Nome:	_	RA:
Turma:	_ 1ª PROVA	03/04/2008
Q1		
Q2		
Q3		
Q4		
Q5		

ATENÇÃO: Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. BOA PROVA!

Q1. (2,0 pontos) Calcule:

Total

(a)
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^2 + 3x + 2}$$

(a)
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^2 + 3x + 2}$$
 (b) $\lim_{x \to +\infty} \sqrt{x^2 + 3x} - \sqrt{5x}$ (c) $\lim_{x \to 0^+} \frac{|x^3 - x|}{x}$.

(c)
$$\lim_{x \to 0^+} \frac{|x^3 - x|}{x}$$

Q2. (2,0 pontos) Sejam $f(x) = \sqrt{x-1}$ e $g(x) = \frac{1}{x-1}$. Determine: $f \circ g$, $g \circ f$ e ache seus domínios.

Q3. (2,0 pontos) Determine onde a função f(x) = |x-1| + |x+2| é diferenciável e calcule sua derivada f'(x). Esboce os gráficos de f e de f'.

Q4. (2,0 pontos) Mostre que $\cos(2x)=2x$ possui solução no intervalo $\left(0,\frac{\pi}{4}\right)$. Dica: Use o Teorema do Valor Intermediário. Justifique sua resposta.

Q5. (2,0 pontos) Suponha que f satisfaça a seguinte propriedade: para todos os $x \in \mathbb{R}$ vale $\left| f(x) - \frac{1}{x} \right| \leqslant \frac{2x^2 + x|x| + 2}{x^2 + 1}$. Ache as assíntotas horizontais de f.