

Relatório Preliminar - Balanceamento de carga em Servidores Web com HAProxy e Keepalived

Disponibilidade e Desempenho

2021 - 2022

Bruno Teixeira

a2019100036@isec.pt

Conteúdo

1	Intr	oduçã	0	1
2	Des	envolv	imento	2
	2.1	Descri	ção das tecnologias usadas	2
	2.2		MariaDB e Galera Cluster	2
	2.3	,	оху	2
	2.4	KeepA	Alived	2
	2.5		ente para as experiências	3
		2.5.1	Aplicação Web	3
		2.5.2	Configuração do HAProxy	4
		2.5.3	Configuração do KeepAlived	5
	2.6	Exper	iências	6
		2.6.1	Experiência 01	6
		2.6.2	Experiência 02	8
3	Gui	ลึด		13
Ü	3.1		oxy e KeepAlived	
	3.2			13
	0.2	3.2.1		13
		3.2.1 $3.2.2$		14
		3.2.2		14
		3.2.3 $3.2.4$		$15 \\ 15$
		3.2.4 $3.2.5$		$15 \\ 15$
		3.2.6		$15 \\ 15$
		3.2.0 $3.2.7$	± ±	18
		3.2.8		$\frac{1}{2}$
	3.3	00	•	$\frac{20}{24}$
	ა.ა	3.3.1		
		0.0		$\frac{24}{24}$
		3.3.2	3	24
		3.3.3	,	25
		3.3.4	Selecionar todos os artigos do carrinho do Cliente 1	25

Lista de Figuras

2.1	Index - Aplicação Web
2.2	Carrinho - Aplicação Web
2.3	Configuração - HAProxy
2.4	Estatísticas - HAProxy
2.5	Configuração - Keepalived
2.6	Esquema - Experiência 01
2.7	Wireshark - Experiência 01
2.8	Single Point of Failure - Experiência 01
2.9	Esquema inicial - Experiência 02
2.10	Esquema com fail-over - Experiência 02
	Wireshark no 192.168.1.183 - Experiência 02
	Estado inicial do KeepAlived em ambos os servidores - Experiência 02
	Wireshark no 192.168.1.183 com o HAProxy desligado - Experiência 02
	Estado atual do KeepAlived em ambos os servidores - Experiência 02
2.15	Wireshark no 192.168.1.183 com o HAProxy retomado - Experiência 02
	Estado final do KeepAlived - Experiência 02
2.17	Single Point of Failure - Experiência 02
3.1	Estrutura da aplicação web - Guião
3.2	Variáveis de ambiente - Guião

Capítulo 1

Introdução

Este trabalho tem como objetivo estudar o balanceamento de carga e o failover em servidores web com o HAProxy e o KeepAlived.

O principal foco é, criar alguns cenários com possíveis falhas, analizar esses cenários, descobrir os pontos fracos e tentar sempre minimizar o down-time.

Para alcançar este objetivo foram então criadas algumas experiências de modo a perceber como é possível criar uma infraestrutura segura e com um down-time reduzido ou até mesmo nulo aplicando ao mesmo tempo o conceito de balanceamento de carga.

Capítulo 2

Desenvolvimento

2.1 Descrição das tecnologias usadas

2.2 Flask, MariaDB e Galera Cluster

O Flask é um *micro-framework* do *Python* destinado principalmente para pequenas aplicações com requisitos mais simples. O mesmo funciona bastante bem com bases de dados tendo sido este o escolhido para o desenvolvimento da aplicação *web* para este trabalho.

Para que a aplicação fosse *stateful* foi então usada uma base de dados em MariaDB, uma vez que a mesma tem uma comunidade enorme na Internet, tornando-a bastante simples de ser utilizada.

O Galera Cluster é um cluster virtual para MariaDB que permite a replicação entre diferentes bases de dados, mantendo assim uma disponibilidade e desempenho alto uma vez que existe mais do que uma base de dados para responder a diferentes querys dos clientes, sendo que todas as mudanças feitas numa base de dados são replicadas para a outra.

2.3 HAProxy

O HAProxy é um serviço Linux que garante o balanceamento de carga para HTTP e TCP. Na prática, o mesmo recebe as conexões dos utilizadores e atua como proxy, criando um canal de comunicação entre o utilizador e um dos webservers.

O HAProxy funciona em dois modos diferentes, HTTP ou TCP.

- Quando opera em TCP dizemos que é um Proxy de camada 4 (OSI)
 - Quando o HAProxy opera neste modo, o mesmo apenas tem acesso a qual IP e Porto o cliente está a tentar aceder, não conseguindo assim ver a informação trocada entre de ambas as partes.
- Quando opera em HTTP dizemos que é um Proxy de camada 7 (OSI)
 - Quando o HAProxy opera neste modo, o mesmo tem acesso a toda a informação, logo estamos a confiar no mesmo para ter acesso a esses dados, dados que transitam de um lado para o outro.

2.4 KeepAlived

O objetivo principal do KeepAlived é fornecer instalações simples para existir balanceamento de carga e alta disponibilidade (a alta disponibilidade é alcançada pelo protocolo VRRP) para sistemas baseados em Linux. O Keepalived agrega então um conjunto de servidores de balanceamento de carga (HAProxy), e consoante a saúde dos mesmos, ele toma decisões sobre pelo qual deverá passar a operacionalização.

2.5 Ambiente para as experiências

Para serem feitas algumas experiências foi criado um ambiente com várias máquinas virtuais, estando estas agregadas a um virtualizador ESXi, ou seja, todas as máquinas estão na mesma LAN.

- webserver01 192.168.1.180
- webserver02 192.168.1.181
- mariadb01 192.168.1.182
- mariadb02 192.168.1.186
- **haproxy01** 192.168.1.183
- haproxy02 192.168.1.184
- **haproxy03** 192.168.1.185
- **haproxy04** 192.168.1.187

2.5.1 Aplicação Web

Como descrito anteriormente, foi criada uma aplicação em Flask. Esta aplicação funciona como uma espécie de lista de compras em que o utilizador depois de fazer o *login*, consegue adicionar e eliminar produtos do seu cesto.

Figura 2.1: Index - Aplicação Web

Figura 2.2: Carrinho - Aplicação Web

2.5.2 Configuração do HAProxy

No ficheiro de configuração do HAProxy (localizado em /etc/haproxy/haproxy.cfg) existem 5 secções, sendo que estas definem como é que o servidor se comporta, quais são as definições por omissão, e como é que o cliente faz pedidos e recebe respostas.

• global

 Nesta primeira secção estão definidas as medidas em que o processo vai operar, sendo estas medidas de um nível mais baixo, ou seja, relacionadas com o sistema operativo.

• defaults

 Esta secção não é obrigatória, no entanto permite reduzir a duplicação de comandos, uma vez que as configurações feitas aqui são aplicadas na secção frontend e backend.

• listen

 Aqui podemos combinar o frontend e backend ao mesmo tempo. Isto é útil, pois é aqui feito o redirecionamento para o endpoint de estatisticas.

• frontend

 Nesta secção definimos como é que os pedidos dos utilizadores irão ser encaminhados para o backend.

• backend

 Aqui definimos os webservers que v\(\tilde{a}\)o operar na infraestrutura, definindo tambem o algoritmo de load balancing a ser utilizado

```
1 # O commando "stats socket" ativa a API do HAProxy sendo assim possível gerar um "endpoint" com todas as estatisticas do proxy e dos servidores web 2 global 3 stats socket /run/haproxy/admin.sock mode 660 level admin 4 stats socket /run/haproxy/admin.sock mode 660 level admin 5 # Neste caso usamos o modo "http" 6 defaults 7 mode http 8 mode http 9 # Configuração referente ao "endpoint" de estatisticas 10 # Por motivos de simplicidade o "auth" está sem encriptação 11 listens stats 12 bind 192.168.1.183:9999 1 stats enable 1 stats hide-version 1 stats principal stats 12 stats enable 1 stats hide-version 1 stats refresh 10s 1 stats auth haproxy:haproxy 1 stats 2 stats 3 stats 2 stats 3 stats 3 stats 2 stats 3 stats 3 stats 2 stats 3 stats
```

Figura 2.3: Configuração - HAProxy

Conforme foi configurado o HAProxy, ao acedermos a http://192.168.1.183:9999/stats conseguimos visualizar uma página web com várias estatísticas sobre os webservers.

Figura 2.4: Estatísticas - HAProxy

2.5.3 Configuração do KeepAlived

No ficheiro de configuração do Keepalived (localizado em /etc/keepalived/keepalived.conf), foi criado um vrrp_script com o intuito de verificar, com um intervalo de 2 em 2 milisegundos, se o haproxy está a funcionar corretamente. Se o mesmo não estiver a funcionar, o peso dele diminui em 10 reduzindo assim a sua prioridade tornando o BACKUP num MASTER.

Depois disto, foi criado um **vrrp_instance** que define uma instância individual do protocolo VRRP com alguns atributos.

```
global defs{
        enable_script_security
# Script que verifica o estado do HAProxy
            script "service haproxy status
             interval 1
            weight -10
  Instancia que executa o script, nomeando o HAProxy01 (192.168.1.183) como MASTER
  Escolhemos a interface que queremos usar
 Prioridade do servidor, esta será anunciada no grupo VRRP
IP virtual do grupo VRRP
vrrp instance V1 1{
              interface ens160
              state MASTER
               virtual_router_id 11
              priority 101
                auth_type PASS
                 auth_pass algumacoisamuitocomplicada
                 192.168.1.200
               track_script {
                 check_haproxy
```

Figura 2.5: Configuração - Keepalived

O mesmo foi feito para o segundo servidor de HAProxy, no entanto foi alterada a prioridade e o estado para definir que este seria o BACKUP.

Foi tambem necessário alterar o Ip, para onde faziamos *bind* inicialmente (**Ip do servidor HAProxy**), para o novo IP virtual (**192.168.1.200**) na secção de *frontend* do ficheiro de configuração do HAProxy.

Por fim foi preciso colocar $net.ipv4.ip_nonlocal_bind=1$ no ficheiro /etc/sysctl.conf uma vez que no segundo servidor de HAProxy o IP virtual ainda não está ativo (só fica ativo quando esse for o MASTER), logo não é possível iniciar o bind.

Esta configuração do KeepAlived apenas foi feita a partir da segunda experiência, uma vez que na primeira ainda não é usado o mesmo para mostrar os riscos que isso tem.

2.6 Experiências

2.6.1 Experiência 01

Nesta experiência foi usado um servidor de balanceamento de carga (HAProxy), dois webservers e uma base de dados externa (MariaDB). Foi feita uma captura no HAProxy para perceber o que acontecia quando o utilizador fazia um pedido ao mesmo.

Figura 2.6: Esquema - Experiência 01

Resultado

Conseguiu-se perceber que o cliente (192.168.1.123) envia um HTTP GET Request diretamente ao servidor HAProxy (192.168.1.183). De seguida, o servidor HAProxy faz um HTTP GET Request ao webserver disponível, que neste caso foi o webserver01 (192.168.1.180). O webserver01 responde com o HTTP status code 200, mostrando que a comunicação ocorreu sem falhas, sendo feito depois um redirecionamento do HAProxy para o cliente. Imediatamente a seguir foi feito outro pedido pelo mesmo cliente, no entanto consegue-se perceber que, como está a ser usar o algoritmo round-robin, quem respondeu foi o webserver02.

Figura 2.7: Wireshark - Experiência 01

Problemas encontrados na Experiência 01

É percetivel que a experiência feita anteriormente tem alguns problemas, como a existência de dois SPOFs (Single Point of Failure).

- Existe um SPOF no HAProxy.
- Existe um SPOF na Base de Dados.

Ou seja, caso o servidor de HAProxy ou a base de dados deixe de operar, o cliente deixa de ter comunicação com os *webservers*. Sabendo isto continuou-se com mais algumas experiências de modo a resolver estes problemas.

Figura 2.8: Single Point of Failure - Experiência 01

2.6.2 Experiência 02

Nesta segunda experiência apenas foi acrescentado mais um servidor de balanceamento de carga e o serviço de **KeepAlived** em ambos os servidores de HAProxy.

O objetivo da mesma era entender como seria feito o fail-over do **KeepAlived** e o que sucedia depois de um servidor MASTER tornar-se BACKUP e vice-versa.

Figura 2.9: Esquema inicial - Experiência 02

Figura 2.10: Esquema com fail-over - Experiência 02

Resultado

Foram feitas várias capturas, tanto no HAProxy01(MASTER) como no HAProxy02(BACKUP) usando o wireshark.

Com a captura no HAProxy01(192.168.1.183) percebe-se que o mesmo emite, de segundo em segundo, um announcement dizendo a sua prioridade, que neste caso é 101. Isto acontece porque no protocolo VRRP apenas o MASTER emite mensagens estando os outros BACKUPs à escuta desse aviso.

	238 17.795893	192.168.1.183	224.0.0.18	VRRP	54 Announc			
	251 18.796187	192.168.1.183	224.0.0.18	VRRP	54 Announc			
	264 19.796514	192.168.1.183	224.0.0.18	VRRP	54 Announc			
	279 20.796752	192.168.1.183	224.0.0.18	VRRP	54 Announc			
	292 21.796972	192.168.1.183	224.0.0.18	VRRP	54 Announc			
	305 22.797168	192.168.1.183	224.0.0.18	VRRP	54 Announc			
4								
	•	,), 54 bytes captured	,				
		_ ,	:0c:29:db:73:4d), Ds		(01:00:5e:0			
		'	.168.1.183, Dst: 224	.0.0.18				
	Virtual Router Redundancy Protocol							
	Version 2, Packet type 1 (Advertisement)							
	Virtual Rtr ID: 11							
	Priority: 101 (Non-default backup priority)							
	Addr Count: 1							
	,, ,	e Text Authenticatio	on [RFC 2338] / Rese	rved [RFC 3768]	(1)			
	Adver Int: 1							
4	Checksum: 0x1ccf [correct]							
	010 00 28 44 1b 00	00 ff 70 d4 18 06	a8 01 b7 e0 00	(Dp				
	020 00 12 21 0b 69			(Dрal				
	030 67 75 6d 61 63			ımaco				
					· ·			
0	Sending VRRP ro	utrrp.prio), 1 byte F	Packets: 1113 · Displaye	d: 83 (7.5%) Pro	file: Default			

Figura 2.11: Wireshark no 192.168.1.183 - Experiência 02

```
| Remps|| Note | Sundo | Service | Respalty Description | Loaded: | Loaded:
```

Figura 2.12: Estado inicial do KeepAlived em ambos os servidores - Experiência 02

Depois de desligar o serviço HAProxy do **HAProxy01(192.168.1.183)**, o mesmo fica com uma prioridade de 91 passando assim para o estado de *BACKUP* ao mesmo tempo que o **HAProxy02(192.168.1.184)** passa para o estado de *MASTER* uma vez que a sua prioridade é superior (100).

	4179 312.859733	192.168.1.183	224.0.0.18	VRRP	54 Announc		
	4181 313.469517	192.168.1.184	224.0.0.18	VRRP	60 Announc		
	4186 314.469748	192.168.1.184	224.0.0.18	VRRP	60 Announc		
	4188 315.470003	192.168.1.184	224.0.0.18	VRRP	60 Announc		
	4189 316.470302	192.168.1.184	224.0.0.18	VRRP	60 Announc		
	4190 317.470524	192.168.1.184	224.0.0.18	VRRP	60 Announc		
4	4196 318.470675	192.168.1.184	224.0.0.18	VRRP	60 Announc		
+ I	Frame 4179: 54 byte	s on wire (432 bits), 54 bytes captu	red (432 bits) on	interface /t		
- I	→ Ethernet II, Src: VMware_db:73:4d (00:0c:29:db:73:4d), Dst: IPv4mcast_12 (01:00						
	• Internet Protocol Version 4, Src: 192.168.1.183, Dst: 224.0.0.18						
	 Virtual Router Redundancy Protocol → Version 2, Packet type 1 (Advertisement) 						
	Virtual Rtr ID: 11						
	Priority: 91 (Non-default backup priority)						
	Addr Count: 1		[555 0000] / 5	1 [555 6766]	(4)		
	Auth Type: Simple Text Authentication [RFC 2338] / Reserved [RFC 3768] (1) Adver Int: 1 Checksum: 0x26cf [correct] [Checksum: Status: Good]						
	IP Address: 192.1						
	Authentication St	ring: algumaco					

Figura 2.13: Wireshark no 192.168.1.183 com o HAProxy desligado - Experiência 02

```
| Repail vool service | Keepal vool service
```

Figura 2.14: Estado atual do KeepAlived em ambos os servidores - Experiência 02

Para terminar, voltou-se a ativar o serviço haproxy no **HAProxy01(192.168.1.183)** tornando-se assim novamente *MASTER* uma vez que a preempção está ativa por omissão fazendo com que a sua prioridade volte a ser 101 como estava definida inicialmente.

4445 469.111033	192.168.1.183	224.0.0.18	VRRP	54 Announc		
4458 470.111248	192.168.1.183	224.0.0.18	VRRP	54 Announc		
4475 471.111472	192.168.1.183	224.0.0.18	VRRP	54 Announc		
4488 472.111647	192.168.1.183	224.0.0.18	VRRP	54 Announc		
4501 473.111860	192.168.1.183	224.0.0.18	VRRP	54 Announc		
4520 474.112107	192.168.1.183	224.0.0.18	VRRP	54 Announc▼		
- Frome 444E, E4 buts	a an idra (422 bita	\	d (422 bits) on	interfore /ti		
Frame 4445: 54 byte	•	,, , ,	` '			
Ethernet II, Src: V	'Mware_db:73:4d (00:	0c:29:db:73:4d), Ds	t: IPv4mcast_12	(01:00:5e:00		
▶ Internet Protocol V	Internet Protocol Version 4, Src: 192.168.1.183, Dst: 224.0.0.18					
Virtual Router Redundancy Protocol						
<pre>Version 2, Packet type 1 (Advertisement)</pre>						
Virtual Rtr ID: 1	Virtual Rtr ID: 11					
Priority: 101 (No	Priority: 101 (Non-default backup priority)					
Addr Count: 1	Addr Count: 1					
Auth Type: Simple	Auth Type: Simple Text Authentication [RFC 2338] / Reserved [RFC 3768] (1)					
Adver Int: 1						
Checksum: 0x1ccf	Checksum: 0x1ccf [correct]					
[Checksum Status: Good]						
IP Address: 192.1	IP Address: 192.168.1.200					
Authentication St	ring: algumaco					

Figura 2.15: Wireshark no 192.168.1.183 com o HAProxy retomado - Experiência 02

```
| Repailwood Service | Repailwood service | Repailwood service| Re
```

Figura 2.16: Estado final do KeepAlived - Experiência 02

Problemas encontrados na Experiência 02

Com esta nova arquitetura, foi possível resolver um SPOF(Single Point of Failure) colocando mais um servidor de balanceamento de carga e acrescentando o serviço de KeepAlived, no entanto é notório que continua a existir um SPOF na base de dados.

Figura 2.17: Single Point of Failure - Experiência 02

Capítulo 3

Guião

Em baixo estão descritos os passos para que seja possível criar todo o código da aplicação web assim como a base de dados de modo a conseguir-se replicar as experiências que foram mostradas anteriormente.

3.1 HAProxy e KeepAlived

Para instalar o HAProxy, bastou fazer *sudo apt install haproxy* em ambos os servidores de HAProxy. Depois foi feita a configuração do ficheiro do HAProxy (/etc/haproxy/haproxy.cfg) como descrito na secção de Configuração do HAProxy.

Para instalar o KeepAlived, bastou fazer sudo apt install keepalived em ambos os servidores de HAProxy. A sua configuração está tambem descrita na secção Configuração do Keepalived.

3.2 Aplicação Web

3.2.1 Estrutura da aplicação

Figura 3.1: Estrutura da aplicação web - Guião

3.2.2 Variáveis de ambiente usadas

```
brun0@webserver01:~$ cat /etc/environment
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/bin:/usr/games:/usr/local/games:/snap/bin"
FLASK_APP=carrinho.py
FLASK_DEBUG=true
RSYNC_PASSWORD="toor"
DB_HOST="mysql+pymysql://brun0:toor@192.168.1.185:3306/carrinho"
DB_USER="brun0"
DB_PW="toor"
DB_PW="toor"
DB_PM="carrinho"
```

Figura 3.2: Variáveis de ambiente - Guião

3.2.3 requirements.txt

Para esta aplicação Web são precisas algumas dependências, dependências estas descritas no ficheiro requeriments.txt. A maneira mais simples de instalar todas as dependências é criar um ficheiro chamado requeriments.txt e depois executar o comando pip3 install -r requirements.txt

```
email-validator==1.1.3
entrypoints==0.3
Flask==1.1.1
Flask-Login==0.5.0
Flask-SQLAlchemy==2.5.1
Flask-WTF==0.15.1
httplib2==0.14.0
importlib-metadata==1.5.0
incremental==16.10.1
Jinja2==2.10.1
mariadb == 1.0.8
MarkupSafe==1.1.0
more-itertools==4.2.0
oauthlib==3.1.0
pexpect = 4.6.0
pyasn1 = = 0.4.2
pyasn1-modules==0.2.1
PyGObject==3.36.0
PyHamcrest==1.9.0
pyinotify==0.9.6
PyJWT==1.7.1
pymacaroons==0.13.0
PyMySQL==1.0.2
PyNaCl==1.3.0
pyOpenSSL == 19.0.0
pyrsistent==0.15.5
pyserial==3.4
python-apt==2.0.0+ubuntu0.20.4.6
python-debian===0.1.36ubuntu1
PyYAML==5.3.1
requests==2.22.0
requests-unixsocket==0.2.0
SecretStorage==2.3.1
simplejson==3.16.0
SQLAlchemy==1.4.26
ssh-import-id==5.10
systemd-python==234
Twisted==18.9.0
ufw == 0.36
urllib3==1.25.8
```

```
wadllib==1.3.3
Werkzeug==0.16.1
WTForms==2.3.3
```

$3.2.4 \quad {\rm sync_between \ webservers.sh}$

Este script foi útil para que quando fosse feito um commit no github, o webserver01 sincronizasse o código atualizado com o webserver02

```
#!/usr/bin/env bash

# automating git stuff

echo "Whats the commit message?"
read message
git add .
git commit -m "${message}"
echo "Pushing data ... "
git push

echo "Syncing to webserver02 ..."

# sync a folder from webserver01 to webserver02
rsync -rt /home/brun0/repo/ brun0@192.168.1.181:/home/brun0/repo --delete-after
```

3.2.5 flask app

carrinho.py

```
from app import app
```

config.py

Criar variável de ambiente com o nome **DB** HOST

```
DB_HOST=mysql+pymysql://<username>:<password>@<db_ip>:<db_port>/<db_name>
```

```
import os

basedir = os.path.abspath(os.path.dirname(__file__))

class Config(object):
    SECRET_KEY = "something"
    SQLALCHEMY_DATABASE_URI = os.environ.get('DB_HOST')
    SQLALCHEMY_TRACK_MODIFICATIONS = False
```

3.2.6 app

```
init .py
```

```
from flask import Flask
from config import Config
```

```
from flask_sqlalchemy import SQLAlchemy
from flask_login import LoginManager

app = Flask(__name__)
app.config.from_object(Config)
db = SQLAlchemy(app)

login = LoginManager(app)
login.login_view = "login"

from app import routes, models
```

forms.py

```
from flask_wtf import FlaskForm
from wtforms import StringField, PasswordField, SubmitField, BooleanField, IntegerField
from wtforms.validators import DataRequired, Length, Email, EqualTo

class LoginForm(FlaskForm):
    email = StringField('Email',validators=[DataRequired(), Email()])
    password = PasswordField('Password', validators=[DataRequired()])
    submit = SubmitField('Login')

class ProductForm(FlaskForm):
    product_type = StringField("Tipo", validators=[DataRequired()])
    quantity = IntegerField("Quantidade", validators=[DataRequired()])
    local = StringField("Local de Compra", validators=[DataRequired()])
    submit = SubmitField('Inserir')
```

models.py

```
from app import db, login
from werkzeug.security import generate_password_hash, check_password_hash
from flask_login import UserMixin
@login.user_loader
def load_user(id):
   return Clientes.query.get(int(id))
class Clientes(UserMixin, db.Model):
       id_cliente = db.Column(db.Integer, primary_key=True)
       nome = db.Column(db.String(64), index=True, unique=True)
       email = db.Column(db.String(120), index=True, unique=True)
       password = db.Column(db.String(128))
       compras = db.relationship("Compras", backref="cliente")
       def __repr__(self):
              return f"{self.nome}"
       def set_password(self, password):
              self.password = generate_password_hash(password)
       def check_password(self, password):
```

```
return check_password_hash(self.password,password)

def get_id(self):
    return self.id_cliente

class Compras(db.Model):
    id_compras = (db.Column(db.Integer, primary_key=True))
    tipo = db.Column(db.String(140))
    quantidade = db.Column(db.Integer)
    local = db.Column(db.String(140))
    id_cliente = db.Column(db.Integer, db.ForeignKey("clientes.id_cliente"))

def __repr__(self):
    return f"{self.id_compras}"
```

routes.py

```
from flask import render_template, flash, redirect, url_for, request, jsonify, make_response
from app import app,db
from app.forms import LoginForm, ProductForm
from flask_login import current_user, login_user, logout_user, login_required
from app.models import Clientes, Compras
# index
@app.route("/")
def index():
   return render_template("index.html")
# login
@app.route('/login', methods=['GET', 'POST'])
def login():
       if current_user.is_authenticated:
              return redirect(url_for("carrinho"))
       form = LoginForm()
       if form.validate_on_submit():
              # query a bd
              user = Clientes.query.filter_by(email=form.email.data).first()
              # verifica o resultado da query, se nao existir ...
              if user is None or not user.check_password(form.password.data):
                      flash("Login invalido", "danger")
                     return redirect(url_for("login"))
              # se existir faz login
              else:
                     login_user(user)
              return redirect(url_for("carrinho"))
       return render_template("login.html", title="Login", form=form)
# logout
@app.route("/logout")
def logout():
       logout_user()
       flash("Logout com sucesso", "info")
       return redirect(url_for("index"))
```

```
# carrinho
@app.route("/carrinho/", methods=["GET", "POST"])
@login_required
def carrinho():
       # lista produtos atuais do cliente
       customer_list = db.session.query(Compras.id_compras.label("id_compras"),
                                    Compras.tipo.label("Tipo"),
                                    Compras.quantidade.label("Quantidade"),
                                    Compras.local.label("Local"))\
                                    .join(Clientes, Compras.id_cliente == Clientes.id_cliente)
                                    .filter(Compras.id_cliente==current_user.get_id()).all()
   # adicionar produtos ao carrinho
       form = ProductForm()
       if form.validate_on_submit():
              compras = Compras(tipo = form.product_type.data,
                             quantidade = form.quantity.data,
                             local = form.local.data,
                             id_cliente = current_user.get_id())
              db.session.add(compras)
              db.session.commit()
              return redirect(url_for("carrinho"))
       return render_template("carrinho.html", title="Lista", form=form,
           customer_list=customer_list)
# apagar artigo
@app.route("/apagar_artigo",methods=["POST"])
@login_required
def delete_item():
       # recebe o POST feito no js
       req = request.get_json()
       # aplica a query
       Compras.query.filter_by(id_compras=int(req["id"])).delete()
       db.session.commit()
       return redirect(url_for("carrinho"))
```

3.2.7 static

main.css

```
body {
  background: #fafafa;
  color: #333333;
  margin-top: 5rem;
}

h1, h2, h3, h4, h5, h6 {
  color: #444444;
}

.bg-steel {
  background-color: #5f788a;
}
```

```
.site-header .navbar-nav .nav-link {
 color: #cbd5db;
.site-header .navbar-nav .nav-link:hover {
 color: #ffffff;
.site-header .navbar-nav .nav-link.active {
 font-weight: 500;
.content-section {
 background: #ffffff;
 padding: 10px 20px;
 border: 1px solid #dddddd;
 border-radius: 3px;
 margin-bottom: 20px;
}
.article-title {
 color: #444444;
a.article-title:hover {
 color: #428bca;
 text-decoration: none;
.article-content {
 white-space: pre-line;
.article-img {
 height: 65px;
 width: 65px;
 margin-right: 16px;
.article-metadata {
 padding-bottom: 1px;
 margin-bottom: 4px;
 border-bottom: 1px solid #e3e3e3
}
.article-metadata a:hover {
 color: #333;
 text-decoration: none;
.article-svg {
 width: 25px;
 height: 25px;
 vertical-align: middle;
}
```

3.2.8 templates

layout.html

```
<!DOCTYPE html>
<html>
<head>
   <!-- Required meta tags -->
   <meta charset="utf-8">
   <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
   <link href="https://use.fontawesome.com/releases/v5.6.3/css/all.css" rel="stylesheet">
   <!-- Bootstrap CSS -->
   k rel="stylesheet"
       href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"
       integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"
       crossorigin="anonymous">
   <link rel="stylesheet" type="text/css" href="{{ url_for('static', filename='main.css') }}">
   <title>Lista de compras 01</title>
</head>
<body>
   <header class="site-header">
     <nav class="navbar navbar-expand-md navbar-dark bg-steel fixed-top">
       <div class="container">
         <a class="navbar-brand mr-4" href="/">Lista de Compras</a>
         <button class="navbar-toggler" type="button" data-toggle="collapse"</pre>
             data-target="#navbarToggle" aria-controls="navbarToggle" aria-expanded="false"
             aria-label="Toggle navigation">
           <span class="navbar-toggler-icon"></span>
         <div class="collapse navbar-collapse" id="navbarToggle">
           <div class="navbar-nav mr-auto">
           </div>
           <!-- Navbar Right Side -->
           <div class="navbar-nav">
            { if current_user.is_anonymous %}
            <a class="nav-item nav-link" href="{{ url_for('login') }}">Login</a>
            <a class="nav-item nav-link" href="{{ url_for('logout') }}">Logout</a>
            <a class="nav-item nav-link" href="{{ url_for('carrinho') }}">Carrinho</a>
            {% endif %}
           </div>
         </div>
       </div>
     </nav>
   </header>
   <main role="main" class="container">
     <div class="row">
         {% with messages = get_flashed_messages(with_categories=true) %}
           {% if messages %}
            {% for category, message in messages %}
              <div class="alert alert-{{ category }}" style="margin:auto">
                {{ message }}
              </div>
            {% endfor %}
           {% endif %}
       {% endwith %}
```

```
{% block content %}{% endblock %}
     </div>
   </main>
   <!-- Optional JavaScript -->
   <!-- ¡Query first, then Popper.js, then Bootstrap JS -->
   <script src="https://code.jquery.com/jquery-3.1.1.min.js"</pre>
        integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
        crossorigin="anonymous"></script>
   <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min.js"</pre>
        integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q"
        crossorigin="anonymous"></script>
   <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"</pre>
        integrity="sha384-JZR6Spejh4U02d8j0t6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmY1"
        crossorigin="anonymous"></script>
</body>
</html>
```

index.html

carrinho.html

```
{% extends "layout.html" %}
{% block content %}
<script>
 function remove_entry(){
     var entry = {id:event.srcElement.id};
     fetch('${window.origin}/apagar_artigo',{
         method: "POST",
         credentials: "include",
         body: JSON.stringify(entry),
         cache: "no-cache",
         headers: new Headers({
             "content-type": "application/json"
         })
     })
 }
</script>
```

```
{% if customer_list|length > 0 %}
<div class="col-8">
<div class="container">
    <thead>
       ID
         Tipo
         Quantidade
         Local de Compra
         {% for item in customer_list %}
       </thead>
      {{ loop.index }}
         {{ item[1] }}
         {{ item[2] }}
         {{ item[3] }}
         >
          <form>
             <button id={{ item[0] }} type="submit" class="btn btn-danger"</pre>
                 onclick="remove_entry();">Apagar</button>
            </form>
         {% endfor %}
         </div>
</div>
{% else %}
<div class="d-flex justify-content-center">
<div class=" d-flex alert alert-dark text-center" style="max-height:62px">Neste momento nao tem
   nenhum produto no seu cesto
</div>
</div>
{% endif %}
 <div class="col-4">
   <div class="content-section">
      <form method="POST" action="">
         {{ form.hidden_tag() }}
         <fieldset class="form-group">
            <legend class="border-bottom mb-4">Carrinho</legend>
            <div class="form-group">
               {{ form.product_type.label(class="form-control-label") }}
               {% if form.product_type.errors %}
                  {{ form.product_type(class="form-control form-control-lg is-invalid") }}
                  <div class="invalid-feedback">
                     {% for error in form.product_type.errors %}
                        <span>{{ error }}</span>
                     {% endfor %}
                  </div>
               {% else %}
                  {{ form.product_type(class="form-control form-control-lg") }}
```

```
{% endif %}
              </div>
              <div class="form-group">
                  {{ form.quantity.label(class="form-control-label") }}
                  {% if form.quantity.errors %}
                      {{ form.quantity(class="form-control form-control-lg is-invalid") }}
                      <div class="invalid-feedback">
                         {% for error in form.quantity.errors %}
                             <span>{{ error }}</span>
                         {% endfor %}
                      </div>
                  {% else %}
                      {{ form.quantity(class="form-control form-control-lg") }}
              </div>
              <div class="form-group">
                  {{ form.local.label(class="form-control-label") }}
                  {% if form.local.errors %}
                      {{ form.local(class="form-control form-control-lg is-invalid") }}
                      <div class="invalid-feedback">
                         {% for error in form.local.errors %}
                             <span>{{ error }}</span>
                         {% endfor %}
                      </div>
                  {% else %}
                      {{ form.local(class="form-control form-control-lg") }}
                  {% endif %}
              </div>
           </fieldset>
           <div class="form-group">
            {{ form.submit(class="btn btn-outline-info") }}
           </div>
       </form>
   </div>
   </div>
{% endblock content %}
```

login.html

```
{% extends "layout.html" %}
{% block content %}
 <div class="container">
   <div class="content-section">
       <form method="POST" action="">
           {{ form.hidden_tag() }}
           <fieldset class="form-group">
               <legend class="border-bottom mb-4">Log In</legend>
               <div class="form-group">
                  {{ form.email.label(class="form-control-label") }}
                  {% if form.email.errors %}
                      {{ form.email(class="form-control form-control-lg is-invalid") }}
                      <div class="invalid-feedback">
                         {% for error in form.email.errors %}
                             <span>{{ error }}</span>
                         {% endfor %}
                      </div>
```

```
{% else %}
                      {{ form.email(class="form-control form-control-lg") }}
                  {% endif %}
              </div>
              <div class="form-group">
                  {{ form.password.label(class="form-control-label") }}
                  {% if form.password.errors %}
                      {{ form.password(class="form-control form-control-lg is-invalid") }}
                      <div class="invalid-feedback">
                         {% for error in form.password.errors %}
                             <span>{{ error }}</span>
                         {% endfor %}
                      </div>
                  {% else %}
                      {{ form.password(class="form-control form-control-lg") }}
              </div>
           </fieldset>
           <div class="form-group">
            {{ form.submit(class="btn btn-outline-info") }}
           </div>
       </form>
   </div>
{% endblock content %}
```

3.3 Base de Dados

3.3.1 Criação da base de dados

Como a conexão é feita a partir de dois servidores remotos(haproxy01 e haproxy02), foi preciso garantir todos os privilegios a esses dois servidores

```
mysql -u root -p
mysql> GRANT ALL ON *.* to <username>@'<ip_haproxy01>' IDENTIFIED BY '<password>';
mysql> GRANT ALL ON *.* to <username>@'<ip_haproxy02>' IDENTIFIED BY '<password>';
mysql> FLUSH PRIVILEGES;
mysql> exit;
sudo service mariadb restart
mysql -u root -p
mysql> create database carrinho;
```

3.3.2 Criação das tabelas

```
create table clientes(
   id_cliente int auto_increment,
   nome varchar(255) not null,
   email varchar(255) not null,
   password varchar(255) not null,
   primary key(id_cliente)
);

create table compras(
   id_compras int auto_increment,
```

```
id_cliente int,
  tipo varchar(255) not null,
  quantidade int not null,
  local varchar(255) not null,
  primary key(id_compras),
  foreign key(id_cliente)
  references clientes(id_cliente));
```

3.3.3 Inserção de dados nas tabelas

3.3.4 Selecionar todos os artigos do carrinho do Cliente 1

```
select compras.id_compras "Id Compras", compras.id_cliente "Id Cliente", clientes.nome "Nome
    Cliente", compras.tipo, compras.quantidade, compras.local from compras inner join clientes on
    compras.id_cliente = clientes.id_cliente and clientes.id_cliente = 1;
```