DIGITAL CIRCUITS

Week-11, Lecture-1 Sequential Circuits

Sneh Saurabh 23rd October, 2018

Digital Circuits: Announcements/Revision

Flip-flop Implementation: positive edge-triggered (1)

- When Clk = 0, SR latch connected to the output has S = R = 1, and present state is maintained
 - ➤ Input D can be 0 or 1, it will not matter
- When clock changes to Clk = 1
 - ➤ If D = 0, R changes to R = 0, and S remains at S=1 and Q=0 state reached
 - ➤ If D = 1, R = 1 remains, and S changes to S = 0 and Q = 1 state reached

Three SR latches: Two connected to Clk and D, One connected to the output

Flip-flop Implementation: positive edge-triggered (2)

To ensure edge-triggered operation

• At Clk = 1 changes in D should not be recorded further (only the value of D when positive edge occurred should decide Q/Q')

- At the positive edge Clk = 1, assume that D = 0
 - ➤ S = 1, R=0 is reached (as already explained)
 - ➤ If now D changes D = 1, no impact on the output of the bottom NAND gate

Flip-flop Implementation: positive edge-triggered (3)

To ensure edge-triggered operation

- At Clk = 1 changes in D should not be recorded further (only the value of D when positive edge occurred should decide Q/Q'
- At the positive edge Clk = 1, assume that D = 1
 - ➤ S = 0, R=1 is reached (as already explained)
 - ➤ If now D changes to D = 0, the output of the bottom NAND gate changes from 0 to 1
 - Since S=0, R remains at 1, (no impact of this change)
 - Since S=0, the output of the top NAND gate remains at 1 (no impact of this change) and S remains at 0

Sequential Circuits

Flip-flops with Clear/Preset

Flip-flops with Clear/Preset

Clear:

- It takes the flip-flop Q pin to 0
- Also called "Reset"

Preset:

- It takes the flip-flop Q pin to 1
- Also called "Set"

Two Types based on when the effect takes place:

- Asynchronous Clear/Preset:
 - ➤ The effect of Clear/Preset on Q is observed immediately (without waiting for clock edge)
- Synchronous Clear/Preset
 - ➤ The effect of Clear/Preset on Q is observed only when appropriate clock edge arrives

Flip-flops with Clear/Preset: Asynchronous vs. Synchronous

Flip-flops with Clear/Preset

Two Types based on level:

- Active High Clear/Preset
- Active Low Clear/Preset

Flip-flop with Asynchronous Clear/Preset

Operation:

- "Reset" or "Clear" is active low in this case
- When *Reset* = 0, *Q*′ is forced to 1 and *S* is forced to 1
- *Q* is changes to 0 immediately, irrespective of Clock

R	Clk	D	Q	Q'
0 1 1	X ↑	X 0 1	0 0 1	1 1 0

Flip-flop with Synchronous Clear/Preset

Operation:

- "Clear" is active high in this case
- When *Clear* = 1, and **Clock edge** arrives, *Q* is changes to 0

Sequential Circuits Other types of Flip-flops

JK Flip-Flop using D flip-flop

Problem:

A JK flip-flop is realized using a D flip-flop using the circuit shown alongside.

Obtain the functionality of the JK flip-flop in a form of *characteristics table*.

Characteristics Table

- A tabular representation of the functionality of a sequential circuit such as a flip-flop
- The next state of the circuit is represented as a function of inputs and the present state
 - \triangleright Next State: The state that results after clock transition Q(t+1)
 - \triangleright Present State: The state just before the application of clock edge Q(t)

JK Flip-Flop: Characteristics Table

Problem:

A JK flip-flop is realized using a D flip-flop using the circuit shown alongside.

Obtain the functionality of the JK flip-flop in a form of *characteristics table*.

J	K	Q(t+1)	Comment
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

JK Flip-Flop: Characteristics Equation

Problem:

A JK flip-flop is realized using a D flip-flop using the circuit shown alongside.

Obtain the functionality of the JK flip-flop in a form of *characteristics equation*

Characteristics Equation

- Representation of the functionality of a sequential circuit such as a flip-flop in the form of an algebraic expression
- Q(t+1) = f(inputs, Q(t))

JK Flip-Flop: Characteristics Equation

Problem:

A JK flip-flop is realized using a D flip-flop using the circuit shown alongside.

Obtain the functionality of the JK flip-flop in a form of *characteristics equation*

To obtain characteristics equation from circuit

• Express the function at "D" in terms of inputs and Q(t)

$$Q(t+1) = JQ' + K'Q$$