EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: <u>cliao25@bu.edu</u>

Fibonocci Heaps

Amortized Analysis of DecreaseKey

• Amortized analysis: Potential function $\Phi(\mathcal{H})$ = number of trees + 2 * number of marked nodes

Fibonacci Heaps: Demonstration

- Illustrate use in shortest path computations
- https://kbaile03.github.io/projects/fibo_dijk/fibo_dijk.html

Recent Ideas in Priority Queues

- Try to get complexity of Fibonacci heaps for DecreaseKey with simpler data structures
- Novel concepts
 - Pairing Heaps
 - Quake heaps
 - Violation heaps
 - Rank-Pairing heaps
- Focus on rank-pairing heaps

2008 - 2 ...

> Tarjen --

• Background: Tournament trees

- Half-ordered binary trees (half-trees)
 - Root has single left child
 - Half-heap property: parent key less than or equal to left child

- If node is leaf, rank = 0
 - If it is root, rank(parent) = 1+rank(left child)
 - If |rank(left child) rank(right child)| <= 1: rank = 1 + max(rank(L),rank(R))
 - If |rank(L) rank(R)|>1: rank(parent) = max(rank(L), rank(R))

d)

Half-Binary Trees

• Rank-Pairing Heaps are a linked list of binary half-trees, with pointer to minimum root

• Operations:

- Insert: add a new single-node half-tree to list: O(1)
- Merge: just link two lists, update min pointer: O(1)

- Operations (cont)
 - DeleteMin: Delete min-root.
 - Cut edges along right path down from new root to give new half-trees
 - Compress: merge roots of equal rank until no two roots have equal rank

- Operations (cont)
 - Compress two trees of equal rank:

- Operations (cont)
 - DeleteMin: Delete min-root.
 - Cut edges along right path down from new root to give new half-trees
 - Compress: merge roots of equal rank until no two roots have equal rank
 - Variation: Lazy compress: don't compress recursively

- Operations (cont)
 - DecreaseKey: Remove x and its left subtree to a new half-tree
 - Replace x by its right child. Change key of x to k. Add x to the list of half tree roots. Update the min-root.
 - Update the ranks

- Operations (cont)
 - DecreaseKey: Update the ranks

- Amortized analysis
 - Key result: number of nodes in a half tree with rank k is again bounded below by F_{k+2} , the Fibonacci number
 - Implies that the maximum height of half-trees in forest is O(log(n))
- Analysis based on potential function
 - Potential of a node: 1 if root, 0 if both children have same rank, 2 if one child's rank is 1 greater than other, j-1 if single child of rank j
 - Potential of heap: sum of potential of all node

Rank-Pairing Heaps: Demo

• https://skycocoo.github.io/Rank-Pairing-Heap/

Simpler implementation than Fibonacci heaps

Same amortized complexity:

• Insert: O(1)

• DeleteMin: O(log(n))

• DecreaseKey: O(1)

• Merge: O(1)

37

- A subtle point in all heaps: need additional data structure to find nodes in O(1)
 - Not implemented in most standard libraries
 - Makes generic standard heap implementations have little utility ...

10/73

Nde 32. (i) node 0

Nde - 6 (i) node 0

Nde - 7.

String Matching and Tries

- Consider the following problem:
 - Given a string T and k nonempty strings $P_1, P_2, ..., P_k$ find all occurrences of $P_1, P_2, ..., P_k$ in T.
 - T is called the text string and $P_1, P_2, ..., P_k$ are called pattern strings.
 - This problem was originally studied in the context of compiling indexes, but has found applications in computer security and computational genomics
- Simpler problem: k = 1
 - Knuth-Morris-Pratt (KMP) algorithm (CLRS)
- Harder problem: k > 1
 - Aho-Corasick tries

Single Pattern Matching

- Given a string T[1:n-] of n characters in finite alphabet set S
- Nonempty string P = P[1:m] of characters in S
- Pattern P occurs with shift s in T[s:s+m-1] = P[1:m]
- Problem: Find all shifts s where Pattern occurs with shift s
- Naive algorithm:
 - For s in 1 to n-m+1:
 - If T[s:s+m-1] = P[1:m], add s to set of shifts where pattern occurs
 - Complexity: O(m(n-m+1)) = $O(m \cdot n)$

Single Pattern Matching

- Example:
 - $T[] = \text{``AAAAAAAAAAAAAAAAAB''} \quad (n=18)$
 - P[] = "AAAAB" (m=5)

One shift matches: s=13

- Example
 - T[] = "ABABABCABABABCABABABC" (n=20)
- $\rightarrow P[] = \text{``ABABAC''} (m=6)$

No shifts match!

- Idea: exploit that whenever we find a mismatch, we have already looked at a subset of the pattern
 - T[] = ``AAAA A A AAAAAAAAAAAAAAAAA (n=18)
 - If we get a mismatch on T[5], we don't have to start searching from k=2 for the next match! We know no shift can match before s = 6
- Idea: patterns have a prefix function
 - A string w is a **proper prefix** of a string x if x = w + v for some string nonempty string v, where + is concatenation
 - A string w is a **proper suffix** of a string x if x = v + w for some non-empty string v

- Algorithm: preprocess pattern P[0:m-1] to compute function $\pi[j]$
 - $\pi[j]$ = longest proper prefix of P[0:j] that is also a suffix of P[0:j], for j = 0 to m-1

• Examples:
$$P = \text{``AAAA''} \longrightarrow \pi[] = [0, 1, 2, 3]$$

•
$$P = \text{``ABCDE''} \longrightarrow \pi[] = [0,0,0,0,0]$$

• P = "AABAACAABAA"
$$\longrightarrow \pi[] = [0,1,0,1,2,0,1,2,3,4,5]$$

• P = "AABAACAABAA"
$$\longrightarrow \pi[] = [0,1,0,1,2,0,1,2,3,4,5]$$

• P = "AAACAAAAAC" $\longrightarrow \pi[] = [0,1,0,1,2,0,1,2,3,4,5]$
• P = "AAABAAA" $\longrightarrow \pi[] = [0,1,0,1,2,0,1,2,3,4,5]$

• P = "AAABAAA"
$$\longrightarrow \pi[] =$$

- Analysis
- String P: "a b a b a b a b c a"; Prefix function: $\pi(i)$: [0,0,1,2,3,4,5,6,0,1]
- Match into T: "a b a b d a a b a b a b a b c a d c d"
 - ababababababcadcd ababababca Shift by $\pi(3)$
 - a b a b a b a b a b a b c a d c d la b a b a b a b c a shift by $\pi(1)$

abab daabababcadcd ababababca ababda**a**bababcadco ababababca

ababdaabababcadcd abababca

• Computing $\pi[j]$ from P[0:m-1]: b C a C а k = 0; j = 1; $\pi[0]=0;$ While j < m: If P[k] = P[j]: arr $k++; \pi[j]=k; j++;$ else if k == 0: # first character did not match $\pi[j] = 0; j++;$ else: #mismatch after first character $k = \pi[k-1]$ 9

```
k = 0; j = 0;
while (j < n)
   if P[k] == T[j]
      k++; j ++; 	→
   if k == m:
      print("match at ", j-i)
      k=pi[k-1]
   else if (j < n \text{ and } P[k] != T[j]):
      if k != 0
          k= pi[k-1]
       else
          j++; 🤲
return
```


				L						
	Т	A	A	В	Α	Α	Α	A	Α	В
_	P	Α	Α	Α						
•	pi	0	1	2						
	S	0	0	0	1	1	1	0	0	0
	k	0/1	1/2	2/0	0/1	1/2	2/1	2/1	2/1	0
	j	0	1	2	3	4	5	6	7	8

- Complexity analysis
 - For each position j in the string T:
 - If it does not match, you slide the pattern to all possible suffixes and check for a match
 - Worst case pattern: "AAAAAAA": $\pi[k] = k$ so lots of prefixes
- Let q = number of digits matched when checking position j.
 - Potential $\Phi(j) = q$. Note $\Phi(0) = 0$, $\Phi(end) = 0$
 - Cost of checking position j: c(j) = number of iterations of $k = \pi[k-1]$ for this j
 - Cost is 1 + c(j) -
 - Each iteration $k = \pi[k-1]$ decreases number matched by at least one
 - Amortized cost for position j: $1 + c(j) + \Phi(j) \Phi(j-1) = 1 + c(j) c(j)$: $\Theta(1)$
- To do n iterations: $\Theta(n)$

• Demo: http://jovilab.sinaapp.com/visualization/algorithms/strings/kmp