

Bifurcation in Biological Systems

Bifurcation

If the variation of a parameter changes the **qualitative behavior** of the steady state(s), we call it bifurcation.

By qualitative behavior, we mean

- a) number of steady states
- b) stability of the steady states

Change in either of these two or both, will change the phase portrait. Therefore, bifurcation in a sense is change in the phase portrait of the system with change in a parameter.

An example in a system of ODEs

$$\frac{dx}{dt} = m - x^2 \qquad \frac{dy}{dt} = -y$$

m < 0; No real steady state

m = 0; steady state at $(0,0) \rightarrow Saddle-node$ type

m > 0; Steady state at $(-\sqrt{m}, 0) \rightarrow \text{Saddle point}$ Steady state at $(+\sqrt{m}, 0) \rightarrow \text{Stable node/sink}$

From Bifurcation to cellular heterogeneity

A signal A controls expression of a protein P & P also controls its own expression

$$\frac{dP}{dt} = 0.1 + 10.\frac{A^2}{1 + A^2}.\frac{P^2}{1 + P^2} - P$$

From Bifurcation to cellular heterogeneity

Bistable system → Bi-modal population distribution

Ref: PLOS Computational Biology

Bifurcation in Developmental Biology

One single cell type → Multiple cell type

Key molecules of embryonic development like NANOG shows bistability

Bifurcation in Developmental Biology

One single cell type → Multiple cell type

Waddington's landscape

From Bifurcation to Hysteresis

Hysteresis: The future steady state is chosen based upon the past steady state Cell achieves molecular memory

From Bifurcation to Hysteresis

GFP under control of lac operon Induced by TMG Has bistability

(Decreasing TMG with time)

Ref: Nature

Key points:

- 1. Bifurcation explains various biological phenomena, from population behavior to cell differentiation
- 2. Bifurcation with bi-stability / multi-stability gives rise to:
 - 1. Cellular heterogeniety
 - 2. Bimodal / multimodal cell population
- 3. Bifurcation can give rise to hysteresis, thereby creating molecular memory.