Текст выступления «Замена непрерывного распределения на дискретное для применения на практике».

Слайд №2

В практических задачах нередко требуется заменить непрерывное распределение на дискретное с сохранением математического ожидания и дисперсии. Одним из методов нахождения такого распределения для аппроксимации нормального распределения является метод Свонсона. Однако в ряде областей, например, в нефтяной промышленности распределением, описывающим запасы нефти, общепринятым является логнормальное распределение. Аппроксимация по методу Свонсона для нормального распределения используется в этих областях, хотя распределение и логнормальное. Также аппроксимируемые случайные величины складывают и умножают. Соответственно, реальной задачей является аппроксимация суммы и произведения логнормальных случайных величин по аппроксимациям исходных случайных величин.

Слайд №3

План работы состоит в следующем.

- 1. Рассмотреть общий подход к трехточечной аппроксимации, трехточечную аппроксимацию нормального распределения, метод Свонсона и вывод правила 30-40-30.
- 2. Рассмотреть трехточечную аппроксимацию логнормального распределения и её свойства.
- 3. Построить алгоритм аппроксимации произведения двух логнормальных распределений.
- 4. Построить алгоритм аппроксимации суммы двух логнормальных распределений.

Слайд №4

Часто бывает на практике, что вместо настоящего распределения известны три его квантили, стандартно это 10-, 50- и 90-процентили. Задачей является нахождение по ним математического ожидания и дисперсии. Обычно задача решается построением весов для квантилей так, чтобы у полученного дискретного распределения были такие

же математическое ожидание и дисперсия, как у исходного. Пусть дана непрерывная случайная величина ξ с функцией распределения F(x). Обозначим $m = \mathbf{E}(\xi)$, $s^2 = \mathbf{D}(\xi)$. Для неё заданы квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$. Также есть случайная дискретная величина $\tilde{\xi}$, которая задана следующим образом. Для неё тоже делаем обозначения математического ожидания и дисперсии. Задача: аппроксимировать распределение случайной величины ξ дискретным распределением $\tilde{\xi}$, то есть найти p_1, p_2, p_3 такие, что следующие равенства верные.

Слайд №5

Рассмотрим предложение. Пусть верна следующая система, где $\hat{x}_{\pi_i} = \hat{\mathsf{F}}^{-1}(\pi_i)$, $\hat{\mathsf{F}}(y)$ — функция распределения $\hat{\xi} = \frac{\xi - m}{s}$. Тогда $m = \tilde{m}$ и $s^2 = \tilde{s}^2$. Это Предложение дает требуемую аппроксимацию дискретным распределением, если найденные вероятности p_i являются неотрицательными. Рассмотрим частный случай $\xi \sim N(\mu, \sigma)$, $\pi = 0.1$, получаем $p_1 \approx 0.305$, $p_2 \approx 0.390$, $p_3 \approx 0.305$. Эти вероятности примерно равны 0.3, 0.4, 0.3, поэтому это правило называют правилом 30-40-30.

Слайд №6

Пусть $\xi = \ln(\eta)$ и $\xi \sim N(\mu, \sigma)$. Знаем, как выразить параметры логнормального распределения через параметры нормального. По следующим формулам. Обратная функция распределения η имеет следующий вид. Также мною было доказано это предложение. Зная любые два квантиля, можно через них выразить параметры μ и σ .

Слайд №7

Имеем следующий алгоритм аппроксимации логнормального распределения. Дано: квантили $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ логнормальной случайной величины η , $\ln(\eta) \sim N(\mu, \sigma)$.

- 1. Выражаем параметры μ и σ математическое ожидание и дисперсию соответствующего нормального распределения через известные $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$.
- 2. Вычисляем значения математического ожидания m и дисперсии s^2 случайной величины η , используя μ и σ .
- 3. С помощью системы уравнений находим значения весов p_1, p_2, p_3 , используя вычисленные m и s^2 .

Результат: веса p_1, p_2, p_3 для $x_{\pi_1}, x_{\pi_2}, x_{\pi_3}$ случайной величины $\tilde{\xi}$. В реальных задачах в нефтяной промышленности используются следующие диапазоны параметров: $\mu \leq 12$, $\sigma \leq 1.5$. Поэтому мы будем обращать на них особое внимание.

Слайд №8

Мы рассмотрели способы вычисления весов для квантилей при аппроксимации логнормального распределения. Но найденные веса являются вероятностями не при любом σ . Выясним, какое должно быть ограничение на этот параметр. Мною было доказано следующее предложение, а также следствие из него. Таким образом, мы получили условие для существования дискретной вероятностной аппроксимации. Например, для $\pi=0.1$ получаем ограничение $\sigma\leq0.6913,\,\sigma^2\leq0.4779.$

Слайд №9

Возникает проблема: метод Свонсона выведенный для аппроксимации нормального распределения используют для логнормального. Какова точность аппроксимации m и s^2 ? Мною доказано предложение, формула для вычисления относительной ошибки аппроксимации математического ожидания представлена на слайде, результат не зависит от параметра μ .

Слайд №10

Также мною была доказана формула для вычисления ошибки аппроксимации дисперсии, она представлена на слайде, результат не зависит от параметра μ .

Слайд №11

Построим график зависимости относительной ошибки аппроксимации математического ожидания и дисперсии от σ . Видим, что при $\sigma \leq 1.5$, взятых из нашего диапазона, ошибка аппроксимации математического ожидания меньше 12%, а ошибка аппроксимации дисперсии может достигать 80%. Для $\sigma \geq 0.69$, когда условие для существования аппроксимации не выполнено, ошибка математического ожидания может быть как маленькой, так и очень большой. Ошибка дисперсии при этом точно больше 25%.

Слайд №12

Мною было подробно написано обоснование алгоритма для нахождения трехточечной симметричной аппроксимации произведения логнормальных распределений. Верно следующее предложение. Зная квантили случайной величины ξ_1 и квантили случайной величины ξ_2 , можно найти квантили соответствующие квантили случайной величины $\xi_1\xi_2$ по следующим формулам, представленным на экране. Здесь a и b такие, что прямая $y=\frac{x-a}{b}$, проходит через точки $(\ln(x_\pi y_\pi),t)$ и $(\ln(x_{0.5}y_{0.5}),0)$. Значение t выражается через известные квантили следующим образом.

Слайд №13

Рассмотрим сумму двух логнормальных случайных величин $\xi = \xi_1 + \xi_2$. Поставим задачу аппроксимации суммы логнормальным распределением $\ln(\eta) \sim N(\mu, \sigma)$, так как нужно рассматривать сумму не обязательно двух, а произвольного числа случайных величин. То есть нужно найти квантили $z_{\pi}, z_{0.5}, z_{1-\pi}$ случайной величины η .

Слайд №14

Имеем следующий алгоритм для решения задачи. Дано: квантили $x_{\pi}, x_{0.5}, x_{1-\pi}$ — квантили $\xi_1, y_{\pi}, y_{0.5}, y_{1-\pi}$ — квантили ξ_2 .

- 1. По набору квантилей ξ_1 находим параметры μ_1 , σ_1 нормального распределения.
- 2. По набору квантилей ξ_2 находим параметры μ_2 , σ_2 нормального распределения.
- 3. Находим математические ожидания и дисперсии ξ_1 и ξ_2 .
- 4. Вычисляем математическое ожидание $\xi_1 + \xi_2$.
- 5. Вычисляем дисперсию $\xi_1 + \xi_2$.
- 6. Находим параметры нормального распределения.
- 7. Находим значения квантилей через μ и σ .
- 8. Находим значения вероятностей p_1, p_2, p_3 .

Результат: вероятности p_1 , p_2 , p_3 для квантилей z_{π_1} , z_{π_2} , z_{π_3} случайной величины η , которая является дискретной аппроксимацией аппроксимации суммы логнормальным распределением.

Слайд №15

Выразим ошибки аппроксимации квантилей q_{π} , $q_{0.5}$, $q_{1-\pi}$ случайной величины ξ через параметры μ_1 , μ_2 , σ_1^2 , σ_2^2 . Здесь значения z_{π} , $z_{0.5}$, $z_{1-\pi}$ вычисляются через обратную функцию распределения для η . Параметры μ , σ можно найти через параметры случайных величин ξ_1 , ξ_2 и вычисленные значения $m = \exp\left(\mu_1 + \frac{\sigma_1^2}{2}\right) + \exp\left(\mu_2 + \frac{\sigma_2^2}{2}\right)$, $s^2 = m_1^2(\exp(\sigma_1^2) - 1) + m_2^2(\exp(\sigma_2^2) - 1)$. Квантили η выражаются через функцию распределения $\xi = \xi_1 + \xi_2$, найденную с помощью формулы свертки.

Слайд №16

Рассмотрим $\ln(\xi_1) \sim N(4, \sigma_1^2)$, $\ln(\xi_2) \sim N(4, \sigma_2^2)$ и найдем ошибки в зависимости от σ_1^2 (строка) и σ_2^2 (столбец) с помощью моделирования, объемы выборок равны 10^6 . Ошибки представлены в этих двух таблицах. Также вычислим для данных значений σ_1 и σ_2 коэффициенты асимметрии и коэффициент эксцесса. Они представлены на следующей таблице.

Слайд №17

Построим оценки плотности для ξ и η при $\mu_1=\mu_2=4$ и вычислим ошибки аппроксимации. Для $\sigma_1^2=0.25,\ \sigma_2^2=0.25$ получили $err_{med}=0.12\%,\ err_{q_{10}}=0.45\%,$ $err_{q_{90}}=0.28\%.$

Слайд №18

Теперь посмотрим на случай, когда ошибки аппроксимации достаточно большие. Для $\sigma_1^2=2.25,\,\sigma_2^2=0.25$ получили $err_{med}=20.9\%,\,err_{q_{10}}=66.7\%,\,err_{q_{90}}=19.1\%.$

Слайд №19

Таким образом, мною были получены следующие результаты.

- 1. Получено условие на σ для существования трехточечной симметричной вероятностной аппроксимации логнормального распределения.
- 2. Численно оценена точность аппроксимации математического ожидания и дисперсии логнормального распределения с помощью метода Свонсона, применяемого к

нормальному распределению.

- 3. Формально и полно написано обоснование алгоритма для нахождения трехточечной симметричной аппроксимации произведения логнормальных распределений.
- 4. Построен алгоритм для нахождения трехточечной симметричной аппроксимации суммы логнормальных распределений.
- 5. Численно оценена точность трехточечной симметричной аппроксимации суммы логнормальных распределений.