Capítulo 1

Conceptos importantes

Computadora : Máquina electronica de cálculo, compuesta por circuitos lógicos que generan conexiones.

Componentes de circuitos lógicos

- Biestable:
- PDL:
- Diac:
- Diodo:
- FGPA:
- Memoria:
- Microprocesador:
- Pila:
- Tiristor:
- Puerta lógica:
- Transistor:
- Triac:

Representación de punto flotante $a\times 10^b$ $1>|a|\geq 0.1$ exceptuando cuando a=0.0b

Tipo de datos	espacio de almacenamiento
float	4 bytes
double	8 bytes
long double	16 bytes

Error de corte:

Epsilón de la máquina (EPS): El EPS es el número más pequeño tal que (1 + EPS) > 1 para la máquina que realiza la suma. El siguiente código permite conocer el epsilón de tu computadora.

Error de redondeo: Pérdida de cifras decimales a medida que se aumenta el exponente.

Error de truncamiento

Teorema de Taylor: Si f(x) es una función suave en un intervalo abierto (a,b)

$$f(c+h) = f(c) + f'(c)h + f''(c)\frac{h^3}{2!} + f'''(c)\frac{h^3}{2!} + \dots + f^n(c)\frac{h^n}{n!}$$

que contiene a c, para un número c+h contenido en (a,b) $f(c+h)=f(c)+f'(c)h+f''(c)\frac{h^3}{3!}+f'''(c)\frac{h^3}{3!}+\ldots+f^n(c)\frac{h^n}{n!}$ El hecho de perder cifras debido a limitar el resultado a ciertas decimale es a lo que llamamos error de truncamiento.

Complejidad algorítmica y costo computacional:

Tiempo de tendencia a funciones

riempo de tendencia a ranciones	
	Tiempos lineales
$ \begin{array}{c} n^2 \\ n^3 \\ n^4 \end{array} $	Tiempos polinómicos
2^n	NP-Duro
n!	NP-Cmpleto

Convergencia

Un ciclo de cálculo se traduce a una iteración

Sea x_k una sucesión de valores. Si existe un número x^* tal que

$$\lim_{k \to \infty} x_k = x^*$$

La sucesión converge a x^* , si eso no ocurre, entonces la suseción diverge.

Velocidad de convergencia

 x_k converge s x^*

- 1. Si existe un $k \ge 1$ a partir del cual se observa que $|x_{k+1} x^*| \le C|x_k x^*|$ donde C es constante entre (0,1) se tiene velocidad de convergencia lineal.
- 2. Igual que el anterior pero $|x_{k+1}-x^*| \leq c_k |x_k-x^*|$ con $c_k \exists (0,1) \ y \ C_k \to 0$

cuando $k\to\infty,$ se tiene velocidad de convergencia lineal.

3. A partir de la iteración k se observa que $|x_{k+1}-x^*| \leq C|x_k-x^{*P}$ donde Cy P son constantes $C\exists (0,1)$ y $P\geq 2$, se tiene convergencia de orden P