

Blocs Fonctionnels pour les Mobiles

Tan Phu VUONG, Professeur de Grenoble INP

tan-phu.vuong@minatec.grenoble-inp.fr

Emetteur Basic

Données

Modulation

Upconversion

Amplification

Emission

Récepteur Basic

Données

Réception

Amplification

Downconvertion

Démodulation

- Atténuation du signal!!
 - Amplitude
 - Phase
- Type de filtres:
 - filtre passe-haut
 - filtre passe-bas
 - filtre passe-bande
 - filtre réjecteur de bande
 - Filtre passe-tout
- Filtres actives ou passives

- Filtres passe-bas
 - passif

$$\underline{\mathbf{U}}_{S} = \frac{\underline{\mathbf{Z}}_{C}}{\underline{\mathbf{Z}}_{R} + \underline{\mathbf{Z}}_{C}} \underline{\mathbf{U}}_{E} = \frac{\frac{1}{jC\omega}}{R + \frac{1}{jC\omega}} \underline{\mathbf{U}}_{E} = \frac{1}{1 + jRC\omega} \underline{\mathbf{U}}_{E}$$

$$\underline{T}(\omega) = \frac{\underline{U}_{S}}{\underline{U}_{E}} = \frac{1}{1 + jRC\omega}$$

Fonction de transfert normalisée

$$T(\omega) = \left| \frac{1}{1 + jRC\omega} \right| = \frac{|1|}{|1 + jRC\omega|} = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

Diagramme de Bode du gain

$$G(\omega) = 20 \cdot \log_{10} T(\omega) = -20 \cdot \log_{10} \left(\sqrt{1 + (RC\omega)^2} \right)$$

$$f_c = \frac{1}{2\pi RC}$$
 Fréquence de coupure

Diagramme de Bode

$$P_{dB} = 10Log_{10}(P) \qquad H_{dB} = 20Log_{10}(H) = 20Log_{10}\left(\frac{\overline{V_s}}{\overline{V_e}}\right)$$

$$H_{dB} = 20Log(H) = 20Log\left(\frac{1}{\sqrt{1+x^2}}\right) = -20Log\left(\sqrt{1+x^2}\right)$$

$$\lim_{x>>1} H_{dB} = -20 Log(\sqrt{x^2}) = -20 Log(x)$$

$$\lim_{x <<1} H_{dB} = -20 Log(\sqrt{1})$$

$$\lim_{x=1} H_{dB} = -20 \log \sqrt{2} = -3 dB$$

Bande passante BP

$$\frac{H_{\text{max}}}{\sqrt{2}} \le H \le H_{\text{max}}$$

Fc=fréquence de coupure à 3dB

Filtres passe-bas 2º ordre

passif

$$\frac{v_2}{v_1} = \frac{\overline{Cp}}{Lp + R + \frac{1}{Cp}} = \frac{1}{LCp^2 + RCp + 1}$$

$$H(\omega) = \frac{1}{1 - LC\omega^2 + jRC\omega}$$

$$f_{c} = \frac{1}{2\pi\sqrt{LC}}$$

Fréquence de coupure

Fonction de transfert normalisée

Filtres passe-bas 2º ordre
 actif

$$\frac{v_1 - v_2}{R} + (v_3 - v_2)Cp + (v_S - v_2)Cp = 0$$

$$(v_2 - v_3)Cp - \frac{v_3}{R} = 0$$

$$v_S = -Av_3$$
 Y=1/R

$$\frac{v_S}{v_1} = \frac{-AYCp}{Y^3 + 3YCp + (1+A)C^2p^2}$$

- Filtres passe-haut
 - passif

$$H(j\omega) = \frac{v_o}{v_i} = \frac{jRC\omega}{1 + jRC\omega}$$

Fréquence de coupure

Fonction de transfert normalisée

Filtres passe-bande

$$h(j\omega) = \frac{1}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)}$$

Fonction de transfert normalisée

$$f_{c} = \frac{1}{2\pi\sqrt{LC}}$$

Fréquence de coupure

$$BW = \frac{f_{cH} - f_{cL}}{f_c}$$

Bande passante

- Filtres coupe-bande
 - passif

Fonction de transfert normalisée

$$f_{c} = \frac{1}{2\pi\sqrt{LC}}$$

Fréquence de coupure

$$BW = \frac{f_{cH} - f_{cL}}{f_c}$$

Bande rejeté

Ordre du filtre

Filtres

- Types de filtre
 - Filtre éléments discrets
 - Filtre piézoélectrique
 - Filtre céramique
 - Filtre cavité
 - Filtre microruban...

Technologie SAW

- onde acoustique guidée par la surface
- pertes de propagation importantes
- filtres ⇒ IDTs (FIR) ou résonateurs (Ladder ou Lattice)
- limité en fréquence et en puissance IDT

Fo	1.9 GHz
IL	2.0 dB
BW	80 MHz
Taille	2.5x2.0x0,9 mm ³

Technologies BAW

- · l'onde acoustique est confinée dans le matériau piézoélectrique
- pertes de propagation moins importantes
- filtres ⇒ résonateurs couplés électriquement (Ladder, Lattice)
 résonateurs couplés acoustiquement (SCF, CRF)

Réduction de 10⁴ des longueurs d'ondes ⇒ résonateur 100µm en bande S Très haut coefficient de qualité : 400 pour du ZnO à 900 MHz

FBAR (Film Bulk Acoustic Resonator)

Filtre Multi-bande

Illustration "filtres multibandes »

Exemple de travaux réalisés au LEST

Filtre très sélectif

bande Rx UMTS (f₀: 1.95 GHz)

Taille: 7 * 9.8 mm

Pertes: 2 dB

Bande passante à -10 dB : 3 %

Réjection : >40 dB de 2.1 à 2.4 GHz

Filtre Accordable

Variation Fréquence centrale

Agilité à base de diodes + MMIC (R<0)

Topologie du filtre

(Travaux LEST – XLIM)

Simulations

<u>Fréquence basse</u>

$$f_{01} = 3.42 \text{ GHz}$$

Fréquence haute

$$f_{02} = 4.53 \text{ GHz}$$

 $\Delta f = 1.11 GHz$

Filtre Accordable

Variation Fréquence centrale

Agilité à base de MEMS

Filtre Accordable

Variation Fréquence centrale

Agilité à base de Matériaux

- Ferroélectriques -

$$\mathcal{E}_r = f(\vec{E})$$

- Cristaux liquides -

Exemple de réponse - Filtre DBR

Changement d'anisotropie de CL

Duplexer

- A duplexer is the network that permits a transmitter and receiver to use the same antenna, at or very near the same frequency.
 - Low loss between transmitter and antenna in transmit (less than 1 dB is desirable)
 - High isolation from transmitter to receive in transmit (as much as 80 dB for megawatt systems)
 - Low loss between antenna and receiver in receive (less than 1 dB is desirable)
 - Fast switching between the transmit and receive state, sometimes "automatically switched by the transmit signal, sometimes by command signal.

Duplexer

Microruban

FIGURE 4.1 General microstrip structure.

Microruban

Microruban

Résonateur Microruban

Substrat Microruban

suspended microstrip line

inverted microstrip line

suspended or inverted microstrip line, enclosed

Filtre Microruban

Filtre Patch

