Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 3 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

- Data Quality
- Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning

- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data,
 e.g., instrument faulty, human or computer error, transmission error
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation=" " (missing data)
 - noisy: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)
 - inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
 - Results in bias data
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which require data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Binning for smoothing

Sorted data for *price* (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15

Bin 2: 21, 21, 24

Bin 3: 25, 25, 34

Figure 3.2 Binning methods for data smoothing.

Data Cleaning as a Process

Data discrepancy detection

- Use metadata (e.g., domain, range, dependency, distribution)
 - use any knowledge you may already have regarding properties of the data.
- Check field overloading
 - Field overloading is adding data in to defined fields not intended for the purpose originally
 - Don't use same field name with different data type
- Check uniqueness rule, consecutive rule and null rule
 - A unique rule says that each value of the given attribute must be different from all other values for that attribute. A consecutive rule says that there can be no missing values between the lowest and highest values for the attribute, and that all values must also be unique (e.g., as in check numbers). A null rule specifies the use of blanks, question marks, special characters, or other strings that may indicate the null condition (e.g., where a value for a given attribute is not available), and how such values should be handled.

- Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- Data migration and integration
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Integration of the two processes
 - Iterative and interactive (e.g., Potter's Wheels)

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration

- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Integration

Data integration:

- Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources, e.g., Bill
 Clinton = William Clinton
 - Cust_id=cust_no
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

- metadata for each attribute include the name, meaning, data type, and range of values permitted for the attribute, and null rules for handling blank, zero, or null values
- Such metadata can be used to help avoid errors in schema integration.
- When matching attributes from one database to another during integration, special attention must be paid to the structure of the data. This is to ensure that any attribute functional dependencies and referential constraints in the source system match those in the target system.

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis (for numeric attributes)
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

x2 Correlation Test for Nominal Data

- Suppose A has c distinct values, namely a1,a2,...ac.
- B has r distinct values, namely b1,b2,...br.
- The data tuples described by A and B can be shown as a contingency table, with the c values of A making up the columns and the r values of B making up the rows.
- Let (Ai,Bj) denote the joint event that attribute A takes on value ai and attribute B takes on value bj, that is, where (A=ai,B=bj).

Correlation Analysis (Nominal Data)

X² (chi-square) test

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected} \qquad \qquad \chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}},$$

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- The χ2 statistic tests the hypothesis that A and B are independent, that is, there is no correlationbetweenthem. The test is based on a significance level, with (r-1)×(c-1) degrees of freedom.
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250(90)	200(360)	450
Not like science fiction	50(210)	1000(840)	1050
Sum(col.)	300	1200	1500

 X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

 It shows that like_science_fiction and play_chess are correlated in the group

- For this 2×2 table, the degrees of freedom are (2-1)(2-1)=1.
- For 1 degree of freedom, the χ2 value needed to reject the hypothesis at the 0.001significance level is 10.828 (taken from the table of upper percentage points of the χ2 distribution, typically available from any textbook on statistics).
- Since our computed value is above this, we can reject the hypothesis that gender and preferred reading are independent and conclude that the two attributes are (strongly) correlated for the given group of people

Critical values of the Chi-square distribution with d degrees of freedom

	Probability of exceeding the critical value						
d	0.05	0.01	0.001	d	0.05	0.01	0.001
1	3.841	6.635	10.828	11	19.675	24.725	31.264
2	5.991	9.210	13.816	12	21.026	26.217	32.910
3	7.815	11.345	16.266	13	22.362	27.688	34.528
4	9.488	13.277	18.467	14	23.685	29.141	36.123
5	11.070	15.086	20.515	15	24.996	30.578	37.697
6	12.592	16.812	22.458	16	26.296	32.000	39.252
7	14.067	18.475	24.322	17	27.587	33.409	40.790
8	15.507	20.090	26.125	18	28.869	34.805	42.312
9	16.919	21.666	27.877	19	30.144	36.191	43.820
10	18.307	23.209	29.588	20	31.410	37.566	45.315

INTRODUCTION TO POPULATION GENETICS, Table D.1

© 2013 Sinauer Associates, Inc.

Correlation Analysis (Numeric Data)

 Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Visually Evaluating Correlation

Scatter plots showing the similarity from -1 to 1.

Correlation (viewed as linear relationship)

- Correlation measures the linear relationship between objects
- To compute correlation, we standardize data objects, A and B, and then take their dot product

$$a'_{k} = (a_{k} - mean(A)) / std(A)$$

$$b'_{k} = (b_{k} - mean(B)) / std(B)$$

$$correlation(A, B) = A' \bullet B'$$

Covariance (Numeric Data)

Covariance is similar to correlation

$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^{n}(a_i-\bar{A})(b_i-\bar{B})}{n}$$

Correlation coefficient: $r_{A,B} = \frac{Cov(A,B)}{\sigma_A\sigma_B}$

where n is the number of tuples, \overline{A} and \overline{B} are the respective mean or **expected values** of A and B, σ_A and σ_B are the respective standard deviation of A and B.

- **Positive covariance**: If $Cov_{A,B} > 0$, then A and B both tend to be larger than their expected values.
- **Negative covariance**: If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- **Independence**: $Cov_{A,B} = 0$ but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence,

Co-Variance: An Example

$$Cov(A, B) = E((A - \bar{A})(B - \bar{B})) = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n}$$

It can be simplified in computation as

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

- Suppose two stocks A and B have the following values in one week:
 (2, 5), (3, 8), (5, 10), (4, 11), (6, 14).
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
 - \bullet E(A) = (2 + 3 + 5 + 4 + 6)/ 5 = 20/5 = 4
 - E(B) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6
 - $Cov(A,B) = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, A and B rise together since Cov(A, B) > 0.

Correlation example

Infant ID #	Gestational Age (weeks)	Birth Weight (grams)
1	34.7	1895
2	36.0	2030
3	29.3	1440
4	40.1	2835
5	35.7	3090
6	42.4	3827
7	40.3	3260
8	37.3	2690
9	40.9	3285
10	38.3	2920
11	38.5	3430
12	41.4	3657
13	39.7	3685
14	39.7	3345
15	41.1	3260
16	38.0	2680
17	38.7	2005

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction

- Data Transformation and Data Discretization
- Summary

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data.
 Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression
 - transformations are applied so as to obtain a reduced or "compressed" representation of the original data.
 - If the original data can be *reconstructed* from the compressed data without any information loss, the data reduction is called **lossless**.
 - If, instead, we can reconstruct only an approximation of the original data, then the data reduction is called **lossy**.

Data Reduction 1: Dimensionality Reduction

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality reduction techniques

- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)

Mapping Data to a New Space

- Fourier transform
- Wavelet transform

Two Sine Waves

Two Sine Waves + Noise

Frequency

What Is Wavelet Transform?

- Decomposes a signal into different frequency subbands
 - Applicable to ndimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression

Wavelet Transformation

- Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis
- Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space
- Method:
 - Length, L, must be an integer power of 2 (padding with 0's, when necessary)
 - Each transform has 2 functions: smoothing, difference
 - Applies to pairs of data, resulting in two set of data of length L/2
 - Applies two functions recursively, until reaches the desired length

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to $S_{\wedge} = [2^{3}/_{4}, -1^{1}/_{4}, 1/_{2}, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0,-1,-1,0]
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[ilde{2}rac{3}{4}]$	$\left[-1\frac{1}{4}\right]$

Haar Wavelet Coefficients

Why Wavelet Transform?

- Use hat-shape filters
 - Emphasize region where points cluster
 - Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order
- Multi-resolution
 - Detect arbitrary shaped clusters at different scales
- Efficient
 - Complexity O(N)
- Only applicable to low dimensional data

Principal Component Analysis (PCA)

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Principal Component Analysis (Steps)

- Given N data vectors from n-dimensions, find $k \le n$ orthogonal vectors (*principal components*) that can be best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., principal components
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the weak components, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
- Works for numeric data only

- PCA can be applied to ordered and unordered attributes, and can handle sparse data and skewed data.
- Multidimensional data of more than two dimensions can be handled by reducing the problem to two dimensions.
- Principal components may be used as inputs to multiple regression and cluster analysis.

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

For example, if the task is to classify customers based on whether or not they are likely to purchase a popular new CD at *AllElectronics* when notified of a sale, attributes such as the customer's telephone number are likely to be irrelevant, unlike attributes such as *age* or *music taste*

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter 7)
 - Data discretization

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in m-D space as the product on appropriate marginal subspaces
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

Parametric Data Reduction: Regression and Log-Linear Models

Linear regression

- Data modeled to fit a straight line
- Often uses the least-square method to fit the line

Multiple regression

 Allows a response variable Y to be modeled as a linear function of multidimensional feature vector

Log-linear model

Approximates discrete multidimensional probability distributions

Regression Analysis

Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a dependent variable (also called response variable or measurement) and of one or more independent variables (aka. explanatory variables or predictors)

- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

Used for prediction
(including forecasting of
time-series data), inference,
hypothesis testing, and
modeling of causal
relationships

Regress Analysis and Log-Linear Models

- Linear regression: Y = w X + b
 - Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
 - Using the least squares criterion to the known values of Y_1 , Y_2 , ..., X_1 , X_2 ,
- Multiple regression: $Y = b_0 + b_1 X_1 + b_2 X_2$
 - Many nonlinear functions can be transformed into the above
- Log-linear models:
 - Approximate discrete multidimensional probability distributions
 - Estimate the probability of each point (tuple) in a multi-dimensional space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equaldepth)

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapter 10

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

Simple random sampling

There is an equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Sampling with replacement

A selected object is not removed from the population

Stratified sampling:

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: With or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample

Data Reduction 3: Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio
 - Typically short and vary slowly with time
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Data Compression

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization

Summary

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

Min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$
- **Z-score normalization** (μ: mean, σ: standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(|v'|) < 1

Discretization

- Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Data Discretization Methods

- Typical methods: All the methods can be applied recursively
 - Binning
 - Top-down split, unsupervised
 - Histogram analysis
 - Top-down split, unsupervised
 - Clustering analysis (unsupervised, top-down split or bottom-up merge)
 - Decision-tree analysis (supervised, top-down split)
 - Correlation (e.g., χ²) analysis (unsupervised, bottom-up merge)

Simple Discretization: Binning

- Equal-width (distance) partitioning
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization Without Using Class Labels (Binning vs. Clustering)

Equal frequency (binning)

K-means clustering leads to better results

Discretization by Classification & Correlation Analysis

- Classification (e.g., decision tree analysis)
 - Supervised: Given class labels, e.g., cancerous vs. benign
 - Using entropy to determine split point (discretization point)
 - Top-down, recursive split
 - Details to be covered in Chapter 7
- Correlation analysis (e.g., Chi-merge: χ²-based discretization)
 - Supervised: use class information
 - Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge
 - Merge performed recursively, until a predefined stopping condition

Concept Hierarchy Generation

- Concept hierarchy organizes concepts (i.e., attribute values)
 hierarchically and is usually associated with each dimension in a data warehouse
- Concept hierarchies facilitate <u>drilling and rolling</u> in data warehouses to view data in multiple granularity
- Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for age) by higher level concepts (such as youth, adult, or senior)
- Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- Concept hierarchy can be automatically formed for both numeric and nominal data. For numeric data, use discretization methods shown.

Concept Hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - street < city < state < country</p>
- Specification of a hierarchy for a set of values by explicit data grouping. we can easily specify explicit groupings for a small portion
- of intermediate-level data.
 - {Urbana, Champaign, Chicago} < Illinois</p>
- Specification of only a partial set of attributes
 - E.g., only *street* < *city*, not others
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - E.g., for a set of attributes: { street, city, state, country}

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
 - Data Quality
 - Major Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values, outliers
- Data integration from multiple sources:
 - Entity identification problem
 - Remove redundancies
 - Detect inconsistencies

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis. IEEE Spectrum, Oct 1996
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003.
- J. Devore and R. Peck. Statistics: The Exploration and Analysis of Data. Duxbury Press, 1997.
- H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning:
 Language, model, and algorithms. VLDB'01
- M. Hua and J. Pei. Cleaning disguised missing data: A heuristic approach. KDD'07
- H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- H. Liu and H. Motoda (eds.). *Feature Extraction, Construction, and Selection: A Data Mining Perspective*. Kluwer Academic, 1998
- J. E. Olson. *Data Quality: The Accuracy Dimension*. Morgan Kaufmann, 2003
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: The Field Guide. Digital Press (Elsevier), 2001
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans.
 Knowledge and Data Engineering, 7:623-640, 1995