$$a_2 = 3a_1 + 1 = 3 \times 4 + 1 = 13 = \frac{}{2}$$

$$a_3 = 3a_2 + 1 = 3 \times 13 + 1 = \left(\frac{3^{3+1} - 1}{2}\right)$$

$$a_n = 3a_{n-1} + 1 = \left(\frac{3^{n+1} - 1}{2}\right).$$

Hence,
$$a_n = \left(\frac{3^{n+1} - 1}{2}\right)$$
 is the solution.

Example 5.66 A person deposits Rs 1,000 in an account that yields 9% interest compounded yearly.

- (i) Set up a recurrence relation for the amount in the account at the end of n years.
- (ii) Find an explicit formula for the amount in the account at the end of n years.
- (iii) How much money will the account contain after 100 years?

Solution (i) Let S_n denote the amount in the account after n years.

But, the amount in the account after n years

= the amount in the account after (n-1) years + interest for the n^{th} year

i.e.,
$$S_n = S_{n-1} + (0.09) S_{n-1}$$
, since the interest is 9% per year i.e., $S_n = (1.09) S_n$

i.e.,
$$S_n = (1.09)S_{n-1}$$

This is the required recurrence relation for the amount in the account at the end of n

(ii) Explicit formula for S_n :

Now,
$$S_1 = (1.09)S_0$$
,
 $S_2 = (1.09)S_1 = (1.09)^2 S_0$
 $S_3 = (1.09)S_2 = (1.09)^3 S_0$

$$S_n = (1.09)S'_{n-1} = (1.09)^n S_0$$

$$\Rightarrow S_n = (1.09)^n S_0$$

i.e.,
$$S_n = (1.09)^n \times 1,000$$
, since $S_0 = \text{Rs } 1,000$

(5.2)

207

Using mathematical induction, we can prove the validity of Eq. (5.2)

When
$$n = 0$$
, $S_0 = (1.09)^0 \times 1,000$
= 1,000

 \therefore The result (i) is true for n = 0.

We assume that $S_k = (1.09)^k \times 1,000$ is true.

We need to prove that $S_{k+1} = (1.09)^{k+1} \times 1,000$ is true.

From the recurrence relation, we have

$$S_{k+1} = (1.09)S_k$$

=
$$(1.09)$$
. $(1.09)^k \times 1,000$ [by our assumption]

$$\Rightarrow S_{k+1} = (1.09)^{k+1} \times 1,000$$

$$\Rightarrow S_{k+1}$$
 is true.

Thus, by the principle of mathematical induction, S_n is true for all values of n.

 \therefore The explicit formula is $S_n = (1.09)^n . (1,000)$

(iii) When n = 100, we have

$$S_{100} = (1.09)^{100} \times 1,000$$

= Rs $(1.09)^{100} \times 1,000$

 \therefore Money in the account after 100 years = Rs 1,000(1.09)¹⁰⁰.

Example 5.67 Suppose the number of bacteria in a colony triples every hour.

(i) Set up a recurrence relation for the number of bacteria after n hours have elapsed.

(ii) If 100 bacteria are used to begin a new colony, how many bacteria will be there in the colony in 10 hours?

Solution (i) Let a_n be the number of bacteria at the end of n hours.

 a_{n-1} is the number of bacteria at the end of (n-1) hours.

Since the number of bacteria in a colony triples every hour, $a_n = 3a_{n-1}$.

This is true whenever n is a positive integer.

Hence, the recurrence relation for the number of bacteria after n hours is

(5.3)

$$a_n = 3a_{n-1}.$$

Discrete Mathematics

(ii) Let
$$a_0 = 100$$
. Then
 $a_1 = 3a_0 = 3 \times 100$
 $a_2 = 3a_1 = 3^2 \times 100$
 $a_3 = 3a_2 = 3^3 \times 100$
:

$$a_n = 3a_{n-1} = 3^n \times 100$$

$$\Rightarrow a_n = 3^n \times 100$$

We can prove the validity of Eq. (5.4) by using the induction principle.

When n = 0, $a_0 = 3^0 \times 100 = 100$. Therefore, a_0 is trivially true.

We assume that $a_k = 3^k \times 100$ is true.

We need to prove that $a_{k+1} = 3^{k+1} \times 100$ is true.

Now, $a_{k+1} = 3.a_k$ [from the recurrence relation given in Eq. (5.3)] $= 3 \times 3^k \times 100$ [by our assumption]

$$=3^{k+1} \times 100$$

$$\Rightarrow a_{k+1} = 3^{k+1} \times 100$$

$$\Rightarrow a_{k+1}$$
 is true.

Hence, by the principle of mathematical induction, a_n is true for every positive integer n. Thus, the explicit formula is $a_n = 3^n \times 100$.

When n = 10, we have

$$a_{10} = 3^{10} \times 100$$

= 59,04,900

Therefore, the number of bacteria in the colony in 10 hours = 59,04,900.

racci sequence The sequence {1, 1, 2, 3, 5, 8, 13,} is called Fibonacci sequence.

$$F = F + F + n > 2 F - 1 F$$

(5.4)