

Big Data with ADAMS

Tweet, tweet, tweet

Collecting tweets

- Twitter allows searches of public tweets
- Twitter offers access to tweets in real time
- ADAMS uses twitter4j.org to access Twitter
- Requires setting up an App

https://apps.twitter.com

Don't worry, it's not that hard...

Settings things up

Create an app

26 & 27 Nov 2015 3 of 26

Settings things up (2)

Set up tokens (consumer and access)

Settings things up (3)

App should show up in your profile settings

Settings things up (4)

Finally, fill in Twitter preferences in ADAMS

User queries

You can query twitter using something like:

```
movie -scary:)
```

[tweets containing "movie" and ":)" but not "scary"]

- Actors to use
 - En TwitterQuery
 - Ec TwitterConverter
- Use case?
 - when looking for specific keywords

Listening

- Rather than posting queries, listen to tweets in real time
- Public access to 1% sample of tweets "garden hose" vs "fire hose"
- Sample bias?

http://arxiv.org/abs/1212.1684

- Use case?
 - create tweet archives for repeatable experiments
 - capture "the moment"
- Actor
 - 🔃 TwitterListener

retrieve a maximum of 100 tweets

convert tweets to text and display them

convert tweets into spreadsheet format and save to CSV "archive tweets"

Continuous archiving

- "Fleeting" nature of tweets makes it hard to repeat experiments
- Archival and replay of tweets solves this
- Next flow shows
 - continuous archival
 - compressed CSV spreadsheets
 - one archive per day

Filtering archives

- At time of writing ~3 million tweets per day
- Experiments can operate on subsets to speed things up considerably
 - → pre-filter spreadsheet archives
- Actors to use
 - 🖾 SpreadSheetFileReader
 - ■F SpreadSheetRowFilter
 - 🖭 SpreadSheetFileWriter

Filtering by country

Filtering by content

Replaying archives

- Replaying archives is excellent for repeatable experiments
- Use cases
 - further filtering
 - feature extraction
 - plotting
- Actor
 - TweetReplay

New Years "Happiness"

Create dataset

- Build dataset from tweets as basis for predictive model
- Use happy vs sad as the "state" of the tweet (= class attribute)
- Add class attribute column using
 - **(fill)** SpreadSheetInsertColumn

Create features

- Using WEKA's StringToWordVector to create features from tweet text
- Apply token cleaners to remove unwanted content
 - users
 - URLs
 - hashtag
 - emoticons

Create features

Create features

using J48 on 1% percent sub-sample

Label tweet stream

- Build model on training set
 - FilteredClassifier: StringToWordVector and J48
- Predict labels for new tweets coming through
- Actors to use
 - ["i"] WekaTrainClassifier
 - [-::] WekaClassifying

Competition: Twitter

- Build a good classification model
- Use the "sanders.arff" dataset
- Perform cross-validation
- Beat ZeroR: 67.1409 %
- Hints
 - Use FilteredClassifier with StringToWordVector
 - Use TwitterNLPTokenizer
 - Use token cleaners

Questions?

