New Fuzzy Methods For Feature Selection

Contents

1	Abstract	3
2	Objective Functions	3
3	Comparative Map — Weights (x_v^h, y^h)	5
4	Conclusions and Future Work	5

1. Abstract

2. Objective Functions

From the book named SPEC, we sort the eigenvalues of S increasingly and we let ξ_1 be the first corresponding eigenvector.

In the equation, $x_{t,i}$ denotes the value of instance \mathbf{x}_t on feature \mathbf{f}_i . $NH(\mathbf{x})$ and $NM(\mathbf{x})$ denote the nearest points to \mathbf{x} in the data with the same and different labels, respectively, and $\|\cdot\|$ is a distance measurement.

$$\mathbf{S}_{ij}^{FIS} = \left\{ \begin{array}{ll} \frac{1}{n_{l}}, & y_{i} = y_{j} = l \\ 0, & otherwise \end{array} \right. \\ \prod_{\mathbb{F}_{sub}} \sum_{F \in \mathbb{F}_{sub}} \hat{\mathbf{f}}^{\intercal} \hat{\mathbf{S}} \hat{\mathbf{f}}, \quad \mathbf{S}_{i,j}^{REL} = \left\{ \begin{array}{ll} 1 & i = j \\ -\frac{1}{k} & x_{j} \in NH\left(\mathbf{x}_{i}\right) \\ \frac{1}{(c-1)k} & x_{j} \in NM\left(\mathbf{x}_{i}, CL(\mathbf{x}_{i})\right) \end{array} \right.$$

TABLE 4.1: The similarity matrices and feature vectors used in different algorithms.

Algorithm	Sample Similarity Matrix	Feature Normalization
Fisher Score	\mathbf{S}^{FIS}	$\tilde{\mathbf{f}} = \frac{\mathbf{D}^{\frac{1}{2}}\mathbf{f}}{\ \mathbf{D}^{\frac{1}{2}}\mathbf{f}\ }, \ \hat{\mathbf{f}} = \frac{\tilde{\mathbf{f}} - \tilde{\mathbf{f}}^{\top}\xi_{1}\xi_{1}}{\sqrt{1 - (\tilde{\mathbf{f}}^{\top}\xi_{1})^{2}}}$
ReliefF	\mathbf{S}^{REL}	$\hat{\mathbf{f}} = rac{\mathbf{D}^{rac{1}{2}}\mathbf{f}}{\ \mathbf{D}^{rac{1}{2}}\mathbf{f}\ }$
Trace Ratio Criterion	$\mathbf{L}_b - \lambda^* \mathbf{L}_w$	$\hat{\mathbf{f}} = \mathbf{f}$

From the article named SLEP, ...

Table 3: Applicability of the SLEP package

Penalty	Problem	Function	Description	Section
	$\min_{\mathbf{x}:\ \mathbf{x}\ _1 \le z} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _2^2$	eplb	Euclidean projection onto the ℓ_1 ball	2.1
		LeastR	Least squares loss	2.2
	$\min_{\mathbf{x}} f(\mathbf{x}) + \lambda \ \mathbf{x}\ _1$	LogisticR	Logistic loss	2.3
		LeastC	Least squares loss	2.4
Lasso	$\min_{\mathbf{x}:\ \mathbf{x}\ _1 \le z} f(\mathbf{x})$	LogisticC	Logistic loss	2.5
		nnLeastR	Least squares loss	2.6
	$\min_{\mathbf{x} \geq 0} f(\mathbf{x}) + \lambda \ \mathbf{x}\ _1$	nnLogisticR	Logistic loss	2.7
		nnLeastC	Least squares loss	2.8
	$\min_{\mathbf{x}:\ \mathbf{x}\ _1 \le z, \mathbf{x} \ge 0} f(\mathbf{x})$	nnLogisticC	Logistic loss	2.9
	$\min_{\mathbf{x}} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _{2}^{2} + \lambda \ \mathbf{x}\ _{q}$	ерр	ℓ_q -regularized Euclidean projection	3.1
		glLeastR	C I	3.2
		glLogisticR	Group Lasso	3.3
		mtLeastR	Multi-task learning	3.4
	$\min_{\mathbf{x}} f(\mathbf{x}) + \lambda \ \mathbf{x}\ _{q,1}$	mtLogisticR		3.5
		mcLeastR		3.6
group Lasso ¹		mcLogisticR	 Multi-class/task learning 	3.7
		mtLeastC		4.1
			Multi-task learning	4.1
	$\min_{\mathbf{x}:\ \mathbf{x}\ _{2,1}\leq z} f(\mathbf{x})$	mtLogisticC		
	13.112.12.12.1	mcLeastC	Multi-class/task learning	4.3
		mcLogisticC		4.4
	$\min_{\mathbf{x}} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _{2}^{2} + \lambda_{1} \ \mathbf{x}\ _{1} + \lambda_{2} \sum_{i=1}^{p-1} x_{i} - x_{i+1} $	flsa	fused Lasso	5.1
fused Lasso	$\lim_{X \to \mathbb{R}} \frac{1}{2} \ X - Y\ _2 + \lambda 1 \ X\ _1 + \lambda 2 \angle_{i=1} \ w_i - w_{i+1}\ _2$		signal approximator	
rused Lusso	$\min_{\mathbf{x}} f(\mathbf{x}) + \lambda_1 \mathbf{x} _1 + \lambda_2 \sum_{i=1}^{p-1} x_i - x_{i+1} $	fusedLeastR	Least Squares Loss	5.2
		fusedLogisticR	Logistic Loss	5.3
sparse inverse	$\max_{\Theta \succ 0} \log \Theta - \langle S, \Theta \rangle - \lambda \Theta _1$	spaInvCov	sparse inverse	
covariance			covariance estimation	6
	$\min_{\mathbf{x}} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _2^2 + \lambda_1 \ \mathbf{x}\ _1 + \lambda_2 \sum_{i=1}^g w_i \ \mathbf{x}_{G_i}\ _2$ se group	<u> </u>	Moreau-Yosida	
		altra		7.1
		I D	Regularization	7.0
sparse group		sgLeastR	Least Squares Loss	7.2
Lasso ²		sgLogisticR	Logistic Loss	7.3
		mc_sgLeastR	Logistic Loss	7.4
	. 10 02 . 3 529 0 0	altra	Moreau-Yosida	0.1
	$\min_{\mathbf{x}} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _{2}^{2} + \lambda \sum_{i=1}^{g} w_{i} \ \mathbf{x}_{G_{i}}\ _{2}$	general_altra	Regularization	8.1
	$\min_{\mathbf{x}} f(\mathbf{x}) + \lambda \sum_{i=1}^{g} w_i \ \mathbf{x}_{G_i}\ _2$	tree_LeastR	Least Squares Loss	8.2
		tree_LogisticR	Logistic Loss	8.3
tree structured		tree_mcLeastR	Least Squares Loss	8.4
group Lasso ³		tree_mcLogisticR	Logistic Loss	8.5
group Lasso		tree_mcLeastR	Least Squares Loss	8.6
				8.7
		tree_mcLogisticR	Logistic Loss	8.7
	$\min_{\mathbf{x}} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _{2}^{2} + \lambda \sum_{i=1}^{g} w_{i} \ \mathbf{x}_{G_{i}}\ _{2}$	overlapping	Moreau-Yosida	9.1
overlapping	$\lim_{\mathbf{x}} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _{2} + \lambda \sum_{i=1}^{n} w_{i} \ \mathbf{x}_{G_{i}}\ _{2}$	Overlapping	Regularization	9.1
group Lasso ⁴		overlapping_LeastR	Least Squares Loss	9.2
-	$\min_{\mathbf{x}} f(\mathbf{x}) + \lambda \sum_{i=1}^{g} w_i \ \mathbf{x}_{G_i}\ _2$	overlapping_LogisticR	Logistic Loss	9.3
		1	Euclidean Projection	
Ordered	$\min_{\mathbf{x} \in P} \frac{1}{2} \ \mathbf{x} - \mathbf{v}\ _2^2$	orderTree	onto P	10.1
	min f(x) \ x .	order costC		10.2
Tree	$\min_{\mathbf{x}\in P} f(\mathbf{x}) + \lambda \ \mathbf{x}\ _1$	orderLeastC	Least Squares Loss	10.2
	Least Squares Loss Logistic Loss	pathSolutionLeast	Pathwise solutions	12
	Logistic Loss	pathSolutionLogistic		
	$\min_{W} \frac{1}{2} XW - Y _F^2 + \lambda W _*$	accel_grad_mlr	Linear regression	13.1
		mat_primal	Linear regression	13.4
trace norm		mat_dual	Linear regression	13.5
	$\min_{W} \frac{1}{2} \sum_{k=1}^{k} X_{ij}w_{ij} - Y_{ij} ^{2} + \lambda W _{\infty}$	accel_grad_mtl	Multi-task learning	13.2
	$\frac{\min_{W} \frac{1}{2} \sum_{i=1}^{k} X_{i}w_{i} - Y_{i} _{2}^{2} + \lambda W _{*}}{\min_{W} \sum_{i=1}^{n} \ell(y_{i}, \text{Tr}(W^{T}X_{i})) + \lambda W _{*}}$	accel_grad_mc	Matrix classification	13.3

^{1:} The ℓ_1/ℓ_q -norm is defined as the summation of ℓ_q -norm of the non-overlapping groups. 2: In the sparse group Lasso, the indices G_i do not overlap, i.e. $G_i \cap G_j = \emptyset, \forall i \neq j$. 3: In the tree structured group Lasso, the indices G_i overlap. However, note that, G_i 's follow the tree structure, as depicted in Figure 11. 4: In the overlapping group Lasso, the indices G_i may overlap, without the restriction in the tree structured group Lasso.

3. Comparative Map — Weights (x_v^h, y^h)

With Pearson's method, if each variance of x_v and y are unitary, then $W_1^3 = \frac{\overline{x_1 y} - \overline{x_1} \cdot \overline{y}}{\sum_{v=1}^n (\overline{x_v y} - \overline{x_v} \cdot \overline{y})}$. If each mean of x_v and y are all zero, then $W_1^3 = \frac{\overline{x_1 y}}{\sum_{v=1}^n \overline{x_v y}} = \frac{\sum x_1^h y^h}{\sum x_1^h y^h + \dots + \sum x_n^h y^h}$. $\frac{\partial W}{\partial y^i} = u'v^{-1} + u(-v^{-2})v' = \frac{x_1^i y^i}{\sum x_1^h y^h + \dots + \sum x_n^h y^h} - \frac{\sum x_1^h y^h}{[\sum x_1^h y^h + \dots + \sum x_n^h y^h]^2} (x_1^i + \dots + x_n^i).$ $j \ge 2 \Rightarrow \frac{\partial W}{\partial x_j^i} = c(-v^{-2})v' = -\frac{\sum x_1^h y^h}{[\sum x_1^h y^h + \dots + \sum x_n^h y^h]^2} \cdot x_j^j \cdot y^i.$ $\frac{\partial W}{\partial x_1^i} = \frac{y^i}{\sum x_1^h y^h + \dots + \sum x_n^h y^h} - \frac{\sum x_1^h y^h}{[\sum x_1^h y^h + \dots + \sum x_n^h y^h]^2} \cdot y^i.$

By Taylor's expansion, and by the combinatorics $\underbrace{AAACCE}_{c_1 \text{ counts how many indexes}} \underbrace{\frac{5!}{3!0!2!0!1!}}_{c_1 \text{ counts how many indexes}} \text{ permutations,}$ $f(x_1, \dots, x_n) = f(x^0) + \sum_{g=1}^{\infty} \frac{1}{g!} \sum_{1 \le i_1 \le i_2 \le \dots \le i_o}^{n} \underbrace{\frac{g!}{c_1! \cdots c_g!}}_{k=1} \prod_{k=1}^{g} (x_{i_k} - x_{i_k}^0) \frac{\partial^g f(x^0)}{\partial x_{i_1} \cdots \partial x_{i_g}}. \tag{1}$

With YNFN-FS, we should numerically get all the first derivatives $\frac{\partial f(x^0)}{\partial x_i}$ at the middle point $x^0 = \frac{x^i + x^f}{2}$. Then $\frac{\partial^2 f(x^0)}{\partial x_{i_1} \partial x_{i_2}}$ and successively, until a Taylor's good approach (no one with MAPE above 20%); but here we need, whenever $n_{FP} = 3$, at least 2^n series (n-cubic regions).

4. Conclusions and Future Work

May/17th/2023 Release* by Vinicius Claudino Ferraz.

^{*}Out of charity, there is no salvation at all.