Weeko4-Parto3

SGD with Momentum (polyok, 1964)

Basic SGD:
$$g_t = \nabla e_n(y_t)$$

$$V_{t+} = -\frac{3}{2}t$$

$$W_{t+} = W_t + \mathcal{E}_t V_t$$

New idea: add a momentum (a push) so that 360

would not stop if Ten (w) 20.

SGD+ Momentum:

this approach is Called "heavy ball" momentum.

$$V_t = -\epsilon_t g_t + \mu V_{t,i}$$

$$W_{41} = W_1 + V_2$$

accumulation of your previous movements.

How Does Momentum Help?

1) Momentum helps 3GD escape flet regions, saddle points, and shallow local optimum.

flat region/ salle point

Shallow bock Minimum

How can Momentum Help?

2-Momentum can lead to fowter convergence, even for convex fond	rions
■ Consider the stretched ellipsoid $f(x_1, x_2) = 0.1x_1^2 + 2x_2^2$.	
43 it's minimum is at (0,0)	
ATThis function is very flat in the direction of 16,	
FI The gradient in 22, direction is much higher than 26,	
Fil with a small learning rate, SGD won't diverge in x d	iveilim
but is very slow in x, direction.	
43 with large learning rate,	
360 progresses	
more rapidly in 2,	~ ,
but diverges in X_2 .	

Heavy-ball momentum method works well in practice.
Heavy-ball momentum method works well in practice. But we don't have any theoretical proof for it.
Nestrou, in 1983, modified the momentum and Guld Prove
nice theoretical guarantees.

Nestrov Momentum

You update your location with your velocity first, and then take the gradient intermediate point.

$$\frac{V_t}{W_{t+1}} = -\varepsilon_t \nabla e_n (W_t + \mu V_t) + \mu V_t,$$

$$W_{t+1} = W_t + V_t$$

Provably better

Convergence for Convex functions.

FUI GD:

 $\left|f(\bar{n}^f)-f(\bar{n}_r)\right|=O\left(\frac{1}{r}\right)$

4) With Nestrov: $\left| f(\underline{w}_t) - f(\underline{w}^*) \right| = O\left(\frac{1}{t^2}\right)$