Maxwell
equations
applied to Mie
scattering
theory

**GONIN Alexis** 

# Maxwell equations applied to Mie scattering theory

**GONIN Alexis** 

University of Strasbourg

22th of August

# Objectives

Maxwell
equations
applied to Mie
scattering
theory

**GONIN Alexis** 

• Create a simple model to simulate Maxwell's equations in the context of Mie scattering theory.



# Mie scattering theory

Maxwell
equations
applied to Mie
scattering
theory







# Model Description

Maxwell
equations
applied to Mie
scattering
theory

- Mathematical Equations
- Boundary Condition
- Mesh
- Initial Condition

• Two dimensionnal system of equations

(1): 
$$\mu_r \frac{\partial H_x}{\partial t} = -\frac{\partial E_z}{\partial y}$$

(2): 
$$\mu_r \frac{\partial H_y}{\partial t} = \frac{\partial E_z}{\partial x}$$

(3): 
$$\epsilon_r \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}$$

**GONIN Alexis** 

• Feel++ CFPDE toolbox

•

$$d\frac{\partial u}{\partial t} + \nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f \text{ dans } \Omega$$

**9** 
$$d = \mu_r; \gamma = (0, E_z)$$

$$a = \mu_r; \gamma = (-E_z, 0)$$

# **Boundary Condition**

Maxwell
equations
applied to Mie
scattering
theory

- $H \wedge n = 0$  and  $\langle H, n \rangle = 0$
- Absrobing layer

#### Mesh

Maxwell
equations
applied to Mie
scattering
theory

GONIN Alexis

There are two background meshes, one for classic BC and one for absorbing BC. Then we can put any particle we want inside the screen.





# Usage

Maxwell
equations
applied to Mie
scattering
theory

- spherical particle
- variable wavelengt
- variable reflective index

### Results

Maxwell
equations
applied to Mie
scattering
theory

**GONIN Alexis** 



Figure: total field (incident plus scattered)

#### Results

Maxwell
equations
applied to Mie
scattering
theory



Figure: Scattered field (total minus incident) on a log scale

#### Results

Maxwell
equations
applied to Mie
scattering
theory



Figure: The angular scattering distribution for incident light

- https://www.met.reading.ac.uk/clouds/maxwell/
- https://arxiv.org/pdf/2302.02860 (chapter 2.1)
- https://docs.feelpp.org/toolboxes/latest/cfpdes/manual.html
- https://www.techno-science.net/glossaire-definition/Theorie-de-Mie.html
- https://www.researchgate.net/publication/243492286