Neoclassical Growth with Long-Term One-Sided Commitment Contracts

Dirk Krueger and Harald Uhlig, 2022

December 7, 2022

Outline

- Introduction
- 2 Model Setup
- 3 Characterizing Optimal Contract
- Stationary Consumption Distribution
- 5 Stationary Consumption Distribution
- 6 General Equilibrium and Market Clearing r

Introduction

This paper

- Characterizes the stationary general equilibrium of neoclassical production economy with
 - ► Idiosyncratic income risk
 - ▶ Long-term dynamic insurance contract: Endogenous incomplete insurance due to limited commitment friction
 - → Different from the Standard incomplete market GE model in Aiyagari (1994) where incomplete asset market is exogenous
 - ► A continuous-time setup with analytical solutions

Model Setup: Household

Preference:

$$E\left[\int_0^\infty e^{-\rho t} u(c(t)) dt\right] \quad \text{with} \quad 0 < -\frac{u''(c)c}{u'(c)} < \bar{\sigma} < \infty$$

- For the analytical characterization, assume log utility
- Infinitely lived agents of unit mass

Labor Productivity and Endowments:

• Labor productivity follows two-state Markov process

$$z_{it} \in Z = \{z_l, z_h\} = \{0, \zeta\}$$

- \bullet The transition rate from high to low is ξ and low to high is ν
 - ▶ Stationary distribution over productivity follows $(\psi_l, \psi_h) = \left(\frac{\xi}{\xi + \nu}, \frac{\nu}{\xi + \nu}\right)$
- Newborn draw productivity from the stationary distribution
- Normalize the average productivity to one: $\frac{\nu}{\xi+\nu}\zeta=1$ \to $\nu(\zeta-1)=\xi$
- Without risk-sharing contract, households consume nontradable endowment $u=u(\chi)>-\infty$

Model Setup: Firms

A competitive sector of production firms with Cobb-Douglas production function

$$AF(K, L) = AK^{\theta}L^{1-\theta}$$

- ullet Capital Accumulation is linear and depreciates at rate δ
- Denote w to be per efficiency unit of labor and r to be rental rate of capital
- Labor is supplied inelastically
- Efficiency unit of labor supplied by high and low productivity households are z_h and z_l respectively, so the aggregate efficiency unit of labor

$$L = \frac{\nu}{\xi + \nu} \zeta = 1$$

Model Setup: Financial Intermediaries and risk-sharing contracts

- A competitive sector of risk-neutral intermediaries
 - Maximize profits and do not have resources on their own
- Households insure against idiosyncratic income risk with intermediaries
- Intermediaries invest the premium payments in capital and so their discount rate is r
- Intermediaries are well-diversified and so not exposed to any risk

One-side Limited Commitment:

- Intermediaries can fully commit to the contract
- Contracting Friction: Households are free to leave the contract at any time and sign up with a new intermediary

Model Setup: Timing of Events

- At time 0, a newborn household draws labor productivity and signs a contract with intermediaries, delivering lifetime utility $U^{\text{out}}(z)$
- At t > 0, first z is realized. Then the hh chooses to commit or leave the contract. In the latter case, hh signs a new contract with another intermediary and receives a lifetime utility $U^{\text{out}}(z)$.

Model Setup: Contract Design Problem (Cost-minimizing Contracts)

Dual Problem:

Intermediaries minimize the net present value of the contract costs V(z, U)

$$V(z,U) = \min_{\langle c(\tau) \rangle \geq 0} \mathbf{E}_t \left[\int_t^\infty e^{-r(\tau-t)} [wc(\tau) - wz(\tau)] d\tau \mid z(t) = z \right]$$

subject to

Promised Keeping Constraint

$$\mathbf{E}_{t}\left[\int_{t}^{\infty} \mathrm{e}^{-
ho(au-t)}u(wc(au))d au\mid z(t)=z
ight]\geq U$$

2 Limited Commitment Constraint

$$\mathsf{E}_s \left[\int_s^\infty \mathrm{e}^{-
ho(au-s)} u(wc(au)) d au \mid z(s)
ight] \geq U^{\mathsf{out}} \left(z(s)
ight)$$

 $\text{for all }s>t\text{, for all }\tau\geq t\text{, for all }z\in Z\text{ and all }U\in \left[U^{\mathsf{out}}\left(z\right) ,\frac{\bar{u}}{\rho}\right) .$

Model Setup: Equilibrium

A stationary equilibrium consists of $\{U^{\text{out}}(z)\}_{z\in Z}$, $c(\tau,z,U)$, V(z,U), w, r, $\phi(c)$

- Given $\{U^{\text{out}}(z)\}_{z\in Z}$ and r, the consumption insurance contract $c(\tau,z,U), V(z,U)$ solves contract design problem
- The outside options lead to zero profits of intermediaries

$$\forall z \in Z, V(z, U^{\text{out}}(z)) = 0$$

- **9** r and w satisfy the firm's optimality conditions: $r = AF_K(K, 1) \delta$ $w = AF_L(K, 1)$
- The goods market clears

$$\int wc\phi(c)dc + \delta K = AF(K,1)$$

The capital market clears

$$\underbrace{\frac{w\left[\int c\phi(c)dc-1\right]}{r}}_{K^s}=K^d$$

- $> w + rK^s = \int wc\phi(c)dc$
- The stationary consumption pdf is consistent with the dynamics of contract

Characterizing Optimal Contract

Full insurance in the long-run: $\rho = r$

As long as $z_{it}=0$, hhs consume the nontradable endowment $c_l=\chi$ and signs a consumption contract that has constant consumption $c_h=\left(\frac{\rho+\nu}{\rho+\nu+\xi}\right)\zeta$ and remains there forever when the instant labor productivity rises to ξ

Characterizing Optimal Contract

Partial Insurance: $r < \rho$

- **1** Whenever $z=\zeta$, the hh consumes a constant amount $c_h=\left(\frac{\rho+\nu}{\rho+\nu+\xi}\right)\zeta$
- ② When the productivity switches to 0, consumption drift down according to the full-insurance Euler equation $\frac{\dot{c}(t)}{c(t)} = r \rho < 0$
- **9** Denote τ the time elapsed since productivity last switched from $z=\zeta$ to 0. Then, $c(\tau)=c_h e^{(r-\rho)\tau}$

Stationary Consumption Distribution

Full-Insurance: $\rho = r$

Consumption distribution places all mass $\phi_h=1$ on c_h

Hint: Individuals flow out of c_l at rate ν and no inflow to this consumption level

Partial Insurance: $r < \rho$

In this case, the stationary distribution is given by a mass point at c_h and a Pareto density below it.

$$\phi_r(c) = \begin{cases} \frac{\xi \nu(c_h)^{-\frac{\nu}{\rho-r}}}{(\rho-r)(\nu+\xi)} c^{\frac{\nu}{\rho-r}-1} & \text{if} \quad c \in (0, c_h) \\ \frac{\nu}{\nu+\xi} & \text{if} \quad c = c_h \end{cases}$$

Hint: On $(0, c_h)$, the distribution satisfies the Kolmogorov forward equation

$$0 = -\frac{d[(r-\rho)c\phi(c)]}{dc} - v\phi(c)$$

Stationary Consumption Distribution

General Equilibrium and Market Clearing r

Production Side: supply of consumption goods and demand for capital

$$\kappa^{d}(r) := \frac{K^{d}(r)}{w(r)} = \frac{\theta}{(1-\theta)(r+\delta)}$$

$$G(r) = \frac{AF\left(K^{d}(r), 1\right) - \delta K^{d}(r)}{w(r)} = 1 + \frac{\theta r}{(1-\theta)(r+\delta)}$$

Consumption distribution o Demand of consumption o supply of capital

$$C(r) = \int c\phi_r(c)dc \quad o \quad \kappa^s(r) = K^s(r)/w(r) = \frac{C(r)-1}{r}$$

Supply of Capital:

- **9** Full insurance $(r = \rho)$: $\kappa^s(r) := \kappa^{FI} = \frac{\xi}{\nu(\nu + \rho + \xi)}$
 - Unique $\rho^{FI} = r^{FI}$: $\kappa^d(r^{FI}) = \kappa^{FI}$
- **a** Partial insurance $(r < \rho)$: $\kappa^s(r) = \frac{\xi}{(\nu + \rho r)(\nu + \rho + \xi)}$

General Equilibrium and Market Clearing r

Unique equilibrium features partial insurance

Suppose $\frac{\theta}{(1-\theta)(\rho+\delta)} < \frac{\xi}{\nu(\nu+\rho+\xi)}$, then there exists a unique stationary equilibrium with interest rate $r^* \in (-\delta, \rho)$ follows

$$r^* = \frac{\theta(\nu + \rho + \xi)(\nu + \rho) - \xi\delta(1 - \theta)}{\xi + \theta(\nu + \rho)}$$

(a) Capital Demand $\kappa^d(r)$ and Supply $\kappa^s(r)$ as a (b) Goods Demand w(r)C(r) and Net Supply Function of the Interest Rate r $Y(r) - \delta K(r)$ as a Function of r

Comparsion to Aiyagari (1994)

- $\forall r$, the supply of assets is less in KU economy \rightarrow a lower r^*
 - Intuition: In the presence of explicit income insurance, the need to accumulate capital for precautionary reasons is reduced

Multiple Equilibria

Figure 5: Two equilibria with partial insurance when $\sigma > 2$.

This figure plots an example of two equilibria, both with partial insurance, under parameter values $\sigma=10, \theta=0.25, \delta=0.16, \nu=0.05, \xi=0.02, \rho=0.4$. The two equilibrium interest rates are given by $r_1^*=-0.0246, r_2^*=0.1357$. Left panel: solid line represents the capital supply curve $k^s\left(r\right)$, dashed line represents the capital demand curve $k^d\left(r\right)$. The right panel displays the two equilibrium consumption distributions.