

```
Note: • pu can generally be a subjective probability
         of an upstep
         • If we're pricing options, we use p_n = p_n^*, e.g., in a forward tree p_n^* := \frac{1}{1 + e^{\sqrt{y_n}}}
Q: In the past, when you were looking for a limiting
 distin of a sequence of binomial r.v.s, which
 theorem did you use?
     ---: Normal Approximation to the Binomial
                     (de Moivre Laplace).
           Consider a sequence of binomial random variables
                  Tn ~ Binomial (n = H of trials, p = prob. of success)
           Set : [[Yn] = n.p
                 Var[Yn] = np(1-p) = D SD[Yn] = Inp(1-p)
               \frac{Y_n - np}{\sqrt{np(1-p)}} \xrightarrow{\mathcal{D}} N(0,1)
          Usage: · Look @ "large" n (rule of thumb:
                                                np 310 and n(+p) 210)
                     P[a < Y_n \le b] = \frac{2}{\sqrt{n - np}} \left( \frac{Y_n - np}{\sqrt{np(1-p)}} < \frac{b - np}{\sqrt{np(1-p)}} \right)
    N... cumulative
dist'n frion of N(0,1)
i.e.,
                             2 P[ a-np < Z < b-np ]
    N(2)= P[Z & z]
                             = N (b-np) - N (a-np)
```

In statistics, we use this theorem like this:

Yn "v" Normal (mean = np, 3d = (np(1-p)))

In our model, the probability of success pur depends on n.

Realized Returns.

56

Inspiration.

Consider an accumulation fition in the compound interest case. Let r... continuously compounded, nisk free interest rate.

a(1) 1 / a(t)

S(t), t>0... time t stock

t(time)