15-Gram-Schmidt-Orthogonalization-Algorithm

January 6, 2017

```
In [1]: from latools import *
    from sympy import *
    init_printing(use_latex=True)
```

1 Description of the Algorithm

Input: $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ a linearly independent set of vectors in \mathbb{R}^n **Output**: $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, and orthogonal basis of span $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$. **Algorithm**:

• Let
$$\mathbf{v}_1 = \mathbf{u}_1$$

• Let $\mathbf{v}_j = \mathbf{u}_j - \frac{\mathbf{u}_j \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{u}_j \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \dots - \frac{\mathbf{u}_j \cdot \mathbf{v}_{j-1}}{\mathbf{v}_{j-1} \cdot \mathbf{v}_{j-1}} \mathbf{v}_{j-1}$ for $j = 2, \dots, k$

2 Example

Apply the Gram-Schmidt diagonalization procedure to the following vectors in \mathbb{R}^3 :

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Start by defining the vectors:

2.0.1 Step 1:

Out[3]:

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

2.0.2 Step 2:

Project \mathbf{u}_2 onto the direction of \mathbf{v}_1

In [4]:
$$v2 = u2 - (u2.dot(v1))/(v1.dot(v1))*v1$$

v2

Out [4]:

$$\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

2.0.3 Step 3:

Project \mathbf{u}_3 onto span $\{\mathbf{v}_1, \mathbf{v}_2\}$

In [5]:
$$v3 = u3 - (u3.dot(v1)) / (v1.dot(v1)) *v1 - (u3.dot(v2)) / (v2.dot(v2)) *v2 v3$$

Out [5]:

$$\begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

3 Application - Diagonalization of Symmetric Matrices

If A is a $n \times n$ symmetric matrix, it is always possible to find an *orthonormal* basis of \mathbb{R}^n consisting of eigenvectors of A. This example shows how to proceed to find such basis.

As an example, let's find an orthonormal basis of eigenvectors of the matrix:

$$A = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} & -1\\ \frac{1}{2} & \frac{3}{2} & 1\\ -1 & 1 & 0 \end{bmatrix}$$

We start by finding the eigenvalues and eigenvectors of *A*.

Α

Out [6]:

$$\begin{bmatrix} \frac{3}{2} & \frac{1}{2} & -1 \\ \frac{1}{2} & \frac{3}{2} & 1 \\ -1 & 1 & 0 \end{bmatrix}$$

Out[7]:

$$-\lambda^3 + 3\lambda^2 - 4$$

In [8]: factor(p)

Out[8]:

$$-\left(\lambda-2\right)^2\left(\lambda+1\right)$$

The eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 1$. We next find a basis for each of the eigenspaces:

3.0.1 Eigenspace of $\lambda_1 = 2$

Out [9]:

$$\begin{bmatrix}
1 & -1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

The system corresponding to the RREF has a single equation:

$$x_1 - x_2 + 2x_3 = 0$$

There are two free variables, x_2 and x_3 . So, the eigenspace E(2) has dimension 2. To find a basis for E(2) we let:

$$x_2 = 1$$
, $x_3 = 0$, so that $x_1 = 1 - 2 \times 0 = 1$, and we let: $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $x_2 = 0$, $x_3 = 1$, so that $x_1 = 0 - 2 \times 1 = -2$:, and we let: $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$

3.1 Eigenspace of $\lambda_2 = -1$

In [10]:
$$R = reduced_row_echelon_form(A - (-1) *eye(3))$$
R

Out[10]:

$$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

We now get the system:

$$x_1 - \frac{1}{2}x_3 = 0$$
$$x_2 + \frac{1}{2}x_3 = 0$$

There is only one free variable, x_3 , so the eigenspace E(-1) has dimension 1. Letting $x_3 = 2$ we get $x_1 = 1$ and $x_2 = -1$, which gives us the eigenvector:

$$\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

Summarizing our findings:

Eigenvalue
$$\lambda_1 = 2$$
; Eigenvectors: $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$

Eigenvalue
$$\lambda_2 = -1$$
; Eigenvector: $\mathbf{u}_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$

Notice that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is *not* orthogonal, since $\mathbf{u}_1 \cdot \mathbf{u}_2 \neq 0$. However:

 \mathbf{u}_3 is orthogonal to both \mathbf{u}_1 and \mathbf{u}_2

This is because they are eigenvectors that correspond to different eigenvalues. To get an orthogonal basis, we apply the Gram-Schimidt procedure to the set $\{\mathbf{u}_1, \mathbf{u}_2\}$

Out[11]:

 $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

Checking:

0

To complete the orthonormal basis, we define:

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

To check that the three vectors $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ are indeed orthogonal we can compute:

```
In [14]: print(v1.dot(v2), v1.dot(v3), v2.dot(v3))
0 0 0
```

To get an orthononormal basis, we simply normalize the basis:

```
In [15]: n1 = v1*1/v1.norm()

n1
```

Out[15]:

 $\begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}$

In [16]:
$$n2 = v2*1/v2.norm()$$

 $n2$

Out[16]:

 $\begin{bmatrix} -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{bmatrix}$

In [17]:
$$n3 = v3 * 1/v3.norm()$$

Out[17]:

$$\begin{bmatrix} \frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \end{bmatrix}$$

Let's now to check our work, build the change of basis matrix:

In [18]:
$$P = Matrix.hstack(n1,n2,n3)$$
 P

Out[18]:

$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & -\frac{\sqrt{6}}{6} \\ 0 & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \end{bmatrix}$$

P must be an orthogonal matrix, so we compute:

Out[19]:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Finally, we can check the diagonalization:

In [20]:
$$P.T * A * P$$

Out[20]:

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$