МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №2 по курсу «Программирование графических процессоров»

Обработка изображений на GPU. Фильтры.

Выполнил: И.А. Мариничев

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников

А.Ю. Морозов

Условие

<u>Цель работы:</u> научиться использовать GPU для обработки изображений. Использование текстурной памяти и двухмерной сетки потоков.

Вариант 1: гауссово размытие.

Программное и аппаратное обеспечение

Compute capability : 2.1

Name : GeForce GT 545 Total Global Memory : 3150381056

Shared memory per block : 49152 Registers per block : 32768 Warp size : 32

Max threads per block : (1024, 1024, 64)

Max block : (65535, 65535, 65535)

Total constant memory : 65536 Multiprocessors count : 3

Processor : Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz

RAM : 16 GB Drive : 349G

OS : Ubuntu 16.04.6 LTS IDE : Visual Studio Code

Compiler : NVIDIA (R) Cuda compiler driver V7.5.17

Метод решения

Считываем входные данные, в том числе из файла. Затем создаем <u>текстурный объект</u> и на СРU рассчитываем массив ядра свертки, который копируем в константную память. После этого вызываем ядро размытия по гауссу по оси ОХ, где в каждый цветовой канал всех пикселей записывается результат свертки. Копируем результат обратно на СРU, обновляем данные в текстурной памяти и вызываем ядро размытия по гауссу по оси ОҮ. В конце записываем результат в выходной файл и освобождаем память.

Описание программы

// ядро све	ртки в константной памяти
constant	float kernel[1024]
// обработ	ка пикселей за границей (приводим к граничным)
1	float modeClamp(int p, int b)

```
// размытие по гауссу по оси ОХ
__global__ void gaussianBlurX(uchar4 *out, cudaTextureObject_t texObj, int w, int h, int r)
// размытие по гауссу по оси ОУ
__global__ void gaussianBlurY(uchar4 *out, cudaTextureObject_t texObj, int w, int h, int r)
```

Результаты

Конфигурация	Размер теста (время указано в ms)				
	O(10^2)	O(10^4)	O(10 ⁵)	O(10^6)	O(10^7)
<<<(32, 32), (32, 32)>>>	0.034464	14.546017	75.905632	1519.959473	3142.233154
<<<(64, 64), (32, 32)>>>	0.031200	15.001823	76.867264	1469.816406	3107.387939
<<<(128, 128), (32, 32)>>>	0.034176	18.386560	80.483261	1449.951538	3022.137207
<<<(256, 256), (32, 32)>>>	0.038144	31.649632	94.315842	1467.479370	2991.355713
<<<(512, 512), (32, 32)>>>	0.041120	84.128609	147.850754	1524.941895	3061.609131
<<<(1024, 1024), (32, 32)>>>	277.791901	293.115112	358.368591	1743.271729	3306.678223
CPU	4654.0	448429.0	2.12557e+06	5.68283e+07	8.77892e+07

Сравнение изображений

r = 0 r = 3

 $r=10 \qquad \qquad r=15$

Выводы

Данный алгоритм применяется в сверточных сетях и в разных программах для работы с изображениями. Как видно из результатов сравнения, GPU дает значительный прирост по времени, особенно на больших изображениях. Так как в данной лабораторной работе использовалась двухпроходная версия алгоритма размытия по Гауссу, то сложность его $O(w^*h^*r)$, стандартная версия имеет сложность $O(w^*h^*r^2)$.