

h(125)→aa→xxxx

TOYOKO ORIMOTO ANDREA MASSIRONI TANVI WAMORKAR

30th October 2017 HGG Meeting

4y IN A NUTSHELL

The possibility of light scalars is a very well established scenario

- The usual suspects (N)MSSM, SM +Singlet ,etc have a subdominant BR (a -> γγ)
 - Non trivial extensions can suppress a -> fermions
 - The 4γ final state is SM background free and we take advantage of the high online/offline reconstruction + identification efficiency
- The existing studies show sensitivity for discovery down to Br(h(125)→aa→χχχχ) ~ 10⁻⁵ for 300/fb@14TeV [hep-ph/0608310]
 - Existing study from ATLAS $h \rightarrow \gamma \gamma$ analysis reinterpreted as $h \rightarrow aa \rightarrow 4\gamma$ search with M(a) < 1 GeV (collimated photons) (only 7 TeV data) [ATLAS-CONF-2012-079]

SAMPLES BEING USED

DATA:

- Double EG re-Mini AOD dataset
- Corresponds to 35.87 fb⁻¹ for 2016

Signal MC:

- Generated using PYTHIA 8
- Officially produced Summer16 samples <u>DAS Link</u>
- m(a) = 0.1 GeV and 1GeV 60 GeV in steps of 5 GeV

Background:

DiPhotons + Jets

DiPhotonJetsBox_M40_80-Sherpa DiPhotonJetsBox_MGG-80toInf_13TeV-Sherpa

Photons + Jets

GJet_Pt-20toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8 GJet_Pt-20to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 GJet_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8

• QCD

QCD_Pt-30to40_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-40toInf_DoubleEMEnriched_MGG-80toInf_TuneCUETP8M1_13TeV_Pythia8 QCD_Pt-30toInf_DoubleEMEnriched_MGG-40to80_TuneCUETP8M1_13TeV_Pythia8

ANALYSIS STRATEG Events w/ Trigger y ID Selection Selection 4 Photon Category 4 γ's H4G 3 γ's All Pre-3 Photon Category Selection **Events Trees** 2 γ's 2 Photon Category 2γ Category 4γ Category 3γ Category

- Pre-Selection : At least 4 γ with $E_T > 15$ GeV and $|\eta| < 2.5$ Good γ 's
- γ-ID Selection: At least 4 good γ's that pass the Hgg MVA ID requirement
 - photonIDMVA > -0.9 for both EB and EE: eliminates a significant fraction of non prompt photons + conserves ~99% efficiency for prompt photons
- Signal extraction to be done by means of Parametric fit to the M(4γ) distribution

TRIGGER

- Online selection is identical to the Low mass h→χχ search
- Trigger Paths:
 - HLT_Diphoton30EB_18EB_R9Id_OR_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
 - Fired by γ's only reconstructed in the Barrel
 - HLT_Diphoton30PV_18PV_R9Id_AND_IsoCaloId_AND_HE_R9Id_DoublePixelVeto_Mass55
 - γ's reconstructed in the Barrel and Endcap

- 4 Photons in the final state 6 Di Photon combinations
- At-least one of the combinations has M(γγ) > 55GeV

Trigger requirement of $M(\gamma\gamma) > 55$ GeV

4 PHOTON CATEGORY

- All 4 γ's are well isolated
- Plots showing Background and Signal MC comparison

4 PHOTON CATEGORY (2)

Blinding region: 115 < M(yyyy) < 130 GeV

Signal region plots

QCD contribution scaled to match Data

3 PHOTON CATEGORY

Plots showing Background and Signal MC comparison

m(a) = 20,15,10,5 GeV

200

3 PHOTON CATEGORY (2)

Signal region plots

QCD contribution scaled to match Data

2 PHOTON CATEGORY

Plots showing Background and Signal MC comparison

2 PHOTON CATEGORY (2)

Blinding region: M(yy) < 130 GeV

Signal region plots

50 60 70

35.87 fb⁻¹ (13TeV)

CMS Preliminary

Normalized Yields

10⁴ |≡

10³

10

Distinguish 2 Photon category signal from the H(125)→xx

 Compare shower shape variables for m(a) = 0.1 GeV (2 photon category) signal and H(125)→χχ signal

H(125)⊸ɣɣ signal

Distinguish 2 Photon category signal from the H(125)→xx (2)

 Compare shower shape variables for m(a) = 0.1 GeV (2 photon category) signal and H(125)→χχ signal

SUMMARY

- Analysis strategy for Higgs decay into 4 photons h(125)→aa→χχχχ was presented
- 4 photon, 3 photon and 2 photon category Background MC and Data comparison plots shown
- Background MC will be used to validate the simulation of our signal description and for analysis development
- Signal extraction and background modeling to be done based on data

TO DO

- To distinguish 2 Photon category from H(125)→χχ
 - Train an MVA variable using the shower shape variables
- For background and Signal Modeling
 - Use the Discrete profiling method (directly on data)
- Start Documentation

BACKUP

SIGNAL EFFICIENCIES

