PREDICTING WE VARIANCE FROM MSM

GIDEON SIMPSON

Following Lemma 3.1 from [1], suppose we are attempting to estimate $\mathbb{E}[f]$ using WE, where f may in fact be the occupancy of the target set B for a flux calculation. Single realization estimates of f after t iterations of WE with N particles are as follows. The point, in time, estimates are:

(1)
$$\eta_t^N(f) = \sum_{i=1}^N w_t^i f(\xi_t^i)$$

where w_t^i is the weight at time t for particle i and particle i sits at position ξ_t^i . Typically, we time average this, having computed up till time t:

(2)
$$\frac{1}{t} \sum_{s=0}^{t-1} \sum_{i=1}^{N} w_s^i f(\xi_s^i).$$

The ensemble average of this quantity (averaged over an ensemble of WE runs),

(3)
$$\lim_{t \to \infty} t \times N \times \operatorname{Var}\left(\frac{1}{t} \sum_{s=0}^{t-1} \sum_{i=1}^{N} w_s^i f(\xi_s^i)\right) = \text{Variance Constant}$$

and the above constant, which we now focus on, is

(4) Variance Constant =
$$\sum_{u} \frac{\pi(u)^{2}}{\alpha(u)} \left\{ \operatorname{Var}_{\pi(\bullet|u)}(Kh) + \operatorname{Var}_{\pi(\bullet|u)}(v) + \pi(v \mid u)^{2} \right\}.$$

In the above expression, u, is the index of the "macro" WE bins, as opposed to any "micro" bins which may have been used to construct them. $\alpha(u)$ is the fraction of walkers allocated to bin u. Quantities are computed as follows. Let K denote the transition matrix (for the recycling process) on the fine bin space. Then π is the stationary measure on the micro bins, and

(5)
$$\pi(u) = \sum_{i \in u} \pi(i)$$

where we are indexing the microbins over i. Next, h is computed as the solution to the Poisson equation

$$(6) (I-K)h = f - \pi(f)$$

This corresponds to the h_0 from the review article, and v solves

(7)
$$v^2 = K(h^2) - (Kh)^2$$

Date: October 14, 2022.

Again, h and v are microbin functions. Then,

(8)
$$\pi(v \mid u) = \sum_{i \in u} \pi(i)v(i)/\pi(u)$$

(9)
$$\operatorname{Var}_{\pi(\bullet|u)}(v) = \sum_{i \in u} \pi(i) v_i^2 / \pi(u) - \left(\sum_{i \in u} \pi(i) v_i / \pi(u)\right)^2$$

(10)
$$\operatorname{Var}_{\pi(\bullet|u)}(Kh) = \sum_{i \in u} \pi(i)(Kh)_i^2/\pi(u) - \left(\sum_{i \in u} \pi(i)(Kh)_i/\pi(u)\right)^2$$

where Kh is obtained from matrix-vector multiplication.

In the ideal setting, the dominant term in (4) is the last,

$$\pi(v)^2$$

but the other two terms may play a nontrivial role.

In my experience, with sufficient microbin resolution, these are relatively (within an order of magnitude) estimates of the limiting variance.

References

 R. J. Webber, D. Aristoff, and G. Simpson. A splitting method to reduce MCMC variance, Dec. 2020. arXiv:2011.13899 [cs, math].