Global Well-Posedness of a Nonlinear Fokker-Planck Type Model of Grain Growth

Batuhan Bayir, Yekaterina Epshteyn, and William M Feldman University of Utah

Full paper available on arXiv:2502.13151

What is Grain Growth?

- ► Grain growth is a highly complex multiscale-multiphysics process appearing in materials science which describes the evolution of the microstructure of polycrystalline materials [1, 2].
- ► These materials consist of many small monocrystalline grains which are separated by grain boundaries.
- ► The changes in grain size affect the material's electrical, thermal, etc. properties, which are important in the engineering of new materials.

Simulation & Free Energy

- ▶ a(t) is the triple junction point, $\alpha^{(j)} = \alpha^{(j)}(t)$'s are lattice orientations, and $\alpha^{(i)} \alpha^{(j)}$'s are lattice misorientations.
- There is a coupled ODE system in terms of a(t) and $\alpha^{(j)}(t)$, which we call the *vertex model* [3]. Since $N \gtrsim 10^4$ in applications, it is convenient to study $N \to \infty$ limit of the vertex model resulting in the following free energy with inhomogeneous absolute temperature D(x):

$$F[f] = \int_{\mathbb{T}^d} (D(x)f(x,t)(\log f(x,t) - 1) + \phi(x)f(x,t)) dx$$

together with the dissipation relation

$$\frac{d}{dt}F[f] = -\int_{\mathbb{T}^d} \frac{f}{\pi(x,t)} |\nabla(D(x)\log f + \phi(x))|^2 dx.$$

Nonlinear PDE Model

$$\begin{cases} \frac{\partial f}{\partial t} = \nabla \cdot \left(\frac{f}{\pi(x,t)} \nabla \left(D(x) \log f + \phi(x) \right) \right), & x \in \mathbb{T}^d, \ t > 0, \\ f(x,0) = f_0(x), & x \in \mathbb{T}^d. \end{cases}$$

- ightharpoonup f(x, t) will be a probability density function,
- $ightharpoonup \pi(x,t) > 0$ is mobility function,
- ightharpoonup D(x) > 0 is absolute temperature function,
- $\blacktriangleright \phi(x)$ is energy density of a grain boundary.

Proof Setup

$$\begin{cases} \frac{\partial u}{\partial t} = L_{\mathsf{FP}} u + \nabla \cdot \left(\frac{\nabla D(x)}{\pi(x, t)} f \log f \right), & x \in \mathbb{T}^d, \ t > 0, \\ u(x, 0) = f_0(x), & x \in \mathbb{T}^d. \end{cases}$$

Here

$$L_{\mathsf{FP}} \boldsymbol{\mathsf{u}} \coloneqq \nabla \cdot \left(\frac{D(x)}{\pi(x,t)} \nabla \boldsymbol{\mathsf{u}} \right) + \frac{\nabla \phi(x)}{\pi(x,t)} \cdot \nabla \boldsymbol{\mathsf{u}} + \nabla \cdot \left(\frac{\nabla \phi(x)}{\pi(x,t)} \right) \boldsymbol{\mathsf{u}}.$$

- $\blacktriangleright \frac{D(x)}{\pi(x,t)} \ge \theta$ for some arbitrary $\theta > 0$.
- ▶ $\frac{D(x)}{\pi(x,t)}$, $\frac{\nabla \phi(x)}{\pi(x,t)} + \nabla \left(\frac{D(x)}{\pi(x,t)}\right)$, and $\nabla \cdot \left(\frac{\nabla \phi(x)}{\pi(x,t)}\right)$ are bounded and belongs to $C_{x,t}^{1+\beta,\beta/2}(\mathbb{T}^d \times [0,\infty))$. The coefficient of the nonlinear part, $\frac{\nabla D(x)}{\pi(x,t)}$ satisfies the same assumptions. Here, $\beta \in (0,1)$.
- $ightharpoonup \Lambda \geq f_0(x) \geq 4\mu$ for some arbitrary $\Lambda, \mu > 0$.

As a Banach space, we set $X := C^0(\mathbb{T}^d \times [0, T])$ which is equipped with a sup-norm. Then, we work on the closed subspace $Y \subset X$:

$$Y := \{ f \in X \mid f \ge \mu, \|f\|_X \le R \}$$

where $R\coloneqq 1+\mu+2\|f_0\|_{C^0(\mathbb{T}^d)}$.

Map

We define the map $\Psi: Y \to Y$, $f \mapsto u$ by the formula given below (M)

$$u = \Psi f(x, t) = \int_{\mathbb{T}^d} K(x, t; y, 0) f_0(y) dy$$

$$- \int_0^t \int_{\mathbb{T}^d} \nabla_y K(x, t; y, s) \cdot \frac{\nabla D(y)}{\pi(y, s)} f(y, s) \log f(y, s) dy ds$$

$$=: \Psi_{f_0, \text{linear}}(x, t) + \Psi_{f, \text{nonlinear}}(x, t)$$

where K is the fundamental solution of $\partial_t - L_{\text{FP}}$.

Gaussian Bounds

Let K be the fundamental solution of the second-order uniformly parabolic operator $\partial_t - L$ in non-divergence form such that all of its coefficients are bounded and $C_{x,t}^{l+\beta,0}$ -Hölder regular. Then, for all $x,y\in\mathbb{T}^d$ and $t-s\leq 1$ with $2a+b\leq 2l$, we have

$$\left|\partial_t^a
abla_y^b K(x,t;y,s)\right| \leq C(t-s)^{-(d+2a+b)/2} \exp\left(\frac{-c\left|x-y\right|^2}{t-s}\right)$$

and

$$\begin{split} |\nabla_{y} K(x,t;y,s) - \nabla_{y} K(x',t;y,s)| \\ & \leq C |x-x'|^{\beta} (t-s)^{-(d+1+\beta)/2} \left(\exp\left(\frac{-c |x-y|^{2}}{t-s}\right) + \exp\left(\frac{-c |x'-y|^{2}}{t-s}\right) \right). \end{split}$$

Conclusions

- ▶ The map (M) is a well-defined $\frac{1}{2}$ -contraction mapping on Y.
- \blacktriangleright There exists a unique fixed point f of the map (M).
- ▶ The continuity estimate $||f g||_X \le 4||f_0 g_0||_{C^0(\mathbb{T}^d)}$ holds.

A priori Estimate

Let f(x, t) be a classical solution of (nFP). Under the assumptions in Proof Setup with $D(x) \ge C_D \ge 1$ and $C_{\pi}^{low} \le \pi(x, t) \le C_{\pi}^{up}$, we have [4]:

$$\exp\left(rac{1}{D(x)}\min_{y\in\mathbb{T}^d}\left(D(y)\lograc{f_0(y)}{f^{ ext{eq}}(y)}
ight)
ight)f^{ ext{eq}}(x) \ \le f(x,t)\le \exp\left(rac{1}{D(x)}\max_{y\in\mathbb{T}^d}\left(D(y)\lograc{f_0(y)}{f^{ ext{eq}}(y)}
ight)
ight)f^{ ext{eq}}(x).$$

Regularity

Gaussian bounds implies $\Psi_{f,\text{nonlinear}} \in C_x^\beta$ so, $f \in C_x^\beta$ and we conclude $F := \frac{\nabla D}{\pi} f \log f \in C_x^\beta$. Since the RHS of our PDE is in the gradient form ∇F , the standard form of the Schauder estimates don't apply. But a relatively recent reference [5] allows us to conclude $\nabla F \in C_{x,t}^{\beta,\beta/2}$. Then we have a right to apply the standard Schauder estimate to get $f \in C_{\log}^{2+\beta,1+\beta/2}$.

Main Result

There exists a unique positive classical global solution of (nFP) which belongs to $f \in C^{2+\beta,1+\beta/2}_{loc}(\mathbb{T}^d \times (0,\infty))$.

Future Directions

- JKO approach to the weak solutions of (nFP).
- ightharpoonup Rigorous study of the $N \to \infty$, many particle, limit of the vertex model.

Acknowledgments & References

This work was partially supported by the NSF grants DMS-2118172 and DMS-2407235.

- [1] J. Rickman, K. Barmak, Y. Epshteyn, and C. Liu. "Point process microstructural model of metallic thin films with implications for coarsening". *npj Comput. Mater.* 9.1 (2023), p. 27.
- [2] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer, R. Sharp, and S. Ta'asan. "Critical events, entropy, and the grain boundary character distribution". *Phys. Rev. B* 83 (13 2011), p. 134117.
- Y. Epshteyn, C. Liu, and M. Mizuno. "Motion of grain boundaries with dynamic lattice misorientations and with triple junctions drag". *SIAM J. Math. Anal.* 53.3 (2021), pp. 3072–3097.
- [4] Y. Epshteyn, C. Liu, and M. Mizuno. Longtime Asymptotic Behavior of Nonlinear Fokker-Planck Type Equations with Periodic Boundary Conditions. 2024. arXiv: 2404.05157.
- [5] H. Dong and H. Zhang. "Schauder estimates for higher-order parabolic systems with time irregular coefficients". *Calc. Var.* 54.1 (2015), pp. 47–74.