宮島研究室 2019 年度 B4 XRD 実験

東京理科大学 理学部 応用物理学科 宮島研究室 B4 渡辺慧

2019年5月14日

目次

1	本研究の目的	1
2	原理	2
2.1	結晶面	2
2.2	逆格子	3
2.3	回折条件	5
2.4	X 線回折	6
2.5	NaCl の結晶構造	8
2.6	2 heta/ heta 法	9
2.7	NaCl 粉末の回折パターン	10
3	NaCl 粉末及び単結晶の回折パターンの観測方法	11
4	NaCl 粉末及び単結晶の回折パターンの解析	13
4.1	NaCl 粉末	13
4.2	NaCl 単結晶	15
5	·····································	17

1 本研究の目的

なんとか

2 原理

2.1 結晶面

図 1(a) のような立方格子を考える。 a_1 、 a_2 、 a_3 を各方向への単位ベクトルと考えた時、位置ベクトルr は $r=ha_1+ka_2+la_3$ と表せる。h,k,l はミラー指数と呼ばれる。このとき、r の方向を [h,k,l] と表記する。[h,k,l] 方向のベクトルと直交する面を格子面と呼ぶ。格子面は、図 1(b) のように等間隔に無限に並び、その間隔を d_{hkl} とする。原点から d_{hkl} の距離にある面を (h,k,l) と表記する。また、(h,k,l) と平行な面すべてを内包して $\{h,k,l\}$ と表記する。(h,k,l) は、各方向の単位長さを 1 としたとき、それぞれの軸の $\frac{1}{h}$ 、 $\frac{1}{k}$ の位置を通過する。ただし、方向成分が 0 の方向があるとき、格子面はその方向と平行になる。

図1 結晶面の概形.

2.2 逆格子

結晶の構造においては、単位格子が空間的に繰り返す周期性がある。ここで、並進操作 $r \to r + R$ に対し不変となるベクトル

$$\boldsymbol{R} = n_a \boldsymbol{a_1} + n_b \boldsymbol{a_2} + n_c \boldsymbol{a_3}$$

が存在する。 $m{R}$ を実格子ベクトルと呼ぶ。ここで、結晶と同様の周期性を持つ関数 $\phi(m{r})=\phi(m{r}+m{R})$ を波数ベクトル $m{G}$ でフーリエ展開すると、

$$\phi(\mathbf{r}) = \sum_{\mathbf{G}} \phi_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}} \tag{1}$$

$$\phi(r+R) = \sum_{G} \phi_{G} e^{iG \cdot (r+R)}$$
 (2)

となる。ここで、式 (1) と式 (2) は等しいため、 \mathbf{R} と \mathbf{G} は

$$e^{i\mathbf{G}\cdot\mathbf{R}} = 1 \leftrightarrow \mathbf{G} \cdot \mathbf{R} = 2n\pi \tag{3}$$

を満たさなければならない。このようなGを

$$G = hb_1 + kb_2 + lb_3$$

と定義する。hkl は回折指数である。G を逆格子ベクトルと呼び、(長さ) $^-1$ の次元を持つ。この時、 a_j と b_k の間には、

$$\mathbf{a}_{i} \cdot \mathbf{b}_{k} = \delta_{ik} \tag{4}$$

$$\begin{cases}
\delta_{jk} = 0 (j \neq k) \\
\delta_{jk} = 2\pi (j = k)
\end{cases}$$
(5)

の関係がある。ここで、 $|a_1|=|a_2|=|a_3|$ かつ $|b_1|=|b_2|=|b_3|$ のとき、 $|b_j|=\frac{1}{|a_j|}$ である。l=0 のときの、実格子空間と逆格子空間の簡単な対応を図 2 に示す。

図2 実格子と逆格子の関係.

左が実格子空間、右が逆格子空間である。hkl=210 を見てみると、逆格子ベクトル [210] は、 実格子における (210) と垂直である。また、 G_{hkl} 方向の結晶面の間隔 d_{hkl} は

$$d_{hkl} = \frac{2\pi}{|\boldsymbol{G}_{hkl}|} \times \gcd(h, k, l) \tag{6}$$

と表せる。 $\gcd(h,k,l)$ は (h,k,l) の最大公約数である。最大公約数が 1 であるとき、つまり (h,k,l) の組が互いに素であるとき、回折指数 hkl とミラー指数 (h,k,l) は一致する。

2.3 回折条件

実格子空間での X線の回折の条件を考える。 X線がある結晶面によって散乱を起こすときの光路を図 3に示す。入射光と結晶面の角度を θ 、結晶面の間隔を dとしたとき、この時、2つの光の光路差は $2d\sin\theta$ である。散乱前後で光の波長が変化しないとき、この光路差が X線の波長の整数倍であれば、散乱光は強め合う。よって、実格子空間における X線の回折の条件は

$$2d\sin\theta = n\lambda\tag{7}$$

となる。この条件を Bragg 条件と呼ぶ。

図3 実格子空間における X 線の散乱.

また、逆格子空間での X 線の回折の条件を考える。入射 X 線の波数ベクトルを k_0 、散乱 X 線の波数ベクトルを k とする。逆格子空間における X 線の散乱を図 4 に示す。 k_0 が逆格子空間の原点を向くベクトルだと考えると、k の終着点は k_0-k で表せる (これを散乱ベクトルと呼ぶ)。ここで、散乱ベクトルが逆格子ベクトル G_{hkl} と等しいとき、つまり、散乱 X 線の波数ベクトルの終点が逆格子空間の格子点に等しいとき、回折が起きる。したがって、逆格子空間における X 線の回折の条件は、

$$k - k_0 = G_{hkl} \tag{8}$$

となる。この条件を Laue 条件と呼ぶ。

図4 逆格子空間における X線の散乱.

2.4 X 線回折

X線は電磁波であり、結晶にX線を入射したとき、X線は構成原子の原子核と電子によって散乱される。荷電粒子による電磁波の散乱には、散乱波の波長が元の波長から変化しない Thomson 散乱と、散乱はの波長が元の波長よりも長くなる Compton 散乱の 2 種類がある。 Thomson 散乱は干渉性散乱、Compton 散乱は非干渉性散乱である。 結晶による回折においては、干渉性散乱のみを考えればよいので、Thomson 散乱のみを考える。 Thomson 散乱において、散乱断面積は散乱体の質量の自乗に反比例するため、X線は電子により散乱される。密度 $\rho(r)$ で空間分布した電子雲によって X線が散乱される場合を、図 5 を用いて考える。

図5 電子雲による X 線の散乱.

電子雲に平面波の X線が入射して、原点 O と点 P で波数 k から k' に散乱された時、位相差は

$$\delta_1 + \delta_2 = (-\mathbf{k} \cdot \mathbf{r}) + (\mathbf{k'} \cdot \mathbf{r}) = K \cdot \mathbf{r} \tag{9}$$

と表せる (散乱ベクトル K=k'-k を定義した)。この時、ある散乱先 r' における散乱 X 線の 重ね合わせは

$$A\rho(\mathbf{0})e^{i(\mathbf{k'\cdot r'})} + A\rho(\mathbf{r})e^{i(\mathbf{k'\cdot r'} + \delta_1 + \delta_2)} = A[\rho(\mathbf{0})e^{i(\mathbf{K\cdot 0})} + \rho(\mathbf{r})e^{i(\mathbf{K\cdot r})}]e^{i(\mathbf{k'\cdot r'})}$$
(10)

となる (A:定数)。ここで、右辺の [] 内の項は、点 O、P で散乱された X 線の振幅に等しい。よって、電子雲全体での散乱振幅は、

$$f = \int \rho(\mathbf{r})e^{i\mathbf{K}\cdot\mathbf{r}}d\mathbf{r} \tag{11}$$

に比例することがわかる。

ところで、 $\rho(\mathbf{r})$ は、結晶の構成原子それぞれの電子密度の和

$$\rho(\mathbf{r}) = \sum_{\mathbf{R}} \sum_{j} \rho_{j} (\mathbf{r} - [\mathbf{R} + \mathbf{r}_{j}])$$
(12)

で表せる $(r_i$:結晶中の j 番目の原子の位置ベクトル)。これを用いて式 (11) を変形すると、

$$f = \int \rho(\mathbf{r}) = \sum_{\mathbf{R}} \sum_{j} \rho_{j} (\mathbf{r} - \mathbf{R} - \mathbf{r}_{j}) e^{i\mathbf{K} \cdot \mathbf{r}} d\mathbf{r}$$

$$= \sum_{\mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \sum_{j} e^{i\mathbf{K} \cdot \mathbf{r}_{j}} \int \rho_{j} (\mathbf{r} - \mathbf{R} - \mathbf{r}_{j}) e^{i\mathbf{K} \cdot (\mathbf{r} - \mathbf{R} - \mathbf{r}_{j})} d(\mathbf{r})$$

$$= \sum_{\mathbf{R}} e^{i\mathbf{K} \cdot \mathbf{R}} \sum_{j} f_{j} e^{i\mathbf{K} \cdot \mathbf{r}_{j}}$$
(13)

となる。式 (11) より、 $\int \rho_j ({m r}-{m R}-{m r}_j) e^{i{m K}\cdot({m r}-{m R}-{m r}_j)} = f_j$ とした。結晶全体の散乱の和を $\sum_{{m R}} e^{i{m K}\cdot{m R}} \equiv G({m K})$ 、単位格子中の散乱の和を $\sum_j f_j e^{i{m K}\cdot{m r}_j} \equiv F({m K})$ と定義する。 $G({m K})$ は Laue 関数と呼ばれ、Laue の回折条件を満たすとき有限の値をとり、それ以外の場合はほぼ 0 である。一例として、あああああああ (教科書写す) $G({m K})$ が Laue 関数であることから、 $F({m K})$ について、 ${m K}={m G}_{hkl}$ として計算できる。よって、

$$F_{hkl} = \sum_{j} f_{j} e^{i\mathbf{G}_{hkl} \cdot \mathbf{r}_{j}}$$

$$= \sum_{j} f_{j} e^{2\pi i (h\mathbf{b}_{1} + k\mathbf{b}_{2} + l\mathbf{b}_{3})}$$
(14)

となる。 F_{hkl} を結晶構造因子と呼ぶ。結晶構造因子は Laue 関数と同様、特定の条件を満たすとき有限の値をとり、それ以外の場合は 0 である。したがって、Laue 条件を満たしていても、 $F_{hkl}=0$ のとき回折は観測されない。これを消滅則と呼ぶ。格子の形状によって、有限の値をとる条件が異なるため、結晶構造の解析の際に有用である。

2.5 NaCl の結晶構造

NaCl 結晶は。、NaCl 型構造をとる。NaCl の構造の概形を図 6 に示す。

図6 NaCl の結晶構造.

すこし消滅則の話

2.6 $2\theta/\theta$ 法

単結晶の時は (002)、粉末の場合はいろんな面がーーってのを書く。

2.7 NaCl 粉末の回折パターン

 2θ の値が 90 よりも小さいときの、NaCl 粉末の回折パターンを表 1 に示す。実験データの解析のおいては、この表のデータを参照する。

表 1 NaCl 粉末の回折パターン [1].

$2\theta(\deg)$	h	k	l	Intensity	d-spacing [nm]
26.886	1	1	1	10	0.3312
31.145	2	0	0	99	0.2869
44.629	2	2	0	61	0.2028
52.878	3	1	1	3	0.173
55.426	2	2	2	19	0.1656
64.959	4	0	0	8	0.1434
71.633	3	3	1	2	0.1316
73.797	4	2	0	19	0.1283
82.251	4	2	2	13	0.1171
88.472	5	1	1	2	0.1104

3 NaCl 粉末及び単結晶の回折パターンの観測方法

NaCl 粉末及び単結晶の回折パターンを、X 線回折装置"SmartLab"を用いて観測した。 SmartLab の構造を図7に示す。

図7 SmartLab の内部構造.

X線源から放射された光を NaCl 粉末及び単結晶に照射し、光検出器で回折光を観測した。X線源から等方的に放射された光を、放物面人工多層膜ミラーを用いて単色化・平行化し、2 枚の入射スリットとソーラースリットを用いて発散を制限した。2 枚の出射スリットとソーラースリットを用いて、試料からの回折光の発散を制限した。Tッテネーターを用いて、光検出器に入射する光を減衰させた。T0 といったのである。表2の実験条件の下、試料ごとに T0 を変えてゆき、回折パターンを測定した。試料は NaCl 粉末と NaCl 単結晶の T2 種類である。単結晶試料の寸法を図 T8 に示す。

表 2 実験条件.

実験条件							
入射スリット	1 mm						
出射スリット	1 mm						
ソーラースリット	$0.5 \deg$						
X 線波長	$1.543\text{Å},\ 1.392\text{Å}$						

図 8 NaCl 単結晶の寸法.

実験に用いた単結晶は、縦 3.2 mm、横 5.2 mm、高さ 1.1 mm の直方体のものである。この結晶を、最も面積の広い面を下にして試料台に設置した。

4 NaCl 粉末及び単結晶の回折パターンの解析

4.1 NaCl 粉末

NaCl 粉末における回折パターンを図9に示す。

図9 NaCl 粉末の回折パターン.

横軸は入射光と回折光のなす角、縦軸は回折強度である。グラフから、鋭いピークが複数見られる。これらのピークのうち、頂点における 2θ が、表 1 の値と近いものだけを抜き出したものを表 3 に示す。

$2\theta[\deg]$	$2\theta[\text{rad}]$	G_m	h	k	l	a
27.306	0.468753	1.891361571	1	1	1	5.751031023
31.646	0.543256333	2.185068392	2	0	0	5.748103832
45.397	0.779315167	3.093719005	2	2	0	5.741478885
53.828	0.924047333	3.63032518	3	1	1	5.737338297
56.419	0.968526167	3.791544409	2	2	2	5.737650888
66.178	1.136055667	4.381295096	4	0	0	5.733464524
73.041	1.2538705	4.777872498	3	3	1	5.729304283
75.259	1.291946167	4.902560146	4	2	0	5.728642375
83.979	1.4416395	5.375122452	4	2	2	5.723700519

表 3 NaCl 粉末の格子定数.

逆格子ベクトルの大きさ G_m は

$$G_m = \frac{4\pi}{\lambda} \sin \theta \tag{15}$$

で計算した。 λ は、今回は K_{lpha} 線の波長である 1.543 nm を用いた。格子定数 a は、 G_m から

$$a = \frac{2\pi}{G_m} \sqrt{h^2 + k^2 + l^2} \tag{16}$$

で計算した。各 θ におけるaの平均をとって、格子定数は

$$a = 5.736746$$

と求まった。

4.2 NaCI 単結晶

図 10 に示す。

図 10 NaCl 単結晶の回折パターン.

横軸は A の回転角、縦軸は回折強度である。グラフから、鋭いピークが複数見られる。 $2\theta/\theta$ 法を用いた単結晶の X 線回折測定では、(001) 面に平行な面での回折しか観測できないため、 K_{α} 線及び K_{β} 線の二つの X 線による回折が観測できる。したがって、どのピークが、どの X 線による回折を示しているのか判断ができない。 $2\theta/\theta$ 法を用いた単結晶の X 線回折測定では、(001) 面に平行な面での回折しか観測できないことを利用し、(h,k,l)=(0,0,2n) となるように回折指数をとり、粉末試料で得た格子定数に近い計算結果が得られるよう、 2θ を逆算した。その結果を表 4 に示す。

表 4 2θ の見積もり.

a	λ	1	$\theta[\mathrm{rad}]$	$2\theta[\deg]$
5.73674607	1.39	2	0.244733355	28.04437672
5.73674607	1.54	2	0.271778272	31.14349589
5.73674607	1.39	4	0.505900419	57.97191777
5.73674607	1.54	4	0.566746084	64.94431732

表 4 から、 K_{α} 線及び K_{β} 線由来の、(0,0,2n) 面による回折角が見積もれた。図 10 のピークの うち、頂点における 2θ が、表 4 に近いものだけを抜き出したものを表 5 に示す。

表 5 NaCl 単結晶の格子定数.

2ℓ	$\theta[\deg]$	$2\theta[\mathrm{rad}]$	$G_{m\beta}$	$G_{m\alpha}$	h	k	l	a_{eta}	a_{lpha}
28	8.598	0.490932333	2.195818211	1.982945083	0	0	2	5.71996349	6.334013034
3	1.739	0.544852833	2.431301177	2.195599203	0	0	2	5.165958095	5.72053405
59	9.173	1.015803167	4.394597543	3.968564221	0	0	4	5.716109326	6.329745117
6	66.28	1.137806667	4.867753959	4.395850588	0	0	4	5.160490899	5.714479939

逆格子ベクトルの大きさ G_m および格子定数 a は、NaCl 粉末と同様の方法で計算した。 λ は表 4 のように、 K_α 線による回折は 1.543 nm、 K_β 線による回折は 1.392 nm をもちいた。各 θ にお ける a の平均をとって、格子定数は

a = 5.717771701

と求まった。

5 結論

かんとか

参考文献

- [1] 株式会社島津 https://www.shimadzu.co.jp/products/opt/guide/07.html 2019/4/12
- [2] キヤノンサイエンスラボ https://global.canon/ja/technology/s_labo/light/003/04.html 2019/04/12
- [3] 分光計器株式会社 http://www.bunkoukeiki.co.jp/technology.fiber.html 2019/04/12
- $[4]\,$ Y.P.Varshni TEMPERATURE DEPENDENCE OF THE ENERGY GAP IN SEMICONDUCTORS
- [5] キッテル固体物理学入門上第8版 p.119