Analysis 3 MA0003: Zusammenfassung

Jonas Treplin

February 25, 2023

1 Maßtheorie

Definition 1 (σ -Algebra) Ein System $A \subset P(\Omega)$ heißt σ -Algebra falls:

$$\Omega \in \mathcal{A}$$

$$A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$$

$$A_i \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A},$$

Die Elemente $A \in \mathcal{A}$ heißen messbar. Eine Menge (Ω, \mathcal{A}) heißt Messraum.

Theorem 1 Für jede σ -Algebra \mathcal{A} gilt:

- $\emptyset \in \mathcal{A}$
- $A_j \in \mathcal{A} \Rightarrow \bigcap_{j=1}^{\infty} A_j \in \mathcal{A}$

Theorem 2 (σ -Algebra auf Urbildern) Folgende Konstruktion ist selbst wieder eine σ -Algebra:

 $\tilde{\mathcal{A}} = \{ f^{-1}(A) | A \in \mathcal{A} \}$

Definition 2 (Erzeugen von σ -Algebren) Für $\mathcal{E} \subset P(\Omega)$ ist die erzeugte σ -Algebra definiert als:

$$\sigma(\mathcal{E}) = \bigcap \{ \mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra und } \mathcal{E} \subset \mathcal{A} \}$$

Theorem 3 Es gilt:

- $E \subset F \Rightarrow \sigma(E) \subset \sigma(F)$
- ist E selbst σ -Algebra dann ist $\sigma(E) = E$

Definition 3 (Borel-\sigma-Algebra) Wir definieren die Borel- σ -Algebra als:

$$\sigma(\{O|O \in \Omega \ offen\})$$

Theorem 4 Seien \mathcal{J}^n die halboffenen Quader und $\mathcal{J}^n_{\mathbb{Q}}$ die halboffenen Quader mit rationalen Koeffizienten im \mathbb{R}^n . Sowie $\mathcal{O}^n, \mathcal{C}^n, \mathcal{K}^n$ die offenen, abgeschlossenen und kompakten Mengen auf dem \mathbb{R}^n , dann gilt:

$$\mathcal{B}(\mathbb{R}^n) = \sigma(\mathcal{J}^n) = \sigma(\mathcal{J}^n_{\mathbb{Q}}) = \sigma(\mathcal{O}^n) = \sigma(\mathcal{C}^n) = \sigma(\mathcal{K}^n)$$

Definition 4 (Grenzwert von Mengen) Wir definieren für $(A_i)_{i \in \mathbb{N}}$:

- $\liminf A_j := \bigcup_{i=1}^{\infty} \bigcap_{j=i}^{\infty} A_j$ Also alle Elemente von die in nur endlich vielen A_j nicht enthalten sind.
- $\limsup A_j := \bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} A_j$ Also alle Elemente die in unendlich vielen A_j enthalten sind.

Definition 5 (Figur) Eine Figur ist jede Menge, die durch die Vereinigung endlich vieler Quader erzeugt werden kann. Man bezeichnet \mathcal{F}^n als den Raum der Figuren.

Definition 6 (Ring) Sei $\mathcal{R} \subset P(\Omega)$ mit:

$$A, B \in \mathcal{R} \Rightarrow A \in \mathcal{R}$$

$$A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathbb{R}$$

Dann heißt R Ring.

Definition 7 (Äußeres Maß) Das äußere Maß $\lambda^{n,*}$ von M ist das Infimum der Größen aller Überdeckungen im Raum der Figuren von M.

Definition 8 (Maß) Ein Maß $\mu : A \to [0, \infty)$ auf einer σ -Algebra A ist charakterisiert durch folgende Eigenschaften:

$$\mu(\emptyset) = 0$$

$$\mu(\biguplus_{j=1}^{\infty}) = \sum_{j=1}^{\infty} \mu(A_j)$$

Ein Maß heißt endlich falls $\mu(\Omega) < \infty$ und σ -endlich falls eine Folge von $A_1 \subset A_2 \subset ...$ existiert mit $A_j \nearrow \Omega$ und $\mu(A_j) < \infty$. Eine Menge $(\Omega, \mathcal{A}, \mu)$ heißt Maßraum.

Theorem 5 (Rechenregeln für Maße) Es gilt:

- $\mu(A \cap B) + \mu(A \cup B) = \mu(A) + \mu(B)$
- $\mu(A \cup B) \le \mu(A) + \mu(A)$
- $A \subset B \Rightarrow \mu(A) \leq \mu(B)$
- $A_i > A \Rightarrow \mu(A_i) > \mu(A)$
- Falls $\mu(A_0) < \infty$ dann gilt auch $A_i \land A \Rightarrow \mu(A_i) \land \mu(A)$
- $\mu(\bigcup_{j=0}^{\infty} A_j) \le \sum_{j=0}^{\infty} \mu(A_j)$

Definition 9 (Dynkin-System) Ein System $\mathcal{D} \subset P(\Omega)$ heißt Dynkin-System falls:

$$\Omega \in \mathcal{D}$$

$$D \in \mathcal{D} \Rightarrow D^c \in \mathcal{D}$$

$$D_j \in \mathcal{D} \Rightarrow \biguplus_{j=1}^{\infty} D_j \in \mathcal{D}$$

Definition 10 (Minimales Dynkin-System) Wir definieren das minimale Dynkin System für $\mathcal{E} \subset P(\Omega)$ als:

$$\delta(\mathcal{E}) = \bigcup \{ \mathcal{D} | \mathcal{D} \text{ ist Dynkin-System und } \mathcal{E} \subset \mathcal{D} \}$$

Theorem 6 Es gilt:

- $E \subset F \Rightarrow \delta(E) \subset \delta(F)$
- Ist E selbst Dynkin System so ist $\delta(E) = E$.
- $E \subset \delta(E) \subset \sigma(E)$

Theorem 7 Es gilt für alle Dynkin-Systeme \mathcal{D} :

$$\mathcal{D}$$
 schnitstabil $\iff \mathcal{D}$ ist σ -Algebra

Außerdem falls ein Erzeugendensystem E schnittstabil ist, dann ist $\delta(E) = \sigma(E)$.

Theorem 8 (EIndeutigkeit der Maßerweiterung) $Sei\ E \subset P(\Omega)\ schnittstabil\ und\ seien\ \mu,\nu\ Maße\ mit:$

$$\mu|_E = \nu|_E$$

und sei $E_j \in E$ mit $E_j \nearrow \Omega$, dann ist: $\mu(A) = \nu(A) \forall A \in \sigma(E)$

Definition 11 (Lebesgue-Borel-Maß) Die Maßerweiterung für den Flächeninhalt eines Quaders ist eindeutig und wird mit λ^n als Lebesgue-Borel-Maß bezeichnet

Definition 12 (Vervollständigung eines Maßes) Ein Maßraum heißt vollständig, falls jede Teilmenge einer Nullmenge wieder messbar ist. Man kann einen Maßraum vervollständigen durch:

$$\tilde{\mathcal{A}} = \{A | \exists M, N \in \mathcal{A} : M \subset A \subset N \land \mu(N/M) = 0\}$$

Man definiert dann $\mu(A) := \mu(N)$. Die Vervollständigung des Lebesgue-Borel-Maß wird als Lebesgue-Maß bezeichnet.

Theorem 9 (Erstes Littlewood'sches Prinzip) Sei $A \subset \mathbb{R}^n$, A ist Lebesguemessbar genau dann wenn zu jedem $\epsilon > 0$ eine offene Menge $A \subset O_{\epsilon}$ existiert, sodass:

$$\lambda^{n,*}(O_{\epsilon} \backslash A) < \epsilon$$

Definition 13 (messbare Abbildung) Für eine messbare Abbildung $f:(\Omega, \mathcal{A}) \to (\tilde{\Omega}, \tilde{\mathcal{A}})$ gilt: $f^{-1}(A) \in \mathcal{A} \forall A \in \tilde{\mathcal{A}}$.

Theorem 10 Sei $f:(\Omega, A) \to (\tilde{\Omega}, \tilde{A})$ und \mathcal{E} ein Erzeugendensystem von \tilde{A} , dann ist f bereits messbar falls gilt:

$$f^{-1}(E) \in \mathcal{A} \forall E \in \mathcal{E}$$

Theorem 11 Für $f: \Omega \to [-\infty, \infty]$ sind folgende Eigenschaften äquivalent:

• f ist messbar.

- $\{\omega | f(\omega) \ge a\} \in \mathcal{A} \forall a$
- $\{\omega | f(\omega) > a\} \in \mathcal{A} \forall a$
- $\{\omega | f(\omega) \le a\} \in \mathcal{A} \forall a$
- $\{\omega | f(\omega) < a\} \in \mathcal{A} \forall a$

Theorem 12 Sei Ω_j eine Folge mit $\Omega = \bigcup \Omega_j$ dann ist f messbar gdw. $f|_{\Omega_j}$ alle messbar sind.

Theorem 13 Sei $f_j: \Omega \to [-\infty, \infty]$ eine Folge messbarer Funktionen, dann ist auch:

$$\sup f_j$$
, $\inf f_j$, $\limsup f_j$, $\liminf f_j$

alle messbar. Auch ist der Punktweise Grenzwert dieser Funktion falls er existiert messbar.

Theorem 14 Kompositionen zweier messbarer Funktionen sind wieder messbar.

Theorem 15 (Bildmaß) Wir definieren $f(\mu)$ als $f(\mu)(A) = \mu(f^{-1}(A))$ als das Bildmaß.

Theorem 16 Das Lebesgue-Borel-Maß λ^n ist translations invariant. D.h. für jede affine Abbildung $T(x) = Ax + b, A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ gilt:

$$\mu(T(A)) = \mu(A)$$

Außerdem ist jedes andere translationsinvariante Maß ein skalares Vielfaches des Lebesgue-Maß. Zudem ist falls $U \in O(n)$:

$$\mu(U(A)) = \mu(A)$$

Zusammen ergibt sich, dass λ^n bewegungsinvariant ist:

Theorem 17 Sei $L \in GL(n)$ dann gilt für das Bildmaß:

$$L(\lambda^n) = \frac{1}{|det(L)|} \lambda^n$$

Theorem 18 (Vitali-Menge) Es gibt eine Menge K die nicht Borel-Messbar ist.

2 Lebesgue-Integral

Definition 14 (Einfache Funktion) Eine Funktion $f: \Omega \to \mathbb{R}$ heißt einfache FUnktion wenn sie messbar ist und nur endlich viele Werte annimmt. Jede einfache Funktion hat also die Form:

$$f(\omega) = \sum_{j=1}^{n} 1_{A_j}(\omega)\alpha_j$$

Wir definieren $E(\Omega)$ als den Raum der einfachen Funktionen auf Ω und $E_{+}(\Omega)$ als den Raum der positiven einfachen Funktionen.

Theorem 19 (Approximation durch einfache Funktionen) Sei $f: \Omega \to [0,\infty]$ messbar, dann gibt es eine monoton wachsende Folge von positiven einfachen Funktionen f_j , sodass $f = \sup f_j$. Es ist sogar f nur genau dann messbar, wenn eine solche Folge existiert.

Theorem 20 (Monotonieprinzip) Sei F eine Menge von Funktionen mit folgenden Eigenschaften:

- $1_A \in F$ für alle $A \in \mathcal{A}$.
- $f, g \in F \Rightarrow \alpha f + \beta g \in F$
- Sei f_j eine monoton wachsende Folge in F, dann ist sup $f_j \in F$.

Dann enthält F die Menge aller messbaren Funktionen.

Definition 15 (Lebesgue-Integral für einfache Funktionen) Sei f eine einfache positive Funktion mit Darstellung: $f = \sum_{j=1}^{n} \alpha_j 1_{A_j}$, wobei die A_j paarweise disjunkt seien. Dann definieren wir:

$$\int_{\Omega} f d\mu = \sum_{j=1}^{n} \alpha_j \mu(A_j)$$

Definition 16 (Lebesgue-Integral für messbare positive Funktionen) Sei $f: \Omega \to [0,\infty]$ messbar. Dann existiert eine monotone Folge von einfachen Funktionen f_j mit sup $f_j = f$. Das Lebesgue-integral von f ist definiert als:

$$\int_{\Omega} f d\mu = \sup \int_{\Omega} f_j d\mu$$

Theorem 21 (Markov-Ungleichung) Es gilt für jede positive messbare Funktion f und jede positive reelle Zahl w:

$$\int_{\Omega}fd\mu\geq w\mu(f\geq w)$$

Definition 17 Sei $f: \Omega \to [-\infty, \infty]$ messbar, dann heißt f integrierbar, falls:

$$\int_{\Omega} f_{+} d\mu < \infty, \int_{\Omega} f_{-} d\mu < \infty$$

Das Lebesque-integral ist dann definiert als:

$$\int_{\Omega}fd\mu:=\int_{\Omega}f_{+}d\mu-\int_{\Omega}f_{-}d\mu$$

Theorem 22 Es ist äquivalent:

- 1. f ist integrierbar
- 2. f_+ und $_-$ sind integrierbar.
- 3. Es gibt integrierbare Funktionen u, v sodass f = u v.
- 4. Es gibt eine integrierbare Funktion g sodass $|f| \leq g$.

5. |f| ist integrierbar.

Theorem 23 Das Integral ist monoton linear. Außerdem ist: $|\int_{\Omega} f d\mu| \le \int_{\Omega} |f| d\mu$

Theorem 24 (Klopapiersatz) Ist f = g fast überall dann gilt:

$$\int_{\Omega} f d\mu = \int_{\Omega} g d\mu$$

Theorem 25 (Beppo-Levi) Sei f_j eine fast überall monoton wachsende Folge nicht negativer messbarer Funktionen. Dann gilt:

$$\lim \int_{\Omega} f_j d\mu = \int_{\Omega} \lim f_j d\mu$$

Theorem 26 (Lemma von Fatou) Sei $f_j : \Omega \to [-\infty, \infty]$ fast überall nicht negativ und messbar Dann gilt:

$$\int_{\Omega} \liminf f_j d\mu \le \liminf \int_{\Omega} f_j d\mu$$

Theorem 27 (Satz der dominierten Konvergenz) Sei $f_j: \Omega \to [-\infty, \infty]$ eine Folge messbarer Funktionen, die punktweise f.ü. gegen f konvergiert. Weiter existiere eine integrierbare Majorante $M: \Omega \to [0, \infty]$ mit $|f_j| \leq M$ f.ü. Dann ist:

$$\lim \int_{\Omega} f_j d\mu = \int_{\Omega} f d\mu$$

Theorem 28 Ist $f:(a,b)\to\mathbb{R}$ differenzierbar und f' beschränkt dann gilt: $f(b)-f(a)=\int_a^b f'(x)dx$

Theorem 29 Auf einem kompakten Intervall ist jede regelintegrierbare Funktion auch Lebesque-integrierbar

Definition 18 (Absolut stetig) Eine Funktion f heißt absolut stetig falls für jedes $\epsilon > 0$ ein $\delta > 0$ existiert, sodass für jede endliche Folge von Teilintervallen $]x_k, y_k[$ mit $\sum_{j=1}^n y_j - x_j < \delta$ gilt:

$$\sum_{j=1}^{n} |f(y_k) - f(x_k)| < \delta$$

Theorem 30 Eine Funktion F ist genau dann darstellbar als: $F(x) = \int_0^x f(t)dt$ wenn sie absolut stetig ist. Es gilt dann F' = f f.ü.

3 L^p -Räume

Definition 19 Sei $p \in [1, \infty)$ dann definieren wir:

$$s_p(f) = (\int |f|^p d\mu)^{1/p}$$

und

$$\mathcal{L}^p(\Omega) := \{ f | f : \Omega \to [-\infty, \infty] \text{ messbar und } s_p(f) < \infty \}$$

Außerdem sei

$$L^p := \mathcal{L}^p / \sim$$

Wobei $f \sim g \iff \int f - g d\mu = 0$.

Theorem 31 (Young'sche Ungleichung) Seien $a, b \ge 0$ und p, q > 1, sodass 1/p + 1/q = 1. Dann ist:

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

Theorem 32 (Hölder Ungleichung) Für p, q > 1, sodass 1/p + 1/q = 1 gilt:

$$||fg||_1 \le ||f||_p ||g||_q$$

Theorem 33 (Minkowski Ungleichung) Es gilt die Dreiecksungleichung:

$$\left(\int |f+g|^p d\mu\right)^{\frac{1}{p}} \le \left(\int |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int |g|^p d\mu\right)^{\frac{1}{p}}$$

Definition 20 (p-Norm) Sei $p \in [0, \infty)$, dann ist

$$||f||_p := (\int |f|^p d\mu)^{\frac{1}{p}}$$

eine Norm in L^p .

Definition 21 (Wesentliches Supremum) Das wesentliche Supremum für messbares f sei definiert als:

$$esssup(f) := \inf\{M|M \ge f \text{ fast ""uberall}\}\$$

Außerdem seien $\mathcal{L} := \{f | essup(f) < \infty\} \text{ und } L^{\infty} = \mathcal{L}^{\infty} / \sim.$

Theorem 34 Auf L^p ist $||f||_{\infty} := esssup(f)$ eine Norm.

Definition 22 (Konvergenzbegriffe) Eine Folge f_j konvergiert gegen f:

• in der p-Norm oder im p-ten Mittel falls:

$$||f_j - f||_p \to 0$$

• punktweise fast überall falls:

$$f_i(x) \to f(x)$$

fast überall.

• im Maß falls:

$$\lim_{j \to \infty} \mu(|f_j - f| > \epsilon) = 0$$

Theorem 35 (Vollständigkeit der L^p -Räume) Für $p \in [1, \infty]$ ist

Theorem 36 (Riesz-Fischer) Falls $f_j \to f$ in $||.||_p$ Dann gibt es eine Teilfolge, sodass $f_{j_k} \to f$ fast überall.

Theorem 37 Für die Konvergenz im Maß gilt:

- $f_j \to g$ und $f_j \to f$ dann ist f = g fast überall.
- $g_j \to g$ und $f_j \to f$ dann gilt: $\alpha f_j + \beta g_j \to \alpha f + \beta g$.
- Konvergiert $f_j \to f$ punktweise f. \ddot{u} . dann gilt auch Konvergenz im Ma β
- $f_j \to f$ im Ma β , dann existiert eine Teilfolge $f_{j_k} \to f$ punktweise fast überall

Definition 23 (Bernstein-Polynom) Wir definieren das Bernstein Polynom:

$$B_k f(x) := \sum_{j=0}^k f(\frac{j}{k}) {k \choose j} x^j (1-x)^{k-j}$$

Theorem 38 (Weierstraß-Approximationssatz) Für $f \in C[0,1]$ gilt:

$$||B_k f - f||_{\infty} \to 0$$

Damit sind die Polynome dicht in $(C(K), ||.||_{\infty})$ für kompakte K.

4 Parameterabhängige Integrale

Theorem 39 Sei $f: X \times \Omega \to \mathbb{R}$ mit $X \subset \mathbb{R}^n$ und weiterhin sei:

- $\omega \mapsto f(x,\omega)$ integrierbar für alle x
- $x \mapsto f(x, \omega)$ stetig in x^* für fast alle ω .
- $M \in \mathcal{L}^1$ eine Majorante: $|f(x,\omega)| \leq M(\omega)$ für alle x und fast alle ω .

Dann ist $g(x) = \int_{\Omega} f(x, \omega) d\mu$ stetig an x^* .

Theorem 40 Sei $f: X \times \Omega \to \mathbb{R}$ mit $X \subset \mathbb{R}^n$ und weiterhin sei:

- $\omega \mapsto f(x,\omega)$ integrierbar für alle x
- $\partial_i f(x,\omega)$ existiert für fast alle ω und alle x.
- $M \in \mathcal{L}^1$ eine Majorante: $|\partial_i f(x,\omega)| \leq M(\omega)$ für alle x und fast alle ω .

Dann gilt für $g(x) = \int_{\Omega} f(x, \omega) d\mu$:

$$\partial_i g(x) = \int_{\Omega} \partial_i f(x, \omega) d\mu$$

5 Mehrfachintegrale

Definition 24 (Produkt-\sigma-Algebra) Seien $(\Omega_j, \mathcal{A}_j)$ Messräume. Dann ist die Produkt- σ -Algebra definiert als:

$$\mathcal{A} = \mathcal{A}_1 \otimes ... \otimes \mathcal{A}_n = \sigma(\bigcup_{j=1}^n \pi_j^{-1}(\mathcal{A}_j))$$

Wobei $\pi_j(\omega_1,...,\omega_n) = \omega_j$ die Projektion auf die j-te Komponente sei.

Theorem 41 Seien $(\Omega_j, \mathcal{A}_j)$ Messräume mit Erzeugendensystemen \mathcal{E}_j . Exisitieren für jedes j eine Folge von $E_k \in \mathcal{E}_j$, sodass $\sup E_k = \Omega_j$ gilt, dann ist für $\mathcal{E}_1 \star ... \star \mathcal{E}_n := \{E_1 \times ... \times E_n | E_j \in \mathcal{E}_j\}$:

$$\sigma(\mathcal{E}_1) \otimes ... \otimes \sigma(\mathcal{E}_n) = \sigma(\mathcal{E}_1 \star ... \star \mathcal{E}_n)$$

Definition 25 (Schnitte) Wir definieren für eine Menge $A \subset X_1 \times X_2$ die Schnitte:

- $A_{x_1} := \{x_2 | (x_1, x_2) \in A\} \subset X_2$
- $A^{x_2} := \{x_1 | (x_1, x_2) \in A\} \subset X_1$

Analog für eine Funktion $f: X_1 \times X_2 \to Y$:

- $f_{x_1}(x_2) := f(x_1, x_2)$
- $f_{x_2}(x_1) := f(x_1, x_2)$

Theorem 42 (Prinzip von Cavalieri) Sei $A \in \mathcal{A}_2 \otimes \mathcal{A}_2$ und $f: X_1 \times X_2 \to Y$ messbar. Dann sind A_{x_1} und f_{x_1} messbar für jedes Feste x_1 . Analog gilt dies auch für X_2 . Mit den Maßen μ_1, μ_2 ist auch die Funktion $m_1(x_1) = \mu_2(A_{x_1})$ messbar. Dies gilt auch analog für X_2 .

Theorem 43 (Produktmaß) Wir definieren das Produktmaß auf $(X_1 \times X_2, A_1 \otimes A_2)$ als:

$$\mu_1 \otimes \mu_2(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$$

Dieses Maß erfüllt für $A \subset X_1 \times X_2$:

$$\mu_1 \otimes \mu_2(A) = \int_{X_1} \mu_2(A_{x_1}) dx_1 = \int_{X_2} \mu_1(A_{x_2}) dx_2$$

Theorem 44 (Satz von Tonelli) Sei $f: X_1 \times X_2 \to [0, \infty]$, dann gilt: Die Funktionen $x_1 \mapsto \int_{X_2} f_{x_1}(x_2) dx_2$ und $x_2 \mapsto \int_{X_1} f^{x_2}(x_1) dx_1$ sind messbar und:

$$\int_{X_1 \times X_2} f(x, x) dx = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) dx_2 \right) dx_1 = \int_{X_2} \left(\int_{X_1} f(x_1, x_2) dx_1 \right) dx_2$$

Theorem 45 (Satz von Fubini) Sei $f: X_1 \times X_2 \to \mathbb{R}$ integrierbar, dann ist:

- f_{x_1} und f^{x_2} für fast alle x_1 bzw. x_2 integrierbar.
- $x_1 \mapsto \int_{X_2} f_{x_1}(x_2) dx_2$ und $x_2 \mapsto \int_{X_1} f^{x_2}(x_1) dx_1$ integrierbar.

 $\int_{X_1 \times X_2} f(x, x) dx = \int_{X_1} \left(\int_{X_2} f(x_1, x_2) dx_2 \right) dx_1 = \int_{X_2} \left(\int_{X_1} f(x_1, x_2) dx_1 \right) dx_2$

Um die Integrierbarkeit zu beweisen kann der Satz von Tonelli verwendet werden.

6 Parametertransformationen

Theorem 46 (Transformationsformel) Seien $\Phi: \tilde{\Omega} \to \Omega$ und $f: \Omega \to [0,\infty]$ messbar. Dann gilt:

$$\int_{\Omega} f d\Phi(\mu) = \int_{\tilde{\Omega}} f \circ \Phi d\mu$$

Theorem 47 (Transformationssatz von Jacobi) Sei $U, V \subset \mathbb{R}^n, \Phi : U \to V$ ein Diffeomorphismus Sei $f : V \to [-\infty, \infty]$ messbar, dann gilt:

$$\int_{V} f(y)d\lambda^{n}(y) = \int_{U} f(\Phi(u))|\det D\Phi(u)|d\lambda^{n}(u)$$

 $falls\ f \ge 0$ oder einer der beiden Seiten integrierbar ist.

Einige nützliche Transformationen:

- 1. Polarkoordinaten in der Ebene $\Phi: (0, \infty) \times (-\pi, \pi) \to \mathbb{R}^2, r, \theta \mapsto (r \cos \theta, r \sin \theta),$ es ist $|\det \Phi(r, \theta)| = r.$
- 2. Kugelkoordinaten $\Phi:(0,\infty)\times(-\pi,\pi)\times(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}^2$:

$$\Phi(r, \theta, \phi) = (r\cos(\theta)\cos(\phi), r\sin(\theta)\cos(\phi), r\sin(\phi))$$

Mit $|\det D\Phi(r,\theta,\phi)| = r^2 \cos(\phi)$

7 Approximationssätze

Theorem 48 (Jensen'sche Ungleichung) Sei μ ein Wahrscheinlichkeitsmaß. Sei I ein Intervall und $k: I \to \mathbb{R}$ konvex und $f: \Omega \to I$ integrierbar, dann ist:

$$k(\int_{\Omega}fd\mu)\leq \int_{\Omega}k\circ fd\mu$$

Definition 26 (Faltung) Sei $f, g : \mathbb{R}^n \to [-\infty, \infty]$, dann heißt:

$$(f \star g)(y) := \int_{\mathbb{R}^n} f(x)g(y - x)dx$$

falls existent Faltung von f und g.

Theorem 49 Es gilt:

$$||f \star g||_p \le ||f||_p ||g||_1$$

Definition 27 (mollifier) Eine Funktion $\phi \in \mathcal{L}^1$ mit $\phi \geq 0$ und $\|\phi\|_1 = 1$ heißt Mollifier/Glättungskern.

Theorem 50 Sei $f \in \mathcal{L}^p(\mathbb{R}^n)$ und ϕ ein Mollifier dann gilt für $\phi_{\epsilon} := \epsilon^{-n} \phi(x/\epsilon)$:

$$||f \star \phi_{\epsilon} - f||_{p} \to 0$$

Definition 28 (Support) Der Support spielt mit dem ADC auf der Botlane. Der Träger/Support von f ist definiert als:

$$supp(f) = \overline{\{x|f(x) \neq 0\}}$$

Weiter definieren wir C_c^{∞} als die Menge der C^{∞} -Funktionen mit kompakten Träger.

Theorem 51 Für $\phi \in C_c^{\infty}$ gilt:

$$\partial^{\alpha}(f \star \phi) = f \star \partial^{\alpha} \phi$$

Theorem 52

$$\overline{C_c^{\infty}}^{\|.\|_p} = L^p$$

Theorem 53 (Egorov) Sei $\lambda(\Omega)$ endlich. Sei $f_j \to f$ fast überall so konvergiert f_j fast gleichmäßig gegen f. D.h. zu jedem $\delta > 0$ existiert eine abgeschlossene Menge E mit mit $\mu(E) < \delta$, sodass $f_j|_{E^c} \to f|_{E^c}$ gleichmäßig.

Theorem 54 (Lusin) Sei $\lambda(\Omega)$ endlich und $f\Omega \to \mathbb{R}$ integrierbar dann gibt es zu jedem $\epsilon > 0$ eine kompakte Menge K mit $\mu(\Omega \setminus K) < \epsilon$ sodass $f|_K$ stetig ist.

8 Hilberträume

Definition 29 (Skalarprodukt) Eine Abbildung $\langle .,. \rangle$: $H \times H \to \mathbb{K}$ heißt Skalarprodukt falls sie die folgenden Eigenschaften erfüllt:

- Positiv Definit: $\langle x, x \rangle > 0$ für $x \neq 0$.
- Hermitesch: $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- Sesquilinear: $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$

Das Skalarprodukt induziert eine Norm: $||x|| = \sqrt{\langle x, x, \rangle}$. Ist H unter dieser Norm vollständig so heißt H Hilbertraum.

Theorem 55 (Parallelogrammgleichung) Für die von einem Skalarprodukt definierte Norm gilt:

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Theorem 56 (Projektionssatz) Sei $K \subset X$ eine konvexe, abgleschlossene, nichtleere Teilmenge des Hilbertaum X. Dann gibt es zu jedem $x \in X$ genau ein $y \in K$, sodass:

$$||x - y|| = \inf_{z \in K} ||z - x||$$

Die Abbildung $P_K: X \to K, x \mapsto y$ heißt Projektion.

Theorem 57 (Variationsungleichung) Sei $K \subset X$ eine konvexe, abgleschlossene, nichtleere Teilmenge des Hilbertaum X. Die Projektion $y = P_K x$ wird charakterisiert durch:

$$\Re(\langle x - y, z - y \rangle) \le 0 \forall z \in K$$

Ist K ein abgeschlossener Unterraum, dann vereinfacht sich dies zu:

$$\langle x-y,z\rangle=0 \forall z\in K$$

Theorem 58 (Projektionssatz für Unterräume) Sei U Untervektorraum des Hilbertraum H. Es gilt:

$$P_{U^{\perp}} = Id - P_U$$

Wenn $U \neq \{0\}$ dann ist: $||P_U|| = 1$

Theorem 59 Es gilt:

$$Y^{\perp \perp} = \overline{spanY}$$

Theorem 60 (Darstellungssatz von Riesz) Für jedes Funktional $x^* \in X^*$ existiert ein $x \in X$, sodass:

$$x^*(y) = \langle x, y \rangle$$

Die Abbildung $J: X \to X^*$ ist bijektiv isometrisch und konjugiert linear.

Theorem 61 Die abgeschlossene Einheitskugel ist genau dann kompakt, wenn der Raum endlichdimensional ist.

Definition 30 (Orthonormalbasis) Eine Menge $S = \subset X$ heißt Orthonormalsystem, falls $||e|| = 1 \forall e \in S$ und $e \perp f \forall e \neq f \in S$. S heißt Orthonormalbasis, falls es kein Orthonormal System \tilde{S} mit $S \subsetneq \tilde{S}$ gibt.

Theorem 62 (Existenz einer Basis und Basiserweiterung) Jeder nichttriviale Hilbertraum hat eine Orthonormalbasis. Zu jedem Orthonormalsystem S gibt es eine Orthonormalbasis \tilde{S} mit $S \subset \tilde{S}$.

Definition 31 (Separabilität) Ein Banachraum X heißt separabel, wenn es eine abzählbare Teilmenge D gibt, sodass: $\overline{D} = X$.

Theorem 63 In einem separablen Hilbertraum ist jede Orthonormalbasis abzählbar.

Theorem 64 Sei X Hilbertraum und $S \subset X$ Orthonormalsystem und $\{e_1, ..., e_n\} \subset S$, und $U = span\{e_1, ..., e_n\}$. Dann ist:

$$P_U(x) = \sum_{j=1}^{n} \langle x, e_j \rangle e_j$$

Außerdem gilt die Bessel'sche Ungleichung:

$$\sum_{j=1}^{n} |\langle x, e_j \rangle|^2 \le ||x||^2$$

Theorem 65 Sei $S = \{e_j, j \in \mathbb{N}\} \subset X$ ein Orthonormalsystem. Es ist Äquivalent:

- S ist eine Orthonormalbasis
- $S^{\perp} = \{0\}$
- $\overline{spanS} = X$

• $F\ddot{u}r$ alle $x \in X$ gilt:

$$x = \sum_{j=1}^{\infty} \langle x, e_j \rangle e_j$$

• Es gilt die Pasevalsche Gleichung:

$$||x||^2 = \sum_{j=1}^n |\langle x, e_j \rangle|^2$$

Theorem 66 (Eindeutigkeit der stetigen Fortsetzung) Sei X normiert und Y Banach, sowie $U \subset X$ ein dichter Unterraum und $S: U \to Y$ linear und stetig. Dann gibt es eine eindeutige Abbildung $T: X \to Y$, sodass $T|_U = S$ und ||S|| = ||T||

Theorem 67 Jeder separable Hilbertraum ist isometrisch isomorph zu $l^2(\mathbb{K})$.

Theorem 68 (Lax-Milgram) Sei $a: X \times X \to \mathbb{K}$ eine Sesquilinearform mit:

$$|a(x,y)| \le C_0 ||x|| ||y||$$

$$\Re a(x,x) > c_0 ||x||^2$$

Dann exisitiert ein $A: X \to X$ mit:

$$a(x,y) = \langle Ax, y \rangle$$

und es gilt:

$$||A|| \le C_0, ||A^{-1}|| \le \frac{1}{c_0}$$

9 Fourier-Analysis

Definition 32 (Trigonometrisches Polynom) Eine Funktion der Form:

$$x \mapsto \sum_{k=-N}^{N} c_k e^{ikx}$$

heißt trigonometrisches Polynom vom Grad N. Man kann sie auch in der Reellen Form darstellen als:

$$x \mapsto \frac{a_0}{2} + \sum_{k=1}^{N} a_k \cos(kx) + b_k \sin(kx)$$

Mit

$$a_0 = 2c_0, a_k = c_k + c_{-k}, b_k = i(c_k - c_{-k})$$

. Die Umformung in die andere Richtung funktioniert mit:

$$c_0 = a_0/2, c_k = (a_k - ib_k)/2, c_{-k} = (a_k + ib_k)/2$$

Theorem 69 Für ein trigonometrisches Polynom $t: I \to \mathbb{C}$ ist äquivalent:

- t ist reellwertig
- $c_k = \overline{c_{-k}}$
- $a_k, b_k \in \mathbb{R}$

Definition 33 Sei $f:(-\pi,\pi)\to\mathbb{C}$ integrierbar. Dann sei:

$$\hat{f}(k) := \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} e^{-ikx} f(x) dx$$

der k-te Fourierkoeffizient,

$$(S_N f)(x) = \frac{1}{\sqrt{2\pi}} \sum_{k=-N}^{N} \hat{f}(k) e^{ikx}$$

das N-te Fourier Polynom und

$$(S_{\infty}f)(x) = \frac{1}{\sqrt{2\pi}} \sum_{k=-\infty}^{\infty} \hat{f}(k)e^{ikx}$$

die Fourierreihe.

Theorem 70 Die trigonometrischen Polynome liegen dicht in $L^p((-\pi,\pi))$. In L^2 ist $S := \{\frac{1}{\sqrt{2}}e^{ikx}|k \in \mathbb{Z}\}$ eine Orthonormalbasis.

Definition 34 (Dirichlet-Kern) Wir definieren den Dirchletkern als:

$$D_N(x) = \frac{1}{2\pi} \sum_{k=-N}^{N} e^{ikx}$$

Es gilt $S_N f = (f \star D_N)$. Außerdem ist:

$$D_N(x) = \begin{cases} \frac{1}{2\pi} (2N+1) & \text{falls } x = 2k\pi \\ \frac{1}{2\pi} \frac{\sin((2N+1)x/2)}{\sin(x/2)} & \text{andernfalls} \end{cases}$$

Theorem 71 (Riemann-Lebesgue) Für reelles $f \in L^{((-\pi,\pi))}$ gilt:

$$\lim_{N \to \infty} \hat{f}(N) = 0$$

Weiter ist:

$$\lim_{N\to\infty} \hat{f}(N) \int_{-\pi}^{\pi} f(x) \cos(Nx) dx = 0$$

sowie

$$\lim_{N \to \infty} \hat{f}(N) \int_{-\pi}^{\pi} f(x) \sin(Nx) dx = 0$$

Theorem 72 (Punktweise Konvergenz der Fourierreihe) $Sei f \in L^1((-\pi, \pi))$ und besitze im Punkt x links- und rechsseitige Ableitung, dann gilt:

$$\lim_{N \to \infty} (S_N f)(x) = \frac{f(x+) + f(x-)}{2}$$

Definition 35 Man betrachtet auch das arithmetische Mittel der Fourierreihen:

$$(\Sigma_N f)(x) = \frac{1}{N} \sum_{K=0}^{N} (S_K f)(x)$$

Dies lässt sich mit dem Fejer-Kern darstellen:

$$K_N = \frac{1}{N} \sum_{j=0}^{N} D_j$$

$$\Sigma_N f = (f \star K_N)$$

Theorem 73 Der Fejer Kern hat folgende Darstellung:

$$K_N(x) = \frac{1}{2\pi N} (\frac{\sin(\frac{N}{2}x)}{\sin(x/2)})^2$$

Theorem 74 Sei $f \in C[-\pi, \pi]$ mit $f(-\pi) = f(\pi)$. Dann gilt:

$$\|\Sigma_N f - f\|_{\infty} \to 0$$

Theorem 75 $S_N f$ ist die Bestapproximation von f auf den Raum der trigonometrischen Funktionen vom Grad maximal f im L^2 -Sinn. Es gilt:

$$||f - S_N f||_2^2 = ||f||_2^2 - \sum_{k=-N}^N |\langle e_k, f \rangle|^2$$

10 Kurvenintegral

Definition 36 (Kurvenintegral) Sei $F: \Omega \to \mathbb{R}^n$ und $\gamma: [a,b] \to \Omega$ stetig differenzierbar, dann definiert man das Kurvenintegral über:

$$\int_{S(\gamma)} F d\gamma = \int_{a}^{b} \langle F(\gamma(t)), \gamma'(t) \rangle dt$$

Theorem 76 Für differenzierbare Skalarfelder $f: \Omega \to \mathbb{R}$ gilt:

$$\int_{S(\gamma)} \nabla f d\gamma = f(\gamma(b)) - f(\gamma(a))$$

Theorem 77 (Integrabilitätsbedingung) Für ein Gradientenfeld $F = \nabla f, f \in C^2$ qilt:

$$\partial_i F_i(x) = \partial_i F_i(x)$$

Definition 37 (sternförmig) Eine Menge Y heißt sternförmig, falls es einen Punkt $x \in Y$ gibt, sodass $[x, y] \subset Y$, $\forall y \in Y$.

Theorem 78 (Poincaré) Auf einem sternförmigen offenen Gebiet Ω ist für $F: \Omega \to \mathbb{R}^n$ äquivalent:

• Die Integrabilitätsbedingung ist erfüllt für F.

• F ist ein Gradientenfeld

Definition 38 (Wegzusammenhang) Ein Raum X heißt wegzusammendhängend, wenn es für alle $x, y \in X$ eine Kurve $\gamma : [0, 1] \to X$ gibt mit:

$$\gamma(0) = x, \gamma(1) = y$$

Definition 39 (konservatives Vektorfeld) Ein Vektorfeld F heißt konservativ, falls für alle Kurven γ_1, γ_2 gilt:

$$\int_{S(\gamma_1)} F d\gamma_1 = \int_{S(\gamma_2)} F d\gamma_2$$

Theorem 79 Auf einem wegzusammenhängend Ω ist $F: \Omega \to \mathbb{R}^n$ genau dann ein Gradientenfeld, wenn es konservativ ist.

11 Oberflächenintegral

Definition 40 (C^{∞} -Zerlegung der 1) Sei $K \subset \mathbb{R}^n$ und $\mathcal{U} = (O_j)_{j \in [n]}$ eine offene Überdeckung eine Familie $\alpha_j \in C^{\infty}(\mathbb{R}^n)$ heißt C^{∞} -Zerlegung der 1, wenn:

$$0 \le \alpha_j \le 1$$

$$supp(\alpha_i) \subset O_i$$

$$\sum_{j=1}^{n} \alpha_j = 1$$

Für jede kompakte Teilmenge existiert eine offene Überdeckung mit passender C^{∞} -Zerlegung.

Definition 41 (Maßtensor) Sei $M \subset \mathbb{R}^n$ eine k-dimensionale C^1 Mannigfaltigkeit und $\psi: U \to O$ eine Parametrisierung. Wir definieren:

$$G_{\psi}(u) = J_{\psi}(u)^{T} J_{\psi}(u), g_{\psi}(u) = \det G_{\psi}(u)$$

Definition 42 Das Integral über die Oberfläche von M für eine Parametrisierung $\psi: U \to O$ ist definiert als:

$$\int_{O} f(\xi)dS(\xi) = \int_{U} f(\psi(u))\sqrt{g_{\psi}(u)}du$$

Das Integral über das gesamte M ist definiert mit hilfe einer Zerlegung der 1:

$$\int_{M} f(\xi)dS(\xi) = \sum_{j=1}^{N} \int_{O_{j}} \alpha_{j}(\xi)f(\xi)dS(\xi)$$

12 Sätze von Gauß, Green und Stokes

Theorem 80 (Satz von Gauß) Sei Ω offen und beschränkt mit C^1 -Rand und $\overline{\Omega} \subset V$. Sei $F: V \to \mathbb{R} \in C^1$, dann ist:

$$\int_{\Omega} div F(x) d\lambda^{n}(x) = \int_{\partial \Omega} \langle F(\xi), \nu(\xi) \rangle dS(\xi)$$

Wobei $\nu(\xi)$ der nach außen zeigende Normalenvektor an ξ sei.

Theorem 81 (Erste Greensche Formel) Sei $f \in C^1, g \in C^2$:

$$\int_{\Omega} f(x)\Delta g(x) = -\int_{\Omega} \langle \nabla f(x), \nabla g(x) \rangle d\lambda^{n}(x) + \int_{\partial \Omega} f(\xi) \partial_{\nu} g(\xi) dS(\xi)$$

Wobei $\partial_{\nu} g(\xi) = \langle \nabla g(\xi), \nu(\xi) \rangle.$

Theorem 82 (Zweite Greensche Formel) Sei $f \in C^1, g \in C^2$:

$$\int_{\Omega} \Delta g(x) d\lambda^{n}(x) = \int_{\partial \Omega} \partial_{\nu} g(\xi) dS(\xi)$$

Ist außerdem $f \in C^2$:

$$\int_{\Omega} (f\Delta g - g\Delta f)(x) d\lambda^{n}(x) = \int_{\partial\Omega} (f\partial_{\nu}g - g\partial_{\nu}f)(\xi) dS(\xi)$$

Theorem 83

$$divF(x) = \lim_{\epsilon \to 0} \frac{1}{vol(B(x,\epsilon))} \int_{\delta B(x,\epsilon)} \langle F(\xi), \nu(\xi) \rangle dS(\xi)$$

Theorem 84 (Stokes in \mathbb{R}^2) Sei $\Omega \subset \mathbb{R}^2$ offen mit C^1 -Rand welcher von ψ im mathematisch positiven sinn durchlaufen wird. Dann gilt:

$$\int_{S(\psi)} F(x)d\psi = \int_{\Omega} \partial_1 F_2 - \partial_2 F_1$$

Theorem 85 (Stokes in \mathbb{R}^3) Sei $O \subset \mathbb{R}^3$ eine 2-dimensionale C^1 -Mannigfaltigkeit mit C^1 -Rand welcher im mathematisch positiven Sinn von γ durchlaufen wird. Dann gilt:

$$\int_{\partial O} F(x)d\gamma = \int_{O} \langle rotF(\xi), \nu(\xi) \rangle dS(\xi)$$

Definition 43 Seien μ und ν Maße. Dann ist ν absolutstetig bzgl. μ ($\nu << \mu$), wenn

$$\mu(A) \Rightarrow \nu(A) = 0$$

Gilt die Umkehrung auch so heißen μ und ν äquivalent. Das Maß μ heißt singulär zu ν ($\mu \perp \nu$), wenn ein A existiert, sodass:

$$\mu(A) = 0 \wedge \nu(\Omega \backslash A) = 0$$

Theorem 86 (Zerlegungssatz von Lebesgue) Seien μ und ν σ -endlich. Dann lässt sich ν auf eindeutige weise in einen absolutstetigen Teil ν_a und singulären Teil ν_s bezüglich μ zerlegen:

$$\nu = \nu_a + \nu_s$$

Theorem 87 Seien μ und ν σ -endlich, dann ist äquivalent:

- ν << μ
- Es gibt eine Dichte $\rho: \Omega \to [0, \infty)$ mit $d\nu = \rho d\mu$.