Feedback — Problem Set-2

Help Center

You submitted this quiz on **Sat 7 Feb 2015 8:07 PM PST**. You got a score of **5.00** out of **5.00**.

Question 1

This question will give you further practice with the Master Method. Suppose the running time of an algorithm is governed by the recurrence $T(n)=9*T(n/3)+n^2$. What's the overall asymptotic running time (i.e., the value of T(n))? Note: If you take this quiz multiple times, you may see different variations of this question.

Your Answer	Score	Explanation
\bigcirc $ heta(n^{3.17})$		
\bigcirc $ heta(n^2)$		
$lacksquare heta(n^2 \log n)$	✓ 1.00	$a = b^d = 9$, so this is case 1 of the Master Method.
$\bigcirc \ heta(n \log n)$		
Total	1.00 / 1.00	

Question 2

Consider the following pseudocode for calculating \boldsymbol{a}^b (where a and b are positive integers)

```
FastPower(a,b) :
   if b = 1
    return a
```

```
otherwise

c := a*a

ans := FastPower(c,[b/2])

if b is odd

return a*ans

otherwise return ans
end
```

Here [x] denotes the floor function, that is, the largest integer less than or equal to x.

Now assuming that you use a calculator that supports multiplication and division (i.e., you can do multiplications and divisions in constant time), what would be the overall asymptotic running time of the above algorithm (as a function of b)?

Your Answer		Score	Explanation
\bigcirc $\Theta(\sqrt{b})$			
$lacksquare$ $\Theta(\log(b))$	~	1.00	Constant work per digit in the binary expansion of b.
$\bigcirc \Theta(b\log(b))$			
\bigcirc $\Theta(b)$			
Total		1.00 / 1.00	

Question Explanation

This gives you a nice way of raising a number to the power in multiplications much less than b. You can get the answer by looking at the binary expression for b.

Question 3

Let $0<\alpha<.5$ be some constant (independent of the input array length n). Recall the Partition subroutine employed by the QuickSort algorithm, as explained in lecture. What is the probability that, with a randomly chosen pivot element, the Partition subroutine produces a split in which the size of the smaller of the two subarrays is $\geq \alpha$ times the size of the original array?

Your Answer		Score	Explanation
$\bigcirc 1 - \alpha$			
\bigcirc 1 $-$ 2 * α	~	1.00	That's correct!
\bigcirc $2-2*lpha$			
<u> </u> α			
Total		1.00 / 1.00	

Question 4

Now assume that you achieve the approximately balanced splits above in every recursive call --- that is, assume that whenever a recursive call is given an array of length k, then each of its two recursive calls is passed a subarray with length between αk and $(1-\alpha)k$ (where $0<\alpha<.5$). How many recursive calls can occur before you hit the base case, as a function of α and the length n of the original input? Equivalently, which levels of the recursion tree can contain leaves? Express your answer as a range of possible numbers d, from the minimum to the maximum number of recursive calls that might be needed. [The minimum occurs when you always recurse on the smaller side; the maximum when you always recurse on the bigger side.]

Your Answer	Score	Explanation
$\bigcirc -rac{\log(n)}{\log(1-2stlpha)} \leq d \leq -rac{\log(n)}{\log(1-lpha)}$		
$\bigcirc 0 \leq d \leq -rac{\log(n)}{\log(lpha)}$		
$\bigcirc -rac{\log(n)}{\log(1-lpha)} \leq d \leq -rac{\log(n)}{\log(lpha)}$		

$$\boxed{ } - rac{\log(n)}{\log(lpha)} \leq d \leq - rac{\log(n)}{\log(1-lpha)}$$
 1.00 That's correct!

Question 5

Define the recursion depth of QuickSort to be the maximum number of successive recursive calls before it hits the base case --- equivalently, the number of the last level of the corresponding recursion tree. Note that the recursion depth is a random variable, which depends on which pivots get chosen. What is the minimum-possible and maximum-possible recursion depth of QuickSort, respectively?

Your Answer		Score	Explanation
$igotimes$ Minimum: $\Theta(\log(n))$; Maximum: $\Theta(n)$	~	1.00	The best case is when the algorithm always picks the median as a pivot, in which case the recursion is essentially identical to that in MergeSort. In the worst case the min or the max is always chosen as the pivot, resulting in linear depth.
$\Theta(\log(n))$; Maximum: $\Theta(n\log(n))$			
Minimum: $\Theta(1)$; Maximum: $\Theta(n)$			
Θ Minimum: $\Theta(\sqrt{n})$; Maximum: $\Theta(n)$			
Total		1.00 / 1.00	