

Group 6

CHEN, Taoyue 1155141543 LAU, Ho Cheung 1155157540 LI, Yuji 1155157174 POON, Yin Ki

ZHAO, Shengchun 1155157253

Problem Statement

- **★** How to choose a streaming platform?
- Should audiences pay for newly released movie ?

Two sets of dataset

Part 1 & 3

16 thousand movie records and their features

Part 2

movie records and their release date on the corresponding platform

Approach to the Problem

Part 1	Expository data analysis of our movie data to navigate platform-based characteristics of movies
Part 2	Forecasting the number of new movies available on each platform(Hulu, Disney, Netflix)
Part 3	Modelling the relationship between features of a movie and its IMDb rating

Analysis result in case 25

Movie Count Of Different Platforms

Platforms by the number of movies they have

Prime Video Netflix Hulu Disney+

Analysis result in case 25

02

Platforms by the number and percentage of high-quality(IMDb 8.5+) movie

By quantity:

By percentage:

02

Platforms by the number and percentage of high-quality(IMDb 8.5+) movie

Rating Distribution of Movies in Netflix

Rating Distribution of Movies in Hulu

Rating Distribution of Movies in Prime Video

Rating Distribution of Movies in Disney+

Movie Count By produced Year across platform

04

Platforms by their top ten genres of movies

05

Platforms shares of top 50 movies in Genre Documentaries, Action, Animation, and Adventure

Netflix

94%

Disney+

Prime Video

710/

Hulu

D2 Forecasting the number of new movies in 2023

Which platforms will have more new contents?

Overall Movie Market Forecasting

Rapidly developed around 2002

Reached the peak around 2017

Data Visualization

Netflix

Hulu

Disney

Seasonality Testing

Netflix

Hulu

Disney

Forecasting The Number Of New Movies

Will Be Released On Different Streaming Platforms

Hulu

Model We Used

- 1, Auto-ARIMA Model
- 2, Prophet Model
- 3, Elastic Net (GLMNET)
- 4, Hybrid ML Model

(combine Prophet and XGBoost)

Forecast Plot

Validation

Netflix

Legend — ACTUAL — 1_ARIMA[0,1,1](0,0,1][12] — 2_PROPHET — 3_GLMNET — 4_PROPHET W/XGBOOST ERRORS

2020

Hulu

Disney

Forecasting For Each Platforms

Netflix

Hulu

Disney

Platform recommendation

★ Netflix

Limitations

- 1, Not add other variables to the model
- 2, Some uncontrollable societal factors may have an influence to the forecasting result
- 3, Hard to verify the completeness of the dataset

03 Model Development

How could we choose movies on streaming platform?

Which Movie is worth watching?

- ★ The IMDb score can be used as a movie viewing guide.
- ★ But what about newly released movies that don't have rating?

We need to know what features of the movies affect the IMDb score.

Data Preprocessing

Standardization

Model requirements

Data cleaning

Remove & Fill the N/A

Dummy variables

For qualitative variables

The problems with OLS model

★ Over-fitting

train_R2	test_R2		
0.360868406	-2.785E+13		
train_RMSE	test_RMSE		
1.0719	7133974.488		
train_MAE	test_MAE		
0.8314	184777.7621		

Ridge regression model

Ridge

VS.

OLS

R2	train_R2	test_R2
Ridge	0.3528	0.3638
OLS	0.3609	-2.785E+13
RMSE	train_RMSE	test_RMSE
Ridge	1.0787	1.0782
OLS	1.0719	7133974.488
MAE	train_MAE	test_MAE
Ridge	0.8402	0.8374
OLS	0.8314	184777.7621

Decision tree

What features contribute the most to movie ratings?

R2	train_R2	test_R2
Decision Tree	0.4066	0.3358
RMSE	train_RMSE	test_RMSE
Decision Tree	1.0328	1.1017
MAE	train_MAE	test_MAE
Decision Tree	0.7983	0.851

Random forest

R2	train_R2	test_R2	
Decision Tree	0.4066	0.3358	
Random Forest	0.7731	0.437335321	
RMSE	train_RMSE	test_RMSE	
Decision Tree	1.0328	1.1017	
Random Forest	0.6387	1.014	
MAE	train_MAE	test_MAE	
Decision Tree	0.7983	0.851	
Random Forest	0.4739	0.7779	

Model results

	train_RMSE	test_RMSE	train_MAE	test_MAE
OLS	1.0719	7133974.4877	0.8314	184777.7621
Lasso	1.0798	1.0790	0.8410	0.8382
Ridge	1.0787	1.0782	0.8402	0.8374
SVR	1.0808	1.0819	0.8270	0.8356
Decision Tree	1.0328	1.1017	0.7983	0.8510
Random Forest	0.6387	1.0140	0.4739	0.7779
Ada boost	0.4191	1.0557	0.2571	0.8023
Gradient boost	0.4295	1.2204	0.3311	0.9405

Limitations and application

- Our weakness lies in need for other essential information about the movies.
- The model can be used as a helpful guide for audience to decide on whether to buy a movie online without previous reviews.

Summary

- ★ Exploratory data analysis for each platform
- ★ Time series and machine learning approaches to forecast the number of new movies in 2023
- ★ Model the relationship between movie features and IMDb ratings with regression and tree-based models

