

=====

Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2010; month=4; day=2; hr=11; min=28; sec=36; ms=334;]

=====

Application No: 10597998 Version No: 1.0

Input Set:

Output Set:

Started: 2010-03-29 04:49:48.346
Finished: 2010-03-29 04:49:51.711
Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 365 ms
Total Warnings: 1
Total Errors: 0
No. of SeqIDs Defined: 38
Actual SeqID Count: 38

Error code	Error Description
W 402	Undefined organism found in <213> in SEQ ID (33)

SEQUENCE LISTING

<110> The University of York
Ian Graham

<120> Desaturase Enzymes

<130> 2905493.4

<140> 10597998

<141> 2010-03-29

<150> 0403452.6

<151> 2004-02-17

<150> 0407807.7

<151> 2004-04-06

<160> 38

<170> PatentIn version 3.3

<210> 1

<211> 477

<212> PRT

<213> Thalassiosira pseudonana

<400> 1

Met Asp Phe Leu Ser Gly Asp Pro Phe Arg Thr Leu Val Leu Ala Ala
1 5 10 15

Leu Val Val Ile Gly Phe Ala Ala Ala Trp Gln Cys Phe Tyr Pro Pro
20 25 30

Ser Ile Val Gly Lys Pro Arg Thr Leu Ser Asn Gly Lys Leu Asn Thr
35 40 45

Arg Ile His Gly Lys Leu Tyr Asp Leu Ser Ser Phe Gln His Pro Gly
50 55 60

Gly Pro Val Ala Leu Ser Leu Val Gln Gly Arg Asp Gly Thr Ala Leu
65 70 75 80

Phe Glu Ser His His Pro Phe Ile Pro Arg Lys Asn Leu Leu Gln Ile
85 90 95

Leu Ser Lys Tyr Glu Val Pro Ser Thr Glu Asp Ser Val Ser Phe Ile
100 105 110

Ala Thr Leu Asp Glu Leu Asn Gly Glu Ser Pro Tyr Asp Trp Lys Asp
115 120 125

Ile Glu Asn Asp Asp Phe Val Ser Asp Leu Arg Ala Leu Val Ile Glu
130 135 140

His Phe Ser Pro Leu Ala Lys Glu Arg Gly Val Ser Leu Val Glu Ser
145 150 155 160

Ser Lys Ala Thr Pro Gln Arg Trp Met Val Val Leu Leu Leu Ala
165 170 175

Ser Phe Phe Leu Ser Ile Pro Leu Tyr Leu Ser Gly Ser Trp Thr Phe
180 185 190

Val Val Val Thr Pro Ile Leu Ala Trp Leu Ala Val Val Asn Tyr Trp
195 200 205

His Asp Ala Thr His Phe Ala Leu Ser Ser Asn Trp Ile Leu Asn Ala
210 215 220

Ala Leu Pro Tyr Leu Leu Pro Leu Leu Ser Ser Pro Ser Met Trp Tyr
225 230 235 240

His His His Val Ile Gly His His Ala Tyr Thr Asn Ile Ser Lys Arg
245 250 255

Asp Pro Asp Leu Ala His Ala Pro Gln Leu Met Arg Glu His Lys Ser
260 265 270

Ile Lys Trp Arg Pro Ser His Leu Asn Gln Thr Gln Leu Pro Arg Ile
275 280 285

Leu Phe Ile Trp Ser Ile Ala Val Gly Ile Gly Leu Asn Leu Leu Asn
290 295 300

Asp Val Arg Ala Leu Thr Lys Leu Ser Tyr Asn Asn Val Val Arg Val
305 310 315 320

Glu Lys Met Ser Ser Arg Thr Leu Leu His Phe Leu Gly Arg Met
325 330 335

Leu His Ile Phe Val Thr Thr Leu Trp Pro Phe Leu Ala Phe Pro Val
340 345 350

Trp Lys Ala Ile Val Trp Ala Thr Val Pro Asn Ala Ile Leu Ser Leu
355 360 365

Cys Phe Met Leu Asn Thr Gln Ile Asn His Leu Ile Asn Thr Cys Ala
370 375 380

His Ala Ser Asp Asn Asn Phe Tyr Lys His Gln Val Val Thr Ala Gln
385 390 395 400

Asn Phe Gly Arg Ser Ser Ala Phe Cys Phe Ile Phe Ser Gly Gly Leu
405 410 415

Asn Tyr Gln Ile Glu His His Leu Leu Pro Thr Val Asn His Cys His
420 425 430

Leu Pro Ala Leu Ala Pro Gly Val Glu Arg Leu Cys Lys Lys His Gly
435 440 445

Val Thr Tyr Asn Ser Val Glu Gly Tyr Arg Glu Ala Ile Ile Ala His
450 455 460

Phe Ala His Thr Lys Asp Met Ser Thr Lys Pro Thr Asp
465 470 475

<210> 2

<211> 2914

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> misc_feature

<222> (274)..(274)

<223> n is a, c, g, or t

<400> 2

cggaggcgca actggagagg ttccggagg tttgatgtaa ttggaggttg ggtcaaatac 60

agattctgcc ctaacatttt ccggaaattt gcttcagttt gattcaagcg aggaggcgct 120

cggcaggagg gcccgtcacc tttttgcata tttgggactt caatggttt tacattttt 180

cctttctgga acccaaacgc tgccttcaa ttctccttcc catactcacg gatggatccc 240

cggaaatgcc accaccaatc acccttgcata atcncaaacc tcgtcatcct tcacatttc 300

tttagcaccat tggccgggtgt acccttcccc gcgactgcca gtctatgggt cagtatatct 360
cccacattg gagaggtatt gctaaaacgt gtcaatcata catatgataa ctggagagtg 420
cacacgaaga gatcaatgct tgagctagga ggggtggctat tggctgtgag cggcagctt 480
cacttaagat attacggcac ggcaagtcta ctcgacaata caaccgatgc tgcaggttta 540
tgcaatacgct caagttgtat caacaacaaa acgtgcgaga atgacgacag tgcttacgaa 600
gatgatgcca tgagagctgt ttgggcattg ctatggcgt tgcagctggg aacgttggtc 660
ggttgtgcgt tagtgttagg agtgcatcat ttcaagtggag ataacctgac caaacaatct 720
gcgataccaa caaaatcttc aaaagcaaag ccaatatctg atcaaaaagc agctgtgaca 780
tccggcagta cctgcgctgt gagagagaag gcacgaaaag acggtctagt actcctcgat 840
ggcaactggc acaacgttga aaagttcgtc catcatcatc ctggaggtgt agaagtgttg 900
gagcagttatc tcggggcaga tatctcgtt gtgttagag tgcatacg aaatccaact 960
caaatacatga aatacgcaa gccggtaacga gctgccaccc cagaagaact tgaggctctc 1020
acaagccgcc gtcaagaggt ttgtcttgat atgatggacg actttgttac caattccatt 1080
gatatcgctt ctccagaaat gcttccaag ccaacgcagt ttgacctgaa gtcatttgag 1140
aaggacttca ttgacttata tgaagagttt gttgcctagg gataacttcaa gcccctaaca 1200
acatggctac tctggaacac agcggtaactg attagtatca tcgcgttatac tgtcatctca 1260
atgaaagtgc taccaccaac ttctttgtc ctacctggag cattgcttgg tctctttgg 1320
caccaaaatg gattcctcat gcacgatgcc gagcaccata atttggctgg aaacgaacgg 1380
ctgaatgaca ttttgggttg gatctatggc actgtttct tgggtgtcaa tggcgcttgg 1440
tggagagagg agcatagaga acatcatgct ttccatcaaca cttacgatga tgaaagtgg 1500
ttcaaaatgc cccaggtgtg tcagcgtcac tgttagacgac ttcaaaatgtt cttgttccctc 1560
tcgttgcata cacattcgat tttattcatt cactcacaga tgagagagga cgtctggata 1620
cagaacaaga agttgattcc gttcttcggt gacgagatca ttcattttttt aacaaacttt 1680
cagcacatcc tttttttcc gatcatctt atcgttggcc gcgttggat tgcgttagat 1740
tctacactga ctgagaggaa gttccgtcct tggagtaagt gtcaattgggatttatttgc 1800
aaggaactgc tgatttgact ttctactaa ctaactgcac cgccacttca tcacgacgat 1860
agcaatactt ggtaatgttt gtcataatcct actacactac gcaatcttac ttcagacgag 1920
tcgtcctata cccgtgtaca tcacggcgtc tctttggcaaa gctattctct ctttgcattt 1980

gcttggaaat cactacgtca agccttggaa tagactcaac gatgccacag agggaaactt	2040
ctgcgttgg cagatactaa gcactcaaga ctttgcgtt ccacgttggt ctcggtggt	2100
gtacggaggt ctcaactttc actattccca tcatactattc ccaacgttgt ctagagagta	2160
ctttcacatt acatcaccac gcattcggtt gagtgctgtt gtttagtggtt gctacattca	2220
tatcaatgtat actcatagct ccatttcttt cgacagagac tatgtgagaa gcacgggctt	2280
cggtttattt agattgcgtt cattgattgc gttgttggaa tggtaacaa cttaacgaa	2340
gtgaggaaag acttcgctac gaaaggccac gggagtggtt cttaatgtt cacgtatct	2400
taagtgtcga gacgatatacg aggttgatattt ttactgtttt gtcaccagta gttcgatctaa	2460
tatgtatgtt caaccgcagc ttgttggattt agtttagtgtt actatgttac tggaaaaatgtt	2520
acgtcgatct actctctgca catctacatc gtgtgaagcc attccgttca agaagtatcc	2580
taatccctcg aaccaaacag ttcgttccata tacccatcat taatcagccg cctctaccgg	2640
atgttgcgtt tggcggtt gctgctgaac cccctcgccg cccgataatg gcaaggca	2700
gtcggacact tgataatctt cttcacagag tttatgagct ggggtttgtt accaataacct	2760
cctttatatg gtactaatgg acccggttcc attattgtttt gggcggtttt ccaccgtttt	2820
gaccgatagg tggccaaagg cccacacaga agagcaccat aaaggcgcag ctttggggaa	2880
actcaagaaa ccccgatggt ccacgttattaa aac	2914

<210> 3
 <211> 1551
 <212> DNA
 <213> *Thalassiosira pseudonana*

<400> 3	
atggcttagag ctgtttgggc attgctatgg gcgttgcagc tggaaacgtt ggtcggttgt	60
gcgttagtgt taggagtgcatacatttcgtt ggagataacc tgaccaaaca atctgcgata	120
ccaacaaaat cttcaaaagc aaagccaata tctgatcaaa aagcagctgt gacatccggc	180
agtacctgctgtt ctgtgagaga gaaggcacga aaagacggtc tagtactcct cgtatggcaac	240
tggtacaacg ttgaaaatgtt cgtccatcat catcctggag gtgttagtggatgtt gttggagcag	300
tacctcggtt cagatatctc gttgtgtttt agagtgtatgc atagaaatcc aactcaaaatc	360
atgaaatatc gcaagccgggt acgagctgcc accccagaag aacttgaggc tctcacaaggc	420
cggcgtaag aggttgtct tgatatgtatgc gacgactttt gttaccaattt cattgtatctc	480
gcttctccag aaatgcttcc caagccaaacg cagtttgacc tgaagtctt tggaaaggac	540

ttcattgact tatatgaaga gtttggct cagggatact tcaagccctc aacaacatgg	600
ctactctgga acacagcggt actgattagt atcatcgct tatctgtcat ctc当地gaaa	660
gtgctaccac caacttcgtt tgtcctaccc ggagcattgc ttggctcttt ttggcaccaa	720
agtggattcc tcatgcacga tgccgagcac cataattgg ctggaaacga acggctgaat	780
gacatttgg gttggatcta tggcactgtc ttcttgggtg tcaatggcgc ttggtgagaa	840
gaggagcata gagaacatca tgcttcctc aacacttacg atgatgaaag tggtttcaaa	900
gatccccaga tgagagagga cgtctggata cagaacaaga agttgattcc gttcttcgg	960
gacgagatca ttcatattttttt aacaaactttt cagcacattt tggccttcc gatcatcttt	1020
atcggttggcc gcgttggat tgcgttagat tctacactga ctgagaggaa gttccgttcc	1080
tggacaatac ttggtaatgt ttgtcatatc ctactacact acgcaatctt atctcagacg	1140
agtcgtccta tccccgtgtt catcatcggt tctcttggc aagctattct ctctttgcaaa	1200
ttgcttggga atcaactacgt caagccttgg aatagactca acgatgccac agagggaaac	1260
ttctgcgttt ggcagatact aagcactcaa gactttgcattt gtcacgttgc gtctcggtgg	1320
ctgtacggag gtctcaactt tcaatttcc catcatctgt tcccaacgtt gtctagagag	1380
tacttcaca ttacatcacc acgcattcg agactatgtg agaagcacgg gttccgttt	1440
atttagatgg cgttatttga ttgcgttgtt ggaatggta acaacttaa cgaagtggagg	1500
aaagacttcg ctacgaaagg ccacgggagt gtggcttca tgtacacgtg a	1551

<210> 4
 <211> 516
 <212> PRT
 <213> Thalassiosira pseudonana

<400> 4

Met Ala Arg Ala Val Trp Ala Leu Leu Trp Ala Leu Gln Leu Gly Thr			
1	5	10	15

Leu Val Gly Cys Ala Leu Val Leu Gly Val His His Phe Ser Gly Asp		
20	25	30

Asn Leu Thr Lys Gln Ser Ala Ile Pro Thr Lys Ser Ser Lys Ala Lys		
35	40	45

Pro Ile Ser Asp Gln Lys Ala Ala Val Thr Ser Gly Ser Thr Cys Ala		
50	55	60

Val Arg Glu Lys Ala Arg Lys Asp Gly Leu Val Leu Leu Asp Gly Asn
65 70 75 80

Trp Tyr Asn Val Glu Lys Phe Val His His His Pro Gly Gly Val Glu
85 90 95

Val Leu Glu Gln Tyr Leu Gly Ala Asp Ile Ser Phe Val Phe Arg Val
100 105 110

Met His Arg Asn Pro Thr Gln Ile Met Lys Tyr Arg Lys Pro Val Arg
115 120 125

Ala Ala Thr Pro Glu Glu Leu Glu Ala Leu Thr Ser Arg Arg Gln Glu
130 135 140

Val Cys Leu Asp Met Met Asp Asp Phe Val Thr Asn Ser Ile Asp Ile
145 150 155 160

Ala Ser Pro Glu Met Leu Pro Lys Pro Thr Gln Phe Asp Leu Lys Ser
165 170 175

Phe Glu Lys Asp Phe Ile Asp Leu Tyr Glu Glu Phe Val Ala Gln Gly
180 185 190

Tyr Phe Lys Pro Ser Thr Thr Trp Leu Leu Trp Asn Thr Ala Val Leu
195 200 205

Ile Ser Ile Ile Ala Leu Ser Val Ile Ser Met Lys Val Leu Pro Pro
210 215 220

Thr Ser Phe Val Leu Pro Gly Ala Leu Leu Gly Leu Phe Trp His Gln
225 230 235 240

Ser Gly Phe Leu Met His Asp Ala Glu His His Asn Leu Ala Gly Asn
245 250 255

Glu Arg Leu Asn Asp Ile Leu Gly Trp Ile Tyr Gly Thr Val Phe Leu
260 265 270

Gly Val Asn Gly Ala Trp Trp Arg Glu Glu His Arg Glu His His Ala
275 280 285

Phe Leu Asn Thr Tyr Asp Asp Glu Ser Gly Phe Lys Asp Pro Gln Met
290 295 300

Arg Glu Asp Val Trp Ile Gln Asn Lys Lys Leu Ile Pro Phe Phe Gly
305 310 315 320

Asp Glu Ile Ile His Phe Leu Thr Asn Phe Gln His Ile Leu Phe Leu
325 330 335

Pro Ile Ile Phe Ile Val Gly Arg Val Gly Ile Val Val Asp Ser Thr
340 345 350

Leu Thr Glu Arg Lys Phe Arg Pro Trp Thr Ile Leu Gly Asn Val Cys
355 360 365

His Ile Leu Leu His Tyr Ala Ile Leu Ser Gln Thr Ser Arg Pro Ile
370 375 380

Pro Val Tyr Ile Ile Gly Ser Leu Trp Gln Ala Ile Leu Ser Leu Gln
385 390 395 400

Leu Leu Gly Asn His Tyr Val Lys Pro Trp Asn Arg Leu Asn Asp Ala
405 410 415

Thr Glu Gly Asn Phe Cys Val Trp Gln Ile Leu Ser Thr Gln Asp Phe
420 425 430

Ala Cys Pro Arg Trp Ser Arg Trp Leu Tyr Gly Leu Asn Phe His
435 440 445

Tyr Ser His His Leu Phe Pro Thr Leu Ser Arg Glu Tyr Phe His Ile
450 455 460

Thr Ser Pro Arg Ile Arg Arg Leu Cys Glu Lys His Gly Leu Pro Phe
465 470 475 480

Ile Glu Ile Ala Phe Ile Asp Cys Val Val Gly Met Val Asn Asn Phe
485 490 495

Asn Glu Val Arg Lys Asp Phe Ala Thr Lys Gly His Gly Ser Val Ala
500 505 510

Phe Met Tyr Thr

<210> 5
 <211> 1900
 <212> DNA
 <213> Thalassiosira pseudonana

<220>
 <221> misc_feature
 <222> (1)..(1)
 <223> n is a, c, g, or t

<220>
 <221> misc_feature
 <222> (3)..(3)
 <223> n is a, c, g, or t

<400> 5
 nanccatatg cgggaatacg gccagggtat acccacagcg cctccgttgc agcaaactcc 60
 tatccaatac ctccccatga acccccccctt cggccaccct atatgcgaga ctcgttgcgtc 120
 tggacctgca gatgatgact ggtgaggcca aattagttgg gaatgcgtgc agatggaggc 180
 cttattcttt tgcaatcagg ggcgtcgta agaggagatc catgttggtg tgtgattcga 240
 cttgcttggg gcgtgcatga tttgtgcgtg cgtgtacgt gttgataggt agaaagagat 300
 cgaggcggtg attcaactat tcaggatact gaaagagttg atatagcagc agtaatata 360
 cctagttgtt tttgtttgtt ttgtgggtta tcaagtattc aatgacgcaa caataacgtt 420
 ggttagtgtat gggtaaacag gtgttcggga caaaggcttt tcataaaatc tatttaacgt 480
 gttcgtaaaa acgacaaaaa gaagccactc tgcaccattc cagcgcagac aagaccagca 540
 ggcacagaac agcacgacac accgacccga gccgaaaaag ccaacaacaa cgacaccgac 600
 ccgagccgat acagccgaca ggcaaaaggct ctctgtaca atctacaaaa cggcaacatc 660
 aaatcatgcc accctccatc aaagacacac tcgacgagcc ctctgtctcg cccgcattca 720
 ccaagtcgcc caccacaaa cccctctcc cccggcccaa acccctcaaa cgataactccc 780
 cctcccaaat ctccccacac aacactccca ccgatgcattg gtcatttac aaatcccaag 840
 tccttgacat ttccaaatgg atatgcacc atccaggtgg agagcagacg ctgttgagg 900
 ttgcccgtat ggatgtacc gatgaattga gggcatatca tggatgtgg gttttggagg 960
 agaagttgcc tcattttgtt attggggagg tggattggac tactaccggc ggggcagaga 1020
 atactgtcac gaaggatgga cagggttcgg agcttatcaa ggattcaga gagttgggtg 1080
 aacacttcga cagggtgggg tactttcagc tcagtcattg gtattacgtc cgtaagggtgg 1140

ctaccgtctt cgccatctt gatatgtcac tcggactctt cttcaatacc gattccatcc 1200
cagcacacat gctcgccgcg gtactcctcg gtatattctg gcaacaattt gcattcgtcg 1260
gacatgactg tggcacatg tcggcgccga ctcatgcccgt gatgtaccta 1320
agctgggagc actgggtgacc ttcttcaatg ggatttcgggt agcgtgggtgg aaggctacgc 1380
acaatgttca tcatgctgtg ccaaataatgtt ttgattgtga cccggacatt gctcatttgc 1440
cggtgtttgc gttgcgtgag cacatgtta cgtcggtgtt taacaagtat catgggaggg 1500
tgatggagtt tgattggctg ggcgttaatg tcttttgcc attcaacac ttttggact 1560
atcccataat ggccgtggcg aggttcaatc tgtacattca atcagcatttgc ttttggcgt 1620
cgaagaacga tggcatgca ggaagaaggg gatcctctag attggatttgc ctggcggtca 1680
atcggtttct tctgttggtt agcggtgctg gtgtcatgca tcccgagctg ggcggagcgt 1740
atcgcatcgttctt cttcgtaag acatgctgtt cctgggttac tgcatgtgca atcacctgtc 1800
gccttcttggacaaatctt gatcccacaa gaggaccgg ttgggttgct cttccgaag 1860
cccggttctg ggctttgcc acattggcgt cccgggtcca 1900

<210> 6
<211> 411
<212> PRT
<213> Thalassiosira pseudonana

<400> 6

Met Pro Pro Ser Ile Lys Asp Thr Leu Asp Glu Pro Phe Val Ser Pro
1 5 10