

Lessons in this Module

- A. Introduction to Nonlinear Models
- B. Linear-Log Model
- C. Log-Linear Model
- D. Log-Log Model
- E. Polynomial Model

Model A: Linear-Linear Model

	Estimate	S.E.	t Value	Pr>Itl
Intercept	34140	2,491	13.7	<.0001
lotsize	6.599	0.4458	14.8	<.0001

R-Squared	Adjusted R-Squared	
0.2871	0.2858	

- Model A: $price = b_0 + b_1*lotsize$
- As X (lotsize) increases by 1 unit, Y (price) changes by b_1 (6.599) units, holding all other factors constant.

Model A: $price = b_0 + b_1*lotsize$ Assumptions

- We need to check if the assumptions for a linear regression model hold.
- The residuals vs. fitted values plot indicates that Model A has heteroscedasticity (non-constant variance); the QQ-plot suggest that there is non-linearity.
- Hence, we need to start exploring non-linear models.
- We focus on natural log transformations of the variables because they are easier to interpret. Note that in R, log() computes the natural log.

The Various Log Transformations

	Y	log(Y)
X	Model A: Level-level model $Y = b_0 + b_1 X$	
log(x)		

GTx

The Various Log Transformations

	Y	log(Y)
X	Model A: Level-level model $Y = b_0 + b_1^* X$	
log(x)	Model B: Linear-Log Model $Y = b_0 + b_1 * log(X)$	

The Various Log Transformations

	Y	log(Y)
X	Model A: Level-level model $Y = b_0 + b_1^* X$	Model C: Log-linear Model $log(Y) = b_0 + b_1 *X$
log(x)	Model B: Linear-Log Model $Y = b_0 + b_1 * log(X)$	

GTx

The Various Log Transformations

	Y	log(Y)
X	Model A: Level-level model $Y = b_0 + b_1^* X$	Model C: Log-linear Model $log(Y) = b_0 + b_1 *X$
log(x)	Model B: Linear-Log Model $Y = b_0 + b_1^* log(X)$	Model D: Log-Log $log(Y) = b_0 + b_1 * log(X)$

Note:

- The log() function in R computes the natural logarithm.
- If a variable x has some values = 0, then use $\log(x+1)$ transformation.

Model B: Linear-Log Model Independent Variable Transformed

	Estimate	S.E.	t Value	Pr>ltl
Intercept	-250,728	20,184	-12.42	<.0001
Ln_lotsize	37660	2381	15.81	<.0001

R-Squared	Adjusted R-Squared
0.315	0.3137

- Model B: $price = b_0 + b_1*log(lotsize)$
- Create a new variable Ln_lotsize which is the natural log of lotsize
- Run Model B using the Housing dataset
- How would you interpret the coefficient of Ln_lotsize?

Model B: $price = b_0 + b_1*log(lotsize)$

What does the coefficient $b_1 = 37660$ imply?

- A. When lotsize increases by 1 sq foot, price increases (on average) by \$37,660.
- B. When lotsize decreases by 1 sq foot, price increases (on average) by \$37,660.
- C. When lotsize decreases by log(1), price increases (on average) by \$376.60.
- D. When lotsize increases by 1%, price increases (on average) by \$376.60.

What is the correct answer?

D. A one percent increase in the independent variable increases (or decreases) the dependent variable by (coefficient/100) units.

GTx

Interpreting a Linear-Log Model

- Linear-log model (and most other models) needs to be interpreted carefully.
- It does not make much practical sense to increase the "log(lotprice)" by one unit.
- But increasing X by 1 percent is almost equivalent to increasing (natural) log(X) by 0.01 units.
- Hence, a 1 percent increase in X increases (natural) log(X) by .01 and, therefore, changes the Y variable by .01* b_1

Model C: Log-Linear Model Dependent Variable Transformed

	Estimate	S.E.	t Value	Pr>ltl
Intercept	10.58	.03451	306.51	<.0001
lotsize	.00009315	.000006177	15.08	<.0001

R-Squared	Adjusted R-Squared
0.2947	0.2935

- Model C: $log(price) = b_0 + b_1*lotsize$
- Create a new variable Ln_price which is the natural log of price.
- How would you interpret the coefficient of lotsize?

Model C: $log(price) = b_o + b_1*lotsize$

What does the coefficient $b_1 = .00009315$ imply in a log-linear model?

- A. When lotsize increases by .01 sq. ft., price increases by .009315% (on average).
- B. When lotsize increases by 1 sq. ft., price increases by .009315% (on average).
- C. When lotsize increases by 1 sq. ft., price decreases by .009315% (on average).
- D. When lotsize decreases by 1 sq. ft., price increases by .009315% (on average).

What is the correct answer?

B. The dependent variable changes by 100*(coefficient) percent for a one unit increase in the independent variable while all other variables in the model are held constant.

Interpreting the Log-linear Model $log(price) = b_0 + b_1*lotsize$

- Increasing x by one unit will increase (natural) log(y) by b_1 units.
- With x = lotsize, the model $log(price) = b_0 + b_1^*x$ is the same as $y = e^{(b_0 + b_1 x)}$. Hence, $dy/dx = b_1 y$, or $dy/y = b_1^*dx$.
- Multiplying both sides by 100, we get $100*dy/y = 100*b_1*dx$.
- Note that (100*dy/y) is the percentage change in Y.
- If dx = 1, then this one unit change in x leads to a $100*b_1$ percentage change in Y.
- Note: this interpretation works when $b_0 + b_1^*x$ is very small. The accurate percentage change in $Y = (e^{b_1} 1)^*100$ for a one unit change in X.

Model D: Log-Log Model

	Estimate	S.E.	t Value	Pr>ltl
Intercept	6.46853	0.27674	23.37	<.001
lotsize	0.54218	0.03265	16.61	<.001

R-Squared	Adjusted R-Squared
0.3364	0.3352

- Model D: $log(price) = b_0 + b_1 * log(lotsize)$
- The dependent and the independent variables are log transformed
- How do you interpret the coefficient of lotsize?

Model D: Log-Log Model log(price) = b_o + b₁*log(lotsize)

 $b_1 = 0.54218$ implies that

- A. When lotsize increases by 1%, price increases (on average) by 0.54218%.
- B. When lotsize decreases by 1%, price increases (on average) by 0.54218%.
- C. When lotsize increases by 1 sq. ft., price increases (on average) by 0.54218%.
- D. When lotsize decreases by 1 sq. ft., price increases (on average) by 0.54218%.

What is the correct answer?

Answer -- A. The dependent variable changes by b_1 % percent for a one percent increase in the independent variable while all other variables in the model are held constant.

Interpreting the Log-Log Model

- Increasing (natural) log(X) by 0.01 leads to increasing (natural) log(Y) by b₁ *0.01 units.
- Increasing (natural) log(X) by 0.01 is almost equivalent to increasing X by 1 percent, which implies changing Y by b₁ percent.
- In a regression setting, we'd interpret elasticity as the percent change in *Y* (the dependent variable), when *X* (the independent variable) increases by one percent.
- Hence b₁ captures elasticity.

Comparing the Models

	R-Squared	Adjusted R-Squared
Model A: Level-Level	0.2871	0.2858
Model B: Linear-Log	0.3150	0.3137
Model C: Log-Linear	0.2947	0.2935
Model D: Log-Log	0.3364	0.3352

GTx

Reasons for (log) Transforming Data

- To achieve a (more) linear relationship
- · To make a distribution more normal
- · To make the variance more constant
- To get a better fit in the model i.e., increase R-Squared

Log Transformations Cheat Sheet

	Y	log(Y)	
X	Model A: Level-Level model $Y = b_0 + b_1^* X$	Model C: Log-Linear Model $log(Y) = b_0 + b_1 *X$	
	As X increases by 1 unit, Y changes by b_1 units, holding all other factors constant.	As X increases by 1 unit, Y increases by $(b_1*100)\%$, holding all other factors constant.	
log(x)	Model B: Linear-Log Model $Y = b_0 + b_1*log(X)$ As X increases by 1%, Y increases by $(b_1/100)$ units, holding all other factors constant.	Model D: Log-Log $log(Y) = b_0 + b_1*log(X)$ As X increases by 1%, Y changes by b_1 %, holding all other factors constant.	

Model E: Polynomial (Quadratic) Model

	Estimate	S.E.	t Value	Pr>ltl
Intercept	11,340	4,892	2.317	.0209*
lotsize	14.81	1.589	9.317	<.0001
lot_square	-6.238e-04	1.162e-04	-5.370	<.0001

R-Squared	Adjusted R-Squared
0.323	0.3205

- Model E: price = b₀ + b₁*lotsize + b₂*lotsize²
- Create a new variable lot_square = lotsize²
- Fit the model, $price = b_0 + b_1*lotsize + b_2*lotsize^2$

GTx

Model E: $price = b_0 + b_1*lotsize + b_2*lotsize^2$

The coefficient $b_1 = 14.81$ implies that

- A. When lotsize increases by 1 sq. ft., price will increase by \$14.81.
- B. When lotsize decreases by 1 sq. ft., price will increase by \$14.81.
- C. When lotsize increases by 1%, price will increase by \$14.81.
- D. None of the above.

What is the correct answer?

D: None of the above

Model E: Interpreting a Polynomial (Quadratic) Model

$price = b_0 + b_1*lotsize + b_2*lotsize^2$

- Coefficients b₁ and b₂ cannot be interpreted individually because when lotsize is increased by 1 unit, it is not possible (or meaningful) to hold lotsize² constant.
- A quadratic model does not allow for <u>an isolated interpretation of coefficients</u> since $\frac{d(price)}{d(lotsize)} = b_1 + 2b_2*lotsize$
- This means that the slope (impact of 1 unit increase in x) is not a constant. It changes at every point of the quadratic curve (if you plot y vs. x).

GTx

Recap of this Module

- A. Introduction to Nonlinear Models
- B. Linear-Log Model
- C. Log-Linear Model
- D. Log-Log Model
- E. Polynomial Model

