서울시 여성안심택배함 입지 선정 최적화에 대한 연구

[구병모 김석진 노영준 박용준 최승민 황재호]

연구 개요

연구 목표 ----

데이터 분석을 통해 최적의 **'여성안심택배함'** 설치위치 선정

연구 과정

타겟 선정

Who? 여성 1인가구에 거주하거나 홀로 집에 있을 때 택배를 수령해야 하는 여성

데이터 수집

데이터 이름	사용 데이터 내용	데이터 제공 사이트	사용 데이터의 개수
서울시 5대 범죄 발생현황 통계	구별 5대 범죄수	서울 열린 데이터 광장	25개 구별 범죄수 데이터
서울시 1인가구(연령별) 통 계	구별 여성1인가구수	서울 열린 데이터 광장	25개 구별 여성 연령별 1인 가구수 데이터
2022 서울시 안심택배함 운 영현황 및 안내	각 구 여성안심택배함 주소, 개수	서울 특별시	25개 구별 여성안심택배함 의 개수, 주소
직접 제작	강남구내 일반백화점 위치	네이버 지도	4개의 데이터
직접제작	강남구내 경찰서 위치	네이버 지도	2개의 데이터
직접제작	강남구내 파출소 위치	네이버 지도	15개의 데이터
직접제작	강남구 지하철 위치	네이버 지도	33개의 데이터
강남구 여성인구밀도 격자	강남구 여성 인구 격자당 밀 도 파악	국토 정보맵	4170개의 데이터

데이터 전처리

22 latitude = []
23 latitude = []
24 longitude = []
25 for i in address:
27 try:
28 latitude.append(geocoding(5)[0])
29 longitude.append(geocoding(1)[1])
30 except:
31 latitude.append('err')
32 longitude.append('err')
33 address_of = pd.Dataframe(('*&\':address, '%\':latitude, '&\':'longitude))
34 address_of = for_cov('./data/cow_postbox_cow', encoding-'cpd0')
37 #address_of = for_cov('./data/gu_police_station_cow', encoding-'cpd0')
38 address_of = for_cov('./data/gu_police_station_cow', encoding-'cpd0')
49 address_of = pd.Oasframe(('*&\':taddress, '%\':'latitude, '&\':'longitude])
40 address_of = for_cov('./data/cow_postbox_cow', encoding-'cpd0')
41 address_of = for_cov('./data/cow_postbox_cow', encoding-'cpd0')
42 address_of = for_cov('./data/cow_postbox_cow', encoding-'cpd0')

도로명 주소, 지번 주소 Geocoders 라이브러리를 활용 위도, 경도 값으로 전처리

키저워 여그 베**겨**

데이터 시각화 및 결과 분석

최적화 Model 분석 및 결과 (1)

Step 1. [MCLP] Model

Maximal Covering Location Problem 주어진 후보지의 개수로 지역 수요를 최대한 커버할 수 있도록 함

Maximize $\sum_{i \in I} w_i y_i$	i : 수요지점 j : 후보지				
Subject to	k : 설치되는 최소 안심 택배함 수				
• $\sum_{j \in J} x_i = K$					
$\bullet \sum_{j \in N_i}^{-1} x_j \ x_j \ge y_i \ \forall i \in I$					
$x_i = \begin{cases} 1, 택배함이 후보지 j에 설치되면 \\ 0, 그외 \end{cases}$	$y_j = $ $\begin{cases} 1, 수요지점 i 가 적어도 하나의 의해 서비스되면 \\ 0, 그외 \end{cases}$				
$w_i: lbl imes AreaRatio imes Police Station imes Small Police Station imes Metro imes Department Store w_i: imes \Delta E \cap \mathbb{R} 이성 주거인구 수 AreaRatio: \mathbb{R} 커버되지않은 면적 비율 Police Station : 경찰서 E Small Police Station : 지구대 E Metro : 지하철 E Department Store : 백화점$					

<모델링 과정>

① 선정한 강남구의 여성안심택배함이 있는 수요지역 시각화

postbox_locate = pd.read_csv('./data/conv_gu_postbox.csv', encoding='cp949')

postbox_locate.head(2)

r = 590

postbox_locate['geom'] = postbox_locate.apply(lambda r: Point(r['改定'], r['孙도']), axis=1)

gdf = pgd.GeoDataFrame(postbox_locate, geometry='geom', crs='epsg:4326')

gdf_flat = gdf.to_crs('epsg:6347')

gdf_flat['geom'] = gdf_flat.geometry.buffer(r)

gdf = gdf_flat.to_crs('epsg:4326')

gdf.head(2)

u = gdf.iloc[0,3]

for _, row in gdf.iterrows():

u = u.u.nlon(row['geom'])

lats = np.array(gdf['祝도'])

lons = np.array(gdf['祝도'])

lons = np.array(gdf['祝도'])

lon_c = '127.027610'

m = folium.Map([lat_c, lon_c], zoom_start = 13)

for lat, lon in zip(lats, lons):

folium.Circle(location = [lat, lon], radius = r, color='black', fill_color = 'purple', weight=1).add_to(m)

m.save('./map/postbox_area.html')

m.save('./map/postbox_area.html')

[기존 8개의 택배함 수요지]

② 택배함이 있는 지역 수요 제거

[기존 8개의 택배함 수요지 제거]

③ 가중치를 이용한 수요 지점 시각화

가중치 = $(1-0.5*a_i) \times (1-0.3*b_i) \times (1+0.8*c_i) \times (1+0.6*d_i)$ a_i : 후보지(i)의 커버 면적 내에 포함되는 '경찰서(500m)' c_i : 후보지(i)의 커버 면적 내에 포함되는 '지하철(250m)' b_i : 후보지(i)의 커버 면적 내에 포함되는 '백화점(250m)'

최적화 Model 분석 및 결과 (2)

④ 모든 수요지점이 커버되는 여성안심택배함 개수 파악

[47개의 택배함 후보지]

죄소	47 개	I의 여성 안실	! 택배함으로 !	모는 취약 시점을 5	서버할 수 있다.
	K	max_value	mean_value	N_Grid(value>0)	Grid_Ratio
0	0	2258.928	53.730002	1503.0	0.3604
1	1	2258.928	53.730002	1431.0	0.3432
2	2	2258.928	53.730002	1362.0	0.3266
3	3	2258.928	53.730002	1296.0	0.3108
4	4	2258.928	53.730002	1234.0	0.2959

[택배함 개수 K에따른 강남구 내 수요지점 커버가능 비율표]

· K : K값이 낮을수록 취약지점을 많이 커버하는 여성안심택배함의 번호
 · N_Grid : K번째 여성안심택배함이 커버하는 격자를 빼고 남은 커버가 필요한 격자의 총수
 · Grid_Ratio : K번째 여성안심택배함이 커버하는 비율을 빼고 남은 커버가 필요한 면적 / 전체 강남구총 면적

Step 2. 최종 추가 여성안심택배함 설치 12곳 위치 선정

[커버할 수 있는 범위에 대한 차이를 나타낸 그래프]

<모델링 과정>

12개로 선정한 이유: 가장 큰 기울기로 변동폭을 보이는 곳이 12->13 구간이고 이 구간의 K(N-1)-K(N)값이 유효하다고 생각하는 위 그래프 총 47개 여성안심택배함의 K(N-1)-K(N)의 평균 32.67 을 넘기 때문에 **12개로 선정**

1 radius = 500
2 K = 12
3 M = cnt
4 opt_sites_ore, f = mclp(ml_nlsp, K, M, radius)
5 print(河田田上 今泉 지名의 元章: {}'.format(f))
6 opt_df= pd.DataFrame(opt_sites_ore, columns=['lon', 'lat'])
8 opt_df['geom'] = opt_df.apply(lambda r: Point(r['lon'], r['lat']), axis=1)
9 gdf = pdd.GeoDataFrame(opt_df, geometry='geom', crs='epsg:5179')
10 gdf = pdf.Co_crs(epsg-4239)
11 gdf['lon'] = gdf['geom'].apply(lambda p:p.x)
12 gdf['lat'] = gdf['geom'].apply(lambda p:p.y)
13 lats = gdf['lat']
15 lons = gdf['lat']
15 lons = gdf['lon']
16 m4 = m3
17 m4 = m3
18 for lat, lon in zip(lats, lons):
19 folium.circle(location = [lat, lon], radius = radius, color='black', fill_color = 'blue', weight=1).add_to(m4)
12 m4

Set parameter Username Academic license - for non-commercial use only - expires 2023-04-25 커버되는 수요 지점의 개수 : 710.0

결 론

결론 및 기대효과

결론

· 최적의 입지선정을 통해 강남구 내 여성안심택배함의 추가 설치 위치를 구축함

기대효과

- · 강남구 내 여성안심택배함 이용률 상승의 효과가 있다.
- · 강남구 내 여성 관련 스토킹 및 택배 사칭 관련 범죄를 예방할수있다.

한계점

- 무게가 무거운 택배의 경우 택배함 이용이 어려우므로 도우미 서비스와 같은 서비스 개발이 필요함
- 주변 거리의 특성이나 교통혼잡도를 고려하지 않고 단순 거리로만 위치를 선정함
- · 주변의 지형을 고려하지 않고 단순 거리로만 위치를 선정함
- · 최적의 여성안심택배함 추가 설치량은 12곳 이지만 모든 수요지역을 충당하기는 어려움