Proposition Let $(M, \xi = \ker x)$ be a contact refl and \mathcal{E}^{2n} a hypersurface, V a contact VFtransverse to \mathcal{E} . Let $\mathcal{E} \pm := \{x \in \mathcal{E} : \frac{1}{2} \angle (V_x) > 0 \}$. Then $(1)^n \mathcal{E} \pm \text{ are ideal Ziouville domain that}$ $fill in the contact structure <math>\Gamma_z$.

Proof Using the flow of V, we get that a noted of E is contactomorphic to an open while W of $E \times \{0\} \subseteq \{E \times |R\}$, fdt + B) where $f \in C^{\infty} E$, $B \in \Omega^{1} E$. The contact condition becomes $0 \neq \omega \wedge (d\omega)^{n} = (fdt + B) \wedge (df \wedge dt + dB)^{n} = fdt \wedge (df)^{+} \wedge B \wedge df \wedge df \wedge (df)^{n-1} = (fdt \wedge df)^{+} \wedge B \wedge df \wedge df \wedge (df)^{n-1} \neq 0$ on E. $B' = fB' \wedge (df')^{n} = (ff) \wedge (df')^{n} = (ff) \wedge (df')^{n} = df \wedge (df')^{n}$. Hence df' is a symplectic form on $E \neq M$. Moreover it is an ideal Giounille domain.