- RNA isolation phase (w/ RNEasy Plus Mini Kit):
 - Every step at room temperature
 - Gather sample (cell, organoid) (< 1x10^7 cells/sample).
 - Lyse directly or trypsinized and collected as a cell pellet by adding 400 uL Buffer RLT Plus and keep it in 1.5 mL tube
 - If organoid, use P1000 pipette tip to break up organoid and do a swirling motion "beating an egg."
 - Homogenize the lysate by vortexing for 1 min
 Pause point: -20°c or -80°c for several months
 - Transfer lysate to purple gDNA Eliminator Spin Column. Pipette up and down until foamy.
 - Centrifuge for 30s at 8000g. Save Flow-Through (/FT). Discard column.
 *All centrifuge at 20-25*c (not cool below 20*c)
 - Add 350 uL of 70% EtOH to FT. Mix and immediately transfer 700 uL of FT to the pink RNEasy Spin Column.
 - Close lid & Centrifuge for 15s at 8000g. Discard FT. Save column.
 - o Add 700 uL Buffer RW1 to the same pink column.
 - o Close lid & Centrifuge for 15s at 8000g. Discard FT. Save column.
 - o Add 500 uL Buffer RPE to the same pink column.
 - Close lid & Centrifuge for 15s at 8000g. Discard FT. Save column.
 - o Add 500 uL Buffer RPE to the same pink column.
 - o Close lid & Centrifuge for 2min at 8000g. Discard FT. Save column.
 - Dry column for 2min.
 - o Place pink column in a new 1.5-mL Eppendorf tube for elution.
 - o Add 35-60 uL dw directly onto the membrane
 - Close lid & Centrifuge for 1min at 8000g to elute RNA.
 - Measure [RNA] with NanoDrop.
 - Store RNA at 4 C until further use.

RT phase:

- Dilute RNA with dw in PCR-tube strip.
- Make RT Master Mix.
- Distribute RT MM into diluted RNA in PCR-tube strip.
- On PCR machine, incubate at 42 C for 2 hours then 4 C.
- Store cDNA RT product at 4 C until further use.
- Formula for RNA dilution per sample:
 - Ideally, target mass of RNA = 1000 ng (max2000 ng)
 - If smallest [RNA] = 65 ng/uL, then set target mass at 65 ng/uL x 15 uL = 1000 ng
 - Calculate volume of RNA needed to reach target mass for each sample.
 - Top off with dw to reach total volume of 15 uL
 - Total volume for RNA diluted = 15 uL
- Formula for RT Master Mix in 2-mL Eppendorf tube:
 - Multiply each volume below by (the number of reactions needed + 10% for pipetting error)

- 2 uL 10X RT Buffer (Applied Biosystem)
- 2 uL 10X RT Random Primers
- 1 uL RT Enzyme (MultiScribe ReverseTranscriptase)
- 0.5 uL dNTP
- Total volume for RT MM per sample = 5.5 uL
- o Total volume for RT product per sample = 20.5 uL
- Thermocycler setup for reverse transcriptase (two-step)

	Step 1	Step 2	Step 3	Step 4
Temperature (°C)	25	37	85	4
Time	10 min	120 min	5 min	∞

- 5RT with BioRad's iScript 5x MM
 - o Dilute RNA to 1000ng or 1500 ng in PCR strip → Total Volume 8uL
 - o Add 2uL 5x MM to make it to 10uL
- qPCR phase (ddCT):
 - Formula for each well:
 - 5 uL 2X PowerSYBR Green MM
 - 0.2 uL 10uM primer mix
 - 0.2 uL RT product/template
 - 4.6 uL dw
 - Step 1: Plate Planning
 - Suppose: 5 samples, 10 genes
 - Mixtures: SYBR MM + Template; dw + primer (not waste more SYBR!)
 - Prepare 5 tubes in strip for 5 templates (dist. horizontally)
 - Each tube has enough for 10 -> 15 rxns
 - Prepare 10 tubes in strip for 10 genes (dist. vertically)
 - Each tube has enough for 5 -> 10 rxns
 - Step 2: Volume Planning
 - SYBR MM + Template Mixture:
 - SYBR MM: 5 uL x 15 rxns = 75 uL
 - Tempalte: 0.2 uL x 15 rxns = 3 uL
 - Total = 78 uL per PCR tube
 - Distributing horizontally 5.2 uL per well
 - Dw + Primer Mixture
 - Primers: 0.2 uL x 10 rxns = 2 uL
 - Dw: 4.6 uL x 10 rxns = 46 uL
 - Total = 48 uL per PCR tube
 - Distributing vertically 4.8 uL per well
 - Step 3: Doing it!
 - Distribute with the electronic multi-channel pipette
 - Each tip has a max volume of 30 uL

- qPCR phase (Nilay 2021.8.24):
 - Make a standard
 - Tube A = Pool 3 uL cDNA from each condition to make a most concentrated standard
 e.g. 6 conditions -> 3x6 = 18 uL
 - Tube B = Dilute tube A in dw to make enough standard volume for each gene

e.g. 10 genes -> dilute to the final volume at least 10x4.5 uL = 45 uL

Serial dilution of Tube B in 1:5 manner 4 times to make tube C, D, E

	Relative	
	cDNA	
Tube B	1:1 (125x)	
Tube C	1:5(25x)	
Tube D	1:25(5x)	
Tube E	1:125(1x)	

- Formula for each rxn (10 uL/rxn)
 - 5 uL 2X PowerSYBR Green MM
 - 0.2 uL 10uM primer mix (each)
 - 2 uL 10-fold dilution RT product/template
 - 2.8 uL dw
- Plate planning
 - Each plate has to have 1) house keeping gene 2) standard reaction for each gene
- Thermocycler (Bio-Rad CFX)

70/0.0. (2.0)					
Activation of enzyme	95c	10 min	Activate		
			AmpliTaq Gold		
			DNA polymerase		
Denature	95c	15 sec			
Annealing&Elongation	60c	60 sec	40x		
Plate readout					
Melt curve analysis	55c	0.5c			
	90c	increment			
		every 5 sec			

