Pontificia Universidad Católica de Chile y Universidad de Chile

Facultad de Matemáticas

Profesor: José Samper

Curso: Álgebra II

Fecha: 3 de septiembre de 2025

Ayudante: José Cuevas Barrientos

Sigla: MPG3201

Extensiones resolubles

1. Ejercicios

1. Sean $K \subseteq L_1, \ldots, L_n \subseteq \Omega$ un conjunto de n subextensiones abelianas (resp. resolubles). Pruebe que el composito $L_1 \cdots L_n \subseteq \Omega$ es abeliano (resp. resoluble).

2. Sea k un cuerpo de car $k \neq 2$ y sea $f(x) \in k[x]$ un polinomio separable con raíces

$$f(x) = \prod_{j=1}^{n} (x - \alpha_j) \in k^{\text{alg}}[x].$$

Definimos el discriminante como $\Delta := \prod_{i < j} (\alpha_i - \alpha_j)^2$ y sea L el cuerpo de escisión de f(x). Tras identificar $\operatorname{Gal}(L/k) \leq S_n$ mediante la permutación de los α_j 's, pruebe que $\operatorname{Gal}(L/k) \cap A_n = \operatorname{Gal}(L/k(\sqrt{\Delta}))$.

3. Clasificación computacional de cuárticas: Sea k un cuerpo de car $k \neq 2$ y sea

$$f(x) := x^4 + ax^3 + bx^2 + cx + d = \prod_{j=1}^{4} (x - \alpha_j).$$

una cuártica irreducible separable.

a) Defina el resolvente cúbico como

$$R_3(x) := (x - (\alpha_1 \alpha_2 + \alpha_3 \alpha_4))(x - (\alpha_1 \alpha_3 + \alpha_2 \alpha_4))(x - (\alpha_1 \alpha_4 + \alpha_2 \alpha_3)).$$

Pruebe que $R_3(x) \in k[x]$ es separable.

b) Sea L/k el cuerpo de escisión de f(x). Pruebe que

Δ	$R_3(x) \in k[x]$	$\operatorname{Gal}(L/k)$
$\neq \Box$	irreducible	S_4
$\neq \Box$	reducible	D_4 o C_4
$=\Box$	irreducible	A_4
$=\Box$	reducible	K_4

- c) Sea $k = \mathbb{Q}$ y suponga que $\Delta \neq \square$ y $R_3 \in \mathbb{Q}[x]$ es reducible. Pruebe que si $Gal(L/k) \cong C_4$, entonces $\Delta > 0$. (O recíprocamente, si $\Delta < 0$, entonces $Gal(L/k) \cong D_4$.)
- 4. Recuerde que un número real $r \in \mathbb{R}$ se dice **constructible** (con regla y compás) si existe $\mathbb{Q}(r) \subseteq \mathbb{Q}(r_1, \ldots, r_n)$, donde cada r_j es de la forma $\sqrt{a+1}$ para algún $a \in \mathbb{Q}(r_1, \ldots, r_{j-1}) \cap \mathbb{R}_{>0}$. Un número complejo $z \in \mathbb{R}$ se dice constructible si Re z, Im $z \in \mathbb{R}$ lo son. Una extensión se dice constructible si todos sus elementos lo son.

Pruebe que una extensión ciclotómica $\mathbb{Q}(\zeta_p)$, donde p es primo, es constructible syss p es un primo de Fermat, es decir, de la forma $p = 2^{2^n} + 1$.

PISTA: Emplee el calculo que ya ha hecho del grupo de Galois y el dato (que no tiene que probar) que todo primo de la forma $2^a + 1$ es necesariamente un primo de Fermat.

A. Comentarios adicionales

Uno puede verificar que el discriminante Δ se puede calcular de manera explícita como el resultante de f(x) y f'(x), que es por definición el determinante de una matriz a coeficientes en k. En general, dicha matriz es bastante grande, pero por ejemplo Sage puede calcular rapidamente dicho número así:

```
1 R, t = QQ['t'].objgen()
2 f = t^3 + t^2 + t + 1
3 f.discriminant()
```

Con ello, podemos determinar fácilmente el grupo de Galois de una extensión de grado 3.

Mediante el teorema de polinomios simétricos uno puede dar fórmulas explícitas para Δ y los coeficientes de $R_3(x)$; esta es

$$R_3(x) := x^3 - bx^2 + (ac - 4d)x - (a^2d + c^2 - 4bd).$$

El discriminante es más largo, puede obtener la fórmula general así:

```
1 R.<a, b, c, d> = QQ['a', 'b', 'c', 'd']
2 S.<x> = R[]
3 (x^4 + a*x^3 + b*x^2 + c*x + d).discriminant()
```

Casos particulares son $\Delta(x^4 + ax + b) = -27a^4 + 256b^3$ y $\Delta(x^4 + ax^2 + b) = 16b(a^2 - 4b)^2$.

Al ser $R_3(x)$ mónico, una sencilla aplicación del teorema de las raíces racionales da un criterio computacional para su irreducibilidad; así, en efecto, el problema 3 arroja un algoritmo para determinar (casi) completamente el grupo de Galois de una cuártica sobre \mathbb{Q} .

Referencias

- 1. CONRAD, K. Galois groups of cubics and quartics (not in characteristic 2) https://kconrad.math.uconn.edu/blurbs/galoistheory/cubicquartic.pdf.
- 2. Jacobson, N. Basic Algebra 2 vols. (Freeman y Company, 1910).

 $\label{local_correction} Correo\ electr\'onico: {\tt josecuevasbtos@uc.cl} \ URL: {\tt https://josecuevas.xyz/teach/2025-2-alg/}$