Amirali Farazmand

99522329

HW4

1. سیستمی دارای ۵ فرایند و چهارمنبع در حالت زیر به سر میبرد ، در چه صورتی وقوع بن بست حتمی است ؟

	منابع تخصيص يافته				منابع مورد نياز				
	R ₀	R ₁	R ₂	R ₃		R ₀	R ₁	R ₂	R
P ₀	٣	•	1	١	P ₀	١	1	•	•
P ₁	•	1	•	•	P ₁	•	1	1	۲
P ₂	1	١	1		P ₂	٣	١		
P ₃	1	1	•	1	P ₃	•	•	١	•
P ₄					P ₄	۲	1	١	

كل منابع اوليه				
R ₀	R ₁	R ₂	R ₃	
۶	٣	F	۲	

- a) فرایند P1 یک واحد از منبع R2 درخواست کند.
- b) فرایند R1 یک واحد از منبع R2 درخواست کند و فرایند P4 اولین واحد R2 را درخواست نماید .
- c فرایند P3 یک واحد از منبع R2 را درخواست کند و فرایند P4 کلیه منابع مورد نیازش را درخواست کند .
 - d) فرایند P1 یک واحد از منبع R2 را درخواست کند و فرایند P4 آخرین واحد R2 را درخواست نماید .

Allocated Ausikeble a) Request, =(0010) 1010 12 cquest, & Neel, ~ => sur Tos allocate => P. 0110 Request, & Aurikbler 1110 Need, = (0,1,0,2) 1101 personal in sell production of section il our of 0600 Available of min willing of delations on => Weller of wind the sent & ملك من ستان داد داد المراج المراج المراج المراجة المرا b) Request, = (0010) Requesty = (0010) Request, = (00 10) Kequesty = (0010)
Request, < Needy = > King in of to pro-Regresta < North Available Request & Aveilette Allocated 0110 0010 2101

مراد المراد المرد المر

8.6.3.2 Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be safely granted. Let $Request_i$ be the request vector for thread T_i . If $Request_i$ [j] == k, then thread T_i wants k instances of resource type R_j . When a request for resources is made by thread T_i , the following actions are taken:

- 1. If $Request_i \leq Need_i$, go to step 2. Otherwise, raise an error condition, since the thread has exceeded its maximum claim.
- If Request_i ≤ Available, go to step 3. Otherwise, T_i must wait, since the resources are not available.
- 3. Have the system pretend to have allocated the requested resources to thread T_i by modifying the state as follows:

 $Available = Available - Request_i$ $Allocation_i = Allocation_i + Request_i$ $Need_i = Need_i - Request_i$

If the resulting resource-allocation state is safe, the transaction is completed, and thread T_i is allocated its resources. However, if the new state is unsafe, then T_i must wait for $Request_i$, and the old resource-allocation state is restored.

ددلاک هنگامی رخ میدهد که 4شرط مربوطه اش برقرار نباشند.

4شرط بدین صورت هستند:

- 1. Mutual-exclusion: ریسورس non-sharable تنها توسط 1 پراسس مورد استفاده باشد و دیگران به آن در آنموقع دسترسی نداشته باشند.
- 2. Hold & wait: پراسس ریسورس هایی که میخواهد و در دسترس اند را بگیرد و آنهایی که دست دیگر پراسس ها اند را صبر کند تا آزاد شوند و بعد آنهارا بگیرد.
- 3. No-preemption: ریسورس ها وسط کار با پراسسی از آن گرفت مگر آنکه پراسس خودش آنر ا آز اد کند.
- 4. Circular-wait: هنگامی که پراسس ها برای بدست آوردن ریسورس دایره وار منتظر پراسس بعدی خود باشند و wait کنند تا ریسورس آزاد شود رخ میدهد. (پراسس 1منتظر 2، منتظر 3،، n، منتظر 1).

A deadlock situation can arise if the following four conditions hold simultaneously in a system:

- 1. Mutual exclusion. At least one resource must be held in a nonsharable mode; that is, only one thread at a time can use the resource. If another thread requests that resource, the requesting thread must be delayed until the resource has been released.
- Hold and wait. A thread must be holding at least one resource and waiting to acquire additional resources that are currently being held by other threads.
- 3. **No preemption**. Resources cannot be preempted; that is, a resource can be released only voluntarily by the thread holding it, after that thread has completed its task.
- **4. Circular wait.** A set $\{T_0, T_1, ..., T_n\}$ of waiting threads must exist such that T_0 is waiting for a resource held by T_1, T_1 is waiting for a resource held by $T_2, ..., T_{n-1}$ is waiting for a resource held by T_n , and T_n is waiting for a resource held by T_0 .

We emphasize that all four conditions must hold for a deadlock to occur. The circular-wait condition implies the hold-and-wait condition, so the four

3. اسنپ شات زیر را برای سیستم در نظر بگیرید:

	Allocation	_Max_
	ABCD	ABCD
T_0	3014	5117
T_1°	2210	3211
T_2	3121	3321
T_3	0510	4612
T_{A}^{J}	4212	6325

با استفاده از الگوریتم بانکدار ، تعیین کنید که آیا هر کدام از حالات زیر در حالت نا امن هستند یا خیر ،اگر یک استیت درحالت امن بود ترتیب اجرا را بنویسید و اگر در حالت نا امن بود توضیح دهید که چرا نا امن است ؟

- a) Available = (0,3,0,1)
- b) Available = (1,0,0,2)

b) Ausilable=(100,2)

10-17, -> Available = (3,2,1,2) ->

" T2 -> " = (6,3,3,3) ->

" To - " = (9,3,4,7) ->

" T3 - " = (9,8,5,7) ->

1/2/ soft = (13,10,6,9) -, (15)/ soft = (15)/ 1, 1/2/ 1/3/4 Nhis

- ا. ماتریس های requested , allocation , availableرا بکشید .
 - الگوریتم مرحله به مرحله تشخیص بن بست را بنویسید .
- ا۱۱. آیا بن بست و جود دارد ؟ در صورت و جود کدام فر ایند ها درگیر هستند ؟

P. Pz	Allocated 00010	Aeguetal 10000	Available 0000	:A@v@5 :(I) **
P3	00100	00001		
P4 P5	01000	00000		
184 احبدائ	المراقبة الم	= (0,1,000) -> P1,12, P3, P5	Requesti (will - 1 is on	(II) (II)

با کشیدن wait-for-graph هم میشد به ددلاک داشتن رسید.

Figure 8.11 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

B)

- **1.** Let *Work* and *Finish* be vectors of length m and n, respectively. Initialize *Work* = *Available*. For i = 0, 1, ..., n-1, if *Allocation* $_i \neq 0$, then *Finish*[i] = false. Otherwise, *Finish*[i] = true.
- 2. Find an index *i* such that both
 - a. Finish[i] == false
 - b. $Request_i \leq Work$

If no such *i* exists, go to step 4.

- Work = Work + Allocation_i
 Finish[i] = true
 Go to step 2.
- **4.** If Finish[i] == false for some i, $0 \le i < n$, then the system is in a deadlocked state. Moreover, if Finish[i] == false, then thread T_i is deadlocked.