In the Claims:

This listing of claims will replace all prior versions, and listings of the claims in the application.

Please amend claims 41-44 and 53-61, cancel claims 51 and 52 without prejudice to their presentation in another application, and add new claims 64-71 as follows.

1-40. (canceled).

41. (currently amended) A compound of general formula (A)

in which:

 R^2 and R^3 are independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, eyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), OC(O),

amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl, or R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) exploalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous;

 R_4 is hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5 to 10 membered heterocyclic group, C_1 - C_{10} alkoyy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)sulfonylamino, aminosulfonyl, C_1 - C_{10} alkylsufinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_2 - C_{12} hydrocarbon chain interrupted by O, S, NR, CO, C(NR), C(R)SO₂, or OC(O)O, wherein R is as defined above and the saturated or unsaturated hydrocarbon chain is optionally substituted as defined above;

n is equal to 0, 1 or 2[[,]];

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl[[,]]; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, $\frac{OR \text{ or } C$, where R is C_1 - C_6 alkylar or substituted C_1 - C_6 alkyl[[.]]:

in which V and W are as follows:

a single carbon-carbon bond[[,]];

V is CR and W is N, saturated or unsaturated[[,]];

V is N and W is CR, saturated or unsaturated[[,]];

a linkage of the form VW or WV = RRC-O or RRC-S, wherein V and/or and W are each optionally substituted (C_1-C_6) alkyl, C_6 aryl or heterocycle[[,]]; and in which each aroup R is independently defined.

(currently amended) A compound of general formula (B1)

$$\begin{array}{c}
X_1 \\
X_2 \\
X_3 \\
X_4 \\
X_5 \\
X_6 \\
X_7 \\
X_8 \\
X_8 \\
X_8 \\
X_9 \\
X_9$$

(B1)

in which:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl, } (C_6 \text{ or } C_{10}) \text{ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl, } (C_3\text{-}C_8) \text{ heterocycloalkenyl, } (C_3\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkyl, } (C_5\text{-}C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1\text{-}C_{10}) \text{ alkyl, } (C_1\text{-}C_{10}) \text{ alkenyl, } (C_1\text{-}C_{10}) \text{ alkoxy, } (C_1\text{-}C_{10}) \text{ thioalkoxy, hydroxyl, } (C_1\text{-}C_{10}) \text{ hydroxylalkyl, halo, } (C_1\text{-}C_{10}) \text{ haloalkyl, amino, amido, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ alkylcarbonyl, } (C_1\text{-}C_{10}) \text{ alkylcarbonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonylamino, aminosulfonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfinyl, or } (C_1\text{-}C_{10}) \text{ alkylsulfonyl, } (C_1\text{-}C_1\text{-$

 $R^3 \text{ is hydrogen, } (C_1\text{-}C_{12}) \text{ alkyl, substituted } (C_1\text{-}C_{12}) \text{ alkyl, or unsaturated } (C_2\text{-}C_{12}) \text{ comprising one or more } C=C \text{ bond or } C\equiv C \text{ bond, } (C_6 \text{ or } C_{10}) \text{ aryl or } (C_6 \text{ or } C_{10}) \text{ heteroaryl, or a combination thereof to form a linked or fused ring system, or } (C_1\text{-}C_{10}) \text{ alkoxy, } (C_1\text{-}C_{10}) \text{ thioalkoxy, hydroxyl, } (C_1\text{-}C_{10}) \text{ hydroxylalkyl, halo, } (C_1\text{-}C_{10}) \text{ haloalkyl, cyano, nitro, amino, amido, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ alkylcarbonyloxy, } (C_1\text{-}C_{10}) \text{ alkoxycarbonyl, } (C_1\text{-}C_{10}) \text{ alkylcarbonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonylamino, aminosulfonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonylamino, aminosulfonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfinyl, or } (C_1\text{-}C_{10}) \text{ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO_2, SO_2N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO_2, SO_2O, or OC(O)O, where R is independently hydrogen, <math>(C_1\text{-}C_{10}) \text{ alkyl, } (C_1\text{-}C_{10}) \text{ alkenyl, } (C_1\text{-}C_{10}) \text{ al$

amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl,

n is equal to 0, 1 or 2[[,]];

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR₄ where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl[[,]]; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C₁-C₆ alkyl₂ or substituted C₁-C₆ alkyl[[,]]; and in which n is equal to zero, one or two, Z is a one atom linkage of N, CH, or CR or a two-atom

in which n is equal to zero, one or two, Z is a one atom linkage of N, CH, or CR or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂, wherein R is C₁-C₆ alkyl or substituted C₁-C₆ alkyl.

43. (currently amended) A compound of claim 41, in which the compounds are of general formula (B2)

$$R_1R_2N$$

(B2)

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkene ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkonyl, $(C_1$ - $C_{10})$ alkylcarbonyl, $(C_1$ - $C_{10})$ alkylcarbonyl, $(C_1$ - $C_{10})$ alkylcarbonyl, $(C_1$ - $C_{10})$ alkylcarbonyl, $(C_1$ - $C_{10})$ alkylthiocarbonyl,

(C₁-C₁₀) alkylsulfonylamino, aminosulfonyl, (C₁-C₁₀) alkylsulfinyl, or (C₁-C₁₀) alkylsulfonyl, R² and R³ are each independently hydrogen, (C₁-C₁₂) alkyl, substituted (C₁-C₁₂) alkyl, or unsaturated (C_2 - C_{12}) comprising one or more C=C bond or C=C bond, (C_6 or C_{10}) aryl or (C_6 or C₁₀) heteroaryl, or a combination thereof to form a linked or fused ring system, or (C₁-C₁₀) alkoxy, (C1-C10) thioalkoxy, hydroxyl, (C1-C10) hydroxylalkyl, halo, (C1-C10) haloalkyl, cyano, nitro, amino, amido, (C1-C10) alkylamino, (C1-C10) alkylcarbonyloxy, (C1-C10) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylthiocarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, (C₁-C₁₀) alkylsulfinyl, or (C₁-C₁₀) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), OC(O), OSO_2 , SO_2O , or OC(O)O, where R is independently hydrogen, (C₁-C₁₀) alkyl, (C₁-C₁₀) alkenyl, (C₁-C₁₀) alkynyl, (C₁-C₁₀) alkoxy, (C₁-C₁₀) hydroxylalkyl, hydroxyl, (C₁-C₁₀) halolalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C₁-C₁₀) alkoxy, hydroxyl, hydroxyl, (C₁-C₁₀) hydroxylalkyl, halo, (C₁-C₁₀) haloalkyl, amino, (C₁-C₁₀) alkylcarbonyloxy, (C₁-C₁₀) alkoxycarbonyl, (C₁-C₁₀) alkylcarbonyl, (C₁-C₁₀) alkylsulfonylamino, aminosulfonyl, or (C1-C10) alkylsulfonylf[,]]; or

 R^2 and R^3 optionally form a $(C_6 \, {\rm or} \, C_{10})$ aryl, $(C_6 \, {\rm or} \, C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_3 - C_8)$ heterocycloalkenyl, $(C_5 - C_8)$ cycloalkene ring, $(C_5 - C_8)$ cycloalkene ring, $(C_5 - C_8)$ cycloalkyl, $(C_5 - C_8)$ heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous[[,]]; or

 R^1 and R^2 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R 2 N, with R^1 and R^2 as defined above,

n is equal to 0, 1 or 2,

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl, and Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl,

in which n is equal to zero, one or two, Y is no atom present, O or O₂ or NR and Z = CR or N; X = NHOH, OH, NROR, CRROH:

and Z is a one atom linkage of N_s of C CH or CR_s , or a two-atom linkage of varying combinations of atoms of C CH, CR_s , O, N, S, SO, SO_2 , and in which each group R is independently defined C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl.

44. (currently amended) A compound of claim 41, in which the compounds are of general formula (C)

$$\begin{array}{c} \\ R_4 \\ R_5 \end{array}$$
 (C)

in which:

 R^3 is hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, eyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, (C_1-C_{10}) alkylsulfinyl, or (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) hydroxylalkyl, hydroxyl, (C_1-C_{10}) alkolalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10})

alkynyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl[[,]];

n is equal to 0, 1 or 2[[,]];

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl[[,]]; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl or substituted C_1 - C_6 alkyl[[,1]]; and

in which Y is equal to no atom, O or O₂ or NR and n is equal to zero, one or two and X is equal to NHOH, OH, NROR, CRROH, and in which each group R is independently defined.

- (previously presented) A compound as claimed in claim 41, in which R² and R³ are both Hydrogen.
- (previously presented) A compound as claimed in claim 41, in which R² is methyl
 (CH₃) and R³ is Hydrogen.
- 47. (previously presented) A compound as claimed in claim 41, in which R² is Hydrogen and R³ is methyl (CH₃).

- 48. (previously presented) A compound as claimed in claim 41, in which R^2 and R^3 are both methyl (CH₃).
- (previously presented) A compound as claimed in claim 41, in which X is -OH, -OC₂H₅,
 -OCH₃, or NHOH.
- 50. (previously presented) A compound as claimed in claim 41, in which Y is represented by one or two oxygen atoms.
- 51-52. (canceled).
- 53. (currently amended) A compound as claimed in claim 41, in which of general formula (Ia)

wherein:

R² and R³ are both Hydrogen (H)[[,]];

Y is equal to two oxygen atoms; and

n is equal to 1, 1;

R1 is one of

X is one of -OH, -CH₃, -OC₂H₅ or NHOH.

54. (currently amended) A compound as elaimed in claim 41, of general formula (B) in which

$$\underset{(B)}{\overset{\text{YI}}{\underset{\text{R}_2}{\bigvee}}} X$$

wherein:

R² and R³ are both methyl (CH₃)[[,1];

Y is equal to zero oxygen atoms[[,]]; and

n is equal to zero[[,]];

R1 is

X is -OCH3, -OC2H5 or -OH.

- (currently amended) A compound as elaimed in claim 41, claim 42, claim 43 or claim 44 which is:
 - 6-Phenylsulfanyl-hexa-2,4-dienoie acid (6a),
 - 6-(4-Chloro-phenylsulfanyl)-hexa-2.4-dienoic acid methyl ester (6b).
 - 6-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester (6c),
 - 6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6d),
 - 6-(4-Methoxy-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6e),
 - 6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7b),
 - 6-(4-Dimethylamino-phenylsulfanyl)-hexa-2.4-dienoic acid hydroxyamide (7c).
 - 6-Phenylsulfinyl-hexa-2,4-dienoic acid methyl ester (8a),
 - 6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8b),

- 6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8c),
- 6-Benzenesulfinyl-hexa-2,4-dienoic acid (8d),
- 6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9a),
- 6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9b),
- 6-Benzenesulfonyl-hexa-2.4-dienoic acid (10a).
- 6-Benzenesulfonyl-hexa-2,4-dienoic acid methyl ester (10b),
- 6-Benzenesulfonyl-hexa-2,4-dienoic acid hydroxyamide (11a),
- 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid methyl ester (13b),
- 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (14a),
- 4-(4-Dimethylamino-phenylsulfanyl)-2-methyl-pent-2-enoic acid methyl ester (21b),
- 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid ethyl ester (24c),
- 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid hydroxyamide (25c).
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid methyl ester (28b),
- 7-(4-Chloro-phenylsulfanyl)-heptanoic acid ethyl ester (28c),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid methyl ester (28e).
- 6-(4-((4-Chlorobenzyl)-methylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28f),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28g),
- 6-(4-Bromo-phenylylsulfanyl)-hexanoic acid methyl ester (28h).
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid methyl ester (28i),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid hydroxyamide (29b),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid hydroxamide (29c),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid hydroxamide (29g),
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid hydroxamide (29i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid methyl ester (30b),
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid ethyl ester (30c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid methyl ester (30e),

6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid methyl ester (30f).

6-(4'-Chloro-biphenyl-4-ylsulfinyl)-hexanoic acid methyl ester (30i),

6-(4-Chloro-benzenesulfinyl)-hexanoic acid hydroxyamide (31a),

7-(4-Chloro-benzenesulfinyl)-heptanoic acid hydroxyamide (31c),

6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid hydroxyamide (31e),

6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid hydroxamide (31f).

6-(4'-Chloro-biphenyl-4-sulfinyl)-hexanoic acid hydroxyamide (31i),

(2E,4E)-5-(5-Dimethylamino-benzo[b]thiophen-2-yl)-penta-2,4-dienoic acid ethyl ester (41a).

(2E,4E)-5-(5-Dimethylaminobenzo[b]thiophen-2-yl)-penta-2,4-dienoic acid hydroxamide (42a).

(E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-acrylic acid ethyl ester (51a.), or

 $(E) - 3 - (3 - (4 - Dimethylamino-phenylsulfanyl) - phenyl) - N - hydroxy-acrylamide \ (52a).$

- 56. (currently amended) A pharmaceutical composition comprising a compound of any one of claims 41 to 44 55, and optionally a pharmaceutically acceptable adjuvant and/or diluent.
- 57. (currently amended) <u>A method of inhibiting HDAC activity in an individual suffering</u> from a disease or condition related to aberrant HDAC activity comprising administering to said <u>individual a therapeutically effective amount of</u> a compound of general formula (I):

$$\begin{array}{c}
Y \\
R_1 \\
\end{array}$$

$$\begin{array}{c}
R_2 \\
\end{array}$$

$$\begin{array}{c}
R_3 \\
\end{array}$$

$$\begin{array}{c}
Q \\
X
\end{array}$$

(I)

in which:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl, } (C_6 \text{ or } C_{10}) \text{ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl, } (C_3\text{-}C_8) \text{ heterocycloalkenyl, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkyl, } (C_5\text{-}C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1\text{-}C_{10}) \text{ alkyl, } (C_1\text{-}C_{10}) \text{ alkenyl, } (C_1\text{-}C_{10}) \text{ alkoxy, } (C_1\text{-}C_{10}) \text{ thioalkoxy, hydroxyl, } (C_1\text{-}C_{10}) \text{ hydroxylalkyl, halo, } (C_1\text{-}C_{10}) \text{ haloalkyl, amino, amido, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ alkylcarbonyl, } (C_1\text{-}C_{10}) \text{ alkylcarbonyl, } (C_1\text{-}C_{10}) \text{ alkylthiocarbonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfonylamino, aminosulfonyl, } (C_1\text{-}C_{10}) \text{ alkylsulfinyl, } \text{ or } (C_1\text{-}C_{10}) \text{ alkylsulfonyl, } \text{ halongly } (C_1\text{-}C_{10}) \text{ alkylsulfonyl, } \text{ or } (C_1\text{-}C_1\text$

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_4-C_{42}) alkyl, of unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6-\sigma r-C_{42})$ aryl-or $(C_6-\sigma r-C_{42})$ heteroaryl, or a combination thereof to form a linked or fused ring-system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, \underline{or} (C_1-C_{10}) haloalkyl $[[[,]]]_{\underline{i}}$ eyano, nitro, amino, amido, (C_4-C_{42}) alkylamino, (C_4-C_{42}) alkylamino, (C_4-C_{42}) alkylamino, (C_4-C_{42}) alkylamino, aminosulfonyl, (C_4-C_{42}) alkylamino, (C_4-C_{42}) alkylamino, aminosulfonyl, (C_4-C_{42}) alkylamino, (C_4-C_{42}) alkylamino, aminosulfonyl, (C_4-C_{42}) alkylamino, (C_4-C_{42}) alkynyl, (C_4-C_{42}) alkoxy, (C_4-C_{42}) alkynyl, (C_4-C_{42}) alkoxy, (C_4-C_{42}) alkynyl, (C_4-C_{42}) alkylaufonyl, $(C_4$

R² and R³ optionally form a (C₆ or C₁₀) aryl, (C₆ or C₁₀) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C₅-C₈) heterocycloalkenyl, (C₅-C₈) cycloalkene ring, (C₅-C₈) cycloalkyl, (C₅-C₈) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous, or heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous; or

R¹ and R² optionally form a (C₆ or C₁₀) aryl, (C₆ or C₁₀) arylalkyl, (C₆ or C₁₀)

heteroaryl, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1R^2N , with R^1 and R^2 as defined above[[,1];

n is equal to 0, 1 or 2[[,]];

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where wherein each group R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl [7,1]; and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C_1 - C_6 alkyl, or substituted C_1 - C_6 alkyl[[,]];

Q represents

$$\left(\begin{array}{c} R_4 \\ R_5 \end{array}\right)_{\mathrm{m}}$$
 or $\left(\begin{array}{c} R_4 \\ R_5 \end{array}\right)_{\mathrm{n}}$

wherein:

m is an integer from 1 to 4;

n is an integer from 1 to 8; and

 R^4 and R^5 each independently represents represent hydrogen, or unsubstituted or substituted C_1 - C_{10} alkyl[[,]]; an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more earbon carbon double-bonds, C_6 or C_{10} -aryl, a 5- to 10 membered heterocyclic group, C_1 - C_{10} -alkoxy, C_1 - C_{10} -thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $\{C_1$ - C_{10} -alkyl)carbonyloxy, $\{C_2$ - C_{10} -alkoxy)carbonyl, $\{C_4$ - C_{10} -alkyl)carbonyl, $\{C_4$ - C_{10} -alkyl)suflonylamino, aminosulfonyl, C_4 - C_{10} -alkylsulfinyl, C_4 - C_{10} -altylsulfinyl, C_4 - C_4 - C_4 -altylsulfinyl, C_4 - C_4 - C_4 -altylsulf

or a pharmaceutically acceptable salt thereof.

- 58. (currently amended) A The method of claim 57 wherein said disease or condition related to aberrant HDAC activity is selected from treating cancer[[,]]; cardiac hypertrophy[[,]]; a haematological disorder[[,]]; an auto-immune disease[[,]]; a neurological condition[[,]]; a genetic-related metabolic disorder[[,]]; a peroxisome biogenesis disorder[[,]]; adrenoleukodystrophy[[,]]; stimulating hematopoietic cells ex vivo; ameliorating and a protozoal parasitic infection[[,]], accelerating wound healing, or protecting hair follicles in an individual comprising administering to said individual a compound of claim 57.
- 59. (currently amended) The method of claim 58, in which the cancer is selected from the group consisting of breast cancer[[,]]; colon cancer[[,]]; colorectal cancer[[,]]; esophageal cancer[[,]]; glioma[[,]]; lung small and non-small cell cancers[[,]]; leukaemia neuroblastoma[[,]]; prostate cancer[[,]]; thoracic cancer[[,]]; melanoma[[,]]; ovarian cancer[[,]]; cervical cancer; and renal cancer
- 60. (currently amended) The method of claim 58 in which the haematological disorder is selected from a-hemoglobinopathy[[,]]; thalessmia[[,]]; of and sickle cell anemia.
- (currently amended) The method of claim 58 in which the autoimmune disorder is selected from arthritis; or and Huntingdon's disease.
- (previously presented) The method of claim 58 in which the neurological disease is Alzheimer's disease.
- (previously presented) The method of claim 58 in which the genetic-related metabolic disorder is cystic fibrosis.
- 64. (new) A compound of claim 43, wherein:

X is NHOH, OH, NROR, or CRROH; and Z is CR or N

65. (new) The method of claim 57, wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, optionally substituted by $(C_1\text{--}C_{10})$ alkoxy, halo or $(C_1\text{--}C_{10})$ alkylamino;

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a C_6 aryl;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently selected from hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is O, 1, or 2 oxygen atoms;

Q represents

$$\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}_m$$
 or $\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}_n$

wherein:

m is an integer from 1 to 4;

n' is an integer from 1 to 8; and

 $\ensuremath{R^4}$ and $\ensuremath{R^5}$ each independently represent hydrogen or methyl.

- 66. (new) The method of claim 57, wherein said compound of general formula (I) is:
 - 6-Phenylsulfanyl-hexa-2,4-dienoic acid (6a),
 - 6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6b), or
 - 6-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester (6c).
- 67. (new) A method of stimulating hematopoietic cells ex vivo, comprising administering an

effective amount of a compound of general formula (I).

- (new) A method of accelerating wound healing in an individual, comprising administering to said individual a therapeutically effective amount of a compound of general formula (I).
- (new) A method of protecting hair follicles in an individual, comprising administering to said individual a therapeutically effective amount of a compound of general formula (I).
- 70. (new) A compound of general formula (Ib)

$$R_1 \stackrel{\text{if}}{\stackrel{\text{lh}}{=}} R_2 \stackrel{\text{lh}}{\stackrel{\text{lh}}{=}} R_3$$

wherein:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl}, (C_6 \text{ or } C_{10}) \text{ arylalkyl}, a 6- \text{ or } 10\text{-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl}, (C_3-C_8) \text{ heterocycloalkenyl}, (C_5-C_8) \text{ cycloalkene ring, } (C_5-C_8) \text{ cycloalkyl}, (C_5-C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1-C_{10}) \text{ alkyl}, (C_1-C_{10}) \text{ alkenyl}, (C_1-C_{10}) \text{ alkynyl}, (C_1-C_{10}) \text{ alkoxy}, (C_1-C_{10}) \text{ thioalkoxy}, \text{ hydroxyl}, (C_1-C_{10}) \text{ hydroxylalkyl}, \text{ halo}, (C_1-C_{10}) \text{ haloalkyl}, \text{ amino, amido, } (C_1-C_{10}) \text{ alkylamino, } (C_1-C_{10}) \text{ alkyltaninoyl}, (C_1-C_{10}) \text{ alkyltaninoyl}, (C_1-C_{10}) \text{ alkyltanino, aminosulfonyl}, (C_1-C_{10}) \text{ alkylsulfinyl}, \text{ or } (C_1-C_{10}) \text{ alkylsulfonyl};$

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a (C₆ or C₁₀) aryl;

n is 0, 1 or 2;

X is hydroxamate (-NHOH); and

Y is 0, 1 or 2 oxygen atoms;

or a pharmaceutically acceptable salt thereof.

71. (new) The method of claim 57, wherein the compound of formula (1) has a structure of general formula (1a):

$$R_1$$
 R_3 R_3 X

wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ anylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) alkolalkyl, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkyltarbonyl, (C_1-C_{10}) alkyltarbonyl, (C_1-C_{10}) alkylsulfonyl, or (C_1-C_{10}) alkylsulfonyl, or (C_1-C_{10}) alkylsulfonyl, or (C_1-C_{10}) alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, or (C_1-C_{10}) haloalkyl; or

 R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, (C_6 or C_{10}) heteroaryl, (C_3 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R²N, with R^1 and R^2 as defined above;

n is 0, 1 or 2:

or a pharmaceutically acceptable salt thereof.

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl; and Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, C₁-C₆ alkyl, or substituted C₁-C₆

alkyl;