Orthogonal projections

We now introduce a construction that will keep coming up:

given a nonzero vector u in \mathbb{R}^n , we would like to decompose a vector $y \in \mathbb{R}^n$ as $\hat{y} + z$, where \hat{y} is of the form αu for some $\alpha \in \mathbb{R}$, and z is orthogonal to u.

Given any $\alpha \in \mathbb{R}$, let $Z = y - \alpha u$. We want 2 to be orthogonal to u,

so $z \cdot u = 0$ means that

i.e., y.u - « (u.u) = 0,

Thus, the required decomposition y = xu, y = xu, y = xu, z = 0

is possible if and only if

 $\alpha = \frac{y \cdot u}{u \cdot u}$, and so $\hat{y} = \frac{y \cdot u}{u \cdot u} u$

The vector $\hat{\mathbf{y}}$ is called the

"orthogonal projection of y onto u", also denoted au "proju y".

and the vector z is called the "complement of y orthogonal to u".

Observe that what we are doing here is similar to extracting the x-coordinate and y-coordinate from a vector (7,4) in \mathbb{R}^2 , because (2,0)

is the projection of (71,y) onto the x-axis, while (0,y) is the

projection of (x, y) onto the y-axis, a span { (0,1)}, and these two axes are orthogonal to each other.

But we might not be so bucky to be able to use the standard basis for Rⁿ, and so the construction above is a way to perform the decomposition

(x,y) = x (1,0) + (0,y)

in TR" with a different orthogonal basis.

In summary:

For two vectors y and u, the "projection of y on u" is denoted by projuy or y and can be calculated as

Then, we can write

Example Let
$$y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 and $u = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

Find the orthogonal projection of y onto u. Then write y as the sum of two orthogonal vectors, one in Span &u? and one orthogonal to u.

Solution
$$\hat{y} = \underbrace{y \cdot u}_{u \cdot u} \cdot u$$

$$= \underbrace{\begin{bmatrix} 7 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix}}_{\begin{bmatrix} 4 \\ 2 \end{bmatrix}} \underbrace{\begin{bmatrix} 4 \\ 2 \end{bmatrix}}_{2}$$

$$= 2 \underbrace{\begin{bmatrix} 4 \\ 2 \end{bmatrix}}_{2} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$z=y-\hat{y}=\begin{bmatrix}7\\6\end{bmatrix}-\begin{bmatrix}8\\4\end{bmatrix}=\begin{bmatrix}-1\\2\end{bmatrix}$$

:.
$$y = \hat{y} + z$$

$$= \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

and \hat{y} , z are orthogonal vectors (check: $\binom{8}{4}$. $\binom{-1}{2}$ = 0)

Observe that, the scalar a obtained in the course of orthogonal projection is you, very similar to the scalars u.u.

obtained earlier when we expressed an arbitrary vector as a linear combination of basis vectors that are orthogonal.

This tells us that when we have $\{u_1, ..., u_p\}$, an orthogonal basis for W and $Y \in W$ is expressed as

y = c,u, + ... + cpup

c; = y•uj, uj•uj,

y is being decomposed as a sum of orthogonal projections along $u_1, u_2, ..., u_p$.

Orthonormal sets

A set & u., ..., up 3 is an orthogonal set of unit set if it is an orthogonal set of unit vectors.

If W = spoon & W., ..., up? then & W., ..., up? automatically forms a basis, because these vectors are lin. dependent.

Moreover ui's are orthonormal and so they form an orthonormal basis (0.n.b) for W.

Examples

1) The storndard basis {e1,..., en}
of IRⁿ is an o.n.b.

2) The vectors (3,1,1), (-1,2,1) and (-1,-4,7) form an orthogonal Set in R³, and hence form a basis.

However, these are not unit vectors.

Thus, we divide each vector by its norm to get an orthonormal basis:

Matrices whose columns form an valhonormel set are important for applications in computer algorithms.

Theorem: An mxn matrix U has orthonormal columns $\iff U^TU = I$.

Gram - Schmidt process

This is an algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^n .

Grien a bossis $\{x_1, x_2, ..., x_p\}$ for a subspece $W \in \mathbb{R}^n$, define

 $v_1 = \alpha_1$

 $V_2 = \chi_2 - \frac{\chi_2 \cdot V_1}{V_1 \cdot V_1} V_1$

 $V_3 = \chi_3 - \chi_3 \cdot V_1 V_1 - \chi_3 \cdot V_2 V_2$:

 $V_{p} = \chi_{p} - \frac{\chi_{p} \cdot v_{1}}{\chi_{1} \cdot v_{1}} v_{1} - \cdots - \frac{\chi_{p} \cdot v_{p-1}}{\chi_{p-1} \cdot v_{p-1}} v_{p-1}.$

Remark: The above process results in an orthogonal basis. To get an orthonormal basis, we would normalize the vector

vi by dividing by IIvill so that we get unit vectors.

Example 1 Let TT be the plane in \mathbb{R}^3 spanned by vectors $x_1 = (1, 2, 2)$ and $x_2 = (-1, 0, 2)$.

Find an orthonormal basis for TT. Solution.

 $V_1 = 2l_1 = (l_1 \cdot 2, 2)$

$$V_2 = \chi_2 - \frac{\chi_2 \cdot v_1}{v_1 \cdot v_1} v_1$$

$$= (-1,0,2) - \frac{3}{9} \cdot (1,2,2)$$

$$= (-4/3, -2/3, 4/3)$$

Thus, $\{v_1, v_2\}$ for an orthogonal basis for Π . Dividing by norms: $w_1 = \frac{v_1}{\|v_1\|} = \frac{1}{3}(1, 2, 2)$ $w_2 = \frac{v_2}{\|v_2\|} = \frac{1}{3}(-2, -1, 2)$

:. {wi, w2} form an orthonormal basis for TT.

Exercises based on the above material:

(i) For the vectors u = (5, -1, 2)v = (2, -1, -3)

Find proju v and proju v.

Ans. Proju $V = \frac{1}{6} (5, -1, 2) = \hat{v}$ Proju $u = \frac{5}{14} (2, -1, -3) = \hat{u}$

2) Using the Gram-Schmidt process, convert the following basis to an ofthonormal one:

$$V_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad V_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \qquad , \quad V_3 = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 1 \end{pmatrix} .$$

Answer:
$$u_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $u_2 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

$$u_3 = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$