Árvores em vetores e heaps

Fonte: http://xkcd.com/835/

PF 10

http://www.ime.usp.br/~pf/algoritmos/aulas/hpsrt.html

Representação de árvores em vetores

Pais e filhos

v[1:m] é um vetor representando uma árvore. Diremos que para qualquer **índice** ou **nó** i,

- i//2 é o pai de i;
- ▶ 2 i é o filho esquerdo de i;
- \triangleright 2 i+1 é o filho direito.

Um nó i só tem filho esquerdo se 2 i < m.

Um nó \mathbf{i} só tem filho direito se $2\mathbf{i}+1 < \mathbf{m}$.

Raiz e folhas

O nó 1 não tem pai e é chamado de raiz.

Um nó i é um **folha** se não tem **filhos**, ou seja 2 i > m.

Todo nó i é raiz da subárvore formada por

$$v[i, 2i, 2i+1, 4i, 4i+1, 4i+2, 4i+3, 8i, \dots, 8i+7, \dots]$$

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível ???.

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível [lg i].

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível $\lfloor \lg i \rfloor$.

Prova: Se p é o nível do nó i, então

Logo,
$$p = \lfloor \lg i \rfloor$$
.

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível [lg i].

Prova: Se p é o nível do nó i, então

Logo,
$$p = |\lg i|$$
.

Portanto, o número total de níveis é ????

Cada nível p, exceto talvez o último, tem exatamente 2^p nós e esses são

$$2^{p}, 2^{p} + 1, 2^{p} + 2, \dots, 2^{p+1} - 1.$$

O nó i pertence ao nível | lg i |.

Prova: Se p é o nível do nó i, então

Logo,
$$p = |\lg i|$$
.

Portanto, o número total de níveis é 1 + lg m

Altura

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Em outras palavras, a altura de um nó i é o maior comprimento de uma seqüência da forma

$$\langle filho(i), filho(filho(i)), filho(filho(filho(i))), .$$

onde filho(\mathbf{i}) vale $2\mathbf{i}$ ou $2\mathbf{i} + 1$.

Os nós que têm altura zero são as folhas.

Altura

A altura de um nó i é o maior comprimento de um caminho de i a uma folha.

Em outras palavras, a altura de um nó i é o maior comprimento de uma seqüência da forma

$$\langle filho(i), filho(filho(i)), filho(filho(filho(i))), .$$

onde filho(\mathbf{i}) vale $2\mathbf{i}$ ou $2\mathbf{i} + 1$.

Os nós que têm altura zero são as folhas.

A altura de um nó \mathbf{i} é $\lfloor \lg(\mathbf{m}/\mathbf{i}) \rfloor$ (...).

Resumão

```
filho esquerdo de i:
                             2i
filho direito de i:
                             2i + 1
                              i//2
pai de i:
nível da raiz.
nível de i
                              |\lg i|
altura da raiz:
                              |\lg m|
altura da árvore:
                              |\lg m|
                              |\lg(m/i)| (...)
altura de i:
altura de uma folha:
                             \leq \lceil m/2^{h+1} \rceil \ldots
total de nós de altura h
```

Heaps

Um vetor v[1:m] é um max-heap se

$$v[i//2] \ge v[i]$$

para todo $\mathbf{i} = 2, 3, \dots, \mathbf{m} - 1$.

De uma forma mais geral, v[j:m] é um max-heap se

$$\mathtt{v}[\mathtt{i}//2] \geq \mathtt{v}[\mathtt{i}]$$

max-heap

O coração de qualquer algoritmo que manipule um \max -heap é uma função que recebe uma lista arbitrário v[1:m] e um índice i e faz v[i] "descer" para sua posição correta.

Rearranja o vetor v[1:m] de modo que o "subvetor" cuja raiz é i seja um max-heap.

```
def peneira(i, m, v):
1    f = 2*i
2    while f < m:
3         if f < m-1 and v[f] < v[f+1]:f+=1
4         if v[i] >= v[f]: break
5         v[i], v[f] = v[f], v[i]
6         i = f
6         f = 2*i
```

Supõe que os "subvetores" cujas raízes são filhos de i já são max-heap.

```
def peneira(i, m, v):
1    f = 2*i
2    while f < m:
3         if f < m-1 and v[f] < v[f+1]:f+=1
4         if v[i] >= v[f]: break
5         v[i], v[f] = v[f], v[i]
6         i = f
6         f = 2*i
```

A seguinte implementação é um pouco melhor pois em vez de trocas faz apenas deslocamentos (linha 5).

```
def peneira(i, m, v):
1 x = v[i]
  f = 2*i
2
    while f < m:
3
       if f < m-1 and v[f] < v[f+1]:f+=1
       if x \ge v[f]: break
4
5
      v[i] = v[f]
6
      i = f
6
       f = 2*i
    v[i] = x
```

Consumo de tempo

linha	todas as	execuções da linha
1	= 1	
2	$\leq 1+1$	lg <mark>m</mark>
3	$\leq \lg m$	
4	$\leq \lg m$	
5	$\leq \lg m$	
6	$\leq \lg m$	
7	= 1	
total	< 3 +	$5 \lg m = O(\lg m)$

Conclusão

O consumo de tempo da função peneira é proporcional a $\lg m$.

O consumo de tempo da função peneira é $O(\lg m)$.

Verdade seja dita ...(...)

O consumo de tempo da função peneira é proporcional a $O(\lg m/i)$.

Recebe um vetor v[1:n] e rearranja v para que seja max-heap.

```
for in range((n-1)//2, 0, -1): #A#
peneira(i, n, v)
```

Relação invariante:

(i0) em #A# vale que, i+1,...,n-1 são raízes de max-heaps.

Consumo de tempo

Análise grosseira: consumo de tempo é

$$\frac{\mathtt{n}}{2} \times \lg \mathtt{n} = \mathrm{O}(\mathtt{n} \lg \mathtt{n}).$$

Verdade seja dita ... (...)

Análise mais cuidadosa: consumo de tempo é O(n).

Conclusão

O consumo de tempo para construir um \max -heap é $O(n \lg n)$.

Verdade seja dita ...(...)

O consumo de tempo para construir um \max -heap é O(n).

Ordenação: algoritmo Heapsort

PF 10

http://www.ime.usp.br/~pf/algoritmos/aulas/hpsrt.html

Ordenação

$$v[1:n]$$
 é crescente se $v[1] \le \cdots \le v[n-1]$.

Problema: Rearranjar um vetor $\mathbf{v}[1:\mathbf{n}-1]$ de modo que ele fique crescente.

Entra:

Sai:

O Heapsort ilustra o uso de estruturas de dados no projeto de algoritmos eficientes.

Rearranjar um vetor $v[\underline{1:n}]$ de modo que ele fique crescente.

Entra:

Sai:

1											n
11	22	22	33	33	33	44	55	55	77	99	

Ordenação por seleção i=5max n 38 50 20 50 60 99 maxn 38 50 50 60 max n 38 50

Ordenação por seleção i=5max n maxn max n max n

1			i								n
38	10	20	44	50	50	55	60	75	85	99	

Função selecao

Algoritmo rearranja v[0:n] em ordem crescente

```
def selecao(n, v):
1   for i in range(n-1, 0, -1): #B#
2     max = i
3     for j in range(i-1, -1, -1):
4         if v[j] > v[max]: max = j
5     v[i], v[max] = v[max], v[i]
```

Função selecao

Algoritmo rearranja $v[\underline{1:n}]$ em ordem crescente

```
def selecao(n, v):
1   for i in range(n-1, 1, -1): #B#
2     max = i
3     for j in range(i-1, 0, -1):
4         if v[j] > v[max]: max = j
5     v[i], v[max] = v[max], v[i]
```

Função selecao

```
Relações invariantes: Em /*B*/ vale que:
```

```
(i0) v[i+1:n] é crescente;
```

(i1)
$$v[1:\mathbf{i}] \leq v[\mathbf{i}+1];$$

Função heap_sort

Algoritmo rearranja v[1:n] em ordem crescente

```
def heap_sort(n, v):
    # pre-processamento
1    for i in range((n-1)//2, 0, -1):
2        peneira(i, n, v)

3    for i in range(n-1, 1, -1): #C#
        v[i], v[1] = v[1], v[i]
5        peneira(1,i,v)
```

Função heap_sort

Relações invariantes: Em #C# vale que:

- (i0) v[i+1:n] é crescente;
- $(i1) v[1:i+1] \le v[i+1];$
- (i2) v[1:i+1] é um max-heap.

Consumo de tempo

linha	consumo de tempo das execuções da linha				
1-2	\approx	n lg n	$= O(n \lg n)$		
3	\approx	n	= O(n)		
4	\approx	n	= O(n)		
5	\approx	$n \lg n$	$= \mathrm{O}(\mathtt{n} \lg \mathtt{n})$		
total	=	$2n \lg n + 2n$	$= O(n \lg n)$		

Conclusão

O consumo de tempo da função heap_sort é proporcional a n lg n.

O consumo de tempo da função heap_sort é $O(n \lg n)$.

Função insereHeap

Inseção de um elemento x em um \max -heap v[1 : n]

```
void insereHeap (int x, int *n, int v[]) {
    int f /* filho */, p/* pai */, t;
    *n += 1; f = *n; p = f / 2; v[f] = x;
2
  while/*D*/ (f > 1 && v[p] < v[f]) {
3
       t = v[p];
4
       v[p] = v[f];
       v[f] = t;
5
       /* pai no papel de filho */
       f = p; p = f / 2;
6
```

Função insereHeap

Relações invariantes: Em /*D*/ vale que:

- (i0) v[1:*n] é uma permutação do vetor original
- (i1) $v[i/2] \ge v[i]$ para todo i = 2, ..., *n diferente de f.

1				f							*n
83	75	25	68	99	15	10	60	57	65	79	

Conclusão

O consumo de tempo da função insereHeap é proporcional a lg n, onde n é o número de elementos no max-heap.

O consumo de tempo da função $heap_sort$ é O(n), onde n é o número de elementos no max-heap.

Mais análise experimental

Algoritmos implementados:

```
mergeR merge_sort recursivo.
mergeI merge_sort iterativo.
quick quick_sort recursivo.
heap heap_sort.
```

Mais análise experimental

A plataforma utilizada nos experimentos foi um computador rodando Ubuntu GNU/Linux 3.5.0-17

Compilador:

```
gcc -Wall -ansi -02 -pedantic -Wno-unused-result.
```

Computador:

model name: Intel(R) Core(TM)2 Quad CPU Q6600 @

2.40GHz

cpu MHz : 1596.000 cache size: 4096 KB MemTotal : 3354708 kB

Aleatório: média de 10

n	mergeR	mergeI	quick	heap
8192	0.00	0.00	0.00	0.00
16384	0.00	0.00	0.00	0.00
32768	0.01	0.01	0.01	0.00
65536	0.01	0.01	0.01	0.01
131072	0.02	0.02	0.02	0.03
262144	0.05	0.04	0.04	0.06
524288	0.10	0.08	0.08	0.12
1048576	0.21	0.20	0.17	0.28
2097152	0.44	0.43	0.35	0.70
4194304	0.92	0.90	0.73	1.73
8388608	1.90	1.87	1.51	4.13

Decrescente

n	mergeR	mergeI	quick	heap
1024	0.00	0.00	0.00	0.00
2048	0.00	0.00	0.00	0.00
4096	0.01	0.00	0.01	0.00
8192	0.00	0.00	0.03	0.00
16384	0.00	0.00	0.14	0.00
32768	0.00	0.01	0.57	0.00
65536	0.01	0.01	2.27	0.01
131072	0.02	0.01	9.06	0.02
262144	0.03	0.03	36.31	0.04

Tempos em segundos.

Para n=524288 quick_sort dá Segmentation fault (core dumped)

Crescente

n	mergeR	mergeI	quick	heap
1024	0.00	0.00	0.00	0.00
2048	0.00	0.00	0.00	0.00
4096	0.00	0.00	0.00	0.00
8192	0.00	0.00	0.03	0.00
16384	0.00	0.00	0.14	0.01
32768	0.01	0.00	0.57	0.01
65536	0.00	0.01	2.26	0.01
131072	0.02	0.02	9.05	0.02
262144	0.03	0.02	36.21	0.04

Tempos em segundos.

Para n=524288 quick_sort dá Segmentation fault (core dumped)

Resumo

função	consumo de	observação
	tempo	
bubble	$O(n^2)$	todos os casos
insercao	$O(n^2)$	pior caso
	O(n)	melhor caso
insercao_binaria	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
selecao	$O(n^2)$	todos os casos
merge_sort	$O(n \lg n)$	todos os casos
quick_sort	$O(n^2)$	pior caso
	$O(n \lg n)$	melhor caso
heap_sort	$O(n \lg n)$	todos os casos

Animação de algoritmos de ordenação

Criados por Nicholas André Pinho de Oliveira: http://nicholasandre.com.br/sorting/

Criados na Sapientia University (Romania): https://www.youtube.com/channel/UCIqiLefbVHsOAXDAxQJH7

ロト (個) (重) (重) 重 のの(