Metody statystyczne

Kurs dla kierunku Informatyki stosowanej Uniwersytet Jagielloński Kraków, 2020/2021

Literatura

- M.Baron, "Probability and Statistics for computer scientists", CRC Press, 2014
- H.Kobayashi, B.L.Mark, W.Turin "Probability, Random Processes, and statystical analysis." Cambridge University Press, 2012

Spis treści

Procesy stochastyczne

- Wprowadzenie
- Systemy kolejkowe
- Ukryte łańcuchy Markowa
- Procesy gałązkowe

1. Prawdopodobieństwo

2. Zmienna losowa
$$\forall s \in S \xrightarrow{X(s)} x \in S_X$$

Zmienna losowa dyskretna

Rozkład prawdopodobieństwa (dyskretne wartości i ich prawdopodobieństwa)

Przykład: rzut kostką

$$X=\{1,2,3,4,5,6\}$$

$$P(X=1)=1/6, P(X=2)=1/6, ...$$

Normalizacja: $\sum_{k} P_X(x_k) = 1$

Związek z prawdopodobieństwem:

P(X=i) dane bezpośrednio

Nieujemność: $\forall_k P_X(x_k) \ge 0$

Zmienna losowa ciągła

Funkcja gęstości prawdopodobieństwa Przedział wartości zmiennej losowej

Przykład: rozkład normalny

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad x \in R$$

Normalizacja: $\int_{-\infty}^{+\infty} f_X(t)dt = 1$

$$P(a < X < b) = \int_{a}^{b} f_X(t)dt$$
$$f_X(x) \ge 0$$

Dystrybuanta $F_X(x) = P(X \le x)$

Równoważna rozkładowi prawdopodobieństwa lub funkcji gęstości prawdopodobieństwa.

$$F_{X}(x_{k}) = \sum_{j:x_{j} \le x_{k}} P_{X}(x_{j})$$

$$F_{X}(x) = \int_{-\infty}^{x} f_{X}(t) dt$$

$$P_{X}(x_{k}) = F_{X}(x_{k}) - F_{X}(x_{k-1})$$

$$f_{X}(x) = \frac{d}{dx} F_{X}(x)$$

$$P(a < X < b) = F_{X}(b) - F_{X}(a)$$

Użyteczne narzędzie do generacji liczb pseudolosowych.

Globalny opis rozkładu prawdopodobieństwa

wartość oczekiwana

$$E(X) = \sum_{k} P_X(x_k) x_k \qquad E(X) = \int_{-\infty}^{+\infty} f_X(x) x \, dx$$

własności:
$$E(a) = a$$

$$E(aX + b) = aE(X) + b$$

$$Y = g(X): E(Y) = \int_{-\infty}^{+\infty} f_X(x) \cdot g(x) \ dx = \int_{-\infty}^{+\infty} f_Y(y) \cdot y \ dy$$

wariancja

$$var(X) \equiv \sigma_X^2 \equiv \sigma^2(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

własności

$$var(a) = 0$$

$$var(aX + b) = a^2 var(X)$$

 $\sigma(X)$ to odchylenie standardowe: $\sigma(X) = \sqrt{var(X)}$

Globalny opis rozkładu prawdopodobieństwa

Kwantyle

```
Kwantylem rzędu p (dla zmiennej losowej X) nazywamy liczbę x<sub>p</sub>:
F<sub>X</sub>(x<sub>p</sub>)=p (0≤p≤1)
```

W szczególności: mediana to kwantyl rzędu ½ kwartyle to kwantyle rzędu ¼, ½, oraz ¾

moda – wartość najbardziej prawdopodobna czyli x: max{ f_x(x) }

Ważne rozkłady dyskretne

Rozkład dwumianowy (związany z próbą Bernoulliego)

$$P_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$k = 0, 1, \dots, n$$

$$E(X) = np$$

$$var(X) = np(1-p)$$

Rozkład geometryczny

$$P_X(k) = (1-p)^{k-1} p$$

$$k = 1, 2, ..., \infty$$

$$E(X) = \frac{1}{p}$$

$$var(X) = \frac{1-p}{p^2}$$

Ważne rozkłady dyskretne

Rozkład Poissona

$$P_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 old lambda=2.2 $k = 0, 1, \ldots, n$ old $\lambda > 0$ old $E(X) = \lambda$ old var $(X) = \lambda$

- Duża próbka, rzadkie zjawisko
- Zjawisko powtarzające się ze stałą częstością

Ważne rozkłady ciągłe

rozkład jednorodny

$$f_X(x) = \frac{1}{b-a}$$

$$x \in [a,b]$$

$$E(X) = \frac{a+b}{2}$$

$$var(X) = \frac{(b-a)^2}{12}$$

Rozkład wykładniczy

$$f_X(x) = \lambda e^{-\lambda x}$$

$$x \in [0, +\infty)$$

$$E(X) = \frac{1}{\lambda}$$

$$\operatorname{var}(X) = \frac{1}{\lambda^2}$$

Ważne rozkłady ciągłe

rozkład normalny

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} \qquad x \in R$$

$$E(X) = \mu$$

$$\operatorname{var}(X) = \sigma^2$$

- Dla μ=0 i σ=1 nazywany jest standardowym rozkładem normalnym (standardowym rozkładem Gaussa).
- Standaryzacja: Jeżeli zmienna losowa X ma rozkład N(μ,σ²) to zmienna losowa Y=(X-μ)/σ ma rozkład N(0,1)
- Reguła 3σ
- Dystrybuanta nie wyraża się analitycznie
- Centralne Twierdzenie Graniczne
- Generowanie, np. transformacja Box-Mullera

Wielowymiarowe zmienne losowe

funkcja gęstości prawdopodobieństwa f_{X,Y}(x,y):

$$\begin{aligned} &\forall x, y \quad f_{X,Y}(x,y) \geq 0 \\ &\int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{X,Y}(x,y) \ dx \ dy = 1 \\ &P(x < X \leq x + dx, y < Y \leq y + dy) = f_{X,Y}(x,y) \ dx \ dy \end{aligned}$$

• Kowariancja
$$cov(X,Y) = E[(X-E(X))(Y-E(Y))] =$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x-E(X))(y-E(Y))f_{X,Y}(x,y) \, dx \, dy$$

 Współczynnik korelacji zmiennych losowych X,Y (unormowana kowariancja) to

$$\rho_{X,Y} \equiv corr(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}}$$

- własności:
 - 1. Współczynnik korelacji jest bezwymiarowy.

$$2.-1 \le \rho_{X,Y} \le 1$$

3. Współczynnik korelacji jest miarą zależności liniowej

$$\rho_{X,Y} = 1$$
 dla
 $Y = aX + b$
 $a > 0$

$$\rho_{X,Y} = -1$$
 dla
 $Y = aX + b$
 $a < 0$

4. Jeżeli $\rho_{X,Y}$ =0 to zmienne X i Y nie muszą być niezależne; nazywamy je wtedy nieskorelowanymi.

Estymacja

punktowa
 oszacowanie wartości parametru Θ przez podanie wartości estymatora T_n(Θ) tego parametru

$$T_n(E(X)) \equiv \overline{X} = \frac{1}{n} \sum_{i=1}^n x_i \qquad T_n(\sigma(\overline{X})) \equiv S(\overline{X}) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n \left(x_i - \overline{X}\right)^2}$$

 przedziałowa – podanie przedziału liczbowego, wewnątrz którego, z założonym prawdopodobieństwem γ, leży prawdziwa wartość parametru Θ.

$$P(T_n^L(\theta) \le \theta \le T_n^P(\theta)) = \gamma$$

$$\mathsf{np.} \quad P\left(\overline{X} - \frac{1}{\sqrt{n}}S(X)t_{\frac{1+\gamma}{2}} \le E(X) \le \overline{X} + \frac{1}{\sqrt{n}}S(X)t_{\frac{1+\gamma}{2}}\right) = \gamma$$

(t_a to kwantyle rozkładu t-Studenta na poziomie a)

Wprowadzenie

Procesy stochastyczne to zmienne losowe ewoluujące i zmieniające się w zależności od dodatkowego parametru, zwykle utożsamianego z czasem.

- Czas może być ciągły (0,+∞) lub (-∞,+∞) lub (0,T) itd.
 lub dyskretny {0,1,2,...} lub {0,1,2,...,T} itd.
- Proces oznaczamy X(t,w) lub X₁(w) lub X(t)
- Najczęściej interesuje nas:
- rozkład prawdopodobieństwa w dla ustalonego t
- zmienność tego rozkładu z czasem
- zmienność w z czasem, dla pojedynczej realizacji
- Stany procesu w mogą być ciągłe lub dyskretne → mówimy o procesach ciągłych lub dyskretnych

Wprowadzenie

https://www.stat.uci.edu/covid19/index.html (Creative Commons Attribution 4.0 International License) Przykłady:

- Liczba stron w kolejnych wydrukach na drukarce
- Czas wydruku kolejnych wydruków na drukarce
- Liczba polubień w serwisie społecznościowym w funkcji czasu lub w funkcji wpisu
- Temperatura w funkcji czasu
- Liczba pasażerów autobusu MPK

Proces Markowa

 Proces X(t) jest procesem Markowa jeżeli dla każdego czasu t₁<t₂<t₃<...<t_n

$$P(X(t_n) \in A_t \mid X(t_1) \in A_1 \cap X(t_2) \in A_2 \cap ... \cap X(t_{n-1}) \in A_{t-1}) =$$

$$= P(X(t_n) \in A_t \mid X(t_{n-1}) \in A_{t-1})$$

czyli

- P(przyszłość | teraźniejszość ∩ przeszłość) =
 = P (przyszłość | teraźniejszość)
 czyli
- Dla przyszłości nie jest istotne po jakiej trajektorii proces doszedł do teraźniejszego stanu. Istotne jest w jakim jest stanie.

Lańcuch Markowa

- Łańcuch Markowa to proces Markowa o dyskretnym czasie i dyskretnych stanach.
- Stany numerujemy 1,2,3,...,n (gdzie n może być nieskończone)
- Kolejne chwile czasu numerujemy 0,1,2,3,...,T (gdzie T może być nieskończone)
- Czas początkowy przyjmujemy t=0
- Oznaczamy X(t), np. X(t=2)=5, X(t=i)=k lub równoważnie X(2)=5, X(i)=k lub równoważnie X₂=5, X_i=k
- Własność Markowa

$$P(X_{t+1}=j|X_t=i)=P(X_{t+1}=j|X_t=i, X_{t-1}=k, X_{t-2}=I,...,X_0=m)$$

Lańcuch Markowa

 Def: Prawdopodobieństwo przejścia ze stanu i w chwili t do stanu j w chwili t+1 (transition probability):

$$p_{ij}(t) := P(X_{t+1} = j \mid X_t = i) \equiv p_{i \to j}(t)$$

 Def: Prawdopodobieństwo przejścia ze stanu i w chwili t do stanu j w chwili t+h (h-step transition probability):

$$p_{ij}^{(h)}(t) := P(X_{t+h} = j \mid X_t = i) \equiv p_{i \to j}^{(h)}(t)$$

- Stan procesu ma podwójne znaczenie: są to wartości jaki przybiera zmienna losowa (np. cena akcji, 0 lub 1, ilość drukowanych stron w danym zadaniu) lub jest to wektor zbudowany z prawdopodobieństw bycia w tych stanach: P_t(X) = (P(X_t=1), P(X_t=2), P(X_t=3),..., P(X_t=n), ...)
- Def: Łańcuch Markowa jest jednorodny gdy wszystkie $p_{ij}(t)$ i $p_{ij}^{(h)}(t)$ nie zależą od czasu. Zatem $p_{ii}(t) \rightarrow p_{ii}$

$$p_{ij}^{(h)}(t) \rightarrow p_{ij}^{(h)}$$

Lańcuch Markowa

- Aby w pełni określić proces Markowa musimy znać stan początkowy X_0 (lub prawdopodobieństwa różnych stanów początkowych $P_0(X)$) i prawdopodobieństwa przejść do innych stanów $p_{ii}(t)$
- Bazując na znajomości $P_0(X)$ oraz $p_{ij}(t)\,$ możemy obliczyć:

$$p_{ij}^{(h)}(t)$$

$$P_h(X) \equiv (P(X_h = 1), P(X_h = 2), \dots, P(X_h = n))$$

$$\lim_{h\to\infty} p_{ij}^{(h)}$$

$$\lim_{h\to\infty} P_h(X)$$

Obliczenia w granicy dużych h odpowiadają prognozie długoterminowej; obliczenie wartości granicznych może być nieraz prostsze niż obliczenie $p_{ij}^{(h)}$ i $P_h(X)$ dla dużych h.

Równanie Chapmanna-Kołmogorowa

$$\begin{split} p_{ij}^{(2)} &\equiv P(X_{t+2} = j \mid X_t = i) = \sum_{k=1}^n P(X_{t+2} = j \mid X_{t+1} = k) P(X_{t+1} = k \mid X_t = i) = \sum_k p_{ik} p_{kj} \\ p_{ij}^{(2)} &\equiv P(X_{t+2} = dX_j \mid X_t = dX_i) = \\ &= \int_{-\infty}^{+\infty} dX_k P(X_{t+2} = dX_j \mid X_{t+1} = dX_k) P(X_{t+1} = dX_k \mid X_t = dX_i) \end{split} \quad \text{Provential}$$

Dowód

$$\begin{split} & p_{ij}^{(2)} \equiv P(X_{t+2} = j \mid X_t = i) = \sum_k P(X_{t+2} = j \cap X_{t+1} = k \mid X_t = i) = \\ & = \sum_k \frac{P(X_{t+2} = j \cap X_{t+1} = k \cap X_t = i)}{P(X_t = i)} = \\ & = \sum_k \frac{P(X_{t+2} = j \mid X_{t+1} = k \cap X_t = i) P(X_{t+1} = k \cap X_t = i)}{P(X_t = i)} = \\ & = \sum_k P(X_{t+2} = j \mid X_{t+1} = k \cap X_t = i) P(X_{t+1} = k \mid X_t = i) = \\ & = \sum_k P(X_{t+2} = j \mid X_{t+1} = k) P(X_{t+1} = k \mid X_t = i) = \sum_k P_{kj} P_{ik} = \sum_k P_{ik} P_{kj} \end{split}$$

Prawdopodobieństwo warunkowe

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Przykład: Błądzenie przypadkowe

- Związane z próbą Bernoulliego
- Zał: przesuwamy się w lewo z prawdopodobieństwem q, w prawo z prawdopodobieństwem p.
- n_I liczba kroków w lewo
- n_P liczba kroków w prawo

$$\begin{cases} n = n_P - n_L \equiv k \\ n = n_L + n_P \\ k = n_P - n_L \end{cases} \rightarrow \begin{cases} n_P = (n+k)/2 \\ n_L = (n-k)/2 \end{cases}$$

Aby osiągnąć pozycję k musimy mieć n_P sukcesów i n_L porażek

$$P(X_n = k) = \binom{n}{n_P} p^{n_P} q^{n_L} = \binom{n}{\frac{n+k}{2}} p^{\frac{n+k}{2}} (1-p)^{\frac{n-k}{2}}$$

$$p = 0.5$$
: $P(X_n = k) = \frac{n!}{2^n} \left(\frac{n+k}{2}! \frac{n-k}{2}! \right)^{-1}$

Przykład: Błądzenie przypadkowe cd

Inne ujęcie $X_n = X_0 + \sum_{i=1}^n S_i$

Gdzie X_0 – punkt startowy, S_i =+1 (z prawdopodobieństwem p) lub -1 (z prawdopodobieństwem q=1-p), n=1,2,3,...

Zał: $X_0 = 0$

wartość oczekiwana S_i oraz S_i²

$$E[S_i] = \sum_{w=-1,1} w \cdot P(w) = (-1)q + 1p = p - q$$

$$E[S_i^2] = \sum_{w=-1,1} w^2 \cdot P(w) = (-1)^2 q + 1^2 p = q + p = 1$$

wartość oczekiwana X_n

$$E[X_n] = E\left[\sum_{i=1}^n S_i\right] = \sum_{i=1}^n E[S_i] = nE[S_1] = n(p-q)$$

czyli dla p=q=0.5 $E[X_n]=0$ (mimo, że dla n nieparzystego $X_n=0$ nie może być nigdy osiągnięte)

Przykład: Błądzenie przypadkowe cd

Odchylenie standardowe X_n

$$\begin{split} E\Big[X_{n}^{2}\Big] &= E\Big[\sum_{i=1}^{n} S_{i} \sum_{j=1}^{n} S_{j}\Big] = E\Big[\sum_{i=1}^{n} S_{i}^{2}\Big] + E\Big[\sum_{i\neq j,i=1}^{n} \sum_{j=1}^{n} S_{i} S_{j}\Big] = nE\Big[S_{1}^{2}\Big] + (n^{2} - n)E\Big[S_{i}\Big]E\Big[S_{j}\Big] = \\ &= n \cdot 1 + (n^{2} - n)(p - q)(p - q) = n + (n^{2} - n)(p - q)^{2} = n^{2}(p - q)^{2} + n(1 - (p - q)^{2}) = \\ &= n^{2}(p - q)^{2} + n((p + q)^{2} - (p - q)^{2}) = n^{2}(p - q)^{2} + n(p^{2} + q^{2} + 2pq - p^{2} - q^{2} + 2pq) = \\ &= n^{2}(p - q)^{2} + 4npq \\ &\text{var}[X_{n}] = E\Big[X_{n}^{2}\Big] - \Big(E[X_{n}]\Big)^{2} = n^{2}(p - q)^{2} + 4npq - n^{2}(p - q)^{2} = 4npq \\ &\sigma[X_{n}] = \sqrt{\text{var}[X_{n}]} = 2\sqrt{npq} \end{split}$$

Wartość oczekiwany zmiany po m-n krokach (m>n)

$$E[X_m - X_n] = E[X_m] - E[X_n] = m(p-q) - n(p-q) = (m-n)(p-q)$$

Przykład: Błądzenie przypadkowe cd

Funkcja autokorelacji

$$E[X_{m} \cdot X_{n}] = E[(X_{m} - X_{n} + X_{n}) \cdot X_{n}] = E[(X_{m} - X_{n}) \cdot X_{n}] + E[X_{n}^{2}] =$$

$$= E[(X_{m} - X_{n})] \cdot E[X_{n}] + E[X_{n}^{2}] = (m - n)(p - q) \cdot n(p - q) + n^{2}(p - q)^{2} + 4npq =$$

$$= (p - q)^{2}(mn - n^{2} + n^{2}) + 4npq = (p - q)^{2}mn + 4npq$$

- Funkcja autokowariancji (klasycznie: cov(X,Y)=E(XY)-E(X)E(Y)) $E[X_m \cdot X_n] E[X_m]E[X_n]$
- Dla dwóch procesów: funkcja korelacji (cross correlation) $E[X_m \cdot Y_n] E[X_m]E[Y_n]$
- Znajdują zastosowanie w badaniu istnienia trendów (dla trendów korelacja wolno znika z czasem), sezonowości danych (periodyczność przenosi się na korelację), badaniu zmienności stanów (bardziej zmienny proces prowadzi do bardziej zmiennej korelacji)
- Opisują własności dynamiczne procesu (własności statyczne (chwilowe) opisuje rozkład prawdopodobieństwa)
- Transformata Fouriera funkcji autokorelacji to "spektrum procesu"

Syt:

- Urządzenie może obsłużyć do dwóch użytkowników. Użytkownicy działają niezależnie od siebie.
- Załóżmy krok czasowy =1 min.
- Każdy z użytkowników, korzystający z urządzenia, przestaje korzystać z prawdopodobieństwem p=0.5 /min;
- Każdy z użytkowników, nie korzystający z urządzenia, zaczyna korzystać z prawdopodobieństwem r=0.2 /min;
- Stan urządzenia oznaczymy liczbą użytkowników X_t={0,1,2}
- Każdy z użytkowników, korzystający z urządzenia, korzystać nadal z prawdopodobieństwem 1-p=1-0.5=0.5 /min;
- Każdy z użytkowników, nie korzystający z urządzenia, nadal nie korzysta z prawdopodobieństwem 1-r=1-0.2=0.8 /min;

- P(koniec użytkowania)= p=0.5 /min;
- P(start użytkowania)=r=0.2 /min

P(pozostanie w użytkowaniu)=0.5 /min

P(pozostanie w nieużytkowaniu)=0.8 /min

Czynniki "2" pochodzą z rozkładu dwumianowego

Zał: $X_0=0$

Jaki będzie stan X(t=1) ?

$$X(t=1) = \begin{cases} 0 & P(X_1 = 0) = 0.64 & \equiv p_{0 \to 0}^{(1)} \\ 1 & P(X_1 = 1) = 0.32 & \equiv p_{0 \to 1}^{(1)} \\ 2 & P(X_1 = 2) = 0.04 & \equiv p_{0 \to 2}^{(1)} \end{cases}$$

Jaki będzie stan X(t=2) ?

$$p_{0\to 0}^{(2)} = \sum_{i=1}^{3} P(X_1 = i \mid X_0 = 0) P(X_2 = 0 \mid X_1 = i) = \sum_{i=1}^{3} p_{0\to i}^{(1)} p_{i\to 0}^{(1)} = p_{0\to 0}^{(1)} p_{0\to 0}^{(1)} + p_{0\to 1}^{(1)} p_{1\to 0}^{(1)} + p_{0\to 2}^{(1)} p_{2\to 0}^{(1)} = 0.64^2 + 0.32 \cdot 0.4 + 0.04 \cdot 0.25 = 0.4096 + 0.128 + 0.01 = 0.5476$$

- Analogicznie liczymy pozostałe prawdopodobieństwa
- Jaki będzie stan X(t=3) ?

$$p_{0\to 0}^{(3)} = \sum_{i=1}^{3} \sum_{j=1}^{3} P(X_1 = i \mid X_0 = 0) P(X_2 = j \mid X_1 = i) P(X_3 = 0 \mid X_2 = j) = \sum_{i=1}^{3} \sum_{j=1}^{3} p_{0\to i}^{(1)} p_{i\to j}^{(1)} p_{j\to 0}^{(1)}$$

$$p_{0\to 0}^{(3)} = \sum_{j=1}^{3} p_{0\to j}^{(2)} p_{j\to 0}^{(1)}$$

Gdy X₀ jest nieznane

Jaki będzie stan X(t=1) ?

$$P(X_1 = k) = \sum_{i=1}^{3} P(X_0 = i) \cdot p_{i \to k}^{(1)}$$

Jaki będzie stan X(t) dla dowolnego t ?

$$\begin{split} P(X_1 = k) &= \sum_{i=1}^{3} P(X_0 = i) \cdot p_{i \to k}^{(1)} \\ P(X_2 = k) &= \sum_{i=1}^{3} \sum_{j=1}^{3} P(X_0 = i) \cdot p_{i \to j}^{(1)} \cdot p_{j \to k}^{(1)} \\ P(X_3 = k) &= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{h=1}^{3} P(X_0 = i) p_{i \to j}^{(1)} p_{j \to h}^{(1)} p_{h \to k}^{(1)} \end{split}$$

→ warto przejść na zapis macierzowy

Macierz przejścia

Def: Macierz przejścia

$$P = \begin{pmatrix} p_{0 \to 0}^{(1)} & p_{0 \to 1}^{(1)} & \cdots & p_{0 \to n}^{(1)} \\ p_{1 \to 0}^{(1)} & p_{1 \to 1}^{(1)} & \cdots & p_{1 \to n}^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n \to 0}^{(1)} & p_{n \to 1}^{(1)} & \cdots & p_{n \to n}^{(1)} \end{pmatrix} \equiv \begin{pmatrix} p_{00} & p_{01} & \cdots & p_{0n} \\ p_{10} & p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n0} & p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & \vdots \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & \vdots \end{pmatrix} \begin{pmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{n1} & \cdots & \vdots \end{pmatrix}$$

Jest to macierz stochastyczna: suma prawdopodobieństw w wierszach wynosi 1 Def: Stan w chwili t $P_t \equiv \left(P(X_t=0), P(X_t=1), P(X_t=2), \dots, P(X_t=n)\right)$ Analogicznie macierz przejścia po h krokach

$$P^{(h)} = \begin{pmatrix} p_{00}^{(h)} & p_{01}^{(h)} & \dots & p_{0n}^{(h)} \\ p_{10}^{(h)} & p_{11}^{(h)} & \dots & p_{1n}^{(h)} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n0}^{(h)} & p_{n1}^{(h)} & \dots & p_{nn}^{(h)} \end{pmatrix}$$

P^(h) też jest macierzą stochastyczną

Macierz przejścia

$$k$$
-ta składowa stanu procesu w dowolnej chwili h $P_h(k) \equiv P(X_h = k) = \sum_{i=0}^n P(X_0 = i) \cdot p_{i \to k}^{(h)} = \left(P_0(0), P_0(1), \dots, P_0(n)\right) \cdot \begin{pmatrix} p_{0 \to k}^{(h)} \\ p_{1 \to k}^{(h)} \\ \vdots \\ p_{n \to k}^{(h)} \end{pmatrix}$ Kolumna macierzy przejścia $P^{(h)}$ Przy powyższych definicjach

Przy powyższych definicjach

$$\begin{array}{|c|c|}\hline P_h = P_0 P^{(h)} \\\hline P^{(h)} = P^h \end{array} \qquad \begin{array}{|c|c|c|}\hline P_1 = P_0 P \\\hline P^{(2)} = P^2 \end{array} \qquad \text{Stan (wektor poziomy)}$$

Dla dużych *h* wielokrotne mnożenie macierzy może nie być praktyczne.

Def: Stan stacionarny Π

$$\Pi \equiv \lim_{h \to \infty} P_h$$

$$\Pi_k \equiv \lim_{h \to \infty} P_h(k)$$

Ponieważ $P_{h+1}=P_hP$ to w granicy $h\to\infty$ $\Pi=\Pi P$

$$\Pi = \Pi P$$

gdy znamy P jest to układ na *n* niewiadomych Π_i , i=1,...,n; ma nieskończenie wiele rozwiązań, ale mamy dodatkowo normalizację $\Pi_0 + \Pi_1 + \Pi_2 + ... + \Pi_n = 1$

Macierz przejścia

Macierz przejścia też ma granicę

$$\hat{\Pi} \equiv \lim_{h \to \infty} P^{(h)} = \begin{pmatrix} \Pi_0 & \Pi_1 & \dots & \Pi_n \\ \Pi_0 & \Pi_1 & \dots & \Pi_n \\ \vdots & \vdots & \ddots & \vdots \\ \Pi_0 & \Pi_1 & \dots & \Pi_n \end{pmatrix}$$

Wszystkie wiersze są takie same i odpowiadają stanom stacjonarnym (końcowym). Sprawdzenie:

$$\begin{split} \Pi &= P_0 \hat{\Pi} = \begin{pmatrix} P_0 & P_1 & \dots & P_n \end{pmatrix} \begin{pmatrix} \Pi_0 & \Pi_1 & \dots & \Pi_n \\ \Pi_0 & \Pi_1 & \dots & \Pi_n \\ \vdots & \vdots & \ddots & \vdots \\ \Pi_0 & \Pi_1 & \dots & \Pi_n \end{pmatrix} = \\ &= ((P_0 \Pi_0 + P_1 \Pi_0 + \dots + P_n \Pi_0), (P_0 \Pi_1 + P_1 \Pi_1 + \dots + P_n \Pi_1), \dots, (P_0 \Pi_n + P_1 \Pi_n + \dots + P_n \Pi_n)) = \\ &= ((P_0 + P_1 + \dots + P_n) \Pi_0, (P_0 + P_1 + \dots + P_n) \Pi_1, \dots, (P_0 + P_1 + \dots + P_n) \Pi_n) = \\ &= (1 \cdot \Pi_0, 1 \cdot \Pi_1, \dots, 1 \cdot \Pi_n) = (\Pi_0, \Pi_1, \dots, \Pi_n) \equiv \Pi \end{split}$$

Macierz przejścia w tym przypadku:

$$P = \begin{pmatrix} 0.64 & 0.32 & 0.04 \\ 0.40 & 0.50 & 0.10 \\ 0.25 & 0.50 & 0.25 \end{pmatrix}$$

$$P^{(2)} = P^2 = \begin{pmatrix} 0.64 & 0.32 & 0.04 \\ 0.40 & 0.50 & 0.10 \\ 0.25 & 0.50 & 0.25 \end{pmatrix} \cdot \begin{pmatrix} 0.64 & 0.32 & 0.04 \\ 0.40 & 0.50 & 0.10 \\ 0.25 & 0.50 & 0.25 \end{pmatrix} = \begin{pmatrix} 0.5476 & 0.3848 & 0.0676 \\ 0.4810 & 0.4280 & 0.0910 \\ 0.4225 & 0.4550 & 0.1225 \end{pmatrix}$$

Zał: stan początkowy: dwóch użytkowników korzysta z urządzenia

Wtedy
$$P_0 = (0,0,1)$$
 $P_0 = (0,0,1)$ $P_0 =$

Dla P₀=(1/3, 1/3, 1/3)

$$P_2 = P_0 P^2 = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0.5476 & 0.3848 & 0.0676 \\ 0.4810 & 0.4280 & 0.0910 \\ 0.4225 & 0.4550 & 0.1225 \end{pmatrix} = \begin{pmatrix} 0.4837 & 0.4226 & 0.0937 \end{pmatrix}$$

Stan stacjonarny $\Pi = \Pi P$

$$P = \begin{pmatrix} 0.64 & 0.32 & 0.04 \\ 0.40 & 0.50 & 0.10 \\ 0.25 & 0.50 & 0.25 \end{pmatrix}$$

Starr stacjonality
$$\Pi = \Pi P$$

$$P = \begin{pmatrix} 0.64 & 0.32 & 0.04 \\ 0.40 & 0.50 & 0.10 \\ 0.25 & 0.50 & 0.25 \end{pmatrix}$$

$$0.8^{*}0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{*}0.8^{*}0.8^{*}0.64$$

$$0.8^{*}0.8^{$$

$$\begin{cases} 0.64\Pi_0 + 0.40\Pi_1 + 0.25\Pi_2 = \Pi_0 \\ 0.32\Pi_0 + 0.50\Pi_1 + 0.50\Pi_2 = \Pi_1 \\ 0.04\Pi_0 + 0.10\Pi_1 + 0.25\Pi_2 = \Pi_2 \end{cases} \rightarrow \begin{cases} \Pi_2 = 1.44\Pi_0 - 1.60\Pi_1 \\ 1.04\Pi_0 - 1.30\Pi_1 = 0 \\ -1.04\Pi_0 + 1.30\Pi_1 = 0 \end{cases}$$
równania zależne

0.5*0.8+0.5*0.2=0.5

2*0.5*0.5=0.5

X=2

0.5*0.5=0.25

X=1

0.5*0.2=0.1

2*0.2*0.8=0.32

0.2*0.2=0.04

0.5*0.5=0.25

0.5*0.8=0.4

$$\begin{cases} \Pi_2 = 1.44\Pi_0 - 1.60\Pi_1 \\ 1.04\Pi_0 - 1.30\Pi_1 = 0 \end{cases} \rightarrow \begin{cases} \Pi_2 = 0.16\Pi_0 \\ \Pi_1 = 0.80\Pi_0 \end{cases}$$

Dokładamy warunek normalizacji

$$\Pi_0 + \Pi_1 + \Pi_2 = 1 \rightarrow \Pi_0 + 0.80\Pi_0 + 0.16\Pi_0 = 1 \rightarrow 1.96\Pi_0 = 1$$
 $\rightarrow \Pi_0 = 0.5102 \quad \Pi_1 = 0.4082 \quad \Pi_2 = 0.0816 \quad \longleftarrow \text{ proszę zinterpretować te liczby}$

Stany stacjonarne

Stany stacjonarne Π spełniają równanie $\Pi P=\Pi$, a wszystkie stany spełniają $P_t P=P_{t+1}$ czyli w stanie stacjonarnym kolejne przejścia nie zmieniają prawdopodobieństw przebywania w określonych stanach. Sam chwilowy stan może się nadal zmieniać.

Przykład: układ z dwoma stanami X={0,1} i macierzą przejścia $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ to prowadzi do

$$P^{(h)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ dla } h \text{ parzystych i } P^{(h)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ dla } h \text{ nieparzystych}$$

czyli P^(h) nie ma granicy czyli stan stacjonarny nie istnieje (jest to układ okresowy)

Def.: Łańcuch Markowa jest regularny jeżeli $\exists_h : \forall_{i,j} \ p_{ij}^{(h)} > 0$

Tw: Każdy regularny łańcuch Markowa ma stan stacjonarny

Stany stacjonarne

Def.: Łańcuch Markowa jest regularny jeżeli

Tw: Każdy regularny łańcuch Markowa ma stan stacjonarny

Przykład 1: 0.9 3 0.1
$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0.9 & 0 & 0 & 0.1 \end{pmatrix}$$

$$P^{(6)} = \begin{pmatrix} 0.009 & 0.090 & 0.900 & 0.001 \\ 0.001 & 0.009 & 0.090 & 0.900 \\ 0.810 & 0.001 & 0.009 & 0.180 \\ 0.162 & 0.810 & 0.001 & 0.027 \end{pmatrix}$$

czyli ten łańcuch jest regularny.

Czy można to zauważyć na grafie?

Stany stacjonarne

Przykład 2:

Jeżeli istnieje stan *i* z p_{ii}=1 (stan absorbujący) to łańcuch nie może być regularny.

Czy istnieje stan stacjonarny?

Przykład 3:

strefa absorbująca Czy łańcuch jest regularny? Czy istnieje stan stacjonarny?

Ogólne metody szukania stanu stacjonarnego - metoda funkcji generującej

Def:
$$P_{n} = \left(P_{n}(X=1), P_{n}(X=2), \ldots\right) \qquad P_{n}^{T} = \begin{pmatrix} P_{n}(X=1) \\ P_{n}(X=2) \\ \ldots \end{pmatrix}$$

$$\vec{g}(z) := \sum_{n=0}^{\infty} P_{n}^{T} z^{n} \qquad \vec{g}(z) = \begin{pmatrix} P_{0}(X=1) \cdot 1 + P_{1}(X=1) \cdot z + P_{2}(X=1) \cdot z^{2} + \ldots \\ P_{0}(X=2) \cdot 1 + P_{1}(X=2) \cdot z + P_{2}(X=2) \cdot z^{2} + \ldots \\ \ldots \end{pmatrix}$$

$$(\vec{g}(z))^{T} = \sum_{n=0}^{\infty} P_{n} z^{n} \qquad (\vec{g}(z))^{T} = (P_{0}(X=1) \cdot 1 + P_{1}(X=1) \cdot z + P_{2}(X=1) \cdot z^{2} + \ldots, \\ / \cdot P \qquad P_{0}(X=2) \cdot 1 + P_{1}(X=2) \cdot z + P_{2}(X=2) \cdot z^{2} + \ldots,$$

$$(\vec{g}(z))^{T} \cdot P = \sum_{n=0}^{\infty} P_{n} z^{n} \cdot P$$

$$(\vec{g}(z))^{T} \cdot P = \sum_{n=0}^{\infty} P_{n} \cdot P z^{n} = \sum_{n=0}^{\infty} P_{n+1} z^{n} = z^{-1} \sum_{n=0}^{\infty} P_{n+1} z^{n+1} = \begin{vmatrix} m = n + 1 \\ n = m - 1 \end{vmatrix} = z^{-1} \sum_{m=1}^{\infty} P_{m} z^{m} =$$

$$= -z^{-1} P_{0} z^{0} + z^{-1} \sum_{n=0}^{\infty} P_{m} z^{m} = -z^{-1} P_{0} + z^{-1} \left(\vec{g}(z) \right)^{T}$$

Ogólne metody szukania stanu stacjonarnego - metoda funkcji generującej

$$\left(\vec{g}(z)\right)^{T} \cdot P = -z^{-1}P_{0} + z^{-1}\left(\vec{g}(z)\right)^{T}$$

$$\left(\vec{g}(z)\right)^{T} \cdot P - z^{-1}\left(\vec{g}(z)\right)^{T} = -z^{-1}P_{0} \quad / \cdot (-z)$$

$$-z\left(\vec{g}(z)\right)^{T} \cdot P + \left(\vec{g}(z)\right)^{T} = P_{0}$$

$$\left(\vec{g}(z)\right)^{T} \cdot \left(-zP + 1\right) = P_{0}$$

$$\left(\vec{g}(z)\right)^{T} \cdot (1 - zP) = P_{0} \quad / \cdot (1 - zP)^{-1}$$

$$\left(\vec{g}(z)\right)^{T} = P_{0} \cdot (1 - zP)^{-1}$$

czyli znając wektor P₀ i macierz P można wyznaczyć g(z)

Twierdzenie o wartościach skończonych (final value theorem)

$$\lim_{n\to\infty} P_n = \lim_{z\to 1} (1-z) \left(\vec{g}(z)\right)^T$$

(można również wyliczać P_k dla skończonych k, przynajmniej w przybliżeniu)

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0.25 & 0.25 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}$$

$$1 - zP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & z & 0 \\ 0.25z & 0.25z & 0.5z \\ 0 & 0.5z & 0.5z \end{pmatrix} = \begin{pmatrix} 1 & -z & 0 \\ -0.25z & 1 - 0.25z & -0.5z \\ 0 & -0.5z & 1 - 0.5z \end{pmatrix}$$

Obliczenie A= $(1-zP)^{-1}$: korzystamy z macierzy sprzężonej adj(A): $A^{-1} = \frac{adj(A)}{\det(A)}$ Gdzie $(adj(A))_{ij} = (-1)^{i+j} M_{ji}$ a M_{ji} to wyznacznik A z usuniętym j-tym wierszem i i-tą kolumną.

$$\det(1-zP) = \left(1-\frac{z}{4}\right)\left(1-\frac{z}{2}\right) - \frac{z^2}{4} - (-z)\left(\frac{-z}{4}\cdot\left(1-\frac{z}{2}\right) - 0\right) + 0 = 1 - \frac{z}{4} - \frac{z}{2} + \frac{z^2}{8} - \frac{z^2}{4} - \frac{z^2}{4} + \frac{z^3}{8} = 1 - z + \frac{z}{4} - \frac{2z^2}{8} - \frac{z^2}{8} + \frac{z^3}{8} = 1 - z + \frac{z}{4} - \frac{2z^2}{8} - \frac{z^2}{8} + \frac{z^3}{8} = 1 - z + \frac{z}{4} - \frac{z^2}{8} -$$

$$(1-zP)^{-1} = \frac{1}{\det(1-zP)} \begin{pmatrix} 1 - \frac{3z}{4} - \frac{z^2}{8} & z\left(1 - \frac{z}{2}\right) & \frac{z^2}{2} \\ \frac{z}{4}\left(1 - \frac{z}{2}\right) & 1 - \frac{z}{2} & \frac{z}{2} \\ \frac{z^2}{8} & \frac{z}{2} & 1 - \frac{z}{4} - \frac{z^2}{4} \end{pmatrix}$$

$$\begin{pmatrix} (\vec{g}(z))^T = P_0 \cdot (1-zP)^{-1} \\ (\vec{g}(z))^T = (g_1(z), g_2(z), g_3(z)) \\ P_0 = (P_0(1), P_0(2), P_0(3))$$

Otrzymujemy

$$g_{1}(z) = \frac{1}{\det(1-zP)} \left(P_{0}(1) \left(1 - \frac{3z}{4} - \frac{z^{2}}{8} \right) + P_{0}(2) \left(\frac{z}{4} \left(1 - \frac{z}{2} \right) \right) + P_{0}(3) \frac{z^{2}}{8} \right)$$

$$g_{2}(z) = \frac{1}{\det(1-zP)} \left(P_{0}(1) \left(z \left(1 - \frac{z}{2} \right) \right) + P_{0}(2) \left(1 - \frac{z}{2} \right) + P_{0}(3) \frac{z}{2} \right)$$

$$g_{3}(z) = \frac{1}{\det(1-zP)} \left(P_{0}(1) \frac{z^{2}}{2} + P_{0}(2) \frac{z}{2} + P_{0}(3) \left(1 - \frac{z}{4} - \frac{z^{2}}{4} \right) \right)$$

$$g_{1}(z) = \frac{1}{\det(1-zP)} \left(P_{0}(1) \left(1 - \frac{3z}{4} - \frac{z^{2}}{8} \right) + P_{0}(2) \left(\frac{z}{4} \left(1 - \frac{z}{2} \right) \right) + P_{0}(3) \frac{z^{2}}{8} \right)$$

$$g_{2}(z) = \frac{1}{\det(1-zP)} \left(P_{0}(1) \left(z \left(1 - \frac{z}{2} \right) \right) + P_{0}(2) \left(1 - \frac{z}{2} \right) + P_{0}(3) \frac{z}{2} \right)$$

$$g_{3}(z) = \frac{1}{\det(1-zP)} \left(P_{0}(1) \frac{z^{2}}{2} + P_{0}(2) \frac{z}{2} + P_{0}(3) \left(1 - \frac{z}{4} - \frac{z^{2}}{4} \right) \right)$$

Wybierając $P_0=(1,0,0)$

$$g_1(z) = \frac{1}{\det(1 - zP)} \left(1 \cdot \left(1 - \frac{3z}{4} - \frac{z^2}{8} \right) \right)$$

$$g_2(z) = \frac{1}{\det(1 - zP)} \left(1 \cdot \left(z \left(1 - \frac{z}{2} \right) \right) \right)$$

$$g_3(z) = \frac{1}{\det(1 - zP)} \left(1 \cdot \frac{z^2}{2} \right)$$

$$(\vec{g}(z))^{T} = P_{0} \cdot (1 - zP)^{-1}$$

$$(\vec{g}(z))^{T} = (g_{1}(z), g_{2}(z), g_{3}(z))$$

$$P_{0} = (P_{0}(1), P_{0}(2), P_{0}(3))$$

Wybierając $P_0=(1,0,0)$

$$P_{\infty}(1) = \lim_{z \to 1} \frac{1 - z}{(1 - z)\left(1 + \frac{z}{4} - \frac{z^2}{8}\right)} \left(1 - \frac{3z}{4} - \frac{z^2}{8}\right) = \frac{1 - \frac{3}{4} - \frac{1}{8}}{1 + \frac{1}{4} - \frac{1}{8}} = \frac{\frac{1}{8}}{\frac{9}{8}} = \frac{1}{9}$$

$$\lim_{n\to\infty} P_n = \lim_{z\to 1} (1-z) \left(\vec{g}(z)\right)^T$$

$$P_{\infty}(2) = \lim_{z \to 1} \frac{1 - z}{(1 - z)\left(1 + \frac{z}{4} - \frac{z^2}{8}\right)} \left(z - \frac{z^2}{2}\right) = \frac{1 - \frac{1}{2}}{1 + \frac{1}{4} - \frac{1}{8}} = \frac{\frac{1}{2}}{\frac{9}{8}} = \frac{4}{9}$$

$$P_{\infty}(3) = \lim_{z \to 1} \frac{1 - z}{(1 - z) \left(1 + \frac{z}{4} - \frac{z^2}{8}\right)} \left(\frac{z^2}{2}\right) = \frac{\frac{1}{2}}{1 + \frac{1}{4} - \frac{1}{8}} = \frac{\frac{1}{2}}{\frac{9}{8}} = \frac{4}{9}$$

Wybierając $P_0 = (0, 0.5, 0.5)$

$$P_{\infty}(1) = \lim_{z \to 1} \frac{1-z}{(1-z)\left(1+\frac{z}{4}-\frac{z^2}{8}\right)} \left(0.5\left(\frac{z}{4}\left(1-\frac{z}{2}\right)\right) + 0.5\frac{z^2}{8}\right) = \frac{1}{9}\left(\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{2} + \frac{1}{2}\cdot\frac{1}{8}\right) = \frac{8}{9}\left(\frac{1}{16} + \frac{1}{16}\right) = \frac{1}{9}$$

Mnożenie P^{∞} też prowadzi do $P_{\infty}=(1/9,4/9,4/9)$.

Ogólne metody szukania stanu stacjonarnego - metoda rozwinięcia spektralnego

zał. wszystkie wartości własne są jednokrotne

$$U := \begin{pmatrix} \begin{pmatrix} u_1 \end{pmatrix} & \begin{pmatrix} u_2 \end{pmatrix} & \dots & \begin{pmatrix} u_n \end{pmatrix} \end{pmatrix} \quad \Lambda := \begin{pmatrix} \lambda_1 & & & & 0 \\ & \lambda_2 & & & \\ & & \ddots & & \\ 0 & & & \lambda_n \end{pmatrix} \quad V := \begin{pmatrix} \begin{pmatrix} & v_1^T & & \\ & v_2^T & & \\ & & \vdots & \\ & & \vdots & \\ & & v_n^T & \end{pmatrix}$$

$$\text{mamy} \quad P = U \Lambda U^{-1}$$

$$P^{2} = U\Lambda U^{-1}U\Lambda U^{-1} = U\Lambda^{2}U^{-1}$$

$$P^{h} = U\Lambda^{h}U^{-1} = \sum_{k} \lambda_{k}^{h} u_{k} v_{k}^{T}$$

$$P_{h} = P_{0}P^{h} = \sum_{k} \lambda_{k}^{h} P_{0} u_{k} v_{k}^{T}$$

$$(P_{h}) = (P_{0}) \left(u_{k} \right) \left(v_{k}^{T} \right)$$

Przykład - metoda rozwinięcia spektralnego

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0.25 & 0.25 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}$$

Równanie charakterystyczne $\det |P - \lambda \cdot 1| = 0 \rightarrow \lambda_1 = 1 \quad \lambda_2 = -0.5 \quad \lambda_3 = 0.25$ Wektory własne

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad u_2 = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} \quad u_3 = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix}$$

$$U = \begin{pmatrix} 1 & 4 & 4 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \quad \Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -0.5 & 0 \\ 0 & 0 & 0.25 \end{pmatrix} \quad V = U^{-1} = \frac{1}{9} \begin{pmatrix} 1 & 4 & 4 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} = \frac{1}{9} U$$

$$v_1^T = \begin{pmatrix} \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix} \quad v_2^T = \begin{pmatrix} \frac{1}{9} & \frac{-2}{9} & \frac{1}{9} \end{pmatrix} \quad v_3^T = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} & \frac{-2}{9} \end{pmatrix}$$

Przykład - metoda rozwinięcia spektralnego

$$P^{h} = \sum_{k} \lambda_{k}^{h} u_{k} v_{k}^{T}$$

$$P^{h} = 1^{h} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{9} & \frac{4}{9} & \frac{4}{9} \end{pmatrix} + (-0.5)^{h} \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{1}{9} & \frac{-2}{9} & \frac{1}{9} \end{pmatrix} + (0.25)^{h} \begin{pmatrix} \frac{1}{9} & \frac{1}{9} & \frac{-2}{9} \end{pmatrix} = \begin{pmatrix} 1 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 4 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 & -8 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 4 & -8 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 1 & 4 & 4 \\ 1 & 4 & 4 \\ 1 & 4 & 4 \end{pmatrix} + (-0.5)^{h} \frac{1}{9} \begin{pmatrix} 4 & -8 & 4 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix} + (0.25)^{h} \frac{1}{9} \begin{pmatrix} 4 & 4 & -8 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix}$$

$$P_h = \sum_{k} \lambda_k^h P_0 u_k v_k^T$$
 Zał: $P_0 = (1,0,0)$

$$P_{h} = \frac{1}{9} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 4 & 4 \\ 1 & 4 & 4 \\ 1 & 4 & 4 \end{pmatrix} + (-0.5)^{h} \frac{1}{9} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 4 & -8 & 4 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix} + (0.25)^{h} \frac{1}{9} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 4 & 4 & -8 \\ 1 & 1 & -2 \\ -2 & -2 & 4 \end{pmatrix} =$$

$$= \frac{1}{9} \begin{pmatrix} 1 & 4 & 4 \end{pmatrix} + (-0.5)^{h} \frac{1}{9} \begin{pmatrix} 4 & -8 & 4 \end{pmatrix} + (0.25)^{h} \frac{1}{9} \begin{pmatrix} 4 & 4 & -8 \end{pmatrix}$$

$$\lim_{h \to \infty} P_h = \lim_{h \to \infty} \left\{ \frac{1}{9} \begin{pmatrix} 1 & 4 & 4 \end{pmatrix} + (-0.5)^h \frac{1}{9} \begin{pmatrix} 4 & -8 & 4 \end{pmatrix} + (0.25)^h \frac{1}{9} \begin{pmatrix} 4 & 4 & -8 \end{pmatrix} \right\} = \left(\frac{1}{9} \quad \frac{4}{9} \quad \frac{4}{9} \right)$$

czyli ten sam stan stacjonarny co poprzednio.

Procesy liczące

Procesy liczące to procesy w których zmienna losowa X(t) jest liczbą zliczonych elementów w czasie t.

- \rightarrow stany są dyskretne X(t)={0,1,2,3,...}
- → jest niemalejący

Najważniejsze rodzaje to:

- procesy Bernoulliego z czasem dyskretnym
- procesy Poissona z czasem ciągłym

Procesy liczące Bernoulliego

- Czas dyskretny
- Stany dyskretne
- Prawdopodobieństwo p pojawienia się elementu w danej chwili nie zmienia się z czasem.
- Liczymy sukcesy w n-elementowej próbie Bernoulliego → X(n) ma rozkład dwumianowy z prawdopodobieństwem p.
- Ma własność Markowa
- Y liczba prób pomiędzy sukcesami, ma rozkład geometryczny
- Próby możemy wiązać z czasem
- Zał: jedna próba trwa Δ sekund $\rightarrow t = n \cdot \Delta \rightarrow n = \frac{t}{\Delta}$
- Czyli X(t) ma rozkład dwumianowy z liczbą prób n i prawdopodobieństwem p $E(X(t)) = n \cdot p = \frac{t}{\Lambda} \cdot p$
- Oczekiwana liczba sukcesów na jednostkę czasu $\lambda = \frac{E(X(t))}{t} = \frac{\frac{L}{\Delta} \cdot p}{t} = \frac{p}{\Lambda}$
- T=Y∆ czas pomiędzy sukcesami

$$E(T) = E(Y\Delta) = \Delta E(Y) = \Delta \cdot \frac{1}{p} = \frac{1}{\lambda} \qquad \text{var}(T) = \text{var}(Y\Delta) = \Delta^2 \text{ var}(Y) = \Delta^2 \frac{1-p}{p^2} = \frac{1-p}{\lambda^2}$$

Przykład: Procesy liczące Bernoulliego

Syt: Zadania przychodzą w tempie 2/min $\rightarrow \lambda$ =2 min⁻¹

Wybrać ∆ tak, aby p=0,1

$$\Delta = \frac{p}{\lambda} = \frac{0.1}{2 \text{ min}^{-1}} = 0.05 \text{ min} = 3 \text{ s}$$

Prawdopodobieństwo więcej niż trzech zadań w ciągu 1 minuty
 1 min = 20∆

$$P(X(n) > 3) = 1 - P(X(n) \le 3) = 1 - P(X(n) = 0) - P(X(n) = 1) - P(X(n) = 2) - P(X(n) = 3) = 1 - {20 \choose 0} p^{0} (1 - p)^{20} - {20 \choose 1} p^{1} (1 - p)^{19} - {20 \choose 2} p^{2} (1 - p)^{18} - {20 \choose 3} p^{3} (1 - p)^{17} = 1 - 0.867 = 0.133$$

Prawdopodobieństwo więcej niż trzydziestu zadań w ciągu 10 minut 10 min = 200∆

$$P(X(n) > 30) = 1 - P(X(n) \le 30) = 1 - P(X(n) = 0) - \dots - P(X(n) = 30) = 0.0067$$

$$P(X(n) > 30) = P(X(n) > 30.5) = P\left(\frac{X(n) - np}{\sqrt{np(1-p)}} > \frac{30.5 - 200 \cdot 0.1}{\sqrt{200 \cdot 0.1 \cdot (1-0.1)}}\right) = P(Z > 2.48) = 1 - P(Z \le 2.48) = 0.0067$$

Dlaczego widzimy różnicę przy zwiększeniu skali?

Przykład: Procesy liczące Bernoulliego

Jaki jest średni czas oczekiwania na pierwsze zdarzenie i jego odchylenie standardowe?

$$E(T) = \frac{1}{\lambda} = \frac{1}{2 \min^{-1}} = 0.5 \text{ min} = 30 \text{ s}$$

$$var(T) = \frac{1-p}{\lambda^2} = \frac{1-0.1}{(2 \min^{-1})^2} = \frac{0.9}{4} \min^2 = 0.225 \min^2 = 0.225 \cdot 60^2 \text{ s}^2 = 810 \text{ s}^2$$

$$\sigma(T) = \sqrt{var(T)} = \sqrt{810 \text{ s}^2} = 28.46 \text{ s}$$

Prawdopodobieństwo, że następne zadanie nie przyjdzie w ciągu 30s

$$P(T > 30 \text{ s}) = P(Y \cdot \Delta > 30 \text{ s}) = P(Y \cdot 3 \text{ s} > 30 \text{ s}) = P(Y > 10) =$$

$$= \sum_{k=11}^{\infty} (1-p)^{k-1} p = \frac{p}{1-p} \sum_{k=11}^{\infty} (1-p)^k = \begin{vmatrix} t = k-10 \\ k = t+10 \end{vmatrix} = \frac{p}{1-p} \sum_{t=1}^{\infty} (1-p)^{t+10} = \frac{p(1-p)^{10}}{1-p} \sum_{t=1}^{\infty} (1-p)^t =$$

$$= \frac{p(1-p)^{10}}{1-p} (1-p) \frac{1}{1-(1-p)} = \frac{p(1-p)^{10}}{1-p} \cdot \frac{1-p}{p} = (1-p)^{10} = (0.9)^{10} = 0.314$$

Równoważne do wystąpienia zera zdarzeń w ciągu 30 s (=10 Δ)

$$P(X(t=10\Delta)=0) = \binom{10}{0} p^{0} (1-p)^{10-0} = 1 \cdot 1 \cdot (0.9)^{10}$$

Poprzedni wykład: Procesy liczące Bernoulliego

Proces liczący

$$\lambda = \frac{E(X(t))}{t} = \frac{p}{\Delta}$$

Proces liczący Bernoulliego z parametrem p: X(t): Y(t)

Procesy liczące Bernoulliego

Macierz przejścia

$$p_{i \to j} \equiv p_{ij} = \begin{cases} p & dla \ j = i + 1 \\ 1 - p & dla \ j = i \\ 0 & poza \ tym \end{cases}$$

- Macierz przejścia nie zmienia się z czasem → jest to jednorodny łańcuch Markowa
- Nie jest regularny, np. $\forall_h : p_{\rightarrow 0}^{(h)} = 0$
- Macierz przejścia po h krokach $p_{i \to j}^{(h)} = P(j-i \text{ sukcesów w } h \text{ próbach}) = \begin{cases} \binom{h}{j-i} p^{j-i} (1-p)^{h-j+i} & dla \ 0 \le j-i \le h \\ 0 & poza tym \end{cases}$

Macierz przejścia

$$P = \begin{pmatrix} 1-p & p & 0 & \cdots \\ 0 & 1-p & p & \ddots \\ 0 & 0 & 1-p & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}$$

jest nieskończona

Procesy liczące Bernoulliego

- Łączenie procesów Bernoulliego
- X proces Bernoulliego definiowany przez prawdopodobieństwo p₁
- Y proces Bernoulliego definiowany przez prawdopodobieństwo p₂
- Z proces połączony

$$P(Z=0) = P(X=0 \cap Y=0) = (1-p_1)(1-p_2) = 1-p_1-p_2+p_1 \cdot p_2$$

$$P(Z=1) = P(X=1 \cup Y=1) = 1-P(X=0 \cap Y=0) = 1-(1-p_1)(1-p_2) = p_1+p_2-p_1 \cdot p_2$$

Procesy liczące Poissona

- Czas ciągły
- Stany dyskretne
- Otrzymujemy przez granicę $\Delta \rightarrow 0$ z procesu Bernoulliego, przy λ =const
- Dwumianowy (n,p) → Poisson (λt)

$$n = \frac{t}{\Delta} \to \infty \ dla \ \Delta \to 0$$
$$p = \lambda \Delta \to 0 \ dla \ \Delta \to 0$$
$$E(X(t)) = np = \frac{t}{\Delta} \lambda \Delta = \lambda t$$

Czas oczekiwania na kolejny sukces (zliczenie)

$$F_T(t) = P(T \le t) = P(Y\Delta \le n\Delta) = P(Y \le n) = 1 - (1 - p)^n = 1 - (1 - \left(\frac{\lambda t}{n}\right))^n \to 1 - e^{-\lambda t} \ dla \ n \to \infty$$
czyli T ma rozkład wykładniczy z parametrem λ

(rozkład wykładniczy ma własność braku pamięci – obliczając prawdopodobieństwo przyjścia kolejnego zdarzenia nie musimy wiedzieć ile minęło od poprzedniego zdarzenia).

T_k – czas k-tego sukcesu ma rozkład Gamma(k,λ)

$$f_{T_k}(t) = \frac{1}{\Gamma(k)} \lambda^k t^{k-1} e^{-\lambda t} \quad x \in (0, +\infty)$$

Przykład: Procesy liczące Poissona

Liczba polubień na stronie wzrasta z λ=7 min⁻¹ i jest procesem Poissona.

Po jakim czasie będziemy mieć 10000 polubień ?

T₁₀₀₀₀ ma rozkład Gamma (10000,7)

$$E(T_k) = \frac{k}{\lambda} = \frac{10000}{7 \,\text{min}^{-1}} = 23 \text{h} \, 48 \, \text{min} \, 34 \, \text{s}$$

$$\sigma(T_k) = \frac{\sqrt{k}}{\lambda} = \frac{100}{7 \,\text{min}^{-1}} = 14 \,\text{min} \, 17 \,\text{s}$$

Jakie jest prawdopodobieństwo, że uzbieramy 10000 polubień w czasie 24h (=1440 min) ?

$$P(T_k \le 1440) = P\left(\frac{T_k - 1428.6}{14.3} \le \frac{1440 - 1428.6}{14.3}\right) = P(Z \le 0.8) = 0.79$$

Procesy liczące Poissona

Inne wyprowadzenie Poissona

$$\begin{split} &P\left(X_{t+\Delta} - X_{t} = 1\right) = \lambda \Delta + O(\Delta) \\ &P\left(X_{t+\Delta} - X_{t} > 1\right) = O(\Delta) \\ &P\left(X_{t+\Delta} - X_{t} = 0\right) = 1 - \left(\lambda \Delta + O(\Delta)\right) \\ &\rightarrow \\ &P\left(X_{t+\Delta} = n\right) = P\left(X_{t} = n\right) \left(1 - \lambda \Delta + O(\Delta)\right) + P\left(X_{t} = n - 1\right) \left(\lambda \Delta + O(\Delta)\right) + O(\Delta) \\ &P\left(X_{t+\Delta} = 0\right) = P\left(X_{t} = 0\right) \left(1 - \lambda \Delta + O(\Delta)\right) + O(\Delta) \\ &\rightarrow \\ &\left\{\frac{dP(X_{t} = n)}{dt} = -\lambda P\left(X_{t} = n\right) + \lambda P\left(X_{t} = n - 1\right) \\ &\frac{dP(X_{t} = 0)}{dt} = -\lambda P\left(X_{t} = 0\right) \\ &\xrightarrow{X_{0} = 0} \\ &\rightarrow \\ &P\left(X_{t} = n\right) = \frac{(\lambda t)^{n}}{st} e^{-\lambda t} \end{split}$$

Procesy liczące Poissona

- Łączenie procesów Poissona
- X_1 proces Poissona definiowany przez częstotliwość λ_1
- X₂ proces Poissona definiowany przez częstotliwość λ₂

. . .

- X_N proces Poissona definiowany przez częstotliwość λ_N
- \rightarrow X=X₁+X₂+...+X_N będzie procesem Poissona z λ_1 + λ_2 +...+ λ_N
- Dekompozycja procesu Poissona o częstotliwości λ

Zał: K wyjściowych procesów,

Dla każdego nowego sygnału wybieramy proces wyjściowy z prawdopodobieństwem p_k

Będzie to proces Poissona o częstotliwości $\lambda_k = \lambda^* p_k$

Przykład: Procesy liczące Poissona

Syt: Zadania przychodzą w tempie 2/min $\rightarrow \lambda$ =2 min⁻¹

Prawdopodobieństwo więcej niż trzech zadań w ciągu 1 minuty

$$P(X(t=1) > 3) = 1 - \underbrace{P(X(t=1) \le 3)}_{\text{kwantyl Poissona } \lambda' = \lambda t = 2 \cdot 1 = 2} = 1 - 0.8571 = 0.143$$

Prawdopodobieństwo więcej niż trzydziestu zadań w ciągu 10 minut

$$P(X(t=10) > 30) = 1 - \underbrace{P(X(t=10) \le 30)}_{kwantyl\ Poissona} = 1 - 0.987 = 0.013$$

Jaki jest średni czas oczekiwania na pierwsze zdarzenie i jego odchylenie standardowe?

$$E(T) = \frac{1}{\lambda} = \frac{1}{2} \min = 30s$$
 $var(T) = \frac{1}{\lambda^2} = \frac{1}{4} \min^2 = 900s^2$ $\sigma(T) = \sqrt{900s^2} = 30s$

Prawdopodobieństwo, że następne zadanie nie przyjdzie w ciągu 30s

$$P(T > 30s) = 1 - \underbrace{F_T(t = 30s)}_{\text{kwantyl wyklad. } \lambda' = \lambda t = 2.0.5 = 1} = 1 - 1 + e^{-\lambda'} = e^{-1} = 0.368$$

Proszę porównać te wyniki z analogicznymi dla procesu Bernoulliego.

Wstęp:

Syt: dane są dwa procesy Poissona, o częstotliwościach λ_1 oraz λ_2

Jakie jest prawdopodobieństwo, że w pierwszym procesie będzie co najmniej n zdarzeń za nim w drugim procesie pojawi się m zdarzeń?

Odp:

Rozważmy proces łączony.

W n+m-1 elementowej próbie Bernoulliego musi pojawić się n lub więcej sukcesów, osiąganych z prawdopodobieństwem $\lambda_1/(\lambda_1+\lambda_2)$

$$P = \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n+m-1-k}$$

Przykład: autostopowicze A i B stoją w kolejce, rezygnując z niej z częstościami odpowiednio λ_A i λ_B . Samochody zabierają autostopowiczów z częstością λ_C , po jednej osobie. Początkowo A stoi w kolejce przed B.

Jakie jest prawdopodobieństwo, że A odjedzie?

Jakie jest prawdopodobieństwo, że B odjedzie?

Ozn:

zdarzenie A – autostopowicz A zrezygnował z kolejki

zdarzenie B – autostopowicz B zrezygnował z kolejki

Zdarzenie C – przyjechał samochód

Jakie jest prawdopodobieństwo, że A odjedzie ?

A pojedzie jeśli zajdzie zdarzenie C przed zdarzeniem A; zdarzenie B bez wpływu.

$$P = \sum_{k=n}^{n+m-1} \binom{n+m-1}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n+m-1-k}$$

n=1, m=1, n+m-1=1 \rightarrow k={1} \rightarrow

$$P(A \ odjedzie) = \sum_{k=1}^{1} {1 \choose k} \left(\frac{\lambda_C}{\lambda_C + \lambda_A}\right)^k \left(\frac{\lambda_A}{\lambda_C + \lambda_A}\right)^{1-k} = {1 \choose 1} \left(\frac{\lambda_C}{\lambda_C + \lambda_A}\right)^1 \left(\frac{\lambda_A}{\lambda_C + \lambda_A}\right)^{1-1} = \frac{\lambda_C}{\lambda_A + \lambda_C}$$

 $P = \sum_{k=n}^{n+m-1} {n+m-1 \choose k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n+m-1-k}$

Jakie jest prawdopodobieństwo, że B odjedzie ?

Zdarzenie K – co najmniej 2C przed B np. CCB, CCCB, ...

Zdarzenie L – co najmniej 1A przed B lub C

Zdarzenie M – co najmniej 1C przed B

np. CB, CCB, CCCB, ... czyli K zawiera się w M

$$B \ odjedzie = K \cup (L \cap M)$$

$$P(B \ odjedzie) = P(K \cup (L \cap M)) = P(K) + P(L \cap M) - P(K \cap L \cap M) =$$

$$= P(K) + P(L \cap M) - P(L \cap (K \cap M)) = P(K) + P(L \cap M) - P(L \cap K)$$

$$P(K): n = 2, m = 1, n + m - 1 = 2 \rightarrow k = \{2\}$$

$$P(K) = \sum_{k=2}^{2} {2 \choose k} \left(\frac{\lambda_C}{\lambda_C + \lambda_B} \right)^k \left(\frac{\lambda_B}{\lambda_C + \lambda_B} \right)^{2-k} = {2 \choose 2} \left(\frac{\lambda_C}{\lambda_C + \lambda_B} \right)^2 \left(\frac{\lambda_B}{\lambda_C + \lambda_B} \right)^{2-2} = \left(\frac{\lambda_C}{\lambda_B + \lambda_C} \right)^2$$

$$P(L \cap M) = P(L) \cdot P(M)$$

$$P(L): \underbrace{n=1, m=1, n+m-1}_{\lambda_A} = 1 \rightarrow k = \{1\} \rightarrow P(L) = \frac{\lambda_A}{\lambda_A + \lambda_B + \lambda_C}$$

$$P(M): \underbrace{n=1, m=1, n+m-1}_{\lambda_C} = 1 \longrightarrow k = \{1\} \longrightarrow P(M) = \frac{\lambda_C}{\lambda_B + \lambda_C}$$

$$P(L \cap M) = \frac{\lambda_A}{\lambda_A + \lambda_B + \lambda_C} \cdot \frac{\lambda_C}{\lambda_B + \lambda_C}$$

$$P(L \cap K) = P(L) \cdot P(K) = \frac{\lambda_A}{\lambda_A + \lambda_B + \lambda_C} \cdot \left(\frac{\lambda_C}{\lambda_B + \lambda_C}\right)^2$$
Exact the equation is
$$P(B \ odjedzie) = \left(\frac{\lambda_C}{\lambda_B + \lambda_C}\right)^2 + \frac{\lambda_A}{\lambda_A + \lambda_B + \lambda_C} \cdot \frac{\lambda_C}{\lambda_B + \lambda_C} - \frac{\lambda_A}{\lambda_A + \lambda_B + \lambda_C} \cdot \left(\frac{\lambda_C}{\lambda_B + \lambda_C}\right)^2 = \frac{\lambda_C^2 \lambda_A + \lambda_C^2 \lambda_B + \lambda_C^3 + \lambda_A \lambda_C \lambda_B + \lambda_C^2 \lambda_A - \lambda_C^2 \lambda_A}{\left(\lambda_B + \lambda_C\right)^2 \left(\lambda_A + \lambda_B + \lambda_C\right)} = \frac{\lambda_A \lambda_C \left(\lambda_C + \lambda_B\right) + \lambda_C^2 \left(\lambda_B + \lambda_C\right)}{\left(\lambda_B + \lambda_C\right)^2 \left(\lambda_A + \lambda_B + \lambda_C\right)} = \frac{\lambda_C \left(\lambda_A + \lambda_C\right)}{\left(\lambda_B + \lambda_C\right)^2 \left(\lambda_A + \lambda_B + \lambda_C\right)} = \frac{\lambda_C \left(\lambda_A + \lambda_C\right)}{\left(\lambda_B + \lambda_C\right)^2 \left(\lambda_A + \lambda_B + \lambda_C\right)}$$

Symulacje numeryczne procesów liczących

Możliwe pytania:

- czas osiągnięcia wybranego stanu
- czas przebywania w danym stanie
- czas przebywania w danej grupie stanów
- porównywanie dwóch procesów (lub realizacji)
- rozkład prawdopodobieństwa stanów w określonej chwili t

Procesy z czasem dyskretnym:

Zakładamy p – prawdopodobieństwo przyjścia nowego zdarzenia.

Idziemy co krok czasowy Δ , w każdym sprawdzamy (losujemy) czy napłynęło zdarzenie. Jeśli tak to zmieniamy stan procesu. Trzeba rozsądnie dobrać Δ !

Procesy z czasem ciągłym:

Zakładamy λ – częstotliwość przychodzenia nowych zdarzeń.

Symulację opieramy o losowanie czasów przyjścia kolejnych zdarzeń (rozkład wykładniczy).

Znając numer zdarzenia i czas przyjścia zdarzenia można wyliczyć estymatory wszystkich charakterystyk.

Niech zmienna losowa u ma rozkład jednorodny na (0,1). Wtedy Y=-ln(u)/ λ ma rozkład wykładniczy o parametrze λ . (z metody odwracania dystrybuanty).

System kolejkowy to zespół obiektów złożony z jednego lub więcej punktów obsługi (serwerów), przeznaczonych do wykonania określonych zadań, strumieni napływających zadań (klientów) i kolejek tych zadań czekających na wykonanie.

Przykłady:

- procesor wykonujący zadania
- serwer obsługujący klientów w sieci
- drukarka
- bramki na autostradzie
- windy w bloku
- kontrola lotów na lotnisku
- działanie lotniska (obsługa pasażerów i samolotów) proces wieloetapowy, złożony
- komunikacja miejska
- telewizja
- zarządzanie projektami (inżynieria oprogramowania)

System kolejkowy to zespół obiektów złożony z jednego lub więcej punktów obsługi (serwerów), przeznaczonych do wykonania określonych zadań, strumieni napływających zadań (klientów) i kolejek tych zadań czekających na wykonanie.

Z reguły można wyróżnić etapy:

- przyjście zdarzenia
- oczekiwanie w kolejce
- skierowanie do wykonania
- wykonanie (obsługa)

przyjście zdarzenia

Napływ zdarzeń łączymy z procesem liczącym A(t), w którym zliczamy zadania, które napłynęły do chwili *t*.

→ stacjonarny system kolejkowy: parametry A(t) nie zmieniają się z czasem Tempo przybywania zadań (arrival rate)

$$\lambda_A \equiv \frac{E(A(t))}{t}$$

Czyli λ_A to oczekiwana liczba nadchodzących zadań na jednostkę czasu. Oczekiwany czas pomiędzy przychodzeniem kolejnych zadań

$$\mu_A = \frac{1}{\lambda_A}$$

oczekiwanie w kolejce i skierowanie do wykonania

Możliwe różne schematy:

FIFO (first in – first out) = FCFS (first come – first serve)

LIFO (last in – first out) - stos

Jeśli wiele serwerów jest wolnych możemy je losować lub wybierać według jakieś reguły (np. najszybszy serwer, najmniej dotychczas używany)

Jeśli wszystkie są zajęte → zadanie trafia do kolejki

Kolejka: może mieć bufor ograniczający liczbę czekających zadań, jeśli jest pełny to zadanie nie wchodzi do kolejki i znika z systemu.

Można tworzyć kolejki priorytetowe

Można nakładać różne ograniczenia, np. przerwy w pracy serwerów, rezygnacja zadań z oczekiwania na wykonanie (gdy przewidywany czas czekania lub czas już spędzony w kolejce jest długi)

→ trudno badać analitycznie, łatwiej symulować metodami Monte Carlo.

wykonanie i usunięcie z systemu

Średni czas obsługi $\mu_{\rm S}$ \rightarrow średnie tempo obsługi (service rate) $\lambda_{\rm S} = \frac{1}{\mu_{\rm S}}$

Różne serwery mogą mieć różne szybkości, możliwości (np. dostępną pamięć), co może wpływać na rozdzielanie zadań

Usuwanie z systemu może być połączone np. z zapisem danych (wyników) na dysk, wykonywanych przez dodatkowy wyspecjalizowany serwer.

Używane oznaczenia

Wydajność (obciążenie) $r = \frac{\lambda_A}{\lambda_S} = \frac{\mu_S}{\mu_A}$

$$r = \frac{\lambda_A}{\lambda_S} = \frac{\mu_S}{\mu_A}$$

- $X_{S}(t)$ liczba zadań obsługiwanych w chwili t (S service)
- $X_W(t)$ liczba zadań czekających w kolejce w chwili t (W waiting)
- X(t)=X_S(t)+X_W(t) całkowita liczba zadań w systemie w chwili t
- S_k czas obsługi k-tego zadania
- W_k czas spędzony w kolejce przez k-te zadanie
- $R_k = S_k + W_k$ całkowity czas spędzony w systemie przez k-te zadanie (R response)

Stacjonarny system kolejkowy:

rozkłady prawdopodobieństwa S_k , W_k , R_k są niezależne od k

X(t) nazywamy procesem kolejkowym.

Nie jest proces liczący – zadania pojawiają się i znikają – mówimy o procesie narodzin i śmierci (birth-death process).

Systemy kolejkowe – prawo Little'a

Prawo Little'a 1954/1961 (Cobham / Little) $E(X) = \lambda_A \cdot E(R)$

$$E(X) = \lambda_A \cdot E(R)$$

Dotyczy także osobno czasów oczekiwania i czasów obsługi:

$$E(X_W) = \lambda_A \cdot E(W)$$

$$E(X_S) = \lambda_A \cdot E(S) = \lambda_A \cdot \mu_S = \lambda_A \cdot \frac{1}{\lambda_S} = r$$

 $E(X_S) = \lambda_A \cdot E(S) = \lambda_A \cdot \mu_S = \lambda_A \cdot \frac{1}{\lambda_s} = r$ czyli wydajność r to oczekiwana liczba zadań bedacych w obsłudze w pewnej chwili czasu będących w obsłudze w pewnej chwili czasu

Dowód (podręcznik M.Baron)

Przykład:

Wchodzimy do banku o 10:00, jest tam już 8 klientów. Po jakim czasie wyjdziemy z banku?

Mierzymy za ile minut przyjdzie następny klient (np. 4 min).

Przyjmujemy E(X)=8 oraz μ_{Δ} =4 min i stąd

$$E(X) = \lambda_{\Lambda} \cdot E(R)$$

$$E(R) = \frac{E(X)}{\lambda_{\Delta}} = E(X) \cdot \mu_{A} = 8 \cdot 4 \min = 24 \min$$

Założyliśmy, że bank ma sprawny system kolejkowy (nie tworzą się zatory) i zoptymalizowany (nie ma za dużo punktów obsługi)

System kolejkowy Bernoulliego z pojedynczym serwerem

- Dyskretny czas
- Jeden serwer
- Nieskończona pojemność kolejki
- Przyjście zadania w kolejnym okienku czasowym (OC) zachodzi z prawdopodobieństwem p_A (i oczywiście brak zadania z 1-p_A)
- Prawdopodobieństwo zakończenia zadania, które jest wykonywane wynosi p_S w każdym kolejnym OC
- Czasy przybycia i obsługi (wykonania) są niezależne
- Różne zadania przychodzą do systemu w sposób od siebie niezależny (jak w próbie Bernoulliego)
- p_A oraz p_S nie zmieniają się z czasem \rightarrow jednorodne łańcuchy Markowa

Z procesów Bernoulliego:

- Liczba OC pomiędzy zdarzeniami ma rozkład geometryczny z p_A
- Liczba OC potrzebnych do wykonania zadania ma rozkład geometryczny z p_s
- Obsługa każdego zadania trwa co najmniej jedno OC $p_{\scriptscriptstyle A} = \lambda_{\scriptscriptstyle A} \cdot \Delta$

$$p_S = \lambda_S \cdot \Delta$$

System kolejkowy Bernoulliego z pojedynczym serwerem

Stany procesu kolejkowego opisujemy liczbą zadań w systemie

Proces kolejkowy Bernoulliego z pojedynczym serwerem jest nieregularnym łańcuchem Markowa – zawsze będą zera w macierzy przejścia bo przejście $0 \rightarrow (n+1)$ jest niemożliwe w n krokach. Można pokazać, że dla $\lambda_S > \lambda_A$ istnieje stan stacjonarny.

System kolejkowy Bernoulliego z pojedynczym serwerem

Macierz przejścia

$$p_{00} = P(brak\ nowych\ zadań) = 1 - p_A$$

$$p_{01} = P(jedno\ nowe\ zadanie) = p_A$$

$$p_{i,i-1} = P(brak \ nowego \ zadania, jedno \ wykonano) = (1 - p_A) p_S$$

$$p_{i,i} = P(brak\ nowego\ zadania,\ nic\ nie\ wykonano) + P(jedno\ nowe\ zadanie,\ jedno\ wykonano) =$$

$$= (1 - p_A)(1 - p_S) + p_A p_S$$

 $p_{i,i+1} = P(jedno\ nowe\ zadanie,\ nic\ nie\ wykonano) = p_A(1-p_S)$

Przykład

Syt: Drukarka

→ jeden serwer, jedno zadanie obsługiwane, pozostałe stoją w kolejce.

Zał: średnio przybywa 20 zadań/h, drukowanie trwa średni 40s. W pewnej chwili trwa drukowanie zadania, a jedno zadanie stoi w kolejce.

- Jakie jest prawdopodobieństwo, że drukarka będzie wolna za 2 min?
- Jakiej kolejki oczekujemy za 2 min?

$$\rightarrow \lambda_{A} = 20/60 = 1/3 \text{ min}^{-1}, \quad \mu_{S} = 40s = 2/3 \text{ min} \\ \rightarrow \lambda_{S} = 1/\mu_{S} = 3/2 \text{ min}^{-1}$$

Zał: Δ =20s=1/3 min.

$$p_{A} = \lambda_{A} \cdot \Delta = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$

$$p_{S} = \lambda_{S} \cdot \Delta = \frac{3}{2} \cdot \frac{1}{3} = \frac{1}{2}$$

$$p_{00} = 1 - p_{A} = 1 - \frac{1}{9} = \frac{8}{9}$$

$$p_{01} = p_{A} = \frac{1}{9}$$

$$dla \ i \ge 1$$
:
$$p_{01} = (1 - p_{01}) p_{02} = (1 - \frac{1}{2}) \cdot \frac{1}{2} = \frac{4}{9}$$

$$\begin{split} p_{i,i-1} &= (1 - p_A) p_S = \left(1 - \frac{1}{9}\right) \cdot \frac{1}{2} = \frac{4}{9} \\ p_{i,i} &= (1 - p_A)(1 - p_S) + p_A p_S = \left(1 - \frac{1}{9}\right)\left(1 - \frac{1}{2}\right) + \frac{1}{9} \cdot \frac{1}{2} = \frac{1}{2} \\ p_{i,i+1} &= p_A(1 - p_S) = \frac{1}{9} \cdot \left(1 - \frac{1}{2}\right) = \frac{1}{18} \end{split}$$

Jaki jest stan początkowy?

Przykład

Stan początkowy: $P_0 = (0, 0, 1, 0, 0, ...)_{\infty}$

Jeżeli interesuje nas co się dzieje za 2 min (=6 Δ) to liczbę stanów możemy ograniczyć do 3+6=9) $\rightarrow P_0 = (0,0,1,0,0,\ldots)_{\mathbf{Q}}$

- $= (0.644, 0.250, 0.080, 0.022, 0.004, \approx 0, \approx 0, \approx 0, \approx 0)$
- Jakie jest prawdopodobieństwo, że drukarka będzie wolna za 2 min ? P₆(0)=0.644

Przykład

$$P_6 = (0.644, 0.250, 0.080, 0.022, 0.004, \approx 0, \approx 0, \approx 0, \approx 0)$$

Jakiej kolejki oczekujemy za 2 min?

$$X_W = X - X_S$$

$$E(X_W)=E(X)-E(X_S)$$

$$E(X) = \sum_{k=0}^{8} P_6(X = k) \cdot k = 0.0.644 + 1.0.250 + \dots + 8.0 = 0.494$$

Drukarka drukuje gdy ma 1 lub więcej zadań:

$$P(drukuje)=1-P_6(X=0)=1-0.644=0.356$$

$$E(X_S) = \sum_{k=0}^{1} P_6(stan \ drukarki) \cdot k = 0.644 \cdot 0 + 0.356 \cdot 1 = 0.356$$

$$E(X_W) = E(X) - E(X_S) = 0.494 - 0.356 = 0.138$$

Jak wybór ∆ wpływa na wyniki ?

$$\Delta$$
=6s=0.1min \rightarrow T=20, N=21 $P_{20}^{\Delta=6s} = (0.609, 0.239,...)$
 Δ =1s=0.016(6)min \rightarrow T=120, N=121 $P_{120}^{\Delta=1s} = (0.599, 0.235,...)$
 Δ =0.5s=0.0.0083(3)min \rightarrow T=240, N=241 $P_{240}^{\Delta=0.5s} = (0.598, 0.234,...)$

$$\Delta$$
=0.1s=0.0016(6)min \rightarrow T=1200, N=1201

$$P_{1200}^{\Delta=0.1s} = (0.5975, 0.2341, 0.1142, 0.0413, 0.0157, ...)$$

Przykład: System kolejkowy Bernoulliego z pojedynczym serwerem i ograniczoną pojemnością - telefon

Telefon pozwala równocześnie na jedno połączenie i przetrzymuje drugie na linii. Pozostałe osoby nie są łączone.

$$\rightarrow$$
 C=2

Zał: średnio 10 rozmów na godzinę, jedna trwa średnio 4 min, Δ =1 min.

$$\lambda_{A} = \frac{10}{1h} = \frac{10}{60 \min} = \frac{1}{6} \min^{-1} \quad \to \quad p_{A} = \lambda_{A} \cdot \Delta = \frac{1}{6} \min^{-1} \cdot 1 \min = \frac{1}{6}$$

$$\lambda_{S} = \frac{1}{4 \min} = \frac{1}{4} \min^{-1} \quad \to \quad p_{S} = \lambda_{S} \cdot \Delta = \frac{1}{4} \min^{-1} \cdot 1 \min = \frac{1}{4}$$

Niech stan X oznacza liczbę połączeń w systemie X={0,1,2}

$$P = \begin{pmatrix} 1 - p_A & p_A & 0 \\ (1 - p_A) p_S & (1 - p_A)(1 - p_S) + p_A p_S & p_A(1 - p_S) \\ 0 & (1 - p_A) p_S & 1 - (1 - p_A) p_S \end{pmatrix} = \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\ \frac{5}{24} & \frac{2}{3} & \frac{1}{8} \\ 0 & \frac{5}{24} & \frac{19}{24} \end{pmatrix}$$

Przykład: System kolejkowy Bernoulliego z pojedynczym serwerem i ograniczoną pojemnością - telefon

$$\begin{split} &\text{Stan stacjonarny }\Pi\text{=}\Pi\text{P} \\ &\left(\Pi_{0} \quad \Pi_{1} \quad \Pi_{2}\right) = \left(\Pi_{0} \quad \Pi_{1} \quad \Pi_{2}\right) \begin{pmatrix} \frac{5}{6} & \frac{1}{6} & 0 \\ \frac{5}{24} & \frac{2}{3} & \frac{1}{8} \\ 0 & \frac{5}{24} & \frac{19}{24} \end{pmatrix} \\ &\rightarrow \begin{cases} \Pi_{0} = \frac{5}{6} \Pi_{0} + \frac{5}{24} \Pi_{1} \\ \Pi_{1} = \frac{1}{6} \Pi_{0} + \frac{2}{3} \Pi_{1} + \frac{5}{24} \Pi_{2} \\ \Pi_{2} = \frac{1}{8} \Pi_{1} + \frac{19}{24} \Pi_{2} \end{cases} \quad \rightarrow \quad \begin{cases} \frac{5}{24} \Pi_{1} = \frac{1}{6} \Pi_{0} \\ \frac{1}{3} \Pi_{1} = \frac{1}{6} \Pi_{0} + \frac{5}{24} \Pi_{2} \\ \frac{3}{24} \Pi_{1} = \frac{5}{24} \Pi_{2} \end{cases} \quad \text{(układ nadokreślony)} \end{split}$$

Korzystając z warunku normalizacji $\Pi_0+\Pi_1+\Pi_2=1$:

$$\begin{split} &\Pi_0 + \Pi_1 + \Pi_2 = 1 \\ &\frac{30}{24} \Pi_1 + \Pi_1 + \frac{3}{5} \Pi_1 = 1 \\ &\frac{5}{4} \Pi_1 + \Pi_1 + \frac{3}{5} \Pi_1 = 1 \end{split}$$

$$\frac{25+20+12}{20}\Pi_{1} = 1 \rightarrow \Pi_{1} = \frac{20}{57} = 0.351 \rightarrow \begin{cases} \Pi_{0} = \frac{25}{57} = 0.439 \\ \Pi_{2} = \frac{12}{57} = 0.210 \end{cases}$$

czyli stan stacjonarny Π =(0.439, 0.351, 0.210)

System kolejkowy z czasem ciągłym

```
Notacja Kendalla: A/S/n/C/N/D
```

```
A – opisuje proces przychodzenia zadań
          M – czasy przyjścia pomiędzy zadaniami są wykładnicze
                    (memoryless, Markov)
          G – dowolne (general)
          D – deterministyczny (nielosowy) (deterministic, degenerated)
          inne (M<sup>X</sup>, MMPP – klastry,...)
S – opisuje proces obsługi zadań
          wartości jak wyżej
n – liczba serwerów
C – pojemność systemu (pomijana gdy C=∞)
          czasami podaje się tylko pojemność kolejki
N – liczba źródeł (pomijana gdy N= ∞)
D – rodzaj obsługi (queue discipline) (pomijana gdy FIFO)
          PS - współdzielenie procesora (procesor sharing)
          PQ – istnieje kolejka priorytetowa (priority queue)
          SIRO – losowo (service in random order)
```

System kolejkowy M/M/1

- → system kolejkowy z pojedynczym serwerem,
- → Pojemność jest ∞
- \rightarrow napływ zadań dany przez rozkład wykładniczy z parametrem λ_A (proces liczący Poissona)
- \rightarrow obsługa zadań dana przez rozkład wykładniczy z parametrem λ_{S}
- → proces napływu zadań i proces obsługi są od siebie niezależne

Prawdopodobieństw przejść szukamy jako granicy systemu Bernoulliego dla małych Δ (zaniedbujemy wyrazu rzędu Δ^2 i wyższe)

$$\begin{split} p_{0,0} &= 1 - p_A = 1 - \lambda_A \Delta \\ p_{0,1} &= p_A = \lambda_A \Delta \\ p_{i,i-1} &= \left(1 - p_A\right) p_S = \left(1 - \lambda_A \Delta\right) \lambda_S \Delta = \lambda_S \Delta - \lambda_A \lambda_S \Delta^2 \approx \lambda_S \Delta \\ p_{i,i} &= \left(1 - p_A\right) \left(1 - p_S\right) + p_A p_S = \left(1 - \lambda_A \Delta\right) \left(1 - \lambda_S \Delta\right) + \lambda_A \lambda_S \Delta^2 \approx 1 - \lambda_A \Delta - \lambda_S \Delta \\ p_{i,i+1} &= p_A \left(1 - p_S\right) = \lambda_A \Delta \left(1 - \lambda_S \Delta\right) = \lambda_A \Delta - \lambda_A \lambda_S \Delta^2 \approx \lambda_A \Delta \end{split}$$

System kolejkowy M/M/1

$$\tilde{P} = \begin{pmatrix} 1 - \lambda_A \Delta & \lambda_A \Delta & 0 & 0 & \dots \\ \lambda_S \Delta & 1 - \lambda_A \Delta - \lambda_S \Delta & \lambda_A \Delta & 0 & \dots \\ 0 & \lambda_S \Delta & 1 - \lambda_A \Delta - \lambda_S \Delta & \lambda_A \Delta & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Czy to jest macierz przejścia?

System kolejkowy M/M/1 – stan stacjonarny
$$\begin{cases} \Pi P = \Pi \\ \sum_{i} \Pi_{i} = 1 \end{cases} \rightarrow (\Pi_{0} \quad \Pi_{1} \quad ...) \tilde{P} = (\Pi_{0} \quad \Pi_{1} \quad ...) \begin{pmatrix} 1 - \lambda_{A} \Delta & \lambda_{A} \Delta & 0 & 0 & ... \\ \lambda_{S} \Delta & 1 - \lambda_{A} \Delta - \lambda_{S} \Delta & \lambda_{A} \Delta & 0 & ... \\ 0 & \lambda_{S} \Delta & 1 - \lambda_{A} \Delta - \lambda_{S} \Delta & \lambda_{A} \Delta & \ddots \\ \vdots & & \ddots \end{pmatrix} = (\Pi_{0} \quad \Pi_{1} \quad ...)$$

Obliczamy dla pierwszej składowej

$$\Pi_{0} \left(1 - \lambda_{A} \Delta \right) + \Pi_{1} \lambda_{S} \Delta = \Pi_{0}$$

$$\Pi_{0} - \Pi_{0} \lambda_{A} \Delta + \Pi_{1} \lambda_{S} \Delta = \Pi_{0}$$

$$\Pi_{1} \lambda_{S} \Delta = \Pi_{0} \lambda_{A} \Delta \quad /: \Delta$$

$$\Pi_{1} \lambda_{S} = \Pi_{0} \lambda_{A} \quad /: \lambda_{S}$$

$$\Pi_{1} = \Pi_{0} \frac{\lambda_{A}}{\lambda_{S}} = r \Pi_{0}$$
Obliczamy dla drugiej składowej
$$\Pi_{0} \lambda_{A} \Delta + \Pi_{1} \left(1 - \lambda_{A} \Delta - \lambda_{S} \Delta \right) + \Pi_{0} \lambda_{S} \Delta = 0$$

$\Pi_0 \lambda_A \Delta + \Pi_1 (1 - \lambda_A \Delta - \lambda_S \Delta) + \Pi_2 \lambda_S \Delta = \Pi_1$

$$\Pi_0 \lambda_A - \Pi_1 \lambda_A - \Pi_1 \lambda_S + \Pi_2 \lambda_S = 0$$

$$-\Pi_1 \lambda_A + \Pi_2 \lambda_S = 0$$

$$\Pi_2 = \Pi_1 \frac{\lambda_A}{\lambda_S} = r \Pi_1 \quad -$$

dla kolejnych składowych:

$$\begin{vmatrix} \Pi_{i-2}\lambda_A\Delta + \Pi_{i-1}\left(1 - \lambda_A\Delta - \lambda_S\Delta\right) + \Pi_i\lambda_S\Delta = \Pi_{i-1} \\ \Pi_{i-2}\lambda_A - \Pi_{i-1}\lambda_A - \Pi_{i-1}\lambda_S + \Pi_i\lambda_S = 0 \\ -\Pi_{i-1}\lambda_A + \Pi_i\lambda_S = 0 \\ \Pi_i = \Pi_{i-1}\frac{\lambda_A}{\lambda_S} = r\Pi_{i-1}$$

Zatem dla i>0:

$$\begin{split} &\Pi_i = r\Pi_{i-1} \\ &\Pi_i = r\Pi_{i-1} = r^2\Pi_{i-2} = \ldots = r^i\Pi_0 \end{split}$$

Normalizacja: $\sum_{i=0}^{\infty} \Pi_i = 1$

$$\sum_{i=0}^{\infty} \Pi_{i} = \sum_{i=0}^{\infty} r^{i} \Pi_{0} = \Pi_{0} \sum_{i=0}^{\infty} r^{i} = \dots dla |r| < 1 \dots = \Pi_{0} \frac{1}{1-r}$$

$$\Pi_0 \frac{1}{1-r} = 1 \rightarrow \Pi_0 = 1-r$$

$$\Pi_1 = r\Pi_0 = r(1-r)$$

$$\Pi_2 = r\Pi_1 = r^2(1-r)$$

:

$$\Pi_n = r\Pi_{n-1} = r^n(1-r)$$

- \rightarrow P(serwer nie ma zadań)= Π_0 =1-r
- → P(serwer pracuje)=1- Π_0 =1-(1-r)=r (obciążenie)

- X(t) w stanie stacjonarnym ma przesunięty rozkład geometryczny
- Y=X+1 ma zwykły rozkład geometryczny z parametrem p=1-r Spr:

$$P(Y = y) = P(X + 1 = y) = P(X = y - 1) \equiv \prod_{y-1} = r^{y-1} (1 - r) = (1 - p)^{y-1} p$$

Oczekiwana liczba zadań w systemie

$$E(X) = E(Y-1) = E(Y) - 1 = \frac{1}{p} - 1 = \frac{1}{1-r} - 1 = \frac{1-(1-r)}{1-r} = \frac{r}{1-r}$$

$$\operatorname{var}(X) = \operatorname{var}(Y-1) = \operatorname{var}(Y) = \frac{1-p}{p^2} = \frac{1-(1-r)}{(1-r)^2} = \frac{r}{(1-r)^2} \longrightarrow \sigma(X) = \sqrt{\frac{r}{(1-r)^2}} = \frac{\sqrt{r}}{1-r}$$

Oczekiwana liczba obsługiwanych zadań

$$X_S = \{0,1\}$$
 $P(X_S = 0) = \Pi_0 = 1 - r$ $P(X_S = 1) = \Pi_1 + \Pi_2 + ... = 1 - \Pi_0 = 1 - (1 - r) = r$ $E(X_S) = 0^*(1 - r) + 1^*r = r$

Oczekiwana liczba zadań w kolejce

$$E(X_W) = E(X - X_S) = E(X) - E(X_S) = \frac{r}{1-r} - r = \frac{r-r(1-r)}{1-r} = \frac{r^2}{1-r}$$

- Oczekiwany czas obsługi E(S)=1/λ_S
- Oczekiwany czas spędzony w kolejce

Zał: nowe zadanie zastaje X zadań w systemie

$$W = S_1 + S_2 + \dots + S_X$$

$$E(W) = E(S_1 + S_2 + \dots + S_X) = E(S) \cdot E(X) = \mu_S \frac{r}{1 - r} = \frac{1}{\lambda_S} \cdot \frac{r}{1 - r} = \frac{r}{\lambda_S (1 - r)}$$

Oczekiwany czas spędzony w systemie

$$E(R) = E(W+S) = E(W) + E(S) = \frac{r}{\lambda_S(1-r)} + \mu_S = \frac{r}{\lambda_S(1-r)} + \frac{1}{\lambda_S} = \frac{r+(1-r)}{\lambda_S(1-r)} = \frac{1}{\lambda_S(1-r)}$$

Nie zależy od dyscypliny wykonywania

Prawo Little'a

$$\lambda_{A} \cdot E(R) = E(X) \longrightarrow \lambda_{A} \cdot \frac{1}{\lambda_{S}(1-r)} = \frac{r}{1-r}$$

$$\lambda_{A} \cdot E(W) = E(X_{W}) \longrightarrow \lambda_{A} \cdot \frac{r}{\lambda_{S}(1-r)} = \frac{r^{2}}{1-r}$$

$$\lambda_{A} \cdot E(S) = E(X_{S}) \longrightarrow \lambda_{A} \cdot \mu_{S} = \lambda_{A} \cdot \frac{1}{\lambda_{S}} = r$$

Rozkład czasu oczekiwania

Zał: nowe zadanie zastaje X zadań w systemie

Regula PASTA (Poisson arrivals see time averages)

$$P(X = i) = \Pi_i$$

$$P(W = 0) = P(X = 0) = \Pi_0 = 1 - r$$

$$P(W > t) = \sum_{i=1}^{+\infty} P(W > t \mid X = i) \cdot P(X = i) = \sum_{i=1}^{+\infty} P(W > t \mid X = i) \cdot \prod_{i} = \sum_{i=1}^{+\infty} P(\tau_{i} > t) \cdot \prod_{i} = \frac{1}{2} \sum_{i=1}^{+\infty} P(T_{i} > t) \cdot \prod_{i} = \frac{1}{2} \sum_{i=1}^{+\infty} P$$

 τ_i – czas potrzebny na wykonanie wszystkich i zadań, liczonych od

momentu przyjścia nowego zadania

$$=\sum_{i=1}^{+\infty}P(\tau_i>t)\cdot(1-r)r^i=\dots$$

$$P(\tau_i > t) = P(A(t) \le i - 1)$$

gdzie A(t) – liczba zadań jakie wykonano do czasu t.

A(t) jest procesem liczący Poissona z parametrem $\lambda_{S}t$.

Zachodzi
$$\sum_{i=1}^{\infty} \sum_{j=0}^{i-1} A_{ij} = \sum_{j=0}^{\infty} \sum_{i=j+1}^{\infty} A_{ij}$$
 Dow:
$$\sum_{i=1}^{\infty} \sum_{j=0}^{i-1} A_{ij} = A_{10} + A_{20} + A_{21} + A_{30} + A_{31} + A_{32} + \dots$$

$$\sum_{j=0}^{\infty} \sum_{i=j+1}^{\infty} A_{ij} = A_{10} + A_{20} + A_{30} + \dots + A_{21} + A_{31} + A_{41} + \dots + A_{32} + \dots$$

$$\dots = r \sum_{i=1}^{\infty} \sum_{j=0}^{i-1} \frac{(\lambda_s t r)^j}{j!} e^{-\lambda_s t} (1-r) r^{i-(j+1)} = r \sum_{j=0}^{\infty} \sum_{i=j+1}^{\infty} \frac{(\lambda_s t r)^j}{j!} e^{-\lambda_s t} (1-r) r^{i-(j+1)} =$$

$$= r \sum_{j=0}^{\infty} \frac{(\lambda_s t r)^j}{j!} e^{-\lambda_s t} (1-r) r^{-(j+1)} \sum_{i=j+1}^{\infty} r^i = r \sum_{j=0}^{\infty} \frac{(\lambda_s t r)^j}{j!} e^{-\lambda_s t} (1-r) r^{-(j+1)} \frac{r^{j+1}}{1-r} =$$

$$= r \sum_{i=0}^{\infty} \frac{(\lambda_s t r)^j}{j!} e^{-\lambda_s t} = r e^{-\lambda_s t} \sum_{i=0}^{\infty} \frac{(\lambda_s t r)^j}{j!} = r e^{-\lambda_s t} e^{\lambda_s t r} = r e^{-\lambda_s t (1-r)}$$

czyli
$$P(W > t) = re^{-\lambda_S t(1-r)}$$

To prawdopodobieństwo jest miarą jakości obsługi (za duże → niezadowolony użytkownik może zrezygnować z usługi).

System kolejkowy M/M/1 – przykład

Syt: Do pewnego pojedynczego serwera przychodzi 5 zadań/min. Ich obsługa zajmuje średnio 10s/zadanie, po czym zadanie opuszcza system. Pojemność systemu jest nieskończona.

$$\rightarrow$$
 M/M/1; λ_A =5 min⁻¹; μ_S =10s=1/6 min.

$$r = \frac{\lambda_A}{\lambda_S} = \lambda_A \cdot \mu_S = 5 \, \text{min}^{-1} \cdot \frac{1}{6} \, \text{min} = \frac{5}{6}$$

$$E(X) = \frac{r}{1-r} = \frac{\frac{5}{6}}{1-\frac{5}{6}} = \frac{\frac{5}{6}}{\frac{1}{6}} = 5$$

$$E(X_W) = \frac{r^2}{1-r} = \frac{\frac{25}{36}}{\frac{1}{6}} = \frac{25}{36} \cdot \frac{6}{1} = \frac{25}{6} = 4.17$$

$$E(X_S) = E(X) - E(X_W) = r = \frac{5}{6} = 0.83$$

$$E(W) = \frac{\mu_S r}{1-r} = \frac{\frac{1}{6} \cdot \frac{5}{6}}{\frac{1}{6}} = \frac{5}{6} \text{ min} = 50 \text{ s}$$

$$E(R) = \frac{\mu_S r}{1-r} = E(W) + \mu_S = 50 \text{ s} + 10 \text{ s} = 60 \text{ s}$$

System kolejkowy M/M/1 – przykład

Syt: Zwiększamy liczbę przychodzących zadań o 10%, czyli do 5.5 zadań/min.

$$\rightarrow$$
 M/M/1 μ_S =10s=1/6 min.

$$\lambda_A = 5 \text{ min}^{-1}$$

$$\lambda_A = 5.5 \text{ min}^{-1} = 11/2 \text{ min}^{-1}$$

$$r = \frac{\lambda_A}{\lambda_S} = \lambda_A \cdot \mu_S = 5 \, \text{min}^{-1} \cdot \frac{1}{6} \, \text{min} = \frac{5}{6}$$

$$r = \frac{\lambda_A}{\lambda_S} = \lambda_A \cdot \mu_S = \frac{11}{2} \min^{-1} \cdot \frac{1}{6} \min = \frac{11}{12} \approx 0.93$$

$$E(X) = \frac{r}{1-r} = \frac{\frac{5}{6}}{1-\frac{5}{6}} = \frac{\frac{5}{6}}{\frac{1}{6}} = 5$$

$$E(X) = \frac{r}{1-r} = \frac{\frac{11}{12}}{1 - \frac{11}{12}} = \frac{\frac{11}{12}}{\frac{1}{12}} = 11$$

$$E(X_W) = \frac{r^2}{1-r} = \frac{\frac{25}{36}}{\frac{1}{6}} = \frac{25}{36} \cdot \frac{6}{1} = \frac{25}{6} = 4.17$$

$$E(X_W) = \frac{r^2}{1-r} = \frac{\frac{121}{144}}{\frac{1}{12}} = \frac{121}{12} = 10.08$$

$$E(X_S) = E(X) - E(X_W) = r = \frac{5}{6} = 0.83$$

$$E(X_S) = E(X) - E(X_W) = r = 0.93$$

$$E(W) = \frac{\mu_S r}{1-r} = \frac{\frac{1}{6} \cdot \frac{5}{6}}{\frac{1}{6}} = \frac{5}{6} \text{ min} = 50 \text{ s}$$

$$E(W) = \frac{\mu_S r}{1-r} = \frac{\frac{1}{6} \cdot \frac{11}{12}}{\frac{1}{12}} = \frac{11}{6} \text{ min} = 110 \text{ s}$$

$$E(R) = \frac{\mu_S}{1-r} = E(W) + \mu_S = 50 \text{ s} + 10 \text{ s} = 60 \text{ s}$$

$$E(R) = \frac{\mu_S}{1-r} = E(W) + \mu_S = 110s + 10s = 120s$$

Systemy kolejkowe z wieloma serwerami

- nowe zadanie czeka w kolejce gdy wszystkie serwery są zajęte
- gdy są wolne serwery różne metody wyboru serwera (losowo, najmniej obciążone poprzednio, najszybsze, ...)
- serwerów może być nieskończenie wiele (w teorii)
- aby system był wydajny potrzeba r<k (a nie r<1 jak dla jednego serwera)

- Dyskretny czas
- k serwerów
- Nieskończona pojemność kolejki
- Przyjście zadania w kolejnym okienku czasowym (OC) zachodzi z prawdopodobieństwem p_A (i oczywiście brak zadania z 1-p_A)
- Prawdopodobieństwo zakończenia zadania, które jest wykonywane na jednym serwerze wynosi p_S w każdym kolejnym OC
- Czasy przybycia i obsługi (wykonania) na wszystkich serwerach są niezależne
- Różne zadania przychodzą do systemu w sposób od siebie niezależny (jak w próbie Bernoulliego)
- p_A oraz p_S nie zmieniają się z czasem → jednorodne łańcuchy Markowa

Z procesów Bernoulliego (jak poprzednio)

- Liczba OC pomiędzy zdarzeniami ma rozkład geometryczny z p_A
- Liczba OC potrzebnych do wykonania każdego zadania ma rozkład geometryczny z ps
- Obsługa każdego zadania trwa co najmniej jedno OC

$$p_{A} = \lambda_{A} \cdot \Delta$$

$$p_S = \lambda_S \cdot \Delta$$

W systemie k serwerów:

- W jednym OC może zakończyć się od 0 do k (przy pełnym obciążeniu) zadań.
- Liczba serwerów kończąca zadania w jednym OC dana jest rozkładem dwumianowym z p_S oraz liczbą prób równą liczbie aktualnie wykonywanych zadań.

Dla k=3

• Macierz przejścia $p_{i,j} = P(X(t+\Delta) = j \mid X(t) = i)$

Zał: pojemność jest nieskończona

Zał: w systemie jest *i* zadań → liczba zajętych serwerów n=min{i,k}

Dla i \leq k wszystkie zadania są wykonywane \rightarrow liczba kończących się zadań ma rozkład dwumianowy B(i, p_S)

Dla i > k tylko k zadań jest wykonywanych \rightarrow liczba kończących się zadań ma rozkład dwumianowy B(k, p_s)

$$p_{0,0} = P(brak \ nowych \ zadań) = 1 - p_A$$

$$p_{0,1} = P(jedno\ nowe\ zadanie) = p_A$$

$$p_{i,i+1} = P(jedno\ nowe\ zadanie,\ nic\ nie\ wykonano) = p_A \binom{n}{0} p_S^0 (1-p_S)^{n-0} = p_A (1-p_S)^n$$

 $p_{i,i} = P(brak\ nowego\ zadania,\ nic\ nie\ wykonano) + P(jedno\ nowe\ zadanie,\ jedno\ wykonano) =$

$$= (1 - p_A)(1 - p_S)^n + p_A \binom{n}{1} p_S^1 (1 - p_S)^{n-1} = (1 - p_A)(1 - p_S)^n + p_A n p_S (1 - p_S)^{n-1}$$

liczba zajętych serwerów n=min{i,k}

 $p_{i,i-1} = P(jedno\ nowe\ zadanie, dwa\ wykonano) + P(brak\ nowego\ zadania,\ jedno\ wykonano) =$

$$=p_{A}\binom{n}{2}p_{S}^{2}(1-p_{S})^{n-2}+(1-p_{A})\binom{n}{1}p_{S}^{1}(1-p_{S})^{n-1}=p_{A}\binom{n}{2}p_{S}^{2}(1-p_{S})^{n-2}+(1-p_{A})np_{S}(1-p_{S})^{n-1}$$

 $p_{i,i-2} = P(jedno\ nowe\ zadanie, trzy\ wykonano) + P(brak\ nowego\ zadania, dwa\ wykonano) = P(jedno\ nowe\ zadanie, trzy\ wykonano)$

$$= p_A \binom{n}{3} p_S^3 (1 - p_S)^{n-3} + (1 - p_A) \binom{n}{2} p_S^2 (1 - p_S)^{n-2}$$

:

 $p_{i,i-(n-1)} = P(jedno\ nowe\ zadanie, n\ wykonano) + P(brak\ nowego\ zadania, n-1\ wykonano) = P(jedno\ nowe\ zadanie, n\ wykonano)$

$$= p_A \binom{n}{n} p_S^n (1 - p_S)^{n-n} + (1 - p_A) \binom{n}{n-1} p_S^{n-1} (1 - p_S)^{n-(n-1)} = p_A p_S^n + (1 - p_A) n p_S^{n-1} (1 - p_S)$$

$$p_{i,i-n} = P(brak\ nowego\ zadania, n\ wykonano) = (1-p_A) \binom{n}{n} p_S^n (1-p_S)^{n-n} = (1-p_A) p_S^n$$

W układzie ze skończoną pojemnością C element $p_{C,C+1}$ nie istnieje, zaś

- $p_{C,C} = P(brak \ nowego \ zadania, nic \ nie \ wykonano) +$
 - + P(jedno nowe zadanie, jedno wykonano) +
 - $+ P(jedno\ nowe\ zadanie,\ nic\ nie\ wykonano) =$

$$= (1 - p_A)(1 - p_S)^n + p_A \binom{n}{1} p_S^1 (1 - p_S)^{n-1} + p_A \binom{n}{0} p_S^0 (1 - p_S)^{n-0} =$$

$$= (1 - p_A)(1 - p_S)^n + p_A n p_S (1 - p_S)^{n-1} + p_A (1 - p_S)^n = (1 - p_S)^n + p_A n p_S (1 - p_S)^{n-1}$$

System kolejkowy Bernoulliego z k serwerami - przykład

Syt: Dwa stanowiska obsługi w call center (=dwa serwery), dwie dalsze rozmowy mogą czekać w kolejce, dalsze są odrzucane. Klienci dzwonią średnio co 5 minut, rozmowa trwa średnio 8 minut. Zakładamy Δ =1 min.

Stan stacjonarny:

$$\rightarrow \quad \Pi = (\underbrace{0.1527}_{\Pi_0} \quad \underbrace{0.2753}_{\Pi_1} \quad \underbrace{0.2407}_{\Pi_2} \quad \underbrace{0.1837}_{\Pi_3} \quad \underbrace{0.1476}_{\Pi_4})$$

System kolejkowy Bernoulliego z k serwerami - przykład

Syt: Dwa stanowiska obsługi w call center (=dwa serwery), dwie dalsze rozmowy mogą czekać w kolejce, dalsze są odrzucane. Klienci dzwonią średnio co 5 minut, rozmowa trwa średnio 8 minut. Zakładamy Δ =1 min.

Stan stacjonarny:
$$\Pi = (\underbrace{0.1527}_{\Pi_0} \quad \underbrace{0.2753}_{\Pi_1} \quad \underbrace{0.2407}_{\Pi_2} \quad \underbrace{0.1837}_{\Pi_3} \quad \underbrace{0.1476}_{\Pi_4})$$

- \rightarrow Nowy klient zostanie odrzucony z prawdopodobieństwem P(X=C)= Π_4 =0.1476 (równoważnie: taki ułamek nowych klientów zostanie odrzuconych)
- → Obciążenie pracowników:

Każdy z pracowników na pewno pracuje gdy w systemie jest 2,3 lub 4 klientów oraz z P=0.5 gdy w systemie jest jeden klient.

Obciążenie pracownika =
$$\Pi_2 + \Pi_3 + \Pi_4 + 0.5\Pi_1 = 0.70965 \approx 71\%$$

(dokładniej: tyle czasu pracownik rozmawia z klientami)

System kolejkowy M/M/k

- → system kolejkowy z k serwerami,
- → pojemność jest ∞
- \rightarrow napływ zadań dany przez rozkład wykładniczy z parametrem λ_A
- ightarrow obsługa zadań dana przez rozkład wykładniczy z parametrem λ_{S}
- → proces napływu zadań i proces obsługi są od siebie niezależne

Prawdopodobieństw przejść szukamy jako granicy systemu Bernoulliego dla małych Δ (zaniedbujemy wyrazu rzędu Δ^2 i wyższe)

$$\begin{aligned} p_{0,0} &= 1 - p_A = 1 - \lambda_A \Delta \\ p_{0,1} &= p_A = \lambda_A \Delta \\ p_{i,i+1} &= p_A (1 - p_S)^n = \lambda_A \Delta (1 - \lambda_S \Delta)^n \approx \lambda_A \Delta \\ p_{i,i} &= (1 - p_A)(1 - p_S)^n + p_A n p_S (1 - p_S)^{n-1} = (1 - \lambda_A \Delta)(1 - \lambda_S \Delta)^n + \lambda_A \Delta n \lambda_S \Delta (1 - \lambda_S \Delta)^{n-1} \approx \\ &\approx (1 - \lambda_A \Delta)(1 - \lambda_S \Delta)^n = (1 - \lambda_A \Delta) \sum_{i=0}^n \binom{n}{i} 1^i \left(-\lambda_S \Delta \right)^{n-i} \approx (1 - \lambda_A \Delta) \sum_{i=n-1}^n \binom{n}{i} 1^i \left(-\lambda_S \Delta \right)^{n-i} \approx \\ &\approx (1 - \lambda_A \Delta) \left(\binom{n}{n-1} (-\lambda_S \Delta)^{n-(n-1)} + \binom{n}{n} (-\lambda_S \Delta)^{n-n} \right) = (1 - \lambda_A \Delta) \left(-n\lambda_S \Delta + 1 \right) \approx 1 - \lambda_A \Delta - n\lambda_S \Delta \end{aligned}$$

System kolejkowy M/M/k

$$\begin{split} p_{i,i-1} &= p_A \binom{n}{2} p_S^2 (1 - p_S)^{n-2} + (1 - p_A) n p_S (1 - p_S)^{n-1} \approx n \lambda_S \Delta \\ p_{i,i-2} &= p_A \binom{n}{3} p_S^3 (1 - p_S)^{n-3} + (1 - p_A) \binom{n}{2} p_S^2 (1 - p_S)^{n-2} \approx 0 \\ \vdots \\ p_{i,i-n} &= (1 - p_A) p_S^n \approx 0 \end{split}$$

$$\tilde{P} = \begin{pmatrix} 1 - p_A & p_A & 0 & 0 & 0 & \dots \\ p_S & 1 - p_A - p_S & p_A & 0 & 0 & \dots \\ 0 & 2p_S & 1 - p_A - 2p_S & p_A & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & p_A & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & 0 & \dots \\ 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 3p_S & 1 - p_A - 3p_S & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 &$$

$$\begin{cases} \Pi P = \Pi \\ \sum_{i} \Pi_{i} = 1 \end{cases} \\ \rightarrow (\Pi_{0} \ \Pi_{1} \ \dots) \tilde{P} = (\Pi_{0} \ \Pi_{1} \ \dots) \begin{cases} 1 - p_{A} & p_{A} & 0 & 0 & 0 & \dots \\ p_{S} & 1 - p_{A} - p_{S} & p_{A} & 0 & 0 & \dots \\ 0 & 2p_{S} & 1 - p_{A} - 2p_{S} & p_{A} & 0 & \dots \\ 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} & p_{A} \\ 0 & 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} \end{cases} = (\Pi_{0} \ \Pi_{1} \ \dots)$$

Obliczamy dla pierwszej składowej

$$\Pi_{0} (1 - \lambda_{A} \Delta) + \Pi_{1} \lambda_{S} \Delta = \Pi_{0}$$

$$\Pi_{0} - \Pi_{0} \lambda_{A} \Delta + \Pi_{1} \lambda_{S} \Delta = \Pi_{0}$$

$$\Pi_{1} \lambda_{S} \Delta = \Pi_{0} \lambda_{A} \Delta /: \Delta$$

$$\Pi_{1} \lambda_{S} = \Pi_{0} \lambda_{A} /: \lambda_{S}$$

$$\Pi_{1} = \Pi_{0} \frac{\lambda_{A}}{\lambda_{S}} = r \Pi_{0}$$

Obliczamy dla drugiej składowej

$$\begin{split} &\Pi_0 \lambda_A \Delta + \Pi_1 \left(1 - \lambda_A \Delta - \lambda_S \Delta \right) + \Pi_2 2 \lambda_S \Delta = \Pi_1 \\ &\Pi_0 \lambda_A - \Pi_1 \lambda_A - \Pi_1 \lambda_S + \Pi_2 2 \lambda_S = 0 \\ &- \Pi_1 \lambda_A + \Pi_2 2 \lambda_S = 0 \\ &\Pi_2 = \Pi_1 \frac{\lambda_A}{2 \lambda_S} = \frac{1}{2} r \Pi_1 = \frac{1}{2} r^2 \Pi_0 \end{split}$$

$$\begin{cases} \Pi P = \Pi \\ \sum_{i} \Pi_{i} = 1 \end{cases} \\ \rightarrow (\Pi_{0} \quad \Pi_{1} \quad \dots) \tilde{P} = (\Pi_{0} \quad \Pi_{1} \quad \dots) \begin{pmatrix} 1 - p_{A} & p_{A} & 0 & 0 & 0 & \dots \\ p_{S} & 1 - p_{A} - p_{S} & p_{A} & 0 & 0 & \dots \\ 0 & 2p_{S} & 1 - p_{A} - 2p_{S} & p_{A} & 0 & \dots \\ 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} & p_{A} \\ 0 & 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = (\Pi_{0} \quad \Pi_{1} \quad \dots)$$

Obliczamy dla trzeciej składowej

$$\begin{split} &\Pi_{1}\lambda_{A}\Delta+\Pi_{2}\left(1-\lambda_{A}\Delta-2\lambda_{S}\Delta\right)+\Pi_{3}3\lambda_{S}\Delta=\Pi_{2}\\ &\Pi_{1}\lambda_{A}-\Pi_{2}\lambda_{A}-\Pi_{2}2\lambda_{S}+\Pi_{3}3\lambda_{S}=0\\ &-\Pi_{2}\lambda_{A}+\Pi_{3}3\lambda_{S}=0\\ &\Pi_{3}=\Pi_{2}\frac{\lambda_{A}}{3\lambda_{S}}=\frac{1}{3}r\Pi_{2}=\frac{1}{3}r\frac{1}{2}r\Pi_{1}=\\ &=\frac{1}{2\cdot3}r^{2}\Pi_{1}=\frac{1}{2\cdot3}r^{3}\Pi_{0} \end{split} \tag{aż do k-tej)} \\ &\Pi_{i-2}\lambda_{A}\Delta+\Pi_{i-1}\left(1-\lambda_{A}\Delta-(i-1)\lambda_{S}\Delta\right)+\Pi_{i}i\lambda_{S}\Delta=\Pi_{i-1}\\ &\Pi_{i-2}\lambda_{A}-\Pi_{i-1}\lambda_{A}-\Pi_{i-1}(i-1)\lambda_{S}+\Pi_{i}i\lambda_{S}=0\\ &-\Pi_{i-1}\lambda_{A}+\Pi_{i}i\lambda_{S}=0\\ &\Pi_{i}=\Pi_{i-1}\frac{\lambda_{A}}{i\lambda_{S}}=\frac{1}{i}r\Pi_{i-1}\\ &\Pi_{i}=\Pi_{i-1}\frac{\lambda_{A}}{i\lambda_{S}}=\frac{1}{i}r\Pi_{i-1}\\ &\Pi_{i}=\frac{1}{2}r\Pi_{i}=$$

dla kolejnych składowych

$$\begin{split} &\Pi_{i-2}\lambda_A\Delta + \Pi_{i-1}\left(1 - \lambda_A\Delta - (i-1)\lambda_S\Delta\right) + \Pi_i i\lambda_S\Delta = \Pi_i \\ &\Pi_{i-2}\lambda_A - \Pi_{i-1}\lambda_A - \Pi_{i-1}(i-1)\lambda_S + \Pi_i i\lambda_S = 0 \\ &-\Pi_{i-1}\lambda_A + \Pi_i i\lambda_S = 0 \\ &\Pi_i = \Pi_{i-1}\frac{\lambda_A}{i\lambda_S} = \frac{1}{i}r\Pi_{i-1} \end{split}$$

 $\Pi_i = \frac{1}{i} r \Pi_{i-1} = \frac{1}{i(i-1)} r^2 \Pi_{i-2} = \dots = \frac{1}{i!} r^i \Pi_0$

w szczególności dla k-tej składowej

$$\Pi_k = \frac{1}{k!} r^k \Pi_0$$

$$\begin{cases} \Pi P = \Pi \\ \sum_{i} \Pi_{i} = 1 \end{cases} \\ \rightarrow (\Pi_{0} \quad \Pi_{1} \quad \dots) \tilde{P} = (\Pi_{0} \quad \Pi_{1} \quad \dots) \begin{cases} 1 - p_{A} & p_{A} & 0 & 0 & 0 & \dots \\ p_{S} & 1 - p_{A} - p_{S} & p_{A} & 0 & 0 & \dots \\ 0 & 2p_{S} & 1 - p_{A} - 2p_{S} & p_{A} & 0 & \dots \\ 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} & p_{A} \\ 0 & 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} \end{cases} = (\Pi_{0} \quad \Pi_{1} \quad \dots) = (\Pi_{0} \quad \Pi_{1} \quad \dots)$$

Obliczamy dla k+1 składowej Przykład dla k=3 (dla 4-tej składowej)

$$\Pi_{2}\lambda_{A}\Delta + \Pi_{3}\left(1 - \lambda_{A}\Delta - 3\lambda_{S}\Delta\right) + \Pi_{4}3\lambda_{S}\Delta = \Pi_{3}
\Pi_{2}\lambda_{A} - \Pi_{3}\lambda_{A} - \Pi_{3}3\lambda_{S} + \Pi_{4}3\lambda_{S} = 0
-\Pi_{3}\lambda_{A} + \Pi_{4}3\lambda_{S} = 0
\Pi_{4} = \Pi_{3}\frac{\lambda_{A}}{3\lambda_{S}} = \frac{r}{3}\Pi_{3} = \frac{r}{3} \cdot \frac{r^{3}}{3!}\Pi_{0}$$

$$\Pi_{3}\lambda_{A} + \Pi_{4}\lambda_{A} + \Pi_{4}\lambda_{A} - \Pi_{4}\lambda_{A} + \Pi_{5}\lambda_{C} = 0
\Pi_{5} = \Pi_{4}\frac{\lambda_{A}}{3\lambda_{S}} = \frac{r}{3}\Pi_{4} = 0
\Pi_{5} = \Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = \frac{r}{3}\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = 0
\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = \frac{r}{3}\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = 0
\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = 0
\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = \frac{r}{3}\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = 0
\Pi_{5}\frac{\lambda_{A}}{3\lambda_{S}} = 0
\Pi_{5$$

→ dla piątej składowej (przy k=3)

$$\Pi_{3}\lambda_{A}\Delta + \Pi_{4}\left(1 - \lambda_{A}\Delta - 3\lambda_{S}\Delta\right) + \Pi_{5}3\lambda_{S}\Delta = \Pi_{4}$$

$$\Pi_{3}\lambda_{A} - \Pi_{4}\lambda_{A} - \Pi_{4}3\lambda_{S} + \Pi_{5}3\lambda_{S} = 0$$

$$-\Pi_{4}\lambda_{A} + \Pi_{5}3\lambda_{S} = 0$$

$$\Pi_{5} = \Pi_{4}\frac{\lambda_{A}}{3\lambda_{S}} = \frac{r}{3}\Pi_{4} = \left(\frac{r}{3}\right)^{2} \cdot \frac{r^{3}}{3!}\Pi_{0}$$

$$\begin{cases} \Pi P = \Pi \\ \sum_{i} \Pi_{i} = 1 \end{cases} \\ \rightarrow (\Pi_{0} \quad \Pi_{1} \quad \dots) \tilde{P} = (\Pi_{0} \quad \Pi_{1} \quad \dots) \begin{cases} 1 - p_{A} & p_{A} & 0 & 0 & 0 & \dots \\ p_{S} & 1 - p_{A} - p_{S} & p_{A} & 0 & 0 & \dots \\ 0 & 2p_{S} & 1 - p_{A} - 2p_{S} & p_{A} & 0 & \dots \\ 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} & p_{A} \\ 0 & 0 & 0 & 3p_{S} & 1 - p_{A} - 3p_{S} \end{cases} = (\Pi_{0} \quad \Pi_{1} \quad \dots)$$

Dla dowolnego k

Obliczamy dla k+1 składowej

dla kolejnych składowych

$$\Pi_{k+2} = \frac{r}{k} \Pi_{k+1} = \frac{r}{k} \cdot \frac{r}{k} \cdot \frac{1}{k!} r^k \Pi_0 = \left(\frac{r}{k}\right)^2 \cdot \frac{r^k}{k!} \Pi_0$$

$$\vdots$$

$$\Pi_{k+j} = \frac{r}{k} \Pi_{k+j-1} = \left(\frac{r}{k}\right)^j \cdot \frac{r^k}{k!} \Pi_0$$

$$\vdots$$

Normalizacja
$$\sum_{i} \Pi_{i} = 1$$

$$\sum_{i} \Pi_{i} = \Pi_{0} + \Pi_{1} + \ldots + \Pi_{k-1} + \Pi_{k} + \Pi_{k+1} + \Pi_{k+2} + \ldots =$$

$$= \Pi_0 + \Pi_0 r + \frac{1}{2} \Pi_0 r^2 + \frac{1}{6} \Pi_0 r^3 + \ldots + \frac{1}{(k-1)!} \Pi_0 r^{k-1} + \frac{1}{k!} \Pi_0 r^k + \frac{r}{k} \frac{1}{k!} r^k \Pi_0 + \left(\frac{r}{k}\right)^2 \frac{1}{k!} r^k \Pi_0 + \ldots =$$

$$= \Pi_0 \left(1 + r + \frac{1}{2} r^2 + \frac{1}{6} r^3 + \ldots + \frac{1}{(k-1)!} r^{k-1} + \frac{1}{k!} r^k + \frac{r}{k} \frac{1}{k!} r^k + \left(\frac{r}{k} \right)^2 \frac{1}{k!} r^k + \ldots \right) =$$

$$= \Pi_0 \left(\sum_{i=0}^{k-1} \left(\frac{r^i}{i!} \right) + \frac{1}{k!} r^k \left(1 + \frac{r}{k} + \left(\frac{r}{k} \right)^2 + \ldots \right) \right) = \Pi_0 \left(\sum_{i=0}^{k-1} \left(\frac{r^i}{i!} \right) + \frac{1}{k!} r^k \sum_{i=0}^{\infty} \left(\frac{r}{k} \right)^i \right) = \prod_{i=0}^{k-1} \left(\frac{r^i}{i!} \right) + \frac{1}{k!} r^k \sum_{i=0}^{\infty} \left(\frac{r}{k} \right)^i \right)$$

$$= \prod_{0} \left(\sum_{i=0}^{k-1} \left(\frac{r^{i}}{i!} \right) + \frac{1}{k!} r^{k} \frac{1}{1 - \frac{r}{k}} \right)$$

$$\to \Pi_0 \left(\sum_{i=0}^{k-1} \left(\frac{r^i}{i!} \right) + \frac{1}{k!} r^k \frac{1}{1 - \frac{r}{k}} \right) = 1 \quad \to \quad \Pi_0 = \left(\sum_{i=0}^{k-1} \left(\frac{r^i}{i!} \right) + \frac{1}{k!} r^k \frac{1}{1 - \frac{r}{k}} \right)^{-1}$$

Łącznie

$$\begin{cases} dla \ i = 0: & \Pi_{i} = \left(\sum_{i=0}^{k-1} \left(\frac{r^{i}}{i!}\right) + \frac{1}{k!} r^{k} \frac{1}{1 - \frac{r}{k}}\right)^{-1} \equiv \left(\alpha + \beta\right)^{-1} \\ dla \ i \leq k: & \Pi_{i} = \frac{1}{i!} r^{i} \Pi_{0} \\ dla \ i > k: & \Pi_{i} = \left(\frac{r}{k}\right)^{i-k} \frac{1}{k!} r^{k} \Pi_{0} = r^{i} \left(\frac{1}{k}\right)^{i-k} \frac{1}{k!} \Pi_{0} = \frac{r^{i}}{k!} k^{k} \left(\frac{1}{k}\right)^{i} \Pi_{0} = \frac{1}{k!} \left(\frac{r}{k}\right)^{i} k^{k} \Pi_{0} \equiv \frac{1}{k!} \rho^{i} k^{k} \Pi_{0} \end{cases}$$

Przykład: (jak dla M/M/1) ale M/M/3

Syt: Zwiększamy liczbę przychodzących zadań do 10 zadań/min, μ_S =10s=1/6 min.

$$\rightarrow \lambda_A = 10 \text{min}^{-1}, \ \lambda_S = \mu_S^{-1} = 6 \text{ min}^{-1} \rightarrow r = 10/6 = 1.67$$
 (r<3 OK)

Jaki procent wiadomości nie będzie stał w kolejce?

$$P(W = 0) = P(X < 3) = \Pi_0 + \Pi_1 + \Pi_2 = 0.17 + 0.29 + 0.24 = 0.70$$

$$\rho = \frac{r}{k} \qquad \alpha = \sum_{i=0}^{k-1} \left(\frac{r^i}{i!}\right) \qquad \beta = \frac{1}{k!} r^k \frac{1}{1 - \frac{r}{k}}$$

Z wyrażeń na M/M/k znajdziemy współrzędną Π₀

Dla k=1
$$\rho = r \qquad \alpha = \sum_{i=0}^{0} \frac{r^{i}}{i!} = \frac{r^{0}}{0!} = 1 \qquad \beta = \frac{1}{k!} r^{k} \frac{1}{1 - \frac{r}{k}} = \frac{1}{1!} r^{1} \frac{1}{1 - \frac{r}{1}} = \frac{r}{1 - r} \qquad \Rightarrow \qquad \Pi_{0} = \frac{1}{\alpha + \beta} = \frac{1}{1 + \frac{r}{1 - r}} = 1 - r$$
Dla k=2
$$\rho = \frac{r}{2} \qquad \alpha = \sum_{i=0}^{1} \frac{r^{i}}{i!} = \frac{r^{0}}{0!} + \frac{r^{1}}{0!} = 1 + r = 1 + 2\rho \qquad \beta = \frac{1}{k!} r^{k} \frac{1}{1 - \frac{r}{k}} = \frac{1}{2!} r^{2} \frac{1}{1 - \frac{r}{2}} = \frac{r^{2}}{2(1 - \rho)} = \frac{4\rho^{2}}{2(1 - \rho)} = \frac{2\rho^{2}}{1 - \rho}$$

$$\Rightarrow \qquad \Pi_{0} = \frac{1}{\alpha + \beta} = \frac{1}{1 + 2\rho + \frac{2\rho^{2}}{1 - \rho}} = \frac{1 - \rho}{1 - \rho + 2\rho - 2\rho^{2} + 2\rho^{2}} = \frac{1 - \rho}{1 + \rho}$$

Prawdopodobieństwo, że nowe zadanie musi czekać w kolejce

$$P(W \neq 0) = P(X \geq k) = \sum_{i=k}^{\infty} \Pi_i = \sum_{i=k}^{\infty} \frac{1}{k!} \rho^i k^k \Pi_0 = \frac{1}{k!} k^k \Pi_0 \sum_{i=k}^{\infty} \rho^i = \frac{1}{k!} k^k \Pi_0 \frac{\rho^k}{1-\rho} = \frac{(k\rho)^k}{k!(1-\rho)} \Pi_0$$
Dla k=1
$$P(W \neq 0) = \frac{(k\rho)^k}{k!(1-\rho)} \Pi_0 = \frac{(1r)^1}{1!(1-r)} (1-r) = r$$

Dla k=2

$$P(W \neq 0) = \frac{(k\rho)^k}{k!(1-\rho)} \prod_0 = \frac{(2\rho)^2}{2!(1-\rho)} \cdot \frac{1-\rho}{1+\rho} = \frac{2\rho^2}{1+\rho}$$

$$\rho = \frac{r}{k} \qquad \Pi_0^{(k=1)} = 1 - r \qquad \Pi_0^{(k=2)} = \frac{1 - \rho}{1 + \rho}$$

Średnia liczba zadań czekających w kolejce

$$\begin{split} E\left(X_{W}\right) &= \sum_{i=k}^{\infty} (i-k) \Pi_{i} = \sum_{i=k}^{\infty} (i-k) \frac{1}{k!} \rho^{i} k^{k} \Pi_{0} = \sum_{i=k}^{\infty} (i-k) \frac{1}{k!} \rho^{i} k^{k} \Pi_{0} \cdot \underbrace{\rho^{k} \rho^{-k} \frac{1-\rho}{1-\rho}}_{1:1} = \\ &= \underbrace{\frac{k^{k} \rho^{k}}{k!(1-\rho)} \Pi_{0}}_{P(W \neq 0)} \sum_{i=k}^{\infty} (i-k) \rho^{i-k} (1-\rho) = P(W \neq 0) (1-\rho) \sum_{i=k}^{\infty} (i-k) \rho^{i-k} = \begin{vmatrix} podstawiam \\ j \equiv i-k \end{vmatrix} = \\ &= P(W \neq 0) (1-\rho) \sum_{j=0}^{\infty} j \rho^{j} = P(W \neq 0) (1-\rho) \frac{\rho}{(1-\rho)^{2}} = \frac{\rho}{1-\rho} P(W \neq 0) \end{split}$$
 Dla k=1

$$E(X_W) = \frac{\rho}{1-\rho} P(W \neq 0) = \frac{r}{1-r} r = \frac{r^2}{1-r}$$

Dla k=2

$$E(X_W) = \frac{\rho}{1-\rho} P(W \neq 0) = \frac{\rho}{1-\rho} \cdot \frac{2\rho^2}{1+\rho} = \frac{2\rho^3}{1-\rho^2} = \frac{2(\frac{r}{2})^3}{1-(\frac{r}{2})^2} = \frac{\frac{r^3}{4}}{\frac{4-r^2}{4}} = \frac{r^3}{4-r^2}$$

System kolejkowy M/M/k – stan stacjonarny

$$\rho = \frac{r}{k} \rightarrow \rho k = r = \frac{\lambda_A}{\lambda_S} \rightarrow \lambda_A = \rho k \lambda_S$$

Średni czas spędzony w kolejce (korzystamy z prawa Little'a)

$$\begin{split} E(W) &= \frac{1}{\lambda_A} E(X_W) = \frac{1}{\lambda_A} \cdot \frac{\rho}{1-\rho} P(W \neq 0) = \frac{1}{\rho k \lambda_S} \cdot \frac{\rho}{1-\rho} P(W \neq 0) = \frac{1}{k \lambda_S (1-\rho)} P(W \neq 0) = \\ &= \frac{1}{k \lambda_S - k \lambda_S \rho} P(W \neq 0) = \frac{1}{k \lambda_S - \lambda_A} P(W \neq 0) \end{split}$$

Dla k=1

$$E(W) = \frac{1}{k\lambda_S - \lambda_A} P(W \neq 0) = \frac{1}{\lambda_S - \lambda_A} r = \frac{\lambda_A}{\lambda_S (\lambda_S - \lambda_A)}$$

Dla k=2

$$E(W) = \frac{1}{k\lambda_S - \lambda_A} P(W \neq 0) = \frac{1}{2\lambda_S - \lambda_A} \frac{2\rho^2}{1+\rho} = \frac{1}{2\lambda_S - 2\rho\lambda_S} \frac{2\rho^2}{1+\rho} = \frac{1}{2\lambda_S (1-\rho)} \frac{2\rho^2}{1+\rho} = \frac{\rho^2}{\lambda_S (1-\rho^2)}$$

Średni całkowity czas spędzony w systemie

$$E(R) = E(W) + E(S) = \frac{1}{k\lambda_S(1-\rho)}P(W \neq 0) + \frac{1}{\lambda_S} = \frac{1}{\lambda_S}\left(\frac{1}{k(1-\rho)}P(W \neq 0) + 1\right)$$

Dla k=1

$$E(R) = \frac{1}{\lambda_{S}} \left(\frac{1}{k(1-\rho)} P(W \neq 0) + 1 \right) = \frac{1}{\lambda_{S}} \left(\frac{1}{1(1-r)} r + 1 \right) = \frac{1}{\lambda_{S}} \cdot \frac{r+1-r}{1-r} = \frac{1}{\lambda_{S}} \cdot \frac{1}{1-r}$$

Dla k=2

$$E(R) = \frac{1}{\lambda_{S}} \left(\frac{1}{k(1-\rho)} P(W \neq 0) + 1 \right) = \frac{1}{\lambda_{S}} \left(\frac{1}{2(1-\rho)} \cdot \frac{2\rho^{2}}{1+\rho} + 1 \right)$$

System kolejkowy M/M/k – stan stacjonarny

$$\rho = \frac{r}{k} \rightarrow \rho k = r = \frac{\lambda_A}{\lambda_S} \rightarrow \lambda_A = \rho k \lambda_S$$

Średnia liczba zadań w systemie (korzystamy z prawa Little'a)

$$E(X) = \lambda_A E(R) = \frac{\lambda_A}{\lambda_S} \left(\frac{1}{k(1-\rho)} P(W \neq 0) + 1 \right) = k \rho \left(\frac{1}{k(1-\rho)} P(W \neq 0) + \frac{k}{k} \right) = \frac{\rho}{1-\rho} P(W \neq 0) + k \rho$$

Dla k=1

$$E(X) = \frac{\rho}{1-\rho} P(W \neq 0) + k\rho = \frac{r}{1-r} \cdot r + r = \frac{r^2 + r - r^2}{1-r} = \frac{r}{1-r}$$

Dla k=2

$$E(X) = \frac{\rho}{1-\rho} P(W \neq 0) + k\rho = \frac{\rho}{1-\rho} \cdot \frac{2\rho^2}{1+\rho} + 2\rho = \frac{2\rho^3 + 2\rho(1-\rho^2)}{1-\rho^2} = \frac{2\rho}{1-\rho^2}$$

Rozkład czasu oczekiwania w kolejce

Zał: nowe zadanie zastaje X zadań w systemie

Dla X>k system wygląda jak M/M/1 z λ_A oraz k $\lambda_S \rightarrow r \rightarrow \frac{\lambda_A}{k\lambda_S} = \frac{r}{k} = \rho$

W' - czas oczekiwania w takim systemie M/M/1

X' – liczba zadań w takim systemie M/M/1

$$P(W = 0) = 1 - P(W \neq 0)$$

$$P(W > t) = P(W > t \mid X \geq k) \cdot P(X \geq k) = P(W > t \mid X \geq k) \cdot P(W \neq 0) =$$

$$= P(W' > t \mid X' \geq 1) \cdot P(W \neq 0) = \rho e^{-k\lambda_S t(1-\rho)} \cdot P(W \neq 0)$$

System kolejkowy M/M/k – przykład

Syt: Mamy do wyboru zakup jednej szybkiej drukarki ($2\lambda_S$) lub dwóch wolniejszych (λ_S).

Szybka drukarka → M/M/1

$$E(R)^{(M/M/1)} = \frac{1}{\lambda_S(1-r)} \rightarrow E(R)^{(M/M/1)} = \frac{1}{2\lambda_S(1-\frac{\lambda_A}{2\lambda_S})}$$

■ Dwie wolne drukarki → M/M/2

$$\rho = \frac{r}{2} = \frac{\lambda_A}{2\lambda_S}$$

$$E(R)^{(M/M/2)} = \frac{1}{\lambda_{S}(1-\rho^{2})} = \frac{1}{\lambda_{S}(1-\rho)(1+\rho)} = \frac{1}{\lambda_{S}(1-\frac{\lambda_{A}}{2\lambda_{S}})(1+\frac{\lambda_{A}}{2\lambda_{S}})} \cdot \frac{2}{2} = E(R)^{(M/M/1)} \cdot \frac{2}{1+\frac{\lambda_{A}}{2\lambda_{S}}} = E(R)^{(M/M/1)} \cdot \frac{4\lambda_{S}}{2\lambda_{S}+\lambda_{A}}$$

Porównując

$$E(R)^{(M/M/1)} > E(R)^{(M/M/2)}$$

$$E(R)^{(M/M/1)} > E(R)^{(M/M/1)} \cdot \frac{4\lambda_{S}}{2\lambda_{S} + \lambda_{A}}$$

$$1 > \frac{4\lambda_S}{2\lambda_S + \lambda_A}$$

$$2\lambda_S + \lambda_A > 4\lambda_S$$

$$\lambda_A > 2\lambda_S$$

System kolejkowy M/M/∞

 ∞ wiele serwerów \rightarrow nie ma kolejki \rightarrow $X_W=0$, $X=X_S$, W=0, R=S $n=min\{i,k\} \rightarrow n=i$

Macierz przejścia (w
$$\Delta$$
)
$$\tilde{P} = \begin{pmatrix}
1 - p_A & p_A & 0 & 0 & 0 & \dots \\
p_S & 1 - p_A - p_S & p_A & 0 & 0 & \dots \\
0 & 2p_S & 1 - p_A - 2p_S & p_A & 0 & \dots \\
0 & 0 & 3p_S & 1 - p_A - 3p_S & p_A & 0 & \dots \\
0 & 0 & 0 & 4p_S & 1 - p_A - 4p_S & \dots \\
\vdots & \vdots & \vdots & \vdots & \dots
\end{pmatrix}$$

Wykorzystamy wyrażenia z M/M/k i zbadamy granicę k → ∞

$$\begin{cases} dla \ i = 0: & \lim_{k \to \infty} \Pi_0 = \lim_{k \to \infty} \left(\sum_{i=0}^{k-1} \left(\frac{r^i}{i!} \right) + \frac{1}{k!} r^k \frac{1}{1 - \frac{r}{k}} \right)^{-1} = \left(\sum_{i=0}^{\infty} \left(\frac{r^i}{i!} \right) + 0 \right)^{-1} = \left(e^r \right)^{-1} = e^{-r} \\ dla \ i > 0: & \lim_{k \to \infty} \Pi_i = \lim_{k \to \infty} \frac{1}{i!} r^i \Pi_0 = \frac{1}{i!} r^i \lim_{k \to \infty} \Pi_0 = \frac{1}{i!} r^i e^{-r} \end{cases}$$

a to jest rozkład Poissona o parametrze r= λ_A/λ_S

$$\rightarrow$$
 E(X)=r var(X)=r

System kolejkowy M/M/∞ - przykład

Duży serwer obsługujący wszystkich chętnych klientów

→ równoważny ∞ wielu serwerom. Zał: μ_A=3 min, μ_S=60 min

$$\rightarrow \lambda_A = \frac{1}{3} \min^{-1} \lambda_S = \frac{1}{60} \min^{-1} \rightarrow r = \frac{\lambda_A}{\lambda_S} = \frac{1}{3} \cdot \frac{60}{1} = 20$$

$$\rightarrow \Pi_0 = e^{-20} = 2.06 \cdot 10^{-9} \approx 0$$

czyli w system praktycznie nigdy nie jest pusty.

Zwykle w systemie jest E(X)=r=20 użytkowników $\sigma(X) = \sqrt{r} = \sqrt{20} \approx 4.47$

Dla tak dużego r rozkład Poissona można (po uciągleniu) przybliżyć rozkładem normalnym \rightarrow korzystając z reguły 3σ :

Przez 99.7% czasu na serwerze jest od 20-3 σ =6.58 do 20+3 σ =33.42 użytkowników.

System kolejkowy M/G/1

Niech σ_S to odchylanie standardowe czasu obsługi

$$E(X) = r + \frac{r^2 + \lambda_A^2 \sigma_S^2}{2(1-r)}$$
 wzór Pollaczka-Chinczyna

$$E(R) = \frac{\lambda_A(\sigma_S^2 + \mu_S^2)}{2(1-r)} + \frac{1}{\lambda_S}$$

Spr: Dla rozkładu wykładniczego $E(X) = \frac{1}{\lambda}$ $var(X) = \frac{1}{\lambda^2}$ Zatem

$$E(X) = r + \frac{r^{2} + \lambda_{A}^{2} \sigma_{S}^{2}}{2(1-r)} \rightarrow E(X) = r + \frac{r^{2} + \lambda_{A}^{2} \frac{1}{\lambda_{S}^{2}}}{2(1-r)} = r + \frac{r^{2} + \lambda_{A}^{2} \frac{1}{\lambda_{S}^{2}}}{2(1-r)} = \frac{r}{1-r} \equiv E(X)^{M/M/1}$$

$$E(R) = \frac{\lambda_{A} \left(\sigma_{S}^{2} + \mu_{S}^{2}\right)}{2(1-r)} + \frac{1}{\lambda_{S}} \rightarrow E(R) = \frac{\lambda_{A} \left(\frac{1}{\lambda_{S}^{2}} + \mu_{S}^{2}\right)}{2(1-r)} + \frac{1}{\lambda_{S}} = \frac{\lambda_{A} \left(\mu_{S}^{2} + \mu_{S}^{2}\right)}{2(1-r)} + \frac{1}{\lambda_{S}} = \frac{2\lambda_{A}}{\lambda_{S}^{2} 2(1-r)} + \frac{1}{\lambda_{S}} = \frac{\lambda_{A} + \lambda_{S} (1-r)}{\lambda_{S}^{2} (1-r)} = \frac{\lambda_{A} + \lambda_{S} - \lambda_{A}}{\lambda_{S}^{2} (1-r)} = \frac{1}{\lambda_{S} (1-r)} \equiv E(R)^{M/M/1}$$

System kolejkowy M/D/1

Ustalmy stały czas obsługi μ_S

 \rightarrow wtedy odchylanie standardowe czasu obsługi σ_S =0

$$E(X) = r + \frac{r^2 + \lambda_A^2 \sigma_S^2}{2(1-r)} \rightarrow E(X)^{M/D/1} = r + \frac{r^2 + \lambda_A^2 \cdot 0}{2(1-r)} = r + \frac{r^2}{2(1-r)}$$

$$E(R) = \frac{\lambda_A(\sigma_S^2 + \mu_S^2)}{2(1-r)} + \frac{1}{\lambda_S} \longrightarrow E(R)^{M/D/1} = \frac{\lambda_A(0+\mu_S^2)}{2(1-r)} + \frac{1}{\lambda_S} = \frac{\lambda_A\mu_S^2}{2(1-r)} + \frac{1}{\lambda_S} = \frac{r}{2\lambda_S(1-r)} + \frac{1}{\lambda_S}$$

$$E(X_W)^{M/D/1} = \frac{r^2}{2(1-r)}$$
 (K.L.Murunaganantha Prasud et al. DOI:10.9790/5728-11121315)

$$E(W)^{M/D/1} = \frac{r}{2\lambda_S(1-r)}$$

Porównując z wynikami dla systemu M/M/1

$$E(X)^{M/M/1} = \frac{r}{1-r}$$
 $E(R)^{M/M/1} = \frac{\mu_S}{1-r} = \frac{1}{\lambda_S(1-r)}$ $E(X_W)^{M/M/1} = \frac{r^2}{1-r}$ $E(W)^{M/M/1} = \frac{\mu_S r}{1-r} = \frac{r}{\lambda_S(1-r)}$

	M/M/1 $\lambda_A=5 \text{ min}^{-1}$ $\mu_s=10 \text{ s}$	M/D/1 λ_A =5 min ⁻¹ μ_s =10 s	M/M/1 $\lambda_A=5.5~min^{-1}$ $\mu_S=10~s$	M/D/1 $λ_A$ =5.5 min ⁻¹ $μ_s$ =10 s
E(X)	5	35/12	11	5.96
E(X _W)	50/12	25/12	10.08	5.04
E(W)	5/6 min	5/12	110 s	55 s
E(R)	1 min	7/12	120 s	65 s

System kolejkowy M/M/1-PS (współdzielenie procesora)

- Wprowadzamy OC, każde zadanie dostaje podczas OC 1/n czasu, gdzie n to aktualna liczba zadań w systemie. Czyli $\lambda_S \to \lambda_S/n$
- Zadania wchodzą od razu do wykonania, co przypomina M/M/∞ (tylko zadania wykonują się dłużej)
- Ale:

Prawdopodobieństwo ukończenia pojedynczego zadania w OC: λ_S/n Prawdopodobieństwo ukończenia jakiegokolwiek zadania w OC: $n^*\lambda_S/n=\lambda_S$ \rightarrow globalnie system możemy opisać parametrami λ_A i λ_S (jak M/M/1)

$$E(X)^{M/M/1-PS} = \frac{r}{1-r}$$
 $E(R)^{M/M/1-PS} = \frac{1}{\lambda_S(1-r)}$ $\prod_{n=0}^{M/M/1-PS} = (1-r)r^n$

 dla systemów z dużą wariancją czasów wykonywania współdzielenie procesora jest korzystne (daje mniejsze E(R)), jednak gdy wariancja czasów wykonania jest mała stan system M/M/1 może być lepszy.

System kolejkowy M/M/1-PS - przykład

- Czas spędzany w systemie przez zadanie jest proporcjonalny do wymagań zadania
- R_k czas przebywania w systemie zadania k, zał: jest proporcjonalny do jego wymagań (np. długości pliku) l_k

$$R_k \sim l_k \equiv c \cdot l_k \rightarrow E(R_k) = E(c \cdot l_k) = cE(l_k) = c\mu_S = \frac{c}{\lambda_S}$$

ale
$$E(R_k) = E(R) = \frac{1}{\lambda_s(1-r)}$$
 \rightarrow $c = \frac{1}{1-r}$

- Przekaźnik, działający w systemie typu PS, obsługuje max. 2.5*10⁹ b/s, średnia długość pakietów to 1250 B = 10 000 b. λ_A =200 000 pakiet/s
 - $\rightarrow \lambda_{\rm S} = 2.5*10^9$ b/s / 10 000 b = 250 000 pakiet/s
 - \rightarrow r= 200 000 pakiet/s / 250 000 pakiet/s =0.8

Średnie opóźnienie średniego pakietu (z prawa Little'a) $\rightarrow E(X) = \frac{r}{1-r} = \frac{0.8}{1-0.8} = 4$ $E(R) = \frac{1}{\lambda_1} E(X) = \frac{4}{200000} s = 20 \,\mu s$

Średnie opóźnienie pakietu o długości 10000 B (8 razy większego niż średnia)

$$R_0 = \frac{10000 \cdot 8[b]}{2500 \cdot 000000[b/s]} = 32 \,\mu s \rightarrow E(R \mid l_k) = \frac{1}{\lambda_S (1-r)} = \frac{\mu_S}{1-r} = \frac{32[\mu s]}{1-0.8} = 160 \,\mu s$$

→ opóźnienie 8 razy większe niż przeciętnie

System kolejkowy M/G/∞

Dla ∞ wielu serwerów sposób obsługi jest nieistotny, liczy się tylko średni czas obsługi

→ stan stacjonarny jak w M/M/∞ i dany rozkładem Poissona

Inne

nieskończona liczba źródeł

Modele Erlanga – klient rezygnuje gdy serwery są zajęte (model Erlanga A ze stratami zgłoszeń) M/G/k/k (lub M/G/k/0), model Erlanga B – część klientów próbuje ponownie,

- Modele z dużymi fluktuacjami zgłoszeń i potencjalnie dużymi stratami
- S źródeł

Model Engseta M/G/k/k/S (lub M/G/k/0/S) – w telekomunikacji połączenie z jednego źródła wyłącza kolejne źródło

$$dla \ 0 \le i \le k: \quad \Pi_i = \frac{\binom{S}{i} r^i}{\sum_{j=0}^k \binom{S}{j} r^j}$$

Sieć www jako proces stochastyczny: każda strona to stan, chodząc pomiędzy stronami zmieniamy stan.

Zał: wybór każdego z linków jest równoprawdopodobny

$$P_{i,j} = \begin{cases} \frac{1}{n_i} & \text{gdy strona } i \text{ linkuje do strony } j; \quad n_i - \text{liczba linków na stronie } i \\ 0 & \text{gdy strona } i \text{ nie linkuje do strony } j \text{ lub } i = j \end{cases}$$

Dygresja: Jak zdefiniować ważność strony?

Próba 1: Ważność strony *k* to liczba linków do niej prowadzących: x_k

... ale chcemy aby ważne strony znaczyły więcej

Próba 2: x_k to suma x_i gdy strona *i* linkuje do k

... ale farmy linków

Próba 3: umniejszamy znaczenie stron z dużą ilością linków: $x_k = \sum_{i=1}^{\infty} \frac{x_i}{n_i}$ stronach linkujących do strony k

suma po

Powyższa definicja odpowiada wynikowi dla stanu stacjonarnego.

Zatem ważność strony możemy obliczać jak odpowiedni stan stacjonarny.

Czy istnieje stan stacjonarny macierzy przejścia opisującej Internet? Przykład:

$$P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$P_{1,2}=1$$

$$P = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$P_{1} = P_{0}P = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

$$P_{2} = P_{1}P = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

$$P_{3} = P_{2}P = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

$$P_{3} = P_{2}P = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

$$P_{3} = P_{2}P = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

$$P_{3} = P_{2}P = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

$$P_{3} = P_{2}P = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Zmieniamy macierz przejścia:
$$P = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

(czynnik 1/N wyraża losowy wybór strony)

$$P_1 = P_0 P = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix}$$

$$P_2 = P_1 P = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

$$P_3 = P_2 P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

$$P_4 = P_2 P = \begin{pmatrix} \frac{1}{4} & \frac{3}{4} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{3}{8} & \frac{5}{8} \end{pmatrix}$$

$$P_{\infty} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Spr:
$$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Procesy stochastyczne a Page Rank

Prawdziwy Internet opiszemy

$$P = \alpha P_{rzeczywiste,norm} + (1-\alpha) \frac{1}{N} \begin{pmatrix} 1 & 1 & \dots \\ 1 & 1 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

- normalizacja prowadzi do macierzy stochastycznej mającej stan stacjonarny
- dla α=1 P opisuje rzeczywisty Internet
- dla α=0 wszystkie strony równoważne p_{i,i}=1/N

L.Page i S.Brin: α =0.85 (Page Rank)

- Szukanie stanu stacjonarnego to szukanie wektora własnego do wartości własnej λ_1 =1, ... ale duży rozmiar macierzy
- Dla N=80*10⁶ potrzeba około 50 iteracji Zbieżność zależy od λ_2 : λ_2 =0.3 kilka iteracji, λ_2 =0.7 kilkanaście iteracji
- Prawdziwe λ_2 jest (bardzo) bliskie 1 \rightarrow potrzeba dużo iteracji
- Dla rzeczywistego Internetu przy N=25*10⁹ potrzeba było blisko 100 iteracji (kilka dni obliczeń) → podział sieci na części, metody numeryczne (macierz rzadka, macierz jedynek).

Obecnie prawdopodobieństwa przejść szacowane są na podstawie gromadzonych danych. Algorytm (zastrzeżony) uwzględnia również inne czynniki.

Ukryte łańcuchy Markowa

Do tej pory znaliśmy macierz przejścia i na jej podstawie wyznaczaliśmy charakterystyki procesu. Znaliśmy także możliwe stany i obserwowali, które występują.

Teraz nie obserwujemy stanów bezpośrednio, ale ich funkcje losowe.

Zastosowania:

- rozpoznawanie mowy gestów
- odszumianie sygnału (tel. komórkowa)
- szukanie sekwencji zasad odsiewając mutacje

Możliwe pytania:

- z jakiego stanu pochodzą obserwowane wyniki (cała realizacja, lub dla danego czasu)
- z jakim prawdopodobieństwem wyniki pochodzą z konkretnego modelu
- jak z obserwacji estymować parametry modelu (np. prawdodopodobieństwa przejść)

Ukryte łańcuchy Markowa

Zał: Nie obserwujemy stanu X_t ale jego funkcję losową $Y=Y(X_t)$ (zał: o skończonym zbiorze wartości).

 \rightarrow mamy drugi proces Y_t : $Y_0, Y_1, Y_2, ...$

X_t nazywamy stanem ukrytym, X – procesem ukrytym Y_t nazywamy stanem obserwowanym, Y- procesem obserwowanym

Zał: X_t jest procesem Markowa oraz Y_t jest funkcją losową tylko X_t , X_{t-1} i Y_{t-1} ; wtedy proces podwójny $A_t = (X_t, Y_t)$ jest też procesem Markowa (zależą od A_{t-1})

Def: $A_t=(X_t, Y_t)$ jest częściowo obserwowanym procesem (modelem, łańcuchem (czas i stany dyskretne)) jeżeli prawdopodobieństwo przejścia nie zależy od Y_{t-1} czyli

$$P(A_t \mid A_{t-1}) = P(A_t \mid X_{t-1}) \qquad \equiv \qquad P(X_t, Y_t \mid X_{t-1}, Y_{t-1}) = P(X_t, Y_t \mid X_{t-1})$$

Dalej zakładamy

$$P(X_{t}, Y_{t} | X_{t-1}) = P(X_{t} | X_{t-1}) \cdot P(Y_{t} | X_{t})$$

czyli zwykłe przejścia w procesie ukrytym X, a następnie X przechodzi w obserwowany Y. (np. sygnał X z szumem E daje w wyniku sygnał Y)

Notacja "parametry modelu"

Prawdopodobieństwo stanu początkowego X_0 =i oraz obserwacji Y_0 =k $\alpha_0(i,k) := P(X_0 = i, Y_0 = k)$

Element macierzy przejścia dla procesu X: $X_{t-1}=i \to X_t=j$ przy obserwacji $Y_t=k$ $C(i;j,k) \coloneqq P(X_t=j,Y_t=k \mid X_{t-1}=i)$

Wektor zbudowany ze prawdopodobieństw stanów początkowych X_0 i obserwacji Y_0 =k $\vec{\alpha}_0(k)$:= $(\alpha_0(0,k),\alpha_0(1,k),\alpha_0(2,k),...)$

Macierz przejścia $\hat{C}(k)$ w stanach X (z X_{t-1} =i do X_t=j) przy ustalonej obserwacji Y_t=k $\left[\hat{C}(k)\right]_{i o j} \coloneqq C(i;j,k)$

Zatem mamy:

$$\sum_{k} \vec{\alpha}_{0}(k) = P_{0} \quad \text{ stan początkowy procesu X}$$

$$\sum_{k} \hat{C}(k) = P \qquad \text{macierz przejścia w procesie X}$$

$$\vec{\theta} \coloneqq (\vec{lpha}_{\scriptscriptstyle 0}(k), \hat{C}(k))$$
 - parametry modelu

Notacja "parametry modelu" - przykład

Zał: X_t – stany ukryte (binarne: 0 lub 1)

E_t − szum (przekłamanie) (binarne)

Y_t – stany obserwowane (binarne)

Zał: błędy (E_t =1) pojawiają się z prawdopodobieństwem ε

$$X_t \oplus E_t = Y_t P(Y_t)$$

$$1 \oplus 0 = 1 \quad 1-\varepsilon$$

$$1 \oplus 1 = 0$$

$$0 \oplus 0 = 0 \quad 1-\varepsilon$$

$$1-\varepsilon$$

$$0 \oplus 1 = 1$$

$$\varepsilon^{4}$$

wtedy np.

$$C(0;1,0) = p_{0\rightarrow 1} \cdot \varepsilon$$

$$C(0;1,1) = p_{0\to 1} \cdot (1-\varepsilon)$$

$$\sum_{k=\{0,1\}} C(0;1,k) = p_{0\rightarrow 1} \cdot \varepsilon + p_{0\rightarrow 1} \cdot (1-\varepsilon) = p_{0\rightarrow 1}$$

Inny spotykany model:

Model BSC (binary

symmetric channel) popełnienie błędu nie

zależy od wartości X,

Model Gilberta-Elliota błędy pojawiaja się seriami

Znając $p_{i o j}, \quad \mathcal{E}, \quad P_0 \quad \text{(parametry modelu) znamy macierze } \ \hat{C}(k) \ \text{i mamy pełną}$ informację o modelu.

Przypadek znanych parametrów modelu

Prawdopodobieństwo pojawienia się określonej sekwencji $\vec{Y}=(Y_0,Y_1,...,Y_T)$ przy ustalonych parametrach $\vec{\theta}:=(\vec{\alpha}_0,\hat{C})$:

$$P(Y_0,Y_1,...,Y_T\,|\,\vec{\theta}\,)$$
 a to jest funkcja największej wiarygodności $L_{\vec{y}}(\vec{\theta}\,) \equiv P(\vec{Y}\,|\,\vec{\theta}\,)$

Funkcję tę obliczymy jako

$$L_{\vec{Y}}(\vec{\theta}) = \sum_{X_0, X_1, \dots, X_T} \alpha_0(X_0, Y_0) \cdot C(X_0; X_1, Y_1) \cdot C(X_1; X_2, Y_2) \cdot \dots \cdot C(X_{T-1}; X_T, Y_T)$$

 wyrażenie pod sumą to prawdopodobieństwo konkretnej realizacji procesu X przy obserwowanych stanach procesu Y

$$\alpha_0(i,k) = P(X_0 = i, Y_0 = k)$$

$$C(i; j,k) = P(X_t = j, Y_t = k \mid X_{t-1} = i)$$

- sumujemy po wszystkich możliwych wartościach nieobserwowanych stanów X_t
- Obliczanie numeryczne $L_{\vec{Y}}(\vec{\theta})$ wprost z powyższej definicji jest bardzo czasochłonne (T sumowań iloczynów T+1 liczb)
 - → istnieją algorytmy przyśpieszające takie obliczenia

Algorytm rekursji do przodu

Algorytm rekursji do przodu (forward recursion algorithm):

$$\vec{\alpha}_0(k) := (\alpha_0(0,k), \alpha_0(1,k), \alpha_0(2,k), \ldots)_M$$
$$\left[\hat{C}(k)\right]_{i \to j} := C(i;j,k) \qquad \left[\hat{C}(Y_t)\right]_{M \times M}$$

wtedy
$$L_{\vec{Y}}(\vec{\theta}) = \vec{\alpha}_0(Y_0) \left(\prod_{t=1}^T \hat{C}(Y_t) \right) \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \end{pmatrix}$$

$$L_{\vec{Y}}(\vec{\theta}) = \left[\left[\left[\vec{\alpha}_0(Y_0) \hat{C}(Y_1) \right] \hat{C}(Y_2) \right] \dots \hat{C}(Y_T) \right] \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \end{pmatrix}$$

Obliczanie numeryczne wymaga T mnożeń wektora M-elementowego przez macierz MxM

Algorytm rekursji do przodu

gdzie tu zysk?

Ozn:
$$X_1 \equiv (X_{t=0} = 1)$$
 $Y_0 \equiv (Y_{t=0} = Y_0)$

$$\vec{\alpha}_0(Y_0) = (P(X_0, Y_0), P(X_1, Y_0), P(X_2, Y_0), \dots, P(X_{M-1}, Y_0))$$

$$\hat{C}(Y_1) = \begin{pmatrix} P_{(X_0,Y_0 \to X_0,Y_1)} & P_{(X_0,Y_0 \to X_1,Y_1)} & \dots \\ P_{(X_1,Y_0 \to X_0,Y_1)} & P_{(X_1,Y_0 \to X_1,Y_1)} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \qquad \leftarrow \text{ Y}_0 \text{ nie jest potrzebne w definicji, a jest dodane tylko dla jasności}$$

$$\vec{\alpha}_{0}(Y_{0})\hat{C}(Y_{1}) = \left(P(X_{0}, Y_{0})P_{(X_{0}, Y_{0} \to X_{1}, Y_{1})} + P(X_{1}, Y_{0})P_{(X_{1}, Y_{0} \to X_{0}, Y_{1})} + \dots, \begin{array}{c} X_{3} \bullet \\ X_{2} \bullet \\ Y_{0}(X_{0}, Y_{0})P_{(X_{0}, Y_{0} \to X_{1}, Y_{1})} + P(X_{1}, Y_{0})P_{(X_{1}, Y_{0} \to X_{1}, Y_{1})} + \dots, \end{array}\right) = X_{1} \bullet \underbrace{X_{1} \bullet X_{2} \bullet X_{1}}_{Y_{0}(X_{1}, Y_{1})} + \underbrace{X_{1} \bullet X_{2} \bullet X_{1}}_{Y_{0}(X_{1}, Y_{1})} + \underbrace{X_{2} \bullet X_{1}}_{X_{1}} + \underbrace{X_{2} \bullet X_{1}}_{Y_{0}(X_{1}, Y_{1})} + \underbrace{X_{2} \bullet X_{1}}_{X_{1}, Y_{1})} + \underbrace{X_{2} \bullet X_{1}}_{X_{1}, Y_{1}} + \underbrace{X_{2}$$

$$\vec{\alpha}_{0}(Y_{0})\hat{C}(Y_{1})\hat{C}(Y_{2}) = (P(X_{0}, Y_{1}), P(X_{1}, Y_{1}), \dots)\hat{C}(Y_{2}) =$$

$$(P(X_{0}, Y_{1})P_{(X_{0}, Y_{1} \to X_{0}, Y_{2})} + P(X_{1}, Y_{1})P_{(X_{1}, Y_{1} \to X_{0}, Y_{2})} + \dots,$$

$$P(X_{0}, Y_{1})P_{(X_{0}, Y_{1} \to X_{1}, Y_{2})} + P(X_{1}, Y_{1})P_{(X_{1}, Y_{1} \to X_{1}, Y_{2})} + \dots, \dots) = (P(X_{0}, Y_{2}), P(X_{1}, Y_{2}), \dots)$$

czyli nie powtarzamy sumowania dla ścieżek, które różnią się np. jednym stanem pośrednim

Algorytm rekursji do tyłu

Algorytm rekursji do tyłu (backward recursion algorithm) :

$$L_{\vec{Y}}(\vec{\theta}) = \vec{\alpha}_0(Y_0) \begin{bmatrix} \hat{C}(Y_1) \dots \hat{C}(Y_{T-1}) \begin{bmatrix} \hat{C}(Y_T) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \end{bmatrix} \end{bmatrix}$$

ale musimy znać kompletny wektor stanów obserwowanych

■ Można połączyć oba algorytmy → forward-backward recursion algorithm zanim napłyną kompletne dane możemy wystartować algorytm do przodu

Szukanie parametrów modelu

• Mając $L_{\vec{Y}}(\vec{\theta})$ szukamy dla jakich $\vec{\theta}$ osiąga ona maksimum i tak możemy znaleźć estymatory parametrów modelu. Zwykle jest to złożony problem numeryczny (szukanie maksimum funkcji w wielowymiarowej przestrzeni parametrów). Jest to zwykła metoda największej wiarygodności.

Estymacja sekwencji stanów ukrytych

Syt: znamy parametry $\vec{\theta}$ oraz obserwacje $\vec{Y}=(Y_0,Y_1,...,Y_T)$ Szukamy $\vec{X}=(X_0,X_1,...,X_T)$

- Nie ma optymalnego estymatora stanów ukrytych
- Często używany jest estymator MAP (maximum a posteriori probability) :

$$\vec{X}^* \equiv \arg\max_{\vec{X}} \pi(\vec{X} \mid \vec{Y}) \qquad \text{gdzie } \pi(\vec{X} \mid \vec{Y}) = \frac{P(\vec{X}, \vec{Y})}{P(\vec{Y})}$$

$$\rightarrow \vec{X}^* = \arg\max_{\vec{X}} P(\vec{X}, \vec{Y})$$

czyli estymatorem jest sekwencja stanów $\vec{X}^* = (X_0^*, X_1^*, ..., X_T^*)$ dająca największe prawdopodobieństwo **ciągu** obserwacji $\vec{Y} = (Y_0, Y_1, ..., Y_T)$

Obliczanie
$$\vec{X}^*$$

$$(X_0, X_1, ..., X_t)$$
 Def: $\tilde{\alpha}_t(j, \vec{y}_0^t) \equiv \max_{t=1} P[X_0^{t-1} = x_0^{t-1}, X_t = j, \vec{Y}_0^t = \vec{y}_0^t] = ...$
$$(y_0, y_1, ..., y_t)^{x_0} (x_0, x_1, ..., x_t)$$

$$\ldots \equiv \max P \big(X_0 = x_0, Y_0 = y_0, X_1 = x_1, Y_1 = y_1, \ldots, X_{t-1} = x_{t-1}, Y_{t-1} = y_{t-1}, X_t = j, Y_t = y_t \big)$$
 (dla 1≤t≤T)

Estymacja sekwencji stanów ukrytych

Takie $\tilde{\alpha}_t(j, \vec{y}_0^t) \equiv \max P[X_0^{t-1} = x_0^{t-1}, X_t = j, \vec{Y}_0^t = \vec{y}_0^t]$ spełnia zależność rekurencyjną

$$\tilde{\alpha}_0(i, y_0) \equiv \alpha_0(i, y_0) \equiv P[X_0 = i, Y_0 = y_0] \quad (dla \ t = 0)$$

$$\tilde{\alpha}_{t}(j, \vec{y}_{0}^{t}) = \max_{i} \{\tilde{\alpha}_{t-1}(i, \vec{y}_{0}^{t-1}) \cdot C(i; j, y_{t})\} \quad dla \ 1 \leq t \leq T$$

Jest to właśnie sekwencja maksymalizująca prawdopodobieństwo (czyli szukane X^*) dla ścieżki kończącej się w X_t =j przy obserwowanych stanach $y_0, ..., y_t$.

Każdorazowo maksimum szukamy wśród M ścieżek (j=0,1,...,M-1) spośród których wybieramy tę z największą $\tilde{\alpha}_t(j,\vec{y}_0^t)$.

Różnica z szukaniem funkcji największej wiarygodności leży w tym, że tam liczyliśmy sumę po ścieżkach, a tutaj wybieramy ścieżkę dającą największe prawdopodobieństwo.

Można też, korzystając z $\max_X \log f(x) = \log \max_X f(x)$ szukać $\alpha_t(j, y_0^t) \equiv \log \tilde{\alpha}_t(j, y_0^t)$ $\alpha_t(j, y_0^t) = \max_i \{\alpha_{t-1}(i, y_0^{t-1}) + d(i; j, y_t)\}$ $\alpha_t(j, y_0^t) \equiv \log C(i; j, y_t) \equiv \log P[X_t = j, Y_t = y_t \mid X_{t-1} = i]$ $\alpha_0(j, y_0) = \log(\alpha_0(j, y_0))$ $d(i; j, y_t) \equiv \log C(i; j, y_t) \equiv \log P[X_t = j, Y_t = y_t \mid X_{t-1} = i]$

Algorytm Viterbiego

$$\begin{split} &\alpha_{t}(j, y_{0}^{t}) \equiv \log \tilde{\alpha}_{t}(j, y_{0}^{t}) \\ &\alpha_{t}(j, y_{0}^{t}) = \max_{i} \{\alpha_{t-1}(i, y_{0}^{t-1}) + d(i; j, y_{t})\} \\ &d(i; j, y_{t}) \equiv \log C(i; j, y_{t}) \equiv \log P[X_{t} = j, Y_{t} = y_{t} \mid X_{t-1} = i] \end{split}$$

- 1) Oblicz lub załóż $\alpha_0(j,y_0) = \log(\alpha_0(j,y_0))$ lub, jeśli znamy stan początkowy $\alpha_0(j,y_0) = \begin{cases} \log(1) = 0 & j = x_0 \\ \log(0) = -\infty & j \neq x_0 \end{cases}$ (zamiast ∞ podstawiamy dużą liczbę ujemną)
- 2) Oblicz rekurencyjnie

$$\alpha_{t}(j, y_{0}^{t}) = \max_{i} \{\alpha_{t-1}(i, y_{0}^{t-1}) + d(i; j, y_{t})\}$$

dla każdego j zapamiętaj z którego stanu X_{t-1} (=i) pochodzi maksimum. Będzie to nasz potencjalny estymator $X_{t-1}^*(j) = \arg\max_{\cdot} [\alpha_{t-1}(i,y_{t-1}) + d(i;j,y_t)]$

- 3) Postępuj tak aż do znalezienia $oldsymbol{X}_{\scriptscriptstyle T}^*(j)$
- 4) Wybierz j dające maksymalne $X_T^st(j)$ i przyjmij je za końcowy estymator X_T^st
- 5) Rekurencyjnie cofaj się, za kolejne estymatory przyjmując zapamiętane argmax

Tak znaleziona ścieżka maksymalizuje również $P(\vec{Y} \mid \vec{X})$

Proces o dwóch stanach ukrytych {A,B}, dwóch stanach jawnych {a,b} i macierzy błędów E prowadzącej ze stanów ukrytych do jawnych

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A}$$

$$E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ a & b \end{pmatrix}_{B}^{A}$$

Załóżmy nieznany (ukryty) stan początkowy, czyli wektor stanu przyjmiemy jako $P_0^{\{A,B\}} = \left(\frac{1}{2},\frac{1}{2}\right)$

Obserwujemy:

t=0

a

Obliczamy:

$$\alpha_{0}(A,a) \equiv P(X_{0} = A, Y_{0} = a) = P_{0}^{\{A,B\}}(A)P(a \mid A) = \frac{1}{2} \cdot \stackrel{E_{A \to a}}{0.8} = \frac{8}{20}$$

$$\alpha_{0}(B,a) = P(X_{0} = B, Y_{0} = a) = P_{0}^{\{A,B\}}(B)P(a \mid B) = \frac{1}{2} \cdot \stackrel{E_{B \to a}}{0.3} = \frac{3}{20}$$

$$\alpha_{1}(A,a) = \max_{i} [\alpha_{0}(i,a) \cdot C(i;A,a)] = \max_{i} [\alpha_{0}(A,a) \cdot C(A;A,a), \alpha_{0}(B,a) \cdot C(B;A,a)] = \max_{i} [\alpha_{0}(A,a) \cdot P_{AA} \cdot E_{Aa}, \alpha_{0}(B,a) \cdot P_{BA} \cdot E_{Aa}] = \max_{i} [\frac{8}{20} \cdot \frac{8}{10} \cdot \frac{8}{10} \cdot \frac{3}{20} \cdot \frac{3}{10} \cdot \frac{8}{10}] = \frac{8^{3}}{2000} \rightarrow X_{1}^{*}(A) = A$$

Proces o dwóch stanach ukrytych {A,B}, dwóch stanach jawnych {a,b} i macierzy błędów E prowadzącej ze stanów ukrytych do jawnych $\alpha_0(A,a) = \frac{8}{20}$

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad P_{0}^{\{A,B\}} = \left(\frac{1}{2}, \frac{1}{2}\right) \qquad \qquad \alpha_{0}(B,a) = \frac{3}{20} \\ \alpha_{1}(A,a) = \frac{8^{3}}{2000} \quad X_{1}^{*}(A) = A$$
Obserwujemy: a b

$$\alpha_1(B,a) = \max_i [\alpha_0(i,a) \cdot C(i;B,a)] = \max[\alpha_0(A,a) \cdot C(A;B,a), \alpha_0(B,a) \cdot C(B;B,a)] = \max_i [\alpha_0(A,a) \cdot C(B;B,a), \alpha_0(B,a), \alpha_0(B$$

$$= \max[\alpha_0(A, a) \cdot P_{AB} \cdot E_{Ba}, \alpha_0(B, a) \cdot P_{BB} \cdot E_{BA}] = \max[\frac{8}{20} \cdot \frac{2}{10} \cdot \frac{3}{10}, \frac{3}{20} \cdot \frac{7}{10} \cdot \frac{3}{10}] =$$

$$= \max\left[\frac{48}{2000}, \frac{63}{2000}\right] = \frac{63}{2000} \rightarrow X_1^*(B) = B$$

$$\alpha_2(A,b) = \max[\alpha_1(A,a) \cdot C(A;A,b), \alpha_1(B,a) \cdot C(B;A,b)] =$$

$$= \max[\alpha_1(A,a) \cdot P_{AA} \cdot E_{Ab}, \alpha_1(B,a) \cdot P_{BA} \cdot E_{Ab}] = \max[\frac{8^3}{2000} \cdot \frac{8}{10} \cdot \frac{2}{10}, \frac{63}{2000} \cdot \frac{3}{10} \cdot \frac{2}{10}] =$$

$$= \frac{8^3}{2000} \cdot \frac{8}{10} \cdot \frac{2}{10} = \frac{8^4}{10^5} = \frac{4096}{10^5} \longrightarrow X_2^*(A) = A$$

Proces o dwóch stanach ukrytych {A,B}, dwóch stanach jawnych {a,b} i macierzy błędów E prowadzącej ze stanów ukrytych do jawnych $\alpha_0(A,a) = \frac{8}{20}$

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad P_{0}^{\{A,B\}} = \left(\frac{1}{2}, \frac{1}{2}\right) \qquad \qquad \alpha_{0}(B,a) = \frac{3}{20} \qquad \alpha_{1}(A,a) = \frac{8^{3}}{2000} \quad X_{1}^{*}(A) = A \qquad \alpha_{1}(B,a) = \frac{63}{2000} \quad X_{1}^{*}(B) = B \qquad \alpha_{2}(B,b) = \max[\alpha_{1}(A,a) \cdot C(A;B,b), \alpha_{1}(B,a) \cdot C(B;B,b)] = \qquad \alpha_{2}(A,b) = \frac{4096}{10^{5}} \quad X_{2}^{*}(A) = A \qquad \alpha_{1}(B,a) = \frac{4096}{10^{5}} \quad X_{2}^{*}(A) = A \qquad \alpha_{2}(B,b) = \max[\frac{8^{3}}{2000} \cdot \frac{7}{10} \cdot \frac{63}{10^{5}} \cdot \frac{7}{10}] = \max[\frac{7168}{210^{5}}, \frac{3087}{210^{5}}] = \frac{7168}{210^{5}} = \frac{3584}{210^{5}} \qquad \rightarrow \qquad X_{2}^{*}(B) = A \qquad \alpha_{1}(B,a) = A \qquad \alpha_{2}(B,b) = A \qquad \alpha_{2}(B,b) = A \qquad \alpha_{2}(B,b) = A \qquad \alpha_{3}(B,a) = \frac{3}{2000} \quad X_{1}^{*}(A) = A \qquad \alpha_{4}(B,a) = \frac{63}{2000} \quad X_{1}^{*}(B) = A \qquad \alpha_{5}(B,a) = \frac{3}{2000} \quad X_{1}^{*}(B) = A \qquad \alpha_{$$

Odtwarzamy końcowe estymatory stanów ukrytych:

Ponieważ
$$\alpha_2(A,b) = \frac{4096}{10^5} > \frac{3584}{10^5} = \alpha_2(B,b) \quad \text{przyjmujemy} \quad X_2^* = A$$

$$X_1^* = X_2^*(A) = A$$

$$X_0^* = X_1^*(A) = A$$

Zatem estymowana sekwencja to {A,A,A} (przy obserwacji {a,a,b}).

Dokładamy nową obserwację dla t=3: Y₃=b

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{pmatrix}_{B}^{A} \qquad P_{0}^{\{A,B\}} = \left(\frac{1}{2},\frac{1}{2}\right) \qquad \qquad \alpha_{0}(A,a) = \frac{8}{20} \qquad \qquad \alpha_{0}(B,a) = \frac{3}{20} \qquad \qquad$$

Odtwarzamy końcowe estymatory stanów ukrytych:

Ponieważ

$$\alpha_3(A,b) = \frac{65536}{10^7} < \frac{175616}{10^7} = \alpha_3(B,b)$$
 przyjmujemy $X_3^* = B \rightarrow X_2^* = B \rightarrow X_1^* = A \rightarrow X_0^* = A$

Zatem estymowana sekwencja to {A,A,B,B} (przy obserwacji {a,a,b,b}).

Dokładamy nową obserwację dla t=4: Y₄=a

$$P = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & A & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad E = \begin{pmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ B & B \end{pmatrix}^{A} \qquad P_{0}^{\{A,B\}} = \begin{pmatrix} \frac{1}{2}, \frac{1}{2} \end{pmatrix}$$

$$\alpha_{0}(A,a) = \frac{8}{20} \qquad \alpha_{0}(B,a) = \frac{3}{20} \qquad \alpha_{0}(B,a) = \frac{3}{20} \qquad \alpha_{1}(A,a) = \frac{8}{20} \qquad \alpha_{1}(A,a) = \frac{8}{20} \qquad \alpha_{1}(A,a) = \frac{8}{20} \qquad \alpha_{1}(A,a) = \frac{8}{20} \qquad \alpha_{1}(A,a) = \frac{3}{20} \qquad \alpha_{1}(B,a) = \frac{63}{2000} \qquad X_{1}^{*}(A) = A \qquad \alpha_{1}(B,a) = \frac{63}{2000} \qquad X_{1}^{*}(B) = B \qquad \alpha_{2}(A,b) = \frac{63}{10^{5}} \qquad X_{2}^{*}(A) = A \qquad \alpha_{2}(A,b) = \frac{4096}{10^{5}} \qquad X_{2}^{*}(A) = A \qquad \alpha_{2}(B,b) = \frac{3584}{210^{5}} \qquad X_{2}^{*}(B) = A \qquad \alpha_{3}(B,b) = \frac{65536}{10^{7}} \qquad X_{3}^{*}(A) = A \qquad \alpha_{3}(B,b) = \frac{175616}{10^{7}} \qquad X_{3}^{*}(A) = A \qquad \alpha_{3}(B,b) = \frac{175616}{10^{7}} \qquad X_{3}^{*}(B) = B \qquad \alpha_{4}(B,a) = \frac{175616}{10^{7}} \qquad X_{4}^{*}(B) =$$

Odtwarzamy końcowe estymatory stanów ukrytych:

Ponieważ
$$\alpha_4(A,a) = \frac{4214784}{10^9} > \frac{3687936}{10^9} = \alpha_4(B,a)$$
 przyjmujemy $X_4^* = A \rightarrow X_3^* = B \rightarrow X_2^* = B \rightarrow X_1^* = A \rightarrow X_0^* = A$ Zatem estymowana sekwencja to {A,A,B,B,A} (przy obserwacji {a,a,b,b,a}).

Sprawdzamy pojedyncze ścieżki:

wynik algorytmu
$$P(A \ A \ B \ B \ A) = \frac{8}{20} \cdot 0.64 \cdot 0.14 \cdot 0.49 \cdot 0.24 = \frac{4214784}{10^9} \approx 0.00421$$

początkowa sekwencja AAA

$$P(A \ A \ A \ B \ A) = 0.4 \cdot 0.64 \cdot 0.16 \cdot 0.14 \cdot 0.24 = \frac{1376256}{10^9} \approx 0.00138$$

największe prawdopodobieństwa z każdego węzła

$$P(A \ A \ A \ A \ A) = 0.4 \cdot 0.64 \cdot 0.16 \cdot 0.16 \cdot 0.16 \cdot 0.64 = \frac{4194304}{10^9} \approx 0.00419$$