OSM Lab 2017: Math Pset 5

Wei Han Chia

Due: 21 July 2017

Problems from the Book

7.1

We will prove that if S is a non-empty subset of V, then conv(S) is convex.

Consider $z, y \in conv(S)$. Then we know by definition that $z = \sum_{i=1}^{n} \lambda_{i,z} x_i$ and $y = \sum_{i=1}^{n} \lambda_{i,y} x_i$. Now consider:

$$\lambda z + (1 - \lambda)y = \lambda \sum_{i=1}^{n} \lambda_{i,z} + (1 - \lambda) \sum_{i=1}^{n} \lambda_{i} x_{i,y}$$
$$= \sum_{i=1}^{n} (\lambda \lambda_{i,z} + (1 - \lambda)\lambda_{i,y}) x_{i}$$

Now since $\sum_{i=1}^{n} \lambda \lambda_{i,z} + (1-\lambda)\lambda_{i,y} = 1$, it follows that $\lambda z + (1-\lambda)y$ is in conv(S). As this holds for every z, y and any $\lambda \in [0,1]$, it follows that conv(S) is convex.

7.2

(i) Consider $x, y \in P$, where P is a hyperplane defined by a, b. Now:

$$\langle z = \lambda x + (1 - \lambda)y, a \rangle = \lambda \langle x, a \rangle + (1 - \lambda)\langle x, b \rangle = b$$

So $z \in P$, and therefore P is convex.

(ii) Consider $x, y \in H$, where H is again the half space defined by a, b. Now:

$$\langle z = \lambda x + (1 - \lambda)y, a \rangle = \lambda \langle x, a \rangle + (1 - \lambda)\langle y, a \rangle \le b$$

So $z \in H$, and therefore H is convex.

7.4

We will use parts (i) - (iv) to prove he following theorem. Let $C \subset \mathbb{R}^n$ be nonempty, closed and convex. A point $\mathbf{p} \in C$ is the projection of \mathbf{x} onto C iff

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle > 0 \quad \forall \mathbf{y} \in C$$

(i)

$$\|\mathbf{x} - \mathbf{y}\|^2 = \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y}, \mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y} \rangle$$

$$= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle + \langle \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$
 From the bilinearity and symmetry of inner products
$$= \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

(ii) From (i), we know that if $2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \ge 0$, then

$$\|\mathbf{x} - \mathbf{y}\|^2 \ge \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2$$

> $\|\mathbf{x} - \mathbf{p}\|^2$ Since $\|\mathbf{p} - \mathbf{y}\|^2 > 0$ when $\mathbf{y} \ne \mathbf{p}$

This is (\Rightarrow)

(iii) If $\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda) \mathbf{p}$, $\lambda \in [0, 1]$, then

$$\|\mathbf{x} - \mathbf{z}\|^2 = \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{z}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{z}\rangle$$
Substituting $\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{p}$

$$= \|\mathbf{x} - \mathbf{p}\|^2 + \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2 + 2\lambda\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y}\rangle$$

(iv) Now let **p** be a projection of **x** onto the convex set C. Since C is convex, for any $\mathbf{y} \in C$, we can define $\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{p} \in C$.

Now since \mathbf{p} is a projection, we know that

$$\|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{z}\|$$

$$\|0 \le \mathbf{x} - \mathbf{z}\|^2 - \|\mathbf{x} - \mathbf{p}\|^2$$
From (iii)
$$= \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2 + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$= \lambda \|\mathbf{y} - \mathbf{p}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

Now since $\lambda \|\mathbf{y} - \mathbf{p}\|^2 > 0$, it follows that $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle > 0$, and so we have (\Leftarrow) .

7.6

We will prove that if $f: \mathbb{R}^n \to \mathbb{R}$ is convex, then the set $S = \{\mathbf{x}\mathbb{R}^n | f(\mathbf{x}) \le c\} \subset \mathbb{R}^n$ is a convex set.

Proof. Consider any $\mathbf{x}_1, \mathbf{x}_2$ in S, and any $\lambda \in [0, 1]$. Now:

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) \le c$$

So clearly $\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$ is in S, and so S is convex.

7.7

We will prove that for any convex set C, and convex functions $f_1, ..., f_k$ taking C to \mathbb{R} , and for any $\lambda_1, ..., \lambda_k \geq 0$, the function

$$f(\mathbf{x}) = \sum_{i=1}^{k} \lambda_i f_i(\mathbf{x})$$

is convex.

Proof. Consider any $\mathbf{x}_1, \mathbf{x}_2$ in $C, \lambda \in [0, 1]$.

$$\lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) = \lambda \sum_{i=1}^k \lambda_i f_i(\mathbf{x}_1) + (1 - \lambda) \sum_{i=1}^k \lambda_i f_i(\mathbf{x}_2)$$

$$= \sum_{i=1}^k \lambda_i (\lambda f_i(\mathbf{x}_1) + (1 - \lambda) f_i(\mathbf{x}_2))$$

$$\geq \sum_{i=1}^k \lambda_i (f_i(\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2))$$

$$= f(\lambda \mathbf{x}_1 + (1 - \lambda)(\mathbf{x}_2))$$

And so f is a convex function.

7.13

Lets assume f(x) < M and f is convex. Now consider $x, y \in \mathbb{R}^n$. We will prove this by contradiction. If f were not constant, then there exists some x, y such that f(x) > f(y).

Then, $f(x) \leq \lambda(f(\lambda x + (1 - \lambda)y)) + (1 - \lambda(f(y)))$. But since f(x) > f(y), we have $f(x) - f(y) + \lambda f(y) \leq \lambda(f(\lambda x + (1 - \lambda)y))$. Now note that as $\lambda \to \infty$, this implies that we have $\lim_{\lambda \to \infty} f(\lambda x + (1 - \lambda y)) \geq \lim_{\lambda \to \infty} \frac{f(x) - f(y)}{\lambda} + f(y) = \infty$. However, this implies that f is unbounded, a contradiction.

7.20

We will prove that if $f: \mathbb{R}^n \to \mathbb{R}$ is convex and -f is also convex, then f is affine. Consider $x, y \in \mathbb{R}^n$.

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 Since f is convex $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$ Since $-f$ is convex $\implies f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y)$

Now clearly f is a linear transformation, and so our function f is an affine function with L=f and c=0.

7.21

We will show that if $D \subset \mathbb{R}$ with $f : \mathbb{R}^n \to D$, and if $\phi : D \to \mathbb{R}$ is a strictly increasing function, then \mathbf{x}^* is a local minimizer for $\phi \circ f(\mathbf{x})$ subject to constraints G and H if and only if \mathbf{x}^* is a local minimizer for the $f(\mathbf{x})$ subject to constraints G and H if and only if H is a local minimizer for the H and H is a local minimizer for the H and H if H and

Now if \mathbf{x}^* is a local minimizer of $\phi \circ f$, since ϕ is strictly increasing, this implies that for all \mathbf{x} fulfilling our constraints, $f(\mathbf{x}) \geq f(\mathbf{x}^*)$, and so \mathbf{x}^* is a local minimizer of f subject to the same constraints.

Now if \mathbf{x}^* is a local minimizer of f, then it follows that for all \mathbf{x} subject to our constraints, $f(\mathbf{x}) \geq f(\mathbf{x}^*)$. Now since ϕ is strictly increasing, it follows that $\phi \circ f(\mathbf{x}) \geq \phi \circ f(\mathbf{x}^*)$ for all \mathbf{x} subject to our constraints, and so it follows that \mathbf{x}^* is a local minimizer of $\phi \circ f$ subject to our constraints.