

Formulação matemática de um problema inverso não-linear

Prof. André L. A. dos Reis

Objetivos da aula

- * A formulação de um problema inverso não linear
- * Métodos por gradiente:
 - Steepest descent
 - Newton
 - Gauss-Newton
 - Levenberg-Marquardt
- * Diferença entre os métodos

Formulação de um problema inverso não-linear

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

Modelagem direta: sintoniza manualmente o conjunto de parâmetros e compara com os dados observados

$$\mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_M \end{bmatrix} \qquad \mathbf{d}^p = \begin{bmatrix} d_1^p \\ \vdots \\ d_N^p \end{bmatrix}$$

Vetor de parâmetros Vetor de dados preditos

$$\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_N^o \end{bmatrix}$$
 $\nabla \psi(\mathbf{p}) = \mathbf{0}$ O gradiente da função de ajuste

Vetor de dados observados $\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$

Problema linear

$$\mathbf{d}^p = \mathbf{G}\mathbf{p}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\dagger} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Problema não-linear

$$\mathbf{d}^p
eq \mathbf{Gp}$$

$$\mathbf{p}=egin{bmatrix} p_1\ dots\ p_M \end{bmatrix}$$
 $\mathbf{d}^p=egin{bmatrix} d^p_1\ dots\ d^p_N \end{bmatrix}$ Vetor de parâmetros Vetor de dados preditos

$$\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_N^o \end{bmatrix} egin{bmatrix}
abla \psi(\mathbf{p}) = \mathbf{0} \
abla \phi \ de \ ajuste \end{bmatrix}$$

Vetor de dados observados $\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$

$$\mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_M \end{bmatrix} \qquad \mathbf{d}^p = \begin{bmatrix} d_1^p \\ \vdots \\ d_N^p \end{bmatrix}$$

Vetor de parâmetros Vetor de dados preditos

$$\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_N^o \end{bmatrix}$$
 $\nabla \psi(\mathbf{p}) = \mathbf{0}$ O gradiente da função de ajuste

Vetor de dados observados $\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$

 $\mathbf{p} = egin{bmatrix} p_1 \ dots \ p_M \end{bmatrix} \qquad \mathbf{d}^p = egin{bmatrix} d_1^p \ dots \ d_N^p \end{bmatrix}$ Vetor de parâmetros Vetor de dados preditos

$$\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_2^o \end{bmatrix}$$
 $\nabla \psi(\mathbf{p}) = \mathbf{0}$ O gradiente da função

O gradiente da função de ajuste

Vetor de dados observados
$$\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$$

 $\Psi(p_1,p_2)$ **P**₂ Mínimo global

Curvas de nível

$$= \left[egin{array}{c} r_1 \\ p_M \end{array}
ight]$$
 Vetor de parâmetros

 $\mathbf{p} = egin{bmatrix} p_1 \ dots \ p_M \end{bmatrix} \qquad \mathbf{d}^p = egin{bmatrix} d_1^p \ dots \ d_N^p \end{bmatrix}$ Vetor de dados preditos

$$\mathbf{d}^o = egin{bmatrix} d_1^o \ \vdots \ d_N^o \end{bmatrix}$$
 $\nabla \psi(\mathbf{p}) = \mathbf{0}$ O gradiente da função de ajuste

$$\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$$

Vetor de parâmetros

 $\mathbf{p} = egin{bmatrix} p_1 \ dots \ p_M \end{bmatrix} \qquad \mathbf{d}^p = egin{bmatrix} d_1^p \ dots \ d_N^p \end{bmatrix}$ Vetor de dados preditos

$$\mathbf{d}^o = \begin{bmatrix} d_1^o \\ \vdots \\ d_N^o \end{bmatrix}$$

O gradiente da função de ajuste Vetor de dados observados

 $\nabla \psi(\mathbf{p}) = \mathbf{0}$

Existem dois tipos de métodos que minimizam estas funções:

Métodos por gradiente (Determinísticos)

Métodos Heurísticos

Métodos por gradiente :

- Steepest descent
- Newton
- Gauss-Newton
- Levenberg-Marquardt

Métodos Heurísticos:

- Simulated Annealing
- Ant Colony
- Algoritmo Genético

Métodos por gradiente

$$\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{f}(\mathbf{p})\|_2^2$$

Expandindo a função de ajuste até segunda ordem, teremos:

$$\psi(\mathbf{p_0} + \Delta \mathbf{p}) \approx \psi(\mathbf{p_0}) + \mathbf{J}(\mathbf{p_0})\Delta \mathbf{p} + \frac{1}{2}\Delta \mathbf{p}^T \mathbf{H}(\mathbf{p_0})\Delta \mathbf{p}$$

 $\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$ Resolveremos este sistema de equações

Métodos por gradiente

Vetor de parâmetros

$$\mathbf{p} = egin{bmatrix} p_1 \ dots \ p_M \end{bmatrix} \qquad \mathbf{d}^p = egin{bmatrix} d_1^p \ dots \ d_N^p \end{bmatrix}$$

 $\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_2^o \end{bmatrix}$ $\nabla \psi(\mathbf{p}) = \mathbf{0}$

Vetor de dados preditos

O gradiente da função

de ajuste

Vetor de dados observados $\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$

Problema linear

 $\mathbf{d}^p = \mathbf{G}\mathbf{p}$

 $(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\dagger} = \mathbf{G}^T\mathbf{d}^o$

Estimador de mínimos quadrados

Problema não-linear

 $\mathbf{d}^p \neq \mathbf{Gp}$

Métodos por gradiente

$$\mathbf{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_M \end{bmatrix} \qquad \mathbf{d}^p = \begin{bmatrix} d_1^p \\ \vdots \\ d_N^p \end{bmatrix}$$

Vetor de parâmetros Vetor de dados preditos

$$\mathbf{d}^o = egin{bmatrix} d_1^o \ dots \ d_N^o \end{bmatrix}$$
 $\nabla \psi(\mathbf{p}) = \mathbf{0}$ O gradiente da função de ajuste

Vetor de dados observados $\psi(\mathbf{p}) = \|\mathbf{d}^o - \mathbf{d}^p\|_2^2$

Problema linear

$$\mathbf{d}^p = \mathbf{G}\mathbf{p}$$

$$(\mathbf{G}^T\mathbf{G})\mathbf{p}^{\dagger} = \mathbf{G}^T\mathbf{d}^o$$

Estimador de mínimos quadrados

Problema não-linear

$$\mathbf{d}^p
eq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Problema não-linear

Steepest Descent : 1/η

Newton: $H(p_0)$

Gauss-Newton : $\mathbf{J}^{\mathsf{T}}(\mathbf{p}_0)\mathbf{J}(\mathbf{p}_0)$

Levenberg-Marquardt : $\mathbf{J}^{\mathsf{T}}(\mathbf{p}_0)\mathbf{J}(\mathbf{p}_0) + \lambda\mathbf{I}$

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

 $\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$

Sistema de equações

Vamos às contas!

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Método	Convergência
Steepest Descent	0
Levenberg-Marquardt	1
Gauss-Newton	2
Newton	3

Lenta = 0

Rápida = 3

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Método	Chute inicial
Steepest Descent	Pode ser longe
Levenberg-Marquardt	Pode ser longe
Gauss-Newton	Deve ser próxima
Newton	Deve ser próxima

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Método	Passo
Steepest Descent	Depende de um parâmetro e do gradiente
Levenberg-Marquardt	Depende do gradiente, da Hessiana e de um parâmetro
Gauss-Newton	Depende do gradiente e da Hessiana
Newton	Depende do gradiente e da Hessiana

Problema não-linear

$$\mathbf{d}^p \neq \mathbf{Gp}$$

$$\mathbf{H}(\mathbf{p_0})\mathbf{\Delta p} = -\mathbf{J}(\mathbf{p_0})$$

Sistema de equações

Método	Custo computacional
Steepest Descent	0
Levenberg-Marquardt	2
Gauss-Newton	1
Newton	3

Baixo = 0

Alto = 3

Como regularizar um problema inverso não-linear? E os exemplos?

Até breve!