# Разработка программного комплекса для исследования влияния аномальных наблюдений на точность прогнозирования в регрессионных моделях

| Пояснительная записка        |
|------------------------------|
| RU.17701729.11.04-01 РП 01-1 |

Листов 29

| Подп.идата   |  |
|--------------|--|
| Инв. № дубл. |  |
| Взам.инв. №  |  |
| Подп.идата   |  |
| нв. Удподл   |  |

### ГЛОССАРИЙ

- 1. Регрессионная модель математический метод прогнозирования, устанавливающий зависимость между целевой переменной и одним или несколькими признаками.
- 2. Аномальные наблюдения точки данных, которые значительно отклоняются от остальных наблюдений в наборе данных и могут негативно влиять на точность прогнозирования.
- 3. JSON легкий формат обмена данными, используемый для хранения конфигураций моделей и параметров экспериментов.
- 4. Асинхронные вычисления метод параллельного выполнения задач для повышения производительности, особенно при проведении множества экспериментов.
- 5. Целевая переменная поле в наборе данных, значение которого модель стремится предсказать на основе признаков.
- 6. Признак поле в наборе данных, которое используется как для предсказания величиныцели.
- 7. Метрики качества показатели, используемые для оценки точности регрессионных моделей или обнаружения аномальных наблюдений.
- 8. Формат CSV текстовый формат для представления табличных данных, где значения разделены специальным символом.
- 9. Шум случайные отклонения в данных, которые не отражают истинную закономерность и могут возникать из-за ошибок измерения.
- 10. Хвост распределения область распределения вероятностей, удаленная от его центральной части.
- 11. Гиперпараметр параметр алгоритма машинного обучения, который устанавливается перед началом обучения и не изменяется в процессе его обучения.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

# СОДЕРЖАНИЕ

| ГЛОССАРИИ     |                                                                                | 2          |
|---------------|--------------------------------------------------------------------------------|------------|
| 1. ВВЕДЕНИЕ   |                                                                                | 4          |
| 1.1.          | Наименование программы                                                         | 4          |
| 1.2.          | Документы, на основании которых ведется разработка                             | 4          |
| 2. НАЗНАЧЕНИ  | ИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ                                                        | 2          |
| 2.1.          | Функциональное назначение                                                      | 2          |
| 2.2.          | Эксплуатационное назначение                                                    | 2          |
| 2.3.          | Область применения программы                                                   | 3          |
| 3. ТРЕБОВАНИ  | ІЯ К ПРОГРАММЕ                                                                 | 4          |
| 3.1.          | Постановка задачи на разработку программы                                      | 4          |
| 3.2.          | Описание алгоритма программы                                                   | 4          |
| 3.2.1.        | Теоретическое обоснование                                                      | 4          |
| 3.2.1.1.      | Характеристика использующихся в приложении методов машинного обучени           | ия5        |
| 3.2.1.2.      | Характеристика использующихся в приложении генераций шума                      | 13         |
| 3.2.2.        | Архитектура проекта                                                            | 14         |
| 3.2.3.        | Описание структуры проекта                                                     | 15         |
| 3.2.4.        | Описание содержания исходного кода                                             | 12         |
| 3.2.4.1.      | Директория lib                                                                 | 12         |
| 3.2.4.2.      | Директория src                                                                 | 13         |
| 3.2.5.        | Описание реализации компонент приложения                                       | 14         |
| 3.2.5.1.      | Директория lib                                                                 | 14         |
| 3.2.5.2.      | Директория src                                                                 | 25         |
| 3.3.          | Организация входных данных                                                     | 29         |
| 3.4.          | Организация выходных данных                                                    | 29         |
| 3.5.          | Описание выбора технических и программных средств                              | 30         |
| 4. ТЕХНИКО-Э  | КОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ                                                        | 25         |
| 4.1.          | Ориентировочная экономическая эффективность                                    | 25         |
| 4.2.          | Предполагаемая потребность                                                     | 25         |
| 4.3.          | Экономические преимущества разработки по сравнению с отечественными и налогами |            |
|               | ОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ                                                           |            |
|               | ГРАЦИИ ИЗМЕНЕНИЙ                                                               |            |
| JINCI PEI NCI | ГАЦИИ ИЭМЕЛЕЛИИ                                                                | <b>4</b> 9 |
|               |                                                                                |            |

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 1. ВВЕДЕНИЕ

# 1.1. Наименование программы

Наименование темы разработки: «Разработка программного комплекса для исследования влияния аномальных наблюдений на точность прогнозирования в регрессионных моделях».

Наименование темы разработки на английском языке: «Development of a Software Package to Study the Influence of Outliers on the Prediction Accuracy in Regression Models».

Наименование программы для пользователя – «MSnOutliers».

# 1.2. Документы, на основании которых ведется разработка

Реализация данного проекта обусловлена темой, которая была утверждена академическим руководителем программы по направлению 09.03.04 "Программная инженерия" в соответствии с учебным планом подготовки бакалавров. Такой выбор темы курсового проекта представляет собой необходимый этап в академической программе, что обуславливает проведение данной разработки.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

#### 2.1. Функциональное назначение

Программный инструмент «MSnOutliers» предназначен для анализа и исследования робастности различных методов регрессионного анализа в условиях присутствия в данных аномальных наблюдений. Приложение предоставляет следующие возможности:

- 1) Моделирование набора данных с контролируемыми параметрами шума различных распределений.
- 2) Оценка эффективности различных статистических методов регрессии при наличии аномальных наблюдений разного количество и характера.
- 3) Применение алгоритмов машинного обучения для обнаружения аномальных наблюдений, последующее удаление аномальных наблюдений и оценка качества детектирования аномальных наблюдений.
- 4) Расчет метрик качества регрессионных моделей при их применении на очищенных моделью машинного обучения данных.
- 5) Итоговая визуализация полученных результатов в виде графиков зависимости ошибки от уровня шума.

#### 2.2. Эксплуатационное назначение

Приложение «MSnOutliers» реализовано как проект для анализа и оценки надежности статистических методов регрессии при наличии шума различного характера. Инструмент работает как с пользовательскими данными, которые могут быть предоставлены в формате CSV, так и с данными, которые можно сгенерировать средствами самого продукта.

Благодаря модульной архитектуре и многопоточности, программа позволяет эффективно проводить серии экспериментов с различными параметрами методов и типов шума, а результаты экспериментов сохраняются и визуализируются. В совокупности это делает «MSnOutliers» мощным инструментом для анализа методов регрессии и машинного обучения.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

# 2.3. Область применения программы

Аудитория продукта, который анализирует качество методов регрессии и машинного обучения, включает в себя студентов и преподавателей в рамках курсов по математической статистике, анализу данных и машинному обучению для детальной демонстрации положительных и отрицательных сторон методов.

Инструмент совместим с большинством основных операционных систем, таких как Windows, Linux и macOS и преимущественно реализован на C++ с использованием Python для визуализации результатов.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 3. ТРЕБОВАНИЯ К ПРОГРАММЕ

#### 3.1. Постановка задачи на разработку программы

Приложение должно быть разработано как инструмент для исследования эффективности методов регрессионого анализа с наличием аномальных наблюдений в исходных данных. Продукт должен поддерживать работу как с пользовательскими наборами данных, так и с генерируемыми выборками с выбранными параметрами. Программа должна предоставлять возможность контролировать добавление шума во входные данные перед применением методов регрессии. Также продукт должен включать возможность применения алгоритмов машинного обучения для предварительного обнаружения и исключение аномальных наблюдений. Результаты работы программы должны представляться в виде:

- 1) Визуализированных графиков зависимости ошибки модели от интенсивности шума
- 2) Метрик качества метода регрессии и обнаружения аномалий
- 3) Рассчитанных коэффициентов метода регрессии

#### 3.2. Описание алгоритма программы

#### 3.2.1. Теоретическое обоснование

В рамках данного проекта использованы различные методы машинного обучения для обнаружения аномальных наблюдений в данных. Выбранные алгоритмы представляют собой различные подходы к определению того, что является "нормальным" для заданного набора данных.

Существует два основных подхода к обнаружению аномалий: алгоритмы, основанные на плотности распределения данных, и методы, основанные на концепции близости наблюдений. К первым относятся методы Kernel Density Estimation и Isolation Forest, ко вторым - алгоритмы DBSCAN и K-Nearest Neighbors.

Методы, основанные на плотности, оценивают вероятностное распределение данных и классифицируют как аномальные те наблюдения, которые находятся в областях с низкой плотностью. Так, IForest строит композицию деревьев, которые изолируют наблюдения путем разделения пространства признаков, и

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

считает аномалиями те наблюдения, которые изолируются быстрее других. KDE оценивает плотность распределения с помощью ядерных функций и выявляет наблюдения с низкой оценкой плотности.

Методы, основанные на близости, рассматривают локальное окружение каждого наблюдения. DBSCAN группирует наблюдения, находящиеся в плотных областях, и классифицирует наблюдения, не принадлежащие ни одному кластеру, как аномалии. KNN определяет аномальные наблюдения на основе расстояния до к-го ближайшего соседа - наблюдения с большими расстояниями считаются выбросами.

Для каждого метода действует условие, что если этим методом все объекты были помечены как аномалии, то все объекты считаются неаномальными и исходные данные остаются неизмененными. Также до обучения методов к входным данным применяется нормализация всех признаков. Этот подход зачастую стабилизирует работу алгоритмов и упрощает подбор гиперпараметров.

Для генерации шума во входных данных используются различные типы статистических распределений: нормальное, Стьюдента, Коши и Лапласа, каждое из которых имеет свои характеристики, влияющие на свойства аномальных наблюдений. Нормальное распределение создает симметричный шум с быстро убывающими хвостами. Распределения Стьюдент и Коши, наоборот, порождают более тяжелые хвосты и более экстремальны аномальные наблюдения. Распределение Лапласа характеризуется экспоненциально убывающими хвостами. Такое разнообразие шумов в регрессии позволяет моделировать различные ситуации зашумления данных.

# 3.2.1.1. Характеристика использующихся в приложении методов машинного обучения

#### 3.2.1.1.1. Метод изолирующего леса: Isolation Forest

Заключается в рекурсивном разделении данных случайным образом. Аномальные наблюдения требуют меньшего количества разделений для их изоляции, поскольку они обычно существенно

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

отличаются от нормальных данных. Метод использует композицию деревьев для каждого выбирается случайное подмножество признаков и случайная точка разделения. Аномальность наблюдения оценивается как среднее пути, необходимому для её изоляции (попадания в листовой узел дерева) в лесу. Чем меньше полученное среднее, тем более вероятнее, что наблюдение является аномальным.

Преимущество метода заключается в способности работать эффективно с данными любой размерности. Также гиперпараметры метода обычно задаются стандартными значениями (количество деревьев – 100, максимальная глубина дерева – 10-12), что исключает необходимость их подбора.

Недостатками алгоритма являются его вероятностный характер, из-за которого результаты алгоритма могут быть недетерминированными для одних и тех же данных. Существенным недостатком метода является сам результат метода на наблюдении — вероятность этого объекта быть аномальным. Делается неявное предположение о некотором пороге, при котором объект является аномальным, что зачастую заранее неизвестно. Также делается предположение, что аномальные наблюдения существенно отличаются от нормальных данных, что тоже заранее не подтверждено.

# 3.2.1.1.2. Метод кластеризации на основе плотности Density-Based Spatial Clustering of Applications with Noise: DBSCAN

Заключается в группировании наблюдений, находящихся в плотных областях и классификации наблюдений в областях с низкой плотностью как аномальные.

Использует два гиперпараметра:

1) r — определяет окрестность наблюдения, в которой другое наблюдение считается близкой к данной

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

2) minimumClusterSize – минимальное количество наблюдений, необходимое для формирования кластера

Наблюдения, которые не принадлежат ни к одному кластеру, рассматриваются как аномальные.

Преимущество метода заключается в его способности обнаруживать кластеры произвольной формы.

Недостатками метода является высокая чувствительность к выбору гиперпараметров метода даже при условии нормализации данных.

# 3.2.1.1.3. Метод оценки плотности ядра: КDE

Основан на непараметрической оценке функции плотности вероятности данных с использованием ядерных функций для вычисления гладкой аппроксимации распределения.

Gamma – гиперпараметр сглаживания. По умолчанию обратно пропорционален размерности входных данных.

Наблюдения с низкой оценкой плотности классифицируются аномальными. Пороговое значение плотности для определения аномальных наблюдений вычисляется на основе плотности распределения всех наблюдений.

Преимуществом алгоритма является гибкость и способность адаптироваться к многомодальным распределениям без предположений о форме данных.

Недостатком является необходимость точной настройки гиперпараметра сглаживания для достижения оптимальных результатов.

#### 3.2.1.1.4. Метод k-ближайших соседей: KNN

Использует расстояние до k-го ближайшего соседа как меру локальной плотности. Наблюдения с большим расстоянием до своего k-ого ближайшего соседа классифицируются как

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

выбросы. Алгоритм применяет евклидово расстояние для определения близости наблюдений.

Использует два основных гиперпараметра: k - количество ближайших соседей для рассмотрения, contamination - ожидаемая аномальных наблюдений В наборе доля данных. Подход эффективен для обнаружения локальных аномалий и не требует предположений о глобальном распределении данных и особенно полезен, когда выбросы определяются относительно локальной глобальной. структуры данных, a не Недостатком подхода является сложность определения оптимального значения k, низкая эффективность в данных с переменной плотностью. Также одним из гиперпараметров метода является ожидаемая доля аномальных наблюдений, что зачастую заранее неизвестно.

#### 3.2.1.1.5. Отсутствие предварительной обработки

Предусматривает использование исходных данных без предварительной обработки алгоритмами машинного обучения для удаления аномальных наблюдений.

#### 3.2.1.2. Характеристика использующихся в приложении генераций шума

#### 3.2.1.2.1. Гауссово распределение: Normal

Основано на нормальном распределении, характеризуемом двумя параметрами: средним значением и стандартным отклонением. Генерирует симметричный шум, значения которого фокусируются вокруг первого параметра, а вероятность аномальных значений экспоненциально уменьшается с увеличением расстояния от среднего.

#### 3.2.1.2.2. Распределение Стьюдента: Student

Основано на распределении Стьюдента с n (параметр) степенями свободы. Создает шум с тяжелыми хвостами, увеличивая

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

вероятность появления экстремальных аномальных значений. Чем выше число степеней свободы n, тем больше распределение вырождается в нормальное.

#### **3.2.1.2.3.** Распределение Коши: Cauchy

Аналогично распределению Стьюдента, создает шум с тяжелыми хвостами, увеличивая вероятность появления экстремальных аномальных значений. Моделирует очень нестабильные данные из-за неопределенного среднего значения и среднеквадратического отклонения.

#### **3.2.1.2.4.** Распределение Лапласа: Laplace

Создает шум с более острым пиком в среднем значении (параметр) и экспоненциально убывающими хвостами (масштаб убывания задается вторым параметром). В сравнении с распределением Гаусса, имеет у экстремальных значений более высокую вероятность.

#### 3.2.1.2.5. Масштабирование целевой переменной

Альтернативный метод создания аномальных наблюдений, заключается в умножении целевой переменной на константу. Подход моделирует ситуацию с резким выбросом, которые в реальной жизни могут возникать при внезапных ошибках устройств или измерений. Метод тем самым создает систематический шум, а не случайный.

#### 3.2.2. Архитектура проекта

#### 3.2.2.1. Пользовательский интерфейс

Представляет собой интерактивную среду для настройки параметров экспериментов. Пользователь получает возможность выбирать данные для анализа, параметры шума, методы регрессии и методы машинного обучения для обнаружения аномалий. Результат первичного взаимодействия (выбора всех доступных опций) является

| II                           | П            | NC           | П            | П            |
|------------------------------|--------------|--------------|--------------|--------------|
| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

конфигурационный JSON-файл, содержащий необходимую информацию о запуске экспериментов. Далее этот файл поступает на вход блоку с запуском экспериментов.

# 3.2.2.2. Блок с запуском экспериментов

Представляет собой главную часть, отвечающую за загрузку и генерацию данных, запуск и анализ экспериментов. Включает в себя:

- 1) Загрузку и обработку данных из CSV-файла.
- 2) К обработанным данным для каждого запущенного эксперимента добавляется шум при помощи статистических и систематических распределений. Статистические распределения реализованы в одном классе, систематическое распределение сделано как операция домножения на константу.
- 3) Далее применяется один из выбранных алгоритмов машинного обучения для обнаружения и удаления аномальных наблюдений. Каждый алгоритм реализован как отдельный класс.
- 4) На отфильтрованных после применения методов машинного обучения данных для определения коэффициентов регрессии используется один из выбранных методов регрессии.
- 5) Итоговым результатом является сохранение метрик качества регрессии и обнаружения аномальных наблюдений в JSON-файл.
- 6) Визуализация данных результатов в PNG-файлы. Создание изображений достигается при помощи оборачивания элементов изображения в классы, записи данных классов в JSON-файл и использования Python команд для обработки данных записей и последующего конструирования изображений.

Этапы 2-5 выполняются параллельно при помощи возможностей параллельного выполнения процессов стандарта С++17.

#### 3.2.3. Описание структуры проекта

Программный инструмент «MSnOutliers» имеет разделение на компоненты:

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

- Директория ui отвечает за пользовательский интерфейс приложения. Компонента компилируется в отдельный исполняемый файл, являющийся основной точкой взаимодействия пользователя с системой.
- 2) Директория src центр приложения, содержащий основную функцию main и логику использования средств директории lib и входных данных и опций, полученных от пользователя. В main выполняется все основные основные этапы, описанные в п.3.2.2.2. В поддиректории PAINTINGS содержатся классы-обертки вокруг различных геометрических образов для удобной записи этих образов в JSON-файл. Компонента компилируется в отдельный исполняемый файл, который будет запущен при использовании пользовательского интерфейса при отправке опций экспериментов, но также исполняемый файл может быть запущен вручную из командной строки.
- 3) Директория lib отвечает за реализацию основного функционала и использования методов регрессии и машинного обучения. Включает в себя поддиректории СОММОN, содержащую классы парсинга CSV-файлов, расчета метрик и предобработки данных, ML, содержащую реализации алгоритмов машинного обучения, MS, содержащую классы статистических методов регрессии и DISTIRIBUTIONS, содержащую класс с реализацией генерации шумов различных распределений. Компонента компилируется в статическую библиотеку, которая затем связывается с исполняемыми файлами из компонент ui и src.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 3.2.4. Описание содержания исходного кода

#### 3.2.4.1. Директория lib

# 3.2.4.1.1. Поддиректория СОММОМ

#### 3.2.4.1.1.1. Файлы DataDeNoiser

Содержат класс DataDeNoiser, определяющий добавление шума в данные и последующее его удаление с помощью различных алгоритмов машинного обучения (3.2.5.1.1.1)

#### 3.2.4.1.1.2. **Файлы Metrics**

Содержат класс Metrics, определяющий статистические методы для расчета различных метрик качества методов регрессии (3.2.5.1.1.2)

#### 3.2.4.1.1.3. **Файл Маtrix**

Определяющий типы данных и функции для работы с матрицами (3.2.5.1.1.3)

#### 3.2.4.1.2. Поддиректория ML

#### 3.2.4.1.2.1. Файлы KNN/KNN

Содержат класс KNN, определяющий реализацию алгоритма K-Nearest Neighbors для обнаружения аномальных наблюдений (3.2.5.1.2.1)

#### **3.2.4.1.2.2.** Файлы KDE/KDE

Содержат класс KDE, определяющий реализацию алгоритма Kernel Density Estimation для обнаружения аномальных наблюдений (3.2.5.1.2.2)

#### 3.2.4.1.2.3. Файлы iForest/Node и iForest/iForest

Содержат классы Node и iForest, определяющие реализацию алгоритма Isolation Forest для обнаружения аномальных наблюдений (3.2.5.1.2.3)

#### 3.2.4.1.2.4. Файлы DBSCAN/DBSCAN

Содержат класс DBSCAN, определяющий реализацию алгоритма Density-Based Spatial Clustering of Applications with Noise для выявления аномальных наблюдений (3.2.5.1.2.4)

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 3.2.4.1.3. Поддиректория DISTRIBUTIONS

#### 3.2.4.1.3.1. Файлы Error Distributions

Содержат класс ErrorDistributions, определяющий реализацию генерации случайных чисел с различными типами распределений для создания шума во входных данных (3.2.5.1.3.1)

### 3.2.4.2. Директория src

#### 3.2.4.2.1. Поддиректория PAINTINGS

#### 3.2.4.2.1.1. Файлы Drawable

Содержат абстрактный базовый класс Drawable, определяющий общий интерфейс для всех графических объектов (3.2.5.2.1.1.1)

# 3.2.4.2.1.2. **Файлы Graph**

Содержат класс Graph, определяющий контейнер для графических объектов и управляет процессом их визуализации (3.2.5.2.1.2.1)

#### 3.2.4.2.1.3. Файлы Scatter

Содержат класс Scatter, определяющий создание точечных графиков, используемых для визуализации зависимости ошибки от уровня шума (3.2.5.2.1.3.1)

#### **3.2.4.2.1.4.** Файлы Line

Содержат класс Line, определяющий отображения линейных функций (3.2.5.2.1.4.1)

#### 3.2.4.2.1.5. Файлы HorizontalLine

Содержат класс HorizontalLine, определяющий создание горизонтальных линий на графиках (3.2.5.2.1.5.1)

#### 3.2.4.2.1.6. Файлы VerticalLine

Содержат класс VerticalLine, определяющий создание вертикальных линий на графиках (3.2.5.2.1.6.1)

#### 3.2.4.2.1.7. Файлы FunctionPlot

Содержат класс FunctionPlot, определяющий отображение произвольных функций (3.2.5.2.1.7.1)

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 3.2.4.2.1.8. Файл drawer.py

Содержит Python команды, определяющие чтение конфигурационного файла в формате JSON и создание визуализации с использованием библиотеки matplotlib (3.2.5.2.1.8.1)

#### 3.2.4.2.2. Метод main()

Содержит основную точку входа программы и реализует логику проведения экспериментов с методами регрессии (3.2.5.2.2)

#### 3.2.5. Описание реализации компонент приложения

#### 3.2.5.1. Директория lib

#### 3.2.5.1.1. Поддиректория СОММОМ

#### 3.2.5.1.1.1. Класс DataDeNoiser

- **3.2.5.1.1.1.1.** \_\_data исходные входные данные, предоставленные для эксперимента.
- **3.2.5.1.1.1.2.** \_\_dataNoised исходные входные данные, в которые был внесен указанный шум.
- **3.2.5.1.1.1.3.** \_\_dataMatNoised матричное представление зашумленных входных данных.
- **3.2.5.1.1.1.4.** \_ precision точность определения аномальных наблюдений.
- **3.2.5.1.1.1.5.** recall полнота определения аномальных наблюдений.
- **3.2.5.1.1.1.6.** \_\_fl Score F1-мера, среднее гармоническое точности и полноты.
- **3.2.5.1.1.1.7.** \_\_noisedIndices вектор значений, указывающих, какие наблюдения стали аномальными.
- **3.2.5.1.1.1.8.** \_denoisedIndices вектор значений, указывающих, какие наблюдения были определены методом машинного обучения как аномальные.

#### 3.2.5.1.1.2. Класс Metrics

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

- **3.2.5.1.1.2.1.** meanAbsoluteError() метод для вычисления средней абсолютной ошибки между истинными и предсказанными значениями.
- **3.2.5.1.1.2.2.** meanSquaredError() метод для вычисления средней квадратической ошибки между истинными и предсказанными значениями.
- **3.2.5.1.1.2.3.** rootMeanSquaredError() метод для вычисления корня из средней квадратической ошибки между истинными и предсказанными значениями
- **3.2.5.1.1.2.4.** meanAbsolutePercentageError() метод для вычисления средней абсолютной процентной ошибки между истинными и предсказанными значениями.
- **3.2.5.1.1.2.5.** symmetricMeanAbsolutePercentageError() метод для вычисления средней симметричной абсолютной процентной ошибки между истинными и предсказанными значениями.

#### 3.2.5.1.1.3. Заголовочгый файл Matrix

- **3.2.5.1.1.3.1.** Shape() метод, возвращающий размеры входных данных в виде пары из количества строк и количества столбцов.
- **3.2.5.1.1.3.2.** EnsureSameShape() –метод, проверяющий равенство размеров двух матриц.
- **3.2.5.1.1.3.3.** Apply() шаблонный метод, применяющий переданную функцию к каждому элементу матрицы и возвращающая результат её применения.
- **3.2.5.1.1.3.4.** L1Norm() метод для вычисления суммы абсолютных разностей между двумя наборами данных.
- **3.2.5.1.1.3.5.** L2Norm() метод для вычисления суммы квадратов разностей между двумя наборами данных.
- **3.2.5.1.1.3.6.** Print() функция для вывода матрицы.

#### 3.2.5.1.2. Поддиректория ML

#### 3.2.5.1.2.1. Поддиректория KNN

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 3.2.5.1.2.1.1. Класс KNN

- **3.2.5.1.2.1.1.2.** \_contamination ожидаемая доля аномальных наблюдения в данных
- **3.2.5.1.2.1.1.3.** \_sortedDistances вектор пар расстояние-индекс, содержащий для каждого наблюдение расстояние до её k-го ближайшего соседа.
- **3.2.5.1.2.1.1.4.** \_data матрица входных данных.
- **3.2.5.1.2.1.1.5.** \_threshold пороговое значение расстояния для определения аномалий.
- **3.2.5.1.2.1.1.6.** KNN() конструктор, принимающий параметры k и contamination.
- **3.2.5.1.2.1.1.7.** Fit() метод обучения, который вычисляет расстояние до k-го ближайшего соседа для каждого наблюдения и определяет пороговое значение.
- **3.2.5.1.2.1.1.8.** Predict() метод, классифицирующий наблюдение на основе расстояния до k-го ближайшего соседа.
- **3.2.5.1.2.1.1.9.** Threshold() метод, вовзращающий пороговое значение расстояния.
- **3.2.5.1.2.1.1.10.** PairDistances() метод, возвращающий вектор пар расстояние-индекс.

#### 3.2.5.1.2.2. Поддиректория КDE

#### 3.2.5.1.2.2.1. Класс КDE

- **3.2.5.1.2.2.1.1.** \_gamma параметр сглаживания ядра.
- **3.2.5.1.2.2.1.2.** \_rho пороговое значение плотности для определения аномалий
- **3.2.5.1.2.2.1.3.** data матрица входных данных.
- **3.2.5.1.2.2.1.4.** \_kernelMatrix матрица значений ядерной функции между всеми парами наблюдений.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

- **3.2.5.1.2.2.1.5.** KernelDensityEstimator() конструктор, принимающий параметр gamma.
- **3.2.5.1.2.2.1.6.** Fit() метод обучения, вычисляющий матрицу ядерных функций и пороговое значение.
- **3.2.5.1.2.2.1.7.** Predict() метод, классифицирующий наблюдения на основе плотности распределения.
- **3.2.5.1.2.2.1.8.** Kernel() метод, вычисляющий значений ядерной функции для пары наблюдений.
- **3.2.5.1.2.2.1.9.** FindThreshol() метод определения порового значения плотности.

#### 3.2.5.1.2.3. Поддиректория iForest

#### 3.2.5.1.2.3.1. Класс Node

- **3.2.5.1.2.3.1.1.** \_j индекс признака во входных данных, предикат для которого был построен в узле.
- **3.2.5.1.2.3.1.2.** \_predicate значение предиката в узле
- **3.2.5.1.2.3.1.3.** \_subL указатель на левый дочерний узел.
- **3.2.5.1.2.3.1.4.** \_subR указатель на правый дочерний узел.
- **3.2.5.1.2.3.1.5.** Node() конструктор, конструктор для создания узла.
- **3.2.5.1.2.3.1.6.** FeatureIndex() метод доступа к индексу признака во входных данных, предикат для которого был построен в узле.
- **3.2.5.1.2.3.1.7.** Predicate() методы доступа к значению предиката в узле.
- **3.2.5.1.2.3.1.8.** Left() метод доступа к левому дочернему узлу.
- **3.2.5.1.2.3.1.9.** Right() метод доступа к правому дочернему узлу.
- **3.2.5.1.2.3.1.10.** ReplaceL() метод для замены левого дочернего узла.
- **3.2.5.1.2.3.1.11.** ReplaceR() метод для замены правого дочернего узла.

#### 3.2.5.1.2.3.2. Класс iForest

- **3.2.5.1.2.3.2.1.** data матрица входных данных.
- **3.2.5.1.2.3.2.2.** dataRows количество входных наблюдений.
- **3.2.5.1.2.3.2.3.** dataCols— количество признаков во входных данных.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

**3.2.5.1.2.3.2.4.** \_trees — вектор корней деревьев в композиции.

**3.2.5.1.2.3.2.5.** \_nEstimators – количество деревьев в композиции

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

- **3.2.5.1.2.3.2.6.** depth— максимальная глубина одного дерева.
- **3.2.5.1.2.3.2.7.** Объекты для генерации чисел: device, generator.
- **3.2.5.1.2.3.2.8.** iForest() конструктор, инициализирующий параметры алгоритма.
- **3.2.5.1.2.3.2.9.** ~iForest() деструктор, освобождающий память композиции деревьев.
- **3.2.5.1.2.3.2.10.** Fit() метод построения композиции деревьев изоляции.
- **3.2.5.1.2.3.2.11.** Clear() метод для очистки памяти деревьев.
- **3.2.5.1.2.3.2.12.** PathLength() метод определения длины пути до листового узла для наблюдения.
- **3.2.5.1.2.3.2.13.** PredictProba() метод, вычисляющий вероятность аномальности наблюдения, опираясь на среднею глубину изолированности.
- **3.2.5.1.2.3.2.14.** Rand() метод для генерации чисел.

#### 3.2.5.1.2.4. Поддиректория DBSCAN

- 3.2.5.1.2.4.1. Класс DBSCAN
  - **3.2.5.1.2.4.1.1.** \_r радиус окрестности наблюдения.
  - **3.2.5.1.2.4.1.2.** \_minimumClusterSize минимальное количество наблюдений для формирования кластера
  - **3.2.5.1.2.4.1.3.** \_idToCluster вектор, сопоставляющий индексы наблюдений с идентификаторами кластеров. Значение 0 для наблюдения означает, что оно признано моделью аномальным
  - **3.2.5.1.2.4.1.4.** data матрица входных данных.
  - **3.2.5.1.2.4.1.5.** DBSCAN() конструктор, принимающий параметры радиуса и минимального размера кластера.
  - **3.2.5.1.2.4.1.6.** GetNeighbors() метод, находящий все наблюдения в радиусе г.
  - **3.2.5.1.2.4.1.7.** ExpandCluster() метод расширения кластера путем добавления.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

# **3.2.5.1.2.4.1.8.** getIdToCluster() — метод, вовзращающий сопоставление наблюдений с кластерами.

#### 3.2.5.1.3. Поддиректория DISTRIBUTION

#### 3.2.5.1.3.1. Класс ErrorDistributions

- **3.2.5.1.3.1.1.** Distributions Type перечисление, содержащее в себе типы распределений, доступных в проекте. В рамках приложения доступны распределения: нормальное, Стьюдента, Коши и Лапласа.
- **3.2.5.1.3.1.2.** \_type поле типа DistributionsType, использующееся для хранения выбранного типа распределения.
- **3.2.5.1.3.1.3.** \_\_distribution поле типа std::variant, хранящее один из выбранных объектов для генерации данных. Принимает разные значения в зависимости от переданного объекта типа Distributions Type.
- **3.2.5.1.3.1.4.** ErrorDistributions() конструктор, принимающий объект типа DistributionsТуре для определения типа распределения два параметра этих распределений.
- **3.2.5.1.3.1.5.** generate() метод, используутся для генерации значения из распределения type.
- **3.2.5.1.3.1.6.** laplaceGenerate() метод для генерации значения из распределения Лапласа.
- **3.2.5.1.3.1.7.** studentGenerate() метод для генерации значения из распределения Стьюдента.

#### 3.2.5.2. Директория src

#### 3.2.5.2.1. Поддиректория PAINTINGS

#### 3.2.5.2.1.1. Класс Drawable

**3.2.5.2.1.1.1.** toJson() - виртуальный метод, который должны реализовать все потомки. Преобразует параметры графического элемента в формат JSON для последующей визуализации с помощью скрипта на Python.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

**3.2.5.2.1.1.2.** ~Drawable() - виртуальный деструктор для корректного освобождения ресурсов при удалении объектов с помощью указателя на базовый класс.

#### 3.2.5.2.1.2. Класс Grap

- **3.2.5.2.1.2.1.** title поле заголовка графика
- **3.2.5.2.1.2.2.** xLabel поле подписи заголовка оси абсцисс
- **3.2.5.2.1.2.3.** уLabel поле подписи заголовка оси ординат
- **3.2.5.2.1.2.4.** \_configPath поле пути к конфигурационному файлу
- **3.2.5.2.1.2.5.** output Path поле пути к файлу вывода изображения.
- **3.2.5.2.1.2.6.** \_ objects вектор указателей на объекты Drawable.
- **3.2.5.2.1.2.7.** Graph() конструктор, принимающий информацию о графике и путях к файлам.
- **3.2.5.2.1.2.8.** saveConfig() метод, сохраняющий конфигурацию графика в JSON-файл.
- **3.2.5.2.1.2.9.** addObject() метод для добавления нового графического элемента в коллекцию.
- **3.2.5.2.1.2.10.** draw() метод, вызывающий Руthon-скрипт для отрисовки графика на основе сохраненной конфигурации.

#### 3.2.5.2.1.3. Класс Scatter

- **3.2.5.2.1.3.1.** points вектор пар координат абсцисс и ординат.
- **3.2.5.2.1.3.2.** color цвет точек
- **3.2.5.2.1.3.3.** pointSize размер точек.
- **3.2.5.2.1.3.4.** transparency прозрачность точек.
- **3.2.5.2.1.3.5.** Scatter() конструктор, принимающий коллекцию точек и параметры отображения.
- **3.2.5.2.1.3.6.** toJson() реализация метода базового класса, преобразующая параметры точечного графика в JSON-формат.

#### 3.2.5.2.1.4. Класс Line

**3.2.5.2.1.4.1.** Коэффициенты линейной функции: k, b.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

- **3.2.5.2.1.4.2.** color цвет линии
- **3.2.5.2.1.4.3.** thickness толщина.
- **3.2.5.2.1.4.4.** transparency прозрачность линии.
- **3.2.5.2.1.4.5.** Line() конструктор, принимающий коэффициенты линейной функции и параметры отображения.
- **3.2.5.2.1.4.6.** toJson() реализация метода базового класса, преобразующая параметры линии в JSON-формат.

#### 3.2.5.2.1.5. Класс HorizontalLine

- **3.2.5.2.1.5.1.** у ордината линии.
- **3.2.5.2.1.5.2.** min x левая граница линии
- **3.2.5.2.1.5.3.** max x правая граница линии
- **3.2.5.2.1.5.4.** color цвет линии
- **3.2.5.2.1.5.5.** \_ thickness толщина.
- **3.2.5.2.1.5.6.** transparency прозрачность линии.
- **3.2.5.2.1.5.7.** HorizontalLine() конструктор, принимающий координаты и параметры отображения.
- **3.2.5.2.1.5.8.** toJson() реализация метода базового класса, преобразующая параметры линии в JSON-формат.

#### 3.2.5.2.1.6. Класс VerticalLine

- **3.2.5.2.1.6.1.** х: абсцисса линии.
- **3.2.5.2.1.6.2.** min x нижняя граница линии
- **3.2.5.2.1.6.3.** max x верхняя граница линии
- **3.2.5.2.1.6.4.** color цвет линии
- **3.2.5.2.1.6.5.** thickness толщина.
- **3.2.5.2.1.6.6.** transparency прозрачность линии.
- **3.2.5.2.1.6.7.** VerticalLine() конструктор, принимающий координаты и параметры отображения.
- **3.2.5.2.1.6.8.** toJson() реализация метода базового класса, преобразующая параметры линии в JSON-формат.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 3.2.5.2.1.7. Класс FunctionPlot

- **3.2.5.2.1.7.1.** \_points: вектор пар координат абсцисс и ординат аргумента и значение функции от аргумента.
- **3.2.5.2.1.7.2.** color цвет точек
- **3.2.5.2.1.7.3.** \_ pointSize размер точек.
- **3.2.5.2.1.7.4.** transparency прозрачность точек.
- **3.2.5.2.1.7.5.** FunctionPlot() конструктор, принимающий функцию, диапозон аргументов, количество точек и параметры отображения.
- **3.2.5.2.1.7.6.** toJson() реализация метода базового класса, преобразующая функцию в JSON-формат.

#### **3.2.5.2.1.8.** Модуль drawer.py

- **3.2.5.2.1.8.1.** Drawer класс, содержащий методы для отрисовки графических элементов
- **3.2.5.2.1.8.2.** draw line() метод для отрисовки линий
- **3.2.5.2.1.8.3.** draw points() метод для отрисовки точечных графиков
- **3.2.5.2.1.8.4.** draw function() метод для отрисовки функций
- **3.2.5.2.1.8.5.** main() основная функция, читает JSON-файл и создает графическое PNG представление графических элементов.

#### 3.2.5.2.2. Метод main()

Метод инициализирует необходимые компоненты (FileParser и Metrics).

Далее загружается конфигурационный JSON-файл, соответствующий выходному файлу, появляющегося при загрузке пользователем опций экспериментов.

Полученная конфигурация проходит валидацию при помощи validateJson() из utils.h.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

Далее для каждого метода регрессии main() проводит многопоточный сеанс с параметрами, введенными пользователем для конкретно этого метода, экспериментов при помощи стандартной библиотеки futures, состоящий из загрузки данных, добавления шума, использования метода обнаружения аномальных наблюдений и расчет параметров метода регрессии. Результат одного процесса, запущенного параллельно с остальными, является класс ExperimentResult из utils.h с метриками детекции и регрессии. Затем для каждого уровня шума для каждого метода регрессии вычисляются среднием показатели метрик с помощью calculateAverage() и сохраняются в формате, следующего пункту 3.4 и приложению 1.

Для визуализации изображений, которые в дальнейшем отправятся в пользовательский интерфейс, используется основная метрика — среднеквадратическая ошибка.

Для их создания полученная зависимость метрики от количества шума оборачивается вокруг Scatter объекта из PAINTINGS/Scatter.hpp и в график добавляется данный объект. Полученная конфигурация графика передается Python командам, сохраняющий требуемые изображения в формате, следующего пункту 3.4. Пример сохраненного изображения находится в Приложении 2.

#### 3.3. Организация входных данных

Организация входных данных соответствует организации выходных JSON-файлов с описанием моделей, изложенной в п. 3.3. ««Разработка программного комплекса для исследования влияния аномальных наблюдений на точность прогнозирования в регрессионных моделях». Пояснительная записка» (RU.17701729.11.04-01 ПЗ 02-1).

#### 3.4. Организация выходных данных

Организация выходных данных соответствует требованиям к организации выходных данных, изложенных в п. 4.1.2. ««Разработка программного комплекса для

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

исследования влияния аномальных наблюдений на точность прогнозирования в регрессионных моделях». Техническое задание» (RU.17701729.11.04-01 T3 01-1).

# 3.5. Описание выбора технических и программных средств

Для разработки деталей обнаружения аномалий и визуализации результатов был выбран смешанный подход с использованием языков программирования C++ и Python. Подобное решение позволило совместить преимущества производительности языка C++ и большой функционал визуализации Python.

Анализ методов регрессии, добавление шума во входные данные, методы машинного обучения и расчет метрик для оценки качества методов регрессии и обнаружения аномальных наблюдений реализовано на С++. Выбор этого языка обусловлен потребностью эффективных вычислений и обработки больших объемов данных. Использующийся стандарт С++17 позволяет использовать механизм многопоточности, за счет чего процесс проведения и анализа экспериментов ускоряется в десятки раз.

Для построения системы сборки проекта использован СМаке версии 3.14, который предоставляет кроссплатформенность и гибкую настройку процесса сборки. Это позволяет собирать проект на различных операционных системах без изменения исходного кода. Для работы с данными в формате JSON используется библиотека nlohmann/json как самая надежная и удобная библиотека для работы с этим форматом.

Визуализация результатов имплементирована при помощи языка программирования Python и библиотек matplotlib и numpy. Данная библиотека предоставляет удобный функционал для создания графиков зависимостей ошибки регрессии от уровня шума. Взаимодействие между модулями C++ и Python происходит по средствам файловой системы — программа на C++ генерирует конфигурации для изображения, а модуль Python их обрабатывает.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### 4. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

#### 4.1. Ориентировочная экономическая эффективность

Приложение «MSnOutliers» представляет образовательную и исследовательскую ценность, особенно в сфере изучения методов статистического анализа и машинного обучения. Экономическая эффективность проекта определяется повышением эффективности образовательного процесса и исследовательской деятельности.

# 4.2. Предполагаемая потребность

Потребность в инструменте обусловлена интересом к алгоритмам машинного обучения, в том числе и методов обнаружения аномальных наблюдений, в различных областях, и статистическим методам регрессии. Особую ценность представляет возможность визуализировать и проанализировать эффективность методов регрессии и их чувствительность к искажению целевой переменной. Это делает приложение полезным в образовательном смысле.

Инструмент помогает пользователям тоньше понять принципы работы алгоритмов машинного обучения и статистических методов. С помощью полученных программой результатов пользователь сможет выбрать оптимальный метод для своей задачи.

# 4.3. Экономические преимущества разработки по сравнению с отечественными и зарубежными аналогами

Существующие решения для анализа методов регрессии и влияния аномальных наблюдений на них такие как ELKI, auditor, outliers или scikit-learn обладают рядом ограничений и недостатков для поставленной задачи:

- 1) Данные инструменты обычно сфокусированы на решение только одной из задач обнаружения аномальных наблюдений и построения методов регрессии.
- 2) Не моделируются различные виды систематических и случайных аномальных наблюдений.
- 3) У большинства методов отсутствуют подробная визуализация и/или

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

подробные отчеты по каждому запущенному методу.

- 4) Не поддерживают многопоточные эксперименты с выбранными различными параметрами и гиперпараметрами.
- 5) Не интегрированы в единое решение.

Разработанный инструмент «MSnOutliers» предоставляет следующие возможности, демонстрирующие экономические преимущества разработки:

- 1) Комплексный подход к программе от генерации данных с шумом до метрик качества.
- 2) Возможность создания шума различного типа.
- 3) Эффективная многопоточная архитектура для запуска параллельных экспериментов.
- 4) Все метрики качества обнаружения аномальных наблюдений и методов регрессии, а также результаты визуализации методов укомплектованы в одной директории для удобного использования.

Таким образом, «MSnOutliers» дает более глубокое понимание влияния аномальных наблюдений на методы регрессии и принимать более обоснованные решения при выборе методов работы с реальными данными.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

#### ПРИЛОЖЕНИЕ 1

#### СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Библиотека "nlohmann/json" [Электронный ресурс] / Niels Lohmann Режим доступа: https://github.com/nlohmann/json, свободный.
- 2. Библиотека "matplotlib" [Электронный ресурс] / Matplotlib Development Team Режим доступа: https://matplotlib.org, свободный.
- 3. Библиотека "numpy" [Электронный ресурс] / NumPy Development Team Режим доступа: https://numpy.org/, свободный.
- 4. Система сборки "CMake" [Электронный ресурс] / Kitware Inc. Режим доступа: https://cmake.org/, свободный.
- 5. «Разработка программного комплекса для исследования влияния аномальных наблюдений на точность прогнозирования в регрессионных моделях». Техническое задание (ГОСТ 19.201-78).
- 6. «Разработка программного комплекса для исследования влияния аномальных наблюдений на точность прогнозирования в регрессионных моделях». Пояснительная записка (RU.17701729.11.04-01 ПЗ 02-1) (ГОСТ 19.404-79).
- 7. ГОСТ 19.201-78: Техническое задание. Требования к содержанию и оформлению. // Единая система программной документации. М.: ИПК Издательство стандартов, 2001.

| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |  |
|------------------------------|--------------|--------------|--------------|--------------|--|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |  |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |  |

# ПРИЛОЖЕНИЕ 2

Пример выходного файла: out\_LSM\_group0.png



| Изм.                         | Лист         | № докум.     | Подп.        | Дата         |
|------------------------------|--------------|--------------|--------------|--------------|
| RU.17701729.11.04-01 РП 03-1 |              |              |              |              |
| Инв. № подл.                 | Подп. и дата | Взам. инв. № | Инв. № дубл. | Подп. и дата |

# ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

|                         | Лист регистрации изменений |             |                   |                        |           |            |                                           |       |          |
|-------------------------|----------------------------|-------------|-------------------|------------------------|-----------|------------|-------------------------------------------|-------|----------|
| Номера листов (страниц) |                            |             | Всего<br>листов № | Входящий<br>№          |           | Лот        |                                           |       |          |
| И<br>3<br>м             | Измен<br>енных             | Замен енных | Новы<br>х         | Анну<br>лиров<br>анных | (страни д | докумен та | сопроводи<br>тельного<br>докум. и<br>дата | Подп. | Дат<br>а |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |
|                         |                            |             |                   |                        |           |            |                                           |       |          |