Logistic Regression Equation

Andy Grogan-Kaylor

2025-07-29

Table of contents

1	1 Logistic Regression		1
	1.1	Equation	1
	1.2	Rewriting The Equation	2
2	Grap	oh	3

1 Logistic Regression

1.1 Equation

Logistic regression—written here with a single independent variable—models the log odds of an outcome as a function of a set of covariates:

$$\ln\left(\frac{p(\text{outcome})}{1 - p(\text{outcome})}\right) = \beta_0 + \beta_1 x_1$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(\text{outcome})}{1-p(\text{outcome})}$ is the odds of the outcome.

Hence, $\ln\left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right)$ is the $\log\ odds$.

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios: $OR = e^{\beta}$

1.2 Rewriting The Equation

We can take the equation:

$$\ln\left(\frac{p(\text{outcome})}{1 - p(\text{outcome})}\right) = \beta_0 + \beta_1 x_1$$

We exponentiate both sides of the equation:

$$\frac{p(\text{outcome})}{1 - p(\text{outcome})} = e^{\beta_0 + \beta_1 x_1}$$

We multiply both sides by the denominator of the fraction that is on the left hand side of the equation:

$$p(\text{outcome}) = e^{\beta_0 + \beta_1 x_1} (1 - p(\text{outcome}))$$

Then:

$$p(\text{outcome}) = e^{\beta_0 + \beta_1 x_1} - e^{\beta_0 + \beta_1 x_1} * p(\text{outcome})$$

Then:

$$p(\text{outcome}) + e^{\beta_0 + \beta_1 x_1} * p(\text{outcome}) = e^{\beta_0 + \beta_1 x_1}$$

Then:

$$(1 + e^{\beta_0 + \beta_1 x_1}) * p(\text{outcome}) = e^{\beta_0 + \beta_1 x_1}$$

And, finally:

$$p(\text{outcome}) = \frac{e^{\beta_0 + \beta_1 x_1}}{1 + e^{\beta_0 + \beta_1 x_1}}$$

We sometimes use a shorthand, and say

$$F(z) = \frac{e^z}{1 + e^z}$$

2 Graph

We graph a logistic distribution with β_0 set to 0, and β_1 set to 1.

Logistic Function

