日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月26日

出 願 番 号 Application Number:

特願2003-182089

[ST. 10/C]:

[JP2003-182089]

願 pplicant(s):

JSR株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

特許庁長官 Commissioner, Japan Patent Office 2003年12月11日

今井康

PEST AVAILABLE COPY

出証番号 出証特2003-3102677

•

【書類名】 特許願

【整理番号】 SRR10512

【提出日】 平成15年 6月26日

【あて先】 特許庁長官 殿

【国際特許分類】 C07C309/25

C07C309/28

C07C309/71

C07C309/72

G03F 7/004

H01L 21/027

H01L 21/30

【発明者】

【住所又は居所】 東京都中央区築地五丁目6番10号

ジェイエスアール株式会社内

【氏名】 米田 英司

【発明者】

【住所又は居所】 東京都中央区築地五丁目6番10号

ジェイエスアール株式会社内

【氏名】 西村 幸生

【発明者】

【住所又は居所】 東京都中央区築地五丁目6番10号

ジェイエスアール株式会社内

王 勇 【氏名】

【特許出願人】

【識別番号】 000004178

【氏名又は名称】 ジェイエスアール株式会社

【代理人】

【識別番号】 100100985

【弁理士】

【氏名又は名称】 福沢 俊明

【電話番号】 03-5570-2185

【先の出願に基づく優先権主張】

【出願番号】 特願2002-373625

【出願日】 平成14年12月25日

【手数料の表示】

【予納台帳番号】 044428

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9116687

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 オニウム塩化合物、感放射線性酸発生剤およびポジ型感放射線性樹脂組成物

【特許請求の範囲】

【請求項1】 カチオン部分が下記一般式(1)で表されるオニウム塩化合物。

【化1】

$$(Ar^{2})_{\overline{n}} A^{+} (Ar^{1})_{\overline{m}}$$
 (1)

「一般式(1)において、Aはヨウ素原子または硫黄原子を示し、Aがヨウ素原 子の場合、mは1または2、nは0または1で、(m+n) = 2を満たし、xは $1 \sim 10$ の整数であり、Aが硫黄原子の場合、mは $1 \sim 3$ の整数、nは $0 \sim 2$ の 整数で、(m+n)=3を満たし、xは1~15の整数であり、A r¹ および Ar² は相互に独立に置換もしくは非置換の炭素数6~20の1価の芳香族炭化 水素基または置換もしくは非置換の原子数3~20の1価の複素環式基を示すか 、あるいは $A r^1 と A r^2$ が相互に結合して、式中の A^+ と共に原子数 $3 \sim 8$ の 環状構造を有する基を形成しており、x個の-OZ基はm個の Ax^1 基の1つ以 上に結合しており、Zは $-SO_2$ R^1 または-S(O) R^2 を示し、 R^1 および R² は相互に独立に水素原子、置換もしくは非置換の炭素数 1~20のアルキル 基、置換もしくは非置換の炭素数3~20の1価の脂環式炭化水素基、炭素数2 ~20のアルケニル基、置換もしくは非置換の炭素数6~20の1価の芳香族炭 化水素基、置換もしくは非置換の原子数3~20の1価の複素環式基または -N(R')2 基(但し、各R'は相互に独立に水素原子、置換もしくは非置換の 炭素数1~20のアルキル基、置換もしくは非置換の炭素数3~20の1価の脂 環式炭化水素基、炭素数2~20のアルケニル基、置換もしくは非置換の炭素数 6~20の1価の芳香族炭化水素基または置換もしくは非置換の原子数3~20 の1価の複素環式基を示すか、あるいは2個のR'が相互に結合して、式中の窒 素原子と共に原子数3~8の環状構造を有する基を形成している。〕

【請求項2】 一般式(1)中のAが硫黄原子である、請求項1に記載のオニウム塩化合物。

【請求項3】 カチオン部分が下記一般式(2)で表されるオニウム塩化合物。

【化2】

*

$$\left(OSO_{2}-CF_{2}-R^{3}\right)_{X}$$

$$\left(Ar^{2}\right)_{n}-A^{+}-\left(Ar^{1}\right)_{m}$$
(2)

[一般式(2)において、A、A r^1 、m、A r^2 、n および x は一般式(1)におけるそれぞれA、A r^1 、m、A r^2 、n および x と同義であり、 R^3 は水素原子、フッ素原子、ニトロ基、シアノ基または炭素数 $1\sim 2$ 0 の 1 価の有機基を示す。]

【請求項4】 一般式(2)中のAが硫黄原子である、請求項3に記載の オニウム塩化合物。

【請求項5】 一般式(2)中のR³が下記一般式(3)で表される基である、請求項3または請求項4に記載のオニウム塩化合物。

【化3】

[一般式(3)において、R⁴ は置換もしくは非置換の炭素数1~20のアルキル基、置換もしくは非置換の炭素数3~20の1価の脂環式炭化水素基、炭素数2~20のアルケニル基、置換もしくは非置換の炭素数6~20の1価の芳香族炭化水素基、置換もしくは非置換の原子数3~20の1価の複素環式基または一N(R'')2基(但し、R''は水素原子、置換もしくは非置換の炭素数1~20のアルキル基、置換もしくは非置換の炭素数3~20の1価の脂環式炭化水素基、炭素数2~20のアルケニル基、置換もしくは非置換の炭素数6~20の1

ページ: 3/

価の芳香族炭化水素基または置換もしくは非置換の原子数3~20の1価の複素 環式基を示すか、あるいは2個のR''が相互に結合して、式中の窒素原子と共に 原子数3~8の環状構造を有する基を形成している。)を示し、pは0~15の 整数であり、gは0~5の整数である。rは1~3の整数である。]

【請求項6】 一般式(3)におけるpおよびaがともに0であり、2つの rがともに1である請求項5に記載のオニウム塩化合物。

【請求項7】 請求項1~6の何れかに記載のオニウム塩化合物からなる感 放射線性酸発生剤。

【請求項8】 (A)請求項7に記載の感放射線性酸発生剤の群から選ばれ る少なくとも1種を必須成分とする感放射線性酸発生剤、並びに(B)酸解離性 基を有するアルカリ不溶性またはアルカリ難溶性の樹脂であって、該酸解離性基 が解離したときにアルカリ易溶性となる樹脂を含有することを特徴とするポジ型 感放射線性樹脂組成物。

【請求項9】 さらに(C)酸拡散制御剤を含有することを特徴とする、請 求項8に記載のポジ型感放射線性樹脂組成物。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、芳香族炭化水素基あるいは複素環式基に結合した-0502 -構造 を有する新規オニウム塩化合物、当該オニウム塩化合物からなる感放射線性酸発 生剤、および当該感放射線性酸発生剤を含有し、集積回路素子の製造に代表され る微細加工に有用なポジ型感放射線性樹脂組成物に関する。

[0002]

【従来の技術】

近年、集積回路素子の製造に代表される微細加工の分野では、より高い集積度 を得るために、0. 3 0 μ m以下のレベルでの微細加工が可能なリソグラフィー 技術が必要とされている。そして、従来のリソグラフィープロセスでは、一般に 放射線としてi線等の近紫外線が用いられているが、この近紫外線では、サブク オーターミクロンレベルの微細加工が極めて困難であると言われている。そこで 、 $0.30 \mu m$ 以下のレベルでの微細加工を可能とするために、より波長の短い放射線の利用が検討されている。

[0003]

前記短波長の放射線に適した感放射線性樹脂組成物として、酸解離性基で保護された酸性官能基を有する成分と、放射線の照射(以下、「露光」という。)により酸を発生する感放射線性酸発生剤との間の化学増幅効果を利用した組成物(以下、「化学増幅型感放射線性組成物」という。)が数多く提案されている。例えば特許文献1には、カルボキシル基あるいはフェノール性水酸基を t ー ブトキシカルボニル基で保護した重合体および感放射線性酸発生剤を含有する化学増幅型感放射線性組成物が開示されている。該組成物は、露光により発生した酸の作用により、重合体中の t ー ブトキシカルボニル基が解離して、カルボキシル基やフェノール性水酸基からなる酸性官能基を形成する結果、レジスト被膜の露光領域がアルカリ現像液に易溶性となる現象を利用したものである。

しかしながら、従来の化学増幅型感放射線性組成物に使用されている感放射線性酸発生剤では、感度が不十分のものがほとんどであり、また従来最も感度が高いとされるスルホニウム塩化合物では耐塩基性が非常に低く、組成物の貯蔵安定性に大きな問題があり、またレジストとしてのプロセス安定性を改善をする塩基性添加剤成分である酸拡散抑制剤の種類も制限されるという欠点がある。

[0004]

【特許文献1】

特開昭 5 9 - 4 5 4 3 9 号公報

[0005]

そこで、耐塩基性が高く保存安定性に極めて優れ、かつ高感度な、より優れた

感放射線性酸発生剤の開発が強く求められている。

[0006]

【発明が解決しようとする課題】

本発明の課題は、従来技術における前記実状に鑑みてなされたものであり、特に、活性放射線、例えば、KrFエキシマレーザー、ArFエキシマレーザー、F2 エキシマレーザー、EUV等に代表される(超)遠紫外線、電子線の如き各種の放射線に感応し、優れた保存安定性を有するとともに、高感度で高解像度の化学増幅型フォトレジストとして有用な感放射線性樹脂組成物に使用される感放射線性酸発生剤として好適な新規オニウム塩化合物、当該オニウム塩化合物かななる感放射線性酸発生剤および当該感放射線性酸発生剤を含有するポジ型感放射線性樹脂組成物を提供することにある。

[0007]

本発明によると、前記課題は、第一に、

カチオン部分が下記一般式(1)で表されるオニウム塩化合物(以下、「オニウム塩化合物(1)」という。)、

によって達成される。

[0008]

【化4】

$$(Ar^{2})_{\overline{n}} A^{+} (Ar^{1})_{\overline{m}}$$
 (1)

[0009]

環状構造を有する基を形成しており、 x 個の - O Z 基は m 個の A r ¹ 基の 1 つ以上に結合しており、 Z は - S O₂ R ¹ または - S (O) R ² を示し、 R ¹ および R ² は相互に独立に水素原子、置換もしくは非置換の炭素数 1 ~ 2 0 のアルキル基、置換もしくは非置換の炭素数 3 ~ 2 0 の 1 価の脂環式炭化水素基、炭素数 2 ~ 2 0 のアルケニル基、置換もしくは非置換の炭素数 6 ~ 2 0 の 1 価の芳香族炭化水素基、置換もしくは非置換の原子数 3 ~ 2 0 の 1 価の複素環式基または - N (R') 2 基 (但し、各 R' は相互に独立に水素原子、置換もしくは非置換の炭素数 1 ~ 2 0 のアルキル基、置換もしくは非置換の炭素数 3 ~ 2 0 の 1 価の脂環式炭化水素基、炭素数 2 ~ 2 0 のアルケニル基、置換もしくは非置換の炭素数 6 ~ 2 0 の 1 価の芳香族炭化水素基または置換もしくは非置換の原子数 3 ~ 2 0 の 1 価の複素環式基を示すか、あるいは 2 個の R'が相互に結合して、式中の窒素原子と共に原子数 3 ~ 8 の環状構造を有する基を形成している。〕

[0010]

本発明によると、前記課題は、第二に、

カチオン部分が下記一般式 (2) で表されるオニウム塩化合物 (以下、「オニウム塩化合物 (2)」という。)、

によって達成される。

[0011]

【化5】

$$\left(OSO_{2}-CF_{2}-R^{3}\right)_{X}$$

$$\left(Ar^{2}\right)_{n}-A^{+}-\left(Ar^{1}\right)_{m}$$
(2)

[-般式(2) において、A、A r^1 、m、A r^2 、n および x は一般式(1) におけるそれぞれA、A r^1 、m、A r^2 、n および x と同義であり、 R^3 は水素原子、フッ素原子、ニトロ基、シアノ基または炭素数 $1\sim 2$ 0 の 1 価の有機基を示す。]

[0012]

本発明によると、前記課題は、第三に、

オニウム塩化合物 (1) あるいはオニウム塩化合物 (2) からなる感放射線性酸発生剤、

によって達成される。

[0013]

本発明によると、前記課題は、第四に、

(A) オニウム塩化合物 (1) およびオニウム塩化合物 (2) の群から選ばれる 少なくとも1種を必須成分とする感放射線性酸発生剤、並びに (B) 酸解離性基 を有するアルカリ不溶性またはアルカリ難溶性の樹脂であって、該酸解離性基が 解離したときにアルカリ易溶性となる樹脂を含有することを特徴とするポジ型感 放射線性樹脂組成物、

によって達成される。

[0014]

【発明の実施の形態】

以下に、本発明について詳細に説明する。

オニウム塩化合物(1)およびオニウム塩化合物(2)

ここでは、オニウム塩化合物(1)およびオニウム塩化合物(2)の共通事項 について説明する。

一般式(1)および一般式(2)において、Aは硫黄原子が好ましく、またxは $1\sim3$ が好ましい。

[0015]

一般式(1) および一般式(2) において、 Ar^1 および Ar^2 の非置換の炭素数 $6\sim20$ の1価の芳香族炭化水素基の炭素数は、好ましくは $6\sim12$ 、さらに好ましくは $6\sim10$ 、特に好ましくは $6\sim8$ である。

前記1価の芳香族炭化水素基の具体例としては、フェニル基、oートルイル基、mートルイル基、pートルイル基、ベンジル基、oーメチルベンジル基、mーメチルベンジル基、pーメチルベンジル基、2,3ーキシリル基、2,4ーキシリル基、2,5ーキシリル基、2,6ーキシリル基、3,4ーキシリル基、5,5ーキシリル基、メシチル基、1ーナフチル基、2ーナフチル基、1ーアントリル基、9ーアントリル基等を挙げることができる。

[0016]

また、 Ar^1 および Ar^2 の非置換の原子数 $3\sim 2001$ 価の複素環式基は、複素環中に窒素原子、酸素原子、硫黄原子等のヘテロ原子を 1 個以上あるいは 1 種以上含む基であり、該 1 価の複素環式基の炭素数は、好ましくは $3\sim 15$ 、さらに好ましくは $3\sim 12$ 、特に好ましくは $3\sim 7$ である。

前記1価の複素環式基の具体例としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-イミダゾリル基、4-イミダゾリル基、5-イミダゾリル基、2-モルホリニル基、3-モルホリニル基、2-ピペリジニル基、3-ピペリジニル基、4-ピペリジニル基、2-ピロリジニル基等を挙げることができる。

[0017]

また、 $A r^1$ および $A r^2$ の置換の炭素数 $6 \sim 2001$ 価の芳香族炭化水素基 および置換の原子数3~20の1価の複素環式基における置換基としては、例え ば、ヒドロキシル基、カルボキシル基、オキソ基(=〇)、炭素数1~4のアル キル基(例えば、メチル基、エチル基、nープロピル基、iープロピル基、nー ブチル基、t-ブチル基等)、炭素数1~4のヒドロキシアルキル基(例えば、 ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基 、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基 、4-ヒドロキシブチル基等)、炭素数1~4のアルコキシル基(例えば、メト キシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、 2-メチルプロポキシ基、1-メチルプロポキシ基、t-ブトキシ基等)、シア ノ基、炭素数2~5のシアノアルキル基(例えば、シアノメチル基、2-シアノ エチル基、3-シアノプロピル基、4-シアノブチル基等)、炭素数2~5のア ルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基 、t-ブトキシカルボニル基等)、炭素数3~10のアルコキシカルボニルアル コキシ基(例えば、メトキシカルボニルメトキシ基、エトキシカルボニルメトキ シ基、tーブトキシカルボニルメトキシ基等)、ハロゲン原子(例えば、フッ素 原子、塩素原子等)、炭素数1~4のフルオロアルキル基(例えば、フルオロメ

チル基、トリフルオロメチル基、ペンタフルオロエチル基等)等を挙げることが できる。

これらの置換基は、 $A r^1$ および $A r^2$ 中にそれぞれ1 個以上あるいは1 種以上存在することができる。

[0018]

また、一般式(1)でいう「 Ar^1 EAr^2 は相互に結合して、一般式(1)中のA+ と共に原子数 $3\sim 8$ の環状構造を有する基を形成しており」とは、 Ar^1 および Ar^2 からそれぞれ 1 個の原子または 1 個の基を除去して形成され

た2つの残基が直接結合するか、該2つの残基が他の2価の原子(例えば、酸素原子、硫黄原子等)または2価の結合基(例えば、メヂレン基、1,1ーエチレン基、1,2ーエチレン基等のアルキレン基や、-NH-基、-CO-基、

 $-SO_2$ -基等)を介して結合することにより、式中の A^+ と共に原子数 $3\sim 8$ の環状構造を有する基を形成しているという意味である。

[0019]

また、オニウム塩化合物(1)およびオニウム塩化合物(2)におけるアニオン部分としては、例えば、スルホン酸アニオン、 MX_a (但し、Mはほう素原子、燐原子、砒素原子またはアンチモン原子を示し、Xはハロゲン原子を示し、aは4~6の整数である。)、ハロゲンアニオン、過塩素酸アニオン、硝酸アニオン、りん酸アニオン、フルオロりん酸アニオン、トリフルオロ酢酸アニオン等を挙げることができる。

ニオン)、下記式(i)で表されるスルホン酸アニオン(以下、「スルホン酸アニオン(i)」という。)等を挙げることができ、特に好ましくは、
CF3 SO3 - 、n-C4 F9 SO3 - 、スルホン酸アニオン(i)等である。
【0020】

【化6】

$$CF_2CF_2SO_3^-$$
 (i)

オニウム塩化合物(1)

一般式(1)において、Zにおける R^1 、 R^2 および R^1 の非置換の炭素数1~20のアルキル基の炭素数は、好ましくは1~18、さらに好ましくは1~15、特に好ましくは1~12である。

前記アルキル基の具体例としては、メチル基、エチル基、nープロピル基、iープロピル基、nーブチル基、2-メチルプロピル基、1-メチルプロピル基、tーブチル基、nーペンチル基、nーヘキシル基、nーヘプチル基、nーオクチル基、nーノニル基、nーデシル基、nーウンデシル基、nードデシル基、tードデシル基、nートリデシル基、nーテトラデシル基、nーペンタデシル基、nーヘキサデシル基、nーヘプタデシル基、nーオクタデシル基、nーノナデシル基、nーエイコシル基等を挙げることができる。

[0022]

また、 R^1 、 R^2 および R^7 の非置換の炭素数 $3\sim 20$ の 1 価の脂環式炭化水素基の炭素数は、好ましくは $3\sim 18$ 、さらに好ましくは $3\sim 12$ 、特に好ましくは $3\sim 8$ である。

前記1価の脂環式炭化水素基の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ノルボルニル基、トリシクロデカニル基、テトラシクロドデシル基、アダマンチル基、3ーメチルー1ーアダマンチル基、3ーメチルー3ーアダマンチル基、3ーエチルー1ーアダマンチル基、3ーエチルー1

-アダマンチル基、3-n-ブチル-3-アダマンチル基等の炭素数6-20の 有橋脂環式炭化水素基等を挙げることができる。

[0023]

また、 R^1 、 R^2 および R^1 の炭素数2~20のアルケニル基の炭素数は、好ましくは2~18、さらに好ましくは2~15、特に好ましくは2~12である。

前記アルケニル基の具体例としては、ビニル基、イソプロペニル基、1-プロペニル基、2-プロペニル基等を挙げることができる。

[0024]

また、 R^1 、 R^2 および R^7 の非置換の炭素数 $6\sim 20$ の 1 価の芳香族炭化水素基の炭素数は、好ましくは $6\sim 12$ 、さらに好ましくは $6\sim 10$ 、特に好ましくは $6\sim 8$ である。

前記1価の芳香族炭化水素基の具体例としては、フェニル基、oートルイル基、mートルイル基、pートルイル基、ベンジル基、oーメチルベンジル基、mーメチルベンジル基、pーメチルベンジル基、2,3ーキシリル基、2,4ーキシリル基、2,5ーキシリル基、2,6ーキシリル基、3,4ーキシリル基、5,5ーキシリル基、メシチル基、1ーナフチル基、2ーナフチル基、1ーアントリル基、9ーアントリル基等を挙げることができる。

[0025]

また、 R^1 、 R^2 および R^1 の非置換の原子数 $3 \sim 2001$ 価の複素環式基は、複素環中に窒素原子、酸素原子、硫黄原子等のヘテロ原子を 1 個以上あるいは 1 種以上含む基であり、該 1 価の複素環式基の原子数は、好ましくは $3 \sim 15$ 、 さらに好ましくは $3 \sim 12$ 、特に好ましくは $3 \sim 7$ である。

前記1価の複素環式基の具体例としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-イミダゾリル基、4-イミダゾリル基、5-イミダゾリル基、2-モルホリニル基、3-モルホリニル基、2-ピペリジニル基、3-ピペリジニル基、4-ピペリジニル基、2-ピロリジニル基等を挙げることができる。

[0026]

また、 R^1 、 R^2 および R^* の置換の炭素数 $1\sim20$ のアルキル基、置換の炭素数 $3\sim20$ の1 価の脂環式炭化水素基、置換の炭素数 $6\sim20$ の1 価の芳香族炭化水素基および置換の原子数 $3\sim20$ の1 価の複素環式基の置換基としては、例えば、前記 Ar^1 および Ar^2 の置換の炭素数 $6\sim20$ の1 価の芳香族炭化水素基および置換の原子数 $3\sim20$ の1 価の複素環式基について例示した置換基と同様のものを挙げることができる。但し、 R^1 のフッ素原子で置換した炭素数 $1\sim20$ のアルキル基は、 $-SO_2$ R^1 基がその硫黄原子に直接結合した $-CF_2$ -を有する場合を含まない。

これらの置換基は、 R^1 、 R^2 およびR'中にそれぞれ1個以上あるいは1種以上存在することができる。

[0027]

また、一般式(1)中の-N(R') $_2$ 基についていう「2 個のR'が相互に結合して、式中の窒素原子と共に原子数 $3\sim8$ の環状構造を有する基を形成している」とは、2 個のR'からそれぞれ1 個の原子または1 個の基を除去して形成された2 つの残基が直接結合するか、該2 つの残基が他の2 価の原子(例えば、酸素原子、硫黄原子等)または2 価の結合基(例えば、メチレン基、1, 2 - エチレン基等のアルキレン基や、-NH - 基、-CO - 基、 $-SO_2$ - 基等)を介して結合することにより、式中の窒素原子と共に原子数 $3\sim8$ の環状構造を有する基を形成しているという意味である。

この場合、該環状構造の原子数は、式中の窒素原子を含めて、好ましくは5~6である。

[0028]

 R^1 、 R^2 およびR'の好ましい具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ペンチルー n-0ルボニル)メチル基、n-0ルボニル n-0ルボニル n-0ルボニ

また、 R^1 および R^2 としては、-N (R')₂ 基も好ましく、さらに好ましくは、-N (C_{13})₂ 基、-N (C_{21})₂ 基等である。

また、 R^2 およびR' としては、トリフルオロメチル基、ノナフルオローn-1ブチル基、パーフルオローn-1クチル基、メトキシカルボニルジフルオロメチル基等も好ましい。

一般式(1)において、複数存在するZは相互に同一でも異なってもよく、また複数存在する-N (R') $_2$ 基は相互に同一でも異なってもよい。

[0029]

オニウム塩化合物(1)の好ましい具体例としては、下記式(1-1)~(1-9)で表される化合物等を挙げることができる。

[0030]

【化7】

【化8】

$$CF_3SO_3^-$$

$$OSO_2-CH_2(CH_2)_2CH_3 \qquad (1-3)$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_3-CH_2(CH_2)_2CH_3$$

$$OSO_3-CH_2(CH_2)_2CH_3$$

$$OSO_3-CH_2(CH_2)_2CH_3$$

[0032]

【化9】

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

$$OSO_2-CH_2(CH_2)_2CH_3$$

(1-6)

[0033]

【化10】

$$H_3C$$
 CH_3
 I_3C
 CH_3
 I_3C
 CH_3
 I_3C
 CH_3
 I_3C
 CH_2
 I_3C
 I_3C

[0034]

【化11】

オニウム塩化合物(1)は、特に、集積回路素子の製造に代表される微細加工の分野に用いられるフォトレジストとして有用な感放射線性樹脂組成物において、活性放射線、例えば、KrFエキシマレーザー、ArFエキシマレーザー、F2 エキシマレーザー、EUV等に代表される(超)遠紫外線、電子線の如き各種の放射線に感応する感放射線性酸発生剤として極めて好適に使用できるほか、加熱により酸を発生する熱酸発生剤や、他の関連するオニウム塩化合物の合成原料等としても有用である。

[0036]

オニウム塩化合物 (2)

一般式 (2) において、 R^3 の 1 価の有機基としては、例えば、置換もしくは 非置換の炭素数 $1\sim 2$ 0 のアルキル基、置換もしくは非置換の炭素数 $3\sim 2$ 0 の 1価の脂環式炭化水素基、炭素数 $2 \sim 2$ 0のアルケニル基、置換もしくは非置換の炭素数 $6 \sim 2$ 0の 1 価の芳香族炭化水素基、置換もしくは非置換の原子数 $3 \sim 2$ 0の 1 価の複素環式基、置換もしくは非置換の炭素数 $2 \sim 2$ 0のアルコキシカルボニル基、置換もしくは非置換の炭素数 $3 \sim 2$ 0のアルコキシカルボニルアルコキシ基等を挙げることができる。

[0037]

一般式(2)において、R³ の非置換の炭素数1~20のアルキル基の炭素数は、好ましくは1~18、さらに好ましくは1~15、特に好ましくは1~12であり、非置換の炭素数3~20の1価の脂環式炭化水素基の炭素数は、好ましくは3~18、さらに好ましくは3~12、特に好ましくは3~8であり、炭素数2~20のアルケニル基の炭素数は、好ましくは2~18、さらに好ましくは2~15、特に好ましくは2~12であり、非置換の炭素数6~20の1価の芳香族炭化水素基の炭素数は、好ましくは6~12、さらに好ましくは6~10、特に好ましくは6~8であり、非置換の原子数3~20の1価の複素環式基は、複素環中に窒素原子、酸素原子、硫黄原子等のヘテロ原子を1個以上あるいは1種以上含む基であり、該1価の複素環式基の原子数は、好ましくは3~15、さらに好ましくは3~17であり、非置換の炭素数2~20のアルコキシカルボニル基の炭素数は、好ましくは2~18、さらに好ましくは2~15、特に好ましくは2~12であり、非置換の炭素数3~20のアルコキシカルボニルをの炭素数は、好ましくは3~18、さらに好ましくは3~15、特に好ましくは3~12である。

[0038]

 R^3 の前記非置換のアルキル基、非置換の1 価の脂環式炭化水素基、アルケニル基、非置換の1 価の芳香族炭化水素基および非置換の1 価の複素環式基としては、例えば、前記 R^1 、 R^2 および R^1 について例示したそれぞれ対応する基と同様のものを挙げることができる。

[0039]

また、 R^3 の非置換の炭素数 $2 \sim 20$ のアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、 t ープトキシカルボニル

基等を挙げることができる。

[0040]

また、R³ の非置換の炭素数3~20のアルコキシカルボニルアルコキシ基としては、例えば、メトキシカルボニルメトキシ基、エトキシカルボニルメトキシ基等を挙げることができる。

[0041]

また、 R^3 の前記アルキル基、1 価の脂環式炭化水素基、1 価の芳香族炭化水素基、1 価の複素環式基、アルコキシカルボニル基およびアルコキシカルボニルアルコキシ基の置換基としては、例えば、前記 Ar^1 および Ar^2 の置換の炭素数 $6\sim20$ の 1 価の芳香族炭化水素基および置換の原子数 $3\sim20$ の 1 価の複素環式基について例示した置換基と同様のものを挙げることができる。

[0042]

R3の好ましい具体例としては、フッ素原子、ニトロ基、シアノ基、メチル基 、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロ ピル基、1-メチルプロピル基、t-ブチル基、n-ペンチル基、ネオペンチル 基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、シクロペンチル基、シ クロヘキシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル 基、1、1-ジフルオロエチル基、ペンタフルオロエチル基、1、1-ジフルオ ローn-プロピル基、1,1,2,2-テトラフルオローn-プロピル基、ヘプ タフルオローn-プロピル基、1,1-ジフルオローn-ブチル基、1,1,2 2 - テトラフルオローnーブチル基、1, 1, 2, 2, 3, 3 - ヘキサフルオ ローnーブチル基、ノナフルオローnーブチル基、1、1ージフルオローnーへ キシル基、1, 1, 2, 2ーテトラフルオローnーヘキシル基、1, 1, 2, 2 , 3, 3-ヘキサフルオローnーヘキシル基、1, 1, 2, 2, 3, 3, 4, 4 -オクタフルオロ-n-ヘキシル基、1, 1, 2, 2, 3, 3, 4, 4, 5, 5 ーデカフルオローnーヘキシル基、パーフルオローnーヘキシル基、パーフルオ ローn-ヘプチル基、3-フルオロシクロペンチル基、パーフルオロシクロペン チル基、4-フルオロシクロヘキシル基、パーフルオロシクロヘキシル基、下記 一般式(3)で表される基(以下、「含フッ素置換基(3)」という。)等を挙 げることができる。

これらの置換基のうち、特に、フルオロアルキル基、含フッ素置換基 (3) 等が好ましい。

[0043]

【化12】

[0044]

「一般式(3)において、R4 は置換もしくは非置換の炭素数1~20のアルキル基、置換もしくは非置換の炭素数3~20の1価の脂環式炭化水素基、炭素数2~20のアルケニル基、置換もしくは非置換の炭素数6~20の1価の芳香族炭化水素基、置換もしくは非置換の原子数3~20の1価の複素環式基または一N(R'')2基(但し、R''は水素原子、置換もしくは非置換の炭素数1~20のアルキル基、置換もしくは非置換の炭素数3~20の1価の脂環式炭化水素基、炭素数2~20のアルケニル基、置換もしくは非置換の炭素数6~20の1価の芳香族炭化水素基または置換もしくは非置換の原子数3~20の1価の複素環式基を示すか、あるいは2個のR''が相互に結合して、式中の窒素原子と共に原子数3~8の環状構造を有する基を形成している。)を示し、pは0~15の整数であり、gは0~5の整数であり、rは1~3の整数である。〕

[0045]

一般式(3)において、R⁴ およびR'"の非置換の炭素数1~20のアルキル基の炭素数は、好ましくは1~18、さらに好ましくは1~15、特に好ましくは1~12であり、非置換の炭素数3~20の1価の脂環式炭化水素基の炭素数は、好ましくは3~18、さらに好ましくは3~12、特に好ましくは3~8であり、炭素数2~20のアルケニル基の炭素数は、好ましくは2~18、さらに好ましくは2~15、特に好ましくは2~12であり、非置換の炭素数6~20の1価の芳香族炭化水素基の炭素数は、好ましくは6~12、さらに好ましくは

6~10、特に好ましくは6~8であり、非置換の原子数3~20の1価の複素 環式基は、複素環中に窒素原子、酸素原子、硫黄原子等のヘテロ原子を1個以上 あるいは1種以上含む基であり、該1価の複素環式基の原子数は、好ましくは3 ~15、さらに好ましくは3~12、特に好ましくは3~7である。

[0046]

[0047]

また、 R^4 およびR''の前記アルキル基、1 価の脂環式炭化水素基、1 価の芳香族炭化水素基および1 価の複素環式基の置換基としては、例えば、前記A r^1 およびA r^2 の置換の炭素数 $6\sim2$ 0の1 価の芳香族炭化水素基および置換の原子数 $3\sim2$ 0の1 価の複素環式基について例示した置換基と同様のものを挙げることができる。これらの置換基は、 R^4 およびR''中にそれぞれ1 個以上あるいは1 種以上存在することができる。

[0048]

また、一般式(3)中の-N(R'') $_2$ 基についていう「 $_2$ 個のR''が相互に結合して、式中の窒素原子と共に原子数 $_3$ ~ $_8$ の環状構造を有する基を形成している」とは、 $_2$ 個のR''からそれぞれ $_1$ 個の原子または $_1$ 0個の基を除去して形成された $_2$ つの残基が直接結合するか、該 $_2$ つの残基が他の $_2$ 6個の原子(例えば、酸素原子、硫黄原子等)または $_2$ 6個の結合基(例えば、 $_3$ 7年レン基等のアルキレン基や、 $_3$ 7月一基、 $_4$ 7日の空素原子と共に原子数 $_3$ 7年の環状構造を有する基を形成しているという意味である。

この場合、該環状構造の原子数は、式中の窒素原子を含めて、好ましくは5~6である。

[0049]

R4 およびR''の好ましい具体例としては、メチル基、エチル基、n-プロピ

ル基、i ープロピル基、n ーブチル基、t ーブチル基、n ーペンチル基、n ーへキシル基、n ーヘプチル基、n ーオクチル基、n ードデシル基、t ードデシル基、n ーヘキサドデシル基、シクロペンチル基、シクロヘキシル基、ノルボニル基、5 ーオキソー2 ーノルボニル基、(2 ーオキソー7,7 ージメチルー1 ーノルボニル)メチル基、p ートルイル基、ベンジル基、フェニル基、1 ーナフチル基、2 ーナフチル基、トリフルオロメチル基、ノナフルオローn ーブチル基、パーフルオローn ーオクチル基、メトキシカルボニルジフルオロメチル基、カンホロイル基等を挙げることができる。

また、 R^4 としては、-N (R'')₂基も好ましく、さらに好ましくは、

- -N (CH₃)₂ 基、-N (C₂ H₅)₂ 基等である。
- 一般式(3)において、複数存在する R^4 は相互に同一でも異なってもよく、また複数存在する-N(R^{11})2基は相互に同一でも異なってもよい。
- 一般式(3)において、pは0~2が好ましく、qは0~2が好ましく、pおよびqがともに0であることがさらに好ましく、特に、pおよびqがともに0であり、2つのrがともに1であることが好ましい。

[0050]

オニウム塩化合物 (2) の好ましい具体例としては、下記式 $(2-1) \sim (2-9)$ で表される化合物等を挙げることができる。

[0051]

【化13】

$$CF_{3}(CF_{2})_{2}CF_{2} - O_{2}SO - S^{\pm} - OSO_{2} - CF_{2}(CF_{2})_{2}CF_{3}$$

$$n-C_{4}F_{9}SO_{3}^{-}$$

$$(2-2)$$

[0052]

【化14】

$$\begin{array}{c|c}
\hline
 & S^{\pm} \\
\hline
 & -OSO_2 - CF_2(CF_2)_6CF_3
\end{array}$$

$$\begin{array}{c}
(2-4) \\
\hline
 & -C_4F_9SO_3
\end{array}$$

[0053]

【化15】

$$\begin{array}{c|c} & & \\ & &$$

$$\begin{array}{c|c} & & \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{array} \begin{array}{c} \\ \\ \hline \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}$$

n-C₄F₉SO₃

[0054]

【化16】

$$\begin{array}{c|c}
\hline
 & S^{+} \\
\hline
 & OSO_{2} - CF_{2}CF_{2}
\end{array}$$

$$\begin{array}{c|c}
\hline
 & (2-8)
\end{array}$$

$$CF_3(CF_2)_2CF_2 - O_2SO - I^{+} - OSO_2 - CF_2(CF_2)_2CF_3$$

$$n-C_4F_9SO_3^{-}$$
(2-9)

[0055]

オニウム塩化合物 (2) は、特に、集積回路素子の製造に代表される微細加工

の分野に用いられるフォトレジストとして有用な感放射線性樹脂組成物において、活性放射線、例えば、KrFエキシマレーザー、ArFエキシマレーザー、F2 エキシマレーザー、EUV等に代表される(超)遠紫外線、電子線の如き各種の放射線に感応する感放射線性酸発生剤として極めて好適に使用できるほか、加熱により酸を発生する熱酸発生剤や、他の関連するオニウム塩化合物の合成原料等としても有用である。

[0056]

オニウム塩化合物 (1) およびオニウム塩化合物 (2) の合成

オニウム塩化合物(1)は、例えば、非特許文献1に記載されている方法により、下記反応式に示すように、前駆オニウム塩化合物(4)とZC1(対応するスルホン酸クロライドまたはスルフィン酸クロライド)とを、塩基性触媒の存在下でエステル化反応させることにより合成することができる。また、オニウム塩化合物(2)もオニウム塩化合物(1)の合成方法と同様にして合成することができる。

[0057]

【化17】

反応式

[0058]

〔式中、A、A r^1 、m、A r^2 、n 、x および Z は一般式(1)におけるそれぞれA、A r^1 、m、A r^2 、n 、x および Z と同義であり、Y - は 1 価アニオンを示す。〕

[0059]

【非特許文献2】

J. Am. Chem. Soc., Vol. 103, p. 7368-7370 (1981)

[0060]

エステル化反応時の2CIの前駆オニウム塩化合物(4)に対するモル比は、 通常、 $1\sim100$ 、好ましくは $1.5\sim10$ である。

[0061]

エステル化反応に使用される塩基性触媒としては、例えば、トリエチルアミン、ピリジン、水酸化カリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム等挙げることができ、好ましくはトリエチルアミン、ピリジン等である。

エステル化反応時の塩基性触媒のZC1に対するモル比は、通常、 $1.0 \sim 1$ 0.0、好ましくは $2.0 \sim 4.0$ である。

[0062]

エステル化反応は、通常、例えば、トルエン、テトラヒドロフラン、ジクロロメタン、ピリジン、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性有機溶媒中で行われる。

エステル化反応の条件は、反応温度が、通常、-40~+50 $^{\circ}$ 、好ましくは-20~+30 $^{\circ}$ であり、反応時間が、通常、0.1~72時間、好ましくは0.5~3時間である。

[0063]

感放射線性酸発生剤

本発明の感放射線性酸発生剤は、オニウム塩化合物(1)あるいはオニウム塩化合物(2)からなり、露光により酸を発生する成分であり、特に、活性放射線、例えば、KrFエキシマレーザー、ArFエキシマレーザー、F2 エキシマレーザー、EUV等に代表される(超)遠紫外線、電子線の如き各種の放射線を用いる微細加工に有用な感放射線性樹脂組成物における感放射線性酸発生剤として極めて好適に使用することができる。

以下では、オニウム塩化合物(1)からなる感放射線性酸発生剤を「酸発生剤 (A1)」といい、オニウム塩化合物(2)からなる感放射線性酸発生剤を「酸 発生剤(A2)|という。

[0064]

ポジ型感放射線性樹脂組成物

- (A)酸発生剤-

本発明のポジ型感放射線性樹脂組成物における(A)成分は、酸発生剤(A1)および酸発生剤(A2)の群から選ばれる少なくとも1種を必須成分とする感放射線性酸発生剤(以下、「(A)酸発生剤」という。)からなる。

酸発生剤(A1)および酸発生剤(A2)においては、-般式(1)中のA、 Ar^1 、m、 Ar^2 、nおよびxと-般式(2)中のA、 Ar^1 、m、 Ar^2 、nおよびxとはそれぞれ、相互に同一でも異なってもよい。

本発明のポジ型感放射線性樹脂組成物において、酸発生剤(A1)および酸発生剤(A2)は、それぞれ単独でまたは2種以上を混合して使用することができる。

[0065]

本発明のポジ型感放射線性樹脂組成物には、酸発生剤(A1)および酸発生剤(A2)以外の感放射線性酸発生剤(以下、「他の酸発生剤」という。)を1種以上併用することができる。

他の酸発生剤としては、例えば、オニウム塩化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物、ジアゾメタン化合物、ジスルホニルメタン化合物等を挙げることができる。

[0066]

前記オニウム塩化合物としては、例えば、ヨードニウム塩、スルホニウム塩(但し、テトラヒドロチオフェニウム塩を含む。)、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジニウム塩等を挙げることができる。

また、前記スルホン化合物としては、例えば、 β - ケトスルホン、 β - スルホニルスルホンや、これらの α - ジアゾ化合物等を挙げることができる。

また、前記スルホン酸エステル化合物としては、例えば、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。

また、前記スルホンイミド化合物としては、例えば、下記一般式(5)で表される化合物を挙げることができる。

[0067]

【化18】

$$\begin{array}{c|c}
O \\
C \\
O \\
N-O-S-R^5
\end{array}$$
(5)

〔一般式(5)において、Xは2価の有機基を示し、 R^5 は1価の有機基を示す。〕

[0068]

一般式(5)において、Xとしては、例えば、メチレン基、炭素数2~20の 直鎖状もしくは分岐状のアルキレン基、炭素数2~20のアラルキレン基、ジフ ルオロメチレン基、炭素数2~20の直鎖状もしくは分岐状のパーフルオロアル キレン基、シクロヘキシレン基、フェニレン基、置換されていてもよいノルボル ナン骨格を有する2価の基や、これらの基を炭素数6以上のアリール基や炭素数 1以上のアルコキシル基で置換基した基等を挙げることができる。

[0069]

また、 R^5 としては、例えば、炭素数 $1\sim10$ の直鎖状もしくは分岐状のアルキル基、炭素数 $1\sim10$ の直鎖状もしくは分岐状のパーフルオロアルキル基、炭素数 $3\sim10$ のパーフルオロシクロアルキル基、炭素数 $7\sim15$ の1価のビシクロ環含有炭化水素基、炭素数 $5\sim12$ のアリール基等を挙げることができる。

[0070]

また、前記ジアゾメタン化合物としては、例えば、下記一般式 (6) で表される化合物を挙げることができる。

[0071]

【化19】

[一般式(6)において、各R⁶ は相互に独立に直鎖状もしくは分岐状のアルキル基、シクロアルキル基、アリール基、ハロゲン置換アルキル基、ハロゲン置換アリール基等の1価の基を示す。]

[0072]

また、前記ジスルホニルメタン化合物としては、例えば、下記一般式 (7) で表される化合物を挙げることができる。

【化20】

[0074]

[一般式(7)において、各R7は相互に独立に直鎖状もしくは分岐状の1価の脂肪族炭化水素基、シクロアルキル基、アリール基、アラルキル基またはヘテロ原子を有する1価の他の有機基を示し、VおよびWは相互に独立にアリール基、水素原子、直鎖状もしくは分岐状の1価の脂肪族炭化水素基、シクロアルキル基、アラルキル基またはヘテロ原子を有する1価の他の有機基を示し、且つVおよびWの少なくとも一方がアリール基であるか、VとWが相互に連結して少なくとも1個の不飽和結合を有する単環もしくは多環を形成しているか、あるいはVとWが相互に連結して下記式(ii)で表される基

[0075]

【化21】

$$-(c)$$
 (ii)

[0076]

(但し、V'及びW'は相互に独立に水素原子、ハロゲン原子、直鎖状もしくは分岐状のアルキル基、シクロアルキル基、アリール基、アラルキル基、または同一のもしくは異なる炭素原子に結合したV'とW'が相互に連結して炭素単環構造を形成しており、V'およびW'が複数存在する場合、複数のV'および複数のW'はそれぞれ相互に同一でも異なってもよく、jは2~10の整数である。)

を形成している。〕

[0077]

他の酸発生剤としては、オニウム塩化合物、スルホンイミド化合物およびジア ゾメタン化合物の群の1種または2種以上が好ましい。

特に好ましい他の酸発生剤としては、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオローn-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムp-トルエンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-トリフルオロメチルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム4-トリフルオロメチルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウム10-カンファースルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウム10-カンフェースルホネート、トリフェニルスルホニウム10-カンフェースルホネート、トリフェニルスルホニウム10-カンフェニルスルホニウム10-カンフェニルスルホニウム10-カンフェニルスルホニウム10-カンフェニルスルホニウム10-カンフェニルスルホネート、トリフェニルスルホニウム10-カンフェニルスルホニウム

トリフェニルスルホニウム 2 、4 ージフルオロメチルベンゼンスルホネート、 1 ー (4-n-r)トキシナフタレンー1ーイル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、 1 ー (4-n-r)トキシナフタレンー1ーイル)テトラヒドロチオフェニウムノナフルオローnーブタンスルホネート、 N ー (トリフルオロメタンスルホニルオキシ)スクシンイミド、 N ー (トリフルオロメタンスルホニルオキシ)ビシクロ $[2.\ 2.\ 1]$ へプトー5ーエンー2 、3 ージカルボキシイミド、 N ー $(1\ 0$ ーカンファースルホニルオキシ)どシクロ $[2.\ 2.\ 1]$ へプトー5 ーエンー2 、3 ージカルボキシイミド、 1 へプトー1 (1 0 ーカンファースルホニルオキシ)ビシクロ 1 (1 0 ーカンファースルホニルオキシ)ビシクロ 1 2 1 1 へプトー1 2 1 2 1 3 ージカルボキシイミド、 1 3 ーズカシンイミド、 1 3 ーズカー1 2 ーズカシンイミド、 1 3 ーズカシンイミド、 1 4 ージオキサスピロ 1 4 ・1 3 ーズカンーフースルホニル)ジアゾメタンの群から選ばれる少なくとも 1 種を挙げることができる。

[0078]

他の酸発生剤の使用割合は、各他の酸発生剤の種類に応じて適宜選定することができるが、酸発生剤(A1)および酸発生剤(A2)と他の酸発生剤との合計100重量部に対して、通常、95重量部以下、好ましくは90重量部以下、さらに好ましくは80重量部以下である。この場合、他の酸発生剤の使用割合が95重量部を超えると、本発明における所期の効果が損なわれるおそれがある。

[0079]

- (B)酸解離性基含有樹脂-

本発明のポジ型感放射線性樹脂組成物における(B)成分は、酸解離性基を有するアルカリ不溶性またはアルカリ難溶性の樹脂であって、該酸解離性基が解離したときにアルカリ易溶性となる樹脂(以下、「(B)酸解離性基含有樹脂」という。)からなる。

ここでいう「アルカリ不溶性またはアルカリ難溶性」とは、(B)酸解離性基 含有樹脂を含有する感放射線性樹脂組成物を用いて形成されたレジスト被膜から レジストパターンを形成する際に採用されるアルカリ現像条件下で、当該レジス

ページ: 30/

ト被膜の代わりに(B)酸解離性基含有樹脂のみを用いた被膜を現像した場合に、当該被膜の初期膜厚の50%以上が現像後に残存する性質を意味する。

[0080]

(B)酸解離性基含有樹脂における酸解離性基とは、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基等の酸性官能基中の水素原子を置換した基であり、酸の存在下で解離する基を意味する。

このような酸解離性基としては、例えば、置換メチル基、1-置換エチル基、 1-置換-n-プロピル基、1-分岐アルキル基、アルコキシカルボニル基、ア シル基、環式酸解離性基等を挙げることができる。

[0081]

前記置換メチル基としては、例えば、メトキシメチル基、メチルチオメチル基、エトキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、ベンジルオキシメチル基、ベンジルチオメチル基、フェナシル基、4ープロモフェナシル基、4ーメトキシフェナシル基、4ーメチルチオフェナシル基、αーメチルフェナシル基、シクロプロピルメチル基、ベンジル基、ジフェニルメチル基、トリフェニルメチル基、4ーブロモベンジル基、4ーニトロベンジル基、4ーメトキシベンジル基、4ーメチャナイベンジル基、4ーエトキシベンジル基、4ーエチルチオベンジル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基、ロープロポキシカルボニルメチル基、iープロポキシカルボニルメチル基、nープロポキシカルボニルメチル基、iープロポキシカルボニルメチル基、カーブトキシカルボニルメチル基、tーブトキシカルボニルメチル基等を挙げることができる。

[0082]

また、前記1-置換エチル基としては、例えば、1-メトキシエチル基、1-メチルチオエチル基、1, 1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1, 1-ジエトキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1, 1-ジフェノキシエチル基、1-ベンジルオキシエチル基、1-ベンジルチオエチル基、1-シクロプロピルオキシエチル基、1-シクロペキシルオキシエチル基、1-フェニルエチル基、1, 1-ジフェニルエチル基、1-メトキシカルボニルエチル基、1-エトキシカルボニルエチ

ル基、1-n-プロポキシカルボニルエチル基、<math>1-i-プロポキシカルボニルエチル基、1-n-ブトキシカルボニルエチル基、1-t-ブトキシカルボニルエチル基等を挙げることができる。

[0083]

また、前記1-置換-n-プロピル基としては、例えば、1-メトキシ-n-プロピル基、1-エトキシ-n-プロピル基等を挙げることができる。

また、前記1-分岐アルキル基としては、例えば、i-プロピル基、1-メチルプロピル基、t-ブチル基、1, 1-ジメチルプロピル基、1-メチルブチル基等を挙げることができる。

また、前記アルコキシカルボニル基としては、例えば、メトキシカルボニル基 、エトキシカルボニル基、iープロポキシカルボニル基、tーブトキシカルボニ ル基等を挙げることができる。

[0084]

また、前記アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、pートルエンスルホニル基、メシル基等を挙げることができる。

[0085]

また、前記環式酸解離性基としては、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロヘキセニル基、4-メトキシシクロヘキシル基、テトラヒドロピラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3-ブロモテトラヒドロピラニル基、4

-メトキシテトラヒドロピラニル基、4-メトキシテトラヒドロチオピラニル基 、3-テトラヒドロチオフェン-1, 1-ジオキシド基等を挙げることができる 。

[0086]

これらの酸解離性基のうち、ベンジル基、 t ーブトキシカルボニルメチル基、 1-メトキシエチル基、 1-エトキシエチル基、 1-ンクロヘキシルオキシエチル基、 1-エトキシー n-プロピル基、 t ーブチル基、 1, 1-ジメチルプロピル基、 t ーブトキシカルボニル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基等が好ましい。

(B)酸解離性基含有樹脂において、酸解離性基は1種以上存在することができる。

[0087]

(B)酸解離性基含有樹脂中の酸解離性基の導入率 ((B)酸解離性基含有樹脂中の酸性官能基と酸解離性基との合計数に対する酸解離性基の数の割合)は、酸解離性基や該基が導入される樹脂の種類により適宜選定することができるが、好ましくは5~100%、さらに好ましくは10~100%である。

[0088]

(B)酸解離性基含有樹脂の構造は、前述した性状を有する限り特に限定はなく、種々の構造とすることができるが、特に、ポリ(pーヒドロキシスチレン)中のフェノール性水酸基の水素原子の一部または全部を酸解離性基で置換した樹脂、pーヒドロキシスチレンおよび/またはpーヒドロキシーαーメチルスチレンと(メタ)アクリル酸との共重合体中のフェノール性水酸基の水素原子および/またはカルボキシル基の水素原子の一部または全部を酸解離性基で置換した樹脂等を好ましく用いることができる。

[0089]

また、(B)酸解離性基含有樹脂の構造は、使用する放射線の種類に応じて種々選定することができる。

例えば、KrFエキシマレーザーを用いる感放射線性樹脂組成物に特に好適な

(B)酸解離性基含有樹脂としては、例えば、下記一般式(8)で表される繰り返し単位(以下、「繰返し単位(8)」という。)を少なくとも1種と繰返し単位(8)中のフェノール性水酸基を酸解離性基で保護した繰り返し単位を少なくとも1種とを有するアルカリ不溶性またはアルカリ難溶性の樹脂(以下、「樹脂(B1)」という。)が好ましい。なお、樹脂(B1)は、ArFエキシマレーザー、F2エキシマレーザー、電子線等の他の放射線を使用する感放射線性樹脂組成物にも好適に使用することができる。

[0090]

【化22】

$$\frac{-\left(HC-CH_{2}\right)}{\left(HO\right)_{a}\left(R^{8}\right)_{b}}$$
(8)

[一般式 (8) において、 R^8 は水素原子または1価の有機基を示し、複数存在する R^8 は相互に同一でも異なってもよく、a およびb はそれぞれ $1\sim3$ の整数である。]

[0091]

繰り返し単位(8)としては、特に、p-ヒドロキシスチレンの非芳香族二重結合が開裂した単位が好ましい。

また、樹脂(B1)は、さらに他の繰り返し単位を少なくとも1種含んでいてもよい。

前記他の繰り返し単位としては、例えば、スチレン等のビニル芳香族化合物; (メタ) アクリル酸 t ーブチル、 (メタ) アクリル酸アダマンチル、 (メタ) アクリル酸 2 ーメチルアダマンチル等の (メタ) アクリル酸エステル類等の重合性 不飽和結合が開裂した単位を挙げることができる

[0092]

また、ArFエキシマレーザーを用いる感放射線性樹脂組成物に特に好適な(

B)酸解離性基含有樹脂としては、例えば、下記一般式(9)で表される繰り返し単位(以下、「繰り返し単位(9)」という。)および下記一般式(10)で表される繰り返し単位(以下、「繰り返し単位(10)」という。)の群から選ばれる少なくとも1種と下記一般式(11)で表される繰り返し単位(以下、「繰り返し単位(11)」という。)を少なくとも1種とを有するアルカリ不溶性またはアルカリ難溶性の樹脂(以下、「樹脂(B2)」という)が好ましい。なお、樹脂(B2)は、KrFエキシマレーザー、F2 エキシマレーザー、電子線等の他の放射線を用いる感放射線性樹脂組成物にも好適に使用することができる

[0093]

【化23】

0

[0094]

[-般式(9)、一般式(10) および一般式(11) において、 R^9 、 R^{11} および R^{12} は相互に独立に水素原子またはメチル基を示し、一般式(9) において、各 R^{10} は相互に独立に水素原子、水酸基、シアノ基または $-COOR^{14}$ (但し、 R^{14} は水素原子、炭素数 $1\sim 4$ の直鎖状もしくは分岐状のアルキル基または炭素数 $3\sim 2$ 0の環状のアルキル基を示す。)を示し、一般式(11)において、各 R^{13} は相互に独立に炭素数 $4\sim 2$ 0の1価の脂環式炭化水素基もしくはその誘導体または炭素数 $1\sim 4$ の直鎖状もしくは分岐状のアルキル基を示し、かつ R^{13} の少なくとも1つが該脂環式炭化水素基もしくはその誘導体であるか、あるいは

何れか 2 つの R 13 が相互に結合して、それぞれが結合している炭素原子と共に炭素数 $4\sim2$ 0 の 2 価の脂環式炭化水素基もしくはその誘導体を形成し、残りの R 13 が炭素数 $1\sim4$ の直鎖状もしくは分岐状のアルキル基または炭素数 $4\sim2$ 0 の 1 価の脂環式炭化水素基もしくはその誘導体を示す。〕

[0095]

好ましい繰り返し単位(9)としては、例えば、(メタ)アクリル酸3ーヒドロキシアダマンタン-1ーイル、(メタ)アクリル酸3,5ージヒドロキシアダマンタン-1ーイル、(メタ)アクリル酸3ーシアノアダマンタン-1ーイル、(メタ)アクリル酸3ーカルボキシルアダマンタン-1ーイル、(メタ)アクリル酸3,5ージカルボキシアダマンタン-1ーイル、(メタ)アクリル酸3ーカルボキシ-5ーヒドロキシアダマンタン-1ーイル、(メタ)アクリル酸3ーメトキシカルボニル-5ーヒドロキシアダマンタン-1ーイル等を挙げることができる。

樹脂(B2)において、繰り返し単位(9)および繰り返し単位(10)はそれぞれ、単独でまたは2種以上が存在することができる。

[0096]

また、好ましい繰り返し単位(11)としては、例えば、(メタ)アクリル酸 1-メチルー1-シクロペンチル、(メタ)アクリル酸1-エチルー1-シクロペンチル、(メタ)アクリル酸1-メチルー1-シクロヘキシル、(メタ)アクリル酸1-エチルー1-シクロヘキシル、(メタ)アクリル酸2-メチルアダマンタンー2-イル、(メタ)アクリル酸2-エチルアダマンタンー2-イル、(メタ)アクリル酸2-エチルアダマンタンー2-イル、(メタ)アクリル酸2-1ープロピルアダマンタンー2-イル、(メタ)アクリル酸2-1ープロピルアダマンタンー2-イル、(メタ)アクリル酸2-メチルアダマンタンー2-イル、(メタ)アクリル酸2-メチルアグマンタンー2-イル、(メタ)アクリル酸1-(アダマンタンー1-イル)ー

[0097]

樹脂(B2)は、さらに他の繰り返し単位を少なくとも1種含むこともできる

前記他の繰り返し単位としては、例えば、(メタ)アクリル酸7-オキソー6

-オキサビシクロ[3.2.1]オクタン-4-イル、(メタ)アクリル酸5-オキソー4ーオキサトリシクロ「4.2.1.0 3,7] ノナンー2ーイル、(メ タ) アクリル酸 2 - オキソテトラヒドロピラン-4-イル、(メタ)アクリル酸 4-メチル-2-オキソテトラヒドロピラン-4-イル、(メタ)アクリル酸5 ーオキソテトラヒドロフランー3ーイル、(メタ)アクリル酸2-オキソテトラ ヒドロフラン-3-イル、(メタ)アクリル酸5-オキソテトラヒドロフラン-2-イルメチル、(メタ)アクリル酸3.3-ジメチル-5-オキソテトラヒド ロフラン-2-イルメチル等の(メタ)アクリル酸エステル類;(メタ)アクリ ルアミド、N, N-ジメチル (メタ) アクリルアミド、クロトンアミド、マレイ ンアミド、フマルアミド、メサコンアミド、シトラコンアミド、イタコンアミド 等の不飽和アミド化合物;無水マレイン酸、無水イタコン酸等の不飽和カルボン 酸無水物類;ビシクロ「2.2.1]ヘプト-2-エンやその誘導体類、テトラ シクロ $\begin{bmatrix} 6 & 2 & 1^{3,6} & 0^{2,7} \end{bmatrix}$ ドデカー3ーエンやその誘導体類等の単官能 性単量体や、メチレングリコールジ(メタ)アクリレート、エチレングリコール ジ(メタ)アクリレート、2,5-ジメチル-2,5-ヘキサンジオールジ(メ タ) アクリレート、1, 2-アダマンタンジオールジ (メタ) アクリレート、1 ,3-アダマンタンジオールジ(メタ)アクリレート、1,4-アダマンタンジ オールジ(メタ)アクリレート、トリシクロデカニルジメチロールジ(メタ)ア クリレート等の多官能性単量体を挙げることができる。

[0098]

さらに、F₂ エキシマレーザーを用いる感放射線性樹脂組成物に特に好適な(B)酸解離性基含有樹脂としては、下記一般式(12)で表される繰り返し単位(以下、「繰り返し単位(12)」という。)および一般式(13)で表される繰り返し単位の群から選ばれる少なくとも1種を有するアルカリ不溶性またはアルカリ難溶性のポリシロキサン(以下、「樹脂(B3)」という。)が好ましい。なお、樹脂(B3)は、KrFエキシマレーザー、ArFエキシマレーザー、電子線等の他の放射線を用いる場合にも好適に使用することができる。

[0099]

【化24】

〔一般式(12)および一般式(13)において、各Eは相互に独立に酸解離性基を有する1 価の有機基を示し、 R^{15} は置換されていてもよい炭素数 $1\sim20$ の直鎖状、分岐状もしくは環状の1 価の炭化水素基を示す。〕

[0100]

一般式(12)および一般式(13)中のEとしては、環状構造を有する基に 酸解離性基が結合した構造を有する基が好ましい。

前記環状構造を有する基としては、炭素数3~8のシクロアルカン、トリシクロデカン、テトラシクロドデカン、アダマンタン等に由来する脂環式環状構造を有する基や、炭素数6~20のハロゲン化芳香族環状構造を有する基が好ましい。

[0101]

樹脂(B3)としては、繰り返し単位(12)を有する樹脂が好ましい。 特に好ましい繰り返し単位(12)の具体例としては、下記式(12-1)~(12-4)で表される単位等を挙げることができる。

[0102]

[0103]

【化26】

樹脂(B3)は、さらに他の繰り返し単位を少なくとも1種含んでいてもよい

前記他の繰返し単位としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のアルキルアルコキシシラン類の加水分解により形成される単位や、下記式(14-1)~(14-4)で表される繰り返し単位等が好ましい。

(14-3) $[0\ 1\ 0\ 7]$

樹脂(B3)は、酸解離性基を有するシラン化合物を重縮合させるか、予め製造したポリシロキサンに酸解離性基を導入することにより製造することができる。

(14-4)

酸解離性基を有するシラン化合物を樹脂合させる際には、触媒として、酸性触媒を用いることが好ましく、特に、該シラン化合物を酸性触媒の存在下で重縮合させたのち、塩基性触媒を加えてさらに反応させることが好ましい。

[0108]

前記酸性触媒としては、例えば、塩酸、硫酸、硝酸、ほう酸、燐酸、四塩化チタン、塩化亜鉛、塩化アルミニウム等の無機酸類;蟻酸、酢酸、nープロピオン酸、酪酸、吉草酸、しゅう酸、マロン酸、こはく酸、マレイン酸、フマル酸、アジピン酸、フタル酸、テレフタル酸、無水酢酸、無水マレイン酸、くえん酸、ベンゼンスルホン酸、pートルエンスルホン酸、メタンスルホン酸等の有機酸類を挙げることができる。

これらの酸性触媒のうち、塩酸、硫酸、酢酸、しゅう酸、マロン酸、マレイン酸、フマル酸、無水酢酸、無水マレイン酸等が好ましい。

前記酸性触媒は、単独でまたは2種以上を混合して使用することができる。

[0109]

また、前記塩基性触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基類;トリエチルアミン、トリーnープロピルアミン、トリーnーブチルアミン、ピリジン等の有機塩基類を挙げることができる。

前記塩基性触媒は、単独でまたは2種以上を混合して使用することができる。

[0110]

(B)酸解離性基含有樹脂が重合性不飽和単量体の重合によりあるいは該重合を経て製造される場合、当該樹脂は、重合性不飽結合を2つ以上有する多官能性単量体に由来する単位および/またはアセタール性架橋基によって分岐構造を導入することができる。このような分岐構造を導入することにより、(B)酸解離性基含有樹脂の耐熱性を向上させることができる。

この場合、(B)酸解離性基含有樹脂中の分岐構造の導入率は、該分岐構造や それが導入される樹脂の種類により適宜選定することができるが、全繰返し単位 に対して10モル%以下であることが好ましい。

[0111]

(B)酸解離性基含有樹脂の分子量については特に限定はなく、適宜選定する ことができるが、ゲルパーミエーションクロマトグラフィー (GPC)で測定し たポリスチレン換算重量分子量(以下、「Mw」という。)は、通常、1,000~500,000、好ましくは2,000~400,000、さらに好ましくは3,000~300,000である。

また、分岐構造をもたない(B)酸解離性基含有樹脂のMwは、好ましくは1,000~150,000、さらに好ましくは3,000~100,000であり、分岐構造を有する(B)酸解離性基含有樹脂のMwは、好ましくは5,000~500,000、さらに好ましくは8,000~300,000である。このような範囲のMwを有する(B)酸解離性基含有樹脂を用いることにより、得られるレジストが現像特性に優れるものとなる。

[0112]

また、(B)酸解離性基含有樹脂のMwとGPCで測定したポリスチレン換算数分子量(以下、「Mn」という。)との比(Mw/Mn)についても特に限定はなく、適宜選定することができるが、通常、 $1\sim10$ 、好ましくは $1\sim8$ 、さらに好ましくは $1\sim5$ である。このような範囲のMw/Mnを有する(B)酸解離性基含有樹脂を用いることにより、得られるレジストが解像性能に優れるものとなる。

[0 1 1 3]

(B)酸解離性基含有樹脂の製造方法については特に限定はないが、例えば、 予め製造したアルカリ可溶性樹脂中の酸性官能基に1種以上の酸解離性基を導入 する方法;酸解離性基を有する1種以上の重合性不飽和単量体を、場合によりた の重合性不飽和単量体と共に、重合する方法;酸解離性基を有する1種以上の重 縮合性成分を、場合により他の重縮合性成分と共に、重縮合する方法等によって 製造することができる。

[0114]

アルカリ可溶性樹脂を製造する際の重合性不飽和単量体の重合および酸解離性 基を有する1種以上の重合性不飽和単量体の重合は、使用される重合性不飽和単 量体や反応媒質の種類等に応じて、ラジカル重合開始剤、アニオン重合触媒、配 位アニオン重合触媒、カチオン重合触媒等の重合開始剤あるいは重合触媒を適宜 に選定し、塊状重合、溶液重合、沈澱重合、乳化重合、懸濁重合、塊状ー懸濁重 合等の適宜の重合形態で実施することができる。

また、酸解離性基を有する1種以上の重縮合性成分の重縮合は、好ましくは酸性触媒の存在下、水媒質中または水と親水性溶媒との混合媒質中で実施することができる。

[0115]

本発明のポジ型感放射線性樹脂組成物において、(A)酸発生剤の使用量は、レジストの所望の特性に応じて種々の選定とすることができるが、(B)酸解離性基含有樹脂100重量部に対して、好ましくは0.001~70重量部、さらに好ましくは0.01~50重量部、特に好ましくは0.1~20質量部である。この場合、(A)酸発生剤の使用量を0.001重量部以上とすることにより、感度および解像度の低下を抑制でき、また70質量部以下とすることにより、レジストの途布性やパターン形状の劣化を抑制することができる。

[0116]

-酸拡散抑制剤-

本発明のポジ型感放射線性樹脂組成物には、露光により(A)酸発生剤から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域での好ましくない化学反応を抑制する作用を有する酸拡散制御剤を配合することが好ましい。このような酸拡散制御剤を配合することにより、感放射線性樹脂組成物の貯蔵安定性が向上させることができるとともに、レジストとしての解像度がさらに向上させ、また露光から現像処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、その結果、プロセス安定性に極めて優れた感放射線性樹脂組成物を得ることができる。

[0117]

このような酸拡散制御剤としては、レジストパターンの形成工程中の露光や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。

前記含窒素有機化合物としては、例えば、下記一般式(15)で表される化合物(以下、「含窒素化合物(I)」という。)、同一分子内に窒素原子を2個有するジアミノ化合物(以下、「含窒素化合物(II)」という。)、窒素原子を3個以上有するポリアミノ化合物や重合体(以下、「含窒素化合物(III)」という

。)、アミド基含有化合物、ウレア化合物、含窒素複素環式化合物等を挙げることができる。

[0118]

【化29】

$$R^{16}$$
 R^{16}
 $N-R^{16}$ (15)

〔一般式(15)において、各R¹⁶は相互に独立に水素原子、アルキル基、アリール基またはアラルキル基を示し、これらの各基は置換されていてもよい。〕

[0119]

一般式(15)において、 R^{16} の置換されていてもよいアルキル基としては、例えば、炭素数 $1\sim15$ 、好ましくは $1\sim10$ のもの、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s e c - ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、n-ペプチル基、n-オクチル基、n-エチルヘキシル基、n-ノニル基、n-デシル基等を挙げることができる。

[0120]

また、R¹⁶の置換されていたもよいアリール基としては、例えば、炭素数6~12のもの、具体的には、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等を挙げることができる。

さらに、 R^{16} の置換されていてもよいアラルキル基としては、例えば、炭素数 $7\sim19$ 、好ましくは $7\sim13$ のもの、具体的には、ベンジル基、 α ーメチルベンジル基、フェネチル基、1ーナフチルメチル基等を挙げることができる。

[0121]

含窒素化合物(I)としては、例えば、n-n+2ルアミン、n-nプチルアミン、n-d

ン、トリー $n-\Delta$ キシルアミン、トリー $n-\Delta$ プチルアミン、トリー $n-\Delta$ クチルアミン、トリー $n-\Delta$ クチルアミン、トリー $n-\Delta$ クチルアミン、トリー $n-\Delta$ クチルアミン、トリー $n-\Delta$ クチルアニリン、ハーメチルアニリン、ハージメチルアニリン、2ーメチルアニリン、3ーメチルアニリン、4ーニトロアニリン、ジフェニルアミン、トリフェニルアミン、1ーナフチルアミン等の芳香族アミン類;エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類等を挙げることができる。

[0122]

また、含窒素化合物(II)としては、例えば、エチレンジアミン、N,N,N',N'ーテトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、N,N,N',N'ーテトラキス(2-ヒドロキシエチル)エチレンジアミン、N,N,N',N'ーテトラキス(2-ヒドロキシプロピル)エチレンジアミン、4,4'ージアミノジフェニルメタン、4,4'ージアミノジフェニルエーテル、4,4'ージアミノベンゾフェノン、4,4'ージアミノジフェニルアミン、2,2'ービス(4-アミノフェニル)プロパン、2ー(4-アミノフェニル)-2-(4-アミノフェニル)プロパン、2ー(4-アミノフェニル)-2-(4-ビスニーン)プロパン、1,4ービス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン、1,3ービス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン等を挙げることができる。

また、含窒素化合物(III)としては、例えば、ポリエチレンイミン、ポリアリルアミン、ジメチルアミノエチルアクリルアミドの重合体等を挙げることができる。

[0123]

また、前記アミド基含有化合物としては、例えば、ホルムアミド、N-メチルホルムアミド、N, N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等を挙げることができる。

前記ウレア化合物としては、例えば、尿素、メチルウレア、1,1-ジメチル

ウレア、1, 3-ジメチルウレア、<math>1, 1, 3, 3-テトラメチルウレア、<math>1, 3-ジフェニルウレア、トリブチルチオウレア等を挙げることができる。

[0124]

[0125]

さらに、前記含窒素有機化合物として、酸解離性基を有する化合物を用いることもできる。

前記酸解離性基を有する含窒素有機化合物としては、例えば、N-(t-r)トキシカルボニル)ピペリジン、N-(t-r)トキシカルボニル)イミダゾール、N-(t-r)トキシカルボニル)ベンズイミダゾール、N-(t-r)トキシカルボニル) 2フェニルベンズイミダゾール、N-(t-r)トキシカルボニル)ジオクチルアミン、N-(t-r)トキシカルボニル)ジエタノールアミン、N-(t-r)トキシカルボニル)ジフェニルアミン等を挙げることができる。

[0126]

これらの含窒素有機化合物のうち、含窒素化合物(I)、含窒素化合物(II) 、含窒素複素環式化合物等が好ましい。 前記酸拡散制御剤は、単独でまたは2種以上を混合して使用することができる

[0127]

酸拡散制御剤の配合量は、(B)酸解離性基含有樹脂100質量部に対して、好ましくは15質量部以下、さらに好ましくは0.001~10質量部、特に好ましくは0.005~5質量部である。この場合、酸拡散制御剤の配合量を0.001質量部以上とすることにより、プロセス条件によってレジストとしてのパターン形状や寸法忠実度が低下することを抑制でき、また15質量部以下とすることにより、レジストとしての感度や露光部の現像性を向上させることができる

[0128]

-溶解制御剤-

本発明のポジ型感放射線性樹脂組成物には、酸の作用により、アルカリ現像液に対する溶解性が高くなる性質を有する溶解制御剤を配合することもできる。

このような溶解制御剤としては、例えば、フェノール性水酸基、カルボキシル 基、スルホン酸基等の酸性官能基を有する化合物や、該化合物中の酸性官能基の 水素原子をを酸解離性基で置換した化合物等を挙げることができる。

前記溶解制御剤は、単独でまたは2種以上を混合して使用することができる。 溶解制御剤の配合量は、感放射線性樹脂組成物中の全樹脂成分100重量部に 対し、通常、10重量部以下、好ましくは5重量部以下である。

[0 1 2 9]

- 界面活性剤-

本発明のポジ型感放射線性樹脂組成物には、感放射線性樹脂組成物の塗布性、 ストリエーション、現像性等を改良する作用を示す界面活性剤を配合することも できる。

このような界面活性剤としては、アニオン系、カチオン系、ノニオン系又は両性の界面活性剤のいずれでも使用することができるが、好ましくはノニオン系界面活性剤である。

前記ノニオン系界面活性剤としては、例えば、ポリオキシエチレン高級アルキ

ルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類のほか、以下商品名で、「KP」(信越化学工業製)、「ポリフロー」(共栄社油脂化学工業製)、「エフトップ」(トーケムプロダクツ製)、「メガファック」(大日本インキ化学工業製)、「フロラード」(住友スリーエム製)、「アサヒガード」及び「サーフロン」(旭硝子製)等の各シリーズ等を挙げることができる。

前記界面活性剤は、単独でまたは2種以上を混合して使用することができる。

界面活性剤の配合量は、感放射線性樹脂組成物中の全樹脂成分100重量部に対し、界面活性剤の有効成分として、通常、2重量部以下、好ましくは1.5重量部以下である。

[0130]

- 増感剤-

本発明のポジ型感放射線性樹脂組成物には、放射線のエネルギーを吸収して、そのエネルギーを(A)酸発生剤に伝達し、それにより酸の生成量を増加する作用を有し、感放射線性樹脂組成物のみかけの感度を向上させることができる増感剤を配合することもできる。

このような増感剤としては、例えば、アセトフェノン類、ベンゾフェノン類、 ナフタレン類、ビアセチル、エオシン、ローズベンガル、ピレン類、アントラセ ン類、フェノチアジン類等を挙げることができる。

これらの増感剤は、単独でまたは2種以上を混合して使用することができる。 増感剤の配合量は、感放射線性樹脂組成物中の全樹脂成分100重量部に対して、通常、50重量部以下、好ましくは30重量部以下である。

[0131]

-他の添加剤-

さらに、本発明のポジ型感放射線性樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて、前記以外の添加剤、例えば、染料、顔料、接着助剤や、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシー4'-メチルカルコン等を配合することもできる。

この場合、染料や顔料を配合することにより、露光部の潜像を可視化させて、

露光時のハレーションの影響を緩和でき、また接着助剤を配合することにより、 基板との接着性を改善することができる。

[0132]

組成物溶液の調製

本発明のポジ型感放射線性樹脂組成物は、通常、使用時に各成分を溶剤に溶解して均一溶液とし、その後必要に応じて、例えば孔径0.2 μ m程度のフィルター等でろ過することにより、組成物溶液として調製される。

[0133]

前記溶剤としては、例えば、エーテル類、エステル類、エーテルエステル類、ケトン類、ケトンエステル類、アミド類、アミドエステル類、ラクタム類、ラクトン類、(ハロゲン化)炭化水素類等を挙げることができ、より具体的には、エチレングリコールモノアルキルエーテル類、ジエチレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテル類、プロピレングリコール・ジアルキルエーテルアセテート類、プロピレングリコール・エーテルアセテート類、プロピレングリコール・エーテルアセテート類、酢酸エステル類、ヒドロキシ酢酸エステル類、乳酸エステル類、アルコキシ酢酸エステル類、(非)環式ケトン類、アセト酢酸エステル類、ピルビン酸エステル類、プロピオン酸エステル類、アセト酢酸エステル類、ピルビン酸エステル類、プロピオン酸エステル類、N、Nージアルキルアセトアミド類、N、Nージアルキルトルムアミド類、N、Nージアルキルアセトアミド類、Nーアルキルピロリドン類、アーラクトン類、(ハロゲン化)脂肪族炭化水素類、(ハロゲン化)芳香族炭化水素類等を挙げることができる。

[0134]

前記溶剤の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノー n ープロピルエーテル、エチレングリコールモノー n ープロピルエーテル、エチレングリコールモノー n ーブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジニャルエーテル、ジエチレングリコールジー n ープロピルエーテル、ジエチレングリコールジー n ーブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコール

モノー $n- \mathcal{T}$ ロピルエーテルアセテート、イソプロペニルアセテート、イソプロペニルプロピオネート、トルエン、キシレン、メチルエチルケトン、シクロヘキサノン、 $2- \mathcal{C}$ アクノン、 $3- \mathcal{C}$ タノン、 $4- \mathcal{C}$ タノン、 $2- \mathcal{C}$ ドロキシプロピオン酸エチル、 $2- \mathcal{C}$ ドロキシー $2- \mathcal{C}$ チルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、 $2- \mathcal{C}$ ドロキシー $3- \mathcal{C}$ 子ル酪酸メチル、乳酸メチル、乳酸 $1- \mathcal{C}$ ロピル、 $1- \mathcal{C}$ の $1- \mathcal{C}$ の 1-

[0135]

これらの溶剤のうち、プロピレングリコールモノアルキルエーテルアセテート類、2-ヘプタノン、乳酸エステル類、2-ヒドロキシプロピオン酸エステル類、3-アルコキシプロピオン酸エステル類等が、塗布時の膜面内均一性が良好となるの点で好ましい。

前記溶剤は、単独でまたは2種以上を混合して使用することができる。

[0136]

また必要に応じて、前記溶剤と共に、他の溶剤、例えば、ベンジルエチルエーテル、ジーnーへキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1ーオクタノール、1ーノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γーブチロラクトン、炭酸エチレン、炭酸プロピレン、エチレングリコールモノフェニルエーテルアセテート等の高沸点溶剤等を使用することができる。

これらの他の溶剤は、単独でまたは2種以上を混合して使用することができる

他の溶剤を使用割合は、全溶剤に対して、通常、50重量%以下、好ましくは30重量%以下である。

[0137]

溶剤の合計使用量は、溶液の全固形分濃度が、通常、5~50重量%、好ましくは10~50重量%、さらに好ましくは10~40重量%、特に好ましくは10~30重量%、就中10~25重量%となる量である。溶液の全固形分濃度をこの範囲とすることにより、塗布時の膜面内均一性が良好となる点で好ましい。

[0138]

レジストパターンの形成

本発明のポジ型感放射線性樹脂組成物からレジストパターンを形成する際には、前記のようにして調製された組成物溶液を、回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、例えば、シリコンウエハー、アルミニウムで被覆されたウエハー等の基板上に塗布することにより、レジスト被膜を形成する。その後、場合により予め加熱処理(以下、「PB」という。)を行ったのち、所定のマスクパターンを介して、該レジスト被膜に露光する。

また、放射線量等の露光条件は、ポジ型感放射線性樹脂組成物の配合組成、添加剤の種類等に応じて適宜選定される。

また、レジストパターンの形成に際しては、露光後に加熱処理(以下、この加熱処理を「PEB」という。)を行うことが、レジストの見掛けの感度を向上させる点で好ましい。

PEBの加熱条件は、感放射線性樹脂組成物の配合組成、添加剤の種類等によ

り変わるが、通常、30~200℃、好ましくは50~150℃である。

[0139]

その後、露光されたレジスト被膜をアルカリ現像液で現像することにより、所 定のレジストパターンを形成する。

前記アルカリ現像液としては、例えば、アルカリ金属水酸化物、アンモニア水、アルキルアミン類、アルカノールアミン類、複素環式アミン類、テトラアルキルアンモニウムヒドロキシド類、コリン、1,8ージアザビシクロ[5.4.0]-7ーウンデセン、1,5ージアザビシクロ[4.3.0]-5ーノネン等のアルカリ性化合物の1種以上を溶解したアルカリ性水溶液が使用され、特に好ましいアルカリ現像液は、テトラアルキルアンモニウムヒドロキシド類の水溶液である。

また、前記アルカリ性水溶液の濃度は、好ましくは10重量%以下、さらに好ましくは $1\sim10$ 重量%、特に好ましくは $2\sim5$ 重量%である。この場合、アルカリ性水溶液の濃度を10重量%以下とすることにより、非露光部の現像液への溶解を抑制することができる。

また、前記アルカリ性水溶液からなる現像液には、界面活性剤等を適量添加することが好ましく、それによりレジストに対する現像液の濡れ性を高めることができる。

なお、前記アルカリ性水溶液からなる現像液で現像した後は、一般に、水で洗 浄して乾燥する。

[0140]

【実施例】

以下に、本発明の実施例を示して、本発明の実施の形態をさらに具体的に説明 する。但し、本発明は、これらの実施例に何ら制約されるものではない。

〔酸発生剤の合成〕

合成例1

 たのち、トリエチルアミン10.5gを加えて、室温で20分間攪拌した。その後、イオン交換水100gを加え、この混合溶液を分液漏斗に移して振とうして静置したのち、水層を除去した。その後、蒸留水300ミリリットルを加えて振とうして静置したのち、水層を除去した。その後、得られたジクロロメタン溶液を無水硫酸マグネシウムで乾燥してろ過したのち、エバポレーターを用いて乾燥した。その後、ジクロロメタン溶液からジクロロメタンを留去し、残留液体を減圧乾燥することにより、4-n-ブタンスルホニルオキシフェニル・ジフェニルスルホニウムノナフルオローn-ブタンスルホネート26.7gを得た。この化合物を「酸発生剤 (A-1)」とする。

[0141]

合成例2

反応フラスコ内で、4-ヒドロキシフェニル・ジフェニルスルホニウムノナフルオローn-Tタンスルホネート30gをジクロロメタン300gに溶解して、窒素置換を行った。その後、ノナフルオローn-Tタンスルホニルクロライド33. 1g加えたのち、トリエチルアミン10.5gを加えて、室温で20分間攪拌した。その後、イオン交換水100gを加え、この混合溶液を分液漏斗に移して振とうして、静置したのち、水層を除去した。その後、蒸留水300ミリリットルを加えて振とうして静置したのち、水層を除去した。その後、得られたジクロメタン溶液を無水硫酸マグネシウムで乾燥してろ過したのち、エバポレーターを用いて乾燥した。その後、ジクロロメタン溶液からジクロロメタンを留去し、残留液体を減圧乾燥することにより、4-ノナフルオローn-Tタンスルホネート26.7gを得た。この化合物を「酸発生剤(A-2)」とする。

[0142]

合成例3

反応フラスコ内で、4-ヒドロキシフェニル・ジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート30gをジクロロメタン300gに溶解して、窒素置換を行った。その後、1, 1, 2, 2-テトラフルオロ-2-(ノルボルナン-2-4-1) エタンスルホニルクロライド30. 6gを加えたのち、トリエ

チルアミン10.5gを加えて、室温で20分間攪拌した。その後、イオン交換水100gを加え、この混合溶液を分液漏斗に移して振とうして、静置したのち、水層を除去した。その後、蒸留水300ミリリットルを加えて振とうして静置したのち、水層を除去した。その後、得られたジクロロメタン溶液を無水硫酸マグネシウムで乾燥してろ過したのち、エバポレーターを用いて乾燥した。その後、ジクロロメタン溶液からジクロロメタンを留去し、残留液体を減圧乾燥することにより、4-[1,1,2,2-r] フェニル・ジフェニルスルホニウムノナフルオロー1-r ロー1-r フェニルオキシ フェニル・ジフェニルスルホニウムノナフルオロー1-r フェスルホネート23.5gを得た。この化合物を「酸発生剤(1-r 入よする。

[0143]

合成例4

反応フラスコ内で、4ーヒドロキシフェニル・ジフェニルスルホニウムノナフルオロー nーブタンスルホネート30gをジクロロメタン300gに溶解して、窒素置換を行った。その後、10ーカンファースルホニルクロライド26.0g加えたのち、トリエチルアミン10.5gを加えて、室温で20分間攪拌した。その後、イオン交換水100gを加え、この混合溶液を分液漏斗に移して振とうして、静置したのち、水層を除去した。その後、蒸留水300ミリリットルを加えて振とうして静置したのち、水層を除去した。その後、得られたジクロロメタン溶液を無水硫酸マグネシウムで乾燥してろ過したのち、エバポレーターを用いて乾燥した。その後、ジクロロメタン溶液からジクロロメタンを留去し、残留液体を減圧乾燥することにより、4ー(10ーカンファースルホニルオキシ)フェニル・ジフェニルスルホニウムノナフルオローnーブタンスルホネート38.6gを得た。この化合物を「酸発生剤(A-4)」とする。

[0144]

合成例 5

反応フラスコ内で、4-ヒドロキシフェニル・ジフェニルスルホニウムノナフルオローn-ブタンスルホネート30gをジクロロメタン300gに溶解して、 窒素置換を行った。その後、p-トシルスルホニルクロライド19.7g加えた のち、トリエチルアミン10.5gを加えて、室温で20分間攪拌した。その後、イオン交換水100gを加え、この混合溶液を分液漏斗に移して振とうして、静置したのち、水層を除去した。その後、蒸留水300ミリリットルを加えて振とうして静置したのち、水層を除去した。その後、得られたジクロロメタン溶液を無水硫酸マグネシウムで乾燥してろ過したのち、エバポレーターを用いて乾燥した。その後、ジクロロメタン溶液からジクロロメタンを留去し、残留液体を減圧乾燥することにより、4ー(pートシルスルホニルオキシ)フェニル・ジフェニルスルホニウムノナフルオローnーブタンスルホネート12.6gを得た。この化合物を「酸発生剤(A-5)」とする。

[0145]

合成例6

反応フラスコ内で、4ーヒドロキシフェニル・ジフェニルスルホニウム1,1,2,2ーテトラフルオロー2ー(ノルボルナンー2ーイル)エタンスルホネート30gをジクロロメタン300gに溶解して、窒素置換を行った。その後、1,1,2,2ーテトラフルオロー2ー(ノルボルナンー2ーイル)エタンスルホニルクロライド30.6g加えたのち、トリエチルアミン10.5gを加えて、室温で20分間攪拌した。その後、イオン交換水100gを加え、この混合溶液を分液漏斗に移して振とうして、静置したのち、水層を除去した。その後、蒸留水300ミリリットルを加えて振とうして静置したのち、水層を除去した。その後、標られたジクロロメタン溶液を無水硫酸マグネシウムで乾燥してろ過したのち、エバポレーターを用いて乾燥した。その後、ジクロロメタン溶液からジクロロメタンを留去し、残留液体を減圧乾燥することにより、1,1,2,2ーテトラフルオロー2ー(ノルボルナンー2ーイル)エタンスルホニルオキシフェニル・ジフェニルスルホニウム1,1,2,2ーテトラフルオロー2ー(ノルボルナンー2ーイル)エタンスルホニルオキシフェニルン・ジフェニルスルホニウム1,1,2,2ーテトラフルオロー2ー(ノルボルナンー2ーイル)エタンスルホニルオキシフェニルン・ジフェニルスルホニウム1,1,2,2ーテトラフルオロー2ー(ノルボルナンー2ーイル)エタンスルホネート23.5gを得た。この化合物を「酸発生剤(A-6)」とする。

[0146]

質量分析

酸発生剤 (A-1) ~ (A-6) について、日本電子(株) 製「JMS-AX50

5 W型質量分析計」を用いて質量分析を行った。分析条件は下記の通りである。 各酸発生剤のカチオン部分について得られたスペクトルを、図1~6に示す。

エミッター電流 : 5 m A (使用ガス: X e)

加速電圧 : 3. 0 k V

10N MULTI: 1. 3

イオン化法 : 高速原子衝撃法(FAB)

検出イオン :カチオン(+)

測定質量範囲 : 20~1,500m/z

スキャン :30秒

分解能 : 1,500

マトリックス : 3 - ニトロベンジルアルコール

lH-NMR分析

酸発生剤 (A-1) ~ (A-6) について、日本電子(株)製「JNM-EX270」を用いて ^1H-NMR 分析を行った。使用した測定溶媒は、重水素化クロロホルムである。得られたスペクトルを、図 $7\sim12$ に示す。

[0147]

〔(B)酸解離性基含有樹脂の合成〕

以下に記載する方法により、(B)酸解離性基含有樹脂を合成した。

(B)酸解離性基含有樹脂のMwおよびMnは、東ソー(株)製GPCカラム (G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、流量1.0ミリリットル/分、溶出溶剤テトラヒドロフラン、カラム 温度40 $^{\circ}$ の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。

[0148]

合成例7

p-アセトキシスチレン101g、スチレン5g、<math>p-t-ブトキシスチレン42g、アゾビスイソブチロニトリル6g、t-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル160gに溶解し、窒素雰囲気下、反応温度を70 \mathbb{C} に保持して、16時間重合した。重合後、反応溶液を大量のn-

ヘキサン中に滴下して、樹脂を凝固精製した。その後、この精製樹脂に、再度プロピレングリコールモノメチルエーテル150gを加え、さらにメタノール300g、トリエチルアミン80g、水15gを加えて、沸点にて還流させながら、8時間加水分解反応を行なった。反応後、溶剤およびトリエチルアミンを減圧留去し、得られた樹脂をアセトンに溶解したのち、大量の水中に滴下して樹脂を凝固させ、析出した白色粉末をろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが16, 000、 $Mw/Mnが1.7であり、<math>^{13}C-N$ MR分析の結果、p-ヒドロキシスチレンとスチレンとp-tーブトキシスチレンとの共重合モル比が72:5:23であった。この樹脂を「樹脂(B-1)」とする。

[0149]

合成例8

p-アセトキシスチレン100g、アクリル酸 t-ブチル25g、スチレン18g、アゾビスイソブチロニトリル6g、t-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル230gに溶解し、窒素雰囲気下、反応温度を70℃に保持して、16時間重合した。重合後、反応溶液を大量のn-ヘキサン中に滴下して、樹脂を凝固精製した。その後、この精製樹脂に、再度プロピレングリコールモノメチルエーテル150gを加え、さらにメタノール300g、トリエチルアミン80g、水15gを加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応後、溶剤およびトリエチルアミンを減圧留去し、得られた樹脂をアセトンに溶解したのち、大量の水中に滴下して樹脂を凝固させ、析出した白色粉末をろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが11, 500、Mw/Mnが1. 6であり、 $^{13}C-N$ MR分析の結果、p-ヒドロキシスチレンとアクリル酸 t-ブチルとスチレンとの共重合モル比が61:19:20であった。この樹脂を「樹脂(B-2)」とする。

[0150]

合成例9

p-アセトキシスチレン97g、p-t-ブトキシスチレン51g、アゾビス

イソブチロニトリル6g、t-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル160gに溶解し、窒素雰囲気下、反応温度を70℃に保持して16時間重合した。重合後、反応溶液を大量のn-ヘキサン中に滴下して、樹脂を凝固精製した。その後、この精製樹脂に、再度プロピレングリコールモノメチルエーテル150gを加え、さらにメタノール300g、トリエチルアミン80g、水15gを加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応後、溶剤およびトリエチルアミンを減圧留去し、得られた樹脂をアセトンに溶解したのち、大量の水中に滴下して樹脂を凝固させ、析出した白色粉末をろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが16, 500、 $Mw/Mnが1.7であり、<math>^{13}C-N$ MR分析の結果、p-ヒドロキシスチレンとp-t-ブトキシスチレンとの共重合モル比が67:33であった。この樹脂を「樹脂(B-3)」とする。

[0151]

合成例10

ポリ(pーヒドロキシスチレン)25gを酢酸nーブチル80gに溶解して、 窒素により30分間バブリングを行った。その後、この溶液にジーtーブチルジ カーボネート49gを加え、触媒としてトリエチルアミン25gを加えて、60 ℃で7時間反応させた。その後、酢酸nーブチルを減圧留去し、得られた樹脂を アセトンに溶解し、大量の水中に滴下して樹脂を凝固させ、析出した白色粉末を ろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが12, 000、 $Mw/Mnが1.7であり、<math>^{13}C-N$ MR分析の結果、ポリ(p-ヒドロキシスチレン)中のフェノール性水酸基の水素原子の26 モル%が t-ブトキシカルボニル基で置換された構造を有するものであった。この樹脂を「樹脂(B-4)」とする。

[0152]

合成例11

ポリ (p-ヒドロキシスチレン) 25gをプロピレングリコールモノメチルア セテート100gに溶解して、窒素により30分間バブリングを行った。その後 、この溶液にエチルビニルエーテル4.8gを加え、触媒としてp-トルエンス ルホン酸ピリジニウム塩1gを加えて、室温で12時間反応させた。その後、反 応溶液を1重量%アンモニア水溶液中に滴下して樹脂を凝固させ、析出した白色 粉末をろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが13, 000、Mw/Mnが1.7であり、 ^1H-N MR分析の結果、ポリ(p-ヒドロキシスチレン)中のフェノール性水酸基の水素原子の34モル%がエトキシキシエチル基で置換された構造を有するものであった。この樹脂を「樹脂(B-5)」とする。

[0153]

合成例 1 2

共重合モル比が92:8のp-ヒドロキシスチレン/p-t-ブトキシカルボニルオキシスチレン共重合体25gをプロピレングリコールモノメチルアセテート100gに溶解して、窒素により30分間バブリングを行った。その後、この溶液にエチルビニルエーテル3.3gを加え、触媒としてp-トルエンスルホン酸ピリジニウム塩1gを加えて、室温で12時間反応させた。その後、反応溶液を1重量%アンモニア水溶液中に滴下して樹脂を凝固させ、析出した白色粉末をろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが13,000、Mw/Mnが1.8であり、 13 C-NMR分析の結果、ポリ(p-ヒドロキシスチレン)中のフェノール性水酸基の水素原子の23 モル%がエトキシキシエチル基で、8 モル%が t-ブチル基で置換された構造を有するものであった。この樹脂を「樹脂(B-6)」とする。

[0154]

合成例13

共重合モル比が90:100p-ヒドロキシスチレン/p-t-ブトキシスチレン共重合体<math>25gをプロピレングリコールモノメチルアセテート100gに溶解して、窒素により30分間バブリングを行った。その後、この溶液にエチルビニルエーテル3.3gを加え、触媒としてp-トルエンスルホン酸ピリジニウム塩1gを加えて、室温で<math>12時間反応させた。その後、反応溶液を1重量%アンモニア水溶液中に滴下して樹脂を凝固させ、析出した白色粉末をろ過して、減圧下50℃で一晩乾燥した。

得られた樹脂は、Mwが13, 000、Mw/Mnが1. 01であり、 $^{13}C-NMR$ 分析の結果、ポリ(p-ヒドロキシスチレン)中のフェノール性水酸基の水素原子の23 モル%が1-エトキシキシエチル基で、10 モル%がt-ブチル基で置換された構造を有するものであった。この樹脂を〔樹脂(B-7)」とする

[0155]

合成例14

メタクリル酸 5- オキソー 4- オキサトリシクロ $[4.2.1.0^{3,7}]$ ノナン -2- イル 5 3 .6 9 g、メタクリル酸 2- メチルアダマンタン -2- イル 4 6 .3 1 g を <math>2- ブタノン 2 0 0 g に溶解し、さらにジメチルアゾビスブチレート 4 .0 4 g を投入したモノマー溶液を準備した。

別に、2-ブタノン100gを投入した1,000ミリリットル三口フラスコを30分窒素パージしたのち、内容物を攪拌しながら<math>80℃に加熱して、前記モノマー溶液を滴下漏斗を用い、4時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、反応溶液を水冷して30℃以下に冷却したのち、メタノール2000g中へ投入し、析出した白色粉末を500 に その後、得られた白色粉末を20 度メタノール4000 gによりスラリー状で洗浄したのち、炉別し、50℃にて176 間乾燥して、白色粉末の樹脂を得た。

この樹脂はMwが9,700であり、メタクリル酸5-オキソー4-オキサトリシクロ $[4.2.1.0^{3,7}]$ ノナン-2-イルとメタクリル酸2-メチルアダマンタン-2-イルとの共重合モル比が59.6:40.4の共重合体であった。この樹脂を「樹脂(B-8)」とする。

[0156]

合成例15

メタクリル酸 2-メチルアダマンタン-2-イル4 0. 9 0 g、メタクリル酸 3-ヒドロキシアダマンタン-1-イル1 5. 4 7 g、メタクリル酸 5-オキソ -4-オキサトリシクロ [4.2.1.0 3,7] ノナン-2-イル4 3.64 g e2-ブタノン200 gに溶解し、さらにジメチルアゾビスブチレート4.02 gを投入したモノマー溶液を準備した。

別に、2-ブタノン100gを投入した1,000ミリリットル三口フラスコを30分窒素パージしたのち、内容物を攪拌しながら80℃に加熱して、前記モノマー溶液を滴下漏斗を用い、4時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、反応溶液を水冷して30℃以下に冷却したのち、メタノール200g中へ投入し、析出した白色粉末を3別した。その後、得られた白色粉末を2度メタノール400gによりスラリー状で洗浄したのち、炉別し、50℃にて17時間乾燥して、白色粉末の樹脂を得た。

この樹脂はMwが9,200であり、メタクリル酸2ーメチルアダマンタンー2ーイルとメタクリル酸3ーヒドロキシアダマンタンー1ーイルとメタクリル酸5ーオキソー4ーオキサトリシクロ [4.2.1.0 3,7] ノナンー2ーイルとの共重合モル比が36.2:15.2:48.6の共重合体であった。この樹脂を「樹脂(B-9)」とする。

[0157]

合成例 1 6

メタクリル酸 1-(rダマンタン-1- Tu)-1-メチルエチル4 3.66 g、メタクリル酸 3-ヒドロキシアダマンタン-1- Tul 4.74 g、メタクリル酸 5- オキソー4- オキサトリシクロ $[4.2.1.0^{3,7}]$ ノナン-2- Tul 4.66 gを 2- ブタノン 200 g に溶解し、さらにジメチルアゾビスブチレート 3.83 gを投入したモノマー溶液を準備した。

別に、2-ブタノン100gを投入した1,000ミリリットル三口フラスコを30分窒素パージしたのち、内容物を攪拌しながら<math>80℃に加熱して、前記モノマー溶液を滴下漏斗を用い、4時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、反応溶液を水冷して30℃以下に冷却したのち、メタノール2000g中へ投入し、析出した白色粉末を5別した。その後、得られた白色粉末を2度メタノール400gによりスラリー状で洗浄したのち、炉別し、50℃にて17時間乾燥して、白色粉末の樹脂を得た。

ナン-2-イルとの共重合モル比が35.6:15.1:49.3の共重合体であった。この樹脂を「樹脂(B-10)」とする。

[0158]

合成例 1 7

別に、2-79/2100gを投入した1,000ミリリットル三口フラスコを30分窒素パージしたのち、内容物を攪拌しながら80℃に加熱して、前記モノマー溶液を滴下漏斗を用い、4時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、反応溶液を水冷して30℃以下に冷却したのち、メタノール2000g中へ投入し、析出した白色粉末を3別した。その後、得られた白色粉末を2度メタノール400gによりスラリー状で洗浄したのち、炉別し、50℃にて17時間乾燥して、白色粉末の樹脂を得た。

この樹脂はMwが 8 , 9 0 0 であり、メタクリル酸 2 - x + y +

[0159]

合成例18

アクリル酸 5-オキソー4-オキサトリシクロ $[4.2.1.0^{3,7}]$ ノナン-2-イル42.44g、アクリル酸 3-ヒドロキシアダマンタン-1-イル15.10g、アクリル酸 2-エチルアダマンタン-2-イル42.46gを2-ブタノン200gに溶解し、さらにジメチルアゾビスブチレート4.17gを投入したモノマー溶液を準備した。

別に、2-ブタノン100gを投入した1,000ミリリットル三口フラスコ

を30分窒素パージしたのち、内容物を攪拌しながら80℃に加熱して、前記モノマー溶液を滴下漏斗を用い、4時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、反応溶液を水冷して30℃以下に冷却したのち、メタノール2000g中へ投入し、析出した白色粉末を5別した。その後、得られた白色粉末を2度メタノール400gによりスラリー状で洗浄したのち、炉別し、50℃にて17時間乾燥して、白色粉末の樹脂を得た。

この樹脂はMw10, 200であり、rクリル酸5-オキソー4-オキサトリシクロ [4.2.1.0 3,7] ノナンー2-イルとrクリル酸3-ヒドロキシアダマンタンー1-イルとrクリル酸2-エチルアダマンタンー2-イルとの共重合モル比が49.2:15.3:35.5の共重合体であった。この樹脂を「樹脂 (B-12)」とする。

[0160]

合成例19

メタクリル酸 5- オキソー 4- オキサトリシクロ $[4.2.1.0^{3,7}]$ ノナンー 2- イル 5 5.00 g、メタクリル酸 3- ヒドロキシアダマンタンー 1- イル 1 1.70 g、アクリル酸 1- エチルシクロペンチル 3 3.31 gを 2- ブタノン 2 0 0 g に溶解し、さらにジメチルアゾビスブチレート 4.56 gを投入したモノマー溶液を準備した。

別に、2-ブタノン100gを投入した1, 000ミリリットル三口フラスコを30分窒素パージしたのち、内容物を攪拌しながら80℃に加熱して、前記モノマー溶液を滴下漏斗を用い、4時間かけて滴下した。滴下開始を重合開始時間とし、重合反応を6時間実施した。重合終了後、反応溶液を水冷して30℃以下に冷却したのち、2-プロパノール/n-へプタン=1/2(重量比)の混合溶媒 2, 000g中へ投入し、析出した白色粉末を5別した。その後、得られた白色粉末を2度2-プロパノール/n-へプタン=1/2(重量比)の混合溶媒 400gによりスラリー状で洗浄したのち、炉別し、50℃にて17時間乾燥した、白色粉末の樹脂を得た。

この樹脂はMwが 8, 5 0 0 であり、メタクリル酸 5 ーオキソー 4 ーオキサトリシクロ $[4. 2. 1. 0^{3,7}]$ ノナンー 2 ーイルとメタクリル酸 3 ーヒドロキ

シアダマンタン-1-イルとアクリル酸 1-エチルシクロペンチルとの共重合モル比が 5 3. 7 : 1 1. 1 : 3 5. 2 の共重合体であった。この樹脂を「樹脂(B-13)」とする。

[0 1 6 1]

合成例20

撹拌機、寒流冷却器および温度計を装着した3つ口フラスコに、前記式(12-2)で表される繰り返し単位を与えるトリエトキシシラン化合物1.52g、前記式(14-1)で表される繰り返し単位を与えるトリエトキシシラン化合物1.57g、メチルトリエトキシシラン1.91g、4-メチル-2-ペンタノン15g、1.75重量%しゅう酸水溶液1.31gを加えて、撹拌しつつ80℃で6時間反応させたのち、反応容器を氷冷して反応を停止させた。その後、反応溶液を分液ロートに移して水層を除去し、さらにイオン交換水を加えて有機層を水洗して、反応溶液が中性になるまで水洗を繰り返したのち、有機層を減圧留去した。

得られた樹脂は、Mwが2,000であり、式(12-2)で表される繰り返し単位と式(14-1)で表される繰り返し単位とのモル比が60:40の樹脂であった。この樹脂を「樹脂(B-14)」とする。

[0162]

〔組成物溶液の調製〕

表 1-1または表 1-2(但し、「部」は重量基準である。)に示す各成分を混合して均一溶液としたのち、孔径 0 . 2μ mのメンブランフィルターでろ過して、実施例 $1\sim 2$ 2 および比較例 $1\sim 2$ の各組成物溶液を調製した。

実施例および比較例で用いた酸発生剤 (A-1) ~ (A-6) および樹脂 (B-1) ~ (B-14)以外の各成分は下記の通りである。

他の酸発生剤

- a-1:トリフェニルスルホニウムトリフルオロメタンスルホネート
- a-2:ビス(4-t-ブチルフェニル) ヨードニウムトリフルオロメタンスル ホネート
- a-3:N-(h) フルオロメタンスルホニルオキシ) ビシクロ [2.2.1]

ヘプトー5ーエンー2, 3ージカルボキシイミド
【0163】

酸拡散制御剤

- C-1: トリーn-ヘキシルアミン
- C-2: トリエタノールアミン
- C-3:2-フェニルベンズイミダゾール
- C-4:1, 2-ジメチルイミダゾール
- C-5:3- ℓ^{2} η^{2} η^{2}

溶解制御剤

D-1: デオキシコール酸 t ーブトキシカルボニルメチルエステル

溶剤

- S-1:乳酸エチル
- S-2:プロピレングリコールモノメチルエーテルアセテート
- S-3:2-ヘプタノン
- S-4:γーブチロラクトン

[0164]

[性能評価]

実施例 $1 \sim 2 \ 2 \ \text{および比較例} \ 1 \sim 2 \ \text{の各液状組成物をシリコンウェハー上にスピンコートしたのち、表 } 2 \ に示す条件で PBを行って、表 2 \ に示す膜厚のレジスト被膜を形成した。その後、表 2 \ に示す条件で露光を行ったのち、表 2 \ に示す条件でPEBを行った。その後、2.38重量%テトラメチルアンモニウムヒドロキシド水溶液を用い、23 <math>\mathbb C$ で 1 分間、パドル法により現像したのち、純水で水洗し、乾燥することにより、レジストパターンを形成した。

[0165]

ここで、露光に用いた装置は、露光光源がKrFエキシマレーザー(表2では「KrF」と表示)の場合、(株)ニコン製「ステッパーNSR2205 EX 12B」(開口数0.55);露光光源がArFエキシマレーザー(表2では「ArF」と表示)の場合、(株)ニコン製ArFエキシマレーザー露光装置(開口数0.55);露光光源がF2エキシマレーザー(表2では「F2」と表示)

の場合、ウルトラテック(Ultratech)社製F₂ エキシマレーザー露光装置「XLS」(開口数0.60);露光光源が電子線の場合、日立製作所(株)製直描用電子線描画装置「HL700」(加速電圧30KeV)を加速電圧50KeVに改良した装置をそれぞれ用いた。

[0166]

得られた各レジストパターンについて、下記の方法により性能評価を行った。 評価結果を表3に示す。

感度

シリコンウエハー上に形成したレジスト被膜に露光量を変えて露光したのち、直ちにPEBを行い、その後現像し、水洗し、乾燥して、レジストパターンを形成したとき、線幅 $0.25\,\mu$ mのライン・アンド・スペースパターン(1L1S)を 1 対 1 の線幅に形成する露光量を最適露光量とし、この最適露光量を感度とした。

解像度

最適露光量で露光したときに解像されるレジストパターンの最小寸法を解像度 とした。

[0167]

パターン形状

シリコンウエハー上に形成した線幅 0.25μ mのライン・アンド・スペースパターン(1L1S)の方形状断面の下辺の寸法La と上辺の寸法Lb を、走査型電子顕微鏡を用いて測定し、 $0.85 \le Lb/La \le 1$ の条件を満足するものを「良好」とし、この条件を満たさないものを「不良」とした。

保存安定性

各液状組成物について、調製後直後の感度、および室温で1月間静置後の感度 を評価して、1月間静置後の感度の調製後直後の感度に対する変化量が10%未 満のものを「良好」とし、10%以上ものを「不良」とした。

[0168]

【表1】

<u>表 1-1</u>

	感放射線性酸発 生剤 (部)	(B)酸解離性基 含有樹脂 (部)	酸拡散制御剤 (部)	溶解制御剤 (部)	溶 剤 (部)
実施例 1	A-1 (3)	B-5 (65) B-4 (35)	C-2 (0.3)		S-1 (250) S-2 (550)
実施例 2	A-2 (2) a-3 (2)	B-5 (70) B-3 (30)	C-1 (0. 25)		S-2 (800)
実施例3	A-1 (2) a-3 (2)	B-7 (100)	C-2 (0.3)		S-1 (250) S-2 (550)
実施例 4	A-2 (2) a-3 (2)	B-1 (100)	C-4 (0.4)		S-1 (800)
実施例 5	A-2 (2) a-2 (1)	B-2 (100)	C-2 (0.3)		S-1 (400) S-2 (400)
実施例 6	A-2 (2) a-3 (1)	B-6 (100)	C-2 (0. 1) C-4 (0. 2)		S-1 (250) S-2 (550)
実施例7	A-6 (1) a -3 (12)	B-7 (100)	C-1 (0.3)		S-4 (600)
実施例8	A-6 (1) a -3 (12)	B-2 (100)	C-1 (0.3)		S-4 (600)
実施例9	A-1 (3)	B-8 (100)	C-5 (0. 25)	D-1 (8)	S-2 (550) S-4 (50)
実施例10	A-2 (4)	B-8 (100)	C-2 (0. 25)		S-2 (550) S-4 (50)
実施例11	A-3 (3)	B-8 (100)	C-5 (0. 25)	D-1 (8)	S-2 (550) S-4 (50)
実施例12	A-4 (4)	B-8 (100)	C-2 (0.25)		S-2 (550) S-4 (50)

[0169]

【表2】

表 1-2

	感放射線性酸発 生剤 (部)	(B)酸解離性基 含有樹脂 (部)	酸拡散制御剤(部)	溶解制御剤 (部)	溶 剤 (部)
実施例13	A-5 (3)	B-8 (100)	C-5 (0. 25)	D-1 (8)	S-2 (550) S-4 (50)
実施例14	A-2 (4)	B-9 (100)	C-5 (0. 25)		S-4 (550) S-2 (50)
実施例15	A-2 (4)	B-10 (100)	C-5 (0. 25)		S-4 (550) S-2 (50)
実施例16	A-2 (4)	B-11 (100)	C-5 (0.25)	D-1 (8)	S-4 (550) S-2 (50)
実施例17	A-2 (4)	B-12 (100)	C-2 (0.25)		S-4 (600)
実施例18	A-2 (4)	B-13 (100)	C-2 (0. 25)		S-4 (550)
実施例19	A-6 (4)	B-8 (100)	C-3 (0.1)		S-4 (900)
実施例20	A-2 (3)	B-1 (100)	C-4 (0.3)		S-1 (400) S-2 (400)
実施例21	A-6 (4)	B-1 (100)	C-4 (0.3)		S-1 (400) S-3 (400)
実施例22	A-1 (1.5)	B-14 (100)	C-3 (0.1)		S-3 (900)
比較例 1	a -1 (5)	B-5 (65) B-4 (35)	C-1 (0.2)		S-1 (250) S-2 (550)
比較例 2	a -1 (4)	B-9 (100)	C-1 (0.3)		S-3 (600)

[0170]

【表3】

_ 表 2

	膜厚 (Å)	Р	В	露光光源	PEB	
	(A)	温度 (℃)	時間(秒)		温度 (℃)	時間(秒)
実施例 1	5000	100	90	KrF	110	90
実施例2	5000	100	90	KrF	110	90
実施例3	5000	100	90	KrF	100	90
実施例4	5000	120	90	KrF	130	90
実施例 5	5000	120	90	KrF	140	90
実施例6	5000	100	90	KrF	110	90
実施例7	2300	130	60	KrF	130	90
実施例8	2300	130	60	KrF	130	90
実施例9	3300	130	90	ArF	130	90
実施例10	3300	130	90	ArF	130	90
実施例11	3300	130	90	ArF	130	90
実施例12	3300	130	90	ArF	130	90
実施例13	3300	130	90	ArF	130	90
実施例14	3300	130	90	ArF	130	90
実施例15	3300	130	90	ArF	120	90
実施例16	3300	120	90	ArF	100	90
実施例17	3300	130	90	ArF	100	90
実施例18	3300	130	90	ArF	110	90
実施例19	4000	130	90	ArF	110	90
実施例20	3000	120	90	電子線	130	90
実施例21	3000	120	90	電子線	130	90
実施例22	1000	130	90	F 2	110	90
比較例1	5000	100	90	KrF	110	90
比較例2	5000	130	90	ArF	140	90

[0171]

【表4】

_ 表 3__

	感度	解像度 (μm)	パターン 形状	保存安定性
実施例 1	300 J/m ²	0. 15	良好	良好
実施例 2	310 J / m ²	0. 15	良好	良好
実施例3	$290 \mathrm{J/m^2}$	0. 15	良好	良好
実施例4	330 J ∕ m ²	0. 14	良好	良好
実施例 5	$320\mathrm{J/m^2}$	0. 16	良好	良好
実施例6	$320 \mathrm{J/m^2}$	0. 15	良好	良好
実施例7	330 J / m ²	0. 13	良好	良好
実施例8	$330\mathrm{J/m^2}$	0. 13	良好	良好
実施例9	375 J/m ²	0. 14	良好	良好
実施例10	382 J / m ²	0. 14	良好	良好
実施例11	385 J / m ²	0. 14	良好	良好
実施例12	370 J / m ²	0. 14	良好	良好
実施例13	375 J / m ²	0. 14	良好	良好
実施例14	428 J / m ²	0. 13	良好	良好
実施例15	419 J / m ²	0. 13	良好	良好
実施例16	$319 \mathrm{J/m^2}$	0. 14	良好	良好
実施例17	296 J / m ²	0. 13	良好	良好
実施例18	323 J / m ²	0. 13	良好	良好
実施例19	450 J / m ²	0. 13	良好	良好
実施例20	0.03C/m ²	0. 14	良好	良好
実施例21	$0.035\mathrm{C/m^2}$	0. 14	良好	良好
実施例22	210 J / m ²	0. 13	良好	良好
比較例1	360 J ∕ m ²	0. 16	不良	不良
比較例2	700 J / m ²	0. 16	不良	不良

[0172]

表3から、本発明の(A)酸発生剤を用いたポジ型感放射線性樹脂組成物は、 当該酸発生剤を用いない比較例のポジ型感放射線性樹脂組成物に比べて、保存安 定性が良好で耐塩基性に優れており、しかも高感度および高解像度であることが 明らかとなる。

[0173]

【発明の効果】

本発明のオニウム塩化合物(1)およびオニウム塩化合物(2)は、特に、優れた保存安定性を有し、かつ活性放射線、例えばKrFエキシマレーザー、ArFエキシマレーザー、F2エキシマレーザーあるいはEUVに代表される遠紫外線、電子線等に感応して高感度であり、集積回路素子の製造に代表される微細加工に有用な化学増幅型フォトレジストの感放射線性酸発生剤として極めて好適に使用することができる。また、これらのオニウム塩化合物を必須成分とする(A)酸発生剤を用いた本発明のポジ型感放射線性樹脂組成物は、保存安定性に優れ、しかも高感度および高解像度であり、特に、今後ますます微細化が進行すると予想される集積回路素子製造用の化学増幅型レジストとして極めて有用である。

【図面の簡単な説明】

【図1】

酸発生剤(A-1)のカチオン部分の質量分析スペクトルを示す図である。

【図2】

酸発生剤(A-2)のカチオン部分の質量分析スペクトルを示す図である。

【図3】

酸発生剤(A-3)のカチオン部分の質量分析スペクトルを示す図である。

図4】

酸発生剤(A-4)のカチオン部分の質量分析スペクトルを示す図である。

【図5】

酸発生剤(A-5)のカチオン部分の質量分析スペクトルを示す図である。

【図6】

酸発生剤(A-6)のカチオン部分の質量分析スペクトルを示す図である。

【図7】

酸発生剤(A-1)の $^1H-NMR分析スペクトルを示す図である。 【図 8】$

酸発生剤 (A-2) の ¹H-NMR分析スペクトルを示す図である。 【図 9】

酸発生剤(A-3)の $^1H-NMR分析スペクトルを示す図である。 【図 <math>10$ 】

酸発生剤(A-4)の $^1H-NMR分析スペクトルを示す図である。 【図 <math>1$ 1 】

酸発生剤(A-5)の $^1H-NMR分析スペクトルを示す図である。 【図 <math>1$ 2 】

酸発生剤 (A-6) の 1H-NMR分析スペクトルを示す図である。

【書類名】図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【書類名】 要約書

【要約】

【課題】 保存安定性に優れ、高感度で高解像度の化学増幅型フォトレジストとして有用な感放射線性樹脂組成物に使用される感放射線性酸発生剤として好適なオニウム塩化合物、該オニウム塩化合物からなる感放射線性酸発生剤、および該感放射線性酸発生剤を含有するポジ型感放射線性樹脂組成物を提供する。

【解決手段】 オニウム塩化合物は、カチオン部分が一般式(1)で表される。 【化1】

$$(Ar^2)_{\overline{n}} A^{+} (Ar^1)_{\overline{n}} \qquad (1)$$

〔式中、AはIまたはS、mは1以上の整数、nは0以上の整数、x x は $1\sim 1$ 5 の整数、A r^1 およびA r^2 は 1 価の(置換)芳香族炭化水素基等示し、O Z はスルホン酸(エステル)の残基またはスルフィン酸(エステル)の残基を示す。〕

ポジ型感放射線性樹脂組成物は、(A)該オニウム塩化合物からなる感放射線 性酸発生剤および(B)酸解離性基含有樹脂を含有する。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号 特願2003-182089

受付番号 50301063917

書類名 特許願

担当官 第六担当上席 0095

作成日 平成15年 7月 1日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000004178

【住所又は居所】 東京都中央区築地五丁目6番10号

【氏名又は名称】 ジェイエスアール株式会社

【代理人】 申請人

【識別番号】 100100985

【住所又は居所】 東京都港区赤坂二丁目17番55号 インターナ

ショナルプラザ赤坂511

【氏名又は名称】 福沢 俊明

出願人履歴情報

識別番号

[000004178]

1. 変更年月日 [変更理由]

2003年 5月 6日

父 史 理 田 」

住所変更

住 所 氏 名 東京都中央区築地五丁目6番10号

ジェイエスアール株式会社

2. 変更年月日

2003年 9月 1日

[変更理由]

名称変更

住 所

東京都中央区築地五丁目6番10号

氏 名

J S R 株式会社