USO DE ÁLGEBRAS MODERNAS PARA SEGURIDAD Y CRIPTOGRAFÍA TAREA I

Resuelve los siguientes problemas. La tarea deberá ser entregada en hojas blancas (digitalizadas en un solo archivo pdf). No se aceptarán tareas en hojas de libreta o de algún otro tipo de cuaderno. Trabajen con limpieza y hagan procedimientos legibles y claros, argumentando cada paso en su solución. No entreguen la tarea con portada, pero especifiquen bien sus nombres, matrícula, número de equipo, y el número de la tarea que están entregando; escriban estos datos en la parte superior de la primera hoja. Si desean entregar un documento en formato pdf generado con Latex, esto también está permitido.

FECHA DE ENTREGA: domingo 24 de abril de 2022.

- 1. Sea d = mcd(a, b). Si a = dx y b = dy, prueba que mcd(x, y) = 1.
- 2. Muestra que 5n+3 y 7n+4 son primos relativos para todo $n \in \mathbb{N}$.
- 3. En la canción "As" de Stevie Wonder, él menciona que $8 \times 8 \times 8 = 4$. Encuentra todos los enteros para los cuales esto es cierto módulo n.
- 4. Encuentra los inversos de los siguientes elementos:
 - (a) $13 \in \mathbb{Z}_{20}$.
 - (b) $13 \in U(14)$.
 - (c) $n-1 \in U(n)$.
- 5. Muestra que la ecuación $5x \equiv 3 \mod 20$ no tiene solución, pero que la ecuación $3x \equiv 5 \mod 20$ sí la tiene. ¿A qué es igual x?
- 6. Muestra que el conjunto $G = \{5, 15, 25, 35\}$ es un grupo bajo la multiplicación módulo 40. ¿Cuál es la identidad de este grupo? ¿Encuentras una relación entre este grupo y U(8)?
- 7. Prueba que un grupo G es Abeliano si y solo si $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$.
- 8. Prueba que un grupo G con la propiedad de que $\forall g \in G, g^2 = e$, entonces G es Abeliano.
- 9. Sea $G = \{e, a, a^2, b, ab, a^2b\}$. Si |a| = 3 y |b| = 2, determina cuál de los seis elementos de G es igual a aba^2 y cual es equivalente a a^2bab .
- 10. Sea G un grupo y sea n un entero impar positivo tal que $g^n=e$ para todo $g\in G$. Si $a,b\in G$ y $a^2=b^2$, prueba que a=b.
- 11. Para cualquier grupo G, prueba que para todo $a, b \in G$ se tiene que |ab| = |ba|. Explica por qué esto prueba que |abab| = |baba|. Además, ¿es verdad que |aba| = |bab|?
- 12. Asume que H es un subgrupo propio de \mathbb{Z} bajo la adición y que $18,30,40 \in H$. Determina H.
- 13. Si H y K son subgrupos de G, demuestra que $H \cap K$ también es un subgrupo de G.
- 14. Encuentra un grupo que no sea cíclico, pero cuyos subgrupos sí lo sean.
- 15. Sea G un grupo cíclico y sea $a \in G$. Prueba que $\langle a \rangle = \langle a^{-1} \rangle$.
- 16. Prueba que $U(2^n)$ no es cíclico si $n \geq 3$.
- 17. ¿Cuál es el orden de el producto de un par de ciclos disyuntos de longitud 4 y 6? Si ahora se tienen tres ciclos disyuntos con longitudes iguales a 6, 8 y 10, ¿cuál es el orden del producto de estos ciclos?
- 18. ¿Cuál es el entero positivo n más pequeño para el cual S_n tiene un elemento de orden igual a 30?

- 19. Sea $\alpha = (123)(145)$. Obtén la versión de ciclos disyuntos de α y calcula α^{99} .
- 20. Para cualquier grupo G y cualquier automorfismo $\phi:G\to G$, demuestra que para todo $a\in G$, $|a|=|\phi(a)|.$
- 21. Asume que $\phi: \mathbb{Z}_{20} \to \mathbb{Z}_{20}$ es un automorfismo y $\phi(5) = 5$. ¿A qué puede ser igual $\phi(x)$? ¿Son estas posibilidades isomórficas a algún subgrupo de U(20)? Si es así, ¿cuál sería ese subgrupo?
- 22. Sean α y β isomorfismos que van de un grupo G a este mismo. Prueba que $H = \{g \in G : \alpha(g) = \beta(g)\}$ es un subgrupo de G.