Mobile Applications for Sensing and Control

Professional Master's Program in Electrical and Computer Engineering

<u>Instructor</u>: **Laura Arjona**

Research Associate UWIN Fellow

Teaching Assistant: Vineetha Thomas

Master's student, ECE

Tips for working remotely

- Do not work from bed
- Do not work from bed
- Do not work from bed
- Have ready your computer/laptop, a <u>microphone</u> and <u>headphones</u>, tools to write notes, a <u>webcam</u> (if you want to share video)
- Lecture is just once a week!! pay attention and make the most of it :D

Remote classes logistics

- Synchronous classes: Thursdays 6-9:30pm (2x 15min breaks)
- All lectures are recorded, and videos will be available after the class (Zoom)
- Join with video is optional

Interacting live in the course

- Have a question within the lecture?
 - a) Just interrupt me and speak out! (preferred)
 - b) "raise your hand" feature in zoom
- Need to talk to me (Laura) after class?
 - We will use breakout rooms.
 Write your name in this shared document, I will meet one by one in a breakout room.

Document link is shared in the general chat

<u>https://docs.google.com/document/d/1Z4WZ17ZtlWnhUMEzhjAh4I2ySjN</u>xtwh9LyIsa57URfg/edit?usp=sharing

— No microphone?: use email or Zoom chat

Providing feedback during lecture

Table Master

Best project award

SafetyBeats

MyAlarm

TravKer

TreatsDispenser

GuitarHero

1615 75th Street Southwest Suite 100 Everett, WA 98203, USA

WEEK	Topics	Assignments	
1 April 2 nd	Introduction My first Android App	Assign. #0 (not-graded)	
2 April 9 th	Android Programming (I)	Assign. #1	
3 April 16 th	Android Programming (II)	Assign. #2	
4 April 23th	Smartphone Sensors	Assign. #3	
5 April 30 th	* TinyML	Assign. #4	
6 May 7 th	Arduino programming (I)	Assign. #5 (a)	
7 May 14 nd	Arduino programming (II) Android-Arduino Interaction	Assign. #5 (b) Final project proposal deadline	
8 May 21 st	Databases/??? Remote data bases, Firebase, Web services		
9 May 28 th	Special topics - Web services - Hybrid Mobile App Frameworks		
10, 11 June 4 th , 11th	Final projects presentation	Final project deadline	

Why Deep Learning?

Classification/Regression

Generate new data

Why Machine Learning?

Why Machine Learning?

Instructor speech

DL generated speech

Evaluation

Weekly Assignments

- Upload to Canvas before Thursday at noon (11:59am)
 - No late assignment accepted without "justification".
- Assignments descriptions will be posted every Thursday after class.
- Upload source code (we will compile and run the code!)
 - we won't grade based on coding style
- For Arduino projects: upload video with demo (+source code)
 - Optional for android-only apps (recommended)

Final Project

Submission deadline: June 4th at 11:59 am

- Individual or Teams (2 or 3 people)
- Proposal submission-> May 14th
- Class presentations on June 4th and June 11th (weeks 10 and 11)
 - Instructions to be posted on Canvas soon
 - ~10 min presentation + up to 5 min questions
 - Live demo mandatory
 - Video recording presentation if non remote attendance justified
 - Presentations conducted in Zoom

Challenges

Small tasks at the end of every lecture.

Will contribute to the corresponding weekly assignment grade.

Getting Help after class

- Help on the assignments/final project/challenges
 - Office hours in Zoom (TA) (Vineetha) 2 days a week

- Canvas
- Piazza
- Zoom meeting with instructor (Laura): upon request
- Email
 - arjonal@cs.washington.edu (Laura-instructor)
 - vthoma@uw.edu (Vineetha TA)

Phantom-Vibration Syndrome

Study shows 2/3 of users report "feeling their phone vibrate when in fact nothing is happening"*

It's an App World!!

US Adults
Average Time per Day

Note: ages 18+; time spent with each device includes all time spent with that device, regardless of multitasking; for example, 1 hour of multitasking on an app while on the mobile web is counted as 1 hour for apps and 1 hour for mobile web

Source: eMarketer, April 2017

225369

It's an App World!!

TV and Mobile Devices: Average Time Spent in the US, 2014-2021

hrs:mins per day among population

2014	2015	2016	2017	2018	2019	2020	2021
■ TV* ■ Mobile devices							

Note: ages 18+; time spent with each medium includes all time spent with that medium, regardless of multitasking; for example, 1 hour of multitasking on desktop/laptop while watching TV is counted as 1 hour for TV and 1 hour for desktop/laptop; *excludes digital

Source: eMarketer, April 2019

T10195 www.eMarketer.com

Pokemon Go trainers on the hunt at Green Lake in Seattle. (GeekWire Photo / John Cook). December 2018

Smartphones beyond recreation

App for ear infection detection

Smartphones beyond recreation

App to help improving ergonomics at work

Sensors: Before and After

Sensor A converter that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument ...

What's inside a smartphone?

Smartphones sensors

- Sensors have been used in cellphones since they were invented ...
 Microphone, number keys, etc
- What made smartphones smart? Touchscreens, accelerometers, gyroscopes, GPS, cameras, etc ...
 Allowed cellphones explode into different markets R.I.P. Garmin, Tomtom, Kodak Intel?
- Instead of carrying around 10 separate devices, now you just need 1

Android supports:

Accelerometer, Ambient Temperature, Gravity, Gyroscope, Light, Linear Acceleration, Magnetic Field, Orientation, Pressure, Proximity, Relative Humidity, Rotation Vector

Lot's of Hardware, so what?

Now that you can collect all this data, how do you use it?

- Application Programming Interfaces (APIs) expose a smartphone's sensors and sensor data to the smartphone programmer (you!)
- The Android Accessory Development Kit (ADK) even provides the ability to add external sensors in a standard way

Smartphone limitations

- Not all sensors are present in all phones
- What about LEDs / NFC /ultrasound /moisture/ other?
- What about actuators, motors?
- May want a remote sensor separate from your phone

Use External sensors with Android

- Single-board microcontroller
- Extend smartphone functionalities (wireless): motors, sensors, actuators, etc

Arduino uno \$17

HUZZAH32 – ESP32 Feather \$20

Raspberry Pi \$35

Connect your phone to Arduino

Connect your phone to Arduino

Brainstorming

Papers discussion + Brainstorming

In groups (20 minutes):

- Groups assigned randomly in a breakout room in Zoom
- Only one team member needs to complete the quiz

1. Read assigned paper and answer these questions

Papers are in *Canvas: Files/In-class-activities/Lecture_1* ->download the one that corresponds to your room's number

Open link from Zoom chat

https://pollev.com/surveys/jQ0WD7CzberG8qkqcQPvX/respond

2. App brainstorming

Open link from Zoom chat:

https://pollev.com/discourses/9sp1zgPuRLMIxJFtCaFph/respond

15min Break

ONE PER WORKING HOUR TO KEEP YOU MOVING

