

EXERCICES DE REVISION

EXERCICE I

Le plan est muni d'un repère orthonormal $(0, \vec{i}, \vec{j})$.

Pour tout entier naturel n, on considère la fonction f_n définie et dérivable sur l'ensemble des nombres réels R par

$$f_n(x) = \frac{e^{-(n-1)x}}{1+e^x}.$$

On désigne par C_n la courbe représentative de f_n dans le repère $(O,\,\vec{i}\,,\,\vec{j}\,)$.

On a représenté ci-dessous les courbes C_n pour différentes valeurs de n.

Soit la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_0^1 f_n(x) dx$$

Partie A - Étude graphique

- 1. Donner une interprétation graphique de u_n .
- 2. Quelles conjectures peut-on faire concernant les variations et la convergence de la suite (u_n) ?
- 3. Proposer, à l'aide du graphique ou de la calculatrice, une valeur approchée de u_4 à 0.05 près.

Partie B ~ Étude théorique

1. Montrer que
$$u_0 = \ln\left(\frac{1+e}{2}\right)$$
.

- 2. Montrer que $u_0 + u_1 = 1$ puis en déduire u_1 .
- **3.** Montrer que, pour tout entier naturel n, $u_n \ge 0$.
- **4.** On pose pour tout entier naturel n et pour tout x réel, $d_n(x) = f_{n+1}(x) f_n(x)$.
 - **a.** Montrer que, pour tout nombre réel x, $d_n(x) = e^{-nx} \frac{1 e^x}{1 + e^x}$.
 - **b.** Étudier le signe de la fonction d_n sur l'intervalle [0;1].
- 5. En déduire que la suite (u_n) est convergente.
- **6.** On note ℓ la limite de la suite (u_n) .
 - a. Montrer que, pour tout entier n supérieur ou égal à 1, on a :

$$u_n + u_{n+1} = \frac{1 - e^{-n}}{n}$$

b. En déduire la valeur de l

EXERCICE II

On s'intéresse à la plus courte distance entre la courbe représentative de la fonction ln et l'origine du repère orthonormé dans lequel elle est représentée.

On note C_f la courbe représentative de la fonction f définie sur $]0; +\infty[$ par $f(x) = \ln x$.

M un point situé sur C_f et on note x l'abscisse de ce point. Soit d la fonction définie sur $]0; +\infty[$ qui à x associe la distance OM.

Partie A –

Il existe une valeur minimale de d(x) atteinte en un reel x_0 . Par lecture graphique, donner un encadrement à 0,1 près de la valeur de x_0 .

Partie B –

- 1) Montrer que $d(x) = \sqrt{x^2 + (\ln x)^2}$ pour tout x réel strictement positif.
- 2) a) Calculer d(x).

- b) Montrer que, pour x réel strictement positif, le signe de d(x) est le même que celui de $x^2 + \ln x$
- 3) Soit gla fonction définie sur $]0; +\infty[$ par $g(x) = x^2 + \ln x$.
 - a) Déterminer les limites de g en 0 et en $+\infty$.
 - b) Etudier les variations de g sur $]0; +\infty[$.
 - c) Montrer alors que l'équation g(x) = 0 admet une unique solution α sur $]0; +\infty[$.
 - d) A l'aide de la calculatrice, déterminer un encadrement à 10^{-3} près de α .
 - e) Préciser le signe de g(x) selon les valeurs de x.
- 4) a) En déduire le tableau de variation de la fonction d sur $]0; +\infty[$.
 - b) Justifier que $\alpha = x_0$.
 - c) Montrer que $\ln \alpha = -\alpha^2$, puis que $d(\alpha) = \alpha \sqrt{1 + \alpha^2}$.
- 5) En déduire une valeur approchée à 10^{-2} près de la distance la plus courte entre l'origine du repère

et C,

<u>Partie C –</u>

On note T la tangente à la courbe C_{ℓ} au point M.

- 1) Quelle conjecture peut-on faire quant à la position de T et (OM) lorsque la distance OM est minimale? Tracer cette tangente sur le sujet (ne pas reproduire la figure).
- 2) a) Déterminer une équation de la tangente T_0 à la courbe C_ℓ au point d'abscisse lpha .
 - b) Déterminer le coefficient directeur de la droite (OM) lorsque OM est minimale.
 - c) Démontrer la conjecture de la guestion 1.

EXERCICE III

Soit f la fonction définie sur ${\pmb R}$ par

$$f(x) = 1 - \frac{4e^x}{e^{2x} + 1}.$$

On note Csa courbe représentative dans un repère orthogonal $(0, \vec{i}, \vec{j})$.

Sur le graphique ci-dessous on a tracé la courbe C. Elle coupe l'axe des abscisses aux points A et B.

Partie A

L'objet de cette partie est de démontrer certaines propriétés de la fonction fque l'on peut conjecturer à partir du graphique.

1. La fonction f semble croissante sur l'intervalle $[0; +\infty[$.

a. Vérifier que pour tout réel x, $f(x) = \frac{4e^x(e^{2x}-1)}{(e^{2x}+1)^2}$.

b. En déduire le sens de variation de la fonction f sur l'intervalle $[0; +\infty[$.

2. La droite d'équation x = 0 semble être un axe de symétrie de la courbe C

Démontrer que cette conjecture est vraie.

- **3.** On désigne par a l'abscisse du point A et on pose $c = e^a$.
 - a. Démontrer que le réel c est une solution de l'équation $x^2 4x + 1 = 0$.

En déduire la valeur exacte de a.

b. Donner le signe de f(x) selon les valeurs de x.

Partie B

L'objet de cette partie est d'étudier quelques propriétés de la fonction F définie sur $\mathbf R$ par :

$$I(x) = \int_0^x f(t)dt$$

- 1. Déterminer les variations de la fonction Fsur ${\bf R}$
- **2.** Interpréter géométriquement le réel $\mathcal{H}(a)$. En déduire que $-a \le \mathcal{H}(a) \le 0$.
- **3.** On cherche la limite éventuelle de Fen $+\infty$.
 - **a.** Démontrer que pour tout réel positif $t, \mathbf{1}(t) \ge 1 4e^{-t}$.
 - **b.** En déduire que pour tout réel positif x, $f(x) \ge x 4$ et déterminer la limite de f(x) lorsque x tend vers $+\infty$.
- 4. Dans cette question, toute trace de recherche ou d'initiative, même incomplète, sera prise en compte dans l'évaluation.

Déterminer la limite de f(x) lorsque x tend vers $-\infty$.

EXERCICE IV

- 1°) Calculer I = $\int_0^{\frac{\pi}{4}} x \tan^2 x \, dx$ à l'aide d'une intégration par parties.
- 2°) Soit la fonction définie sur $\left[0; \frac{\pi}{2}\right[$ par: $f(x) = \sqrt{x} \tan x$ dont la courbe (C_f) est représentée ci-contre dans le plan P muni du repère orthonormal $(O; \vec{i}, \vec{j})$:

 On considère le solide engendré par la rotation autour de l'axe $(O; \vec{i})$ de la surface délimitée dans le plan P par l'axe $(O; \vec{i})$, la droite d'équation $x = \frac{\pi}{4}$ et la courbe (C_f) .

Sachant que l'unité graphique est de $2\,\mathrm{cm}$, calculer le volume V du solide en cm^3 .

EXERCICE V

Soit fla fonction définie sur $[1; +\infty[$ par : $f(x) = \sqrt{x} e^{-x}$.

Pour tout $\alpha > 1$, on considère l'intégrale : $I(\alpha) = \int_{\alpha}^{2\alpha} f(x) dx$.

- 1°) Interpréter géométriquement le nombre $I(\alpha)$.
- **2°)** Démontrer que, pour tout $x \in [1; +\infty[$, on $a : e^{-x} \le f(x) \le x e^{-x}$.
- **3°)** En déduire que pour tout $\alpha > 1$: $e^{-\alpha} e^{-2\alpha} \le I(\alpha) \le (\alpha + 1) e^{-\alpha} + (-1 2\alpha) e^{-2\alpha}.$
- **4°)** Rappel: « Une fonction g admet une limite égale à I en $+\infty$ » signifie: « Pour tout intervalle ouvert I contenant I, on peut trouver un réel A tel que: I contient toutes les valeurs de g(x) pour x supérieur ou égal à A. »

Démontrer le théorème suivant :

« Soient u, v et w des fonctions définies sur $[1; +\infty[$ telles que : pour tout réel $x \ge 1$, $u(x) \le v(x) \le w(x)$, et soit l un réel.

Si
$$\lim_{x \to +\infty} u(x) = l$$
 et $\lim_{x \to +\infty} w(x) = l$ alors $\lim_{x \to +\infty} v(x) = l$.

5°) En déduire la limite de $I(\alpha)$ lorsque α tend vers $+\infty$.

