Krachten en krachtdragers Het standaardmodel Feynman Kosmische straling en airshowers Relativiteit

Quantummechanica en Relativiteitsleer bij kosmische straling

Niek Schultheiss

Krachten en krachtdragers

- Op kerndeeltjes werkt de zwaartekracht.
- Op kerndeeltjes werkt de elektromagnetische kracht.
- Kernen kunnen via de zwakke kernkracht vervallen.
- Kerndeeltjes worden bijeen gehouden door de sterke kernkracht.
- Krachten worden overgedragen door krachtdragers (bosonen).

Neutronverval: een voorbeeld van zwakke interactie.

$$\bullet \ _0^1 n \rightarrow_1^1 p +_{-1}^0 e +_0^0 \overline{\nu}$$

- Het element schuift 1 plaats omhoog in het periodiek systeem.
- Het W^- boson bepaalt de interactie.

$$\bullet \ _0^1 n \rightarrow_1^1 p +_{-1}^0 W^-$$

$$ullet \ _{-1}^{0}W^{-}
ightharpoonup^{0}_{-1} e +_{0}^{0} \overline{
u}$$

Materie en anti-materie

- 1928: Theoretisch onderzoek van Dirac leidt tot deeltjes met een negatieve energie.
- Een negatieve energie heeft geen fysische betekenis.
- De theorie is ook kloppend te maken door anti-materie te introduceren.
- 1932: Anderson ontdekt het positron (een anti-elektron).
- Het positron heeft dezelfde eigenschappen als het elektron (ook de massa!). De lading is echter tegengesteld.

Massa en energie

- Klassiek: $E_{totaal} = E_{kinetisch}(+E_{potententieel})$
- Einstein: $E_{totaal} = E_{kinetisch} + E_{rust} = mc^2 = \gamma m_0 c^2$.
- Energie is massa.

De sterke kracht o kleurlading

- ullet Zware elementen o veel protonen en neutronen in de kern.
- Grote afstoting door Coulombse lading (elektromagnetische kracht).
- De sterke kracht is veel sterker dan de elektromagnetische kracht.
- De sterke kracht werkt door uitwisseling van kleurlading.

Soorten lading

	Materie	Anti-materie	Voorbeeld
Coulomb	positief	negatief	proton
	negatief	positief	elektron
Kleur	rood	anti-rood	
	groen	anti-groen	
	blauw	anti-blauw	

- Proton \rightarrow kleurloos (rood + groen + blauw)
- Anti-proton \rightarrow kleurloos (anti-rood + anti-groen + anti-blauw)

Krachtdragers: bosonen

- Gravitatie kracht: graviton? Werkt door de hele kosmos.
- Elektromagnetische kracht: foton (lichtquantum). Werkt door de hele kosmos.
- Zwakke wisselwerking: W^- , W^+ en Z bosonen. Werkt tot 10^{-15} m.
- Sterke wisselwerking: Gluon. Werkt tot 10^{-15} m.
- De sterke wisselwerking neemt toe als de afstand toeneemt.

Deeltjes

generatie	1	2	3
quarks	и	С	t
	d	S	b
leptonen	ν_{e}	ν_{μ}	ν_{τ}
	e	μ	au

- Er zijn drie op elkaar lijkende generaties deeltjes.
- De eerste generatie is stabiel.

Stabiele deeltjes

- u: up-quark, Coulombse lading is $\frac{2}{3}e$.
- *d*: down-quark, Coulombse lading is $-\frac{1}{3}e$.
- e: elektron, Coulombse lading is -e.
- $\overline{\nu}$: anti-neutrino, Coulombse lading is 0e

Het Feynmandiagram voor neutronverval

Baryonen (proton en neutron) en mesonen (pion)

 Gluonen houden de quarks in een proton, neutron of pion door uitwisseling van kleur samen.

Processen in een airshower

- Hadronisch deel: interacties van baryonen (o.a. proton of neutron) maken door de sterke kernkracht mesonen (o.a. pionen).
- Overgangsdeel: pionen worden omgezet in lepton / anti-lepton of foton paren.
- Elektromagnetisch deel: Door creatie en annihilatie van lepton anti-leptonparen wordt de energie verdeeld over een toenemende hoeveelheid fotonen.
- De energie wordt grotendeels omgezet in deeltjes.

Pion creatie

Pion verval

Paarproductie, annihilatie en bremsstrahlung

Muonen

- Muonen en anti-muonen maken deel uit van de tweede generatie en lijken op elektronen.
- Muonen hebben een gemiddelde levensduur van $2,2\mu s$.
- Omdat $c=299792458 \mathrm{m/s}$ verwachten we een gemiddelde maximale weglengte van 660m.
- Een groot deel van de muonen bereikt echter het aardoppervlak. De luchtlaag is veel dikker dan 660m.

Tijddiletatie

- Muonen met een energie van $10^{10} {\rm eV}$ of meer komen veel in airshowers voor.
- Volgens Einstein is de energie te schrijven als: $E = \gamma m_0 c^2$.
- De rustmassa van een muon is ongeveer 100MeV.
- De massa wordt door de Lorentz factor $\gamma = 10^{10} {\rm eV}/10^8 {\rm eV} = 10^2$ maal de rustmassa.
- De tijd gaat door deze snelheid langzamer. Hier werkt dezelfde Lorentz factor. De gemiddelde weglengte van 660m wordt dus 66km.
- Een groot deel van de muonen komt dus op het aardoppervlak.

Lengtecontractie

- Een waarnemer die met het muon meereist heeft een klok die synchroon loopt met de klok van het muon.
- Toch zal het muon op dezelfde plaats vervallen.
- De door de waarnemer gemeten verplaatsing is dus 660m.
- Volgens een waarnemer op Aarde is de afstand echter 66km.
- Nu is er ook sprake van dezelfde Lorentz factor.
- Een waarnemer die met het muon meereist ziet de Aarde dus als een ellipsode en niet als een bol.