Math 4242 Homework 3

- (1) Let $V = \mathbb{R}^3$ and $W = \mathbb{R}_{\leq 2}[x]$. Let $T(a, b, c) = a + b(x 1) + c(x 1)^2$. Is T linear? If so, identify a basis for V and W and write down the matrix
- (2) Consider the linear map $T: M_{2,2}(\mathbb{R}) \to \mathbb{R}^2$ given by

$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a - b, c + d)$$

Find a basis for Ker(T) and Img(T).

- (3) Suppose $T \in \text{End}(V)$ is an invertible map. Prove that if v_1, \dots, v_n is a
- (5) Suppose T ∈ End(V) is an invertible map. Prove that if v₁, ..., v_n is a basis, then Tv₁, ..., Tv_n is also a basis.
 (4) Prove that (a) (U + W)⁰ = U⁰ ∩ W⁰ (b) (U ∩ W)⁰ = U⁰ + W⁰.
 (5) Let T: ℝ³ → ℝ² defined by T(x, y, z) = (2x + 3y + 4x, 3x + 4y + 5z). Let e₁, e₂, e₃ denote the standard basis of ℝ³ and f₁, f₂ denote the standard basis of \mathbb{R}^2 . (a) Describe the linear functionals $T^*(f_1^*)$ and $T^*(f_2^*)$. (b) Write $T^*(f_1^*)$ and $T^*(f_2^*)$ as linear combinations of e_1^*, e_2^*, e_3^* .
- (6) Suppose U is a subspace of V, and $\pi: V \to V/U$ the quotient map. Consider the dual of the quotient map $\pi^* \in \text{Hom}((V/U)^*, V^*)$. Show that $\operatorname{Img}(\pi^*) = U^0$ and π^* is an isomorphism $(U/V)^* \cong U^0$.
- (7) OS 3.1.9
- (8) OS 3.1.17