CLAIM AMENDMENTS

(Previously presented) A process for preparing cabergoline
 (I)

cabergoline (I)

comprising the following steps:

(a) reacting the compound of formula (XIII)

(XIII)

wherein R_1 is a C_{1-4} alkyl group, in the presence of a catalyst

(i) with a compound of formula (XIV), X-COOR₂ (XIV)

wherein R_2 is an optionally substituted straight or branched

C₁₋₆ alkyl group,

X represents a bromine or chlorine atom, or

(ii) with a compound of formula (XV), $O\left(COOR_{2}\right)_{2} \quad (XV)$

wherein R_2 is a group as defined above for formula (XIV);

[[(j)]] (b) reacting the obtained carbamate derivative of formula (XVI)

$$O$$
 C
 OR_1
 H
 $N-COOR_2$
 H
 R_2OOC-N

(XVI)

wherein R_1 and R_2 is a group as defined above, with 3-(dimethylamino)propylamine in the presence of a catalyst;

[[(j)]] (c) reacting the obtained ergoline-8 β -carboxamide derivative of formula (XVII)

(XVII)

wherein R_2 is a group as defined above, with ethyl isocyanate in the presence of ligand(s) and Ib and IIb metal group salt catalyst;

[[(j)]] (d) reacting the obtained protected N-acylurea derivative of formula (XVIII)

(XVIII)

wherein \mathbf{R}_2 is a group as defined above, with a strong aqueous inorganic acid; and

[[(j)]] (e) reacting the obtained secondary amine of formula (XIX)

(XIX)

with an electrophyl allyl alcohol derivative in the presence of a palladium or nickel containing catalyst and optionally in the presence of ligand(s) to form cabergoline (I).

- 2. (Previously presented) A process according to claim 1 wherein R_1 is methyl and R_2 is tert-butyl.
- 3. (Currently amended) A process according to any of claims 1 to 2 claim 1 wherein step (a) is carried out at a temperature of from 0°C

to 50°C in the presence of 4-dimethylaminopyridine catalyst in a hydrocarbon halide solvent.

- 4. (Currently amended) A process according to any of claims 1 to 2 claim 1 wherein step (b) is carried out at a temperature of from 50° C to 70° C in an C_{1-6} alkyl alcohol solvent in the presence of 2-hydroxypyridine catalyst.
- 5. (Currently amended) A process according to any of claims 1 to 2 claim 1 wherein step ©) is carried out in hydrocarbon halide solvent, in the presence of copper(I) chloride and/or copper(II) chloride and/or copper(I) bromide and/or copper(I) iodide catalysts and triphenylphosphine or tri-p-tolylphophine ligand at a temperature of from 30°C to 50°C.
- 6. (Currently amended) A process according to any of claims 1 to 2 claim 1 wherein step (d) is carried out at a temperature of from 40°C to 80°C in aqueous hydrochloric acid.
- 7. (Currently amended) A process according to any of claims 1 to 2 claim 1 wherein at step (e) the electrophyl allyl alcohol derivative is allyl acetate, the catalyst is tetrakis(triphenyl-phosphine)palladium(0), and the reaction is carried out in an aromatic hydrocarbon solvent at a temperature of from 20°C to 50°C.

8. (Previously presented) Compounds of formula (XVI)

$$O$$
 C
 OR_1
 $N-COOR_2$
 R_2OOC-N

(XVI)

wherein R_1 represents a C_{1-4} alkyl group and R_2 represents an optionally substituted C_{1-6} alkyl group.

- 9. (Previously presented) Compound according to claim 8 wherein R_1 is methyl and R_2 is text-butyl.
- 10. (Previously presented) Compound of formula (XVII)

(XVIII)

wherein $\mathbf{R}_{\mathbf{2}}$ represents an optionally substituted $\mathbf{C}_{\mathbf{1-6}}$ alkyl group.

13. (Previously presented) Compound according to claim 12 wherein R_2 is tert-butyl.

14. (Previously presented) Compound of formula (XIX)

(XIX)

15. (Currently amended) The polymorphic amorphous form of Cabergoline [[(I)]].

- 16. (Currently amended) Process for the preparation of the polymorphic amorphous form of Cabergoline [[(I)]] wherein the chromatographically purified oily Cabergoline [[(I)]] is dissolved in a suitable organic solvent and from the obtained solution the solvent is partially removed several times in vacuum at a temperature of from 0°C to 30°C, until not oily but solid product is obtained.
- 17. (Previously presented) A process according to claim 16 wherein the solvent is acetone, methyl acetate or dichloromethane.