Genetics of sex determination in Lysiphlebus fabarum

Cyril Matthey-Doret

Supervised by: Casper Van Der Kooi

Directed by: Tanja Schwander

Sex determination

- Hymenoptera are haplodiploids
- In sexual lineages: egg fertilization --> female

CSD mechanism

- 2 different alleles required to trigger female development
- Males are normally haploid: single copy
- Diploid individuals with homozygous CSD --> males
- Can be single or multi-locus CSD

Pathway

L.fabarum: Introduction

- Sex and asex populations
- Central fusion automixis: recombination
- Multi-locus or single-locus csd?

Crossed individuals

- Thelytokous females
- Stronlgy inbred
 - High rate of diploid males production
 - Highly homozygous background

Crossed individuals

- Total of 201 offspring
- From 12 different thelytokous mothers

Crossed individuals

- Different allelic combinations of CSD
- Haploid males: useless
- Sequencing data:
 - 201 offspring
 - 11 mothers (1 missing)

Finding CSD: General idea

 Find regions that are homozygous in males and heterozygous in females

RAD-seq

- Digest genome
- Sequence flanking regions
- Single-end sequencing

Bioinformatic analysis of RAD-seq

- Processing raw reads into a catalog of loci
- Different pipelines available
 - **STACKS**, PyRAD, Rtd, RAD-tools...
- Requires setting several parameters through empirical testing

- Builds loci from reference, or *de novo*
- Each module takes arbitrary parameters

Cstacks

Assemble Catalog

min'cov	nloci	mean cov	sd'cov
1	5020.07	31.8333	58.6313
2	3659.14	42.5051	64.9899
3	2747.17	49.8687	68.1818
4	1505.35	55.5657	70.0606
5	781.869	60.101	71.3283
6	597.859	63.9141	72.2677

Sstacks

Match to Catalog

Minimum stack depth

- Building catalog from all individuals
- Position and coverage of every SNP variant

Mismatches: homologous loci

mismatch	mean loci	mean alleles
1	2696	7799
2	3129	8464
3	3198	8704
4	3263	8914

Each individual's SNPs matched to the catalog

Each individual's SNPs matched to the catalog

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2017

SOCIETY

doi: 10.1111/2041-210X.12775

Lost in parameter space: a road map for STACKS

Josephine R. Paris¹ , Jamie R. Stevens¹ and Julian M. Catchen*, D

¹Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK; and ²Department of Animal Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA

Excluding haploids

- Loci obtained in haploids should all be homozygous.
- But this is not the case! Why?
 - Sequencing errors
 - Paralogue merging
 - Repetitive sequences?

Excluding haploids

How to split haploids and diploids?

Current solution: Choose a homozygosity

threshold:

$$Hom_M > \mu_F + 2\sigma_F$$

Mu: mean of daughters hom. Sigma: stdev of daughters hom.

Improving ploidy separation

- Remove alleles with low number of reads relative to other allele
- Remove loci with excessive coverage (paralogues)

How many SNPs are "CSD-like" in diploids ?

- How many SNPs are "CSD-like" in diploids ?
- Pooling all wasps together:
 - None

"CSD-like"

How many SNPs are "CSD-like" in diploids ?

"CSD-like"

Per family:

Too many

Finding CSD

- What regions are inherited like CSD?
- For each SNP: proportion of individuals where SNP fit CSD pattern

$$Q Q O O \longrightarrow CSD=1$$

$$\frac{Hom(M) + Het(F)}{2}$$

Finding CSD

- Computing CSD prop. in each family
- Average each position's value across families

Proportion of CSD individuals, averaged across families

Top CSD candidates

Challenges

- Probably no restriction site inside CSD locus
 - Imperfect male-female segregation
- May be multi-locus CSD
 - Different causative loci in different clutches

Zooming into families

Zooming into families

M-F Fst along genome

Pooling all families together

Splitting by family

First results

Family	Mother	Sons	Daughters
А	1	26	4
В	1	10	4
С	1	6	1
D	1	6	4
Е	1	3	15
F	1	10	7
G	1	6	9
Н	1	15	6
1	1	4	2
J	1	20	7
K	1	14	4
L	1	4	14

Family	Mother	Sons	Daughters
Α	1	1	2
В	1	1	3
С	1	2	1
D	0	4	4
E	1	3	13
F	1	3	6
G	1	3	9
Н	1	10	6
1	1	1	2
J	1	1	6
K	1	6	4
L	1	2	13

213 individuals sequenced

117 individuals left for downstream analyses.

Exclusion of SNPs that are homozygous in mother

