

CS 516 Compilers and Programming Languages II

Parallel Computing-4

Annoucements

Powerstrips will be down today around noon to reboot!

Project 1 deadline extension: Wednesday, April 1 (no joke ©!)

Reminder: Homework #2 sample solution has been posted

Homework #1 and #2 grades have been posted

Homework #3 has been posted; will cover vectorization algorithms this week

Definition:

Statement S_2 has a loop-carried dependence on statement S_1 if and only if S_1 references location M on iteration i, S_2 references M on iteration j and d(i,j) > 0 (that is, D(i,j) contains a "<" as leftmost non "=" component).

Example:

Loop-carried dependence

Level of a loop-carried dependence is the index of the leftmost non"=" of D(i,j) for the dependence.

For instance:

```
DO I = 1, 10

DO J = 1, 10

DO K = 1, 10

S<sub>1</sub> A(I, J, K+1) = A(I, J, K)

ENDDO

ENDDO

ENDDO
```

- Direction vector for S1 is (=, =, <)
- Level of the dependence is 3
- A level-k dependence between S_1 and S_1 is denoted by $S_1 \delta_k S_1$

Loop-carried Transformations

- Theorem Any reordering transformation that does not alter the relative order of any loops in the nest and preserves the iteration order of the level-k loop preserves all level-k dependences.
- Proof:
 - \rightarrow D(i, j) has a "<" in the kth position and "=" in positions 1 through k-1
 - \Rightarrow Source and sink of dependence are in the same iteration of loops 1 through k-1
 - \Rightarrow Cannot change the sense of the dependence by a reordering of iterations of those loops
- As a result of the theorem, powerful transformations can be applied

ITGERS Loop-carried Transformations

Example:

DO I = 1, 10

$$S_1 A(I+1) = F(I)$$

 $S_2 F(I+1) = A(I)$
ENDDO

can be transformed to:

Loop-independent dependences

Definition Statement S_2 has a loop-independent dependence on statement S_1 if and only if there exist two iteration vectors i and j such that:

- 1) Statement S_1 refers to memory location M on iteration i, S_2 refers to M on iteration j, and i = j.
- 2) There is a control flow path from S_1 to S_2 within the iteration.

Example:

```
DO I = 1, 10
S_1 	 A(I) = ...
S_2 	 ... = A(I)
ENDDO
```

ITGERS Loop-independent dependences

More complicated example:

```
DO I = 1, 9
S_1 \qquad A(I) = \dots
S_2 = A(10-I)
ENDDO
```

No common loop is necessary. For instance:

```
DO I = 1, 10
S_1 \qquad A(I) = \dots
ENDDO
DO I = 1, 10
S_2 = A(10-I)
ENDDO
```

Rutgers

Loop-independent dependences

More complicated example:

No common loop is necessary. For instance:

Note: Merging these two loops (loop fusion) would change the dependence pattern (true to anti dependencies), and therefore would not be valid.

Loop-independent dependences

Theorem If there is a loop-independent dependence from S_1 to S_2 , any reordering transformation that does not move statement instances between iterations and preserves the relative order of S_1 and S_2 in the loop body preserves that dependence.

- S_2 depends on S_1 with a loop independent dependence is denoted by S_1 δ_∞ S_2
- Note that the direction vector will have entries that are all "=" for loop independent dependences

RUTGERS Loop-carried & Loop-independent Dependencies

- Loop-independent and loop-carried dependence partition all possible data dependences!
- Note that if $S_1 \delta S_2$, then S_1 executes before S_2 . This can happen only if:
 - \rightarrow The distance vector for the dependence is greater than 0, or
 - \rightarrow The distance vector equals 0 and S_1 occurs before S_2 textually (note: we assume no control flow within loop)

...precisely the criteria for loop-carried and loop-independent dependences.

Simple Dependence Testing

• Theorem: Let α and β be iteration vectors within the iteration space of the following loop nest:

```
DO i_1 = L_1, U_1

DO i_2 = L_2, U_2

...

DO i_n = L_n, U_n

A(f_1(i_1, \ldots, i_n), \ldots, f_m(i_1, \ldots, i_n)) = \ldots

S_2 = A(g_1(i_1, \ldots, i_n), \ldots, g_m(i_1, \ldots, i_n))

ENDDO

...

ENDDO

ENDDO
```

RUTGERS Simple Dependence Testing

```
DO i_1 = L_1, U_1

DO i_2 = L_2, U_2

...

DO i_n = L_n, U_n

A(f_1(i_1, ..., i_n), ..., f_m(i_1, ..., i_n)) = ...

S_2 = A(g_1(i_1, ..., i_n), ..., g_m(i_1, ..., i_n))

ENDDO

ENDDO

ENDDO
```

A dependence exists from S₁ to S₂ if and only if there exist values of α and β such that

- (1) α is lexicographically less than or equal to β ($\alpha \le \beta$), and
- (2) the following system of dependence equations is satisfied:

$$f_i(\alpha) = g_i(\beta)$$
 for all i, $1 \le i \le m$

RUTGERS Dependence Testing

Can we solve this problem exactly?
What is conservative in this framework? (false positive vs. false negative)

Typically: restrict the problem to consider index and bound expressions that are linear functions

⇒ solving general system of linear equations in integers is NP-hard

Solution Methods

Inexact methods

- Greatest Common Divisor (GCD)
- Banerjee's inequalities

Cascade of exact, efficient tests (fall back on inexact methods if needed)

- Rice (see posted PLDI'91 paper)
- Stanford

Polyhedral dependence representation Exact general tests (integer programming)

14