Formal Specification and Verification of Object-Oriented Programs

First-Order Calculus

Reasoning by Syntactic Transformation

Prove validity of ϕ by syntactic transformation of ϕ

Logic Calculus: Sequent Calculus based on notion of sequent:

$$\underbrace{\psi_1, \dots, \psi_m}_{\text{Antecedent}} \quad \Rightarrow \quad \underbrace{\phi_1, \dots, \phi_n}_{\text{Succedent}}$$

has same meaning as

$$(\psi_1 \wedge \cdots \wedge \psi_m) \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

Notation for Sequents

$$\psi_1, \dots, \psi_m \Rightarrow \phi_1, \dots, \phi_n$$

Consider antecedent/succedent as sets of formulas, may be empty

Schema Variables, Schematic Sequents

 $\phi_i, \psi_j, ...$ match formulas; $\Gamma, \Delta, ...$ match sets of formulas Characterize infinitely many sequents with a single schematic sequent

$$\Gamma \Rightarrow \phi \wedge \psi, \Delta$$

Matches sequents with top-level occurrence of conjunction in succedent

Call $\phi \, \wedge \, \psi$ main formula and Γ, Δ side formulas of sequent

Any sequent of the form $\Gamma, \phi \Rightarrow \phi, \Delta$ is logically valid: axiom

Sequent Calculus Rules

Write syntactic transformation schema for sequents that precisely reflects semantics of connectives

Meaning: to prove the conclusion, it suffices to prove all premisses

Example

andRight
$$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$

Admissible to have no premisses (iff conclusion is valid, e.g., axiom)

Sequent Calculus Rules: (Correctness)

Soundness

Meaning: to prove the conclusion, it suffices to prove all premisses

Definition (Sound Sequent Rule)

A rule is sound (correct) iff the validity of its premisses implies the validity of its conclusion.

Example

andRight
$$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$$

"Propositional" Sequent Calculus Rules

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$ \frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta} $	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \land \psi, \Delta}$
or	$\begin{array}{c c} \hline \Gamma, \phi \Rightarrow \Delta & \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \phi \vee \psi \Rightarrow \Delta \end{array}$	$\frac{\Gamma \Rightarrow \phi, \psi, \Delta}{\Gamma \Rightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{ c c c }\hline \Gamma \Rightarrow \phi, \Delta & \Gamma, \psi \Rightarrow \Delta \\\hline \Gamma, \phi \rightarrow \psi \Rightarrow \Delta \\\hline \end{array}$	$\frac{\Gamma, \phi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \to \psi, \Delta}$
	close $\overline{\Gamma,\phi\Rightarrow\phi,\Delta}$ true	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$

Sequent Calculus Proofs

Goal to prove:
$$\mathcal{G} = \psi_1, \dots, \psi_m \Rightarrow \phi_1, \dots, \phi_n$$

- find rule \mathcal{R} whose conclusion matches \mathcal{G}
- \blacktriangleright instantiate ${\cal R}$ such that conclusion identical to ${\cal G}$
- recursively find proofs for resulting premisses $\mathcal{G}_1, \ldots, \mathcal{G}_r$
- tree structure with goal as root
- close proof branch when rule without premiss encountered

Goal-directed proof search

In KeY tool proof displayed as JAVA Swing tree

A Simple Proof

CLOSE
$$\xrightarrow{p \Rightarrow q, p} \xrightarrow{p, q \Rightarrow q}$$
 CLOSE $p, (p \rightarrow q) \Rightarrow q$ $p \land (p \rightarrow q) \Rightarrow q$ $p \land (p \rightarrow q) \Rightarrow q$ $p \land (p \rightarrow q) \Rightarrow q$

A proof is closed iff all its branches are closed

prop.key

Soundness and Completeness

Definition (Soundness of Sequent Calculus)

A sequent calculus is sound iff a closed proof implies the validity of the formula corresponding to its root sequent.

Definition (Completeness of Sequent Calculus)

A sequent calculus is complete iff for any valid formula ϕ a closed proof with root sequent $\Rightarrow \phi$ exists.

Theorem (Soundness, Completeness)

The sequent calculus as introduced in this lecture is sound and complete.

Proving a universally quantified formula

Claim: $\forall \tau x$; ϕ is true

How is such a claim proved in mathematics?

All even numbers are divisible by 2 \forall int x; (even(x) \rightarrow divByTwo(x))

Let c be an arbitrary number Declare "unused" constant int c

The even number c is divisible by 2 prove $even(c) \rightarrow divByTwo(c)$

Sequent rule ∀-right

allRight
$$\frac{\Gamma \Rightarrow \begin{bmatrix} x/c \end{bmatrix} \phi, \Delta}{\Gamma \Rightarrow \forall \tau x; \phi, \Delta}$$

 \blacktriangleright $[x/c] \phi$ is result of replacing each occurrence of x in ϕ with c

Proving an existentially quantified formula

Claim: $\exists \tau x$; ϕ is true

How is such a claim proved in mathematics?

There is at least one prime number $\exists int x$; prime(x)

Provide any "witness", say, 7 Use variable-free term int 7

7 is a prime number prime(7)

Sequent rule ∃-right

exRight
$$\frac{\Gamma \Rightarrow [x/t] \phi, \exists \tau x; \phi, \Delta}{\Gamma \Rightarrow \exists \tau x; \phi, \Delta}$$

 \blacktriangleright t any variable-free term of type τ

Using a universally quantified formula

We assume $\forall \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know: all primes > 2 are odd \forall int x; (prime(x) $\land x > 2 \rightarrow$ odd(x))

In particular, this holds for 17 Use variable-free term int 17

We know: if 17 is prime it is odd $prime(17) \land 17 > 2 \rightarrow odd(17)$

Sequent rule ∀-left

allLeft
$$\frac{\Gamma, \forall \tau x; \phi, [x/t'] \phi \Rightarrow \Delta}{\Gamma, \forall \tau x; \phi \Rightarrow \Delta}$$

ightharpoonup t' any variable-free term of type τ

Using an existentially quantified formula

We assume $\exists \tau x$; ϕ is true

How is such a fact used in a mathematical proof?

We know such an element exists, but we don't know which it is Let's give it a new name for future reference

Sequent rule ∃-left

exLeft
$$\frac{\Gamma, [x/c] \phi \Rightarrow \Delta}{\Gamma, \exists \tau x; \phi \Rightarrow \Delta}$$

- \triangleright c new constant of type τ , not occurring anywhere in ϕ , Γ , Δ
- Now, we can refer to the c, for which we know that $[x/c] \phi$ holds

Proving Validity of First-Order Formulas: Example

Example (A simple theorem about binary relations)

Untyped logic: let type of x and y be any \exists -left: substitute new constant c of type any for x \forall -right: substitute new constant d of type any for y \forall -left: free to substitute any term of type any for y, choose d

Validity of First-Order Formulas: Proving Equality

Using an equation between terms

We assume t = t' is true

How is such a fact used in a mathematical proof?

Use
$$x \doteq y - 1$$
 to simplify $(x+1)/y$ $x \doteq y - 1 \Rightarrow 1 \doteq (x+1)/y$

$$x \doteq y - 1 \Rightarrow 1 \doteq (x+1)/y$$

Replace x in conclusion with right-hand side of equation

We know:
$$(x+1)/y$$
 equal to $(y-1+1)/y$ $x = y-1 \Rightarrow 1 = (y-1+1)/y$

Sequent rule =-left

$$\mathsf{applyEqL} \; \frac{\; \Gamma, t \doteq t', \left[t/t'\right] \phi \Rightarrow \Delta \;}{\; \Gamma, t \doteq t', \phi \Rightarrow \Delta} \quad \mathsf{applyEqR} \; \frac{\; \Gamma, t \doteq t' \Rightarrow \left[t/t'\right] \phi, \Delta \;}{\; \Gamma, t \doteq t' \Rightarrow \phi, \Delta}$$

- Always replace left- with right-hand side (use eqSymm if necessary)
- ▶ t, t' variable-free terms of the same type

Proving Validity of First-Order Formulas: Example

Using an existentially quantified formula and an equation

Let x, y denote arbitrary integer constants, x is not zero

We know further that x divides y

Show: $(y/x) * x \doteq y$

('/') is integer division: existential premise needed, e.g., x = 2, y = 1

Proof: We know x divides y, i.e., there exists a k such that k * x = y

Let now c denote such a k

Hence we can replace y by c * x on the right side

Arithmetic simplification (using $\neg(x \doteq 0)$)

Demo

divide.key

Closing a subgoal in a proof is possible when:

► We derived a sequent that is obviously valid

$$\text{close } \frac{}{-\Gamma, \phi \Rightarrow \phi, \Delta} \quad \text{true } \frac{}{-\Gamma \Rightarrow \text{true}, \Delta} \quad \text{false } \frac{}{-\Gamma, \text{false} \Rightarrow \Delta}$$

We derived an equation that is obviously valid

eqClose
$$\Gamma \Rightarrow t \doteq t, \Delta$$

Sequent Calculus for FOL at One Glance

	left side, antecedent	right side, succedent
\forall	$ \frac{\Gamma, \forall \tau x; \phi, [x/t'] \phi \Rightarrow \Delta}{\Gamma, \forall \tau x; \phi \Rightarrow \Delta} $	$\frac{\Gamma \Rightarrow [x/c] \phi, \Delta}{\Gamma \Rightarrow \forall \tau x; \phi, \Delta}$
3	$ \frac{\Gamma, [x/c] \phi \Rightarrow \Delta}{\Gamma, \exists \tau x; \phi \Rightarrow \Delta} $	$\frac{\Gamma \Rightarrow [x/t'] \phi, \exists \tau x; \phi, \Delta}{\Gamma \Rightarrow \exists \tau x; \phi, \Delta}$
÷	$\frac{\Gamma, t \doteq t' \Rightarrow \begin{bmatrix} t/t' \end{bmatrix} \phi, \Delta}{\Gamma, t \doteq t' \Rightarrow \phi, \Delta}$ (+ application rule on left side)	

- \blacktriangleright [t/t'] ϕ is result of replacing each occurrence of t in ϕ with t'
- ightharpoonup t, t' arbitrary variable-free terms of type τ
- ightharpoonup c new constant of type au (occurs not on current proof branch)
- Equations can be reversed by symmetry

Recap: "Propositional" Sequent Calculus Rules

main	left side (antecedent)	right side (succedent)
not	$\frac{\Gamma \Rightarrow \phi, \Delta}{\Gamma, \neg \phi \Rightarrow \Delta}$	$\frac{\Gamma, \phi \Rightarrow \Delta}{\Gamma \Rightarrow \neg \phi, \Delta}$
and	$ \frac{\Gamma, \phi, \psi \Rightarrow \Delta}{\Gamma, \phi \land \psi \Rightarrow \Delta} $	$\frac{\Gamma \Rightarrow \phi, \Delta \qquad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \wedge \psi, \Delta}$
or	$\begin{array}{c c} \hline \Gamma, \phi \Rightarrow \Delta & \Gamma, \psi \Rightarrow \Delta \\ \hline \Gamma, \phi \vee \psi \Rightarrow \Delta \end{array}$	$\frac{\Gamma \Rightarrow \phi, \psi, \Delta}{\Gamma \Rightarrow \phi \vee \psi, \Delta}$
imp	$\begin{array}{ c c c c c c }\hline & \Gamma \Rightarrow \phi, \Delta & \Gamma, \psi \Rightarrow \Delta \\\hline & \Gamma, \phi \rightarrow \psi \Rightarrow \Delta \\\hline \end{array}$	$\frac{\Gamma, \phi \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \phi \rightarrow \psi, \Delta}$
	close $\overline{\Gamma,\phi\Rightarrow\phi,\Delta}$ true	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$