注: 若无特别说明, 用 \hat{f} 表示 f 的 Fourier 变换, 用 f^{\vee} 表示 Fourier 逆变换.

练习 1. 假设 $f \in L^1(\mathbb{R}^n)$. 求证: $\widehat{f} 与 f^{\vee}$ 都是 \mathbb{R}^n 上的有界、连续函数.

练习 2. 完成下列问题:

- (i) 假设 $f \in L^1(\mathbb{R}^n)$. 求证: 当 $|\xi| \to \infty$ 时, $\widehat{f}(\xi) \to 0$. (提示: 取 $\xi' = \frac{1}{2} \frac{\xi}{|\xi|^2}$, 试将 \widehat{f} 写成 $\widehat{f}(\xi) \frac{1}{2} \int [f(x) f(x \xi')] e^{-2\pi i \cdot \xi} dx$.)
- (ii) 作为 (i) 的推论,证明:如果 f 是 $[0,2\pi]$ 上的可积函数,则

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx dx = 0.$$

(iii) 假设 f 是 $[0,2\pi]$ 上的可积函数,E 是 $[0,2\pi]$ 的可测子集, $\{t_k\}$ 是任一数列,求证:

$$\lim_{k \to \infty} \int_E \cos^2(kx + t_k) dx = \frac{m(E)}{2}.$$

练习 3. 假设 $f,g \in L^1(\mathbb{R}^n)$. 证明如下两个性质.

- (i) $\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$.
- (ii) $\int_{\mathbb{R}^n} f(x)\widehat{g}(x)dx = \int_{\mathbb{R}^n} \widehat{f}(\xi)g(\xi)d\xi$.

练习 4. 考察 \mathbb{R}^n 上的函数 $f(x) = e^{-\pi|x|^2}$. 求证: 其傅里叶变换为 $\widehat{f}(\xi) = e^{-\pi|\xi|^2}$.

练习 5. 假设 $f \in \mathbb{R}^n$ 上有紧支集的光滑函数. 我们使用记号 $f(x) \longrightarrow g(\xi)$ 表示 f 的傅里叶变换是 g. 求证:

(i)
$$\partial_{x^{\alpha}} f(x) \longrightarrow (2\pi i \xi)^{\alpha} \widehat{f}(\xi)$$
 以及 (ii) $(-2\pi i x)^{\alpha} f(x) \longrightarrow \partial_{\xi^{\alpha}} \widehat{f}(\xi)$

其中 $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_k,\cdots)$ 表示多重指标 $(\alpha_i$ 中仅有限项不为 0), $\partial_{x^\alpha}=\partial_{x_1}^{\alpha_1}\partial_{x_2}^{\alpha_2}\cdots\partial_{x_k}^{\alpha_k}\cdots$,并且 $\xi^\alpha=\xi_1^{\alpha_1}\xi_2^{\alpha_2}\cdots\xi_k^{\alpha_k}\cdots$.

练习 6. 试用 Fourier 变换的方法得到全直线 \mathbb{R} 上的常微分方程 $\frac{d^2}{dx^2}u+u=f$ 解的表达式.

练习 7. 试说明在 \mathbb{R}^n 上有紧支集的光滑函数构成的集合 (常记为 $C_c^\infty(\mathbb{R}^n)$) 在 $L^1(\mathbb{R}^n)$ 中关于由范数 $\|\cdot\|_{L^1(\mathbb{R}^n)}$ 诱导的度量稠密. 即:对于任何 $f\in L^1(\mathbb{R}^n)$,存在一列 $g_k\in C_c^\infty(\mathbb{R}^n)$,使得 $\|g_k-f\|_{L^1(\mathbb{R}^n)}\to 0$.