智科专业本科生课程《智能机器人技术》

第4章 机器人位置级正运动学

彭键清 助理教授、硕导 中山大学智能工程学院

邮箱: pengjq7@mail.sysu.edu.cn

办公室: 工学园1栋505

2023年04月01日

刚体状态及运动描述-知识小结

	状态变量 (位移)	速度变量		加速度	误差矢量		控制变量	三轴特点
平移	位置矢量 <i>p</i>	线速度	$v = \dot{p}$	<i>i</i> v	\boldsymbol{e}_p	$\boldsymbol{e}_p = \boldsymbol{p}_d - \boldsymbol{p}_c$	三轴力 f_c $f_c = K_{pp}e_p$ $+K_{pi}\int e_p dt + K_{pd}\dot{e}_p$	三 <mark>轴解耦</mark> 单轴可以 单独考虑
旋转	姿态矩阵 R	角速度 <i>ω</i>	$\boldsymbol{\omega}^{\times} = \dot{\boldsymbol{R}} \boldsymbol{R}^{\mathrm{T}}$	ώ	\boldsymbol{e}_{o}	$oldsymbol{\delta_R} = oldsymbol{R}_d oldsymbol{R}_c^{\mathrm{T}} \ oldsymbol{e}_o = ig(oldsymbol{\delta_R}ig)_E$	$\boldsymbol{\tau}_{c} = \boldsymbol{K}_{op} \boldsymbol{e}_{o}$ $+ \boldsymbol{K}_{oi} \int \boldsymbol{e}_{o} dt + \boldsymbol{K}_{od} \dot{\boldsymbol{e}}_{o}$	<mark>三轴耦合</mark> 三轴需要 同时考虑
	姿态角		$\boldsymbol{\omega} = \boldsymbol{J}_{Euler} \dot{\boldsymbol{\Psi}}$			$oldsymbol{e}_o = oldsymbol{J}_{Euler} \Delta oldsymbol{\Psi}$		
	轴-角(k , <i>ø</i>)		$\omega = k\dot{\phi}$			$e_o = kd_\phi$		
	单位四元数 $oldsymbol{arrho}$		$\omega = 2M \left(\mathbf{Q}^* \right)^{\dagger} \dot{\mathbf{Q}}$			$e_o = 2\delta_{\varepsilon}$		

第4章 机器人位置级正运动学

- 1 机器人运动链及其状态描述
- 2 机器人运动学基本概念
- 3 机器人运动学建模的D-H法
- 4 典型机器人正运动学方程
- 5 机器人工作空间的分析

4.1.1 作业系统主要坐标系

■ 主要坐标系

- (1) 世界坐标系
- (2) 基坐标系
- (3) 末端效应器坐标系
- (4) 目标坐标系

4.1.2 机器人运动链的组成

- n自由度串联机器人运动链的组成
 - ▶ n+1个杆件 连杆0~连杆n,其中连杆0 为基座、连杆n为末端
 - ▶ n个关节 编号为关节1-关节n
 - ▶ 连接关系连杆(*i*-1)通过关节*i*与连杆*i*相连

4.1.3 运动及力的传递过程

■ 机器人作业的实现过程

- 作业工具在末端:执行期望的路径,考虑末端的位置和姿态
- 运动控制在关节: 电机安装在关节,通过控制关节运动,带动连杆进一步实现对末端位置和姿态的控制

4.1.3 运动及力的传递过程

■ 运动及力的传递

- > 不同物体之间的状态传递: 关节-连杆-末端
- ➤ 不同维度状态变量的传递: 关节(n)-连杆(n+1)-末端(6)
- ▶ 四类状态变量的传递: 位置、速度、加速度、力/力矩

4.1.4 关节状态的描述

◆ 关节状态变量(关节位置)

- 旋转关节: 旋转角度 θ_i
- ▶ 移动关节: 平移位移d_i

用变量 q_i 统一表示为:

$$q_i = \begin{cases} \theta_i, & \text{revolute joint} \\ d_i, & \text{translational joint} \end{cases}$$

则关节位置:

$$\boldsymbol{q} = [q_1, q_2, \cdots q_n]^{\mathrm{T}}$$

4.1.4 关节状态的描述

◆ 关节速度

$$\dot{\boldsymbol{q}} = \begin{bmatrix} \dot{q}_1, & \dot{q}_2, & \cdots & \dot{q}_n \end{bmatrix}^{\mathrm{T}}$$

◆ 关节加速度

$$\ddot{\boldsymbol{q}} = \begin{bmatrix} \ddot{q}_1, & \ddot{q}_2, & \cdots & \ddot{q}_n \end{bmatrix}^{\mathrm{T}} \in \mathfrak{R}^n$$

◆ 关节驱动力/力矩

$$\boldsymbol{\tau} = \begin{bmatrix} \tau_1, & \tau_2, & \cdots & \tau_n \end{bmatrix}^{\mathrm{T}} \in \mathfrak{R}^n$$

4.1.5 末端状态的描述

◆ 末端位姿

末端的位置、姿态分别表示为:

$$\boldsymbol{p}_e = \begin{bmatrix} x_e, & y_e, & z_e \end{bmatrix}^{\mathrm{T}}, \quad \boldsymbol{\Psi}_e = \begin{bmatrix} \alpha_e, & \beta_e, & \gamma_e \end{bmatrix}^{\mathrm{T}}$$

组合一起后,表示为:

$$\boldsymbol{X}_{e} = \begin{bmatrix} x_{e}, & y_{e}, & z_{e}, & \alpha_{e}, & \beta_{e}, & \gamma_{e} \end{bmatrix}^{T}$$

◆ 末端速度

$$\boldsymbol{v}_{e} = \begin{bmatrix} v_{ex} & v_{ey} & v_{ez} \end{bmatrix}^{\mathrm{T}} = \dot{\boldsymbol{p}}_{e}$$

$$\boldsymbol{\omega}_{e} = \begin{bmatrix} \omega_{ex} & \omega_{ey} & \omega_{ez} \end{bmatrix}^{\mathrm{T}} = \boldsymbol{J}_{Euler} \dot{\boldsymbol{\Psi}}_{e}$$

组合一起后,表示为:
$$\dot{\boldsymbol{x}}_{e} = \begin{bmatrix} \boldsymbol{v}_{e}^{\mathrm{T}}, \boldsymbol{\omega}_{e}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} v_{ex}, v_{ey}, v_{ez}, \omega_{ex}, \omega_{ey}, \omega_{ez} \end{bmatrix}^{\mathrm{T}} \in \boldsymbol{R}^{6}$$

注意区分 X_e, \dot{x}_e 的大小写,含义不同

4.1.5 末端状态的描述

◆ 末端加速度

$$\ddot{\boldsymbol{x}}_{e} = \begin{bmatrix} \dot{\boldsymbol{v}}_{e}^{\mathrm{T}}, \dot{\boldsymbol{\omega}}_{e}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} \dot{v}_{ex}, & \dot{v}_{ey}, & \dot{v}_{ez}, & \dot{\omega}_{ex}, & \dot{\omega}_{ey}, & \dot{\omega}_{ez} \end{bmatrix}^{\mathrm{T}} \in \Re^{6}$$

◆ 末端操作力/力矩

$$oldsymbol{F}_e = \begin{bmatrix} oldsymbol{f}_e^{\mathrm{T}}, & oldsymbol{m}_e^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} f_{ex}, & f_{ey}, & f_{ez}, & m_{ex}, & m_{ey}, & m_{ez} \end{bmatrix}^{\mathrm{T}} \in \mathfrak{R}^6$$

第4章 机器人位置级正运动学

- 1 机器人运动链及其状态描述
- 2 机器人运动学基本概念
- 3 机器人运动学建模的D-H法
- 4 典型机器人正运动学方程
- 5 机器人工作空间的分析

4.2.1 机器人状态空间

口 关节空间 (位形空间、臂型空间)

由机器人关节变量(电机位置通过减速机构后的变量)所有可能的值组成的集合称为关节空间,也可称为位形空间(Configuration Space)或臂型空间

$$S_{\mathbf{J}} = \left\{ \boldsymbol{q} = \left[q_{1}, \dots, q_{n} \right]^{T} : q_{i} \in \left[q_{i_{\min}}, q_{i_{\max}} \right] \right\} \subset \mathbf{R}^{n}$$

口 驱动空间

由作为驱动源的电机位置变量组成的集合 称为驱动空间 (未通过减速机构)

对于直接驱动(无减速器环节)的情况, 驱动空间=关节空间

4.2.1 机器人状态空间

口操作空间

机器人所有臂型对应的末端执行器所有位姿(包括位置和姿态)组成的集合,称为操作空间(Operational Space)

$$S_{\mathrm{T}} = \left\{ \boldsymbol{X}_{e} = f\left(\boldsymbol{q}\right) : \boldsymbol{q} \in S_{J} \right\} \subset \mathbf{R}^{6}$$

口工作空间 (任务空间)

机器人所有臂型对应的末端执行器所有位置(一般只强调位置)组成的集合,称为工作空间,或任务空间。一般又分为可达工作空间(Reachable Workspace)、灵巧工作空间(Dexterous Workspace)

$$S_{W} = \left\{ \boldsymbol{P}_{e} = f_{p}\left(\boldsymbol{q}\right) : \boldsymbol{q} \in S_{J} \right\} \subset \mathbf{R}^{3}$$

可达工作空间: 最大工作空间范围, 不考虑姿态是否满足条件

灵巧工作空间: 以任何姿态均可达到的工作空间范围

4.2.1 机器人状态空间

口不同空间中的状态变量形式

状态类型	关节空间	操作空间		
运动状态	关节位置q、速度q、 加速度q	末端位姿 X_e 、速度 \dot{x}_e 、加速度 \ddot{x}_e		
作用力	关节力/力矩 $\mathbf{\tau} = \begin{bmatrix} \tau_1, & \tau_2, & \dots, & \tau_n \end{bmatrix}^T$	末端对环境的操作力/力矩 (\pmb{f}_e, \pmb{m}_e)		

4.2.2 机器人学基本理论的内涵

口机器人运动学与动力学的内涵

机器人运动学、动力学、静力学对应的状态之间的关系

4.2.3 机器人运动学问题

- ▶ 运动学正问题:根据关节状态,确定机械臂末端状态
- 运动学逆问题:根据机械臂末端状态,确定关节状态

包括位置级、速度级和加速度级三个层次

4.2.3 机器人位置级运动学问题

■ 位置级正运动学

根据关节位置计算机械臂末端位姿

$$X_e = \text{fkine}(q)$$

上式中, fkine是forwor Kinematics (正运动学) 的简写

■ 位置级逆运动学

根据机械臂末端位姿计算关节位置

$$q = ikine(X_e)$$

上式中, ikine是inverse Kinematics (逆运动学)的简写

■ 平面2R机械臂正运动学

- > 状态描述
 - ◆ 关节状态: [θ₁, θ₂]^T
 - 末端位置: [x_e, y_e]^T
- > 根据关节角计算末端位置

$$\begin{cases} x_e = l_1 \cos \theta_1 + l_2 \cos \left(\theta_1 + \theta_2\right) \\ y_e = l_1 \sin \theta_1 + l_2 \sin \left(\theta_1 + \theta_2\right) \end{cases}$$

上式即为平面2R机械臂的正运动 学方程。

◆ 正运动学方程的矩阵形式

$$\begin{bmatrix} x_e \\ y_e \end{bmatrix} = \begin{bmatrix} l_1 c_1 + l_2 c_{12} \\ l_1 s_1 + l_2 s_{12} \end{bmatrix}$$

其中:

$$\begin{cases} c_1 = \cos \theta_1, & c_{12} = \cos \left(\theta_1 + \theta_2\right) \\ s_1 = \sin \theta_1, & s_{12} = \sin \left(\theta_1 + \theta_2\right) \end{cases}$$

正运动学方程可简单表示为:

$$\boldsymbol{p}_e = \text{fkine}(\theta_1, \theta_2)$$

■ 平面2R机械臂逆运动学

问题:已知末端位置 $[x_e, y_e]^T$,求关节角 $[\theta_1, \theta_2]^T$

将正运动学方程中两个式子的左右两边平方后相加(也可采用几何法,根据余弦定理)可得

$$x_e^2 + y_e^2 = l_1^2 + l_2^2 + 2l_1l_2c_2$$

 \blacktriangleright 若 $\left| \frac{x_e^2 + y_e^2 - l_1^2 - l_2^2}{2l_1 l_2} \right| \le 1$,可解出

$$\theta_2 = \pm a\cos\left(\frac{x_e^2 + y_e^2 - l_1^2 - l_2^2}{2l_1 l_2}\right)$$

- 平面2R机械臂逆运动学
 - ▶ 进一步可得:

$$\theta_{1} = \operatorname{atan2} \left[-l_{2} s_{2} x_{e} + \left(l_{1} + l_{2} c_{2} \right) y_{e}, \right.$$

$$\left(l_{1} + l_{2} c_{2} \right) x_{e} + l_{2} s_{2} y_{e} \right]$$

可见,对于2R的逆运动学,有两组解,即同一个末端位置对应2组关节角(臂型)

◆机器人自由度

▶ 结构方面: <u>关节自由度数</u>

所有关节自由度的总和,称为机器人关节自由度(或轴数),用n表示,实际为关节空间的维数。

▶ 末端运动能力: 末端自由度

末端平动、转动自由度总和称为末端自由度数,实际为任务空间的维数,用m表示。

▶ 任务所需末端运动能力: 任务自由度 完成具体任务要求末端具有的平动、转动自 由度的总和, 称为任务自由度数, 用r表示, 可 知r≤m。

◆ 机器人冗余性问题

> 少自由度机器人(或欠自由度)

机器人关节自由度数小于任务自由度数,即n < r。

> 全自由度机器人

机器人关节自由度数等于任务自由度数,即n=r。

▶ 冗余自由度机器人(或冗余机器人) 机器人关节自由度数大于任务自由度 数,即*n>r*。

◆ 平面冗余与非冗余

问题: 平面2R、平面3R、平面4R, 何时冗余?

- > 末端状态
 - 末端位置(2维): [x_e, y_e]^T
 - 末端姿态(1维): ψ
- > 关节状态
 - 平面2R: $[\theta_1, \theta_2]^T$
 - 平面3R: $[\theta_1, \theta_2, \theta_3]^T$
 - 平面4R: $[\theta_1, \theta_2, \theta_3, \theta_4]^T$

◆ 平面冗余与非冗余

- \rightarrow 若对末端同时进行定位、定姿(r=3)
 - 平面2R (n=2): 欠自由度
 - 平面3R (n=3): 全自由度
 - 平面4R (n=4): 冗余自由度
- \rightarrow 若对末端仅进行定位(r=2)
 - 平面2R (n=2): 全自由度
 - 平面3R (n=3): 冗余自由度
 - 平面4R (n=4): 冗余自由度

◆空间冗余与非冗余

- > 末端状态
 - 末端位置(3维)
 - 末端姿态(3维)
- > 关节状态
 - 空间n-R机械臂(n维):

$$[\theta_1, \ldots, \theta_n]^T$$

◆空间冗余与非冗余

- \rightarrow 若对末端同时进行定位、定姿(r=6)
 - 空间3R (n=3): 欠自由度
 - 空间4R (n=4): 欠自由度
 - 空间6R (n=6): 全自由度
 - 空间7R (n=7): 冗余自由度
- ➤ 若对末端仅进行定位/定姿(r=3)
 - 空间3R (n=3): 全自由度
 - 空间4R (n=4): 冗余自由度
 - 空间6R (n=6): 冗余自由度
 - 空间7R (n=7): 冗余自由度

第4章 机器人位置级正运动学

- 机器人运动链及其状态描述
- 2 机器人运动学基本概念
- 3 机器人运动学建模的D-H法
- 4 典型机器人正运动学方程
- 5 机器人工作空间的分析

4.3.1 运动学建模的关键

◆ 末端位姿的确定问题

机器人由n+1个杆件、n个关节组成:

- > 末端位姿由各杆件的位姿决定
- > 各杆件的位姿由关节位置决定

关键:为每个杆件建立坐标系,得到 其位姿与关节位置的关系,进而得到 末端位姿与所有关节位置的关系。

问题:完整描述相邻坐标系间的位姿需要6个变量,对于n+1个杆件而言,如何简单、有效描述坐标系间的关系?

4.3.1 运动学建模的关键

◆ 关节运动的传递特性

关节运动传递的两个重要因素:

- ▶ 关节轴──运动的方向
- ▶ 转动半径──垂直于关节轴

简单有效描述的思路: 充分利用上述 两个条件来建立杆件坐标系,不影响 传递特性却可以减少参数的数量。

结果: 仅需4个参数可描述杆件间的坐标关系。需要指出的是,此时的坐标系是具有一定特点(满足2个约束条件)的坐标系

4.3.2 连杆的参数化表示

◆ 连杆自身的参数

连杆的作用: 关节*i*和关节*i*+1之间

的连接,对应两个关节轴

连杆自身的参数包括2个:

▶ **连杆长度** *a_i*: 相连两轴公垂线的长度

 \rightarrow **轴扭转角** α_i : 相连两轴的夹角

4.3.2 连杆的参数化表示

◆ 连杆之间的参数

连杆之间的参数包括2个:

- ightharpoonup **连杆间距** d_i : 关节轴上两个 垂点间的距离
- \triangleright **连杆夹角** θ_i : 相连等效直杆 的夹角

4.3.2 连杆的参数化表示

◆ 连杆4参数小结

连杆自身的参数	连杆长度	a_i	连杆 <i>i</i> 等效直杆的长度或连杆 <i>i</i> 相邻两个关节轴公垂线 <i>l_i</i> 的长度		
(基于连杆i定义)	轴扭转角	$lpha_i$	连杆 i 相邻两个关节轴(即 ξ_i 和 ξ_{i+1})之间的夹角		
相邻连杆的参数	连杆间距	d_{i}	与关节 i 相连的两相邻等效直杆(即 l_{i-1} 和 l_i) 之间的距离		
(基于关节i定义)	连杆夹角	$ heta_i$	与关节 i 相连的两相邻等效直杆(即 l_{i-1} 和 l_i) 之间的夹角		

4.3.3 连杆坐标系定义

◆ 连杆坐标系三轴的确定

 \rightarrow 轴1: 关节轴 (ξ_i 或 ξ_{i+1})

➤ 轴2: 轴间公垂线l_i

▶ 轴3: 右手定则确定

 \triangleright 原点: 轴上的垂点 $(C_i \vec{\mathbf{y}} D_i)$

◆ 建立方法

回顾: 连杆i连接关节i和关节(i+1)

①将{i}系原点建在关节(i+1)轴上 🛶 经典D-H法

②将 $\{i\}$ 系原点建在关节i轴上 \longrightarrow 改造的D-H法(MDH)

注意: 不管D-H法还是MDH法, 坐标系 $\{i\}$ 都与连杆i固连

4.3.3 连杆坐标系定义

◆经典D-H法

Jaques Denavit和Richard S. Hartenberg于1957提出,用于建立各连杆坐标系的规则,特点是z_i轴即为关节(i+1)轴。为经典D-H法。

◆ 改造的D-H法(MDH)

由于D-H法定义的z轴的编号与对应关节的编号不一致,后有学者对该规则进行了修改,规定 z_i 轴即为关节i轴,修改后的方法称为**MDH法**(Modified D-H)。

本课程中,在不做特别说明时,均采用经典D-H法

◆ 中间杆件 i (i =1~n-1)的D-H坐标系定义

①相邻轴异面的情况

- *z_i*: 关节*i*+1轴线
- x_i : 公垂线 l_i , 指向 $C_i \rightarrow D_i$
- y_i 根据右手定则建立
- o_i: 公垂点D_i

◆ 中间杆件 i (i =1~n-1)的D-H坐标系定义

②相邻轴平行的情况

● *z_i*: 关节*i*+1轴

● o_i: 公垂点C_{i+1}

● x_i : 过 o_i 的公垂线 l_i 共线

● y_i 根据右手定则建立

◆ 中间杆件 i ($i=1\sim n-1$)的D-H坐标系定义

③相邻轴相交的情况

- *z_i*: 关节*i*+1轴,运动正向
- x_i : 两轴所在面的法向量,即 $x_i = \pm (z_{i-1} \times z_i)$
- y_i 根据右手定则建立
- o_i : 两轴的交点

◆基座坐标系 (i =0)的定义

基座仅与关节1相连,故只要求 z_0 轴与 关节1的轴线重合即可,而对 x_0 、 o_0 可任意

● z₀: 关节1轴

● *x*₀: 可任意

● o_0 : 可任意

● y₀, 根据右手定则建立

实际中可结合工作场地描述的需要。

◆末端坐标系 (i =n)的定义

末端仅与关节n相连,不存在节n+1关节轴,故 z_n 、 o_n 可以任意; 但 x_n 必须与前一个关节轴垂直(为符 合公垂线的规则)

- *x_n*: 与*z_{n-1}*垂直(多种可能)
- z_n : 可任意(一般与 z_{n-1} 指向相同)
- *o_n*: 可任意
- y_n. 根据右手定则建立

◆末端坐标系 (*i* =*n*)的定义

为了体现末端杆件的长度,原 点置于末端点、 z_n 与 z_{n-1} 指向相同。

按下面两种情况确定 x_n :

- ①当2,1.1轴沿臂展方向时
 - x_n轴垂直于臂展方向
- ②当 z_{n-1} 轴垂直于臂展方向时
 - x_n轴沿臂展方向

◆构建简化运动链

将所有关节轴及公垂线描述出来,得到简化运动链

确定:

- > 关节轴 ξ_i
- > 公垂线(等效直杆) l_i
- \triangleright 公垂点为 C_i 和 D_i

- ◆建立基座坐标系 $\{x_0y_0z_0\}$
 - \rightarrow 以基座上感兴趣的位置为 o_0 、关节1轴为 z_0
 - $> x_0$ 轴和 y_0 轴与 z_0 轴垂直,方向任选。

◆建立中间杆件的坐标系 $\{x_iy_iz_i\}$ $(i=1\sim(n-1))$

- ▶ z_i: 关节i+1轴线
- $> x_i$: 若 z_i 和 z_{i-1} 异面或平行,为公垂线 l_i 若相交,则以两轴所在面法向量为 x_i ,即 x_i = $\pm (z_{i-1} \times z_i)$
- $> y_{i}$ 根据右手定则建立

- ◆建立末端坐标系 $\{x_ny_nz_n\}$
 - \rightarrow 以末端感兴趣的位置为 o_n 、 z_{n-1} 为 z_n
 - \rightarrow 按下面两种情况确定 x_n :
 - 当 z_{n-1} 轴沿臂展方向时, x_n 轴垂直于臂展方向
 - 当 z_{n-1} 轴垂直于臂展方向时, x_n 轴沿臂展方向

当z_{n-1}轴沿臂展方向时

当2,11轴垂直于臂展方向时

◆ D-H参数表示 (上述4个连杆参数)

- $> a_i : M_{z_{i-1}}$ 轴和 x_i 轴的交点到第i坐标系原点沿 x_i 轴的偏置距离
- $> \alpha_i : 统x_i$ 轴由 z_{i-1} 轴转向 z_i 轴的偏角
- $> d_i : 从第(i-1) 坐标系的原点到<math>z_{i-1}$ 轴和 x_i 轴的交点沿 z_{i-1} 轴的距离

旋转关节, θ_i 为变量,其余常数 平移关节, d_i 为变量,其余常数

◆相邻连杆坐标系间的关系

由此,可知坐标系 $\{i-1\}$ 经过下述变换后与坐标系 $\{i\}$ 重合:

- ① 绕 z_{i-1} 旋转角 θ_i . 则 x_{i-1} 与 x_i 指向相同 \Longrightarrow T_1 = Rot (z, θ_i)
- ② 沿 z_{i-1} 平移距离 d_i

- $\Longrightarrow T_2 = \text{Trans}(0,0,d_i)$
- \longrightarrow T_3 = Trans $(a_i,0,0)$
- ④ 绕 x_i 旋转角 α_i 则 z_{i-1} 与 z_i 重合
- $\Longrightarrow T_4 = \operatorname{Rot}(\mathbf{x}, \alpha_i)$

◆相邻连杆坐标系间的位姿关系——齐次矩阵表示

根据上面的旋转关系,有:

$$\begin{aligned}
& = \mathbf{T}_{1}\mathbf{T}_{2}\mathbf{T}_{3}\mathbf{T}_{4} = \overline{\text{Rot}}(z, \theta_{i}) \overline{\text{Trans}}(0, 0, d_{i}) \overline{\text{Trans}}(a_{i}, 0, 0) \overline{\text{Rot}}(x, \alpha_{i}) \\
& = \begin{bmatrix} c \theta_{i} & -s \theta_{i} & 0 & 0 \\ s \theta_{i} & c \theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c \alpha_{i} & -s \alpha_{i} & 0 \\ 0 & s \alpha_{i} & c \alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} c \theta_i & -s \theta_i c \alpha_i & s \theta_i s \alpha_i & a_i c \theta_i \\ s \theta_i & c \theta_i c \alpha_i & -c \theta_i s \alpha_i & a_i s \theta_i \\ 0 & s \alpha_i & c \alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

◆相邻连杆坐标系间的位姿关系——齐次矩阵表示

$$\mathbf{T}_{i} = \begin{bmatrix} c \theta_{i} & -s \theta_{i} c \alpha_{i} & s \theta_{i} s \alpha_{i} & a_{i} c \theta_{i} \\ s \theta_{i} & c \theta_{i} c \alpha_{i} & -c \theta_{i} s \alpha_{i} & a_{i} s \theta_{i} \\ 0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ 则从 {0} 系到{n} 系的位姿关系为(正运动学)

$${}^{0}\boldsymbol{T}_{n} = {}^{0}\boldsymbol{T}_{1} {}^{1}\boldsymbol{T}_{2} \cdots {}^{n-1}\boldsymbol{T}_{n} = \operatorname{Fkine}(\boldsymbol{\Theta})$$

> 当给定 0T_n 时,则可解关节角(逆运动学)

$${}^{0}\boldsymbol{T}_{n} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \boldsymbol{\Theta} = \text{Ikine}\begin{pmatrix} {}^{0}\boldsymbol{T}_{n} \end{pmatrix}$$

补充知识: MDH法

◆ 改造后的D-H表示法(MDH): z_i 轴指向关节i的旋转轴

D-H及M-D-H的比较

◆连杆坐标系z轴与关节旋转轴关系

- \rightarrow **DH法:** z_i 轴指向关节(i+1)运动轴
- ➤ MDH法: z_i轴指向关节i的运动轴
- ◆ 相邻连杆坐标系之间的齐次变换矩阵不同

$$\mathbf{DH浅}:$$

$$i^{-1}\mathbf{T}_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

➤ MDH法:

$$egin{aligned} egin{aligned} c heta_i & -s heta_i & 0 & a_i \ s heta_i c_{lpha_i} & c heta_i c lpha_i & -s lpha_i & -d_i s lpha_i \ s heta_i s_{lpha_i} & c heta_i s lpha_i & c lpha_i & d_i c lpha_i \ 0 & 0 & 0 & 1 \end{aligned}$$

第4章 机器人位置级正运动学

- 机器人运动链及其状态描述
- 2 机器人运动学基本概念
- 3 机器人运动学建模的D-H法
- 4 典型机器人正运动学方程
- 5 机器人工作空间的分析

4.4.1 空间3R肘机械臂

◆ D-H坐标系及D-H参数分别如下表和下图所示

D-H参数表

连杆i	$ heta_i$	$lpha_i$	a_i	d_{i}
1	0	-90	0	d_1
2	0	0	a_2	0
3	0	0	a_3	0

3R肘机械臂正运动学方程

》 将D-H参数代入后分别得到:

$$\mathbf{T}_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{T}_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{T}_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & a_{3}c_{3} \\ s_{3} & c_{3} & 0 & a_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

因此,位置级正运动学方程为:

$${}^{0}\boldsymbol{T}_{3} = {}^{0}\boldsymbol{T}_{1} {}^{1}\boldsymbol{T}_{2} {}^{2}\boldsymbol{T}_{3} = \begin{bmatrix} c_{1} c_{23} & -c_{1} s_{23} & -s_{1} & c_{1} (a_{2}c_{2} + a_{3}c_{23}) \\ s_{1} c_{23} & -s_{1}s_{23} & c_{1} & s_{1} (a_{2}c_{2} + a_{3}c_{23}) \\ -s_{23} & -c_{23} & 0 & d_{1} -a_{2}s_{2} -a_{3}s_{23} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

3R肘机械臂正运动学方程

- ◆ 直观验证:特例+观察
 - \rightarrow 特例,将 $\theta_1 = \theta_2 = \theta_3 = 0$ 代入上式,得

$${}^{0}\boldsymbol{T}_{3} = \begin{bmatrix} c_{1} c_{23} & -c_{1} s_{23} & -s_{1} & c_{1} (a_{2}c_{2} + a_{3}c_{23}) \\ s_{1} c_{23} & -s_{1}s_{23} & c_{1} & s_{1} (a_{2}c_{2} + a_{3}c_{23}) \\ -s_{23} & -c_{23} & 0 & d_{1} - a_{2}s_{2} - a_{3}s_{23} \\ \hline 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a_{2} + a_{3} \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_{1} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ 观察, {3}系各轴及原点在{0}系中的表示,可得

3R肘机械臂正运动学方程

◆ 运动特点分析

末端姿态和位置分别表示为:

$${}^{0}\mathbf{R}_{3} = \begin{bmatrix} c_{1} c_{23} & -c_{1} s_{23} & -s_{1} \\ s_{1} c_{23} & -s_{1} s_{23} & c_{1} \\ -s_{23} & -c_{23} & 0 \end{bmatrix}, \quad {}^{0}\mathbf{p}_{3} = \begin{bmatrix} c_{1} (a_{2}c_{2} + a_{3}c_{23}) \\ s_{1} (a_{2}c_{2} + a_{3}c_{23}) \\ d_{1} - a_{2}s_{2} - a_{3}s_{23} \end{bmatrix}$$

①根据R3表达式可分析末端姿态的特点

观察 \mathbf{R}_3 ,各轴指向仅与 θ_1 和($\theta_2+\theta_3$)相关,**仅有两个自由变量**用于确定 姿态,无法实现三轴任意指向,**不适合用于定姿**的作业任务。

②根据P3表达式可分析末端位置的特点

$$p_{3x}^2 + p_{3y}^2 + (p_{3z} - d_1)^2 = a_2^2 + a_3^2 + 2a_2a_3c_3 \le (a_2 + a_3)^2$$

可知,末端位于以点 $(0,0,d_1)$ 为球心、 (a_2+a_3) 为半径的球内。三个角度对末端三轴分量都有独立贡献,适合用于定位的作业任务。

4.4.2 空间3R球腕机械臂

◆ D-H坐标及D-H参数

D-H参数表

连杆i	$ heta_i$	$lpha_i$	a_i	d_{i}
1	0	-90	0	d_1
2	-90	-90	0	0
3	0	0	a_3	d_3

4.4.2 空间3R球腕机械臂

> 各杆件之间的齐次变换矩阵

$${}^{0}\boldsymbol{T}_{1} = \begin{bmatrix} c_{1} & 0 & -s_{1} & 0 \\ s_{1} & 0 & c_{1} & 0 \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}^{1}\boldsymbol{T}_{2} = \begin{bmatrix} c_{2} & 0 & -s_{2} & 0 \\ s_{2} & 0 & c_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}^{2}\boldsymbol{T}_{3} = \begin{bmatrix} c_{3} & -s_{3} & 0 & 0 \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

> 正运动学表达式

$${}^{0}\boldsymbol{T}_{3} = {}^{0}\boldsymbol{T}_{1} {}^{1}\boldsymbol{T}_{2} {}^{2}\boldsymbol{T}_{3} = \begin{bmatrix} s_{1}s_{3} + c_{1}c_{2}c_{3} & s_{1}c_{3} - c_{1}c_{2}s_{3} & -c_{1}s_{2} & -d_{3}c_{1}s_{2} \\ -c_{1}s_{3} + s_{1}c_{2}c_{3} & -c_{1}c_{3} - s_{1}c_{2}s_{3} & -s_{1}s_{2} & -d_{3}s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & -c_{2} & d_{1} - d_{3}c_{2} \\ \hline 0 & 0 & 1 \end{bmatrix}$$

空间3R球腕机械臂

- ◆ 直观验证:特例+观察
 - \rightarrow 特例,将 θ_1 =0、 θ_2 =-90、 θ_3 =0代入上式,得

$${}^{0}\boldsymbol{T}_{3} = \begin{bmatrix} s_{1}s_{3} + c_{1}c_{2}c_{3} & s_{1}c_{3} - c_{1}c_{2}s_{3} & -c_{1}s_{2} & -d_{3}c_{1}s_{2} \\ -c_{1}s_{3} + s_{1}c_{2}c_{3} & -c_{1}c_{3} - s_{1}c_{2}s_{3} & -s_{1}s_{2} & -d_{3}s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & -c_{2} & d_{1} - d_{3}c_{2} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & d_{3} \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & d_{1} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ 观察, {3}系各轴及原点在{0}系中的表示,可得

空间3R球腕机械臂

◆ 运动特点分析

末端姿态和位置分别表示为:

$${}^{0}\mathbf{R}_{3} = \begin{bmatrix} s_{1}s_{3} + c_{1}c_{2}c_{3} & s_{1}c_{3} - c_{1}c_{2}s_{3} & -c_{1}s_{2} \\ -c_{1}s_{3} + s_{1}c_{2}c_{3} & -c_{1}c_{3} - s_{1}c_{2}s_{3} & -s_{1}s_{2} \\ -s_{2}c_{3} & s_{2}s_{3} & -c_{2} \end{bmatrix}, \quad {}^{0}\mathbf{p}_{3} = \begin{bmatrix} -d_{3}c_{1}s_{2} \\ -d_{3}s_{1}s_{2} \\ d_{1} - d_{3}c_{2} \end{bmatrix}$$

①根据R3表达式可分析末端姿态的特点

观察 \mathbf{R}_3 ,各轴指向与 θ_1 、 θ_2 、 θ_3 相关,**三个自由变量都**用于确定姿态,可实现三轴任意指向,**适合用于定姿**的作业任务。

②根据P3表达式可分析末端位置的特点

$$p_{3x}^2 + p_{3y}^2 + (p_{3z} - d_1)^2 = (-d_3c_1s_2)^2 + (-d_3s_1s_2)^2 + (-d_3c_2)^2 = d_3^2$$

可知末端位于以点 $(0,0,d_1)$ 为球心、 d_3 为半径的球面上。再观察表达式,仅 θ_1 、 θ_2 两个角度对末端位置有贡献,不适合用于定位的作业任务。

第4章 机器人位置级正运动学

- 1 机器人运动链及其状态描述
- 2 机器人运动学基本概念
- 3 机器人运动学建模的D-H法
- 4 典型机器人正运动学方程
- 5 机器人工作空间的分析

4.5.1 机器人工作空间分析常用方法

- ◆机器人工作空间的通用计算方法
 - ▶ 几何法 根据几何关系直接绘出(每个关节运动一周扫出一个圆)
 - ▶ 数值法1——全局遍历 遍历关节空间所有数据组合,采用正运动学直接计算,多重循环
 - ▶ 数值法2——随机分布
 基于蒙特卡洛原理,采用正运动学直接计算

4.5.2 几何法

◆ 几何法——平面2R机械臂举例

关节状态:

$$\boldsymbol{\Theta} = \begin{bmatrix} \theta_1, & \theta_2 \end{bmatrix}^{\mathrm{T}}$$

机械臂末端状态: $p_e = [x_e, y_e]^T$

$$\boldsymbol{p}_e = \begin{bmatrix} x_e, & y_e \end{bmatrix}^{\mathrm{T}}$$

约束条件: 关节角范围均

4.5.2 几何法

◆空间3R肘机械臂举例

关节状态:

$$\boldsymbol{\Theta} = \left[\theta_1, \theta_2, \theta_3\right]^{\mathrm{T}}$$

约束条件: 关节角范围均

机械臂末端状态: $p_e = [x_e, y_e, z_e]^T$

$$\boldsymbol{p}_e = \begin{bmatrix} x_e, & y_e, & z_e \end{bmatrix}^{\mathrm{T}}$$

为 $(-\pi, \pi]$

4.5.2 几何法

◆空间3R肘机械臂工作空间分析结果

◆数值法1——全空间遍历计算正运动

遍历关节空间所有数据组合,采用正运动学直接计算,多重循环

```
for q1=-pi: dq: pi
    for q2 = -pi: dq: pi
       for qn = -pi: dq: pi
           Pe = fkine(q1, q2, ..., qn)
        end
    end
  end
```

◆数值法2——蒙特卡罗法

基于蒙特卡洛原理,采用正运动学直接计算

蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

核心公式:

- (1) 对每个关节变量,在其规定的范围内,随机抽取N个值 qi=qimin+ (qimax-qimin)×RAND (N,1) (*i*=1,...,*n*)
- (2) 对所有角度组合,采用循环(多重循环)语句依次将各关节变量值组合代入运动学正解方程

Pe = fkine(q1, q2, ..., qn)

◆ 3R肘机械臂工作空间分析结果

基于蒙特卡洛原理,采用正运动学直接计算

每个关节范围为[-180°, 180°]

每个关节范围为[0°, 180°]

◆3R球腕机械臂工作空间分析结果

基于蒙特卡洛原理,采用正运动学直接计算

每个关节范围为[-180°, 180°]

每个关节范围为[0°, 180°]

谢谢!

附录: 空间6R腕部分离机械臂

▶ D-H坐标系及其参数表

附录: 空间6R腕部分离机械臂

> 正运动学方程

$${}^{0}\boldsymbol{T}_{6} = {}^{0}\boldsymbol{T}_{1} {}^{1}\boldsymbol{T}_{2} \cdots {}^{5}\boldsymbol{T}_{6} = \begin{vmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$n_{x} = -\left[c_{1}s_{23}s_{5} + \left(s_{1}s_{4} - c_{1}c_{23}c_{4}\right)c_{5}\right]c_{6} - \left(s_{1}c_{4} + c_{1}c_{23}s_{4}\right)s_{6}$$

$$n_{y} = -\left[s_{1}s_{23}s_{5} - \left(c_{1}s_{4} + s_{1}c_{23}c_{4}\right)c_{5}\right]c_{6} + \left(c_{1}c_{4} - s_{1}c_{23}s_{4}\right)s_{6}$$

$$n_{z} = -\left(c_{23}s_{5} + s_{23}c_{4}c_{5}\right)c_{6} + s_{23}s_{4}s_{6}$$

$$o_{x} = \left[c_{1}s_{23}s_{5} + \left(s_{1}s_{4} - c_{1}c_{23}c_{4}\right)c_{5}\right]s_{6} - \left(s_{1}c_{4} + c_{1}c_{23}s_{4}\right)c_{6}$$

$$o_{y} = \left[s_{1}s_{23}s_{5} - \left(c_{1}s_{4} + s_{1}c_{23}c_{4}\right)c_{5}\right]s_{6} + \left(c_{1}c_{4} - s_{1}c_{23}s_{4}\right)c_{6}$$

$$o_{z} = \left(c_{23}s_{5} + s_{23}c_{4}c_{5}\right)s_{6} + s_{23}s_{4}c_{6}$$

$$p_{x} = a_{2}c_{1}c_{2} + d_{4}c_{1}s_{23} + d_{6}\left[c_{1}s_{23}c_{5} - \left(s_{1}s_{4} - c_{1}c_{23}c_{4}\right)s_{5}\right]$$

$$a_{x} = c_{1}s_{23}c_{5} - \left(s_{1}s_{4} - c_{1}c_{23}c_{4}\right)s_{5}$$

$$a_{y} = s_{1}s_{23}c_{5} + \left(c_{1}s_{4} + s_{1}c_{23}c_{4}\right)s_{5}$$

$$a_{z} = c_{23}c_{5} - s_{23}c_{4}s_{5}$$

$$p_{z} = a_{2}s_{1}c_{2} + d_{4}s_{1}s_{23} + d_{6}\left[s_{1}s_{23}c_{5} + \left(c_{1}s_{4} + s_{1}c_{23}c_{4}\right)s_{5}\right]$$

$$p_{z} = d_{1} - a_{2}s_{2} + d_{4}c_{23} + d_{6}\left(c_{23}c_{5} - s_{23}c_{4}s_{5}\right)$$

73/71