Question 1: 0,375 Bonne réponse ! 1,00/1 Point

Dans cette nouvelle série de questions, on va s'interesser à la représentation des réels avec une virgule flottante. Dans cette question on utilise une représentation des réels sur 10 bits,

1 bit de signe
4 bits d'exposant
5 bits pour la pseudo mantisse
On veut représenter le réel dont l'écriture en base dix est 0,0375

Que vaut le bit de signe ?

0

nombre positif

Question 2: 0,375 0,00/1 Point

Cette question est la suite de la précédente... Dans cette question on utilise une représentation des réels sur 10 bits,

- 1 bit de signe4 bits d'exposant
- 5 bits pour la pseudo mantisse
 On veut représenter le réel dont l'écriture en base dix est 0,0375

Question 3: 0,375 0.00/1 Point

Cette question est la suite de la précédente... Dans cette question on utilise une représentation des réels sur 10 bits,

- 1 bit de signe
- 4 bits d'exposant
- 5 bits pour la pseudo mantisse
 On veut représenter le réel dont l'écriture en base dix est 0,0375

Question 4: 0,375 0,00/1 Point

Cette question est la suite de la précédente... Dans cette question on utilise une représentation des réels sur 10 bits,

- 1 bit de signe4 bits d'exposant

5 bits pour la pseudo mantisse
On représente donc le réel dont l'écriture en base dix est 0,0375 par

0 0010 00110

quelle est en fait la "vraie" valeur représentée ?

1 bit de signe4 bits d'exposant5 bits pour la pseudo mantisse

Corrigé

Question 6: C'est qui le plus grand?

On continue à utiliser une représentation des réels sur 10 bits,

1 bit de signe4 bits d'exposant

0 1110 11111

- . 5 bits pour la pseudo mantisse

Quel est le codage du plus grand réel normalisé ?

Bonne réponse ! 1,00/1 Point

Question 7: On peut sous-titrer?

Bonne réponse ! 1,00/1 Point

On continue à utiliser une représentation des réels sur 10 bits,

1 bit de signe4 bits d'exposant

252

5 bits pour la pseudo mantisse

Quel est l'écriture en base 10 du plus grand réel normalisé ?

256-4 (2^8-2^2)

Un réel non nul peut être codé comme un flottant normalisé en simple précision sans qu'il n'y ait eu d'arrondi à faire. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 = 23 bits).

On code le même réel comme un flottant en double précision. On note s_2 son signe (1 bit), e_2 son exposant (11 bits), e_2 son pseudo mantisse (64-1-12 =52 bits).

s2 est

Un réel non nul peut être codé comme un flottant normalisé en simple précision sans qu'il n'y ait eu d'arrondi à faire. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), m_1 sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision. On note s_2 son signe (1 bit), e_2 son exposant (11 bits), m_2 sa pseudo mantisse (64-1-12 =52 bits).

e2 est

Un réel non nul peut être codé comme un flottant normalisé en simple précision sans qu'il n'y ait eu d'arrondi à faire. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), m_1 sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision.

On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

Les 23 premiers bits de m2 sont

Un réel non nul est codé comme un flottant normalisé en simple précision avec un arrondi. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision.

On note s_2 son signe (1 bit), e_2 son exposant (11 bits), m_2 sa pseudo mantisse (64-1-12 =52 bits).

s₂ est

ça dépend

☐ jamais égal à s₁

Bonne réponse ! 1,00/1 Point

Un réel non nul est codé comme un flottant normalisé en simple précision avec un arrondi. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 = 23 bits).

On code le même réel comme un flottant en double précision. On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

e2 est

☐ toujours égal à e₁

Question 13 : Passage simple précision double précision

Bonne réponse ! 1,00/1 Point

Un réel non nul est codé comme un flottant normalisé normalisé en simple précision avec un arrondi. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 = 23 bits).

On code le même réel comme un flottant normalisé en double précision. On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

Les 23 premiers bits de m₂ sont

Un réel non nul est codé comme un flottant normalisé normalisé en simple précision avec un arrondi. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), e_1 son pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant normalisé en double précision. On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

Les 23 premiers bits de m₂ :

- □ ont toujours un prefixe commun avec m₁
- peuvent être tous différents des bits correspondant de m₁ par exemple 1,11111...1111111 avec 40 1

Un réel non nul est codé comme un flottant normalisé en simple précision avec un arrondi. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), e_1 sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision. On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

n₁ l'entier relatif codé par e₁, et soit n₂ l'entier relatif codé par e₂

On a toujours n₁-127=n₂-1023?

e=

On code ici les réels comme des flottants en double précision. L'entier X₁=2 65+263 est codé avec :s=

> 10000000 X et sa pseudomantisse comporte

X 1 dont le premier est en position 2 et le dernier en

Corrigé

, e=

On code ici les réels comme des flottants en double précision.

L'entier X₁=2 65+263 est codé avec :s=

10001000000 et sa pseudomantisse comporte

1 dont le premier est en position 2 et le dernier en position 2

position 2

Question 17: Double

Bonne réponse ! 1,00/1 Point

On code ici les réels comme des flottants en double précision.

Question 18 : Double

Bonne réponse ! 1,00/1 Point

On code ici les réels comme des flottants en double précision.

Le réel X₃=2 -10 est codé avec :s=

Question 19: Addition de double

Bonne réponse ! 1,00/1 Point

Bonne réponse ! 1,00/1 Point

On additionne X₁ et X₃. Le résultat sera arrondi ?

Bonne réponse ! 1,00/1 Point

On additionne X₂ et X₃. Le résultat sera arrondi ?

On effectue des opérations arithmétiques sur des flottants, le résultat de l'opération est NaN si

on multiplie 0 et + l'infini on divise l'infini par l'infini on divise 0 par 0 un des opérandes au moins est NaN on essaye de calculer la racine carré de moins un 1 on additionne + l'infini et moins l'infini on soutrait + l'infini de + l'infini

