

CLASS

MOCK PAPER

MATHEMATICS [SA1]

Time: 3 Hrs. MM: 90

GENERAL INSTRUCTIONS

- I. All questions are compulsory.
- II. The question paper consists of 34 questions divided into four sections A, B, C and D.
- Section A contains 8 questions of 1 mark each, which are multiple choice type questions, Section III. B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each, Section D contains 10 questions of 4 marks each.
- IV. There is no overall choice in the paper. However, internal choice is provided in one guestion of 2 marks, three questions of 3 marks and two questions of 4 marks.
- ٧. Use of calculator is not permitted.

SECTION-A

- Rationalizing factor of $1 + \sqrt{2} + \sqrt{3}$ 1.
 - (a) $1+\sqrt{2}-\sqrt{3}$
- (b) 2
- (d) $1+\sqrt{2}+\sqrt{3}$
- If a + b + c = 0, then $a^3 + b^3 + c^3$ is equal to
 - (a) 5 abc
- (b) 2abc
- (c) $abc + (abc)^0$
- (d) 3*abc*
- Factors of polynomial $12x^2 7x + 1$ are 3.
 - (a) (3x-1)(4x-1)
- (b) (4x+1)(3x-1)
- (c) $12\left(x+\frac{1}{3}\right)\left(x-\frac{1}{4}\right)$ (d) $12\left(x+\frac{1}{4}\right)\left(x-\frac{1}{3}\right)$
- An angle is 14° more than its complementary angle then angle is
 - (a) 38°
- (b) 52°
- (c) 50°
- (d) None of these

- 5. Expansion of $\left(x + \frac{1}{x}\right)^2$ is
 - (a) $x^2 + 2x + \frac{1}{x^2}$ (b) $x^2 2x + \frac{1}{x^2}$
 - (c) $x^2 + 2 + \frac{1}{x^2}$ (d) $x^2 2 + \frac{1}{x^2}$
- In a triangle ABC, $\angle A + \angle B = 144^{\circ}$ and $\angle A + \angle C = 124^{\circ}$ then $\angle B =$
 - (a) 56°
- (b) 60°
- (c) 65°
- (d) 45°
- The side of an isosceles right triangle of hypotenuse $4\sqrt{2}$ cm is
 - (a) 8 cm
- (b) 6 cm
- (c) 4 cm
- (d) $4\sqrt{3}$ cm
- The base of a right triangle is 8 cm and hypotenuse is 10 cm. Its area will be
 - (a) 24 cm^2
- (b) $40 \, \text{cm}^2$
- (c) $48 \, \text{cm}^2$
- (d) $80 \, \text{cm}^2$

SECTION-B

- 9. If $\frac{3+\sqrt{5}}{4-2\sqrt{5}} = p+q\sqrt{5}$, where p and q are rational numbers, find the value of p and q.
- **10.** Factorize: $x^2 x \left(\frac{a^2 1}{a} \right) 1$.
- 11. Simplify: $(a+b)^3 + (a-b)^3 + 6a(a^2-b^2)$
- 12. The side BC of a triangle ABC is produced to D. The bisector of the \angle A meets BC in L. Prove that \angle ABC+ \angle ACD=2 \angle ALC
- 13. In the adjoining figure, AB = AC. Prove that BM = CN

Prove that the sides opposite to equal angles of a triangle are equal.

14. Points (6, -6) and (-6, 6) lie in the same quadrant, State true or false and justify your answer.

SECTION-C

15. Find three rational numbers between $\frac{1}{5}$ and $\frac{7}{10}$.

Express $0.\overline{001}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

- 16. Simplify the following by rationalising the denominators: $\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}}$
- 17. Factorize: $p^3 p^2 q + \frac{1}{3} p q^2 \frac{1}{27} q^3$

If $x = \frac{4}{3}$ is a root of the polynomial

 $f(x) = 6x^3 - 11x^2 + kx - 20$, then find the value of k.

- 18. Use the factor theorem to factorize $x^3 + x^2 4x 4$ completely.
- 19. If AC = BD, then prove that AB = CD.

20. In figure, $\angle CQD = \angle BQD$ and AD is the bisector of $\angle BAC$. Prove that $\Delta CAQ \cong \Delta BAQ$ and hence CQ = BQ.

21. If in figure, PQ = PT and $\angle TPS = \angle QPR$, prove that triangle PRS is isosceles.

22. In figure, E is any point on median AD of a $\triangle ABC$. Show that ar $(\triangle ABE) = \text{ar } (\triangle ACE)$.

23. *AD* and *BC* are equal perpendiculars to a line segment *AB* (See figure). Show that *CD* bisects *AB*.

Or

In $\triangle ABC$, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

24. The sides of a triangular plot are in the ratio 3:5:7 and its perimeter is 300 m. Find its area.

SECTION-D

- **25.** Visualise $4.\overline{26}$ on the number line, up to 4 decimal places.
- **26.** The teacher asked the students to write $0.19\overline{6}$

in the form of $\frac{p}{q}$, $q \neq 0$, p and q are integers.

Ravi said $\frac{79}{900}$ while Anu said no it is $\frac{59}{300}$

Is Anu correct? Justify your answer. Which values are shown by Anu?

27. Find α and β if x + 1 and x + 2 are factors of $p(x) = x^3 + 3x^2 - 2\alpha x + \beta$.

Or

Find the value of p and q, if (x + 3) and (x - 4) are factors of $x^3 - px^2 - qx + 24$.

28. Evaluate each of the following using suitable identities:

 $(i) (999)^3$

(ii) 95×96

- **29.** The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + b$ when divided by (x + 1) and (x 1) leaves the remainders 19 and 5 respectively. Find the values of a and b. Hence, find remainder when p(x) is divided by (x + 2).
- **30.** Does Euclid's fifth postulate imply the existence of parallel lines? Explain.
- 31. ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB.

Show that \angle BCD is a right angle.

32. In figure, if $PQ \perp PS$, $PQ \parallel SR$, $\angle SQR = 28^{\circ}$ and $\angle QRT = 65^{\circ}$, then find the values of x and y.

33. An exterior angle of a triangle is 115° and one of the opposite angles is 35°. Find the other two angles.

\mathbf{Or}

Side QR of a Δ PQR is produced in both the directions. Prove that the sum of the two exterior angles so formed is greater than 180°.

34. Plot the points (2, 0), (2, 3), (0, 6), (-2, 3) and (-2, 0) and join them in order. Find the type of figure thus formed.

HINTS & SOLUTIONS

SECTION-A

1. (a) Since rationalising factor of (a + b) = a - bsimilarly rationalising factor of $(1 + \sqrt{2}) + \sqrt{3}$ = $(1 + \sqrt{2}) - \sqrt{3}$

(1 mark)

2. **(d)**
$$a^3 + b^3 + c^2 - 3abc = (a + b + c)$$

 $(a^3 + b^3 + c^3 - ab - bc - ca)$
(½ mark)

$$\Rightarrow a^3 + b^3 + c^3 = 3abc \qquad (\frac{1}{2} \text{ mark})$$

3. (a)
$$12x^2 - 7x + 1 = 12x^2 - 4x - 3x + 1$$

= $4x(3x-1) - (3x-1)$
= $(4x-1)(3x-1)$ (1 mark)

4. (a)
$$x+x+14=90^{\circ}$$

 $2x=76 \Rightarrow x=38^{\circ}$ (1 mark)

5. (c)
$$\left(x + \frac{1}{x}\right)^2 = x^2 + \frac{1}{x^2} + 2 \cdot x \cdot \frac{1}{x} = x^2 + \frac{1}{x^2} + 2$$

(1 mark)

6. (a)
$$\angle A + \angle C = 124^{\circ}, \angle A + \angle B = 144^{\circ}$$

 $\Rightarrow 144^{\circ} - \angle B + \angle B + \angle B - 20 = 180$
(½ mark)
 $\Rightarrow \angle B = 56^{\circ}$ (½ mark)

7. (c) Let side be 'x'

$$x^2 + x^2 = (4\sqrt{2})^2$$
 (½ mark)
 $\Rightarrow x^2 = 16 \Rightarrow x = 4 \text{cm}$ (½ mark)

8. (a) Third side =
$$\sqrt{\text{(Hypotenuse)}^2 - (\text{Base})^2}$$

= $\sqrt{100 - 64} = 6 \text{ cm}$
 $s = \frac{10 + 8 + 6}{2}$
 $s = 12 \text{ cm}$ (½ mark)
Area = $\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{12(12-10)(12-8)(12-6)}$
= $\sqrt{12 \times 2 \times 4 \times 6} \text{ cm}^2 = 24 \text{ cm}^2$ (½ mark)

SECTION-B

9. We have
$$\frac{3+\sqrt{5}}{4-2\sqrt{5}} = p+q\sqrt{5}$$

LHS
$$\frac{3+\sqrt{5}}{4-2\sqrt{5}} \times \frac{4+2\sqrt{5}}{4+2\sqrt{5}}$$
 (½ mark)

$$=\frac{12+10\sqrt{5}+10}{16-20}$$

$$=\frac{22+10\sqrt{5}}{-4}$$
 (½ mark)

Now,
$$-\left(\frac{22}{4} + \frac{10\sqrt{5}}{4}\right) = p + q\sqrt{5}$$

$$\Rightarrow \frac{-11}{2} - \frac{5\sqrt{5}}{2} = p + q\sqrt{5}$$
 (½ mark)

$$\Rightarrow$$
 $p = -\frac{11}{2}$ and $q = \frac{-5}{2}$ (½ mark)

10.
$$x^2 - x \left(\frac{a^2 - 1}{a} \right) - 1 = x^2 - x \left(a - \frac{1}{a} \right) - 1$$
 (½ mark)

$$= x^2 - ax + \frac{x}{a} - 1$$
 (½ mark)

$$= x(x-a) + \frac{1}{a}(x-a)$$
 (½ mark)

$$= (x-a)\left(x+\frac{1}{a}\right)$$
 (½ mark)

11. Consider
$$(a + b)^3 + (a - b)^3 + 6a(a^2 - b^2)$$

= $(a + b)^3 + (a - b)^3 + 3(2a)(a + b)(a - b)$.

(Using Identity
$$(a^2 - b^2) = (a - b) (a + b)$$
)

$$= (a+b)^3 + (a-b)^3 + 3(a+b)(a-b) \{(a+b) + (a-b)\}$$

=
$$\{(a+b)+(a-b)\}^3$$
 (½ mark)
= $(2a)^3 = 8a^3$ (½ mark)

12.
$$\angle ALC = \angle 1 + \angle B$$

 $\Rightarrow 2 \angle ALC = 2 \angle 1 + 2 \angle B$ (½ mark)

$$(\because \angle ACD = \angle A + \angle B)$$

$$\Rightarrow 2 \angle ALC = \angle ACD + \angle B = \angle ACD + \angle ABC$$

$$(\frac{1}{2} \text{ mark})$$

13. In \triangle ABC, AB=AC (given) \angle ABC= \angle ACB (½ mark) (angles opposite to equal sides are equal)

$$\triangle$$
s BCM and CBN,
 \angle N = \angle M (each = 90°)
 \angle ABC = \angle ACB (from above)

$$\begin{array}{ccc} BC = BC & (common) \\ \therefore & \Delta BCM \cong \Delta CBN & \textbf{(1 mark)} \\ & (A.A.S. \ rule \ of \ congruency) \\ \Rightarrow & BM = CN & (CPCT) \ \textbf{(½ mark)} \end{array}$$

Or

Given: $\triangle ABC$, in which $\angle B = \angle C$

To prove : AB = AC

Construction : Draw AD, the bisector of angle $\angle BAC$ which meets BC at D.

(1/2 mark)

Proof : In
$$\triangle ABD$$
 and $\triangle ACD$
 $\angle B = \angle C$ (Given)
 $AD = AD$ (Common side)
 $\angle BAD = \angle CAD$ (By construction)

Therefore
$$\triangle ABD \cong \triangle ACD$$
 (By ASA) (½ mark)

Hence corresponding sides, AB = AC (½ mark)

14. False, because (6, -6) lies in IV quadrant and (-6, 6) lie in II quadrant. **(2 marks)**

SECTION-C

15. One rational number between $\frac{1}{5}$ and $\frac{7}{10}$

$$= \frac{1}{2} \left(\frac{1}{5} + \frac{7}{10} \right) = \frac{1}{2} \left[\frac{2+7}{10} \right] = \frac{9}{20}$$
 (1 mark)

Second rational number between $\frac{1}{5}$ and $\frac{7}{10}$

$$=\frac{1}{2}\left(\frac{1}{5}+\frac{7}{10}\right)$$

$$= \frac{1}{2} \left(\frac{1}{5} + \frac{9}{20} \right) = \frac{1}{2} \left(\frac{4+9}{20} \right) = \frac{13}{40}$$
 (1 mark)

Third rational number between $\frac{1}{5}$ and

$$\frac{7}{10} = \frac{1}{2} \left(\frac{13}{40} + \frac{1}{5} \right) = \frac{1}{2} \left(\frac{13+8}{40} \right) = \frac{21}{80}$$

The required three rational and numbers bewteen

$$\frac{1}{5}$$
 and $\frac{7}{10}$ are $\frac{9}{20}$, $\frac{13}{40}$ and $\frac{21}{80}$ (1 mark)

)r

Let $x = 0.\overline{001} = 0.001001001...$

Multiplying both sides by 1000 (since three digits are repeating), we get

$$1000 x = 1.001001...$$
 (½ mark)

$$\Rightarrow 1000 x = 1 + 0.001001001...$$
 (½ mark)

$$\Rightarrow 1000 x = 1 + x$$
 (½ mark)

$$\Rightarrow 999 x = 1$$
 (½ mark)

$$\Rightarrow x = \frac{1}{999}$$
 (½ mark)

Thus,
$$0.\overline{001} = \frac{1}{999}$$
 which is of the form $\frac{p}{q}$,

Where, $p = 1$ (½ mark)
 $q = 999 (\neq 0)$.

16. Consider,
$$\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}}$$

$$= \frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} \times \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}} \times \frac{\sqrt{6} - \sqrt{3}}{\sqrt{6} - \sqrt{3}}$$
(1 mark)

$$= \frac{2\sqrt{12} - 2\sqrt{18}}{2 - 3} + \frac{6\sqrt{12} - 6\sqrt{6}}{6 - 3}$$
 (½ mark)

$$= 2\sqrt{18} - 2\sqrt{12} + 2\sqrt{12} - 2\sqrt{6}$$
 (½ mark)

$$=2\sqrt{18}-2\sqrt{6}$$
 (½ mark)

$$=2\sqrt{6}(\sqrt{3}-1)$$
 (½ mark)

17. Consider
$$p^3 - p^2 q + \frac{1}{3} p q^2 - \frac{1}{27} q^3$$

= $p^3 - \frac{1}{27} q^3 - p^2 q + \frac{1}{3} p q^2$ (½ mark)

$$= (p)^{3} - \left(\frac{1}{3}q\right)^{3} - 3p\left(\frac{1}{3}q\right)\left(p - \frac{1}{3}q\right)$$
(1 mark)

$$= \left(p - \frac{1}{3}q\right)^3$$
 (1 mark)

[Using identity: $a^3 - b^3 - 3ab(a - b)$]

$$= \left(p - \frac{1}{3}q\right) \left(p - \frac{1}{3}q\right) \left(p - \frac{1}{3}q\right)$$
 (½ mark)

$$f(x) = 6x^3 - 11x^2 + kx - 20$$

$$f\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right)^3 - 11\left(\frac{4}{3}\right)^2 + k\left(\frac{4}{3}\right) - 20 = 0$$

(½ mark)

$$\Rightarrow 6\left(\frac{64}{27}\right) - 11\left(\frac{16}{9}\right) + \frac{4k}{3} - 20 = 0$$
 (½ mark)

$$\Rightarrow$$
 128 - 176 + 12k - 180 = 0 (½ mark)

$$\Rightarrow 12k + 128 - 356 = 0$$
 (½ mark)

$$\Rightarrow 12k = 228$$
 (½ mark)

$$\Rightarrow k=19$$
 (½ mark)

18. Let
$$f(x) = x^3 + x^2 - 4x - 4$$

The constant term in $f(x)$ is -4
Its factors are 1, -1, 2, -2, 4 and -4 (½ mark)

Now, $f(2) = 2^3 + 2^2 - 4 \times 2 - 4 = 0$

$$\therefore (x-2) \text{ is a factor of } f(x) = x^3 + x^2 - 4x - 4$$
(1/2 mark)

On dividing f(x) by (x-2),

$$x-2 \int \frac{x^3 + x^2 - 4x - 4}{x^3 - 2x^2} \left(x^2 + 3x + 2 - \frac{x^2 - 4x - 4}{3x^2 - 4x - 4} \right)$$

$$\frac{3x^2 - 4x - 4}{-x^2 - 4x - 4}$$

$$\frac{2x - 4}{-x^2 - 4}$$

$$\frac{2x - 4}{-x^2 - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$\frac{-x^2 + 3x + 2}{-x^2 - 4x - 4}$$

$$f(x) = (x-2)(x^2+3x+2)$$
 (½ mark)

=
$$(x-2)[x^2+x+2x+2]$$
 (½ mark)

$$=(x-2)[x(x+1)+2(x+1)]$$

=
$$(x-2)(x+2)(x+1)$$
 (½ mark)

19.
$$AC = BD$$
 ... (1)

$$AC = AB + BC$$
 [B lies between A and C] ...(2)
(1 mark)

$$BD = BC + CD$$
 [C lies between B and D] ... (3)
(1 mark)

Substituting (2) and (3) in (1), we get
$$AB + BC = BC + CD$$
 (½ m

$$AB + BC = BC + CD$$
 (½ mark)

$$AB = CD$$
 [Subtracting equals from equal] ($\frac{1}{2}$ mark)

Since, AD is the bisector of $\angle BAC$ therefore, in $\triangle CAQ$ and $\triangle BAQ$,

$$\angle CAQ = \angle BAQ$$
 (½ mark)

Given that $\angle CQD = \angle BQD$ (Given)

$$\Rightarrow$$
 180° - $\angle CQD = 180^{\circ} - \angle BQD$ (½ mark)

$$AQC = \angle AQB \qquad (\frac{1}{2} \text{ mark})$$

$$AQ = AQ$$
 (Common) (½ mark)

$$\therefore \Delta CAQ \cong \Delta BAQ$$
 (ASAAxiom) (½ mark)

$$CQ = BQ$$
 (C.P.C.T.) (½ mark)

21. From ΔPQT , we have given

$$PQ = PT$$
 (½ mark)

Since, Angles opposite to equal sides

$$\therefore$$
 $\angle PTQ = \angle PQT$ (1) (½ mark)

Now, In $\triangle PST$ and $\triangle PRQ$,

We have

$$PT = PQ$$
 and $\angle TPS = \angle QPR$ (½ mark)

∴ From (1)

$$\angle PTQ = \angle PQT$$

 $\Rightarrow \angle PTS = \angle PQR$

$$\therefore \Delta PST \cong \Delta PRQ \quad (ASAAxiom) \quad (\frac{1}{2} \text{ mark})$$
 and by C.P.C.T

$$PS = PR$$
 (½ mark)

 $\Rightarrow \Delta PRS$ is isosceles. (½ mark)

22. Since, AD is a median in $\triangle ABC$ which divides it into two triangles of equal areas. (½ mark)

$$\therefore \quad \text{ar } (\Delta ABD) = \text{ar } (\Delta ACD) \qquad \dots (1)$$

(1/2 mark)

Similarly, ar $(\Delta EBD) = \text{ar}(\Delta ECD)$ (2)

(1/2 mark)

 $(:: ED \text{ is a median in } \Delta EBC)$

Subtracting (2) from (1), we get

$$ar(\Delta ABD) - ar(\Delta EBD)$$
 (½ mark)

$$= \operatorname{ar}(\Delta ACD) - \operatorname{ar}(\Delta ECD) \qquad (\frac{1}{2} \operatorname{mark})$$

$$\Rightarrow$$
 ar($\triangle ABE$) = ar($\triangle ACE$). (½ mark)

23. From $\triangle OAD$ and $\triangle OBC$

we have given

AD = BC (½ mark)

 $\angle OAD = \angle OBC$ (Each = 90°) (½ mark)

 $\angle AOD = \angle BOC$ (Vertically Opposite Angles)

(½ mark)

 \therefore By AAS rule $\triangle OAD \cong \triangle OBC$ (½ mark)

 $\therefore \quad \text{By CPCT}, \ OA = OB \qquad \qquad (\frac{1}{2} \text{ mark})$

Thus CD bisects AB. ($\frac{1}{2}$ mark)

Or

 $\triangle ADB$ and $\triangle ADC$ gives us that

 $\angle ADB = \angle ADC$ (Each = 90°) (½ mark)

(:: AD is the perpendicular bisector of BC)

$$\therefore DB = DC \qquad (\frac{1}{2} \mathbf{mark})$$

$$AD = AD$$
 (Common) (½ mark)

$$\therefore$$
 $\triangle ADB \cong \triangle ADC$ (By SAS Rule) (1 mark)

$$\therefore AB = AC \qquad (C.P.C.T) \qquad (\frac{1}{2} \text{ mark})$$

Hence proved.

24. The sides are in the ratio 3:5:7.

So let the sides be 3x, 5x and 7x respectively.

Now, perimeter = $300 \, \text{m}$

$$\Rightarrow 3x + 5x + 7x = 300$$
 (½ mark)

15x = 300

$$x = \frac{300}{15} = 20$$
 (½ mark)

So the sides are 60 m, 100 m and 140 m

$$a = 60 \text{ m}$$

$$b = 100 \text{m}$$
 (½ mark)

$$c = 140 \text{ m}$$

$$s = \frac{a+b+c}{2} = \frac{300}{2} = 150 \,\text{m}$$
 (½ mark)

$$\therefore$$
 Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$

(½ mark)

$$= \sqrt{150(150 - 60)(150 - 100)(150 - 140)}$$

$$=\sqrt{150\times90\times50\times10}=1500\sqrt{3} \text{ m}^2$$

(1/2 mark)

SECTION-D

25.
$$4.\overline{26} = 4.262626...$$

$$(1+1+1+1=4 \text{ marks})$$

(1/2 mark)

```
26. Let x = 0.19666
                                                                     Similarly, if (x-4) is a factor of f(x), then f(4)=0
                               ...(i)
                                               (1/2 mark)
                                                                     \therefore (4)^3 - p(4)^2 - q(4) + 24 = 0
      Multiplying both the sides by 100, we get
                                                                          64 - 16p - 4q + 24 = 0
      100x = 19.666
                                               (1/2 mark)
                               ...(ii)
                                                                          -4p-q+22=0
                                                                                                   .....(2) (½ mark)
      Again, multiplying both the sides of (i) by 1000,
                                                                     Solving eq.(1) and (2)
      we get
                                                                                              -3p + q - 1 = 0
      1000x = 196.666
                               ...(iii)
                                               (1/2 mark)
                                                                                              -4p-q+22=0
      On subtracting (ii) from (iii), we obtain
                                                                                               -7p + 21 = 0
      900x = 177
                                               (1/2 mark)
                                                                                                              (1/2 mark)
                                                                     \therefore p=3
                                                                                                              (1/2 mark)
                                               (1/2 mark)
                                                                     Substituting, p = 3 in eq. (1) we get
                                                                     -3(3)+q-1=0
                                                                                                              (1/2 mark)
                                                                     \therefore q = 10
                                                                                   \therefore p = 3 \text{ and } q = 10
                                                                                                              (1/2 mark)
     x = \frac{59}{300}
                                               (1/2 mark)
                                                                   (i) We have (999)^3 = (1000 - 1)^3
                                                                                                              (1/2 mark)
                                                                          =(1000)^3-(1)^3-3(1000)(1)(1000-1)
      Yes, Anu is correct.
                                                                                                              (1/2 mark)
      Values shown by Anu are:
                                                (1 mark)
                                                                           =10000000000-1-2997000=997002999
                                                                                                               (1 mark)
           Knowledge
                                                                     (ii) Consider 95 \times 96 = (90 + 5) \times (90 + 6)
      (ii)
           Curiosity
                                                                                                              (1/2 mark)
                                                                          =(90)^2 + (5+6)(90)+(5)(6)
      (iii) Truthfullness
                                                                                                              (1/2 mark)
                                                                          =8100+990+30=9120.
27. Put x + 1 = 0 or x = -1 and x + 2 = 0 or x = -2
                                                                                                              (1 mark)
      in p(x)
                                                              29. p(x) = x^4 - 2x^3 + 3x^2 - ax + b
                                               (½ mark)
      Then, p(-1) = (-1)^3 + 3(-1)^2 - 2\alpha(-1) + \beta = 0
                                                                     When p(x) is divided by (x + 1), remainder
                                                (1/2 mark)
                                                                     = p(-1) = (-1)^4 - 2(-1)^3 + 3(-1)^2 - a(-1) + b
      \Rightarrow -1 + 3 + 2\alpha + \beta = 0
                                                                                                              (1/2 mark)
      \Rightarrow \beta = -2\alpha - 2
                                    ....(1)
                                                                     = 1 + 2 + 3 + a + b = a + b + 6
                                                (1/2 mark)
                                                                     \Rightarrow a+b+6=19
           p(-2) = (-2)^3 + 3(-2)^2 - 2\alpha(-2) + \beta = 0
                                                                     \Rightarrow a+b=13
                                                                                                              (1/2 mark)
                                                                                                   ...(i)
      \Rightarrow -8+12+4\alpha+\beta=0
                                                (1/2 mark)
                                                                     When p(x) is divided by (x-1), remainder
      \Rightarrow \beta = -4\alpha - 4
                                    .....(2) (\frac{1}{2} mark)
                                                                          = p(1) = 1^4 - 2 \times 1^3 + 3 \times 1^2 - a \times 1 + b
      By equalising both of the above equation
                               -2\alpha - 2 = -4\alpha - 4
                                                                                                              (1/2 mark)
                                                (1/2 mark)
                                                                          = 1 - 2 + 3 - a + b
           2\alpha = -2 \implies
                               \alpha = -1
                                                                     \Rightarrow -a+b+2=5
                               \alpha = -1 put in eq. (1)
                                                                     \Rightarrow -a+b=3
                                                                                                               (1/2 mark)
                                                                                                   ...(ii)
                                                (1/2 mark)
                                                                     Adding (i) and (ii), we get
      \Rightarrow \beta = -2(-1) - 2 = 2 - 2 = 0.
                                                                          2b = 16 \Rightarrow b = 8
                                                                                                              (1/2 mark)
      Hence
                               \alpha = -1, \beta = 0 (½ mark)
                                                                     Susstituting b = 8 in equation (i), we get
                                                                          a + 8 = 13
                                                                                             \Rightarrow a = 5
                                                                                                              (1/2 mark)
      Let f(x) = x^3 - px^2 - qx + 24.
                                                                          a = 5, b = 8
      Since, (x + 3) is a factor of f(x), so by factor
                                                                     Hence, p(x) = x^4 - 2x^3 + 3x^2 - 5x + 8 (½ mark)
      theorem, f(-3) = 0
                                                (1/2 mark)
      f(-3) = (-3)^3 - p(-3)^2 - q(-3) + 24 = 0
                                                                     When p(x) is divided by (x+2), remainder,
      \therefore -27-9p+3q+24=0
                                                                          = p(-2) = (-2)^4 - 2(-2)^3 + 3(-2)^2 - 5(-2) + 8
                                               (½ mark)
      \therefore -3p+q-1=0 .....(1) (½ mark)
                                                                          = 16 + 16 + 12 + 10 + 8 = 62
```

- **30.** If a straight line ℓ falls on two straight lines m and n such that the sum of the interior angles on one side of ℓ is two right angles, then by Euclid's fifth postulate the lines will not meet on this side of ℓ . Next, we know that the sum of the interior angles on the other side of line ℓ will also be two right angles. Therefore, they will not meet on the other side also. So, the lines m and n never meet and are, therefore, parallel. (4 marks)
- 31. Given a $\triangle ABC$ which is isosceles with AB = AC. Side BA is produced to D such that AD = AB.

To Prove : $\angle BCD$ is a right angle.

Proof: Since, $\triangle ABC$ is an isosceles

$$\therefore \angle ABC = \angle ACB \qquad \dots (1) \quad (\frac{1}{2} \mathbf{mark})$$
$$AC = AD$$

(::AB = AC and AD = AB)

 \therefore In $\triangle ACD$,

$$\angle CDA = \angle ACD$$
 (½ mark)
(Angles opposite to equal sides

opposite to equal sides of a triangle are equal)

$$\angle CDB = \angle ACD$$
(2) (½ mark)

a mat

By adding (1) and (2), we get

$$\angle ABC + \angle CDB = \angle ACB + \angle ACD$$

(1/2 mark)

$$\Rightarrow \angle ABC + \angle CDB = \angle BCD \dots (3)$$
 (½ mark)

Now, In $\triangle BCD$,

$$\angle BCD + \angle DBC + \angle CDB = 180^{\circ}$$

(By angle sum property)

$$\Rightarrow \angle BCD + \angle ABC + \angle CDB = 180^{\circ} \text{ (1/2 mark)}$$

$$\Rightarrow \angle BCD + \angle BCD = 180^{\circ}$$
 (Using (3))

$$\Rightarrow 2\angle BCD = 180^{\circ}$$
 (½ mark)

 $\Rightarrow \angle BCD = 90^{\circ}$

$$\Rightarrow \angle BCD$$
 is a right angle. (½ mark)

32. As we know the exterior angle is equal to the sum of the two interior opposite angles

$$\therefore \angle QRT = \angle RQS + \angle QSR$$

$$\Rightarrow$$
 65° = 28° + $\angle OSR$

$$\Rightarrow \angle OSR = 65^{\circ} - 28^{\circ} = 37^{\circ}$$
 (½ mark)

Also given $PQ \perp SP$

$$\therefore \angle OPS = 90^{\circ} \qquad (\frac{1}{2} \text{ mark})$$

Also $PQ \parallel SR$ gives

$$\angle OPS + \angle PSR = 180^{\circ}$$
 (½ mark)

(: The sum of consecutive interior angles on the same side of the transversal is 180°)

$$\angle PSR = 90^{\circ}$$
 (½ mark)

$$\Rightarrow \angle PSO + \angle OSR = 90^{\circ} \Rightarrow v + 37^{\circ} = 90^{\circ}$$

$$\Rightarrow v = 90^{\circ} - 37^{\circ} = 53^{\circ}$$
 (½ mark)

Now, from ΔPQS , we have

$$\angle POS + \angle OSP + \angle OPS = 180^{\circ}$$
 (½ mark)

(By angle sum property of a triangle)

$$\Rightarrow x + y + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow x + 53^{\circ} + 90^{\circ} = 180^{\circ}$$
 (½ mark)

$$\Rightarrow x = 180^{\circ} - 143^{\circ} = 37^{\circ}.$$
 (½ mark)

33. Let in $\triangle PQR$, exterior $\angle PRS = 115^{\circ}$ and $\angle P = 35^{\circ}$ We know that, (½ mark)

 $\angle PRS = \angle P + \angle Q$ (Exterior Angle Theorem)

(½ mark)

$$\Rightarrow 115^{\circ} = 35^{\circ} + \angle Q$$
 (½ mark)

$$\Rightarrow \angle Q = 115^{\circ} - 35^{\circ} = 80^{\circ}$$
 (½ mark)

(½ mark)

Again, in ΔPQR ,

$$\angle P + \angle Q + \angle R = 180^{\circ}$$
 (½ mark)

(: The sum of the three angles of a triangle is 180°)

$$\Rightarrow$$
 35° + 80° + \angle R = 180° (½ mark)

$$\Rightarrow \angle R = 180^{\circ} - 115^{\circ}$$

$$\Rightarrow \angle R = 65^{\circ}$$
. (½ mark)

Or

$$\angle PRE + \angle PRQ = 180^{\circ}$$
 (Linear Pair Axiom)

(½ mark)

$$\Rightarrow \angle PRE = 180^{\circ} - \angle R$$
 ...(1)

(1/2 mark)

$$\Rightarrow \angle PQF + \angle PQR = 180^{\circ} \qquad \text{(1/2 mark)}$$
(Linear Pair Axiom)
$$\Rightarrow \angle PQF + \angle Q = 180^{\circ} \qquad \dots (2)$$
(1/2 mark)

Adding (1) and (2), we have

$$\angle PRE + \angle PQF = 360^{\circ} - (\angle Q + \angle R)$$
 ...(3) (½ mark)

In
$$\triangle PQR$$
,
 $\angle Q + \angle R = 180^{\circ} - \angle P...(4)$ (½ mark)

From (3) and (4),

$$\angle PRE + \angle PQF = 360^{\circ} - (180^{\circ} - \angle P)$$

 $(\frac{1}{2} \text{ mark})$
 $= 180^{\circ} + \angle P > 180^{\circ} (\because \angle P \text{ is positive})$
 $(\frac{1}{2} \text{ mark})$

34. Let the given points are A(2, 0), B(2, 3), C(0, 6), D(-2, 3) and E(-2, 0). After plotting and joining, we get the figure.

(3 marks)

After plotting A, B, D and E and joining, we get a 'Pentagon.' (1 mark)