מבחן לדוגמה באלגברה לינארית -20109

יש לענות על ארבע מתוך חמש השאלות הבאות.

כל שאלה 25 נקודות.

שאלה 1

$$\begin{cases} x & + ay + z = 0 \\ ax & + y + az = 0 \\ (a+1)x - y + z = 0 \end{cases}$$
 : א.

 \cdot אילו ערכים של a יש למערכת אילו

- (i) פתרון יחיד!
- . שמצאת a אינסוף פתרונות? רשום את הפתרון הכללי עבור כל אחד מערכי (ii)
 - $A^2=0$ מעל ${f R}$ המקיימת מסדר n imes n מעריצה מטריצה מעל I+lpha A הוכח שהמטריצה A הפיכה עבור כל

שאלה 2

- ויהי $m \times n$ בסיס של n>1 , \mathbf{R}^n מטריצה ממשית מסדר $\{v_1,v_2,...,v_n\}$ יהי $\underline{b} \neq \underline{0}$, $\underline{b} \in \mathbf{R}^m$
 - . הוכח כי הקבוצה $\left\{v_1-v_n,v_2-v_n,...v_{n-1}-v_n\right\}$ בלתי תלויה לינארית.
 - $\rho(A)=1$ אז $A\underline{x}=\underline{b}$ אוואוות של מערכת המשוואות $v_1,v_2,...,v_n$ הוכח כי אם .2
 - . $\left|A-2I\right|=\left|A+2I\right|=0$: נתון כי: 3×3 נתון מסדר מטריצה סינגולרית מסדר מחר מסדר את מסדר מהו מימד מרחב הפתרונות של המערכת A=0 ימק את תשובתך.

שאלה 3

.4-א שווה או ממעלה מעלה R ממעלה לינומים מעל V יהי

V של הפולינומים הפולינומים וב-Uוב- וב-x=-1 ב- המתאפסים הפולינומים קבוצת קבוצת הפולינומים היx=1 ב- x=-1 . וב- ב- x=1

- V ו- W תת-מרחבים של א.
 - $U \cap W$ ול- W ול- U מצא בסיס ל- U, ל-
 - U+W -ג. מצא בסיס ל

שאלה 4

 $W\neq\{0\}$, $U\neq\{0\}$ יהיו U וכי V ממימד סופי. נתון כי W תת-מרחבים של מרחב לינארי V ממימד סופי. נתון כי V אז לכל וקטור $V\in V$ קיימת הצגה יחידה $V=U\oplus W$ ווי $V=U\oplus V$ הטרנספורמציה הלינארית המוגדרת על-ידי: לכל V=V כאשר V=V מוגדר כמו ב V

מצא את כל הערכים העצמיים של p ואת התת-מרחבים העצמיים שלה. האם את כל הערכים העצמיים של p ואת התת-מרחבים את תשובתך.

 R^3 ב. יהי $U = Sp\{(1,1,1),(1,0,1)\}$ ב. מצא בסיס אותונורמלי משלים אורתוגונלי של U

שאלה 5

- א. תהי V o V ממימד סופי. T: V o V ממימד סופי.
 - . Im $T^2 = \operatorname{Im} T$ אז $V = \operatorname{Im} T \oplus \ker T$ הוכח שאם. (i)
 - $. \ker T^2 = \ker T$ אז $\operatorname{Im} T^2 = \operatorname{Im} T$ (ii)
 - . Im $T^2=\operatorname{Im} T$ אם ורק אם $V=\operatorname{Im} T\oplus\ker T$ (iii) הסק כי
- את אמקיימת של טרנספורמציה לינארית אר $\mathbf{R}^2 \to \mathbf{R}^2$, מדרגה לינארית טרנספורמציה אי. הטענות שבסעיף אי.
- ב. הוכח או הפרך עייי דוגמה נגדית את הטענה הבאה : $n\times n \ \, \text{ מטריצה אלכסונית מסדר } \, n\times n \ \, \text{ ו-} \, B$ מטריצה מסדר $n\times n$ שכל איבריה שווים לאפס פרט לאיבר במקום (1,n) שהוא שווה ל-1. אזי A+B לכסינה.