$12n_{0148} \ (K12n_{0148})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 5402057u^{19} - 3583441u^{18} + \dots + 1977478b + 13308358,$$

$$-639093u^{19} + 2151139u^{18} + \dots + 1977478a - 11355740, \ u^{20} - u^{19} + \dots + 8u - 1 \rangle$$

$$I_2^u = \langle u^5a + 2u^4a - 4u^3a - 5u^4 - 3u^2a + au + 10u^2 + 5b - 3a,$$

$$u^5a - 2u^5 - 3u^3a + u^2a + 6u^3 + a^2 + 2au + u^2 - a - 6u - 1, \ u^6 - 3u^4 + 2u^2 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

T

$$I_1^u = \langle 5.40 \times 10^6 u^{19} - 3.58 \times 10^6 u^{18} + \dots + 1.98 \times 10^6 b + 1.33 \times 10^7, -6.39 \times 10^5 u^{19} + 2.15 \times 10^6 u^{18} + \dots + 1.98 \times 10^6 a - 1.14 \times 10^7, \ u^{20} - u^{19} + \dots + 8u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.323186u^{19} - 1.08782u^{18} + \dots - 21.2507u + 5.74254 \\ -2.73179u^{19} + 1.81213u^{18} + \dots + 39.4687u - 6.72997 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.119500u^{19} - 0.378541u^{18} + \dots - 7.19615u + 2.43256 \\ -3.10782u^{19} + 2.21574u^{18} + \dots + 47.4853u - 8.50446 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2.81060u^{19} - 2.56427u^{18} + \dots - 52.8262u + 10.8039 \\ -3.18615u^{19} + 1.40304u^{18} + \dots + 33.4356u - 4.59062 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 4.68409u^{19} - 2.27049u^{18} + \dots - 53.3439u + 8.58394 \\ 1.97808u^{19} - 0.907299u^{18} + \dots - 22.6536u + 3.12055 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -3.69057u^{19} + 2.49256u^{18} + \dots + 52.9545u - 9.28098 \\ 1.03914u^{19} - 0.150948u^{18} + \dots - 5.14484u + 0.559226 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.78422u^{19} + 0.960462u^{18} + \dots + 26.8596u - 3.11259 \\ -2.92442u^{19} + 1.93725u^{18} + \dots + 42.5149u - 7.01762 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{8158475}{988739}u^{19} \frac{7089886}{988739}u^{18} + \dots \frac{162706955}{988739}u + \frac{47565543}{988739}u^{18} + \dots$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{20} + 43u^{19} + \dots - 20046u + 625$
c_2, c_4	$u^{20} - u^{19} + \dots - 214u + 25$
<i>c</i> ₃	$u^{20} - u^{19} + \dots + 18u - 5$
c_5, c_9	$u^{20} - u^{19} + \dots + 4u - 1$
<i>c</i> ₆	$u^{20} + 3u^{19} + \dots - 70u + 1$
c_7, c_{11}, c_{12}	$u^{20} - u^{19} + \dots + 8u - 1$
<i>C</i> ₈	$u^{20} + 3u^{19} + \dots - 162u + 17$
c_{10}	$u^{20} - u^{19} + \dots - 564u - 2209$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} - 253y^{19} + \dots - 251953366y + 390625$
c_2, c_4	$y^{20} + 43y^{19} + \dots - 20046y + 625$
<i>c</i> ₃	$y^{20} - y^{19} + \dots - 214y + 25$
c_5,c_9	$y^{20} + 41y^{19} + \dots + 84y + 1$
c_6	$y^{20} + 49y^{19} + \dots - 2266y + 1$
c_7, c_{11}, c_{12}	$y^{20} - 15y^{19} + \dots - 16y + 1$
c ₈	$y^{20} + 45y^{19} + \dots - 6660y + 289$
c_{10}	$y^{20} + 89y^{19} + \dots - 52304702y + 4879681$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.823692 + 0.671587I		
a = 0.380830 - 0.847218I	-3.84702 - 2.60363I	6.95480 + 2.97260I
b = 0.227244 + 0.074641I		
u = -0.823692 - 0.671587I		
a = 0.380830 + 0.847218I	-3.84702 + 2.60363I	6.95480 - 2.97260I
b = 0.227244 - 0.074641I		
u = -0.101123 + 1.192090I		
a = -2.77141 + 0.53695I	17.7040 - 4.4434I	6.63619 + 1.99809I
b = -2.30625 + 0.07618I		
u = -0.101123 - 1.192090I		
a = -2.77141 - 0.53695I	17.7040 + 4.4434I	6.63619 - 1.99809I
b = -2.30625 - 0.07618I		
u = 1.153440 + 0.367601I		
a = -0.297249 - 0.756563I	0.86870 + 1.47310I	9.24158 - 0.66486I
b = -0.989133 + 0.311759I		
u = 1.153440 - 0.367601I		
a = -0.297249 + 0.756563I	0.86870 - 1.47310I	9.24158 + 0.66486I
b = -0.989133 - 0.311759I		
u = -1.24490		
a = -1.13302	5.11345	18.8050
b = -0.227826		
u = 1.281610 + 0.133928I		
a = -1.172220 - 0.435450I	2.04381 + 2.88061I	12.72572 - 3.09919I
b = -0.804234 + 0.979321I		
u = 1.281610 - 0.133928I		
a = -1.172220 + 0.435450I	2.04381 - 2.88061I	12.72572 + 3.09919I
b = -0.804234 - 0.979321I		
u = -1.296610 + 0.228232I		
a = 0.146274 + 0.961667I	3.01054 - 4.88727I	15.6926 + 6.5772I
b = -0.862052 - 0.640482I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.296610 - 0.228232I		
a = 0.146274 - 0.961667I	3.01054 + 4.88727I	15.6926 - 6.5772I
b = -0.862052 + 0.640482I		
u = 0.238874 + 0.462215I		
a = 0.0284078 - 0.0494443I	-1.40207 + 2.19140I	8.77126 - 4.72251I
b = 0.868979 - 0.326831I		
u = 0.238874 - 0.462215I		
a = 0.0284078 + 0.0494443I	-1.40207 - 2.19140I	8.77126 + 4.72251I
b = 0.868979 + 0.326831I		
u = 0.452767 + 0.174316I		
a = -0.37480 - 1.75664I	-1.43242 + 2.12619I	10.10877 - 2.97976I
b = 0.957475 - 0.420375I		
u = 0.452767 - 0.174316I		
a = -0.37480 + 1.75664I	-1.43242 - 2.12619I	10.10877 + 2.97976I
b = 0.957475 + 0.420375I		
u = -1.40293 + 0.65488I		
a = 1.40779 - 0.91448I	-17.7758 - 2.1213I	8.50196 + 0.80172I
b = 2.25453 - 0.06910I		
u = -1.40293 - 0.65488I		
a = 1.40779 + 0.91448I	-17.7758 + 2.1213I	8.50196 - 0.80172I
b = 2.25453 + 0.06910I		
u = 1.46039 + 0.53064I		
a = 1.21678 + 1.71521I	-16.8226 + 10.5550I	9.32128 - 4.53620I
b = 2.39771 + 0.19059I		
u = 1.46039 - 0.53064I		
a = 1.21678 - 1.71521I	-16.8226 - 10.5550I	9.32128 + 4.53620I
b = 2.39771 - 0.19059I		
u = 0.319454		
a = 1.00420	0.583408	17.2870
b = -0.260725		

$$II. \\ I_2^u = \langle u^5a + 2u^4a + \dots + 5b - 3a, \ u^5a - 2u^5 + \dots - a - 1, \ u^6 - 3u^4 + 2u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{5}u^{5}a - \frac{2}{5}u^{4}a + \dots - \frac{1}{5}au + \frac{3}{5}a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{5}u^{5}a - \frac{2}{5}u^{4}a + \dots + \frac{8}{5}a - 1 \\ -u^{4}a + u^{2}a + a \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} + 3u^{3} - 2u^{2} - 2u + 2 \\ -\frac{1}{5}u^{5}a - u^{5} + \dots - \frac{2}{5}a - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3}a + u^{3} - au - 2u^{2} - a - u + 2 \\ -u^{5}a + u^{4}a - u^{5} + 2u^{3}a + u^{4} - u^{2}a + 2u^{3} - 2u^{2} - a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5}a + u^{4}a + 2u^{3}a + u^{4} - 2u^{2}a - 3u^{3} - au - 2u^{2} + 6u \\ u^{4}a + u^{4} - u^{2}a - 2u^{3} - au - u^{2} + 2u \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-\frac{8}{5}u^5a - \frac{16}{5}u^4a + \frac{12}{5}u^3a - 4u^4 + \frac{24}{5}u^2a - \frac{8}{5}au + 8u^2 + \frac{4}{5}a + \frac{4}{5}a$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^2 - u + 1)^6$
c_2	$(u^2 + u + 1)^6$
<i>c</i> ₃	$(u^4 - u^2 + 1)^3$
c_5, c_9	$(u^2+1)^6$
<i>C</i> ₆	$u^{12} + 6u^{11} + \dots + 70u + 25$
c_7, c_{11}, c_{12}	$(u^6 - 3u^4 + 2u^2 + 1)^2$
<i>C</i> ₈	$(u^6 + u^4 + 2u^2 + 1)^2$
c_{10}	$u^{12} + 2u^{11} + \dots + 40u + 25$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y^2+y+1)^6$
<i>c</i> ₃	$(y^2 - y + 1)^6$
c_5, c_9	$(y+1)^{12}$
<i>c</i> ₆	$y^{12} + 4y^{11} + \dots - 850y + 625$
c_7, c_{11}, c_{12}	$(y^3 - 3y^2 + 2y + 1)^4$
<i>c</i> ₈	$(y^3 + y^2 + 2y + 1)^4$
c_{10}	$y^{12} - 4y^{11} + \dots + 850y + 625$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.307140 + 0.215080I		
a = 0.634341 - 0.270971I	1.37919 + 4.85801I	9.50976 - 6.44355I
b = -0.011413 + 0.244862I		
u = 1.307140 + 0.215080I		
a = -0.551838 - 0.413870I	1.37919 + 0.79824I	9.50976 + 0.48465I
b = -1.74346 + 0.24486I		
u = 1.307140 - 0.215080I		
a = 0.634341 + 0.270971I	1.37919 - 4.85801I	9.50976 + 6.44355I
b = -0.011413 - 0.244862I		
u = 1.307140 - 0.215080I		
a = -0.551838 + 0.413870I	1.37919 - 0.79824I	9.50976 - 0.48465I
b = -1.74346 - 0.24486I		
u = -1.307140 + 0.215080I		
a = -0.32280 + 1.43855I	1.37919 - 0.79824I	9.50976 - 0.48465I
b = -1.74346 - 1.24486I		
u = -1.307140 + 0.215080I		
a = -1.08442 - 0.99883I	1.37919 - 4.85801I	9.50976 + 6.44355I
b = -0.011413 - 1.244860I		
u = -1.307140 - 0.215080I		
a = -0.32280 - 1.43855I	1.37919 + 0.79824I	9.50976 + 0.48465I
b = -1.74346 + 1.24486I		
u = -1.307140 - 0.215080I		
a = -1.08442 + 0.99883I	1.37919 + 4.85801I	9.50976 - 6.44355I
b = -0.011413 + 1.244860I		
u = 0.569840I		
a = -0.85741 - 2.02468I	-2.75839 - 2.02988I	2.98049 + 3.46410I
b = -0.111148 - 0.500000I		
u = 0.569840I		
a = 2.18213 + 0.26980I	-2.75839 + 2.02988I	2.98049 - 3.46410I
b = 1.62090 - 0.50000I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.569840I		
a = -0.85741 + 2.02468I	-2.75839 + 2.02988I	2.98049 - 3.46410I
b = -0.111148 + 0.500000I		
u = -0.569840I		
a = 2.18213 - 0.26980I	-2.75839 - 2.02988I	2.98049 + 3.46410I
b = 1.62090 + 0.50000I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^6)(u^{20} + 43u^{19} + \dots - 20046u + 625)$
c_2	$((u^2 + u + 1)^6)(u^{20} - u^{19} + \dots - 214u + 25)$
c_3	$((u^4 - u^2 + 1)^3)(u^{20} - u^{19} + \dots + 18u - 5)$
C4	$((u^2 - u + 1)^6)(u^{20} - u^{19} + \dots - 214u + 25)$
c_5,c_9	$((u^2+1)^6)(u^{20}-u^{19}+\cdots+4u-1)$
c_6	$(u^{12} + 6u^{11} + \dots + 70u + 25)(u^{20} + 3u^{19} + \dots - 70u + 1)$
c_7, c_{11}, c_{12}	$((u^6 - 3u^4 + 2u^2 + 1)^2)(u^{20} - u^{19} + \dots + 8u - 1)$
C ₈	$((u^6 + u^4 + 2u^2 + 1)^2)(u^{20} + 3u^{19} + \dots - 162u + 17)$
c_{10}	$(u^{12} + 2u^{11} + \dots + 40u + 25)(u^{20} - u^{19} + \dots - 564u - 2209)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1	$((y^2 + y + 1)^6)(y^{20} - 253y^{19} + \dots - 2.51953 \times 10^8y + 390625)$	
c_2, c_4	$((y^2 + y + 1)^6)(y^{20} + 43y^{19} + \dots - 20046y + 625)$	
<i>c</i> ₃	$((y^2 - y + 1)^6)(y^{20} - y^{19} + \dots - 214y + 25)$	
c_5, c_9	$((y+1)^{12})(y^{20}+41y^{19}+\cdots+84y+1)$	
<i>C</i> ₆	$(y^{12} + 4y^{11} + \dots - 850y + 625)(y^{20} + 49y^{19} + \dots - 2266y + 1)$	
c_7, c_{11}, c_{12}	$((y^3 - 3y^2 + 2y + 1)^4)(y^{20} - 15y^{19} + \dots - 16y + 1)$	
<i>C</i> 8	$((y^3 + y^2 + 2y + 1)^4)(y^{20} + 45y^{19} + \dots - 6660y + 289)$	
c_{10}	$(y^{12} - 4y^{11} + \dots + 850y + 625)$ $\cdot (y^{20} + 89y^{19} + \dots - 52304702y + 4879681)$	