Qualitative Data

- Many variables are categorical in nature:
 - E.g., gender, race, industry, region, letter grade
 - Variables take on limited number of values, assigning each observation to a "category."
 - In experimental traditions and in R, these variables are called factors.
- Categorical variables may be nominal or ordinal.

Incorporating Qualitative Data

- To put categorical variables into regression model, we typically use indicator variables (**dummy variables**).
 - Value 1 ("true") is used for certain states and 0 ("false") otherwise.
- Example: population model that predicts wage as a function of education, with an indicator variable for female:
 - wage = $\beta_0 + \delta_0$ female + β_1 educ + u
 - For male subject with given value of education, expected wage will be $\beta_0 + \beta_1$ educ.
 - For female subject, expected wage will be $\beta_0 + \delta_0 + \beta_1$ educ.

about:blank Page 1 of 5

Omitting Base Category

- Did not include indicator variables for both male and female
 - $\circ \text{ wage} = \beta_0 + \gamma_0 \text{ male} + \delta_0 \text{ female} + \beta_1 \text{ educ} + u$
 - Wouldn't be able to estimate model because they'd be perfectly collinear
- Must omit one category: the base category
 - Could have chosen male or female, model would be equivalent
 - wage = $\beta_0 + \delta_0$ female + β_1 educ + u
 - wage = $\beta_0 + \gamma_0$ male + β_1 educ + u

Print Slides

7/28/19, 2:13 AM

Omitting Base Category (cont.)

- Could leave both categories in but omit intercept
 - wage = γ_0 male + δ_0 female + β_1 educ + u
 - Harder to test if categories are different
 - Usual formula for R-squared no longer valid

Interpreting Coefficients

Fitted wage equation including female indicator variable:

$$wage = -1.57 - 1.81 female + .572 educ$$
 $(.025) (.26) (.049)$
 $+ .025 exper + .141 tenure$
 $(.012) (.021)$
 $n = 526, R^2 = .364$

 Holding education, experience, and tenure fixed, women earn \$1.81 less per hour than men.

about:blank Page 3 of 5

Comparing Group Means

- We may want to compare mean of a variable for two different groups.
 - Put indicator variable for one category in population model by itself.

$$wage = 7.10 - 2.51 female$$

(.21) (.26)
 $n = 526, R^2 = .116$

- Not holding other factors constant, women earn \$2.51 less than men (i.e., difference between mean wage of men and women is \$2.51).
- t-statistic in this case is test of whether two group means are equal.

Treatment as a Dummy Variable

- Randomly assign subjects to control group and one or more treatment groups.
 - Have control group as base category, dummies for each treatment group.
- Example: clinical trial where subjects are randomly assigned to take new blood pressure medication or placebo
 - Blood pressure = $\beta_0 + \beta_1$ medication + u
 - \circ β_1 represents difference in blood pressure between treatment and control.
 - t-test would test hypothesis that treatment has no effect.

about:blank Page 4 of 5

Ordinal Variables

How do we put ordinal variables into regression model?

- Generally wrong to place ordinal variable directly into population model
 - Would impose linear structure on variable
- Use indicator variables for each category, allowing effect of each one to vary independently
- Example: MBR = $\beta_0 + \beta_1 CR$ + other factors
 - MBR = Municipal bond rate
 - CR = Credit rating from 0 to 4 (0 = worst, 4 = best)

Ordinal Variables (cont.)

- This specification not appropriate—credit rating only contains ordinal information
- Better way to incorporate information is to define dummies:
 - MBR = $\beta_0 + \delta_1 CR_1 + \delta_2 CR_2 + \delta_3 CR_3 + \delta_4 CR_4$ + other factors

about:blank Page 5 of 5