Commonly used Taylor Series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
$$= \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$$
$$= \sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^n}{n} \stackrel{\text{or}}{=} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots$$

$$= \sum_{n=0}^{\infty} x^n$$

$$\cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \dots$$

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \frac{x^9}{9!} + \dots$$

