

(19) RU⁽¹¹⁾ 2 180 514⁽¹³⁾ С1
(51) МПК⁷ А 61 В 5/01

РОССИЙСКОЕ АГЕНТСТВО
ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ
ФЕДЕРАЦИИ

- (21), (22) Заявка: 2001101121/14, 15.01.2001
(24) Дата начала действия патента: 15.01.2001
(46) Дата публикации: 20.03.2002
(56) Ссылки: RU 2122208 С1, 20.11.1998. RU 2131700 С1, 20.06.1999. RU 2036659 С1, 09.06.1995. US 5101814 A, 07.04.1992. US 5119819 A, 09.06.1992. US 5139023 A, 18.08.1992.
(98) Адрес для переписки:
119991, Москва, ул. Косыгина, 4, ИХФ РАН,
патентный отдел

- (71) Заявитель:
Институт химической физики РАН им. Н.Н.
Семенова
(72) Изобретатель: Шмелев В.М.,
Бобылев В.М.
(73) Патентообладатель:
Шмелев Владимир Михайлович,
Бобылев Владимир Михайлович

(54) СПОСОБ НЕИНВАЗИВНОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ГЛЮКОЗЫ

(57) Реферат:

Изобретение относится к области медицины, а именно к неинвазивному мониторингу концентрации глюкозы в крови человека. Определяют концентрацию глюкозы в крови с помощью измерительного устройства, при этом проводят непрерывный мониторинг концентрации глюкозы в крови путем измерения в области поверхностных вен головы тепловых потоков датчиком измерительного устройства, а концентрацию глюкозы (X_g^*) определяют по формуле $X_g = X_1^* + X_2^*$, где $X_1^* = W_{\text{тн}}(s)X_t^*$, $X_2^* = K_n W^m(s)X_{\text{тн}}^*$, где X_t^* - безразмерное отклонение температуры от установившегося значения, $X_{\text{тн}}^*$ - безразмерное отклонение теплового потока от установившегося

значения, $W_{\text{тн}}(s) = 1 / (T_{\text{тн}} s + 1)$ - передаточная функция концентрации глюкозы в крови по температуре и тепловому потоку, $T_{\text{тн}}$ - экспериментально определяемая постоянная времени переходного процесса, K_n - экспериментально определяемый безразмерный коэффициент, $s = d/dt$ - оператор дифференцирования. В качестве датчиков температуры используют Z - термисторы, которые прижимают к поверхности головы с помощью упругого элемента и изолируют от внешней среды тепловой изоляцией, а сигнализацию о концентрации глюкозы осуществляют с помощью тонального сигнала и дисплея. Способ обеспечивает повышение точности определения концентрации глюкозы в крови. Кроме того, он прост в исполнении. 2 з.п. ф-лы, 2 ил., 2 табл.

R
U
2
1
8
0
5
1
4
C
1

R U 2 1 8 0 5 1 4 C 1

(19) RU (11) 2 180 514 (13) C1
(51) Int. Cl.⁷ A 61 B 5/01

RUSSIAN AGENCY
FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 2001101121/14, 15.01.2001

(24) Effective date for property rights: 15.01.2001

(46) Date of publication: 20.03.2002

(98) Mail address:
119991, Moskva, ul. Kosygina, 4, IKhF RAN,
patentnyj otdel

(71) Applicant:
Institut khimicheskoy fiziki RAN im. N.N.
Semenova

(72) Inventor: Shmelev V.M.,
Bobylev V.M.

(73) Proprietor:
Shmelev Vladimir Mikhajlovich,
Bobylev Vladimir Mikhajlovich

(54) METHOD FOR DETERMINING GLUCOSE CONCENTRATION IN NONINVASIVE WAY

(57) Abstract:

FIELD: medicine. SUBSTANCE: method involves determining blood glucose concentration by means of measuring instrument. Continuous blood glucose concentration monitoring is carried out by measuring heat flows in the area of head superficial veins by means of measuring instrument transducer. Glucose concentration (X_g) is calculated from a formula $X_g = X_1 + X_2$, where $X_1 = W_{Th}(s)X_{Th}$, $X_2 = K_hW_{Th}(s)X_{Th}$, where X_{Th} - the dimensionless temperature from steady state value, X_{Th} - the dimensionless heat flow deviation from

steady state value, $W_{Th}(s) = 1/(T_{Th} \times S+1)$ is the transition function of blood glucose concentration with respect to temperature and heat flow, T_{Th} is the experimentally stated transient process time constant K_h is the experimentally stated dimensionless coefficient, $s = d/dt$ is the differentiation operator. Z- thermistors are used as temperature pickups pressed against head surface by means of elastic member and insulated from ambient space by means of heat insulation members. Glucose concentration information is represented by means of tonal signal and display unit. EFFECT: enhanced accuracy of measurements. 3 cl, 2 dwg, 2 tbl

R
U
2
1
8
0
5
1
4

C
1

R
U
2
1
8
0
5
1
4
C
1

R U 2 1 8 0 5 1 4 C 1

Изобретение относится к области медицины, а именно к неинвазивному мониторингу концентрации глюкозы в крови.

В настоящее время с целью диагностики сахарного диабета определяют концентрацию глюкозы в крови человека либо путем проведения биохимического анализа некоторого количества взятой у пациента крови в условиях клинической лаборатории, либо с помощью прибора глюкометра, снабженного чувствительной к глюкозе крови тест-полоской с помещенной на ней каплей крови пациента (инвазивный метод) (Л.Г. Мазовецкий, В.К. Беликов. Сахарный диабет, М.: Медицина, 1987). На основании результатов определения концентрации глюкозы в крови упомянутым методом диагностируют сахарный диабет.

Этот метод основан на необходимости забора крови у пациента.

Известен способ для неинвазивного определения глюкозы в частях человеческого тела (патент США 5.795.305 от 18.08.98 US Class 60/549; 600/316). Способ основан на определении с помощью измерительного устройства температуры и теплоизлучения человеческого тела (на поверхности и в полостях тела) и наличии корреляции между концентрацией глюкозы в крови и температурой тела. Соответствующий алгоритм позволяет преобразовать данные, полученные при измерении температуры, в значения концентрации глюкозы в частях человеческого тела и в крови.

Недостатком этого способа является недостоверность определения текущей концентрации глюкозы в крови человека. В первую очередь, это связано с использованием феноменологически не обоснованного алгоритма связи динамических параметров измерения - температуры, теплоизлучения и концентрации глюкозы, основанного на установлении корреляционных зависимостей переменных на базе линейного регрессионного анализа. Этот алгоритм не опирается на математическую модель углеводного обмена, не учитывает влияния индивидуальных факторов на изменения температуры. Алгоритм связывает только текущую концентрацию глюкозы в крови с текущей температурой и не позволяет осуществлять упреждающую сигнализацию об опасных концентрациях глюкозы в крови. Кроме того, в указанном способе и алгоритме вычислений не измеряется и не используется кондуктивный поток тепла от тела человека.

Наиболее близким аналогом (прототипом) является способ неинвазивного измерения концентрации глюкозы в крови, предусматривающий облучение кровеносных сосудов коллимированным излучением полупроводникового лазера, в котором регистрируют поглощенное, рассеянное и диффузионно отраженное кровью излучение измерительным устройством, включающим блок интеграции, детектор, подключенный к аналогово-цифровому преобразователю, дисплей и др. (RU 2122208 С1, кл. G 01 N 33/49, A 61 В 5/00, п.20.11.98).

Известный способ-прототип позволяет осуществлять неинвазивное измерение концентрации глюкозы в крови, что является несомненным достоинством, но имеет ряд недостатков:

1) отличается сложностью конструкции

используемого устройства и сложностью его применения;

2) не позволяет достичь желаемой точности при измерении концентрации глюкозы в крови;

3) не позволяет осуществлять упреждающую сигнализацию об опасных нарушениях углеводного обмена - пороговых повышении или понижении концентрации глюкозы в крови;

4) не позволяет осуществлять непрерывный мониторинг концентрации глюкозы в крови.

Задачей предлагаемого изобретения является создание неинвазивного способа определения концентрации глюкозы в крови, который позволяет повысить точность определения, осуществлять непрерывный мониторинг концентрации глюкозы в крови, осуществлять упреждающую сигнализацию об опасных нарушениях углеводного обмена - пороговых повышении или понижении концентрации глюкозы в крови, и будет отличаться простотой и надежностью.

Решение поставленной задачи достигается предлагаемым способом неинвазивного определения концентрации глюкозы в крови, включающим использование измерительного устройства, в котором проводят непрерывный мониторинг концентрации глюкозы в крови путем измерения в области поверхностных вен головы температуры тела и кондуктивных тепловых потоков с помощью датчиков измерительного устройства, а концентрацию глюкозы (X^*g) определяют по формуле:

$$X^*g = X^*_1 + X^*_2,$$

где $X^*_1 = W_{TP}(s)X^*_T$, $X^*_2 = K_P W_{TP}(s)X^*_P$,

где X^*_T - безразмерное отклонение температуры от установленвшегося значения,

35 X^*_P - безразмерное отклонение теплового потока от установленвшегося значения,

$W_{TP}(s) = 1/(T_{TP}s + 1)$ - передаточная функция концентрации глюкозы в крови по температуре и тепловому потоку.

40 K_P - экспериментально определяемый безразмерный коэффициент,

$s = d/dt$ - оператор дифференцирования,

Т_{TP} - экспериментально определяемая 45 постоянная времени переходного процесса.

В качестве датчиков температуры используют Z-термисторы, которые фиксируют на поверхности головы с помощью упругого элемента и изолируют от внешней среды тепловой изоляцией.

Сигнализацию о концентрации глюкозы осуществляют с помощью тонального сигнала и дисплея.

Предлагаемый способ был разработан на основе теоретических и экспериментальных исследований процесса биохимического превращения глюкозы в крови человека с помощью измерений температуры и тепловых потоков вблизи головного мозга в области поверхностных вен головы, то есть в областях максимально приближенных к энергетическому источнику интенсивного биохимического превращения глюкозы - головному мозгу. В основу этих исследований были положены известные феноменологические представления об определяющей роли центральной нервной системы в обеспечивающем необходимый уровень активности обменных процессов управлении метаболизмом клеточных

объемов внутренних органов тела посредством регулирования интенсивности глюкозного обмена и температуры протекания биохимических превращений глюкозы в организме человека и, в частности, в его головном мозгу (Г.Ульмер, Ф.Вальдек, О.Гарт, Г.Тевс. Физиология человека. - М.: Мир, 1986, т.4, 312 с.). Связи этих процессов можно представить в виде функциональной схемы (см. фиг.1). При этом предполагалось, что заданное центральной нервной системой значение концентрации глюкозы в крови устанавливается по окончании свойственного большинству динамических характеристик организма человека аperiодического переходного процесса (Ю.Г.Антонов, С.И.Кефаренко, И.А.Микульская, И.К.Пароконная. Математическая теория системы сахара крови. - Киев: Наукова думка, 1971, гл. 2, Элементы теории, с. 15-26.). При проведении исследований применена компьютерная обработка получаемых экспериментальных данных для нахождения взаимосвязи таких параметров процесса, как значения температуры, теплового потока, их производных и временного смещения динамических значений температуры и концентрации глюкозы в крови при переходных процессах.

Принципиальным результатом проведенных исследований, является обнаружение функциональной связи концентрации глюкозы в крови G с температурой T , тепловым потоком F при выраженному проявлении принципа управляющего управления, результатом которого является опережающее изменение термических параметров при соответствующем изменении уровня концентрации глюкозы в крови:

$$G(t) = \Psi(T(t-\tau), F(t-\tau)),$$

где τ - время опережения. На основе экспериментального обследования пациентов установлено, что величина τ составляет порядка 10-30 минут и это означает, что предлагаемый способ позволяет с временным опережением 10-30 минут прогнозировать изменение концентрации глюкозы в крови и сигнализировать о приближении опасных состояний глюкозного обмена.

Было установлено, что измерение термических параметров в области головного мозга (в области поверхностных вен головы) в отличие от измерений в других частях человеческого тела дает более достоверную информацию, так как при этом устраняется дополнительное влияние на результаты измерений сложных биохимических процессов преобразований белков и жиров.

В результате применения способа было обнаружено влияние на измеряемые термические параметры некоторых индивидуальных факторов (общий тонус организма пациента, психологическое и физическое напряжение, напряженный мыслительный процесс, напряженность слуховых и зрительных центров при интенсивном восприятии информации и т.п.). Для учета подобных факторов при вычислении концентрации глюкозы крови проводилась предварительная персональная калибровка устройства для конкретного пациента с целью установления соответствующих постоянных алгоритма, учитывающих индивидуальное влияние указанных факторов на результаты

определения концентрации глюкозы в крови.

Для достоверного преобразования измеренных величин температуры и теплового потока в значения концентрации глюкозы крови человека разработан функциональный алгоритм $G = \Psi(T, F, W_i)$, построенный на основе функциональных связей, определяемых в результате решения системы дифференциальных уравнений, описывающих динамику рассматриваемого процесса с учетом индивидуальных факторов (W_i), влияние которых определяют на основе персональной калибровки системы измерения для конкретного пациента с использованием инвазивных методов и приборов, проводимой с целью определения зависимостей от времени температуры, теплового потока и концентрации глюкозы в крови, необходимых для построения функционального алгоритма.

Система дифференциальных уравнений динамики процессов изменения температуры, теплового потока и концентрации глюкозы крови в общем виде может быть представлена как

$$X_g^* = X_{g0} + X_{gT},$$

$$\text{где } X_{gT} = W_{T\Pi}(s)X_T,$$

$$X_{g\Pi} = K_\Pi W_{\Pi\Pi}(s)X_{\Pi},$$

$X_g^* = \Delta X_g / X_{g0}$ - безразмерное отклонение концентрации глюкозы в крови от установленвшегося значения,

$X_T^* = \Delta X_T / X_{T0}$ - безразмерное отклонение температуры от установленвшегося значения,

$X_{\Pi}^* = \Delta X_{\Pi} / X_{\Pi0}$ - безразмерное отклонение теплового потока от установленвшегося значения,

$X_{g0}, X_{T0}, X_{\Pi0}$ - установленшиеся значения соответственно концентрации глюкозы крови, температуры и теплового потока тела:

$$\Delta X_g = X_g - X_{g0}, \Delta X_T = X_T - X_{T0}, \Delta X_{\Pi} = X_{\Pi} - X_{\Pi0}.$$

X_g, X_T, X_{Π} - текущие значения концентрации глюкозы в крови, температуры и теплового потока,

$W_{T\Pi}(s) = 1/(T\Pi s + 1)$ - передаточная функция концентрации глюкозы в крови по температуре и тепловому потоку,

K_Π - экспериментально определяемый безразмерный коэффициент,

$$s = d/dt - оператор дифференцирования,$$

$T\Pi$ - экспериментально определяемая постоянная времени переходного процесса.

Предложенный способ подтвержден примерами.

Пример 1. Проводились измерения температуры и теплового потока над поверхностью вены головы *v.jugularis extera* и с использованием функционального алгоритма вычислялась концентрация глюкозы в крови у больного А. Параллельно проводились измерения концентрации глюкозы крови у этого больного диабетом инвазивным прибором ONE TOUCH. В начале сеанса измерений испытуемый пообедал. Результаты измерений и расчета приведены в таблице 1.

Полученное время опережения τ равнялось 10 минутам. Из сравнения результатов измерений концентрации глюкозы крови, определенных предложенным способом и инвазивным методом, видно, что они отличаются не более чем на 10%.

Пример 2. Проводились измерения температуры и теплового потока над

поверхностной веной головы v.jugularis extrema и с использованием функционального алгоритма вычислялась концентрация глюкозы в крови у пациента Б, не страдающего диабетом. Параллельно проводились измерения концентрации глюкозы крови у этого пациента инвазивным прибором ONE TOUCH. В начале сеанса измерений испытуемый выпил стакан сладкого чая. Результаты измерений и расчета приведены в таблице 2.

Время опережения τ равнялось 14 минутам. Из сравнения результатов измерений концентрации глюкозы крови, определенных предложенным методом и инвазивным методом, видно, что они отличаются не более чем на 10%.

Полученные нами экспериментальные данные позволили предложить способ упреждающей сигнализации об опасных состояниях глюкозного обмена, принципиально отличающийся от известных по локализации зон измерения и алгоритму пересчета измеренных температуры и теплового потока в концентрацию глюкозы в крови, по конструкции устройства и достигаемому результату.

На фиг. 2 представлена схема устройства для реализации предлагаемого способа.

Устройство содержит пружинный наголовник 1, датчик температуры и теплового потока 2 на основе алмазных термисторов TA-1 с тепловой изоляцией из эластичного материала пенополиуретана на упругом элементе 3, компьютерный модуль 4 измерительного устройства на базе Ноут-бука "Compad" с дисплеем 5 и устройством звуковой сигнализации 6.

Пружинный наголовник 1 фиксирует датчик 2 над поверхностью вены головы, например *v.jugularis extrema*, который прижимается и фиксируется с точностью 0,5-2,5 мм упругим элементом 3. Датчик измеряет температуру и тепловой поток и передает результаты измерений в компьютерный модуль 4, который формирует результаты измерений как функции времени, регистрирует их в памяти и преобразует их в значения текущей и прогнозируемой концентрации глюкозы крови, а также определяет время опережения τ , посредством использования функционального алгоритма и на основе результатов предварительной калибровки, отражает данные на дисплее 5 и формирует звуковой упреждающий тональный сигнал об опасных состояниях глюкозного обмена с помощью модуля звуковой сигнализации 6. Тепловая изоляция из эластичного материала защищает датчик от воздействия внешней среды и увеличивает точность измерения. Устройство требует периодической (1-2 раза в неделю) оценки и при необходимости корректирует калибровки персонально для конкретного пациента, в результате чего определяют эмпирические поправочные коэффициенты, которые вводятся в компьютерный модуль 4 и уточняют настройку устройства упреждающей сигнализации на требуемые уровни ее срабатывания, соответствующие, например, значениям концентрации глюкозы в крови 4 ммоль/л (нижний уровень) и 8 ммоль/л (верхний уровень). Оценку калибровки проводят путем измерения концентрации глюкозы в крови пациента каким-либо инвазивным глюкометром через время от

момента срабатывания сигнализации, равное определенному при первоначальной калибровке времени упреждения τ ,циальному организму этого пациента, и сравнения показанного на дисплее устройства значения концентрации глюкозы в крови с показанием инвазивного глюкометра. Корректировку калибровки и настройки сигнализации производят в том случае, когда различие показаний устройства и инвазивного глюкометра превысит допустимую величину, например 1 мМоль/л.

В качестве измерительного элемента температуры и теплового потока в устройстве, реализующем предлагаемый способ, может быть применен Z-термистор, который в отличие от NTC-термистора обладает более высокой чувствительностью и способностью фиксации некоторой заранее выбранной температуры в режиме изменения своих параметров, что дает возможность получить информацию о достижении концентрацией глюкозы в крови определенного заранее выставляемого порогового уровня, за пределами которого наступает угроза здоровью данного пациента. Применение Z-термистора обеспечивает также

25 возможность непосредственного преобразования изменения температуры в изменения частоты и амплитуды выходного напряжения (В.Д. Зотов. Z-термисторы, CHIP News, Т. 1(34), с. 37, 1999). Это существенно упрощает электронную схему и позволяет значительно снизить стоимость носимого пациентом устройства. В наиболее простом и дешевом варианте возможна выдача информации о достижении различных уровней концентрации глюкозы с помощью звуковых сигналов различной частоты.

30

35 Например, при достижении концентрацией глюкозы крови верхнего допустимого предела ее значений выдается высокочастотный звуковой сигнал, а при достижении нижнего предела - низкочастотный звуковой сигнал. Это существенно упрощает конструкцию устройства и дает возможность пациенту получать текущую упреждающую информацию о достижении концентраций глюкозы крови того или иного фиксированного уровня с целью принятия мер для его изменения.

40

45 Применение в устройстве Z-термистора позволяет с помощью простейшей схемы реализовать его работу в частотно-амплитудном режиме, то есть с изменением температуры и теплового потока пропорционально изменяются частота и амплитуда электрических импульсов. Чувствительность датчика при этом существенно выше по сравнению с датчиком, использующим NTC-термистор. Работа в амплитудно-частотном режиме позволяет использовать усилитель переменного тока, что

50 дает возможность достигнуть лучшего соотношения сигнал/шум и повысить стабильность работы устройства, а также упрощает интерфейс передачи данных в компьютерный модуль устройства.

55

При проведении современной интенсивной инсулинотерапии больного сахарным диабетом применение предлагаемого способа и упомянутого устройства в сочетании с изложенной методикой персональной калибровки, ее оценки и корректировки позволит осуществлять непрерывное слежение за состоянием глюкозного обмена в

RU 180514 C1

организме больного сахарным диабетом, с упреждением по времени сигнализировать об опасных отклонениях его от нормы, сократить количество заборов крови для анализа и расход дорогостоящих тест-полосок к глюкометрам более чем в 10 раз по сравнению с использованием для целей интенсивной инсулинотерапии обычных инвазивных глюкометров, когда пациент должен ежедневно проводить 5-7 заборов крови из пальца с использованием тест-полосок.

Использование реализующего заявленный способ устройства позволит осуществить непрерывный неинвазивный мониторинг состояния глюкозного обмена больного сахарным диабетом, супреждающую сигнализацию об опасных состояниях этого обмена при простоте конструкции устройства, низкой стоимости его производства и эксплуатации,носимом пациентом исполнении и высоких технико-эксплуатационных свойствах такого устройства.

Формула изобретения:

1. Способ неинвазивного определения концентрации глюкозы в крови, включающий использование измерительного устройства, отличающийся тем, что проводят непрерывный мониторинг концентрации

глюкозы в крови путем измерения в области поверхностных вен головы температуры тела и кондуктивных тепловых потоков с помощью датчиков измерительного устройства, а концентрация глюкозы (X_g^*) определяют по формуле $X_g = X_1^* + X_2^*$, где $X_1^* = W_{\text{тп}}(s)X_T^*$, $X_2^* = K_{\text{тп}}W_{\text{тп}}(s)X_{\text{тп}}^*$, где X_T^* - безразмерное отклонение температуры от установленного значения, $X_{\text{тп}}^*$ - безразмерное отклонение теплового потока от установленного значения, $W_{\text{тп}}(s) = 1/(T_{\text{тп}}s+1)$ - передаточная функция концентрации глюкозы в крови по температуре и тепловому потоку, $T_{\text{тп}}$ - экспериментально определяемая постоянная времени переходного процесса, $K_{\text{тп}}$ - экспериментально определяемый безразмерный коэффициент, $s = d/dt$ - оператор дифференцирования.

2. Способ по п. 1, отличающийся тем, что в качестве датчиков температуры используют Z-термисторы, которые фиксируют на поверхности головы с помощью упругого элемента и изолируют от внешней среды тепловой изоляцией.

3. Способ по пп. 1 и 2, отличающийся тем, что сигнализацию о концентрации глюкозы осуществляют с помощью тонального сигнала и дисплея.

30

35

40

45

50

55

60

R U
2 1 8 0 5 1 4
C 1

Таблица 1

Измеренная Температура, С	36.650	36.920	37.235	37.395	37.430	37.401	37.440
Рассчитанные Величины Концентрации Глюкозы Ммоль/л	2.4	5.6	9.0	10.5	10.9	10.7	11.0
Измеренные Величины Концентрации Глюкозы Ммоль/л	2.6	5.7	8.2	10.9	10.8	11.7	10.7

R U 2 1 8 0 5 1 4 C 1

R U 2 1 8 0 5 1 4 C 1

Таблица 2

Измеренная Температура, С	36.747	36.756	37.756	37.750	37.765	37.776	37.826
Рассчитанные Величины Концентрации Глюкозы Ммоль/л	4.2	4.3	4.3	4.3	4.4	4.6	5.2
Измеренные Величины Концентрации Глюкозы Ммоль/л	4.4	4.5	4.5	4.7	4.9	4.9	5.2

Измеренная Температура, С	36.874	36.921	36.918	36.891	36.783	36.705	36.668
Рассчитанные Величины Концентрации Глюкозы Ммоль/л	5.8	6.4	6.4	6.0	4.7	3.5	3.1
Измеренные Величины Концентрации Глюкозы Ммоль/л	5.4	5.8	5.7	5.4	4.7	3.5	3.1

R U 2 1 8 0 5 1 4 C 1

R U 2 1 8 0 5 1 4 C 1

R U 1 8 0 5 1 4 C 1

Т - температура

G - концентрация глюкозы в крови

M - метаболизм в клеточных объемах головного мозга

т - временное смещение при переходных процессах

U_T - сигнал управления терморегулированием

U_y - сигнал управления глюкозным обменом

Фиг.1

Фиг. 2

R U 2 1 8 0 5 1 4 C 1

Best Available Copy

THOMSON
*
DELPHION

RESEARCH
PRODUCTS
INSIDE DELPHION

[Logout](#)
[Help](#)
[Search](#)

[My Account](#)
[Products](#)
[Search: Quick/Number Boolean Advanced Derwent](#)

The Delphion Integrated View: INPADOC Record

Get Now: PDF | More choices...

Tools: Add to Work File: Create new Wor

View: Jump to: [Top](#)

Go to: [Derwent](#)

[Email](#)

>Title: **RU2180514C1: METHOD FOR DETERMINING GLUCOSE CONCENTRATION IN NONINVASIVE WAY**

Derwent Title: Method for determining glucose concentration in noninvasive way
[Derwent Record]

Country: RU Russian Federation

Kind: C1 Patent

Inventor: SHMELEV V.M.;
BOBYLEV V.M.;

Assignee: INSTITUT KHMICHESKOJ FIZIKI RAN IM. N.N. SEMENOVA
[News, Profiles, Stocks and More about this company](#)

Published / Filed: 2002-03-20 / 2001-01-15

Application Number:

IPC Code: A61B 5/01;

ECLA Code: None

Priority Number: 2001-01-15 RU2001000101121

Abstract: medicine. SUBSTANCE: method involves determining blood glucose concentration by means of measuring instrument. Continuous blood glucose concentration monitoring is carried out by measuring heat flows in the area of head superficial veins by means of measuring instrument transducer. Glucose concentration ((X^*g)) is calculated from a formula $X^*g = X^*1 + X^*2$, where $X^*1 = WThf(s) X^*T$, $X^*2 = KhfWThf(s)X^*hf$, where X^*T - the dimensionless temperature from steady state value, X^*hf - the dimensionless heat flow deviation from steady state value, $WThf(s) = 1/(TThf \times S+1)$ is the transition function of blood glucose concentration with respect to temperature and heat flow, $TThf$ is the experimentally stated transient process time constant Khf is the experimentally stated dimensionless coefficient, $s = d/dt$ is the differentiation operator. Z-thermistors are used as temperature pickups pressed against head surface by means of elastic member and insulated from ambient space by means of heat insulation members. Glucose concentration information is represented by means of tonal signal and display unit. EFFECT: enhanced accuracy of measurements. 3 cl, 2 dwg, 2 tbl

Family:

PDF	Publication	Pub. Date	Filed	Title
<input checked="" type="checkbox"/>	RU2180514C1	2002-03-20	2001-01-15	METHOD FOR DETERMINING GLUCOSE CONCENTRATION IN NONINVASIVE WAY

1 family members shown above