∞ Évaluation du 03/01/2023

Exercice 1 On considère trois points de l'espace :

$$A(1;1;1)$$
 $B(1;2;3)$ $C(3;2;1)$

1. Justifier rapidement que \overrightarrow{AB} et \overrightarrow{AC} forme un plan. On calcule les coordonnées des deux vecteurs :

$$\overrightarrow{AB}(1-1;2-1;3-1) = (0;1;2)$$

 $\overrightarrow{AC}(3-1;2-1;1-1) = (2;1;0)$

Ces deux vecteurs ne sont pas colinéaires car leur coordonnées ne sont pas proportionnelles. Ces deux vecteurs forment donc un plan.

2. Déterminer un vecteur normal du plan (ABC).

Appelons $\vec{n}(x; y; z)$ un vecteur normal de ce plan.

Il suffit qu'il soit normal à deux vecteurs non colinéaires de ce plan; on va choisir les vecteurs \overrightarrow{AB} et \overrightarrow{AC} :

$$\begin{cases} \overrightarrow{AB}.\overrightarrow{n} = 0 \\ \overrightarrow{AC}.\overrightarrow{n} = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 0x + 1y + 2z = 0 \\ 2x + y + 0z = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} z = -\frac{1}{2}y \\ x = -\frac{1}{2}y \end{cases}$$

Finalement, le vecteur \vec{n} a ses coordonnées de la forme $\left(-\frac{1}{2}y; y; -\frac{1}{2}y\right)$. On choisit comme vecteur \vec{n} le vecteur de coordonnées (1; -2; 1).

3. En déduire une équation cartésienne du plan (ABC). Un point M(x; y; z) appartient au plan (ABC) si et seulement si \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux :

$$\overrightarrow{AM}.\overrightarrow{n} = 0$$

$$\Leftrightarrow (x-1) \times 1 + (y-1) \times (-2) + (z-1) \times 1 = 0$$

$$\Leftrightarrow x - 1 - 2y + 2 + z - 1 = 0$$

$$\Leftrightarrow x - 2y + z = 0$$

4. Est ce que le point D(1;3;2) appartient au plan (ABC) ? Il faut vérifier si les coordonnées de D vérifient l'équation cartésienne du plan (ABC) :

$$x_D - 2y_D + z_D = 1 - 2 \times 3 + 2 = -3 \neq 0$$

Par conséquent, le point D n'appartient pas au plan (ABC).

10

5. Donner une équation paramétrique de la droite (AD). Une représentation paramétrique de la droite (AD) est de la forme :

$$\begin{cases} x = x_A + tu_x \\ y = y_A + tu_y \\ z = z_A + tu_z \end{cases}, t \in \mathbb{R}$$

avec $\vec{u}(u_x, u_y, u_z)$ un vecteur directeur de (AD).

Comme vecteur directeur de (AD), on peut choisir le vecteur \overrightarrow{AD} dont les coordonnées sont (0;2;1). On en déduit qu'une représentation paramétrique de la droite (AD) est :

$$\begin{cases} x = 1 \\ y = 1 + 2t \quad , t \in \mathbb{R} \\ z = 1 + t \end{cases}$$

Exercice 2 *Soit f la fonction définie sur l'intervalle*]0; $+\infty[$ *par*

$$f(x) = x \ln(x) + 1$$

On note \mathscr{C}_f sa courbe représentative dans un repère du plan.

1. Déterminer la limite de la fonction f en 0 ainsi que sa limite en $+\infty$. Aucune justification demandée. Par croissance comparée, on peut écrire que :

$$\lim_{x\to +\infty}x\ln(x)+1=+\infty$$

Par produit de limites, on en déduit que :

$$\lim_{x \to 0} x \ln(x) = 1$$
donc par somme de limites
$$\lim_{x \to 0} x \ln(x) + 1 = 0$$

2. On admet que f est dérivable sur]0; $+\infty[$ et on notera f' sa fonction dérivée. Calculer f'(x).

$$f'(x) = (x\ln(x) + 1)' = (x\ln(x))' + 0 = x'\ln(x) + x \times (\ln(x))' = 1 \times \ln(x) + x \times \frac{1}{x} = \ln(x) + 1$$

3. En déduire le tableau de variation de la fonction f sur]0; $+\infty[$. On y fera figurer la valeur exacte de l'extremum de f sur]0; $+\infty[$ et les limites.

On doit d'abord le signe de la dérivée f'(x) sur]0; $+\infty[$:

$$f'(x) \ge 0 \Leftrightarrow \ln(x) + 1 \ge \ln(x) \ge -1 \Leftrightarrow x \ge e^{-1}$$

On en déduit le tableau de variations suivant :

x	0	e^{-1}	+∞
f(x)		- 0	+
f'(x)	0	$1-\frac{1}{e}$	+∞

La valeur 1 dans le tableau se trouve en remplaçant x par e^{-1} dans f(x):

$$f(e^{-1}) = e^{-1}\ln(e^{-1}) + 1 = e^{-1} \times (-1) + 1 = 1 - \frac{1}{e}$$

4. Justifier qu'il n'existe aucune solution α à l'équation f(x) = 0.

La fonction f *est continue sur*]0; $+\infty$ [.

Sur l'intervalle $]0;e^{-1}]$, la fonction est décroissante de 1 à $1-\frac{1}{e}>0$: elle ne peut donc par passer par 0. Si elle passait par 0, le théorème des valeurs intermédiaires nous dirait qu'elle passerait par toutes les valeurs de $]0;1-\frac{1}{e}[$, ce qui n'est pas le cas d'après le tableau de variations. Sur l'intervalle $[e^{-1};+\infty[$, la fonction est croissante de $1-\frac{1}{e}>0$ à $+\infty$: elle ne peut donc par passer par 0. Si elle passait par 0, le théorème des valeurs intermédiaires nous dirait qu'elle passerait par toutes les valeurs

de]0;1 – $\frac{1}{e}$ [, ce qui n'est pas le cas d'après le tableau de variations.