Monitoreo y Terminación de Descenso de Gradiente

Descenso de gradiente

- Descenso de gradiente
 - Iterativo
 - Generalizable
 - Regresión Lineal
 - Regresión Logística
 - Redes Neuronales
 - Máquinas de Vectores de Soporte
 - Cualquier modelo con E derivable
 - Escalable (con modificaciones)
 - Millones de ejemplos

Descenso de gradiente con 2 parámetros

Descenso de gradiente con n>2 parámetros

- ¿Cuándo terminar?
 - Iteraciones fijas
 - Tolerancia de error
- ¿Cómo determinar?
 - Monitorear parámetros vs error
 - Ver si se llega al mínimo
 - No se puede visualizar
 E con n>2 parám.

Error vs Parámetros

Curvas de error

- Monitorear Error vs Iteración
 - No requiere 1D o 2D
 - Funciona si el error no es convexo
- Cada Iteración
 - Calcular error
 - Actualizar gráfico
 - (o guardar en vector y dibujar al final)
 - (idem en un archivo)
- Sirve para otros métodos iterativos

Curvas de error - Posibles síntomas

- ConvergenciaRápida
- Ajustes menores
- Típico

- Divergencia
- Posibilidades
- 1) α muy alto
- 2) ej. sin normalizar

Iteraciones/Épocas

- Ajustes constantes
- Posibilidades
- 1) Faltan iteraciones
- 2) α muy chico

- Modelo no aprende
- Problema muy complejo
- α muy chico

Curvas de error entrenamiento/prueba

- 1)
 - Buen entrenamiento
 - Buena generalización
- 2)
 - Buen entrenamiento
 - Mala generalización
- 3)
 - Buen entrenamiento
 - Buena generalización
 - Mala a lo último
 - Parar antes

- 4)
 - Mal entrenamiento
 - Mala generalización
 - Cambiar modelo

Para antes (early stopping)

- Entrenar más tiempo
 - Aprender mejor
 - Conjunto entrenamiento
- Típico
 - K iteraciones
 - Error de prueba ↓
 - K+1 en adelante
 - Error de prueba
- Early Stopping
 - No esperar a que error en entrenamiento se estanque
 - Monitorear error en prueba (o val)

Descenso de gradiente con early stopping

```
  descenso_gradiente(x<sub>train</sub>, y<sub>train</sub>, x<sub>test</sub>, y<sub>test</sub>, α, ite)

o p = parametros aleatorios
\circ E = error(x_{test}, y_{test}, p)
\circ i = 0
Repetir
   ■ Calcular \delta E/\delta p
    p = p - \alpha \delta E/\delta p 
   = i=i+1
   ■ Hasta que abs(E-E_{anterior}) \simeq 0 o i=ite
 o retornar p
```

Para antes (early stopping)

- Alternativamente
 - Entrenar hasta el final
 - Guardar checkpoints del modelo
 - Valores de los parámetros
 - En distintas iteraciones ----
 - Elegir el checkpoint con menor error de prueba

Métricas de error

- Función de error E
 - Diseñada para optimizar
 - Ejemplo MSE

 - $MSE_i = (y_i f(x_i))^2$ $MSE = (1/n) \Sigma_i^n MSE_i$
 - Difícil de interpretar MSE;
 - Difícil de interpretar MSE
 - Si **MSE = 12** ¿qué significa?
- Métricas
 - Similares a funciones de error
 - No tienen que ser optimizables
 - Más fáciles de interpretar
 - Fáciles de comparar entre modelos / problemas

Métrica Error Absoluto Medio

- Métrica MAE
 - Mean Absolute Error
 - Para problemas de Regresión
 - \circ MAE_i = abs(y_i-f(x_i))
 - \circ MAE = $(1/n)^{\frac{1}{2}} \Sigma_{i}^{n}$ MAE
 - No es derivable
 - abs() no es derivable en 0
- Fácil de interpretar
 - Mismas unidades que la salida y

Ejemplo: Error Absoluto Medio

Métrica MAE

- \circ MAE_i = abs(y_i-f(x_i))
- $\circ MAE = (1/n) \sum_{i}^{n} MAE_{i}$
- Error MSE
 - $\circ MSE_{i} = (y_{i} f(x_{i}))^{2}$
 - $\circ MSE^{T} = (1/n) \Sigma_{i}^{n} MSE_{i}$

Salida	Esperado norm²	MSE	abs(norm) MAE
3	5	4	2
3	5	4	2
1	5	16	4
3	-1	16	4

MAE: En promedio, el modelo tiene un error de 3 puntos