14 重构生命之树

王强

December 26, 2024

南京大学生命科学学院

Outline

14.1 演化理论赋予分类学新的目标

14.2 系统发生树的构建

14.3 单系类群, 并系类群和多系类群

14.4 重建系统发生面临的挑战

14.1 演化理论赋予分类学新的目标

分类学

- taxonomy
- 基于共有的相似性, 例如体型或骨骼特征
- 是分等级体系的, 相容性的组

Figure 1. 亚里士多德 (Aristotle), 384-322 BC, 分类学之父

Figure 2. 自然的阶梯 (the ladder of nature)

Figure 3. 林奈 (Carl Linnaeus), 1707-1778, 现代分类学之父

- 精心挑选的特征
- 双名命名法, 属名 + 种加词
- 植物种志, Species Plantarum
- 自然系统, Systema Naturae

人为分类系统

- 物种的识别与命名
- 归类与建立分类系统

分类学新的目标

- 共同祖先学说
 - ► Galapagos 群岛各岛屿上的不同地雀由来自南美大陆 的共同祖先演变而来 → 进而推断: 所有动 (植) 物有一 个共同祖先, 所有生物有一个单一起源.
- 建立起可以反映生物类群演化历史的分类系统
- 系统学, Systematics

14.2 系统发生树的构建

Table 1. 脊椎动物表型特征

颚	四肢	毛发	肺	尾巴
-	-	-	-	+
+	-	-	-	+
+	-	-	+	+
+	+	-	+	+
+	+	+	+	+
+	+	+	+	-
+	+	+	+	-
	- + + + +	+ - + + + + + + + + + + + + + + + +	+ - + + + + + + + + + + + + +	+ + + + + + + + + + + + + +

Figure 4. 脊椎动物系统发生树

Figure 5. 系统发生树

Figure 6. 树的结构

	水生	径向对称	肛门	内骨骼
水母	+	+	-	-
海星	+	+	+	+
人	-	-	+	+

- 表型分类学, Phenetics
- 支序分类学, Cladistics

Figure 7. 维利・亨尼希 (Willi Hennig), 1913-1976, 支序分类学之 父

- 同源相似性
- ■同功相似性

Figure 8. 同源相似性

Figure 9. 鲸鱼的后肢

Figure 10. 同功相似性, 游泳的动物

Figure 11. 同功相似性, 干旱地区的植物

排除同功相似性(趋同演化)后,所有可用的特征都是等价的吗?

支序分类学的三个基本假设:

- 1. 任何一组生物都通过共同祖先关系而相关联
- 2. 系统发育分支具有二分模式
- 3. 生物特征会随着时间在谱系中发生变化

- 祖征 (primitive character)
- 衍征 (derived character)
 - ▶ 共同衍征 (shared derived character)
- 独征(自衍征)

如何构建系统树

- 1. 选择感兴趣的分类单元
- 2. 确定特征并分析性状状态
- 3. 确定特征的极性
- 4. 通过 共同衍征 而非 祖征 对分类单元进行分组
- 5. 通过明确的方法解决冲突
- 6. 构建系统树

>Lamprey

00001

>Trout

10001

>Lungfish

10011

>Turtle

11011

>Cat

11111

>Gorilla

11110

>Human

11110

Figure 12. 基于形态学特征的脊椎动物系统发生树

系统学有什么用?

- 建立分类系统
- 预测生物的特性
- 阐明进化机制

14.3 单系类群, 并系类群和多系类

群

14.3 单系类群, 并系类群和多系类群

14.4 重建系统发生面临的挑战

14.4 重建系统发生面临的挑战

Labeled leaves	Binary unrooted trees	Binary rooted trees	
1	1	1	
2	1	1	
3	1	3	
4	3	15	
5	15	105	
6	105	945	
7	945	10,395	
8	10,395	135,135	
9	135,135	2,027,025	
10	2,027,025	34,459,425	