```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn import preprocessing,svm
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
```

In [4]: df=pd.read_csv(r"C:\Users\jangidi veena\OneDrive\Documents\jupyter\used_cars_d
df

Out[4]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Se
		•••						
7248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
7249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
7250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
7251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	
7252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

7253 rows × 14 columns

In [5]: df.head()

Out[5]:

	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_Type
0	0	Maruti Wagon R LXI CNG	Mumbai	2010	72000	CNG	Manual	First
1	1	Hyundai Creta 1.6 CRDi SX Option	Pune	2015	41000	Diesel	Manual	First
2	2	Honda Jazz V	Chennai	2011	46000	Petrol	Manual	First
3	3	Maruti Ertiga VDI	Chennai	2012	87000	Diesel	Manual	First
4	4	Audi A4 New 2.0 TDI Multitronic	Coimbatore	2013	40670	Diesel	Automatic	Second
				_		_		

In [6]: df.describe()

Out[6]:

	S.No.	Year	Kilometers_Driven	Seats	Price
count	7253.000000	7253.000000	7.253000e+03	7200.000000	6019.000000
mean	3626.000000	2013.365366	5.869906e+04	5.279722	9.479468
std	2093.905084	3.254421	8.442772e+04	0.811660	11.187917
min	0.000000	1996.000000	1.710000e+02	0.000000	0.440000
25%	1813.000000	2011.000000	3.400000e+04	5.000000	3.500000
50%	3626.000000	2014.000000	5.341600e+04	5.000000	5.640000
75%	5439.000000	2016.000000	7.300000e+04	5.000000	9.950000
max	7252.000000	2019.000000	6.500000e+06	10.000000	160.000000

In [7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7253 entries, 0 to 7252
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	S.No.	7253 non-null	int64
1	Name	7253 non-null	object
2	Location	7253 non-null	object
3	Year	7253 non-null	int64
4	Kilometers_Driven	7253 non-null	int64
5	Fuel_Type	7253 non-null	object
6	Transmission	7253 non-null	object
7	Owner_Type	7253 non-null	object
8	Mileage	7251 non-null	object
9	Engine	7207 non-null	object
10	Power	7207 non-null	object
11	Seats	7200 non-null	float64
12	New_Price	1006 non-null	object
13	Price	6019 non-null	float64

dtypes: float64(2), int64(3), object(9)

memory usage: 793.4+ KB

In [8]: df.tail()

Out[8]:

	;	S.No.	Name	Location	Year	Kilometers_Driven	Fuel_Type	Transmission	Owner_1
72	248	7248	Volkswagen Vento Diesel Trendline	Hyderabad	2011	89411	Diesel	Manual	
72	249	7249	Volkswagen Polo GT TSI	Mumbai	2015	59000	Petrol	Automatic	
72	250	7250	Nissan Micra Diesel XV	Kolkata	2012	28000	Diesel	Manual	
72	251	7251	Volkswagen Polo GT TSI	Pune	2013	52262	Petrol	Automatic	1
72	252	7252	Mercedes- Benz E- Class 2009- 2013 E 220 CDI Avan	Kochi	2014	72443	Diesel	Automatic	

```
In [9]: df.isna().any()
Out[9]: S.No.
                               False
         Name
                               False
         Location
                               False
         Year
                               False
         Kilometers_Driven
                               False
         Fuel_Type
                               False
                               False
         Transmission
         Owner_Type
                               False
         Mileage
                                True
         Engine
                                True
         Power
                                True
         Seats
                                True
         New_Price
                                True
         Price
                                True
         dtype: bool
In [10]: df.shape
Out[10]: (7253, 14)
In [11]: df.isnull().sum()
Out[11]: S.No.
                                  0
                                  0
         Name
                                  0
         Location
         Year
                                  0
         Kilometers_Driven
                                   0
                                  0
         Fuel_Type
                                  0
         Transmission
         Owner_Type
                                  0
                                  2
         Mileage
         Engine
                                 46
         Power
                                 46
         Seats
                                  53
                                6247
         New_Price
         Price
                               1234
         dtype: int64
In [12]: | df.fillna(value=0,inplace=True)
```

```
In [13]: df.isnull().sum()
Out[13]: S.No.
                                0
                                0
         Name
          Location
                                0
                                0
         Year
                                0
         Kilometers_Driven
         Fuel_Type
                                0
         Transmission
                                0
         Owner_Type
                                0
                                0
         Mileage
                                0
         Engine
                                0
         Power
         Seats
                                0
         New_Price
                                0
         Price
                                0
         dtype: int64
In [14]: | df=df[['Year', 'Price']]
         df.columns=['yr','pr']
In [15]: sns.lmplot(x="yr",y="pr",data=df,order=2,ci=None)
```

Out[15]: <seaborn.axisgrid.FacetGrid at 0x1a4cead9510>

In [16]: df.head(10)

Out[16]:

	yr	pr
0	2010	1.75
1	2015	12.50
2	2011	4.50
3	2012	6.00
4	2013	17.74
5	2012	2.35
6	2013	3.50
7	2016	17.50
8	2013	5.20
9	2012	1.95

In [18]: df.describe()

Out[18]:

	yr	pr
count	7253.000000	7253.000000
mean	2013.365366	7.866665
std	3.254421	10.796286
min	1996.000000	0.000000
25%	2011.000000	2.290000
50%	2014.000000	4.650000
75%	2016.000000	8.400000
max	2019.000000	160.000000

```
In [19]: df.fillna(method='ffill',inplace=True)
```

C:\Users\jangidi veena\AppData\Local\Temp\ipykernel_14680\4116506308.py:1: Se
ttingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [20]: x=np.array(df['yr']).reshape(-1,1)
y=np.array(df['pr']).reshape(-1,1)
```

In [21]: | df.dropna(inplace=True)

C:\Users\jangidi veena\AppData\Local\Temp\ipykernel_14680\1379821321.py:1: Se ttingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [22]: X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print(regr.score(X_test,y_test))
```

0.07278676245503346

```
In [23]: y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.scatter(X_test,y_pred,color='k')
    plt.show()
```



```
In [24]: df500=df[:][:500]
sns.lmplot(x="yr",y="pr",data=df500,order=1,ci=None)
```

Out[24]: <seaborn.axisgrid.FacetGrid at 0x1a4cfc09250>


```
In [26]: df500.fillna(method='ffill',inplace=True)
    X=np.array(df500['yr']).reshape(-1,1)
    y=np.array(df500['pr']).reshape(-1,1)
    df500.dropna(inplace=True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(X_train,y_train)
    print("Regression:",regr.score(X_test,y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

Regression: 0.1002500397691709


```
In []: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    mode1=LinearRegression()
    mode1.fit(X_train,y_train)
    y_pred=mode1.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```