Matière:

Physique Chimie

ÉQUILIBRE D'UN SOLIDE EN ROTATION AUTOUR D'UN AXE FIXE

Dynamomètre

Barre à trous

0 0

0 0

0

Niveau:

Tronc Commun

I) Moment d'une force:

1) ÉTUDE EXPÉRIMENTALE :

a) Montages expérimentaux

Montage $n^{\circ}1$:

A l'aide du dynamomètre, On mesure le poids de la barre.

$$P_1 = ... 0.3 \text{ N ou } 0.4 \text{ N } ...$$

Réaliser le montage ci-contre, Le système doit être en équilibre (immobile).

□ Noter les valeurs des distances

$$OG = \dots$$
 et $OA = \dots$

☐ À l'aide d'un rapporteur, noter les valeurs des angles :

$$\alpha = \dots$$
 et $\beta = \dots$

Montage n° 1

Déterminer la valeur P du poids du sytème :

On note P₁ la valeur du poids de la barre et P₂ celle du poids du solide

 $P = P_1 + P_2$ P = 1,3 N ou 1,4 N....

1

b) Bilan des forces

- Action de la terre sur le système {Barre ; Solide} : \vec{P}
- \Box Action du dynamomètre $\{D\}$ sur le système $\{Barre; Solide\}: \widetilde{F}$
- ☐ Action de l'axe de rotation sur le système {Barre ; Solide} : C

Représentons de manière qualitative, les forces qui agissent sur le système {Barre; Solide}. La direction de \vec{C} est obtenue de telle manière que les directions des trois forces soient concourantes (une des conditions d'équilibre d'un solide en translation soumis à trois forces).

c) Mesures expérimentales

Chaque binôme ayant noté ses mesures regroupons les valeurs dans dan tableau :

										Г		
Binôme	1	2	3	4	5	6	7	8	9	10	11	12
OG (cm)	17,5	17,5	17,5	17,5	17,5	18	17,5	17,5	17,5	17,5	17,5	17,5
P (N)	1,3	1,4	1,3	1,3	1,4	1,2	1,4	1,4	1,4	1,4	1,4	1,4
α (°)	120	102	115	112	116	80	99	90	90	105	120	65
OA (cm)	35	27,5	30	30	27,5	36	22,5	22,5	35	35	32,5	25
F (N)	0,8	0,9	0,8	1,1	0,9	0,7	1,1	1,3	1	0,8	0,7	1
β (°)	140	78	120	40	65	120	82	58	45	125	62	115

d) Interprétation des mesures

L'objectif est de déterminer une quantité qui reste constante dans chaque cas.

Les élèves font plusieurs tentatives afin de trouver une relation entre OG; P; α ; OA; F et β . Deux binômes (7 et 5) qui ont travaillé sur leurs propres mesures, on fait remarquer que les produits $OG \times P$ et $OA \times F$ sont égaux.

Comparons les produits $OG \times P$ et $OA \times F$ dans chaque cas et déterminons l'écart Δ entre ces deux valeurs :

	Binôme	1	2	3	4	5	6	7	8	9	10	11	12
($OG \times P$	22,75	24,50	22,75	22,75	24,50	21,60	24,50	24,50	24,50	24,50	24,50	24,50
($OA \times F$	28,00	24,75	24,00	33	24,75	25,20	24,75	29,25	35	28	22,75	25,00
	Δ	5,25	0,25	1,25	10,25	0,25	3,60	0,25	4,75	10,50	3,50	1,75	0,50

On constate que le produit est constant (Δ faible) dans certains cas (2; 3; 5; 7; 11 et 12); alors que pour d'autre il avoisine les 45 % de la mesure. **Donc, on ne peut admettre cela comme une loi.** Représentons les forces dans le cas 7 cité ci-dessus :

Donc la relation:

$$\mathbf{F} \times \mathbf{O} \mathbf{A} = \mathbf{P} \times \mathbf{O} \mathbf{G}$$

N'est valable que dans les cas particuliers où $\vec{F}/\!/\vec{P}$; mais dans les autres cas :

$$\mathbf{F} \times \mathbf{OA} \neq \mathbf{P} \times \mathbf{OG}$$

représentons les forces qui sont capables de faire tourner la barre OA autour de l'axe de rotation O, c'est à dire \vec{F} et \vec{P} . On voit, intuitivement, que \vec{C} n'intervient pas dans la rotation de la barre ; on verra pourquoi par la suite. Représentons la projection orthogonale d_2 et d_1 de l'axe O sur les directions des forces \vec{F} et \vec{P} respectivement. En utilisant la trigonométrie dans un triangle rectangle, on obtient :

2) DEFINITION:

À partir des mesures expérimentales précédentes, on peut définir une grandeur physique, qui reste invariante dans certaines conditions.

Soit une tige OB mobile autour de l'axe O, soumise à une force \vec{F} au point M. Le moment de la force \vec{F} par rapport à O, noté $M_{\vec{F}/O}$ s'écrit :

$$\mathbf{M}_{\vec{F}/O} = \pm F \times OM \sin(\alpha)$$
{ou} $\mathbf{M}{\vec{F}/O} = \pm F \times d$

d étant la plus courte distance entre de O par rapport à la direction de F Unité du moment d'une force : le newton.mètre (N.m)

Le moment d'une force par rapport à un axe, peut être définie comme la capacité d'une force à faire tourner le solide autour de l'axe, dans un sens ou dans l'autre, plus ou moins vite.

II)THÉORÈME DES MOMENTS

Soit un solide assujetti à tourner autour d'un axe Δ , passant par O.

Le solide est en équilibre autour de O, si la somme des moments des forces qui le font tourner dans un sens est égale à la somme des moments des forces qui le font tourner dans l'autre sens.

$$\sum \boldsymbol{M} \left(\vec{\mathbf{F}}_{\text{ext}} \right) = 0$$

Dans l'exemple considéré (voir figure), on considére que la barre est soumise à cinq forces ; en comptant l'action de l'axe de rotation sur la barre.

$$\mathbf{M}_{\mathbf{F}_{1}/\mathbf{O}} + \mathbf{M}_{\mathbf{F}_{3}/\mathbf{O}} = \mathbf{M}_{\mathbf{F}_{2}/\mathbf{O}} + \mathbf{M}_{\mathbf{F}_{4}/\mathbf{O}} \implies F_{1}d_{1} + F_{3}d_{3} = F_{2}d_{2} + F_{4}d_{4}$$

Sinon on choisit un sens positif de rotation, et le théorème des moments devient :

Le solide en rotation autour d'un axe est en équilibre si la somme algébrique des moments des forces est nulle.

$$\frac{M_{F_{1}/O} + M_{F_{3}/O} - M_{F_{2}/O} - M_{F_{4}/O} = 0}{\sum M(\vec{F}_{ext}) = 0}$$

III) COUPLE DE FORCES

Soit un solide $\{S\}$ mobile autour d'un axe O, soumis à un couple de forces $(\vec{F}_1; \vec{F}_2)$

Un couple de forces est constitué de deux forces de directions parallèles (distantes de d), de même valeur F et de sens contraire.

Cas 1: (voir figure ci-contre)

Déterminons le moment total $M_{\Gamma/O}$, choisissons un sens de rotation positif.

$$\begin{split} M_{\overline{F}_1/O} &= +F_1.d_1 \quad _{et} M_{\overline{F}_2/O} = +F_2.d_2 \\ M_{T/O} &= M_{\overline{F}_1/0} + M_{\overline{F}_1/0} = F_1.d_1 + F_2.d_2 \\ \text{or } F_1 &= F_2 \text{ donc on peut écrire} : M_{T/O} = F.(d_1 + d_2) \end{split}$$

$$_{\text{de plus d1} + \text{d2} = \text{d}}$$
 ; $_{\text{donc}}$ $M_{\Gamma/O} = F \times d$

<u>Cas 2</u>: les deux forces sont situées du même côté de l'axe de rotation (voir figure ci-contre).

Déterminons le moment total $\,M_{\Gamma/O}\,$

$$\begin{split} &M_{\overline{F}_1/O} = + F_1.d_1 \ \ \text{et} \ \ M_{\overline{F}_2/O} = - F_2.d_2 \\ &\text{donc } M_{T/O} = F_1.d_1 - F_2.d_2 \quad \ \text{or } F_1 = F_2 \text{ donc } \\ &M_{T/O} = F.\big(d_1 - d_2\big), \text{ de plus } d_1 - d_2 = d \end{split}$$

en conclusion : $M_{\Gamma/O} = F \times d$

