Выбор прогностических моделей в римановых фазовых пространствах

Выпускная квалификационная работа бакалавра

Алтай Эйнуллаев Эльшан оглы Научный руководитель: д.ф-м.н. В.В.Стрижов

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.03.01 Прикладная математика и физика

Выбор моделей в римановых фазовых пространствах

Матрицы ковариации набора временных рядов лежат в римановом пространстве симметричных, положительно определенных матриц.

Проблема

В отличие от задачи классификации, задачу прогнозирования нельзя решить в пространстве матриц ковариации, т.к. требуется прогнозировать исходные временные ряды.

Предлагаемый подход

Матрицы ковариации рассматриваются как описание взаимосвязи фазовых траекторий набора временных рядов и используется для повышения качества прогноза.

Матрица ковариации в фазовых пространствах

 $\mathbf{x}_t = [x_{1t}, \dots, x_{nt}]^\mathsf{T}$ – набор n временных рядов, $\stackrel{\leftarrow}{\mathbf{x}}_{it} = [x_{i(t-L+1)}, \dots, x_{it}]^\mathsf{T}$ – точки фазового пространства Y_i векторов задержек ряда x_{it} размерности L.

Матрица ковариации в каждый момент времени:

$$\mathbf{C}_t = \frac{1}{L-1} \mathbf{X}_t \mathbf{X}_t^\mathsf{T},$$

где
$$\mathbf{X}_t = [\stackrel{\leftarrow}{\mathbf{x}}_{1t} \dots \stackrel{\leftarrow}{\mathbf{x}}_{nt}]^\mathsf{T}$$
.

Точкам фазовых траекторий $\overset{\leftarrow}{\mathbf{x}}_{1t},\overset{\leftarrow}{\mathbf{x}}_{2t}$ ставится в соответствие матрица ковариации \mathbf{C}_t .

Локальный прогноз в фазовых пространствах

Фазовое пространство векторов задержек:

$$d_{e}(\overset{\leftarrow}{\mathbf{x}}_{it_{1}},\overset{\leftarrow}{\mathbf{x}}_{it_{2}}) = \|\overset{\leftarrow}{\mathbf{x}}_{it_{1}} - \overset{\leftarrow}{\mathbf{x}}_{it_{2}}\|_{2}$$

Локальный прогноз:

$$x_{i(T+1)} = f(x_{i(t'_1+1)}, \dots, x_{i(t'_k+1)}),$$

где $\overset{\leftarrow}{\mathbf{x}}_{it_1},\ldots,\overset{\leftarrow}{\mathbf{x}}_{it_k}-k$ ближайших соседей $\overset{\leftarrow}{\mathbf{x}}_{iT}$ по $d_{\mathrm{e}}.$

Риманово фазовое пространство матриц ковариации:

$$d_r(\mathbf{C}_{t_1}, \mathbf{C}_{t_2}) = \| \mathsf{Log}(\mathbf{C}_{t_1}^{-1} \mathbf{C}_{t_2}) \|_F = [\sum_{i=1}^L \mathsf{In}^2 \, \lambda_i]^{\frac{1}{2}},$$

Локальный прогноз:

$$x_{i(T+1)} = F(x_{i(t'_1+1)}, \ldots, x_{i(t'_k+1)}),$$

где $\mathbf{C}_{t_1'},\ldots,\mathbf{C}_{t_k'}$ – k ближайших соседей $\mathbf{C}_{\mathcal{T}}$ по d_r .

Перевод матриц в касательное пространство $T_{\mathbf{C}}$

Перевод матрицы \mathbf{C}_t в касательное пространство $T_{\mathbf{C}}$:

$$\mathbf{S}_t = \mathsf{Log}_{\mathbf{C}}(\mathbf{C}_t) = \mathbf{C}^{\frac{1}{2}} \mathsf{log}(\mathbf{C}^{-\frac{1}{2}} \mathbf{C}_t \mathbf{C}^{-\frac{1}{2}}) \mathbf{C}^{\frac{1}{2}}.$$

Обратное отображение:

$$\mathbf{C}_t = \mathsf{Exp}_{\mathbf{C}}(\mathbf{S}_t) = \mathbf{C}^{\frac{1}{2}} \exp(\mathbf{C}^{-\frac{1}{2}} \mathbf{S}_t \mathbf{C}^{-\frac{1}{2}}) \mathbf{C}^{\frac{1}{2}}.$$

Перевод \mathbf{C}_t из M в пространство $T_{\mathbf{C}}$ и обратно

Метод улучшения базового прогноза

Требуется выбрать две модели f, F:

$$\mathbf{x}_t \xrightarrow{f} \hat{\mathbf{x}}_{t+1}^f$$

$$(\hat{\mathbf{x}}_{t+1}^f, \mathbf{S}_t) \xrightarrow{F} \hat{\mathbf{x}}_{t+1}.$$

Отимизационная задача

$$\hat{\mathbf{w}}_f = \arg\min_{\mathbf{w} \in \mathbb{R}^k} \mathcal{L}(\mathbf{w}, \hat{\mathbf{x}}_{t+1} - \mathbf{x}_{t+1}),$$

$$\hat{\mathbf{w}}_{F} = \arg\min_{\mathbf{w} \in \mathbb{R}^{m}} \|F(\hat{\mathbf{x}}_{t+1}^{f}, \mathbf{S}_{t}|\mathbf{w}) - \mathbf{x}_{t+1}\|_{2}^{2}.$$

Критерий качества

$$MSE = \frac{1}{h} \sum_{i=T+1}^{T+h} \frac{1}{2} ||\hat{\mathbf{x}}_i - \mathbf{x}_i||_2^2.$$

где h — горизонт прогноза.

Расстояние между зашумленными \mathbf{C}_t

Лемма (Эйнуллаев, 2025)

Пусть $\tilde{\mathbf{C}}_{t_1} = \mathbf{C} + \delta \tilde{\mathbf{C}}_{t_1}, \tilde{\mathbf{C}}_{t_2} = \mathbf{C} + \delta \tilde{\mathbf{C}}_{t_2}$. Тогда, при условии $\mathbf{C}^{-1} - \mathbf{C}^{-1}\delta \tilde{\mathbf{C}}_{t_1}\mathbf{C}^{-1} \succ \mathbf{0}$ и приближения $\tilde{\mathbf{C}}_{t_1}^{-1}\tilde{\mathbf{C}}_{t_2} \approx \mathbf{E} + \mathbf{C}^{-1}(\delta \tilde{\mathbf{C}}_{t_2} - \delta \tilde{\mathbf{C}}_{t_1})$, в первом порядке теории возмущений, собственные числа матрицы $\tilde{\mathbf{C}}_{t_1}^{-1}\tilde{\mathbf{C}}_{t_2}$ равны:

$$egin{aligned} &\tilde{\lambda}_1 = 1 + (\mathbf{C}^{-1}(\delta \tilde{\mathbf{C}}_{t_2} - \delta \tilde{\mathbf{C}}_{t_1}))_{11}, \ &\tilde{\lambda}_2 = 1 + (\mathbf{C}^{-1}(\delta \tilde{\mathbf{C}}_{t_2} - \delta \tilde{\mathbf{C}}_{t_1}))_{22}. \end{aligned}$$

Расстояние, на которое отдалятся матрицы $\mathbf{C}_{t_1}, \mathbf{C}_{t_2}$:

$$d(\tilde{\mathbf{C}}_{t_1}, \tilde{\mathbf{C}}_{t_2}) pprox \sqrt{\sum_i [(\mathbf{C}^{-1}(\delta \tilde{\mathbf{C}}_{t_2} - \delta \tilde{\mathbf{C}}_{t_1}))_{ii}]^2}.$$

Метод ковариационного перекрестного отображения

Algorithm K∏O

```
Require: \mathbf{x}_{t} = (x_{1t}, \dots, x_{nt})^{\mathsf{T}}. \mathbf{C}_{t}: t = 1, \dots, N
Ensure: [\rho_1, \ldots, \rho_n]
     for t \in [L + 2, N - 1] do
             C_{t_1}, \ldots, C_{t_{t+1}} \leftarrow \mathsf{nn}(C_t)
             for i \in [1, n] do
                     [\alpha_1, \dots, \alpha_{L+1}] \leftarrow \frac{\exp(-\rho(\mathbf{C}_t, \mathbf{C}_{t_j})/\rho(\mathbf{C}_t, \mathbf{C}_{t_1}))}{\sum\limits_{t=1}^{L+1} \exp(-\rho(\mathbf{C}_t, \mathbf{C}_{t_j})/\rho(\mathbf{C}_t, \mathbf{C}_{t_1}))}
                    \hat{x}_{i(t+1)} \leftarrow \sum_{k=1}^{L+1} \alpha_k x_{it_k}
             end for
     end for
     for i \in [1, n] do
             \rho_i \leftarrow \rho([x_{i(L+2)}, \dots, x_{iN}], [\hat{x}_{i(L+2)}, \dots, \hat{x}_{iN}])
     end for
```

Метод КПО на синтетических данных

КПО на $x_{1t}=\sin(t)+\varepsilon_{1t}$, $x_{2t}=3\sin(t)+\varepsilon_{2t}$, $\varepsilon_{it}\sim\mathcal{N}(0,\sigma^2)$; наблюдаем очень низкие значения корреляции

Потеря информации о фазе

Две различные точки фазовых траекторий набора временных рядов, имеющие одну и ту же матрицу ковариации

Метод КПО на рядах потребления электроэнергии

Результаты метода ковариационного перекрестного отображения для трех наборов рядов

Метод улучшения базового прогноза

Результаты метода улучшения базового прогноза

Влияние ковариации на будущее временного ряда

Временные ряды x_{1t}, x_{2t}

Прогноз дисперсии x_{1t}

Локальный прогноз по векторам задержек и локальный прогноз по матрицам ковариации $D(\stackrel{\leftarrow}{\mathbf{x}}_{1(T+L)})$

Выносится на защиту

- 1. Предложен метод ковариационного перекрестного отображения,
- 2. Проведены эксперименты с выбором прогностических моделей и определены условия их применимости,
- 3. Проведен анализ влияния шума на матрицы ковариации и расстояния между ними в римановом пространстве.
- Результаты были доложены на 67-й конференции МФТИ.