Wydział WFiIS	Imię i nazwisko 1. Mateusz Kulig		Rok 2022	Grupa 3	Zespół 1
	2. Przemysław Rys	Ś			
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Ogniwo słoneczne			Nr ćwiczenia 134	
Data wykonania 24.04.2022	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

W sprawozdaniu opisana została charakterystyka prądowo napięciową oraz sprawność ogniw: monokrystalicznego, polikrystalicznego oraz amorficznego. Źródłem światła użytego w eksperymencie była lampa jarzeniowa. Każde z ogniw różniło się między sobą powierzchnią czynną oraz liczbą sekcji. W konsekwencji przeprowadzonego doświadczenia udało się dowieść iż największą wydajnością charakteryzuje się ogniwo monokrystaliczne.

1. Wstęp teoretyczny

Ogniwem słonecznym nazywamy urządzenie, które przetwarza energię światła słonecznego na prąd elektryczny. Dla fotoogniwa półprzewodnikowego proces przemiany energii odbywa się w warstwie zubożonej. Foton przenosi elektron z pasma walencyjnego do pasma przewodnictwa. Zjawisko to może zachodzić o ile energia kwantu światła jest większa niż szerokość przerwy energetycznej. W ten sposób przemieszczone elektrony i dziury tworzą prąd elektryczny. Najpopularniejszym materiałem z którego tworzy się fotoogniwa jest krzem. Wyróżniamy ogniwa monokrystaliczne, charakteryzujące się największą wydajnością, oraz tańsze ogniwa polikrystaliczne lub amorficzne. Charakterystyka prądowo-napięciowa takich ogniw jest podobna do charakterystyki diody półprzewodnikowej, jest jedynie przesunięta w dół o wartość proporcjonalną do natężenia światła. Moc wydzielona na ogniwie wyrażona jest za pomocą wzoru

$$P = UI. (1)$$

Istnieje wartość napięcia dla którego wydzielana moc P_{max} jest największa. Za jej pomocą zdefiniować możemy sprawność fotoogniwa wyrażoną jako

$$\eta = \frac{P_{max}}{\phi nS},\tag{2}$$

gdzie ϕ to natężenie światła, n liczba sekcji składających się na fotoogniwo, a S to powierzchnia jednej sekcji. Analiza procesu konwersji światła słonecznego na energię elektryczną wskazuje, że maksymalna sprawność ogniwa krzemowego wynosi około 25%.

2. Aparatura

Do przeprowadzenia doświadczenia użyliśmy następujących przyrządów:

- Fotoogniwa krzemowe monokrystaliczne, polikrystaliczne i amorficzne,
- Lampa umieszczona na regulowanym statywie,
- Amperomierz i woltomierz w eksperymencie wykorzystane zostały dwa multimetry, które zostały odpowiednio podłączone tak by spełniały funkcje amperomierza i woltomierza,
- Linijka za jej pomocą mierzyliśmy odległość pomiędzy źródłem światła a fotoogniwem,
- Luksomierz użyliśmy go do zmierzenia natężenia światła wydzielanego przez lampę.

3. Metodyka doświadczenia

Doświadczenie rozpoczęliśmy od odpowiedniego podłączenia wszystkich elementów obwodu. Następnie za pomocą luksomierza sprawdziliśmy jakie natężenie światła wydzielała lampa. Dalej podłączyliśmy monokrystaliczne ogniwo krzemowe i za pomocą pokrętła znajdującego się na płytce zmienialiśmy napięcie. Odczytaną z amperomierza wartość natężenia prądu zapisywaliśmy i od razu obliczaliśmy wydzielaną moc. Po znalezieniu napięcia dla którego wartość mocy była największa, wykonywaliśmy jeszcze kilka dodatkowych pomiarów, by otrzymać dokładniejsze wyniki. Całą procedurę powtórzyliśmy dla fotoogniwa polikrystalicznego i amorficznego. Doświadczenie zakończyliśmy pomiarem charakterystyki prądowonapięciowej dla fotoogniwa monokrystalicznego przy różnej odległości dzielącej lampę i płytkę.

4. Analiza danych

Przeprowadziliśmy pomiar charakterystyki prądowo napięciowej dla trzech różnych typów ogniw, wyznaczając przy tym opór, moc, napięcie przypadające na jedną sekcję oraz gęstość prądu. Wyżej wymienione wielkości zebrane zostały w poniższych tabelach Tab. 1-3.

Tab. 1. Ogniwo monokrystaliczne, którego liczba sekcji, to n = 1, a jej powierzchnia wynosi S = 64 [cm²].

b = 0.1 [cm.].					
$R = \frac{U}{I} \left[\Omega \right]$	<i>U</i> [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	$\frac{U}{n}[V]$	$j = \frac{I}{S} \left[\frac{\text{mA}}{\text{cm}^2} \right]$
1,4	0,146	103,9	15,2	0,146	1,623
2,0	0,204	101,5	20,7	0,204	1,586
2,6	0,253	98,9	25,0	0,253	1,545
3,2	0,301	93	28,0	0,301	1,453
3,4	0,31	90,8	28,1	0,31	1,419
3,7	0,324	88,3	28,6	0,324	1,380
4,2	0,348	82,1	28,6	0,348	1,283
5,1	0,371	72,2	26,8	0,371	1,128
6,3	0,394	62,9	24,8	0,394	0,983

11,5	0,425	37,1	15,8	0,425	0,580
16,3	0,434	26,7	11,6	0,434	0,417
21,2	0,439	20,7	9,1	0,439	0,323
26,1	0,441	16,9	7,5	0,441	0,264
31,2	0,443	14,2	6,3	0,443	0,222
36,1	0,444	12,3	5,5	0,444	0,192
40,8	0,445	10,9	4,9	0,445	0,170
45,5	0,446	9,8	4,4	0,446	0,153
50,8	0,447	8,8	3,9	0,447	0,138
74,7	0,448	6	2,7	0,448	0,094
99,8	0,449	4,5	2,0	0,449	0,070

Tab. 2. Ogniwo polikrystaliczne, którego liczba sekcji, to n = 8, a powierzchnia pojedynczej sekcji wynosi S = 7.8 [cm²].

	tynosis ijo [<u> </u>			
$R = \frac{U}{I} \left[\Omega \right]$	U [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	$\frac{U}{n}[V]$	$j = \frac{I}{S} \left[\frac{\text{mA}}{\text{cm}^2} \right]$
106,6	0,81	7,6	6,16	0,101	0,974
202,8	1,46	7,2	10,51	0,183	0,923
228,6	1,6	7	11,20	0,200	0,897
248,5	1,69	6,8	11,49	0,211	0,872
272,7	1,8	6,6	11,88	0,225	0,846
296,9	1,9	6,4	12,16	0,238	0,821
316,1	1,96	6,2	12,15	0,245	0,795
327,9	2	6,1	12,20	0,250	0,782
340,0	2,04	6	12,24	0,255	0,769
362,1	2,1	5,8	12,18	0,263	0,744
413,0	2,23	5,4	12,04	0,279	0,692
504,2	2,42	4,8	11,62	0,303	0,615
619,5	2,54	4,1	10,41	0,318	0,526
730,6	2,63	3,6	9,47	0,329	0,462
812,1	2,68	3,3	8,84	0,335	0,423
941,4	2,73	2,9	7,92	0,341	0,372
1022,2	2,76	2,7	7,45	0,345	0,346
1158,3	2,78	2,4	6,67	0,348	0,308
1473,7	2,8	1,9	5,32	0,350	0,244
1658,8	2,82	1,7	4,79	0,353	0,218

Tab. 3. Ogniwo amorficzne, którego liczba sekcji, to n = 14, a powierzchnia pojedynczej sekcji wynosi S = 5.5 [cm²].

$R = \frac{U}{I} \left[\Omega \right]$	<i>U</i> [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	$\frac{U}{n}[V]$	$j = \frac{I}{S} \left[\frac{\text{mA}}{\text{cm}^2} \right]$
108,7	0,2	1,84	0,37	0,014	0,335
1004,4	1,82	1,812	3,30	0,130	0,329
1919,2	3,42	1,782	6,09	0,244	0,324
2963,2	5,15	1,738	8,95	0,368	0,316
3800,1	6,54	1,721	11,26	0,467	0,313
3975,3	6,75	1,698	11,46	0,482	0,309
4184,1	7	1,673	11,71	0,500	0,304
4430,8	7,24	1,634	11,83	0,517	0,297

4529,7	7,32	1,616	11,83	0,523	0,294
4783,7	7,52	1,572	11,82	0,537	0,286
5136,0	7,74	1,507	11,66	0,553	0,274
5951,3	8,07	1,356	10,94	0,576	0,247
6965,9	8,38	1,203	10,08	0,599	0,219
7887,5	8,55	1,084	9,27	0,611	0,197
8933,3	8,71	0,975	8,49	0,622	0,177
9977,3	8,8	0,882	7,76	0,629	0,160
11017,4	8,88	0,806	7,16	0,634	0,147
12048,5	8,94	0,742	6,63	0,639	0,135
13005,8	9	0,692	6,23	0,643	0,126
15184,6	9,05	0,596	5,39	0,646	0,108

Rys. 1. Charakterystyka prądowo napięciowa dla przypadku ogniwa monokrystalicznego w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Rys. 2. Charakterystyka prądowo napięciowa dla przypadku ogniwa polikrystalicznego w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Rys. 3. Charakterystyka prądowo napięciowa dla przypadku ogniwa amorficznego w normalizacji prądu na powierzchnię sekcji oraz napięcia na ilość sekcji.

Największą gęstość prądu zwarcia daje ogniwo monokrystaliczne, najmniejszą natomiast amorficzne.

Największe napięcie przypadające na jedną sekcje daje ogniwo amorficzne, najmniejsze natomiast polikrystaliczne.

Korzystając z wzoru (2) jesteśmy w stanie obliczyć sprawność wyżej badanych ogniw.

Natężenie światła użyte w doświadczeniu wynosiło 116 $\left[\frac{W}{m^2}\right]$.

Ogniwo monokrystaliczne ma sprawność $\eta_m = 3.9$ %.

Ogniwo polikrystaliczne ma sprawność $\eta_p = 1,7 \%$.

Ogniwo amorficzne ma sprawność $\eta_a = 1.3 \%$.

Jak można zauważyć największą sprawność posiada ogniwo monokrystaliczne, co jest związane z wyższą klasą użytych do jego produkcji surowców.

Tab. 4. Tabela charakterystyki prądowo napięciowej oraz wartości mocy od odległości ogniwa od źródła światła.

<i>U</i> [V]	I [mA]	$P = U \cdot I \text{ [mW]}$	d [cm]
0,13	95,4	12,40	27,5
0,12	85	10,20	29,5
0,11	7,85	0,86	31,1
0,1	6,99	0,70	33,8
0,09	63,3	5,70	36
0,08	5,89	0,47	37,6
0,07	53,1	3,72	40
0,06	47,5	2,85	42,9
0,05	35,8	1,79	51

Zależność mocy od odległości zestawiona została na poniższym wykresie.

Rys. 4. Wykres mocy ogniwa od odległości od źródła światła.

5. Podsumowanie

W wyniku przeprowadzonego doświadczenia udało się wyznaczyć charakterystyki prądowo napięciowe oraz sprawności ogniw: monokrystalicznego, polikrystalicznego oraz amorficznego. Największą sprawnością charakteryzowało się ogniwo monokrystaliczne co było przewidziane jeszcze przed przeprowadzonym doświadczeniem. Z wykresów charakterystyki prądowo napięciowej odpowiednich ogniw od razu widać eksponencjalny związek między wielkościami.

6. Literatura

[1] - http://website.fis.agh.edu.pl/~pracownia_fizyczna/cwiczenia/134.pdf - 24.04.2022