第六讲:图论模型和算法

数学模型和算法的应用与 MATLAB 实现

周吕文

中国科学院力学研究所

2017年7月3日

微信公众号: 超级数学建模

提要

- 1 图论算法简介
 - 起源
 - 定义
 - 应用
- 2 概念、算法和实例
 - 基本概念
 - 常用算法
 - 数模案例
- 3 总结
 - 要求

图论的起源: 哥尼斯堡七桥问题

图论的起源: 哥尼斯堡七桥问题

图论的定义

- 图论 (Graph theory) 以图为 研究对象,研究顶点和边组成 的图形的数学理论和方法.
- 图论中的图是由若干给定的 顶点及连接两顶点的边所构 成的图形。
- 图论中的图通常用来描述某些事物之间的某种特定关系,用顶点代表事物,用边表示相应两个事物间的关系.

数学建模竞赛中的应用

表: 近几年 MCM 中用到图论和网络的特等奖论文统计

年份题号	题目	特等奖论文数
2011 MCM-B	中继器协调问题	4
2012 MCM-B	犯罪克星	7
2013 ICM-C	地球健康的网络模型	5
2014 MCM-B	大学传奇教练	1
2014 ICM-C	使用网络来评估影响和冲击	6
2015 ICM-C	组织人力资本管理	6

提要

- 1 图论算法简介
 - 起源
 - 定义
 - 应用
- 2 概念、算法和实例
 - 基本概念
 - 常用算法
 - 数模案例
- 3 总结
 - 要求

图 (无向图) 的构成

$$V(G) = \{u, v, w, x, y\}$$

$$E(G) = \{a, b, c, d, e, f, q, h\}$$

$$\varphi_G(e) = vx = xv$$

图的构成

顶点集 边集 关联函数

顶点集 V(G)

• 图 G 中所有顶点的集合。

边集 E(G)

• 图 G 中所有边的集合。

关联函数 φ_G

 $\bullet \varphi_G : E(G) \longrightarrow V(G)$

环/连杆/重边

b 为环; a 为连杆; d, f 为重边

环

• 端点重合为一点的边。

连杆

• 端点不重合的边。

重边

• 具有相同的两个端点的边。

图 (无向图) 和有向图

有向图的构成

$$V(G) = \{u, v, w, x, y\}$$

$$E(G) = \{a, b, c, d, e, f, q, h\}$$

$$\varphi_G(a) = (u, v) = uv$$

有向图的构成

顶点集 弧集 关联函数

顶点集 V(G)

● 图 G 中所有顶点的集合。

• 图 G 中所有弧的集合。

关联函数 φ_G

 $\bullet \varphi_G : A(a) \longrightarrow V(G)$

• 若 $V(H) \subset V(G)$ 且 $E(H) \subset E(G)$, 则称 H 是 G 的子图。

周吕文

一些特殊的图

一些特殊的图

一些特殊的图

图与网络的数据结构: 无向图关联/邻接矩阵

- 关联矩阵 $M = (m_{ve})$, $m_{ve} \in \{0, 1, 2\}$ 表示边 e 与顶点 v 关 联的次数。
- 邻接矩阵 $A=(a_{uv})$, a_{uv} 表示是否存在从顶点 u 到 v 的弧。

图与网络的数据结构:有向图关联/邻接矩阵

- 关联矩阵 $M = (m_{va}), m_{va} \in \{1, -1, 0\}$ 分表示弧 a 与顶点 v 关联的关系(尾、头、其它)。
- 邻接矩阵 $A=(a_{uv})$, a_{uv} 表示是否存在从顶点 u 到 v 的弧。

顶点的度和中心度

$$d(x) = 3$$

$$d^+(x) = 2$$

度 $d_G(v)$

• $G + 5 v \notin \mathbb{R}$ 的边数, $d_G(v) = d^-(v) + d^+(v)$ 。

出度 $d^-(v)$

以 v 为弧尾, 起始于该点的
 弧数。

入度 $d^+(v)$

以 v 为弧头,终止于该点的 弧数。

顶点的度和中心度

点度中心度

$$C_D(v) = d^+(v)$$

接近中心度

$$C_C(v) = \frac{1}{\sum_{u \in V} d(u, v)}$$

中间中心度

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

特征向量中心度

$$C_E(v) = x_v = \frac{1}{\lambda} \sum_{u \in M(v)} x_u = \frac{1}{\lambda} \sum_{u \in V} a_{vu} x_u$$

图论工具箱:函数

图论工具箱的相关命令

四比工共和的相关中令		
函数名	功能	
graphallshortestpaths	求图中所有顶点对之间的最短距离	
graphconnredcomp	找无 (有) 向图的 (强/弱) 连通分支	
graphisreddag	测试有向图是否含有圈	
graphisomorphism	确定一个图是否有生成树	
graphmaxflow	计算有向图的最大流	
graphminspantree	在图中找最小生成树	
graphpred2path	把前驱顶点序列变成路径的顶点序列	
graphshortestpath	求指定一对顶点间的最短距离和路径	
graphtopoorder	执行有向无圈图的拓扑排序	
graphtraverse	求从一顶点出发, 所能遍历图中的顶点	

图论工具箱:数据结构

【满矩阵和稀疏矩阵 (full⇒sparse)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 \end{bmatrix} \rightleftharpoons \begin{bmatrix} (2,1) & 2 \\ (3,1) & 3 \\ (3,2) & 6 \\ (4,2) & 5 \\ (4,2) & 5 \\ (5,2) & 3 \\ (5,3) & 1 \\ (6,4) & 2 \\ (6,5) & 4 \end{bmatrix}$$

图论工具箱:用法举例

graphshortestpath 函数用法

```
[a,b,c,d,e,f] = deal(1,2,3,4,5,6);
02 %
03 w = [0 2 3 0 0 0 \% a]
       2 0 6 5 3 0 % b
04
       3 6 0 0 1 0 % c
0.5
       0 5 0 0 1 2 % d
06
    0 3 1 1 0 4 % e
07
       0 0 0 2 4 0]; % f
08
09
  W = sparse(w);
  [dist, path, pred] = graphshortestpath(W, a, f)
```

网络分析工具箱:函数

网络分析工具箱的相关命令

函数名	功能
degrees	求图中所有顶点的度,入度和出度
ave_neighbor_deg	求图中所有顶点的相邻顶点平均度
closeness	求图中所有顶点的接近中心度
node_betweenness_faster	求图中所有顶点的中间中心度
edge_betweenness	求图中所有边的中间中心度
eigencentrality	求图中所有顶点的特征向量中心度
clust_coeff	求图中所有顶点的集聚系数

网络分析工具箱: 用法举例

网络分析工具箱: 用法举例

点度中心度的接近中心度的求解

```
01 n = 10; % 顶点数
02 % 给Andre, Betty, ..., Jane标号为1, 2, ..., 10.
03 Andre = 1; Betty = 2; Carol = 3; Dave = 4; Ed = 5;
04 Fanny = 6; Garth = 7; Hale = 8; Ike = 9; Jane = 10;
05%根据图构造邻接矩阵.
06 A = zeros(n);
07 A(Andre, [Betty, Carol, Dave, Fanny]) = 1;
08 A(Betty, [Andre, Dave, Ed, Garth]) = 1;
09 A(Carol, [Andre, Dave, Fanny]) = 1;
10 A( Dave, [Andre, Betty, Carol, Ed, Fanny, Garth]) = 1;
11 A( Ed, [Betty, Dave, Garth]) = 1;
12 A(Fanny, [Andre, Carol, Dave, Garth, Hale]) = 1;
13 A(Garth, [Betty, Dave, Ed, Fanny, Hale]) = 1;
14 A( Hale, [Fanny, Garth, Ike]) = 1;
15 A( Ike, [ Hale, Jane]) = 1;
16 A( Jane, [ Ike]) = 1;
17 Cd = degrees(A)' /(n-1) % 计算点度中心度并标准化.
18 Cc = closeness(A)*(n-1) % 计算接近中心度并标准化.
```

最短路径

•
$$G(V, W)$$
 边权为 $w(v_i, v_j)$ 。

● 两个顶点 v。和 v4 间存在一 条总权最小的路

$$w(\mu) = \min \sum_{(v_i, v_j) \in \mu} w(v_i, v_j)$$

```
0 0 % a
        2 0 6 5 3 0 % b
02
        3 6 0 0 1 0 % c
0 5 0 0 1 2 % d
03
04
       0 3 1 1 0 4 % e
05
        0 0 0 2 4 0]; % f
06
07 W = sparse(w);
```

08 [dist, path, pred] = graphshortestpath(W, 1, 6)

最小生成树

- G(V, E) 边权为 $w(v_i, v_j)$ 。
- 若存在 $T \subseteq E$ 且为无循环 图, 使权 T 的总权最小

$$w(T) = \min \sum_{(v_i, v_j) \in T} w(v_i, v_j)$$

```
4 inf
                       5
                          inf
02
              0 5 inf
                           3 3
     inf 5 0 5 3 inf
5 inf 5 0 2 4
inf 3 3 2 0 1
03
04
05
         3
                 inf 4
06
                                0];
   W = sparse(w);
   [ST, pred] = graphminspantree(W);
```

最短(Hamilton)回路

- G(V, W) 边权为 $w(v_i, v_j)$ 。
- 寻找 G 中的回路 C, 使得 C 的总权最小

$$w(C) = \min \sum_{(v_i, v_j) \in C} w(v_i, v_j)$$

```
01 R = 6378.137;
02 dist = zeros(n);
03 for i = 1:n
04     for j = i+1:n
05         dist(i,j) = distance(lat(i),lon(i), lat(j),lon(j), R);
06     end
07 end
08 [order,totdist] = minhamiltonpath(dist)
```

灾情巡视路径:问题

• 分三组(路)巡视,设计总路程最短且各组均衡的巡视路线

数据预处理

• 构造完全图: 由图论工具箱 graphallshortestpaths 函数求得任意两点最短路。

明确目标:将 G 分成三个子图 $G(V_1)$, $G(V_2)$ 和 $G(V_3)$

- 子顶点集中都包含顶点 $O: O \in V_i, i = 1, 2, 3;$
- 子顶点集中包含了 V 中所有顶点: $\bigcup V_i = V$;
- 最小 Hamilton 回路长度总和最小化: $\min C_{\Sigma} = \min \sum C_i$
- 最小 Hamilton 回路长度均衡化: $\min\{C_{\max} C_{\min}\}$

灾情巡视路径:分组

分组方案

- **1** (**1 5**), (**2 6**), (**8 4**)
- ② (① ④ ⑤), (②; 15, 18), (③ ⑥; 22, 3, 4, 8, 11, 13, D, G)

1: $C_{\Sigma} = 554.1$; $C_{\text{max}} = 237.5$

2: $C_{\Sigma} = 607.6$; $C_{\text{max}} = 203.5$

提要

- 1 图论算法简介
 - 起源
 - 定义
 - 应用
- 2 概念、算法和实例
 - 基本概念
 - 常用算法
 - 数模案例
- 3 总结
 - 要求

要求

- 掌握图论常见问题(最短路径、最小生成树等)的数学描述和实际意义。
- 掌握节点中心度的数学描述和实际意义。
- 会使用工具箱函数求解图论常见问题。
- 会使用工具臬函数求解网络常见问题。

- 自行学习所给图论教程,了解最大流、最小费用流问题。
- 结合模拟退火算法,针对灾情巡视路径问题开发一个自动分组程序。
- 使用网络方法,解决"2014 ICM-C 使用网络来评估影响和冲击"问题。

Thank You!!!