Asymptotic Running Time Analysis

Professor Kevin Gold

Asymptotic Analysis

- We think about running time based on how the number of operations scales with input size
- In the long run, some functions dominate others

Goals

- Our goals are to ---
 - Make you an informed consumer of algorithms, interpreting how fast they are
 - Let you analyze the speed of your own code, so you can tell when a significant speedup may be possible
- Today we'll cover big-O, big-Ω, and big-O and the conventions by which computer scientists describe running times.

Asymptotic Growth

- We will generally only be concerned with asymptotic running times — what happens when input size N gets large.
- We want to ignore multiplication by constant factors.
 - If we did care about these, we'd need to know the exact time required for instructions — too machine-specific
 - The differences we'll care about are bigger than constant factors in the long run
- We'll show three ways of talking about function growth an upper bound (O), a lower bound (Ω), and a tight bound (Θ)

Big-O: Intuitive Gloss

- Big-O separates functions into different worst-case running times - ignoring constants and in the long run
 - Constant: O(1)
 - Linear or better: O(N)
 - Quadratic or better: O(N²)
 - Factorial or better: O(N!)
- Big-O is technically an **upper bound**, but is often used informally as if it were the real running time; why would you say it's O(N²) if it's really linear?

Big-O: A Definition

- Let f be a function of the natural numbers.
- f = O(g(n)) if, for some positive c and n_0 , $f(n) \le cg(n)$ for all $n \ge n_0$.

Breaking down the definition

The core idea is f(n) = O(g(n)) if f(n) ≤ g(n) as n gets large.

operations (time)

Breaking down the definition

 We allow f(n) to be greater than g(n) for a little while, as long as g(n) passes it in the long run (past some n₀).

Breaking down the definition

- We also want constants to not matter. So if we can multiply by a constant c and get f(n) ≤ cg(n), that should count as f(n) = O(g(n)).
- This will make functions with the same growth rate big-O of each other.

Big-O is an Upper Bound

• Here, f(n) = O(g(n)) — they are not the same growth rate, but g(n) is always bigger after n_0 (c=1, $n_0=0$)

Why Use an Upper Bound? Uncertainty in the Analysis

- For i = 1 to N:
 If A[i] is odd:
 return A[i]
- What is the running time of this? It looks linear in the worst case (no odd numbers). So, O(N)
- But what if that worst case is actually impossible because
 A[1] is always odd? Then the running time is actually O(1).
- We may not know whether this acts more like linear or constant time, but O(N) is a safe claim in either case

Big-O is the "≤" of Function Relations

- There are asymptotic operators we'll cover that are analogous to each of ≤, ≥, =, <, and >
- Of these, Big-O is most similar to ≤.
 - It holds when two growth rates are essentially equal:
 N = O(2N). (Both linear)
 - It holds when the first growth rate is asymptotically less than the second: $N = O(2^N)$. (Linear vs exponential)
- It is the most commonly used of the bounds because with algorithms, we usually want an upper bound on the worst case running time.
 - "The worst case running time of my algorithm is O(n2)"

A Big-O Claim is More Like Set Membership than Equality

- Always put big-O on the right of the equals sign: 5n = O(n).
- The = sign isn't really symmetric, so you can't do algebra like "5n = O(n) = 2n implies 5n = 2n." You are claiming that the function on the left belongs to the category on the right.
 - For this reason, big-O is sometimes written with set inclusion: f(n) ∈ O(n).

A Big-O Bound that Works for Both Functions is a Bound on their Sum

- If f and g are both O(h), then f+g is O(h).
 (Where h is a function.)
- For example, $f(n) = n^2$ and g(n) = n are both $O(n^2)$, so $f(n) + g(n) = n^2 + n$ is $O(n^2)$
- Proof: if f ≤ c₁h and g ≤ c₂h,
 f+g ≤ (c₁ + c₂)h and (c₁ + c₂) is the constant required by the definition of big-O.

When calculating the asymptotic time of doing one subroutine, then another, the big-O is simply the same as the more expensive subroutine.

f: O(N)

f+g:
O(N²)

g: O(N²)

A Polynomial of Degree d is O(nd)

- Given a polynomial $a_0n^d + a_1n^{d-1} + ... + a_d$, note that each term is $O(n^d)$
- So by the result on the previous slide, summing the terms results in a function that is still O(nd).

So always drop lower-order terms when describing a polynomial running time: O(N²), not O(N² + N + 1)

Increasing the Degree Increases the Big-O

- Every time we increase the degree, we get a factor n that can't be compensated for by multiplying by a constant
 - $n^3 \le cn^2$ doesn't work, because we'd have $n \le c$ and c is constant
- This reinforces the idea that *no matter what the constant factors are*, the bigger growth rate will eventually pass up the slower growth rate

Every Logarithm Grows Slower Than Every Polynomial

- Logarithmic growth is always slower any polynomial
 - We can show this with limits: $\lim_{n\to\infty} \log n/n^x = \lim_{n\to\infty} (1/n)/xn^{x-1} = \lim_{n\to\infty} 1/xn^x = 0$
- Logs of different bases are within constant factors of each other: $\log_b n = (\log_c n) / (\log_c b) = a \text{ constant times } \log_c n, \text{ for all bases } b \& c \text{ (for example, } \log_2 N = (\log_3 N)/(\log_3 2), \text{ and } 1/(\log_3 2) \text{ is a constant)}$
- So we will often talk about O(log n) without specifying a base
 - Though occasionally we will speak of lg n (base 2) and ln n (base e)

Every Exponential Grows Faster Than Every Polynomial

- For every r > 1 and every
 d > 0, n^d grows slower than rⁿ
 - For example, n¹⁰⁰ grows slower than 1.02ⁿ (though n¹⁰⁰ gets a nice head start)
- Unlike logs, exponentials with different bases have different big-O: 3ⁿ is not O(2ⁿ), since (3/2)ⁿ isn't a constant

Exponential Time is Much Worse than Polynomial Time

 Time to process N inputs at 1 million instructions per second with the given running times (p. 34 of Kleinberg & Tardos)

N	n	n³	2 ⁿ
10	< 1s	< 1s	< 1s
100	< 1s	< 1s	10 ¹⁷ years
1000	< 1s	18min	>10 ²⁵ years
10000	< 1s	12 days	>10 ²⁵ years

An Algorithm is Considered Tractable if it is Polynomial Time

- Where polynomial time means, O(nd) for some d
- Note that this includes logarithmic and constant time

It's Typically the Worst Case That is Analyzed

- Best cases don't say as much about how an algorithm performs typically - every algorithm can get lucky
- It's also usually easier to analyze the worst case than the average case over all inputs
 - No need to make assumptions about the distribution of input for worst case - just "anything that can go wrong, will"
- Only for randomized algorithms with randomness built in to the algorithm - do we see heavy use of the average running time

Review of Big-O So Far: Practice Questions

• Identify whether f(N) = O(g(N)), g(N) = O(f(N)), or both.

1.
$$f(N) = 2N, g(N) = 4N$$

2.
$$f(N) = N^2$$
, $g(N) = 2^N$

3.
$$f(N) = N^2$$
, $g(N) = N^2 + N + 100$

4.
$$f(N) = N, g(N) = log N$$

5.
$$f(N) = 2^N, g(N) = N2^N$$

6.
$$f(N) = N \log N, g(N) = N$$

7.
$$f(N) = \sqrt{N}, g(N) = \log N$$

Review of Big-O So Far: Practice Questions

• Identify whether f(N) = O(g(N)), g(N) = O(f(N)), or both.

1.
$$f(N) = 2N$$
, $g(N) = 4N$ **both**

2.
$$f(N) = N^2$$
, $g(N) = 2^N$ $N^2 = O(2^N)$

3.
$$f(N) = N^2$$
, $g(N) = N^2 + N + 100$ **both**

4.
$$f(N) = N$$
, $g(N) = \log N$ log $N = O(N)$

5.
$$f(N) = 2^N$$
, $g(N) = N2^N$ $2^N = O(N2^N)$

6.
$$f(N) = N \log N$$
, $g(N) = N$ **N = O(N log N)**

7.
$$f(N) = \sqrt{N}$$
, $g(N) = \log N$ log $N = O(N^{0.5})$

Lower Bounds: Ω

- Sometimes we may want to say, "This algorithm must take at least this much time"
 - Often to show a running time can't be improved further.
- Just as big-O serves as an upper bound on the running time, big-Ω serves as a lower bound, the ≥ to big-O's ≤
- The definition is identical to big-O with one inequality reversed
- $f(n) = \Omega(g(n))$ if, for some c and n_0 , $f(n) \ge cg(n)$ for all $n \ge n_0$.

g is $\Omega(f)$ iff f is O(g)

Tight Bounds: O

- If f = O(g) and $f = \Omega(g)$, then $f = \Theta(g)$.
- Unlike big-O, Θ means you are giving the actual growth rate (but still ignoring constants!) instead of an upper bound.
 - $n^2 = O(2^n)$ but $n^2 \neq O(2^n)$
 - $n^2 + 1 = \Theta(n^2)$
- This is the asymptotic bound analogous to "=": growth rates must be effectively the same for one to be big-Θ of the other
- People often mean big- Θ when they say big-O! And they're still telling the truth because $f = \Theta(g)$ implies f = O(g)!

Other Bounds: Little-o, Little-w

- If we want to say one growth rate is strictly faster or slower than another, we use little-o and little-ω:
 - $n = o(n^2)$
 - $n = \omega(\log n)$
- These are analogous to < and > for growth rates.
- The technical definition of little-o is f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
- Similarly, $f(n) = \omega(g(n))$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = + \infty$.
- We can now say " log_2 n is $o(n^d)$ for all d > 0" and " r^n is $\omega(n^d)$ for all r > 1, d > 0"

Other Bounds Practice

 Of o, ω, O, Θ, and Ω, which best describes the relationship between the functions, and which also happen to apply?

•
$$f(n) = n^2$$
, $g(n) = n^2 + n$

•
$$f(n) = 2^n$$
, $g(n) = 3^n$

•
$$f(n) = n^2$$
, $g(n) = n \log n$

Other Bounds Practice

- Of o, ω, O, Θ, and Ω, which best describes the relationship between the functions, and which also happen to apply?
 - $f(n) = n^2$, $g(n) = n^2 + n$ f(n) is O(g(n)), $\Omega(g(n))$, O(g(n))
 - $f(n) = 2^n$, $g(n) = 3^n$ f(n) is o(g(n)), O(g(n))
 - $f(n) = n^2$, $g(n) = n \log n$ f(n) is $\Omega(g(n))$, $\omega(g(n))$

In general, one of these three patterns must hold, corresponding to o, Θ, and ω

Analyzing Algorithms

- Analyzing an algorithm's runtime comes down to counting operations and characterizing how the number of operations scales with the input.
- We assume elementary operations such as integer comparisons, additions, and assignment are constant time (unless we expect to deal with numbers of unbounded size)
- Iterating over all the input once is linear time.
- If an algorithm does one subroutine and then another, the operations are summed, so use the larger big-O of the two.
- If operations happen in a loop, multiply the number of operations that happen in one iteration by the number of times the loop executes.

As usual, ignore constants and low-order terms.

Warm-Up

```
// Sum all entries in an N x N matrix A.
// Assume zero-indexing.
mySum(A):
Let sum = 0.
For i = 0 to N-1,
    For j = 0 to N-1,
        sum += A[i][j]
```

Return sum

10	10	10
10	10	10
10	10	10

Playing With Constants

```
// Sum almost all entries in an N x N matrix A.
// Assume zero-indexing.
mySum(A):
Let sum = 0.
For i = 0 to N-1,
   For j = 0 to N-5,
       sum += A[i][j]
Return sum
```


Half the Matrix

```
// Sum the upper right triangle of an N x N matrix A.
// Assume zero-indexing.
mySum(A):
let sum = 0
For i = 0 to N-1,
   For j = i to N-1,
       sum += A[i][j]
Return sum
```


Don't Say N²

```
// Sum an M x N matrix A.
// Assume zero-indexing.
mySum(A):
Let sum = 0.
For i = 0 to M-1,
    For j = 0 to N-1,
        sum += A[i][j]
Return sum
```

An Exponential Running Time

```
// Brute force approach to "subset-sum" problem.

// Given a set S of numbers, determine whether

// any subset of them could sum to a target number T.

mySubsetSum(S,T):

For all 2|S| possible subsets mySubset of S,

mySum = sum of all elements in mySubset

if mySum == T

Return mySubset

Return "not found"

What's the big-O worst case
```

running time?

(Give it in terms of ISI)

An Exponential Running Time

```
// Brute force approach to "subset-sum" problem.

// Given a set S of numbers, determine whether

// any subset of them could sum to a target number T.

mySubsetSum(S,T):

For all 2<sup>|S|</sup> possible subsets mySubset of S,

mySum = sum of all elements in mySubset

if mySum == T

Return mySubset

Return "not found"

What's the big-O worst case
```

running time?

ISI2ISI

Think Worst Case

What's the big-Θ worst case running time?

$\Theta(N^2)$

- Each iteration is O(N): $O(\log N) + O(N) = O(N)$
 - Binary search for k is O(log N), summing the row is O(N)
- With N O(N) iterations, the algorithm is O(N²)
 - N times a polynomial that is O(N) increases the degree by one
- The worst case is also $\Omega(N^2)$ it must take at least that much time to sum all the elements in each row

Summary

- We describe algorithm speed by the growth in number of operations required as a function of N, the input size
 - We want that function to grow as slowly as possible!
- big-O: an upper bound on a growth rate, ignoring constants
- big-Ω: a lower bound that otherwise works like big-O
- big-Θ: if big-O and big-Ω apply a tight bound
- o, ω: "strictly less than," "strictly greater than"
- Each polynomial degree Θ(n^k) is its own category of growth rate, and others are possible: Θ(n log n), Θ(n!) ...
- Your choice of data structures can affect this degree of efficiency