12.5: Lines & Planes in Space

Lines

The **vector equation** for line L through $P_0(x_0, y_0, z_0)$ parallel to vector \vec{v} :

$$ec{r}(t) = \overbrace{ec{r}_0}^{P_0} + t ec{v} \ \left(-\infty < t < \infty
ight)$$

The **standard parametrization** through $P_0(x_0,y_0,z_0)$ parallel to $\vec{v}=v_1\mathbf{i}+v_2\mathbf{j}+v_3\mathbf{k}$:

$$egin{aligned} x(t) &= x_0 + t v_1 \ y(t) &= y_0 + t v_2 \ z(t) &= z_0 + t v_3 \end{aligned}$$

If is line, $-\infty < t < \infty$. If t is bounded, is line segment.

Distance from point to line

$$d = rac{\left\|\overrightarrow{PS} imes ec{v}
ight\|}{\left\|ec{v}
ight\|}$$

Planes

The **vector equation** for a plane through $P_0(x_0, y_0, z_0)$ with normal vector $\vec{n} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ is given by:

$$\vec{n} \cdot (\overrightarrow{P_0P}) = 0$$

Component equation:

$$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$

Angle between two planes

- Parallel planes have the same normal.
- Angle between two intersecting planes = acute angle between normals

$$\left(\cos heta=rac{|ec{n}_1\cdotec{n}_2|}{\|ec{n}_1\|\|ec{n}_2\|}
ight)$$

Distance from point to plane

$$d = \left\| \operatorname{proj}_{\hat{n}} \overrightarrow{PS}
ight\| = \overrightarrow{PS} \cdot \widehat{\hat{n}}$$

Use this to find distance between skew lines

• Given lines l_1,l_2 , find unit normal vector of the l_1l_2 plane, $\hat{n}=rac{ec{l_1} imesec{l_2}}{\|ec{l_1} imesec{l_2}\|}$, and project \overrightarrow{PS} onto \hat{n}

Intersecting lines & planes

Lines

Lines: l_1, l_2 can be: parallel, coincident, skew, intersecting

· coincident: same line

· skew: neither parallel nor intersecting

If direction vectors are same, parallel or coincident

• Pick point on l_1 . If on l_2 , coincident

• Else parallel

If not, skew or intersecting

- · Check for intersecting point. If exists, intersecting
- · Else skew

Planes

Parallel, intersecting, coincident

- If normals are parallel, planes are parallel
- If normals are not parallel, cross product gives direction vector for line of intersection of the planes

Line & Plane

• Substitute line into plane and find point where line & plane intersect

12.6: Cylinders and Quadric Surfaces

Cylinder: surface generated by moving straight line along given planar curve, holding line parallel to given fixed line

• Curve used to make cyl. is the generating curve

Quadric Surface: 2nd degree equation in x, y, z

$$Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Jz + K = 0$$

Elliptical Paraboloid: $rac{x^2}{a^2}+rac{y^2}{b^2}=rac{z}{c}$

Ellipsoid: $rac{x^2}{a^2}+rac{y^2}{b^2}+rac{z^2}{c^2}=1$

Elliptical Cone: $rac{x^2}{a^2}+rac{y^2}{b^2}=rac{z^2}{c^2}$

Hyperboloid of One Sheet: $rac{x^2}{a^2}+rac{y^2}{b^2}-rac{z^2}{c^2}=1$

Hyperboloid of Two Sheets: $-rac{x^2}{a^2}-rac{y^2}{b^2}+rac{z^2}{c^2}=1$

Hyperbolic Paraboloid: $rac{y^2}{b^2} - rac{x^2}{a^2} = rac{z}{c}$

Saddle from "how to theoretically turn a sphere inside out" lookin ass

13.1, 13.2: Vector Functions

Vector function $ec{f} \colon \mathbb{R} \mapsto \mathbb{R}^n$

- ullet Given real valued functions f_1,f_2,f_3 ,
 - $oldsymbol{\cdot} ec{f}(t) = f_1(t) \mathbf{i} + f_2(t) \mathbf{j} + f_3(t) \mathbf{k}$
- ullet f_1,f_2,f_3 are the **components** of $ec{f}$
- Parametrization should be obvious

Limits of Vector Functions

Let $ec{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$,

$$\lim_{t o t_0}ec{r}(t)=ec{L}$$

if for every $\epsilon > 0$, there exists corresponding $\delta > 0$ such that for all $t \in D$,

$$\|ec{r}(t) - ec{L}\| < \epsilon ext{ whenever } 0 < |t - t_0| < \delta$$

idk why i wrote that cause basically the idea is: to find lim, find lim of each component

 $ec{f}$ is **continuous** at point $t=t_0$ if $\lim_{t o t_0}ec{f}(t)=ec{f}(t_0)$

 $(\vec{f} ext{ is continuous if all points are continuous)}$

Limit rules

Given $ec{f}(t)
ightarrow ec{L}, ec{g}(t)
ightarrow ec{M}, u(t)
ightarrow U$, then:

- 1. $ec{f}(t) + ec{g}(t)
 ightarrow ec{L} + ec{M}$
- 2. $lphaec{f}(t)
 ightarrow lphaec{L}$
- 3. $u(t) \vec{f}(t) o U \vec{L}$
- 4. $ec{f}(t)\cdotec{g}(t)
 ightarrowec{L}\cdotec{M}$
- 5. $ec{f}(t) imesec{g}(t)
 ightarrowec{L} imesec{M}$

Derivatives of Vector Functions

$$ec{r}'(t) = \lim_{\Delta t o 0} rac{ec{r}(t + \Delta t) - ec{r}(t)}{\Delta t}$$

If limit exists, \vec{r} is **differentiable** at t.

 $(ec{r}\ ext{is differentiable}\ ext{if all points are differentiable})$

 $ec{r}'$ is the same as the sum of the derivatives of each component

Derivative rules

- 1. $(\vec{f} + \vec{g})'(t) = \vec{f}'(t) + \vec{g}'(t)$
- 2. $(\alpha \vec{f})'(t) = \alpha \vec{f}'(t)$
- 3. $(\vec{f} \cdot \vec{g})'(t) = \vec{f}'(t) \cdot \vec{g}(t) + \vec{f}(t) \cdot \vec{g}'(t)$ (product rule, applies for dot product, cross product, scalar multiplication)
- 4. $(\vec{f}\circ u)'(t)=\vec{f}'(u(t))u'(t)$ (chain rule)

Tangent Lines, Velocity, Acceleration

 $ec{r}(t)$ is **smooth** if $rac{dr}{dt}$ is continuous & never zero

Tangent line to smooth curve $\vec{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ at $t = t_0$ is the line that passes $\vec{r}(t_0)$ & is parallel to $\vec{r}'(t_0)$.

If \vec{r} is position,

- $ec{v}=rac{dec{r}}{dt}$ (velocity)
- $ec{a}=rac{dec{v}}{dt}$ (acceleration)
- direction of motion = direction of \vec{v}
- speed = $||\vec{v}||$

Integrals of Vector Functions

 $ec{R}(t)$ is antiderivative of $ec{r}(t)$ on interval I if $rac{dec{R}}{dt}=ec{r}$ at each point in I.

$$\int ec{r}(t)\,dt = ec{R}(t) + ec{C}$$

(componentize to find indef/def integral)

Integral rules

- 1. $\int_a^b (ec{f}+ec{g})(t)\,dt = \int_a^b ec{f}(t)\,dt + \int_a^b ec{g}(t)\,dt$
- 2. $\int_a^b (\alpha \vec{f})(t) dt = \alpha \int_a^b \vec{f}(t) dt$
- 3. $\int_{a}^{b} (\vec{c}\vec{f})(t) dt = \vec{c} \int_{a}^{b} \vec{f}(t) dt$ 4. $\left\| \int_{a}^{b} (\vec{f})(t) dt \right\| \leq \int_{a}^{b} \left\| \vec{f}(t) \right\| dt$

Projectile Motion

Ideal projectile motion: bro use finematics