Razonamiento y Planificación Automática

César Augusto Guzmán Álvarez

Doctor en Inteligencia Artificial

Tema 6 : Búsqueda heurística

Sesión 2 / 2

Universidad Internacional de La Rioja

Resumen – Tema anterior

Tema 6 : Búsqueda heurística

Sesión 1:

- ▶ Que es una heurística ?
- ▶ Búsqueda A*

Sesión 2:

- ▶ Búsqueda por subobjetivos
- ▶ Búsqueda online

Fuente: https://media.geeksforgeeks.org/wp-content/uploads/a_-search-algorithm-1.png

Índice

Sesión 1:

- ▶ Que es una heurística ?
- ▶ Búsqueda A*

Sesión 2:

- ▶ Búsqueda por subobjetivos
- ▶ Búsqueda online

Búsqueda por subobjetivos

Aplicación «débil» de información heurística :

Contemplar todo el espacio de posibles soluciones.

• Aplicación «fuerte» de heurísticas :

Contemplar un espacio reducido de búsqueda.

Búsqueda por subobjetivos

Problema del Puzzle-8

Búsqueda online

- No deterministas
- Objetivos cambian
- Parcialmente inaccesibles

Fuente: Mission ExoMars. ESA

Búsqueda online o reactiva	Búsqueda offline o deliberativa									
Repetir: 1. Percibir entorno 2. Elegir la mejor acción 3. Ejecutar acción Fin Repetir	 Percibir entorno Buscar plan Ejecutar plan 									

- Búsqueda por ascenso de colinas.
- Búsqueda por horizonte.

Búsqueda online o Reactiva

Búsqueda online – Ascenso de colinas

- Greedy approach
- No backtracking


```
Input: entorno, objetivo, h'
1: Repetir:
     nodo ← percibir(entorno)
2:
     Si objetivo ∈ nodo Entonces
3:
          retornar objetivo encontrado
4:
5:
     sucesores ← expandir(nodo)
     Si sucesores = \emptyset Entonces
6:
7:
          retornar no hay solución
     mejorNodo ← argmin[evaluar(sucesores,h')]
     accion ← seleccionarAccion(nodo, mejorNodo)
9:
     ejecutar(accion, entorno)
11: Fin repetir
```

f(n) = h'(n)

h' es completa (h'=h), entonces es óptimo y completo

Búsqueda online – Por horizonte.

- Expandir los nodos hasta una profundidad k
- Seleccionamos acción más prometedora
- Por ejemplo, k = 2


```
Input: entorno, objetivo, h', k
1: Repetir:
     nodo ← percibir(entorno)
2:
3:
     Si objetivo ∈ nodo Entonces
          retornar objetivo encontrado
4:
5:
     sucesores ← expandir(nodo,k,[objetivo])
     Si sucesores = \emptyset Entonces
6:
7:
           retornar no hay solución
     mejorNodo ← argmin[evaluar(sucesores,h')]
9:
     accion ← seleccionarAccion(nodo, mejorNodo)
     ejecutar(accion, entorno)
11: Fin repetir
```

h' es completa (h'=h), entonces es óptimo y completo

Practica - Búsqueda online - Ascenso de colina.

Fuente: https://www.codingame.com/ide/puzzle/the-labyrinth

Practica - Búsqueda online - Ascenso de colina.

- Es un dominio con información desconocida.
- El tablero es como sigue:

?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
#									•	•					?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
#		#	#	#	#	#	#	#	#	#	#	#	#	#	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
#	•	•	•	•		T		•	•	•	•				?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
#					•				•			•								•				#		#			#
#		#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#		#			#
#			•			#	#		•	•	•			#	#		•	•		•		#			•		#	#	#
#				#	#	#	#			#	#			#	#			#	#			#			#		•		#
#					•				•	#	#					•		#	#				•		#		C		#
#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#

Donde:

- # es una pared
- . es un lugar donde se puede caminar
- ? es información desconocida
- T es el inicio
- C es el final

Gracias!

