# Day 25 Perpetual Options

Kerry Back BUSI 521–ECON 505 Rice University Spring 2022

### Set-up

Single risky asset with price S and constant volatility  $\sigma$ , single Brownian motion, constant risk-free rate

Dividend paid by risky asset in time period dt is  $qS_t dt$  for constant q ("dividend yield")

Total return is

$$\frac{\mathrm{d}S + qS\,\mathrm{d}t}{S} = \frac{\mathrm{d}S}{S} + q\,\mathrm{d}t$$

Total expected return under RNP is risk-free rate, so

$$\frac{\mathrm{d}S}{S} = (r - q)\,\mathrm{d}t + \sigma\,\mathrm{d}B^*$$

for a risk-neutral Brownian motion B\*

## Perpetual Call

Perpetual call option with strike K

Why exercise? To capture the dividend. But the asset price and dividend must be high enough before it is optimal to do so.

An example of a strategy is to pick a number x and exercise the first time  $S_t$  gets up to x. The optimal strategy will be of this type.

The problem of finding the optimal exercise time is in the class of problems often called optimal stopping.

## **Exercise Boundary**

We will first calculate the value if we exercise the first time  $S_t$  gets up to x for an arbitrary  $x > S_0$ .

Let  $\tau = \inf\{t \mid S_t \ge x\}$ . This is called the hitting time of x.

By the time-homogeneity of S, the value at any  $t < \tau$  depends only on  $S_t$ . Call it  $f(S_t)$ .

More formally,

$$f(s) = \mathsf{E}^*[\mathrm{e}^{-r\tau}((x-K) \mid S_0 = s] = \mathsf{E}^*[\mathrm{e}^{-r(\tau-t)}(x-K) \mid S_t = s]$$



#### Fundamental ODE

The fundamental ODE is

$$\frac{\mathsf{drift}^* \; \mathsf{of} \; f}{f} = r$$

which is

$$(r-q)Sf' + \frac{1}{2}\sigma^2S^2f'' = rf$$

Trying a power solution  $f(S) = S^{\gamma}$ , we see that f satisfies the ODE if and only if

$$(r-q)\gamma + \frac{1}{2}\sigma^2\gamma(\gamma-1) = r$$

The quadratic formula shows that there are two real roots of this equation. One is negative and the other is greater than 1.

# General Solution and Boundary Conditions

Let  $\gamma=$  absolute value of negative root, and  $\beta=$  positive root. The general solution of the ODE is

$$aS^{-\gamma} + bS^{\beta}$$

for constants a and b that must be determined by boundary conditions.

The value f of the call exercised at the hitting time of x satisfies f(0) = 0 and f(x) = x - K. The condition f(0) = 0 implies a = 0, and the condition f(x) = x - K implies  $b = (x - K)x^{-\beta}$ .

The value of the call is

$$f(S_t) = (x - K) \left(\frac{S_t}{x}\right)^{\beta}$$

# **Optimal Stopping**

To optimize, maximize  $(x - K) \left(\frac{S_t}{x}\right)^{\beta}$  over x. The factor  $S_t^{\beta}$  is a positive constant and is irrelevant for determining the optimum, so we can maximize

$$(x - K)x^{-\beta} = x^{1-\beta} - Kx^{-\beta}$$

The FOC is

$$(1-\beta)x^{-\beta} + \beta Kx^{-\beta-1} = 0$$

Equivalently,

$$(1-\beta)x + \beta K = 0$$

So,

$$x^* = \frac{\beta}{\beta - 1} K$$

# Perpetual Put

Recall that the general solution of the ODe is  $f(s) = as^{-\gamma} + bs^{\beta}$ .

For a put, we exercise the first time  $S_t$  drops to a boundary x. The boundary conditions for a put are  $f(\infty) = 0$ , and f(x) = K - x. The condition  $f(\infty) = 0$  implies b = 0. The condition f(x) = K - x implies  $a = (K - x)x^{\gamma}$ .

So, the put value is

$$f(S_t) = (K - x) \left(\frac{x}{S_t}\right)^{\gamma}$$

The FOC for maximizing over x is

$$\gamma K x^{\gamma - 1} - (1 + \gamma) x^{\gamma} = 0$$

Maximizing over x yields  $x^* = \gamma K/(1 + \gamma)$ .

