E-Commerce Customer Segmentation Gilang Putra Bahana

Outline

Topics Covered:

- Business Problem
- Data Source
- Data Overview/Insights
- Clustering Analysis
- Recommendation

Business Problem

Introduction & Objective

- An e-commerce startup launched its website when the covid-19 hits, and it makes the company get its fortune.
- The CEO, Gustavo, believes that the company has to improve the marketing strategy, because they are not using targeted marketing and it hurts their marketing budget, as only a fraction of their customer back to their website.

 The CEO ask our help as a data analyst, on how to increase the marketing conversion rate by doing more targeted marketing using customer segmentation.

Data Source

The data is provided in 3 (three) google sheet customer dataset, order dataset, and order payment dataset, which consist of customers that have already bought some item from 2016 to 2018. The data can be seen through the entity relationship database below:

Data Source

Data Dictionary

customers_dataset

- **customer_id:** customer unique identifier (PK)
- customer_unique_id: similar with customer id
- customer_zip_code_prefix: zip code
- customer_city: city where customer live
- customer_state: state where customer live

orders_dataset

- order_id: order unique identifier (PK)
- customer_id: customer unique identifier (FK)
- order_status: status of customer's order
- order_purchase_timestamp: date and time when the customer purchase goods
- order_approved_at: date and time when the e-commerce approved order
- order_delivered_carrier_date: date and time when the goods with courier
- order_delivered_customer_date: date and time when the goods arrived to customer
- order_estimated_delivery_date: estimated delivery date

order_payments_dataset

- order_id: customer unique identifier (PK)
- payment_sequential: the way customer pay on their goods (sequential or once, start from 1 to 26.
- payment_type: credit card, boleto, debit card, voucher
- payment_installments: the number of installments, start from 0 to 24 months
- payment_value: the money spent to buy goods

Data Source

Data Frame Preview

	customer_id	customer_city	customer_state	order_id	order_status	order_purchase_timestamp	payment_sequential	payment_type	payment_installments	payment_value
0	06b8999e2fba1a1fbc88172c00ba8bc7	franca	SP	00e7ee1b050b8499577073aeb2a297a1	delivered	2017-05-16 15:05:35	1.0	credit_card	2.0	146.87
1	18955e83d337fd6b2def6b18a428ac77	sao bernardo do campo	SP	29150127e6685892b6eab3eec79f59c7	delivered	2018-01-12 20:48:24	1.0	credit_card	8.0	335.48
2	4e7b3e00288586ebd08712fdd0374a03	sao paulo	SP	b2059ed67ce144a36e2aa97d2c9e9ad2	delivered	2018-05-19 16:07:45	1.0	credit_card	7.0	157.73
3	b2b6027bc5c5109e529d4dc6358b12c3	mogi das cruzes	SP	951670f92359f4fe4a63112aa7306eba	delivered	2018-03-13 16:06:38	1.0	credit_card	1.0	173.30
4	4f2d8ab171c80ec8364f7c12e35b23ad	campinas	SP	6b7d50bd145f6fc7f33cebabd7e49d0f	delivered	2018-07-29 09:51:30	1.0	credit_card	8.0	252.25

Data Frame Properties

Data Overview/ Insights

The data has been cleaned and merged before analysis is conducted.

- There are 88.975 unique customer in the clean dataset, who buys 93.120 times in the e-commerce.
- Most of the customers come from Sao Paulo city, whose state, SP, comprises 43% of the total customers.
- Most widely used payment type is credit card. 73% of success order paid by credit card.

Customer on average spend \$110.
 Minimum payment is \$0, the customer make payment using voucher. The largest payment made is \$344.

Clustering Analysis

Only 4 (four) columns used in order to see the relationship and create cluster in the data. The columns used are:

- payment_value
- payment_type
- payment_installments
- customer_state

payment value vs payment type

payment value vs payment installments

payment value vs customer state

Cluster using all data

Based on elbow analysis, we can infer the cluster within the data is 4 or 5.

Based on business judgment, we will make only 4 clusters.

Clustering Analysis

Why 4 clusters? Not 5?

- Based on elbow method, the most suitable cluster would be either 4 or
 I have assesed both of the options, and choose 4 cluster as the segmentation of the e-commerce customer, because we can still differentiate the characteristics of the customer when there's only 4 clusters. When we go more than 4 clusters, the differentiation within each cluster is vague.
- With this 4 cluster, we can give specific recommendations to each cluster, and make more targeted marketing, and hopefully, make more sales.

Clustering Characteristics

Descriptive Statistics each cluster:

			count	mean	median	max	min
cluster	payment_type	payment_installments_cat					
0	credit_card	medium term	359	73.032061	73.340	76.39	37.58
	debit_card	no debt-debt club	636	47.781934	46.555	76.39	13.38
	voucher	no debt-debt club	4091	29.615031	25.000	76.49	0.00
	boleto	no debt-debt club	7776	49.600837	49.535	76.51	11.62
	credit_card	pinjol friendly	11386	52.907541	54.100	76.51	20.03
		no debt-debt club	14070	45.064644	45.130	76.52	0.01
1	credit_card	long commitment	63	177.073968	173.290	225.06	142.11
	debit_card	no debt-debt club	251	177.705498	174.160	225.70	141.62
	voucher	no debt-debt club	315	177.914603	175.490	225.71	141.72
	credit_card	no debt-debt club	2463	174.524633	170.280	225.96	141.60
		medium term	3101	180.846301	179.190	225.96	141.51
	boleto	no debt-debt club	3249	176.294503	172.520	225.97	141.63
	credit_card	pinjol friendly	8798	176.810631	173.255	225.99	141.60
2	credit_card	long commitment	38	277.793947	273.615	338.77	228.71
	debit_card	no debt-debt club	102	273.716863	269.250	340.07	226.06
	voucher	no debt-debt club	112	269.712054	253.580	341.02	226.88
	credit_card	no debt-debt club	832	274.410300	268.340	343.91	226.11
	boleto	no debt-debt club	1337	274.435669	267.790	344.33	226.04
	credit_card	medium term	1901	276.402593	271.580	344.32	226.12
		pinjol friendly	3579	274.713954	268.450	344.34	226.05
3	credit_card	long commitment	13	135.566923	135.520	139.98	130.57
	debit_card	no debt-debt club	417	105.225156	102.350	140.91	76.57
	voucher	no debt-debt club	904	102.199226	100.000	141.13	76.66
	credit_card	medium term	3019	106.300119	105.280	141.50	76.44
	boleto	no debt-debt club	5603	105.936682	104.690	141.58	76.55
	credit_card	no debt-debt club	6825	102.846399	98.800	141.53	76.54
		pinjol friendly	11880	108.308539	107.780	141.58	76.50

	total	mean	median	max	min
cluster					
0	38318	46.973324	47.84	76.52	0.00
1	18240	177.128408	173.60	225.99	141.51
2	7901	274.972215	268.84	344.34	226.04
3	28661	106.107420	104.73	141.58	76.44

Customer Segmentation

Summary:

The distribution of data on each cluster quite good (no cluster with small count).

Cluster characteristic:

- a. cluster 0: team lunas characteristics:
- Average spending is around \$46.91.
- Most of the customers using credit card without installments.
- b. cluster 1: team cc & offline payment characteristics:
- Average spending is around \$176.84.
- Most of the customers using credit card with <= 6 months installments. Beside credit card, they are also using boleto (some kind of offline payment, common in Brazil, in Indonesia very similar with pay in Indomaret/Alfamart).

- c. cluster 2: team buy now, pay later characteristics:
- Average spending is around \$274.67.
- Most of the customers pay using credit card within 1 year installments (medium term).
- d. cluster 3: team cc short term characteristics:
- Average spending is around \$105.92.
- Most of the customers pay using credit card with <= 6 months installments, meaning that they are pinjol friendly \$\mathbb{\psi}\$.

Customer Segmentation

Recommendation:

a. cluster 0: team lunas

- Cluster 0 named as team lunas, because they tend to purchase goods directly with credit card without installments.
- We can make bundling promotions on the items they usually buy, and expect their spending behaviour will improve.

b. cluster 1: team cc & offline payment

- This is our second biggest spender in our e-commerce. In order to target this cluster, we have to improve our boleto payment to be more seamless, because this cluster rely on credit card and boleto.
- We can also give specialized discount if people pay the items using boleto.

c. cluster 2: team buy now, pay later

- This is our highest spender in our e-commerce. In order to target this cluster, we have to give more incentive for people paying with credit card + installments.
- We can partner with bank, and give various bank-related discounts. We can also give 0% interest for the installments

d. cluster 3: team cc short term

 We can use similar strategy to attract customer from this cluster with strategy from cluster 2. We can give incentive by offering more bank-related discounts, and give 0% interest for the installments.

Thank you!

Full Python Script:

https://tinyurl.com/cust-segmentation

Any question, comment, or feedback?

Feel free to reach me at:

https://www.linkedin.com/in/gilangbahana/

