\$5 TO 1

Paralymeth Cherically Greeks

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Design a 11ebb net to implement logical AND function

Initially the weights and bias are set to o $: w_1 = w_2 = b = 0$

set the initial weights as old weights and apply hebb rule.

$$\omega$$
 (new)= ω (old)+ $\Delta \omega$
 $\Delta \omega = 2y$
 $\Delta \omega_1 = 2y = 1 \times 1 = 1$
 $\Delta \omega_2 = 2y = 1 \times 1 = 1$
 $\Delta b = y = 1$

Pacheonal house and training

T IS SIEVE WEARINGING OF MESTIVOROSTY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

$$w_1(naw) = w_1(old) + \Delta w_1$$
 $= 0 + 1 = 1$
 $w_2(naw) = w_2(old) + \Delta w_2$
 $= 0 + 1 = 1$
 $b(naw) = b(old) + \Delta b$
 $= 0 + 1 = 1$

New weight and bias vectors = [1 1 1]

Second input [2, 2 b] = [1 -1 +]
 $b = y = -1$
 $\Delta w_1 = 2_1 y = +1 *(-1) = -1$
 $\Delta b = y = -1$
 $\Delta b = y = -1$
 $w_1(naw) = w_1(old) + \Delta w_1$
 $= 1 + (-1) = 0$
 $w_2(naw) = w_2(old) + \Delta w_2$
 $= 1 + 1 = 2$
 $b(naw) = b(old) + \Delta b$
 $= 1 - 1 = 0$

Parshyanath Charleads Trusta

A P. SINI INSTITUTE OF THE CINOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

$$\Delta \omega_1 = \chi_1 y = C - 1) * C - 1) = 1$$

$$\Delta \omega_2 = \chi_2 y = C + 1) * C - 1) = -1$$

$$\Delta b = y = -1$$

$$\omega = C + 1$$

$$\therefore \omega_1 (\Omega ew) = \omega_1 (Old) + \Delta \omega_1$$
$$= 0 + 1 = 1$$

$$\omega_2(\text{new}) = \omega_1(\text{old}) + \Delta\omega_2$$

= 2+CD=1

Parahymenh Charled Grants

A P SINI MUSHHUMA OF THEORING A

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

$$\Delta \omega_1 = 2iy = C-i) * C-i) = 1$$
 $\Delta \omega_2 = 22y = C-i) * (-i) = 1$
 $\Delta b = y = -1$
 $= u_1 \text{ (new)} = \omega_1 \text{ (old)} + \Delta \omega_1$
 $= 1+1=2$
 $\omega_2 \text{ (new)} = \omega_2 \text{ (old)} + \Delta \omega_2$
 $= 1+1=2$

$$b \quad Cnew) = b(old) + \Delta b$$
$$= -1 - 1 = -2$$

: Final weight and bias vectors: [2 2 -2]

fig. Hebb Netwook for AND function

Parthymath Charled Guers

T B SIMI MAINIMINE OF THER INDICES.

SUPPLIES SCHOOL STATES

(Approved by AICTE New Delhi & Govt. of Maharashtra, Affiliated to University of Mumbai) (Religious Jain Minority)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Network Test:

For
$$21 = 1$$
 $22 = 1$ $b = 1$
 $9 = 2 + 2 - 2 = 2$ (positive value)

For
$$a_1 = 1$$
 $a_2 = -1$ $b = 1$
 $y = 2 - 2 - 2 = -2$ (-vo value)

For
$$\chi_1 = -1$$
 $\chi_2 = 1$ $b = 1$
 $y = -2 + 2 - 2 = -2$ ($\forall e \forall alue$)

$$y = -2 - 2 - 2 = -6$$
 (-ve value)