Inferência estatística

Murillo F. Rodrigues

Estimação

O que é;

- Objetivo: fazer generalizações sobre uma população
- Parâmetros populacionais: média, proporção, ...
- Exemplos:

 μ - média da característica da população:

 μ : taxa média de glicose de mulheres com idade superior a 60 anos, em certa localidade;

 p – proporção de "indivíduos" em uma população com determinada característica.

p: proporção de pacientes com menos de 40 anos diagnosticados com câncer nos pulmões

O que éş

Variável de interesse X

- Com os elementos da amostra podemos estimar uma característica ou parâmetro populacional
- Estimador = estatística = função dos elementos da amostra que representa a característica de interesse

O que éş

- Estimador = estatística = função dos elementos da amostra que representa a característica de interesse
- Exemplo:

 \overline{X} : média amostral (estimador da média μ da característica X da população).

 \hat{p} : proporção amostral (estimador da proporção p populacional).

 Estimativa é o valor assumido pelo estimador para a sua amostra

 \overline{x} é o valor de X para a amostra observada.

Distribuição amostral do estimador

- Objetivo: estimar a média populacional de uma variável
 X, a partir de uma amostra de valores de X
- Possíveis procedimentos:
 - Estimação pontual
 - Estimação intervalar

· Estimador pontual para média populacional

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \sum_{i=1}^n \frac{X_i}{n}$$

Estimativa pontual

$$\bar{x} = \frac{x_1 + \dots + x_n}{n}$$

- Estimativa intervalar ou intervalo de confiança
 - Estimadores pontuais são variáveis aleatórias e possuem distribuições de probabilidade
 - Podemos incorporar essa incerteza na nossa estimativa?

$$\begin{bmatrix} - & \varepsilon & - \\ X & - & \varepsilon \end{bmatrix}$$

Como é a distribuição de probabilidade de uma média???

Parênteses

· Erro padrão da média amostral

$$SE = \sqrt{\frac{\sigma^2}{n}}$$

$$SE = \sqrt{\frac{S^2}{n}}$$

Parênteses

Z-score

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1)$$

• Estimativa intervalar ou intervalo de confiança

$$\begin{bmatrix} - & - & - \\ X & - & \varepsilon \end{cases}$$
 ; $X + \varepsilon$

$$\varepsilon = z \frac{\sigma}{\sqrt{n}}$$

Parênteses

Variância desconhecida = Estatística T

$$T = \frac{\bar{X} - \mu}{\sqrt{\frac{S^2}{n}}} \sim t_{n-1}$$

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Parênteses

Distribuição T

• Estimativa intervalar ou intervalo de confiança

$$\begin{bmatrix} - & - & - \\ X & - & \varepsilon & ; & X & + & \varepsilon \end{bmatrix}$$

$$\varepsilon = z \frac{\sigma}{\sqrt{n}}$$

$$\varepsilon = t_{n-1}^c \sqrt{\frac{S^2}{n}}$$

$$IC(\mu; \gamma) = \left[\bar{X} - t_{n-1}^c \sqrt{\frac{S^2}{n}}; \bar{X} + t_{n-1}^c \sqrt{\frac{S^2}{n}} \right]$$

Estimativa intervalar ou intervalo de confiança

$$\varepsilon = z \frac{\sigma}{\sqrt{n}}$$

$$\varepsilon = t_{n-1}^c \sqrt{\frac{S^2}{n}}$$

• Estimativa intervalar ou intervalo de confiança

Como interpretar ???

• Estimativa intervalar ou intervalo de confiança

Como interpretar ??? Vamos usar o R para ilustrar a interpretação!

Teste de Hipóteses

O que é uma hipótese?

· É uma conjectura sobre um parâmetro populacional

Conjectura – Wikipédia, a enciclopédia livre

https://pt.wikipedia.org/wiki/Conjectura ▼

Uma conjectura é uma ideia, fórmula ou frase, a qual não foi provada ser verdadeira, baseada em suposições ou ideias com fundamento não verificado.

- Exemplo:
 - "Eu acho que homens têm altura média maior que mulheres"

Exemplo de hipótese

- Hipótese nula: homens e mulheres têm mesma altura média
- Hipótese alternativa: homens são, em média, mais altos que mulheres
- Seja X a variável altura dos homens e Y altura das mulhers:

$$H_0: \mu_X = \mu_Y$$

 $H_1: \mu_X > \mu_Y$

Exemplo de hipótese

 Seja X a variável altura dos homens e Y altura das mulhers:

$$H_0: \mu_X - \mu_Y = 0$$

$$H_1: \mu_X - \mu_Y > 0$$

 Vamos ver se a altura média dos homens e mulheres dessa sala diferem!

Como eu decido?

Estatística T

$$T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$$

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}}$$

- Nível de significância lpha=0.05
- $s_p^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$

• Evidência amostral $(n,ar{x},s)$

P-valor

Determinar o nível descritivo. Como?

$$H_0: \mu_X - \mu_Y = 0$$

 $H_1: \mu_X - \mu_Y > 0$
 $P = P(T >= T_{obs})$

Decisão: se P > alpha, então não rejeitamos H0!

RESUMO

Teste de hipóteses para a média populacional μ

(via nível descritivo)

- (0) Descrever o parâmetro de interesse μ .
- (1) Estabelecer as hipóteses:

 H_0 : $\mu = \mu_0$ contra uma das alternativas

$$H_1$$
: $\mu \neq \mu_0$, H_1 : $\mu > \mu_0$ ou H_1 : $\mu < \mu_0$.

(2) Escolher a Estatística de teste:

$$Z = \sqrt{n} \frac{\overline{X} - \mu}{\sigma}$$
 ou $T = \sqrt{n} \frac{\overline{X} - \mu}{S}$

(3) Escolher um nível de significância α.

- (4) Selecionar uma **amostra** casual simples de tamanho n \Rightarrow determinar a média amostral \bar{x}_{obs} e o desvio padrão (populacional σ ou amostral s).
- (5B) Determinar o nível descritivo P

Se
$$H_1$$
: $\mu > \mu_0$, $P = P(Z \ge z_{obs})$ ou $P(T \ge t_{obs})$
Se H_1 : $\mu < \mu_0$, $P = P(Z \le z_{obs})$ ou $P(T \le t_{obs})$
Se H_1 : $\mu \ne \mu_0$, $P = 2 \times P(Z \ge |z_{obs}|)$ ou $2 \times P(T \ge |t_{obs}|)$

(6) Decidir, comparando P com o nível de significância α, e concluir.

Se
$$P \le \alpha \Rightarrow$$
 rejeitamos H_0
Se $P > \alpha \Rightarrow$ não rejeitamos H_0

- · Análise de Variância (Analysis of Variance)
- · Comparação simultânea de médias de vários grupos

$$H_0: \mu_1 = \dots = \mu_k$$

 $H_1: \mu_i \neq \mu_i$

Supondo k grupos, teríamos:

Grupo 1	Grupo 2	 Grupo k
y_{11}	y_{21}	y_{k1}
y_{12}	y_{22}	y_{k2}
•	•	•
•	•	•
•	•	•
y_{1n1}	y_{2n2}	${\cal Y}_{knk}$

 \bar{y}_k .

- Termos importantes:
 - fator: critério de classificação (tratamentos)
 - nível: cada classificação ou grupo

Modelo estatístico:

OBSERVAÇÃO = SISTEMÁTICA + ALEATÓRIA

- Componente sistemático (previsível): incorpora conhecimento que o pesquisador tem sobre o fenômeno
- Componente aleatório: representa as variações individuais que não são explicadas pela parte sistemática do modelo. Também conhecido como erro aleatório ou resíduo

Modelo estatístico (1):

$$Y_{ij} = \mu_i + e_{ij}$$
, $i = 1,..., k, j = 1,..., n_i$

com μ_i : média de Y no nível i (efeito do nível i),

 e_{ij} : efeito aleatório do j-ésimo indivíduo do nível i,

 Y_{ii} : variável resposta do j-ésimo indivíduo do nível i.

Suposição:

 e_{ij} ~ normais, independentes com média 0 e variância σ^2 .

Se a hipótese H_0 for verdadeira, o modelo pode ser reescrito:

Modelo estatístico (0):

$$Y_{ij} = \mu + e^*_{ij}, i = 1,..., k, j = 1,..., n_i$$

Variabilidade Total =

Variabilidade entre grupos

+

Variabilidade dentro dos grupos

Como calculamos aquelas variabilidades?

$$SQD = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

$$QMD = \frac{SQD}{n-k}$$

$$SQE = \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

$$QME = \frac{SQE}{k-1}$$

- Mas... como eu decido?
- Queremos comparar se a variação entre grupos é maior que a variação dentre grupos!
- Estatística F

$$F = \frac{QME}{QMD}$$

Tudo resumido na tabela de ANOVA

Fonte de Variação	g.l.	Soma de Quadrados	Quadrado Médio	Teste F
Entre grupos	k - 1	SQE	QME = SQE/(k-1)	F = QME/QMD
Dentro de grupos	n - k	SQD	QMD = SQD/(n-k)	
Total	n - 1	SQT		

com
$$F \sim F_{(k-1, n-k)}$$

$$SQE = \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y})^2$$

$$SQD = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

$$SQD = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

OBS.:
$$SQT = SQE + SQD$$

Tudo resumido na tabela de ANOVA

Fonte de Variação	g.l.	Soma de Quadrados	Quadrado Médio	Teste F
Entre grupos	k - 1	SQE	QME = SQE/(k-1)	F = QME/QMD
Dentro de grupos	n - k	SQD	QMD = SQD/(n-k)	
Total	n - 1	SQT		

com
$$F \sim F_{(k-1, n-k)}$$

$$SQE = \sum_{i=1}^{k} n_i (\bar{y}_i - \bar{y})^2$$

$$SQD = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

$$SQD = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2$$

OBS.:
$$SQT = SQE + SQD$$

$$R^2 = \frac{2}{SQT}$$

Análise de Regressão Linear

 É uma ANOVA quando meu fator é uma variável contínua!

ANOVA

Supondo k grupos, teríamos:

	-		
Grupo 1	Grupo 2	 Grupo k	
y_{11}	y_{21}	y_{k1}	
y_{12}	y_{22}	y_{k2}	y_k
			0
			s_k
y_{1n1}	y_{2n2}	y_{knk}	

- Termos importantes:
 - fator: critério de classificação (tratamentos)
 - nível: cada classificação ou grupo

Modelo

O modelo estatístico para esta situação seria:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

em que:

 Y_i = valor observado para a variável dependente Y no i-ésimo nível da variável independente X.

 β_0 = constante de regressão. Representa o intercepto da reta com o eixo dos Y.

β₁ = coeficiente de regressão. Representa a variação de Y em função da variação de uma unidade da variável X.

 $X_i = i$ -ésimo nível da variável independente X (i = 1,2,...,n)

 e_i = é o erro que está associado à distância entre o valor observado Y_i e o correspondente ponto na curva, do modelo proposto, para o mesmo nível i de X.

Estimando os parâmetros

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

$$\hat{\beta} = \frac{cov(x, y)}{var(x)}$$

Tabela de ANOVA

Fonte de Variação	g.l.	Soma de Quadrados	Quadrado Médio	Teste F
Regressão	1	SQReg	QMReg = SQReg	F= QMReg/QMRes
Resíduo	n - 2	SQRes	QMRes = SQRes/(n-2)	
Total	n - 1	SQT		

$$SQT = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$SQRes = \sum_{i=1}^{n} \left[y_i - (\hat{\alpha} + \hat{\beta}x_i) \right]^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

Teste Qui-quadrado

Aderência

Qui-quadrado de aderência

Categorias	Frequência observada	Frequência esperada, sob ${\cal H}_0$
1	O_1	\boldsymbol{E}_1
2	O_2	E_2
3	O_3	E_3
:	:	: :
k	O_k	E_k
Total	n	n

Qui-quadrado de aderência

Categorias	Frequência observada	Frequência esperada, sob ${\cal H}_0$
1	O_1	$oldsymbol{E}_1$
2	O_2	E_2
3	O_3	E_3
:	:	: :
k	O_k	E_k
Total	n	n

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

Qui-quadrado de aderência

Supondo H_0 verdadeira,

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi_q^2$$
, aproximadamente,

sendo que q = k - 1 representa o número de graus de liberdade.

