

Constructor de Portafolios Sencillo

Julian D. Osorio

Contenidos

Carga de Datos

Pronostico

Modelo CPPI

Modelamiento

Modelo de Markowitz

Carga de Datos

Indicadores Tecnicos

Datos Historicos

Extraidos de Yahoo Finance: aperturas, extremos y cierres.

Media Movil

Identificación de Soportes y Resistencias

Índice de Fuerza Relativa

Tendencia a Futuras Correcciones

```
today = date.today().strftime("%Y-%m-%d")
def load( stock = None, start = "2009-01-01", stop = today, delta target = True, mensual = False ):
  if mensual:
   df = yf.download(stock, "2000-01-01", stop)
    new indx = pd.to datetime(df.index)
   df.set_index(new_indx, inplace=True)
   df = df.resample('M').mean()
   df['RSI'] = pda.rsi( df['Close'], length = 2 ) # indicadores de analisis tecnico
    df['FMA'] = pda.ema( df['Close'], length = 2 )
   df['MMA'] = pda.ema( df['Close'], length = 4 )
   df['SMA'] = pda.ema( df['Close'], length = 6 )
  else:
   df = yf.download(stock, start, stop)
   df['RSI'] = pda.rsi( df['Close'], length = 15 ) # indicadores de analisis tecnico
    df['FMA'] = pda.ema( df['Close'], length = 20 )
   df['MMA'] = pda.ema( df['Close'], length = 100 )
   df['SMA'] = pda.ema( df['Close'], length = 150 )
  if delta target:
   df['Target'] = df['Adj Close'] - df['Open']
   df['Target'] = df['Target'].shift(-1) # tomorrow stock value delta
   df['Categoria'] = [1 	 if 	 df.Target[i] > 0 	 else 	 0 	 for 	 i 	 in 	 range(	 df.shape[0])]
  else:
   df['Target'] = df['Adj Close'].shift(-1) # tomorrow stock value
   df['Categoria'] = [ 1 if df.Target[i] > df['Adj Close'].iloc[i] else 0 for i in range( df.shape[0] ) ]
  df.dropna(inplace=True)
  df.reset_index(inplace = True)
  df.drop( ['Volume', 'Close'], axis = 1, inplace = True )
  return df
```

load():

Parametros de Entrada.

- Start: Cota inferior de los Datos
- Stop: Cota Superior
- delta_target Tipo de Target a considerar; precio de Cierre o delta de precio.

Salida.

Pandas DataFrame

Modelamiento

Modelamiento

Comparación de los Modelos

XGBoost

Sobre la variable Objetivo

Pronostico

Alimentar el Modelo

Cargar el Modelo

```
from keras.models import
lstm = load_model("VEIEX.h5")
```


Recolectar Datos

Input(1, steps, features)


```
• • •
def forecast(model):
  Tomar los 'steps' datos más recientes para predecir recursivamente el siguiente
  temp = date.today()
  mes atras = temp - relativedelta(months=1)
  mes_atras = mes_atras.strftime("%Y-%m-%d")
  df_forecast = df.copy()
  df_forecast.drop( [ 'Date', 'Categoria'], axis = 1, inplace = True )
  df_forecast = df_forecast.iloc[-steps:,:]
  x_df = df_forecast.iloc[ :, :8 ]
  sc = MinMaxScaler(feature_range=(0,1))
  x_df = sc.fit_transform(x_df)
  x_forecast = []
  x 	ext{ forecast.append}(x 	ext{ df}) ; x 	ext{ forecast} = np.array(x 	ext{ forecast})
  y_forecast = model.predict(x_forecast)
  y_forecast = inversa(y_forecast, df_forecast, borrar = False, test = False)
  return y_forecast[0]
```

Modelo de Markowitz

Modelo de Markowitz

Optimización de Portafolios

Global Minimum Variance Portfolio (GMV)

Portafolio de menor Riesgo en la Frontera de Eficiencia

El modelo de Markowitz sufre en particular de Riesgos de Estimación, donde los Retornos Esperados, así sea por una pequeña desviación, afectan considerablemente la Frontera de Eficiencia. EL GMV es el Portafolio menos afectado por el Riesgo de Estimación.

Maximun Sharp Ratio Portfolio (MSR)

Portafolio con mayor Utilidad por unidad de Volatilidad

En esencia, el MSR me dice cuanto más retorno puedo tener respecto a una inversión en un activo libre de Riesgo; usualmente Bonos del Tesoro.

Modelo CPPI

Constant Proportion Portfolio

Movimiento Browniano

$$rac{R_{t+dt}-R_{t}}{R_{t}}=\mu dt+\sigma\sqrt{dt}\xi_{t}$$

Cambio en el retorno esperado del Portafolio influenciado por variables aleatorias (Mov. Browniano)

¡Gracias!