Angular

v2,v4,v5, v6 - v13 (avec npm et typescript)

Table des matières

I - Présentation de Angular	5
Présentation du framework web Angular	5
II - Environnement de développement Angular	14
Environnement de développement pour Angular	14
2. Anatomie élémentaire d'un composant angular	
3. Arborescence de composants (TD)	
III - Langage typescript	28
Bases syntaxiques du langage typescript (ts)	28
2. Programmation objet avec typescript (ts)	
3. Lambda et generics et modules	
4. Modules (es2015 et typescript)	
5. Précautions/pièges "js" (et "ts")	

IV - Essentiel sur templates , bindings , events	64
Anatomie d'un composant angular	
2. Templates bindings (property, event)	67
V - Switch et routing essentiel (navigation)1. Switch élémentaire de sous composants	77
2. Bases élémentaires du routing angular	78
VI - Contrôles de formulaires (bases essentielles	s)81
Contrôle des formulaires	81
VII - Components (angular)	88
Structure d'une application angular 2+	88
2. Les modules applicatifs	
3. Précisions sur les composants (@Component)	
4. Cycle de vie sur composants (et directives)	
5. Formatage des valeurs à afficher avec des "pipes"	100
VIII - Services et injections (essentiel)	102
Services "angular" (concepts et bases)	
NB : Observable<> ressemble un peu à Promise<> et se cor	
compteService.getComptesOfClientObservable(this.clientId)	
.subscribe(comptes =>this.comptes = comptes ,	
error => console.log(error));	103
Observable (de rxjs) sera étudié de façon plus détaillée au sein d	•
ultérieur (HTTP ,)	103
2. Injection de dépendances (bases)	104
IX - Appels de W.S. REST (Observable,)	106
Angular et dialogues HTTP/REST	106
Nouvelle Api HttpClient (depuis Angular 4.3)	108
X - Routing angular (compléments importants)	112
Sous niveau de routage (children)	112
2. Routes paramétrées et navigation par code	
3. Route conditionnée par gardien	115
4. Aperçu sur le routing angular avancé	117

Angular v6-7-8 Didier Defrance Page 2

XI -	- Directives	118
	Aperçu sur les directives (angular2+)	
XII	- Packaging et déploiement d'appli. angular	122
	déploiement avec ou sans "bundle"	
	Angular-CLI en mode développement	
	JIT vs AOT (Ahead-Of-Time)	
	ivy (à partir de angular 9)	
5.	Mise en production d'une application angular	12/
XIII	l - Aspects divers de angular (pipes,)	130
1.	BehaviorSubject	130
2.	Autres aspects divers	134
ΧIV	/ - Tests unitaires (et) avec angular	137
	Différent types de tests autour de angular	
XV	- Sécurité – application "Angular2"	138
1.	Sécurisation d'une application "angular"	138
	Sécurisation des appels aux Web-services REST	
	Migration "AngularJs/v1.x" et Angular 2+	
	Utilisation du service Http avec Promise	
5.	Simulation d'appels HTTP via angular-in-memory-web-api	150
XV	I - Annexe – Ancien Http (avant HttpClient) Utilisation du service Http avec Observable (rxjs)	152
1.	Utilisation du service Http avec Observable (rxjs)	152
2.	Retransmission des éléments de sécurité (v2,v4,v5)	157
XV	II - Annexe – RxJs	158
1.	introduction à RxJs	158
2.	Fonctionnement (sources et consommations)	
3.	Réorganisation de RxJs (avant et après v5,v6)	159
4.	Sources classiques générant des "Observables"	161
	Principaux opérateurs (à enchaîner via pipe)	
6.	Passerelles entre "Observable" et "Promise"	165
XV	III - Annexe – ngx-bootstrap	166

Extension "ngx-bootstrap" pour angular Mode "offLine" et indexed-db	171
3. IndexedDB et idb	172
4. Socket.io	176
XIX - Annexe – Web Services REST (coté serve	eur)184
Généralités sur Web-Services REST	184
2. Limitations Ajax sans CORS	191
3. CORS (Cross Origin Resource Sharing)	

I - Présentation de Angular

1. Présentation du framework web Angular

1.1. Positionnement du framework "Angular"

Angular est un framework web de Google qui s'exécute entièrement du coté navigateur et dont la programmation est basée sur le langage typescript (version fortement typée de javascript/es6+). La récupération de données s'effectue via des services (à programmer) et dont la responsabilité est souvent d'appeler des web services REST (transfert de données JSON via HTTP).

Les principaux intérêts de la technologie angular sont les suivants :

- une grande partie des traitements web s'effectue coté client (dans le navigateur) et le serveur se voit alors déchargé d'une lourde tâche (refabriquer des pages, gérer les sessions utilisateurs, ...) ---> bien pour tenir la charge.
- meilleurs performances/réactivités du coté affichage/présentation web (navigateur) : c'est directement l'arbre DOM qui est réactualisé/rendu à partir des modifications apportées sur le modèle typescript/javascript (plus de html à transférer/ré-analyser).
- séparation claire entre la partie "présentation" (js) et la partie "services métiers" (java ou ".net" ou ".php" ou "nodejs" ou ...) . Google présente d'ailleurs parfois angularJs ou Angular2+ comme un framework MVW (Model-View-Whatever) .

1.2. Contexte architectural

Ancienne architecture web prédominante (années 1995-2015) :

Pages HTML générées coté serveur (ex : java/JEE, php, asp, ...) et sessions HTTP coté serveur.

Ancienne architecture web

Nouvelle architecture web prédominante (depuis 2015 environ) :

Front-end (ex : Angular, VueJs, React, ...) en HTML5/CSS3/JS invoquant (via ajax) des Webservices REST d'un "backend" serveur quelconque (nodeJs, php, java/JEE/spring, python, ...).

Env exécution NodeJs

souvent SPA (Single Page Application)

--> avantages : meilleurs performances (si grand nombre de clients simultanés) et meilleur séparation font-end (affichage standard HTML5/CSS3) / back-end (api rest) .

1.3. Evolution du framework "angular" (versions)

Evolution de angular (versions) *javascript*, contrôleur *angularJs* (1.x) 2012 - 2016 typescript, composants, angular 2 (fin 2016) avec bugs __ moins bugs, angular 4.0 à 4.2 (début 2017) angular-cli angular 4.3 et 5.x (fin 2017) - http --> httpClient angular 6, 7, 8 (2018, 2019) -RxJs et base angular enfin stable **Angular 9, ... ,13** (2020,2022) moteur ivy performant

<u>NB:</u>

- L'ancienne version 1.x s'appelait AngularJs
- Depuis la v2, le framework à été renommé Angular (sans js car typescript)
- La v2 comportait plein de bugs . la v3 n'a jamais existé .
- Les v4 et v5 étaient utilisables (sans bug) mais depuis certaines parties ont été grandement restructurées (http --> httpClient, rxjs, ...)
- Le framework "angular" s'est enfin stabilisé à partir de la version 6 (les v7 et v8 apportent quelques améliorations sans grand chamboulement).
- A partir de la version 9, le coeur interne d'angular a été refondu (moteur "ivy" plus performant) et certains aspects avancés ont été améliorés (compacité du code, lazy loading enfin stabilisé, ...)
- Les versions récentes d'angular (11, 12, 13, ...) sont maintenant accompagnées d'un langage <u>typescript</u> configuré en <u>mode strict</u>. Ceci oblige à programmer avec plus de rigueur.

1.4. Binding angular

En s'étant inspiré du design pattern "MVVM" (*Model-View-ViewModel*) proche de MVC, le framework Angular gère automatiquement une mise à jour de la vue HTML qui s'affiche dans le navigateur en effectuant (quasi-automatiquement) des synchronisations par rapports aux valeurs d'un modèle orienté objet (compatible JSON) qui est géré en mémoire par une **hiérarchie de composants**.

Quelque soit la version d'angular (1, 2, 4 ou +), le **binding automatique** entre valeurs saisies ou affichées et les valeurs des objets "javascript" constitue **la principale valeur ajoutée du framework**.

C'est le principal apport d'Angular par rapport à une application simplement basé sur jquery.

<u>NB</u>: AngularJs (v1.x) utilisait un binding systématiquement bidirectionnel et assez peu performant. Angular (v2, v4, ...) utilise maintenant un binding mieux contrôlé (soit unidirectionnel , soit bidirectionnel) et est plus performant.

1.5. Structure "Single Page" et routage angular

De façon à ce que le code javascript (librairies angular + code de l'application) soit conversé en mémoire sur le long terme, une application Angular est constitué d'une seule grande page "index.html" qui est elle même décomposée en une hiérarchie de composants (ex : header, footer, content,). On parle généralement en terme de "SPA: Single Page Application" pour désigner cette architecture web (très classique).

Le composant principal ("main.component", ".ts", ".html") comporte très souvent une balise spéciale <router-outlet></router-outlet> (fonctionnellement proche de <div />) dont le contenu (interchangeable) sera automatiquement remplacé par un des sous composants importants de l'application.

Le switch de sous composants sera associé à des navigations généralement paramétrées dans un module de routage.

En pouvant associer une speudo-URL relative à l'affichage contrôlé d'un certain sous composant précis , il est ainsi possible de mémoriser des "bookmarks / favoris / marques-pages" dans un navigateur .

1.6. Particularités du framework "Angular" (v2, v4, ..., v6, ...)

- le code d'une application angular est bien structuré (orienté objet / syntaxe rigoureuse grâce à typescript) et est "très maintenable" .
- le framework "angular" est dès le départ très complet (rendu, binding, routage, appels ajax/http, ...), ce qui n'est volontairement pas le cas de certains autres frameworks concurrents (backbone, react, knockout-js, ...)
- l'environnement de développement est basé (depuis la v2) sur **npm** et @angular/cli et est maintenant très complet (tests, génération de bundles, ...)

NB:

- Angular Js (1.x) n'était basé que sur javascript/es5 et ne nécessitait aucun environnement de développement sophistiqué (un simple "notepad++" suffisait").
 En contre partie de cet environnement de développement simpliste, le code d'une application "Angular Js / 1.x" était assez rapidement complexe à maintenir (pas adapté aux applications de grandes tailles).
- Depuis la v2 , "Angular" n'est plus qualifié de "Js" et s'appuie sur un environnement de développement beaucoup plus sophistiqué (npm + @angular/cli + typescript) et très complet (tests , générations de "bundles" ,).
- Depuis la V2 d'angular les composants sont codés en typescript "typé et orienté objet" (.ts)
- A court terme les fichiers ".ts" sont traduits en ".js" (es5 ou es6+) de façon à pouvoir être interprétés par presque tous les navigateurs des années 2010-2018 ou 2018-202x.

1.7. Orientation "composants"

Contrairement à l'ancienne version 1.x, les nouvelles versions 2+ du framework angular sont clairement orientées "composants". Il s'agit là d'une évolution récente des technologies web.

Web Component:

"Web Component" est une spécification (récente) du "W3C".

"Web component" est un ensemble d'API WEB permettant de programmer et utiliser des composants personnalisés au sein de pages (ou applications) HTML.

Les 4 api fondamentales des "web component" sont :

- Custom elements (pour créer et enregistrer de nouveaux éléments HTML et les faire reconnaître par le navigateur)
- **shawdow dom** (encapsulation (private/public) de "js et css")
- es module / html imports (modularité / packaging)
- html template (squelettes/modèles de nouveau éléments HTML instanciables)

Shadow DOM:

- Fragment d'un arbre dom (isolé de l'arbre DOM principal).

Nouvelles balises "html" associées aux "Web Component":

<template> <slot> ...

NB:

Cette normalisation (récente) peut éventuellement encore un peu évoluer. C'est supporté que par certains navigateurs récents.

Quelques URLs pour approfondir le sujet :

https://css-tricks.com/an-introduction-to-web-components/ https://developer.mozilla.org/fr/docs/Web/Web Components

https://www.webcomponents.org/introduction

https://developers.google.com/web/fundamentals/web-components/

...

- Le framework "Angular" met en oeuvre (à sa façon, sans absolument tenir compte de cette norme) la plupart des fonctionnalités des "web component".
- Une petite application angular de type "composant réutilisable" peut éventuellement être packagé comme un web-component portable (respectant la norme) de manière à être ensuite utilisé dans un cadre "html/javascript" classique (sans framework).
- Dans la plupart des cas , le framework angular sera utilisé pour programmer une application complète constituée d'un assemblage de composants spécifiques "angular" .

1.8. Eventuelles extensions pour angular

primeNg, @angular/material et ngx-bootstrap sont trois extensions concurrentes qui sont constituées d'un ensemble homogène de nouveaux composants graphiques réutilisables (ex : tabs/onglets, menus déroulants, panels, ...)

material2 est obsolète et remplacé par @angular/material.

@angular/material est quelquefois accompagné de flex-layout (pour l'aspect "responsive").

ng2-bootstrap est **obsolète** et remplacé par **ngx-bootstrap** (ng-bootstrap est encore une autre variante, cependant moins utilisée).

<u>Attention</u>: certains jolis thèmes de primeNg sont des extensions payantes et la programmation de nouveaux thèmes pour "primeNg" n'est pas simple.

En utilisant une de ces bibliothèques additionnelles, le développement concret d'une application angular 4+ s'appuie sur de nouvelles balises prêtes à l'emploi et facilement paramétrables.

- --> avantage : code plus compact et intégration naturelle dans le reste du code applicatif angular.
- --> petit inconvénient : balisages et paramétrages assez spécifiques (moins portables que du classique "html5+css3") .

NB: Angular 1.x s'appuyait en interne sur "jquery lite". Depuis la v2, Angular ne s'appuie plus du tout sur jquery. Il est vivement déconseillé d'utiliser "jquery" avec angular 2,4,6+

ionic 3+ est une extension de angular 4+ qui s'appuie en interne sur "apache cordova" et qui permet de développer des applications mobiles hybrides (en partie "web", en partie native) pour les smartphones "ios/iphone", "android", "windows", ...

Quelques bonnes extensions pour angular (testées/utilisées):

<u>NB</u>: La plupart des <u>extensions pour angular</u> sont à considérées comme <u>facultatives</u> mais sont très pratiques et permettre d'obtenir un code lisible compact et maintenable dans un style bien "angular".

II - Environnement de développement Angular

1. Environnement de développement pour Angular

1.1. Environnement de développement minimum (depuis v2)

Bien que Angular soit une technologie qui s'exécute "coté navigateur", l'environnement de développement s'appuie sur la sous partie "npm" de nodeJs.

L' éco-système "npm" sert essentiellement à télécharger et exécuter les technologies de développement nécessaires pour angular ("tsc", "@angular/cli", ...").

A l'époque des premières "v2" de Angular , le mode de développement préconisé consistait à directement partir d'un fichier "package.json" récupéré par copier/coller et éventuellement adapté pour ensuite lancer "npm install" , etc ...

Bien qu'encore possible actuellement, ce mode de développement basique et direct est de moins en moins utilisé au profit de l'utilitaire en ligne de commande "@angular/cli" (exposé au sein du prochain paragraphe).

1.2. Développement Angular basé sur @angular/cli (ng)

incontournable @angular/cli

S'installant via *npm install -g @angular/cli*, angular CLI est un *utilitaire en ligne de commandes* (s'appuyant sur npm et webpack) permettant de gérer toutes les phases d'un projet angular:

```
ng new my-app -- création d'une nouvelle appli angular4+

ng g component cxy -- génération d'un nouveau composant
ng g service sa -- génération d'un nouveau service
ng g ...

ng serve -- build en mémoire + démarrage serveur de test
ng build -- construction de bundles (pour déploiement et production)
ng ...
```

Angular-CLI est maintenant officiellement préconisé sur le site officiel de Angular. Autant faire comme tout le monde et utiliser cette façon de structurer et construire une application angular.

Installation (en mode global) de angular-cli via npm : npm install -g @angular/cli

NB : si besoin , upgrade préalable de npm via npm install npm@latest -g
ou bien carrément désinstaller nodeJs et réinstaller une version plus récente.

La création d'une nouvelle application s'effectue via la ligne de commande "**ng new** *my-app*". Cette commande met pas mal de temps à s'exécuter (beaucoup de fichiers sont téléchargés).

Au sein de l'arborescence des répertoires et fichiers créés (voir ci-après) :

^{*} src/assets est prévu pour contenir des ressources annexes (images,) qui seront automatiquement recopiées/packagées avec l'application construite.

Principales lignes de commandes de **ng** (angular-cli) :

Timelpales lighes de commandes de lig (angui	
ng new my-app , cd my-app	Création d'une nouvelle application " <i>my-app</i> ".
ng serve Lancement de l'application en mode développement (watch & compile file , server,) \rightarrow URL par défaut : http://localhost:4200	
ng build	Construction de l'application (par défaut en modeprod depuis la version 12)
ng help	Affiche les commandes et options possibles
ng generate (ou ng g)	Génère un début de code pour un composant, un service ou autre (selon argument précisé)
ng test	Lance les tests unitaires (via karma)
ng e2e (avant version 12) installer et utiliser cypress depuis la v12	Lance les tests "end to end" / "intégration"

Première Installation de @angular/cli

Eventuelle installation de nodeJs et npm (si nécessaire):

Si **node -v** et **npm -v** se sont pas des commandes reconnues (dans un terminal texte) alors télécharger et installer **nodeJs** (pour windows 64 bits ou pour et en version LTS). Relancer ensuite un terminal texte et lancer *npm -v* pour vérifier.

Eventuelle installation de typescript (si nécessaire):

Si tsc -v est une commande inconnue (dans CMD), alors lancer la commande suivante :

npm install -g typescript

installation de angular-cli:

Si **ng** -help est une commande non reconnue (dans CMD) alors lancer la commande suivante :

npm install -g @angular/cli

Installer si nécessaire l'IDE Visual Studio code.

Création et lancement d'une application angular

Dans c:/.../tp-js ou ailleurs lancer la commande suivante

ng new my-app

- choisir "y" à la question "activer le routing angular"
- choisir "scss" comme format de feuilles de styles

NB: La commande ng new my-app met généralement beaucoup de temps à s'exécuter et elle sollicite beaucoup de réseau (nombreux téléchargements). Dans certains cas (heureusement très rares), il faut lancer la commande une seconde fois si la première tentative n'a pas fonctionné.

Se placer dans le répertoire my-app (cd my-app)

Lancer la commande ng serve -o

Vérifier le fonctionnement initial de l'application construite via l'url http://localhost:4200 à charger dans un navigateur .

NB: En phase de développement, le mini serveur démarré par **ng serve** re-génère automatiquement une nouvelle version à jour de l'application dès que le code .ts ou .html de l'application est modifié.

Cependant, certains bugs temporaires ou certaines modifications importantes de l'application (configuration, restructuration de composants, ...) nécessitent quelquefois un re-démarrage de ng serve.

Pour arrêter ng serve avant de le rédémarrer, il faut se placer dans le terminal (souvent dédié) où ng serve a été préalablement lancé et taper Ctrl-C

Angular v6-7-8 Didier Defrance Page 17

Type de composants que l'on peut générer (début de code) :

Scaffold (échafaudage)	Usage (ligne de commande)
Component	ng g component my-new-component ng g c my-new-component
Directive	ng g directive my-new-directive
Pipe	ng g pipe my-new-pipe
Service	ng g service my-new-service ng g s my-new-service
Class	ng g class my-new-class
Interface	ng g interface my-new-interface
Enum	ng g enum my-new-enum
Module	ng g module my-module

<u>NB</u>: principales options utiles pour **ng g component** sont les suivantes :

```
--style css (ou --style scss ) ou ...
```

- -- flat (pas de sous répertoire)
- --skip-tests (ne génère pas de fichier ...spec.ts)
- --inline-template (ne génère pas de fichier .html)
- --inline-style (ne génère pas de fichier .css , possible en css seulement)

<u>NB</u>: **ng serve construit l'application entièrement en mémoire** pour des raisons d'efficacité / performance (on ne voit aucun fichier temporaire écrit sur le disque).

ng build génère quant à lui des fichiers dans le répertoire my-app/dist.

Contenu du répertoire my-app/dist/my-app après la commande "ng build" :

3rdpartylicenses.txt	13/03/2022 20:45	Document texte	16 Ko
📝 favicon.ico	23/02/2022 17:17	Fichier ICO	1 Ko
index.html	13/03/2022 20:45	Firefox HTML Doc	3 Ko
main.e690766f54729005.js	13/03/2022 20:45	Fichier de JavaScript	672 Ko
🟂 polyfills.96fd61f4191dac28.js	13/03/2022 20:45	Fichier de JavaScript	37 Ko
🏂 runtime.b5b2d38d33a5a587.js	13/03/2022 20:45	Fichier de JavaScript	2 Ko
📝 styles.a5d4ddde1dbf3b1d.css	13/03/2022 20:45	Fichier CSS	159 Ko

Migration globale de angular-cli vers version plus récente :

```
npm uninstall -g angular-cli
npm cache verify
npm install -g @angular/cli@latest
```

Migration locale du seul projet courant vers version plus récente :

ng <u>update</u> @angular/cli @angular/core [--to=13.3.0]

Ajout de bibliothèque(s) javascript :

<u>NB</u>: si l'on souhaite utiliser conjointement certains fichiers javascripts complémentaires (exemple pas conseillé mais quelquefois compatible : "jquery...js" et "bootstrap.min.js") on peut :

- 1) placer un répertoire "js" a coté de node-modules (ou bien utiliser un jquery récupéré par npm)
- 2) adapter le fichier angular.json de la façon suivante :

NB : bien que techniquement possible , l'ajout de jquery.js à un projet angular est **très** déconseillé !!!

1.3. IDE et éditeurs de code pour angular

1.4. Configuration "npm" et "@angular/cli" pour Angular

Voici un exemple de fichier "package.json" généré par "ng new my-app" :

```
"name": "my-app",
"version": "0.0.0",
"scripts": {
 "ng": "ng",
 "start": "ng serve",
 "build": "ng build",
 "watch": "ng build --watch --configuration development",
 "test": "ng test"
"private": true,
"dependencies": {
 "@angular/animations": "~13.0.0",
 "@angular/common": "~13.0.0",
 "@angular/compiler": "~13.0.0",
 "@angular/core": "~13.0.0",
 "@angular/forms": "~13.0.0".
 "@angular/platform-browser": "~13.0.0",
 "@angular/platform-browser-dynamic": "~13.0.0",
 "@angular/router": "~13.0.0",
 "bootstrap": "^5.1.3",
 "ngx-bootstrap": "^8.0.0",
 "rxjs": "~7.4.0",
 "tslib": "^2.3.0",
 "zone.js": "~0.11.4"
"devDependencies": {
 "@angular-devkit/build-angular": "~13.0.4",
 "@angular/cli": "~13.0.4",
 "@angular/compiler-cli": "~13.0.0",
 "@types/jasmine": "~3.10.0",
 "@types/node": "^12.11.1",
 "jasmine-core": "~3.10.0",
 "karma": "~6.3.0",
 "karma-chrome-launcher": "~3.1.0",
 "karma-coverage": "~2.0.3",
 "karma-jasmine": "~4.0.0",
 "karma-jasmine-html-reporter": "~1.7.0",
 "typescript": "~4.4.3"
```

NB: au sein de cet exemple, les extensions *bootstrap* et *ngx-bootstrap* ont été ajoutées via *npm install -s*

Voici un exemple de fichier tsconfig.json généré :

```
"compileOnSave": false,
"compilerOptions": {
"baseUrl": "./",
 "outDir": "./dist/out-tsc",
 "forceConsistentCasingInFileNames": true,
 "strict": true,
 "noImplicitOverride": true,
 "noPropertyAccessFromIndexSignature": true.
 "noImplicitReturns": true,
 "noFallthroughCasesInSwitch": true,
 "sourceMap": true,
"declaration": false,
 "downlevelIteration": true,
 "experimentalDecorators": true,
 "moduleResolution": "node",
 "importHelpers": true,
 "target": "es2017",
 "module": "es2020",
 "lib": [
  "es2020",
  "dom"
"angularCompilerOptions": {
"enableI18nLegacyMessageIdFormat": false,
 "strictInjectionParameters": true,
 "strictInputAccessModifiers": true,
"strictTemplates": true
```

Ce fichier servira à paramétrer le comportement du pré-processeur (ou pré-compilateur) "tsc" permettant de transformer des fichiers ".ts" en fichiers ".js".

Fichier "main.ts" (généré et ré-exploité par @angular/cli) pour charger et démarrer le code de l'application :

```
import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
  enableProdMode();
}
platformBrowserDynamic().bootstrapModule(AppModule)
  .catch(err => console.log(err));
```

Page principale index.html (qui sera retraitée/enrichie via ng serve ou ng build)

NB : les fichiers index.html et styles.css peuvent être un petit peu personnalisés mais le gros du code de l'application sera placé dans les sous-répertoires "app" et autres .

1.5. Exemple de code élémentaire pour une application angular

app/app.component.ts

```
import {Component} from '@angular/core';
                                     My First Angular 2 App ..
                                     i i*i
@Component({
                                     11
 selector: 'app-root',
                                     24
 template: `<h1>My First {{message}} .. </h1>
                                     39
   416
525
     i i*i 
   636
    {{i}}}{{i*i}}
                                     749
   864
   981
})
export class AppComponent {
     message: string;
    values: number[] = [1,2,3,4,5,6,7,8,9];
     constructor(){
      this.message = "Angular 2 App";
```

```
NB: dans @Component(),
```

- soit templateUrl: 'app.component.html' (template html dans fichier annexe)
- soit template: `<h1>... {{message}} </h1>
 - ...` (contenu direct d'un petit template html entre quotes inverses)

app/app.module.ts

```
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { AppComponent } from './app.component';
```

```
@NgModule({
  imports: [BrowserModule],
  declarations: [AppComponent],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule {}

à lancer et tester via ng serve
  et http://localhost:4200
```

1.6. Styles css globaux et styles spécifiques à un composant.

```
xyz.component.ts
```

```
...

@Component({
    selector: 'xyz',
    templateUrl: './xyz.component.html',
    styleUrls: ['./xyz.component.css']
})
export class XyzComponent implements OnInit {
...
}
```

xyz.component.css

```
input.ng-valid[required] {
        border-left: 5px solid #42A948; /* green */
}
input.ng-invalid {
        border-left: 5px solid #a94442; /* red */
}
.errMsg{
        font-style: italic;
}
```

Ces classes de styles css ne sont utilisées que par le composant "xyz". Il n'y aura pas d'effet de bord (pas d'éventuels conflits ou perturbations) avec d'autres composants.

Pour utiliser des styles css au niveau global (toute l'application), on peut dans un contexte "angular-cli" les référencer dans la partie "styles" de .angular.json

```
"styles": [
    "src/styles.css", "src/assets/css/xyz.css"
],
...
```

 $\underline{\text{NB}}$: Les chemins sont à exprimer de façon relative à *la racine de l'appli angular* (la où est placé *package.json*) .

1.7. Lien classique entre angular 12+ et bootstrap-css 4 ou 5

<u>Avertissement préalable</u>:

Bootstrap-css vient assez récemment de basculer de la version 4.x à la nouvelle version 5.x

<u>Téléchargement (et installation dans l'appli) de bootstrap-css via npm</u> :

```
npm install -s bootstrap

et eventuellement (pour paquets d'icônes) :
npm install -s bootstrap-icons (pour V5)
   ou bien
npm install -s @fortawesome/fontawesome-free (pour V4 ou ...)
```

NB: par défaut, la dernière version stable de bootrap-css est téléchargée (actuellement 5+). on peut (si besoin) préciser la version de bootstrap souhaitée lors du "npm install".

dans angular.json:

Petit test dans un ...component.html:

```
<input type="button" value="ok" class="btn btn-primary" />
<i class="fa fa-heart" aria-hidden="true" style="color: red;"></i>
ou bien
<i class="bi-arrow-down-circle-fill"></i>

!-- bi-... pour bootstrap-icons et fa-.... pour fontawesome →
```

2. Anatomie élémentaire d'un composant angular

Chaque **composant** (visuel) d'une application Angular est constitué de plusieurs fichiers complémentaires (par défaut rangés dans un même sous-répertoire) :

- xy.component.ts (classe TypeScript du composant)
- xy.component.html ("temptate" HTML du composant)
- xy.component.css (ou .SCSS) (styles CSS spécifiques au composant)
- xy.component.spec.ts (spécifications pour tests unitaires)

Le fichier **xy.component.ts** correspond à la **structure orientée objet du composant** et comporte généralement des propriétés / attributs / données internes et des méthodes événementielles.

Remarque: la valeur de selector: (dans la décoration @Component() du fichier xy.component.ts) correspond au nom de la nouvelle balise qui sera associée à ce composant et qui permettra d'accrocher / insérer ce composant dans le template HTML d'un composant parent.

Le fichier xy.component.html appelé "template" HTML correspond à la représentation HTML + Angular du composant et correspondra, après analyse et traitement par Angular, à une partie de l'arbre DOM de la page HTML.

Un "template" HTML Angular comporte, en plus des syntaxes HTML standardisées, des paramétrages spécificiques au framework Angular :

- Expressions : {{...}}
- "Bindings" de propriétés : [(ngModel)]="..."
- Déclenchement de méthodes événementielles : (click)="onAction()"

La racine de l'arborescence des composants est la balise <app-root></app-root> de la page src/index.html. Ainsi, app-root est la valeur du sélecteur du composant principal (AppComponent dans app.component.ts, app.component.html, ...)

Attention: Pour qu'il soit pris en compte, chaque composant de l'application doit être **enregistré** dans un des modules (souvent dans la partie "declarations: [. . .] " du module principal src/app/app.module.ts).

3. Arborescence de composants (TD)

Ce TD va permettre de créer de nouveaux composants Angular et de les rattacher entre eux.

- Revenir, si besoin, sur le projet my-app (Angular) via un File/Open Folder de Visual Studio Code
- Relancer, si besoin, ng serve au sein d'un terminal (nouveau ou pas)
- Au sein d'un **nouveau terminal** de Visual Studio Code, lancer les commandes suivantes dans l'ordre indiqué ci-dessous :
 - ng g component header
 - ng g component footer
 - ng g component basic
- Se placer dans src/app/basic (via cd) pour lancer les commandes suivantes :
 - ng g component calculatrice
 - · ng g component tva
- Lire les messages affichés par les commandes précédentes ng g component ... et visualiser (au sein de Visual Studio Code) :
 - Les nouveaux répertoires créés (dans src/app)
 - Les nouveaux fichiers créés (.ts, .scss, .html, -spec.ts)
 - Les modifications apportées dans le fichier src/app/app.module.ts
- Dans src/app/header/header.component.ts, repérer la valeur app-header du sélecteur
- Ajouter les sous-composants <app-header></...>, <app-basic></...> et</app-footer></...> dans src/app/app.component.html
- De la même façon, ajouter les sous-sous-composants "calculatrice" et "tva" dans src/app/basic/basic.component.html
- Modifier éventuellement certaines couleurs de fond (via .SCSS) pour bien distinguer les sous-composants

• Tester via http://localhost:4200

footer works!

Etats des principaux fichiers à ce stade :

Fichier src/app/header/header.component.html

```
header works!
```

Fichier src/app/header/header.component.css

```
.entete {background-color: lightgrey;}
```

Fichier src/app/basic/basic.component.html

```
ksic works!
<app-calculatrice></app-calculatrice>
<app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-tva></app-t
```

• Fichier src/app/app.component.html

```
<app-header></app-header>
 welcome to {{title}} 
<!-- <router-outlet></router-outlet> -->
<app-basic></app-basic>
<app-footer></app-footer>
```

Arborescence générée (sélecteurs et composants) :

```
index.html
    app-root (app.component)
    app-header (header.component)
    app-basic (basic.component)
        app-calculatrice (calculatrice.component)
        app-tva (tva.component)
    app-footer (footer.component)
```

III - Langage typescript

1. Bases syntaxiques du langage typescript (ts)

1.1. Rappel: Version de javascript (ES5 ou ES6/es2015)

Les versions standardisées/normalisées de javascript sont appelées ES (EcmaScript) . Les versions modernes sont :

- ES5 (de 2009) supporté par quasiment tous les navigateurs actuels ("mobiles" ou "desktop")
- ES6 (renommé ES2015 car normalisé en 2015). ES6/es2015 n'est pour l'instant supporté que par quelques navigateurs "desktop" récents.

 ES6/ES2015 apporte quelques nouvelles syntaxes et mots clefs (class, let, ...) et gère des modules dits "statics" via "import { ComponentName } from 'moduleName'; " et export.

En 2016, 2017, 2018, ..., une application basée sur "typescript" doit être compilée/transpilée en ES5 de façon à pouvoir s'exécuter sur n'importe quel navigateur. Il est souvent possible de générer en parallèle du code en version es6 compréhensible par les navigateurs modernes.

1.2. TypeScript / ts en tant qu'évolution de ES6

Le langage "typescript" est une évolution de ES6 (ECMAScript 6) avec un typage fort et éventuellement des décorations (@...).

Ce langage (à l'origine créé par Microsoft) s'utilise concrètement en écrivant des fichiers ".ts" qui sont transformés en fichiers ".js" via un pré-processeur "tsc" (typescript compiler).

Cette phase de transcription (".ts \rightarrow .js") s'effectue durant la phase de développement.

<u>Comportement de tsc</u>: tant que l'on ajoute pas de spécificités "typescript", le fichier ".js" généré est identique au fichier ".ts".

Si par contre on ajoute des précisions sur les types de données au sein du fichier ".ts" alors :

- le fichier ".js" est bien généré (par simplification ou développement) si aucune erreur bloquante est détectée.
- des messages d'erreurs sont émis par "tsc" si des valeurs sont incompatibles avec les types des paramètres des fonctions appelées ou des affectations de variables programmées.

(!!!) Attention, attention:

Pour l'instant la plupart des moteurs d'interprétation de javascript (des navigateurs , de nodeJs, ...) ne tiennent pas encore compte des types (:number , :string , :boolean , ...) de l'extension "typescript" .

Les précisions de type (:number, :string, :boolean, ...) des fichiers ".ts" sont ainsi "perdues" dans les fichiers ".js" générés et *des incohérences de types peuvent alors éventuellement avoir lieu au moment de l'exécution*.

Bien que déclarée de type ":number", le contenu d'une variable x saisie numériquement dans un

<i p><input /> sera quelquefois (selon le framework) récupérée comme la valeur 123 ou bien "123".

Et x + 2 vaudra alors 125 ou "1232".

Et Number(x) + 2 vaudra toujours 125.

La rigueur supplémentaire apportée par typescript porte donc essentiellement sur des contrôles effectués sur le code source par des outils de développement (éditeurs et/ou compilateurs sophistiqués). Des incohérences de types seront par exemple détectées au niveau des paramètres d'entrée et/ou des valeurs de retour lors d'un appel de fonction.

<u>Autre très grand intérêt de typescript</u>: dans le cadre (très fréquent) d'une approche orientée objet bien structurée, l'utilisation d'une variable dont le type "classe d'objet" est connu/déclaré mènera souvent l'éditeur à proposer spontanément une liste d'attributs ou méthodes possibles (*auto-complétion intelligente*).

1.3. Point de repère important: compilation systématique

- Typescript doit être vu comme un langage un peu virtuel à systématiquement compiler.
- On gagne à écrire le code source en typescript plutôt qu'en javascript.
- C'est toujours du code transformé en javascript qui s'exécute au runtime au sein d'un navigateur ou bien de nodeJs.

1.4. installation classique de typescript (via npm)

De façon à télécharger et lancer le compilateur "tsc", on pourra (entre autres possibilités) s'appuyer sur *nodejs/npm* (à préalablement télécharger/installer si nécessaire en version *LTS* depuis *https://nodejs.org/en/download/*)

npm install -g typescript

1.5. utilisation directe de tsc sans tsconfig.json

Premiers pas (sans structure de projet):

```
f1.ts
```

```
let a :number;
a=6;
console.log(a);
```

traduction (transpilation/compilation) de ".ts" vers ".js" via tsc :

```
tsc f1.ts
```

génère (par défaut , sans option) dans le même répertoire le fichier suivant :

```
f1.js
```

```
var a;
a = 6;
console.log(a);
```

Lancement du fichier fl.js (ici via node sans navigateur internet):

```
node fl.js
```

1.6. Générer le fichier tsconfig.json (début de projet)

au sein d'un répertoire (vide ou pas) de projet on peut lancer la commande suivante :

```
tsc --init
```

---> cela génère un fichier de configuration avec plein de paramètres possibles en commentaires

Exemple simplifié de fichier tsconfig.json généré:

```
"compilerOptions": {
/* Basic Options */
 // "incremental": true,
                                   /* Enable incremental compilation */
"target": "es5",
                                   /* Specify ECMAScript target version: 'ES3' (default), 'ES5', 'ES2015', 'ES2016', 'ES2017',
                                  'ES2018', 'ES2019' or 'ESNEXT'. */
"module": "commonjs",
                                         /* Specify module code generation: 'none', 'commonjs', 'amd', 'system', 'umd', 'es2015', or 'ESNext'. */
// "lib": [],
                              /* Specify library files to be included in the compilation. */
// "sourceMap": true,
                                     /* Generates corresponding '.map' file. *
// "outFile": "./'
                                /* Concatenate and emit output to single file. */
// "outDir": "./",
                                  /* Redirect output structure to the directory. */
// "rootDir": "./",
                                /* Specify the root directory of input files. Use to control the output directory structure with --outDir. */
/* Strict Type-Checking Options */
 "strict": true,
                                 /* Enable all strict type-checking options. */
// "noImplicitAny": true,
                                     /* Raise error on expressions and declarations with an implied 'any' type. */
// "strictNullChecks": true,
                                     /* Enable strict null checks. */
/* Experimental Options */
// "experimentalDecorators": true,
                                        /* Enables experimental support for ES7 decorators. */
// "emitDecoratorMetadata": true,
                                        /* Enables experimental support for emitting type metadata for decorators. */
```

Un lancement de **tsc** (sans argument) permet de **compiler d'un seul coup tout un tas de fichiers** (en tenant compte des options du fichier **tsconfig.json**).

1.7. <u>Utilisation classique de tsc en mode projet</u>

Après une installation globale effectuée par "npm install -g typescript ", une ligne de commande en "tsc" ou "tsc -w" lancée depuis le répertoire d'un projet où est présent le fichier tsconfig.json suffit à lancer toute une série de compilations "typescipt" :

```
✓ TP-TS-WEB
tsconfig.json
                                                                ✓ .vscode
                                                                {} launch.json
"compilerOptions": {
  "target": "es5",

✓ dist

  "module": "commonis",

✓ css

  "lib": ["ES2015","DOM"],
  "sourceMap": true,
  "outDir": "dist/js",
                                                                  JS calculs.js
  "rootDir": "src",
                                                                  JS calculs.js.map
  "noEmitOnError": false,
                                                                calcul.html
  "strict": true,

✓ src

                                                                TS calculs.ts
                                                               tsconfig.json
```

1.8. Eventuel lancement de tsc en mode watch (-w)

Lancé avec l'option **-w** , le transpilateur **tsc** va automatiquement compiler tous les fichiers **".ts"** fraîchement modifiés et sauvegardés .

Ce fonctionnement met en place une tâche de fond surveillant l'état d'un paquets de fichiers dans quelques répertoires d'un projet. Une fois lancé "tsc-w" ne rend plus la main dans une console "CMD" ou "powershell" ou "sh". Il vaut mieux donc lancer tsc-w dans un terminal dédié.

1.9. <u>Source map (.map)</u>

Avec l'option "sourceMap": true, le compilateur/transpilateur "tsc" génère des fichiers ".js.map" à coté des fichiers ".js".

Ces fichiers dénommés "**source map**" servent à effectuer des correspondances entre le code source original ".ts" et le code transformé ".js" .

Ces fichiers ".map" sont quelquefois chargés et interprétés par des débogueurs sophistiqués (ex : debug de VisualStudio , ...).

Ces fichiers ".map" ne sont pas indispensables pour l'interprétation du code ".js" généré et peuvent généralement être omis en production .

Quelques Bons éditeurs de code (pour langage "typescript"):

- * Visual Studio Code
- * Atom
- * WebStorm

1.10. précision des types de données

Г	
boolean	var isDone: boolean = false;
number	<pre>var height: number = 6; var size : number = 1.83 ;</pre>
string	<pre>var name: string = "bob"; name = 'smith';</pre>
array	<pre>var list1 : number[] = [1, 2, 3]; var list2 : Array<number> = [1, 2, 3];</number></pre>
enum	<pre>enum Color {Red, Green, Blue}; // start at 0 by default // enum Color {Red = 1, Green, Blue}; var c: Color = Color.Green; //display as "1" by default var colorName: string = Color[1]; // "Green" if "Red" is at [0] // Color["Green"] return 1</pre>
any	<pre>var notSure :any = 4; notSure = "maybe a string instead"; notSure = false;</pre>
unknown	<pre>var something :unknown = 4; something = "string value"; var ch : string = something ;</pre>
void	<pre>function warnUser(): void { alert("This is my warning message"); }</pre>
object	(objet quelconque : plus précis que "any", moins précis qu'un nom de classe). var obj : object = { id : 2 , label : "cahier" } ; obj = { prenom : "jean", nom : "Bon" } ; //structure objet différente acceptée .

hello world.ts

```
function greeterString(person: string) {
    return "Hello, " + person;
}

var userName = "Power User";

//i=0; //manque var (erreur détectée par tsc)

var msg = "";

//msg = greeterString(123456); //123456 incompatible avec type string (erreur détectée par tsc)

msg = greeterString(userName);

console.log(msg);
```

values: number[] = [1,2,3,4,5,6,7,8,9];

1.11. Rappels sur tableaux (construction et parcours)

```
var tableau : string[] = new Array<string>();
//tableau.push("abc");
//tableau.push("def");

tableau[0] = "abc";
tableau[1] = "def";
```

Au moins 3 parcours possibles:

```
var n : number = tableau.length;
for(let i = 0; i<n; i++) {
    console.log(">> at index " + i + " value = " + tableau[i] );
}
```

```
for(let i in tableau) {
   console.log("** at index " + i + " value = " + tableau[i] );
}
```

```
for( let s of tableau) {
    console.log("## val = " + s);
}
```

1.12. Portées (var , let) et constantes (const)

Depuis longtemps (en javascript), le mot clef "var" permet de déclarer explicitement une variable dont la portée dépend de l'endroit de sa déclaration (globale ou dans une fonction).

Sans aucune déclaration, une variable (affectée à la volée) est globale et cela risque d'engendrer des effets de bords (incontrôlés). Ceci est maintenant interdit en "typescript".

Introduits depuis es6/es2015 et typescript 1.4, les mots clefs **let** et **const** apportent de nouveaux comportements :

- Une variable déclarée via le mot clef **let** a une *portée limité au bloc local* (exemple boucle for). Il n'y a alors pas de collision avec une éventuelle autre variable de même nom déclarée quelques ligne au dessus du bloc d'instructions (entre {}}, de la boucle).
- Une variable déclarée via le mot clef **const** ne peut plus changer de valeur après la première affectation. Il s'agit d'une constante.

Exemple:

```
const PISur2 = Math.PI / 2;
//PISur2 = 2; // Error, can't assign to a `const`
console.log("PISur2 = " + PISur2);
var tableau : string[] = new Array<string>();
tableau[0] = "abc";
tableau[1] = "def";
var i : number = 5;
var j : number = 5;
//for(let i in tableau) {
for(let i=0; i<tableau.length; i++) {
  console.log("*** at index " + i + " value = " + tableau[i]);
}
//for(j=0; j < tableau.length; j++) 
for(var j=0; j<tableau.length; j++) {
  console.log("### at index " + i + " value = " + tableau[i]);
}
console.log("i=" + i); //affiche i=5
console.log("j="+j); //affiche j=2
```

1.13. Quelques éléments essentiels issus de javascript "es5"

Number("123px") retourne NaN tandis que parseInt("123px") retourne 123.

<u>Remarque importante</u>: une **variable non initialisée** est considérée comme "**undefined**" (notion proche de "null") et ne peut pas être utilisée en tant qu' objet préfixe.

L'opérateur **typeof** *variable* retourne une chaîne de caractère de type "string", "number", "boolean", "undefined", selon le type du contenu de la variable à l'instant t.

```
var vv ;
if( typeof vv == "undefined" ) {
    console.log("la variable vv n'est pas initialisée") ;
}
if( vv == null ) {
    console.log("la variable vv est soit null(e) soit non initialisée") ;
}
```

L'opérateur == (d'origine c/c++/java) retourne true si les 2 expressions ont des valeurs à peu près équivalente (ex 25 est une valeur considérée équivalente à "25").

L'opérateur === (spécifique à javascript) retourne true si les 2 expressions ont à la fois les mêmes valeurs et le même type ("25" et 25 ne sont pas de même type).

window.setTimeout(chExpr,n) permet d'interpréter l'expression chExpr en différé (n ms plus tard)

window.setInterval(chExpr,n) permet de lancer l'interprétation périodique de chExpr toutes les n ms;

```
var jsonString = JSON.stringify(jsObject);
var jsObject2 = JSON.parse(jsonString);
```

delete tab[i]; //supprime la valeur de tab[i] qui devient undefined.

```
tab.splice(i, 2, val1, val2); //remplace tab[i] par val1 et tab[i+1] par val2, etc tab.splice(i, 1); //remplace tab[i] par rien et donc supprime la case tab[i] //sans trou, certains autres éléments sont déplacés (changement d'indice)
```

1.14. Eléments essentiels issus de javascript "es6 / es2015"

- arrow functions (alias "lambda expression") (exemple: (p) => { console.log(p); })
- mots clefs "let", "const" en plus de "var"
- nouvelle boucle for (.. of)
- template string es2015 (avec quotes inverses et \${})
- · Map, Set, ...
- Destructuring
- ...

1.15. "template string" es2015 (avec quotes inverses et \${})

```
var name = "toto";
var year=2015;
// ES5
//var message = "Hello " + name + " , happy " + year; // Hello toto , happy 2015
// ES6/ES2015 :
const message = `Hello ${name} , happy ${year}`; // Hello toto , happy 2015
//attention: exception "ReferenceError: name is not defined" si name est undefined
console.log(message);
```

\${} peut éventuellement englober des expressions mathématiques ou bien des appels de fonctions.

```
let x=5, y=6;
let carre = (x) => x*x;
console.log(`pour x=${x} et y=${y}, x*y=${x*y} et x*x=${carre(x)}`);
//affiche pour x=5 et y=6, x*y=30 et x*x=25
```

template-string multi-lignes:

```
//template multi-lignes ES2015:
let htmlPart=

<select>
<option>1</option>
<option>2</option>
</select>
;
console.log(htmlPart);
```

1.16. for (..of ..) with destructuring on Array (javascript et ts)

<u>Destructuring iterable (array or ...)</u>:

```
const [ id , label ] = [ 123 , "abc" ];
console.log("id="+id+" label="+label);

//const arrayIIterable = [ 123 , "abc" ];
//var iterable1 = arrayIIterable;
const string1Iterable = "XYZ";
var iterable1 = string1Iterable;
const [ partie1 , partie2 ] = iterable1;
console.log("partie1="+partie1+" partie2="+partie2);
==>
id=123 label=abc
partie1=X partie2=Y
```

Autre exemple plus artistique (Picasso):

```
const dayArray = ['lundi', 'mardi', 'mercredi'];
for (const entry of dayArray.entries()) {
    console.log(entry);
}
//[ 0, 'lundi' ]
//[ 1, 'mardi' ]
//[ 2, 'mercredi' ]

for (const [index, element] of dayArray.entries()) {
    console.log(`${index}. ${element}`);
}
// 0. lundi
// 1. mardi
// 2. mardi
```

1.17. Typages forts sophistiqués (typescript)

```
dialect: "mssql" | "mysql" | "postgres" | "sqlite" | "mariadb"; est plus précis que dialect: string;
```

```
unite: string | undefined; // string ou bien undefined (proche de null)
```

permet d'autoriser à laisser unite à la valeur par défaut undefined (sans initialisation explicite). Cependant, comme la valeur de unite sera potentiellement undefined, un tsc très/trop rigoureux nous forcera quelquefois à vérifier le *unite* !=null .

1.18. Trop ou pas assez de rigueur ?

Au sein d'une application "angular" 2 à 10, le fichier **tsconfig.json** généré <u>ne comportait pas</u> l'option "**strict": true**, et on pouvait donc programmer sans trop de rigueur si on le souhaitait.

Avec "strict": true (valeur par défaut depuis angular 11) ,on est par défaut obligé d'initialiser les propriétés d'un objet .

On peut éventuellement doser le niveau de rigueur sur un projet typescript en effectuant (au sein de tsconfig.json), les paramétrages suivants :

```
/* Strict Type-Checking Options */
  "strict": true.
                                  /* Enable all strict type-checking options. */
 // "noImplicitAny": true,
                                      /* Raise error on expressions and declarations with an implied 'any' type. */
  "strictNullChecks": false or true,
                                                /* Enable strict null checks. */
                                        /* Enable strict checking of function types. */
 // "strictFunctionTypes": true,
 // "strictBindCallApply": true,
                                        /* Enable strict 'bind', 'call', and 'apply' methods on functions. */
  "strictPropertyInitialization": false or true, /* Enable strict checking of property initialization in classes. */
 // "noImplicitThis": true,
                                     /* Raise error on 'this' expressions with an implied 'any' type. */
 // "alwaysStrict": true,
                                    /* Parse in strict mode and emit "use strict" for each source file. */
```

NB : l'option --strict est équivalente à --strictNullChecks plus --strictPropertyInitialization plus --noImplicitAny plus quelques autres options strictes

```
sans --strictNullChecks
                                           avec --strictNullChecks
var s1: string;
                                           let s2: string;
s1 = "abc"; // OK
                                           s2 = "abc";
                                                        // OK
s1 = null; // OK
                                           //s2 = null; // Error
s1 = undefined; // OK
                                           //s2 = undefined; // Error
var a: number;
                                           let s3: string | null;
a = 2; // OK
                                           s3="abc";
a = null; // OK
                                           s3=null; //OK
a = undefined; // OK
                                           //s3=undefined; // Error
                                           /*
var isOk: boolean;
isOk = true; // OK
                                           function getLengthVa(s: string | null) {
isOk = false; // OK
                                             return s.length; // Error: Object is possibly 'null'.
                                           }*/
isOk = null; // OK
isOk = undefined; // OK
                                           function getLengthVb(s: string | null) {
function getLengthv1(s: string | null) {
  return s.length; // OK
                                             if (s === null)
```

```
| return 0;
| else
| return s.length; //OK
| */
| return s ? s.length : 0; //OK
| }
```

```
Sans --strictPropertyInitialization
                                         avec --strictPropertyInitialization
class Personne {
                                         class PersonneV2 {
 prenom: string;
                                            prenom: string;
  nom: string;
                                            nom: string;
 taille: number;
                                            taille : number = 0; //lere façon d'initialiser
 // toutes propriétés = undefined
                                                               //(valeur par défaut)
 // par défaut
                                            constructor(prenom:string="", nom:string=""){
 //constructeur facultatif
                                              //2eme façon d'initialiser (via constructeur)
                                              this.prenom=prenom;
                                              this.nom=nom;
}
                                            }
                                          }
let p1 = new Personne();
console.log("p1="+JSON.stringify(p1));
                                         let p2A = new PersonneV2();
                                         console.log("p2A="+JSON.stringify(p2A));
                                         let p2B = new PersonneV2("jean","Bon");
                                         console.log("p2B="+JSON.stringify(p2B));
```

SansnoImplicitAny	avecnoImplicitAny
function logWithImplicitAnyArg(x) {	function logWithExplicitAnyArg(x :any) {
<pre>console.log("arg of implicitly any type : " + x); }</pre>	<pre>console.log("arg of explicit any type : " + x); }</pre>
logWithImplicitAnyArg(6);	//avec unknown depuis typescript 3.0: function logWithExplicitUnknownArg(x :unknown) {

```
logWithImplicitAnyArg("abc"); console.log("arg of explicit unknown type : " + x);
}
logWithExplicitAnyArg(6);
logWithExplicitAnyArg("abc");
```

1.19. any vs unknown

Introduit depuis la version 3.0 de typescript le nouveau type **unknown** est une variante plus rigoureuse de any avec **des restrictions sur les affectations possibles**.

<u>Règle</u>: sans casting, la valeur d'une variable de type **unknown** ne peut seulement être affectée qu'à des variables de type **any** ou bien **unknown**.

```
Exemples:
```

```
var anything : any;
anything = "abc";
anything = 123;
var s1 : string = anything; //ok typescript
console.log("value of string s1 is "+s1);//strange execution result (123)
var something : unknown;
something = "abc"; something = 123;
// NB: The unknown type is only assignable to the any type and the unknown type itself
var s2 : string = "";
//s2 = something; //Error Type 'unknown' is not assignable to type 'string'
console.log("value of string s2 is "+s2);
var something2 : unknown;
something2 = something; //OK
var something3 : unknown;
something3 = \text{anything}; //OK
//----control Flow Based Type Narrowing ----
function controlFlowBasedTypeNarrowingEx1(s: unknown){
  let ch : string = "";
  //eh = s; //Error Type 'unknown' is not assignable to type 'string'
  if(typeof s === "string"){
    ch=s;
```

```
console.log("string ch="+ch)
  let d: Date;
  if( s instanceof Date){
    console.log("year=" +d.getUTCFullYear());
  }
controlFlowBasedTypeNarrowingEx1("abc"); // string ch=abc
controlFlowBasedTypeNarrowingEx1(123);
controlFlowBasedTypeNarrowingEx1(new Date()); // year=2021
//----- explicit Type Narrowing / Casting ----
function withUnknowAssignementEffect(s: unknown){
  let ch: string;
  //ch = s as string; //syntaxe 1 via mot clef as
  ch = <string> s; //syntaxe alternative 2 via <...>
  console.log("string(or not) ch="+ch)
withUnknowAssignementEffect("ABC"); // string(or not) ch=ABC
withUnknowAssignementEffect(1234); // string(or not) ch=1234
//----
type UnionType1 = unknown | string; // unknown
type UnionType2= unknown | number; // unknown
type IntersectionType1 = unknown & undefined; // undefined
type IntersectionType2 = unknown & string; // string
//----
let sx : string ="abc";
//let sx2 : string =new String("abe"); //Error !!!
```

2. Programmation objet avec typescript (ts)

2.1. Classe et instances

Version 1 (simplifiée) ne fonctionnant qu'avec "strictPropertyInitialization": false

```
class Compte {
    numero : number;
    label : string;
    solde : number;

    debiter(montant : number) : void {
        this.solde -= montant; // this.solde = this.solde - montant;
    }

    crediter(montant : number) : void {
        this.solde += montant; // this.solde = this.solde + montant;
    }
}
```

```
var c1 = new Compte(); //instance (exemplaire) 1
console.log("numero et label de c1: " + c1.numero + " " + c1.label);
console.log("solde de c1: " + c1.solde);
var c2 = new Compte(); //instance (exemplaire) 2
c2.solde = 100.0;
c2.crediter(50.0);
console.log("solde de c2: " + c2.solde); //150.0
```

NB: Sans initialisation explicite (via constructeur ou autre), les propriétés internes d'un objet sont par défaut à la valeur "undefined". Lorsque tsconfig.json comporte la ligne d'option "strict": true, ceci ne fonctionne qu'avec l'option complémentaire "strictPropertyInitialization": false...

2.2. constructor

Un constructeur est une méthode qui sert à initialiser les valeurs internes d'une instance dès sa construction (dès l'appel à new).

En langage typescript le constructeur se programme comme la méthode spéciale "**constructor**" (mot clef du langage) :

```
class Compte{
    numero : number;
    label: string;
    solde : number;

    constructor(numero:number, libelle:string, soldeInitial:number){
        this.numero = numero;
        this.label = libelle;
        this.solde = soldeInitial;
    }

//...
}
```

```
var c1 = new Compte(1,"compte 1",100.0);
c1.crediter(50.0);
console.log("solde de c1: " + c1.solde);
```

```
NB: il n'est pas possible d'écrire plusieurs versions du constructeur :
```

Il faut donc <u>quasi systématiquement</u> utiliser la syntaxe = *valeur_par_defaut* sur les arguments d'un constructeur pour pouvoir créer une nouvelle instance en précisant plus ou moins d'informations lors de la construction :

```
class Compte{
    numero : number;
    label: string;
    solde : number;

constructor(numero:number=0, libelle:string="?", soldeInitial:number=0.0){
        this.numero = numero;
}
```

```
this.label = libelle;
this.solde = soldeInitial;
}//...
}
```

```
var c1 = new Compte(1,"compte 1",100.0);
var c2 = new Compte(2,"compte 2");
var c3 = new Compte(3);
var c4 = new Compte();
```

<u>Remarque</u>: en plaçant le mot clef (récent) "**readonly**" devant un attribut (propriété), la valeur de celui ci doit absolument être initialisée dès le constructeur et ne pourra plus changer par la suite.

2.3. Propriété "private"

```
class Animal {
    private _ size : number;
    name:string;
    constructor(theName: string = "default animal name") {
        this.name = theName;
        this._size = 100; //by default
        }
    move(meters: number = 0) {
        console.log(this.name + " moved " + meters + "m." + " size=" + this._size);
    }
}
```

var al = new Animal("favorite animal");

al._size=120; //erreur détectée '_size' est privée et seulement accessible depuis classe 'Animal'.

al.move();

Remarques importantes:

- public par défaut.
- En cas d'erreur détectée sur "private / not accessible", le fichier ".js" est (par défaut) tout de même généré par "tsc" et l'accès à ".size" est tout de même autorisé / effectué au runtime.

 ⇒ private génère donc des messages d'erreurs qu'il faut consulter (pas ignorer) !!!

2.4. Accesseurs automatiques get xxx() /set xxx()

```
class Animal {
    private _ size : number;
    public get size() : number{ return this._ size;
    }
    public set size(newSize : number){
        if(newSize >=0) this._ size = newSize;
        else console.log("negative size is invalid"); //ou bien throw "negative size is invalid"
    }
    ...} //NB : le mot clef public est facultatif devant "get" et "set" (public par défaut)
```

```
var a1 = new Animal("favorite animal");

a1.size = -5; // calling set size() → negative size is invalid (at runtime), _size still at 100

a1.size = 120; // calling set size()

console.log("size=" + a1.size); // calling get size() → affiche size=120
```

2.5. Mixage "structure & constructor" avec public ou private

```
class Compte {
    numero : number;
    label: string;
    solde : number;

constructor(public numero : number=0,
    public label : string="?",
    public solde : number=0.0) {
    this.numero = numero;
    this.label = label; this.solde = solde;
} //...
}
```

```
var c1 = new Compte(1,"compte 1",100.0);
c1.solde = 250.0; console.log(c1.numero + ' ' + c1.label + ' ' + c1.solde );
```

Remarque importante : via le mof clef "public" ou "private" ou "protected" (au niveau des paramètres du constructeur), certains paramètres passés au niveau du constructeur sont automatiquement transformés en attributs/propriétés de la classe.

Autrement dit, toutes les lignes "barrées" de l'exemple précédent sont alors générées implicitement (automatiquement).

2.6. mot clef "static"

Le la même façon que dans beaucoup d'autres langages orientés objets (c++, java, ...), le mot clef *static* permet de déclarer des variables/attributs de classes (plutôt que des variables/attributs d'instances).

La valeur d'un attribut "static" est partagée par toutes les instances d'une même classe et l'accès s'effectue avec le prefixe "NomDeClasse." plutôt que "this." .

Exemple:

```
class CompteEpargne {
    static taux: number= 1.5;
    constructor(public numero: number , public solde :number = 0){
    }
    calculerInteret() {
      return this.solde * CompteEpargne.taux / 100;
    }
}

var compteEpargne = new CompteEpargne(1,200.0);
console.log("interet="+compteEpargne.calculerInteret());
```

2.7. <u>héritage et valeurs par défaut pour arguments</u>:

```
class Animal {
    name:string;
    constructor(theName: string ="default animal name") { this.name= theName;}
    move(meters: number = 0) {
        console.log(this.name + " moved " + meters + "m.");
    }
}
```

```
class Snake extends Animal {
    constructor(name: string) { super(name); }
    move(meters = 5) {
        console.log("Slithering...");
        super.move(meters);
    }
}
```

```
class Horse extends Animal {
    constructor(name: string) { super(name); }
    move(meters = 45) {
        console.log("Galloping...");
        super.move(meters);
    }
}
```

```
var a = new Animal(); //var a = new Animal("animal");
var sam = new Snake("Sammy the Python"); //var sam = new Snake();
var tom: Animal = new Horse("Tommy the Palomino");
a.move(); // default animal name moved 0m.
sam.move(); // Slithering... Sammy the Python moved 5m.

tom.move(34); //avec polymorphisme (for Horse)
// Galloping... Tommy the Palomino moved 34m.
```

<u>NB</u>: depuis la version 1.3 de typescript, le mot clef "**protected**" peut être utilisé dans une classe de base à la place de private et les méthodes des sous classes (qui hériteront de la classe de base) pourront alors accéder directement au attributs/propriétés "*protected*".

2.8. Classes abstraites (avec opérations abstraites)

```
// classe abstraite (avec au moins une méthode abstraite / sans code):
abstract class Fig2D {
 constructor(public lineColor : string = "black",
        public lineWidth: number = 1,
        public fillColor : string = null){
 }
         -performVisit(visitor : FigVisitor) : void {}
 abstract perform Visit(visitor : FigVisitor) : void ;
// classe concrète (avec du code d'implémentation pour chaque opération):
class Line extends Fig2D {
 constructor(public x1:number = 0, public y1:number = 0,
        public x2:number = 0, public y2:number = 0,
        lineColor: string = "black",
        lineWidth : number = 1){
          super(lineColor,lineWidth);
performVisit(visitor : FigVisitor) : void {
  visitor.doActionForLine(this);
```

```
var tabFig : Fig2D[] = new Array<Fig2D>();
tabFig.push( new Fig2D("blue") ); //impossible d'instancier une classe abstraite
tabFig.push( new Line(20,20,180,200,"red") ); //on ne peut instancier que des classes concrètes
```

2.9. Variantes sur classe typescript en mode strict

L'option "strict": true souvent présente dans tsconfig.json nous force à bien typer et initialiser les propriétés d'une classe. D'autre part le choix des types de données influencera grandement les instructions possibles au sein des méthodes de la classe.

Les variantes suivantes illustrent différentes possibilités à choisir (et éventuellement mixer) au cas par cas :

Variante Va (sans null ni undefined):

```
class PersonneVa {
  prenom: string;
  nom: string:
  taille : number = 0;
  constructor(prenom : string="",nom :string =""){
     this.prenom=prenom;
     this.nom=nom;
  }
  methodXy():void{
     //this.nom = null; //Erreur, null=valeur interdite
     //this.nom = undefined; //Erreur, undefined=valeur interdite
     this.nom=this.nom.toUpperCase();
  }
let pa1 = new PersonneVa();
console.log("pa1="+JSON.stringify(pa1));
let pa2 = new PersonneVa("jean","Bon"); pa2.taille=175; pa2.methodXy();
console.log("pa2="+JSON.stringify(pa2));
pa1={"taille":0,"prenom":"","nom":""}
pa2={"taille":175,"prenom":"jean","nom":"BON"}
```

Variante Vb (avec null et sans undefined) :

```
class PersonneVb {
    prenom : stringOrNull;
    nom : stringOrNull;
    taille : numberOrNull = null;

constructor(prenom :stringOrNull = null, nom :stringOrNull = null){
        this.prenom=prenom;
        this.nom=nom;
    }
```

```
methodXy():void{
    //this.nom = null; //OK,null=valeur autorisée
    //this.nom = undefined; //Erreur, undefined=valeur interdite
    //this.nom=this.nom.toUpperCase(); //Error this.nom possibly null
    if(this.nom)
       this.nom=this.nom.toUpperCase(); //OK apres verif!= null
let pb1 = new PersonneVb();
console.log("pb1="+JSON.stringify(pb1));
let pb2 = new PersonneVb("jean","Bon"); pb2.taille=175; pb2.methodXy();
console.log("pb2="+JSON.stringify(pb2));
pb1={"taille":null,"prenom":null,"nom":null}
pb2={"taille":175,"prenom":"jean","nom":"BON"}
Variante Vc (avec null et undefined):
class PersonneVc {
  prenom: stringOrNullOrUndefined;
  nom: stringOrNullOrUndefined;
  taille: numberOrNullOrUndefined = undefined;
  constructor(prenom:stringOrNullOrUndefined=undefined,
             nom:stringOrNullOrUndefined =undefined){
    this.prenom=prenom;
     this.nom=nom;
  methodXy():void{
     //this.nom = null: //OK.null=valeur autorisée
    //this.nom = undefined; //Ok , undefined=valeur autorisée
    //this.nom_this.nom.toUpperCase(); //Error this.nom possibly null or undefined
    if(this.nom)
       this.nom=this.nom.toUpperCase(); //OK apres verif!= null or undefined
let pc1 = new PersonneVc();
console.log("pc1="+JSON.stringify(pc1));
let pc2 = new PersonneVc("jean","Bon"); pc2.taille=175; pc2.methodXy();
console.log("pc2="+JSON.stringify(pc2));
pc1=\{\}
pc2={"taille":175,"prenom":"jean","nom":"BON"}
Variante Vd (avec propriétés suffixées par !) :
```

//NB: Le suffixe ! que l'on peut placer à la fin des noms de propriétés est une syntaxe spéciale et explicite permettant de demander au compilateur typescript d'accepter que certaines variables ne soient exceptionnellement pas initialisées dès le départ (même en mode strict).

```
class PersonneVd {
  prenom! : stringOrNull;
  nom! : string;
  taille!: number;
  methodXy():void{
     //this.nom = null; //Erreur,null=valeur interdite
     //this.nom = undefined; //Erreur, undefined=valeur interdite
     this.nom=this.nom.toUpperCase(); //ATTENTION: pas de verification si pas undefined !!!!
     if(this.prenom)
       this.prenom=this.prenom.toUpperCase(); //OK apres verif!= null or undefined
let pvd = new PersonneVd();
console.log("pvd="+JSON.stringify(pvd));
//<del>pvd.methodXy();</del>
//Erreur à l'execution : TypeError: Cannot read property 'toUpperCase' of undefined
//CONCLUSION: la syntaxe! est du laxisme explicitement permis en mode strict!!!
                  plutôt déconseillé en général !!!!
pvd.prenom= "jean"; pvd.nom= "Bon"; pvd.taille= 175;pvd.methodXy();
console.log("pvd="+JSON.stringify(pvd));
pvd=\{\}
pvd={"prenom":"JEAN","nom":"BON","taille":175}
```

2.10. Interfaces

person.ts

```
interface Person {
    firstname: string;
    lastname: string;
}

function greeterPerson(person : Person) {
    return "Hello, " + person.firstname + " " + person.lastname;
}

//var user = {name: "James Bond", comment: "top secret"};

//incompatible avec l'interface Person (erreur détectée par tsc)

var user = {firstname: "James", lastname: "Bond" , country: "UK"};
```

```
//ok : compatible avec interface Person

msg = greeterPerson(user);
console.log(msg);

class Student {
    fullname : string;
    constructor(public firstname, public lastname, public schoolClass) {
        this.fullname = firstname + " " + lastname + "[" + schoolClass + "]";
    }
}

var s1 = new Student("cancre", "Ducobu", "Terminale"); //compatible avec interface Person
msg = greeterPerson(s1);
console.log(msg);
```

<u>Rappel important</u>: via le mof clef "public" ou "private" (au niveau des paramètres du constructeur), certains paramètres passés au niveau du constructeur sont automatiquement transformés en attributs/propriétés de la classe (ici "Student") qui devient donc compatible avec l'interface "Person".

Au sein du langage "typescript", une interface correspond à la notion de "structural subtyping". Le véritable objet qui sera compatible avec le type de l'interface pourra avoir une structure plus grande.

Interface simple/classique:

```
interface LabelledValue {
    label: string;
}
```

```
function printLabel(labelledObj: LabelledValue) {
  console.log(labelledObj.label);
}
var myObj = {size: 10, label: "Size 10 Object"};
printLabel(myObj);
```

Interface avec propriété(s) facultative(s) (suffixée(s) par?)

```
interface LabelledValue {
  label : string;
  size? : number ;
}
```

```
function printLabel(labelledObj: LabelledValue) {
  console.log(labelledObj.label);
  if( labelledObj.size ) {
    console.log(labelledObj.size);
  }
}

var myObj = {size: 10, label: "Size 10 Object"};
  printLabel(myObj);

var myObj2 = { label: "Unknown Size Object"};
  printLabel(myObj2);
```

Interface pour type précis de fonctions :

```
interface SearchFunc {
   (source: string, subString: string): boolean;
}
```

→ deux paramètres d'entrée de type "string" et valeur de retour de type "boolean"

```
var mySearch: SearchFunc;

mySearch = function(src: string, sub: string) {
   var result = src.search(sub);
   if (result == -1) {
      return false;
   }
   else {
      return true;
   }
} //ok
```

Interface pour type précis de tableaux :

```
interface StringArray {
   [index: number]: string;
}
```

```
var myArray: StringArray;
myArray = ["Bob", "Fred"];
```

Interface pour type précis d'objets :

```
interface ClockInterface {
    currentTime: Date;
    setTime(d: Date);
}
```

```
class Clock implements ClockInterface {
    currentTime: Date;
    setTime(d: Date) {
        this.currentTime = d;
    }
    //...
}
```

3. Lambda et generics et modules

3.1. Programmation fonctionnelle (lambda, ...)

Rappels (2 syntaxes "javascript" ordinaires) valables en "typescript" :

```
//Named function:
function add(x, y) {
    return x+y;
}

//Anonymous function:
var myAdd = function(x, y) { return x+y; };
```

Versions avec paramètres et valeur de retour typés (typescript) :

```
function add(x: number, y: number): number {
    return x+y;
}
var myAdd = function(x: number, y: number): number { return x+y; };
```

Type complet de fonctions:

```
var myAdd : (a:number, b:number) => number =
  function(x: number, y: number): number { return x+y; };
```

<u>NB</u>: les noms des paramètres (ici "a" et "b") ne sont pas significatifs dans la partie "type de fonction". Ils ne sont renseignés que pour la lisibilité .

Le type de retour de la fonction est préfixé par => . Si la fonction de retourne rien alors => void .

Inférences/déduction de types (pour paramètres et valeur de retour du code effectif):

```
var myAdd: (a:number, b:number)=>number =
  function(x, y) { return x+y; };
```

Paramètre de fonction optionnel (suffixé par ?)

```
function buildName(firstName: string, lastName?: string) {
   if (lastName)
      return firstName + " " + lastName;
   else
      return firstName;
}

var result1 = buildName("Bob"); //ok
var result2 = buildName("Bob", "Adams", "Sr."); //error, too many parameters
var result3 = buildName("Bob", "Adams"); //ok
```

Valeur par défaut pour paramètre de fonction

```
function buildName(firstName: string, lastName = "Smith") {
```

```
return firstName + " " + lastName;
}

var result1 = buildName("Bob");  //ok : Bob Smith
var result2 = buildName("Bob", "Adams", "Sr.");  //error, too many parameters
var result3 = buildName("Bob", "Adams");  //ok
```

Derniers paramètres facultatifs (...[])

```
function buildName(firstName: string, ...restOfName: string[]) {
    return firstName + " " + restOfName.join(" ");
}
var employeeName = buildName("Joseph", "Samuel", "Lucas", "MacKinzie");
```

Lambda expressions

Une "lambda expression" est syntaxiquement introduite via () => { } Il s'agit d'une syntaxe épurée/simplifiée d'une fonction anonyme où les parenthèses englobent d'éventuels paramètres et les accolades englobent le code.

Subtilité de "typescript":

La valeur du mot clef "this" est habituellement évaluée lors de l'invocation d'une fonction . Dans le cas d'une "lambda expression" , le mot clef this est évalué dès la création de la fonction.

Exemples de "lambda expressions":

```
var myFct : ( tabNum : number[]) => number ;

myFct = (tab) => { var taille = tab.length; return taille; }

//ou plus simplement:
myFct = (tab) => { return tab.length; }

//ou encore plus simplement:
myFct = (tab) => tab.length;

//ou encore plus simplement:
myFct = tab => tab.length;
```

```
var numRes = myFct([12,58,69]);
console.log("numRes=" + numRes);
```

```
var myFct2 : ( x : number , y: number ) => number ;
myFct2 = (x,y) => { return (x+y) / 2; }
//ou plus simplement:
myFct2 = (x,y) => (x+y) / 2;
```

<u>NB</u>: la technologie "**RxJs**" utilisée par angular2 utilise beaucoup de "lambda expressions".

3.2. Generics

Fonctions génériques :

```
function identity<T>(arg: T): T {
    return arg;
}
```

T sera remplacé par un type de données (ex : string , number , ...) selon les valeurs passées en paramètres lors de l'invocation (Analyse et transcription "ts" → "js") .

```
var output = identity<string>("myString"); // type of output will be 'string'
```

```
var output = identity("myString"); // type of output will be 'string' (par inférence/déduction) var output2 = identity(58.6); // type of output will be 'number' (par inférence/déduction)
```

<u>Classes génériques</u>:

```
class GenericNumberUtil<T> {
    zeroValue: T;
    add (x: T, y: T): T {
        return <T> <any>(Number(x)+Number(y));
    }
}

var myGenericNumber = new GenericNumberUtil<number>();
myGenericNumber.zeroValue = 0;
var resAddAsNumber :number = myGenericNumber.add(5,6); //return 11

var stringNumeric = new GenericNumberUtil<string>();
stringNumeric.zeroValue = "";
var resAddAsString :string = stringNumeric.add("5","6"); //return "11"
```

```
interface Lengthwise {
    length: number;
}

function loggingIdentity <T extends Lengthwise>(arg: T): T {
    console.log(arg.length); // we know it has a .length property, so no error return arg;
}
```

4. Modules (es2015 et typescript)

4.1. Modules "es6/es2015" et organisation en fichiers

Les modules ES6:

- ont une syntaxe simple et sont basés sur le découpage en fichiers (un module = un fichier),
- sont automatiquement en mode « strict » (rigoureux),
- offrent un support pour un chargement asynchrone et permet de générer des bundles "statiques" via rollup ou webpack .

Les modules doivent exposer leurs variables et méthodes de façon explicite. On dispose donc des deux mots clés :

- export : pour exporter tout ce qui doit être accessible en dehors du module,
- **import** : pour importer tout ce qui doit être utilisé dans le module (et qui est donc exporté par un autre module).

4.2. Exemple avec chargement direct depuis navigateur récent:

math-util.js

```
export function additionner(x , y) {
   return x + y;
}
export function multiplier(x, y) {
   return x * y;
}
```

ou bien

```
function additionner(x , y) {
    return x + y;
  }
function mult(x, y) {
    return x * y;
  }
export { additionner, mult as multiplier };
```

dom-util.js

```
export class DomUtil {
    static displayInDiv(divId,message){
```

```
document.querySelector('#'+divId).innerHTML = message;
}

static multilineMessage(...args) {

//NB: la syntaxe ... permet de récupérer tous (ou bien les derniers) arguments (en nombre variable)

//sous forme de tableau . Cette syntaxe est permise en mode "strict" alors que la

//syntaxe Dom.multilineMessage.arguments est interdite en mode "strict" (dans module es6)

let nb_arg=args.length;

let messages=null;

if(nb_arg>=1) messages=args[0];

for(let i=1;i<nb_arg;i++)

messages+="<br/>"+args[i];

return messages;
}

}
```

main.js

<html>

```
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<br/>
<iri div<br/>
<br/>
<br/
```

Attention:

- type="module" est indispensable mais n'est supporté que par les navigateurs récents
- la page html et les modules javascripts doivent être téléchargés via http (par exemple via http://localhost:3000/ et lite-server).

4.3. default export (one per module)

xy.js

```
export function mult(x, y) {
    return x * y;
}

//export default function_or_object_or_class (ONE PER MODULE)

export default {
    name : "xy",
    features : { x : 1 , y: 3 }
}
```

main.js

```
import xy , { mult } from "./xy.js";
...
let msg = xy.name + "--" + JSON.stringify(xy.features) + "--" + mult(3,4);
```

4.4. Modules "typescript"

Le langage typescript gère deux sortes de modules "namespaces logiques" et "modules externes" :

		Dans un seul fichier ou réparti dans plusieurs fichiers (à regrouper), peu importe.
modules (externes)	Via (au moins un) mot clef export au	Toujours un fichier par module

(selon norme es2015)	premier niveau d'un fichier et utilisation via mot clef import	(nom du module = nom du fichier)
		Selon contexte (nodeJs ou)

4.5. Quelques syntaxes "typescript" pour les modules :

validateurs.ts

```
export interface StringValidator {
    isAcceptable(s: string): boolean;
}

var lettersRegexp = /^[A-Za-z]+$/;
var numberRegexp = /^[0-9]+$/;

export class LettersOnlyValidator implements StringValidator {
    isAcceptable(s: string) {
        return lettersRegexp.test(s);
    }
}

export class ZipCodeValidator implements StringValidator {
    isAcceptable(s: string) {
        return s.length === 5 && numberRegexp.test(s);
    }
}
```

Utiliser la syntaxe **import** { Xxxx, Yyyy } **from** './xxyy'; pour utiliser des éléments (classes, interfaces,) exportés dans le fichier "xxyy.ts"

test-import-validateur.ts

4.6. Modules (externes) "es2015" vs modules "cjs" :

Les principales technologies de "modules javascript" sont les suivantes :

- CommonJS (cjs) modules "synchrones", syntaxe "var xyz = requires('xyz')" NB: node (nodeJs) utilise partiellement les idées et syntaxes de CommonJS.
- Autres (AMD, ...)
- <u>ES2015 Modules</u>: syntaxiquement standardisé, mots clef "import {...} from '...' " et export pour la gestion dynamique des modules(possibilité de générer des bundles (es5 ou es6) regroupant plusieurs modules statiquement assemblés ensemble).

L'un des principaux atouts de la structure des "modules es2015" tient dans les imports statiques et précis qui peuvent ainsi être analysés pour une génération optimisée des bundles à déployer en production.

Au lieu d'écrire *var/const xyModule* = *requires('xyModule')* comme en "cjs", la syntaxe plus précise de es2015 permet d'écrire

import { Composant1, ..., ComposantN } from 'xyModule'.

Ainsi l'optimisation dite "Tree-Shaking" (de webpack ou rollup ou ...) permet d'exclure tous les composants jamais utilisés de certaines librairies et la taille des bundles générés est ainsi beaucoup plus petite.

5. Précautions/pièges "js" (et "ts")

La programmation en javascript (ou typescript) peut quelquefois être déroutante (non intuitive, piégeuse, ...) et essentiellement sur les points suivants :

- exécution en différé (en mode asynchrone) des callbacks
- variables javascripts référençant quelquefois des éléments "mutable" ou "immutable".

<u>NB</u>:

- * une valeur atomique (number, string, boolean, ...) sera re-créée en tant que nouvelle instance ailleurs en mémoire (avec nouvelle valeur) à la suite d'une demande de modification.
- --> sémantique proche d'un passage par valeur (au niveau d'un paramètre de fonction) comportement de type "copy on write" .
- * un objet javascript évolué (avec sous parties) pourra généralement être modifié sans changer de position en mémoire
- --> sémantique d'un véritable passage par référence (au niveau d'un paramètre de fonction) comportement de type copie d'un "accès" partagé en mode lecture/écriture

à comprendre, expérimenter et ne pas perdre de vue ...

sinon ... beaucoup de bugs non maîtrisés ...

IV - Essentiel sur templates , bindings , events

1. Anatomie d'un composant angular

Un "template" HTML Angular comporte, en plus des syntaxes HTML standardisées, des paramétrages spécificiques au framework Angular :

- Expressions : {{...}}
- "Bindings" de propriétés : [(ngModel)]="..."
- Déclenchement de méthodes événementielles : (click)="onAction()"

Le principal intérêt du framework Angular réside dans les **liaisons automatiques** établies entre les parties d'un modèle de vue HTML ("template") et les données d'un modèle orienté objet en mémoire dans le composant.

Ce "mapping" ou "binding" peut être unidirectionnel (via {{...}} ou [...]="...") ou bidirectionnel (via [(ngModel)]="...").

Le déclenchement de méthodes événementielles, via la syntaxe (evtName) = "on... (\$event)", constitue également un paramétrage du "mapping" Angular.

1.1. Exemple ultra simple

username: superUser

hello

message:

username: superUser

hello

message: Hello superUser

Fichier basic.component.ts

```
import { Component } from '@angular/core';

@Component({
    selector: 'app-basic',
    templateUrl: './basic.component.html',
    styleUrls: ['./basic.component.scss']
})
    export class BasicComponent{

    username : string ="";
    message : string ="";

onAction(){
    this.message ="Hello " + this.username;
}

constructor() { }
}
```

Fichier basic.component.html

```
username: <input [(ngModel)]="username" > <br><button (click)="onAction()">hello</button> <br>message: <b>{{message}}</b>
```

Explications:

- L'expression {{message}} (côté .html) permet d'afficher automatiquement la valeur de l'attribut message de l'instance de la classe du composant TypeScript
- Cet affichage sera automatiquement réactualisé par le framework Angular dès que la valeur de l'attribut .message changera dans la zone mémoire du composant
- La syntaxe (click)="onAction()" sur le bouton du template HTML permet de demander un appel automatique à la méthode onAction() du composant dès que l'utilisateur cliquera sur le bouton
- La syntaxe [(ngModel)]="username" sur la zone de saisie correspond à un binding bidirectionnel entre la zone input et l'attribut username du composant TypeScript. Par conséquence :
 - La zone input affichera toujours une valeur actualisée de l'attribut username en mémoire
 - L'attribut username sera automatiquement modifié en mémoire dès que l'utilisateur saisira une nouvelle valeur dans la zone de saisie

NB : l'utilisation de [(ngModel)] nécessite l'importation de FormsModule dans app.module.ts :

```
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { FormsModule } from '@angular/forms';
import { AppComponent } from './app.component';

@NgModule({
imports: [ BrowserModule , FormsModule],
    declarations: [ AppComponent ],
    bootstrap: [ AppComponent ]
})
export class AppModule { }
```

Attention: Sans ajout de FormsModule dans la partie imports: [] de @NgModule de app.module.ts, la syntaxe [(ngModel)]="..." ne fonctionnera pas!!!

2. Templates bindings (property, event)

2.1. Binding Angular

Le "mapping" ou "binding" Angular peut être unidirectionnel (via {{...}} ou [...]="...") ou bidirectionnel (via [(ngModel)]="...").

Comme le montre le schéma ci-dessus, ce "binding" peut éventuellement être appliqué sur des sousobjets du composant (exemple : {{data.label}}).

2.2. Exemples d'interpolations / expressions {{ }}

```
My current hero is {{currentHero.firstName}}
The sum of 1 + 1 is {{a + b}}
The sum of 1 + 1 is not {{a + b + computeXy()}}
< !-- computeXy() appelé sur composant courant associé au template →</p>
```

2.3. Syntaxe des liaisons entre vue/template et modèle objet

Syntaxes (template HTML)	Effets/comportements
Hello {{ponyName}}	Affiche Hello poney1 si ponyName vaut poney1
Employer:	Pas exception (affichage ignoré) si l'objet
{{employer?.companyName}}	(facultatif/optionnel) est un "undefined"
<pre>Card No.: {{cardNumber myCr editCardNumberFormatter}}</pre>	Pipe(s) pour préciser un ou plusieurs(s) traitement(s) avant affichage
<pre><input [value]="firstName"/></pre>	Affecte la valeur de l'expression firstName à la propriété value (one-way)
<div title="Hello {{ponyName}}"></div>	équivalent à:
	<div [title]="'Hello' + ponyName"></div>
<pre><div [style.width.px]="mySize"></div></pre>	Affecte la valeur de l'expression mySize à une partie de style css (ici width.px)
<button (click)="</td"><td>Appelle la méthode readRainbow () en</td></button>	Appelle la méthode readRainbow () en
"readRainbow(\$event) ">	passant l'objet \$event en paramètre lorsque l'événement click est déclenché sur le
	composant courant (ou un de ses sous composants)
<pre><input [(ngmodel)]="userName"/></pre>	Liaison dans les 2 sens (lecture/écriture).
	NB: ngModel est ici une directive d'attribut prédéfinie dans le module FormsModule.
<my-cmp [(title)]="name"> possible mais très rare</my-cmp>	"two-way data binding" sur (sous-)composant. équivalent à: <my-cmp (titlechange)="name=\$event" [title]="name"></my-cmp>

2.4. Principales directives prédéfinies (angular2/common)

<pre><section *ngif="showSection"></section></pre>	Rendu conditionnel (si expression à true). Très pratique pour éviter exception {{obj.prop}} lorsque obj est encore à "undefined" (pas encore chargé)
<li *ngfor="let item of list">	Elément répété en boucle (forEach)
<pre><div [ngclass]="{active: isActiv e, disabled: isDisabled}"></div></pre>	Associe (ou pas) certaines classes de styles CSS selon les expressions booléennes .

2.5. Précision (vocabulaire) "attribut HTML, propriété DOM"

<input type="text" value="Bob"> est une syntaxe HTML au sein de laquelle l'attribut
value correspond à la valeur initiale de la zone de saisie.

Lorsque cette balise HTML sera interprétée, elle sera transformée en sous arbre DOM puis affichée/rendue par le navigateur internet.

Lorsque l'utilisateur saisira une nouvelle valeur (ex : "toto") :

- la valeur de l'attribut HTML value sera inchangée (toujours même valeur initiale/par défaut).
- La valeur de la propriété "value" attachée à l'élément de l'arbre DOM aura la nouvelle valeur "toto".

Autrement dit, un attribut HTML ne change pas de valeur, tandis qu'une propriété de l'arbre DOM peut changer de valeur et pourra être mise en correspondance avec une partie d'un composant "angular2".

<u>NB</u>: Au sein de l'exemple ci-dessous, la propriété "*disabled*" de l'élément de l'arbre DOM est valuée à partir de la propriété "*isUnchanged*" du composant courant.

```
<button [disabled]="isUnchanged">Save</button>
```

et la propriété "disabled" de l'élément DOM a (par coïncidence non systématique) le même nom que l'attribut "disabled" de la balise HTML button .

Exception qui confirme la règle:

Dans le cas, très rare, où une propriété d'un composant "angular" doit être associé à la valeur d'un attribut d'une balise HTML, la syntaxe prévue est [attr.nomAttributHtml]="expression".

Exemple: One-Two

2.6. Style binding

```
<button [style.color] = "isSpecial? 'red': 'green'">Red</button>
<button [style.backgroundColor]="canSave?'cyan': 'grey'" >Save</button>
```

Au sein des exemples ci-dessus, un seul style css n'était dynamiquement contrôlé à la fois.

De façon à contrôler dynamiquement d'un seul coup les valeurs de plusieurs styles css on pourra préférer l'utilisation de la directive **ngStyle** :

2.7. CSS Class binding

La classe CSS "special" (.special { ... }) est dans l'exemple ci dessous associée à l'élément <div> de l'arbre DOM si et seulement si l'expression "isSpecial" est à true au sein du composant .

```
<div [class.special]="isSpecial">The class binding is special</div>
```

Cette syntaxe est appropriée et conseillée pour contrôler l'application conditionnée d'une seule classe de style CSS.

De façon à contrôler dynamiquement l'application de plusieurs classe CSS , on préférera la directive **ngClass** spécialement prévue à cet effet :

```
setClasses() {
  return {
    saveable: this.canSave, // true
    modified: !this.isUnchanged, // false
    special: this.isSpecial, // true
  }
}
```

pour un paramétrage selon la syntaxe suivante :

```
<div [ngClass]="setClasses()">This div is saveable and special</div>
```

2.8. Bindings particuliers

Cas particulier [ngValue] pour une liste de sélection d'objet :

Pour une cache à cocher (input de type=checkbox), le binding unidirectionnel (ts ---> template) peut s'effectuer via [checked]="nomProprieteBooleene".

Via [(ngModel)]="propXy" la valeur de la proriété propXy est automatiquement mise à jour suite à une saisie ou sélection de nouvelle valeur. Il est cependant possible en complément de demander à appeler juste après une méthode particulière pour déclencher un éventuel traitement utile via la syntaxe (ngModelChange)="onMajZzAfterXyChange()"

2.9. Exemple 1 (calculatrice)

calculatrice.component.ts

```
import { Component, OnInit } from '@angular/core';
@Component({
selector: 'app-calculatrice',
templateUrl: './calculatrice.component.html',
styleUrls: ['./calculatrice.component.scss']
export class CalculatriceComponent implements OnInit {
a : number = 0;
b : number = 0;
res : number =0;
onCalculer(op:string){
 switch(op){
     case "+" :
            this.res = Number(this.a) + Number(this.b);break;
            this.res = Number(this.a) - Number(this.b);break;
            this.res = Number(this.a) * Number(this.b);break;
     default:
            this.res = undefined;
     }
}
```

```
//coordonnées relatives de la souris qui survole une div
x:number=0;
y:number=0;

onMouseMove(evt : MouseEvent){
    let currentDiv : HTMLElement= <HTMLElement> evt.target;
    this.x = evt.pageX - currentDiv.offsetLeft;
    this.y = evt.pageY - currentDiv.offsetTop;
}

onMouseLeave(evt : MouseEvent){
    this.x=undefined; this.y=undefined;
}

constructor() { }
ngOnInit(): void {}
}
```

Quelques explications:

- Au moment où la méthode onCalculer() sera appelée, les valeurs saisies pour les zones de saisie a et b seront normalement déjà répercutées en mémoire dans this.a et this.b via les syntaxes [(ngModel)]="a" et [(ngModel)]="b" côté.html
- Lorsque le code de la méthode onCalculer () modifiera la valeur de this.res, cette valeur sera automatiquement réaffichée / actualisée côté.html via la syntaxe {{res}}}
- Le code de la méthode onMouseMove () est un peu plus technique. Cette méthode montre comment accéder aux informations de l'événement click géré par un navigateur internet.

calculatrice.component.html:

```
<div class="c1">
<h3>calculatrice angular</h3>
<label>a :</label> <input type="number" [(ngModel)]="a" > <br>
<label>b :</label> <input type="number" [(ngModel)]="b" > <br>
<label>operation :</label>
<input type="button" value="+" (click)="onCalculer('+')" > &nbsp;
<input type="button" value="-" (click)="onCalculer('-')" > &nbsp;
<input type="button" value="*" (click)="onCalculer('*')" >
<br>
<label>resultat:</label>
<span [style.font-weight]="res>0?'bold':'normal'" [class.negatif]="res<0" >
{{res}}
</span> <br>
<hr>
<div class="c2" (mousemove)="onMouseMove($event)"</pre>
                 (mouseout)="onMouseLeave($event)">
Zone à survoler à la souris .<br>
x = \{\{x\}\}\ , y = \{\{y\}\}\
</div>
</div>
```

Quelques explications:

• Au niveau de (click)="onCalculer('+'), on passe ici un paramètre simple

(nom de l'opération mathématique) à la fonction événementielle qui sera appelée

- Au niveau de (mousemove)="onMouseMove(\$event)", on passe ici un paramètre technique (objet évenement click géré par le navigateur, vu ici comme la syntaxe spéciale \$event du framework Angular)
- [style.font-weight]="res>0?'bold':'normal'" permet d'affecter, au style CSS font-weight, la valeur bold si la valeur de this.res est positive et normal dans les autres cas.
- [class.negatif]="res<0" permet d'activer la classe .negatif (à définir dans un fichier .css) dès que la valeur de this.res sera négative

calculatrice.component.scss:

calculatrice angular (v1)			
a:	2		
b:	5		
operation :	+ - *		
resultat:	7		
Zone à survoler à la souris .			
x= , y=			

Zone à survoler à la souris . x=204, y=34

2.10. Autre exemple (plus sophistiqué)

catégorie à selectionner:

- cd
- dvd
- other

catégorie à selectionner:

- cd
- dvd
- other

produits de la catégorie cd :

```
reflabel prix
p1 CD1 5.6
p2 CD2 9.6
```

catégorie à selectionner:

- cd
- dvd
- other

produits de la catégorie dvd :

```
reflabel prix
p3 DVD a 15.6
p4 DVD b 19.6
```

zz.component.ts

```
import { Component, OnInit } from '@angular/core';
class Produit{
 constructor(public ref:string="?",
        public label : string ="?",
        public prix : number =0){}
@Component({
 selector: 'app-zz',
 templateUrl: './zz.component.html',
 styleUrls: ['./zz.component.scss']
export class ZzComponent implements OnInit {
 listeCategories = [ "cd" , "dvd" , "other"];
 categorie: string | undefined;//à choisir
 mapCategorieProduits= new Map<string,Produit[]>();
 listeProduits: Produit[] | undefined; //selon categorie choisie
 onSelectCategorie(categorieChoisie:string){
  this.categorie=categorieChoisie;
  console.log("categorieChoisie="+this.categorie)
  this.listeProduits=this.mapCategorieProduits.get(this.categorie);
  console.log("listeProduits="+JSON.stringify(this.listeProduits))
```

```
constructor() {
    this.mapCategorieProduits.set("cd",
        [ new Produit('p1','CD1',5.6) , new Produit('p2','CD2',9.6)]
    );

    this.mapCategorieProduits.set("dvd",
        [ new Produit('p3','DVD a',15.6) , new Produit('p4','DVD b',19.6)]
    );

    this.mapCategorieProduits.set("other",
        [ new Produit('p5','smartPhone',255.6) , new Produit('p6','TV',567.6)]
    );
}

ngOnInit(): void {
}
```

zz.component.html

```
<div class="myWrapFlexbox">
 <div class="myColItem">
  <h3>catégorie à selectionner:</h3>
  ul>
    (click)="onSelectCategorie(c)"
     [class.selected]="c==categorie">{{c}}
  </div>
 <div class="myColItem" *ngIf="categorie">
  <h3>produits de la catégorie {{categorie}} :</h3>
   ref label prix 
    {{p.ref}} {{p.label}} {{p.prix}}
    </div>
</div>
```

zz.component.css

```
.selected { color : blue; font-weight: bold;}
.myWrapFlexbox { padding : 1em; display: flex; flex-flow: row wrap; }
.myColItem { flex: 1 1 auto; text-align: left; padding: 2px; margin: 8px;}
```

2.11. TP tva

Si ce n'est pas déjà fait:

- créer un nouveau composant TvaComponent via ng g component tva
- accrocher ce composant à son composant parent (<app-tva></app-tva>)
- vérifier la présence de FormsModule dans la partie imports:[] de app.module.ts

Coder ensuite (en 1 ou 2 versions successives) de composant *TvaComponent* de manière à atteindre l'objectif suivant :

calcul de tva

tva: 40

ttc: 240

Suggestions:

- On pourra coté .ts préparer un tableau de taux de tva possibles avec par exemple les valeurs = [5, 10, 20];
- Une seule méthode on CalculTvaTtc() devrait suffire à recalculer tva et ttc
- On pourra éventuellement coder une pré version au sein de laquelle la méthode *onCalculTvaTtc()* est déclenchée par un bouton poussoir temporaire
- Dans la version finale sans bouton poussoir, on pourra traiter l'événement (*input*) sur la zone de saisie et l'événement (*change*) sur la liste déroulante .
- Via une directive *ngIf on affichera les valeurs calculées tva et ttc que si tva est >0.

V - Switch et routing essentiel (navigation)

1. Switch élémentaire de sous composants

<u>Attention</u>: il ne s'agit ici que d'une présentation préliminaire de quelques possibilités d'angular de manière à montrer (par comparaison) les valeurs ajoutées du véritable "routing" angular.

1.1. rare switch (local) de sous-templates (sous-composants):

```
<div [ngSwitch]="variableXy">
  <composant1 *ngSwitchCase="'case1Exp'">...</composant1>
  <composant2 *ngSwitchCase="'case2LiteralString'">...</composant2>
  <div_ou_composant3 *ngSwitchDefault>...</div_ou_composant3>
  </div>
```

NB: Attention à bien placer des "simples quotes" dans les "doubles quotes".

Ceci permet simplement de switcher de "détails à afficher" (et donc souvent de sous-composant). On reste dans un même composant parent principal . Pas de changement d'URL .

<u>Attention</u>: Le switch/basculement de composant s'effectue par remplacement d'instance (et éventuelle perte de l'état de l'ancien composant remplacé).

--> pas de show/hide ni display none/block mais rechargement complet d'un nouveau composant !!!

1.2. éventuel pseudo switch visuel (en apparence)

On peut éventuellement se bricoler facilement un "pseudo switch visuel" en jouant sur le style display de plusieurs < div ... > dont une seule est active à l'instant t :

--> dans ce cas l'instance développée ou pas (visible ou pas) d'un sous composant est conservée (ainsi que l'état de ses variables d'instance).

2. Bases élémentaires du routing angular

2.1. Navigation avec changement d'url et configuration

De façon à naviguer efficacement (tout en pouvant enregistrer des "bookmarks" sur une des parties de l'application), il faut utiliser le "routeur" d'angular 4+ qui sert à basculer de composants (ou sous composant) tout en gérant bien les URLs/Paths relatifs.

Le service de routage est prise en charge par le module "RouterModule".

Lors de la création d'une nouvelle application angular (via *ng new my-app*), certaines questions sont posées telles qu'entre-autres :

"voulez vous activer le routing angular ?"

Si l'on répond "oui" à cette question le fichier *app-routing.module.ts* est alors créé au sein du répertoire **src/app** et ce module annexe est également relié au module principal **app.module.ts**.

Si l'on a répondu "non", il faut alors ajouter soit même le fichier *app-routing.module.ts* et le relier au fichier *app.module.ts* selon l'exemple suivant :

app-routing.module.ts

Liaison au sein du module principal app.module.ts:

```
import { AppRoutingModule } from './app-routing.module';
....
@NgModule({
  imports: [ BrowserModule , FormsModule , HttpClientModule, AppRoutingModule , ... ],
  ...})
export class AppModule { }
```

2.2. router-outlet

router-outlet = partie d'un template qui changera automatiquement de contenu selon la route courante.

Exemple: app.component.html

Dans la plupart des cas simple/ordinaire comme celui-ci, un seul router-outlet (sans nom) suffit.

Dans certains cas sophistiqués et bien structurés , il est possible qu'un des sous-composants comporte en lui un autre <router-outlet> (à un niveau imbriqué) pour ainsi pouvoir switcher de sous-sous-composant .

Dans des cas très complexes, il est possible de configurer des "router-outlet" annexes (avec des noms) et de leurs associer des contenus variables selon un suffixe particulier placé en fin d'URL.

2.3. Routage simple (sans paramètres)

Au sein de app-routing.module.js

```
const routes: Routes = [
    { path: 'welcome', component: WelcomeComponent },
    { path: '', redirectTo: '/welcome', pathMatch: 'full'},
    { path: 'login', component: LoginComponent },
    { path: '**', redirectTo: '/welcome', pathMatch: 'full' }
];
```

suffit pour se retrouver automatiquement redirigé de index.html vers l'URL .../welcome (d'après la seconde règle avec redirectTo:) .

La première route associe le composant "WelcomeComponent" à la fin d'url "welcome" et dans ce cas la balise <router-outlet></router-outlet> sera remplacé par le contenu (template) du composant "WelcomeComponent".

Finalement un click sur un lien hypertexte dont l'url relative est "login" (ou bien une navigation équivalente) déclenchera automatiquement un basculement de sous composant (le template de "LoginComponent" sera affiché au niveau de <router-outlet></router-outlet>).

La route spéciale (de path valant '**') permet de naviguer par défaut vers /welcome en cas de route mal exprimée (exemple: fin d'url inconnue suite à un changement de version de l'appication).

2.4. Déclenchement d'une navigation angular par lien hypertexte

Par exemple dans *header.component.html*

```
<a routerLink="/welcome">welcome</a> &nbsp;
<a routerLink="/login">login</a> &nbsp;
```

Avec ici "welcome" et "login" qui correspondent aux valeurs des path de app-routing.module.js

VI - Contrôles de formulaires (bases essentielles)

1. Contrôle des formulaires (template-driven)

1.1. les différentes approches (template-driven, model-driven,...)

Approches	Caractéristiques	
template-driven	Simples paramétrages dans le templates HTML,	
	selon standard HTML5, pas ou très peu de code typescript/ javascript	
model-driven (alias reactive-forms)	Manière plus précise de paramétrer le comportement des validations de formulaire (moins de paramétrages coté HTML), plus de code typescript	
via <i>Form-builder API</i>	Variante sophistiquée de model-driven / reative-forms	

L'approche la plus simple et la plus classique est "template-driven".

L'approche "model-driven" (un plus complexe et très différente) sera étudiée ultérieurement pour ne pas apporter de confusion.

Rappel (configuration nécessaire dans le module) :

app.module.ts

1.2. Rappels des principales contraintes de saisies d'HTML5

- required : le champ est requis (valeur obligatoire)
- minlength="3": il faut saisir au moins 3 caractères
- pattern="^[a-zA-Z].+": la valeur saisie doit correspondre à une expression régulière (ici ça doit commencer par un caractère alphabétique puis contenir au moins un autre caractère quelconque)
- ...

Exemples:

```
... <input [(ngModel)]="login.username" required pattern="^[a-zA-Z].+"/>
... <input [(ngModel)]="login.password" required minlength="3"/>
... <input [(ngModel)]="login.roles" required />
```

1.3. Activations automatiques de classes css (ng-invalid, ...)

En mode "template driven", le framework Angular analyse les contraintes de validation du standard HTML5 et active ou désactive automatiquement certaines classes de styles css :

Etat	flag (booléen)	Css class si true	Css class si false
Champ visité (souris entrée et sortie)	touched	ng-touched	ng-untouched
Valeur du champ modifiée	dirty	ng-dirty	ng-pristine
Valeur du champ valide	valid	ng-valid	ng-invalid

NB:

- Le framework **angular active ou désactive automatiquement** les classes de styles ngvalid, ng-invalid, etc dont les noms sont prédéfinis (convenus à l'avance) au niveau des champs d'un formulaire.
- C'est néanmoins au **développeur** que revient le soin d'associer une mise en forme souhaitée à ces classes de styles dans le fichier global src/styles.scss ou ailleurs .

Exemples de styles.css

```
.ng-valid[required] {
  border-left: 5px solid #42A948; /* green */
}
input.ng-invalid {
  border-left: 5px solid #a94442; /* red */
}
```


1.4. Exemples de paramétrages HTML (ngForm), template-driven

Attention:

Chaque champ du formulaire doit absolument avoir un nom de renseigné (via **name="..."**) dès qu'il se trouve encadré par **<form** ...> et **</form>**.

Sinon: erreur du coté ng serve ou bien du coté console du navigateur.

NB: un formulaire est globalement considéré comme valide que lorsque tous les champs de celui ci sont valides .

Bouton "submit" grisé tant que l'ensemble du formulaire n'est pas encore entièrement valide :

```
NB: L'intérêt d'écrire explicitement
```

```
<form #formXy="ngForm" > est de pouvoir écrire plus bas
<button type="button" [disabled]="!formXy.form.valid">Submit</button>
<!-- déclencheur d'action grisé tant que formulaire pas globalement valide -->
```

Eventuels messages d'erreurs montrés ou cachés:

En déclarant une variable locale de référence associée à l'objet du champ de saisie via la syntaxe #nameFormCtrl="ngModel", on peut afficher de façon conditionnée certains messages d'erreurs :

Soumission d'un formulaire:

nameFormCtrl.touched (true or false)

```
export class CoordsFormComponent {
    ....
    submitted = false;
    onSubmit() { this.submitted = true; // ou autre }
    .....
}
```

VII - Components (angular)

1. Structure d'une application angular 2+

1.1. Programmation "orientée objet" et "modularité par classe"

Selon une logique proche de celle de nodeJs, une application "Angular" peut s'appuyer sur les mots clefs "export" et "import" (de TypeScipt et de ES2015) de façon à être construite sur une base modulaire.

Chaque composant élémentaire est un fichier à part. (dans le cas d'un composant visuel, il pourra y avoir des fichiers annexes ".html", ".css"). Il exporte quelque-chose (classe, interface, données, ...).

Un composant angular doit importer un ou plusieurs autre(s) module(s) ou classe(s) / composant(s) s'il souhaite avoir accès aux éléments exportés et les utiliser. Le référencement d'un autre composant s'effectue généralement via un chemin relatif commençant par "./".

Exemple:

```
app/app.component.ts
...
export class AppComponent { ... }
```

app/app.module.ts

```
import {AppComponent} from './app.component'
...
@NgModule({
...
bootstrap: [AppComponent]
})
...
```

Le cœur d'angular est codé à l'intérieur de librairies de composants prédéfinis regroupés en modules.

Les modules des "librairies" prédéfinies d'angular sont par convention préfixés par "@angular".

Exemples:

1.2. Deux niveaux de modularité: fichiers/classes et modules

Une **classe** (composant visuel, directive, service, ...) est un composant de petite taille (généralement de niveau **fichier**).

Dans le contexte d'une application angular, on appelle "module angular" une sous partie importante de l'application (correspondant généralement à un répertoire ou sous répertoire).

Chaque **module angular** comporte un fichier principal *xyz.module.ts* comportant la décoration **@NgModule**.

Dans certains cas techniques , un **module (secondaire ou annexe)** correspond à un seul fichier (comportant une décoration @NgModule) : module auxiliaire pour configurer le routage (approuting.module.ts , ...)

Une petite application peut comporter un seul grand module fonctionnel (ex : "app").

Une grosse application peut comporter plusieurs grands modules complémentaires (ex : partie principale publique "app", partie réservée à l'administrateur "admin", partie/espace réservé(e) à un utilisateur connecté et ayant tel rôle.

Un module peut également permettre de rassembler un ensemble de services communs spécifiques à l'application (ex : Authentification , Session , SharedData , ...)

Finalement, un module peut rassembler un ensemble de composants réutilisables (à la manière des extensions "material", "ionic" ou "primeNG").

1.3. Principaux types de composants "angular":

Module fonctionnel (répertoire)	Ensemble de composants et/ou de services (généralement placés dans un même répertoire) et chapeauté par une classe décorée via @NgModule .	
Module auxiliaire (paramétrages / config.)	Simple fichier auxiliaire de paramétrage (ex : approuting.module.ts) regroupant certains éléments de configuration.	
Component (composant visuel)	Composant visuel de l'application graphique (associé à une vue basée elle même sur un template) – généralement spécifique à une application	
	NB: un composant angular est souvent vu comme une nouvelle balise/sélecteur (ex : <app-header></app-header>)	
Directive	Elément souvent réutilisable permettant de générer ou altérer dynamiquement une partie de l'arbre DOM.	
	NB: une fois programmée, une directive peut s'utiliser sur tout un tas de balise/élément html (ex: $\sup $, $\sup < div>$, $\sup < span>)$	
	Une directive s'utilise souvent comme un nouvel attribut spécial (ex : [highlight]="'yellow'", *ngIf="")	

	2 types de directives : "structurelles" , "attribut"
Service (invisible , potentiellement partagé)	Un service est un élément invisible de l'application (qui rend un certain service) en arrière plan (ex : accès aux données , configuration, calculateur ,)

2. Les modules applicatifs

La classe principale d'un module Angular doit être (par convention) placée dans un fichier xyz/xyz.module.ts où xyz est le nom du module (ex : "app").

Cette classe principale doit être décorée par @NgModule.

```
providers: liste explicite des "composants services"
                                                       import { NgModule }
                                                                                from
qui seront rendus accessible à l'ensemble des
                                                       '@angular/core';
                                                       import { BrowserModule } from
composants de ce module.
(NB : depuis angular 6 et le paramétrage { providedIn:
                                                                       '@angular/platform-
'root' } de @Injectable() tous les services du module
                                                       browser';
courant sont implicitement rendus accessibles à tous les
                                                       (a)NgModule({
composants du module)
                                                                     [ BrowserModule,
                                                        imports:
                                                                      FormsModule],
                                                        providers: [ Logger ],
declarations : liste des classes plutôt visuelles
                                                        declarations: [ AppComponent,
(composants, directives, pipes) appartenant au module
                                                                        XyComponent ],
                                                        exports:
                                                        bootstrap: [AppComponent]
exports : sous ensemble des "déclarations" qui seront
visibles par d'autres modules
                                                       export class XyzModule { }
imports: liste de modules (prédéfinis/techniques,
extensions, ...) dont le composants internes sont
rendus accessibles au éléments du module courant
bootstrap: vue principale ("root", "main", ...) (pour
module principal seulement)
```

<u>NB</u>: par défaut, une application angular (générée par *ng new* ...) ne comporte qu'un seul module applicatif (répertoire **src/app** et fichier **app.module.ts**)

Une petite application angular peut se contenter d'un seul module.

Une application angular de grande taille dévrait idéalement être décomposée en plusieurs modules complémentaires (chargés dynamiquement en mémoire en mode "lazy") de façon à démarrer rapidement . C'est un aspect avancé qui sera généralement présenté dans une annexe du cours .

2.1. Structure arborescente d'une application Angular 2+

Une application "angular2+" est structurée comme un **arbre de composant**s.

3. Précisions sur les composants (@Component)

3.1. Anatomie d'un composant de angular 2+

Rappels:

Un composant "angular 2+" est essentiellement constitué d'une classe codant le la structure et le comportement de celui ci (par exemple : réactions aux événements).

Les **métadonnées** sont introduites par une ou plusieurs **décorations** placées au dessus de la classe (ex : @Component). <u>Vocabulaire typescript</u> : décoration plutôt qu'annotation .

La vue graphique gérée par un composant est essentiellement structurée via un **template** HTML/CSS comportant des syntaxes spécifiques "angular 2+" (*ngFor, {{}}).

Les liaisons/correspondances gérées par le framework angular2+ entre les éléments du composant "orienté objet" et les éléments de la vue "web/HTML/DOM" issue du template sont appelées "*data binding*".

Nuances:

```
[ propertyBinding ]
( eventBinding )
[( two-way data binding )]
```

DOM/Template/User

```
Component
(Object/Memory)

<------[gropXy]="xy"
-------(eventZz)="onZz($event)" ---->

------[(ngModel)]="xy" ------>
```

3.2. Vue d'ensemble sur @Input et @Output

Principe fondamental (commun au framework concurrent "react") : Au sein d'une arborescence de composants ,

- les ordres/directives/paramétrages descendent
- les événements remontent

3.3. Simple et efficace @Input()

@Input (du coté sous-composant) permet de récupérer des valeurs (fixes ou variables et dynamiques) qui sont spécifiées par un composant parent/englobant.

Exemple élémentaire: header.component.ts

```
import { Component, Input } from '@angular/core';
@Component({
    selector: 'app-header',
    templateUrl: './header.component.html'
})
export class HeaderComponent {
    @Input()
    titre /*: string*/ ="titreParDefaut";

    @Input()
    infos /*: string*/ ="";

    constructor(){}
}
```

header.component.html

```
<h3>MyHeader {{title}} .. {{infos}}</h3>
```

Exemple d'utilisation depuis un composant parent : app.component.ts

```
import { Component } from '@angular/core';
@Component({
    selector: 'app-root',
    TemplateUrl: './app.component.html'
})
export class AppComponent {
    title /* :string */ = 'titre1';
    message: string = "Welcome to my Angular 2+ App";
}
```

app.component.html

```
<app-header [titre]="title" infos="**" > </app-header>
<h1>{{message}} .. </h1> ...
```

MyHeader titre1 .. **

date:Mon Dec 12 2016 11:54:09 GMT+0100 (CET)

My First Angular 2 App ..

Variantes d'utilisation:

Eventuels et rares paramétrages avancés (pour cas très pointus):

```
@Input('title') // pour < myheader title='titre 1' /> (vue externe)
titre: string; //pour this.titre en interne dans le sous composant
```

@Attribute dans constructeur ressemble un peu à @Input

```
export class Child {
  isChecked;
  constructor(@Attribute("checked") checked) {
    this.isChecked = !(checked === null);
  }
}
```

avec cette utilisation potentielle:

```
<child checked></child>
<child checked='true'></child>
<child></child>
```

3.4. @Output() assez complexes pour besoins avancés

@Output (au niveau d'un sous-composant) permet de déclarer un **événement** qui sera potentiellement remonté et géré par un composant parent/englobant.

Exemple:reglette.component.ts

```
import { Component, OnInit , EventEmitter, Output, Input } from '@angular/core';

@Component({
    selector: 'app-reglette',
    templateUrl: './reglette.component.html',
    styleUrls: ['./reglette.component.scss']
})
export class RegletteComponent implements OnInit {

@Input()
    width/*:string*/ = "100"; //largeur paramétrage (100px par defaut)

@Output()
    changeEvent = new EventEmitter<{value:number}>();
```

```
onCurseur(event : Event){
    const evt : MouseEvent = <MouseEvent> event;
    const valX = evt.offsetX;
    const pctCurseur = (valX / Number(this.width)) * 100 ; //en %
    this.changeEvent.emit({value:pctCurseur});
}
```

reglette.component.html

```
<div class="reglette" (click)="onCurseur($event)"
  [style.width.px]="width">
</div>
```

reglette.component.css

```
.reglette {
    width: 100px; height: 40px;
    background: linear-gradient(to right, white, blue);
    border-style: solid; border-width: 2px; border-color: blue;
}
```

Utilisation au niveau d'un composant parent :

```
...
export class DemoComponent implements OnInit {
  valeurCurseur /*:number*/ =0;

onChangeCurseur(event : any){
  const evt : {value:number} = event;
  this.valeurCurseur = evt.value;
}
...}
```

```
<app-reglette width="200" (changeEvent)="onChangeCurseur($event)"></app-reglette>
curseur = {{valeurCurseur}}
```


curseur = 49

si click dans le milieu de la réglette

curseur = 1

si click dans le début de la réglette (coté gauche)

curseur = 97

si click dans la fin de la réglette (coté droit)

3.5. Projection d'éléments imbriqués (<ng-content>)

Un composant angular peut (en tant que nouvelle balise telle que *toggle-panel* ici), incorporer à son tour certains sous éléments (ex: <div...> ou autre sous-sous composant angular).

Exemple:

Le (ou le paquet de) sous-composant(s)/sous-balises imbriqué au niveau de l'utilisation d'un composant réutilisable sera vu via la balise spéciale <ng-content></ng-content> au sein du template HTML (code interne) de ce composant.

Cette fonctionnalité était appelée "transclusion" au sein des directives "angular Js 1.x", elle est maintenant appelée "*projection de contenu*" au sein des composants angular 2+.

<u>Exemple concret</u>: composant réutilisable "*togglePanel*" basé sur des styles *bootstrap* et fontes *bootstrap-icons*:

```
import { Component, Input } from '@angular/core';
@Component({
    selector: 'toggle-panel', templateUrl: './toggle-panel.component.html']
})
export class TogglePanelComponent {
    toggleP /* : boolean */ =false;
    @Input()
    title /* : string */ = 'default panel title';
    constructor() { }
}
```

Exemple d'utilisation:

4. Cycle de vie sur composants (et directives)

Interfaces (à facultativement implémenter)	Méthodes (une par interface)	Moment où la méthode est appelée automatiquement par angular2
OnChanges	ngOnChanges()	Dès changement de valeur d'un "input binding" (exemple : "propriété initialisée selon niveau parent")
OnInit	ngOnInit()	A l'initialisation du composant et après
		les premiers éventuels ngOnChanges()
		et après constructeur et injections
DoCheck	ngDoCheck()	pour cas très pointus avec détection
AfterContentInit	ngAfterContentInit()	spécifique des changements à afficher ou pas,
AfterContentChecked	ngAfterContentChecked()	pus,
AfterViewInit	ngAfterViewInit()	
AfterViewCkecked	ngAfterViewCkecked()	
OnDestroy	ngOnDestroy()	Juste avant destruction du composant

Exemple:

```
liste-comptes.component.ts
```

```
import { Component, Input, OnInit } from '@angular/core';
import { PreferencesService } from '../common/service/preferences.service';

@Component({
    selector: 'app-header',
    templateUrl: './header.component.html',
    styleUrls: ['./header.component.scss']
})
export class HeaderComponent implements OnInit {
    @Input()
    titre /*: string*/ ="titreQuiVaBien";

    constructor() {        console.log("dans constructeur de HeaderComponent , titre=" + this.titre)
    }

    ngOnInit(): void {        console.log("dans ngOnInit() de HeaderComponent , titre=" + this.titre)
}
```

```
Dans la console du navigateur :
dans constructeur de HeaderComponent , titre=titreQuiVaBien
dans ngOnInit() de HeaderComponent , titre=myApp
```

ngOnInit() de angular ressemble un peu à @PostConstruct de java/jee et permet de programmer

des initialisations au bon moment (pas trop tôt).

5. Formatage des valeurs à afficher avec des "pipes"

```
Exemples:
{{ montant | number:'1.0-2' }} <!-- arrondi à 2 chiffres après virgule
                        number: 'minIntegerDigit.minFractionDigit-maxFractionDigit' -->
<div> {{ birthday | date:"MM/dd/yy" }} </div>
<!-- pipe with configuration argument => "February 25, 1970" -->
<div>Birthdate: {{currentHero?.birthdate | date:'longDate'}}</div>
<div>{{ title | uppercase }}</div> <div>{{ title | lowercase }}</div>
{{taux | percent }} <!-- affiche 5% si taux vaut 0.05 -->
{{ birthday | date | uppercase }}
{{ birthday | date: 'fullDate' | uppercase }}
                                                          €240.27
{{ tva | currency: 'EUR': 'symbol': '1.0-2' }}
il existe encore d'autres pipes prédéfinis: ....
"json pipe" pour (temporairement) déboguer un "binding":
<div>{{ currentHero | json }}</div>
<!-- Output:
  { "firstName": "Hercules", "lastName": "Son of Zeus", "birthdate": "1970-02-25T08:00:00.000Z",
     "url": "http://www.imdb.com/title/tt0065832/",
     "rate": 325, "id": 1 }
```

NB: Dans une application angular >=2, les tris et filtrages ne sont généralement pas effectués par des pipes "angular" (pas de | sort ni de | filter) mais par des opérateurs de RxJs (à placer coté .ts dans .pipe() avant .subscribe()) --> voir annexe "RxJs".

Pipe selon "locale" (fr , en-US ,)

```
{{ montant | number:'1.0-2':'fr'}} < !-- affiche 20 000,55 --> 
{{ montant | number:'1.0-2':'en-US'}} < !-- affiche 20,000.55 -->
```

NB: l'argument: 'fr' nécessite l'enregistrement de localFr dans app.module.ts:

```
import localeFr from '@angular/common/locales/fr';
import { registerLocaleData } from '@angular/common';
registerLocaleData(localeFr);

@NgModule({
....})
```

On peut éventuellement définir ':fr-FR' comme default "locale" dans app.module.ts :

NB : il est possible de programmer de nouveaux pipes personnalisés et réutilisables .

Cet aspect avancé est généralement présenté dans une annexe du cours.

VIII - Services et injections (essentiel)

1. Services "angular" (concepts et bases)

Un service est un module de code "invisible" comportant des traitements "ré-utilisables" et souvent "partagés" tels que :

- des accès aux données (indirectement via ajax/http et ws rest/json)
- des mises à jours de données (indirectement via ajax/http et ws rest/json)
- données partagées (par plusieurs composants) en mémoire dans l'appli angular (coté navigateur)
- gestion de la session utilisateur (authentification, ...)
- traitements réutilisables (calculs, traductions, ...)

- ...

<u>NB</u>: Pour synchroniser plusieurs composants visuels sur l'affichage de données communes/partagées on pourra :

- éventuellement injecter (publiquement) un même service dans ces différents composants visuels puis utiliser des expressions telles que {{serviceDataXy.subData.pXy}}
- et/ou utiliser "BehaviorSubject" (cas particulier de "Observable") (voir autre chapitre "aspect divers et avancés").

Exemple simplifié (en version "mocked" sans accès http):

compte.service.ts

```
import { Injectable } from '@angular/core';
//import { Headers, Http, Response } from '@angular/http';
import { Observable, of } from 'rxjs'; // _http.get() return Observable < Response > !!
import { filter, flatMap, toArray } from 'rxjs/operators'
import { Compte, Operation, Virement } from './compte';

@Injectable()
export class CompteService {

public getComptesOfClientObservable(numCli: number): Observable < Compte[] > {
    return of(this.sampleComptes); //simulation sans tenir compte de numCli
}

//pour test temporaire (sans base):
private sampleComptes: Compte[]= [
    { "numero": 1, "label": "compte 1 (courant, mock)", "solde": 600.0 },
    { "numero": 2, "label": "compte 2 (LDD, mock)", "solde": 3200.0},
    { "numero": 3, "label": "compte 3 (PEL, mock)", "solde": 6500.0 } ];
}
```

```
NB: Observable<...> ressemble un peu à Promise<...> et se consomme via compteService.getComptesOfClientObservable(this.clientId) .subscribe(comptes =>this.comptes = comptes , error => console.log(error));
```

Observable (de rxjs) sera étudié de façon plus détaillée au sein d'un chapitre ultérieur (HTTP, ...).

2. Injection de dépendances (bases)

A l'époque du framework "angular 1", l'injection de dépendances consistait à automatiquement relier entre eux deux composants via des correspondances entre "nom de service" et nom d'un paramètre d'une fonction "contrôleur".

Angular 2+ gère l'injection de dépendances de manière plus typée et plus orientée objet.

2.1. Enregistrement des éléments qui pourront être injectés:

L'injection de dépendances gérée par Angular2+ passe par un enregistrement des fournisseurs de choses à potentiellement injecter.

Ceci s'effectue généralement au moment du "bootstrap" et se configure au niveau de la partie ("providers :") de la décoration @NgModule d'un module applicatif.

<u>Exemples</u>:

```
...

@NgModule({
    ...
    providers: [ ConfigService, ClientService ],
    bootstrap: [ AppComponent ]
})
export class AppModule {
```

Si un élément potentiellement injectable n'est pas, globalement, enregistré au niveau global (@NgModule), il pourra éventuellement être déclaré, localement, au niveau des "providers" spécifiques d'un composant :

```
@Component({
    selector: 'my-app',
    template:`...`,
    providers: [HeroService]
})
export class AppComponent{ ...
}
```

La documentation officielle d'Angular 2+ parle en terme de "**root_injector**" (pour de niveau @NgModule) et de "**child injector**" (pour les sous niveaux : @Component , ...)

2.2. Nouveauté/évolution à partir de la version 6

A partir de la version 6 d'angular , la décoration @Injectable() comporte un paramètre important nommé "providedIn' .

```
@Injectable({
  providedIn: 'root'
})
export class XyService {...
}
```

La valeur de **providedIn** correspond souvent à '**root**' (au sens "root injector" de niveau module) et dans ce cas le service "XyService" sera automatiquement considéré comme fourni par le module (app.module.ts ou autre).

Autrement dit, via ce nouveau paramétrage, plus absolument besoin de placer XyService dans la partie providers: [] de @NgModule(), le service XyService sera automatiquement fourni à tous les composants du module qui en auront besoin (ceux qui auront paramétré une injection de dépendance).

2.3. Injection de dépendance via constructeur

```
@Component({
    selector: 'my-app',
    template: `... ` /*,
        providers: [HeroService] nécessaire que si pas déjà enregistré globalement dès le NgModule() */
})
export class AppComponent {
    ...
    constructor(private _ heroService: HeroService) {
        // this._heroService (de type HeroService) est automatiquement initialisé
        // par injection si métadonnées introduites via @Component ou @Injectable ou ...
};
...
}
```

Angular2+ initialise automatiquement les éléments passés en argument des constructeurs lorsqu'il le peut (ici par injection du service de type HeroService). Cet automatisme n'est déclenché que si la classe du composant est décorée par @Component() ou @Injectable() ou ...

Pour que des injections de dépendances puissent être gérées au niveau du constructeur de la classe courante :

- au minimum @Injectable() (au sens "sous-composants, sous-services automatiquement injectables")
- assez souvent @Component() (qui peut plus peut moins)

si paramètre du constructeur pas typé alors @Inject(ClassComponent) permet de préciser le type de composant à injecter

IX - Appels de W.S. REST (Observable, ...)

1. Angular et dialogues HTTP/REST

1.1. Contexte des appels HTTP/REST et CORS

Une application Angular s'exécute au sein d'un navigateur Web . Lorsque celle-ci doit effectuer un appel HTTP/ajax , elle est soumise aux restrictions habituelles du navigateur :

- appels en file:/ pas toujours autorisés (ok avec firefox , par défaut refusés avec chrome)
- les URLs des WS-REST appelés doivent commencer par le même nom de domaine que celui qui a servi à télécharger index.html (ex : http://localhost:4200 ou http://www.xyz.com ou ...). Dans le cas contraire des autorisations "CORS" sont nécessaire du coté serveur (java ou php ou nodeJs/express ou ...).

<u>Rappel important</u>: si les appels HTTP/ajax sont effectués vers au autre nom de domaine il faudra prévoir des autorisations "**CORS**" du coté des web-services REST coté serveur (ex : nodeJs/Express ou Java/JEE/JaxRS ou SpringMvc).

D'autre part, beaucoup de web-services REST nécessitent des paramètres de sécurité pour pouvoir être invoqués (ex : jetons/tokens, ...) . Une adaptation au cas par cas sera souvent à prévoir.


```
// Exemple : CORS enabled with express/node-js :
app.use(function(req, res, next) {
    res.header("Access-Control-Allow-Origin", "*"); //"*" ou "xy.com , ..."
    res.header("Access-Control-Allow-Methods", "POST, GET, PUT, DELETE,
    OPTIONS"); //default: GET, ...
    res.header("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type,
    Accept , Authorization");
    next();
});
```

1.2. Configuration d'un reverse-proxy http

De façon à écrire et tester du code simple , stable et portable (de la phase de développement/test jusqu'à la phase de production) , on aura intérêt à :

- utiliser des URLs relatives
- **configurer un reverse proxy http** (option *--proxy-config* de *ng serve* développée dans le chapitre "packaging / déploiement")

1.3. Promise ou Observable ?

Les habitués de AngularJs (1.x) connaissent bien les "Promise". Celles-ci sont encore utilisables avec Angular 2, 4 ou 5 (avec quelques adaptations).

Pour des développements nouveaux, on pourra cependant préférer la nouvelle api "Observable" de rxjs qui est par certains cotés plus évoluée que les "Promise" et qui s'utilise de manière très similaire.

"Promise" ou "Observable" est un choix pour notre code de haut niveau. Le service Http de Angular peut s'adapter aux deux modes et les appels de bas niveaux seront effectués de la même façon.

NB: Dans la suite de ce chapitre, l'api RxJs et les "Observable" seront mis en avant Les "Promises" sont placées dans une des annexes

Le service prédéfini Http de angular >=2 retourne des "Observable<Response>" que l'on peut éventuellement transformer en Promise<...> via la méthode .toPromise() .

1.4. Simulation d'invocation de WS REST via of() de rxjs

of(...) permet de retourner immédiatement un jeu de données (en tant que simulation d'une réponse à un appel HTTP en mode get).

D'autres solutions sont disponibles pour simuler des appels HTTP ... (voir chapitre/annexe sur test unitaire)

1.5. Ancien service Http de Angular 2 à 4.2

NB: de la version 2.0 à 4.2 le framework angular ne proposait que le service Http pour appeler des Web Services REST.

Depuis la version 4.3 le nouveau service HttpClient rend obsolète l'ancien service Http. D'autre part, les nouveautés syntaxiques apportées par RxJs 6 et Angular 6 augmente encore l'écart entre ancien et nouveau style concernant les appels http.

L'ancienne façon d'appeler les WS-REST via Http (et pas HttpClient) a maintenant été déplacé dans une annexe de ce support de cours .

2. Nouvelle Api HttpClient (depuis Angular 4.3)

La nouvelle api **HttpClient** de la partie **@angular/common/http** de **Angular >= 4.3** est une **version améliorée** (avec meilleur typage, généricité, code d'utilisation plus compacte, ...) du service technique **Http** disponible depuis Angular 2.

2.1. Configuration du module HttpClientModule

Pour utiliser HttpClient à la place de Http, il faut commencer par importer le module technique "**HttpClientModule**" à la place de l'ancien "HttpModule" dans un module fonctionnel de l'application (ex : app.module.ts) :

2.2. <u>Utilisation du service technique HttpClient dans un service :</u>

(ou éventuellement directement depuis un composant) :

```
import { HttpClient } from '@angular/common/http';
// à la place de l'ancien import { Http } from '@angular/http';
...
constructor(private http: HttpClient){ } //injection de dépendance
...
```

==> En mode "HttpClient" l'appel à http.get() retourne directement les données de la réponse Http au format Observable<any> et non pas un Observable<Response> brute à analyser/décortiquer.

```
Autrement dit, les anciennes lignes de code

.map(response => < Client[]> response.json() )

.catch(e => { return Observable.throw('error:' + e);});

qui suivaient aussitôt les anciens appels à http.get() ne sont donc plus systématiquement

nécessaires .
```

Récupération fine des causes d'erreurs via second paramètre facultatif de subscribe :

```
this.http.get('https://api.github.com/users/didier-tp)
   .subscribe(
   data => {      console.log(data); } ,
      (err: HttpErrorResponse) => {
        if (err.error instanceof Error) {
            console.log("Client-side error occured.");
        } else {
            console.log("Server-side error occured.");
        }
    });
```

2.3. Appels typés:

Plus rigoureusement , un appel à http.get<DataClass> (url , ...) retourne des données au format Observable<DataClass> plutôt qu'au format Observable<any>

Exemple:

```
public getTabInscriptionsObservable(): Observable< Client[] > {
    let inscriptionUrl : string = null;
    inscriptionUrl = this._inscriptionUrlBase;
    console.log( "inscriptionUrl = " + inscriptionUrl);
    return this.http.get<Client[]>(inscriptionUrl );
}
```

2.4. Mode post avec header http personnalisé :

```
import { HttpClient , HttpHeaders} from "@angular/common/http"; import { Observable } from "rxjs";
```

Autre exemple (avec post-traitement annexe via .pipe() et tap from 'rxjs/operators'):

```
postAuth(auth : AuthRequest):Observable<AuthResponse>{
    return this._http.post<AuthResponse>(this._authBaseUrl ,auth, {headers: this._headers})
    .pipe(
    //tap( other async task without transforming result)
    tap( (authResponse) => { this.storeAuthResponseAndToken(authResponse); })
    );
}
```

Mode "put" (variante du mode "post") :

```
putDevise(dev : Devise):Observable<Devise>{
    return this.http.put<Devise>(this.basePrivateUrl ,dev,{headers: this._headers} );
}
```

Rappel:

- les conventions "api REST" recommande le mode "PUT" pour les mises à jour (update) d'entités/ressources existantes.
- En pratique, le mode "POST" peut assez souvent être employé avec une sémantique de "saveOrUpdate" (et donc pas absolument besoin de .put() dans ce cas).

2.5. Exemple de suppression (delete):

```
public deleteDeviseServerSide(deviseCode):Observable<any>{
    let deleteUrl: string = this.basePrivateUrl + "/" + deviseCode;
    console.log("deleteUrl=" + deleteUrl");
    return this.http.delete(deleteUrl");
}
```

2.6. intercepteurs:

Disponible à partir de la version 4.3, les intercepteurs sont surtout utiles pour renvoyer un jeton d'authentification :

avec la déclaration suivante dans app.module.ts :

```
import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { HttpClientModule } from '@angular/common/http';
import { HTTP_INTERCEPTORS } from '@angular/common/http';
import { AppComponent } from './app.component';
import { MyAuthInterceptor } from './myauth.interceptor';
@NgModule({
  declarations: [
                     AppComponent
  imports: [
    BrowserModule,
                      HttpClientModule ],
  providers: [{
    provide: HTTP_INTERCEPTORS,
    useClass: MyAuthInterceptor,
    multi: true
  }],
  bootstrap: [AppComponent]
export class AppModule { }
```

X - Routing angular (compléments importants)

1. Sous niveau de routage (children)

Une application angular peut comporter plusieurs niveaux de composants et sous composants.

Un <router-outlet> dans un composant principal permet par exemple de switcher de sous composants Xxx, Yyy, Zzz et un de ces sous composants (par exemple Yyy) peut à son tour comporter une balise <router-outlet> pour switcher de sous-sous-composants (Aa ou Bb).

Exemple d'url avec sous niveaux:

```
xxx/
yyy/aa
yyy/bb
zzz/
```

Exemple de configuration de routes avec sous niveau:

2. Routes paramétrées et navigation par code

2.1. Configuration de routes avec paramètres logiques

```
// dans app-routing.module.ts

const routes: Routes = [...
{ path: 'xx/:categorie', component: XxComponent }

{ path: 'yy/:yyId', component: YyComponent }

];
```

2.2. Navigation avec paramètres et via lien hypertexte

```
<a [routerLink]="['/yy', numYy]" ...> vers yy </a>
et
<a [routerLink]="['/xx', categorieXx]" ...> vers xx </a>
```

où *numYy* et *categorieXx* sont des attributs/propriétés (avec des *valeurs variables*) de la la classe du composant à l'origine de la navigation (là où sont les liens hypertextes).

Si peu de catégories on peut envisager ce type de lien hypertexte:

```
<a [routerLink]="['/xx', 'categorieA']" ...> vers xx de categorie a </a>
<a [routerLink]="['/xx', 'categorieB']" ...> vers xx de categorie b </a>
```

2.3. Déclenchement d'une navigation par code (coté .ts)

....html

```
<button (click)="onNavigateYy()" > vers yy </button>
```

.....ts

```
import {Router} from '@angular/router'; ...
export class .....Component {
    numYy : number = 1;
    categorieXX :string = "categorieA";
    constructor(private _router: Router){
    }
    onNavigateYy():void {
      let link = ['/yy', this.numYy]; //ou link = ['/zz'] ; si pas de paramètre
      this._router.navigate( link );
    // ou bien this._router.navigateByUrl(`/yy/${this.numYy}`); //avec quote inverse `...`!!!
    }
}
```

2.4. Récupération du paramètre accompagnant la navigation :

On s'intéressera dans ce paragraphe à tenir compte de la valeur d'un paramètre passé au bout de route activée.

Remarque très importante (pour comprendre et ne pas devenir fou):

- (Cas "a") Suite à la série de navigation suivante :

 yyy, xxx, yyy, des composants des classes Yyy, Xxx et Yxx seront ré-instanciés à chaque changement d'URL (et l'état des variables d'instance sera perdu).
- (Cas "b") Suite à la série de navigation suivante :

 detail_produit/1, detail_produit/2, detail_produit/3 (où seule change la valeur du paramètre en fin d'url), l'instance de la classe DetailProduit est conservée et la callback enregistrée (via subscribe) sur this_route.params est automatiquement ré-appelée pour prendre en compte le changement de numéro de produit à détailler.

NB:

Dans le cas "a", où les instances ne sont pas conservées, on peut coder simplement l'unique récupération d'un paramètre en fin de route activée via la notion de snapshot (valeurs à l'instant t):

Exemple:

```
class MyComponent {
  constructor(route: ActivatedRoute) {
   const yyId: number = Number(route.snapshot.params['yyId']);
  // NB le nom logique du paramètre (ici yyId) doit correspondre à celui
  // de la route { path: 'yy/:yyId', component: YyComponent } configurée dans
  // app-routing.module.ts
  ...
}
```

Dans le cas "b", on a besoin d'enregistrer une callback potentiellement réappelée plusieurs fois (à chaque changement de valeur du paramètre):

3. Route conditionnée par gardien

Il est possible de créer (et enregistrer dans un module) des services techniques (ex : CanActivateRouteGuard) et implémentant une interface "Can...." (ex : CanActivate) pour contrôler si une route peut ou pas être activée selon (par exemple) une authentification utilisateur effectuée ou pas .

NB : en cas de route bloquée, il n'y a pas d'automatisme de type lien hypertexte grisé ou invisible. Une telle fonctionnalité doit éventuellement/potentiellement être codée en complément .

3.1. Gardien basique (bolquant sans explication)

```
return this.auth.isUserAuthenticated();
}
}
```

Dans la définition des routes, on pourra déclarer une liste de gardiens à utiliser :

```
... { path: 'dashboard', component: DashboardComponent, canActivate: [CanActivateRouteGuard] }, ...
```

3.2. Redirection si route bloquée

Depuis Angular 7.1, la méthode canActivate() d'un gardien peut non seulement retourner un booléen mais aussi un objet de type **UrlTree** pour effectuer une redirection vers un composant explicatif de type "*NotAuthorizedComponent*".

Exemple:

avec par exemple not-authorized.component.html

```
<h3>not-authorized</h3>
login obligatoire pour accéder à la partie demandée
<a routerLink="/login">login</a>
```

et app-routing.module.ts comportant

```
{ path : "not-authorized" , component : NotAuthorizedComponent },
```

4. Aperçu sur le routing angular avancé

Autres aspects avancés du "routing angular":

router-outlet annexe/secondaire	A un niveau donné, il peut exister d'autres <router-outlet> secondaires avec des noms. Ceci permet de changer le contenu de plusieurs <div> d'un seul coup (ex : contenu et menu latéral)</div></router-outlet>
LazyLoading	Au lieu de charger dès le démarrage (dans le navigateur) tous les composants de l'application (ce qui peut quelquefois être long/lent), on peut organiser la structure du code en différents modules qui ne seront chargés (en différé) que lors d'une navigation (ex : activation d'un lien hypertexte associé au routage)

Ces divers aspects avancés sont souvent traités dans une annexes ou bien un cours "angular avancé"

XI - Directives

1. Aperçu sur les directives (angular2+)

1.1. Les 3 types/niveaux de directives d'angular2:

Attribute Directive	Change l'apparence ou le comportement d'un (souvent seul) élément de l'arbre DOM (exemple ngStyle)
Structural Directive	Change la structure de l'arbre DOM (et donc des éléments affichés) en ajoutant ou supprimant des sous éléments dans l'arbre DOM (exemple : ngIf, ngFor, ngSwitch)
Component	élément composite de l'arbre DOM (selon structure du template HTML associé)

Au final, @Component peut être vu comme un cas particulier (et assez fréquent) de directive.

1.2. Directive (de niveau "attribut")

Exemple (tiré du "tutoriel officiel"):

app/highlight.directive.ts

Le paramétrage le plus important est la décoration @Directive.

Le nom du sélecteur CSS doit être encadré par des crochets lorsqu' il s'agit d'une directive.

el de type *ElementRef* correspond à un élément de l'arbre DOM dont il faut mettre à jour le rendu.

Exemple d'utilisation:

app/app.module.ts

```
import { NgModule } from '@angular/core';
...
import {HighlightDirective} from './highlight.directive'

@NgModule({
  imports: [BrowserModule, FormsModule],
  declarations: [AppComponent, MyHeaderComponent, HighlightDirective],
  providers: [],
  bootstrap: [AppComponent]
})
export class AppModule { }
```

app/app.component.ts

```
import {Component} from 'angular2/core';
@Component({
    selector: 'my-app',
    template: ' ... <span myHighlight>Highlight me!</span>'
})
export class AppComponent { }
```

Résultat:

My First Angular 2 App

Highlight me!

Version améliorée (avec paramètre via @Input et gestion d'événements) :

```
import {Directive, ElementRef, HostListener, Input} from '@angular/core';
@Directive({ selector: '[myHighlight]'})
export class HighlightDirective {
    @Input('myHighlight')
    public highlightColor: string;

private _defaultColor = 'red';

@Input() set defaultColor(colorName:string){
    this._defaultColor = colorName || this._defaultColor;
}
constructor(private el: ElementRef) {
```

```
@ HostListener('mouseenter')
  onMouseEnter() { this._highlight(this.highlightColor || this._defaultColor); }

@ HostListener('mouseleave')
  onMouseLeave() { this._highlight(null); }

private _highlight(color: string)
  { el.nativeElement.style.backgroundColor = color; }
}
```

NB:

Sans argument, @Input() fait que la propriété exposée a le même nom que celle de la classe (public ou get / set).

Avec un argument, @Input permet de préciser un alias sur la propriété exposée (ex : 'myHighlight' plutôt que highlightColor).

@HostListener permet d'associer des noms d'événements (déclenchés sur l'élément DOM courant) à une méthode événementielle.

Utilisation:

```
Highlight me!
ou bien (plus simplement) :
Highlight me!
```

Pick a highlight color

Green Yellow Cyan

ou bien (avec un choix dynamique):

1.3. Directive structurelle

Une directive structurelle (ajoutant ou retirant des sous éléments dans l'arbre DOM) se programme de façon très semblable à une directive d'attribut (même décoration @Directive, même syntaxe (avec crochets) pour le sélecteur CSS). La principale différence tient dans les éléments injectés dans le constructeur :

- TemplateRef correspond à la branche des sous éléments imbriqués (à supprimer ou ajouter ou ...)
- ViewContainerRef permet de contrôler dynamiquement le contenu via des méthodes prédéfinies telles que .clear() ou .createEmbeddedView()

Exemple "myUnless" (tiré du tutoriel officiel):

<u>Utilisation (comme *ngIf)</u>:

```
age: <input type='text' [(ngModel)]="age" /><br/>
=18">
condition "age>=18" is false and myUnless is true.
 <br/>
=18)">
condition "age>=18" is true and myUnless is false.
```

XII - Packaging et déploiement d'appli. angular

1. <u>déploiement avec ou sans "bundle"</u>

1.1. Rappel du contexte d'un développement angular

- Le code source d'une application angular est en typescript (.ts), lui même une évolution de es2015.
- Les modules d'angular sont basés sur la technologie des modules es2015 (syntaxiquement standardisé, mots clef "import {...} from '...' " et export pour la gestion statique des modules).
- Le code compilé/transpilé doit idéalement être généré au format .js (es5) de façon à être interprété de façon compréhensible par presque tous les navigateurs.
- Le développement d'une application "Angular+" est basée sur npm et nodeJs. La plupart des bundles d'angular (@angular/core, ...) sont au format "umd.js" et en es5. Il existe également une distribution parallèle au format "es2015 ou +" des librairies d'angular et RxJs dans le répertoire node-modules récupéré par npm..

1.2. <u>Déploiement (théorique ou rare) sans bundle</u>

Il serait possible d'extraire (par copie) les librairies fondamentales de angular et de RxJs de la branche node_modules (de nodeJs) dans un répertoire "dist/lib".

Ce répertoire "dist" comportera également :

'reflect-metadata/Reflect.js'

- les templates html et les styles css de l'application.
- le résultat des transpilations (".ts \rightarrow .js") des composants de notre application.

Au final, ce répertoire "dist" comportera tous les fichiers nécessaires de l'application "angular" et son contenu pourra être recopié "tel quel" vers n'importe quel serveur HTTP (ex : htdocs de apache2). On pourra également recopier cet ensemble de fichiers "angular" pour les intégrer en tant que sous partie "html+js+css" d'une application Java/JEE, Php ou autre.

Bien que possible, un déploiement sans bundle va induire un très grand nombre de microtéléchargements lorsqu'un utilisateur va utiliser l'application depuis son navigateur. --> pas rapide , pas performant !!!!

Voici la liste des principales librairies à récupérer (par extraction/copie) :

```
'zone.js/dist/zone.js'

'core-js/client/shim.min.js',
'systemjs/dist/system-polyfills.js',
'systemjs/dist/system.src.js',
'rxjs/**',
'@angular/core/bundles/core.umd.js',
'@angular/common/bundles/common.umd.js',
'@angular/compiler/bundles/compiler.umd.js',
'@angular/platform-browser/bundles/platform-browser-dynamic.umd.js',
'@angular/platform-browser-dynamic/bundles/platform-browser-dynamic.umd.js',
```

- '@angular/http/bundles/http.umd.js',
- '@angular/router/bundles/router.umd.js',
- '@angular/forms/bundles/forms.umd.js',
- '@angular/upgrade/bundles/upgrade.umd.js',

1.3. <u>Déploiement via webpack et angular-cli</u>

Le projet "Angular-CLI" utilise maintenant en interne la technologie "webpack" pour générer les bundles à déployer.

On peut ainsi en quelques lignes de commandes :

- créer un nouveau projet ayant la structure et la configuration attendues par webpack et angular-cli.
- créer des débuts de composants (Component, Service, ...)
- générer des bundles en mode "dev" (développement) ou bien en mode "prod" (production) : avec uglify / compression en plus.

2. Angular-CLI en mode développement

L'essentiel de @angular/cli a déjà été présenté en début du cours.

Rappel des principales lignes de commandes de **ng** (@angular/cli):

ng new my-app , cd my-app	Création d'une nouvelle application "my-app".
ng serve	Lancement de l'application en mode développement (watch & compile file , launch server,) → URL par défaut : http://localhost:4200
ng generate (ou ng g)	Génère un début de code pour un composant, un service ou autre (selon argument précisé)
ng test	Lance les tests unitaires (via karma)
ng e2e	Lance les tests "end to end" / "intégration" (après un ng server à lancer au préalable)

<u>NB</u>: **ng serve construit l'application entièrement en mémoire** pour des raisons d'efficacité / performance (on ne voit aucun fichier temporaire écrit sur le disque).

2.1. proxy http pour appels ajax/WS-REST en mode dev

Il serait possible (durant la phase de développement) de :

- utiliser des URLs absolues (ex : http://localhost:8282/xxx/yyy) pour appeler des Web services "REST" (java ou php ou nodeJs/express ou ...) via angular et ajax
- paramétrer des autorisations "CORS" du coté serveur (code java ou js/express ou ...)
- configurer des switchs d'URL coté angular

De façon à éviter toutes ces choses (aujourd'hui déconseillées), on peut :

- toujours utiliser des URLs relatives (ex : xxx/yyy) pour appeler des Web services "REST" (java ou php ou nodeJs/express ou ...) via angular et ajax dès la phase de développement
- ne pas systématiquement avoir besoin de configurer des autorisations "CORS" du coté serveur
- configurer un proxy http au sein d'angular-CLI (uniquement exploitable avec ng serve).

ng serve --proxy-config proxy.conf.json

```
avec proxy.conf.json
```

pour que les requêtes d'urls relatives apixy/.. soient redirigées vers une application java/tomcat.

ou bien

```
avec proxy.conf.json
```

pour que les requêtes d'urls relatives apixy/.. soient redirigées vers une appli. nodeJs/express.

Ne fonctionnant qu'en mode "développement" (via ng serve), certains équivalents de *proxy-config* en mode "production" seront exposés au sein des paragraphes ci-après.

3. JIT vs AOT (Ahead-Of-Time)

Une application angular est principalement constituée de fichier ".ts" et ".html". Au moment de l'exécution du code au sein d'un navigateur, même les templates ".html" sont transformés en code javascript au niveau des mécanismes internes.

Cette "compilation/transpilation" (.ts + .html) => "..bundle.js" peut être effectuée de 2 manières :

- par le compilateur "jit" (just in time)
 par le compilateur "aot" (ahead-of-time)

Le choix du mode de compilation peut s'effectuer en plaçant ou pas l'option --aot au niveau de ng serve ou ng build:

```
Lancement par défaut avec "jit":
ng serve
ng build
Lancement avec "aot":
ng serve --aot
ng build --aot
<u>Nb</u>: avec l'option --prod, ng build utilise par défaut --aot:
<u>lancement avec --aot implicite</u>:
ng build --prod
```

Effets/comportements:

	avec jit	avec aot
bundle .js construit	comporte le code de "jit" pour transformer ".html" juste avant exécution	ne comporte par "jit" mais le ".js" déjà construit à partir des ".html"
temps de compilation	assez rapide	beaucoup plus lent
temps d'exécution	moyen	plus rapide
taille des bundles à télécharger	gros	petit

aot offre également plus de sécurité (via à vis de l'injection de code ".js" rendue plus difficile).

Restrictions (rigueurs ajoutées) par "aot":

La compilation en mode "aot" des templates ".html" s'effectue de manière rigoureuse (avec quelques restrictions "typescript") . Voir éventuellement la documentation officielle (https://angular.io/guide/aot-compiler) pour approfondir le sujet.

Beaucoup de petites erreurs (de cohérence ".html" / ".ts") passées comme inaperçues lors du développement ordinaire (avec ng serve) sont révélées lors d'un lancement de ng serve --aot ou bien ng build --prod. C'est alors le moment de peaufiner encore un peu le code de l'application.

4. <u>ivy (à partir de angular 9)</u>

En version "preview" au sein de angular8 et maintenant bien intégré dans angular 9 et 10, ivy est le nom de code du nouveau moteur de compilation et de rendu d'Angular.

Principaux apports de ivy

- compilation plus rapide en aot (gain d'environ 40%)
- poids des bundles "js" générés réduit d'environ 15 % (grâce au "Tree shaking").
- plus de rapidité au niveau des tests
- **debug plus facile** (car code généré plus clair)

Impacts de Ivy sur le développement "angular" (v9, v10, ...)

- certaines fonctionnalités avancées (angular-universal, ...) ont mis du temps à s'adapter à ivy (utiliser les versions les plus récentes possibles)
- réels gains de tous les cotés en production
- étant donné que le temps de compilation "aot" a été réduit de 40 %, le "ng serve" des versions 9 et 10 d'angular utilise maintenant "aot" par défaut plutôt de "jit".
 Avantages: moins d'incohérences laissées inaperçues, compilation plus rigoureuse Inconvénients: "ng serve" plus lent (surtout au premier lancement) et un peu plus besoin de arrêter et relancer "ng serve" suite à des modifications importantes de l'application.

Depuis v9, "aot" par défaut (avec ng serve et avec ng build).

Pour un lancement *quelquefois* un petit plus rapide (en mode "*jit*") de "ng serve" en V9, v10, il faut lancer:

ng serve --aot=false

5. Mise en production d'une application angular

ng build (et ng build --prod) génère des fichiers dans le répertoire my-app/dist.

Contenu du répertoire my-app/dist après la commande "ng build" (par défaut en mode --dev) :

ng build --prod est quelquefois accompagné de quelques "bugs" avec certaines anciennes versions de angular-cli .

Lorsque le mode "--prod" fonctionne, les fichiers "bundle" générés sont compressés au format ".gz".

NB:

- · le code généré dans le répertoire dist ne fonctionne qu'avec un accès "http" (pas file:).
- il est possible de recopier le code du répertoire "dist" vers le répertoire d'une application simple nodeJs/express pour effectuer une sorte de mixage compatible (code nodeJs/express pour WS-REST et code "angular" recopié dans sous répertoire "front-end" servi statiquement par nodeJs/express via app.use(express.static('front-end');
- Une mise en production évoluée passera souvent par l'utilisateur d'un véritable serveur http (tel que apache 2.x ou nginx). On pourra déposer le code "static" angular à cet endroit et configurer des "reverse-proxy" vers des WS-REST java ou php ou nodeJs/express.

5.1. Configuration nginx pour angular et redirection WS-REST.

Le démarrage de **nginx** sous windows s'effectue sans aucune option *(double click sur nginx.exe)* L'arrêt du serveur s'effectue via **nginx -s stop**

répertoire par défaut des pages statiques : **html** (ou l'on peut placer un sous répertoire my-angular-app)

configuration par défaut (sous windows) : **conf/nginx.conf** (avec copie de sauvegarde conseillée dans *original.nginx.conf.txt*)

Configuration importante au sein de **conf/nginx.conf**:

```
server {
    listen 80;
    server_name localhost;

# NB1: dans nginx.conf, l'ordre des règles est important
# et selon ~ ou = ou ^~ les autres règles sont utilisées ou pas
# NB2: les "location" sont exprimés avec des expressions
# régulières ^AuDebut, aLaFin$, contenu de() recupéré par $1,...
```

```
# REMARQUE IMPORTANTE pour APPLI ANGULAR:
  # on peut déposer le code d'une appli angular (contenu du répertoire "dist")
  # dans un sous répertoire "my-angular-app" ou "appxy" de nginx/html
  # que si la valeur de <base href="/"> est ajustée en <base href="/appxy/"> ou ...
  # proxy mvc/api part of my-java-app to tomcat on 127.0.0.1:8080
  # virtualy seen as a "api" subpart of /my-angular-app (in html)
location \sim ^{\text{my-angular-app/api/(.*)}}
  proxy pass http://127.0.0.1:8080/my-java-app/mvc/api/$1?$args;
  # proxy minibank api part of nodeJs app to 127.0.0.1:8282
  # virtualy seen as a "minibank" subpart of /appxy (in html)
location \sim ^{\text{appxy/minibank/(.*)}}
  proxy pass http://127.0.0.1:8282/minibank/$1?$args;
location / {
  root html;
  index index.html index.htm;
}
```

<u>Attention</u>, <u>Attention</u>: il faut absolument placer 127.0.0.1 (ou autre ip ou) dans la config mais pas localhost pour que ça fonctionne partout (sous windows, sous linux, ...)!!!!

XIII - Aspects divers de angular (pipes, ...)

1. BehaviorSubject

<u>NB</u>: un objet de type <u>BehaviorSubject</u><...> doit avoir une valeur initiale dès sa construction. C'est une chose "*Observable*" depuis plusieurs composants de l'application. Dès que la valeur sera modifiée, tous les observateurs seront automatiquement synchronisés.

Exemple:

caddy.service.ts

```
import { Injectable } from '@angular/core';
import { BehaviorSubject } from 'rxjs/BehaviorSubject';
@Injectable()
export class CaddyService {
private compteur : number = 0;
 private caddyContent : string[] = [];
 public bsCompteur: BehaviorSubject<number>
             = new BehaviorSubject<number>(this. compteur);
 public bsCaddyContent : BehaviorSubject<string[]>
              = new BehaviorSubject<string[]>(this. caddyContent);
 constructor() {
  //....subscribe(callBackOnNext(nextValue), callBackOnError(err), callBackOnCompleted());
  this.bsCompteur.subscribe(
             nextValueOfCompteur => this. compteur = nextValueOfCompteur);
 }
 public addElementInCaddy(productName : string){
  this. caddyContent.push(productName);
  this.bsCaddyContent.next(this. caddyContent);
  this. compteur++;
  this.bsCompteur.next(this. compteur);
 public clearCaddy(){
  this. caddyContent = [];
  this.bsCaddyContent.next(this. caddyContent);
  this. compteur=0;
  this.bsCompteur.next(this. compteur);
```


dans my-header.component.html

```
.... caddySize: {{caddySize}} ....
```

dans my-header.component.ts

selection.component.html

```
 selection of product(s)  product : <input [(ngModel)]="productName" /> <button (click)="onAddInCaddy($event)" >add in caddy</button>
```

selection.component.ts

```
import { Component, OnInit } from '@angular/core';
import { CaddyService } from "app/caddy.service";
...
export class SelectionComponent implements OnInit {
```

```
productName : string = "?";

constructor(private caddyService : CaddyService ){ }

ngOnInit() { }

onAddInCaddy(evt){
  //appel indirect de bsCompteur.next(++....); et donc déclenchement de tous les subscribe(...)
  this.caddyService.addElementInCaddy(this.productName);
  }
}
```

commande.component.html

commande.component.ts

Eventuelle combinaison "BehaviorSubject + LocalStorage"

En cas de "refresh" déclenché (quelquefois involontairement) pas l'utilisateur (via F5 ou autre), tout le contenu en mémoire de l'application angular est réinitialisé et potentiellement perdu.

Pour ne pas perdre le contenu (caddy ou autre) dans un tel cas , le "localStorage" d'HTML5 peut éventuellement être une solution.

caddy.service.ts

```
import { Injectable } from '@angular/core';
import { BehaviorSubject } from 'rxjs/BehaviorSubject';
@Injectable()
export class CaddyService {
 private compteur : number = 0;
                                   private caddyContent : string[] = [];
 public bsCompteur : BehaviorSubject<number>
             = new BehaviorSubject<number>(this. compteur);
 public bsCaddyContent : BehaviorSubject<string[]>
              = new BehaviorSubject<string[]>(this. caddyContent);
 constructor() {
  this.bsCompteur.subscribe( nextValueOfCompteur => this. compteur = nextValueOfCompteur);
  this.tryReloadCaddyContentFromLocalStorage();
  this.subscribeCaddyStoringInLocalStorage();
 }
 //Attention: localStorage = moyennement securisé / confidentiel
 private subscribeCaddyStoringInLocalStorage(){
   this.bsCompteur.subscribe( nextValueOfCompteur =>
                  localStorage.setItem("caddySize",""+nextValueOfCompteur ));
   this.bsCaddyContent.subscribe( caddyContent =>
                  localStorage.setItem("caddyContent",JSON.stringify(caddyContent) ));
 }
 private tryReloadCaddyContentFromLocalStorage(){
  // code à améliorer (en tenant compte des exceptions):
   let caddySizeAsString = localStorage.getItem("caddySize");
   if(caddySizeAsString) {
     this. compteur = Number(caddySizeAsString);
     this.bsCompteur.next( this._compteur );
   let caddyContentAsString = localStorage.getItem("caddyContent");
   if(caddyContentAsString){
    this. caddyContent = JSON.parse(caddyContentAsString);
    this.bsCaddyContent.next( this. caddyContent);
 }
```

2. Autres aspects divers

2.1. Custom pipe:

cd src/app/common/pipe

ng g pipe exponential (avec si nécessaire option --skip-import en cas de problème)

src/app/common/pipe/exponential.pipe.ts

```
import { Pipe, PipeTransform } from '@angular/core';

/* Raise the value exponentially

* Example:

* {{ x | exponential: 3}} , pour x = 5 , affiche 5 puissance 3 = 5*5*5=125 .

*/

@Pipe({ name: 'exponential'})

export class ExponentialPipe implements PipeTransform {

transform(value: unknown, ...args: unknown[]): unknown {
 let val : number = <number> value;
 let p : number = <number> args[0] || 1;
 return Math.pow(val,p);
 }
}
```

Déclaration du pipe personnalisé dans app.module.ts :

```
import { ExponentialPipe } from './common/pipe/exponential.pipe';
....
@NgModule({
  declarations: [ AppComponent, .... , ExponentialPipe ] , ....
})
```

Template de Composant utilisant le pipe personnalisé:

```
....html
```

```
Super power boost: {{2 | exponential: 10}}
```

Power Booster

Super power boost: 1024

2.2. Syntaxes alternatives :

```
bind-target = "expression"
                              est équivalent à
                                                        [target] = "expression"
on-target = "expression"
                              est équivalent à
                                                        (target)="expression"
bindon-target = "expression" est équivalent à
                                                         [(target)]="expression"
<hero-detail *ngFor="#hero of heroes" [hero]="hero"></hero-detail>
est équivalent à
<template ngFor #hero [ngForOf]="heroes">
 <hero-detail [hero]="hero"></hero-detail>
</template>
```

2.3. Divers

Rappel:

```
The null or not hero's name is {{nullHero?.firstName}}
{{a?.b?.c?.d}} is ok if a or b or c is null or undefined
```

Possibilité d'externaliser le template dans un fichier html à part :

```
@Component({
selector: 'hero-list',
templateUrl: 'app/hero-list.component.html'
})
export class HeroesComponent { ... }
```

2.4. <u>logs , ...</u>

console.log("...") standard de javascript

XIV - Tests unitaires (et ...) avec angular

1. <u>Différent types de tests autour de angular</u>

1.1. Vue d'ensemble / différents types et technologies de tests

<u>Rappel du contexte</u>: une application "Angular2+" correspond avant tout à la partie "Interface graphique" d'une architecture n-tiers et s'exécute au sein d'un navigateur web avec interprétation d'un code "typescript" transformé en "javascript".

Les principales fonctionnalités à tester sont les suivantes :

- test unitaire d'un service (avec éventuel "mock" sur accès aux données)
- test unitaire d'un composant graphique (avec éventuel mock sur "service")
- test d'intégration complet (end to end) englobant un dialogue HTTP/ajax/XHR avec des web services REST en arrière plan et sans avoir à connaître la structure interne de l'application (vue comme un boîte noire, vue de la même façon que depuis l'utilisateur final).

Pour tester du code javascript , la technologie de référence est "**jasmine**" . Avec quelques extensions pour angularJs ou Angular2+, cette technologie pourrait suffire à mettre en place des tests unitaires simples .

Etant donné que l'on souhaite également tester unitairement des composants graphiques (en javascript) qui s'exécutent dans un navigateur, on a également besoin d'une technologie de test qui puisse interagir avec un navigateur (chrome, firefox, ...) et c'est là qu'intervient "karma".

Pour effectuer des tests globaux en mode "end-to-end" / "boîte noire", on peut utiliser la technologie spécifique "protractor" qui permet d'intégrer ensemble "selenium" et "angular" à travers des tests faciles à lancer.

On a souvent besoin d'automatiser certaines étapes lors du lancement des tests. Une technologie annexe de script telle que "**Grunt**" ou "**gulp**" peut alors être intéressante (nb: dans le cas particulier de "angular CLI", beaucoup de choses sont déjà automatisées derrière le lancement de "ng test" et "grunt" ou "gulp" n'est pas indispensable).

Dans la plupart des cas, le coeur de la configuration du projet est basé sur npm / package.json (avec éventuellement "angular cli") et la configuration autour des tests est globalement la suivante :

```
package.json (npm)

→ grunt ou gulp ou angular_cli (scripts)

→ karma ou protractor (interaction navigateur)

→ jasmine (tests codés en javascript)

et extensions pour angular
```

A titre de comparaison, dans le monde "java" : l'équivalent de "npm" + "grunt" ou "gulp" correspond à "maven", "ant" ou "graddle" l'équivalent de "karma" ou "protractor" correspond à "selenium_driver" ou autre l'équivalent de "jasmine" correspond à "JUnit" (+ extensions "mockito", "...").

XV - Sécurité – application "Angular2"

1. Sécurisation d'une application "angular"

1.1. Quelques considérations générales sur la sécurité

Même transformé de ".ts" en "js", une application Angular n'est pas véritablement compilé, son code source est accessible et éventuellement sujet à interception / modification.

- --> jamais d'éléments confidentiels dans le code de l'application (pas de "salt ", pas de "default_password", ...)
- --> le coté serveur ne doit avoir qu'une confiance limitée aux requêtes angular . Il est bon de revérifier fréquemment "token" et autres .

1.2. Conseils sur la structure d'une application angular sécurisée

- HTTPS / SSL dès qu'il faut échanger des informations confidentielles (username, password) , ...
- Un service d'authentification
- Des gardiens pour certaines routes

2. Sécurisation des appels aux Web-services REST

2.1. Pseudo session avec "token" plutôt que cookie :

Une application cliente qui appelle une série de WS-REST peut être développée avec des technologies très diverses :

- java standalone (swing, java-fx,)
- java/jee (JSF+....) ou (Spring-web-mvc +)
- HTML + js (jquery ou angular ou react ou) au sein d'un navigateur avec appels ajax
- PHP , C++ , .net/C# , ...

De même , l'application serveur qui gère le WS-REST ne gère pas systématiquement une session HTTP.

Des jetons de sécurité ("token") sont généralement employés pour gérer l'authentification d'un utilisateur et d'une application dans le cadre d'une communication sous forme de WS-REST.

Le jeton de sécurité est généré si le couple (username,password) transmis est correctement vérifié coté serveur.

Ce "token" (véhiculé au format "string") pourra prendre la forme d'un uuid (universal unique id, exemple: e51cd176-a522-454c-9c0a-36ca74cdb2d0) ou bien être conforme au format JWT (Json Web Token).

Dans le cas d'un token de type uuid, le coté serveur doit maintenir une liste ou une map des "tokens générés et valides" (éventuellement associés à certaines infos (username, role,).

Dans le cas d'un token sophistiqué de type jwt, le token généré comporte déjà en lui (de manière cryptée/extractible) certaines informations utiles (subject, roles,) et donc pas besoin de map coté serveur.

Le protocole HTTP a normalisé la façon dont le token doit être retransmis au sein des requêtes émises du client vers le serveur (après l'authentification préalablement effectuée) :

Il faut pour cela utiliser le champ "Authorization :" de l'entête HTTP pas en mode "Basic" mais en mode "Bearer" (signifiant "au porteur" en français).

exemple (postman):

Authorization • F	Headers (1)	Body Pre-requ	est Script Tests
Key			Value
Authorization			Bearer e51cd176-a522-454c-9c0a-36ca74cdb2d0
Nowkov			

exemple (javascript / jquery) :

2.2. Responsabilités techniques coté serveur :

Composants	Responsabilités techniques
AuthManager (gestionnaire d'authentification)	vérifier login/credential via dataBase ou autre
TokenManager (gestionnaire de "token")	Gérer (générer, vérifier,) une sorte de jeton (uuid, jwt,)
WsRestAuth (ws de login/authentification)	WS REST vérifiant login/credential et retournant token dans message de réponse global (ex : AuthResponse retourné au format JSON)
MyTokenInterceptor	Intercepteur technique (selon techno : Springmvc ou jax-rs ou) permettant de vérifier la validité du jeton véhiculée par une requête.
WsRestXy	WS REST fonctionnel avec partie en accès restreint annotée via @AuthTokenRequired

2.3. Service d'authentification / génération token

exemple (postman):


```
Authorization Headers (1) Body Pre-request Script Tests

form-data x-www-form-urlencoded raw binary JSON (application/json) 

[ "username": "toto", "password": "pwd_toto" }

{ "authToken": "e51cd176-a522-454c-9c0a-36ca74cdb2d0", "authOk": true, "message": "authentification reussie" }
```

2.4. Intercepteur et vérification d'un jeton

Status: 200 OK si ok

ou bien

Status: 403 Forbidden
si faux jeton (invalid token)

Status: 401 Unauthorized
ou bien
si pas de jeton

ANNEXES

3. Migration "AngularJs/v1.x" et Angular 2+

3.1. Evolutions de AngularJs (V1) à Angular (V2)

Basé sur un modèle à base de composants (à la syntaxe plus rigoureuse), le framework "Angular 2" reprend les fonctionnalités fondamentales de la version 1 ("sorte de MVC" coté client/navigateur, appels de Web-services "REST") tout en supportant mieux les points suivants :

- liaison (binding) entre modèle et vue mieux contrôlé (plus performant, plus prédictible)
- meilleur adaptation à l'environnement cible (grands écrans, mobiles, ...)
- moins de conflits entre les librairies, ...

Le langage de développement préconisé à changé (javascript pour angular1, typescript pour Angular2). Plus fortement typé et plus expressif, le langage typescipt permet d'écrire du code plus lisible, plus compact et plus facile à maintenir.

Après une longue période de gestation, la première version "finale" d'angular 2 se nomme en fait "Angular" tout court (sans JS). AngularJs étant le nom des anciennes versions 1.x.

AngularJs (V1)	Angular (V2)
Code javascript (ES5)	Code TypeScript compilé/transpilé en JS/ES5
	ou bien DART ou bien
Logique structurelle : "parties de page" (contrôleur, \$scope,)	Logique structurelle : "composant et sous- composant" (orienté objet)
Binding bidirectionnel quelquefois pas performant (trop coûteux en opérations CPU)	Binding plus fin (dans un sens ou les deux)
Environnement de développement complètement libre (notepad++ peut suffir) .	NodeJs et npm est nécessaire comme environnement de développement et il faut gérer
	une compilation/transpilation "ts \rightarrow js".
Plutôt orienté "single page" / application simple	Utilisable sur des applications évoluées

Au final, le développement "Angular" (V2) est très différent de celui d'une application AngularJs.

NB: La notion de @Component de Angular >=2 correspond à une combinaison simplifiée de 2 composants complémentaires d'angular 1.x "Contrôleur + Directive".

D'une manière générale, les syntaxes angular2 sont beaucoup plus compactes et lisibles/maintenables que celles d'angular 1.x

4. Utilisation du service Http avec Promise

4.1. Promise via http en lecture/recherche (get)

Exemple élémentaire en lecture (inspiré du tutoriel officiel et un peu adapté):

hero.service.ts

```
import {Injectable} from '@angular/core';
import {Hero} from './hero';
//import {HEROES} from './mock-heroes'; //old version without http , without in-memory-web-api
import { Headers, Http } from '@angular/http';
@Injectable()
export class HeroService {
 private headers = new Headers({'Content-Type': 'application/json'});
 private heroesUrl = 'app/heroes'; //URL to web api ou bien http://localhost:8080/xyzApp/heroes
 constructor(private http: Http) { }
 public getHeroPromise(id: number): Promise<Hero> {
   return this.getHeroesPromise()
        .then(heroes => heroes.find(hero => hero.id === id));
 public getHeroesPromise() : Promise< Hero[] > {
  //return this.getHeroesPromiseQuickly();
  //return this.getHeroesPromiseSlowly();
  return this.getHeroesPromiseViaHttp();
private getHeroesPromiseViaHttp(): Promise<Hero[]> {
  return this.http.get(this.heroesUrl)
         .toPromise()
         .then(response => response.json().data as Hero[])
         .catch(this.handleError);
 }
private handleError(error: any): Promise<any> {
     console.error('An error occurred', error); // for demo purposes only
    return Promise.reject(error.message || error);
  }
```

Configuration requise au niveau du module:

app.module.ts

```
import './rxjs-extensions';
import { NgModule } from '@angular/core';
import { HttpModule } from '@angular/http';
import { HeroService } from './hero.service';
...
@NgModule({
  imports: [..., HttpModule ],
  declarations: [AppComponent, ...],
  providers: [HeroService ],
  bootstrap: [AppComponent]
})
export class AppModule { }
```

rxjs-extensions.ts

```
// Observable class extensions
import 'rxjs/add/observable/of'; import 'rxjs/add/observable/throw';

// Observable operators
import 'rxjs/add/operator/catch'; import 'rxjs/add/operator/debounceTime';
import 'rxjs/add/operator/distinctUntilChanged';
import 'rxjs/add/operator/do'; import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/map'; import 'rxjs/add/operator/switchMap';

// convert observable to promise:
import 'rxjs/add/operator/toPromise';
```

<u>Utilisation depuis un composant de l'application</u>:

```
...
export class HeroesComponent implements OnInit {
  public heroes : Hero[];
...
constructor( private heroService: HeroService) { }
  ngOnInit(): void { this.getHeroes(); }
  getHeroes(): void {
    this.heroService.getHeroesPromise().then(heroes => this.heroes = heroes );
  }
...
}
```

4.2. Simulation de Promise (sans appel HTTP)

mock-heroes.ts

```
import {Hero} from './hero';

export var HEROES: Hero[] = [

{ "id": 11, "name": "Mr. Nice" },

{ "id": 12, "name": "Narco" },

{ "id": 13, "name": "Bombasto" },

{ "id": 14, "name": "Celeritas" },

{ "id": 15, "name": "Magneta" },

{ "id": 16, "name": "RubberMan" },

{ "id": 17, "name": "Dynama" },

{ "id": 18, "name": "Dr IQ" },

{ "id": 19, "name": "Magma" },

{ "id": 20, "name": "Tornado" }

];
```

hero-service.ts

4.3. Http/Promise en mode put, post, delete

Exemple élémentaire (inspiré du tutoriel officiel) :

hero.service.ts

```
import {Injectable} from '@angular/core';
import { Headers, Http } from '@angular/http';
@Injectable()
export class HeroService {
 private headers = new Headers({'Content-Type': 'application/json'});
 private heroesUrl = 'app/heroes'; //URL to web api ou bien http://localhost:8080/xyzApp/heroes
 constructor(private http: Http) { }
public updatePromise(hero: Hero): Promise<Hero> {
   const url = `${this.heroesUrl}/${hero.id}`;
   return this.http
    .put(url, JSON.stringify(hero), {headers: this.headers})
    .toPromise()
    .then(() \Rightarrow hero)
    .catch(this.handleError);
 public createPromise(name: string): Promise<Hero> {
   return this.http
    .post(this.heroesUrl, JSON.stringify({name: name}), {headers: this.headers})
    .toPromise()
    .then(res => res.json().data) // return new (created) Hero with (auto incr) id
    .catch(this.handleError);
public deletePromise(id: number): Promise<void> {
   const url = `${this.heroesUrl}/${id}`;
   return this.http.delete(url, {headers: this.headers})
    .toPromise()
    .then(() => null)
    .catch(this.handleError);
```

Exemples d'utilisation depuis un composant :

```
this.heroService.createPromise(name)
.then(hero => { this.heroes.push(hero); this.selectedHero = null; });
```

```
this.heroService.updatePromise(this.hero)
.then(() => this.msg="updated");
```

```
this.heroService
.deletePromise(hero.id)
.then(() => {
    this.heroes = this.heroes.filter(h => h !== hero);
    if (this.selectedHero === hero) { this.selectedHero = null; }
});
```

5. <u>Simulation d'appels HTTP via angular-in-memory-web-api</u>

Angular (v2) propose une api prédéfinie nommée "angular-in-memory-web-api" qui permet de simuler un dialogue HTTP/REST avec un service web.

Avantages:

- * possibilité d'effectuer des tests avec angular2 seulement (pas besoin de nodeJs ou autre)
- * documenté (avec exemples) sur le site officiel de Angular2
- * tests possibles en écriture/mise à jour, suppression

<u>Inconvénients</u> (à court terme, version actuelle):

- * quelques limitations importantes (structures de données, ...)
- * La valeur de retour est encapsulée par un niveau intermédiaire ".data" . Ce qui n'est pas toujours transposable avec un réel web service existant.
- * il faudra restructurer (de façon non négligeable) la configuration du module pour basculer sur l'appel de véritables services web externes
- * en connaissant bien une technologie serveur (ex : nodeJs/express/Mongoose ou Java/Jee/Jax-Rs) on va presque aussi vite à développer un véritable service externe.

Configuration nécessaire au niveau de app.module.ts

```
import './rxjs-extensions';
import { NgModule }
                      from '@angular/core';
import { HttpModule }
                      from '@angular/http';
// Imports for loading & configuring the in-memory web api
import { InMemoryWebApiModule } from 'angular-in-memory-web-api';
import { InMemoryDataService } from './in-memory-data.service';
import { HeroService }
                          from './hero.service';
import { AppComponent } from './app.component';
@NgModule({
imports: [..., HttpModule, InMemoryWebApiModule.forRoot(InMemoryDataService)],
...
})
export class AppModule { }
```

Définition de la structure du jeu de données servant à définir la simulation du service web (en mode CRUD):

in-memory-data.service.ts

```
import { InMemoryDbService } from 'angular-in-memory-web-api';
export class InMemoryDataService implements InMemoryDbService {
 createDb() {
  let heroes = [
   {id: 11, name: 'Mr. Nice'},
   {id: 12, name: 'Narco'},
   {id: 13, name: 'Bombasto'},
   {id: 14, name: 'Celeritas'},
   {id: 15, name: 'Magneta'},
   {id: 16, name: 'RubberMan'},
   {id: 17, name: 'Dynama'},
   {id: 18, name: 'Dr IQ'},
   {id: 19, name: 'Magma'},
   {id: 20, name: 'Tornado'},
   {id: 21, name: 'Didier'}
  ];
  return {heroes};
 }
```

Ce service "*InMemoryDataService*" étant associé à la racine de la configuration de InMemoryWebApiModule (au sein de app.module.ts), l'URL relative de ce "speudo service" sera

"app" (le nom du module courant).

De façon cohérente vis à vis de l'exemple précédent , l'accès en mode CRUD à la partie "heroes" se fera via l'URL relative "app/heroes" .

```
→ d'où la valeur

private heroesUrl = 'app/heroes'; //URL to web api

que l'on retrouvait dans les exemples précédents de ce chapitre.
```

XVI - Annexe – Ancien Http (avant HttpClient)

1. <u>Utilisation du service Http avec Observable (rxjs)</u>

1.1. Ancien service Http de Angular 2 à 4.2

NB: de la version 2.0 à 4.2 le framework angular ne proposait que le service Http pour appeler des Web Services REST.

Depuis la version 4.3 le nouveau service HttpClient rend obsolète l'ancien service Http. D'autre part, les nouveautés syntaxiques apportées par RxJs 6 et Angular 6 augmente encore l'écart entre ancien et nouveau style concernant les appels http.

1.2. Observable (premières versions de rxjs, avant v6)

Angular (v2,v4,v5) met clairement en avant la nouvelle api tierce-partie rxjs et "Observable".

Plus évoluée que l'api "Promise", **rxjs/Observable** est cependant aussi simple d'utilisation et apporte (au sein d'angular v2.x) les **avantages suivants**:

- * possibilité d'effectuer plusieurs traitements lorqu'un sujet "Observable" est prêt (d'un point de vue asynchrone)
- * "Observable" est le format "par défaut" de l'api "Http" de angular (v2.x) http.get() retourne Observable<Response> !!!
- * l'api "rxjs" offre tout un tas de combinaisons (programmation fonctionnelle asynchrone avec "lambda expression"), est extensible et existe même au dehors de js/javascript (il existe une version "java").

Configuration nécessaire pour rxjs/Observable au niveau du module :

app.module.ts

```
import './rxjs-extensions';
import { NgModule } from '@angular/core';
import { HttpModule } from '@angular/http';

import { ClientService } from './client.service';
import { CompteService } from './compte.service';

@NgModule({
  imports: [..., HttpModule, AppRoutingModule ],
  declarations: [ AppComponent , ... ],
  providers: [ ClientService , CompteService ],
  bootstrap: [ AppComponent ]
})
export class AppModule { }
```

<u>NB</u>: Le fichier *rxjs-extensions.ts* (rassemblant plein de import) est facultatif mais conseillé pour la ré-utilisabilité simple et rapide "des nombreux petits import" . ..

rxjs-extensions.ts

```
// Observable class extensions
import 'rxjs/add/observable/of'; import 'rxjs/add/observable/throw';

// Observable operators
import 'rxjs/add/operator/catch'; import 'rxjs/add/operator/toPromise';
import 'rxjs/add/operator/do'; import 'rxjs/add/operator/filter';
import 'rxjs/add/operator/map'; import 'rxjs/add/operator/switchMap';
```

1.3. Appel Http/get et réponse Observable (v2,v4,v5)

compte.service.ts

```
import {Injectable,Inject} from '@angular/core';
import './rxjs-extensions';
import {Headers, Http, Response} from '@angular/http';
import {Observable} from 'rxjs/Observable'; // http.get() return Observable<Response>!!!
import {Compte, Operation, Virement} from './compte';
(a)Injectable()
export class CompteService {
 private headers = new Headers({'Content-Type': 'application/json'});
 // NB: my-api est à configurer dans proxy.conf.json (ng serve --proxy-config proxy.conf.json)
 private compteUrlBase:string = "./my-api/comptes"; // + ?numClient=...'; // REST call
 constructor (private http: Http ) {
 }
public getComptesOfClientObservable(numCli: number) : Observable < Compte[] > {
  let comptesUrl : string = null;
  comptesUrl = this. compteUrlBase + "?numClient=" + numCli;
  console.log( "comptesUrl = " + comptesUrl);
  return this. http.get(comptesUrl)
            .map(response => <Compte[]> response.json() )
            .catch(e \Rightarrow \{ return Observable.throw('error:' + <math>e);\} );
```

```
} ... }
```

Exemple d'appel:

1.4. Modes post, ... avec Observable (v2,v4,v5)

```
//demande de Virement (POST)

export class Virement {
    constructor(
    public montant : number,
    public numCptDeb: number,
    public numCptCred : number,
    public ok: boolean
    ) {}
```

```
import './rxjs-extensions';
...
export class CompteService {
    private _headers = new Headers({'Content-Type': 'application/json'});
    private _virementUrl :string = "./my-api/virement" // POST REST call

// Rappel: my-api est à configurer dans proxy.conf.json (ng serve --proxy-config proxy.conf.json)

public postVirementObservable(virement: Virement): Observable<Virement> {
    console.log( "virementUrl = " + this._virementUrlBase);
    return this._http

        .post(this._virementUrlBase, JSON.stringify(virement), {headers: this._headers})
        .map(res => <Virement> res.json())
        .catch(e => {return Observable.throw('error:' + e);});
```

```
}
...
}
```

Exemple appel:

param-virement.component.ts

```
import {Component, Output, EventEmitter} from '@angular/core';
import {Virement} from '../compte';
import {CompteService} from '../compte.service';
@Component({
 selector: 'param-virement',
 template: \( \langle \text{div id="divVirement" style="...." > \( \langle \text{h3} \) parametrage virement \( \langle \text{h3} \) 
        ... <input id="montant" [(ngModel)]="transfert.montant" /> <br/>
        ...<input id="numCptDeb" [(ngModel)]="transfert.numCptDeb" /> <br/>
      ... <input id="numCptCred" [(ngModel)]="transfert.numCptCred" /> <br/>
     <br/>
<button (click)="doVirementAndRefresh()">effectuer le virement</br>
  </div> ` })
export class ParamVirementComponent {
 @Output()
 public virementOk: EventEmitter<{value:string}> = new EventEmitter<{value:string}>();
 message: string;
 transfert: Virement = { "montant": 0, "numCptDeb": 1, "numCptCred": 2, "ok":false};
 constructor(private compteService : CompteService){
 }
 private setAndLogMessage( virementOk : boolean){
    if(virementOk){ this.message = "le montant de " + this.transfert.montant +
            " a bien ete transfere du compte " + this.transfert.numCptDeb +
             " vers le compte " + this.transfert.numCptCred; }
    else {this.message = "echec virement"; }
   console.log(this.message);
 }
 doVirementAndRefresh(){
  console.log("doVirementAndRefresh(): " + this.transfert.montant );
```

2. Retransmission des éléments de sécurité (v2,v4,v5)

Un ensemble de Web services "REST" (ou "API Rest" ou "Restful Api") est généralement sécurisé sur les bases suivantes :

- HTTPS
- jeton (token) d'authentification véhiculé en mode "Bearer" ou autre et au format uuid ou jwt ou autre
- éventuels autre(s) champ(s) de l'entête HTTP (ex : csrf, X-XSRF-TOKEN, ...)

La documentation officielle du framework Angular (v2, v4, ...) indique que certains champs de l'entête HTTP sont automatiquement / implicitement retransmis au sein des requêtes ultérieures.

Il peut cependant être nécessaire de retransmettre explicitement certaines informations reçues (ex : jeton/token).

Exemple (à adapter au contexte et peaufiner) :

A la réception de la réponse d'un WS d'authentification retournant ici un token dans une structure/classe "VerifAuth" spécifique à une certaine Api REST :

```
...
storeTokenInLocalStorage(va:VerifAuth){
    if(va && va.token){
        console.log('received token='+va.token);
        localStorage.setItem('token',va.token); //ici stockage du jeton dans localStorage HTML5
        //alternative : stockage du jeton en mémoire dans un (sous-)service commun.
    }
}
```

Retransmission standardisé du jeton en mode "Bearer" dans le champ "Authorization" :

```
mprivate _headers = new Headers({'Content-Type': 'application/json'});

loadTokenFromLocalStorage(){
    var token = localStorage.getItem('token');
    if(token){
        this._headers.set('Authorization','Bearer' + token);
    }
}

...

this.loadTokenFromLocalStorage();
    return this._http.get(urlWsRest,{headers: this._headers})
        .map(response => response.json()).catch(e => Observable.throw(e));
...
```

XVII - Annexe - RxJs

1. introduction à RxJs

1.1. Principes de la programmation réactive

La programmation réactive consiste essentiellement à programmer un enchaînement de traitements asynchrones pour réagir à un flux de données entrantes .

Un des intérêts de la programmation réactive réside dans la souplesse et la flexibilité des traitements fonctionnels mis en place :

- En entrée, on pourra faire librement varier la source des données (jeux de données statiques , réponses http , input "web-socket" , événement DOM/js ,)
- En sortie, on pourra éventuellement enregistrer plusieurs observateurs/consommateurs (si besoin de traitement en parallèles . par exemple : affichages multiples synchronisés) .

1.2. RxJs (présentation / évolution)

RxJs est une bibliothèque **javascript** (assimilable à un mini framework) spécialisée dans la programmation réactive .

Il existe des variantes dans d'autres langages de programmation (ex : RxJava, ...).

RxJs s'est largement inspiré de certains éléments de programmation fonctionnelle issus du langage "scala" (map ,flatMap , filter , reduce , ...) et a été à son tour une source d'inspiration pour "Reactor" utilisable au sein de Spring 5 .

RxJs a été dès 2015/2016 mis en avant par le framework Angular qui à fait le choix d'utiliser "Observable" de RxJs plutôt que "Promise" dès la version 2.0 (Angular 2) .

Depuis, le framework "Angular" a continuer d'exploiter à fond la bibliothèque RxJs . Cependant , les 2 frameworks ont beaucoup évolué depuis 2015/2016 .

La version **4.3** de **Angular** a apporter de grandes simplifications dans les appels de WS-REST via le service **HttpClient** (rendant *obsolète* l'ancien service *Http*).

La version 6 de Angular a de son coté été *restructurée* pour intégrer les gros changements de RxJs 6. Heureusement, pas de bouleversement en V7 (tranquille continuité).

La version 6 de RxJs s'est restructurée en profondeur sur les points suivants :

- changement des éléments à importer (nouvelles syntaxes pour les import { } from "")
- changements au niveau des opérateurs à enchaîner (plus de préfixe, pipe(), ...).

1.3. Principales fonctionnalités d'un "Observable"

Observable est la structure de données principale de l'api "RxJs".

- Par certains cotés , un "Observable" ressemble beaucoup à un objet "Promise" et permet d'enregistrer élégamment une suite de traitements à effectuer de manière asynchrone .
- En plus de cela , un "Observable" peut facilement être manipulé / transformé via tout un tas d'opérateurs fonctionnels prédéfinis (ex : map , filter , sort , ...)
- En outre, comme son nom l'indique, un "Observable" correspond à une mise en oeuvre possible du design pattern "observateur" (différents observateurs synchronisés autour d'un même sujet observable).

2. Fonctionnement (sources et consommations)

```
Source_configurée_et_initialisée
.pipe(
   callback_fonctionnelle_1 ,
   callback_fonctionnelle_2 ,
   ....
) .subscribe(callback_success , callback_error , callback_terminate)
```

NB : les paramètres callback_error et callback_terminate de .subscribe() sont facultatifs et peuvent donc être omis s'ils ne sont pas utiles en fonction du contexte.

NB : il faut (en règle général, sauf cas particulier/indication contraire) appeler .subscribe() pour que la chaîne de traitement puisse commencer à s'exécuter.

3. Réorganisation de RxJs (avant et après v5,v6)

La version 6 de RxJs a été beaucoup restructurée :

- -plus de préfixe "Observable." devant of() et autres fonctions -pipe() nécessaire pour enchaîner une série d'opérateurs (ex : map , filter , ...) -réorganisation des éléments à importer
- Quelques correspondances "avant/après" pour une éventuelle migration :

anciennes versions de RxJs (ex : v4)	versions récentes de RxJs (ex : v6)
Observable.of(data);	of(data);
import { } from "";	<pre>import { Observable, of } from "rxjs"; import { map , flatMap ,toArray ,filter} from 'rxjs/operators';</pre>

3.1. Imports dans projet Angular / typescript

```
import { Observable , of } from 'rxjs';
import { map , flatMap ,toArray ,filter} from 'rxjs/operators';
exemple d'utilisation (dans classe de Service) :
```

3.2. Imports "umd" dans fichier js (navigateur récent)

EssaiRxjs.html

avec <u>rxjs.umd.min.js</u> récupéré via <u>https://unpkg.com/rxjs/bundles/rxjs.umd.min.js</u> ou bien via une URL externe directe (CDN) <script src="https://unpkg.com/rxjs/bundles/rxjs.umd.min.js"></script>

NB: "The global namespace for rxjs is rxjs"

essaiRxJs.js

```
console.log('essai rxjs');

const { range } = rxjs;

const { map, filter } = rxjs.operators;

range(1, 10).pipe(

filter(x => x \geq 5),

map(x => x * x)

).subscribe(x => console.log(x));
```


4. Sources classiques générant des "Observables"

4.1. Données statiques (tests temporaires, cas très simples)

```
let jsObject = { p1 : "val1" , p2 : "val2" } ;
of(jsObject)...subscribe(...);
let tabObj = [ { ...} , { ... } ];
of(tabObj)...subscribe(...);
of(value1 , value2 , ... , valueN)...subscribe(...);
```

4.2. <u>Données numériques : range(startValue,endValue)</u>

```
range(1, 10).subscribe(x => console.log(x));

1
2
...
10
```

4.3. source périodique en tant que compteur d'occurence

4.4. source en tant qu'événement js/DOM

```
import { fromEvent } from 'rxjs';

const el = document.getElementById('my-element');

// Create an Observable that will publish mouse movements
const mouseMoves = fromEvent(el, 'mousemove');

// Subscribe to start listening for mouse-move events
const subscription = mouseMoves.subscribe((evt /*: MouseEvent */) => {
    // Log coords of mouse movements
    console.log(`Coords: ${evt.clientX} X ${evt.clientY}`);

// When the mouse is over the upper-left of the screen,
    // unsubscribe to stop listening for mouse movements
    if (evt.clientX < 40 && evt.clientY < 40) {
        subscription.unsubscribe();
    }
});</pre>
```

4.5. source en tant que réponse http (sans angular HttpClient)

```
import { ajax } from 'rxjs/ajax';

// Create an Observable that will create an AJAX request
const apiData = ajax('/api/data');

// Subscribe to create the request
apiData.subscribe(res => console.log(res.status, res.response));
```

4.6. source en tant que données reçues sur canal web-socket

. . .

5. Principaux opérateurs (à enchaîner via pipe)

Rappel (syntaxe générale des enchaînements):

```
Source_configurée_et_initialisée
.pipe(
    callback_fonctionnelle_1 ,
    callback_fonctionnelle_2 ,
    ....
) .subscribe(callback_success , callback_error , callback_terminate)
```

avec plein de variantes possibles

Exemple:

Principaux opérateurs:

тар	Transformations quelconques (calculs, majuscules, tri,)
flatMap	
toArray	
filter	Filtrages (selon comparaison,)

5.1. map(): transformations

En sortie, résultat (retourné via return) d'une modification effectuée sur l'entrée.

Exemple 1:

```
const obsNums = of(1, 2, 3, 4, 5);
const squareValuesFunctionOnObs = map((val) => val * val);
const obsSquaredNums = squareValuesFunctionOnObs(obsNums);
obsSquaredNums.subscribe(x => console.log(x));
```

// affiche 1 4 9 16 25

Exemple 2:

```
const obsStrs = of("un", "deux", "trois");
obsStrs.pipe(
```

5.2. flatMap() et toArray()

De façon à itérer une séquence d'opérateurs sur chaque élément d'un tableau tout en évitant une imbrication complexe et peu lisible de ce type :

on pourra placer une séquence d'opérateurs qui agiront sur chacun des éléments du tableau entre flatMap() et toArray() :

```
observableSurUnTableau
.pipe(
    flatMap(itemInTab=>itemInTab),
    map(( itemInTab )=>{ ... }),
    filter((itemInTab) => itemInTab.prix <= 300),
    toArray()
).subscribe((tableau) => { ... });
```

5.3. <u>filter()</u>

5.4. map with sort on array

```
{numero:4,label:'produit4',prix:15.0},
{numero:5,label:'produit5',prix:35.0}
]);
obsTab.pipe(
map( (tab) => tab.sort( (p1,p2) => (p1.prix > p2.prix) ))
)
.subscribe(t => console.log( JSON.stringify(t)) );
```

6. Passerelles entre "Observable" et "Promise"

6.1. Source "Observable" initiée depuis une "Promise" :

```
import { from } from 'rxjs';

// Create an Observable out of a promise :
const observableResponse = from(fetch('/api/endpoint'));

observableResponse.subscribe({
  next(response) { console.log(response); },
  error(err) { console.error('Error: ' + err); },
  complete() { console.log('Completed'); }
});
```

6.2. Convertir un "Observable" en "Promise"

```
observableXy.toPromise()
.then(...)
.catch(...)
```

XVIII - Annexe – ngx-bootstrap

1. Extension "ngx-bootstrap" pour angular

1.1. Présentation de ngx-bootstrap

L'extension "**ngx-bootstrap**" (principalement développée par "*Valor Software*") permet de bien intégrer **bootstrap-css** (3 ou 4) au sein d'une application angular 4,6 ou + .

Rappel:

- Une grande partie de bootstrap-css correspond essentiellement à des styles css prédéfinis et ne nécessite pas absolument de code javascript (un *npm install bootstrap* pourrait suffire dans de tel cas).
- Certains aspects de bootstrap-css sont dynamiques (ex : menus déroulants , popups, basculement d'onglets,) et nécessitent un peu de code javascript pour fonctionner. A l'origine bootstrap-css était très souvent accompagné par jquery et du plugin "bootstrap/jquery".
- Une application "angular" à sa propre dynamique et n'est normalement pas accompagnée par jquery. On a donc besoin d'une adaptation particulière "angular" pour les aspects dynamiques de bootstrap-css et c'est principalement à cela que sert l'extension ngx-bootstrap

NB: initialement nommé "ng2-bootstrap" (à l'époque angular 2 et 4), le projet a été ensuite renommé ngx-bootstrap. Il existe également un projet concurrent (et très ressemblant) intitulé "ng-bootstrap" (sans x) qui est beaucoup moins téléchargé/utilisé. Autant donc suivre la plus grande communauté de développeurs et utiliser "ngx-bootstrap".

1.2. Intégration de ngx-bootstrap dans un projet angular :

Pour les relativement anciennes versions d'angular (v5, ...), il est nécessaire de :

- 1. télécharger "ngx-bootstrap" via "npm install -s"
- 2. ajuster le fichier angular json (anciennement angular-cli.json) de façon à configurer les css
- 3. ajuster le fichier app.module.ts (ou un autre module)

package.json

```
"dependencies": {
    "@angular/core": "~8.2.0",
    ...,
    "bootstrap": "4.1.1",
    "chart.js": "^2.8.0",
    "font-awesome": "^4.7.0",
    "ng2-charts": "^2.3.0",
    "ngx-bootstrap": "^5.1.1",
    ...
}
```

```
angular.json
```

```
...
"styles": [
```

```
"./node_modules/bootstrap/dist/css/bootstrap.min.css",

"./node_modules/ngx-bootstrap/datepicker/bs-datepicker.css",

"./node_modules/font-awesome/css/font-awesome.min.css",

"src/styles.scss"

],
...
```

src/app/app.module.ts

```
import { TabsModule } from 'ngx-bootstrap/tabs';
import { BsDatepickerModule } from 'ngx-bootstrap/datepicker';
import { CarouselModule } from 'ngx-bootstrap/carousel';
...
imports: [
    BrowserModule, FormsModule, HttpClientModule, AppRoutingModule, ChartsModule,
    BrowserAnimationsModule,
    TabsModule.forRoot(), BsDatepickerModule.forRoot(), CarouselModule.forRoot()
    ]
...
```

Avec une version récente d'angular (ex : v7 , v8) , la commande "ng add ..." convient parfaitement pour automatiser tout cela:

```
ng add ngx-bootstrap
```

```
puis (selon les besoins):

ng add ngx-bootstrap --component componentName

exemple-of-componentName: accordion, alerts, buttons, ..., tabs, ...
```

1.3. Site de référence pour ngx-bootstrap

https://valor-software.com/ngx-bootstrap/#/

https://valor-software.com/ngx-bootstrap/#/documentation

https://valor-software.com/ngx-bootstrap/#/documentation#getting-started

1.4. Quelques composants de ngx-bootstrap

Onglets (tabs):

```
<tabset>
<tab heading="calcul tva">
<app-tva></app-tva>
</tab>
<tab heading="simulation emprunt">
<app-simu-emprunt></app-simu-emprunt>
</tab>
<tab heading="conversion de devise">
<app-conversion></app-conversion>
</tab>
</tab>
</tab>
</tab>
<tab simulation emprunt conversion de devise</tab
```

<u>Calendrier javascript (datePicker)</u>:

```
<input placeholder="yyyy-mm-dd" name="date"
        [(ngModel)]="datePublication" bsDatepicker
        [bsConfig]="{ dateInputFormat: 'YYYY-MM-DD' }" />
avec datePublication : Date = new Date(); du coté .ts
Date:

2019-09-17
```


Carousel (slide-show, défilement d'images)

1.5. <u>Exemples de composants personnalisés s'appuyant sur bootstrap-css</u>

En plus des composants prédéfinis de "ngx-bootstrap", il est assez facile de mettre en oeuvre un paquet de composants personnalisés réutilisables basés sur bootstrap-css (et un peu sur ngx-bootstrap).

L'exemple suivant correspond à des extraits d'un module (nommé "*bs-util*") de composants réutilisables :

Dans **src/bs-util** (à coté de **src/app**) :

bs-util.module.ts

```
import { BsDropdownModule } from 'ngx-bootstrap/dropdown';
import { CollapseModule } from 'ngx-bootstrap/collapse';
import { ModalModule } from 'ngx-bootstrap/modal';
@NgModule({
imports: [
 CommonModule, FormsModule, RouterModule, BrowserAnimationsModule,
 CollapseModule.forRoot(), BsDropdownModule.forRoot(), ModalModule.forRoot()
 ],
 exports:
 BsuTogglePanelComponent,
 BsuMyFormGroupWithLabelComponent, BsuNavBarComponent,
 BsuOverviewCardComponent, BsuModalComponent
 declarations: [BsuTogglePanelComponent,
 BsuMyFormGroupWithLabelComponent, BsuNavBarComponent, BsuNavItemComponent,
 BsuDropdownMenuComponent,
 BsuOverviewCardComponent,BsuModalComponent
})
export class BsUtilModule { }
```

Ce module pourra ensuite être globalement importé par un module applicatif :

```
import { BsUtilModule } from 'src/bs-util.module';
...
@NgModule({
...
imports: [
    BrowserModule, FormsModule, BsUtilModule
],
...})
export class AppModule { }
```

code complet au bout de l'URL suivante : https://github.com/didier-mycontrib/angular8plus (partie ng-bs4-app/src/bs-util).

2. Mode "offLine" et indexed-db

2.1. Gestion de online/offline par les navigateurs

La plupart des navigateurs détectent et gère le mode "déconnecté" de la manière suivante :

- la <u>propriété</u> booléen **window.navigator.onLine** est automatiquement fixée par le navigateur pour indiquer si la connexion à internet est établie ou coupée .

Les <u>événements</u> "online" et "offline" sont automatiquement déclenchés par le navigateur en cas de basculement / changement d'état .

2.2. exemple de service angular "OnlineOfflineService"

```
...
@Injectable({ providedIn: 'root'})
export class OnlineOfflineService {

public connectionChanged = new BehaviorSubject < boolean > (window.navigator.onLine);

get isOnline() { return window.navigator.onLine;
}

constructor() {

window.addEventListener('online', () => this.updateOnlineStatus());

window.addEventListener('offline', () => this.updateOnlineStatus());
}

private updateOnlineStatus() {

console.log("onLine="+window.navigator.onLine);

this.connectionChanged.next(window.navigator.onLine);
}

}
```

Exemple d'utilisation :

et onLine={{onLine}} coté .html

3. IndexedDB et idb

3.1. Présentation de IndexDB, idb et liens webs (documentations)

Tout comme WebSQL/SQLite et localStorage, IndexedDB est une technologie de persistance (base de données) intégrée dans les navigateurs récents (html5).

LocalStorage est basique et fonctionne en mode "key-value pairs".

Depuis 2010 WebSQL/SQLite est considéré comme "déconseillé/obsolète" car moins bien que IndexedDB.

IndexedDB permet de directement stocker et recharger des objets "javascript" depuis une zone de stockage persistante gérée par le navigateur .

Documentations sur IndexedDB (de base) fourni sans "Promise" par un navigateur:

- https://developer.mozilla.org/fr/docs/Web/API/API IndexedDB/Using IndexedDB
- https://javascript.info/indexeddb

Bibliothèque "idb" (pour code avec "Promise"):

- https://www.npmjs.com/package/idb
- https://github.com/jakearchibald/idb

<u>NB</u>: **idb** est une **api d'un peu plus haut niveau** (basée sur des "**Promise**") qui permet de manipuler plus simplement l'api de bas niveau "IndexedDB" (fourni de façon normalisée par les navigateurs).

<u>Documentation sur IndexedDB (avec api supplémentaire "idb" retournant "Promise") et concepts</u>

bien expliqués:

- https://developers.google.com/web/ilt/pwa/working-with-indexeddb (attention: ancienne version)

Exemple IndexedDB avec Promises et async/await:

- https://medium.com/@filipvitas/indexeddb-with-promises-and-async-await-3d047dddd313

3.2. Structure de IndexedDB

3.3. <u>Utilisation de IndexedDB via idb (avec "Promise")</u>:

```
if (!('indexedDB' in window)) {
  console.log('This browser doesn\'t support IndexedDB');
  return;
}
```

```
npm install -s idb
```

(ex : *version 4.0.4*)

Les exemples de code (partiels) ci-après seront en typescript et intégrés au framework "angular".

```
import { Observable, of, from} from 'rxjs';
import { openDB , IDBPDatabase} from 'idb';

@Injectable({ providedIn: 'root'})
export class ProductService {

private currentIdb : IDBPDatabase = null;

//méthode asynchrone pour ouvrir la base 'my-idb'
//en créant si besoin l' objectStore 'products' avec options :

private openMyIDB() : Promise<IDBPDatabase>{
  var dbPromise = openDB('my-idb', 1 /* version */, {
    upgrade(upgradeDb, oldVersion, newVersion, transaction) {
    if (!upgradeDb.objectStoreNames.contains('products')) {
        upgradeDb.createObjectStore('products', {keyPath: '_id', autoIncrement: false});
    }
    }
    }
});
```

return dbPromise;

```
private getAllProductsPromise() : Promise<Product[]>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
    var tx = db.transaction('products', 'readonly');
    var store = tx.objectStore('products');
    return store.getAll();
  });
```

```
public getProducts() : Observable<Product[]> {
  return from(this.getAllProductsPromise()); //from() to convert Promise to Observable
private addProductInMyIDbPromise(p:Product):Promise<any>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
   let tx = db.transaction('products', 'readwrite');
   let store = tx.objectStore('products');
   store.add(p);
   return tx.done;
  });
 private updateProductInMyIDbPromise(p:Product):Promise<any>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
   let tx = db.transaction('products', 'readwrite');
   let store = tx.objectStore('products');
   store.put(p);
   return tx.done;
  });
 private deleteProductInMyIDbPromise(id:string):Promise<any>{
  let dbPromise = this.accessMyIDB();
  return dbPromise.then(function(db) {
   let tx = db.transaction('products', 'readwrite');
   let store = tx.objectStore('products');
   store.delete(id);
   return tx.done;
  });
 private memProductlist : Product[] =
 [ { _id: "p1", category: "divers", price: 1.3, label: "gomme", description: "gomme blanche"},
  { id : "p10", category : "livres", price : 12.1, label : "A la recherche du temps perdu",
  description : "Marcel Proust" } ];
 private async initMyIdbSampleContent(){
  let db = await this.openMyIDB();//not accessMyIDB() since .close() at the end of this aync function
  let tx = db.transaction('products', 'readwrite');
  let store = tx.objectStore('products');
  for(let p of this.memProductlist){
      let exitingProdWithSameKey = await store.get(p. id);
      if(exitingProdWithSameKey==null){
         await store.add(p);//reject Promise and tx if p already in store
  await tx.done; db.close();
```

}

4. Socket.io

4.1. Présentation de Socket.io

Socket.io est une api javascript qui encapsule et améliore la prise en charge des "websockets".

<u>Rappel</u>: les **websockets** sont une technologie permettant d'établir des *communications bidirectionnelles* via un canal construit au dessus du protocole HTTP et cela permet au coté serveur d'envoyer spontanément des informations (ou événements) au client (fonctionnant dans un navigateur). C'est une des technologies de "push".

Valeurs ajoutés par la bibliothèque javascript "socket.io":

websocket (utilisé seul)	socket.io
protocole (lui même basé sur tcp et http) maintenant géré par la plupart des navigateurs et pouvant être manipulé en code javascript de bas niveau	librairie javascript complémentaire (à télécharger et utiliser)
fourni un <u>canal de communication full-duplex</u> <u>de bas niveau</u>	fourni un <u>canal abstrait de communication</u> <u>full-duplex</u> (de plus haut niveau) <u>basé sur des</u> <u>événements</u> .
proxy http et load-balancer ne sont pas gérés par les websockets ===> gros problème / limitation	les communications peuvent êtres établies même en présence de proxy http et de load- balancer (en mettant en oeuvre des mécanismes supplémentaires pour compenser les limitations des "websockets" généralement utilisées en interne)
ne gère pas le broadcasting	gère (si besoin) le broadcasting
pas d'option pour le "fallback"	comporte des options pour le "fallback"

documentation sur site officiel de Socket.io (présentation, concepts):

- https://socket.io/docs/

bibliothèque socket.io:

- https://www.npmjs.com/package/socket.io-client
- https://www.npmjs.com/package/@types/socket.io-client

4.2. chat-socket.io coté serveur (en version "typescript")

```
| package.json | {
| "name": "chat-socket-io",
| "version": "0.1.0",
| "dependencies": {
| "ent": "^2.2.0",
| "express": "^4.17.1",
| "socket.io": "^2.2.0"
| },
| "description": "Chat temps réel avec socket.io",
| "devDependencies": {
| "@types/ent": "^2.2.1",
| "@types/express": "^4.17.0",
| "@types/socket.io": "^2.1.2"
| }
| }
```

chat-socket-io/src/app.ts

```
import express, { Request, Response } from 'express';
import * as http from 'http';
import * as ent from 'ent';// Permet de bloquer les caractères HTML
import * as sio from 'socket.io';
const app :express.Application = express();
const server = http.createServer(app);
const io = sio.listen(server);
//les routes en /html/... seront gérées par express
//par de simples renvois des fichiers statiques du répertoire "/html"
app.use('/html', express.static( dirname+"/html"));
app.get('/', function(req :Request, res : Response ) {
  res.redirect('/html/index.html');
 });
//events: connection, message, disconnect and custom event like nouveau client
io.sockets.on('connection', function (socket:any) {
  // Dès qu'on nous donne un pseudo,
  // on le stocke en variable de session/socket et on informe les autres personnes :
  socket.on('nouveau client', function(pseudo:string) {
    pseudo = ent.encode(pseudo);
    socket.pseudo = pseudo;
    socket.broadcast.emit('nouveau client', pseudo);
  });
  // Dès qu'on reçoit un message, on récupère le pseudo de son auteur
  //et on le transmet aux autres personnes
  socket.on('message', function (message:string) {
    message = ent.encode(message);
```

```
socket.broadcast.emit('message', {pseudo: socket.pseudo, message: message});
});
server.listen(8383,function () {
   console.log("http://localhost:8383");
});
```

4.3. chat-socket-io coté client (html/js)

chat-socket-io/dist/lib/socket.io.js (à télécharger)

```
chat-socket-io/dist/html/index.html
<html>
  <head>
    <meta charset="utf-8" />
    <title>Chat temps réel avec socket.io</title>
       #zone chat strong { color: white; background-color: black; padding: 2px; }
    </style>
  </head>
  <body>
    <h1>Chat temps réel avec socket.io (websocket)</h1>
    <i>(version adaptée de https://openclassrooms.com/fr/courses/1056721-des-applications-
ultra-rapides-avec-node-js/1057959-tp-le-super-chat)</i>
    message:<input type="text" name="message" id="message" size="50" autofocus />
    <input type="button" id="envoi_message" value="Envoyer" />
    <div id="zone chat"></div>
    <script src="lib/socket.io.js"></script>
    <script>
       var zoneChat = document.querySelector('#zone chat');
       var zoneMessage = document.querySelector('#message');
       // Connexion au serveur socket.io :
       var socket = io.connect('http://localhost:8383');
       // On demande le pseudo, on l'envoie au serveur et on l'affiche dans le titre
       var pseudo = prompt('Quel est votre pseudo ?');
       socket.emit('nouveau client', pseudo);
       document.title = pseudo + ' - ' + document.title;
       // Quand on reçoit un message, on l'insère dans la page
       socket.on('message', function(data) {
         insereMessage(data.pseudo, data.message)
       })
       // Quand un nouveau client se connecte, on affiche l'information :
       socket.on('nouveau client', function(pseudo) {
```

```
zoneChat.innerHTML='<em>' + pseudo + ' a rejoint le Chat !</em>'
                                +zoneChat.innerHTML;
       })
      // Lorsqu'on click sur le bouton, on transmet le message et on l'affiche sur la page
      document.querySelector('#envoi message').addEventListener('click',function () {
         var message = zoneMessage.value;
         socket.emit('message', message); // Transmet le message aux autres
         insereMessage(pseudo, message); // Affiche le message aussi sur notre page
         zoneMessage.value="; zoneMessage.focus(); // Vide la zone de Chat et remet le focus dessus
         return false; // Permet de bloquer l'envoi "classique" du formulaire
       });
      // fonction utilitaire pour ajouter un message dans la page :
      function insereMessage(pseudo, message) {
         zoneChat.innerHTML='<strong>' + pseudo + '</strong> ' + message
                                 + ''+zoneChat.innerHTML;
    </script>
 </body>
</html>
localhost:8383 indique
Quel est votre pseudo?
 toto
                                      Annuler
   titi - Chat temps réel avec socket.io X
← → ℃ む
               ① (i) loc
                         150 %
                               ... ☑ ☆
                                                   Chat temps réel avec
                                                Chat temps réel avec socket.io
socket.io (websocket)
                                                (websocket)
                                                (version adaptée de
(version adaptée de https://openclassrooms.com
                                                https://openclassrooms.com/fr/courses/1056721-des-applications-
/fr/courses/1056721-des-applications-ultra-
                                                ultra-rapides-avec-node-js/1057959-tp-le-super-chat)
rapides-avec-node-js/1057959-tp-le-super-chat)
                                                message:
                                                 Envoyer
message:
                                                toto cc
 Envoyer
                                                titi bb
toto cc
                                                toto aa
titi bb
toto aa
toto a rejoint le Chat!
```

4.4. Socket.io coté client (intégré dans Angular)

npm install socket.io-client --save

src/app/common/service/chat.service.ts

```
import { Injectable } from '@angular/core';
import * as sio from 'socket.io-client';
import { Observable } from 'rxis';
@Injectable({ providedIn: 'root'})
export class ChatService {
private url : string = 'http://localhost:8383';
//https://github.com/didier-mycontrib/tp node js (chat-socket-io)
 private socket;
 constructor() {
  this.socket = sio(this.url);
 public sendMessage(message:string, eventName:string="message") {
  this.socket.emit(eventName, message);
 public getMessagesObservable(eventName :string="message") : Observable<any>{
  return Observable.create((observer) => {
    this.socket.on(eventName, (message) => {
       observer.next(message);
    });
  });
```

chat.component.ts

```
import { Component, OnInit } from '@angular/core';
import { ChatService } from 'src/app/common/service/chat.service';

interface EventMessagewithPseudo {
    pseudo : string;
    message : string;
}

@Component({
    selector: 'app-chat',
    templateUrl: './chat.component.html',
    styleUrls: ['./chat.component.scss']
})

export class ChatComponent implements OnInit {
    pseudo:string;//undefined by default
    pseudoSent : boolean = false;
    newMessage: string;
    messages: EventMessagewithPseudo[] = [];
```

```
constructor(private chatService : ChatService) { }
onSetPseudo() {
 this.chatService.sendMessage(this.pseudo,"nouveau client");
 this.pseudoSent = true;
onSendMessage() {
 this.chatService.sendMessage(this.newMessage); //envoi du message (pour diffusion)
 //push() ajoute à la fin, unshift() ajoute au début :
 this.messages.unshift({pseudo:this.pseudo,
                        message:this.newMessage});// pour affichage local du message envoyé
 this.newMessage = ";
ngOnInit() {
 this.chatService
  .getMessagesObservable("nouveau client")
  .subscribe((username: string) => {
   this.messages.unshift({pseudo:username, message: 'a rejoint le Chat!'});
  });
 this.chatService
  .getMessagesObservable("message")
  .subscribe((evtMsgWithPseudo: any) => {
   this.messages.unshift(evtMsgWithPseudo);
  });
```

chat.component.html

```
chat.component.css
```

```
.pseudo_chat { color: white; background-color: black; padding: 2px;}
```

XIX - Annexe – Web Services REST (coté serveur)

1. Généralités sur Web-Services REST

2 grands types de services WEB: SOAP/XML et REST/HTTP

WS-* (SOAP / XML)

- "Payload" systématiquement en XML (sauf pièces attachées / HTTP)
- Enveloppe SOAP en XML (header facultatif pour extensions)
- Protocole de transport au choix (HTTP, JMS, ...)
- Sémantique quelconque (appels méthodes), description WSDL
- Plutôt orienté Middleware SOA (arrière plan)

REST (HTTP)

- "Payload" au choix (XML, HTML, JSON, ...)
- Pas d'enveloppe imposée
- Protocole de transport = toujours HTTP.
- Sémantique "CRUD" (modes http PUT,GET,POST,DELETE)
- Plutôt orienté IHM Web/Web2 (avant plan)

Points clefs des Web services "REST"

Retournant des données dans un format quelconque ("XML", "JSON" et éventuellement "txt" ou "html") les web-services "REST" offrent des résultats qui nécessitent généralement peu de re-traitements pour être mis en forme au sein d'une IHM web.

Le format "au cas par cas" des données retournées par les services REST permet peu d'automatisme(s) sur les niveaux intermédiaires.

Souvent associés au format <u>"JSON"</u> les web-services "REST" conviennent parfaitement à des appels (ou implémentations) au sein du langage javascript.

La relative simplicité des URLs d'invocation des services "REST" permet des appels plus immédiats (un simple href="..." suffit en mode GET pour les recherches de données).

La compacité/simplicité des messages "JSON" souvent associés à "REST" permet d'obtenir d'assez bonnes performances.

REST = style d'architecture (conventions)

REST est l'acronyme de **Representational State Transfert**.

C'est un **style d'architecture** qui a été décrit par **Roy Thomas Fielding** dans sa thèse «Architectural Styles and the Design of Network-based Software Architectures».

L'information de base, dans une architecture REST, est appelée **ressource**. Toute information (à sémantique stable) qui peut être nommée est une ressource: un article, une photo, une personne, un service ou n'importe quel concept.

Une ressource est identifiée par un **identificateur de ressource**. Sur le web ces identificateurs sont les **URI** (Uniform Resource Identifier).

<u>NB</u>: dans la plupart des cas, une ressource REST correspond indirectement à un enregistrement en base (avec la *clef primaire* comme partie finale de l'uri "identifiant").

Les composants de l'architecture REST manipulent ces ressources en **transférant** à travers le réseau (via HTTP) des représentations de ces ressources. Sur le web, on trouve aujourd'hui le plus souvent des représentations au format HTML, XML ou JSON.

REST et principaux formats (xml, json)

Une invocation d'URL de service REST peut être accompagnée de données (en entrée ou en sortie) pouvant prendre des formats quelconques : text/plain, text/html, application/xml, application/json, ...

Dans le cas d'une lecture/recherche d'informations, le format du résultat retourné pourra (selon les cas) être :

- imposé (en dur) par le code du service REST.
- au choix (xml, json) et <u>précisé par une partie de l'url</u>
- au choix (xml, json) et précisé par le <u>champ "Accept :" de l'entête HTTP</u> de la requête. (<u>exemple</u>: Accept: application/json).

Dans tous les cas, la réponse HTTP devra avoir son format précisé via le champ habituel *Content-Type:* application/json de l'entête.

Format JSON (JSON = JavaScript Object Notation)

<u>Les 2 principales caractéristiques</u> de JS0N sont :

- Le principe de clé / valeur (map)
- L'organisation des données sous forme de tableau

```
"nom": "article a",
    "prix": 3.05,
    "disponible": false,
    "descriptif": "article1"
},
{
    "nom": "article b",
    "prix": 13.05,
    "disponible": true,
    "descriptif": null
}
```

Les types de données valables sont :

- tableau
- objet
- chaîne de caractères
- valeur numérique (entier, double)
- booléen (true/false)
- null

une liste d'articles

une personne

{
 "nom": "xxxx",
 "prenom": "yyyy",
 "age": 25
}

REST et méthodes HTTP (verbes)

Les <u>méthodes HTTP</u> sont utilisées pour indiquer la <u>sémantique des actions</u> demandées :

• **GET** : **lecture/recherche** d'information

POST : envoi d'informationPUT : mise à jour d'information

• **DELETE** : **suppression** d'information

Par exemple, pour récupérer la liste des adhérents d'un club, on peut effectuer une requête de type GET vers la ressource http://monsite.com/adherents

Pour obtenir que les adhérents ayant plus de 20 ans, la requête devient http://monsite.com/adherents?ageMinimum=20

Pour supprimer numéro 4, on peut employer une requête de type **DELETE** telle que **http://monsite.com/adherents/4**

Pour envoyer des informations, on utilise **POST** ou **PUT** en passant les informations dans le corps (invisible) du message HTTP avec comme URL celle de la ressource web que l'on veut créer ou mettre à jour.

Exemple concret de service REST : "Elevation API"

L'entreprise "Google" fourni gratuitement certains services WEB de type REST.

"*Elevation API*" est un service REST de Google qui renvoie l'altitude d'un point de la planète selon ses coordonnées (latitude ,longitude).

La documentation complète se trouve au bout de l'URL suivante :

https://developers.google.com/maps/documentation/elevation/?hl=fr

Sachant que les coordonnées du Mont blanc sont :

Lat/Lon: 45.8325 N / 6.86417 E (GPS: 32T 334120 5077656)

Les invocations suivantes (du service web rest "api/elevation")

http://maps.googleapis.com/maps/api/elevation/json?locations=45.8325,6.86417 http://maps.googleapis.com/maps/api/elevation/xml?locations=45.8325,6.86417 donne les résultats suivants "json" ou "xml":

```
?xml version="1.0" encoding="UTF-8"?>
<ElevationResponse>
<status>OK</status>
<result>
<location>
<lat>45.8325000</lat>
<lng>6.8641700</lng>
</location>
<elevation>4766.4667969</elevation>
<resolution>152.7032318</resolution>
</result>
</ElevationResponse>
```

2. <u>Limitations Ajax sans CORS</u>

3. CORS (Cross Origin Resource Sharing)

CORS=Cross Origin Resource Sharing

CORS est une norme du W3C qui précise certains champs à placer dans une entête HTTP qui serviront à échanger entre le navigateur et le serveur des informations qui serviront à décider si une requête sera ou pas acceptée.

(utile si domaines différents), dans requête simple ou bien dans prééchange préliminaire quelquefois déclenché en plus :

Au sein d'une requête "demande autorisation" envoyée du client vers le serveur :

Origin: http://www.xy.com

Dans la "réponse à demande d'autorisation" renvoyée par le serveur :

Access-Control-Allow-Origin: http://www.xy.com

Ou bien

Access-Control-Allow-Origin: * (si public)

→ requête acceptée

Si absence de "Access-Control-Allow-Origin :" ou bien valeur différente ---> requête refusée

CORS=Cross Origin Resource Sharing (2)

NB1: toute requête "CORS" valide doit absolument comporter le champ "*Origin*:" dans l'entête http. Ce champ est <u>toujours</u> construit automatiquement par le navigateur et jamais renseigné par programmation javascript.

Ceci ne protège que partiellement l'accès à certains serveurs car un "méchant hacker" utilise un "navigateur trafiqué".

Les mécanismes "CORS" protège un peu le client ordinaire (utilisant un vrai navigateur) que dans la mesure ou la page d'origine n'a pas été interceptée ni trafiquée (l'utilisation conjointe de "https" est primordiale).

NB2: Dans le cas (très classique/fréquent), où la requête comporte "Content-Type: application/json" (ou application/xml ou ...), la norme "CORS" (considérant la requête comme étant "pas si simple") impose un pré-échange préliminaire appelé "Preflighted request/response".

Paramétrages CORS à effectuer coté serveur

L'application qui coté serveur, fourni quelques Web Services REST, peut (et généralement doit) autoriser les requêtes "Ajax / CORS" issues d'autres domaines ("*" ou "www.xy.com").

Attention: ce n'est pas une "sécurité coté serveur" mais juste un paramétrage autorisant ou pas à rendre service à d'autres domaines et en devant gérer la charge induite (taille du cluster, consommation électrique, ...).

Paramétrage "CORS" avec Spring-mvc

et

```
@Configuration
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(final HttpSecurity http) throws Exception {
        http.authorizeRequests()
             .antMatchers("/", "/favicon.ico", "/**/*.png",
                     "/**/*.gif", "/**/*.svg", "/**/*.jpg",
                              "/**/*.html", "/**/*.css", "/**/*.js").permitAll()
             .antMatchers("/devise-api/public/**").permitAll()
             .antMatchers("/devise-api/private/**").authenticated()
              .and().cors() //enable CORS (avec @CrossOrigin sur class @RestController)
             .and().csrf().disable()
             .exceptionHandling().authenticationEntryPoint(unauthorizedHandler)
             .and()
             .sessionManagement().sessionCreationPolicy(SessionCreationPolicy.STATELESS)
             .and()
             .addFilterBefore(jwtAuthenticationFilter,
                              UsernamePasswordAuthenticationFilter.class);
         }
```