Nirma University

Institute of Technology Semester End Examination (IR), Dec-2021

B.Tech. in Computer Science & Engineering, Semester -VII 2CS701 – Compiler Construction

Roll /	Supervisor's Initial					
Exam No.	with Date	*				
Time: 2 Hour	Marks: 50					
Instructions:	1. Attempt all the questions.					
	 Figures to right indicate full marks. Draw neat sketches wherever necessary. 					
	Assume suitable data wherever required.					
Q-1 (A) CLO-1	Demonstrate a method (step by step process) to construct directly from regular expression for regular expression (a+b)*(a					
Q-1 (B) CLO-2	Construct the CLR parsing table for following grammar $S \rightarrow L = R$	[6]				
	S→ R L→ * R					
	L→id; R→ L					
Q-1 (C) CLO-2	Explain any one register allocation method using an appre example.	opriate [6]				
OR						
Q-1 (C) CLO-2	Design a LL(1) Parse table for the following grammar. Explain th recovery strategy for the input string "aab".					
6 6 (4)	$S \rightarrow AbS \mid e \mid \epsilon$ $A \rightarrow a \mid e$					
Q-2 (A) CLO-3	List optimization approaches after code generation phase and eany two methods with suitable example.	explain [6]				
Q-2 (B) CLO-4	Convert the following C code into 3 address code: If $(A>B \&\& C>D)$	[6]				
020 1	{					
	X=1; If (E <f)< td=""><td></td></f)<>					
	X=9;					
	} Else					
	{ X=5;					
	[PT0]	0]				
OR						

Q-2 (B) Compare various intermediate representation formats with suitable [6] CLO-4 example.

Q-2 (C) "For any Top down parsing, Left recursion removal and left factoring [4] is important". Write your opinion about the statement and justify with suitable example.

Q-3 (A) Construct operator precedence function table from given operator [6] CLO-4 precedence relation table.

precedence	TCIation tak	Jic.			
	\$	+	*	()
\$	=	<	<	<	<
=	>	>	<	<	>
*	>	>	>	<	>
(<	<	<	=
.)	>	>	>		>

Q-3 (B) Construct the DAG for the given below expression (CLO-2 ((x+y)-((x+y)/(x-y)))+((x+y)*(x-y)) [6]

Q-3 (C) What is dead code in code optimization? Eliminate the dead code [4] CLO-3 from the following code fragment, if exists:

int x;

void insert()

{ int i;

i=1;

x=1;

x=2; return;

x=3;