Outline

- Introduction
- 2 Learning Algorithms
- 3 Learning Models
 - 3.1. GMM-UBM system
 - 3.2. Joint factor analysis
 - 3.3. Probabilistic linear discriminant analysis
 - 3.4. Support vector machine
 - 3.5. Restricted Boltzmann machine
- 4 Deep Learning
- Case Studies
- 6 Future Direction

Outline

- Introduction
- 2 Learning Algorithms
- 3 Learning Models
 - 3.1. GMM-UBM system
 - 3.2. Joint factor analysis
 - 3.3. Probabilistic linear discriminant analysis
 - 3.4. Support vector machine
 - 3.5. Restricted Boltzmann machine
- 4 Deep Learning
- Case Studies
- 6 Future Direction

GMM distribution from three Gaussians

Gaussian mixture model

Gaussian mixture model (GMM) is a weighted sum of Gaussians

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{i=1}^{M} \pi_i b_i(\mathbf{x})$$
$$\boldsymbol{\theta} = \{\pi_i, \mathbf{u}_i, \Sigma_i\}$$

 π_i : mixture weight

u_i: mixture mean vector

 Σ_i : mixture covariance matrix

$$b_i(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u}_i)^{\top} \Sigma_i^{-1} (\mathbf{x} - \mathbf{u}_i)\right)$$

• Mixture component z_i is a latent variable which is either zero or one

Maximum likelihood

- In ML estimation, we need to
 - compute the likelihood of a sequence of features given a GMM
 - estimate the parameters of GMM given a set of feature vectors
- Assuming independence between features in a sequence, we have

$$p(X|\theta) = p(\mathbf{x}_1, \dots, \mathbf{x}_T|\theta) = \prod_{t=1}^T p(\mathbf{x}_t|\theta)$$

ML estimation is performed by

$$m{ heta}_{\mathsf{ML}} = rg \max_{m{ heta}} p(X|m{ heta}) = rg \max_{m{ heta}} \sum_{t=1}^T \log \left[\sum_{i=1}^M \pi_i b_i(\mathbf{x}_t) \right]$$

Parameter estimation

E-step is to calculate the auxiliary function

$$egin{aligned} Q(m{ heta}, m{ heta}^{ ext{old}}) &= \mathbb{E}_{\mathbf{z}}[\log p(X, \mathbf{z} | m{ heta}) | X, m{ heta}^{ ext{old}}] \ &= \sum_{t=1}^{T} \sum_{i=1}^{M} p(z_{ti} = 1 | X, m{ heta}^{ ext{old}}) \log p(\mathbf{x}_{t}, z_{ti} = 1 | m{ heta}) \end{aligned}$$

ML estimates are obtained via M-step as

$$\begin{split} \pi_i^{\mathsf{new}} &= \frac{T_i}{T} \\ \boldsymbol{\mu}_i^{\mathsf{new}} &= \frac{1}{T_i} \sum_{t=1}^T \gamma(z_{ti}) \mathbf{x}_t = \frac{1}{T_i} \mathbb{E}_i[\mathbf{x}] \\ \boldsymbol{\Sigma}_i^{\mathsf{new}} &= \frac{1}{T_i} \sum_{t=1}^T \gamma(z_{ti}) (\mathbf{x}_t - \boldsymbol{\mu}_i) (\mathbf{x}_t - \boldsymbol{\mu}_i)^\top = \frac{1}{T_i} \mathbb{E}_i[\mathbf{x}\mathbf{x}^\top] - \boldsymbol{\mu}_i \boldsymbol{\mu}_i^\top \end{split}$$

where $T_i = \sum_t \gamma(z_{ti})$ and $\gamma(z_{ti}) = p(z_{ti} = 1|X, \boldsymbol{\theta}^{\text{old}})$

E-step

Probabilistically align samples to each mixture

Accumulate sufficient statistics

$$T_i = \sum_{t=1}^{T} p(z_{ti} = 1|X)$$

$$\mathbb{E}_t(\mathbf{x}) = \sum_{t=1}^{T} p(z_{ti} = 1|X)\mathbf{x}_t$$

$$\mathbb{E}_i(\mathbf{x}\mathbf{x}^T) = \sum_{t=1}^T p(z_{ti} = 1|X)\mathbf{x}_t\mathbf{x}_t^T$$

M-step

Update model parameters

GMM parameters

$$\pi_i^{ ext{new}} = rac{T_i}{T}$$
 $oldsymbol{\mu}_i^{ ext{new}} = rac{1}{T_i} \mathbb{E}_i[\mathbf{x}]$

$$\Sigma_i^{\mathrm{new}} = \frac{1}{T_i} \mathbb{E}_i[\mathbf{x}\mathbf{x}^T] - \boldsymbol{\mu}_i \boldsymbol{\mu}_i^T$$

Speaker verification

Realization of log likelihood ratio test from signal detection theory

$$S_{\mathsf{LR}}(X|oldsymbol{ heta}^{\mathsf{target}},oldsymbol{ heta}^{\mathsf{ubm}}) = \log(X|oldsymbol{ heta}^{\mathsf{target}}) - \log(X|oldsymbol{ heta}^{\mathsf{ubm}})$$

- GMMs are used for both target and background models
 - target model trained using enrollment speech
 - universal background model trained using speech from many speakers

Target model & UBM

- Target model is adapted from universal background model (UBM)
 - good with limited target training data
- Maximum a posteriori (MAP) adaptation
 - align target training vectors to UBM
 - accumulate sufficient statistics
 - update target model parameters with smoothing to UBM parameters
- Adaptation for those parameters of seen acoustic events
 - sparse regions of feature space filled in by UBM parameters
- Side benefits
 - keep correspondence between target and UBM mixtures
 - allow for fast scoring when using many target models (top-M scoring)

Maximum a posteriori adaptation

ullet Prior density for GMM mean vector $oldsymbol{\mu}=\{oldsymbol{\mu}_i\}$ is introduced

$$p(\boldsymbol{\mu}_i) = \mathcal{N}(\boldsymbol{\mu}_i | \boldsymbol{\mu}_i^{\mathsf{ubm}}, \sigma^2 \mathbf{I})$$

- MAP estimation [Gauvain and Lee, 1994] is performed by using the enrollment data $X_s = \{\mathbf{x}\}_{t=1}^{T_s}$ from a target speaker s
 - E-step is to calculate

$$Q(oldsymbol{\mu}_i, oldsymbol{\mu}_i^{\mathsf{old}}) = \sum_{t=1}^{T_s} \gamma(z_{ti}) \log p(\mathbf{x}_t|z_{ti} = 1, oldsymbol{\mu}_i) + \log p(oldsymbol{\mu}_i|oldsymbol{\mu}_i^{\mathsf{ubm}}, \sigma^2 \mathbf{I})$$

- M-step is to maximize $Q(\mu_i,\mu_i^{\mathrm{old}})$ to find

$$\mu_i^{\mathsf{new}} = \frac{\sum_t \gamma(z_{ti}) \mathbf{x}_t}{\sum_t \gamma(z_{ti}) + r} + \frac{r \mu_i^{\mathsf{ubm}}}{\sum_t \gamma(z_{ti}) + r} = \alpha_i \mathbb{E}_i[\mathbf{x}] + (1 - \alpha_i) \mu_i^{\mathsf{ubm}}$$

where
$$\alpha_i = \frac{\sum_t \gamma(z_{ti})}{\sum_t \gamma(z_{ti}) + r}$$

MAP adaptation for GMM-UBM

- UBM is based on GMM and trained by using EM algorithm
- Speaker GMM is established by adjusting UBM by using MAP adaptation

Speaker recognition procedure

Outline

- Introduction
- 2 Learning Algorithms
- 3 Learning Models
 - 3.1. GMM-UBM system
 - 3.2. Joint factor analysis
 - 3.3. Probabilistic linear discriminant analysis
 - 3.4. Support vector machine
 - 3.5. Restricted Boltzmann machine
- 4 Deep Learning
- Case Studies
- 6 Future Direction

Joint factor analysis

- Factor analysis is a statistical method which is used to describe the variability among the observed variables in terms of potentially lower number of unobserved variables called factors
- Factor analysis is a latent variable model for feature extraction
- Joint factor analysis (JFA) was the initial paradigm for speaker recognition

Intuition & interpretation

- A supervector for a speaker should be decomposable into speaker independent, speaker dependent, channel dependent, and residual components
- Each component is represented by low-dimensional factors, which operate along the principal dimensions of the corresponding component
- Speaker dependent component, known as the eigenvoice, and the corresponding factors

Low dimensional eigenvoice factors

Factor decomposition

GMM supervector u for a speaker can be decomposed as

where

- m is a speaker-independent supervector from UBM
- V is the eigenvoice matrix
- $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the speaker factor vector
- **U** is the eigenchannel matrix
- $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$ is the channel factor vector
- D is the residual matrix, and is diagonal
- $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the speaker-specific residual factor vector

Dimensionality

- For a 512-mixture GMM-UBM system, the dimensions of each JFA component are typically as follows
 - V 20,000 by 300 (300 eigenvoices)
 - **y** 300 by 1 (300 speaker factors)
 - U 20,000 by 100 (100 eigenchannels)
 - x 100 by 1 (100 channel factors)
 - **D** 20,000 by 20,000 (20,000 residuals)
 - z 20,000 by 1 (20,000 speaker-specific residuals)
- These dimensions have been empirically determined to produce the best results
- Bayesian model selection can help
- Judge by the marginal likelihood over latent component under different dimensions

Training procedure

- We train the JFA matricies in the following order [Kenny et al., 2007a]
 - 1. Train the eigenvoice matrix V, assuming that U and D are zero
 - 2. Train the eigenchannel matrix \boldsymbol{U} given the estimate of \boldsymbol{V} , assuming that \boldsymbol{D} is zero
 - 3. Train the residual matrix **D** given the estimates of **V** and **U**
- Using these matrices, we compute y for speaker, x for channel, and z for residual factors
- We compute the final score by using these matrices and factors

Total variability

- Subspaces U and V are not completely independent
- A combined total variability space was used [Dehak et al., 2011]

Training total variability space

- Rank of **T** is set prior to training
- T and w are latent variables
- EM algorithm is used
- Training total variability matrix T is similar to training V except that training T is performed by using all utterances from a given speaker but as produced by different speakers
- Random initialization for T
- Each \mathbf{o}_t has dimension D. Number of Gaussian components is M. Dimension of supervector is $M \cdot D$
- UBM diagonal covariance matrix Σ ($MD \times MD$) is introduced to model the residual variability not captured by T

Sufficient statistics

- 0^{th} order statistics $N_c(u) = \sum_t \gamma_c(\mathbf{o}_t)$ of an utterance u
- 1^{th} order statistics $F_c(u) = \sum_t \gamma_c(\mathbf{o}_t) \mathbf{o}_t$
- 2^{nd} order statistics $S_c(u) = \operatorname{diag}\left(\sum_t \gamma_c(\mathbf{o}_t) \mathbf{o}_t \mathbf{o}_t^\top\right)$ where

$$\gamma_c(\mathbf{o}_t) = p(c|\mathbf{o}_t, \theta_{\mathsf{ubm}}) = \frac{\pi_c p(\mathbf{o}_t|\mathbf{m}_c, \mathbf{\Sigma}_c)}{\sum_{j=1}^{M} \pi_i p(\mathbf{o}_t|\mathbf{m}_j, \mathbf{\Sigma}_j)}$$

• Centralized 1th and 2nd order statistics

$$\begin{split} \tilde{F}_c(u) &= \sum_{t=1}^T \gamma_c(\mathbf{o}_t)(\mathbf{o}_t - \mathbf{m}_c) \\ \tilde{S}_c(u) &= \operatorname{diag}\left(\sum_{t=1}^T \gamma_c(\mathbf{o}_t)(\mathbf{o}_t - \mathbf{m}_c)(\mathbf{o}_t - \mathbf{m}_c)^\top\right) \end{split}$$

where \mathbf{m}_c is the subvector corresponding to mixture component c

EM algorithm

Sufficient statistics

$$N(u) = \begin{bmatrix} N_1(u) \cdot \mathbf{I}_{D \times D} & 0 & \cdots & 0 \\ 0 & N_2(u) \cdot \mathbf{I}_{D \times D} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & N_M(u) \cdot \mathbf{I}_{D \times D} \end{bmatrix} \tilde{F}(u) = \begin{bmatrix} \tilde{F}_1(u) \\ \tilde{F}_2(u) \\ \vdots \\ \tilde{F}_M(u) \end{bmatrix}$$

- EM algorithm [Kenny et al., 2005]
 - Initialize m, Σ and T
 - E-step: for each utterance u, calculate the parameters of the posterior distribution of $\mathbf{w}(u)$ using the current estimates of $\mathbf{m}, \mathbf{\Sigma}, \mathbf{T}$
 - M-step: update \mathbf{T} and $\mathbf{\Sigma}$ by solving a set of linear equations in which $\mathbf{w}(u)$'s play the role of explanatory variables
 - Iterate until data likelihood given the estimated parameters converges

E-step: posterior distribution of $\mathbf{w}(u)$

• For each utterance u, we calculate the matrix

$$\mathbf{L}(u) = \mathbf{I} + \mathbf{T}^{\top} \mathbf{\Sigma}^{-1} N(u) \mathbf{T}$$

• Posterior distribution of w(u) conditioned on the acoustic observations of an utterance u is Gaussian with mean

$$\mathbb{E}[\mathbf{w}(u)] = \mathbf{L}^{-1}(u)\mathbf{T}^{\top}\mathbf{\Sigma}^{-1}\tilde{F}(u)$$

and covariance matrix

$$\mathsf{Cov}(\mathbf{w}(u), \mathbf{w}(u)) = \mathbf{L}^{-1}(u)$$

 Variational Bayesian JFA was developed for speaker verification [Zhao and Dong, 2012]

Linear discriminant analysis

 I-vectors from JFA model are used in linear discriminant analysis (LDA)

- Both methods used to reduce the dimensionality of speaker model
- A is chosen such that within-speaker variability S_w is minimized and between-speaker variability S_b is maximized within the space
- A is found by eigenvalue method via maximizing

$$\mathcal{J}(\mathbf{A}) = \operatorname{Tr}\{S_w^{-1}S_b\}$$

Outline

- Introduction
- 2 Learning Algorithms
- 3 Learning Models
 - 3.1. GMM-UBM system
 - 3.2. Joint factor analysis
 - 3.3. Probabilistic linear discriminant analysis
 - 3.4. Support vector machine
 - 3.5. Restricted Boltzmann machine
- 4 Deep Learning
- Case Studies
- 6 Future Direction

Factor analysis

Assuming a factor analysis model of the i-vectors of the form

$$w = u + Fh + \varepsilon$$

- ${\bf w}$ is the i-vector, ${\bf u}$ is the mean of i-vectors, and ${\bf h} \sim \mathcal{N}(0,{\bf l})$ is the latent factors
- First compute the maximum likelihood estimate of the factor loading matrix **F**, also known as the eigenvoice subspace
- ullet Full covariance of residual noise arepsilon explains the variability not captured through the latent variables

PLDA

Under Gaussian assumption, this model is known in face recognition as PLDA [Prince and Elder, 2007]

Gaussian PLDA

• Assume that there are low dimensional, normally distributed hidden variables x_1 and x_{2r} such that

$$D_r = \mathbf{m} + \underbrace{U_1 \mathbf{x}_1}_{S} + \underbrace{U_2 \mathbf{x}_{2r} + \varepsilon_r}_{C_r}$$

- ullet Residual $arepsilon_r$ is normally distributed with mean 0 and precision matrix Λ
- ullet m is the center of acoustic space and ${f x}_1$ is the speaker factors
- ullet Columns of U_1 are the eigenvoices

$$\operatorname{Cov}(S,S) = U_1 U_1^{\top}$$

- \mathbf{x}_{2r} varies from one recording to another (channel factors)
- Columns of U_2 are the eigenchannels

$$Cov(C_r, C_r) = \Lambda^{-1} + U_2 U_2^{\top}$$

Graphical representation

- Including \mathbf{x}_{2r} enables the decomposition of speaker and channel factors
- \bullet \mathbf{x}_{2r} can always be eliminated at recognition time
- Between-speaker covariance matrix Cov(S, S) & within-speaker covariance matrix $Cov(C_r, C_r)$
- These matrices cannot be treated as full rank

PLDA speaker recognition

• Given two i-vectors D_1 and D_2 , we would like to perform the hypothesis test

H₁: the speakers are the same H₀: the speakers are different

Likelihood ratio is calculated by

$$\frac{p(D_1, D2|H_1)}{p(D_1|H_0)p(D_2|H_0)}$$

- Likelihood ratio for any type of speaker recognition or speaker clustering problem
- The evidence integral should be calculated

$$\int p(D, \mathbf{z}) d\mathbf{z}$$

Model assumption

- Assume that
 - we have succeeded in estimating the model parameters $\theta = \{\mathbf{m}, U_1, U_2, \Lambda\}$
 - given a collection $D=(D_1,\ldots,D_R)$ of i-vectors associated with a speaker, we have figured out how to evaluate the marginal likelihood or the evidence

$$p(D) = \int p(D, \mathbf{z}) d\mathbf{z} = \int p(D|\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

- $-\mathbf{z} = \{\mathbf{x}_1, \mathbf{x}_{2r}\}\$ is the hidden variables associated with the speaker
- We show how to do speaker recognition in this situation and how both problems are tackled by using variational Bayes to approximate the posterior distribution $p(\mathbf{z}|D)$

Variational approximation

- Evidence p(D) can be evaluated exactly in the Gaussian case but this involves inverting the large sparse block matrices
- If q(z) is any distribution on z, variational lower bound is yielded as

$$\mathcal{L} \triangleq \mathbb{E}_q \left[\log \frac{p(D, \mathbf{z})}{q(\mathbf{z})} \right]$$

where $\log p(D) \ge \mathcal{L}$ with equality iff $q(\mathbf{z}) = p(\mathbf{z}|D)$

- Variational Bayes provides a principled way to find a good approximation $q(\mathbf{z})$ to $p(\mathbf{z}|D)$
- Model parameters $\theta = \{\mathbf{m}, U_1, U_2, \Lambda\}$ are estimated by maximizing the evidence lower bound (ELBO) $\mathcal L$ which is calculated over all of the speakers in a training set

Bayesian speaker recognition

- Full Bayesian avoids the point estimates of model parameters
- Coupling of multiple latent variables is tackled in VB [Villalba and Lleida, 2014]
- Uncertainties are compensated for model regularization in speaker recognition
- Prior densities $p(U_1)$ and $p(U_2)$ can be flexibly incorporated
- Selection for the number of speaker factors or channel factors
- Manually tuning for unknown variables is avoided
- Analogous to the the treatment of the number of mixture components in Bayesian estimation of GMM
- Bayesian mixture of PLDA [Mak et al., 2016] was recently developed

Outline

- Introduction
- 2 Learning Algorithms
- 3 Learning Models
 - 3.1. GMM-UBM system
 - 3.2. Joint factor analysis
 - 3.3. Probabilistic linear discriminant analysis
 - 3.4. Support vector machine
 - 3.5. Restricted Boltzmann machine
- 4 Deep Learning
- Case Studies
- 6 Future Direction

What is a good decision boundary?

- Consider a two-class, linearly separable classification problem
- Many decision boundaries!
 - perceptron algorithm can be used to find such a boundary
 - different algorithms have been proposed
- Are all decision boundaries equally good?

Large-margin decision boundary

- Decision boundary should be as far away from the data of both classes as possible [Vapnik, 2013]
 - we should maximize the margin m
 - distance between the origin and the line $\mathbf{w}^{\top}\mathbf{x} = k$ is $\frac{k}{\|\mathbf{w}\|}$

Finding the decision boundary

- $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ is the data set and $y_i\in\{1,-1\}$ is the class label of \mathbf{x}_i
- Decision boundary should classify all points correctly

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge 1$$
, for $i = 1, \dots, n$

Decision boundary can be found by solving the constrained optimization problem

Minimize
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 subject to $y_i(\mathbf{w}^{ op}\mathbf{x}_i+b)\geq 1$, for $i=1,\ldots,n$

Constrained optimization

Original problem

Minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \geq 1$, for $i = 1, \dots, n$

• We introduce the Lagrange multipliers $\alpha_i \geq 0$ to form the Lagrangian function

$$L = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 \right)$$

Setting the gradient of L w.r.t w and b to zero, we have

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Dual problem

- New objective function is expressed in terms of α_i only
- If we know \mathbf{w} , we know all α_i . If we know all α_i , we know \mathbf{w}
- Original problem is known as the primal problem
- A quadratic programming objective is formed by

$$\begin{aligned} & \text{maximize } L(\alpha) = \sum_{i}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \\ & \text{subject to } \alpha_{i} \geq 0, \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{aligned}$$

• Global maximum of α_i can be found

Characteristics of the solution

- Many of α_i are zero
 - w is a linear combination of a small number of data points
 - This sparse representation can be viewed as data compression as in the construction of KNN classifier
- \mathbf{x}_i with non-zero α_i are called support vectors
 - decision boundary is determined only by support vectors
 - $-t_j, j=1,\ldots,s$ are the indices of s support vectors

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$

- For testing with a new data z
 - compute $f = \mathbf{w}^{\top} \mathbf{z} + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}^{\top} \mathbf{z} + b$ and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise

Non-separable problem

- We allow error ξ_i in classification. It is based on the output of the discriminant function $\mathbf{w}^{\top}\mathbf{x} + b$
- ξ_i approximates the number of misclassified samples

Soft margin hyperplane

• If we minimize $\sum_{i} \xi_{i}$, ξ_{i} can be computed by

$$\begin{cases} \mathbf{w}^{\top} \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^{\top} \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

- $-\xi_i$ are slack variables in optimization
- $-\xi_i=0$ if there is no error for \mathbf{x}_i
- $-\xi_i$ is an upper bound of the number of errors
- We want to minimize $\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$
 - C is a tradeoff parameter between error and margin
- Optimization problem becomes

$$\begin{aligned} & \text{Minimize } \frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{i=1}^n \xi_i \\ & \text{subject to } y_i(\mathbf{w}^\top\mathbf{x}_i + b) \geq 1 - \xi_i, \ \ \xi_i \geq 0 \end{aligned}$$

Dual problem

• Dual of this new constrained optimization problem is

$$\begin{aligned} & \text{maximize } L(\alpha) = \sum_{i}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \\ & \text{subject to } C \geq \alpha_{i} \geq 0, \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{aligned}$$

- **w** is recovered as $\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$
- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_i now
- ullet Once again, a quadratic programming solver can be used to find $lpha_i$

Non-linear decision boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become non-linear?
- Key idea: transform x_i to a higher dimensional space to make life easier
 - input space: the points x_i are located
 - feature space: the space of $\phi(\mathbf{x}_i)$ after transformation
- Why transform?
 - linear operation in the feature space is equivalent to non-linear operation in input space
 - classification can become easier with a proper transformation.
 - In the XOR problem, for example, adding a new feature make the problem linearly separable

Dimensionality in feature space

- Computation in the feature space can be costly because it is highly dimensional
 - feature space is typically infinite-dimensional!
- Kernel trick comes to rescue

Kernel trick

$$\begin{aligned} & \text{maximize } L(\alpha) = \sum_{i}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \\ & \text{subject to } C \geq \alpha_{i} \geq 0, \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{aligned}$$

- $\mathbf{x}_i^{\top} \mathbf{x}_i$ is inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations, e.g. angle, distance, can be expressed by inner products
- Define the kernel function K by

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j)$$

Kernel function in SVM

- Change all inner products to kernel functions
- For training
 - original

$$\begin{aligned} & \text{maximum } L(\alpha) = \sum_{i}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j} \\ & \text{subject to } C \geq \alpha_{i} \geq 0, \ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{aligned}$$

with kernel function

maximum
$$L(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$
 subject to $C \geq \alpha_{i} \geq 0$, $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$

Kernel function in SVM

- For testing, the new data ${\bf z}$ is classified as class 1 if $f \ge 0$ and as class 2 if f < 0
 - original

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$
$$f = \mathbf{w}^{\top} \mathbf{z} + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}^{\top} \mathbf{z} + b$$

with kernel function

$$\begin{aligned} \mathbf{w} &= \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \phi(\mathbf{x}_{t_j}) \\ f &= \langle \mathbf{w}, \phi(\mathbf{z}) \rangle + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} K(\mathbf{x}_{t_j}, \mathbf{z}) + b \end{aligned}$$

Similarity measure

- Since the training of SVM only requires the value of $K(\mathbf{x}_i, \mathbf{x}_j)$, there is no restriction of the form of \mathbf{x}_i and \mathbf{x}_i
 - $-\mathbf{x}_i$ can be a sequence or a tree instead of a feature vector
- $K(\mathbf{x}_i, \mathbf{x}_j)$ is just a similarity measure comparing \mathbf{x}_i and \mathbf{x}_j
- Kernel function needs to satisfy the Mercer function, i.e., the function is positive-definite
- For a test object z, the discriminant function essentially is a weighted sum of the similarity between z and a pre-selected set of objects, also called the support vectors

$$f(\mathbf{z}) = \sum_{\mathbf{x}_i \in S} \alpha_i y_i K(\mathbf{z}, \mathbf{x}_i) + b$$

where *S* denotes the set of support vectors

Outline

- Introduction
- 2 Learning Algorithms
- 3 Learning Models
 - 3.1. GMM-UBM system
 - 3.2. Joint factor analysis
 - 3.3. Probabilistic linear discriminant analysis
 - 3.4. Support vector machine
 - 3.5. Restricted Boltzmann machine
- 4 Deep Learning
- Case Studies
- 6 Future Direction

Restricted Boltzmann machine

- ullet Bipartite the undirected graphical model with visible variable ullet and hidden variable ullet
- Building-block for deep belief networks and deep Boltzmann machines
- \bullet RBMs are generative models of \boldsymbol{v} based on the marginal distribution
- Joint distribution of (v, h) is an exponential family
- Discriminative fine-tuning can be applied
- Variables are typically binary, however no such restriction exists
- Bidirectional graphical model

Graphical model

- No connection between nodes of the same layer (i.e. sparsity)
- Allow fast training (blocked-Gibbs sampling)
- Correlations between nodes in v are still present in the marginal $p(\mathbf{v}|\mathbf{W})$
- Hidden variable **h** captures the higher level information

Joint distribution

Energy-based distribution is defined by

$$p(\mathbf{v}, \mathbf{h}|\boldsymbol{\theta}) = Z(\boldsymbol{\theta})^{-1} p^*(\mathbf{v}, \mathbf{h}|\boldsymbol{\theta})$$

where

$$p^*(\mathbf{v}, \mathbf{h}|\boldsymbol{\theta}) = \exp\left(\sum_i v_i b_i + \sum_j h_j a_j + \underbrace{\sum_{i,j} v_i h_j W_{ij}}_{-E(\mathbf{v}, \mathbf{h})}\right)$$

and
$$\boldsymbol{\theta} = \{W, \mathbf{b}, \mathbf{a}\}$$

- ullet $\{b,a\}$ denote the biases and are usually assumed to be zero for compact notation
- $Z(\theta) = \sum_{\mathbf{v},\mathbf{h}} p^*(\mathbf{v},\mathbf{h}|\theta)$ is the partition function

Individual distribution

- Consider binary (\mathbf{v}, \mathbf{h}) with zero biases $\{\mathbf{b}, \mathbf{a}\}$
- $p(\mathbf{h}|\mathbf{v}) = \prod_j p(h_j|\mathbf{v})$ where $p(h_j|\mathbf{v}) = \frac{1}{1 + \exp(-\sum_i v_i W_{ij})}$
- $p(\mathbf{v}|\mathbf{h}) = \prod_i p(v_i|\mathbf{h})$ where $p(v_i|\mathbf{h}) = \frac{1}{1 + \exp(-\sum_i h_j W_{ij})}$
- Product form is due to the restricted structure

Learning with RBM

ullet Maximize the likelihood of $oldsymbol{ heta}$ given $oldsymbol{ t v}^n$

$$\rho(\mathbf{v}^n) = \prod_n Z^{-1} \sum_h \exp\left(\sum_{ij} v_i^n h_j^n W_{ij}\right)$$

- We obtain $\frac{\partial \log p(\mathbf{v}^n)}{\partial W_{ij}} = E_{p_{data}}[v_i h_j] E_{p_{model}}[v_i h_j]$ where $p_{data}(\mathbf{v}^n, \mathbf{h}^n) = p(\mathbf{h}^n | \mathbf{v}^n) p(\mathbf{v}^n)$
- $p(\mathbf{h}^n|\mathbf{v}^n)$ is an easy and exact calculation for RBM
- $p(\mathbf{v}^n)$ is an empirical distribution
- $\frac{\partial \log Z(\theta)}{\partial W_{ij}} = E_{p_{model}}[v_i h_j]$ is hard to compute
- Learning using contrastive divergence with mini-batches is performed