A Novel Discriminative Framework for Sentence-Level Discourse Analysis

Shafiq Joty

In collaboration with

Giuseppe Carenini, Raymond T. Ng

Discourse Analysis in RST

The bank was hamstrung in its efforts to face the challenges of a changing market by its links to the government, analysts say.

Computational Tasks

The bank was hamstrung in its efforts to face the challenges of a changing market by its links to the government, analysts say.

The bank was hamstrung in its efforts to face the challenges of a changing market by its links to the government,

analysts say.

Discourse Parsing

ATTRIBUTION [analysts say,] **FLABORATION** [The bank was hamstrung in its efforts] [to face the challenges of a changing market by its links to the government,]

Motivation

- √ Text summarization (Marcu, 2000)
- √ Text generation (Prasad et al., 2005)
- ✓ Sentence compression (Sporleder & Lapata, 2005)
- ✓ Question Answering (Verberne et al., 2007)

Outline

- Previous work
- Discourse parser
- Discourse segmenter
- Corpora/datasets
- Evaluation metrics
- Experiments
- Conclusion and future work

Previous Work (1)

Soricut & Marcu, (2003)

SPADE Segmenter & Parser

Generative approach
Lexico-syntactic features
Structure & Label dependent
Sequential dependencies
Hierarchical dependencies

Hernault et al. (2010)

SVMs
Large feature set
Optimal
Sequential dependencies
Hierarchical dependencies

Newspaper articles

level

Previous Work (2)

Subba & Di-Eugenio, (2009)

Shift-reduce Only Parser

Sentence + Document level

ILP-based classifier

Compositional semantics

Optimal

Sequential dependencies

Hierarchical dependencies

Fisher & Roark (2007)

Binary log-linear Segmenter

State-of-the-art performance Parse-tree features are important

Instructional manuals

Discourse Parsing

Assume a sentence is already segmented into EDUs.

Our Discourse Parser

Parsing model

Assign probabilities to DTs.

R ranges over set of relations

Parsing algorithm

Find the most probable DT

3/9/2013 © Shafiq Joty

Requirements for Our Parsing Model

- ✓ Discriminative
- ✓ Joint model for Structure and Label
- ✓ Sequential dependencies
- ✓ Hierarchical dependencies
- Should support an optimal parsing algorithm

Our Parsing Model

Model structure and label jointly

Relation at level i $R \in \{1 ... M\}$

Structure at level i $S \in \{0, 1\}$

Spans at level i

Dynamic Conditional Random Field (DCRF) [Sutton et al, 2007]

Models sequential dependencies

Obtaining probabilities

Apply DCRF recursively at different levels and compute posterior marginals of relation-structure pairs

Level 1

Level 2

Obtaining probabilities

Apply DCRF recursively at different levels and compute posterior marginals of relation-structure pairs

Level 3

Features Used in Parsing Model

8 organizational features

Relative number of EDUs in span 1 and span 2.

Relative number of tokens in span 1 and span 2.

Distances of span 1 in EDUs to the *beginning* and to the *end*.

Distances of span 2 in EDUs to the *beginning* and to the *end*.

8 N-gram features

Beginning and end lexical N-grams in span 1.

Beginning and end lexical N-grams in span 2.

Beginning and end POS N-grams in span 1.

Beginning and end POS N-grams in span 2.

5 dominance set features (SPADE)

Syntactic labels of the *head* node and the *attachment* node.

Lexical heads of the *head* node and the *attachment* node.

Dominance relationship between the two text spans.

2 contextual features

Previous and next feature vectors.

2 substructure features

Root nodes of the left and right rhetorical subtrees.

Hierarchical dependencies

Parsing Algorithm

Probabilistic CKY-like bottom-up algorithm

$$T(i, j) = P(R[i, m, j])$$

$$m = argmax_{i \le k \le j} P(R[i, k, j])$$

R ranges over set of relations

Finds global optimal

Outline

- Previous work
- Discourse parser
- Discourse segmenter
- Corpora/datasets
- Evaluation metrics
- Experiments
- Conclusion and future work

Discourse Segmentation

The bank was hamstrung in its efforts to face the challenges of a changing market by its links to the government, analysts say.

Discourse Segmentation

The bank was hamstrung in its efforts

EDU

to face the challenges of a changing market by its links to the government,

EDU

analysts say.

EDU

Segmentation is the primary source of inaccuracy (Soricut & Marcu, 2003)

Our Discourse Segmenter

- Binary classification: boundary or no-boundary
- Logistic Regression with L₂ regularization
- Bagging to deal with sparse boundary tags

Features used

SPADE features

Chunk and POS features

Positional features

Contextual features

Corpora/Datasets

RST-DT corpus (Carlson & Marcu, 2001)

- 385 news articles
 - -Train: 347 (7673 sentences)
 - -Test: 38 (991 sentences)

Relations

- 18 relations
- 39 with Nucleus-Satellite

Instructional corpus (Subba & Di-Eugenio, 2009)

•176 how-to-do manuals 3430 sentences

Relations

- 26 primary relations
- Reversal of non-commutative as separate relations
- 70 with Nucleus-Satellite

Evaluation Metrics

Metrics for parsing accuracy (Marcu, 2000)

- Unlabeled (Span)
 Labeled (Nuclearity, Relation)
 F-measure

Precision, Recall

Metric for segmentation accuracy (Soricut & Marcu, 2003; Fisher & Roark, 2007)

Intra-sentence EDU boundary

Precision, Recall F-measure

Experiments (1)

Parsing based on manual segmentation

	Instructional					
Test	set	10-fold	Doubly	S&E	10-fold	
SPADE	DCRF	DCRF	Human	ILP	DCRF	
93.5	94.6	93.7	95.7	92.9	97.7	
85.8	86.9	85.2	90.4	71.8	87.2	
67.6	77.1	75.4	83.0	63.0	73.6	
	SPADE 93.5 85.8	Test set SPADE DCRF 93.5 94.6 85.8 86.9	SPADE DCRF DCRF 93.5 94.6 93.7 85.8 86.9 85.2	Test set 10-fold Doubly SPADE DCRF DCRF Human 93.5 94.6 93.7 95.7 85.8 86.9 85.2 90.4	Test set 10-fold Doubly S&E SPADE DCRF DCRF Human ILP 93.5 94.6 93.7 95.7 92.9 85.8 86.9 85.2 90.4 71.8	

Our model outperforms the state-of-the-art by a wide margin, especially on relation labeling

Experiments (2)

Discourse segmentation

			Instructional					
		Test	set		10-fc	old	10-fold	10-fold
Scores	HILDA SPADE F&R		F&R	LR	SPADE	LR	SPADE	LR
Precision	77.9	83.8	91.3	88.0	83.7	87.5	65.1	73.9
Recall	70.6	86.8	89.7	92.3	86.2	89.9	82.8	89.7
F-measure	74.1	85.2	90.5	90.1	84.9	88.7	72.8	80.9

Human agreement (F-measure): 98.3

- Our model outperforms SPADE and comparable to F&R
- We use fewer features than F&R

Experiments (3)

Parsing based on automatic segmentation

		Instructional				
	Test s	et	10-fold	10-fold		
Scores	SPADE	DCRF	DCRF	DCRF		
Span	76.7	80.3	78.7	71.9		
Nuclearity	70.2	73.6	72.2	64.3		
Relation	58.0	65.4	64.2	54.8		

- Our model outperforms SPADE by a wide margin
- Inaccuracies in segmentation affects parsing on Instructional corpus

Error analysis (Relation labeling)

	то	EV	SU	MA	COMP	EX	COND	TE	CA	EN	ВА	CONT	JO	SA	AT	EL
TO	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	2
EV	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3	2
SU	0	0	6	0	0	0	0	0	0	0	0	1	2	0	0	10
MA	0	0	0	10	0	1	0	1	0	0	0	0	2	0	1	7
COMP	0	0	0	1	1	1	0	0	2	0	3	2	1	0	0	6
EX	0	0	0	0	0	9	0	0	4	1	2	0	0	1	4	1
COND	0	0	0	0	0	0	20	3	0	1	1	1	1	2	6	7
TE	0	0	0	0	0	0	0	11	1	0	5	0	9	4	2	9
CA	0	0	0	1	0	4	0	1	5	4	1	1	6	1	6	3
EN	0	0	0	1	0	0	0	1	0	24	2	0	1	1	1	9
BA	0	0	0	0	1	1	2	7	1	0	15	2	7	4	6	15
CONT	0	0	0	0	1	1	2	1	0	0	4	26	4	6	5	6
JO	0	0	0	0	0	2	0	3	1	0	3	1	43	7	4	13
SA	0	0	2	0	0	0	3	2	0	3	0	0	0	80	3	31
AT	0	1	0	0	0	3	3	2	2	0	2	2	1	15	276	20
EL	1	0	1	3	2	3	2	5	5	11	5	6	14	9	19	295

- Most frequent ones confuse less frequent ones
- Hard to distinguish semantically similar relations

Conclusion

- Discriminative framework for discourse analysis.
- Our parsing model:
 - ✓ Discriminative
 - ✓ Structure and label jointly
 - ✓ Sequential and hierarchical dependencies
 - ✓ Supports an optimal parsing algorithm
- Our approach outperforms the state-of-the-art by a wide margin.

Future Work

- Extend to multi-sentential text.
- Can segmentation and parsing be done jointly?