# MINIMAX STATE ESTIMATION UNDER BREGMAN DIVERGENCE

Maria Quadeer, Marco Tomamichel, and Christopher Ferrie (arXiv:1808.08984)

Centre for Quantum Software and Information, University of Technology, Sydney

## 1. What is quantum state tomography?



#### 2. Conventional estimation techniques



Direct inversion (DI): Suppose one measures an unknown quantum state in  $\mathbb{C}^2$  along the x, y and z directions. Assuming that each of the measurements are performed only once, let us suppose that each of the outcome is 'up' so that  $p_x = p_y = p_z = 1$ . Now, an estimator that would yield the same probabilities would be the one with the Bloch vector:  $(2p_x - 1, 2p_y - 1, 2p_z - 1) = (1, 1, 1)$ . This is an invalid quantum state as it lies outside the Bloch ball (and has negative eigenvalues).

Maximum likelihood estimation (MLE): A likelihood functional  $\mathcal{L}[\rho]: \mathcal{S}(\mathcal{H}) \mapsto [0,1]$  is the probability of observing a data set  $\mathbb{D}$  given that the system is in the state  $\rho \in \mathcal{S}(\mathcal{H})$ ,  $\mathcal{L}[\rho] = p(\mathbb{D}|\rho) = \prod_{i=1}^{N} (\operatorname{tr}[E_i\rho])^{n_i}$  where  $n_i$  is the number of times the i-th outcome is recorded in  $\mathbb{D}$ .  $\mathcal{L}[\rho]$  is to be maximized over  $\mathcal{S}(\mathcal{H})$  to obtain an estimate. In the above example,  $\mathcal{L}[\rho] = (1+r_x)(1+r_y)(1+r_z)/6^3$ , to be maximized under  $\|\vec{r}\| \leq 1$ . This implies that  $r_x = r_y = r_z = 1/\sqrt{3}$ , which corresponds to an estimator that is a pure state.

#### 4. Estimators, loss functions & risk

- An estimator is defined as the map  $\hat{\rho}: \mathcal{X} \mapsto \mathcal{S}(\mathcal{H})$ .
- The value of  $\hat{\rho}(x)$  is the estimate of  $\rho_{\theta}$  when the measurement outcome is X=x.
- To measure how good an estimator is one chooses a distance-measure —called the loss function, denoted as  $L(\rho_{\theta}, \hat{\rho}(x))$ .
- We choose Bregman divergence as the loss-function that generalizes both relative entropy and Hilbert-Schmidt distance.
- X is a random variable and to make sense of the loss we average it with respect to the conditional distribution of  $X-p(x|\theta)$  to obtain the risk of the estimator:

$$R(\rho_{\theta}, \hat{\rho}) = \int_{\mathcal{X}} \mathrm{d}p(x|\theta) L(\rho_{\theta}, \hat{\rho}(x)).$$

#### 5. Bregman divergence

Let  $f:[0,1]\mapsto \mathbb{R}$  be a strictly convex continuously-differentiable real-valued function. Then, the Bregman divergence between density matrices  $\rho,\sigma$  is defined as

$$D_f(\rho,\sigma) = \operatorname{tr} \left( f(\rho) - f(\sigma) - f'(\sigma)(\rho - \sigma) \right).$$

- Not a metric but  $D_f(\rho, \sigma) \ge 0$  with equality if and only if  $\rho = \sigma$ .
- Bregman divergence generalizes two important classes of distance-measures.
- Relative entropy obtained by choosing  $f: x \mapsto x \log x$ .
- Hilbert-Schmidt distance (Schatten 2-norm) obtained by choosing  $f: x \mapsto x^2$ .

#### 6. Bayes & Minimax estimator

- Risk is a function of  $\rho_{\theta}$ .
- There does not exist a unique estimator  $\hat{\rho}$  that will minimize risk for all  $\rho_{\theta}$ .
- There are two ways of solving this problem—either minimizing average risk or worst-case risk:

average risk: 
$$\int_{\Theta} d\pi(\theta) R(\rho_{\theta}, \hat{\rho})$$
 worst-case risk:  $\sup_{\theta} R(\rho_{\theta}, \hat{\rho})$  minimizing estimator: Bayes minimizing estimator: minimax

• Bayes estimator is the mean if the loss function is Bregman divergence.

#### 3. Bayesian mean estimation



Bayesian mean estimation (BME) allows one to update one's estimate in the light of new data (see Block 6).

## 7. How far can Bayesian estimation take us?

Result 1. For any estimator  $\hat{\rho}$ , there always exists a sequence of Bayes estimators such that the limit of the sequence performs at least as well as  $\hat{\rho}$ , i.e.

$$R(
ho_{ heta},\hat{
ho}) \geq R\Big(
ho_{ heta},\lim_{n o\infty}\hat{
ho}_{B}^{\pi_{n}}\Big), \quad orall heta \in \Theta.$$

(Generalization of the work of [1] to Bregman divergence.)

#### 8. Is there a Bayes estimator that is also minimax?

Choice of bad priors can always result in nonsensical estimates, but minimax analysis leads to a natural identification of priors.

Result 2. There always exists a sequence of priors such that the limit of the sequence maximizes the average risk of a Bayes estimator,

$$r(\pi,\hat{
ho}_B^{\pi}) = \int_{\Theta} \mathrm{d}\pi( heta) R(
ho_{ heta},\hat{
ho}_B^{\pi}),$$

and the limit of the respective sequence of Bayes estimators minimizes the worst-case risk, i.e., it is minimax. The limit of the sequence of priors is called a least favourable prior. (Generalization of the work of [1] to Bregman divergence.)

# 9. What is the measurement that minimizes the worst-case risk?

- A POVM that minimizes the worst-case risk is called a minimax POVM.
- In covariant state estimation, given a fixed state  $\rho_0$ , one is interested in estimating the states  $\rho_{\theta} \in \{V_g \rho_0 V_g^{\dagger}\}$ , where  $g \in G$  is a group element acting on the parameter space  $\Theta$ , and  $V_g$  is the unitary representation G acting on  $S(\mathcal{H})$ .

Result 3. Any covariant measurement is minimax for covariant state estimation. Moreover, if there exists a measurement  $\mathcal{P}_c$  which is covariant under a subgroup H of G such that  $\{V_h | h \in H\}$ , where  $V_h$  is the projective unitary representation of the subgroup H, forms a unitary 2-design, then  $\mathcal{P}_c$  is minimax.

• Also, we look at the simplest system of a single qubit (extending the results of [1] to Hilbert-Schmidt distance), and observe that every *spherical 2-design* in  $\mathbb{C}^2$  is a minimax POVM.

#### References

[1] T. Koyama, T. Matsuda, and F. Komaki. "Minimax Estimation of Quantum States Based on the Latent Information Priors". In: *Entropy* 19.11 (2017), p. 618.