import numpy as np
import pandas as pd

df=pd.read_csv("/content/iris.csv")
df

₽	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

df.head(5)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

df.tail(5)

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica

df.shape

(150, 5)

df.dtypes

sepal length (cm) float64
sepal width (cm) float64
petal length (cm) float64
petal width (cm) float64
target object
dtype: object

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype	
0	sepal length (cm)	150 non-null	float64	
1	sepal width (cm)	150 non-null	float64	
2	petal length (cm)	150 non-null	float64	
3	petal width (cm)	150 non-null	float64	
4	target	150 non-null	object	
dtypos: $float64(4)$ $object(1)$				

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

df.describe()

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)


```
import seaborn as sb
                                                                         .......
import statistics as stat
      min
                    4.300000
                                      2.000000
                                                        1.000000
                                                                         0.100000
stat.mean(df['sepal length (cm)'])
    5.843333333333334
                    6 400000
                                      3 300000
                                                       5 100000
                                                                         1 200000
stat.median(df['sepal length (cm)'])
    5.8
stat.mode(df['sepal length (cm)'])
    5.0
np.percentile(df['sepal length (cm)'], 50)
    5.8
df['sepal length (cm)'].quantile([0.05,0.25,0.5,0.75])
    0.05
            4.6
    0.25
            5.1
    0.50
            5.8
    0.75
            6.4
    Name: sepal length (cm), dtype: float64
stat.variance(df['sepal length (cm)'])
    0.6856935123042506
xstd= np.std(df['sepal length (cm)'])
print(xstd)
    0.8253012917851409
sb.set(style='darkgrid')
sb.distplot(df['sepal length (cm)'])
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f4367e087f0>

sb.distplot(df['sepal length (cm)'],kde=False,bins=30)

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f4362ef8d60>

df.isnull().sum()

sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0
target 0
dtype: int64

X=df.drop('target',axis=1)

```
Y=df['target']
print(X)
print(Y)
```

```
sepal length (cm)
                          sepal width (cm) petal length (cm)
                                                                    petal width (cm)
0
                     5.1
                                          3.5
                                                               1.4
                                                                                    0.2
1
                     4.9
                                          3.0
                                                               1.4
                                                                                   0.2
2
                     4.7
                                          3.2
                                                               1.3
                                                                                   0.2
3
                                          3.1
                                                               1.5
                                                                                   0.2
                     4.6
4
                     5.0
                                          3.6
                                                               1.4
                                                                                   0.2
                     . . .
                                          . . .
                                                               . . .
                                                                                    . . .
. .
145
                     6.7
                                          3.0
                                                               5.2
                                                                                   2.3
146
                     6.3
                                          2.5
                                                               5.0
                                                                                   1.9
147
                     6.5
                                          3.0
                                                               5.2
                                                                                   2.0
                     6.2
                                          3.4
                                                               5.4
                                                                                   2.3
148
149
                                          3.0
                                                                                   1.8
                     5.9
                                                               5.1
```

```
[150 rows x 4 columns]
0
          setosa
1
          setosa
2
          setosa
          setosa
4
          setosa
         . . .
145
       virginica
       virginica
146
147
       virginica
148
       virginica
149
       virginica
Name: target, Length: 150, dtype: object
```

data = Y.value_counts()
data

setosa 50 versicolor 50 virginica 50

Name: target, dtype: int64

from sklearn.preprocessing import LabelEncoder

```
lb = LabelEncoder()

Y = lb.fit_transform(Y)

sb.set(style='darkgrid')
sb.distplot(Y,kde=False,bins=10)
```

/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: FutureWarning: `di warnings.warn(msg, FutureWarning)

<matplotlib.axes. subplots.AxesSubplot at 0x7f43625aec40>

from sklearn.model_selection import train_test_split

```
X_train, X_test, Y_train, Y_test =train_test_split(X,Y,test_size=0.2)
```

from sklearn.naive bayes import GaussianNB

```
gnb = GaussianNB()
gnb.fit(X_train, Y_train)
    GaussianNB()
```

gnb.score(X_test,Y_test)*100

93.3333333333333

from sklearn.metrics import accuracy score

```
X train prediction=gnb.predict(X train)
training_data_accuracy=accuracy_score(X_train_prediction,Y_train)
```

print('Accuracy score of the training data: ',training_data_accuracy*100)

Accuracy score of the training data: 95.83333333333334

```
X_test_prediction=gnb.predict(X_test)
testing_data_accuracy=accuracy_score(X_test_prediction,Y_test)
```

print('Accuracy score of the testing data: ',testing_data_accuracy*100)

Colab paid products - Cancel contracts here

✓ 0s completed at 7:22 PM

×