Contents

Al	Abstract			
A	know	rledgements	j	
1	Intr	oduction	1	
	1.1	Motivation	1	
	1.2	Research Question and Goals	2	
		1.2.1 Research Questions	2	
		1.2.2 Goals	3	
	1.3	Structure	3	
	1.4	GitHub repository	3	
2	Ron	nansh	4	
	2.1	Rhaeto-Romance	4	
	2.2	Romansh	5	
	2.3	Rumantsch Grischun	6	
		2.3.1 Lia Rumantscha	6	
		2.3.2 Rumantsch Grischun	6	
		2.3.3 Features	7	
		2.3.4 Today	7	
3	Con	npiling the Corpus	9	
	3.1	Introduction	9	
	3.2	Collecting the Data	9	
	3.3	Web Scraping	10	
	3.4	Building the Corpus	11	
		3.4.1 HTML Parsing	11	
		3.4.2 Document Alignment	12	
	3.5	-	13	
	3.6	Summary	15	
		3.6.1 Statistics	1 5	

4	Sent	tence Alignment	19
	4.1	Introduction	19
		4.1.1 Formal definition	19
	4.2	Method Overview	20
		4.2.1 Length Based	20
		4.2.2 Partial Similarity Based	20
		4.2.3 Translation based	21
		4.2.4 Hybrid models	21
		4.2.5 Summary	22
	4.3	More Recent methods	22
		4.3.1 Bleualign	22
		4.3.2 Vecalign	23
	4.4	Sentence Alignment Pipeline	24
		4.4.1 Tool of choice	24
		4.4.2 Pipeline	25
		-	25
			26
			27
	4.5	Results	28
5	Wor	rd Alignment	29
	5.1	5	29
	5.2		30
	3.2		30
			32
	5.3	Word Embaddings	33
	3.3		33
			34
			35
			36
			36
	5.4		37
	Э.т		37
			38
		3.4.2 Summary	,0
6	Gold	d Standard 4	1 0
	6.1	Introduction	1 0
	6.2	Sure and Possible Alignments	11
	6.3	Gold standard for German-Romansh	11

		6.3.1 Annotation tool	12
		6.3.2 Guidelines	12
		6.3.3 General priniciples	12
		6.3.4 Examples	13
	6.4	Flaws	16
7	Resu	ults 4	18
	7.1	Evaluation Metrics	18
	7.2	Baseline Systems	19
		7.2.1 fast_align	19
		7.2.2 eflomal	50
		7.2.3 Performance	50
	7.3	SimAlign	50
		7.3.1 Performance	51
	7.4	Discussion	52
		7.4.1 General Problems with Evaluation	54
	7.5	Summary	55
8	Con	cluding Words 5	56
	8.1	Goals	56
	8.2	Corpus Compliation	56
	8.3	Gold Standard	57
	8.4	Evaluation	57
	8.5	Future	57
Li	st of T	Tables 5	59
Li	st of I	Figures 6	50
Ll	St of 1	Listings	52
Bi	bliogr	raphy	53
A	Algr	ament Examples	7 0
	A. 1	Compounds	70
	A.2	Perfect—Perfect	71
	A.3	German Preterite-Romansh Perfect	73
	A.4	Double Negation	74
	A.5	Differing Word Order	74
	A 6	Summary	78

В	JSON examples	79
C	Aligning Romansh to Italian	83
	C.1 Examples	 83
	C.2 Summary	 86

Glossary

Graubünden The Canton of Grisons. 1, 5, 9, 56

HTML Hypertext Markup Language. A language containing display instructions for web browsers and the format in which web pages are usually saved . 10

JSON JavaScript Object Notation. A format for organizing data in a hierarchical form.

Standeskanzlei State Chancellery of Grisons. 9, 56

URL Uniform Resource Locator. A reference to an internet resource, a web address. 10

Acronyms

AER average error rate. 38, 48, 50, 51, 52, 54, 61

EM exepctation-maximization. 31

gen genitive. 45

HTML Hypertext Markup Language. 10, 11, 15

JSON JavaScript Object Notation. 11, 12, 13, 15, 56, 58, 79

NER named entity recognition. 2

NMT neural machine translation. 24, 27

part participle. 45

pl plural. 45

POS part of speech. 2, 43, 55

pres present. 45

SMT statistical machine translation. 23

URL Uniform Resource Locator. 27, 56

List of Tables

2.1	Examples for choosing the forms for Rumanstch Grischun	8
3.1	Description of the table corpus in corpus.db	14
3.2	Description of the table raw in corpus.db	14
3.3	Number of parallel documents per year	16
3.4	Number of documents per language and year	17
3.5	Twenty most frequent tokens in each language in the corpus	18
4.1	Parallel corpus in numbers	28
6.1	Translation examples of German compounds into Romansh	44
7.1	Word alignment quality of the baseline models	51
7.2	Word alignment quality using SimAlign	52
7.3	Comparison of the best performance of the three SimAlign methods	52

List of Figures

2.1	Map of the distribution of Rhaeto-Romance	5
3.1	Directory tree of corpus_builder	10
3.2	Directory scheme for saving the HTML files	11
3.3	Portion of automatically aligned press releases	12
3.4	Corpus creation pipeline	15
4.1	Sentence alignment pipeline	25
5.1	Word alignment example	29
5.2	Similarity matrix	37
5.3	Alignment matrix	37
5.4	The resulting word alignment	38
6.1	Aligning German compounds to a Romansh noun phrases	44
6.2	Aligning German perfect to Romansh perfect	44
6.3	Alignment of German preterite to Romansh perfect	45
6.4	Aligning a German present participle to a Romansh relative clause	45
7.1	Comparing precision between the systems for different dataset sizes	53
7.2	Comparing recall between the systems for different dataset sizes	53
7.3	Comparing AER between the systems for different dataset sizes	54
A.1	Word alignment example for the case of perfect tense in German and Ro-	
	mansh	71
A.2	Word alignment example with compounds	72
A.3	Word alignment example with compounds	72
A.4	Word alignment example for the case of perfect tense in German and Ro-	
	mansh	73
A.5	Word alignment example for the case of German preterite	74
A.6	Word alignment example for the case of German preterite	75
A.7	Word alignment example with a German separable verb in preterite	75
A.8	Word alignment example with Romansh double negation (na betg)	76

A.9	Word alignment example with Romansh double negation (na betg)	76
A.10	Word alignment example with differing word order	77
A.11	Word alignment example for a long sentence with differing word order	77
A.12	Word alignment example for a long sentence with differing word order	78
C.1	Word alignment example Romansh–Italian and Romansh–German	84
C.2	Word alignment example Romansh–Italian and Romansh–German	84
C.3	Word alignment example Romansh–Italian and Romansh–German	85
C.4	Word alignment example Romansh–Italian and Romansh–German	85
C.5	Word alignment example Romansh–Italian and Romansh–German	85

List of Listings

4.1	Excerpt from a file containing sentences for alignment	26
4.2	Excerpt from the file containing sentence pairs in German–Romansh	28
B.1	Example for a JSON file containing the press releases extracted from the	
	HTML files	79
B.2	Example for a JSON file containing aligned documents	80

Bibliography

Brown, Peter F. et al. (1993). "The Mathematics of Statistical Machine Translation: Parameter Estimation". In: *Computational Linguistics* 19.2, pp. 263–311. URL: https://aclanthology.org/J93-2003.

Pires, Telmo, Eva Schlinger, and Dan Garrette (July 2019). "How Multilingual is Multilingual BERT?" In: *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. Florence, Italy: Association for Computational Linguistics, pp. 4996–5001. DOI: 10.18653/v1/P19-1493. URL: https://aclanthology.org/P19-1493.

Appendix C

Aligning Romansh to Italian

Due to the nature of my research question, I virtually ignored in the course of this work the issue of word alignments using embeddings (i.e., SimAlign) between Romansh and Italian. Therefore, I would like to curtly attend this issue in this appendix part.

Romansh and Italian share many similarities. Both of them are Romance languages and some researchers even consider Romansh to be a part of the Italian dialect continuum (see Section 2.1).

Since 1-to-many alignments and differing word order are more challenging to model than 1-to-1 alignments and similar or identical word order—word order or 1-to-many alignments are not modeled by IBM Model 1, but only by higher models (Brown et al. 1993)—one might expect that it should be easier to word-align languages that are more similar in structure, word order and grammar. That is, word-aligning Romansh to Italian should be easier than aligning Romansh to German due to the higher similarity between the former languages. Further, when dealing with unseen languages, as in the case of Romansh, multilingual language models have been shown to favor language similarity and vocabulary overlaps (Pires, Schlinger, and Garrette 2019). All this gives rise to the assumption that word alignment for Romansh–Italian might perform better.

I randomly hand-picked a few examples¹ and compared SimAlign's performance on the pairs Romansh-Italian and Romansh-German in order to unempircally² test this notion.

C.1 Examples

Figure C.1 is an example for a word alignment that works perfectly both with Italian and with German. In Figure C.2³, word alignment works well with Italian and German exactly

¹The only precondition was that the sentences be short; Visualization for longer sentences leaves something to be desired.

²Obviously, a gold standard for Romansh-Italian would be needed.

³Apologies for the somewhat unreadable edges in Romansh–German

Figure C.1: Word alignment example Romansh–Italian and Romansh–German

Figure C.2: Word alignment example Romansh–Italian and Romansh–German

for the same Romansh words, and it is exactly the same words where SimAlign fails: Romansh *en quest connex* ("in this context/matter") is not aligned correctly, neither in German nor in Italian. The same applies for Romansh *vegn* (literally "come", but here part of the passive construction), which is misaligned both times. This is also the case in Figure C.3. The same words are aligned correctly with German and with Italian, but in both cases Romansh *chantun* ("canton") remains unaligned.

In Figure C.4 word alignment with German is even better than with Italian. Here, every alignment is correct, whereas in the Italian example, Romansh *schilar* ("tackle") is not aligned to Italian *affronatare*, which should have been the case.

Finally, Figure C.5 is an example for many misalignments. In the German example, SimAlign succeeds in aligning Romansh *la derasaziuna da infecziuns* to German *die Durchseuchung*, but the rest of the alignments are wrong. The Italian example is completely misaligned.

Figure C.5: Word alignment example Romansh–Italian and Romansh–German

C.2 Summary

From observing these very few hand-picked cases, SimAlign doesn't seem to perform better when aligning Romansh to Italian. This is in spite of the higher similarity between Romansh and Italian, compared with German.

One possible explanation for this is that what mostly influences performance is the quality of the embeddings. If the Romansh word is similar enough to any of the words (or subwords) in the language model, alignment will work, regardless of the target language. Take for example Figure C.1. Here, all of the Romansh words are reminiscent of other seen languages and alignment works perfectly. However, in the case of Figure C.3, a suitable embedding for the Romansh word *chantun* cannot be looked-up for some reason, hence the word remains unaligned in both cases.