Algebra - Lista 13

Przez $H \subseteq G$ oznaczamy, że H jest podgrupą normalną G.

Zadanie 1 Pokaż, że centrum S_n (tj. zbiór $\{a: ag=ga \text{ dla każdego } g\in S_n\}$) dla $n\geq 3$ jest trywialne, tzn. jest równe $\{e\}$.

Wskazówka: Wystarczy popatrzeć na g będące odpowiednią transpozycją.

Zadanie 2 Znajdź wszystkie podgrupy normalne w grupie symetrii kwadratu.

Zadanie 3 Załóżmy, że H jest podgrupą G, a N podgrupą normalną G. Pokaż, że wtedy

$$HN = \{hn : h \in H, n \in N\}$$

jest podgrupa G.

Zadanie 4 Załóżmy, że grupy N_1, N_2 są normalne w G. Pokaż, że N_1N_2 jet podgrupą normalną. Możesz skorzystać z Zadania 4, w którym pokazaliśmy, że jest to podgrupa.

Zadanie 5 Załóżmy, że w G jest dokładnie jeden element x (różny od e) rzędu 2, tj. $x^2 = e$. Udowodnij, że jest on w centrum grupy, tj. gx = xg dla każdego g.

Wskazówka: Ile jest podgrup dwuelementowych w G?

Zadanie 6 Jak wygląda podgrupa S_3 generowana przez cykl (1,2,3)? Pokaż, że ta podgrupa jest normalna. Podaj tabelkę grupy ilorazowej S_3 przez tą podgrupę.

Zadanie 7 Pokaż, że podgrupa $\{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\} \leq S_4$ jest podgrupą normalną.

Zadanie 8 Pokaż, że jeśli $K \subseteq H$ oraz $H \triangleleft G$ to niekoniecznie $K \subseteq G$.

Wskazówka: Rozważ $G = A_4$ oraz $H = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}.$

Zadanie 9 Załóżmy, że H_1 jest podgrupą normalną G_1 zaś H_2 jest podgrupą normalną G_2 . Pokaż, że $H_1 \times H_2$ jest podgrupą normalną $G_1 \times G_2$.

Zadanie 10 Wykonaj następujące obliczenia modulo 4 oraz modulo 7:

- $-(24 \cdot 5 + 3 \cdot (-2)) \cdot (82 13)$
- $1 + 2 + 3 + \ldots + 100$
- $1 \cdot 5 + 17 \cdot (-32) + 10 \cdot 4$