

# Second Semester 2015-2016 <u>Course Handout (Part-II)</u>

Date: 13/01/2016

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE F418

Course Title : Modelling and Simulation in Chemical Engineering

Instructor-in-Charge : Subhajit Majumder

# **Course Description**

The Modelling and Simulation of Chemical Engineering processes is a subject of major importance for the knowledge of unitary processes of transport and kinetics. Basically it deals with three aspects, namely; modelling of chemical engineering processes, parameter estimations and application of numerical methods for solution of models. In this course, first chapter is devoted to introduction of the course and discusses the process modelling and need of simulation. Subsequently it follows the parameter estimation, tools of simulation, development of models, classification of models, unit models of unit process, models of mass transfer equipment, heat transfer equipment, reactors, and application of numerical methods for solutions of models.

#### **Scope & Objective**

This course is designed to have detailed understanding of process simulation, tools of simulation, parameter estimation, models and classification of models, alternate classification of models, mathematical modelling. The primary objective of the course is to formulate mathematical models for mass transfer, heat transfer, fluid flow operations and reaction engineering aspects. It also caters the role of simulations and simulators in industrial applications by covering in-depth knowledge of modular & equation-solving approaches in simulation, decomposition of network and convergence promotion.

### **Pre-requisites**

Basic knowledge of Courses on Material & Energy Balance; Transport Phenomena and Numerical methods.

#### **Text Books**

TB Babu B.V., "Process Plant Simulation", 1<sup>st</sup> Ed., Oxford University Press, 2004.

#### **Reference Books:**

- R1 Luyben W. L., "Process Modeling Simulation and Control for Chemical Engineers", 2<sup>nd</sup> Ed., McGraw Hill, 1990.
- R2 Najim K., "Process Modeling and Control in Chemical Engineering", CRC, 1990.
- R3 Aris R., "Mathematical Modeling, Vol. 1: A Chemical Engineering Perspective (Process System Engineering)", Academic Press, 1999.





## **Course Plan**

| Lecture<br>No. | Learning<br>Objectives          | Topics to be covered                                                                                                                                                                                                  | Learning<br>outcome                                                                                    | Reference<br>Chap./Sec.<br>(Text Book/<br>Reference<br>Book) |  |
|----------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| 1              | Introduction                    | Introduction to process modelling and simulation, Process synthesis and process analysis, Process modelling, Deterministic vs stochastic processes  Mathematic models and their necessities.  Knowledge simulation    |                                                                                                        | Ch. 1.1, 1.2<br>and Ch. 2.1 of<br>TB                         |  |
|                | 1                               | PART I (MODELLING)                                                                                                                                                                                                    | Γ                                                                                                      |                                                              |  |
| 2-3            | Process<br>Modelling            | Physical modelling, Mathematical modelling, Chemical system modelling                                                                                                                                                 | Knowledge of Physical and Mathematical models, Modelling in Chemical Engineering                       | Ch. 2.2, 2.3, 2.4 of TB                                      |  |
| 4-5            |                                 | Fundamental laws                                                                                                                                                                                                      | Formulation of dynamic models with case studies based on mass, component, momentum and energy balances | Ch. 2.2 of R1                                                |  |
| 6-7            |                                 | Classification of Mathematical modelling                                                                                                                                                                              | Knowledge of<br>Mathematical<br>models<br>(classification)                                             | Ch. 3 of TB                                                  |  |
| 8-11           | Chemical<br>System<br>Modelling | Models in mass transfer operations: solvent extraction, CSTR, mixing tank, gas absorption, distillation                                                                                                               | Formulation of models in mass transfer phenomena                                                       | Ch. 4 of TB<br>and Class<br>notes                            |  |
| 12-18          |                                 | Models in heat transfer operations: conduction through hollow cylindrical pipe, heating of a liquid, heat loss through maturing tank, heat transfer through extended surfaces, heat transfer in tubular gas preheater | Formulation of models in heat transfer                                                                 | Ch. 5 of TB                                                  |  |
| 19-20          |                                 | Models in fluid flow operations: continuity equation, flow through packed bed column                                                                                                                                  | Formulation of models selected fluid                                                                   | Ch. 6.1 and<br>6.2 of TB                                     |  |





|                      |               |                                                  | flow operations |               |  |  |  |  |  |
|----------------------|---------------|--------------------------------------------------|-----------------|---------------|--|--|--|--|--|
| 21.22                |               | Modela in magation and in action at the interest | flow operations | Cl. 7.1 J     |  |  |  |  |  |
| 21-22                |               | Models in reaction engineering: chemical         | Formulation of  | Ch. 7.1 and   |  |  |  |  |  |
|                      |               | reaction with diffusion in a tubular reactor,    | models in       | 7.4 of TB     |  |  |  |  |  |
|                      |               | reactors in series                               | reaction        |               |  |  |  |  |  |
|                      |               |                                                  | engineering     |               |  |  |  |  |  |
|                      |               |                                                  | phenomena       |               |  |  |  |  |  |
| PART II (SIMULATION) |               |                                                  |                 |               |  |  |  |  |  |
| 23-25                | Modular       | Analysis vs design mode, precedence,             | Role of         | Ch. 11 of TB  |  |  |  |  |  |
|                      | Approaches    | disjoining, the SWS algorithm                    | simulation and  |               |  |  |  |  |  |
|                      | and Equation- |                                                  | simulators in   |               |  |  |  |  |  |
|                      | solving       |                                                  | industrial      |               |  |  |  |  |  |
|                      | approach      |                                                  | applications.   |               |  |  |  |  |  |
|                      |               |                                                  | Knowledge of    |               |  |  |  |  |  |
|                      |               |                                                  | sequential and  |               |  |  |  |  |  |
|                      |               |                                                  | modular         |               |  |  |  |  |  |
|                      |               |                                                  | approaches      |               |  |  |  |  |  |
|                      |               |                                                  | to process      |               |  |  |  |  |  |
|                      |               |                                                  | simulation      |               |  |  |  |  |  |
| 26-27                | Industrial    | Aspen Plus, methodology of Aspen Plus            | Get acquainted  | Demonstration |  |  |  |  |  |
|                      | Simulation    | usage for industrial case studies                | with industrial |               |  |  |  |  |  |
|                      | Package       |                                                  | process         |               |  |  |  |  |  |
|                      |               |                                                  | simulation      |               |  |  |  |  |  |
|                      |               |                                                  | package         |               |  |  |  |  |  |
| 28-30                | Decomposition | Algorithm based on Signal Flow Graph:            | Knowledge of    | Ch. 12.1 and  |  |  |  |  |  |
|                      | of Networks   | Tearing algorithms, Barkley and Motard           | different       | 12.2 of TB    |  |  |  |  |  |
|                      |               | algorithm, Basic Tearing algorithm               | decomposition   |               |  |  |  |  |  |
| 31-34                |               | Algorithm based on Reduced Digraph: Kehat        | algorithms to   | Ch. 12.3 of   |  |  |  |  |  |
|                      |               | algorithm, M&H algorithm                         | reduce the      | TB            |  |  |  |  |  |
|                      |               | w.go                                             | number of       | 12            |  |  |  |  |  |
|                      |               |                                                  | process         |               |  |  |  |  |  |
|                      |               |                                                  | streams         |               |  |  |  |  |  |
| 35-37                | Convergence   | Newton's method, Direct substitution and         | Methodologies   | Ch. 13.1 of   |  |  |  |  |  |
|                      | Promotion     | Quasi Newton methods                             | for physical    | TB            |  |  |  |  |  |
|                      |               |                                                  | and             | _             |  |  |  |  |  |
|                      |               |                                                  | thermodynamic   |               |  |  |  |  |  |
|                      |               |                                                  | properties      |               |  |  |  |  |  |
|                      |               |                                                  | required for    |               |  |  |  |  |  |
|                      |               |                                                  | process plant   |               |  |  |  |  |  |
|                      |               |                                                  | simulation      |               |  |  |  |  |  |
| 38-40                | Specific      | Selected industrial problems/ case studies       | Application of  | Ch. 14 of TB  |  |  |  |  |  |
| 30 <del>-4</del> 0   | Purpose       | Science mausurar problems/ case studies          | different       | (selected     |  |  |  |  |  |
|                      | Simulation    |                                                  | simulation      | `             |  |  |  |  |  |
|                      | Silliulation  |                                                  |                 | portions)     |  |  |  |  |  |
|                      |               |                                                  | algorithms in   |               |  |  |  |  |  |
|                      |               |                                                  | industries      |               |  |  |  |  |  |



**Evaluation Scheme (Total Marks 200)** 

| EC  | <b>Evaluation component</b> | Duration  | Weightage (%) | Date and time    | Nature of    |
|-----|-----------------------------|-----------|---------------|------------------|--------------|
| No. | (EC)                        | (Minutes) |               |                  | component    |
| 1   | Mid-Semester Test           | 90        | 30            | 14/3 2:00 -      | Closed Book  |
|     |                             |           |               | 3:30 PM          |              |
| 2   | Surprise Tests <sup>#</sup> | -         | 20            | -                | Closed Book/ |
|     | _                           |           |               |                  | Open Book*   |
| 3   | Assignment <sup>\$</sup>    | -         | 10            | To be            | Continuous   |
|     |                             |           |               | announced in     | Monitoring   |
|     |                             |           |               | the class in due |              |
|     |                             |           |               | course of time   |              |
| 4   | Comprehensive               | 180       | 40            | 4/5 FN           | Closed Book  |
|     | Examination                 |           |               |                  |              |

<sup>&</sup>lt;sup>#</sup> Total <u>six</u> surprise tests will be conducted. Out of these, the performance in <u>best four</u> will be considered for final evaluation. Each surprise test will carry 10 marks. During surprise tests, students will be asked to solve problems and submit the answer sheet to the instructor.

Out of six surprise tests, three will be conducted before mid-semester examination.

**Chamber Consultation Hour:** To be announced in the class.

Make-up policy: Make-up will be granted only in case of genuine reason(s) (medical ground only) for not appearing in the regular tests (Mid-Semester and Comprehensive Examinations). Make-up will not be given for surprise tests. Proper proofs (medical certificate, prescription etc. from Medical Center) must be submitted along with Make-up application. Prior permission of IC is compulsory.

**Notices:** All notices concerning this course will be displayed on the Notice Board of Chemical Engineering Department and will also be available online on NALANDA Portal.

Instructor-in-charge CHE F418

Email: subhajit@pilani.bits-pilani.ac.in





<sup>\$</sup>Conceptual problems/case studies will be given as Assignment.

<sup>\*</sup>During open book evaluation, **only text book is allowed.** Class notes and Xerox copies of any other materials are not allowed.