Author: Pavel Kocourek

Problem Set 2

- 1. Consider the sequence $a_n = (-1)^n \log n$. Which of the following statements are true and why?
 - a. For any $K \in \mathbb{R}$, eventually $a_n > K$.
 - b. For any $K \in \mathbb{R}$, frequently $a_n > K$.
 - c. The sequence a_n diverges.
- 2. Can you find a convergent sequence a_n such that:
 - a. the sequence $b_n = na_n$ diverges?
 - b. the sequence $c_n = \frac{a_n}{n}$ diverges?
 - c. the sequence $d_n = a_n + n$ converges?
- 3. Find the limits of the following sequences:

a.
$$a_n = \frac{\sin(n)}{n + \frac{1}{n}}$$

b.
$$b_n = \frac{\log(n+1)}{\log(n)}$$

- 4. Consider the set $S = [0, 1) \cup (a, a + 1]$:
 - a. For what values of a the set S is open?
 - b. For what values of a the set S is closed?
 - c. Determine the boundary ∂S for a=1.
- 5. Consider the function

$$f(x) = \frac{x}{(x-1)(x+1)}.$$

- a. What is the largest subset of ${\mathbb R}$ on which the function can be defined?
- b. Determine intervals on which the function is continuous.
- c. Show that $f(x) = \frac{1}{2}$ at some $x \in (2, 3)$.