STAT 102B: Sample Exam I Questions

George Michailidis

1 Problems that require calculations

Problem 1:

Consider the function

$$f(x) = (x+2)^2$$
.

Use Newton's algorithm to perform **one iteration** starting from $x_0 = 5$.

Answer:

Step 1: Compute the first and second derivatives of f(x):

$$f'(x) = \frac{d}{dx}(x+2)^2 = 2(x+2),$$
$$f''(x) = \frac{d}{dx}[2(x+2)] = 2.$$

Step 2: Apply Newton's update rule:

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}.$$

Step 3: Plug in $x_0 = 5$:

$$f'(5) = 2(5+2) = 14, \quad f''(5) = 2,$$

 $x_1 = 5 - \frac{14}{2} = 5 - 7 = -2.$

Problem 2:

Consider the lasso regression problem.

Write pseudo-code that implements the proximal gradient algorithm with a fixed step size η .

Be as detailed as possible.

Answer:

Algorithm 1 Proximal Gradient Algorithm for Lasso (Fixed Step Size + Stopping Criterion)

Require: Design matrix $X \in \mathbb{R}^{n \times p}$, response vector $y \in \mathbb{R}^n$, regularization parameter $\lambda > 0$, step size $\eta > 0$, tolerance **tol**> 0, maximum iterations K

- 1: Initialize $\beta_0 \in \mathbb{R}^p$ (e.g., $\beta_0 = 0$)
- 2: for k = 1 to K do
- 3: Compute gradient of $SSE(\beta)$:

$$\nabla f(\beta^{(t)}) = -\frac{1}{n} X^{\top} (y - X\beta^{(t)})$$

4: Gradient descent step:

$$\tilde{\beta}_k = \tilde{\beta}_k - \eta \nabla f(\beta_k)$$

5: Apply soft-thresholding (proximal operator for $\lambda \|\beta\|_1$):

$$\beta_{k+1}(j) = \operatorname{sign}(\tilde{\beta}_k(j)) \cdot \max(|\tilde{\beta}_k(j)| - \eta \lambda, 0)$$
 for $j = 1, \dots, p$

6: Check stopping criterion:

if
$$\|\beta_{k+1} - \beta_k\|_2 < \mathbf{tol}$$
 then stop

- 7: end for
- 8: **return** β_{k+1}

Problem 3:

Consider a lasso regression problem with five predictors and regularization parameter $\lambda = 0.5$. At iteration k, the gradient update with step size $\eta = 0.5$ produces

the following values for the regression coefficients.

$$\begin{bmatrix} 2.1 \\ -3.5 \\ 0.2 \\ 1.3 \\ -0.5 \end{bmatrix}$$

What would the value of the regression coefficients be at iteration k + 1?

Answer:

To obtain the updated coefficients $\beta^{(k+1)}$, we apply the soft-thresholding operator elementwise:

$$\beta_{k+1}(j) = \operatorname{sign}(\tilde{\beta}_k(j)) \cdot \max\left(|\tilde{\beta}_k(j)| - \eta\lambda, 0\right), \quad j = 1, \dots, 5$$

Since $\eta = 0.5$ and $\lambda = 0.5$, we compute $\eta \lambda = 0.25$. Next, apply the soft-thresholding to each component:

$$\beta_{k+1}(1) = \operatorname{sign}(2.1) \cdot \max(2.1 - 0.25, 0) = 1 \cdot 1.85 = 1.85$$

$$\beta_{k+1}(2) = \operatorname{sign}(-3.5) \cdot \max(3.5 - 0.25, 0) = -1 \cdot 3.25 = -3.25$$

$$\beta_{k+1}(3) = \operatorname{sign}(0.2) \cdot \max(0.2 - 0.25, 0) = 1 \cdot 0 = 0$$

$$\beta_{k+1}(4) = \operatorname{sign}(1.3) \cdot \max(1.3 - 0.25, 0) = 1 \cdot 1.05 = 1.05$$

$$\beta_{k+1}(5) = \operatorname{sign}(-0.5) \cdot \max(0.5 - 0.25, 0) = -1 \cdot 0.25 = -0.25$$

Thus, the updated coefficients at iteration k+1 are:

$$\beta_{k+1} = \begin{bmatrix} 1.85 \\ -3.25 \\ 0 \\ 1.05 \\ -0.25 \end{bmatrix}$$

Problem 4: Consider the function

$$f(x,y) = x^2 + y^2 + \log(x) + \exp(y).$$

Use Newton's algorithm to perform **one iteration** starting from $(x_0, y_0) = (1, 0)$.

Answer:

Step 1: Compute the gradient

The gradient of f is:

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x + \frac{1}{x} \\ 2y + \exp(y) \end{bmatrix}$$

At $(x_0, y_0) = (1, 0)$:

$$\nabla f(1,0) = \begin{bmatrix} 2 \cdot 1 + \frac{1}{1} \\ 2 \cdot 0 + \exp(0) \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

Step 2: Compute the Hessian

The Hessian matrix of f is:

$$H_f(x,y) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 2 - \frac{1}{x^2} & 0 \\ 0 & 2 + \exp(y) \end{bmatrix}$$

At $(x_0, y_0) = (1, 0)$:

$$H_f(1,0) = \begin{bmatrix} 2-1 & 0 \\ 0 & 2+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

Step 3: Newton update

The Newton step is given by:

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} - H_f^{-1}(x_0, y_0) \cdot \nabla f(x_0, y_0)$$

Since the Hessian is diagonal, its inverse is easy to compute:

$$H_f^{-1}(1,0) = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$$

Thus,

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 - 3 \\ 0 - \frac{1}{3} \end{bmatrix} = \begin{bmatrix} -2 \\ -\frac{1}{3} \end{bmatrix}$$

Problem 5: Consider a test data set with the following responses $y = \{0, 1, 1, 0, 1, 1\}$.

A logistic regression model calculated the following predicted probabilities $\hat{y} = \{0.6, 0.9, 0.3, 0.2, 0.4, 0.75\}$. Calculate the confusion matrix if the threshold is set to t = 0.5.

How do your answers change if the threshold is set to t = 0.3.

Answer:

Consider the true responses:

$$y = \{0, 1, 1, 0, 1, 1\}$$

and the predicted probabilities:

$$\hat{y} = \{0.6, 0.9, 0.3, 0.2, 0.4, 0.75\}$$

Threshold t = 0.5

We convert probabilities to class predictions:

$$\hat{y}_{\text{class}} = \{1, 1, 0, 0, 0, 1\}$$

Compare with true labels:

- True Positives (TP): Predicted 1 and actual $1 = \text{indices } 2, 6 \Rightarrow 2 \text{ cases}$
- False Positives (FP): Predicted 1 and actual $0 = \text{index } 1 \Rightarrow 1$ case
- True Negatives (TN): Predicted 0 and actual 0 = index 4 \Rightarrow 1 case
- False Negatives (FN): Predicted 0 and actual $1 = \text{index } 3, 5 \Rightarrow 2 \text{ cases}$

Confusion matrix at t = 0.5:

	Pred 0	Pred 1
True 0	1	1
True 1	2	2

Threshold t = 0.3

Convert probabilities:

$$\hat{y}_{\text{class}} = \{1, 1, 1, 0, 1, 1\}$$

Compare with true labels:

• TP: indices 2, 3, 5, $6 \Rightarrow 4$ cases

• FP: index $1 \Rightarrow 1$ case

• TN: index $4 \Rightarrow 1$ case

• FN: none

Confusion matrix at t = 0.3:

	Pred 0	Pred 1
True 0	1	1
True 1	0	4

2 Multiple choice Quiz Questions

Question 1: Which of the following best describes the ROC curve?
• A plot of precision vs. recall.
• 🗸 A plot of true positive rate vs. false positive rate.
• A plot of sensitivity vs. specificity.
• A plot of true positives vs. false negatives.
Question 2: The Lasso regression is known for:
• Producing non-unique solutions.
• ✓ Selecting a subset of predictors.
• Being insensitive to regularization.
• Being equivalent to Ridge regression.
Question 3: What happens when the regularization parameter λ is very large in Ridge regression?
• The model overfits.
• The model becomes sparse.
• Regression coefficients shrink toward zero.
• AUC increases.
Question 4: The proximal gradient method is typically used when:
• The loss function is non-differentiable.
• The optimization problem has a composite structure, with one component being non-differentiable

• Gradient descent is unstable.	
• The loss function is quadratic.	
Question 5: Which of the following is an example of a function with a simple properator?	oximal
• $\boxed{\checkmark}$ ℓ_1 norm.	
• Squared error loss.	
• Binary cross-entropy loss.	
•	
Question 6: During k -fold cross-validation, test loss is calculated on:	
• The entire data set.	
• Only the training folds.	
• Only the test fold.	
• An entirely separate validation set.	
Question 7: If validation loss starts increasing while training loss continues crease, this most likely indicates:	to de-
• Training requires more epochs.	
• The step size used in the optimization algorithm is too large.	
• V Overfitting is occurring.	
• Underfitting is occurring.	
Question 8: For the Lasso problem, the proximal operator corresponds to:	
• The identity operator.	

Question 12: In the coordinate descent algorithm for linear regression, during each iteration:

• All regression coefficients are updated simultaneously.
\bullet $\boxed{\checkmark}$ A single regression coefficient is updated while keeping others fixed.
• A random subset of regression coefficients is updated.
• All regression coefficients are updated, but in a specific order.
Question 13: Coordinate descent is most advantageous when:
• The dimension of the optimization problem is small.
• The optimization problem has multiple minima.
• The variables in the objective function have complex interactions.
\bullet $\boxed{\checkmark}$ The optimization problem is high-dimensional and each coordinate-wise problem is easy to solve
Question 14: Newton's algorithm uses which second-order information?
• Gradient of the objective function only.
• 🗸 Hessian matrix of the objective function.
• An identity matrix.
• Proximal operator.
Question 15: Which of the following is true about the AUC score?
• It is only used in regression problems.
• It can take negative values.
\bullet \checkmark A score closer to 1 indicates better classification.
• It measures calibration of predicted probabilities.

Question 16: The mathematical formulation of Lasso Regression adds which term to the ordinary least squares objective function?

- $\sqrt{\lambda} \sum_{j=1}^p |\beta_j|$.

Question 17: In the proximal gradient algorithm, the proximal operator $\operatorname{prox}_{t,g}(z)$ is defined as:

- $\sqrt{}$ arg $\min_x g(x) + \frac{1}{2t} ||x z||_2^2$
- $\bullet \qquad \arg\min_{x} g(x) + t \|x z\|_{2}^{2}$
- $\bullet \qquad \arg\min_{x} f(x) + t \|x z\|_{2}^{2}$

Question 18: Suppose that you have a data set comprising 1 million observations and 100,000 predictors that exhibit a high degree of multicollinearity. A computationally efficient algorithm to estimate the regression coefficients is:

- Gradient descent applied to the sum-of-squares errors loss function.
- Gradient descent applied to the sum-of-squares errors loss function, augmented with a regularization term that penalizes the sum of squared regression coefficients.
- Newton's algorithm applied to the sum-of-squares errors loss function, augmented with a regularization term that penalizes the sum of squared regression coefficients.
- Stochastic gradient descent applied augmented to the sum-of-squares errors loss function, augmented with a regularization term that penalizes the sum of squared regression coefficients.