• Топология

- \circ топологическое пространство упорядоченная пара $\langle X,\Omega \rangle$, где X(носитель) множество, а Ω (топология) множество каких-то его подмножеств + аксиомы:
 - ullet $arnothing\in\Omega,X\in\Omega$ (пустое множество и всё пространство открыты)
 - Если $\{A_i\}$, $A_i \in \Omega$ некоторое семейство элементов Ω , то $\bigcup_i A_i \in \Omega$ (объединение произвольного семейства открытых множеств открыто);
 - Если A_1,A_2,\ldots,A_n , $A_i\in\Omega$ конечное множество открытых множеств, то его пересечение также открыто: $A_1\cap A_2\cap\cdots\cap A_n\in\Omega$
- открытое и замкнутое множество

Oткрытое множество — множество из Ω .

Замкнутое множество — мн-во, дополнение которого открыто.

• внутренность и замыкание множества

внутренность A — максимальное открытое множество A° , входящее в A

замыкане A — минимальное замкнутое множество A, содержащее A

- \circ топология стрелки $X=\mathbb{R}, \Omega=\{(x,+\infty)|x\in\mathbb{R}\}\cup\{\emptyset\}$
- \circ дискретная топология $X
 eq \emptyset, \Omega = 2^X$
- топология на частично упорядоченном множестве
- индуцированная топология на подпространстве

Пусть лано какое-то $S\subseteq X$. Индуцированная топология на подпространстве $X-\Omega'=\{y\cap X|y\in\Omega\}$

• **связность** : связное пространство — пространство такое, что его нельзя разбить на два непустых непересек. открытых подмножества

• Исчисление высказываний

• высказывание — Строка в некотором алфавите, строящаяся по ледующим правилам:

```
высказывание :=
{пропозициональная переменная} |
(высказывание | высказывание) |
(высказывание & высказывание) |
(высказывание -> высказывание)
```

А,В,С ... — пропозициональные переменные

Х,Ү,Z ... — метапеременные для переменных

- метапеременные "Plaseholder" for variables
- пропозициональные переменные символы, обозначающие высказывания
- аксиома высказывание

• **схема аксиом** — шаблон для генерации аксиом

```
1 a -> b -> a

2 (a -> b) -> (a -> b -> c) -> (a -> c)

3 a -> b -> (a & b)

4 a & b -> a

5 a & b -> b

6 a -> a | b

7 b -> a | b

8 (a -> c) -> (b -> c) -> ((a | b) -> c)

9 (a -> b) -> (a -> !b) -> !a

10 !!a -> a
```

Интуиционисты меняют посленюю аксиому на a -> !a -> b

- \circ правило Modus Ponens Если доказано lpha и lpha o eta, то считаем доказанным eta
- доказательство последовательность высказываний, каждое из которых либо аксиома, либо Modus Ponens.
- вывод из гипотез

 α выводимо из Γ , где Γ — список высказываний, если существует вывод, то есть последовательность высказываний такая, что каждое из них либо аксиома, либо из Γ , либо получается по M. P.

∘ доказуемость (⊢)

Высказывание lpha доказуемо, если существует доказательство $lpha_1 \dots lpha_k$, где $lpha_k = lpha$.

- множество истинностных значений
- модель (оценка переменных)
- \circ оценка высказывания Отображение: формула ightarrow множество истинностных значений
- **общезначимость** (=) истинность при любой оценке
- выполнимость: существует оценка, при которой формула выполнена
- невыполнимость: нет такой оценки, что см выше
- \circ следование: формула X следует из $G_1 \dots G_n$, если в любой оценке, в которой истинны $G_1 \dots G_n$ истинна и X.
- корректность доказуемость ⇒ общезначимость
- полнота общезначимость ⇒ доказуемость
- противоречивость когда выводится любая формула
- \circ формулировка теоремы о дедукции $\Gamma \vdash \alpha \to \beta \iff \Gamma, \alpha \vdash \beta$
- Интуиционистское исчисление высказываний (заменили аксиому снятия двойного отрицания на lpha o
 eg lpha o eta
 - \circ закон исключённого третьего $\alpha \vee \neg \alpha$
 - \circ закон снятия двойного отрицания $eg \neg \alpha o lpha$
 - \circ закон Пирса ((lpha
 ightarrow eta)
 ightarrow lpha)
 ightarrow lpha
 - Все эти законы не выволятся в ИИВ
 - ВНК-интерпретация логических связок
 - lpha&eta, если есть доказательство lpha и eta
 - $lpha \lor eta$, если есть доказательство lpha или eta и мы знаем, чего именно
 - lpha o eta, если мы умеем строить доказательство eta из доказательства lpha
 - $\neg lpha$, если из lpha можно построить противоречие (lpha
 ightarrow ot)

- \circ теорема Гливенко (формулировка) Если $\vdash_{\mathbf{k}} \alpha$, то $\vdash_{\mathbf{k}} \neg \neg \alpha$
- решётка

 $\langle A, \leq
angle$ — решётка, если:

- ullet $orall a,b\in A:$ \exists наименьший $c=a+b:a\leq c,b\leq c$
- ullet $\forall a,b \in A: \quad \exists$ наибольший $c=a \cdot b: c \leq a,c \leq b$
- дистрибутивная решётка

решётка + свойство: $a + (b \cdot c) = a \cdot b + a \cdot c$

лемма: $a\cdot(b+c)=a\cdot b+a\cdot c$

теорема: решётка дистрибутивна 👄 не содержит ни диаманта ни пентагона

• импликативная решётка

дистрибутивная решётка + определена операция псевдодополнения (относительно b): $c=a o b=max\{x|x\cdot a\leq b\}$

теорема: дистрибутивность в определении можно опустить

 \mathbf{def} : 1 — наибольший элемент решётки \mathbf{def} : 0 — наименьший элемент решётки

• алгебра Гейтинга — Импликативная решётка с 0

def: nсевдодополнение $a=a \rightarrow 0$

Всякая алгебра Гейтинга — модель ИИВ

- \circ булева алгебра алгебра Гейтинга такая, что orall a: a+
 eg a=1
- Гёделева алгебра

Алгебра Гейтинга zе́делева, если $\forall a,b: (a+b=1 \implies a=1|b=1)$

- \circ операция $\Gamma(A)$ Добавим к алгебре Гейтинга новую "1", большую всех элементов, а старую переименуем в " ω ".
- \circ алгебра Линденбаума Пусть lpha, eta формулы, $lpha \le eta$, если eta dash lpha, если $lpha \le eta \& eta \le lpha$

Тогда, алгебра Линденбаума — ИИВ $/_pprox$ [факторизация по операции pprox]

теорема: Алгебра Линденбаума — точная модель ИИВ. Но нифига не конечная.

теорема: Алгебра Линденбаума — Гёделева

- \circ формулировка свойства дизъюнктивности и.и.в $\vdash \alpha \lor \beta \implies \vdash \alpha$ или $\vdash \beta$
- Определить модель, значит задать логические связки и истинностные значения
- Модель корректна, если любое доказуемое утверждение в ней истинно
- Модель полна, если любое истинное в ней утверждение доказуемо
- Модель точная, она корректна и полна
- Исчисление называют табличным, если существует конечная точная модель этого исчисления
- формулировка свойства нетабличности и.и.в.: ИИВ не таблично (см выше)

• Исчисление предикатов

- предикатные и функциональные символы, константы и пропозициональные переменные
- свободные и связанные вхождения предметных переменных в формулу
- свобода для подстановки

```
D предметное множество
    V множество истинностынх значений
    ФУНКЦИЯ : D<sup>n</sup> -> D
    \Pi P E \Pi U KAT : D^n -> V
    Предметная переменная
                                a, b, c, x, y, z, a₀, a' ...
    Терм
    Предикатный символ
    Формула
    TFPM =
             (предметная переменная) |
             (функциональный символ) (ТЕРМ₀, ТЕРМ₁, ...)
    ФОРМУЛА =
             (ФОРМУЛА | ФОРМУЛА)
             (ФОРМУЛА & ФОРМУЛА)
             (ФОРМУЛА -> ФОРМУЛА) |
             (!ФОРМУЛА) |
             (∀ предметная переменная.ФОРМУЛА) |
             (З предметная переменная.ФОРМУЛА) |
             (предикатный символ) (ТЕРМ₀, ТЕРМ₁, ...)
    Связанное вхождение - вхождение в области действия квантора.
    Связывающее вхождение — вхождение непосредственно рядом с квантором.
    Ех: (∀х. ... х ...) первое вхождение — связывающее, второе вхождение — связанное.
    Не связанные и не связывающие вхождения — свободные.
    Терм θ свободен для подстановки в формулу ψ вместо х, если после подстановки θ вместо свободных вхождений х, θ не станет связанным.
• два правила для кванторов
   11.(orall x.\phi)	o\phi[x:=\Theta] , где \Theta свободна для подстановки вместо x в \phi
• две аксиомы для кванторов
```

$$\circ$$
 две аксиомы для кванторов $2.rac{\psi o\phi}{\psi o\psi x.\phi}$, где x не входит свободно в ψ $3.rac{\phi o\psi}{(\exists x.\phi) o\psi}$ \circ оценки и модели в исчислении предикатов Чтобы оценить значение формулы в ИП, нужно за

Чтобы оценить значение формулы в ИП, нужно задать кортеж $\langle D, E, P, R \rangle$, где:

■ D — предметное множество

- D оценка для функциональных символов $(D^n \to D)$ D оценка для предикатов $D^n \to V$
- ullet D- свободные предметные переменные
- ∘ теорема о дедукции для И. П.
 - $\Gamma, \alpha \vdash \beta$, в доказательстве нет применений правил для кванторов по свободным переменным из α , то $\Gamma \vdash \alpha \to \beta$ $\Gamma \vdash \alpha \to \beta$ ⇒ $\Gamma, \alpha \vdash \beta$
- \circ лемма: $\llbracket \psi
 Vert^{x:=\llbracket heta
 Vert} = \llbracket \psi
 Vert x := \llbracket heta
 Vert^{\parallel}
 Vert
 Vert^{\parallel}$, если heta свободна для подстановки вместо x
- теорема о корректности для И. П. каждое доказуемое утв. общезначимо
 - lacktriangle Множество Γ непротиворечиво, если нет lpha такого, что $\Gamma \vdash lpha$ и $\Gamma \vdash \lnot lpha$
 - Формула замкнута, если она не содержит свободных переменных
 - Формула бескванторна, если она не содержит кванторов
 - полное непротиворечивое множество (бескванторных) формул непротиворечивое множество (бескванторных) формул + св-во: $\forall \alpha: \quad \alpha \in \Gamma | \neg \alpha \in \Gamma$
- \circ модель для формулы модель $\langle D, E, P \rangle$
- теорема Гёделя о полноте исчисления предикатов (формулировка) лемма: Для любой формулы ИП найдётся эквив. ей ф-ла с поверхностными кванторами **теорема**: Γ — непротиворечивое множество формул ИП. Тогда, существует модель для Γ
- следствие из теоремы Гёделя о исчислении предикатов: полнота???

Шень, Верещагин Инт. логика Конспект 2011