Searching for Subspace Trails and Truncated Differentials

March 5th, 2018

Horst Görtz Institute for IT Security Ruhr-Universität Bochum

Gregor Leander, Cihangir Teczan, and Friedrich Wiemer

RUB

Structural Attacks

Invariant Subspaces

Invariant Subspaces [Lea+11] (Last Year's FSE)

Let *U* be a subspace of \mathbb{F}_2^n , and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We write $U + a \xrightarrow{F} U + b$, if

$$\exists a: \exists b: F(U+a) = U+b$$

Main Idea

Structural Attacks

Subspace Trail Cryptanalysis

Subspace Trail Cryptanalysis [GRR16] (Last Year's FSE)

Let U, V be subspaces of \mathbb{F}_2^n , and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We write $U \stackrel{F}{\to} V$, if

$$\forall a: \exists b: F(U+a) \subseteq V+b$$

Main Idea

The Problem

Can't we just activate a single S-box and check to what this leads us?

The short answer is: No!¹

¹The long answer is this talk.

Outline

Outline

- 1 Motivation
- 2 Intuition

Subspace Complement

If *U* is a subspace of \mathbb{F}_2^n , we denote by U^{\perp} it's *complement*:

$$U^{\perp} := \left\{ u \in \mathbb{F}_2^n \mid \forall x \in U : \langle x, u \rangle = 0 \right\}$$

Derivative

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We denote the *derivative of F in direction u* by

$$\Delta_u(F)(x) := F(x) + F(x+u)$$

Linear Structure

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then (α, u) is called a *linear structure*, if

$$\exists c \in \mathbb{F}_2 : \forall x \in \mathbb{F}_2^n : \langle \alpha, \Delta_u(F)(x) \rangle = c$$

The Image of the Derivative is in the Subspace

Observation

Let $U \xrightarrow{F} V$, then for every $u \in U$:

$$x \in U + x \xrightarrow{F} F(x) \in V + b$$

 $x + u \in U + x \xrightarrow{F} F(x + u) \in V + b$

implying $F(x) + F(x + u) \in V$.