from $E_1 \times \cdots \times E_n$ to K. The map $l_{v_1^*,\dots,v_n^*}$ extends uniquely to a linear map $L_{v_1^*,\dots,v_n^*} \colon E_1 \otimes \cdots \otimes E_n \longrightarrow K$ making the following diagram commute.

$$E_1 \times \cdots \times E_n \xrightarrow{\iota_{\otimes}} E_1 \otimes \cdots \otimes E_n$$

$$\downarrow^{L_{v_1^*, \dots, v_n^*}} K$$

We also have the multilinear map

$$(v_1^*, \dots, v_n^*) \mapsto L_{v_1^*, \dots, v_n^*}$$

from $E_1^* \times \cdots \times E_n^*$ to $\text{Hom}(E_1 \otimes \cdots \otimes E_n, K)$, which extends to a unique linear map L from $E_1^* \otimes \cdots \otimes E_n^*$ to $\text{Hom}(E_1 \otimes \cdots \otimes E_n, K)$ making the following diagram commute.

$$E_1^* \times \cdots \times E_n^* \xrightarrow{\iota_{\otimes}} E_1^* \otimes \cdots \otimes E_n^*$$

$$\downarrow^L$$

$$\text{Hom}(E_1 \otimes \cdots \otimes E_n; K)$$

However, in view of the isomorphism

$$\operatorname{Hom}(U \otimes V, W) \cong \operatorname{Hom}(U, \operatorname{Hom}(V, W))$$

given by Proposition 33.15, with $U = E_1^* \otimes \cdots \otimes E_n^*$, $V = E_1 \otimes \cdots \otimes E_n$ and W = K, we can view L as a linear map

$$L: (E_1^* \otimes \cdots \otimes E_n^*) \otimes (E_1 \otimes \cdots \otimes E_n) \to K,$$

which corresponds to a bilinear map

$$\langle -, - \rangle \colon (E_1^* \otimes \cdots \otimes E_n^*) \times (E_1 \otimes \cdots \otimes E_n) \longrightarrow K,$$
 (††)

via the isomorphism $(U \otimes V)^* \cong \text{Hom}(U, V; K)$ given by Proposition 33.8. This pairing is given explicitly on generators by

$$\langle v_1^* \otimes \cdots \otimes v_n^*, u_1 \ldots, u_n \rangle = v_1^*(u_1) \cdots v_n^*(u_n).$$

This pairing is nondegenerate, as proved below.

Proof. If $(e_1^1, \ldots, e_{m_1}^1), \ldots, (e_1^n, \ldots, e_{m_n}^n)$ are bases for E_1, \ldots, E_n , then for every basis element $(e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*$ of $E_1^* \otimes \cdots \otimes E_n^n$, and any basis element $e_{j_1}^1 \otimes \cdots \otimes e_{j_n}^n$ of $E_1 \otimes \cdots \otimes E_n$, we have

$$\langle (e_{i_1}^1)^* \otimes \cdots \otimes (e_{i_n}^n)^*, e_{j_1}^1 \otimes \cdots \otimes e_{j_n}^n \rangle = \delta_{i_1 j_1} \cdots \delta_{i_n j_n},$$

where δ_{ij} is *Kronecker delta*, defined such that $\delta_{ij} = 1$ if i = j, and 0 otherwise. Given any $\alpha \in E_1^* \otimes \cdots \otimes E_n^*$, assume that $\langle \alpha, \beta \rangle = 0$ for all $\beta \in E_1 \otimes \cdots \otimes E_n$. The vector α is a finite