Derivação Implícita

Priscila Bemm

UEM

Objetivo

• Derivar funções definidas implicitamente.

Diremos que uma equação F(x,y)=0 define implicitamente y como função de x se existe uma função y=f(x) que satisfaz F(x,f(x))=0, para todo $x\in Dom(f)$. Neste caso, diremos também que a função f(x) está definida implicitamente pela equação F(x,y)=0

Exemplo

- a) $y = 3x^2 + 1$ é uma função explícita.
- b) y 3x 1 = 0 é uma função implícita.
- c) $x^2 + y^2 1 = 0$ é uma função implícita.
- d) $y = \sqrt{1 x^2}$ é uma função explícita.
- d) $y + y^2 + \cos(x + y) = 0$ é uma função implícita.

3 / 22

Priscila Bemm (UEM) Derivação Implícita

Quantas funções distintas são definidas implicitamente pela equação $x^2 + y^2 = 4$?

Quantas funções distintas são definidas implicitamente pela equação $x^2 + y^2 = 4$?

Neste caso é possível expressar y em função da variável x, pois $y^2 = 4 - x^2$ e assim

$$y = \pm \sqrt{4 - x^2}.$$

Portanto, a equação implícita $x^2 + y^2 = 4$ define duas funções

$$f(x) = \sqrt{4 - x^2}$$
 e $g(x) = -\sqrt{4 - x^2}$.

Os gráficos de f e g são, respectivamente, os semicírculos superior e inferior do círculo de centro na origem e raio 2 dado por $x^2 + y^2 = 4$.

Priscila Bemm (UEM)

Em geral, dada uma equação implícita nas variáveis x e y, sem um recurso computacional, não é uma tarefa fácil expressar y em função de x, como podemos observar na equação

$$4xy^3 + x^2y - x^5 + 4x - 6 = 0.$$

Todavia não precisamos resolver uma equação para obter y explicitamente em termos de x, para calcularmos a derivada de y. E é isto que vamos abordar nesta aula.

Determine $\frac{dy}{dx}$ da equação implícita $x^2+y^2=4$, utilizando a regra da cadeia.

Determine $\frac{dy}{dx}$ da equação implícita $x^2 + y^2 = 4$, utilizando a regra da cadeia.

Derivando em relação a x temos nos dois membros da igualdade obtemos

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(4)$$

Determine $\frac{dy}{dx}$ da equação implícita $x^2 + y^2 = 4$, utilizando a regra da cadeia.

Derivando em relação a x temos nos dois membros da igualdade obtemos

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(4)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(4)$$

Determine $\frac{dy}{dx}$ da equação implícita $x^2 + y^2 = 4$, utilizando a regra da cadeia.

Derivando em relação a x temos nos dois membros da igualdade obtemos

$$\frac{d}{dx}(x^2+y^2) = \frac{d}{dx}(4)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(4)$$

$$2x + 2y \cdot \frac{dy}{dx} = 0.$$

Determine $\frac{dy}{dx}$ da equação implícita $x^2 + y^2 = 4$, utilizando a regra da cadeia.

Derivando em relação a x temos nos dois membros da igualdade obtemos

$$\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(4)$$

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = \frac{d}{dx}(4)$$

$$2x + 2y \cdot \frac{dy}{dx} = 0.$$

O que implica que se $y \neq 0$, então

$$\frac{dy}{dx} = -\frac{2x}{2y} = -\frac{x}{y}.$$

Vimos no exemplo anterior que a função $y=\sqrt{4-x^2}$ satisfaz a equação $x^2+y^2=4$. A derivada de y pela fórmula obtida acima é dada por

$$\frac{dy}{dx} = -\frac{x}{\sqrt{4-x^2}}.$$

Uma outra maneira de verificarmos esta relação é calculando a derivada $y=\sqrt{4-x^2}=(4-x^2)^{\frac{1}{2}}$ pela regra da cadeia. Com efeito,

$$\frac{dy}{dx} = \frac{1}{2}(4-x^2)^{-\frac{1}{2}} \cdot (-2x) = -\frac{x}{\sqrt{4-x^2}} = -\frac{x}{y}.$$

Priscila Bemm (UEM)

Determine $\frac{dy}{dx}$ da equação implícita $4xy^3 + x^2y - x^5 + 4x - 6 = 0$.

Determine
$$\frac{dy}{dx}$$
 da equação implícita $4xy^3 + x^2y - x^5 + 4x - 6 = 0$.

Derivando a equação com relação a \boldsymbol{x} temos

Determine $\frac{dy}{dx}$ da equação implícita $4xy^3 + x^2y - x^5 + 4x - 6 = 0$.

Derivando a equação com relação a x temos

$$\frac{d}{dx}(4xy^3 + x^2y - x^5 + 4x - 6) = \frac{d}{dx}(0)$$

Determine $\frac{dy}{dx}$ da equação implícita $4xy^3 + x^2y - x^5 + 4x - 6 = 0$.

Derivando a equação com relação a x temos

$$\frac{d}{dx}(4xy^{3} + x^{2}y - x^{5} + 4x - 6) = \frac{d}{dx}(0)$$

$$\Rightarrow \left[\frac{d}{dx}(4x)y^{3} + 4x\frac{d}{dx}(y^{3})\right] + \left[\frac{d}{dx}(x^{2})y + x^{2}\frac{dy}{dx}\right] - \frac{d}{dx}(x^{5}) + \frac{d}{dx}(4x) - \frac{d}{dx}(6) = 0$$

Determine $\frac{dy}{dx}$ da equação implícita $4xy^3 + x^2y - x^5 + 4x - 6 = 0$.

Derivando a equação com relação a x temos

$$\frac{d}{dx}(4xy^{3} + x^{2}y - x^{5} + 4x - 6) = \frac{d}{dx}(0)$$

$$\Rightarrow \left[\frac{d}{dx}(4x)y^{3} + 4x\frac{d}{dx}(y^{3})\right] + \left[\frac{d}{dx}(x^{2})y + x^{2}\frac{dy}{dx}\right] - \frac{d}{dx}(x^{5}) + \frac{d}{dx}(4x) - \frac{d}{dx}(6) = 0$$

$$\Rightarrow 4y^{3} + 4x \cdot 3y^{2} \cdot \frac{dy}{dx} + 2xy + x^{2}\frac{dy}{dx} - 5x^{4} + 4 = 0$$

Priscila Bemm (UEM)

Determine $\frac{dy}{dx}$ da equação implícita $4xy^3 + x^2y - x^5 + 4x - 6 = 0$.

Derivando a equação com relação a x temos

$$\frac{d}{dx}(4xy^3 + x^2y - x^5 + 4x - 6) = \frac{d}{dx}(0)$$

$$\Rightarrow \left[\frac{d}{dx}(4x)y^3 + 4x\frac{d}{dx}(y^3)\right] + \left[\frac{d}{dx}(x^2)y + x^2\frac{dy}{dx}\right] - \frac{d}{dx}(x^5) + \frac{d}{dx}(4x) - \frac{d}{dx}(6) = 0$$

$$\Rightarrow 4y^3 + 4x \cdot 3y^2 \cdot \frac{dy}{dx} + 2xy + x^2\frac{dy}{dx} - 5x^4 + 4 = 0$$

$$\Rightarrow 4y^3 + 12xy^2\frac{dy}{dx} + 2xy + x^2\frac{dy}{dx} - 5x^4 + 4 = 0.$$

$$\Rightarrow 4y^{3} + 12xy^{2}\frac{dy}{dx} + 2xy + x^{2}\frac{dy}{dx} - 5x^{4} + 4 = 0$$

Assim, se $12xy^2 + x^2 \neq 0$ então

$$(12xy^{2} + x^{2})\frac{dy}{dx} = 5x^{4} - 4y^{3} - 2xy - 4$$

$$\Rightarrow \frac{dy}{dx} = \frac{5x^{4} - 4y^{3} - 2xy - 4}{12xy^{2} + x^{2}}$$

Priscila Bemm (UEM)

Derivação Implícita

Determine $\frac{dy}{dx}$ da equação implícita $y=x^2sen\ y.$

Determine $\frac{dy}{dx}$ da equação implícita $y = x^2 sen y$.

$$\frac{dy}{dx} = \frac{d}{dx} \left[x^2 sen \ y \right]$$

$$\frac{dy}{dx} = \frac{d}{dx} \left[x^2 \right] sen \ y + x^2 \frac{d}{dx} [sen \ y]$$

$$\frac{dy}{dx} = 2xsen \ y + x^2cos \ y \cdot \frac{dy}{dx}.$$

Logo, $(1-x^2\cos y)\frac{dy}{dx} = 2x \sin y$ e assim

$$\frac{dy}{dx} = \frac{2x \operatorname{sen} y}{1 - x^2 \cos y},$$

Determine $\frac{dy}{dx}$ da equação implícita $e^{x^2} \cdot cos(y^3) = 1$.

Determine $\frac{dy}{dx}$ da equação implícita $e^{x^2} \cdot cos(y^3) = 1$.

$$\frac{d}{dx}(e^{x^2})\cos(y^3) + e^{x^2}\frac{d}{dx}(\cos(y^3)) = 0$$

$$\Rightarrow 2xe^{x^2}\cos(y^3) + e^{x^2}(-\sin(y^3))\frac{d}{dx}(y^3) = 0$$

$$\Rightarrow 2xe^{x^2}\cos(y^3) - 3y^2e^{x^2}\sin(y^3)\frac{dy}{dx} = 0.$$

Logo,
$$(-3y^2e^{x^2}sen(y^3))\frac{dy}{dx}=-2xe^{x^2}cos(y^3)$$
 o que implica

$$\frac{dy}{dx} = \frac{2xe^{x^2}\cos(y^3)}{3y^2e^{x^2}\sin(y^3)},$$

se $3y^2e^{x^2}sen(y^3) \neq 0$.

Derivadas das Funções Trigonométricas Inversas

Vamos fazer uso do conceito de derivação implícita e da regra da cadeia para obtermos a derivada das funções trigonométricas inversas básicas: $\sin^{-1}(x)$, $\cos^{-1}(x)$ e $\tan^{-1}(x)$ que são, respectivamente, as inversas das funções $sen\ x$, $cos\ x$ e $tg\ x$.

Derivadas das Funções Trigonométricas Inversas

As derivadas das funções trigonométricas inversas são:

(a)
$$\frac{d}{dx}(sen^{-1}x) = \frac{1}{\sqrt{1-x^2}};$$
 (d) $\frac{d}{dx}(cosec^{-1}x) = -\frac{1}{x\sqrt{x^2-1}};$

(b)
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}};$$
 (e) $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}};$

(c)
$$\frac{d}{dx}(tg^{-1}x) = \frac{1}{1+x^2};$$
 (f) $\frac{d}{dx}(cotg^{-1}x) = -\frac{1}{1+x^2}.$

Priscila Bemm (UEM)

Demonstrações

(a) Sabemos que para $-\frac{\pi}{2} < y < \frac{\pi}{2}$ a função seno possui inversa, ou seja,

$$y = sen^{-1}x$$
, se, e somente se, $sen y = x$.

Derivando sen y = x implicitamente em relação a x obtemos

$$\cos y \cdot \frac{dy}{dx} = 1$$
, ou ainda, $\frac{dy}{dx} = \frac{1}{\cos y}$.

Observe que para $-\frac{\pi}{2} < y < \frac{\pi}{2}$ temos que $\cos\,y \neq 0$, na verdade $\cos\,y > 0$.

Assim, da relação $sen^2y+cos^2y=1$ temos que $cos~y=\sqrt{1-sen^2y}=\sqrt{1-x^2}$, já que sen~y=x. Deste modo,

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-x^2}}.$$

Portanto,
$$\frac{d}{dx}\left(sen^{-1}x\right) = \frac{1}{\sqrt{1-x^2}}$$
.

4D > 4B > 4E > 4E > E 990

Demonstrações

(c) Por definição de inversa da função tangente, para todo $-\frac{\pi}{2} < y < \frac{\pi}{2}$, temos que

$$y = tg^{-1}x$$
, se, e somente se, $tg \ y = x$.

Derivando $tg \ y = x$ implicitamente em relação a x obtemos

$$sec^2y \cdot \frac{dy}{dx} = 1$$

.

Dividindo $sen^2y + cos^2y = 1$ por cos^2y provamos que tg^2 $y + 1 = sec^2$ y. Logo,

$$\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + tg^2 y} = \frac{1}{1 + x^2}.$$

Donde concluímos que

$$\frac{d}{dx}\left(tg^{-1}x\right) = \frac{1}{1+x^2}.$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Demonstrações

(d) Para $y \in (0, \frac{\pi}{2})$ a função $cosec\ y$ possui inversa. Deste modo, temos que

$$y = cosec^{-1}x$$
, se, e somente se, $cosec \ y = x$.

Derivando cosec y=x implicitamente em relação a x obtemos

$$-cosec\ y\ cotg\ y\cdot \frac{dy}{dx}=1, \quad \text{ou ainda}, \quad \frac{dy}{dx}=-\frac{1}{cosec\ y\ cotg\ y}.$$

Dividindo $sen^2y+cos^2y=1$ por sen^2y provamos que $cotg^2$ $y+1=cosec^2$ y. Como estamos assumindo $y\in(0,\frac{\pi}{2})$ temos que $\ cotg$ $y=\sqrt{cosec^2y-1}$. Portanto,

$$\frac{d}{dx}\left(cosec^{-1}x\right) = \frac{dy}{dx} = -\frac{1}{cosec\ y\ cotg\ y} = -\frac{1}{x\sqrt{x^2 - 1}}.$$

A demonstração dos demais itens segue de maneira análoga.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Priscila Bemm (UEM) Derivação Implícita 16/22

Derivação Logarítmica

Seja $y = \log_a x$, então

$$a^y = x$$

Derivando os dois membros da igualdade obtemos:

$$\frac{d}{dx}(a^y) = \frac{d}{dx}(x)$$

Aplicando a regra da cadeia do lado esquerdo da igualdade,

$$a^y \cdot \ln a \frac{dy}{dx} = 1$$

Assim,

$$\frac{dy}{dx} = \frac{1}{a^y \cdot \ln a} = \frac{1}{x \cdot \ln a}$$

Logo,

$$\frac{d}{dx}(\log_a x) = \frac{1}{x \cdot \ln a}$$

Observações

Pela regra da cadeia,

$$\frac{d}{dx}(\log_a f(x)) = \frac{f'(x)}{f(x) \cdot \ln a}$$

e

$$\frac{d}{dx}(\ln f(x)) = \frac{f'(x)}{f(x)}$$

Em geral há quatro casos para os expoentes e as bases:

- $\underline{\bullet} \frac{d}{dx}(f(x)^b) = b \cdot f(x)^{b-1} \cdot f'(x)$, onde b é constante.
- **3** $\frac{d}{dx}(a^{g(x)}) = a^{g(x)} \cdot (\ln a) \cdot g'(x)$, onde a é constante.
- \bullet $\frac{d}{dx}[f(x)]^{g(x)}$, neste caso a derivação logarítmica pode ser usada.

Priscila Bemm (UEM)

Exemplo

Calcule
$$\frac{dy}{dx}$$
 de $y = x^{\sin x}$.

Aplicando a função exponencial em $y = x^{\sin x}$ temos,

$$\ln y = \ln x^{\sin x} \Leftrightarrow \ln y = \sin x \cdot \ln x$$

Derivando com relação a x:

$$\frac{d}{dx}\left[\ln y\right] = \frac{d}{dx}\left[\sin x \cdot \ln x\right]$$

$$\frac{d}{dx} [\ln y] = \frac{d}{dx} [\sin x \cdot \ln x]$$

$$\frac{y'}{y} = \frac{d}{dx} [\sin x] \cdot \ln x + \sin x \cdot \frac{d}{dx} [\ln x]$$

$$\frac{y'}{y} = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}$$

$$y' = y \cdot \left[\cos x \cdot \ln x + \frac{\sin x}{x} \right]$$

$$= x^{\sin x} \cdot \left[\cos x \cdot \ln x + \frac{\sin x}{x} \right]$$

Dúvidas?