CS 5003: Parameterized Algorithms Lecture 16

Krithika Ramaswamy

IIT Palakkad

Vertex Cover Above LP

Vertex Cover Above LP

Instance: A graph G on n vertices m edges and integer k

Question: Poes 6 have a vertex cover of size at most k?

Parameter: k-lp(G)

lp(G) >= |M|

Vertex Cover Above Matching

<u>Instance:</u> A graph G on n vertices m edges, integer k, a matching M

Question: Poes 6 have a vertex cover of size at most k?

Parameter: k-IMI

We have Ip(G) >= M (think about it) and thus this makes sense.

 $4^{(k-lp(G))} n^{O(1)}$ time algorithm is a $4^{(k-lMl)} n^{O(1)}$ time algorithm

Odd Cycle Transversal

OCT - set of vertices that has at least one vertex of every odd length cycle

bipartite

A graph is bipartite iff it has no odd cycle

forward dirn can be proved by contradiction, for reverse dirn, let v be any vertex in G, define $X = \{x \mid d_G(v, x) \text{ is ev}\}$

Odd Cycle Transversal

Instance: A graph G on n vertices m edges and integer k

Question: Poes 6 have an oct of size at most k?

Parameter: k

(G, k) OCT

(H, IV(G)I+k) Vertex Cover

G has an OCT of size k iff H has a VC of size IV(G)I+k

black denotes OCT and other 2 colors are for t

Suppose 6 has an OCT of size k

a2

C2

Z2

Suppose 6 has an OCT of size k

G has a bipartite graph of size IV(G)I-k

Suppose 6 has an OCT of size k

H has an IS of size IV(G)I-k

H has a VC of size |V(G)|+k

Suppose H has a VC of size IV(G)I+k

H has an IS of size IV(G)I-k

Suppose H has a VC of size IV(G)I+k

H has an IS of size IV(G)I-k

Suppose H has a VC of size IV(G)I+k

- G has a bipartite graph of size IV(G)I-k
- G has an OCT of size k

G has an OCT of size k iff H has a VC of size IV(G)I+k

- * To determine if G on n vertices has an OCT of size k,
 - * Construct H from G
 - * Matching M of size n in H
 - * Determine if H has a VC of size n+k
 - Use the Vertex Cover Above LP algorithm on H that has matching M
 - * $(4^{n+k-lpopt(H)} n^{0(1)} time which is 4^{n+k-lMl-k} n^{0(1)} time)$