1. details about procruste transformation in maximizing likelihood: Given matrix X and Y, say, both in $R^{p\times n}$. We want to minimize $\|X - \Gamma(Y - \mu 1^{\tau})\|$, for any $\mu \in R^p$, and orthonormal Γ in $R^{p\times p}$. It can be shown easily that $\tau = \frac{1}{n}(Y - X)1$ minimizes it. Now it remains to find the rotation matrix, and we assume both X and Y are centered at 0 in the following.

$$||X - \Gamma Y||^2$$

$$= \operatorname{tr}((X - \Gamma Y)^{\tau}(X - \Gamma Y))$$

$$= \operatorname{tr}(X^{\tau}X - Y^{\tau}Y - 2X^{\tau}\Gamma Y)$$

$$= \operatorname{const} - 2\operatorname{tr}(\Gamma Y X^{\tau})$$

Now we seek to maximize $\operatorname{tr}(\Gamma Y X^{\tau})$. Let $Y X^{\tau} = u \Sigma v^{\tau}$ be the sigular value decomposition, it becomes:

$$\operatorname{tr}(\Gamma Y X^{\tau})$$
$$= \operatorname{tr}(v^{\tau} \Gamma u \Sigma)$$

so $\Gamma = vu^{\tau}$ maximize above expression.

In the dynamic latent space model, when we translate or rotate all points at a fixed timepoint t, we do not change the pairwise distance, hence the likelihood based on X_t does not change. However, the transformation reduces $||X_t - X_{t-1}||$, and hence increases the likelihood based on random walk.

2. a simulation involving weighted links:

We consider 3 types of nodes. For simplicity, we call them "author", "paper", and "word" respectively.

We generate 3 "communities", each contains 8 authors, 25 papers, and 47 words. We only consider two types of links: the binary link between author and paper, and the weighted nonnegative integer valued link between paper and word.

The regression model is not simply log-linear. While η is calculated in the same way, we set $\mu = \exp(\eta)$ when $\eta < 0$ and $\mu = \eta + 1$ otherwise, to prevent it from increasing exponentially when two points get close.

In one simulation, true value of parameters:

model betas:

1.0000	1.0000	1.0000
1.0000	1.0000	0.1000
1.0000	1.0000	1.0000

model radius:

0	0.4000	0
0.6000	0	0
0	0	0

Simulated value after 10,000 steps:

model betas:

0 1.4211 0 0 0 0.2147 0 0 0

model radius:

0 0.4014 0 0 0 0.5986 0 0 0

3. histogram of pairwise distance from the previous simulation:

