Problem 1:

i)
$$\dot{x}_1 = \lambda - k \dot{x}_1 \dots \dot{x}_2 = k \dot{x}_1 - k \dot{x}_2$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} u - kx_1 \\ kx_1 - kx_2 \end{bmatrix}$$

$$sX_{1}(s) = \frac{u}{s} - kX_{1}(s)$$

$$(S+k) \times_{1}(s) = \frac{M}{s} = 0 \qquad \times_{1}(s) = \frac{1}{s(s+k)}$$

$$T_1 = \frac{X_1(s)}{u} = \frac{1}{s(s+k)}$$

$$T_2 = \frac{X_2(s)}{u} = \frac{K}{s(s+k)^2}$$

$$ST_2 = \frac{k}{(S.t.k)^2} = \frac{k}{S^2 \cdot 2sktk^2}$$
 for [no oschlatur.]

	X; = W-K, X;	$\dot{x}_2 = K_1 x_1 - K_2 x_2$
	S.X,(5) = 14-	$k_1 \times_1(S) = D \cdot (S+k_1) \times_1(S) = \frac{M}{S} = D \cdot \times_1(S) \cdot \frac{M}{S(S+k_1)}$
	5 X ₂ (5) 2 · K ₁	$\chi_{i}(s) - \chi_{i} \chi_{i}(s) = \nabla \cdot \chi_{i}(s) = \frac{\chi_{i} \chi_{i}(s)}{S_{i} \chi_{i}}$
		$= \frac{k_1}{5 + k_2} \cdot \frac{21}{5(5 + k_1)}$
	X, will still	l.m. Le oscilation
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5 (5+k1)(5+k2) =D ST2 = K1 5 (5+k1)(5+k2) 5+k1
		Wn= Jkiki 5 = k1+k2 2.Jkiki
		is ki + kz, = +1 so / nill oscallare.
3)	(1.8 C18 => Wn>1
	t _s <9.2	4,6 < 9,2 = 0 = >0,5
	2\	c= 25 m

. 4;	$\dot{y} = -\lambda^2 y + \chi_2$
	$5 \cdot Y(s) = -\lambda^2 \cdot Y(s) + \lambda \lambda X_2(s)$
· · · · · · · · · · · · · · · · · · ·	$Y(s) = \frac{1}{S + \lambda^2} Y_2(s) = \frac{1}{S + \lambda^2} \frac{ku}{S(s + k)^2}$
	TO TO THE STATE OF THE DE
	(1/4)
	$T_{\gamma} = \frac{Y(s)}{u^2} \frac{k}{s(s+\lambda^2)(s+k)^2}$
· · · · · · · · · · · · · · · · · · ·	poles. Hable? Jes $\frac{1}{2}$ roots all $\text{Re}(\mathbf{y}) < 0$. poles are Hable is proceed with FVT.
· · · · · · · · · · · · · · · · · · ·	Im $y(t) = \lim_{s \to \infty} \gamma(s) = \frac{1}{s + \lambda^2} \frac{k \cdot \lambda k}{s(s + k)^2}$ No. will not convey
· · · · · · · · · · · · · · · · · · ·	we wan to replace SSE: so integral carroller.
	os trasfr frc. Y . $T_y = \frac{k}{s(s+\lambda^2)(s+k)^2}$

	K		
· · · · · · · · · · · · · · · · · · ·	5(5+X2)(5+K)	7 · · · · · · · · · · · · · · · · · · ·	Ki (6)
		K _I .G.	··· k _I ····· k
		1. Kili = D.	S S(54/2) (546)2
			1-1 Kx K 5 · s (s+1/2) (s+16)2
			$S \cdot S (S+\lambda^2)(S+k)^2$
		· · · · · · · · · · · · · · · · · · ·	K.
			52(5+22)(5+k)2+k2k
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	S (S+1) (S+1) + KI
			k _I
			S. + 35 4 35 3 5 4 Kz
Sleste y	poles ?		p proced of pvT
3. 3.	3 0 1 kg	17 Kt >0.	him e(+) = (m S.E(s)
	3	· · · · · · · · · · · · · · · · · · ·	/ s(R) 5+35+353+5
3 kz + 18		to change on sing	54)543°45°4KI
	It &	stelle!	R=1.3. =>
i il iki			

lin	55+354+357+52 =		
	59435453464	YAY	
		 	· · · · · · · · · · · · · · · · · · ·
		 	· · · · · · · · · · · · · · · · · · ·
		 	. www.septemberleather.com
		 - ,	

Problem ?

$$\frac{Y}{R} = \frac{G_1}{1+G_1K} \cdot \frac{27G_2}{7} = \frac{G_1}{1+G_1G_2} \cdot \frac{27G_2}{7} \cdot \frac{G_1(1+K_1K_2) \cdot 27G_2}{7} \cdot \frac{G_1(1+K_1K_2) \cdot 27G_2}{7} \cdot \frac{G_1(1+K_1K_2) \cdot 27G_2}{1+G_1G_2 \cdot 1+K_1K_2}$$

$$\frac{27(1+K_1K_2)}{(K_1K_2+1)s^2+(6\cdot K_1K_1+K_2+6)s+(12K_1K_2+5K_2+12)}$$

$$K_1K_2+1$$

St. 6+6K, Kz+Kz 12K, Kz+5kz+12 K, Kz+1 S+ K, Kz+1

Coc Strongs .	= 1 6 K, K2+ K2+6	12k1 k2 + 5k2+12
	12k, k2 +5kx+12	. No. sish chaze:
66, k	etkith	12k, kz+kz+6>0
0. 12k, k2	t Sk ₂ t.12	$\frac{3k_{2}}{2}$ $\frac{3k_{1}}{2}$ $\frac{3k_{1}}{2}$ $\frac{3k_{2}}{2}$ $3k$
E = R-Y		
	(k,k2	1 (6 k, k, + k, + b) . 5 + 12 k, k, t + 5 (2+12)
	Coral (Kikzi	1) 527 (6k, kz+kz+6) 5-15k, kz+5kz+12)
lim e(t)) = \lmsE(s) = \cdots \sigma^2 + \cdots \sigma^2	+s + 12k, k2+5k2-15
	-15k1k2+5k2-15.=	
		= Mr. werks, ? ?

$t_{5} = \frac{4.6}{5} \times 1.3$	Mp=e 11=52 <0:03) calculate has CAS.
	>0.749804	
	wn>3.538	1 . 5- min = 3.5.38
2 Zwa =	$6 k_1 k_2 + k_2 + 6 = 9.279 \Rightarrow \sqrt{5}$	wn = 15
	= 12k, k2+5k2+12 = 27,84-2	Cn = 353
		n= 5116 5,276
· Lets cheele to se	e of n all well, . > (K; = 1)	3,093 2=\$ > SSE=0
	√1.5 √152 0.303% 50,43334 ∠3%. ✓	look at end of prev page.
ts:=	4,6 8 wn 0 8793 5.776	0,99155
au	Fonditis soushed: (K1 = 0.01) (K2 = 3.093)	