人工知能

第2章 探索(1): 状態空間と基本的な探索

立命館大学 情報理工学部 谷口彰

STORY 状態空間と基本的な探索

- ホイールダック2号はダンジョンに入り、宝箱や出口を見つけなければならない。ホイールダック2号は宝箱に入ったアイテムや財宝を手に入れながら、出口に早くたどり着かなければならない。そして、スフィンクスを倒してさなければならない。
- ダンジョン内は迷路になっている.これを闇雲に進んでも, ゴールにたどり着けるのかもしれない.しかし,同じ所をくる くる回ってしまうかもしれないし,行き止まりにぶつかるかも しれない.では,どのようにすれば効率的かつ確実に宝箱や ゴールを見つけることができるのだろうか?

ホイールダック2号にまず求められたのは迷路をきちんと探索 する能力だった.

仮定 状態空間と基本的な探索

- ホイールダック2号は迷路の完全な地図を持っているものとする。ただし、地図上のゴールの位置はわからないものとする。
- ホイールダック2号は迷路の中で自分がどこにいるか認識できるものとする。
- ホイールダック2号は連続的な迷路の空間から適切な離散状態 空間を構成できるものとする。
- ホイールダック2号は物理的につながっている場所・状態には 意図すれば確定的に移動することができるものとする。

Contents

- □2.1 状態空間表現
- □2.2 迷路からの状態空間構成
- □2.3 基本的な探索
- □2.4 ホイールダック 2 号の迷路探索

2.1.1 ロボットと状態空間

- ロロボットは**センサ系(sensor system)** と**モータ系(motor system)** (もしくはアクチュエータ系)を持つ.
- □このような状況を数学的に表現することを目指すのが, 広い意味での**状態空間表現(state space representation)**である.

ロボットと環境の相互作用

2.1.2 システムのモデル化と不確実性

・モデル化(modeling)

「このように捉えよう」「このように捉えれば、そんなに間 違っていないはずだ」とシステム(system)を数理的に表現する。

不確実性の取り扱い

- 確定システム
 - 行動後の状態が一通りに決まるシステム
 - 例) 投球, ルービックキューブ
- ・確率システム
 - 行動後の状態が1 通りに決まらず確率的に変化するシステム
 - 例) スロットマシン, 麻雀

2.1.3 連続システム

- ロシステム制御理論や力学では**連続の状態空間**で表現することが多い.
- 口状態ベクトル(state vector) x_t とと行動ベクトル(action vector) u_t を用いて表現されることが多い.

本書では扱わない

状態ベクトル $x_t = (x_t^{pos}, y_t^{pos}, \theta_t^{pos})$

行動ベクトル $u_t = (v_t^R, v_t^L)$

2.1.4 離散システム

口離散システム(discrete system) では,状態(state) s_t も行動(action) a_t も離散的な選択肢のうちの一つとなる.

2.1.5 離散システムとグラフ表現

- ロ離散確定システムでは $s_{t+1} = f(s_t, a_t)$ によって状態遷移を表すことができる.
- ロ状態を**ノード**,行動を**有向辺**で示す.

(例) 感情の状態を「うれしい」「ふ つう」「かなしい」の三状態で定義

Contents

- □2.1 状態空間表現
- □2.2 迷路からの状態空間構成
- □2.3 基本的な探索
- □2.4 ホイールダック 2 号の迷路探索

2.2.1 マス(grid)ごとに状態をおく状態空間 構成

- □1 マス1 マスを一つの状態として捉える
- ロノード間は**無向辺**で結ばれている.

非効率な表現になっている?

2.2.2 分岐と行き止まりに 状態をおく状態空間構成

ロたとえば「**分岐**」と「**行き止まり**」についてのみ状態をおいて状態空間を構成してみる.

図 2.7 迷路の状態空間(「分岐」と「行き止まり」を状態化)

※状態空間の作り方は物理的環境が決まれば決まるものではなく 探索等がしやすいように「丁夫して良い」ものである.

2.2.3 物体操作タスク(task)の状態空間構成

ロ例)物体操作タスクの状態空間

- □箱とぬいぐるみがあり、これらをおく場所が三箇所あるとする.
- □箱の上にぬいぐるみは乗るが、ぬいぐるみの上には箱は乗らない.
- □ロボットは箱かぬいぐるみ,一方のみを持ち上げて任意の場所に移動させることができる.両方を同時に動かすことはできない.

図 2.8 物体操作タスクの状態空間図

演習2-1 迷路からの状態空間構成

・下記の迷路において「分岐」と「行き止まり」についてのみ状態をおいて状態空間を構成し、グラフ表現せよ。

Contents

- □2.1 状態空間表現
- □2.2 迷路からの状態空間構成
- □2.3 基本的な探索
- ■2.4 ホイールダック2号の迷路探索

2.3.1 知識を用いない探索

□「どこはすでに調べたか」「どこはまだ探していないから調べるべきだ」というような情報を管理し、効率的にしらみつぶしにする必要がある.

口探索問題

□初期状態から目標状態へ至る行動の系列を求めること

口解(solution)

□目標状態へ至る行動の系列

2.3.2 オープンリストとクローズドリスト

2.3.3 深さ優先探索

Algorithm 2.1 深さ優先探索

- 2 while オープンリストが空ではない. do
- ③ オープンリストから先頭の要素 s を取り出す. クローズドリストに s を追加する (s を探査することに相当).
- a s が目標状態ならば、解は発見されたとして探索を終了.
- s から接続していてまだ探査していない状態をすべてオープンリストの**先頭**に追加する (**スタック**に**プッシュ**する).
- 6 end while 探索を終了.

深さ優先探索

オープンリストとクローズドリストの 変化を追ってみよう。

深さ優先探索の結果

ステップ	オープンリスト	クローズリスト
1	Α	
2	В, С	A 4 create
3	D, E, C	А, В
4	I, E, C	A, B, D
5	E, C	A, B, D, I
6	С	A, B, D, I, E
7	F, G, H	A, B, D, I, E, C
8	G, H	A, B, D, I ,E, C, F
9	J, H	A, B, D, I, E, C, F, G
10	Н	A, B, D, I, E, C, F, G, J
11		A, B, D, I, E, C, F, G, J, H

図 2.10

深さ優先探索の例

演習2-2 深さ優先探索

- ・下図のグラフに関して, s を初期状態として 深さ優先探索を行え. ただしそれぞれについて, オープンリストとクローズドリストの変化も示すこと.
- ただし、アルファベットの並びが前の方から探索する.

2.3.4 幅優先探索

Algorithm 2.2 幅優先探索

- ② while オープンリストが空ではない. do
- ③ オープンリストから先頭の要素sを取り出す。クローズドリストにsを追加する(sを探査することに相当)。
- a s が目標状態ならば、解は発見されたとして探索を終了.
- s から接続していてまだ探査していない状態をすべてオープンリストの末尾に追加する (キューにエンキューする).
- ⑥ end while 探索を終了.

幅優先探索

オープンリストとクローズドリストの 変化を追ってみよう。

幅優先探索の結果

ステップ	オープンリスト	クローズリスト
1	Α	
2	В, С	Α ()
3	C, D, E	A, B
4	D, E, F, G, H	A, B, C
5	E, F, G, H, I	A, B, C, D
6	F, F, H, I	A, B, C, D, E
7	G, H, I	A, B, C, D, E, F
8	H, I, J	A, B, C, D, E, F, G
9	I, J	A, B, C, D, E, F, G, H
10	J	A, B, C, D, E, F, G, H, I
11		A, B, C, D, E, F, G, H, I, J

図 2.12

幅優先探索の例

演習2-3 幅優先探索

- ・下図のグラフに関して, s を初期状態として 幅優先探索を行え. ただしそれぞれについて, オープンリストとクローズドリストの変化も示すこと.
- ただし、アルファベットの並びが前の方から探索する.

Contents

- □2.1 状態空間表現
- □2.2 迷路からの状態空間構成
- □2.3 基本的な探索
- □2.4 ホイールダック 2 号の迷路探索

演習 2-4 宝箱やゴールを求めて迷路を探索するホイールダック2 号

で迷路をぬけてみよう!

2.4.2 深さ優先探索と幅優先探索の比較

・深さ優先探索の特徴

- ③ オープンリストに記憶されるノード数があまり多くならないため, 状態空間の大きい探索木を探索するのに適した手法である.
- ②解が初期ノードから近いところにある場合でも,深さを優先して探索を行なってしまうため,解を発見するまでに無駄な探索をしてしまう可能性がある.

• 幅優先探索の特徴

- ❸初期ノードに近いところから探索するため、初期ノードから近い解を発見するのに有効である。
- ②探索木の構造が横に大きいとき、探索のために保持する ノード数が多くなってしまい、多くのメモリを必要とする.

第2章のまとめ

- □離散システムの状態空間のグラフ表現について学んだ.
- □状態空間表現を得る方法について学んだ.
- ■基本的な探索手法として深さ優先探索と幅優先探索について 学んだ.
- □深さ優先探索と幅優先探索におけるオープンリストとクローズドリストの管理方法について学んだ

