

Predictive Mining for Time-Series Data

Ali Ridho Barakbah

Knowledge Engineering Research Group

Department of Information and Computer Engineering

Politeknik Elektronika Negeri Surabaya

Classification algorithms can be used

Predictive Mining

Non-time series data with numerical value prediction

Some classification algorithms can be used (NN)

- Statistical approaches for forecasting
- Some machine learning algorithms (RNN, LSTM)

Discussion today: Methods for Time-Series Data Prediction

- Simple Moving Average
- Weighted Moving Average
- Linear Regression
- Exponential Smoothing

Simple Moving Average

- Used for smoothing
- Attempts to find a local mean
- This can be done simply by taking the average of the points around the time of interest
- For example, if we are interested in a window of width k, we simply take a series of data and compute their average

$$y_{t+1} = \frac{1}{k} \sum_{i=1}^{k} y_i$$

Х	Υ		
1	32		
2	24		
3	43		
4	65		
5	57		
6	71		
7	76		
8	79		
	55.875		

k = 8

$$y = 55.875$$

Mean

Weighted Moving Average

- To give different orientation in a window of width k
- Set a series of weights for each window of the data
- Commonly, it assigns greater weighting to recent data points and less weighting on past data points
- The weighted moving average is calculated by multiplying each observation in the data set by a predetermined weighting factor.

$$y_{t+1} = \sum_{i=1}^k w_i y_i$$

Х	w	Υ	w * Y
1	1/36	32	0.89
2	2/36	24	1.33
3	3 / 36	43	3.58
4	4/36	65	7.22
5	5 / 36	57	7.92
6	6/36	71	11.83
7	7 / 36	76	14.78
8	8/36	79	17.56
36			65.11

x = 9

$$y = 65.11$$

Sum

$$k = 8$$

Linear Regression

- Regression is a measuring tool used to determine whether there is a correlation between variables
- Regression analysis is more accurate in correlation analysis because the rate of change of a variable against other variables can be determined. So in regression, forecasting or estimating the value of the dependent variable on the independent variable is more accurate
- Linear regression is a regression where the independent variable (variable X) has the highest rank of one. For simple regression, i.e. linear regression which only involves 2 variables (variables X and Y)

Linear Regression from Y to X

$$Y = a + b * X$$

where:

Y = dependent variable

X = independent variable

a = intercept

b = slope (regression coefficient)

$$a = \frac{(\Sigma Y)(\Sigma X^{2}) - (\Sigma Y)(\Sigma XY)}{(n)(\Sigma X^{2}) - (\Sigma X)^{2}}$$
$$b = \frac{(n)(\Sigma XY) - (\Sigma X)(\Sigma Y)}{(n)(\Sigma X^{2}) - (\Sigma X)^{2}}$$

X	Υ	X ²	XY
1	32	1	32
2	24	4	48
3	43	9	129
4	65	16	260
5	57	25	285
6	71	36	426
7	76	49	532
8	79	64	632
36	447	204	2344

Sum

$$n = 8$$

$$a = \frac{(\Sigma Y)(\Sigma X^{2}) - (\Sigma Y)(\Sigma XY)}{(n)(\Sigma X^{2}) - (\Sigma X)^{2}}$$

$$= \frac{(447 * 204) - (36 * 2344)}{(8 * 204) - (36 * 36)}$$

$$= 20.25$$

$$b = \frac{(n)(\Sigma XY) - (\Sigma X)(\Sigma Y)}{(n)(\Sigma X^2) - (\Sigma X)^2}$$
$$= \frac{(8*2344) - (36*447)}{(8*204) - (36*36)}$$
$$= 7.9167$$

$$Y = a + b X$$

= 20.25 + 7.9167 * X

$$x = 9$$

$$y = 20.25 + 7.9167 * 9$$

= 20.25 + 71.2503
= 91.5003

Exponential Smoothing

- Forecasting is based on past forecasting errors that are used for subsequent forecasting corrections
- Calculated based on the results of forecasting + previous forecasting errors
- Do iteratively over time k

$$F_{t+1} = \alpha D_t + (1-\alpha) F_t$$

where:

 F_{t+1} = Prediction value in period t+1

 F_t = Prediction value in period t

 D_t = Actual value in period t

 α = weight

$$\alpha = 70\%$$

t	D_t	F _t	αD_t	(1- α) F_t	F _{t+1}
1	32	-	-	-	32
2	24	32	16.80	9.60	26.40
3	43	26.40	30.10	7.92	38.02
4	65	38.02	45.50	11.41	56.91
5	57	56.91	39.90	17.07	56.97
6	71	56.97	49.70	17.09	66.79
7	76	66.79	53.20	20.04	73.24
8	79	73.24	55.30	21.97	77.27

$$t = 9 \implies D_t = 77.27$$

Prediction Evaluation

Mean Absolute Error (MAE) =
$$\frac{\sum_{t=1}^{N} |d_t - d_t'|}{N}$$

Mean Squared Error (MSE) =
$$\frac{\sum_{t=1}^{N} (d_t - d_t')^2}{N}$$

Mean Absolute Percent Error (MAPE) =
$$\frac{100}{N} \sum_{t=1}^{N} \left[\left| \frac{d_t - d_t'}{d_t} \right| \right]$$

$$MAE = \frac{2+1+1+2}{4} = 1.5$$

$$MSE = \frac{4+1+1+4}{4} = 2.5$$

MAPE =
$$\frac{100}{4} \left[\frac{2}{5} + \frac{1}{4} + \frac{1}{5} + \frac{2}{5} \right]$$

= 31.25

- Actual value
- Prediction value

