An analysis of student's gaming behaviors in an intelligent tutoring system: predictors and impacts

Kasia Muldner, Winslow Burleson, Brett Van de Sande, Kurt VanLehn User Modeling and User-Adapted Interaction April 2011, Volume 21, Issue 1, pp 99–135

Seminar: Intelligent Tutoring Systems

Presented by: Praharsha Sirsi

Introduction

Intelligent TutoringSystem

• What is Gaming?

Predicting Gaming

Impact of Gaming

Understanding Gaming

- Student Character
 - Goal Orientation
 - > Attitude
 - > Self resolve

(Model accounted for only 9% of variance)

- Lesson Features
 - Confusing hints
 - Poor interface design

(Model accounted for 56% of variance)

 But, non ITS studies – Student Character is a better predictor

Analyses in the Paper

- Better predictor of gaming Student or Problem?
- How and where students are gaming?
- Impact of ITS hints
- Model accounts for 61% of variance in gaming
- Various Educational Data Mining (EDM) techniques
- Model applied to Cognitive Tutor ITS as well

Background: Detecting Gaming

- Detecting gaming using algorithms on EDM data
 - Latent Response Model
 - Model was compared to Human Observations
 - Gamed-Hurt detections were good
 - Gamed-Not Hurt detections failed
 - Waikato Environment for Knowledge Analysis (WEKA)
 - Machine Learning package
 - · Identified lack of gaming well (98%)
 - Identification of gaming was poor (19%)
- Detecting reasons for gaming
 - Poor ITS design
 - > Model explained 56% of the variance
 - > Unknown step (or Difficult step) is gamed the most
 - Boredom also leads to gaming

Background: Detecting Gaming

- Detecting gaming using Human Observation
 - > Visual Inspection
 - > Might make students uncomfortable
 - > Ratio of observers to students
 - Consistency of the Human Observer
- Detecting gaming using "hand-labelling" of EDM data
 - Considers student actions in context
 - > Labour intensive
 - > Inconsistency in labelling
- Detecting gaming based on actions
 - > Help Tutor
 - > If-Then action rules designed by hand
 - > Approach relies heavily on Psychological Experts

Background: Discouraging Gaming

Delaying the hints

- > Discourages students from rushing through hints
- > Significantly reduced help requests
- > No impact on learning
- Resulted in another form of gaming

Supplementary exercises and animated agent

- > Disapproval on detecting gaming
- Marginal impact on gaming
- > No impact on learning

Visualizations

- > Of behaviour: Reduced gaming, impact on learning not assessed.
- > Of progress: Reduced gaming, improved learning

Background: Understanding Hints

- High level hints
 - > Extract information
- Bottom-out hints
 - > Provide information
 - > Might not be harmful
- Study correlated bottom-out hints to learning
 - > But no correlation to high level hints
- Human tutors are more adaptive and selective in hints
- Reinforced Learning
- Scaffolding Questions

Primary Data

- Pittsburgh Learning Center DataShop
- Andes ITS for assigned class homework and test prep
- Entries
 - Drawing diagrams
 - > Equations
 - > Any order
 - > Provides feedback for correctness
- Request for hints
 - > General information
 - Finally bottom-out hint
- Final score decremented for every bottom-out hint

The Gaming Detector

What if the student learns after copying?

Table 1 Tutor-Student turn pairs					
	(a) Student: hint requ	uest	(b) Student: entry		
	Fast	Slow	Fast		Slow
(i) Tutor: bottom-out hint	(S)Skip hint	_	(C)Copy hint		_
(ii) Tutor: high-level hint	(S)Skip hint	_	_		_
(iii) Tutor: incorrect (red)	_	_	(G)Guess (red only)	_	-
(iv) Tutor: correct (green)	$(P)No\ planning$	-	_		_
gamed cells italicized					

Set of 318 unique problems and 286 students

Setting the time thresholds

Enough time to read?

Setting the time thresholds

Predictor of gaming

PerGaming _{sp}	percentage of gaming by a student s on a problem p	(1)
$\sum_{p=1}^{p=N} \text{perGaming}_p/N$	average gaming by a student s across all N	
	problems p solved by that student	(2)
$\sum_{s=1}^{s=M} \text{perGaming}_p/M$	average gaming on a problem p across all M students s	(3)

- Student or Problem?
- Problem is the unit of analysis
 - > Might consider lesson (too large)
 - > Tutor-student turn pair would be ideal (too small, difficult to equate)
- Rapid hint requests: Not lumped
 - > If gaming is lumped, then non-gaming must be too
- Using a step
 - Asking for hints, incorrect attempts, correct entry
 - What if a single action in a step is gamed?

Different analyses: Linear Regression

Dependent Variable

Independent Variables

PerGaming_{sp}

$$\sum_{p=1}^{p=N} \text{perGaming}_p/N$$

$$\sum_{s=1}^{s=M} \text{perGaming}_p/M$$

percentage of gaming by a student s on a problem p (1)

axerage gaming by a student s across all N
problems p solved by that student

average gaming on a problem p across all M students s (3)

F=16915, p < 0.001, R2 = .608

Student: standardized coefficient=.658, t=52.7, p < 0.001

Problem: standardized coefficient = .325, t= $\overline{74.23}$, p < 0.001

 $perGamed_{s,p} = const + .658\overline{student_s} + .325\overline{problem_p}$

(2)

Different analyses: Self Correlation

- Randomly sub-divide students (or problems) into buckets
- Check for correlation between the buckets
- Student self-correlation
 - > Two buckets
 - Randomly splitting problems solved by a given student
 - Storing in each bucket the average gaming
 - r = .963, p < 0.001
- Problem self-correlation
 - > Two buckets
 - Randomly splitting students who solved a given problem
 - Storing in each bucket the average gaming
 - r = .89, p < 0.001

Different analyses: Self Correlation

Fig. 2 Scatter plot for student (left) and problem (right) self correlations from the Andes data (percentage of gaming shown on X and Y axes)

Different analyses: Gaming frequency distributions

- How many students are high frequency gamers?
- How many problems are often gamed?
- Is gaming among students truly random? Normal Distribution
 - > Shapiro-Wilks test of normality: W = .89, p = 0.02
- Is gaming among problems truly random?
 - > W = .92, p > 0.05

Different analyses: Gaming frequency distributions

Fig. 3 Andes data on student (top) and problem (bottom) gaming distributions. Each bucket contains students (or problems) with a 3% gaming range (e.g., bucket 6 has 3% <gaming <6%)

Different analyses: Parameter learning

- Bayesian network parameter learning
 - > 'studentClass': whether a student is a low or high gamer
 - > 'problemClass': whether a problem is a low or high gamed problem
 - > 'gamed': true if a tutor-student turn pair was gamed and false otherwise

• Classification:

> Each student as a low or high gamer, based on a median split from

$$\sum_{p=1}^{p=N} \text{perGaming}_p/N$$
 average gaming by a student s across all N problems p solved by that student

> Each problem as a low or high gamed problem based on a median split

```
\sum_{s=1}^{s=M} \text{perGaming}_p/M average gaming on a problem p across all M students s
```

Netica

Learn the network parameters from the Andes data

Bayesian Network 1

- P (gamed = true | problemClass = low, studentClass = low) = .10
- P (gamed = true | problemClass = low, studentClass = high) = .37
- P (gamed = true | problemClass = high, studentClass = low) = .18
- P (gamed = true | problemClass = high, studentClass = high) = .54

Fig. 4 Predictive Bayesian network (top) and corresponding parameters obtained from the Andes log data via the Netica counting algorithm (bottom). The parameters for P(gamed=false | . . .), not shown here, are simply 1-P (gamed=true |...)

Bayesian Network 2

Fig. 5 Naïve Bayes classifier (top) and corresponding parameters obtained from the Andes log data via the Netica counting algorithm (bottom). The parameters for P([problem,student]Class=low |...), not shown here, are simply 1-P ([problem, student]Class=high |...)

Gaming Predictor in Cognitive Tutor

- Method of solving problems: similar to Andes
- 53 individual students, 775 unique problems
- Linear Regression Analysis
 - > F = 4588, p < 0.001, R2 = .420 (Andes: F=16915, p < 0.001, R2 = .608)
 - > Student: standardized coefficient= .52, t = 76, p < 0.001 (Andes: standardized coefficient=.658, t=52.7, p < 0.001)
 - > Problem: standardized coefficient= .35, t = 51, p < 0.001 (Andes: standardized coefficient= .325, t=74.23, p < 0.001
- Self Correlation Analysis
 - > Student: r = .973, p < 0.001 (Andes: r = .963, p < 0.001)
 - > Problem: r = .55, p < 0.001 (Andes: r = .89, p < 0.001)

Gaming Predictor in Cognitive Tutor

Gaming frequency distributions

Gaming Predictor in Cognitive Tutor

Bayesian Network

```
P (gamed = true | problemClass = low, studentClass = low) = .03
```

P (gamed = true | problemClass = low, studentClass = high) = .10

P (gamed = true | problemClass = high, studentClass = low) = .07

P (gamed = true | problemClass = high, studentClass = high) = .17

Gaming Profiles

22.5% of tutor-student turn pairs were gamed

	(a) Student: Hint Request		(b) Student: Entry			
	fast	slow	fast		slow	
(1) Tutor: B-O Hint	S: 0.02 (.3)	.2 (2.1)	C: 1.8 (2	23.6)	5.7 (73.9)	
(2) Tutor: H-L Hint	S:18.4 (58.6)	5.8 (18.5)	.7 (2.3	3)	6.4 (20.6)	=100%
(3) Tutor: Incorrect	3.0 (12.4)	2.5 (10.3)	G: 5.4 (22.1) (RED)	4.8 (20) (GREEN)	8.7 (35.8)	
(4) Tutor: Correct	P: 5.3 (14.5)	3.6 (10.0)	14.1 (38	3.9)	13.3 (36.6)	

=100%

High Gamers and Low gamers

Median split on the values of average gaming of student

		(a) Student: Hint Request		(b) Student: Entry		
		fast	slow	fast		slow
(1) T + P O II'	LG	S: 0.02	0.07	C: 0	C: 0.34	
(1) Tutor: B-O Hint	HG	S: .03	.25	<i>C</i> : .	C: 3.3	
	LG	S: 7.1	6.4	0.53 0.92		7.3
(2) Tutor: H-L Hint	HG	S: 29.7	5.1			5.7
	LG	3.2	3.2	G: 5.5 (RED)	5.3 (GREEN)	11.4
(3) Tutor: Incorrect	HG	2.8	1.8	G: 5.2 (RED)	4.2 (GREEN)	6.0
(4) Tutor: Correct HG		P: 1.5	3.4	20.3		21.1
		P: 9.1	3.9	8.1		5.5

High Gamers and Low gamers

Analyses of Hints: Hint Viewing

Average time spent on viewing hints

High-Level Hint: 5.7s

Bottom-out hint: 9.2s

	High Gamers	Low Gamers
Bottom-out hints	7.5s	10.9s
High level hints	3.2s	8.1s

Analyses of Hints: Basic analysis

	High Gamers	Low Gamers
Generate entry after high level hint	16%	36%
Generate entry after bottom-out hint	97%	97%

Generating correct entry

	High Gamers	Low Gamers
After high level hint (eventually)	73%	72%
After bottom-out hint	92%	89%

Analyses of Hints: Basic analysis

Generating correct entry

	High Gamers	Low Gamers
After bottom-out hint (attempts)	1.19 attempts	1.23 attempts
After bottom-out hint (Time)	23s	34s
After high level hint (attempts)	2.01 attempts	1.66 attempts
After high level hint (Time)	28s	37s

Dynamic Bayesian Model Basic Model

guess: P(solution entry $_t$ = correct | knowledge $_t$ = unmastered) = 0.33 slip: P(solution entry $_t$ = incorrect | knowledge $_t$ = mastered) = 0.15 learn: P(knowledge $_t$ = mastered | knowledge $_{t-1}$ = unmastered) = 0.25 forget: P(knowledge $_t$ = unmastered) = 0.06

Dynamic Bayesian Model Help Model

scaffold: P(solution entry $_{t}$ = correct | knowledge $_{t}$ = unmastered, hint(s) $_{t}$ = true) = 0.38 guess: P(solution entry $_{t}$ = correct | knowledge $_{t}$ = unmastered, hint(s) $_{t}$ = false) = 0.31 slipHint(s): P(solution entry $_{t}$ = incorrect | knowledge $_{t}$ = mastered, hint(s) $_{t}$ = true) = 0.17 slipNoHint(s): P(solution entry $_{t}$ = incorrect | knowledge $_{t}$ = mastered $_{t}$ hint(s) $_{t}$ = false) = 0.16 learnHint(s): P(knowledge $_{t}$ = mastered | knowledge $_{t-1}$ = unmastered $_{t}$ hint(s) $_{t}$ = true) = 0.21 learnNoHint(s): P(knowledge $_{t}$ = mastered | knowledge $_{t-1}$ = unmastered, hint(s) $_{t}$ = false) = 0.23 forgetHint(s): P(knowledge $_{t}$ = unmastered | knowledge $_{t-1}$ = mastered, hint(s) $_{t}$ = true) = 0.05 forgetNoHint(s): P(knowledge $_{t}$ = unmastered | knowledge $_{t-1}$ = mastered, hint(s) $_{t}$ = false) = 0.04

Dynamic Bayesian Model Help Model

```
scaffold-HL: P(solution entry + =correct | knowledge + = unmastered, hint(s) + =high-level) = 0.21
scaffold-BO: P(solution entry t = correct \mid knowledge t = unmastered, hint(s) t = bottom-out) = 0.49
guess: P(solution entry t = correct \mid knowledge t = unmastered, hint(s) t = none) = 0.25
slipWith-HL-Hint(s): P(solution entry, =incorrect | knowledge, = mastered, hint(s), =high-level) = 0.32
slipWith-BO-Hint(s): P(solution entry t = incorrect \mid knowledge t = mastered, hint(s) t = bottom-out) = 0.13
slipNoHint(s): P(solution entry _{t} = incorrect | knowledge _{t} = mastered, hint(s) _{t} = none ) = 0.17
learnWith-HL-Hint(s): P(knowledge t = mastered \mid knowledge <math>t = t = unmastered, hint(s) t = t = high-level) = 0.25
learnWith-BO-Hint(s): P(knowledge t = mastered \mid knowledge <math>t = t) = unmastered, hint(s) t = t = bottom-out) = 0.28
learnNoHint(s): P(knowledge = mastered | knowledge = = unmastered , hint(s) = none) = 0.23
forgetWith-HL-Hint(s): P(knowledge t=unmastered | knowledge t=1 =mastered, hint(s) t=high-level) = 0.08
forgetWith-BO-Hint(s): P(knowledge_t = unmastered \mid knowledge_{t-1} = mastered, hint(s)_t = bottom-out) = 0.05
forgetNoHint(s): P(knowledge t = unmastered | knowledge t-1 = mastered, hint(s) t = none) = 0.03
```

Impact of gaming DBN with 2-valued hints node

```
Low Gamers (2-valued 'hint(s)' node):
        scaffold: P(solution entry _{t} =correct | knowledge _{t} = unmastered, hint(s) _{t} =true) = 0.37
        guess: P(solution entry _{t} = correct | knowledge _{t} = unmastered , hint(s) _{t} = false) = 0.27
        slipWithHint(s): P(solution entry _t = incorrect \mid knowledge <math>_t = mastered, hint(s) _t = true) = 0.22
        slipNoHint(s): P(solution entry + = incorrect | knowledge + = mastered, hint(s) + = false ) = 0.15
        learnWithHint(s): P(knowledge t = mastered \mid knowledge t_{-1} = unmastered, hint(s) = true) = 0.26
        learnNoHint(s): P(knowledge _{+} = mastered | knowledge _{+} = unmastered , hint(s)=false) = 0.22
High Gamers (2-valued 'hint(s)' node):
        scaffold: P(solution entry t = correct \mid knowledge t = unmastered, hint(s) t = true) = 0.39
        guess: P(solution entry _{t} = correct | knowledge _{t} = unmastered , hint(s) _{t} = false) = 0.32
        slipWithHint(s): P(solution entry _t = incorrect \mid knowledge _t = mastered, hint(s)_t = true ) = 0.16
        slipNoHint(s): P(solution entry t = incorrect \mid knowledge <math>t = mastered, hint(s) t = false) = 0.18
        learnWithHint(s): P(knowledge t = mastered \mid knowledge t_{-1} = unmastered, hint(s) = true) = 0.17
```

learnNoHint(s): P(knowledge $t = mastered \mid knowledge <math>t = t = learnNoHint(s)$): P(knowledge t = t = learnNoHint(s)) = 0.19

Impact of gaming DBN with 3-valued hints node

```
Low Gamers (3-valued 'hint(s)' node):
```

```
scaffold-HL: P(solution entry _t = correct | knowledge _t = unmastered, hint(s) _t = high-level) = 0.27 scaffold-BO: P(solution entry _t = correct | knowledge _t = unmastered, hint(s) _t = bottom-out) = 0.43 guess: P(solution entry _t = correct | knowledge _t = unmastered, hint(s) _t = none) = 0.25 slipWith-HL-Hint(s): P(solution entry _t = incorrect | knowledge _t = mastered, hint(s) _t = bottom-out) = 0.26 slipWith-BO-Hint(s): P(solution entry _t = incorrect | knowledge _t = mastered, hint(s) _t = bottom-out) = 0.14 slipNoHint(s): P(solution entry _t = incorrect | knowledge _t = mastered, hint(s) _t = none) = 0.15 learnWith-HL-Hint(s): P(knowledge _t = mastered | knowledge _t = unmastered, hint(s)=none) = 0.31 learnWith-BO-Hint(s): P(knowledge _t = mastered | knowledge _t = unmastered, hint(s)=none) = 0.41 learnNoHint(s): P(knowledge _t = mastered | knowledge _t = unmastered , hint(s)=none) = 0.22
```

High Gamers (3-valued 'hint(s)' node):

```
scaffold-HL: P(solution entry _{t} entry =correct | knowledge _{t} = unmastered, hint(s)=high-level) = 0.22 scaffold-BO: P(solution entry _{t} =correct | knowledge _{t} = unmastered, hint(s)=bottom-out) = 0.46 guess: P(solution entry _{t} = correct | knowledge _{t} = unmastered , hint(s)=none) = 0.26 slipWith-HL-Hint(s): P(solution entry _{t} =incorrect | knowledge _{t} = mastered, hint(s)=high-level) = 0.37 slipWith-BO-Hint(s): P(solution entry _{t} =incorrect | knowledge _{t} = mastered, hint(s)=bottom-out) = 0.14 slipNoHint(s): P(solution entry _{t} =incorrect | knowledge _{t} = mastered, hint(s)=none) = 0.21 learnWith-HL-Hint(s): P(knowledge _{t} = mastered | knowledge _{t-1} =unmastered, hint(s)=bottom-out) = 0.25 learnNoHint(s): P(knowledge _{t} = mastered | knowledge _{t-1} =unmastered, hint(s)=none) = 0.20
```

Impact on learning

guessWithGaming: P(solution entry t = correct | knowledge t = unmastered, gaming t = true) = 0.47 guessNoGaming: P(solution entry t = correct | knowledge t = unmastered, gaming t = false) = 0.47 slipWithGaming: P(solution entry t = incorrect | knowledge t = mastered, gaming t = true) = 0.26 slipNoGaming: P(solution entry t = incorrect | knowledge t = mastered, gaming t = false) = 0.15 learnWithGaming: P(knowledge t = mastered | knowledge t = unmastered, gaming = true) = 0.19 learnNoGaming: P(knowledge t = mastered | knowledge t = unmastered, gaming = false) = 0.33 forgetWithGaming: P(knowledge t = unmastered | knowledge t = mastered, gaming = true) = 0.06 forgetNoGaming: P(knowledge t = unmastered | knowledge t = mastered, gaming = false) = 0.06

Conclusion

Thank you!