Literature Survey

S.NO	Title	Authors	Publication Date	Methodology	Merits	Demerits
1	Brent crude oil price forecast utilizing Deep Neural Network Architectures	Amir Daneshvar and Maryam Ebrahimi	05 May 2022	Artificial Neural Network, Deep Learning	The LSTM layers results in more accurate result.	Crude oil price signals exhibit highly nonlinear and complex behavior.
2.	Crude oil prices and volatility prediction by a hybrid model based on kernel extreme learning machine	Hongli Niu and Yazhi Zhao	17 September 2021	VMD-KELM	The VMD- KELM model shows a more powerful ability than other models in improving the precision of forecasting crude oil volatility.	-
3.	Crude oil price prediction using ANN	Nalini Gupta and Shobhit Nigam	January 2020	Artificial Neural Network	ANN model is effective. This capture the changing pattern of prices. Prediction is accurate.	Market trends have to be planned, then the ANN model will perform.
4.	Crude oil price prediction using complex network and deep learning algorithms	Makumbonori Bristone, Rajesh Prasad, Adamu Ali Abubakar	19 June 2019	Artificial Neural Network, Deep Learning	The appropriate number of LSTM layers can effectively improve the model.	The other factors that affect the crude oil price volatilities such as economic growth, exchange rate demand are not considered.
5.	Daily crude oil price forecasting using Hybridizing wavelet and Artificial Neural Network Model	Ani Shabri and Ruhaidah Samsudin	16 July 2014	Artificial Neural Network	The hybrid model showed a great improvement in crude oil price modeling and produced better forecasts than ANN model alone.	•

	1	I	T.			
6.	Machine Learning	Abdullah	-	Artificial Neural	Returns	
	Approach for crude oil			Network	function had	
	price prediction with				successfully	
	Artificial Neural				proved to	
	Networks-Quantitative				cleanse and	
	(ANN-Q) model				uniform the	
					data from	
					errors and	
					noises hence,	
					the crisp	
					prediction	
					result.	
7.	A novel look back N	Rudra Kalyan	-	ARIMA,	Attained	-
	feature approach	Nayak		LBNF Algorithm	better training	
	towards prediction of				and accuracy	
	crude oil price				by shifting	
	_				the dataset	
					into n class	
					problem and	
					more scope to	
					classifier.	