16.1 Determinação de E_{TH}

Se os dois condutores ideais que ligam o circuito I ao circuito II forem cortados, no circuito I formam-se dois terminais, A e B.

 E_{TH} é a **tensão de circuito aberto** (U_{ca}) existente entre A e B, ou seja, a tensão que existe entre A e B se nenhum componente exterior ao circuito I for ligado entre esses terminais.

16.2 Determinação de R_{TH} com o circuito desactivado, por análise de associações de resistências

Este método não se pode aplicar quando o circuito possui fontes ideais dependentes.

16.3 Determinação de R_{TH} sem desactivação do circuito

16.4 Determinação de R_{TH} quando E_{TH} é nulo, sem análise de associações de resistências

Quando $E_{TH} = 0$, não é possível calcular R_{TH} recorrendo à corrente de curto-circuito, uma vez que esta também é nula.

B

16.4.1 Recurso a uma fonte ideal de corrente

16.4.2 Recurso a uma fonte ideal de tensão

Exercício: Recorrendo ao Teorema de Thévenin, determinar o valor da tensão presente nos terminais da resistência de 2Ω .

Tópicos de Resolução:

1. Retirar a resistência de 2Ω .

3. Calcular \mathbf{R}_{TH} .

4. Ligar a resistência de 2Ω ao circuito equivalente e calcular U.

Exercício: Recorrendo ao Teorema de Thévenin, determinar o valor da potência em jogo na fonte ideal de tensão.

Tópicos de Resolução:

1. Retirar a fonte ideal de tensão.

2. Calcular \mathbf{E}_{TH} .

3. Calcular \mathbf{R}_{TH} .

4. Ligar a fonte ideal de tensão ao circuito equivalente, calcular **I** e determinar a potência em jogo na fonte ideal de tensão.

Exercício: Recorrendo ao Teorema de Thévenin, determinar o valor da potência em jogo na resistência de 2Ω .

Tópicos de Resolução:

1. Retirar a resistência de 2Ω .

2. Calcular \mathbf{E}_{TH} .

3. Calcular \mathbf{R}_{TH} .

4. Ligar a resistência de 2Ω ao circuito equivalente, calcular I e determinar a potência em jogo na resistência de 2Ω .

Exercício: Determinar o equivalente de Thévenin do circuito representado, relativamente aos terminais A e B.

Tópicos de Resolução:

1. Calcular \mathbf{E}_{TH} .

2. Calcular R_{TH} a partir da corrente de curto-circuito I_{cc} .

Exercício: Determinar o equivalente de Thévenin do circuito representado, relativamente aos terminais A e B.

Tópicos de Resolução:

1. Calcular \mathbf{E}_{TH} .

2. Calcular \mathbf{R}_{TH} recorrendo à fonte de corrente de 1A.

17. Teorema de Norton

Um **circuito I** e um **circuito II** estão ligados entre si por dois condutores ideais e isolados de outros circuitos, verificando-se as seguintes condições:

- O circuito I e o circuito II são **lineares**, podendo conter:
 - o resistências;
 - o fontes ideais independentes;
 - o fontes ideais dependentes lineares.
- Se o circuito I tiver **fontes ideais dependentes lineares**, as tensões e correntes que controlam essas fontes pertencem todas ao circuito I.
- Se o circuito II tiver **fontes ideais dependentes lineares**, as tensões e correntes que controlam essas fontes pertencem todas ao circuito II.

Nestas circunstâncias, todas as tensões e correntes que existem no **circuito II** continuam a ser as mesmas se o **circuito I** for substituído pelo seu **Equivalente de Norton**.

17.1 Determinação de I_N

Se os dois condutores ideais que ligam o circuito I ao circuito II forem cortados, no circuito I formam-se dois terminais, A e B.

 I_N é a **corrente de curto-circuito** (I_{cc}) relativa aos terminais A e B, ou seja, a corrente que passa num condutor ideal colocado entre esses terminais.

17.2 Determinação de $R_{\rm N}$ com o circuito desactivado, por análise de associações de resistências

Este método não se pode aplicar quando o circuito possui fontes ideais dependentes.

17.3 Determinação de $R_{\rm N}$ sem desactivação do circuito

17.4 Determinação de $R_{\rm N}$ quando $I_{\rm N}$ é nulo, sem análise de associações de resistências

Quando I_N = 0, não é possível calcular R_N recorrendo à tensão de circuito aberto, uma vez que esta também é nula.

17.4.1 Recurso a uma fonte ideal de corrente

17.4.2 Recurso a uma fonte ideal de tensão

Exercício: Recorrendo ao Teorema de Norton, determinar o valor da corrente que atravessa a resistência de 2Ω .

Tópicos de Resolução:

1. Retirar a resistência de 2Ω .

2. Calcular I_N .

3. Calcular $\mathbf{R}_{\mathbf{N}}$.

4. Ligar a resistência de 2Ω ao circuito equivalente e calcular I.

Exercício: Recorrendo ao Teorema de Norton, determinar o valor da potência em jogo na fonte ideal de tensão.

Tópicos de Resolução:

1. Retirar a fonte ideal de tensão.

2. Calcular I_N .

3. Calcular $\mathbf{R}_{\mathbf{N}}$.

4. Ligar a fonte ideal de tensão ao circuito equivalente e determinar a potência em jogo nessa fonte.

Exercício: Recorrendo ao Teorema de Norton, determinar o valor da potência em jogo na resistência de 2Ω .

Tópicos de Resolução:

1. Retirar a resistência de 2Ω .

2. Calcular I_N .

3. Calcular $\mathbf{R}_{\mathbf{N}}$.

4. Ligar a resistência de 2Ω ao circuito equivalente e determinar a potência em jogo nessa resistência.

Exercício: Determinar o equivalente de Norton do circuito representado, relativamente aos terminais A e B.

Tópicos de Resolução:

1. Calcular I_N .

2. Calcular R_N a partir da tensão de circuito aberto U_{ca} .

Exercício: Determinar o equivalente de Norton do circuito representado, relativamente aos terminais A e B.

Tópicos de Resolução:

1. Calcular I_N .

3. Calcular \mathbf{R}_{N} recorrendo à fonte ideal de tensão de 1V.

18. Relação Existente Entre o Equivalente de Thévenin e o Equivalente de Norton

 $\mathbf{U}_{\mathrm{ca}} = \mathbf{R}_{\mathrm{N}} \cdot \mathbf{I}_{\mathrm{N}}$

 $E_{TH} = R_N \cdot I_N$

$$I_{cc} = \frac{E_{TH}}{R_{TH}}$$

 $I_{cc} = I_N$

 $I_{N} = \frac{E_{TH}}{R_{TH}}$

 $R_{AB} = R_{TH}$

 $R_{AB} = R_{N}$

 $R_{TH} = R_N$