Introduction to neuroinformatics Passive membrane

Valerio Mante valerio@ini.uzh.ch

Cell membrane

Channels and pumps

Potassium channel

Sodium-potassium pump

Potential as a function of time

Potential as a function of space

Ionic currents and Ohm's law

What about time?

Model neuron:

1. Sphere of membrane

2. Isopotential

I_e = injected current

I_C = capacitive current charges/discharges the membrane

Model neuron:

1. Sphere of membrane

2. Isopotential

I_e = injected current

I_C = capacitive current charges/discharges the membrane

$$I_L = g_L \left(V - E_L \right)$$

Model neuron:

1. Sphere of membrane

2. Isopotential

I_e = injected current

I_C = capacitive current charges/discharges the membrane

$$I_L = g_L \left(V - E_L \right)$$

Model neuron:

1. Sphere of membrane

2. Isopotential

I_e = injected current

I_c = capacitive current charges/discharges the membrane

$$I_L = g_L \left(V - E_L \right)$$

Model neuron:

1. Sphere of membrane

2. Isopotential

I_e = injected current

I_c = capacitive current charges/discharges the membrane

$$I_L = g_L \left(V - E_L \right)$$

The membrane as an electrical circuit

C = capacitance

Ability to store charge

$$I_{e} = I_{L} + I_{C}$$

$$I_{L} = g_{L} (V - E_{L})$$

$$C \frac{dV}{dt} = I_{C}$$

$$V(t) = V_{\infty} + (V(0) - V_{\infty})e^{-\frac{t}{\tau_m}}$$

Potential time-course

Spatial summation

Input resistance

Input resistance

Local differences in input resistance

Temporal summation

Two ionic currents

@ equilibrium: $I_L = I_S$

Two ionic currents

The membrane as an electrical circuit

$$V_{\infty} = \frac{g_L E_L + g_S E_S}{g_L + g_S}$$

$$\tau_m = \frac{C}{g_L + g_S}$$

Two ionic currents

@ equilibrium: $I_L = I_S$

Spatial potential gradients

The cable equation

$$c_{\rm m} \frac{\partial V}{\partial t} = \frac{1}{2ar_{\rm L}} \frac{\partial}{\partial x} \left(a^2 \frac{\partial V}{\partial x} \right) - i_{\rm m} + i_{\rm e}.$$

Infinite cable

Infinite cable

Spatio-temporal response to current pulse

Finite cable

Passive currents in a branching neuron

Rall and Rinzel, 1973

The appropriate level of description

Figure 6.15: A sequence of approximations of the structure of a neuron. The neuron is represented by a variable number of discrete compartments each representing a region that is described by a single membrane potential. The connectors between compartments represent resistive couplings. The simplest description is the single-compartment model furthest to the right. (Neuron diagram from Haberly, 1990.)