Corrimientos y Rotaciones

Las instrucciones de corrimiento posicionan o mueven números a la izquierda o a la derecha dentro de un registro o localidad de memoria, excepto los registros de segmento.

Corrimiento a la izquierda

SHL: Shift Logical Left

Ejemplo:

SHL AL,1

Carry Flag (CF)

Corrimiento a la derecha

SHR: Shift Logical Right

Ejemplo:

SHR AL,1

Corrimiento a la izquierda aritmético

SAL: Shift Arithmetic Left

Ejemplo:

SAL AL,1

Carry Flag (CF)

Corrimiento a la derecha aritmético

SAR: Shift Arithmetic Right

Ejemplo:

SAR AL,1

Cuando se desea realizar un corrimiento de mas de un bit se usa el registro CL para indicar la cuenta de corrimientos. El registro CL no se modifica al ejecutarse la instrucción de corrimiento.

Ejemplos:

Hace un corrimiento de dos bits a la izquierda en el registro AX.

MOV CL,2

SHL AX,CL

Hace un corrimiento aritmético de siete bits a la derecha en el registro BL.

MOV CL,7

SAR BL,CL

Tabla 23. Instrucciones de Corrimiento.

Instrucciones	Comentarios		
SHL AX,1	Corrimiento de AX 1 lugar a la izquierda		
SHR BX,1	Corrimiento de BX 1 lugares a la derecha		
SAL DATA1,CL	Corrimiento aritmético de DATA CL lugares a la		
	izquierda		
SAR SI,CL	Corrimiento aritmético de SI CL lugares a la derecha		

Las operaciones de corrimientos también se pueden utilizar como operaciones aritméticas simples tales como:

Corrimiento a la izquierda: multiplicación por potencias de 2ⁿ

Corrimiento a la derecha: división por potencias de 2ⁿ

Ejemplos:

Multiplicación por potencias de 2ⁿ:

$$2Dh * 2 = 0x5A$$

$$2Dh << 1 = 0x5A$$

36h * 4 = 0xD8

$$36h << 2 = 0xD8$$

Operador Corrimiento lógico a la izquierda en lenguaje C

División por potencias de 2ⁿ:

$$2Dh / 2 = 0x16$$

$$2Dh >> 1 = 0x16$$

$$36h / 8 = 0x06$$

$$36h >> 3 = 0x06$$

Operador Corrimiento lógico a la derecha en lenguaje C

Ejemplo 26

;Multiplica AX por 10 (1010)

```
SHL AX,1 ;2 veces AX

MOV BX,AX

SHL AX,1 ;4 veces AX

SHL AX,1 ;8 veces AX

ADD AX,BX ;10 veces AX
```

;Multiplica AX por 18 (10010)

```
SHL AX,1 ;2 veces AX
MOV BX,AX
SHL AX,1 ;4 veces AX
SHL AX,1 ;8 veces AX
SHL AX,1 ;16 veces AX
ADD BX,AX ;18 veces AX
```


Rotaciones

Las instrucciones de rotación posicionan datos binarios mediante la rotación de la información en un registro o localidad de memoria ya sea de un extremo u otro o a través de la bandera de acarreo.

Al igual que con los Corrimientos, si se va a realizar una rotación de mas de un bit se tiene que usar al registro CL para indicar la cuenta de rotaciones.

Rotación a la izquierda

ROL: Rotate Left

Ejemplo:

ROL AL,1

Rotación a la izquierda con acarreo

RCL: Rotate Left through Carry

Ejemplo:

RCL AL,1

CF = 1 Si la bandera de acarreo previamente estaba en 1: **AL = 5Fh** Si estaba en 0: **AL = 5Eh**

Rotación a la derecha

ROR: Rotate to Right

Ejemplo:

ROR AL,1

Rotación a la derecha con acarreo

RCR: Rotate Right through Carry

Ejemplo:

RCR AL,1

x 1 0 1 0 1 1 1

Si la bandera de acarreo previamente CF = 1 estaba en 1: **AL = D7h**

Si estaba en 0: AL = 57h

Rotaciones

Tabla 24. Instrucciones de Rotación.

Instrucciones	Comentarios
ROL SI,1	Rota a SI 1 lugares a la izquierda
ROR AX,CL	Rota a AX CL lugares a la derecha
RCL BL,1	Rota a BL 1 lugares a la izquierda, a través de CF
RCR AH,CL	Rota a AH CL lugares a la derecha, a través de CF

Rotaciones

Figura 13. Conjunto de operaciones de rotación disponibles en el 8088.

TEST

La instrucción **TEST** realiza una operación **AND**.

La diferencia es que la instrucción AND cambia el operando destino, mientras que la instrucción TEST <u>no lo hace</u>.

Una operación **TEST** sólo afecta la condición del registro de banderas, el cual indica el resultado de la prueba.

Por ejemplo, si se usa la instrucción TEST para probar un único bit, la bandera de cero Z será:

Z = 1 si el bit era 0

Z = 0 si el bit era 1

TEST

Tabla 21. Instrucciones TEST.

Instrucciones	Comentarios
TEST DL,DH	Realiza: DL AND DH
TEST CX,BX	Realiza: CX AND BX
TEST AX,04H	Realiza: AH AND 04