Exercise 1

JavaScript: x => xLambda Calculus: λx.x

Exercise 2

λx.x

Sub x = a:

λa.a

Therefore, answer is **b) λa.a**

2. **λxy.yx**

$$= \lambda x(\lambda y.yx)$$

Sub
$$x = a$$
, $y = b$:

 $\lambda a(\lambda b.ba)$

Therefore, answer is **b)** λ**a**(λ**b.ba)**

3. **λxy.xz**

Sub
$$x = m$$
, $y = n$:

λmn.mz

Therefore, answer is **b) λmn.mz**

Exercise 3

1. **(λx.x)y**

$$= x [x := y]$$

$$= y$$

2. **λx.xx**

This is already the normal form

3. **(λz.zz)(λy.yy)**

$$= zz [z := (\lambda y.yy)]$$

$$= (\lambda y.yy)(\lambda y.yy)$$

$$=$$
 $yy [y := (\lambda y.yy)]$

$$= (\lambda y.yy)(\lambda y.yy)$$

= ...

This will continue infinitely.

Therefore, this is a divergence.

4. (λx.xx)y

$$= xx [x := y]$$

$$= yy$$

Exercise 4

1. **(λy.zy)a**

$$= zy [y := a] = za$$

2. **(λx.x)(λx.x)**

$$= x [x := \lambda x.x] = \lambda x.x$$

3. **(λx.xy)(λx.xx)**

$$= xy [x := \lambda x.xx] = (\lambda x.xx)y$$

$$= xx [x := y] = yy$$

- 4. (λz.z)(λa.aa)(λz.zb)
 - = $((\lambda z.z)(\lambda a.aa))(\lambda z.zb)$
 - $= (z [z := \lambda a.aa])(\lambda z.zb)$
 - $= (\lambda a.aa)(\lambda z.zb)$
 - = aa [a := λ z.zb]
 - $= (\lambda z.zb)(\lambda z.zb)$
 - $= zb [z := \lambda z.zb]$
 - $= (\lambda z.zb)b$
 - = zb [z := b]
 - = bb

Exercise 5

- 1. **λx.zx**
 - = z
- 2. **λx.xz**

This expression cannot be simplified further

- 3. **(λx.bx)(λy.ay)**
 - = ba

Exercise 6

1. λx.xxx

This lambda expression takes in a parameter x and only uses x in its output. Therefore, there are no free variables. Hence, it is a combinator.

2. **λxy.zx**

Since z is not a parameter but is used in the output, there is a free variable. Therefore, the expression is not a combinator.

3. **λxyz.xy(zx)**

This lambda expression takes in parameters x, y and z and only uses all x, y and z in its output. Therefore, there are no free variables. Hence, it is a combinator.

4. λ**xyz.xy(zxy)**

This lambda expression takes in parameters x, y and z and only uses all x, y and z in its output. Therefore, there are no free variables. Hence, it is a combinator.

Exercise 7

 $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ $Y g = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))(g)$ $= (\lambda x.f(xx))(\lambda x.f(xx)) [f := g]$ $= (\lambda x.g(xx))(\lambda x.g(xx))$ $= g(xx) [x := \lambda x.g(xx)]$ $= g((\lambda x.g(xx))(\lambda x.g(xx)))$ $= g((\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))g)$ = g(Y g)

Exercise 8

TRUE = $\lambda xy.x$ FALSE = $\lambda xy.y$ IF = $\lambda btf. btf$ AND = $\lambda xy. IF x y FALSE$ OR = $\lambda xy. IF x TRUE y$ NOT = $\lambda x. IF x FALSE TRUE$

1. NOT FALSE

- = $(\lambda x. IF x FALSE TRUE)(FALSE)$
- = IF x FALSE TRUE [x := FALSE]
- = IF FALSE FALSE TRUE
- = $(\lambda btf. b t f)(FALSE FALSE TRUE)$
- = b t f [b := FALSE, t := FALSE, f := TRUE]
- = FALSE FALSE TRUE
- = $(\lambda xy.y)$ (FALSE TRUE)
- = y [x := FALSE, y := TRUE]
- = TRUE

2. **IF (OR TRUE FALSE)**

- $= \lambda btf. b t f (OR TRUE FALSE)$
- = b t f (b := OR, t := TRUE, f := FALSE)
- = OR TRUE FALSE
- = λxy . IF x TRUE y (TRUE FALSE)
- = IF x TRUE y (x := TRUE, y := FALSE)
- = IF TRUE TRUE FALSE
- $= \lambda btf. b t f (TRUE TRUE FALSE)$
- = b t f (b := TRUE, t := TRUE, f := FALSE)
- = TRUE TRUE FALSE
- $= \lambda xy.x$ (TRUE FALSE)
- = x [x := TRUE, y := FALSE]
- = TRUE

3. IF (AND TRUE TRUE)

- = λ btf. b t f (AND TRUE TRUE)
- = b t f (b := AND, t := TRUE, f := TRUE)
- = AND TRUE TRUE
- = λxy . IF x y FALSE (TRUE TRUE)
- $= IF \times y FALSE (x := TRUE, y := TRUE)$
- = IF TRUE TRUE FALSE
- = λ btf. b t f (TRUE TRUE FALSE)
- = b t f (b := TRUE, t := TRUE, f := FALSE)
- = TRUE TRUE FALSE
- $= \lambda xy.x$ (TRUE FALSE)
- = x [x := TRUE, y := FALSE]
- = TRUE