

MSML610: Advanced Machine Learning

Machine Learning on Time Series

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References:

Time Series

- Time Series
 - Basic definition
 - Time series operators
 - Time series decomposition
- Classical Methods
- Advanced and Modern Approaches
- Special techniques for time series modeling

Basic definition

- Time Series
 - Basic definition
 - Time series operators
 - Time series decomposition
- Classical Methods
- Advanced and Modern Approaches
- Special techniques for time series modeling

Time Series

- A time series is a sequence of observations over time, e.g.,
 - Finance: Hourly stock prices
 - Web Analytics: Number of active users on a site sampled at regular intervals
 - Manufacturing: Sensor data from machinery (e.g., temperature or vibration) collected over time for predictive maintenance
 - Weather: Daily temperature measurements
 - Energy: Daily electricity usage of a household
- Time series are needed only for things that change over time
 - Everything in the real world (besides mathematical objects) changes over time!
- Goal: understand patterns and predict future values
- A time series is modeled as a random process, i.e., a sequence of random variables indexed by time:

$$\{Y_t\}_{t=-\infty}^{\infty}$$

- Can be continuous or discrete
- Often consider data equi-spaced in time

The time dimension weather since renders variables exhibit dependence

Time Series Visualization and Exploration

- Visualization:
 - Guides preprocessing choices
 - Helps form hypotheses before modeling
- Distinguish between underlying structure and randomness
 - Trend: long-term increase or decrease
 - Seasonality: repeating patterns at regular intervals
 - Noise: random fluctuations
- Line plots show raw data over time, e.g.,
 - Trend presence
 - Outliers or abrupt changes
- Seasonal plots reveal periodic patterns
 - E.g., plot monthly sales to find yearly seasonality
- Autocorrelation plots (ACF) detect repeating structures

j-lag autocovariance

• The *j*-lag autocovariance of a time series $\{Y_t\}$ is:

$$\mathsf{Cov}(Y_t, Y_{t-j}) \stackrel{\mathit{def}}{=} \mathbb{E}[(Y_t - \mathbb{E}[Y_t])(Y_{t-j} - \mathbb{E}[Y_{t-j}])]$$

- Covariance of a random variable and the variable j samples before
- The *j*-lag autocorrelation of a time series $\{Y_t\}$ is:

$$\rho(Y_t, Y_{t-j}) = \mathsf{Corr}(Y_t, Y_{t-j}) \stackrel{\mathsf{def}}{=} \frac{\mathsf{Cov}(Y_t, Y_{t-j})}{\sqrt{\mathbb{V}[Y_t]\mathbb{V}[Y_{t-j}]}}$$

- Measures strength and direction of the linear relationship between samples
- Scale-free

Stationarity

- A time series { Y_t} is **stationary** if some properties (e.g., mean, variance, autocorrelation structure) do not change over time, i.e., they are unchanged by shifts in time
 - Stationarity is analogous to IID sampling for random variables
- Time series are rarely stationary
 - Stationarity is often an approximation/simplification of reality

• Why important:

- Many models (e.g., ARIMA) assume stationarity
- E.g., raw stock prices are non-stationary, returns often are

• Tests for stationarity:

- ADF Test (Augmented Dickey-Fuller): tests for unit root
- KPSS Test: tests for trend stationarity

Strictly stationarity: definition

- A time series $\{Y_t\}$ is **strictly stationary** iff for any any set of r > 0 indices $t_1, t_2, ..., t_r < t$, the joint distribution of $(Y_{t_1}, Y_{t_2}, ..., Y_{t_r})$ depends only on the differences $t_1 t_2, ..., t_1 t_r$
 - E.g., (Y_1, Y_5) has the same joint distribution as (Y_{12}, Y_{16})
 - E.g., (Y_1, Y_2, Y_3) has the same joint distribution as (Y_3, Y_4, Y_5)
- Intuition:
 - The data (i.e., joint probability of any set of observations) is invariant when we shift it in time
 - Only the distances in time matter
- If $\{Y_t\}$ is strictly stationary:
 - All moments (e.g., mean, variance) of Y_t don't depend on t
 - Any statistics between lags of the time series depend only on the difference in time between lags

Weakly stationarity: definition

- Weakly stationarity requires weaker assumptions than for strictly stationary process:
 - 1. The mean is constant over time: $\mathbb{E}[Y_t] = \mu \ \forall t$
 - 2. The variance is constant over time: $\mathbb{V}[Y_t] = \sigma^2 \ \forall t$
 - 3. The *j*-lag autocovariance $Cov(Y_t, Y_{t-j})$ depends on distance between lags j but not on t: $Cov(Y_t, Y_{t-j}) = \gamma_j$
- In practice, there is a constraint only on:
 - the joint distribution of 2 time indices
 - · first and second moments

Intuition

- No trend (mean is constant)
- Variations around the mean have constant amplitude (variance is constant)
- Consistent wiggling (random patterns look the same)

Auto-Correlation Function (ACF)

- Auto-correlation function is a graphical representation of the i-lag autocorrelation of a time series
- It is a plot of the correlation coefficient of a time series with its own lagged values
 - · Ideally, plot also the uncertainty of the coefficients
- Partial Auto-Correlation Function (PACF) is like ACF but controls for the values of the time series at all shorter lags
 - The partial autocorrelation at lag k:

$$\alpha(k) = \mathsf{Corr}(Y_t - \mathsf{Proj}_{t,k}(Y_t), Y_{t-k} - \mathsf{Proj}_{t,k}(Y_{t,k}))$$

where $Proj_{t,k}(x)$ is the projection of x onto the space spanned by $(x_t,...,x_{t-k+1})$

Transformation of a time series

- Any deterministic transformation g() of a strictly (weakly) stationary process $\{Y_t\}$ is also strictly (weakly) stationary
- Sometimes there is a transformation that makes the process stationary, e.g.,
 - Detrending
 - Differencing (integer or fractional)
- Log transformations stabilize variance
 - Useful when data grows exponentially
- Differencing removes trend and makes series stationary
 - First difference: $y'_t = y_t y_{t-1}$
- Power transformations (e.g., square root) can reduce skewness
- Detrending techniques:
 - Subtract a fitted trend line
 - Apply moving average smoothing

Time series operators

- Time Series
 - Basic definition
 - Time series operators
 - Time series decomposition
- Classical Methods
- Advanced and Modern Approaches
- Special techniques for time series modeling

Time series operators

• Time series operators $f(\cdot)$ (e.g., lag, difference) operates on a time series $\{X_t\}$ to generate another time series $\{Y_t\}$:

$$\{Y_t\} = f(\{X_t\})$$

Lag operator

• Given a time series $\{X_t\}$, the lag operator $L(\cdot)$ generates the time series:

$$Y_t = LX_t = X_{t-1}$$

- Aka "shift back", backshift, delay
- Intuition of lagging a time series:

$$Y_t = LX_t = X_{t-1}$$

the t (e.g., today) element of the new time series is the t-1 (yesterday) element of the old time series, i.e., it delays the time series

Lag operator: positive sign

- The "normal" direction (i.e., with positive delay) is delaying / lagging
 - It is a positive sign since we are not snooping in the future
- This is the same convention of pd.shift()
- When using a variable function of time, it corresponds to x(t-a) with a>0

Shifting backwards

 When we shift backwards (aka lag) df.shift(n>0), we move a value from the past to today

date	val	<pre>val.shift(2)</pre>
2016-03-10	0	nan
2016-03-11	1	nan
2016-03-14	2	0
2016-03-15	3	1
2016-03-16	4	2

- This is equivalent to "shifting down" a time series ordered by increasing dates
- The values at the beginning of the period are not available since they require data before the period of interest

Lead operator

It is accomplished by:

$$Y_t = L^{-1}X_t = X_{t+1}$$

- Aka "shift forward"
- When using a variable function of time, the transformation is like x(t+2) since the value today x(0) is the value computed in the future x(2)
- MEM: we use a negative number in df.shift(-2) and in x(t-a) with a < 0 which is ominous sign of snooping in the future

Shifting forward

 When we shift forward (aka lead) df.shift(n<0), we move a value from the future (i.e., a value computed n periods in the future) to today

date	val	val.shift(-2)
2016-03-10	0	2
2016-03-11	1	3
2016-03-14	2	4
2016-03-15	3	nan
2016-03-16	4	nan

- This is equivalent to "shifting up" a time series ordered in the usual way (by increasing dates)
- A consequence is that:
 - Some values at the end of the period won't be available since they would have been computed after the period of interest is over
 - Some values computed at the beginning of the period will be discarded

Shifting more than one time step

• We can shift more than one lag with:

$$L^k X_t = X_{t-k}$$

$$L^{-k}X_t = X_{t+k}$$

Difference operator

• The first difference of a time series is defined as the time series:

$$\Delta X_t = X_t - X_{t-1}$$

i.e., the time series that is the difference between the original time series and its lagged version

Difference operator in terms of lag operator

 The first difference can be written in terms of lag operator as the time series:

$$\Delta X_t = (1 - L)X_t$$

Second difference operator

• The second difference is defined as:

$$\Delta^2 X_t = \Delta(\Delta X_t)$$

Developing:

$$Y_t = \Delta X_t = X_t - X_{t-1}$$

and

$$Z_t = Y_t - Y_{t-1}$$

= $X_t - X_{t-1} - (X_{t-1} - X_{t-2})$
= $X_t - 2X_{t-1} + X_{t-2}$

• Note that this is not the difference $Y_t - Y_{t-2}$

Second difference operator in terms of lag operator

$$\Delta^2 X_t = (1 - L)^2 X_t$$

N-th difference operator

• The *n*-th difference operator is defined:

$$\Delta^n X_t = (1 - L)^n X_t$$

Differencing: intuition

 Differencing means computing the difference between consecutive observations:

$$Y_t = X_t - X_{t-1}$$

- This means removing the changes in the level of a time series, eliminating trend and seasonality, which stabilize the mean of the time series
- Differencing is a transformation applied to time series that can make it stationary

Differencing in terms of lag operator

• The (first order) difference can be written:

$$\Delta X_t = (1 - L)X_t$$

• The second order difference can be written:

$$\Delta^2 X_t = (1 - L)^2 X_t$$

• The n-th order difference can be written:

$$\Delta^n X_t = (1 - L)^n X_t$$

Time series decomposition

- Time Series
 - Basic definition
 - Time series operators
 - Time series decomposition
- Classical Methods
- Advanced and Modern Approaches
- Special techniques for time series modeling

Decomposition of Time Series

- Break time series into components:
 - Trend
 - Long-term increase or decrease in data
 - Can change direction over time
 - Seasonality
 - Affected by seasonal factors (e.g., time of day, day of week, month of year)
 - Fixed and known frequency
 - Cycle
 - Value rises and falls without fixed frequency
 - E.g., economic conditions exhibit cycles
 - Residual (noise)
- Additive model:
 - $y_t = \mathsf{Trend}_t + \mathsf{Seasonality}_t + \mathsf{Residual}_t$
- The component can also be mixed in different ways (e.g., multiplicative)
- Visual decomposition helps in selecting the right model

Seasonality: example

- Consider antidiabetic drug sales
 - Sharp spike in January, dip in February, increase over the year
- Why?
 - In January, government subsidy makes it cost-effective to stockpile drugs
 - In February, dip occurs as people have already bought many drugs
 - Demand increases until December as people use their reserves
 - Then the cycle repeats next year

Cycle: example

- GDP moves up and down around its long-term growth trend
- There are different cycles:
 - Inventory: 3-5 years
 - Fixed investment: 7-11 years
 - Infrastructural investment: 15-25 years
 - Technological investment: 45-60 years

Seasonal plot

- Season plot allows visual inference and understand model structure
- Assume we know the periodicity of a signal (e.g., yearly periodicity of a monthly time series)
- Partition the time-series based on the periodicity:
 - E.g., for a time series with yearly periodicity, break the time series into yearly chunks
 - Plot each time series chunk on the same graph
 - Use a box plot if there are many observations

Questions:

- Do the data exhibit a seasonal pattern?
- Is there a within-group pattern (e.g., Jan and July exhibit similar patterns)?
- Are there outliers after accounting for seasonality?
- Is the seasonality changing over time?

Seasonal sub-series plot

- The data for each season is collected together in a separate mini time plots
 - E.g., all the data points for Jan are plotted together as a time series

Seasonal differencing

- Instead of computing the difference between consecutive observations, take the difference between observations at the same point of consecutive periods
 - Useful for removing seasonal effects in time series data
 - E.g., for time series with yearly periodicity, take the Year-over-Year (YoY) difference
 - Helps in identifying underlying trends by eliminating seasonal fluctuations
- Particularly beneficial for data with strong seasonal patterns, such as retail sales or temperature data
 - E.g., if you have monthly sales data, compare January sales of one year to January sales of the next year to see the YoY change

Spectral plot

- Spectral plot estimates spectral density of a process from time samples of the signal
 - Detects periodicity
 - Identifies dominant frequencies
 - Analyzes power distribution over frequency
- E.g., in audio processing, a spectral plot identifies different frequencies in a sound recording, allowing for noise reduction or enhancement of certain frequencies

Classical Methods

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

Simple models for stochastic process

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

White noise process

• Defined as:

$$\{Y_t\} \sim \mathsf{WN}(0,\sigma^2)$$

- Each Y_t is a IID random variable at time t
 - Independent over time
 - Drawn from the same distribution (not necessarily Gaussian) $Y_t \sim \text{IID}$ from distribution F
 - With mean 0 and certain variance $\mathbb{E}[Y_t] = 0, \mathbb{V}[Y_t] = \sigma^2$

Key points:

- It's strictly stationary
- $\{Y_t\}$ is uncorrelated over time
- Variance σ^2 is constant for all t
- Cov $(Y_t, Y_{t-j}) = \gamma_j = 0$ for $j \neq 0$

- White noise is often used as a basic building block in time series analysis
 - E.g., if Y_t follows a Gaussian distribution (Gaussian white noise) $Y_t \sim \text{IID } \mathcal{N}(0,\sigma^2)$
- It's called "white noise" because:

Deterministically trending process

- Defined as $Y_t = \beta_0 + \beta_1 t + \varepsilon_t$ where:
 - The noise is Gaussian: $\varepsilon_t \sim \text{GWN}(0, \sigma_{\varepsilon}^2)$
 - The noise term is also called "innovation", "error term"
- The mean $\mathbb{E}[Y_t] = \beta_0 + \beta_1 t$ depends on t
 - It is non-stationary in the mean

Random walk

- Defined as $Y_t = Y_{t-1} + \varepsilon_t$ where
 - The noise is Gaussian: $\varepsilon_t \sim \text{GWN}(0, \sigma_\varepsilon^2)$
- It can be rewritten in terms of the noise terms doing a recursive substitution:

$$Y_t = Y_0 + \sum_{i=1}^t \varepsilon_i$$

• The mean is constant:

$$\mathbb{E}[Y_t] = \mathbb{E}[Y_0] = \mu$$

The variance is:

$$\mathbb{V}[Y_t] = t\sigma_{\varepsilon}^2$$

since all the covariances between innovations are 0

• It is non-stationary in the variance

Autoregressive models

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

Autoregressive (AR) Models

• An AR model of order *p* predicts future values using past *p* values:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$

where:

- c is a constant
- $\phi_1, \phi_2, \dots, \phi_p$ are model parameters
- y_t is the value at time t
- $y_{t-1}, y_{t-2}, \dots, y_{t-p}$ are past values (lags)
- ϵ_t i.i.d. $\mathcal{N}(0, \sigma^2)$ is white noise (random error term)
- E.g., predicting temperature today using temperature for past 3 days:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \phi_3 y_{t-3} + \epsilon_t$$

- AR models assume the time series is stationary:
 - Stationarity implies statistical properties of the series do not change over time
 - Partial Autocorrelation Function helps choose p
 - Model parameters are estimated using methods like Ordinary Least Squares (OLS) or Maximum Likelihood Estimation (MLE)

AR(1) process

- Aka "auto-regressive of order 1"
- AR(1) model is defined as:

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t$$

where the noise is IID Gaussian: $\varepsilon_t \sim \mathsf{GWN}(0, \sigma_\varepsilon^2)$

- MEM: AR(1) = autoregressive term + noise
- The representation:

$$Y_t = \phi Y_{t-1} + \varepsilon_t$$

can be thought as a regression of Y_t against Y_{t-1}

• So it is regressive with respect to itself, i.e., "auto-regressive"

AR(1) process: mean

• Applying the expected value to the definition of AR(1) we get:

$$\mathbb{E}[Y_t] = c + \phi \mathbb{E}[Y_{t-1}] + \mathbb{E}[\varepsilon_t]$$

• Assuming the mean is constant:

$$\mu = c + \phi \mu$$

so:

$$\mu = \frac{c}{1 - \phi}$$

AR(1) process: in terms of mean

Rewriting the AR(1) model:

$$Y_t = c + \phi Y_{t-1} + \varepsilon_t$$

using the relationship for the mean:

$$\mu = \frac{c}{1-\phi}$$

we get:

$$Y_t = \mu(1 - \phi) + \phi Y_{t-1} + \varepsilon_t$$

• Rewriting in terms of difference from the mean:

$$Y_t - \mu = \phi \cdot (Y_{t-1} - \mu) + \varepsilon_t$$

ullet MEM: It is like random walk but with a mean μ and a param ϕ

AR(1) process: properties

 We can compute the statistical properties of AR(1) process using the definition of AR(1) model in terms of the mean:

$$\begin{split} \mathbb{E}[Y_t] &= \mu \\ \mathbb{V}[Y_t] &= \frac{\sigma_{\varepsilon}^2}{1 - \phi^2} \\ \mathrm{Cov}[Y_t, Y_{t-j}] &= \mathbb{V}[Y_t] \phi^j \\ \rho(Y_t, Y_{t-j}) &= \phi^j \end{split}$$

ullet The AR(1) model is weakly stationary if $-1 < \phi < 1$

Ergodicity: intuition

• Y_t and Y_{t-j} tend to being independent as j grows large enough

AR(1) process approximates ergodicity

• The autocorrelation has a geometric decay:

$$\mathsf{Cov}[Y_t, Y_{t-j}] = \mathbb{V}[Y_t]\phi^j$$

i.e., variables that are closer in time are more correlated than variables that are farther in time

ullet If $j o\infty$ then $\mathsf{Cov}[Y_t,Y_{t-j}] o 0$ (ergodicity)

AR(1) process is mean-reverting

- Mean-reverting = when it is far from the mean, it tends to go back
- \bullet The speed of mean reversion depends on ϕ

AR(1) process vs Gaussian white noise

- The AR(1) process is smoother than the GWN due to the autocorrelation in time
- The Gaussian white noise is choppy

AR(1) as function of ϕ

- ullet $\phi = 0 o$ white noise: it bounces around the mean
- $0 < \phi < 1$ it stays far from the mean and then reverts (it is smoother)
- ullet $\phi=1
 ightarrow$ random walk: it walks away from the mean
- ullet $\phi > 1
 ightarrow$ explosive progress since it diverges accelerating
- ϕ < 0 it is super choppy

AR(1) to model financial time series

- Good model
 - Interest rates
 - Growth rate of macroeconomic variables (growth of GDP, growth of unemployment)
 - Pnl
- Bad model
 - Stocks don't show a strong time dependency
 - Returns look like White noise, prices look like Random walk

AR(p) model

• AR(p) is an autoregressive model of order p:

$$Y_t = c + \sum_{i=1}^{p} \phi_i Y_{t-i} + \varepsilon_t$$

where ε terms are white noise

• MEM: AR(p) models are linear combination of p past realization + noise

AR(p) model in terms of lag operator

The AR equation is:

$$Y_t = c + \sum_{i=1}^{p} \phi_i Y_{t-i} + \varepsilon_t$$

Separating var and noise term

$$Y_t - \sum \phi_i Y_{t-i} = c + \varepsilon_t$$

Using lag operator

$$Y_t - \sum \phi_i L^i Y_t =$$

$$(1 - \sum \phi_i L^i) Y_t =$$

$$f(\phi, L) Y_t = c + \varepsilon_t$$

Moving average models

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

Moving Average (MA) Models

A MA model of order q predicts future values using past q errors

$$y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

where:

- μ is the mean of the series
- ϵ_t is the white noise error term at time t
- $\theta_1, \theta_2, \dots, \theta_q$ are the parameters of the model
- E.g., correcting for sensor noise by using past error patterns
 - If a sensor consistently overestimates by a small amount, the MA model can adjust for this by considering past errors
- MA models are always stationary
 - Suitable for time series data where the impact of a shock is short-lived
 - Useful for modeling time series with short-term dependencies

MA(1) process: def

- Aka "moving average of order 1"
- MA(1) model is defined as:

$$Y_t = c + \theta \varepsilon_{t-1} + \varepsilon_t$$

where the noise is iid Gaussian: $\varepsilon_t \sim \text{GWN}(0, \sigma_{\varepsilon}^2)$

- MEM: MA(1) = linear combination of 1 past innovations + noise
- MEM: MA uses θ like in MAT

MA(1) process: why called moving average?

Consider:

$$Y_{t} = c + \phi \varepsilon_{t-1} + \varepsilon_{t}$$

$$Y_{t-1} = c + \phi \varepsilon_{t-2} + \varepsilon_{t-1}$$

- You can see that it's like a window
 - with given coefficients (computing an average)
 - moving in time

MA(1) process: correlation structure

• There is correlation only between Y_t and Y_{t-1} , but not between any other variable:

$$\begin{aligned} Y_t &= f(\varepsilon_t, \varepsilon_{t-1}) \\ Y_{t-1} &= f(\varepsilon_{t-1}, \varepsilon_{t-2}) \\ Y_{t-2} &= f(\varepsilon_{t-2}, \varepsilon_{t-3}) \\ \dots \\ Y_{t-k} &= f(\varepsilon_{t-k}, \varepsilon_{t-k-1}) \end{aligned}$$

since there are common terms only between variables that have a distance $t_1-t_2 \leq 1$

MA(1) process: properties

• Using the definitions we obtain:

$$\begin{split} \mathbb{E}[Y_t] &= c \\ \mathbb{V}[Y_t] &= (1+\theta)\sigma_{\varepsilon}^2 \\ \text{Cov}[Y_t, Y_{t-1}] &\overset{d.as}{=} \gamma_1 = \theta \sigma_{\varepsilon}^2 \\ \text{Cov}[Y_t, Y_{t-j}] &\overset{d.as}{=} \gamma_j = 0, \ \forall j > 1 \end{split}$$

- It is a weakly stationary process since
 - mean and variance are constant
 - the covariance depends only on the difference of the lags

MA(1) process: example of overlapping returns

 Assume that the 1-month continuously compounded returns r_t are IID normal:

$$r_t \sim \text{IID N}(\mu_r, \sigma_r^2)$$

• If we consider a monthly time series of 2-month cc returns using:

$$r_t(2) = r_t + r_{t-1}$$

• Then $\{r_t(2)\}$ follows a MA(1) process

MA(q) model

• MA(q) is a moving average model of order q:

$$Y_t = c + \sum_{i=1}^p \theta_i \varepsilon_{t-i} + \varepsilon_t$$

where ε terms are white noise

- ullet Note that c is the mean and so it can be indicated with μ
- It shows autocorrelation among various Y_t terms
- MEM: MA(q) models are linear combination of q error terms from the past

MA(q) model: intuition of covariance structure

- In general MA(q) has dependency between consecutive terms Y_t up to Y_{t-q}
- It can be seen by considering

$$\begin{aligned} Y_t &= f(\varepsilon_t, \varepsilon_{t-1}, ..., \varepsilon_{t-q}) \\ ... \\ Y_{t-k} &= f(\varepsilon_{t-k}, \varepsilon_{t-k-1}, ..., \varepsilon_{t-k-q}) \end{aligned}$$

and noticing that there are common terms as long $t-k \le t-q \iff k \le q$

MA(q) model in terms of lag operator

• The MA equation is:

$$Y_t = \mu + \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

• Using the lag operator:

$$Y_t = \mu + (1 + \sum_{i=1}^q \theta_i L^i) \varepsilon_i = \mu + f(\theta, L) \varepsilon_i$$

ARMA(p, q) process

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

ARMA(p, q) model

It contains p autoregressive terms and q moving average terms:

$$ARMA(p,q) = AR(p) + MA(q)$$

• A realization of an ARMA(p, q) process is:

$$Y_{t} = AR(p) + MA(q)$$

$$= (c + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \varepsilon_{t}) + (c + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} + \varepsilon_{t})$$

$$= c + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i} + \varepsilon_{t}$$

- AR part involves regressing the variable on its own lagged values
- MA part models error term as a linear combination of lagged error terms

ARMA model in terms of lag operator

 We can separate the terms relative to the variable Y_t and to the error term:

$$(1 - \sum_{i=1}^{q} \phi_i L^i) Y_t = c + (1 + \sum_{i=1}^{p} \theta_i L^i) \varepsilon_i$$

Residuals of ARMA model

- Residuals should be uncorrelated and normally distributed
- One can check the ACF of the residuals

ARMA, ARIMA Models

• ARMA models combine AR and MA components:

$$y_t = c + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{j=1}^{q} \theta_j \epsilon_{t-j} + \epsilon_t$$

- ARIMA models extend ARMA by including differencing
 - Handles non-stationary data
 - Useful for time series forecasting
 - Can model a wide range of time series data

ARIMA

- Consider ARIMA(p, d, q) where:
 - p = number of autoregressive terms (AR)
 - d = order of differencing (I)
 - q = number of moving average terms (MA)
- ARIMA(p, d, q) has form:

$$\phi(B)(1-B)^d y_t = \theta(B)\varepsilon_t$$

where:

- $\phi(B) = 1 \phi_1 B \phi_2 B^2 \dots \phi_p B^p$ is autoregressive (AR) term
- $\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \cdots + \theta_q B^q$ is moving average (MA) term
 - B() is the backshift operator: $By_t = y_{t-1}$
 - $\varepsilon_t \sim \mathcal{N}(0, \sigma^2)$ is white noise
- Important points:
 - Differencing helps to stabilize the mean of a time series
 - Over-differencing can lead to increased model complexity without improving accuracy
 - Under-differencing can result in a non-stationary series
 - E.g., if a time series shows a linear trend, first-order differencing (d=1) might be sufficient to achieve stationarity
- Model building steps
 - Identification (select p, d, q)

SARIMA

- Seasonal ARIMA (SARIMA) extends ARIMA to handle seasonal patterns in time series data
- It incorporates seasonal autoregressive and moving average terms, as well as seasonal differencing

ARIMA model

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

ARIMA model class

- class of statistical models for analyzing and forecasting time series data
- It is a generalization of ARMA (Auto-Regressive Moving Average)
- AR = Auto-Regression
 - uses relationship between next observation and a number of lagged observations
- I = Integrated
 - uses differencing of observations to make the time series stationary
- MA = Moving Average
 - uses the dependency between next observation and a residual error from a moving average model applied to lagged observations

ARIMA(p, d, q)

- p: number of lag observations included in the model
 - aka lag order
- *d*: degree of differencing (i.e., the number of times the observations are differenced)
- q: size of the moving average window
 - · aka order of moving average

Particular cases of ARIMA

- Setting p, d, or q to 0, ARIMA is simplified to a ARMA, AR, I, MA model
- ARIMA(0, 0, 0)
 - $\rightarrow X_t = \varepsilon_t$, which is white noise
- ARIMA(0, 1, 0) = I(1)
 - $X_t = X_{t-1} + \varepsilon_t$, which is a random walk
- ARIMA(p, 0, q) = ARMA(p, q)

ARIMA model in the form of ARMA model

- An ARIMA model can be represented as an ARMA model applied to the time series resulting from differencing
- An ARIMA(p, d, q) is described by the equations:

$$\begin{cases} Z_t = (1-L)^d Y_t \\ (1-\sum_{i=1}^p \phi_i L^i) Z_t = (1+\sum_{i=1}^q \theta_i L^i) \varepsilon_t \end{cases}$$

• So there is differencing of order i, then AR(p) and MA(q)

Fitting ARMA / ARIMA models

- The original Box-Jenkins approach has 3 phases:
 - 1. Model identification / selection
 - · identify seasonality
 - difference data, if necessary, to achieve stationarity
 - check if variables are stationary
 - use ACF, PACF to decide AR and MA components to use
 - 2. Parameter estimation
 - Pick coefficients to get best fit
 - 3. Model checking
 - Test estimated model
 - E.g., the residual should have no serial correlation and be stationary in mean and variance
 - If estimation is inadequate, go back to step 1) and attempt to build a better model

ARCH model

- Time Series
- Classical Methods
 - Simple models for stochastic process
 - Autoregressive models
 - Moving average models
 - ARMA(p, q) process
 - ARIMA model
 - ARCH model
- Advanced and Modern Approaches
- Special techniques for time series modeling

ARCH: in brief

- = Auto-Regressive Conditional Heteroskedasticity
- ARCH is used to model time series that exhibit time-varying volatility and volatility clustering
- Engle (2003): Nobel price in Economics

Volatility clustering

• = periods of swings interspersed with periods of calm

ARCH: intuition

 Variance of error term (aka innovation) is described as a function of the value of the previous time periods error terms

$$\mathbb{V}[\varepsilon_t] = f(\varepsilon_{t-1}, ..., \varepsilon_{t-N})$$

• E.g., error variance follows an AR model

ARCH(q): definition

• The model for the error term of the time series is:

$$\varepsilon_t = \sigma_t \cdot \mathbf{z}_t$$

where:

- z_t is white noise process (stochastic part)
- σ_t^2 is the time-dependent variance given by an AR(q) model:

$$\begin{split} \sigma_t^2 &= \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 \\ &= \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \ldots + \alpha_q \varepsilon_{t-q}^2 \\ \text{where } \alpha_i &> 0 \end{split}$$

 MEM: the error variance is AR(q), i.e., a linear combination of squares of previous error term realizations

GARCH

- = Generalized ARCH
- The error variance follows an ARMA model

GARCH(p, q): definition

• The error term of a time series is modelled as:

$$\varepsilon_t = \sigma_t \cdot \mathbf{z}_t$$

where:

- z_t is white noise process (stochastic part)
- σ_t^2 is the time-dependent variance given by an ARMA(p, q) model

$$\sigma_t^2 = \omega + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{i=1}^p \beta_i \sigma_{t-i}^2$$

Seasonal ARIMA (SARIMA)

- SARIMA models capture both non-seasonal and seasonal patterns
- SARIMA notation: ARIMA $(p, d, q)(P, D, Q)_s$
 - (P, D, Q) = seasonal components
 - s = number of periods per season (e.g., s = 12 for monthly data)
- Seasonal differencing removes seasonal patterns:
 - $y'_t = y_t y_{t-s}$
- Useful when strong periodic behavior exists
- Steps similar to ARIMA:
 - Model seasonal and non-seasonal parts separately
- Example: forecasting monthly airline passenger data

Exponential Smoothing Methods

- Forecast future values by weighted averages of past observations
- Simple Exponential Smoothing:
 - Good for data with no clear trend or seasonality
- Holt's Linear Trend Method:
 - Models both level and trend
- Holt-Winters Method:
 - Extends Holt's to include seasonality
- Intuition:
 - More recent observations get more weight
- Forecast equations use smoothing parameters α , β , γ
- Example: predicting daily demand with seasonal shopping patterns

Advanced and Modern Approaches

- Time Series
- Classical Methods
- Advanced and Modern Approaches
- Special techniques for time series modeling

State Space Models

 State space models describes how a system evolves over time using states and observations

Components

- State vector (x_t) : Hidden/internal state of the system at time t
- Observation vector (y_t) : What we can measure at time t
- State equation: $x_{t+1} = F_t x_t + G_t u_t + w_t$
- Observation equation: $y_t = H_t x_t + v_t$
 - F_t: State transition matrix
 - G_t: Control input matrix
 - H_t: Observation matrix
 - w_t, v_t: Process and observation noise

Types

- Linear vs Nonlinear
- Time-invariant vs Time-varying
- Deterministic vs Stochastic

Goal

- Infer hidden states from noisy observations
- Predict future observations or states

Vector Autoregressions (VAR)

- VAR models generalize AR models to multivariate time series
- Each variable depends on past values of itself and others
- Mathematical form (for 2 variables):
 - $y_{1,t} = c_1 + \phi_{11}y_{1,t-1} + \phi_{12}y_{2,t-1} + \epsilon_{1,t}$
 - $y_{2,t} = c_2 + \phi_{21}y_{1,t-1} + \phi_{22}y_{2,t-1} + \epsilon_{2,t}$
- Intuition:
 - Capture dynamic interrelationships among multiple series
- Used for:
 - Economic indicators
 - Multichannel sensor data
- Example: modeling GDP growth and inflation jointly

Spectral Analysis and Frequency Domain Methods

- Analyze time series in terms of cycles and frequencies
- Fourier Transform decomposes series into sinusoidal components
- Periodogram estimates strength of different frequencies
- Intuition:
 - Understand repeating patterns that may not be obvious in time domain
- Useful for:
 - Identifying dominant periodicities
 - Filtering noise
- Applications:
 - Seismology, climate cycles
- Example: detect yearly cycle in temperature data

Machine Learning for Time Series

- Use supervised learning to predict future values
- Key steps:
 - Feature engineering (lags, rolling statistics, Fourier terms)
- Common algorithms:
 - Decision trees
 - Random forests
 - Gradient boosting (e.g., XGBoost)
- Handle nonlinearity and complex interactions
- Often requires careful cross-validation due to temporal structure
- Example: predicting electricity consumption using lagged features

Deep Learning for Time Series

- Specialized neural networks for sequential data
- Recurrent Neural Networks (RNNs):
 - Capture dependencies across time steps
- Long Short-Term Memory networks (LSTMs):
 - Solve vanishing gradient problem
 - Retain long-term dependencies
- Temporal Convolutional Networks (TCNs):
 - Use causal convolutions for sequence modeling
- Strengths:
 - Handle complex, nonlinear dynamics
- Require large datasets and careful tuning
- Example: predicting stock price movements using past sequences

Special techniques for time series modeling

- Time Series
- Classical Methods
- Advanced and Modern Approaches
- Special techniques for time series modeling

Cross-Validation for Time Series

- Standard cross-validation is not suitable due to time dependency
- Rolling-Origin Evaluation:
 - Train on expanding window, test on next time step
- Walk-Forward Validation:
 - Move training and testing windows forward step-by-step
- Intuition:
 - Always predict the future, never the past
- Allows robust estimation of model performance
- Important for hyperparameter tuning

Anomaly Detection in Time Series

- Identify unusual patterns not consistent with past behavior
- Applications:
 - Finance (fraud detection, unusual trading activity)
 - Cybersecurity (intrusion detection, system failures)
- Common methods:
 - Statistical thresholds (e.g., values $> 3\sigma$ from mean)
 - Machine learning (isolation forests, autoencoders)
- Important to account for seasonality and trend
- Unsupervised methods are often necessary
- Example: detecting a sudden drop in website traffic

Hierarchical and Grouped Time Series Forecasting

- Forecast series that are organized in hierarchies or groups
- Bottom-up approach:
 - Forecast each low-level series, aggregate upward
- Top-down approach:
 - Forecast top-level series, disaggregate downward
- Middle-out approach:
 - Forecast middle levels and adjust both up and down
- Challenges:
 - Coherence (forecasts must add up correctly across levels)
- Applications:
 - Retail (store, region, national sales)
- Example: forecast sales per store, then sum to national level

Probabilistic and Quantile Forecasting

- Predict full distribution of future values, not just a single number
- Quantile forecasting:
 - Predict specific quantiles (e.g., 10%, 50%, 90%)
- Helps express uncertainty explicitly
- Useful when risk-sensitive decisions depend on forecast range
- Common methods:
 - Quantile regression
 - Bayesian models
- Example: forecasting a 90% prediction interval for electricity demand