UNIVERSIDADE FEDERAL DO PARANÁ - DEPTO DE MATEMÁTICA

Disciplina MNUM7009 - Análise Numérica I - PPGMNE Prof. Luiz Carlos Matioli

Lista de exercícios sobre o Interpolação polinomial.

- 1. Construa explicitamente os 4 polinômios de Lagrange associados aos pontos $x_0 = -2, x_1 = -1, x_2 = 1$ e $x_3 = 2$. Qual o grau desses polinômios? Faça um gráfico exibindo-os.
- 2. Dados os pontos (5.9, 34.8), (6, 36), (6.1, 37.2) e (6.2, 38.4) determine o polinômio interpolador cúbico usando
 - (i) a base canônica (aquela que monta o sistema linear utilizando a condição de interpolação e depois resolve o sistema para determinar os coeficientes do polinômio).
 - (ii) a base de Lagrange (polinômio interpolador de Lagrange).
 - (iii) a base de Newton (polinômio interpolador de Newton).

Verifique que as três representações fornecem o mesmo polinômio.

3. Encontre aproximações para f(2.5) usando polinômios interpoladores (fórmula de Lagrange) - de graus 2, 3 e 4 e os dados da Tabela abaixo. Compare os resultados. Repita o exercício usando a forma do polinômio interpolador de Newton.

x	f(x)
2	0.5103
2.2	0.5208
2.4	0.5104
2.6	0.4813
2.8	0.4359

- 4. (a) Dados os pontos (0,0), (1,1) e (4,2), determine o polinômio interpolador nos seguintes casos:
 - (i) Lagrange.
 - (ii) Hermite.
 - (iii) Spline linear e cúbica.
 - (b) Represente geometricamente, no plano, os poliônimos encontrados no item anterior.

5. Um censo da população norte-americana é realizado a cada dez anos. A tabela a seguir fornce a população, em milhares de pessoas, entre 1940 e 1990.

Ano	1940	1950	1960	1970	1980	1990
população (em milhares)	132.165	151.326	179.323	203.302	226.542	249.633

- (a) Use interpolação polinômial para aproximar a população nos anos de 1930, 1965 e 2010.
- (b) A população em 1930 era de aproximadamente 123.203.000. Quão precisas você considera suas estimativas para 1965 e 2010?
- 6. Considere a função de distribuição de probalidade normal padrão definida por

$$N(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} exp\left(-\frac{t^{2}}{2}\right) dt$$

cujos valores são mostrados na tabela a seguir

Z	N(z)
0.0	0.5
0.5	0.69146
1.0	0.84134
1.5	0.93319
2.0	0.97725
2.5	0.99379
3.0	0.99865

- (a) Calcular $p_n(0.3)$ utilizando polinômios interpoladores de gauss n = 1, 2, 3, 4, 5.
- (b) Interpolar z=0.3 utilizando um polinômio cúbico.