

Data Science & Business Analytics

Machine Learning Models

David Issá davidribeiro.issa@gmail.com

1. Árvores de Decisão

1. Árvores de Decisão

- Algoritmos não paramétricos de supervised learning usados para classificação ou regressão.
- Uma das principais vantagens é o facto da solução do modelo representa um conjunto de regras, fáceis de interpretar.

1. Árvores de Decisão

- Algoritmos não paramétricos de supervised learning usados para classificação ou regressão.
- Uma das principais vantagens é o facto da solução do modelo representa um conjunto de regras, fáceis de interpretar.
- Em alguns problemas, estamos apenas interessados em obter a melhor precisão possível. Noutros, estamos mais interessados em compreender os resultados e a forma como o modelo está a produzir as estimativas!

Interpretabilidade

E se tivermos uma nova observação onde Age = 5 e Income =1?

Num problema de classificação, o objetivo é:

- Discriminar entre classes;
- Obter leaf nodes tão puras quanto possível;
- Idealmente, cada leaf node represente apenas observações de uma determinada classe.

1. Árvores de Decisão - Regressão

1. Árvores de Decisão – Regressão

Num problema de regressão, o objetivo é:

- Segmentar as variáveis independentes de modo a que as observações sejam o mais parecidas possíveis relativamente à variável a prever.
- O valor das leaf nodes devem ser o mais próximos possíveis das observações que a compõem.

1. Árvores de Decisão – Regras extraídas

- Cada branch adiciona uma conjunção (Λ);
- Cada leaf adiciona uma disjunção (V)
- \bigcirc \leftrightarrow (age < 3)
- $\triangle \leftrightarrow (age \ge 3) \land (income < 3) \land (age \ge 6)$
- $\land \leftrightarrow (age \ge 3) \land (income \ge 3) \land (age < 5)$
- lacktriangledown \leftrightarrow $(age \ge 3) \land (age \ge 5)$

- $\bigcirc \leftrightarrow (age < 3) \lor ((age \ge 3) \land (income < 3) \land (age < 6)) \lor ((age \ge 3) \land (income \ge 3) \land (age \ge 5))$
- $\land \Leftrightarrow ((age \ge 3) \land (income < 3) \land (age \ge 6)) \lor ((age \ge 3) \land (income \ge 3) \land (age < 5))$

1. Árvores de Decisão – Vantagens

- Interpretação: Compreender facilmente a razão subjacente à decisão;
- Insensível a factores de escala: Podem ser utilizados diferentes tipos de medidas sem necessidade de normalização;
- Definição automática das variáveis mais relevantes em cada caso;
- As variáveis mais relevantes aparecem na parte superior da árvore;
- As árvores de decisão são consideradas um método não paramétrico: não há suposições sobre a distribuição das variáveis.

1. Árvores de Decisão – Problemas

Exemplo: Classificação de celas

# núcleos	# caudas	Cor	Membrana	Classe
1	1	Clara	Fina	X
2	1	Clara	Fina	X
1	1	Clara	Grossa	X
1	1	Escura	Fina	X
1	1	Escura	Grossa	X
2	2	Clara	Fina	Υ
2	2	Escura	Fina	Υ
2	2	Escura	Grossa	Υ
2	1	Escura	Fina	Z
2	1	Escura	Grossa	Z
1	2	Clara	Fina	Z
1	2	Clara	Grossa	Z

Métrica discriminativa: mede o poder discriminativo de uma determinada variável em relação à variável alvo.

Poder discriminativo =
$$\frac{1}{n} \sum_{i=1}^{n} C_i$$

Onde:

- n é o número de observações;
- C_i é o número de observações classificadas com a classe mais frequente da variável alvo, para cada categoria i de uma determinada variável independente.

# núcleos	# caudas	Cor	Membrana	Classe
1	1	Clara	Fina	Χ
2	1	Clara	Fina	Χ
1	1	Clara	Grossa	Χ
1	1	Escura	Fina	Χ
1	1	Escura	Grossa	Χ
2	2	Clara	Fina	Υ
2	2	Escura	Fina	Υ
2	2	Escura	Grossa	Υ
2	1	Escura	Fina	Z
2	1	Escura	Grossa	Z
1	2	Clara	Fina	Z
1	2	Clara	Grossa	Z

Poder discriminativo =
$$\frac{4+3}{12}$$
 = 0.58

# núcleos	# caudas	Cor	Membrana	Classe
1	1	Clara	Fina	Χ
2	1	Clara	Fina	Χ
1	1	Clara	Grossa	Χ
1	1	Escura	Fina	X
1	1	Escura	Grossa	Χ
2	2	Clara	Fina	Υ
2	2	Escura	Fina	Υ
2	2	Escura	Grossa	Υ
2	1	Escura	Fina	Z
2	1	Escura	Grossa	Z
1	2	Clara	Fina	Z
1	2	Clara	Grossa	Z

2

5 ⊥ 2

Ζ

Usando o # de caudas:

Poder discriminativo = $\frac{5+3}{12}$ = 0.67

# núcleos	# caudas	Cor	Membrana	Classe
1	1	Clara	Fina	Х
2	1	Clara	Fina	Χ
1	1	Clara	Grossa	Χ
1	1	Escura	Fina	Χ
1	1	Escura	Grossa	Χ
2	2	Clara	Fina	Υ
2	2	Escura	Fina	Υ
2	2	Escura	Grossa	Υ
2	1	Escura	Fina	Z
2	1	Escura	Grossa	Z
1	2	Clara	Fina	Z
1	2	Clara	Grossa	Z

Poder discriminativo = $\frac{3+2}{12}$ = 0.41

# núcleos	# caudas	Cor	Membrana	Classe
1	1	Clara	Fina	Х
2	1	Clara	Fina	Χ
1	1	Clara	Grossa	X
1	1	Escura	Fina	X
1	1	Escura	Grossa	Χ
2	2	Clara	Fina	Υ
2	2	Escura	Fina	Υ
2	2	Escura	Grossa	Υ
2	1	Escura	Fina	Z
2	1	Escura	Grossa	Z
1	2	Clara	Fina	Z
1	2	Clara	Grossa	Z

Usando a membrana:

Membrana	Fina	Grossa
Х	3	2
Y	2	1
Z	2	2

Poder discriminativo =
$$\frac{3+2}{12}$$
 = 0.41

# núcleos	1	2
X	4	1
Y	0	3
Z	2	2

# caudas	1	2
X	5	0
Y	0	3
Z	2	2

Cor	Clara	Escura
Х	3	2
Y	1	2
Z	2	2

Membrana	Fina	Grossa
Χ	3	2
Υ	2	1
Z	2	2

0.58

0.67

0.41

0.41

Escolha: # caudas

# núcleos	Cor	Membrana	Classe
1	Clara	Fina	X
2	Clara	Fina	Χ
1	Clara	Grossa	X
1	Escura	Fina	X
1	Escura	Grossa	Χ
2	Escura	Fina	Z
2	Escura	Grossa	Z

# núcleos	Cor	Membrana	Classe
2	Clara	Fina	Υ
2	Escura	Fina	Υ
2	Escura	Grossa	Υ
1	Clara	Fina	Z
1	Clara	Grossa	Z

úcleos Cor Membrana		Classe
Clara	Fina	X
Clara	Fina	X
Clara	Grossa	X
Escura	Fina	X
Escura	Grossa	X
Escura	Fina	Z
Escura	Grossa	Z
	Clara Clara Clara Escura Escura Escura	Clara Fina Clara Fina Clara Grossa Escura Fina Escura Grossa Escura Fina

# núcleos	1	2
X	4	1
Y	0	0
Z	0	2

$$P.D=0.86$$

Cor	Clara	Escura
Х	3	2
Y	0	0
Z	0	2

$$P.D = 0.71$$

Membrana	Fina	Grossa
X	3	2
Y	0	0
Z	1	1

$$P.D = 0.71$$


```
X \leftrightarrow ((\#caudas = 1) \land (\#nucleos = 1)) \lor ((\#caudas = 1) \land (\#nucleos = 2) \land (cor = Clara))
Y \leftrightarrow ((\#caudas = 2) \land (\#nucleos = 2))
Z \leftrightarrow ((\#caudas = 2) \land (\#nucleos = 1)) \lor ((\#caudas = 1) \land (\#nucleos = 2) \land (cor = Escura))
```


2.1 Árvores de Classificação – CART

2.1 Árvores de Classificação - CART

- O algoritmo CART (Classification And Regression Trees) é o algoritmo usado pelo scikit-learn.
- Utiliza o Gini index para medir a "desordem" em cada variável independente:

$$Gini(D) = 1 - \sum_{i=1}^{n} p_i^2$$

Onde:

- D são os dados de treino para uma determinada classe de uma determinada variável;
- p_i é a probabilidade de uma observação em D pertencer à classe C_i da variável alvo, estimada por $C_{i,D}/D$;
- $C_{i,D}$ é o número de observações pertencentes à classe C_i e D.

2.1 Árvores de Classificação - CART

Começamos por calcular o grau de desordem na variável alvo:

$$Gini(D) = 1 - \sum_{i=1}^{n} p_i^2$$

• Se escolhermos a variável A para dividir o "nó" da árvore em v partições, então o grau de desordem é calculado através de:

$$Gini_A(D) = \sum_{j=1}^{v} \frac{D_j}{D} \times Gini(D_j)$$

 A partir do Gini index, podemos calcular o ganho de informação para uma determinada variável independente A:

$$Gain(A) = Gini(D) - Gini_A(D)$$

2.1 Árvores de Classificação – CART

Exemplo: compra de um computador

idade	rendimento	estudante	rating_crédito	compra_pc -	→ Variável depende
<= 30	elevado	não	médio	não	_
<= 30	elevado	não	excelente	não	
[31,,40]	elevado	não	médio	sim	
> 40	médio	não	médio	sim	
> 40	baixo	sim	médio	sim	
> 40	baixo	sim	excelente	não	
[31,,40]	baixo	sim	excelente	sim	
<= 30	médio	não	médio	não	
<= 30	baixo	sim	médio	sim	
> 40	médio	sim	médio	sim	
<= 30	médio	sim	excelente	sim	
[31,,40]	médio	não	excelente	sim	
[31,,40]	elevado	sim	médio	sim	
> 40	médio	não	excelente	não	

2.1 Árvores de Classificação - CART

$$Gini(D) = 1 - \sum_{i=1}^{n} p_i^2$$

$$Gini_{pc}(D) = Gini(9,5) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

2.1 Árvores de Classificação - CART

Calculando o Gini associado à variável idade:

idade	sim	não	Total	Gini	
<= 30	2	3	5	0.48	$Gini_{\leq 30}(D) = Gini(2,3) = 1 - (2/5)^2 - (3/5)^2 = 1$
[31,, 40]	4	0	4	0	$Gini_{[31,\dots,40]}(D) = Gini(4,0) = 1 - (4/4)^2 - (0/4)^2$
> 40	3	2	5	0.48	$Gini_{>40}(D) = Gini(3,2) = 1 - (3/5)^2 - (2/5)^2 =$

$$Gini_A(D) = \sum_{j=1}^{v} \frac{D_j}{D} \times Gini(D_j)$$

$$Gini_{idade}(D) = \frac{5}{14}Gini_{\leq 30}(3,2) + \frac{4}{14}Gini_{[31,\dots,40]}(4,0) + \frac{5}{14}Gini_{>40}(3,2) = 0.343$$

2.1 Árvores de Classificação – CART

$$Gain(A) = Gini(D) - Gini_A(D)$$

Assim, o ganho de informação na variável idade é:

$$Gain(idade) = Gini_{pc}(D) - Gini_{idade}(D) = 0.459 - 0.343 = 0.116$$

Se repetirmos o mesmo para as restantes variáveis:

$$Gain(rendimento) = 0.459 - 0.440 = 0.019$$

 $Gain(estudante) = 0.459 - 0.368 = 0.091$
 $Gain(crédito) = 0.459 - 0.429 = 0.03$

Idade é a variável com o maior ganho de informação, pelo que começamos com essa variável na segmentação da árvore.

2.1 Árvores de Classificação – CART

• Em alternativa ao Gini index, podemos usar a Entropy:

$$Entropy(D) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

• Se escolhermos a variável A para dividir o "nó" da árvore em v partições, então o grau de desordem é calculado através de:

$$Entropy_A(D) = \sum_{j=1}^{v} \frac{D_j}{D} \times Entropy(D_j)$$

 A partir do Gini index, podemos calcular o ganho de informação para uma determinada variável independente A:

$$Gain(A) = Entropy(D) - Entropy_A(D)$$

2.1 Árvores de Classificação - CART

$$Entropy(D) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

compra_pc
sim não
$$Entropy_{pc}(D) = E(9,5) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right)^2 - \frac{5}{14}\log_2\left(\frac{5}{14}\right)^2$$
9 5 = 0.940

2.1 Árvores de Classificação - CART

Calculando a Entropy associado à variável idade:

idade	sim	não	Total	Gini	
<= 30	2	3	5	0.48	$Entropy_{\leq 30}(D) = E(2,3) = -(2/5)log_2(2/5) - (3/5)log_2(3/5) = 0.971$
[31,, 40]	4	0	4	0	$Gini_{[31,\dots,40]}(D) = E(4,0) = -(4/4)log_2(4/4) - (0/4)log_2(0/4) = 0$
> 40	3	2	5	0.48	$Gini_{>40}(D) = E(3,2) = -(3/5)log_2(3/5) - (2/5)log_2(2/5) = 0.971$

$$Entropy_A(D) = \sum_{j=1}^{v} \frac{D_j}{D} \times Entropy(D_j)$$

$$Entropy_{idade}(D) = \frac{5}{14} E_{\leq 30}(3,2) + \frac{4}{14} E_{[31,\dots,40]}(4,0) + \frac{5}{14} E_{>40}(3,2) = 0.694$$

2.1 Árvores de Classificação – CART

$$Gain(A) = Entropy(D) - Entropy_A(D)$$

Assim, o ganho de informação na variável idade é:

$$Entropy(idade) = E_{pc}(D) - E_{idade}(D) = 0.940 - 0.694 = 0.246$$

Se repetirmos o mesmo para as restantes variáveis:

Entropy(rendimento) = 0.029Entropy(estudante) = 0.151

Entropy(crédito) = 0.048

Idade continua a ser a variável com o maior ganho de informação, pelo que começamos com essa variável na segmentação da árvore.

2.1 Árvores de Classificação – CART

idade	rendimento	estudante	crédito	compra_pc
[31,,40]	elevado	não	médio	sim
[31,,40]	baixo	sim	excelente	sim
[31,,40]	médio	não	excelente	sim
[31,,40]	elevado	sim	médio	sim

2.1 Árvores de Classificação – CART

- Na verdade, a árvore de decisão CART apenas cria ramos binários para uma determinada variável.
- Ou seja, no caso da variável Idade, não seriam criados 3 ramos, mas sim apenas 2... esta é uma das limitações deste algoritmo.
- Assim, antes de iniciarmos o treino do modelo, devemos transformar as variáveis categóricas em variáveis numéricas, por exemplo, através de one-hot encoding, obrigando a árvore a criar ramos binários.
- Algoritmos como o ID3, C4.5, C5 permitem a criação de mais de 2 ramos!

2.1 Árvores de Classificação - CART

Mas e se a variável Idade fosse numérica?

Então seria necessário determinar o melhor ponto de corte:

Ordenar os valores da variável;

 Cada ponto médio entre cada par de valores adjacentes é um possível ponto de corte;

• Avaliar a medida de grau de desorderm (Gini, Entropy, etc.) para as partições separadas por cada ponto de corte.

 Escolher o ponto de corte que produza o menor grau de desordem.

• Este grau de desordem (e ganho de informação) é comparado com o das restantes variáveis, como visto anteriormente.

21

David Issá – 2024

www.edit.com.pt

 Num problema de regressão, há alguns problemas que são fáceis de ajustar utilizando uma regressão linear:

- Para certos conjuntos de dados, devemos utilizar outros métodos que não a utilização de linhas rectas para fazer previsões.
- Uma opção é a árvore de regressão!
- Uma árvore de regressão é um tipo de árvore de decisão em que cada "leaf node" representa um valor numérico e não uma categoria discreta como nas árvores de decisão de classificação.

 Quando temos mais de 2 preditores, tais como a idade, o número de filhos e o número de meses como cliente, prever o dinheiro montante através de um gráfico é muito difícil, se não impossível...

Idade	#Filhos	#Meses como Cliente		Montante gasto
18	0	1	•••	5
22	1	1		7
23	0	3		6
27	2	2		68
34	3	2		72
38	2	3		69
43	1	2		77
45	0	1	•••	48
48	3	2		42
53	2	1	•••	16
57	3	3	•••	18
64	1	2		14

- A primeira coisa a fazer, tal como nas árvores de classificação, é decidir qual a variável com menos "grau de desordem" para começar a utilizar na árvore.
- Mas como decidimos qual o ponte de corte a usar nas variáveis, de modo a calcular esse "grau de desordem"?

Para cada variável, ordenamos os valores e testamos diferentes pontes de corte, calculando o erro total da previsão (média da variável alvo) para cada grupo:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2$$

Em alternativa do MSE, o MAE pode ser usado.

Começando na variável Idade:

Idade	Montante gasto (y)
18	5
22	7
23	6
27	68
34	72
57 64	18
64	14

Se o ponto de corte for Idade \leq 20:

• 1º grupo de observações:

$$\bar{y} = 5$$

$$MSE(Idade \le 20) = \frac{1}{1}(5 - 5)^2 = 0$$

• 2º grupo de observações:

$$\bar{y} = \frac{7 + 6 + \dots + 14}{11} = 39.7$$

$$MSE(Idade > 20) = \frac{1}{11}((7 - 39.7)^2 + (6 - 39.7)^2 + \dots + (14 - 39.7)^2) = 733.3$$

$$TOTAL\ MSE = 0 + 733.3 = 733.3$$

Se o ponto de corte for Idade \leq 20:

Começando na variável Idade:

Idade	Montante gasto (y)
18	5
22	7
23	6
27	68
34	72
57	18
57 64	14

Se o ponto de corte for Idade \leq 22.5:

1º grupo de observações:

$$\bar{y} = 6$$

$$MSE(Idade \le 22.5) = \frac{1}{2}((5-6)^2 + (7-6)^2) = 1$$

• 2º grupo de observações:

$$\bar{y} = \frac{6 + 68 + \dots + 14}{10} = 43.2$$

$$MSE(Idade > 22.5) = \frac{1}{10}((6 - 43.2)^2 + (68 - 43.2)^2 + \dots + (14 - 43.2)^2) = 688.8$$

$$TOTAL\ MSE = 1 + 688.8 = 689.8$$

Se o ponto de corte for Idade ≤ 22.5:

Começando na variável Idade:

Idade	Montante gasto (y)
18	5
22	7
23	6
27	68
34	72
57	18
64	14

Se o ponto de corte for Idade \leq 25:

• 1º grupo de observações:

$$\bar{y} = 6$$

$$MSE(Idade \le 25) = \frac{1}{3}((5-6)^2 + (7-6)^2 + (6-6)^2) = 0.7$$

• 2º grupo de observações:

$$\bar{y} = \frac{68 + 72 + \dots + 14}{10} = 47.1$$

$$MSE(Idade > 25) = \frac{1}{9}((68 - 47.1)^2 + (72 - 47.1)^2 + \dots + (14 - 47.1)^2) = 596.3$$

$$TOTAL\ MSE = 0.7 + 596.3 = 597.0$$

Se o ponto de corte for Idade \leq 25:

Começando na variável Idade:

Ponto de corte para Idade	TOTAL MSE
≤ 20.0	733.3
≤ 22.5	689.8
≤ 25.0	597.0
≤ 30.5	1333.0
≤ 36.0	1558.1
≤ 40.5	1526.6
≤ 44.0	1265.0
≤ 46.5	1056.8
≤ 50.5	828.0
≤ 55.0	816.2
≤ 60.5	782.1

E para a variável #Filhos:

#Filhos	Montante gasto
0	5
1	7
0	6
2	68
3	72
2	69
1	77
0	48
3	42
2	16
3	18
1	14

Ponto de corte para #Filhos	TOTAL MSE
≤ 0.5	1155.8
≤ 1.5	1301.1
≤ 2.5	1321.6

E para a variável #Meses Cliente:

#Meses	Montante gasto
1	5
1	7
3	6
2	68
2	72
3	69
2	77
1	48
2	42
1	16
3 2	18
2	14

Ponto de corte para #Meses	TOTAL MSE
≤ 1.5	1056.7
≤ 2.5	1501.3

Comparando o erro total usando o melhor ponte de corte para cada variável:

Ponto de corte para Idade	TOTAL MSE
≤ 20.0	733.3
≤ 22.5	689.8
≤ 25.0	597.0
≤ 30.5	1333.0
≤ 36.0	1558.1
≤ 40.5	1526.6
≤ 44.0	1265.0
≤ 46.5	1056.8
≤ 50.5	828.0
≤ 55.0	816.2
≤ 60.5	782.1

Ponto de corte para #Filhos	TOTAL MSE		
≤ 0.5	1155.8		
≤ 1.5	1301.1		
≤ 2.5	1321.6		

Ponto de corte para #Meses	TOTAL MSE
≤ 1.5	1056.7
≤ 2.5	1501.3

A primeira variável a ser usada é Idade com o ponto de corte ≤ 25:

Idade	#Filhos	#Meses como Cliente	 Montante gasto
18	0	1	 5
22	1	1	 7
23	0	3	 6

Idade	#Filho s	#Meses como Cliente	 Montante gasto
27	2	2	 68
34	3	2	 72
38	2	3	 69
43	1	2	 77
45	0	1	 48
48	3	2	 42
53	2	1	 16
57	3	3	 18
64	1	2	 14

2.2 Árvores de Regressão - Overfitting

- Para evitar overfitting, podemos definir um número mínimo de samples, abaixo do qual uma determianda ramificação deixa de ser segmentada.
- Por exemplo, se definissemos *min_samples = 7*, o ramo da esquerda terminaria e a 'lead node' Idade ≤ 25 passa a ter um valor previsto de montante gasto de 6!
- Outra forma de evitar overfitting seria defining um nível máximo de profundidade, por exemplo, se max_depth = 1, a árvore terminaria.

Obrigado!