HOMEWORK 7

MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is the first homework assignment. The problems are from Hammack [Ham18, Ch.5]:

• Chapter 5, Exercises: 1, 2, 3, 4, 5, 16, 17, 18, 19, 20

CONTENTS

Chapter 5	2
Ch.5, Exercise 1	2
Ch.5, Exercise 2	2
Ch.5, Exercise 3	2
Ch.5, Exercise 4	2
Ch.5, Exercise 5	2
Ch.5, Exercise 16	2
Ch.5, Exercise 17	2
Ch.5, Exercise 18	2
Ch.5, Exercise 19	3
Ch.5, Exercise 20	3
References	3

Date: March 6, 2020.

CHAPTER 5

Ch.5, Exercise 1. Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.
Solution to Ch.5, Exercise 1. \Box
Ch.5, Exercise 2. Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.
Solution to Ch.5, Exercise 2. \Box
Ch.5, Exercise 3. Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then a and b are odd.
Solution to Ch.5, Exercise 3. □
Ch.5, Exercise 4. Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc , then a does not divide b .
Solution to Ch.5, Exercise 4.
Ch.5, Exercise 5. Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$ then $x < 0$.
Solution to Ch.5, Exercise 5. □
Ch.5, Exercise 16. Suppose $x, y \in \mathbb{Z}$. If $x + y$ is even, then x and y have the same parity.
Solution to Ch.5, Exercise 16. □
Ch.5, Exercise 17. If <i>n</i> is odd, then $8 (n^2 - 1)$.
Solution to Ch.5, Exercise 17. □
Ch.5, Exercise 18. If $a, b \in \mathbb{Z}$, then $(a + b)^3 \equiv a^3 + b^3 \pmod{3}$.
Solution to Ch.5, Exercise 18. □

Ch.5, Exercise 19. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b(modn)$ and $a \equiv c(modn)$, then $c \equiv b(modn)$.

Solution to Ch.5, Exercise 19.

Ch.5, Exercise 20. If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

Solution to Ch.5, Exercise 20.

REFERENCES

[Ham18] Richard Hammack, Book of Proof, 3 ed., Creative Commons, 2018.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu