FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4:2009 TEST REPORT

For

J2013

Model: J2013

Trade Name: JAWBONE

Issued for

Aliph com

99 Rhode Island Street, 3rd Floor. San Francisco, CA 94103 United States

Issued by

Compliance Certification Services Inc. Hsinchu Lab.

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

TEL: +886-3-5921698 FAX: +886-3-5921108

http://www.ccsrf.com E-Mail : service@ccsrf.com

Issued Date: July 04, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF or any government agencies. The test results of this report relate only to the tested sample identified in this report.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	06/06/2013	Initial Issue	All Page 40	Gloria Chang
01	07/04/2013	Deleted RF Exposure Evaluation in EUT Description & Revised Appendix		Gloria Chang

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	4
2. EUT DESCRIPTION	5
3. DESCRIPTION OF TEST MODES	6
4. TEST METHODOLOGY	6
5. FACILITIES AND ACCREDITATION	7
5.1 FACILITIES	7
5.2 ACCREDITATIONS	7
5.3 MEASUREMENT UNCERTAINTY	8
6. SETUP OF EQUIPMENT UNDER TEST	9
7. FCC PART 15.247 REQUIREMENTS	10
7.1 6dB BANDWIDTH	10-13
7.2 MAXIMUM PEAK OUTPUT POWER	14-15
7.3 POWER SPECTRAL DENSITY	16-19
7.4 CONDUCTED SPURIOUS EMISSION	20-23
7.5 RADIATED EMISSION	24-35
7.6 CONDUCTED EMISSION	36-40
ADDENDIY I DADIO EDECIJENCY EXPOSIDE DROCEDIJRES	11

1. TEST REPORT CERTIFICATION

Applicant : Aliph com

Address : 99 Rhode Island Street, 3rd Floor.

San Francisco, CA 94103 United States

Equipment Under Test: J2013 **Model**: J2013

Trade Name : JAWBONE

Tested Date : May 15 ~ June 06, 2013

APPLICABLE STANDARD			
Standard Test Result			
FCC Part 15 Subpart C AND ANSI C63.4:2009	PASS		

WE HEREBY CERTIFY THAT: The above equipment has been tested by Compliance Certification Services Inc., and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Sb. Lu

Sr. Engineer

Reviewed by:

Gundam Lin Sr. Engineer

2. EUT DESCRIPTION

Product Name	J2013		
Model Number	J2013		
Identify Number	T130605S03		
Received Date	May 15, 2013		
Frequency Range	2402MHz~2480MHz		
Transmit Power	8.77 dBm (0.0075W)		
Channel Spacing	2MHz		
Channel Number	40 Channels		
Transmit Data Rate	GFSK (1Mbps)		
Type of Modulation	Frequency Hopping Spread Spectrum		
Frequency Selection	by software / firmware		
Antenna Type	Monopole Antenna, Antenna Gain : 1.30 dBi		
Power Pating	3.7Vdc, 900mAh, 3.3Wh (For Battery)		
Power Rating	5Vdc (For Charging)		
Test Voltage	120Vac/60Hz		
DC Power Cable Type	Shielded micro USB cable 0.6m × 1 (Detachable)		
I/O Port Micro USB Port × 1, Audio In Port × 1			
Signal Cable	Audio cable 1m × 1		

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For more details, please refer to the User's manual of the EUT.
- 3. This submittal(s) (test report) is intended for FCC ID: V3J-J2013 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.

3. DESCRIPTION OF TEST MODES

Radiated Emission (Below 1 GHz) and Conducted Emission Test

1. The following test modes were scanned during the preliminary test:

No.	Pre-Test Mode
1	Normal Mode (Only BT Link)
2	Normal Mode + Audio In (BT+ iPod Audio In)
3	Charge Mode (NB Charge + BT Link)
4	Charge Mode + Audio In (NB Charge + BT Link + iPod Audio In)
5	USB Traffic Mode (Power Switch Off, USB Traffic. No Bluetooth)

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

Final Test Mode					
Emission	Radiated Emission	Charge Mode + Audio In (NB Charge + BT Link + iPod Audio In)			
EIIIISSIOII	Conducted Emission	Charge Mode + Audio In (NB Charge + BT Link + iPod Audio In)			

Remark : Then, the above highest emission mode of the configuration of the EUT and cable was chosen for all final test items.

Radiated Emission (Above 1 GHz) and Conducted Emission Test

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2402
Middle	2440
High	2480

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC CFR 47, 15.207, 15.209 and 15.247.

Report No.: T130605S03-RP1-1

5. FACILITIES AND ACCREDITATION

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

NO. 989-1 Wen Shan Rd., Shang Shan Village, Qionglin Shiang Hsinchu County 30741, Taiwan, R.O.C

The sites are constructed in conformance with the requirements of ANSI C63.4:2009 and CISPR 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4, CISPR 16-1-5.

5.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

> **Taiwan TAF**

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

> Canada **INDUSTRY CANADA** VCCI Japan **BSMI Taiwan USA FCC MRA**

Copies of granted accreditation certificates are available for downloading from our web site, http:///www.ccsrf.com

5.3 MEASUREMENT UNCERTAINTY

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4-2.

PARAMETER	UNCERTAINTY
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 30 to 1000 MHz	+/- 3.97
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 1 to 18GHz	+/- 3.58
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 18 to 26 GHz	+/- 3.59
Semi Anechoic Chamber (966 Chamber_B) / Radiated Emission, 26 to 40 GHz	+/- 3.81
Conducted Emission (Mains Terminals), 9kHz to 30MHz	+/- 2.48

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	HP	ProBook 4421s	CNF03242PM	DoC
2	iPod	APPLE	A1099	JQ529LM6SAZ	
3	Monitor	Dell	ST2220Lb	CN-0P9H7F-7426 1-19K-1PLM	DoC
4	Mouse	HP	M-UAE96	265986-011	DoC
5	Printer	HP	C6431D	CN19T6S011	

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Run CSR Blue Test software.
- 3. Select the following settings.

Transport type: USB

4. BLE TX mode

Freq: 2402, 2440, 2480 (Channel 0, 19, 39)

- 5. After RF command load in EUT remove use cable to test.
- 6. All of the functions are under run
- 7. Start test.

Normal Mode:

- 1. EUT & peripherals setup diagram is shown in appendix setup photos.
- 2. Power on all equipments.
- 3. (1) Use BT Build up a connection between EUT and Notebook (Play music).
 - (2) Audio in with iPod (Play music).
 - (3) Charge mode.
- 4. All of the functions are under run.
- 5. Start test.

7. FCC PART 15.247 REQUIREMENTS

7.1 6dB BANDWIDTH

LIMITS

§ 15.247(a) (2) For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	09/12/2013

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The transmitter output was connected to a spectrum analyzer.
- 2. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.
- 3. Set the video bandwidth (VBW) \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST RESULTS

Channel	Channel Frequency (MHz)	6dB Bandwidth (kHz)	Minimum Limit (kHz)	Pass / Fail
Low	2402	770	500	PASS
Middle	2440	760	500	PASS
High	2480	760	500	PASS

Report No.: T130605S03-RP1-1

7.2 MAXIMUM PEAK OUTPUT POWER

LIMITS

§ 15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following :

§ 15.247(b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands : 1 watt.

§ 15.247(b) (4) Except as shown in paragraphs (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Anritsu	ML2495A	1149001	12/06/2013
Power Sensor	Anritsu	MA2411B	1126148	12/07/2013

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the peak power detection.

TEST RESULTS

Channel	Channel Frequency	Peak	Power	Peak Power Limit (dBm) (W)		- Pass / Fail	
Chamie	(MHz)	(dBm)	(W)				
Low	2402	8.52	0.0071	30	1	PASS	
Middle	2440	8.67	0.0074	30	1	PASS	
High	2480	8.77	0.0075	30	1	PASS	

Remark: The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the power meter to allow for direct reading of power.

7.3 POWER SPECTRAL DENSITY

LIMITS

§ 15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	09/12/2013

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set analyzer center frequency to DTS channel center frequency.
- 3. Set the span to 1.5 times the DTS channel bandwidth.
- 4. Set the RBW ≥ 3 kHz.
- 5. Set the VBW \geq 3 x RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Report No.: T130605S03-RP1-1

TEST RESULTS

Channel	Channel Frequency (MHz)	Final RF Power Level in 3KHz BW (dBm)	Minimum Limit (dBm)	Pass / Fail
Low	2402	-6.755	8	PASS
Middle	2440	-6.130	8	PASS
High	2480	-6.233	8	PASS

Remark: The cable assembly insertion loss of 10.5dB (including 10 dB pad and 0.5 dB cable) was Entered as an offset in the spectrum analyzer to allow for direct reading of power.

FCC ID: V3J-J2013

Report No.: T130605S03-RP1-1

7.4 CONDUCTED SPURIOUS EMISSION

LIMITS

§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4407B	US41443108	09/12/2013

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST SETUP

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS

FCC ID: V3J-J2013

Report No.: T130605S03-RP1-1

CH Middle (2.38GHz ~ 2.5GHz) Agilent Mkr4 2.48800 GHz Ref 20.5 dBm Atten 20 dB 46.08 dBm Peak Log 10 dB/ Offst 10.5 dΒ DI **夕 夕** -11.3 dBm Stop 2.5 GHz Start 2.38 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 12.43 ms (1001 pts) Amplitude 8.686 dBm Type Freq X Axis 2.44000 GHz (1) Freq 2.40000 GHz -48.53 dBm -47.67 dBm (1) 2.48350 GHz Freq 2.48800 GHz -46.08 dBm CH Middle (30MHz ~ 26.5GHz) Agilent R T Mkr1 25.362 GHz Ref 20.5 dBm Atten 20 dB 40.39 dBm Peak Log 10 dB/ Offst 10.5 dΒ DI -11.3 dBm Stop 26.5 GHz Start 30 MHz #Res B**W 100** kHz #VBW 300 kHz Sweep 2.742 s (1001 pts) Amplitude Marker Trace X Axis (1) Freq 25.362 GHz -40.39 dBm

FCC ID: V3J-J2013

Report No.: T130605S03-RP1-1

7.5 RADIATED EMISSION

LIMITS

(1) According to § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

Remark:

(2) According to § 15.205 (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

^{1. 1} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{2. &}lt;sup>2</sup> Above 38.6

FCC ID: V3J-J2013

(3) According to § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Report No.: T130605S03-RP1-1

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(KHz)	300
0.490 – 1.705	24000/F(KHz)	30
1.705 – 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

Remark: **Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(4) According to § 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENT

Radiated Emission / 966Chamber_B

Name of Equipment	Manufacture	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY46180323	04/15/2014
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101131	01/14/2014
Bi-log Antenna	SCHWARZBECK	VULB 9168	9168-250	09/26/2013
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117	00078733	12/11/2013
Horn Antenna	COM-POWER	AH-840	03077	12/20/2013
Pre-Amplifier	Agilent	8447D	2944A10052	07/17/2013
Pre-Amplifier	Agilent	8449B	3008A01916	07/17/2013
LOOP Antenna	EMCO	6502	8905-2356	06/10/2013
Notch Filters Band Reject	Micro-Tronics	BRM05702-01	026	N.C.R

Remark: 1. Each piece of equipment is scheduled for calibration once a year.

2. N.C.R = No Calibration Request.

Report No.: T130605S03-RP1-1

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from below 1GHz.

9kHz ~ 30MHz

30MHz ~ 1GHz

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

TEST PROCEDURE

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. While measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. While measuring the radiated emission above 1GHz, the EUT was set 3 meters away from the interference-receiving antenna.
- 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

Below 1 GHz (9kHz ~ 30MHz)

No emission found between lowest internal used/generated frequency to 30MHz.

Below 1 GHz (30MHz ~ 1GHz)

Product Name	J2013	Test By	Waternil Guan
Test Model	J2013	Test Date	2013/05/15
Test Mode	Charge Mode + Audio In	Temp. & Humidity	26°C, 52%

966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
134.76	48.34	-14.36	33.98	43.50	-9.52	Peak		
239.52	46.10	-13.65	32.45	46.00	-13.55	Peak		
312.27	41.70	-11.10	30.60	46.00	-15.40	Peak		
460.68	48.33	-8.15	40.18	46.00	-5.82	Peak		
504.33	45.24	-7.71	37.53	46.00	-8.47	Peak		
551.86	42.47	-6.78	35.69	46.00	-10.31	Peak		
576.11	42.83	-6.04	36.79	46.00	-9.21	Peak		
640.13	37.67	-5.10	32.57	46.00	-13.43	Peak		
		966 Chambe	er_B at 3Met	ter / Vertical				
Frequency (MHz)	Reading (dBµV)	Correction Factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark		
121.18	48.89	-15.66	33.23	43.50	-10.27	Peak		
212.36	49.60	-15.34	34.26	43.50	-9.24	Peak		
312.27	43.95	-11.10	32.84	46.00	-13.16	Peak		
455.83	45.73	-8.20	37.53	46.00	-8.47	Peak		
504.33	49.40	-7.71	41.69	46.00	-4.31	Peak		
534.40	44.12	-7.14	36.98	46.00	-9.02	Peak		
576.11	41.81	-6.04	35.77	46.00	-10.23	Peak		
623.64	38.56	-5.18	33.38	46.00	-12.62	Peak		

Remark:

- 1. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit.
- 2. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Loss (dB) PreAmp.Gain (dB)
- 4. Result (dBuV/m) = Reading (dBuV) + Correction Factor (dB/m)
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Above 1 GHz

Product Name	J2013	Test By	Waternil Guan
Test Model	J2013	Test Date	2013/05/17
Test Mode	CH Low	Temp. & Humidity	25°C, 47%

966 Chamber_B at 3Meter / Horizontal								
Reading- PK (dBuV)	Reading- AV (dBuV)		<u> </u>		Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
45.53		3.94	49.47		74.00	54.00	-24.53	Peak
45.28		4.00	49.28		74.00	54.00	-24.72	Peak
44.98		4.05	49.03		74.00	54.00	-24.97	Peak
41.62		6.95	48.57		74.00	54.00	-25.43	Peak
50.65	44.54	9.16	59.81	53.70	74.00	54.00	-0.30	AVG
39.33		11.77	51.10		74.00	54.00	-22.90	Peak
	9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
43.63		2.30	45.93		74.00	54.00	-28.07	Peak
43.17		4.43	47.60		74.00	54.00	-26.40	Peak
42.64		4.86	47.50		74.00	54.00	-26.50	Peak
42.46		5.43	47.89		74.00	54.00	-26.11	Peak
	PK (dBuV) 45.53 45.28 44.98 41.62 50.65 39.33 Reading-PK (dBuV) 43.63 43.17 42.64	Reading-	Reading-PK (dBuV) Reading-AV (dBuV) Correction Factor (dB/m) 45.53 3.94 45.28 4.00 44.98 4.05 41.62 6.95 50.65 44.54 9.16 39.33 11.77 PK (dBuV) (dBuV) (dB/m) 43.63 2.30 43.17 4.43 42.64 4.86	Reading-PK (dBuV) (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) 45.53 3.94 49.47 45.28 4.00 49.28 44.98 4.05 49.03 41.62 6.95 48.57 50.65 44.54 9.16 59.81 39.33 11.77 51.10 Reading-PK (dBuV) (dBuV) (dBuV) (dB/m) Result-PK (dBuV/m) 43.63 2.30 45.93 43.17 4.43 47.60 42.64 4.86 47.50	Reading-PK (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) 45.53 3.94 49.47 45.28 4.00 49.28 44.98 4.05 49.03 41.62 6.95 48.57 50.65 44.54 9.16 59.81 53.70 39.33 11.77 51.10 Reading-PK (dBuV) (dBuV) (dBuV) (dB/m) Result-PK (dBuV/m) (dBuV/m) Result-AV (dBuV/m) 43.63 2.30 45.93 43.17 4.43 47.60 42.64 4.86 47.50	Reading-PK (dBuV) Reading-PK (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) 45.53 3.94 49.47 74.00 45.28 4.00 49.28 74.00 44.98 4.05 49.03 74.00 41.62 6.95 48.57 74.00 50.65 44.54 9.16 59.81 53.70 74.00 39.33 11.77 51.10 74.00 Reading-PK (dBuV) (dBuV) (dBuV) (dBuV) (dBuV/m) (dBuV/m) Result-PK (dBuV/m) (dBuV/m) Limit-PK (dBuV/m) 43.63 2.30 45.93 74.00 43.17 4.43 47.60 74.00 42.64 4.86 47.50 74.00	Reading-PK (dBuV) Reading-PK (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) 45.53 3.94 49.47 74.00 54.00 45.28 4.00 49.28 74.00 54.00 44.98 4.05 49.03 74.00 54.00 41.62 6.95 48.57 74.00 54.00 50.65 44.54 9.16 59.81 53.70 74.00 54.00 39.33 11.77 51.10 74.00 54.00 **Reading-PK (dBuV) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-PK (dBuV/m) Correction (dBuV/m) 74.00 54.00 43.63 2.30 45.93 74.00 54.00 43.17 4.43 47.60 74.00 54.00 42.64 4.86 <td>Reading-PK (dBuV) Reading-AV (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 45.53 3.94 49.47 74.00 54.00 -24.53 45.28 4.00 49.28 74.00 54.00 -24.72 44.98 6.95 48.57 74.00 54.00 -25.43 50.65 44.54 9.16 59.81 53.70 74.00 54.00 -22.90 966 Chamber_B at 3Meter / Vertical Reading-PK (dBuV) Reading-Q(dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 43.63 2.30 45.93 74.00 54.00 -28.07 43.17 4.43 47.60 74.00 54.00 -26.40 42.64 4.86 47.50 74.00 54.00 -26.50 </td>	Reading-PK (dBuV) Reading-AV (dBuV) Correction Factor (dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 45.53 3.94 49.47 74.00 54.00 -24.53 45.28 4.00 49.28 74.00 54.00 -24.72 44.98 6.95 48.57 74.00 54.00 -25.43 50.65 44.54 9.16 59.81 53.70 74.00 54.00 -22.90 966 Chamber_B at 3Meter / Vertical Reading-PK (dBuV) Reading-Q(dB/m) Result-PK (dBuV/m) Result-AV (dBuV/m) Limit-PK (dBuV/m) Limit-AV (dBuV/m) Margin (dB) 43.63 2.30 45.93 74.00 54.00 -28.07 43.17 4.43 47.60 74.00 54.00 -26.40 42.64 4.86 47.50 74.00 54.00 -26.50

Remark:

4800.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

9.16

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

74.00

54.00

-23.37

Peak

50.63

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

41.47

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

74.00

74.00

74.00

74.00

54.00

54.00

54.00

54.00

-26.81

-25.98

-25.84

-24.00

Peak

Peak

Peak

Peak

Product Name	J2013	Test By	Waternil Guan
Test Model	J2013	Test Date	2013/05/17
Test Mode	CH Middle	Temp. & Humidity	25°C, 47%

	966 Chamber_B at 3Meter / Horizontal								
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1656.00	43.98		-0.85	43.13		74.00	54.00	-30.87	Peak
2296.00	43.56		3.26	46.82		74.00	54.00	-27.18	Peak
2536.00	44.15		4.03	48.18		74.00	54.00	-25.82	Peak
3210.00	42.66		5.43	48.09		74.00	54.00	-25.91	Peak
4110.00	41.68		7.44	49.12		74.00	54.00	-24.88	Peak
4875.00	46.56	40.44	9.36	55.92	49.80	74.00	54.00	-4.20	AVG
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1984.00	43.28		2.11	45.39		74.00	54.00	-28.61	Peak
2666.00	42.32		4.30	46.62		74.00	54.00	-27.38	Peak

Remark:

2838.00

3165.00

3990.00

4920.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

4.66

5.34

7.16

9.48

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

47.19

48.02

48.16

50.00

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

42.53

42.68

41.00

40.52

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) - Limit(AV)

Product Name	J2013	Test By	Waternil Guan
Test Model	J2013	Test Date	2013/05/17
Test Mode	CH High	Temp. & Humidity	25°C, 47%

966 Chamber_B at 3Meter / Horizontal									
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
2296.00	44.68		3.26	47.94		74.00	54.00	-26.06	Peak
2536.00	44.16		4.03	48.19		74.00	54.00	-25.81	Peak
2652.00	42.56		4.27	46.83		74.00	54.00	-27.17	Peak
3915.00	41.69		6.98	48.67		74.00	54.00	-25.33	Peak
4260.00	40.82		7.80	48.62		74.00	54.00	-25.38	Peak
4965.00	41.63		9.60	51.23		74.00	54.00	-22.77	Peak
		9	66 Chaml	ber_B at 3	3Meter / V	ertical			
Frequency (MHz)	Reading- PK (dBuV)	Reading- AV (dBuV)	Correction Factor (dB/m)	Result-PK (dBuV/m)	Result-AV (dBuV/m)	Limit-PK (dBuV/m)	Limit-AV (dBuV/m)	Margin (dB)	Remark
1952.00	43.75		1.82	45.57		74.00	54.00	-28.43	Peak
2112.00	43.42		2.63	46.05		74.00	54.00	-27.95	Peak
2710.00	42.46		4.39	46.85		74.00	54.00	-27.15	Peak
3780.00	41.93		6.67	48.60		74.00	54.00	-25.40	Peak
4380.00	40.63		8.08	48.71		74.00	54.00	-25.29	Peak
40.00	00.45								

Remark:

4950.00

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Average test would be performed if the peak result were greater than the average limit.

9.56

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

49.03

74.00

54.00

-24.97

Peak

- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Result = Reading + Correction Factor

Margin = Result - Limit

Remark Peak = Result(PK) - Limit(PK)

Remark AVG = Result(AV) – Limit(AV)

Restricted Band Edges

7.6 CONDUCTED EMISSION

LIMITS

§ 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBµv)				
(MHz)	Quasi-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

TEST EQUIPMENT

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-465	08/07/2013
L.I.S.N	SCHWARZBECK	NSLK 8127	8127-473	03/07/2014
EMI Receiver	ROHDE & SCHWARZ	ESCS 30	835418/008	10/16/2013
Pulse Limiter	ROHDE & SCHWARZ	ESH3-Z2	100117	07/03/2013

Remark: Each piece of equipment is scheduled for calibration once a year.

Report No.: T130605S03-RP1-1

TEST SETUP

TEST PROCEDURE

The basic test procedure was in accordance with ANSI C63.4:2009.

The test procedure is performed in a 4m × 3m × 2.4m (L×W×H) shielded room.

The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.

The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.

The EUT was located so that the distance between the boundary of the EUT and the closest surface of the LISN is 0.8 m. Where a mains flexible cord was provided by the manufacturer shall be 1 m long, or if in excess of 1 m, the excess cable was folded back and forth as far as possible so as to form a bundle not exceeding 0.4 m in length.

TEST RESULTS

Product Name	J2013	Test By	Rueyyan Lin
Test Model	J2013	Test Date	2013/06/05
Test Mode	Charge Mode + Audio In	Temp. & Humidity	21°C, 51%

LINE

Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

Product Name	J2013	Test By	Rueyyan Lin
Test Model	J2013	Test Date	2013/06/05
Test Mode	Charge Mode + Audio In	Temp. & Humidity	21°C, 51%

NEUTRAL

Remark:

- 1. Correction Factor = Insertion loss + Cable loss
- 2. Emission level = Reading Value + Correction factor
- 3. Margin value = Emission level Limit value

APPENDIX I RADIO FREQUENCY EXPOSURE PROCEDURES

According to § 15.247 (i) and § 1.1307(b)(1), system operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

KDB 447498 D01: Approximate SAR test exclusion power thresholds at selected

frequencies and test separation distances are illustrated in the following table:

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	SAR Test Exclusion Threshold
1500	12	24	37	49	61	
1900	11	22	33	44	54	
2450	10	19	29	38	48	(mW)
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\lceil \sqrt{f_{(GHz)}} \rceil \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Maximum Measured Transmitter Power:

Channel Frequency	Maximum Pea Output			Numeric antenna gair	
(MHz)	(dBm)	(mW)	(dBi)	(mW)	
2480	8.77	7.5	1.30	1.35	

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\lceil \sqrt{f_{(GHz)}} \rceil = 7.8/10^* \sqrt{2.48} = 1.23 \le 3.0$

Threshold at which no SAR required is 19mW and ≤ 3.0 for 1-g SAR, Separation distance is 10mm.

Conclusion : The SAR measurement is exempt.