

사물인터넷

7주차 - 디지털 IO 인터페이스 활용할 수 있는 센서

101111000101001010011001

01. 신호등 LED

시각 표현 소자

10111100010100101001100010100111110

신호등 모듈 사용해보기

- 모듈이란?
 - ❖ 회로를 구성한 보드
 - ❖ 기판위에 부품을 배치하고 결선하여 인터페이스를 간단하게 만든 전자 보드를 모듈이라 한다
- 신호등 모듈
 - ❖ 빨강, 노랑 초록 LED 모듈
 - ❖ GND 공통에 각 LED에 HIGH 공급하여 켤 수 있다
 - ❖ 핀이름은 R = 빨강, Y = 노랑, G = 초록, GND

신호등 모듈 핀

- 핀이름은 다음과 같이 연결
 - ❖ GND 0V or GND
 - ❖ R Red LED
 - ❖ Y Yellow LED
 - ❖ G Green LED

신호등 연결

신호등모듈	아두이노
GND	GND
R	11
Υ	10
G	9

신호등 모듈 - 코드(1)

```
#define RED_LED 11
#define YELLOW_LED 10
#define GREEN_LED 9
void setup()
 pinMode(RED_LED, OUTPUT);
 pinMode(YELLOW_LED, OUTPUT);
 pinMode(GREEN_LED, OUTPUT);
```


신호등 모듈 - 코드(2)

```
void loop()
 digitalWrite(RED_LED, HIGH);
 digitalWrite(YELLOW_LED, LOW);
 digitalWrite(GREEN_LED, LOW);
 delay(1000);
 digitalWrite(RED_LED, LOW);
 digitalWrite(YELLOW_LED, HIGH);
 digitalWrite(GREEN_LED, LOW);
 delay(1000);
 digitalWrite(RED_LED, LOW);
 digitalWrite(YELLOW_LED, LOW);
 digitalWrite(GREEN_LED, HIGH);
 delay(1000);
```


과제 - 신호등 모듈 수정

```
static int status;
void setup()
 status = 0;
 pinMode(RED_LED, OUTPUT);
 pinMode(YELLOW_LED, OUTPUT);
 pinMode(GREEN_LED, OUTPUT);
void loop()
  digitalWrite(RED_LED, LOW);
  digitalWrite(YELLOW_LED, LOW);
  digitalWrite(GREEN_LED, LOW);
```

과제 - 기존 코드의 동작과 같이 1초에 한 개씩 켜지도록 BLANK1, 2, 3 을 채워주세요

```
switch(status){
 case 0:
       status = 1;
       BLANK 1
       break;
 case 1:
      status = 2;
       BLANK 2
       break:
 case 2:
       status = 0;
       BLANK 3
       break;
 default:
       break;
};
delay(1000);
```


02. DotMatrix

시각 표현 소자

101111000101001010011000101001111101

도트메트릭스(DotMatrix)

- Dot + Matrix
 - ❖ Dot는 LED를 의미한다.
 - ❖ Matrix 는 행렬 배열 모양이다.
 - ❖ LED 배열을 DotMatrix 라고 한다.

 <i>a</i> _{1,1} <i>a</i> _{2,1}	a _{1,2} a _{2,2}	$a_{1,3} \ldots$ $a_{2,3} \ldots$			
<i>a</i> _{3,1}	<i>a</i> _{3,2}	<i>a</i> _{3,3}			

도트매트릭스(DotMatrix)

- 도트매트릭스는 행렬 LED 개수에 따라 사이즈가 가변이다 ❖ 8x8 또는 16x16. 그 이상의 배열도 있다.
- 문자, 숫자, 그림 등 Display 목적으로 사용 된다
- LED는 휘도가 높아 멀리서도 정확하게 보인다
- 전광판 또는 안내판 등에 사용되며, 일상 생활에서 많이 접할 수 있다

도트매트릭스 전광판

- 행렬의 핀이 있으며, 교차해서 선택할 수 있다
- 8x8 도트매트릭스는 16개의 핀이 있다
- 반시계 방향으로 핀이 카운트 된다
- COL과 ROW 핀이 섞여 있다
 - **♦** COL 13,3,4,10,6,11,15,16
 - ❖ ROW 9, 14, 8, 12, 1, 7, 2, 5

- LED의 극성에 따라 두 가지 형태가 있다
 - Common Cathode/Common Anode

■ 한번에 16핀을 모두 제어 해야한다

- 착시 현상을 이용하여 행 단위로 빠르게 제어한다
 - ❖ 사람의 눈은 잔상이 사라지기전에 다시 비추면 계속 켜있다고 느낀다

도트매트릭스 연결도(Common Cathod)

■ COL: 9,3,2,12,15,11,7,6

■ ROW: 13,8,17,10,5,16,4,14

COL	PIN	Arduino
1	13	9
2	3	3
3	4	2
4	10	12
5	6	15
6	11	11
7	15	7
8	16	6

ROW	PIN	Arduino
1	9	13
2	14	8
3	8	17
4	12	10
5	1	5
6	7	16
7	2	4
8	5	14

도트매트릭스 연결도(Common Cathod)

Common Anode Dotmatrix 켜기

```
void setup() {
        pinMode( 9,OUTPUT);
        pinMode( 3,OUTPUT);
        pinMode( 2,OUTPUT);
        pinMode(12,OUTPUT);
        pinMode(15,OUTPUT);
        pinMode( 11,OUTPUT);
        pinMode( 7,OUTPUT);
        pinMode( 6,OUTPUT);
        pinMode( 13,OUTPUT);
        pinMode(8,OUTPUT);
        pinMode( 17,OUTPUT);
        pinMode( 10,OUTPUT);
        pinMode( 5,OUTPUT);
        pinMode( 16,OUTPUT);
        pinMode( 4,OUTPUT);
        pinMode(14,OUTPUT);
```

```
void loop() {
// Col
          digitalWrite(9,HIGH);
          digitalWrite(3,LOW);
          digitalWrite(2, LOW);
          digitalWrite(12, LOW);
          digitalWrite(15, LOW);
          digitalWrite(11, LOW);
          digitalWrite(7, LOW);
          digitalWrite(6, LOW);
// Row
          digitalWrite(13, LOW);
          digitalWrite(8, HIGH);
          digitalWrite(17, HIGH);
          digitalWrite(10, HIGH);
          digitalWrite(5, HIGH);
          digitalWrite(16, HIGH);
          digitalWrite(4, HIGH);
          digitalWrite(14, HIGH);
```


스마일 예제 (1/5)

```
//표현할 문자를 2진수로 정의.
#define DOT { \
 \{0,0,1,1,1,1,0,0\},\
 \{0,1,0,0,0,0,1,0\},\
 \{1,0,1,0,0,1,0,1\},\
 \{1,0,0,0,0,0,0,1\},\
 {1,0,1,0,0,1,0,1}, \
 \{1,0,0,1,1,0,0,1\},\
 \{0,1,0,0,0,0,1,0\},\
 {0,0,1,1,1,1,0,0} \
byte col = 0;
byte leds[8][8];
```


스마일 예제 (2/5)

```
int pins[17] = \{-1, 5, 4, 3, 2, 14, 15, 16, 17, 13, 12, 11, 10, 9, 8, 7, 6\};
```

```
int cols[8] = {pins[13], pins[3], pins[4], pins[10], pins[6],pins[11], pins[15], pins[16]};
```

int rows[8] = {pins[9], pins[14], pins[8], pins[12], pins[1],pins[7], pins[2], pins[5]};

int pattern[8][8] = DOT;

스마일 예제 (3/5)

```
void setup() {
 //아두이노 디지털 핀 출력 설정
 for (int i = 1; i \le 16; i++) {
  pinMode(pins[i], OUTPUT);
 //LED를 켜기 전에 모두 끄기
 for (int i = 1; i \le 8; i++) {
  digitalWrite(cols[i - 1], LOW);
 for (int i = 1; i \le 8; i++) {
  digitalWrite(rows[i - 1], LOW);
```


스마일 예제 (4/5)

```
void loop() {
 //출력
 display();
 delay(2);
void display() {
 //다음 column으로 넘어가기 전에 이전led를 끈다
 digitalWrite(cols[col], LOW);
 //현재 column
 col++;
 if (col == 8) {
  col = 0;
```


스마일 예제 (5/5)

```
for (int row = 0; row \langle 8; row++ \rangle {
  if (pattern[col][7 - row] == 1) {
    digitalWrite(rows[row], LOW); // LED ON
  else {
    digitalWrite(rows[row], HIGH); // LED OFF
 digitalWrite(cols[col], HIGH);
} //display() 함수 종료
```

24

마무리

■ Delay를 1초로 늘려보자

```
void loop() {
//출력
display();
delay(2);
}
```

- ❖ 행렬의 그리는 동작이 정확히 보이게 된다.
- Tinkercad 를 사용하여 확인해보자
 - ❖ Led 를 8x8로 배열하여 시물레이션할 수 있다.
 - ❖ 코드 검증 및 이해하는데 효과적이다.