Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Разработка интернет приложений»

Отчет по лабораторной работе №6 «Анализ и прогнозирование временного ряда»

Выполнил:

студент группы ИУ5-62Б Васильченко Дарья Проверил:

преподаватель каф. ИУ5 Гапанюк Ю.Е.

Описание задания:

- 1. Выберите набор данных (датасет) для решения задачи прогнозирования временного ряда.
- 2. Визуализируйте временной ряд и его основные характеристики.
- 3. Разделите временной ряд на обучающую и тестовую выборку.
- 4. Произведите прогнозирование временного ряда с использованием как минимум двух методов.
- 5. Визуализируйте тестовую выборку и каждый из прогнозов.
- 6. Оцените качество прогноза в каждом случае с помощью метрик.

Лабораторная работа №6: "Анализ и прогнозирование временного ряда".

```
In [2]:
          import numpy as np
          import pandas as pd
          from matplotlib import pyplot
          import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
          from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
          from statsmodels.tsa.arima.model import ARIMA
          from sklearn.model selection import GridSearchCV
          from gplearn.genetic import SymbolicRegressor
          \textbf{from} \ \ \textbf{statsmodels.graphics.tsaplots} \ \ \textbf{import} \ \ \textbf{plot\_acf}, \ \ \textbf{plot\_pacf}
        Использован датасет, содержащий данные об изменении численности населения: https://www.kaggle.com/datasets/census/population-time-series-data?
        datasetId=51748&sortBy=voteCount
In [4]: | data = pd.read_csv('POP.csv')
          data.head()
Out[4]: realtime_start value
                                      date realtime end
         0 2019-12-06 156309.0 1952-01-01
                                               2019-12-06
         1 2019-12-06 156527.0 1952-02-01
         2 2019-12-06 156731.0 1952-03-01
                                               2019-12-06
         3 2019-12-06 156943.0 1952-04-01
                                              2019-12-06
           2019-12-06 157140.0 1952-05-01 2019-12-06
        Проигнорируем данные о реальном времени, поскольку мы концентрируемся только на диапазоне дат, в котором меняется население.
         data = data.drop(['realtime_start','realtime_end'],axis=1)
In [6]:
          """Преобразование столбца даты в объект datetime и установка его в качестве индекса"""
          data['date'] = pd.to_datetime(data['date'])
          data.set_index('date',inplace=True)
          data.head()
                       value
               date
         1952-01-01 156309.0
         1952-02-01 156527.0
         1952-03-01 156731.0
         1952-04-01 156943.0
         1952-05-01 157140.0
         data.describe()
Out[7]:
                       value
         count
                  816.000000
         mean 243847.767826
           std 50519.140567
           min 156309.000000
          25% 201725.250000
          50% 239557.500000
          75% 289364.250000
          max 330309.946000
        Визуализация временного ряда
          fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Временной ряд в виде графика')
          data.plot(ax=ax, legend=False)
          pyplot.show()
```

Временной ряд в виде графика


```
In [9]:
    for i in range(1, 5):
        fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(5,4))
        fig.suptitle(f'Jar nopядка {i}')
        pd.plotting.lag_plot(data, lag=i, ax=ax)
        pyplot.show()
```

Лаг порядка 1

Лаг порядка 2

Лаг порядка 3


```
In [10]:

fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Автокорреляционная диаграмма')
pd.plotting.autocorrelation_plot(data, ax=ax)
pyplot.show()
```


Автокорреляционная функция

In [42]: plot_acf(data, lags=100)
 plt.tight_layout()

Частичная автокорреляционная функция

In [40]: plot_pacf(data, lags=30)
 plt.tight_layout()

Декомпозиция временного ряда

```
In [14]:
    decomposed = seasonal_decompose(data['value'], model = 'add')
    fig = decomposed.plot()
```


Наблюдается положительная динамика с 1952 по 2019 год.

Разделение временного ряда на обучающую и тестовую выборку

```
In [15]: data_2 = data.copy()

In [16]: # Целочисленная метка шкалы βремени xnum = list(range(data_2.shape[0])) # Paзделение выборки на обучающую и тестовую Y = data_2['value'].values train_size = int(len(Y) * 0.7) xnum_train, xnum_test = xnum[0:train_size], xnum[train_size:] train, test = Y[0:train_size], Y[train_size:] history_arima = [x for x in train]
```

Прогнозирование временного ряда авторегрессионным методом (ARIMA)

```
In [17]:
           # Параметры модели (p,d,q)
           arima\_order = (2,1,0)
           # Формирование предсказаний
           predictions_arima = list()
           for t in range(len(test))
               model_arima = ARIMA(history_arima, order=arima_order)
               model_arima_fit = model_arima.fit()
yhat_arima = model_arima_fit.forecast()[0]
               predictions_arima.append(yhat_arima)
           history_arima.append(test[t])
# Вычисление метрики RMSE
           error_arima = mean_squared_error(test, predictions_arima, squared=False)
In [18]:
           # Ошибка прогноза
           np.mean(Y), error_arima
Out[18]: (243847.7678259804, 24.173499535797916)
In [19]:
           # Записываем предсказания в DataFrame
           data_2['predictions_ARIMA'] = (train_size * [np.NAN]) + list(predictions_arima)
In [20]:
           fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
           fig.suptitle('Предсказания временного ряда')
           data_2.plot(ax=ax, legend=True)
```

Предсказания временного ряда


```
In [21]:

fig, ax = pyplot.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5))
fig.suptitle('Предсказания временного ряда (тестовая выборка)')
data_2[train_size:].plot(ax=ax, legend=True)
pyplot.show()
```

Предсказания временного ряда (тестовая выборка)

Прогнозирование временного ряда методом символьной регресии

/usr/local/lib/python3.7/dist-packages/sklearn/utils/validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

y = column_or_id(y, warn=irue)						
ı	Populat:	ion Average		Best Individual		
Gen	Length	Fitness	Length	Fitness	00B Fitness	Time Left
0	263.65	2.43463e+63	23	7.14077e+09	N/A	2.77m
1	130.98	5.77055e+16	43	6.06688e+09	N/A	1.13m
2	53.10	4.58992e+15	34	3.54847e+09	N/A	39.70s
3	34.28	1.99853e+19	13	1.42699e+09	N/A	32.05s
4	35.05	2.10424e+16	38	1.04052e+09	N/A	31.71s
5	30.47	2.56729e+16	36	4.29436e+08	N/A	29.49s
6	31.30	3.00498e+16	50	6.39791e+07	N/A	30.52s
7	38.37	8.59782e+15	35	1.51165e+07	N/A	30.47s
8	43.37	5.29474e+15	47	4.76034e+06	N/A	30.80s
9	37.70	8.42452e+15	35	4.14545e+06	N/A	27.96s
10	40.68	5.69103e+15	32	3.65059e+06	N/A	30.63s
11	45.38	5.71108e+15	29	3.65015e+06	N/A	29.93s
12	41.36	5.72894e+15	29	3.65015e+06	N/A	29.92s
13	35.07	3.58233e+15	29	3.65015e+06	N/A	25.72s
14	33.33	8.46569e+15	35	3.53261e+06	N/A	25.03s
15	31.43	3.14997e+19	35	3.53261e+06	N/A	24.63s
16	30.19	1.42657e+16	35	3.53261e+06	N/A	22.80s
17	30.81	2.81228e+15	35	3.53261e+06	N/A	24.42s
18	33.31	5.72757e+15	35	3.53261e+06	N/A	23.06s
19	33.71	1.26632e+16	35	3.50395e+06	N/A	22.17s
20	34.95	1.70198e+16	35	3.50395e+06	N/A	22.53s
21	42.21	6.70957e+15	35	3.50395e+06	N/A	24.04s
22	54.68	6.78469e+15	35	3.50395e+06	N/A	24.09s
23	50.99	6.47928e+18	102	3.50387e+06	N/A	23.79s
24	42.69	8.57551e+15	71	3.50376e+06	N/A	20.67s
25	59.07	6.73374e+21	85	3.49756e+06	N/A	23.04s
26	89.07	1.51918e+25	85	3.49756e+06	N/A	26.59s
27	100.70	2.98833e+18	91	3.48956e+06	N/A	28.13s
28	120.58	7.92131e+23	91	3.48956e+06	N/A	31.64s
29	142.26	1.91023e+18	127	3.48498e+06	N/A	33.27s
30	116.37	6.9315e+21	54	3.46676e+06	N/A	35.69s

```
31
       103.96
                    2.33782e+22
                                        54
                                                 3.46676e+06
                                                                            N/A
                                                                                    34.645
       107.16
                    2.82439e+18
                                        54
                                                 3.46676e+06
                                                                            N/A
                                                                                    26.50s
  32
  33
       110.56
                    4.95099e+26
                                       112
                                                 3.45858e+06
                                                                            N/A
                                                                                    25.78s
                                                 3.45249e+06
        94.20
                    1.96986e+18
                                       114
                                                                            N/A
                                                                                    22.815
  35
        77.71
                     6.0703e+15
                                       133
                                                 3.43034e+06
                                                                            N/A
                                                                                    19.76s
                    5.62717e+15
                                                 3.42948e+06
                                                                                    23.33s
       111.25
                                        79
                                                                            N/A
  36
                      1.4552e+18
       142.44
                                       246
                                                 3.41658e+06
                                                                            N/A
                                                                                    24.40s
  38
                                                 3.36822e+06
       171.28
                     3.11029e+19
                                       187
                                                                                    26.25s
                                                                            N/A
  39
       197.58
                     2.8446e+16
                                       187
                                                 3.36419e+06
                                                                            N/A
                                                                                    27.93s
                                                 3.35931e+06
                    1.12226e+16
                                                                            N/A
                                                                                    28.03s
  40
       213.08
                                       212
                     7.07447e+17
                                                 3.35563e+06
                                                                            N/A
                                                                                    25.74s
  42
       200.58
                    9.48793e+19
                                       308
                                                 3.25166e+06
                                                                            N/A
                                                                                    25.51s
  43
       203.16
                     6.9535e+17
                                       308
                                                 3.24914e+06
                                                                            N/A
                                                                                    24.90s
       271.65
                    2.48275e+15
                                                 3.17665e+06
                                                                                    28.32s
  44
                                       434
                                                                            N/A
       340.95
                    1.45248e+18
                                       434
                                                 3.17665e+06
  46
       407.23
                     2.9286e+14
                                       874
                                                 3.13466e+06
                                                                            N/A
                                                                                    34.04s
                                      857
  47
       475.59
                    8.20919e+13
                                                 3.13086e+06
                                                                            N/A
                                                                                    36.51s
                     6.58531e+17
                                                  3.1245e+06
                                                  3.1232e+06
                                                                                    54.96s
       871.75
                     5.67064e+14
                                      1140
  50
      1008.67
                    1.44739e+18
                                      1126
                                                 3.11533e+06
                                                                            N/A
                                                                                    59.475
  51
      1040.20
                    8.00984e+13
                                      1337
                                                  3.1087e+06
                                                                            N/A
                                                                                    57.75s
      1087.90
                     4.8939e+10
                                      1352
                                                 3.10262e+06
                                                                                    56.91s
                     6.88053e+18
                                                 3.09244e+06
  53
      1212.74
                                      1338
                                                                            N/A
                                                                                    58.22s
  54
      1332.59
                    9.76027e+14
                                      1324
                                                 3.09015e+06
                                                                            N/A
                                                                                    59.025
  55
      1375.70
                     4.2908e+14
                                      1361
                                                 3.08045e+06
                                                                                    57.03s
                                                                            N/A
      1400.24
                    4.21109e+14
                                      1622
                                                 3.07579e+06
                                                                                    53.43s
      1485.49
                     3.56926e+14
                                      1361
                                                  3.0712e+06
                                                                                    56.32s
  57
                                                                            N/A
  58
      1565.07
                    5.99454e+17
                                      1379
                                                 3.06568e+06
                                                                            N/A
                                                                                    58.10s
      1519.96
                    1.18494e+10
                                                 3.05779e+06
  59
                                      1452
                                                                            N/A
                                                                                    44.29s
                                                 3.05779e+06
      1441.96
                    3.61367e+14
                                      1452
                                                                                    37.90s
  60
                                                                            N/A
                                                                                    36.405
  61
      1484.91
                    3.60553e+14
                                      1441
                                                 3.04915e+06
                                                                            N/A
                                      1441
  62
      1502.33
                    8.71965e+13
                                                 3.04637e+06
                                                                            N/A
                                                                                    32.50s
                     5.11657e+12
                                                                                    27.78s
  63
      1499.87
                                                 3.04262e+06
                                                                            N/A
      1457.59
                    3.97956e+14
                                      1453
                                                 3.03789e+06
  64
                                                                            N/A
                                                                                    21.46s
  65
      1514.59
                    3.44098e+14
                                      1735
                                                 3.03427e+06
                                                                            N/A
                                                                                    20.76s
  66
      1597.79
                    6.70466e+14
                                      1728
                                                 3.02874e+06
                                                                            N/A
                                                                                    14.12s
      1652.89
                     3.52673e+14
                                                 3.02842e+06
                                                                            N/A
                                                                                     9.83s
  68
      1696.85
                    3.44312e+14
                                      1728
                                                 3.02504e+06
                                                                            N/A
                                                                                     4.99s
  69
      1756.59
                    5.96419e+17
                                      1817
                                                 3.01702e+06
                                                                            N/A
                                                                                     0.00s
SymbolicRegressor(const_range=(-100, 100),
function_set=['add', 'sub', 'mul', 'div', 'sin'],
```

generations=70, init_depth=(4, 10), metric='mse population_size=500, random_state=0, stopping_criteria=0.01, verbose=1)

In [24]:

print(SR. program)

X0)), sub(add(X0, X0), add(add(add(X0, X0), X0), sin(X0)))), 51.302), add(X0, X0)))), add(add(add(add(add(Add(X0, X0), Add(X0, X0), X0)), sin(mul(sub(-36.019, -77.644), add(add(add(add(add(Add(Add(X0, 51.302), add(Add(X0, X0), X0)), add(X0, X0))))), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(Add(Add(X0, 51.302), 51.302), add(Add(X0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(Add(Add(Add(Add(Add(X0, 51.302), 51.302), add(Add(X0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), Add(Add(Add(Add(Add(X0, X0), X0)), Add(X0, X0))))), sin(mul(Sub(-36.019, -77.644), Add(Add(Add(Add(X0, X0), X0)), Add(X0, X0))))), sin(mul(Sub(-36.019, -77.644), Add(Add(Add(Add(Add(Add(X0, X0), X0)), Add(X0, X0)))))), sin(mul(Sub(-36.019, -77.644), Add(Add(Add(Add(Add(Add(X0, X0), X0)), Add(X0, X0)))))), sin(mul(Sub(-36.019, -77.644), Add(Add(Add(Add(Add(Add(X0, X0), X0)), Add(X0, X0)))))), sin(mul(Sub(-36.019, -77.644), Add(Add(Add(Add(Add(X0, X0), X0)), Add(X0, X0)))))))), sin(mul(Sub(-36.019, -77.644), Add(Add(Add(Add(Add(X0, X0), X0)))))))))))) X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0)))), sin(mul(sub(-36.019, 8.619, -77.644)), Sub(add(X0, X0)), add(X0, X0)), add(X0, X0))), sin(X0))))))), 51.302), add(add(X0, X0)), Sin(X0))))), 51.302), add(X0, X0)))), sin(X0))))), 51.302), add(Add(X0, X0))), sin(X0)))), sin(X0))), add(X0, X0)), add(X0, X0)))), sin(X0)))), sin(X0)))), sin(X0))), add(X0, X0)), add(X0, X0)))), sin(X0)))), sin(X0))), sin(X0)))), sin(X0))), add(X0, X0))), add(X0, X0)))), sin(X0))), sin(X0))), sin(X0))), add(X0, X0)))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), add(X0, X0)))), add(X0, X0)))), sin(X0))), sin(X0))), sin(X0))), add(X0, X0)))), sin(X0))), add(X0, X0))), add(X0, X0)))), sin(X0))), sin(X0))), add(X0, X0)))), sin(X0))), add(X0, X0))), add(X0, X0))), add(X0, X0)))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), sin(X0)))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), sin(X0)))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), sin(X0))), sin(X0)))), sin(X0))), sin 0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, X0), add(X0, sub(mul(add(add(X0, 51.302), add(add(X0, X0), X0)), a dd(X0, X0)), add(X0, X0)), sub(add(X0, X0), add(add(add(X0, X0), X0), sin(X0))))), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.64 4), add(add(add(X0, X0), add(add(add(X0, X0), X0), sin(X0))))), 51.302), add(X0, X 0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0)), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(Add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(X0, X0)), X0)), add(X0, X0)), add(X0, X0))), sin(mul(sub(-36.019, -77.644), add(add(Add(X0, X0)), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(X0, X0)), sub(add(X0, X0)), su 0), mul(55.353, mul(sub(-36.019, -77.644), add(add(x0, add(add(x0, x0), x0), x0), x0), xin(x0)))))), 51.302), add(x0, x0))))), sin(mu $d(X\emptyset, X\emptyset), X\emptyset)), \ add(add(X\emptyset, 51.302), X\emptyset)), \ add(X\emptyset, X\emptyset))))), \ sin(mul(sub(-36.019, -77.644), \ add(add(sin(X\emptyset), add(X\emptyset, X\emptyset))), \ add(X\emptyset, X\emptyset))))), \ sin(mul(sub(-36.019, -77.644), \ add(add(sin(X\emptyset), X\emptyset)), \ add(X\emptyset, X\emptyset)))))))$ (mul(sub(-36.019, -77.644), add(add(X0, X0), X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0)), add(X0, X0))), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, 51.302), add(add(X0, X0), X0)), add(X0, X0)))), sin(mul(sub(-36.019, -77.644), add(add(add(X0, X0), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(add(add(X0, X0), X0)), add(X0, X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0)))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0))))), sin(mul(sub(-36.019, -77.644), add(add(x0, X0), X0)))))

Предсказания временного ряда (тестовая выборка)


```
In [28]: error_SR = mean_squared_error(test, y_sr, squared=False)

In [29]: # Ошибка прогноза пр. mean(Y), error_SR

Out[29]: (243847.7678259804, 6510.330169456957)
```

Качество прогноза моделей

GPLEARN R^2: 0.8047153645391025 MSE: 6510.330169456957 MAE: 6443.710113418146

Вывод: Обе модели, ARIMA и GPLEARN, показали хороший результат. Лучшей по всем используемым метрикам оказалась модель ARIMA.