Конспект по дискретной алгебре (1-й семестр)

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Андрей Сергеевич **Станкевич** (лектор, инструктор по отношениям... на множествах) t.me/andrewzta

1 октября 2021 г.

Содержание

1	Отн	ошения	3
	1.1	Свойства отношений	3
	1.2	Транзитивное замыкание	3
2	Бул	ева алгебра	4
	2.1	Определения	4
	2.2	Перечислим некоторые функиии	4
		2.2.1 Функции $n=0$	4
		2.2.2 Функции $n=1$	5
		2.2.3 Функции $n=2$	5
	2.3	Базовые связки базовых функций	5
	2.4	Базисы, критерий поста	6
		2.4.1 Канонический базис	6
	2.5	Полиномы Жегалкина	7
	2.6	Критерий Поста	8
3	Ано	нс следующей темы: Схемы элементов	9

1. Отношения

1.1. Свойства отношений

Отношения бывают:

- Рефлексивные
- Симметричные
- Антисимметричные
- Транзитивные

Транзитивность и квадрат отношения - опрпделения выглядят похоже.

Определение 1 (Композиция отношений).

$$R \subseteq A \times B, G \subseteq A \times B$$
 (1)

$$T \subseteq A \times C \text{ is } RG \overset{\text{def}}{\Longleftrightarrow} \exists x \in R$$
 (2)

$$H \subset A, H \stackrel{\text{def}}{=} R^2$$
 (3)

$$H^0 = \{(x, x) | x \in A\} \tag{4}$$

1.2. Транзитивное замыкание

Замечание. Квадрат отношения "больше на 1" - это отношение "больше на 2".

Определение 2 (Транзитивное замыкание).

Т.3. отношения ${\cal R}$ - минимальное по включение транзитивное отношение, содержащие ${\cal R}$

Определение 3 (Замкнутое относительно операции свойство). Оно выполняется для результата этой операции над объектами, тоже удовлетворяющими этому свойству.

Замечание. Не всегда есть минимальное по включению множество, удовлетворяющее заданному свойству, но тут есть, так как замкнутое относительно операции пересечения.

Определение 4 (Транзитивное замыкание, эквивалентное). Т.З. отношения R:

$$R^{+} = \bigcup_{i=1}^{\infty} R^{i} \tag{5}$$

То, что определения эквивалентны доказывается, через то, что:

- Первое подмножество второго
- Второе подмножество первого

Определение 5.

$$R^* = \bigcup_{i=0}^{\infty} R^i \tag{6}$$

Замечание. Бывает такая абстрактная ситуация: просто так не получается, но если добавить коспозицию самого с собой бесконечное количество раз, то получится.

Например, пути на графе.

2. Булева алгебра

2.1. Определения

Математические основы компьютера требуют знания двоичной логики, поэтому изучим её основы.

$$\mathbb{B} = \{True(1), False(0)\} \tag{7}$$

Булева функция - возвращает boolean. Бывают также n-арные функции: $\mathbb{B}^n\mapsto \mathbb{B}$

Функций $\mathbb{B}^n \mapsto \mathbb{B}$: 2^{2^n} .

2.2. Перечислим некоторые функиии...

2.2.1. Функции n = 0

$$\mathbb{B}^0 = \{(,)\}$$

- · alwaysTrue
- · alwaysFalse

2.2.2. Функции n=1

- \cdot id x проектор
- · not
- $\cdot 0_1$
- · 1₁

2.2.3. Функции n=2

- $0000:0_2$
- · 0001 : &&, ∧
- 0010 :→
- $0011:P_1$
- $0100: not \leftarrow$
- $0101:P_2$
- $0110: \oplus$
- $0111 : \lor$
- 1000 :↓
- 1001 :==
- $1010 : \neg y$

• ...

2.3. Базовые связки базовых функций

Но в реальности мы не хотим всегда задавать функции таблицей.

Определение 6. Композиция

Определение 7. Подстановка

Подстановка и композиция вместе обеспечивают любой достпный способ комбинации операций.

Определение 8. Замыкание множества функций - множество всех функций, которые мы можем выразить через них.

Определение 9. Базис (полная система функций) - множество функций, замыкание которого - универсальное множество функций.

2.4. Базисы, критерий поста

2.4.1. Канонический базис

Теорема 1. Через композии и подстановки операций $\{\land, \neg, \lor\}$ можно выразить любую функцию, которая могла бы появиться в таблице

Доказательство. Функция задаётся бинарной последовательностью длины n (бит для каждого набора аргументов).

Построим конструкцию. Бит совпадения некой последовательности с заданной получается через конструкцию

$$is(seq) = \bigwedge_{i=0}^{n} (initial_seq_i == seq_i) = \bigwedge_{i=0}^{n} (seq_i \ if \ initial_seq_i \ else \ \neg seq_i)$$
 (8)

Затем выберем те последовательности, где пародируемая функция выдаёт 1 и напишем в ответе:

$$f = \bigvee_{i=0}^{n} is_seq_i \ if \ seq_i$$
 (9)

Определение 10. СДНФ - совершенная дизъюнктивная нормальная функция, …СДНФ - совершенная дизъюнктивная нормальная функция, …

2.5. Полиномы Жегалкина

 $\{\oplus, \wedge, 0\}$

Лемма 1. A,B - множества булевых функций A - базис $\forall f\in A:$ можно выразить формулой через B Тогда B - базис

Доказательство. Докажем через индукцию по дереву разбора. ■

Теорема 2. $\{\oplus, \land, 0\}$ - базис

Доказательство.

$$\neg x = x \oplus \mathbb{1} \land \in Bx \lor y = \neg(\neg x \lor) \tag{10}$$

Определение 11 (Канонический полином Жегалкина).

$$P=a\oplus\bigoplus_{\begin{subarray}{c}1\leqslant i_1<\ldots< i_k\leqslant n\\k\in\overline{1,n}\end{subarray}}a_{i_1,\ldots,i_k}\wedge x_{i_1}\wedge\ldots\wedge x_{i_k},\quad a,a_{i_1,\ldots,i_k}\in\{0,1\}.$$

Любой полином преобразованиями можно привести к приведённому полиному.

Определение 12. Моном - одночлен (произведение переменных)

Замечание. Мономы $\in M$, $|M| = 2^n$:

- $x, y : M = \{1, x, y, xy\}$
- $x, y: M = \dots$

Теорема 3. Любая функция, кроме $\mathbb{O}:\exists !$ приведённый полином Жегалкина

Доказательство. У Булева функция: ∃ полином Жегалкина

• количество ПЖ: 2^{2^n}

⇒ биекция: ∀ ПЖ: ∃ БФ ■

Полезные, правда, избыточные базисы:

- $\cdot \, \, \mathbb{U}_2$ все функции от двух аргументов
- $\cdot \ \mathbb{T}_2$ все пороговые функции от двух аргументов

2.6. Критерий Поста

Классы функций:

- ${m \cdot}\ F_0: f(0,0,\dots,0) = 0$ сохранающие ноль
- $F_1: f(1,1,\ldots,1) = 1$ сохранающие ноль
- $F_m: \forall i(a_i\leqslant b_i)\Rightarrow f(a_1,\dots,a_n)\leqslant f(b_1,\dots,b_n)$ монотонные, но только "возрастают"
- F_s : существует ПЖ, не использующий \wedge , таких всего $2^(n+1)$

Теорема 4 (Теорема Поста). F - базис
$$\iff \forall i \in \{F_0, F_1, L, M, S\}: F \not\subset F_i$$

Доказательство. Первая часть - докажем, что все классы замкнуты, причём существуют функиии вне любого класса. Второе очевидно, первое докажем через дерево разбора.

Вторая часть - докажем, что если есть f_0, f_1, f_m, f_s, f_l , каждая не принадлежит соответствующему классу, это может быть и одна и та же функция, то через них можно выразить что угодно.

Да начнётся разбор случаев!

1.

$$\begin{cases} f_0(1,1,\ldots,1) = 1 \\ f_0(0,0,\ldots,0) = 1 \end{cases} \tag{12}$$

 \Longrightarrow получили 1

2. Кхм.. Тут случаев слишком много, не буду я это записывать...

8

Замечание. Критерий Поста конструктивен, поэтому возмодна такая лабораторная: даны таблицы 5 истинности функций каждого типа. Задание: выразить через них в явном виде канонический базис

Замечание. На самом деле, таблицы истинности и формулы - самые неудобные способы работы с булевыми функциями на практике:

3. Анонс следующей темы: Схемы элементов

А сколько информации содержится в функции, сколько элементов нужно для её выражения, почему обычно - много?! Об этом и обо многом другом вы узнаете на следущей лекции!