BlinkDB and G-OLA:

Supporting Approximate Answers in SparkSQL

Sameer Agarwal and Kai Zeng Spark Summit | San Francisco, CA | June 15th 2015

About Us

Sameer Agarwal

- Software Engineer at Databricks
- PhD in Databases (UC Berkeley)
- Research on Approximate Query Processing (BlinkDB)

2. Kai Zeng

- Post-doc in AMP Lab/ Intern at Databricks
- PhD in Databases (UCLA)
- Research on Approximate Query Processing (ABM)

100 TB on 1000 machines

Continuous Query Execution on Samples of Data

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

34.6667

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

35

City	Latency
NYC	30
NYC	38
SLC	34
LA	36
SLC	37
SF	28
NYC	32
NYC	38
LA	36
SF	35
NYC	38
LA	34
	NYC NYC SLC LA SLC SF NYC NYC LA SF NYC

What is the average <u>latency</u> in the table?

$$35 \pm 2.1$$

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

```
35 ± 2.1
33.83 ± 1.3
34.6667 ± 0.0
```

Demo


```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")

// batch processing
val result = dataFrame.collect() // 34.6667
```



```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")
// online processing
val onlineDataFrame = dataFrame.online
onlineDataFrame.collectNext() // 35 ± 2.1
onlineDataFrame.collectNext() // 33.83 ± 1.3
```



```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")
// online processing
val onlineDataFrame = dataFrame.online
while (onlineDataFrame.hasNext()) {
  onlineDataFrame.collectNext()
```

```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")
// online processing
val onlineDataFrame = dataFrame.online
while (onlineDataFrame.hasNext() &&
  responseTime <= 10.seconds) {</pre>
  onlineDataFrame.collectNext()
```

```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")
// online processing
val onlineDataFrame = dataFrame.online
while (onlineDataFrame.hasNext() &&
  errorBound >= 0.01) {
  onlineDataFrame.collectNext()
```

```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")
// online processing
val onlineDataFrame = dataFrame.online
while (onlineDataFrame.hasNext() &&
  userEvent.cancelled()) {
  onlineDataFrame.collectNext()
```

```
val dataFrame =
    sqlCtx.sql("select avg(latency) from log")
// online processing
val onlineDataFrame = dataFrame.online
while (onlineDataFrame.hasNext() &&
  userEvent.cancelled()) {
  onlineDataFrame.collectNext()
```

AGGREGATES/ UDAFs JOINS/GROUP BYs NESTED QUERIES

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, Ion Stoica. BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data. In ACM EuroSys 2013.

Ariel Kleiner, Ameet Talwalkar, Sameer Agarwal, Ion Stoica, Michael Jordan. **A General Bootstrap Performance Diagnostic.** In ACM KDD 2013

Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan, Samuel Madden, Barzan Mozafari, Ion Stoica. Knowing When You're Wrong: Building Fast and Reliable Approximate Query Processing Systems. In ACM SIGMOD 2014.

Error Estimation on a Sample of Data

Focused on <u>estimating aggregate errors</u> given representative samples

- 1. Count: N(np, n(1-p)p)
- 2. Sum: $N(np\mu, np(\sigma^2 + (1-p)\mu^2))$
- 3. Mean: $N(\mu, \sigma^2/n)$
- 4. Variance: $N(\sigma^2, (\mu_4 \sigma^4)/n)$
- 5. Stddev: $N(\sigma, (\mu_4 \sigma^4)/(4\sigma^2 n))$

Central Limit Theorem (CLT)

HOE:ASTAT63, BIL: WILEY86, CGL:ASTAT83, PH:IBM96

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	SLC	34

ID	City	Latency
1	NYC	30
2	NYC	30
3	SLC	34
4	LA	36

ID	City	Latency
1	SLC	34
2	LA	36
3	SLC	34
4	LA	36

$$\theta_1 = 34$$

$$\theta_{2} = 32.5$$

$$\theta_2 = 32.5$$
 ... $\theta_{100} = 35$

$$34.5 \pm 2$$

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	SLC	34

ID	City	Latency
1	NYC	30
2	NYC	30
3	SLC	34
4	LA	36

ID	City	Latency
1	SLC	34
2	LA	36
3	SLC	34
4	LA	36

$$\theta_1 = 34$$

$$\theta_2 = 32.5$$

$$34.5 \pm 2$$

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	SLC	34
5	SLC	37

 $\theta_1 = 34.6$

	City	Latericy
1	SLC	37
2	NYC	30
3	SLC	34
4	LA	36
5	NYC	30

θ_{γ}	=	33.4	

$$35 \pm 1.6$$

ID	City	Latency
1	SLC	34
2	SLC	37
3	SLC	34
4	LA	36
5	LA	36

$$\theta_{100} = 35.4$$

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	SLC	34
5	SLC	37
O	OHO	07

Leverage Poissonized Resampling to generate samples with replacement

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

City	Latency	$\#_1$
NYC	30	2
NYC	38	1
SLC	34	0
SLC	34	1
SLC	37	1
	NYC NYC SLC SLC	NYC 30 NYC 38 SLC 34 SLC 34

Sample from a Poisson (1) Distribution

$$\theta_1 = 33.8$$

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

ID	City	Latency	#1
1	NYC	30	2
2	NYC	38	1
3	SLC	34	0
4	SLC	34	1
5	SLC	37	1
6	SF	28	2

Incremental Error Estimation

ID	City	Latency
1	NYC	30
2	NYC	38
3	SLC	34
4	LA	36
5	SLC	37
6	SF	28
7	NYC	32
8	NYC	38
9	LA	36
10	SF	35
11	NYC	38
12	LA	34

What is the average <u>latency</u> in the table?

ID	City	Latency	#1	#2
1	NYC	30	2	1
2	NYC	38	1	0
3	SLC	34	0	2
4	SLC	34	1	2
5	SLC	37	1	0
6	SF	28	2	1
O	OI	20		Т

Construct all Resamples in a Single Pass

0.2-0.5% additional overhead

High Level Take-away:

Bootstrap and Poissonized Resampling Techniques are the key towards achieving quick and continuous error bars for a general set of queries

Kai Zeng, Sameer Agarwal, Ankur Dave, Michael Armbrust and Ion Stoica. G-OLA: Generalized Online Aggregation for Interactive Analysis on Big Data. In SIGMOD 2015.

Overall Quadratic Cost!

Delta Update: Simple Queries

SELECT avg(latency)
FROM log

Delta Update: Simple Queries

SELECT avg(latency)
FROM log

Delta Update: Simple Queries

SELECT avg(latency)
FROM log


```
SELECT avg(latency)
FROM log
WHERE latency >
(
    SELECT avg(latency)
    FROM log
)
```



```
SELECT avg(latency)
FROM log
WHERE latency >
(
    SELECT avg(latency)
    FROM log
)
```



```
SELECT avg(latency)
FROM log
WHERE latency >
(
    SELECT avg(latency)
    FROM log
)
```



```
SELECT avg(latency)
FROM log
WHERE latency >
  SELECT avg(latency)
  FROM log
```



```
SELECT avg(latency)
FROM log
WHERE latency >
(
    SELECT avg(latency)
    FROM log
)
```



```
AVG
SELECT avg(latency)
FROM log
                        × latency < 8
                                                 latency > A
                                         FILTER
WHERE latency >
                                          IOIN
  SELECT avg(latency)
  FROM log
                            10\pm 2
                                              SCAN
                                     AVG
                                     SCAN
```

```
AVG
SELECT avg(latency)
FROM log

√ latency > 12

                                          FILTER
                                                  latency > A
WHERE latency >
                                           IOIN
  SELECT avg(latency)
  FROM log
                            10\pm 2
                                               SCAN
                                      AVG
                                     SCAN
```

```
AVG
SELECT avg(latency)
FROM log
                        ? 8 < latency < 12
                                         FILTER
                                                  latency > A
WHERE latency >
                                           IOIN
  SELECT avg(latency)
  FROM log
                            10\pm 2
                                               SCAN
                                      AVG
                                     SCAN
```

```
AVG
SELECT avg(latency)
FROM log
                        ? 8 < latency < 12
                                         FILTER
                                                  latency > A
WHERE latency >
                                           IOIN
  SELECT avg(latency)
  FROM log
                            10\pm 2
                                               SCAN
                                      AVG
                                     SCAN
```

High Level Take-away:

Introduce Delta Update Queries as a First Class Citizen in Query Execution

Check out our code!

1. Code Preview: http://github.com/amplab/bootstrap-sql. Send us an email to kaizeng@cs.berkeley.edu and sameer@databricks.com to get access!

2. Spark Package in July'15

3. Gradual Native SparkSQL Integration in 1.5, 1.6 and beyond

Conclusion

 Continuous Query Execution on Samples of Data is an important means to achieve interactivity in processing large datasets

- 2. New SparkSQL Libraries:
 - BlinkDB for Continuous Error Bars
 - G-OLA for Continuous Partial Answers

Thank you.

Sameer Agarwal (sameer@databricks.com) Kai Zeng (kaizeng@cs.berkeley.edu)

