Calcolo Numer	ico ed Elementi di	Prof. L. Dedè	Firma leggibile dello studente
Analisi		Prof. A. Manzoni	
CdL Ingegneria	Aerospaziale	Prof. S. Micheletti	
Prima Prova in	<u>Itinere</u>		
02 maggio 201	8		
Cognome:		Nome:	Matricola:

ISTRUZIONI

- Riportare le risposte nello spazio indicato.
- Alcuni esercizi richiedono di utilizzare MATLAB; per tali esercizi riportare sul foglio esclusivamente gli output richiesti.
- Utilizzare esclusivamente una penna nera o blu.
- Tempo a disposizione: 1h 30m.

SPAZIO RISERVATO AL DOCENTE

Pre Test	
Esercizio 1	
Esercizio 2	
Totale	

Pre Test

1. (1 punto) Determinare il più piccolo numero (positivo) x_{min} rappresentabile nell'insieme $\mathbb{F}(2,4,-3,7)$; riportare il risultato in base decimale.

10 punti

2. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 3 & 4 & 7 \\ 3 & 3 & 5 \\ 6 & 4 & 0 \end{bmatrix}$ e si determini la sua fattorizzazione

LU senza pivoting. Riportare il valore dell'elemento $u_{33} = (U)_{33}$ della matrice triangolare superiore U.

3. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 9 & 1 \\ 1 & \alpha \end{bmatrix}$ dipendente da un parametro $\alpha \in \mathbb{R}$. Per quali valori di $\alpha > 0$ è soddisfatta la condizione necessaria e sufficiente per la convergenza del metodo di Jacobi applicato alla soluzione di $A\mathbf{x} = \mathbf{b}$ per $\mathbf{b} \in \mathbb{R}^2$?

4. (2 punti) Si consideri la matrice $A = \begin{bmatrix} 11 & -10 \\ -10 & 2 \end{bmatrix}$. Assegnato il vettore iniziale $\mathbf{x}^{(0)} = (1, 1)^T$ si riporti il valore approssimato $\lambda^{(1)}$ dell'autovalore ottenuto applicando un'iterazione del metodo delle potenze (dirette).

5. (1 punto) Quale tra gli autolavori della matrice $A = \begin{bmatrix} 15 & 0 & 0 \\ -11 & -20 & 0 \\ -3 & 7 & -9 \end{bmatrix}$ può essere determinato applicando il metodo delle potenze *inverse*? Se ne riporti il valore.

6. (1 punto) Si consideri la funzione $f(x) = e^{(10/9-x)} - 1$ con un unico zero α e il metodo di bisezione per la sua approssimazione. Senza applicare esplicitamente il metodo, si *stimi* l'errore commesso dopo k = 5 iterazioni partendo dall'intervallo iniziale [0,4].

7. (1 punto) Si consideri la funzione $f(x) = \frac{1}{\sqrt{x-1}} - \sqrt{x-1}$. Si riporti il valore della prima iterata del metodo di Newton $x^{(1)}$ ottenuta per il valore dell'iterata iniziale $x^{(0)} = \frac{4}{3}$.

	i) Siano A e								
di conv condizi	(i) Siano A e e ergenza per one di ottima tutta la no	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l
di conv condizi	ergenza per one di ottima	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l
di conv condizi	ergenza per one di ottima	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l
di conv condizi	ergenza per one di ottima	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l
di conv condizi	ergenza per one di ottima	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l
di conv condizi	ergenza per one di ottima	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l
di conv condizi	ergenza per one di ottima	il metodo e alità sul pa	di Richard rametro α	lson stazior	nario prece	ondizionato	o. Inoltre	, si riporti	ino l

12 punti

(c)	(4 punti) Si considerino ora la seguente matrice $A \in \mathbb{R}^{100 \times 100}$ e le due matrici di precondizionamento P_1 e $P_2 \in \mathbb{R}^{100 \times 100}$:
	$A = \text{pentadiag}(-1, -4, 10, -4, -1), P_1 = I \text{ (la matrice identità)} e P_2 = \text{tridiag}(-5, 10, -5).$
	Si calcolino i valori dei parametri ottimali $\alpha_{opt,1}$ e $\alpha_{opt,2}$ per il metodo di <i>Richardson stazionario</i> precondizionato rispettivamente con le matrici P_1 e P_2 .
	$\alpha_{opt,1} = \underline{\qquad} \qquad \alpha_{opt,2} = \underline{\qquad}$
	Si supponga ora di applicare il metodo per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, con $\mathbf{b} \in \mathbb{R}^{100}$ e un vettore iniziale $\mathbf{x}^{(0)} \in \mathbb{R}^{100}$ tale per cui $\ \mathbf{e}^{(0)}\ _A = 1$, essendo $\mathbf{e}^{(k)} := \mathbf{x} - \mathbf{x}^{(k)}$ per $k \geq 0$. Si riportino gli errori stimati $\ \mathbf{e}^{(k)}\ _A$ applicando $k = 10$ iterazioni del metodo con le matrici di precondizionamento P_1 e P_2 corrispondenti ai parametri ottimali $\alpha_{opt,1}$ e $\alpha_{opt,2}$.
	per $P_1: \ \mathbf{e}^{(10)}\ _A \le \underline{\qquad}$ per $P_2: \ \mathbf{e}^{(10)}\ _A \le \underline{\qquad}$
	Quale delle due matrici di precondizionamento, P_1 o P_2 , garantisce una convergenza più rapida del metodo? Si motivi la risposta data.
(d)	(4 punti) Si implementi il metodo di Richardson stazionario precondizionato in Matlab [®] nella funzione Richardson.m (si usi il comando "back-slash" di Matlab [®] \ laddove necessario). Si utilizzi il criterio d'arresto basato sul residuo relativo (detto anche residuo normalizzato). La struttura della funzione è:
	<pre>function [x,Nit] = Richardson(A,b,P,alpha,x0,nmax,tol).</pre>
	Si considerino come $input$: A, la matrice assegnata; b, il termine noto assegnato; P, la matrice di precondizionamento; alpha, il parametro α ; x0, l'iterata iniziale; nmax, il numero massimo di iterazioni consentite; tol, la tolleranza sul criterio d'arresto. Si considerino come $output$: x, la soluzione approssimata; Nit, il numero di iterazioni effettuate.
	Si utilizzi la funzione Richardson.m per approssimare la soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ con A data al punto (c), $\mathbf{b} = (1, 1, \dots, 1)^T \in \mathbb{R}^{100}$, la matrice di precondizionamento P_2 data al punto (c), $\alpha = 0.25$, l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, la tolleranza $\mathbf{tol} = 10^{-3}$ e $\mathbf{nmax} = 1000$. Si riportino: il numero N di iterazioni effettuate, la terza componente della soluzione approssimata $\mathbf{x}^{(N)}$, ossia $x_3^{(N)}$, e il valore del corrispondente residuo relativo $r_{rel}^{(N)}$.
	$N = $ $x_3^{(N)} = $ $r_{rel}^{(N)} = $
	Infine, utilizzando opportunamente la funzione Richardson.m, si riportino i valori della terza componente delle iterate $\mathbf{x}^{(1)}$ e $\mathbf{x}^{(2)}$, ossia $x_3^{(1)}$ e $x_3^{(2)}$.
	$x_3^{(1)} = \underline{\hspace{1cm}} x_3^{(2)} = \underline{\hspace{1cm}}$

Esercizio 2.	Si consideri la seguente funzione di iterazione	
	$\phi(x) = 2 + \text{atan}\left(e^{(x-2)} - 1\right)$	(1)
lotata di due pi	unti fissi $\alpha > 3$ e $\beta = 2$.	
	tracci e si riporti qualitativamente il grafico della fu $x \in [1,4]$ e si evidenzino i punti fissi α e β .	ınzione di iterazione $\phi(x)$ data i
b) <i>(1 nunto)</i> Si	riporti l'algoritmo del metodo delle iterazioni di pu	into fisso
		nito lisso.
	enunci con precisione un risultato di convergenza los con una funzione di iterazione generica $\phi(x)$.	cale per il metodo delle iterazion

10 punti

teorico dato		zione di iterazione ϕ data in Eq. (1). Sulla base del risultato do delle iterazioni di punto fisso è adeguato per approssimare il sposta data.
di punto fis	so per $\phi(x)$ data in Equitato con almeno 4 ci	
	$x^{(1)} = $	$x^{(2)} = $
	$x^{(3)} = $	$x^{(4)} = $
mostri che e	esiste una costante posi $ x^{(k)} - \alpha $	one di iterazione $\phi(x)$ di Eq. (1) e il suo punto fisso $\alpha > 3$. Si sitiva $C < 1$ tale per cui, per ogni $x^{(0)} \ge 3$, vale $\alpha \le C^k x^{(0)} - \alpha $ per $k = 0, 1, \ldots$ Suggerimento: si studi graficamente la funzione $\phi'(x)$ per $x \ge 3$
In tal caso.	qual è l'ordine di conv	$C = \underline{\hspace{1cm}}$ vergenza atteso del metodo ad α ? Perché?
	quar e i erume ur conv	