Planejamento Dinâmico de Rotas para VANTs em Patrulha Naval

- UFRJ/COPPE/PESC
- CPS767 Algoritmos de Monte Carlo e Cadeias de Markov

- Aluno: Luiz Henrique Souza Caldas
- Prof.: Daniel Ratton Figueiredo

Introdução

- 4,5 milhões de km² de área marítima
- Necessidade de patrulha naval eficiente
- Uso de VANTs para reconhecimento e vigilância
- Necessidade de planejamento de rotas mais inteligente

Problema

- Missões de patrulha com inserção progressiva de alvos.
- Restrições operacionais:
 - Autonomia limitada
 - Alcance desigual dos sensores (radar e câmera)
- Objetivo: maximizar a inspeção de navios
- Formulação:
 - Variação do Problema do Caixeiro Viajante (TSP)
 - Inserção de novos pontos ao longo da missão
 - Reordenamento dinâmico da rota

Metodologia (simulação)

- VANT percorre rota pré-definida com linhas paralelas
- Rota de referência:
 - Número de linhas
 - Alcance do radar
- Sensores embarcados:
 - Radar (50 MN): detecta navios
 - Câmera (20 MN): confirma identificação
- Estados dos alvos:
 - Não detectado
 - Detectado (quando entra no radar)
 - Inspecionado (quando entra na câmera)
- Alvos estáticos

Metodologia (políticas)

- Passiva: segue a rota original
- Greed: reordena dinamicamente os alvos e waypoints, priorizando os mais próximos.
- Simulated Annealing: usa um método MCMC para otimizar a sequência de visita, buscando menor distância total.

Metodologia (simulated anneling)

- Inicia com uma permutação aleatória de navios detectados + waypoints restantes
- A cada iteração:
 - Escolhe dois pontos aleatórios da rota s
 - Inverte a ordem entre eles
 - Aceita nova rota s' se for **melhor** (menor distância f(s'))
 - Caso contrário, aceita com probabilidade: $P = e^{\frac{f(s') f(s)}{T}}$

- $T_i = T_0 \beta^i$: temperatura
 - $0 < \beta < 1$
 - T_0 : temperatura inicial
 - *i* : índice
- N_i : iterações em T_i
- Salva a melhor solução
- Cadeia de Markov:
 - Estados: permutações possíveis
 - Transições: inversões possíveis
 - Irredutível, aperiódica e simétrica.

Resultado (parâmetros)

- Simulação
 - Área de interesse: 300 × 300 MN
 - Velocidade do VANT: 300 nós
 - Sensores: radar (50 MN), câmera (20 MN)
 - Autonomia: 2400 MN
 - Navios: 10, 25 a 200, em incrementos de 25
 - Distribuição dos navios: aleatória e uniforme
 - 100 iterações
- Simulated Annealing:
 - $T_0 = 10$
 - $| \cdot T_{min} = 10^{-4} |$
 - $\beta = 0.9$
 - $N_i = 50$

Resultados (distância)

- Política passiva: distância constante (trajetória fixa)
- Greed e SA: aumentam a distância com o número de navios
- A partir de 100 navios, atingem o limite de autonomia
- Antes disso, Simulated Annealing percorre menos, indicando melhor otimização de trajeto

Resultados (detecção)

- Passiva: mantém taxa constante e geralmente melhor
- Greed e SA: desempenho semelhante até 75 navios
- Em cenários densos, greed detecta mais que SA
- A partir de 100 navios, todas sofrem queda → limitação da autonomia do VANT

Resultados (inspeção)

- Passiva: baixa taxa de inspeção (não desvia da rota)
- Greed e SA: desempenho semelhante até 75 navios
- Em cenários densos, greed inspeciona mais
- Queda geral ocorre por limite de autonomia do VANT

Resultados (tempo de execução)

Simulated Annealing:

- Cresce linearmente com o número de navios n
- Número de iterações não depende de *n*
- Custo da rota: O(n) por iteração

• Greed:

- Calcula distâncias em O(n)
- Ordena em $O(n \log(n))$
- Tempo desprezível (parece constante)

• Passiva:

• Tempo constante

Resultados (trajetórias)

Simulated Annealing: ajusta rota de forma mais otimizada

→ menor distância e menos cruzamentos

Conclusão

- Simulated Annealing foi superior à Greed em cenários menos densos (≤ 75 navios), em termos de distância percorrida
- Greed teve melhor desempenho geral na detecção e inspeção com baixo custo computacional
- Em cenários mais carregados, a **autonomia do VANT limitou** a eficácia das políticas ativas

Trabalhos Futuros

- Incluir dinâmica realista do VANT (manobras e aceleração)
- Considerar navios em movimento
- Paralelizar simulação e replanejamento em tempo real
- Explorar funções de custo mais elaboradas, que levem em consideração a exploração do ambiente

Obrigado