Parity

MA842 at BU Spring 2019

Céline Maistret

February 7, 2019

1 Parity

These are notes for Céline Maistret's course MA842 at BU Spring 2019.

The course webpage is https://sites.google.com/view/cmaistret/teaching#h.p_BYGoPzU848FJ.

Course overview:

Main references:

- 1. Vlad
- 2. Silverman
- 3. Milne

1.1 Mordell-Weil

Lecture 4 5/2/2018

Remark 1.1 A homomorphism $\phi \colon \operatorname{Gal}(\overline{K}/K) \to G$ for a finite group G is continuous if it comes from a finite Galois extension, i.e.

$$\exists F/K$$
 finite Galois , $\tilde{\phi} \colon \operatorname{Gal}(F/K) \to G$

s.t. ϕ is the composition $Gal(\overline{K}/K) \to Gal(F/K) \xrightarrow{\tilde{\phi}} G$. So $\phi(g)$ only cares about what g does to F.

Proposition 1.2 *Let E/K be an elliptic curve*

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$

for $P \in E(K)$ have $\frac{1}{2}P \in E(\overline{K})$ s.t. $\frac{1}{2}P \oplus \frac{1}{2}P = P$.

1. $K(\frac{1}{2}P)/K$ is a Galois extension and $Gal(K(\frac{1}{2}P)/K) = C_2 \times C_2$ from Lemma 1.

2.

$$\phi_P \colon \operatorname{Gal}(\overline{K}/K) \to E(K)[2]$$

$$g\mapsto Q^\sigma-Q=g(\frac{1}{2}P)-\frac{1}{2}P$$

is well defined and has kernel $Gal(K/K(\frac{1}{2}P))$.

3.

$$\phi: E(K)/2E(K) \to \operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), E(K)[2])$$

$$P \mapsto \phi_P$$

is well defined and injective. Now ϕ_P is continuous by 2. and so

$$\phi_{P \oplus Q}(g) = g(\frac{1}{2}(P \oplus Q)) - (\frac{1}{2}P \oplus \frac{1}{2}Q)$$
$$= g(\frac{1}{2}P) \oplus g(\frac{1}{2}Q) - \frac{1}{2}P \ominus \frac{1}{2}Q$$
$$= \phi_P(g) \oplus \phi_Q(g)$$

a homomorphism.

$$\phi_{2Q}(g) = g(\frac{1}{2}2Q)) - \frac{1}{2}2(Q) = g(Q) - Q = 0$$

for all $g \in Gal(\overline{K}/K)$ if $Q \in E(K)$ so this is well defined. For injectivity:

$$\phi_P(g) = 0 \implies g(\frac{1}{2}P) = \frac{1}{2}P \forall g \in Gal(\overline{K}/K)$$

$$\implies \frac{1}{2}P \in E(K) \implies P \in 2E(K)$$

which gives injectivity.

4.

$$\eta \colon \operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), E(K)[2]) \to K^{\times}/K^{\times 2} \times K^{\times}/K^{\times 2} \times K^{\times}/K^{\times 2}$$

$$\psi \mapsto \psi_{\alpha}, \psi_{\beta}, \psi_{\gamma}$$

$$\psi(g) \in \{0, (\alpha, 0)\} \subseteq E(K) \iff g \in \operatorname{Gal}(\overline{K}/K(\sqrt{\psi_{\alpha}}))$$

then η is an injective homomorphism. It is an isomorphism to the subgroup of triples a, b, c s.t. $abc \in K^{\times 2}$. Proof:

$$\operatorname{Hom}_{cts}(\operatorname{Gal}(\overline{K}/K), C_2) \simeq K^{\times}/K^{\times 2}$$

with ψ s.t. $\ker \psi = \operatorname{Gal}(\overline{K}/K\sqrt{d}) \leftrightarrow d$. It is an isomorphism:

$$\ker \psi_i = \operatorname{Gal}(\overline{K}/K(\sqrt{d_i})), i = 1, 2$$

$$\ker \psi_1 \psi_2 = \operatorname{Gal}(\overline{K}/K(\sqrt{d_1 d_2}))$$

Now apply this to $E(K)[2] = C_2 \times C_2$ to get an isomorphism to $K^{\times}/K^{\times 2} \times K^{\times}/K^{\times 2}$. Record this third homomorphism to get η .

5. If $P = (x_0, y_0) \in E(K)$ then

$$\eta(\phi_P) = (x_0 - \alpha, x_0 - \beta, x_0 - \gamma).$$

Proof sketch: If

$$E \colon y^2 = x^3 + Ax^2 + Bx$$

then for $Q = (x_0, y_0) \in E(K)$.

$$2Q = \left(\left(\frac{x_0 - B}{2y_0} \right)^2, \dots \right)$$

Hence if $2Q = P = (x_1, y_1)$ then $\sqrt{x_1} \in K(\frac{1}{2}P)$. So if

$$E \colon y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$

then

$$P = (x_2, y_2)$$

then

$$\sqrt{x_2 - \alpha}, \sqrt{x_2 - \beta}, \sqrt{x_2 - \gamma} \in K(\frac{1}{2}P)$$

$$K(\sqrt{x_2 - \alpha}), K(\sqrt{x_2 - \beta}), K(\sqrt{x_2 - \gamma}) \subseteq K(\frac{1}{2}P)$$

$$\Longrightarrow K(\frac{1}{2}P) = K(\sqrt{x_2 - \alpha}, \sqrt{x_2 - \beta}, \sqrt{x_2 - \gamma})$$

Example 1.3 Let

$$E: y^2 = x(x-1)(x+1)$$

for $P \in E(\mathbf{Q})$, $\mathbf{Q}(\frac{1}{2}P)/\mathbf{Q}$ can only ramify at 2.

$$\mathbf{Q}(\frac{1}{2}P) \subseteq \mathbf{Q}(i,\sqrt{2})$$

$$P = (x_0, y_0) \mapsto x_0, x_0 - 1, x_0 + 1 \in \mathbf{Q}^{\times}/\mathbf{Q}^{\times 2}$$

is a homomorphism so x_0 , $x_0 - 1$, $x_0 + 1$ are ± 1 , ± 2 up to square.

x_0	$x_0 - 1$	$x_0 + 1$	rat?
1	1	1	1) rat
1	-1	-1	2) non-rat
1	2	2	1) rat
1	-2	-2	2) non-rat
-1	1	-1	2) non-rat
-1	-1	1	1) rat
-1	2	-1	2) non-rat
-1	-2	2	1) rat
2	1	2	3) non-rat
2	-1	-2	2) non-rat
2	2	1	4) rat
2	-2	-1	2) non-rat
-2	1	-2	rat
-2	-1	2	rat
-2	2	-1	rat
-2	-2	1	rat

Table 1.4: Images

1) The 2-torsion points P = 0, (0,0), (1,0), $(-1,0) \in E(\mathbf{Q})$ give us some rows. 2) As we have $x_0 > -1$ we get $x_0 + 1 > 0$ so $x_0(x_0 - 1) > 0$ for the product to be a square (and hence > 0). 3) $x_0 = 2A^2$, $x_0 - 1 = B^2$, $x_0 + 1 = 2C^2$ with $A, B, C \in \mathbf{Q} \setminus \{0\}$. Let A = m/n so $2m^2/n^2 - 1 = B^2$

$$2m^2 - n^2 = (Bn)^2$$

and

$$2m^2 + n^2 = 2(Cn)^2$$

if $m \equiv 0(2) \implies -1 = \square \pmod{8}$ a contradiction.

$$m \equiv 1 \pmod{2} \implies m^2 \equiv 1 \pmod{8}$$
.

So
$$2 - n^2 = \square \pmod{8} \implies n^2 \equiv 1 \pmod{8}$$

$$2 + n^2 = 2 \square \pmod{8} \implies n^2 \equiv 0 \pmod{8}$$

$$|E(\mathbf{Q})/2E(\mathbf{Q})| = 4$$

$$|E(\mathbf{Q})[2]| = 4 \implies \mathrm{rk} = 0$$

$$E(\mathbf{Q}) \cong E(\mathbf{Q})[2].$$

4) Use the group structure!

Theorem 1.5 Complete 2-decent. *Let K be a field of characteristic 0 and*

E:
$$y^2 = (x - \alpha)(x - \beta)(x - \gamma)$$
, α , β , γ distinct.

The map

$$P \mapsto (x_0 - \alpha, x_0 - \beta, x_0 - \gamma)$$

replacing $x_0 - \alpha$ with $(x_0 - \beta)(x_0 - \gamma)$ if 0.

$$E(K)/2E(K) \rightarrow (K^{\times}/K^{\times^2})^3$$

Triples (a, b, c) *that lie in the image satisfy abc* $\in K^{\times 2}$. A triple a, b, c with $abc \in K^{\times 2}$ *lies in the image iff it is in the image of* E(K)[2] *or*

$$cz_3^2 - \alpha + \gamma = az_1^2$$

$$cz_3^2 - \beta + \gamma = bz_1^2$$

is soluble with $z_i \in K^{\times}$. In which case

$$P=(az_1^2+\alpha,\sqrt{abc},z_1z_2z_3)\mapsto(a,b,c)$$

iii) If K is a number field and (a, b, c) is in the image then

$$K(\sqrt{a}, \sqrt{b}, \sqrt{c})/K$$

only ramifies at primes dividing $2(\alpha - \beta)(\alpha - \gamma)(\beta - \gamma)$.

Exercise 1.6

$$E \colon y^2 = x(x-5)(x+5).$$

Lecture 5 7/2/2018

Recall:

$$\phi \colon E(K)/2E(K) \to \operatorname{Hom}_{cts}(G_K, E(K)[2])$$
$$P \mapsto \phi_P$$

where $\phi_P \colon \sigma \mapsto Q^{\sigma} - Q$ where Q = 2P. Which is well-defined and injective. Elements of

$$\operatorname{Hom}_{cts}(G_K, E[2]) \leftrightarrow a, b, c \in (K^{\times}/K^{\times 2}) \text{ s.t. } abc \in K^{\times 2}$$
$$(x_0, y_0) \mapsto (x_0 - \alpha, x_0 - \beta, x_0 - \gamma).$$

Lemma 1.7 *Let* $n \ge 1$

1.

$$\psi \colon E(K)/nE(K) \to \{K \subseteq F \subseteq \overline{K}\}$$
$$P \mapsto K(\frac{1}{n}P, E[n])$$

is well defined.

2. $K(\frac{1}{n}P, E[n])/K$ only ramifies at $\mathfrak{p}|n\Delta_E$.

3.

$$Gal(K(\frac{1}{n}P, E[n])/K) \le \mathbf{Z}/n \times \mathbf{Z}/n$$

4. There are only finitely many fields satisfying 2. and 3. so im ψ is finite.

To do descent, need more than ψ (i.e. injection).

Definition 1.8 Let *G* be a group and *M* a *G*-module then let

$$H^0(G,M)=M^G=\{m\in M:gm=m\forall g\in G\}$$

 $H^1(G, M) = \{\text{skew homs } G \to M\}/\{\text{skew homs } G \to M \text{ of the form } g \mapsto g(t) - t, \ t \in M\}.$

٥

Remark 1.9 If *G* acts trivially on *M* then

$$H^0(G,M)=M$$

$$H^1(G, M) = \text{Hom}(G, M).$$

When *G* is profinite then we want that the skew homomorphisms factor through finite Galois groups. We will prove that

$$E(K)/nE(K) \hookrightarrow H^1(G_K, E[n]).$$

Theorem 1.10 *If*

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

is an exact sequence of G-modules then

$$0 \to H^0(G,A) \to H^0(G,B) \to H^0(G,C) \to H^1(G,A) \to H^1(G,B) \to H^1(G,C).$$

Lemma 1.11

- 1. ψ is finite-to-one (gives Mordell-Weil)
- 2. Let

$$\phi_P \colon G_K \to E[n]$$

$$\phi_P(gh) = \phi_P(g) + g\phi_P(h)$$

is a skew (or crossed) homomorphism. If $(\frac{1}{n}P)'$ is another choice of $\frac{1}{n}P$ and φ_P' is the corresponding skew homomorphism, then

$$\phi_P - \phi_P'$$

is of the form

$$g \mapsto T \ominus gT$$

where $T \in E[n]$.

3. ϕ_P factors through

$$Gal(K(\frac{1}{n}P, E[n])/K).$$

4.

$$\phi \colon E(K)/nE(K) \to Z/B$$
$$P \mapsto \phi_P$$

is an injective homomorphism. Where

$$Z = \{skew\ homs\ G_K \rightarrow E[n]\}$$

 $B = \{skew\ homs\ G_K \to E[n]\ of\ the\ form\ g \mapsto T\ominus gT,\ T\in E[n]\}.$

Proof.

1. There are finitely many skew homomorphisms

$$Gal(K(\frac{1}{n}P, E[n])/K) \rightarrow E[n]$$

and by 4.

$$P \mapsto \{\phi_P, K(\frac{1}{n}P, E[n])\}$$

is injective. So $\psi \colon P \mapsto K(\frac{1}{n}P, E[n])$ is finite to one by 3.

2.

$$\phi_P(gh) = \frac{1}{n}P \ominus gh\frac{1}{n}P$$

$$= \left((\frac{1}{n}P) \ominus g(\frac{1}{n}P) \right) \oplus \left(g(\frac{1}{n}P) \ominus g(h(\frac{1}{n}P)) \right)$$

$$= \phi_P \oplus g(\phi_P(h)).$$

Remark: If $E[n] \subseteq E(K)$ then ϕ_P is a homomorphism. Recall for n=2

$$\phi_P(gh) = \frac{1}{2}P \ominus gh(\frac{1}{2}P)$$

$$= \frac{1}{2}P \ominus h(\frac{1}{2}P) \oplus h(\frac{1}{2}P) \ominus g(h(\frac{1}{2}P))$$

$$= \phi_P(h) \oplus \phi_P(g)$$

since $2h(\frac{1}{2}P) = h(P) = P$. Consider now

$$\frac{1}{n}P = \frac{1}{n}P' \oplus T$$

for some $T \in E[n]$

$$(\phi_P \ominus \phi_P')(g) = \phi_P(g) - \phi_P'(g) = \frac{1}{n}P \ominus g(\frac{1}{n}P) - [(\frac{1}{n}P) \oplus T \ominus g(\frac{1}{n}P) \oplus gT]$$
$$= T \ominus gT.$$

Take $G = G_K$

$$B = E(\overline{K}), A = E[n], C = E(\overline{K})$$

to get

$$0 \to E[n] \to E(\overline{K}) \xrightarrow{\cdot n} E(\overline{K}) \to 0$$

which gives the long exact sequence

$$0 \to E(K)[n] \to E(K) \xrightarrow{\cdot n} E(K) \xrightarrow{\delta} H^1(G_K, E[n]) \to H^1(G_K, E(\overline{K})) \to$$
$$\Longrightarrow E(K)/nE(K) \hookrightarrow H^1(G_K, E[n]).$$

Problem:

$$H^1(G_K, E[n])$$

is infinite. What subgroup of

$$H^1(G_K, E[n])$$

do we land in?

Notation: When v is a place of K we have $G_{K_v} \subseteq G_K$, for any module M have $M^{G_K} \leq M^{G_{K_v}}$ and

Res:
$$H^1(G_K, E[n]) \to H^1(G_{K_n}, E[n])$$
.

We have from the theorem

$$0 \longrightarrow E(K)/nE(K) \xrightarrow{\delta} H^{1}(G_{K}, E[n]) \longrightarrow H^{1}(G_{K}, E(\overline{K})) \longrightarrow \\ \downarrow^{\text{Res}} \qquad \downarrow^{\text{Res}} \\ 0 \longrightarrow \prod_{v} E(K_{v})/nE(K_{v}) \xrightarrow{\delta} \prod_{v} H^{1}(G_{K_{v}}, E[n]) \longrightarrow \prod_{v} H^{1}(G_{K_{v}}, E(\overline{K})) \longrightarrow$$

we want to understand im δ i.e. the subgroup

$$\ker\{H^1(G_K, E[n]) \to H^1(G_K, E(\overline{K}))\}$$

this is as hard as finding E(K), here is why:

Claim 1.12

$$H^1(G_K, E(\overline{K}))$$

corresponding to principal homogeneous spaces for E (genus 1 curves whose jacobian is E)

Finding

$$\ker\{H^1(G_K, E[n]) \to H^1(G_K, E(\overline{K}))\}$$

is equivalent to finding which PHS coming from H^1 have a rational point. ??? Hensels lemma

Let C be a curve

$$\operatorname{Isom}(C) \leftrightarrow C(\overline{K}) \times \operatorname{Aut}(C)$$

$$\tau_p \circ \alpha \leftrightarrow (P, \sigma)$$

$$\operatorname{Twist}(E/K) \leftrightarrow H^1(G_K, \operatorname{Isom}(C))$$

$$C \simeq_{\overline{K}} E$$

$$PHS \leftrightarrow H^1(G_K, E(\overline{K}))$$

C is a PHS for *E* iff *E* is the jacobian of *C*.