LECTURE 16

Markov Processes - I

• Readings: Sections 7.1–7.2

Lecture outline

- Checkout counter example
- Markov process definition
- *n*-step transition probabilities
- Classification of states

Checkout counter model

- Discrete time $n = 0, 1, \dots$
- Customer arrivals: Bernoulli(p)
- geometric interarrival times
- Customer service times: geometric(q)
- "State" X_n : number of customers at time n

Finite state Markov chains

- X_n : state after n transitions
- belongs to a finite set, e.g., $\{1, \ldots, m\}$
- X_0 is either given or random
- Markov property/assumption: (given current state, the past does not matter)

$$p_{ij} = P(X_{n+1} = j \mid X_n = i)$$

= $P(X_{n+1} = j \mid X_n = i, X_{n-1}, ..., X_0)$

- Model specification:
- identify the possible states
- identify the possible transitions
- identify the transition probabilities

n-step transition probabilities

• State occupancy probabilities, given initial state *i*:

$$r_{ij}(n) = \mathbf{P}(X_n = j \mid X_0 = i)$$

Time 0 Time n-1 Time n $r_{i1}(n-1) = p_{1j}$ \vdots $r_{im}(n-1) = p_{mj}$

– Key recursion:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

- With random initial state:

$$P(X_n = j) = \sum_{i=1}^{m} P(X_0 = i) r_{ij}(n)$$

Example

	n = 0	n = 1	n=2	n = 100	n = 101
$r_{11}(n)$					
$r_{12}(n)$					
$r_{21}(n)$					
$r_{22}(n)$					

Generic convergence questions:

• Does $r_{ij}(n)$ converge to something?

n odd: r22(n) =

 $n \text{ even: } r_2 2(n) =$

• Does the limit depend on initial state?

 $r_{11}(n)=$

 $r_{31}(n)=$

 $r_{21}(n) =$

Recurrent and transient states

- State i is recurrent if: starting from i, and from wherever you can go, there is a way of returning to i
- If not recurrent, called **transient**

- -i transient: $\mathbf{P}(X_n=i) o \mathbf{0}, \ i$ visited finite number of times
- Recurrent class: collection of recurrent states that "communicate" with each other and with no other state