Árvores

Estruturas de Dados Prof. David Buzatto

Árvores

• Estruturas de dados não lineares;

Árvore 1

Árvore 2

- o Conjunto finito de elementos (nós);
- O primeiro nó é chamado de raiz;
- Formada por três subconjuntos:
 - Subconjunto do nó raiz;
 - Subconjunto da sub-árvore esquerda;
 - Subconjunto da sub-árvore direita;
- Implica em cada nó poder ter no máximo 2 filhos;

Representação em Árvore

Representação em Conjunto

- o Árvore Binária de Busca
 - Todos os nós de uma sub-árvore direita são maiores ou iguais ao nó raiz;
 - Todos os nós de uma sub-árvore esquerda são menores que o nó raiz;
 - Cada sub-árvore é também uma árvore binária;

Propriedades

 O grau de um nó é igual ao seu número de sub-árvores;

Propriedades

- Em uma árvore binária, o grau máximo de um nó é 2;
- O grau de uma árvore é igual ao máximo dos graus de todos os seus nós;
- Uma árvore binária tem grau máximo igual a 2;

Propriedades

- Nó pai: nó acima e com ligação direta a outro nó;
- Nó filho: nó abaixo e com ligação direta a outro nó;
- Nós irmãos: nós que possuem o mesmo pai;
- Nó folha ou terminal: nó que não possui filhos;

Propriedades - no raiz - nó pai dos nós 2 e 8 - no filho do nó 6 - no filho do nó 6 - nó irmão do nó 8 - nó irmão do nó 2 - nó pai dos nós 1 e 4 - nó folha 2 - no filho do nó 2 - nó filho do nó 2 - nó irmão do nó 4 - nó irmão do nó 1 - nó folha - nó pai do nó 3 - no filho do nó 4 - nó folha

Propriedades

 Nó ancestral: nós que estão acima de um nó e possuem ligação direta ou indireta;

Propriedades

 Nó ancestral: nós que estão acima de um nó e possuem ligação direta ou indireta;

Propriedades

 Nó descendente: nós que estão abaixo de um nó e possuem ligação direta ou indireta.

Os nós 2, 8, 1, 4 e 5 são descendentes do nó 6

Propriedades

 Nó descendente: nós que estão abaixo de um nó e possuem ligação direta ou indireta.

Propriedades

 Nó descendente direito: nós que estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da sub-árvore direita;

Propriedades

 Nó descendente direito: nós que estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da sub-árvore direita;

Propriedades

Nó descendente esquerdo: nós que estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da sub-árvore esquerda;

Propriedades

 Nó descendente esquerdo: nós que estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da subárvore esquerda;

Propriedades

 Nível de um nó: é a sua distância em relação ao nó raiz. O nível da raiz é sempre zero;

Propriedades

 Altura ou profundidade de uma árvore: é o nível do nó mais distante da raiz;

Propriedades

• Número máximo de nós em um nível: 2^n , onde n é o nível em questão

Propriedades

- Árvore estritamente binária: árvore em que todos os nós tem 0 ou 2 filhos;
- Número de nós de uma árvore estritamente binária:

2n-1, onde n é a quantidade de nós folha

Quantidade de nós folha: 4 Os nós folha são: 1, 3, 5, e 8 Número de nós da árvore estritamente binária:

$$2n - 1 = 2.4 - 1 = 8 - 1 = 7$$

Propriedades

 Árvore completa: árvore em que todos os nós com menos de dois nós filhos ficam no último e no penúltimo nível;

Propriedades

 Árvore cheia: árvore estritamente binária e completa;

Inserção

- Relembrando...
 - Todos os nós de uma sub-árvore direita são maiores ou iguais ao nó raiz;
 - Todos os nós de uma sub-árvore esquerda são menores que o nó raiz;

Árvore Binária de Busca Inserção

raiz <u>¥</u>

Inserção

o inserir(6)

raiz

6

Inserção

oinserir(8)

Inserção

o inserir(7)

Inserção

oinserir(4)

Inserção

o inserir(5)

Inserção

o inserir(9)

Inserção

o inserir(3)

Remoção

- o De novo...
 - Todos os nós de uma sub-árvore direita são maiores ou iguais ao nó raiz;
 - Todos os nós de uma sub-árvore esquerda são menores que o nó raiz;
 - Sendo assim:
 - A remoção de um nó com filhos faz com que o nó maior que ele (à sua direita) ocupe sua posição;
 - Se o nó à direita não existe, então o nó à esquerda ocupa sua posição;
 - Caso o nó seja um nó folha, não há a necessidade de reestruturação da árvore;

Remoção

oremover(8)

Remoção

oremover(8)

Remoção

o remover(3)

não tem maior nem menor

Remoção

o remover(3)

Remoção

oremover(6)

Remoção

• remover(6)

Remoção

o remover(7)

Remoção

o remover(7)

Remoção

oremover(9)

Remoção

oremover(9)

Remoção

• remover(5)

não tem maior nem menor

Remoção

• remover(5)

Remoção

o remover(4)

Remoção

o remover(4)

raiz

Percursos

- Percurso: forma de percorrer uma estrutura de dados, no caso, em uma árvore;
- Tipos de percurso:
 - 1. Pré-ordem;
 - 2. Em ordem (ordem simétrica);
 - 3. Pós-ordem (ordem final);

Percursos – Pré-ordem

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

6 4 3 5 8

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

6 4 3 5 8

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

6 4 3 5 8 7 9

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

6 4 3 5 8 7 9

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

6 4 3 5 8 7 9

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

Percursos – Pré-ordem

o Raiz → Esquerda → Direita

Percursos – Em ordem (ordem simétrica)

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7 8

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7 8

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7 8

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7 8 9

Percursos – Em ordem (ordem simétrica)

o Esquerda → Raiz → Direita

3 4 5 6 7 8 9

Percursos – Em ordem (ordem simétrica)

Percursos – Em ordem (ordem simétrica)

Percursos – Pós-ordem (ordem final)

Percursos – Pós-ordem (ordem final)

● Esquerda → Direita → Raiz

3 5 4 7 9 8

Percursos – Pós-ordem (ordem final)

● Esquerda → Direita → Raiz

3 5 4 7 9 8 6

Percursos – Pós-ordem (ordem final)

Percursos – Pós-ordem (ordem final)

Percursos – Pré-ordem inverso

o Raiz → Direita → Esquerda

6 8 9 7 4 5 3

Percursos – Em ordem (ordem simétrica) inverso

Direita → Raiz → Esquerda

9 8 7 6 5 4 3

Percursos – Pós-ordem (ordem final) inverso

Direita → Esquerda → Raiz

9 7 8 5 3 4 6

Bibliografia

- ASCENCIO, A. F. G.; ARAÚJO, G. S. Estruturas de Dados. São Paulo: Pearson, 2011. 432 p.
- TENENBAUM, A. M.; LANGSAM, Y.;
 AUGENSTEIN, M. J. Estrutura de dados usando
 C. São Paulo: Pearson Makron Books, 1995.
 884 p.
- VILLAS, M. V.; FERREIRA, A. G. M.; LEROY, P. G.; MIRANDA, C.; BOCKMAN, C. L. Estruturas de Dados: Conceitos e Implementação. Rio de Janeiro: Editora Campus, 1993. 298 p.