<u>Lab04 – Assignment</u>

IT-314 - Software engineering

Jal Dani

202201315

Q.1 Prepare a class diagram for the following object diagram that shows a portion of Europe.

Figure-1

• Class Name: Country

Attributes

> "name": String

Association

> Borders: A many-to-many association between the Countryside

Question:1

Each Country (Spain, France, Belgium) is an instance of the country class.

This class diagram generalizes the structure shown in your object diagram by abstracting individual countries

Prepare a class diagram for object diagram given in Figure -2. Explain your multiplicity decisions. What is the smallest number of points required to construct a polygon? Does it make a difference whether or not points may be shared between polygons? Your answer should address the fact that points are ordered.

Classes:

- Point
- Polygon

Attributes:

- Point Class:
 - Xcoord: int
 - Ycoord: int
- Polygon:
- The polygon class itself does not seem to have additional attributes.

Relationship

- Polygon and Point
 - A polygon has a one-to-many relation.
 - Multiplicity: At least 3 needed.

Class Diagram Representation

Explanation of Multiplicity:

Polygon to Point:

A polygon has at least 3 points (hence 1...* cardinality).

A point can belong to multiple polygons (many-to-many relationship).

Smallest Number of Points:

The smallest number of points required to construct a polygon is 3, as a polygon needs at least three vertices to form a closed shape (a triangle).

Sharing Points Between Polygons:

Yes, points can be shared between polygons (e.g., neighboring polygons on a mesh or grid may share vertices). This does not affect the validity of the polygon, but it may impact the specific shape depending on how points are shared and ordered.

Q3

Figure 3 is a partially completed class diagram of an air transportation system. Add multiplicities in the diagram. Also add association names to unlevelled associations

Class Diagram Representation:

We want to model a system for management of flights and pilots. An airline operates flights. Each airline has an ID. Each flight has an ID a departure airport and an arrival airport: an airport as a unique identifier. Each flight has a pilot and a co-pilot, and it uses an aircraft of a certain type; a flight has also a departure time and an arrival time. An airline owns a set of aircraft of different types. An aircraft can be in a working state, or it can be under repair. In a particular moment an aircraft can be landed or airborne. A company has a set of pilots: each pilot has an experience level: 1 is minimum, 3 is maximum. A type of airplane may need a particular number of pilots, with a different role (e.g.: ca0ptain, co-pilot, navigator): there must be at least one captain and one co-pilot, and a captain must have a level 3.

