

Mathématiques 2

PC

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires indépendantes de même loi $\mathcal{B}\left(\frac{1}{2}\right)$. On note $S_n=\sum_{i=1}^n X_i$ pour n entier non nul.

1. Préciser la loi de S_n , son espérance et sa variance.

Oral

- 2. Déterminer une expression sommatoire (que l'on ne cherchera pas à simplifier) de $\mathbb{P}(S_n < \frac{n}{2})$.
- 3. Programmer une fonction binom(n,k) qui calcule le coefficient binomial $\binom{n}{k}$ avec $k \in [0, n]$.
- 4. Programmer une fonction sn2(n) qui calcule $\mathbb{P}\left(S_n < \frac{n}{2}\right)$
- 5. Pour $n\geqslant 1$, on note $u_n=\mathbb{P}\left(S_n<\frac{n}{2}\right)$. Représenter les termes de la suite $(u_{20k})_{k\in[1,100]}$. Que peut-on conjecturer ?
- 6. Pour $n\geqslant 1,$ on note $v_n=\mathbb{P}\left(S_n\geqslant \frac{n}{2}\right)$. établir l'égalité

$$\forall n \geqslant 1$$
 $v_n = u_n + \mathbb{P}\left(S_n = \frac{n}{2}\right)$

- 7. En déduire une démonstration du résultat observé à la question 5.
- 8. On note $w_n = \mathbb{P}(S_{2n} = n)$ pour $n \ge 1$. En considérant $\ln\left(\frac{w_{n+1}}{w_n}\right)$, retrouver le résultat précédent sans utiliser l'équivalent de Stirling.