Elliptic curves and their moduli spaces Exercise sheet 10

Solutions by: Esteban Castillo Vargas and David Čadež

27. Juni 2024

Problem 1.

1.

- 2. If ϕ is divisible in L, then it is clearly divisible in $\operatorname{Hom}(T_l(E_1), T_l(E_2))$. Suppose ϕ is divisible by l in $\operatorname{Hom}(T_l(E_1), T_l(E_2))$. Then ϕ vanishes on $E_1[l]$, so by proposition 10.1 from the lectures we have that ϕ is already divisible by l.
- 3. If $\operatorname{End}^0(E)$ is a quaternion algebra, then $\operatorname{End}(E)$ is of rank 4 (its always free of rank ≤ 4). The map $\mathbb{Z}_l \otimes_{\mathbb{Z}} \operatorname{End}(E) \cong (\mathbb{Z}_l)^4 \to \operatorname{End}(T_l(E)) \cong M_2(\mathbb{Z}_l)$ (we used $T_l(E) \cong \mathbb{Z}_l$) is injective. By previous part invertible elements in $\mathbb{Z}_l \otimes_{\mathbb{Z}} \operatorname{End}(E)$ get mapped to invertible elements in $\operatorname{End}(T_l(E))$, so the map is also surjective.

Problem 2. By assumption both E_1 and E_2 have some nontrivial endomorphism, lets denote them by τ_1 and τ_2 . By assumption there is an isomorphism $\phi \colon \mathbb{Q}(\tau_1) \to \mathbb{Q}(\tau_2)$. It follows that $\phi(\tau_1) = a\tau_2 + b$. Since K is an imaginary-quadratic field, τ_1 and τ_2 satisfy equations $\tau_1^2 + d_1 = 0$ and $\tau_2^2 + d_2 = 0$ for some integers $d_1, d_2 > 0$.

$$0 = \phi(\tau_1)^2 + d_1 = a^2 \tau_2^2 + 2ab\tau_2 + b^2 + d_1 = -a^2 d_2 + 2ab\tau_2 + b^2 + d_1$$

Therefore ab = 0.

If a=0, then $b^2+d_1=0$ which doesn't have a solution for $b\in\mathbb{Q}$. So b=0. Then $a^2d_2=d_1$. Write $a=\frac{a_1}{a_2}\in\mathbb{Q}$. Then $a_1^2d_2=a_2^2d_1$ and $a_2\tau_1=\pm a_1\tau_2$. So there exists a nonconstant morphism from E_1 to E_2 , namely multiplication with $a_2\in\mathbb{Z}$.