Texas Instruments TMS 32C5x DSP

Characteristics of TI 'C5x DSPs

TMS320 DEVICES	ON-CHIP MEMORY (16-BIT WORDS)				WO DODTS				
	DARAM		SARAM	ROM	I/O PORTS		POWER SUPPLY	CYCLE TIME	PACKAGE TYPE
	DATA	DATA + PROG	DATA + PROG	PROG	SERIAL	PARALLEL [†]	(V)	(ns)	QFP [‡]
TMS320C50	544	512	9K	2K§	2	64K	5	50/35/25	132 pin
TMS320LC50	544	512	9K	2K§	2	64K	3.3	50/40/25	132 pin
TMS320C51	544	512	1K	8K§	2	64K	5	50/35/25/20	100/132 pin
TMS320LC51	544	512	1K	8K§	2	64K	3.3	50/40/25	100/132 pin
TMS320C52	544	512	-	4K§	1¶	64K	5	50/35/25/20	100 pin
TMS320LC52	544	512	-	4K§	1¶	64K	3.3	50/40/25	100 pin
TMS320C53	544	512	3K	16K§	2	64K	5	50/35/25	132 pin
TMS320LC53	544	512	3K	16K§	2	64K	3.3	50/40/25	132 pin
TMS320C53S	544	512	3K	16K§	2¶	64K	5	50/35/25	100 pin
TMS320LC53S	544	512	3K	16K§	2¶	64K	3.3	50/40/25	100 pin
TMS320LC56	544	512	6K	32K	2#	64K	3.3	35/25	100 pin
TMS320LC57	544	512	6K	32K	2#	64K + HPI	3.3	35/25	128 pin
TMS320C57S	544	512	6K	2K§	2#	64K + HPI	5	50/35/25	144 pin
TMS320LC57S	544	512	6K	2K§	2#	64K + HPIII	3.3	50/35	144 pin

TI 'C5x DSP CPU

Instruction Fetch

Data Processing

Key DSP Instructions

- MAC pma,dma multiply/accumulate $ACC + P \rightarrow ACC$ $pma x dma \rightarrow P$ (repeatable with pma+1)
- MACD pma,dma -multiply/accumulate/delay ACC + P -> ACC pma x dma -> P $dma -> dma +1 \ (move\ data\ for\ delay)$ $(repeatable\ with\ pma +1)$

Other key instructions

- T register used with multiplier
- LT dma/ind : mem -> TREGO
- LTA dma/ind : load T, ACC=ACC+P
- LTD dma/ind: load T, ACC=ACC+P, move data
- LTP dma/ind: load T, P->ACC

Low-Pass Filter

$$H(z) = \frac{Y(z)}{X(z)} = \frac{(b-1)z}{z-b} = \frac{(b-1)}{1-bz^{-1}}$$
 IN Xn,PA0 ;read x(n) ZAP ;A=P=0
 $Y(z) = bz^{-1}Y(z) + (1-b)X(z)$ MAC B,Yn
 $y(n) = by(n-1) + (1-b)x(n)$ MAC C,Xn
 APAC ;A=A+P
 SACHYn ;save LSB
 OUTYn,PA1 ;out y(n)

Finite Impulse Response (FIR) Filter

SACHY

$$H(z) = \frac{Y(z)}{X(z)} = c_0 + c_1 z^{-1} + c_2 z^{-2}$$

$$y(n) = c_0 x(n) + c_1 x(n-1) + c_2 x(n-2)$$

Prog. Mem Data Mem.
C0 X(n)
C1 X(n-1)
C2 X(n-2)

LARP AR3 ;AR3 active pointer

LAR AR3,#X0 ;point to X(n)

ZAP ;A=P=0

MAC C0,*- ;c0*x(n)

MAC C1,*- ;+c1*x(n-1)

MAC C2,*- ;+c2*x(n-2)

APAC ;final A=A+P

;save LSB

PID Controller

$$a(n) = a(n-1) + c_0 e(n) + c_1 e(n-1) + c_2 e(n-2)$$

OUT An, PA1

a(n)=control action e(n) = nth error c0,c1,c2 constants

Prog. Mem Data Mem.
C0 e(n)
C1 e(n-1)
C2 e(n-2)

IN E0,PA0 ;new error e(n) LARP AR3 ;AR3 active pointer LAR AR3,#X0 ; point to e(n-2)ZAP A=P=0MAC c2,*-;c2*e(n-2)MACD c1,*-;+c1*e(n-1), move eMACD c0,* ;+c0*e(n), move e; final A = A + PAPAC SACH An ;save LSB

Basic sum of products

$$Y = \sum_{k=0}^{N} c_k x(k) \qquad \text{LARPAR3} \qquad ; \text{AR3 active pointer} \\ \text{LAR AR3, $\#$X0} \qquad ; \text{point to X0} \\ \text{ZAP} \qquad ; \text{A=P=0} \\ \text{Prog. Mem} \qquad \text{Data Mem.} \qquad \text{RPT $\#$N} \\ \text{C0} \qquad \qquad \text{X(0)} \qquad \text{MAC C0, *+} \qquad ; \text{sum of products} \\ \text{C1} \qquad \qquad \text{X(1)} \qquad \text{APAC} \qquad ; \text{final A=A+P} \\ \text{....} \qquad \qquad \text{SACHY} \qquad ; \text{save LSB} \\ \end{cases}$$

Basic sum of products

$$Y = \sum_{k=0}^{N} x(k) y(k)$$

B0 RAM B1 RAM x(0) y(0) x(1) y(1) x(N) y(N) CNFP ;B0 prog memory

LARP AR3 ;AR3 active pointer

LAR AR3,#Y ;point to y(0)

ZAP ; A=P=0

RPT #N

MAC X0,*+ ;sum of products

APAC ; final A=A+P

SACHY ;save LSB

CNFD ;B0 back to data memory