Analyse complexe

Séries de Dirichlet

Question 1/12

Théorème de la progression arithmétique de Dirichlet

Réponse 1/12

En posant
$$\zeta_{\mathbb{P},\alpha}(s) = \sum_{\substack{p \in \mathbb{P} \\ p \equiv \alpha[m]}} p^{-s},$$

$$\zeta_{\mathbb{P},\alpha}(s) - \frac{1}{\varphi(m)} \frac{1}{s-1} \text{ définie pour } \operatorname{Re}(s) > 1 \text{ se}$$
 prolonge en une fonction holomorphe au voisinage de 1 et $\{p \in \mathbb{P}, p \equiv \alpha \ [m]\}$ a une densité analytique de $\frac{1}{\varphi(m)}$

Question 2/12

Abscisse de convergence d'une série de Dirichlet

Réponse 2/12

$$\inf\left(\left\{\sigma\in\mathbb{C},\sum_{n=1}^{+\infty}a_n\sigma^n\text{ converge}\right\}\right)$$
 Une série de Dirichlet est holomorphe sur
$$\left\{\operatorname{Re}(z)>\sigma\right\}$$

Question 3/12

Équivalent de la série de Dirichlet
$$\sum_{n=1}^{\infty} a_n n^{-s}$$
 en $\operatorname{Re}(s) \to +\infty$

Réponse 3/12

$$\sum_{n=1}^{+\infty} a_n n^{-s} \underset{\text{Re}(s)\to+\infty}{\sim} a_{n_0} n_0^{-s} \text{ où}$$

$$n_0 = \min(\{n \in \mathbb{N}, a_n \neq 0\})$$

Question 4/12

Caractère de Dirichlet modulo N

Réponse 4/12

Morphisme de groupes
$$\chi: (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{*}$$

 χ est étendu à \mathbb{Z} par

$$\chi(n) = \begin{cases} \chi(\overline{n}) & \text{si } n \land N = 1\\ 0 & \text{sinon} \end{cases}$$

Question 5/12

Développement eulérien d'une série de Dirichlet associé à une fonction strictemene multiplicative bornée

Réponse 5/12

Pour
$$Re(z) > 1$$
,

$$\sum_{n=1}^{+\infty} a(n)n^{-s} = \prod_{p \in \mathbb{P}} (1 - a(p)p)^{-1}$$

Le produit infini converge sur tout compact de $\{\operatorname{Re}(s) > 1\}$

Question 6/12

Valeurs de σ et σ_{abs} pour (a_n) périodique non nulle

Réponse 6/12

$$\sigma_{\text{abs}} = 1, \ \sigma \in [0, 1]$$

$$\sigma = \begin{cases} 0 & \text{si } \sum_{n=1}^{N} a_n = 0 \\ 1 & \text{sinon} \end{cases}$$

Question 7/12

Théorème de Landau

Réponse 7/12

 $+\infty$

Si $\sum_{n=1}^{\infty} a_n n^{-s}$ est une série de Dirichlet à termes positifs avec une abscisse de convergence $+\infty$

$$\sigma \in \mathbb{R}$$
, alors $\sum_{n=1}^{\infty} a_n n^{-s}$ est définie et holomorphe sur le demi-plan $\{\operatorname{Re}(z) > \sigma\}$ et ne se prolonge analytiquement sur aucun voisinage de σ

Question 8/12

Abscisse de convergence d'une série de Dirichlet

Réponse 8/12

$$\inf \left(\left\{ \sigma \in \mathbb{C}, \sum_{n=1}^{+\infty} a_n \sigma^n \text{ converge absolument} \right\} \right)$$

Question 9/12

Densité naturelle

Réponse 9/12

$$A \subset \mathbb{P}$$
 admet une densité analytique $\delta \in [0,1]$

$$A \subset \mathbb{P}$$
 admet une densité analytique $\delta \in [0, 1]$ si $\lim_{x \to +\infty} \left(\frac{|\{p \in A, p \leqslant x\}|}{|\{p \in \mathbb{P}, p \leqslant x\}|} \right) = \delta$

Question 10/12

Développement eulérien d'une série de Dirichlet associé à une fonction multiplicative

Réponse 10/12

Pour
$$\operatorname{Re}(z) > \sigma_{\operatorname{abs}}$$
,
$$\sum_{n=1}^{+\infty} a(n) n^{-s} = \prod_{p \in \mathbb{P}} \left(\sum_{k=0}^{+\infty} a(p^k) p^{-ks} \right)$$

Question 11/12

Théorème des nombres premiers

Réponse 11/12

$$\pi(x) = |\{p \in \mathbb{P}, p \leqslant x\}|$$

$$\pi(x) \underset{x \to +\infty}{\sim} \frac{1}{\log(x)}$$

Question 12/12

Densité analytique

Réponse 12/12

Soit
$$\zeta_A(s) = \sum_{p \in A} p^{-s}$$
 (pour $\text{Re}(s) > 1$)

 $A \subset \mathbb{P}$ admet une densité analytique $\delta \in [0, 1]$

si
$$\lim_{s \to 1^+} \left(\frac{\zeta_A(s)}{\zeta_{\mathbb{P}}(s)} \right) = \delta$$