FairCal: Fairness Calibration For Face Verification

Removing bias through clustering and calibration

Tiago Salvador^{1,3}, Stephanie Cairns^{1,3}, Vikram Voleti^{2,3}, Noah Marshall^{1,3}, Adam Oberman^{1,3}

¹ McGill University ² Université de Montréal ³ Mila

Bias in Al

Racial bias in a medical algorithm favors white Overcoming Racial Bias In AI Systems And Startlingly Even In patients over sicker black patients AI Self-Driving Cars AI expert calls for end to UK use of AI Bias Could Put Women's 'racially biased' algorithms Lives At Risk - A Challenge For Regulators Gender bias in Al: building Bias in Al: A problem recognized but fairer algorithms still unresolved Amazon, Apple, Google, IBM, and Microsoft worse at transcribing black people's voices than white people's with Al voice recognition, study finds Millions of black people affected by racial bias in health-care algorithms When It Comes to Gorillas, Google Photos Remains Blind Study reveals rampant racism in decision-making software used by US hospitals -General promised a fix after its photo-categorization software labeled black people as portlas in 2015. More than two and highlights ways to correct it. The Week in Tech: Algorithmic Bias Is Bad. Uncovering It Is Good. Google 'fixed' its racist algorithm by removing gorillas from its image-labeling tech Artificial Intelligence has a gender bias problem – just ask Siri The Best Algorithms Struggle to Recognize Black Faces Equally US government tests find even top-performing facial recognition systems misidentify blacks at rates five to 10 times higher than they do whites

Bias in Al

Racial bias in a medical algorithm favors white Overcoming Racial Bias In AI Systems And Startlingly Even In patients over sicker black patients AI Self-Driving Cars AI expert calls for end to UK use of AI Bias Could Put Women's 'racially biased' algorithms Lives At Risk - A Challenge For Regulators Gender bias in Al: building Bias in Al: A problem recognized but fairer algorithms still unresolved Amazon, Apple, Google, IBM, and Microsoft worse at transcribing black people's voices than white people's with Al voice recognition, study finds Millions of black people affected by racial bias in health-care algorithms When It Comes to Gorillas, Google Photos Remains Blind Study reveals rampant racism in decision-making software used by US hospitals -Georgie promised a fix after its oboto-categorization software labeled black negotie as gorillas in 2015. More than two years later, it has o't found one and highlights ways to correct it. The Week in Tech: Algorithmic Bias Is Bad. Uncovering It Is Good. Google 'fixed' its racist algorithm by removing gorillas from its image-labeling tech Artificial Intelligence has a gender bias problem – just ask Siri The Best Algorithms Struggle to Recognize Black Faces Equally US government tests find even top-performing facial recognition systems misidentify blacks at rates five to 10 times higher than they do whites.

Face Verification Problem

Given two images, decide if it is a genuine/imposter pair.

imposter pair

Baseline Approach

- · Measure the similarity between embeddings.
- · Threshold to obtain a binary classifier.

4

Bias in Face Verification

Predictive Equality

A binary classifier \widehat{Y} exhibits predictive equality for subgroups g_1 and g_2 if the classifier has equal FPRs for each subgroup,

$$\mathbb{P}_{(\boldsymbol{x}_1,\boldsymbol{x}_2)\sim\mathcal{G}_1}\left(\widehat{Y}=1\mid Y=0\right)=\mathbb{P}_{(\boldsymbol{x}_1,\boldsymbol{x}_2)\sim\mathcal{G}_2}\left(\widehat{Y}=1\mid Y=0\right).$$

Results for the FaceNet (Webface) model on the RFW dataset.

Goals and Related Work

Devise a post-hoc method that:

- Improves Accuracy
- · Achieves Fairness-calibration
- Achieves Predictive equality (equal FPRs)
- Does not require the sensitive attribute
- · Does not require additional training.

Our FairCal method achieves all of the above!

Methods	Improves Fairly accuracy calibrated		Predictive equality	Does not require :	Does not require additional training		
AGENDA	×	×	V	×	✓	×	
PASS	×	×	V	×	✓	×	
FTC	×	×	✓	×	✓	×	
GST	✓	×	V	×	×	✓	
FSN	✓	×	V	✓	✓	✓	
FairCal (Ours)	✓	✓	✓	V	✓	✓	

FairCal

Calibration Stage

Input: feature embeddings of a set of face images $\mathcal{Z}^{\mathsf{cal}}$

- 1. Apply the *K*-means algorithm to \mathcal{Z}^{cal} partitioning the embedding space \mathcal{Z} into *K* clusters $\mathcal{Z}_1, \ldots, \mathcal{Z}_k$.
- 2. Form the K calibration sets

$$S_k^{\mathsf{cal}} = \{ \mathsf{s}(\mathbf{x}_1, \mathbf{x}_2) : f(\mathbf{x}_1) \in \mathcal{Z}_k \text{ or } f(\mathbf{x}_2) \in \mathcal{Z}_k \} \,, \quad k = 1, \dots, K \}$$

3. For k = 1, ..., K find a calibration map μ_i such that

$$\mu_k(s(\mathbf{x}_1, \mathbf{x}_2)) = \mathbb{P}[Y = 1 \mid S = s, f(\mathbf{x}_1) \in \mathcal{Z}_k \text{ or } f(\mathbf{x}_2) \in \mathcal{Z}_k]$$

Test Stage

- 1. Given an image pair (x_1, x_2) , compute the cluster of each image feature: k_1 and k_2
- 2. The model's confidence in it being a genuine pair is

$$c(\mathbf{x}_1, \mathbf{x}_2) = \theta \mu_{k_1}(s(\mathbf{x}_1, \mathbf{x}_2)) + (1 - \theta) \mu_{k_2}(s(\mathbf{x}_1, \mathbf{x}_2))$$

where $\theta=\frac{|S_{k^1}^{\rm cal}|}{|S_{k^1}^{\rm cal}|+|S_{k^2}^{\rm cal}|}$ is the relative population fraction of the two clusters.

Results - Predictive Equality

Results - Predictive Equality

Comparison of subgroup FPRs in terms of AAD, MAD, STD.

				RF	W		BFW							
		FaceN	let (VG0	Face2)	FaceN	let (We	FaceNet (Webface) ArcFace							
	(\psi)	AAD	MAD	STD	AAD	MAD	STD	AAD	MAD	STD	AAD	MAD	STD	
	Baseline	0.10	0.15	0.10	0.14	0.26	0.16	0.29	1.00	0.40	0.12	0.30	0.15	
	AGENDA	0.11	0.20	0.13	0.12	0.23	0.14	0.14	0.40	0.18	0.09	0.23	0.11	
FPR	PASS	0.11	0.18	0.12	0.11	0.18	0.12	0.36	1.21	0.49	0.12	0.29	0.14	
ᇤ	FTC	0.10	0.15	0.11	0.12	0.23	0.14	0.24	0.74	0.32	0.09	0.20	0.11	
0.1%	GST	0.13	0.24	0.15	0.09	0.16	0.10	0.13	0.35	0.16	0.10	0.24	0.12	
0	FSN	0.10	0.18	0.11	0.11	0.23	0.13	0.09	0.20	0.11	0.11	0.28	0.14	
	FairCal (Ours)	0.09	0.14	0.10	0.09	0.16	0.10	0.09	0.20	0.11	0.11	0.31	0.15	
	Baseline	0.68	1.02	0.74	0.67	1.23	0.79	2.42	7.48	3.22	0.72	1.51	0.85	
	AGENDA	0.73	1.14	0.81	0.73	1.08	0.78	1.21	3.09	1.51	0.65	1.78	0.84	
≃	PASS	0.89	1.52	1.01	0.68	0.99	0.73	3.30	10.18	4.34	0.72	2.00	0.93	
표	FTC	0.60	0.91	0.66	0.54	1.05	0.66	1.94	5.74	2.57	0.54	1.04	0.61	
1%	GST	0.52	0.92	0.60	0.30	0.57	0.37	1.05	3.01	1.38	0.44	1.13	0.56	
	FSN	0.37	0.68	0.46	0.35	0.61	0.40	0.87	2.19	1.05	0.55	1.27	0.68	
	FairCal (Ours)	0.28	0.46	0.32	0.29	0.57	0.35	0.80	1.79	0.95	0.63	1.46	0.78	

Results

Accuracy

			RF	W		BFW								
	Face	Net (VGGF	ace2)	Face	eNet (Web	face)	Fac	eNet (Web	face)	ArcFace				
(†)	AUROC	TPR @ 0.1% FPR	TPR @ 1% FPR	AUROC	TPR @ 0.1% FPR	TPR @ 1% FPR	AUROC	TPR @ 0.1% FPR	TPR @ 1% FPR	AUROC	TPR @ 0.1% FPR	TPR @ 1% FPR		
Baseline	88.26	18.42	34.88	83.95	11.18	26.04	96.06	33.61	58.87	97.41	86.27	90.11		
AGENDA	76.83	8.32	18.01	74.51	6.38	14.98	82.42	15.95	32.51	95.09	69.61	79.67		
PASS	86.96	13.67	29.30	81.44	7.34	20.93	92.27	17.21	38.32	96.55	77.38	85.26		
FTC	86.46	6.86	23.66	81.61	4.65	18.40	93.30	13.60	43.09	96.41	82.09	88.24		
GST	89.57	22.61	40.72	84.88	17.34	31.56	96.59	44.49	66.71	96.89	86.13	89.70		
FSN	90.05	23.01	40.21	85.84	17.33	32.80	96.77	47.11	68.92	97.35	86.19	90.06		
FairCal (Ours)	90.58	23.55	41.88	86.71	20.64	33.13	96.90	46.74	69.21	97.44	86.28	90.14		

Fairness-Calibration

				RF	W			BFW								
	Face	Net (V	'GGFac	:e2)	Face	eNet (Webfa	ce)	FaceNet (Webface)				ArcFace			
(↓)	Mean	AAD	MAD	STD	Mean	AAD	MAD	STD	Mean	AAD	MAD	STD	Mean	AAD	MAD	STD
Baseline	6.37	2.89	5.73	3.77	5.55	2.48	4.97	2.91	6.77	3.63	5.96	4.03	2.57	1.39	2.94	1.63
AGENDA	7.71	3.11	6.09	3.86	5.71	2.37	4.28	2.85	13.21	6.37	12.91	7.55	5.14	2.48	5.92	3.04
PASS	8.09	2.40	4.10	2.83	7.65	3.36	5.34	3.85	13.16	5.25	9.58	6.12	3.69	2.01	4.24	2.37
FTC	5.69	2.32	4.51	2.95	4.73	1.93	3.86	2.28	6.64	2.80	5.61	3.27	2.95	1.48	3.03	1.74
GST	2.34	0.82	1.58	0.98	3.24	1.21	1.93	1.34	3.09	1.45	2.80	1.65	3.34	1.81	4.21	2.19
FSN	1.43	0.35	0.57	0.40	2.49	0.84	1.19	0.91	2.76	1.38	2.67	1.60	2.65	1.45	3.23	1.71
FairCal (Ours)	1.37	0.28	0.50	0.34	1.75	0.41	0.64	0.45	3.09	1.34	2.48	1.55	2.49	1.30	2.68	1.52

Thank You!

Contact: tiago.saldan has alvador @mcgill.ca