Gate MA-2010

AI24BTECH11032 Shreyansh Sonkar

- 40) Consider the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$, $0 < x < \pi, t > 0$, with $u(0,t) = u(\pi,t) =$ $0, u(x, 0) = \sin x$ and $\frac{\partial u}{\partial t} = 0$ at t = 0. Then $u\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ is
 - a) 2

b) 1

c) 0

d) -1

1

- 41) Let $I = \int_C \frac{e^x}{x} dx + (e^y \ln x + x) dy$, where C is the positively oriented boundary of the region enclosed by $y = 1 + x^2$, y = 2, $x = \frac{1}{2}$. Then the value of I is
 - a) $\frac{1}{9}$

- b) $\frac{5}{24}$ c) $\frac{7}{24}$

- d) $\frac{3}{8}$
- 42) Let $\{f_n\}$ be a sequence of real valued differentiable functions on [a,b] such that int $f_n(x) \to f(x)$ as $n \to \infty$ for every $x \in [a,b]$ and for some Riemann-integrable function $f: [a,b] \rightarrow R$ Consider the statements

 $P_1: \{f_n\}$ converges uniformly

 $P_2: \{f_n'\}$ converges uniformly

$$P_3: \int_n^b f_n(x) dx \to \int_n^b f(x) dx$$

 P_4 : f is differentiable

Then which one of the following need NOT be true

- a) P_1 implies P_1 b) P_2 implies P_1 c) P_2 implies P_4 d) P_3 implies P_1

- 43) Let $f_n(x) = \frac{x^n}{1+x}$ and $g_n(x) = \frac{x^n}{1+nx}$ for $x \in [0,1]$ and $n \in \mathbb{N}$. Then on the interval [0, 1].
 - a) both $\{f_n\}$ and $\{g_n\}$ converge uniformly
 - b) neither $\{f_n\}$ nor $\{g_n\}$ converges uniformly
 - c) $\{f_n\}$ converges uniformly but $\{g_n\}$ does not converge uniformly
 - d) $\{g_n\}$ converges uniformly but $\{f_n\}$ does not converge uniformly
- 44) consider the power series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{x^n}{n}$. Then
 - a) both converge on (-1,1]
 - b) both converge on [-1, 1)
 - c) exactly one of them converges on (-1, 1]

d) none of them converges on $[-1, 1)$		2
45) Let X=N be equipped with the topology generated by the basis consisting of sets $A_n = (n, n+1, n+2\cdots), n \in \mathbb{N}$. Then X is		
a) Compact and connectedb) Hausdorff and connected	c) Hausdorff and compd) Neither Compact no	•
46) Four weightless rods form a rhombus PQRS with smooth hinges at the joints. Another weightless rod joins the midpoints E and F of PQ and PS respectively. The system is suspended from P and a weight 2W is attached to R. If the angle between the rods PQ and PS is 2θ , then the thrust in the rod EF is		
a) W $\tan \theta$ b) 2W $\tan \theta$	c) W $\cot \theta$	l) 4W $\tan \theta$
47) For a continuous function $f(t), 0 \le r \le 3 \int_0^1 \operatorname{ts} y(s) ds$ has a) a unique solution if $\int_0^1 \operatorname{s} f(s) ds \ne 0$ b) no solution if $\int_0^1 \operatorname{s} f(s) ds = 0$	≤ 1 the integral equati	ion $y(t) = f(t) +$

Common Data for Question 48 and 49:

c) infinitely many solution if $\int_0^1 sf(s) ds = 0$ d) infinitely many solution if $\int_0^1 sf(s) ds \neq 0$

Let X and Y be continuous random variables with the joint probability density function $f(x, y) = \begin{cases} ae^{-zy}, & 0 < x < y < \infty \\ 0, & \text{otherwise} \end{cases}$

Common Data Question

48) The value of a is

a) 4

b) 2

c) 0

d) 0.5

49) the value of of E(X | Y = 2) is

a) 4

b) 3

c) 2

d) 1

Common Data for Question 50 and 51:

Let X=N×Q with the subspace topology of the usual topology on R^2 and P= $\{(n, \frac{1}{n}) : n \in \mathbb{N}\}$.

50) In the space X,

- a) P is closed but is not open
- b) P is open but is not closed
- c) P is both open and closed
- d) P is neither open but nor closed

- 51) The boundary of P and X is

 - a) an empty set b) a singleton set c) P

d) X

Linked Answer Question

Statement for linked Answer Questions 52 and 53:

For a differentiable function f(x), the integral $\int_0^h f(x) dx$ is approximated by the formula $h[a_0 f(0) + a_1 f(h)] + h^2[b_0 f'(0) + b_1 f'(h)]$, which is exact for all polynomials of degree at most 3.

- 52) The value of a_1 and b_1 respectively are
 - a) $\frac{1}{2}$ and $-\frac{1}{12}$ b) $-\frac{1}{12}$ and $\frac{1}{2}$ c) $\frac{1}{2}$ and $\frac{1}{12}$ d) $\frac{1}{12}$ and $-\frac{1}{2}$

- 53) The values of a_0 and b_0 respectively are

 - a) $\frac{1}{2}$ and $\frac{1}{2}$ b) $\frac{1}{12}$ and $-\frac{1}{12}$ c) $\frac{1}{2}$ and $\frac{1}{12}$ d) $\frac{1}{2}$ and $-\frac{1}{12}$