Короткие SL_2 -структуры на алгебрах Ли и лиевских модулях

Стасенко Роман Олегович НИУ ВШЭ, Московский центр фундаментальной и прикладной математики theromestasenko@yandex.ru Секция: Алгебраическая геометрия

Пусть S — произвольная редуктивная алгебраическая группа. Назовем S-структурой на алгебре Ли $\mathfrak g$ гомоморфизм $\Phi: S \to \operatorname{Aut}(\mathfrak g)$. S-структуры ранее излучались различными авторами, в том числе $\mathfrak g$. $\mathfrak g$. В. Винбергом.

В докладе рассматриваются SL_2 -структуры. SL_2 -структуру назовем короткой, если представление Ф группы SL_2 разлагается на неприводимые представления размерностей 1, 2 и 3. Если рассматривать неприводимые представления размерностей только 1 и 3, то получится известная конструкция Титса-Кантора-Кехера, устанавливающая взаимно-однозначное соответствие между простыми йордановыми алгебрами и простыми алгебрами Ли определенного вида.

Аналогично теореме Титса–Кантора–Кехера в случае коротких SL_2 -структур можно установить взаимно-однозначное соответствие между простыми алгебрами Ли с такой структурой и так называемыми простыми симплектическими структурами Ли-Йордана.

Пусть на алгебре Ли $\mathfrak g$ задана SL_2 -структура и отображение $\rho:\mathfrak g\to\mathfrak g\mathfrak l(U)$ — линейное представление. Гомомофизм $\Psi:S\to GL(U)$ называется SL_2 -структурой на лиевском $\mathfrak g$ -модуле U, если

$$\Psi(s)\rho(\xi)u = \rho(\Phi(s)\xi)\Psi(s)u, \quad \forall s \in S, \xi \in \mathfrak{g}, u \in U.$$

Подобная конструкция имеет интересные приложения к теории представлений йордановых алгебр, о которых будет рассказано в докладе. Также в докладе будет представлена полная классификация неприводимых коротких \mathfrak{g} -модулей для простых алгебр Ли.