

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Lecture 13

(Taylor's Version)

11.16.21

Refresher Quiz

1. Examining the scatterplot on the left, does there seem to be a linear trend in the data? Is it increasing or decreasing? Is it weak or strong?

2. The correlation value is -0.321. You next test $H_0: \rho=0$ and get a p-value of 0.005. Explain how the evidence can be so strong even though the graph displays substantial scatter and the correlation value is far from -1.

3. Given this data, can we conclude that X affects Y?

Refresher Quiz

1. Examining the scatterplot on the left, does there seem to be a linear trend in the data? Is it increasing or decreasing? Is it weak or strong?

Looks like a weak, negative (decreasing) correlation

2. The correlation value is -0.321. You next test $H_0: \rho=0$ and get a p-value of 0.005. Explain how the evidence can be so strong even though the graph displays substantial scatter and the correlation value is far from -1.

Probably because we have a lot of samples!

3. Given this data, can we conclude that X affects Y?

No! Correlation \neq causation!

How to best define the relationship between two variables?

How to best define the relationship between two variables?

Regression models try to explain the relationship between two variables

$$\frac{rise}{run} = \frac{s_y}{s_x} = \frac{2.88}{1.60} = 1.80$$

$$\frac{9}{5} = 1.80$$

If two variables have a perfect correlation ($r=\pm 1$), the slope of the line that fits the data exactly will have a slope of $\pm s_y/s_\chi$

How many degrees (F) is 17.5 C?

$$F = 32 + \frac{9}{5}C$$

$$F = 32 + \frac{9}{5}(17.5)$$

$$F = 63.5$$

What if our relationship doesn't have a perfect correlation?

If two variables do **NOT** have a perfect correlation $(r \neq \pm 1)$, the slope of the line that fits the data best (least-squares or fitted regression line) will have a slope of $r(s_y/s_x)$ and passes through the point (\bar{x}, \bar{y})

The fitted regression line: full equation

(i.e. How much we expect y to change with x)

 $\beta_1 = r(s_v/s_x)$

The fitted regression line: full equation

$$(y = b + mx + e)$$

$$y = \beta_0 + \beta_1 X + \epsilon$$

mean(income)

[1] 9.004844

mean (happiness)

[1] 3.392859

$$\beta_1 = r(s_y/s_x) = 0.227$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\beta_0 = 3.39 - (0.227)(9.0)$$

$$= 1.347$$

The fitted regression line: $Y = \beta_0 + \beta_1 X$

Using R's 1m() function

Using R's 1m() function

```
lm(happiness ~ income, data = income_data)
happiness = 1.34 + 0.227(income)
Call:
lm(formula = happiness ~ income)
Coefficients:
                         For every 1 unit increase in income, there
 (Intercept)
                income
                           is a 0.227 unit increase in happiness
     1.3429
                0.2276
```


A note on prediction

Interpolation:

Predicting Y for an X within the range of the data

Extrapolation:

Predicting Y for an X outside the range of the data

A note on prediction

Interpolation:

Predicting Y for an X within the range of the data

Extrapolation:

Predicting Y for an X outside the range of the data

No assurance relationship remains linear outside range

WNT10B

Interpreting the linear model

Interpreting the linear model

Estimate

$$(\bar{y} \text{ for } \mu \rightarrow \bar{b}_1 \text{ for } \beta_1)$$

Error of the estimate

$$(SE_{\bar{y}} \rightarrow SE_{\bar{b}_1})$$

Confidence interval

$$(\bar{y} \pm t_{0.025} SE_{\bar{y}} \rightarrow \bar{b}_1 \pm t_{0.025} SE_{\bar{b}_1})$$

Hypothesis testing

$$(H_0: \mu = 0 \rightarrow H_0: \beta_1 = 0)$$

Error of the regression coefficient

Error of the regression coefficient

residual = observed - fitted

$$e_i = y_i - \hat{y}_i$$

Residual sum of squares:

$$SS(resid) = \sum_{i} e_i^2$$

The residual sum of squares will be small if the data points all lie very close to the line.

Error of the regression coefficient

"Variance" around the best fit line

The "best fit" line minimizes the SS(resid)

The "best fit" line minimizes the SS(resid)

Residual SD:

$$s_e = \sqrt{\frac{\sum e_i^2}{n-2}}$$

Degrees of freedom

Residual SD specifies how far off predictions made using the regression model tend to be.

The "best fit" line minimizes the SS(resid)

Residual SD:

$$S_e = \sqrt{\frac{\sum e_i^2}{n-2}}$$

Degrees of freedom

Residual SD specifies how far off predictions made using the regression model tend to be.

The "best fit" line minimizes the SS(resid)

Residual SD:

$$S_e = \sqrt{\frac{\sum e_i^2}{n-2}}$$

Degrees of freedom

Residual SD specifies how far off predictions made using the regression model tend to be.

The "best fit" line minimizes the SS(resid)

Residual SD:

$$s_e = \sqrt{\frac{\sum e_i^2}{n-2}}$$

Degrees of freedom

Residual SD specifies how far off predictions made using the regression model tend to be.

The "best fit" line minimizes the SS(resid)

SD:

$$S_y = \sqrt{\frac{\sum (y_i - \bar{y})^2}{n-1}}$$

Degrees of freedom

SD measures variability around the mean

Residual SD:

$$s_e = \sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}}$$

Degrees of freedom

Residual SD measures variability around the regression line

How much of the total variance in Y can be explained by X?

How much of the total variance in Y can be explained by X?

How much of the total variance in Y can be explained by X?

The proportion of variance in Y that is explained by the linear relationship between X and Y

Also the square of correlation coefficient, *r*

sy (i.e. data fits regression line very poorly)

$$r^2 = 1 - 1 = 0$$

The proportion of variance in Y that is explained by the linear relationship between X and Y

Which model has the higher r² value?

$$s_e = \sqrt{\frac{SS(resid)}{n-2}}$$

$$r^2 = 1 - \frac{s_e^2}{s_y^2}$$

SS(resid)	0	7.98	83.1
n	20	20	20
$\boldsymbol{s_y}$	2.89	2.85	3.45
S_e			
r ²			

SS(resid)	0	7.98	83.1
n	20	20	20
Sy	2.89	2.85	3.45
s_e			
r ²			

$$s_e = \sqrt{\frac{SS(resid)}{n-2}}$$

$$r^2 = 1 - \frac{s_e^2}{s_y^2}$$

SS(resid)	0	7.98	83.1
n	20	20	20
Sy	2.89	2.85	3.45
S_e	0	0.631	2.04
r ²			

$$s_e = \sqrt{\frac{SS(resid)}{n-2}}$$

$$r^2 = 1 - \frac{s_e^2}{s_y^2}$$

SS(resid)	0	7.98	83.1
n	20	20	20
s_y	2.89	2.85	3.45
s_e	0	0.631	2.04
r^2			

$$s_e = \sqrt{\frac{SS(resid)}{n-2}}$$

$$r^2 = 1 - \frac{s_e^2}{s_y^2}$$

SS(resid)	0	7.98	83.1
n	20	20	20
Sy	2.89	2.85	3.45
s_e	0	0.631	2.04
r ²	1	0.95	0.65

$$s_e = \sqrt{\frac{SS(resid)}{n-2}}$$

$$r^2 = 1 - \frac{s_e^2}{s_y^2}$$

SS(resid)	0	7.98	83.1
n	20	20	20
Sy	2.89	2.85	3.45
s_e	0	0.631	2.04
r ²	1 (1)	0.95 (0.949)	0.65 (0.634)

cor(income, happiness)

[1] 0.5093659

$$r^2 = 0.5093^2$$

$$r^2 = 0.259$$

25.9% of the variance in happiness is explained by the relationship between happiness and income

Interpreting the linear model

Estimate

$$(\bar{y} \text{ for } \mu \rightarrow \bar{b}_1 \text{ for } \beta_1)$$

Error of the estimate

$$(SE_{\bar{y}} \rightarrow SE_{\bar{b}_1})$$

Confidence interval

$$(\bar{y} \pm t_{0.025} SE_{\bar{y}} \rightarrow \bar{b}_1 \pm t_{0.025} SE_{\bar{b}_1})$$

Hypothesis testing

$$(H_0: \mu = 0 \rightarrow H_0: \beta_1 = 0)$$

 We can calculate all this by hand, but we are not going to... instead we will take advantage of the power of R and focus on how to interpret its output

Test statistic:

$$t_s = \frac{b_1 - 0}{SE_{b_1}}$$
 $(df = n - 2)$ $SE_{b_1} = \frac{s_e}{s_x \sqrt{n - 1}}$

Understand degrees of freedom, but the other math is not essential to memorize!!!

> summary(lm(happiness ~ income, data = income_data))

```
Call:
lm(formula = happiness ~ income, data = income_data)
Residuals:
       1Q Median 3Q Max
-3.5033 -0.8873 0.0459 0.9218 3.1279
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.34291 0.16505 8.136 3.3e-15 ***
income 0.22765 0.01727 13.182 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.234 on 496 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.258
F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16
```

> summary(lm(happiness ~ income, data = income_data))

Call:

 $lm(formula = happiness \sim income, data = income_data)$

Residuals:

Repeat the formula

```
Min 1Q Median 3Q Max -3.5033 -0.8873 0.0459 0.9218 3.1279
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.34291 0.16505 8.136 3.3e-15 ***
income 0.22765 0.01727 13.182 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 1.234 on 496 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.258
F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16
```

> summary(lm(happiness ~ income, data = income_data))

```
Call:
```

lm(formula = happiness ~ income, data = income_data)

Residuals (come back to)

```
Residuals:
```

```
Min 1Q Median 3Q Max -3.5033 -0.8873 0.0459 0.9218 3.1279
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.34291 0.16505 8.136 3.3e-15 ***
income 0.22765 0.01727 13.182 < 2e-16 ***

---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 1.234 on 496 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.258
F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16
```

> summary(lm(happiness ~ income, data = income_data))

Call:

```
lm(formula = happiness ~ income, data = income_data)
```

Residuals:

```
Min 1Q Median 3Q Max -3.5033 -0.8873 0.0459 0.9218 3.1279
```

Slope and intercept

```
\beta_1 Signif. codes: {}^0H = 1.34 + 0.227(I) ''' 0.1 '''
```

```
Residual standard error: 1.234 on 496 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.258
F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16
```

> summary(lm(happiness ~ income, data = income_data)) Call: lm(formula = happiness ~ income, data = income_data) Residuals: -3.5033 -0.8873 0 0459 0.9218 3.1279 How much variation Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.34291 0 16505 8.136 3.3e-15 *** (0.01727) 13.182 < 2e-16 *** 0.22765 income Residual standard error: 1.234 on 496 degrees of freedom Multiple R-squared: 0.2595, Adjusted R-squared: 0.258

F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16

Testing the hypothesis H_0 : $\beta_1=0$ > summary(lm(happiness ~ income, data = income_data))

Call: lm(formula = happiness ~ income, data = income_data)

```
Residuals: SE_{b_1} Min 1Q Median 3Q Max
```

-3.5033 -0.8873 0 0459 0.9218 3.1279

Hypothesis testing

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.34291 0.16505 8.136 3.3e-15 ***

income 0.22765 0.01727 13.182 < 2e-16 ***
```

```
\beta_1 \xrightarrow{\text{Mot usually interested in}} H = 1.34 + 0.227(I) \qquad \text{Not usually interested in}
```

```
Residual standard error: 1.234 on 496 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.258
F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16
```

> summary(lm(happiness ~ income, data = income_data))

```
Call:
lm(formula = happiness ~ income, data = income_data)
Residuals:
            10 Median 30
                                Max
-3.5033 -0.8873 0.0459 0.9218
Coefficients: 50
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.34291 0.16505 8.136 3.3e-15 ***
           0.22765
                      0.01727 13.182 < 2e-16 ***
```

```
General fit parameters
```

Residual standard error: 1.234 on 496 degrees of freedom Multiple R-squared: 0.2595, Adjusted R-squared: 0.258 F-statistic: 173.8 on 1 and 496 DF, p-value: < 2.2e-16

- Note: test on β_1 does not ask *whether* the relationship between X and Y is linear, rather *assuming* a linear relationship, is the slope nonzero?
- Directional or non-directional tests
- Beware of curvilinearity, outliers, and influential points (just like with correlation)

Reporting the results

A simple linear regression was performed to test if income significantly predicted happiness. We found that income did significantly predict happiness with a 0.227 unit increase in happiness for every \$10,000 increase in income ($B_1 = 0.227$ +/- 0.017, p-value < 2e-16). The model (Y = 0.227X + 1.34)explained 25.8% of the total variation in happiness in this study.

Regression: Describes how one variable (x) affects another variable (y)

Correlation: Quantifies the direction and strength of the relationship between two variables (x and y)

cor(happiness, income) 0.509 $(0.509^2 = R^2 = 0.259)$

Regression: Describes how one variable (x) affects another variable (y)

	Correlation	Regression
When to use	When summarizing direct relationship between two variables	To predict or explain responses
Able to quantify direction of relationship?		
Able to quantify strength of relationship?		
Able to show cause and effect?		
Able to predict and optimize?		
X and Y are interchangeable?		

Regression: Describes how one variable (x) affects another variable (y)

	Correlation	Regression
When to use	When summarizing direct relationship between two variables	To predict or explain responses
Able to quantify direction of relationship?	Yes	Yes
Able to quantify strength of relationship?		
Able to show cause and effect?		
Able to predict and optimize?		
X and Y are interchangeable?		

Regression: Describes how one variable (x) affects another variable (y)

	Correlation	Regression
When to use	When summarizing direct relationship between two variables	To predict or explain responses
Able to quantify direction of relationship?	Yes	Yes
Able to quantify strength of relationship?	Yes	Yes
Able to show cause and effect?		
Able to predict and optimize?		
X and Y are interchangeable?		

Regression: Describes how one variable (x) affects another variable (y)

	Correlation	Regression
When to use	When summarizing direct relationship between two variables	To predict or explain responses
Able to quantify direction of relationship?	Yes	Yes
Able to quantify strength of relationship?	Yes	Yes
Able to show cause and effect?	No	Yes
Able to predict and optimize?		
X and Y are interchangeable?		

Regression: Describes how one variable (x) affects another variable (y)

	Correlation	Regression
When to use	When summarizing direct relationship between two variables	To predict or explain responses
Able to quantify direction of relationship?	Yes	Yes
Able to quantify strength of relationship?	Yes	Yes
Able to show cause and effect?	No	Yes
Able to predict and optimize?	No	Yes
X and Y are interchangeable?		

Regression: Describes how one variable (x) affects another variable (y)

	Correlation	Regression
When to use	When summarizing direct relationship between two variables	To predict or explain responses
Able to quantify direction of relationship?	Yes	Yes
Able to quantify strength of relationship?	Yes	Yes
Able to show cause and effect?	No	Yes
Able to predict and optimize?	No	Yes
X and Y are interchangeable?	Yes	No

Rexample

```
regression_example_blank.R x
Run Source =
    # Linear model demo
    # LOAD AND INSPECT STOPPING DISTANCE DATA
  6
    # COMPUTING REGRESSION LINE BY HAND
 10
 11
 12
 13
 14
    # plot regression line
    # a = intercept, b = slope
 17
 18
    # use lm()
 21
 22
 23
    # look at summary
 25
 26
```