1. Use the inverse matrix method without the aid of the calculator to solve the system $\begin{cases} x + 3y = 7 \\ 4x - y = 2 \end{cases}$

$$\begin{pmatrix} 1 & 3 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 3 \\ 4 & -1 \end{pmatrix}, |A| = -1 - 12 = -13$$

So
$$A^{-1} = -\frac{1}{13} \begin{pmatrix} -1 & -3 \\ -4 & 1 \end{pmatrix}$$

Therefore,
$$\begin{pmatrix} x \\ y \end{pmatrix} = -\frac{1}{13} \begin{pmatrix} -1 & -3 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 7 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

2. Draw all the non-isomorphic trees on six vertices. How many isomers does hexane (C_6H_{14}) have?

A very very little point, the C and H in the parenthesis should not be in math mode.

3. Let A = (0,0) and B = (6,0). If AP : PB = 2 : 1, show that the locus of P is a circle and find its centre and radius.

According to the Apollonius' Cirlce Theorem, since $\frac{AP}{PB} = 2$, the locus of P is a circle.

Let
$$OB = x$$
, then $P_2A = 2P_2B$, $6 + x + x + 2 = 2(x + x + 2)$, so $x = 2$.

 $OP_1 = 4$ with O at (8,0).

4. Use the limit comparison test to determine whether the series
$$\sum_{n=1}^{\infty} \frac{3n^2 - n}{\sqrt{n^6 + n^3}}$$
 converges or diverges.

$$\lim_{n \to \infty} \frac{3n^2 - n}{\sqrt{n^6 + n^3}}$$

$$= \lim_{n \to \infty} \frac{\frac{3n^2 - n}{n^2}}{\sqrt{\frac{n^6 + n^3}{n^4}}}$$

$$= \lim_{n \to \infty} \frac{3 - \frac{1}{n}}{\sqrt{2 + \frac{1}{n}}}$$

$$= \lim_{n \to \infty} \frac{3}{n}$$

Since
$$\lim_{n\to\infty} \frac{\frac{3n^2-n}{\sqrt{n^6+n^3}}}{\frac{3}{n}} = 1$$
, and the harmonic series $\sum_{n=1}^{\infty} \frac{3}{n}$ diverges, according to the limit comparison test, the series $\sum_{n=1}^{\infty} \frac{3n^2-n}{\sqrt{n^6+n^3}}$ diverges.

- 5. Consider the symmetric group (S_4, \circ) . Let A be the set of elements in S_4 that commute with (12)(3)(4).
 - (a) There are four elements in A. Write them down.

$$P1 = (1)(2)(3)(4)$$

$$P2 = (1)(2)(34)$$

$$P3 = (12)(3)(4)$$

$$P4 = (12)(34)$$

- (b) Construct the operation table for (A, \circ) . Does (A, \circ) form a group? Be sure to justify your answer.
 - (A, \circ) is an abelian group with associativity, identity element P1, elements inverse with themselves, and closed within P1, P2, P3, and P4.

0	P1	P2	Р3	P4
P1	P1	P2	Р3	P4
P2	P2	P1	P4	Р3
Р3	Р3	P4	P1	P2
P4	P4	Р3	P2	P1