Math 635 Lecture 37

Thomas Cohn

4/16/21

Recall from last time: Let M be a compact, oriented, Riemannian manifold. Then the Laplacian on forms $\Delta: \Omega^k \to \Omega^k$ is $\Delta = \delta d + d\delta$. (Note that these are technically different d's and different δ 's, because d increases the degree and δ reduces it.) And we have the deRham complex

$$\cdots \xleftarrow{d}_{\delta} \Omega^{k-1} \xleftarrow{d}_{\delta} \Omega^k \xleftarrow{d}_{\delta} \Omega^{k+1} \xleftarrow{d}_{\delta} \cdots$$

where $d^* = \delta$, i.e., $\forall \alpha \in \Omega^{k-1}, \beta \in \Omega^k, \langle d\alpha, \beta \rangle_{\ell^2} = \langle \alpha, \delta\beta \rangle_{\ell^2}$.

Lemma:

- (1) $\delta^2 = 0$ (because $\delta^2 = (d^2)^*$)
- (2) $\Delta^* = \Delta$: $\forall \alpha, \beta \in \Omega^k$, $\langle \Delta \alpha, \beta \rangle_{\ell^2} = \langle \alpha, \Delta \beta \rangle_{\ell^2}$
- (3) $[\Delta, d] = 0, [\Delta, \delta] = 0$
- (4) $\Delta \alpha = 0$ iff $d\alpha = 0$ and $\delta \alpha = 0$

Proof (3): $(\delta d + d\delta)d = \delta dd + d\delta d$ and $d(\delta d + d\delta) = d\delta d + dd\delta = d\delta d$. So $[\Delta, d] = 0$. (Identical proof for $[\Delta, \delta] = 0$.) \Box

(4): \Leftarrow is obvious. For \Rightarrow , note that $\Delta \alpha = 0$ implies

$$0 = \langle \Delta \alpha, \alpha \rangle = \langle \delta d\alpha, \alpha \rangle + \langle d\delta \alpha, \alpha \rangle = \langle d\alpha, d\alpha \rangle + \langle \delta \alpha, \delta \alpha \rangle = ||d\alpha||_{\ell^2}^2 + ||\delta \alpha||_{\ell^2}^2$$

So $d\alpha = 0$ and $\delta\alpha = 0$. \square

General Things about Linear Differential Operators

Let $U \subseteq \mathbb{R}^n$, consider $C^{\infty}(U, \mathbb{C})$.

Defn: A differential operator P on $C^{\infty}(U,\mathbb{C})$ is of the form $\forall f \in C^{\infty}(U,\mathbb{C})$,

$$P(f) = \sum_{\alpha} c_{\alpha}(x) (D^{\alpha} f)(x) \quad \alpha \text{ multi-index with } |\alpha| \leq n \qquad D^{\alpha} = \frac{1}{i} \left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots \frac{1}{i} \left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}$$

(here, we're using $i = \sqrt{-1}$). Note that P is local – P(f)(x) only depends on f in a neighborhood of x.

On manifolds, on $C^{\infty}(M,\mathbb{C})$, linear differential operators are generated as a ring by multiplying by functions. For vector bundles/systems, we have $P: C^{\infty}(U,\mathbb{C}^r) \to C^{\infty}(U,\mathbb{C}^s)$, where $P = (P_{ij})_{s \times r}$, and P_{ij} is a scalar differential operator.

In the manifold setting, suppose we have two bundles \mathcal{E} and \mathcal{F} :

Consider $P: \Gamma(\mathcal{E}) \to \Gamma(\mathcal{F})$. Under local trivializations on the same $U \subseteq M$, we have $\Gamma(\mathcal{E}|_U) \cong C^{\infty}(U, \mathbb{C}^r) \cong \Gamma(\mathcal{F}|_U)$. So P is locally the Euclidean case.

We already know a bunch of examples!

Ex: $d: \Omega^k \to \Omega^{k+1}$ and $\nabla: \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E} \otimes T^*M)$ are differential operators of order 1.

The main invariant associated to a differential operator P is called its symbol. The symbol captures the top degree part of the operator. For an operator on $C^{\infty}(U,\mathbb{C})$, think of computing: take $x_0 \in U, \xi_0 \in T^*_{x_0}U$ (i.e. $(x_0,\xi_0) \in T^*U$). Pick χ,ρ functions, both $C_0^{\infty}(U,\mathbb{R})$ such that $\chi \equiv 1$ near x_0 and $d\rho_{x_0} = \xi_0$. Consider $P(\chi e^{i\tau\rho})(x_0)$ for $\tau \gg 1$. We get

$$P(\chi e^{i\tau\rho})(x_0) = \sum_{\substack{|\alpha| = m \stackrel{\text{def}}{=} \text{deg } P}} c_{\alpha}(x_0) D^{\alpha}(\chi e^{i\tau\rho}) + \text{lower degree terms}$$

Look for the highest power of τ on the right-hand side.

$$\tau^m e^{i\tau\rho(x_0)} \sum_{|\alpha|=m} c_{\alpha}(x_0) \underbrace{(\nabla \rho(x_0))^{\alpha}}_{\xi_1^{\alpha_1} \cdots \xi_n^{\alpha_n}} + \text{lower order terms in } \tau$$

Now, forget the τ and forget the exponential.

Defn: The symbol of a differential operator P is

$$\sigma_P(x_0, \xi_0) = \sum_{|\alpha| = m} c_{\alpha}(x_0) \xi^{\alpha} = \lim_{\tau \to \infty} e^{-i\tau \rho(x_0)} \frac{1}{\tau^m} P(\chi e^{i\tau \rho})(x_0)$$

Conclusion: On manifolds, $P: C^{\infty}(M, \mathbb{C}) \supset$, $\sigma_P: T^*M \to \mathbb{C}$ is well-defined. Specifically, it's a homogeneous polynomial in χ of degree M on each fiber.

Ex: Let $X \in \mathfrak{X}(M)$. Then $\sigma_{\mathcal{L}_X} : T^*M \to \mathbb{C}$ is $\sigma_{\mathcal{L}_X}(p,\xi) = i \langle \xi, X_p \rangle$.

Ex: $\Delta: C^{\infty}(M) \supset$, $\sigma_{\Delta}: T^*M \to \mathbb{C}$ is $\sigma_{\Delta}(p,\xi) = g^{ij}(p) \xi_i \xi_j = ||\xi||^2 \operatorname{Id}$. (Recall: this is from the definition of Δ in coordinates.)

If $P: \Gamma(\mathcal{E}) \to \Gamma(\mathcal{F})$,

Then for $(p,\xi) \in T^*M$, $\sigma_P(p,\xi) : \mathcal{E}_p \to \mathcal{F}_p$ is a linear map between the fibers.

Prop: If P and Q are differential operators such that $P \circ Q$ makes sense, then $\sigma_{P \circ Q} = \sigma_P \circ \sigma_Q$.

Defn: P is an elliptic operator iff $\forall (p,\xi)$ with $\xi \neq 0$, $\sigma_P(p,\xi)$ is invertible.

Ex: $P = \Delta$ is elliptic. $\sigma_{\Delta} = ||\xi||^2 \operatorname{Id}$, so it's invertible everywhere. Δ has an approximate inverse $G - \sigma_G(p, \xi) = \frac{\operatorname{Id}}{||\xi||^2}$. $\Delta \circ G - I$ and $G \circ \Delta - I$ are smoothing operators – they're very small.

We're skipping a lot of stuff here, but...

Thm: (Spectral Theorem of the Laplacian) Consider $\Delta : \Omega^k(M) \to \Omega^k(M)$, where M is a compact, oriented, Riemannian manifold. Then

- (1) $\mathcal{U}^k = \ker \Delta$ has finite dimension.
- (2) There's an orthonormal basis (in the ℓ^2 sense) of Ω^k , $\{\alpha_j\}$, and $0 \le \lambda_0 \le \lambda_1 \le \cdots \to +\infty$ s.t. $\Delta \alpha_j = \lambda_j \alpha_j$. In other words, we can think of Δ as an infinite matrix, that can be diagonalized by α_j and λ_j . We'll write $\forall \alpha \in \Omega^k$, $\alpha = \alpha^H + \sum_{\lambda>0 \text{ distinct }} \alpha_\lambda$. α^H is the harmonic piece $-\Delta \alpha^H = 0$, $\Delta \alpha_\lambda = \lambda \alpha_\lambda$. We define Green's operator $G(\alpha) = \sum_{\lambda>0} \frac{1}{\lambda} \alpha_\lambda$. So $(I \Delta \circ G)(\alpha) = G^H$.

Ex: For Δ on $C^{\infty}(S^2)$, we have $\lambda = k(k+1)$ with multiplicity 2k+1 (for $k \in \mathbb{Z}_{>0}$).