

Métodos estatísticos

Análise de variância para um fator

Prof. Walmes M. Zeviani

Departamento de Estatística Universidade Federal do Paraná

Estrutura da unidade

- Análise de variância (ANOVA).
- Regressão linear simples.

Figura 1. Representações esquemáticas dos modelos de ANOVA e regressão linear simples.

Notas preliminares

- Será feita uma apresentação introdutória enfatizando a intuição e uso da análise de variância (ANOVA: analysis of variance).
- ► Ela será vista como **generalização** do teste t para comparar k > 2 médias.
- Os aspectos técnicos são importantes mas a compreensão dos conceitos tem precedência.
- ► A ANOVA é o método central de inferência para Análise de Experimentos Planejados ou Estudos Experimentais.
- Não entraremos no contexto do Planeiamento de **Experimentos**.

Figura 2. Ilustração de 4 populações com médias diferentes.

Terminologia

População

Observações feitas em unidades provenientes de populações diferentes.

- Estudos observacionais ou amostrais.
- Sem controle de fatores externos ou de confundimento.

Tratamentos

Observações feitas em unidades que rece**beram** tratamentos diferentes

- Estudos experimentais.
- ► Fatores externos ou de confundimento são controlados.

Figura 3. Unidades onde são observadas as respostas.

Motivação · comparar várias médias

- ▶ O teste t é usado para comparar a média de duas populações.
- ▶ Mas na prática, deseja-se avaliar simultaneamente igualdade de k > 2 médias, ou seja,

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_k$$

 H_a : "há diferença em pelo menos algum par".

Se for aplicado o teste t para todos os pares possíveis, tem-se $\binom{k}{2}$ testes a serem realizados \rightarrow muitos testes e difícil interpretação.

Figura 4. Número de testes em função do número de médias.

Motivação · comparar várias médias

 \blacktriangleright Se α é nível de significância em cada teste t, então $\alpha_k = P(\text{"pelo menos um par diferir"}|H_0 \text{ verdadeira})$ $= 1 - (1 - \alpha)^{\binom{k}{2}}$

é a chance de erro tipo I supondo que são testes independentes.

- ► O problema é:
 - ▶ O **número de testes** de pares se torna grande com k.
 - ▶ Inflaciona a chance de falso positivo com aumento de k.
 - Os testes não são independentes.

Figura 5. Probabilidade de erro tipo I.

A análise de variância para k médias

- ► A ANOVA para k médias resolve os dois problemas.
 - ► Independente de k, a hipótese H₀ é testada em **apenas um teste**.
 - ightharpoonup O nível de significância α é **controlado** neste teste.
- ▶ O teste t para amostras independentes com k=2 quando $\sigma_1^2 = \sigma_2^2$ é um **caso particular** da ANOVA para um fator.

Figura 6. Ilustração de 4 populações com médias diferentes.

Relação da v.a. t com a v.a. F

► Foi visto que a v.a.

$$t = \frac{\overline{y} - \mu_0}{S/\sqrt{n}} \stackrel{H_0}{\sim} t_v \text{ sendo } v = n - 1$$

$$t = \frac{\overline{y}_1 - \overline{y}_2}{S(1/\sqrt{n_1} + 1/\sqrt{n_2})} \stackrel{H_0}{\sim} t_v \text{ sendo } v = n_1 + n_2 - 1$$

é a estatística de teste para hipóteses sobre a média de v.a. Normais.

► E a v.a.

$$F = \frac{S_1^2}{S_2^2} \stackrel{H_0}{\sim} F_{n_1 - 1, n_2 - 1}$$

é a estatística de teste para hipóteses sobre a razão de variâncias de v.a. Normais.

Como estão conectadas?

É uma relação bem conhecida em Estatística que

Se
$$t \sim t_v$$
 então $t^2 \sim F_{1,v}$.

- 1. Como essas v.a. estão conectadas no contexto de teste de hipótese?
- 2. Por que o nome análise de variância se julga hipótese de igualdade entre médias?

Para esclarecer ambos, precisamos mostrar que a estatística t^2 é a razão de duas variâncias.

O caso de uma população

- ▶ Já que $t^2 = F$, então temos que $t^2 = \frac{(\overline{y} \mu_0)^2}{s^2/n}$.
- ▶ Sob a hipótese nula H_0 : $\mu = \mu_0$, a quantidade

$$(\overline{y}-\mu_0)^2$$

é um estimador não viciado de σ^2 , pois

$$E\left[(\overline{y}-\mu_0)^2\right] = \frac{\sigma^2}{n}$$
 logo $\hat{\sigma}_h^2 = n(\overline{y}-\mu_0)^2$

é um estimador baseado em um único desvio independente (grau de liberdade 1).

• É fato que, para fins de estimação, σ_h^2 é um estimador i) não eficiente e ii) útil apenas guando se conhece μ_0 (que não é o caso aqui).

O caso de uma população (cont.)

- ▶ Para estimar σ^2 usamos o estimador não viciado S^2 .
- ▶ Todavia, para uma mesma amostra de dados, tem-se

$$\hat{\sigma}_h^2 \stackrel{H_0}{=} n(\overline{y} - \mu_0)^2 \quad \text{com 1 GL}$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2 \quad \text{com } n-1 \text{ GL}$$

como estimadores de σ^2 , sendo $\hat{\sigma}_h^2$ não viciado apenas sob H_0 .

- ▶ Além disso, $\hat{\sigma}_{h}^{2}$ e S^{2} são **estimadores independentes**.
- Dessa forma,

$$t^{2} = \frac{(\overline{y} - \mu_{0})^{2}}{s^{2}/n} = \frac{n(\overline{y} - \mu_{0})^{2}}{s^{2}} = \frac{\hat{\sigma}_{h}^{2}}{s^{2}} \stackrel{H_{0}}{\sim} F_{1,n-1}$$

é a razão de duas estimativas independentes de variância sob H_0 .

O caso de uma população (cont.)

- $ightharpoonup Å medida que <math>H_0: \mu = \mu_0$ é falsa, então o numerador será maior que o denominador, levando então à rejeição de H_0 .
- ► S^2 é um estimador de σ^2 que não depende de μ_0 ou da decisão sobre H_0 .
- ▶ Por isso, ele também é chamado de estimador puro da variância.
- ► E, dessa forma, $\hat{\sigma}_h^2$ não é um estimador puro pois é viciado se Ho não for verdadeira.

Estimador da variância sob H_0 . Fornece evidência contra H_0 .

Estimador puro da variância. Não depende de H_0 .

O caso de duas populações

- O caso de duas populações é análogo.
- ► Considere o teste na condição em que $\sigma_1^2 = \sigma_2^2$ com H_0 : $\mu_1 = \mu_2$.
- ▶ Pelos mesmos argumentos, tem-se que

$$t^{2} = \frac{(\overline{y}_{1} - \overline{y}_{2})^{2}}{s^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} = \frac{(\overline{y}_{1} - \overline{y}_{2})^{2}}{s^{2} \left(\frac{n_{1} + n_{2}}{n_{1} n_{2}}\right)} = \frac{\left(\frac{n_{1} n_{2}}{n_{1} + n_{2}}\right) (\overline{y}_{1} - \overline{y}_{2})^{2}}{s^{2}} = \frac{\hat{\sigma}_{h}^{2}}{s^{2}} \stackrel{H_{0}}{\sim} F_{1, n-1},$$

é a razão de duas estimativas independentes de variância sob H_0 .

▶ O raciocínio permanece válido para k > 2 e será detalhado a seguir.

Considerações até aqui

- ▶ Dessa forma, o teste para $H_0: \mu_1 = \mu_2$ pode ser visto como a razão de dois estimadores independentes da variância.
- ▶ Então, um teste t para a **média** pode ser escrito como teste entre estimadores da variância
- ▶ Isso justifica o nome **análise de variância** porque a estatística para testar a igualdade das k médias será expressa como razão de duas variâncias.
- Detalhes técnicos à parte, a exposição foi feita para justificar a relação entre t e F unificando as abordagens.

Figura 7. Foto de Startup Stock Photos no Pexels

Hipóteses e suposições

► A ANOVA testa a hipótese nula de igualdade simultânea entre k médias.

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$
VS

 H_a : "há diferença em pelo menos algum par".

► Assume que as **variâncias** das *k* populações são iguais.

$$\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2 = \sigma^2.$$

▶ E que a distribuição da característica Y é **Normal**,

$$Y_1 \sim N(\mu_1, \sigma^2), \quad Y_2 \sim N(\mu_2, \sigma^2), \quad \cdots \quad , Y_k \sim N(\mu_k, \sigma^2).$$

Figura 8. Ilustração da hipótese nula e suposições da ANOVA.

Especificação de modelo

▶ Pode-se considerar que são dois modelos concorrentes

$$H_0: Y_i \sim N(\mu, \sigma^2)$$
vs
$$H_a: Y_i \sim N(\mu_i, \sigma^2), \quad i \in \{1, \dots, k\}.$$

- ► Estes modelos são especificações de "molde" usados para **gerar os dados** observados
- ► A questão é: qual molde se mostra mais compatível? → os dados apoiam qual hipótese?

Figura 9. Modelos concorrentes conforme as hipóteses nula e alternativa.

Notação de médias e notação de efeitos

▶ O modelo pode ser escrito com **notação de efeitos** $\mu_i = \mu + \tau_i$, isto é,

$$Y_i \sim N(\mu + \tau_i, \sigma^2), \quad i \in \{1, \dots, k\},$$

com a restrição de que $\sum_{i=1}^{k} \tau_i = 0$.

► E as hipóteses se tornam

$$H_0: \tau_i = 0$$
 para todo $i \in \{1, ..., k\}$ $\Longrightarrow \sum_{i=1}^k \tau_i^2 = 0$
vs $H_a: \tau_i \neq 0$ para algum $i \in \{1, ..., k\}$ $\Longrightarrow \sum_{i=1}^k \tau_i^2 > 0$.

Ideia geral

Decompor a variabilidade e suas componentes:

- 1. Desvios das observações (y_{ij}) em relação à média geral (\overline{u}) .
- 2. Desvios das observações (y_{ij}) em relação às suas médias (\overline{y}_i) .
- 3. Desvios das médias (\overline{y}_i) em relação à média geral (\overline{y}) .

O que leva à igualdade fundamental da ANOVA:

$$\sum_{i=1}^{k} \sum_{j=1}^{r} (y_{ij} - \overline{y}_{..})^2 = \sum_{i=1}^{k} r(\overline{y}_{i.} - \overline{y}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{r} (y_{ij} - \overline{y}_{i.})^2$$
SQtratamentos
SQresíduos

Figura 10. Valores observados e curvas representando o modelo.

Ilustração da ideia · cenário 1

Figura 11. Ilustração da decomposição da soma de quadrados.

Ilustração da ideia · cenário 2

Figura 12. Ilustração da decomposição da soma de quadrados.

Decomposição em somas de quadrados

A decomposição consiste em calcular 3 quantidades

$$\begin{aligned} & \text{SQtotal} = \sum_{i=1}^k \sum_{j=1}^r (y_{ij} - \overline{y}_{..})^2 &= \sum_{i=1}^k \sum_{j=1}^r y_{ij}^2 - C \quad \text{sendo} \quad C = \frac{y_{..}^2}{n}, \\ & \text{SQtratamentos} = \sum_{i=1}^k r(\overline{y}_{i.} - \overline{y}_{..})^2 &= \sum_{i=1}^k \frac{y_{i.}^2}{r} - C, \\ & \text{SQresiduos} = \sum_{i=1}^k \sum_{j=1}^r (y_{ij} - \overline{y}_{i.})^2 &= \text{SQtotal} - \text{SQtratamentos}, \end{aligned}$$

em que y_{ij} é o valor na unidade j do tratamento i, y_i é o total do tratamento i, \overline{y}_i é a média do tratamento i, u é total geral, \overline{u} é a média geral, k é o número de tratamentos e r é o número de unidades ou repetições de cada tratamento.

Valor esperado das somas de quadrados

▶ O valor esperado da soma de quadrados de tratamentos é

$$E(SQtratamentos) = (k-1)\sigma^2 + r\sum_{i=1}^{k} \tau_i^2.$$

O valor esperado da soma de quadrados de resíduos é

$$E(SQresiduos) = k(r-1)\sigma^2.$$

- Sob a hipótese nula, o termo $\sum_{i=1}^{k} \tau_i^2 = 0$ e tem-se dois **estimadores** independentes da variância.
- \triangleright Para isolar σ^2 nas expressões, divide-se pelos graus de liberdade.

Quadrados médios

- ▶ O **quadrado médio** é o quociente da soma de quadrados pelos graus de liberdade.
- Dessa forma, os quadrados médios e seus valores esperados são

QMtratamentos =
$$\frac{\text{SQtratamentos}}{k-1}$$
 \implies E(QMtratamentos) = $\sigma^2 + \frac{r}{k-1} \sum_{i=1}^k \tau_i^2$,

QMresíduos = $\frac{\text{SQresíduos}}{k(r-1)}$ \implies E(QMresíduos) = σ^2 .

► A estatística de teste é

$$F_0 = \frac{\text{SQtratamentos}/(k-1)}{\text{SQresíduos}/k(r-1)} = \frac{\text{QMtratamentos}}{\text{QMresíduos}} \stackrel{H_0}{\sim} F_{k-1;k(r-1)}.$$

ightharpoonup Rejeita-se a hipótese nula ao nível de significância α quando $F_0 > F_\alpha$ para graus de liberdade k-1 no numerador e k(r-1) no denominador.

O quadro de análise de variância

Tabela 1. Estrutura do quadro de análise de variância.

Causa	GL	SQ	QM	F	p-valor
		$SQtr. = \sum_{i=1}^{k} \frac{y_{i.}^2}{r} - C$			$P(F > F_0)$
Resíd.	k(r - 1)	SQt. – SQtr.	$QMr. = \frac{S}{k(r)}$	5Qr. √ — 1)	514
Total	<i>kr</i> − 1	$SQt. = \sum_{i=1}^{r} y_{ij}^2 - C$			

- ▶ O guadro de ANOVA organiza todos os elementos mencionados.
- \triangleright Contém a estatística de teste, graus de liberdade e a estimativa de σ^2 dada pelo quadrado médio dos resíduos (QMr).

Exemplo: estilo musical na produção de poedeiras

Os dados a seguir são de um experimento para verificar o efeito do estilo musical na produção de ovos de galinhas poedeiras (VIEIRA, 1999, Tabela 7.2, pág. 74). Faça a análise de variância considerando $\alpha=5\%$.

Tabela 2. Número de ovos observado em cada unidade experimental conforme os estilos musicais.

sertaneja		clássica	pop	ular	testem	unha
	25	24	IF	25	in	20
	21	31		18		17
	29	32		19		23
	26	26		22		16

Figura 13. Diagrama de dispersão do número de ovos conforme os estilos musicais.

Solução

	4 4 4 4 4 4 4		
testemunha	popular	clássica	sertaneja
20	25	24	25
17	18	31	21
23	19	32	29
16	22	26	26
$y_{4.} = 76$	$y_{3.} = 84$	$y_{2.} = 113$	$y_{1.} = 101$

$$C = 374^2/16 = 8742.25.$$

$$SQtotal = 25^2 + 21^2 + \dots + 23^2 + 16^2 - 8742.25 = 345.75.$$

$$SQtrat = 101^{2}/4 + 113^{2}/4 + 84^{2}/4 + 76^{2}/4 - 8742.25 = 208.25.$$

$$SQres = 345.75 - 208.25 = 137.5.$$

$$s^2 = 137.5/4(4-1) = 11.46 \implies s_{\overline{y}} = \sqrt{s^2/r} = 1.69$$

Solução

Tabela 4. Quadro de análise de variância para o número de ovos conforme o estilo musical.

Causa	GL	SQ	QM	F	p-valor
Tratamento	3	208.25	69.42	6.0582	0.0094
Resíduos	12	137.50	11.46		
					100 miles 100 miles

Tabela 5. Tabela com as médias para cada estilo músical e intervalos de confiança (nível de confiança individual $1 - \alpha = 0.95$, logo $t_{0.025} = 2.179$).

Música	Média	Erro pad.	LI IC	LS IC
sertaneja	25.25	1.69	21.56	28.94
clássica	28.25	1.69	24.56	31.94
popular	21.00	1.69	17.31	24.69
testemunha	19.00	1.69	15.31	22.69

Questões adicionais · pressupostos

- A resposta é discreta. Como verificar se as suposições foram violadas?
- ▶ Pode-se inspecionar os pressupostos pela análise de resíduos.
- ► Também é possível aplicar testes de hipótese para os pressupostos.
- Os pressupostos não devem ser violados para validade das inferências.

Figura 14. Gráficos dos resíduos.

Questões adicionais · detalhamento

UFPR

Questões adicionais

- 1. Quais estilos musicais diferem da testemunha?
- 2. Quais estilos musicais diferem entre si?

Principal preocupação

- Aplicar teste t para cada par terá nível de significância por teste igual a α.
- ightharpoonup O nível de significância global α_k fica sendo

$$1-(1-\alpha)^{\binom{k}{2}}\leq \alpha_k\leq \alpha.$$

- Mas é desejável manter o nível de significância
 global em α.
- ► Como fazer isso?

Figura 15. Médias estimadas para o número de ovos conforme cada estilo musical acompanhadas do intervalo de confiança.

Métodos de comparações múltiplas de hipótese

- ► São aplicados após a rejeição de H₀ pela estatística F da ANOVA.
- ► São métodos para **corrigir** a inflação do nível de significância global decorrente do teste de um grande número de hipóteses.
- ► Isso é feito principalmente de duas formas:
 - 1. Corrige-se o p-valor após os testes de hipótese individuais para ter nível de significância global α_k deseiado.
 - Emprega-se uma estatística de teste de hipótese que incorpore o número de hipóteses para ter nível de significância global α_k desejado.

Figura 16. Cena do filme O Exterminador do Futuro 2.

Opções existentes

- Para cada umas das opções existem vários métodos e variações existentes.
- Para este curso introdutório será apresentado um exemplo de cada.
 - ► Teste com correção de Bonferroni.
 - ► Teste de **Tukey** da diferença honesta significativa.
- ► ANOVA com fatores qualitativos e comparações múltiplas são concomitantes.
- Muitos livros introdutórios abordam apenas ANOVA.
- Aqui será feita a apresentação para contemplar as etapas da análise completa.

Figura 17. Foto de Pexels.

Correção do p-valor pelo método de Bonferroni

 Agora serão testadas separadamente um conjunto de hipóteses

$$H_0: \mu_i = \mu_j$$
 para todo $i \neq j$.

- ► Se as hipóteses forem para todos os pares possíveis de $i, j \in \{1, ..., k\}$, já foi visto que totalizam $u = \binom{k}{2}$.
- ► Dado um nível de significância global, para p hipóteses independentes, o nível de significância individual (α) corrigido é

$$lpha_p = 1 - (1 - lpha)^p \log o$$

$$lpha = 1 - (1 - lpha_p)^{1/p} \approx lpha_p/p.$$

Figura 18. Nível de confiança individual como função no número de hipóteses e do nível de confiança global.

Aplicação

- ▶ Dessa forma, o p-valor do teste t individual é multiplicado por p para corrigir pela quantidade de hipóteses.
- ▶ Para o exemplo, k = 4 e, portanto, p = 6 hipóteses considerando a diferença entre todos os pares de médias.

Tabela 6. Níveis descritivos (p-valores) sem correlação para o número de hipóteses e com correção de Bonferroni.

Hipótese	Dif.	Erro pad.	t	p-val.	p-val. Bonf.
clássica - sertaneja	3.00	2.39	1.25	0.234	1.000
popular - sertaneja	-4.25	2.39	-1.78	0.101	0.607
testemunha - sertaneja	-6.25	2.39	-2.61	0.023	0.137
popular - clássica	-7.25	2.39	-3.03	0.010	0.063
testemunha - clássica	-9.25	2.39	-3.86	0.002	0.014
testemunha - popular	-2.00	2.39	-0.84	0.420	1.000

Comparações múltiplas pelo teste de Tukey

- ► Outra opção é trocar a estatística de teste → outra distribuição amostral.
- ▶ Pelo **teste de Tukey**, rejeita-se a hipótese de igualdade de duas médias quando

$$q_0 = \frac{\operatorname{abs}(\overline{y}_i - \overline{y}_j)}{\operatorname{ep}(\overline{y}_i - \overline{y}_j)} = \frac{\operatorname{abs}(\overline{y}_i - \overline{y}_j)}{\sqrt{2s^2/r}} > q_{\alpha, \nu, k},$$

em que $q_{\alpha,v,k}$ é quantil superior da distribuição da **amplitude total studentizada** e ep(.) denota erro-padrão.

- ▶ Ou seja, não se usa mais a distribuição t mas sim esta que incorpora o número de tratamentos (k) como parâmetro.
- ▶ Pelo uso desta estatística de teste se faz o controle para manter o nível de significância global no valor desejado.

Aplicação

▶ Para o exemplo em mãos, o valor crítico do teste é (de tabela ou software)

$$q_{0.05,12,4} = 4.199$$
 que é maior que $t_{0.025,12} = 2.179$

fazendo com que a evidência necessária para rejeição de H_0 seja maior.

Tabela 7. Níveis descritivos (p-valores) sem correlação para o número de hipóteses e pelo teste de Tukey.

Hipótese	Dif.	Erro pad.	p-val.	90	p-val. Tukey
clássica - sertaneja	3.00	2.39	0.234	1.77	0.607
popular - sertaneja	-4.25	2.39	0.101	-2.51	0.331
testemunha - sertaneja	-6.25	2.39	0.023	-3.69	0.092
popular - clássica	-7.25	2.39	0.010	-4.28	0.045
testemunha - clássica	-9.25	2.39	0.002	-5.47	0.010
testemunha - popular	-2.00	2.39	0.420	-1.18	0.837

O impacto das correções nos intervalos de confiança

Figura 19. Amplitude dos intervalos de confiança para a diferença entre médias de acordo com os métodos de correção para a multiplicidade.

Outras abordagens para tratar a multiplicidade

- Existem várias abordagens similares à de Bonferroni.
 - ► False discovery rate.
 - Método Holm-Bonferroni.
 - ► Método single-step.
 - Entre outras.
- Existem vários testes com propostas similares ao Tukey.
 - ► Teste de Duncan.
 - ► Teste de Student-Newman-Keuls.
 - ▶ Teste de Scheffè.
 - ► Entre outros.
- ▶ Detalhes sobre os procedimentos estão fora do escopo deste curso.

Anova com mais de um fator

- ► A ANOVA é o principal método de inferência para estudos experimentais ou experimentos planejados.
- ► Com ela é possível avaliar o efeito de mais de um fator além de determinar existência de interação entre fatores.
- ► Interação: o resultado não é apenas a soma dos efeitos dos tratamentos → existe sinergismo, antagonismo, etc. entre eles.
- ► Experimentos fatoriais empregam a combinação de vários fatores.

Figura 20. Ilustração de um experimento que estuda a combinação de 3 fatores na remoção de manchas.

Planejamento e análise de experimentos

- Planejamento e Análise de Experimentos, Delineamento de Experimentos ou Estatística Experimental é uma área da Estatística voltada à construção, implantação, condução, análise e interpretação de experimentos planejados.
- ► Estudos experimentais geralmente permitem afirmar causalidade.
- ► Tem origem predominantemente agrícola, mas é usado em todas as áreas da Ciência
- Estuda principalmente os delineamentos experimentais.

Figura 21. Ilustração de um experimento de campo em delineamento de blocos casualizados completos.

Estrutura da unidade

- Análise de variância (ANOVA).
- Regressão linear simples.

Figura 22. Ilustração dos assuntos desta Unidade.