CSE544: Assignment 5 Solutions

From the fable, the maximum difference is 0.24.

91

x	$F_Y(x)$	$\hat{F_x}$	$\hat{F_x^+}$	$ \hat{F_x} - F_Y(x) $	$ \hat{F_x^+} - F_Y(x) $
0.6	0.2	0.0	0.1	0.2	0.1
0.85	0.283	0.1	0.2	0.1833	0.0833
0.97	0.3233	0.2	0.3	0.1233	0.0233
1.09	0.3633	0.3	0.4	0.0633	0.0366
1.23	0.41	0.4	0.5	0.01	0.09
1.34	0.4466	0.5	0.6	0.0533	0.1533
1.68	0.56	0.6	0.7	0.04	0.14
1.78	0.593	0.7	0.8	0.106	0.206
1.98	0.66	0.8	0.9	0.14	0.24
2.65	0.8833	0.9	1.0	0.0166	0.116.

0.24 < C(0.37).

Therefore, we fail to reject H_0 (Null Hypothesis).

$$H_0: X \equiv Y$$

$$X = \{2, 9\} Y = \{4\}$$

Calculating the difference of Means for the given Dataset

$$T_{Obs} = |5.5 - 4| = 1.5$$

Calculating Difference of Means for the 6 possible permutations:

S.No	Permutation	$T_i = \overline{X} - \overline{Y} $
1	$\{2, 9\} \{4\}$	1.5
2	$\{9, 2\} \{4\}$	1.5
3	$\{2, 4\} \{9\}$	6
4	$\{4, 9\} \{2\}$	4.5
5	$\{4, 2\} \{9\}$	6
6	$\{9, 4\} \{2\}$	4.5

$$p_{val} = \frac{1}{N!} \sum_{i=1}^{N!} I(T_i > T_O bs)$$

$$p_{val} = \frac{4}{6}$$

$$p_{val} = 0.66$$

Here p-value = 0.66; (> 0.05 threshold). Therefore, we fail to reject H_0 .

93

(a)

	Dealer A	Dealer B	Dealer C	Total
Win	48	54	19	121
Draw	7	5	4	16
Lose	55	50	25	130
Total	110	109	48	267

From the above table, $Grand\ Total = 267$

$$P(Win) = \frac{TotalWins}{GrandTotal} = \frac{121}{267}$$

$$P(DealerA) = \frac{TotalA}{GrandTotal} = \frac{110}{267}$$

If the outcomes are independent of dealer;

Expected frequency of Win and Dealer $A = (Grand\ Total) * P(Win) * P(Dealer A)$

Similarly, we populate the below table with expected frequencies:

	Dealer A	Dealer B	Dealer C
Win	49.85	49.4	21.75
Draw	6.59	6.53	2.88
Lose	53.56	53.07	23.37

Evaluating the χ^2 test:

Observed	Expected	$\frac{(O-E)^2}{E}$
48	49.85	0.0686
54	49.4	0.428
19	21.75	0.3477
7	6.59	0.0255
5	6.53	0.358
4	2.88	0.435
55	53.56	0.0387
50	53.07	0.178
25	23.37	0.113
$\sum O = 267$	$\sum E = 267$	$\sum \frac{(O-E)^2}{E} = 1.993$

We now have the Q - statistic(Q) = 1.993

$$df(Degree\ of\ Freedom) = (3-1)*(3-1)$$

 $p-value = Pr(\chi_4^2 > 1.993) = 1-0.2629 = 0.737$

As p - value(0.737) > 0.05, we fail to reject H_0 .

(b)

$$\rho_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{(X_i - \overline{X})^2} \sqrt{(Y_i - \overline{Y})^2}}$$

Dealer A; $\overline{X} = 45$ Dealer B; $\overline{X} = 45.2$ Dealer C; $\overline{X} = 32.6$

$$\begin{array}{l} \rho_{A,B} = \frac{1396}{\sqrt{14622193.6}} = 0.779 (>0.5) - \text{Positive linear correlation} \\ \rho_{B,C} = \frac{-96.2}{\sqrt{2193.6694.4}} = -0.779 - \text{No linear correlation} \\ \rho_{A,C} = \frac{1396}{\sqrt{1462694.4}} = 0.0218 - \text{No linear correlation} \end{array}$$

As the probability of winning each game is same; the results for each of the dealers should be correlated. We observe from above that results from Dealer C are not linearly correlated with Dealer A and Dealer B. We could infer that Dealer C is responsible for loss of money.

3

(a)

$$p-value: 1999vs.2009 = 0.0$$

 $p-value: 2009vs.2019 = 0.0$

Reject null hypothesis for both scenarios as $0.0 < 0.05\,$

(b)

$$\begin{aligned} p-value : &1999vs.2009 = 0.0\\ p-value : &2009vs.2019 = 0.0 \end{aligned}$$

Reject null hypothesis for both scenarios as 0.0 < 0.05

(c)

Point of maximum difference is 95.6 KS statistic is 0.804

Point of maximum difference is 104.3 KS statistic is 0.806

Based on above plots: for the period 1999-2009;

D = 0.804

 $D > 0.05 (max\ difference\ threshold)$

Thus, for 1999-2009, we reject the null hypothesis. $\,$

Similarly, the period 2009-2019;

D = 0.806

 $D > 0.05 (max\ difference\ threshold)$

Thus, for 2009-2019, we reject the null hypothesis.

Note that in \$5 below, since we assumed n and are large, of and \$2 are nell approximated by \$3, and by consistency of sample variance, we can replace \$01 & \$02 with \$x & \$x\$ we can replace \$01 & \$02 with \$x & \$x\$ respectively.

Sina
$$X_1, \dots, X_m$$
 X_m X_m

$$= P \left(\frac{X - Y - (H_1 - H_2)}{\sqrt{\frac{8x^2}{n}} + \frac{5x^2}{m}} - \frac{H_1 - H_2}{\sqrt{\frac{5x^2}{n}} + \frac{5x^2}{m}} \right)$$

$$= \sqrt{\frac{-S - \frac{H_1 - H_2}{\sqrt{\frac{3x^2}{n}} + \frac{5x^2}{m}}}{\sqrt{\frac{3x^2}{n}} + \frac{5x^2}{m}}$$

$$= \sqrt{\frac{-S - \frac{H_1 - H_2}{\sqrt{\frac{5x^2}{n}} + \frac{5x^2}{m}}}{\sqrt{\frac{5x^2}{n} + \frac{5x^2}{m}}} - \frac{N(0, 1)}{\sqrt{\frac{5x^2}{n} + \frac{5x^2}{m}}}$$

$$= \sqrt{\frac{-S - \frac{1}{2}}{\sqrt{\frac{5x^2}{n} + \frac{5x^2}{m}}}} - \sqrt{\frac{-S - \frac{1}{2} - \frac{1}{2}}{\sqrt{\frac{5x^2}{n} + \frac{5x^2}{m}}}}$$

$$= \sqrt{\frac{-S - \frac{1}{2} - \frac{1}{2}}{\sqrt{\frac{5x^2}{n} + \frac{5x^2}{m}}}} - \sqrt{\frac{-S - \frac{1}{2} - \frac{1}{2}}{\sqrt{\frac{5x^2}{n} + \frac{5x^2}{m}}}}$$

(b) Let
$$t_{06S} = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{S_x^2 + S_y^2}{n}}}$$
 be the

obsurved statistic.

$$= P\left(\frac{\overline{x} - \overline{y}}{\sqrt{S_x^2 t \cdot s_y^2}} \times tobs\right)$$

$$\frac{1}{\sqrt{\frac{5x^2+5x^2}{n^2+\frac{5x^2}{m^2}}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{n^2+\frac{5x^2}{m^2}}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^2}{m^2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\frac{5x^2+5x^$$

$$= \left(\frac{\text{tobs}}{\frac{\left(\frac{1}{2}x^2 + \frac{1}{2}x^2}{\sqrt{n}}}\right)$$

$$= \overline{\mathcal{D}}\left(\frac{\overline{X}-\overline{Y}-(\mathcal{H}_{1}-\mathcal{H}_{1})}{\sqrt{\frac{3}{n}^{2}+\frac{5}{m}^{2}}}\right).$$