QCM 03

QCM

X. Pessoles - E. Durif

Savoirs et compétences :

Question 1

Cocher les propositions justes

- 1. Il s'agit de la réponse indicielle d'un système du premier ordre.
- 2. Il s'agit de la réponse indicielle d'un système du deuxième ordre.
- 3. Le coefficient d'amortissement est plus grand que 1.
- 4. Le coefficient d'amortissement est plus petit que 0.7.
- 5. Le coefficient d'amortissement est plus petit que 1.

Question 2 Cocher les propositions justes.

- 1. Je suis sensé savoir calculer le coefficient d'amortissement à partir du premier dépassement.
- 2. Je suis sensé savoir calculer le coefficient d'amortissement à partir du secon dépassement.
- 3. Je suis sensé savoir calculer le coefficient d'amortissement à partir de la pseudo période.

4. Je suis sensé savoir calculer le coefficient d'amortissement à partir du temps de pic. E Je suis sensé savoir calculer le coefficient d'amortissement à partir de la valeur finale. F Je suis sensé savoir calculer la pulsation à partir du temps de réponse à 5%.

Question 3 Cocher les propositions justes.

- 1. Je suis sensé savoir calculer la pulsation propre à partir du premier dépassement.
- 2. Je suis sensé savoir calculer la pulsation propre à partir du second dépassement.
- 3. Je suis sensé savoir calculer la pulsation propre à partir de la pseudo période.
- 4. Je suis sensé savoir calculer la pulsation propre à partir du temps de pic.
- 5. Je suis sensé savoir calculer la pulsation propre à partir de la valeur finale.
- 6. Je suis sensé savoir calculer la pulsation propre à partir du temps de réponse à 5%.

Chapitre 1 - QCM 03

Question 4 Cocher les propositions justes.

- 1. Le premier dépassement est égal à 1,5.
- 2. Le premier dépassement est égal à 0,5.
- 3. Il n'y a pas de dépassement.
- 4. La réponse D.

Question 5 *T désigne la constante de temps d'un système du premier ordre.*

- 1. Le temps de réponse à 5% est de 3T.
- 2. Le signal atteint 63% de la valeur finale à T.
- 3. Le temps de réponse à 5% est de 5T.
- 4. Je ne sais pas.

Question 6 Le gain statique d'un système d'ordre 1 est K. Le système est sollicité par un échelon d'amplitude E.

- 1. La valeur finale vaut K.
- 2. La valeur finale vaut E.
- 3. La valeur finale vaut KE.
- 4. La valeur finale vaut 0.
- 5. La valeur finale vaut 12.
- 6. La valeur finale est infinie.

Question 7 Le gain statique d'un système d'ordre 1 est K. Le système est sollicité par une rampe de pente a.

- 1. La valeur finale vaut K.
- 2. La valeur finale vaut E.
- 3. La valeur finale vaut KE.
- 4. La pente de l'asymptote est Ka.
- 5. L'écart statique est non nul.
- 6. La valeur finale est infinie.

Question 8 Parmi les propositions suivantes, lesquelles sont vraies?

- Pour un coefficient d'amortissement de 0,7, le temps de réponse est le plus rapide avec dépassement.
- 2. Pour un coefficient d'amortissement de 1, le temps de réponse est le plus rapide ave
- 3. dépassement.
- 4. Pour un coefficient d'amortissement de 0,7, le temps de réponse est le plus rapide sans dépassement.
- 5. Pour un coefficient d'amortissement de 1, le temps de réponse est le plus rapide sans dépassement.
- 6. Le système est plus rapide si le coefficient d'amortissement vaut 0,7 que s'il vaut 1.

7. Le système est plus rapide si le coefficient d'amortissement vaut 0,2 que s'il vaut 1.

Question 9 Les (La) caractéristique(s) du diagramme de Bode d'un intégrateur K/p sont (est) :

- 1. le gain a une pente de 20dB/decade.
- 2. le gain a une pente de + 20 dB/decade.
- 3. le gain a une pente nulle.
- 4. le gain passe par le point (1,20 logK)
- 5. le gain passe par le point (0,20 logK)
- 6. la phase est de +90°.
- 7. la phase est de -90°.

Question 10 Les (La) caractéristique(s) du diagramme de Bode d'un dérivateur Kp sont (est) :

- 1. le gain a une pente de 20dB/decade.
- 2. le gain a une pente de + 20 dB/decade.
- 3. le gain a une pente nulle.
- 4. le gain passe par le point (1,20 logK)
- 5. le gain passe par le point (0,20 logK)
- 6. la phase est de $+90^{\circ}$.
- 7. la phase est de -90°.

Question 11 Soit un système du premier ordre de gain K et de constante de temps T. On souhaite tracer le diagramme de Bode de la fonction de transfert.

- 1. Le gain est forcément négatif.
- 2. Le gain est forcément positif.
- 3. Le gain est forcément positif puis négatif.
- 4. Le gain peut être positif et négatif.
- 5. Le gain peut être négatif.
- 6. La rupture de pente est à 1/T.
- 7. La rupture de pente est à T.
- 8. Il n'y a pas de rupture de pente.

Question 12 Soit un système d'ordre 2 de gain K, d'amortissement z, de pulsation propre w0. On souhaite tracer e diagramme de Bode.

- 1. Si z > 1 il y a deux ruptures de pente.
- 2. Si z > 1 il y a une rupture de pente.
- 3. Lorsque w tend vers l'infini, la pente de l'asymptote du gain est de -40 dB/decade.
- 4. Lorsque w tend vers 1, la pente du gain est de 0.

Question 13 Soit un système d'ordre 2 de gain K, d'amortissement z<0.7, de pulsation propre w0. On souhaite tracer le diagramme de Bode.

- 1. La pulsation de résonance est inférieure à la pulsation propre.
- 2. On peut déterminer le coefficient d'amortissement à partir du gain à la résonance.
- 3. On peut déterminer le gain à partir de la valeur du gain lorsque w tend vers 0.
- 4. On peut déterminer la pulsation propre à partir de l'intersection des asymptotes.