## COMP.4040 HW1

1. Solution (credit from Denzel Pierre):



2. Solution (credit from Denzel Pierre):

Insertion\_Sort(A, v)

1 for i = 1 to A. length

2 if A[i] = v3 return i4 return NIL

## Loop Invariant:

Initialization: Before the first loop, there is no statement

Maintenance: At each iteration,  $A[1 ... i - 1] \neq v$ 

Termination: When the loop terminates, either:

- The for loop returns i, proving the if statement insures A[i] = v.
- The for loop returns NIL, proving that for  $A[1 ... A. length], A[i] \neq v$ .

## **3. Solution** (credit from Venkata Praneeth Mummaneni):



## Merge Sort Sorted Sequence merge merge merge Initial Sequence

4. Solution (credit from Denzel Pierre):

| 1 if $n \leq 1$                                                                                                                                                                                                                                                                                           | C1                          | 1          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
| 2 return 1                                                                                                                                                                                                                                                                                                | C2                          | 1          |
| 3  for  i = 1  to  5                                                                                                                                                                                                                                                                                      | C3.                         | 6          |
| 4 for $j = 1$ to $n^2$                                                                                                                                                                                                                                                                                    | C4                          | $5(n^2+1)$ |
| 5 print "this is a recursive call"                                                                                                                                                                                                                                                                        | C5                          | $5n^2$     |
| 6 Mystery $\left(\frac{n}{3}\right)$                                                                                                                                                                                                                                                                      | $T\left(\frac{n}{3}\right)$ | 1          |
| 7 Mystery $\left(\frac{n}{3}\right)$                                                                                                                                                                                                                                                                      | $T\left(\frac{n}{3}\right)$ | 1          |
| 8 Mystery $\left(\frac{n}{3}\right)$                                                                                                                                                                                                                                                                      | $T\left(\frac{n}{3}\right)$ | 1          |
| $T(n) = cn^2 + 3T\left(\frac{n}{3}\right)$ $T(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{cn^2}{3}\right) + cn^2$                                                                                                                                                                                      |                             | (3)        |
| $T(n) = c_1 + c_2 + 6c_3 + c_4(5n^2 + 5) + c_5(5)$ $T(n) = cn^2 + 3T\left(\frac{n}{3}\right)$ $T(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{cn^2}{3}\right) + cn^2$ $= 9T\left(\frac{n}{9}\right) + \frac{3cn^2}{3} + cn^2$ $T(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{cn^2}{3}\right) + cn^2$ |                             | (3)        |
| $T(n) = cn^{2} + 3T\left(\frac{n}{3}\right)$ $T(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{cn^{2}}{3}\right) + cn^{2}$                                                                                                                                                                                |                             | (3)        |
| $T(n) = cn^2 + 3T\left(\frac{n}{3}\right)$ $T(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{cn^2}{3}\right) + cn^2$ $= 9T\left(\frac{n}{9}\right) + \frac{3cn^2}{3} + cn^2$                                                                                                                              |                             | (3)        |
| $T(n) = cn^2 + 3T\left(\frac{n}{3}\right)$ $T(n) = 3\left(3T\left(\frac{n}{9}\right) + \frac{cn^2}{3}\right) + cn^2$ $= 9T\left(\frac{n}{9}\right) + \frac{3cn^2}{3} + cn^2$ $T(n) = 9\left(3T\left(\frac{n}{27}\right) + \frac{cn^2}{3^2}\right) + cn^2$                                                 |                             | (3)        |

It is not clear how to get T(n) in  $\theta(n^2)$ , should add the following analysis  $\leq cn^2 \sum_{i=0}^{\infty} \frac{1}{3^i}$ 

$$\leq cn^2 \sum_{i=0}^{\infty} \frac{1}{3^i}$$

The summation is geometric and converges to 3/2

$$\leq \frac{3}{2}cn^2$$

5. Solution (credit from Venkata Praneeth Mummaneni):

Array with elements in the order  $n, n-1, n-2, \dots -3, 2, 1$  has the most number of innersions.

This array has  $(n-1)+(n-2)+\dots +3+2+1$  inversions  $\Rightarrow \text{ Number of inversions} = \frac{n(n-1)}{2}$ 

inversions = 0

if P<r

Q=LCP+r)/21

inversions = inversions + COUNT-INVERSIONS (A, P, q)

inversions = inversions + COUNT-INVERSIONS (A, P, q)

inversions = inversions + COUNT-INVERSIONS (A, P, q, r)

inversions = inversions + INVERSIONS (A, P, q, r)

return inversions.

```
Counting number of inversions: INVERSIONS (A, P, 9, 91)
n1 = 9-p+1
2. n2 = 21-9/
3. Let L[1 .- n,+1] and R[1 ... n2+1] be new aways
4. for i = 1 to n,
S. LCIJ = A (P+i-1)
6. for j=1 to n,
7. RCj] = ACq+j]
8. L[n,+1] = 00
9. R(n2+1) = 00
 10. 1 = 1
 11. j= 1
 12. inversions = 0
 13. iscounted = FALSE
 14. for K = p to se
      if iscounted == FALSE and RCj] < LCi]
          invertions = invertions + n, - i + )
        acounted = TRUE
     if LCi] { RCj]
```

```
19. A(x) = L(i)

20. i = i + 1

21. else A(x) = R(j)

22. j = j + 1

23. is counted = FALSE

24. suturen inversions
```

