Exécution d'ordres.

On s'intéresse aux marchés avec un unique carnet d'ordre. Soit $(A_i)_{i\in\mathbb{N}^*}$ l'ensemble des agents. On appele ordre tout quadruplet de la forme $o=(o_A,o_d,o_p,o_q)$ avec $o_A\in(A_i)_{i\in\mathbb{N}^*},\ o_d\in\{\text{ask,bid}\},\ o_p>0$ et $o_q>0$. Ω dénote l'ensemble des ordres et Ω_n dénote l'ensemble des parties \mathcal{O} de Ω à n éléments tq $\forall o\neq o'\in\mathcal{O},\ o_A\neq o'_A$. On note aussi w_i le wealth de l'agent i, $c_i\geqslant 0$ son cash initial et $n_i\geqslant 0$ ses assets initiaux. On suppose aussi que les agents ne peuvent avoir de cash ni d'assets négatifs.

Si W est une fonction de bien-être social prenant en entrée les w_i , on peut définir \tilde{W} prenant en entrée les $(c_i)_{1 \leq i \leq n}$, les $(n_i)_{1 \leq i \leq n}$ et un séquence d'ordres $\mathcal{O} = (o_1, \ldots, o_n)$ et retourant le bien-être social $\tilde{W}((c_i, n_i)_{1 \leq i \leq n}, \mathcal{O})$ après l'exécution de la séquence d'ordre \mathcal{O} sur le marché initialisé avec un carnet d'ordres vide et dont les agents sont initialisés avec les conditions initiales $CI = (c_i, n_i)_{1 \leq i \leq n}$. On notera alors W_{CI} : $\mathcal{O} \mapsto \tilde{W}(CI, \mathcal{O})$.

On se demande si, à W fixé, il existe une relation d'ordre total \leq sur l'ensemble Ω des ordres possibles tq pour tout sous-ensemble fini $\mathcal{O} = \{o_1, \ldots, o_n\} \in \Omega_n$, pour toutes conditions initiales $CI \in \mathbb{N}^{2n}$, la séquence $(o_{\sigma(1)}, \ldots, o_{\sigma(n)})$ tq $o_{\sigma(1)} \leq \ldots \leq o_{\sigma(n)}$ maximise le welfare, i.e.:

$$W_{CI}(o_{\sigma(1)}, \dots, o_{\sigma(n)}) = \max_{\tau \in \mathfrak{S}_n} W_{CI}(o_{\tau(1)}, \dots, o_{\tau(n)})$$

Remarque : Il n'y généralement pas unicité de la séquence maximisant ce welfare. On demande juste que celle triée selon \leq soit une d'entre elles.

On note $\mathfrak{S}_{\mathcal{O}}$ l'ensemble des séquences dont les éléments sont exactement les éléments de \mathcal{O} et W_u le welfare utilitaire, W_{\min} le welfare min, W_{\max} le welfare max et W_N le welfare de Nash. On se donne $p_0 \geqslant 0$: c'est le prix initial donné aux assets lorsque qu'aucun prix n'a encore été fixé.

1 Séquences de deux ordres

On va montrer le résultat (simple) suivant :

Propriété 1.1

Si $\mathcal{O} \in \Omega_2$, il existe une séquence $s \in \mathfrak{S}_{\mathcal{O}}$ maximisant à la fois W_u , W_N , W_{\min} et W_{\max} quelles que soient les conditions initiales.

Démonstration: Si les deux ordres ont la même direction, ou si un est un ask et l'autre un bid avec $p_{ask} > p_{bid}$, alors aucun prix n'est fixé et le résultat est trivial.

Dans le cas où $\mathcal{O} = \{o_1 = (A_1, \operatorname{ask}, p_a, q_a), o_2 = (A_2, \operatorname{bid}, p_b, q_b)\}$ avec $p_b \geqslant p_a$, notons $q = \min(q_a, q_b)$.

Quelle que soit la séquence d'exécution, un prix $p \in \{p_a, p_b\}$ sera fixé et une quantité q sera échangée. On aura donc $w_1 = (c_1 + qp) + (n_1 - q)p = c_1 + n_1p$ et $w_2 = (c_2 - qp) + (n_2 + q)p = c_2 + n_2p$, d'où $W_u = c_1 + c_2 + (n_1 + n_2)p$, $W_N = (c_1 + n_1p)(c_2 + n_2p)$, $W_{\min} = \min_i(c_i + n_ip)$ et $W_{\max} = \max_i(c_i + n_ip)$. Toutes ces quantités étant croissantes selon p, elles sont toutes maximisées pour la séquence (o_2, o_1) puisque le prix fixé sera $p_b \geqslant p_a$.

Au passage, on peut montrer le résultat suivant :

Propriété 1.2

Si $\mathcal O$ est consitué d'un ordre ask o_a et d'un ordre bid o_b , alors :

- Si $p_a \ge p_b$, alors le welfare final ne dépend pas de la séquence d'exécution.
- Si $p_a < p_b$, alors $W_u(o_b, o_a) > W_u(o_a, o_b)$ et $W_N(o_b, o_a) > W_N(o_a, o_b)$
- Si $p_a < p_b$, alors $W_{\min}(o_b, o_a) \geqslant W_{\min}(o_a, o_b)$ avec cas d'égalité lorsque $n_b = 0$ et $c_b \leqslant c_a + n_a p_a$.
- Si $p_a < p_b$, alors $W_{\max}(o_b, o_a) \geqslant W_{\max}(o_a, o_b)$ avec cas d'égalité lorsque $n_b = 0$ et $c_b \geqslant c_a + n_a p_b$.

Démonstration: Le premier point est trivial et le second point se prouve en remarquant que $n_a > 0$.

Le troisième point est plus long à prouver : l'inégalité est évidente mais le cas d'égalité ne l'est pas : il s'agit d'étudier quand on a $\min(c_a+n_ap_a,c_b+n_bp_a)=\min(c_a+n_ap_b,c_b+n_bp_b)$. Comme $p_a < p_b$, avoir $n_b=0$ est une condition nécessaire, ce qui nous ramène à étudier quand $\min(c_a+n_ap_a,c_b)=\min(c_a+n_ap_b,c_b)$ ce qui est vrai ssi $c_b\leqslant c_a+n_ap_a$. Il suffit ensuite de vérifier que la réciproque (si $n_b=0$ et $c_b\leqslant c_a+n_ap_a$ alors on a l'égalité) est vraie.

La quatrième point s'étudie comme le troisième.

On remarque au passage qu'on ne peut pas avoir à la fois le cas d'égalité pour W_{\min} et pour W_{\max} lorsque $p_a < p_b$.

2 Interlude: Un lemme utile

On note $\operatorname{argsmax}_{x \in X} f(x)$ l'ensemble $\{x \in X, f(x) = \max_{y \in X} f(y)\}.$

Lemme 2.1

Soit $n \ge 2$. Soit $\mathcal{O} = \{o_1, \dots, o_n\} \in \Omega_n$. Soit \mathcal{O}' et \mathcal{O}'' deux sous-ensembles de \mathcal{O} d'intersection nulle. Soit W fixé.

S'il existe $CI \in \mathbb{N}^{2n}$ tq, en notant $S = \operatorname{argsmax}_{s \in \mathfrak{S}_{\mathcal{O}}} W_{CI}(s)$, on a pour tout $s \in S$ l'existence de $o_i \in \mathcal{O}'$ et $o_j \in \mathcal{O}''$ tq l'ordre o_i apparait avant o_j dans la séquence s, alors si \leq existe, il existe $o_i \in \mathcal{O}'$ et $o_j \in \mathcal{O}''$ tq $o_i \leq o_j$.

Démonstration: Sous l'hypothèse que \leq existe, la séquence $s = (o_{\sigma(1)} \leq \ldots \leq o_{\sigma(n)})$ maximise le welfare W pour toutes les conditions initiales, donc pour CI en particulier. Donc $s \in S$. Par hypothèse, il existe donc $o_i \in \mathcal{O}'$ et $o_j \in \mathcal{O}''$ tq o_i apparait avant o_j dans s. Donc, par définition de s, $o_i \leq o_j$

De ce lemme et de la propriété 1.2 on peut donc déduire que :

Propriété 2.2

Si $o_a, o_b \in \Omega^2$ avec $o_{a,d} = \text{ask}$, $o_{b,d} = \text{bid}$ et $o_{a,p} < o_{b,p}$, alors $o_b \le o_a$, si $W = W_u$, W_N , W_{\min} ou W_{\max} et si \le existe.

3 Non-existence de \leq pour les welfares usuels

On va utiliser ce les résultats précédents pour montrer qu'il n'existe pas d'ordre \leq sur Ω vérifiant la propriété voulue.

3.1 Welfare min et welfare de Nash

Théorème 3.1

Soit $W = W_{\min}$ ou W_N .

Il n'existe pas d'ordre total \leq sur Ω tq pour tout ensemble $\mathcal{O} = \{o_1, \ldots, o_n\} \in \Omega_n$, pour toutes conditions initiales $CI \in \mathbb{N}^{2n}$, la séquence $(o_{\sigma(1)}, \ldots, o_{\sigma(n)})$ tq $o_{\sigma(1)} \leq \ldots \leq o_{\sigma(n)}$ est une des séquences de \mathcal{O} maximisant le welfare W_{CI} .

Démonstration:

1ère étape : Il existe $\mathcal{O} \in \Omega_3$ constitué de deux ordres asks o_1 et o_2 et d'un ordre bid o_3 dont le prix est supérieur à ceux des ordres asks tq ni (o_3, o_1, o_2) ni (o_3, o_2, o_1) ne maximisent le welfare. Soit $\mathcal{O} = \{o_1 = (A_1, \operatorname{ask}, p_1, q_1), o_2 = (A_2, \operatorname{ask}, p_2, q_2), o_3 = (A_3, \operatorname{bid}, p_3, q_3)\} \in \Omega_3$ et soit $CI = (c_i, n_i)_{1 \le i \le 3} \in \mathbb{N}^6$ tq :

1. $p_1 < p_3$

4. $q_2 \leq n_2$

2. $p_2 < p_3$

5. $q_2 < q_3$

3. $q_1 \leqslant n_1$

6. $q_3 - q_2 < q_1 < q_3$

7.
$$c_3 + n_3 p_3 < c_1 + n_1 p_3$$

 $< \min(c_2 + q_2 p_2 + n_2 p_3 - q_2 p_3, c_3 - q_2 p_2 + q_2 p_3 + n_3 p_3)$
8. $q_2(p_3 - p_2) < (c_2 + n_2 p_3) - (c_3 + n_3 p_3)$

L'existence de tels $\mathcal O$ et CI n'a rien d'une évidence : un exemple est donné en annexe A.1.

Dans le tableau suivant, on donne le cash et le nombre d'assets détenu par chaque agent après l'exécution de différentes séquences. Le dernier prix fixé est, dans tous les cas, p_3 . Le détail est donné en annexe A.2.

	Séquence	A_1		A_2		A_3	
'		cash	assets	cash	assets	\cosh	assets
((o_2, o_3, o_1)	$c_1 + (q_3 - q_2)p_3$	$n_1 - (q_3 - q_2)$	$c_2 + q_2 p_2$	$n_2 - q_2$	$ \begin{array}{c c} c_3 - q_2 p_2 \\ -(q_3 - q_2) p_3 \end{array} $	$n_3 + q_3$
((o_3,o_1,o_2)	$c_1 + q_1 p_3$	$n_1 - q_1$	$c_2 + (q_3 - q_1)p_3$	$n_2 - (q_3 - q_1)$	$c_3 - q_3 p_3$	$n_3 + q_3$
	(o_3, o_2, o_1)	$c_1 + (q_3 - q_2)p_3$	$n_1 - (q_3 - q_2)$	$c_2 + q_2 p_3$	$n_2 - q_2$	$c_3 - q_3 p_3$	$n_3 + q_3$

Donc, il vient que:

Séquence w_1		w_2	w_3	
(o_2, o_3, o_1)	$c_1 + n_1 p_3$	$c_2 + q_2 p_2 + (n_2 - q_2) p_3$	$c_3 + q_2(p_3 - p_2) + n_3 p_3$	
(o_3, o_1, o_2) (o_3, o_2, o_1)	$c_1 + n_1 p_3$	$c_2 + n_2 p_3$	$c_3 + n_3 p_3$	

On notera (o_3, \cdot, \cdot) les séquences (o_3, o_1, o_2) et (o_3, o_2, o_1) .

On en conclut que $W_{\min,CI}(o_3,\cdot,\cdot) = \min(c_1 + n_1p_3, c_2 + n_2p_3, c_3 + n_3p_3) = c_3 + n_3p_3$ d'après (7), (8) et (2). De plus, $W_{\min,CI}(o_2,o_3,o_1) = \min(c_1 + n_1p_3, c_2 + q_2p_2 + (n_2 - q_2)p_3, c_3 + q_2(p_3 - p_2) + n_3p_3) = c_1 + n_1p_3$ d'après (7). Finalement, (7) donne aussi que $W_{\min,CI}(o_2,o_3,o_1) = c_1 + n_1p_3 > c_3 + n_3p_3 = W_{\min,CI}(o_3,\cdot,\cdot)$. On a bien montré ce qu'on voulait pour $W_{\min,CI}$. Faisons de même pour $W_{N,CI}$:

$$\begin{array}{l} W_{N,CI}(o_3,\cdot,\cdot) = (c_1+n_1p_3)(c_2+n_2p_3)(c_3+n_3p_3) \text{ et} \\ W_{N,CI}(o_2,o_3,o_1) = (c_1+n_1p_3)(c_2+q_2p_2+(n_2-q_2)p_3)(c_3+q_2(p_3-p_2)+n_3p_3), \text{ d'où} \\ \frac{W_{N,CI}(o_2,o_3,o_1)}{W_{N,CI}(o_3,\cdot,\cdot)} = \frac{(c_2+q_2p_2+(n_2-q_2)p_3)(c_3+q_2(p_3-p_2)+n_3p_3)}{(c_2+n_2p_3)(c_3+n_3p_3)} \\ = & \cdots \\ = & 1+\frac{q_2(p_3-p_2)\big[(c_2+n_2p_3)-(c_3+n_3p_3)-q_2(p_3-p_2)\big]}{(c_2+n_2p_3)(c_3+n_3p_3)} \\ \text{avec } q_2\underbrace{(p_3-p_2)\big[(c_2+n_2p_3)-(c_3+n_3p_3)-q_2(p_3-p_2)\big]}_{>0 \text{ selon } (2)} > 0. \\ \\ \text{Donc } W_{N,CI}(o_2,o_3,o_1) > W_{N,CI}(o_3,\cdot,\cdot). \end{array}$$

2^{ème} étape : Conclusion

Si d'aventure il existait une relation d'ordre \leq_{\min} (resp. \leq_N) sur Ω tq pour tout ensemble $\mathcal{O}' = \{o'_1, \ldots, o'_n\} \in \Omega_n$, pour toutes conditions initiales $CI' \in \mathbb{N}^{2n}$, la séquence $(o'_{\sigma(1)}, \ldots, o'_{\sigma(n)})$ tq $o'_{\sigma(1)} \leq \ldots \leq o'_{\sigma(n)}$ est une des séquences de \mathcal{O}' maximisant le welfare $W_{\min,CI'}$ (resp. $W_{N,CI'}$), alors :

Comme o_3 est un bid et comme o_1, o_2 sont des asks tq $p_1 < p_3$ (1) et $p_2 < p_3$ (2), alors de la propriété 2.2 découle le fait que $o_3 \leq_{\min} o_1, o_3 \leq_{\min} o_2, o_3 \leq_N o_1$ et $o_3 \leq_N o_2$. Ces inégalités sont mêmes strictes car o_1, o_2 et o_3 sont distincts. o_3 est donc à la fois le minimum de \mathcal{O} pour \leq_{\min} et pour \leq_N . Les séquences s_{\min} et s_N de \mathcal{O} ordonnées respectivement selon \leq_{\min} et \leq_N débutent dont toutes deux par o_3 i.e. sont de la forme (o_3,\cdot,\cdot) . Par hypothèse, s_{\min} (resp. s_N) est donc un point en lequel $W_{\min,CI}$ (resp. $W_{N,CI}$) atteint son maximum, ce qui contredit les résultats de la première étape.

3.2 Welfare max

Théorème 3.2

Il n'existe pas d'ordre total \leq sur Ω tq pour tout ensemble $\mathcal{O} = \{o_1, \ldots, o_n\} \in \Omega_n$, pour toutes conditions initiales $CI \in \mathbb{N}^{2n}$, la séquence $(o_{\sigma(1)}, \ldots, o_{\sigma(n)})$ tq $o_{\sigma(1)} \leq \ldots \leq o_{\sigma(n)}$ est une des séquences de \mathcal{O} maximisant le welfare $W_{\max,CI}$.

Démonstration: La preuve est identique en tous points à la preuve pour W_{\min} : la seconde étape est identique, on va donc se contenter de préciser la première étape.

1ère étape : Il existe $\mathcal{O} \in \Omega_3$ constitué de deux ordres asks o_1 et o_2 et d'un ordre bid o_3 dont le prix est supérieur à ceux des ordres asks tq ni (o_3, o_1, o_2) ni (o_3, o_2, o_1) ne maximisent le welfare. Soit $\mathcal{O} = \{o_1 = (A_1, \operatorname{ask}, p_1, q_1), o_2 = (A_2, \operatorname{ask}, p_2, q_2), o_3 = (A_3, \operatorname{bid}, p_3, q_3)\} \in \Omega_3$ et soit $CI = (c_i, n_i)_{1 \le i \le 3} \in \mathbb{N}^6$ tq :

1. $p_1 < p_3$ 5. $q_1 < q_3 < q_2$ 2. $p_2 < p_3$ 6. $q_3 p_3 < c_3$ 3. $q_1 \le n_1$ 7. $\max(c_1 + q_1 p_1 + (n_1 - q_1) p_3, c_2 + n_2 p_3)$ 4. $q_2 \le n_2$ $< c_3 + q_1(p_3 - p_1) + n_3 p_3$ 8. $\max(c_1 + n_1 p_3, c_2 + n_2 p_3) < c_3 + n_3 p_3$

Un exemple est fournit en annexe B.1 Dans le tableau suivant, on donne le cash et le nombre d'assets détenu par chaque agent après l'exécution de différentes séquences. Le dernier prix fixé est, dans tous les cas, p_3 . Le détail est donné en annexe B.2.

Séquence	A_1		A_2		A_3	
Sequence	cash	assets	cash	assets	\cosh	assets
(o_1, o_3, o_2)	$c_1 + q_1 p_1$	$n_1 - q_1$	$c_2 + (q_3 - q_1)p_3$	$n_2 - (q_3 - q_1)$	$ \begin{array}{c c} c_1 - q_1 p_1 \\ - (q_3 - q_1) p_3 \end{array} $	$n_3 + q_3$
(o_3, o_1, o_2)	$c_1 + q_1 p_3$	$n_1 - q_1$	$c_2 + (q_3 - q_1)p_3$	$n_2 - (q_3 - q_1)$	$c_3 - q_3 p_3$	$n_3 + q_3$
(o_3, o_2, o_1)	c_1	n_1	$c_2 + q_3 p_3$	$n_2 - q_3$	$c_3 - q_3 p_3$	$n_3 + q_3$

Donc, il vient que:

Séquence	w_1	w_2	w_3	
(o_1, o_3, o_2)	$c_1 + q_1 p_1 + (n_1 - q_1) p_3$	$c_2 + n_2 p_3$	$c_3 + q_1(p_3 - p_1) + n_3 p_3$	
(o_3, o_1, o_2)	$c_1 + n_1 p_3$	$c_2 + n_2 p_3$	$c_3 + n_3 p_3$	
(o_3, o_2, o_1)	$C_1 + n_1 p_3$	$\begin{bmatrix} c_2 + n_2p_3 \\ \end{bmatrix}$	C3 + h3p3	

On notera (o_3, \cdot, \cdot) les séquences (o_3, o_1, o_2) et (o_3, o_2, o_1) .

On a $W_{\max,CI}(o_3,\cdot,\cdot) = \max(c_1 + n_1p_3, c_2 + n_2p_3, c_3 + n_3p_3) = c_3 + n_3p_3$ selon (8).

Et $W_{\max,CI}(o_1,o_3,o_2) = \max(c_1+q_1p_1+(n_1-q_1)p_3, c_2+n_2p_3, c_3+q_1(p_3-p_1)+n_3p_3) = c_3+q_1(p_3-p_1)+n_3p_3$ selon (7),

d'où $W_{\max,CI}(o_3,\cdot,\cdot) = c_3 + n_3p_3 < c_3 + q_1(p_3 - p_1) + n_3p_3 = W_{\max,CI}(o_1,o_3,o_2)$ selon (1).

3.3 Welfare utilitaire

On notera dans cette partie les conditions initiales $CI = (c_i(0), n_i(0))_{1 \le i \le n}$. On appelle instant t+1 l'instant où est placé le premier ordre ou où est fixé le premier prix depuis l'instant t.

Lemme 3.3

Soit CI fixées.

Il existe $C \ge 0$ et $N \ge 0$ tq $\forall \mathcal{O} = \{o_1, \dots, o_n\} \in \Omega_n, \forall m \le n, W_{u,CI}(o_1, \dots, o_m) = C + Np_m$ où p_m est le dernier ordre fixé après l'exécution de la séquence (o_1, \dots, o_m) .

Démonstration: Soit $t \ge 0$.

Si l'instant t+1 a été fixé par un ordre placé, on a trivialement $\sum_{1 \leq i \leq n} c_i(t+1) = \sum_{1 \leq i \leq n} c_i(t)$ et $\sum_{1 \leq i \leq n} n_i(t+1) = \sum_{1 \leq i \leq n} n_i(t)$.

Si l'instat t+1 a été fixé par un prix qui a été fixé, noté A_i l'agent dont provient l'ordre ask, A_j celui dont provient le bid, q la quantité échangée et p le prix fixé. On a $\forall k \notin \{i,j\}, c_k(t+1) = c_k(t)$ et $n_k(t+1) = n_k(t)$ et : $c_i(t+1) = c_i(t) + qp, n_i(t+1) = n_i(t) - q, c_j(t+1) = c_j(t) - qp$ et $n_j(t+1) = n_j(t) + q$.

Donc $\sum_{1 \leqslant i \leqslant n} c_i(t+1) = \sum_{1 \leqslant i \leqslant n} c_i(t)$ et $\sum_{1 \leqslant i \leqslant n} n_i(t+1) = \sum_{1 \leqslant i \leqslant n} n_i(t)$ dans tous les cas : $\sum_i c_i$ et $\sum_i n_i$ sont constantes. On les notes respectivement C et N. Alors $W_{u,CI}(t) = \sum_i w_i(t) = \sum_i c_i(t) + n_i(t)p = C + Np$ avec p le dernier prix fixé.

En fait, on pourra montrer qu'il n'existe pas de contre-exemples avec 3 ordres, mais il en existe avec 4 ordres.

4 Welfare leximin

4.1 Formalisme

Définition 4.1 (Pré-ordre total leximin)

Soit $n \in \mathbb{N}^*$ et $x, y \in \mathbb{R}^n$. On définit le pré-ordre total leximin \leq_{Lm} par $x \leq_{\operatorname{Lm}} y$ ssi, en notant $\sigma, \tau \in \mathfrak{S}_n$ des permutations tq $x_{\sigma(1)} \leqslant \ldots \leqslant x_{\sigma(n)}$ et $y_{\tau(1)} \leqslant \ldots \leqslant y_{\tau(n)}$, il existe $k \in [[1, n+1]]$ tq $\forall i < k, x_{\sigma(i)} = y_{\tau(i)}$ et, si $k \leqslant n, x_{\sigma(k)} < y_{\tau(k)}$.

Informellement, x est plus petit que y lorsque la séquence des coordonnées de x triées dans l'ordre croissant est lexicographiquement plus petite que la séquence des coordonnées de y triées également dans l'ordre croissant.

On quotiente alors \mathbb{R}^n par la relation d'équivalence \sim définie par $x \sim y$ lorsque $x \leq_{\operatorname{Lm}} y$ et $y \leq_{\operatorname{Lm}} x$ (i.e. lorsque les coordonnées de x sont une permutations des coordonnées de y). La relation $\lesssim_{\operatorname{Lm}} \sup \mathbb{R}^n / \sim$ définie par $X \lesssim_{\operatorname{Lm}} Y$ lorsque $\forall x \in X, \forall y \in Y, x \leq_{\operatorname{Lm}} y$ est alors une relation d'ordre totale 1 sur \mathbb{R}^n / \sim . Pour une partie finie P de \mathbb{R}^n , on définit alors $\max_{\lesssim_{\operatorname{Lm}}} P$ comme étant égal à l'intersection entre P et le maximum de $\{\bar{x}, x \in P\}$ pour $\lesssim_{\operatorname{Lm}}$, où \bar{x} désigne la classe d'équivalence de x par \sim .

On se demande si, en appellant welfare lexmin W la fonction identité définie sur l'union des R^n avec $n \in \mathbb{N}^*$, il existe un ordre total \leq sur Ω tq pour tout n, pour tout ensemble $\mathcal{O} = \{o_1, \ldots, o_n\} \in \Omega_n$, pour toutes conditions initiales $CI \in \mathbb{N}^{2n}$, on a $W_{CI}(o_{\sigma(1)}, \ldots, o_{\sigma(n)}) \in \max_{\leq_{\operatorname{Lm}}, \tau \in \mathfrak{S}_n} W_{CI}(o_{\tau(1)}, \ldots, o_{\tau(n)})$ avec $\sigma \in \mathfrak{S}_n$ tq $o_{\sigma(1)} \leq \ldots \leq o_{\sigma(n)}$.

La réponse est non : il suffit de reprendre le contre-exemple de W_{\min} (et la propriété 1.2 reste vraie).

^{1.} Bourbaki, Éléments de mathématique : Théorie des ensembles, Paris, Masson, 1998, ch III, §1, n°2, p3

A Détails de la preuve du théorème 3.1

A.1 Exemple d'ensembles \mathcal{O} et CI vérifiant les hypothèses

i	p_i	q_i	c_i	n_i
1	1463	3	20932	4
2	1248	4	45856	24
3	5528	6	12339	5

A.2 Preuve des valeurs obtenues pour le cash et les assets après exécution des différentes séquences

On représente un carnet d'ordre de la façon suivante :

$$A_2 = \frac{p_2}{q_2}$$

$$= \frac{p_3}{q_3} A_5$$

$$A_1 = \frac{p_1}{q_1}$$
ASKS BIDS

avec, sur cet exemple, A_i un agent ayant placé un ordre au prix p_i pour une quantité q_i . Les ordres 1 et 2 sont des asks, l'ordre 3 est un bid, et l'échelle verticale est l'échelle des prix : $p_1 < p_3 < p_2$.

A.2.1 Séquence (o_2, o_3, o_1)

$$\begin{array}{c|c} & & & & \\ \hline & & & \\ \hline & & & \\ A_1 & \hline & & \\ A_1 & \hline & & \\ \hline & & & \\ A_1 & \hline & & \\ \hline & & & \\ \hline & & \\ A_1 & \hline & & \\ \hline &$$

A.2.2 Séquence (o_3, o_1, o_2)

$$\begin{array}{c|c} & p_3 \\ \hline & q_3-q_1 \end{array} A_3$$

$$A_2 \begin{array}{c} p_2 \\ \hline & q_2 \end{array} \\ A_2 \begin{array}{c} p_2 \\ \hline & q_2-(q_3-q_1) \end{array}$$
 ASKS BIDS ASKS BIDS Aljout de o_2 Match entre o_2 et o_3

A.2.3 Séquence (o_3, o_2, o_1)

$$\begin{array}{c|c} & p_3 \\ \hline & q_3-q_2 \end{array} A_3$$

$$A_1 \begin{array}{c} p_1 \\ \hline & q_1 \end{array} \qquad A_1 \begin{array}{c} p_1 \\ \hline & q_1-(q_3-q_2) \end{array}$$
 ASKS BIDS Ajout de o_1 ASKS bids Match entre o_1 et o_3

B Détails de la preuve du théorème 3.2

B.1 Exemple d'ensembles \mathcal{O} et CI vérifiant les hypothèses

i	p_i	q_i	c_i	n_i
1	1166	1	23500	11
2	1002	13	14969	15
3	2048	11	32763	24

B.2 Preuve des valeurs obtenues pour le cash et les assets après exécution des différentes séquences

B.2.1 Séquence (o_1, o_3, o_2)

$$\begin{array}{c|c} p_3 \\ \hline q_3-q_1 \end{array} A_3$$

$$A_2 \begin{array}{c} p_2 \\ \hline q_2 \end{array} \\ A_2 \begin{array}{c} p_2 \\ \hline q_2-(q_3-q_1) \end{array}$$

$$ASKS \quad BIDS \\ Ajout de o_2 \end{array} \qquad ASKS \quad BIDS \\ Match entre o_2 et o_3$$

B.2.2 Séquence (o_3, o_1, o_2)

$$\begin{array}{c|c} & p_3 \\ \hline & q_3-q_1 \end{array} A_3$$

$$A_2 \begin{array}{c} p_2 \\ \hline & q_2 - (q_3-q_1) \end{array}$$
 ASKS BIDS Ajout de o_2 ASKS BIDS Match entre o_2 et o_3

B.2.3 Séquence (o_3, o_2, o_1)