

广州谦辉信息科技有限公司

Duet2 WiFi 主板使用说明

创客基地

QQ群: 489095605 232237692

邮箱: Huangkaida@makerbase.com.cn

文档版本 1.0

发布日期 2018-07-01

版权所有 © 广州谦辉信息科技有限公司 。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

和其他 Makerbase 或"Makerbase "商标均为广州谦辉信息科技有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受广州谦辉信息科技商业合同和条款的约束,本文档中描述的 全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,广州谦 辉信息科技有限公司对本文档内容不做任何明示或默示的声明或保证。由于产品版本升级或其 他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的 所有陈述、信息和建议不构成任何明示或暗示的担保。

版本更新

版本	修改时间	修改内容	备注
V1.0	2019-2-28	初始版本	

目录

一、 简介	4
二、 特点优势	4
三、 连接说明及尺寸图	5
1. Duet2 WiFi 主板产品实物图:	5
2. Duet2 WiFi 系统连接图	6
3. Duet2 WiFi 安装尺寸图	7
4. Duet2 WiFi 4.3 寸屏幕安装尺寸图	7
5. Panel 4.3 寸屏转接板安装尺寸图	8
四、 使用说明	9
4.1 固件与驱动获取方式:	
4.2 固件烧录与驱动安装	9
4.2.1 安装 SAM-BA v2.18,	9
4.2.2 通过软件进行固件烧入	10
4.2.3. 驱动更新	
五. 配置文件的生成和更新	16
六. 配置文件更新和网页操作	23
6.1 SD 卡文件目录	23
6.2 上位机连接与设置	24
6.3 WIFI 指令设置	25
6.4 网页连接	26
6.5 配置文件修改	27
七 技术支持及保证	29

一、简介

Duet2 WiFi 主板是针对市场需求推出的一款主板。主芯片采用 ARM Cortex-M4 ATSAM4E8E ,运行主频高达 120 MHz。采用 reprap 固件,配置文件直接在网页进行配置生成,更加简单便捷。支持连接 PanelDue 触摸屏。主板内置 WiFi 模块,可通过网页进行控制和打印。采用 TMC2660 驱动,支持高细分高电流,适合需求大电流,大机型的的机器作主控使用。且电机驱动,sd 卡等功能均有预留外接端口,拓展性更强。

二、 特点优势

- 1.采用 ARM Cortex-M4 ATSAM4E8E 主芯片,运行主频高达 120 MHz,自带 FPU 浮点数运算单元。
- 2.采用 TMC2660 驱动芯片,最高可以设置 256 细分.可支持大电机,芯片驱动电流最高可达 4A,静音效果好。
- 3.步进电机电流直接设置,无需担心调节电流时损坏驱动或电位器。
- 4.主板自带 wifi 模块,通过网页连接模块的 IP 进行控制和打印。
- 5.使用 REPRAP Firmware, 配置参数可以 web 界面进行编辑生成,后续修改可以直接通过文本编辑器(比如 Notepad + +)对 config 文件进行修改即可,操作简单。
- 6.可配合 Panel Due 触摸屏进行使用,操作界面简洁,灵敏度高;
- 7.主板硬件有双 Z 的设计,不用在固件另行设置。每个轴均有预留外接驱动的端口,拓展方便。
- 8.主板内置卡槽之外, 预留了外接 sd 卡的接口, 如有需要可进行外接。
- 9.电路板采用高质量的4层板,并专门作了散热优化处理。

三、 连接说明及尺寸图

1. Duet2 WiFi 主板产品实物图:

Makerbase

2. Duet2 WiFi 系统连接图

3. Duet2 WiFi 安装尺寸图

4. Duet2 WiFi 4.3 寸屏幕安装尺寸图

5. Panel 4.3 寸屏转接板安装尺寸图

单位: ㎜

四、使用说明

4.1 固件与驱动获取方式:

- ★ 问淘宝客服或者技术人员获取固件;
- ★ 可到我们的github网址进行下载: https://github.com/makerbase-mks?tab=repositories

或者可到duet的github网站进行下载

Panel屏: https://github.com/dc42/PanelDueFirmware/releases

主板: https://github.com/dc42/RepRapFirmware/releases

4.2.1 安装 SAM-BA v2.18,

通过 USB 口连接主板,电脑可识别串口(若无法识别 COM 口,则按下主板 ERASE 键约 1S 以上,重新上电)

4.2.2 通过软件进行固件烧入

Duet 主板和 Panel 屏幕使用之前,均需要烧入固件,通过 SAM-BA 软件

注意: Panel 屏幕有分 4.3 寸, 5.0 寸, 和 7.0 寸的固件, 我们默认提供的固件为 4.3 寸的固件。

烧写固件需要注意,固件的对应的屏幕要和你使用的屏幕一致,方可正常使用。

主板和屏幕的烧写步骤,主要注意固件的选择和 CPU 类型的选择

Duet 主板: 固件: DuetWiFiFirmware.bin 主板 CPU 类型: at91sam4e8-ek

Panel 屏: 固件: PanelDue-v3-4.3 主板 CPU 类型: at91sam4s4-ek

以下为烧录的步骤

按照以上操作完成,变完成的固件烧录。完成后 USB 的端口名字变成如图所示:

4.2.3. 驱动更新

如果烧录完固件,没有变成上图所示,而是显示未知设备,如下图所示,则需要对 USB 驱动更新。

1. 设备管理器里面右击设备,选择更新驱动程序软件

2.浏览到存放 usb 驱动的文件夹(驱动文件可以在从提供的网站进行获取)

https://github.com/dc42/RepRapFirmware/blob/dev/Driver/DuetDriverFiles.zip

3.如下图所示,即为驱动安装成功。

五. 配置文件的生成和更新

Duet2 WiFi 的配置文件是直接在网页进行配置生成的,通过 TF 卡进行更新。

网页配置的网址为: https://configurator.reprapfirmware.org/Start

1. 若你的机器符合它提供的机型,则可以进入预设模板进行配置。

下述为自定义配置(Custom configuration),进行配置。

Welcome to the new RepRapFirmware Configuration Tool

Please follow this wizard to obtain an individual configuration bundle for your printer

T3P3 Mini Kossel	
RepRapPro Ormerod 1	
RepRapPro Ormerod 2	
RepRapPro Fisher	
The following machine templates were contributed by users and have not been throughly tested:	
Distech Prometheus System	
Reach3D Printer	
Wanhao Duplicator i3	
Alternatively you can create your own individual configuration by creating a new one from scratch or by loading an existing JSC	ON template:
Custom configuration	
Use existing configuration	
te: This version is still experimental. If you encounter problems, please use the old config tool and report back on the Duet3D for	orums.
s web app is fully open-source and licensed under the terms of the GPLv3. Check out GitHub for the source files.	

2. 主板参数和机械参数的设置

主板类型选择 Duet2 WiFi, 固件版本一般为默认(若使用版本的较旧,有下拉选项可选对应版本)选择所用机型的机构,和设置各轴的最大最小行程。

Board:			Firmware version:				
Duet 2 WiFi •			1.21 or newer	•			
Read config-override.g file at e Save print state on power failu		ocess					
Printer Geometry							
Cartesian CoreXY CoreXZ							
Cartesian CoreXY CoreXZ		Y minimum:			Z minimum:		
Cartesian CoreXY CoreXZ		Y minimum:	r	mm	Z mínimum:	mm	
Cartesian CoreXY CoreXZ	mm		į	mm		mm	
Cartesian CoreXY CoreXZ Cminimum:	mm	0		mm	0	mm	

3. 电机参数设置

电机的方向(Direction),最大速度与加速度(Max. Speed Change,Max Speed ,Acceleration)根据实际情况进行调节

细分设置(Microstepping (interpolation)): 主板为 TMC2660 驱动,最高可以用 256 细分,根据实际需求设置

脉冲设置(Steps per):可以点击脉冲设置框,设置电机,皮带,丝杆的对应参数,会生成一个对应的脉冲值。也可以通过公式自行计算设置

驱动电流(motor current):驱动芯片最大电流为 4000mA,设置不要超过或者太过接近于最大电流。 也应注意所使用电机的最大电流,进行设置。(过载或者满载可能造电 机或者芯片过热,影响造成运行)

挤出机设置(Extruders): 若使用的为双挤出头或者多挤出头,可以在这里增减(ADD Extruders,Remove Extruders)

电机闲置设置: 闲置电流(Idle Current Percentage): 在电机现在的情况下,电流会降低为你设置的把百分比。

闲置超时(Idle Timeout): 当电机超过你设置的时间没有动作,将会断开电流关闭电机(M84)。

Direction	Microstepping (interpolation)	Steps per mm	Max. Speed Change (mm/s)	Max. Speed (mm/s)	Accele- ration (mm/s²)	Motor Current (mA)	Motor Driver
Forwards ¢	x16 (on) •	80	15	100	500	800	0 (X) ¢
	interpolated to x256		0 8 3				
Forwards •	x16 (on) \$	80	15	100	500	800	1 (Y) •
	interpolated to x256						
Forwards ¢	x16 (on) •	4000	0.2	3	20	800	2 (Z) •
	interpolated to x256						
Direction	Microstepping (interpolation)	Steps per mm	Max. Speed Change (mm/s)	Max. Speed (mm/s)	Accele- ration (mm/s ²)	Motor Current (mA)	Motor Driver
Forwards •	x16 (on) •	420	2	20	250	800	3 (EO) Φ
	interpolated to x256						
Current Reduction	1	dle Current Perce	entage:	Idle	: Timeout:		
	Forwards ¢ Forwards ¢ Forwards ¢ Direction	Forwards \$\psi\$ \text{ (interpolation)} \\ \text{x16 (on)} \ \phi \\ \text{interpolated to x256} \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{interpolated to x256} \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{interpolated to x256} \\ \text{S} \text{S} \text{Microstepping (interpolation)} \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{Microstepping (interpolation)} \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{x16 (on)} \ \phi \\ \text{Forwards} \ \phi \ \text{Y16 (on)} \ \phi \\ \text{Y16 (on)} \phi \\ Y16 (on	Forwards \$\psi \text{x16 (on)} \phi \text{80} \\ interpolated to x256 Forwards \$\phi \text{x16 (on)} \phi \text{80} \\ interpolated to x256 Forwards \$\phi \text{x16 (on)} \phi \text{80} \\ interpolated to x256 Forwards \$\phi \text{x16 (on)} \phi \text{4000} \\ interpolated to x256 S Microstepping (interpolation) Steps per mm	Direction (interpolation) mm (mm/s) Forwards	Direction (interpolation) mm (mm/s) (mm/s) Forwards ♦ x16 (on) ♦ 80 15 100 Forwards ♦ x16 (on) ♦ 80 15 100 Forwards ♦ x16 (on) ♦ 4000 0.2 3 Interpolated to x256 Steps per mm Max. Speed Change (mm/s) Max. Speed (mm/s)	Direction (interpolation) mm (mm/s) (mm/s) (mm/s²) Forwards ♦ x16 (on) ♦ 80 15 100 500 Forwards ♦ x16 (on) ♦ 80 15 100 500 Forwards ♦ x16 (on) ♦ 4000 0.2 3 20 **S * Hadd **Direction Microstepping (interpolation) Steps per mm Max. Speed Change (mm/s) Max. Speed ration (mm/s²) **Forwards \$ x16 (on) \$ 420 2 20 250	Direction (interpolation) mm (mm/s) (mm/s) (mm/s²) (mA) Forwards ♦ x16 (on) • 80 15 100 500 800 Forwards • x16 (on) • 80 15 100 500 800 Forwards • x16 (on) • 4000 0.2 3 20 800 s + Add Extruder - Reference of the company of t

4.自动调平于限位设置

偏移值设置:调平开关相较于挤出头骗一下(XOffset,YOffset)

调平开关:设置开关的类型(Probe type),如果没有使用自动调平就选择 NO Z probe。使用自动调平的话,设置相应的参数。

限位设置: NC 为常闭, NO 为常开。NONE 为不使能限位。

Endstop Location:回零方向。

回零设置: 回零速度 (Homing speed)

5.温度功能设置

热床设置: 现在输出端口,温度控制调节(一般默认即可)

加热设置:设置最高温度(Temp limit),选择热敏传感器的类型。

6.双喷头设置

设置双喷头的偏移值,若单喷头,可以忽略此设置。

7.调平范围和点距

8. 网络设置

设置打印机还所连 WIFI 热点的名称和密码

9. 配置风扇参数及自定义指令

选择风扇的输出值和触发温度

配置文件自定义项(Custom Settings for config.g):若有自定义功能添加,可以直接在此添加代码进行定义。

10.配置文件生成与下载

如图所示

六. 配置文件更新和网页操作

配置文件的是同 sd 卡进行更新,且每次上电主板都会对配置进行读取,所以要保证每次上电 sd 卡上都是有配置文件的。文件目录需按要求进行设置

6.1 SD 卡文件目录

文件目录,每个文件夹不同类型的文件,按要求进行存放(可以直接下载目录,然后把 sys(配置文件)替换进去即可)

下载地址:

文件夹要按照要求设置。

Gcode 是专门放置 gcode 打印文件的文件夹

Macros: 放置触摸屏和固件所需的一些宏文件(一般默认是即可)

Sys: sys 即为上述的网页生成的配置文件(可以在网页生成后直接替换掉)

www: web 界面文件保存(一般默认即可)

6.2 上位机连接与设置

一般在 wifi 的账号与密码设置正确,且在 wifi 的范围之内的情况下,连接上位机后,或返回一个 IP, 即为主板 wifi 的 IP。

也可以通过上位机发送指令,对 wifi 的设置进行修改。

6.3 WIFI 指令设置

M997 S1 更新 WIFI 固件(wifi 的固件需放置在 sd 卡的 sys 文件夹中)若连接上位机后没有返回 IP,可能 wifi 设置不正常,或者不在范围之内

M552 S1 开启 WIFI(模块上的 led 点亮,若连接上位机后没有返回 IP,可能 wifi 设置不正常,或者不在范围之内)

M552 S0 关闭 WIFI (模块上 led 熄灭)

M587 S"WIFI 名称" P"密码" 添加 WIFI 网络到模块例: M587 S"mks2.4G" P"12345678"

(M587 指令需先执行 M552 S0 以关闭 WIFI, 通过 M588 指令对原先 wifi 移除, 再进行设置新的 wifi 名称和密码)

M588 S"WIFI 名称" 从列表移除该 WIFI,包括密码,SSID

6.4 网页连接

可以通过浏览器输入转对应的 ip, 进如控制界面。还需输入在配置文件设置的机器密码,方可进行控制。

6.5 配置文件修改

如果更新完固件和配置文件之后,还需要对参数进行重新调整的话。可以通过网页修改,或者通过 文档编辑器进行修改。(若对配置文件或者 G 代码不是很熟悉的情况,可在网页进行重新进行设置 生成配置文件,则可以不进行一下操作)。

1. 网页修改配置文件

在网页连接上打印机的情况下,可以读取的配置文件,可进行修改


```
Editing 0:/sys/config.g
; General preferences
                             ; Send absolute coordinates...
G90
                             ; ...but relative extruder moves
M83
M555 P2
                              ; P1; like RepRapFirmare P2; like Marlin
M575 P1 B115200 S1
                             ; MKS TET
                              ; Set machine name
M550 P"My printer"
                               ; Set password
M551 P"makerbase"
M552 S1
                              ; Enable network
;** Access point is configured manually via M587
M586 PO S1
                            ; Enable HTTP
                              ; Disable FTP
M586 P1 S0
                             ; Disable Telnet
M586 P2 S0
; Drives
                             ; Drive O goes forwards
M569 PO S1
M569 P1 S1
                             ; Drive 1 goes forwards
                              ; Drive 2 goes backwards
M569 P2 S0
M569 P3 S1
                              ; Drive 3 goes forwards
M350 X256 Y256 Z256 E256 I1
                                 ; Configure microstepping with interpolation
                                                                                                                                                 X Cancel

✓ Save Changes
```

2. Notepad++

也可以通过编辑器 Notepad++进行编辑,后保存到 sd 卡,插到主板进行更新亦可。

适合代码比较熟悉的人群进行修改,编辑完进行保存

详细对应可参考网址:

配置说明

https://duet3d.dozuki.com/Wiki/ConfiguringRepRapFirmwareCartesianPrinter

硬件说明

https://duet3d.dozuki.com/Wiki/Hardware_Overview

七 技术支持及保证

- 1. 发货前会做通电测试,保证可以正式使用才发货。
- 2. 欢迎各位朋友加入讨论群: 232237692
- 3. 欢迎光临博客交流: http://flyway97.blog.163.com
- 4. 3D打印机主板定制, 联系黄生: 13148932315 谭生: 15521395023 彭生: 13427595835
- 5. 有问题可联系我们客服或者在群里找技术支持人员,我们将竭诚为您服务

创客基地官网

创客基地淘宝