TALLER PROGCOMP: TRACK EDD PREFIX SUM 1D Y 2D

Gabriel Carmona Tabja

Universidad Técnica Federico Santa María, Università di Pisa

April 8, 2024

Part I

PREFIX SUM

Problema

Dado un arreglo de n enteros, determinar la suma entre las posiciones i y j ($1 \le i \le j \le n$).

Problema

Dado un arreglo de n enteros, determinar la suma entre las posiciones i y j ($1 \le i \le j \le n$).

Solución Inicial

Fácil, recorro todos los números entre i y j, acumulando la suma.

¿Cuál es la complejidad?

Problema

Dado un arreglo de n enteros, determinar la suma entre las posiciones i y j (1 $\leq i \leq j \leq n$).

Solución Inicial

Fácil, recorro todos los números entre i y j, acumulando la suma.

¿Cuál es la complejidad? O(n) Nada mal :)

Problema

Dado un arreglo a de n enteros y q **queries**, determinar la suma entre las posiciones i_q y j_q $(1 \le i_q \le j_q \le n)$.

Problema

Dado un arreglo a de n enteros y q **queries**, determinar la suma entre las posiciones i_q y j_q (1 $\leq i_q \leq j_q \leq n$).

Solución Inicial

Fácil, por cada query recorro todos los números entre i_q y j_q , acumulando la suma.

¿Cuál es la complejidad?

Problema

Dado un arreglo a de n enteros y q **queries**, determinar la suma entre las posiciones i_q y j_q (1 $\leq i_q \leq j_q \leq n$).

Solución Inicial

Fácil, por cada query recorro todos los números entre i_q y j_q , acumulando la suma.

¿Cuál es la complejidad? $O(n^2)$ Lo perdimos todo :(.

Definición

$$prefix(i) = \sum_{j=1}^{i} a_j$$

 $prefix(i) = \sum_{j=1}^{i} a_j$ OJO: asumiendo que los indices del arreglo van de 1 hasta n.

Definición

$$prefix(i) = \sum_{j=1}^{i} a_j$$

OJO: asumiendo que los indices del arreglo van de 1 hasta *n*.

Propiedad

$$suma(i, j) = prefix(j) - prefix(i - 1)$$

Demostración

$$prefix(j) = a_1 + a_2 + \ldots + a_j$$

$$prefix(i-1) = a_1 + a_2 + \ldots + a_{i-1}$$

$$prefix(j) - prefix(i-1) = a_1 + a_2 + \ldots + a_j - (a_1 + a_2 + \ldots + a_{i-1})$$

$$prefix(j) - prefix(i-1) = a_i + \ldots + a_j = suma(i,j)$$

CÓDIGO

```
struct prefix {
    vector < int > p;
    prefix(vector < int > &nums) {
        p.push_back(0);
        for(int i = 0; i < nums.size(); i++) {
            p.push_back(nums[i] + p[i]);
        }
    }
    int query(int i, int j) {
        return p[j] - p[i - 1];
    }
}</pre>
```

Complejidad de construcción: O(n)Complejidad por query: O(1):)

LIMITACIONES Y DETALLES

- Para que funcione la operación debe tener inverso
- ► Si hay updates, lo perdemos todo :(
 - Lo resolveremos con algo mágico más adelante

Part II

PREFIX SUM 2D

Ahora extenderemos la idea de Prefix Sum a dos dimensiones.

Determinar la suma en la sub matrix i, j, k, l, lo que significaría la suma de lo que esta entre la fila i hasta la j y la columna k hasta la l.

Ejemplo

suma(2,3,2,3) = 40

OJO: asumiento que los indices están entre 1 y n.

La primera fila y la primera columna son fáciles de rellenar.

10	20	30	
5	10	20	
2	4	6	

Ahora, ¿cómo rellenamos el resto?

La primera fila y la primera columna son fáciles de rellenar.

	20	30	10	30	
5	10	20	10	?	
		6	17	?	

Ahora, ¿cómo rellenamos el resto? La intuición sería que a la posición i, j se le sume lo de j-1 y i-1

La primera fila y la primera columna son fáciles de rellenar.

Ahora, ¿cómo rellenamos el resto?

La intuición sería que a la posición i, j se le sume lo de j-1 y i-1 Pero, pasa lo siguiente:

- ightharpoonup prefix(2, 2) = prefix(1, 2) + prefix(2, 1)
- ightharpoonup prefix(1,2) = prefix(1,1) + a[1][2]
- prefix(2,1) = prefix(1,1) + a[2][1]

Reptimos prefix(1,1).

La primera fila y la primera columna son fáciles de rellenar.

Ahora, ¿cómo rellenamos el resto?

La intuición sería que a la posición i, j se le sume lo de j-1 y i-1 Pero, pasa lo siguiente:

- ightharpoonup prefix(2, 2) = prefix(1, 2) + prefix(2, 1)
- ightharpoonup prefix(1,2) = prefix(1,1) + a[1][2]
- prefix(2,1) = prefix(1,1) + a[2][1]

Reptimos prefix(1,1).

Por lo que, la formula final sería:

$$prefix(j, l) = prefix(j - 1, l) + prefix(j, l - 1) - prefix(j - 1, l - 1)$$

CÓDIGO

CALCULAR LA SUMA

Ahora, queremos permitir la operación suma(i, j, k, l).

Calculemos suma(1,3,2,3).

CALCULAR LA SUMA

Ahora, queremos permitir la operación suma(i, j, k, l).

Calculemos suma(1,3,2,3).

$$suma(1,3,2,3) = prefix(3,3) - prefix(1-1,3) - prefix(3,2-1) + prefix(1-1,2-1)$$

CALCULAR LA SUMA

Ahora, queremos permitir la operación suma(i, j, k, l).

Calculemos suma(1,3,2,3).

$$suma(1,3,2,3) = prefix(3,3) - prefix(1-1,3) - prefix(3,2-1) + prefix(1-1,2-1)$$

Formula general:

$$suma(i, j, k, l) = prefix(j, l) - prefix(i - 1, l) - prefix(j, k - 1) + prefix(i - 1, k - 1)$$

References I