Introduction to Stochastic Processes

Assignment 8 Ari Feiglin

8.1 Exercise

Assuming $B^1(t)$ and $B^2(t)$ are two independent Brownian motions, show that the following are also Brownian motion:

- (1) $X(t) = B^{1}(A+t) B^{1}(A)$ for A > 0.
- (2) $X(t) = \alpha B^1(t) + \sqrt{1 \alpha^2} B^2(t)$ for $0 < \alpha < 1$.
- (1) X(0) = 0 and it is also trivially almost surely continuous. And

$$X(t+h) - X(t) = B^{1}(A+t+h) - B^{1}(A+t) \sim \mathcal{N}(0,h)$$

And in general $X(t_n) - X(t_{n-1}) = B(t_n) - B(t_{n-1})$ so differences are independent.

(2) We will show in general that if $\sum_{j=1}^k \alpha_j^2 = 1$ and B^1, \ldots, B^k are independent, then $X(t) = \sum_{j=1}^k \alpha_j B^j$ is Brownian motion. $X(0) \stackrel{as}{=} 0$ and X(t) is also almost surely continuous as the sum of almost surely continuous functions.

$$X(t+h) - X(t) = \sum_{j=1}^k \alpha_j \left(B^j(t+h) - B^j(t) \right) \sim \sum_{j=1}^k \alpha^j \mathcal{N}(0,h) = \mathcal{N}\left(0, h \sum_{j=1}^k \alpha_j^2\right) = \mathcal{N}(0,h)$$

And since

$$Cov(X(a) - X(b), X(c) - X(d)) = \sum_{j=1}^{k} \sum_{i=1}^{k} \alpha_j \alpha_i Cov(B^j(a) - B^j(b), B^i(c) - B^i(d))$$

$$= \sum_{j=1}^{k} \alpha_j^2 Cov(B^j(a) - B^j(b), B^j(c) - B^j(d)) = 0$$

Since for $i \neq j$, B^j and B^i are independent. Thus $X(t_n) - X(t_{n-1}), \dots, X(t_1) - X(t_0)$ are independent (since if coefficients of a Gaussian vector are pairwise uncorrelated, the coefficients are independent).

8.2 Exercise

Set $0 \le a < b$, show that Brownian motion is almost surely not monotonic on [a, b]. Then show that Brownian motion is almost surely not monotonic on any [a, b].

Set a sequence $t_1 < \cdots < t_n < \cdots$ where $a \le t_i \le b$. Then $\mathbb{P}(B(t_i) - B(t_{i-1}) > 0) = \mathbb{P}(\mathcal{N}(0, t_i - t_{i-1}) > 0) = \frac{1}{2}$ and similarly $\mathbb{P}(B(t_i) - B(t_{i-1}) < 0) = \frac{1}{2}$. And we know that $\{B(t_i) - B(t_{i-1})\}$ is independent, and since

$$\sum_{i=1}^{\infty} \mathbb{P}(B(t_i) - B(t_{i-1}) > 0) = \sum_{i=1}^{\infty} \mathbb{P}(B(t_i) - B(t_{i-1}) < 0) = \infty$$

Thus by Borel-Cantelli, $\mathbb{P}(B(t_i) > B(t_{i-1}) \text{ i.o.}) = \mathbb{P}(B(t_i) < B(t_{i-1}) \text{ i.o.}) = 1$. So almost surely, there is a subsequence of t_n on which B is strictly increasing and another on which B is strictly decreasing. So B(t) is almost surely not monotonic on t_n and therefore almost surely not monotonic on [a, b].

Now, B(t) is monotonic on some [a,b] if and only if it is monotonic on some [p,q] for $p,q\in\mathbb{Q}$ by the density of the rationals. Thus

$$\mathbb{P}(B(t) \text{ is monotonic on some } [a,b]) = \mathbb{P}\left(\bigcup_{p < q \in \mathbb{Q}} B(t) \text{ is monotonic on } [p,q]\right)$$

$$\leq \sum_{p < q \in \mathbb{Q}} \mathbb{P}(B(t) \text{ is monotonic on } [p,q]) = 0$$

The last equality is since B(t) is almost surely not monotonic on any set [a, b]. Thus B(t) is almost surely not monotonic on any [a, b].

8.3 Exercise

Suppose f is a continuous function on [0,1] such that f(0) = 0. Let $\varepsilon > 0$, show that

$$\mathbb{P}\left(\sup_{0 \le t \le 1} |B(t) - f(t)| < \varepsilon\right) > 0$$

Using Lèvy's construction, we have that $G_n \Rightarrow B$ in [0,1] where G_n are functions which are linearly interpolated through points in D_n . Since G_n converges to B uniformly, there exists an N such that for every $n \geq N$, $||B - G_n||_{\infty} < \frac{\varepsilon}{3}$. And since [0,1] is compact and f is continuous, it is uniformly continuous. So let us define $f_n(d) = f(d)$ for $d \in D_n$ and interpolate f_n linearly through the points in D_n . Since f is uniformly continuous on [0,1] there exists a $\delta > 0$ such that if $|x-y| < \delta$ then $|f(x) - f(y)| < \frac{\varepsilon}{6}$. There must exist an n such that the difference in points in D_n ($= \frac{1}{2^n}$) is less than δ , and so if $x \in [d_1, d_2]$ for $d_1, d_2 \in D_n$,

$$|f(x) - f_n(x)| \le |f(x) - f(d_1)| + |f(d_1) - f_n(d_1)| + |f_n(d_1) - f_n(x)| < \frac{\varepsilon}{3}$$

The final inequality is due to $f(d_1) = f_n(d_1)$ and $|f_n(d_1) - f_n(x)| \le |f_n(d_1) - f_n(d_2)|$ since f_n is linear in $[d_1, d_2]$. So there exists an N such that for every $n \ge N$ and $0 \le t \le 1$, $|B(t) - G_n(t)|$, $|f(t) - f_n(t)| < \frac{\varepsilon}{2}$. Now,

$$|B(t) - f(t)| \le |B(t) - G_n(t)| + |G_n(t) - f_n(t)| + |f_n(t) - f(t)| < \frac{2\varepsilon}{3} + |G_n(t) - f_n(t)|$$

So we must show there is a non-zero probability that $|G_n(t) - f_n(t)| < \frac{\varepsilon}{3}$. Since f_n and G_n are both linearly interpolated through points on D_n , their maximum distance will be taken on D_n . For every $d \in D_n \setminus D_{n-1}$, by definition

$$G_n(t) = \frac{G_{n-1}(d-2^{-n}) + G_{n-1}(d+2^{-n})}{2} + \frac{Z_d}{\sqrt{2^{n+1}}}$$

And so

$$\mathbb{P}\Big(|G_n(t) - f_n(t)| < \frac{\varepsilon}{3}\Big) = \mathbb{P}\Big((\forall d \in D_n) |G_n(d) - f_n(d)| < \frac{\varepsilon}{3}\Big)$$

Now since the values of $G_n(d)$ are determined by a finite number of independent normal distributions (which have full range), this probability must be nonzero.