PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-242985

(43)Date of publication of application: 31.08.1992

(51)Int.CI.

H01S 3/18 // H01L 33/00

(21)Application number: 02-414843

(71)Applicant : TOYODA GOSEI CO LTD

AKASAKI ISAMU

AMANO HIROSHI

(22)Date of filing:

26.12.1990

(72)Inventor:

OKAZAKI NOBUO

MANABE KATSUHIDE

AKASAKI ISAMU AMANO HIROSHI

(54) GALLIUM NITRIDE GROUP COMPOUND SEMICONDUCTOR LASER DIODE

(57)Abstract:

PURPOSE: To obtain a blue laser.

CONSTITUTION: A gallium nitride group compound semiconductor laser diode having, at least, one p-n junction where a p-layer 5 consisting of a gallium nitride group compound semiconductor showing the n-type conductivity (AlxGa1-x)yIn1-yN:0·x·1,0·y·1) and a ptype layer 5 consisting of a gallium nitride group compound semiconductor showing the p-type conductivity (AlxGa1-x)yin1-yN:0·x'·1,0·y'·1) (x=x' or x \neq x', y=y' or y \neq y) are joined. Since it is succeeded to generate a gallium nitride group compound semiconductor showing the p-type conductivity, it is made possible to realize a p-n junction type semiconductor laser of homojunction and heterojunction.

02/05/27

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平4-242985

(43)公開日 平成4年(1992)8月31日

(51) Int.Cl.⁵

識別記号

庁内整理番号

技術表示箇所

H01S 3/18

9170-4M

HO1L 33/00

C 8934-4M

審査請求 未請求 請求項の数8(全 6 頁)

(21)出願番号

特顯平2-414843

(22)出頭日

平成2年(1990)12月26日

(71)出願人 000241463

豊田合成株式会社

受知県西春日井郡春日町大宇蔣合宇長畑1

番地

(71)出願人 591014949

赤碕 勇

愛知県名古屋市西区浄心1丁目1番38-

805

(71)出願人 591014950

天野 浩

受知県名古屋市名東区神丘町2丁目21 虹

ケ丘東団地25号棟505号室

(74)代理人 弁理士 藤谷 修

最終頁に続く

(54) 【発明の名称】 空化ガリウム系化合物半導体レーザダイオード

(57) 【要約】

(修正有)

【目的】 育色のレーザを得ること。

【構成】 n型導電性を示す窒化ガリウム系化合物半導体((Al Gai-) In: N:0 \leq x \leq 1,0 \leq y \leq 1)から成る n層 3 と、p型導電性を示す窒化ガリウム系化合物半導体((Al ·Gai-·)·In:-N:0 \leq x' \leq 1,0 \leq y' \leq 1)(x=x' またはx+x',y=y' またはy+y') から成る p層 5 とが接合された少なくとも1つの p n接合を有する窒化ガリウム系化合物半導体レーザダイオード。p型導電性を示す窒化ガリウム系化合物半導体の生成に成功したので、ホモ接合、ヘテロ接合の p n接合型の半導体レーザが実現できた。

【特許請求の範囲】

【請求項1】 n型導電性を示す窒化ガリウム系化合物 半導体 ((A| Ga 1-) In 1- N:0≦x≦1,0≤y≦1)から成 る n 層と、p 型導電性を示す窒化ガリウム系化合物半導 体((A) ·Ga; · ·) · [n; · · N:0≦x'≤1,0≦y'≤1)(x=x' またはx+x',y=y' または y+y') から成るp 層とが接 合された少なくとも1つのpn接合を有する室化ガリウ ム系化合物半導体レーザダイオード。

【請求項2】 前記 n 層及び前記 p 層は、禁制帯幅が同 0≤x≤1,0≤y≤1)及び空化ガリウム系化合物半導体((A i・Ga:-・)・In:-・N:0≦x'≦1,0≦y'≦1)(x=x' または I≠I',y=y' または y≠y') で構成されていることを特 徴とする特許請求の範囲請求項1に記載の窒化ガリウム 系化合物半導体レーザダイオード。

【請求項3】 前記pn接合は、禁制帯幅の比較的大き い室化ガリウム系化合物半導体((Al Gai-) Ini- N:0 ≤x≤1,0≤y≤1)から成る層と、禁制帯幅の比較的小さ い窒化ガリウム系化合物半導体((Al·Gai··)・lni·· N:0≤x'≤1,0≤y'≤1,但しx'=y'=1 は含まない。 x≠x' 及び/又は y≠y') から成る層との接合により構成され たことを特徴とする特許請求の範囲請求項1に記載の窒 化ガリウム系化合物半導体レーザダイオード。

【簡求項4】 禁制帯幅の比較的小さい室化ガリウム系 化合物半導体 ((Al · Gai - ·) · Ini - ·N:0≦x'≦1,0≦y' ≤1. 但しx'=y'=1 は含まない)から成る層を、相互に禁 制帯幅及び混晶組成が同一又は異なり、前記層に対して 禁制帯幅の比較的大きい窒化ガリウム系化合物半導体 ((Al Gai -) Ini - N:0≤x≤1,0≤y≤1,x≠x'及び/又 は y≠y') から成るp型導電性を示す層とn型導電性を 30 示す層との2つの層で、両側から挟んだ構造の接合を有 する窒化ガリウム系化合物半導体レーザダイオード。

【請求項5】 相互に禁制帯幅の異なる、窒化ガリウム 系化合物半導体((A] Ga:-) In:- N:0≤x≤1,0≤y≤1) から成る層と窒化ガリウム系化合物半導体 ((Al · Ga ı-・)・Iqı-・N:0≤x'≤1,0≤y'≤1, x≠x'及び/又は y+y'から成る層)から成る層とを2つ以上積層した窒 化ガリウム系化合物半導体レーザダイオード。

【請求項6】 アクセプタ不純物をドープした壁化ガリ ウム系化合物半導体 ((Al Gai-) Ini- N:0≤x≤1,0≤y 40 ≤1)から成る層に電子線を照射してp型化した層を有す る空化ガリウム系化合物半導体レーザダイオード。

【請求項7】 前記p型化された空化ガリウム系化合物 半導体 ((A1 Ga) -) Inj - N:0≤x≤1,0≤y≤1)から成る 層と電極用金属との接触部分の形状は短冊状であること を特徴とする特許請求の範囲請求項6に記載の窒化ガリ ウム系化合物半導体レーザダイオード。

【請求項8】 サファイア、Si、6H-SiC又はGaN から成 る基板を有することを特徴とする特許請求の範囲請求項 1に記載の窒化ガリウム系化合物半導体レーザダイオー 50

۴.

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、可視単波長、特に、青 色領域から紫色領域まで、及び紫外光領域で発光可能な 半導体レーザダイオードに関する。

【0002】本発明の半導体レーザダイオードは、本発 明者らにより初めて明らかにされた電子線照射処理によ る ((A) Ga₁-) In₁- N:0≤x≤1,0≤y≤1)層のp型化技-一な空化ガリウム系化合物半導体((Al Gai-) $I exttt{Di}_{i}$ N: 10 術を基盤として、新たに開発さた技術を加えて、初め て、 ((Al Ga₁-) ln₁- N:0≤x≤1,0≤y≤1)半導体レー ザダイオードの製作が可能となったものである。

[0003]

[従来技術] 現在、実用化されている最短波長の電流注 入型半導体レーザダイオードは、リン化インジウムガリ ウムアルミニウム (InGaAlP) 系結晶により作製されてい。 る。その発振波長は可視長波長領域、即ち、赤色領域で ある0.6 ~0.7 μm帯に属する。

[0004]

【発明が解決しようとする課題】しかしながら、更に、 短波長である青色、紫色領域或いは紫外光領域での発光 が可能な半導体レーザを実現するのは、この材料では物 性上困難である。より広い禁制帯幅を持つ半導体材料を 用いる必要がある。(Al Gai-) In:- N はその候補の一 つである。

【0005】(Al Gai-) Ini- N)、特に、GaN は室温 (300K)で光励起により誘導放出することが確認されてい る(H. Amano 等: Japanese Journal of Applied Physics 第29巻1990年 L205-L206頁)。 このことから、上記 半導体でレーザダイオードが構成できる可能性がある。

【0006】しかしながら、上記系統の化合物半導体は p 型単結晶薄膜の作製が困難であるため、現在に到るま で(Al Gai-) Ini- N を用いた電流注入による半導体レ ーザダイオードは実現していない。

【0007】本発明は、上記の課題を解決するために成 されたものであり、その目的とするところは、短波長で ある背色、紫色領域或いは紫外光領域におけるレーザを 得ることである。

[0008]

【課題を解決するための手段】本第1発明は、 n型伝導 性を示す窒化ガリウム系化合物半導体((Al Gai-) In 」 N:0≤x≤1.0≤y≤1)から成るn層と、p型伝導性を 示す窒化ガリウム系化合物半導体 ((Al ·Gai- ·) · ID 1- ·N:0≤x'≤1,0≤y'≤1)(x=x'またはx≠x',y=y'また はy≠y') から成るp層とが接合された少なくとも1つ のpn接合を設けたことを特徴としている。

【0009】第2発明は、n層及びp層を、禁制帯幅が 同一な空化ガリウム系化合物半導体で構成したことを特 徴としている。

【0010】第3発明は、pn接合を、禁制帯幅の比較

3

的大きい窒化ガリウム系化合物半導体から成る層と、禁 制帯幅の比較的小さい窒化ガリウム系化合物半導体から 成る層との接合により構成したことを特徴としている。

[0011] 第4発明は、禁制帯幅の比較的小さい層を、相互に禁制帯幅及び混晶組成が同一又は異なり、その層に対して禁制帯幅の比較的大きい層で挟んだ構造を有することを特徴とする。

【0012】第5発明は、禁制帯幅の異なる層を2つ以上積層した構造であることを特徴とする。

【0013】第6発明は、アクセプタ不純物をドープし 10 た室化ガリウム系化合物半導体から成る層に電子線を照 射してp型化させた層を有することを特徴とする。

【0014】第7発明は、p型化された窒化ガリウム系 化合物半導体から成る層とその層に対する電極用金属と の接触部分の形状を短冊状としたことを特徴とする。

【0015】第8発明は、基板に、サファイア、Si、6H -SiC又はGaN を用いることを特徴としている。

[0016]

【作用及び効果】 ((Al Gai) Ini N:0≤x≤1,0≤y≤1)半導体において、本発明者等により、初めてp型電導 20性を示す層の製作が可能となった。これにより、上配の室化ガリウム系化合物半導体で構成されたキャリア注入型のレーザダイオードの製作及びその発振が可能となった。

【0017】本発明のように電子線照射処理による(Al Gai.) Ini. Nのp型化効果と、構造を工夫することにより、育色から紫色及び紫外光領域の発振被長を持つ半導体レーザダイオードが実現された。

[0018]

【発明の概要】上配発明において、窒化アルミニウムガ 30 リウムインジウム(Al Gai-) In: N 単結晶作製用基板には、サファイア, 珪素(Si),6B 炭化珪素(6H-SiC)ないし窒化ガリウム(GaN) を用いることができる。

[0019] サファイアを基板とする場合には少なくと も低温(例えば約600℃)で堆積したAIN 薄膜を含む層 を緩衝層とするのが望ましい。

【0020】SIを基板とする場合には少なくともSC-SiC 薄膜一層か或いは3C-SiC薄膜及びAIN 薄膜の二層を含む 層を緩衝層とするのが望ましい。

【0021】6H-SICを基板とする場合には直接ないしGaNを緩衝層とするのが望ましい。GaNを基板とする場合には直接単結晶作製が行なわれる。Si, GH-SIC 及びGaNを基板とする場合にはn型単結晶が用いられる。

【0022】まず、同一組成同士の結晶によるpn接合構造を作製する場合につき述べる。サファイアを基板とする場合、(Al Gai-) Ini-N を成長させる直前に、基板温度を所望の値(例えば 600℃)に設定し、成長炉内に少なくともアルミニウム(AI) を含む化合物及び窒素の水酸化物を導入し、サファイア基板表面にAIN 薄膜緩衡層を形成する。

【0023】その後、Alを含む化合物の導入を止め、基板温度の再設定を行う。そして、所選の混晶組成となるようにAlを含む化合物、ガリウム(Ga)を含む化合物及びインジウム(In)を含む化合物を導入してn型(Al Ga₁) In₁-N 単結晶の成長を行う。

[0024] なお、この場合n型単結晶の抵抗率を下げるためにSi, 酸素(0),硫黄(S),セレン(Se), テルル(Te) などドナー不純物となる元素を含む化合物を同時に導入しても良い。

[0025]ドナー不純物をドーピングする場合、その機度に関しては n層に均一にドーピングしても良い。 又、 n層のオーム性電極形成を容易にするために n層成長初期に高機度にドーピングし、 p n接合付近ではドーピングしないか或いは低機度にドーピングしても良い。 [0026]次に、一度、ウエハを成長炉から取り出し、試料表面の一部を選択成長用マスクとなる物質、例えば酸化珪素(\$101)により覆い、再びウエハを成長炉に戻す。又は、ウエハを取り出さずそのまま成長を続ける。

80 【0027】少なく、も所望の混晶組成となるようなAlを含む化合物、Gaを占む化合物、Inを含む化合物及び窒素の水素化物及びアクセプタ不純物となる元素、例えばベリリウム(Be)、マグネシウム(Mg)、亜鉛(2n)、カドミウム(cd)、炭素(C)を含む化合物を成長炉に導入してアクセプタ不純物をドープした(Al Gai-) In:-N 単結晶(p層)の成長を行う。

【0028】アクセプタドープ層の成長膜厚は電子線照射処理する場合の電子線侵入長を考慮して決定する。 次にウェハを成長炉から取り出し、アクセプタドープ(A 1 Ga₁) In₁-N 層の電子線照射処理を行う。

【0029】電子線照射処理する領域は試料表面全体或いは一部、例えば短冊状とする。試料表面全体に電子線を照射する場合には、更に、アクセプタドープ層(p層)の上に絶縁層を堆積し、その絶縁層の一部に短冊状の窓を開け、その窓の上に金属を接触させ、p層に対するオーム性電極を形成する。 短冊状に電子線照射処理する場合には、電子線の照射された領域の一部或いは全部を覆うように金属を接触させ、p層に対するオーム性電極を形成する。

(0 【0030】最終的に、p層と金属の接触する部分の形状は短冊である。n層の電極は選択成長用マスクを取り外して、その後に形成するか、或いはアクセプタドープ層(p層)の一部を表面倒からエッチングして下層のn層に対して窓を開け、金属を接触させオーム性電極を形成する。

【0031】 n型のSi、GH-SiC或いはGaN を基板として 用いる場合もほぼ同様の手段により素子作製を行う。し かし、選択成長技術は用いず、p層とn層に対する電極 は素子の上下の両側に形成する。即ち、n層電極は基板 50 裏面全体に金属を接触させオーム性電極を形成する。 5

【0032】以上が同一組成の結晶によるpn接合構造 の半導体レーザダイオードを作製する場合の基本的方法 である。異種混晶組成の結晶の接合、いわゆるヘテロ接 合を利用した素子を作製する場合にも、pn接合を形成 するという点では上記同一混晶組成の結晶の接合を利用 する場合と同様である。

【0033】単一のヘテロ接合を形成する場合、同一混 晶組成の結晶によるpn接合に加え、更にn層側に禁制 帯幅が大きい π型の結晶を接合して少数キャリアである---正孔の拡散阻止層とする。

【0034】(Al Gas-) Ins-N 系単結晶の禁制帯幅付 近の発光はn層で特に強いため、活性層はn型結晶を用 いる必要がある。(Al Gai-) In: - N 系単結晶のパンド 構造は(Al Gaj-) Inj- As系単結晶や(Al Gaj-) Inj-P 系単結晶と似ており、パンド不連続の割合は価電子帯 よりも伝導帯の方が大きいと考えられる。しかし、(A) Gai-) Ini- N 系単結晶では正孔の有効質量が比較的大 きいためn型同士のヘテロ接合は正孔拡散阻止として有 効に作用する。

【0035】二つのヘテロ接合を形成する場合、禁制帯 幅の比較的小さいn型の結晶の両側に各々禁制帯幅の大 きいn型及びp型の結晶を接合し禁制帯幅の小さいn型 の結晶を挟む構造とする。

【0036】多数のヘテロ接合を形成する場合、n型の 比較的禁制帯幅の大きい薄膜結晶と比較的禁制帯幅の小 さい薄膜結晶を複数接合し、その両側にそれぞれ更に禁 制帯幅の大きいn型及びp型の結晶を接合し、多数のへ テロ接合を挟む。

【0037】(Al Gai-) Ini- N 系単結晶の禁制帯幅付 近での光の屈折率は禁制帯幅が小さい程大きいため、他 の(Al Gai-) Ini- As系単結晶や(Al Gai-) Ini- P 系 単結晶による半導体レーザダイオードと同様、禁制帯幅 の大きい結晶で挟むヘテロ構造は光の閉じ込めにも効果 がある。

【0038】ヘテロ接合を利用する場合も、同一組成の 結晶によるpn接合の場合と同様に、オーム性電極組成 を容易にするため電極と接触する部分付近のキャリア機 度は高濃度にしても良い。

【0039】 n 型結晶のキャリア濃度はドナー不純物の ドーピング濃度により、またp型結晶のキャリア濃度は 40 アクセプタ不純物のドーピング濃度及び電子線照射処理 条件により制御する。又、特にオーム性電極形成を容易 にするため高キャリア濃度実現が容易な結晶を金属との 接触用に更に接合してもよい。

[0040]

【実施例】以下、本発明を具体的な実施例に基づいて説 明する。 ((Al Ga:-) In;- N:0≤x≤1,0≤y≤1)半導体 レーザダイオード用単結晶の作製には機型有機金属化合 物気相成長装置を用いた。以下基板としてサファイア、

を示す。

【0041】(1) サファイア基板の場合

図1は、サファイア基板を用いた半導体レーザダイオー ドの構造を示した断面図である。図1において、(0001) 面を結晶成長面とするサファイア基板1を有機洗浄の 後、結晶成長装置の結晶成長部に設置する。成長炉を真 空排気の後、水素を供給し1200℃程度まで昇温する。こ れによりサファイア基板1の表面に付着していた炭化水 紫系ガスがある程度取り除かれる。

【0042】次に、サファイア基板1の温度を 600℃程 皮まで降温し、トリメチルアルミニウム(TMA) 及びアン モニア(NEA) を供給して、サファイア基板1上に50mm程 度の膜厚を持つAIN 層2を形成する。 次に、TMA の供 給のみを止め、基板温度を1040℃まで上げ、TMA、トリメ チルガリウム(TMG) 及びシラン(SIL) を供給しSiドー プn型GaAIN 層3 (n層) を成長する。

· 【0043】一旦、ウェハを成長炉から取り出し、GaAl N 層3の表面の一部をSiO でマスクした後、再び成長 炉に戻して真空排気して水素及びNEL を供給し1040℃ま で昇温する。次に、TMG を供給して、S10g でマスクさ れていない部分に厚さ 0.5μmのGaN層 4を成長させ る。次に、TMA 及びピスシクロペンタディエニルマクネ シウム(Cp.Mg) を更に供給してドープGaAIN 層 5 (p 層)を 0.5µm成長する。

【0044】次に、マスクとして使用したS102 を弗酸 系エッチャントにより除去する。次に、ドープGaAIN 層 5 (p層) 上にSiO₂層7を堆積した後、縦1mm、横50μ mの短冊状に窓7Aを開け、真空チャンパに移して、ド ープGaAIN 層5(p層)に電子線照射処理を行う。典型 30 的な電子線照射処理条件を表に示す。

【表1】

電子製加速電圧	1 5 K V
エミッション電流	120 # ADL
電子線スポット低	60 µm φ
試料温度	297K

【0045】次に、ドープGaAIN 暦5 (p層) の窓8の 部分と、Siドープn型GaAlN 層3(n層)に、それぞ れ、金属電極を形成する。結晶成長は以上である。上記 の構造は、特許請求の範囲請求項4に記載の発明に対応 する。

【0046】(2)Si 基板の場合

SI基板上に作成したレーザダイオードの構造を図2に示 す。低抵抗n型Siの(111) 面基板8を有機洗浄の後、弗 酸系エッチャントにより表面の酸化物を取り除き結晶成 SI, 6H-SIC及びGaN を用いた場合各々について成長手順 50 長部に設置する。成長炉を真空排気の後水素を導入し基

7

板を1000℃まで昇温して、基板8の表面を洗浄化し、更に、プロパン(Ca Ha) いはアセチレン(Ca Ha) を供給する。これにより表面に3C-SIC薄膜9が形成される。

【0047】この後、成長炉内を一旦真空排気して余分なガスを取り除く。次に成長炉に水素を供給し基板温度を 600℃にし、TMA 及びNHL を供給してAIN 轉膜 10を 3C-SIC薄膜 9上に形成する。次に、TMA の供給のみを止め基板温度を1040℃にして、TMG, TMA 及びSIHL を供給してn型GaAIN 層 11 (n層)を成長する。

【0048】次に、TMA 及びSiB, のみの供給を止めGAN 10 層 12を 0.5μm成長し、再びTMA及びCP, Mgを加え Mg ドープGaAIN 層 13 (p層) を 0.5μm成長する。次に、MgドープGaAIN 層 13 (p層) 上にSiO。 層 15を堆積した後、縦 1 mm、横50μmの短冊状に窓 15 Aを開け、真空チャンパに移して、MgドープGaAIN 層 13 (p層) に電子線を照射する。電子線の照射条件は前実施例と同様である。その後、SiO。 層 15 倒からMgドープGaAIN 層 13 (p層) に対する電極 14 Aを形成し、他方、基板 8 の裏面に n型GaAIN 層 11 (n層) に対する電極 14 Bを形成した。 20

【0 D 4 9】(3)6H-SiC 基板の場合

6H-SIC基板上に作成したレーザダイオードを図3に示す。低抵抗n型6H-SICの(0001) 面基板16を有機洗浄の後、王水系エッチャントによりエッチングの後、結晶成長部に設置する。成長炉を真空排気の後、水素を供給し、1200℃まで昇温する。次に、成長炉に水素を供給し基板温度を1040℃にして、TMG, SIH。及びNHsを供給してn型GaN 緩衝層17を0.5~1μm程度成長する。次に、TMAを加え、n型GaN 緩衝層17の上にn型GaAN層18(n層)を成長する。

【0050】次に、n型GAN層180上に、前配OSi基板を用いたレーザダイオードと同一構造に、同一ガスを用いて、同一成長条件で、それぞれ、GAN 層19 を 0.5 μ m、MgドープGAN 層2 0 (p 層) を 0.5 μ mの厚さに形成した。次に、MgドープGAN 層2 0 上にSi0 Mg 2 を堆積した後、Wg 1 mm、Wg 1 mm、Wg 2 2 A を開け、東空チャンパに移して、Wg ドープGAN 層2 0 (p Mg 2 0 に電子線を照射した。電子線の照射条件は前実施例と同様である。

【0051】その後、Si02層22側からMgドープGaAIN層20(p層)に対する電極21Aを形成し、他方、基板16の裏面にn型GaAIN層18(n層)に対する電極21Bを形成した。

【0052】(4)GaN基板の場合

GaN 基板上に作成したレーザダイオードを図4に示す。 低抵抗n型GaN の(0001)面基板23を有機洗浄の後、リ ン酸+硫酸系エッチャントによりエッチングの後、この基板23を結晶成長部に設置する。次に、成長炉を真空排気の後、水素及びNB」を供給し、基板温度を1040でにして、5分間放置する。次に、TMG及びSiB」を更に加えてn型GaN 級衝層24を0.5~1 μmの厚さに形

成した。

【0053】次に、TMA を加え、n型GaAlN B25 を成長させた。次に、n型GaAlN B25 の上に、前配のS1 基板を用いたレーザダイオードと同一構造に、同一ガスを用いて、同一成長条件で、それぞれ、GaN B26 を 0.5μ m、Mg ドープGaAlN B27 (pB) を 0.5μ mのp で成した。次に、Mg ドープGaAlN B27 上にGaAlN B27 上にGaAlN B27 上にGaAlN B27 と地積した後、Wax 100 一点 Wax 100 年間 大阪 Wax 100 年間 Wax 100 年間 大阪 Wax 100 年間 Wax 100年間 Wax 100

[0054] その後、S10x 層29側からMgドープGAAIN 層27 (p層) に対する電極28Aを形成し、他方、基板23の裏面にn型GAAIN 層25 (n層) に対する電極28Bを形成した。

[0056] 上配のいづれの構造のレーザダイオードも、室温においてレーザ発振した。

【図面の簡単な説明】

【図1】サファイア基板上に作製した本発明の具体的な一実施例に係る ((Al Gai-) Ini-N:0≤x≤1,0≤y≤1) 系半導体レーザダイオードの構成を示した断面図。

【図2】S1基板上に作製した本発明の具体的な一実施例 に係る ((Al Gai-) Ini- N:0≤x≤1,0≤y≤1)系半導体 レーザダイオードの構成を示した断面図。

30 【図3】6H-S1C基板上に作製した本発明の具体的な一実施例に係る((Al Ga:) In: N:0≤x≤1,0≤y≤1)系半導体レーザダイオードの構成を示した断面図。

【図4】GaN 基板上に作製した本発明の具体的な一実施例に係る ((Al Gai-) Ini-N:0≤x≤1,0≤y≤1)系半導体レーザダイオードの構成を示した断面図。

【符号の説明】

1-サファイアの(0001)面基板

- 2, 9, 17-AiN 緩衝層
- 3, 11, 18, 25-n型AlGaN 層 (n層)
- 7 4, 12, 19, 26-GaN 層
 - 5, 13, 20, 27-MgドープAlGaN 層 (p層)
 - 7, 15, 22, 29-SIO₂ 層

6A, 14A, 21A, 28A―電極 OMgドープAIGAN 層 (p層) に対する)

6B, 14B, 21B, 28B一電極(n型AlGaN 層 (n層) に対する)

【図2】

[図3]

[図4]

フロントページの続き

(72)発明者 岡崎 伸夫

爱知県西春日井郡春日町大字蔣合字長畑1 番地 豊田合成株式会社内

(72)発明者 真部 勝英

愛知県西春日井郡春日町大字蔣合字長畑1 番地 豊田合成株式会社内 (72)発明者 赤碕 勇

愛知県名古屋市西区浄心1丁目1番38-805

(72)発明者 天野 浩

愛知県名古屋市名東区神丘町二丁目21 虹 ケ丘東団地25号棟505号室