CONTROL II - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES-MARTÍNEZ AYUDANTES: DIEGO FICA - NICOLÁS SUÁREZ

Pregunta 1

Considere una economía \mathcal{E} con dos periodos. Hay $S \geq 2$ estados de la naturaleza en el segundo periodo y una única mercancía. Cada agente $i \in \{1, \dots, N\}$ tiene una asignación inicial de recursos $(w_0^i, \dots, w_S^i) \gg 0$ y preferencias representables por una función de utilidad $U^i : \mathbb{R}_+^{S+1} \to \mathbb{R}$ continua, estrictamente creciente y estrictamente cóncava. Existen J < S activos numerarios. Esto es, cada contrato $j \in \{1, \dots, J\}$ es caracterizado por promesas $(A_{s,j})_{s \in \{1,\dots,S\}} \neq 0$ medidas en unidades de la única mercancía disponible.

Tomando el precio de la mercancía como numerario y dados precios $q = (q_1, \ldots, q_J) \in \mathbb{R}_+^J$ para los activos, el agente i puede demandar planes de consumo y portafolios financieros en su conjunto presupuestario $B^i(q)$, el cual es caracterizado por los vectores $(x^i, z^i) \in \mathbb{R}_+^{S+1} \times \mathbb{R}^J$ tales que:

$$x_0^i + \sum_{j=1}^J q_j z_j^i \quad \le \quad w_0^i \,, \qquad \qquad x_s^i \, \le \, w_s^i + \sum_{j=1}^J A_{s,j} z_j^i, \quad \forall s \in \{1,\dots,S\}.$$

En este contexto, suponga que para cada agente i existe un vector $(\varepsilon_1^i, \dots, \varepsilon_J^i) \in \mathbb{R}_+^J$ tal que, dado $(z_1^i, \dots, z_J^i) \in \mathbb{R}^J$ tenemos que

$$\left[w_s^i + \sum_{j=1}^J A_{s,j} z_j^i \ge 0, \ \forall s \in \{1, \dots, S\} \right] \iff \left[z_j^i \ge -\varepsilon_j^i, \quad \forall j \in \{1, \dots, J\} \right].$$

Demuestre que es posible definir una economía de intercambio estática \mathcal{E}^* con J+1 mercancías de tal forma que existe una correspondencia biunívoca entre los equilibrios de la economía con mercados incompletos \mathcal{E} y los equilibrios de \mathcal{E}^* .

Solución. Fije $i \in \{1, \dots, N\}$ y $\overline{q} = (\overline{q}_1, \dots, \overline{q}_J) \in \mathbb{R}_+^J$. Note que, por la monotonía estricta de las preferencias, la canasta $(\overline{x}^i, \overline{z}^i) \in \mathbb{R}_+^{S+1} \times \mathbb{R}^J$ maximiza la función de utilidad U^i en el conjunto presupuestario $B^i(\overline{q})$ si y solamente si $(\overline{x}^i, \overline{z}^i) \in \mathbb{R}_+ \times \mathbb{R}^J$ maximiza la función

$$V^{i}(x_{0}^{i}, z^{i}) = U^{i}\left(x_{0}^{i}, \left(w_{s}^{i} + \sum_{j=1}^{J} A_{s,j} z_{j}^{i}\right)_{s \in \{1, \dots, S\}}\right)$$

en el conjunto

$$\left\{ (x_0^i, z^i) \in \mathbb{R}_+ \times \mathbb{R}^J : x_0^i + \sum_{j=1}^J \overline{q}_j z_j^i \leq w_0^i \,, \quad w_s^i + \sum_{j=1}^J A_{s,j} z_j^i \, \geq \, 0, \quad \forall s \in \{1, \dots, S\} \right\}.$$

Esta última propiedad es a su vez equivalente a afirmar que $(\overline{x}_0^i, \overline{z}^i)$ maximiza V^i en el conjunto

$$\left\{(x_0^i,z^i)\in\mathbb{R}_+\times\mathbb{R}^J:x_0^i+\sum_{j=1}^J\overline{q}_j(z_j^i+\varepsilon_j^i)\leq w_0^i+\sum_{j=1}^J\overline{q}_j\varepsilon_j^i\,,\quad z_j^i+\varepsilon_j^i\geq 0,\;\forall j\in\{1,\dots,J\}\right\}.$$

¹Puede ser útil pensar en el cambio de variables $y_j^i = z_j^i + \varepsilon_j^i$. Note que no es necesario probar que esos conjuntos de equilibrio son diferentes de vacío.

Por lo tanto, haciendo el cambio de variables $y_j^i = z_j^i + \varepsilon_j^i$, concluimos que

$$(1) \hspace{1cm} (\overline{x}^i,\overline{z}^i) \in \underset{(x^i,z^i) \in B^i(\overline{q})}{\operatorname{argmax}} U^i(x^i,z^i) \hspace{1cm} \Longleftrightarrow \hspace{1cm} (\overline{x}^i_0,\overline{y}^i) \in \underset{(x^i_0,y^i_0) \in C^i(\overline{q})}{\operatorname{argmax}} F^i(x^i_0,y^i),$$

donde

$$F^{i}(x_{0}^{i}, y^{i}) = U^{i} \left(x_{0}^{i}, \left(w_{s}^{i} + \sum_{j=1}^{J} A_{s,j} (y_{j}^{i} - \varepsilon_{j}^{i}) \right)_{s \in \{1, \dots, S\}} \right),$$

$$C^{i}(\overline{q}) = \left\{ (x_{0}^{i}, y^{i}) \in \mathbb{R}_{+} \times \mathbb{R}_{+}^{J} : x_{0}^{i} + \sum_{j=1}^{J} \overline{q}_{j} y_{j}^{i} \leq w_{0}^{i} + \sum_{j=1}^{J} \overline{q}_{j} \varepsilon_{j}^{i} \right\}.$$

Dado que los individuos tienen preferencias estrictamente monótonas y $(A_{s,j})_{s\in\{1,...,S\}} \neq 0$ para cada $j \in \{1,...,J\}$, sabemos que en un equilibrio competitivo de la economía \mathcal{E} el precio de cada activo será estrictamente positivo. Efectivamente, si el activo j tuviera precio cero, invirtiendo en él se podrían obtener recursos ilimitados en algún estado de la naturaleza en t=1 sin incurrir en costos en t=0.

Por lo tanto, sigue de la relación (1) que $(\overline{q}, (\overline{x}^i, \overline{z}^i)_{i \in \{1, ..., N\}})$ es un equilibrio de la economía con mercados incompletos \mathcal{E} , i.e.,

$$(\overline{x}^i, \overline{z}^i) \in \underset{(x^i, z^i) \in B^i(\overline{q})}{\operatorname{argmax}} U^i(x^i), \ \forall i \in \{1, \dots, N\}; \qquad \sum_{i=1}^N (\overline{x}^i - w^i) = 0; \qquad \sum_{i=1}^N \overline{z}^i = 0,$$

si y solamente si $(\overline{q}, (\overline{x}_0^i, \overline{y}^i)_{i \in \{1,...,N\}})$, donde $\overline{y}_j^i = \overline{z}_j^i + \varepsilon_j^i$, cumple las siguientes propiedades

$$(\overline{x}_0^i, \overline{y}^i) \in \operatorname*{argmax}_{(x_0^i, y^i) \in C^i(\overline{q})} F^i(x_0^i, y^i), \ \forall i \in \{1, \dots, N\}; \quad \sum_{i=1}^N (\overline{x}_0^i - w_0^i) = 0; \quad \sum_{i=1}^N \overline{y}_j^i = \sum_{i=1}^N \varepsilon_j^i, \ \forall j \in \{1, \dots, J\}.$$

Por lo tanto, $(\overline{q}, (\overline{x}^i, \overline{z}^i)_{i \in \{1,...,N\}})$ es un equilibrio competitivo de \mathcal{E} si y solamente si $(\overline{q}, (\overline{x}^i_0, \overline{y}^i)_{i \in \{1,...,N\}})$ es un equilibrio competitivo de una economía estática \mathcal{E}^* con J+1 mercancías y N individuos, donde cada $i \in \{1, \ldots, N\}$ tiene función de utilidad F^i y asignaciones iniciales $(w_0^i, \varepsilon_1^i, \ldots, \varepsilon_J^i)$.

Pregunta 2

Describa una economía de intercambio estática con producción. Haciendo las hipótesis necesarias sobre preferencias, asignaciones iniciales y tecnologías de producción, demuestre que todo equilibrio competitivo es Pareto eficiente.

Solución. En una economía estática con producción hay N individuos que son propietarios de J firmas. Los individuos utilizan sus recursos iniciales y los beneficios obtenidos por sus empresas para demandar L mercancías perfectamente divisibles. Los mercados son competitivos y los individuos toman los precios como dados. Cada individuo $i \in \{1,\ldots,N\}$ es caracterizado por una función de utilidad $U^i: \mathbb{R}_+^L \to \mathbb{R}$, una asignación inicial de recursos $w^i \in \mathbb{R}_+^L$ y derechos de propiedad sobre las firmas $\theta^i = (\theta^i_1,\ldots,\theta^i_J) \geq 0$, los cuales cumplen $\sum_{i=1}^N \theta^i = (1,\ldots,1)$. Cada firma es caracterizada por un conjunto de posibilidades de producción $Y^j \subseteq \mathbb{R}^L$.

Un equilibrio para esta economía es dado por un vector de precios $\overline{p} \in \mathbb{R}_+^L \setminus \{0\}$ junto con decisiones óptimas de consumo y producción $((\overline{x}^i)_{i \in \{1,...,N\}}, (\overline{y}^j)_{j \in \{1,...,J\}})$ tales que,

$$\overline{y}^j \in \underset{y^j \in Y^j}{\operatorname{argmax}} \ \overline{p} \cdot y^j, \quad \forall j \in \{1, \dots, J\}, \qquad \overline{x}^i \in \underset{x^i \in B^i(\overline{q})}{\operatorname{argmax}} \ U^i(x^i), \ \forall i \in \{1, \dots, N\},$$

$$\sum_{i=1}^{N} \overline{x}^i = \sum_{i=1}^{N} w^i + \sum_{j=1}^{J} \overline{y}^j,$$

donde $B^i(\overline{p}) := \left\{ x^i \in \mathbb{R}_+^L : \overline{p} \cdot x^i \leq \overline{p} \cdot w^i + \overline{p} \cdot \sum_j \theta_j^i \overline{y}^j \right\}$ es el conjunto presupuestario de i a precios \overline{p} .

Diremos que una distribución de recursos $(x^i)_{i\in\{1,\dots,N\}} \in \mathbb{R}_+^{LN}$ es factible si existen planes de producción $(y^j)_{j\in\{1,\dots,J\}} \in \prod_j Y^j$ tales que $\sum_{i=1}^N x^i \leq \sum_{i=1}^N w^i + \sum_{j=1}^J y^j$.

Fije un equilibrio $(\overline{p}, (\overline{x}^i)_{i \in \{1, \dots, N\}}, (\overline{y}^j)_{j \in \{1, \dots, J\}})$ y suponga que la distribución de recursos $(\overline{x}^i)_{i \in \{1, \dots, N\}}$ no es Pareto eficiente. Entonces, existe otra distribución factible $(x^i)_{i \in \{1, \dots, N\}}$ tal que $U^i(x^i) \geq U^i(\overline{x}^i)$ para todo agente $i \in \{1, \dots, N\}$ y $U^k(x^k) > U^k(\overline{x}^k)$ para algún $k \in \{1, \dots, N\}$. Si las preferencias son localmente no-saciadas, lo anterior implica que

$$\overline{p} \cdot x^k > \overline{p} \cdot w^k + \overline{p} \cdot \sum_{i=1}^J \theta_j^k \overline{y}^j; \qquad \overline{p} \cdot x^i \geq \overline{p} \cdot w^i + \overline{p} \cdot \sum_{i=1}^J \theta_j^i \overline{y}^j, \quad \forall i \in \{1, \dots, N\} \setminus \{k\}.$$

Agregando estas desigualdades y utilizando la factibilidad de $(x^i)_{i\in\{1,\dots,N\}}$ obtenemos que

$$\overline{p} \cdot \sum_{i=1}^{N} w^{i} + \overline{p} \cdot \sum_{j=1}^{J} y^{j} \ge \overline{p} \cdot \sum_{i=1}^{N} x^{i} > \overline{p} \cdot \sum_{i=1}^{N} w^{i} + \overline{p} \cdot \sum_{j=1}^{J} \overline{y}^{j}$$

para algún vector de planes de producción $(y^j)_{j\in\{1,\dots,J\}}\in\prod_j Y^j$. Así, $\overline{p}\cdot\sum_{j=1}^J y^j>\overline{p}\cdot\sum_{j=1}^J \overline{y}^j$. Esto implica que existe alguna firma j tal que $\overline{p}\cdot y^j>\overline{p}\cdot\overline{y}^j$. Una contradicción con la optimalidad de las decisiones de las empresas en un equilibrio. Por lo tanto, si las preferencias de los individuos son localmente no-saciadas, todo equilibrio competitivo (caso exista) es Pareto eficiente.