Parsing

Victor Eijkhout

Notes for CS 594 - Fall 2004

What is parsing?

- ▶ Check for correctness: is this a legal program
- Uncover meaning: convert to internal representation

Levels of parsing

- Check for illegal characters
- Build tokens (identifiers, numbers, operators &c) from characters (lexical analysis)
- Statements tokens (syntactical analysis)
- ► Semantical restrictions: define/use &c

```
my_array[ii] = 3+sin(1.0);
```

- ► Lexical analysis: 'my_array', '[', 'ii' &c.
- ► Syntactical: this is an assignment; Ihs is something you can assign to, rhs is arithmetic expression
- Semantics: my_array is array, ii is integer, sin is defined function

Mixing of levels

In Fortran:

```
X = SOMENAME(Y+3)
```

- Lexical analysis simple
- Syntax unclear: rhs can be function call or array element
- Solution: give lexer access to symbol table

Correctness

- Lexical analysis finds identifiers: 5ab is illegal
- Syntactical analysis finds expressions: array[ii) is illegal
- ▶ In T_EX?

Parsing by automaton

- Lexical analysis by Finite State Automaton
- Syntactical analysis by Pushdown Automaton
- ▶ In practice some mixing of levels

Terminology

► Language: a set of words

$$\{a^n|n \text{ is prime}\}$$

- Grammar: set of rules that produces a language
- Automaton: abstract device that can recognize a language
- Derivation: actual sequency of rules or transitions used to derive a string
- Parse tree: 2D way of writing derivation

to be precise

- Grammar:
 - Start symbol S
 - ▶ Terminal symbols a, b, c, ... from the alphabet
 - Non-terminals A, B, C, ..., ultimately to be replaced
 - ▶ Rules $\alpha \to \beta$ where α, β strings of terminals and non-terminals
- Automaton:
 - Starting state
 - Accepting state
 - Work storage
 - Transition diagram

Types of languages

- ▶ Languages differ in types of grammar rules $\alpha \rightarrow \beta$
- Automata differ in amount of workspace
- ► Four levels Chomsky hierarchy; many other types

▶ Regular languages

- Regular languages
- ► Turing machine: infinite tape
- ▶ No restriction on grammar rules

► Context-sensitive languages

- ► Context-sensitive languages
- ▶ Linear-bounded automata
- ▶ No rules $\alpha \rightarrow \epsilon$

- ► Context-sensitive languages
- Linear-bounded automata
- ▶ No rules $\alpha \rightarrow \epsilon$
- ▶ Normal form: $AB \rightarrow BA$, $AB \rightarrow A\beta$

► Context-free languages

- Context-free languages
- Push Down Automata
- ▶ Only rules $A \rightarrow \alpha$

- Context-free languages
- Push Down Automata
- ▶ Only rules $A \rightarrow \alpha$
- ▶ Normal form: $A \rightarrow b\alpha$ or $A \rightarrow b$

► Regular languages

- Regular languages
- ► Finite State Automata
- ▶ Only rules $A \rightarrow bC$, $A \rightarrow b$

Lexical analysis

Function of a lexer

- ► Recognize identifiers, numbers
- Also side effects: store names of functions

Definition

Inductively, through regular expressions

- ightharpoonup is the empty language
- 'a' denotes the language {a} (a in alphabet)
- if α, β denote languages A, B, then
 - $\alpha\beta$ or $\alpha \cdot \beta$ denotes $\{xy|x \in A, y \in B\}$
 - $\alpha | \beta$ denotes the language $A \cup B$.
 - α^* denotes the language $\bigcup_{n\geq 0}A^n$.

Finite state automata

- ► Starting state *S*₀
- \triangleright other states S_i ; subset: accepting states
- ▶ input alphabet I; output alphabet O
- ▶ transition diagram $I \times S \rightarrow S$

Finite state automata

- ► Starting state *S*₀
- \triangleright other states S_i ; subset: accepting states
- ▶ input alphabet I; output alphabet O
- ▶ transition diagram $I \times S \rightarrow S$
- ▶ non-deterministic: $I \cup \{\epsilon\} \times S \rightarrow S$

Finite state automata

- ► Starting state S₀
- \triangleright other states S_i ; subset: accepting states
- ▶ input alphabet I; output alphabet O
- ▶ transition diagram $I \times S \rightarrow S$
- ▶ non-deterministic: $I \cup \{\epsilon\} \times S \rightarrow S$
- String is accepted if (any) sequence of transitions it causes leads to an accepting state

Automaton that accepts ϵ :

Automaton that accepts a:

 \mathbf{a}

Automaton that accepts $A \cdot B$:

Automaton that accepts $A \cup B$:

Automaton that accepts A^* :

Characterization

- Any sufficiently long string $\alpha = uvw$
- ▶ then *uvⁿw* also in the language

Example

Language $a^*|b^*$:

Example: keywords

A bit like what happens in lexical analysis:

Converting NFA to DFA

Introduce new states

Converting NFA to DFA

- ► Introduce new states
- new state is set of old states

Converting NFA to DFA

- ► Introduce new states
- new state is set of old states
- \blacktriangleright new states closed under ϵ -transitions

New
$$S_0 = \{0, 1, 6\}$$

▶
$$S_0 + B \Rightarrow S_1 = \{2, 6, 7\}$$
,

New $S_0 = \{0, 1, 6\}$

►
$$S_0 + B \Rightarrow S_1 = \{2, 6, 7\}$$
,

▶
$$S_0 + \neg B \Rightarrow S_6 = \{6, 7\}$$

New $S_0 = \{0, 1, 6\}$

▶
$$S_0 + B \Rightarrow S_1 = \{2, 6, 7\}$$
,

$$\blacktriangleright S_0 + \neg B \Rightarrow S_6 = \{6,7\}$$

$$lacksquare$$
 $S_1+{ t E}\Rightarrow S_2=\{3,6,7\}$, et cetera

NFA for lexical analysis

small problems

 \triangleright Careful with the ϵ -transition back:

```
printf("And then he said ""Boo!""");
final state reached three times: only transition when
maximum string recognized
```

Not always:

```
X = 4.E3
IF (4.EQ.VAR) THEN
```

 \Rightarrow look-ahead needed

lex

A tool for lexical analysis

- ▶ You write regular expressions, and *lex* reports if it finds any
- ▶ Three sections: definitions, rules, code

Example

```
у.Г
 int charcount=0,linecount=0;
%}
%%
. charcount++;
\n {linecount++; charcount++;}
%%
int main()
  yylex();
  printf("There were %d characters in %d lines\n",
         charcount, linecount);
  return 0;
```

Running lex

lex code gets translated to C:

```
lex -t count.1 > count.c
cc -c -o count.o count.c
cc -o counter count.o -l1
```

Executable uses stdin/out, can be changed

Definitions section

- ▶ C code: between %{ ... %} copied to top of C file
- ▶ Definitions: 'letter [a-zA-Z]' (like #define)
- State definitions (later)

Example 2

Rules section

- Input is matched by character
- Actions of longest match are taken, earliest if equal length
- Matched text is char *yytext, length int yyleng

Example 2'

Example 3

```
[0-9]+ process_integer();
[0-9]+\.[0-9]* |
\.[0-9]+ process_real();
```

Regular expressions

- . Match any character except newlines.
- \n A newline character.
- \t A tab character.
- ^ The beginning of the line.
- \$ The end of the line.
- <expr>* Zero or more occurrences of the expression.
- <expr>+ One or more occurrences of the expression.
- <expr>? Zero or one occurrences of the expression.
- (<expr1>|<expr2>) One expression of another.
 - [<set>] A set of characters or ranges, such as [,.:;] or [a-zA-Z].
 - $[^{\text{set}}]$ The complement of the set, for instance $[^{\text{t}}]$.

Example: filtering comments

Does not work on

This text /* has */ a /* comment */ in it

Context

- Match in context
- Left context implemented through states:

```
<STATE>(some pattern) {...

State switching:

<STATE>(some pattern) {some action; BEGIN OTHERSTATE;}

Initial state is INITIAL, other states defined

%s MYSTATE

%x MYSTATE
```

Use of states

```
%x COMM
%%
\n
           ECHO;
"/*"
            BEGIN COMM;
<COMM>"*/"
           BEGIN INITIAL;
<COMM>.
<COMM>\n
%%
```

Context'

- Right context: abc/de {some action}
- context tokens not in yytext/yyleng

Example: text cleanup

```
Input:
```

```
This text (all of it ) has occasional lapses, in punctuation (sometimes pretty bad), (sometimes not so).
```

```
(Ha! ) Is this : fun?Or what!
```

Solution with context more compact than without.

Define:

```
punct [,.;:!?]
text [a-zA-Z]
```

need for context

- Consider '),' ') ,' ')a' ') a'
- ▶ Rules ")" " "+ {printf(")");} depend on context

right context solution

```
")"" "+/{punct}
                      {printf(")");}
")"/{text}
                      {printf(") ");}
{text}+" "+/")"
                      {while (yytext[yyleng-1]==' ') yyleng--; ECHO;}
({punct}|{text}+)/"(" {ECHO; printf(" ");}
"("" "+/{text}
                   {while (yytext[yyleng-1]==', ') yyleng--; ECHO;}
{text}+" "+/{punct} {while (yytext[yyleng-1]==' ') yyleng--; ECHO;}
                      {printf(" ");}
                      {ECHO;}
n/n
\n
                      {ECHO;}
```

left context solution

Use defined states:

```
punct [,.;:!?]
text [a-zA-Z]
```

```
%s OPEN
```

left context solution, cont'd

```
" "+ ;
<INITIAL>"(" {ECHO; BEGIN OPEN;}
<TEXT>"("
             {printf(" "); ECHO; BEGIN OPEN;}
<PUNCT>"("
")" {ECHO ; BEGIN CLOSE;}
<INITIAL>{text}+ |
<OPEN>{text}+
                 {ECHO; BEGIN TEXT;}
<CLOSE>{text}+
<TEXT>{text}+
<PUNCT>{text}+
                 {printf(" "); ECHO; BEGIN TEXT;}
{punct}+ {ECHO; BEGIN PUNCT;}
\n {ECHO; BEGIN INITIAL;}
```

Context-free languages Parsing strategies Ambiguity and conflicts yacc

Syntactical analysis

Function of syntactical analysis

- ► Recognize statements: loops, assignments &c
- Convert to internal representation: parse trees

► Semantics: define/use sequence &c

Grammars

► Backus Naur, or other formalism

```
▶ In LATEX: bnf.sty
  \begin{bnf}
  Expr: number Tail.
  Tail: $\epsilon$; + number Tail; * number Tail
  \end{bnf}
  Output:
            Expr \longrightarrow number Tail
            Tail \longrightarrow \epsilon \mid + number Tail
              * number Tail
  (use my bnf.env)
```

most language constructs are context-free

Concepts

- ▶ Grammar rules $A \rightarrow x\alpha$
- ▶ Derivations $abcA\gamma \Rightarrow abcx\alpha\gamma$
- ► Parse tree

Context-free languages Parsing strategies Ambiguity and conflicts yacc

Context-free languages

Definition

- ▶ Grammatical: only rules $A \rightarrow \alpha$
- ▶ From automata: pushdown automata

Pumping lemma

- ► For every language there is an *n* such that
 - strings longer than n can be written uvwxy
 - ▶ and for all k: $uv^k wx^k y$ also in the language
- ► Proof:

▶ Non-{context-free} language: $\{a^n b^n c^n\}$

Deterministic and non-deterministic

- ▶ No equivalence
- ▶ Deterministic: $L_c = \{\alpha c \alpha^R | c \notin \alpha\}$
- ▶ Non-deterministic: $L = \{\alpha \alpha^R\}$

Algebra of languages

- \triangleright Expressions **x** and **y** denote languages, then
 - ▶ union: $\mathbf{x} + \mathbf{y} = \mathbf{x} \cup \mathbf{y}$
 - ▶ concatenation: $\mathbf{x}\mathbf{y} = \{w = xy | x \in \mathbf{x}, y \in \mathbf{y}\}$
 - repetition: $\mathbf{x}^* = \{ w = x^n | x \in \mathbf{x}, n \ge 0 \}$

Algebra: solving equations

- Equation: $\mathbf{x} = \mathbf{a} + \mathbf{x}\mathbf{b}$
- ▶ Interpretation: $\mathbf{x} = \mathbf{a} \cup \{w = xb | x \in \mathbf{x}, b \in \mathbf{b}\}$
- Solving:
 - first of all $x \supset a$
 - ▶ then also $x \supset a \cdot b$
 - ► continuing: **x** ⊃ **abb**,...
- verify: x = ab*

Algebra: solving equations

- ▶ Equation: $\mathbf{x} = \mathbf{a} + \mathbf{x}\mathbf{b}$
- ▶ Interpretation: $\mathbf{x} = \mathbf{a} \cup \{w = xb | x \in \mathbf{x}, b \in \mathbf{b}\}$
- Solving:
 - first of all $x \supset a$
 - ▶ then also $x \supset a \cdot b$
 - ► continuing: **x** ⊃ **abb**,...
- ▶ verify: x = ab*
- Numerically: x = a/(1-b)

- ▶ Normal form: $A \rightarrow a\alpha$
- Write grammar of context-free language as x^t = x^tA + f^t, where x non-terminals, f rhs that are of normal form, x^tA describes normal form rhs

- ▶ Normal form: $A \rightarrow a\alpha$
- Write grammar of context-free language as $\mathbf{x}^t = \mathbf{x}^t \mathbf{A} + \mathbf{f}^t$, where \mathbf{x} non-terminals, \mathbf{f} rhs that are of normal form, $\mathbf{x}^t \mathbf{A}$ describes normal form rhs
- Example:

$$\begin{array}{lll} S \rightarrow aSb \dot{|} XY | c \\ X \rightarrow YXc | b \\ Y \rightarrow XS \end{array} \quad \begin{bmatrix} S, X, Y \end{bmatrix} = \begin{bmatrix} S, X, Y \end{bmatrix} \begin{bmatrix} \phi & \phi & \phi \\ Y & \phi & S \\ \phi & Xc & \phi \end{bmatrix} + \begin{bmatrix} aSb + c, b, \phi \end{bmatrix}$$

- ▶ Normal form: $A \rightarrow a\alpha$
- ▶ Write grammar of context-free language as $\mathbf{x}^t = \mathbf{x}^t \mathbf{A} + \mathbf{f}^t$, where \mathbf{x} non-terminals, \mathbf{f} rhs that are of normal form, $\mathbf{x}^t \mathbf{A}$ describes normal form rhs

Solution:

$$\mathbf{x}^t = \mathbf{f}^t \mathbf{A}^*$$

- ▶ Normal form: $A \rightarrow a\alpha$
- ▶ Write grammar of context-free language as $\mathbf{x}^t = \mathbf{x}^t \mathbf{A} + \mathbf{f}^t$, where \mathbf{x} non-terminals, \mathbf{f} rhs that are of normal form, $\mathbf{x}^t \mathbf{A}$ describes normal form rhs

Solution:

$$\mathbf{x}^t = \mathbf{f}^t \mathbf{A}^*$$

▶ Needed: more explicit expression for A*.

- ▶ Note $\mathbf{A}^* = \lambda + \mathbf{A}\mathbf{A}^*$
- then normal form:

$$\mathbf{x}^t = \mathbf{f}^t + \mathbf{f}^t \mathbf{A} \mathbf{A}^* = \mathbf{f}^t + \mathbf{f}^t \mathbf{B}$$

where $\mathbf{B} = \mathbf{A}\mathbf{A}^*$.

- Note **A*** = λ + **AA***
- then normal form:

$$\mathbf{x}^t = \mathbf{f}^t + \mathbf{f}^t \mathbf{A} \mathbf{A}^* = \mathbf{f}^t + \mathbf{f}^t \mathbf{B}$$

where $\mathbf{B} = \mathbf{A}\mathbf{A}^*$.

▶ B:

$$B = AA^* = A + AAA^* = A + AB$$

not necessarily normal form

- Note **A*** = λ + **AA***
- then normal form:

$$\mathbf{x}^t = \mathbf{f}^t + \mathbf{f}^t \mathbf{A} \mathbf{A}^* = \mathbf{f}^t + \mathbf{f}^t \mathbf{B}$$

where $\mathbf{B} = \mathbf{A}\mathbf{A}^*$.

▶ B:

$$B = AA^* = A + AAA^* = A + AB$$

not necessarily normal form

▶ Elements of **A** that start with a nonterminal can only start with nonterminals in **x**. Hence substitute a rule from equation above.

Context-free languages Parsing strategies Ambiguity and conflicts yacc

Parsing strategies

Top-down parsing

- ▶ Start with *S* on the stack, replace by appropriate rule, guided by input
- ► Example: expression 2*5+3, which is produced by the grammar

```
Expr \longrightarrow number Tail
Tail \longrightarrow \epsilon \mid + number Tail \mid * number Tail
```

initial queue:	2 * 5 + 3	
start symbol on stack:		Expr
replace		number Tail
match	*5 + 3	Tail
replace		* number Tail
match	5 + 3	number Tail
match	+ 3	Tail
replace		+ number Tail
match	3	number Tail
match	ϵ	Tail
match		

$$E \Rightarrow n T \Rightarrow n * n T \Rightarrow n * n + n T \Rightarrow n * n + n$$

LL(1)

Equivalent grammar:

 $Expr \longrightarrow number \mid number + Expr \mid number * Expr$ assuming one more token look-ahead:

initial queue:	2 * 5 + 3	
start symbol on stack:		Expr
replace		number * Expr
match	5 + 3	Tail
replace		number + Expr
match	3	Expr
replace	3	number
match	ϵ	
11(2)		

LL(2)

LL is recursive descent

```
Finding of proper rule:

define FindIn(Sym,NonTerm)
  for all expansions of NonTerm:
    if leftmost symbol == Sym
        then found
    else if leftmost symbol is nonterminal
        then FindIn(Sym,that leftmost symbol)
FindIn(symbol,S);
```

Problems with LL(k)

- Some grammars are not LL(k) for any k: if A<B and A both legal
- Infinite loop:

```
Expr \longrightarrow number \mid Expr + number \mid Expr * number
```

Bottom-up: Shift-reduce

- Recognize productions from terminals
- \triangleright Example: expression 2*5+3 produced by

$$E \longrightarrow number \mid E + E \mid E * E$$

	stack	queue
initial state:		2*5+3
shift	2	*5+3
reduce	Е	*5+3
shift	E*	5+3
shift	E*5	+3
reduce	E*E	+3
reduce	E	+3
shift, shift, reduce	E + E	
reduce	Е	

$$E \Rightarrow E + E \Rightarrow E + 3 \Rightarrow E * E + 3 \Rightarrow E * 5 + 3 \Rightarrow 2 * 5 + 3$$

$$LR(0)$$

Where to start reducing?

- 'Greedy' reducing is not always best
- Grammar:

$$\begin{array}{ccc} S \longrightarrow aAcBe \\ A \longrightarrow bA \mid b \\ B \longrightarrow d \end{array}$$

and string abbcde.

▶ Derivation 1:

$$abbcde \Leftarrow abAcde \Leftarrow aAcde \Leftarrow aAcBe \Leftarrow S.$$

Derivation 2:

$$\texttt{abbcde} \Leftarrow \texttt{aAbcde} \Leftarrow \texttt{aAAcde} \Leftarrow \texttt{?}$$

Handle

If $S \Rightarrow^* \alpha Aw \Rightarrow \alpha \beta w$ is a right-most derivation, then $A \rightarrow \beta$ at the position after α is a handle of αAw .

Question: how to find handles

Operator-precedence grammars

- Operator grammar: 'expr-op-expr'
- ▶ Formally: never two consecutive non-terminals, and no rules $A \rightarrow \epsilon$.
- Declare precedences (and associativity)

	number	+	\times
number		>	>
+	< <	>	<
×	< <	⋗	>

- ▶ Annotate expression: 5 + 2 * 3 becomes $\langle 5 \rangle + \langle 2 \rangle * \langle 3 \rangle$
- ▶ Reducing: E + E * E
- ▶ Insert precedences: < + < * >
- ▶ Scan forward to closing, back to open: $\langle E * E \rangle$ is handle
- ▶ Reduce: *E* + *E*
- ▶ ⇒ precendences correctly observed
- (note: no global scanning; still shift-reduce like)

Definition of *LR* parser

An LR parser has the following components

- Stack and input queue; stack will also contain states
- Actions 'shift', 'reduce', 'accept', 'error'
- Functions Action and Goto
 - With input symbol a and state on top of the stack s:
 - ▶ If Action(a, s) is 'shift', then a and a new state s' = Goto(a, s) are pushed on the stack.
 - If Action(a, s) is 'reduce A → β' where |β| = r, then 2r symbols are popped from the stack, a new state s' = Goto(a, s") is computed based on the newly exposed state on the top of the stack, and A and s' are pushed. The input symbol a stays in the queue.

More powerful than simple shift/reduce; states much more complicated

motivating example

Grammar

$$E \longrightarrow E + E \mid E * E$$
 input string $1 + 2 * 3 + 4$.

- ▶ Define precedences: $op(+) = 1, op(\times) = 2$
- Define states as; initially state 0
- Transitions: push operator precedence, do not change state for numbers
- Shift/reduce strategy: reduce if precedence of input lower than of stack top

Parser states

```
item Grammar rule with location indicated. From A \to B C items: A \to \bullet B C, A \to B \bulletC, A \to B C (stack is left of dot, queue right)
```

closure of an item The smallest set that

- Contains that item;
- If I in closure and I = A → α •B β with B nonterminal, then I contains all items B → •γ.

state Set of items.

follow of A: set of all terminals that can follow A's expansions

Motivation: valid items

- ▶ Recognized so far: $\alpha\beta_1$
- ▶ Consider item $A \rightarrow \beta_{1 \bullet} \beta_2$
- ▶ Item is called *valid*, if rightmost derivation

$$S \Rightarrow^* \alpha A w \Rightarrow \alpha \beta_1 \beta_2 w$$

- ▶ Case: $\beta_2 = \epsilon$, then $A \rightarrow \beta_1$ handle: reduce
- ▶ Case: $\beta_2 \neq \epsilon$, so shift β_2 .

example of valid items

► String E+T* in grammar:

$$E \longrightarrow E+T \mid T$$

 $T \longrightarrow T*F \mid F$
 $F \longrightarrow (E) \mid id$

Derivations

$$E \Rightarrow E + T \Rightarrow E + T * F$$

$$E \Rightarrow E + T \Rightarrow E + T * F \Rightarrow E + T * (E)$$

$$E \Rightarrow E + T \Rightarrow E + T * F \Rightarrow E + T * id$$
give items T \to T*_\circ F F \to _\circ (E) F \to _\circ id

States and transitions

- ▶ New start symbol S', added production $S' \rightarrow S$.
- ▶ Starting state is closure of $S' \rightarrow {}_{\bullet}S$.
- ▶ Transition d(s, X): the closure of

$$\{\mathtt{A} \, \to \alpha \ \mathtt{X}_{\bullet} \ \beta | \mathtt{A} \, \to \alpha \ {}_{\bullet}\mathtt{X} \ \beta \text{ is in } s\}$$

▶ The initial state is the closure of $S' \rightarrow {}_{\bullet}S$.

Grammar:
$$S \rightarrow (S)S \mid \epsilon$$

States (after adding $S' \rightarrow .S$):

with transitions (
$$\{A \to \alpha_{\bullet} X \beta \in s \Rightarrow (cl)(A \to \alpha X_{\bullet} \beta)$$
):

Grammar:
$$S \to (S)S \mid |\epsilon|$$

States (after adding $S' \to .S$):
0. $\{S' \to .S, S \to .(S)S, S \to .\}$

with transitions
$$(\{A \to \alpha_{\bullet} X \beta \in s \Rightarrow (cl)(A \to \alpha X_{\bullet} \beta))$$
:

Grammar: $S \rightarrow (S)S \mid \epsilon$ States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

$$1.~\{\mathtt{S'}\,\to\mathtt{S.}\}$$

States (after adding $\mathtt{S}' \, \to \, \mathtt{.S})\!:$

$$0. \ \{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

- $1.~\{\mathtt{S'}\,\to\mathtt{S.}\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

- $1.~\{\mathtt{S'}\,\to\mathtt{S.}\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$
- 3. $\{S \rightarrow (S.)S\}$

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

- 1. $\{S' \rightarrow S.\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$
- 3. $\{S \rightarrow (S.)S\}$
- 4. $\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

- 1. $\{S' \rightarrow S.\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$
- 3. $\{S \rightarrow (S.)S\}$
- 4. $\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$
- 5. $\{S \rightarrow (S)S.\}$

States (after adding $S' \rightarrow .S$):

$$\textbf{0.} \ \{ \texttt{S}' \ \rightarrow \ . \, \texttt{S}, \texttt{S} \ \rightarrow \ . \, \, (\texttt{S}) \, \texttt{S}, \texttt{S} \ \rightarrow \ . \, \}$$

1.
$$\{S' \rightarrow S.\}$$

2.
$$\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$$

3.
$$\{S \rightarrow (S.)S\}$$

4.
$$\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$$

5.
$$\{S \rightarrow (S)S.\}$$

with transitions (
$$\{A \to \alpha_{\bullet} X \beta \in s \Rightarrow (cl)(A \to \alpha X_{\bullet} \beta)$$
):

$$d(0,S) = 1$$

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

- 1. $\{S' \rightarrow S.\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$
- 3. $\{S \rightarrow (S.)S\}$
- 4. $\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$
- 5. $\{S \rightarrow (S)S.\}$

- d(0, S) = 1
- d(0, '(') = 2)

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

- 1. $\{S' \rightarrow S.\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$
- 3. $\{S \rightarrow (S.)S\}$
- 4. $\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$
- 5. $\{S \rightarrow (S)S.\}$

- \rightarrow d(0,S)=1
- d(0,'(')=2
- d(2, S) = 3

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

$$1.~\{\mathtt{S'}\,\to\mathtt{S.}\}$$

2.
$$\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$$

3.
$$\{S \rightarrow (S.)S\}$$

4.
$$\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$$

5.
$$\{S \rightarrow (S)S.\}$$

$$\rightarrow$$
 $d(0, S) = 1$

$$d(0,'('))=2$$

$$d(2, S) = 3$$

$$d(2,'(')=2)$$

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

1.
$$\{S' \rightarrow S.\}$$

2.
$$\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$$

3.
$$\{S \rightarrow (S.)S\}$$

4.
$$\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$$

5.
$$\{S \rightarrow (S)S.\}$$

$$\rightarrow$$
 $d(0, S) = 1$

$$d(0,'('))=2$$

$$d(2, S) = 3$$

$$d(2,'(') = 2)$$

$$d(3,')')=4$$

States (after adding $S' \rightarrow .S$):

0.
$$\{S' \rightarrow .S, S \rightarrow .(S)S, S \rightarrow .\}$$

1.
$$\{S' \rightarrow S.\}$$

2.
$$\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$$

3.
$$\{S \rightarrow (S.)S\}$$

4.
$$\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$$

5.
$$\{S \rightarrow (S)S.\}$$

$$\rightarrow$$
 $d(0, S) = 1$

$$d(0, '(') = 2)$$

$$d(2, S) = 3$$

$$d(2,3) = 3$$

$$d(2,'(') = 2$$

$$d(3,')')=4$$

$$d(4, S) = 5$$

States (after adding $S' \rightarrow .S$):

$$0. \ \{\mathtt{S}' \to \mathtt{.S}, \mathtt{S} \to \mathtt{.(S)S}, \mathtt{S} \to \mathtt{.}\}$$

- 1. $\{S' \rightarrow S.\}$
- 2. $\{S \rightarrow (.S)S, S \rightarrow .(S)S, S \rightarrow .\}$
- 3. $\{S \rightarrow (S.)S\}$
- 4. $\{S \rightarrow (S).S, S \rightarrow .(S)S, S \rightarrow .\}$
- 5. $\{S \rightarrow (S)S.\}$

- \rightarrow d(0,S)=1
- d(0, '(') = 2)
- d(2, S) = 3
- d(2,'('))=2
- d(3,')' = 4
- d(4, S) = 5
- d(4,'('))=2

Stack handling

Loop:

- (1) **if** the current state contains $S' \to S_{\bullet}$ accept the string
- (2) **else if** the current state contains any other final item $\mathbb{A} \to \alpha_{\bullet}$ pop all the tokens in α from the stack, along with the corresponding states; let s be the state left on top of the stack: push \mathbb{A} , push $\mathbb{d}(s,\mathbb{A})$
- (3) **else if** the current state contains any item $A \to \alpha$ •x β , where x is the next input token let s be the state on top of the stack: push x, push d(s,x) **else** report failure

Context-free languages Parsing strategies Ambiguity and conflicts yacc

Ambiguity and conflicts

Shift/reduce conflict

▶ Grammar for 2 + 5 * 3:

$$\begin{array}{ll} \langle \mathtt{expr} \rangle \longrightarrow & \langle \mathtt{number} \rangle \mid & \langle \mathtt{expr} \rangle + \langle \mathtt{expr} \rangle \mid & \langle \mathtt{expr} \rangle \\ \times & \langle \mathtt{expr} \rangle \end{array}$$

interpretations:

Parse: reduce 2 + 5 to <expr> + <expr>, then reduce to <expr>, or shift the minus?

solutions

► Reformulate the grammar as

$$\begin{array}{lll} \langle \texttt{expr} \rangle & \longrightarrow & \langle \texttt{mulex} \rangle \mid & \langle \texttt{mulex} \rangle + \langle \texttt{mulex} \rangle \\ \langle \texttt{mulex} \rangle & \longrightarrow & \langle \texttt{term} \rangle \mid & \langle \texttt{term} \rangle \times \langle \texttt{term} \rangle \\ \langle \texttt{term} \rangle & \longrightarrow & number \end{array}$$

new parse:

Introduce precedence of operators.
 Possibly more efficient if large number of operators.

'Dangling else'

► Consider the grammar

$$\langle \mathtt{statement} \rangle \longrightarrow \mathit{if} \langle \mathtt{clause} \rangle \mathit{then} \langle \mathtt{statement} \rangle \mid \mathit{if} \langle \mathtt{clause} \rangle \mathit{then} \langle \mathtt{statement} \rangle \mathit{else} \langle \mathtt{statement} \rangle$$

string

if
$$c_1$$
 then if c_2 then s_1 else s_2

Interpretations:

Reduce/reduce conflict

► Grammar for x y c

$$\begin{array}{cccc} A & \longrightarrow & B c d \mid E c f \\ B & \longrightarrow & x y \\ E & \longrightarrow & x y \end{array}$$

- ► LR(1) parser: shift x y, then reduceto B or E?
- ▶ LR(2) parser: sees d or f
- ► An LL parser: ambiguity in the first 3 tokens LL(4) parser can sees d or f.

• Grammar for $x y c^n \{d|f\}$:

$$\begin{array}{ccccc} A & \longrightarrow & B & C & d & | & E & C & f \\ B & \longrightarrow & x & y & & & \\ E & \longrightarrow & x & y & & & \\ C & \longrightarrow & c & | & C & c & & & \end{array}$$

- ightharpoonup confusing for any LR(n) or LL(n) parser with a fixed amount of look-ahead
- rewrite:

$$A \longrightarrow BorE \ c \ d \mid BorE \ c \ f$$
 $BorE \longrightarrow x \ y$
or (for an $LL(n)$ parser):
 $A \longrightarrow BorE \ c \ tail$
 $tail \longrightarrow d \mid f$
 $BorE \longrightarrow x \ y$

Introduction Lexical analysis Syntactical analysis ontext-free languages orsing strategies orbiguity and conflicts occ

yacc

yacc and lex

- lex produces tokens
- yacc analyzes sequences of tokens
- lexer returns on recognizing a token
- main program in yacc code

File structure

```
...definitions...
%%
...rules...
%%
...code...
```

Default main calls yyparse

Example: yacc code header

```
File name words.y
%{
#include <stdlib.h>
#include <string.h>
  int yylex(void);
#include "words.h"
  int nwords=0;
#define MAXWORDS 100
  char *words[MAXWORDS];
%}
%token WORD
%%
```

Context-free languages Parsing strategies Ambiguity and conflicts yacc

include file

Generated by running yacc:

%% cat words.h
#define WORD 257

Example: *lex* code

```
%{
#include "words.h"
int find_word(char*);
extern int yylval;
%}
%%
[a-zA-Z]+ {yylval = find_word(yytext);
   return WORD;}
\n
%%
```

```
text : ;
         text WORD ; {
            if ($2<0) printf("new word\n");
            else printf("matched word %d\n",$2);
%%
int find_word(char *w)
{ int i:
  for (i=0; i<nwords; i++)</pre>
    if (strcmp(w,words[i])==0) return i;
  words[nwords++] = strdup(w); return -1;
int main(void)
  yyparse();
  printf("there were %d unique words\n",nwords);
```

Running lex and yacc

```
/* create and compile yacc C file */
yacc -d -t -o YACCFILE.c YACCFILE.y
cc -c -o YACCFILE.o YACCFILE.c

/* create and compile lex C file */
lex -t LEXFILE.l > LEXFILE.c
cc -c -o LEXFILE.o LEXFILE.c

/* link together */
cc YACCFILE.o LEXFILE.o -o YACCPROGRAM -ly -l1
```

Make with suffix rules

```
# disable normal rules
.SUFFIXES:
.SUFFIXES: .1 .y .o
# lex rules
.1.0:
        lex -t $*.1 > $*.c
        cc -c $*.c -o $*.o
# yacc rules
.v.o:
        if [ ! -f $*.h ] ; then touch $*.h ; fi
        yacc -d -t -o $*.c $*.y
        cc -c -o $*.o $*.c :
        rm $*.c
# link lines
lexprogram : $(LEXFILE).o
        cc $(LEXFILE).o -o $(LEXFILE) -11
yaccprogram : $(YACCFILE).o $(LEXFILE).o
        cc $(YACCFILE).o $(LEXFILE).o -o $(YACCFILE) = 1y -11
```

yacc definitions section

- ► C code in between %{ ... %}
- ▶ Token definitions: the *lex* return tokens
- Associativity rules (later)

Tokens

▶ Definition: %token F00

▶ In .h file: #define FOO 257 (or so)

▶ *lex* code: return F00

Returning values over the stack

- lex assigns to yylval
- value is put on top of stack
- ▶ if a yacc rule is matched: \$1, \$2, \$3 are assigned (as many as elements in rhs)
- replace stack top: assign to \$\$

Calculator example: *lex* code

```
%{
#include "calc1.h"
void yyerror(char*);
extern int yylval;
%}
%%
[\t]+;
[0-9]+
           {yylval = atoi(yytext);
            return INTEGER;}
[-+*/]
           {return *yytext;}
"("
           {return *yytext;}
")"
           {return *vvtext;}
\n
           {return *yytext;}
           {char msg[25];
            sprintf(msg,"%s <%s>","invalid character",yytext);
            yyerror(msg);}
```

Calculator example: yacc code

```
%{
int yylex(void);
#include "calc1.h"
%}
%token INTEGER
%%
program:
        line program
        line
line:
        expr '\n'
                             { printf("%d\n",$1); }
          'n,
```

Calculator example: yacc code, cont'd

```
expr:
        expr '+' mulex \{ \$\$ = \$1 + \$3; \}
         | expr '-' mulex { $$ = $1 - $3; }
         | mulex
                               \{ \$\$ = \$1; \}
mulex:
        mulex '*' term { $$ = $1 * $3; }
         | mulex '/' term
                               \{ \$\$ = \$1 / \$3; \}
         | term
                               \{ \$\$ = \$1; \}
term:
         '(' expr ')'
                               \{ \$\$ = \$2; \}
           INTEGER
                               \{ \$\$ = \$1; \}
```

Calculator with variables

- ► Simple case: single letter variables
- more complicated: names
- Extra rule: assignments
- lex returns
 - double values
 - ▶ int index of variable

Multiple return types

Declare possible return types:

```
%union {int ival; double dval;}
```

Connect types to return tokens:

```
%token <ival> NAME
%token <dval> NUMBER
```

► The types of non-terminals need to be given:

```
%type <dval> expr
%type <dval> mulex
%type <dval> term
```

▶ In .h file will now have

```
#define name 258
#define NUMBER 259
typedef union {int ival; double dval;} YYSTYPE;
extern YYSTYPE yylval;
```

Multiple return types: *lex* code

```
[\t]+;
(([0-9]+(\.[0-9]*)?)|([0-9]*\.[0-9]+))
            yylval.dval = atof(yytext);
            return DOUBLE;}
[-+*/=]
           {return *yytext;}
"("
           {return *yytext;}
")"
           {return *yytext;}
[a-z]
           {yylval.ivar = *yytext - 'a';
            return NAME;} /* more later */
\n
           {return *yytext;}
           \{char msg[25];
            sprintf(msg, "%s <%s>", "invalid character", yyte
            yyerror(msg);}
```

Example: calculator with variables

Tokens are double numbers, or variables (int index in table)

```
%{
#define NVARS 100
char *vars[NVARS]; double vals[NVARS]; int nvars=0;
%}
%union { double dval; int ivar; }
%token <dval> DOUBLE
%token <ivar> NAME
%type <dval> expr
%type <dval> mulex
%type <dval> term
```

Symbol table handling

lex parses variable names:

```
[a-z][a-z0-9]* {
          yylval.ivar = varindex(yytext);
          return NAME;}
```

names are dynamically stored:

```
int varindex(char *var)
{
  int i;
  for (i=0; i<nvars; i++)
    if (strcmp(var,vars[i])==0) return i;
  vars[nvars] = strdup(var);
  return nvars++;
}</pre>
```

Arithmetic

Largely as before:

```
expr:
         expr '+' mulex \{ \$\$ = \$1 + \$3; \}
         expr '-' mulex
                               \{ \$\$ = \$1 - \$3; \}
                                 \{ \$\$ = \$1; \}
         | mulex
mulex:
         mulex '*' term
                                 \{ \$\$ = \$1 * \$3; \}
         | mulex '/' term
                                \{ \$\$ = \$1 / \$3; \}
                                 \{ \$\$ = \$1: \}
          l term
term:
         '(' expr ')'
                                 \{ \$\$ = \$2; \}
          NAME
                                 { $$ = vals[$1]: }
           DOUBLE
                                 \{ \$\$ = \$1: \}
```

Assignments

```
line:
```

```
expr '\n' { printf("%g\n",$1); } | NAME '=' expr '\n' { vals[$1] = $3; }
```

Operator precedence and associativity

Increasing precedence order:

```
%left '+' '-'
%left '*' '/'
%right '^'
%%
expr:
        expr '+' expr ;
        expr '-' expr ;
        expr '*' expr ;
        expr '/' expr ;
        expr ', expr ;
        number ;
```

Unary operators

Error handling

```
Default: yyerror prints syntax error
Better:
  lex code:
  ۱n
        lineno++;
  yacc code:
  void yyerror(char *s)
  {
    printf("Parsing failed in line %d because of %s\n",lineno,s);
    return;
  }
Your own error messages:
  expr : name '[' name ']'
          {if (!is_array($1) yyerror("array name expected");
```

Error recovery

▶ Use of error token: