Painel / Meus cursos / SC26EL / 15-Observadores de Estado / Questionário sobre Observadores de Estados

Iniciado em	sexta, 14 mai 2021, 10:14
Estado	Finalizada
Concluída em	sexta, 14 mai 2021, 10:23
Tempo	8 minutos 13 segundos
empregado	
Notas	2,0/2,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Questão **1**

Correto

Atingiu 1,0 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam $\mu_{1,2}=-50$.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -50 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Os polos da planta são (do menor para o maior): $\emph{s}_1 =$

-10

✓ e **s**₂ =

~

A matriz de observabilidade tem a forma $N = \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix}$. Assim, os elementos da matriz N são:

 $n_{11} = \frac{1}{2}$

 \checkmark , $n_{12} =$

~ ,

*n*₂₁ = -50

✓ , **n**₂₂ =

~

O posto da matriz de observabilidade é:

2

~ .

Portanto, o sistema é: Observável

O polinômio característico desejado para o observador é:

1

✓ s^2+

✓ *s*+

_

Logo, os elementos da matriz $\phi(A)=egin{bmatrix} arphi_{11} & arphi_{12} \ arphi_{21} & arphi_{22} \end{bmatrix}$ são:

 $\varphi_{11} = 2450$

 \checkmark , $arphi_{12}=$

$$\varphi_{21} =$$

$$-4250$$

$$\checkmark$$
 , $\varphi_{22}=$

~

Assim, o vetor de ganhos associado ao observador é $\textit{K}_{e} = \left[\right.$

-95

275

✓]^T.

A representação do observador em espaço de estados é dada por:

$$\dot{ ilde{x}} = A_{obs} ilde{x} + B_{obs}egin{bmatrix} u \ y \end{bmatrix}$$

$$ilde{y} = C_{obs} ilde{x}$$

A matriz $A_{obs}=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$ e seus elementos são:

a₁₁ = 190

~

~

A matriz $B_{obs}=egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \end{bmatrix}$ e seus elementos são:

 $b_{11} = 0$

~ ,

$$b_{21} = 1$$

.

A matriz $extit{C}_{obs} = egin{bmatrix} c_{11} & c_{12} \ c_{21} & c_{22} \end{bmatrix}$ e seus elementos são:

 $c_{11} = 1$

 \checkmark , $c_{12} =$

✓ , $c_{21} =$ 0 **✓** , c₂₂ =

1

Questão **2**

Correto

Atingiu 1,0 de 1,0

Dado o sistema abaixo, projete um observador de estados de forma que os autovalores do observador sejam $\mu_{1,2,3}=-50$.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -150 \\ 1 & 0 & -95 \\ 0 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 150 \\ 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Os polos da planta são (do menor para o maior): $s_1 =$

-10

 \checkmark , $s_2 =$ -5

✓ e **s**₃ = -3

A matriz de observabilidade tem a forma $N = \begin{bmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{bmatrix}$. Assim, os elementos da matriz N são:

 \checkmark , $n_{12} =$ 0

✓ , $n_{13} =$

 $n_{21} =$

✓ , $n_{22} =$ 1

 \checkmark , $n_{23} =$ -18

 $n_{31} =$ 1

✓ , $n_{32} =$ -18

 \checkmark , $n_{33}=$ 229

O posto da matriz de observabilidade é:

Portanto, o sistema é: Observável

O polinômio característico desejado para o observador é: 1 $\checkmark s^3 +$ 150 $\checkmark s^2 +$ 7500 **√** s+ 125000 Logo, os elementos da matriz $\phi(A) = egin{bmatrix} arphi_{11} & arphi_{12} & arphi_{13} \ arphi_{21} & arphi_{22} & arphi_{23} \ arphi_{31} & arphi_{32} & arphi_{33} \end{bmatrix}$ são: $\varphi_{11} =$ 124850 ullet , $arphi_{12}=$ -19800 \checkmark , $\varphi_{13}=$ -754350 **~** , $\varphi_{21} =$ 7405 ullet , $arphi_{22}=$ 112310 \checkmark , $arphi_{23}=$ -497555 **~** , $\varphi_{31} =$ 132 \checkmark , $\varphi_{32} =$ 5029 \checkmark , $\varphi_{33}=$ 21788 Assim, o vetor de ganhos associado ao observador é $\textit{K}_{e} = \left[\right.$ 124850 7405 132 **✓**]^T.

A representação do observador em espaço de estados é dada por:

$$\dot{\tilde{x}} = A_{obs}\tilde{x} + B_{obs} \begin{bmatrix} u \\ y \end{bmatrix}$$
 $\tilde{y} = C_{obs}\tilde{x}$

```
A matriz A_{obs} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} e seus elementos são:
```

$$a_{11} = 0$$

$$\checkmark$$
 , $a_{12} = 0$

$$a_{21} = 1$$

$$a_{31} = 0$$

✓ ,
$$a_{33} =$$
 -150

A matriz
$$B_{obs}=egin{bmatrix} b_{11} & b_{12} \ b_{21} & b_{22} \ b_{31} & b_{32} \end{bmatrix}$$
 e seus elementos são:

$$b_{11} = 150$$

$$b_{21} = 1$$

$$b_{31} = 0$$

A matriz
$$C_{obs} = egin{bmatrix} c_{11} & c_{12} & c_{13} \ c_{21} & c_{22} & c_{23} \ c_{31} & c_{32} & c_{33} \end{bmatrix}$$
 e seus elementos são:

$$c_{11} = 1$$

\checkmark , $c_{12}=$				
0				
✓ , c ₁₃ =				
0				
✓ ,				
$c_{21} =$				
0				
\checkmark , $c_{22}=$				
1				
\checkmark , $c_{23}=$				
0				
✓ ,				
$c_{31} =$				
0				
\checkmark , $c_{32}=$				
0				
\checkmark , $c_{33}=$				
1				
~ .				
Diagrama	de Blocos Scilab/Xco	s - Simulação		

Seguir para...

Aula 16 - Projeto de Controlador com Observador de Estados - Parte 1 ►