2025 MCM/ICM Summary Sheet Team Control Number 2506135

 \mathbf{C}

An MCM Paper Made by Team 1234567

Summary

Here is the abstract of your paper.

Firstly, that is ...

Secondly, that is ...

Finally, that is ...

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega$$

Keywords 1

Team # 2506135 Page 2 of 8

Contents

1	Introduction	3				
	1.1 Problem Background					
	1.2 Restatement of Problem					
	1.3 Our work	3				
2	Assumptions	3				
3	Notations	3				
4	Data Preprocessing	4				
	4.1 Basic Data Preprocessing					
	4.2 Data Mining	4				
5	Task1:	4				
	5.1 Details about Model 1	4				
_	T12.	_				
6	Task2: 6.1 Conclusion of Model 2					
	6.2 Commetary on Model 2					
	0.2 Commetary on Woder 2	U				
7	Task3	6				
8	Task4	6				
9	Sensitivity Analysis	6				
10	Model Evaluation	6				
	10.1 Strengths	6				
	10.2 Weaknesses	6				
11	Conclusion	6				
Me	emorandum					
Re						
Аp	Appendix A: Further on LATEX Appendix B: Program Codes					
	r	9				

Team # 2506135 Page 3 of 8

1 Introduction

1.1 Problem Background

Here is the problem background ...

Two major problems are discussed in this paper, which are:

- Doing the first thing.
- Doing the second thing. doing doing11

1.2 Restatement of Problem

A literatrue[1] say something about this problem ...

1.3 Our work

We do such things ...

- **1.** We do ...
- **2.** We do ...
- **3.** We do ...

2 Assumptions

3 Notations

The primary notations used in this paper are listed in Table 1.

Table 1: Notations

Symbol	Definition
\overline{A}	the first one
b	the second one
α	the last one

Team # 2506135 Page 4 of 8

4 Data Preprocessing

4.1 Basic Data Preprocessing

4.2 Data Mining

5 Task1:

5.1 Details about Model 1

The detail can be described by equation (1):Equation 1:

$$\alpha + \beta = \gamma$$

$$\alpha + \beta = \gamma$$

$$\alpha$$
(1)

$$A + B + C + D + E + F$$

$$= G + Q + W + E + R + T + Y$$

$$= A + S + D + F + G + H + J$$
(2)

$$F(x) = \begin{cases} 0 & , \text{if } x < 0\\ x+1 & , \text{if } x > 0\\ 1 & , \text{otherwise} \end{cases}$$
 (3)

Table 2: Variable Name

Variable Name	Code	Definition
Whether Host Country	is host	Whether the country is the host(1 for host,0 for non-host)
Medal Expectation Increment *Personnel Expectation Increment	medal_increment * personnel_increment	Product of medal expectation increment and personnel expectation increment
Sport Advantage Coefficient	sport_adv	Advantage coefficient of a specific sport
Country Level	country_lvl	The level of the country in the competition (ordered by rank)

Continued on next page

Team # 2506135 Page 5 of 8

Project Medal	sport_medal _per_ person	Ratio of sport medals to projected personnel
Expectation /Project		for a specific sport
Personnel Expection		
Gold Medal Probability	gold_prob	Probability of an athlete
		winning a gold medal
Silver Medal	silver_prob	Probability of an athlete winning a silver medal
Probability		
Bronze Medal	silver_prob	Probability of an athletewinning a bronze medal

Probability of an athlete winning no medal

Table 2: Variable Name (Continued)

6 Task2:

Probability

No Medal Probability

6.1 Conclusion of Model 2

The results are shown in Figure 1, where t denotes the time in seconds, and c refers to the concentration of water in the boiler.

no_medal_probe

Figure 1: The result of Model 2

Team # 2506135 Page 6 of 8

6.2 Commetary on Model 2

The instance of long and wide tables are shown in Table ??.

Figure 2 gives an example of subfigures. Figure 2a is on the left, and Figure 2b is on the right.

Figure 2: Two images

- 7 Task3
- 8 Task4
- 9 Sensitivity Analysis
- 10 Model Evaluation
- 10.1 Strengths
 - First one...
 - Second one ...
- 10.2 Weaknesses
 - Only one ...

11 Conclusion

Team # 2506135 Page 7 of 8

Memorandum

To: Heishan Yan **From:** Team 1234567 **Date:** October 1st, 2019

Subject: A better choice than MS Word: LATEX

In the memo, we want to introduce you an alternate typesetting program to the prevailing MS Word: **LATEX**. In fact, the history of LATEX is even longer than that of MS Word. In 1970s, the famous computer scientist Donald Knuth first came out with a typesetting program, which named TEX...

Firstly, ...
Secondly, ...
Lastly, ...

According to all those mentioned above, it is really worth to have a try on LATEX!

References

- [1] Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? *Physical review*, 47(10), 777.
- [2] A simple, easy LaTeX template for MCM/ICM: EasyMCM. (2018). Retrieved December 1, 2019, from https://www.cnblogs.com/xjtu-blacksmith/p/easymcm.html

Team # 2506135 Page 8 of 8

Appendix A: Further on LATEX

To clarify the importance of using LATEX in MCM or ICM, several points need to be covered, which are ...

```
To be more specific, ...

All in all, ...

Anyway, nobody really needs such appendix ...
```

Appendix B: Program Codes

Here are the program codes we used in our research.

test.py

```
# Python code example
for i in range(10):
    print('Hello, world!')
```

test.m

```
% MATLAB code example
for i = 1:10
    disp("hello, world!");
end
```

test.cpp

```
// C++ code example
#include <iostream>
using namespace std;

int main() {
   for (int i = 0; i < 10; i++)
        cout << "hello, world" << endl;
   return 0;
}</pre>
```