Large-Scale Machine Translation between Available Corpora and Initial Results Arabic and Hebrew:

Yonatan Belinkov and James Glass

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA

AMTA 2016 Workshop on Semitic Machine Translation Austin, TX November 1, 2016

Why Arabic and Hebrew

Culture and politics

Why Arabic and Hebrew

Culture and politics

Linguistic similarities

Orthography, Morphology, Syntax, lexicon

Why Arabic and Hebrew

Culture and politics

Linguistic similarities

Orthography, Morphology, Syntax, lexicon

Challenges

Ambiguous orthography, rich morphology

Figure from: http://www.lironlavi.com/2012/08/06/aravrit/

Lack of parallel corpora

- Lack of parallel corpora
- Synchronous CFGs (Shilon+ 2012)
- > Manually-crafted, not robust
- Pivoting via English (El Kholy+Habash 2014, 2015)
- Under-specification of useful features

- Lack of parallel corpora
- Synchronous CFGs (Shilon+ 2012)
- > Manually-crafted, not robust
- Pivoting via English (El Kholy+Habash 2014, 2015)
- > Under-specification of useful features
- Tokenization/segmentation

- Lack of parallel corpora
- Synchronous CFGs (Shilon+ 2012)
- Manually-crafted, not robust
- Pivoting via English (El Kholy+Habash 2014, 2015)
- Under-specification of useful features
- Tokenization/segmentation
- Important for Arabic-English (Badr+ 2008, Habash+Sadat 2006, El Kholy+Habash 2012, Devlin+ 2014, Almahairi+ 2016) and Hebrew-English (Lavie+ 2004, Lembersky+ 2012, Singh+Habash
- Used in phrase-based, hybrid, and end-to-end neural MT

Parallel Corpora

Corpus	Sents	Arabic	Hebrew	Domain/genre
		WOIGS	WOLCS	
OpenSubtitles	14.6M	108M	111M	Movies, IV
OpenSubtitles (alt)	9.5M	71M	76M	Movies, TV
WIT ³	0.2M	3.4M	3.1M	TED talks
GNOME	0.6M	2.1M	2.6M	Localization
KDE	80.5K	0.5M	0.4M	Localization
Ubuntu	51.3K	0.2M	0.2M	Localization
Shilon et al.	1.6K	28K	25K	News
Tatoeba	0.9K	90K	0.6M	User-contributed
GlobalVoices	76	3.2K	3.7K	News

Thanks to Mauro! (Marcello's talk)

Parallel Corpora

News	3.7K	3.2K	76	GlobalVoices
User-contributed	0.6M	90K	0.9K	Tatoeba
News	25K	28K	1.6K	Shilon et al.
Localization	0.2M	0.2M	51.3K	Ubuntu
Localization	0.4M	0.5M	80.5K	KDE
Localization	2.6M	2.1M	0.6M	GNOME
TED talks	3.1M	3.4M	0.2M	WIT ³
Movies, TV	76M	71M	9.5M	OpenSubtitles (alt) 9.5M 71M
Movies, TV	111M	108M	14.6M	OpenSubtitles
Domain/genre	Hebrew words	Arabic words	Sents	Corpus

Large vocabulary size (and high ambiguity)

- Large vocabulary size (and high ambiguity)
- Standard approach: tokenize \rightarrow translate \rightarrow detokenize
- Example: "in the house"

- Large vocabulary size (and high ambiguity)
- Standard approach: tokenize \rightarrow translate \rightarrow detokenize

Example: "in the house"

- Requires language-specific tools
- Tokenization scheme not tuned for MT

- Large vocabulary size (and high ambiguity)
- Standard approach: tokenize → translate → detokenize
- Recently, sub-word units in neural models (Sennrich+ 2016, Luong+Manning 2016, Kim+ 2016, ...)
- Byte-pair encoding: unsupervised, pre/post-processing
- Subnet over characters: supervised, end-to-end (RNN, CNN, ...)

Can character-based neural models replace morphology-aware tokenization?

Experimental Setup

Experimental Setup

- MT systems
- Moses for phrase-based MT (fast_align, 5-gram LM, MERT)
- seq2seq-attn for neural MT (LSTM, attention, 50k vocabulary, beam search, Torch impl.)

Experimental Setup

- MT systems
- Moses for phrase-based MT (fast_align, 5-gram LM, MERT)
- seq2seq-attn for neural MT (LSTM, attention, 50k vocabulary, beam search, Torch impl.)
- Tokenization and sub-word models
- MADAMIRA/Farasa for Arabic tokenization (Pasha+ 2014, Abdelali+ 2016)
- (HTag for Hebrew tokenization (Adler 2009))
- charCNN (Kim et al. 2016)
- Replace word vectors with CNN over character vectors

ത	—	е	Ф	С	Б	മ	
NMT+charCNN+UNK replace	NMT+charCNN	NMT+UNK replace	NMT	PBMT+Tok-MADAMIRA	PBMT+Tok-Farasa	PBMT	
10.86	10.65	10.12	9.91	9.63	9.51	9.31	BLEU

Tokenization helps PBMT (b>a, c>a)

œ	–	е	Q	С	σ	മ	
NMT+charCNN+UNK replace	NMT+charCNN	NMT+UNK replace	NMT	PBMT+Tok-MADAMIRA	PBMT+Tok-Farasa	PBMT	
10.86	10.65	10.12	9.91	9.63	9.51	9.31	BLEU

- Tokenization helps PBMT (b>a, c>a)
- charCNN helps NMT (f>d)

	d NMT	c PBN	b PBN	a PBMT	
NMT+IINK replace		PBMT+Tok-MADAMIRA	PBMT+Tok-Farasa	П	
10 13	9.91	9.63	9.51	9.31	BLEU

- Tokenization helps PBMT (b>a, c>a)
- charCNN helps NMT (f>d)
- Replace UNK gives small boost (e>d, g>f)

10.86	NMT+charCNN+UNK replace	Ø
10.65	NMT+charCNN	–
10.12	NMT+UNK replace	е
9.91	NMT	Q
9.63	PBMT+Tok-MADAMIRA	С
9.51	PBMT+Tok-Farasa	Б
9.31	PBMT	മ
BLEU		

- Tokenization helps PBMT (b>a, c>a)
- charCNN helps NMT (f>d)
- Replace UNK gives small boost (e>d, g>f)
- Char-based NMT works best (f, g)

10.86	NMT+charCNN+UNK replace	9
10.65	NMT+charCNN	<u></u>
10.12	NMT+UNK replace	е
9.91	NMT	Q
9.63	PBMT+Tok-MADAMIRA	С
9.51	PBMT+Tok-Farasa	σ
9.31	PBMT	٩
BLEU		

More results

- Previous results used only source side, Arabic tokenization
- What about target side, Hebrew tokenization?

More results

- Previous results used only source side, Arabic tokenization
- What about target side, Hebrew tokenization?
- More complicated picture

<	<	<	Both
<	×	×	Hebrew Tok
×	<	<	Arabic Tok
Char NM1	Word NMT	PBMT	

Best combination: char-based NMT + Arabic tok + Hebrew tok (11.86 BLEU)

Example Translations

Input	السنة الماضية عرضت هاتين الشريحتين لكي أوضح أن الغطاء الجليدي القطبي ، الذي كان خلال الثلاثة ملايين سنة الماضية في حجم أقله ثمانية وأربعين ، قد تقلص بنسبة أربعين في المائة .
Ref	בשנה שעברה הצגתי את שתי השקופיות האלה שמראות כי כיפת הקרח הארקטי , אשר במשך רוב שלושת מיליון השנים האחרונות היתה שווה לגודלן של 48 המדינות התחתונות , התכווצה בכארבעים אחוזים .
English	Last year I showed these two slides so that demonstrate that the arctic ice cap, which for most of the last three million years has been the size of the lower 48 states, has shrunk by 40 percent.
PBMT	בשנה שעברה את שני الشريحتين כדי להדגים את כיפת הקרח של הקוטב , שהיה במהלך שלושת מיליון השנים האחרונות של אמרתי 48 , קמטי ב @-@ 40 אחוז .
N T	בשנה שעברה הצגתי את שתי השורות האלה כדי להוכיח <unk> הקרח , שהיה במשך 3 מיליון השנים האחרונות של מה שאמרתי , שמונה <unk> , <unk> ב @-@ 40 אחוז .</unk></unk></unk>
NMT+unk	בשנה שעברה הצגתי את שתי השורות האלה כדי להוכיח את הקרח , שהיה במשך 3 מיליון השנים האחרונות של מה שאמרתי , שמונה כרגע , התכווץ ב @-@ 40 אחוז .
NMT+char	בשנה שעברה הראיתי את שתי השקופיות האלה כדי להראות <mark><unk></unk></mark> הקרח , שהיה במהלך שלושת מיליוני השנים האחרונות , בערך ב @-@ 48 אחוז .
NMT+char+unk	בשנה שעברה הראיתי את שתי השקופיות האלה כדי להראות את הקרח , שהיה במהלך שלושת מיליוני השנים האחרונות , בערך ב @-@ 48 אחוז .

Example Translations

. אבל זה מפחית את הסיכון לבעיה הספציפית הזו כי היא לא מראה את הדגים של קרח	NMT+char+unk
. אבל זה מפחית את הסיכון לבעיה הספציפית הזו כי היא לא מראה את הדגים של קרח	NMT+char
. אבל זה מפחית את הסיכון הזה מפני שהוא לא מראה בעובי של קרח	NMT+unk
. אבל זה מפחית את הסיכון הזה מפני שהוא לא מראה בעובי של קרח	NMT
אבל זה להפחית את הסיכון הבעיה הזו , במיוחד כי לא <mark>בעובי</mark> הקרח .	PBMT
But this understates the seriousness of this particular problem because it doesn't show the thickness of the ice.	English
. אבל עובדה זו ממעיטה מחומרתה של הבעיה המסויימת הזאת כי היא אינה מראה את עובי הקרח	Ref
ولكن هذا يقلل من خطورة هذه المشكلة بالذات لأمها لا تظهر سماكة الجليد .	Input

"fish"

"thickness"

Example Translations

NMT+char+unk	NMT+char	NMT+unk	NMT	PBMT	English	Ref	Input
הקרח , במובן מסוים , הוא הלב של מערכת האקלים העולמית . הוא גדל בחורף מתארך בקיץ .	הקרח , במובן מסוים , הוא הלב של מערכת האקלים העולמית . הוא גדל בחורף <unk> בקיץ .</unk>	כיסוי הקוטב , במובן מסוים , הוא הלב הפועם של מערכת האקלים העולמית . הוא מתפשט בחורף מתארך בקיץ .	<unk> הקוטב , במובן מסוים , הוא הלב הפועם של מערכת האקלים העולמית . הוא <unk> בחורף <unk> בקיץ .</unk></unk></unk>	כיסוי לקוטב , במובן מסויים , הוא הלב הפועם של מערכת האקלים הגלובלי . זה מתפשט בחורף وينكمش בקיץ .	The arctic ice cap is, in a sense, the beating heart of the global climate system. It expands in winter and contracts in summer.	כיפת הקרח הארקטי היא , במובן מסויים , ליבה הפועם של מערכת מזג האויר הגלובלית . היא מתרחבת בחורף ומתכווצת בקיץ .	غطاء القطب الجليدي ، بمعنى ما ، هو القلب النابض لنظام المناخ العالمي . أنه يتمدد في الشتاء وينكمش في الصيف .

Contributions

- Review existing large-scale Arabic-Hebrew corpora
- Evaluate state-of-the-art MT systems on Arabic-Hebrew translation
- Compare tokenization with character-based neural models

		BLEU	BLEU Meteor PPL	PPL
a	PBMT	9.31	32.30	478.4
Б	PBMT+Tok-Farasa	9.51	33.38	335.5
С	PBMT+Tok-MADAMIRA	9.63	32.90	342.5
р	d NMT	9.91 30.55	30.55	2.275
е	NMT+UNK replace	10.12 31.84	31.84	2.275
f	NMT+charCNN	10.65 32.43	32.43	2.239
Ø	NMT+charCNN+UNK replace	10.86 33.61	33.61	2.239

NMIT-charCNN+Tok-HTAG (reconstruct det) NMT+charCNN+Tok-HTAG (reconstruct+separate det) NMT+charCNN+Tok-HTAG (reconstruct+separate det) NMT+charCNN+Tok-HTAG-Farasa (reconstruct det) NMT+charCNN+Tok-HTAG-Farasa (reconstruct+separate det) NMT+charCNN+Tok-HTAG-MADAMIRA NMT+charCNN+Tok-HTAG-MADAMIRA (reconstruct+separate det) NMT+charCNN+Tok-HTAG-MADAMIRA (reconstruct+separate det)	NMT+Tok-HTAG NMT+Tok-HTAG (reconstruct det) NMT+Tok-HTAG (reconstruct+separate det) NMT+Tok-HTAG-Farasa (reconstruct det) NMT+Tok-HTAG-Farasa (reconstruct det) NMT+Tok-HTAG-Farasa (reconstruct+separate det) NMT+Tok-HTAG-MADAMIRA (reconstruct det) NMT+Tok-HTAG-MADAMIRA (reconstruct+separate det) NMT+Tok-HTAG-MADAMIRA (reconstruct+separate det)	PBMT+Tok-HTAG PBMT+Tok-HTAG (reconstruct det) PBMT+Tok-HTAG (reconstruct+separate det) PBMT+Tok-HTAG-Farasa PBMT+Tok-HTAG-Farasa (reconstruct det) PBMT+Tok-HTAG-Farasa (reconstruct+separate det) PBMT+Tok-HTAG-Farasa (reconstruct+separate det) PBMT+Tok-HTAG-MADAMIRA PBMT+Tok-HTAG-MADAMIRA (reconstruct+separate det)	NMT+Tok-Farasa NMT+Tok-Farasa+UNK Replace NMT+Tok-MADAMIRA NMT+Tok-MADAMIRA+UNK Replace NMT+Tok-MADAMIRA+UNK Replace NMT+charCNN+Tok-Farasa NMT+charCNN+Tok-Farasa+UNK Replace NMT+charCNN+Tok-MADAMIRA NMT+charCNN+Tok-MADAMIRA	NMT NMT Large NMT+UNK Replace NMT+charCNN NMT+charCNN+UNK Repl.	PBMT+Tok-Farasa PBMT+Tok-MADAMIRA
11.43 11.04 11.31 11.04 11.03 11.14 11.86 11.63 11.10	9.66 10.07 10.31 10.86 10.95 11.26 10.58 11.11 10.89	9.23 9.07 8.89 10.13 9.95 9.61 10.33 10.25	10.36 10.56 10.15 10.36 10.71 10.89 10.45 10.46	9.91 9.92 10.12 10.65 10.86	9.31 9.51 9.63
		31.51 32.72 32.82		30.55 30.46 31.84 32.43 33.61	32.30 33.38 32.90
				2.275 2.214 2.275 2.239 2.239 2.239	478.4 335.5 342.5