Exercício-Programa 2: Previsão da Fase de Infecção por COVID-19 MAC0425 - Inteligência Artificial

Juliana Namie Yamamoto 11314971 23 de junho de 2025

Resumo

Este trabalho desenvolve um modelo de rede neural para classificação do estágio de infecção por COVID-19 com base no repositório de exames de pacientes do Hospital das Clínicas (https://repositoriodatasharingfapesp.uspdigital.usp.br/). Utilizando dados de índices IgG, implementamos uma arquitetura Multilayer Perceptron (MLP) que alcançou 98.68% de acurácia na previsão de três categorias: não reagente (0), inconclusivo (0.5) e reagente (1).

1 Introdução

A pandemia de COVID-19 evidenciou a necessidade de métodos rápidos e precisos para classificação da fase infecciosa. Testes sorológicos geram índices contínuos cuja interpretação manual pode variar entre profissionais. Automatizar essa análise com redes neurais oferece vantagens em consistência e escalabilidade.

Os principais objetivos deste projeto é desenvolver um classificador automático que:

- Interprete valores de índice sorológico
- Classifique em três categorias (0=não reagente, 0.5=inconclusivo, 1=reagente)
- Alcance uma porcentagem de acurácia aceitável

Este relatório apresenta a metodologia e, em seguida uma discussão sobre os resultados obtidos pela rede neural.

2 Metodologia

Os dados utilizados neste estudo foram originalmente extraídos do sistema hospitalar do Hospital das Clínicas (HC-FMUSP) e organizados em uma tabela estruturada por meio de consultas em SQL. Essa etapa prévia permitiu a limpeza, filtragem e formatação dos dados relevantes — em especial os valores dos índices IgG e os respectivos rótulos de classificação sorológica — de forma a facilitar o carregamento posterior via pandas no ambiente Python.

2.1 Pré-processamento dos Dados

- Amostra: 759 pacientes (489 reagentes, 12 inconclusivos, 258 não reagentes)
- Features: Índice sorológico de pacientes que fizeram o exame "COVID-19 - PESQUISA DE ANTICORPOS IgG"
- **Split:** 80% treino, 20% teste

```
import pandas as pd
from sklearn.model_selection import train_test_split

dataset = pd.read_csv("HC_TABELA_SEM.csv", sep='|')
dataset['RESULTADO'] = dataset['RESULTADO'].map({
    'Reagente': 1,
    'N o reagente': 0,
    'Inconclusivo': 0.5
})

x = dataset[['INDICE']].values
y = dataset['RESULTADO'].values
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.2
)
```

Listing 1: Leitura e processamento dos dados

Intanciando Custo e Otimizador:

```
device = torch.device("cuda" if torch.cuda.is_available()
    else "cpu")

model = COVID_predictor().to(device)

criterion = nn.BCELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=
    learning_rate)
```

Listing 2: Custo e Otimizador

2.2 Arquitetura da Rede Neural

```
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
  class COVID_predictor(nn.Module):
      def __init__(self):
          super().__init__()
          self.fc1 = nn.Linear(1, 16)
          self.fc2 = nn.Linear(16, 16)
          self.output = nn.Linear(16, 1)
          self.dropout = nn.Dropout(0.2)
12
      def forward(self, x):
          x = F.relu(self.fc1(x))
14
15
          x = self.dropout(x)
          x = F.relu(self.fc2(x))
16
          return torch.sigmoid(self.output(x))
17
```

Listing 3: Classe da rede neural em PyTorch

A arquitetura da rede neural implementada segue o modelo MLP, utilizando a biblioteca PyTorch. A rede possui uma camada de entrada com um único neurônio correspondente ao índice sorológico, seguida por duas camadas ocultas com 16 neurônios cada e função de ativação ReLU. Após a primeira camada oculta, é aplicada uma camada de dropout com taxa de 20% para regularização e prevenção de overfitting. A camada de saída contém um único neurônio com ativação sigmoide, adequada à previsão de probabilidades para uma tarefa de classificação binária ou contínua em [0,1].

2.3 Experimentos

Os experimentos consistiram no treinamento do modelo por 100 épocas com aprendizado supervisionado, utilizando a função de perda Binary Cross Entropy (BCELoss) e o otimizador Adam com taxa de aprendizado de 0.01. A avaliação do desempenho do modelo foi realizada por meio das métricas de acurácia e valor da função de perda, monitoradas tanto no conjunto de treino quanto no de teste. Além disso, foram registradas as predições do modelo e comparadas com os rótulos verdadeiros para análise qualitativa dos resultados, especialmente em casos intermediários entre as classes.

3 Resultados

Durante o treinamento da rede neural, observou-se uma melhoria progressiva no desempenho do modelo, conforme indicado pelos valores de perda e acurácia ao longo das épocas. A tabela a seguir resume os resultados obtidos no conjunto de teste para 10 épocas de treinamento.

Epoch	Test Loss	Test Accuracy
1	0.3358	0.6184
2	0.3222	0.8618
3	0.3089	0.9408
4	0.2955	0.9737
5	0.2821	0.9737
6	0.2687	0.9737
7	0.2554	0.9868
8	0.2426	0.9868
9	0.2300	0.9868
10	0.2174	0.9868

Tabela 1: Evolução da perda e acurácia no conjunto de teste ao longo de 10 épocas.

Ao final da décima época, o modelo alcançou uma acurácia de 98,68% com uma perda de 0,2174 no conjunto de teste, indicando um desempenho consistente e estável após a convergência.

Observa-se que a função de perda diminui progressivamente ao longo das épocas, como é esperado em treinamentos bem-sucedidos. Com mais épocas,

é provável que a perda continue reduzindo, refletindo um aprendizado ainda mais refinado do modelo.

Para avaliar a capacidade preditiva do modelo de forma qualitativa, a tabela abaixo apresenta um subconjunto das predições realizadas, comparando os valores dos índices de entrada, as saídas da rede e os rótulos verdadeiros.

Índice	Predição	Resultado
0.20	0.00	0.00
3.30	1.00	1.00
0.20	0.00	0.00
12.60	1.00	1.00
0.30	0.00	0.00
8.30	1.00	1.00
10.40	1.00	1.00
0.20	0.00	0.00
10.00	1.00	1.00
0.20	0.00	0.00

Tabela 2: Exemplos de predições do modelo no conjunto de teste.

O modelo demonstrou acerto em todos os casos ilustrados, destacando sua eficácia na separação entre os índices classificados como reagentes e não reagentes. Os bons resultados obtidos sugerem que a rede foi capaz de aprender uma fronteira de decisão adequada mesmo com um único preditor contínuo.

4 Discussão

Os resultados apresentam a rede neural como uma proposta que é viável para prever a fase da infecção por COVID-19 a partir do índice IgG. Com alta acurácia no teste, o modelo simples demonstrou ser eficaz na classificação, principalmente entre casos claramente reagentes e não reagentes.

Na prática, essa rede pode automatizar a triagem sorológica, auxiliando profissionais de saúde em decisões rápidas, especialmente em contextos com grande volume de exames. Contudo, para uso profissional, é necessária uma validação adicional e a integração com outros indicadores clínicos. Mesmo assim, o modelo apresenta potencial como ferramenta auxiliar para agilizar diagnósticos e reduzir interpretações subjetivas.

5 Bibliografia

Referências

- [1] B., Arunachalam (2023). Binary Classification with TensorFlow Tutorial. Disponível em: [https://www.freecodecamp.org/news/binary-classification-made-simple-with-tensorflow/]
- [2] Ghulam Jillani, Muhammad (2024). Building an ANN with Py-Torch: A Deep Dive into Neural Network Training. Disponível em: [https://jillanisofttech.medium.com/building-an-ann-with-pytorcha-deep-dive-into-neural-network-training-a7fdaa047d81]
- [3] GeeksForGeeks (2025). How to implement neural networks in PyTorch?

 . Disponível em: [https://www.geeksforgeeks.org/deep-learning/how-to-implement-neural-networks-in-pytorch/]