

2	[01] (Previously Presented Currently Amended) An architecture A method and apparatus
3	for the measurement of photomask optical path difference, the apparatus comprising:
4	A spatially coherent light source;
.5	An interferometric beam processing module;
6	An optical microscope; and
7	A photosensitive detector;
8	Wherein said module is disposed to receive and divide light from said light source into a
9	number of phase-coherent light beams, each of which passes through an aperture;
10	Wherein said microscope is disposed to image the multitude of said apertures in said
.11	module with a given demagnification onto a photomask in order to create a
12	multitude of phase probes; and
· 13	Wherein said detector is disposed to receive the transmitted fringe pattern caused by the
14	interference of the multitude of said phase probes;
15	and the method comprising the step of measuring the shift in interference fringe patterns
16	recorded for different phase probe positions on the photomask.
17	
18	[02] (Currently Amended) The apparatus architecture of claim 1 wherein said light source is a
19	laser with a wavelength that is approximately the same as the actinic wavelength of said
20	photomask.
21	[03] (Currently Amended) The apparatus architecture of claim 1 wherein said optical
22	demagnification of said apertures is greater than 50.
23	[04] (Currently Amended) The apparatus architecture of claim 1 wherein said module is of the
24	Mach-Zehnder (MZ) interferometer type.

1	[U5] (Previously Presented Currently Amended) The apparatus architecture of claim 1
2	wherein the relative optical phase between said phase probes may be varied by suitable
3	adjustments to said module.
4	[06] (Currently Amended) The apparatus architecture of claim 1 wherein said module is a
·5	dual-aperture screen.
6	[07] (Canceled)
7	[08] (Currently Amended) The apparatus architecture of claim 1 wherein said detector is a
8	UV-sensitive CCD camera.
9	[09] (Currently Amended) The apparatus architecture of claim 1 wherein said detector is a
10	photomultiplier tube (PMT).
11	[10] (Previously Presented Currently Amended) The apparatus architecture of claim 1
12	wherein the number of said phase probes is two (2).
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

1	[11] (Previously Presented Currently Amended) An architecture A method and apparatus
2	for the measurement of photomask optical path difference, the apparatus comprising:
3	A spatially coherent light source;
4	An interferometric beam processing module;
5	An optical microscope; and
6	A photosensitive detector;
7	Wherein said module is disposed to receive and divide light from said light source into a
8	number of phase-coherent light beams, each of which passes through an aperture;
9	Wherein said microscope is disposed to image the multitude of said apertures in said
10	module with a given demagnification onto a photomask in order to create a
11	multitude of phase probes; and
12	Wherein said detector is disposed to receive the reflected fringe pattern caused by the
13	interference of the multitude of said phase probes;
14	and the method comprising the step of measuring the shift in interference fringe patterns
15	recorded for different phase probe positions on the photomask.
16	[12] (Currently Amended) The apparatus architecture of claim 11 wherein said light source is
17	a laser with a wavelength that is approximately the same as the actinic wavelength of said
18	photomask.
19	[13] (Currently Amended) The apparatus architecture of claim 11 wherein said optical
20	demagnification of said apertures is greater than 50.
21	[14] (Currently Amended) The apparatus architecture of claim 11 wherein said module is of
22	the Mach-Zehnder (MZ) interferometer type.

- 1 [15] (Previously Presented -- Currently Amended) The apparatus architecture of claim 11
- 2 wherein the relative optical phase between said phase probes may be varied by suitable
- 3 adjustments to said module.
- 4 [16] (Currently Amended) The apparatus architecture of claim 11 wherein said module is a
- ·5 dual-aperture screen.
- 6 [17] (Canceled)
- 7 [18] (Currently Amended) The apparatus architecture of claim 11 wherein said detector is a
- 8 UV-sensitive CCD camera.
- 9 [19] (Currently Amended) The apparatus architecture of claim 11 wherein said detector is a
- 10 photomultiplier tube (PMT).
- [20] (Previously Presented -- Currently Amended) The apparatus architecture of claim 11
- 12 wherein the number of said phase probes is two (2).
- 13 [21] (New) The apparatus of claim 1 wherein said module is of the Twyman-Green
- interferometer type.
- 15 [22] (New) The apparatus of claim 11 wherein said module is of the Twyman-Green
- interferometer type.

17

18