## Returns to Skills and Tasks: Evidence from 22 Selected Countries

Georgios Mantas



gmantas93@gmail.com

July 26, 2017

#### Overview

- OECD PIAAC Survey of Adults Skills
  - Countries in my Empirical Analysis
  - Cognitive Skills Assessed
- Baseline Empirical Approach
  - Returns to Numeracy Across Countries
  - Heterogeneity of Returns by Different Sub-groups
- Task-based Empirical Approach
  - Why Job Tasks Add Value to the Empirical Analysis
  - Returns to Numeracy in Baseline and Task-based Approach
- 4 Robustness Check of Returns to Numeracy and Tasks
  - Selection of Sample for Robustness Check
- What Country Characteristics Affect Returns to Numeracy?
- Policy Implications
- Concluding Remarks & Recommendations

## Programme for the International Assessment of Adult Competencies (PIAAC)

- Purpose: Comparable data for cognitive skills and job tasks
- Number of Countries: 33 in total
- Target Population: Individuals aged 16–65 years
  - Cover at least 95% of the target population
  - Achieve overall response rates of 70% or greater
- 2 Rounds of Data Collection
  - Round 1: August 2011–March 2012
  - Round 2: April 2014–March 2015
- 22 out of 33 countries in my analysis
  - Due to legal restrictions and non-reported variables

## Countries in my Empirical Analysis

| 1) Belgium (BEL)          | 2) Chile (CHL)          | 3) Cyprus (CYP)     |
|---------------------------|-------------------------|---------------------|
| 4) Czech Republic (CZE)   | 5) Denmark (DNK)        | 6) Estonia (EST)    |
| 7) Finland (FIN)          | 8) France (FRA)         | 9) Greece (GRC)     |
| 10) Ireland (IRL)         | 11) Israel (ISR)        | 12) Italy (ITA)     |
| 13) Japan (JPN)           | 14) Korea (KOR)         | 15) Lithuania (LTU) |
| 16) Netherlands (NLD)     | 17) Norway (NOR)        | 18) Poland (POL)    |
| 19) Slovak Republic (SVK) | 20) Slovenia (SVN)      | . , ,               |
| 21) Spain (ESP)           | 22) United Kingdom (UK) |                     |

- Belgium → Flanders region only
- ullet United Kingdom o England & Northern Ireland only
- Country acronyms in parentheses

## Assessed Cognitive Skill Domains in PIAAC Survey

Prior to skill assessment → A background questionnaire was filled

#### Skill assessed in PIAAC:

- Literacy
- Numeracy
- Problem solving in technology-rich environments
  - Assessed on a 500-point scale
  - Assistance during cognitive skills assessment was forbidden

I focus on **numeracy scores**  $\rightarrow$  Most comparable across countries

## Numeracy Scores & Gross Hourly Wage by Country



Note: Gross hourly wage (in PPP U.S. dollars). Source: PIAAC

## Baseline Empirical Approach

$$\log y_{ic} = \eta_c + \alpha_0 + \alpha_1 C_{ic} + \alpha_2 P E_{ic} + \alpha_3 P E_{ic}^2 + \alpha_4 G_{ic} + \epsilon_{ic}$$
 (1)

- $y_i \rightarrow \text{gross hourly earnings (in PPP U.S. dollars) of individual } i$
- ullet C o numeracy scores standardised to (0,1) within country
- ullet PE o years of potential experience (age years of schooling 6)
- ullet  $PE^2 
  ightarrow$  squared years of potential experience divided by 100
- $G \rightarrow \text{binary gender indicator } (1 = \text{female}; 0 = \text{male})$
- $\bullet$   $\epsilon \rightarrow$  stochastic term
- ullet c o country indicator
- $\eta_c o$  country-fixed effects

Sample: Workers aged 16-65 excluding self-employed & unemployed

## Returns to Numeracy Across Countries



## Age Varying Heterogeneity of Returns



Source: Author's calculations & PIAAC

July 26, 2017

## Heterogeneous Returns in Different Job Sub-groups



## Heterogeneous Returns in Different Societal Sub-groups



Source: Author's calculations & PIAAC

July 26, 2017

### Task-based Empirical Approach

$$\log y_{ic} = \eta_c + \alpha_0 + \alpha_1 C_{ic} + \alpha_2 P E_{ic} + \alpha_3 P E_{ic}^2 + \alpha_4 G_{ic} + \alpha_5 ICT_{ic} + \alpha_6 INFL_{ic} + \alpha_7 PHYS_{ic} + \alpha_8 DISC_{ic} + \epsilon_{ic}$$
(2)

#### **OECD** selected tasks indices interpretation:

- $lue{1}$  ICT o cognitive or analytical tasks frequency
- INFL  $\rightarrow$  influence or interpersonal tasks frequency
- ullet PHYS o physical or manual tasks frequency
- DISC → tasks discretion or intensity
- ullet Continuous variables from 0 to 4 **except** PHYS o ordinal [0,4]
- Pre-standardised to (2,1) within country by OECD

## Why Job Tasks Add Value to the Empirical Analysis?

| Variables                | (1)       | (2)       | (3)       | (4)       | (5)       |
|--------------------------|-----------|-----------|-----------|-----------|-----------|
| Numeracy                 | 0.094***  | 0.094***  | 0.089***  | 0.088***  | 0.056***  |
|                          | [0.002]   | [0.002]   | [0.002]   | [0.002]   | [0.002]   |
| Experience               | 0.025***  | 0.024***  | 0.024***  | 0.024***  | 0.021***  |
|                          | [0.001]   | [0.001]   | [0.001]   | [0.0007]  | [0.001]   |
| Experience <sup>2</sup>  | -0.037*** | -0.035*** | -0.035*** | -0.035*** | -0.031*** |
|                          | [0.001]   | [0.001]   | [0.001]   | [0.001]   | [0.001]   |
| Female                   | -0.103*** | -0.095*** | -0.094*** | -0.091*** | -0.095*** |
|                          | [0.004]   | [0.004]   | [0.004]   | [0.004]   | [0.004]   |
| ICT                      | 0.081***  | 0.069***  | 0.063***  | 0.056***  | 0.034***  |
|                          | [0.002]   | [0.002]   | [0.002]   | [0.002]   | [0.002]   |
| Influence                |           | 0.053***  | 0.054***  | 0.051***  | 0.029***  |
|                          |           | [0.002]   | [0.002]   | [0.002]   | [0.002]   |
| Physical                 |           |           | -0.040*** | -0.039*** | -0.027*** |
|                          |           |           | [0.002]   | [0.002]   | [0.002]   |
| Discretion               |           |           |           | 0.029***  | 0.028***  |
|                          |           |           |           | [0.002]   | [0.002]   |
| Country fixed effects    | X         | X         | X         | X         | X         |
| Industry fixed effects   |           |           |           |           | X         |
| Occupation fixed effects |           |           |           |           | X         |
| $R^2$                    | 0.42      | 0.43      | 0.44      | 0.44      | 0.50      |
| Observations             | 35,226    | 34,221    | 34,196    | 33,776    | 33,037    |

<sup>\*</sup>  $p \le 0.10$ , \*\*  $p \le 0.05$ , \*\*\*  $p \le 0.01$ 

12112121

# Comparison of Returns to Numeracy in Baseline and Task-based Approach



## Selection of Sample for Robustness Check

#### Full-time employees aged 35-54 (i.e. prime-age)

Why I am using the specific sub-sample?

- Approximate better the lifetime earnings [Haider and Solon, 2006]
   According to [Hanushek et al., 2013]:
- Isolates the direct labour market effects due to limited influences from:
  - Family
  - 4 Health condition
  - Changes in preferences
- ullet Strong commitment to their job o Climax of their careers

## Returns to Numeracy Before and After Robustness Check



### Returns to Job Tasks Before and After Robustness Check



### Empirical Methodology for Cross-Country Differences

The final algebraic form is the following:

$$\log y_{ic} = \eta_c + \alpha_0 + \alpha_1 C_{ic} + \beta_1 (C_{ic} \times \Lambda_c) + \alpha_2 P E_{ic} + \alpha_3 P E_{ic}^2 + \alpha_4 G_{ic} + \epsilon_{ic}$$
 (3)

- Job tasks were not included due to self-selection concerns
- $c \rightarrow 1, \dots, 22$  countries
- $\eta_c \to \text{Country fixed effects}$
- $\Lambda_c \to \text{Country-specific measures}$
- ullet  $\eta_c$  absorbs the major effects from  $\Lambda_c$
- Standard errors clustered at the country level
- All  $\Lambda_c$  are de-meaned

Sample: Full-time employees aged 35-54 (i.e. prime-age)



## What Country Characteristics Affect Returns to Numeracy?

| Variables                     | (1)       | (2)      | (3)      | (4)      | (5)      | (6)       | (7)      | (8)       | (9)       |
|-------------------------------|-----------|----------|----------|----------|----------|-----------|----------|-----------|-----------|
| Numeracy                      | 0.133***  | 0.135*** | 0.132*** | 0.135*** | 0.135*** | 0.144***  | 0.135*** | 0.147***  | 0.077***  |
|                               | [800.0]   | [0.010]  | [0.009]  | [0.009]  | [0.005]  | [0.01]    | [0.009]  | [0.009]   | [0.006]   |
| × EPL                         | -0.045*** |          |          |          |          |           |          | -0.039**  | -0.035**  |
|                               | [0.013]   |          |          |          |          |           |          | [0.02]    | [0.014]   |
| × Unionism                    | ' '       | 0.0002   |          |          |          |           |          |           |           |
|                               |           | [0.0003] |          |          |          |           |          |           |           |
| × GDP per capita Growth       |           |          | -0.003   |          |          |           |          |           |           |
|                               |           |          | [0.006]  |          |          |           |          |           |           |
| × Productivity Growth         |           |          |          | -0.008   |          |           |          |           |           |
|                               |           |          |          | [0.013]  |          |           |          |           |           |
| × Minimum Wage                |           |          |          |          | -0.004   |           |          |           |           |
|                               |           |          |          |          | [0.0013] |           |          |           |           |
| × Public Sector               |           |          |          |          |          | -0.034*** |          | -0.036*** | -0.021*** |
|                               |           |          |          |          |          | [800.0]   |          | [0.009]   | [0.006]   |
| × R&D Investements            |           |          |          |          |          |           | 0.016**  | 0.013*    | 0.010     |
|                               |           |          |          |          |          |           | [0.007]  | [0.007]   | [0.006]   |
| Country fixed effects         | X         | Χ        | Χ        | Х        | Χ        | Х         | Χ        | X         | X         |
| Industry fixed effects (22)   |           |          |          |          |          |           |          |           | X         |
| Occupation fixed effects (10) |           |          |          |          |          |           |          |           | X         |
| $R^2$                         | 0.42      | 0.41     | 0.41     | 0.41     | 0.41     | 0.41      | 0.41     | 0.42      | 0.51      |
| Number of Countries           | 21        | 20       | 22       | 20       | 22       | 22        | 22       | 21        | 21        |
| Observations                  | 20,299    | 19,761   | 21,217   | 19,761   | 21,217   | 21,217    | 21,217   | 20,299    | 20,299    |

<sup>\*</sup>  $p \le 0.10$ , \*\*  $p \le 0.05$ , \*\*\*  $p \le 0.01$ 

◆ロト ◆部ト ◆差ト ◆差ト き めなべ

## Country Measures Explanation

- Employment Protection Legislation (EPL) index: Strictness of employment protection for individual and collective dismissals
- Unionism: Share of workers who are trade union members
- Percentage GDP per capita Growth (2007-2012)
- Productivity: Change in real productivity (2007-2012)
- Minimum Wage: Binary variable if a statutory minimum wage exists
- Public Sector: Share of workers employed in the public sector  $\rightarrow$  Calculated from PIAAC
- R&D Investments: Gross domestic expenditure on R&D (2007-2012)

## Policy Implications

#### Policies to augment well-being and mitigate inequality:

- Excellent preschool through high school education
- Broad access to post-secondary education
- Good public health

#### Those policies could reduce wage inequality:

- Enabling more adults to attain high productivity and well-paid jobs
- Raising skills supply reduces the wage premium of skilled workers

## Wage Inequality by Country



Note: Wage inequality defined as gross hourly wage ratio between 90th and 10th percentile of wage distribution. Source: PIAAC

## Shortcomings of My Analysis

#### **Endogeneity Issues**

- ullet Omitted variable bias o Other skills scores are missing
- ullet Reverse causality o Better skills related to challenging jobs
- Schooling extension → Related partly to higher cognitive skills
- ullet Standard ability bias o Innate ability merely measurable
- Self-selection into occupations and job tasks (i.e. non-random assignment)

#### Recomendations for Future Research

- Combine school achievements and direct skills measurements
- ullet Use comparable panel data o changes across countries and over time
- Roy's model to randomly assign workers into occupations and job tasks [Autor and Handel, 2013]

#### References



Haider, S., & Solon, G. (2006).

Life-Cycle Variation in the Association between Current and Lifetime Earnings *The American Economic Review*, 96(4), 1308-1320.



Hanushek, E. A., Schwerdt, G., Wiederhold, S., & Woessmann, L. (2013).

Returns to Skills around the World: Evidence from PIAAC

National Bureau of Economic Research, (No. w19762).



Autor, D. H., & Handel, M. J. (2013).

Putting tasks to the test: Human capital, job tasks, and wages *Journal of Labor Economics*, 31(S1), S59-S96.

## The End

Thank you for your attention!