

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION PROBLEM

- 1. Depending on the size of the house, predict the price of the house
- 2. Depending on no of hours studied, predict the marks obtained
- 3. Depending on the exp (in years), predict the salary of a person

GRAPHICAL REPRESENTATION OF LINEAR REGRESSION

y=box b1x

Taxi Fare = b0 +b1 *km travelled

Purple line represents best fit line

SPLITTING THE DATASET INTO TRAINING AND TEST DATASET

TRAINING Dataset	Labels for Training DataSet
X_train	y_train
Test Dataset	Labels for Test Dataset
X_test	y_test

STEPS

- I. Importing the Libraries
- 2. Importing the dataset
- 3. Splitting the dataset into Training set and Test set
- 4. Training Simple Linear Regression model on the training set
- · 5. Predicting the Test set results
- 6.Visualizing the Training set results
- · 7.Visualizing the Test set result

Linear Regression	Logistic Regression
Linear regression is used to predict the continuous dependent variable using a given set of independent variables.	Logistic Regression is used to predict the categorical dependent variable using a given set of independent variables.
Linear Regression is used for solving Regression problem.	Logistic regression is used for solving Classification problems.
In Linear regression, we predict the value of continuous variables.	In logistic Regression, we predict the values of categorical variables.
In linear regression, we find the best fit line, by which we can easily predict the output.	In Logistic Regression, we find the S-curve by which we can classify the samples.
Least square estimation method is used for estimation of accuracy.	Maximum likelihood estimation method is used for estimation of accuracy.
The output for Linear Regression must be a continuous value, such as price, age, etc.	The output of Logistic Regression must be a Categorical value such as 0 or 1, Yes or No, etc.
In Linear regression, it is required that relationship between dependent variable and independent variable must be linear.	In Logistic regression, it is not required to have the linear relationship between the dependent and independent variable.
In linear regression, there may be collinearity between the independent variables.	In logistic regression, there should not be collinearity between the independent variable.