Project Diamond Hands

Supervised learning techniques to forecast Bitcoin price returns

Contributors:

Lee Copeland

Vishnu Kurella

Ahmad Sadraei

Ling Zhou

Goal and Recipe

Goal: Design an algorithmic trading strategy using supervised learning techniques to decide on the optimal position for the next 1hr return of Bitcoin

Inputs: Utilize various observable market data points, including prices and technical indicators for crypto and non-crypto assets

Data

Curation and pre-processing:

- Download and slice time series data by hourly interval (Messari and Genesis Volatility APIs)
- Process and clean data set (merge, interpolate for market closures)
- Scale Data and then split data into train and test groups
- Build, train and compare multiple models to determine optimal BTC position for the next hour

Data

Independent variables: All time series data intervals are hourly

Spot Price % Change:

- Bitcoin (BTC)
- Ethereum (ETH)
- DXY (Bloomberg USD Index)
- S&P 500 futures
- Gold futures
- 10yr UST futures

Technical Indicators:

- Volume
- BTC/ETH Ratio
- 50 hour + 200 hour moving averages

Option Metrics:

- BTC and ETH at-the-money implied volatility
- BTC and ETH 25-delta implied skew

Technologies

- Tensorflow
- Sklearn
- Google Colab
- APIs (Messari and Genesis)
- Numpy
- Pandas
- Quantitative Easing

- Supervised learning can consider multiple factors and known past outcomes to make predictions about future outcomes
- We chose a classification model over a regression model in order to focus on the decision of having a position
- There are 5 classification fields: large short, small short, no position, small long; large long
- Recurrent Neural Networks (RNN) use output from previous intervals to inform the current interval
- We chose a bidirectional LSTM recurrent neural network for time series forecasting in TensorFlow

- LSTM: "Long Short-Term Memory" is a type of RNN model
- Vanilla RNN models use their operating state memory (short-term)
- LSTM is a variant of RNN that uses operating state memory from historical intervals (long-term) to inform the present interval decision

Multi-label Classification

Trading strategy seeks to scale position size based on signal strength

The basic iteration of our model with just 4 inputs:

- btc_close_pct
- btc_volume
- eth_close_pct
- eth_volume

Buy 71% of time, buy 2x 19% of time, sell 1x 10% of the time

-2	-1	0	1	2	
0	0	0	1	0	3452
			0	1	908
	1	0	0	0	474

ayer (type)	Output Shape	Param #
lstm_45 (LSTM)	(None, 4, 4)	96
dropout_45 (Dropout)	(None, 4, 4)	0
lstm_46 (LSTM)	(None, 4, 4)	144
dropout_46 (Dropout)	(None, 4, 4)	0
lstm_47 (LSTM)	(None, 4)	144
dropout_47 (Dropout)	(None, 4)	0
dense_15 (Dense)	(None, 5)	25

		precision	recall	f1-score	support
	0	0.00	0.00	0.00	851
	1	0.24	0.10	0.14	1172
	2	0.00	0.00	0.00	754
	3	0.27	0.77	0.39	1197
	4	0.21	0.22	0.21	860
micro	avg	0.25	0.25	0.25	4834
macro	avg	0.14	0.22	0.15	4834
weighted	avg	0.16	0.25	0.17	4834
samples	avg	0.25	0.25	0.25	4834

- 409 Parameters
- 0.14 average precision

Added the %change in BTC/ETH ratio:

- btc_close_pct
- btc_volume
- eth_close_pct
- eth_volume
- btc_eth_ratio

This model was much more "aggressive": Bought 2x 27% of the time, Sold 2x 2% of the time

Better returns + higher standard deviation, net result in higher sharpe ratio

Layer (type)	Output Shape	Param #
 lstm_48 (LSTM)	(None, 5, 5)	140
dropout_48 (Dropout)	(None, 5, 5)	0
lstm_49 (LSTM)	(None, 5, 5)	220
dropout_49 (Dropout)	(None, 5, 5)	0
lstm_50 (LSTM)	(None, 5)	220
dropout_50 (Dropout)	(None, 5)	0
dense_16 (Dense)	(None, 5)	30
dense_16 (Dense)		-
otal params: 610 rainable params: 610		
on-trainable params: 0		

		precision	recall	f1-score	support
	0	0.21	0.02	0.04	851
	1	0.30	0.08	0.12	1172
	2	0.00	0.00	0.00	754
	3	0.26	0.69	0.38	1197
	4	0.24	0.36	0.29	860
micro	avg	0.26	0.26	0.26	4834
macro	avg	0.20	0.23	0.17	4834
weighted	avg	0.22	0.26	0.18	4834
samples	avg	0.26	0.26	0.26	4834

- 610 Parameters
- 0.20 average precision

Added the %change in BTC/ETH ratio and BTC vol + skew:

- btc_close_pct
- btc_volume
- eth_close_pct
- eth_volume
- btc_eth_ratio_pct
- btc_twentyFiveDelta30DayExp
- btc_atm30

This model was much more "aggressive": Bought 1x only 54% of time, Bought 2x 28% of time, Sold 1x 18% of time

Better returns + same standard deviation, net result in higher sharpe ratio

ayer (type)	Output Shape	Param #
lstm (LSTM)	(None, 7, 7)	252
dropout (Dropout)	(None, 7, 7)	0
lstm_1 (LSTM)	(None, 7, 7)	420
dropout_1 (Dropout)	(None, 7, 7)	0
lstm_2 (LSTM)	(None, 7)	420
dropout_2 (Dropout)	(None, 7)	0
dense (Dense)	(None, 5)	40
otal params: 1,132		
rainable params: 1,132		

		precision	recall	f1-score	support
	0	0.00	0.00	0.00	851
	1	0.26	0.30	0.27	1172
	2	0.00	0.00	0.00	754
	3	0.27	0.59	0.37	1197
	4	0.26	0.26	0.26	860
micro	avg	0.26	0.26	0.26	4834
macro	avg	0.16	0.23	0.18	4834
weighted	avg	0.17	0.26	0.20	4834
samples	avg	0.26	0.26	0.26	4834

- 1132 Parameters
- 0.16 average precision

BTC Annualized Return: 51.696043%
BTC Annualized Standard Deviation: 66.393471%
BTC Sharpe Ratio: 0.7786314196077307
LSTM Annualized Return: 55.021245%
LSTM Annualized Standard Deviation: 99.722304%
LSTM Sharpe Ratio: 0.5517446236967012

Uses S&P, US 10Y, Gold, and USD futures instead of additional BTC/ETH data:

- btc_close_pct
- btc_volume
- eth_close_pct
- eth volume
- dxy_close_pct
- es_close_pct
- gc_close_pct
- us_close_pct

This model was much more "aggressive": Bought 1x only 47% of time, Bought 2x 32% of time, Sold 1x 21% of time

Worse returns, higher standard deviation, worse sharpe ratio

ayer (type)	Output Shape	Param #
 lstm_21 (LSTM)	(None, 8, 8)	320
dropout_21 (Dropout)	(None, 8, 8)	0
lstm_22 (LSTM)	(None, 8, 8)	544
dropout_22 (Dropout)	(None, 8, 8)	9
lstm_23 (LSTM)	(None, 8)	544
dropout_23 (Dropout)	(None, 8)	0
dense_7 (Dense)	(None, 5)	45
otal params: 1,453		
rainable params: 1,453 on-trainable params: 0		

		precision	recall	f1-score	support
	0	0.00	0.00	0.00	851
	1	0.23	0.20	0.22	1172
	2	0.00	0.00	0.00	754
	3	0.27	0.52	0.36	1197
	4	0.20	0.36	0.26	860
micro	avg	0.24	0.24	0.24	4834
macro	avg	0.14	0.22	0.17	4834
weighted	avg	0.16	0.24	0.19	4834
samples	avg	0.24	0.24	0.24	4834

- 1453 Parameters
- 0.14 average precision

Pitfalls

- We started with too much data and that actually diluted the signal
 - Reducing the number of features our model took actually yielded better results
 - Needing to make sure the number of features ended up around %10 of parameters
- Spent majority of time running the model using various features sub sets to find the optimal ones to use
- Our model yielded different result on each run (given same input)
 - The random initialization of the weight for the model makes the outcome of the model non-deterministic
 - Could use random seed to counter the issue

Follow Ups

- Utilize higher precision data, such as every five minutes instead of hourly
- Adjust the parameters for the LSTM model for Models 2 and 3 to identify a model with better precision
- Model for an output position in ETH or an alt-coin instead of bitcoin because the other coins may be more efficient
- Transaction Costs

Questions