Maximum Contiguous Sum of Subsequence

Time limit: 1 sec

Given a sequence $A=a_1,a_2,a_3,...,a_n$, a subsequence of $\bf A$ is a non-empty set of consecutive members of $\bf A$. A subsequence can be defined by two indices of $\bf A$ that mark the beginning and ending members of the subsequence. For example, $\langle a_3,a_4,a_5\rangle$ is a subsequence of $\bf A$ defined by indices 3 and 5 while $\langle a_1,a_4,a_5\rangle$ is not a subsequence.

We would like to find a subsequence of **A** such that the summation of the elements of that subsequence is maximal.

Input

- The first line of input contains one integers \mathbf{N} $(1 \le N \le 10^5)$ indicating the size of the sequence.
- The second line contains **N** integer a[i] $(-1 \times 10^3 \le a[i] \le 10^3)$ that indicates the elements of the sequence.

Output

The only line of the output must contain the summation of the maximal contiguous subsequence.

Example

Input	Output
15	10
1 2 -1 5 3 -8 -2 4 3 -4 -5 7 -1 -2 4	
8	-1
-1 -2 -2 -2 -2 -1	