N-body simulations of the Self–Confinement of Viscous Self–Gravitating Narrow Eccentric Planetary Ringlets

Joseph M. Hahn, Douglas P. Hamilton, Thomas Rimlinger, and Lucy Luu²

¹Space Science Institute

(Received not yet; Revised not yet; Accepted not yet)

Submitted to Somewhere, eventually

ABSTRACT

The following shows how narrow eccentric planetary ringlets can evolve into a self-confining state.

Keywords: editorials, notices — miscellaneous — catalogs — surveys — update, me

1. INTRODUCTION

Narrow eccentric planetary ringlets have properties both interesting and not well understood: sharp edges, sizable eccentricity gradients, and a confinement mechanism that inhibits radial spreading due to ring viscosity. Prevailing ringlet confinement mechanisms include: unseen shepherd satellites (reference), periapse pinch (ref), self gravity (ref), and self-confinement (ref). This study uses N-body simulations to show how narow self-gravitating ringlets can evolve into a self-confining state.

2. RINGLET CONFINEMENT MECHANISMS

This section explains the pros and cons of the various ringlet confinement mechanisms, and then motivates the possibility that ringlets are self-confining. That possibility is explored further via numerical simulations using the epi_int_lite N-body integrator.

3. EPI_INT_LITE

Epi_int_lite is a child of the epi_int N-body integrator that was used to simulate the outer edge of Saturn's B ring that is sculpted by satellite perturbations (Hahn & Spitale 2013). The new code is very similar to its parent but differs in three significant ways: (i.) epi_int_lite is written in python and recoded for more efficient execution, (ii.) epi_int_lite uses a more accurate drift step for unperturbed motion around an oblate planet (detailed in Appendix A), and (iii.) epi_int_lite uses the C = 1 approximation that is justified below (Appendix B).

Otherwise epi_int_lite's treatment of ring self-gravity and viscosity are identical to that used by the parent code; see Hahn & Spitale (2013) for additional details. The epi_int_lite source code is available

Corresponding author: Joseph M. Hahn

jhahn@spacescience.org

² University of Maryland

Hahn et al.

at https://github.com/joehahn/epi_int_lite, and the code's numerical quality is assessed in Appendix C where the output of several numerical experiments are compared against theoretical predictions.

Calculations performed by epi_int_lite use natural units with gravitation constant G=1, central primary mass M=1, and the ringlet's inner edge has initial radius $r_0=1$, and so the ringlet masses m_r and radii r quoted below are in units of M and r_0 . Converting code output from natural units to physical units requires choosing physical values for M and r_0 and multiplying accordingly, and when this text does so it assumes the primary's mass is Saturn's, $M=5.68\times 10^{29}$ gm, and a typical ring radius of $r_0=1.0\times 10^{10}$ cm.

4. N-BODY SIMULATIONS OF VISCOUS GRAVITATING RINGLETS

This Section describes a suite of N-body simulations of narrow viscous gravitating planetary ringlets, to highlight the range of initial ringlet conditions the do evolve into a self-confining state, and those that do not.

4.1. nominal model

This nominal model evolves into the self-confining state...

acknowledgments...

APPENDIX

A. APPENDIX A

Derive the more accurate drift step used by epi_int_lite...

B. APPENDIX B

Detail the C = 1 approximation used by epi_int_lite, and show that the errors associated with this approximation are negligable...

C. APPENDIX C

Compare epi_int_lite to theoretical predictions

C.1. radial spreading of viscous viscous

Show that ringlet viscosity causes circular non-gravitating ringlet to spread at the expected rate...

REFERENCES

Hahn, J. M., & Spitale, J. N. 2013, ApJ, 772, 122