Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники
Кафедра электронных вычислительных машин
Отчет по лабораторной работе №7 дисциплины «Системы обработки знаний»
Выполнил студент группы ИВТ-41/Крючков И. С./
Проверил

1. Цель лабораторной работы

В ходе лабораторной работы необходимо подготовить исходные данные для систем нечеткого вывода на базе алгоритма Мамдани и Сугено для заданной функции, а также приобретение основных навыков работы с программой MATLAB.

2. Задание

Разработать скрипт графика двух переменных для функции согласно варианта задания. В отчет включить графики функций с разными параметрами. Например, с 3 шагами изменения диапазона x=-1:0.01:-0.3; x=-1:0.05:-0.3; x=-1:0.1:-0.3, разными цветами, поворотом оси.

Используя линейную аппроксимацию, получить эмпирические формулы для функции y=f(x), зафиксировав значение x1. Например, x1=2 и получить эмпирическую формулу при изменении x2. Сформировать не менее 8 нечетких правил для модели Мамдани и включить их в отчет.

Используя линейную аппроксимацию, получить эмпирические формулы для функции y=f(x). Сформировать не менее 8 нечетких правил для модели Сугено и включить их в отчет.

Сделать выводы по результатам выполнения лабораторной работы №1.

3. Ход работы

Функция: $y = 3x_1^2 * \cos(x_2 + 3)$

Диапазон х1: [-6; 5]

Диапазон х2: [-6; 4]

Задание графиков функций.

Скрипт графика двух переменных для функции $y = 3x_1^2 * \cos(x_2 + 3)$

представлен на рисунке 1. График функции с различными параметрами представлен на рисунках 2-4.

```
n = 10; % Количество точек дискретизации z = -6:(5+6)/n:5 t = -6:(4+6)/n:4; [x1, x2] = meshgrid(z, t); y = (3*x1.^2).*cos(x2+3); mesh(x1, x2, y) xlabel('x_1'); ylabel('x_2'); zlabel('y'); title('Искомая зависимость');
```

Рисунок 1 – скрипт графика

Рисунок 2 – График функции с 10 точками дискретизации

Рисунок 3 – График функции с 25 точками дискретизации

Рисунок 4 – График функции с 100 точками дискретизации

Вычисление значение функции для заданных параметров на интервале и выполнение аппроксимации функции, заданной таблично.

Исходные данные для функции:

Фиксируем x2 = -6 и формируем зависимости для x1

x1	-6	0	5
У	-106.92	0	-74.25

Фиксируем x2 = -1 и формируем зависимости для x1

x 1	-6	0	5
У	-44.9439	0	-31.211

Фиксируем x2 = 3.4 и формируем зависимости для x1

x 1	-6	0	5
У	107.26	0	74.49

Формирование нечетких правил для модели Мамдани:

```
Если X_2 = «низкий» И X_1 = «низкий», ТО y = «низкий»;
```

Если
$$X_2$$
 = «низкий» И X_1 = «средний», ТО y = «средний»;

Если
$$X_2$$
 = «низкий» И X_1 = «высокий», ТО у = «ниже среднего»;

Если
$$X_2$$
 = «средний» И X_1 = «низкий», ТО y = «средний»;

Если
$$X_2$$
 = «средний» И X_1 = «средний», ТО у = «средний»;

Если
$$X_2$$
 = «средний» И X_1 = «высокий», ТО у = «средний»;

Если
$$X_2$$
 = «высокий» И X_1 = «низкий», ТО y = «высокий»;

Если
$$X_2$$
 = «высокий» И X_1 = «средний», ТО y = «средний»;

Если
$$X_2$$
 = «высокий» И X_1 = «высокий», ТО у = «выше среднего»;

Формирование нечетких правил для модели Сугено:

Если
$$X_2$$
 = «низкий» И X_1 = «низкий», $TO y = 26.7298*x1 - 9.4049*x2;$

Если
$$X_2$$
 = «низкий» И X_1 = «средний», $TO y = 2.97*x1 + 1.32*x2$;

Если
$$X_2$$
 = «низкий» И X_1 = «высокий», $TO y = -20.7898*x1 - 5.445*x2;$

Если
$$X_2$$
 = «средний» И X_1 = «низкий», $TO y = 11.236*x1 + 23.7204$;

Если
$$X_2$$
 = «средний» И X_1 = «средний», $TO y = 1.2484*x1 - 3.3292;$

Если
$$X_2$$
 = «средний» И X_1 = «высокий», $TO y = -8.7391*x1 - 13.7328$;

Если
$$X_2$$
 = «высокий» И X_1 = «низкий», $TO y = -26.8160*x1 - 16.6505*x2$;

Если
$$X_2$$
 = «высокий» И X_1 = «средний», TO $y = -2.9796*x1 + 2.3369*x2;$

Если
$$X_2$$
 = «высокий» И X_1 = «высокий», $TO y = 20.8569*x1 - 9.6397*x2$

Выводы

В ходе выполнения лабораторной работы был разработан скрипт для создания графика двух переменных для функции с различными параметрами. Также было сформированы нечеткие правила для модели Мамдани и для модели Сугено. Нечеткая база знаний для модели Мамдани может трактоваться как некоторое разбиение пространства влияющих факторов на подобласти с размытыми границами, в каждой из которых функция отклика принимает значение, заданное соответствующим нечетким множеством. База знаний в модели типа Сугэно имеет вид: ее правила содержат посылки в виде нечетких множеств и заключения в виде четкой линейной функции.