Package 'failCompare'

November 28, 2022

Title Fitting, Ranking, and Testing Failure Time Models
Version 1.2.0
Description Tools for fitting and comparing the performance of failure-time models from the F distribution family, Vitality family, and others.
License GPL (>= 3)
Encoding UTF-8
<pre>URL https://github.com/Columbia-Basin-Research-West/failCompare</pre>
BugReports https://github.com/Columbia-Basin-Research-West/failCompare/issues
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Depends R (>= 2.10)
Suggests rmarkdown, knitr, testthat (>= 3.0.0) VignetteBuilder knitr
Imports methods,
survival, flexsurv, vitality
Config/testthat/edition 3
R topics documented:
chinook
fc_boot
fc_combine
fc_fit
fc_fit_single
fc_mod_ls
fc pred
fc_rank

2 chinook

chin	ook	Lifespans of microacoustic tags used as part of a juvenile salmon survival study conducted during two seasons.	
Index			22
	trout		21
	-		
	sockeye		19
	•		
	=		
	-		
	=		
	•		
	fc_surv		11
	fc_select		10

Description

Lifespans of microacoustic tags used as part of a juvenile salmon survival study conducted during two seasons.

Usage

chinook

Format

A data frame with 150 rows and 2 variables:

days life span of acoustic tag, in days **season** spring or summer study ...

fc_boot 3

fc_boot	Nonparametric bootstrap of failure time model object	

Description

Nonparametric bootstrap of failure time model object

Usage

```
fc_boot(mod_obj, nrep, type = "pred", times = NULL, tol = 0.9, ...)
```

Arguments

mod_obj	failure time model object of class "fc_obj"
nrep	number of resampling replicates
type	character describing whether bootstrap samples of predicted survivals ("pred") or parameters ("par") should be returned.
times	times at which survival fraction will be estimated, if type="pred".
tol	optional tolerance setting for the estimated proportion of bootstrap data sets that cannot be fit, default = 0.9
	arguments passed to the optimizer

Details

Random sampling of the failure time data with replacement as a means for propagating uncertainty in predictions of survival probability and estimates of parameter sampling distributions (Tibshirani and Efron 1993).

Value

if type="pred" survival fraction or proportion of failed subjects (nrep x times) is returned, and if type="par" a matrix of bootstrap parameter estimates dimensions (nrep x number of parameters).

References

Efron, B. and Tibshirani, R. 1993 An Introduction to the Bootstrap. Chapman and Hall, New York. Townsend R., L., J. R. Skalski, P. Dillingham, T. W. Steig. 2006 Correcting bias in survival estimation resulting from tag failure in acoustic and radiotelemetry studies. Journal of Agricultural Biological and Environmental Statistics.11:183-196.

See Also

```
fc_fit
```

Examples

```
data(sockeye)
taglife=sockeye[,"days"]
weib_mod=fc_fit(taglife,model="weibull")
fc_boot(weib_mod,nrep=60,times = 10:20)
```

fc_combine

fc_combine

Combination of multiple failure time model objects into a list of models

Description

A combination of multiple failure time model objects into a list of models.

Usage

```
fc_combine(mod_ls)
```

Arguments

mod_ls

list of fc_mods

Details

A convenience function for combining model failure time model object fc_obj into a failure model list object fc_list. Lists that include the "Kaplan-Meier" model or duplicates are not allowed. Model lists with different censoring selections are also not allowed.

Value

fc_list object

References

Li, T., and Anderson, J.J. 2009. The vitality model: a way to understand population survival and demographic heterogeneity. Theoretical Population Biology 76(2):118-131.

Li, T., and Anderson, J.J. 2013. Shaping human mortality patterns through intrinsic and extrinsic vitality processes. Demographic Research 28:341-372.

See Also

```
fc_select and fc_fit
```

Examples

```
### Load example dataframe
data(sockeye)
taglife=sockeye[,"days"] #define vector of times

### Fit a 2-parameter Weibull model
weib_mod=fc_fit(time=taglife,model="weibull")

### Fit a 4-parameter Vitality 2013 model
vit_mod=fc_fit(time=taglife,model="vitality.4p")

# Combine two "fc_obj" objects into a model list of class "fc_list"
fc_combine(mod_ls = list(weib_mod,vit_mod))
```

fc_diff 5

fc_diff	Log-rank test of two data sets	

Description

A log-rank test of two data sets using the "survival" package

Usage

```
fc_diff(data, time, group, censorID = NULL)
```

Arguments

4-4-	1 - 4 - C	4-::	11	
data	datarrame	containing	an	variables

time numeric failure times

group character or factor grouping variable

censorID logical vector the same length as "time" indicating censored observations

Value

Returns the results of a log-rank test for comparing two survival distributions.

fc_fit	Fitting one or a set of failure time models	

Description

Routines for fitting a common failure time model or models

Usage

```
fc_fit(time, model, SEs = TRUE, censorID = NULL, rc.value = NULL, ...)
```

Arguments

time	numeric vector of failure times
model	character string specififying the model(s) to be fit
SEs	logical for whether standard errors should be estimated
censorID	binary or logical variable the same length as time indicating censored observations, with zeros or FALSE indicating a censored observation
rc.value	rc.value right-censoring cutoff value (i.e.,only observations with times $>$ rc.value are censored due to termination of the experiment or study)
	additional arguments passed to optimizer

6 fc_fit

Details

This is a model fitting routine used to fit one or a set of failure time models:

- "weibull" = 2-parameter Weibull
- "weibull3" = 3-parameter Weibull
- "gompertz" = Gompertz Model
- "gamma" = Gamma distribution (2-parameter)
- "lognormal" = Log-Normal distribution
- "llogis" = Log-Logistic distribution
- "gengamma" = Generalized Gamma Distribution (3-parameter; Prentice 1974 parameterization)
- "vitality.ku" = 4-parameter vitality model from Li and Anderson (2009)
- "vitality.4p" = 4-parameter vitality model from Li and Anderson (2013)
- "kaplan-meier" = Kaplan-Meier nonparametric estimate (NOTE: this model cannot be specified in a list with any other model

Details on the parameterization of these distributions can be found in the appendix of the failCompare user manual. If a single model is specified, a "fc_obj" is created, which can be used to adjust a CJS model in the "cbrATLAS" package.

If multiple models are specified, a "fc_list" is created containing output from all models that could be fit with default optimizer settings. A warning will appear if any of the models could not be fit, in which case the user should either remove the model from consideration or specify initial parameter values. Initial values may be specified for one model at a time by supplying a numeric vector corresponding to the number of parameters using the inits argument. The user may also pass arguments to the stats::optim() function, which is used to fitting all but the Vitality models.

Objects of class fc_list may serve as an input in the fc_rank() function, which ranks the performance of the model using the Skalski and Whitlock (2020) GOF measure.

Printing a fc_obJ will display parameter estimates and accompanying standard errors, if available. Each fc_obJ is a list of the following extractable objects:

- "mod choice" = model name
- "times" = dataframe of failure time, survival fraction, and censoring binary var
- "fit_vals" = failure times and predicted survival under the model, 95% LCL and UCL if available
- "mod_objs" = actual model object created by "flexsurvdist" or "vitality package" much more to extract from "flexsurvdist
- "par_tab" = table of parameter estimates and SE in failCompare recognized order
- "KM_DF" = table of product limit (Kaplan-Meier) estimates for plotting (Kaplan and Meier 1954)
- "KM_mod" = survival package K-M model estimates
- 'censored' = binary/logical variable the length of the data describing individual observations that are censored

Value

Returns failure model object of class "fc_obj" if one model specified OR a failure model list object of class "fc_list" if multiple models are specified.

fc_fit_single 7

References

Kaplan, E.L., and Meier, P. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282):457-481.

Li, T., and Anderson, J.J. 2009. The vitality model: a way to understand population survival and demographic heterogeneity. Theoretical Population Biology 76(2):118-131.

Li, T., and Anderson, J.J. 2013. Shaping human mortality patterns through intrinsic and extrinsic vitality processes. Demographic Research 28:341-372.

Prentice, R. L. 1974. A Log Gamma Model and Its Maximum Likelihood Estimation. Biometrika: 61(3):539-544.

Skalski, J. R., and S. L. Whitlock. 2020. Vitality models found useful in modeling tag-failure times in acoustic-tag survival studies. Animal Biotelemetry 8(1):1-10.DOI:10.1186/s40317-020-00213-z.

fc_fit_single

Fitting a single failure time model

Description

Fitting a single failure time model

Usage

```
fc_fit_single(y, y_sfrac, model, Hess, non_cen, KM_DF, KM_mod, inits, ...)
```

Arguments

У	failure time
y_sfrac	survival fraction
model	failure time model
Hess	calculating standard errors
non_cen	logical of length(y)
KM_DF	K-M model predictions
KM_mod	K-M model object
inits	initial value arguments
•••	additional arguments passed to optimizer

Details

function for fitting an individual failure time model assuming inputs have been vetted by user-facing function fc_fit().

Value

"fc_obj" if successful NULL if otherwise

8 fc_plot

 fc_mod_ls

List of supported models and parameter names.

Description

List of supported models and parameter names.

Usage

```
fc_mod_ls
```

Format

named list of default failCompare models

fc_plot

Plotting failure time and sample survival function

Description

Plotting failure time and sample survival function

Usage

```
fc_plot(
    time,
    surv,
    censorID,
    group = NULL,
    hist = T,
    surv_curv = T,
    main,
    ylim,
    xlim,
    ylab,
    xlab,
    ...
)
```

Arguments

time	failure time (x axis)
surv	survival function (y axis)
censorID	binary or logical variable the same length as time indicating censored observations, with zeros or FALSE indicating a censored observation
group	grouping variable, limit of 3
hist	logical show histogram of failure times
surv_curv	logical show histogram of failure times

fc_pred 9

main	title for scatterplot
ylim	y axis limits for survival plot, used to override default of $c(0,1)$
xlim	x axis limits for survival plot
ylab	y axis limits for survival plot, used to override default of $c(0,1)$
xlab	x axis limits for survival plot
	additional argument passed to plot()

Details

plot of type "data" shown by default. For "residual" type plot showing (Kaplan-Meier estimates - parametric model fit), plot a singular model of class = fc_obj.

Value

histogram of failure times and/or scatter plot of sample survival function.

fc_pred Failure time predictions

Description

generates predictions from failure time model objects.

Usage

```
fc_pred(mod_obj = NULL, times, shift = 0, pars = NULL, model = NULL)
```

Arguments

mod_obj	model object (class = fc_obj)
times	time vector
shift	temporal offset of model predictions
pars	parameter estimates, if mod_obj absent
model	survival model name, if mod_obj absent

Value

numeric vector failure/survival probability

10 fc_select

fc_rank

Ranking failure time models

Description

This provides a ranking of failure time models.

Usage

```
fc_rank(x)
```

Arguments

Х

an object of class "fc_list"

Details

This uses the Skalski and Whitlock (2020) goodness-of-fit measure to rank parametric failure time models. The statistic is based on the squared difference between a given parametric model and the product-limit estimate of the survival estimate described by Kaplan and Meier (1954).

Value

Creates a table of models ranked in ascending order according to a goodness-of-fit measure.

References

Kaplan, E.L., and Meier, P. 1958. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53(282):457-481.

Skalski, J. R., and S. L. Whitlock. 2020. Vitality models found useful in modeling tag-failure times in acoustic-tag survival studies. Animal Biotelemetry 8(1):1-10. doi:10.1186/s40317-020-00213-z#'

fc_select

Selecting a failure time model from a list

Description

select failure time model from predefined list of candidate models produced by the function $fc_fit()$. Kaplan-Meier nonparametric model is selectable from any list.

Usage

```
fc_select(mod_ls, model)
```

fc_surv 11

Arguments

 mod_1s failure model list object (i.e., class fc_list) model

model selected from list of those available. Options include:

- "weibull" = 2-parameter Weibull
- "weibull3" = 3-parameter Weibull
- "gompertz" = Gompertz Model
- "gamma" = Gamma distribution (2-parameter)
- "lognormal" = Log-Normal distribution
- "llogis" = Log-Logistic distribution
- "gengamma" = Generalized Gamma Distribution
- "vitality.ku" = 4-parameter vitality model
- "vitality.4p" = 4-parameter vitality model
- "kaplan-meier" = Kaplan-Meier nonparametric estimate (always selectable)

Value

Returns a failure time model object of class fc_obj.

See Also

fc fit

fc_surv

Compute sample survival function

Description

Computes a sample survival function.

Usage

```
fc_surv(time, censorID = NULL, rc.value = NULL)
```

Arguments

time failure or censoring time

binary or logical variable the same length as time indicating censored observacensorID

tions, with zeros or FALSE indicating a censored observation

time after which all values are censored rc.value

Details

Calculates a sample survival function accounting for right censoring. In the absence of censoring, it uses the basic survival function estimator, or otherwise uses the Kaplan-Meier product limit estimate.

Value

a numeric vector of survival fraction estimates sample survival function

fc_tryfit

fc_test

Simulated Kolmogorov-Smirnov Test

Description

Simulated Kolmogorov-Smirnov Test

Usage

```
fc_test(times, iters = 50000, model = "gompertz", label = "", plot = FALSE)
```

Arguments

```
times numeric vector of failure times

iters replicates for bootstrap (default to 50k)

model distribution

label optional argument for labeling plots

plot optional argument for creating histogram
```

Details

performs a a simulation-based Kolmogorov-Smirnov test.

Value

p-value and optionally histogram based on a Monte Carlo estimate of the sampling distribution of the D statistic.

See Also

```
ks.test.rweibull.
```

fc_tryfit

Error handling for fitting failCompare models

Description

Error handling for fitting failCompare models

Usage

```
fc_tryfit(
  y = y,
  y_sfrac = NULL,
  fit_call,
  model = "weibull3",
  non_cen = NULL,
  Hess = NULL,
  inits = NULL,
  ...
)
```

ks.test_fc 13

Arguments

y numeric time argument of failure times carried through y_sfrac survival fraction

fit_call call to dependent model fitting functions.

model model argument passed from fc_fit()

non_cen logical indicating censored variables for use by flexsurv and vitality models

Hess logical argument to fc_fit() carried through

inits initial parameter values for optimization of a single model

... additional arguments passed to dependent functions

Details

Prevents errors from interrupting single- and multi-model runs using fc_fit

Value

model fitting output for internal use by fc_fit

ks.test_fc ks.t

ks.test with suppressed warnings

Description

ks.test with suppressed warnings

Usage

```
ks.test_fc(...)
```

Arguments

... inputs to stats::ks.test() function

Value

expected output from ks.test

14 pike

logweib3.lik

3-parameter weibull likelihood

Description

3-parameter weibull likelihood

Usage

```
logweib3.lik(x, tags.in)
```

Arguments

x estimated parameters (beta, gamma, eta) or (shape,thrsh,scale)

tags.in observed time to failure

Value

log likelihood

pike

Lifespans of rats in an example described in Lee and Wang 2003.

Description

Lifespans of rats in an example described in Lee and Wang 2003.

Usage

pike

Format

A data frame with 35 rows and 2 variables:

days time until death of fish

death 1s indicate observed failures ...

plot.fc_list

plot.fc_list	Plotting fitted values when object of class "fc_list" is called

Description

Plotting fitted values when object of class "fc_list" is called

Usage

```
## S3 method for class 'fc_list'
plot(x, model = NULL, km = F, res = 100, xlim, ...)
```

Arguments

X	fc_list object (ranked or not). See fc_rank for information on ranking.
model	vector of up 1-3 models contained within the "fc_list" object
km	logical for showing step function of kaplan-meier estimates alongside model
res	fineness of survival function predictions (i.e., increments between which the line of the function is drawn).
xlim	numeric vector of length 2 describing x axis limits, used to override default of \pm -5% of min and max
	additional arguments passed to plot()

Details

Plot type "data" shown by default. For "residual" type plot showing (kaplan-meier estimates - parametric model fit) plot a single model of class = fc_obj . Consider decreasing res if failure time range <10 and increasing if above 100.

Value

plot and a message

See Also

```
plot.fc_obj
```

plot.fc_obj	generic function that plots fitted values when a object of class "fc_obj" is called
-------------	---

Description

generic function that plots fitted values when a object of class "fc_obj" is called

Usage

```
## S3 method for class 'fc_obj'
plot(x, km = FALSE, km.ci = FALSE, res = 100, type = "data", ...)
```

print.fc_obj

Arguments

X	of class "fc_obj", created using
km	Show kaplan-meier estimates
km.ci	Show 95% confidence limits surrounding kaplan-meier estimates
res	Number of evenly space points within the range of the data for plotting
type	Plotting survival curve of data ("data") versus difference between Kaplan-Meier estimates and predictions from a parametric model ("resid")
	arguments passed to plot plot

Value

plot and potentially a message about unplotted models in the set

print.fc_list Generic function that limits the amount of output displayed when an fc_list is called

Description

Printed output for class "fc_list"

Usage

```
## S3 method for class 'fc_list'
print(x, ...)
```

Arguments

x an object of class "fc_list"
... additional arguments to print()

Value

description of list of models

print.fc_obj Generic function that limits the amount of output displayed when an fc_obj is called

Description

Generic function that limits the amount of output displayed when an fc_obj is called

Usage

```
## S3 method for class 'fc_obj'
print(x, ...)
```

pvit09 17

Arguments

X	an object of class "fc_obj"
	additional arguments to print()

pvit09

Cumulative distribution function of Vitality 2009 model

Description

Cumulative distribution function of Vitality 2009 model

Usage

```
pvit09(x, par1, par2, par3, par4)
```

Arguments

X	time
par1	r
par2	S
par3	k
par4	u

Value

cumulative probability

pvit13

Cumulative distribution function of Vitality 2013 model

Description

Cumulative distribution function of Vitality 2013 model

Usage

```
pvit13(x, par1, par2, par3, par4)
```

Arguments

X	time
par1	r
par2	S
par3	lambda
par4	beta

Value

cumulative probability

rweibull3

rvitality

Generating samples from 2009 and 2013 Vitality models

Description

Generating samples from 2009 and 2013 Vitality models

Usage

```
rvitality(
  parms,
  times_dat,
  t_seq_fineness = 0.005,
  quant_seq = seq(0, 1, 0.005),
  model = "Vitality09"
)
```

Arguments

parms vector of parameters, Vitality 2009 (r,s,k,u), Vitality 2013 (r,s,lambda,beta) times_dat survival times used for determining # samples to generate and range of slices

 $t_seq_fineness$ time increments to with which to slice up the survival curve

quant_seq bins in which to place simulated times model either "Vitality09" ot "Vitality13"

Value

random values

rweibull3

random number generation for 3-parameter weibull

Description

random number generation for 3-parameter weibull

Usage

```
rweibull3(n, shape, scale = 1, thres = 0)
```

Arguments

n sample size shape beta scale lambda thres gamma

Value

vector of random values from the 3-parameter weibull model

sockeye 19

sockeye	Lifespans of microacoustic tags used as part of a juvenile salmon survival study conducted during two seasons.

Description

Lifespans of microacoustic tags used as part of a juvenile salmon survival study conducted during two seasons.

Usage

sockeye

Format

A data frame with 50 rows and 1 variable:

days life span of acoustic tag, in days ...

steelhead	Lifespans of microacoustic tags used as part of a juvenile steelhead survival study with premature tag failures that require censoring at 79 days.

Description

Lifespans of microacoustic tags used as part of a juvenile steelhead survival study with premature tag failures that require censoring at 79 days.

Usage

steelhead

Format

A data frame with 82 rows and 1 variables:

Day life span of acoustic tag, in days

•••

20 summary.fc_obj

summary.fc_list

Generic function for summarizing an object of class "fc_list"

Description

Generic function for summarizing an object of class "fc_list"

Usage

```
## S3 method for class 'fc_list'
summary(object, ...)
```

Arguments

object of class fc_list

... additional arguments to summary

Value

Summary of model fitting calls and GOF rankings (if available)

 $\verb"summary.fc_obj"$

Generic function for summarizing an object of class "fc_obj"

Description

Generic function for summarizing an object of class "fc_obj"

Usage

```
## S3 method for class 'fc_obj'
summary(object, ...)
```

Arguments

```
object of class fc_obj
```

... additional arguments to summary

Value

Summary of fc_obj model of calls to model fitting functions.

taglife.fn_weib3

taglife.fn_weib3 Fitting 3-parameter Weibull model to failure time data (adapted R. Townsend's code)	from
--	------

Description

Fitting 3-parameter Weibull model to failure time data (adapted from R. Townsend's code)

Usage

```
taglife.fn_weib3(tags.in, tag.se = T, inits = NULL, ...)
```

Arguments

tags.in	vector of observed time to failure (days)
tag.se	logical for whether to compute SEs
inits	initial parameter values for optimization of a single model
	additional arguments passed to optim()

Value

Returns a list with model objects (mod_obj), fitted values (fit_vals) and table of parameter estimates (par_tab).

trout	Lifespans of rainbow trout exposed to gas supersaturation. Based on	
	example given in Salinger et al. 2003.	

Description

Lifespans of rainbow trout exposed to gas supersaturation. Based on example given in Salinger et al. 2003.

Usage

trout

Format

A data frame with 35 rows and 2 variables:

```
days time until death of fish censored Observation was censored ...
```

Index

```
* datasets
                                                        summary.fc_obj, 20
     chinook, 2
                                                        taglife.fn_weib3, 21
     fc_{mod_ls, 8}
                                                        trout, 21
     pike, 14
     sockeye, 19
     steelhead, 19
     trout, 21
{\tt chinook}, \textcolor{red}{2}
fc_boot, 3
fc_combine, 4
fc_diff, 5
fc_fit, 3, 4, 5, 11
\texttt{fc\_fit\_single}, \textcolor{red}{7}
fc_mod_ls, 8
fc_plot, 8
fc_pred, 9
fc_rank, 10
fc_select, 4, 10
fc_surv, 11
fc\_test, 12
fc_tryfit, 12
ks.test, 12
ks.\,test\_fc,\,13
logweib3.lik, 14
pike, 14
plot, 16
plot.fc_list, 15
plot.fc_obj, 15
print.fc\_list, \\ 16
print.fc_obj, 16
pvit09, 17
pvit13, 17
rvitality, 18
rweibull, 12
rweibull3, 18
sockeye, 19
steelhead, 19
\verb|summary.fc_list|, 20|
```