Learning Resource

On

Software Project Management

Unit-1: Part-1

Prepared By:
Kunal Anand
Assistant Professor, SCE
KIIT, DU, Bhubaneswar-24

Talkflow

This part includes the brief discussion on:

- Definition of Software Project Management (SPM)
- How are software products different from other kinds of projects?
- Components of SPM
- Activities covered under SPM
- Challenges and Opportunities in SPM
- Tools and Techniques in SPM
- Managing human and technical resources
- Setting Objectives
- Project success/failure

Software & Project

Software

- A collection of programs
- Combined in a package
- To perform different applications

Project

- A temporary activity but with a proper plan
- Performed by people in formally organized group
- To produce a unique product or service by adopting standard establishment and practices.

Characteristics of Projects

A task is more 'project-like' if it is:

- Non-routine
- Planned
- Aiming at a specific target
- Carried out for a customer
- Carried out by a temporary workgroup
- Involving several specialisms
- Made up of several different phases
- Constrained by time and resources
- Large and/or complex

Management

- According to **Harold Koontz**, "Management is the art of getting the work done through people in formally organized groups."
- Management is an individual or group of individuals that accepts the responsibilities to run an organization.
- The salient features of management:
 - It is one or group of individuals who plan, organize, direct and control all the essential activities of the organization.

Features of Management

- They don't work alone; rather, they motivate people to do the work and coordinate all the activities to achieve well-defined objectives.
- Management is a continuous and never-ending process.
- It is "Result Oriented".
- It is dynamic in nature.
- Management may be aided but not replaced by computers.
- It follows established principles and rules.

Why is Project Management important?

- Large amounts of money are spent on ICT e.g., the UK government in 2003-4 spent £2.3 billion on contracts for ICT and only £1.4 billion on road building
- Projects often fail Standish Group claim only a third of ICT projects are successful. 82% were late, and 43% exceeded their budget.
- Poor project management is one of the major factors in these failures,

Are software projects different from other projects?

- Software projects differ from other type of projects in following aspects:
 - Tangible vs nontangible
 - Complexity
 - Flexibility
 - Invisibility

The above issues make software more problematic to build than other engineered artifacts.

Projects can be:

- In-house: clients and developers are employed by the same organization
- Out-sourced: clients and developers employed by different organizations
- 'Project Manager' could be:
 - a 'contract manager' in the client organization
 - a technical project manager in the supplier/services organization

Components of SPM

• SPM involves planning, executing, and controlling software projects to meet specific goals within constraints such as time, budget, and resources. The key components of software project management include:

- Project Planning

- Scope Definition: Identifying project goals, deliverables, and boundaries.
- Requirements Gathering: Documenting functional and non-functional requirements.
- Work Breakdown Structure (WBS): Dividing tasks into manageable sections.
- Scheduling: Creating timelines with milestones and deadlines.
- Resource Planning: Allocating human, technological, and financial resources. 10

• Project Estimation

- Time Estimation: Calculating the time required for each task or phase.
- Cost Estimation: Budgeting for development, tools, and contingencies.
- Effort Estimation: Determining the number of hours or days required for tasks.

• Risk Management

- Risk Identification: Spotting potential risks early in the project.
- Risk Analysis: Assessing the likelihood and impact of risks.
- Risk Mitigation Planning: Developing strategies to minimize or handle risks proputer Engineering

• Team Management

- Role Definition: Assigning clear roles and responsibilities to team members.
- Communication Management: Establishing channels and tools for effective collaboration.
- Motivation and Leadership: Ensuring team morale and resolving conflicts.

• Quality Management

- Quality Assurance (QA): Establishing processes to ensure high-quality deliverables.
- Quality Control (QC): Testing and validating the software against requirements.
- Standards Compliance: Adhering to industry and organizational standards computer Engineering

contd..

Project Monitoring and Control

- Progress Tracking: Monitoring timelines and deliverables.
- Performance Metrics: Measuring productivity and quality.
- Issue Management: Identifying and resolving problems quickly.

• Stakeholder Management

- Engagement: Keeping stakeholders informed and involved.
- Expectation Management: Aligning project deliverables with stakeholder needs.
- Feedback Integration: Incorporating stakeholder input into project adjustments.

contd..

• Configuration Management

- Version Control: Managing changes to software artifacts.
- Baseline Management: Maintaining approved versions of deliverables.
- Change Control: Handling requests for modifications systematically.

Delivery and Deployment

- Implementation Planning: Defining deployment processes.
- User Training: Providing necessary documentation and training to users.
- Post-Deployment Support: Ensuring smooth transition and addressing issues after launch.

•14

• Project Closure

- Final Review: Ensuring all objectives are met and deliverables are accepted.
- Documentation: Archiving lessons learned, project reports, and artifacts.
- Handover: Transitioning the system to maintenance teams or end-users.
- Each of these components contributes to the success of software projects by ensuring a structured approach to meeting project objectives.

Activities covered by project management

- Feasibility study: The sole purpose is to decide whether the project is doable.
- **Planning:** If the feasibility study indicates the proposed work is viable, then the project planning can start. Here, the essential aspects like scheduling, budget and resource allocation, staffing, etc., are planned.
- Execution: Once the above two steps are done, one can start with the project execution. Usually, the execution contains two sub-phases named design and implementation.

Challenges and Opportunities in SPM

• SPM involves both challenges and opportunities. Understanding these can help managers anticipate potential issues and leverage available advantages to ensure project success.

• Challenges in SPM

- Unclear Requirements: Incomplete or changing requirements can disrupt project plans. It can leads to scope creep, rework, and potential project failure.
- Time Constraints: Unrealistic deadlines can compromise quality. It Causes stress, rushed deliverables, and potential burnout.
- Budget Limitations: Financial constraints may limit resources and tools. It affects quality, delivery timelines, and team satisfaction.

contd..

- **Team Collaboration:** Poor communication and lack of alignment can cause inefficiencies. It leads to delays and conflicts within the team.
- Technical Challenges: Complex technologies or unproven tools may introduce risks. It causes delays and increases debugging or redevelopment efforts.
- **Risk Management:** Failure to identify and mitigate risks early. It leads to unplanned issues and cost overruns.
- Quality Assurance: Balancing speed with maintaining high standards. Risk of delivering subpar software.
- Adapting to Change: Rapid changes in technology or market demands. It requires flexibility, often disrupting the original plan.

• Opportunities in SPM

– Innovation in Tools and Processes:

- Opportunity: Leverage advanced project management tools (e.g., Agile, DevOps).
- Benefit: Improves efficiency, collaboration, and tracking.

– Global Talent Pool:

- Opportunity: Access skilled professionals worldwide.
- Benefit: Enhances expertise and innovation.

– Agile Methodologies:

- Opportunity: Implement flexible frameworks for iterative development.
- Benefit: Allows faster adaptation to changing requirements.

 School of Computer Engineering

• Improved Communication Technology:

- Opportunity: Use tools like Slack, Zoom, or MS Teams for collaboration.
- Benefit: Bridges communication gaps in distributed teams.

• Data-Driven Decision-Making:

- Opportunity: Use analytics and performance metrics to guide decisions.
- Benefit: Identifies bottlenecks and optimizes resource allocation.

Automation in Testing and Deployment:

- Opportunity: Automate repetitive tasks such as code testing.
- Benefit: Reduces manual errors and accelerates delivery.

• Focus on Sustainability:

- Opportunity: Adopt eco-friendly and cost-efficient practices.
- Benefit: Aligns with organizational goals and public sentiment.

Scalability and Cloud Technology:

- Opportunity: Use cloud platforms for flexible infrastructure.
- Benefit: Facilitates seamless scaling and efficient resource usage.

• Emphasis on Soft Skills:

- Opportunity: Invest in leadership and interpersonal skills.
- Benefit: Builds cohesive teams and effective
 communication.
 School of Computer Engineering

• Enhanced Stakeholder Engagement:

- Opportunity: Involve stakeholders through collaborative planning.
- Benefit: Ensures alignment and increases project acceptance.
- By addressing these challenges proactively and seizing opportunities strategically, software project managers can enhance the chances of project success while driving innovation and value creation.

Tools and Techniques in SPM

Tools in SPM

Project Planning Tools:

- Examples: Microsoft Project, Smartsheet, Monday.com, Asana.
- Purpose: Create project plans, timelines, and schedules.

– Collaboration and Communication Tools:

- Examples: Slack, Microsoft Teams, Zoom, Google Workspace.
- Purpose: Facilitate team communication and file sharing.

– Version Control Systems:

- Examples: Git, GitHub, Bitbucket, GitLab.
- Purpose: Manage code versions and track changes collaboratively. School of Computer Engineering •23

contd..

Task and Workflow Management Tools:

- Examples: Jira, Trello, ClickUp, Wrike.
- Purpose: Track tasks, assign responsibilities, and visualize workflows.

Risk Management Tools:

- Examples: RiskWatch, Active Risk Manager (ARM).
- Purpose: Identify, analyze, and mitigate risks.

Resource Management Tools:

- Examples: Resource Guru, Hub Planner, TeamGantt.
- Purpose: Manage resource allocation and availability.

Quality Assurance (QA) Tools:

- Examples: Selenium, TestRail, JMeter, Postman.
- Purpose: Automate and manage testing processes.

• Documentation Tools:

- Examples: Confluence, Notion, Microsoft OneNote.
- Purpose: Create and manage project documentation.

• Time Tracking and Reporting Tools:

- Examples: Toggl, Harvest, Clockify.
- Purpose: Track time spent on tasks and generate reports.

• Agile Tools:

- Examples: Rally, Azure DevOps, Scrumwise.
- Purpose: Support Agile methodologies like Scrum and Kanban.

Budgeting and Financial Tools:

- Examples: QuickBooks, Planview, Scoro.
- Purpose: Manage project budgets and financial planning.

• Deployment and Integration Tools:

- Examples: Jenkins, Kubernetes, Docker, Ansible.
- Purpose: Automate CI/CD pipelines and deployment processes.

Techniques in SPM

- Work Breakdown Structure (WBS): Breaking down the project into smaller, manageable tasks.
- Critical Path Method (CPM): Identifying the sequence of tasks that determine the project duration.
- PERT (Program Evaluation Review Technique): Estimating project duration using optimistic, pessimistic, and most likely time estimates.

contd..

- **Agile Methodologies:** Frameworks like Scrum, Kanban, and SAFe for iterative development.
- Gantt Charts: Visualizing project schedules and timelines.
- Earned Value Management (EVM): Measuring project performance against scope, schedule, and budget.
- **Kanban Boards:** Visualizing task progress in columns (e.g., To Do, In Progress, Done).
- Risk Assessment Techniques: Tools like SWOT Analysis, Risk Matrices, and Monte Carlo simulations.
- MoSCoW Prioritization: Categorizing tasks as Must-have, Should-have, Could-have, and Won't-have.
- Rapid Prototyping: Building quick prototypes for early feedback.

- Continuous Integration and Continuous Deployment (CI/CD): Automating code integration and deployment to enhance reliability.
- Stand-Up Meetings: Short, daily team meetings to review progress and address blockers.
- Change Control Processes: Systematically evaluating and approving project changes.
- Root Cause Analysis (RCA): Investigating the cause of problems and preventing recurrence.
- By using these tools and techniques effectively, software project managers can enhance team collaboration, minimize risks, and ensure successful project delivery.

Managing Human Resources

- Managing human resources in SPM is crucial for ensuring that the right people are in the right roles, effectively collaborating to achieve project goals.
- It involves planning, organizing, and leading the team to optimize productivity and maintain motivation.
- Stakeholders: These are people who have a stake or interest in the project. They could be users/clients or developers/implementers.
- They could be:
 - Within the project team
 - Outside the project team, but within the same organization
 - Outside both the project team and the organization.
- Need to define common project objectives.

contd..

• Key Aspects of Human Resource Management in Software Projects

• Resource Planning:

- Role Identification: Define roles and responsibilities for developers, testers, designers, and other team members.
- Skill Mapping: Match team members' skills to project requirements.
- Resource Allocation: Ensure efficient use of available personnel for each phase of the project.

Team Building

- **Hiring and Onboarding:** Recruit individuals with the required technical and soft skills.
- **Training:** Provide necessary training on tools, technologies, or methodologies (e.g., Agile, DevOps).
- Team Cohesion: Foster collaboration and trust among team members.

School of Computer Engineering

• Defining Roles and Responsibilities

- Clearly outline roles such as project manager, business analyst, developer, tester, and UI/UX designer.
- Set expectations for deliverables and performance metrics.

• Communication Management

- Channels: Use tools like Slack, Teams, or email to facilitate clear communication.
- Meetings: Schedule regular team meetings, stand-ups, or one-on-ones.
- Feedback: Establish a system for ongoing performance feedback.

• Conflict Resolution

- Address conflicts promptly and fairly to maintain a harmonious team environment.
- Encourage open communication to resolve misunderstandings or misalignments.

Motivation and Leadership

- Incentives: Offer bonuses, flexible work options, or growth opportunities.
- Support: Provide emotional support and guidance to help team members manage stress.

• Time Management

- Scheduling: Ensure team members have realistic workloads and deadlines.
- Prioritization: Help the team focus on high-priority tasks. •32

Retention and Succession Planning

- Retention: Offer career growth, competitive compensation,
 and a positive work environment.
- Succession Planning: Prepare backups for key roles to ensure continuity in case of turnover.

Challenges in Managing Human Resources

- Skill Gaps: Addressing shortages in required technical expertise.
- Team Dynamics: Managing diverse personalities and work styles.
- Remote Collaboration: Ensuring productivity in geographically dispersed teams.
- Burnout: Balancing workloads to prevent team fatigue.
- Attrition: Managing the impact of key team members leaving mid-project.

Managing Technical Resources

- Managing technical resources in SPM involves effectively planning, allocating, and utilizing the tools, infrastructure, and technologies required for successful project delivery.
- This ensures that technical assets are available, optimized, and aligned with project goals.
- Key Aspects of Technical Resource Management
 - Resource planning: Identify existing technical resources.
 Determine additional resources needed based on project requirements. Plan costs for procuring and maintaining technical resources.
 - Technology selection: Choose appropriate tools for development, testing, deployment, and project management. Select technologies and frameworks that align with the project's needs.

Infrastructure management

- Development Environment: Set up workstations, servers, and network configurations.
- Test Environment: Provision staging and testing environments that mimic production.
- Continuous Integration/Continuous Deployment (CI/CD): Implement automated pipelines for efficiency.
- Version Control: Use tools like Git, GitHub, or Bitbucket for managing code versions.

- Resource allocation:

- Ensure timely procurement and renewal of software licenses.
- Allocate sufficient computational resources to avoid bottlenecks.

 School of Computer Engineering

 •35

contd..

- Performance monitoring: Track the utilization of technical resources to prevent overuse or underuse. Use tools like New Relic or AWS CloudWatch for real-time monitoring of systems.
- Security management: Access control, Data protection,
 Threat detection
- Scalability and Flexibility: Utilize services like AWS,
 Azure, or Google Cloud to handle growing demands.
- Training and Documentation: Train the team on how to use specific tools and technologies effectively. Maintain documentation for tools, configurations, and troubleshooting.

contd..

Lifecycle Management

- Procurement to Retirement: Plan the acquisition, maintenance, and eventual decommissioning of technical assets.
- Upgrades: Regularly update tools and technologies to remain compatible with industry standards.

Challenges in Managing Technical Resources

- Budget Constraints: High costs of tools, infrastructure, and licenses.
- Rapid Technological Change: Keeping up with emerging technologies and trends.
- Overuse or Underutilization: Inefficient resource allocation leading to wastage or shortages.
- Security Risks: Protecting resources from cyber threats and unauthorized access.

School of Computer Engineering

Setting Objectives

- Objectives focus on the desired outcomes of the project rather than tasks within it.
- Need for a project authority who sets the project scope and allocates/approves costs.
- Could be one person or a group like a Project Board,
 Project Management Board, Steering committee
- Informally, the objective of a project can be defined by completing the statement:

"The project will be regarded as a success if.......

• Objectives are like post-conditions for the project, focus on what will be put in place, rather than how activities will be carried out.

Goals/sub-objectives

- These are steps along the way to achieving the objective. Informally, these can be defined by completing the sentence
- To reach objective X, the following must be in place

A.	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
Β.	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
C.								_							et	

Often, a goal can be allocated to an individual.

- Individuals might have the capability of achieving goals on their own, but not the overall objective e.g.
 - Overall objective user satisfaction with software product
 - Analyst goal accurate requirements
 - Developer goal reliable software

Measures of Effectiveness

- Measure of effectiveness is a practical method of checking that an objective has been met.
 - How do we know that the goal or objective has been achieved?
 - By a practical test, that can be objectively assessed.
 - e.g., for user satisfaction with software products:
 - Repeat business they buy further products from us
 - Number of complaints − if low etc.

Project Success/Failure

• Degree to which objectives are met

- In general, if, for example, the project is running out of time, this can be recovered by reducing scope or increasing costs.
- Similarly, costs and scope can be protected by adjusting other corners of the 'project triangle'.

Reasons for Project Failure

- Reasons that make a project "Failure":
 - Insufficient resources
 - Unrealistic timeline
 - Unclear specifications
 - Change in scope
 - Disagreement among the stakeholders
 - Bad planning
 - Absence of suitable project management mechanism.

How a Project gets to success???

- Factors contributing to the success of a project include:
 - A comprehensive, realistic plan.
 - The plan must be up-to-date.
 - Resolving conflicts among stakeholders to gain consensus over the outcome.
 - Reasonable resource requirements and their optimal utilization.
 - Build an efficient team and take good care of them.
 - Stakeholders must be informed on a regular basis.
 - Willingness to change or try new ideas.
 - Be not only a manager but also a leader.