Name:		
Permanent code:		
Place number:		

Directives:

- Write your name, permanent code, and place number.
- Read all the questions and answer directly on the questionnaire.
- Use only a pen or pencil. No documentation, calculator, phone, computer, or any other object allowed.
- The exam contains 8 questions for 110 points. 10 are bonus points.
- Be careful with time. The exam is conceived so that 1 minute corresponds to 1 point approximatively.
- This exam contains 17 pages, including 3 pages at the end for draft.
- Write legibly and detail your answers.
- You have 100 minutes to complete this exam.

BONNE CHANCE!

1	/ 20
2	/ 10
3	/ 15
4	/ 15
5	/ 10
6	/ 15
7	/ 15
8	/ 10
Total	/ 110

- 1. (20) Consider the functions echelonner and echelonner2 shown in Appendix A. The numerical type in Python is immutable and the use of the operation *= in this context creates a new instance, i.e. it does not mutate the existing instance.
 - a) (5) What is the value of x after the execution of the two following instructions:

```
x = [1,2,3]
echelonner( x, 5 )
```

b) (5) If x is not equal to [1,2,3], how is this possible that this implementation of echelonner changes the parameter sent by the function call?

							_	_										
c`) ((5)	What	is t	he v	zalue.	of 3	₹ afte	er the	execu	tion	of the	two	foll	owing	inst	ructi	ons:
•	, ,	· · ·	111111	10 0		arac	O	- 41		021000	CICII	OI HIL		1011	~ ,, ,,,,	III C		OIID.

$$x = [1,2,3]$$

echelonner2(x , 5)

d) (5) Explain why echelonner2 modifies or not the value of x:

2.	(10) The numbers of operations executed by algorithms A and B are $52n^2$ and $2n^3$, respectively. Determine n_0 such that A is better than B for all $n \ge n_0$.

<u>IFT2015</u>: Structures de données H15

3.	(15) Describe an algorithm to find the minimum and maximum values of n numbers that uses less than $3n/2$ comparisons. Hint: Try first to create a group of minimum candidates and a group of maximum candidates.

4.	(15) Write a recursive function that generates all subsets of a set of n elements T (without any repeat of any).

5.	(10) Consider the DynamicArray class saw in class and partially given in Appendix B. Modify the functiongetitem so that it implements the
	Python semantic of negative indexing.
	1 ython semantic of negative indexing.

<u>IFT2015</u>: Structures de données H15

6.	(15) Show how to use a stack S and a queue Q to generate all the possible subsets of a set of n elements T in a non recursive manner.

7.	(10) Describe an fast algorithm, in $O(n)$, to reverse a singly linked list (see the Interface of a List in Appendix C).

8. (15) Fill the array below by showing in each line the state changes of a corresponding array when we sort it using heapsort. Start with the initial heap. Draw on the next page the initial heap and subsequent alterations. (*NB. the number of lines in the array below does not necessarily represent the exact number needed to sort the values of its initial state*).

Initial heap =>

15	7	1	16	4	15	6	21	8

IF 12015: Structures de données H15					
Draw your heaps here :					

Appendix A: functions echelonner et echelonner 2

```
def echelonner( donnees, facteur ):
    for j in range( len( donnees ) ):
        donnees[j] *= facteur

def echelonner2( donnees, facteur ):
    for val in data:
        val *= facteur
```

Appendix B: DynamicArray

```
import ctypes
class DynamicArray:
    #return a pointer to a memory area
    #that can store c contiguous python objects
    def makeArray( self, c ):
        return( c * ctypes.py object )()
    #create an array of 1 element
    def __init__( self ):
       self. n = 0
        self. capacity = 1
        self._A = self._makeArray( self._capacity )
    #returns the number of elements in the array
    def len ( self ):
        return self. n
    #returns the capacity of the array
    def capacity( self ):
        return self._capacity
    #return the element at index k
    def getitem ( self, k ):
        if not 0 <= k < self._n:</pre>
            raise IndexError( 'index out of bounds' )
        return self. A[k]
    ( and so on... )
```

Appendix C : List

```
#ADT List "interface"
class List:
    def __init__( self ):
        pass
    #return the number of elements in List
    def __len__( self ):
       pass
    # convert a List into a string:
    # elements listed between brackets
    # separated by commas
    # size and capacity of the data structure
    # indicated when relevant
    def str ( self ):
       pass
    #add element at the end of list
    def append( self, element ):
        pass
    #remove the kth element
    def remove( self, k ):
        pass
    #find and return the rank of
    #element if in list, False otherwise
    def find( self, element ):
        pass
```

IFT2015 : Structures de données H15
Draft 1

IFT2015 : Structures de données H15
Draft 2

IFT2015 : Structures de données H15
Draft 3