Linear Algebra I Summary of Lectures: Orthogonal Bases

Dr Nicholas Sedlmayr

- 1. Definition 4.1: Two vectors v and w in an inner product space are orthogonal if $\langle v|w\rangle = 0$. The set of vectors $\{v_1, v_2, \ldots\}$ is said to be orthogonal, and the vectors v_1, v_2, \ldots in the set are said to be mutually orthogonal if each pair of distinct vectors v_i, v_l with $i \neq l$ are said to be an orthogonal pair, $\langle v_i|v_l\rangle = 0$.
- 2. Definition 4.2: A set $\{w_1, w_2, ...\}$ of vectors in an inner product space is said to be orthonormal if $\langle w_i | w_j \rangle = \delta_{ij}$. If the orthonormal set is a basis then it is called an orthonormal basis.
- 3. Proposition 4.3: If V is an inner product space over \mathbb{R} or \mathbb{C} , $v_1, v_2, \ldots v_n \in V$, $v_i \neq 0 \ \forall i = 1 \ldots n$, and the v_i are mutually orthogonal then $\{v_1, v_2, \ldots v_n\}$ is a linearly independent set.
- 4. Lemma 4.4: If u, v are any two vectors in an inner product space V with $v \neq 0$ then the vector

$$w = u - \frac{\langle v|u\rangle}{\langle v|v\rangle}v$$

is orthogonal to v.

5. Lemma 4.5: If V is an inner product space, $u, v_1, v_2, \dots v_k \in V$ and $v_1, v_2, \dots v_k$ are mutually orthogonal non-zero vectors then

$$w = u - \sum_{i=1}^{k} \frac{\langle v_i | u \rangle}{\langle v_i | v_i \rangle} v_i$$

is orthogonal tro $v_1, v_2, \dots v_k$.

6. Theorem 4.6: (The Gram-Schmidt process) If $\{v_1, \ldots v_n\}$ is a basis of a finite dimensional inner product space V, then $\{w_1, \ldots w_n\}$ obtained by

$$\begin{array}{l} w_1 = v_1 \\ w_2 = v_2 - \frac{\langle w_1 | v_2 \rangle}{\langle w_! | w_1 \rangle} w_1 \\ \vdots \\ w_k = v_k - \sum_{i=1}^{k-1} \frac{\langle w_i | v_k \rangle}{\langle w_i | w_i \rangle} w_i \\ \vdots \end{array}$$

is an orthogonal basis of V.

- 7. Corollary 4.7: Any finite dimensional inner product space V has an orthonormal basis.
- 8. Definition 4.8: Two real vector spaces V, W with forms $F: V \times V \to \mathbb{R}$ and $G: W \times W \to \mathbb{R}$ respectively are isomorphic if there is a bijection $f: V \to W$ such that

$$f(u+v) = f(u) + f(v),$$

$$f(\lambda v) = \lambda f(v) \text{ and}$$

$$F(u,v) = G(f(u), g(v)),$$

 $\forall u, v \in V \text{ and } \forall \lambda \in \mathbb{R}.$

Similarly two complex vector spaces V, W with forms $F: V \times V \to \mathbb{C}$ and $G: W \times W \to \mathbb{C}$ respectively are isomorphic if there is a bijection $f: V \to W$ such that

$$f(u+v) = f(u) + f(v),$$

$$f(\lambda v) = \lambda f(v) \text{ and}$$

$$F(u,v) = G(f(u), g(v)),$$

 $\forall u, v \in V \text{ and } \forall \lambda \in \mathbb{C}.$

- 9. Corollary 4.9: Let V be a Euclidean vector space of dimension n. Then V is isomorphic to \mathbb{R}^n with the standard inner product as an inner product space. Similarly each unitary vector space V of dimension n is isomorphic to \mathbb{C}^n with the standard inner product as an inner product space.
- 10. Proposition 4.10: Suppose that $\{e_1, e_2, \dots e_n\}$ is an orthonormal basis of a Euclidean space V. Then for any $v \in V$:

$$v = \sum_{i=1}^{n} \langle e_i | v \rangle e_i.$$

11. Proposition 4.11: (Pythagoras' theorem) Suppose $e_1, e_2, \dots e_n$ is an orthonormal basis of a Euclidean space V. Then for all $v \in V$

$$||v||^2 = \sum_{i=1}^n \langle e_i | v \rangle^2.$$

12. Corollary 4.12: (Parseval's identity) If $e_1, e_2, \dots e_n$ is an orthonormal basis of a Euclidean space V, and $v, w \in V$, then

$$\langle v|w\rangle = \sum_{i=1}^{n} \langle v|e_i\rangle\langle e_i|w\rangle..$$

13. Proposition 4.13: (Bessel's inequality) If $e_1, e_2, \dots e_k$ is an orthonormal set of vectors in a real inner product space V, and $v \in V$, then

$$\sum_{i=1}^{k} \langle e_i | v \rangle^2 \le ||v||^2.$$

- 14. Proposition 4.14: If $e_1, e_2, \dots e_n$ is an orthonormal basis of a complex inner prodoct space V, and $v, w \in V$, then:
 - (a) $v = \sum_{i=1}^{n} \langle e_i | v \rangle e_i$,
 - (b) $||v||^2 = \sum_{i=1}^n \langle e_i | v \rangle^2$, (Pythagoras' theorem) and
 - (c) $\langle v|w\rangle = \sum_{i=1}^{n} \langle v|e_i\rangle\langle e_i|w\rangle = \sum_{i=1}^{n} \overline{\langle e_i|v\rangle}\langle e_i|w\rangle$ (Parseval's identity).
- 15. Proposition 4.15: (Bessel's inequality) If $e_1, e_2, \dots e_k$ is an orthonormal set of vectors in a complex inner product space V, and $v \in V$, then

$$\sum_{i=1}^{k} |\langle e_i | v \rangle|^2 \le ||v||^2.$$

16. Definition 4.16: If U and W are subspaces of a vector space V then the sum of U and W is defined as

$$U + W = \{u + w : u \in U, w \in W\}.$$

- 17. Proposition 4.17: U + W is a subspace of a vector space V if U and W are subspaces of V.
- 18. The union of two sets is $A \cup B = \{x : x \in A \lor x \in B\}$. I.e. the elements in either A or B. The intersection of two sets is $A \cap B = \{x : x \in A \land x \in B\}$. I.e. the elements in both A or B.
- 19. Definition 4.18: If V is a vector space and U is a subspace of V, then W is called a complement to U in V if
 - (a) W is a subspace of V,
 - (b) V = U + W, and
 - (c) $U \cap W = \{0\}.$

When these conditions are met we write $V = U \oplus W$, and say that V is the direct sum of U and W.

20. Definition 4.19: If V is an inner product space and U is a subspace of V we define

$$U^{\perp} = \left\{ v \in V : \langle u | v \rangle = 0 \, \forall u \in U \right\}.$$

This is called the orthogonal complement of U in V, or "U perp" for short.

21. Lemma 4.20: If V is an inner product space, U is a subspace of V, and U has a basis $\{u_1, \ldots u_k\}$, then

$$U^{\perp} = \{ v \in V : \langle u_i | v \rangle = 0 \,\forall i = 1, \dots k \}.$$

- 22. Proposition 4.21: If V is an inner product space, and U is a finite dimensional subspace of V, then
 - (a) U^{\perp} is a subspace of V,
 - (b) $U \cap U^{\perp} = \{0\}$, and

- (c) $U + U^{\perp} = V$.
- 23. Proposition 4.22: If $V = U \oplus W$ then $\dim(V) = \dim(U) + \dim(W)$.
- 24. Corollary 4.23: If V is a finite dimensional inner product space, and U is a subspace of $\mathbf{V},$ then
 - (a) $\dim(U) + \dim(U^{\perp}) = \dim(V)$, and
 - (b) $(U^{\perp})^{\perp} = U$.