	PAGE NO.: DATE: / /
	Assignment 3C024 102103660
	Predictive Analysis Using Statistics
-	Parameter Estimation
E	taken from a Normal Pale lation Hale - Drand
	(XI, X2), be a orandom sample of size on taken from a Normal Population, Hear = 01 and variance = 02. Find HLE of these 2 Parameters.
	Function will be Chin a Population distribution
4	Function will be a Normal Population distribution
1	$L(\theta_1,\theta_2) = \frac{\pi}{11} \cdot e^{\left(\left(\frac{\chi_i - \chi_i}{2}\right)^2\right)}$
	V2TG2
	Take natural log on both sides
	$ln L(0,0_2) = \left\{ \left(-\frac{(X_i - M)^2 - J ln (2T6^2)}{26^2} \right) - \frac{1}{2} ln \left(-\frac{(X_i - M)^2 - J ln (2T6^2)}{2} \right) \right\}$
112	To if , not the MLG, differentiate clog-chilehood of m w.r.t O, and Oz
1	ym w.r.t O, and Oz
	d. In 1 (D, O) 1 = 5 /X: -U) - 0
	do, l=1 (62)
	We are grien Beneralal distribution
	This inflies,
	m (-0-1) 0 T = (-0) 1
	EXi-nU=0
	(=) as modular and (a)
	0/11 =1 2 Xi
	M [2]

For Oz, $\frac{d}{do_2} dn L \left(O_1, O_2 \right) = \underbrace{\left\{ - \left(X_i - O_1 \right)^2 + 1 \right\}}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 2 O_2 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 2 O_2 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 2 O_2 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)}_{L=1} = \underbrace{\left(- \left(X_i - O_2 \right)^2 + 1 \right)$ $\frac{x}{2} \frac{(x_{i}-0_{i})^{2}-m=0}{0_{2}^{2}}$ 1 & (Xi -01)2 = m O22 (=1 O2 0,2 =1 \(\int (Xi-0i)^2\)
0,2 \(\text{n}\) \(\text{t=1}\) 02=1 & (Xi-01)2 Sample Variance 2. X1, X2 --- Xn be a random sample from B (m, o) distribution, where 0 = 0! = (0,1) Is unknown and im' is a known + ve unliger We are given Binomial disbubution L(0) = TT (m) 0 Xi (1-0) m-Xi Taking natural log,

