Kubične krivulje v kriptografiji

Miha Avsec

Ljubljana, 30. marec 2020

Motivacija

Zakaj bi uporabljali kubične krivulje za namene kriptografije?

 Kubične krivulje nam zagotavljajo večjo varnost glede na dolžino uporabljenega ključa.

AES	ECC	RSA
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	521	15360

 Krajši ključi predstavljajo prednost predvsem v okoljih s slabšo procesorsko močjo in omejenim pomnilnikom (pametne kartice, IoT, ...).

Projektivna ravnina

Projektivna ravnina \mathbb{P}^2 nad poljem \mathbb{F} je kvocientni prostor $\mathbb{F}^3-\{0\}/\sim$, kjer je ekvivalenčna relacija \sim podana z $(a,b,c)\sim(\alpha a,\alpha b,\alpha c)$ za vsak neničelni $\alpha\in\mathbb{F}$. Točke v \mathbb{P}^2 so torej podane s homogenimi koordinatami $[a,b,c]=[\alpha a,\alpha b,\alpha c]$ za vse $\alpha\neq 0$.

Homogen polinom

Polinom P je homogen stopnje d, če velja

$$P(\lambda x, \lambda y, \lambda z) = \lambda^d P(x, y, z)$$
 za vse $\lambda \in \mathbb{F}$.

.

Slika: Projektivna ravnina

Algebraična krivulja

Algebraična krivulja, podana s homogenim polinomom P, je množica točk

$$\mathcal{C}_P = \{A \in \mathbb{P}^2, P(A) = 0\}.$$

Kubična krivulja

Kubična krivulja je algebraična krivulja, podana s homogenim polinomom stopnje 3. V splošnem je polinom oblike

$$a_{300}x^3 + a_{210}x^2y + a_{201}x^2z + a_{120}xy^2 + a_{102}xz^2 + + a_{012}yz^2 + a_{030}y^3 + a_{003}z^3 + a_{111}xyz + a_{021}y^2z,$$

kjer so $a_{ijk} \in \mathbb{F}$. Ta zapis vsebuje 10 koeficientov, vendar se lahko v gladkih primerih polinom poenostavi z ustrezno zamenjavo spremenljivk.

Gladkost

Algebraična krivulja je gladka, če nima singularne točke.

Izrek

Enačbo gladke kubične krivulje nad algebraično zaprtim poljem lahko zapišemo v Weierstrassovi obliki

$$y^2z = x^3 + axz^2 + bz^3.$$

Slika: $y^2z = x^3 - xz^2$

Zgled v projektivni ravnini z = 1

Slika: $y^2 = x^3 - x$

Slika: $y^2 = x^3 + x$

Grupa nad kubičnimi krivuljami

Za definicijo grupe na kubičnih krivuljah nad $\mathbb C$ najprej uvedimo pomožno operacijo

$$*: \mathcal{C}_P \times \mathcal{C}_P \to \mathcal{C}_P$$
,

tako da za poljubni točki A, B na krivulji velja:

$$A*B = \begin{cases} A & \text{ \'e je } A = B \text{ prevoj,} \\ C & \text{ \'e je } \overline{AB} \cap \mathcal{C}_P = \{A,B,C\}\,, \\ A & \text{ \'e je } \overline{AB} \text{ tangenta v } A, \text{ ter } A \neq B, \\ B & \text{ \'e je } \overline{AB} \text{ tangenta v } B, \text{ ter } A \neq B, \\ C & \text{ \'e je } A = B \text{ in } \{\text{tangenta v } A\} \cap \mathcal{C}_P = \{A,C\}\,. \end{cases}$$

Grupa nad kubičnimi krivuljami

Izrek

Kubična krivulja (C_P ,+) je Abelova grupa za operacijo

$$+: \mathcal{C}_P \times \mathcal{C}_P \rightarrow \mathcal{C}_P \ (A,B) \mapsto (A*B)*O$$
,

kjer je O poljubna izbrana točka na krivulji \mathcal{C}_P .

Opomba

Za kubično krivuljo v Weierstrassovi obliki za točko O ponavadi izberemo tako imenovano točko v neskončnosti, oblike [0,1,0], ki jo označimo z ∞ .

Grupa nad kubičnimi krivuljami

Slika: Grafično seštevanje točk na kubični krivulji.

Eliptične krivulje mod *p*

Za dani števili $a,\ b\in\mathbb{Z}/p\mathbb{Z}$ je $kubična\ krivulja$ nad poljem $\mathbb{Z}/p\mathbb{Z}$ množica točk

$$E_{(a,b)}(\mathbb{Z}/p\mathbb{Z}) = \left\{ [x,y,z] \in \mathbb{P}^2(\mathbb{Z}/p\mathbb{Z}) : y^2z = x^3 + axz^2 + bz^3 \right\}.$$

Drugače povedano, afina kubična krivulja je množica rešitev Weierstrassove enačbe

$$y^2 = x^3 + ax + b,$$

pri čemer upoštevamo zvezo med afinimi in projektivnimi koordinatami točk:

$$(x,y) \in (\mathbb{Z}/p\mathbb{Z})^2 \Leftrightarrow [x,y,1] \in \mathbb{P}^2(\mathbb{Z}/p\mathbb{Z}).$$

Torzijske točke

Definicija

Naj bo E eliptična krivulja nad poljem K, ter naj bo $n \in \mathbb{N}$. Torizjske točke reda n, so točke v množici

$$E[n] = \{ P \in E(\overline{K}) | nP = \infty \}.$$

Izrek

Naj bo E eliptična krivulja nad poljem K in naj bo $n \in \mathbb{N}$. Če karakteristika polja K ne deli n oziroma je enaka 0, potem je

$$E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_n$$
.

Zapišimo $n=p^r n'$, kjer p ne deli n'. Če je karakteristika K enaka p>0 in p|n, potem velja

$$E[n] \cong \mathbb{Z}_{n'} \oplus \mathbb{Z}_{n'}$$
 ali $E[n] \cong \mathbb{Z}_n \oplus \mathbb{Z}_{n'}$.

Endomorfizem

Definicija

Naj bo K polje nad katerim je definirana eliptična krivulja E. Endomorfizem na E je homomorfizem $\alpha: E(\overline{K}) \to E(\overline{K})$, ki je podan z racionalno funkcijo. Torej obstajata racionalni funkciji R_1 in R_2 s koeficienti v \overline{K} za kateri velja

$$\alpha(x,y)=(R_1(x,y),R_2(x,y)),$$

za vse $(x,y) \in E(\overline{K})$.

Standardizirana oblika

Endomorfizem lpha lahko zapišemo v standardizirani obliki

$$\alpha(x,y)=(r_1(x),r_2(x)y), \text{ kjer je} r_1(x)=\frac{p(x)}{q(x)}.$$

Definicija

Stopnja endomorfizma je definirana kot

$$deg(\alpha) = egin{cases} \max\{\deg p(x),\deg q(x)\} & \check{c}e \ lpha \not\equiv 0, \\ 0 & \check{c}e \ lpha \equiv 0. \end{cases}$$

Definicija

Netrivialni endomorfizem α je separabilen, če je odvod $r'_1(x) \not\equiv 0$.

Frobeniusov endomorfizem

Naj bo \mathbb{F}_q končno polje z algebraičnim zaprtjem $\overline{\mathbb{F}_q}$ in naj bo

$$\phi_q: \overline{\mathbb{F}_q} \to \overline{\mathbb{F}_q},$$
$$x \mapsto x^q$$

Frobeniusova preslikava na \mathbb{F}_q . Če je eliptična krivulja E definirana nad \mathbb{F}_q , potem ϕ_q deluje na točkah E kot:

$$\phi_q(x,y) = (x^q,y^q) \text{ in } \phi_q(\infty) = \infty.$$

Hassejev izrek

Izrek (Hasse)

Naj bo E eliptična krivulja nad končnim poljem \mathbb{F}_q . Potem red $E(\mathbb{F}_q)$ zadošča zvezi

$$|q+1-\#E(\mathbb{F}_q)|\leq 2\sqrt{q}$$
.

Red grupe

Trditev

Naj bo
$$\#E(\mathbb{F}_q)=q+1-a$$
. Zapišimo $X^2-aX+q=(X-lpha)(x-eta)$. Potem velja $\#E(\mathbb{F}_{q^n})=q^n+1-(lpha^n+eta^n),$

za vse n > 1.

Delitelji

Delitelj

Naj bo K polje in naj bo P točka na krivulji $E(\overline{K})$. Za vsako točko P definirajmo formalen simbol [P]. Delitelj D na krivulji E je končna linearna kombinacija takih simbolov s celoštevilskimi koeficienti

$$D=\sum_{i}a_{j}[P_{j}],\ a_{j}\in\mathbb{Z}_{.}$$

Definicija

Definirajmo vsoto in stopnjo delitelja kot

$$\operatorname{sum}(\sum_{j} a_{j}[P_{j}]) = \sum_{j} a_{j}P_{j} \in E(\overline{K}),$$

$$\deg(\sum_j a_j[P_j]) = \sum_j a_j \in \mathbb{Z}_.$$

Definicija

Naj bo E eliptična krivulja nad poljem K. Funkcija na E je racionalna funkcija

$$f(x,y) \in \overline{K}$$

ki je definirana za vsaj eno točko na $E(\overline{K})$. Funkcija torej zavzame vrednosti v \overline{K} .

Trditev

Naj bo P točka na krivulji E. Potem obstaja funkcija u_P , kateri rečemo uniformizator, z lastnostjo $u_P(P)=0$, za katero velja, da lahko vsako funkcijo f(x,y) nad E zapišemo kot

$$f=u_P^rg, \ ext{\it za nek } r\in \mathbb{Z}, \ ext{\it kjer } g(P)
eq 0 \ ext{\it in } rac{1}{g(P)}
eq 0.$$

Definicija

Številu r iz trditve rečemo red funkcije f v točki P in ga označimo z $ord_P(f)$.

Definicija

Naj bo f funkcija nad E, ki ni identično enaka 0. Definirajmo delitelj funkcije f kot

$$div(f) = \sum_{P \in E(\overline{K})} ord_P(f)[P] \in Div(E).$$

Weilovo parjenje

Definicija

Naj bo K polje in naj bo $n \in \mathbb{N}$ tak, da karakteristika K ne deli n.

$$\mu_n = \{ x \in \overline{K} | x^n = 1 \}$$

je grupa n-tih korenov enote \overline{K} .

Weilovo parjenje

Izrek

Naj bo E eliptična krivulja definirana nad poljem K, in naj bo $n \in \mathbb{N}$. Predpostavimo, da karakteristika polja K ne deli n. Potem obstaja Weilovo parjenje

$$e_n: E[n] \times E[n] \rightarrow \mu_n,$$

za katerega velja:

• e_n je bilinearna v obeh spremenljivkah

$$e_n(S_1 + S_2, T) = e_n(S_1, T)e_n(S_2, T)$$

in

$$e_n(S, T_1 + T_2) = e_n(S, T_1)e_n(S, T_2)$$

za vse $S, S_1, S_2, T, T_1, T_2 \in E[n]$.

Izrek (nadaljevanje)

- e_n je neizrojena v obeh spremenljivkah. To pomeni, $e_n(S,T)=1$ za vse $T \in E[n]$ natanko tedaj, ko je $S=\infty$.
- $e_n(T,T) = 1$ za vse $T \in E[n]$.
- $e_n(T,S) = e_n(S,T)^{-1}$ za vse $S, T \in E[n]$.
- $e_n(\rho S, \rho T) = \rho(e_n(S, T))$ za vse avtomorfizme ρ na \bar{K} , za katere je ρ identiteta na koeficientih enačbe za E.
- $e_n(\alpha(S), \alpha(T)) = e_n(S, T)^{\deg(\alpha)}$ za vse separabilne endomorfizme α polja E.

Millerjev algoritem

Izrek

Naj bo E eliptična krivulja in naj bosta $P = (x_P, y_P), Q = (x_Q, y_Q)$ ne ničelni točki na E.

• Označimo z λ naklon premice, ki povezuje točki P,Q. V primeru, da sta ti točki enaki, λ predstavlja naklon tangente v točki. Če je premica navpična $(x_P = x_Q)$, potem privzamemo, da je $\lambda = \infty$. Definirajmo funkcijo $g_{P,Q}$ na sledeči način:

$$g_{P,Q} = \begin{cases} \frac{y - y_P - \lambda(x - x_P)}{x + x_P + x_Q - \lambda^2} & \text{ \'e } \lambda \neq \infty, \\ x - x_P & \text{ sicer.} \end{cases}$$

Potem velja

$$div(g_{P,Q}) = [P] + [Q] - [P + Q] - [\infty].$$

Izrek (nadaljevanje)

lacktriangle (Millerjev algoritem) Naj bo m ≥ 1 . Zapišimo m v binarnem kot

$$m = m_0 + m_1 \cdot 2 + m_2 \cdot 2^2 + \ldots + m_{n-1} \cdot 2^{n-1},$$

kjer so $m_i \in \{0,1\}$ in $m_{n-1} \neq 0$. Potem algoritem 1 vrne funkcijo f_P , za katero velja

$$div(f_P) = m[P] - [mP] - (m-1)[\infty].$$

Algoritem 1 Millerjev algoritem

- Vhod: število m podano v binarnem zapisu, točka P na eliptični krivulji
 Izhod: funkcija f_P
- 3: T = P, f = 1
- 4: **for** i = n 2 : 0 **do**
- 5: $f = f^2 \cdot g_{T,T}$
- 6: T = 2T
- 7: if $m_i = 1$ then
- 8: $f = f \cdot g_{T,P}$
- 9: T = T + P
- 10: end if
- 11: end for

Diffie-Hellmanova izmenjava ključev nad eliptičnimi krivuljami

- **4** Alenka in Boris se dogovorita za eliptično krivuljo E nad končnim obsegom \mathbb{F}_q , ter za točko $P \in E(\mathbb{F}_q)$.
- ② Alenka se naključno odloči za skrivno število $a \in \mathbb{N}$, in izračuna $P_a = aP$, ter to pošlje Borisu. Pri tem red točke P ne sme biti enak a.
- **3** Boris se naključno odloči za skrivno število $b \in \mathbb{N}$, in izračuna $P_b = bP$, ter to pošlje Alenki. Pri tem red točke P ne sme biti enak b.
- 4 Alenka izračuna $aP_b = abP$.
- Skupni ključ je abP.

Problem diskretnega logaritma

Definicija

Naj bo G grupa, kjer njeno operacijo označimo $z\circ.$ Naj bosta $a,b\in G.$ Naj b^k označuje

$$b^k = \underbrace{b \circ b \circ \cdots \circ b}_{k-krat}.$$

Število $k \in \mathbb{N}$, ki reši enačbo

$$b^k = a$$

imenujemo diskretni logaritem elementa a pri osnovi b.

Problem diskretnega logaritma

Problem Diffie-Hellmanove izmenjave ključev lahko prevedemo na problem diskretnega logaritma na sledeč način

- Vzemi aP in izračunaj a tako, da rešiš problem diskretnega logaritma.
- Izračunaj a(bP).

Velja torej:

 $DL \Rightarrow DH$

MOV napad

MOV napad uporabi Weilovo parjenje, da pretvori problem diskretnega logaritma iz $E(\mathbb{F}_q)$ v problem diskretnega logaritma nad $\mathbb{F}_{q^m}^{\times}$. Nato pa diskretni logaritem nad novim poljem napademo s pomočjo algoritma izračun indeksa. To deluje če velikost polja \mathbb{F}_{q^m} ni dosti večja od velikosti polja \mathbb{F}_q . Postopek napada sledi poteku dokaza naslednje trditve.

Trditev

Naj bo E eliptična krivulja nad \mathbb{F}_q . Naj bosta $P,Q\in E(\mathbb{F}_q)$, ter naj bo N red točke P. Predpostavimo, da velja $\gcd(N,q)=1$. Potem obstaja tako število k, da velja Q=kP natanko tedaj ko $NQ=\infty$ in $e_N(P,Q)=1$.

MOV napad

Izberi *m* tako, da

$$E[N] \subset E(\mathbb{F}_{q^m}).$$

Ker imajo vse točke E[N] koordiante v $\overline{\mathbb{F}_q} = \cup_{j \geq 1} \mathbb{F}_{q^j}$ tak m obstaja. Prav tako je μ_N v \mathbb{F}_{q^m} .

- **1** Izberi točko $T \in E(\mathbb{F}_{q^m})$.
- Izračunaj red M točke T.
- **3** Naj bo $d = \gcd(M, N)$ in naj bo $T_1 = (M/d)T$. Potem ima T_1 red, ki deli N, torej je $T_1 \in E[N]$.
- ullet Izračunaj $\zeta_1=e_N(P,T_1)$ in $\zeta_2=e_N(Q,T_1)$. Tu sta ζ_1 in ζ_2 v $\mu_d\subset \mathbb{F}_{q^m}^{ imes}$.
- **5** Reši problem diskretnega logaritma $\zeta_2 = \zeta_1^k$ v $\mathbb{F}_{q^m}^{\times}$. To nam da k mod d.
- O Ponovi za različne točke T dokler ni k določen.

Anomalne krivulje

Definicija

Krivulji E nad poljem \mathbb{F}_q , za katero velja

$$\#E(\mathbb{F}_q)=q,$$

rečemo anomalna krivulja.

Trditev

Naj bo E eliptična krivulja nad \mathbb{F}_p in naj bosta $P,Q\in E(\mathbb{F}_p)$. Predpostavimo še, da je krivulja E oblike $y^2=x^3+ax+b$. Potem obstajajo cela števila a',b',x_1,x_2,y_1,y_2 in eliptična krivulja E' podana z

$$y^2 = x^3 + a'x + b',$$

ter točke $P'=(x_1,y_1),$ $Q'=(x_2,y_2),$ $\in E'(\mathbb{Q}).$ Za ta števila velja

$$a \equiv a', b \equiv b', P \equiv P', Q \equiv Q' \pmod{p}$$
.

Algoritem 2 Napad na anomalne krivulje

Vhod: Točki P, Q nad eliptično krivuljo E.

Izhod: diskretni logaritem k.

- Razširi E, P, Q nad \mathbb{Z} , kot v trditvi 11.
- ② Izračunaj $P_2' = (p-1)P' \equiv (x', y') \pmod{p^2}$.
- **3** Izračunaj $Q_2' = (p-1)Q' \equiv (x'', y'') \pmod{p^2}$.
- Izračunaj

$$m_1 = p \frac{y' - y_1}{x' - x_1}, \ m_2 = p \frac{y'' - y_2}{x'' - x_2}.$$

The V_p (m_2) < 0 ali $v_p(m_1)$ < 0 poizkusi na drugi krivulji E'. V nasprotnem primeru je $k \equiv m_1/m_2 \pmod{p}$.