Bayes Classifiers

PROF XIAOHUI XIE SPRING 2019

CS 273P Machine Learning and Data Mining

Machine Learning

Bayes Classifiers

Naive Bayes Classifiers

Bayes Error

Gaussian Bayes Classifiers

A basic classifier

- Training data D={x⁽ⁱ⁾,y⁽ⁱ⁾}, Classifier f(x; D)
 - Discrete feature vector x
 - f(x; D) is a contingency table
- Ex: credit rating prediction (bad/good)
 - X_1 = income (low/med/high)
 - How can we make the most # of correct predictions?

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

A basic classifier

- Training data D={x⁽ⁱ⁾,y⁽ⁱ⁾}, Classifier f(x; D)
 - Discrete feature vector x
 - f(x; D) is a contingency table
- Ex: credit rating prediction (bad/good)
 - X_1 = income (low/med/high)
 - How can we make the most # of correct predictions?
 - Predict more likely outcome for each possible observation

Features	# bad	# good
X=0	42	15
X=1	338	287
X=2	3	5

A basic classifier

- Training data D={x⁽ⁱ⁾,y⁽ⁱ⁾}, Classifier f(x; D)
 - Discrete feature vector x
 - f(x; D) is a contingency table
- Ex: credit rating prediction (bad/good)
 - $-X_1 = income (low/med/high)$
 - How can we make the most # of correct predictions?
 - Predict more likely outcome for each possible observation
 - Can normalize into probability:p(y=good | X=c)
 - How to generalize?

Features	# bad	# good
X=0	.7368	.2632
X=1	.5408	.4592
X=2	.3750	.6250

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = ?
- P(F|H) = ?

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = p(F) p(H|F)= (1/2) * (1/40) = 1/80
- P(F|H) = ?

- Two events: headache, flu
- p(H) = 1/10
- p(F) = 1/40
- p(H|F) = 1/2
- P(H & F) = p(F) p(H|F)= (1/2) * (1/40) = 1/80
- P(F|H) = p(H & F) / p(H)= (1/80) / (1/10) = 1/8

Classification and probability

- Suppose we want to model the data
- Prior probability of each class, p(y)
 - E.g., fraction of applicants that have good credit
- Distribution of features given the class, p(x | y=c)
 - How likely are we to see "x" in users with good credit?
- Joint distribution

$$p(y|x)p(x) = p(x,y) = p(x|y)p(y)$$

Bayes Rule:

$$\Rightarrow \quad p(y|x) = p(x|y)p(y)/p(x)$$
 (Use the rule of total probability to calculate the denominator!)
$$= \frac{p(x|y)p(y)}{\sum_{c} p(x|y=c)p(y=c)}$$

Bayes classifiers

- Learn "class conditional" models
 - Estimate a probability model for each class
- Training data, D
 - Split by class, $D_c = \{ x^{(j)} : y^{(j)} = c \}$
- Estimate p(x | y=c) using D_c
- For a discrete x, this recalculates the same table...

Features	# bad	# good	
X=0	42	15	
X=1	338	287	
X=2	3	5	

p(x y=1)	
15 / 307	_
287 / 307	
5 / 307	
	287 / 307

p(y=0 x)	p(y=1 x)
.7368	.2632
.5408	.4592
.3750	.6250

p(y)	383/690	307/690
------	---------	---------