

INVESTIGATING THE DEPENDENCE ON MACHINE SIZE OF THE ENERGY CONFINEMENT IN TOKAMAKS USING DATA-DRIVEN METHODS

M.Sc. Student Karina Chiñas Fuentes

Prof. Dr. Geert Verdoolaege PhD Student Joseph Hall

11/07/2023

European Master of Science in Nuclear Fusion and Engineering Physics

[ITER Organization, 2023]

Plasma boundary
Magnetic surface
$$\log(\mathsf{T}_{\mathsf{E},\mathsf{th}}) \longrightarrow \mathsf{OLS}$$

$$\tau_{E,th} = \alpha_0 \cdot I_P^{\alpha_I} \cdot B_t^{\alpha_B} \cdot \bar{n}_e^{\alpha_n} \cdot P_{l,th}^{\alpha_P} \cdot R_{geo}^{\alpha_R} \cdot \kappa_a^{\alpha_\kappa} \cdot \epsilon^{\alpha_\epsilon} \cdot M_{eff}^{\alpha_M}$$

European Master of Science in Nuclear Fusion and Engineering Physics

WORKFLOW

GHENT

UNIVERSITY

WORKFLOW

Dataset size = 6252

DECREASING REGISTERS

DECREASING REGISTERS

"Small dataset"

"Big dataset"

Smallest subset for $\alpha_R < 1$

 $\alpha_{R} \sim 0.9998$

Subset size = 618

9.88% decreased α_R 90.12% did not

Smallest α_R

 $\alpha_{R} \sim 0.6379$

Subset size = 1459

23.34% decreased α_R 76.66% did not

STDB5

DECREASING AND UNAFFECTING REGISTERS

"Small dataset"

"Small dataset"

"Big dataset"

"Big dataset"

Smallest subset for

 $\alpha_R < 1$

 $\alpha_{\rm R} \sim 0.99$

dataset size = 618

Complementary for

 $\alpha_R < 1$

 $\alpha_{R} \sim 1.71$

dataset size = 5634

Complementary for smallest α_R

 $\alpha_{R} \sim 2.16$

dataset size = 4793

Smallest α_R

 $\alpha_{\rm R} \sim 0.64$

dataset size = 1459

+

+

Together they make **STDB5**

dataset size = 6252

WORKFLOW

WHICH REGISTERS IN STDB5 ARE DECREASING α_R ?

Depends on how you classify / label them.

IS THIS
DECREASE
DUE TO
DATA
ISSUES?

CAN WE PREDICT
WHETHER A
NEW REGISTER
WILL
DECREASE α_R ?

RELATE THE FINDINGS
TOKAMAK
CHARs & PHYSICS

European Master of Science in Nuclear Fusion and Engineering Physics

MULTICOLLINEARITY?

CONSEQUENCES

- Increase in the standard errors of each feature
- Numerical instability
- Unreliable models

[W.-M Lee, 2021]
[D.Besley, E. Kuh, and R. Welsch, 2004]
[R. M. O'Brien, 2007]

VARIANCE INFLATION FACTOR

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$$

$$VIF_k = \frac{1}{1 - R_k^2}$$

$R^2 - 1 -$	$\sum_{i=1}^{n}$	$(y_i - \hat{y}_i)^2$
N - 1 -	$\sum_{i=1}^{n}$	$\overline{(y_i - \bar{y})^2}$

	1		
I _p [MA]	B _t [T]	 €	T _{E,th} [s]
0.2959	2.205	 0.242	0.051
	I I	 	
0.9794	4.795	 0.327	0/1731
0.3740	1.744	 0.286	0.0340
			•

[D.Besley, E. Kuh, and R. Welsch, 2004] [R. M. O'Brien, 2007]

VARIANCE INFLATION FACTOR

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$$

$$VIF_k = \frac{1}{1 - R_k^2}$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

		l		
I _p [MA]	B _t [T]		€	T _{E,th} [s]
0.2959	2.205	I I	0.242	0.051
		I I		
0.9794	4.795	l 	0.327	0/1731
0.3740	1.744	I I	0.286	0.0340
		I		

[D.Besley, E. Kuh, and R. Welsch, 2004] [R. M. O'Brien, 2007]

VARIANCE INFLATION FACTOR

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$$

$$VIF_k = \frac{1}{1 - R_k^2}$$

$$Var[\beta_k] = \frac{\left(1 - R^2\right) \cdot \sum \left(y_i - \bar{y}\right)^2}{n - M - 1} \cdot \frac{1}{\sum x_k^2} \cdot VIF_k$$

$R^2 - 1 -$	$\sum_{i=1}^{n}$	$(y_i - \hat{y}_i)$	2
Λ – 1 –	$\frac{1}{\sum_{i=1}^{n}}$	$(y_i - \bar{y})$	2

I _p [MA]	B _t [T]	 E	T _{E,th} [s]
0.2959	2.205	 0.242	0.051
0.9794	4.795	 0.327	0/1731
0.3740	1.744	 0.286	0.0340
			4

[D.Besley, E. Kuh, and R. Welsch, 2004] [R. M. O'Brien, 2007]

VIF: RESULTS

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$$

$$VIF_k = \frac{1}{1 - R_k^2}$$

$$Var[\beta_k] = \frac{\left(1 - R^2\right) \cdot \sum \left(y_i - \bar{y}\right)^2}{n - M - 1} \cdot \frac{1}{\sum x_k^2} \cdot VIF_k$$

I_p -	25	17	16	21	19	18	- 25
B_t -	3.3	5.2	3.8	5.4	3.3	5.3	- 20
$ar{n}_e$ -	4.6	2.7	2.8	3	3.2	2.8	
$P_{l,th}$ -	5.8	4.1	5.4	4.4	5.8	4.2	- 15
R_{geo} -	11	13	10	14	9.4	14	- 10
κ_a -	5.6	2.7	3.6	3.2	4.4	2.8	
ϵ -	7.2	8.5	7.8	8.8	7.3	8.7	- 5
M_{eff} -	1.7	1.3	1.5	1.4	1.5		- 0
	SIDBL	TOB'S	Big	Big	Small	Small	- 0
Ć	5,	1.3 STDB5 Oecreasin	Mattectin	g Bio	Small Smallecting) -	

European Master of Science in Nuclear Fusion and Engineering Physics

VIF: RESULTS

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \hat{\boldsymbol{\beta}} = \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T\mathbf{y}$$

$$VIF_k = \frac{1}{1 - R_k^2}$$

$$Var[\beta_k] = \frac{\left(1 - R^2\right) \cdot \sum \left(y_i - \bar{y}\right)^2}{n - M - 1} \cdot \frac{1}{\sum x_k^2} \cdot VIF_k$$

B_t -	1.7	2.6	2.1	2.4	1.7	2.6	- 25
$ar{n}_e$ -	3.9	2.4	2.5	2.6	2.9	2.5	- 20
$P_{l,th}$ -	5.6	4.1	5.3	4.3	5.7	4.2	- 15
R_{geo} -	4.7	4.1	4.1	4.2	4	4.2	15
κ_a -	2.8	1.9	2.3	2	2.5	1.9	- 10
ϵ -	2	2.6	2.4	2.3	2.1	2.5	- 5
M_{eff} -					1.5	1.4	
	SIDBI	STDBS	O. Big	1.4 Big	Small	Small	- 0
Ç	, ,	S' pecreasir	Maffectin	creasing	affecting		

WORKFLOW

WHICH REGISTERS IN STDB5 ARE DECREASING α_R ?

Depends on how you classify / label them.

IS THIS
DECREASE
DUE TO
DATA
ISSUES?

Yes, but not entirely.

CAN WE PREDICT WHETHER A NEW REGISTER WILL DECREASE α_R ?

RELATE THE FINDINGS
TOKAMAK
CHARs & PHYSICS

FEATURES OF INTEREST: Entropy

$$E = -\sum_{i,j=1}^{N} \left[S_{ij} \log(S_{ij}) + \left(1 - S_{ij} \right) \log(1 - S_{ij}) \right]$$

$$E = -\sum_{\substack{i,j=1\\i\neq j}}^{N} \left[S_{ij} \log(S_{ij}) + \left(1 - S_{ij} \right) \log(1 - S_{ij}) \right]$$

$$S_{ij} = \exp\left(-\gamma \cdot D_{ij} \right), \quad D_{ij} = \left[\sum_{k=1}^{M} \left(\frac{x_{ik} - x_{jk}}{max(F_k) - min(F_k)} \right)^2 \right]^{1/2}$$

$$S_{ij} = \frac{1}{M} \sum_{k=1}^{M} \delta_{ij}(x^k); \quad \text{with } \delta_{ij}(x^k) = \begin{cases} 1, \text{ if } x_i^k = x_j^k \\ 0, \text{ if } x_i^k \neq x_j^k \end{cases}$$

columns 35 | 12

IDEA

Keep features that increased the entropy when removed.

[M. Dash and H. Liu, 2020]

FEATURES OF INTEREST: Entropy + Low MCL

columns

35 | 12

$$E = -\sum_{i,j=1}^{N} \left[S_{ij} \log(S_{ij}) + \left(1 - S_{ij} \right) \log(1 - S_{ij}) \right]$$

$$E = -\sum_{\substack{i,j=1\\i\neq j}}^{N} \left[S_{ij} \log(S_{ij}) + \left(1 - S_{ij} \right) \log(1 - S_{ij}) \right]$$

$$S_{ij} = \exp\left(-\gamma \cdot D_{ij} \right), \quad D_{ij} = \left[\sum_{k=1}^{M} \left(\frac{x_{ik} - x_{jk}}{max(F_k) - min(F_k)} \right)^2 \right]^{1/2}$$

$$S_{ij} = \frac{1}{M} \sum_{k=1}^{M} \delta_{ij}(x^k); \quad \text{with } \delta_{ij}(x^k) = \begin{cases} 1, \text{ if } x_i^k = x_j^k \\ 0, \text{ if } x_i^k \neq x_j^k \end{cases}$$

MULTICOLLINEARITY

Removing features with high VIF and causing high condition indices.

FEATURES OF INTEREST: Entropy + Low MCL

FEATURE	DESCRIPTION	FEATURE	DESCRIPTION
BETA	Plasma pressure normalised to B _t	WFICFORM	Total fast ion energy due to ICRH estimated from approximate formula
RHOSTAR	Normalised Ion Gyroradius	WFFORM	Total fast ion energy due to NBI
NUSTAR	Normalised Ion collision frequency	ZEFFNEO	Line average plasma effective charge, from Bremsstrahlung
Q95	Plasma safety factor at the 95% poloidal flux surface	DWDIA	Time rate of change of the total plasma stored energy
PFLOSS	NBI power that is lost from the plasma through charge exchange and unconfined orbits		

Description of all columns in STDB5 found in [Princeton, 2021, http://arks.princeton.edu/ark:/88435/dsp01m900nx49h]

FEATURES FOR PREDICTION

Best Performance with "big dataset"

PREDICTIONS IN NEW DEVICES

													•
<u> </u>	$\overline{I_P}$	B_t	\bar{n}_e	$P_{l,th}$	R_{geo}	κ_a	ϵ	M_{eff}	$ ho_*$	β_t	$ u_*$	995	$ au_{E,th}$
ITER	15	5.3	1.03	87	6.2	1.8	0.32	2.5	0.002	2.24	0.014	3	3.5
SPARC	8.7	12.2	3.1	25	1.85	1.97	0.31	2.5	0.003	1.20	0.03	3.2	0.77

UNAFFECTED

$$\tau_{E,2.16} = 0.06 \cdot I_p^{0.78} \cdot B_t^{0.24} \cdot \bar{n}_e^{0.41} \cdot P_{l,th}^{-0.75} \cdot R_{geo}^{2.16} \cdot \kappa_a^{0.5} \cdot \epsilon^{0.79} \cdot M_{eff}^{0.22}$$

WORKFLOW

WHICH REGISTERS IN STDB5 ARE DECREASING α_R ?

Depends on how you classify / label them.

IS THIS
DECREASE
DUE TO
DATA
ISSUES?

Yes, but not entirely.

CAN WE PREDICT WHETHER A NEW REGISTER WILL DECREASE α_R ?

Yes, with only four variables.

RELATE THE FINDINGS
TOKAMAK
CHARs & PHYSICS

Characteristic Clusters: main features

New STDB5

Characteristic Clusters: main features

New STDB5

Dimensionless Scaling and the Normalized Ion Gyroradius

$$\omega_i \cdot \tau_{E,the} \propto \rho_*^{-(2+\chi_\rho')} \cdot F(\nu_*, \beta_t, \{p_i\})$$
 with $0 \le \chi_\rho' \le 1$ $\chi_\rho' = 0.9 \pm 0.3$

H-mode

characteristic turbulence scale length $\ \ell pprox
ho_*^{\chi_{
ho}'} \cdot a^{1-\chi_{
ho}'}$

				D1g	b1g_as		1_as	
		STDB2	STDB5	Decr.	Unaff.	Decr.	Unaff.	
	χ_{ρ}	-3.09	-1.80	-1.31	-2.63	-1.5	-2.08	
	χ'_{ρ}	1.09	0.2	0.69	0.63	-0.5	0.08	
ITER	ℓ [m]	0.0012	7.99	227.43	0.026	64.99	1.15	
SPARC	ℓ [m]	0.0017	1.67	22.33	0.019	8.46	0.37	

[G. Verdoolaege et al., 2021] [I. P. E. G. et al., 1999]

Density Limits

STDB5

$$n_{GW} = \frac{10 \cdot I_p}{\pi a^2}$$

Density Limits

New STDB5

Conclusions and Further Work

CONCLUSIONS

FURTHER WORK

- Multicollinearity is **not** the sole factor influencing α_R .
- It is possible to predict influencing observations with
- Chara β_t β_t ν_* q_{95} r spherical tokamaks.
- It is possible to tell if a dataset lacks of representative physics.
- Most of the observations that surpassed the GW limit are classified as unaffecting.
- ITER and SPARC are expected to follow a scaling law similar to the 1998 scaling (great news!).

- Obtain more data on spherical tokamaks.
- Discern between spherical and non spherical.
- Take time-series data of relevant shots and subject to other ML algorithms; e.g.
 surrogate modelling.

Karina Chiñas Fuentes

Master of Science Student

FUSION-EP Programme

- E karina.chinasfuentes@ugent.be
- E nuclear.fusion@ugent.be
- L Sint Pietersnieuwstraat 41, 9000 Gent

www.ugent.be
https://nuclearfusion.ugent.be/

infusion

- f Universiteit Gent
- @ugent
- @ugent
- in Ghent University

Thank you! Questions?

Complete References

- Zohm, Hartmut. "Magnetohydrodynamic stability of tokamaks". John Wiley & Sons, 2015.
- "Machine," ITER, 2023. Available: https://www.iter.org/mach. [Accessed: Jul. 05, 2023]
- W.-M Lee, "Statistics in Python Collinearity and Multicollinearity". Medium, 2021. [Online]. Available:

https://towardsdatascience.com/statistics-in-python-collinearity-and-multicollinearity-4cc4dcd82b3f

- D. Belsley, E. Kuh, and R. Welsch, "Regression Diagnostics". Canada: Wiley-Interscience, 2004.
- R. M. O'Brien, "A caution regarding rules of thumb for variance inflation factors," Qualitative & Quantitative, vol. 41, pp. 673–690, Oct. 2007, Published on March 13, 2007. doi: 10.1007/s11135-006-9018-6.
- G. Verdoolaege et al., "The updated ITPA global h-mode confinement database: Description and analysis," Princeton Plasma Physics Laboratory, Princeton University, 2021. [Online]. Available: http://arks.princeton.edu/ark:/88435/dsp01m900nx49h.
- M. Dash and H. Liu, "Feature selection for clustering," Arizona State University, Jun. 2020. [On- line]. Available: https://www.public.asu.edu/~huanliu/papers/pakdd00clu.pdf.
- G. Verdoolaege et al., "The updated ITPA global H-mode confinement database: Description and analysis," Nuclear Fusion, vol. 61, May. 2021. doi: 10.1088/1741-4326/abdb91.
- I. P. E. G. on Confinement, Transport, I. P. E. G. on Confinement Modelling, Database, and I. P. B. Editors, "Chapter 2: Plasma confinement and transport," Nuclear Fusion, vol. 39, no. 12, p. 2175, Dec. 1999. doi: 10.1088/0029-5515/39/12/302.

