Final Project - Forecasting Gold Price

Aliaksandr Panko

February 21, 2018

Contents

1	Obj	jectives	1
2	Dat	${f a}$	1
3	Lin	ar Regression	2
	3.1	Results of the regression	2
	3.2	Model Without Alpha	3
	3.3	Multiple regression	4
4	\mathbf{AR}	MA model	6
	4.1	Stationarity	6
	4.2	ACF & PACF	6
5	For	m ecast	8
	5.1	Multiple regression	8
	5.2	ARIMA	8

1 Objectives

To forecast gold price evolution we would like to compare a linear regression estimated by the Ordinary Least Squares (OLS) method and another model.

2 Data

Gold prices are given:

• Data Source

• Frequency: Annual data

• Period: 1978 - 2014

3 Linar Regression

In the first part of the project OLS linear regression is used.

1. Explanatory variable: Previous gold price

2. Explained variable: Current gold price

The regression equation is:

$$gold_t = \alpha + \beta gold_{t-1}$$

3.1 Results of the regression

Original:

OLS Regression Results

Dep. Variable:			gold	R-squared:			0.906			
Model:			OLS	Adj.	R-squared:		0.903			
Method:		Least Squa	ares	F-sta	atistic:		326.3			
Date:		Tue, 20 Feb	2018	Prob	(F-statistic)	:	5.31e-19			
Time:		22:3	1:23	Log-	Likelihood:		-222.73			
No. Observation	ns:		36	AIC:			449.5			
Df Residuals:			34	BIC:			452.6			
Df Model:			1							
Covariance Type	e:	nonro	oust							
==========										
	coef	std err		t	P> t	[0.025	0.975]			
const	36.1122	35.585		1.015	0.317	-36.205	108.429			
gold_lag	0.9882	0.055	18	8.064	0.000	0.877	1.099			
. ''					·		4 475			
Omnibus:	_	.980		in-Watson:		1.175				
Prob(Omnibus):			.050		ue-Bera (JB):		4.617			
Skew:			654		. ,		0.0994			
Kurtosis:		4	.169	Cond	. No.		1.15e+03			

Logarithm:

OLS Regression Results

Dep. Variable:		log_gold	R-square	ed:		0.869			
Model:		OLS	Adj. R-s	quared:		0.865			
Method:	L	east Squares	F-statis	tic:		225.0			
Date:	Tue,	20 Feb 2018	Prob (F-	statistic):	1.48e-16				
Time:		22:32:31	Log-Like	lihood:		8.9141			
No. Observations	:	36	AIC:			-13.83			
Df Residuals:		34	BIC:			-10.66			
Df Model:		1							
Covariance Type:		nonrobust							
===========			=======						
	coef	std err	t	P> t	[0.025	0.975]			
const	0.4074	0.386	1.056	0.299	-0.377	1.192			
log_gold_lag	0.9420	0.063	15.001	0.000	0.814	1.070			
Omnibus:	=======	10.138	Durbin-V	latson:	======	1.234			
Prob(Omnibus):		0.006	Jarque-E	Bera (JB):		9.400			
Skew:		0.993	Prob(JB)):		0.00910			
Kurtosis:		4.523	Cond. No			75.1			
==========					=======				

As we can see in both models constant is not significant at 95% significance level (p_value > 0.05)

Based on R^2 we can conclude that in both cases the model describes gold prices evaluation rather good (gold price in the previous period explains 90.56 % and 86.87 % of today's evolution respectively)

So, it is a good idea to implement this model without intercept.

3.2 Model Without Alpha

The regression equation is:

$$gold_t = \beta gold_{t-1}$$

This model gives us next result:

OLS Regression Results

			======	====					
Dep. Variable:	gold		R-squared:			0.969			
Model:		OLS			Adj. R-squared:			0.969	
Method:		Least Squares		F-sta	tistic:		1110.		
Date:		Tue, 20 Feb 2018		18	Prob	(F-statistic):		4.23e-28	
Time:			22:45:	16	Log-L	ikelihood:		-223.26	
No. Observation	ıs:			36	AIC:			448.5	
Df Residuals:				35	BIC:			450.1	
Df Model:				1					
Covariance Type	:		nonrobu	st					
				====					
	coe.	f std	err		t	P> t	[0.025	0.975]	
gold_lag	1.034	9 0	.031	33	.313	0.000	0.971	1.097	
				====					
Omnibus:			3.8	76	Durbi	n-Watson:		1.193	
Prob(Omnibus):			0.1			e-Bera (JB):		3.211	
Skew:			0.1	82	Prob(,		0.201	
Kurtosis:			4.4	17	Cond.	No.		1.00	

The result is extremely good, 97% of gold price evaluation can be explained by this model! However Durbin-Watson test and Jarque-Bera test signal that there is autocorrelation problem and residuals are not normally distributed.

Actually, it is well-known problem: "since stock prices tend not to change too radically from one day to another, the prices from one day to the next could potentially be highly correlated, even though there is little useful information in this observation. In order to avoid autocorrelation issues, the easiest solution in finance is to simply convert a series of historical prices into a series of percentage-price changes from day to day." ref. Investopedia

In a conclusion, I would rather use model with percentage that are mentioned above.

3.3 Multiple regression

I decided to take into consideration next factors:

- 1. Producer Price Index for All Commodities [PPIACO]
- 2. Wilshire 5000 Total Market Index [WILL5000IND]

Frankly speaking, it was not so easy to find out these factors. I also tried money supply and interest rates but they were not significant.

Likely in the end the model gives rather good result:

OLS Regression Results

Dep. Variable	:		y R-squ	ared:		0.878				
Model:		OL	S Adj.	R-squared:		0.871				
Method:		Least Square	_	tistic:		122.6				
Date:	W	ed, 21 Feb 201	8 Prob	(F-statistic):	2.83e-16				
Time:		00:10:5	9 Log-L	ikelihood:		9.5962				
No. Observati	ons:	3	7 AIC:			-13.19				
Df Residuals:		3	4 BIC:			-8.360				
Df Model:			2							
Covariance Ty	pe:	nonrobus	t							
	coef	std err	t	P> t	[0.025	0.975]				
const	-11.5109	1.293	-8.905	0.000	-14.138	-8.884				
PPIACO	3.9755	0.301	13.208	0.000	3.364	4.587				
WILL5000IND	-0.6026	0.069	-8.779	0.000	-0.742	-0.463				
Omnibus:	=======	1.47	1 Durbi	 n-Watson:		1.014				
Prob(Omnibus)	:	0.47	9 Jarqu	e-Bera (JB):		0.910				
Skew:		0.38		٠,		0.634				
Kurtosis:		3.07		,		237.				

As we can see all factors are significant at 1% level and 87.8% data are explained by the model. Nevertheless Durbin-Warson test still is not perfect that means autocorrelation existence.

Let us compare the results visually:

As we can see it is good enough.

4 ARMA model

Since we have rather good prediction taking into account only previous value I decided to try ARMA model model for predicting gold price evolution.

4.1 Stationarity

Firstly, we need to check stationarity. For this purposes I used Augmented Dickey-Fuller unit root test.

The null hypothesis of the **Augmented Dickey-Fuller** is that there is a unit root, with the alternative that there is no unit root.

 $p_{\text{-}}$ value is 3.13184167501e-06 - this means that we reject H0 and assume that the **process** is stationary.

4.2 ACF & PACF

Secondly, we need to check ACF and PACF and use Box–Jenkins method.

It's clear that ACF decays exponentially and PACF has 2 significant spikes. Since differencing is not required, the parameters of the model are **ARIMA(2,0,0)**. Let us have a look at the results:

ARMA Model Results									
Dep. Variable Model: Method: Date: Time: Sample:		css-n d, 21 Feb 20	0) Log L	BIC					
========	coef	std err	Z	P> z	[0.025	0.975]			
	562.3753 1.4218	0.146	2.623 9.712	0.013	1.135	1.709			
	Real	Ima	aginary	Modul	us	Frequency			
AR.1 AR.2	1.2213 1.6584		_	1.22		0.0000			

As we can see the model describes the actual values rather good.

5 Forecast

5.1 Multiple regression

 $current_price = exp(-11.5109 + 3.9755 * log(ppiaco) - 0.6026 * log(will 5000 ind))$

Assuming that in 2015 ppiaco was 190.4 and market index (will5000ind) was 90.66, we can find gold price in 2015 = 766 USD per troy ounce.

5.2 ARIMA

The designed model gives us price value 1143.79641724 for the next year. I must say that the difference between two models is considerable. But as R^2 says ARIMA result is a little bit more reliable.