Problem. Let d be a squarefree integer and let

$$\omega_d = \begin{cases} \sqrt{d} & \text{if } d \equiv 2, 3 \pmod{4}, \\ \frac{1+\sqrt{d}}{2} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

Show that the set of algebraic integers in $\mathbb{Q}(\sqrt{d})$ is $\mathbb{Z}[\omega_d]$.

Solution. It is easy to see that $\mathbb{Z}[\omega_d] = \{a + b\,\omega_d : a, b \in \mathbb{Z}\}$ as $\omega_d^2 = d$ if $d \equiv 2, 3 \pmod 4$ and $\omega_d^2 = (d-1)/4 + \omega_d$ if $d \equiv 1 \pmod 4$. Now let $\alpha = p + q\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. Let $q \neq 0$ and let $x^2 + ax + b \in \mathbb{Q}[x]$ be the irreducible polynomial of α over \mathbb{Q} . Plugging in α we get

$$0 = \alpha^2 + a\alpha + b = (p + q\sqrt{d})^2 + a(p + q\sqrt{d}) + b = (p^2 + q^2d + ap + b) + (2pq + aq)\sqrt{d}.$$

Comparing the coefficients we get

$$p^2 + q^2d + ap + b = 0$$
 and $2pq + aq = 0$.

Because $q \neq 0$ we obtain a = -2p and $b = p^2 - q^2d$. Thus α is an algebraic integer if and only if 2p and $p^2 - q^2d$ are both integers. We now treat the cases $d \equiv 2, 3 \pmod{4}$ and $d \equiv 1 \pmod{4}$ separately.

Suppose that $d \equiv 2, 3 \pmod{4}$. Note that $\mathbb{Z}[\sqrt{d}]$ consists only of algebraic integers for if $p + q\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ (with $q \neq 0$), then 2p and $p^2 - q^2d$ are clearly integers.

Now let $p+q\sqrt{d}\in\mathbb{Q}(\sqrt{d})$ be an algebraic integer. If q=0, then p must be integer and so $p+q\sqrt{d}=p\in\mathbb{Z}[\sqrt{d}]$. If $q\neq 0$, then a=2p and $b=p^2-q^2d$ are both integers. Substituting a into b we get that $a^2/4-q^2d=(a^2-4q^2d)/4$ is an integer. In particular, $4q^2d$ is an integer. This implies that q is a half-integer. To see this take q=r/s, where r and s are coprime integers. Then $s^2|4r^2d$ and so $s^2|4d$. Because d is squarefree it follows that $s^2|4$ and so s|2. Let q=c/2, where c is an integer. Then we have

$$a^2 - c^2 d \equiv 0 \pmod{4}.$$

Because $d \equiv 2, 3 \pmod 4$, it follows that $a^2 \equiv c^2 \equiv 0 \pmod 4$ for if $c^2 \equiv 1 \pmod 4$, then $a^2 \equiv 2, 3 \pmod 4$, a contradiction as 0 and 1 are the only quadratic residues mod 4. Hence a and c are both even and as a consequence p = a/2 and q = c/2 are both integers. Thus $p + q\sqrt{d} \in \mathbb{Z}[\sqrt{d}]$.

Now suppose that $d \equiv 1 \pmod{4}$. Let $a + b\omega_d \in \mathbb{Z}[\omega_d]$. Then

$$a + b\omega_d = \left(\frac{2a+b}{2}\right) + \frac{b}{2}\sqrt{d}.$$

Let $p + q\sqrt{d} = a + b\omega_d$, where $p, q \in \mathbb{Q}$. If b = 0, then $a + b\omega_d = a$ is clearly an algebraic integer. Now if $b \neq 0$, then $q \neq 0$ and

$$2p = 2a + b$$
 and $p^2 - q^2d = \frac{4a^2 + b^2 + 4ab}{4} - \frac{b^2d}{4} = a^2 + ab + b^2\left(\frac{1-d}{4}\right)$

are both integers. Hence, $a + b\omega_d$ is an algebraic integer.

Now suppose that $p+q\sqrt{d}\in\mathbb{Q}(\sqrt{d})$ is an algebraic integer. Again if q=0, then p must be an integer and so $p+q\sqrt{d}=p\in\mathbb{Z}[\omega_d]$. If however $q\neq 0$, then a=2p and $b=p^2-q^2d$ must be integers. Just as before q must be half-integer so let q=c/2, where c is an integer. Again we have

$$a^2 - c^2 d \equiv 0 \pmod{4}.$$

Because $d \equiv 1 \pmod 4$ we get $a^2 = c^2 \pmod 4$. This implies that $a \equiv c \pmod 2$ and so we have

$$p + q\sqrt{d} = \frac{a}{2} + \frac{c}{2}\sqrt{d} = \frac{a-c}{2} + c\left(\frac{1+\sqrt{d}}{2}\right) \in \mathbb{Z}[\omega_d].$$