

General Description

The MAX4493/MAX4494/MAX4495 single/dual/quad general-purpose operational amplifiers are designed for use in systems powered with dual supplies from $\pm 2.25 \text{V}$ to $\pm 5.5 \text{V}$ or with a single supply of $\pm 4.5 \text{V}$ to $\pm 11 \text{V}$. These op amps provide a unity-gain bandwidth of 5MHz with only 770 μ A of quiescent current per amplifier. The wide input common-mode range extends from 200mV beyond the negative rail to within 1.5V of the positive supply rail while the output swings within 10mV (RI = 100k Ω) of either rail.

These amplifiers have excellent (110dB) open-loop gain with very low THD+N of 0.002% (f = 1kHz). The single MAX4493 is available in a tiny 5-pin SC70 package and the dual MAX4494 is available in the space-saving 8-pin SOT23. The quad MAX4495 is available in both 14-pin TSSOP and 14-pin SO packages. All products are rated at the automotive temperature range of -40°C to $+125^{\circ}\text{C}$.

Applications

Battery-Powered Systems
DAC Output Amplifiers
Industrial Control Systems
Voltage Reference Generators
Signal Conditioning

Typical Operating Characteristic

Typical Operating Circuit appears at end of data sheet.

Features

- ♦ 770µA Supply Current per Amplifier
- ♦ Operates from Dual ±2.25V to ±5.5V Supplies
- ♦ 5MHz Gain-Bandwidth Product
- ♦ Rail-to-Rail Output Swing
- ♦ Input Voltage Range Extends 200mV Below the Negative Rail
- ♦ 110dB Open-Loop Gain (R_L = 100kΩ)
- **♦** Low THD+N of 0.002% (f = 1kHz)
- ♦ No Phase Reversal for Overdriven Inputs
- ♦ Unity-Gain Stable
- Available in Space-Saving Packages
 5-Pin SC70 (MAX4493)
 8-Pin SOT23 (MAX4494)
 14-Pin TSSOP (MAX4495)

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4493AXK+T	-40°C to +125°C	5 SC70	ABR
MAX4493AXK/V+T	-40°C to +125°C	5 SC70	+AUE
MAX4493AUK+T	-40°C to +125°C	5 SOT23	ADPG
MAX4494AKA+T	-40°C to +125°C	8 SOT23	AAEM
MAX4494AKA/V+T	-40°C to +125°C	8 SOT23	+AEQP
MAX4494AUA+	-40°C to +125°C	8 µMAX	_
MAX4494ASA+	-40°C to +125°C	8 SO	_
MAX4495AUD+	-40°C to +125°C	14 TSSOP	_
MAX4495ASD+	-40°C to +125°C	14 SO	_

+Denotes a lead(Pb)-free/RoHS-compliant package. // denotes an automotive qualified part.

T = Tape and reel.

Pin Configurations

MIXIM

Maxim Integrated Products

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})+12V
Voltage from Any Pin to Ground or
Any Other Pin(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration to
V _{CC} , V _{EE} , or GroundContinuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
5-Pin SC70 (derate 3.1mW/°C above +70°C)247mW
5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW

8-Pin SOT23 (derate 9.1mW/°C above +70°C)	727mW
8-Pin µMAX® (derate 4.5mW/°C above +70°C)	362mW
8-Pin SO (derate 5.9mW/°C above +70°C)	471mW
14-Pin TSSOP (derate 9.1mW/°C above +70°C)	727mW
14-Pin SO (derate 8.3mW/°C above +70°C)	667mW
Operating Temperature Range40°C to	+125°C
Storage Temperature Range65°C to	
Lead Temperature (soldering, 10s)	+300°C

μΜΑΧ is a registered trademark of Maxim Integrated products, Inc.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 100k\Omega$ to ground, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range	Vs	Guaranteed by PSRR test	±2.25		±5.5	V
Quiescent Supply Current per Amplifier	Is			770	1100	μΑ
Input Offset Voltage	Vos	T _A = +25°C		0.3	5	mV
input Onset voitage	VOS	$T_A = T_{MIN}$ to T_{MAX}			10	IIIV
Input Offset Voltage Drift	TCVos			3		μV/°C
Input Offset Voltage Channel Matching		MAX4494 and MAX4495		1		mV
Input Bias Current	ΙΒ			0.2	1	μΑ
Input Offset Current	los			5	300	nA
		Differential mode (-1V \leq V _{IN} \leq +1V)		250		kΩ
Input Resistance	R _{IN}	Common mode (V_{EE} - 0.2V \leq $V_{CM} \leq$ V_{CC} - 1.5V)		110		МΩ
Common-Mode Input Voltage Range	V _{CM}	Guaranteed by CMRR test	V _{EE} - 0.2V		V _{CC} - 1.5V	V
Common-Mode Rejection Ratio	CMRR	V _{EE} - 0.2V ≤ V _{CM} ≤ V _{CC} - 1.5V	65	90		dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 2.25 V \text{ to } \pm 5.5 V$	65	80		dB
Large-Signal Voltage Gain	Avol	$R_L = 100$ k $Ω$, $V_{EE} + 0.25$ V \le $V_{OUT} \le$ $V_{CC} - 0.25$ V	85	110		dB
		$R_L = 1k\Omega$, $V_{EE} + 0.5V \le V_{OUT} \le V_{CC} - 0.5V$	65	90		
Output Voltage Swing	Vout	$R_L = 100k\Omega$, $V_{CC} - V_{OH}$ and $V_{OL} - V_{EE}$		10	150	mV
Output Voltage Swing	VOUT	$R_L = 1k\Omega$, $V_{CC} - V_{OH}$ and $V_{OL} - V_{EE}$		200	450	IIIV
Output Short-Circuit Current	Isc	Sourcing or sinking		15		mA

Note 1: All devices are 100% production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design and not production tested.

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 100k\Omega$ to ground, $C_L = 15pF, T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Gain-Bandwidth Product	GBWP		5	MHz
Full-Power Bandwidth	FPBW	$V_{OUT} = 5Vp-p$	190	kHz
Slew Rate	SR	V _{OUT} = 5Vp-p	3	V/µs
Phase Margin			75	degrees
Gain Margin			15	dB
Total Harmonic Distortion Plus Noise	THD+N	$f = 1kHz$, $V_{OUT} = 5Vp-p$, $A_V = +1V/V$	0.002	%
Settling Time to 0.01%	ts	$A_V = +1V/V$, $V_{OUT} = 5V$ step	4	μs
Input Capacitance	CIN		2	рF
Input Noise Voltage Density	eIN	f = 1kHz	8	nV/√ Hz
Input Noise Current Density	İIN	f = 1kHz	0.2	pA/√Hz
All-Hostile Crosstalk		f = 1kHz, MAX4494 and MAX4495	-100	dB
Capacitive-Load Stability		$A_V = +1V/V$, no sustained oscillations	300	рF
Power-Up Time	ton	V _{OUT} = 1V, 1µs power supply rise-time	3	μs

Typical Operating Characteristics

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, R_L = 100k\Omega$ to ground, $C_L = 15pF, T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, R_L = 100k\Omega$ to ground, $C_L = 15pF, T_A = +25^{\circ}C$, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, R_L = 100k\Omega$ to ground, $C_L = 15pF, T_A = +25^{\circ}C$, unless otherwise noted.)

SWING (RL TO VEE, VCC = +5V, VEE = -5V) 120 115 $R_I = 100k\Omega$ 110 LARGE-SIGNAL GAIN (dB) 105 $R_L = 10k\Omega$ 100 95 $R_L=1k\boldsymbol{\Omega}$ 90 85 80 9.2 8.8 10.0 TOTAL OUTPUT VOLTAGE SWING (VP-P)

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, V_{CM} = 0V, R_L = 100k\Omega$ to ground, $C_L = 15pF, T_A = +25^{\circ}C$, unless otherwise noted.)

POWER-UP TIME (VIN = +1V)

STABILITY vs. CAPACITIVE AND RESISTIVE LOADS

6 ______ /N/XI/N

Pin Description

	PIN			
MAX4493	MAX4494	MAX4495	NAME	FUNCTION
_	1	1	OUTA	Channel A Output
_	2	2	INA-	Channel A Inverting Input
_	3	3	INA+	Channel A Noninverting Input
_	7	7	OUTB	Channel B Output
_	6	6	INB-	Channel B Inverting Input
_	5	5	INB+	Channel B Noninverting Input
_	_	8	OUTC	Channel C Output
_	_	9	INC-	Channel C Inverting Input
_	_	10	INC+	Channel C Noninverting Input
_	_	14	OUTD	Channel D Output
_	_	13	IND-	Channel D Inverting Input
_	_	12	IND+	Channel D Noninverting Input
4	_		OUT	Output
1	_	_	IN+	Noninverting Input
3	_	_	IN-	Inverting Input
5	8	4	V _C C	Positive Supply
2	4	11	VEE	Negative Supply

Applications Information

Rail-to-Rail Output Stage

The MAX4493/MAX4494/MAX4495 output stage can drive up to 1k Ω and still swing within 200mV of the rails.

Capacitive-Load Stability

Driving large capacitive loads can cause instability in many op amps. The MAX4493/MAX4494/MAX4495 are

Figure 1. Capacitive Load Driving Circuit

stable with capacitive loads up to 300pF. The Capacitive-Load Stability graph in the *Typical Operating Characteristics* gives the stable operation region for capacitive versus resistive load. Stability with higher capacitive loads can be improved by adding an isolation resistor in series with the op-amp output, as shown in Figure 1. This resistor improves the circuit's phase margin by isolating the load capacitor from the amplifier's output. As seen in the *Typical Operating Characteristics*, driving capacitive loads with an isolation resistor exhibits some overshoot, but no oscillation.

Full-Power Bandwidth

The FPBW is given by:

$$FPBW(Hz) = \frac{SR}{\pi \left[V_{OUTp-p(max)}\right]}$$

where the slew rate (SR) is 3V/µs. Figure 2 shows the full-power bandwidth as a function of the peak-to-peak AC output voltage.

Power-Up Conditions

The MAX4493/MAX4494/MAX4495 typically settle within 3µs after power-up. See Power-Up Time in *Typical Operating Characteristics*.

Power Supplies and Layout

The MAX4493/MAX4494/MAX4495 operate with dual supplies from $\pm 2.25 V$ to $\pm 5.5 V$. Bypass both V_{CC} and V_{EE} with their own $0.1 \mu F$ capacitor to ground.

Good layout technique helps optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

Figure 2. Bandwidth vs. Peak-to-Peak AC Voltage Plot

Pin Configurations (continued)

Typical Operating Circuit

Chip Information

 $\begin{array}{c} R_{g} \\ \hline \\ 0.1\mu F \\ \hline \\ DAC \\ \hline \\ -5V \\ \end{array}$

PROCESS: Bipolar

TSSOP4.40mm.EPS

SC70, Low-Power, General-Purpose, Dual-Supply, Rail-to-Rail Op Amps

Package Information

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
14 TSSOP	U14-1	<u>21-0066</u>
5 SOT23	U5-1	<u>21-0057</u>
5 SC70	X5-1	<u>21-0076</u>
8 SO	S8-2	<u>21-0041</u>
8 SOT23	K8-5	<u>21-0078</u>
8 μMAX	U8-1	<u>21-0036</u>
14 SO	S14-1	<u>21-0041</u>

Package Information (continued)

SOT-23 5L

Package Information (continued)

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

SYMBOL INCHES MM MAX. MIN. MAX. A .053 .069 1.35 1.75 A1 .004 .010 0.10 0.25 b .014 .019 0.35 0.49 c .007 .010 0.19 0.25 E .150 .157 3.80 4.00 e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27 a. 0° 8° 0° 8° 8°	COMMON DIMENSIONS						
MIN. MAX. MIN. MAX. A .053 .069 1.35 1.75 AI .004 .010 0.10 0.25 b .014 .019 0.35 0.49 c .007 .010 0.19 0.25 E .150 .157 3.80 4.00 e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	CAMBUI	INC	HES	ММ			
AI .004 .010 0.10 0.25 b .014 .019 0.35 0.49 c .007 .010 0.19 0.25 E .150 .157 3.80 4.00 e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	SIMBUL	MIN.	MAX.	MIN.	MAX.		
b .014 .019 0.35 0.49 c .007 .010 0.19 0.25 E .150 .157 3.80 4.00 e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	Α	.053	.069	1.35	1.75		
c .007 .010 0.19 0.25 E .150 .157 3.80 4.00 e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	A1	.004	.010	0.10	0.25		
E .150 .157 3.80 4.00 e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	b	.014	.019	0.35	0.49		
e .050 BSC 1.27 BSC H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	С	.007	.010	0.19	0.25		
H .228 .244 5.80 6.20 L .016 .050 0.40 1.27	E	.150	.157	3.80	4.00		
L .016 .050 0.40 1.27	e	.050	BSC	1.27	BSC		
	Н	.228	.244	5.80	6.20		
a 10° 8° 10° 8°	L	.016	.050	0.40	1.27		
	α	0°	8*	0*	8*		

VARIATION A					
SYMBOL	INC	HES	М	М	
SIMBUL	MIN.	MAX.	MIN.	MAX.	
D	.189 .197 4.80 5.00				
N			3		
MS012		А	Α		
PKG. CODE	\$8-2, \$8-4, \$8-5, \$8-6F, \$8-7F, \$8-8F, \$8-10F, \$8-11F, \$8-16F				

VARIATION B					
SYMBOL	INC	HES	М	М	
SIMDUL	MIN.	MAX.	MIN.	MAX.	
D	.337	.344	8.55	8.75	
N	14				
MS012	AB				
PKG. CODE	\$14-1, \$14-4, \$14-5, \$14-6; \$14M-4, \$14M-5, \$14M-6, \$14M-7				

VARIATION C						
SYMBOL	INC	HES	М	М		
SIMBUL	MIN.	MAX.	MIN.	MAX.		
D	.386	.394	9.80	10.00		
N		16				
MS012	AC					
PKG. CDDE	\$16-1, \$16-3, \$16-5, \$16-6, \$16-8, \$16-7F, \$16-9F, \$16-10F; \$16M-3, \$16M-6					

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC # 10-0131.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.15 MM (.006') PER SIDE.
- LEADS TO BE COPLANAR WITHIN 0.10mm (.004").
- MEETS JEDEC MS012
- 6. ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND POFREE (+) PKG. CODES.

-DRAWING NOT TO SCALE-

21-0041

PACKAGE DUTLINE,

8L, 14L, 16L SDIC .150 INCH PPROVAL | DOCUMENT CONTROL NO.

Package Information (continued)

Package Information (continued)

_Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	10/08	Updated first paragraph of the General Description section	1
3	12/09	Added lead-free and automotive parts to Ordering Information	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.