^T. \end{aligned}$$

- Iteratively updating metric; changes "slowly"
- ▶ Same action of $\nabla^2 f(x_k)^{-1}$ and P_k over $\nabla^2 f(x_k) S_k$.
- Must be symmetric

$$P_k = \nabla^2 f(x_k) + \left(I - \mathcal{W}_k \mathsf{proj}_{\mathcal{S}_k}^{\mathcal{W}_k}\right) \left(P_{k-1} - \nabla^2 f(x_k)\right) \left(I - \mathsf{proj}_{\mathcal{S}_k}^{\mathcal{W}_k} \mathcal{W}_k\right)$$

$$\operatorname{proj}_{\mathcal{S}}^{A}A := \mathcal{S}(\mathcal{S}^{T}A\mathcal{S})^{-1}\mathcal{S}^{T}A = A - \operatorname{projection onto span}(\mathcal{S}).$$

Testing on Duke-Breast-Cancer Classification

7129 features and 44 data
Preconditioning can make all the difference

Testing on Duke-Breast-Cancer Classification

7129 features and 44 data
Preconditioning can make all the difference

References

Fletcher, B. R., Powell, M. J. D. (1960).

A rapidly convergent descent method for minimization.

Davidon, W. C. (1959). Variable metric method for minimization.

Goldfarb, D. (1970).

A Family of Variable-Metric Methods Derived by Variational Means.

Mathematics of Computation, 24(109), 23.