General Physics Equation Summary Sheet

SI UNITS	
Length	m
Mass	kg
Time	S
Electric current	Α
Temperature	K
Luminous intensity	Cd
DERIVED UNI	TS
Volume	m ³
Force	N
Energy/Work	J
Power	W
Pressure	Pa
Charge	С
Resistance	Ω
Capacitance	F
METRIC PREFIX	KES
Terra	10 ¹²
G iga	10 ⁹
Mega	10 ⁶
k ilo	10 ³
centi	10 ⁻²
milli	10-3
μicro	10 ⁻⁶
nano	10 ⁻⁹
pico	10 ⁻¹²
femto	10 ⁻¹⁵
atto	10 ⁻¹⁸

Gei	ici ai P	ilysics Equa	
	KINE	MATICS	
Δx		Displacement	
$v = \frac{1}{2}$	<u>∆x</u> ∆t	Velocity	
	<u>\range v</u> \range t	Acceleration	
	<u>No</u>	<u>Uniform</u>	
Acce	<u>eleration</u>	<u>Acceleration</u>	
$\Delta x = v$	∨t	$\Delta x = v_{avg}t$	
		$\Delta x = v_i t + \frac{1}{2}at^2$	
		$v_f^2 = v_i^2 + 2a\Delta x$	
		v _f = v _i + at	
	Position	ı vs Time	
Position o	slope = $\frac{\Delta x}{\Delta t}$ = velocity		
OO Time			
Velocity vs Time			
elocity	slope = $\frac{\Delta v}{\Delta t}$	√ t = acceleration Time	
Velc	area = displacement		

MECHANICS			
	Newton's L	aws of Motion	
1 st Law	If $\Sigma F = 0$, then	n v = constant	
2 nd Law	ΣF = ma		
3 rd Law	$F_{1\to 2} = -F_{2\to 1}$		
$F_{g} = G \frac{m_1 m_2}{r^2}$		Gravity	
$G = 6.67 \times 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$		Gravitational Constant	
W = mg		Weight	
$F_{fmax} = \mu_s F_N$		Static Friction	
$F_f = \mu_k F_N$		Kinetic Friction	

WORK AND ENERGY			
$W = (F\cos\theta)d$	Work		
E = KE + U	Mechanical Energy		
$KE_i + U_i = KE_f + U_f$	Conservation of Mechanical Energy		
$KE = \frac{1}{2}mv^2$	Kinetic Energy (Translational)		
$U_{gravitational} = mgy$	Gravitational Potential Energy		
$U_{elastic} = \frac{1}{2}kx^2$	Elastic Potential Energy		
$W_{NC} = \Delta E$	Work of Nonconservative Forces		
$W_{net} = \Delta KE$	Work-Energy Theorem		
F = -kx	Hooke's Law (Spring Force)		
$P = \frac{W}{\Delta t} = Fv$	Power		

MOMENTUM AND COLLISIONS		
p = mv	momentum	
FΔt = Δp	Impulse-Momentum Theorem	
Elastic Collisions	Perfectly Inelastic Collisions	
$p_i = p_f$	$p_i = p_f$	
$KE_i = KE_f$	KE _i > KE _f	

ROTATIONAL KINEMATICS							
		Linear Angul		Angul	ar	Relation	
Displace	ement		Δχ	Δθ		$\Delta x = r \Delta \theta$	
Velocity	,	$v = \frac{\Delta x}{\Delta t}$		$\omega = \frac{\Delta \theta}{\Delta t}$		v = rω	
Acceler	ation	$a = \frac{\Delta v}{\sigma}$ $\alpha = \frac{\Delta v}{\sigma}$		$\alpha = \frac{\Delta \alpha}{\Delta}$	_	a = r α	
No Acc	eleration	on Uniform Acceleration			eleration		
linear	angula	r	linear		ar	ngular	
$\Delta x = vt$	$\Delta\theta = \omega t$	-	$\Delta x = v_{avg}t$		$\Delta\theta = \omega_{avg}t$		
			$\Delta x = v_i t + \frac{1}{2}at^2$		Δθ	$\theta = \omega_i t + \frac{1}{2}\alpha t^2$	
		,	$v_f^2 = v_i^2 + 2a\Delta x$		ωf	$e^2 = \omega_i^2 + 2\alpha\Delta\theta$	
		,	v _f = v _i + at		$v_f = v_i + at$ $\omega_f = \omega_i + \alpha t$		$=\omega_i + \alpha t$

UNIFORM CIRCULAR **MOTION**

> Centripetal Acceleration

ROTATIONA	L DYNAMICS
$\tau = F_{\perp} r$	Torque
$\tau = (Fsin\theta) r$	
I = ∑mr²	Moment of
	Inertia
$x_{CG} = \frac{\sum m_i x_i}{\sum m_i}$	Center of
$\sum m_i$	Gravity
∑F = 0	Conditions for
$\Sigma \tau = 0$	Equilibrium
Angular	Linear
Δθ	d
ω	V
α	a
_	m
τ	F
$\Sigma \tau = I \alpha$	Σ F = ma
$KE_{rot} = \frac{1}{2}I\omega^2$	KE = ½mv ²
$KE_{rot} = \frac{1}{2}I\omega^2$ $W = \tau(\Delta\theta)$	$KE = \frac{1}{2}mv^2$ $W = Fd$

ELASTICITY OF SOLIDS			
$\frac{F}{A} = Y \frac{\Delta L}{L_0}$	Stretching/Compression		
$\frac{F}{A} = S \frac{\Delta x}{h}$	Shear Deformation		
$\Delta P = -B \frac{\Delta V}{V}$	Volume Deformation		

	GASES
$P = \frac{F}{A}$	Pressure
$p_1V_1 = p_2V_2$	Boyle's Law
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	Charles' Law
$\frac{V_1}{n_1} = \frac{V_2}{n_2}$	Avogadro's Principle
$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$	Combined Gas Law
pV = nRT	Perfect Gas Law
$p_{total} = p_A + p_B + p_C +$ $p_A = \chi_A p_{total}$	Dalton's Law of Partial Pressures

A11 A51 5 11 A				
SIMPLE HARMONIC MOTION				
$x = A\cos(\omega t)$	Displacement			
$v = -A\omega sin(\omega t)$	Velocity			
$v_{max} = A\omega$				
$a = -A\omega^2\cos(\omega t)$	Acceleration			
$a_{max} = A\omega^2$				
$f = \frac{1}{T}$	Frequency / Period			
$\omega = 2\pi f = \frac{2\pi}{T}$	Frequency Factor			
1-	Frequency Factor			
$\omega = \sqrt{\frac{k}{m}}$ $\omega = \sqrt{\frac{g}{L}}$	for Springs			
g	Frequency Factor			
$\omega = \sqrt{\frac{L}{L}}$	for Pendulums			
$x = A\cos(\omega t + \phi)$	φ = phase shift			
$y(x,t) = A\cos(\omega t \pm kx)$	$\omega = 2\pi f$			
	2π			
	$k = \frac{2\pi}{\lambda}$			
Stan	ding Waves			
$\lambda f = v$	Wave Speed			
2L	String fixed at both ends			
$\lambda_{n} = \frac{1}{n} n = 1,2,3$ $4L$	Pipe open at both ends			
$\lambda_{\rm n} = \frac{4L}{-}$ $n = 1,3,5$	String fixed at one end			
$\lambda_{\rm n} = \frac{1}{n}$ $n = 1,3,3$	Pipe open at one end			
$v = \sqrt{\frac{T}{\mu}}$	Wave Velocity on a String			

FLUIDS			
$\rho = \frac{m}{V}$	Density		
$S. G. = \frac{\rho}{\rho_{H_2O}}$	Specific Gravity		
$P = \rho_{fluid} g h$	Hydrostatic Pressure (Gauge Pressure)		
$P = P_0 + \rho_{fluid} g h$	Absolute Pressure		
$F_B = W_{fluid\ displaced}$ $F_B = (\rho_{fluid})(V_{submerged})(g)$	Buoyancy Force		
% submerged = $\frac{\rho_{\text{object}}}{\rho_{\text{fluid}}} \times 100$			
$\frac{\mathbf{F_1}}{\mathbf{A_1}} = \frac{\mathbf{F_2}}{\mathbf{A_2}}$	Pascal's Principle (Hydraulic Jack)		
$A_1d_1 = A_2d_2$	Hydraulic Jack		
F = Av	Flow Rate		
$A_1v_1 = A_2v_2$	Continuity Equation		
$P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$	Bernoulli's Equation		

THERMODYNAMICS					
$C = \frac{q}{\Delta T}$		Н	Heat Capacity		
$C = \frac{q}{\Delta T}$ $C_s = \frac{C}{m}$		Sp	Specific Heat Capacity		
$C_{\rm m} = \frac{C}{n}$		М	Molar Heat Capacity		
$C_{\rm m} = \frac{C}{n}$ $C_{\rm V} = \left(\frac{\delta U}{\delta T}\right)_{\rm V}$	$=\frac{\Delta U}{\Delta T}$	Co	Constant Volume Heat Capacity		
$C_{P} = \left(\frac{\delta H}{\delta T}\right)_{P} =$	$=\frac{\Delta H}{\Delta T}$	Co	onstant Pressure	Heat Capacity	
$\Delta U = q + w$		Cł	nange in Internal	Energy	
$q = \int C_V dT$	Constant V	w	$=\int -p_{\rm ext} dV$	Universal	
$q = \int C_P dT$	Constant P	W	$r = -p\Delta V$	Constant p _{ext}	
q = -w	Constant T	$w = -nRT ln \frac{V_f}{V_i}$		Reversible, Isothermal	
H = U + pV		Er	Enthalpy		
$\Delta H = q_p$		Er	nthalpy Change a	t Constant p	
$C_P - C_V = nR$		Fo	For a Perfect Gas		
Laws of Therr	modynamics				
1 st Law E	1 st Law Energy can't be created or destroyed.			d.	
	or a spontaneo	us p	process, ΔS _{universe}	> 0.	
	A perfectly ordered crystal at OK has zero entropy.				
$\Delta S = \frac{q_{rev}}{T}$			Entropy Change		
$\Delta S = nRln \frac{V_f}{V_i} = nRln \frac{p_i}{p_f}$ $\Delta S = nC ln \frac{T_f}{T_i}$		Entropy Change during Expansion/Compression			
$\Delta S = n C \ln \frac{T_f}{T_i}$			Entropy Change during heating		

SOUND		
$v = \lambda f$	Speed of Sound	
$v = \sqrt{\frac{Y}{\rho}}$	Speed of Sound in a Metal Rod	
$v = \sqrt{\frac{P}{\rho}}$	Speed of Sound in a Gas	
$v = 331 \text{m/s} \sqrt{\frac{\text{T}}{273 \text{K}}}$	Temperature Dependence on the Speed of Sound	
$I = \frac{P}{A} = \frac{P}{4\pi r^2}$	Intensity of Sound	
$\beta = 10\log \frac{I}{I_0}$ $I_0 = 10^{-12} \frac{W}{I_0}$	Intensity Level	
m^2	5 1 5"	
$I_0 = 10^{-12} \frac{W}{m^2}$ $f_0 = f_s \frac{v \pm v_0}{v \mp v_s}$	Doppler Effect	

ELECTRIC FIELDS AND FORCES		
e = 1.602×10 ⁻¹⁹ C	Fundamental charge	
$F = \left k \frac{q_1 q_2}{r^2} \right $	Coulomb's Law	
F = qE	Force due to an Electric Field	
$E = \left k \frac{q}{r^2} \right $	Electric Field due to a Point Charge	
$\Phi_E = EA\cos\theta = \frac{Q}{\epsilon_0}$	Gauss's Law (Electric Flux)	
$V = k \frac{q}{r}$	Potential due to a Point Charge	
U = qV	Potential Energy of a Point Charge	
ΔV = -Ed	Relationship between ΔV and E	
W = qΔV	Work done against an electric field	
$W = -q\Delta V$	Work done by an electric field	

MAGNETIC FIELDS AND FORCES			
F = qvBsinθ	Magnetic Force on a Charged Particle in Motion	iB iF.	
F = BI ℓ sinθ	Magnetic Force on a Current-carrying Wire	B	
τ = BIANsinθ	Torque on a Current- Carrying Loop		
$B = \frac{\mu_0 I}{2\pi r}$	Magnetic Field Due to a Current Carrying Wire	B	
$B = N \frac{\mu_0 I}{2R}$	Magnetic Field at the Center of a Circular Current-Carrying Loop	I B	
$B = \frac{\mu_0 NI}{L} = \mu_0 nI$	Magnetic Field Inside an Ideal Solenoid	II III	

INDUCED VOLTAGES AND	O INDUCTANCE
$Φ_B = B_\perp A = BAcos\theta$	Magnetic Flux
$\epsilon = -N \frac{\Delta \Phi_B}{\Delta t}$	Faraday's Law
Δt	(Induce Emf)
$\Delta V = B \ell v_{\perp}$	Motional Emf
ε = NBA ω sin ω t	Generator Emf
$\begin{aligned} \epsilon_1 &= -N_1 \frac{\Delta \Phi_{B21}}{\Delta t} = -M \frac{\Delta I}{\Delta t} \\ \epsilon_2 &= -N_2 \frac{\Delta \Phi_{B12}}{\Delta t} = -M \frac{\Delta I}{\Delta t} \end{aligned}$	Mutual Inductance
$\begin{split} \epsilon_2 &= -N_2 \frac{\Delta \Phi_{B12}}{\Delta t} = -M \frac{\Delta I}{\Delta t} \\ \epsilon &= -N \frac{\Delta \Phi_B}{\Delta t} = -L \frac{\Delta I}{\Delta t} \\ L &= N \frac{\Delta \Phi_B}{\Delta I} = N \frac{\Delta \Phi_B}{I} \end{split}$	Self-Inductance
$\frac{\Delta V_1 I_1 = \Delta V_2 I_2}{\frac{\Delta V_1}{\Delta V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}}$	Transformers
$\epsilon = -L \frac{\Delta I}{\Delta t}$	Emf in an RL Circuit
$I(t) = \frac{\varepsilon}{R} \left(1 - e^{-\frac{t}{\tau}} \right) \qquad \tau = \frac{L}{R}$	Current in an RL Circuit
PE _L = ½ LI ²	Potential Energy Stored in an Inductor

AC (ALTERNATING CURRENT) CIRCUITS			
$\Delta V = \Delta V_{max} \sin \omega t$	AC Potential		
$\Delta V_{\rm rms} = \frac{\Delta V_{\rm max}}{\sqrt{2}}$	Rms Potential		
$\Delta I_{rms} = \frac{\Delta I_{max}}{\sqrt{2}}$	Rms Current		
$P = I_{rms}^2 R$	Power Dissipated in a Resistor		
$\Delta V_{max} = I_{max} R$ $\Delta V_{rms} = I_{rms} R$	Ohm's Law		
$X_{C} = \frac{1}{2\pi fC} = \frac{1}{\omega C}$ $\Delta V_{C,rms} = I_{rms} X_{C}$	Capacitive Reactance		
$X_{C} = 2\pi f L$ $\Delta V_{L,rms} = I_{rms} X_{L}$	Inductive Reactance		
$Z = \sqrt{R^2 + (X_L - X_C)^2}$ $\Delta V_{max} = I_{max} Z$ $\Delta V_{rms} = I_{rms} Z$	Impedance of RLC Circuits		
$f_0 = \frac{1}{2\pi\sqrt{LC}}$	Resonance Frequency in LC Circuits		

ELECTROMAGNETIC RADIATION		
$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3.0 \times 10^8 \text{m}$ /s	Speed of Light in a Vacuum	
$n = \frac{c}{v}$	Index of Refraction	
$\lambda f = v$	Wavelength/Frequency of Light	
$E_{photon} = hf$	Energy of a Photon	
$u_E = \frac{1}{2} \varepsilon_0 E^2$	Energy density of the Electric Field	
$u_{B} = \frac{1}{2\mu_{0}}B^{2}$ $I = \frac{P}{\mu_{0}}$	Energy density of the Magnetic Field	
$I = \frac{P}{A}$	Intensity of Light	
$f_{O} = f_{S} \left(1 \pm \frac{u}{c} \right)$	Doppler Effect	
$I = \frac{1}{2}I_0$	Unpolarized light	
2 10	transmitted through a	
	polarizing filter	
$I = I_0 \cos^2 \theta$	Polarized light transmitted	
	through a polarizing filter	

REFLECTION AND REFRACTION		
$\theta_{incidence} = \theta_{reflection}$	Law of Reflection	
$n_1 \sin \theta_1 = n_2 \sin \theta_2$	Snell's Law of Refraction	
$n = \frac{c}{v}$	Index of Refraction	
$\sin\theta_{critical} = \frac{n_2}{n_1}$	Critical Angle for Total Internal Reflection	
$d' = d \frac{n_2}{n_1}$	Apparent depth	

-				
MIRRORS AND LENSES				
f = ½ R		Focal Length		
$\frac{1}{-} + \frac{1}{-} = \frac{1}{4}$		Thin Mirror a		
p q f			Lens Equation	
$m = \frac{h_i}{h_o} = -$	$-\frac{q}{p}$		Magnification	า
Lens Power	r =	$\frac{1}{f_m}$	Lens Power	
f number =	$\frac{f}{D}$		F number	
		Diverging M	irror/Lens	
		р	q	f
Always		+	Ovirtual	Θ
	С	onverging N	/lirror/Lens	
p > f		⊕	(+) real	⊕
p < f		⊕	⊖ _{virtual}	⊕
q +	re	al, inverted ir		
q 😑	vir	tual, upright	image	
m 🕀	up	right		
_m \ominus	inv	verted		
m < 1		duced image		
m > 1	en	larged image		
	C	ombination	s of Lenses	
$m = (m_1) \times (m_1)$	12)		magnification	
$\frac{1}{f_{net}} = \frac{1}{f_1} + \frac{1}{f_1}$	$\frac{1}{f_2}$		Two lenses in direct contact	
1 1	1	d	Two lenses n	ot in direct
$\frac{1}{f_{net}} = \frac{1}{f_1} + \frac{1}{f_1}$	$\overline{f_2}$	$+{f_1f_2}$	contact	
Optical Instruments				
$\mathbf{M}_1 = -\frac{q_1}{p_1} \approx \frac{L}{f_o}$		Lateral magnification of objective		
$m_e = \frac{25cm}{f_e}$		Angular mag eyepiece	nification of	
$\mathbf{m} = \frac{\theta}{\theta_o} = \frac{f_o}{f_e}$		Angular mag	nification of	
$\theta_{min} \approx \frac{\lambda}{a}$		Telescope Re (Single Slit)	solution	
$\theta_{min} \approx \frac{1.22\lambda}{D}$		Telescope Re (circular aper		
D				

WAVE OPTICS		
$d \sin\theta_{\text{bright}} = m\lambda$ $y_{\text{bright}} = \frac{\lambda L}{d} m$	Bright Fringes (Double Slit Interference)	
$d \sin\theta_{dark} = (m + \frac{1}{2})\lambda$ $y_{bright} = \frac{\lambda L}{d} \left(m + \frac{1}{2}\right)$	Dark Fringes (Double Slit Interference)	
$2t = \left(m + \frac{1}{2}\right)\lambda_{film}$	Thin Film Interference Destructive Interference (No Phase Shift)	
$2t = m\lambda_{film}$	Thin Film Interference	
	Destructive Interference (Phase Shift)	
$d sin\theta_{bright} = m\lambda$	Bright Fringes (Diffreaction Grating)	
a $sin\theta_{dark} = m\lambda$	Dark Fringes (Single Slit Interference)	

CONSTANTS			
g	9.80 m/s ²	Gravitational acceleration near the	
		surface of the Earth	
G	6.67×10 ⁻¹¹ N·m ² /kg ²	Gravitational constant	
ME	5.98×10 ²⁴ kg	Mass of the Earth	
RE	6.38×10 ⁶ m	Radius of the Earth	
R	8.314 J/mol·K	Universal gas constant	
k _e	8.99×10 ⁹ N·m ² /C ²	Coulomb constant	
ϵ_0	8.85×10 ⁻¹¹ C ² /N·m ²	Permitivity of Free Space	
е	1.62×10 ⁻³¹ C	Fundamental charge	
me	9.11×10 ⁻³¹ kg	Mass of an electron	
m _p	1.67×10 ⁻²⁷ kg	Mass of a proton	
μο	4π×10 ⁻⁷ T·m/A	Permeability of Free Space	
С	3.00×10 ⁸ m/s	Speed of Light (vacuum)	