VE320 – Summer 2021

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 9 Metal-Semiconductor Schottky Junction

Outline

9.1 The Schottky barrier diode

9.2 Metal-semiconductor Ohmic contacts

- Work function: energy difference between the vacuum energy level and the Fermi level
- Electron affinity: energy different between the vacuum energy level and conduction band bottom edge

Element	Work function, $\phi_{\scriptscriptstyle m}$
Ag, silver	4.26
Al, aluminum	4.28
Au, gold	5.1
Cr, chromium	4.5
Mo, molybdenum	4.6
Ni, nickel	5.15
Pd, palladium	5.12
Pt, platinum	5.65
Ti, titanium	4.33
W, tungsten	4.55

Element	Electron affinity, χ
Ge, germanium	4.13
Si, silicon	4.01
GaAs, gallium arsenide	4.07
AlAs, aluminum arsenide	3.5

- Schottky barrier: $\phi_{B0} = (\phi_m \chi)$
- Built-in potential barrier: $V_{\rm bi} = \phi_{B0} \phi_n$

Reverse bias

Forward bias

Ideal junction properties

$$\frac{d\mathbf{E}}{dx} = \frac{\boldsymbol{\rho}(x)}{\boldsymbol{\epsilon}_s}$$

$$E = \int \frac{eN_d}{\epsilon_s} dx = \frac{eN_dx}{\epsilon_s} + C_1$$

$$C_1 = -\frac{eN_d x_n}{\epsilon_s}$$

$$E = -\frac{eN_d}{\epsilon_s}(x_n - x)$$

$$W = \sqrt{\frac{2\varepsilon(V_{bi} + V_R)}{q} \frac{1}{N_d}} \approx x_n$$

Problem Example #1

Consider a contact between tungsten and n-type silicon doped to $N_d = 10^{16}$ cm⁻³ at T=300K. Determine the theoretical barrier height, built-in potential barrier and maximum electric field in the Schottky diode for zero applied bias. The work function of tungsten $\phi_m = 4.55 eV$ and electron affinity $\chi = 4.01 eV$.

Ideal junction properties

$$C' = C' = \frac{dQ}{dV_b} |_{V_b = V_0} = \frac{\varepsilon}{W} = \sqrt{\frac{q\varepsilon N_D}{2(V_{bi} + V_R)}}$$

$$E_c$$

$$E_r$$

$$E_v$$

$$\frac{1}{C'^2} = \frac{2(V_{bi} + V_R)}{V_b}$$

$$W = \sqrt{\frac{2\varepsilon(V_{bi} + V_R)}{q} \frac{1}{N_d}} \approx x_n$$

Ideal junction properties

Non-ideal effects on barrier height: charge imaging

$$F = \frac{-e^2}{4\pi\epsilon_s (2x)^2} = -eE$$

When the charge is moving from the infinity to x

$$-\phi(x) = + \int_{x}^{\infty} E \, dx' = + \int_{x}^{\infty} \frac{e}{4\pi\epsilon_{s} \cdot 4(x')^{2}} \, dx' = \frac{-e}{16\pi\epsilon_{s} x}$$

Imaging charges

Non-ideal effects on barrier height: charge imaging

Non-ideal effects on barrier height: charge imaging

Non-ideal effects on barrier height: charge imaging

$$J = J_{sT} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$

$$J_{sT} = A * T^2 \exp\left(\frac{-e\phi_{Bn}}{kT}\right)$$

$$A^* \equiv \frac{4\pi e m_n^* k^2}{h^3}$$

$$J = J_{sT} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$

$$J_{sT} = A * T^2 \exp\left(\frac{-e\phi_{Bn}}{kT}\right)$$

$$A^* \equiv \frac{4\pi e m_n^* k^2}{h^3}$$

$$J_{sT} = A * T^2 \exp\left(\frac{-e\phi_{B0}}{kT}\right) \exp\left(\frac{e\Delta\phi}{kT}\right)$$

$$J = J_{sT} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$

$$J_{sT} = A * T^2 \exp\left(\frac{-e\phi_{Bn}}{kT}\right)$$

$$J_s = \frac{eD_n n_{po}}{L_n} + \frac{eD_p p_{no}}{L_p}$$

Outline

- 9.1 The Schottky barrier diode
- 9.2 Metal-semiconductor Ohmic contacts

Ideal Nonrectifying Barrier

Ideal Nonrectifying Barrier

<u>Ideal Nonrectifying Barrier</u>

Tunneling Barrier

The tunneling current has the form

$$J_t \propto \exp\left(\frac{-e\phi_{Bn}}{E_{oo}}\right)$$

where

$$E_{oo} = \frac{e\hbar}{2} \sqrt{\frac{N_d}{\epsilon_s m_n^*}}$$

The tunneling current increases exponentially with doping concentration.

Silicide alloy

Nickel silicide, NiSi

<u>Titanium silicide</u>, TiSi₂

Specific contact resistance

$$R_c = \left. \left(\frac{\partial J}{\partial V} \right)^{-1} \right|_{V=0} \qquad \Omega\text{-cm}^2$$

$$J_n = A * T^2 \exp\left(\frac{-e\phi_{Bn}}{kT}\right) \left[\exp\left(\frac{eV}{kT}\right) - 1\right] \quad \stackrel{\stackrel{\bullet}{\text{g}}}{=} \quad ^4$$

 $R_c = \frac{\left(\frac{kT}{e}\right) \exp\left(\frac{+e\phi_{Bn}}{kT}\right)}{\frac{k^2T^2}{2}}$

