Package 'tgml'

May 2, 2025

tg	ml Treed Guided Machine Learning
Inde	x (
	tgml
Coı	ntents
Date	/Publication 2025-05-02 09:10:01 UTC
Repo	ository CRAN
Mair	ntainer Yunro Chung <yunro.chung@asu.edu></yunro.chung@asu.edu>
Auth	or Yunro Chung [aut, cre] (ORCID: https://orcid.org/0000-0001-9125-9277)
Need	sCompilation no
Depe	ends R (>= 4.5.0), glmnet, randomForest, e1071, pROC, stats, graphics
Lice	se GPL (>= 2)
Desc	ription Generalization of the classification and regression tree (CART) model that partitions subjects into terminal nodes and tailors machine learning model to each terminal node.
Date	2025-04-22
Versi	ion 0.1.0
Title	Treed Guided Machine Learning for Personalized Prediction and Precision Diagnostics
Type	Package

Description

The treed model generalizes the classification and regression tree (CART) model by partitioning subjects into terminal nodes and tailoring machine learning model to each terminal node.

Usage

tgml(y,x,z,ynew,xnew,znew,MLlist,eval,cut,max_depth,min_sample)

Arguments

У	Response vector. If a factor codied as 0 or 1, classification is assumed. Otherwise, regression is assumed.
X	Data.frame or matrix of predictors that is used to estimate a tree structure.
Z	Data.frame or matrix of predictors that is used in terminal node specific ML models. See the description below about the difference between x and z.
ynew	Response vector for the test set corresponding to y (default ynew=NULL).
xnew	Data.frame or matrix for the test set corresponding to x (default xnew=NULL).
znew	Data.frame or matrix for the test set corresponding to z (default znew=NULL).
MLlist	Candidate ML models that can be assigned to each terminal node (default ML-list=c("lasso","rf","svm")). Any other ML models can be included. See the details below.
eval	Evaluation criteria to split trees, where eval="mse","bs", or "auc" stands for mean squared error, brier score, and area under the receiver operating characteristics (ROC) curve, respectively. If eval=NULL, "mse" (or "bs") is used for a continuous (or binary) y.
cut	Number of percentile-based cutoff values for jth column of x , $j=1,2,$ (default cut=10).
max_depth	Maximum depth of trees. Equivalently, max_depth=log2(max_B), where max_B is the number of maximum terminal nodes (or subgroups) (default max_depth=4 (or equivalently max_B=16)).
min_sample	The number of minimum sample size per each node, i.e., length(y)>min_sample if y is continuous and min(length(y==1),length(y==0))>min_sample (default min_sample=20).

Details

This treed model uses recursive partitioning to search for the optimal decision-tree based rule that partitions subjects into distinct terminal nodes and assigns one of the most effective ML models to each terminal node. At each candidate split, candidate ML models are fitted on the left and right child nodes, respectively, and the best ML combination that minimizes the combined mse, bs (or maximize auc) is selected for each terminal node.

Ideally, there are two sets of predictors, x and z, e.g., demographic variables and biomarkers, where x is used to split trees, and z is assigned to each terminal node. However, if this is not possible, it allows to use the same x and z in the tgml function, e.g., tgml(y=y, x=x, z=x, ...).

Regarding the node number, an internal node s has left and right child nodes $2\times s$ and $2\times s+1$, respectively, where node 1 is a root node; nodes 2 and 3 are left and right child nodes of node 1; nodes 4 and 5 are left and right nodes of node 2; and so on.

Currently, lasso(), randomForest(), and svm(...,kernel="radial") functions from R packages cv.glmnet, randomForest, and e1071 are supported, but any ML models can be flexibly added, e.g., see the example 3 below.

Value

An object of class tgml, which is a list with the following components:

terminal Node numbers in terminal nodes.

internal Node numbers in internal nodes.

splitVariable Variable (i.e., x[,u] if splitVariable[k]=u) used to split the internal node k.

cutoff cutoff[k] is the cutoff value to split the internal node k.

selML ML model assigned to the terminal node t.

fitML fitML[[t]] is the fitted ML model at the terminal node $t \in \text{terminal}$.

 y_hat Estimated y (or estimated probability) on the training set (y,x,z) if y is continu-

ous (or binary).

node_hat Estimated node on the training set.

mse Training MSE.

bs Training Brier Score.
roc Training ROC curve.

auc Training AUC.

y_hat_new Estimated y (or estimated probability) on the test set (ynew,xnew,znew) if y is

continuous (or binary).

mse_new Test MSE.

bs_new Test Brier Score.

roc_new Test ROC curve.

auc_new Test AUC.

Author(s)

Yunro Chung [aut, cre]

References

Nishtha Shah and Yunro Chung, Treed-guided personalized prediction with applications to precision diagnostics (in preperation)

Examples

```
set.seed(10)
###
#1. continuous y
###
n=200*2 #n=200 & 200 for training & test sets

x=matrix(rnorm(n*10),n,10) #10 predictors
z=matrix(rnorm(n*10),n,10) #10 biomarkers
```

```
xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups
lp=rep(NA,n)
for(i in 1:n)
  lp[i]=1+3*z[i,subgr[i]]
y=lp+rnorm(n,0,1)
idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]
y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]
fit1=tgml(y,x,z,ynew=ynew,xnew=xnew,znew=znew)
fit1$mse_new
plot(fit1$y_hat_new~ynew,ylab="Predicted y",xlab="ynew")
#2. binary y
###
x=matrix(rnorm(n*10),n,10) #10 predictors
z=matrix(rnorm(n*10),n,10) #10 biomarkers
xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups
lp=rep(NA,n)
for(i in 1:n)
  lp[i]=1+3*z[i,subgr[i]]
prob=1/(1+exp(-lp))
y=rbinom(n,1,prob)
y=as.factor(y)
idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]
y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]
fit2=tgml(y,x,z,ynew=ynew,xnew=xnew,znew=znew)
fit2$auc_new
plot(fit2$roc_new)
###
#3. add new ML models
# 1) write two functions:
```

```
#
       c_xx & c_xx_predict if y is continuous or
      b_xx & b_xx.predict if y is binary
#
#
   2) update MLlist that includes xx, not c_xx nor b_xx.
   run tgml using updated MLlist.
   The below is an example of adding ridge regression.
###
#3.1. ridge regression for continuous y.
c_ridge=function(y,x){
  x=data.matrix(x)
  suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=0),silent=TRUE))</pre>
  return(fit)
}
c_ridge_predict=function(fit,xnew){
  y.hat=rep(NA,nrow(xnew))
  if(!is.null(fit)){
    xnew=data.matrix(xnew)
   y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))
  }
  return(y.hat)
}
#3.2. ridge regression for binary y.
b\_ridge=function(y,x)\{
  x=data.matrix(x)
  fit=NULL
 suppress Warnings(try(fit <- glmnet::cv.glmnet(x,y,alpha=1,family="binomial"),silent=TRUE))
  return(fit)
b_ridge_predict=function(fit,xnew){
  y.hat=rep(NA,nrow(xnew))
  if(!is.null(fit)){
   xnew=data.matrix(xnew)
   y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))
  return(y.hat)
}
#3.3. update MLlist
MLlist=c("lasso","ridge")
fit3=tgml(y,x,z,ynew=ynew,xnew=xnew,znew=znew,MLlist=MLlist)
fit3$auc_new
plot(fit3$roc_new)
```

Index

tgml, 1