$\ensuremath{\mathsf{PMATH352W18}}$ Complex Analysis - Class Notes

Johnson Ng

January 3, 2018

Contents

1 Lecture 1 - Jan 3, 2018		
	1.1 Complex Numbers and Their Properties	4

List of Definitions

1.1.1	Complex Number, Complex Plane	4
1.1.2	Sum and Product	4
1.1.3	Conjugate	7
1.1.4	Modulus	7

List of Theorems

Duanagitian 1 1 1	Dagie Incomelities	-
Proposition 1.1.1	basic mequanties	 1

Chapter 1

Lecture 1 - Jan 3, 2018

1.1 Complex Numbers and Their Properties

Definition 1.1.1 (Complex Number, Complex Plane)

A complex number is a vector in \mathbb{R}^2 . The complex plane, denoted by \mathbb{C} , is a set of complex numbers,

$$\mathbb{C} = \mathbb{R}^2 = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

In \mathbb{C} , we usually write

$$0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$i = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad x = \begin{pmatrix} x \\ 0 \end{pmatrix}$$
$$iy = \begin{pmatrix} 0 \\ y \end{pmatrix}$$

where $x, y \in \mathbb{R}$. Consequently, we have that

$$x + iy = x + yi = \begin{pmatrix} x \\ y \end{pmatrix}$$

If for $x, y \in \mathbb{R}$, z = x + iy, then x is aclled the real part of z and y is called the imaginary part of z, and we write

$$Re(z) = x \quad Im(z) = y.$$

Definition 1.1.2 (Sum and Product)

We define the sum of two complex numbers to be the usual vector sum, i.e.

$$(a+ib) + (c+id) = \binom{a}{b} + \binom{c}{d} = \binom{a+c}{b+d} = (a+c) + i(b+d)$$

where $a, b, c, d \in \mathbb{R}$.

We define the product of two complex numbers by setting $i^2 = -1$, and by requiring the product to be commutative, associative, and distributive over the sum. In this setup, we have that

$$(a+ib)(c+id) = ac + iad + ibc + i^2bd$$
$$= (ac - bd) + i(ad + bc)$$
(1.1)

Example 1.1.1

Let z = 2 + i, w = 1 + 3i. Find z + w and zw.

$$z + w = (2+i) + (1+3i)$$
$$= 3+4i$$

$$zw = (2+i)(1+3i)$$

= $(2-3) + i(6+1)$ By Equation (1.1)
= $-1 + 7i$

Example 1.1.2

Show that every non-zero complex number has a multiplicative inverse, z^{-1} , and find a formula for this inverse.

Let z = a + ib where $a, b \in \mathbb{R}$ with $a^2 + b^2 \neq 0$. Then

$$z(x+iy) = 1$$

$$\iff (ax - by) + i(ay + bx) = 1$$

$$\iff \begin{pmatrix} ax - by \\ ay + bx \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{a^2 + b^2} \begin{pmatrix} a \\ -b \end{pmatrix}$$

$$\iff x + iy = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$

Therefore, we have that the formula for the inverse is

$$(a+ib)^{-1} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$
(1.2)

Notation

For $z, w \in \mathbb{C}$, we write

$$-z = -1z$$
 $w - z = w + (-z)$
 $\frac{1}{z} = z^{-1}$ $\frac{w}{z} = wz^{-1}$

Example 1.1.3 Find $\frac{(4-i)-(1-2i)}{1+2i}$.

$$\frac{(4-i) - (1-2i)}{1+2i} = \frac{3+i}{1+2i}$$
$$= (3+i)(\frac{1}{5} - i\frac{2}{5})$$
$$= 1-i$$

Note

The set of complex numbers is a **field** under the operations of additiona and multiplication. This means that $\forall u, v, w \in \mathbb{C}$,

$$u + v = v + u uv = vu$$

$$(u + v) + w = u + (v + w) (uv)w = u(vw)$$

$$0 + u = u 1u = u$$

$$u + (-u) = 0 uu^{-1} = 1, u \neq 0$$

$$u(v + w) = uv + uw$$

Definition 1.1.3 (Conjugate)

If z = x + iy where $x, y \in \mathbb{R}$, then the **conjugate of** z is given by $\bar{z} = x - iy$

Example 1.1.4

Let z=3+4i. Then the $\bar{z}=3-4i$. Represented in the complex plane, we have the following:

Definition 1.1.4 (Modulus)

We define the **modulus** (length, magnitude) of $z = x + iy \in \mathbb{C}, x, y \in \mathbb{R}$, to be

$$|z| = \sqrt{x^2 + y^2} \in \mathbb{R}.\tag{1.3}$$

Note

For $z, w \in \mathbb{R}$, we have

but note that $|z+w| \neq |z| + |w|$.

Proposition 1.1.1 (Basic Inequalities)

1.
$$|\text{Re}(z)| \le |z|$$

- 2. $|\text{Im}(z)| \le |z|$
- 3. $|z+w| \le |z| + |w|$ Triangle Inequality
- 4. $|z+w| \ge ||z| |w||$ Inverse Triangle Inequality

Proof

Note that $|z|^2 = \text{Re}(z)^2 + \text{Im}(z)^2$ and that we can express $|x| = \sqrt{x^2}$ for any $x \in \mathbb{R}$. 1 and 2 immediately follows from that.

To prove 3, we have that

$$|z + w|^{2} = (z + w)(\bar{z} + \bar{w})$$

$$= |z|^{2} + |w|^{2} + (w\bar{z} + \bar{w}z)$$

$$= |z|^{2} + |w|^{2} + 2\operatorname{Re}(w\bar{z})$$

$$\leq |z|^{2} + |w|^{2} + 2|w\bar{z}| \quad by \ 1$$

$$= |z|^{2} + |w|^{2} + 2|wz| \quad since \ |w\bar{z}| = |w| |\bar{z}| \quad and \ |z| = |\bar{z}|$$

$$= (|z| + |w|)^{2}$$

To prove 4, note that

$$|z| = |z + w - w| \le |z + w| + |w| \tag{1.4}$$

$$|w| = |w + z - z| \le |z + w| + |z| \tag{1.5}$$

Observe that

Equation (1.4)
$$\Longrightarrow |z| - |w| \le |z + w|$$

Equation (1.5) $\Longrightarrow |w| - |z| \le |z + w|$

Thus, we have that

$$|z+w| \ge ||z| - |w||$$

as required.

Example 1.1.5

We may describe a set $\{z \in \mathbb{C} : |z-i|=1\}$ as follows:

Let $a,b\in\mathbb{C}$ describe the set $\{z\in\mathbb{C}:|z-a|<|z-b|\}.$