ColumbiaX: Machine Learning Lecture 9

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

LOGISTIC REGRESSION

BINARY CLASSIFICATION

Linear classifiers

Given: Data $(x_1, y_1), \ldots, (x_n, y_n)$, where $x_i \in \mathbb{R}^d$ and $y_i \in \{-1, +1\}$

A linear classifier takes a vector $w \in \mathbb{R}^d$ and scalar $w_0 \in \mathbb{R}$ and predicts

$$y_i = f(x_i; w, w_0) = \operatorname{sign}(x_i^T w + w_0).$$

We discussed two methods last time:

- ► Least squares: Sensitive to outliers
- ▶ Perceptron: Convergence issues, assumes linear separability

Can we combine the separating hyperplane idea with probability to fix this?

BAYES LINEAR CLASSIFICATION

Linear discriminant analysis

We saw an example of a linear classification rule using a Bayes classifier.

For the model $y \sim \text{Bern}(\pi)$ and $x \mid y \sim N(\mu_y, \Sigma)$, declare y = 1 given x if

$$\ln \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)} > 0.$$

In this case, the *log odds* is equal to

$$\ln \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)} = \underbrace{\ln \frac{\pi_1}{\pi_0} - \frac{1}{2}(\mu_1 + \mu_0)^T \Sigma^{-1}(\mu_1 - \mu_0)}_{\text{a constant } w_0} + x^T \underbrace{\Sigma^{-1}(\mu_1 - \mu_0)}_{\text{a vector } w}$$

LOG ODDS AND BAYES CLASSIFICATION

Original formulation

Recall that originally we wanted to declare y = 1 given x if

$$\ln \frac{p(y=1|x)}{p(y=0|x)} > 0$$

We didn't have a way to define p(y|x), so we used Bayes rule:

- ▶ Use $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$ and let the p(x) cancel each other in the fraction
- ▶ Define p(y) to be a Bernoulli distribution (coin flip distribution)
- ▶ Define p(x|y) however we want (e.g., a single Gaussian)

Now, we want to directly define p(y|x). We'll use the log odds to do this.

LOG ODDS AND BAYES CLASSIFICATION

Log odds and hyperplanes

Classifying x based on the log odds

$$L = \ln \frac{p(y = +1|x)}{p(y = -1|x)},$$

we notice that

- 1. $L \gg 0$: more confident y = +1,
- 2. $L \ll 0$: more confident y = -1,
- 3. L = 0: can go either way

The linear function $x^T w + w_0$ captures these three objectives:

- ► The distance of x to a hyperplane H defined by (w, w_0) is $\left| \frac{x^T w}{\|w\|_2} + \frac{w_0}{\|w\|_2} \right|$.
- ightharpoonup The sign of the function captures which side x is on.
- \blacktriangleright As x moves away/towards H, we become more/less confident.

LOG ODDS AND HYPERPLANES

Logistic link function

We can directly plug in the hyperplane representation for the log odds:

$$\ln \frac{p(y = +1|x)}{p(y = -1|x)} = x^{T} w + w_0$$

Question: What is different from the previous Bayes classifier?

Answer: There was a formula for calculating w and w_0 based on the prior model and data x. Now, we put no restrictions on these values.

Setting p(y = -1|x) = 1 - p(y = +1|x), solve for p(y = +1|x) to find

$$p(y = +1|x) = \frac{\exp\{x^T w + w_0\}}{1 + \exp\{x^T w + w_0\}} = \sigma(x^T w + w_0).$$

- ► This is called the *sigmoid function*.
- ▶ We have chosen $x^T w + w_0$ as the *link function* for the log odds.

LOGISTIC SIGMOID FUNCTION

- ▶ Red line: Sigmoid function $\sigma(x^T w + w_0)$, which maps x to p(y = +1|x).
- ▶ The function $\sigma(\cdot)$ captures our desire to be more confident as we move away from the separating hyperplane, defined by the *x*-axis.
- ▶ (Blue dashed line: On a later slide.)

LOGISTIC REGRESSION

As with regression, absorb the offset: $w \leftarrow \begin{bmatrix} w_0 \\ w \end{bmatrix}$ and $x \leftarrow \begin{bmatrix} 1 \\ x \end{bmatrix}$.

Definition

Let $(x_1, y_1), \dots, (x_n, y_n)$ be a set of binary labeled data with $y \in \{-1, +1\}$. Logistic regression models each y_i as independently generated, with

$$P(y_i = +1|x_i, w) = \sigma(x_i^T w), \quad \sigma(x_i; w) = \frac{e^{x_i^T w}}{1 + e^{x_i^T w}}.$$

Discriminative vs Generative classifiers

- ightharpoonup This is a *discriminative* classifier because x is not directly modeled.
- ▶ Bayes classifiers are known as *generative* because *x* is modeled.

Discriminative: p(y|x) Generative: p(x|y)p(y).

LOGISTIC REGRESSION LIKELIHOOD

Data likelihood

Define $\sigma_i(w) = \sigma(x_i^T w)$. The joint likelihood of y_1, \dots, y_n is

$$p(y_1, \dots, y_n | x_1, \dots, x_n, w) = \prod_{i=1}^n p(y_i | x_i, w)$$
$$= \prod_{i=1}^n \sigma_i(w)^{\mathbb{1}(y_i = +1)} (1 - \sigma_i(w))^{\mathbb{1}(y_i = -1)}$$

- Notice that each x_i modifies the probability of success for its y_i .
- ▶ Predicting new data is the same:
 - ▶ If $x^T w > 0$, then $\sigma(x^T w) > 1/2$ and predict y = +1, and vice versa.
 - We now get a confidence in our prediction via the probability $\sigma(x^T w)$.

LOGISTIC REGRESSION AND MAXIMUM LIKELIHOOD

More notation changes

Use the following fact to condense the notation:

$$\underbrace{\frac{e^{y_i x_i^T w}}{1 + e^{y_i x_i^T w}}}_{\sigma_i(y_i \cdot w)} = \left(\underbrace{\frac{e^{x_i^T w}}{1 + e^{x_i^T w}}}_{\sigma_i(w)}\right)^{\mathbb{1}(y_i = +1)} \left(\underbrace{1 - \frac{e^{x_i^T w}}{1 + e^{x_i^T w}}}_{1 - \sigma_i(w)}\right)^{\mathbb{1}(y_i = -1)}$$

therefore, the data likelihood can be written compactly as

$$p(y_1,\ldots,y_n|x_1,\ldots,x_n,w)=\prod_{i=1}^n\sigma_i(y_i\cdot w)$$

We want to maximize this over w.

LOGISTIC REGRESSION AND MAXIMUM LIKELIHOOD

Maximum likelihood

The maximum likelihood solution for w can be written

$$w_{\text{ML}} = \arg \max_{w} \sum_{i=1}^{n} \ln \sigma_{i}(y_{i} \cdot w)$$

= $\arg \max_{w} \mathcal{L}$

As with the Perceptron, we can't directly set $\nabla_w \mathcal{L} = 0$, so we need an iterative algorithm. At step t, we can update

$$w^{(t+1)} = w^{(t)} + \eta \nabla_w \mathcal{L}, \qquad \nabla_w \mathcal{L} = \sum_{i=1}^n (1 - \sigma_i(y_i \cdot w)) y_i x_i.$$

We will see that this results in an algorithm similar to the Perceptron.

LOGISTIC REGRESSION ALGORITHM (STEEPEST ASCENT)

Input: Training data $(x_1, y_i), \ldots, (x_n, y_n)$ and step size $\eta > 0$

- 1. **Set** $w^{(1)} = \vec{0}$
- 2. For step t = 1, 2, ... do

• Update
$$w^{(t+1)} = w^{(t)} + \eta \sum_{i=1}^{n} (1 - \sigma_i(y_i \cdot w)) y_i x_i$$

Perceptron: Search for misclassified (x_i, y_i) , update $w^{(t+1)} = w^{(t)} + \eta y_i x_i$.

Logistic regression: Something similar except we sum over all data.

- ▶ Recall that $\sigma_i(y_i \cdot w)$ picks out the probability assigned to the observed y_i .
- ► Therefore $1 \sigma_i(y_i \cdot w)$ is the probability assigned to the *wrong* value.
- ▶ Perceptron is "all-or-nothing." Either it's correctly or incorrectly classified.
- ▶ Logistic regression has a probability "fudge-factor."

BAYESIAN LOGISTIC REGRESSION

Problem: If a hyperplane can separate all training data, then $||w_{\text{ML}}||_2 \to \infty$. This drives $\sigma_i(y_i \cdot w) \to 1$ for each (x_i, y_i) .

Even for nearly separable data it might get a few very wrong in order to be more confident about the rest. This is a case of "over-fitting."

A solution: Regularize w with $\lambda w^T w$:

$$w_{\text{MAP}} = \arg\max_{w} \sum_{i=1}^{n} \ln \sigma_{i}(y_{i} \cdot w) - \lambda w^{T} w$$

We've seen how this corresponds to a Gaussian prior distribution on w.

How about the posterior p(w|x, y)?

LAPLACE APPROXIMATION

BAYESIAN LOGISTIC REGRESSION

Posterior calculation

Define the prior distribution on w to be $w \sim N(0, \lambda^{-1}I)$. The posterior is

$$p(w|x,y) = \frac{p(w) \prod_{i=1}^{n} \sigma_i(y_i \cdot w)}{\int p(w) \prod_{i=1}^{n} \sigma_i(y_i \cdot w) dw}$$

This is not a "standard" distribution and we can't calculate the denominator.

Therefore we can't actually say what p(w|x, y) is.

Can we approximate p(w|x, y)?

LAPLACE APPROXIMATION

One strategy

Pick a distribution to approximate p(w|x, y). We will say

$$p(w|x, y) \approx \text{Normal}(\mu, \Sigma).$$

Now we need a method for setting μ and Σ .

Laplace approximations

Using a condensed notation, notice from Bayes rule that

$$p(w|x,y) = \frac{e^{\ln p(y,w|x)}}{\int e^{\ln p(y,w|x)} dw}.$$

We will approximate $\ln p(y, w|x)$ in the numerator and denominator.

LAPLACE APPROXIMATION

Let's define $f(w) = \ln p(y, w|x)$.

Taylor expansions

We can approximate f(w) with a **second order Taylor expansion**.

Recall that $w \in \mathbb{R}^{d+1}$. For any point $z \in \mathbb{R}^{d+1}$,

$$f(w) \approx f(z) + (w - z)^{T} \nabla f(z) + \frac{1}{2} (w - z)^{T} (\nabla^{2} f(z)) (w - z)$$

The notation $\nabla f(z)$ is short for $\nabla_w f(w)|_z$, and similarly for the matrix of second derivatives. We just need to pick z.

The Laplace approximation defines $z = w_{\text{MAP}}$.

LAPLACE APPROXIMATION (SOLVING)

Recall $f(w) = \ln p(y, w|x)$ and $z = w_{\text{MAP}}$. From Bayes rule and the Laplace approximation we now have

$$p(w|x,y) = \frac{e^{f(w)}}{\int e^{f(w)}dw}$$

$$\approx \frac{e^{f(z)+(w-z)^{T}\nabla f(z)+\frac{1}{2}(w-z)^{T}(\nabla^{2}f(z))(w-z)}}{\int e^{f(z)+(w-z)^{T}\nabla f(z)+\frac{1}{2}(w-z)^{T}(\nabla^{2}f(z))(w-z)}dw}$$

This can be simplified in two ways,

- 1. The term $e^{f(w_{MAP})}$ in the numerator and denominator can be viewed as a constant since it doesn't vary in w. It therefore cancels out.
- 2. By definition of how we find w_{MAP} , the vector $\nabla_w \ln p(y, w|x) | w_{\text{MAP}} = 0$.

LAPLACE APPROXIMATION (SOLVING)

We're therefore left with the approximation

$$p(w|x,y) \ \approx \ \frac{\mathrm{e}^{-\frac{1}{2}(w-w_{\mathrm{MAP}})^T \left(-\nabla^2 \ln p(y,w_{\mathrm{MAP}}|x)\right)(w-w_{\mathrm{MAP}})}}{\int \mathrm{e}^{-\frac{1}{2}(w-w_{\mathrm{MAP}})^T \left(-\nabla^2 \ln p(y,w_{\mathrm{MAP}}|x)\right)(w-w_{\mathrm{MAP}})} dw}$$

The solution comes by observing that this is a multivariate normal,

$$p(w|x, y) \approx \text{Normal}(\mu, \Sigma),$$

where

$$\mu = w_{\text{MAP}}, \quad \Sigma = \left(-\nabla^2 \ln p(y, w_{\text{MAP}}|x)\right)^{-1}$$

We can take the second derivative (Hessian) of the log joint likelihood to find

$$\nabla^2 \ln p(y, w_{\text{MAP}}|x) = -\lambda I - \sum_{i=1}^n \sigma(y_i \cdot x_i^T w_{\text{MAP}}) \left(1 - \sigma(y_i \cdot x_i^T w_{\text{MAP}})\right) x_i x_i^T$$

BAYESIAN LOGISTIC REGRESSION

Laplace approximation for logistic regression

Given labeled data $(x_1, y_1), \ldots, (x_n, y_n)$ and the model

$$P(y_i|x_i, w) = \sigma(y_i x_i^T w), \quad w \sim N(0, \lambda^{-1} I), \qquad \sigma(y_i x_i^T w) = \frac{e^{y_i x_i^T w}}{1 + e^{y_i x_i^T w}}$$

1. Find:
$$w_{\text{MAP}} = \arg \max_{w} \sum_{i=1}^{n} \ln \sigma(y_i x_i^T w_{\text{MAP}}) - \frac{\lambda}{2} w^T w$$

2. Set:
$$-\Sigma^{-1} = -\lambda I - \sum_{i=1}^{n} \sigma(y_i x_i^T w_{\text{MAP}}) \left(1 - \sigma(y_i x_i^T w_{\text{MAP}})\right) x_i x_i^T$$

3. Approximate: $p(w|x, y) = N(w_{MAP}, \Sigma)$.

ColumbiaX: Machine Learning Lecture 10

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

FEATURE EXPANSIONS

FEATURE EXPANSIONS

Feature expansions (also called **basis expansions**) are names given to a technique we've already discussed and made use of.

Problem: A linear model on the original feature space $x \in \mathbb{R}^d$ doesn't work.

Solution: Map the features to a higher dimensional space $\phi(x) \in \mathbb{R}^D$, where D > d, and do linear modeling there.

Examples

- ▶ For polynomial regression on \mathbb{R} , we let $\phi(x) = (x, x^2, \dots, x^p)$.
- ► For jump discontinuities, $\phi(x) = (x, 1\{x < a\})$.

MAPPING EXAMPLE FOR REGRESSION

High-dimensional maps can transform the data so output is linear in inputs.

Left: Original $x \in \mathbb{R}$ and response y.

Right: x mapped to \mathbb{R}^2 using $\phi(x) = (x, \cos x)^T$.

MAPPING EXAMPLE FOR REGRESSION

Using the mapping $\phi(x) = (x, \cos x)^T$, learn the linear regression model

$$y \approx w_0 + \phi(x)^T w$$

 $\approx w_0 + w_1 x + w_2 \cos x.$

Left: Learn (w_0, w_1, w_2) to approximate data on the left with a plane.

Right: For each point x, map to $\phi(x)$ and predict y. Plot as a function of x.

MAPPING EXAMPLE FOR CLASSIFICATION

High-dimensional maps can transform data so it becomes linearly separable.

Left: Original data in \mathbb{R}^2 .

Right: Data mapped to \mathbb{R}^3 using $\phi(x) = (x_1^2, x_1x_2, x_2^2)^T$.

MAPPING EXAMPLE FOR CLASSIFICATION

Using the mapping $\phi(x) = (x_1^2, x_1x_2, x_2^2)^T$, learn a linear classifier

$$y = sign(w_0 + \phi(x)^T w)$$

= sign(w_0 + w_1x_1^2 + w_2x_1x_2 + w_3x_2^2).

Left: Learn (w_0, w_1, w_2, w_3) to linearly separate classes with hyperplane.

Right: For each point x, map to $\phi(x)$ and classify. Color decision regions in \mathbb{R}^2 .

FEATURE EXPANSIONS AND DOT PRODUCTS

What expansion should I use?

This is not obvious. The illustrations required knowledge about the data that we likely won't have (especially if it's in high dimensions).

One approach is to use the "kitchen sink": If you can think of it, then use it. Select the useful features with an ℓ_1 penalty

$$w_{\ell_1} = \arg\min_{w} \sum_{i=1}^{n} f(y_i, \phi(x_i), w) + \lambda ||w||_1.$$

We know that this will find a sparse subset of the dimensions of $\phi(x)$ to use.

Often we only need to work with dot products $\phi(x_i)^T \phi(x_j) \equiv K(x_i, x_j)$. This is called a **kernel** and can produce some interesting results.

PERCEPTRON (SOME MOTIVATION)

Perceptron classifier

Let $x_i \in \mathbb{R}^{d+1}$ and $y_i \in \{-1, +1\}$ for i = 1, ..., n observations. We saw that the Perceptron constructs the hyperplane from data,

$$w = \sum_{i \in \mathcal{M}} y_i x_i,$$

where M is the sequentially constructed set of misclassified examples.

Predicting new data

We also discussed how we can predict the label y_0 for a new observation x_0 :

$$y_0 = \operatorname{sign}(x_0^T w) = \operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_i x_0^T x_i\right)$$

We've taken feature expansions for granted, but we can explicitly write it as

$$y_0 = sign(\phi(x_0)^T w) = sign(\sum_{i \in \mathcal{M}} y_i \phi(x_0)^T \phi(x_i))$$

We can represent the decision using dot products between data points.

KERNELS

Kernel definition

A kernel $K(\cdot, \cdot): \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a symmetric function defined as follows:

Definition: For any set of n data points $x_1, \ldots, x_n \in \mathbb{R}^d$, the $n \times n$ matrix K, where $K_{ij} = K(x_i, x_j)$, is *positive semidefinite*.

Intuitively, this means *K* satisfies the properties of a covariance matrix.

Mercer's theorem

If the function $K(\cdot,\cdot)$ satisfies the above properties, then there exists a mapping $\phi:\mathbb{R}^d\to\mathbb{R}^D$ such that

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j).$$

If we first define $\phi(\cdot)$ and then K, this is obvious. However, sometimes we first define $K(\cdot, \cdot)$ and avoid ever using $\phi(\cdot)$.

GAUSSIAN KERNEL (RADIAL BASIS FUNCTION)

By far the most popular kernel is the Gaussian kernel, also called the radial basis function (RBF),

$$K(x, x') = a \exp\left\{-\frac{1}{b}||x - x'||^2\right\}.$$

- ► This is a good, general-purpose kernel that usually works well.
- ▶ It takes into account proximity in \mathbb{R}^d . Things close together in space have larger value (as defined by kernel width b).

In this case, the the mapping $\phi(x)$ that produces the RBF kernel is *infinite dimensional* (it's a continuous function instead of a vector). Therefore

$$K(x,x') = \int \phi_t(x)\phi_t(x') dt.$$

- \blacktriangleright K(x,x') is like a Gaussian on x with x' as the mean (or vice versa).
- $\phi_t(x)$ can be thought of as a function of t with parameter x.

KERNELS

Another kernel

Map:
$$\phi(x) = (1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \dots, \sqrt{2}x_i x_j, \dots)$$

Kernel:
$$\phi(x)^T \phi(x') = K(x, x') = (1 + x^T x')^2$$

In fact, we can show: $K(x, x') = (1 + x^T x')^b$, for b > 0 is a kernel as well.

Kernel arithmetic

Certain functions of kernels can produce new kernels.

Let K_1 and K_2 be any two kernels, then constructing K in the following ways produces a new kernel (among many other ways):

$$K(x,x') = K_1(x,x')K_2(x,x')$$

 $K(x,x') = K_1(x,x') + K_2(x,x')$
 $K(x,x') = \exp\{K_1(x,x')\}$

KERNELIZED PERCEPTRON

Returning to the Perceptron

We write the feature-expanded decision as

$$y_0 = \operatorname{sign} \left(\sum_{i \in \mathcal{M}} y_i \phi(x_0)^T \phi(x_i) \right)$$

=
$$\operatorname{sign} \left(\sum_{i \in \mathcal{M}} y_i K(x_0, x_i) \right)$$

We can pick the kernel we want to use. Let's pick the RBF (set a = 1). Then

$$y_0 = \operatorname{sign}\left(\sum_{i \in \mathcal{M}} y_i e^{-\frac{1}{b}||x_0 - x_i||^2}\right)$$

Notice that we never actually need to calculate $\phi(x)$.

What is this doing?

- ▶ Notice $0 < K(x_0, x_i) \le 1$, with bigger values when x_0 is closer to x_i .
- ▶ This is like a "soft voting" among the data picked by Perceptron.

KERNELIZED PERCEPTRON

Learning the kernelized Perceptron

Recall: Given a current vector $w^{(t)} = \sum_{i \in \mathcal{M}_t} y_i x_i$, we update it as follows,

- 1. Find a new x' such that $y' \neq \operatorname{sign}(x'^T w^{(t)})$
- 2. Add the index of x' to \mathcal{M} and set $w^{(t+1)} = \sum_{i \in \mathcal{M}_{t+1}} y_i x_i$

Again we only need dot products, meaning these steps are equivalent to

- 1. Find a new x' such that $y' \neq \text{sign}(\sum_{i \in \mathcal{M}_t} y_i K(x', x_i))$
- 2. Add the index of x' to \mathcal{M} but don't bother calculating $w^{(t+1)}$

The trick is to realize that we never need to work with $\phi(x)$.

- ▶ We don't need $\phi(x)$ to do Step 1 above.
- We don't need $\phi(x)$ to classify new data (previous slide).
- ▶ We only ever need to calculate K(x,x') between two points.

KERNEL k-NN

An extension

We can generalize kernelized Perceptron to *soft k*-NN with a simple change. Instead of summing over misclassified data \mathcal{M} , sum over *all* the data:

$$y_0 = \operatorname{sign}\left(\sum_{i=1}^n y_i e^{-\frac{1}{b}\|x_0 - x_i\|^2}\right).$$

Next, notice the *decision* doesn't change if we divide by a positive constant.

Let:
$$Z = \sum_{j=1}^{n} e^{-\frac{1}{b}||x_0 - x_j||^2}$$

Construct: Vector
$$p(x_0)$$
, where $p_i(x_0) = \frac{1}{Z} e^{-\frac{1}{b}||x_0 - x_i||^2}$

Declare:
$$y_0 = \operatorname{sign}\left(\sum_{i=1}^n y_i p_i(x_0)\right)$$

- ▶ We let all data vote for the label based on a "confidence score" $p(x_0)$.
- ▶ Set *b* so that most $p_i(x_0) \approx 0$ to only focus on neighborhood around x_0 .

KERNEL REGRESSION

Nadaraya-Watson model

The developments are almost limitless.

Here's a regression example almost identical to the kernelized *k*-NN:

Before:
$$y \in \{-1, +1\}$$

Now: $y \in \mathbb{R}$

Using the RBF kernel, for a new (x_0, y_0) predict

$$y_0 = \sum_{i=1}^n y_i \frac{K(x_0, x_i)}{\sum_{j=1}^n K(x_0, x_j)}.$$

What is this doing?

We're taking a locally weighted average of all y_i for which x_i is close to x_0 (as decided by the kernel width). *Gaussian processes* are another option...

KERNELIZED BAYESIAN LINEAR REGRESSION

Regression setup: For *n* observations, with response vector $y \in \mathbb{R}^n$ and their feature matrix X, we define the likelihood and prior

$$y \sim N(Xw, \sigma^2 I), \quad w \sim N(0, \lambda^{-1} I).$$

Marginalizing: What if we integrate out w? We can solve this,

$$p(y|X) = \int p(y|X, w)p(w)dw = N(0, \sigma^2 I + \lambda^{-1} X X^T).$$

Kernelization: Notice that $(XX^T)_{ij} = x_i^T x_j$. Replace each x with $\phi(x)$ after which we can say $(\phi(X)\phi(X)^T)_{ij} = K(x_i, x_j)$. We can define K directly, so

$$p(y|X) = \int p(y|X, w)p(w)dw = N(0, \sigma^2 I + \lambda^{-1} K).$$

This is called a *Gaussian process*. We never use w or $\phi(x)$, but just $K(x_i, x_j)$.

Definition

- Let $f(x) \in \mathbb{R}$ and $x \in \mathbb{R}^d$.
- Define the *kernel* K(x, x') between two points x and x'.
- Then f(x) is a Gaussian process and y(x) the noise-added process if

$$y | f \sim N(f, \sigma^2 I), \quad f \sim N(0, K) \quad \Leftrightarrow \quad y \sim N(0, \sigma^2 I + K)$$

where $y = (y_1, \dots, y_n)^T$ and K is $n \times n$ with $K_{ii} = K(x_i, x_i)$.

Comments:

- We combined the previous λ^{-1} with K (for notation only).
- ▶ Typical breakdown: f(x) is the GP and y(x) equals f(x) plus i.i.d. noise.
- ► The kernel is what keeps this from being "just a Gaussian."

Above: A Gaussian process f(x) generated using

$$K(x_i, x_j) = \exp\left\{-\frac{\|x_i - x_j\|^2}{b}\right\}.$$

Right: The covariance of f(x) defined by K.

Top: Unobserved underlying function, **Bottom:** Noisy observed data sampled from this function

PREDICTIONS WITH GAUSSIAN VECTORS

Bayesian linear regression

Imagine we have *n* observation pairs $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ and want to predict y_0 given x_0 . Integrating out w, the joint distribution is

$$\begin{bmatrix} y_0 \\ y \end{bmatrix} \sim \text{Normal} \begin{pmatrix} \mathbf{0}, \sigma^2 I + \begin{bmatrix} x_0^T x_0 & (X x_0)^T \\ X x_0 & X X^T \end{bmatrix} \end{pmatrix}$$

We want to predict y_0 given \mathcal{D} and x_0 . Calculations can show that

$$y_0 | \mathcal{D}, x_0 \sim \text{Normal}(\mu_0, \sigma_0^2)$$

 $\mu_0 = (Xx_0)^T (XX^T)^{-1} y$
 $\sigma_0^2 = \sigma^2 + x_0^T x_0 - (Xx_0)^T (XX^T)^{-1} (Xx_0)$

The since the infinite Gaussian process is only evaluated at a finite set of points, we can use this fact.

PREDICTIONS WITH GAUSSIAN PROCESSES

Predictive distribution of y(x)

Given measured data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$, the distribution of y(x) can be calculated at any *new* x to make predictions.

Let $K(x, \mathcal{D}_n) = [K(x, x_1), \dots, K(x, x_n)]$ and K_n be the $n \times n$ kernel matrix restricted points in \mathcal{D}_n . Then we can show

$$y(x)|\mathcal{D}_n \sim N(\mu(x), \Sigma(x)),$$

$$\mu(x) = K(x, \mathcal{D}_n)K_n^{-1}y,$$

$$\Sigma(x) = \sigma^2 + K(x, x) - K(x, \mathcal{D}_n)K_n^{-1}K(x, \mathcal{D}_n)^T$$

For the posterior of f(x) instead of y(x), just remove σ^2 .

GAUSSIAN PROCESSES POSTERIOR

What does the posterior distribution of f(x) look like?

- ▶ We have data marked by an \times .
- ▶ These values pin down the function f(x) nearby
- \blacktriangleright We get a mean and variance for every possible x from a previous slide.
- ► The distribution on y(x) adds variance σ^2 (*very* small above) point-wise.