- 1. Sort the functions from lowest asymptotic order to highest asymptotic order. Note: some of them may have the same asymptotic order.
 - $f_1(n) = n + n^3$
 - $f_2(n) = nlog(n)$
 - $f_3(n) = log(n)^2$
 - $f_4(n) = 1.5^n$
 - $f_5(n) = n^{1.5}$
 - $f_6(n) = n^{log(n)}$
 - $f_7(n) = 2^n$
 - $f_8(n) = 2^{n-1}$
 - $f_9(n) = n!$
 - $f_{10}(n) = nlog(n)^2$
- 2. find an asymptotic order of a function k(n) such that $k(n)^{k(n)} = n$.
- 3. find an asymptotic order of a function k(n) such that $k(n)^{k(n)} = n^2$.
- 4. find an asymptotic order of a function k(n) such that $k(n)^{k(n)} = 2^n$.
- 5. Let $f(n) = 2^n$ and $g(n) = 3^n$. It is true that $f = \Theta(g)$?
- 6. Suppose that f = O(g) and g = O(h). Prove formally that f = O(h).
- 7. Suppose that $f = \Omega(g)$ and $g = \Omega(h)$. Prove formally that $f = \Omega(h)$.
- 8. Suppose that $f = \Theta(g)$ and $f = \Theta(h)$. Does this imply that $g = \Theta(h)$?
- 9. It is possible that f = O(g), $g = \Omega(h)$ and $f = \Theta(h)$?
- 10. It is possible that $f = O(g), g = \Theta(h)$ and f = O(h)?
- 11. It is possible that f = O(g), $g = \Omega(h)$ and $f = \Omega(h)$?