Can Explanations Be Useful for Calibrating Black Box Models?

Xi Ye and Greg Durrett

A growing number of black-box NLP models

- A growing number of black-box NLP models
- Performance degradation if deploying black-box models on a new domain

Adversarial SQuAD

Question

Where did the Panthers practice?

Context

Hard to calibrate black-box models due to extremely limited information available

Adversarial SQuAD

Question

Where did the Panthers practice?

Context

- Hard to calibrate black-box models due to extremely limited information available
- Use explanation techniques to reveal more information

Adversarial SQuAD

Question

Where did the Panthers practice?

Context

- Hard to calibrate black-box models due to extremely limited information available
- Use explanation techniques to reveal more information
- Core question: can we leverage explanations to calibrate black box models?

Adversarial SQuAD

Question

Where did the Panthers practice?

Context

Question

Where did the Panthers practice?

Context

Explanations can tell important features that the model is relying on

Question

Where did the Panthers practice?

Context

The Panthers practice at the San Jose Stadium. The Vikings practice at Stark Industries.

Question

Where did the Panthers practice?

Context

- Explanations can tell important features that the model is relying on
- Calibrating based on whether the explanation is reasonable

Question

Where did the Panthers practice?

Context

The Panthers practice at the San Jose Stadium. The Vikings practice at Stark Industries.

Question

Where did the Panthers practice?

Context

The Panthers practice at the San Jose Stadium.

The Vikings practice at Stark Industries.

Calibrator

A key token (Panthers) in the question wasn't being attended to.

Therefore, the prediction is likely to be incorrect.

- Explanations can tell important features that the model is relying on
- Calibrating based on whether the explanation is reasonable

Question

Where did the Panthers practice?

Context

The Panthers practice at the San Jose Stadium. The Vikings practice at Stark Industries.

Question

Where did the Panthers practice?

Context

The Panthers practice at the San Jose Stadium.

The Vikings practice at Stark Industries.

Calibrator

A key token (Panthers) in the question wasn't being attended to.

Therefore, the prediction is likely to be incorrect.

Calibrating with Explanations

Answer San Jose **Prediction Stark Industries**

Question Where did the Panthers practice?

Context The Panthers practice at the San Jose Stadium.

The Vikings practice at Stark Industries.

Calibrating with Explanations

Extract features describing the "reasoning" of the model

Calibrating with Explanations

- Extract features describing the "reasoning" of the model
- Use features to assess the correctness of the prediction

Example

Explanation

Use Lime and Shap to generate interpretations

- Use Lime and Shap to generate interpretations
 - Do not require access to model parameters or gradients

- Use Lime and Shap to generate interpretations
 - Do not require access to model parameters or gradients

- Use Lime and Shap to generate interpretations
 - Do not require access to model parameters or gradients
 - Assign an attribution score (importance) to each input token

Assign each token with a set of human-understandable properties (e.g., POS tags)

- Assign each token with a set of human-understandable properties (e.g., POS tags)
- Extract a numeric feature by aggregating the attributions to tokens associated with each property

- Assign each token with a set of human-understandable properties (e.g., POS tags)
- Extract a numeric feature by aggregating the attributions to tokens associated with each property

Question Where did the Panthers practice?

Context The Panthers practice at the San Jose Stadium.

The Vikings practice at Stark Industries.

- Assign each token with a set of human-understandable properties (e.g., POS tags)
- Extract a numeric feature by aggregating the attributions to tokens associated with each property

- Assign each token with a set of human-understandable properties (e.g., POS tags)
- Extract a numeric feature by aggregating the attributions to tokens associated with each property

- Assign each token with a set of human-understandable properties (e.g., POS tags)
- Extract a numeric feature by aggregating the attributions to tokens associated with each property
- Refer to the paper for details of the features used for calibrating QA and NLI models

Question Where did the Panthers practice?

Context The Panthers practice at the San Jose Stadium.

The Vikings practice at Stark Industries.

Importance of NNP: 0.10 Importance of Question: 0.27

Importance of V*: 0.35 Importance of NNP in Context: 0.07

Use RandomForest as the model class of calibrators

- Use RandomForest as the model class of calibrators
- ▶ Train the calibrator using a small number of feature-correctness pairs from the target domain

- Use RandomForest as the model class of calibrators
- Train the calibrator using a small number of feature-correctness pairs from the target domain

- Use RandomForest as the model class of calibrators
- Train the calibrator using a small number of feature-correctness pairs from the target domain

Base Model

RoBERTa

Base Model

RoBERTa

Source Domain

Target Domain

Base Model

RoBERTa

Source Domain Target Domain

QA: SQuAD TriviaQA
HotpotQA

Base Model

RoBERTa

Source Domain

Target Domain

QA: SQuAD — TriviaQA
HotpotQA

NLI: MNLI \longrightarrow QNLI MRPC

Base Model

RoBERTa

Source Domain

Target Domain

B

QA: SQuAD →

SQuAD-Adv TriviaQA HotpotQA

NLI: MNLI

QNLI
MRPC

Calibrator

RandomForest trained using 500 data points

Metrics

Metrics

 Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)

Coverage-F1 Curve on Squad-Adv

Metrics

- Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)
- Evaluate using area under coverage-F1 curve (AUC)

Coverage-F1 Curve on Squad-Adv

Methods

Metrics

- Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)
- Evaluate using area under coverage-F1 curve (AUC)

Coverage-F1 Curve on Squad-Adv

Metrics

- Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)
- Evaluate using area under coverage-F1 curve (AUC)

Coverage-F1 Curve on Squad-Adv

Methods

Prob: confidence of prediction

Metrics

- Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)
- Evaluate using area under coverage-F1 curve (AUC)

Coverage-F1 Curve on Squad-Adv

Methods

- Prob: confidence of prediction
- Kamath: (Kamath et al. 2020): calibrator using heuristic features (probabilities, length of context, length of answer)

Metrics

- Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)
- Evaluate using area under coverage-F1 curve (AUC)

Coverage-F1 Curve on Squad-Adv

Methods

- Prob: confidence of prediction
- ► Kamath: (Kamath et al. 2020): calibrator using heuristic features (probabilities, length of context, length of answer)
- BowCal: calibrator using bag-of-word features without using explanations (e.g., count of NNP)

Metrics

- Coverage-F1 Curve: average F1 scores with varying coverage (faction of most confident questions being answered)
- Evaluate using area under coverage-F1 curve (AUC)

Coverage-F1 Curve on Squad-Adv

Methods

- Prob: confidence of prediction
- Kamath: (Kamath et al. 2020): calibrator using heuristic features (probabilities, length of context, length of answer)
- BowCal: calibrator using bag-of-word features without using explanations (e.g., count of NNP)
- LimeCal & ShapCal: calibrators using explanation-based features

▶ LimeCal achieves the best performance

- LimeCal achieves the best performance
- Explanations are helpful; Lime/ShapCal outperforms calibrators without using explanations

- LimeCal achieves the best performance
- Explanations are helpful; Lime/ShapCal outperforms calibrators without using explanations
- Substantial performance difference when selectively answering a part of the questions that the calibrator is most confident with

Explanations improves the generalization performance across all pairs covering both QA and NLI tasks

Comparison to Finetuned Models

Comparison to Finetuned Models

Finetuing a Glass-Box Model

Comparison to Finetuned Models

▶ Explanation-based calibrator even outperforms a fine-tuned model on SQuAD → TriviaQA

Conclusion:

Conclusion:

Can explanations be useful for calibrating black-box models? YES!

Conclusion:

- Can explanations be useful for calibrating black-box models? YES!
- Using explanations successfully improves model generalization on QA and NLI tasks

Conclusion:

- Can explanations be useful for calibrating black-box models? YES!
- Using explanations successfully improves model generalization on QA and NLI tasks

Limitations:

Conclusion:

- Can explanations be useful for calibrating black-box models? YES!
- Using explanations successfully improves model generalization on QA and NLI tasks

Limitations:

Generating explanations with Lime and Shap is computationally expensive

Conclusion:

- Can explanations be useful for calibrating black-box models? YES!
- Using explanations successfully improves model generalization on QA and NLI tasks

Limitations:

Generating explanations with Lime and Shap is computationally expensive

How about Large Language Models?

The Unreliability of Explanations in Few-Shot In-Context Learning (Ye and Durrett, ArXiv 2022)

Free text explanations can also be useful for calibrating large LM (GPT-3) in some settings

Conclusion:

- Can explanations be useful for calibrating black-box models? YES!
- Using explanations successfully improves model generalization on QA and NLI tasks

Limitations:

Generating explanations with Lime and Shap is computationally expensive

How about Large Language Models?

The Unreliability of Explanations in Few-Shot In-Context Learning (Ye and Durrett, ArXiv 2022)

Free text explanations can also be useful for calibrating large LM (GPT-3) in some settings

Code Available at

https://github.com/xiye17/InterpCalib