Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

Chapter 2

Linear Spaces

The heart of linear algebra

$$\mathbb{R}^n = \left\{ \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \mid v_i \in \mathbb{R} \text{ for } 0 \le i \le n \right\}.$$

a set of vectors together with rules for vector addition and multiplication by real numbers such that

- 1. **commutativity** u + v = v + u for all $u, v \in \mathbb{R}^n$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in\mathbb{R}^n$ and all $a,b\in\mathbb{R}$;
- 3. **additive identity** there exists an element $0 \in \mathbb{R}^n$ such that v + 0 = v for all $v \in \mathbb{R}^n$;
- 4. **additive inverse** for every $v \in \mathbb{R}^n$, there exists $w \in \mathbb{R}^n$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in \mathbb{R}^n$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a, b \in \mathbb{R}$ and all $u, v \in \mathbb{R}^n$.

$$M_{m,n}(\mathbb{R}) = \left\{ \begin{bmatrix} v_{11} & \cdots & v_{1n} \\ \vdots & \cdots & \vdots \\ v_{m1} & \cdots & v_{mn} \end{bmatrix} \mid v_{ij} \in \mathbb{R} \right\},\,$$

 $(M_{m,n}(\mathbb{R}),+,\cdot)$ has the following properties:

- 1. **commutativity** u + v = v + u for all $u, v \in M_{m,n}$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in M_{m,n}$ and all $a,b\in\mathbb{R}$;
- 3. **additive identity** there exists an element $0 \in M_{m,n}$ such that v + 0 = v for all $v \in M_{m,n}$;
- 4. additive inverse for every $v \in \mathbb{R}^n$, there exists $w \in M_{m,n}$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in M_{m,n}$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a, b \in \mathbb{R}$ and all $u, v \in M_{m,n}$.

The infinite-dimensional space \mathbb{R}^{∞} whose vectors have infinitely many components, as in v = (1, 2, 1, 2, ...) has the following properties:

- 1. **commutativity** u + v = v + u for all $u, v \in \mathbb{R}^{\infty}$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in\mathbb{R}^{\infty}$ and all $a,b\in\mathbb{R}$;
- 3. additive identity there exists an element $0 \in \mathbb{R}^{\infty}$ such that v + 0 = v for all $v \in \mathbb{R}^{\infty}$;
- 4. **additive inverse** for every $v \in \mathbb{R}^{\infty}$, there exists $w \in \mathbb{R}^{\infty}$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in \mathbb{R}^{\infty}$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a, b \in \mathbb{R}$ and all $u, v \in \mathbb{R}^{\infty}$.

The space of functions V that consists of all functions $f:[0,1] \to \mathbb{R}$ has the following properties:

- 1. **commutativity** u + v = v + u for all $u, v \in V$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in V$ and all $a,b\in\mathbb{R}$;
- 3. **additive identity** there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;
- 4. **additive inverse** for every $v \in \mathbb{R}^n$, there exists $w \in V$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in V$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

$$P_n(x) = \{a_n x^n + \dots + a_1 x + a_0 \mid a_i \in \mathbb{R} \text{ for all } 0 \le i \le n\}$$

has the following properties:

- 1. **commutativity** u + v = v + u for all $u, v \in P_n(x)$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in P_n(x)$ and all $a,b\in\mathbb{R}$;
- 3. **additive identity** there exists an element $0 \in P_n(x)$ such that v + 0 = v for all $v \in P_n(x)$;
- 4. **additive inverse** for every $v \in P_n(x)$, there exists $w \in P_n(x)$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in P_n(x)$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a, b \in \mathbb{R}$ and all $u, v \in P_n(x)$.

Definition

A set V with an addition and a scalar multiplication, $(V, +, \cdot)$, is a linear space if it has the following properties:

- 1. **commutativity** u + v = v + u for all $u, v \in V$;
- 2. **associativity** (u+v)+w=u+(v+w) and (ab)v=a(bv) for all $u,v,w\in V$ and all $a,b\in\mathbb{R}$;
- 3. **additive identity** there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$;
- 4. **additive inverse** for every $v \in V$, there exists $w \in V$ such that v + w = 0;
- 5. multiplicative identity 1v = v for all $v \in V$;
- 6. distributive properties a(u+v) = au + av and (a+b)u = au + bu for all $a, b \in \mathbb{R}$ and all $u, v \in V$.

Remark

Why for every $v \in V$, we have

- $0 \cdot v = \mathbf{0}$ for every $v \in V$.
- $c \cdot 0 = \mathbf{0}$ for every $c \in \mathbb{R}$.
- $(-1) \cdot v = -v$ for every $v \in V$.

Linear combinations

Definition

Let V be a real linear space. An element $w \in V$ is a linear combination of $v_1, \dots, v_m \in V$ if and only if there exit scalars $c_1, \dots, c_m \in \mathbb{R}$ as coefficients such that

$$w = c_1 v_1 + \ldots + c_m v_m.$$

Let
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 8 \\ 4 & 9 \end{bmatrix}$$
.

Consider vectors A_1 and A_2 , the first and the second column of A. Let $V = \{c_1A_1 + c_2A_2 \mid c_1, c_2 \in \mathbb{R}\}.$

Is V a linear space? The linear space V is called the column space of A.

Definition of Linear sub-Spaces

Definition

Let a set V is a linear space along with an **addition** on V and a scalar multiplication on V

$$(V,+,\cdot).$$

A non-empty subset $W \subseteq V$ is called a linear sub-space if it is a linear space under the addition and the scalar multiplication of V.

Note. The zero vector belongs to every subspace (Why?).

Note. The smallest subspace contains only one vector 0.

Examples

Example. Construct a subset of \mathbb{R}^2 that is

i. closed under vector addition and subtraction, but not scalar multiplication on \mathbb{R} .

Examples

Example. Construct a subset of \mathbb{R}^2 that is

i. closed under vector addition and subtraction, but not scalar multiplication on \mathbb{R} .

ii. closed under scalar multiplication but not under vector addition.

Example.

• What is the smallest subspace of \mathbb{R}^2 which contains $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and
$$e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

Example.

• What is the smallest subspace of \mathbb{R}^2 which contains $\boldsymbol{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and
$$e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

• What is the smallest subspace of \mathbb{R}^3 which contains $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$\underline{\text{and}} \ \boldsymbol{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \ \underline{\text{and}} \ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} ?$$

Theorem

A non-empty subset W of a real linear space V is a sub-space if and only if $cv_1 + v_2 \in W$ for every $v_1, v_2 \in W$ and $c \in \mathbb{R}$.

Theorem

A non-empty subset W of a real linear space V is a sub-space if and only if $cv_1 + v_2 \in W$ for every $v_1, v_2 \in W$ and $c \in \mathbb{R}$.

Linear combinations stay in the subspace.

"closed" under addition and scalar multiplication.

Theorem

The intersection of each family of sub-spaces of a linear space V is a subspace of V?

<u>Theorem</u>

The intersection of each family of sub-spaces of a linear space V is a subspace of V?

Fact

The union of two sub-spaces is not a subspace unless one is contained in the other.

Theorem

The intersection of each family of sub-spaces of a linear space V is a subspace of V?

Fact

The union of two sub-spaces is not a subspace unless one is contained in the other.

Definition

Let W_1, \ldots, W_m be sub-spaces of a linear space V. The sum of them is defined as

$$W_1 + \dots + W_m = \{ w_1 + \dots + w_m | w_i \in W_i \text{ for } 1 \le i \le m \}.$$

• Note that $W_1 + \ldots + W_m$ is a subspace of V which contains W_i for each $1 \le i \le m$.

Thank You!