Cognome	\mathbf{e}	Nome:	
---------	--------------	-------	--

Esame di Strutture Discrete

14 Luglio 2021

Soluzioni

Prima parte

- 1. Data la formula $(p \land \neg q) \Rightarrow (q \lor r)$, quale dei seguenti assegnamenti di valore alle variabili proposizionali p, q, r non soddisfa la formula?
 - A. p = T, q = T, r = T
 - **B.** p = T, q = F, r = F (RISPOSTA CORRETTA)
 - C. p = F, q = T, r = F
 - D. la formula è sempre soddisfatta

Giustificazione: La formula data è un'implicazione quindi è falsa in un solo caso, ovvero quando la premessa è vera e la conseguenza è falsa. Nello specifico, quando $p \land \neg q$ è vero e $q \lor r$ è falso. p = T, q = F rende vera la premessa $p \land \neg q$ mentre q = F, r = F rende falsa la conseguenza.

- 2. Quali delle seguenti formule è una tautologia?
 - A. $\neg (p \land \neg p)$ (RISPOSTA CORRETTA)
 - B. $\neg (p \lor \neg p)$
 - C. $\neg(p \to \neg p)$
 - D. Nessuna delle formule precedenti è una tautologia

Giustificazione: La formula $p \land \neg p$ ossia il "principio di non contraddizione" è sempre falsa, e quindi la sua negazione $\neg p \lor p$, ossia "la legge del terzo escluso", è sempre vera.

- 3. Dati gli insiemi $A=\{1,2,3\}$ e $B=\{3,4,5\}$, quanti sono gli elementi della famiglia $\mathcal{P}(A)\cup\mathcal{P}(B)$?
 - A. 13
 - **B.** 14 (RISPOSTA CORRETTA)
 - C. 15
 - D. 16

Giustificazione: $\mathcal{P}(A)$ e $\mathcal{P}(B)$ hanno entrambi 8 elementi. La loro intersezione non è vuota perché hanno in comune gli insiemi $\{3\}$ e \emptyset . Quinsi la loro unione ha 16-2=14 elementi.

- 4. Data la famiglia di insiemi $\mathcal{A}=\{\{1,2\},\{2,3\},\{3,4\}\}$, quanti sono gli elementi della chiusura rispetto all'intersezione di \mathcal{A} ?
 - A. 4
 - B. 5
 - C. 6 (RISPOSTA CORRETTA)
 - D. 7

Giustificazione: Nella chiusura rispetto all'intersezione della famiglia data ci sono tutti $e \ 3 \ gli \ insiemi \ della famiglia ed inoltre \ \{2\} = \{1,2\} \cap \{2,3\}, \ \{3\} = \{3,4\} \cap \{2,3\}, \ e \ \emptyset = \{1,2\} \cap \{3,4\}.$

- 5. Sia A un insieme non vuoto, e sia R una relazione binaria definita su A. La relazione R si dice anti-simmetrica se
 - A. per ogni $x \in A$, R(x, x) è falso;
 - **B.** per ogni $x, y \in A$, se R(x, y) e R(y, x) sono entrambe vere, allora x = y; (RISPOSTA CORRETTA)
 - C. per ogni $x,y\in A,$ se R(x,y) è vera allora R(y,x) è falsa;
 - D. per ogni $x,y,z\in A,$ se R(x,y) e R(y,z) sono entrambe vere, allora z=y.

Giustificazione: Vedi definizione di relazione anti-simmetrica

Seconda parte

- 6. Il principio di induzione afferma che data una proprietà P(n) sui numeri naturali, tale proprietà è vera per ogni numero n se è vera P(0) ed inoltre, per ogni n
 - A. è vera P(n + 1) quando è vera P(n) (RISPOSTA CORRETTA)
 - B. sono vere P(n) e P(n+1)
 - C. è vera P(n+1)
 - D. Nessuna delle precedenti

Giustificazione: Vedi definizione del principio di induzione

- 7. Utilizzando l'algoritmo di Euclide per il calcolo del MCD tra 561 e 45 abbiamo
 - A. MCD(561, 45) = MCD(45, 34)
 - B. MCD(561, 45) = MCD(45, 33)
 - C. MCD(561, 45) = MCD(45, 21) (RI-SPOSTA CORRETTA)
 - D. MCD(561, 45) = MCD(45, 12)

Giustificazione: Nel compito d'esame la risposta C riportava un errore di stampa MCD(561,45) = MCD(45,22) La risposta corretta è MCD(561,45) = MCD(45,21) perché $541 \mod 45 = 21$.

- 8. Per quali delle seguenti coppie (n, m) non esiste l'inverso di $n \mod m$?
 - **A.** (121, 55) (**RISPOSTA CORRETTA**)
 - B. (72, 55)
 - C. (121, 72)
 - D. Per nessuna di tali coppie di valori

Giustificazione: L'inverso modulare esiste se e solo se i 2 numeri sono coprimi. $121 = 11^2$ e $55 = 5 \cdot 11$ quindi non sono coprimi e l'inverso non esiste. Il numero $72 = 2^3 \cdot 3^2$ e quindi è coprimo sia con 55 che con 121.

- 9. Calcolare $145^{145} \mod 13$
 - A. 2 (RISPOSTA CORRETTA)
 - B. 6
 - C. 8
 - D. 10

Giustificazione: *Notiamo che* 145 mod 13 = $2, \phi(13) = 12, 145 \text{ mod } 12 = 1.$

- 10. Quale numero tra 104, 105, 140, 145 ha un valore di ϕ diverso dagli altri 3?
 - A. 104
 - B. 105
 - C. 140
 - D. 145 (RISPOSTA CORRETTA)

Giustificazione:
$$\phi(104) = \phi(105) = \phi(140) = 48$$
, mentre $\phi(145) = 112$. Terza parte

- 11. Questo test contiene 20 domande con 4 possibili risposte per ogni domanda. Quante sono le possibili sequenze di risposte che si possono dare?
 - A. 2^{20}
 - B. 2^{30}
 - C. 2⁴⁰ (RISPOSTA CORRETTA)
 - D. 2^{50}

Giustificazione: 4 risposte possibili per ogni domanda quindi, regola del prodotto, 4^{20}

- 12. Dato l'insieme {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} quanti sono i sottoinsiemi di 5 elementi che contengono almeno un numero primo?
 - A. 240
 - B. 242
 - C. 244
 - D. 246 (RISPOSTA CORRETTA)

Giustificazione: Tutti i sottoinsiemi di cardinalità 5 di un insieme di 10 elementi sono $\binom{10}{5} = 252$. I numeri primi dell'insieme sono 4 ovvero 2, 3, 5, 7. Quindi, i sottoinsiemi di cardinalità 5 che non contengono alcuno dei primi sono $\binom{6}{5} = 6$. Tutti gli altri, ovvero 246 contengono almeno 1 primo.

- 13. Lanciamo tre pedoni sopra una scacchiera 4 × 4 con, ovviamente, metà caselle nere e metà bianche. Assumendo che ogni pedone cada interamente dentro una casella della scacchiera, e non cada dentro una casella dove era caduto precedentemente un altro pedone, qual è la probabilità che tutti e tre i pedoni cadano dentro una casella bianca?
 - A. $\frac{1}{10}$ (RISPOSTA CORRETTA)
 - B. $\frac{1}{12}$
 - C. $\frac{1}{14}$
 - D. $\frac{1}{16}$

Giustificazione: Le caselle della miniscacchiera sono 16, 8 bianche e 8 nere. Il primo pedone lanciato cade su una casella bianca con probabilità $\frac{8}{16}$. Il secondo con probabilità $\frac{7}{15}$ ed il terzo con probabilità $\frac{6}{14}$. I tre eventi sono indipendenti e quindi la probabilità che si verifichino tutti e tre è data dal prodotto: $\frac{8}{16} \cdot \frac{7}{15} \cdot \frac{6}{14} = \frac{1}{10}$.

14. Lanciamo 2 dati. Qual è la probabilità che la somma dei 2 valori ottenuti sia un numero primo?

- A. $\frac{3}{1}$
- B. $\frac{5}{12}$ (RISPOSTA CORRETTA)
- C. $\frac{3}{18}$
- D. $\frac{5}{18}$

Giustificazione: I casi totali sono ovviamente 36. I casi in cui la somma è un numero primo sono i seguenti 15:

Quindi $\frac{15}{36} = \frac{5}{12}$.

- 15. Per la lotteria di Ferragosto vengono venduti 4500 biglietti. Io ne ho comprati a sufficienza per avere probabilità $\frac{1}{15}$ di vincere. Quanti ne ho comprati?
 - A. 250
 - B. 300 (RISPOSTA CORRETTA)
 - C. 350
 - D. 400

Giustificazione: Semplice calcolo: se x è il numero dei biglietti comprati allora $\frac{x}{4500} = \frac{1}{15}$. Quindi $x = 4500 \cdot \frac{1}{15} = 300$.

Quarta parte

- 16. Dato un grafo orientato G, quale delle seguenti affermazioni è vera?
 - A. La somma dei gradi in uscita dei vertici è uguale alla somma dei gradi in entrata.
 - B. La somma totale di tutti i gradi, in entrata ed uscita, è uguale al doppio del numero degli archi.
 - C. Entrambe le affermazioni precedenti sono vere; (RISPOSTA CORRETTA)
 - D. Tutte le affermazioni precedenti sono false

Giustificazione: Controllare la definizione di grafo orientato e di grado dei vertici.

- 17. Quanti archi ha un grafo orientato completo con 10 vertici?
 - A. 100
 - B. 90 (RISPOSTA CORRETTA)
 - C. 60
 - D. 45

Giustificazione: Per ogni coppia ordinata di vertici (i, j) c'è un arco, quindi $10 \cdot 9 = 90$. Per chiarire, il vertice 1 ha un arco in uscita verso tutti gli altri 9 vertici. Il vertice 2 ha un arco in uscita verso tutti gli altri 9 vertici, etc.

GRAFOG

18. Dato il grafo *G* in figura, quante sono le sue componenti fortemente connesse?

A. 1

B. 2

C. 3 (RISPOSTA CORRETTA)

D. 4

Giustificazione: I vertici 1, 2, 3, 4 sono in un unica componente fortemente connessa. I vertici 5 e 6 sono, ognuno per conto proprio, una componente fortemente connessa.

- 19. Dato il grafo *G*, quale delle seguenti affermazioni è corretta?
 - A. Il grafo non è aciclico, ma è possibile eliminare un solo arco per renderlo aciclico. (RISPOSTA CORRETTA)
 - B. Il grafo possiede un un cammino hamiltoniano. (RISPOSTA CORRETTA)
 - C. Il grafo è colorabile con 2 colori, utilizzando l'algoritmo greedy.
 - D. Tutte le affermazioni precedenti sono false

Giustificazione: Se eliminiamo l'arco (4,1) il grafo diventa aciclico. Il grafo possiede un ciclo di lunghezza 3 e di sicuro non è colorabile con 2 colori. Ricordiamo che la colorabilità per un grafo orientato è definita come la colorabilità per lo stesso grafo quando si ignora l'orientamento degli archi. Il grafo non ha un "ciclo" hamiltoniano ma la domanda parla di cammino e quindi la risposta è si, c'è un cammino hamiltoniano: 2-4-1-3-5-6

20. Dato il grafo *G*, quale delle seguenti è la sua matrice di adiacenza?

$$A. \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$B. \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$C. \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Giustificazione: Il vertice 1 ha 2 archi in uscita verso i vertici 2 e 3. Solo le matrici C e D verificano tale proprietà. Il vertice 4 ha 2 archi in uscita verso i vertici 1 e 6. Solo la matrice D verifica tale proprietà.

DOMANDE EXTRA:

A queste domande rispondano, in alternativa alle domande 1 e 2, **SOLO** gli studenti immatricolati l'anno accademico scorso, che decidono di portare il programma dell'anno scorso.

- 21. Dati 3 insiemi A,B,C e supponendo che $A\setminus C=B\setminus C$ allora deve necessariamente essere vero che
 - A. $A \cap B = C$
 - B. A = B
 - C. $A \subseteq B$ oppure $B \subseteq A$
 - D. tutte le affermazioni precedenti sono false (RISPOSTA CORRETTA)

Giustificazione: Considera gli insiemi $A = \{1,2,3\}, B = \{1,2,4\}$ e $C = \{3,4\}.$ $A \setminus C = B \setminus C = \{1,2\}$ però

- $A \cap B = \{1, 2\} \neq C$
- $A \neq B$
- A non è un sottoinsieme di B e B non è un sottoinsieme di A
- 22. La congettura Union-Closed afferma che se una famiglia di insiemi è chiusa rispetto all'unione allora
 - A. Esiste un insieme della famiglia contenuto in almeno la metà degli insiemi della famiglia
 - B. Esiste un elemento che appartiene ad almeno la metà degli insiemi della famiglia (RISPOSTA CORRETTA)
 - C. Esiste un insieme della famiglia contenuto in tutti gli insiemi della famiglia
 - D. Esiste un elemento che appartiene a tutti gli insiemi della famiglia

Giustificazione: Controllare la definizione della congettura.