SBML Model Report

Model name: "Fallon2000 - Interleukin-2 dynamics"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Matthew Grant Roberts¹ and Catherine Lloyd² at June 25th 2010 at noon. and last time modified at June 25th 2010 at noon. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	8
events	0	constraints	0
reactions	13	function definitions	5
global parameters	13	unit definitions	6
rules	4	initial assignments	0

Model Notes

This a model from the article:

Computational model for effects of ligand/receptor binding properties oninterleukin-2 trafficking dynamics and T cell proliferation response.

Fallon EM, Lauffenburger DA. Biotechnol Prog 2000 Sep-Oct;16(5):905-16 11027188,

¹EMBL-EBI, mroberts@ebi.ac.uk

²University of Auckland, c.lloyd@auckland.ac.nz

Abstract:

Multisubunit cytokine receptors such as the heterotrimeric receptor forinterleukin-2 (IL-2) are ubiquitous in hematopoeitic cell types of importance inbiotechnology and are crucial regulators of cell proliferation and differentiation behavior. Dynamics of cytokine/receptor endocytic trafficking can significantly impact cell responses through effects of receptordown-regulation and ligand depletion, and in turn are governed byligand/receptor binding properties. We describe here a computational model fortrafficking dynamics of the IL-2 receptor (IL-2R) system, which is able topredict T cell proliferation responses to IL-2. This model comprises kinetic equations describing binding, internalization, and postendocytic sorting of IL-2and IL-2R, including an experimentally derived dependence of cell proliferationrate on these properties. Computational results from this model predict that IL-2 depletion can be reduced by decreasing its binding affinity for the IL-2Rbetagamma subunit relative to the alpha subunit at endosomal pH, as a result ofenhanced ligand sorting to recycling vis-a-vis degradation, and that an IL-2analogue with such altered binding properties should exhibit increased potencyfor stimulating the T cell proliferation response. These results are inagreement with our recent experimental findings for the IL-2 analogue termed 2D1[Fallon, E. M. et al. J. Biol. Chem. 2000, 275, 6790-6797]. Thus, this type of model may enable prediction of beneficial cytokine/receptor binding properties to aid development of molecular design criteria for improvements in applications such as in vivo cytokine therapies and in vitro hematopoietic cell bioreactors.

This model was taken from the CellML repository and automatically converted to SBML. The original model was: Fallon EM, Lauffenburger DA. (2000) - version=1.0 The original CellML model was created by:

Catherine Lloyd c.lloyd@auckland.ac.nz The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of ten unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name time

Definition 60 s

2.2 Unit unit_0

Name 1/(0.0166667*s)

Definition $(0.0166667 \text{ s})^{-1}$

2.3 Unit unit_1

Name 0.06*nl/(mol*s)

Definition $0.06 \text{ nl} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$

2.4 Unit unit_2

Name 1

Definition 1

2.5 Unit unit_3

Name 1/Tmol

Definition $Tmol^{-1}$

2.6 Unit unit_4

Name 1

Definition dimensionless⁰

2.7 Unit substance

 $\mbox{\bf Notes}\ \mbox{\bf Mole}$ is the predefined SBML unit for substance.

Definition mol

2.8 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.9 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment	compartment		3	1	litre	Ø	

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

Name compartment

4 Species

This model contains eight species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi-
					tion
Rs_0	Rs	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
Cs_0	Cs	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
Ri_0	Ri	COMpartment	$\operatorname{mol} \cdot 1^{-1}$		\Box
Ci_0	Ci	COMpartment	$\operatorname{mol} \cdot 1^{-1}$		
Li_O	Li	COMpartment	$\operatorname{mol} \cdot 1^{-1}$		
$Ld_{-}0$	Ld	COMpartment	$\text{mol} \cdot l^{-1}$		
L_0	L	COMpartment	$\text{mol} \cdot l^{-1}$		\Box
Y_0	Y	${\tt COMpartment}$	$\text{mol} \cdot 1^{-1}$		

5 Parameters

This model contains 13 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kr	kr		0.014	$(0.0166667 \text{ s})^{-1}$	\overline{Z}
kf	kf		0.001	$0.06 \text{ nl} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	
kre	kre		0.110	$(0.0166667 \text{ s})^{-1}$	\Box
kfe	kfe		$1.104 \cdot 10^{-4}$	$0.06 \text{ nl} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$	
kt	kt		0.007	$(0.0166667 \text{ s})^{-1}$	
Vs	Vs		11.000	$(0.0166667 \text{ s})^{-1}$	
ksyn	ksyn		0.001	$(0.0166667 \text{ s})^{-1}$	
ke	ke		0.040	$(0.0166667 \text{ s})^{-1}$	
kx	kx		0.150	$(0.0166667 \text{ s})^{-1}$	
kh	kh		0.035	$(0.0166667 \text{ s})^{-1}$	
Ve	Ve		10^{-14}	1	$\overline{\checkmark}$
NA	NA		$6.022 \cdot 10^{11}$	$Tmol^{-1}$	
IL2	IL2		1.000	dimensionless ⁰	

6 Function definitions

This is an overview of five function definitions.

6.1 Function definition Constant_flux__irreversible

Name Constant flux (irreversible)

Argument v

Mathematical Expression

v (1)

6.2 Function definition modifier_function_1

Name modifier function 1

Arguments parameter, modifier, substrate

Mathematical Expression

parameter \cdot modifier \cdot substrate (2)

6.3 Function definition function_for_Li

Name function for Li

Arguments kf, Li, Ri, kre, Ci, Ve, Na

Mathematical Expression

$$\frac{kf \cdot Li \cdot Ri - kre \cdot Ci}{Ve \cdot Na} \tag{3}$$

6.4 Function definition function_for_L

Name function for L

Arguments kf, L, Rs, kr, Cs, kx, Li, Ve, Na, Y

Mathematical Expression

$$\frac{\left(kf\cdot L\cdot Rs-kr\cdot Cs-kx\cdot Li\cdot Ve\cdot Na\right)\cdot Y}{Na}\tag{4}$$

6.5 Function definition modifier_function_3

Name modifier function 3

Arguments parameter, modifier

Mathematical Expression

parameter
$$\cdot$$
 modifier (5)

7 Rules

This is an overview of four rules.

7.1 Rule kf

Rule kf is an assignment rule for parameter kf:

$$kf = \begin{cases} \frac{kr}{11.1} & \text{if IL2} = 1\\ \frac{kr}{8.2} & \text{otherwise} \end{cases}$$
 (6)

7.2 Rule kre

Rule kre is an assignment rule for parameter kre:

$$kre = \begin{cases} kr \cdot 8 & \text{if IL2} = 1\\ kr \cdot 5 & \text{otherwise} \end{cases}$$
 (7)

7.3 Rule kfe

Rule kfe is an assignment rule for parameter kfe:

$$kfe = \begin{cases} \frac{kre}{1000} & \text{if } IL2 = 1\\ \frac{kre}{3000} & \text{otherwise} \end{cases}$$
 (8)

7.4 Rule Y_0

Rule Y_0 is a rate rule for species Y_0:

$$\frac{d}{dt}Y_{-}0 = \begin{cases}
\left(\frac{600 \cdot [Cs_{-}0]}{250 + [Cs_{-}0]} - 200\right) \cdot 1000 & \text{if } \frac{600 \cdot [Cs_{-}0]}{250 + [Cs_{-}0]} - 200 > 0 \\
0 & \text{otherwise}
\end{cases} \tag{9}$$

8 Reactions

This model contains 13 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	Receptorbinding_toLigand	Receptor binding to Ligand	$Rs_0 \xrightarrow{L_0} Cs_0$	
2	ReceptorLigandcomplexdissocation	Receptor/Ligand complex dissocation	$Cs_0 \longrightarrow Rs_0$	
3	Upregulation- _of_Receptor- _Synthesis	Upregulation of Receptor Synthesis	$\emptyset \xrightarrow{Cs_0} Rs_0$	
4	Receptor- _Internalisation	Receptor Internalisation	$Rs_0 \longrightarrow Ri_0$	
5	Receptor- _Synthesis	Receptor Synthesis	$\emptyset \longrightarrow Rs_0$	
6	Endocytosisof_ReceptorLigand_complex	Endocytosis of Receptor/Ligand complex	$Cs_0 \longrightarrow Ci_0$	
7	IL_2_bindingto_freeBetaGammaheterodimer_1	IL-2 binding to free BetaGamma heterodimer	$Ri0 \xrightarrow{Li0} Ci0$	

N₀	Id	Name	Reaction Equation	SBO
8	Dissocationof_IL_2Heterodimercomplex	Dissocation of IL-2/Heterodimer complex	$Ci_0 \longrightarrow Ri_0$	
9	Degradation_of- _heterodimer	Degradation of heterodimer	$Ri_0 \longrightarrow \emptyset$	
10	Degradation- _of_IL_2- _heterodimer- _complex	Degradation of IL-2/heterodimer complex	$Ci0 \longrightarrow Ld0$	
11	IL_2_binding- _dissociating	IL-2 binding/dissociating	$\text{Li}_{-}0 \xrightarrow{\text{Ri}_{-}0, \text{ Ci}_{-}0} \emptyset$	
12	Ligand- _recycling	Ligand recycling	$\text{Li}_0 \longrightarrow \emptyset$	
13	Ligand_Binding- _Dissociation- _Recycling	Ligand Binding/Dissociation/Recycling	$L_{-0} \xrightarrow{\text{Rs_0, Cs_0, Li_0, Y_0}} \emptyset$	

8.1 Reaction Receptor_binding_to_Ligand

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Receptor binding to Ligand

Reaction equation

$$Rs_0 \xrightarrow{L_0} Cs_0 \tag{10}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
Rs_0	Rs	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
L_0	L	

Product

Table 8: Properties of each product.

Id	Name	SBO
Cs_0	Cs	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_1 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{modifier_function_1}\left(\text{kf}, [\text{L_0}], [\text{Rs_0}]\right)$$
 (11)

 $modifier_function_1$ (parameter, modifier, substrate) = parameter \cdot modifier \cdot substrate (12)

 $modifier_function_1$ (parameter, modifier, substrate) = parameter · modifier · substrate (13)

8.2 Reaction Receptor_Ligand_complex_dissocation

This is an irreversible reaction of one reactant forming one product.

Name Receptor/Ligand complex dissocation

Reaction equation

$$Cs_-0 \longrightarrow Rs_-0$$
 (14)

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
Cs_0	Cs	

Product

Table 10: Properties of each product.

Id	Name	SBO
Rs_0	Rs	

Kinetic Law

Derived unit $(0.0166667 \text{ s})^{-1} \cdot \text{mol}$

$$v_2 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{kr} \cdot [\text{Cs_0}]$$
 (15)

8.3 Reaction Upregulation_of_Receptor_Synthesis

This is an irreversible reaction of no reactant forming one product influenced by one modifier.

Name Upregulation of Receptor Synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{Cs}_{-}0} \text{Rs}_{-}0 \tag{16}$$

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
Cs_0	Cs	

Product

Table 12: Properties of each product.

Id	Name	SBO
Rs_0	Rs	

Kinetic Law

Derived unit $(0.0166667 \text{ s})^{-1} \cdot \text{mol}$

$$v_3 = \text{vol}(\text{COMpartment}) \cdot \text{modifier_function_3}(\text{ksyn}, [\text{Cs_0}])$$
 (17)

$$modifier_function_3$$
 (parameter, $modifier$) = parameter · $modifier$ (18)

$$modifier_function_3$$
 (parameter, $modifier$) = parameter · $modifier$ (19)

8.4 Reaction Receptor_Internalisation

This is an irreversible reaction of one reactant forming one product.

Name Receptor Internalisation

Reaction equation

$$Rs_0 \longrightarrow Ri_0$$
 (20)

Table 13: Properties of each reactant.

Id	Name	SBO
Rs_0	Rs	

Product

Table 14: Properties of each product.

Id	Name	SBO
Ri_O	Ri	

Kinetic Law

Derived unit $(0.0166667 \text{ s})^{-1} \cdot \text{mol}$

$$v_4 = \text{vol}(\text{COMpartment}) \cdot \text{kt} \cdot [\text{Rs}_0]$$
 (21)

8.5 Reaction Receptor_Synthesis

This is an irreversible reaction of no reactant forming one product.

Name Receptor Synthesis

Reaction equation

$$\emptyset \longrightarrow Rs_-0$$
 (22)

Product

Table 15: Properties of each product.

Id	Name	SBO
Rs_0	Rs	

Kinetic Law

 $\textbf{Derived unit} \ 1 \cdot \left(0.0166667 \ s\right)^{-1}$

$$v_5 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{Constant_flux_irreversible}\left(\text{Vs}\right)$$
 (23)

Constant_flux_irreversible
$$(v) = v$$
 (24)

Constant_flux_irreversible
$$(v) = v$$
 (25)

8.6 Reaction Endocytosis_of_Receptor_Ligand_complex

This is an irreversible reaction of one reactant forming one product.

Name Endocytosis of Receptor/Ligand complex

Reaction equation

$$Cs_0 \longrightarrow Ci_0$$
 (26)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
Cs_0	Cs	

Product

Table 17: Properties of each product.

Id	Name	SBO
Ci_O	Ci	

Kinetic Law

Derived unit $(0.0166667 \text{ s})^{-1} \cdot \text{mol}$

$$v_6 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{ke} \cdot [\text{Cs}_0]$$
 (27)

8.7 Reaction IL_2_binding_to_free_BetaGamma_heterodimer_1

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name IL-2 binding to free BetaGamma heterodimer

Reaction equation

$$Ri_0 \xrightarrow{Li_0} Ci_0$$
 (28)

Table 18: Properties of each reactant.

Id	Name	SBO
Ri_O	Ri	

Modifier

Table 19: Properties of each modifier.

Id	Name	SBO
Li_O	Li	

Product

Table 20: Properties of each product.

Id	Name	SBO
Ci_O	Ci	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_7 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{modifier_function_1}\left(\text{kfe}, [\text{Li_0}], [\text{Ri_0}]\right)$$
 (29)

 $modifier_function_1$ (parameter, modifier, substrate) = parameter \cdot modifier \cdot substrate (30)

 $modifier_function_1$ (parameter, $modifier_substrate$) = parameter \cdot $modifier_substrate$ (31)

8.8 Reaction Dissocation_of_IL_2_Heterodimer_complex

This is an irreversible reaction of one reactant forming one product.

Name Dissocation of IL-2/Heterodimer complex

Reaction equation

$$Ci_0 \longrightarrow Ri_0$$
 (32)

Table 21: Properties of each reactant.

Id	Name	SBO
Ci_O	Ci	

Product

Table 22: Properties of each product.

Id	Name	SBO
Ri_O	Ri	

Kinetic Law

 $\textbf{Derived unit} \ \left(0.0166667 \ s\right)^{-1} \cdot mol$

$$v_8 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{kre} \cdot \left[\text{Ci}_{-}0\right]$$
 (33)

8.9 Reaction Degradation_of_heterodimer

This is an irreversible reaction of one reactant forming no product.

Name Degradation of heterodimer

Reaction equation

$$Ri_0 \longrightarrow \emptyset$$
 (34)

Reactant

Table 23: Properties of each reactant.

Id	Name	SBO
Ri_O	Ri	

Kinetic Law

Derived unit $(0.0166667 \text{ s})^{-1} \cdot \text{mol}$

$$v_9 = \text{vol}\left(\text{COMpartment}\right) \cdot \text{kh} \cdot [\text{Ri}_0]$$
 (35)

8.10 Reaction Degradation_of_IL_2_heterodimer_complex

This is an irreversible reaction of one reactant forming one product.

Name Degradation of IL-2/heterodimer complex

Reaction equation

$$Ci_0 \longrightarrow Ld_0$$
 (36)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
Ci_O	Ci	

Product

Table 25: Properties of each product.

Id	Name	SBO
Ld_0	Ld	

Kinetic Law

Derived unit $(0.0166667 \text{ s})^{-1} \cdot \text{mol}$

$$v_{10} = \text{vol}\left(\text{COMpartment}\right) \cdot \text{kh} \cdot \left[\text{Ci}_{-0}\right]$$
 (37)

8.11 Reaction IL_2_binding_dissociating

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name IL-2 binding/dissociating

Reaction equation

$$\text{Li}_{-0} \xrightarrow{\text{Ri}_{-0}, \text{ Ci}_{-0}} \emptyset \tag{38}$$

Table 26: Properties of each reactant.

Id	Name	SBO
Li_O	Li	

Modifiers

Table 27: Properties of each modifier.

Id	Name	SBO
Ri_O	Ri	
${\tt Ci_0}$	Ci	

Kinetic Law

Derived unit $1^{-1} \cdot s^{-1} \cdot (1000000 \text{ mol})^2$

$$v_{11} = vol\left(COMpartment\right) \cdot function_for_Li\left(kf, [Li_0], [Ri_0], kre, [Ci_0], Ve, NA\right) \quad (39)$$

$$function_for_Li\left(kf,Li,Ri,kre,Ci,Ve,Na\right) = \frac{kf\cdot Li\cdot Ri - kre\cdot Ci}{Ve\cdot Na} \tag{40}$$

$$function_for_Li\left(kf,Li,Ri,kre,Ci,Ve,Na\right) = \frac{kf\cdot Li\cdot Ri - kre\cdot Ci}{Ve\cdot Na} \tag{41}$$

8.12 Reaction Ligand_recycling

This is an irreversible reaction of one reactant forming no product.

Name Ligand recycling

Reaction equation

$$\text{Li}_{-}0 \longrightarrow \emptyset$$
 (42)

Table 28: Properties of each reactant.

Id	Name	SBO
Li_O	Li	

Kinetic Law

 $\textbf{Derived unit} \ \left(0.0166667 \ s\right)^{-1} \cdot mol$

$$v_{12} = \text{vol}\left(\text{COMpartment}\right) \cdot \text{kx} \cdot [\text{Li}_{-}0]$$
 (43)

8.13 Reaction Ligand_Binding_Dissociation_Recycling

This is an irreversible reaction of one reactant forming no product influenced by four modifiers.

Name Ligand Binding/Dissociation/Recycling

Reaction equation

$$L_{-0} \xrightarrow{\text{Rs_0, Cs_0, Li_0, Y_0}} \emptyset$$
 (44)

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
L_0	L	

Modifiers

Table 30: Properties of each modifier.

Id	Name	SBO
Rs_0	Rs	
$\mathtt{Cs}_{-}\mathtt{0}$	Cs	
${\tt Li_0}$	Li	
$Y_{-}O$	Y	

Kinetic Law

$$v_{13} = vol\left(COMpartment\right) \cdot function_for_L\left(kf, [L_0], [Rs_0], kr, [Cs_0], kx, [Li_0], Ve, NA, [Y_0]\right) \tag{45}$$

$$function_for_L\left(kf,L,Rs,kr,Cs,kx,Li,Ve,Na,Y\right) = \frac{\left(kf\cdot L\cdot Rs - kr\cdot Cs - kx\cdot Li\cdot Ve\cdot Na\right)\cdot Y}{Na} \tag{46}$$

$$function_for_L\left(kf,L,Rs,kr,Cs,kx,Li,Ve,Na,Y\right) = \frac{\left(kf\cdot L\cdot Rs - kr\cdot Cs - kx\cdot Li\cdot Ve\cdot Na\right)\cdot Y}{Na} \tag{47}$$

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

9.1 Species Rs_0

Name Rs

Notes Initial value of 1500 from paper

Initial concentration 1500 mol·l⁻¹

This species takes part in six reactions (as a reactant in Receptor_binding_to_Ligand, Receptor_Internalisation and as a product in Receptor_Ligand_complex_dissocation, Upregulation_of_Receptor_Synthesis, Receptor_Synthesis and as a modifier in Ligand_Binding-_Dissociation_Recycling).

$$\frac{\mathrm{d}}{\mathrm{d}t} Rs_{-}0 = v_2 + v_3 + v_5 - v_1 - v_4 \tag{48}$$

9.2 Species Cs_0

Name Cs

Notes SBML file uploaded with initial value set to 1

Initial concentration $1 \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in Receptor_Ligand_complex_dissocation, Endocytosis_of_Receptor_Ligand_complex and as a product in Receptor_binding_to-_Ligand and as a modifier in Upregulation_of_Receptor_Synthesis, Ligand_Binding-_Dissociation_Recycling).

$$\frac{d}{dt}Cs_{-}0 = v_1 - v_2 - v_6 \tag{49}$$

9.3 Species Ri_0

Name Ri

Notes Initial value of 300 from paper

Initial concentration 300 mol·1⁻¹

This species takes part in five reactions (as a reactant in IL_2_binding_to_free_BetaGamma-heterodimer_1, Degradation_of_heterodimer and as a product in Receptor_Internalisation, Dissocation_of_IL_2_Heterodimer_complex and as a modifier in IL_2_binding_dissociating).

$$\frac{d}{dt}Ri_{-}0 = v_4 + v_8 - v_7 - v_9 \tag{50}$$

9.4 Species Ci_0

Name Ci

Notes SBML file uploaded with initial value set to 1

Initial concentration $1 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in <code>Dissocation_of_IL_2_Heterodimer_complex</code>, <code>Degradation_of_IL_2_heterodimer_complex</code> and as a product in <code>Endocytosis_of_Receptor_Ligand_complex</code>, <code>IL_2_binding_to_free_BetaGamma_heterodimer_1</code> and as a modifier in <code>IL_2_binding_dissociating</code>).

$$\frac{d}{dt}Ci_0 = v_6 + v_7 - v_8 - v_{10}$$
(51)

9.5 Species Li_0

Name Li

Notes SBML file uploaded with initial value set to 0.01

Initial concentration $0.01 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in IL_2_binding_dissociating, Ligand_recycling and as a modifier in IL_2_binding_to_free_BetaGamma_heterodimer_1, Ligand_Binding_Dissociation_Recycling).

$$\frac{d}{dt}Li_{-}0 = -v_{11} - v_{12} \tag{52}$$

9.6 Species Ld_0

Name Ld

Notes SBML file uploaded with initial value set to 1

Initial concentration $1 \text{ mol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in Degradation_of_IL_2_heterodimer_complex).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{L}\mathrm{d}_{-}0 = v_{10} \tag{53}$$

9.7 Species L_0

Name L

Notes SBML file uploaded with initial value set to 10

Initial concentration $10 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in Ligand_Binding_Dissociation_Recycling and as a modifier in Receptor_binding_to_Ligand).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{L}_{-}0 = -v_{13} \tag{54}$$

9.8 Species Y_0

Name Y

Initial concentration $2.5 \cdot 10^8 \text{ mol} \cdot 1^{-1}$

Involved in rule Y_0

This species takes part in one reaction (as a modifier in Ligand_Binding_Dissociation_Recycling). Not this but one rule determines the species' quantity because this species is on the boundary of the reaction system.

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

 $[^]c\mathrm{European}$ Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany