INTRODUCTION TO LANGUAGES AND FINITE AUTOMATA

Maria Thomas

October 6, 2023

Given a task, two questions arise:

1 Can it be carried out using a computer?

2 How can the task be carried out?

Models of computation are used to help answer these questions.

Types of structures used in models of computation:

• Grammars

Types of structures used in models of computation:

• Grammars

- ▶ Grammars are used to generate the words of a language and to determine whether a word is in a language.
- ▶ Formal languages, which are generated by grammars, provide models for both natural languages, such as English, and for programming languages, such as Pascal, Fortran, Prolog, C, and Java.
- ▶ American linguist Noam Chomsky in the 1950s.

Maria Thomas Unit 4 October 6, 2023 3 / 56

• Finite-state machines

- Finite-state machines
 - ▶ Various types of finite-state machines are used in modeling.

• Turing machines

Finite-State Machines

- Many kinds of machines, including components in computers, can be modeled using a structure called a finite-state machine.
- All versions of finite-state machines include a finite set of states
 - 1 a designated starting state, an input alphabet,
 - 2 a transition function that assigns a next state to every state
 - 3 input pair
- Applications in computer science and data networking.
- Spell checking, grammar checking, indexing or searching large bodies of text etc.

Maria Thomas Unit 4 October 6, 2023 6 / 56

Finite-State Machines with Output

- Finite-state machines that produce output.
- We will see how finite-state machines can be used to model a vending machine, a machine that delays input, a machine that adds integers, and a machine that determines whether a bit string contains a specified pattern.

Maria Thomas Unit 4 October 6, 2023 7 / 56

Definition 1

• A finite-state machine $M = (S, I, O, f, g, s_0)$ consists of a finite set S of states, a finite input alphabet I, a finite output alphabet O, a transition function f that assigns to each state and input pair a new state, an output function g that assigns to each state and input pair an output, and an initial state s_0 .

Maria Thomas Unit 4 October 6, 2023 8 / 56

Representation

- Let $M = (S, I, O, f, g, s_0)$ be a finite-state machine. We can use a state table to represent the values of the transition function f and the output function g for all pairs of states and input.
- Another way to represent a finite-state machine is to use a **state** diagram, which is a directed graph with labeled edges. In this diagram, each state is represented by a circle. Arrows labeled with the input and output pair are shown for each transition.

Unit 4 October 6, 2023 9/56

• The state table shown in Table 2 describes a finite-state machine with $S = \{s_0, s_1, s_2, s_3\}$, $I = \{0, 1\}$, and $O = \{0, 1\}$. The values of the transition function f are displayed in the first two columns, and the values of the output function g are displayed in the last two columns.

TABLE 2				
	f			g
	Input		In	put
State	0	1	0	1
s_0	s_1	s_0	1	0
s_1	<i>s</i> ₃	s_0	1	1
s_2	s_1	s_2	0	1
<i>S</i> ₃	<i>s</i> ₂	s_1	0	0

• Construct the state table for the finite-state machine with the state diagram shown in figure below.

Maria Thomas Unit 4 October 6, 2023 12 / 56

	·f		g	
	Input		In	put
State	0	1	0	1
s_0	s_1	<i>s</i> ₃	1	0
s_1	s_1	s_2	1	1
s_2	<i>s</i> ₃	<i>S</i> ₄	0	0
s_3	s_1	s_0	0	0
S ₄	<i>s</i> ₃	s_4	0	0

• Find the output string generated by the finite-state machine in if the input string is 101011.

Maria Thomas Unit 4 October 6, 2023 14 / 56

Input	1	0	1	0	1	1	
State	<i>s</i> ₀	s_3	s_1	<i>s</i> ₂	<i>s</i> ₃	s_0	<i>s</i> ₃
Output	0	0	1	0	0	0	_

Definition 2

• Let $M = (S, I, O, f, g, s_0)$ be a finite-state machine and $L \subseteq I^*$. We say that M recognizes(or accepts) L if an input string x belongs to L if and only if the last output bit produced by M when given x as input is a 1.

Maria Thomas Unit 4 October 6, 2023 16 / 56

• In a certain coding scheme, when three consecutive 1 s appear in a message, the receiver of the message knows that there has been a transmission error. Construct a finite-state machine that gives a 1 as its current output bit if and only if the last three bits received are all 1s.

Maria Thomas Unit 4 October 6, 2023 17 / 56

- Three states are needed in this machine:
- The start state s_0 remembers that the previous input value, if it exists, was not a 1.
- The state s_1 remembers that the previous input was a 1, but the input before the previous input, if it exists, was not a 1.
- The state s_2 remembers that the previous two inputs were 1s.

Maria Thomas Unit 4 October 6, 2023 18 / 56

Example 4 Ctd.

Input 1: 1011

Input 2: 0100111

Maria Thomas Unit 4 October 6, 2023 19 / 56

Example 4 Ctd.

Input 1: 1011

Input 2: 0100111

The final output bit of the finite-state machine we constructed here is 1 if and only if the input string ends with 111.

Maria Thomas Unit 4 October 6, 2023 19/56

Types of Finite-State Machines

- Mealy machines: outputs correspond to transitions between states.
- Moore machine: output is determined only by the state.

Maria Thomas Unit 4 October 6, 2023 20/56

Example of Moore Machine

Construct the state table for the Moore machine with the state diagram shown here.

Maria Thomas Unit 4 October 6, 2023 21 / 56

Example of Moore Machine

	f		
C44-	Input		_
State	0	1	g
<i>s</i> ₀	s ₁	<i>s</i> ₂	1
s_1	s_1	<i>S</i> ₀	1
<i>s</i> ₂	s_1	<i>s</i> ₂	0

Example of Moore Machine

Inputs: a) 0101

b) 111111

Strings

- Sequences of the form $a_1, a_2, ..., a_n$ or $a_1a_2...a_n$ are called strings.
- The length of the string S is the number of terms in this string.
- The **empty string**, denoted by λ , is the string that has no terms. The empty string has length zero.

Maria Thomas Unit 4 October 6, 2023 24 / 56

Vocabulary

- A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols.
- A word (or sentence) over V is a string of finite length of elements of V.
- The empty string or null string, denoted by λ , is the string containing no symbols.
- The set of all words over V is denoted by V^* . A language over V is a subset of V^* .

Maria Thomas Unit 4 October 6, 2023 25 / 56

Definition: Concatenation

• Suppose that A and B are subsets of V^* , where V is a vocabulary. The concatenation of A and B, denoted by AB, is the set of all strings of the form xy, where x is a string in A and y is a string in B.

Maria Thomas Unit 4 October 6, 2023 26 / 56

- Let $A = \{0, 11\}$ and $B = \{1, 10, 110\}$. Find AB and BA.
- Let $A = \{1, 00\}$. Find A^n for n = 0, 1, 2, 3.

Maria Thomas Unit 4 October 6, 2023 27 / 56

Definition: Kleene closure of A

- Suppose that A is a subset of V^* . Then the Kleene closure of A, denoted by A^* , is the set consisting of concatenations of arbitrarily many strings from A. That is, $A^* = \bigcup_{k=0}^{\infty} A^k$.
- Example: What are the Kleene closures of the sets $A = \{0\}$, $B = \{0, 1\}, \text{ and } C = \{11\} ?$

Unit 4 October 6, 2023 28 / 56

Solution

• The Kleene closure of A is the concatenation of the string 0 with itself an arbitrary finite number of times. Hence,

$$A^* = \{0^n : n = 0, 1, 2, 3...\}$$

- The Kleene closure of B is the concatenation of an arbitrary number of strings, where each string is either 0 or 1. This is the set of all strings over the alphabet $V = \{0, 1\}$.
- The Kleene closure of C is the concatenation of the string 11 with itself an arbitrary number of times. Hence, C^* is the set of strings consisting of an even number of 1s.

That is,
$$C^* = \{1^{2n} | n = 0, 1, 2, ...\}.$$

Maria Thomas Unit 4 October 6, 2023

Finite-State Automata

- A finite-state machine with no output is called finite-state automaton.
- A finite-state automaton M = (S, I, f, s₀, F) consists of a finite set
 S of states, a finite input alphabet I, a transition function f that
 assigns a next state to every pair of state and input (so that
 f: S × I → S), an initial or start state s₀, and a subset F of S
 consisting of final (or accepting states).
- We can represent finite-state automata using either state tables or state diagrams. Final states are indicated in state diagrams by using double circles.

Maria Thomas Unit 4 October 6, 2023 30 / 56

Exercise

• Construct the state diagram for the finite-state automaton $M = (S, I, f, s_0, F)$, where $S = \{s_0, s_1, s_2, s_3\}$, $I = \{0, 1\}$, $F = \{s_0, s_3\}$, and the transition function f is given in Table 1.

TABLE 1			
	f		
	Input		
State	0	1	
s_0	s_0	s_1	
s_1	s_0	s_2	
s_2	s_0	s_0	
s_3	s_2	s_1	

Maria Thomas Unit 4 October 6, 2023 31 / 56

Exercise

• Construct the state diagram for the finite-state automaton $M = (S, I, f, s_0, F)$, where $S = \{s_0, s_1, s_2, s_3\}$, $I = \{0, 1\}$, $F = \{s_0, s_3\}$, and the transition function f is given in Table 1.

TABLE 1			
	f		
	Input		
State	0	1	
s_0	s_0	s_1	
s_1	s_0	s_2	
s_2	s_0	s_0	
s_3	s_2	s_1	

Maria Thomas Unit 4 October 6, 2023 32 / 56

EXTENDING THE TRANSITION FUNCTION

- The transition function I of a finite-state machine
 M = (S, I, f, s₀, F) can be extended so that it is defined for all
 pairs of states and strings.
 i.e. f can be extended to a function f: S × I* → S.
- Let $x = x_1x_2...x_k$ be a string in I^* . Then $f(s_1, x)$ is the state obtained by using each successive symbol of x, from left to right, as input, starting with state s_1 . From s_1 we go on to state $s_2 = f(s_1, x_1)$, then to state $s_3 = f(s_2, x_2)$, and so on, with $f(s_1, x) = f(s_k, x_k)$.

Language Recognition by Finite-State Machines

- A string x is said to be recognized or accepted by the machine $M = (S, I, f, s_0, F)$ if it takes the initial state s_0 to a final state. i.e. $f(s_0, x)$ is a state in F.
- Two finite-state automata are called equivalent if they recognize the same language.

Maria Thomas Unit 4 October 6, 2023 35 / 56

Determine the languages recognized by the finite-state automaton

Ans: $L(M) = \{0, 01\}$

Determine the languages recognized by the finite-state automaton

Ans: $L(M) = \{0^n, 0^n 10x : n = 0, 1, 2, ...andx \text{ is any string}\}\$

Maria Thomas Unit 4 October 6, 2023 37 / 56

Deterministic Finite-State Automaton

Deterministic finite-state automaton is a finite-state machine in which for each pair of state and input value there is a unique next state given by the transition function.

Maria Thomas Unit 4 October 6, 2023 38 / 56

- Construct deterministic finite-state automata that recognize each of these languages.
 - a the set of bit strings that begin with two 0s
 - b the set of bit strings that contain two consecutive 0s
 - c the set of bit strings that do not contain two consecutive 0s
 - d the set of bit strings that end with two 0s
 - e the set of bit strings that contain at least two 0s

Maria Thomas Unit 4 October 6, 2023 39 / 56

 $40 \, / \, 56$

• Show that the two finite-state automata M_0 and M_1 in the figures are equivalent.

Solution: Let x be any string.

For M_0 to recognise x, x must reach one of the final stages, s_1 or s_4 , from the starting stage s_0 . Now, the only string that reaches s_1 from s_0 is 1.

The strings that will reach s_4 from s_0 should reach s_2 and then from s_2 to s_4 .

The strings from s_0 to reach s_4 should start with 0, followed by a 1 or start with 0 followed by more additional 0s, which keep the machine in state s_2 , followed by a 1 to reach the final stage, s_4 .

All other strings takes the machine from s_0 to a state that is not final. \therefore

$$L(M_0) = \{1, 0^n 1 : n = 1, 2, \dots\}$$
(1)

Maria Thomas Unit 4 October 6, 2023 44/56

Solution ctd: For a string x to be recognized by M_1 , x must take the machine from s_0 to the final state, i.e. s_1 .

If x is just 1, it reaches s_1 from s_0 .

If x starts with a number of 0s, which leave the machine in state s_0 , followed by a 1, which takes it to the final state s_1 . A string of all 0s is not recognized because it leaves the machine in state s_0 , which is not final. All strings that contain a start with 1 followed by a 0 are not recognized because it will reach s_2 , which is not final. \therefore

$$L(M_1) = \{1, 0^n 1 : n = 1, 2, ...\}$$
(2)

From (1) and (2) we can conclude that the finite state machines M_0 and M_1 recognise the same language. Hence by the definition of equivalent machines, M_0 and M_1 are equivalent.

Maria Thomas Unit 4 October 6, 2023 45 / 56

Nondeterministic Finite-State Automaton

A nondeterministic finite-state automaton $M = (S, I, f, s_0, F)$ consists of a set S of states, an input alphabet I, a transition function f that assigns a set of states to each pair of state and input (so that $f : S \times I \to P(S)$), a starting state s_0 , and a subset F of S consisting of the final states.

Maria Thomas Unit 4 October 6, 2023 46/56

Find the state diagram for the nondeterministic finite-state automaton

with the state table shown below.

nown be	f	
	Input	
State	0	1
s_0	s_0, s_1	<i>s</i> ₃
s_1	s_0	s_1, s_3
s_2		s_0, s_2
<i>s</i> ₃	s_0, s_1, s_2	s_1

Maria Thomas Unit 4 October 6, 2023 47/56

Find the state table for the nondeterministic finite-state automaton with the state diagram shown below.

Maria Thomas Unit 4 October 6, 2023 49 / 56

	f	
	Input	
State	0	1
s_0	s_0, s_2	$s_{\rm l}$
s_1	<i>s</i> ₃	<i>S</i> ₄
s_2		<i>S</i> ₄
s_3	<i>S</i> ₃	
<i>S</i> ₄	<i>s</i> ₃	<i>S</i> ₃

Find the language recognized by the nondeterministic finite-state automaton, M_2 .

Maria Thomas Unit 4 October 6, 2023 51 / 56

Theorem

If the language L is recognized by a nondeterministic finite-state automaton M_0 , then L is also recognized by a deterministic finite-state automaton M_1 .

Maria Thomas Unit 4 October 6, 2023 52 / 56

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton given below.

Unit 4 October 6, 2023 53 / 56

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton given below.

Maria Thomas Unit 4 October 6, 2023 55 / 56

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton given below.

Maria Thomas Unit 4 October 6, 2023 56 / 56