MAC 2312 CALCULUS II CRN 83557 MWF

$\mathbf{Exam}\ \mathbf{1}$

Term Fall, 2024

Full Name:

Instructions

- 1. Total time: 1 hour 15 minutes.
- 2. Write the information requested above.
- 3. Switch off any electronic devices.
- 4. Calculators are not allowed.
- 5. Write the solution in the given space.
- 6. Show all your work for full credit.
- 7. Scratch papers are provided but will not be graded.

Q.N.	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Bonus	10	
Total	60	

1. (10 points) Find the area of the region bounded by the curves (integrate with respect to x):

$$y = x^2 + 2x, \qquad y = 4x$$

2. (10 points) (Disk Problem) Find the volume of the solid obtained by rotating the region bounded by

$$y = \sqrt{x+2}$$
, $x = -1$, $x = 1$; about the x-axis.

3. (10 points) Find the integral using Integration by Parts: $\int_0^{\frac{\pi}{2}} x \sin x \, dx$

4. (10 points) Find the integral using trigonometric substitution $\int \frac{x}{\sqrt{(4-x^2)}} dx$. (Hint: Substitute $x=2\sin\theta$, find dx then integrate)

5. (10 points) Find the integral using partial fraction $\int \frac{1}{(x^2-3x)} dx$.

- 6. (10 points)
 - (a) Find the average value of the function on the given interval: f(x) = 2x 1, [0,2]

(b) Find c in the given interval such that $f_{avg} = f(c)$.

Bonus Problem (Extra 10 points) Find the volume of the solid obtained by rotating the region bounded by

$$y = x^2$$
, $y = \sqrt{x}$; about the y-axis.