第7章 化学动力学

一、概念题

- 1. 当化学反应系统的体积恒定时,化学反应速率v与 v_{B} 的关系为v=_______。
- 2. 一级反应 A P , 反应物 A 在 35 min 内反应掉 30% , 则此反应的速率系数 为______ , 在 5 h 内 A 反应掉_____。
 - 3. 有的化学反应的速率随温度的升高反而减小。_____(对,错)
- 4. 对于反应 $2NO+Cl_2\longrightarrow 2NOCl$, 只有当速率方程的形式为 $\upsilon=kc_{NO}^2c_{Cl_2}$ 时,才有可能为基元反应。其它的任何形式,都表明该反应不是基元反应。 (对,错)
- 5. 某反应的速率系数 $k = 5.0 \times 10^{-5} \, \mathrm{dm^3 \cdot mol^{-1} \cdot s^{-1}}$, 若浓度单位改为 $\mathrm{mol \cdot cm^{-3}}$, 时间单位 改为 min , 则 k 的数值是
- 6. 某复合反应的反应机理为 $A \xrightarrow[k_1]{k_1} B$, $B+D \xrightarrow[k_2]{k_2} Z$, 则 B 的浓度随时间的变化率 $\frac{\mathrm{d}c_B}{\mathrm{d}t} = \underline{\hspace{1cm}}$
- 7. 某复合反应的速率系数与它的各基元反应的速率常数间的关系为 $k=k_2(k_1/2k_3)^{1/2}$,则复合反应的活化能 E 与各基元反应的活化能 E_1 , E_2 , E_3 间的关系为_______。
- 二、反应 α A —— P 的速率方程为 $-\frac{\mathrm{d}c_{\mathrm{A}}}{\mathrm{d}t}=kc_{\mathrm{A}}^n$, 若 A 的初始浓度为 c_{A0} , 则在 300 K 时 A 转化掉 20%需要 12.6 min , 在 340 K 时 A 转化掉 20%需要 3.20 min。
 - (1) 试导出 A 转化掉 20%所需时间 t 与速率系数 k 的关系式。
 - (2) 若在 300K 至 340K 的温度范围反应的活化能不变,试求此活化能。
 - 三、858~K~时, $N_2O~(g)$ 在一恒容的密闭容器中按下式分解:

$$N_2O(g) {\longrightarrow} \ N_2(G) + \ \frac{1}{2}O_2(g)$$

实验测得总压随时间的变化如下:

已知 $N_2O(g)$ 的分解为一级反应,t=0 时为纯的 $N_2O(g)$,试求 $N_2O(g)$ 的半衰期 $t_{1/2}$ 。 四、反应 $2NO(g)+O_2(g)\longrightarrow 2NO_2(g)$ 在一恒温恒容的容器内进行,其反应机理如下:

$$2NO(g)$$
 $k_1, E_{a,1}$ $k_2O_2(g)$ 快反应

 $N_2O_2(g)+O_2(g)$ $\xrightarrow{k_2,E_{a,2}}$ $2NO_2(g)$ 慢反应

各基元反应的活化能 $E_{a,1} = 80 \text{ kJ} \cdot \text{mol}^{-1}$, $E_{a,-1} = 200 \text{ kJ} \cdot \text{mol}^{-1}$, $E_{a,2} = 80 \text{ kJ} \cdot \text{mol}^{-1}$ 。 (1) 试求 复合反应的级数及活化能;(2) 升高温度复合反应的速率是增大还是减少?