Spark API

Tao Ruangyam, ING Analytics - Frankfurt Hub

Istanbul 2020

What will be covered in this session

- Intro to Spark API
- RDD
- DataFrame API
- Window functions
- Built-in functions
- UDFs

Introduction

col1	col2	col3
Row 1		
Row 2		
Row N		

RDD (Resillient Distributed Dataset)

DataFrame (abstraction over RDD)

With Serialisation

RDD

- Defines how to read & process data
- Automatic control over distribution

col1

Row 1

col2

col3

RDD

What coders see

API functions

- map()
- filter()
- cache()
- count()

- ...

RDD

(Resillient Distributed Dataset)

What it tells Driver

- How the data is created
 - From beginning
 - Until the output
- How the data is distributed
 - How to partition
 - Which executor has it

RDD

Create an RDD

```
rdd = spark.sparkContext.parallelize([
    ('Red', 22, 3500),
    ('Green', 70, 5500),
    ('Blue', 15, 9500)
])

rdd = spark.sparkContext \
    .textFile('/path/to/file.csv') \
    .map(lambda line: line.split(','))
```


API overview

Supported by Python

DataFrame (abstraction over RDD)

With Serialisation

With Serialisation

DataSet

(Statically Typed)

Only Scala

DataFrame API

- Higher-level abstraction over RDD
- No typesafe checking at compilation (Dataset has)
- Fully compatible with SparkSQL API
- Serialised!

DataFrame API

Create a DataFrame

DataFrame API

Filter, add columns, do some aggregation

```
from pyspark.sql.functions import *
result = data.filter((col('a') < 10) | (col('a').isNull()))
result = data.join(data2, "col-to-join", "inner")
result = data.withColumn("newCol", explode("array-column"))</pre>
```


Note that, Spark is lazy evaluated

Code will not be executed right away

```
from pyspark.sql.functions import *
result = data \
  .filter((col('a') < 10) | (col('a').isNull())) \
                                                           Not executed yet
  .join(data2, "col-to-join", "inner")
exploded = result.withColumn("newCol", explode("array-column"))
                                                                        Not executed yet
                             Executed!
exploded.show(25)
n = exploded.count()
                                Executed!
                                                     Executed!
exploded.write.save('path/to/file.parquet')
```


Why lazy? Why not actively evaluate?

Process can be more optimisable with lazy evaluation

Read.csv Read.parquet Read.csv Read.parquet Only reads partially given the filter Join Join Only reads partially given the filter Filter Filter **Execution Plan Optimisation** Write.csv Write.csv

Spark realises that not all data is needed

RDD API is accessible from DataFrame

```
df = spark.read.parquet('path/to/file.parquet')
out = df.rdd.map(lambda row: "Features: {}".format(row.feature))
kv = df.rdd.keyBy(lambda row: row.a)
```

Since DataFrame is just an abstraction over RDD, **DF.rdd** exposes the RDD inside

Ways to transfer data to Pandas

But this can cause out-of-memory

Pandas to Spark

```
import numpy as np
import pandas as pd
# Enable Arrow-based columnar data transfers
spark.conf.set("spark.sql.execution.arrow.enabled", "true")
# Generate a pandas DataFrame
pdf = pd.DataFrame(np.random.rand(100, 3))
# Create a Spark DataFrame from a pandas DataFrame using Arrow
df = spark.createDataFrame(pdf)
```

Arrow will transfer local Pandas dataframe to the Spark instance

Pandas to Spark

Controlling partitions

spark.default.parallelism (number of partitions after join or reduceByKey)

HashJoin

Regardless of prior number of partitions, Spark **reshuffles** them by **joining keys**

HashJoin

DF 2 500 Partitions

spark.sql.shuffle.partitions 3000

BroadcastHashJoin

Still works the same way with **HashJoin** but all executors **get the whole broadcasted** dataframe

HashJoin

Writing output

```
df.write.option("header","true").csv("path/file.csv")
df.write.partitonBy("col1").parquet("path/file.parquet")
df.write.mode("append").parquet("path/file.parquet")
df.write.json("path/file.json")
df.write.saveAsTable("schema.hive_table_name")
```


Writing output

Writing output, cont'd

Writing output (as one partition)

Read the partitioned data

df.read.parquet("path/Output.parquet")

Spark always overrides number of partitions

Partiton 1

Partiton 2

Executor § 1

Executor § 2

Choosing the right data types

	Parquet	CSV	JSON	Avro
Optimised for	File size, SELECT	Readability	Portability	Schema changes
Read speed	Fastest	Slow	Slowest	Fast
Write speed	Slow	Fastest	Slowest	Fast
Partitonable	Yes	Yes	No	Yes
File size	Smallest	Large	Largest	Small
Spark needs to read the whole file	No	Yes	Yes	No

Let's try out the API

https://github.com/tao-pr/spark-workshop

Column type

col("name")
lit(value)

Functions

min()

explode()

rank()

. . .

collect_set()

udf()

Column type

cover	num
Red,Blue,Black	5
Red,Green	10
Green,White	15
Yellow	30

cover	num	colours
Red,Blue,Black	5	[Red,Blue,Black]
Red,Green	10	[Red,Green]
Green,White	15	[Green,White]
Yellow	30	[Yellow]

dfOut = df.withColumn("colours", split(col("cover"), lit("\\,")))

double double

product	loss
light	3.0
light	4.0
fridge	8.5
fridge	2.5
fridge	1.5
powersupply	0.1

product	loss	logloss
light	3.0	1.09861229
light	4.0	1.38629436
fridge	8.5	2.14006616
fridge	2.5	0.91629073
fridge	1.5	0.40546511
powersupply	0.1	-2.30258509

dfOut = df.withColumn("logloss", log(col("loss")))

product	loss
light	3.0
light	4.0
fridge	8.5
fridge	2.5
fridge	1.5
powersupply	0.1

product	loss	logloss	minlogloss
light	3.0	1.09861229	-2.30258509
light	4.0	1.38629436	-2.30258509
fridge	8.5	2.14006616	-2.30258509
fridge	2.5	0.91629073	-2.30258509
fridge	1.5	0.40546511	-2.30258509
powersupply	0.1	-2.30258509	-2.30258509

```
dfOut = df.withColumn("logloss", log(col("loss")) )
    .withColumn("minlogloss", min(col("logloss")) )
```


Window functions!

product	loss
light	3.0
light	4.0
fridge	8.5
fridge	2.5
fridge	1.5
powersupply	0.1

product	loss	logloss	minlogloss
light	3.0	1.09861229	1.09861229
light	4.0	1.38629436	1.09861229
fridge	8.5	2.14006616	0.40546511
fridge	2.5	0.91629073	0.40546511
fridge	1.5	0.40546511	0.40546511
powersupply	0.1	-2.30258509	-2.30258509

from pyspark.sql.window import Window

Window functions!

product	loss
light	3.0
light	4.0
fridge	8.5
fridge	2.5
fridge	1.5
powersupply	0.1

product	loss	logloss	rank
light	3.0	1.09861229	1
light	4.0	1.38629436	2
fridge	8.5	2.14006616	3
fridge	2.5	0.91629073	2
fridge	1.5	0.40546511	1
powersupply	0.1	-2.30258509	1

from pyspark.sql.window import Window

Explode array column

product	prices
Α	[15,25,35]
В	[]
С	[20]
D	[1,3,5,6]

product	prices	price
A	[15,25,35]	15
A	[15,25,35]	25
Α	[15,25,35]	35
С	[20]	20
D	[1,3,5,6]	1
D	[1,3,5,6]	3
D	[1,3,5,6]	5
D	[1,3,5,6]	6

dfOut = df.withColumn("price", explode(col("prices")))

str

Conditions

product	prices
Α	[15,25,35]
В	
С	[20]
D	[1,3,5,6]

product	price	
Α	15	A or B
Α	25	A or B
Α	35	A or B
В	Null	A or B
С	20	
D	1	
D	3	
D	5	
D	6	

Using built-in funcitons anywhere

+	Example
Select	df.select("TARGET", explode(col("a")))
WithColumn	df.withColumn("TARGET", explode(col("a")))
Filter	df.filter($abs(col("v") > 50)$
Aggregation	df.groupBy(floor(col("v")).agg(sum("w"))

UDF (User-defined function)

Make a function distributable across nodes

Spark SQL

Tao Ruangyam, ING Analytics - Frankfurt Hub

Istanbul 2020

Equivalent DataFrame functions on SQL

Interchangeability between **DataFrameAPI** and **SQL command**

```
df.where(col("price")<3000)\</pre>
  .groupBy("grade").agg(
  count(lit(1)).alias("units"),
  avg("size").alias("avgsize")
                                                                               DataFrame API
                                                                               (SparkSQL)
  ).show(3)
|grade|units| avgsize|
     B 113 | 85.77658681742913 |
      C | 122 | 83.27286338415303 |
      A | 16 | 98.3440670967102 |
spark.sql("""SELECT grade, sum(1) as units, avg(size) as size
    FROM inventory WHERE price<3000
    GROUP BY grade"""
                                                                               Equivalent SQL
    ).show(3)
                                                                               command
```


Relation between DataFrame API and SQL engine

Both are compiled into the same form: Physical execution plan

Typically users do not have to worry about this box But the logical plan can also be customisable (Scala)

Instead of writing DataFrame API, we can write SQL

Both DataFrame API and SQL are compiled into Physical execution plan

```
>>> spark.sql("SELECT type, min(price) as low, max(price) as high FROM inventory GROUP BY type").explain()
= Physical Plan =
*(6) HashAggregate(keys=[type#1667], functions=[min(price#1710), max(price#1710)])
+- Exchange hashpartitioning(type#1667, 200)
   +- *(5) HashAggregate(keys=[type#1667], functions=[partial_min(price#1710), partial_max(price#1710)])
      +- *(5) Project [type#1667, price#1710]
        +- *(5) Sort [_nondeterministic#1774 ASC NULLS FIRST], true, 0
            +- Exchange rangepartitioning(_nondeterministic#1774 ASC NULLS FIRST, 200)
               +- *(4) Project [type#1667, pythonUDF0#5951 AS price#1710, rand(8934628709428066776) AS _nonde
                  +- BatchEvalPython [<lambda>(avgprice#1670L, stdprice#1671L)], [avgprice#1670L, stdprice#16
                     +-*(3) Project [avgprice#1670L, stdprice#1671L, type#1667]
                        +- Generate explode(size#1686), [type#1667, avgprice#1670L, stdprice#1671L], false, [
                           +- *(2) Project [type#1667, avgprice#1670L, stdprice#1671L, pythonUDF0#5950 AS siz
                              +- BatchEvalPython [<lambda>(avgsize#1672L, stdsize#1673L, qty#1669L)], [avgpri
                                 +-*(1) Project [avgprice#1670L, avgsize#1672L, gty#1669L, stdprice#1671L, s
                                    +- Scan ExistingRDD[type#1667,grade#1668,gty#1669L,avgprice#1670L,stdpric
```


What is SparkSQL?

Both DataFrame API and SQL are compiled into Physical execution plan

```
>>> df.groupBy("type").agg(min("price").alias("low"), max("price").alias("high")).explain()
= Physical Plan =
*(6) HashAggregate(keys=[type#1667], functions=[min(price#1710), max(price#1710)])
+- Exchange hashpartitioning(type#1667, 200)
   +- *(5) HashAggregate(keys=[type#1667], functions=[partial_min(price#1710), partial_max(price#1710)])
      +- *(5) Project [type#1667, price#1710]
         +- *(5) Sort [_nondeterministic#1774 ASC NULLS FIRST], true, 0
            +- Exchange rangepartitioning(_nondeterministic#1774 ASC NULLS FIRST, 200)
               +- *(4) Project [type#1667, pythonUDF0#5971 AS price#1710, rand(8934628709428066776) AS _nond
                  +- BatchEvalPython [<lambda>(avgprice#1670L, stdprice#1671L)], [avgprice#1670L, stdprice#1670L)
                     +- *(3) Project [avgprice#1670L, stdprice#1671L, type#1667]
                        +- Generate explode(size#1686), [type#1667, avgprice#1670L, stdprice#1671L], false,
                           +- *(2) Project [type#1667, avgprice#1670L, stdprice#1671L, pythonUDF0#5970 AS si
                              +- BatchEvalPython [<lambda>(avgsize#1672L, stdsize#1673L, qty#1669L)], [avgpr
                                 +- *(1) Project [avgprice#1670L, avgsize#1672L, qty#1669L, stdprice#1671L,
                                    +- Scan ExistingRDD[type#1667,grade#1668,gty#1669L,avgprice#1670L,stdpri
```


Built-in functions in SQL

All Spark built-in functions can also work with SQL!

```
spark.sql("SELECT a,min(b), collect_set(c) FROM table WHERE c>0 GROUP BY a")

df.where(col("c")>0).groupBy("a").agg(min(col("b")), collect_set(col("c")))
```


Built-in functions in SQL

SQL trick with **explode**

Exploded array will vanish because explode does not reserve null

```
>>> spark.sql("select grade, explode(sub) from vec").show(10)
+----+
| grade|col|
+----+
| A| A1|
| A| A2|
| A| A3|
| B| B1|
| B| B2|
| C| C1|
| C| C3|
+----+
```


Built-in functions in SQL

```
|grade|
        sub
     A|[A1, A2, A3]|
        [B1, B2]|
[C1, C3]|
>>> spark.sql("select grade, s from vec lateral view outer explode(sub) as s").show(10)
grade
                               Reserve null with lateral view outer
         B2
     D|null|
```

More complex SQL is also supported

```
type|grade|seller| price| size| lat| lng|
|Apartment| C| 14| 1091.334|30.537722| 17.6535|30.582376|
SELECT type, grade, price, COALESCE(
   CASE WHEN size<30 THEN "small" ELSE NULL END,
   CASE WHEN size<80 THEN "medium" ELSE NULL END,
   CASE WHEN size<100 THEN "large" ELSE "xlarge" END) AS size from df
C| 832.8406|medium
                                  You can use SQL at any complexity
|Apartment|
          B| 3210.3003|medium|
|Apartment|
           B| 3756.9866| large|
                                  Spark SQL can handle like other industry-grade RDBMS
   House | A | 8788.338 | xlarge
         C| 3782.6099|xlarge
    House
             1800.9767 | large
Anartment
```


SparkSQL supports Hive

Hive is a **relational database** engine for Hadoop

SparkSQL supports Hive

Hive table abstracts the access to physical files with SQL

```
df = spark.read.csv("path/file.csv").filter(col("a") = 100).select("a","b")

df = spark.sql("SELECT a, b FROM schema.table WHERE a = 100")
```

To create a Hive table from an existing file

```
CREATE EXTERNAL TABLE IF NOT EXISTS schema.table(a INT, b STRING)
ROW FORMAT DELIMITED
FIELD TERMINATED BY ','
STORED AS CSV
LOCATION '/path/file.csv'
```


Hive External vs Internal table

External means outside of Hive's Warehouse location

Hive External vs Internal table

Dropping external table also destroys the physical file

Hive vs Impala

Impala is upto 70x faster as it cache the direct pointer to the physical file

