## 18 Topologische Eigenschaften von Prävarietäten

**Lemma 42.** Für einen topologischen Raum X und  $U \subseteq X$  offen haben wir eine Bijektion

$$\{Y\subseteq U\ irred.\ abg.\}\longleftrightarrow \{Z\subseteq X\ irred.\ abg.\ mit\ Z\cap U\neq\emptyset\}$$
 
$$Y\longmapsto \overline{Y}\ (Abschluss\ in\ X)$$
 
$$Z\cap U\longleftrightarrow Z$$

*Proof.* Lemma 14:  $Y \subseteq X$  irreduzibel  $\Leftrightarrow \overline{Y} \subseteq X$  irreduzibel.

 $Y \subseteq U$  abgeschlossen  $\Leftrightarrow \exists A \subseteq X$  abgeschlossen:  $Y = U \cap A$ .

$$\Rightarrow Y\subseteq \overline{Y}\subseteq A\Rightarrow Y=U\cap \overline{Y}$$

Y irreduzibel in  $U \Rightarrow Y$  irreduzibel in X

 $\Rightarrow \overline{Y}$  irreduzibel nach 14

$$\Rightarrow Y \mapsto \overline{Y} \mapsto \overline{Y} \cap U = Y. \checkmark$$

 $\emptyset \neq Z \cap U \subseteq Z$  damit dicht da Z irreduzibel (Satz 13 ii. und v.)

Also ist die Abbildung  $\leftarrow$  wohldefiniert.

$$\Rightarrow \overline{Z \cap U} = Z$$

**Proposition 43.** Sei  $(X, \mathcal{O}_X)$  eine Prävarietät.

Dann ist X noethersch (insbesondere quasikompakt) und irreduzibel.

*Proof.* Sei  $X = \bigcup_{i=1}^n$  endliche offene aff. Überdeckung und  $X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$  eine absteigende Kette abgeschlossener Teilmengen.

 $\Rightarrow U_i \cap Z_1 \supseteq U_i \cap Z_2 \supseteq \cdots$ , ist eine absteigende Kette abgeschlossener Teilmengen von  $U_i$ 

 $\Rightarrow \forall i \ \exists n_i \in \mathbb{N}: \ U_i \cap Z_{n_i} = U_i \cap Z_{i+m}$  für alle  $m \in \mathbb{N}$ . Setzen wir  $n := \max n_i$ , so folgt:

 $\forall i = 1, \dots, n \ \forall m \ge n : \ U_i \cap Z_m = U_i \cap Z_{m+1}$ 

 $\Rightarrow (Z_i)_i$  wird stationär da  $Z_m = \bigcup_i U_i \cap Z_m$ .

X ist demnach noethersch.

X ist weiter irreduzibel:

Sei  $X = X_1 \cup \cdots \cup X_n$  die Zerlegung in irreduzible Komponenten.

Angenommen es wäre  $n \geq 2$ .

$$\Rightarrow \exists i_0 \in \{2, \dots, n\}: X_1 \cap X_{i_0} \neq \emptyset. \text{ (Andernfalls gilt: } X = X_1 \sqcup \underbrace{X \backslash X_1}_{=X_2 \cup \dots \cup X_n \text{ abg.}}, \text{ im Widerspruch}$$

dazu, dass X zusammenhängend ist.)

Sei ohne Einschränkung  $i_0 = 2$ . Sei  $x \in X_1 \cap X_2, x \in U \subseteq X$  offen, affin (d.h. affine Varietät).

U irreduzibel  $\Rightarrow \overline{U}$  (Abschluss in X)  $\subseteq X_j$  für ein  $j \in \{1, \dots, n\}$ 

**Jedoch**: Da  $x \in X_i \cap U \subseteq U$  irreduzibel ist, ist  $\underbrace{\overline{X_i \cap U}}_{\subseteq \overline{U} \subseteq X_i} = X_i, i = 1, 2$ 

 $\Rightarrow X_1, X_2 \subseteq X_j$ . Widerspruch zu maximale Komponente.