표준규격서 및 설치시방서 (인조잔디파일이 식모된 투수블록)

1. 신청제품명

가. 국문: 인조잔디파일이 식모된 투수블록

나. 영문: Water permeable block with transplanted artificial grass

다. 신청제품 관련 산업재산권 보유현황

구 분	출원/등록번호(일자)	제 목	출원/등록
특 허	제10-1689381호(2016.12.19)	투수블록	등록
특 허	제10-1689380호(2016.12.19)	인조잔디파일이 식모된 투수블록	등록
특 허	제10-2019-0114303호(2019.09.17)	인조잔디파일 식모방법	출원
특 허	제10-2019-0114304호(2019.09.17)	인조잔디파일 식모장치	출원

2. 신청제품 개요

가. 적용범위

1) 적용범위

이 규격은 플라스틱소재의 투수블록(세라믹파쇄석 내부충전)타공 구멍에 인조잔디원사를 직접 식모하여 제조한 인조잔디투수블록으로써, 아래와 같이 야외테라스, 운동장용이나 조경용 인조잔디 투수블록, 주차장의 잔디블록, 어린이놀이터 및 하이브리드잔디 등에 활용할 수 있는 특수블록 제품에 적용한다.

2) 용어의 정의

- 인조잔디: 화학적 합성을 통해 인위적으로 천연잔디처럼 직조한 잔디
- 파일: 인조잔디의 기포지에 고정된 입모상의 실 또는 섬유(잎)
- 투수블록: 상하부의 많은 구멍을 통하여 투수되는 플라스틱 블록
- 특수블록: 일반적으로 많이 사용되는 블록이 아니라 특수한 재질이나 형태로 제작되는 블록
- 충진재: 소음,진동,충격 등을 완화하는 소재
- ㅇ 하이브리드잔디: 인조잔디 사이에 천연잔디를 뒤섞은 복합잔디
- 충격흡수패드: 충격흡수를 위해 투수블록 저면에 깔리는 투수형 패드

나. 인용 규격

1) 형식승인: 해당없음

2) 신청제품의 규격

- ①KS F 3881 실외체육시설 인조잔디 시험방법
- ②만능재료시험기 압축하중, 휨강도/처짐변위 시험 방법
- ③KQS-O-1036 KCL 배수판 품질지침서
 - 제품에 나타나는 규격에 인용됨으로써 이 규격의 규정 일부를 구성한다. 그 인용규격은 그 최신판을 적용한다
 - 수요처의 규격이 있는 경우 표시하되, 별도 규격이 없는 경우 제품 자체의 규격을 제시한다.

다. 성능인증 신청범위

1)신청모델 리스트

구	모델명	규격	조달청
분	工业。	11 ~4	물품식별번호
1	AG625-40	300x300x(40+40)mm+무충진	23868123
2	AG625-40-H320	300x300x(320+40)mm+무충진	23911372
3	AG625-40-H440	300x300x(440+40)mm+무충진	23911373
4	AG625-40S	300x300x(40+40)mm+규사, 식모공625개	23868121
5	AG900-40S	300x300x(40+40)mm+규사, 식모공900개	23868118
6	AG625-55S	300x300x(40+40)mm+규사	23868122
7	AG625-55S-P10	300x300x(40+40)mm+규사+패드10mm	23868120
8	AG625-55S-P30	300x300x(40+40)mm+규사+패드30mm	23868124
9	AG225-55S-N	300x300x(40+40)mm+규사+부엽토+천연잔디	23868119

2)신청모델 용도(사례)

인테리어	야외테라스	발코니	현관
정원	수목보호판	체육시설	잔디투수블록

3)신청모델 규격(크기및부품)

번호	물품식별번호	모델명	규격(mm)	설명
1	30131596- 23868123	AG625-40	300x300x40	625공,투수블록H40mm, 파일H40mm,파일무게>1,000g/m2
2	30131596- 23911372	AG625-40-H320	300x300x320	625공,투수블록H320mm, 파일H40mm,파일무게>1,000g/m2
3	30131596- 23911373	AG625-40-H440	300x300x440	625공,투수블록H440mm, 파일H40mm,파일무게>1,000g/m2
4	30131596- 23868121	AG625-40S	300x300x40	625공,투수블록H40mm, 파일H40mm,파일무게>1,000g/m2, 규사충전
5	30131596- 23868118	AG900-40S	300x300x40	900공,투수블록H40mm, 파일H40mm,파일무게>1,500g/m2, 규사충전
6	30131596- 23868122	AG625-55S	300x300x40	625공,투수블록H40mm, 파일H55mm,파일무게>1100g/m2, 규사충전
7	30131596- 23868120	AG625-55S-P10	300x300x40+10	625공,투수블록H40mm, 파일H55mm,파일무게>1100g/m2, 규사충전,패드10mm
8	30131596- 23868119	AG625-55S-P30	300x300x40+30	625공,투수블록H40mm, 파일H55mm,파일무게>1100g/m2, 규사충전,패드30mm
9	30131596- 23868124	AG225-55S-N	300x300x40	225공,투수블록H40mm, 파일H55mm,파일무게>400g/m2, 규사+부엽토충전,하이브리드잔디

라. 제품의 구성 및 구조

- 1)본체와 덮개로 구성되는 투수블록: 5~8mm투수공
- 2)철편으로 식모되는 인조잔디파일: 변색방지 자외선차단제 함유
- 3)투수블록내부에 충전되는 세라믹파쇄석: D8~15mm
- 4)투수블록 내부의 중앙에 위치하는 토사포집부재
- 5)규사,부엽토,부직포,충격흡수패드,하이브리드잔디 등 옵션품목

마. 제조 및 가공방법

1) 제조 공정도 및 제조방법

2) 재료

모델명	재료	자재구성표
AG625-40		
AG625-40-B320		① 플라스틱블록 본체
AG625-40-B440		② 플라스틱블록 덮개
AG625-40S	PP플라스틱, PE인조잔디원사, 세라믹	③ 세라믹파쇄석
A C000 40C	파쇄석, 아연도강철편, 규사, 부엽토,	④ 인조잔디원사
AG900-40S		⑤ 충진재
AG625-55S	PS부직포, PE발포패드, 천연잔디	(규사,부엽토)
AG625-55S-P10		⑥ 충격흡수패드
AG625-55S-P30		
AG225-55S-N		

바. 마감 및 외관

- 1)외관상 현저한 흠, 불량, 파손, 변형, 균열 등의 결점이 없어야 하며, 연결부표면은 불규칙적인 형태가 없어야 한다.
- 2)외관상 잔디 색상은 표시나지 않도록 균일해야 한다.

사. 포장 및 표시

- 1)포장: 비닐포장으로 하되, 각 포장단위마다 명판, 각인 등의 표시사항을 명기한다.
- 2)표시: 표시는 편리한 방법으로 잘 보이는 곳에 다음사항을 표시하여야 한다. 다만, 주문자와 제조사 사이의 협정에 따라 일부를 추가하거나 생략할 수 있다.
 - ① 제조일자
 - ② 치수(너비*높이*길이)
 - ③ 모델명
 - ④ 원산지

3. 적용된 기술

가. 적용된 기술

- 1) 적용기술
 - ①특허등록 제10-1689381호: 투수블록
 - ▶ 투수블록은 쇄석이 충진되는 플라스틱(PP재질) 본체와 덮개로 구성 되어 있으며, 측면과 상하면이 타공되어 있고, 상판 중앙에는 토사포집부재 가 놓여 있는 투수블록
 - ②특허등록 제10-1689380호: 인조잔디파일이 식모된 투수블록
 - ▶개발된 인조잔디파일이 식모된 투수블록은 쇄석이 충진되는 플라스틱 (PP재질)본체와 덮개로 구성되어 있으며, 측면과 상·하면이 타공되어 있고, 상판 중앙에는 토사포집부재가 놓여 있고 상판 엠보싱의 홀에 인조잔디파일을 식모하는 투수블록
 - ③특허출원 제10-2019-0114303호: 인조잔디파일 식모방법
 - ▶하기 인조잔디파일 식모장치를 이용하여 투수블록에 직접 식모하는 기술로서, 투수블록의 성형구멍에 인조잔디 원사를 철편으로 박아 넣고 절단하는 과정이 자동으로 이루어지는 식모방법
 - ④특허출원 제10-2019-0114303호: 인조잔디파일 식모장치
 - ▶스풀에 감겨 있는 인조잔디의 원사를 투수블록의 타공구멍으로 공급하여 투수블록의 타공구멍에 인조잔디의 원사와 함께 철편을 박아넣어 인조잔디의 원사를 식모하고 절단하는 과정이 자동으로 이루어지는 인조잔디 파일 식모장치

2) 적용기술 근거

①적용기술 반영정도

구분	청구항 1	신청제품	대비결과
구성1	플라스틱본체+덮개	플라스틱본체+덮개	동일
구성2	쇄석골재충전+토사포집부재	쇄석골재충전+토사포집부재	동일
구성3	인조잔디파일식모	인조잔디파일식모	동일

②적용기술 효과 : 접근방법의 시도로 적용기술의 우월적 요소 창출

기능 항목	기능 개선	항목별 기능
1.환경성	백킹 및 연결부 접착제 무사용	유해물질 불포함
2.폐기물재활용	기포지 및 접착제 사용않음	단일소재 재활용가능
3.충격흡수력	유실, 파손되는 고무충진재 없음	충격흡수력 저하시간 단축
4.내구성	충격흡수 가능한 투수블록 사용	내구성 저하속도 낮음
5.유지보수	연결부 끼움맞춤식	탈부착가능 및 유지보수용이
6.천연잔디식재	기포지 사용방식 대신 타공방식	타공으로 천연잔디식재가능
7.배수판기능	원활한 배수기능과 내구성증진	별도의 배수공사 필요없음

나. 동종업계와의 제품 기술 수준

- 1)동종업계의 국내·외 기술수준: 기존의 기포지 식모기술(섬유직조방식)
 - ▶기존 인조잔디의 터프팅(tufting)에 의한 기포지 직조방식은 새로운 기술개발 없이 오랫동안 사용하던 방식^(*)으로서, 잔디의 파일이 <u>구조적으로 눕게되어</u> 규사 및 고무칩 등의 충진재가 깊게 고루 충진되지 않아 노출이 빈번하고 인조잔디의 수명이 짧다.
 - (*) 1950년대 미국Astroturf사 개발된 후 60여년 동안 백킹재, 충진재 및 원사만 발전하고 직조방식은 그대로임
 - ▶잔디파일을 고정시키기 위해 기포지 <u>직조후 접착코팅</u>을 하고, <u>현장시공시</u> <u>기포지</u>연결이음에 접착제를 대량사용하고 있어 잔디를 철거할 때에는 대량의 폐기물이 발생하는 등 많은 폐해가 발생하고 있다.
- 2) 신청제품의 기술수준: 적용기술인 우월적요소(투수블록 직접 식모기술)
 - ▶신청기술은 그동안 오랫동안 사용해오던 카페트형 인조잔디의 기포지 직조방식의 문제점을 개선하고 극복하기 위하여 개발한 새로운 패러다임의

<u>식모기술</u>로서, 인조잔디 파일을 <u>투수블록에 직립식모하는</u> <u>방식</u>으로 구조적으로 직립성을 유지하여 규사 등의 충진재가 깊게 고루 충진될 수 있는 구조을 갖추고 있어 파일의 탄성을 상대적으로 오랫동안 유지하고 있어 <u>인조잔디의 수명이 길다</u>.

- ▶투수블록의 분해·조립구조로 유지관리시 상대적으로 시공성이 우수하고, 철거작업이 용이하고 철거후에는 100%재활용이 가능하여 산업폐기물이 생성되지 않으며, 접착제 사용이 필요없다.
- ▶인조잔디와 투수블록의 모듈화 기술로 충분한 배수성을 확보하여 집중호우시 물이 고여 지반이 약해지거나 충진재 유실 등 배수관련 하자를 방지하였으며 표준화된 투수블록 사용으로 배수 토목시공 부실을 최소화하고 토목 공사 비용과 기간을 단축시켰다.

3) 기술수준 비교

①차별성 비교

비교항목	기존 카펫제품 제조기술	신청제품 제조기술	기술차별성
제조장치			제조장치 및 제조방법이 차별화됨
완제품			투수블록형과 카펫형 으로 조달품목이 차별 화됨

기술수준 비교

	카펫형제품	신청제품
(조달청물품명)	(인조잔디)	(특수블록)
제품사진		
식모방식	기포지 터프팅(바느질)	투수블록에 직접식모
파일인발력(N)	85	115
투수성능(mm/h)	180이하	2,000이상
블록의 형태	블록 없고 롤형	투수블록
재활용 유무	불가능 (기포지 접착제 사용)	100% 가능
직립성 유무	출고시 방향성을 갖고 눕게 됨	직립유지
온도저감능력	불량	우수
친환경성	불량(접착제사용)	우수(끼움조립식)
제조방법	뒷면에 접착제 백킹처리함	플라스틱에 직접 식모함
제조장치	카펫직조기+백킹및건조기	사출성형기+자동식모기
충격흡수력	고무충진재 사용	플라스틱블록+천연충진재(규사) 사용
폐기처리비	m2당 8,000원 소요	없음
폐기처리방법	소각처리(미세먼지발생)	재활용
하이브리드잔디	ㅂᅱᆫ	7] L
가능여부	불가능	가능

4. 제품의 성능 및 우수성

가. 성능기준 및 시험항목

- 1) 일반적 성능기준 및 시험항목
 - ①일반적 성능기준 및 시험항목

시험기준	시험항목	성능기준
	1.유해성(인조잔디파일) 시험	
	2.유해성(배수판) 시험	KS F 3888-1:2018 4.1.3 유해물질 품질기준 이상
	3.유해성(충진재:규사,부엽토) 시험	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	4.원사총섬도 시험	2,000denier 이상
I/C	트립어네크셔 기침	2000회 마모후
KS	5.파일내구성 시험	질량변화10%이하
	C 비어 서는 기침	잔염시간 20초이내,
	6.방염성능 시험	탄화거리 10cm이내
	7.접합강도 시험	250N/100mm 이상
	8.회전저항 시험	25~50Nm
	9.피부/표면마찰계수 시험	0.35~1.00
	10.배수판 냉열반복 시험	이상없음,
	(겉모양,길이변화율)	±0.5% 이내
Q마크	11.배수판 연화온도 시험	섭씨 90도 이상
	12.배수판 낙구충격 시험	깨짐, 균열, 박리가 없을것
의뢰자 제시방법	13.압축하중 시험	100kN 이상
	14.연결부 휨강도/처짐변위(상방향) 시험	600N, 10mm 이상
ліон	15.연결부 휨강도/처짐변위(하방향) 시험	600N, 10mm 이상

②시험방법

- ▶ 유해성 시험(인조잔디,배수판,충진재)
 - -중금속 함량 시험은 KS M 6956에 따른다. 다만, 중금속 용출시험은 EN 71-3에 따른다.
 - -총 휘발성 유기화합물(T-VOCs) 총량 시험은 KS M 6956에 따라 실시 하다.
 - -다환 방향족 탄화수소(PAHs) 총량 시험은 KS M 6956에 따라 실시한다.
 - -프탈레이트계 가소제 함량은 KS M 1991에 따른다.

▶ 워사총섬도 시험

시료의 직물 또는 실의 번수 측정은 KS K 0414 또는 KS K ISO 2060에 따라 실시한다.

▶ 파일마모강도(내구성) 시험

KS K 0525에 따른다. 마모강도(%)는 (마모시험전 파일사무게-마모시험 후 파일무게)/마모시험전 파일사무게로 한다.

▶ 방염성능 시험

KS K 0818의 7.16(연소성)에 따라 실시한다.

▶ 접합강도 시험

KS A 0006에 규정하는 상온·상습 상태에서 하여야 하며 시험에 사용되는 인장 시험기는 KS K 0520의 6.1[정속 인장식(CRE) 시험기]의 규정조건을 만족하여야 한다.

▶회전저항 시험

-시험기를 약 60m 높이에서 낙하시킨 후 그 상태에서 수직방향으로 여분의 힘이 들어가지 않도록 주의하면서 토크미터를 회전시킨다. 45도를 넘지 않도록 회전시킨 후 표시되는 저항 최고치를 읽는다. 시험 결과값은 5회 실시한 후의 평균값을 사용한다.

▶ 피부/표면마찰계수 시험

- -FIFA에서 규정하는 securisport 스포츠 표면 시험기를 사용한다.
- -인조피부는 Maag Technic AG에서 제작한 실리콘 인조피부 L7350 Sonnentalstrasse 8600 DUEBENDORF, Switzerland를 사용한다.

시험용 발 위에 설치된 나사에 끈을 부착하고 인조피부가 붙어 있는 시험용 발을 시험 플레이트에 안정적으로 설치되어 있는 것을 확인하면서 추가로 질량을 증가시켜 전체 질량이 (1700 ∓ 50) g이 되도록 한 후 피부 마모시험을 하여 평균하중이 (6 ∓ 1.5) N이어야 한다.

-시험기에 표시된 마찰계수 값을 기록한 후 인조피부를 교체하고 충전 재를 가감없이 정돈하여 3회의 시험을 반복한다. 시험동안 인조피부와 의 접촉은 금지하며 압축공기를 이용하여 파편을 제거한다. 3회의 평균 마찰계수를 계산하고 기록한다.

▶ 배수판 냉열반복 시험(KQS-O-1036)

시료를 순환형 강제식 항온조 안에서 냉열과정을 5회 반복한 후 (23+2)도로 12시간 이상 방치하여 육안으로 시험편의 부풂, 갈라짐, 뒤틀림 등의 이상 유무를 조사한 후 시료의 길이를 측정하고 변화율을 계산한다.

▶ 배수판 연화온도 시험 KS M ISO 306에 따른다.

▶배수판 낙구충격 시험

배수판 5개를 채취하여 상온이 유지되는 실내에서 1시간 이상 방치한 후 평평한 시멘트 콘크리트 바닥 위에 놓고 윗부분의 750mm 되는 높이에서 시료 중앙에 강제 구[무게 (500 \mp 5)g, 지름 약 50mm)]를 1회 자유 낙하시킨 후 1개라도 표2에 규정한 깨짐, 균열 및 그 밖의 사용상 결함이 없어야 한다.

▶ 압축하중 시험

배수판의 압축하중 시험편은 제품 그대로를 취하며 제품을 압축시험기의 가압판 사이에 놓고 분당 $10mm \mp 10\%$ 의 속도로 압축하여 제품이 견디는 최대 하중값을 구한다. 결과는 5개 시료의 평균값으로 나타낸다.

- ▶ 연결부 휨강도/최대처짐변위(상방향,하방향) 시험(자체의뢰시험)
 - -4개가 결합된 투수블록 연결부 하부에 4각 가장자리(600mmx600mm)로 부터 37mm x 37mm 폭의 목재 지지대를 형성하여 중앙부에 빈 공간 (526mmx526mmx바닥으로부터의 높이:37mm)을 확보한후 가압한다.
 - -4개의 투수블록의 중앙에 가압판(200mmx200mmx3mm)을 놓고 시험속 도 5mm/min로 만능재료시험기(50kN압축시험기)로 측정하되, 상방향으로 1회 및 하방향으로 1회 휚강도와 최대 처짂변위를 측정한다.

2) 제품우수성입증 성능기준 및 시험항목

①제품 우수성입증 성능기준 및 시험항목

시험기준	시험항목	성능기준	비고
	1.파일인발강도(stud후) 시험	40N 이상	
VC	2.충격흡수성(초기) 시험	20% 이상	고무칩 충전 없이 시험
KS	3.충격흡수성(stud후) 시험	10% 이상	고무칩 충전 없이 시험
	3.투수성능 시험	180mm/h 이상	

②시험방법

- ▶ 파일인발강도(stud후) 시험
 - -KS 6.1.9 스터드 마모 규정에 의한다.
 - -KS KL ISO 4919 또는 KS K 0818에 따른다. 이 때 경사방향, 위사 방향으로 각각 100mm x 100mm의 시험편 2매를 채취하고 시료를 표준 상태로 한 후 적당한 성능의 파일사 인발시험기로 각각 5개소에 있는 파일을 당길 때의 최대하중(N)을 측정하고 그 평균값을 정수자리까지 표시한다. 이 때 인발속도는 (305∓10)mm/min로 한다.
- ▶ 충격흡수성(초기) 시험
 -KS 6.1.1에 의하여 시험한다.
- ▶ 충격흡수성(stud후) 시험
 -KS 6.1.9 스터드 마모 규정에 따라 KS 6.1.1에 의하여 시험한다.
- ▶ 투수성능 시험
 - -KS 6.1.8 투수성능 시험에 의하되, 투수성 결과값이 2,000mm/h 보다 높을 경우 2,000mm/h 이상으로 표시한다.

나. 제품의 성능

1) 일반적 성능시험 결과

시험항목	KS기준	시험결과
1.유해성(인조잔디파일) 시험	KS F 3888-1:2018	KS F 3888-1:2018
2.유해성(배수판) 시험	4.1.3 유해물질	4.1.3 유해물질
3.유해성(충진재;규사,부엽토) 시험	품질기준 이상	품질기준 이상
5.원사총섬도 시험	2,000denier 이상	15,600denier
6.파일내구성 시험	10% 이하	7%
7.방염성능 시험	잔염시간 20초이내, 탄화거리 10cm이내	잔염시간 20초이내, 탄화거리 10cm이내
8.접합강도 시험	250N/100mm 이상	443N/100mm
9.회전저항 시험	25~50Nm	34
10.피부/표면마찰계수 시험	0.35~1.00	0.79
12.배수판 냉열반복 시험	이상없음,	이상없음,
(겉모양, 길이변화율)	±0.5% 이내	±0.1%
13.배수판 연화온도 시험	섭씨 100도 이상	섭씨 140도
14.배수판 낙구충격 시험	깨짐, 균열, 박리가 없을것	이상없음
15.압축강도 시험	100kN 이상	152kN
16.연결부휨강도(상방향) 시험 (자체의뢰시험)	1,000N 이상	2,069N,변위3mm이상
17.연결부휨강도(하방향) 시험 (자체의뢰시험)	1,000N 이상	2,132N,변위3mm이상

2) 제품우수성입증 성능시험 결과

①정량적 성능시험 결과

시험항목	KS기준	시험결과	성능비교
1.파일인발강도(stud마모후)	40N이상	115N	2.9배 ↑
2.충격흡수성(초기)		모델별 28%~72%	1.4배∼3.6배↑
1)AG625-40(H320,H440)	20%이상	28%	1.4배 ↑
2)AG625(900)-40S		46%	2.3배↑
3)AG625-55S-N		50%	2.5배↑
4)AG625-55S		51%	2.5배↑
5)AG625-55S-10P		54%	2.7배 ↑
6)AG625-55S-30P		72%	3.6배 ↑
3.충격흡수성(stud마모후)	10%이상	모델별 15%~69%	1.5배∼6.9배↑
1)AG625-40(H320,H440)		15%	1.5배↑
2)AG625(900)-40S		21%	2.1배↑
3)AG625-55S		20%	2.0배↑
4)AG625-55S-10P		36%	3.6배 ↑
5)AG625-55S-N		42%	4.2배↑
6)AG625-55S-30P		69%	6.9배↑
4.투수성능	180mm/h이상	2,000mm/h이상	11.0배 ↑

②정성적 성능시험 결과: 배수능력 및 온도저감능력이 상대적 우수함

③정량적/정성적 제품 우수성 비교

기술차별성 항목	기존기술 : 기포지 식모기술	신청기술 : 투수블록 식모기술
1.식모기술	기포지 터프팅(바느질) 식모	투수블록 에 직접식모
2.식모기술에	파일이 눕게됨	파일이 직립유지
따른 파일의	- 잔디수명이 짧다	- 잔디수명이 길다
직립성	- 규사, 충진재 노출	- 상대적으로 비노출
3.유해가능 물질	접착제, 고무칩	없음(조립식, PE, PP사용)
4.배수기능성	상대적으로 원활하지 않음	구조적으로 매우 원활함
5.그라운드온도 상승(여름철)	상대적으로높음 (콘크리트와 기포지밀착층)	상대적으로 작음 (공극율 쇄석 충진층)
6.유지관리 편의성	접착이음 으로 불리함	분해조립이 용이함
7.철거시 재활용성	불가능(접착제 대량사용), 대량 폐기물 및 비용발생	100%가능(PE, PP사용)
8.하이브리드 잔디구조 유무	불가능	가능
9.배수토목시공성	시공사에 의존	시공 부실을 최소화
10.토목시공비용절감	토목공사 비용과다	토목공사 비용절감(배수층)
11.조달청품명등록 상이성(제품품명)	인조잔디 (물품분류번호:30121897)	특수블록 (물품분류번호:30131596)

다. 하자보증 방법 및 기간

- 1)제품의 보증기간 내 제작자의 과오로 인한 제품 하자 발생 시 제작자 부담으로 즉시 보수 또는 교환하며, 사용자의 보관 및 사용상 과실로 인한 하자 발생 시 사용자의 부담을 원칙으로 한다.
- 2)납품 설치일로부터 1년
- 3)납품 설치일로부터 3년간 품질 보증을 위하여 무상으로 A/S 및 유지관리를 한다.