COMP4650 / COMP6490 Document Analysis 2018

Information Extraction

https://powcoder.com

Add WeChat-povycoder

Overview of IE lectures

- Introduction to Information Extraction (IE)
- Sequence labeling methods

Markov Process

Assignment Project Exam Help

The HMM algolithms://powcoder.com

The CRF algorithm WeChat powcoder

Automatic summarization

* Acknowledgement: Some of the content originates from the Stanford NLP course at Coursera.org

Sequence labeling

Sequential data

Speech, text, video analysis, time-series, stock market, genes...

Assignment Project Exam Help Sequential labeling problem https://powcoder.com - Is a type of pattern recognition task that involves the algorithmic

- Is a type of pattern recognition task that involves the algorithmic assignment of a pategorical label to each member of a sequence of observed values

Sequential methods

- Probabilistic methods; usually make a Markov assumption
- Algorithms: HMM, Maximum Entropy, Conditional Random Fields

Sequence labeling in NLP

speech recognition part-of-speech tagging Assignment Project Exam Help sentence segmentation grapheme to morpheme convertion chunking (shallow syntactic parsing) named entity recognition information extraction

Markov Process

Deterministic patterns

- Each state is dependent solely on the previous state
- Easy to understand and determine once the transitions are fully known, e.g., semaphore

https://powcoder.com

Add WeChat powcoder

Non deterministic patterns

It is possible for any state to follow another, e.g., weather

Markov Chairgnment Project Exam Help

Stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event

First-order Markov chain, the prob. Of a particular state dependes only on the previous state

Markov assumption

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

A Markov chain: compute a prob. for a sequence of events that we can be observe in the world. Assignment Project Exam Help

https://powcoder.com

But some events are not directable observable in the world... Add WeChat powcoder

Hidden Markov model

Hidden Markov Model

Markov assumption

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

Assignment Project Exam Help

https://powcoder.com
Output independence assumption: the prob of an output observation o, depends on the state that produce the observation q_i and not on any other state or any other observations

$$P(o_i|q_1...q_i,...,q_T,o_1,...,o_i,...,o_T) = P(o_i|q_i)$$

Weather and Ice Cream

Jason Eisner, 2002

 You are a climatologist in the year 2799 studying global warming

- Assignment Project Exam Help
 You can't find any records of the weather in Baltimore for summer of 2018 https://powcoder.com
- But you find JE's diary WeChat powcoder
- Which lists how many ice-creams Jason ate every day that summer
- Use the observations (ice-cream ate) to estimate the temperature every day

10/12/18

Hidden Markov Model

Various examples exist where the process states are not directly observable, but are indirectly observable,

then we have a **Hidden Markov Model** Assignment Project Exam Help

Hidden states

Observations

What is a Hidden Mark Model?

- HMM is a graphical model
- Circles represent states
- Arrows represent probabilistical pendenties between states

https://powcoder.com

Add WeChat powcoder

HMM Notation

- Light blue nodes are hidden states
 - Dependent only on the previous state
- Purple nodes are observations states Assignment Project Exam Help
 - Dependent only on their hidden state https://powcoder.com

The future is independent of the past, given the present

HMM notation

 $\{X, O, \Pi, A, B\}$ Add WeChat powcoder

 $X : \{x_1...x_N\}$ are the values for the hidden states

 $O: \{o_1...o_M\}$ are the values for the observations

Parameters

 $\Pi = \{\pi_{\iota}\}$ are the initial state probabilities

 $\mathbf{A} = \{a_{ii}\}$ are the state transition probabilities

 $\boldsymbol{B} = \{b_{ik}\}$ are the observation state probabilities (emission)

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11} \dots a_{ij} \dots a_{NN}$	a transition probability matrix A , each a_{ij} representing the probability
	Assignmenta Project Exam Holp 1 \forall i
$O = o_1 o_2 \dots o_T$	a sequence of T observations, each one drawn from a vocabulary $V =$
	v ₁ ,v ₂ , https://powcoder.com
$B = b_i(o_t)$	a sequence of observation likelihoods, also called emission probabili-
	ties, each expressing the probability of an observation o_t being generated from a state i
$\pi=\pi_1,\pi_2,,\pi_N$	an initial probability distribution over states. π_i is the probability that the Markov chain will start in state <i>i</i> . Some states <i>j</i> may have $\pi_j = 0$,
	meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMM model $\mu = (A, B, \pi)$

$$Q=q_1q_2\ldots q_N$$

 $A = a_{11} \dots a_{ij} \dots a_{NN}$

a set of N states WeChat powcoder a transition probability matrix A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$

 $O = o_1 o_2 \dots o_T$

a sequence of T observations, each one drawn from a vocabulary V = $v_1, v_2, ..., v_V$

 $B = b_i(o_t)$

a sequence of observation likelihoods, also called emission probabili**ties**, each expressing the probability of an observation o_t being generated from a state i

 $\pi = \pi_1, \pi_2, ..., \pi_N$

an **initial probability distribution** over states. π_i is the probability that the Markov chain will start in state i. Some states j may have $\pi_i = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

HMM Problems

There are three fundamental problems that can be solved using HMM

1. LIKELIHOOD (testing): Given an HMM model $\mu = (A, B, \pi)$ and an observation sequence O, compute the likelihood $P(O|\mu)$.

Given # i Assignment Project Exam Helpather?

https://powcoder.com

2. **DECODING:** Given an observation sequence O and an HMM model $\mu = (A, B, \pi)$, discover the Add WeChat powcoder best hidden state sequence Q.

Given a sequence of ice-creams, what was the most likely weather on those days?

3. LEARNING: Given an observation sequence *O* and set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Likelihood: Given an HMM $\lambda = (A,B)$ and an observation sequence O, determine the likelihood Project Exam Help

https://powcoder.com

- -E.g. what is the probability of ancice-cream sequence 3 1 3?
- -But we don't know what the hidden state sequence is...

10/12/18 20

Let's make it simpler.

What is the likelihood of an ice-cream observed sequence 3-1-2, given the higher state sequence HOT HOT COLD?

https://powcoder.com

hot

$$P(O|Q) = \prod_{i=1}^{T} P(o_i|q_i)$$

hot

 Add WeChat powcoder

 Add WeChat powcoder

 Add WeChat powcoder

 Add Add

$$P(3 \ 1 \ 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$$

Join prob. Of been in a particular weather sequence Q and generate a particular sequence of ice-creams events Assignment Project Exam Help

$$P(O,Q) = P(O|Q) \text{Add} \text{PWehat} P(w|q_0) \text{der} \prod_{i=1}^{T} P(q_i|q_{i-1})$$

$$P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{hot}) \times P(3|\text{cold})$$

Compute the prob. of ice-cream events 3-1-3 by summing over all possible weather sequences, weighted by their probability

Assignment Project Exam Help

$$P(O) = \underbrace{\operatorname{https://poweoder}_{Q}}_{Q} P(Q)$$
Add WeChat powcoder

 $P(3 \ 1 \ 3) = P(3 \ 1 \ 3, \text{cold cold cold}) + P(3 \ 1 \ 3, \text{cold cold hot}) + P(3 \ 1 \ 3, \text{hot hot cold}) + \dots$

For N hidden states and observation sequence of T observations, there are N^T possible hidden state sequences.

When *N* and *T* are large \rightarrow intractable

Likelihood → Forward algorithm

Dynamic Programming algorithm, stores table of intermediate values so it need not recompute them.

Computes P(O) by summing over probabilities of all hidden state paths that could generate the observation sequence 3-1-3:

Assignment Project Exam Help

$$\alpha_t(j) = \sum_{i=1}^{N} \text{ttps://payscoder.com}$$
 Add WeChat powcoder The previous forward path probability $Ct - 1$

The transition probability from the previous state to the current state

The state observation likelihood of the observation of given the current state j $b_i(o_t)$

function FORWARD(observations of len T, state-graph of len N) **returns** forward-prob

create a probability matrix *forward[N,T]*

for each state s from Alstoi grament Project Examit la lexamit la

 $forward[s,1] \leftarrow \pi_s * b_s(o_1)$

for each time step t from https://powcoder.com/cursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} eChat powcoder \\ forward[s,t-1] * a_{s',s} * b_s(o_t)$$

$$forwardprob \leftarrow \sum_{s=1}^{N} forward[s, T]$$
; termination step
$$return forwardprob$$

The forward algorithm, where forward [s,t] represents $\alpha_t(s)$.

HMM Problems

1. LIKELIHOOD (testing): Given an HMM model $\mu = (A, B, \pi)$ and an observation sequence O, compute the likelihood $P(O|\mu)$.

Given # i Assignment Project Exam Helpather?

https://powcoder.com

2. **DECODING:** Given an observation sequence O and an HMM model $\mu = (A, B, \pi)$, discover the Add WeChat powcoder best hidden state sequence Q.

Given a sequence of ice-creams, what was the most likely weather on those days?

3. LEARNING: Given an observation sequence *O* and set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Decoding: Viterbi algorithm

(Andrew Viterbi, 1967)

Decoding: Given an observation sequence O and an HMM $\lambda = (A,B)$, discover the **best** hidden state sequence of weather states in Q

Assignment Project Exam Help

Given the observations 3-1-1 and an HMM, what is the **best** (most probable) hiddentipe at persequence of $\{H,C\}$

Add WeChat powcoder

Viterbi algorithm

- Dynamic programming algorithm
- Uses a dynamic programming trellis to store probabilities that the HMM is in state j after seeing the first t observations, for all states j

Decoding: Viterbi algorithm

Decoding: Given an observation sequence O and an HMM $\lambda = (A,B)$, discover the **best** hidden state sequence of weather states in Q

Assignment Project Exam Help

Given the observations 3-1-1 and an HMM, what is the **best** (most probable) hiddentipe at persequence of $\{H,C\}$

Add WeChat powcoder

Viterbi algorithm

- Dynamic programming algorithm
- Uses a dynamic programming trellis to store probabilities that the HMM is in state j after seeing the first t observations, for all states j

- Value in each cell computed by taking MAX over all paths leading to this cell – i.e. best path
- Extension of a path from state i at time t-1 is computed by multiplying:

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) \, a_{ij} \, b_j(o_t)$$

Assignment Project Exam Help

the **previous Viterbi path probability** from the previous time step

the **transition probability** from the previous time step a_{ij} the **transition probability** from the previous time state q_j to current state q_j

the **state observation likelihood** of the observation symbol o_t given the current state j

 Most probable path is the max over all possible previous state sequences

Like Forward Algorithm, but it takes the max over previous path probabilities rather than sum

Viterbi example

HMM model was develop by Baum and collegues in Princeton (Baym and Petrie, 1966; Baum and Eagon, 1967)

Viterbi

Multiple independent discovery and publications Assignment Project Exam Help

Citation	Field
Viterbi (1967)	information theory
Vintsyuk (1968) Needleman and Wunsch (1968)	we speech processing
Needleman and Wunsch (1)	970) molecular biology
Sakoe and Chiba (1971)	speech processing
Sankoff (1972)	molecular biology
Reichert et al. (1973)	molecular biology
Wagner and Fischer (1974)	computer science

HMM Problems

There are three fundamental problems that can be solved using HMM

1. LIKELIHOOD (testing): Given an HMM model $\mu = (A, B, \pi)$ and an observation sequence O, compute the likelihood $P(O|\mu)$.

Given # i Assignment Project Exam Helpather?

https://powcoder.com

2. **DECODING:** Given an observation sequence O and an HMM model $\mu = (A, B, \pi)$, discover the Add WeChat powcoder

best hidden state sequence Q.

Given a sequence of ice-creams, what was the most likely weather on those days?

3. LEARNING/TRAINING: Given an observation sequence *O* and set of possible states in the HMM, learn the HMM parameters *A* and *B*.

Training: The Forward-Backward (Baum-Welch) Algorithm

- Learning: Given an observation sequence O and the set of states in the EMMHearn the HMM parameters A (transition) and B (emission) https://powcoder.com
- Input: unlabeled seq of observations O and vocabulary of possible hidden states Q
 - E.g. for ice-cream weather:
 - Observations = {1,3,2,1,3,3,...}
 - Hidden states = {H,C,C,C,H,C,....}

Intuitions

 Iteratively re-estimate counts, starting from an initialization for A and B probabilities, e.g. all equi-probable

Assignment Project Exam Help

- Estimate new probabilities by computing forward probability for an observation, dividing prob. mass although although computing to it, and computing the backward probability from the same state

Details: https://web.stanford.edu/~jurafsky/slp3/A.pdf

POS-tagging with HMM

Summary

 HMMs are a major tool for relating observed sequences to hidden information that explains or predicts the observation ignment Project Exam Help

https://powcoder.com

 Forward, Viterbi, and Forward-Backward Algorithms are used for computing likelihoods, decoding, and training HMMs

The power of HMMs

We can use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable!!

NLP applications

- → Speech Recognition
- → POS-Tagging Assignment Project Exam Help
- → Information Extraction
- → Word/clause segmentations://powcoder.com

Other applications

- → Gene finding
- → Robot localization
- → User modeling

Add WeChat powcoder

Limitations

- → Local features
- → Simple HMM models do not work well with large data
- → Difficult to incorporate a diverse set features
- → No suited to work with long distance dependencies (up to ~3/5 grams)

Conditional Random Fields (CRF)

- CRF is a graphical model (Lafferty, McCallum, and Pereira, 2001)
- Relax the strong independence assumptions made in models such as HMM
- The biggest advantage of CREs ever HMMs is that they can handle overlapping features

HMM vs. CRF

HMM

- Trained by maximizing Trained by maximizing likelihood of class p(x, y) Trained by maximizing Trained by maximizing likelihood of classes p(x|y) Classes p(x|y)
- https://powcoder.com

 Features are assumed Dependency on features independent Add WeChat powcoder weights
- Feature weights set independently
- Normalization is per state
- Feature weights are set mutually

CRF

 Normalization over the whole sequence

Take away Sequential data

- Speech, text, video analysis, time-series, stock market, genes...

Sequential labeling problem

- Is a type of pattern recognition task that involves the algorithmic assignment of a categorical label to each member of a sequence of observed values

https://powcoder.com

Sequential methods Add WeChat powcoder

- Probabilistic methods; usually make a Markov assumption, i.e. that the choice of label directly dependent only on the immediately adjacent labels;
- Algorithms: HMM, Maximum Entropy, Conditional Random Field

Markov Process are the basics for:

Reinforcement learning; Planing; RNN; Sequence2Sequence models, etc.

Anecdotal References

Markov Chains

https://www.youtube.com/watch?v=o-jdJxXL_W4

HMM 3D Simulator

https://www.youtube.com/watch?v=Fy6tLBzXT4M Exam Help

HMM @ Numb3rs: Find a militing on the total management of the sum of the company of the sum of the company of t

https://www.youtube.com/watch?v=NdOm8NE0qD4

They always say practice makes perfect

HMM in Python, with scikit-learn

https://github.com/hmmlearn/hmmlearn

UMDHMM

http://www.kan Arssi.gom/kenttvPredjetotvEexaml#Helphmm

https://powcoder.com

CRFsuite Python

Add WeChat powcoder

http://www.chokkan.org/software/crfsuite/

CRF++ C++

http://crfpp.googlecode.com/svn/trunk/doc/index.html

GRMM Java

http://mallet.cs.umass.edu/grmm/index.php

Further References

Stamp, 2012. A Revealing Introduction to Hidden Markov Models.

Assignment Project Exam Help
Lafferty, McCallum and Pereira, 2001. Conditional Random Fields:
Probabilistic Models for Segmentation and Labeling Sequence Data.
https://powcoder.com

Sutton and McCallum, 2006 and Introduction pto Conditional Random Fields for Relational Learning.

Bikel, 1999. An Algorithm that Learns What's in a Name.

Bach and Badaskar, 2007. A survey on Relation Extraction.