Amplificateur opérationnel en régime non linéaire

Table des matières

1	Comparateur à AO			
	1.1	Comp	arateur simple en boucle ouverte	
			arateur en boucle fermée : trigger de schmitt	
		1.2.1	Montage	
		1.2.2	Stabilisation du montage	
		1.2.3	Comparateur à hysterésis	
2 Multivibrateur astable				
			ıge	
	2.2	Etude	théorique	

1 Comparateur à AO

Il s'agit d'opérateur à AO supposé ideal, en régime non linéaire ($\varepsilon \neq 0$) on obtient à la sortie

- Saturation basse si $\varepsilon < 0$
- Saturation haute si $\varepsilon > 0$

1.1 Comparateur simple en boucle ouverte

Cet opérateur à AO va permettre de comparer une tension $v_e(t)$ appliquée sur une entrée (+) (par exemple) et une tension de référence v_r sur l'autre entrée .

$$\varepsilon = v^+ - v^- = v_e - v_r$$

si $v_e > v_r \Rightarrow \varepsilon > 0$ saturation haute
si $v_r > v_e \Rightarrow \varepsilon < 0$ saturation basse

 \bullet Remarque : Si l'on permute les deux entrées, le comparateur est dit inverseur . En pratique la caractéristique de transfert est visualisé en mode X-Y de l'oscilloscope

1.2 Comparateur en boucle fermée : trigger de schmitt

1.2.1 Montage

On pose

$$\beta = \frac{R_1}{R_1 + R_2}$$

$$v_r' = (1 - \beta)v_r = \frac{R_2}{R_1 + R_2}v_r$$

1.2.2 Stabilisation du montage

Pour montrer l'instabilité du montage on considère que l'AO est réel tq v_s et ε sont reliés par l'équation : on suppose que $v_r=0$

$$\tau \frac{dv_s}{dt} + v_s = \mu \varepsilon$$

$$v^{+} = R_{1}i = \frac{R_{1}}{R_{1} + R_{2}}v_{s} = \beta v_{s} \text{ et } \varepsilon = \beta v_{s} - v_{e}$$

$$\tau \frac{dv_s}{dt} + (1 - \mu\beta)v_s = -\mu v_e$$

 $\mu\beta >> 1 \Rightarrow v_s = k \exp(\frac{\mu\beta}{\tau}t) \to \infty, t \to \infty$ (solution de l'équation SSM) donc v_s diverge et l'AO sature en tension .

1.2.3 Comparateur à hysterésis

$$v^{+} = v_r + R_1 i = v_r + R_1 \frac{v_s - v_r}{R_1 + R_2} = v_r + \beta(v_s - v_r) = \beta v_s + v_r'$$
$$\varepsilon = v^{+} - v^{-} = \beta v_s + v_r' - v_e$$

▶ Saturation haute
$$\varepsilon > 0 \Rightarrow v_e < \beta v_s + v_r' = \beta V_{sat} + v_r' = v_{e2}$$

- ▶ Saturation basse $\varepsilon < 0 \Rightarrow v_e > -\beta V_{sat} + v'_r = v_{e1}$
- ➤ Cycle d'hysterésis

On part du point A_0 tq $v_s = +V_{sat} \Rightarrow \varepsilon > 0$

On augmente la tension jusqu'à $v_e=v_{e2}$ donc on décrit le ségment A_0A_2 .

À $v_e=v_{e2}:\varepsilon=v_{e2}-v_{e2}=0\Rightarrow$ basculement de v_s à $-V_{sat}$ et si on augmente v_e toujours on aura $v_s=-V_{sat}$ car $\varepsilon<0$

On diminue v_e jusqu'à $v_e=v_{e1}$ t
q $\varepsilon=0\Rightarrow$ basculement de v_s à $+V_{sat}$ d'où l'allure du cycle à hysterésis

La largeur du cycle est

$$\Delta v_e = v_{e2} - v_{e1} = 2\beta V_{sat}$$

Le centre du cycle à hysterésis

$$v_e = \frac{v_{e1} + v_{e2}}{2} = v_r'$$

2 Multivibrateur astable

2.1 Montage

Le signal de sortie $\pm V_{sat}$ fournie par le trigger de schmitt, est intégré par un circuit RC Ce système (non linéaire) à deux états instables correspondant aux basculement de v_s

est appelé multivibrateur astable.

Intérêt : Il permet de générer des signaux périodiques créneau $v_s(t)$ et pseudo-triangulaire $v_c(t)$ associés à des oscillations de relaxation .

2.2 Etude théorique

$$v_c=v^-,\beta=\frac{R_1}{R_1+R_2},\tau=RC\text{ et }v^+=R_1i_1=\frac{R_1}{R_1+R_2}v_s=\beta v_s$$
 on choisit comme origine du temps $t=0$ l'instant où v_s bascule de $+V_{sat}$ à $-V_{sat}$ $v_s(0^-)=V_{sat}$ et $v_s(0^+)=-V_{sat}$, $\varepsilon(0^-)=v^+(0^-)-v^-(0^-)=0$ $v_c(0^-)=\beta v_s(0^-)=\beta V_{sat}$ La continuité de la tension aux bornes du condensateur $v_c(0^+)=v_c(0^-)=\beta V_{sat}$ $\varepsilon(0^+)=v^+(0^+)-v^-(0^+)=\beta v_s(0^+)-v_c(0^+)=-\beta V_{sat}-\beta V_{sat}=-2\beta V_{sat}$ on déduit que

$$\varepsilon(0^+) = -2\beta V_{sat} < 0$$

donc le condensateur se décharge dans R:

$$i = c \frac{dv_c}{dt}$$
 et $v_c + Ri = v_s \Rightarrow \boxed{\tau \frac{dv_c}{dt} + v_c = v_s = -V_{sat}}$

la solution de cette équation est $v_c(t) = k \exp(-\frac{t}{\tau}) - V_{sat}$ $v_c(0^+) = \beta V_{sat} \Rightarrow k = (1+\beta)V_{sat}$

$$v_c(t) = V_{sat}[(1+\beta)\exp(-\frac{t}{\tau}) - 1]$$

 $v_{c} \text{ diminue jusqu'à } \varepsilon = 0 \Rightarrow \text{basculement à } + V_{sat}$ $\varepsilon = 0 \Rightarrow v_{c}(t_{1}^{-}) = v^{+}(t_{1}^{-}) = -\beta V_{sat} \text{ donc}$ $-\beta V_{sat} = V_{sat}[(1+\beta) \exp(-\frac{t_{1}}{\tau}) - 1] \Rightarrow t_{1} = \tau \ln \frac{1+\beta}{1-\beta}$ $\text{à } v_{s} = +V_{sat} : v_{c} + \tau \frac{dv_{c}}{dt} = V_{sat} \Rightarrow v_{c} = k \exp(-\frac{t-t_{1}}{\tau}) + V_{sat}$ $v_{c}(t_{1}^{+}) = v_{c}(t_{1}^{-}) = -\beta V_{sat} \Rightarrow v_{c} = V_{sat}[1-(1+\beta) \exp(-\frac{t-t_{1}}{\tau})]$ $v_{c} \text{ augmente jusqu'à } \varepsilon = 0 \text{ à } t = t_{2} \Rightarrow \text{ basculement à } -V_{sat}$ $\varepsilon(t_{2}^{-}) = 0, v_{c}(t_{2}^{-}) = \beta V_{sat} = v^{+}(t_{2}^{-})$ $\exp(-\frac{t_{2}-t_{1}}{\tau}) = \frac{1-\beta}{1+\beta}$

$$t_2 = t_1 + \tau \ln(\frac{1+\beta}{1-\beta}) = 2t_1$$

$$T = 2t_1 = 2\tau \ln(\frac{1+\beta}{1-\beta}) = 2Rc \ln(\frac{2R_1 + R_2}{R_2})$$

$$T = 2Rc\ln(1 + 2\frac{R_1}{R_2})$$