

PROJECT PLANNING AND SCHEDULING

Planning and scheduling

- ❑ Levels of planning and scheduling
 - Long-range planning (several years),
 - middle-range planning (1-2 years),
 - short-range planning (few months),
 - **scheduling** (few weeks), and
 - reactive scheduling (now)
- ❑ These functions are now often integrated

João Miguel da Costa Sousa

67

Project planning

- ❑ Planning and scheduling of *jobs (activities)* subjected to precedence constraints.
- ❑ Setting is a parallel machine environment with unlimited number of machines.
- ❑ **Objective:** minimize makespan

João Miguel da Costa Sousa

68

Project properties

- ❑ Project goals: quality, time, costs, customer satisfaction
- ❑ Network of activities/jobs
- ❑ Limited resource capacity
- ❑ Project life-cycle:
 - Order acceptance
 - Engineering and process planning
 - Material and resource scheduling
 - Project execution
 - Evaluation and service

João Miguel da Costa Sousa

69

Project areas

- ❑ Construction
- ❑ Production
- ❑ Management
- ❑ Research
- ❑ Maintenance
- ❑ Installation, implementation
- ❖ **Examples:** construction of power generation centers, software developments, launching of aircrafts, design, development and construction of defense vehicles.

João Miguel da Costa Sousa

70

Project representation

- ❑ Example: planning a concert

Job	Description	Predecessors
A	Plan concert	-
B	Advertise	A
C	Sell tickets	A
D	Hold concert	B, C

João Miguel da Costa Sousa

71

Job-on-arc format

- Not allowed: two jobs cannot have the same starting and ending node!

- Need to introduce a dummy job:

João Miguel da Costa Sousa

72

Example 1

- Setting up a production facility

Job	Description	Duration (p_j)
1	Design production tooling	4 weeks
2	Prepare manufacturing drawings	6 weeks
3	Prepare production facility for new tools and parts	10 weeks
4	Procure tooling	12 weeks
5	Procure production parts	10 weeks
6	Kit parts	2 weeks
7	Install tools	4 weeks
8	Testing	2 weeks

João Miguel da Costa Sousa

73

Precedence graph

Job	Immediate predecessors	Immediate successors
1	-	4
2	-	5
3	-	6, 7
4	1	6, 7
5	2	6
6	3, 4, 5	8
7	3, 4	8
8	6, 7	-

Job-on-arc network

João Miguel da Costa Sousa

74

Job-on-node format

- No need for a dummy node
- Nodes can be depicted as rectangles

João Miguel da Costa Sousa

75

Jobs on a time axis

j	precedence
A:	-
B:	-
C:	A
D:	A, B
E:	A
F:	E
G:	E
H:	C, F
J:	D, G

João Miguel da Costa Sousa

76

Critical Path Method (CPM)

- Processing time, p_j , of job j is fixed. A job does not require any resource.
- Unlimited number of machines in parallel and n jobs with precedence constraints.
- Objective:** minimize makespan
- **slack job:** the start of its processing time can be postponed without increasing the makespan
- **critical job:** the job that cannot be postponed
- **critical path:** the set of critical jobs

João Miguel da Costa Sousa

77

Critical Path Method

Forward procedure

- Starting at time zero, calculate the **earliest** each job can be started
- The completion time of the last job is the makespan

Backward procedure

- Starting at time equal to the makespan, calculate the **latest** each job can be started so that the makespan obtained in the forward procedure is realized.
- Finds the **critical path**.

João Miguel da Costa Sousa

78

Critical Path Method

Notation:

- p_j processing time of job j
- S'_j earliest possible starting time of job j
- C'_j earliest possible completion time of job j
- S''_j latest possible starting time of job j
- C''_j latest possible completion time of job j
- $C'_j = S'_j + p_j$
- $\{ \text{all } k \rightarrow j \}$ jobs that are predecessors of job j
- $\{ j \rightarrow \text{all } k \}$ jobs that are successors of job j

João Miguel da Costa Sousa

79

Forward procedure

Step 1:

Set time $t = 0$
Set $S_j = 0$ and set $C'_j = p_j$, for all jobs j with no predecessors

Step 2:

Compute for each job j

$$S'_j = \max_{\{ \text{all } k \rightarrow j \}} C'_k,$$

$$C'_j = S'_j + p_j$$

Step 3:

The optimal makespan is $C_{\max} = \max(C'_1, C'_2, \dots, C'_n)$

João Miguel da Costa Sousa

80

Backward procedure

Step 1:

Set $t = C_{\max}$
Set $C''_j = C_{\max}$ and $S''_j = C_{\max} - p_j$ for jobs j with no successors

Step 2:

Compute for each job j

$$C''_j = \min_{\{ j \rightarrow \text{all } k \}} S''_k,$$

$$S''_j = C''_j - p_j$$

Step 3:

Verify that $\min(S''_1, \dots, S''_n) = 0$

João Miguel da Costa Sousa

81

Comments

- The forward procedure gives the earliest possible starting time for each job
- The backwards procedures gives the latest possible starting time for each job
- If these are equal the job is a **critical job**.
- If these are different the job is a **slack job**, and the difference is the **float**.
- A **critical path** is a chain of jobs starting at time 0 and ending at C_{\max} .

João Miguel da Costa Sousa

82

Example 2

Jobs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
p_j	5	6	9	12	7	12	10	6	10	9	7	8	7	5

João Miguel da Costa Sousa

83

Example 2: forward procedure

João Miguel da Costa Sousa

84

Example 2: backward procedure

João Miguel da Costa Sousa

85

Example 2: Critical Path

João Miguel da Costa Sousa

86

Program Evaluation and Review Technique

- ❑ Processing times is not deterministic in PERT.
- ❑ Processing time of job j is random with mean μ_j and variance σ_j^2 .
- ❑ Want to determine the **expected makespan**
- ❑ Assuming:
 - p_j^a = optimistic processing time of job j
 - p_j^m = most likely processing time (mode) of job j
 - p_j^b = pessimistic processing time of job j

João Miguel da Costa Sousa

87

Expected Makespan

- ❑ Estimation of **expected processing time**:

$$\hat{\mu}_j = \frac{p_j^a + 4p_j^m + p_j^b}{6}$$

- ❑ Apply CPM with expected processing times.

- ❑ Let J_{cp} be a critical path.

- ❑ Estimation of **expected makespan**:

$$\hat{E}(C_{\max}) = \sum_{j \in J_{cp}} \hat{\mu}_j$$

João Miguel da Costa Sousa

88

Distribution of makespan

- ❑ Estimation of the variance of processing times:

$$\hat{\sigma}_j^2 = \left(\frac{p_j^b - p_j^a}{6} \right)^2$$

- ❑ Estimation of the variance of the makespan

$$\hat{V}(C_{\max}) = \sum_{j \in J_{cp}} \hat{\sigma}_j^2$$

- ❑ Assume it is **normally distributed** (Gaussian)

João Miguel da Costa Sousa

89

Example 2 using PERT (1)

Jobs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
p_j^a	4	4	8	10	6	12	4	5	10	7	6	6	7	2
p_j^m	5	6	8	11	7	12	11	6	10	8	7	8	7	5
p_j^b	6	8	14	18	8	12	12	7	10	15	8	10	7	8

- ❑ Precedence constraints as before.

- ❑ Estimation of means and standard deviations:

Jobs	1	2	3	4	5	6	7	8	9	10	11	12	13	14
μ_j	5	6	9	12	7	12	10	6	10	9	7	8	7	5
σ_j	0.33	0.67	1	1.33	0.33	0	1.33	0.33	0	1.33	0.33	0.66	0	1
σ_j^2	0.11	0.44	1	1.78	0.11	0	1.78	0.11	0	1.78	0.11	0.44	0	1

João Miguel da Costa Sousa

90

Example 2 using PERT (2)

- ❑ Critical path is the same:

$$1 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 11 \rightarrow 12 \rightarrow 14$$

- ❑ Estimated makespan:

$$\hat{E}(C_{\max}) = \sum_{j \in J_{cp}} \hat{\mu}_j = 56$$

- ❑ Estimate of the variance of the makespan:

$$\hat{V}(C_{\max}) = \sum_{j \in J_{cp}} \sigma_j^2 = 2.66$$

João Miguel da Costa Sousa

91

Example 2 using PERT (3)

- ❑ Probability that the project is completed by time 60 is:

$$\Phi\left(\frac{60-56}{\sqrt{2.66}}\right) = \Phi(2.449) = 0.993$$

- where $\Phi(x)$ is the probability that a normally distributed random variable ($\mu=0$, $\sigma=1$) is less than x .

- ❑ For the path: $1 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow 10 \rightarrow 12 \rightarrow 14$ the estimated makespan is 55. The variance is 7.33

- ❑ Probability that the project is completed by time 60 is:

$$\Phi\left(\frac{60-55}{\sqrt{7.33}}\right) = \Phi(1.846) = 0.968$$

João Miguel da Costa Sousa

92

Potential problems with PERT

- ❑ Always underestimates project duration
 - other paths may delay the project

- ❑ Non-critical paths ignored
 - critical path probability
 - critical activity probability

- ❑ Activities are not always independent
 - same raw material, weather conditions, etc.

- ❑ Estimates may be inaccurate

João Miguel da Costa Sousa

93

Time/Cost tradeoffs: linear costs

- ❑ By **allocating money** (for additional resources) to jobs their processing time p_j can be reduced

- ❑ Assume that processing times are fixed

- ❑ Linear relation between allocated money and p_j

- ❑ Processing time:

$$p_j^{\min} \leq p_j \leq p_j^{\max}$$

- ❑ Marginal cost of reducing processing time by one time unit:

$$c_j = \frac{c_j^a - c_j^b}{p_j^{\max} - p_j^{\min}}$$

João Miguel da Costa Sousa

94

Linear cost

- ❑ Cost of processing job j in p_j time units ($p_j^{\min} \leq p_j \leq p_j^{\max}$):

$$c_j^b + c_j(p_j^{\max} - p_j)$$

João Miguel da Costa Sousa

95

Solution methods

❑ **Objective:** minimum cost of project

❑ **Time/Cost Trade-Off Heuristic**

- Good schedules (not optimal)
- Works also for nonlinear costs

❑ **Linear programming formulation**

- *Always* optimal schedules
- Nonlinear version not easily solved

João Miguel da Costa Sousa

96

Sources, Sinks, and Cut sets

G_{cp} – subgraph consisting of critical paths

João Miguel da Costa Sousa

97

Time/Cost Trade-Off Heuristic

Step 1:

- Set all processing times at their maximum: $p_j = p_j^{\max}$
- Determine all critical paths with these processing times
- Construct the graph G_{cp} of critical paths

Step 2:

- Determine all minimum cut sets in the current G_{cp}
- Consider only those cut sets where all processing times are larger than their minimum: $p_j > p_j^{\min}, \forall j \in G_{cp}$
- If there is no such set STOP

João Miguel da Costa Sousa

98

Time/Cost Trade-Off Heuristic

Step 3:

- For each minimum cut set compute the cost of reducing all its processing times by one time unit.
- Take the minimum cut set with the lowest cost.
- If this is greater or equal than the overhead cost c_o per unit time STOP

Step 4:

- Reduce all processing times in the minimum cut set by one time unit
- Determine the new set of critical paths
- Revise graph G_{cp} accordingly and go back to Step 2

João Miguel da Costa Sousa

99

Example 3 (example 2 modified)

j	1	2	3	4	5	6	7	8	9	10	11	12	13	14
p_j^{\max}	5	6	9	12	7	12	10	6	10	9	7	8	7	5
p_j^{\min}	3	5	7	9	5	9	8	3	7	5	6	5	5	2
c_j^a	20	25	20	15	30	40	35	25	30	20	25	35	20	10
c_j	7	2	4	3	4	3	4	4	4	5	2	2	4	8

Overhead: $c_o = 6$ (cost of project per time unit)

João Miguel da Costa Sousa

100

1. Max. processing times, find G_{cp}

João Miguel da Costa Sousa

101

1. Max. processing times, find G_{cp}

Cost = overhead + job costs = $c_o * C_{\max} + \sum c_j^a$
 $= 6 * 56 + 350 = 686$

João Miguel da Costa Sousa

102

2, 3. Min. cut sets in G_{cp} & lowest cost

Cut sets: {1},{3},{6},{9},
{11},{12},{14}.

Minimum cut set with lowest cost

João Miguel da Costa Sousa

103

4. Reduce proc. time for each job by 1

Cost = overhead + job costs = $c_o * C_{\max} + \sum c_j^a$
 $= 6 * 55 + 352 = 682$

João Miguel da Costa Sousa

104

2, 3. Min. cut sets in G_{cp} & lowest cost

Cut sets: {1},{3},{6},{9},
{11},{12},{14}.

Minimum cut set with lowest cost

João Miguel da Costa Sousa

105

Next 3 iterations

Cost = overhead + job costs = $c_o * C_{\max} + \sum c_j^a$
 $= 6 * 52 + 355 = 667$

João Miguel da Costa Sousa

106

Step 1, 2, and 3

Reduce processing time
next on job 6

João Miguel da Costa Sousa

107

After more iterations ...

João Miguel da Costa Sousa

108

Obtained solution

João Miguel da Costa Sousa

109

Other optimal solution

João Miguel da Costa Sousa

110

Linear programming formulation

- ❑ The heuristic does not guarantee optimum
 - See example 4.4.3 from Pinedo's book
- ❑ Here total cost is linear so use LP

$$c_o C_{\max} + \sum_{j=1}^n (c_j^b + c_j(p_j^{\max} - p_j))$$

- ❑ Ignoring the constant terms:

$$c_o C_{\max} - \sum_{j=1}^n c_j p_j.$$

João Miguel da Costa Sousa

111

Linear Program

- ❑ The processing time p_j of a job j is a **decision variable**.
- ❑ The earliest possible starting time of a job j is denoted as x_j , and is also a decision variable.
- ❑ For jobs k without predecessors $x_k = 0$, and $p_j^{\min} \leq p_j \leq p_j^{\max}$
- ❑ The linear problem has $2n + 1$ decision variables: $C_{\max}, p_1, \dots, p_n, x_1, \dots, x_n$.

João Miguel da Costa Sousa

112

Linear Program

$$\begin{aligned} \text{minimize} \quad & c_o C_{\max} - \sum_{j=1}^n c_j p_j. \\ \text{subject to} \quad & x_k - p_j - x_j \geq 0, \forall j \rightarrow k \in A \\ & p_j \leq p_j^{\max}, \forall j \\ & p_j \geq p_j^{\min}, \forall j \\ & x_j \geq 0, \forall j \\ & C_{\max} - x_j - p_j \geq 0, \forall j \end{aligned}$$

João Miguel da Costa Sousa

113

Nonlinear costs

Discrete time-framework:

- ❑ Arbitrary function $c_j(p_j) \rightarrow$ cost of setting job j to processing time p_j
- ❑ decreasing convex cost-function

$$c_j(p_j-1) - c_j(p_j) \geq c_j(p_j) - c_j(p_j+1)$$
- ❑ non-decreasing overhead cost-function $c_o(t)$
- ❑ Given processing times and $c_j(p_j)$, which algorithm can be used (heuristic or LP)?

João Miguel da Costa Sousa

114

Nonlinear costs

Continuous time-framework:

- ❑ **Nonlinear programming** problem with the same constraints as the LP model.
- ❑ Objective function:

$$\int_0^{C_{\max}} c_o(t) dt + \sum_j c_j(p_j)$$

João Miguel da Costa Sousa

115

Workforce (Resource) constraints

- ❑ **Project Scheduling with Workforce Constraints** = Resource Constrained Project Scheduling (RCPS)

Notation

- ❑ n jobs $j = 1, \dots, n$
- ❑ N different pools in workforce $i = 1, \dots, N$
- ❑ W_i total number of operators in pool i
- ❑ W_{ij} number of operators in pool i needed for job j
- ❑ **Objective:** minimize makespan

João Miguel da Costa Sousa

116

Example 4

- ❑ Five jobs and two types of operators:

- 4 operators of type 1
- 8 operators of type 2

Jobs	1	2	3	4	5	Job	Immediate Predecessors	Immediate Successors
p_j	8	4	6	4	4	1	—	4
W_{1j}	2	1	3	1	2	2	—	5
W_{2j}	3	0	4	0	3	3	—	5
						4	1	—
						5	2, 3	—

João Miguel da Costa Sousa

117

Solution of example 4

- ❑ Without workforce constraints, critical path is $1 \rightarrow 4$, with $C_{\max} = 12$.
- ❑ Optimal schedule: $C_{\max} = 18$.
- ❑ **Optimal schedule:**

João Miguel da Costa Sousa

118

Workforce Constraints

- ❑ This is a **very hard** problem. Cannot be solved using linear programming.
- ❑ Can be formulated as an **integer programming** problem.
- ❑ Let job $n + 1$ be a dummy job (sink)
- ❑ Let x_{jt} be a binary variable:

$$x_{jt} = \begin{cases} 1 & \text{if job } j \text{ is completed exactly at time } t \\ 0 & \text{otherwise.} \end{cases}$$

João Miguel da Costa Sousa

119

Makespan

- Let H be an upper bound of makespan, as e.g.:

$$H = \sum_{j=1}^n p_j$$

- Completion time of job j is

$$\sum_{t=1}^H t x_{jt}$$

- Makespan:

$$\sum_{t=1}^H t x_{n+1,t}$$

João Miguel da Costa Sousa

120

Integer Programming formulation

$$\text{minimize } \sum_{t=1}^H t x_{n+1,t}$$

$$\text{subject to } \sum_{t=1}^H t x_{jt} + p_k - \sum_{t=1}^H t x_{kt} \leq 0 \quad \text{precedence constraints}$$

$$\sum_{j=1}^n \left(W_{ij} \sum_{u=t}^{t+p_j-1} x_{ju} \right) \leq W_j \quad \text{total demand of pool } i$$

$$\sum_{t=1}^H x_{jt} = 1 \quad \text{jobs are processed}$$

João Miguel da Costa Sousa

121

In practice

- The IP problem is very hard to be solved when number of jobs is large and time horizon is long.
- (Almost) always resource constraints
- Heuristics**
resource constraint → precedence constraint
- Job shop scheduling is a special case of this problem

João Miguel da Costa Sousa

122

Rome laboratory Outage MANager

123

- Shut down of a nuclear power plant for maintenance
- Should be done very carefully!**
- 10 000 to 40 000 jobs
- 1 000 000 euros per day

João Miguel da Costa Sousa

ROMAN problem

- Given a set of jobs, precedence constraints and resource requirements, assign resources to jobs for specific periods to:
 - Minimize makespan
 - Ensure that all jobs can be done safely
- Jobs:** refueling, repairs, plant modifications, maintenance

João Miguel da Costa Sousa

124

Approach

- Decision tree for sophisticated safety analysis
- Constraint programming* based project scheduling system
 - Builds on basic algorithms to be studied
- See papers!

João Miguel da Costa Sousa

125