Table of Contents

List of Tables	xvi
List of Figures	.xix
Abstract	αxiv
Chapter 1 Introduction	1
Chapter 2 Approaches to Software Design	7
2.1 Software Design Methods	7
2.1.1 Objectives of Software Design Methods	8
2.1.2 Methods for Producing Sequential Designs	14
2.1.2.1 Structured Analysis and Structured Design	14
2.1.2.2 Real-Time Structured Analysis and Structured Design	15
2.1.3 Methods for Producing Concurrent Designs	16
2.1.3.1 Concurrent Designs From RTSA Models	16
2.1.3.2 Concurrent Designs Without RTSA Models	17
2.1.3.3 Concurrent Designs For Ada	18
2.1.4 Methods for Producing Object-Oriented Designs	19
2.1.5 Approaches to Design Scheduling	19
2.2 Automating Software Design Methods	20
2.2.1 Approaches to Automating Architectural Design	20
2.2.1.1 Cluster Analysis	21
2.2.1.2 Formal Rule Rewriting Systems	22
2.2.1.3 Artificial Intelligence Approaches	22
2.2.1.3.1 Rule-based Expert Systems	23
2.2.1.3.1.1 Specification-Transformation Expert System	23
2.2.1.3.1.2 System Architects Apprentice, Design Assistant	24

2.2.1.3.2 Other Artificial Intelligence Approaches	26
2.2.2 Approaches to Automating Detailed Design	27
2.3 Automatic Programming	27
2.4 Summary of Findings	29
2.4.1 Importance of Architectural Design	29
2.4.2 Benefits of Software Design Methods	30
2.4.3 Benefits from Automating Software Design Methods	30
Chapter 3 Overview of Research	32
3.1 Evaluation of Existing Approaches	32
3.2 Generating Concurrent Designs for Real-Time Software	37
3.2.1 The Designer's Objectives	37
3.2.2 A Software Design Method for Concurrent and Real-Time Systems	s40
3.2.2.1 COBRA	41
3.2.2.2 CODARTS	43
3.2.2.2.1 Task Structuring	44
3.2.2.2.2 Task-Interface Definition	46
3.2.2.2.3 Module Structuring	47
3.2.2.2.4 Integrating Tasks and Modules	48
3.2.2.2.5 Configuration and Evaluation	49
3.3 The Research Problem	49
3.3.1 Modeling and Analyzing Specifications	50
3.3.2 Modeling Designs and Target Environments	52
3.3.3 Modeling Decision-Making Processes	52
3.4 A Knowledge-based Approach to Design Generation	54
3.4.1 A Conceptual View of the Approach	54
3.4.1.1 Design-Process Meta-Knowledge	59
3.4.1.2 Decision-Making Knowledge Bases and Design-Decision Ru	ıles67
3.5 Proof-of-Concept Prototype	71
Chapter 4 A Meta-Model for Specifications	74

4.1 The Concept Hierarchy76	
4.1.1 Specification Elements	
4.1.1.1 RTSA Syntactic Element Classification80	
4.1.1.2 Semantic Element Classification	
4.1.1.2.1 Terminators	
4.1.1.2.2 Solid Transformations	
4.1.1.2.3 Device Interface Objects	
4.1.1.2.4 Control Objects	
4.1.1.2.5 Solid Directed Arcs	
4.1.1.2.6 Dashed Directed Arcs90	
4.1.1.2.7 Functions	
4.1.1.2.8 Solid Two-Way Arcs96	
4.1.2 Specification Addenda96	
4.1.2.1 Aggregation Groups	
4.1.2.2 Exclusion Groups98	
4.1.2.3 Locked-State Events	
4.2 Concept Axioms and Inheritance	
4.3 Classification Rules and Concept Classification	
4.4 Information Elicitation	
Chapter 5 A Meta-Model for Concurrent Designs	
5.1 A Diagrammatic View of the Design Meta-Model113	
5.2 Modeling Concurrent Designs	
5.2.1 Concurrent Design Entities	
5.2.2 Relationships Among Concurrent Design Entities	
5.2.3 Assumptions Underlying the Design Meta-Model135	
5.3 Describing Target Environments	
Chapter 6 Task Structuring141	
6.1 Identify Candidate Tasks	
6.1.1 Rules for Identifying Input/Output Tasks	

6.1.2 Rules for Identifying Internal Tasks	146
6.1.2.1 Internal Periodic Tasks	148
6.1.2.2 Internal Asynchronous Tasks	51
6.2 Allocate Remaining Transformations to Tasks	153
6.2.1 Allocating Transformations Based on Control Cohesion	.153
6.2.2 Allocating Transformations Based on Sequential Cohesion	154
6.2.3 Allocating Transformations Based on Functional Cohesion	.160
6.3 Consider Task Mergers	62
6.3.1 Rules for Combining Tasks Based on Mutual Exclusion	.164
6.3.2 Rules for Combining Tasks Based on Sequential Cohesion	.166
6.3.3 Rules for Combining Tasks Based on Temporal Cohesion	.168
6.3.4 Rules for Combining Tasks Based on Task Inversion	173
6.3.5 Rationale for Preferred Rule Orderings	175
6.4 Consider Resource Monitors	.77
6.5 Review Task Structure and Consider Renaming Tasks	179
Chapter 7 Task Interface Definition	81
7.1 Allocate External Task Interfaces	184
7.1.1 Rule to Allocate Timer Events	184
7.1.2 Rule to Allocate External Events	85
7.1.3 Rules for Allocating Data	86
7.1.4 Rule to Identify Inter-Task Exchanges	187
7.2 Allocate Control and Event Flows	188
7.2.1 Rules for Mapping to Software Events	89
7.2.2 Rules for Mapping to Tightly-Coupled Messages	193
7.2.3 Rule for Mapping to Queued Messages	194
7.2.4 Rule for Mapping Ambiguous Control and Event Flows	.195
7.2.5 Rules for Mapping to Existing Messages	198
7.3 Allocate Data Flows	:00
7.3.1 Rules for Mapping to Tightly-Coupled Messages	201

	7.3.2 Rules for Mapping to Queued Messages	203
	7.3.3 Rule for Mapping Ambiguous Data Flows	206
	7.3.4 Rules for Mapping to Existing Messages	208
	7.3.5 Rule for Symmetric Message Interfaces	212
	7.3.6 Rule for Ambiguous Interface to Input/Output Devices	214
7.4	Elicit Message Priorities	.216
7.5	Allocate Queue Interfaces.	.217
	7.5.1 Rules for Single-Priority Message Queues	218
	7.5.2 Rules for Multiple-Priority Message Queues	221
7.6	Consider Renaming Task Interface Design Elements	224
Chapt	er 8 Module Structuring	.225
8.1	Identify Candidate Modules	227
	8.1.1 Rule for Identifying Device-Interface Modules	228
	8.1.2 Rules for Identifying Other Interface Modules	228
	8.1.3 Rule for Identifying State-Transition Modules	230
	8.1.4 Rule for Identifying Data-Abstraction Modules	231
	8.1.5 Rules for Identifying State-Driven Modules	232
8.2	Allocate Functions to Data-Abstraction Modules	235
8.3	Allocate Remaining Transformations to Modules	240
8.4	Allocate Isolated Elements to Modules	243
	8.4.1 Rules to Allocate Isolated Data Stores	244
	8.4.2 Rules to Allocate Isolated Functions	246
8.5	Consider Module Subsumption	247
8.6	Determine Module Operations.	249
	8.6.1 Rule to Allocate Arcs Internal to Modules	251
	8.6.2 Rules to Determine Operations for Interface Modules	252
	8.6.3 Rule to Determine Operations for State-Transition Modules	263
	8.6.4 Rules to Determine Operations for Direct Access to Data Stores	265
	8.6.5 Rules to Determine Operations from Functions	268

8.7 Review Module Structure and Consider Renaming Modules	277
Chapter 9 Task and Module Integration	278
9.1 Determine Module Placements	280
9.1.1 Captive Modules	281
9.1.1.1 Rules for Placing DIMs for Asynchronous and Periodic Devi	ces281
9.1.1.2 Rule for Placing State-Transition Modules	283
9.1.1.3 Rules for Placing User and Subsystem Interface Modules	284
9.1.2 Shareable Modules	285
9.1.2.1 Rule for Placing Data-Abstraction Modules	287
9.1.2.2 Rules for Placing Remaining Information-Hiding Modules	289
9.2 Link Tasks and External Modules	294
9.3 Link External Modules	299
Chapter 10 A Prototype COconcurrent Designer's Assistant	304
10.1 Software Architecture for CODA	305
10.2 Knowledge Representation	308
10.2.1 Specification Meta-Model	309
10.2.2 Design Meta-Model	311
10.2.3 Decision-Making Processes and Design-Decision Rules	313
10.2.4 Meta-Knowledge	314
10.3 CODA's Components	316
10.3.1 Command & Query Processor	316
10.3.2 Specification Library and Specification Analyzer	316
10.3.3 Concept Classifier and Classification Rules	317
10.3.4 Design Library and Design Generator	317
10.3.5 Target Environment Description Library and Loader	318
10.3.6 Hardware and Software Requirements for the Prototype	318
10.4 User's View of CODA	318
10.4.1 CODA Viewed by a Novice Designer	319
10.4.2 CODA Viewed by an Experienced Designer	321

10.4.2.1 CODA Commands	322
10.4.2.1.1 CODA Enforces Process Constraints	322
10.4.2.1.2 CODA Manages Libraries	324
10.4.2.1.3 CODA Analyzes Specifications	325
10.4.2.1.4 CODA Generates Designs	326
10.4.2.1.5 Unimplemented Commands	326
10.4.2.2 CODA Queries	327
10.4.2.2.1 General Information Queries	327
10.4.2.2.2 Querying Design Elements	327
10.4.2.2.3 Querying Design Histories	329
10.4.2.2.4 Querying Design Relationships	329
Chapter 11 Evaluation	331
11.1 Summary Evaluation	331
11.1.1 Evaluation Against Research Objectives	332
11.1.2 Comparison Against Other Approaches	334
11.1.3 Strengths and Weaknesses of the Proposed Approach	337
11.2 Analysis of the Case Studies	339
11.2.1 Modeling and Analysis of Specifications	339
11.2.1.1 Semantic Interpretation of Flow Diagrams	339
11.2.1.1.1 Problems Classifying Data Flows	342
11.2.1.1.2 Problems Classifying Functions	343
11.2.1.1.2.1 Tentative Classifications	344
11.2.1.1.2.2 Assisted Classifications	345
11.2.1.2 Extensions and Restrictions to RTSA	346
11.2.1.3 Eliciting Helpful Information	347
11.2.1.3.1 Eliciting Node Cardinality	348
11.2.1.3.2 Eliciting Locked-State Events	348
11.2.1.3.3 Eliciting Exclusion Groups	349
11.2.1.3.4 Eliciting Aggregation Groups	350

11.2.2 Generation and Representation of Designs	350
11.2.2.1 Task Structures	350
11.2.2.1.1 Candidate Tasks	351
11.2.2.1.2 Remaining Transformations	353
11.2.2.1.3 Task Mergers	356
11.2.2.1.4 Resource Monitors	357
11.2.2.2 Task Interfaces	360
11.2.2.2.1 External Task Interfaces	360
11.2.2.2.2 Control and Event Flows	361
11.2.2.2.3 Data Flows	363
11.2.2.2.4 Message Priorities and Queue Interfaces	364
11.2.2.3 Module Structures	365
11.2.2.3.1 Candidate Modules	365
11.2.2.3.2 Functions of Data-Abstraction Modules	367
11.2.2.3.3 Remaining Transformations	368
11.2.2.3.4 Isolated Elements	369
11.2.2.3.5 Module Subsumption	370
11.2.2.3.6 Module Operations	371
11.2.2.4 Task and Module Integration	373
11.2.2.5 Assessment of Automated Design Generation	373
11.3 Aspects of the Approach that Proved Difficult to Automate	376
11.3.1 Specification Analysis	376
11.3.1.1 Aperiodic Functions	376
11.3.1.2 Triggered Functions Receiving Data Flows	377
11.3.1.3 Stimulus versus Response	378
11.3.1.4 Classifying Terminators	379
11.3.1.5 Eliciting Required Information	379
11.3.1.6 Expressing Cardinality	380
11.3.1.7 Specification Addenda	380

11.3.1.7.1 Mutual Exclusion	
11.3.1.7.2 Locked-State Events381	
11.3.1.7.3 Aggregation	
11.3.2 Design Generation	
11.3.2.1 Allocating Transformations to Existing Tasks	
and Modules	
11.3.2.2 Combining Tasks with Compatible Periods383	
11.3.2.3 Combining Data-Abstraction Modules	
11.3.2.4 Determining Synchronization Requirements	
11.4 Quality of Generated Designs	
11.4.1 Task Structure	
11.4.2 Module Structure	
11.4.3 Task and Module Integration	
11.4.4 Task Interfaces	
11.5 Interpretation of Results	
Chapter 12 Contributions and Future Research	
12.1 Contributions	
12.2 Potential Applications	
12.3 Future Research	
References	
Appendices411	
Appendix A. Axioms and Classification Rules for the Specification Meta-Model412	,
A.1 Axioms for Semantic Concepts	
A.1.1 Axioms for Specification Elements	
A.1.2 Axioms for Specification Addenda	
A.2 Rules for Classifying Semantic Concepts	
A.2.1 Rules for Arc Classification	
A.2.2 Rules for Transformation Classification	
A.2.3 Rules for Stimulus-Response Classification	

	A.2.4 Rules for Ambiguous-Function Classification	453
Appen	dix B. Automobile Cruise Control and Monitoring System Case Study	.456
B.1	Analyzing the Specification	59
	B.1.1 Classifying the Specification	159
	B.1.2 Eliciting Additional Information	61
	B.1.3 Checking Classifications and Axioms	162
	B.1.4 Annotated Data/Control Flow Diagrams	162
B.2	Generating the Design4	75
	B.2.1 Structuring Tasks	77
	B.2.1.1 Identifying Candidate Tasks	177
	B.2.1.2 Allocating Remaining Transformations	1 79
	B.2.1.3 Considering Task Mergers	180
	B.2.1.4 Completing Task Structuring	182
	B.2.2 Structuring Modules	82
	B.2.2.1 Identifying Candidate Modules	184
	B.2.2.2 Allocating Functions to DAMs	186
	B.2.2.3 Allocating Isolated Elements	187
	B.2.2.4 Considering Module Subsumption	487
	B.2.2.5 Completing Module Structuring4	188
	B.2.3 Integrating Tasks and Modules	1 90
	B.2.4 Defining Task Interfaces	91
	B.2.4.1 Allocating External Task Interfaces	1 91
	B.2.4.2 Allocating Control and Event Flows	194
	B.2.4.3 Allocating Data Flows	95
	B.2.4.4 Eliciting Message Priorities and Defining Queue Interfaces	.495
	B.2.4.5 Completing Task-Interface Definition	196
	B.2.5 The Completed Design	196
	B.2.5.1 Creating the Software Architecture Diagarm	196
	B.2.5.2 Assessing the Design	502

B.3 Design Generated for a Novice Designer	
B.3.1 Generating the Design	
B.3.2 The Completed Design	
Appendix C. Robot Controller System Case Study	
C.1 Robot Controller System, Version 1	
C.1.1 Analyzing the Specification	
C.1.1.1 Classifying Concepts in the Specification511	
C.1.1.2 Eliciting Additional Information and Verifying Concepts512)
C.1.1.3 Annotated Data/Control Flow Diagram513	
C.1.2 Generating the Design	
C.1.2.1 Structuring Tasks	
C.1.2.2 Structuring Modules	
C.1.2.3 Integrating Tasks and Modules	
C.1.2.4 Defining Task Interfaces	
C.1.2.5 The Completed Design	
C.1.3 A Design for Target Environments without Message Queues526	5
C.2 Robot Controller System, Version 2	
Appendix D. Elevator Control System Case Study533	
D.1 Elevator Control System for a Small Building	
D.1.1 Analyzing the Specification	
D.1.1.1 Classifying Concepts	
D.1.1.2 Eliciting Additional Information and Verifying the Specification.536	5
D.1.1.3 Annotated Data/Control Flow Diagram537	
D.1.2 Generating the Design	
D.1.2.1 Structuring Tasks543	
D.1.2.2 Structuring Modules	
D.1.2.3 Integrating Tasks and Modules	
D.1.2.4 Defining Task Interfaces	
D.1.2.5 The Completed Design	

D.1.3 Differentiating Queued Messages by Priority	552
D.1.3.1 Priority Message Queuing Services Unavailable	553
D.1.3.2 Priority Message Queuing Services Available	553
D.2 Elevator Control System for a Large Building	555
Appendix E. Remote Temperature Sensor Case Study	559
E.1 Analyzing the Specification	560
E.1.1 Evaluating the Original Data Flow Diagram	560
E.1.2 Correcting and Reevaluating the Data Flow Diagram	562
E.1.3 Eliciting Additional Information	566
E.2 Generating the Design	567
E.2.1 Structuring Tasks	567
E.2.2 Defining Task Interfaces	570
E.2.3 The Task Architecture	571
E.2.4 Structuring Modules	571
E.2.5 Integrating Tasks and Modules	573
E.2.6 The Completed Design	573
E.3 CODA Unaided	576
E.3.1 Analyzing the Specification	577
E.3.2 The Completed Design	577
Appendix F. Index Of Terms	580
F.1 Terms Defined Within The Specification Meta-Model	580
F.1.1 Specification Elements	580
F.1.2 Specification Addenda	584
F.2 Terms Defined Within The Design Meta-Model	584
F.2.1 Design Entities	584
F.2.2 Design Relationships	585
Curriculum Vitae	588